

THE MACMILLAN COMPANY
NEW YORK BOSTON CHICAGO DALLAS
ATLANTA SAN FRANCISCO

MACMILLAN & CO LIMITED LONDON BOMBAY CALCUTTA MELBOURNE

THE MACMILLAN CO OF CANADA LTD
TORONTO

# A

# **DICTIONARY**

OF

# HEMICAL SOLUBILITIES

# INORGANIC

FIRST EDITION

BY

ARTHUR MESSINGER COMEY, Ph D

SECOND EDITION
ENLARGED AND REVISED

BY

ARTHUR MESSINGER COMEY, Ph D

DIRECTOR, EASTERN LABORATORY, E I DU PONT DE NEMOURS AND CO

AND

DOROTHY A HAHN, PH D

PROFESSOR OF CHEMISTRY, MT HOLYOKE COLLECE

New York
THE MACMILLAN COMPANY
1921

All rights reserved

COPYRIGHT 1921 By THE MACMILLAN COMPANY

Set up and printed

Published February 1921

# PREFACE TO FIRST EDITION

For many years a need has been felt by chemists for a book which shall collect into convenient form for ready reference the various data concerning the solubility of chemical substances that have been published from time to time in chemical periodicals and elsewhere

The first mention that can be found of such a plan was made in 1731, when Peter Shaw delivered Chemical Lectures in London, as may be seen from the following —

Extracts from Peter Shaw's Chemical Lectures, publickly read at London in 1731 and 1732 London Second Edition, London 1755 8vo

Page 97 Experiment I —That Water as a Menstruum dissolves more of one body and less of another

[He shows that two ounces of water dissolve two ounces of Epsom salt, five drachms of common salt, and eight grains of cream of tartar Only in the latter case much remained undissolved until boiled ]

"It might be proper for the further Improvement of Chemistry and Natural Philosophy to form a Table of the Time and Quantity wherein all the known Salts are dissolvable in Water — Such a Table regularly formed might ease the Trouble of refining Salts, by shewing at once without future Trial or Loss of Time how much Water each Salt required to dissolve it for Clarification, Filtration, or Crystallization — It would likewise supply us with a ready and commodious Wav of separating any Mixture of Salts, by shewing which would first shoot out of the Mixture upon Crystallization — The same Table might also direct us to a ready and commodious Method of separating two Salts without waiting for Crystallization — "

It was many years, however, before the scheme suggested by Peter Shaw was put into execution. Professor F. H. Storer published the first work that undertook to carry out the idea in its entirety, in 1864, in a book, which he entitled "First Outlines of a Dictionary of Solubilities of Chemical Substances," and which contained a compilation of nearly all the data on the subject published before 1860. It was at once recognized as a most valuable contribution to chemical literature, but for many years it has been difficult to obtain this work, as the limited edition which was published was soon wholly exhausted. Since then nothing has appeared on the subject except the brief tabulations found in various reference books, and no attempt has been made to cover the whole subject.

It is needless to state that the growth of chemical science since the publication of Professor Storer's book has been so enormous that that work has lost, at least to a great extent, the practical value it possessed thirty years ago. This growth has been indeed so great, and the data which have accumulated since 1860 so far surpass the earlier in volume, that a simple revision of Professor Storer's book was impracticable, and it therefore seemed best to start afresh

With the facilities offered by the various scientific libraries at Harvard University, the Massachusetts Institute of Technology, and other libraries in Boston, it has been possible to collect nearly all the data relating to the subject For the work before 1860 Professor Storer's work has been found invaluable

The method pursued has been to form a preliminary list of compounds with more or less data by consulting the two most complete works on inorganic chemistry—Gmelin-Kraut's "Handbuch der anorganischen Chemie" and Graham-Otto-Michaelis's "Lehrbuch" These statements have been verified and elaborated by consulting the original memoirs in all the periodicals devoted to chemical literature which were obtainable The "Jahresbericht der Chemie" also has been used extensively in tracing references, but the original memoirs have always been consulted and references given to them when possible

It has been found impracticable to draw any distinction as to reliability between the various data given by different observers. It was manifestly impossible to attempt to verify experimentally the statements of those who have carried on the researches, for the most assiduous labor of many could only cover a small portion of the attested facts. Therefore, even when two statements are directly contradictory, both have been given with the authority for each. The only exception to this has been made when more recent discoveries have shown beyond any reasonable doubt the falsity of previous work. In this way some of the older manifestly inaccurate work has been omitted. In a majority of cases the more recent work may be considered to be the more accurate, but this is not the invariable rule. A Synchronistic Table of the more common periodicals is given in the Appendix, whereby it is easy to determine the date of the publication of a research to which reference is made.

It may be objected by the practical chemist that most of the work previous to 1850 might well have been omitted, but a great deal of this work possesses at least a historical value, and often furnishes facts which have not since been verified. Much of the earlier work when obviously of less importance, has been printed in smaller type.

The aim has been to include in this volume all analyzed morganic substances, that is, all substances which do not contain carbon, but exception has been in ide in the case of CO<sub>2</sub>, CO, CS<sub>2</sub>, the carbonates, eyanides, ferro-cyanides, etc., which are here included

The work has been brought up to March, 1894, when this volume went to press, and the results of researches published since that time are not included in the present edition

It is hoped that this book will fill to some extent the want that has been felt by chemists for a compilation of this nature. While it has been attempted to make the book as free from errors as possible, nevertheless it is naturally impossible to avoid many mistakes, and the compiler will be very grateful to those who may call his attention to any errors or omissions

# PREFACE TO SECOND EDITION

During the twenty-five years which have elapsed since the publication of the first edition of this dictionary, a very large amount of work has been published in chemical periodicals, containing data concerning the solubility of morganic chemical compounds. As it was impossible for the compiler of the first edition to devote the time necessary for the collecting of the published data, it was necessary to employ assistance, and Dr. Dorothy A. Hahn, Professor of Chemistry, Mt. Holyoke College, was engaged for this work. Dr. Hahn has collected the larger part of the material in this book, which work in spite of its arduous and tedious nature, she has performed in a most painstaking manner.

The compilation and arrangement of the data collected by Dr Hahn, which devolved upon the original author, took much time. This, together with difficulties in printing, caused by the general conditions after the war, has delayed the publication until the present year, although the work was begun in 1916, and it has only been brought up to January 1st of that year

Since the publication of the first edition of this work, Dr Atherton Seidell has brought out two editions of his book, entitled "Solubilities of Inorganic and Organic Substances," which covers quite a different field, as he considers only quantitative data and those only for the commoner substances. Dr Seidell has followed the plan in most cases where there are several available solubility determinations of a substance, of selecting and averaging the more reliable results, and embodying them in tables. Although this undoubtedly facilitates ready reference, it has seemed better to adhere to the original plan of the first edition, and to publish all the data in the form of the original authorities with references and dates, so that the user may be at liberty to use his own judgment in selection. Some few of the tables arranged by Dr Seidell, however, have seemed to possess decided advantages over any other published data and they have been incorporated in the present volume. It is desired also to acknowledge indebtedness to Dr Seidell's work for certain other tables where the original sources were not available to the present compilers.

The same plan and arrangement used in the first edition has been followed with certain claboration, however, of the arrangement of data on the solubility of two or more salts in a solvent, which is explained in the Explanatory Preface

Data published since the first edition on the cobalt and chromium ammonia compounds and those of the platinum group have been omitted, as it seemed that solubility data on those compounds possessed very little general interest

As stated in the preface of the first edition, while every possible attempt has been made to avoid errors, it is manifestly impossible to avoid many mistakes in a work of this nature, and the compiler will be glad to have his attention called to any errors or omissions

# EXPLANATORY PREFACE

In order to reduce this volume to a convenient size the subject-matter has been abbreviated and condensed as far as seemed compatible with clearness, but it has been the aim not to use any abbreviations which are not at once intelligible without consulting the explanatory table. The more common chemical formulæ have been universally used, thereby saving a large amount of space without detracting from ready intelligibility to chemists.

The solubility of the substance in water is first given, the data being arranged chronologically in the longer articles. Then follow the specific gravities of the aqueous solutions, and also any data obtainable regarding their boiling-points, other physical data concerning solutions are not included. Following this is the solubility of the substance in other solvents—first the inorganic acids, then alkali and salt solutions, and finally organic substances.

Owing to the great increase of data, published during the last twenty years, on the simultaneous solubility of two or more salts in a given solvent, it has been found necessary to plan some arrangement, whereby such data can easily be found, and the plan adopted is as follows. The data for the solubility of two salts in a solvent is placed under the salt which comes first according to the alphabetical arrangement in this dictionary, and the order of the data on various salts under the same heading follows the alphabetical order of the salts considered. Thus the data on the solubility of NH<sub>4</sub>Cl+BaCl<sub>2</sub>, NH<sub>4</sub>Cl+CuCl<sub>2</sub>, and NH<sub>4</sub>Cl+PbCl<sub>2</sub>, and NH<sub>4</sub>Cl+(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> are placed under Ammonium Chloride and arranged in the given order. Certain exceptions have been made to this rule, where the data directly concerns the solubility of a salt in a solution of another salt, in which case, it is placed under the former. Numerous cross references, however, are given, which it is hoped will avoid confusion

In many cases no definite distinction can be drawn between the phenomena of solution and decomposition. At present the theory of solution is in a confused state, and until what really takes place when a substance dissolves is thoroughly understood no distinct line can be drawn. The whole subject is unsettled at the present time, for while many chemists believe in the so-called "dissociation" theory, yet the "hydrate" theory is not without its supporters. It is not my intention to discuss the theoretical side of the question, which has been so well treated in many recent works. It is, however, obvious that the phenomena are essentially different, when, for example, sodium carbonate is dissolved in water, in which case the original salt is deposited on evaporation, and when iron is dissolved in sulphuric acid, and the solution deposits a sulphate of iron. Yet it is still the custom to speak of iron as soluble in sulphuric acid, although it would be much more accurate to say that the sulphuric acid was decomposed by the iron. It has thus been found impracticable to draw a sharp line between solu-

tion and decomposition, and the term "soluble" has in general been used where a solution of some sort is formed by the action of the solvent

The matter of alphabetical arrangement of chemical compounds, in the present somewhat confused state of chemical nomenclature, has been a difficult question to decide The plan followed has been practically that of the standard Dictionaries of Chemistry, whereby the compounds of metals with one of the non-metallic elements have been classified under the metals, while the salts of the other acids (the oxygen acids so called and some few others) have been arranged alphabetically under the acids Thus barium chloride is found under barium, while barium chlorate is found under chloric acid. No exception has been made in the case of the rare metals, as is usually the custom in Dictionaries of Chemistry Double salts are to be found under the word which comes first alphabetically, thus, "common alum," potassium aluminum sulphate, is found under aluminum sulphate as aluminum potassium sulphate (under sulphuric acid), but ammonia chrome alum is found under ammonium sulphate as am In the same way the double sulphate and chro monium chromium sulphate mate of potassium is found under potassium chromate (chromic acid), and not under potassium sulphate (sulphuric acid) The double chloride of ammonium and magnesium is found under ammonium chloride (ammonium), while the double chloride of potassium and magnesium is found under magnesium chloride (magnesium) An exception is made, however, in the case of double compounds of salts of oxygen acids with salts containing a single non-metallic element, in which case they are always found under the oxygen acid Thus the double sulphate and chloride of lead, PbSO<sub>4</sub>, PbCl<sub>2</sub>, is found under lead sulphate (sulphuric acid), and not under lead chloride (lead)

The above method in some cases widely separates analogous compounds but it was found to be the only practical way to a strictly alphabetical arrangement, which is no necessary in a book containing so many very short articles

The ammonia addition-products furnished another difficulty. While their nature is more or less definitely understood in the cobalt platinum, etc., compounds, and a definite nomenclature is in general use, there is an absolute lack of anything of the kind in the less definite compounds. It is good usage to speak of cupi animonium compounds, but how shall we design at the analogous cadmium compounds? Cadmiumnonium" has not yet received the sanction of chemists, and AlCli, NH, is a still worse case for naming. I have therefore not attempted to name these compounds, but classified them all under the salts to which the ammonia is added, affixing the word ammonia thus aluminum chloride ammonia, cadmium chloride ammonia, and also cupic chloride ammonia for the salt now almost universally known as cupi ammonium chloride.

The ammonia compounds of cobalt, chromium, increasy, and the platinum metals are arranged alphabetically according to their universally accepted names, a list of which is given under each of those elements

It has further been necessary to settle arbitrarily the question whether a substance should be considered as a double salt or a salt of a compound acid con

taining one of the metals. For example, "fluosilicates" (or silicofluorides, as some may prefer) is the general name for the double fluorides of  $SiF_4$  and a metal, but this unanimity in usage gradually disappears as the basic elements become more nearly alike, so that it is impossible to draw a line between such compounds and a compound such as the double chloride of magnesium and potassium, for which indeed the name "potassium chloromagnesate" has been proposed. The aim has been in all these cases to follow the best usage rather than make an absolutely homogeneous system of nomenclature out of the existing confusion.

In the matter of formulæ no attempt at uniformity has been made Thus in the case above some chemists write the formula of the double chloride of magnesium and potassium as KMgCl<sub>3</sub>, others as KCl, MgCl<sub>3</sub> The form here used has been in most cases that of the author from whom the data are taken

The prefixes mono, di, tri, ortho, pyro, etc, have in general been disregarded in the alphabetical arrangement, and have been printed in italics. Exceptions to this have been made, however, in the cobalt, chromium, etc, ammonium compounds, and in a few others, as dithionic, perchloric, etc, acids. Cross references have been used, so as to prevent any confusion arising from lack of uniformity in this respect.

In the Appendix will be found formulæ and tables for the conversion of the degrees of various hydrometer scales into specific gravity, and a Synchronistic Table of the Periodicals to which references are most frequently made



# **ABBREVIATIONS**

atmos —atmosphere
b -pt —boiling-point
comp —compound
conc —concentrated
corr —corrected
cryst —crystallised, crystalline
decomp —decompose, decomposes,
decomposition, etc
dil —dilute
eutec —eutectic
insol —insoluble
M —a univalent Metal
Min —Mineral

abs ---absolute

mol -molecule

m-pt—melting-point
ord—ordinary
n—normal
ppt, pptd, etc—precipitate, precipitated, etc
pt—part
sat—saturated
sl—slightly
sol—soluble
sp gr—specific gravity
supersat—supersaturated
t°=temperature in Centigrade degrees
temp—temperature
tr pt—transition point
vol—volume

# ABBREVIATIONS OF REFERENCES

A —Annalen der Pharmacie, edited by Liebig and others, 1832–39, continued as Annalen der Chemie und Pharmacie, 1840-73, continued as Justus Liebig's Annalen der Chemie, 1874 - 1915 +406 vols

A ch—Annales de Chimie et de Physique Paris 1st series, 1789–1816, 96 vols, 2nd series, 1817–40, 78 vols, 3rd series, 1841–63, 69 vols, 4th series, 1864–73, 30 vols, 5th series, 1874–83, 30 vols, 6th series, 1884–93, 30 vols, 7th series, 1893–1903, 30 vols, 8th series, 1904–13, 30 vols, 9th series, 1914+, 3 vols

Acta Lund—Acta Universitatis Lundensis, or Lunds Universitets Års-skrift Lund, 1864+Am Chemist—The American Chemist New York, 1870–77 7 vols

Am Ch —The American Chemical Journal, edited by Remsen Baltimore, 1879–1913

50 vols

Am J Sci —American Journal of Science and Arts, edited by Silliman, Dana, and others New Haven 1st series, 1818–45, 50 vols, 2nd series, 1846–70, 50 vols, 3rd series, 1871–95, 50 vols, 4th series, 1896–1915+, 40 vols Also numbered consecutively, 190 vols

Analyst —The Analyst London, 1876–1915+ 45 vols

Ann chim farm — Annali di chimica e di farmacologia Milan, 1886-90 5 vols

Ann des Mines — See Ann Min

Ann Min —Annales des Mines Paris

Ann Phil -Annals of Philosophy London 1st series, 1813-20, 16 vols, new series, 1821–26, 12 vols

Ann Phys -See Pogg and W Ann

Apoth Z —Apotheker-Zeitung Berlin

Arb Kais Gesundheitsamt — Arbeiten aus dem Kaiserlichen Gesundheitsamte

Arch Néer Sc — Archives Néerlandaises des Sciences exactes et naturelles Arch Pharm — Archiv der Pharmacie, continued from Archiv des Apothekervereins in Norddeutschland, which forms the 1st series 1st series, 1822-34, 50 vols, 2nd series, 1835-72, 150 vols, 3rd series, 1873-94+, 32 vols Also numbered consecutively, which system is exclusively used after 3rd series, vol 253 (1915)

Arch sc Phys nat —Archives des sciences physiques et naturelles de la Bibliothèque

universelle de Géneve

A Suppl —Annalen der Chemie und Pharmacie Supplement-Bande Vol 1 1861, vol 11, 1862-63, vol m 1864-65, vol w 1865-66, vol v 1867, vol v 1868, vol vn 1870, vol viii 1872

B-Berichte der deutschen chemischen Gesellschaft Berlin, 1868-1915+ 48 vols

Att Acc Line -Atti della reale accademia dei Lincei, rendconditi, etc B A B-Sitzungsberichte der koniglichen preussischen Akademie der Wissenschaften zu Berlin

Belg Acad Bull —Bulletin de l'Académie Royale des Sciences, des Lettres, et des Beaux-Arts de Belgique

Berz J B - Jahresbericht uber die Fortschritte der physischen Wissenschaften, edited by 30 vols Berzelius 1822–47

Br Arch —Archiv des Apothekervereins im nordlichen Teutschland, etc., edited by Brandes 1st series, 1822-31, 39 vols, corresponds to 1st series of Arch Pharm

Bull Acad Cric —Bulletin international de l'Académie des Sciences de Cracovie

Bull Ac St Pétersb—Bulletin de l'Académie Impériale des Sciences de St Petersbourg Bull Soc —Bulletin des Séances de la Société chimique de Paris 2nd series, 1864-88, 50 vols, 3rd series, 1889-1906, 36 vols, 4th series, 1907-15+, 18 vols

Bull Soc chim Belg —Bulletin de la Société chimique Belgique

Bull Soc ind Mulhouse —Bulletin de la Sociéte industrielle de Mulhouse 1828–49 22 vols Bull Soc Min —Bulletin de la société française de Minéralogie 1878-1915+ 37 vols

C A—Chemical Abstracts American Chemical Society New York C C—Chemisches Centralblatt, continued from Pharmaceutisches Centralblatt

C B Miner—Centralblatt für mineralogie, Geologie und Palæontologie Berlin Chem Ind—Die Chemische Industrie, edited by Jacobsen Berlin Chem Soc—Journal of the Chemical Society of London 1st series, 1849—62, 15 vols, 2nd series, 1863-78, 17 vols, new series, 1878-1915+ The vols are numbered consecutively from 1849 1878-vol 32 Total, 108 vols Chem -tech Centr-Anz —Chemisch-technischer Central-Anzeiger

Chem Weekbl -- Chemiker Weekblad

Chem Z -See Ch Z

Chem Zeitschr - Chemische Zeitschrift

Ch Gaz — The Chemical Gazette London, 1843–59 17 vols
Ch Kal — Chemiker Kalender, edited by Biedermann
Ch Z — Chemiker Zeitung
Ch Z Repert — Chemisches Repertorium Beiblatt zur Chemiker-Zeitung Gothen

Cım —II Čimento Turin, 1852-54 6 vols C N—The Chemical News London, 1860–1915+ 112 vols

Comm —Commentar zur Pharmacopæa germanica by Hager Berlin, 1883

Compt chim —Comptes-rendus mensuels des Travaux chimiques, edited by Laurent a Gerhardt 1845-51 7 vols

C R—Comptes-rendus hebdomadaires des Séances de l'Académie des Sciences Pa.

1835 - 1915 +161 vols

Crell Ann—Chemische Annalen für die Freunde der Naturlehre, etc., edited by Cr 1784-1803 40 vols Dansk Vid For—Oversigt over det kgl danske Videnskabernes Selskabs Forhandling

Copenhagen Dingl —Dingler's Polytechnisches Journal, edited by Dingler and others

330 vols

Edinb Trans—Transactions of the Royal Society of Edinburgh 1788 - 1915 +Ed J Sci — The Edinburgh Journal of Science 1st series, 1824-29, 10 vols, 2nd ser 1829-32, 6 vols Continued as Phil Mag

Electrochem Ind—Electrochemical Industry (Oct , 1902, to Dec , 1904) later Elect chemical and Metallurgical Industry New York

Elektrochem Z — Elektrochemische Zeitschrift

Eng Min J—The Engineering and Mining Journal New York

Gazz ch it —Gazzeta chimica italiana Palermo, 1871-1915+ 45 vols

Gilb Ann —Annalen der Physik, edited by Gilbert 1st series, 1799–1808, 30 vols, 2 series, 1809-18, 30 vols, 3rd series, 1819-24, 26 vols Also numbered consecutive Continued as Pogg 76 vols

Gm -K --Gmelin-Kraut's Handbuch der anorganischen Chemie, 6te Auflage

7te Auflage, 1907–1915+ Gr -Ot —Graham-Otto's ausfuhrliches Lehrbuch der anorganischen Chemie, 5te Auflage, Michaelis 1878-89

Jahrb Miner — Jahrbuch für Mineralogie, Geologie und Palæontologie 1832 Then Neues Jahrbuch für Minerologie Stuttgart Heidelberg

Jahrb d Pharm — Jahresbericht der Pharmacie

J Am Chem Soc — Journal of the American Chemical Society New York, 1876-1915 37 vols

J Anal Appl Ch — The Journal of Analytical and Applied Chemistry, edited by Hε 1887–93 7 vols

J B — Jahresbericht über die Fortschritte der Chemie, u. s. w.

J Chim méd — Journal de Chimie médicale, de Pharmacie, et de Ioxicologie 1st ser 1825-34, 10 vols, 2nd series, 1835-44, 10 vols, 3nd series, 1845-54, 10 vols, series, 1855–64, 10 vols, 5th series, 1865–76 12 vols Jena Zeit — Jenaische Zeitschrift für Medicin und Naturwissenschaften

J Pharm — Journal de Pharmacie et de Chimie Paris 2nd series, 1815-41, 27 vols, series, 1842–64, 46 vols, 4th series, 1865–79, 30 vols, 5th series, 1879–94, 6th series, 1895–1909, 30 vols, 7th series, 1910–15+, 10 vols s—Journal der Physik, edited by Gren 1790–98 12 vols Continued as Gilb Air

J Phys —Journal der Physik, edited by Gren

J Phys Ch—The Journal of Physical Chemistry Ithaca, N Y J pr—Journal fur praktische Chemie, edited by Erdmann, Kolbe, and v Meyer Leipz 1st series, 1834-69, 108 vols, 2nd series, 1870-1915+ 92 vols

russ phys Chem Soc — Journal de la Société physico-chemique russe St Pétersbou Russ Soc — Journal of the Russian Chemical Society St Petersburg, 1869–1915 47 vols

J Soc Chem Ind —Journal of the Society of Chemical Industry London, 1882-1915 34 vols

S C I —See above

J Tok Chem Soc — Journal of the Tokyo Chemical Society

Kastn Arch — Archiv für die gesammte Naturlehre, edited by Kastner Nuremberg, 182 25 vols

Listy Chemické —Listy Chemické, edited by Preis and others Prague

Lond R Soc Proc — See Roy Soc Proc

Lund Univ Arsk —Lunds Universitets Ars-skrift Lund

M —Monatshefte fur Chemie und verwandter Theile der anderer Wissenschaften Vienna.

1880–1915+ 36 vols M A B—Sitzungsberichte der mathematisch-physikalischen Classe der kgl bayerischen Akademie der Wissenschaften zu München

Mag Pharm — Magazin der Pharmacie 1823–31

Mém Acad St Pétersb — Mémoires de l'Académie Impériale des Sciences de Saint-Pétersbourg

M Ch—See M

Mem Coll Sci Kyoto —Memoirs of the College of Science, Kyoto Metall —Metallurgie Halle

Miner Jahrb — Neues Jahrbuch fnr Mineralogie, etc. 1833–73 40 vols Miner Mag — Mineralogical Magazine London

Miner Mitt —Mineralogische und petrographische Mitteilungen Monit Scient —Le Moniteur Scientifique, edited by Quesnesville Paris

N Arch Sc ph nat — Nouvelles Archives des Sciences physiques et naturelles

N Cim —Il nuovo Cimento Pisa, 1855-61 14 vols

N Edinb Phil J—New Edinburgh Philosophical Journal 1819-64 90 vols

N Jahrb Miner—Neues Jahrbuch für Mineralogie Stuttgart N Jahrb Pharm—Neues Jahrbuch der Pharmacie 1796–1840 42 vols

Pharm - Neues Journal der Pharmacie für Aerzte, etc., edited by Trommsdorff 1817–34 27 vols

N Rep Pharm—Neues Repertorium fur Pharmacie 1852-76 25 vols

Pharm Centralbl —Pharmaceutisches Centralblatt
C C Continued as 1830-49 20 vols

Pharm Era —Pharmaceutical Era

Pharm J Trans —Pharmaceutical Journal and Transactions

Pharm Post —Pharmaceutische Post Wien

Pharm Vierteljb —Pharmaceutische Vierteljahresberichte
Pharm Weekbl —Pharmaceutisches Weekblad
Pharm Ztg —Pharmaceutische Zeitung
Phil Mag —The Philosophical Magazine London 1st series, 1814–26, 26 vols, 2nd series
1827–32, 11 vols, 3rd series, 1832–50, 37 vols, 4th series, 1851–75, 50 vols, 5th
series, 1876–1900, 50 vols, 6th series, 1901–1915+, 30 vols
Phil Mag Ann —The Philosophical Magazine and Annals of Chemistry, etc Corresponds

to Phil Mag 2nd series
Phil Trans—The Philosophical Transactions of the Royal Society of London 1665–1915+

Phys Rev —The Physical Review

Pogg—Annalen der Physik und Chemie, edited by Poggendorf 1st series, 1824–43, 60 vols 2nd series, 1844-53, 30 vols, 3rd series, 1854-63, 30 vols, 4th series, 1864-73, 30 vols, 5th series, 1874-77, 10 vols Continued as W Ann

Polyt Centralbl —Polytechnisches Centralblatt 1st series, 1835–46, 12 vols, 2nd series, 1847–73, 30 vols

Proc Am A A S-Proceedings of the American Association for the Advancement of Science

Proc Am Acad —Proceedings of the American Academy of Arts and Sciences 1846 - 1915 +50 vols

Proc Am Phil Soc —Proceedings of the American Philosophical Society Philadelphia

Proc Chem Soc —Proceedings of the Chemical Society of London

Proc K Akad Wet -See Ver K Akad Wet

Proc Soc Manchester —Proceedings of the Literary and Philosophical Society of Manchester Proc Roy Soc -See Roy Soc Proc

Q J Sci —Quarterly Journal of Science London, 1816-26 22 vols

Rass Min —Rassegna mineraria, metallurgica e chimica

Real Ac Linc — Atti di Reale Accademia dei Lincei Rome

Rend Ac Linc See Att Ac Linc

Rep anal Ch — Repertorium der analytischen Chemie 1881-87 7 vols

Rep Brit Assn Adv Sci -Reports of the Meetings of the British Association for the Advancement of Science

Repert — See Rep Pharm

Répert chim appl —Répertoire de Chimie pure et appliquée Paris, 1858-63 9 vols Rep Pharm — Repertorium für die Pharmacie, edited by Buchner 1st series, 1815-34, 50 vols, 2nd series, 1835–48, 50 vols, 3rd series, 1849–51, 10 vols Continued as N Rep Pharm

Rev gén chim—Revue génerale de chimie pure et appliquée

Rev Mét —Revue de Métallurgie Paris

Roy Soc Proc -Proceedings of the Royal Society of London 1832-1915+ 92 vols

Roy Soc Trans—Abstracts of Philosophical Transactions of the Royal Society of London 1832-54 6 vols Continued with Roy Soc Proc

R t c—Recueil des Travaux chimiques des Pays-Bas Leiden, 1882–1915+ 34 vols

Russ Zeit Pharm—Pharmaceutische Zeitschrift für Russland Scheik Verhandel—Scheikundige Verhandelingen en Onderzoekingen, edited by Mulder Rotterdam, 1857-64 3 vols

Scher J —Allgemeines Journal der Chemie, edited by Scherer 1798-1810 17 vols Continued as Schw J

Schw J-Journal für Chemie und Physik, edited by Schweigger 1st series, 1811-20, 30 vols, 2nd series, 1821–30, 30 vols, 3rd series, 1831–33, 9 vols Continued as J pr

Sill Am J—American Journal of Science, edited by Silliman, etc. See Am J Sci. Sitzungsb. bohms. Gesell.—Sitzungsberichte der königlichen bohmschen Gesellschaft der Wissenschaften im Prag

Storer's Dict -First Outlines of a Dictionary of Solubilities of Chemical Substances, by

F H Storer Boston, 1864 Sv V A F — Ofversigt af kongl Svenska Vetenskaps-Akademien Forhandlingar holm

Sv V A H —Kongliga Svenska Vetenskaps-Akademiens Handlingar Stockholm Sv V A H Bih —Bihang till kongl Svenska Vetenskaps-Akademiens Handlingar

Techn J B —Jahresbericht über die Fortschritte der chemischen Technologie, edited by Wagner, Fischer, etc

Trans Am Electrochem Soc - Transactions of the American Electrochemical Society Philadelphia

Trans Faraday Soc - Transactions of the Faraday Society London

Trans Roy Soc -Philosophical Transactions of the Royal Society of London

Ver K Akad Wet — Verslag Koninkle Akademie van Wettenschappen, Amsterdam

W A B-Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften zu Wien

vv Ann—Annalen der Physik und Chemie, edited by Wiedemann Continuation of Pogg 1877-1899 69 vols 4th series, 1900-1915+ 48 vols

W Ann Beibl—Beiblatter zu Wiedemann's Annalen Leipzig

Z anal—Zeitschrift für analytische Chemie, edited by Fresenius Wiesbaden, 1862–1915+

Z anorg—Zeitschrift für anorganische Chemie, edited by Kruss 1892–1915+ 93 vols Z B H Sal—Zeitschrift für das Berg, Hutten, und Salinen-Wesen in dem preussischen Berlin

Staate Zeit angew Ch -Zeitschrift für 14c Chemie Berlin, 1887-1915+ 29 vols Zeit Chem — Zeitschrift für Chemie und Pnirmacie 1st scries, 1858-64, 6 vols., 2nd scries,

"N F," 1865-71, 7 vols Zeit d allgem oster Apothekeiv —Zeitschrift des allgemeinen osterieichischen Apothekei vereins

Zeit ges Nat-Zeitschrift für die gesammten Naturwissenschaften

Zeit Krist —Zeitschrift für K 1 c und Mineralogie 1877-1915+ 51 vols

Zeit Pharm -- See Russ Zeit Phirm

Z Flektrochem —Zeitschrift für I lektrochemie – Hille

Z Phys Ch —Zeitschrift für physik ilische Chemie, edited by Oswild and van t Hoff 1887-1915+ 90 vols

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chem — /citschrift für ilv- loz ile Chemie Strissburg

physiol Chemie Strissburg

physiol Chemie Strissburg

physiol Chemie Strissbur

Z Ver Zuckerind —Zeitschrift des Verein der aeutschen Zuckerindustrie

# A DICTIONARY OF CHEMICAL SOLUBILITIES INORGANIC

| , |   |  |   |  |
|---|---|--|---|--|
|   | • |  | • |  |
|   |   |  |   |  |
|   |   |  |   |  |
|   |   |  |   |  |
|   |   |  |   |  |
|   |   |  |   |  |
|   |   |  |   |  |
|   |   |  |   |  |
|   |   |  |   |  |

OF

# CHEMICAL SOLUBILITIES

#### INORGANIC

#### Actinium emanation

Solubility coefficient of actinium emanation in  $H_2O$  at room temp is 2. If the solubility of actinium emanation in

If the solubility of actinium emanation in  $H_2O$  is made = 1, the relative solubility of the emanation in sat KCl+Aq=0.9, in conc  $H_2SO_4=0.95$ , in ethyl alcohol=1.1, in amyl alcohol=1.6, in benzaldehyde=1.7, in benzene=1.8, in toluene=1.8, in petroleum=1.9, in  $CS_2=2.1$  at  $1.8^\circ$ 

(Hevesy, Phys Zeit 1911, 12 1221)

# Air, Atmospheric

#### See also Nitrogen and Oxygen

100 vols  $\rm\,H_2O$  at 15° and 760 mm absorb about 5 vols atmospheric air (Saussure)

1 vol  $H_2O$  at t° and 760 mm pressure absorbs V vols atmospheric air reduced to 760 mm and 0°

| t° | v       | t° | v       | t° | v       |
|----|---------|----|---------|----|---------|
| 0  | 0 02471 | 7  | 0 02080 | 14 | 0 01822 |
| 1  | 0 02406 | 8  | 0 02034 | 15 | 0 01795 |
| 2  | 0 02345 | 9  | 0 01192 | 16 | 0 01771 |
| 3  | 0 02287 | 10 | 0 01953 | 17 | 0 01750 |
| 4  | 0 02237 | 11 | 0 01916 | 18 | 0 01732 |
| 5  | 0 02179 | 12 | 0 01882 | 19 | 0 01717 |
| 6  | 0 02128 | 13 | 0 01851 | 20 | 0 01701 |

(Bunsen's Gasometry)

11  $H_2O$  absorbs cc N and O from air at t° and 760 mm pressure

| t° | cc<br>N | cc<br>O | N+O   |
|----|---------|---------|-------|
| 0  | 16 09   | 8 62    | 24 71 |
| 5  | 14 18   | 7 60    | 21 78 |
| 10 | 12 70   | 6 79    | 19 49 |
| 15 | 11 67   | 6 25    | 17 92 |
| 20 | 11 08   | 5 93    | 17 01 |

(Bunsen, Gasometr Methoden, 2te Aufl 209, 220)

11 H<sub>2</sub>O absorbs cc N and O from air at t° and 760 mm pressure (dry)

| to | cc N  | cc O | и+о   | %0    |
|----|-------|------|-------|-------|
| 10 | 15 47 | 7 87 | 23 34 | 33 74 |
| 15 | 13 83 | 7 09 | 20 92 | 33 86 |
| 20 | 12 76 | 6 44 | 19 20 | 33 55 |
| 25 | 11 78 | 5 91 | 17 69 | 33 40 |

(Roscoe and Lunt, Chem Soc 55 568)

11 H<sub>2</sub>O absorbs cc N and O from air at t° and 760 mm

| t°                                         | cc N                                               | cc O                                          | %0                                                 |
|--------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| 0<br>6 0<br>6 32<br>9 18<br>13 70<br>14 10 | 19 53<br>16 34<br>16 60<br>15 58<br>14 16<br>14 16 | 10 01<br>8 28<br>8 39<br>7 90<br>7 14<br>7 05 | 33 88<br>33 60<br>33 35<br>33 60<br>33 51<br>33 24 |

(Pettersson and Sondén, B 22 1439)

1 l H<sub>2</sub>O absorbs cc N (0° and 760 mm) from atmospheric air at t° and 760 mm pressure (dry)

| - | t°                    | cc N                                      | t°                         | cc N                                      | to                   | cc N                             |
|---|-----------------------|-------------------------------------------|----------------------------|-------------------------------------------|----------------------|----------------------------------|
|   | 0<br>2<br>4<br>6<br>8 | 19 14<br>18 20<br>17 34<br>16 54<br>15 81 | 10<br>12<br>14<br>16<br>18 | 15 14<br>14 53<br>13 98<br>13 48<br>13 03 | 20<br>22<br>24<br>25 | 12 63<br>12 27<br>11 95<br>11 81 |

(Hamberg, J pr (2) 33 447)

1 l  $H_2O$  absorbs cc N from air at t° and 760 mm pressure

| t° | cc N  | t° | cc N  | t° | cc N  |
|----|-------|----|-------|----|-------|
| 0  | 19 29 | 10 | 15 36 | 20 | 12 80 |
| 5  | 17 09 | 15 | 13 95 | 25 | 11 81 |

(Dittmar, Challenger Expedition, vol 1 pt 1)

11  $H_2O$  sat with air at t° and 760 mm contains cc O (red to 0° and 760 mm)

| t°                                             | cc O                                                                                             | t°                                                             | cc O                                                                                            | t°                                                 | ec O                                                                          |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 10 187<br>9 910<br>9 643<br>9 387<br>9 142<br>8 907<br>8 682<br>8 467<br>8 260<br>8 063<br>7 873 | 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21 | 7 692<br>7 518<br>7 352<br>7 192<br>7 038<br>6 891<br>6 730<br>6 614<br>6 482<br>6 356<br>6 233 | 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 6 114<br>5 999<br>5 886<br>5 776<br>5 669<br>5 564<br>5 460<br>5 357<br>5 255 |  |  |
| T 20 1570                                      |                                                                                                  |                                                                |                                                                                                 |                                                    |                                                                               |  |  |

(Winkler, B 22 1773)

 $1 \text{ vol } \text{H}_2\text{O} \text{ absorbs } 0 \text{ } 01748 \text{ vol air at } 24 \text{ } 05^{\circ} \text{ and } 760 \text{ mm} \text{ pressure} \text{ (Winkler, B } 21 \text{ } 2851 \text{ )}$ 

Composition of the absorbed air between 0° and 24° is 34 91% O and 65 09% N (Bunsen), between 15° and 16°, 32 17% O and 67 83% N (Konig and Kranch, Z anal 19 259), 32% O and 68% N (Regnault), at 0°, 35 1% O, 10°, 34 8% O, 20°, 34 3% O, 25°, 33 7% O (Winkler, B 21 2483) See also Roscoe and Lunt, and Pettersson and Sondén, page 1

Solubility of atmos oxygen and mitrogen in  $1000 \text{ cc } H_2O$  at 760 mm pressure (cale )

| Temp                       | Oxygen | Nitrogen | Temp | Oxvgen | Nitrogen |
|----------------------------|--------|----------|------|--------|----------|
|                            | cc     | cc       |      | cc     | ec       |
| 0°                         | 10 19  | 18 45    | 29°  | 533    | 10 30    |
| 1                          | 9 91   | 17 99    | 30   | 524    | 10 15    |
| 2                          | 9 64   | 17 55    | 31   | 5 15   | 9 99     |
| 1<br>2<br>3<br>4<br>5<br>6 | 9 39   | 17 12    | 32   | 5 07   | 9.83     |
| 4                          | 9 14   | 16 71    | 33   | 499    | 9 67     |
| 5                          | 8 91   | 16 30    | 34   | 491    | 9 52     |
| 6                          | 8 68   | 15 91    | 35   | 453    | 9 37     |
| 7                          | 8 47   | 15 54    | 36   | 4 76   | 9 22     |
| 8                          | 826    | 15 18    | 37   | 4 69   | 9.08     |
| 7<br>8<br>9                | 8 06   | 14 83    | 35   | 4 62   | 8 94     |
| 10                         | 7 87   | 14 50    | 39   | 4 55   | 8 81     |
| ĩi                         | 7 69   | 14 19    | 40   | 4 48   | 8 67     |
| 12                         | 7 52   | 13 89    | 41   | 4 42   | 5 55     |
| 13                         | 7 35   | 1361     | 42   | 4 35   | 5 4 3    |
| 14                         | 7 19   | 13 35    | 43   | 4 28   | S 31     |
| 15                         | 7 04   | 13 07    | 44   | 4 22   | 8 20     |
| 16                         | 6 89   | 1283     | 45   | 4 15   | 8 09     |
| 17                         | 6 75   | 12 57    | 46   | 4 09   | 7 97     |
| 18                         | 6 61   | 12 34    | 47   | 4 03   | 7 87     |
| 19                         | 6 48   | 12 12    | 48   | 3 97   | 7 76     |
| 20                         | 6 35   | 1191     | 49   | 391    | 7 65     |
| 21                         | 6 23   | 1171     | 50   | 3 85   | 7 55     |
| 22                         | 6 10   | 11 52    | 51   | 3 79   | 7 45     |
| 23                         | 5 98   | 11 33    | 52   | 374    | 7 34     |
| 24                         | 5 86   | 11 14    | 53   | 3 68   | 7 24     |
| 25                         | 5 75   | 10 96    | 54   | 3 62   | 7 13     |
| 26                         | 5 64   | 10 79    | 55   | 3 56   | 7 03     |
| 27                         | 5 54   | 1062     | 56   | 3 51   | 692      |
| 28                         | 5 43   | 10 46    | 57   | 345    | 681      |

Solubility of atmos etc -- Continued

| 10 0 2 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |        |          |      |        |                  |  |
|-----------------------------------------|--------|----------|------|--------|------------------|--|
| Temp                                    | Oxygen | Nitrogen | Temp | Oxygen | Nitroge          |  |
|                                         | cc     | cc       |      | cc     | cc               |  |
| 58°                                     | 3 39   | 671      | 80°  | 1 97   | 4 03             |  |
| 59                                      | 3 34   | 6 60     | 81   | 1 89   | 3 88             |  |
| 60                                      | 3 28   | 6 50     | 82   | 181    | 3 73             |  |
| 61                                      | 3 22   | 6 39     | 83   | 173    | 3 57             |  |
| 62                                      | 3 16   | 6 27     | 84   | 1 65   | 3 41             |  |
| 63                                      | 3 10   | 6 16     | 85   | 1 57   | 3 24             |  |
| 64                                      | 304    | 6 05     | 86   | 1 48   | 3 07             |  |
| 65                                      | 2 98   | 5 94     | 87   | 1 39   | 2 89             |  |
| 66                                      | 292    | 5 82     | 88   | 1 30   | 271              |  |
| 67                                      | 285    | 5 70     | 89   | 1 21   | 2 52             |  |
| 68                                      | 279    | 5 59     | 90   | 1 11   | 2 32             |  |
| 69                                      | 273    | 5 47     | 91   | 102    | 2 12             |  |
| 70                                      | 266    | 5 35     | 92   | 092    | 1 91             |  |
| 71                                      | 260    | 5 23     | 93   | 081    | 17(              |  |
| 72                                      | 2 53   | 5 10     | 94   | 071    | 1 48             |  |
| 73                                      | 2 47   | 4 98     | 95   | 0 60   | 1 2 <sup>r</sup> |  |
| 74                                      | 2 40   | 4 85     | 96   | 048    | 10               |  |
| 75                                      | 2 33   | 4 72     | 97   | 0.37   | 07               |  |
| 76                                      | 2 26   | 4 59     | 98   | 0.27   | 05               |  |
| 77                                      | 2 19   | 4 45     | 99   | 0.13   | 02               |  |
| 78                                      | 2 12   | 4 32     | 100  | 000    | 0.01             |  |
| 79                                      | 2 04   | 4 18     | 1 1  |        |                  |  |

(Winkler, B 1901, 34 1440)

Absorption of atmospheric an by H<sub>2</sub>O at and 760 mm pressure  $\beta$  = coefficient absorption  $\beta_1$  = "Solubility" (Sunder oxygen)

| t°                                   | β                                                       | $\boldsymbol{\beta}_1$                                  | t                                      | β                                                       | <b>β</b> 1 |
|--------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|---------------------------------------------------------|------------|
| 0<br>5<br>10<br>15<br>20<br>25<br>30 | 0 02881<br>2543<br>2264<br>2045<br>1869<br>1724<br>1606 | 0 02864<br>2521<br>2237<br>2011<br>1526<br>1671<br>1539 | 55<br>60<br>65<br>70<br>75<br>80<br>85 | 0 01253<br>1216<br>1182<br>1156<br>1137<br>1126<br>1119 |            |
| 35<br>40<br>45<br>50                 | 1503<br>1418<br>1351<br>1297                            | 1420<br>1315<br>1224<br>1140                            | 95                                     | 1109<br>1105                                            | 01<br>00   |

(Winkler B 1901 34 1409)

Section than pure H.O., but their itio between O. incremiums constant. In section that with it 6.22° the oxygen was 33.50% of the tegas absorbed. (Pettersson and Sonden.)

1.1 sect-water absorbs ce N and O from at t° and 760 mm pressure

| t                  | ec N                             | ec ()                        | N +0                             | % (                           |
|--------------------|----------------------------------|------------------------------|----------------------------------|-------------------------------|
| 0<br>5<br>10<br>15 | 14 41<br>13 22<br>12 08<br>11 01 | 7 77<br>6 95<br>6 29<br>5 70 | 22 18<br>20 15<br>18 37<br>16 71 | 35 ()<br>34 3<br>34 2<br>34 1 |
| /TD                | N.T.                             | NT -                         |                                  | Ti and                        |

(Tornoe, Norwegian North Atlantic Exp Chem 15) 1 l sea water absorbs cc N from air at to and 760 mm

| t° | cc N  | t° | cc N  | t° | cc N  |
|----|-------|----|-------|----|-------|
| 0  | 15 60 | 10 | 12 47 | 2C | 10 41 |
| 5  | 13 86 | 15 | 11 34 | 25 | 9 62  |

(Dittmar)

11 sea-water absorbs cc N ( $0^{\circ}$  and 760 mm) from atmospheric air at to and 760 mm pressure (dry)

| t                     | cc V                                      | t°                         | cc N                                      | t                    | cc N                          |
|-----------------------|-------------------------------------------|----------------------------|-------------------------------------------|----------------------|-------------------------------|
| 0<br>2<br>4<br>6<br>8 | 14 85<br>14 20<br>13 60<br>13 04<br>12 53 | 10<br>12<br>14<br>16<br>18 | 12 06<br>11 62<br>11 23<br>10 87<br>10 54 | 20<br>22<br>24<br>25 | 10 25<br>9 98<br>9 73<br>9 62 |

(Hamberg)

Absorption of air which is free from carbonic acid by H  $SO_4$  at 18° and 760 mm  $\alpha =$ coefficient of solubility

| H <sub>2</sub> SO <sub>4</sub> | α      | H <sub>2</sub> SO <sub>4</sub> | α      |
|--------------------------------|--------|--------------------------------|--------|
| 98%                            | 0 0173 | 70%                            | 0 0055 |
| 90%                            | 0 0107 | 60%                            | 0 0059 |
| 80%                            | 0 0069 | 50%                            | 0 0076 |

(lower, Z anorg 190b, **50**, 388)

Absolute alcohol absorbs 0 11 vol gas from air 1/3 of which is O and /3 N On mixing with an equal vol H O /3 of the dissolved gas is given off (Dobereiner) 100 vols alcohol (951%) absorb 141 vols air (Robinet C R 58 608) 100 vols petroleum absorb 6 8 vols air

6 89 oil of lavender 140 benzene oil of turpentine (Robinet lc)

1 vol ether at 760 mm pressure absorbs 0290 vols in at 0°, 0287 vols at 10°, 0.286 vols at 15° (Christoff Z phys Ch 1912, 79 459)

#### Alcohol C<sub>2</sub>H<sub>5</sub>OH

| Sp gr o         | op gr of purcethyl alcohol + Aq at 25° |           |                        |  |  |  |  |
|-----------------|----------------------------------------|-----------|------------------------|--|--|--|--|
| %<br>deohol     | >p ₽t                                  | alcohol   | Sp gr                  |  |  |  |  |
| 0               | 0 997077                               | 55        | 0 898502               |  |  |  |  |
| <u>2</u><br>5   | 0 993359<br>0 988166                   | 60        | 0 886990<br>0 875269   |  |  |  |  |
| 6<br>10         | 0 986563<br>0 980434                   | 70<br>75  | 0 863399<br>0 851336   |  |  |  |  |
| 15<br>20        | 0 973345<br>0 966392                   | 80<br>85  | 0 839114<br>0 826596   |  |  |  |  |
| 25              | 0 958946                               | 90        | 0.813622               |  |  |  |  |
| 30<br>35        | 0 950672<br>0 941459                   | 95<br>98  | $0.799912 \\ 0.791170$ |  |  |  |  |
| $\frac{40}{45}$ | $0931483 \ 0920850$                    | 99<br>100 | 0 788135<br>0 785058   |  |  |  |  |
| 50              | 0 909852                               | -         | -                      |  |  |  |  |

(Osborne, McKelvy and Bearce, Bureau of Standards, Sci Paper No 197)

# Alum, Ammonia

See Sulphate, aluminum ammonium

#### Alum, Chrome

See Sulphate, aluminum chromium

#### Alum, Iron

See Sulphate, aluminum ferric

#### Alum, Potash

See Sulphate, aluminum potassium

#### Alumina

See Aluminum oxide

#### Aluminic acid, $H_2Al_2O_4 = Al_2O_3$ $H_2O_3$

Aluminum hydroxide possesses acid properties and salts corresponding to an acid of the above formula exist

See Aluminum hydroxide

#### Alummates

All aluminates are insol in H<sub>2</sub>O except those of K and Na (Fremy) and Ba (Beckmann, J pr (2) 26 385)

#### Barium aluminate, BaAl O<sub>4</sub>+4H O

Sol in 10 pts HO, can be recryst from

alcohol (Deville J pr 87 299) +5H O Sl sol in H<sub>2</sub>O with decomp (Allen, Am Ch J 1900, 24 313)

+7HOSl sol in cold, not completely sol in hot HO Sol in cold dil HCl+Aq (Beckmann, J pr (2) 26 385)

Ba Al<sub>2</sub>O +5H O Sol in 20 pts H O by

boiling (Beckmann, B 14 2151)
Insol in alcohol

Sl sol in HO with decomp insol in alcohol (Allen, Am Ch J 1900, **24** 311)

BasAl O6+7-11H O Sol in 15 pts H O with decomp into Ba Al O +5H O, insol in alcohol (Beckmann)

Barium aluminate bromide, BaAl O<sub>4</sub> BaBr +11HO

Sol in HO (Beckmann, J pr (2) 26 385, 474)

Barium aluminate chloride, BaAl O<sub>4</sub>, 3BaCl<sub>2</sub> +6HO

Sol in HO (Beckmann le) BaAl O4, BaCl +11HO Sol in HO (Beckmann, 1 c)

Barium aluminate iodide, BiAl O4, BiI Sol in H<sub>2</sub>O (Beckmann lc)

#### Calcium aluminate, CaO, Al O<sub>3</sub>

Decomp by H O but does not "set in HCl, insol in HNO<sub>3</sub> H SO<sub>4</sub>, and HF (Dufau, C R 1900, **131** 54<sub>2</sub>)

 $Ca_2Al_2O_5+7HO$ Slowly decomp H<sub>2</sub>O, sl sol in H O (Allen, Am Ch J 1900, **24** 316)

Ca<sub>3</sub>Al O<sub>6</sub> Insol in H<sub>2</sub>O, not decomp by KOH+Aq, sol in acids (Tissier, C R 48 627)

#### Cobalt aluminate

"Thenard's or Lethner's blue" Insol in

CoAl<sub>2</sub>O<sub>4</sub> Insol in H<sub>2</sub>O and acids (Ebel-

Cobalt magnesium aluminate, [MgCo]Al<sub>2</sub>O<sub>4</sub> "Smnel Blue" Insol in H2O or HCl+Aq (Ebelmen)

#### Glucinum aluminate, GlAl<sub>2</sub>O<sub>4</sub>

Min Chrysoberyll Not attacked by acids, but decomp by KOH+Aq

Iron (ferrous) aluminate, FeAl<sub>2</sub>O<sub>4</sub>

Min Hercymte Not attacked by acids

Lithium aluminate, LiAlO2

Sol in H<sub>2</sub>O (Weyberg, C C 1906, II **1659**)

Lithium hydrogen aluminate, LiHAl<sub>2</sub>O<sub>4</sub>+  $5H_2O$ 

Sl sol in  $H_2O$ , decomp on boiling (Allen, Am Ch J 1900, 24 310)

#### Magnesium aluminate, MgAl<sub>2</sub>O<sub>4</sub>

Min Spinel Insol in H<sub>2</sub>O

Insol in HNO<sub>3</sub>+Aq, very sl sol in HCl +Aq, partly sol in H<sub>2</sub>SO<sub>4</sub> at boiling temp (Abich, Pogg 23 316) Sol by standing 2 hours at 210° with a mixture of 3 pts H<sub>2</sub>SO<sub>4</sub> and 1 pt H<sub>2</sub>O<sub>2</sub> or by

boiling with this mixture together with HF (Mitscherlich, J pr 81 108)

Sl sol in HCl, HF, and H2SO4, insol in HNO<sub>3</sub> (Dufau, Bull Soc 1901, (3) 25 669)

#### Manganous aluminate

Insol in H<sub>2</sub>O and acids (Fbelmen, A ch (3) **22** 225)

MnAl<sub>2</sub>O<sub>4</sub> Insol in HCl+Aq, readily

attacked by HF, HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>

Decomp by fusion with alkali chlorate, nitrate, oxide or carbonate (Dufau, C R 1902, **135** 963)

#### Nickel aluminate

Insol in H<sub>2</sub>O

#### Potasssium aluminate, K<sub>2</sub>Al<sub>2</sub>O<sub>4</sub>+3H O

Decomp by dissolving in pure H<sub>2</sub>O with separation of Al<sub>2</sub>O<sub>3</sub> (Fremy, A ch (3) 12 362) Can be recrystallised from water containing a little alkali, without decomposition (Fremy)

Insol in alcohol

Sodium aluminate, Na<sub>2</sub>Al<sub>2</sub>O<sub>4</sub> Easily and completely sol in cold  $H_2O$ (Schaffgotsch, Pogg 43 117) İnsol in alcohol  $+4H_2O$ (Allen, Am Ch J 1900, 24 308)

Miscible with hot H<sub>2</sub>O, and as  $Na_6Al_2O_6$ sol as NaOH in cold H2O Insol in alcohol but decomp thereby (Tissier, C R 43 102)

Strontium aluminate, Sr<sub>8</sub>Al<sub>2</sub>O<sub>6</sub>+6H<sub>2</sub>O

Sl sol in H<sub>2</sub>O (with slow decomp in Aq (Allen, Am Ch J 1900, 24 314) solution)

#### Thallium aluminate, Tl<sub>4</sub>Al<sub>2</sub>O<sub>5</sub>+7H<sub>2</sub>O

Not completely sol in, but slowly hydrolysed by H.O

Readily sol in dil acids and in the fixed alkalies (Hawley, J Am

Insol in abs alcohol Chem Soc 1907, 29 303)

Zinc aluminate, ZnAl<sub>2</sub>O<sub>4</sub>

Insol in acids or alkalies Min Gahnite (Automolite)

+xH<sub>2</sub>O Sol in KOH, and NH<sub>4</sub>OH+A<sub>0</sub> (Berzelius )

# Aluminicoantimoniotungstic acid

Ammonium aluminicoantimoniotungstate.  $6(NH_4)_2O$ ,  $2Al_2O_3$ ,  $3Sb_2O_5$ ,  $18WO_3+$ 17H<sub>2</sub>O

A shellac-like gum (Daniels, J Am Chem Soc 1908, **30** 1856)

Barium aluminicoantimoniotungstate, 5BaO,  $2Al_2O_3$ ,  $3Sb_2O_5$ ,  $18WO_3+6H_2O$ 

Somewhat insol in dil HCl J Am Chem Soc 1908, 30 1857)

Silver aluminicoantimoniotungstate, 6Ag O,  $2Al_2O_3$ , 3Sb  $O_5$ ,  $18WO_3 + 12H O$ 

PptSol in NH4OH+Aq but requires HNO3 (1 10) to dissolve it (Daniels, J. Am. Chem. Soc 1908, **30** 1857)

#### Aluminicoarseniotungstic acid

Ammonium aluminicoarseniotungstate,  $6(NH_4)_2O$ , 2Al  $O_3$ , 3As  $O_5$ , 18WO<sub>3</sub>+ 14H<sub>2</sub>O

Springly sol in HO (Duncls, J Am Chem Soc 1908, 30 1854)

Barium aluminicoarseniotungstate, 4B iO,  $2Al_2O_3$ ,  $3A_5O_5$ ,  $18WO_3 + 12HO$ 

Vcrv sl sol in H<sub>2</sub>O

Sol in very dil IICl or HNO; (Daniels, J Am Chem Soc 1908, **30** 1855)

Cadmium aluminicoarseniotungstate, 4CdO,  $2Al O_3$ ,  $3As_2O_5$ ,  $18WO_3 + 17H_2O_3$ 

Sol in dil mineral acids and in strong PA+HO₄HN (Daniels, J Am Chem Soc 1908, **30** 1855)

#### Aluminicomolybdic acid

Ammonium aluminicomolybdate,  $3(NH_4)_2O$ ,  $Al_2O_3$ ,  $12M_0O_3+19H_2O$ 

(Hall, J Am Chem Soc 1907, 29 Ppt 696)

+20H<sub>2</sub>O More sol in H<sub>2</sub>O than potassium

aluminicomolybdate (Struve, Bull Acad St Petersb 12 147)

+22H<sub>2</sub>O (Marckwald, Dissert 1895)

Barium aluminicomolybdate, 4BaO, Al<sub>2</sub>O<sub>3</sub>,  $12\text{MoO}_3+14\text{H}_2\text{O}$ 

Ppt (Hall, J Am Chem Soc 1907, 29 712)

Lead aluminicomolybdate, 4PbO,  $Al_2O_3$ ,  $12MoO_3 + 21H_2O$ 

Ppt (Hall, J Am Chem Soc 1907, 29 712)

Potassium aluminicomolybdate,  $3K_2O$ ,  $Al_2O_3$ ,  $12M_0O_3 + 20H_2O$ 

1 pt of the salt is sol in 40 67 pts  $\rm H_2O$  at 17° Very difficultly sol in acids (Struve)  $\rm H_2Al(MoO_4)_3,~2KHMoO_4$  Sol in  $\rm H_2O$  (Parmentier, C R 94 1713)

Silver aluminicomolybdate,  $4Ag_2O$ ,  $Al_2O_3$ ,  $12MoO_3+16H_2O$ 

Ppt (Hall, J Am Chem Soc 1907, 29 712)

Sodium aluminicomolybdate,  $3Na_2O$ ,  $Al_2O_3$ ,  $12MoO_3+22H_2O$ 

Efflorescent Easily sol in H<sub>2</sub>O (Gentele J pr **81** 413)

# Aluminicophosphotungstic acid.

Ammonium aluminicophosphotungstate, 9(NH<sub>4</sub>)<sub>2</sub>O, 2Al<sub>2</sub>O<sub>3</sub>, 4P<sub>2</sub>O<sub>5</sub>, 9WO<sub>3</sub>+13H<sub>2</sub>O Sl sol in cold and in hot H<sub>2</sub>O (Daniels,

Si soi in cold and in hot  $H_2O$  (Daniels, J Am Chem Soc 1908, **30**, 1851)

Barium aluminicophosphotungstate, 4BaO, 2Al O<sub>3</sub>, 4P<sub>3</sub>O<sub>5</sub>, 9WO<sub>3</sub>+13H O

Sl sol in HO Sol in very dil HCl or HNO<sub>8</sub> (Daniels, J Am Chem Soc 1908, **30** 1853)

Silver aluminicophosphotungstate, 4Ag O, 2Al O,  $4P_2O_5$ ,  $9WO_4+6H$  O

Nearly insol in HO Sol in NH<sub>4</sub>OH and in dil HNO<sub>3</sub> Insol in a ctic acid (Daniels, J Am Chem Soc 1908, **30** 1852)

Zinc aluminicophosphotungstate, 5ZnO, 2Al ()<sub>3</sub>, 4P O<sub>5</sub>, 9WO<sub>4</sub>+11H<sub>2</sub>O

Sol in dil wids and in a large quantity of conc ammonia when NH<sub>4</sub>Cl is present (Daniels, J Am Chem Soc 1908, **30** 1853)

# Aluminicotungstic acid

Ammonium aluminicotungstate,  $3(NH_4)$  O,  $Al_2O_3$ ,  $9WO_3+4H_2O$ 

Sol in conc  $HNO_3$  and in conc HCl When the solution in conc HCl was boiled, a yellow colored ppt separated (F F Smith J Am Chem Soc 1903, 25 1230)

Ammonium silver alumininicotungstate,  $11\mathrm{Ag_2O},\ 21(\mathrm{NH_4})_2\mathrm{O},\ 4\mathrm{Al_2O_3}\ 36\mathrm{WO_3}$ 

The dry salt is insol in pure H2O, but 1

readily sol in H<sub>2</sub>O containing NH<sub>3</sub> or HNO<sub>3</sub> (E F Smith, J Am Chem Soc 1903, 25 1231)

Barium aluminicotungstate, 8BaO,  $Al_2O_3$ ,  $9WO_3+7H_2O$ 

Not sol in acids when dry Somewhat decomp by boiling with cone HCl, HNO<sub>3</sub> or aqua regia (Daniels, J Am Chem Soc 1908, **30** 1848)

Copper aluminicotungstate, 2CuO, Al<sub>2</sub>O<sub>3</sub>, 9WO<sub>3</sub>+16½H<sub>2</sub>O

Sol in large quantities of H<sub>2</sub>O (Daniels, J Am Chem Soc 1908, **30** 1847)

Mercurous aluminicotung state, 5Hg O,  $Al_2O_3$ ,  $9WO_3$ 

Sl sol in H<sub>2</sub>O Sol in HNO<sub>3</sub>(15) (Daniels, J Am Chem Soc 1908, **30** 1849)

Zinc aluminicotungstate, 1½ZnO, Al<sub>2</sub>O<sub>3</sub>, 9WO<sub>3</sub>+8H<sub>2</sub>O

Insol in H<sub>0</sub>O (Daniels, J Am Chem Soc 1908, **30** 1850)

ZnO,  $\acute{\rm Al}$  O<sub>5</sub>,  $9\rm W\acute{O}_3+20\rm H$  O Sol in H<sub>2</sub>O (Daniels )

#### Aluminum, Al

Less easily attacked than ordinary metals (iron, copper, lead, zinc, tin) by air, H O, wine, beer, coffee, milk, oil, butter, fats, etc Vinegar dissolves 0 349 g from a sq decimetre in 4 months, and 5 % NaCl+Aq, only 0 045 g in the same time (Ballaud, C R 114 1536)

The action of various substances contained in foods and drinks on compact Al as it occurs in utensils is very slight. Hard or soft water, whether cold or hot, showed no action in 8 days, 1% solutions of taitanic, tannic, and acetic acids had no action in same time, also 5% bonic, carbolic, and salicylic acids. 4% and 10% acetic acid dissolved only 0.4 mg of Al, while 10% acetic acid dissolved 21 mg from a roughened piece of Al foil in 8 days 1% soda solution dissolved 15 mg in 8 days (Rupp, Dingl. 283, 119)

Similar results were obtained by Arche (Dingl 284 255)

Liquids which are ordinarily contained in foods and drinks do not attack sheet Al except in a very small degree. The following losses in weight in mg by the action of the given liquids on 100 sq. centimetres sheet aluminum for 6 days were obtained.

| Liquids                                                                                 | Losin mg                                                     |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Claret Hock Brandy 5 % alcohol 5 % tartaric acid + Aq 1 % ""  7 acetic acid + Aq 1 % "" | 2 84<br>3 27<br>1 08<br>0 61<br>1 69<br>2 58<br>3 58<br>4 38 |

| Liquids                                                                                                                                                | Loss in mg                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 5 % citric acid+Aq 1 % "" 5 % lactic acid+Aq 5 % buty ric acid+Aq Coffee Tea Beei 4 % boric acid+Aq 5 % carbolic acid+Aq 1 % "" 1, % salicylic acid+Aq | 2 15<br>1 90<br>4 77<br>1 31<br>0 50<br>0<br>0<br>1 77<br>0 23<br>0 49<br>6 35 |

(Lunge, C N 65 110)

The apparent solubility of this metal in H O is due to the presence of minute quantities of Na Absolutely pure Al does not lose any weight to H<sub>2</sub>O and the H<sub>2</sub>O remains perfectly clear Also dil acids remain perfectly clear (Moissan, C R 1895, 121 794-98, C C 1896, I 193)

Sl attacked by H2O at 80° (W Smith,

J Soc Chem Ind 1904, 23 475)

Fasily sol in dil or cone HCl+Aq, whether hot or cold also in HBi, HI, or HF+Aq Insol in dil H SO<sub>4</sub>+Aq (de la Rive), sl attacked by cold, easily by hot cone H<sub>2</sub>SO<sub>4</sub> Not attacked by HNO<sub>3</sub>+Aq even when cone and boiling (Wohler) easily sol in dil H<sub>2</sub>SO<sub>4</sub>, or HNO<sub>3</sub>+Aq in vacuo (Weeren, B **24** 1798), slowly sol in 27 % HNO<sub>3</sub>+Aq, 100 cm HNO<sub>3</sub>+Aq requiring 2 months to dissolve 2 g Al (Montemartini, Gizz ch it **22** 397), very slool in most organic reads, but solubil ity is increased by presence of NiCl

Not attacked by dil or conc HNO, at ord temp but attacked by hot HNO. Attacked by H<sub>4</sub>PO<sub>4</sub> (Smith, J. Soc Chem. Ind. 1904,

**23** 475)

Completely sol at 100° in two hours in HNO<sub>3</sub> sp. gr. 1.15–1.16 (Stillman, J. Am. Cham. Soc. 1607.11)

Chem Soc 1897 19 714)

Very casily sol in HNO (contrary to the usual statement in text bools) (Woy C C 190, 11 94)

Slowly attacked by HNO3+Ag (20-25 %) at 25-30° (Deventer Chem Weekbl 1907

4 69)

Dil HNO3 of HSO3 does not uttel Al on account of formation of liver of gas. Action is increased by vacuum. Solutions of metallic chlorides, the metal of which is used and attaches itself to the Al (Pt. Au, Cu. Hg) increase the solubility, but when metal is soluble in the wild (Le. Zn, etc.), there is no increase of solubility. (Differ. C. R. 1890, 110, 573.)

Violently attacked by dil or conc. H PO<sub>4</sub>+

Aq (Wintelei)

Not attacked by solution of HCl in liquid HCN (Kahlenberg, J phys Chem 1902, 6 662)

Very easily sol in cone or dil KOH, or NaOH+Aq Slowly ittacked by NH<sub>4</sub>OH+

Aq (Wohler), sol in  $BaO_2H_2+Aq$  (Beckmann, J pr (2) 26 385), slowly sol in CaO  $H_2$ 

Sol in excess of 10 % KOH+Aq and in NaOH and LiOH+Aq, sol in hot conc Ba(OH)<sub>2</sub>, Sr(OH)<sub>2</sub> and Ca(OH)<sub>2</sub>+Aq (Allen, Am Ch J 1900, **24** 304-331)

Attacked by hot conc NH<sub>4</sub>OH+4q (Smith, J Soc Chem Ind 1904, **23** 475)

Sl attacked by sulphates, or nitrates+Aq, but all chlorides, bromides, and iodides, except those of the alkalies and alkaline earths, even AlCl<sub>8</sub>+Aq, dissolve the metal Insol in alum, or in NaCl+Aq, but sol in alum+NaCl+Aq (Tissier, C R 41 362), sol in NaCl+Aq (Deville, A ch (3) 43 14), sol in neutral FeCl<sub>3</sub>+Aq in vacuo (Weeren, B 24 1798) Violently attacked by CuCl+Aq (Tommasi, Bull Soc (2) 37 443)

Rapidly sol in  $K_2S_2O_8+Aq$ , more slowly sol in  $(NH_4)_2S_2O_8+Aq$  (Levi, Gazz ch it 1908, **38** (1) 583)

Attacked by (NH<sub>4</sub>)<sub>3</sub>PO<sub>4</sub>+Aq Sl attacked by NaNO<sub>3</sub>+Aq or KNO<sub>3</sub>+Aq at 100° (Smith, J Soc Chem Ind 1904 **23** 475)

Not affected by NH<sub>4</sub>NO<sub>3</sub>+Aq (Hodgkinson, C N 1904, **90** 142)

Attacked by POCl, at 100° (Remtzer B 845)

Insol in liquid NH<sub>3</sub> (Crore, Am Ch J 1898, **20** 826)

Insol in liquid CO (Buchner, / phys Ch 1906, **54** 674)

Attacked by NOCl (Sudborough Chem Soc 1891, **59** 659

92% alcohol attacks Alless than H.O. Purc Alas attacked less than commercial (Hugouneng, J. Pharm. 1895, (6) 1, 537.)

Sol morganic acids containing chlorides (Smith J Soc Chem Ind 1904 23 17)

Actic tuting and aftic reids attick Alondy at first. Metal is covered by liver of hydro de but on addition of haloid salts gradual solution ensues. (Ditte C. P. 1898) 127, 919.)

Not attacked by sugar (Aq. (Klein C. R.

102 1170 )

#### Aluminum arsenide

Decomp by HO with evolution of AsH<sub>3</sub> (Wohler Pogg 11 160)

Decomp by HO (Tonzes Direct C R 1900 130 131)

#### Aluminum boride, \| B<sub>1</sub>

Very slowly sol in hot cone HCl+  $\Lambda q$  and hot  $\Lambda aOH + \Lambda q$ , but easily in moderately strong warm  $H \times O_3 + \Lambda q$  (Hampe  $\Lambda$  183 75)

Al B<sub>4</sub> Not attacked by HCl or KOH+ Aq Scarcely attacked by boiling HSO<sub>4</sub> Hot cone HNO<sub>4</sub>+Aq dissolves gradually but completely (Hampe, Le)

# Aluminum borocarbide, \laC B45

Insol in HO, HCl+Aq, HSO<sub>4</sub>+Aq or

Aq (Hampe, lc)

#### Aluminum bromide, AlBi 3

Dissolved by H2O with great Anhudrous violence and evolution of much heat sol in alcohol More sol in CS2 than All3 (Weber, Pogg 103 264)

Sol in SOCl<sub>2</sub> (Besson, C R 1896, 123

Sol in C2H5Br (Plotnikoff, C C 1902, II 617) Sol in acetone (Naumann, B 1904, 37 4328), (Fidmann, C C 1899, II 1014)

Solubility of AlBr<sub>3</sub> in organic liquids

| Solvent             | t°                                              | Mols<br>per 100                                                                        | t°                                                                            | Mols<br>per 100                                                                         | t°                                                        | Mols<br>per 100                                                             |
|---------------------|-------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|
| Benzo-<br>phenone   | 48° 45 42 38 50 60 70 80 90 100 110 120         | 0<br>8 5<br>13 8<br>18 3<br>21<br>23 4<br>25 7<br>28 1<br>30 6<br>33 4<br>36 3<br>39 6 | 130°<br>140<br>142<br>140<br>130<br>120<br>110<br>100<br>90<br>80<br>70<br>60 | 43 2<br>48 4<br>50 52 1<br>54 5<br>56 7<br>58 6<br>60 3<br>61 7<br>62 9<br>64 1<br>o5 1 | 50°<br>38<br>50<br>60<br>70<br>80<br>85<br>90<br>93<br>96 | 66 0<br>67 2<br>70 7<br>74 2<br>78 3<br>83 3<br>86 7<br>90 7<br>94 8<br>100 |
| Fthylenc<br>bromide | 10°<br>6<br>2<br>-2<br>10                       | 0<br>8 4<br>16 0<br>22 9<br>28 4                                                       | 20°<br>30<br>40<br>50<br>60                                                   | 33 9<br>40 1<br>47 2<br>55 1<br>63 6                                                    | 70°<br>80<br>90<br>96                                     | 72 7<br>82 3<br>92 2<br>100                                                 |
| Benzoyl<br>ehlonde  | -0 5<br>-2 5<br>5<br>10<br>30<br>50<br>70<br>80 | 0<br>6 5<br>13 0<br>17 4<br>24 6<br>31 8<br>40<br>44 3                                 | \$5<br>90<br>80<br>60<br>40<br>20<br>7<br>20                                  | 47<br>50 8<br>52 8<br>56<br>59 5<br>63 1<br>65 5<br>67 9                                | 40°<br>60<br>70<br>80<br>90<br>96                         | 72 6<br>79 4<br>83 9<br>89 2<br>95 5<br>100                                 |

Pol P-le-Gra, (Menschutlin, Ann Inst.) **13** 1)

+6HO Vav sol in HO +15H () (Punfiloff, J B 1895 785)

Aluminum antimony bromide, 2 \lBi 3, 55bBi +24H ()

Decomp by HoO (Wem-Hygroscopic land, B 1903, 36 258)

Aluminum potassium bromide, AlBi 3, KBr Sol in H () (Weber, Pogg 103 267)

Aluminum bromide ammonia,  $AlBr_3$ ,  $xNH_3$ Decomp by HO (Weber, Pogg 103 267)

KCH+Aq, slowly sol in hot conc HNO3+ | Aluminum perbromide carbon bisulphide, AlBr<sub>3</sub> Br<sub>4</sub>, CS<sub>2</sub>

> Sol in ether, ethyl bromide, ethylene bromide and benzene, decomp by HO (Plot-mkoff, J Russ phys Chem Soc 1901, 33 91, C C 1901, I 1193)

> 2AlBr<sub>3</sub>, Br<sub>4</sub>, CS<sub>2</sub> Sol in ether and benzene, insol in petroleum ether (Plotnikoff, l c)

#### Aluminum bromochloride, AlCl Br

Deliquescent Somewhat less violently dissolved by H<sub>2</sub>O than is AlBr<sub>3</sub> (v Bartal, Z anorg 1907, 55 154) +6H O Deliquescent Sol in H O with-

out evolution of heat (v Bartal, Z anorg 1907, **55** 155)

#### Aluminum carbide, Al<sub>4</sub>C<sub>3</sub>

Decomp by fused KOH at 100°, insol in fuming HNO3 in the cold, decomp by H2O, and dil acids (Moissan, Bull Soc 1894, (3) 11 1012, C R 1894, 119 16-20)

Insol in acetone (Naumann, B 1904, 37

4328)

#### Aluminum chloride, basic, Al O14H10, HCl

Easily sol in HO (Schlumberger, Bull Soc 1895, (3) **13** 56)

# Aluminum chloride, AlCla

Anhydrous Very deliquescent Sol in H<sub>2</sub>O with a hissing noise and evolution of heat Solution of AlCl<sub>3</sub> in H O loses HCl on evaporation, and AlCl<sub>3</sub> is finally wholly converted into Al O3

Sol in 1 432 pts H.O at 15° (Gerlach) AlCl<sub>3</sub>+Aq containing 19 15 % AlCl<sub>3</sub> boils at 103 4° AlCl + Aq containing 38 3 % AlCl<sub>3</sub> boils it 1128° (Gerlach)

Sp & of AlCl<sub>d</sub>+ Ag at 15°

| , AICI1       | ∽p ⊬r      | , AIC Is  | ∽p gr  |
|---------------|------------|-----------|--------|
| 1             | 1 0072     | 22        | 1 1709 |
|               | 1 ()144    | 23        | 1 179ა |
| 3             | 1 0216     | 24        | 1 1881 |
| 2<br>3<br>4   | 1 0289     | 2)        | 1 1965 |
| )             | 1 0561     | 26        | 1 2058 |
| 6             | 1 0435     | 27        | 1 2149 |
| $\frac{2}{7}$ | 1 0510     | 28        | 1 2241 |
| Š             | 1 ()555    | 29        | 1 2331 |
| 9             | 1 0659     | 50        | 1 2422 |
| 10            | 1 0734     | >1        | 1 2518 |
| 11            | 1 0812     | 52        | 1 2615 |
| 12            | 1 0890     | 33        | 1 2711 |
| 13            | 1 0965     | 54        | 1 2808 |
| 14            | 1 1047     | 35        | 1 2905 |
| 15            | 1 1125     | 36        | 1 3007 |
| 16            | 1 1207     | 37        | 1 3109 |
| 17            | 1 1290     | 58        | 1 3211 |
| 18            | 1 1372     | 39        | 1 3313 |
| 19            | 1 1455     | 4()       | 1 3415 |
| 20            | 1 1557     | 41        | 1 3522 |
| 21            | 1 1632     |           |        |
|               | (Gerlach Z | anal 8 28 | 31)    |

(Gerlach, Z anal 8 281)

Sp gr at 20° of AlCl $_3$ +Aq containing mg mols AlCl $_3$  per liter

| M                                                      | Sp gr                                                          |  |
|--------------------------------------------------------|----------------------------------------------------------------|--|
| 0 01<br>0 025<br>0 05<br>0 075<br>0 10<br>0 25<br>0 55 | 1 00104<br>1 00282<br>1 00588<br>1 00870<br>1 01158<br>1 02911 |  |
| 1 0<br>1 5<br>2 0                                      | 1 11054<br>1 16308<br>1 21378                                  |  |
|                                                        |                                                                |  |

(Jones & Pearce, Am Ch J 1907, 38 726)

Sol in 1 pt strong alcohol at 12 5° (Wenzel), easily sol in ether, sl sol in CS<sub>2</sub>, insol in ligroine or benzene

Difficultly sol in AsBr<sub>3</sub> (Walden, Z anorg 1902, 29 374)

Sol in AlBr<sub>3</sub> (Isbekow, Z anorg 1913,

84 26) Insol in liquid NH<sub>8</sub> (Franklin, Am Ch

J 1898, 20 826) Insol in CS<sub>2</sub> at ord temp (Arctowski, Z

anorg 1894, 6 257)
Sol in benzonitrile (Naumann, B 1914,

47 1369)
Difficultly sol in acetone (Naumann, B

1904, 37 4328)
Insol in ethyl acetate (Naumann, B

1910, 43 314)
Insol in methylal (Eidmann, C C 1899, II 1014)

Solubility of AlCl<sub>3</sub> in organic liquids

| Solvent             | t°                                         | Mols<br>per 100                                                                        | t°                                                                           | Mols<br>per 100                                                                            | t                                                                   | Mols<br>per 100                                                             |
|---------------------|--------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Benzo-<br>phenone   | 48° 44 39 5 50 60 70 80 90 100 110 120 125 | 0<br>8 5<br>13 8<br>18 3<br>21<br>23 4<br>25 7<br>28 1<br>30 6<br>33 4<br>36 3<br>39 6 | 130°<br>125<br>120<br>110<br>100<br>90<br>80<br>70<br>60<br>80<br>100<br>120 | 43 2<br>48 4<br>50<br>52 1<br>54 5<br>56 7<br>58 6<br>60 3<br>61 7<br>62 9<br>64 1<br>65 1 | 130°<br>140<br>150<br>160<br>170<br>180<br>185<br>190<br>192<br>194 | 66 0<br>67 2<br>70 7<br>74 2<br>78 3<br>83 3<br>86 7<br>90 7<br>94 8<br>100 |
| Benzoyl<br>chloride | -0 5° -4 -7 5 0 20 40                      | 0<br>7 9<br>12 7<br>14 1<br>18 8<br>25 0                                               | 60°<br>70<br>80<br>90<br>93<br>90                                            | 33 0<br>37 5<br>42 2<br>47 1<br>48 7<br>50 6                                               | 80°<br>70<br>60<br>40                                               | 52 9<br>55 1<br>57 2<br>61 0                                                |

(Menschutkin, Ann Inst Pol P-le-Gr

 $+6H_2O$  Very deliquescent, very sol in  $H_2O$  Sol in 0.25 pt  $H_2O$  (Thomson) Sol in 2 pts abs alcohol at ordinary temp, and 1.5 pts at b-pt (Thomson)

Completely insol in a solution of ether in H<sub>2</sub>O sat with HCl (Havens, Am J Sci 1898, (4) 6 46

Aluminum ammonium chloride, AlCl<sub>3</sub>, NH<sub>4</sub>Cl (Baud, A ch 1904, (8) 1 46)

Aluminum antimony chloride

See Chlorantimonate, aluminum

Aluminum barium chloride, 2AlCl<sub>3</sub>, BaCl<sub>2</sub> (Baud, C R 1901, **133** 869)

Aluminum calcium chloride, basic

3CaO, CaCl<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>+10H<sub>2</sub>O (Steinmetz, Z phys Ch 1905, **52** 466) 10CaO, CaCl<sub>2</sub>, 6Al<sub>2</sub>O<sub>3</sub> Slowly decomp by boiling H<sub>2</sub>O (Gorgeu, Bull Soc 1887, (2) **48** 51)

Aluminum calcium chloride, 4AlCl<sub>3</sub>, 3CaCl<sub>2</sub> (Baud, A ch 1904, (8) 1 51)

Aluminum nitrosyl chloride, AlCl<sub>3</sub>, NOCl Deliquescent, and decomp by H<sub>2</sub>O (Weber Pogg, **118** 471)

Aluminum palladium chloride,  $AlCl_3$ ,  $PdCl_2 + 10H_2O$ 

See Chloropalladite, aluminum

Aluminum phosphorus pentachloride, AlCl<sub>3</sub>, PCl<sub>5</sub>

Decomp violently by HO (Baudrimont)

Aluminum phosphoryl chloride, AlCl<sub>3</sub>, POCl<sub>3</sub>
Deliquescent Sol in H<sub>2</sub>O with decomp Sol in warm POCl<sub>3</sub>, from which it separates on cooling (Casselmann, A 98 220)

Aluminum platinum chloride, AlCl., PtCl + 15H.O

See Chloroplatinite, aluminum

Aluminum potassium chloride, Al(1, K(1 Slowly deliquescent Sol in H() with evolution of heat and decomp (Degen, A 18 332)

Aluminum selenium chloride, 2 \lambda \lambda \lambda\_1, \lambda \lambda \lambda\_1, \lambda \lambda \lambda\_1 \lambda\_1, \lambda \lambda \lambda\_1 \lambda\_1 \lambda\_1 \tag{Weber,} \lambda \lambda \lambda \tag{Weber,} \lambda \tag{Weber,} \lambda 
Aluminum sodium chloride, AlCl<sub>3</sub>, NaCl

Much less deliquescent than AlCl<sub>3</sub> Sol in H<sub>2</sub>O with evolution of heat Upon evaporating, NaCl crystallises out (Wohler)

Aluminum strontium chloride, 4AlCl<sub>3</sub>, 3SrCl<sub>2</sub> (Baud, A ch 1909, (8) 1 52)

Aluminum sulphur chloride, 2AlCl<sub>3</sub>, SCl<sub>4</sub>
Decomp by H<sub>2</sub>O with evolution of much

leat and separation of some sulphur (Weber. ogg, 104 421) AlCl<sub>8</sub>,SCl<sub>4</sub> Decomp by H<sub>2</sub>O (Ruff, B

901. 34 1757)

Muminum tellurium chloride, 2AlCl<sub>3</sub>, TeCl<sub>4</sub> Very sol in dil  $H_2SO_4+Aq$  (Weber, J pr **6** 313)

Muminum chloride ammonia, AlCl<sub>3</sub>, NH<sub>3</sub> Sol in  $H_2O$  (Rose, Pogg, 24 248)

Completely sol in H2O (Baud, C R

1901, **132** 135) AlCl<sub>b</sub>, 2NH<sub>8</sub> AlCl<sub>3</sub>, 2NH<sub>3</sub> Very hygroscopic nan, Am Ch J 1895, 17 750) (Still-

 $AlCl_3$ ,  $3NH_3$  Decomp by  $H_2O$ 

M pt 380° (Baud, C R AlCl<sub>3</sub>, 5NH<sub>3</sub>

1901, **132** 135)

AlCl<sub>3</sub>, 6NH<sub>3</sub> Decomp by H<sub>2</sub>O (Stillman, Am Ch J 1895, 17 752) Somewhat hygroscopic (Baud, C R 1901, 132 135)

Aluminum chloride nitric oxide, [2AlCl<sub>8</sub>, NO Very hygroscopic Decomp rapidly in the Sol in KOH+Aq (Thomas, C R 1895, 121 130)

Aluminum chloride phosphine, 3AlCl<sub>3</sub>, PH<sub>3</sub> Decomp by H<sub>2</sub>O or NH<sub>4</sub>OH+Aq (Rose Pogg, 24 295)

Aluminum chloride hydrogen sulphide

Deliquescent Decomp by H<sub>2</sub>O or NH<sub>4</sub>OH +Aq (Wohler)

Aluminum chloride sulphur dioxide, AlCl<sub>3</sub>,  $SO_2$ 

Decomp by H<sub>2</sub>O, alcohol, or benzene (Adrianowski, B 12 688) (Baud, A ch 1904, (8) 1 32) 2AlCl<sub>3</sub>, SO

Aluminum cobalt, Co<sub>3</sub>Al<sub>4</sub>

Sol in strong acids (Brunck, B 1901, 34) 2734)

Aluminum copper, Cu<sub>4</sub>Al<sub>9</sub>

Sol in aqua regia, decomp by HCl (Brunck, B 1901, **34** 2733)

Aluminum fluoride, All 3

Anhydrous Not attacked by H O or acids, and only very slightly by boiling conc H<sub>2</sub>SO<sub>4</sub> Insol in boiling KOH+Aq (Deville, C R **42** 49)

Insol in ethyl acetate (Naumann, B

1910, 43 314)

Insol in acetone (Naumann, B 1904, 37 4328)

+½H<sub>2</sub>O Insol in H<sub>2</sub>O Sl sol in HF (Baud, C R 1902, **135** 1104)

+H<sub>2</sub>O Completely but only sparingly sol in H<sub>2</sub>O (Mazzuchelli, Real Ac Linc 1907, (5) 16, I 775, Chem Soc 1907, 92, (2) 549) +3½H<sub>2</sub>O Two modifications (1) Easily Sol in HF (2) Insol in H<sub>2</sub>O sol in H<sub>2</sub>O SI sol in HF (Baud, C R 1902, 135 1104)

 $+7H_{2}O$ Sol in  $H_2O$ (Deville, A ch (3) **61** 329)

Min Fluellite

Very efflorescent Sat solu- $+8\frac{1}{2}H_{2}O$ tion contains 3 85 g AlF<sub>3</sub> per 100 g at 11° and 1 2 g at -0 2° (Mazzucchelli, Real Ac Line 1907, (5) 16, I 775, Chem Soc 1907, (2), 92 549)

Aluminum hydrogen fluoride, 3AlF<sub>8</sub>, 2HF+  $5H_2O$ 

Solin H<sub>2</sub>O, precipitated by alcohol (Deville)  $2AlF_3$ ,  $HF+5H_2O$  (Deville, A ch (6) 61

Aluminum ammonium fluoride, AlF<sub>3</sub>, NH<sub>4</sub>F Somewhat sol in H<sub>2</sub>O, insol in H<sub>2</sub>O containing NH<sub>4</sub>OH or NH<sub>4</sub>F (Berzelius, Pogg

**1** 45) AlF<sub>3</sub>, 2NH<sub>4</sub>F+1 5H<sub>2</sub>O Sol in 100 pts H<sub>2</sub>O at 16° (Baud, C R 1902, **135** 1338) Sol in 100 pts

AlF<sub>8</sub>, 3NH<sub>4</sub>F Nearly insol in H<sub>2</sub>O, easily sol in dil acids (Petersen, J pr (2) 40 35) Quite easily sol in H.O, but insol in NH<sub>4</sub>F+Aq (Helmholt, Z anorg 3 129)

Aluminum barium fluoride

Apparently not obtained in pure state (Roder)

Aluminum calcium fluoride,  $AlF_3$  CaF  $+H_9O$ Min Evigtokite

Aluminum calcium sodium fluoride, AlF3, CaF<sub>2</sub>, NaF+H O Min Pachnolite

Aluminum cobaltous fluoride, AlF<sub>3</sub>, CoF<sub>2</sub>+ 7H O

Sol in dil HF+Aq (Weinland, Z anoig 1899, **22** 272)

Aluminum cupric fluoride, 2AlF<sub>3</sub>, CuF

Very slowly but completely sol in HO (Berzelius)

 $AlF_8$  2CuF +11H O Sol in dil HF+Aq (Weinland, Z anoig 1899, **22** 272-76) 2AlF<sub>3</sub> 3CuF +18H O Sol in dil HF+ Aq (Weinland)

Aluminum cupric hydrogen fluoride, AlF CuF, HF+8H O

Efflorescent in the air Sol in dil HF + Aq (Weinland, Z anorg 1899, 22 272)

Aluminum iron (ferrous) fluoride, AlF3  $FeF_2+7HO$ 

Sl sol in dil HF+Aq (Weinland, Z anorg 1899, **22** 270)

Aluminum lithium fluoride

Insol in HO (Berzelius)

Aluminum magnesium fluoride 2AlF<sub>3</sub>, MgF (?) (Roder)

Aluminum nickel fluoride, AlF<sub>3</sub>, N<sub>1</sub>F<sub>2</sub>+7H<sub>2</sub>O Sl sol in dil HF+Aq (Weinland, Z anorg 1899, 22 271)

Aluminum potassium fluoride, AlF3, 3KF

Very sl sol in acid solutions, and still less in H<sub>2</sub>O (Gay-Lussac and Thénard ) AlF<sub>3</sub>, 2KF As above

Aluminum silicon fluoride See Fluosilicate, aluminum

#### Aluminum sodium fluoride

2AlF<sub>3</sub>, 3NaF Min Chiolite AlF<sub>3</sub>, 2NaF Min Chodneffite AlF<sub>3</sub>, 3NaF Min Cryolite H<sub>2</sub>O Insol in HCl+Aq I AlF<sub>8</sub>, 2NaF Sl sol in Decomp by H.SO4, or by boiling with NaOH+Aq

Aluminum strontium fluoride As the Ba salt (Roder)

Aluminum thallous fluoride, 2AlF<sub>8</sub>, 3TlF Ppt Sl sol in HO (Ephraim, Z anorg

1909, **61** 243)

Aluminum zinc fluoride, AlF<sub>3</sub>, ZnF +7H<sub>2</sub>O Sol in dil HF+Aq (Weinland, Z anorg 1899, **22** 272)

2AlF, ZnF Slowly but completely sol in HO (Berzelius)

#### Aluminum hydroxide, Al O<sub>3</sub>, H O = Al O (OH)

Dehydrated by concacids, without dissolv

ing (Becquerel, C.R., 67, 108) Min Diaspore Insol in HCl+Aq, and not attacked by boiling conc. H SO4, unless

it has been ignited

Al O,  $2H O = Al O(OH)_4$  Pptd Al hydroude, when boiled twenty hours with HO is insol in reads and alkalies, and has the above composition (St Calles, A ch (3) **46** 57)

Mm Baurite

Soluble modifications -(1) Meta aluminum hydroxide From basic Al acetate HO and more readily in HC H<sub>3</sub>O aqueous solution is congulated by traces of alkalies, many reids, and salts, while other reids and salts have no effect. Thus, 1 pt H SO<sub>4</sub> in 1000 pts H O added to 7000 pts of above solution contuning 20 pts Al<sub>2</sub>O<sub>3</sub>, converts the liquid into a nearly solid mass Citiic, tutaire, ovilic, chiomic, molybdic, racemie, suberie, sulcylic benzoie, gillie, lactie, cinnumie, butvrie, valerie, cumphonic picite, uite, meconic, comenic, and hemipinic acids act in the same way HCl and HN(), have far less action, 600 mols being necessary to produce the same effect as 1 mol H2SO4, while acetic, formic, boric, arsenious, pyro-|nenschein)

meconic, and opianic acids do not coagulate the solution, except when moderately conc 1 pt KOH in 1000 pts H<sub>2</sub>O coagulates 9000 pts of the solution NaOH, NH<sub>4</sub>OH, and Ca(OH)<sub>2</sub> have the same effect

The solution is not coagulated by acetates. unless added in large quantity, and even then the ppt is redissolved when treated with Nitrates and chlorides coagulate with difficulty, Na<sub>2</sub>SO<sub>4</sub>, MgSO<sub>4</sub>, and CaSO<sub>4</sub>+Aq, however, have as strong an action as a liquid containing the same amount of H,SO4 teaspoonful of the solution introduced into the mouth solidifies at once from the action of the saliva The ppt formed by acids is not sol in an ecessx of the acid, but by the long continued action of conc H<sub>2</sub>SO<sub>4</sub> especially if hot, the ppt is dissolved, boiling conc HCl+Aq also dissolves it, but less readily than  $H_2SO_4$  The ppt is sol in boiling conc KOH+Aq The residue, when the solution is evaporated at 100°, has composition  $Al_2O_3$ ,  $2\ddot{H}_2O$ , and is insol in acids (Cium, Chem Soc 6 225)

(b) By Dialysis Sol in H<sub>2</sub>O from which it is separated by extremely small amounts of various substances, as acids, ammonia, salts (especially K<sub>2</sub>SO<sub>4</sub>), caramel, ctc An excess of acid dissolves the coagulum. If the solution contains 0.5% Al<sub>2</sub>O<sub>3</sub> or less, it may be boiled without change, but the hydroxide separates out suddenly when it is reduced to 1/2 its vol, and even very dil solutions gelitimise spontaneously in a few days solution is not congulated by alcohol or sugar

(Grahum A 121 41)

Al  $O_3$ , 3H  $O = Al(OH)_3$  (rystallised Diffi cultly sol in reids and alkalies (Cossa N Cm (2) **3** 228) Insol in boiling HCl+ \q (Wohler, A **113** 249) Sl sol in KOH+ \q nearly insol in cold H SO, HCL HNO + Vq. very slowly sol in hot HCl+\q more readily m hot HSO<sub>4</sub> (v Bonsdorff Po<sub>8-2</sub> 27 27) α-modification Unstable Changes into β modification Sol in N-HSO<sub>4</sub> it ord temp. Sol in N-N (OH and m hot \ OH of concentration 5NaO 100HO morg 1904 **41** 226)

β-modification Insol in N H SO<sub>1</sub> it ord Difficulty sol in warm N NiOH but eisily sol in hot NiOH of concentration 5N i O, 100H O - Its solubility in NiOH in creases with increase in concentration of the

hydroxylaons (Russ)

 $\delta$ -modification. Firstly solar cone II SO<sub>4</sub>, only sl sol in HCl HNO, or actic acids or in  $ilkih + \lambda q$  (Lommiss ( 1905, H 605)

Min Gibbsite Sol in  $H(1+\lambda q)$  and dil H<sub>2</sub>SO<sub>4</sub>+Aa Readily sol in cone KOH and N + HOt + Aa

Precipitated Completely insol in H O or H CO3+Aq E isily sol in acids when freshly pptd, but solubility diminishes on standing Easily sol in  $I(OH \text{ or } N_1OH + \Lambda q)$  (Son-

Herz (Z anorg 25 155) found that alumium hydroxide which has been dried in a acuum dessicator requires for solution in 3 atoms Na to 1 atom Al [aOH+Aq lade (Z Elektrochem 1911, 17 261) was nable to obtain this result Herz says Slade's cror is due to insufficient shaking of the soluon (Herz, Z Elektrochem 1911, 17 403)

New solubility determinations verify the tatement of Herz (Z anorg 25, 155) that the plubility of Al(OH)<sub>3</sub> in NaOH+Aq is proortional to the concentration of NaOH hey do not, however, verify his statement hat the ratio Na Al in the solutions is alrays 3 1, for the author finds that the ratio Va Al varies from 2 1 to 10 1 depending n the conditions of precipitation and the nethod and duration of drying of the Al(OH)3 Slade, Z Elektrochem, 1912, 18 1)

Sl sol in NH4OH+Aq when freshly pptd, out presence of NH4 salts diminish its soluulity, and it separates out completely after

ong standing (Fresenius)

Somewhat sol in NH4OH+Aq, the more eadily the larger the vol of H<sub>2</sub>O Somewhat ol in  $(NH_4)_2CO_3+Aq$ , but less than in VH4OH+Aq Sl sol in dil NH4Cl+Aq, inless that salt be in large excess. It is finally vholly pptd if allowed to stand several days

18752 pts NH<sub>4</sub>OH +Aq (4 % NH<sub>4</sub>OH) dis olve an amt of Al(OH)3 corresponding to one ot Al<sub>2</sub>O<sub>3</sub>, NH<sub>4</sub>Cl prevents this solubility al nost comple ely (Hanamann, Pharm Vier eli **12** 527)

 $Al(OH)_3$ , prepared by ppt of a solution of  $Al(NO_3)_3$  with  $NH_4OH$ , filtered and washed

s insol in NH4OH+Aq

Al(OH)3 prepared by pptn of a solution of potassium aluminate with NH4Cl is sol in a luge excess of NH4OH if this is added to the ppt at once. This modification which is sol in NH4OH is unstable and easily goes over into the modification which is insol in NH4OH (Renz B 1903, **36** 2751)

 $(NH_4) CO_3 + Aq does not dissolve$ Al(OH) and not a trace is dissolved by boiling  $NII_4Cl + Aq$  (Weeten Pogg 92 97) conc

With  $NH_4I + \Lambda q$ , it forms a double salt, 111 3NH<sub>4</sub>I which is sol in H O but not in 

Durocher A ch (3) 17 (21) Luchs found, on the contrary that it is not wholly insolain  $(NH_4) S + \sqrt{q}$  (Liesenius Quint)

Insol in  $F(Cl_3 + \Lambda q)$  (Bech imp.)

Determinations of the solubility of alummum hydroxide in AlCl3+Aq show that part goes into solution to form a compound while the greater put is in the colloidal form (Fischer, Z. morg 1904, 40, 46)

Only SI sol in cone Al  $(SO_4)_3 + Aq$ , but solubility increases with decrease in concentration of Al<sub>2</sub>(SO<sub>4</sub>), until it reaches a maximum at a concentration of 32 % Al (SO<sub>4</sub>)<sub>3</sub> at 20°, 28 % at 40°, and 38 % at 60° With further decrease in concentration of Al (SO<sub>4</sub>)<sub>3</sub> comp (Duboin, C R 1908, 146 1028)

the solubility of Al(OH)<sub>3</sub> in Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> diminishes (Kremann, C A 1909 2422)

Sol in Ba(OH) + Aq (Rose) Sol in boiling Fe(NO<sub>3</sub>)<sub>3</sub>, Cr(NO<sub>3</sub>)<sub>3</sub>, B<sub>1</sub>(NO<sub>3</sub>)<sub>3</sub>, Hg(NO<sub>3</sub>)<sub>2</sub>, HgNO<sub>3</sub>, SnCl<sub>2</sub>, and

SbCl<sub>3</sub>+Aq (Persoz) Insol in HCN or cold KCN+Aq, but sl

sol in hot KCN+Aq (Rose)
Insol in KC<sub>2</sub>H<sub>3</sub>O +Aq (Osann, 1821)
When moist, sol in H SO<sub>3</sub>+Aq, from which it is reported on boiling (Berthier, A ch (3)

Somewhat sol in NaC H<sub>3</sub>O<sub>2</sub>+Aq

cer)

Not pptd by NH<sub>4</sub>OH+Aq in presence of

Na citrate (Spiller)

Sol in ethyl amine, amyl amine, sinkaline, ethyl picoline hydroxide, stibethylium hydrovide, triethyltoluenyl ammonium hydrov-1de + Aa(Friedlander)

Sol in alkyl amines (Renz, B 1903, 36 2751)

Insol in acetone (Naumann, B 1904, 37 4328)

Sol to a considerable extent in K<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+

Verv sl $\,$  sol $\,$  in cane sugar $+\,$ Aq $\,$   $\,$  (Ramsev $\,$ ) Solubility in glycerine+Aq containing about 60 % by vol of glycerine 100 cc of the solution contain 0 25 g Al O<sub>3</sub> (Muller,

Z anoig 1905, **43** 322) Al O<sub>3</sub> 5H O Insol Insol in H.O. NH4OH+ Aq and alcohol Sol in HCl and HNO3+ Aq (Zunino, Gazz ch it 1900 30 (1)

194)

 $1_{6}O_{14}H_{10}$ Trialuminum hydroxide

Not sol in cone acids in the cold not sol in KOH (cold) and only sl sol in hot KOH Characterized by its solubility in exactly one mol dil HCl Dil solutions do not gelatinize even on long standing Conc solution of NH4Cl and other salts cause ppt which is dissolves on addition of H O

Alk thes and alkali carbonates decomp the salt with HCl and ppt trialuminium by droxide H SO4 and sol sulphates give insol compds with the hydrate HNO, like HCl gives soluble compds with the hydrite (Structural formula given ) (Schlumberger Bull Soc 1895 (5) 13 41-65 C C 1895, I 421)

Aluminum iodide, \ll;

Anhydrous Tumes on an and deliquesces Sol in HO with evolution of much heat Sol in CS and crystallizes from the hot sat solu tion on cooling (Weber) Sol in alcohol (Weber), ether and tetrachlormethane (Gust as son )

Sol in AlBr<sub>3</sub> (Isbekow 7 morg 1913 **84** 26)

+6HO Very sol m HO

Aluminum mercuric iodide, All 3, HgI +8H O Very deliquescent, sol in HO without deAluminum potassium iodide, AlI<sub>3</sub>, KI Sol in H<sub>2</sub>O with evolution of much heat (Weber, Pogg 101 469)

Aluminum iodide ammonia, AlI<sub>3</sub>, 3NH<sub>3</sub> Decomp by H<sub>2</sub>O (Weber, Pogg 103 263)

Aluminum iodide mercuric oxyiodide, 2AlI<sub>3</sub>, HgO,  $3HgI_2+15H_2O$ (Duboin, C R. 1907, 145 714)

#### Aluminum iron, FeAl<sub>3</sub>

Readily sol in strong HNO<sub>3</sub> (Brunck, B 1901, **34** 2734)

#### Aluminum manganese, Mn<sub>2</sub>Al<sub>7</sub>

Sol in strong HCl (Brunck, B 1901, 34 2735)

## Aluminum molybdenum, Al<sub>4</sub>Mo

Easily sol in hot HNO<sub>3</sub> or HCl (Wohler, A 1860, 115 103)

(Guillet, C R 1901, 133 293) Al₂Mo (Gullet) AlMo

AlMo<sub>4</sub> Not attacked by dil HCl+Aq (Guillet)

Not attacked by HCl+Aq  $AlMo_{20}$ (Guillet)

#### Aluminum nickel, Al<sub>3</sub>N<sub>1</sub>

Sol in strong acids (Brunck, B 1901, 34 2734)

#### Aluminum nitride, Al<sub>2</sub>N

Slowly attacked by hot or cold HO Decomp by acids and aqueous solutions of the alkalies, especially when they are concentrated (Mallet, A 186 155)

Easily decomp H<sub>2</sub>O when finely powdered

(Rossil, C R. 1895, 121 942)

Decomp by moist air and by boiling H O and by alkalis+Aq (Iranck, Ch Z 1897, **21** 263

#### Aluminum oxide, Al O.

Mın CrystallineCorundum, sapphire,

ruby, emery Insol in acids

Ignited Al<sub>2</sub>O<sub>3</sub> is insol in Amorphous acids except that it dissolves slowly when heated with a mixture of 1 pt  $\rm H_2SO_4$  and 1 pt  $\rm H_2O$  (Berzelius) Slowly sol in boiling

HCl+Aq (Rose, Pogg 52 595)
Sol in 22 pts of a mixture of 8 pts H SO<sub>4</sub>
and 1 pt H<sub>2</sub>O (Mitscherlich) The lower the temperature at which Al<sub>2</sub>O<sub>3</sub> has been heated, the more sol is it in acids and alkalies

Solubility in (calcium sucrate+sugar)+

1 l solution containing 4186 g sugar and 34 3 g CaO dissolves 1 35 g Al<sub>2</sub>O<sub>3</sub>, 1 l solution containing 296 5 g sugar and 24 2 g H<sub>2</sub>SO<sub>4</sub> and aqu CaO dissolves 0 32 g Al<sub>2</sub>O<sub>3</sub>, 1 l solution conmolten alkali taining 174 4 g sugar and 14 1 g CaO dis-

(Bodenbender, J B solves 0 19 g Al<sub>2</sub>O<sub>8</sub> **1865** 600)

Insol in acetone (Naumann, B 1904, 37 4328)

See also Aluminum hydroxide

#### Aluminum peroxide, Al<sub>2</sub>O<sub>3</sub>, Al<sub>2</sub>O<sub>4</sub>+10H<sub>2</sub>O

Ppt, sol in acids with decomp (Terni, C A 1912 3068)

#### Aluminum oxybromide

Basic aluminum bromides containing three equivalents or less of Al<sub>2</sub>O<sub>3</sub> to one of AlBr<sub>3</sub> are sol in H2O Those containing more than three equivalents are insol (Ordway, Am J Ser (2) **26** 203)

#### Aluminum oxychloride

Sol in dil acids or alkalies Decomp by H<sub>2</sub>O (Hautefeuille and Perrey, C R 100 1220)

Basic aluminum chlorides containing two equivalents or less of  $Al_2O_8$  to one of  $AlCl_3$  are sol in  $H_2O$  Those containing more than two equivalents are insol (Ordway)

 $Al_2O_3$ ,  $3AlCl_3+3H_2O$ (Tomması, Bull Soc (2) 37 443)

 $Al_2O_3$ ,  $8AlCl_3+3H_2O$ (Tomması)  $3Al_2O_3$ ,  $AlCl_3+15H_2O$  (Tomması)

#### Aluminum phosphide, Al<sub>3</sub>P

Unstable (Franck, Ch Z 1898, 22 240) Al<sub>2</sub>P<sub>2</sub> Decomp by H<sub>2</sub>O (Fonzes-Diacon, C R 1900, **130** 1315)

Unstable (Franck, Ch Z 1898, 22 240) Decomp by H2O and reids Al<sub>3</sub>P<sub>7</sub> (Franck)

Decomp by HO and acids  $Al_3P_7$ (Franck, Ch. Z. 1898, **22**, 288) Al<sub>5</sub>P<sub>3</sub> Unstable (Franck, Ch. Z. 1898,

**22** 240)

#### Aluminum platinum, Pt<sub>3</sub> \l<sub>10</sub>

The Alas dissolved out by HCl (Brunck, B 1901, **34** 2735)

#### Aluminum selenide, Al Ses

Decomp by HO (Lonzes Discon, C. R. 1900, **130** 1315)

#### Aluminum silicide, Al Sia

More casily solomicids than Ale (Winkler, J pr 91 193)

#### Aluminum chromium silicide, Al Ci4516

Insol in hot conc HCl, HNO3, H SO4 and aqua regia Sol in cold HF or in HF+HNO3 Sol in molten alkalı Insol in NaOH+Aq, KOCl+Ag or fused KClO3 or KHSO4 (Munchot and Kieser, A 1904, 337, 356)

Al2Cr4S18 Insol in hot cone HCl, HNO3, H<sub>2</sub>SO<sub>4</sub> and aqua regia Sol in HF and in (Manchot and Kieser A

#### Aluminum tungsten silicide

Insol in most acids and aqua regia Easily sol in HF, HNO $_3$  and in molten alkali Not attacked by dil NaOH+Aq (Manchot and Kieser, A 1904, 337 360)

#### Aluminum vanadium silicide, Al<sub>2</sub>V<sub>8</sub>S<sub>118</sub>

Sol in HF Not attacked by hot conc HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> or aqua regia Decomp by fusing with NaOH Stable toward fused KClO<sub>3</sub> (Manchot, A 1907, **357** 134)

#### Aluminum sulphide, AlS

Decomp by H<sub>2</sub>O Sol in acids and alkalis (Regelsberger, Z Elektrochem, 1898, 4 548) Al<sub>2</sub>S<sub>3</sub> Decomp in moist air and by H<sub>2</sub>O (Wohler) Insol in acetone (Naumann, B 1904, 37 4328)

## Aluminum chromium sulphide, Al<sub>2</sub>S<sub>3</sub>,CrS

Sl attacked by HCl+Aq Gradually decomp by HNO<sub>3</sub> (Houdard, C R 1907, 144 1115)

Aluminum magnesium sulphide, Al<sub>2</sub>S<sub>3</sub>, MgS Decomp by H<sub>2</sub>O, alcohol and acids (Houdard, C R 1907, 144 1116)

#### Aluminum potassium sulphide

Violently decomposed by H<sub>2</sub>O (St Claire Deville, J pr **71** 293) Does not exist (Gratama, R t c **3** 4)

Aluminum silver sulphide, 5Al<sub>2</sub>S<sub>3</sub>, 4Ag<sub>2</sub>S (Cambi, Real Ac Linc (5) **21**, II 838)

#### Aluminum telluride

Decomp by H<sub>2</sub>O (Wohler, Pogg 11 160)

#### Aluminum titanide, Al<sub>4</sub>Ti

Not attacked by H<sub>2</sub>O or by cold HNO<sub>3</sub> Sl sol in warm HNO<sub>3</sub> Sol in cold cone H<sub>2</sub>SO<sub>4</sub> or HCl Sol in warm KOH+Aq (Levy, A ch 1902, (6) **25** 449)

Sol in HCl and in aqua regia (Guillet)
Al<sub>3</sub>T1 Sol in hot dil H SO<sub>4</sub> and in hot
KOH+aq Sol in hot conc acids (Manchot, A 1907, **357** 142)

Al<sub>3</sub>I<sub>12</sub> Aluminothermic product is sol in HCl and aqua regia (Guillet)

# Aluminosulphuric acid, $Al_2(SO_4H)_6+7 H_2O$

Sol in H<sub>2</sub>O with decomp into Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> (Silberberger, M 1904, **25** 222)

# Diamide, N₂H₄

See Hydrazine

#### Amidochromic acid

#### Amidochromates

Do not exist Those described by Darm-

stadter and Lowenthal are impure bichromates (Wyrouboff, Bull Soc 1894, (3) 11 845-53, C C 1894, II 610)

Ammonium amidochromate, (NH<sub>4</sub>)NH<sub>2</sub>CrO<sub>3</sub>

Very sol in H<sub>2</sub>O (Lowenthal, Z anorg 1894, 6 363)

Is ammonium dichromate (Wyrouboff, Bull Soc (3) 11 845)

## Lithium amidochromate, LiNH2CrO3

Very sol in  $H_2O$  and acids (Lowenthal, Z anorg 1894, 6 364)

## Potassium amidochromate, KCrO<sub>2</sub>NH<sub>2</sub>

Sol only in H<sub>2</sub>O Sat solution in H<sub>2</sub>O contains 13 % of the salt (Heintze, J pr (2) 4 214)

# Amidophosphoric acid, $HPO_3(NH_2) = PO(NH_2) (OH)_2$

Sol in  $H_2O$ , but decomp on standing or by heat (Stokes, Am Ch J 15 198)

#### Aluminum amidophosphate

Ppt Sol in NH<sub>4</sub>OH+Aq (Stokes)

# Ammonium amidophosphate,

NH<sub>4</sub>HPO<sub>3</sub>(NH<sub>2</sub>)
Very sol in H<sub>2</sub>O (Stokes)

# Barium amidophosphate, BaPO<sub>3</sub>(NH)+H<sub>2</sub>O

Very sl sol in  $H_2O$  (Stokes)  $BaH_2(PO_8NH_2)_2+2\frac{1}{2}H_2O$  Quite difficultly sol in  $H_2O$  (Stokes)

#### Calcium amidophosphate, CaPO<sub>3</sub>(NH<sub>2</sub>)

Much less sol in H<sub>2</sub>O than Ba salt (Stokes)

CaH<sub>2</sub>(PO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub> Much less sol in HO than the Ba salt (Stokes)

#### Chromic amidophosphate

Ppt Sol in warm NH<sub>4</sub>OH+Aq (Stokes)

#### Cobalt amidophosphate

Neutral Ppt Acid Sl sol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH+Aq

#### Cupric amidophosphate

Neutral Sl sol in H<sub>2</sub>O Acid Nearly insol in H<sub>2</sub>O

#### Ferrous amidophosphate

Neutral Sol in much H<sub>2</sub>O, and in HC<sub>2</sub>H<sub>4</sub>O<sub>2</sub>, or NH<sub>4</sub>OH+Aq
Acid Nearly insol in H<sub>2</sub>O or NH<sub>4</sub>Cl+Aq
Sol in NH<sub>4</sub>OH+Aq

#### Ferric amidophosphate

Neutral Ppt Sol in excess of alkali

amidophosphate and in NH<sub>4</sub>OH+Aq Insol  $In HC_2H_3O_2+Aq$ 

Acid As the neutral salt

Hydroxylamine amidophosphate,  $(NH_3O)HPO_3(NH_2)$ Sl sol in H<sub>2</sub>O (Stokes)

Lithium amidophosphate, LiHPO<sub>3</sub>(NH) Sl sol in H<sub>2</sub>O (Stokes)

Magnesium amidophosphate, MgPO<sub>3</sub>(NH<sub>2</sub>) +7H<sub>2</sub>O

Very sl sol in  $H_2O$ , quite easily sol in dil  $NH_4Cl+Aq$  Sol in  $HC_2H_3O_2+Aq$  (Stokes)  $MgH_2(PO_3NH_2)_2 + 3\frac{1}{4}H_2O$ Insol NH<sub>4</sub>Cl+Aq (Stokes)

# Manganese amidophosphate

Neutral Ppt Acid Sl sol in H<sub>2</sub>O

#### Nickel amidophosphate

NeutralPpt Sol NH₄OH+Aq Acid Sl sol in HO

Potassium amidophosphate, K PO<sub>3</sub>(NH<sub>2</sub>)

Very sol in H<sub>2</sub>O and not decomp by boiling (Stokes) KHPO<sub>3</sub>(NH<sub>2</sub>) Easily sol in cold H<sub>2</sub>O. insol in alcohol (Stokes)

Silver amidophosphate,  $Ag_2PO_3(NH)$ 

Almost insol in H<sub>2</sub>O Sol in HNO<sub>3</sub> or NH₄OH+Aq AgHPO<sub>3</sub>(NH<sub>2</sub>) Sl sol in H<sub>2</sub>O, easily sol in dil HNO3 or HC2H3O3+Aq, ilso in

Sodium amidophosphate, Na<sub>2</sub>PO<sub>3</sub>(NH)

Not deliquescent, very sol in HO pptd from aqueous solution by alcohol (Stokes) NaHPO<sub>3</sub>(NH)+1/4(?)HO Nearly insol in cold, and decomp by hot H () Insol in alcohol

# Zinc amidophosphate

 $NH_4OH + Aq$ 

Neutral Perceptibly sol in H () Acid Sl sol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH or HC,H3O +Aq

Diamidophosphoric acid,  $PO(NH_2)_2OH$ 

Sol in cold HO, almost insol in alcohol. stable in the air but decomp when heated and by boiling in aq solution (Stokes, Am Ch J 1894, **16** 130)

Barium diamidophosphate, [PO(NH<sub>2</sub>) O]<sub>2</sub>Ba Very sol in H<sub>2</sub>O, insol in alcohol, aq solution decomp slowly (Stokes, Am Ch J 1894, **16** 134)

Magnesium diamidophosphate,  $[PO(NH_2)]$ ,  $O]_2Mg$ 

Sol in HO, insol in alcohol (Stokes)

Potassium diamidophosphate, PO(NH<sub>2</sub>)<sub>2</sub>OK Sol in HO, not deliquescent, insol in alcohol (Stokes)

Silver dramidophosphate, PO(NH<sub>2</sub>)<sub>2</sub>OAg Very stable, insol in H<sub>2</sub>O Very sol in NH<sub>4</sub>OH+Aq (Stokes)

Sodium diamidophosphate, PO(NH<sub>2</sub>)<sub>2</sub>ON<sub>2</sub> Sol in H<sub>2</sub>O, not deliquescent, insol in alcohol (Stokes)

# $D_i$ amıdo $tr_i$ hydroxylphosphoric acid

Silver diamidotrihydroxylphosphate,  $(AgO)_3P(NHAg)_2$ 

(Stokes, Am Ch J 1894, 16 147) Insol in cold

in HC H<sub>3</sub>O<sub>3</sub> or  $H_2O$  (AgO)<sub>3</sub>P(NH<sub>2</sub>)(NHAg) H<sub>2</sub>O (Stokes)  $(AgO)_3P(NH_2)_9$ Decomp by cold HO (Stokes)

 $+2H_{\bullet}O$ Decomp by boiling но (Stokes)

# Amidoimidophosphoric acid

Amidoheximidoheptaphosphoric acid, PO (NH<sub>2</sub>)[NH PO(OH)], NH PO(OH)<sub>2</sub>  $= P_7 N_7 O_{15} H_{16}$ 

Known only in solution in H () (Stokes Am Ch J 1898 **20** 758)

Silver diamidopyrimidophosphate, NH(PO NH OAg)

Almost insol in H(), sol in NH<sub>4</sub>()H +  $\Lambda a$ (Stokes, Am Ch J 1894 16 136)

Silver amidotetrimido pentaphosphate, PaNaOnHAg

Ppt (Stokes Am Ch J 1898 20 752)

Silver amidoheximidoheplaphosphate, P7N7()15H9Ag

Ppt , decomp by actic acid (Stokes Am Ch. J. 1898,  ${f 20}$  759.)

Sodium amidodiimidotriphosphate,

PO ONa < NH PO(ONa) NHPO(ONa)NH

 $= P_3 N_3 O_7 H_4 N_{14} + H_1 O_1$ 

Unstable sol in H2O, insol in alcohol (Stokes, Am Ch J 1896, 18 643)

Sodium amidoheximidoheptaphosphate, P7N O15H9Na7

Sol in HO, pptd by ilcohol (Stokes, Am Ch J 1898, 20 758)

# Amidophosphimic acid

Silver amidophosphimate, P(NH) NH<sub>2</sub>(OAg)<sub>2</sub>
Decomp by heat, decomp in contact with H<sub>2</sub>O (Stokes, Am Ch J 1894, **16** 139)
(AgO)<sub>2</sub>P(NAg)(NHAg) (?) Sl sol in NH<sub>4</sub>OH+Aq (Stokes, Am Ch J 1894, **16** 149)

#### Amidosulphonic acid, HOSO<sub>2</sub>NH<sub>2</sub>

Easily sol in H O, less easily in alcohol (Berglund, B 9 252 and 1896)

Very stable, less easily sol in H<sub>2</sub>O than its

K salt (Raschig, A 241 177)
Stable in air Non-deliquescent when cold Sol in 5 pts H<sub>2</sub>O at 0° and in 2½ pts H O at 70° Solution in H<sub>2</sub>O can be boiled several minutes without decomp Solubility is decreased by addition of H<sub>2</sub>SO<sub>4</sub>, so that if 1/5-1/4 pt H<sub>2</sub>SO<sub>4</sub> is added to H<sub>2</sub>O, 100 pts of the liquid dissolve only 3 pts HOSO<sub>2</sub>NH<sub>2</sub> in the cold Pptd from solution by HNO<sub>3</sub> or glacial acetic acid, but not by HCl Solubility is decreased by presence of NaHSO<sub>4</sub> (Diversand Haga, Chem Soc 1896, 69 1641)

#### **Amidosulphonates**

Easily sol in H2O, sl sol in alcohol

#### Aluminum amidosulphonate

Very sol in  $H_2O$  (Berglund, Bull Soc (2) **29** 422)

Ammonium amidosulphonate, (NH<sub>4</sub>)NH<sub>2</sub>SO<sub>3</sub>
Deliquescent Sol in HO, insol in alcohol

Ammonium silver amidosulphonate, NH<sub>4</sub>SO<sub>3</sub>(NH<sub>2</sub>), AgSO<sub>3</sub>(NH) (Ephraim & Guirwitsch, B 1910, **43** 148)

Barium amidosulphonate, Ba(NH SO<sub>3</sub>) Sol in 3 pts H O (Berglund, l c)

Cadmium amidosulphonate, Cd(NH SO<sub>3</sub>) + 5H<sub>2</sub>()

Very sol in  $H_2O$  (B)

Calcium amidosulphonate,  $Ca(NHSO_3)_2 + 4H()$ 

Very sol in HO (B)

Cobalt amidosulphonate, Co(NH SO<sub>3</sub>) + 3H<sub>2</sub>()

Sol in  $H_2O$  (B)

Copper amidosulphonate, Cu(NH SO<sub>2</sub>)<sub>2</sub>+ 2H O

Sol in H<sub>2</sub>O (B)

Gold (auric) potassium amidosulphonate, K<sub>2</sub>Au<sub>2</sub>(NSO<sub>3</sub>)<sub>3</sub>

Very sl sol in cold, more easily sol in hot

H<sub>2</sub>O Sol in dil HCl+Aq (Hofmann, B 1912, **45** 1735)

Lead amidosulphonate,  $Pb(NH_2SO_3)_2 + H_2O$ The most sol of all amidosulphonates (B)

Lithium amidosulphonate LiNH SO<sub>3</sub> Deliquescent (B)

Magnesium amidosulphonate Very sol in H<sub>2</sub>O

Manganese amidosulphonate, Mn(NH<sub>2</sub>SO<sub>3</sub>) +3H<sub>2</sub>O

Very sol in H<sub>2</sub>O (B)

Mercuric amidosulphonate, basic, Hg(HgOSO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>

Insol in 3.5 % HNO<sub>3</sub>+Aq Very sol in 3 % HCl+Aq (Hofmann, B 1912, **45** 1733 +2H<sub>2</sub>O Insol in hot H<sub>2</sub>O Sol in KOH+Aq (Divers and Haga, Chem Soc 1896, **69** 1649)

Mercuric potassium amidosulphonate, KHgNSO<sub>3</sub>

Very sl sol in cold  $H_2O$  and cold dil KOH +Aq Sol in 3 % HCl+Aq (Hofmann, B 1912, **45** 1732)

 $\begin{array}{cc} \textbf{Mercuric sodium amidosulphonate,} \\ \textbf{NaHgNSO}_{3} \end{array}$ 

Nearly completely sol in hot HO (Hoffmann, B 1912, **45** 1734)

Nickel amidosulphonate, Ni(NH SO<sub>3</sub>)<sub>2</sub>+ 3H<sub>2</sub>O Sol in H<sub>2</sub>O (B)

Potassium amidosulphonate, KNH SO<sub>3</sub> Sol in H<sub>2</sub>O (Berglund)

Potassium silver amidosulphonate, NHAgSO<sub>3</sub>K+HO

Silver amidosulphonate, AgNH SO<sub>3</sub> Sol in 15 pts H O at 19° (B)

Sodium amidosulphonate, \a\H<sub>2</sub>SO<sub>3</sub> Sol in H<sub>2</sub>O

Strontium amidosulphonate,  $Sr(NHSO_3)_2 + 4HO$ Sol in HO

Thallium amidosulphonate, 71NH SO<sub>3</sub> Sol in H<sub>2</sub>O

Uranyl amidosulphonate Sol in H<sub>2</sub>O

Zinc amidosulphonate, Zn(NH SO<sub>3</sub>)<sub>2</sub>+4H<sub>2</sub>O Sol in H<sub>2</sub>O

# Amidosulphurous acid

Ammonium amidosulphite, NH2 SO2 NH4

Very deliquescent Decomp in the air with loss of NH<sub>3</sub> Sol in H O with decomp Sol in anhydrous alcohol Sl sol in dry ether (Divers, Chem Soc 1900, 77 330)

#### Ammonia, NH3

Very sol in H<sub>2</sub>O, with evolution of much

1 vol H2O absorbs 670 vols (½ pt by weight) NHs at  $+10^{\circ}$  and 29 8 in pressure sp gr of solution = 0 875 (Davy)

At low temperatures H<sub>2</sub>O absorbs more than ½ its weight of NH<sub>2</sub> and sp gr of solution = 0.850 (Dalton) 100 pts H<sub>2</sub>O absorb 8 41 pts NH<sub>2</sub> at 24° 5.96 pts at 55° (Osann) bushe 700 m/s NH<sub>2</sub> 6 m/s H<sub>2</sub>O m/s

1 vol H<sub>2</sub>O absorbs 780 vols NH<sub>3</sub> 6 vols H<sub>2</sub>O increasing to 10 vols sat NH<sub>4</sub>OH+Aq 1 vol sat NH<sub>4</sub>OH+Aq contains 468 vols NH<sub>3</sub> (Thomson) 1 vol H<sub>2</sub>O absorbs 450 vols NH<sub>3</sub> at 15° (Dumas) 1 vol H<sub>2</sub>O absorbs 700 vols NH<sub>3</sub> at ordinary temperature (Otto)

100 pts H<sub>2</sub>O absorb in NH<sub>3</sub> gas 47 7 pts NH<sub>3</sub> by weight (Berselius)
1 vol H<sub>2</sub>O absorbs 505 vols NH<sub>3</sub> and vol is increased to 15 vol and sp gr becomes 0 900 (Ure)

 $1 \text{ vol } H_2O \text{ at } 0^{\circ} \text{ and } 760 \text{ mm} \text{ absorbs } 1177 3$ vols NH<sub>3</sub> (Sims)

1 vol H<sub>2</sub>O at 0° and 760 mm absorbs 1146

vols NH<sub>3</sub> (Roscoe and Dittmar) 1 vol H2O at 0° and 760 mm absorbs

1049 6 vols NH<sub>3</sub> (Carius) 1 vol H<sub>2</sub>O at 0° and 760 mm absorbs 1270

vols NH<sub>2</sub> (Berthelot) 1 vol H<sub>2</sub>O at 0° and 760 mm absorbs 1050

vols NH<sub>2</sub> (Bunsen) HO absorb 64 50 g 100 cc  $NH_3$ 

(Raoult)

Solubility of NH<sub>3</sub> in H<sub>2</sub>O at 760 mm and t° 1 g H O absorbs g NH<sub>3</sub>, according to Roscoe and Dittmai (A 122 347) (RD), and according to Sims (A 118 345) (S)

| t°                                                                          | g NH <sub>3</sub><br>RD                                                                                                    | g NHa<br>S                                                                                                                 | t°                                                                               | g NH <sub>3</sub><br>RD                                                                         | g VH <sub>3</sub>                                                                                                                   |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>26 | 0 875<br>0 833<br>0 792<br>0 751<br>0 713<br>0 679<br>0 645<br>0 612<br>0 582<br>0 554<br>0 526<br>0 499<br>0 474<br>0 449 | 0 899<br>0 853<br>0 809<br>0 765<br>0 724<br>0 684<br>0 646<br>0 611<br>0 578<br>0 546<br>0 518<br>0 490<br>0 467<br>0 446 | 36<br>38<br>40<br>42<br>44<br>46<br>48<br>50<br>52<br>54<br>56<br>58<br>60<br>70 | 0 343<br>0 324<br>0 307<br>0 290<br>0 275<br>0 259<br>0 244<br>0 229<br>0 214<br>0 200<br>0 186 | 0 363<br>0 350<br>0 338<br>0 326<br>0 315<br>0 304<br>0 294<br>0 284<br>0 265<br>0 256<br>0 247<br>0 248<br>0 247<br>0 248<br>0 194 |
| 28<br>30                                                                    | 0 426<br>0 403                                                                                                             | 0 426<br>0 408                                                                                                             | 80<br>90                                                                         |                                                                                                 | 0 154<br>0 114                                                                                                                      |
| 32<br>34                                                                    | 0 382                                                                                                                      | 0 393<br>0 378                                                                                                             | 98<br>100                                                                        |                                                                                                 | 0 082<br>0 074                                                                                                                      |
| 04                                                                          | 0 362                                                                                                                      | 0 3/8                                                                                                                      | 100                                                                              |                                                                                                 | 0 0/4                                                                                                                               |

Solubility of NH<sub>3</sub> by vol in H<sub>2</sub>O at 760 mm and to 1 vol H2O at 760 mm and to dissolves V vols NH3 gas, vols reduced to 0° and 760 mm

| t°                                                               | v                                                                                                                                | to                                                                         | v                                                                                                                              |  |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 1049 60<br>1020 78<br>993 26<br>966 98<br>941 88<br>917 90<br>894 99<br>873 09<br>852 14<br>831 98<br>812 76<br>794 32<br>776 60 | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25 | 759 55<br>743 11<br>727 22<br>711 82<br>696 85<br>682 26<br>667 99<br>653 99<br>640 19<br>626 54<br>612 98<br>599 46<br>585 94 |  |  |
|                                                                  | <b>'</b> C                                                                                                                       | 1 00 1111                                                                  |                                                                                                                                |  |  |

(Carius, A 99 144)

Solubility of NH3 in H2O at P mm pressure and 0° 1 pt H2O absorbs pts NH3 at P mm pressure and 0°

| r mm pressure and 0                                                                                                  |                                                                                                                                             |                                                                                                                                    |                                                                                                                                             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| P                                                                                                                    | Pts NH <sub>3</sub>                                                                                                                         | P                                                                                                                                  | Pts NH <sub>3</sub>                                                                                                                         |  |  |  |
| 10<br>20<br>30<br>40<br>50<br>75<br>100<br>125<br>150<br>175<br>200<br>250<br>350<br>400<br>450<br>500<br>600<br>650 | Pts NH <sub>3</sub> 0 044 0 084 0 120 0 149 0 175 0 228 0 275 0 315 0 351 0 382 0 411 0 465 0 515 0 561 0 607 0 646 0 690 0 731 0 768 0 804 | 900<br>950<br>1000<br>1050<br>1100<br>1150<br>1200<br>1250<br>1300<br>1450<br>1450<br>1550<br>1600<br>1650<br>1700<br>1750<br>1500 | Pts NH <sub>3</sub> 0 968 1 101 1 037 1 075 1 117 1 161 1 208 1 258 1 310 1 361 1 415 1 469 1 526 1 554 1 645 1 707 1 770 1 535 1 906 1 976 |  |  |  |
| 500<br>550<br>600<br>650<br>700<br>750<br>800                                                                        | 0 690<br>0 731<br>0 768<br>0 804<br>0 840<br>0 872<br>0 906                                                                                 | 1700<br>1750<br>1800                                                                                                               | 1 770<br>1 535<br>1 906                                                                                                                     |  |  |  |
| 850                                                                                                                  | 0 937                                                                                                                                       |                                                                                                                                    |                                                                                                                                             |  |  |  |

(Roscoe and Dittmu, A 112 349)

In proportion as the temperature is higher, so much the more nearly does the solubility of NH3 in H2O conform to the law of Henry and Dalton, but only obeys it completely when the temperature is 100°, as is seen in the following table

olubility of NH<sub>3</sub> in H<sub>2</sub>O at various pressures and temperatures P=partial pressure, 1 e total pressure minus the tension of aqueous vapour at the given temperature, G=grams NH<sub>3</sub> dissolved in 1 g H<sub>2</sub>O at the given pressure, G at 760=grams NH<sub>3</sub> that would be contained in 1 g H<sub>2</sub>O if the solubility was proportional to the pressure

| be contained in 1 g H <sub>2</sub> O if the solubility was proportional to the pressure                                                                    |                                                                                                                                                                                       |                                                                                                                                                                             |                                                                                                                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                             |                                                                                                                                                                                                    |                                                                               |                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|
| P                                                                                                                                                          | 0°                                                                                                                                                                                    |                                                                                                                                                                             | 20°                                                                                                                                                                                                         |                                                                                                                                                           | 40°                                                                                                                                                                                                         |                                                                                                                                                                                                    | 100°                                                                          |                                                                      |
|                                                                                                                                                            | G at P                                                                                                                                                                                | G at 760                                                                                                                                                                    | G at P                                                                                                                                                                                                      | G at 760                                                                                                                                                  | G at P                                                                                                                                                                                                      | G at 760                                                                                                                                                                                           | G at P                                                                        | G at 760                                                             |
| 20<br>30<br>40<br>60<br>80<br>100<br>120<br>140<br>160<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>650<br>700<br>850<br>900<br>950<br>1000<br>1050 | G at P  0 082 0 117 0 148 0 169 0 240 0 280 0 316 0 346 0 375 0 398 0 421 0 472 0 519 0 563 0 606 0 650 0 692 0 732 0 770 0 809 0 850 0 891 0 899 0 937 0 980 1 029 1 077 1 126 1 177 | G at 760  3 113 2 960 2 820 2 522 2 280 2 127 2 000 1 880 1 684 1 598 1 434 1 315 1 152 1 100 1 052 1 012 0 975 0 946 0 923 0 903 0 903 0 809 0 869 0 869 0 862 0 855 0 852 | 0 119<br>0 141<br>0 158<br>0 173<br>0 187<br>0 202<br>0 207<br>0 232<br>0 266<br>0 296<br>0 325<br>0 353<br>0 425<br>0 447<br>0 470<br>0 492<br>0 514<br>0 518<br>0 535<br>0 556<br>0 574<br>0 613<br>0 632 | G at 760  1 513 1 337 1 200 1 095 1 017 0 962 0 918 0 881 0 810 0 705 0 670 0 638 0 612 0 587 0 566 0 550 0 534 0 521 0 518 0 497 0 485 0 497 0 466 0 457 | 0 052<br>0 064<br>0 076<br>0 088<br>0 099<br>0 109<br>0 120<br>0 145<br>0 168<br>0 191<br>0 211<br>0 232<br>0 251<br>0 269<br>0 320<br>0 335<br>0 338<br>0 349<br>0 363<br>0 378<br>0 391<br>0 404<br>0 414 | 0 497<br>0 490<br>0 483<br>0 476<br>0 470<br>0 462<br>0 454<br>0 426<br>0 414<br>0 402<br>0 399<br>0 382<br>0 372<br>0 363<br>0 355<br>0 347<br>0 339<br>0 332<br>0 325<br>0 319<br>0 307<br>0 300 | 0 068<br>0 073<br>0 074<br>0 078<br>0 083<br>0 088<br>0 092<br>0 096<br>0 101 | 0 074<br>0 074<br>0 074<br>0 074<br>0 074<br>0 073<br>0 073          |
| 1100<br>1150<br>1200<br>1250<br>1300<br>1350<br>1400<br>1450<br>1500<br>1700<br>1800<br>1900<br>2000<br>2100                                               | 1 230<br>1 283<br>1 336<br>1 338<br>1 442<br>1 496<br>1 549<br>1 603<br>1 656<br>1 755<br>1 861<br>1 966<br>2 070                                                                     | 0 850<br>0 848<br>0 846<br>0 844<br>0 843<br>0 542<br>0 841<br>0 840<br>0 839<br>0 835<br>0 835<br>0 832                                                                    | 0 651<br>0 669<br>0 685<br>0 704<br>0 722<br>0 741<br>0 761<br>0 780<br>0 801<br>0 842<br>0 881<br>0 919<br>0 955<br>0 992                                                                                  | 0 450<br>0 442<br>0 433<br>0 428<br>0 422<br>0 417<br>0 413<br>0 409<br>0 406<br>0 400<br>0 394<br>0 388<br>0 382<br>0 377                                | 0 425<br>0 434<br>0 445<br>0 454<br>0 463<br>0 472<br>0 479<br>0 486<br>0 493<br>0 511<br>0 530<br>0 547<br>0 565<br>0 579                                                                                  | 0 294<br>0 287<br>0 282<br>0 276<br>0 271<br>0 266<br>0 260<br>0 255<br>0 250<br>0 242<br>0 237<br>0 231<br>0 226<br>0 220<br>0 215                                                                | 0 106<br>0 110<br>0 115<br>0 120<br>0 125<br>0 130<br>0 135                   | 0 073<br>0 073<br>0 073<br>0 073<br>0 073<br>0 073<br>0 073<br>0 073 |

(Sims, A 118 346)

Solubility of NH<sub>3</sub> in H<sub>2</sub>O at temps below 0° One gram H<sub>2</sub>O dissolves

grams NH<sub>8</sub> Temp
0 947 —3 9°
1 115 —10°
1 768 —20°
2 781 —30°
2 946 —40°

(Mallet, Am Ch J 1897, 19 807

The solubility of NH<sub>3</sub> in H<sub>2</sub>O does not follow Dalton's law at ord temp, but does at temp near 100° (Konowaloff, J Russ Phys Chem Soc 1894, 26 48, Chem Soc 1896, 70 (2) 351

## Sp gr of NH<sub>4</sub>OH+Aq

| %NH:                                          | Sp gr  | %NH <sub>3</sub> | Sp gr  |
|-----------------------------------------------|--------|------------------|--------|
| 32 3* 29 25 26 25 37* 22 07 19 54 17 52 15 88 | 0 8750 | 14 53            | 0 9435 |
|                                               | 0 8857 | 13 46            | 0 9476 |
|                                               | 0 9000 | 12 40            | 0 9513 |
|                                               | 0 9054 | 11 56            | 0 9545 |
|                                               | 0 9166 | 10 82            | 0 9573 |
|                                               | 0 9255 | 10 17            | 0 9597 |
|                                               | 0 9326 | 9 6              | 0 9616 |
|                                               | 0 9385 | 9 5*             | 0 9632 |

#### (H Davy, Elements, 1 241)

Sp gr of NH<sub>4</sub>OH+Aq at 16°, according to Otto in his Lehrbuch

|                   | Otto in his | Lehrbuch |        |
|-------------------|-------------|----------|--------|
| % NH <sub>3</sub> | Sp gr       | % NH3    | Sp gr  |
| 12 000            | 0 9517      | 8 500    | 0 9650 |
| 11 875            | 0 9521      | 8 375    | 0 9654 |
| 11 750            | 0 9526      | 8 250    | 0 96ა9 |
| 11 625            | 0 9531      | 8 125    | 0 9664 |
| 11 500            | 0 9536      | 8 000    | 0 9669 |
| $11 \ 375$        | 0 9540      | 7 875    | 0 9673 |
| 11 250            | 0 9545      | 7 750    | 0 9675 |
| $11 \ 125$        | 0 9550      | 7 625    | 0 9653 |
| 11 000            | 0 9555      | 7 500    | 0 9685 |
| 10 950            | 0 9556      | 7 375    | 0 9692 |
| 10 875            | 0 9559      | 7 250    | 0 9697 |
| 10 750            | 0 9564      | 7 125    | 0 9702 |
| $10\ 625$         | 0 9569      | 7 000    | 0 9707 |
| 10 500            | 0 9574      | 6 875    | 0 9711 |
| 10 375            | 0 9578      | 6 750    | 0 9716 |
| 10 250            | د958 0      | 6 625    | 0 9721 |
| $10 \ 125$        | 0 9588      | 6 500    | 0 9726 |
| 10 000            | 0 9593      | 6 375    | 0 9730 |
| 9 875             | 0 9597      | 6 250    | 0 9735 |
| 9 750             | 0 9602      | 6 125    | 0 9740 |
| 9 625             | 0 9607      | 6 000    | 0 9745 |
| 9 500             | 0 9612      | 5 875    | 0 9749 |
| 9 375             | 0 9616      | 5 750    | 0 9754 |
| 9 250             | 0 9621      | 5 625    | 0 9759 |
| $9\ 125$          | 0 9626      | 5 500    | 0 9764 |
| 9 000             | 0 9631      | 5 375    | 0 9768 |
| 8 875             | 0 9636      | 5 250    | 0 9773 |
| 8 750             | 0 9641      | 5 125    | 0 9778 |

8 625

0 9645

5 000

0.9755

Sp gr of NH<sub>4</sub>OH+Aq, according to Ure in Dict of Arts

| % NHs         Sp gr         %NHs         Sp gr           27 940         0 8914         15 900         0 9363           27 633         0 8937         14 575         0 9410           27 038         0 8967         13 250         0 9455           26 751         0 8983         11 925         0 9510           26 500         0 9000         10 600         0 9564           25 175         0 9045         9 275         0 9614           23 850         0 9090         7 950         0 9662           22 525         0 9133         6 625         0 9716           21 200         0 9177         5 300         0 9768           19 875         0 9227         3 975         0 9828           18 550         0 9275         2 650         0 9887           17 225         0 9320         1 325         0 9945 |                                                                                                  |                                                                                                  |                                                                                            |                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | % NH:                                                                                            | Sp gr                                                                                            | %NH3                                                                                       | Sp gr                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 633<br>27 038<br>26 751<br>26 500<br>25 175<br>23 850<br>22 525<br>21 200<br>19 875<br>18 550 | 0 8937<br>0 8967<br>0 8983<br>0 9000<br>0 9045<br>0 9090<br>0 9133<br>0 9177<br>0 9227<br>0 9275 | 14 575<br>13 250<br>11 925<br>10 600<br>9 275<br>7 950<br>6 625<br>5 300<br>3 975<br>2 650 | 0 9410<br>0 9455<br>0 9510<br>0 9564<br>0 9614<br>0 9662<br>0 9716<br>0 9768<br>0 9828<br>0 9887 |

Sp gr, b-pt, and vols gas in NH4OH+Aq

| % NH3 | Sp gr | B pt                                                              | Vols gas in<br>1 vol liquid |
|-------|-------|-------------------------------------------------------------------|-----------------------------|
| 35 3  | 0 85  | -3 3° +3 3° 10° 16 6° 23 3° 36 6° 43 3° 50° 56 6° 63 3° 70° 75 3° | 494                         |
| 32 6  | 0 86  |                                                                   | 456                         |
| 29 9  | 0 87  |                                                                   | 419                         |
| 27 3  | 0 88  |                                                                   | 382                         |
| 24 7  | 0 89  |                                                                   | 346                         |
| 22 2  | 0 90  |                                                                   | 311                         |
| 19 8  | 0 91  |                                                                   | 277                         |
| 17 4  | 0 92  |                                                                   | 244                         |
| 15 1  | 0 93  |                                                                   | 211                         |
| 12 8  | 0 94  |                                                                   | 180                         |
| 10 5  | 0 95  |                                                                   | 147                         |
| 8 3   | 0 96  |                                                                   | 116                         |
| 6 2   | 0 97  |                                                                   | 57                          |
| 4 1   | 0 98  | 86 1°                                                             | 57                          |
| 2 0   | 0 99  | 91 1°                                                             | 25                          |

(Dalton, in New System 2 422)

Sp gr of NH<sub>4</sub>OH+ \q s it it t

| t                                         | Sp gr                                                                                  | t                                                 | Sp gr                                   | t                                            | Sp gr                                                                          |
|-------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 0 8535<br>0 8561<br>0 8587<br>0 8611<br>0 8635<br>0 8638<br>0 8681<br>0 8703<br>0 8725 | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 15<br>19<br>20<br>21<br>22<br>23<br>24<br>25 | 0 590 5<br>0 5916<br>0 5925<br>0 5940<br>0 5952<br>0 596 5<br>0 5974<br>0 5951 |

(Carus, A 99 141)

Sp gr of NH<sub>3</sub>()N+Aq it 11° iccording to Carus (A 99 148)

| % VH <sub>3</sub> | pb Fi  | o >H₃ | Sp gr   |
|-------------------|--------|-------|---------|
| 36 0              | 0 8844 | 35 2  | 0 \$560 |
| 35 8              | 0 8848 | 35 0  | 0 8864  |
| 35 6              | 0 8852 | 34 8  | 0 8865  |
| 35 4              | 0 8856 | 34 6  | 0 8872  |

<sup>\*</sup>By direct experiment The other numbers were obtained by calculation making no allowance for compensation

| gr of NH₄OH- | ⊢Aq at | 14°, | etc — Cont |
|--------------|--------|------|------------|
|--------------|--------|------|------------|

| Sp | gr | of | NH <sub>4</sub> OH- | -Ac at | 14°. | etcCont |
|----|----|----|---------------------|--------|------|---------|
|    |    |    |                     |        |      |         |

| gr or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NH4OH+A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iq at 14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , etc —Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | % NH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NH:  34 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 | Sp gr  0 8877 0 8881 0 8885 0 8889 0 8885 0 8889 0 8894 0 8898 0 8903 0 8907 0 8916 0 8920 0 8925 0 8929 0 8934 0 8948 0 8948 0 8957 0 8962 0 8967 0 8976 0 8967 0 8976 0 8981 0 8968 0 8991 0 9006 0 9011 0 9026 0 9031 0 9036 0 9041 0 9057 0 9057 0 9068 0 9073 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 0 9078 | % NH <sub>3</sub> 22 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 20 8 6 4 2 | Sp gr<br>0 9185<br>0 9191<br>0 9197<br>0 9203<br>0 9209<br>0 9215<br>0 9221<br>0 9227<br>0 9233<br>0 9239<br>0 9245<br>0 9251<br>0 9257<br>0 9264<br>0 9271<br>0 9283<br>0 9289<br>0 9289<br>0 9302<br>0 9308<br>0 9314<br>0 9321<br>0 9327<br>0 9333<br>0 9340<br>0 9340<br>0 9366<br>0 9373<br>0 9386<br>0 9373<br>0 9386<br>0 9373<br>0 9400<br>0 9414<br>0 9427<br>0 9434<br>0 9456<br>0 9477<br>0 9484<br>0 9491<br>0 9505<br>0 9527<br>0 9542<br>0 9578<br>0 9578 |
| 22 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 9180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 9586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                              | .q ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| % NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sp gr                                                                                                                                                                                                                                        | % VH;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sp gr                                                                                                                                                                                                          |
| 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 | 0 9593<br>0 9601<br>0 9608<br>0 9616<br>0 9623<br>0 9631<br>0 9639<br>0 9647<br>0 9654<br>0 9662<br>0 9670<br>0 9677<br>0 9685<br>0 9693<br>0 9701<br>0 9709<br>0 9717<br>0 9725<br>0 9733<br>0 9741<br>0 9749<br>0 9757<br>0 9765<br>0 9773 | 5 4 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 | 0 9790<br>0 9799<br>0 9807<br>0 9815<br>0 9823<br>0 9831<br>0 9839<br>0 9847<br>0 9855<br>0 9863<br>0 9873<br>0 9890<br>0 9907<br>0 9915<br>0 9924<br>0 9932<br>0 9941<br>0 9959<br>0 9959<br>0 9967<br>0 9983 |
| 5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 9781                                                                                                                                                                                                                                       | 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 9991                                                                                                                                                                                                         |

Hager also gives a table in his Commentar zur Pharmacopoea, which is practically identical with those here given

Strength of NH<sub>4</sub>OH+Aq of certain sp gr at  $12^{\circ}$ 

|       | l kg solu       | 1 l solu        | 1 litre | consists of |
|-------|-----------------|-----------------|---------|-------------|
| JD Er | tion con        | tion con        | H O in  | liquid NH3  |
|       | NH <sub>3</sub> | NH <sub>3</sub> | ce      | ın ee       |
| 0 870 | 384 4           | 334 5           | 535 5   | 464 5       |
| 0 880 | 347 2           | 305 5           | 574 5   | 425 5       |
| 0 890 | 311 6           | 277 3           | 612 7   | 387 3       |
| 0 900 | 277 3           | 249 5           | 650 5   | 349 5       |
| 0 910 | 244 9           | 222 8           | 687 2   | 312 8       |
| 0 920 | 213 4           | 196 3           | 723 7   | 276 3       |
| 0 930 | 182 9           | 170 1           | 759 9   | 240 1       |
| 0 940 | 152 9           | 143 7           | 796 ɔ   | 203 7       |
| 0 950 | 124 2           | 118 0           | 832 0   | 168 0       |
| 0.960 | 97 0            | 93 1            | 866 9   | 133 1       |
| 0 970 | 70 2            | 68 0            | 902 0   | 98 0        |
| 0.980 | 45 3            | 44 3            | 935 7   | 64 3        |
| 0 990 | 21 0            | 20 7            | 969 3   | 30 7        |
|       |                 |                 |         |             |

(Wachsmuth, Arch Phum (3) 8 510)

# Sp gr of NH<sub>4</sub>OH+Aq at 15° (Most careful experiments)

| Sp gr | % NH3 | Sp gr | % NH3 |
|-------|-------|-------|-------|
| 0 990 | 2 15  | 0 926 | 19 50 |
| 0 974 | 6 10  | 0 916 | 22 50 |
| 0 950 | 12 54 | 0 910 | 24 40 |

| $\mathbf{Sp}$ | gr | of NH4 | pA+HC | at | 15°—Continued |
|---------------|----|--------|-------|----|---------------|
|               |    |        |       |    |               |

| Dh Br Or                | op gi of 14111011 + Aq as 19 Communica |                |              |  |  |
|-------------------------|----------------------------------------|----------------|--------------|--|--|
| Sp gr                   | % NH3                                  | Sp gr          | % NH3        |  |  |
| 0 900<br>0 890<br>0 885 | 27 70<br>31 40<br>33 5                 | 0 882<br>0 880 | 34 8<br>35 5 |  |  |

(Gruneberg, Chem Ind 12 97)

The following table is calculated from the above by interpolation —

(Gruneberg)

Sp gr of NH<sub>4</sub>OH+Aq at 14°

| % HN3 | Sp gr  | % NH3 | Sp gr  |
|-------|--------|-------|--------|
| 31    | 0 8933 | 15 6  | 0 9400 |
| 23 8  | 0 9116 | 11 7  | 0 9536 |
| 20 4  | 0 9246 | 5 1   | 0 9780 |

(I unge and Smith, B 17 777)

Sp gr of NH<sub>4</sub>OH+Aq at 15°, according to I unge and Wiernik (Zeit f angew Ch 1889 183)

(Most carefully worked out and calculated)

| Sp gr | % NH3 | 11 contains<br>g NH3 | Correction for = 1 |
|-------|-------|----------------------|--------------------|
| 1 000 | 0 00  | 0 0                  | 0 00018            |
| 0 998 | 0 45  | 4 5                  | 0 00018            |
| 0 996 | 0 91  | 9 1                  | 0 00019            |
| 0 994 | 1 37  | 13 6                 | 0 00019            |
| 0 992 | 1 84  | 18 2                 | 0 00020            |
| 0 990 | 2 31  | 22 9                 | 0 00020            |
| 0 988 | 2 80  | 27 7                 | 0 00021            |
| 0 986 | 3 30  | 32 5                 | 0 00021            |
| 0 984 | 3 80  | 37 4                 | 0 00022            |
| 0 982 | 4 30  | 42 2                 | 0 00022            |
| 0 980 | 4 80  | 47 0                 | 0 00023            |
| 0 978 | 5 30  | 51 8                 | 0 00023            |
| 0 976 | 5 80  | 56 6                 | 0 00024            |
| 0 974 | 6 30  | 61 4                 | 0 00024            |
| 0 972 | 6 80  | 66 1                 | 0 00025            |
| 0 970 | 7 31  | 70 9                 | 0 00025            |
| 0 968 | 7 82  | 75 7                 | 0 00026            |

Sp gr of NH4OH+Aq at 15°, etc -Continued

| Sp gr | % NH3     | 1 l contains<br>g NH3 | Correction for = 1° |
|-------|-----------|-----------------------|---------------------|
| 0 966 | 8 33      | 80 5                  | 0 00026             |
| 0 964 | 8 84      | 85 2                  | 0 00027             |
| 0 962 | 9 35      | 89 9                  | 0 00028             |
| 0 960 | 9 91      | 95 1                  | 0 00029             |
| 0.958 | 10 47     | 100 3                 | 0 00030             |
| 0 956 | 11 03     | 105 4                 | 0 00031             |
| 0 954 | 11 60     | 110 7                 | 0 00032             |
| 0 952 | 12 17     | 115 9                 | 0 00033             |
| 0 950 | 1274      | 121 0                 | 0 00034             |
| 0 930 | 13 31     | 126 2                 | 0 00034             |
| 0 946 | 13 88     | 131 3                 | 0 00036             |
| 0 944 | 14 46     | 136 5                 | 0 00037             |
| 0 944 | 15 04     | 141 7                 | 0 00037             |
|       |           | 146 9                 | 0 00038             |
| 0 940 |           |                       |                     |
| 0 938 | 16 22     | 152 1                 | 0 00040             |
| 0 936 | 16 82     | 157 4                 | 0 00041             |
| 0 934 | 17 42     | 162 7                 | 0 00041             |
| 0 932 | 18 03     | 168 1                 | 0 00042             |
| 0 930 | 18 64     | 173 4                 | 0 00042             |
| 0 928 | 19 25     | 178 6                 | 0 00043             |
| 0 926 | 19 87     | 184 2                 | 0 00044             |
| 0 924 | 20 49     | 189 3                 | 0 00045             |
| 0.922 | 21 12     | 194 7                 | 0 00046             |
| 0 920 | 21 75     | 200 1                 | 0 00047             |
| 0 918 | $22 \ 39$ | 205 6                 | 0 00048             |
| 0 916 | 23 03     | 210 9                 | 0 00049             |
| 0 914 | 23 68     | 216 3                 | 0 00050             |
| 0 912 | 24 33     | 221 9                 | 0 00051             |
| 0 910 | 24 99     | 227 4                 | 0 00052             |
| 0 908 | 25 65     | 232 9                 | 0 00053             |
| 0 906 | 26 31     | 238 3                 | 0 00054             |
| 0 904 | 26 98     | 2439                  | 0 00055             |
| 0 902 | 27 65     | 249 4                 | 0 00056             |
| 0 900 | 28 33     | 255 0                 | 0.00057             |
| 0.898 | 29 01     | 260 5                 | 0.00055             |
| 0.896 | 29 69     | 266 0                 | 0 00059             |
| 0.894 | 30 37     | 271 5                 | 0.00060             |
| 0 892 | 31 05     | 277 ó                 | 0 00060             |
| 0 890 | 31 75     | 282 6                 | 0 00061             |
| 0.888 | 32 50     | 258 6                 | 0 00062             |
|       | 33 25     | 294 6                 | 0 00065             |
|       | 34 10     | 301 4                 | 0 00064             |
| 0 884 |           | 1 1                   |                     |
| 0 882 | 34 95     | 508 3                 | 0 00065             |

NH3 is much less sol in KOH, or NaOH+Aq than in HO

Solubility of NII, in 11 O, and KOII+Aq of various strengths 100 pts solvent absorbs g NII, it to

| ť°                 | но                               | KOH+Aq<br>11.25 , KO             | KOH + Aq<br>25 25% K O           |
|--------------------|----------------------------------|----------------------------------|----------------------------------|
| 0<br>8<br>16<br>24 | 90 00<br>72 75<br>59 75<br>49 50 | 72 00<br>57 00<br>46 00<br>37 25 | 49 50<br>37 50<br>28 50<br>21 75 |
|                    |                                  |                                  |                                  |

(Raoult, A ch (5) 1 262)

100 pts sat KOH+Aq dissolve only 1 pt  $\%H_3$ 

Solubility in NaOH+Aq is the same as in

KOH+Aq of the same strength

NH<sub>4</sub>Cl $^+$ Aq absorbs slightly less NH<sub>3</sub> than the same vol H<sub>2</sub>O NaNO<sub>3</sub>, and NH<sub>4</sub>NO<sub>3</sub>+Aq absorb almost the same amount NH<sub>3</sub> as the same vol H<sub>2</sub>O (Raoult, lc)

## Solubility of NH<sub>3</sub> in 100 pts Ca(NO<sub>3</sub>)<sub>2</sub>+Aq

| t° | H <sub>2</sub> O | Ca(NO <sub>3</sub> ) <sub>2</sub> +Aq<br>29 38%Ca(NO <sub>3</sub> ) <sub>2</sub> | Ca(NO <sub>3</sub> ) +Aq<br>59 03%Ca(NO <sub>3</sub> ) <sub>2</sub> |
|----|------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 0  | 90 00            | 96 25                                                                            | 104 50                                                              |
| 8  | 72 75            | 78 50                                                                            | 84 75                                                               |
| 16 | 59 75            | 65 00                                                                            | 70 50                                                               |

(Raoult, lc)

## Solubility in salt solutions at 25°C

| Dolubility III ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             | 7110 000 20                                                                                                                                     |                                                                                                                                                                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mols NH3 soluble in<br>1 liter of                                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                                                                                                                 |  |
| Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o normal<br>solution                                                                                                                                                                                        | 1 normal<br>solution                                                                                                                            | 1 5 nor<br>mal<br>solution                                                                                                                                                                                                                      |  |
| KCI KB1 KI KOH NaCI NaB1 NaI NaOH L1CI L1B1 L1 L1 L1OH KF KNO3 KNO KCN KCNS L2K GO3 L2K GO3 L2K GO4 L3K C1O4 CH4COOK HCOOK HCO | 0 930<br>0 950<br>0 970<br>0 852<br>0 938<br>0 965<br>0 985<br>0 980<br>1 030<br>0 539<br>0 923<br>0 926<br>0 926<br>0 926<br>0 575<br>0 866<br>0 868<br>0 868<br>0 868<br>0 887<br>0 927<br>0 940<br>0 951 | 0 866 0 904 0 942 0 716 0 889 0 916 0 992 0 789 1 008 1 040 1 094 0 808 0 722 0 855 0 858 0 772 0 768 0 650 0 771 0 765 0 760 0 677 0 749 0 795 | 0 809<br>0 857<br>0 900<br>0 607<br>0 843<br>0 890<br>0 985<br>0 716<br>1 045<br>1 090<br>0 768<br>0 626<br>0 804<br>0 798<br>0 802<br>0 814<br>0 675<br>0 675<br>0 675<br>0 675<br>0 675<br>0 675<br>0 675<br>0 675<br>0 675<br>0 676<br>0 678 |  |

(Abegg & Riesenfeld, Z phys Ch 1902, **40** 

| Salt                                                                                                                                 | Concentration of the aq solution                 | Mols NH <sub>3</sub><br>soluble in 1 liter of<br>solution            |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|--|
| KCl<br>NaCl<br>CH <sub>3</sub> COOK<br>½(COOK) <sub>2</sub><br>KOH<br>NaOH<br>½K,CO <sub>3</sub><br>½Na <sub>2</sub> CO <sub>3</sub> | 0 5 normal  ""  ""  ""  ""  ""  ""  0 426 normal | 0 923<br>0 966<br>0 902<br>0 902<br>0 870<br>0 896<br>0 914<br>0 932 |  |

(Riesenfeld, Z phys Ch 1903, 45 462)

The solubility of NH<sub>3</sub> in NaNO<sub>3</sub>, NH<sub>4</sub>NO<sub>3</sub> and in AgNO<sub>3</sub>,2NH<sub>3</sub>+Aq is nearly the same as in pure  $\rm H_2O$  (Konowaloff, C C 1898, II 659)

Distribution-coefficient of NH<sub>3</sub> between water and CHCl<sub>3</sub>=26 3 at 20°, 24 9 at 25°, 23 2 at 30°

The distribution-coefficient of NH<sub>3</sub> between CHCl<sub>3</sub> and a number of salt solutions has been determined for the purpose of studying the nature of metal-ammonia compounds in aqueous solution (Dawson, Chem Soc 1900, 77 1242)

# Distribution of NH<sub>3</sub> between H<sub>2</sub>O and CHCl<sub>3</sub> at 18°

| 0 9280     0 03506       1 921     0 07703       2 064     0 08350       2 274     0 09317       2 590     0 1083       3 700     0 1639       4 333     0 1996 | NH <sub>3</sub> concentration in<br>aqueous solution<br>mols /litre | NH <sub>3</sub> concentration in<br>CHCl <sub>3</sub> solution<br>mols / litre |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                                                                                                                                 | 1 921<br>2 064<br>2 274<br>2 590<br>3 700                           | 0 07703<br>0 08350<br>0 09317<br>0 1083<br>0 1639                              |

(Dawson, Z phys Ch 1909, 69 120)

#### Distribution of NH<sub>3</sub> between hydroxides + 1q and CHCl<sub>3</sub> at 18°

| Aqueous solution                                                                     | NH <sub>3</sub> concen<br>tration in<br>the aqueous<br>solution<br>mols /litre | NH; concen<br>tration in the<br>CHCl; solution<br>mols/litre |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|
| 0 2-N KOH<br>0 5-N KOH<br>0 2-N NaOH<br>0 5-N NaOH<br>0 2-N ½Ba(OH)<br>0 5-N ½Ba(OH) | 1 949<br>1 978<br>2 016<br>1 944<br>2 076<br>3 397                             | 0 0841<br>0 0951<br>0 0869<br>0 0907<br>0 08905<br>0 1560    |  |  |

(Dawson, lc)

Distribution of NH<sub>3</sub> between Cu(OH)<sub>2</sub>+Aq and CHCl<sub>3</sub> at 18°

| Conc of Cu(OH) <sub>2</sub><br>equivalents/litre | NH <sub>3</sub> concentra-<br>tion in aqueous<br>solution<br>mols /litre | NH <sub>2</sub> concentra<br>tion in CHCl <sub>3</sub><br>solution<br>mols /htre |  |
|--------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| 0 041                                            | 2 014                                                                    | 0 07968                                                                          |  |
| 0 0705                                           | 2 653                                                                    | 0 1087                                                                           |  |
| 0 081                                            | 3 011                                                                    | 0 1247                                                                           |  |

Dawson, lc)

Sol in alcohol and ether

Sol in 3 pts alcohol of 38° (Boullay) 1 vol alcohol of 0 829 sp gr absorbs about 50 vols NH<sub>3</sub> (Davy)

Much less sol in ethyl, propyl, or amyl alcohol than in H<sub>2</sub>O (Pagliano and Emo, Gazz ch it **13** 278)

Solubility of NH<sub>3</sub> in ethyl alcohol ( )solute at t°

Pts NE per 100 t٥ % NH<sub>8</sub> pts : ohol 0 19 7 5 17 1 2( 6 6 11 7 14 1 16 4 13 2 11 2 14 7 7 17 12 6 14 22 10 9 1' 28 4 9 2 1( 1

(de Bruyn, R t c 11 112

 $_{0}$  mr

Mülle

1 vol abs alcohol at 20° and pressure absorbs 340 vols NH<sub>3</sub> gas W Ann 1891, **43** 567)

W Ann 1891, 43 507 )

1 1 methyl alcohol sat with NH<sub>3</sub> ontain

218 g NH<sub>3</sub> at 0°, sp gr of solution =0 770

coefficient of solubility =425 0 (De pine)

Solubility of NH<sub>3</sub> in alcohol at t° weight NH<sub>3</sub> = weight NH<sub>3</sub> contained in a litre of solution sat at 760 mm and t°, sp gr = sp gr of solution, C = coefficient of solubili

| Temp                         | Degree of Alcohol 100°               |                         | 100° 90°                |                          | 70°                     | 60°                      | 50°                  |
|------------------------------|--------------------------------------|-------------------------|-------------------------|--------------------------|-------------------------|--------------------------|----------------------|
| 0°                           | Weight NH <sub>3</sub><br>Sp gr<br>C | 130 5<br>0 782<br>209 5 | 146 0<br>0 783<br>245 0 | 206 5<br>0 808<br>390 0  |                         | 246 0<br>0 830<br>504 5  | 04 5<br>9835<br>97 7 |
| 10°                          | Weight NH <sub>3</sub><br>Sp gr<br>C | 108 5<br>0 787<br>164 3 | 120 0<br>0 803<br>186 0 | 167 0<br>0 800<br>288 0  |                         | 198 25<br>0 831<br>373 0 | 27 0<br>850<br>38 6  |
| 20°                          | Weight NH<br>Sp gr<br>C              | 75 0<br>0 791<br>106 6  | 97 5<br>0 788<br>147 8  | 119 75<br>0 821<br>190 5 | 137 5<br>0 829<br>223 0 | 152 5<br>0 842<br>260 8  | 82 7<br>869<br>38 2  |
| 30° Weight NH₃<br>Sp gr<br>C |                                      | 51 5<br>0 798<br>97 0   | 74 0<br>0 791<br>186 7  | 81 75<br>0 826<br>121 6  | 100 3                   | 129 5<br>0 846<br>211 6  | 52 0<br>883<br>52 0  |

(Delépine, J. Pharm (5) 25, 496)

Solubility of  $NH_3$  in methyl alcohol (absolute) at  $t^{\circ}$ 

| t°   | % NH3 | Pts NH <sub>3</sub> per 100<br>pts alcohol |
|------|-------|--------------------------------------------|
| 0    | 29 3  | 41 5                                       |
| 6    | 26 0  | 35 2                                       |
| 11 7 | 23 5  | 30 7                                       |
| 14 7 | 21 8  | 27 9                                       |
| 17   | 20 8  | 26 3                                       |
| 22   | 18 3  | 22 4                                       |
| 28 4 | 14 8  | 17 4                                       |

(de Bruyn, lc)

Readily sol in ether

Sol in 04 vol petroleum from Amiano (Saussure)

1 vol oil of turpentine absorbs 7 5 vols NH<sub>3</sub> at 16°

1 vol oil of lemon absorbs 8.5 vols  $NH_3$  at  $16^{\circ}$ 

1 vol oil of rosemary absorbs 9 5 vols NH<sub>3</sub> at 29°

1 vol oil of lavender absorbs 47 v s NH<sub>8</sub> at 20° (Saussure)

1 vol caoutchine absorbs 3 vo NH<sub>3</sub> (Himly)

Valerol absorbs much NII<sub>3</sub> (Crc1 ardt, Ach (3) 7 278)

1 vol ether at 760 mm pressure absorbs 17 13 vols NH<sub>3</sub> at  $0^{\circ}$ , 12 35 vols at  $0^{\circ}$  and 10 27 vols at  $15^{\circ}$  (Christoff, Z p ys Ch 1912 **79** 459)

+H<sub>2</sub>O Colorless cryst ils

+½H<sub>2</sub>O Large transparent rystals (Rupert, J Am Chem Soc 1909, **3** 868)

Ammonia, with metal salts

For the ammonia addition-pio icts of metal salts, see under the respecti metal salts, except in the case of Co, Cr, Hg and the Pt metals, for which see cobalt am chromium ammonium, etc, compoi ids, for

further reference New data on Co and Cr ammonium compounds and those of the Pt metals, published since the first edition, has not been included in the present edition

#### Ammonium amalgam, NH4, xHg

Decomp by  $H_2O$ , but more easily in presence of naphtha, alcohol, or ether

#### Ammonium azoimide, $N_4H_4 = NH_4N_3$

Easily sol in  $\rm H_2O$ , sl sol in absolute alcohol, easily in 80% alcohol Insol in ether or benzene (Curtius, B 24 3344)

## Ammonium cobalt azoimide, NH<sub>4</sub>N<sub>3</sub>, CoN<sub>6</sub>

Rather sol in  $H_2O$  (Curtius and Rissom, J pr 1898, (2) 58 302)

#### Ammonium bromide, NH4Br

Easily sol in H<sub>2</sub>O with absorption of much heat

| 1 pt NH <sub>4</sub> Br dissolves in pts H <sub>2</sub> O at |                      |          |              |     |                      |  |  |
|--------------------------------------------------------------|----------------------|----------|--------------|-----|----------------------|--|--|
| t°                                                           | Pts H <sub>2</sub> O | t°       | Pts H O      | t°  | Pts H <sub>2</sub> O |  |  |
| 10<br>16                                                     | 1 51<br>1 39         | 30<br>50 | 1 23<br>1 06 | 100 | 0 78                 |  |  |

(Eder, W A B 82 (2) 1284)

NH<sub>4</sub>Br+Aq containing 41 09% NH<sub>4</sub>Br is sat at 15° (Gerlach)

Sp gr of NH<sub>4</sub>B<sub>1</sub>+Aq at 15°

| % NH₄Br | Sp gr  | % NH <sub>4</sub> Br | Sp gr  |  |  |
|---------|--------|----------------------|--------|--|--|
| 5       | 1 0326 | 20                   | 1 1285 |  |  |
| 10      | 1 0652 | 30                   | 1 1921 |  |  |
| 15      | 1 0960 | 41 09                | 1 2920 |  |  |

(Eder)
Sp. or of NH.Rr+Ag at 16°

| op                   | gr of NH4 | Br+Aq II             | .0-    |
|----------------------|-----------|----------------------|--------|
| % NH <sub>4</sub> Br | 5p gr     | % NH <sub>4</sub> Br | Sp gr  |
| 2                    | 1 0119    | 22                   | 1 1375 |
| 3                    | 1 0181    | 23                   | 1 1440 |
| 4                    | 1 0242    | 24                   | 1 1506 |
| )                    | 1 0305    | 25                   | 1 1573 |
| 6                    | 1 0364    | 26                   | 1 1642 |
| 7                    | 1 0425    | 27                   | 1 1713 |
| 5                    | 1 0486    | 28<br>29<br>30       | 1 1757 |
| 9                    | 1 0547    |                      | 1 1862 |
| 10                   | 1 0609    |                      | 1 1935 |
| 11                   | 1 0672    | 31                   | 1 2015 |
| 12                   | 1 0735    | 32                   | 1 2098 |
| 13                   | 1 0798    | 33                   | 1 2180 |
| 14                   | 1 0862    | )4                   | 1 2260 |
| 15                   | 1 0926    | 35                   | 1 2342 |
| 16                   | 1 0958    | 36                   | 1 2425 |
| 17                   | 1 1051    | >7                   | 1 2500 |
| 15                   | 1 1115    | 38                   | 1 2594 |
| 19                   | 1 1181    | 39                   | 1 2679 |
| 20                   | 1 1246    | 40                   | 1 2765 |
| 21                   | 1 1310    | 41                   | 1 2850 |
|                      | TT /      | 1000                 |        |

(Hager, Comm 1883)

 $25~{\rm g~NH_4Br} + 50~{\rm g~H_2O~lower~the~temp}$  from 15 1° to —1 1° (Rudorff )

Sol in liquid NH $_3$  at —50° (Moissan C R 1901, 133 713) Very sol in liquid NH $_3$  (Franklin, Am Ch J 1898, 20 826)

Sl sol in alcohol

1 pt NH<sub>4</sub>Br dissolves in 32 3 pts alcohol (0 806 sp gr) at 15°, 9 5 pts at 78° (Eder, *lc*)
100 pts absolute methyl alcohol dissolve 12 5 pts at 19°, 100 pts absolute ethyl alcohol dissolve 3 22 pts at 19° (de Bruyn, Z phys Ch 10 783)

Solubility in mixtures of methyl and ethyl alcohol at 25°

P = % methyl alcohol in the solvent G = g NH<sub>4</sub>Br in 10 cc of the solution S = sp gr of the sat solution at 25°/4°

| P      | G     | s      |
|--------|-------|--------|
| 0 00   | 0 255 | 0 8065 |
| 4 37   | 0 299 | 0 8083 |
| 10 40  | 0 321 | 0 8117 |
| 41 02  | 0 506 | 0 8252 |
| 80 69  | 0 813 | 0 8501 |
| 84 77  | 0 847 | 0 8508 |
| 91 25  | 0 934 | 0 8551 |
| 100 00 | 0 983 | 0 8605 |

(Herz, Z anorg 1908, 60 156)

Solubility in mixtures of methyl and propyl alcohol at 25°

P = % propyl alcohol in the solvent G = g NH<sub>4</sub>Br in 10 cc of the solution S = Sp gr of the sat solution at 25°/4°

| P                                                  | (r                                                          | ន                                                                        |
|----------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|
| 0<br>11 11<br>23 5<br>65 2<br>91 5<br>93 75<br>100 | 0 953<br>0 551<br>0 690<br>0 305<br>0 128<br>0 125<br>0 095 | 0 8605<br>0 \$521<br>0 \$426<br>0 \$151<br>0 \$097<br>0 \$059<br>0 \$059 |
|                                                    |                                                             |                                                                          |

(Huz lc)

Solubility in mixtures of propyl and ethyl alcohol at 25

 $P = C_0$  propyl decodol in the solvent  $C_0 = K \cdot NH_4Br \cdot m \cdot 10 \cdot cc$  of the solution  $S = Sp \cdot gr \cdot of the solution at 2 > 1$ 

| Į.    | (     | 4      |
|-------|-------|--------|
|       |       |        |
| 0     | 0.255 | 0.5065 |
| 5 1   | 0.251 | 0.5062 |
| 17 45 | 0.257 | 0.5052 |
| 56 6  | 0.165 | 0.5045 |
| 58-6  | 0 111 | 0.8042 |
| 91.2  | 0 105 | 0.5049 |
| 95.2  | 0.104 | 0.5059 |
| 100   | 0 095 | 0.5059 |
|       |       |        |

(H(12, lc)

Sol in 809 pts ether (0.729 sp gr)(Eder. lc)

Sol in acetone (Eidmann, C C 1899 II, 1014), (Naumann, B 1904, 37 4328) Insol in benzonitrile (Naumann, B 1914,

**47** 1370) Insol in methyl acetate (Naumann, B

**1909**, **42** 3790) Insol in ethylacetate (Naumann, B 1910, 43 314)

## Ammonium tribromide, NH<sub>4</sub>Br<sub>2</sub>

Gives off Br in air Sol in H<sub>2</sub>O (Roozeboom, B 14 2398)

Very sol in H<sub>2</sub>O Decomp in the air (Chattaway, Chem Soc 1915, 107 106)

Ammonium antimony bromide, 3NH<sub>4</sub>Br, 2SbBr<sub>2</sub>

Easily sol in abs alcohol 1905 II, 293) (Caven, C C

7NH<sub>4</sub>Br, 3SbBr<sub>3</sub> Easily sol in abs alcohol (Caven, C C 1905 II, 293)

See also Bromantimonate, ammonium

Ammonium bismuth bromide, NH4Br, BiBr<sub>3</sub>  $+H_2O$ 

Deliquescent Decomp by H<sub>2</sub>O Sol in alcohol (Nicklès, C R 51 1097)

Ammonium cadmium bromide, NH4Br,  $CdBr_2 + \frac{1}{2}H_2O$ 

Sol in 073 pt H<sub>2</sub>O, 53 pts abs alcohol, 280 pts ether (sp gr 0729), and 24 pts alcohol ether (1 1) (Eder, Dingl 221 89)

Sol in H2O without decomp between 1°

and 110 1°

100 pts of the solution contain at 1° 14 8° 52 2° 110 1°

53 82 58 01 65 32 75 83 pts of the salt (Rimbach, B 1905, 38 1555)

4NH<sub>4</sub>Br, CdBr<sub>2</sub> Sol in 0 96 pt H<sub>2</sub>O, from which it is pptd by alcohol or ether (Eder) Solubility in H<sub>2</sub>O at t°

Below 160° the salt is decomp by H<sub>2</sub>O, at 160° it is sol in H2O without decomp

| t°   | 100 pts of the solution contain |    |           |    |                                 |    | Galadanhara                    |  |
|------|---------------------------------|----|-----------|----|---------------------------------|----|--------------------------------|--|
|      | Pts<br>Cd                       |    | Pts<br>Br |    | Pts<br>NH4                      |    | Solid phase                    |  |
|      |                                 |    |           |    |                                 |    | Double salt+NH <sub>4</sub> Br |  |
| 13 0 |                                 |    |           |    |                                 | 85 | "                              |  |
| 44 5 | 15                              | 01 | 53        | 85 | 7                               | 35 | "                              |  |
| 76 4 | 14                              | 60 | 55        | 28 | 7                               | 80 | "                              |  |
|      |                                 |    |           | 50 |                                 | 45 | "                              |  |
|      |                                 |    |           |    | $\frac{10}{67} = \frac{10}{43}$ |    | Double salt                    |  |
|      | /7                              |    | ,         | -  | ~                               |    | 05 00 1550)                    |  |

(Rimbach, B 1905, 38 1558)

Not sol in HBr+Aq without decomp (Rimbach) Not sol without decomp in LiBr+Aq,  $CaBr_2+Aq$ ,  $MgBr_2+Aq$ ,  $N_1Br_2+Aq$ , or mide

CoBr<sub>2</sub>+Aq, even though very c ic solution are used Sol without decom ın ZnBr24 (Rimbach, B 1905, 38 15 1)

Ammonium chloromolybdenu bromide 2NH<sub>4</sub>Br, Cl<sub>4</sub>Mo<sub>3</sub>Br<sub>2</sub>

Decomp by pure H<sub>2</sub>O Can l crystallize from HBr+Aq Apparently ol withou decomp in alcohol (Blomstrai )

Ammonium cuprous bromide

4NH<sub>4</sub>Br, Cu<sub>2</sub>Br<sub>2</sub> Fairly stal e in air 2NH<sub>4</sub>Br Cu<sub>2</sub>Br<sub>2</sub>+H<sub>2</sub>O Fai v stable ii (Wells, Z anorg 1895, **10** [59)

Ammonium cuprous bromid ammonia NH<sub>4</sub>Br, Cu<sub>2</sub>Br<sub>2</sub>, 3NH<sub>3</sub> (Fleurent, C R 1891, 113 1(7)

Ammonium cupric bromide, 2N [4Br, CuBr  $+2H_2O$ Very sol in H<sub>2</sub>O (de Kor 1ck, B 21

Ammonium iridium bromide See Bromiridate, ammonium

777 R)

Ammonium iron (ferric) bromi e.  $(NH_4)FeBr_4+2H_2O$ 

Very deliquescent, sol in H ( (Walden Z anorg 1894, 7 332)

Ammonium lead bromide, 12NF Br. 7 PbBr  $+7H_2O$ 

Decomp on air, oi with cold F O (André OR 96 1502) 6NH<sub>4</sub>Br, PbBr<sub>2</sub>+H<sub>2</sub>O Dec up by cold

 $H_2O$  (A)  $7NH_4Br$ ,  $PbBr_2+1\frac{1}{2}H_6O$ S ible on air

decomp by cold H<sub>2</sub>O  $-(\mathbf{A}_{\cdot})$ 

None of the above compounds ıst (Wells Sill Am J 146 25) 2NH<sub>4</sub>Br, PbBr<sub>2</sub> Decomp b

HO Sol

ong reids

3) 17 351 )

in conc KOH+Aq and in (Fonzes-Diacon, Bull Soc 1897 NH₄Br, 3PbBr (Wells)

Ammonium magnesium brom e, NH<sub>4</sub>Br  $MgBr_2+6H O$ 

Deliquescent Sol in H O eich, J pr (2) **28** 338)

Ammonium mercuric bromide, 2HgBr, NH<sub>4</sub>Bı

Decomp by H2O into its con tuent salts (Rây, Chem Soc 1902, 81 648

Ammonium molybdenum bromi  $, 2NH_4B_1$ MoBr<sub>3</sub>+H<sub>2</sub>O

Easily sol in H<sub>2</sub>O (Rosenhei i, Z anorg 1905, **46** 322)

Ammonium molybdenum bromic chloride See Ammonium chloromolyb -num bro

## Ammonium osmium bromide See Bromosmate, ammonium

Ammonium osmyl bromide, (NH<sub>4</sub>)<sub>2</sub>OsO<sub>2</sub>Br<sub>4</sub> Sol in H<sub>2</sub>O (Wintrebert, A ch 1903, (7) **28** 95)

Ammonium osmyl oxybromide.  $(NH_4)_2OsO_3Br_2$ 

(Wintrobert, A ch 1903 (7) 28 117)

Ammonium palladium bromide See Bromopalladate, ammonium, and Bromopalladite, ammonium

Ammonium platinum bromide See Bromoplatinate, ammonium

Ammonium rhodium bromide See Bromorhodite, ammonium

Ammonium selenium bromide See Bromoselenate, ammonium

Ammonium tellurium bromide See Bromotellurate, ammonium

Ammonium thallic bromide, NH<sub>4</sub>Br, TlBr<sub>3</sub>+  $2H_2O$ 

Sol in H<sub>2</sub>O (Willm)  $+4H_2O$ Efflorescent Sol in H<sub>2</sub>O (Nicklès)  $+5H_{2}O$ Sol in H<sub>2</sub>O (Nicklès)

Ammonium stannous bromide (ammonium bromostannite), NH<sub>4</sub>B<sub>1</sub>, SnBr<sub>2</sub>+H<sub>2</sub>O (Benas, C C 1884 958) Sol in H O 2NH<sub>4</sub>Br, SnBr<sub>2</sub> Sol in H2O (Raymann and Preis, A 223 323)

Sol in H<sub>2</sub>O  $+\mathrm{H}_2\mathrm{O}$ (Benas, l c)  $+2\mathrm{H}_2\mathrm{O}$ (Richardson, Am Ch J 14 96)  $NH_4Br$ ,  $2SnBr_2(?)$  (Benus)

Ammonium stannic bromide, 2NH<sub>4</sub>Br, SnBr<sub>4</sub> See Bromostannate, ammonium

Ammonium uranyl bromide, 2NH<sub>1</sub>B<sub>1</sub>, UO<sub>2</sub>B<sub>1</sub> +2HO

Very deliquescent, and sol in II2O (Sendtner)

Ammonium zinc bromide, 2NH<sub>4</sub>Bi, ZnBi

Deliquescent, and sol in HO (Bodeker, J B 1860 17)

+H2O Very deliquescent, and sol in HO

(\langle \text{ndrc}, A \text{ ch (6) 3 104 )} +xH O (Lephrum, Z anoig 1908, 59 66 ) NH4Br, ZnBr Sol in HO only by great dilution (Jones & Knight, Am Ch J 1899, **22** 136)

+H₂O Not hygroscopic (Lphrum, Z morg 1908, **59** 66)

Ammonium bromide arsenic trioxide See Arsenite bromide, ammonium

Ammonium bromide mercuric chloride, NH<sub>4</sub>Br, 2HgCl<sub>2</sub>

Ppt (Rây, Chem Soc 1902, 81 649)

Ammonium bromide mercuric iodide, 2NH<sub>4</sub>Br, HgI<sub>2</sub>

Decomp by H<sub>2</sub>O Sol in alcohol without decomp (Grossmann, B 1903, 36 1602) 3NH<sub>4</sub>Br, 2HgI<sub>2</sub> Decomp by H<sub>2</sub>O in alcohol without decomp (Grossmann, B 1903, 36 1602)

Ammonium lead bromochloride, NH<sub>4</sub>Pb<sub>2</sub>Br<sub>4</sub>Cl

Decomp by H<sub>2</sub>C (Fonzes-Diacon, Bull Soc 1897, (3) 17 350) NH<sub>4</sub>Pb<sub>2</sub>Cl<sub>4</sub>Br Decomp by H<sub>2</sub>O (Fonzes-Diacon, Bull Soc 1897, (3) 17 349)

Ammonium bromochloroiodide, NH4ClBrI Very stable, sol in  $H_2O$ (Chattaway. Chem Soc 1915, 107 108)

Ammonium lead bromoiodide, NH<sub>4</sub>PbBrI<sub>2</sub>+ 2H2O and NH4Pb2BrI4

Decomp by H<sub>2</sub>O Sol in conc KOH+Aq and in strong acids (Fonzes-Diacon, Bull Soc 1897, (3) **17** 352)

Ammonium bromiodobromide, Decomp in the air Sol in son, Am Ch J 1900, 24 28)

Ammonium chloride, NH<sub>4</sub>Cl

(Sal-ammoniae) Not deliquescent in H<sub>2</sub>O with reduction of temp

Sol in 2.24 pts  $\rm H_2O$  (Wenzel) NH<sub>4</sub>Cl+Aq sat at 10° has sp  $\rm gr=1.072$  (1) Sol in 2.72 pts cold and 1 pt bolling H O (M R

and P)
Sol in 3 pts II<sub>2</sub>O at 187 o (Abl) 11pt boiling II (Lourcioy) 100 pts dissolve 36.7 pts NII4C1

100 pts NH4Cl +Aq sat at its b pt (114.2) contains 88.9 pts NH4Cl in 100 pts of the solution (Berzelius) 100 pts H O at 15 divisolve 3.3 dipts and at 100 100 pts NH4Cl (Ures Diet) NH4Cl +Aq sat at 1.5 has sp. gt. 107,209 and contains at least 31.88 pts NH4Cl divisolved in every 100 pts H O (Michel and Krafft A. ch. (3). 41, 178.) NH4Cl +Aq sat at 1.0° contains 23.8% NH4Cl (Uler). (Lller)

NII4C1+Aq sat in the cold contains 11 3 , NII4C1 (lourcroy) Sol in 1 pt II O at 113 b pt of sat solution

(Criffiths) Sol in 27 pts II Oat 1575 forming a liquid of 105 sp gr (Karsten 1840) Sol in 2 727 pts II O at 10 (Crens Hin Buch)

100 pts/II O at 718 mm pressure in lit dissolve pts/NII/C1

| ť°                                           | Pts<br>NH <sub>4</sub> Cl | to             | I ts<br>NII (I          | t°             | I 14<br>NH4C I        | t                | I ts<br>NH <sub>4</sub> C1 |
|----------------------------------------------|---------------------------|----------------|-------------------------|----------------|-----------------------|------------------|----------------------------|
| $\begin{array}{c} 0 \\ 10 \\ 20 \end{array}$ | 28 40<br>32 84<br>37 28   | 30<br>40<br>50 | 41 72<br>46 16<br>50 60 | 60<br>70<br>80 | ) 01<br>) 15<br>63 )2 | 90<br>100<br>110 | 65 36<br>72 50<br>77 24    |

(Alluard C R 59 500)

| AMIMONIOM OHDORIDE                                                    |                                                                                          |                                                                                                                                                                                                                                                                |                                                                              |                                                                                                                            |                                                                                                  |                                                                                                                                                                   |                                                                                                                                                     |                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                                                              |                                                                                                                                       |                                                                      |                                   |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|
|                                                                       | Sol                                                                                      | ubılı                                                                                                                                                                                                                                                          | ty ın 1                                                                      | 00 r                                                                                                                       | ts H <sub>2</sub>                                                                                | O at t°                                                                                                                                                           |                                                                                                                                                     |                                                              | Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ubility                                                                                                              | of N                                                                         | H₄Cl ın                                                                                                                               | H <sub>2</sub> O                                                     | t°                                |
| t°                                                                    | Pts<br>NH4CI                                                                             | t°                                                                                                                                                                                                                                                             | Pts<br>NH,CI                                                                 | t°                                                                                                                         | Pts<br>NH,Cl                                                                                     | t°                                                                                                                                                                | Pts<br>NH,CI                                                                                                                                        |                                                              | t°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      | 100 g                                                                        | H <sub>4</sub> Cl in<br>of the<br>lution                                                                                              | s                                                                    | l phase                           |
| 0 1 1 2 3 3 4 5 6 6 7 8 9 10 11 12 13 14 15 6 17 18 19 20 22 23 24 25 | 29 7 30 0 3 6 31 0 31 4 31 8 32 2 6 33 3 3 4 1 5 34 8 35 5 6 0 4 36 8 37 6 6 38 8 4 38 8 | 30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>51<br>52<br>53<br>54<br>54<br>55<br>55<br>56<br>56<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57 | 41 4 41 8 42 2 7 1 43 6 0 4 44 4 44 45 3 8 44 47 7 6 0 5 5 1 3 8 5 5 1 5 2 3 | 60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>71<br>72<br>73<br>74<br>75<br>77<br>78<br>80<br>81<br>82<br>83<br>84<br>85 | 55 57 27 58 7 27 58 58 7 27 58 58 7 2 56 60 7 2 60 60 7 2 60 60 60 60 60 60 60 60 60 60 60 60 60 | 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115 | 71 3 9 72 5 1 73 1 74 3 9 75 6 1 7 76 7 7 7 8 0 6 2 9 9 5 2 8 8 2 5 1 8 8 2 5 1 8 8 2 5 1 8 8 2 5 1 8 8 6 8 7 1 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 | ±—————————————————————————————————————                       | - 3 ( - 4 ) - 6 ( - 8 ) - 9 ( - 11 ) - 13 ( - 14 ) - 13 ( - 12 ) - 14 ( - 15 ) ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - 12 ) - 2 ( - | 25<br>70<br>70<br>44<br>45<br>44<br>25<br>77<br>99<br>14<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 11 13 15 18 18 18 18 20 20 21 21 22 22 22 22 22 22 22 22 22 22 22            | 28<br>4<br>31<br>31<br>37<br>31<br>37<br>37<br>37<br>37<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47 | 03, <b>37</b>                                                        | 14Cl "" "" "" "" "" "" "14        |
|                                                                       | 40 9                                                                                     | ز<br>59                                                                                                                                                                                                                                                        | 53 2<br>53 7<br>54 2<br>54 7                                                 | 86<br>87<br>88<br>89                                                                                                       | 69 0<br>69 6<br>70 2<br>70 7                                                                     | 115 65                                                                                                                                                            | 87 3                                                                                                                                                | t                                                            | grav<br>o Ge<br>ccor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vity o<br>erlach<br>ding t                                                                                           | f NH4<br>at 15<br>to Schi                                                    | Cl+Aq<br>°(Z ar<br>ff at 19                                                                                                           | al 8<br>(A 1                                                         | $\frac{31), S=}{1, \frac{74}{2}}$ |
|                                                                       | Mulder<br>ervation                                                                       |                                                                                                                                                                                                                                                                | culateo<br>Scheik                                                            |                                                                                                                            |                                                                                                  | wn and<br>lel 1864                                                                                                                                                |                                                                                                                                                     | % NH,C                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sp g                                                                                                                 | s                                                                            | % NH4Ci                                                                                                                               | G                                                                    | S gr   S                          |
|                                                                       | Solu                                                                                     | bılıt                                                                                                                                                                                                                                                          | y in 10                                                                      | 00 p                                                                                                                       | ts H <sub>2</sub> C                                                                              | at t°                                                                                                                                                             |                                                                                                                                                     | 1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                    | 0029                                                                         | <u> </u>                                                                                                                              | 1 050                                                                | -                                 |
| NH,<br>Sc<br>109                                                      | 2 32 (L<br>H <sub>4</sub> Cl +<br>4Cl (v<br>ol in 2<br>326 )<br>ol in 2                  | -Aq<br>v H<br>272<br>803                                                                                                                                                                                                                                       | sat at<br>auer, J<br>pts H<br>pts H                                          | Pogg<br>13-1<br>pr<br>1 <sub>2</sub> O a                                                                                   | 2 2   136   16° con 103 1 at 19° t 15°                                                           | 64 9 90 6 315 ) tains 26 14 ) (Schi                                                                                                                               | ff, A                                                                                                                                               | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 1 00<br>1 00<br>1 01<br>1 02<br>1 02<br>1 02<br>1 03<br>1 03<br>1 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0632   1<br>0948   1<br>1264   1<br>1580   1<br>1880   1<br>2481   1<br>2481   1<br>3370   1<br>8658   1             | 0058<br>0087<br>0116<br>0145<br>0174<br>0203<br>0233<br>0263<br>0293<br>0322 | 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>26<br>27                                                                        | 1 05:<br>1 05:<br>1 06:<br>1 06:<br>1 06:<br>1 06:<br>1 07:<br>1 07: | 3                                 |
| $NH_{4}$                                                              | Cl (7                                                                                    | $\operatorname{sch}$                                                                                                                                                                                                                                           | ugaeff,                                                                      | Za                                                                                                                         | norg 1                                                                                           | ains 38<br>914, <b>86</b><br>tains 2                                                                                                                              | 161)                                                                                                                                                | 15                                                           | 1 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 524 1                                                                                                                | 0409<br>0438                                                                 | 30                                                                                                                                    |                                                                      | 1 0802<br>1 0846                  |
| NH                                                                    | Cl (1                                                                                    | Meei                                                                                                                                                                                                                                                           | burg,                                                                        | C C                                                                                                                        | 1904                                                                                             | II, 136                                                                                                                                                           | 2)                                                                                                                                                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      | 0467<br>minati                                                               | ons, see                                                                                                                              | Stor                                                                 | s Diet                            |
| 50                                                                    |                                                                                          | •                                                                                                                                                                                                                                                              | НОа<br>1000 m                                                                |                                                                                                                            | $_{\rm H_2O}$                                                                                    | 100 g I                                                                                                                                                           | $H_2O$                                                                                                                                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gı (                                                                                                                 | of NH                                                                        | Cl+Ac                                                                                                                                 | ıt 18                                                                | 3'                                |
|                                                                       | t°                                                                                       |                                                                                                                                                                                                                                                                | diss<br>mols                                                                 | olve<br>NH₄                                                                                                                | ~                                                                                                | dissolv<br>g NH4                                                                                                                                                  | re                                                                                                                                                  | % NI                                                         | I <sub>4</sub> Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sp                                                                                                                   | gr                                                                           | % NH                                                                                                                                  | 4Cl                                                                  | ) gr                              |
|                                                                       | 3 5<br>25 0<br>50 0                                                                      |                                                                                                                                                                                                                                                                | 108<br>129<br>167                                                            | 5 2<br>9 7<br>7 0                                                                                                          |                                                                                                  | 31 25<br>38 5<br>49 6                                                                                                                                             | 5                                                                                                                                                   | 10<br>15                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 (                                                                                                                  | )142<br>)289<br>)430                                                         | 20<br>25                                                                                                                              |                                                                      | 0571<br>0710                      |
| (                                                                     | But∡ a                                                                                   | nd I                                                                                                                                                                                                                                                           | viaicus                                                                      | s, Z .                                                                                                                     | anorg                                                                                            | 1911, <b>7</b> 1                                                                                                                                                  | 169                                                                                                                                                 | )                                                            | (Ko                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hlrau                                                                                                                | sch, W                                                                       | Ann                                                                                                                                   | 1879                                                                 | ]                                 |

Sp gr at  $20^{\circ}/4^{\circ}$  of a normal solution of NH<sub>4</sub>Cl=1 01454 (Haigh, J Am Chem Soc 1912, **34** 1151)

 $NH_4Cl + Aq$  containing 6 52%  $NH_4Cl$  has sp gr  $20^{\circ}/20^{\circ} = 10195$  (Le Blanc & Rohland, Z phys Ch 1896, 19 272)

| Temp of maximum density of NH <sub>4</sub> Cl+Aq | g mol NH4Cl in<br>1000 g H2O |
|--------------------------------------------------|------------------------------|
| 2 640°                                           | 0 1899                       |
| 0 055°                                           | 0 5407                       |

(de Coppet, C R 1900, 131 178)

Sp gr of dil NH<sub>4</sub>Cl+Aq at 20 004° and 731 mm (corr) Conc =g equiv NH<sub>4</sub>Cl per l at 20 004°

| Conc                                                                         | Sp gr                                                                                                                |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 0 0000<br>0 0001<br>0 0002<br>0 0005<br>0 0010<br>0 0020<br>0 0050<br>0 0100 | 1 000,000,0<br>1 000,001,8<br>1 000,003,7<br>1 000,009,3<br>1 000,018,5<br>1 000,036,9<br>1 000,091,3<br>1 000,180,3 |

(Lamb and Lee, J Am Chem Soc 1913, 35 1688)

Sp gi of dil NH4Cl+Aq

| NH4Cl g in 1000 g | Sp gr    |
|-------------------|----------|
| of solution       | 16°/16°  |
| 0                 | 1 000000 |
| 0 4431            | 1 000150 |
| 0 9061            | 1 000304 |
| 1 5085            | 1 000606 |
| 3 5047            | 1 001196 |
| 7 7845            | 1 002562 |
| 1 3425            | 1 004994 |
| 31 2364           | 1 010018 |

(Dijken, Z. phys. Ch. 1897, 24, 107.)

B-pt of NH<sub>4</sub>Cl+Aq, containing pts NH<sub>4</sub>Cl to 100 pts H<sub>2</sub>O G= a cording to Gellach (Z and **26** 439), I = according to I (g) and (A ch (2) **59** 436)

| B pt                             | G                                                           | 1                                                           | B pt                                                      | G                                            | L                                                    |
|----------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| 101° 102 105 104 105 106 107 108 | 6 5<br>12 8<br>19 0<br>24 7<br>29 7<br>34 6<br>39 6<br>45 0 | 7 8<br>13 9<br>19 7<br>25 2<br>30 5<br>35 7<br>41 3<br>47 3 | 109°<br>110<br>111<br>112<br>113<br>114<br>114 2<br>114 8 | 50 6<br>56 2<br>61 9<br>67 8<br>74 2<br>81 3 | 53 5<br>59 9<br>66 4<br>73 3<br>80 5<br>88 1<br>88 9 |

Sat NH<sub>4</sub>Cl+Aq boils at 115 8° at 718 mm pressure (Alluard, C R **59** 500)

 $m NH_4Cl+Aq$  containing 74 2 pts  $m NH_4Cl$  to 100 pts  $m H_2O$  forms a crust at 113°, highest temperature observed, 114 8° (Gerlach, Z anal 26 426)

NH<sub>4</sub>Cl+Aq containing 10% NH<sub>4</sub>Cl boils at 101 7°, 20% NH<sub>4</sub>Cl, at 104 4° (Gerlach) NH<sub>4</sub>Cl+Aq containing 10 6% NH<sub>4</sub>Cl gives off NH<sub>8</sub> at 37° (Leeds, Am J Sci (3) 7 197)

When NH<sub>4</sub>Cl+Aq is boiled, or even evap on water bath, a little NH<sub>3</sub> is expelled (Fresenius)

30 pts NH<sub>4</sub>Cl mixed with 100 pts  $\rm H_2O$  lower the temp from 13 3° to -5 1°, that is 18 4° (Rudorff, B 2 68)

Freezing-point of sat solution is -154, the same temp which is caused by mixing 25 pts NH<sub>4</sub>Cl with 100 pts snow (Rüdorff, Pogg 122 337)

Conc HCl+Aq precipitates part of NH<sub>4</sub>Cl from sat NH<sub>4</sub>Cl+Aq (Vogel, J pr  $\bf 2$  199)

Solubility of NH<sub>4</sub>Cl in HCl+Aq at 0° NH<sub>4</sub>Cl = mols NH<sub>4</sub>Cl (in milligrammes) dissolved in 10 cc of the liquid, HCl = mols HCl (in milligrammes) dissolved in 10 cc of the liquid

| NH4Cl  | HCl   | Sum of<br>mols | Sp gr  |
|--------|-------|----------------|--------|
| 46 125 | 0 0   | 46 125         | 1 076  |
| 43 6   | 2 9   | 46 5           | 1 0695 |
| 41 0   | 5 5   | 46 5           | 1 0705 |
| 39 15  | 7 85  | 47 0           | 1 0715 |
| 36 45  | 10 85 | 47 30          | 1 073  |
| 27 57  | 21 4  | 48 77          | 1 078  |
| 10 875 | 53 0  | 63 875         | 1 106  |
| 8 8    | 61 0  | 69 8           | 1 114  |

(Engel, Bull Soc (2) 45 655)

## Solubility of NH<sub>4</sub>Cl in HCl+Aq

| t            | HCl concentration g mol per 100 g H O | Weight NH4C1 | Molecular<br>solubility |
|--------------|---------------------------------------|--------------|-------------------------|
| 0°           | ()                                    | 298 40       | 5 59                    |
|              | 11                                    | 286 45       | 5 56                    |
| "            | 1 2                                   | 271 23       | 5 08                    |
| "            | Ī                                     | 245 35       | 4 60                    |
| $25^{\circ}$ | 0                                     | 395 10       | 7 40                    |
| "            | 1,                                    | 350 85       | 7 13                    |
| "            | 1,                                    | 366-00       | 6 85                    |
| "            | 1                                     | 339 05       | 6 35                    |

(Aumstrong & Evre, Proc. R. Soc. (A.) **84** 127)

| Solubility in N        | $H_4OH +$ | Aq   | NH.   | Cl: | = m  | ols |
|------------------------|-----------|------|-------|-----|------|-----|
| NH <sub>4</sub> Cl (in | mgs)      | ın - | 10 cc | so  | lutı | on, |
| $NH_3 = mols$          | $NH_3$    | (m : | mgs)  | ın  | 10   | cc  |
| solution               |           | •    | _     |     |      |     |

| NH4Cl                                                                                                   | NH <sub>3</sub>                                                                            | Sp gr                                                                                                    |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 46 125<br>45 8<br>45 5<br>45 125<br>44 5<br>44 0<br>43 625<br>43 125<br>44 0<br>44 375<br>49 75<br>60 0 | 0<br>5 37<br>12 025<br>23 4<br>38 0<br>47<br>54 5<br>80 0<br>90 0<br>95 5<br>130<br>169 75 | 1 076<br>1 067<br>1 054<br>1 044<br>1 031<br>1 025<br>1 017<br>0 993<br>0 992<br>0 983<br>0 953<br>0 931 |

(Engel, Bull Soc (3) 6 17)

 $\rm NH_4Cl + BaCl_2 \quad 100~pts~H_2O~dissolve~33~8~pts~NH_4Cl + 11~6~pts~BaCl_2~at~20°~(Rudorff, Pogg~148~467~)$ 

Solubility of NH<sub>4</sub>Cl and BaCl<sub>2</sub> in H<sub>2</sub>O

|                   | Wt p                                      | 8-1-1                                |                     |  |
|-------------------|-------------------------------------------|--------------------------------------|---------------------|--|
| t°                | NH4Cl                                     | BaCl <sub>2</sub>                    | Solid phase         |  |
| -16 2°<br>0<br>30 | 16 10<br>19 26<br>24 89<br>26 93<br>29 53 | 8 07<br>8 22<br>8 19<br>8 40<br>8 55 | NH₄Cl+<br>BaCl 2H₂O |  |

schreinemakers, Chem Weekbl 1910, 7 333) See also BaCl<sub>2</sub>+NH<sub>4</sub>Cl under BaCl<sub>2</sub>

NH<sub>4</sub>Cl+CdCl<sub>2</sub> Solubility of NH<sub>4</sub>Cl and CdCl<sub>2</sub>

See Ammonium cadmium chloride

 $\rm NH_4Cl + CuCl_2$  Solubility of NH\_4Cl in H<sub>2</sub>O at 30° in presence of varying amounts of CuCl<sub>2</sub>

| OuOig                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| % by<br>wt<br>CuCl <sub>2</sub>                                                                | % by<br>wt<br>NH4Cl                                                                            | Solid phase                                                                                                                                                                                                                                                                                                 |
| 0<br>1 9<br>3 6<br>7 7<br>10 5<br>12 3<br>15 6<br>19 9<br>24 0<br>35 1<br>41 4<br>43 2<br>43 9 | 29 5<br>28 6<br>25 9<br>19 8<br>16 5<br>14 9<br>12 1<br>9 4<br>7 1<br>4 9<br>3 4<br>2 1<br>2 0 | NH <sub>4</sub> Cl NH <sub>4</sub> Cl +CuCl <sub>2</sub> 2NH <sub>4</sub> Cl 2H <sub>2</sub> O CuCl 2NH <sub>4</sub> Cl 2H <sub>2</sub> O  CuCl <sub>2</sub> 2NH <sub>4</sub> Cl 2H <sub>2</sub> O +CuCl 2H <sub>2</sub> O  CuCl <sub>2</sub> 2NH <sub>4</sub> Cl 2H <sub>2</sub> O +CuCl 2H <sub>2</sub> O |
|                                                                                                |                                                                                                |                                                                                                                                                                                                                                                                                                             |

(Meerburg, Z anorg 1905, 45 3)

 $NH_4Cl+PbCl_2$  Solubility of N  $\overline{}_4Cl$  and  $PbCl_2$  in  $H_2O$  at  $22^\circ$ 

| 2.0022.222                                                                                                    |                                  |                                      |                    |
|---------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------|--------------------|
| g eq<br>m 100                                                                                                 | uivalent<br>0 g H <sub>2</sub> O | Solid ph                             |                    |
| NH4Cl                                                                                                         | PbCl <sub>2</sub>                |                                      |                    |
| 0 0                                                                                                           | 0 0749                           | PbCl                                 |                    |
| 0 1                                                                                                           | 0 0325                           | "                                    |                    |
| 0 2                                                                                                           | 0 0194                           | "                                    |                    |
| 0 2<br>0 3<br>0 4                                                                                             | 0 0153                           | "                                    |                    |
| 04                                                                                                            | 0 0138                           | "                                    |                    |
| 0 5                                                                                                           | 0 0130                           | "                                    |                    |
| 0.52                                                                                                          | 0 0127                           | PbCl <sub>2</sub> +NH <sub>4</sub> ( | 2PbCl <sub>2</sub> |
| 0 55                                                                                                          | 0 0123                           | NH4Cl, 2I                            | Cl <sub>2</sub>    |
| 06                                                                                                            | 0 0113                           | ''                                   | -                  |
| 0 65                                                                                                          | 0 0105                           | "                                    |                    |
| 07                                                                                                            | 0 0099                           | "                                    |                    |
| 0 8                                                                                                           | 0 0087                           | "                                    |                    |
| 0 9                                                                                                           | 0 0083                           | "                                    |                    |
| 10                                                                                                            | 0 0080                           | "                                    |                    |
| 1 2                                                                                                           | 0 0075                           | ,                                    |                    |
| 1 5                                                                                                           | 0 0073                           | "                                    |                    |
| 20                                                                                                            | 0 0077                           | "                                    |                    |
| $\overline{2}$ $\overline{5}$                                                                                 | 0 0092                           | (                                    |                    |
| 3 0                                                                                                           | 0 0112                           | "                                    |                    |
| $egin{array}{c} 0 & 9 \\ 1 & 0 \\ 1 & 2 \\ 2 & 5 \\ 2 & 5 \\ 3 & 0 \\ 4 & 0 \\ 5 & 0 \\ 7 & 0 \\ \end{array}$ | 0 0182                           | "                                    |                    |
| 5 0                                                                                                           | 0 0296                           | "                                    |                    |
| 6 0                                                                                                           | 0 0473                           | "                                    |                    |
| 7 0                                                                                                           | 0 0774                           | "                                    |                    |
| 7 29                                                                                                          | 0 0898                           | NH <sub>4</sub> Cl+NH <sub>4</sub> C | 2PbCl              |
| 7 29                                                                                                          | 0 0000                           | NH <sub>4</sub> C                    | 501                |
| (Brons                                                                                                        | tedt, Z phy                      | ys Ch 1911, 77                       | 132)               |

Solubility of NH<sub>4</sub>Cl and 2PbCl , N I<sub>4</sub>Cl in  $_{\rm H_4O}$  at  $_{\rm 100}^{\circ}$ 

| NH<br>g equi          | 4Cl<br>valent   | Pb<br>g equ           | Cl<br>ıvalent   |            |              |
|-----------------------|-----------------|-----------------------|-----------------|------------|--------------|
| in 1000 g<br>solution | и 1000 g<br>Н2О | ın 1000 g<br>solution | и 1000 g<br>Н О | ∽olı       | shase        |
| 1 277                 | 1 404           | 0 160                 | 0 176           | N<br>+2171 | iCl<br>l H O |

(Bronstedt, l c)

 $NH_4Cl + MgCl_2$  Solubility of NI 1 and  $NH_4MgCl_3$   $6H_2()$ 

|                                         | In 10<br>mols | 000 g<br>H <sub>2</sub> O |                                        |         |
|-----------------------------------------|---------------|---------------------------|----------------------------------------|---------|
| t°                                      | mols<br>(H,Cl | mols<br>VigCl             | Solid phis                             |         |
|                                         | - W-          | - SO                      | NH <sub>4</sub> Cl+NH <sub>4</sub> MgC |         |
| 3 5°                                    | 27 5          | 55 7                      | NH <sub>4</sub> Cl+NH <sub>4</sub> MgC | $6H_2O$ |
| $\begin{array}{c} 25 \\ 50 \end{array}$ | 42 1          | 56 4                      | ,                                      |         |
| 50                                      | 62 9          | 59 1                      | "                                      |         |
|                                         |               |                           |                                        |         |

(Biltz and Marcus, Z anorg 1911,

170)

## Solubility of NH<sub>4</sub>MgCl<sub>2</sub> 6H<sub>2</sub>O and MgCl<sub>2</sub> 6H<sub>2</sub>O

|                    | In 1000           | g mol H <sub>2</sub> O     |                                                                                              |
|--------------------|-------------------|----------------------------|----------------------------------------------------------------------------------------------|
| t°                 | g mol<br>NH4Cl    | g mol<br>MgCl <sub>2</sub> | Solid phase                                                                                  |
| 3 5°<br>25°<br>50° | 0 5<br>0 5<br>0 8 | 99 5<br>103 8<br>111 2     | MgCl <sub>2</sub> 6H <sub>2</sub> O +<br>NH <sub>4</sub> MgCl <sub>3</sub> 6H <sub>2</sub> O |

(Biltz and Marcus, Z anorg 1911, 71 170)

NH<sub>4</sub>Cl+NH<sub>4</sub>NO<sub>3</sub> 100 pts H<sub>2</sub>O dissolve 29 1 pts NH<sub>4</sub>Cl+173 8 pts NH<sub>4</sub>NO<sub>3</sub> at 19 5° (Rudorff, B **6** 482)

 $NH_4Cl+Ba(NO_8)_2$  100 pts  $H_2O$  dissolve at 18 5°—

|                                                         | 1    | 2           | 3              | 4              | 5   |  |
|---------------------------------------------------------|------|-------------|----------------|----------------|-----|--|
| NH <sub>4</sub> Cl<br>Ba(NO <sub>3</sub> ) <sub>2</sub> | 36 7 | 38 6<br>8 6 | 38 06<br>16 73 | 39 18<br>17 02 | 8 9 |  |

2, sat Ba(NO<sub>3</sub>)<sub>2</sub>+Aq treated with NH<sub>4</sub>Cl, 3, sat NH<sub>4</sub>Cl+Aq treated with Ba(NO<sub>3</sub>)<sub>2</sub>, 4, simultaneous treatment of both salts with H<sub>2</sub>O (Karsten)

 $_{18.5^{\circ}-}^{NH_4Cl+KNO_3}$  100 pts  $_{12}^{O}$  dissolve at

|                                        | 1    | 2              | 3              | 4              | 5    | 6            |
|----------------------------------------|------|----------------|----------------|----------------|------|--------------|
| KNO <sub>3</sub><br>NH <sub>4</sub> Cl | 29 9 | 30 56<br>44 33 | 37 68<br>37 98 | 38 62<br>39 84 | 36 7 | 34 2<br>38 8 |
|                                        |      | 74 89          | 75 66          | 78 46          |      | 73 0         |

1 and 5, according to Mulder, 2, sat KNO<sub>3</sub> +Aq treated with NH<sub>4</sub>Cl, 3, sat NH<sub>4</sub>Cl+Aq treated with KNO<sub>3</sub>, 4, simultaneous treatment of NH<sub>4</sub>Cl and KNO<sub>3</sub> (Karsten), 6, by warming solution with excess of both salts, and cooling to 14.8° The amount of excess of one or the other salt has no influence (Rudorff)

 $NH_4Cl+N_1NO_3$  Slowly sol in sat  $N_1NO_3+Aq$  at first to a clear solution, but afterwards  $N_1Cl$  separates out (Narsten)

NH4Cl+KCl 100 pts H O dissolve-

|              | (Rudorff)<br>15 | (Karsten)<br>18 75    |                     |       |  |  |
|--------------|-----------------|-----------------------|---------------------|-------|--|--|
| KCl<br>NH₄Cl | 16 97<br>25 90  | 34 4   16 27<br>29 83 |                     | 37 02 |  |  |
|              | (Rüdorff)<br>22 |                       | (Mulder)<br>At b pt |       |  |  |

100 pts sat solution of NH<sub>4</sub>Cl+KCl contain 30 61 pts of the two salts at 13-16° (v Hauer, J pr 103 114)

67 7

87 3

19 1

30 4

**KCl** 

NH₄Cl

| NH <sub>4</sub> Cl+NaCl | 100 pts | $H_2O$ | dissolve— |
|-------------------------|---------|--------|-----------|
|-------------------------|---------|--------|-----------|

|                            | 10-20° | (Mulder)<br>10° | (v Hauer)<br>13–16° |                        |  |
|----------------------------|--------|-----------------|---------------------|------------------------|--|
| NH <sub>4</sub> Cl<br>NaCl | 35 8   | 19 50<br>30 00  | 33 3                | 18 8-20 3<br>24 6-26 1 |  |
|                            |        | 49 50           |                     | 43 4-46 4              |  |

|               | (Karsten)<br>18 75° |          |    | (Rüde<br>18 | At b pt  |   |    |   |          |        |    |   |
|---------------|---------------------|----------|----|-------------|----------|---|----|---|----------|--------|----|---|
| NH₄Cl<br>NaCl | 22<br>26            | 06<br>38 | 37 | 02          | 22<br>23 | 9 | 87 | 3 | 78<br>22 | 5<br>3 | 40 | 4 |
|               | 48                  | 44       |    |             | 46       | 8 |    |   | 100      | 8      |    |   |

Sp gr of sat solution of NH<sub>4</sub>Cl+NaCl is 179 (Karsten)

NH<sub>4</sub>Cl+(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> 100 pts H<sub>2</sub>O dissolve 26 8 pts NH<sub>4</sub>Cl+46 5 pts (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> at 21 5° (Rudorff, B **6** 484)

## Solubility in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq at 30°

|                                                                                 | on of the                                                                     | Solid phase                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| % by wt<br>NH4Cl                                                                | % by wt<br>(NH4)2SO4                                                          |                                                                                                                                                    |  |  |
| 0<br>6 86<br>14 62<br>17 60<br>17 93<br>19 07<br>19 97<br>22 3<br>24 06<br>29 5 | 44<br>36 15<br>28 6<br>25 69<br>25 81<br>23 22<br>21 3<br>16 33<br>12 72<br>0 | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> '' (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> +NH <sub>4</sub> Cl NH <sub>4</sub> Cl '' '' '' |  |  |

(Schreinemakers, Z phys Ch 1909, **69** 562)

 $NH_4Cl+CuSO_4$  Sol in sat  $CuSO_4+Aq$ , at first to a clear solution, but a double sulphate of  $NH_4$  and Cu soon sep is ites (Kusten)

NH4Cl+MgSO<sub>4</sub> Slowly and difficultly sol in sat MgSO<sub>4</sub>+Aq with subsequent separtion of double sulphate (Kusten)

 $NH_4Cl+KSO_4$  100 pts H O dissolve, it 18 75°—

|                |      | u            | b              | (              |      |
|----------------|------|--------------|----------------|----------------|------|
| K₂SO₄<br>NH₄Cl | 10 8 | 11 1<br>38 2 | 13 26<br>37 94 | 15 28<br>37 92 | 36-7 |
|                |      | 49 3         | 51 20          | 51 20          |      |

In (a) NH<sub>4</sub>Cl was added to set  $K > CO_4 + Aq$ In (b)  $K_2 SO_4$  was added to set  $NH_4 Cl + Aq$ In (c) NH<sub>4</sub>Cl and  $K_2 SO_4$  were treated together with H O (Karsten) 100 pts  $H_2O$  at  $14^\circ$  dissolve 141 pts  $K_2SO_4+368$  pts  $NH_4Cl=509$  pts  $KSO_4+NH_4Cl$ , under all conditions (Rudorff, Pogg 148 565)

100 pts H<sub>2</sub>O dissolve at b -pt -

| K₂SO₄<br>NH₄Cl | 26 75 | 33 3- 33 9<br>90 4-111 8 | 87 3 |
|----------------|-------|--------------------------|------|
|                |       | 123 7-145 7              |      |

(Mulder)

NH<sub>4</sub>Cl+Na<sub>2</sub>SO<sub>4</sub> 100 pts H<sub>2</sub>O dissolve 28 9 pts NH<sub>4</sub>Cl+24 7 pts Na<sub>2</sub>SO<sub>4</sub>, if NH<sub>4</sub>Cl+Aq sat at 10° is sat with Na<sub>2</sub>SO<sub>4</sub> at 11°

100 pts H<sub>2</sub>O dissolve 318 pts NH<sub>4</sub>Cl+ 90 pts Na<sub>2</sub>SO<sub>4</sub>, if Na<sub>2</sub>SO<sub>4</sub>+Aq sat at 10° is sat with NH<sub>4</sub>Cl at 11° (Mulder, J B 1866 68)

Sol in sat Na<sub>2</sub>SO<sub>4</sub>+Aq (Karsten) Sol in sat ZnSO<sub>4</sub>+Aq (Karsten)

Sl sol in liquid NH<sub>3</sub> at —50° (Moissan, C R 1901, **133** 713)

Very sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 826)

Very sl sol in absolute alcohol

100 pts alcohol of 0 939 sp gr dissolve—at 4° 8° 27° 38° 56°

11 2 12 6 19 4 23 6 30 1 pts NH<sub>4</sub>Cl (Gerardin, A ch (4) 5 129)

boiling highest rectified spirit dissolve 1 pt

(Wenzel)
alcohol of—

900 sp gr dissolve 6.5 pts NH<sub>4</sub>Cl 0.872 4.75 0.834 1.5 (Kirwan)

Though somewhat sol in pure absolute alcohol, NH<sub>4</sub>Cl is absolutely insol in alcohol in presence of methyl amine chlorides (Winkles, A 93 324)

100 pts absolute methyl alcohol dissolve

3 35 pts at 19°

100 pts absolute ethyl alcohol dissolve 0 62 pt at 19° (de Bruyn, Z phys Ch 10 783)

Solubility of NH<sub>4</sub>Cl in methyl alcohol

| t°           | Alcohol concentration mol galcohol for 1000 g H <sub>2</sub> O | Solubility<br>in 1000 g H O | Molecular<br>solubility |
|--------------|----------------------------------------------------------------|-----------------------------|-------------------------|
| 0°           | 0                                                              | 298 40                      | 5 59                    |
| 4            | 1/4                                                            | 297 35                      | 5 57                    |
| "            | 1/3                                                            | 296 55                      | 5 55                    |
| "            | í                                                              | 292 65                      | 5 47                    |
| 6            | 3                                                              | 283 15                      | 5 30                    |
| $25^{\circ}$ | 0                                                              | 395 10                      | 7 40                    |
| "            | 1/4                                                            | 394 75                      | 7 39                    |
| 4            | 17,                                                            | 393 55                      | 7 37                    |
| "            | ĺ                                                              | 392 90                      | 7 36                    |
| "            | 3                                                              | 386 20                      | 7 23                    |

(Armstrong and Eyre, Pioc R Soc I and (A) 84 127) Solubility of NH<sub>4</sub>Cl in ethyl alcohol

| Alcohol concentration<br>mol g alcohol for<br>1000 g H <sub>2</sub> O | Solubility in<br>1000 g H O                    | Mol<br>solı           | ular                     |
|-----------------------------------------------------------------------|------------------------------------------------|-----------------------|--------------------------|
| 0<br>14<br>12<br>1<br>1<br>3                                          | 298 40<br>295 50<br>291 95<br>286 40<br>266 25 | 5<br>5<br>5<br>5<br>4 | 9<br>3<br>17<br>37<br>39 |

(Armstrong and Eyre, lc)

See also ammonium cupric chloride

Solubility of NH<sub>4</sub>Cl in propyl alcoluding to Solubility in Mo ultration mol g sloohol for 1000 g H O solubility in the solubility of NH<sub>4</sub>Cl in propyl alcoluding in the solubility in the solu

| t°  | tration mol g<br>alcohol for<br>1000 g H <sub>2</sub> O | Solubility in<br>1000 g H O | Mo<br>solı | ular<br>ılıty  |
|-----|---------------------------------------------------------|-----------------------------|------------|----------------|
| 0°  | 0                                                       | 298 46                      | 5          | 9              |
| "   | 1/4                                                     | 295 40                      | 5          | э3             |
| "   | $\frac{1}{4}$ $\frac{1}{2}$                             | 291 30                      | 5          | <del>1</del> 5 |
| "   | 1                                                       | 284 00                      | 5          | 32             |
| 25° | 0                                                       | 395 10                      | 7          | 10             |
| 4   | 1/4                                                     | 393 50                      | 7          | 37             |
| "   | 1/4<br>1/2                                              | 390 80                      | 7          | 32             |
| "   | ī                                                       | 384 80                      | 7          | '1             |
|     | / A                                                     | 1 17 7                      | - \        |                |

(Armstrong and Eyre, lc)

Solubility in mixtures of methyl and ethyl alcohol at 25°

P = % methyl alcohol in the solvent

P=% methyl alcohol in the solvent G=g NH<sub>4</sub>Cl in 10 cc of the solution S=sp gr of the sat solution at 25°

| P                                                                    | G                                                                       | \$                                                                            |
|----------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 0 00<br>4 37<br>10 40<br>41 02<br>50 69<br>\$4 77<br>91 25<br>100 00 | 0 0533<br>0 0583<br>0 0658<br>0 118<br>0 217<br>0 227<br>0 247<br>0 276 | 0 790<br>0 790<br>0 791<br>0 791<br>0 795<br>0 802<br>0 802<br>0 804<br>0 806 |

(Heiz, Z inoig 1908, 60 155

Solubility in mixtures of methyl and propyl alcohol at 25

 $P = C_0$  propyl alcohol in the solvent G = g NH<sub>4</sub>Cl in 10 cc of the solution S = Sp gr of the sit solution at 25

| P      | (     |          |
|--------|-------|----------|
| 0      | 0 276 | 0 S06    |
| 11 11  | 0 231 | 0 803    |
| 23 8   | 0 182 | 0 S00    |
| 65 2   | 0 071 | 0 800    |
| 91 8   | 0 026 | 0 800    |
| 93 75  | 0 023 | 0 800    |
| 100 00 | 0 018 | 0 800 ?) |

(Herz, Z anorg 1908, 60 157

Solubility in mixtures of propyl and ethyl alcohol at 25°

P = % propyl alcohol in the solvent G=g NH4Cl in 10 cc of the solution S=Sp gr of the sat solution at 25°/4°

| P                                                        | G                                                                            | S                                                                            |  |  |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
| 0<br>8 1<br>17 85<br>56 6<br>88 6<br>91 2<br>95 2<br>100 | 0 0533<br>0 0505<br>0 0455<br>0 0312<br>0 0210<br>0 0203<br>0 0190<br>0 0177 | 0 7908<br>0 7910<br>0 7916<br>0 7963<br>0 7996<br>0 8001<br>0 8003<br>0 8009 |  |  |  |  |
|                                                          |                                                                              |                                                                              |  |  |  |  |

(Herz, Z anorg 1908, 60 160)

Insol in ether and CS<sub>2</sub> (Fordos and Gélis, **A** ch (3) **32** 393)

Very sl sol in acetone (Krug and M'Elroy, J anal appl Ch 6 184)

Solubility of NH<sub>4</sub>Cl in acetone+Ag at 25° A = cc acetone in 100 cc acetone +Aq

NH<sub>4</sub>Cl = millimols NH<sub>4</sub>Cl in 100 cc of the solution

| A                                                        | NH4Cl                                              | Sp gr                                                      |
|----------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>46 5   lower<br>to 2 phases | 585 1<br>534 1<br>464 6<br>396 7<br>328 5<br>283 7 | 1 0793<br>1 0618<br>1 0451<br>1 0263<br>0 99984<br>0 97998 |
| 85 7 J upper   90                                        | 18 9<br>9 4                                        | 0 8390<br>0 8274                                           |

(Herz, Z anoig 1905 45 263)

Solubility of NH<sub>4</sub>Cl in glycerine + Aq at 25° G=g glycenne in 100 g glycenne+Aq NH<sub>4</sub>Cl=millimols NH<sub>4</sub>Cl in 100 cc of the solution

| (                                              | NH <sub>4</sub> Cl                                          | Sp gr                                                              |
|------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|
| 0<br>15 28<br>25 98<br>45 36<br>54 23<br>83 84 | 585 1<br>544 6<br>502 9<br>434 4<br>403 5<br>291 4<br>228 4 | 1 0793<br>1 0947<br>1 1127<br>1 1452<br>1 1606<br>1 2225<br>1 2617 |

(Haz, lc)

Insol in acctone (Naumann, B 1904, 37 4328), (Lidmann, C C 1899 II, 1014)

Insol in inhydrous pyridine Sol in 97% puridine + Aq, 95% pyridine + Aq and in 93% pyridinc+ Aq (Kihlenberg, J Am Chem Soc 1908, **30** 1107)

Insol in C5 (Arctowski, Z inorg 1894, 6 257)

Very sol in cthyl amine (Shinn, J. phys. Chem 1907, **11** 538)

Insol in methyl acetate (Numann, B

**1909**, **42** 3790)

Insol in ethyl acetate (Naumann, B 1910, 43 314)

Insol in benzonitrile (Naumann, B 1914, **47** 1370)

Sol in formic acid (Zanninovich-Tessarin, Z phys Ch 1896, 19 251)

Ammonium antimony chloride, SbCl<sub>6</sub>(NH<sub>4</sub>)<sub>2</sub>, SbCl<sub>6</sub>(NH<sub>4</sub>)<sub>3</sub>

Decomp by H<sub>2</sub>O (Weinland, B Ppt 1905, **38** 1085 )

SbCl<sub>6</sub>(NH<sub>4</sub>), SbCl<sub>5</sub>, NH<sub>4</sub>OH Very deliquescent, sl sol in H2O with decomp (Weinland, B 1901, 34 2635)

Ammonium antimonous chloride, NH4Cl, SbCl<sub>8</sub>

Deliquescent (Dehérain, C R 52 734) 2NH₄Cl, SbCl₃+2H₂O Permanent in dry air, decomp by much H<sub>2</sub>O (Poggiale) 3NH<sub>4</sub>Cl, SbCl<sub>3</sub>+3H<sub>2</sub>O As above

Ammonium antimonic chloride, 3NH<sub>4</sub>Cl. SbCl<sub>5</sub>

(Dehéram, C R 52 Decomp by H<sub>2</sub>O 734)

4NH<sub>4</sub>Cl, SbCl<sub>5</sub> Decomp by H<sub>2</sub>O (D) See also Chlorantimonate, ammonium

Ammonium antimony platinum chloride, (Sb, Pt)Cl<sub>6</sub>(NH<sub>4</sub>)<sub>2</sub>

Ppt (Weinland, B 1905, 38 1084)

Ammonium antimony tin chloride,  $(Sb,Sn)Cl_6(NH_4)_2$ 

Ppt (Weinland, B 1905, **38** 1085)

Ammonium arsenyl chloride, 2NH<sub>4</sub>Cl, AsOCl  $+\frac{1}{2}H_{2}O$ 

(Wallace, Phil Mag (4) 16 358)

Ammonium bismuth chloride, NH<sub>4</sub>Cl, 2BiCl<sub>3</sub> Deliquescent (Dehérain, C R 54 724)

2NH<sub>4</sub>Cl, B<sub>1</sub>Cl<sub>3</sub> Decomp by H O (Arppe) Pogg **64** 237)

+2½HO (Rammelsberg) 3NH<sub>4</sub>Cl, B<sub>1</sub>Cl<sub>3</sub> Decomp by HO (Arppc)

5NH<sub>4</sub>Cl, 2B<sub>1</sub>Cl<sub>8</sub> (Rammelsberg) Ammonium bismuth potassium chloride,

2NH<sub>4</sub>Cl, BıCl<sub>3</sub>, KCl (Deheram, C R **54** 724)

Ammonium cadmium chloride, NHiCl CdCl Solubility of NH.(1 (d(1 in H() it to

| Solubling of Milder ( del in it ), to a |    |                                      |    |    |    |      |       |                        |    |                     |    |                                                    |     |
|-----------------------------------------|----|--------------------------------------|----|----|----|------|-------|------------------------|----|---------------------|----|----------------------------------------------------|-----|
| t                                       |    | Pts by weight in 100 pts of solution |    |    |    |      | on    | g in 100 g<br>solution |    | Grams in<br>100 H O |    | Mol HO<br>free salt dis<br>solved by 100<br>mol HO |     |
|                                         |    | C                                    | ı  | (  | Cd | N    | $H_4$ | _                      | •  |                     |    | 4 ř                                                | 9 - |
| 2                                       | 4° | 13                                   | 44 | 14 | 26 | $_2$ | 24    | 29                     | 94 | 42                  | 74 | 3                                                  | 25  |
|                                         | 0  | 15                                   | 07 | 15 | 82 | 2    |       | 33                     | 45 |                     | 26 |                                                    | 55  |
| 41                                      | 2  | 17                                   | 46 | 18 |    |      | 89    |                        | 96 |                     | 83 |                                                    | 86  |
| 63                                      | 8  | 19                                   | 73 | 20 | 92 | 3    |       | 43                     | 99 |                     | 54 | )                                                  | 98  |
| 105                                     | 9  | 23                                   | 52 | 24 | 70 | 4    | 01    | 52                     | 58 | 109                 | 33 | 5                                                  | 30  |
| (Rimbach, B 1897, 30 3076)              |    |                                      |    |    |    |      |       |                        |    |                     |    |                                                    |     |

+1/2H<sub>2</sub>O Sl sol in H<sub>2</sub>O, alcohol, and wood spirit (v Hauer, W A B **13** 449)
4NH<sub>4</sub>Cl, CdCl<sub>2</sub> Sol in H<sub>2</sub>O (v Hauer)
Decomp by H<sub>2</sub>O to NH<sub>4</sub>Cl, CdCl<sub>2</sub> Decomp increases with decrease of temp. At

comp increases with decrease of temp At 3 9° approximately wholly decomp to NH<sub>4</sub>Cl, CdCl<sub>2</sub> At 113 9° very nearly all is 4NH<sub>4</sub>Cl, CdCl<sub>2</sub> (Rimbach, B 1897, **30** 3077)

Solubility of 4NH<sub>4</sub>Cl, CdCl<sub>2</sub> in H<sub>2</sub>O at t°

| t°                                            | Pts dissolved in 100 pts by<br>weight of solution |                                                    |                                                |  |  |
|-----------------------------------------------|---------------------------------------------------|----------------------------------------------------|------------------------------------------------|--|--|
|                                               | Cd                                                | CI                                                 | NH4                                            |  |  |
| 3 9<br>16 1<br>40 2<br>58 5<br>112 9<br>113 9 | 5 75<br>6 93<br>9 91<br>12 50<br>16 66<br>16 51   | 18 17<br>20 26<br>23 84<br>26 53<br>31 79<br>32 71 | 7 37<br>7 97<br>8 92<br>9 35<br>10 78<br>11 30 |  |  |
| (Rim                                          | hach B 18                                         | 97 30 307                                          | 71 \                                           |  |  |

(Rimbach, B 1897, 30 3071)

Sol without decomp in 37.3% HCl(d=1.19) and 24.8% HCl(d=1.125) (Rimbach, B 1905, 38 1569)

Solubility of 4NH<sub>4</sub>Cl,CdCl<sub>2</sub>+NH<sub>4</sub>Cl in H<sub>2</sub>O at t°

|                             | In 100                       | ) pts by w<br>solution           | t of the                       |                              | ation of<br>d phase          |
|-----------------------------|------------------------------|----------------------------------|--------------------------------|------------------------------|------------------------------|
| t°                          | Pts by<br>wt Cd              | Pts by<br>wt Cl                  | Pts by<br>wt NH4               | Mol %<br>NH₄Cl               | Mol %<br>Tetra<br>salt       |
| 1 0<br>13 2<br>40 1<br>58 2 | 2 82<br>2 76<br>3 16<br>3 51 | 17 11<br>18 84<br>22 56<br>25 21 | 7 82<br>8 71<br>10 49<br>11 72 | 59 0<br>74 0<br>71 0<br>69 0 | 41 0<br>26 0<br>29 0<br>31 0 |

(Rimbach, B 1902, **35** 1300)

Solubility of 4NH<sub>4</sub>Cl, CdCl<sub>2</sub>+NH<sub>4</sub>Cl, CdCl<sub>2</sub> in H<sub>2</sub>O at t°

| _                           | In 100 p                       | ts by wt<br>solution             | of the                       | Compos<br>the solu    | ution of<br>d phase    |
|-----------------------------|--------------------------------|----------------------------------|------------------------------|-----------------------|------------------------|
| ť                           | Pts by<br>wt Cd                | Pts by<br>wt Cl                  | Pts by<br>wt NH4             | Mol %<br>Mono<br>salt | Mol %<br>Tetra<br>salt |
| 1 1<br>14 0<br>40 7<br>58 5 | 5 34<br>7 12<br>10 24<br>12 50 | 17 62<br>19 86<br>23 82<br>26 53 | 7 27<br>7 84<br>8 85<br>9 35 | 49 6<br>47 0<br>77 0  | 50 4<br>53 0<br>23 0   |

(Rimbach, B 1902, **35** 1300)

Sol without decomp in 50% I iCl+Aq, 33 3% CaCl>+Aq and 50% MgCl2+Aq (Rimbach, B 1905,  $\bf 38$  1569 )

Ammonium chloromolybdenum chloride,  $2NH_4Cl$ ,  $Cl_4Mo_4Cl_2+2H_2O$ 

Decomp by pure HO, can be crystallized from HCl+Aq (Blomstrand)

Ammonium chromium chloride, 2NH<sub>4</sub>Cl, CrCl<sub>3</sub>+H O

Sol in H<sub>2</sub>O with decomp (Neumann, A 244 229)

 $+6H_2O = 2NH_4Cl$ ,  $[C_1Cl_2 4H_2O]Cl + 2H_2O$ 

Hygroscopic Decomp by H and b alcohol (Weinland, B 1907, 40 '70)

Ammonium cobaltous chloride, NI Cl, CoC +6H<sub>2</sub>O

Deliquescent in moist air Very -asily so in  $H_2O$  (Hautz, A 66 284)

Ammonium cobaltous chloride immonia NH<sub>4</sub>Cl, CoCl<sub>2</sub>, NH<sub>3</sub> (F Ros )

Ammonium cuprous chloride, 4NH l Cu<sub>2</sub>Cl Decomp in the air

4NH<sub>4</sub>Cl, 3Cu<sub>2</sub>Cl<sub>2</sub> Decomp by H<sub>2</sub>O, no by alcohol (Ritthausen, J pr 5° 369) Fairly stable in air (Wells, Z a org 189° 10 158)

Ammonium cupric chloride,

NH₄Cl, CuCl₂

Solubility of NH<sub>4</sub>Cl, CuCl<sub>2</sub> in abso te alcoho

| % CuCl2 |            | Solid phase                                                 |    | Zacia<br>% | So                | l phase             |
|---------|------------|-------------------------------------------------------------|----|------------|-------------------|---------------------|
|         |            | NH <sub>4</sub> Cl+NH <sub>4</sub> Cl,<br>CuCl <sub>2</sub> |    |            |                   |                     |
| 4       | 74         | NH <sub>4</sub> Cl+NH <sub>4</sub> Cl,<br>CuCl <sub>2</sub> | 34 | 92         | NH <sub>4</sub> C | CuCl <sub>2</sub> - |
| 6       | <b>4</b> 5 | NH <sub>4</sub> Cl, CuCl <sub>2</sub>                       | 34 | 50         | Cuci              | ( 2H5U1             |

(Foote and Walden, J Am Ch So 1911, 33 1032)

 $+2\mathrm{H}_2\mathrm{O}$  Sol in 2 pts  $\mathrm{H}_2\mathrm{O}$  Hautz, 4 66 280)

Does not exist, (Meerburg, C ( 1904 II

1362 2NH<sub>4</sub>Cl, CuCl +2H<sub>2</sub>O Lasily l in H O also in alcohol, even when absol<sup>1</sup> e (Car

and Henry, J pr 13 184)

Solubility of 2NH<sub>4</sub>Cl, CuCl<sub>2</sub> in F O at t°

g 2NH<sub>4</sub>Cl CuCl<sub>2</sub> in t٥ 100 g of the solution Solid ase -1 5° 387 -2 48 5 88 -3 95 8 78 9 97 -4 60 13 12 --6 40 15 84 **--**> 04 -9 24 17 64 20 12 -10 80 ±20 3 -110icc +2NHiCl uC1 2H 0 20 46 -102NH4CLCt 122H O 21 16 -5 22 02 0 24 26 +12**25** 95 20 27 70 30

(Meerburg, Z anorg 1905, 4

40

50

60

70

80

30 47

33 24

36 13

39 25

43 36

8)

Somewhat sol in liquid NH<sub>3</sub>

and Kraus, Am Ch J 1898, 20 827)
Is the only hydrate of 2NH<sub>4</sub>Cl, CuCl<sub>2</sub> existing between —11° and +80° C C 1904 II, 1362) (Meerburg,

(Bourgeois, Bull Soc 1898, (3) +3H<sub>2</sub>O**19** 786)

#### Ammonium cupric chloride ammonia, 2NH<sub>4</sub>Cl, CuCl<sub>2</sub>, 2NH<sub>8</sub>

Decomp by H<sub>2</sub>O, less easily by alcohol Decomp by acids (Ritthausen)

Ammonium indium chloride, 2NH4Cl, InCl3  $+H_{2}O$ 

Easily sol in H<sub>2</sub>O (Mever)

Ammonium iodine chloride, NH4Cl, ICl3 More sol in H<sub>2</sub>O than KCl, ICl<sub>3</sub> (Filhol, J Pharm 25 441, Berz J B 20 (2) 110)

Ammonium iridium trichloride See Chloriridite, ammonium

Ammonium iridium tetrachloride See Chloriridate, ammonium

Ammonium iron (ferrous) chloride, NH4Cl. FeCl<sub>2</sub>

Easily sol in HO, insol in alcohol (Wink-

Ammonium iron (ferric) chloride, 2NH4Cl, FeCl<sub>3</sub>+H<sub>2</sub>O

Deliquescent Sol in H<sub>2</sub>O without decomp (Fritzsche), sol in 3 pts H<sub>2</sub>O at 18 75° (Abl.) Sol in H<sub>2</sub>O (Walden, Z anorg 1894, 1 332)

Ammonium iron (ferric) potassium chloride, NH<sub>4</sub>Cl, FeCl<sub>3</sub>, KCl+1½H<sub>2</sub>O

Min Kremersite Deliquescent

Ammonium lead chloride, NH<sub>4</sub>Cl, 2PbCl<sub>2</sub>+ 3H<sub>2</sub>()

Sol in H<sub>2</sub>O without decomp (?) (André,

C R 96 1502) 6NH<sub>4</sub>Cl, PbCl +H<sub>4</sub>O 9NH<sub>4</sub>Cl, PbCl +1<sup>1</sup><sub>2</sub>H<sub>4</sub>O 9NH<sub>4</sub>Cl 2PbCl +2<sup>1</sup><sub>2</sub>H O

10NH4Cl, PhCl2+H O

11NII4Cl, 2PbCl2+312H O

18NH<sub>4</sub>Cl, PbCl<sub>2</sub>+4H<sub>2</sub>O

All these salts are decomp by H2O (Andre A ch (6) 3 104)

Of the salts prepared by Andre, only one NH<sub>4</sub>Cl, 2PbCl exists (Wells, Sill Am J **146** 25)

Solubility determinations show that NH4Cl 2PbCl<sub>2</sub> is the only double salt formed at 25° (Foote, Am Ch J 1907, 37 121)  $NH_4Cl$ ,  $PbCl + \frac{1}{3}H_2O$  (Wells, lc)

Ammonium lead tetrachloride See Chloroplumbate, ammonium

(Franklin | Ammonium magnesium chloride, NH<sub>4</sub>MgCl<sub>3</sub>  $+6H_2O = NH_4Cl$ ,  $MgCl_2 + 6H_2O$ 

Deliquescent Very sol in H<sub>2</sub>O Sol in 6 pts cold H<sub>2</sub>O (Fourcroy)

Solubility in NH<sub>4</sub>Cl+Aq at t°

|                      | Per 1000 Mol H <sub>2</sub> O |                      |  |  |
|----------------------|-------------------------------|----------------------|--|--|
| t°                   | Mol<br>NH₄Cl                  | Mol MgCl2            |  |  |
| 3 5°<br>25 0<br>50 0 | 27 5<br>42 1<br>62 9          | 55 7<br>56 4<br>59 1 |  |  |

(Biltz, Z anorg 1911, 71 170)

4NH<sub>4</sub>Cl,5MgCl<sub>2</sub>+33H<sub>2</sub>O Sol in H<sub>2</sub>O (Berthelot and André, A ch (6) 11 294)

Ammonium manganous chloride, NH<sub>4</sub>Cl,  $MnCl_2 + \frac{1}{2}H_2O$ 

Sol m  $1\frac{1}{2}$  pts H<sub>2</sub>O at ordinary temp (Hautz, A 66 280), does not exist (Saunders, Am Ch J 14 134)

2NH<sub>4</sub>Cl, MnCl<sub>2</sub>+H<sub>2</sub>O Sol in H<sub>2</sub>O (Rammelsberg), does not exist (Saunders)

+2H<sub>2</sub>O Easily sol in H<sub>2</sub>O, but with decomp into NH4Cl and MnCl2 (Saunders)

Ammonium manganic chloride, 2NH<sub>4</sub>Cl, MnCl<sub>2</sub>

Sol in H<sub>2</sub>O, less sol in NH<sub>4</sub>Cl+Aq stable (Neuman, M 1894, 15 490)

Decomp by H2O Sol in HCl  $+H_2O$ apparently without decomp (Rice, Chem Soc 1898, **73** 260)

Ammonium mercuric chloride, 2NH<sub>4</sub>Cl, HgCl<sub>2</sub>+H<sub>2</sub>O (sal alembroth)

Sol in 066 pt H<sub>2</sub>O at 10°, and in nearly every proportion of hot H2O

NH<sub>4</sub>Cl, HgCl<sub>2</sub> Easily sol in H<sub>2</sub>O  $+\frac{1}{2}H_2O$  Easily sol in  $H_2O$  (Kane)

2NH<sub>4</sub>Cl, 3HgCl<sub>2</sub>+4H<sub>2</sub>O H<sub>2</sub>O (Holmes, C N **5** 351) Easily sol in

NH<sub>4</sub>Cl, 2HgCl<sub>2</sub> Very sol in H<sub>2</sub>O (Rây,

Chem Soc 1902, **81** 648) NH<sub>4</sub>Cl, 5HgCl<sub>2</sub> (Stromholm, J pr 1902,

(2) **66 441**)

Ammonium mercuric sodium chloride, NH4Cl, HgCl<sub>2</sub>, 4NaCl (?)

Sol in HO (Kossmann, A ch (3) 27 243)

Ammonium molybdenum chloride, 2NH<sub>4</sub>Cl,  $MoCl_3+H_2O$ 

Very sol in H<sub>2</sub>O Nearly insol in alcohol (Chilesotti, C C 1903 II, 652) and ether See also Ammonium chloromolybdenum chloride

Ammonium molybdenum chloride iodide See Ammonium chloromolybdenum iodide

Ammonium molybdenyl chloride, 2NH<sub>4</sub>Cl,  $M_0O_2Cl_2+2H_2O$ (Weinland, Z anorg 1905, 44 98) Sol in H<sub>2</sub>O, insol in 2NH<sub>4</sub>Cl, MoOCl<sub>3</sub> (Klason, B 1901, 34 H<sub>2</sub>O sat with HCl 149 Ammonium nickel chloride, NH<sub>4</sub>Cl, NiCl<sub>2</sub>+ Easily sol in Deliquescent in moist air H<sub>2</sub>O (Hautz)  $4NH_4Cl$ ,  $N_1Cl_2+7H_2O$  (?) Ammonium osmium tetrachloride See Chlorosmate, ammonium Ammonium osmium sesquichloride See Chlorosmite, ammonium Ammonium osmyl chloride, (NH<sub>4</sub>)<sub>2</sub>OsO<sub>2</sub>Cl<sub>4</sub> Sol in H<sub>2</sub>O Decomp by HCl (Wintrebert, A ch 1903, (7) 28 92) Ammonium osmyl oxychloride,  $(NH_4)_2OsO_3Cl_2$ Very sl sol m H<sub>2</sub>O Sol in KOH+Aq with decomp (Wintrebert, A ch 1903, (7) **28** 116) Ammonium palladium chlorides See Chloropalladate, ammonium and chlorommonium num rhodium dichloride, 4NH4Cl,  $\Delta \text{Cl}_2 + 3\frac{1}{2}\text{H}_2\text{O}$ (Willm Sol in H<sub>2</sub>O, but decomp slowly **B 16** 3033) Does not exist (Leidié, A ch (6) 17 277) Ammonium rhodium trichloride See Chlororhodite, ammonium Ammonium rhodium chloride ammonium nitrate, Rh<sub>2</sub>Cl<sub>6</sub>, 6NH<sub>4</sub>Cl, 2NH<sub>4</sub>NO<sub>3</sub> See Chlororhodite nitrate, ammonium Ammonium ruthenium trichloride See Chlororuthenite, ammonium Ammonium ruthenium tetrachloride See Chlororuthenate, ammonium Ammonium tellurium chloride See Chlorotellurate, ammonium Ammonium thallic chloride, 3NH<sub>4</sub>Cl, ICl<sub>3</sub> Easily sol in HO (Willin) +2H<sub>2</sub>O Fasily sol in H<sub>2</sub>O and alcohol (Nickles, J Pharm (4) 1 28) Ammonium thorium chloride, 8NH4Cl, ThCl4 +8H<sub>2</sub>O Sol in H<sub>2</sub>O (Chydenius) Ammonium tin (stannous) chloride (ammon-1um chlorostannite), NH<sub>4</sub>Cl, SnCl<sub>2</sub>+H<sub>2</sub>O by H<sub>2</sub>O Ammonium chloride arsenic trioxideResembles K salt (Richardson, Am Ch J 14 93)

2NH<sub>4</sub>Cl, SnCl<sub>2</sub>+H<sub>2</sub>O Sol in H<sub>2</sub>O, decomp by boiling (Rammelsberg) Contains 2H<sub>2</sub>O (Richardson) 4NH<sub>4</sub>Cl, SnCl<sub>2</sub>+3H<sub>2</sub>O Decomp by H ) (Poggiale, C R 20 1182) Does not exist (Richardson) Ammonium tin (stannic) chloride See Chlorostannate, ammonium Ammonium titanium chloride, 2NH<sub>4</sub>Cl. T 'l. +2H<sub>2</sub>O Ppt, decomp in moist air, sol in fun ig HCl, insol in ether (Rosenheim, Z an 1901, **26** 242) Ammonium titanium chloride, 3NH<sub>4</sub>Cl, Ti l<sub>4</sub> Sol in H<sub>2</sub>O 6NH<sub>4</sub>Cl, T<sub>1</sub>Cl<sub>4</sub> Sol in H<sub>2</sub>O (Rose) Ammonium tungsten chloride,  $(NH_4)_3W_2C =$ 3NH₄Cl, 2WCl₃ Easily sol in H<sub>2</sub>O Nearly insol in nost organic solvents (Olsson, B 1913, 46 5 7) Ammonium uranyl chloride Very deliquescent, and sol in H<sub>2</sub>O (1 ligot)  $2NH_4Cl_1(UO_2)Cl_2+2H_2O$ Solution at 5° contains in 100 g 3 51 g, NH<sub>4</sub>, 40 67 g O<sub>2</sub> and 19 15 g Cl, hence there is consider the december of the state of the sta decomp (Rimbach, B 1904, 37 466) Ammonium vanadium chloride, 2NH II, VCl₃+H<sub>2</sub>O Difficulty sol in H2O and alcohol (Sta er, B 1904, **37** 4412) Ammonium zinc chloride, NH<sub>4</sub>Cl, ZnC +  $2H_{\lambda}O$ Deliquescent Very sol in H<sub>2</sub>O tz, A 66 287) 2NH<sub>4</sub>Cl, ZnCl<sub>2</sub> Sol in H<sub>2</sub>O (Ramr berg, Pogg 94 507) +H<sub>2</sub>O Deliquescent in moist air Sc ın <sup>2</sup>/<sub>3</sub> pt cold II O with absorption of heat ol in 0.28 pt hot H2O (Golfier-Bassiyre Α ch 70  $3\overline{44}$ ), sol in  $^{1}_{2}$  pt cold II () (II tz, A 66 287) 3NH4Cl, ZnCl2 Sol in II O (Marigi +H O(Berthelot, A ch (6) 11 294 4NH<sub>4</sub>Cl, InCl<sub>2</sub> (Deheran) 6NH<sub>4</sub>Cl, ZnCl +2/3H O (Berthelot, ) Ammonium chloride zinc oxychloride, 2Z l2, 8NH<sub>4</sub>Cl, ZnO Sol in a little HO, but decomp by ex (Andre) 3ZnCl, 10NH4Cl, ZnO As above (A lré, A ch (6) 3 88) Ammonium chloride antimony fluc de, NH<sub>4</sub>Cl, SbF<sub>8</sub> Easily sol in H<sub>2</sub>O (de Haen, B **21** 90 R)

See Arsenite chloride, ammonium

Ammonium chloride bismuth bromide. 3NH₄Cl, B<sub>1</sub>Br<sub>3</sub>+H<sub>2</sub>O

Deliquescent, decomp by H<sub>2</sub>O (Muir. Chem Soc 31 148)

2NH<sub>4</sub>Cl, B<sub>1</sub>Br<sub>3</sub>+3H<sub>2</sub>O Decomp by H<sub>2</sub>O (Muir )

5NH₄Cl, 2BıBr₃+H₂O Decomp by H<sub>2</sub>O (Mur)

Ammonium chloride chromic oxychloride, 2NH<sub>4</sub>Cl, CrOCl<sub>3</sub>

Decomp in the air Sol in conc HCl without decomp (Weinland, B 1906, 39 4045)

Ammonium chloride cuprocupric thiosulphate, 2NH<sub>4</sub>Cl, Cu<sub>2</sub>O, CuO, 3S<sub>2</sub>O<sub>2</sub>

See Thiosulphate ammonium chloride, cuprocupric

Ammonium chloride lead iodide, 3NH4Cl,  $PbI_{2}$ 

Decomp with HO (Behrens, Pogg 62 252)

4NH<sub>4</sub>Cl, PbI<sub>2</sub>+2H O Decomp with H<sub>2</sub>O (Poggiale, C R 20 1180)

Ammonium chloride mercuric bromide, NH<sub>4</sub>Cl, HgBr<sub>2</sub>

(Edhem-Bey, Dissert 1885)

Ammonium chloride platinum sulphite See Chloroplatosulphite, ammonium

Ammonium chloride tin (stannous) bromide, 2NH₄Cl, SnBr +H O

Sol in H<sub>2</sub>O (Raymann and Preis, A 223)

Ammonium dichloroiodide, NH<sub>4</sub>Cl I

Slowly decomp when exposed to dry an at ord temp Very sol m HO (Chattaway, Chem Soc 1915 107 107)

Ammonium tetrachloroiodide, NH<sub>4</sub>Cl<sub>4</sub>I

Decomp in the un (Chittiwiv, Chem Soc 1915, **107** 107)

Ammonium lead chloroiodide, NH<sub>4</sub>PbCll +  $2H \odot \text{and (NH<sub>4</sub>) PbCl I} + 2H \odot$ 

Sol in KOH+Aq and in strong reids, decomp by II O (Lonzes Divion, Bull Soc 1897, (a) **17** 348)

Ammonium fluoride, NH<sub>1</sub>I

Abund intly sol in If (), sl sol in alcohol (Marign ic, Ann Min (5) 15 221)

Insol in liquid NH, (Ruff and Geisel, B 1903, **36** 820)

Almost insol in liquid NH<sub>3</sub> it 50° (Moissan, C R 1901, 133 713)

Sol in methyl alcohol (Curara, Gazz ch it 1896, 26 119)

Ammonium hydrogen fluoride, NH<sub>4</sub>F, HF Deliquescent in moist air Sol in HO

Ammonium antimony fluoride, 2NH4F, SbF3 Deliquescent, sol in 0.9 pt cold H<sub>2</sub>O

Insol in alcohol or ether (Flückinger, A. **84** 248

NH4F, 4SbF3 3 pts sol m 2 pts H2O (Raad and Hauser, B 1890, 23 R 125) NH<sub>4</sub>F, SbF<sub>5</sub> Easily sol in H<sub>2</sub>O (Marignac, A 145 239)

Ammonium bismuth fluoride, 2NH<sub>4</sub>F, B<sub>1</sub>F<sub>3</sub> Insol in H<sub>0</sub>O Rather difficultly sol in acids (Helmholt, Z anorg 3 115)

Ammonium cadmium fluoride, NH<sub>4</sub>F, CdF<sub>2</sub> Insol in H<sub>2</sub>O Sol in acids on boiling (Helmholt, Z anorg 3 115)

Ammonium chromium fluoride, 3NH4F, CrF<sub>3</sub>

Easily sol in H<sub>2</sub>O Sl sol in NH<sub>4</sub>F+Aq (Petersen, J pr (2) 40 52)  $2NH_4F, CrF_3 + H_2O$  (Wagner, B **19** 896)

Ammonium cobaltous fluoride, 2NH<sub>4</sub>F, CoF<sub>2</sub>  $+2\mathrm{H}_{2}\mathrm{O}$ 

Sl sol in H<sub>2</sub>O (Wagner, B **19** 896) Easily sol in HO (Helmholt, Z anorg **3** 132 )

Ammonium columbyl fluoride See Fluoxycolumbate, ammonium

Ammonium columbium fluoride oxyfluoride. 3NH<sub>4</sub>F, CbF<sub>5</sub>, CbOF<sub>3</sub>

See Fluoxycolumbate columbium fluoride, ammonium

Ammonium copper fluoride, 2NH<sub>4</sub>F, CuF +  $2H_{2}O$ 

(Helmholt, Z anorg 3 Insol in HO 115)

Nearly insol in H O but decomp thereby (Haas, Čh Z 1908, 32 8)

Ammonium glucinum fluoride, 2NH<sub>4</sub>F, Gll-Sol in H O (Manginic, A ch (4) 30 51) Very sol in H () (Helmholt, Z inoig 3

Ammonium iron (ferrous) fluoride, 2NH<sub>1</sub>l, (Wagner, B 19 896) ŀeŀ

 $NH_4F$ , FeF +2H() (W)

Ammonium iron (ferric) fluoride, 2NII41, Fel

More sol in H O than the corresponding K compound Decomp by boiling (Nichles, J Phum (4) 7 1թ)

3NH4F, FeF3 Sl sol m II () (M nign u, A ch (3) 60 306)

Fasily sol in icids (Helmholt, 7 morg **3** 124)

Ammonium manganic fluoride, 2NH<sub>4</sub>l,  $MnF_4$ 

More sol than the K sult (Nuckles, C R **65** 107)

True composition is 4NH<sub>4</sub>F, Mn<sub>2</sub>F<sub>6</sub> (Christensen, J pr (2) **34** 41)

See also Fluomanganate, ammonium

Ammonium manganyl fluoride

See Fluoxymanganate, ammonium

Ammonium molybdenum fluoride

Insol in H<sub>2</sub>O Sol in HCl+Aq (Berzelius)

See also Fluomolybdate, ammonium

Ammonium molybdenyl fluoride
See Fluoxymolybdate, ammonium

Ammonium nickel fluoride, 2NH<sub>4</sub>F, N<sub>1</sub>F<sub>2</sub>+ 2H<sub>2</sub>O

Sol in  $\rm H_2O$  (Wagner, B 19 896) Easily sol in  $\rm H_2O$  (Helmholt, Z anorg 3 143)

Ammonium scandium fluoride,  $(NH_4)_8ScF_6$ Easily sol in  $H_2O$  Aqueous solution is not decomp by boiling Decomp by acids (R I Meyer, Z anorg 1914, 86 275)

Ammonium silicon fluoride See Fluosilicate, ammonium

Ammonium silver fluoride, 2NH4F, AgF+

scopic Sol in H<sub>2</sub>O, sol in cone Sol in alcohol (Grützner, in 1900, **238** 3) F, AgF+4H O More deliquescent d<sub>4</sub>F (Bohm, Dissert **1906**)

Ammonium tantalum fluoride See Fluotantalate, ammonium

Ammonium tantalyl fluoride

See Fluoxytantalate, ammonium

Ammonium tellurium fluoride, NH<sub>4</sub>F, TeF<sub>4</sub>
Decomp by H<sub>2</sub>O (Hogbom, Bull Soc (2)
35 60)

Ammonium tin (stannous) fluoride,  $2NH_4F$ ,  $SnF_2+2H_2O$ 

Sol in  $H_2O$  (Wagner, B 19 896)

Ammonium tin (stannic) fluoride, 2NH<sub>4</sub>F, SnF<sub>4</sub>

See Fluostannate, ammonium

Ammonium titanium sesquifluoride See Fluotitanate, ammonium

Ammonium titanyl fluoride
See Fluoxypertitanate, ammonium

See Fluoxypertitanate, ammonium
Ammonium tungstyl fluoride

See Fluoxytungstate, ammonium

Ammonium uranyl fluoride
See Fluoxyuranate, ammonium

Ammonium vanadium sesquifluoride See Fluovanadate, ammonium Ammonium vanadyl fluoride See Fluoxyvanadate, ammonium

Ammonium zinc fluoride, 2NH<sub>4</sub>F, ZnF<sub>2</sub>
Sol in H<sub>2</sub>O (R Wagner)
+2H<sub>2</sub>O Very sl sol in H<sub>2</sub>O Easily so
in dil acids (Helmholt)

Ammonium zirconium fluoride See Fluozirconate, ammonium

Ammonium fluoride manganic oxyfluorid  $2NH_4F$ ,  $MnOF_2$  Precipitate (Nicklès)

See also Fluoxymanganate, ammonium

Ammonium fluoride molybdenum trioxid 2NH<sub>4</sub>F, MoO<sub>3</sub> Decomp by H<sub>2</sub>O (Mauro, Gazz ch 18 120)

Ammonium fluoride tungsten oxyfluoride See Fluoxytungstate, ammonium

Ammonium fluoride tungsten oxyfluoride ammonium tungstate, 4NH<sub>4</sub>F, WO<sub>2</sub>F (NH<sub>4</sub>)<sub>2</sub>WO<sub>4</sub>

See Fluoxytungstate tungstate, ammoniur Ammonium fluoride vanadium oxyfluoride

See Fluoxyvanadate, and fluoxyhypovan date, ammonium

Ammonium hydroselenide, NH<sub>4</sub>HSe

Sol in  $H_2O$  with decomp (Bineau, A c (2) 67 229) Ammonium hydrosulphide,  $NH_4SH$ 

Sol in H<sub>2</sub>O and alcohol Solutions decom on air

Ammonium hydroxide, NH<sub>4</sub>OH See Ammonia,

Ammonium imidosulphamide, (S O<sub>4</sub>N<sub>3</sub>H<sub>4</sub>)NH<sub>4</sub> (Hantzsch B 1905 **38** 1033

(Hantzsch, B 1905, **38** 1033)

Ammonium iodide, NH₄I

Very deliquescent Sol in 060 pt H ( (Eder, Dingl 221 89)

Sp gr of aqueous solution of NH<sub>4</sub>I at 1 containing—

C R 1901, 133 713)

containing— 10 20 30 40 50%NH<sub>4</sub> 1 0652 1 1397 1 2260 1 3260 1 4415

0652 1 1397 1 2260 1 3260 1 4415 (Kohlrausch, W Ann **1879** 1)

NH<sub>4</sub>I+Aq containing 12 51% NH<sub>4</sub>I h sp gr 20°/20° = 1 0846

NH<sub>4</sub>I+Aq containing 19 19% NH<sub>4</sub>I h sp gr 20°/20° = 1 1359

(Le Blanc and Rohland, Z phys Ch 189 19 279)

Very easily sol in liquid NH<sub>3</sub> (Frankli Am Ch J 1898, **20** 826) Very sol in liquid NH<sub>3</sub> at -50° (Moissai

Sol in SOCl (Walden, Z anorg 1900, **25** 216)

Sol in liquid SO<sub>2</sub> (Walden, Z anorg 1902, **30** 160)

Sol in 4 0 pts abs alcohol (Eder, lc) " 210 " " 20 " ether (Eder, lc)alcohol-ether (1

1) (Eder,

Sol m acetone (Endmann, CC 1899, II 1014), (Naumann, B 1904, 37 4328) Insol m ethyl acetate (Naumann, B 1910, 43 314)

Sl sol in benzonitrile (Naumann, B 1914, 47 1369)

#### Ammonium diodide, NH<sub>4</sub>I<sub>2</sub>

Sol in alcohol, ether, CS<sub>2</sub>, and KI+Aq, less sol in chloroform (Guthrie, Chem Soc (2) **1** 239 )

## Ammonium triiodide, NH<sub>4</sub>I<sub>3</sub>

Sl deliquescent Sol in little H2O, but decomp by much H<sub>2</sub>O Soc **33** 397) (Johnson, Chem

Ammonium antimony iodide, NH<sub>4</sub>I, SbI<sub>3</sub>+  $2H_{2}O$ 

Decomp by H<sub>2</sub>O (Nickles, C R 51 1097)

 $3NH_4I$ ,  $4SbI_3+9H_2O$ Decomp by H<sub>2</sub>O, Sol in HC2H3O2, with separation of SbOI HCl, and  $H_2C_4H_4O_6+Aq$ Decomp by CS<sub>2</sub> (Schaffer, Pogg 109 611)

3NH<sub>4</sub>I, SbI<sub>3</sub>+3H<sub>2</sub>O As above 4NH<sub>4</sub>I, SbI<sub>3</sub>+3H<sub>2</sub>O As above

Ammonium bismuth iodide, NH<sub>4</sub>I, B<sub>1</sub>I<sub>3</sub>+  $H_2O$ 

Deliquescent, decomp by HO (Nicklès,

C R **51** 1097)  $4NH_4I$ ,  $B_1I_3+3H_2O$  As above Pogg 111 240) (Linau,

 $2NH_4I$ ,  $B_1I_3+2\frac{1}{2}H$  O Decomp by  $H_2O$ , or MCl, MBr, or MI+Aq (Nicklès, J pr (2) **39** 116)

Ammonium cadmium iodide, 2NH<sub>4</sub>I, CdI<sub>2</sub>+ 2H ()

Deliquescent (Croft) Sol at 15° in 055 pt H<sub>2</sub>O, 070 pt abs alcohol, 89 pts other (sp gr 0729), and 18 pts alcohol-ether (1 1) (Fder, Dingl **221** 89)

100 pts of the solution in H<sub>2</sub>O contain 85 97 pts of the salt at 145° (Rimbach, B 1905, **38** 1563)

NH<sub>4</sub>I, CdI +1/2H () Sol at 15° in 0 90 pt H<sub>2</sub>O, 088 pt abs alcohol, and 24 pts ether (sp gr 0.729) (Lder,  $l\dot{\epsilon}$ )

(Grossmann, Z anoig 1902, 33  $+\mathrm{H}_2\mathrm{O}$ 154)

Ammonium chloromolybdenum iodide. 2NH<sub>4</sub>I, Cl<sub>4</sub>Mo<sub>3</sub>I +2H<sub>2</sub>O

Decomp by H<sub>2</sub>O Cryst from HI+Aq (Blomstrand)

Ammonium cuprous iodide, 2NH4I, Cu<sub>2</sub>I<sub>2</sub>+  $H_{2}O$ 

Decomp on the air, or by  $H_2O$ , or alcohol (Sagher, C R 104 1440)  $+\frac{1}{2}H_2O$  Decomp by  $H_2O$  with separa-

tion of Cu<sub>2</sub>I<sub>2</sub> (Gossner, Zeit Kryst 1903, 38 501)

Ammonium cupric iodide ammonia, 2NH<sub>4</sub>I,  $CuI_2$ ,  $2NH_3+2H_2O$ 

Insol in H<sub>2</sub>O or alcohol, sl sol in NH<sub>4</sub>OH

+6**H**₂O Unstable (Saglier, C R 104 1440)

NH4I, 2CuI, 3NH8 (Fleurent, C R 1891, **113** 1047)

Ammonium iridium diiodide, 2NH<sub>4</sub>I, IrI.

Insol in cold or hot H<sub>2</sub>O, and in alcohol Sol in warm dil acids (Oppler)

Ammonium iridium sesquiiodide See Iodiridite, ammonium

Ammonium iridium tetraiodide See Iodiridate, ammonium

Ammonium lead iodide, NH<sub>4</sub>I, PbI<sub>2</sub>+2H<sub>2</sub>O Decomp by much HO (Wells, Sill Am J 146 25)

4NH<sub>4</sub>I,3PbI<sub>2</sub>+6H<sub>2</sub>O S1sol in HO (Mosnier, C R 1895, 120 444)

Sol in strong Sol in H<sub>2</sub>O with decomp KOH+Aq and in strong acids Diacon, Bull Soc 1897, (3) 17 347)

Ammonium magnesium iodide, NH<sub>4</sub>I, MgI<sub>2</sub> +6H<sub>2</sub>O

Very deliquescent (I erch, J pr (2) 28 338)

Ammonium mercuric iodide, NH4I, HgI + ΗО

Decomp into its constituents by HO (Boullay, A ch (2) 34 345)

Sol without decomp in alcohol and other NH4I, 2HgI Decomp by HO Sol in KI+Aq Very sol in alcohol, ether and nitrobenzol (Low, Zeit Kryst, 51 138)

Ammonium silver iodide, 2NH<sub>1</sub>I, AgI

Deliquescent Decomp by H () (Poggial( )

Ammonium thallic iodide, NH<sub>4</sub>I, 11I<sub>3</sub>

Sol in H () (Nickles, J Ph um (4) 1 32)

Ammonium tin (stannous) iodide, NH<sub>4</sub>I, SnI Decomp by smill unt HO but completely sol in a large amt (Boullay, A ch (2) 34 376)

 $+1\frac{1}{2}H_2O$  (Personne)

Ammonium zinc iodide, 2NH<sub>4</sub>I, ZnI

Extremely deliquescent, and sol in HO (Rammelsberg, Pogg 43 665)

NH<sub>4</sub>I, ZnI<sub>2</sub>+4½H<sub>2</sub>O Hydroscopic (Ephraim, Z anorg 1910, 67 384)

Ammonium iodide arsenic trioxide See Arsenite iodide, ammonium

Ammonium cobalt nitride
See Ammonium cobalt azoimide

Ammonium ruthenium dihydronitrosobromide, NO Ru<sub>2</sub>H<sub>2</sub>(NH<sub>3</sub>)<sub>6</sub>Br<sub>3</sub> 2HBr
Ppt (Brizard, A ch 1900, (7) 21 363)

Ammonium ruthenium nitrosochloride, 3NH<sub>4</sub>Cl 2HCl NORu<sub>2</sub>H<sub>2</sub>Cl<sub>3</sub> Ppt (Brizard, A ch 1900, (7) 21 354)

Ammonium ruthenium dihydronitrosochloride, NO Ru<sub>2</sub>H<sub>2</sub>(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub> 2HCl

Ppt (Brizard, A ch 1900, (7) **21** 358) Ammonium peroxide, (NH<sub>4</sub>)<sub>2</sub>O<sub>2</sub>

M-pt  $-2^{\circ}$  Sl sol in ether without decomp (D'Ans, B 1913, **46** 3076)

Sol m alcohol, insol m ether, decomp slowly in aq solution (Melikoff, B 1897, 30 3145)

Ammonium hydrogen peroxide,  $(NH_4)_2O_2$ , H O

ordinary temp (Melikoff, B

table, deliquesces at ordinary cohol, insol in light petroleum 898, **31** 152)

Ammonium selenide, (NH<sub>4</sub>)<sub>2</sub>Se

Sol in H<sub>2</sub>O with decomp (Bineau, A ch (2) 67 229)

Stable in the air Sol in H<sub>2</sub>O, aq solution decomp slowly (Lenher and Smith, J Am Chem Soc 1898, 20 277)

Ammonium hydrogen selenide, NH<sub>4</sub>HSe Sol in HO (Fabre, C R 103 269)

Ammonium monosulphide, (NH<sub>4</sub>)<sub>2</sub>S

Decomp on air Sol in H<sub>2</sub>O, but solution decomposes rapidly

Very sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 826)

Ammonium disulphide, (NH4) S

Sol in H<sub>2</sub>O with decomp Does not exist (Bloxam, Chem Soc 1895, **67** 293)

Ammonium tetrasulphide, (NH<sub>4</sub>)<sub>2</sub>S<sub>4</sub>

Easily sol in H<sub>2</sub>O Cone solution is stable, dil solution decomp on air Easily sol in alcohol without decomp, but solution decomp on the air more rapidly than the aqueous solution (Fritzsche, J pi 32 313) + 14 H O When dissolved in H<sub>2</sub>O, it is at

+14HO When dissolved in H<sub>2</sub>O, it is at once dissociated with deposition of S (Bloxam, Chem Soc 1895, 67 303)

Ammonium pentasulphide, (NH<sub>4</sub>)<sub>2</sub>S<sub>5</sub>

Decomp on air Sol in  $H_2O$  with separation of S Sol in alcohol without decomp, but solution decomposes quickly on standing (Fritzsche, J pr 32 313)

Rapidly decomp by  $H_2O$  with separation

Rapidly decomp by  $H_2O$  with separation of S (Blovam, Chem Soc 1895, **67** 298)  $+H_2O$  Decomp by  $H_2O$  with separation of S (Bloxam, Chem Soc 1895, **67** 298)

Ammonium heptasulphide, (NH<sub>4</sub>)<sub>2</sub>S<sub>7</sub>

More stable on air, and less easily decom-

posed by H<sub>2</sub>O than (NH<sub>4</sub>)<sub>2</sub>S<sub>5</sub> +1<sup>1</sup>/<sub>8</sub>H<sub>2</sub>O Decomp by H<sub>2</sub>O with separation of S Slowly attacked by dil HCl+Aq (Bloxam, Chem Soc 1895, **67** 307)

Tetrammonium heptasulphide,  $(NH_4)_4S_7 + 4H_2O$ 

Sol in  $H_2O$  Solution can be kept for a long time without depositing S (Bloxam, Chem Soc 1895, 67 298)

Drammonium enneasulphide,  $(NH_4)_2S_9 + \frac{1}{2}H_2O$ 

Decomposed by H<sub>2</sub>O with separation of S Not attacked by boiling dil HCl+Aq on account of formation of a hard crust of S on the crystals (Bloxam, Chem Soc 1895, 67 306)

Tetrammonium enneasulphide, (NH<sub>4</sub>)<sub>4</sub>S<sub>9</sub>

Solution in  $H_2O$  deposits crystals of  $(NH_4)_2S_5$  on standing (Bloxam, Chem Soc 1895, **67** 302)  $+3\frac{1}{2}H_2O$  Decomp by  $H_2O$  with separations

+3½H<sub>2</sub>O Decomp by H<sub>2</sub>O with separation of S (Bloxam, Chem Soc 1895, **67** 299)

Ammonium polysulphides

Conc NH<sub>3</sub>+Aq dissolves H<sub>2</sub>S to form  $(NH_4)_2S_2NH_4SH$  On dilution more H<sub>2</sub>S is absorbed to form  $(NH_4)_2S_3NH_4SH$ , then  $(NH_4)_2S_3NH_4SH$ , then  $(NH_1)_2S_3NH_4SH$  (Bloxur, ( ) 1895, **67** 284)

Ammonium copper sulphide, (NH<sub>4</sub>) S, 2CuS<sub>3</sub> (?)

Sol in warm H O, but decomp on standing Warm KOH+Aq acts similarly, sl sol in NH<sub>4</sub>OH+Aq, Na CO<sub>3</sub>+Aq, or absolute alcohol Insol in other Decomp by dil acids (Priwoznik, B 6 1291)

Correct formula is NH<sub>4</sub>CuS<sub>4</sub> Sl sol in H C Decomp by cone and dil reids Easily sol in NaOH Sl sol in alcohol (Biltz, B 1907, **40** 976)

Ammonium gold polysulphide, AuSaNH4

Ppt (Hofmann, B 1903, **36** 3092, B 1904, **37** 245)

Ammonium iridium pentadecasulphide,  $IrS_{15}(NH_4)_3$ 

Ppt (Hofmann, B 1904, 37 247)

Ammonium palladium undecasulphide,  $PdS_{11}(NH_4)_2 + \frac{1}{2}H_2O$ 

Ppt (Hofmann, B 1904, 37 248)

Ammonium platinum pentadecasulphide, PtS<sub>15</sub>(NH<sub>4</sub>)<sub>2</sub>+2H<sub>2</sub>O

Can be washed with CS<sub>2</sub> without decomp Sol m alcohol Insol in ether (Hofmann, B 1903, **36** 3091)

Ammonium stannic sulphide
See Sulphostannate, ammonium

Ammonium telluride, NH4HTe

Easily sol in  $\rm H_2O$  (Bineau, A ch (2) 67 229)

 $\begin{array}{ccc} \text{Ammonium} & \text{sulphide} & \text{ammonia,} & (\mathrm{NH_4})_2\mathrm{S,} \\ & 2\mathrm{NH_3} & \end{array}$ 

Very unstable (Bloxam, Chem Soc 1895, 67 294)

Ammonium acrisulphomelid, (NSO ONH<sub>4</sub>)<sub>3</sub>

(Hantzsch and Stuer, B 1905, 38 1039)

## Ammonplatindiamine comps See Platintriamine comps

Ammondisulphonic acid, NH<sub>3</sub>(SO<sub>3</sub>H)<sub>2</sub>

Known only in its salts (Claus, A 158 52 and 194)

Contains 2 at H less, and is identical with imidosulphonic acid NH(SO H)<sub>2</sub>, which see (Raschig, A **241** 161)

Ammontrisulphonic acid, NH2(SO3H)3

Known only in its salts (Claus, A 158 52 and 194)

Contains 2 at H less, and is nitrilosulphonic acid N(SO<sub>3</sub>H)<sub>3</sub>, which see (Raschig, A **241** 161)

Ammontetrasulphonic acid, NH(SO<sub>3</sub>H)<sub>4</sub>

Known only in its salts (Claus, A 158 52 and 194)

Does not exist, but was impure nitrilosulphonic teid, which see (Raschig, A 241 161)

Anhydroarseniotungstic acid, H<sub>3</sub>AsW<sub>8</sub>O<sub>28</sub> See under Arseniotungstic acid

Anhydrooxycobaltamine chloride,

$$Co_2(NH_3)_{10}$$
  $\begin{bmatrix} Cl \\ O(OH) \end{bmatrix}$   $Cl_4+HO$ 

Fasily sol in  $\rm H_2O$ , but decomposes after a few minutes, can be recrystallized from dil  $\rm HCl+Aq$  Precipitated from sat HO solution by cone  $\rm HCl+Aq$ , or alcohol (Vortmann, M Ch 6 404)

Anhydrooxycobaltamme chloride mercuric chloride, Co<sub>2</sub>(NH<sub>8</sub>)<sub>10</sub>(ClO<sub>2</sub>H)Cl<sub>4</sub>, 3HgCl<sub>2</sub>

2PtCl<sub>4</sub>
Can be recrystallized from H<sub>2</sub>O containing
HCl

---- chloronitrate,

comp

 $Co_2(NH_3)_{10}Cl(O OH)(NO_3)_4+H_2O$ Can be recrystallized from dil HCl+Aq  $Co_2(NH_3)_{10}Cl(O OH)Cl_2(NO_3)_2+H_2O$ More easily sol in H<sub>2</sub>O than the preceding

---- chlorosulphate, Co<sub>2</sub>(NH<sub>3</sub>)<sub>10</sub>Cl(O OH)(SO<sub>4</sub>)<sub>2</sub>

--- nitrate,  $Co_2(NH_3)_{10}(NO_3)(OOH)(NO_3)_4$ + $H_2O$ 

Sl sol in pure H<sub>2</sub>O with immediate decomp Can be recrystallized from H<sub>2</sub>O containing HNO<sub>3</sub>

Sl sol in cold H<sub>2</sub>O When crystallized from dil H<sub>2</sub>SO<sub>4</sub>+Aq, is converted into—[Co<sub>2</sub>(NH<sub>3</sub>)<sub>10</sub>O OH]<sub>2</sub>(SO<sub>4</sub>)<sub>5</sub>,H<sub>2</sub>SO<sub>4</sub>+3H<sub>2</sub>O, which by further recrystallization from very

dil  $H_2SO_4+Aq$  becomes—  $[Co_2(NH_3)_{10}O OH]_2(SO_4)_5+8H_2O$  Sl sol

in cold H<sub>2</sub>O (Vortmann)

Anhydrophospholuteotungstic acid, H<sub>3</sub>PW<sub>5</sub>O<sub>8</sub>

See under Phosphotungstic acid

## Antimonic Acid

Metantimonic acid, HSbO<sub>3</sub>

Very sl sol in HO, sol in conc HCl+Aq, sl sol in dil HNO<sub>3</sub>+Aq, easily sol in tartance acid+Aq, easily sol in hot NOH, or NnOH+Aq, completely insol in NH<sub>4</sub>OH+

Ag (Firmy, A ch (3) 23 407)

SI sol in H<sub>2</sub>O V<sub>1</sub>y sI sol in KOH and K<sub>2</sub>CO<sub>1</sub>+Aq Insol in NH<sub>4</sub>OH+Aq Insol in HNO<sub>3</sub>+H SO<sub>4</sub> Slowly sol in cold, quickly in hot HCl+Aq SI sol in tartific and oxilic acid ind in kHC O<sub>4</sub>+Aq (Senderens, Bull Soc 1899, (3) **21** 48)

Insol in accione (N uum inn, B 1904, **37** 4329)

Pyroantimonic acid, H<sub>4</sub>Sb<sub>2</sub>O<sub>7</sub>

More sol in H<sub>2</sub>O and reads than H<sub>3</sub>SbO<sub>4</sub> Sol in cold NH<sub>4</sub>OH, or KOH+Aq (Fremy) Slowly sol in cold H<sub>2</sub>O

588 g Sb<sub>2</sub>O<sub>5</sub> in 11 H<sub>2</sub>O at 15° 8 55 " " 11 " " 25° 21 30 " " 11 " " 60° (Delacroix, J Pharm 1897, 6 337-41)

Sl sol in H<sub>2</sub>O Very sl sol in KOH and K<sub>2</sub>CO<sub>2</sub>+Aq Insol in NH<sub>4</sub>OH+Aq, and in HNO<sub>8</sub>+H<sub>2</sub>SO<sub>4</sub> Slowly sol in cold, quickly in hot HCl+Aq Sl sol in tartaric acid, oxahc acid and KHC2O4+Aq (Senderens, Bull Soc 1899, (3) 21 48)

## Orthoantimonic acid, H<sub>3</sub>SbO<sub>4</sub>

Sl sol in H<sub>2</sub>O Insol in NH<sub>4</sub>OH+Aq

Easily sol in KOH+Aq (Fremy)
Does not exist (Raschig, B 18 2745)

Has, however, been prepared by Daubrawa (A 186 110), Conrad (C N 40 198), and Beilstein and Blaese (Bull Ac St Petersb

Very sol in H<sub>2</sub>O (Delacroix, Bull Soc

1899 (3) 21 1049)

Very sl sol in  $H_2O$ , in KOH and  $K_2CO_8+$ Aq Slowly sol in cold, quickly in hot HCl+Aq Insol in  $NH_4OH+Aq$ , and in  $HNO_8+H_2SO_4$  Sl sol in tartaric acid, oxalic acid Slowly sol in cold, quickly in hot HCl+ and KHC<sub>2</sub>O<sub>4</sub>+Aq (Senderens, Bull Soc 1899, (3) 21 52)

 $+\frac{1}{2}H_2O$  (Beilstein and Blaese)

According to Beilstein and Blaese only one antimonic acid, H<sub>3</sub>SbO<sub>4</sub>, exists

## Tetrantimonic acid, $Sb_2O_5 + 4H_2O = H_5Sb_2O_9$

Slowly sol in cold H<sub>2</sub>O

Solution sat at to contains g Sb2O5 per litre-

15° 25° 70° 8 3-8 75 5 88 21 30 53 89 in solution by heating to 100° or ling in the cold to Sb<sub>2</sub>O<sub>5</sub>, 3H<sub>2</sub>O L, Bull Soc 1899, (3) 21 1049)

Insol in H<sub>2</sub>O Very sl sol in KOH and K<sub>2</sub>CO<sub>3</sub>+Aq Slowly sol in cold, quickly in hot HCl+Aq Insol in NH<sub>4</sub>OH+Aq Insol in HNO<sub>3</sub>+H<sub>2</sub>SO<sub>4</sub> Sl sol in tartaric acid, oxalic acid and in KHC<sub>2</sub>O<sub>4</sub>+Aq (Senderens, Bull Soc 1899, (3) 21 51)

#### Hexantimonic acid, $Sb_{9}O_{5}+6HO=$ $H_{12}Sb_2O_{11}$

Sol in H<sub>2</sub>O to the extent of 22 g Sb<sub>2</sub>O<sub>5</sub> per l but on standing becomes turbed and a white powder is pptd until finally only 3 g Sb  $O_5$  are dissolved per l (Senderens, Bull Soc **1899**, (3) **21 48–49**)

#### Antimonates

a Antimonates From HSbO<sub>3</sub> Some of the K and NH<sub>4</sub> salts are sol in H<sub>2</sub>O, the others are slightly sol or insol

From H<sub>4</sub>Sb O β Pyroantimonates a class, insol in H<sub>2</sub>O, but decomp thereby except in presence of large excess of alkali (Fremy, A ch (3) 12 499)

Probably do not exist (Beilstein and

Blaese)

## Aluminum antimonate, Al<sub>2</sub>O<sub>3</sub>, 3Sb<sub>2</sub>O<sub>5</sub> (?)

Somewhat sol in excess of Al salts +AaInsol in K<sub>4</sub>Sb O<sub>7</sub>+Aq

(Beilstein and Blaese, Bull Ac & Ppt Petersb **33** 101  $Al(SbO_3)_3 + 7H_2O = AlH_6(SbO_4)_3 + 4H_2$ (B and B)

 $Al_2O_3$ ,  $Sb_2O_5+9H_2O$  Ppt (Ebel, B 2

3043)

Ammonium antimonate, NH<sub>4</sub>SbO<sub>3</sub>+2H<sub>2</sub>( Insol in H<sub>2</sub>O

+2½H<sub>2</sub>C Insol in F Bull Soc 1899, (3) **21** 56) Insol in H<sub>2</sub>O (Senderer  $+6H_2O$  See  $(NH_4)_2H_2Sb_2O_7+5H_2O$ 

Ammonium pyroantimonate, (NH<sub>4</sub>)<sub>4</sub>Sb<sub>5</sub>O<sub>7</sub>

Known only in solution  $(NH_4)_2H_2Sb_2O_7+5H_2O$ 

Sol in H<sub>2</sub>O, but decomp by standing a boiling into insol salt Insol in alcoho (Fremy, J pr 45 215) Composition NH<sub>4</sub>SbO<sub>3</sub>+6H<sub>2</sub>O, according to Raschig (1 **18** 2743)

#### Barium antimonate, Ba(SbO<sub>3</sub>)<sub>2</sub>

Ppt Scarcely sol in H<sub>2</sub>O Slowly sol i

BaCl<sub>2</sub>+Aq  $+2\mathrm{H}_2\mathrm{O}$ Somewhat sol in H<sub>2</sub>O Easil sol in HCl+Aq (Delacroix, Bull So

1899, (3) **21** 1051)

+5, or 6H<sub>2</sub>O Ppt BaSb<sub>4</sub>O<sub>7</sub>+5H<sub>2</sub>O Sol in conc HCl (Dela croix, Bull Soc 1899, (3) 21 1051

BaO,  $3Sb_2O_5 + 5H_2O$ Insol in H<sub>2</sub>O completely sol in HCl (Delacroix, lc)  $BaO, 4Sb_{\bullet}O_{5}+15H_{2}O$ (Delacroix, lc) 9BaO, 10Sb<sub>2</sub>O<sub>5</sub>+18H<sub>2</sub>O Insol in HCl

Aq (Delacroix, lc)

#### Bismuth antimonate, $B_1SbO_4+H_2O$

Insol in H<sub>2</sub>O, sol in HCl+Ac (Cavazzi, Gazz ch it 15 37)  $3B_{12}O_3$ ,  $Sb_2O_5+H_2O$  Insol in  $H_2O$ , so in HCl+Aq (Cavazzi)  $2B_{12}O_3$ ,  $Sb_9O_5$  As above (Cav 1/1)

## Cadmium antimonate, $Cd(SbO_3) + 2H_2O$

Insol in H<sub>2</sub>O (Senderens, Bull Soc 189<sup>c</sup> (3) **21** 56) +3½HO Very sol in H<sub>2</sub>() Sol in HC

(Lbel, Dissert 1890) +Aq

+5H<sub>2</sub>OInsol in H<sub>2</sub>O (Senderens, lc) +6HOPpt Insol in HO (Fbel, E **22** 3043)

## Calcium antimonate, Ci(SbO<sub>3</sub>)<sub>2</sub>

Ppt (Heffter, Pogg 86 418) +5HO

Insol in HO (Senderens, Bull +6HOSoc 1899, (3) 21 56) 3CaO, 2Sb O<sub>5</sub>+6H<sub>2</sub>O Min Ullmanite

Chromic antimonate, Cr(SbO<sub>3</sub>)<sub>3</sub>+14H O (Beilstein and Blaese)

## Cobaltous antimonate, Co(SbO<sub>3</sub>)<sub>2</sub>+5H<sub>2</sub>O

Insol in H<sub>2</sub>O Loses 3H<sub>2</sub>O in the presence  $Al(SbO_3)_3 + 15H_2O = AlH_6(SbO_4)_3 + 12H_2O$  of H SO<sub>4</sub> and passes into  $Co(SbO_3)_2 + 2H_2O$  (Senderens, Bull Soc.

(Ebel. B 22 3043)

Sl sol in H<sub>2</sub>O Sl sol in boiling

Insol in H<sub>2</sub>O (Senderens, Bull

Insol in H<sub>2</sub>O

(Senderens, lc)

+12H<sub>2</sub>O Ppt (Heffter, Pogg 86 448)

Cobaltous hydrogen antimonate, CoH<sub>4</sub>(SbO<sub>4</sub>)<sub>2</sub>

(Gorgeul, Ann Phys Beibl 1897, 21 198)

Cu(SbO<sub>3</sub>)<sub>2</sub> Insol in H<sub>2</sub>O, acids, or alkalies

```
Soc 1901, (3) 25 289)
Glucinum antimonate, Gl(SbO<sub>3</sub>)<sub>2</sub>+6H O
  Somewhat sol in hot H.O Eisily sol in
warm HCl (Ebel, Dissert 1890)
Iron (ferrous) antimonate
  SI sol in HO (Berzelius)
Iron (ferric) antimonate
  Insol in H O (B)
  \text{Fe}_2\text{O}_3, Sb () +7H () Ppt (Ebel, B 22
3043)
  F_{C_2}O_3, 25b O_5 + 11H O Ppt
                                      (Beilstein
and Blacke)
  Fe(SbO_3)_4 + 6^{1}_2HO Ppt (B and B)
Lead antimonate, basic, Pb<sub>3</sub>(SbO<sub>3</sub>) (OH)<sub>4</sub>+
     2H_2O = Pb_3(SbO_4) + 4H_2O
         Blemerite, Bindheimite
  2Pb(SbO_3), PbO+11HO Ppt
                                       (B and
B)
Lead antimonate, Pb(SbO<sub>3</sub>)<sub>2</sub>
   Insol in H<sub>2</sub>O
                    Incompletely decomp by
acids (Berzelius)
                  Insol in HO
  Naples Yellow
   +2H O
            Insol in H<sub>2</sub>O (Senderens, Bull
Soc 1899, (3) 21 57)
   +5H_2O
             Ppt
                     (Ébel, B 22 3043)
   +6H<sub>2</sub>O
             Ppt
                    (Beilstein and Blaese)
            Insol in H_2O (Senderens, lc)
   +9H<sub>2</sub>O
```

also insol in H<sub>2</sub>O

Ppt

Cupric antimonate, 3CuO, 2Sb<sub>2</sub>O<sub>5</sub>

Ppt (Beilstein and Blaese)

Soc 1899, (3) **21** 55) +5H<sub>2</sub>O Ppt (Ebel, B **22** 3043)

CuO, 2Sb<sub>2</sub>O<sub>5</sub>+9H<sub>2</sub>O Insol in H<sub>2</sub>O

ın Sb<sub>2</sub>O<sub>5</sub>, 4H<sub>2</sub>O+Aq (Delacroix, Bull Soc

Sol in NH2OH and in trantimonic acid+Aq

CuO,  $6Sb_2O_5 + 16H_2O$  (Delacroix, lc)

Cupric antimonate ammonia, Cu(SbO<sub>3</sub>)<sub>2</sub>,

 $2(NH_4SbO_3+2H_2O)$  (Raschig, B **18** 2743)

Cu(SbO<sub>3</sub>) ,3NH<sub>3</sub>+9H<sub>2</sub>O (Delacroix, Bull

 $CuSb_2N_3H_{21}O_{12} = Cu(ONH_4)OH$ 

Insol in HO and NHOH+Aq (Schiff.

solutions of cobalt salts

1899. (3) 21 55)

+6H.O

 $+7H_{2}O$ 

 $+H_2O$ 

(Berzelius)

 $+2H_{\bullet}O$ 

Insol in H<sub>2</sub>O

1899, (3) 21 1054)

 $4NH_3+4H_9O$ 

(Delacroix, l c

A 123 39)

2CuO, 3Sb<sub>2</sub>O<sub>5</sub>+10H<sub>2</sub>O

Lead antimonate chloride, Pb(SbO<sub>3</sub>)<sub>2</sub>, PbCl<sub>2</sub> Min Nadorite Sol in HCl. HNO3, and tartaric acid + Ac

## Lithium antimonate, LiSbOa

Sl sol in cold, sol in hot H<sub>2</sub>O, and crystallizes on cooling Much more sol than NaSbO<sub>3</sub>

 $+3H_2O$ Ppt Sl sol in H<sub>2</sub>O (Beilstein and Blaese )

Magnesium antimonate, Mg(SbO<sub>3</sub>)<sub>2</sub>+12H<sub>2</sub>O Sol in hot, less sol in cold H<sub>2</sub>O (Heffter) Sol in MgSO<sub>4</sub>+Aq, insol in KSbO<sub>3</sub>+Aq (Berzelius)

## Manganous antimonate, Mn(SbO<sub>2</sub>),

Difficultly sol in H<sub>2</sub>O When heated, is sol only in strong acids  $+2H_{\circ}O$ Insol in H<sub>2</sub>O (Senderens, Bull

Soc 1899, (3) 21 56)  $+5H_2O$ Ppt (Ebel, B 22 3043)  $+6H_2O$ Insol in  $H_2O$  (Senderens, lc)  $+7H_{\bullet}O$ Ppt (Beilstein and Blaese)

#### Mercurous antimonate

Insol in H<sub>2</sub>O (Berzelius)

## Mercuric antimonate. Hg(SbO<sub>3</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O, alkalies, and most acids Sl attacked by boiling H SO<sub>4</sub>, and HCl+

+2H<sub>2</sub>O Insol in H<sub>2</sub>O (Senderens, Bull Soc 1899, (3) **21** 55) +5HOInsol in H<sub>2</sub>O (Senderens) +6H<sub>2</sub>OPpt (Beilstein and Blaese)

## Nickel antimonate, Ni(SbO<sub>3</sub>) +2H O

Insol in H<sub>2</sub>O (Senderens, Bull Soc 1899. (3) **21** 54)

+5H<sub>2</sub>O Insol in HO (Senderens)  $+6H_{0}$ Ppt Insol in H<sub>2</sub>O Pogg 86 446) +12HO Sl sol in HO (Heffter)

#### Potassium antimonate, ASbO3

Insol in H<sub>2</sub>O Sol in wim KOH+Aq, but separates nearly completely on cooling By boiling with HO, or by standing for a long time with cold HO, it gradually dissolves as  $2KSbO_3+5HO$ , or KHSbO<sub>7</sub>+4HO or 2KH<sub>2</sub>SbO<sub>4</sub>+3H O Insol in CS (

(Arctowski, Z anoig 1894, 6 257)

Insol in HO (Senderens, Bull  $+H_2O$ Soc 1899, (3) **21** 57)

 $+1\frac{1}{2}H_2O$  (=2KSbO<sub>3</sub>+5H O of I (my) Lasily sol in H2O, especially if wirm Solution is pptd by NH4Cl+Aq (Ficmy, A ch (3) 12 499)

100 pts HO at 20° dissolve  $+2\frac{1}{2}H_{2}O$ 2.81 pts anhydrous salt, sp gr of solution sat at 18°=1 0263 Composition is given as K<sub>2</sub>H<sub>0</sub>Sb<sub>2</sub>O<sub>7</sub>+4H O (Knoile and Olschewsky, B 20 3043)

 $+3\frac{1}{2}$ H<sub>2</sub>O Insol in H O (Senderens, lc)

+4½H<sub>2</sub>O Sol m H<sub>2</sub>O Pharm 1897, (6) **6** 533) (Delacroix, J.  $2K_2O$ ,  $3Sb_2O_5 + 10H_2O$ Sl sol in H<sub>2</sub>O (Delacroix, J Pharm 1897, 6 337) +10H<sub>2</sub>O(Delacroix, lc)

Potassium pyroantimonate, K<sub>4</sub>Sb<sub>2</sub>O<sub>7</sub>

Deliquescent, decomp by boiling with H<sub>2</sub>O mto  $KSbO_3+5H_2O$ , by cold  $H_2O$  mto  $K_2H_2Sb_2O_7+6H$  O (Fremy)

K<sub>2</sub>H<sub>2</sub>Sb<sub>2</sub>O<sub>7</sub>+6H O (Fremy) Does not exist (Knorre and Olschewsky) Insol in liquid NH<sub>8</sub> (Franklin, Am Ch J 1898, **20** 829)

Insol in acetone (Naumann, B 1904, 37

Insol in methyl acetate (Naumann, B 1909, **42** 3790) Insol in ethyl acetate (Naumann, B

1904, **37** 3601)

Potassium hydrogen pyroantimonate, K<sub>2</sub>H<sub>2</sub>Sb<sub>2</sub>O<sub>7</sub>

Insol in acetone (Eidmann, C C 1899, II 1014)

(Senderens, Bull Soc 1899, (3) +2½H₂O 21 57)

 $+3\frac{1}{2}H_{0}O$ Very difficultly sol in hot or cold H<sub>2</sub>O (Knorre and Olschewsky, B 18 2358)

Quite difficultly sol in cold H<sub>2</sub>O +6H<sub>2</sub>ONot precipitated by NH<sub>4</sub>Cl+Aq Aqueous solution gradually decomposes (Fremy) +4H<sub>2</sub>O Scc 2KSbO<sub>3</sub>+5H O

Potassium antimonate sulphantimonate, KSbO<sub>3</sub>, K<sub>3</sub>SbS<sub>4</sub>+5H O

Decomp on un, and with cold HO Sol in hot H<sub>2</sub>O (Rammelsberg)

#### Silver antimonate

Insol in HO (Berzelius)

 $AgSbO_3 + 3H O = AgH SbO_4 + 2H O I 1 \leftarrow$ ily sol in NH4OH+Aq, when freshly pptd (Beilstein and Blacse)

+1½H O  $_{
m Ppt}$ (Ebd, B **22** 3045)

Silver antimonate ammonia, 1gH SbO4, 2NH<sub>3</sub>+HO

(Beilstein and Blacke)

#### Sodium antimonate, \ 15b();

Sol in much HO but soon becomes de composed into Na H Sb O

 $+3^{1}$ <sub>2</sub>H () composition of  $\times$ <sub>1</sub> H Sb () + 6HO, according to Beilstein and Black 1000 pts H O dissolve 0 31 pt NaSbO<sub>3</sub>+

31/2H () it 12 3°

1000~
m pts -alcohol of 15~
m SC dissolve 0.13~
m ptNaSbO3+312H () at 123

1000 pts alcohol of 256% dissolve 0.07 pt  $N_4SbO_3+5^{-1}_2H$  () at 12.3

Somewhat more sol, when freshly precipitated

Absolutely insol in glacial HC H<sub>3</sub>O

Presence of NaOH or Nasalts diminish solubility while NH4OH or K salts increase it

slightly (Beilstein and Blaese, Bull Ac St Petersb 33 201)

+4½H2O Sol in H2O (Delacroix, Bull Soc 1899, (3) 21 1051) 2Na<sub>2</sub>O, 3Sb<sub>2</sub>O<sub>5</sub>+10H<sub>2</sub>O

(Delacroix, l c)  $Na_2O$ ,  $3Sb_2O_5 + 11H_2O$ (Delacroix, l c)

Sodium pyroantimonate. Na<sub>2</sub>H<sub>2</sub>Sb<sub>2</sub>O<sub>7</sub>+  $6H_2O$ 

Boiling  $H_2O$  dissolves  $\frac{1}{850}$  pt of this salt (Fremy) 1000 pts H<sub>2</sub>O dissolve 2 5 pts salt (Ebel, B **22** 3044) See also NaSbO<sub>3</sub>+ (Ebel, 3½H<sub>2</sub>O

+5H<sub>2</sub>O (Knorre and Olschewsky)

Strontium antimonate, Sr(SbO<sub>3</sub>)<sub>2</sub>+6H<sub>2</sub>O

Ppt Less sol in H<sub>2</sub>O than SrSO<sub>4</sub> ter, Pogg 86 418)

Thallous antimonate, TISbO<sub>3</sub>+2H<sub>2</sub>O = TlH<sub>2</sub>SbO<sub>4</sub>+H<sub>2</sub>O

Somewhat sol in H<sub>2</sub>O, when freshly precipi tated, insol when dried (Beilstein and Blaese )

Tin (stannous) antimonate, 2SnO, Sb<sub>2</sub>O<sub>5</sub>

(Lenssen, A 114 113) Sn(SbO<sub>3</sub>)<sub>2</sub>+2H<sub>2</sub>O Attacked with difficult by acids or alkalies, most easily by hot conc  $\rm H_2SO_4$  (Schiff, A 120 55)  $\rm 2SnO, 3Sb\ O_5+4H_2O$ 

SnO, 2Sb<sub>2</sub>O<sub>5</sub>

#### Tin (stannic) antimonate

Insol in HO (Levol, A ch (3) 1 504)

Uranium antimonate, 5UO<sub>2</sub>, 3Sb<sub>2</sub>O<sub>5</sub>+15H<sub>2</sub>O Sol in hot cone HCl+Ag, and ii  $UCl_3 + Aq$  (Rummelsberg)

Zinc antimonate, Zn(SbO<sub>3</sub>)<sub>2</sub>

Very slightly sol in HO (Berzelius) sol in solutions of Zn silts

+2H () (1 bel, Dissert 1890)

Insol in HO (Senderens, Bull Soc 1899 (3) 21 57)

Not wholly insol in cold, mod +  $^{\circ}$ H O criticly sol in hot HO (Fbcl, Dissert 1890 Insol m H O (Senderens) +6H ()

#### Antimoniomolybdic acid

Ammonium antimoniomolybdate, 5(NH<sub>4</sub>) () 45b () 7MoO;+12H ()

Readily sol in hot HO (Gibbs, Am Ch J 7 392)

Antimoniotungstic acid,  $3Sb_2O_5$ ,  $4WO_3$ 11HO

Sol in H () (Hillopeiu, C R 1896, 123 1065

Potassium antimoniotungstate, 3k (), 3Sb () 4W(),+4H()

Much more sol in hot than in cold H () Decomp by HCl, H2SO4 and HNO3 (Hallo peru C R 1896, 123 1066)

+16H<sub>2</sub>O Much more easily sol in hot than cold H<sub>2</sub>O Decomp by HCl, H<sub>2</sub>SO<sub>4</sub>, and HNO<sub>3</sub> (Hallopeau, *lc*)

 $6K_2O$ ,  $4Sb_2O_5$ ,  $12WO_3+25H_2O$ Sl sol in  $H_2O$  (Gibbs, Am Ch J **7** 392)

Antimoniuretted hydrogen
See Antimony hydride

# Antimonosomolybdic acid

Ammonium antimonosomolybdate,  $6(NH_4)_2O$ ,  $3Sb_2O_3$ ,  $17MoC_3+21H_2O$ 

Insol in cold  $H_2O$  (Gibbs, Am Ch J 7 313)

## Antimonosophosphotungstic acid

 $\begin{array}{c} \textbf{Potassium antimonosophosphotungstate,} \\ 12K_2O,\ 5Sb_2O_8,\ 6P_2O_5,\ 22WO_3+48H_2O\ , \\ \textbf{Nearly insol in cold or warm } H_2O\ \ (Gibbs,\\ \textbf{Am Ch J 7 } 392\ ) \end{array}$ 

## Antimonosotungstic acid

## Ammonium antimonosotungstate

Sol in H<sub>2</sub>O

Barium antimonosotungstate, 4BaO, 6Sb<sub>2</sub>O<sub>3</sub>, 22WO<sub>3</sub>+36H<sub>2</sub>O

Precipitate, very sl sol in hot H<sub>2</sub>O (Gibbs, Am Ch J 7 313)

## Antimonous acid, HSbO2

(Long, J Am Chem Soc 1895, 17 87)  $+1\frac{1}{2}H_2O$  Ppt (Schaffner, A 51 182)  $H_3SbO_3$  Ppt (Clarke and Stallo, B 13 1793)

Does not exist (Guntz, C R 102 1472)  $H_4Sb_2O_5$  When freshly pptd, is sol in dil KOH, and  $N_4OH+Aq$  Scarcely sol in  $NH_4OH+Aq$ , or in  $(NH_4)_2CO_3$ , or  $KHCO_3+Aq$ 

Completely sol in K<sub>2</sub>CO<sub>3</sub>, and Na<sub>2</sub>CO<sub>3</sub>+Aq, especially if warm. When recently pptd is sl sol in successive and +Aq.

Calcium antimonite, ( iSh2O4 (?)

Min Romerte Insol in reids

Cobaltous antimonite (')

Sl sol in HO (Bozelius)

Cuprous antimonite, ( u6(SbO3)

Insol in H () Sol in reids, most easily in cone  $HCl+\Lambda q$  (II ausmann and Stromeyer, Schw J 19 241)

## Cupric antimonite (\*)

Insol in H<sub>2</sub>() (Berzelius) CuSb<sub>2</sub>()<sub>5</sub> Min Ammiolite

CuSb<sub>2</sub>O<sub>4</sub> Sol in HCl+Aq tuture and citic acids (Harding, Z morg 1899, **20** 238)

## Iron (ferrous) antimonite (?)

More sol in  $H_2()$  than the antimonate (Dumas)

Potassium antimonite, K2O, 3Sb.O3

Easily decomp by cold H<sub>2</sub>O Not decomp by KOH+Aq containing over 20 9% K<sub>2</sub>O (Corimimbouf, C R 115 1305) +3H<sub>2</sub>O As above (C)

Potassium antimonite iodide, K<sub>2</sub>O, 8Sb<sub>2</sub>O<sub>8</sub>, 2KI

Insol and not decomp by cold or hot  $H_2O$  Not decomp by acids or alkalies Aqua regia decomp slowly Tartaric acid dissolves gradually (Gruhl, Dissert 1897)

Sodium antimonite, NaSbO<sub>2</sub>+3H<sub>2</sub>O

Difficultly sol in H<sub>2</sub>O (Terreil, A ch (4) 7 380)

2Na<sub>2</sub>O, 3Sb<sub>2</sub>O<sub>3</sub>+H<sub>2</sub>O Decomp by H<sub>2</sub>O, but not by NaOH+Aq containing 94 3 g NaOH per 1 (Cormimbouf)

Na<sub>2</sub>O, 2Sb<sub>2</sub>O<sub>3</sub> Decomp by H<sub>2</sub>O but not by NaOH+Aq containing 188 6 g NaOH per l (C)

per I (C)
Na.O,  $3\text{Sb}_2\text{O}_3$  Decomp by  $\text{H}_2\text{O}$ , but not by NaOH+Aq containing 113 2 g NaOH per I (C)
+2H<sub>2</sub>O=NaH<sub>2</sub>(SbO)<sub>3</sub> (Terreil)

#### Antimony, Sb

Does not decomp H<sub>0</sub>O Not attacked by HCl+Aq (Berzelius), slowly sol in conc HCl+Aq (Debray), slowly sol in conc warm HCl+Aq (Troost) Attacked by very conc HCl+Aq only when finely divided (Schutzenberger, Willm), very sl attacked by dil or conc acid (Guntz) Not attacked by boiling HCl+Aq (Gmelin) By careful experiments, pure Sb is absolutely insol in dil or conc, hot or cold HCl+Aq, except when in contact with oxygen (Ditte and Metzner, A ch (6) 29 889)

Insol in dil or cold cone, but sol in hot cone H<sub>2</sub>SO<sub>4</sub> Oxidized but not dissolved by HNO<sub>4</sub>+Aq Fasily and completely sol in

aqua regia

Very slowly attacked by pure HNO<sub>3</sub>+Aq of 151–142 sp gr weaker and has no murked action whether it contains NO<sub>2</sub> or not HCl+HNO<sub>3</sub> has no action if dil or it low temp, but when even very dil and KNO is added, the action will begin (Millon, A ch (3) 6 101)

Not attacked in 10 months by 2', HNO<sub>3</sub>+Aq of his not dissolved by HNO<sub>3</sub>+Aq of any concentration is white powder being ilways left, which is insol in HNO<sub>3</sub>+Aq or HO (Montematum Calze chart 22 384)

Insol in ilk ilics+Aq Somewhat sol in distilled H<sub>2</sub>O. More or less sol in solutions of icids, ilk ilics and salts and in alcohol and other. Only sl sol in a mixture of ileohol and other. (Ruff and Albert, B. 1905. 38.54.)

Alkaline H O<sub>2</sub> converts Sb into intimonic acid, but neutral H O is without action (Clark, Chem. Soc. 1893, **63**, 886.)

Insol in liquid NH<sub>3</sub> (Gorc, Am. Ch. J. 1898, **20**, 826.)

| ANTIMONY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ARSEN                                                 | IDE                                  |                                                    |                                                                                        |                                                          |                                   |                             |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-----------------------------|------------------|
| Easily attacked by pyrosulphurvl chloride<br>Ieumann and Kochlin, B 16 479)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Solubility of SbBr <sub>3</sub> in organic liquids—Co |                                      |                                                    |                                                                                        |                                                          |                                   |                             |                  |
| Sb is sol in a mixture of HNO <sub>3</sub> and tartaric id or other polybasic acids (Czerwek, Z ial 1906, <b>45</b> 507)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Solvent                                               | t°                                   | Mols<br>per 100                                    | t°                                                                                     | Mols<br>per 100                                          | t°                                | Mols                        |                  |
| Not attacked by a mixture of alcohol and her (Cohen, Z phys Ch 1904, 47 12) ½ cc oleic acid dissolves 0 0007 g Sb in days (Gates, J phys Ch 1911, 15 143) There are three modifications 1 Ordinary gray metallic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Iod<br>benzene                                        | —28 6°<br>—30 5<br>—32<br>—20<br>—10 | 0<br>4 0<br>8 7<br>13 5<br>17 5<br>21 7            | 10°<br>20<br>30<br>40<br>50<br>60                                                      | 26 · 3<br>31 · 5<br>37 · 3<br>43 · 7<br>50 · 7<br>58 · 5 | 70°<br>80<br>90<br>94             | 6,<br>78<br>9]<br>100       | }                |
| 2 Black amorphous Unstable at ord<br>mp By boiling with H <sub>2</sub> O is changed to<br>letallic Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Paradı-<br>chlor-<br>benzene                          | 54 5°<br>51 5<br>48 5<br>55          | 0<br>6 3<br>12 8<br>18 7                           | 65°<br>70<br>75<br>80                                                                  | 29 5<br>37 0<br>45 6<br>56 2                             | 85°<br>90<br>94                   | 68<br>81<br>10(             | }                |
| 3 Yellow Very unstable At —50° goes ver rapidly into the ordinary black modifica-<br>on Sol in CS <sub>2</sub> at a little above —90° stock, B 1903, 37 898)<br>Unstable above —90° (Stock, B 1905, 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paradi-<br>brom-<br>benzene                           | 88°<br>80<br>75<br>70                | 0<br>6 8<br>18 0<br>29 5<br>41 5                   | 65°<br>70<br>75<br>80<br>85                                                            | 52 0<br>59 1<br>66 5<br>74 4<br>83 0                     | 90°<br>92<br>94                   | 9<br>9<br>10(               | 3                |
| ntimony arsenide, Sb <sub>2</sub> As<br>(Descamps, C R 86 1055)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nitro<br>benzene                                      | 6°<br>1<br>4<br>9<br>15<br>(17)      | 0<br>8 6<br>17 0<br>24 0<br>29 7<br>(31 9)         | —5° 5 15 25 35 45                                                                      | 32 3<br>35 3<br>38 8<br>42 8<br>47 4<br>52 8             | 55°<br>65<br>75<br>85<br>90<br>94 | 5'<br>6'<br>7<br>8'<br>9    | 1<br>2<br>3<br>3 |
| ntimony tribromide, SbBr <sub>3</sub> Deliquescent, decomp by H <sub>2</sub> O Very sol in liquid NH <sub>3</sub> (Gore, Am Ch 1898, 20 826) Very sol in warm liquid AsBr <sub>3</sub> , forming a olution with sp gr = 3 685 at 47° (Retgers,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metadi-<br>nitro-<br>benzene                          | 90°<br>85<br>80<br>75<br>70<br>65    | 0<br>8 1<br>16 2<br>24 2<br>31 8<br>38 5<br>44 3   | 55°<br>50<br>47 5<br>50<br>55<br>60<br>65                                              | 49 1<br>53 0<br>54 4<br>56 1<br>58 8<br>62 2<br>66 2     | 70°<br>75<br>80<br>85<br>90<br>94 | 7<br>7<br>8<br>8<br>9       | 3<br>7<br>3<br>2 |
| alden, Z anorg 1900, 25  lB13 (Isbekow, Z morg 1913,  ly sol in PCl3 and PBr3 (Walden, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Toluene                                               | -93° -93 5 -70 -50 -30 -10 - 1       | 0<br>0 3<br>1 2<br>2 6<br>5 2<br>13 3<br>22 4      | 10° 20 30 (34) 40 50 60                                                                | 28 8<br>36 7<br>47 5<br>(54 0)<br>51 5<br>56 3<br>62 3   | 70°<br>80<br>85<br>90<br>94       | 6<br>7<br>8<br>9<br>10      | 4<br>2<br>6      |
| 1900, 25 211) Sol in alcohol and CS Sol in ether forming two livers (Hiyes, J hem Soc 1902, 24 360) Sol in acctone (Naumain, B 1904, 37 328)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lthyl<br>benzene                                      | —93°<br>—60<br>—10                   | 0 1<br>0 4<br>1 0<br>2 3<br>3 9<br>6 4             | 10°<br>20<br>25<br>29<br>40<br>50                                                      | 9 8<br>19 5<br>28 6<br>37 8<br>44 6<br>51 6              | 60°<br>70<br>80<br>85<br>90<br>94 | 5<br>6<br>7<br>8<br>9<br>10 | 8<br>4<br>4<br>6 |
| Solubility of SbBr <sub>7</sub> in organic liquids Dita in parentheses indicate labile equilib-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Propyl<br>benzene                                     | 90°<br>60<br>40<br>30<br>20<br>10    | 0 4<br>1 2<br>3 4<br>5 9 5<br>17 2<br>24 3         | $ \begin{vmatrix} (-1 & 5 & 0) \\ (-20) & 0 \\ 0 & 10 \\ 20 & 30 \\ 40 \end{vmatrix} $ | (33 3)<br>(23 3)<br>25 8<br>27 8<br>30 ,<br>34 1<br>38 6 | 50<br>60<br>70<br>80<br>90<br>91  | 4<br>5<br>6<br>7<br>9       | 3<br>5<br>5<br>5 |
| Solvent t   801   t   701   t   701   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | -70<br>- 0<br>-40<br>-30             | 1 9<br>3 6<br>, 1<br>7 1<br>13 4<br>16 4<br>(19 4) | (-13)<br>-10<br>0<br>10<br>20<br>30                                                    |                                                          | 50<br>60<br>70<br>80<br>90<br>91  | 3<br>4<br>5<br>6<br>9<br>10 | 8 3 0 3          |
| 3) 6 0 80 45 2 12 14 100<br>4) 5 6 91 5 1 14 100<br>1) 12 1 92 66 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Mense                                                | hutkın,                              | Ann                                                | Inst Po                                                                                | ol P lo                                                  | , Gı                              | 13                          | )                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | See E<br>11so                                         | below                                | tımona                                             | ite, M                                                                                 |                                                          |                                   | m                           |                  |
| 3tom be nzenc   -11°   0   15°   17° 4   7° 0   6° 2   22° 2   8° 81° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° 1   10° | Very<br>(Weinle                                       | (20)<br>hygicand and                 | oscopie<br>1 Feig                                  | e De                                                                                   | comp<br>03 <b>, 36</b>                                   | by                                | Н                           |                  |

Antimony caesium bromide, 2SbBr<sub>5</sub>, 3CsBr+2H<sub>2</sub>O
Loses Br<sub>2</sub> in the air (Weinland, B 1903, 16 257)

Intimony calcium bromide, SbBr<sub>2</sub>, CaBr<sub>2</sub>+8H<sub>2</sub>O

Easily decomp (Benedict, Proc Am Acad 1895, 30 9)

Intimony glucinum bromide, 3SbBr<sub>5</sub>, 2GlBr<sub>2</sub> +18H<sub>2</sub>O

Hydroscopic Easily decomp (Weinland, 3 1903, 36 258)

Intimony magnesium bromide, SbBr<sub>3</sub>, MgBr<sub>2</sub> +8H<sub>2</sub>O

As Ca salt (Benedict, Proc Am Acad 1895, 30 9)

Intimony potassium bromide,  $10SbBr_3$ ,  $23KBr+27H_2O$ 

(Herty, Am Ch J 1894, 16 496)

Antimony rubidium bromide, 2SbBr<sub>3</sub>, 3RbBr Decomp by H<sub>2</sub>O, can be recryst from dil dBr+Aq (Wheeler, Z anorg 5 258)

SbRb<sub>2</sub>Br<sub>6</sub> Slowly loses Br<sub>2</sub> in the air Decomp by H<sub>2</sub>O (Weinland, B 1903, **36** 

10SbBr<sub>3</sub>, 23RbBr (?) Cryst from conc

HBr + Aq (Wheeler)

The composition assigned to this salt by Wheeler (Z anorg 5 253) is incorrect Ephraim, B 1903, 36 1817)

Antimony vanadium bromide, SbBr3,  $VBr_4+7H_2O$ 

Hydroscopic Decomp by  $\rm H_2O$  Sol in lil HCl and in tartaric acid (Weinland, B 1903, **36** 260)

Antimony bromide potassium chloride,  $SbBr_3$ ,  $3KCl+1\frac{1}{2}H_2O$ 

Slowly deliquescent Very sol in  $H_2O$  Sat solution contains 120 5 g to 100 cc  $H_2O$ , and has sp gr = 19

Decomp by much H<sub>2</sub>O (Atkinson, Chem Soc **43** 290)

Does not exist (Herty, Am Ch J 1894, 16 497)

See also Antimony chloride potassium bromide

Antimony bromofluoride, SbF<sub>b</sub>Br

Decomp by H<sub>2</sub>O (Ruff, B 1906, **39** 4319)

#### Antimony trichloride, SbCl3

Deliquescent Decomp by H<sub>2</sub>O with preipitation of SbOCl This precipitation is prevented by tartaric, citric, or hydrochloric acid, in by cone solutions of chlorides of alkalies and alkaline earths Solubility in H<sub>2</sub>O 100 pts SbCl<sub>3</sub> sol in pts H<sub>2</sub>O at t°

| , <u></u>                                                  |                                     |  |  |  |  |
|------------------------------------------------------------|-------------------------------------|--|--|--|--|
| t°                                                         | Pts H O                             |  |  |  |  |
| 0°<br>15°<br>20°<br>25°<br>30°<br>35°<br>40°<br>50°<br>60° | 16 6<br>12 3<br>10 9<br>10 1<br>9 4 |  |  |  |  |
| 35°<br>40°<br>50°<br>60°                                   | 8 7<br>7 3<br>5 2<br>2 2            |  |  |  |  |

(Meerburg, Z anorg 1903, 33 299)

Solubility in HCl+Aq 100 mol H<sub>2</sub>O dissolve mol SbCl<sub>3</sub> in presence of mol HCl at 20°

| Mol HCl                                              | Mol SbCls                                                         |
|------------------------------------------------------|-------------------------------------------------------------------|
| 0<br>2 4<br>6 5<br>8 4<br>8 6<br>9 8<br>12 2<br>29 6 | 72 1-72 8<br>73 0<br>67 5<br>67 6<br>66 5<br>65 0<br>65 3<br>54 5 |
|                                                      |                                                                   |

(Meerburg, Z anorg 1903, 33 304)

## Solubility in HCl+Aq

|                                                                               |                                              |                                        | -                                    |                                 |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|---------------------------------|--|--|--|
|                                                                               | 100 mol H O dissolve at 20°                  |                                        |                                      |                                 |  |  |  |
| Solid phase                                                                   | 1                                            | 2                                      | 3                                    | 4                               |  |  |  |
|                                                                               | Mol<br>SbCl <sub>3</sub>                     | Mol<br>HCl                             | Mol<br>SbOCl                         | Mol<br>HCl                      |  |  |  |
| SbOCI                                                                         | 8 7<br>8 6<br>19 6<br>19 8                   | 7 2<br>7 5<br>8 0<br>8 9               | 9 8<br>16 1<br>21 7<br>25 0<br>28 0  | 6 9<br>7 9<br>7 4<br>8 8<br>8 6 |  |  |  |
| (SbOCl)x,(SbCls)y                                                             | 37 5<br>44 0<br>63 7<br>69 1<br>66 1<br>69 8 | 8 7<br>6 8<br>6 2<br>5 6<br>4 6<br>5 3 | 32 0<br>35 8<br>59 5<br>61 0<br>62 7 | 7 9<br>7 9<br>6 4<br>6 5<br>4 4 |  |  |  |
| SbCl <sub>3</sub> and (SbOCl) <sub>x</sub> ,(SbCl <sub>3</sub> ) <sub>y</sub> | 69 3<br>68 3                                 | 4 3<br>3 6                             |                                      |                                 |  |  |  |

1 & 2 (Meerburg, Z anorg 1903, **33** 302) 3 & 4 (Noodt, Z anorg 1903, **33** 302)

Somewhat sol in liquid (CN) (Cent nerszwer, Bull Soc 1901, (3) 28 405)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 826)

Easily sol in PCl<sub>3</sub> and PBr<sub>3</sub> (Walden, Z anorg 1900, **25** 211)

Sol in S Cl<sub>2</sub> (Walden, Z anorg 1900, **25** 217)

| Easily sol in $AsBr_3$ (Walden, Z anorg 1902, 29 374)                                                                                                                                                                             |                                                       |                                                                                        |                                                |                                                                 |                                  | Solubility of SbCl <sub>3</sub> in organic liquids— |                                                                 |                                                                  |                                                                                            | ont                                                 |                                                                  |                                                    |                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|----------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|
| Sol<br>in hot<br>on coo                                                                                                                                                                                                           | ın alcol<br>CS <sub>2</sub> , bı                      | iol wit<br>it solu                                                                     |                                                | diminis                                                         | shes r                           | apidly                                              | Solvent                                                         | t°                                                               | Mols<br>per 100                                                                            | t°                                                  | Mols<br>per 100                                                  | t°                                                 | Mols<br>per 100                                          |
| 72)  1 g SbCl <sub>s</sub> is sol in 0 186 g acetone at 18° Sp gr of sat solution 18°/4°=2 216 (Naumann, B 1904, <b>37</b> 4332) Sol in ethyl acetate (Naumann B 1904, <b>37</b> 3601)  1 pt sol in 16 97 pts of ethyl acetate at |                                                       |                                                                                        |                                                |                                                                 | Metadi<br>nitro<br>benzene       | 90°<br>80<br>70<br>60<br>40<br>(20)<br>(1)<br>(—11) | 0<br>14 3<br>25 3<br>33 8<br>45 6<br>(53 6)<br>(59 9)<br>(62 2) | (—10°)<br>(10)<br>(27 5)<br>(28 5)<br>27 5<br>25<br>(20)<br>(10) | (57 7)<br>(62 4)<br>(44 5)<br>(50 0)<br>55 0<br>60 2<br>(66 2)<br>(73 5)                   | (0°)<br>20<br>30<br>40<br>50<br>60<br>70<br>73      | 78 1)<br>65 2<br>68 8<br>73 2<br>78 5<br>85 8<br>95 2            |                                                    |                                                          |
| 18° 8<br>(Naum<br>Sol<br>47 136                                                                                                                                                                                                   | Sp gr (<br>lann, B<br>in benz<br>19)<br>in metl       | of sat<br>1910,<br>onitri                                                              | solutio<br>43 32<br>le (Na                     | n 18°/                                                          | '4°=1<br>in, B                   | 7968<br>1914,                                       | Toluene                                                         | 93°<br>94<br>70<br>50<br>40<br>30<br>20                          | 0<br>0 5<br>1 4<br>3 3<br>5 1<br>7 2<br>10                                                 | -10° 0 6 11 (-8) 20 30                              | 14 4<br>22 1<br>28 6<br>35 7<br>(27 0)<br>40 5<br>47 6           | 40°<br>42 °<br>40 50<br>60 70<br>73                | 71 1<br>77 1<br>83 8<br>94 7<br>100                      |
| Sol<br>Data 1                                                                                                                                                                                                                     | ubility<br>n pare                                     | nthese                                                                                 | Cl <sub>3</sub> in or<br>s indica<br>rum       | ate lak                                                         | liquid<br>oile ed                | quılıb-                                             | Ethyl-<br>benzene                                               | -93°<br>-50<br>-30<br>-10<br>0<br>10<br>20                       | 0 1<br>0 6<br>1 1<br>3 6<br>5 6<br>9 4<br>16 8<br>27 2                                     | 35°<br>39<br>37<br>35<br>(33)<br>(15)<br>(25)<br>37 | 36 4<br>50<br>57 7<br>61 8<br>(65 7)<br>(37 8)<br>(47 5)         | (36 8<br>(33)<br>40<br>50<br>60<br>65<br>70        | (68 1)<br>(65 7)<br>70 3<br>77 3<br>85 5<br>90 3<br>95 6 |
| Solvent                                                                                                                                                                                                                           | t°                                                    | Mols<br>per 100                                                                        | t°                                             | Mols<br>per 100                                                 | to                               | Mols<br>per 100                                     |                                                                 | 30<br>(—70°)                                                     |                                                                                            | —70°                                                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$           | 73                                                 | 53 2<br>53 6                                             |
| Benzene                                                                                                                                                                                                                           | 5 6° 4 1 10 20 30 40                                  | 0<br>2 6<br>7 1<br>10 1<br>13 1<br>16 8<br>21 4                                        | 50<br>60<br>70<br>75<br>77 5<br>79<br>77 5     | 27 2<br>34 7<br>45 2<br>53 1<br>58 7<br>66 6<br>73 4            | 75°<br>70<br>62<br>67 0<br>73    | 78 5<br>83 3<br>89 3<br>94 2<br>100                 | Propyl<br>benzene                                               | (-50) $(-40)$ $(-30)$ $(-20)$ $(-10)$ $(-5)$ $(0)$ $(1)$         | (0 6)<br>(2 8)<br>(5 2)<br>(8 8)<br>(14 8)<br>(25 1)<br>(32 4)<br>(43 3)<br>(50)<br>(51 1) | -50<br>-40<br>-30<br>-20<br>-10<br>-5<br>0<br>5     | 1 5<br>3 0<br>5 5<br>9 7<br>16 2<br>20 5<br>26 2<br>35 6<br>41 6 | 10<br>20<br>30<br>40<br>50<br>60<br>65<br>70<br>73 | 53 6<br>56 9<br>60 6<br>65 5<br>72<br>81<br>86 8<br>95 1 |
| Chlor<br>benzene                                                                                                                                                                                                                  | -45 2°<br>-47<br>-40<br>-30<br>-20<br>-15             | 0<br>2 2<br>3 6<br>6 0<br>9 0<br>11 6                                                  | -10<br>-3<br>0<br>(4)<br>10<br>20              | 114 4<br>19 4<br>28 1<br>(41 1)<br>32 5<br>38 7                 | 30<br>40<br>50<br>60<br>70<br>73 | 47 1<br>56 2<br>66 6<br>78 7<br>94 3<br>100         | Iso<br>amyl<br>benzene                                          | -80<br>-70<br>-60<br>-30<br>-40<br>(-30)                         | 3<br>5 4<br>8 4<br>12 4<br>17 9<br>(27 3)                                                  | (—45°)<br>(—35)<br>—25<br>—15                       | (17 1)<br>(22 8)<br>29 3<br>36 6<br>4 > 6<br>(52 3)              | 0°<br>10<br>20<br>30<br>40<br>50                   | 46 3<br>48 8<br>52 5<br>57 3<br>63 4<br>71 4             |
| Brom<br>benzene                                                                                                                                                                                                                   | -31° -32 5 (-30) -30 -20 -10                          | 0<br>34<br>(64)<br>48<br>76<br>107                                                     | 0<br>3<br>(6)<br>(7)<br>10<br>20               | 21 7<br>26 6<br>31 8<br>(41 9)<br>(50 0)<br>36 4<br>43 2        | 40<br>50<br>60<br>65<br>70<br>73 | 59 2<br>68 5<br>80 6<br>57 2<br>95 0<br>100         | (Menso                                                          | (—25)<br>(—22)<br>(—20 5)<br>(—22)<br>hutkin,                    |                                                                                            | (-10)                                               | (60 3)<br>(66 6)<br>(44 2)<br>(44 9)<br>ol P -lo                 | 60<br>65<br>70<br>73<br>eGr                        | 81 7<br>88<br>95 5<br>100<br>13 1)                       |
| Lod<br>benzene                                                                                                                                                                                                                    | -10 -25 to -30 (-30) (-40) (-40) (-20) (-20) (-10)    | 17 8<br>0<br>2 1<br>(11 7)<br>(20 8)<br>(27 2)<br>(30 9)<br>(33 9)<br>(33 9)<br>(37 -) | 30<br>(-))<br>-34,<br>-2,<br>-1,<br>-5<br>(-3) | 0 8<br>(10 7)<br>10 7<br>16 1<br>21 7<br>39 1<br>(17 2)<br>11 7 | 2)<br>3)<br>4)<br>70<br>7        | 3 )<br>60 4<br>67 )<br>76 2<br>57 1<br>1) 0         | +.<br>Delic<br>Melt<br><b>106</b> 17                            | •                                                                | t De<br>Stil H                                                                             | comp 1<br>O it 10                                   | ох II (<br>b (I                                                  |                                                    | HCI<br>C R                                               |
| Paradi<br>chlor<br>benzene                                                                                                                                                                                                        | Antimory pendamoride, 500   Antimory pendamoride, 500 |                                                                                        |                                                |                                                                 |                                  |                                                     | an be<br>ip by<br>amt<br>ccipi-<br>nce of                       |                                                                  |                                                                                            |                                                     |                                                                  |                                                    |                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             |                                                       |                                                                                        |                                                |                                                                 |                                  | +H<br>(Ansch<br>+4H<br>and Fv                       | () Del<br>utz ind<br>[() In<br>rins )                           | liquese<br>Ivin<br>isol in                                       | eent S<br>s, \ 23<br>chloro                                                                | ol in<br>89 28 i<br>form                            | (1                                                               | oform<br>schutz                                    |                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             |                                                       |                                                                                        |                                                |                                                                 |                                  |                                                     |                                                                 |                                                                  |                                                                                            |                                                     |                                                                  |                                                    |                                                          |

Antimony hydrogen pentachloride, SbCl<sub>5</sub>, HCI+4½H2O

"Metachlorantimonic acid" according to Weinland and Schmid, (Z anorg 1905, 44

Very easily sol in H<sub>2</sub>O, alcohol, acetone and glacial acetic acid Aqueous solution decomp on standing with separation of Sb<sub>2</sub>O<sub>5</sub> but remains clear in presence of 10% HCl (Weinland and Schmid, Z anorg 1905, 44

SbCl<sub>5</sub>, 5HCl+10H<sub>2</sub>O Not deliquescent Decomp by H<sub>2</sub>O Melts in crystal H<sub>2</sub>O at about 55° (Engel, C R 106 1797)

Antimony antimonyl chloride, SbCl<sub>3</sub>, SbOCl More easily attacked by H<sub>2</sub>O than SbOCl (Bemmelen, Z anorg 1903, **33** 293)

Antimony antimonyl potassium chloride, SbCl<sub>8</sub>, SbOCl, 2KCl

Not deliquescent Immediately decomp by hot or cold H<sub>2</sub>O, sol in hot glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, or in HCl, or tartaric acid +Aq

Insol in KCl+Aq, hot or cold alcohol, CS2, or ligroine (Benedikt, Proc Am Acad 29) 217)

Antimony antimonyl rubidium chloride, SbCl<sub>3</sub>, SbOCl, 2RbCl

Sol in very dil HCl+Aq (Wells, Am J Sci 1897, (4) **3** 463)

Antimony barium chloride, SbCl<sub>3</sub>, BaCl<sub>2</sub>+  $^{3}/_{2}H_{2}O$ 

Decomp by H<sub>2</sub>O

Antimony cæsium chloride, SbCl<sub>3</sub>, 6CsCl

Decomp by H<sub>2</sub>O Cryst from dil HCl+ Aq (Godeffioy, Arch Pharm (3) 12 47) 2SbCl<sub>3</sub>, 3CsCl Decomp by H<sub>2</sub>O, sl sol in cold, easily in hot dil HCl+Aq This is identical with the above salt (Saunders, Am Ch J **14** 152)

SbCl4, 2CsCl Sol in boiling conc HCl+ Aq without decomp (Setterberg, Oef Vet

Akad 1882, 6 23) SbCl<sub>5</sub> CsCl Cryst from HCl+Aq without Decomp by HO (Setterberg, decomp Ocf Vet Akid 1882, 6 27)

Antimony calcium chloride, SbCl3, CaCl + 8H O

(Benedict, Proc  $_{
m Am}$ Lasily decomp Acad 1895, 30 9)

SbCl<sub>6</sub>CaSbCl<sub>5</sub> OH+9H O Deliquescent, sl sol in H<sub>2</sub>O (Weinland, B 1901, 34 2635)

Antimony chromium chloride,

CrCl<sub>3</sub>, 3SbCl<sub>5</sub>+13H<sub>2</sub>O (Weinland) should be

 $[SbCl_6]_3[Cr(OH_2)_6] + 7H_2O$ ,

and CrCl<sub>3</sub>, SbCl<sub>5</sub>+10H<sub>2</sub>O should be  $[SbCl_6][Cr(OH_2)_4Cl_2]+6H_2O$ (Pfeiffer, Z anorg 1903, 36 349) Antimony glucinum chloride, SbCl<sub>3</sub>, GlCl<sub>2</sub>+  $3H_2O$ 

Decomp by H<sub>2</sub>O Very hydroscopic Very easily sol in HCl (Ephraim, B 1903, **36** 1822)

+4H<sub>2</sub>O Ppt Decomp by H<sub>2</sub>O in HCl (Ephraim, B 1903, **36** 1822) Sol

Antimony hydrazine chloride, SbCl<sub>3</sub>, 3N₂H₅Cĺ

Sol in conc HCl+Aq, decomp by H<sub>2</sub>O (Ferratini, C A 1912, 1613)

Antimony lithium chloride, SbCl<sub>3</sub>, 2LiCl+ 5H O

Hydroscopic Decomp by H<sub>2</sub>O Very easily sol in HCl (Ephraim, B 1903, **36** Very 1821)

+6H<sub>2</sub>O Decomp by H<sub>2</sub>O, easily sol in HCl (Ephram, B 1903, **36** 1822)

Antimony magnesium chloride, SbCl<sub>3</sub>, MgCl<sub>2</sub> +5H<sub>2</sub>O

Hydroscopic Decomp by H.O Can be cryst from HCl without decomp (Ephraim,

B 1903, **36** 1823) 2SbCl<sub>3</sub>, MgCl<sub>2</sub> Hygrosco by H<sub>2</sub>O Very sol in HCl Hygroscopic Decomp (Ephraim) SbCl<sub>7</sub>MgSbCl<sub>6</sub>MgOH+17H<sub>2</sub>O Hydro-

scopic Sol in H2O with decomp (Weinland, B 1901, **34** 2635)

Antimony nitrosyl chloride, SbCl<sub>5</sub>, NOCl

Very deliquescent, decomp by pure H<sub>2</sub>C sol in H<sub>2</sub>O containing tartaile acid (Webei, Pogg 123 347) žŠbCl<sub>5</sub>, 5NOCl Decomp by HO

borough, Chem Soc 59 661)

Antimony phosphorus chloride, SbCl., PCl5 Deliquescent (W.cber, Pogg 125 78)

Antimony phosphoryl chloride, SbCl<sub>5</sub>, POCl<sub>3</sub> Deliquescent (Weber)

Antimony platinum potassium chloride, (Sb, Pt)Cl<sub>6</sub>Ix

Ppt (Weinland, B 1905, 38 1056)

Antimony potassium chloride, SbCl3, 2KCl Sol in HO without decomp (Jacquelain,

A ch (2) 66 125) Immediately decomp Not deliquescent Sol in HCl, or tutanic by hot or cold HO

acid+Aq (Benedikt, Proc Am Acad 29

+2H<sub>2</sub>O Very efflorescent SbCl<sub>3</sub>, JkCl Deliquescent Decomp by hot H O (Poggrile)

+2H O (Romanis, C N 49 273) Not obtained by Benedikt (l c)

10SbCl2,23KCl True composition of above salts Sol in HO (Herty Am Ch J 1894, **16** 495)

SbCl<sub>3</sub>, 2KCl is the only true compound, all

others being isomorphous mixtures (Jordis, B 1903, **36** 2539) 2SbCl<sub>4</sub>, 3KCl Deliquescent Decomp by (Bosek, Chem Soc 1895, 67 516)

SbCl<sub>6</sub>KSbCl<sub>5</sub>KOH Hydroscopic H<sub>2</sub>O with decomp (Weinland, B 1901, 34 2635)

See also Antimony antimonyl potassium chloride

Antimony rubidium chloride, SbCl<sub>2</sub>, RbCl Decomp on air or with H<sub>2</sub>O (Saunders.

Am Ch J 14 162) 2SbCl<sub>3</sub>,RbCl+H<sub>2</sub>O Decomp on air

(Wheeler, Z anorg 5 253)
SbCl<sub>3</sub>, 6RbCl Decomp by H<sub>2</sub>O
froy, Arch Pharm (3) 9 343) (Godef-

Formula is 10SbCl<sub>3</sub>, 23RbCl (?) (Saunders Am Ch J 14 159) 10SbCl<sub>3</sub>, 23RbCl (?) Dec sol in HCl+Aq (Saunders) Decomp by H<sub>2</sub>O,

Formula is 3SbCl<sub>8</sub>,7RbCl (Wells and

Foote, Am J Sci 1897, (4) 3 461)
Composition assigned to this salt by
Saunders (Am Ch J 14 155) is incorrect (Ephram, B 1903, 36 1817)

3SbCl<sub>8</sub>, 5RbCl As above (Saunders) Formula 1s 2SbCl<sub>3</sub>, 3RbCl (Wheeler) Rb<sub>2</sub>SbCl<sub>6</sub> Ppt Decomp by H<sub>2</sub>O (Weinland, B 1905, 38 1083)

Rb<sub>2</sub>SbCl<sub>6</sub>, 2Rb<sub>8</sub>SbCl<sub>6</sub> Ppt Decomp by H<sub>2</sub>O (Weinland, B, 1901, **34** 2635)

Antimony selenium chloride, SbCl<sub>5</sub>, SeCl<sub>4</sub> Deliquescent (Weber)

Antimony selenyl chloride, SbCl<sub>5</sub>, SeOCl<sub>2</sub> Very deliquescent (Weber, Pogg 125 325)

Antimony sodium chloride, SbCl<sub>3</sub>, 3NaCl (?) Decomp by much H<sub>2</sub>O (Poggiale)

Antimony sulphur chloride, 2SbCl<sub>5</sub>, 3SCl<sub>2</sub> Decomp by H O

SbCl<sub>5</sub>, SCl<sub>4</sub> Sol in dil HNO<sub>3</sub>+Aq Mpt 125-126° in an atmos of chlorine Violently decomp by H<sub>2</sub>O (Ruff, B 1904, **37** 4515)

Antimony thallium chloride, SbCl<sub>3</sub>, 3TlCl

Ppt (Ephram, Z anorg 1909, 61 249) SbCl<sub>4</sub>, TlCl (Ephraim and Barteczko, Z anorg 1909, **61** 251)

2SbCl<sub>4</sub>, 27 lCl, TlCl<sub>3</sub> Slowly decomp by cold HO (Lphram and Barteczko, Z anoig 1909, 61 253)

Antimony trichloride ammonia, SbCl<sub>3</sub>, NH<sub>3</sub> Not very deliquescent Decomp by H<sub>2</sub>O

pentachloride ammonia, SbCl<sub>5</sub>, Antimony  $6NH_{2}$ 

Decomp by H<sub>0</sub>O (Persoz)

pentachloride cyanhydric acid. Antimony SbCl<sub>5</sub>, 3HCN

Deliquescent, decomp by H<sub>2</sub>O (K) n. A **74** 85)

Antimony pentachloride nitric oxide, 5 bCls. NO

Decomp by H<sub>2</sub>O (Besson, C F 108 1012)

Antimony pentachloride nitrogen pe xide, 3SbCl<sub>5</sub>, 2NO<sub>2</sub>

Decomp by H<sub>2</sub>O (Besson)

Antimony pentachloride nitrogen su hide, SbCl<sub>5</sub>, N<sub>4</sub>S<sub>4</sub>

Easily decomp (Davis, Chem Soc 1906. **89** 1577)

Decomp by cold H<sub>2</sub>O, HCl, H<sub>2</sub>S( warm alcohol, also by boiling with KOF ⊢Aq Almost insol in organic solvents (Wc ling. Z anorg 1908, 57 283)

Antimony chloride potassium bromid SbCl<sub>3</sub>,3KBr+1½H<sub>2</sub>O

Very deliquescent Decomp by nuch H<sub>2</sub>O (Atkinson, Chem Soc 43 289)  $2SbCl_3,3KBr+2H_2O$  (Atlanson) SbCl<sub>3</sub>,KBr+H<sub>2</sub>O (Atkinson) Above are mixtures (Herty, Am

1894, **16** 497) See Antimony bromide potassium charide

Antimony chlorofluoride, SbCl<sub>3</sub>F<sub>2</sub> (Swarts, Z anorg 1896, 12 71)

Antimony fluorodide, SbF<sub>5</sub>I

Slowly decomp by H<sub>2</sub>O (Ruff, B 1906. **39** 4321)

 $(SbF_5)_2I$ Sol in H<sub>2</sub>O with pptn f I2 (Ruff, B 1906, **39** 4321)

Antimony trifluoride, SbF<sub>3</sub> Deliquescent Sol in H<sub>2</sub>O

Solubility in H2O it to

| t°   | 100 g of the<br>solution con<br>tain g SbF <sub>3</sub> | 100 g I |  |
|------|---------------------------------------------------------|---------|--|
| 0°   | 79 37                                                   | 384 7   |  |
| 20   | 81 64                                                   | 444 7   |  |
| 22 5 | \$1 91                                                  | 452 8   |  |
| 25   | 83 12                                                   | 492 4   |  |
| 30   | 84 93                                                   | 565 6   |  |

(Rosenheim, Z anorg 1909, 61 18) Solubility in HI+Aq it 0°

| Normality of HI +Aq | 100 g H O of the H<br>tion dissolve g | solu<br>F3 |
|---------------------|---------------------------------------|------------|
| 2<br>1<br>0 5       | 474 9<br>432 5<br>404 0               |            |

(Rosenheim, Z anorg 1909, 61 19 )

| Solubility of SbF <sub>3</sub> in salts+Aq at 0°                 |                                                                                          |                                                                                 |  |  |  |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| Salt                                                             | Normality of salt solution                                                               | 100 g H <sub>2</sub> O of the<br>salt solution dis-<br>solve g SbF <sub>3</sub> |  |  |  |  |  |
| KCl                                                              | $egin{array}{cccc} 1 & & & & \\ 0 & 5 & & & \\ 0 & 25 & & \\ 0 & 125 & & \\ \end{array}$ | 461 8<br>448 3<br>431 9<br>407 3                                                |  |  |  |  |  |
| KBr                                                              | 1<br>0 5<br>0 25<br>0 125                                                                | 448 7<br>450 0<br>455 6<br>417 2                                                |  |  |  |  |  |
| KNO <sub>3</sub>                                                 | 1<br>0 5<br>0 25<br>0 125                                                                | 458 2<br>451 9<br>418 3<br>401 4                                                |  |  |  |  |  |
| ½K <sub>2</sub> SO <sub>4</sub>                                  | 1<br>0 5<br>0 25                                                                         | 419 9<br>408 5<br>406 6                                                         |  |  |  |  |  |
| ½K <sub>2</sub> C <sub>2</sub> O <sub>4</sub>                    | 1<br>0 5<br>0 25<br>0 125                                                                | 465 7<br>481 2<br>451 3<br>405 2                                                |  |  |  |  |  |
| 1/2(NH <sub>4</sub> ) <sub>2</sub> C <sub>2</sub> O <sub>4</sub> | 0 5<br>0 25<br>0 125                                                                     | 431 9<br>442 3<br>433 3                                                         |  |  |  |  |  |
| ½K₂C₄H₄O <sub>6</sub>                                            | 1<br>0 5<br>0 25<br>0 125                                                                | 461 4<br>430 5<br>430 8<br>435 2                                                |  |  |  |  |  |

(Rosenheim, Z anorg 1909, 61 192)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 826)

## Antimony pentafluoride, SbF<sub>5</sub>

Sol in H<sub>2</sub>O (Mangnac, A 145 239) Very hydroscopic, bpt 155° Sol in H<sub>2</sub>O with hissing (Ruff, B 1904, **37** 678) +2H<sub>2</sub>O (Ruff, B 1904, **37** 679)

Antimony pentafluoride diantimonyfluoride,  $Sb_3F_{11} = 2SbF_3$ ,  $SbF_5$ 

Hydroscopic, bpt 390° Easily sol in H<sub>2</sub>O (Ruff, B 1904, 37 680)

Antimony pentafluoride pentaantimony trifluoride, SbF<sub>5</sub>, 5SbF<sub>3</sub>

Bpt 384° (corr) (Ruff, B 1904, **37** 681)

## Antimony cæsium fluoride,

CsF.2SbF<sub>3</sub> CsF,3SbF<sub>3</sub> 4CsF,7SbF<sub>3</sub> CsF,SbF<sub>3</sub>

2CsF,SbF<sub>3</sub> (Wells, Am J Sci 1901, (4) 11 451) Antimony lithium fluoride, SbF<sub>8</sub>, 2LiF

Sol in more than 20 pts H<sub>2</sub>O (Flückinger, Pogg 87 245) SbF<sub>8</sub>, L<sub>1</sub>F Eas Chem Z 13 357) Easily sol in H<sub>2</sub>O (Stein.

Antimony potassium fluoride, SbF<sub>8</sub>, 2KF Sol in less than 2 pts boiling, and in 9 pts

cold H<sub>2</sub>O Insol in alcohol or ether SbF<sub>8</sub>, KF More sol than SbF<sub>8</sub>, 2KF Sol

in 28 pts H<sub>2</sub>O (Fluckinger, Pogg 87 245) SbF<sub>5</sub>, KF Easily sol in H<sub>2</sub>O SbF<sub>5</sub>, 2KF+2H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Marignac, A 145 239)

## Antimony sodium fluoride, SbF<sub>3</sub>, 3NaF

Sol in 14 pts cold, and 4 pts boiling H<sub>2</sub>O Sol in HF (Fluckinger, Pogg 87 245) SbF<sub>3</sub>, NaF 100 pts cold H<sub>2</sub>O dissolv

SbF<sub>3</sub>, NaF 100 pts cold H<sub>2</sub>O dissolve 93 pts 100 pts hot H<sub>2</sub>O dissolve 166 pts (Stein, Wagners' J B 1887 1160)
4SbF<sub>3</sub>, NaF As NH<sub>4</sub> salt (Raad and Hauser, B 1890, 23 R 125)
SbF<sub>4</sub> 2NaF Facility 21

SbF<sub>5</sub>, 2NaF E nac, A **145** 329) Easily sol in H<sub>2</sub>O (Marig-

Antimony thallium fluoride, TlF,SbF<sub>3</sub>

Sol in H<sub>2</sub>O without decomp (Ephraim, B 1909, 42 4458

TlF,2SbF<sub>3</sub> Sol in H<sub>2</sub>O without decomp (Ephraim)
\_ TlF,3SbF<sub>8</sub> Sol in H<sub>2</sub>O without decomb

Deco~~

Antimony trifluoride ammonia, Sbr.

Sl sol in liquid NH<sub>3</sub> (Ruff, B 1... 4326)

Antimony trifluoride ammonium chloride SbF<sub>3</sub>, NH<sub>4</sub>Cl

Easily sol in H<sub>2</sub>O (de Haen, B 21 901

Antimony trifluoride ammonium sulphate,  $SbF_3$ ,  $(NH_4)SO_4$ 

More sol than K or Na salt 1 pt H<sub>2</sub>O dissolves 14 pts at 24° and 15 pts at 100° (de Haen, B 21 902 R)

Antimony fluoride lithium chloride, SbF<sub>8</sub>, LiCl

Sol in HO (Stein, Chem Z 13 357)

pentafluoride nitrosyl fluoride, Antimony SbF<sub>5</sub>, NOF

Hydroscopic Decomp by H2O Sol in liquid NH3 with decomp SI sol in NOCI, SiCl<sub>4</sub>, PCl<sub>3</sub>, AsCl<sub>5</sub>, SO<sub>2</sub>Cl and SOCl<sub>2</sub> (Ruff, Z anorg 1908, 58 (34)

Antimony trifluoride potassium chloride, SbF<sub>3</sub>, KCl

 $100~\rm{pts}~H~O~dissolve~51~pts~at~24^{\circ},~and~300~\rm{pts}~at~100^{\circ}~(de~Haen,~B~21~901~R~)$ 

Antimony trifluoride potassium sulphate, SbF<sub>3</sub>, K<sub>2</sub>SO<sub>4</sub>

Sol in  $H_{\bullet}O$ (de Haen)

2SbF<sub>3</sub>, K<sub>2</sub>SO<sub>4</sub> Very sol in H<sub>2</sub>O (Mayer, B 1894, **27** R 922)

Antimony trifluoride sodium chloride, SbF<sub>3</sub>, NaCl

Easily sol in H<sub>2</sub>O (de Haen, B 21 901  $\mathbf{R}$  )

Antimony trifluoride sodium sulphate, SbF<sub>3</sub>,  $Na_2SO_4$ 

Sol in H<sub>2</sub>O (de Haen)

Antimony fluorodide, SbF<sub>5</sub>I

Mpt 80°, slowly decomp by  $H_2O$  (Ruff, B 1906, **39** 4321) Mpt 110-115°, decomp by  $(SbF_5)_2I$ H<sub>2</sub>O (Ruff)

Antimony fluosulphide, SbF<sub>5</sub>S

Very hygroscopic Decomp by H<sub>0</sub>O Sol with decomp in alcohol Sol in CCl4 (Ruff, B 1906, **39** 4332)

Antimony gold, Au<sub>3</sub>Sb

Insol in equal pts of HNO3 and tartaric (Roessler, Z anorg 1895, 9 72)

Antimony hydride, SbH<sub>3</sub>

Scarcely sol in HO 1000 ccm HO absorb 412 cc SbH3 at 105° Decomp by long contact with HO, also by conc HSO, or KOH+Aq (Jones, Chem Soc 29 641)

Antimony trihydroxide, Sb  $O_3$ , 2H O = $Sb_2O(OH)_4$ 

(Schaffner, A **51** 182)

Sb(OH)<sub>3</sub> Ppt (Clarke and Stolla, B 13

Does not exist (Guntz, C R 102 1472) See Antimonous acid and antimony trioxide

Antimony triodide, SbI;

Decomp by H O or SO decohol Sol in HI+Aq, sol in boiling C5 and in boiling benzene, but separates out on cooling most insol in CHCl3 (Cooke, Proc Am Acid (2) 5 72)

Fisily sol in AsBi; (Wilden, / morg

1902, **29** 574)

Sol in wirm AsBr ⊳p gr of ι solution sat it 40° which solidings it 37°, = 3 720 This dissolves furth a Asia whereby the mpt sinks to 31° and sp gr rises to 3 501 Bv mixing the latter solution with a solution of AsI3 in CH I2, + liquid can be obtained with a sp gr of 3702 it 20° (Retgers, Z phys Ch 1893, 11 340)

sol in PCl3 (Beckmann, Z morg 1906, **51** 110)

Sol in SOCI (Wilden, Z anoig 1900, **25** 215)

Sol in SOCl<sub>2</sub> and S<sub>2</sub>Cl<sub>2</sub> (Walden, Z an g 1900, **25** 216) Sol in AsCl<sub>3</sub>

(Walden, Z anorg 1 **25** 214)

Sol in SnCl4 (Walden, Z anorg 1 **25** 218)

Sol in POCl<sub>3</sub> (Walden, Z anorg 1) **25** 212 ) Easily sol in PCl<sub>3</sub> and PBr<sub>3</sub> (Wale n.

Z anorg 1900, 25 211) Partly sol in, and partly decomp by il-

cohol or ether (M'Ivor, Chem Soc (2) 328)

Insol in oil of turpentine and CCl4

100 pts methylene iodide dissolve 11 3 SbI<sub>3</sub> at 12°, sp gr of solution = 3 453

gers, Z anorg 3 343) Sol in C<sub>6</sub>H<sub>6</sub> (Retgers, Z phys Ch 1 )3, **11** 334)

Sol in acetone (Naumann, B 1904 37 4328)

Antimony pentaiodide, Sbl<sub>5</sub>

Very unstable (Pendleton, C N 48

Antimony barium iodide, SbI<sub>3</sub>, BaI<sub>2</sub>+9F

Decomp by H<sub>2</sub>O Sol in HCl, HC<sub>2</sub>F or  $H_2C_4H_4O_6+Aq$ CS<sub>2</sub> dissolves out { I<sub>3</sub> (Schaffer, Pogg 109 611)

Antimony cæsium iodide, 2SbI<sub>3</sub>,3CsI

Sl sol in HI+Aq Exists in two dis rms (Wells, Am J Sci 1901, (4) 11 forms

Antimony potassium iodide, 2SbI3, 31  $3H_2O$ 

Decomp by H<sub>2</sub>O Sol in HCl, HC<sub>2</sub>I or H C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+Aq CS<sub>2</sub> dissolves out | I<sub>3</sub> (Schaffer, Pogg 109 611) SbI<sub>3</sub>, 2KI+2½HO Decomp by ٠O (Nickles, J. Pharm (3) 39 116)

Antimony rubidium iodide, 28bI3, 3RbI

Decomp by HO (Wheeler, Z mor **259** )

Antimony sodium iodide, 25hI,, 3N I+ 12H O

As 25bI3, 3INI (Schaffer, Pogg 109 1)

Antimony thallous iodide, 25bl., 31ll

Decomp by HO and by HCl+Aq, al by dechol (Fphram, Z morg 1908, 58 ·4)

Antimony nitride, ShN

Decomp by heat (Franz Lischer, B 110. **43** 1471 )

Antimony trioxide, Sh ()

Very sl sol in H () Sol in \$900-1 000 pts H O at 100°, 55,000-61,100 pts a 15° (Schulze, J pr. (2) 27 320 )
Sol in HCl+Aq Insol in IINO<sub>3</sub>+Ac but

but not is insol as met istannic acid. Sol in fuming HNO3 or HSO4. Insol in dil old but sol in conc ilkalies, o ilkili carbon

Aq Sol in cold Nilson SbCls Sol in 15 pts boiling SbCls Sol in cold NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>3</sub>+Aq (Schneider,

Pogg 108 407)

Sol in HC2H3O2, or H2C4H4O6+Aq, and not pptd from these solutions by H<sub>2</sub>O Easily sol in benzoic acid Insol in pyrotartaric acid Very sol in KHC4H4O6+Aq Sol in glycerine

Somewhat sol in H<sub>3</sub>PO<sub>4</sub>+Aq (Köhler,

Dingl 1885, 258 520)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 826 ) Sol in lactic acid (Kretzschmar, Ch Z

1888, 12 943) Sol in grape sugar solution to which Ca(OH)<sub>2</sub> has been added (Vogel, B 1885, **18,** R 38)

Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014)

Sol in glycerine in presence of alkalies (Kohler, Dingl 1885, **258** 520)

Exists in a sol colloidal modification

(Spring, B 16 1142)

Min Valentinite, Senarmontite +H<sub>2</sub>O See Antimonous acid

Antimony tetroxide, Sb<sub>2</sub>O<sub>4</sub>

Insol in H<sub>2</sub>O Slightly attacked by acids, hot cone HCl+Aq acts only slightly senius)

Min Cervantite Sl sol in HCl+Aq

Antimony pentoxide, Sb O<sub>5</sub>

Insol in HO Easily sol in HCl+Aq sol in conc KOH+Aq

"Antimonoxyd" is sol in glycerine in presence of alkalies

100 g glycerine, to which have been added 10 g NaOH+Aq (1 1), dissolve 20 6 g at b-pt, 20 g NaOH+Aq (1 1), dissolve 360 g at b-pt, 40 g NiOH+Aq (1 1), dissolve 68 5 g at b -pt 80 g NaOH + Aq (1 1), dissolve 93 0 g at b -pt , 120 g NaOH +Aq (1 1), dissolve 1192 g it b-pt (Kohler Dingl 258 520)

See also Antimonic acid

Antimony nitrogen pentoxide, 25b O, N  $O_t$ Not decomp by HO (Thomas, C R 1895, **120** 1116)

Antimony oxybromide See Antimonyl bromide

Antimony oxychloride See Antimonyl chloride

Antimony oxyfluoride See Antimonyl fluoride

Antimony oxysulphide, 55 OS

Min Antimony blende (kermesite) Insol in H<sub>2</sub>O or dil acids, except HCl+Aq (Schneider, Pogg 110 147)

Antimony palladium, Sb<sub>2</sub>Pd

Sl sol in equal pts of HNO3 and tartaric acids (Roessler, Z anorg 1895, 9 69)

Antimony platinum, Sb Pt

Insol in equal pts of HNO<sub>3</sub> and tartaric acids (Roessler, Z anorg 1895, 9 67)

Antimony phosphide, SbP

Insol in benzene, ether, or CS<sub>2</sub> (M'Ivor, B 6 1362)

Antimony selenide, SbSe

(Chrétien, C R 1906, 142 1341)

(Chrétien, lc) Sb₃Se₄ Sb<sub>4</sub>Se<sub>5</sub> (Chrétien, lc)

Sol in KOH+Aq (Hofacker, A Sb<sub>2</sub>Se<sub>3</sub> 107 6)

Sb<sub>2</sub>Se<sub>5</sub> (Hofacker)

Antimony selenide, with M selenide See Selenoantimonates, M

Antimony trisulphide, Sb S3 (Kermes)

Insol in H<sub>2</sub>O and dil acids

1 l H<sub>2</sub>O dissolves 5 2 x 10-8 mols pptd Sb<sub>2</sub>S<sub>3</sub> at 18° (Weigel, Z phys Ch 1907, **58** 294)

Decomp by conc HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub> Sol in conc HCl+Aq Easily sol in dil KOH, NaOH, (NH<sub>4</sub>)<sub>2</sub>S, and K<sub>2</sub>S+Aq Sl sol in NH<sub>4</sub>OH+Aq, very sl sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+ Aq, insol in KSH+Aq (Fresenius)

Sol in a mixture of 50 pts H<sub>2</sub>O and 18 pts HCl (sp gr 1 16) even when completely sat with HS (Ling and Carson, J Soc Chem Ind 1902, 21 1018)

Sl sol in II SO<sub>3</sub>+Aq

1872, 75 1276) Civst Sb S<sub>3</sub> is only sl sol in NH<sub>4</sub>OH+

(Guerout, C R

Aq (1 pt in about 2000 pts NII,)

Pptd amorphous ShoS3 is appreciably more sol (1 pt in 600 pts NH<sub>d</sub>) (Guot, J pr 1543, 29 53)

SI sol in hot 200 Ni BiO7+Aq still less sol in cold (Materic, C C 1906, II 557)

Insol in NII<sub>4</sub>Cl+Aq

Sol in 14–15 pts pure SbCl; (Schneider, Pogg 108 407)

Slowly sol in H C<sub>1</sub>H<sub>1</sub>O<sub>1</sub> + \q Sol in boiling N 48b5++Aq

Sol in hot citie turture and oxide reids 51 sol in malic, benzoic, pierie and pyrogallie reads. Insol in formic and rectic reads. I'specially cisily sol in citie and oxalic acids with addition of KNO; KNO or KClO3 (Bolton, ( N 1878, 37 86 and 99)

Sol in ethylamine sulphydrate + \q Min Stibute Sol in cold citic and+

(Bolton, C N 37 11)

Soluble modification Sh >3 may be obtuned in a colloidal state in aqueous solution containing 1 pt SbS; to 200 pts 11 O This can be boiled without decomp but 5b 5; is pptd by unds ind silts

Antimony irrifluoride potassium sulphate, SbF<sub>8</sub>, K<sub>2</sub>SO<sub>4</sub>

Sol in H<sub>2</sub>O (de Haen)

2SbF<sub>8</sub>, K<sub>2</sub>SO<sub>4</sub> Very sol in H<sub>2</sub>O (Mayer, B 1894, 27 R 922)

Antimony trifluoride sodium chloride, SbF<sub>3</sub>, NaCl

Easily sol in  $H_2O$  (de Haen, B **21** 901

Antimony trifluoride sodium sulphate, SbF<sub>3</sub>,  $Na_2SO_4$ 

Sol in H<sub>2</sub>O (de Haen)

Antimony fluoiodide, SbF<sub>5</sub>I

Mpt 80°, slowly decomp by H2O (Ruff, B 1906, **39** 4321)

Mpt 110-115°, decomp by  $(SbF_5)_2I$ H₂O (Ruff)

Antimony fluosulphide, SbF<sub>5</sub>S

Very hygroscopic Decomp by HO Sol with decomp in alcohol Sol in CCl4 (Ruff, B 1906, **39** 43?2)

Antimony gold, Au<sub>3</sub>Sb

Insol in equal pts of HNC3 and tartaric acids (Roessler, Z anorg 1895, 9 72)

Antimony hydride, SbH<sub>3</sub>

Scarcely sol in HO 1000 ccm HO absorb 4 12 cc SbH3 at 10 5° Decomp by long contact with HO, also by conc HSO4 or KOH+Aq (Jones, Chem Soc 29 641)

Antimony trihydroxide, Sb O3 2H O=  $Sb O(OH)_1$ 

(Schuffner, A 51 182) Sb(OH), Ppt (Clurke and Stolla, B 13 1787)

Does not exist (Cruntz C R 102 1472) See Antimonous acid and antimony tri

Antimony triodide, Shil

Decomp by HO or SO', alcohol Sol in HI+ Aq sol in boiling CS and in boiling benzere but separates out on cooling. Almost insol in CPCl<sub>1</sub> (Cool c, Proc. Am. Acid (2) 5 72)

Lishy sol in AsB (Wilden / morg

1902 29 5717

⇒p μ of εsolution Sol in warm AsBr sat at 40 which solidines at 37 -5 720 This dissolves furth a Ast - whereby the mpt sinks to of and spike it is to 5801. By mixing the latter solution with a solution of AsI in CHI + liquid can be obtained with rsp gr cf 3702 it 20 Retgers / phys (h 1895-11 40)

Sol in PCI (Peelmann Z anor, 1906) 51 110 1

Sol in SO (1 / Wilden / mor\_ 1900)

Sol in SOCl<sub>2</sub> and S<sub>2</sub>Cl<sub>2</sub> (Walden, Z 1900, **25** 216) Sol in AsCl<sub>3</sub>

lorg

(Walden, Z anorg 900. **25** 214)

Sol in SnCl4 (Walden, Z anorg 1900, **25** 218)

Sol in POCl<sub>3</sub> (Walden, Z anorg 1900, **25** 212)

Easily sol in PCl<sub>3</sub> and PBr<sub>3</sub> (W lden, Z anorg 1900, 25 211)

Partly sol in, and partly decomp cohol or ether (M'Ivor, Chem Soc v al-1) 14 328)

Insol in oil of turpentine and CCl4

100 pts methylene iodide dissolve 1 3 pts  $SbI_3$  at 12°, sp gr of solution = 3 453 (Retgers, Z anorg 3 343)

Sol in C<sub>6</sub>H<sub>6</sub> (Retgers, Z phys Cl 1893, **11** 334)

Sol in acetone (Naumann, B 16 4, 37 4328)

Antimony pentaiodide, SbIs

Very unstable (Pendleton, C N 3 97)

Antimony barium iodide, SbI3, BaI--H<sub>2</sub>O Decomp by H2O Sol in HCl, H H<sub>3</sub>O<sub>2</sub>, or H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+Aq CS<sub>2</sub> dissolves or SbI<sub>x</sub> (Schaffer, Pogg 109 611)

Antimony cæsium iodide, 2SbI3,3CsI

Sl sol in HI+Aq Exists in two istinct (Wells, Am J Sci 1901, (4) 455)

Antimony potassium iodide, 2SbI<sub>3</sub> 3KI+3H<sub>2</sub>O

Decomp by HO Sol in HCl, H 2H3O2, or H C4H4O6+Aq CS2 dissolves o 1 SbI3 (Schaffer, Pogg 109 611)

SbI, 2KI+2½H2() Decomp 1  $H_2O$ (Nickles, J. Pharm (3) 39 116)

Antimony rubidium iodide, 25bI3, 31 oI

Decomp by HO (Wheeler, Z org 5 259)

Antimony sodium iodide, 25hI, 3NaI+1211 ()

As 25bL, 3Kl (Schaffer, Pogg 1 9 611)

Antimony thallous iodide, 28bl., 31

Decomp by HO and by HCl+Ac also by deohol (I phrum, Z morg 1908, 8 354)

Antimony nitride, Sh

Decomp by heat (Franz Lischer B 1910, 43 1171 )

Antimony trioxide, Sh ();

Very Sl. Sol. in H.O. Sol. in 89 0-10,000 pts H O it 100°, 55,000-61,100 p

(Schulze, J. pr. (2) **27** 320.) Sol in HCl+Aq. Insol in HNO Aq, but not is insol as metast innic and \$1 in cold furning HNO, or HSO4 Insol in dil, but sol in cone ilkilies, o ilkali cai onates+

Sol in cold NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>3</sub>+Aq Sol in 15 pts boiling SbCl<sub>3</sub> Pogg 108 407) (Schneider,

Sol in HC2H3O2, or H2C4H4O6+Aq, and not pptd from these solutions by H<sub>2</sub>O Easily sol in benzoic acid Insol in pyrotartaric acid Very sol in KHC4H4O6+Aq Sol in glycerine

(Kohler.

Somewhat sol in H<sub>3</sub>PO<sub>4</sub>+Aq Dingl 1885, **258** 520) Insol in liquid NH<sub>3</sub> (Gore, A (Gore, Am Ch J 1898, **20** 826 )

Sol in lactic acid (Kretzschmar, Ch Z

1888, **12** 943)

Sol in grape sugar solution to which Ca(OH)<sub>2</sub> has been added (Vogel, B 1885, 18, R 38)

Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014)
Sol in glycerine in presence of alkalies

(Kohler, Dingl 1885, 258 520)

Exists in a sol colloidal modification (Spring, B 16 1142)

Min Valentinite, Senarmontite +H<sub>2</sub>O See Antimonous acid

Antimony tetroxide, Sb<sub>2</sub>O<sub>4</sub>

Insol in H<sub>2</sub>O Slightly attacked by acids, hot cone HCl+Aq acts only slightly senius)

Min Cervantite Sl sol in HCl+Aq

Antimony pentoxide, Sb O<sub>5</sub>

Easily sol in HCl+Aq Sl Insol in H O sol in conc KOH+Aq

"Antimonoxyd" is sol in glycerine in pres-

ence of alkalies

 $100~{\rm g}$  glycerine, to which have been added  $10~{\rm g}$  NaOH+Aq (1~1), dissolve 20 6 g at b-pt, 20 g NaOH+Aq (1 1), dissolve 360 g at b-pt, 40 g NiOH+Aq (1 1), dissolve 68 5 g at b-pt 80 g NaOH+Aq (1 1), dissolve 93 0 g at b pt , 120 g NaOH+Aq (1 1), dissolve 93 0 g at b pt , 120 g NaOH+Aq (1 1), dissolve 119 2 g at b-pt (kohler, Dingl 258 520)

See also Antimonic acid

Antimony nitrogen pentoxide, 2Sb O<sub>5</sub>, N O<sub>5</sub> Not decomp by HO (Thomas, C R 1895, **120** 1116)

Antimony oxybromide See Antimonyl bromide

Antimony oxychloride See Antimonyl chloride

Antimony oxyfluoride See Antimonyl fluoride

Antimony oxysulphide, Sh.OS2

Min Antimony blende (kermesite) Insol in H<sub>2</sub>O or dil acids, except HCl+Aq (Schneider, Pogg 110 147)

Antimony palladium, Sb<sub>2</sub>Pd

SI sol in equal pts of HNO3 and tartaric (Roessler, Z anorg 1895, 9 69) acids

Antimony platinum, Sb<sub>2</sub>Pt

Insol in equal pts of HNO<sub>8</sub> and tartaric acids (Roessler, Z anorg 1895, 9 67)

Antimony phosphide, SbP

Insol in benzene, ether, or CS<sub>2</sub> (M'Ivor, B 6 1362)

Antimony selenide, SbSe

(Chrétien, C R 1906, 142 1341)

(Chrétien, lc) Sb<sub>3</sub>Se<sub>4</sub> Sb<sub>4</sub>Se<sub>5</sub> (Chrétien, lc)

Sb<sub>2</sub>Se<sub>3</sub> Sol in KOH+Aq (Hofacker, A 107 6)

Sb<sub>2</sub>Se<sub>5</sub> (Hofacker)

Antimony selenide, with M selenide See Selenoantimonates, M

Antimony trisulphide, Sb<sub>2</sub>S<sub>3</sub> (Kermes)

Insol in H2O and dil acids

1 l H<sub>2</sub>O dissolves 5 2 x 10-8 mols pptd Sb<sub>2</sub>S<sub>3</sub> at 18° (Weigel, Z phys Ch 1907, **58** 294)

Decomp by conc HNO3 or H2SO4 Sol in conc HCl+Aq Easily sol in dil KOH, NaOH, (NH4)2S, and K2S+Aq Sl sol in NH<sub>4</sub>OH+Aq very sl sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+ Aq insol in KSH+Aq (Fresemus)

Sol in a mixture of 50 pts H<sub>2</sub>O and 18 pts HCl (sp gr 1 16) even when completely sat with H<sub>2</sub>S (Lang and Carson, J Soc Chem Ind 1902, 21 1018)

Sl sol in H<sub>2</sub>SO<sub>3</sub>+Aq (Guerout, C R

1872, 75 1276)

Cryst Sb S<sub>3</sub> is only sl sol in NH<sub>4</sub>OH+ Aq (1 pt ın about 2000 pts NH<sub>3</sub>)

Pptd amorphous Sb<sub>2</sub>S<sub>3</sub> is appreciably more sol (1 pt in 600 pts NH3) (Garot, J pr 1843, **29** 83)

Sl sol in hot 2% Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>+Aq still less sol in cold (Materne, C C 1906, II 557)

Insol in NH4Cl+Aq

Sol in 14-15 pts pure SbCl<sub>3</sub> (Schneider, Pogg 108 407)

Slowly sol in H C4H4O6+Aq Sol in boiling Na<sub>3</sub>SbS<sub>4</sub>+Aq

Sol in hot citric, tartaire and oxalic icids Sl sol in malic, benzoic, pieric and pyrogallic acids Insol in formic and acetic acids Especially easily sol in citaic and oxalic acids with addition of KNO<sub>3</sub>, KNO or KClO<sub>3</sub> (Bolton, C. N. 1878, **37**, 86 and 99.)

Sol in ethylamine sulphydrate+Aq

Min Stibnite Sol in cold citiic acid+ (Bolton, C N 37 14)

5b S<sub>3</sub> may be ob-Soluble modification tained in a colloidal state in aqueous solution containing 1 pt Sb S3 to 200 pts H2O This can be boiled without decomp, but Sb S3 is pptd by acids and silts

| Table of maximum dilution of so                       | olutions of Antimony sulphur dioxide, SbSO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | 6.01.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| acids and salts which cause pptn                      | 1 17 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                       | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $H_2SO_4$ 1                                           | 140 Antimony telluride, SbTe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                       | 45 Insol in H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                       | 111501 111 1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (NH <sub>4</sub> ) SO <sub>4</sub> 1                  | 100   Dogress Insor in 1120 (Opponioni, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       | 1720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                       | 2060 Antimonyl bromide, SbOBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                       | 135 Insol in CS <sub>2</sub> (Cooke, Proc Am Acad 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $BaCl_2$ 1                                            | 2050 104)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $MgCl_2$ 1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       | 2500 Si soi ili liquid 11113 (Gore, Alli Cil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                       | 1090, 20 020 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                       | 0500 051512 (1111101, 0 11 20 119)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                       | 35,000 Antimonyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $(NH_4)_2Fe_2(SO_4)_4$ 1                              | 800 From SbCl <sub>3</sub> SbOCl Insol in H <sub>2</sub> O D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                       | 40,000 comp by boiling with H <sub>2</sub> O, sol in HCl+A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $KSbOC_4H_4O_6$ 1                                     | 10. Comp by boning with 1120, But in 1101   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                       | i ilisoi ili alcolloi di etilei, soi ili Co2, Ciio,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (Schulze, J pr (2) <b>27</b> 32                       | or $C_6H_6$ (Sabanajew, Zeit Ch 1871 204)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A a during the day 15 C                               | Insol in liquid NH <sub>3</sub> (Gore, Am Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ntimony trisulphide with M.S                          | [1898, <b>20</b> 826]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| See Sulphantimonites, M                               | Insol in acetone (Naumann B 1904, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - · · · · · · · · · · · · · · · · · · ·               | 4329)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ntimony pentasulphide, Sb <sub>2</sub> S <sub>5</sub> | Sb <sub>4</sub> O <sub>5</sub> Cl <sub>2</sub> Algaroth powder Decomp 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Insol in H2O, or H2O containing                       | g H <sub>2</sub> S Sol   H <sub>2</sub> O Sol in HCl+Aq (Cooke, Proc A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Insol in 1120, of 1120 contamining                    | Six gol and A 1 10 1 toutour and I A (Coheff)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| conc HCl+Aq Complete                                  | ely sol in Acad 13 1), tartane acid+Aq (Schaffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TH OH + Aq, traces dissolve in (N                     | $(H_4)_2CO_3 + (A_152_135)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ily sol in KOH, or NaC                                | $OH + Aq$ , or $Sb_8O_{11}Cl_2$ (Cooke)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| sulphides+Aq Sol in                                   | 50 pts $cold \mid Sb_8OCl_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OH+Aq (Geiger)                                        | $Sb_{41}O_{50}Cl_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\ln (NH_4)_2CO_3 + Aq$                               | From SbCl <sub>5</sub> SbOCl <sub>3</sub> Deliquescent L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| in cold, but sol in hot all                           | kalı carbon- composed by H <sub>2</sub> O Sol in H <sub>2</sub> O (Daubray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| in cold, but sor in not an                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tes+Aq (Berzelius)                                    | A 184 118)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Insol in Na <sub>3</sub> SbS <sub>4</sub> +Aq         | Does not exist (Anschutz and Evans,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| When boiled with ilcohol, eth                         | $a(1, CS_2, oil   239 285)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| of turpentine, etc., portion of the                   | he S is dis-   Sb <sub>3</sub> OCl <sub>13</sub> Deliquescent Insol in C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| olved out (Berzelius)                                 | easily sol in tartaric acid+Aq (William                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $CS_2$ dissolves about $5^{\prime}$ of the            | he sulphur C N 24 224)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rammelsberg )                                         | Sh <sub>3</sub> O <sub>4</sub> Cl <sub>7</sub> (Williams)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| antimony pentusulphide with M S                       | SbO <sub>2</sub> Cl Decomp by hot H O into HSb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| See Sulphantimonates, M                               | Antimonyl fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                       | From Sbl 3 Sb4O3F6 Not deliquesce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Antimony sulphochloride, 555( l <sub>3</sub>          | (Fluckager Pagg 87 249)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Decomp by moist in oi H O                             | (Clocz, \   (Fidekiger, Fogg of 21))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| h (3) <b>30</b> 374)                                  | Antonord again fuanda Shi OH Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SbS Cl. Lisily ittacked by ac                         | Antimonyl cæsium fluoride, Shl 4OH, Csk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1010 CL 1 (MIL) ((((((((((((((((((((((((((((((((((((  | (Wells, Am J Sci 1901, (4) 11 456)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5 (Ouvind, C R 116 1516)                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sb S Cl (Ouvrid)                                      | Antimonyl sodium fluoride, Sb()k <sub>3</sub> , N <sub>3</sub> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 28bSCl, 38bS; Decomp by                               | dil HC1+ HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Aa (Schneider)                                        | The state of the s |
| SbSCI 7SbCla Deliquescent                             | decomp by Deliquescent Fisily sol in HO (Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| I () (Schneider Page 108 407                          | n ic, 1 145 239)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 () (Schneider Pogg 108 407                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antonio sulphoduscida Shi S                           | Antimonyl iodide, $5b_4O_5I_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Antimony sulphofluoride, Shl S                        | Difficultly sol in solution of tutaric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| See Antimony fluosulphide                             | or terrates Decomp by HCl, HNO3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                       | of the Lady of in disher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Antimony sulphoiodide, \h\l                           | $H_2S()_4 + Aq$ I usily sol in ilkalies,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Not attacked by H O and de                            | (comp only   (NH4) S + Aq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| by conc acids. Insol in CS                            | (Schneider, SbOI Insol in CS2 (Cooke, Proc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                       | \(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pogg 110 147)                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sh Sale (Henry and Garot)                             | ry (1811) de- Antimonyl sulphide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sb S I3 Sol in dry CS Ver                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| comp (Ouvrard, C R 117 108                            | (a) 1 1266 Withinford oxygenthringe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Comp Court in, O 10 221 10                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# Argon, A

100 cc H<sub>2</sub>O dissolve 4 05 cc argon at 13 9° Critical t -121 6° under 50 6 atmos Bpt -Sp gr 199 (Rayleigh, C N 1895, **71** 51-62, 299-302, C C **1895** 467)

Coefficient of absorption in H<sub>2</sub>O at 12° = 0.0394, at  $13.9^{\circ} = 0.0405$ (Ramsay, Phil Trans 1895, 186 A 225)

Absorption by H O at to

| t° | Coefficient of absorption |  |
|----|---------------------------|--|
| 0° | 0 0561                    |  |
| 10 | 0 0438                    |  |
| 20 | 0 0379                    |  |
| 30 | 0 0348                    |  |
| 40 | 0 0338                    |  |
| 50 | 0 0343                    |  |

(Antropoff, Roy Soc Proc 1910, 83 A 480)

Absorption of argon by H<sub>2</sub>O at t° and 760 mm pressure

| t°                          | Coefficient of absorption                                                                                  |
|-----------------------------|------------------------------------------------------------------------------------------------------------|
| 0° 1 5 10 15 20 25 30 35 40 | 0 05780<br>0 05612<br>0 05080<br>0 04525<br>0 04099<br>0 03790<br>0 03470<br>0 03256<br>0 03053<br>0 02865 |
| 45<br>50                    | 0 02731<br>0 02567                                                                                         |

(Estreicher, Z phys Ch 1899, **31** 184)

11 H<sub>2</sub>O at 38° absorbs 25 7 cc A

1 l blood absorbs 25 3 cc A (Regnard

and Schloesing, C R 1897, 124 303)

Not absorbed by members of the fatty series of organic compounds, with members of the atomatic scries absorption was observed varying from 8% of the volume employed for benzene to 1% for aniline (Berthelot, C R 1899, 129 71)

#### Arsenamide, $As(NH_2)_3$

Insol in liquid NH<sub>3</sub> Decomp by H<sub>2</sub>O (Hugot, C R 1904, 139 55)

#### Arsenic, As

Unaltered by pure H2O Insol in HCl+ Aq if air is excluded, but sl sol in presence of air Not attracked by dil H SO4+Aq Oxidized by conc H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, or aqua regia Not attacked at 20° by HNO<sub>3</sub>, conc or dil, or containing NO<sub>2</sub>, not by HNO<sub>3</sub>+HCl, as long as they do not act on each other, but if treated with the above mixture in extremely dilute state, and a few drops of KNO2+Aq | HO, or by boiling (Gmelin)

are added, the As is attacked at once (Mıllon, A ch (3) 6 101)

Sol in sea water, 0 009 mg per liter off Brittany, 0 01 to 0 09 mg per liter near Azores (Gautier, C R 1903, 137 232) Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, **20** 827) Insol in liquid NH<sub>3</sub>

(Hugot, A ch 1900, (7) **21** 31)

Insol in NaOH, KOH, or NH4OH+Aq Sol in S<sub>2</sub>Br<sub>2</sub> (Hannay, Chem Soc (2) 11 823)

Insol in alcohol and ether

Sol in certain fatty oils

Insol in methylene iodide (Retgers, Z anoig 3 343)

½ ccm oleic acid dissolves 0 0032 g As in 6 days (Gates, J phys Ch 1911, 15 143)

Yellow modification Very unstable (Mc-Leod, C N 1894, 70 139)

Fairly stable in liquid air (Thomson, Chem Soc 1906, 90 (2) 745)

100 ccm CS<sub>2</sub> dissolve at

20° 12° –15° 46° 0° −60° 6 20-25 10g As

Less sol in benzene and ethyl acetate (Erdmann, Z anorg 1902, 32 448)

Arsenic acid See page 59

### Arsenic bromide AsBr

Decomp by about 3 pts boili\_ presence of HBr 17 261)

Sol in CS

Sol in AlBr<sub>3</sub> (Isbekow, Z anoig 1913,

**84** 26 ) Easily sol in PCl<sub>3</sub> and PBi<sub>3</sub> (Walden, Z anorg 1900, 25 211)

1900, Sol in S<sub>2</sub>Cl (Walden, Z anoig **25** 217)

Arsenic cæsium bromide, 2AsBi 3, 3CsBr

Decomp by HO, can be recryst from conc HBi + Aq (Wheeler, Z anoig 4 451)

Arsenic rubidium bromide, 2AsBi<sub>8</sub>, 3RbCl As the corresponding Cs comp

Arsenic bromide ammonia,  $AsBi_3$ ,  $3NH_3$ 

(Besson, C R 110 Decomp by H<sub>2</sub>O 1258)

Arsenic bromide copper, 2 AsBi 3,7Cu

Stable toward hot HO Decomp by KOH (Hilpert and Herrman, B 1913, 46 2224)

Arsenic bromide silver, AsBi 3, 3 Ag

Scarcely decomp by cold HO (Hilpert and Herrmann)

Arsenic chloride, AsCl<sub>3</sub>

Miscible with little HO, and with alcohol, her, and volatile oils Decomp by much ether, and volatile oils

olive oil Somewhat sol in HCl+Aq

(Walden. Easily sol in PCl<sub>8</sub> and PBr<sub>8</sub>

Z anorg 1900, 25 211)

Sol in liquid CN (Centnerszwer, J russ phys Ges 1901, 33 545)

Sol in S2Cl (Walden, Z anorg 1900, 25 217)

#### Arsenic pentachloride, AsCl<sub>5</sub>

Fumes in the air with evolution of hydro-Readily sol in CS2, and absolute ether cooled to -30° (Baskerville, J Am Chem Soc 1902, 24 1070)

# Arsenic cæsium chloride, 2AsCl<sub>3</sub>, 3CsCl

Decomp by H<sub>2</sub>O 100 pts HCl+Aq (12 sp gr) dissolve 0 429 pt salt (Wheeler, Z anorg 4 451)

# Arsenic iridium phosphorus chloride

See Iridium phosphorus chloride arsenic chloride

# Arsenic rubidium chloride, 2AsCl<sub>3</sub>, 3RbCl

Decomp by  $H_2O$  100 pts HCl+Aq (sp gr 12) dissolve 2 935 pts salt (Wheeler, Z anorg 4 451)

> 1ur chloride, 2AsCl<sub>3</sub>, 3SCl<sub>2</sub> O H vo (Rose) ompound is a mixture (Nilson, ,1)

# Arsenic chloride ammonia, 2AsCl<sub>3</sub>, 7NH<sub>3</sub>

Decomp by cold HO, with evolution of NH<sub>3</sub> From the solution crystallizes As<sub>4</sub>Cl N H<sub>10</sub>O<sub>8</sub>

Sol in alcohol without decomp Pogg 52 62)

Composition is AsCl., 4NH, (Besson, C R 110 1258)

# Arsenic chloride copper, 2AsCl<sub>3</sub>,7Cu

Somewhat decomp by HO Decomp by KOH, or hot HCl (Hilpert and Herman, B 1913, 46 2224)

# Arsenic chloride silver, 2 \\Cl3, 7 \L

HO, NH4OH and KOH split off Ag (Hilport and Hormann)

#### Arsenic trifluoride, \\\!

Sol in HO with evolution of heat and de composition (Berzelius)

I isily sol in benzene 1 Moiss in. (

99 574 ) Miscible with alcohol and other (M Ivor ( N 30 169)

### Arsenic pentufluoride, \\\

Sol in HO alkalies + Ag and liquid Ask with evolution of heat. Absorbed by other alcohol and benzene with evolution of heat (Ruff, B 1906, 39 67)

Miscible with oil of turpentine, and with Arsenic potassium fluoride, AsF<sub>5</sub>, KF ive oil Somewhat sol in HCl+Aq

AsF<sub>5</sub>, 2KF+H<sub>2</sub>O AsF<sub>5</sub>, AsOF<sub>3</sub>, 4KF+3H<sub>2</sub>O (Marignac, \_ 145 237)

Arsenic fluoride ammonia, 2AsF<sub>3</sub>, 5NH<sub>3</sub>

Easily decomp by H<sub>2</sub>O (Besson, C 1 **110** 1258)

#### Arsenic pentafluoride mitrosyl fluoride, AsF NOF

Decomp by H<sub>2</sub>O, furning HCl, NaOH+A, dry ether and dry alcohol with evolution NO Sol in conc HNO3, hot conc H<sub>2</sub>SC boiling NOCl and AsF3 Insol in CCl<sub>4</sub> at CS<sub>2</sub> (Ruff, Z anorg 1908, 58 327)

#### Arsenic trifluoride sulphur tetrachlorid 2AsF<sub>3</sub>, SCl<sub>4</sub>

Very hydroscopic Decomp by H<sub>2</sub>O at NaOH Decomp by thionyl chloride, CC CS<sub>2</sub>, abs alcohol and ether Decomp Decomp by H<sub>2</sub>O as I ligroin, benzene and toluene (Ruff, B 190, **37** 4520 )

#### Arsenic hydride, AsH<sub>3</sub>

Sl sol in H2O and alkalı hydrates+A with subsequent decomposition H<sub>2</sub>O . sorbs 1/5 vol AsH3 Decomp by conc acro Absorbed rapidly by oil of turpentine, sligh by fixed oils, and not at all by alcohol, eth or KOH+Aq (Gmelin)

Insol in KOH+Alcohol (Meissner)

Not more sol in alkaline solutions than a pure HO (Berzelius)

Insol in H2O, alcohol, eth , AsH Solid (Wiederhold, Pogg 118 615)

Insol in H<sub>2</sub>O, sol in methylene iodi ylene, or in conc KOH+Aq (Retgers, 1 morg 4 403)

# Arsenic hydride boron bromide, AsH<sub>3</sub>, BI 3

Lisily decomp Decomp by H () preciably sol in AsH<sub>3</sub> or BBr<sub>3</sub> Insol in C (Stock, B 1901, 34 949)

#### Arsenic diiodide, $15 l_4$

Decomp by H O or alkalies, easily sol deohol, ether, chloroform or cubon di (Bumberger and Phillip, B 14 264 Not attacked by cold cone II SO4 or

cold furning HNO3 The litter oxidizes in warming Decomp by pyridine Sol in boiling actic enhydride (Hewitt and Wismill Chem Soc 1907, 91 962)

#### 

Sol m > 12 pts boiling H2O, and solut on if boiled down deposits pure Asl3, but if to cool slowly, deposits crystals of As2O3 1501

Sl sol m HCl+Aq Sol m POCl<sub>4</sub>, PCl<sub>3</sub> and PB<sub>13</sub> (Wale n, Z morg 1900, **25** 212)

Sol m PCl<sub>2</sub> (Beckmann, Z anorg 1906, **51** 110)

Sol in SOCl<sub>2</sub>, S<sub>2</sub>Cl<sub>2</sub> and SO<sub>2</sub>Cl<sub>2</sub> (Walden, Z anorg 1900, **25** 216)

Sol in SnCl<sub>4</sub> (Walden, lc)

Easily sol in AsBr. (Walden, Z anorg 1902, 29 374)

Sol in AsCl. (Walden, Z anorg 1900, **25** 214)

Sol in alcohol without decomp

Sol in ether, benzene, chloroform, and CS2 100 pts methylene iodide dissolve 17 4 pts AsI<sub>3</sub> at 12° (Retgers, Z anorg 3 343)

#### Arsenic pentaiodide, AsI.

More or less sol in  $\rm H_2O$ , alcohol, CHCl<sub>3</sub>, ether and CS<sub>2</sub> (Sloan, C N 1882, **46** 194)

# Arsenic cæsium iodide, 2AsI<sub>3</sub>, 3CsI

Decomp by H<sub>2</sub>O, sol in conc HI+Aq (Wheeler, Z anorg 4 451)

Arsenic rubidium iodide, 2AsI<sub>3</sub>, 3RbI As the corresponding Cs comp

# Arsenic sulphur iodide See Arsenic sulphoiodide

Arsenic truodide ammonia, 2AsI<sub>3</sub>, 9NH<sub>3</sub>

Insol in benzene (Bamberger and Phillip, B 14 2643) (Besson, C R 110 1258) AsI<sub>3</sub>, 4NH<sub>3</sub>

#### Arsenic nitride, AsN

Easily decomp into As and N (Hugot, C R 1904, 139 56)

Decomp by heat (Franz Fischer, B **1910**, **43** 1471)

#### Arsenic suboxide, As<sub>2</sub>O (?)

Insol in H<sub>2</sub>O, decomp by dil acids or NH<sub>4</sub>OH+Aq

Does not exist (Geuther, A 240 208)

#### Arsenic trioxide, As O<sub>3</sub>

"White arsenic" (vists in two modifications aAs O3,—erystalline, octahedral, opaque, porcelaneous, etc., AAs O3,—amorphous, vitrous, "arsonic glass"

The d£ the solubility of As O<sub>3</sub> , the reasons being that re va v (1) the solubility of the two modifications is different, (2) that the length of time necessary to effect solution differs in the two modifications, and (3) that there is a tendency of the amorphous As O<sub>3</sub> to go over into the crystalline state during the process of solution aAs2O3 is also not easily moistened, especially when in a pulverulent condition, which is not the case with the  $\beta$  modification (Winkler, pr (2) 31 247)

The older data we very um chable, but pos-

sess a certain historical interest

1 pt  $As_2O_3$  is sol in 10.5 pts (Wenzel) 11.34 pts (Fischer) 11.86 pts in  $\frac{1}{4}$  hour (Klaproth) 12.2 pts (Bucholz) 15.0 pts (Brandt Bergman) 16.0 pts (Vogel) 24 pts (Lametheriè) 40 pts (Porner) 64 pts

(Baumé) 80 pts (Navier) 200 pts (Aschof and Nasse 1812) 640 pts (Hagen 1796) boiling H<sub>2</sub>O 1 pt AssO<sub>1</sub> is sol in 7 72 pts H<sub>2</sub>O if a or 9 33 pts if β (Gubort) in 24 pts H<sub>2</sub>O if a or 21 pts if β (Taylor) Sol in 53 3 pts. H<sub>2</sub>O at 18 75° (Abl) Sol in 30 pts H<sub>2</sub>O (Nussembrock)

After the solution in H2O at 100° has been left stand-

ing at ordinary temperatures—

1 pt As<sub>2</sub>O<sub>3</sub> remains dissolved in 16 pts H<sub>2</sub>O at 16° and 20 pts H<sub>2</sub>O at 7° (Bucholz) in 33 pts H<sub>2</sub>O at 7° (Kiaproth) in 33 45 pts H<sub>2</sub>O at 6° (Kiaproth) in 33 45 pts H<sub>2</sub>O atter 3 days 55 pts H<sub>2</sub>O atter 8 days 64 50 pts H<sub>2</sub>O atter 2 3 weeks at 10° (Fischer) in 33 52 pts if αAs<sub>2</sub>O<sub>3</sub> was used 55 06 pts if βAs O<sub>3</sub> was used (Guibort) in 38 pts if αAs<sub>2</sub>O<sub>3</sub> after 6 months 53 71 pts if βAs<sub>2</sub>O<sub>3</sub> after 48 hours (Taylor) When an excess of pulverized As<sub>2</sub>O<sub>3</sub> is left to digest for several days with cold H<sub>2</sub>O<sub>2</sub> ing at ordinary temperatures

for several days with cold H2O-1 pt dissolves in 50 pts (Bucholz) in 66 pts. (Fischer) in 80 pts at 15° (Bergman) in 80 pts if  $\alpha$ , and 103 pts if  $\beta$  (Guibort) 96 pts at 10° (Spelman) 96 pts at 35 5° (Hahnemann) 320 pts H<sub>2</sub>O at 20° (Aschof and Nasse 1812) H<sub>2</sub>O at 15 6° or below dissolves less than  $\frac{1}{4}$ % As<sub>2</sub>O<sub>5</sub> (Deltan)

(Dalton)
To dissolve 1 pt As<sub>2</sub>O<sub>3</sub> in 12 pts H<sub>2</sub>O it is necessary to boil an excess of As<sub>2</sub>O<sub>3</sub> with H<sub>2</sub>O if 1 pt As<sub>2</sub>O<sub>3</sub> is boiled with 12 pts H<sub>2</sub>O considerable remains undissolved and even with 1 pt As<sub>2</sub>O<sub>3</sub> to 50–60 pts H<sub>2</sub>O long continued boiling is necessary to effect solution If a clear solution saturated by long boiling with an excess of As<sub>2</sub>O<sub>3</sub> is poured off and evaporated continuously to ½ its original bulk no As<sub>2</sub>O<sub>3</sub> separates out and the solution contains 1 pt As<sub>2</sub>O<sub>3</sub> to 6 pts H<sub>2</sub>O (Dalton)

100 pts aqueous solution of  $\beta$ As<sub>2</sub>O<sub>3</sub> sat at 15° contain 0 96 pt As<sub>2</sub>O<sub>3</sub> and 9 68 pts when sat at 100° (Guibort)

If 1 pt pulverized As<sub>2</sub>O<sub>3</sub> be digested 10 days at 19-25° in 5-10 pts H<sub>2</sub>O the solution contains 1 pt As<sub>2</sub>O<sub>3</sub> to 50

n 5-10 pts H<sub>2</sub>O the solution contains 1 pt As<sub>2</sub>O to 50 pts H<sub>2</sub>O A solution of same strength is obtained in 25 days by digesting 1 pt As<sub>2</sub>O<sub>3</sub> in 40 pts H<sub>2</sub>O If 1 pt As<sub>2</sub>O<sub>3</sub> be immersed in 80 pts H<sub>2</sub>O the resulting solution contains 1 pt As<sub>2</sub>O<sub>3</sub> to 90 pts H<sub>2</sub>O the resulting solution contains 1 pt As<sub>2</sub>O<sub>3</sub> to 180 pts H pts H<sub>2</sub>O 1 pt As<sub>2</sub>O<sub>3</sub> to 280 pts H<sub>2</sub>O I pt As<sub>2</sub>O<sub>3</sub> to 1200 pts H<sub>2</sub>O and ev pt As<sub>2</sub>O<sub>3</sub> is digested at ordinary temper several days with 16 000-100 000 pts H<sub>2</sub>O a portion remains indissolved Pulvenzed As<sub>2</sub>O<sub>3</sub> was set aside

several days with 16 000–100 000 pts  $\rm H_2O$  a portion remains unclassolved Pulverized  $\alpha As_2O$  swas set aside with  $\rm H_2O$  in closed bottles for 18 years when 1 pt  $\rm As_2O_3$  was present in 1000 pts  $\rm H_2O$  a perfect solution was obtained when 1 pt  $\rm As_2O_3$  in 100 pts  $\rm T$   $\rm As_2O_3$  was unclassolved when 1 pt  $\rm As_2O_3$  in 35 pts  $\rm H$  O 0 35%  $\rm As_2O_3$  was unclassolved so that the solution contained 1 pt  $\rm As$  O<sub>3</sub> to 54 pts  $\rm H_2O$  (Gmelin) Porcelaneous modification ( $\alpha As$  O<sub>3</sub>) is much more solutions.

concanned 1 pt. AS 03 to 34 pts.  $\Pi_{2O}$  (Gmein) Porcelaneous modification ( $\alpha$ As O3) is much more sol in H O than the vitreous ( $\beta$ AssO3) 100 pts.  $\Pi_{2O}$  at ordinary temperature dissolve 0 96 pt.  $\Pi_{2O}$  AssO3 100 pts. boiling  $\Pi_{2O}$  dissolve 9 68 pts.  $\Pi_{2O}$  and 11 47 pts.  $\Pi_{2O}$  and when the temperature of this solution has fallen to 15° the solution from

 $\beta$ As<sub>2</sub>O<sub>3</sub> retains 1.78 pts and that from  $\alpha$ As<sub>2</sub>O<sub>3</sub> retains 2.9 pts (Berzelius [citing Guibort])

βAs O3 dissolves more quickly and abundantly than a As<sub>2</sub>O<sub>3</sub> I he same amount H O which will take up 36-38 pts \(\betaAs O<sub>3</sub> at 12-13° will dissolve only 12-14 pts aAs O., or H O dissolve 4 pts βAs O<sub>3</sub> and 12-13 pts aAsO3 By long boiling with H (), a As O<sub>3</sub> is converted into βAs<sub>2</sub>O<sub>3</sub>, and thus requires the solubility of the latter, so that 100 pts boiling H<sub>2</sub>O c in take up 11 pts As O<sub>3</sub> But at low temperature β\s<sub>2</sub>O<sub>3</sub> is converted into aAs O3 when in contact with H2O, so that the solution becomes weaker ifter a while, and retains only the proportion of AsOs corresponding to the solubility of Comminution which hastens the αAs<sub>2</sub>O<sub>3</sub> rate of solubility of a \s (); without increasing the amount dissolved diminishes the solubility of BAs O3, is this is converted into a As O3

 $As_2O_3$ by the friction or contact with H<sub>2</sub>O which has been rendered opaque by NH<sub>4</sub>OH, and that which has been crystallized from an aqueous solution, are equally sol in  $H_2O$  (Bussy, C R 24 774, A 64 286)

100 pts  $H_2O$  dissolve 1 707 pts  $\beta As_2O_3$  in 2½ years, 100 pts boiling H<sub>2</sub>O dissolve 11 46 pts  $\beta As_2O_3$  in 3 hours, and 11 86 pts in 12 hours, 10 14 pts aAsoO3 in 3 hours, and 10 18 pts in 12 hours (Rose, Ann Phys (1) 36 494)

A cold sat solution which stood over excess of As<sub>2</sub>O<sub>3</sub> for 10 months at 10-20° contains 12% As<sub>2</sub>O<sub>3</sub>, hot sat solution a few days after saturation contains 2 25-2 50% As2O8 trace of HCl is present, the solution contains Hot sat solution of porcelain 38% As<sub>2</sub>O<sub>3</sub> mod of As2O3 contains 4 days after saturation 24% As<sub>2</sub>O<sub>3</sub> at  $24^{\circ}$ , after 82 days at  $14^{\circ}$ , 15%, after 4 months at  $12^{\circ}$ , 13% As<sub>2</sub>O<sub>3</sub> (Bacaloglo, J pr 83 111)

According to later experiments, 1 pt aAs2O3 dissolves in 355 pts H<sub>2</sub>O in 1 day at 15° while 1 pt βAs<sub>2</sub>O<sub>3</sub> dissolves in 108 pts H<sub>2</sub>O under the same conditions 1 pt aAs<sub>2</sub>O<sub>3</sub> dissolves in 46 pts H<sub>2</sub>O, if solution is prepared at 100°, and allowed to stand 24 hours at 15° while 1 pt \$As<sub>2</sub>O<sub>8</sub> dissolves in 30 pts H<sub>2</sub>O under the same conditions (Buchner, N Rep Pharm 22 265)

100 pts  $H_2O$  dissolve pts  $\alpha As_2O_3$  and  $\beta As_2O_3$ at ordinary temperature

| Time                                                                           | aAs Os                                                                                 | βAs O <sub>3</sub>                                                                     |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1 hour 3 hours 6 hours 12 hours 24 hours 2 days 4 days 1 week 3 weeks 2½ years | 0 023<br>0 088<br>0 353<br>0 364<br>0 956<br>1 627<br>1 814<br>1 673<br>1 776<br>1 712 | 1 589<br>2 356<br>3 666<br>3 361<br>5 306<br>2 629<br>2 429<br>1 763<br>1 713<br>1 707 |

In the solution of βAs<sub>2</sub>O<sub>3</sub>, octahedral crystals were deposited on the sides of the vessel after 12 hours, which continued to increase There was no such deposit in the case of

From the maxima in the above table, 100 pts HO can dissolve 37 pts βAs<sub>2</sub>O<sub>3</sub> and 17

pts aAs2O3 at ordinary temperature

100 pts boiling HO dissolve 1146 pts  $\beta As_2O_3$  and 10 140 pts  $\alpha As O_3$  in  $\beta$  hours, 11.86 pts  $\beta As_2O_3$  and 10.176 pts  $\alpha As O_1$  in (Cl Winkler, J pr (2) **31** 247) 12 hours

100 pts H<sub>2</sub>O dissolve 175 pts of a third modification (hexagonal crystalline) at ordinary temperature, and 275 pts it 100° (Claudet, Chem Soc (2) 6 179)

βAs<sub>2</sub>O<sub>8</sub> dissolves more rapidly in HCl+Aq than aAs<sub>2</sub>O<sub>3</sub> (Schultz-Sellac, B 4 109)

While 100 ccm H<sub>2</sub>O dissolve 0 8507  $\beta As_2O_3$  at 185°, 100 ccm  $H_2O$  contain 13195 g HCl dissolve 1 1513 g  $\beta As_2$ containing 6 09 g HCl, 1 2724 g  $\beta$ As (Chodounsky, Listy Chemické, 13 114)

100 ccm H<sub>2</sub>O dissolve 1 495 g As<sub>2</sub>O<sub>3 it</sub> (Wood, Chem Soc 1908, 93 412) Solubility of crystalline As<sub>2</sub>O<sub>3</sub> in H<sub>2</sub>O 1 l of the sat solution contains at 15°  $25^{\circ}$ 39 8°

12 006 16 566 20 384 29 302 60+g A ), (Bruner, Z anorg 1903, 37 456)

Much more easily sol in many acids the  $H_2O$ Easily sol in furning H<sub>2</sub>S (Schultz-Sellac)

100 pts dilute H<sub>2</sub>SO<sub>4</sub>+Aq of various strengths dissolve at t°

| t°  | Pts<br>\$\beta\text{As}_2\text{O}_3 | to    | Pts<br>βAs Os              | Ratios<br>amts (<br>solved<br>80° 18 |
|-----|-------------------------------------|-------|----------------------------|--------------------------------------|
| 80° | 1 0195<br>1 3664<br>1 1933          | 18 5° | 0 5422<br>0 7203<br>0 6522 | 1 88<br>1 89<br>1 84                 |

(Chodounsky, lc)

Decomp by HNO3 or aqua regia into As Sol in H PO<sub>4</sub>+Aq (Bergman) More sol in HCl+Aq than in H2SO4, HNO<sub>3</sub>+Aq, and still less in HC<sub>2</sub>H<sub>3</sub>O +Å Solubility in HCl+Aq

| Conc of HCl+Aq                                                                | Grams of As O <sub>3</sub> per 100<br>of solution                       |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 0 46N<br>0 98N<br>2 03N<br>3 13N<br>3 81N<br>5 32N<br>6 50N<br>7 85N<br>9 17N | 1 52<br>1 41<br>1 17<br>1 11<br>1 1 5<br>2 20<br>5 11<br>12 25<br>18 16 |
|                                                                               |                                                                         |

As the concentration of the acid increa the solubility of the oxide decreases, a m mum being reached when the concentrat of the solvent is about 3.2N Beyond t point, an increase in the concentration of solvent leads to a corresponding increase n the solubility (Wood, Chem Soc 1908, 415)

Insol in liquid CO (Buchner, Z ph 3 Ch 1906, **54** 674)

Easily sol in cold II CO<sub>4</sub>+Aq man)

When pulverized, it dissolves in hot H C 4 +Aq, but separates out on cooling

Easily sol in hot benzoic acid + Aq Sol in tartaric acid+Aq

Easily sol in alkali hydrates, or carbona s +Aq

Easily sol in NH<sub>4</sub> arsenite+Aq at 70-80°, crystallizing out on cooling (Berzelius)

Sol in hot K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq Sol in AsCl<sub>3</sub> (Penney and Wallace) More sol in Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>+Aq than in H<sub>2</sub>O Very sl sol in absolute alcohol (Vogel)

Sol in 80 pts highly rectified spirit (Wenzel) when 1 pt powdered AssO<sub>3</sub> is digested 30 days in 10-40 pts alcohol a solution is formed containing 1 pt AssO<sub>3</sub> to 60 pts alcohol when 1 pt AssO<sub>3</sub> is digested with 60-150 pts alcohol a solution is formed containing 1 pt AssO<sub>3</sub> to 124-140 pts alcohol (Fischer) Sol in 70-80 pts alcohol (Thompson.)

Alcohol dissolves 0 446 pt  $\beta$ As<sub>2</sub>O<sub>3</sub> (Rose, A Phys (1) **52** 455)

100 pts alcohol dissolve pts, As<sub>2</sub>O<sub>3</sub>

| Vol % of<br>alcohol | αAs <sub>2</sub> O <sub>3</sub> at<br>15° | αAs <sub>2</sub> O <sub>8</sub> at<br>b pt of<br>alcohol | βAs <sub>2</sub> O <sub>3</sub> at<br>15° |
|---------------------|-------------------------------------------|----------------------------------------------------------|-------------------------------------------|
| 56<br>79<br>84      | 1 680<br>1 430                            | 4 895<br>4 551                                           | 0 504<br>0 540<br>0 565                   |
| 86<br>88            | 0 715                                     | 3 197                                                    | 0 717                                     |
| 100                 | 0 025                                     | 3 402                                                    | 1 060                                     |

(Girardin, J Pharm (3) 46 269)

100 pts absolute alcohol dissolve 0 446 pt  $\beta$  As  $O_3$  in 2  $\frac{1}{4}$  years (Winkler, J pr (2) 31  $\frac{347}{4}$ )

Nearly insol in ether

100 pts ether dissolve 0.454 pt  $\beta$ As<sub>2</sub>O<sub>3</sub>

(Winkler)

Ether extracts 1 mg As  $O_3$  from sat As<sub>2</sub>O<sub>3</sub>+Aq for every 15 cc ether used, less is extracted when the solution is acidified with HCl, and almost none if acidified with HSO<sub>4</sub> or HC<sub>4</sub>O<sub>5</sub> (Selmi, B 13 206)

 $\alpha As_2O_3$  is sol in 50 pts boiling nitrobenzol  $\beta As_2O_3$  is insol in boiling nitrobenzol (Auer-

bach, Z = 1903, **37** 353)

β ls O in oil of turpentine, but αAs O<sub>3</sub> is insol therein αAs O<sub>3</sub> is very sl sol in benzene or petroleum ether, but more sol in methyl deohol, ethyl alcohol, ether, or chloroform (Schm.)

100 pts C5<sub>2</sub> dissolve 0 001 pt βAs<sub>2</sub>O<sub>3</sub> in

21/1 years (Winkler)

SI sol in the fitty oils 1000 pts a istor-oil dissolve 133 pts As<sub>2</sub>O<sub>3</sub> at oidmary temperature, and 9 pts at boiling temperature 1000 pts other oils dissolve 0.6–0.8 pt. As O<sub>3</sub> in the cold, and about 1.7 pts on boiling (Berzelius)

Insol in chinoline or indine (Hoffmann,

A\_ch\_(3) 9 113, 169)

Moder ttely sol in chinolin (Beckmann and Gibel, Zimorg 1906, 51 236)

Insol in actional (Naumann, B 1904, 37 4329), (Eddin un, C C 1899, II 1014)

Sol in amyl alcohol and is divided between it and H<sub>2</sub>O in the constant ratio of 1 5 47 at 25° (Aucrbach, Z anorg 1903, **37** 376)

Min Arsenolite

Arsenic trioxide pentoxide, 3As<sub>2</sub>O<sub>3</sub>, 2As O<sub>5</sub> +3H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Joly, C R 100 1221) 2As<sub>2</sub>O<sub>3</sub>, As O<sub>5</sub>+H O Decomp by H<sub>2</sub>O (Joly)

 $A_{S_0}O_3$ ,  $A_{S_2}O_5+H_2O$  (Joly)

Arsenic tetroxide, As<sub>2</sub>O<sub>4</sub>

Sl sol in H O from which it is partially pptd by alcohol More easily sol in alkali carbonates or HCl+Aq Most easily sol in NaOH or KOH+Aq (Herbst, Dissert 1894)

Arsenic pentoxide, As<sub>2</sub>O<sub>5</sub>

Deliquescent in moist air, slowly sol in H<sub>2</sub>O, forming H<sub>3</sub>AsO<sub>4</sub>, which see Easly sol in alcohol, much more sol in alcohol than As<sub>2</sub>O<sub>3</sub> Very sl sol in the fatty oils, 100 pts of oil dissolving 0.2 pt As<sub>2</sub>O<sub>5</sub> in the cold, and 1 pt with partial decomp on boiling (Berzelius)

1000 pts boiling poppy-oil dissolve 27 pts  $As_2O_5$ , 1000 pts boiling castor-oil dissolve 34 pts  $As_2O_5$  (Heimpel and Grundner)

+4H<sub>2</sub>O Solubility in H<sub>2</sub>O at t°

| t°                    | Pts HsAsO4<br>in100 pts<br>solution                                          | t°                         | Pts H <sub>2</sub> AsO <sub>4</sub><br>in 100 pts<br>solution        |
|-----------------------|------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------|
| 55°504540353025201510 | 69 9<br>70 9<br>71 9<br>72 9<br>73 9<br>74 9<br>75 9<br>76 9<br>77 9<br>78 9 | -5° 0 +5 10 15 20 25 30 35 | 80 0<br>81 0<br>82 1<br>83 3<br>84 7<br>86 3<br>88 0<br>90 1<br>92 8 |

(Menzies and Potter, J Am Chem Soc 1912, 34 1464)

+5/3H O Solubility in H O at to

| 1 /022 0 .000                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t°                                           | Pts H <sub>3</sub> A <sub>3</sub> O <sub>1</sub> in 100 pts<br>of solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| +10° 20 50 40 50 60 70 80 90 110 120 130 140 | \$\frac{1}{59} \\ \frac{1}{59} \\ \frac{5}{90} \\ \frac{5}{91} \\ \frac{2}{91} \\ \frac{9}{9} \\ \frac{6}{93} \\ \frac{2}{93} \\ \frac{9}{95} \\ \frac{6}{95} \ |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

(Auerbach, Z anorg 1903, 37 376) (Menzies and Potter, J Am Chem Soc 1912,

 $As_{9}O_{5}+4H_{2}O$  and  $3As_{9}O_{5}+5H_{9}O$  are the only hydrates that can be isolated (Menzies and Potter )

See also Arsenic Acid

# Arsenic trioxide, with alkali haloid See Arsenite, alkalı haloid

# Arsenic sulphur trioxide, $As_2O_3$ , $SO_3$

Deliquescent, decomp by H2O (Adie,

Chem Soc **55** 157)
As<sub>2</sub>O<sub>3</sub>, 2SO<sub>3</sub> As above
As<sub>2</sub>O<sub>3</sub>, 3SO<sub>3</sub> (Weber, F (Adıe) (Weber, B 19 3186) As<sub>2</sub>O<sub>3</sub>, 4SO<sub>3</sub> As above (Adie) As<sub>2</sub>O<sub>3</sub>, 6SO<sub>3</sub> (Weber)  $As_2O_3$ ,  $8SO_3$ As above (Adie)

# Arsenic oxychloride, etc.

See Arsenyl chloride, etc.

# Arsenic phosphide, AsP

Decomp by H₂O Not attacked by cold H.SO4 or HCl, and only sl sol therein on warming Easily deco NaOH, BaO<sub>2</sub>H<sub>2</sub>+Aq Easily decomp by HNO<sub>8</sub>, KOH, Insol in alcohol. ether, chloroform, sl sol in CS2

P<sub>2</sub>As<sub>3</sub>O<sub>2</sub> Product of action of H<sub>2</sub>O on above compound, which it resembles (Jan-

owsky, B 6 216)

### Arsenic monoselenide, As<sub>2</sub>Se

Insol in most organic and inorganic sol-Sol very slowly in conc HCl and vents H<sub>2</sub>SO<sub>4</sub> Sol in boiling alkalı hydroxides+Aq (Szarvasy, B 1897, 30 1245)

#### Arsenic triselenide, As<sub>2</sub>S<sub>3</sub>

Partially sol in KOH+Aq if boiled with it for a long time (Uelsmann, A 116 123)

#### Arsenic pentaselenide, As Se<sub>5</sub>

Insol in most solvents, as conc HCl Sol in alkalı hydrates and sulpho-hydrates+Aq

(Szarvasy, B 1895, 28 2655-2656)

Insol in HO, in dil acids and in conc HCl Sl sol in waim HNO3+Aq Oxidized by cold fuming HNO<sub>3</sub> Sol in alkalics and in hot alkalı carbonates + Aq Insol ın alcohol, ether, CS, etc (Clever Z morg 1895, 10 129)

#### Arsenic selenosulphide

See Arsenic sulphoselenide

#### Arsenic sulphide, AsaS

Ppt Insol in NH<sub>4</sub>OH or in colorless (NH<sub>4</sub>) S+Aq Sol in yellow NII<sub>4</sub>SH+Aq (Scott, Chem Soc 1900, 77 652)

### Arsenic disulphide, As S

Min Realgar Difficultly sol in alkali sulphides+Aq Pirtly dissolved by KOH+ Aq with decomposition Sol at 150° m a sealed tube in NaHCO<sub>3</sub>+Aq, and crystallizes out on cooling (Scharmont A ch (3) 32 158)

Arsenic trisulphide, As<sub>2</sub>S<sub>3</sub>

Insol in H<sub>2</sub>O when prepared in the dry wa but when prepared moist is very liable to into the colloidal modification mention | below Insol in H<sub>2</sub>O containing H<sub>2</sub>S , HNO<sub>3</sub>, HCl, H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>(CO<sub>2</sub>, NH<sub>4</sub>Cl, KNO<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, MgS(

(Bontigny) Insol in H<sub>2</sub>O Traces are dissolved t H<sub>2</sub>S+Aq Sl decomp by boiling with H<sub>2</sub> or long contact with cold H2O (Fresenius 1 l H<sub>2</sub>O dissolves 2 l x 10-6 mols ppt  $As_2S_3$  at  $18^\circ$ (Weigel, Z phys Ch 1907, 5 294)

Insol in dil acids Insol in cold, ar scarcely attacked by hot conc HCl+Aq

Easily decomp by HNO<sub>3</sub> or aqua regia Easily sol in cold KOH, NaOH, or NH4O +Aq, also in alkali carbonates, or sulphates Αq

Sol ın hot KHSO₃+Aq

Sol in citric acid, and alkali citrates+A (Spiller)

Slowly sol in cold 2% Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>+A Easily sol on heating (Materne, C C 190 II 557)

Insol in CS<sub>2</sub> Min Orpiment

As<sub>2</sub>S<sub>3</sub> may also be obtained in a colloid form, sol in  $H_2O$ Sat solution contai 34 46% As<sub>2</sub>S<sub>3</sub>, it is decomp by standing, bi may be boiled without com a decor position, most acids and many salts ppt As<sub>21</sub> (Schulze, J pr (2) 25 431)

The following solutions cause pptn As<sub>2</sub>S<sub>3</sub> in a solution of the colloidal modific tion, when added in the given state of dil tion

| nc  |                                                 |                       |                                      |
|-----|-------------------------------------------------|-----------------------|--------------------------------------|
| )11 |                                                 | 1<br>1<br>1<br>1<br>1 | 555<br>276<br>255<br>138<br>65<br>26 |
|     | $HC H_3O + Aq$                                  | 1                     | 0 15                                 |
|     | K SO <sub>4</sub> +Aq                           | î                     | 76                                   |
|     | Na SO <sub>4</sub> +Aq                          | ĩ                     | 129                                  |
|     | $(NH_4) SO_4 + Aq$                              | i                     | 188                                  |
|     | CaSO <sub>4</sub> +Aq                           | 1                     | 2750                                 |
|     | $MgSO_4 + Ag$                                   | 1                     | 2650                                 |
|     | $ZnSO_4 + Aq$                                   | 1                     | 5530                                 |
|     | $MnSO_4 + Aq$                                   | 1                     | 2560                                 |
|     | $N_1SO_4 + Aq$                                  | 1                     | 5440                                 |
|     | I <sub>1</sub> (SO <sub>4</sub> +A <sub>0</sub> | 1                     | 2580                                 |
|     | $11 (SO_4)_3 + 1q$                              | 1                     | 52600                                |
|     | $11_2SO_4 + \Lambda q$                          | 1                     | 799                                  |
|     | KCl+Aq                                          | 1                     | 1.7                                  |
|     | KBr+Aq                                          | 1                     | 10)                                  |
|     | KI+Aq                                           | 1                     | 55                                   |
|     | $I_1I + Aq$                                     | 1                     | 127                                  |
|     | NaCl+Aq                                         | 1                     | 212                                  |
|     | NH₄Cl+Aq                                        | 1                     | 207                                  |
|     | B ₁Cl₂+Aq                                       | 1                     | 2860                                 |
|     | $C_{3}C_{1} + Aq$                               | 1                     | 4370                                 |
|     | MgCl + Aq                                       | 1                     | 10000                                |
|     |                                                 |                       |                                      |

| $FeCl_3+Aq$                   | 1 | 50000       |
|-------------------------------|---|-------------|
| AlCl <sub>3</sub> +Aq         | i | 83000       |
| CrCl <sub>3</sub> +Aq         | i | 20000       |
| KNO <sub>8</sub> +Aq          | i | 20000<br>84 |
|                               |   |             |
| NaNO <sub>3</sub> +Aq         | 1 | 117         |
| $NH_4NO_8+Aq$                 | 1 | 138         |
| $Ba(NO_3)_2 + Aq$             | 1 | 2080        |
| $KClO_3 + Aq$                 | 1 | 88          |
| $CaH_2(CO_3)_2 + Aq$          | 1 | 3120        |
| $K_2C_2H_4O_6+Aq$             | 1 | 85          |
| $K_2C_2O_4+Aq$                | 1 | 81          |
| $NaC_2H_3O_2+Aq$              | 1 | 78          |
| Urea+Aq                       | 1 | 25          |
| $(NH_4)_2Fe(SO_4) +Aq$        | ī | 1160        |
| $K_2Al_2(SO_4)_4+Aq$          | ĩ | 50000       |
| $K_2Fe_2(SO_4)_4+Aq$          | ī | 55500       |
| $K_2Cr_2(SO_4)_4+Aq$          | i | 25000       |
| $K_4$ Fe(CN) <sub>6</sub> +Aq | i | 25000<br>67 |
|                               |   |             |
| $K_8$ Fe(CN) <sub>6</sub> +Aq | 1 | 81          |
|                               |   |             |

Cold cone solutions of boric, arsenious, tartaric, benzoic, and salicylic acids, also cane sugar, or chloral hydrate cause no pptn Absolute alcohol and glycerine may also be mixed with the solutions without causing (Schulze, J pr (2) 25 442)

+6H<sub>2</sub>O, decomp completely into As<sub>2</sub>S<sub>3</sub> under a pressure of 6000 to 7000 atmos

(Spring, Z anorg 1895, 10 186)

Arsenic pentasulphide, As S<sub>5</sub>

Sol in NH4OH, KOH, Insol m HO NaOH+Aq, and solutions of alkali sulphides and carbonates Sol in BaO H2, and CaO2H2

Sol in citiic acid, and alkali citrates+Aq

(Spiller)

Alcohol dissolves out S on boiling (Berzelius)

(Nilson, J

Sol in alkali aisenites+Aq pr (2) **14** 155)

 $+H_2O$  (Nilson, lc)

Arsenic trisulphide, with M S  $S \epsilon e$  Sulpharsenites, M

Arsenic pentasulphide, with M S Sec Sulpharsenates, M

Arsenic sulphobromide,  $AsS Bi_d = AsSBi +$ 

Decomp by H () (Hunny, Chem Soc **33** 254)

Arsenic sulphochloride, As 5 Cl

Slowly decomp by boiling H O Sol in hot AsClawithout decomp (Ouvind, C. R. 116) 1516)

AsS CL Decomp by HO NH<sub>4</sub>OH, and alkali cuborates+Aq rud)

ASS CI Slowly decomp by boiling H O Sol in ilkali cubonites and in NH4OH+Aq (Ouvrad, ( R 1893, 116 1517)

Arsenic sulphoiodide, AsSI

Insol in alcohol, chloroform or carbon disulphide (Schneider, J. pr. (2) 23 456) Formula is probably As S<sub>3</sub>, AsI<sub>3</sub>

Slowly attacked by HCl+Aq, somewhat more easily by HNO<sub>3</sub>+Aq Easily sol in KOH, or NH<sub>4</sub>OH+Aq (Schneider, J pr (2) **34** 505)

2AsI<sub>3</sub>, SI<sub>6</sub> Decomp on air (Schneider, J pr (2) 36 509)

As<sub>4</sub>S<sub>5</sub>Í<sub>2</sub> Less sol in CS<sub>2</sub> than AsI<sub>3</sub> (Ouvrard, C R 117 107)

As SI4 (Ouvrard)

See also Arsenyl sulphoiodide

Arsenic sulphoselenide, As<sub>2</sub>SeS<sub>2</sub>

Easily sol in cold NH<sub>4</sub>SH+Aq Nearly completely sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (v Gerichten, B 7 29)

More difficultly sol than the pre- $As_2SSe_2$ ceding comp in NH<sub>4</sub>SH+Aq (v Gerichten)

 $As_2Se_2S_3$  Sp gr = 6 402 at ca 750° Insol in most solvents Easily sol in al-

kalı hydroxides and sulphides+Aq vasy, B 1895, 28 2661)

Sp gr = 11.35 at  $550-600^{\circ}$ As  $Se_3S_2$ Insol in most solvents Easily sol in alkalı hydroxides and sulphides + Aq (Szarvasy, B 1895, 28 2659)

Arsenic telluride,  $As_2Te_2$ 

Sol in HNO3 and HNO3+HCl+Aq (Oppenheim, J pr **71** 266) As above (Oppenheum)  $As_2Te_3$ 

Arsenic acid, anhydrous, As<sub>2</sub>O<sub>5</sub> See Arsenic pentoxide

Metaarsenic acid, HAsOs

Slowly sol in cold, quite easily sol in 1 of  $H_2O$ , with considerable evolution of 1 and conversion into H<sub>3</sub>AsO<sub>4</sub> (Kopp, A (3) **48** 196)

Orthoarsenic acid, H<sub>3</sub>AsO<sub>4</sub>

Sol in H<sub>2</sub>O, with absorption of heat 1 pt As O<sub>5</sub> dissolves in 0405 pt H<sub>2</sub>O at  $12.5^{\circ}$ , or 100 pts H O dissolve 244.81 pts As O<sub>5</sub> at  $12.5^{\circ}$  (Vogcl)

Sol m 05 pt HO (Ihénard)

Sol in 6 pts cold HO, and more quickly in 2 pts\_hot Ĥ () (Bucholz)

100 pts HO it 1556° dissolve 150 pts As  $O_5$  (Ure's Dict)

 $H_3AsO_4+Aq$  sat it 15° contains 15°  $4s()_5$ 

Sp gr of  $H_3AsO_4+Aq$  at 15° a=sp gr if % is As () b = sp gi if % is  $\text{H}_3\text{As}()_4$ 

| ' 0                                         | a                                                                    | b                                                                            | 1%                                     | a                       | ь                                                        |
|---------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|-------------------------|----------------------------------------------------------|
| 5<br>10<br>15<br>20<br>25<br>30<br>35<br>40 | 1 042<br>1 055<br>1 154<br>1 187<br>1 245<br>1 306<br>1 378<br>1 453 | 1 0337<br>1 0690<br>1 1061<br>1 1457<br>1 1552<br>1 2542<br>1 2540<br>1 3382 | 45<br>50<br>55<br>60<br>65<br>70<br>75 | 1 540<br>1 635<br>1 742 | 1 3973<br>1 4617<br>1 5320<br>1 6086<br>1 6919<br>1 7827 |

(Schiff, A 113 183, calculated by Gerlach, | Zanal **27** 303)

Sp gr of  $H_3AsO_4+Aq$  at 15° a=sp gr if % is  $As_2O_5$ , b=sp gr if % is  $H_3AsO_4$ 

|                                                                                                  | is As <sub>2</sub> O <sub>5</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v−sp g                                                                                                                                                                                                                                                                                                                                            | 1 11 7                                                                  | O 12 11311                                                                                                                                            | 304                                    |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| c <sub>o</sub>                                                                                   | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ь                                                                                                                                                                                                                                                                                                                                                 | %                                                                       | а                                                                                                                                                     | ь                                      |
| 123456789011234567890112345678901123456789011234567890112345678901123456789011234567890112454456 | 1 008<br>1 016<br>1 023<br>1 031<br>1 039<br>1 048<br>1 057<br>1 065<br>1 1083<br>1 092<br>1 102<br>1 111<br>1 130<br>1 140<br>1 150<br>1 150<br>1 170<br>1 180<br>1 1214<br>1 226<br>1 237<br>1 249<br>1 228<br>1 325<br>1 351<br>1 35 | 1 006 1 013 1 019 1 026 1 032 1 039 1 046 1 052 1 066 1 073 1 081 1 088 1 103 1 111 1 1126 1 134 1 142 1 150 1 158 1 1210 1 128 1 228 1 247 1 247 1 247 1 257 1 278 1 299 1 309 1 331 1 355 1 357 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 1 377 | 47849012345667890123445667890123345655555555666666666777777777777777777 | 1 564<br>1 582<br>1 601<br>1 620<br>1 642<br>1 663<br>1 706<br>1 728<br>1 752<br>1 777<br>1 801<br>1 940<br>1 940<br>2 030<br>2 060<br>2 050<br>2 150 | 11111111111111111111111111111111111111 |

(Kopp, calculated by Garlach, Z 3160

See also Arsenic pentoxide

#### I moarsenic acid, H<sub>4</sub>As O<sub>7</sub>

Very deliquescent easily sol in HO with evolution of much heat—ind conversion into H3 \501

#### Arsenates

Assentes of the alkali metals and read | usen ites of the alkaline-cuth metals are solin HO Neutral and basic arsenates are casily solomomeral acids including  $H_3AsO_4$  bit 15°, in 381 pts  $NH_4Cl+\Lambda q$  (1

less sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq The net ral alkaline-earth arsenates are less sol in  $H_4OH$ +Aq than in H<sub>2</sub>O, but more sol in N [4Cl+ Aq (Field) The alkalı arsenates are sol in hot glycerine (Lefèvie, C R 108 1 58)

### Aluminum arsenate, $Al_2(AsO_4)$ ,

Ppt Insol in H<sub>2</sub>O, difficultly sol i acids (Coloniano, C R 103 273)

Insol in acetone (Naumann, B 1 )4.37

2Al<sub>2</sub>O<sub>3</sub>, 3As<sub>2</sub>O<sub>5</sub> Nearly unattac d by boiling H<sub>2</sub>O, sol in dil acids (Left re, A Nearly unattac d by ch (6) 27 5)

Aluminum potassium arsenate, 2Al<sub>2</sub>O 3As<sub>2</sub>O<sub>5</sub>

(Lefèvre)

Aluminum sodium arsenate, 2Al<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>O, 3As O.

(Lefèvre)

Ammonium arsenate,  $(NH_4)_8AsO_4+3$ 

Difficultly sol in H<sub>2</sub>O Less sol ι H<sub>2</sub>O than (NH<sub>4</sub>)<sub>2</sub>HAsO<sub>4</sub> (Mitscheilich)

Insol in liquid NH3 (Franklin, A 1 Ch J 1898, **20** 826)

# Ammonium hydrogen arsenate, (NH<sub>4</sub>) HAsO<sub>4</sub>

Fffloresces, giving off NH; more HO than (NH<sub>4</sub>)3 \sO<sub>4</sub> (Salkowsky

**104** 129 ) Insol in actione (Fidmain, C ( 1899, II 1014)

# Ammonium dihydrogen arsenate,

NH<sub>3</sub>H AsO<sub>4</sub>

Not offorescent - Very sol in H O

Ammonium barium arsenate, \HiB: \(\O\_4+\) 1<sub>2</sub>H ()

Sol by 10 days contact in 1591 pt H (). in 18,852 pts of a mixture of 1 pt NL OH+ Aq and 3 pts H O in 227 pts of a of 1 pt NH<sub>4</sub>Cl in 10 pts H O and lution 2169 pts of a solution of 1 pt NH<sub>4</sub>Cl in 0 pts NH4OH+Aq and 60 pts HO (1 fevre, V (h. 1892, (6) **27** 13)

 $(XH_4) B_4H (XsO_4)$ I fllorescent Insol in H O cisily sol in dil HNO + Aq. (B ut-

mann, Arch Pharm 36 56)

#### Ammonium calcium arsenate, $\langle 11_1(1) | 50_1 +$ 1 H()

1000 pts pure H O dissolve 0.20 this salt, 1000 pts NH4Cl+Aq (containing o() pts NH<sub>4</sub>Cl) dissolve 1.15 pts, this salt (c 0 pts H(O+100) pts  $NH_1OH(sp)$  gr =0.5 )) dissolve 0.01 pt this salt (Lield, Chem и 11

Soluble by 10 days' contact in 2167 p HO7), in 43478 pts NH<sub>4</sub>OH+Aq (1 3), in 10570 pts

NH<sub>4</sub>Cl+NH<sub>4</sub>OH+Aq (1 10 60) (Lefèvre, A ch 1892, (6) 27 13) +6H<sub>2</sub>O Sol in hot, very sl sol in cold H<sub>2</sub>O, sl sol in NH<sub>4</sub>Cl, and NH<sub>4</sub>OH+Aq

(Wach, Schw J 12 285)  $+7H_2O$  (Bloxam, C N **54** 163)

Efflorescent  $(NH_4)_2CaH_2(AsO_4)_2$ Insol in HO, easily sol in dil HNO<sub>8</sub>+Aq (Baumann, Arch Pharm 36 36)

 $(NH_4)Ca_3H_2(AsO_4)_3+3H_2O$ 

 $(NH_4)Ca_6H_5(AsO_4)_6+3HO$ (Bloxam, C N 54 163)

Ammonium glucinum arsenate, NH4GlAsO4  $+4\frac{1}{2}H_2O$ 

More stable than the corresponding potassium salt (Bleyer, Z anorg 1912, 75 291)

Ammonium iron (ferric) dihydrogen arsenate, NH<sub>4</sub>H<sub>2</sub>AsO<sub>4</sub>, FeAsO<sub>4</sub>

Hydrolyzed by H<sub>2</sub>O Sol in cold conc HCl, hot HNO3, hot dil  $H_2SO_4$ , and in hot arsenic acid+Aq contain-

ing 75% arsenic pentoxide Sol in hot conc NH<sub>4</sub>OH+Aq Completely

hydrolyzed by caustic alkalies Insol in conc NH4Cl+Aq and in 50% acetic acid (Curtman, J Am Chem Soc 1910, **32** 628)

Ammonium magnesium arsenate, NH<sub>4</sub>MgAsO<sub>4</sub>

Sl sol in H<sub>2</sub>O Sol in acids

Anhydrous salt is sol in 2784 pts H<sub>2</sub>O at 15°, m 15,904 pts NH<sub>4</sub>OH+Aq (1 3) (0 96 sp gr), m 1386 pts NH<sub>4</sub>Cl+Aq (1 70), m 886 7 pts NH<sub>4</sub>Cl+Aq (1 7), m 3014 pts  $NH_4Cl$  (1 pt)+ $NH_4OH$  (0 96 sp gr) (10 pts)+Aq (60 pts), in 32,827 pts magnesia mixture (Fresenius, Z anal 3 206)

Anhydrous salt is sol in 4389 pts NH4NO2 +Aq (1 50), in 2561 5 pts KCl+Aq (1 165), in 1422 pts ammoniacal solution of 35 g tartaric acid in 250 cc H<sub>2</sub>O, in 933 5 pts ammoniacal solution of 2.5 g entric acid in 250 cc  $H_2O$  (Puller, Z anal 10 62)

+½H₂O

Sol in 2656 pts H<sub>2</sub>O at 15°, in 15,038 pts NH<sub>4</sub>OH+Aq (1 3) (0 96 sp gr), m 844 pts NH<sub>4</sub>Cl+Aq (1 7), m 1315 pts NH<sub>4</sub>Cl+Aq 70), in 2871 pts NH<sub>4</sub>Cl (1 pt )+NH<sub>4</sub>OH (0.96 sp gr) (10 pts) + Aq (60 pts)(Fresemus

1000 pts pure H<sub>2</sub>O dissolve 0 14 pt salt, 1000 pts NH<sub>4</sub>Cl+Aq (containing 100 pts NH<sub>4</sub>Cl) dissolve 0.95 pt salt, 900 pts H<sub>2</sub>O +100 pts NH<sub>4</sub>OH (sp gr 0880) dissolve 0 07 pt salt (Field, Chem Soc 11 6)

+6H<sub>2</sub>O Sl efflorescent Sl sol in H<sub>2</sub>O Very sl sol in NH<sub>4</sub>OH+Aq

# Solubility of NH<sub>4</sub>MgAsO<sub>4</sub>+6H<sub>2</sub>O in H<sub>2</sub>O and NH<sub>4</sub> salts+Aq Grams salt dissolved in 100 g solvent

| t°                         | H₂O                                                 | NH <sub>4</sub> 5%<br>NH <sub>4</sub> NO <sub>3</sub> +Aq | 5%<br>NH4Cl+Aq                                      | NH <sub>4</sub> OH<br>1 pt NH <sub>4</sub> OH +<br>Aq (0 96) +4 pts<br>H <sub>2</sub> O | 4 % NH4UH+<br>Aq+5%<br>NH4Cl+Aq | 4% Np4c<br>Aq +10%<br>NH4Cl+Aq |
|----------------------------|-----------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|--------------------------------|
| 0°<br>20<br>30             | 0 03388<br>0 02066                                  | 0 09216<br>0 11358<br>0 11758                             | 0 08397<br>0 12284<br>0 11264                       | 0 00874<br>0 00958                                                                      | 0 01331                         | 0 03165                        |
| 40<br>50<br>60<br>70<br>80 | 0 02746<br>0 02261<br>0 02103<br>0 01564<br>0 02364 | 0 13936<br>0 18945<br>0 21115<br>0 18880<br>0 18945       | 0 19016<br>0 18889<br>0 21952<br>0 22092<br>0 23144 | 0 01173<br>0 01005<br>0 00902<br>0 00949<br>0 00912                                     | 0 04691                         | 0 05353                        |

(Wenger, Dissert 1911)

Ammonium manganous arsenate,  $NH_4MnA_5O_4+6H_2O$ 

Nearly insol in cold H<sub>2</sub>O, easily sol in dil reids, insol in ilcohol (Otto, J pr 2 414)

Ammonium sodium arsenate, NH4N iHAs()4 +4H()

Sol in H () (Uclsmann, Zeit f ges Nit **23** 347)

Ammonium sodium hydrogen arsenate,  $(NH_4)_3N \iota_3H_6(A_5O_4)_4+6H_2O_6$ 

Sol in HO (Filhol and Senderens, C R 94 649)

Ammonium strontium arsenate, NH451 As()4  $+\frac{1}{2}H_{2}O$ 

Sol by 10 days' contact in 3229 pts HO, in 11,586 pts dil NH<sub>4</sub>OH+Aq, in 199 pts

of a mixture of 1 pt NH<sub>4</sub>Cl in 7 pts H O and in 1519 pts of a solution of 1 pt NH<sub>4</sub>Cl m 10 pts NH<sub>4</sub>OH+Aq and 60 pts HO (Lefevre, A ch 1892, (6) 27 13)

Ammonium uranyl arsenate, NH<sub>4</sub>(UO<sub>2</sub>) AsO<sub>4</sub>

Insol in HO, HCH3O, and saline solutions as NH<sub>4</sub>Cl+Aq sol in mineral acids (Puller, Z. anal **10** 72)

Ammonium vanadium arsenate.

 $NH_4(VO_2)_2AsO_4$ , and  $(NH_4)_2HAsO_4+$ 2(VO) H AsO4

See Arseniovanadate, ammonium

Ammonium arsenate tellurate

See Arseniotellurate, ammonium

```
Antimony arsenate (?)
```

Insol in H<sub>2</sub>O, insol in acids after ignition, but when fresh is sol in conc boiling HCl+ Aq, and sl sol in HNO<sub>3</sub>+Aq (Dumas)

Barium arsenate, Ba<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>

1000 pts pure H<sub>2</sub>O dissolve 0.55 pt Ba<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>, 1000 pts NH<sub>4</sub>Cl+Aq (containing 50 pts NH<sub>4</sub>Cl) dissolve 1 95 pts Ba<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>, 900 pts H<sub>2</sub>O+100 pts NH<sub>4</sub>OH+Aq (sp gr =0.88) dissolve 0.03 pt  $Ba_3(AsO_4)_2$  (Field, Chem Soc 11 6)

Sol in cold HNO<sub>3</sub>, and HCl+Aq (Berzelius), H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>, and HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (An-

Solubility in H<sub>2</sub>O is not increased by presence of NH4, Na, or A salts (Laugier) Not pptd in presence of Na citrate (Spiller)

+1½H<sub>2</sub>O (Salkowsky, J pr 104 129)

Barium hydrogen arsenate, BaHAsO4+ 13/2H O

Very sl sol in H<sub>2</sub>O, but decomp thereby into Ba<sub>8</sub>(AsO<sub>4</sub>)<sub>2</sub> and BaH<sub>4</sub>(AsO<sub>4</sub>) (Berzehus)

Sl sol in cold acids +H<sub>2</sub>O Sl sol in either BaCl<sub>2</sub>+Aq or Na HAsO<sub>4</sub>+Aq (Maumené, J B 1864 237)

Barium tetrahydrogen arsenate,  $B_1H_4(\Lambda sO_4)_2$ +2H()

Is early sol in HO (Setterberg, Berz J B

26 206 ) Difficultly sol in little, but decomp by much H() Easily sol in H('l+ 1q less easily in  $H(H_3() + Aq (Horminn, Dissert, 1879)$ 

Barium arsenate, acid, Bi() 215 () +411 () Very sl. sol in H () (Mitscherlich)

Barium pyroarsenate, Bi \<()

Insol in HO but decomp thereby into BiH \( \cdot \) (1 efecte ( R 108 10 \( \cdot \))

Barium potassium arsenate, Pik \s();

SI decomp by cold H O rapidly sol in dil ands (lefevie A ch (6) 27 1)

Barium sodium arsenate, Bililo 9H () (Joly, ( I. 1887 104 1702)

Barium arsenate chloride, Bui 1501 Pull Insol in H O sol in dil H $\times$ O +Aq (Lichartier ( h 65 172)

Bismuth arsenate, basic, Bi \s(); \(\frac{1}{2}\)() Insol in HO Sol in mineral acids (C iv izzi (rizz ch it 14 259)  $_{0}$ B<sub>1</sub> O<sub>1</sub>  $_{2}$ As O  $_{2}$ +SH O  $_{2}$ Mm  $_{2}$ Rhagat I isily sol in HCI + Aq sl sol in HNCI + $\Lambda q$ 

Bismuth arsenate,  $BiAsO_4 + \frac{1}{2}H_2O$ 

Insol in H<sub>2</sub>O Insol in HNO -Aq ın presence of H<sub>3</sub>AsO<sub>4</sub>, or alkalı arsens s+Aq, sol in HCl+Aq (Salkowsky, J r 104. 129)

Not wholly ınsol ın HN)<sub>3</sub>+Aq (Schneider, J pr (2) 20 418)

Very sol in H<sub>8</sub>AsO<sub>4</sub>+Aq (Dum Insol in Bi(NO<sub>3</sub>)<sub>3</sub>+Aq (Dumas

Sol in Bi(NOs)s+Aq (Salkowsk Insol in conc Bi(NO3) + Aq con uning a small quantity of HNO<sub>3</sub> (Schneide)

Bismuth copper arsenate, Bi Cu<sub>20</sub>A 10H<sub>44</sub>O<sub>76</sub>  $=B_{12}O_{3}$ , 20CuO,  $5As_{2}O_{5}+22H_{6}$ 

Min Minte Decomp by dil H O<sub>3</sub>+Aq into insol BiAsO<sub>4</sub>, and Cu<sub>3</sub>(AsO<sub>4</sub>, which goes into solution (Dana)

Bismuth uranyl arsenate, Bi2(AsO, ,  $8B_1O_8H_3$ ,  $(UO_2)_8(A_8O_4)_2$ Min Walpurgite

Cadmium arsenate,  $Cd_3(A_5O_4)_2$ (Salkowsky, J pr 104 129 Ppt 2CdO, As<sub>2</sub>O<sub>5</sub> (lefèvre, C R 11 405) 5CdO, 2As<sub>2</sub>O<sub>5</sub>+5H O Ppt (Sa owsky)

Cadmium pyroarsenate, Cd As<sub>2</sub>O<sub>7</sub> (de Schulten)

Cadmium hydrogen arsenate, Co IAsO4+ HO

Decomp by HO (Demel, B 12 1279) CdH<sub>4</sub>(AsO<sub>4</sub>) +2H O Decomp y excess of HO (de Schulten, Bull Soc (

Cadmium potassium arsenate, 2( (), K<sub>2</sub>(), 15()

(Lefevie C R 110 405)

Cadmium sodium arsenate, (d) As ()

Slowly sol in dil acids (1 cfc 110 105) 2CdO, 4N cO, 3As O — (Lefevie

Cadmium arsenate bromide, CdBr

Sol in very dil HNO; † Aq. (de schulten Bull Soc (5) **1** 472 )

Cadmium arsenate chloride, ( ( \ \( ( ) \)  $\mathbf{C}$ 

Sol in very dil HNO, JAq (de chulten)

Cæsium arsenate, ( \( \cdot \) \( \tau \) \( \tau \)

Ppt (1 phrum / morg 1910 5 246 )

Calcium arsenate, (1,(1,(1,1)) + 31Insol in H O sol in  $H_1 = O_4 + \lambda G$ 

(Kotschoubey, J. pr. 49, 182)

Calcium pyroarsenate, ( i \s () Slowly decomp by cold H O into iHAs()

 $+1^{1}_{2}H()$  (leftere)

Calcium hydrogen arsenate, CaHAsO4+ %H<sub>2</sub>O

Insol in  $H_2O$  (Debray, A ch (3) 61 419) +H<sub>2</sub>O M<sub>1</sub>n Hardingerite Easily sol in acids

+2½H<sub>2</sub>O Min Pharmacolite Easily sol in acids

+3H<sub>2</sub>O Insol in H<sub>2</sub>O, sol in HCl, HNO<sub>3</sub>, or  $H_8AsO_4+Aq$ , also in  $(NH_4)_2SO_4$ ,  $NH_4NO_3$ , NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, and NH<sub>4</sub>Cl+Aq (Pfaff)

Calcium tetrahydrogen arsenate.  $CaH_4(AsO_4)_2$ 

Sol in  $H_2O$ (Graham)

+H<sub>2</sub>O Sl sol in H<sub>2</sub>O Decomp by much hot H<sub>2</sub>O into H<sub>3</sub>AsO<sub>4</sub> and Ca<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub> Decomp by (Hormann, Dissert 1879)

Calcium iron (ferric) arsenate, 6CaO, 4Fe<sub>2</sub>O<sub>3</sub>,  $5As_2O_5 + 15H_2O(?)$ 

Min Arseniosiderite Sol in acids

Calcium magnesium arsenate, Ca<sub>5</sub>H<sub>2</sub>(AsO<sub>4</sub>)<sub>4</sub>,  $Mg_5H_2(AsO_4)_4+10H_2O$ 

Mın Picropharmacolite Easily sol in acids

 $Ca_3(AsO_4)_2$ ,  $Mg_3(AsO_4)_2$ Sol in HNO<sub>3</sub>+ (Kuhn)

Min Berzelite Sol in HNO<sub>3</sub>+Aq  $Ca_8Mg_6H_{14}(AsO_4)_{14}+49H_2O$  Min Wapplerite

Calcium potassium arsenate, CaKAsO<sub>4</sub> (Lefèvre, A ch (6) 27 5)

Calcium sodium arsenate, CaNaAsO4

(Lefevre, A ch (6) 27 1) 4CaO, 2Na O, 3As O<sub>5</sub> Not attacked by boiling H(), casily sol in dil acids

Calcium uranyl arsenate,  $Ca(UO)_2(AsO_4)_2+$ SH ()

Min Uranospinite

CaHAsO<sub>4</sub>, Calcium vanadium arsenate, 2(VO )H A5O₄+8H O

See Arseniovanadate, calcium

Calcium arsenate chloride, Ca<sub>3</sub>(AsO<sub>4</sub>), CaCl<sub>2</sub> Insol in H O, sol in dil HNO<sub>3</sub>+Aq (Lechutici C R **65** 172)  $3C_{13}(\Lambda_5O_4)$ ,  $C_1CI_2$ As above (Lechutici)

Cerous arsenate, C(HAs()<sub>4</sub>

Insol m IIO Sol in usenic reid+Aq (Berzelius)

Ceric hydrogen arsenate,  $C_{\epsilon}(HA_{s}O_{4})$  + 6H ()

Insol in H2O and dil acids (Bubicii, B 1910, **43** 2216)

Ceric dihydrogen arsenate,  $C_{\ell}(H AsO_4)_4 +$ 4H ()

Sol in conc HNO<sub>2</sub> (Barbieri l c)

Chromic arsenate, 2Cr<sub>2</sub>O<sub>3</sub>, 3As<sub>2</sub>O<sub>5</sub>

Insol in H<sub>2</sub>O and cone boiling acids (Lefèvre, A ch (6) 27 5)

Chromic potassium arsenate, 2Cr<sub>2</sub>O<sub>3</sub>, 3K<sub>2</sub>O,  $3As_{\bullet}O_{\delta}$ (Lefèvre)

Chromic sodium arsenate, 2Cr<sub>2</sub>O<sub>3</sub>, 3Na<sub>2</sub>O<sub>3</sub>  $3As_2O_5$ (Lefèvre)

Cobaltous arsenate, basic, 4CoO,  $\text{As}_2\text{O}_5$ Easily sol in acids (Gentele, J B 1851

Co(CoOH)AsO<sub>4</sub> Insol in H<sub>2</sub>O, difficultly sol in acids (Coloriano)

Cobaltous arsenate, Co<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>+8H<sub>2</sub>O

Ppt Insol even in boiling H<sub>2</sub>O, easily sol in HNO<sub>3</sub>, HCl, and NH<sub>4</sub>OH+Aq, sol in  $H_2AsO_4+Aq$  (Proust), sol in dil  $FeSO_4+Aq$ (Karsten, Pogg 60 266)

Min Cobalt bloom, Erythrite Easily sol in

5CoO, 2As<sub>2</sub>O<sub>5</sub>+3H<sub>2</sub>O Insol in H<sub>2</sub>O, difficultly sol in acids (Coloriano, C R 103

2CoO, As<sub>2</sub>O<sub>5</sub> Sl attacked by boiling H<sub>2</sub>O, easily sol in dil acids (Lefèvre)

Cobaltous hydrogen arsenate CoH (AsO ) Sol in

Cobaltous potassium arsenate, CokAs (Lefèvre)

Cobaltous sodium arsenate, CoNaAsO4 (Lefevre) 4CoO, 2Na<sub>2</sub>O, 3As O<sub>5</sub> (Lefèvre)

Cobaltous vanadium arsenate,  $C_0(VO_2)_2H (AsO_4)_2 + 8H_2O$ 

See Arseniovanadate, cobaltous

Cobaltous arsenate ammonia, Co<sub>3</sub>(AsO<sub>4</sub>),  $NH_3+7HO$ 

(Duciu, A ch 1901, (7) 22 185) Co<sub>3</sub>(AsO<sub>4</sub>), 2NH<sub>3</sub>+6H O (Duci (Ducru, l c)  $C_{03}(A_{9}O_{4})_{2}$ ,  $3NH_{3}+5H_{2}O$ (Ducru, l c)

Cuprous arsenate, 2Cu O, As O<sub>5</sub> (Humpe, Dissert 1874) 4Cu O, As O<sub>5</sub> (Hampe, l c)

Cuprous pyroarsenate,  $Cu_4 As O_7$ 

Sol in NH<sub>4</sub>OH or KOH+Aq Ppt (Reich ud, B 1595, 31 2166)

Cupric arsenate, basic, SCu(), As ()5+ 12H ()

Min Chalcophyllite Fisily sol in unds and  $NH_4OH + Aq$ 6CuO, As O<sub>5</sub>+3H O Min Aphanesite.

Choclasite Sol in reids and ammonia 5CuO, As<sub>2</sub>O<sub>5</sub>+2H O Min Erinite in HNO₃+Aq

 $+5\mathrm{H}_2\mathrm{O}$ Min Cornwallite Sol in acids, Cupric arsenate ammonia, and NH<sub>4</sub>OH+Aq +9H<sub>2</sub>O Min Tirolite  $3NH_8+4H_2O$ Insol in cold or hot H<sub>2</sub>O (Da our, J pr Insol in H<sub>2</sub>O 4CuO,  $As_2O_5+H_2O$ (De-**37** 485) bray, A ch (3) 61 423) 2CuO,  $As_2O_5$ ,  $4NH_8+3H_2O$ I comp by Min Olivenite Sol in acids, and NH<sub>4</sub>OH H<sub>2</sub>O (Schiff, A 123 42) +Aq, decomp by hot KOH+AqCupric arsenate calcium carbon e, 5CuO, +7H<sub>2</sub>O Min Euchroite Sol in HNO<sub>3</sub>+  $As_2O_5$ ,  $CaCO_8+4H_2O$ , or 9H  $\mathbf{A}\mathbf{q}$  $+4\frac{1}{2}H_{2}O$ (Hirsch, C C 1891, I 15) Min Tyrolite Easily sol in cids, and NH<sub>4</sub>OH+Aq Cupric arsenate, Cu<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub> Cupric arsenate sodium chloride,  $2 \frac{1}{3} (AsO_4)_2$ , Insol in H<sub>2</sub>O Easily sol in HCl+Aq, sl NaCl+7½H<sub>2</sub>O sol in other acids, sol in NH<sub>4</sub>OH+Aq (Coloriano, C R 103 273) Decomp by hot H<sub>2</sub>O (H<sub>1</sub>rs Insol in methyl acetate (Naumann, B 1891) 3Cu<sub>8</sub>(AsO<sub>4</sub>)<sub>2</sub>, 2NaCl+13½H O 1909, **42** 3790) Insol in liquid NH<sub>3</sub> (Franklin, Am Ch  $+17\frac{1}{2}H_2O$  (Hirsch, lc) 5Cu<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>, 3NaCl+23H<sub>2</sub>O J 1898, **20** 827)  $+4H_2O$  Decomp by hot  $H_2O$  (Debray) Didymium arsenate, D12H3(AsO4  $+5 H_2 O$ Min Trichalcite Easily sol in Ppt Insol in H<sub>2</sub>O, sl sol in cold HCl+Aq (Marignac, A ch (3) 38 164) Cupric arsenate, acid, 5CuO, 2As<sub>2</sub>O<sub>5</sub>  $5D_{12}(AsO_4)_2$ ,  $As_2O_5+3H_2O$ Sol in  $H_2SO_3+Aq$  (Vogel) Glucinum arsenate,  $Gl_3(AsO_4)$ . +3H<sub>2</sub>O (Salkowsky) +8,9½, and 12½H O Insol in H<sub>2</sub>O, sol in H<sub>3</sub>AsO<sub>4</sub>- Aq (Ber-(Hirsch) zehus) (Color-CuHAsO<sub>4</sub>+H<sub>2</sub>O Insol in H<sub>2</sub>O Glucinum hydrogen arsenate, Gl iano)  $+1\frac{1}{2}H_2O$  Insol in  $H_2O$ (Debray, A Obtained in impure state by he ting As2O; ch (3) 61 419) with Gl(OH)2 in a sealed tul SCuO,  $3As O_5 + 12H_2O$  (Hirsch) (Bleyer, Z anorg 1912, 75 287) Cupric lead arsenate, 3CuO, PbO, As<sub>2</sub>O<sub>5</sub>+ Glucinum tetrahydrogen arsenat  $GlH_4(AsO_4)_2$  $2H_2O$ Min Bayldonite Nearly insol in HNO<sub>3</sub>+ Very hydroscopic (Bleyer, Z **75** 287) Glucinum potassium arsenate Cupric potassium arsenate, Cul\AsO<sub>4</sub> 1⁄4GlO +5H O Slowly sol in NH<sub>4</sub>OH+Aq, easily sol in acids (Lefevre, A ch (6) 27 5) giving more basic salts 8CuO, K O, As O<sub>5</sub> Easily sol in dil acids 1912, 75 289) (Lefevre) Glucinum sodium arsenate, Cupric sodium arsenate, Cu Na AsO<sub>4</sub> 1⁄2GlO+6H O (I efevre ) Unstable 3Cu(), Na (), 2As<sub>2</sub>O<sub>5</sub> Very sol in dil Z anorg 1912, **75** 290) 2Cu (4sO<sub>4</sub>), NaH As( (Husch, C ( 1891, I 15)  $\mathbf{Ppt}$ Iron (ferrous) arsenate,  $6H_2O$  (?) N t₂HAsO₄+  $6Cu_3(A_5O_4)_2$ ,  $2NaH_2A_5O_4$ , 131, H (), or 16H<sub>2</sub>O Ppt (Husch)  $3Cu_3(A_5O_4)$ ,  $Na_2HA_5O_4+91_2HO$ Ppt(Wittstein) (Hirsch)  $4Cu_3(As()_4)$ , Na  $HAs()_4+11H$  () Ppt Αq (Hirsch) Cupric uranyl arsenate, Cu(UO<sub>2</sub>) (AsO<sub>4</sub>)<sub>2</sub>+ +24H<sub>2</sub>O 8H () (Werther, A 68 312) Min Zeunerite

Cupric vanadium arsenate,  $Cu(VO) H (AsO_4)_2 + 3H O$ 

See Arseniovanadate, cupric

Unstable Amorphous Lasily lydrolyzed, (Bleve Z anorg NaGlAsO. Fasily hydrolyze (Bleyer,  $_3(AsO_4) +$ Sl sol in NH<sub>4</sub>OH+A Insol in  $(NH_4)_8AsO_4+Aq$  or other NH salts+Aq +8H<sub>2</sub>O Min Symplesite 5 | in HCl+ Iron (ferric) arsenate, basic, 16 c O<sub>3</sub>, As<sub>2</sub>O<sub>5</sub> Insol in NH4OH+Aq (Bei lius) 2Fe O<sub>3</sub>, As O<sub>5</sub>+12H<sub>2</sub>O Inso in NH<sub>4</sub>OH +Aq3Fe<sub>2</sub>O<sub>3</sub>, 2As<sub>2</sub>O<sub>5</sub>  $3\text{Fe}_2(\text{AsO}_4)_2$ ,  $\text{Fe}_2\text{O}_6\text{H}_6 + 12\text{H}$  ) Pharmacosiderite -Easily sol acids. decomp by KOH+Aq

 $(l_3(AsO_4)_2,$ 

, Dissert

dursch)

eak acids

at 220°

norg 1912.

KGlAsO<sub>4</sub>,

Iron (ferric) arsenate, Fe<sub>2</sub>O<sub>3</sub>, As<sub>2</sub>O<sub>5</sub>

Ppt Insol in H<sub>2</sub>O Decomp by hot H<sub>2</sub>O

Sol in HCl, H<sub>2</sub>SO<sub>4</sub> and HNO<sub>8</sub> (Metzke, Z anorg 1898, 19 473) +4H<sub>2</sub>O Min Scorodite

+4H<sub>2</sub>O Min Sources HCl+Aq, insol in HNO<sub>2</sub>+Aq HCl+Aq, insol in H<sub>2</sub>O When freshly ptd, sol in NH<sub>4</sub>OH+Aq Sol in HCl, or  $INO_3+Aq$  Insol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, or  $INO_4$ HNO₃+Aq

salts+Aq (Wittstein) Sol in warm H SO<sub>3</sub>+Aq or (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>+ Aq (Berthier, A ch (3) 7 79)

Iron (ferric) arsenate, acid, Fe<sub>2</sub>O<sub>8</sub>,3As<sub>2</sub>O<sub>5</sub>  $+167H_{2}O$ 

Ppt, sl sol in acids with a yellow color, and in NH<sub>4</sub>OH+Aq with a red color (Metzke, Z anorg 1898, 19 476)

 $2\text{Fe}_{\circ}\text{O}_{3}$ ,  $3\text{As}_{2}\text{O}_{5}+12\text{H}_{2}\text{O}$  Insol in  $\text{H}_{2}\text{O}$  or

 $HC_2H_3O_2+Aq$ 

Sol in mineral acids

Sol only in conc H<sub>8</sub>AsO<sub>4</sub>+Aq

Sol in (NH<sub>4</sub>)<sub>8</sub>AsO<sub>4</sub>, and other NH<sub>4</sub> salts

+Aq (Wittstein)
Sol in NH<sub>4</sub>OH+Aq
+22½H<sub>2</sub>O Ppt Sl sol in acids with
a yellow color, and in NH<sub>4</sub>OH+Aq with a red color (Metzke, Z anorg 1898, 19 475)

Iron (ferroferric) arsenate, 6FeO, 3FeO<sub>3</sub>,  $4As_2O_5 + 32H_2O$ 

Insol in H<sub>2</sub>O Sol in HCl+Aq Decomp (Wittstein, J B 1866 243) by KOH+Aq

Iron (ferric) lead arsenate, 5Fe2(AsO4)2,  $Pb_8(AsO_4)_2$ 

Min Carmine Spar Carminite Sol in acids, KOH+Aq dissolves out As<sub>2</sub>O<sub>5</sub> (Sandberger)

Iron (ferric) potassium arsenate, 2Fe<sub>2</sub>O<sub>3</sub>,  $3K_2O$ ,  $3As_2O_5$ 

Not attacked by boiling HO, easily sol in dil acids (Lefèvre)

Fe C<sub>3</sub>, K<sub>2</sub>O, 2As<sub>2</sub>O<sub>5</sub> (Lefevre)

Iron (ferric) sodium arsenate, Fe<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>O,  $2As_2O_5$ 

(Lefevre) 2Fe<sub>2</sub>O<sub>3</sub>, 3Na<sub>2</sub>O, 3As<sub>2</sub>O<sub>5</sub> (Lefevie)

Lanthanum arsenate, La<sub>2</sub>H<sub>3</sub>(AsO<sub>4</sub>)<sub>3</sub>

(Fierichs and Smith) Doubtful (Cleve, B 11 910)

Lead arsenate, basic, 15PbO,2As,O<sub>5</sub> (?)

Ppt (Stromholm Z anorg 1904, 38 446)

Lead arsenate, Pb<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O, NH<sub>4</sub>OH, or NH<sub>4</sub> salts+Aq (Wittstein)

Sol in 2703 5 pts HC2H3O2+Aq contain-(Bertrand, Monit ing 38 94% HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> Scient (3) 10 477)

Sol in sat NaCl+Aq (Becquerel, C R

**20** 1523 )

Not pptd in presence of Na citrate (Spiller )

Lead pyroarsenate, Pb<sub>2</sub>As<sub>2</sub>O<sub>7</sub>

Sol m Insol in H<sub>2</sub>O or HC<sub>2</sub>H<sub>2</sub>O<sub>2</sub>+Aq

HCl, or HNO<sub>3</sub>+Aq (Rose)
Decomp by cold H<sub>2</sub>O (Lefèvre)
+H<sub>2</sub>O=PbHAsO<sub>4</sub> Ppt (Salkowsky, J pr **104** 109)

Lead potassium arsenate, PbKAsO4 (Lefèvre, A ch (6) 27 5)

Lead sodium arsenate, PbNaAsO4

(Lefèvre ) 4PbO, 2Na<sub>2</sub>O, 3As<sub>2</sub>O<sub>5</sub> Superficially decomp by cold H2O (Lefèvre)

Lead arsenate chloride, 3Pb<sub>8</sub>(AsO<sub>4</sub>)<sub>2</sub>, PbCl<sub>2</sub> Sol in dil HNO3+Aq (Lechartier) Min Mimetrie Sol in HNO3, and KOH+ Aq

Lithium arsenate, Li<sub>2</sub>AsO<sub>4</sub>

Ppt Sol in dil acids and in  $HC_2H_4O_2+q$  (de Schulten, Bull Soc (3) 1 479) Li $H_2AsC_4+3/2H_2O$  Decomp by  $H_2O$  into H<sub>8</sub>AsO<sub>4</sub> and L<sub>13</sub>AsO<sub>4</sub> (Rammelsberg, Pogg **128** 311)

Magnesium arsenate, Mg3(AsO4)2

(Naumann, B Insol in methyl acetate 1909, 42 3790)

+7H<sub>2</sub>O, +8H<sub>2</sub>O, +10H<sub>2</sub>O, and +22H<sub>2</sub>O (Grühl, Dissert **1897**)

+8H<sub>2</sub>O Min Hörnesite Insol in H<sub>2</sub>O, easily sol in acids

Magnesium hydrogen arsenate, MgHAsO4 Insol in H<sub>2</sub>O (de Schulten, C  $+\frac{1}{2}H_{2}O$ R 100 263)

(Schiefer)  $+5H_{\bullet}O$ +6½H<sub>2</sub>O Insol in H<sub>2</sub>O 1000 pts boiling

H\_O dissolve 15 pts (Thompson) Sol in HNOs+Aq before ignition, but insol in acids after ignition (Graham, A 29

Min Roesslerite Sol in HCl+ +7H O

Magnesium tetrahydrogen arsenate,  $MgH_4(AsO_4)$ 

Very deliquescent, sol in H<sub>2</sub>O (Schiefer)

Magnesium potassium arsenate, MgKAsO4

Insol in, but decomp by cold H2O (Rose)

Easily sol in dil acids (Lefèvre) +7H<sub>2</sub>O (Kinkelin, Dissert, 1893) 4MgO, 2K<sub>2</sub>O, 3As O<sub>5</sub> Not attacked by boiling H2O, slowly sol in dil acids (Lefèvre )

Magnesium potassium hydrogen arsenate,  $KMgH(AsO_4)_2+xH_2O$ 

(Kinkelin, Desert Decomp by HO 1883)

Mg<sub>2</sub>KH<sub>2</sub>(AsO<sub>4</sub>)<sub>2</sub>+5H<sub>2</sub>O (Chevron and Drouxhe, J B **1888**, 523)

Magnesium potassium sodium arsenate, Mg<sub>2</sub>KNa(AsO<sub>4</sub>)<sub>2</sub>+10H<sub>2</sub>O (Kinkelin, Dissert 1883)

Magnesium sodium arsenate, MgNaAsO4 Insol in H<sub>2</sub>O Very sl sol in dil acids (Lefèvre)

4MgO, 2Na<sub>2</sub>O, 3As<sub>2</sub>O<sub>5</sub> (Lefèvre)

Magnesium vanadium arsenate, MgH<sub>2</sub>(VO<sub>2</sub>)<sub>2</sub>(AsO<sub>4</sub>)<sub>2</sub>+9H<sub>2</sub>O and MgHAsO<sub>4</sub>, 2(VO<sub>2</sub>)H<sub>2</sub>AsO<sub>4</sub>+9H<sub>2</sub>O See Arseniovanadate, magnesium

Magnesium arsenate chloride, Mg<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>, MgCl<sub>2</sub>

Insol in H<sub>2</sub>O, sol in dil HNO<sub>3</sub>+Aq (Lechartier, C R 65 172)

Magnesium arsenate fluoride, Mg<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>,
MgF<sub>2</sub>

Insol in  $H_2O$ , sol in dil  $HNO_3+Aq$  (Lechartier)

Manganous arsenate, basic, 6MnO, As O<sub>5</sub>+ 3H<sub>2</sub>O (?)

Min Chondroarsenite Easily and completely sol in dil HCl, and HNO<sub>3</sub>+Aq

Manganous arsenate, Mn<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>+HO

Insol in H<sub>2</sub>O, sl sol in acids (Coloniano, C R 103 273)
5MnO. 2As O<sub>5</sub>+5H<sub>2</sub>O Insol in H O

5MnO, 2As O<sub>5</sub>+5H<sub>2</sub>O Insol in H O (Coloriano) 2MnO, As<sub>2</sub>O<sub>5</sub> Sl decomp by cold H<sub>2</sub>O.

but rapidly on heating (Lefevre)
MnHAsO<sub>4</sub>+H<sub>2</sub>O Decomp by boiling
H O into 5MnO, 2As O<sub>5</sub>+5H O Sol in
HNO<sub>5</sub>, H SO<sub>4</sub>, or H<sub>3</sub>AsO<sub>4</sub>+Aq

Manganous tetrahydrogen arsenate, MnH<sub>4</sub>(AsO<sub>4</sub>)

Deliquescent Easily sol in HO (Schiefer)

Manganous potassium arsenate, Mnk AsO<sub>4</sub> (Lefèvre, A ch (6) 27 5)

Manganous sodium arsenate, MnNaAsO4

Very sol in dil acids (Lefevie) 2MnO, 4Na<sub>2</sub>O, 3As<sub>2</sub>O<sub>5</sub> Not attacked by boiling H<sub>2</sub>O, very sol in dil acids (Lefevie)

Manganous arsenate chloride,  $\mathrm{Mn}_3(\mathrm{AsO}_4)$ ,  $\mathrm{MnCl}$ 

Insol in  $H_2O$ , sol in dil  $H \O_3 + Aq$  (Lechartier, A 58 259)

Manganic arsenate, Mn<sub>2</sub>(AsO<sub>4</sub>)<sub>2</sub>+2H O Insol in H<sub>2</sub>O, sol in acids

Mercurous arsenate,  $(Hg_2)_3(AsO_4)_2$ 

Insol in H<sub>2</sub>O, difficultly sol in acids (Coloriano, C R 103 273) Ppt (Haack, C C 1890, II 736)

Hg (AsO<sub>3</sub>)<sub>2</sub> Insol in H<sub>2</sub>O, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, alcohol Decomp by cold HCl+Aq Sl so in cold HNO<sub>3</sub>+Aq, from which it is precipated by NH<sub>4</sub>OH as Hg<sub>2</sub>HAsO<sub>4</sub> (Simo Pogg 41 424)

Mercurous hydrogen arsenate, Hg<sub>2</sub>HA<sub>8</sub>O<sub>4</sub>

Insol in H<sub>2</sub>O, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, or NH<sub>4</sub>OH+A Decomp by cold HCl+Aq, sol in cold HN , +Aq without decomp, very sl sol withe & decomp in NH<sub>4</sub>NO<sub>3</sub>+Aq (Simon, Pogg 4 424)

Mercuric arsenate,  $Hg_3(AsO_4)_2$ 

Ppt Sol in H<sub>3</sub>AsO<sub>4</sub> or HNO<sub>3</sub>+Aq (Be man) Very sl sol in H<sub>2</sub>O Easily sol in HCl+Aq Sl sol in HNO<sub>3</sub>+Aq Insol in H<sub>2</sub>AsO<sub>4</sub>+Aq (Haack, C C 1890, II 73)

Mercurous silver arsenate, Hg<sub>2</sub>AgAsO<sub>4</sub>

Sol in hot conc HNO<sub>3</sub> (Jacobsen, B 1 Soc 1909, (4) 5 948)

Mercurous arsenate nutrate,  $Hg_3AsO_4$ ,  $Hgl)_2 + H_2O$ 

Insol in  $H_2O$  or  $HC_2H_3O_2$ , sol in HNO + Aq (Simon, Pogg 41 424)  $3Hg_3AsO_4$ ,  $2HgNO_3$ ,  $2Hg_2O$  Ppt (Haa)

Molybdenum arsenate

Ppt

Nickel arsenate, basic, 5NiO, As<sub>9</sub>O<sub>5</sub>

Min — (Bergemann)

N1(N1OH)AsO<sub>4</sub> Difficultly attacked of acids of alkalies (Coloriano, Bull Soc 2 45 241)

 $5N_1O$ ,  $2As_2O_5+3H_2O$  As above

Nickel arsenate,  $N_{13}(AsO_4)_2$ 

Min — (Bergemann) +xHO Insol in H<sub>2</sub>O Sol in H<sub>3</sub>A and conc mineral acids Easily sol NH<sub>4</sub>OH+Aq

+2H<sub>2</sub>O Insol in H<sub>2</sub>O, difficultly so racids (Coloriano, Bull Soc **45** 241)

+8HO Min Nickel-bloom, Annabe ite Easily sol in acids

NiHAsO<sub>4</sub>+H<sub>2</sub>O Sol in H<sub>2</sub>O Diffic thattacked by acids (Coloriano, C R 03 274)

Nickel potassium arsenate, 12NiO, 3  $\circ O$  5As  $O_5$ 

(Lefèvre)

2N<sub>1</sub>O, k<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub> Rapidly sol 11 dil acids (Lefèvre)

Nickel sodium arsenate, NiNaAsO4

Very slowly sol in dil acids (Lefev 4NiO, 2Na O, 3As O<sub>5</sub> (Lefèvre)

Nickel arsenate ammonia,

 $N_{13}(AsO_4)_2, NH_3 + 7H_2O$  $N_{13}(AsO_4)_2, 2NH_3 + 6H_2O$ 

N<sub>18</sub>(AsO<sub>4</sub>)<sub>2</sub>,3NH<sub>8</sub>+5H O (Ducru,

Ι

1900, **131** 703)

Palladium arsenate (?)

Ppt

Platinum arsenate (?)

Ppt Sol in HNO3+Aq

Potassium arsenate, KaAsO.

Deliquescent Very sol in H2O (Graham, Pogg 32 47)

Insol in ethyl acetate 1904, 37 3601) (Naumann, B

Potassium hydrogen arsenate, K2HAsO4 Sol in H<sub>2</sub>O

Potassium dihydrogen arsenate, KH2AsO4

Sol in 53 pts H<sub>2</sub>O at 6°, forming a solution of sp gr 1 1134 Much more sol in hot H<sub>2</sub>O Insol in alcohol

Sol in 26 666 pts boiling conc alcohol (Wenzel) Potassium sodium hydrogen arsenate,

KNaHAsO4+16H.O

Sol in H O

K<sub>3</sub>Na<sub>3</sub>H<sub>6</sub>(AsO<sub>4</sub>)<sub>4</sub>+9H O Sol in H<sub>2</sub>O, and not easily decomp thereby into its constituents (Filhol and Senderens, C R 95 343)

Potassium strontium arsenate, KSrAsO4 (Lefevre, C R 108 1058)

Potassium vanadium arsenate, K(VO)24sO4  $+2\frac{1}{9}H O$ 

See Arseniovanadate, potassium

Potassium zinc arsenate, KZnAsO4 (Lefevre)

Potassium arsenate sulphate See Arseniosulphate, potassium

Rhodium arsenate (?)

Ppt

Rubidium metaarsenate, Rb 4sO3

Sol in HO (Bouchonnet, C R 1907 l44 642)

Rubidium arsenate, Rb<sub>3</sub>AsO<sub>4</sub>+2H O

Very hydroscopic, sol in HO to give an ilkaline solution Absorbs CO from the ur Bouchonnet, lc)

?ubidium pyroarsenate, Rb. As O (Bouchonnet, lc)

lubidium hydrogen arsenate, Rb HAsO4+ +HO

Absorbs CO from the air Very hydrocopie, sol in HO Insol in alcohol (Bouhonnet, lc)

'ubidium dihydrogen arsenate, RbH  ${
m AsO_4}$ Not hydroscopic Very sol in HO, aq olution is acid to litmus (Bouchonnet, lc)

ilver arsenate, Ag<sub>3</sub>A<sub>5</sub>O<sub>4</sub>

Insol in H<sub>0</sub>O Sol in acids, easily sol  $_{1} H_{3}AsO_{4}+Aq$  (Joly, C R 103 1071)

11 H<sub>2</sub>O dissolves 0 0085 g Ag<sub>2</sub>AsO<sub>4</sub> at 20° (Whitby, Z anorg 1910, 67 108) Much less sol in HiAsO4 than AgiPO4 (Graham)

Sol m \H40H+Aq (Scheele)

Sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>4</sub>+Aq Insol in NH<sub>4</sub> sulphate nitrate, or succinate + Aq (Witt-

Very al sol in \H.\O<sub>1</sub>+Aq, more easily in HC<sub>2</sub>H<sub>2</sub>O<sub>2</sub>+Aq (Graham) Sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq, but not so easily as

ot pptd in presence of Na citrate (Spiller)

Insol in liquid \H: (Gore Am Ch J 1898, 20 829 ]

Silver hydrogen arsenate, Ag.H AsO4

Decomp by H2O, with formation of Ag.AsO. (Setterberg, Berz J B 26 208) ÂgH AsO. Decomp by H2O (Joly, C R 103 1071)

Ag<sub>2</sub>O, 2As<sub>2</sub>O<sub>3</sub> Decomp by H<sub>2</sub>O Rather sl sol in H\O2+Aq \erv easily sol in NH4OH+Aq (Hurtzig and Geuther, A 111 168)

Silver arsenate ammonia, Ag. AsO. 4\H. Easily sol in HO Widmann, Bull Soc (2) **20** 64)

Silver arsenate sulphate, 3 Ag O As O<sub>5</sub>, SO<sub>5</sub> Decomp by HO with separation of 4g3 4sO4 decomp by dil H O4+1q 1 etterberg, Berz J B 26 209

Sodium arsenate, Na. AsO4+12H O

Permanent in dry air Sol in 3 57 pts H O Permanent in drv air Sol in 357 pts HO at 155° (Graham) 100 pts HO at 155° dissolve 28 pts Na AsO +12HO Berzelius) Sol in 375 pts HO at 17 or 100 pts HO at 17 dissolve 25 7 pts or at Na, 4sO<sub>4</sub> + 4q at 17° contains 21 1° Na AsO<sub>4</sub> + 12HO or 10 4° Na AsO and ha sp gr 11186 (Schiff, A 113 50)

Melts in crystal H O at 55 o

>p gr of \1 4-0 - 4q 11 1- $\tilde{c} = \frac{c}{c} \ln 4 + 0 - 12 \text{H } 0$ 

| , c                                  | Sp gr                                                                        | ۲-                                    | _p                                                                 | ,                          | `p &                                                     |
|--------------------------------------|------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|----------------------------|----------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 1 0053<br>1 0107<br>1 0161<br>1 0215<br>1 0270<br>1 0325<br>1 0380<br>1 0435 | 9<br>10<br>11<br>12<br>15<br>14<br>15 | 1 0490<br>1 0547<br>1 0603<br>1 0659<br>1 0716<br>1 0775<br>1 0887 | 15<br>18<br>20<br>21<br>22 | 1 0945<br>1 1005<br>1 1061<br>1 1121<br>1 1179<br>1 1258 |

(Schiff, calculated by Gerlach Z and 8 286

Arseniate of oda di olve n i pt 1 milas alcohol (Wenzel)

+41 )H () Hall Chem 50c 51 93 +10HO Inducent Hall

Arsenioarsenic acid, 3As<sub>2</sub>O<sub>3</sub>, 2As<sub>2</sub>O<sub>5</sub>+  $3H_2O$ 

Decomp by H<sub>2</sub>O (Joly, C R 100 1221)  $3As_2O_3$ ,  $As_2O_5+H_2O$  Decomp by  $H_2O$ 

Decomp by H<sub>2</sub>O  $As_2O_3$ ,  $As_2O_5+H_2O$ (Joly)

See also Arsenic traoxide pentoxide

#### Arseniochromic acid

Ammonium arseniochromate,  $2(NH_4)_2O$ ,  $As_2O_5$ ,  $4CrO_3+H_2O$ 

Insol in H<sub>2</sub>O (Friedheim and Mozkin,

Z anorg 1894, 6 280)

3(NH<sub>4</sub>)<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, 8CrO<sub>3</sub> Decomp by recryst from H<sub>2</sub>O (Friedheim and Mozkin, Z anorg 1894, 6 281)

Potassium arseniochromate, 2K<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, 4CrO<sub>2</sub>

Decomp by recryst from H O (Friedheim and Mozkin, Z anorg 1894, 6 275)

 $2K_2O$ ,  $As_2O_\delta$   $4Cr\bar{O}_3+H_2O$ Decomp by recryst from H2O (Friedheim and Mozkin, lc)

Arseniomolybdic acid, As<sub>2</sub>O<sub>5</sub>, 6MoO<sub>3</sub>+ 10H<sub>2</sub>O

By recryst from H O the comp with 18H O is formed (Pufahl, Dissert 1888)

+16H O Sol in HO (Debry)

+18H O Completely sol in H O Sp gr of sat solution at 18 8° is 2.21 Easily sol in ibs alcohol Insol in CS, hig hydrocurbons and CHCl; (Pufihl, lc)

45 O5, 7MoO3+14H () (Seyberth, B 7 391)

As O<sub>1</sub>, 18MoO<sub>3</sub>+28H O | Very sol in H O Sp gr of sit solution it  $15.3^{\circ} = 2.45$  and 1.66

contains 2.16 g acid. I asily sol in absolute alcohol insol in CS liquid hydrocurbons and CHCl; (Putabl, lc)

Sol in other with subsequent separation into two Livers See Phosphotungstic acid (Directed B 20 1152)

**+,5H()** When recryst I fflorescent comp with 28H O is formed (Put ihl lc) ASO 20MoO +27HO SI sol in HNO + Aq (Debras ( R 78 1408)

arseniomolybdate,  $(NII_1)()$ , Ammonium 15.0 - 2 MoO + 11.0

(Inchem 7 morg 1894 6 28)

+ 4H O (Lindheim /c)  $(NH_4) \cap As \cap (6M_6O_4 + 2H_1) = Sl_sol$ 

m cold II O sol m acids (Debray) F4H O Sl sol in cold very cisily sol in hot HO (Puf thl lc)

2(NII<sub>4</sub>) O As O 6MoO + 6H O SI sol m HO Cannot be recryst therefrom (Pufahl)

+12H () (Friedheim, Z. morg 1891 6 **51**)

 $3(NH_4) O As O , 6M_6O_4 + 4H O Clined$ 

heim, lc)

 $+8H_2O$ (Friedheim, lc) 2H<sub>2</sub>O, 7M<sub>0</sub>O<sub>3</sub>, As<sub>2</sub>O<sub>5</sub>+4H ) H<sub>2</sub>O (Seyberth, B **7** 391) (NH<sub>4</sub>)<sub>2</sub>O, Sol in hot H<sub>2</sub>O Not obtained (Pufahl)

 $7(NH_4)_2O$ ,  $2As_2O_5$ ,  $14M_0O_3 + 28H_2O_5$ (Friedheim, lc)

 $5(NH_4)_2O$ ,  $As_2O_5$ ,  $16MoO_8+5H_2O$  (Fri 1heim, Z anorg 1894, 6 31)

5(NH<sub>4</sub>)<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, 16MoO<sub>3</sub>+9H<sub>2</sub>O Necunsol in cold, sol in boiling H<sub>2</sub>O Easily in NH<sub>4</sub>OH+Aq (Gibbs, Am Ch J 3 4( +12H<sub>2</sub>O(Pufahl, lc)

 $2(NH_4)_2O$ , 18MoO<sub>3</sub>+17H )  $As_2O_5$ (Pufahl, lc)

 $3(NH_4)_2O$ ,  $As_2O_5$ ,  $18MoO_3 + 14H_2O$ sol in H<sub>2</sub>O and alcohol (Kehrmann, anorg 1894, 7 421)

3(NH<sub>4</sub>)<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, 20MoO<sub>3</sub> H<sub>2</sub>O (Debray, C R **78** 1408) Easily sol in

 $3(NH_4)_2O$ ,  $As_2O_5$ ,  $24M_0O_8+12H_2O$ composed by H<sub>2</sub>O, especially when boil g Easily sol in NH<sub>2</sub>OH+Aq, less easily sol in warm H2SO4 and boiling H3AsO4+Aq sol in molybdic acid+Aq, HNO3, and co c  $NH_4NO_3+Aq$  (Pufahl,  $\bar{l}c$ )

Barium arseniomolybdate, BaO, As<sub>2</sub>O<sub>5</sub>  $6\text{MoO}_3 + 10\text{H}_2\text{O}$ 

Sl sol in H<sub>2</sub>O Partially decomp by l il-(Pufahl, lc)

BaO, As<sub>2</sub>O<sub>5</sub>, 6MoO<sub>3</sub> (Pufahl, lc) SI sol in F O

 $3B_3O$ , As  $O_5$ ,  $7MoO_3$  Ppt (Seybert )  $3B_3O$ , As  $O_5$ ,  $18MoO_3$  Decomp by I O (Pufahl, lc)

Cadmium arseniomolybdate, CdO, 21 O.  $A_{52}O_{5}$ ,  $6M_{0}O_{3}+11H_{2}O$ 

(Pufihl)  $3CdO_1$   $3HO_2$   $AsO_2$ ,  $18MoO_3+o3HO$ 

(Put thl)

Cæsium arseniomolybdate, Cs(), A 6MoO;

SI sol in II (Put thl, lc) 1( s O, \ \s O , \ \ 26\MoO\_3 + 15\H O ρt (I phr um, Z morg 1910, **65** 246)

Calcium arseniomolybdate, (10), 6M6O (+10H O

Rather difficultly sol in cold HO (Pu hl,

o(a) As () (6 MoO), As Pasalt fahl (c)

3C4O, As O 18MoO3+32H O Very of in HO Solution sit it 15° has sp., (Put thl lc) 2 163

Cobalt arseniomolybdate, (o() 211 () A (), 6MoO; + 11H O

(Putahl) 3H () \<0, 18Mo(); ∃ 33 () 3C oO, (Pufahl)

Cupric arseniomolybdate, (u() 211 () A (),  $6M_0O_3+15H_1O_1$  (Put  $3h_1$ )

3C uO, 3H(0), 15(0), 18Mo(0) + 34(Pufahl)

Lithium  $L_{12}O$ ,  $As_2O_5$ , arseniomolybdate.  $6M_0O_3 + 14H_2O$ 

Very sol in  $H_2O$  (Pufahl, lc) 3L<sub>12</sub>O, As<sub>2</sub>O<sub>5</sub>, 18M<sub>0</sub>O<sub>3</sub>+34H<sub>0</sub>O Solution sat at 15° has sp gr of 2481 (Pufahl, lc)

Magnesium arseniomolybdate, MgO, As<sub>2</sub>O<sub>5</sub>,  $6\text{MoO}_3 + 13\text{H}_2\text{O}$ 

Very sol in  $H_2O$  (Pufahl, lc)  $3MgO, As_2O_5, 18MoO_3 + 36H_2O$ Sol m  $H_2O$  (Pufahl, lc)

Manganese arseniomolybdate, MnO, 2H<sub>2</sub>O,  $A_{s_2O_5}$ ,  $6M_0O_3+11H_2O_3$ 

(Pufahl)

 $3M_{nO}$ ,  $3H_{2O}$ ,  $As_{2O_{5}}$ ,  $18M_{0O_{8}} + 33H_{2O}$ (Pufahl)

Nickel arseniomolybdate, NiO, 2H<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>,  $6M_0O_3 + 11H_2O$ 

(Pufahl) 3N<sub>1</sub>O, 3H<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, 18M<sub>0</sub>O<sub>3</sub>+34H<sub>2</sub>O (Pufahl)

Potassium arseniomolybdate, K<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>,  $2\text{MoO}_3 + 5\text{H}_2\text{O}$ 

Sol in  $H_2O$  (Friedheim, Z anorg 2 314)  $K_2O$ ,  $As_2O_5$ ,  $6MoO_3+5H_2O$  Sol in hot H<sub>2</sub>O without decomp (Friedheim, Z anorg

1892, **2** 330 )  $K_2O$ ,  $As_2O_5$ ,  $18MoO_3+25H_2O$  Easily sol in cold  $H_2O$  Decomp on dilution (Pufahl, lc)

 $3K_2O$ ,  $As_2O_5$ ,  $18M_0O_3 + 26H_2O$ Easily sol in H<sub>2</sub>O (Pufahl, lc) 3K<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, 20M<sub>0</sub>O<sub>3</sub> (Debray, C R **78** 1408) Insol in H<sub>2</sub>O

 $3K_2O$ , As  $O_5$ ,  $24M_0O_3+12H_2O$  Somewhat sol in H<sub>2</sub>O acidified with HNO<sub>3</sub> (Pufahl,

Rubidium arseniomolybdate, 3Rb<sub>2</sub>O<sub>5</sub>, 3A<sub>5</sub> O<sub>5</sub>,

 $5\text{MoO}_3+9\text{H}$  O Fisily sol in H() (Ephraim, Z inoig

1910, **65** 241) Rb O, As O,  $6M_0O_3$ Sl sol in H<sub>2</sub>O (Puf thl. *lc*)

Pptd 4Rb (), As ()<sub>5</sub>, 18MoO<sub>3</sub>+40H O (Fphrum, Z morg 1910, 65 241-4)

Silver arseniomolybdate, 3Ag (), As (),  $6M_0O_3+xH_1O_1$ 

(Pufahl, Lopzig 1888)

6 Ag O, As O ,  $18 \text{MoO}_3 + 22 \text{H O}$  SI sol m HO Very sol m NH4OH and m dil  $HNO_3$  (Put thl, lc)

7 Ag O 2 As O , 36MoO<sub>3</sub>+30H O Sl sol in cold, cisily sol in hot II O strongly acidifield with HNO<sub>i</sub> (Put hl, lc)

Sodium arseniomolybdate,  $N \iota ()$ ,  $A_5 ()$ ,  $2\text{MoO}_3 + 8\text{H} \odot$ 

(Friedheim, Z. morg. 1892, 2, 357.)  $N_1$  (), As (),  $6M_0$ (),  $+12H_2$ () Very sol  $H_2$ () Solution 5 it it 198° has sp gr = m H<sub>2</sub>O 1 678 (Friedheim, *lc*)

 $3Na_2O_1$ ,  $As_2O_5$ ,  $6MoO_3+11H_2O_1+12H_2O_2$ and +13H<sub>2</sub>O Sl sol in cold H<sub>2</sub>O (Pufahl, lc)

 $3Na_2O$ ,  $As_2O_5$ ,  $18MoO_3 + 24H_2O$ Easily sol in  $H_2O$  (Pufahl, lc) +30H O SI sol in cold H<sub>2</sub>O (Pufahl,

lc)

Strontium arseniomolybdate, SrO, As<sub>2</sub>O<sub>5</sub>,  $6\text{MoO}_3 + 10\text{H}_2\text{O}$ 

As Ba salt (Pufahl, lc)

3SrO, As<sub>2</sub>O<sub>5</sub>, 6MoO<sub>3</sub> As Ba salt (Pufahl, lc)3SrO,  $As_2O_5$ ,  $18MoO_3+32H_2O$  Very sol  $m H_2O$  (Pufahl, lc)

Thallium arseniomolybdate, 6Tl<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>,  $18\text{MoO}_3 + x\text{H}_2\text{O}$ 

(Pufahl)  $3Tl_2O$ ,  $3H_2O$ ,  $As_2O_5$ ,  $18M_0O_8+3H_2O$  Ppt (Pufahl)

Zinc arseniomolybdate, ZnO, 2H<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>,  $6\text{MoO}_3 + 11\text{H}_2\text{O}$ (Pufahl)

3ZnO,  $As_2O_5$ ,  $18MoO_3+37H_2O$  Very sol in H<sub>2</sub>O (Pufahl)

# Arseniophosphovanadicotungstic acid

Ammonium arseniophosphovanadicotungstate 69V

Sol in (Rogers, J

# Arsemophosphovanadicovanadiotungstic

NOU TOUG, ME

Ammonium arseniophosphovanadicovanadiotungstate,  $99(NH_4)^{2}O$ ,  $2As_2O_5$ ,  $12P_2O_5$ ,  $6V_2O_3$ ,  $66V_2O_5$ ,  $191WO_3 + 522H_2O_5$ 

Sl sol in cold H<sub>2</sub>O (Rogers, J Am Chem Soc 1903, **25** 314)

# Arsemophosphovanadiotungstic acid

Ammonium arseniophosphovanadiotungstate.  $82(NH_4) O_5$ ,  $3As O_5$ ,  $12P_2O_5$ ,  $52V_2O_5$ , 201WO3+567H O

Very sol in warm HO Insol in organic solvents (Rogers, J Am Chem Soc 1903, **25** 312)

# Arseniosulphuric acid

Ammonium arseniosulphate,  $2(NH_4)_2O$ , **4**5 ()₁, 25()₃+3H ()

C in beaccivet from HO (Friedheim and Mozkin, Z. anorg. 1894, 6, 290.)

Potassium arseniosulphate, 2h<sub>2</sub>O, As O<sub>5</sub>, 250(+5H)

(Friedheim and Mozkin, Z amorg 1894, 6 289)

5K (), As (), SSO<sub>3</sub>+6H<sub>2</sub>O (Friedheim und Mozkin, Z. morg. 1894 6 291)

Sodium arseniosulphate, 2Na O. As<sub>2</sub>O<sub>5</sub>,  $2SO_3 + 3H_2O$ 

(Friedheim and Mozkin, Z anorg 1894, 6 290)

#### Arsemotelluric acid

Ammonium arseniotellurate, 2(NH<sub>4</sub>)<sub>2</sub>O.  $As_2O_5$ ,  $TeO_3+4H_2O$ 

Sol in H<sub>2</sub>O (Weinland, Z anorg 1901, 65) Sol

 $4(NH_4)_2O$ ,  $3As_2O_5$ ,  $2TeO_3+11H_2O$ in H<sub>2</sub>O (Weinland)

arsemotellurate, 2Na<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, Sodium  $2\text{TeO}_3 + 9\text{H}_2\text{O}$ 

Pot (Weinland lc)

Arseniotungstic acid, 3H2O, As2O5, 16WO2  $+32H_2O = H_8A_8W_8O_{28} + 16H_2O$ hydroarsemoluteotungstic acid)

Sol in H<sub>2</sub>O (Kehrmann, A 245 45) 3H<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, 19WO<sub>3</sub> (?) Sp gr of sat solution in H<sub>2</sub>O is 3 279 (Fremery, B 17 296)

Is a mixture containing principally H<sub>3</sub>AsW<sub>8</sub>O<sub>28</sub>+16H<sub>2</sub>O (Kehrmann)  $As_2O_5$ ,  $18WO_3+xH_2O$  Sol

 $m H_2O$ (Kehrmann, Z anorg 1899, 22 292)

# Aluminum ammonium arseniotungstate

See Aluminicoarseniotungstate, ammonıum

Ammonium arseniotungstate, 4(NH<sub>4</sub>) O,  $2H_2O$ ,  $As_2O_5$ ,  $6WO_3 + 3H_2O$ 

Sl sol in cold H<sub>2</sub>O or HNO<sub>3</sub>+Aq, easily sol in boiling H.O (Gibbs, Proc Am Acad **16** 135)

 $7(NH_4) O, As_2O_5, 14WO_3, +17H_2O Very$ sl sol even in boiling H O (Fremery, l c)

 $3(NH_4)_2O$ ,  $As_2O_5$ ,  $16WO_3+16H_2O = (NH_4)_3AsW_8O_{28}+8H_2O$  Sol in  $H_2O$ 

(Kehrmann)

5(NH<sub>4</sub>)<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, 17WO<sub>3</sub>+8H O Can be recryst from H<sub>2</sub>O without decomp Decomp Can be by long boiling with HO (Kehimann, Zanorg 1899, 22 294)

3(NH<sub>4</sub>)<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, 18WO<sub>3</sub>+14, or 18H O Very sol in cold H<sub>2</sub>O Can be accept from

(Kehrmann, lc)

 $3(N\hat{H}_4)_2O$ , As  $O_5$ ,  $21NO_3+xH$  () I sally leading in HO Fasily decomps on received (Kehrmann, lc)

 $3(NH_4) O, As_2O_5, 24WO_3+12H O$ More sol in H2O than corresponding phosphotung-

state (Kehrmann, lc)

Barium arseniotungstate,  $2B_1O$ ,  $45O_5$ ,  $16WO_3 + xH_2O$ 

Sol in  $H_2O$ (Pechard, A ch (6) 22 262) 7BaO, As<sub>2</sub>O<sub>5</sub>, 22WO<sub>3</sub>+54H O Sol Can be recryst therefrom (Kehimann, lc)

Potassium arseniotungstate, 3K<sub>2</sub>O, H<sub>2</sub>O,  $As_2O_5$ ,  $6WO_3$ 

Insol in H<sub>2</sub>O Readily sol in alk hydroxides+Aq (Gibbs)  $3K_2O$ ,  $As_2O_5$ ,  $16WO_3 + 16H_2O = K_3A^{-7}_8O_{28}$ 

+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Kehrmann ) 5K<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, 17WO<sub>3</sub>+22H<sub>2</sub>O Sc reely

sol in cold H<sub>2</sub>O (Kehrmann, Z anorg 899. **22** 295)

 $3K_2O, As_2O_5, 18WO_3 + 14H_2O$  Efflore (Kehrmann, lc)

 $3K_2O$ ,  $As_2O_5$ ,  $19WO_3+16H_2O$  (?) H<sub>2</sub>O (Fremery)

Silver arseniotungstate,  ${
m Ag_5AsW_8O_{29}}$ 

Insol in H<sub>2</sub>O (Kehrmann, A 245 55 perhaps identical with-

6Ag<sub>2</sub>O, As<sub>2</sub>O<sub>5</sub>, 16WO<sub>3</sub>+11H<sub>2</sub>O In I in  $H_2O$  (G1bbs)

Sodium arseniotungstate, 3Na<sub>2</sub>O,  $3WO_8+20H_2O$ 

Very sol in H<sub>2</sub>O (Lefort, C R 92 -61)

32O5,

# Arsemous acid, HAsO2

Solubility of  $HAsO_2$  in amyl alcohol+1 1 at 25°

 $a_w = mol \text{ of } HAsO_2 \text{ in } 1 \text{ l of } H_2O$  $a_a = \text{mol of } HAsO_2 \text{ in 1 l of amylalc}$  iol h = partition coefficient

| 8.W    | a <sub>a</sub> | h    |
|--------|----------------|------|
| 0 0449 | 0 0082         | 5 48 |
| 0 0446 | 0 0083         | 5 38 |
| 0 0887 | 0 0164         | 5 41 |
| 0 0892 | 0 0161         | 5 53 |
| 0 1800 | 0 0324         | 5 55 |

(Auerbach, Z anorg 1903, 37 356

Solubility of HAsO, in sat H3BO; + \ and amyl alcohol

 $a_w = mol \text{ of HAsO in 1 l of II ()}$ aa = mol of HAsO2 in 11 of unyl ilco ol h = partition coefficient

| 8.W    | aa     | h    |
|--------|--------|------|
| 0 0859 | 0 0161 | 5 >> |
| 0 1720 | 0 0521 | 5 >5 |

(Aucibich, lc)

Insol in ethyl icetite (Nauman 1904, 37 3601)

See Arsenic trioxide

#### Arsenites

All arsenites, except those of the k ili metals, are partially or wholly insol in ſ٥, but easily sol in acids, several use so  $(NH_4)_2SO_4$ ,  $NH_4NO_3$ , or  $NH_4Cl + \lambda q$ ın

All basic disentes are sol in reads ( ept those that give an insole salt with the le I Many are sol in excess of As  $O_3 + Aq$ 

Aluminum arsenite, Al<sub>2</sub>O<sub>3</sub>, As<sub>2</sub>O<sub>3</sub>

Sl sol in boiling H<sub>2</sub>O Easily sol in NaOH +Aq and in acids (Reichard, B 1894, 27 1029)

Aluminum arsenite iodide, AlI<sub>3</sub>, 6As<sub>2</sub>O<sub>8</sub>+  $16H_2O$ 

(Gruhl, Dissert 1897)

Ammonium arsenite, NH<sub>4</sub>AsO<sub>2</sub>

Very sol in  $H_2O$  (Luynes, J pr 72 180) C 1899, Insol in acetone (Eidmann, C II 1014), (Naumann, B 1904, 37 4328) (NH<sub>4</sub>)<sub>3</sub>AsO<sub>3</sub> (?) Sol in H<sub>2</sub>O (Staven-

hagen, J pr 1895, (2) 51 11 ) (NH<sub>4</sub>)<sub>4</sub>As<sub>2</sub>O<sub>5</sub> Very sol in H<sub>2</sub>O lalcohol or ether (Stein, A 74 218) Insol in

Could not be obtained (Stavenhagen)

Ammonium arsenite bromide, 2As<sub>2</sub>O<sub>3</sub>, NH<sub>4</sub>Br Sl sol in H<sub>2</sub>O (Rudorff, B 19 2679)

Ammonium arsenite chloride, As<sub>2</sub>O<sub>3</sub>, NH<sub>4</sub>Cl St sol in H<sub>2</sub>O Sol in warm dil NH<sub>4</sub>OH +Aq (Rüdorff)

Ammonium arsenite iodide, 2As<sub>2</sub>O<sub>8</sub>, NH<sub>4</sub>I Sl sol in boiling H<sub>2</sub>O Sol in warm dil NH<sub>4</sub>OH+Aq (Rudorff)

Antimony arsenite (?)

Ppt Sol in a small amount H<sub>2</sub>O, but insol in a large quantity (Berzelius)

Completely sol in KOH+Aq (Reynolds)

Barium arsenite, Ba(AsO<sub>2</sub>)<sub>2</sub>

It is all sol in HO when recently pptd, but insol after being dried Potd from aqueous solution by boiling (Filhol, A 68 308)

Only sl sol in H<sub>2</sub>O (Stivenhagen, J pr

1895, (2) 51 18)

 $B \iota_3(A_5()_3)$ SI sol in cold HO, sol in hot H2O and dil acids (Stavenhagen, I pr 1595, (2) **51** 17)

Ppt (Bloxum, Chem Soc B 1H4(15()3)

**15** 281 )

+34H () Moderately sol in cold, more casily sol in hot HO Insol in ilcohol (Perper, Dissert 1894)

Fisily sol in H<sub>2</sub>O BiAs () +2H ()

(St ivenhagen, J. pr. 1895, (2) **51** 18.) +4H O. Sl. sol. in H.O. dso somewhat sol. in alcohol. (Stein A. **74** 218.)

Sl sol in H<sub>1</sub>\SO<sub>1</sub>+\q ind BiO H<sub>2</sub>+\q

(Dum is) Sol in NH4Cl+ Aq (Wickemoder, A 41 516)

Not pptd from solutions contuming Ni citrate (Spiller)

BaAs<sub>4</sub>() Sol in HO Tess sol in alcohol (Reichard, B 1894, 27 1033)

Bismuth arsenite, BiAsO<sub>3</sub>+5H () (?)

Easily sol in HNO<sub>3</sub>+Aq (Schneider, J p (2) 20 419)

Sl sol in H<sub>2</sub>O (Stavenhagen, J pr 1895, (2) **51** 35)

Cadmium arsenite,  $Cd_3(AsO_3)$ .

Sl sol in  $H_2O$ , easily sol in  $NH_4OH + Aq$  and dil acids (Stavenhagen, lc) Cd<sub>2</sub>As<sub>2</sub>O<sub>5</sub> Ppt (Reichard, B 1898, **31** 2168)

Sol in acids without decomp, insol in

alkalıs (Reichard, B 1894, 27 1033) 5CdO, As<sub>2</sub>O<sub>3</sub>+12H<sub>2</sub>O Not attacked by KOH, Ba(OH)<sub>2</sub> or alkalı carbonates+Aq Insol in KCN+Aq (Reichard, Ch Z 1902, **26** 1145)

Cæsium arsenite bromide, As<sub>2</sub>O<sub>8</sub>, CsBr Sol in  $H_2O$  (Wheeler, Z anorg 4 451)

Cæsium arsenite chloride, As<sub>2</sub>O<sub>3</sub>, CsCl As above

Cæsium arsenite iodide, As<sub>2</sub>O<sub>3</sub>, CsI As above

Calcium arsenite, Ca(AsO<sub>2</sub>)<sub>2</sub>

Somewhat sol in  $H_2O$ , sol in  $Ca(OH)_2+$ Aq or As<sub>2</sub>O<sub>3</sub>+Aq (Simon, Pogg 47 417) Ca<sub>3</sub>(AsO<sub>3</sub>)<sub>2</sub> Ppt (Kuhn, J B 1852 379) Only sl sol H<sub>2</sub>O, readily sol in dil acids

(Stavenhagen, lc)

Sol in H<sub>2</sub>O, insol in alcohol (Reichard, B 1894, 27 1036)

3CaO, 2As<sub>2</sub>O<sub>3</sub>+3H<sub>2</sub>O Sl sol in H<sub>2</sub>O, easily sol in NH<sub>4</sub>Cl+Aq, sol in As<sub>2</sub>O ' ^~ (Stein)

CaH<sub>4</sub>(AsO<sub>3</sub>)<sub>2</sub>+xH<sub>2</sub>O Moderately son in  $H_2O$ Insol in abs alcohol (Perper, Dissert 1894)

 $Ca_2As_2O_5$ Sl sol in  $H_2O$ , 1 pt in 3000-4000 pts H<sub>2</sub>O Alkalı chlorides increase solubility slightly (Stavenhagen, lc)

Sl sol in H2O insol in H2O containing CaO H (Berzehus)

Not pptd in presence of 4000-5000 pts HO (Hart ing Lassaigne)
Not pptd from sc Hi salts and

| Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not place | Not (Giescke and Schweigger)

Not pptd from solutions containing sodium (itrate (Spiller)

Calcium arsenite iodide, Cil, 3A5();+ 12H O

SI sol in IIO Decomp on heating (Gruhl, Dissert 1897)

Chromic arsenite, ('i As();

Sol in II O, but slowly decomp by boiling (Neville, ( N 34 220)

Sol in HCl, repptd by NII10H+ \q sol m KOH+Aq (Reich ud, B 4894, **27** 4028)

Cobaltous arsenite basic, 7CoO, As Oa

Very sol in dil, difficultly sol in conc H2SO4 Sol in cone NaOII and in cone NH<sub>4</sub>OII+Aq (Reich aid, Z anal 1903, 42 10)

Cobaltous arsenite, 3CoO, As<sub>2</sub>O<sub>3</sub>

Sol KOH+Aq with decomp (Identical with salt of Girard) (Reichard, B 1894, 27 1031)

+4H<sub>2</sub>O Sl sol in H<sub>2</sub>O, easily sol in acids (Stavenhagen, J pr 1895, (2) 51 39)
3CoO, 2As<sub>2</sub>O<sub>5</sub>+4H<sub>2</sub>O Sol in HNO<sub>5</sub>
(Girard, C R 1852, 34 918)
Co<sub>3</sub>H<sub>5</sub>(AsO<sub>3</sub>)<sub>4</sub> Insol in H<sub>2</sub>O, sol in Co<sub>3</sub>H<sub>5</sub>(AsO<sub>3</sub>)<sub>4</sub> Insol in H<sub>2</sub>O, sol in Hron (ferric) arsente, Fe<sub>2</sub>O<sub>3</sub>As<sub>2</sub>O<sub>3</sub>

NHOH+Ag when from

HNO3, HCl, or NH4OH+Aq (Proust)

Only sol in KOH, or NaOH+Aq when formed in a solution containing an excess of those reagents (Reynoso, C R 31 68)

Co<sub>2</sub>As<sub>2</sub>O<sub>5</sub> Ppt (Reichard, B 1898, **31** 2165)

Sol in HNO<sub>3</sub> and HCl+Aq (Proust)

Cupric arsenite,  $Cu(AsO_2)_2$ 

(Avery, J Am Chem Soc 1906, 28 1161) Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 827)

Sl sol in  $H_2O$  $+H_2O$ (Stavenhagen, lc)

 $+2H_2O$  Sl sol in  $H_2O$ , insol in alcohol

(Stavenhagen, lc) 3CuO, As<sub>2</sub>O<sub>3</sub> Ppt (Stavenhagen, lc) 2CuO, As<sub>2</sub>O<sub>3</sub> (Scheele's green) Insol in H<sub>2</sub>O, sol in KOH+Aq, NH<sub>4</sub>OH+Aq, and in most acids Formula is Cu<sub>3</sub>(AsO<sub>3</sub>)<sub>2</sub>+ 2H<sub>2</sub>O (Sharples, C N **35** 89)

Sol in NH<sub>4</sub>OH+Aq without decomp Sol in KOH+Aq with decomp (Reichard, B 1894, 27 1026)

Insol in pyridine (Schroeder, Dissert

**1901**)

5CuO, As<sub>2</sub>O<sub>3</sub> Insol in H<sub>2</sub>O, sol in acids, NH₄OH+Aq and conc MOH+Aq ard, Ch Z 1902, 26 1142) xCuO, yAs<sub>2</sub>O<sub>3</sub> Min Trippkeite Easily

Didymium arsenite, Di H<sub>3</sub>(AsO<sub>3</sub>)<sub>3</sub>

sol in HNO3 and in HCl+Aq

(Frenchs and Smith, A 191 355) Does not exist (Cleve, B 11 910)

Glucinum arsenite iodide, GlI, 3As O<sub>3</sub>+ 8H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Gruhl, Dissert **1897**)

Gold (aurous) arsenite, 3Au O, As<sub>2</sub>O<sub>3</sub>

(Reichard B 1894, Decomp by light **27** 1027 )

Gold (auric) arsenite, AuAsO<sub>3</sub>+H O

Very sol in H(), NH4()H+Aq and dil reads (Stavenhagen, J. pr. 1895, (2) 51 28)

Iron (ferrous) arsenite, I(O,As ()

Decomp in the un when moist sol in NH4OH+Aq when freshly pptd (Reichard, B 1894, **27** 1029-30)

Fe As O<sub>5</sub> Sol in NH<sub>4</sub>OH+Aq,  $\mathbf{Ppt}$ insol in NH4 arsenite, or other NH4 silts+ Aq (Wittstein)

Iron (ferric) arsenite, basic, 4Fe<sub>2</sub>O<sub>3</sub>, A<sub>1</sub> O<sub>3</sub>+

H<sub>2</sub>O extracts As<sub>2</sub>O<sub>3</sub> Sol in onc Ppt acids with separation of As2O3 Aceti acid is without action (Bunsen and Ber iold,

Sol in NH<sub>4</sub>OH+Aq when freshly ptd (Reichard, B 1894, 27 1030)

 $Fe_4As_2O_9$  Ppt (Reichard, B 189, 31 2170)

+7H<sub>2</sub>O Sol in NaOH, and KOH+ kg "Ferric arsenite" is sl sol in Al2(S 4)3+ Aq (Kynaston, Dingl 235 326)

Lanthanum arsenite, La<sub>2</sub>H<sub>3</sub>(AsO<sub>3</sub>)<sub>3</sub>

Ppt (Frerichs and Smith, A 191 3 5) Does not exist (Cleve, B 11 910)

Lead arsemte,  $Pb(AsO_2)_2 + xH_2O$ 

Sl sol in H<sub>2</sub>O Insol in KOH, but NaOH + Aq(Berzehus)

Insol in H2O, NH4OH  $NH_{4}$  $Pb_2As_2O_5$ arsenite, or other NH<sub>4</sub> salts+Aq Vittstein )

Pb<sub>3</sub>(AsO<sub>3</sub>)<sub>2</sub> Scarcely sol in H<sub>2</sub>O, sol in HNO<sub>3</sub>, or HC<sub>2</sub>H<sub>3</sub>O +Aq I asıly uling H<sub>2</sub>O dissolves some As<sub>2</sub>O<sub>3</sub> Not com etely

insol in KOH+Aq (Streng, A 129 2 3) Sol in acetic acid, insol in HO the presence of ammonium salts, sol in N )H+ Aq, sl sol in KOH+Aq (Reicha 1894, **27** 1024) , в

+H<sub>2</sub>O Sl sol in H<sub>2</sub>O, easily sol ı dıl acids (Stavenhagen, J pr 1895, (2)

Lead arsenite chloride, Pb<sub>5</sub>As<sub>2</sub>O<sub>8</sub>, 2Pb(

Min Ekdemite Easily sol in HNO | Aq. and warm HCl+Aq

33

Magnesium arsenite, Mg<sub>3</sub>(AsO<sub>3</sub>)

Insol in NH<sub>4</sub>OH+Aq, but sol in luge excess of NH<sub>4</sub>Cl+Aq (Rose)

Very sol in boiling HO and in dil ads Sol in NH4Cl+Aq (Reichard, B 18 1, 27 1032)

Very sol in HO and dil reids (5 avenhagen, lc

 $Mg_2As_2() + 4H()$ Hydroscopic Vay sol in H2O and reads (Stavenhagen ι)  $3MgO,2AsO_3+3HO,+15H_2O$ , and

+18H<sub>2</sub>O (Perper Dissert **1894**)

Magnesium arsenite iodide, Mgl  $\rightarrow 1 ()_3 +$ 12H<sub>2</sub>O

Moderately sol in HO (Gruhl, I sect 1897)

Manganous arsenite,  $Mn_3(AsO_3) + 5H$ 

Sol in H2O, insol in alcohol, cisily o lized by moist air  $\int t \cdot (\mathbf{r} \cdot \mathbf{r}) d\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r}$ 

3MnO,2As<sub>2</sub>O<sub>3</sub> (Reichard B 189 27 1032)

 $Mn_3H_2As_4O_{10}+4H_2O$ Sl sol in  $H_2O$ Very sol in acids and alkalı (Stavenhagen,

Mn<sub>5</sub>As<sub>2</sub>O<sub>8</sub> Ppt (Reichard, B 1898, **31** 2165)

### Mercurous arsenite, Hg<sub>2</sub>O,As<sub>2</sub>O<sub>3</sub>

Decomp by light Decomp by H<sub>2</sub>O

(Reichard, B 1894, 27 1022)

Hg<sub>3</sub>AsO<sub>3</sub> Only sl sol in H<sub>2</sub>O, sol in dil acids (Stavenhagen, J pr 1895, (2) 51

Gradually and completely decomposed by H<sub>2</sub>O (Reichard, Ch Z 1902, **26** 1143)

### Mercuric arsenite, Hg<sub>3</sub>(AsO<sub>3</sub>)<sub>2</sub>

Sl sol in  $H_2O$ (Stavenhagen, lc)

Decomp more easily by H<sub>2</sub>O than is the mercurous comp (Reichard, Ch Z 1902, **26** 1143)

2HgO,As<sub>2</sub>O<sub>3</sub> Not decomp by boiling with H<sub>2</sub>O Undecomp by boiling acids Decomp by KOH+Aq, K CO<sub>3</sub>+Aq and NH<sub>4</sub>OH+Aq (Reichard, B 1894, 27 1021) Hg<sub>5</sub>As<sub>2</sub>O<sub>3</sub> Ppt Decomp by boiling H<sub>2</sub>O Very sl sol in H<sub>2</sub>SO<sub>4</sub>+HCl (Reichard, B 1898, **31** 2170)

### Nickel arsenite, Ni<sub>3</sub>(AsO<sub>3</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O, easily sol in NH<sub>4</sub>OH+Aq

(Proust)

(Reichard, B 1898, 31 2165)  $3\tilde{N}_1O_12\tilde{A}_{2}O_3$  Sol in  $NH_4OH+Aq$  (identical with salt of Girard) (Reichard, B 1894, **27** 1031)

Insol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH+  $+4H_2O$ 

Aq (Proust)

Sol in KOH+Aq (Giraid, C R 34 918)

2NiO, As O<sub>3</sub> Insol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH +Aq, sol in KOH+Aq (Reynoso, C R 31 68)

### Platinum arsenite, Pt<sub>3</sub>(A<sub>5</sub>()<sub>3</sub>)<sub>4</sub>

Sol in HO and alcohol, very unstable (Stavenhagen, l c)

#### Potassium arsenite, IAA()

Sol m II O sl sol m dcohol (Pustem, A 68 309)

Insol in ethyl acetate (Naumann, B

1904, **37** 5601)

Does not exist 

K3AsO3 Very sol in II O, sol in alcohol (Stavenhagen, lc)

K4As () +6H () Very sol in HO, sol in alcohol (Stivenhigen, lc)

K As<sub>4</sub>O<sub>7</sub>+2H O Sol m H O, sl sol m ilcohol (Pisteur, A 68 309)

# Potassium arsenite bromide, 41s O., 2KBi

More sol in HO than iodide (Schiff and Sestini, A 228 72)

2As ()3, KBr (Rudorff, B 19 2675)

Potassium arsenite chloride, 2As<sub>2</sub>O<sub>3</sub>, KCl

Much more quickly sol in hot H<sub>2</sub>O than bromide or iodide (Rüdorff, B 19 2675) As<sub>2</sub>O<sub>3</sub>, KCl Decomp by H<sub>2</sub>O

Potassium arsenite iodide, 3As<sub>2</sub>O<sub>3</sub>, 2KI+  $H_2O$ 

Sl sol in cold H<sub>2</sub>O, sol in 20 pts boiling, and 40 pts cold  $H_2O$  (Emmet, Sill Am J (2) 18 583)

6KAsO2, 2KI+3H2O Sol in H2O and alcohol Decomp by acids (Harms)

 $2KH(AsO_2)_2$ ,  $As_2O_3$ , 2KISl sol in H<sub>2</sub>O

(Harms, A 91 371)

2As<sub>2</sub>O<sub>3</sub>, KI Very difficultly sol even in boiling H<sub>2</sub>O Very easily sol in KOH+Aq, but much less so in K<sub>2</sub>CO<sub>3</sub>+Aq (Rūdorff, B 19 2670)

Sol in 40 pts cold, 20 pts hot H<sub>2</sub>O, sol in (Schiff and Sestim, A 228 72)

Potassium arsenite sulphate, K<sub>3</sub>AsO<sub>3</sub>,  $10K_2SO_4$ 

(Stavenhagen, Zeit angew ch 1894, 8 166)

# Rubidium arsenite, RbAsO<sub>2</sub>

Sol in H<sub>2</sub>O, aq solution is alkaline to litmus Insol in alcohol (Bouchonnet, C R 1907, **144** 641)

Rubidium arsenite bromide, As<sub>2</sub>O<sub>3</sub>, RbBr Decomp by H<sub>2</sub>O (Wheeler, Z anorg 4 451)

Rubidium arsenite chloride, As<sub>2</sub>O<sub>3</sub>, RbCl As above

Rubidium arsenite iodide, As<sub>2</sub>O<sub>3</sub>, RbI As above

#### Silver arsenite, Ag AsO<sub>3</sub>

Insol in HO Not pptd in presence of 20,000 pts H<sub>2</sub>O (Harting)

11 H O dissolves 0 0115 g Ag<sub>3</sub>AsO<sub>3</sub> at 20° (Whitby, Z anoig 1910, **67** 108)
Only sl sol in H O and in dil acids, readily

sol in NH4OH+Aq ind conc acids (Stavenhagen, lc)

Decomp by light, by KOH+Aq and by NH<sub>4</sub>OH + Aq (Reich ud, B 1894, 27 1022-

It isily sol in HNO3+Aq and other reads (Mucct)

More castly sol in HC HaOz+Aq than  $A_{g_3}P()_4$  sl sol in HC  $H_3()$  +Aq (Suntos, ( N 38 94)

Insol in KOH+Aq (Kuhn, Arch Phum (2) **69** 267)

Fisily sol in NH4OH+Aq (Marcet) Insol in NH4()H+Aq, but sol therem in presence of alkali mitrates (Santos lc)

Incompletely sol in (NH<sub>4</sub>) CO; (NH<sub>4</sub>) SO<sub>4</sub>, or NH<sub>4</sub>NO<sub>3</sub>+Aq (Wittstein,

| Repert **51** 41)

(Naumann, B

Decomp by NH<sub>4</sub>Cl+Aq Sol in KAsO + (Kuhn, lc)Not pptd in solutions containing sol

citrates (Spiller)

Sol in methyl acetate

1909, 42 3790) Sl sol in methyl acetate (Bezold, Dis-

sert 1908)

Insol in ethyl acetate (Hamers, Dissert 1906), (Naumann, B 1910, 43 314) +H<sub>2</sub>O Very sol in H<sub>2</sub>O, NH<sub>4</sub>OH+Aq

and in dil acids (Stavenhagen, J pr 1895, (2) 51 29)  $2Ag_2O$ ,  $As_2O_3$ Ppt (Pasteur, J Pharm

(3) **13** 395)

Could not be obtained (Stavenhagen, lc) 3Ag<sub>2</sub>O, 2As<sub>2</sub>O<sub>3</sub> Sol in cold HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+

Aq (Santos)
Sol in NH<sub>4</sub>OH+Aq and in potassium arsenite+Aq (Girard, CR 34 918)
Ppt (Reichard, B 1898, 31 2167)

Could not be obtained (Stavenhagen, lc)

Silver arsenite ammonia, 2Ag<sub>2</sub>O, As<sub>2</sub>O<sub>3</sub>, 4NH<sub>3</sub>

Insol in H<sub>2</sub>O or alcohol (Girard)

#### Sodium arsenites

Correspond to potassium arsenites, but have not been obtained in crystalline form All are very sol in H<sub>2</sub>O (Pasteur, A 68 308  $Na_3AsO_3$ Very sol in HO (Stavenhagen, lc)

Insol in ethyl acetate (Naumann, B

1904, **37** 3602)

Sodium arsenite bromide, 2As O<sub>3</sub>, NaBi Decomp by warm HO (Rudorff, B 21 3052)

Sodium arsenite iodide, 2As O<sub>3</sub>, NaI Decomp by hot H O (Rudorff)

Strontium arsenite, Sr<sub>3</sub>(AsO<sub>3</sub>)

Sol in H<sub>2</sub>O (Stavenhagen, lc)

Sol in H<sub>2</sub>O, insol in alcohol (identical with (Reichard, B 1894, 27 1036)

Sr<sub>2</sub>As O<sub>2</sub>+2H O Quite easily sol in H O (Stein)

SI sol in H<sub>2</sub>C, S<sub>1</sub>O<sub>2</sub>H +Aq, or H<sub>3</sub>AsO<sub>4</sub>+

Aq (Dumas) Very sl sol in ilcohol (Stein)

Lasily sol in HO and in acids (bt wen-

higen, J pr 1895, (2) **51** 17) Si<sub>2</sub>As<sub>4</sub>O<sub>9</sub> Moderately sol in H O (Reichard, B 1894, 27 1036)

Strontium arsenite iodide, 511,  $3450_3$ + 12H ()

As Ba comp (Gruhl, Dissert 1897)

Thallium arsenite,  $\Gamma l_3 A_5 C_3$ 

Sl sol in H<sub>2</sub>O and alcohol, easily sol in acids, especially in dil H SO<sub>4</sub> (Stavenhager, Tin (stannous) arsenite, Sn<sub>3</sub>(AsO<sub>3</sub>)<sub>2</sub>

Ppt, decomp by acids and alkali Reichard, B 1898, **31** 2169) +2H<sub>2</sub>O Sl sol in H<sub>2</sub>O Easily so ın dıl acids and alkalies (Stavenhagen, lc

Tin (stannic) arsenite,  $Sn_3(AsO_3)_4+5$  $H_{2}O$ Sl sol in  $H_0O$  (Stavenhagen, l c)

5SnO<sub>2</sub>, 2As<sub>2</sub>O<sub>3</sub> Ppt Sol in acids decomp (Reichard, B 1894, **27** 102 thoutSn<sub>7</sub>As<sub>2</sub>O<sub>17</sub> Ppt (Reichard, B 1 8, 31 2169)

Uranium arsenite, UO2, As,O3

+H0Insol in NH<sub>4</sub>OH+Aq, only sl sol Aq Sol in acids (Reichard, B 1 4, 27 1029)

Zinc arsenite, ZnO, As<sub>2</sub>O<sub>3</sub>

(Avery, J Am Chem Soc 1 6, 28  $116\bar{3}$ ) 3ZnO,As<sub>2</sub>O<sub>3</sub> Sol in acids without comp Easily sol in NH<sub>4</sub>OH+Aq (Reich d, B

 $2H_2O$ 

lv de-

ĴH₂O

arsen-

2600)

Ch J

102

1894, **27** 1033)

Arseniovanadic acid, As<sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>5</sub>

Easily sol in H<sub>2</sub>O, but solution ea composes, crystallizes from H<sub>2</sub>O with Composition is vanadium dihydroger ate (VO<sub>2</sub>)H<sub>2</sub>AsO<sub>4</sub> (Friedheim, B 23 +14, and +18H<sub>2</sub>O (Ditte, C

757) Could not be obtained (Friederm)  $3As_2O_5$ ,  $2VO_5$  (Berzelius) Corr t for-

mula is as above (Friedheim)  $3H_2O$ ,  $7As_2O_5$ ,  $6V_2O_5$  (G1bbs, Am

7 209) Could not be obtained Friedheim ]  $3HO, 5As_2O_5, 8V_2O_5+24HO$ ibbs)

Could not be obtained (Friedheim)

#### Arsemovanadates

According to Friedheim (Z. mois 1892, 2 319) the arseniovanadates are dor le arsenates of VO, and NH4

Ammonium arseniovanadate, (NII)), As O 2V O ,+5H O

I fflorescent in dry in sl sol i comp by hot HO Com cold. decomp by hot Comp sition div in idium ımmonium (nate  $=(VO_2)(NH_4)AsO_4+2_2HO$ (Fri B 23 2600)

Sl sol in cold H<sub>2</sub>O Somewhat more cisilv sol in hot H2O with separation o  $V(0_{5})$ (Schmitz-Dumont, Dissert 1891)

2(NH<sub>4</sub>)<sub>2</sub>O, 3As O, 2V O +4H O not be crystallized from H O Com Cansition 18  $(NH_4)$   $HAsO_4+2(VO_2)$   $HAsO_4$ Friedheim)

Decomp under H<sub>2</sub>O to (NH<sub>4</sub>) (). V O<sub>5</sub> As O<sub>5</sub>+5H O (Schmitz-Dumont, lc

 $5(NH_4)_2O$ ,  $4A_8O_5$ ,  $2V_2O_5+18H$  () sol in HO(Ditte, C R 102 1019) D s not (Friedheim, B 23 2605) exist

Calcium arseniovanadate, 2CaO, 3As<sub>2</sub>O<sub>5</sub>,  $2V_2O_5 + 21H_2O = CaHAsO_4 + 2(VO_2)$ H<sub>2</sub>AsO<sub>4</sub>+8H<sub>2</sub>O

Can be crystallized in presence of vanadic acid without decomp (Friedheim) Efflorescent Sol in H<sub>2</sub>O (Schmitz-

Dumont, lc)

Cobalt arseniovanadate, CoO, As<sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>5</sub>+  $9H_{\circ}O = C_{\circ}(VO_{2}) H_{2}(A_{\circ}O_{4})_{2} + 8H_{2}O$ Sol in H<sub>2</sub>O (Friedheim)

Copper arsemovanadate, CuO, As<sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>5</sub>+  $4H_2O = Cu(VO_2)_2H_2(AsO_4)_2 + 3H_2O$ Sol in H<sub>2</sub>O (Friedheim)

Magnesium arseniovanadate, MgO, As<sub>2</sub>O<sub>5</sub>,  $V_2O_5 + 10H_2O = (VO_2)_2MgH_2(AsO_4)_2 +$ 9H<sub>2</sub>O

Sol in H<sub>2</sub>O (Friedheim) Moderately sol in H<sub>2</sub>O Solution decomp on standing (Schmitz-Dumont, lc)

 $2MgO, 3As_2O_5 2V_2O_5, +23H_2O = MgHAsO_4$  $+2(VO_2)H_0AsO_4+9H_2O$  Sol in  $H_2O$  (Friedheim)

Sol in H2O but solution decomp on evaporation (Schmitz-Dumont, Ic)

Potassium arseniovanadate, K2O, As2O5,  $2V_2O_5 + 5H_2O = (VO_2)_2KAsO_4 + 2\frac{1}{2}H_2O$ Sol in H<sub>2</sub>O (Friedheim)

Sl sol in cold H<sub>2</sub>O Partially decomp on heating (Schmitz-Dumont)

Strontium arseniovanadate, 2SrO, 3As<sub>2</sub>O<sub>5</sub>,  $2V_2O_5 + 20H_2O = SrHAsO_4 + 2(VO_2)_2H_2$  $AsO_4 + 7\frac{1}{2}H_2O$ 

Sol in HO (Friedheim) +21H<sub>2</sub>O Lustly sol in H<sub>2</sub>O (Schmitz-Dumont)

Zinc arseniovanadate, ZnO As<sub>2</sub>O<sub>5</sub>, VO<sub>5</sub>+  $6\frac{1}{2}H O = Zn(VO_2)_2H_2(AsO_4)_2 + 5\frac{1}{2}H_2O$ Sol in H<sub>2</sub>O (Irredheim)

2ZnO,  $3\text{As}_2\text{O}_5$ ,  $2\text{V O}_5 + 5\text{H}_2\text{O}$ , and  $+18\text{H}_2\text{O}$ =  $2\text{nHAsO}_4 + 2(\text{VO}_2)_2\text{H}_2\text{AsO}_4$ , and  $+6\frac{1}{2}\text{H O}$ Sol in II O (Friedheim)

# Arseniovanadicotungstic acid

Ammonium arseniovanadicotungstate,  $17(NII_4) O_1 As O_1 14 \frac{1}{2} V_2 O_3 29 W O_3 +$ 98H ()

SI sol in cold II O Readily sol in boiling HO Insol in ilcohol, ether, benzene, CS CHCl<sub>3</sub>, actione, nitrobenzené, anilmé and aceti l (Rogers, J Am Chem Soc 25 (7)

### Arseniovanadicovanadic acid

Ammonium arseniovanadicovanadate,  $5(NII_4)$  (), 12As O<sub>1</sub>, 12VO, 6V O<sub>1</sub>+

Sl sol in cold, sol in hot H2O, from which ciystallizes-

 $4(NH_4) O, 9As_2O_5, 9VO_2, 8V_2O_5 + 11H_2O$ Sol in H<sub>2</sub>O (Gibbs, Am Ch J 7 209)

# Arseniovanadicovanadiotungstic acid

Ammonium arseniovanadicovanadiotungstate.  $17(NH_4)_2O_{,2}As_2O_{5},7V_2O_{5},4V_2O_{3},32WO_{3}$  $+73H_2O$ 

Sl sol in cold, readily sol in boiling H<sub>2</sub>O (Rogers, J Am Chem Soc 1903, 25 310)

# Arseniovanadiotungstic acid

Ammonium arseniovanadiotungstate,  $18(NH_4)_2O$ ,  $2As_2O_5$ ,  $13VO_5$ ,  $39WO_8+$  $88H_2O$ 

Sol in H<sub>2</sub>O Insol in organic solvents (Rogers, J Am Chem Soc 1903, 25 306)

Arseniuretted hydrogen, AsH: See Arsenic hydride

#### Arsenochromic acid

Potassium arsenochromate, K<sub>4</sub>Cr<sub>2</sub>As<sub>2</sub>O<sub>16</sub>+ 12H<sub>2</sub>O

Sol in moderately conc mineral acids (Tarugi, C C 1897, II 724)  $K_7Cr_8As_5O_{22} + 24H_2O$ Pot Sol in dil warm acids (Tarugi)

Potassium hydrogen arsenochromate, K<sub>4</sub>H<sub>6</sub>Cr<sub>3</sub>As<sub>2</sub>O<sub>16</sub> (Tarugi, C C 1897, II 724)

# Arsenosoarsemotungstic acid

 $H_2O$  (Gibbs, Am Ch J 7 313)

Potassium arsenosoarseniotungstate, 10K<sub>2</sub>O,  $4As_2O_5$ ,  $As_2O_3$ ,  $21WO_3 + 2\bar{6}H_2O$ Precipitate Sol in a large amount of hot

### Arsenosomolybdic acid

Ammonium arsenosomolybdate, 3(NH<sub>4</sub>) O, 5As O<sub>3</sub>, 12MoO<sub>3</sub>+24H<sub>2</sub>O

SI sol in H<sub>2</sub>O (Gibbs, Am Ch J 7 313)

Ammonium barium arsenosomolybdate,  $3(NII_4) O$ , 2B iO,  $5As_2O_3$ ,  $10MoO_3 +$ 501I<sub>2</sub>O

Ppt (Ephraim, Z anorg 1910, 66 57)

Ammonium cupric arsenosomolybdate,  $(NH_4)_2O_1$  CuO,  $2A \times O_3$ ,  $4M_0O_3 + 2H_2O_1$ und 2(NII<sub>4</sub>)<sub>2</sub>O, CuO, 3As<sub>2</sub>O<sub>3</sub>, 6MoO<sub>3</sub>+ 13H<sub>2</sub>O

Ppts (Pphram, Z anorg 1910, 66 58)

Barium arsenosomolybdate, 3BaO, 2As Os.  $8M_0O_3+13HO$ 

Vaysl solm IIO (Gibbs)

Copper arsenosomolybdate, 2CuO, 3As O<sub>3</sub>, 6MoO<sub>3</sub>

Sol in H O (Gibbs)

arsenosomolybdate, Manganese 2MnO,  $3As_2O_3$ ,  $6MoO_3+6IIO$ , and  $+15H_2O$ Insol in H<sub>2</sub>O (Gibbs)

Potassium arsenosomolybdate, 3K<sub>2</sub>O, As<sub>2</sub>O<sub>3</sub>, Arsenyl iodide, As<sub>8</sub>I<sub>2</sub>O<sub>11</sub> = 2AsO  $5\text{MoO}_3 + 3\text{H}_2\text{O}$ 

Easily sol in H<sub>2</sub>O (Ephraim, Z anorg 1910, 66 54) 3K<sub>2</sub>O, As<sub>2</sub>O<sub>3</sub>, 8M<sub>0</sub>O<sub>3</sub>+18H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Ephram)

Sodium arsenosomolybdate, Na<sub>2</sub>O, As<sub>2</sub>O<sub>3</sub>,  $2\text{MoO}_3+6\text{H}_2\text{O}$ 

Easily sol in H<sub>2</sub>O (Ephraim, Z anorg 1910, **66** 56)

 $2Na_2O$ ,  $As_2O_3$ ,  $4MoO_3+13H_2O$ Ppt (Ephram)

Zinc arsenosomolybdate, 2ZnO, 3As<sub>2</sub>O<sub>3</sub>,  $6\text{M}_{0}\text{O}_{3}+6\text{H}_{2}\text{O}$ Sol in H<sub>2</sub>O (Gibbs)

# Arsenosophosphotungstic acid

Potassium arsenosophosphotungstate, 10K<sub>0</sub>O,  $14As_2O_3$ ,  $3P_2O_5$ ,  $32WO_3 + 28HO$ 

Moderately sol in cold, very leasily in hot  $\mathbf{H}_{2}\mathbf{O}$  (G1bbs)  $7K_2O$ ,  $2As_2O_3$ ,  $4P_2O_5$ ,  $60WO_3 + 55H_2O_5$ Sol in hot H<sub>2</sub>O with decomp (Gibbs)

Potassium sodium arsenosophosphotungstate,  $5K_2O$ , Na<sub>2</sub>O,  $2As_2O_3$ ,  $2P_2O_5$ ,  $12WO_3 +$ 15H<sub>2</sub>O (Gibbs, Am Ch J 7 313)

# Arsenosotungstic acid

Ammonium arsenosotungstate,  $7(NH_4)_2O$ ,  $2As_2O_3$ ,  $18WO_3+18HO$ Sol in H<sub>2</sub>O (Gibbs)

Barium arsenosotungstate, 4BaO, As<sub>2</sub>O<sub>3</sub>,  $9WO_3 + 21H_2O$ 

Precipitate Nearly insol in HO (Gibbs)

Sodium arsenosotungstate, 9Na O, 8As O<sub>3</sub>,  $16WO_3 + 55H_2O$ 

Very sol in H<sub>2</sub>O (Gibbs, Am Ch J 7 313)

# Arsenyl bromide, AsOBr

H<sub>2</sub>O dissolves out As<sub>2</sub>O<sub>3</sub>, insol in ilcohol (Serullas)

(Wallace, Phil Mag (4) 17 122)  $+H_2O$  $As_8O_9Br_6 = 2AsBr_3$ ,  $3AsO_3 + 12HO$ 

# Arsenyl bromide with MBr

See Arsenite bromide, M

Arsenyl chloride, AsOCl

Sol in H<sub>2</sub>O with decomp +H<sub>2</sub>O (Wallace, Phil Mag (4) **16** 358) As<sub>3</sub>O<sub>4</sub>Cl (Wallace)

Arsenyl chloride with MCl

See Arsenite chloride, M

Arsenyl potassium fluoride, AsOF<sub>3</sub>, KF+  $H_{9}O$ 

(Marignac, A 145 237)

 $12H_{2}O$ 

Decomp by H<sub>2</sub>O (Wallace, Pl | Mag (4) **17** 122)

 $3As_2O_3+$ 

Sl sol in cold H2O, less sol in alcohol (Phsson, J Pharm 14 46)

Arsenyl 10dide with MI

See Arsenite iodide, M

Arsenyl sulphoiodide,  $As_{18}I_9S_6O_9$ 

Scarcely attacked by cold H Boiling H<sub>2</sub>O extracts AsI<sub>8</sub> Decomp by 1 tHNO<sub>8</sub> or H<sub>2</sub>SO<sub>4</sub> Easily sol in KOH, or N <sub>4</sub>OH+Aq <sub>4</sub>OH+Aq (Schneider, J pr (2) **36** 513)

#### Arsıne

See Arsenic hydride

# Atmospheric air

See Air, atmospheric

Auriamine, Au(OH)2NH2

(Jacobsen, C R 1908, 146 12

 $D_{i}$ auriamine,  $Au_{2}(OH)_{4}NH$ 

(Jacobsen, C R 1908, 146 12

Sesquiauriamine,  $NAu_3$ ,  $NH_3$ 

Decomp by H<sub>2</sub>O into NAu<sub>3</sub> taschig, A **235** 341)

Auric acid, HAu<sub>2</sub>O<sub>4</sub>

Sol in HBr, or HCl+Aq (F uss, B 19 2546)

#### Ammonium aurate

See Auroamidoimide

Barium aurate, BaAu  $O_4+5H$  O

SI sol in H<sub>2</sub>O (Weigand, Zeit angew Ch 1905, 19 139)

+6HO Sl sol in HO Sol dıl H<sub>2</sub>SO<sub>4</sub> and in dil HNO3 Sol in HCl ecomp by ulcohol (Meyer, C R 1907, 14 806)

Calcium aurate (?)

Insol in II O, sol in CiCl +1 (Fremy, **1** (h (3) **31** 485)

C 1 \u2O4+6H2O As Br sa (Meyer, C R 1907, **145** 806)

Magnesium aurate (?)

Insol in HO, sol in IgCl +Aq (Pelletier)

Potassium aurate,  $I(\Lambda u)_2 + HI$ 

Very Sol in HO, and ca (Fremy A ch (3) **31** 483)

Sol in ilcohol, the solution in leohol does not decomp below 50° (liguic A ch (3)

**11** 364) Potassium aurate sulphite, IAu( , 2K<sub>2</sub>SO<sub>3</sub>+

Sol in H2O with decomp early insol in alkaline solutions (Fremy, a ch (3) 31 1485)

Sodium aurate, Na<sub>2</sub>Au<sub>2</sub>O<sub>4</sub>+2H<sub>2</sub>O

Sol in H2O Sol in dil H2SO4, dil HNO3, and HCl with decomp Decomp by alcohol (Meyer, C R 1907, 145 806)

Strontum aurate, SrAu<sub>2</sub>O<sub>4</sub>+6H<sub>2</sub>O As Ba salt (Meyer)

Aurumide chloride, Au(NH)Cl (Raschig)

Aurumide nitrate,  $Au_2N_2H_2O$ ,  $2HNO_3$ , or AuN,  $HNO_3 + \frac{1}{2}H_2O$ , or  $Au_2O(NH)_2$ , 2HNO.

Not deliquescent Decomp by hot  $H_2O$  into  $Au_2O(NH)_2$  (Schottlander, J B 1884

# Auroamidoimide, $Au(HN)NH_2+3H_2O$

(Fulminating gold ) Insol in  $\rm H_2O$ , not attacked by dil acids, sol in conc acids, and in moderately dil acids, when freshly precipitated Insol in alkalies or alcohol Sol in KCN+Aq

# Triauroamine, Au<sub>8</sub>N+5H<sub>2</sub>O

Not decomp by boiling dil acetic acid, HNO<sub>3</sub>, or H<sub>2</sub>SO<sub>4</sub> (Raschig, A 1886, 235) 349)

# Auricyanhydric acid, HAu(CN)<sub>4</sub>+1½H<sub>2</sub>O

Easily sol in H2O, alcohol, or ether

See also Bromauricvanides Chlorauricyanides

Iodauricyanides

Ammonium auricyanide, NH<sub>4</sub>Au(CN)<sub>4</sub>

Easily sol in H2O or alcohol Insol in Barium, Ba ether

Cobaltous auricyanide,  $Co[Au(CN)_4]_2 + 9H_2O$ Sl sol in cold, easily in hot H<sub>2</sub>O Sl sol in alcohol (I indbom)

Potassium auricyanide, KAu(CN)<sub>4</sub>+1½H<sub>2</sub>O Efflorescent SI sol in cold, easily in hot

H<sub>2</sub>O L suly sol in alcohol

Silver auricyanide, AgAuCN<sub>4</sub>

Insol in H<sub>2</sub>O or HNO<sub>3</sub>+Aq Sol in  $NH_4OH + Aq$ 

Diaurodiamine nitrate

See Aurumide nitrate

Aurobromhydric acid

See Bromauric acid

Aurobromic acid

See Bromauric acid

Aurochlorhydric acid See Chlorauric acid

Aurochloric acid

See Chlorauric acid

Aurocyanhydric acid

Aurocvanides with MCN

See Cyanide, aurous with MCN

Azınosulphonic acid

Ammonium azinosulphonate, N<sub>3</sub>SO<sub>3</sub>NH<sub>4</sub> (Traube, B 1914, 47 944)

Barium azinosulphonate, (N<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>Ba (Traube, B 1914, 47 944)

Potassium azinosulphonate, NaSOaK Easily sol in H<sub>2</sub>O Can be cryst from boiling abs alcohol (Traube, B 1914, 47 943)

Sodium azinosulphonate, N<sub>2</sub>SO<sub>3</sub>Na (Traube, B 1914, 47 944)

# Azoımıde, HN<sub>3</sub>

Miscible with H<sub>2</sub>O and alcohol (Curtius and Radershausen, J pr (2) 43 207

Stable in aq solution, decomp slowly by dil boiling HCl (Curtius, J pr 1898, (2) 58 265)

For salts of HN<sub>8</sub>, see azomide of metal under metal

Azoımıde, hydroxylamıne, N<sub>2</sub>H,2NH<sub>2</sub>OH

Sol in H<sub>2</sub>O Gradually volatilizes at ord temp (Dennis, J Am Chem Soc 1907, 29 22)

# Azophosphoric acid

See Pyrophosphamic acid

Deutazophosphoric acid See Pyrophosphodiamic acid

Decomp by H<sub>2</sub>O and abs alcohol (Guntz, C R 1901, 133 874)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 827 )

### Barium amalgam, BaHg<sub>13</sub>

Stable in contact with liquid amalgam up to 30° Can be cryst from Hg without decomp if temp does not exceed 30° (Kerp, Z anorg 1900, 25 68)

BaHg<sub>12</sub> Stable in contact with liquid amalgam from 30°-100° C in be cryst from Hg without decomp it any temp within these limits (Kerp)

### Barium amide, Ba(NH)

B-pt 280° (Mentrel, C C 1903, I 276) Decomp by HO (Guntz and Mentrel, Bull Soc 1903, (3) 29 578)

# Barium potassium amide

See Potassium ammonobarate

### Barium ammonia, Ba(NH<sub>3</sub>)6

Takes fire in the air Only sl sol in liquid NH<sub>3</sub> Violently decomp by H<sub>2</sub>O (Mentrel, IC R 1902, 135 740)

Barium arsenide, BasAs2

(Lebeau, C R 1899, Decomp by H<sub>2</sub>O **129** 48)

#### Barium azoimide, Ba(N<sub>3</sub>).

Very sl hydroscopic, explosive

12 5 pts are sol in 100 pts H<sub>2</sub>O at 0° 16 2 " " " 100 " H<sub>2</sub>O " 10 H<sub>2</sub>O " 10 5° " "

H<sub>2</sub>O " 15° 16 7 " "100 " H<sub>2</sub>O " 17° 17 3 " " " " 100 " 0 0172 pts are sol in 100 pts abs alcohol at

Insol in ether (Curtius, J pr 1898, (2) **58** 290)

See also Barium nitride

Barrum boride, BaBe

Sol in fused oxidizing agents, not decomp by H<sub>2</sub>O, insol in aq acids, sl sol in conc H<sub>2</sub>SO<sub>4</sub>, sol in dil and conc HNO<sub>8</sub> (Moissan, C R 1897, 125, 634)

Barium subbromide sodium bromide, BaBr. NaBr

(Guntz, C R Decomp by H<sub>2</sub>O 1903, **136** 750)

Barium bromide,  $BaBr_2$ , and  $+2H_2O$ 

100 pts H<sub>2</sub>O dissolve-80° 100° at 0° 20° 40° 60°

104 114 123135 149 pts BaBr<sub>2</sub>

Sat BaBr<sub>2</sub>+Aq contains at

--20° --9° +7° 16° 40° 19°

45 7 46 5 48 5 48 8 49 3 50 9%BaBr<sub>2</sub> 71° 76° 77° 104° 145° 160° 175°

55 1 55 5 55 6 56 6 60 5 59 4 60 3%BaBr<sub>2</sub> (Étard, A\_ch\_1894, (7) 2 540)

Sp gr of BaBr<sub>2</sub>+Aq at 19 5° containing 15 25  $30\% \mathrm{BaBr_2}$ 1 045 1 092 1 114 1 201 1 262 1 329

35 50 55%BaBr<sub>2</sub> 40 45 1 405 1 485 1 580 1 685 1 800 (Kremers, Pogg 99 444, calculated by Gerlach Z anal 8 285)

BaBr +Aq containing 774% BaBr, has  $sp_gr 20^{\circ}/20^{\circ} = 10716$ 

 $BaBr_2+Aq$  containing 16 76%  $BaBr_2$  has gr  $20^{\circ}/20^{\circ}=1$  1674

(Le Blanc and Rohland, Z phys Ch 1896,

279) Sat BaBr<sub>2</sub>+Aq boils at 113° (Kiemers, Pogg 99 43)

Solubility in BaI<sub>2</sub>+Aq at t°

Sat solution contains t٥ o BaI % BaBr 57 9 4 7 --16-165 0 59 O +605 5 66 0 1359 3 67 3 9 0 67 2 135 170 11 0 67 4 67 7 210 14 9

(Étard, A ch 1894, (7) 3 287)

Very sol in absolute alcohol (Hür feld) 100 pts absolute methyl alcohol diss lve 50 pts BaBr<sub>2</sub> at 22 5°

100 pts absolute ethyl alcohol dis alve 3 pts BaBr<sub>2</sub> at 22 5° (de Bruyn, Z pl s Ch **10** 783)

Sat solution in 87% alcohol conta is 6% BaBr<sub>2</sub> (Richards, Z anorg 3 455) 100 pts absolute methyl alcohol ssolve

45 8 pts BaBr<sub>2</sub>+2H<sub>2</sub>O at 15° 100 pts 93 5% methyl alcohol a ssolve 27 3 pts BaBr<sub>2</sub>+2H<sub>2</sub>O at 15° 100 pts 50% methyl alcohol dissolv 4 pts BaBr<sub>2</sub>+2H<sub>2</sub>O at 15° (de Bruyn, Z phys Ch 10 787)

100 g BaBr<sub>2</sub>+CH<sub>8</sub>OH contain 0 4 g 3aBr₁ at the critical temp (Centnerszwer, 2 phys Ch 1910, **72** 437)

At 15°, 1 pt by weight is sol in 36 pts methyl alcohol, sp gr 207 " ethyl " " " 35 652 " propyl " " (Rohland, Z anorg 1897, 15 413)

Nearly insol in boiling amvl alcol ol, 10 ccm dissolving only an amt equal to 3 mg

(Browning, Sill Am J 144 45 1, 37

Sol in acetone (Naumann, B 19 4328, Eidmann, C C 1899, II 1014) Insol in benzonitrile (Naumann, È 1914.

**47** 1370) Difficultly sol in methyl acetate Nau-

mann, B 1909, **42** 3789) Insol in ethyl acetate (Naumann, F 1910.

**43** 314)

Barium cadmium bromide, BaBr, C 3r<sub>2</sub>+

Sol in H<sub>2</sub>O (v Hauer, W A B 20 40)

# Barium rhodium bromide

See Bromorhodite, barium

Barium bromide ammonia, BiBi .8NI

Decomp by H<sub>2</sub>O (Joannis, C R 1905. **140** 1244)

Barium bromide hydrazine, BiBi, 2N

Hydroscopic Very sol in HO In ol m alcohol (Fruizen, Z morg 1908, 60 91)

#### Barium bromofluoride, BaBi2,Bak

Insol in and undecomp by boiling a ohol Sol in HBr and in HNO, Decomp by H<sub>2</sub>O. hot II SO<sub>4</sub>, dil HCl, dil HNO<sub>3</sub>, or dil acid (Defreqz, C R 1904, **138** 199) cetic

# Barium carbide, BaC<sub>2</sub>

Decomp by HO (Maguenne, C I 360)

Sp gr 375 Easily decomp by H<sub>2</sub> and dil acids (Moissan, Bull Soc 1894, ) 11 1008)

# Barium carbonyl, Ba(CO)2

Sol in H<sub>2</sub>O (Guntz and Mentrel, Bull Soc 1903, (3) 29 586)

#### Barrum subchloride, BaCl

Decomp by H<sub>2</sub>O (Guntz, C R 1903, **136** 751)

Barrum subchloride sodium chloride, BaCl, NaCl

Decomp by  $H_2O$  (Guntz, C R 1903, 136 750)

# Barrum chloride, BaCl<sub>2</sub>, and +2H<sub>2</sub>O Permanent in dry air

100 pts H<sub>2</sub>O at t<sup>o</sup> dissolve (a) pts BaCl<sub>2</sub> and (b) pts BaCl<sub>2</sub>+2H<sub>2</sub>O

| t°    | a     | b     | t°     | a     | ь     |
|-------|-------|-------|--------|-------|-------|
| 15 64 | 34 86 | 43 50 | 74 89  | 59 94 | 65 51 |
| 49 31 | 43 84 | 55 63 | 105 48 | 59 58 | 77 89 |

(Gay Lussac A ch. (2) 11 309)

100 pts  $\rm\,H_2O$  at to dissolve 32 62  $\pm 0$  2711t pts  $\rm\,BaCl_2$  (Kopp )

100 pts H2O dissolve pts BaCl2+2H2O at to

| t°                                        | Pts BaCl <sub>2</sub> +2H <sub>2</sub> O t° |                                | Pts<br>BaCl <sub>2</sub> +2H <sub>2</sub> O |
|-------------------------------------------|---------------------------------------------|--------------------------------|---------------------------------------------|
| 16 25<br>20 00<br>22 50<br>37 50<br>50 00 | 39 66<br>42 22<br>43 7<br>51 0<br>65 0      | 62 50<br>75 00<br>87 00<br>100 | 48 0<br>63 0<br>65 0<br>72 0                |

#### (Brandes)

Sol in 2.67 pts H O at 18.75° (Abl) 1 pt BaCl<sub>2</sub> is sol in 2.86 pts  $\rm H_2O$  at 15.5° and 1.67 pts at boiling temp (M R and P) 100 pts  $\rm H_2O$  at 15.5° dissolve 20 pts BaCl and 43 pts at 87.7° (Ures Dict)

Solubility in 100 pts H O at to

| t°                         | I ts<br>BaCl                 | t°                     | Pts<br>BaCl <sub>2</sub>     |
|----------------------------|------------------------------|------------------------|------------------------------|
| 0<br>12 2<br>38 4<br>62 7) | 31 1<br>33 9<br>41 2<br>47 7 | 77 5<br>95 65<br>102 5 | 51 9<br>57 7<br>58 9<br>59 7 |

(Nordenshield Pogg 136 316)

100 pts II O dissolve pts BaCl at t

| t             | Pt4<br>B iC l2       | t        | I ts<br>BaCl <sub>2</sub> |
|---------------|----------------------|----------|---------------------------|
| 9<br>30<br>37 | 33 2<br>35 1<br>40 0 | 50<br>58 | 43 7<br>4 9               |

(Gerardin A ch (4) 5 143)

1 pt  $BaCl_2+2H$  O is sol in 2 18 pts  $H_2O$  at 21 5°, and the solution has sp gr = 1 2878 (Schiff, A 109 326)

1 pt anhydrous BaCl<sub>2</sub> is sol in 286 pts H<sub>2</sub>O at 15° (Gerlach)

Solubility in 100 pts H<sub>2</sub>O at t°

| t°                                                                                                                               | Pts<br>BaCl <sub>2</sub>                                                                                                                                                                   | t°                                                                                                                               | Pts<br>BaCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t°                                                                                                                                                                                                            | Pts<br>BaCl <sub>2</sub>                                                                                   |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 1 22 23 24 25 6 27 28 29 0 3 3 3 3 4 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9257924681358025702570257025<br>331132223333558025702570257025<br>331322233333445<br>34457025702570257025<br>331333334457025<br>33133333334457025<br>3313333333333333333333333333333333333 | 36<br>37<br>38<br>39<br>41<br>42<br>44<br>45<br>46<br>47<br>49<br>49<br>55<br>55<br>55<br>55<br>66<br>66<br>66<br>66<br>67<br>67 | \$9 \; 0 \; 2 \; 5 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; 4 \; 7 \; 0 \; 3 \; 6 \; 9 \; 2 \; | 71<br>72<br>73<br>74<br>75<br>76<br>77<br>78<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>104<br>1 | 49 7 0 3 6 9 2 5 8 1 4 4 7 0 3 6 0 3 6 9 2 6 9 2 5 8 2 3 5 3 4 5 4 5 5 5 5 6 6 6 0 5 5 5 5 5 5 5 6 6 0 6 0 |  |

(Mulder, calculated from his own and other observations Scheik Verhandel 1864 45)

The saturated solution contains-

603 pts BaCl<sub>2</sub> to 100 pts H<sub>2</sub>O, and boils at 104 1° (Mulder)

60 1 pts BaCl to 100 pts  $H_2O$ , and boils at 104 4° (Legi and )

618 pts BuCl, to 100 pts H<sub>2</sub>O, and boils it 104 5° (Griffith)

59 58 pts BaCl<sub>2</sub> to 100 pts II<sub>2</sub>O, and boils at 105 45° (Gry-Lussac), at 106° (Kremers)

54 1 pts BuCl to 100 pts H O, and forms cust at 104 4°, highest temperature observed,  $104~9^\circ$  (Gerlich, Z anal 26~426)

Sit BiCl2+Aq contuns at

100° 130 144° 160° 180° 215°

36 37 3 37 5 38 9 40 7 43 1%BaCl<sub>2</sub> (Étud, A ch 1894, (7) **2** 535)

Aq solution contains 27 6% BaCl<sub>2</sub> at 30° (Shi cineniakers, C C 1910, I 9)

Solubility of BaCl<sub>2</sub>+2H<sub>2</sub>O in H<sub>2</sub>O equals 1745 mol-litre at 30° (Masson, Chem Soc **1911, 99** 1136)

BaCl<sub>2</sub>+Aq sat at 8° has sp gr 1 27 (Anthon) BaCl<sub>2</sub>+Aq sat at 15° has sp gr 1 282 (Michel and

Krafft)
BaCls+Aq sat at 181° has sp gr 1 285 and con
BaCls+Aq sat at 181° has sp gr 1 285 and con
(Kar sten.)

Sp gr of BaCl2+Aq at 19 5°

| % BaCl <sub>2</sub> | Sp gr  | % BaCl <sub>2</sub> | Sp gr  |
|---------------------|--------|---------------------|--------|
| 8 88                | 1 0760 | 27 53               | 1 2245 |
| 18 24               | 1 1521 | 35 44               | 1 2837 |

(Kremers Pogg 99 444)

# Sp gr of BaCl<sub>2</sub>+Aq at 15°

| % BaCl <sub>2</sub>                             | Sp gr                                                                                                                                       | % BaCl <sub>2</sub>                                                  | Sp gr                                                                                                                            |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 1 00917<br>1 01834<br>1 02750<br>1 03667<br>1 04584<br>1 05569<br>1 06554<br>1 07538<br>1 08523<br>1 09508<br>1 10576<br>1 11643<br>1 12711 | 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25 | 1 13778<br>1 14846<br>1 15999<br>1 17152<br>1 18305<br>1 19458<br>1 20681<br>1 21892<br>1 23173<br>1 24455<br>1 25736<br>1 27017 |

(Gerlach, Z anal 8 283)

# Sp gr of BaCl<sub>2</sub>+Aq at 215°

| % BaCl <sub>2</sub> +<br>2H <sub>2</sub> O                                    | Sp gr                                                                                                                                    | % BaCl <sub>2</sub> +<br>2H <sub>2</sub> O                                             | Sp gr                                                                                                                                              |  |  |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 1 0073<br>1 0147<br>1 0222<br>1 0298<br>1 0374<br>1 0452<br>1 0530<br>1 0610<br>1 0692<br>1 0776<br>1 0861<br>1 0947<br>1 1034<br>1 1122 | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 1 1302<br>1 1394<br>1 1488<br>1 1584<br>1 1683<br>1 1783<br>1 1884<br>1 1986<br>1 2090<br>1 2197<br>1 2304<br>1 2413<br>1 2523<br>1 2636<br>1 2750 |  |  |  |  |
|                                                                               | ' '                                                                                                                                      | ~ .                                                                                    |                                                                                                                                                    |  |  |  |  |

(Schiff, calculated by Gerlach, lc)

### Sp gr of BaCl<sub>2</sub>+Aq at 18°

| % BaCl <sub>2</sub> | Sp gr                      | % BaCl2  | Sp gr            |
|---------------------|----------------------------|----------|------------------|
| 5<br>10<br>15       | 1 0445<br>1 0939<br>1 1473 | 20<br>24 | 1 2047<br>1 2559 |

(Kohlrausch, W Ann 1879 1)

| Sp gr of BaCl <sub>2</sub> +Aq at 20°                  |                                                                          |  |  |  |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|--|--|
| g mols BaCl2 per l                                     | Sp gr                                                                    |  |  |  |  |  |  |  |
| 0 01<br>0 025<br>0 05<br>0 075<br>0 10<br>0 25<br>0 40 | 1 001878<br>1 00475<br>1 00929<br>1 01369<br>1 01766<br>1 0456<br>1 0726 |  |  |  |  |  |  |  |

(Jones and Pearce, Am Ch J 1907, 38 117 BaCl<sub>2</sub>+Aq containing 6 94% BaCl has  $sp_gr_20^{\circ}/20^{\circ} = 1.0640$ 

BaCl<sub>2</sub>+Aq containing 11 38% BaC sp gr 20°/20°=1 1086 has (Le Blanc and Rohland, Z phys Ch 896, 19 279)

> Sp gr of BaCl<sub>2</sub>+Aq at 25° BaCl2+Aq 1 0884 1-normal 1

0441 " 1 0226 1 0114

(Wagner, Z phys Ch 1890, 5 35

Sp gr of BaCl<sub>2</sub>+Aq t٥ Concentration of BaCl2+Aq 25° 1 pt BaCl<sub>2</sub> in 3684 pts H<sub>2</sub>O 2194 0145

gr

" 52 597 22 8 1 (Hittorf, Z phys Ch 1902, 39 62

# Temp of Maximum Density

| Weight of BaCl <sub>2</sub><br>in 1000 grams<br>H <sub>2</sub> O | Temp of maximum density                         | Molecular<br>tion of to<br>M | educ               |  |  |  |  |  |  |
|------------------------------------------------------------------|-------------------------------------------------|------------------------------|--------------------|--|--|--|--|--|--|
| 0<br>6 73<br>10 42<br>20 83<br>41 72                             | 3 982°<br>3 207°<br>2 783°<br>1 572°<br>—0 843° | 23<br>23<br>24<br>24<br>24   | }<br>}<br><b>!</b> |  |  |  |  |  |  |

(De Coppet, C R 1897, **125** 53

BaCl2+Aq containing 10% Bi(1 1 ils at 100 6° (Gerlach)

BaCl<sub>2</sub>+Aq containing 20° o B iCl 1 ils at (Gerlach)

B-pt of BaCl<sub>2</sub>+Aq containing pts B Cl<sub>2</sub> to 100 pts  $H_2O$  G = according to (ılach (Z anal 26 443),  $I = \mu$  cording to I mand (A ch (2) **59** 452)

| B pt      | (    | 1    |
|-----------|------|------|
| 100 5°    | 6.4  | 11   |
| 101 0     | 12 7 | 19   |
| 101 5     | 19 0 | 26   |
| 102 0     | 25 3 | 32   |
| $102 \ 5$ | 31 6 | 38   |
| 103 0     | 37 7 | 44   |
| 103 5     | 43 7 | 50   |
| 104 0     | 49 5 | 56 + |
| $104 \ 4$ | 1    | 60   |
| 104 5     | 55 2 |      |

Less sol in H O containing HCl than in pure  $H_2O$ , and scarcely sol in conc HCl+Aq (Berzelius)

Solubility of BaCl<sub>2</sub> in HCl+Aq at 0° BaCl<sub>2</sub>=no ½ mols (in milligrammes) dissolved in 10 cc of the liquid, HCl=no mols (in milligrammes) contained in the same

quantity of liquid

| BaCl <sub>2</sub>                                                       | HCl                                                                | Sum of mols                                                                   | Sp gr                                                                         |
|-------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 29 45<br>27 8<br>26 075<br>23 4<br>14 0<br>10 2<br>6 67<br>2 74<br>0 29 | 0<br>1 1<br>2 8<br>5 0<br>14 36<br>18 775<br>22 75<br>32 0<br>50 5 | 29 45<br>28 9<br>28 875<br>28 4<br>28 36<br>28 975<br>29 42<br>34 74<br>50 79 | 1 250<br>1 242<br>1 228<br>1 210<br>1 143<br>1 118<br>1 099<br>1 079<br>1 088 |

(Engel, Bull Soc (2) 45 653)

Sol in about 8000 pts conc HCl+Aq Sol in about 20,000 pts conc HCl+Aq through which HCl gas was passed

Practically insol in conc HCl+Aq containing 1/6 vol ether (Mar, Sill Am J 143

Solubility in HCl+Aq at 30°

| Composition of the solution                            |                                                       | Solid phase                                                                                                   |  |  |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| % by<br>wt HCl                                         | % by wt<br>BaCl <sub>2</sub>                          | Sond phase                                                                                                    |  |  |  |  |  |
| 0<br>5 94<br>11 55<br>18 11<br>32 35<br>37 34<br>38 63 | 27 6<br>12 97<br>3 85<br>0 46<br>0 00<br>0 00<br>0 00 | BaCl <sub>2</sub> , 2H O  " " " " " BaCl , 2H <sub>2</sub> O +BaCl <sub>2</sub> , H O BaCl , H <sub>2</sub> O |  |  |  |  |  |

(Schreinemakers, Z phys Ch 1909, 68 89)

Much less sol in  $HNO_3+Aq$  than in H O, because  $Ba(NO_3)$  is nearly insol therein (Wurtz )

BaCl<sub>2</sub> is sol in about—

4 00 pts H<sub>2</sub>O

 $5.00 \text{ pts } NH_4OH + Aq (conc.)$ 

5 33 pts NH<sub>4</sub>OH + Aq (1 vol conc 3 vols H O) 5 33 pts HCl + Aq (1 vol conc 4 vols

H ()

800 pts HC<sub>2</sub>H<sub>3</sub>() +Aq (1 vol commercial acid 1 vol H 0)

6 00 pts NH<sub>4</sub>Cl + \q(1 pt NH<sub>4</sub>Cl 10 pts H O)

6 00 pts NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O +Aq (dd NH<sub>4</sub>OII+ Aq neutralized by dd HC H<sub>4</sub>O +Aq)

667 pts NaC H<sub>3</sub>O +Aq (commercial HC H<sub>3</sub>O neutralized by Na CO<sub>4</sub>, and dil with 4 vols H<sub>4</sub>O)

6 33 pts Cu(C<sub>2</sub>H<sub>3</sub>O) +Aq See Stolba (Z

inal 2 390)

 $5\,67$  pts grape sugar (1 pt grape sugar 10 pts  $H_2O$ ) (Peuson, Zeit Chem **1869** 662)

 $BaCl_2+NH_4Cl$  Solubility of  $BaCl_2$  m  $NH_4Cl+Aq$  at  $30^\circ$ 

| Composition of the solution                                                      |                                                                               | Solid phase                                                                                                                |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| % NH4Cl                                                                          | % BaCl <sub>2</sub>                                                           |                                                                                                                            |
| 0<br>5 71<br>10 06<br>13 84<br>20 00<br>24 69<br>25 79<br>26 06<br>27 47<br>29 5 | 27 6<br>22 16<br>18 36<br>15 42<br>10 89<br>8 33<br>7 95<br>7 99<br>3 56<br>0 | BaCl <sub>2</sub> 2H <sub>2</sub> O<br>" " " " " BaCl <sub>2</sub> 2H <sub>2</sub> O+NH <sub>4</sub> Cl NH <sub>4</sub> Cl |

(Schreinemakers, Z phys Ch 1909, 66 688)

See also under Ammonium chloride

BaCl<sub>2</sub>+Ba(OH)<sub>2</sub> Solubility of BaCl<sub>2</sub> in

BaO+Aq at 30°

(Schreinemakers, Z. phys. Ch. 1909, 68–88)
Sol in CuCl<sub>2</sub>, NH<sub>4</sub>Cl+Aq at 30° (Schreinemikers, Z. phys. Ch. 1909, 66–688)

The solubility data for the system BaCl + CuCl<sub>2</sub>+KCl+Aq have been determined at 40° and 60° (Schreinem ikers, C C 1915, I 933)

B<sub>1</sub>Cl +H<sub>g</sub>Cl Solubility of B<sub>1</sub>Cl + H<sub>g</sub>Cl in H O

|                                     | od em )                                                       | r 100 L<br>tion                                    | Solid phase                                        |
|-------------------------------------|---------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 10 4° 10 4 10 4 10 4 10 4 10 4 10 4 | B x C 1<br>23 58<br>23 44<br>22 58<br>22 48<br>22 10<br>21 64 | 50 54<br>50 74<br>51 23<br>51 41<br>51 66<br>51 74 | B 1Cl ,2H O+HgCl<br>B 1Cl <sub>2</sub> ,3HgCl 6H O |
| $\frac{10}{25} \frac{4}{0}$         | 23 02                                                         | 54 83                                              | B Cl ,2H O+HgCl,                                   |

(Foote and Bristol, Am Ch J 32 248)

### Solubility of BaCl<sub>2</sub>+HgCl<sub>2</sub> in H<sub>2</sub>O

|                                                                                                                              | Temp =30                                                                                                                 |                                                                          |                                                                                                             | Temp =0°                                                                                                    |                                                                                                                                                                                                                                                              |       |  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| % HgCl <sub>2</sub>                                                                                                          | % BaCl <sub>2</sub>                                                                                                      | Solid phase                                                              | % HgCl <sub>2</sub> % BaCl Solid phase                                                                      |                                                                                                             |                                                                                                                                                                                                                                                              |       |  |
| 0<br>2 90<br>7 09<br>12 98<br>22 61<br>34 57<br>46 50<br>55 16<br>55 32<br>55 19<br>48 97<br>41 30<br>27 62<br>14 19<br>7 67 | 27 77<br>27 56<br>27 47<br>26 99<br>26 89<br>26 69<br>25 22<br>23 46<br>23 08<br>22 98<br>17 87<br>14 26<br>8 41<br>2 65 | BaCl <sub>2</sub> 2H <sub>2</sub> O  " " " " " " " " " " " " " " " " " " | 0<br>14 25<br>36 20<br>46 12<br>46 05<br>46 07<br>46 59<br>47 78<br>48 43<br>48 43<br>29 0<br>16 36<br>3 95 | 23 70<br>24 0<br>24 89<br>24 07<br>24 03<br>24 05<br>23 28<br>21 05<br>20 64<br>20 71<br>11 59<br>6 11<br>0 | BaCl <sub>2</sub> 2H <sub>2</sub> O  ""  BaCl <sub>2</sub> , 3HgCl <sub>2</sub> 6H <sub>2</sub> O+ ""  BaCl <sub>2</sub> , 3HgCl <sub>2</sub> 6H <sub>2</sub> C  BaCl <sub>2</sub> , 3HgCl <sub>2</sub> 6H <sub>2</sub> O+1  HgCl <sub>2</sub> ""  Temp =40° | 12(CI |  |
|                                                                                                                              |                                                                                                                          |                                                                          | 56 57                                                                                                       | <b>?2</b> 98                                                                                                | BaCl <sub>2</sub> 2H <sub>2</sub> O+HgCl                                                                                                                                                                                                                     |       |  |

(Schrememakers, Ch Weekbl 1911, 7 202)

BaCl<sub>2</sub>+KCl Sol in sat KCl+Aq, at first without pptn The KCl is pptd after a time until a state of equilibrium is reached

100 pts H<sub>2</sub>O at 16 6° dissolve 33 8-27 2 pts KCl and 18 2-34 9 pts BaCl<sub>2</sub> (Kopp, A **34** 

100 g sat solution of BaCl<sub>2</sub>+KCl contain 13 83 g BaCl<sub>2</sub> and 18 97 g KCl at 25° (Foote, Am Ch J 32 253)

 $BaCl_2+Ba(NO_3)_2$   $BaCl_2$  is sol in sat  $Ba(NO_3)_2+Aq$ 

Solubility of BaCl +Ba(NO<sub>3</sub>)<sub>2</sub> in H O Both salts present in solid phase

| t°                  | Gms per 100 gms<br>solution  |                          | l to                     |                      | r 100 gms<br>ution   |
|---------------------|------------------------------|--------------------------|--------------------------|----------------------|----------------------|
|                     | BaCl                         | Ba(NO <sub>3</sub> )     |                          | BiCl                 | Bt(NO3)              |
| 0<br>20<br>40<br>60 | 22 5<br>24 5<br>26 5<br>28 5 | 4 3<br>6 0<br>7 5<br>9 5 | 100<br>140<br>180<br>210 | 31<br>32<br>33<br>32 | 14<br>20<br>26<br>32 |

(Ltard, A Ch (7) 2 535)

Very slowly sol in sit  $NaNO_3 + 1q$  with separation of  $Ba(NO_3)_2$ 

Rapidly sol in sat  $KNO_3 + \Lambda q$ , forming  $Ba(NO_3)_2$ , which separates out (Karsten)

BaCl<sub>2</sub>+NaCl BaCl<sub>2</sub> is sol in NaCl+Aq at first without separation of NaCl, which, however, finally separates

BaCl<sub>2</sub>+KCl Sol in sat KCl+Aq, at first | 100 pts H<sub>2</sub>O dissolve, when both salt a

| U  | n_ | exc  | es                                                                | s                                                      |         |                                                        |                                                        |                                                        |                                                       |                                                       |
|----|----|------|-------------------------------------------------------------------|--------------------------------------------------------|---------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 1  |    |      |                                                                   |                                                        |         |                                                        | !                                                      | 5                                                      | ;                                                     | 6                                                     |
| 35 |    |      |                                                                   |                                                        | 0       | 40                                                     |                                                        | 19                                                     | 4                                                     | 0                                                     |
|    | 1  | 35 9 | $ \begin{array}{c c} 1 & 2 \\ 35 & 9 & 4 \\ 34 & 34 \end{array} $ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 -   - | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

1, 2, and 3 are at 17° (Kopp, A 34 68 4, 5, and 6 are at b-pt (Mulder)

Solubility of  $BaCl_2+NaCl$ 100 pts  $H_2O$  dissolve pts BaCl and aClat  $t^{\circ}$ 

| t° | Pts<br>BıCl | Pts<br>NaCl | t°  | I ts<br>BaCl | s<br>Cl |
|----|-------------|-------------|-----|--------------|---------|
| 10 | 4 1         | 33 9        | 60  | 9 7          | 5       |
| 20 | 4 1         | 35 8        | 70  | 11 7         | 6       |
| 30 | 5 0         | 33 7        | 80  | 13 9         | 6       |
| 40 | 6 3         | 33 6        | 90  | 15 9         | 6       |
| 50 | 7 9         | 33 5        | 100 | 17 9         | 6       |

(Precht and Wattgen, B 14 1667

30°

Solubility of BaCl + NaClin HCl+Aq

|                  |          |    |       | -    |          | 1   |                 |      |        |     |
|------------------|----------|----|-------|------|----------|-----|-----------------|------|--------|-----|
| Solid phase NaCl |          |    |       | 5    | olid phi | 140 | BiCl            | 'н о |        |     |
| Sp<br>of         | <u>r</u> |    | ( mo  | l li | tic      |     | op gr<br>of sat |      | ( mol  | (   |
|                  | tion     |    | ист   | 1    | 1(1      |     | dutien          |      | HCI    | ı(1 |
| 1 2              | 018      | 0  | 0000  | 5    | 4()()    | 1   | 3056            | 0    | 0000   | 745 |
| 1 1              | 906      | 0  | 4575  | 4    | 932      | 1   | <i>2</i> 651    | 0    | 4709   | 468 |
| 1 1              | 801      | 0  | 969   | 4    | 386      | 1   | 2117            | 1    | 107    | 122 |
| 1 1              | 633      | 1  | 786   | 3    | 589      | 1   | 1759            | 1    | 622    | 861 |
| 1 1              | 512      | 2  | 412   | 2    | 978      | 1   | 1419            | 2    | 234    | 592 |
| 1 1              | 427      | 3  | 052   | 2    | 463      | 1   | 1068            | 5    | 041    | 307 |
| 1 1              | 289      | 4  | 152   | 1    | 625      | 1   | 0880            | 3    | 953    | 124 |
| 1 1              | 188      | 5  | 950   | 0    | 630      | 1   | 0895            | 3    | 059    | 020 |
| 1 1              | 258      | 7  | 205   | 0    | 268      | 1   | 1024            | 6    | 234    | 00  |
|                  |          |    |       | Į    |          |     | 1609            | 10   | 25     | 00  |
|                  | (Ma      | ss | on, C | he   | n So     | oc  | 1911,           | 9    | 9 1136 | ī   |

"

93 95

| Solubility | of BaCl <sub>2</sub> | +NaCl m | HCl+Aq | at 30° |
|------------|----------------------|---------|--------|--------|
|------------|----------------------|---------|--------|--------|

| %HCl  | %NaCl | %BaCl2 | Solid phase                               |
|-------|-------|--------|-------------------------------------------|
| 0     | 23 85 | 3 8    | NaCl, BaCl <sub>2</sub> 2H <sub>2</sub> O |
| 4 84  | 18 07 | 2 27   | "                                         |
| 12 02 | 9 55  | 0 82   | "                                         |
| 17 20 | 4 65  | 0 29   | "                                         |
| 23 16 | 1 54  | 0 00   | "                                         |
| 28 66 | 0 47  | 0 00   | "                                         |
| 36 51 | 0 12  | 0 00   | NaCl+BaCl <sub>2</sub> H <sub>2</sub> O   |

(Schreinemakers, Arch Néer Sc ex nat (2) **15** 91)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 827)

Solubility in alcohol 100 pts alcohol of given sp gr dissolve pts of the anhydrous and crystallized

| Sp gr | Pts<br>BaCl <sub>2</sub> | Pts<br>BaCl <sub>2</sub> +2H <sub>2</sub> O |
|-------|--------------------------|---------------------------------------------|
| 0 900 | 1 00                     | 1 56                                        |
| 0 848 | 0 29                     | 0 43                                        |
| 0 834 | 0 185                    | 0 32                                        |
| 0 817 | 0 09                     | 0 06                                        |

(Kirwan)

Insol in abs alcohol, or below 19° in alcohol of over 91% Dil alcohol dissolves less BaCl<sub>2</sub> than corresponds to the amount of H<sub>2</sub>O present (Gerardin, A ch (4) 5 142)

Solubility in 100 pts alcohol at to D=sp gr of alcohol, S = solubility

| D=0                        | 9904                                 | 04 D = 0 9848              |                                      | D = 0 9793                 |                                      | D=0 9726              |                              |
|----------------------------|--------------------------------------|----------------------------|--------------------------------------|----------------------------|--------------------------------------|-----------------------|------------------------------|
| t°                         | s                                    | t                          | s                                    | t                          | 9                                    | t°                    | q                            |
| 14<br>25<br>32<br>47<br>60 | 29 1<br>32 0<br>33 3<br>37 4<br>39 8 | 14<br>32<br>39<br>50<br>63 | 25 0<br>29 1<br>30 9<br>33 2<br>37 6 | 11<br>15<br>20<br>35<br>45 | 19 6<br>20 4<br>21 7<br>24 6<br>26 8 | 1 5<br>23<br>33<br>50 | 10 6<br>17 0<br>19 1<br>22 0 |

| D =                        | 0 9573                             | D=0 9390                   |                                  | D =0                       | 5967              | D = 0 8429                 |                                       |
|----------------------------|------------------------------------|----------------------------|----------------------------------|----------------------------|-------------------|----------------------------|---------------------------------------|
| t                          | ٩                                  | t°                         | 4                                | t°                         | ч                 | t                          | 5                                     |
| 13<br>24<br>34<br>39<br>50 | 10<br>11 4<br>12 9<br>13 8<br>15 2 | 12<br>23<br>31<br>37<br>47 | 6 3<br>7 2<br>5 3<br>9 0<br>10 1 | 1 <sub>~</sub><br>30<br>47 | 0 1<br>4 3<br>4 9 | 12<br>19<br>25<br>50<br>67 | 0 00<br>0 00<br>0 04<br>0 25<br>0 377 |

(Gardin, A ch (4) 5 142)

Solubility in dil alcohol of x% by weight at 15°

% alcohol 0 10 20 30 40 60 80 Pts BaCl<sub>2</sub> 2H<sub>2</sub>O 30 2<sub>0</sub> 23 7 18 0 12 8 9 3 3 4 0 5 (Schiff, A 118 365)

Sol in 6885-8108 pts 993% alcohol at 145°, and in 1857 pts at ebullition (Fresenius )

|                | alcohol   | BaCl2 | Solid phase                                                            |
|----------------|-----------|-------|------------------------------------------------------------------------|
| <del>30°</del> | 0         | 27 95 | BaCl <sub>2</sub> 2H <sub>2</sub> O                                    |
| "              | 32 67     | 10 63 | "                                                                      |
| "              | 50 16     | 5 68  | "                                                                      |
| "              | 66 72     | 2 23  | 46                                                                     |
| "              | 92 53     | 0 05  | 46                                                                     |
| "              | 94 83     | 0 07  | BaCl <sub>2</sub> 2H <sub>2</sub> O+BaCl <sub>2</sub> H <sub>2</sub> O |
| "              | 94 75     | 0 05  |                                                                        |
| "              | 94 60     | 0 07  | "                                                                      |
|                | 1 - 1 - 1 |       |                                                                        |

Solubility of BaCl<sub>2</sub> in alcohol+Aq

%

BaCl<sub>2</sub> H<sub>2</sub>O 66 0 08 98 17 BaCl<sub>2</sub> H<sub>2</sub>O+BaCl<sub>2</sub> " 99 41 BaCl<sub>2</sub> 60° 0 31 57 BaCl<sub>2</sub> 2H<sub>2</sub>O 66 16 68 20 16 " 34 10 13 21 " " 2 82 66 02" 88 55 0 25 " 90 11 0 09 BaCl<sub>2</sub> 2H<sub>2</sub>O+BaCl<sub>2</sub> H<sub>2</sub>O " 90 39

(Schreinemakers and Massink, Chem Weekbl 1910, 7 213)

BaCl<sub>2</sub> H<sub>2</sub>O

100 pts absolute methyl alcohol dissolve 2 18 pts BaCl<sub>2</sub> at 15 5°, and 7 3 pts BaCl<sub>2</sub>, 2H<sub>2</sub>O at 6° (de Bruyn, Z phys Ch 10 783)

At 15° C 1 pt by weight is sol in -78 pts methyl alcohol of sp gr 0 790 **~**0 8035 7,000 \*\*\* ethyl 100,000 " " " " " 0 8085

000 " propyl " " " " 0 (Rohland, Z anorg 1897, **15** 413 )

Absolutely insol in boiling amyl alcohol (Browning, Sill Am J 144 459) Absolutely insol in acctic ether (Cann.

C R 102 363)

Very sl sol in acetone roy, J Anal Ch 6 184) (Krug and M'El-

100 pts by weight of glycerine dissolve 10 pts BaCl at 155° (de Bruyn, Z phys Ch **10** 783)

Insol in acetone (Naumann, B 1904, 37 4329) (Lidmann, C C 1899, II 1014) Insol in benzonitrile (Naumann, B 1914,

**47** 1370)

Insol in methyl icetate (Naumann, B 1909, **42** 3790)

Insol in inhydrous pyridine, 97% pyridine+Aq and 95% pyridine+Aq SI sol in 93% pyridinc+Aq (Kahlenberg, J Ani Chem Soc 1908, **30** 1107)

+H<sub>2</sub>O Solution of monohydrate sat at 6° contains 31 57% BaCl (Schreinemakers, Chem Weekbl 1910, 7 213)

25 grams of the monohydrate are sol in 100 cc of methyl alcohol at 14° (kirschner, Z phys Ch 1911, 76 176)

Exact solubility in methyl alcohol cannot be determined as BaCl<sub>2</sub>+H<sub>2</sub>O separates out from a sat solution of the dihydrate (Kirschner, Z phys ch 1911, **76** 177)

Barium cadmium chloride, BaCl<sub>2</sub>,CdCl<sub>2</sub>+  $4H_{2}O$ 

Easily sol in H<sub>2</sub>O (v Hauei)

### Solubility in H<sub>2</sub>O at t°

| t°                                                    | 100 pts                                                     | s solution conta                                            | ın pts                                                      | 100 g of<br>solution                                        | 100 g H <sub>2</sub> O<br>dissolve                              | 100 mole                                    | HO            |
|-------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|---------------|
| t                                                     | Cl                                                          | Ba                                                          | Cd                                                          | contain g salt                                              | g salt                                                          | anhydro                                     | ls of<br>salt |
| 22 5<br>32 9<br>41 4<br>53 4<br>62 0<br>97 8<br>108 3 | 15 19<br>16 18<br>16 95<br>18 21<br>18 81<br>22 48<br>23 51 | 14 71<br>16 09<br>16 81<br>18 13<br>18 74<br>22 00<br>22 79 | 11 98<br>12 40<br>13 05<br>13 95<br>14 73<br>17 57<br>18 53 | 41 88<br>44 59<br>46 87<br>50 30<br>52 28<br>62 05<br>64 83 | 72 06<br>80 73<br>88 01<br>101 21<br>109 56<br>163 50<br>184 33 | 3<br>3 4<br>4 (<br>4 6<br>5 (<br>7 &<br>8 4 |               |
| 109 2                                                 | 23 69                                                       | 29 95                                                       | 18 67                                                       | 65 31                                                       | 188 27                                                          | 8 €                                         |               |

(Rimbach, B 1897, 30 3083)

BaCl<sub>2</sub> 2CdCl<sub>2</sub>+5H<sub>2</sub>O Quite difficultly sol in H<sub>2</sub>O (v Hauer)

### Solubility in H<sub>2</sub>O at t°

| t°                                                     | 100 pts by wt                                               | of solution cont                                            | am pts by wt                                                | 100 g of solution                                           | 100 g H <sub>2</sub> O<br>dissolve                               | 100 moli                        | H O  |
|--------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|------|
|                                                        | Cl                                                          | Ва                                                          | Cd                                                          | contain g salt                                              | g salt                                                           | anhydro                         | salt |
| 22 6<br>41 3<br>53 9<br>62 2<br>69 5<br>107 2<br>107 2 | 16 89<br>18 15<br>18 78<br>19 66<br>20 18<br>23 31<br>23 16 | 11 00<br>11 77<br>12 41<br>12 83<br>13 09<br>14 87<br>14 93 | 17 71<br>19 22<br>19 85<br>20 59<br>21 20<br>24 11<br>24 39 | 45 60<br>49 14<br>51 04<br>53 08<br>54 47<br>62 29<br>62 48 | 83 82<br>96 62<br>104 25<br>113 13<br>119 64<br>165 18<br>166 53 | 2 6<br>3 2<br>3 5<br>3 1<br>5 1 |      |

(Rimbach, B 1897, 30 3083)

mercuric chloride, basic, BaCl<sub>2</sub>, HgO H<sub>2</sub>O

Decomp by H<sub>2</sub>O (André, C R 104 431)

Barium mercuric chloride, BaCl<sub>2</sub>, 2HgCl<sub>2</sub>+ 2H<sub>2</sub>O

Efflorescent in dry air, sol in H<sub>2</sub>O (v Bonsdorff, Pogg 17 130)

The salt BaCl<sub>2</sub>, 2HgCl<sub>2</sub>+2H<sub>2</sub>O described by Bonsdorff does not form under the conditions which he gives (Foote, Am Ch J 1904, **32** 

BaCl<sub>2</sub>,3HgCl<sub>2</sub>+6H<sub>2</sub>O Solubility determinations with mixtures of BaCl<sub>2</sub> and HgCl<sub>2</sub> show that these chlorides do not form a double salt at 25°, but that a transition temp exists at about 17 2° below which the salt BaCl<sub>2</sub>, 3HgCl<sub>2</sub>+6H<sub>2</sub>O forms (Foote, Am Ch J 1904, 32 251)

+8H<sub>2</sub>O Less sol in H<sub>2</sub>O than the Sr and Mg double salts (Swan, Am Ch J 1898, **20** 633)

Barium rhodium chloride, 3BaCl<sub>2</sub>, Rh Cl<sub>6</sub> See Chlororhodite, barium

Barrum stannous chloride, BaCl<sub>2</sub>, SnCl<sub>2</sub>+4H<sub>2</sub>O

Sol in H<sub>2</sub>O (Poggiale, C R 20 1183)

Barium stannic chloride

See Chlorostannate, barium

Barium uranium chloride, BaCl<sub>2</sub>,UCl<sub>4</sub>
Decomp by H<sub>2</sub>O (Aloy, Bull Soc 1899, (3) **21** 265)

Barium zinc chloride, BaCl<sub>2</sub>, ZnCl<sub>2</sub>+4 <sub>2</sub>O Deliquescent, and sol in H<sub>2</sub>O (W rner, C N 27 271)

Pptd from warm solution only (Ep aim, Z anorg 1910, 67 381)  $+2\frac{1}{2}H_2O$  Pptd from cold so tion (Ephraim)

Barium chloride hydrazine, BaCl<sub>2</sub>, 2N I<sub>4</sub>

Hydroscopic (Franzen, Z anorg 1908, 60 290)

Barium chloride hydroxylamine, BaC, 2NH<sub>2</sub>OH

Very sol in H<sub>2</sub>O (Crismer, Bull S (3) 3 118)

Barium chloride sulphuric anhydride, aCl<sub>2</sub>, 2SO<sub>3</sub>

Decomp by HO (Schultz-Sellack B 4 113)

Barium chlorofluoride, BiCll

Difficultly sol in H<sub>2</sub>O, but much me e sol than B<sub>4</sub>F<sub>2</sub> Decomp by H<sub>2</sub>O, so that when washed on filter, the filtrate contains more BaCl<sub>2</sub> than BaF<sub>2</sub> (Berzelius, Pogg 1 9)

Insol in and undecomp by boiling a ohol, sol in conc HCl and HNO<sub>3</sub> Decor by hot H<sub>2</sub>O, hot H<sub>2</sub>SO<sub>4</sub>, dil rectic acid, d HCl or dil HNO<sub>3</sub> (Defacq<sub>4</sub>, C R 190 **138** 198)

Barium cyanamide, BaCN,

Decomp by  $H_2O$  (Frank, C C 1' 2, II 774)

Barium subfluoride sodium fluoride, BaF, Barium hydroxide, BaO<sub>2</sub>H<sub>2</sub> NaF

(Guntz, C R 1903, Decomp by H<sub>2</sub>O **136** 750 )

### Barium fluoride, BaF<sub>2</sub>

Scarcely sol in H<sub>2</sub>O (Berzelius), less sol in H<sub>2</sub>O than CaF<sub>2</sub>

1 liter H<sub>2</sub>O dissolves 1630 mg BaF<sub>2</sub> at 18° (Kohlrausch, Z phys Ch 1904, 50 356)

1605 mg are contained in 1 l of sat solution at 18° (Kohlrausch, Z phys Ch 1908,

**64** 168) Insol in molten MnCl<sub>2</sub>, MnBr<sub>2</sub>, MnI<sub>2</sub>, MnCl<sub>2</sub>+BaCl<sub>2</sub>, MnBr<sub>2</sub>+BaBr<sub>2</sub> and MnI<sub>2</sub>+  $BaI_2$  (Defacqz, A ch 1904, (8) 1 350) Easily sol in HCl, HNO<sub>3</sub>, or HF+Aq (Gay-Lussac and Thénard)

Sl sol in liquid HF (Franklin, Z anorg 1905, 46 2)

Insol in ethyl acetate 1910, 43 314) (Naumann, B

Sol in an aqueous solution of sodium citrate (Spiller)

# Barium tin (stannic) fluoride See Fluostannate, barrum

Barium tellurium fluoride, BaF2, 2TeF4 Decomp by H<sub>2</sub>O (Hogborn, Bull Soc (2) **35** 60)

# Barium titanium fluoride See Fluotitanate, barium

Barium titanyl fluoride, TiO<sub>2</sub>F<sub>2</sub>, BaF<sub>2</sub> See Fluoxypertitanate and fluoxytitanate, barium

Barium uranyl fluoride See Fluoxyuranate, barium

Barium vanadyl fluoride See Fluoxyvanadate, barium

Barium zirconium fluoride, 3BaF<sub>2</sub>, 2ZrF<sub>4</sub>+ 2HO

Insoluble precipitate (Marignac) See also Fluozirconate, barium

# Barium fluoiodide, BaF2, BaI2

Decomp by HO, dil HCl, dil HNO<sub>8</sub> or hot HSO<sub>4</sub> Sol in HI and HNO<sub>3</sub> Insol in and undecomp by boiling alcohol comp by dil acetic acid (Defacqz, C R 1904, **138** 199)

# Barium hydride, BiH

Decomp by H O or HCl+Aq (Winkler, B 24 1979) Decomp by H<sub>2</sub>O (Guntz, C R 1901,

**132** 964)

Barium hydrosulphide, BaS<sub>2</sub>H<sub>2</sub>

Easily sol in HO Insol in alcohol  $+4H_2O$  Sol in  $H_2O$ , and the solution dissolves S (Veley, Chem Soc 49 369)

100 pts cold H<sub>2</sub>O dissolve 5 pts BaO<sub>2</sub>H<sub>2</sub> boiling

(Davy)

100 pts H O at 20° dissolve 3 45 pts BaO (Bineau C R 41. 509)

100 pts H<sub>2</sub>O at 13° dissolve 2 86 pts BaO 47° • 13 3 17 9 (Osann)

100 pts H<sub>2</sub>O dissolve pts BaO at t<sup>o</sup>

|                                | 100 Ptb 2220 dabbot 0 Ptb 2200 dt 0         |                                  |                                               |                            |                                          |  |  |  |
|--------------------------------|---------------------------------------------|----------------------------------|-----------------------------------------------|----------------------------|------------------------------------------|--|--|--|
| t°                             | Pts BaO                                     | t°                               | Pts BaO                                       | t°                         | Pts BaO                                  |  |  |  |
| 0<br>5<br>10<br>15<br>20<br>25 | 1 5<br>1 75<br>2 22<br>2 89<br>3 48<br>4 19 | 30<br>35<br>40<br>45<br>50<br>55 | 5 0<br>6 17<br>7 36<br>9 12<br>11 75<br>14 71 | 60<br>65<br>70<br>75<br>80 | 18 76<br>24 67<br>31 9<br>56 85<br>90 77 |  |  |  |

(Rosenthiel and Ruhlmann, J B 1870 314)

100 pts H<sub>2</sub>O dissolve at 25° 55 08 millimols  $BaO_2H_2$ (Herz and Knoch, Z anorg 1904, **41** 315)

Sp gr of BaO2H2+Aq

| %BaO            | Sp gr              | %BaO       | Sp gr        |
|-----------------|--------------------|------------|--------------|
| 30<br>19<br>2 6 | 1 6<br>1 3<br>1 03 | 1 8<br>0 9 | 1 02<br>1 01 |

(Dalton)

Sp gr of  $\rm BaO_2H_2+Aq$  at 18° containing 1.25%  $\rm BaO_2H_2=1.0120$ , containing 2.5%=1.0253 (Kohlrausch, W Ann 1879, 6 41)

Sp gr of BaO<sub>2</sub>H<sub>2</sub>+Ag at 80°

| op gr or baoging   rid at 60                                                                                                                 |                                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                                                                                |                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Sp gr                                                                                                                                        | BaO <sub>2</sub> H <sub>2</sub><br>by<br>volume                                                                                                       | BaO <sub>2</sub> H <sub>2</sub><br>by<br>weight                                                                                              | Sp gr                                                                                                                                        | BaO <sub>2</sub> H <sub>2</sub><br>by<br>volume                                                                                                | BaO <sub>2</sub> H <sub>2</sub><br>by<br>weight                                                                                            |
| 1 514<br>1 500<br>1 479<br>1 458<br>1 450<br>1 413<br>1 400<br>1 390<br>1 378<br>1 350<br>1 338<br>1 312<br>1 301<br>1 278<br>1 249<br>1 236 | 58 22<br>56 31<br>54 14<br>49 38<br>48 90<br>45 90<br>45 90<br>44 22<br>42 40<br>41 45<br>38 60<br>37 30<br>35 02<br>34 02<br>31 48<br>28 14<br>26 41 | 38 45<br>37 54<br>36 60<br>33 87<br>33 75<br>32 25<br>32 14<br>31 81<br>30 80<br>28 59<br>27 88<br>26 69<br>26 13<br>24 67<br>22 52<br>21 36 | 1 219<br>1 200<br>1 195<br>1 174<br>1 152<br>1 129<br>1 125<br>1 114<br>1 100<br>1 062<br>1 049<br>1 040<br>1 031<br>1 022<br>1 015<br>1 009 | 24 53<br>23 00<br>22 15<br>19 83<br>17 78<br>16 01<br>15 80<br>14 56<br>13 06<br>10 58<br>9 16<br>7 55<br>6 51<br>5 18<br>4 78<br>3 90<br>3 37 | 20 12<br>19 17<br>18 53<br>16 89<br>15 43<br>14 18 14 04<br>13 07<br>11 87<br>9 83<br>8 62<br>7 20<br>6 26<br>5 02<br>4 67<br>3 84<br>3 34 |
| (Haff C N 1902 86 284)                                                                                                                       |                                                                                                                                                       |                                                                                                                                              |                                                                                                                                              |                                                                                                                                                |                                                                                                                                            |

(Haff, C N 1902, 86 284)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 827)

More sol in NaCl+Aq, KNOs+Aq, or NaNO<sub>3</sub>+Aq than in H<sub>2</sub>O (Karsten)

Not precipitated by alcohol

Sol with combination in absolute alcohol and anhydrous methyl alcohol Insol in ether

Insol in acetone (Naumann, B 1904, **37** 4329, Eidmann, C C **1899**, II 1014)

Solubility in acetone+Aq at 25° A = cc acetone in 100 cc acetone+Aq  $BaO_2H_2$  =millimols  $BaO_2H_2$  in 100 cc of

the solution

S=sp gr of the solution

| A                                     | BaO <sub>2</sub> H <sub>2</sub>                                 | s                                                                                    |  |
|---------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| 0<br>10<br>20<br>30<br>40<br>50<br>60 | 55 08<br>31 84<br>17 79<br>9 10<br>4 75<br>1 54<br>0 48<br>0 08 | 1 04790<br>1 01677<br>0 99268<br>0 97630<br>0 95605<br>0 93980<br>0 91790<br>0 89562 |  |

(Herz, Z anorg 1904, 41 321)

 ${\rm BaO_2H_2}$  is sol in an aqueous solution of cane sugar (Hunton, Phil Mag (3) 11 156), also in an aqueous sol of mannite (Favre, A ch (3) 11 76), sorbine (Pelouze), hot solution of quercite, separating on cooling (Dessaignes)

+3H<sub>2</sub>O Decomp by H O free from carbonic acid Sl sol in alcohol and ether (Bauer, Z anorg 1905, 47, 416)

Solubility in H<sub>2</sub>O the same as that of the comp with 8H<sub>2</sub>O Insol in alcohol and ether

(Bauer, Zeit angew Ch 1903, 17 341)

Nearly insol in alcohol and ether (Bauer, Zeit angew Ch 1903, 16 349)

+8H<sub>2</sub>O Sol in 20 pts cold, and 3 pts

+8H<sub>2</sub>O Sol in 20 pts cold, and 3 pts boiling H<sub>2</sub>O (Graham), 17 5 pts H<sub>2</sub>O at 15 5°, and in all proportions of hot H<sub>2</sub>O (Hope) Sol in 19 pts H O at 15°, and 2 pts at 100° (Wittstein)

If BaO<sub>2</sub>H<sub>2</sub>+8H<sub>2</sub>O is heated it dissolves in the crystal HO and the solution has the following bpts

53 72 %BaO49 05 50 05 52 43 B-pt 103° 104° 105° 106° 58 74 %BaO 55 35 57 49 61 44 107° 109° 108° 108 5° B-pt

 $BaO_2H_2+3H_2O$  separates at  $109^{\circ}$  (Bauer, Zeit angew Ch 1903, 17 345)

B-pt of  $BaO_2H_2$   $8H_2O + \Lambda q$  at 732 mm

| Bpt       | Time    | ′ <sub>ø</sub> BaO |
|-----------|---------|--------------------|
| 78° (mpt) | 0       | 48 45              |
| 78        | 4'      | 48 45              |
| 103       | 6' 30"  | 49 05              |
| 104       | 6' 45"  | 50 05              |
| 105       | 7' 30"  | 52 43              |
| 106       | 9' 25"  | 53 72              |
| 107       | 10' 45" | 55 35              |

| -pt of $BaO_2H_2$ $8H_2O+Aq$ , etcC             |                                                         |                       | itinued                          |
|-------------------------------------------------|---------------------------------------------------------|-----------------------|----------------------------------|
| Bpt                                             | Time                                                    | 9                     | aO                               |
| 108<br>108 5<br>109<br>109<br>108<br>105<br>100 | 12'<br>—<br>13'<br>17' 40"<br>17' 50"<br>18'<br>18' 45" | 5<br>6<br>6<br>6<br>6 | 49<br>74<br>44<br>65<br>53<br>51 |

(Bauer, Z anorg 1905, 47 40 )

Solubility in  $Ba(NO_3)_2+Aq$  at  $>^\circ$ Solution sat with respect to both 1 (NO<sub>3</sub>)<sub>2</sub> and  $BaO_2H_2$ ,  $8H_2O$ 

| Sp gr 25°/25°                                                                                                                                                                                                                      | g BaO as<br>Ba(OH) <sub>2</sub> in<br>100 g H <sub>2</sub> O                                                                                 | g Ba<br>100 | (O <sub>8</sub> ) <sub>2</sub> in<br>H <sub>2</sub> O                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------|
| 1 1448<br>1 1371<br>1 1288<br>1 1220<br>1 1133<br>1 1062<br>1 1044<br>1 1010<br>1 0975<br>1 0949<br>1 0937<br>1 0885<br>1 0864<br>1 0790<br>1 0774<br>1 0731<br>1 0731<br>1 0751<br>1 0626<br>1 0640<br>1 0538<br>1 0538<br>1 0512 | 5 02<br>4 93<br>4 83<br>4 72<br>4 65<br>4 61<br>4 60<br>4 55<br>4 54<br>4 52<br>4 52<br>4 48<br>4 46<br>4 40<br>4 42<br>4 35<br>4 35<br>4 29 | 1           | 48<br>21<br>66<br>55<br>01<br>82<br>555<br>08<br>66<br>46<br>32<br>44<br>41<br>79<br>53<br>88<br>45<br>43 |
|                                                                                                                                                                                                                                    |                                                                                                                                              |             |                                                                                                           |

(Parsons and Coison, J Am Ch a Soc 1910, 32 1385)

Solubility of Ba(OII) +SII() (soli phase) in MCl+Aq (mol per litre of plution) at 25°

| Solution of                 | ((1) | (( | )          |
|-----------------------------|------|----|------------|
| I ıCl                       | 0    | 0  | )5         |
| "                           | 0.75 | 0  | 15         |
| "                           | 1 42 | 0  | 37         |
| "                           | 2 30 | 1  | 36         |
| KCl                         | 0.86 | 0  | 15         |
| "                           | 1 75 | 0  | 0          |
| "                           | 3 40 | 0  | 76         |
| NaCl                        | 0    | 0  | <b>)</b> 5 |
| "                           | 0.73 | 0  | 30         |
| "                           | 1 43 | 0  | 99         |
| "                           | 2 82 | 0  | )6         |
| RbCl                        | 1 25 | Ö  | 18         |
| (Herz, Z anorg 1910, 67 36) |      |    |            |

| % Na <sub>2</sub> O                                                                                                          | %BaO                                                                                                              | Solid phase                                                |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 0<br>4 78<br>6 43<br>9 63<br>11 62<br>17 87<br>23 28<br>24 63<br>26 14<br>27 72<br>28 43<br>29 24<br>32 12<br>34 72<br>41 09 | 4 99<br>1 29<br>0 89<br>0 57<br>0 53<br>0 47<br>1 06<br>1 87<br>1 75<br>1 58<br>1 34<br>0 82<br>0 59<br>0 57<br>0 | BaO 9H <sub>2</sub> O  " " " " " " " " " " " " " " " " " " |

(Schreinemakers, Z phys Ch 1909, 68 84)

50% alcohol dissolves less than 0.5% of its wt of BaO<sub>2</sub>H<sub>2</sub>+8H<sub>2</sub>O (Beckmann, J pr 1883, (2) **27** 138)

Barium subiodide sodium iodide, BaI, NaI Decomp by H<sub>2</sub>O (Guntz, C R 1903, **136** 750 )

#### Barium iodide, BaI<sub>2</sub>

Very sol in H2O and Not deliquescent alcohol 100 pts of anhydrous salt dissolve at 0° 19 5° 30° 40° 60° 90° 106° 41 37 ın 59 48 44 43 35 pts HO (Kremers, Pogg 103 66)

Sp gr of BaI<sub>2</sub>+Aq containing 10 20 25 30%BaI2 15 1 045 1 091 1 143 1 201 1 265 1 333 60%BaI<sub>2</sub> 1 412 1 495 1 596 1 704 1 825 1 970 (Kiemers, Pogg 111 63, calculated by Gciluch, Z anal 8 279)

Lasily sol in alcohol (Henry)

Sl sol in benzonitiile (Num inn, B 1914, 47 1369)

(Naum inn, B 1904, 37 Sol in acctone 4328 Lidm um, C C 1899, II 1014)

Sol in methyl icetite (Numum, B 1909, 42 3789)

+2H<sub>2</sub>O At 15°C, 1 pt byweight in sol in 22 pts methyl alcohol sp gr 0 790 0.5035 93 307 " 0 8085 (Rohland, Z anorg 1897, 15 413)

# $+7H_2O$ (1homson, B 10 1343)

The composition of the hydrates formed by BaI<sub>2</sub> at different dilutions is calculated from determinations of the lowering of the fr-pt produced by BaI2 and of the conductivity and sp gr of BaI<sub>2</sub>+Aq (Jones, Am Ch J 1905, 34 306)

Barium iodide, basic, Ba(OH)I+9H<sub>2</sub>O See Barium oxviodide

Barium bismuth iodide, BaI<sub>2</sub>, 2BiI<sub>3</sub>+18H<sub>2</sub>O Deliquescent, decomp by H<sub>2</sub>O (Linau. Pogg **111** 240 )

Barium cadmium iodide, BaI2, CdI2+5H2O Deliquescent (Croft)

Barium mercuric iodide, BaI2, 2HgI2

Decomp by much H<sub>2</sub>O (Boullay)
BaI<sub>2</sub>, HgI<sub>2</sub> Sol in H<sub>2</sub>O (Boullay)
Sp gr of sat solution=3575-3588
(Rohrbach, W Ann 20 169)
+5H<sub>2</sub>O (Duboin, C R 1906, 143 314)

2BaI<sub>2</sub>, 3HgI<sub>2</sub>+16H<sub>2</sub>O (Duboin, C R

1906, 142 888) BaI<sub>2</sub>, 5HgI<sub>2</sub>+8H<sub>2</sub>O As the corresponding Ca salt (Duboin, C R 1906, 142 888)
3BaI<sub>2</sub>, 5HgI<sub>2</sub>+21H<sub>2</sub>O Very deliquescent

(Duboin, C R 1906, 142 889)

Barium stannous iodide

Very sol in H<sub>2</sub>O (Boullay)

Barium zinc iodide, BaI2, 2ZnI2

Deliquescent, and sol in H<sub>2</sub>O (Rammelsberg)

+4H<sub>2</sub>O Very hydroscopic (Ephraim, Z anorg 1910, 67 385)

Barium nitride, Ba<sub>8</sub>N

Decomp H<sub>2</sub>O violently, not alcohol quenne, A ch (6) 29 219) BaN

See Barium azoimide

Barium oxide, BaO

Sol in H2O with evolution of heat Easily sol in dil HNO3, or IICl+Aq

Solubility in NaOH+Aq Sei Barium hydroxide

Solubility in Na<sub>2</sub>O, HCl, +H<sub>2</sub>O at 30° (Schreinemakers, Z phys Ch 1909, 68 98) Solubility in Ni O, NaCl, BaCl +Aq at 30° (Schrememakers)

Insol in liquid NII; (Gore, Am Ch J 1598, **20** 827 )

Sol with combination in absolute alcohol and inhydrous wood-spirit. Insol in other

I asily sol in absolute methyl alcohol 11 absolute of hyladeohol sat with BaO at 9° contains 213 S g BaO (Berthelot, Bull

Soc 8 389) Sol in methyl ilcohol (Neuberg and Neimann, Biochem Z 1906, 1 173)

Insol in acctore (Fidmann, C C 1899, II 1014, Naum ann, B 1904, 37 4329)

Insol in methyl icetite (Numann, B 1909, 42 3790)

See also Barium hydroxide

Barium peroxide, BaO<sub>2</sub>

Insol in HO, decomp by boiling HO

Sol in acids with formation of hydrogen dioxide

Forms hydrate with 8H<sub>2</sub>O, also 10H<sub>2</sub>O (Berthelot, A ch (5) 21 157), also a compound BaO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>, which is very unstable, sl sol in cold H2O, and insol in alcohol or ether (Schone, A 192 257)

 $+8H_2O$  100 cc pure  $H_2O$  dissolve 0 168  $BaO_2+8H_2O$ , if  $H_2O$  contains 0 3 g.  $+8H_2O$  $Ba(OH)_2 + 8H_2O$ , only  $0.102 g BaO_2 + 8H_2O$  are dissolved, if  $0.6 g Ba(OH)_2 + 8H_2O$  only 0 019 g BaO<sub>2</sub>+8H<sub>2</sub>O are dissolved (Schone, A 1878, **192** 266)

Insol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4329)

Barium oxybromide, Ba(OH)Br+2H<sub>2</sub>O

Decomp by  $H_2O$  (Beckmann, J pr (2) **27** 132)

 $BaBr_2, BaO + 5H_2O$ Sl sol in H<sub>2</sub>O (Tassilly, C R 1895, 120 1340)

Barium oxychloride, Ba(OH)Cl+2H<sub>2</sub>O Decomp by H<sub>2</sub>O (Beckmann, J pr (2) **26** 388, 474)

Barium mercury oxychloride, BaCl<sub>2</sub>, HgO+ 6H₂O

Decomp by H<sub>2</sub>O (André, C R 104 431)

Barium oxyiodide, Ba(OH)I+9H<sub>2</sub>O

Decomp by H<sub>2</sub>O and alcohol (Beckmann, B 14 2154)

BaI<sub>2</sub>,BaO+9H<sub>2</sub>O Sl sol in H<sub>2</sub>O silly, C R 1895, **120** 1340) (Tas-

Barium oxysulphides, Ba O<sub>4</sub>S<sub>8</sub>+58H<sub>2</sub>O,  $Ba_2OS + 10H O, Ba_4OS_3 + 28H_2O$ 

Very unstable, decomp by recrystallization into BaS2H2 and BaO2H

Barium phosphide, BaP<sub>2</sub>

Decomp by HO (Dumas, A ch 32 364)

Ba<sub>2</sub>P Crystallized Sol in dil rads. insol in concluded, decomp by HO Insol in organic solvents at ord temp (Jaboin, C R 1899, **129** 765)

Barium selenide, Busc

Sol in H O with decomp Sl sol in H () (Favic, C R 102 1169)

Barium silicide, Bi Si

(Jungst, C C 1905, I 195)

Slowly decomp by HO, not by NH4OH+1q Ripidly decomp by conc NiOH Sol in HNO3, HSO4 and H3PO4 with evolution of spontaneously influenmable grs Sol in HF and HCl Sol in acctic acid without evolution of gas (Moiss in, Trute ch min 1904, III 680)

Decomp rapidly in both hot and cold H O (Bradley, C N 1900, 82 150)

Barium sulphide, BaS

Sol in H<sub>2</sub>O with decomp Crystallized Decomp by H<sub>2</sub>O

Attacked by cold conc HNO<sub>3</sub> ch. 1899, (7) 17 521) ( [ourlot.

Cryst modification is less readily cted on by air and other reagents than the ar rphous modification, sol in fuse oxidizing (Mourlot, C R 1898, 126 645) agents

 $+\mathrm{H}_2\mathrm{O}$  (Neuberg and Neimann, ochem Z 1906, 1 174)

 $+6H_2O$ Slowly sol in boiling F O, with decomp, insol in, but decomp b alcohol (Schone) boiling

Barium sulphide,  $Ba_4S_7+25H_2O$  (?) Sol in H<sub>2</sub>O (Schone, Pogg 112 215)

Barium trisulphide, BaS<sub>8</sub>

Sol in large amount of boili, H<sub>2</sub>O (Schone, Pogg 112 215)

Barium tetrasulphide, BaS4+HO

Easily sol in H<sub>2</sub>O, especially if he, sol in 2 42 pts H<sub>2</sub>O at 15°, insol in CS<sub>2</sub> o alcohol (Schone, Pogg 112 224) +2H<sub>2</sub>O (Veley, Chem Soc 49

Barium pentasulphide, BaS<sub>5</sub> Known only in solution

Barium mercuric sulphide, BaS, Hg? -5H<sub>2</sub>O Sol in H<sub>2</sub>O (Wagner, J pr 98

Barium nickel sulphide, BaS, 4NiS Sol in warm cone HCl (Belluc, C A **1909**, 293)

Barium stannic sulphide

Sc. Sulphostannate, barrum

Barium uranyl sulphide, 6B is, JOS+ $xH_2O(?)$ 

Decomp by HCl+1q (Remcl Pogg **124** 159)

Baryta

See Barium oxide, Bi()

Beryllium, Be

For berythum and its salts, see C icinum and the corresponding salts

Bismuth, Bi

Not attacked by H(O) - Very slowly atsl sol ticled by HCl+Aq (Troost) Ver m cone HCl+Aq (Schutzenberger, Not itticked by dil HCl+Aq (Ni Willm) let and Hannot) Very slowly attacked by dd HCl + Aq (Godeffroy) According to ver careful experiments pure Bris absolutely untacked by hot or cold, dil or conc HCl+4 except in presence of oxygen (Ditte and etzner, 4 (h (6) 29 397)

Not attacked by dil H SO4+Aq ecomp by hot conc H<sub>2</sub>SO<sub>4</sub> Easily sol in dil or conc HNO<sub>3</sub>+Aq, or aqua regia

Not attacked by pure HNO<sub>3</sub>+Aq of 1 52 to 1 42 sp gr at 20°, violently attacked by a more dil acid, but the acid becomes concentrated thereby Conc HNO<sub>8</sub>+Aq attacks only by heating or adding NO<sub>2</sub> (Millon, A ch (3) 6 95)

Insol in liquid NH<sub>8</sub> (Gore, Am Ch J

1898, **20** 827 )
½ ccm oleic acid dissolves 0 0091 g Bi in 6 days (Gates, J phys Chem 1911, **15** 143)

# Bismuth arsenide, Bi<sub>3</sub>As<sub>4</sub> (Descamp, C R 86 1065)

Bismuth dibromide, Bi<sub>2</sub>Br<sub>4</sub>

Not known in a pure state (Weber, Pogg 107 599)

### Bismuth tribromide, BiBr3

Very deliquescent Decomp by H<sub>2</sub>O Sol in alcohol or ether

Sol in AlBr<sub>3</sub> (Isbekow, Z anorg 1913, 84 27)

# Bismuth hydrogen bromide, $BiBr_3$ , $2HBr+4H_2O$

Deliquescent
Decomp in the air (Aloy, Bull Soc 1906,
(3) 35 398)

## Bismuth cæsium bromide, 2BiBi3, 3CsBr

Ppt Insol in HBr Sol in HCl and in HNO<sub>3</sub> (Hutchins, J Am Chem Soc 1907, 29 33)

### Bismuth potassium bromide, BiBi<sub>3,2</sub>KB<sub>1</sub> Decomp by H O (Aloy, Bull Soc 1906, (3) **35** 398)

### Bismuth bromide ammonia, BiBi<sub>3</sub>, 3NH<sub>3</sub> Sol in HCl+Aq

B<sub>1</sub>B<sub>1</sub> 3, 2NH<sub>3</sub> (?)

2BiBi, 5NII; Not deliquescent, not decomp by HO, custly sol in dil acids (Muii, Chem Soc 29 144)

## Bismuth bromide potassium chloride,

K BiCl<sub>3</sub>Bi +1<sup>1</sup> H O Decomp by H O (Atkinson, Chem Soc **43** 289)

### Bismuth dichloride, Bi Cl4

Very deliquescent Decomp by H O dilucids, or cone NH<sub>4</sub>Cl+Aq (Weber, Pogg 107/596)

### Bismuth trichloride, BiCl<sub>3</sub>

Deliquescent Decomp by HO Sol in dil HCl+Aq, and ileohol Not decomp by HO in presence of citrates (Spiller)

008 g sol m 100 ccm liquid H<sub>2</sub>S (Antony, C C 1905, I 1692)

Moderately sol in liquid NH₃ (Gore, Am Ch J 1898, 20 827)

1 g BiCl<sub>3</sub> is sol in 5 59 g acetone at 18° Sp gr of sat solution 18°/4°=0 9194 (Naumann, B 1904, **37** 4331)

Sol in acetone and in methylal (Erdmann, C C 1899, II 1014)

Sol in benzonitrile (Naumann, B 1914, 47 1369)

Sol in ethyl acetate (Naumann, B 1910, 43 314)

1 pt is sol in 60 36 pts ethyl acetate at 18° Sp gr at 18°/40°=0 9106 (Naumann, B\_1910, 43° 320)

Sol in methyl acetate (Naumann, B 1909, 42 3790)

### Bismuth chloride, Bi<sub>3</sub>Cl<sub>8</sub> (?)

Decomp by H<sub>2</sub>O (Dehérain, C R 54 724)

Bismuth hydrogen chloride,  $2B_1Cl_3$ ,  $HCl+3H_2O$ 

Not deliquescent Decomp by  $H_2O$  (Engel, C R 106 1797)

BīCl<sub>3</sub>, 2HCl (Jacquelain, A ch (2) **62** 363)

### Bismuth cæsium chloride, BiCl<sub>8</sub>, 3CsCl

Decomp by H<sub>2</sub>O SI sol in cold dil HCl+Aq, but easily sol on warming (Bijoham Am Ch J 14 181)

2BiCl<sub>3</sub>, 3CsCl As above (Brigham) BiCl<sub>3</sub>, 6CsCl Lasily sol in H O and du HCl+Aq (Godeffroy, B 8 9)

Does not exist (Brigham)

### Bismuth hydrazine chloride, BiCl<sub>3</sub>, 3N H<sub>4</sub>HCl

Sol in acids, from which it is pptd by H O (Ferratini, C A 1912 1613)

Bismuth nitrosyl chloride, BiCl<sub>5</sub>, NOCl Very deliquescent Decomp by HO (Sudborough, Chem Soc 59 662)

# Bismuth potassium chloride, BiCl, KCl+

Decomp by H.O. Camot be recryst except from cone BrCl<sub>3</sub>+HCl Decomp by HCl+Aq into BrCl<sub>3</sub>, 2kCl+2HO (Brighum, Am Ch. J. **14** 167)

BiCl<sub>3</sub> 2kCl Decomp by HO (Arppe, Pogg **64** 37)

Dehauescent

Sol in H O with decomposite the oxychloride when excess H O is used (Aloy, Bull Soc 1906, (5) 35-397)

+211 O Decomp by HO (Jacquelum,

J pr 14 1)

Sol in moder itely cone HCl+Aq BiCl<sub>3</sub>, 3KCl Decomp by HO (Arppe) Does not exist (Brigham) ham)

| Bismuth<br>H <sub>2</sub> O | rubidium | chloride, | BıCl <sub>3</sub> , | RbCl+ |
|-----------------------------|----------|-----------|---------------------|-------|
| 1120                        |          |           |                     |       |

Decomp by H<sub>2</sub>O, sol in dil HCl+Aq, from which BiCl<sub>3</sub>, 3RbCl crystallizes (Brigham, Am Ch J 14 174)
BiCl<sub>3</sub>, 3RbCl Decomp by H<sub>2</sub>O, sol in dil

HCl+Aq without decomp (Brigham) Decomp by  $H_2O$ , sol in B<sub>1</sub>Cl<sub>2</sub>, 6RbCl

HCl+Aq (Godeffroy, B 8 9), does not exist (Brigham) 10B1Cl3, 23RbCl (?) As above (Brig-

Bismuth sodium chloride, BiCl<sub>3</sub>, 2NaCl+  $H_2O$ 

+3H<sub>2</sub>O Decomp by H<sub>2</sub>O (Arppe, Pogg **64** 237) B<sub>1</sub>Cl<sub>8</sub>, 3NaCl

### Bismuth thallous chloride, BiCl<sub>2</sub>, 3TlCl (Ephram, Z anorg 1909, 61 254) BiCl<sub>8</sub>, 6TlCl Ppt (Ephram)

### Bismuth chloride ammonia, 2BiCl<sub>3</sub>, NH<sub>3</sub> Stable (Dehéram, C R 54 724) BiCls, 2NHs B<sub>1</sub>Cl<sub>3</sub>, 3NH<sub>3</sub> (D)

Bismuth chloride nitric oxide, BiCl<sub>3</sub>, NO (Thomas, C R 1895, Very hygroscopic **121** 129)

Bismuth chloride nitrogen peroxide, BiCl<sub>3</sub>,  $NO_2$ 

Decomp by moist air, but stable in dry air (Thomas, C R 1896, 122 612)

## Bismuth chloride selenide See Bismuth selenochloride

## Bismuth trifluoride, BiF<sub>3</sub>

Insol in H<sub>2</sub>O or alcohol (Gott and Muir, Chem Soc 53 138)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 827 )

Bismuth hydrogen fluoride, Bil 3, 3HF Decomp by boiling HO Deliquescent (Mur, Chem Soc 39 21)

## Bismuth gold, Au<sub>3</sub>Bi

Insol in equal pts of HNO3 and tartaric acids (Roessler, Z anorg 1895, 9 71)

## Bismuthous hydroxide, Bi(OH)<sub>3</sub>

Sol in strong acids Insol in solutions of alkalies, alkali carbonates,  $(NH_4)_2CO_3$ , or NH<sub>4</sub>NO<sub>3</sub>, or of amyl amme (Wurtz) recently pptd is sol in NH<sub>4</sub>Cl+Ag, but insol in NH<sub>4</sub>NO<sub>3</sub>+Ag (Brett, **1837**) Not pptd in presence of Na citrates (Spiller)

### Solubility of freshly pptd Bi(OH) in NaOH + Aq

| g NaOH per l | g Bi dissolved<br>per l at 20° | g Bidu<br>perla | lved<br>100° |
|--------------|--------------------------------|-----------------|--------------|
| 400<br>320   | 0 16<br>0 11                   | 1 4             |              |
| 240<br>200   | 0 11<br>0 10                   | 0 ;             |              |
| 160<br>120   | 0 08                           | 0 ;             |              |
| 80<br>40     | 0 04<br>trace                  | 0 2             |              |
| 20           | 0                              | 0 1             |              |

(Moser, Z anorg 1909, 61 386

n

cids

ither

, but

ıfica-

 $NO_3$ 

one

ope)

q, so

by

### Solubility of freshly pptd Bi(OH) KOH+Aa

| KOH per l g                            | g Bi dissolved                               | g Bı dıs                 | lved |
|----------------------------------------|----------------------------------------------|--------------------------|------|
|                                        | per l at 20°                                 | per l aı                 | 00°  |
| 560<br>448<br>336<br>280<br>224<br>168 | 0 14<br>0 11<br>0 11<br>0 10<br>0 08<br>0 06 | 1 6<br>1 2<br>0 5<br>0 5 |      |
| 112                                    | 0 03                                         | 0 3                      |      |
| 56                                     | trace                                        | 0 2                      |      |
| 28                                     | 0                                            | 0 1                      |      |

(Moser, Z anorg 1909, 61 386

B12O3, 2H2O  $B_{12}O_3$ ,  $H_2O$ (Muir, Chem Soc 32 31) See also Bismuth trioxide

Bismuth tetrahydroxide, Bi<sub>2</sub>O<sub>4</sub>, H O (Wernicke, Pogg 141 109) B<sub>1</sub> O<sub>4</sub>, 2H<sub>2</sub>O

### Bismuthic hydroxide (Bismuthic acid), 12O5, $H_2O$

Insol in H<sub>2</sub>O, easily decomp by (Fremy, A ch (3) **12** 495) Decom H<sub>2</sub>SO<sub>4</sub>, not attacked by SO +Aq, 1 dissolved nor decomp by dil IINO3+4 slowly converted into an allotropic me tion (') Partially decomp by cone ] Slowly but wholly dissolved by hot  $HNO_3$  Sl sol in conc KOH + Aq (A Sol in about 100 pts boiling KOH+

cone that it solidifies on removing the unp (Muir, Chem Soc **51** 77)

B<sub>12</sub>O<sub>p</sub>, 2H<sub>2</sub>O (Bodcker, A 123 61) Does not exist (Hoffmann and Gea her)

### Bismuth iodide, Bil3

Not attacked by cold H O, but by b ling, BiOI is formed 100 pts absolute a ohol ohol dissolve 3½ pts salt at 20° (Gott and Iuir, Chem Soc 57 138)

Sol in HNO<sub>3</sub>, and HI+Aq, from wl ch it is reported by H<sub>2</sub>O or alcohol Sol in K +Aq or KOH+Aq (Rammelsberg)

Sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 827)  $100~{\rm g}$  absolute alcohol dissolve 3 5 g  $\rm \,BiI_3$  at 20° (Gott and Muir, Chem Soc 57 138) Sol in acetone (Naumann, B 1904, 37 100 pts methylene iodide dissolve 0 15 pt Bils at 12°, and very little more at higher temperatures (Retgers, Z anorg 3 343) Sol in methyl acetate (Naumann, B 1909, 42 3790)

Bismuth hydrogen iodide, BiIs, HI+4H<sub>2</sub>O (Arppe, Pogg 44 248)

Bismuth cæsium iodide, 3CsI,2BiI3 Very sl sol in H<sub>2</sub>O (Wells, Am J Sci 1897, (4) **3** 464)

Bismuth calcium iodide,  $2B_1I_3$ ,  $CaI_2+18H_2O$ Deliquescent, decomp by H<sub>2</sub>O Pogg 111 240)

Bismuth magnesium iodide, 2BiI<sub>8</sub>, MgI<sub>2</sub>+ 12H<sub>2</sub>O

Deliquescent, decomp by H<sub>2</sub>O (Linau, Pogg 111 240)

Bismuth potassium iodide, BiI<sub>8</sub>, 4KI Ppt (Arppe, Pogg 44 237)  $BiI_s$ , 3KI (Astre, C R 110 1137)  $BiI_s$ , 2KI Sol in acetic ether (Astre)  $+4H_2O$  Sol in small amt  $H_2O$  without pptn, but decomp by much H<sub>2</sub>O B<sub>1</sub>I<sub>3</sub>, 2KI, HI (Arppe) 2B<sub>1</sub>I<sub>3</sub>, 3KI+2HO (Astre) B<sub>1</sub>I<sub>3</sub>,KI+H<sub>2</sub>O Decomp by H<sub>2</sub>O (Nicklès, C R **51** 1097) 2B<sub>1</sub>I<sub>3</sub>, KI Sol in acetic ether (Astre)

Bismuth sodium iodide, BiI<sub>3</sub>, NaI+H O Deliquescent, decomp by H2O (Nickles, C R 51 1097)  $2B_1I_3$ ,  $3N_1I+12HO$  As above (I in u, ) Pogg 111 240)

Bismuth zinc iodide, 2131I<sub>3</sub>,  $LnI_2+12HO$ Very deliquescent (I man, Pogg 111 240)

Bismuth iodide ammonia, Bil3, 3NII3 Decomp by HO (Rammelsberg)

Bismuth iodide zinc bromide Sol in H () (I in in, Pogg 111 240)

Bismuth nitride

Faplosive (Lischer, B. 1910, **43**, 1471.) Bin Ppt Decomp by H<sub>2</sub>O or dil acids (Franklin, J. Am. Chem. Soc. 1905, 27, 847.)

Bismuth dioxide, Bi O<sub>2</sub>

Sol in conc HNO3+Aq Decomp by strong acids, and boiling KOH+Aq
Decomp by H<sub>2</sub>O (lanatar, Z anorg 1901, **27** 438)

Bismuth trioxide, Bi<sub>2</sub>O<sub>8</sub>

Insol in  $H_2O$ Sol in cone acids Solubility of Bi<sub>2</sub>O<sub>3</sub> in HNO<sub>3</sub>+Aq at 20°

|   |                                  |                                 | 6 0 ) 1 q av = 0                                                                                          |
|---|----------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------|
|   | In 10<br>hqu                     | Og of the<br>ud phase           | Solid phase                                                                                               |
|   | g B <sub>12</sub> O <sub>2</sub> | g N <sub>2</sub> O <sub>5</sub> |                                                                                                           |
|   | 0 321                            | 0 963                           | B <sub>12</sub> O <sub>3</sub> N <sub>2</sub> O <sub>5</sub> 2H <sub>2</sub> O                            |
|   | 0 337                            | 0 982                           | "                                                                                                         |
|   | 3 54                             | 4 68                            | "                                                                                                         |
|   | 6 37                             | 7 17                            | "                                                                                                         |
|   | 13 67                            | 12 50                           | "                                                                                                         |
|   | 14 85                            | 13 31                           | "                                                                                                         |
|   | 18 74                            | 15 90                           | B <sub>12</sub> O <sub>8</sub> N <sub>2</sub> O <sub>5</sub> H <sub>2</sub> O                             |
|   | 23 50                            | 19 21                           | "                                                                                                         |
|   | 23 50                            | 19 29                           | <b>66</b>                                                                                                 |
|   | 27 15                            | 20 96                           | <b>6</b>                                                                                                  |
|   | 28 11                            | 21 64                           | £ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                   |
|   | 29 50                            | 22 53                           | 66                                                                                                        |
|   | 30 19                            | 22 90                           | 66                                                                                                        |
|   | 31 48                            | 23 70                           | "                                                                                                         |
|   | 32 93                            | 24 83                           | B <sub>12</sub> O <sub>8</sub> N <sub>2</sub> O <sub>5</sub> H <sub>2</sub> O+                            |
|   | 32 80                            | 24 86                           | B <sub>12</sub> O <sub>8</sub> 3N <sub>2</sub> O <sub>5</sub> 10H <sub>2</sub> O                          |
|   | 32 67                            | 24 70                           | B <sub>12</sub> O <sub>8</sub> 3N <sub>2</sub> O <sub>5</sub> 10H <sub>2</sub> O                          |
|   | 32 59                            | 24 60                           | 7,                                                                                                        |
|   | 32 24                            | 24 68                           | "                                                                                                         |
|   | 30 74                            | 25 13                           | "                                                                                                         |
|   | 29 83                            | 25 30                           | "                                                                                                         |
| į | 24 16                            | 28 25                           | "                                                                                                         |
|   | 16 62                            | 35 40                           | "                                                                                                         |
| i | 12 17                            | 43 37                           | "                                                                                                         |
| Į | 11 66                            | 46 62                           | "                                                                                                         |
| ı | 11 19                            | 49 38                           | "                                                                                                         |
| ı | 11 19                            | 50 20                           | **                                                                                                        |
|   | 15 20                            | 54 66                           | "                                                                                                         |
|   | 20 76                            | 53 75                           | "                                                                                                         |
|   | 27 85                            | 51 02                           | $\begin{cases} B_{12}O_{3} & 3N_{2}O_{5} & 10H_{2}O + \\ B_{12}O_{3} & 3N_{2}O_{5} & 3H_{2}O \end{cases}$ |
| Į | 8 58                             | 68 28                           | B <sub>12</sub> O <sub>3</sub> 3N O <sub>5</sub> 3H O                                                     |
|   | 4 05                             | 74 90                           | ""                                                                                                        |
|   |                                  |                                 |                                                                                                           |

(Rutten, Z morg 1902, 30 386)

Solubility of Br O. in HNO +14

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                      | Somblity of Bi O <sub>4</sub> in HNO <sub>3</sub> + lq at t |                |                |                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                      | _ t                                                         | Bi Oa          | ' NO           | Solid phase                                                                                                                                                                                                                                                                             |
| $\begin{bmatrix} 28 & 2 & 29 & 6 & B1 & 0_4 & 3N & 0_4 & 10H & O \\ 16 & 1 & 7 & 7 & & & & & \\ 5 & 55 & 7 & 11 & & & & & \\ 27 & 62 & 22 & 16 & & & & \\ 10 & 80 & 31 & 60 & & & & \\ 37 & 82 & 55 & 80 & & & \\ 55 & 73 & 47 & 02 & & & \\ \end{bmatrix} \begin{bmatrix} B1 & 0_4 & 3N & 0_4 & 10H & O \\ B1 & 0_4 & 3N & 0_4 & 10H & O \\ B1 & 0_3 & 3N & 0_4 & 10H & O + \\ B1 & 0_3 & 3N & 0_6 & 5H & O \end{bmatrix}$ | ()°                                                         | 24 02<br>31 09 | 19 1<br>23 S   | <br>                                                                                                                                                                                                                                                                                    |
| 10   80   31   60   B <sub>1</sub> O <sub>1</sub> N O <sub>7</sub> H O + B <sub>1</sub> O <sub>3</sub>   3N O <sub>7</sub> 10H O   B <sub>1</sub> O <sub>3</sub> 3N O <sub>7</sub> 10H O   B <sub>1</sub> O <sub>3</sub> 3N O <sub>7</sub> 10H O + B <sub>1</sub> O <sub>3</sub> 3N O <sub>6</sub> 10H O + B <sub>1</sub> O <sub>3</sub> 3N O <sub>6</sub> 3H O                                                             | 3()°                                                        | 16-1           | 29 6<br>17 7   | 1                                                                                                                                                                                                                                                                                       |
| 4 59   77 90   `B1 O4 3N O5 3H O                                                                                                                                                                                                                                                                                                                                                                                            | 65°                                                         | 10 50          | 31 60<br>55 80 | B <sub>1</sub> O <sub>3</sub> N O <sub>7</sub> H O+B <sub>1</sub> O <sub>3</sub><br>3N O <sub>4</sub> 10H O<br>B <sub>1</sub> O <sub>3</sub> 3N O <sub>5</sub> 10H O<br>[B <sub>1</sub> O <sub>3</sub> 3N O <sub>5</sub> 1H O+<br>[B <sub>1</sub> O <sub>3</sub> 3N O <sub>5</sub> 5H O |

(Rutten)

| Solu                                                  | Solubility of B <sub>12</sub> O <sub>3</sub> in HNO <sub>3</sub> +Aq at t° |                                                              |                                                                                 |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| t°                                                    | %B12O2                                                                     | %N2O1                                                        | Solid phase                                                                     |  |  |
| 72°<br>75°<br>80°                                     | 37 23<br>36 74<br>39 75                                                    | 47 76<br>47 91<br>45 16                                      | B <sub>12</sub> O <sub>3</sub> 3N <sub>2</sub> O <sub>5</sub> 4H <sub>2</sub> O |  |  |
| 9°<br>20°<br>30°<br>50°<br>64°<br>65°<br>75 5°<br>72° | 31 2<br>32 8<br>34 2<br>36 9<br>40 6<br>40 8<br>45 4<br>45 9               | 23 9<br>24 8<br>26 4<br>28 9<br>31 1<br>31 6<br>34 6<br>35 6 | B12O3 3N2O5 10H2O + B12O3 N2O5 H2O  ""  ""  ""  ""  ""  ""  ""  ""  ""          |  |  |
| 11 5°<br>20°<br>50°<br>65°                            | 25 36<br>27 85<br>32 22<br>35 73                                           | 52 57<br>51 02<br>49 29<br>47 02                             | B12O3 3N2O5 10H O +<br>B12O3 3N2O5 3H O                                         |  |  |

(Rutten)

### Solubility in NaOH+Aq at 25°

| Conc of NaOH      | g Bi <sub>2</sub> O <sub>3</sub> in 100 cc of solution                                                 |
|-------------------|--------------------------------------------------------------------------------------------------------|
| Mol/I             | Mean result                                                                                            |
| 1 0<br>2 0<br>3 0 | $\begin{array}{c} 0 \ 0013 \pm 0 \ 0002 \\ 0 \ 0026 \pm 0 \ 0002 \\ 0 \ 0049 \pm 0 \ 0005 \end{array}$ |

(knox, Chem Soc 1909, 95 1767)

(Γidm inn, C C 1899, Insol in acctone II 1011) Min Bismite Lasily sol in HNO3+1q

See also Bismuthous hydroxide

### Bismuth letroxide, Bi ()<sub>1</sub>

Sol in conc HC1+Aq, with evolution of Cl, in oxygen acids with evolution of O - I ess cisily sol in conc. H SO<sub>3</sub> than in HNO<sub>3</sub>, or HCl + 1q

Bismuth oxide, Big(), (2)

(Hoffmann and Couther)

### Bismuth pentoxide, Bi ()

Sol in dil acids Combines with HO to form bismuthic hydroxide which see (Hasebrock B 20 213)

Bismuth oxybromide, etc

See Bismuthyl bromide, etc

### Bismuth palladium, PdBi

Insal megaalpts HNO and tartane reads (Roessler / morg 1895, 9-70)

### Bismuth platinum, PtBi

Insol equal pts HNO and turbure reads (Roessler Z morg 189) 9 69)

Bismuth phosphide, BiP

(Cavazzı)

Bismuth triselenide, Bi<sub>2</sub>Se<sub>3</sub>

Insol in H<sub>2</sub>O, alkalies, or alkali si phides Aq, sl attacked by HCl+Aq, oxic ed by HNO<sub>3</sub>+Aq (Schneider, Pogg 94 6 Min Frenzehte

Bismuth potassium selenide See Selenobismuthite, potassium

Bismuth selenochloride, BiSeCl

Not attacked by H<sub>2</sub>O, very sl sol 1 HCl+ Aq, easily and completely sol with comp in HNO<sub>3</sub>+Aq (Schneider)

> 3 B12S2 1 294)

13+Aq,

ı of S

 $a_2S_2O_3$ 

 $_{1}NO_{3}+$ 

arbon-

hydro-

 $Va_2S_2 +$ 09, **95** 

cc of

(Still-

amt of

 $25^{\circ}$ 

185 **ካ }**ኝ

1 100 cc ution

95, **120** 

**)**)

Bismuth disulphide,  $B_{12}S_2 + 2H_2O$  (?) Insol in H<sub>2</sub>O Decomp by HCl+ iq

### Bismuth trisulphide, Bi<sub>2</sub>S<sub>3</sub>

Insol in H<sub>2</sub>O

1 l  $H_2O$  dissolves 0 35 x 10-6 mo at 18° (Weigel, Z phys Ch 1907, Easily sol in moderately dil HN and conc HCl+Aq, with separati Insol in alkalies, alkali sulphides, or KCN+Aq, insol in NH4Cl, or NI Insol in potassium thi Aq (Brett) (Rosenbladt, Z anal 26

ate+AqInsol in alkalı hydroxides or alka sulphides

Insol in 2N-(NH<sub>4</sub>)<sub>2</sub>S+Aq 0 0090 g B<sub>12</sub>S<sub>3</sub> is sol in 100 cc N Aq at 25° (Knox, Chem Soc

1764) Somewhat sol in Na2S+Aq NaS+Aq (sp gr 106) dissolve at B<sub>1</sub> S<sub>3</sub> corresponding to 0 031 g B<sub>12</sub>O min, J Am Chem Soc 1896, 18 6

Solubility in Na<sub>2</sub>S+N iOII+Aq

| Conc of Na S   Conc of NaOH   g Bi                    | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                      |      |
|-------------------------------------------------------|-----------------------------------------|----------------------|------|
|                                                       | Conc of Na S                            | Concot NaOH<br>Mol/l | Bi S |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0 5                                     |                      | 0    |

(Knox, Chem Soc 1909, 95 1

Bismuth sulphide pptd from ici solution is not dissolved by subsequent treationt with (Stone, J. Am. Chem., c. 1896, K > + 1q18 1091)

Sol in K S + Aq (Ditte, C R

Solubility in K S+KOH+Aq it

| mining.              | 111 12 1 1 11//21 1    |       |                      |
|----------------------|------------------------|-------|----------------------|
| C+n   1 K S   M 1 /1 | Conc. of KOH<br>Mol./l | Bi ct | in 100<br>lution     |
| 0 5<br>1 0<br>1 25   | 1 0<br>1 0<br>1 25     | 0     | )240<br> 230<br> 354 |
| (Knox.               | Chem Soc 190           | 9, 95 | 63)                  |

(Knox, Chem Soc 1909, 95

| Solubility in alkalı sulphides + Aq at 25° |                                   |                                                           |  |
|--------------------------------------------|-----------------------------------|-----------------------------------------------------------|--|
| Alkalı<br>sulphide                         | Conc of alkalı<br>sulphide Mol /l | g B <sub>12</sub> S <sub>2</sub> in 100 cc<br>of solution |  |
| Na <sub>2</sub> S                          | 0 5<br>1 0<br>1 5                 | 0 0040<br>0 0238<br>0 1023                                |  |
| $K_2S$                                     | 0 5<br>1 0<br>1 25                | 0 0042<br>0 0337<br>0 0639                                |  |

(Knox, Chem Soc 1909, 95 1762)

Decomp by FeCl<sub>3</sub>+Aq (Cammerer, C C 1891, II 525)

Insol in KCN+Aq (Hoffmann, A 1884, **223** 134)

Min Bismuthinite Easily sol in HNO<sub>3</sub>+Aq

Bismuth cuprous sulphide, Bl<sub>2</sub>S<sub>5</sub>, Cu<sub>2</sub>S

Insol in H<sub>2</sub>O Sol with decomp in HNO<sub>3</sub>

+Aq (Schneider, J pr (2) 40 564)

Min Emplectonite

Bismuth potassium sulphide, B<sub>12</sub>S<sub>3</sub>, K<sub>2</sub>S (Schneider, Pogg 136 460)

Insol in ethyl acetate (Naumann, B

1910, **43** 314)
B<sub>12</sub>S<sub>3</sub>,4K<sub>2</sub>S+4H<sub>2</sub>O Decomp by H<sub>2</sub>O
Very sol in K<sub>2</sub>S+Aq Efflorescent in dry
air (Ditte, C R 1895, **120** 186)

See also Sulphobismuthite, potassium

Bismuth silver sulphide,  $\mathrm{Bi}\ \mathrm{S_3},\ \mathrm{Ag_2S}$ 

Insol in cold HCl, or HNO $_3$  Sol in warm HNO $_3$  with separation of S, in boiling HCl with separation of H $_2$ S

Min Plenargyrite, Matildite (Schneider, J pr 1890, (2) 41 414)

Bismuth sodium sulphide, Bi S3, Na<sub>2</sub>S (Schneider)

Bismuth sulphide telluride, Bi<sub>2</sub>S<sub>3</sub>, 2Bi<sub>2</sub>Te<sub>3</sub>

Min Tetradymite Sol in HNO<sub>3</sub> with sepa 1 ation of S

B<sub>1</sub> S<sub>2</sub>, 2B<sub>1</sub> I c

Min Josephe As above

Bismuth sulphobromide, BiSB1<sub>2</sub>
(Muii and bagles, Chem. Soc. 1895, **67**, 91.)

Bismuth sulphochloride, BiSCl

Insol in H O or dil HCl+Aq Sol in conc HCl, or HNO<sub>3</sub>+Aq Decomp by dk dies+Aq (Schneider, Pogg **93** 464)

### Bismuth sulphoiodide, BiSI

Not attacked by boiling  $H_2O$ , and dil acids Decomp by hot conc HCl+Aq, and  $HNO_3+Aq-KOH+Aq$  dissolves out I (Schneider, Pogg 110–114)

Bismuth telluride, Bi<sub>2</sub>Te<sub>3</sub>

Min Tetradymite Sol in HNO<sub>3</sub>+Aq See also Bismuth sulphide telluride

Bismuthic acid, HBiO<sub>3</sub>
See Bismuthic hydroxide

Potassium bismuthate, KBiO3

Sol in H<sub>2</sub>O (Arppe) KH(B<sub>1</sub>O<sub>3</sub>)<sub>2</sub> Insol in H<sub>2</sub>O

Not decomp by boiling H<sub>2</sub>O (André, C R 113 860)

No salts of HBiO<sub>3</sub> can exist (Muir and Carnegie, Chem Soc 51 77)

### Bismuthicotungstic acid

Ammonium bismuthicotungstate,  $3(NH_4)_2O$ ,  $2B_{12}O_8$ ,  $11WO_3+10H_2O$ 

A yellow oil which dries to a yellow glass (E F Smith, J Am Chem Soc 1903, 25 1232)

Potassium bismuthicotungstate, 3K<sub>2</sub>O, 2B<sub>12</sub>O<sub>3</sub>,11WO<sub>3</sub>+15H<sub>2</sub>O

A yellow oil which dried to a pale yellow glass (E F Smith, J Am Chem Soc 1903, 25 1233)

Strontum bismuthicotungstate, 3SrO, 2B<sub>12</sub>O<sub>3</sub>,11WO<sub>3</sub>+11H<sub>2</sub>O

A yellow wax, insol in pure H<sub>2</sub>O, but sol in H<sub>2</sub>O containing a few drops HNO F Smith, J Am Chem Soc 1903, **25** 

### Bismuthyl bromide, BiOBr

Insol in H<sub>2</sub>O, sol in moderately conc HBr+Aq Insol in H<sub>2</sub>O (Herz, Z anorg 1903, **36** 

348)

B<sub>18</sub>O<sub>9</sub>Br<sub>6</sub> Insol in H<sub>2</sub>O, easily sol in conc HCl, or HNO<sub>3</sub>+Aq, less sol in dil HNO<sub>3</sub>+Aq

 $B_{1_{11}}O_{13}B\hat{r}_{7}$  As the preceding comp (Muir)

### Bismuthyl chloride, BiOCl

Insol in H<sub>2</sub>O or dil acids Sol in conc HCl, or HNO<sub>3</sub>+Aq

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 827)

Insol in acetone (Naumann, B 1904, **37** 4329)

+HO (Heintz, Pogg 63 55)

 $+3H_2O$  (Phillips,  $\overline{Bi}$  Arch (1) **39** 41)  $B_{17}O_9Cl_3$  (Arppe)  $B_1O_2Cl_4$  Insol in  $H_2O$ , sol in hot HCl, or  $HNO_3+Aq$  (Muir)

### Bismuthyl fluoride, BiOl

Insol in  $H_2O$ , sol in HCl, HBr, or HI+Aq (Gott and Muir, Chem Soc 33 139) B<sub>1</sub>OF, 2HF Insol in  $H_2O$ 

### Bismuthyl iodide, BiOI

Not decomp by H<sub>2</sub>O or alkaline solutions Sol in HCl+Aq Decomp by HNO<sub>2</sub>+Aq (Schneider, J pr 79 424) Insol in KCl, or KI+Aq

3BiOI,7Bi<sub>2</sub>O<sub>3</sub> Sol in dil HCl, decomp by  $HNO_3$ , insol in boiling  $H_2O$  and alkali (Blyth, C N 1896, **74** 200)

BiI<sub>3</sub>, 5B<sub>12</sub>O<sub>3</sub> Ppt Sl sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+ Aq Not decomp by H<sub>2</sub>O (Fletcher and Cooper, Pharm J (3) 13 254)

4Bils, 5Bi2Os Easily sol in HCl+Aq Decomp by HNOs+Aq Sl attacked by  $H_2SO_4$ , somewhat sol in  $H_2C_4H_4O_6$ , and KHC4H4O6+Aq

Sol in  $(NH_4)_2$ S, and KOH + Aq (Storer's

Dict )

## Bismuthyl sulphide, BisO<sub>8</sub>S

(Hermann, J pr 75 452) B<sub>12</sub>O<sub>2</sub>S Insol in H<sub>2</sub>O (Scherpenberg,

C C 1889, II 641) B14O8S Min Karelinite

## Boracic acid

See Boric acid

### Borax

See Tetraborate, sodium

### Boric acid, anhydrous, B<sub>2</sub>O<sub>3</sub> See Boron trioxide

## Metaboric acid, HBO

Sol in H O

SI sol in hot glacial icetic icid (Holt. Chem Soc 1911, 100 (2) 720)

## ()rthoboric acid, H<sub>3</sub>BO<sub>3</sub>

Sc1 in 20 pt / H O at 15 75 (All) 100 pt HO at 100 h lvc 2 pt (Ure Dut)

1 pt crystallized acid dissolves in -2) 66 pts HO at 19

250 11 55 12 66 10 16 )() 62 6 12 7,° 1 7 57 ))

100 2 97 Or, 100 pts H O dissolve it -

> 19 5 9 pts H<sub>3</sub>BO<sub>3</sub> 250 6 5 ່ 7 5 77 **)()** 95 62 16 0 21.07)

25 (1 57 34 () 100

Or, sat aqueous solution contains at -3 75%H<sub>8</sub>BO<sub>8</sub> 6 27 " " 19°

37 5° 7 32 " " " 50° 8 96 " 62 5° 14 04 " 75° ` 17 44 " " 87 5° 21 95 " "

100° 25 17 " (Brandes and Firnhaber, Arch Phar 7 50)

"

at 25°

1 litre H<sub>2</sub>O dissolves at—

25°

19 47 g H<sub>8</sub>BO<sub>8</sub> 29 20 " "" O° 12° 20° 39 92 " " 69 91 " ,, 40° 62° 114 16 " 80° 168 15 " " 291 16 " 102°

(Ditte, C R 85 1069)

1 l H<sub>2</sub>O dissolves 0 901 mol H<sub>3</sub>B(

(Herz, Z anorg 1910, 66 359) 1 l  $H_2O$  dissolves 0 898 mol  $H_3BO$ at 25° Sp gr of the solution = 1 0168 ( $\mathbb{N}$  iller,  $\mathbb{Z}$ phys Ch 1907, 57 529)

1 l H<sub>2</sub>O dissolves 0 887 mol H<sub>3</sub>B at 25° and 1 025 mol at 30° (Ageno at Valla, Ist Ven (VIII) 14 II, 331)

### Solubility in H<sub>2</sub>O at t°

| t    | g H <sub>3</sub> BO <sub>3</sub> in 100 g of the | lution |
|------|--------------------------------------------------|--------|
|      | 2 59                                             |        |
| 12 2 | 3 69                                             |        |
| 21   | 4 90                                             |        |
| اد   | 6 44                                             |        |
| 40   | 8 02                                             |        |
| 50   | 10 35                                            |        |
| 60   | 12 90                                            |        |
| 69 5 | 15 58                                            |        |
| 50   | 19-11                                            |        |
| 90   | 25 30                                            |        |
| 99.5 | 25 10                                            |        |
| 108  | 56.7                                             |        |
| 11)  | 45-0                                             |        |
| 120  | 52 1                                             |        |
|      |                                                  |        |

(Nasmi and Ageno, Z. phys. Ch. 109, 69

Solubility curve for orthoboric icid in HO it various temp up to 120 ⊣∖asını and Ageno, Gazz ch. it. 1911, 41 ( ) 131

Special Hill On A at it it S 1014 ( other A 24 -41) Sp. p. t. HiBO ( FA (su. u.1.) p. 90 4 7) E 0.48 tolb : I

## Sp gr of H<sub>3</sub>BO<sub>3</sub>+ \q at 15

| Halso | ∠b Fi                      | HaI ()   | μr          |
|-------|----------------------------|----------|-------------|
| 1 2 3 | 1 0054<br>1 0069<br>1 0106 | S it sol | 0147<br>015 |

(Gerlich, Z. mal 28 473)

Sp gr of H<sub>3</sub>BO<sub>3</sub>+Aq at 18° %H<sub>3</sub>BO<sub>3</sub> 0 776 1 92 2 88 3 612 Sp gr 1 0029 1 0073 1 0109 1 0131 (Bock, W Ann 1887, **30** 638)

Volatile with steam

More sol in dil HCl+Aq than in  $\rm H_2O$  Sol in warm conc  $\rm H_2SO_4$ , HCl, or  $\rm HNO_3+Aq$ 

Solubility in HCl+Aq at 25°

| Millimols HCl in<br>10 ccm of the solution | Millimois H <sub>3</sub> BO <sub>3</sub> in 10 ccm<br>of the sat solution |  |
|--------------------------------------------|---------------------------------------------------------------------------|--|
| 7 0<br>13 7                                | 9 01<br>7 69<br>6 66                                                      |  |
| /YY 17                                     | 1010 00 000                                                               |  |

(Herz, Z anorg 1910, 66 359)

| Solubility of H3BO3                                                                  | III HCI+Aq at 10                                                                                |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Normality of HCl                                                                     | Normality of H <sub>8</sub> BO <sub>8</sub>                                                     |
| 0<br>0 130<br>0 260<br>0 390<br>1 30<br>2 16<br>4 32<br>6 00<br>7 08<br>5 74<br>9 51 | 0 907<br>0 895<br>0 870<br>0 842<br>0 645<br>0 542<br>0 308<br>0 338<br>0 327<br>0 327<br>0 338 |
|                                                                                      | 1                                                                                               |

(Herz, Z anoig 1902, **33** 354)

Solubility in HF+Aq at 26°

| (1) Frier of Hk  (2) Interafter saturation with HaBOn at 26 |             | (3) Titer after addition of mannitol | (3)-(2)<br>equals free<br>boric acid |  |
|-------------------------------------------------------------|-------------|--------------------------------------|--------------------------------------|--|
| 3 21n                                                       | 1 61        | 2 36                                 | 0 75                                 |  |
| 2 80n                                                       | 1 25(1 40°) | 2 21                                 | 0 96(0 81?)                          |  |

The values 0.75 and 0.81 represent the solubility of H<sub>2</sub>BO<sub>3</sub> in the concentrations of fluorboric acid resulting from the original concentration of HF+Aq

(Abegg, Z morg 1903, 35 145)

Solubility of H<sub>3</sub>BO<sub>3</sub> in acids+Aq at 26°

| Acid             | Normality of<br>the icid                         | Normality of HaBOa                                 |
|------------------|--------------------------------------------------|----------------------------------------------------|
| H 501            | 0 548<br>2 74<br>5 48<br>5 75                    | 0 746<br>0 518<br>0 312<br>0 092                   |
| HNO <sub>3</sub> | 0 241<br>1 206<br>1 607<br>2 411<br>5 96<br>7 38 | 0 818<br>0 676<br>0 593<br>0 567<br>0 268<br>0 238 |

(Herz, Z anorg 1903, 34 205)

Solubility in KOH+Aq See Borates, potassium Solubility in NaOH+Aq See Borates, sodium

Solubility in LiCl+Aq at 25°

| Millimols LiCl in           | Millimols H <sub>3</sub> BO <sub>3</sub> in 10 ccm |  |  |
|-----------------------------|----------------------------------------------------|--|--|
| 10 ccm of the solution      | of the sat solution                                |  |  |
| 7 1<br>10 3<br>22 3<br>37 2 | 9 01<br>8 13<br>7 65<br>6 42<br>5 02               |  |  |

(Herz, Z anorg 1910, 66 359) Solubility in KCl+Aq at 25°

| Millimols KCl in<br>10 ccm of the solution | Millimols H <sub>3</sub> BO <sub>3</sub> in 10 ccm<br>of the sat solution |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| 1 9<br>7 9<br>15 6<br>30 6                 | 9 01<br>9 20<br>9 44<br>9 80<br>10 75                                     |  |  |  |

(Herz)

Solubility in RbCl+Aq at 25°

| Millimols RbCl in      | Millmols H <sub>3</sub> BO <sub>3</sub> in 10 ccm |
|------------------------|---------------------------------------------------|
| 10 ccm of the solution | of the sat solution                               |
| 14 0<br>25 3           | 9 01<br>9 66<br>10 60                             |

(Herz)

Solubility in NaCl+Aq at 25°

| Millimols NaCl in      | Millimols H <sub>3</sub> BO <sub>3</sub> in 10 ccm |
|------------------------|----------------------------------------------------|
| 10 ccm of the solution | of the sat solution                                |
| 8 2<br>15 2<br>29 4    | 9 01<br>8 49<br>8 25<br>8 20                       |

(Herz)

Solubility in H<sub>2</sub>O is increased by presence of KCl, KNO<sub>3</sub>, K<sub>2</sub>SO<sub>4</sub>, NaNO<sub>3</sub> and Na<sub>2</sub>SO<sub>4</sub> In general the solubility in H<sub>2</sub>O is increased in general the solubility in H<sub>2</sub>O is increased.

by the presence of both electrolytes and nonelectrolytes (Bogdan, C C 1903, II 2)

Sol in borax + Aq (McLauchlan, Z anorg 1903, 37 371) Sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, **20** 827)
Unattacked and undissolved by liquid NO<sub>2</sub>

(Frankland, Chem Soc 1901, 79 1362) Sol in 6 pts alcohol (Wittstein), 5 pts

boiling alcohol (Wenzel) Only traces dissolve in anhydrous ether (Schiff) Sol in 100 pts ether (Hager's Comm) Sol in several essential oils

1 l H<sub>2</sub>O sat with amyl alcohol dissolves 0 8952 mol H<sub>3</sub>BO<sub>3</sub> at 25° (Auerbach, Z

anorg 1903, 37 357)

146 3

(Müller, Z phys Ch 1907, 57 514)

 $35^{\circ}$ 

|     |                                                                                        | lcohol + Aq at t°                                                                     | Sp gr of amyl alcohol                                                                                      | +Aq sat with                                                                                                          | $[^3\mathrm{BO}_3]$ |
|-----|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------|
|     | mols H <sub>3</sub> BO <sub>3</sub> in 1<br>nols H <sub>3</sub> BO <sub>3</sub> in 1   |                                                                                       | g water in 1 l of alcohol+                                                                                 | d25°/4°                                                                                                               |                     |
| t°  | M                                                                                      | A                                                                                     | 32 481                                                                                                     | 0 82229                                                                                                               |                     |
| 15° | 607 2<br>589 3<br>589 0<br>586 0<br>427 4<br>425 8<br>289 1<br>894 0<br>372 0<br>371 8 | 176 4<br>177 4<br>177 1<br>173 4<br>127 6<br>127 0<br>84 9<br>264 0<br>110 0<br>110 8 | 35 465<br>37 339<br>42 479<br>45 175<br>45 636<br>47 883<br>51 461<br>52 043<br>59 270<br>63 179<br>64 254 | 0 82324<br>0 82321<br>0 82321<br>0 82447<br>0 82456<br>0 82454<br>0 82527<br>0 82585<br>0 82699<br>0 82739<br>0 82779 |                     |
| 25° | 301 2<br>180 8<br>49 15<br>51 04<br>26 02                                              | 85 7<br>54 0<br>15 45<br>15 45<br>8 05                                                | 66 403<br>66 624<br>68 253<br>69 211<br>75 610                                                             | 0 82701<br>0 82670<br>0 82856<br>0 82884<br>0 82999(                                                                  | )<br>               |
| 950 | 146 9                                                                                  | 44 97                                                                                 | (Mul                                                                                                       | ler )                                                                                                                 |                     |

Solubility of  $\mathrm{H_{3}BO_{3}}$  in amyl alcohol and NaCl+Aq at 25°

44 27

| Water          | Water phase |              | Amyl alcohol phase   |                 |     |      |
|----------------|-------------|--------------|----------------------|-----------------|-----|------|
| V- Cll-t       | mol HaBOa   | S 050/40     | 11 contains          |                 |     |      |
| NaCl normality | moi H3BO3   | Sp gr 25°/4° | mol H <sub>2</sub> O | mol amyl akohol | mol | 3BO3 |
| 0 00           | 0 880       | 0 8296       | 4 10                 | 8 39            | 0   | )40  |
| 0 945          | 0 866       | 0 8277       | 3 55                 | 8 49            | 0   | 335  |
| 1 490          | 0 850       | 0 8268       | 3 27                 | 8 54            | 0   | 659  |
| 1 865          | 0 844       | 0 8259       | 3 03                 | 5 56            | 0   | 724  |
| 2 355          | 0 833       | 0 8254       | 2 86                 | 5 59            | 0   | 550  |
| 2 845          | 0 827       | 0 8247       | 2 62                 | 5 62            | 0   | 577  |
| 3 06           | 0 810       | 0 8241       | 2 39                 | 8 66            | Ö   | 591  |
| 3 48           | 0 810       | 0 8240       | 2 32                 | 5 69            | 0   | 006  |
| 3 57           | 0 807       | 0 8236       | 2 15                 | 5 70            | 0   | 066  |
| 4 01           | 0 801       | 0 8233       | 1 99                 | 5 72            | 0   | 162  |
| 4 28           | 0 798       | 0 8229       | 1 75                 | 5 75            | ő   | 210  |

(Muller)

Solubility in hydroxy-compounds + Aq. it 25

|                         | soldoned in injuring (migration) and the injuring the inj |                                             |                                      |                                  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|----------------------------------|--|--|
| Organic substance added | Mol of organic sub<br>stance in 100 mol of<br>the mixture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mol of boric acid sol<br>in 1 l of solution | 5p gr of the pure<br>mixtur          | p great a mixtur                 |  |  |
| Lactic acid             | 2 321<br>6 819<br>18 77<br>36 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 07<br>1 61<br>1 86<br>2 08                | 1 0252<br>1 0722<br>1 1405<br>1 2023 | 1 444<br>1 186<br>1 635<br>1 254 |  |  |
| Glycerine               | 24 64<br>46 75<br>67 71<br>90 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 205<br>2 132<br>2 96<br>3 78              | 1 1574<br>1 2370<br>1 2531           | 1 707<br>1 260<br>1 526<br>1 710 |  |  |

| Organic substance<br>added | Mol of organic sub<br>stance in 100 mol of<br>the mixture | Mol of boric acid sol<br>in 1 l of solution | Sp gr of the pure mixture  | Sp gr of the mixture sat with boric acid |
|----------------------------|-----------------------------------------------------------|---------------------------------------------|----------------------------|------------------------------------------|
| Mannitol                   | 0 790<br>0 810<br>0 945<br>1 585                          | 1 007<br>1 015<br>1 029<br>1 136            | 1 0244<br>1 0288<br>1 0475 | 1 0425<br>1 0433                         |
| Dulcitol                   | 0 065<br>0 130<br>0 260                                   | 0 8876<br>0 9078<br>0 9360                  | 0 9995<br>1 0018<br>1 0060 | 1 0686<br>1 0212<br>1 0260               |

(Muller)

Solubility of  $H_3BO_3$  in alcohols+Aq at 25° M=Mol of alcohol in 100 mol of alcohol+Aq  $H_3BO_3=Mol$  of  $H_3BO_3$  in 1 l of the solution  $d_1=Sp$  gr of alcohol+Aq  $d_2=Sp$  gr of alcohol+Aq sat with  $H_3BO_3$ 

| Alcohol added    | M                                                               | H₃BO₃                                                           | d <sub>1</sub>                                                     | d <sub>2</sub>                                                     |
|------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Methyl alcohol   | 11 74<br>28 64<br>36 02<br>43 95<br>52 31                       | 0 895<br>1 012<br>1 098<br>1 161<br>1 307<br>2 900              | 0 7924                                                             | 0 8904                                                             |
| Ethyl alcohol    | 8 996<br>22 28<br>44 46<br>55 62<br>79 89<br>88 10<br>99 26     | 0 829<br>0 800<br>0 729<br>0 700<br>0 893<br>1 105<br>1 527     | 0 7860                                                             | 0 8353                                                             |
| n-Propyl alcohol | 23 66<br>53 63<br>83 65<br>100                                  | 0 6437<br>0 4569<br>0 5776<br>0 961                             | 0 9043<br>0 8231<br>0 8133<br>0 8010                               | 0 9193<br>0 8570<br>0 8466<br>0 8297                               |
| 1-Butyl dcohol   | 0 70<br>2 15<br>2 18<br>71 4<br>77 1<br>85 6                    | 0 884<br>0 857<br>0 857<br>0 323<br>0 347<br>0 4212<br>0 6927   | 0 9923<br>0 9853<br>0 9855<br>0 8173<br>0 8133<br>0 8081<br>0 7984 | 1 0124<br>0 0038<br>0 0046<br>0 8351<br>0 8220<br>0 8195<br>0 8172 |
| 1-Amyl alcohol   | 0 448<br>0 520<br>0 525 <sup>1</sup><br>67 26<br>75 54<br>83 40 | 0 883<br>0 880<br>0 880<br>0 2584<br>0 2722<br>0 3190<br>0 5703 | 0 9943<br>0 9935<br>0 9931<br>0 822<br>0 8183<br>0 8142<br>0 8068  | 1 0132<br>1 0125<br>1 0123<br>0 829<br>0 8253<br>0 8223<br>0 8220  |

<sup>1</sup> Water sat with alcohol

Alcohol sat with water

Easily sol in acetone (Krug and M'Elroy, J Anal Ch 6 184)

Solubility in acetone+Aq at 20° A = ccm acetone in 100 ccm acetone+Aq H<sub>3</sub>BO<sub>3</sub>=millimols H<sub>3</sub>BO<sub>3</sub> in 100 ccm the solution

| A                                           | H <sub>3</sub> BO <sub>3</sub>                                               |
|---------------------------------------------|------------------------------------------------------------------------------|
| 0<br>20<br>30<br>40<br>50<br>60<br>70<br>80 | 79 15<br>81 71<br>83 35<br>82 74<br>81 61<br>76 40<br>67 62<br>55 05<br>8 06 |

(Herz, Z anorg 1904, 41 319)

100 g pure anhydrous ether dissolve 0 00775 g H<sub>3</sub>BO<sub>3</sub>

100 g ether sat with H<sub>2</sub>O dissolve 0 2391 g  $_{\rm H_3BO_3}$ 

1 Rose, Dissert 1902)

Sol in 10 pts glyccine (Hager)

100 pts glycerine (sp gr 1 26 at 15 5°) dissolve pts H<sub>3</sub>BO<sub>3</sub> at t°

| 10                  | Pts<br>H <sub>3</sub> BO <sub>3</sub> | 10                   | Pts<br>HaBOa         | t°              | Pts<br>H <sub>3</sub> BO <sub>3</sub> |
|---------------------|---------------------------------------|----------------------|----------------------|-----------------|---------------------------------------|
| 0<br>10<br>20<br>30 | 20<br>24<br>25<br>33                  | 40<br>50<br>60<br>70 | 35<br>44<br>50<br>56 | 80<br>90<br>100 | 61<br>67<br>72                        |

(Hooper Ph. J. Irms (3) 13 258)

Solubility of H<sub>3</sub>BO<sub>3</sub> in glyceine+Aq it 25° (i-g glycerine in 100 g glycerine+Aq H.BO: Millimols H<sub>3</sub>BO: in 100 cc of the -olution

| (     | н во         | Jb F1   |
|-------|--------------|---------|
| 0     | 90 1         | 1 0170  |
| 7 15  | 90-1         | 1 0379  |
| 20 11 | 90-6         | 1 0629  |
| ol 15 | 92-9         | 1 0597  |
| 4(4)  | 97 0         | 1 1130  |
| 15 7  | 1(13-()      | 1 1328  |
| 69.2  | 140 2        | 1 1571  |
| 100   | 300 3        | 1 2719  |
| Have  | / morg (90). | 45 205) |

Solubility of H BO in organic reids + Aq it 26

| Ail     | Norm lity of<br>the gold | Sormality of HaBOs |
|---------|--------------------------|--------------------|
| Acetic  | 0 570                    | 0.587              |
| 71.1.11 | 3 55                     | 0 538              |
|         | > 70                     | 0.268              |

| Solubi   | lity of H <sub>3</sub> BO <sub>3</sub> , e | tc —Contrnue                    |       |
|----------|--------------------------------------------|---------------------------------|-------|
| Acid     | Normality of<br>the acid                   | Normality of                    | [₃BO₃ |
| Tartaric | 0 955<br>1 909<br>2 51<br>3 316            | 0 890<br>0 923<br>0 962<br>1 07 |       |
|          |                                            |                                 |       |

(Herz. Z anorg 1903, **34** 206)

The solubility of H<sub>3</sub>BO<sub>3</sub> in H<sub>2</sub>O is inc. ased by the presence of racemic acid

| Millimols racemic acid<br>in 10 ccm of the solvent | Millimols borie ε<br>in 10 ccm of the sc |  |
|----------------------------------------------------|------------------------------------------|--|
| 0<br>6 3<br>12 6<br>24 7                           | 9 01<br>9 86<br>10 46<br>11 65           |  |

(Herz, Z anorg 1911, 70 71)

Solubility of H<sub>3</sub>BO<sub>3</sub> in H<sub>2</sub>O is increased by the presence of tartaric acid

| Millimols tartaric acid<br>in 10 ccm of the solvent | Millimols boric a<br>10 ccm of the sol | l in<br>ion |
|-----------------------------------------------------|----------------------------------------|-------------|
| 0 7 5                                               | 9 01<br>10 00                          |             |
| 15<br>30                                            | 10 70<br>12 07                         |             |
|                                                     | 1011 WA E1                             | -           |

(Herz, Z anorg 1911, 70 71)

| Solubility in oxalic acid+Aq at 25°                |                                               |                 |  |
|----------------------------------------------------|-----------------------------------------------|-----------------|--|
| Millimols oxalic acid<br>in 10 ccm of the solution | Millimols H <sub>3</sub> B(<br>ccm of the sat | ın 10<br>olut10 |  |
| 2 97<br>5 95<br>13 77                              | 9 01<br>9 95<br>10 80<br>11 98                |                 |  |

(Haz, Z morg 1910, 66 93)

0105-

Solubility in H2O is increased by t ence of unca, acctone or propylalcohol (Bogdan, C C 1903, II 2)

Readily sol in hot glacial actic acie (Holt Chem Soc 1911, 100 (2) 720)

Sol in 250 pts benzene (Higer)

Solubility of H<sub>3</sub>BO<sub>3</sub> in mainte + \c at t°

|     | Solid phase H4BO3                                                               |                                                                                                  |     |                                                    |                                                                      |
|-----|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----|----------------------------------------------------|----------------------------------------------------------------------|
| 10  | Mr mol                                                                          | ın 1 l                                                                                           |     | Mg m                                               | i nil                                                                |
| 1-  | Mannite                                                                         | H <sub>3</sub> BO <sub>3</sub>                                                                   |     | Mannit                                             | H <sub>3</sub> BO <sub>3</sub>                                       |
| 25° | 0 1<br>0 1<br>0 3<br>0 4<br>0 5<br>0 6<br>0 7<br>0 8<br>1 043<br>1 409<br>1 781 | 0 \$87<br>0 951<br>1 015<br>1 039<br>1 071<br>1 102<br>1 142<br>1 173<br>1 244<br>1 404<br>1 521 | 30, | 0<br>0 1<br>0 2<br>0 3<br>0 4<br>0 5<br>0 6<br>0 7 | 1 025<br>1 056<br>1 086<br>1 118<br>1 157<br>0 193<br>1 219<br>1 258 |

|       | Solid phase mannite                                          |                                |  |  |
|-------|--------------------------------------------------------------|--------------------------------|--|--|
| to    | Mg mol                                                       | s in 11                        |  |  |
| t-  - | Mannite                                                      | H <sub>2</sub> BO <sub>3</sub> |  |  |
| 25°   | 1 075<br>1 1424                                              | 0<br>0 2646                    |  |  |
| "     | $\begin{array}{c} 1 \ 259 \\ 1 \ 265 \\ 1 \ 354 \end{array}$ | 0 463<br>0 559<br>0 794        |  |  |
| "     | 1 409<br>1 536                                               | 0 927<br>1 243                 |  |  |
| "     | 1 781                                                        | 1 521                          |  |  |

(Ageno and Valla, Ist Ven (VIII) 14 331)

Distribution between  $H_2O$  and amyl alcohol at  $25^{\circ}$ 

 $w = concentration of H_3BO_3$  in H<sub>2</sub>O layer expressed in millimols

a = concentration of  $H_3BO_3$  in alcohol layer expressed in millimols

| w     | a     |
|-------|-------|
| 265 8 | 76 6  |
| 196 5 | 59 5  |
| 159 6 | 47 5  |
| 126   | 37 1  |
| 87 9  | 33 2  |
| 75 2  | 22 7  |
| 64 6  | 19 76 |

(Abegg, Z anorg 1903, **35** 130)

Partition of H<sub>0</sub>BO<sub>3</sub> between water and mixtures of amyl alcohol and CS<sub>2</sub>

W = Mıllımols H<sub>3</sub>BO<sub>3</sub> in 10 ccm of the aqueous layer

 $G = M_1 llimols H_3 BO_1$  in 10 ccm of the amylal cohol— $CS_2$  layer

| Comparition of the obvent mixture                         | (                                | w                                | $\mathbf{W}_{t}\mathbf{G}$   |
|-----------------------------------------------------------|----------------------------------|----------------------------------|------------------------------|
| 75% by vol amyl<br>alcohol+25% by<br>vol CS               | 0 145<br>0 275<br>0 429<br>0 589 | 0 624<br>1 198<br>1 844<br>2 565 | 4 31<br>4 36<br>4 30<br>4 45 |
| 50% by vol amyl<br>alcohol+<br>50', by vol CS             | 0 145<br>0 259<br>0 364<br>0 555 | 0 756<br>1 353<br>1 946<br>2 889 | 5 47<br>5 21<br>5 34<br>5 22 |
| 25% by vol amyl<br>alcohol+<br>75% by vol CS <sub>2</sub> | 0 085<br>0 175<br>0 264<br>0 384 | 0 699<br>1 467<br>2 165<br>3 129 | 8 24<br>8 40<br>8 12<br>8 14 |

(Herz, Z Elektrochem 1910, 16 870)

Distribution between HF+Aq and amyl alcohol at 25°

c=HF concentration (millimols)

a=H<sub>3</sub>BO<sub>3</sub> concentration in alcohol layer (expressed in millimols)

 $\hat{\mathbf{w}} = \mathbf{H_3}\mathbf{BO_3}$  concentration in water layer (expressed in millimols)

| c                                     | a                                                                      | w                                                                           |
|---------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 500<br>"<br>"<br>250<br>"<br>"<br>125 | 14 3<br>19 2<br>25 3<br>114 3<br>30 1<br>37 0<br>56 8<br>108 0<br>39 0 | 71 2<br>99 2<br>144 2<br>979 0<br>144 5<br>194 8<br>321 5<br>652 0<br>170 5 |
| 62 <sub>.5</sub>                      | 47 2<br>52 8<br>96 0<br>30 4<br>39 4<br>65 (68°)<br>90 0               | 214 0<br>240 5<br>442 0<br>111 2<br>151 8<br>272 8<br>362 2                 |

(Abegg, Z anorg 1903, **35** 131)

See also Boron trioxide

Pyroboric (tetraboric) acid, H<sub>2</sub>B<sub>4</sub>O<sub>7</sub>

Sol in H<sub>2</sub>O

Sp gr of solutions of boric acid, calc as H<sub>2</sub>B<sub>4</sub>O<sub>7</sub>, containing—

6 3 1 27 1 91 2 54%H<sub>2</sub>B<sub>4</sub>O<sub>7</sub> 1 0034 1 0069 1 0106 1 0147 sp gr Sat solution at 15° has sp gr 1 015 (Ger-

lach, Z anal 28 473)
Insol in hot glacial acetic acid (Holt,

Chem Soc 1911, **100** (2) 720)

### Borates

No borate is quite insol in  $H_2O$ , the alkali borates are very sol. The less sol borates are easily decomp by  $H_2O$ , the easily sol salts are also decomp, but less quickly. The less sol borates are easily sol in  $H_3DO_3$ ,  $HNO_3$ , ctc. They are more sol in  $H_2O$  containing tartaric acid of potassium tartrate than in pure  $H_2O$  (Souberain.) The normal borates of the alkaline-carths are sol to no inconsiderable extent in H O, and more readily in hot, than in cold H O. (Berzelius, Pogg. 34–568.) All borates are insol, or sl. sol in alcohol

Aluminum borate, 2Al Os, BOs

Min Jeremacowite  $+3\text{H}_2\text{O}$  Ppt (Rose, Pogg **91** 452)  $3\text{Al}_2\text{O}_3$ ,  $B_2\text{O}_3$  Crystallized Insol in  $4\text{HNO}_3$ +Aq (Ebelmen, A ch (3) **33** 62)  $3\text{Al O}_3$ ,  $2\text{B O}_3$ +7H O Ppt (Rose, l c)

### Ammonium borate

The system (NH<sub>4</sub>)<sub>2</sub>O,B O<sub>3</sub>,H<sub>2</sub>O at 60° has

```
BORATE, AMMONIUM
been studied by Sborgi
1915 (5) 24 I, 1225)
                                                          3BaO, B<sub>2</sub>O<sub>3</sub> Easily sol in mineral
                                 (Real Ac Linc
                                                                                                      ıds
                                                       Sl attacked by dil acetic acid
C R 1901, 132 258)
                                                                                               (Our
                                                                                                      ard.
  2(NH_4)_2O_4B_2O_3+5H_2O_3
                                  (Sborgi)
                                                                   Slowly sol in warm dilute I NO3
                                                         BaB<sub>4</sub>O<sub>1</sub>
Ammonium diborate
                                                       +Aq (Ditte, C R 77 892)
  Difficultly sol in acetone (Naumann, B
                                                          +5H<sub>2</sub>O Sol in 100 pts cold, and
                                                                                                      ore
1904, 37 4328)
                                                       freely in hot H<sub>2</sub>O When freshly pptc
                                                                                                      sol
                                                       in cold NH4Cl+Aq (Wackenroder, A
                                                                                                       41
Ammonium tetraborate, (NH<sub>4</sub>)<sub>2</sub>B<sub>4</sub>O<sub>7</sub>+4H<sub>2</sub>O,
                                                       315), NH4NO3+Aq (Brett, Phil Mag (
                                                                                                       10
     or perhaps NH_4H(BO_2)_2+1\frac{1}{2}H_2O
                                                       96), and BaCl<sub>2</sub>+Aq (Rose)
  Sol in 12 pts cold H2O, decomp by heat
                                                         BaB<sub>6</sub>O<sub>10</sub>+13H<sub>2</sub>O
                                                                              (Laurent, A ch (
                                                                                                       67
(Rammelsberg, Pogg 90 21)
                                                       215)
                                                                      (Bloxam, Chem Soc 14
                                                                                                      43)
  Sol in acetone
                       (Eidmann, C C 1899,
                                                         Ba_2B_2O_5
                                                          5BaO, 2B<sub>2</sub>O<sub>3</sub>
II 1014)
   +H_2O
                                                          Ba_3B_{10}O_{18} + 6H_2O
             (Arfvedson)
                                                                                 Sol in 100 pts
                                                                                                      cold
                                                       H_{\circ}O
                                                               Easily sol in ammonium nitra
                                                                                                      , or
                                                       chloride, or barium chloride+Aq
Pogg 87 1)
Ammonium octoborate, (NH<sub>4</sub>)<sub>2</sub>B<sub>8</sub>O<sub>13</sub>+6H<sub>2</sub>O
                                                                                                      ose,
   Sol in 8 pts cold, decomp by boiling H<sub>2</sub>O
(Rammelsberg, Pogg 90 21)
                                                          Ba_2B_6O_{11} Easily sol in warm dilute
                                                                                                      ıds
    -4H₂O
                                                          +6H<sub>2</sub>O
   Min Lirdellerite
                                                          +7H_{2}O
                           Sol in H<sub>2</sub>O with de-
                                                          +15H<sub>2</sub>O (Laurent, A ch (2) 67 2
comp
Ammonium dekaborate, (NH<sub>4</sub>)<sub>2</sub>B<sub>10</sub>O<sub>16</sub>+
                                                       Barium borate bromide, 3BaO, 5B<sub>2</sub>O<sub>3</sub>, I Br.
     6H₂O
                                                          (Ouvrard, C R 1906, 142 283)
   Permanent Sol in H<sub>2</sub>O (Rammelsberg)
                (Atterberg, Bull Soc (2) 22
                                                                                                      ^{1}_{2}
   +8H<sub>2</sub>O
                                                       Barium borate chloride, 3BaO,5B<sub>2</sub>O<sub>3</sub>,B
350)
                                                          Unaffected by H<sub>2</sub>O Sol in acids
                                                                                                      )uv-
                                                       rard, C R 1906, 142 283)
Ammonium dodekaborate, (NH<sub>4</sub>)<sub>2</sub>B<sub>12</sub>O<sub>19</sub>+
     9H_2O
                                                       Bismuth borate, BiBO<sub>3</sub>+2H<sub>2</sub>O
   Sol in hot H<sub>2</sub>O (Bechi, Sill Am J (2)
                                                                Sl sol in H<sub>2</sub>O Decomp by H<sub>2</sub>S
17 129 )
                                                       Not decomp by KOH+Aq (Vanino,
Ammonium perborate, NH<sub>4</sub>BO<sub>3</sub>
                                                       1906, (2) 74 152)
   See Perborate, ammonium
                                                       Cadmium borate, Cd<sub>3</sub>(BO<sub>3</sub>)<sub>2</sub>
Ammonium calcium borate, (NH<sub>4</sub>)<sub>8</sub>CaB<sub>4</sub>O<sub>11</sub>
                                                          Insol in H<sub>2</sub>O, easily sol in dil acids
                                                                                                      שנונ
                                                       1ard, C R 1900, 130 174)
      = CaB_4O_7 + 4(NH_4)_2O
                                                                       Difficultly sol in H() () rom
                                                          Cd(BO<sub>2</sub>)
   (Ditte, C R 96 1663)
                                                       (yer), insol in HO, sol in HCl+Aq (O ing),
Ammonium magnesium borate
                                                       easily sol in warm NH4Cl+Aq (Rose)
   Sol in HO, decomp by boiling
                                              (Ram-
                                                          (Guertler, Z anorg 1904, 40 242)
                                                          3CdO, 2B₂O₃+3Ĥ O
melsberg, Pogg 49 451)
                                                                                      Ppt
                                                                                                      ın
                                                              (Rose, Pogg 88 299)
                                                       H(0)
 Ammonium zinc borate, 4(NH<sub>4</sub>) B<sub>4</sub>O,
                                                          CdO, 2BO<sub>3</sub>+2HO (Ditte, A ch
                                                                                                      583,
      Z_n(BO_2)_2 + 5H_2O_2
                                                       (5) 30 255)
   (Ditte, C R 96 1663)
                                                          CdO_{1} + 4B_{2}O_{3} + 10H_{2}O_{3}
                                                                                     Sol in H (
                                                                                                       de
                                                       comp on heating (Ditte, Veh 1885)
                                                                                                      30
 Barium borate, B<sub>1</sub>(BO<sub>2</sub>)
                                                       25)
   Ppt (Ouvraid C R 1906 142 283)
    +2H ()
              (Attobog)
                                                                                                     } ()<sub>3</sub>,
                                                       Cadmium borate bromide, 6(df)
    +4H () (Benedikt B 7 703)
                                                            CdBr
        Sol in 3300 pts 45% alcohol
                                                          Insol in H O and furning HClor HB
                                                                                                     - Aq
                  7,500
                              50
                                                       (Roussem and Allanc, C. R. 1894, 119)
                                                                                                     72)
                 25,000
                              60
                          " 75
                                                                                                     3 O3,
                 55,000
                                                       Cadmium borate chloride, 6(df)
                                                            CdCb
              (Berg, Z and 16 25)
                                                          (Roussem and Allure, C
                                                                                          R 189
                                                                                                      118
```

wood spirit (Fbelmen) Cæsium borate, Cs B<sub>f</sub>()<sub>10</sub> Decomp by H2O forming 2B (O B O)  $B_4()$ ,  $B_2()$ , +4H () (Ouvrard, C R 1906, Very sol in H2O, less in alcohol (Re chle, L anoig 4 116) 142 253)

1256)

Cadmium borate iodide, 60 dO SBO, dI (Allure, C. R. 1898 127 557)

+10H () Sl sol in cold, more readily in

hot HO, especially in presence of ammonium salts (Berzelius, Pogg **34** 568) Sol in sodium citrate+Aq (Spiller) Insol in Calcium borate, Ca(BO<sub>2</sub>)<sub>2</sub>

Sl sol in H<sub>2</sub>O, insol in alkalı chlorides, or boiling conc acetic acid+Aq, sol in cold or hot solutions of ammonium salts, especially ammonium nitrate, in CaCl2+Aq, and also easily sol in dilute mineral acids at 50° (Ditte, C R 80 490, 561)

 $+2H_2O$ +4H<sub>2</sub>O, two modifications of which one is very unstable (van't Hoff and Meyerhoffer, A 1906, 351 101)

When warmed in H<sub>2</sub>O it goes  $+6H_2O$ over into CaB<sub>2</sub>O<sub>4</sub>+4H<sub>2</sub>O (van't Hoff and

Meyerhoffer )

Sol in H<sub>2</sub>O without decomp, 1 l solution contains 2 g salt (Ditte, C R **96** 1663)

CaB<sub>4</sub>O<sub>7</sub> Decomp by H<sub>2</sub>O (Blount, C N

**54** 208) (Naumann, B

Insol in methyl acetate 1909, **42** 3790) (Ditte, C R 96 1663)

+3H<sub>2</sub>OMm Bechilite  $+4\mathrm{H}_2\mathrm{O}$ 

 $+6\mathrm{H}_2\mathrm{O}$ Mm Borocalcite Sol in acids

 $CaB_6O_{10}$ ,  $+4H_2O$ 

Unstable On standing in the  $+8H_2O$ solution in which it is formed it changes into  $CaB_6O_{10}+4H_2O$ 

⊢12H<sub>2</sub>O Unstable Goes over into (van't Hoff and Meyer- $CaB_6O_{10} + 8H_2O$ 

hoffer, A 1906, 351 104)

(Ditte, C R 96 1663)  $CaB_8O_{18} + 12H_2O$ 2CaO,B<sub>2</sub>O<sub>3</sub> Insol in H<sub>2</sub>O, sol in dil acids (Ouvrard, C R 1905, 141 353)

 $\mathrm{Ca_{2}B_{6}O_{11}}$ (Ditte, C R 77 785)

Min Pandermite, Pricette  $+3H_2O$  $4CaO, 5B_2O_3 + 9H_2O$ 

+5H<sub>2</sub>O Min Colemanite

If all the Ca is in form of colemanite, the solution contains in 100 g, 48 g H<sub>3</sub>BO<sub>3</sub> and 01 g CaO (van't Hoff, B A B **1907**, 653) +7H<sub>2</sub>O

+9H<sub>2</sub>O (van't Hoff and Meyerhoffer, A

1906, **351** 101)

3CaO,  $B_2O_3$ Easily sol in dil acids (Ouvrard, C R 1901, **132** 258)

3CaO, 5B<sub>2</sub>O<sub>3</sub>+9H<sub>2</sub>O (van't Hoff, B A B

**1906**, II 568)

4CaO,  $5\text{B}_2\text{O}_3 + 9\text{H}_2\text{O}$  True composition of Panderinite (van't Hoff, B A B 1906, II 572)

Calcium iron (ferrous) borate silicate, Ca2F (B2S12O10

Min Homilite Easily sol in HCl+Aq

Calcium magnesium borate, CaO, MgO,  $3B_2O_3+6H_2O$ 

Min Hydroboracite Somewhat sol in H<sub>2</sub>O Easily sol in waim HCl+Aq or HNO3 +Aq 3CaO, 3Mg(), 4B()<sub>3</sub> (Ditte, C R 77 894)

Calcium sodium borate, 2CaO, Na<sub>2</sub>O, 5B O<sub>3</sub> +8H<sub>2</sub>O

(van't Hoff, B A B 1907, 303  $Ca_4B_{10}O_{18}$ ,  $Na_3B_5O_9+15$ , or  $24H_2O$ 

Min Natroborocalcite, Ulexite Decomp Sol in acids by boiling with H<sub>2</sub>O

 $Ca_2Na_4B_{12}O_{22}+15H_2O$  $M_{in}$ Franklandıte Sl sol in H<sub>2</sub>O, easily sol in HCl, and HNO<sub>3</sub>+Aq

Calcium borate bromide, 3CaO, 3B<sub>2</sub>O<sub>3</sub>, CaBr<sub>2</sub>

Sl attacked by H<sub>2</sub>O Very sol in dilute acetic acid (Ouvrard, C R 1905, 141 1023) 3CaO, 5B<sub>2</sub>O<sub>s</sub>, CaBr<sub>2</sub> Hardly attacked by cold H<sub>2</sub>O or very dil acetic acid Sol m strong acids, even when dilute (Ouvrard, C R 1905, 141 1023)

Calcium borate chloride, Ca<sub>3</sub>B<sub>2</sub>O<sub>6</sub>, CaCl<sub>2</sub>

Decomp quickly by moist air or H<sub>2</sub>O, slowly by absolute alcohol (Chatelier, C R **99** 276)

3CaO, 3B<sub>2</sub>O<sub>3</sub>, CaCl<sub>2</sub> 1905, **141** 353) (Ouvrard, C R

3CaO, 5B<sub>2</sub>O<sub>3</sub>, CaCl<sub>2</sub> SI attacked by cold H<sub>2</sub>O and dil acetic acid+Aq Strong acids dissolve even when very dilute (Ouvrard, C R 1905, **141** 352)

Calcium borate silicate, 2CaO, B<sub>2</sub>O<sub>8</sub>, 2S<sub>1</sub>O<sub>2</sub>  $+H_2O$ 

Min Datolite Sol in HCl+Aq with separation of gelatinous silica

+2H<sub>2</sub>O Min Botryolite CaO, B<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub> Min Danburite sl attacked by HCl+Aq before ignition

Chromous borate

Precipitate Sol in free acids, borax+Aq (Moberg)

Chromic borate,  $7Cr_2O_3$ ,  $4B_2O_3$ 

Insol in  $H_2O$ , sol in excess of borax +Aq(Hebberling, C C 1870 122)

Chromic magnesium borate, 3Cr<sub>2</sub>O<sub>3</sub>, 6MgO,  $2B_2O_3$ 

Not attacked by acids (Ebelmen, A ch (3) 33 52)

2Cr<sub>2</sub>O<sub>3</sub>, 9MgO, 3B<sub>2</sub>O<sub>3</sub> **105** 1260) (Mallard, C R

Cobaltous borate, 3CoO, 2B<sub>2</sub>O<sub>3</sub>+4H O

(Rose, Pogg **88** 299) (Mallard, C R **105** 1260) (Ouvrard, C R 1900, **130** Sl sol in H<sub>2</sub>O 3CoO, B<sub>2</sub>O<sub>3</sub> 2CoO, B<sub>2</sub>O<sub>3</sub> 337)

Cobaltous borate bromide, 6CoO, 8B<sub>2</sub>O<sub>3</sub>, CoBr<sub>2</sub>

(Rousseau and Allane, C R 1894, 119 73)

Cobaltous borate chloride, 6CoO, 8B<sub>2</sub>O<sub>3</sub>, CoCl

(Rousseau and Allane, C R 1894, 118 1257)

Cobaltous borate 10dide, 6CoO, 8B O<sub>3</sub>, CoI<sub>2</sub> (Allaire, C R 1898, 127 557)

Cuprous borate, 3Cu O, 2B<sub>2</sub>O<sub>3</sub> (Guertler, Z anorg 1904, 38 459)

### Cupric borate

Composition depends on temperature and concentration of solutions Boiling H2O dissolves out all the boric acid Sol in acids,

slowly sol in hot cone NH4Cl+Aq

Cu(BO<sub>2</sub>)<sub>2</sub> Insol in cold dil acids, even Slowly sol in hot conc HCl Not attacked by alkalics or alkali carbonates+Aq (Guertler, Z anorg 1904, 38 456)

Insol in methyl acetate (Naumann, B 1909, **42** 3790)

Cupric borate ammonia, CuB<sub>4</sub>O<sub>7</sub>, 4NH<sub>3</sub>+  $6H_9O$ 

Efflorescent Can be recrystallized from a little NH<sub>4</sub>OH+Aq (Pasternack, A 151 227)

### Didymium borate, DiBO<sub>3</sub>

Insol in H<sub>2</sub>O acidulated with HCl+Aq (Cleve, Bull Soc (2) 43 363)

 $D_{12}(B_4O_7)_8$  Insol in  $H_2O_7$ , sol in acids (Frerichs and Smith, A 191 355)

### Glucinum borate, basic, 5GlO, B<sub>2</sub>O<sub>3</sub>

Insol in H<sub>2</sub>O, sol in acids (Kruss and Moraht, B 23 735)

### Iron (ferrous) borate

Ppt H<sub>2</sub>O dissolves out all the boric acid (Tunnerman)

### Iron (ferric) borate, Fe<sub>1</sub>(BO<sub>2</sub>)<sub>6</sub>+3H<sub>2</sub>O

Insol in H<sub>2</sub>O Ppt

Min Lagonite Sol in acids 2Fe<sub>2</sub>O<sub>3</sub>, 3B<sub>2</sub>O<sub>3</sub> (Mallard, C R 105 1260) 61 ( O<sub>3</sub>, B O<sub>3</sub>+6H O Ppt (Rose, Pogg

89 473)  $9F_{(2}O_3, BO_3+9HO)$ Ppt (Rosc)

Iron (ferric) magnesium borate, 31 e<sub>2</sub>O<sub>3</sub>,

6MgO, 2B O₃

Insol in H<sub>2</sub>() Sol in conc HCl+Aq (Ebelmen, A. ch. (3) **33**, 53.) 2Fe O<sub>3</sub>, 9MgO, 3BO<sub>3</sub>, (Millard, C. R.

**105** 1260 )

Iron (ferroferric) magnesium borate, 3Mg() I (O F (O) BO

Min Luduigite Slowly sol in HCl+Aq when finely powdered

Iron (ferrous) borate bromide, 61 (1) SB();

Slowly sol in hot HNO3+Aq (Rousseau und All unc C R 116 144)

Iron (ferrous) borate chloride, (il (1) SB();  $I \in C1$ 

Slowly sol in hot  $HNO_3+\Lambda q$  (Roussein and All me, C R 116 (1195)

### Lanthanum borate, 21 1 O; B O;

(Nordenskjold, Pogg. 114 618)

 $I_{\perp}(B_4O)$  Ppt (Smith) Formula is  $I + B_0O_1 + vH O$  (Cleve, B) **11** 910)

Lead borate, basic,

 $2\text{PbO}, B_2O_3 + 2H_2O$ Ppt  $4PbO, 3B_2O_3+4H_2O$  Ppt

+5H<sub>2</sub>O Ppt Ppt

6PbO, 5B<sub>2</sub>O<sub>3</sub>+6H<sub>2</sub>O 8PbO, 3B<sub>2</sub>O<sub>3</sub>+8H<sub>2</sub>O Ppt

9PbO,  $5B_{2}O_{3}+9H_{2}O$ Ppt (Rose, ogg **87** 470 )

### Lead borate, Pb(BO<sub>2</sub>)<sub>2</sub>+H<sub>2</sub>O

Insol in H<sub>2</sub>O Easily sol in dil HN orboiling HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Decomp by I SO4. HCl, also by boiling KOH, or NaOH Aq Insol in alcohol (Herapath, Phil M (3)**34** 375)

Sol in NH<sub>4</sub>Cl+Aq, sol in sat NaCl 2PbO, 3B<sub>2</sub>O<sub>3</sub>+4H<sub>2</sub>O (Herapath) Aq'

PbB<sub>4</sub>O<sub>7</sub>+4H<sub>2</sub>O Slightly sol in pure I<sub>2</sub>O, but insol in solutions of Na salts as N<sub>1</sub> B<sub>4</sub>O<sub>7</sub> +Aq (Souberran)

Lead borate chloride, Pb(BO<sub>2</sub>)<sub>2</sub>, PbCl<sub>2</sub>- I<sub>2</sub>O Insol in cold, very slowly decomp 1 hot H<sub>2</sub>O into its constituents Easily sol i dil hot HNO3+Aq, insol in alcohol (Her bath. Phil Mag (3) **34** 375)

### Lead borate nitrate, Pb(BO), Pb(N<sub>3</sub>) + HO

Insol in alcohol (Herapath)

### Lithium borate, LiBO

Solubility in H O 100 g H<sub>2</sub>O dissolve g LiBO at t°

| t°            | g I 1B()                                               | t°             | g I           | () |
|---------------|--------------------------------------------------------|----------------|---------------|----|
| 0<br>10<br>20 | $\begin{array}{c} 0 \ 7 \\ 1 \ 4 \\ 2 \ 6 \end{array}$ | 30<br>40<br>45 | 4<br>11<br>20 | 2  |

(Le Chatcher, C R 1897, 124 109 )

(Fidminn C C L899, Insol in acctone II 1014, Naumann B 1904 37 4329 Insol in methyl actite (Numi i

1909, 42 3790)

Insol in ethyl act ite 1910, **43** 314) (Numu

+511() (Ic Chatcher Bull Soc 1599 (3) **21**  $\rightarrow 5$  )

+16H()Iffloresces in the in owly sol in cold IIO rapidly in hot IIO (1)Chatcher ( R 1897, **124** 1092)

I i H₃(BO₃) +14H O (Reischle / norg

4 166)  $\Pi(0)$  $I_1 B_i()$ Deliquescent cisily sol i

(Articidson A ch 10 S2) Sol in acctone (Lidmann C 1899,

II 1014) Insol in acctone (Naumann B 194, 37

4329) Insol in methyl icctite (Numin B

1909 42 3790) +5H() Insol in ilcohol (lu nger, Aich Ph (3) 8 195)

insol in alcohol (Filsinger)

L<sub>10</sub>O, 4B<sub>2</sub>O<sub>3</sub> Insol in H<sub>2</sub>O (Le Chatelier.

Bull Soc 1899, (3) 21 35) +10H<sub>2</sub>O

Sol in H<sub>2</sub>O, insol in alcohol (Filsinger) "Acid lithium borate" is less sol than the

tetraborate (Gmelin)

 $L_{12}O$ ,  $5B_2O_3+10HO$ (Dukelski, C A **1908** 1089

Magnesium borate,  $Mg(BO_2)_2$ 

(Ditte, C R 77 893)

+3HOMin Pinnoite

+4HO(Laurent, A ch (2) 67 215)

+8HOInsol in cold or hot H2O, easily sol in HCl+Aq Decomp by conc HCl sol in HCl+Aq Decomp +Aq into H<sub>3</sub>BO<sub>3</sub> and MgCl<sub>2</sub> (Wohler) MgB<sub>4</sub>O<sub>7</sub>+8H<sub>2</sub>O (Popp, A Suppl 8 1) (Rose, A 84 221)

Sol in 75 pts cold H<sub>2</sub>O (Rammelsberg,

Pogg 49 445)

2MgO, B<sub>2</sub>O<sub>3</sub> Insol in H<sub>2</sub>O, but sol in Na<sub>2</sub>CO<sub>3</sub>+Aq (Guertler, Z anorg 1904, 40 **23**6)

+HO Very sl sol in 1/10 N HCl+Aq (van t Hoff, B A B 1907, 658)

Min Ascharite

3MgO, B<sub>2</sub>O<sub>3</sub> Insol in H<sub>2</sub>O, easily sol in

acids (Ebelmen, A 80 208)

Very sl sol in cold, but somewhat decomp

by boiling H<sub>2</sub>O (Rammelsberg) Somewhat sol in cold H<sub>2</sub>O +9H O

(Wohler, Pogg 28 525)

 $HNO_3 + Aq$ 

3MgO,  $2B_2O_3$  Sol in warm  $H_9SO_4$  or  $NO_3+Aq$  (Ditte, C R 77 893) MgO,  $6BO_3+18H_2O=Mg(BO_2)_{2_2}$   $10HBO_2$ +13H O (Rammelsberg, Pogg 49 445) 3Mg(), 4B<sub>2</sub>O<sub>3</sub> Sol in hot dil acids, insol (Ditte, C R 77 893) in acetic acid

5 MgO,  $2 \text{B O}_{s} + 1 \frac{1}{2}$ , and  $3 \text{H}_{2} \text{O}$ Sz ibeliate Difficultly sol in HCl+Aq 9Mg(), BO<sub>3</sub> (Mallard, C R 105 260)

Magnesium manganous borate,  $3Mg_2B_2O_5$ , 4Mn B () +7H<sub>2</sub>()

Min Sussevite Sol in HCl+Aq

**Magnesium potassium borate,**  $KMg B_{11}O_{19}+$ 9H ()

Mm Kaliborile Insol in H O (Feit, Ch Z 1889, 13 1188) 2K O, 11B O<sub>3</sub>+20H O  $2M_{L}()$ (van't Hoff and Lichtenstein, B A B 1904, 936)

Magnesium sodium borate, Mg B<sub>6</sub>O<sub>11</sub>,  $N_1 B_4 O_7 + 30 H O$ 

Efflorescent About as sol in cold HO as borax solution separates out a Mg borate on warming, which redissolves on cooling Decomp by boiling H<sub>2</sub>() (Rammelsberg)

Magnesium strontium borate, 3MgO, 3SrO, 4B O<sub>4</sub>

Easily sol in dil icids (Ditte, C R 77 ১95)

L<sub>12</sub>O, 3B<sub>2</sub>O<sub>3</sub>+6H<sub>2</sub>O Very sol in H<sub>2</sub>O, Magnesium borate bromide, 2Mg<sub>2</sub>B<sub>8</sub>O<sub>15</sub>, MgBr<sub>2</sub> or 6MgO, 8B<sub>2</sub>O<sub>3</sub>, MgBr<sub>2</sub>

(Rousseau and Allaire, C R 1894, 119, 71)

Magnesium borate chloride, 2Mg<sub>3</sub>B<sub>8</sub>O<sub>15</sub>,  $MgCl_2$ 

Min Boracite Insol in H<sub>2</sub>O, slowly sol (Kraut) in acids Stassfurthite Easily sol in warm acids (Bischof)

Magnesium borate iodide, 6MgO, 8B<sub>2</sub>O<sub>3</sub>,

(Allaire, C R 1898, 127 556)

Magnesium borate phosphate, Mg(BO<sub>3</sub>)<sub>2</sub>, 2MgHPO<sub>4</sub>+7H O

Min Luneburgite

Magnesium borate sulphate,  $2Mg_3B_4O_9$ ,  $3MgSO_4+12H_2O$ 

Min Magnesium sulphoborite Sol in mineral acids when ground (Naupert, B 1893, 26 874)

Manganous borate, MnB<sub>4</sub>O<sub>7</sub> (?)

Insol in H<sub>2</sub>O (Berzelius), very sl sol in H<sub>2</sub>O (Γhomas, Am Ch J 4 358), decomp by warm, slowly by cold HO Sol in MgSO. +Aq (Berzelius)

+3H<sub>2</sub>O(Endemann and Paisley, Zeit

angew Ch 1903, 16 176)

 $+5H_{2}O$  $\mathbf{Ppt}$ (Endemann and Pa ala Very hydroscopic (Endemann, Ai J 1903, **29** 72)

3MnO, B<sub>2</sub>O<sub>3</sub> (Mallard, C R **105** 1260) Not attacked by H<sub>2</sub>O Very sol in acids (Ouvrard, C R 1900, 130 336)

3MnO, 2B<sub>2</sub>O<sub>3</sub> (Mallard)

Very sl sol in H O  $MnH_4(BO_3)$ 

Solubility in 2% Na SO<sub>4</sub>+Aq At 18 5°, 0 77 g MnH<sub>4</sub>(BO<sub>3</sub>)<sub>2</sub> are dissolved per litre, at 40°, 0 65 g, at 60°, 0 36 g, at 80°, 0 12 g Solubility in 2% NaCl+Aq 1 I solution

dissolves 1 31 g salt at 18 2°, 0 6 g at 59° and 0 29 g at 80° Solubility in 2% CaCl +Aq 11 CaCl +

Aq dissolves 291 g s alt at 176°, 244 g ut 430, 225 g at 61°, and 135 g ut 80° (Haitley and Ramage, Chem Soc 63 129)

Manganous borate bromide, 6MnO, 8BO<sub>3</sub>,

(Rousseau and Allaire, C R 1894, 119 73)

Manganous borate chloride, 6MnO, 8BO; MnCl

(Rousseau and Allane, C R 1894, 118 1257)

Molybdenum borate, MoO, 2B<sub>2</sub>O<sub>3</sub> (?)

Insol in H<sub>2</sub>O, sol in H<sub>3</sub>BO<sub>3</sub>+Aq (Berzelius)

## Molybdenum borate, Mo<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>

Precipitate Insol in H<sub>2</sub>O, sl sol in a solution of boric acid (Berzelius)

See Boromolybdic Acid

### Nickel borate, Ni(BO<sub>2</sub>)<sub>2</sub>+2H<sub>2</sub>O

Insol in H<sub>2</sub>O Easily sol in acids Easily sol in warm NH<sub>4</sub>Cl+Aq (Rose, Pogg 88 299)

 $2N_1O$ ,  $B_2O_3+xH_2O$  Easily sol in acids (Rose)

 $3N_1O$ ,  $2B_2O_8+5H_2O$  Easily sol in acids (Rose)

3N<sub>1</sub>O,B<sub>2</sub>O<sub>3</sub> Not attacked by H<sub>2</sub>O, sol in acids (Ouvrard, C R 1900, 130 337)

Nickel borate bromide, 6NiO, 8B2O3, NiBr2 (Rousseau, C R 1894, 119 73)

Nickel borate chloride, 6N<sub>1</sub>O,8B<sub>2</sub>O<sub>3</sub>,N<sub>1</sub>Cl<sub>2</sub> (Rousseau, C R 1894, 118 1257)

### Potassium borates

Solubility of B<sub>2</sub>O<sub>3</sub> in K<sub>2</sub>O+Aq at 30°

| Solution       | contains                                         | 2111                                                                                                                                          |
|----------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| o by wt K2O    | % by wt B2O3                                     | Solid phase                                                                                                                                   |
| 47 50<br>46 45 | 0 72                                             | KOH, 2H₂O                                                                                                                                     |
| 46 36          | 0 91                                             | h <sub>2</sub> O, B <sub>2</sub> O <sub>3</sub> , 2 5H <sub>2</sub> O                                                                         |
| 40 51<br>36 82 | 1 25<br>1 80                                     | "                                                                                                                                             |
| 36 72<br>32 74 | 1 85<br>3 51                                     | "                                                                                                                                             |
| 29 63<br>26 89 | $\begin{array}{c} 6 \ 98 \\ 12 \ 12 \end{array}$ | 44                                                                                                                                            |
| 24 84<br>23 30 | 17 63<br>18 19                                   | "<br>K₂O, 2B₂O₃, 4H₂O                                                                                                                         |
| 16 21<br>11 78 | 13 10<br>9 82                                    | "                                                                                                                                             |
| 9 18<br>6 22   | 8 00<br>9 13                                     | "                                                                                                                                             |
| 7 79<br>7 73   | 13 20<br>13 37                                   | " " " " " " " " " " " " " " " " " " "                                                                                                         |
|                | -, .,                                            | K <sub>2</sub> O, 2B <sub>2</sub> O <sub>3</sub> , 4H <sub>2</sub> O+<br>K <sub>2</sub> O, 5B <sub>2</sub> O <sub>3</sub> , 8H <sub>2</sub> O |
| 7 S1<br>7 67   | 13 28<br>13 19                                   | "                                                                                                                                             |
| 7 71<br>7 63   | 13 21<br>13 25                                   | К O, эв O , 8H O                                                                                                                              |
| 3 42<br>1 50   | 7 59<br>4 15                                     | •                                                                                                                                             |
| 0 S0<br>0 51   | 3 05<br>3 19                                     |                                                                                                                                               |
| 0 33           | 4 58                                             | KO, 5BO3, SHO+<br>B(OH)3                                                                                                                      |
| 0 35<br>0 31   | 4 51<br>4 46                                     | •                                                                                                                                             |
| 0 28           | 1 36<br>3 54                                     | B(OH);                                                                                                                                        |

At 30° only the three pot issum borstes K (), B<sub>2</sub>O<sub>3</sub>+2 5H (), K (), 2B O<sub>3</sub>+4H () and K (), 5B O<sub>3</sub>+8H () exist in stable form (Dukelski, Z. anorg 1906, **50**–42)

Potassium metaborate, KBO<sub>2</sub>

Sol in small amount of H<sub>2</sub>O (Ber shus, Pogg **34** 568) +1½H<sub>2</sub>O Only stabile hydrate ( ikel-

ski, Z anorg 1906, **50** 42) +1 $\frac{1}{2}$ H<sub>2</sub>O (Atterberg, Bull Soc ( ) **22** 350)

Potassium tetraborate, K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>

Very sol in  $H_2O$  +4 $H_2O$  (Atterberg, Bull Soc ( + 22 350)

Only stabile hydrate (Dukelski, l) +5 $H_2O$  Very sol in  $H_2O$ , more so than  $K_2B_6O_{10}$  or  $K_2B_{12}O_{19}$ 

+6H<sub>2</sub>O (Atterberg,  $l \epsilon$ )

Potassium hexaborate,  $K_2B_6O_{10}+5$ , and  $8H_2O$ 

Easily sol in  $H_2O$ Does not exist (Dukelski, l c)

Potassium dekaborate, K<sub>2</sub>B<sub>10</sub>O<sub>16</sub>+8H (
Sol in H<sub>2</sub>O (Rammelsberg)
Only hydrate (Dukelski)

Potassium dodekaborate, K<sub>2</sub>B<sub>12</sub>O<sub>19</sub>+10 <sub>2</sub>O Sl sol in cold, very sol in ho H (Laurent, A ch 67 215)

 $=K_2B_{10}O_{16}$  (Rammelsberg) Does not exist (Dukelski)

Potassium borate fluoride, KBO, KF Sol in H<sub>2</sub>O (Schiff and Sestim,

72)
KBO<sub>2</sub>, 2KI Sol in little, decoi p by much H<sub>2</sub>O Insol in H<sub>2</sub>O (Schiff i 1 Sestim, A **228** 72)

228

Rubidium borate, Rb B<sub>4</sub>O<sub>7</sub>

Anhydrous (Reischle, Z. anoig 4 bb.) +6H2O Not deliquescent or effloscent Sol in H.O. (Reissig, A. 127 33)

Samarium borate, SmBO;

Insol in H<sub>2</sub>O, sol in HCl+Aq  $\sim$  leve, Bull Soc (2) **43** 1670)

Scandium borate, School

Sol in dil acids (Crookes Phil Trans 1910, **210** A 364)

Silver borate, AgBO

SI sol in H<sub>2</sub>O. By wishing with <sup>1</sup> O the boric reid is dissolved out (Rose harm Centralbl **1853** 205)

Sol with decomp in N i S O + V (Herschel), sol in NH<sub>4</sub>NO<sub>3</sub>+Aq if pptd old 1 l H<sub>2</sub>O dissolves ca 6 x 10<sup>-</sup> gr u stoms

1 l H<sub>2</sub>O dissolves ca 6 x 10<sup>-</sup> gr u stoms at 25° (Abegg and Cox, Z phys C 1903, **46** 11)

Insol in othyl acetate (Naum in, B 1910, **43** 314)

 $3 \text{ Ag } (), 4 \text{B}_2 ()_3 \quad (\text{Rose}, l \cdot \epsilon)$ 

### Sodium borates

Solubility of B<sub>2</sub>O<sub>8</sub> in Na<sub>2</sub>O+Aq at 30°

|                              | contains                                             |                                                                                                                                               |
|------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| % by wt<br>Na <sub>2</sub> O | % by wt<br>BOs                                       | Solid phase                                                                                                                                   |
| 42 00                        |                                                      | NoOH HO                                                                                                                                       |
| 40 85                        | 2 71                                                 | NaOH, H <sub>2</sub> O                                                                                                                        |
| 41 37                        | 5 10                                                 | "                                                                                                                                             |
| 38 85                        | 5 10                                                 | 1 '' 1                                                                                                                                        |
| 34 44                        | 0 20                                                 | Na <sub>2</sub> O, B <sub>2</sub> O <sub>3</sub> , 4H <sub>2</sub> O                                                                          |
|                              | 3 73                                                 |                                                                                                                                               |
| 29 39                        | 2 51                                                 | "                                                                                                                                             |
| 28 61                        | 5 55<br>3 73<br>2 51<br>2 38<br>2 44<br>2 75<br>2 98 | 1                                                                                                                                             |
| 27 78                        | 2 44                                                 | "                                                                                                                                             |
| 26 13                        | 2 75                                                 | "                                                                                                                                             |
| <b>25 08</b>                 | 2 98                                                 | "                                                                                                                                             |
| 23 00                        | 3 82                                                 | 46                                                                                                                                            |
| 16 61                        | 13 69                                                | 46                                                                                                                                            |
| 21 58                        | 4 63                                                 | Na <sub>0</sub> O <sub>2</sub> B <sub>0</sub> O <sub>2</sub> 4H <sub>0</sub> O <sub>+</sub>                                                   |
|                              |                                                      | Na <sub>2</sub> O, B <sub>2</sub> O <sub>3</sub> , 4H <sub>2</sub> O+<br>Na <sub>2</sub> O, B <sub>2</sub> O <sub>3</sub> , 8H <sub>2</sub> O |
| 20 58                        | 4 69                                                 | Na <sub>2</sub> O, B <sub>2</sub> O <sub>3</sub> , 8H <sub>2</sub> O                                                                          |
| 18 31                        | 4 97                                                 | 14a2O, D2O8, 6112O                                                                                                                            |
| 15 32                        | 6 21                                                 | - "                                                                                                                                           |
| 13 25                        |                                                      | 46                                                                                                                                            |
|                              | 8 18                                                 | "                                                                                                                                             |
| 12 39                        | 9 12                                                 | 1                                                                                                                                             |
| 8 85                         | 10 49                                                | $Na_2O, 2B_2O_3, 10H_2O$                                                                                                                      |
| 5 81                         | 6 94                                                 | · ·                                                                                                                                           |
| 4 00                         | 4 76                                                 | 41                                                                                                                                            |
| 1 88                         | 2 41                                                 | 61                                                                                                                                            |
| 1 38                         | 5 16                                                 | 46                                                                                                                                            |
| 184                          | 7 36                                                 | "                                                                                                                                             |
| $2 \ 02$                     | 7 79                                                 | "                                                                                                                                             |
| 2 40                         | 9 48                                                 | "                                                                                                                                             |
| 4 08                         | 17 20                                                | Na <sub>2</sub> O, 2B <sub>2</sub> O <sub>3</sub> , 10H <sub>2</sub> O                                                                        |
|                              | 1 -:                                                 | $+\mathrm{Na}_{\circ}\mathrm{O}_{2}$ 5B <sub>2</sub> O <sub>3</sub> ,                                                                         |
|                              |                                                      | 10H <sub>2</sub> O                                                                                                                            |
| 3 79                         | 15 84                                                | Na <sub>2</sub> O, 5B <sub>2</sub> O <sub>3</sub> , 10H <sub>2</sub> O                                                                        |
| 3 79<br>3 <b>4</b> 7         | 13 30                                                | 11020, 01208, 101120                                                                                                                          |
| 2 26                         | 12 14                                                |                                                                                                                                               |
|                              |                                                      | No O ED O 10TT O                                                                                                                              |
| 1 99                         | 11 84                                                | Na <sub>2</sub> O, 5B O <sub>3</sub> , 10H <sub>2</sub> O                                                                                     |
| 1 00                         | 11.50                                                | $+B(OH)_3$                                                                                                                                    |
| 1 86                         | 11 78                                                | B(OH) <sub>3</sub>                                                                                                                            |
| 1 81                         | 11 18                                                | "                                                                                                                                             |
| 0 64                         | 6 11                                                 |                                                                                                                                               |
| •                            | 3 54                                                 | "                                                                                                                                             |
|                              | <u>.                                    </u>         |                                                                                                                                               |

At 30°, only the four sodium borates Na<sub>2</sub>O,  $B O_3 + 4H_2O$ ,  $Na_2O$ ,  $B_2O_3 + 8H$  O,  $Na_2O$ ,  $2B_2O_3 + 10H$  O, and Na O,  $5B_2O_3 + 10H_2O$ exist as stable phases

(Dukelski, Z anorg 1906, 50 46)

### Sodium metaborate, NiBO

Anhydrous I usily sol in HO, with evolution of heat

+H<sub>2</sub>O Easily sol in H () (Benedikt) Lasily sol in H<sub>2</sub>O (Benedikt, +2H₂O B 7 703)

Easily sol in HO (Berzelius) +3H<sub>2</sub>OSl efflorescent Sol in hot, less +4H<sub>2</sub>Osol in cold H<sub>2</sub>O Melts at 57° in its crystal H<sub>2</sub>O (Dukelski, Z anorg 50 42)

 $+4\frac{1}{2}H_{2}O$ (Atterberg, Z anorg 1906, 48 370)

 $+5\frac{1}{2}H_2O$ (Atterberg) +8H<sub>2</sub>O(Atterberg)

+4H<sub>2</sub>O and +8H<sub>2</sub>O are the only hydrates formed (Dukelski)

System Na<sub>2</sub>O, B<sub>2</sub>O<sub>3</sub>, H<sub>2</sub>O at 60° investigated by Sborgi (Real Ac Linc 1915, (5) **24** I, 443)

### Sodium tetraborate, Na B<sub>4</sub>O<sub>7</sub> (Borax)

100 g H<sub>2</sub>O dissolve at ° 10° 21 5° 30° 37 5°

1 3 1 6 2 8 3 9 5 6 g anhydrous salt

45° 50° 54° 55° 56° 57°

8 1 10 5 13 3 14 2 15 0 16 0 g anhydrous salt

(Horn and van Wagener, Am Ch J 1903, 30 347)

Insol in ethyl acetate (Naumann, B 1910, 43 314)

Sol in amyl alcohol in the presence of metaarsenious acid and excess of H<sub>2</sub>BO<sub>3</sub> (Auerbach, Z anorg 1903, 37 358)

+4H<sub>2</sub>O $+5H_2O$ 

100 g H<sub>2</sub>O dissolve at

65° 70° 80° 90° 100°

22 0 24 4 31 4 40 8 52 3 g anhydrous salt

(Horn and van Wagener, Am Ch J 1903, 30 347)

 $+6H_2O$ Grows opaque in the au (Bechi,

Sill Am J (2) **17** 129 ) +10H<sub>2</sub>O Only stabi Only stabile hydrate (Dukelski, Z anorg 50 30) Efflorescent on surface in dry air Not efflorescent when free from Na<sub>2</sub>CO<sub>3</sub> (Sims)

Sol in 12 pts cold and 2 pts hot  $\rm H_2O$  Sat cold Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>+Aq contains 9 23% and sat hot Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>+Aq contains 33 33% Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> (Gmelin) Sol in 20 pts cold and 6 pts boiling H O (Wal

lerius) Sol in 15 pts H O at 18 70 (Abl)

100 pts H<sub>2</sub>O at 1.0 5° dissolve 5 pts at 60° 40 pts
at 100° 166 pts Na<sub>2</sub>B<sub>2</sub>O<sub>7</sub>+10H O (Ure s Dictionary )

100 pts sat Na<sub>2</sub>B<sub>3</sub>O<sub>7</sub>+Aq at 105 5° contain 22 5 pts
Na<sub>2</sub>B<sub>3</sub>O<sub>7</sub> or 100 pts H<sub>3</sub>O dissolve 110 54 pts Na B<sub>4</sub>O<sub>7</sub>
or 1 pt Na<sub>2</sub>B<sub>3</sub>O<sub>7</sub> is sol in 0 9047 pt H O at 105 5°
(Griffith Quar J Sci 18 90)

### Solubility in 100 pts H O at to

| t                               | Pts<br>Na B <sub>4</sub> O <sub>7</sub>       | Pts<br>Na <sub>2</sub> B <sub>4</sub> ()<br>+10H () | t                           | Pts<br>Na B4O                             | Pts<br>N 1 B4O7<br>+10H O                   |
|---------------------------------|-----------------------------------------------|-----------------------------------------------------|-----------------------------|-------------------------------------------|---------------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>50 | 1 49<br>2 42<br>4 05<br>6 00<br>8 79<br>12 93 | 2 83<br>4 65<br>7 88<br>11 90<br>17 90<br>27 41     | 60<br>70<br>80<br>90<br>100 | 18 09<br>24 22<br>31 17<br>40 14<br>55 16 | 40 43<br>57 85<br>76 19<br>116 66<br>201 43 |

(Poggiale, A (h (3) 8 46)

100 pts H O dissolve 1.4 pts Na  $B_4O_7$  at 0°, and 55.3 pts at 100° (Mulder)

Na  $B_4O_7 + Aq$  sat at 15° has sp gi = 10199, and contains 3926 pts Na B<sub>4</sub>O<sub>7</sub> to 100 pts H<sub>2</sub>O (Michel and Krafft, A ch (3) **41** 471)

 $Na_2B_4O_7+Aq$  sat at 17° has sp gr = (Stolba, J pr 97 503)

Sp gr of Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>+Aq at 15°

| %<br>Na <sub>2</sub> B <sub>4</sub> O | N 12B4O7<br>+10H2O | Sp gr  | % Na B407 | %<br>Na B₄O <sub>7</sub><br>+10H₂O | Sp gr  |
|---------------------------------------|--------------------|--------|-----------|------------------------------------|--------|
| 1                                     | 0 52               | 1 0049 | 4         | 2 11                               | 1 0199 |
| 2                                     | 1 06               | 1 0099 | 5         | 2 64                               | 1 0249 |
| 3                                     | 1 59               | 1 0149 | 6         | 3 17                               | 1 0299 |

(Gerlach, Z anal 28 473)

Sp gr of  $Na_2B_4O_7 + Aq$  sat at  $15^\circ = 1032$ (Gerlach)

Sat Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>+Aq boils at 105 5°, and contains 1105 pts  $Na_2B_4O_7$  to 100 pts  $H_2O$ (Griffith)

Sat Na B<sub>4</sub>O<sub>7</sub>+Aq forms a crust at 103° and contains 60 14 pts Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> to 100 pts H<sub>2</sub>O, highest temp observed, 104 3° (Gerlach, Z anal 26 427)

B-pt of Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>+Aq containing pts  $Na_2B_4O_7$  to 100 pts  $H_2O$ 

| B pt   | Pts<br>Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> | B pt   | Pts<br>Na <sub>2</sub> B <sub>4</sub> O |
|--------|------------------------------------------------------|--------|-----------------------------------------|
| 100 5° | 8 64                                                 | 103 0° | 61 2                                    |
| 101 0  | 17 2                                                 | 103 5  | 75 4                                    |
| 101 5  | 26 5                                                 | 104 0  | 90 8                                    |
| 102 0  | 37 5                                                 | 104 5  | 109 0                                   |
| 102 5  | 48 5                                                 | 104 6  | 112 3                                   |

(Gerlach, Z anal 26 452)

M-pt of Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>+10H O is 75 5° (Tılden, Chem Soc 45 407)

Insol in alcohol 100~g alcohol (0 941 sp  $~\rm gr$  ) dissolve 2 48 g at 15 5° (U S P)

Sol in alcoholic solution of NiC HiO (Stromeyer)

Sol in 14.7 pts glyceine of 1.225 sp. gr (Vogel)

Sol in 1 pt glyceine (Schultze, Arch Pharm (3) 6 149)

100 g glycerine dissolve 60 3 g at 15.5°  $(U > \ddot{P})$ 

Min Tincal

### Sodium borate, $Na_2B_8O_{11}+10H$ ()

Sol in 5-6 pts cold H O (Bolley A 68 122) Perhaps sodium hydrogen tetraborate N 1HB4O, +41/2H O

 $N_1 B_{10}O_{16} + 10H O$ Decomp by H O (Atterberg, Z morg 48 370)

>t ibile

(Dukelski, Z. morg. 50 42)  $+11H_2O$  (I unent, C R 29 5)

Sodium borate fluoride, NiBO 3N il + 4H O

Sol in H<sub>2</sub>O

Businow (B 7 112) considers this salt to | Tin (stannous) borate (?) be a mixture

 $Na_2B_4O_7$ , 12NaF+22HOCan t separated into its constituents by H<sub>2</sub>O (Berzelius, Beiz J B 23 96)

Strontium borate, Sr(BO<sub>2</sub>)<sub>2</sub>

(Ditte, C R 77 788) Easily hydrated by H<sub>2</sub>O forming Srt 2H<sub>2</sub>O Very sol in dil acetic acid  $B_2O_3$  $+2\mathrm{H}_2\mathrm{O}$ (Ouvrard, C R 1906, 142 282) Insol in acetone (Naumann, B 1 4, 37

4329  $+2H_2O$ (Ouvrard, l c)

(Ouvrard, l c) +4H<sub>2</sub>O1 l H<sub>2</sub>O dissolves 2 3 g  $+5\mathrm{H}_{2}\mathrm{O}$ t 10°

(Ditte, A ch 1883 (5) 30 253) Insol in H<sub>2</sub>O, sol in dil  $SrB_4O_7$ (Guertler, Z anorg, 1904, 40 243)

+4H<sub>2</sub>O Sol in 130 pts boiling H<sub>2</sub>O 100 pts H<sub>2</sub>O at 100° dissolve 7 7 pts (Ure's Dict) Easily sol in cold NH<sub>4</sub> salts+Aq, sol n cold HNO<sub>8</sub>+Aq

acids

2SrO,B<sub>2</sub>O<sub>3</sub> Easily decomp by H<sub>2</sub> forming B<sub>2</sub>O<sub>3</sub>, SrO, 4H<sub>2</sub>O Very s (Ouvrard, C R 1906, **142** 282) Very sol 11 acids

3SrO, B<sub>2</sub>O<sub>3</sub> Less easily attacked v H<sub>2</sub>O than Ca comp Very sol in minera acids SI attacked by dil acetic acid vrard, C R 1901, 132 258)

Very sl sol in H2O, sol  $SrB_6O_{10}$ acids

(Laurent)  $SrB_8O_{31} + 7HO$  Ppt (Laurent) +12H<sub>2</sub>O (Ditte)

Sr<sub>3</sub>B<sub>4</sub>O<sub>9</sub> Sol in cold mineral ac is and (Ditte, C R 77 785) acetic acid

2SrO, 3B O<sub>3</sub> Easily sol in acids (Ditte. l c)

Strontium borate bromide, 3510. 5B<sub>2</sub>O<sub>3</sub>, SrBi

As the chloride (Ouvrud, C 1 1906. **142** 283)

Strontium borate chloride, 351(), 5B ()<sub>4</sub>, SrCl

SI attacked by cold H O not att ked by dilute acetic acid (Ouvraid, CR 1 % 142 282)

### Thallous borate, IIB() + I II ()

Decomposing the in (Buchtala J., 1913) (2) **88 754**)

 $\Pi B O$ (Buchtili)

Ppt Sol in boiling H  $HB_4O_7$ in cold dil HSO<sub>1</sub>+Aq (Crookes)

(Buchtali J pr 191 +2H () (2) 88 774)

 $H B_t O_{10} + 3H O$ (Buchtala)

H B<sub>8</sub>O<sub>13</sub>+4H O (Bucht di)

 $\Pi B_{10}O_{10} + S\Pi O$ (Buchtili)  $H B_1 O_D + 7H O$ (Buchtala)

### Thorium borate (?)

Precipit ite Insol in HO and  $I_3BO_3+$ Aq (Berzehus)

Ppt (Wenzel)

### Divanadyl borate

Insol in H<sub>2</sub>O, sol in H<sub>3</sub>BO<sub>3</sub>+Aq (Berzelius)

### Ytterbium borate, YbBO<sub>3</sub>

Insol in conc HCl, sol in HF  $\,$  (Cleve, Z anorg 1902,  $\pmb{32}$  148 )

### Yttrium borate

Precipitate (Berlin, Pogg 43 105)

## Zinc borate, 3ZnO, 2B<sub>2</sub>O<sub>3</sub>

(Mallard, C R 105 1260)

Decomp by H<sub>2</sub>O, very sol in dil acids (Ouvrard, C R 1900, 130 336)

ZnO, 2B<sub>2</sub>O<sub>3</sub>+4H<sub>2</sub>O Sol in H<sub>2</sub>O with decomp (Ditte, A ch 1883, (5) 30 256)

3ZnO, 4B<sub>2</sub>O<sub>3</sub>+H<sub>2</sub>O Ppt (Holdermann,

Arch Pharm 1904, 242 567)

ZnO,  $4B_2O_3+10H_2O$  (Ditte, A ch 1883, (5) **30** 256) 9ZnO, 4B<sub>2</sub>O<sub>3</sub>+9H<sub>2</sub>O SI +Aq (Rose, Pogg **88** 299) Sl sol m H<sub>3</sub>BO<sub>3</sub>

 $3Z_{nO}$ ,  $B_{2}O_{3}$  Insol in mineral acids Chatelier, C R 113 1034)

Zinc borate ammonia, ZnB<sub>4</sub>O<sub>7</sub>, 4NH<sub>3</sub>+6H<sub>2</sub>O Easily sol in NH<sub>4</sub>OH, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, H<sub>2</sub>SO<sub>4</sub>, HCl, and HNO<sub>3</sub>+Aq (Buchner, A 151) 234)

Zinc borate bromide, 6ZnO, 8B<sub>2</sub>O<sub>3</sub>, ZnBr<sub>2</sub> (Rousseau and Allaire, C R 116 1446)

Zinc borate chloride, 6ZnO.8B<sub>2</sub>O<sub>3</sub>,ZnCl<sub>2</sub> Insol in HCl (Rousseau, C R 1894, 118 1256)

Zinc borate iodide, 6ZnO, 8B2O3, ZnI2 (Allaire, C R 1898, 127 556)

Zirconium borate, (?)

Insol in H<sub>2</sub>O

Perboric acid See Perboric Acid

Boric phosphoric acid

See Phosphoboric acid

Boric tungstic acid See Borotungstic acid

Boric acid sulphur trioxide See Borosulphuric acid

### Borimide, B (NH);

Decomp by H<sub>2</sub>O, insol in all indifferent solvents, sol in liquid NH3+S to form a dark blue solution (Stock, B 1901, **34** 3044)

## Borimide hydrochloride, B<sub>2</sub>(NH)<sub>3</sub>,3HCl

Decomp by H<sub>2</sub>O, insol in all ordinary organic solvents (Stock, B 1901, **34** 3045)

## Borofluorhydric acid, HBF4

See Fluoboric acid

### **Roroffuorides**

See Fluoborides

### Boromolybdic acid

Sol in H<sub>2</sub>O Decomp by alcohol (Berzelius )

### Boron, B

(a) Amorphous Somewhat sol in pure H<sub>2</sub>O, when not ignited Salts and acids separate it out of aqueous solution Upon evaporation of H2O solution a crust is formed, which is only partially sol in  $H_2O$  (Berzelius, Pogg 2 113) Decomp by hot  $H_2SO_4$ and cold moderately conc HNO<sub>3</sub>+Aq Strongly ignited amorphous B is much less easily attacked by reagents than freshly pptd , and is insol in  $\rm H_2O$  (Berzelius) Insol in caustic alkalies+Aq, also in alcohol and ether

Above boron was very impure (Moissan,

C R 114 392) Pure B is not attacked by acids, but has a strong reducing action on kMnO<sub>4</sub>+Aq, FeCl<sub>3</sub>

+Aq, etc (Moissan, C R 114 617)

Does not melt at 1500° Readily sol in conc acids, as H<sub>2</sub>SO<sub>4</sub>, HNO<sub>8</sub>, H<sub>3</sub>PO<sub>4</sub>, very sl sol in hydracids, decomp H<sub>2</sub>O at ied heat (Moissan, A ch 1895, (7) 6 313-14)
Insol in liquid NH<sub>3</sub> (Gorc

1898, **20** 827)
(b) Crystallized 1 Insol in  $\square_2 \cup$ , KOH+Aq Very slightly and slowly a by boiling cone  $H_2SO_4$  Gradually so cone  $HNO_3$  Formula is  $Al_2B_{24}$  (1 Formula is Al<sub>2</sub>B<sub>24</sub> (Hampe, A **183** 75)

2 Very slightly attacked by cone HCl or H<sub>2</sub>SO<sub>4</sub>, slowly but completely sol in conc HNO<sub>3</sub>, insol in NOH+Aq Formula is Formula is  $C_2Al_3B_{48}$  (Hampe)

C2Al3B44 (rystalline Insol in a solution of CrO; in H SO4 Insol in hot conc HCl and H SO4 Sol in hot conc HNO3 (Biltz, B 1910, 43 303)

### Boron tribromide, BBi;

in HO or alcohol with decomp (Nickles, C R 60 800)

### Boron phosphorus bromide, BBis, PBi

Decomp by H₂O

Sol in CS, and CHCl; Decomp by ilcohol, ether, etc (Luible, C R 116 1521) BBr<sub>3</sub>, PBi SI sol in cold, casily in hot (Turible)

### Boron bromide ammonia, BBi , 4NH;

Decomp by H<sub>2</sub>O and alkalies (Besson, C R 114 542)

Boron bromide phosphine, BBi , PH, Violently decomp by H<sub>2</sub>O (Besson, C R **113** 78)

Boron bromide phosphorus trichloride, 2BBr<sub>3</sub>,PCl<sub>3</sub>

Decomp by H<sub>0</sub>O Sol in BBr<sub>3</sub>, PCl<sub>3</sub>, CS<sub>2</sub>, and CHCl<sub>3</sub> Insol in petroleum ether (Tarible, C R 1901, 132 84)

Boron bromide phosphorus pentachloride, 2BBr<sub>3</sub>,PCl<sub>5</sub>

Sol in BBr<sub>3</sub> and CS<sub>2</sub>, decomp by H<sub>2</sub>O, insol in light petroleum (Tarible, C R 1901, **132** 85)

Boron bromide phosphorus duodide, 2BBr<sub>3</sub>,

Sol in BBr<sub>3</sub>, CS<sub>2</sub>, CHCl<sub>3</sub>, insol in light petroleum, decomp by  $\rm H_2O$  (Tarible, C R 1901, 132 205)

Boron bromide phosphoryl chloride, BBr<sub>3</sub>, POCI:

Very easily decomp (Oddo and Tealdi, Gazz ch it 1903, 33 (2) 431)

Boron bromoiodide, BBr<sub>2</sub>I

Decomp violently by H<sub>2</sub>O (Besson, C R **112** 100 )

BB1I (Besson, C R 112 100)

Boron bromosulphide, B<sub>2</sub>S<sub>3</sub>,BBr<sub>3</sub>

Decomp by H<sub>2</sub>O (Stock, B 1901, 34 3040)

Boron carbide, B<sub>6</sub>C

Very stable, insol in HF and in HNO3, sol in KOH at red heat (Moissan, Bull Soc 1594, (3) 11 1101)

Insol in acids, sol in fused alkili (Mois-

san, CR 1894, 118 559)
BC on BC Insol in all the usual solvents (Mullhauser, Z anoig 5 92)

Boron trichloride, BCl3

Rapidly absorbed by H O and alcohol with decomposition

Boron nitrosyl chloride, BCl, NOCl

Decomp violently by HO (Geuther, J pr (2) 8 554)

Boron phosphoryl chloride, BCl, POCl,

Decomp immediately by HO (Gustavson, Zeit Chem 1870 521)

Boron chloride ammonia, 2BCl3, 3NH3

Decomp by H2O (Berzehus, Pogg 2 147)

Boron chloride phosphine, BCl<sub>3</sub>, PH<sub>3</sub>

Decomp by HO (Besson, C R 110 516)

Boron chlorosulphide, B<sub>2</sub>S<sub>1</sub>,BCl<sub>3</sub>

(Stock B 1901, 34 Decomp by HO 3040)

Boron traffuoride, Bb.

H () theorbs 700 vols BF, gas to form 1 sin)

liquid of 1 77 sp gr On boiling, 1/5 of t BF<sub>3</sub> is given off, and a residue boiling at 16 200° with composition BF<sub>3</sub>+2H<sub>2</sub>O or H 3HF, is left (J Davy, A ch 86 178  $O_2+$ 

1 ccm H<sub>2</sub>O absorbs at 0° and 762 mn pressure 1 057 ccm BF<sub>3</sub>

1 vol conc H<sub>2</sub>SO<sub>4</sub> of 185 sp gr 8 sorbs 50 vols BF<sub>3</sub>

Absorbed by alcohol with decomp Cold oil of turpentine absorbs 6  $BF_3$ 

Boron fluoride ammonia, BF<sub>3</sub>,NH<sub>3</sub>, BF<sub>3</sub>, 2NH<sub>8</sub>, and BF<sub>3</sub>, 3NH<sub>3</sub>

Decomp by H<sub>2</sub>O

Boron fluoride cyanhydric acid, BF3, F N Very unstable (Patein, C R 113

Boron fluoride phosphine, 2BF<sub>3</sub>, PH<sub>3</sub>

Very unstable at ordinary temp D omp by H<sub>2</sub>O (Besson, C R **110** 80)

Boron hydride, BH3

Not obtained free from H Sl sol 1 H<sub>2</sub>O (Jones, Chem Soc 35 41)

See Cyclotriborene

B<sub>4</sub>H<sub>10</sub> B -pt 16-17° at 760 mm Very unstable Takes fire spontar ously

in the air Decomp by H<sub>2</sub>O, dil HCl, and o dized by conc HNO3 with explosive violence

Absorbed by NaOH+AqDecomp by alcohol Sol in dry b izene

(Stock, B 1912, 45 3562)  $B_0H_{12}$  B-pt 100° at atmospheric pi ssure
Decomp by  $H_2O$  With aqueous z alies,

alies, hydrogen is evolved (Stock, B 19 ), 45 3565)

B<sub>8</sub>H Insol m HCl Sol in aquate B<sub>1</sub> +Aq (Winkler, B 1890, **23** 778 B<sub>10</sub>H<sub>14</sub> M -pt 99 5°, not attacked a and

/ cold or boiling HO Sol in dil NaO +AqSol in ilcohol, ether, benzene, in CS (Stock, B 1913, 46 3360)

Boron iodide, Bl3

Very hygroscopic, and instantly oby  $H_2O$  or alcohol. Very sol in CSomp, CCL C<sub>1</sub>H<sub>6</sub> less sol in PCl<sub>3</sub>, AsCl<sub>3</sub>, and many organic liquids (Moissan C great 112 717)

Boron iodide ammonia, BI, 5NH,

Decomp by HO (Besson, C 114 p42)

Boron iodophosphide, Bl P

Very hygroscopic, decomp by H ( Not attacked by cold cone H SO<sub>4</sub>, even if ming, but on heating decomposition take place Very sl sol in CS<sub>2</sub> Insol in benzen PCl<sub>3</sub>, or CCl<sub>4</sub> (Moissan, C R 113 624) but

Mois-

Less hygroscopic than BI otherwise the properties are similar

### Boron nitride, BN

Insol in H2O, conc HNO3, conc HCl+ Aq, or conc solutions of alkalies Decomp by hot conc H<sub>2</sub>SO<sub>4</sub> or HF (Wohler, A 74 70)

"

Boron trioxide, B<sub>2</sub>O<sub>3</sub>

Deliquescent Sol in H2O with a large increase in temp (Ditte, C R 85 1069)

1 pt dissolves-

18 75° m 47 01 pts H<sub>2</sub>O 25° " 27 75 " "O **~** 27 75 44 37 5° " 18 73 " " 50° " 15 13 " " 9 29 " 62 5° " 46 75° " 7 28 " ..

" 87 5° 66 5 58 " " 100° 474

Or 100 pts H<sub>2</sub>O dissolve—

18 75° 2 13 pts B<sub>2</sub>O<sub>3</sub> 25° 3 60 " • 37 5° 4 24 50° " 6 61 " 62 5° 10 76 " 75° " " 13 73 ' 87 5° 17 92 " " " 100° 21 09 "

(Brandes and Firnhaber, Arch Pharm 7 50)

1 litre H<sub>2</sub>O dissolves-

11 00 g B<sub>2</sub>O<sub>3</sub> 16 50 " "" 0° 12° " 20° 22 49 " 40° 39 50 " 62° 64 50 " 80° 95 00 " " 102° 164 50 " (Ditte, C R 85 1069)

Sat HO solution boils at 100° (Brandes and Funhaber)

Sat HO solution boils at 103 3° (Grif-

fiths, Quar J Sci 18 90)

Sol in acetic acid, hot conc HCl+Aq, HNO<sub>3</sub>, and H SO<sub>4</sub> From the three latter it separates on cooling or dilution with HO

Solubility in Na<sub>2</sub>O+Ag at 30 See Borates, sodium

Solubility in K<sub>2</sub>O+Aq at 30°

See Borates, potassium

(Holt, Insol in hot glacial acetic acid Chem Soc 1911, 100 (2) 720)

Insol in ilcohol (Graham)

Sol in alcohol (Berzelius, Ebelmen) Sol in oils

See also Boric acid

Boron trioxide potassium fluoride,  $B_2O_3$ , 2KF Gradually sol in H<sub>2</sub>O Decomp by much H<sub>2</sub>O Insol in alcohol (Schiff and Sestim, A 228 82)

Boron oxychloride, BOCl

(Gustavson, Zeit Chem 1870 521) BOCl<sub>3</sub> Slowly decomp by H<sub>2</sub>O (Councler, J pr (2) 18 399)

Oxychlorides of either the above formulæ do not exist, the true formula for boron oxychloride is B<sub>8</sub>O<sub>11</sub>Cl<sub>2</sub> (Lorenz, A 247 226)

Boron phosphide, BP

Insol in H<sub>2</sub>O Sol in conc boiling alkalies +Aq with decomp Decomp by HNO3+Aq (Besson, C R 113 78)

Insol in PCl<sub>3</sub>, AsCl<sub>3</sub>, SbCl<sub>3</sub>, CCl<sub>4</sub>, and in

fact in all known solvents

Not attacked by boiling H<sub>2</sub>O, conc HCl, or HI+Aq Sol in conc HNO, with decomp on heating Not attacked by cold H2SO4 (Moissan, C R 113 726)

B<sub>6</sub>P<sub>3</sub> Not attacked by boiling conc HNO<sub>3</sub>

+AqInsol in all solvents (Moissan)

Boron phosphoiodide

See Boron 10dophosphide

Boron selenide, B<sub>2</sub>Se<sub>3</sub>

Violently decomp by H<sub>2</sub>O (Sabatier, C R 112 1000)

Boron trisulphide, B2S3

Decomp with violence with H<sub>2</sub>O Combines with alcohol and ether (Fremy, A. ch. (3) 38 312)

Insol in most solvents, but sl sol in PCl<sub>3</sub> without decomp, more sol in SCl2, but does not crystallize from the solution (Moissan, C R 115 203)

Boron trisulphide ammonia, B<sub>2</sub>S<sub>3</sub>,6NH<sub>3</sub>

Ppt (Stock, B 1901, 34 3042)

Boron pentasulphide, B<sub>2</sub>S<sub>5</sub>

Decomp by H<sub>2</sub>O and alcohol (Moissan, C R 115 271)

Borosulphuric acid, BOHSO<sub>4</sub>+SO<sub>3</sub>

Decomp by HO (Schultz-Sellac, B 4 12)

B(HSO<sub>4</sub>)<sub>3</sub> Very deliquescent Easily sol in fuming H<sub>2</sub>SO<sub>4</sub> (D'Arcy, Chem Soc 55 155)

SO<sub>2</sub>(O BO)<sub>2</sub> Hydroscopic Deliquescent Sol in HO with decomp Decomp by cold alcohols (Pictet, Bull Soc 1908, (4) 3 1121)

(SO<sub>3</sub>)<sub>2</sub>B<sub>2</sub>O<sub>3</sub> Hydroscopic Deliquescent Sol in H<sub>2</sub>O with decomp Decomp by cold alcohols (Pictet, Bull Soc 1908, (4) 3 1121)

Boronootungstic acid,  $H_4B_2W_9O_3$   $22H_2O = 9WO_3$ ,  $B_2O_3$ ,  $2H_2O + 22H_2O$  $H_4B_2W_9O_{32} +$ 

Sol in less than 1/9 pt H<sub>2</sub>O, and as easily sol in alcohol and ether Sp gr of aqueous solution is somewhat under 3 (Klein, A ch (5) **28** 370)

Aluminum borononotungstate, Al<sub>4</sub>(B<sub>2</sub>W<sub>9</sub>O<sub>32</sub>)<sub>3</sub> +65H<sub>2</sub>O

Extremely sol in H<sub>2</sub>O (Klein)

Ammonium —,  $(NH_4)_4B_9W_9O_8 + 18H_2O$ Quickly effloresces (Klein)

Barium borononotungstate, Ba<sub>2</sub>B<sub>2</sub>W<sub>9</sub>O<sub>32</sub>+

Sol in 4 pts cold, and less than  $\frac{1}{2}$  pt hot  $H_2O$  (Klein)

Cadmium —,  $Cd_2B_2W_9O_{32}+18H_2O$ 

Deliquescent

100 pts of salt dissolve in less than 8 pts  $\rm H_2O$  at 19° Sp gr of solution is 328 (Klein )

Sp gr of sat solution at 15 6°/4° = 3 2887, at 16 2°/4° = 3 2868 (Kahlbaum, Z anorg 1902, **29** 229)

Calcium —,  $Ca_2B_2W_9O_3 + 15H_2O$ Sol in  $^1/_{10}$  pt  $H_2O$  Solution has sp gr = 3 10 (Klein)

Cerum —,  $Ce_4(B_2W_9O_{3^\circ})_3+57H_2O$ Very sol in  $H_2O$ , sp gr of solution is over 3

Chromium —,  $Cr_4(B_2W_9O_{32})_3+74H_2O$ Very sol in  $H_2O$ , sp. gr. of solution is 2.80 (klein.)

Cobalt ----, Co<sub>2</sub>B<sub>2</sub>W<sub>9</sub>O<sub>32</sub>+18H<sub>2</sub>O

Very sol in H<sub>2</sub>O, sp gr of solution sat at 19°=3 36 (Kkin)

100 pts H<sub>2</sub>O dissolve 306 8 pts anhydrous salt at 16 2°, 298 pts at 18 5°, 299 7 pts at 19 6°, 296 pts at 21 5°

Sp gr of solution sit at 19 2°/4° = 3 1369

Copper —, Cu B W<sub>9</sub>O<sub>3</sub> +19H O
25 pts H<sub>2</sub>O dissolve 100 pts sult Sp gr
of solution = 2 6 (klein)

(Kahlbaum, Z anorg 1902, 29 218)

Lead ——, Pb B W<sub>3</sub>O<sub>12</sub>+11H O
Sl sol in cold casily sol in hot H O (Klein)

Lithium ---, ( ')

Very sol in H O  $\rightarrow$ p gr of solution is about 3

Magnesium - , Mg B W<sub>2</sub>O<sub>3</sub> +22H O Voy sol in H O (Klein)

Manganous - Mn B W<sub>2</sub>O<sub>3</sub> +17H O 100 pts dissolvem 15 pts H O Sp gr of solution at 19 - 3 D (Klein)

Mercurous - ,  $\rightarrow H_{K} O$ ,  $B O_{3}$ ,  $9WO_{3} +$ 

Precipitate

Insol in H O  $^{\circ}$  (klein) Sol in 20,000 pts dil cold and 1000 pts boiling HNO  $_{1}$ + Aq of 1.42 sp. gi

Nickel --,  $\sim$ 1 B<sub>0</sub>W<sub>1</sub>(), +1SH ()

Very sol in H O sp gr of sit solution it 19 = 3 32

100 pts H O dissolve 261 6 pts it 21 2° 5p gr 15 7 5°/4° of solution = 2 2959 (Killbium, Zinorg 1902, **29** 218) Potassium borononotungstate,  $K_4B_2W$  )<sub>3</sub>,+  $13H_2O$ 

5 pts salt dissolve in 8 pts  $H_2O$  at 9° to form a solution of 1 38 sp gr The s ution sat at 100° has sp gr of over 2 (Kl n)

Silver —,  $Ag_4B_2W_9O_{32}+14H_2O$ 

Very sl sol in H<sub>2</sub>O

Sodrum —, Na<sub>2</sub>H<sub>2</sub>B W<sub>9</sub>O<sub>32</sub>+23H<sub>0</sub>O

Very sol in  $\rm H_2O$  Solution sat at 1 contains 84 pts salt to 16 pts  $\rm H_2O$  (Kl n)  $\rm Na_4B_2W_9O_{32}+12H_2O$  Sol in less t an  $^1/_3$  pt  $\rm H_2O$ 

Thallium —,  $Tl_2B_2W_9O_{32}+5H_2O$ Sl sol in hot  $H_2O$  and nearly insol 1 cold  $H_2O$  (Klein)

Uranyl ——,  $(UO_3)_3(B_2W_9O_{30})_2+30H$  Very sol in  $H_2O$  (Klein) Sp gr of solution=31

Zinc ——,  $Zn_2B_2W_9O_{32}+2H_2O$ Very sol in  $H_2O$  Sp gr of solutior 3 15 (Klein)

Borodecitungstic acid

Barium borodecrtungstate, Ba<sub>2</sub>B W O<sub>35</sub>+ 20H O

Sol in HO (Klein, C R 99 35)

Boroduodecrtungstic acid, H<sub>8</sub>B<sub>2</sub>W<sub>1</sub> <sub>43</sub> = 4H O, B O<sub>8</sub>, 12 WO<sub>3</sub>

Known only in solution, which decomposes into boronoitungstic acid and tungstic acid, when evaporated to a certain concertation (Klein, C. R. 99, 35)

Barium potassium boroduodeeitungsta 3B i(), K (), B<sub>2</sub>(), 12W(), +28H

Potassium — K<sub>8</sub>B<sub>2</sub>W<sub>1</sub> O<sub>43</sub>+21H ( Sol in H O (Klein)

2K() 12W()<sub>1</sub>, B()<sub>1</sub>+1SH() Sol 1H<sub>2</sub>O (Klein)

Boroquatum decrungsuc acid, II, 1  $W_{13}O_{1}$ =  $GH(O_1, B_2O_3, 14WO_3)$ 

H is not been obtained in the free state (Klein  $\Delta$  ch (5) **28** 353)

Barium boroquatuoideeitungstate,  $B_{14}B_2W_{14}O_{18} = 3B_4O - B_4O_3$ ,  $A_4O_3 + A_4O_4$ 

St sol m HO (Klem)

Barium sodium — , 31,810 1 NiO, 3H O BO, 14WO,+29H O

Potassium ——, 3K (), H (), B (), 1 W() $_3+$ 

Sol in H () (Klein)

Silver — AgiH B W<sub>14</sub>O<sub>43</sub>+7H () Nearly insol in cold H () (Klein

Sodium —, Na<sub>4</sub>H<sub>8</sub>B W<sub>14</sub>O<sub>51</sub>+29H ) Sol in H O (Klein) Sodium strontium boroquatuordecitungstate, 3½SrO, 1½Na<sub>2</sub>O, B<sub>2</sub>O<sub>3</sub>, 14WO<sub>3</sub>+29H<sub>2</sub>O Decomp by H<sub>2</sub>O (Klein)

Boroundevigintitungstic acid

Barium boroundevigintitungstate, 4BaO, B<sub>2</sub>O<sub>3</sub>, 19WO<sub>3</sub>+30H<sub>2</sub>O

Can be cryst from H<sub>2</sub>O (Ebenhusen, Dissert **1905**)

Boroquattuoretrigintitungstic acid, B<sub>2</sub>O<sub>3</sub>, 24WO<sub>3</sub>+66H<sub>2</sub>O

Deliquescent Somewhat more sol in  $\rm H_2O$  than  $\rm B_2O_3$ ,  $\rm 28WO_3+62H_2O$  Also more stable (Copaux, C R 1908, 147 975)

Barium boroquattuoretrigintitungstate, 5BaO, B<sub>2</sub>O<sub>3</sub>, 24WO<sub>3</sub>+54H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve 50 pts salt (Copaux, A ch 1909, (8) 17 217)

6BaO,  $B_2O_3$ ,  $24WO_3+58H_2O$  (Copaux, l c)

Cadmium ---, 5CdO, B<sub>2</sub>O<sub>3</sub>, 24WO<sub>3</sub>+

Extremely sol in  $H_2O$  (Copaux, l c)

Calcium —, 5CaO,  $B_2O_3$ , 24WO<sub>3</sub>+44H<sub>2</sub>O Very sol in H<sub>2</sub>O (Copaux, l c)

Lithium —,  $15L_{12}O$ ,  $B_2O_8$ ,  $24WO_3+38H_9O$  (Copaux, l c)

Magnesium —, 5MgO, B<sub>2</sub>O<sub>3</sub>, 24WO<sub>3</sub>+

Very sol in  $H_2O$  (Copaux, l c)

Mercurous —,  $9\text{Hg}_2\text{O}$ ,  $BO_3$ ,  $24\text{WO}_3+$ 25HO (Copaux, lc)

Potassium —,  $5\text{K}_2\text{O}$ ,  $\text{B}_2\text{O}_3$ ,  $24\text{WO}_3+$   $36\text{H}_2\text{O}$  (Copaux, l c)

Sodium —,  $5\text{Na}_2\text{O}$ ,  $\text{B}_2\text{O}_3$ ,  $24\text{WO}_3 + 5\text{H}_2\text{O}$ As NH<sub>4</sub> salt (Copaux, l c)

Boroquinquetvigintitungstic acid

Potassium boroquinquelingintitungstate, 5KO, B<sub>2</sub>O<sub>3</sub>, 25WO<sub>3</sub>+34H<sub>2</sub>O (Ebenhusen, Dissert 1905)

Boroduodetrigintatungstic acid, B<sub>2</sub>O<sub>3</sub>, 28WO<sub>3</sub>+62H<sub>2</sub>O

Decomp in boiling aqueous solution (Copiux, C R 1908, **147** 975)

Potassium boroduodetrigintatungstate, 6h O,  $B_2O_3$ ,  $28WO_3+42H_2O$ 

Decomp by boiling alkalies (Copaux, A ch 1909 (8) 17 217)

### Borovanadic acid

Sol in  $H_2O$  Easily decomp (Guyard, Bull Soc (2) **25** 354)

Metabromantimonic acid, HSbBr<sub>6</sub>+3H<sub>2</sub>O

Very hydroscopic Loses  $Br_2$  in the air Decomp by  $H_2O$  with separation of antimonic acid (Weinland, B 1903, **36** 256)

Ammonium metabromantimonate, NH<sub>4</sub>SbBr<sub>6</sub>+H<sub>2</sub>O

Loses Br<sub>2</sub> in the air Decomp by  $H_2O$  (Weinland, l c)

Iron (ferric) metabromantimonate, Fe(SbBr<sub>6</sub>)<sub>3</sub>+14H<sub>2</sub>O

Very hydroscopic Decomp by  $H_2O$  (Weinland, l c)

Lithium metabromantimonate, LiSbBr<sub>6</sub>+4H<sub>2</sub>O

Very hydroscopic Loses Br<sub>2</sub> in the air Decomp by  $H_2O$  (Weinland, l c)

Nickel metabromantimonate,  $N_1(SbBr_6)_2 + 12H_2O$ 

Hydroscopic Decomp by  $H_2O$  (Weinland, l c)

Potassium metabromantimonate, KSbBr<sub>6</sub>+ H<sub>2</sub>O

Loses  $Br_2$  in the air Decomp by  $H_2O$  (Weinland, l c)

Bromarsenious acid See Arsenyl bromide

Bromauric acid, HAuBr<sub>4</sub>+3H<sub>2</sub>O

(Lengfeld, Am Ch J 1901, **26** 329) +5H<sub>2</sub>O Very sol in H<sub>2</sub>O (Thomser pr (2) **13** 337)

+6H<sub>2</sub>O Sol in ether and CHCl<sub>2</sub> without decomp (Lengfeld, Am Ch J 1901, **26** 329)

Ammonium bromaurate, NH<sub>4</sub>AuBr<sub>4</sub>
Ppt (Gutbier, Z anorg 1914, 85 358)

Barium bromaurate

Not deliquescent Sol in H<sub>2</sub>O (v Bonsdorff, Pogg 17 261)

Cæsium bromaurate, CsAuBr4

Sl sol in H O or alcohol Insol in ether (Wells and Wheeler, Sill Am J 144 157) Ppt (Gutbier, Z anorg 1914, 85 360)

Cerium bromaurate, CeAuBr<sub>6</sub>+8H<sub>2</sub>O Sol in H O (Jolin, Bull Soc (2) **21** 533)

Didymium bromaurate, DiAuBr<sub>6</sub>+9H<sub>2</sub>O Very deliquescent Sol in H<sub>2</sub>O (Cleve)

Lanthanum bromaurate, LaAuBr<sub>6</sub>+9H<sub>2</sub>O Sol in H<sub>2</sub>O (Cleve)

Magnesium bromaurate

Deliquescent in moist aii (v Bonsdorff)

Manganese bromaurate

Deliquescent (v Bonsdorff)

Potassium bromaurate, KAuBr<sub>4</sub>

Sl sol in H<sub>2</sub>O More sol in cold alcohol than in H<sub>2</sub>O (v Bonsdorff)

+2H<sub>2</sub>O Sol in 5 12 pts H<sub>2</sub>O at 15°, 1 56 pts at 40°, and 0 48 pt at 67° ether Sl sol in KBr+Aq Decomp by (Schottlander, A 217 314)

+5H<sub>2</sub>O Efflorescent (v Bonsdorff)

Rubidium bromaurate, RbAuBr4

As cæsium bromaurate Ppt (Gutbier, Z anorg 1914, 85 359)

Samarium bromaurate, SmAuBr<sub>6</sub>+10H<sub>2</sub>O Very deliquescent (Cleve, Bull Soc (2) **43** 165)

Sodium bromaurate, NaAuBr4 Slowly sol in H<sub>2</sub>O (v Bonsdorff)

Zinc bromaurate, Zn(AuBr<sub>4</sub>)<sub>2</sub> Very deliquescent (v Bonsdorff)

Bromauricyanhdric acid Not known in free state

Barium bromauricyanide, Ba[Au(CN)<sub>2</sub>Br<sub>9</sub>]<sub>2</sub>+  $10H_2O$ 

Very sol in hot or cold H<sub>2</sub>O, also in alcohol (Lindbom, Lund Univ Arsk 12 No 6)

Cadmium bromauricyanide, Cd[Au(CN)<sub>2</sub>Br<sub>2</sub>]<sub>2</sub> +6H<sub>2</sub>O

Very sol in hot or cold H2O, but solution is unstable (Lindbom)

Calcium bromauricyanide, Ca[Au(CN)<sub>2</sub>Br<sub>2</sub>]<sub>2</sub> +10H<sub>2</sub>C

Extremely sol in H2O and alcohol (Lind-

Cobalt bromauricyanide, Co[Au(CN)<sub>2</sub>Bi<sub>2</sub>]<sub>2</sub>+  $9H_{2}O$ 

Moderately sol in H<sub>2</sub>O Less sol than other bromauricyanides (Lindbom)

Potassium bromauricyanide, KAu(CN)2Bi2 +3H<sub>2</sub>O

Sol in H<sub>2</sub>O and alcohol

Sodium bromauricyanide, NiAu(CN)2Br2+  $2H_2O$ 

Very sol in H<sub>2</sub>O or alcohol

Strontium bromauricyanide, Si [Au(CN) Br]2  $+xH_2O$ 

Very sol in HO or alcohol

Zinc bromauricyanide, Zn[Au(CN) Bi] + 8H<sub>2</sub>O

Easily sol in cold or hot H ()

### Bromhydric acid, HBr

Very sol in H<sub>2</sub>O

The most concentrated HBr+Aq has a sp gr of 178, and contains 82 02% HBr (Ch unpion and Pellat, C R 70 620) This, or a weak acid on heating leaves a residue which

mm pressure, and contains 48 17% (Topsoe), at 126° under 758 mm presand contains 46 83% HBr (Bineau), and sp gr = 1 486 at 20° (Bineau), sp gr = 1 ıre, has 3 at (Champion and Pellat), sp gr =1 ) at 20° (Topsoe) According to Roscoe (A 116 214) ar ıcıd of constant composition, obtained by b ling a stronger or a weaker acid, if distilled ıder 752-769 mm pressure, contains 47 38-47 HBr, and boils at 126° at 760 mm pre 6%ure, but the composition is dependent of the pressure, as, for example, under 1952

distils unchanged at 125-1255° under

785

[Br]

nm

on-

tains 463% HBr (Roscoe) By conducting dry air through HB -Aq an acid is obtained containing 51 65% 1 Br if at 16°, and 49 35% HBr if at 100° (Rc oe) 1 vol H<sub>2</sub>O dissolves 600 ± vols HBr ε 10° (Berthelot, C R 76 679)

pressure, the residue boils at 153°, and

1 pt H<sub>2</sub>O at t° and 760 mm pressu dissolves pts HBr

| -20 2473  0 2212  +75 50   | t°           | Pts<br>HBr     | t°                                                    | Pts<br>HBr     | t°  | o <sub>ts</sub><br>IBr |
|----------------------------|--------------|----------------|-------------------------------------------------------|----------------|-----|------------------------|
| -10   2 335    +25   1 930 | $-20 \\ -15$ | 2 473<br>2 390 | $\begin{bmatrix} -5 \\ 0 \\ +10 \\ +25 \end{bmatrix}$ | 2 212<br>2 103 | +75 | 715<br>505<br>300      |

(Roozeboom, R t c 4 107)

Absorption by 1 pt H2O at to and p p ssure in mm

 $t^{\circ} = -25^{\circ}$ Its HBr Ιt HBr р 760 2 550 100 056 2 263 1 7,5 300 0.5 2 120 1 140 10

|            | $t^{\circ} = -20^{\circ}$ |           |            |  |  |  |
|------------|---------------------------|-----------|------------|--|--|--|
| p          | Pts HBr                   | P         | I i IIBr   |  |  |  |
| 760<br>375 | 2 473<br>2 267            | 130<br>20 | 056<br>550 |  |  |  |
| 180        | 2 119                     |           |            |  |  |  |

| $t^{\circ} = -15$ |          |     |   |      |  |  |
|-------------------|----------|-----|---|------|--|--|
| p                 | Lis IIBi | p   | i | HBı  |  |  |
| 760               | 2 390    | 175 |   | 0.06 |  |  |
| 470               | 2 266    | 102 |   | 950  |  |  |
| 250               | 2 119    |     |   |      |  |  |

| р          | Its HBr        | p          | I | HBr        |
|------------|----------------|------------|---|------------|
| 760<br>570 | 2 350<br>2 265 | 310<br>216 |   | 115<br>055 |

 $t = -113^{\circ}$ 

| t = -0     |                |            |                |  |  |  |
|------------|----------------|------------|----------------|--|--|--|
| р          | Pts HBr        | p          | Pts HBr        |  |  |  |
| 760<br>730 | 2 280<br>2 264 | 430<br>298 | 2 117<br>2 055 |  |  |  |

| t° | = | 0° |
|----|---|----|
|----|---|----|

| р   | Pts HBr | р   | Pts HBr |
|-----|---------|-----|---------|
| 760 | 2 212   | 380 | 2 054   |
| 540 | 2 116   | 5   | 1 085   |

(Roozeboom, R t c 4 107)

Sp gr of HBr+Aq

| Sp gr                                                                                           | % HBr                                                                                          | Temp                            | Sp gr                                                                                  | % HBr                                                                                  | Temp                                |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------|
| 1 055<br>1 075<br>1 089<br>1 089<br>1 118<br>1 131<br>1 164<br>1 200<br>1 232<br>1 253<br>1 302 | 7 67<br>10 19<br>11 94<br>12 96<br>15 37<br>16 92<br>20 65<br>24 35<br>27 62<br>29 68<br>33 84 | 14° 14° 14° 14° 14° 13° 13° 13° | 1 335<br>1 349<br>1 368<br>1 419<br>1 431<br>1 438<br>1 451<br>1 460<br>1 485<br>1 490 | 36 67<br>37 86<br>39 13<br>43 12<br>43 99<br>44 62<br>45 45<br>46 09<br>47 87<br>48 17 | 13° 13° 13° 13° 13° 13° 14° 14° 14° |

(Topsoe, B 3 404)

Sp gr of HBr+Aq at 14°

| % HBr                                        | >p £r                                                                         | % HBr                                              | Sp gr                                                                                  | % HBr                                        | Sp gr                                                                |
|----------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7              | 1 007<br>1 014<br>1 021<br>1 028<br>1 035<br>1 043<br>1 050                   | 18<br>19<br>20<br>21<br>22<br>23<br>24             | 1 140<br>1 149<br>1 158<br>1 167<br>1 176<br>1 186<br>1 196                            | 35<br>36<br>37<br>38<br>39<br>40<br>41       | 1 314<br>1 326<br>1 338<br>1 351<br>1 363<br>1 376<br>1 389          |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 1 055<br>1 065<br>1 073<br>1 081<br>1 089<br>1 097<br>1 106<br>1 114<br>1 122 | 25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 1 206<br>1 215<br>1 225<br>1 235<br>1 246<br>1 257<br>1 268<br>1 279<br>1 290<br>1 302 | 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49 | 1 403<br>1 417<br>1 431<br>1 445<br>1 459<br>1 473<br>1 487<br>1 502 |

(Lopson calculated by Carlieb, Z. unal 27 olb.)

Sp gr of HBr + Aq at 15°

| % HBi               | ∠! rı                            | HBt                  | אן נולק Pr                       | /o HBr   | אן פר          |
|---------------------|----------------------------------|----------------------|----------------------------------|----------|----------------|
| 5<br>10<br>15<br>20 | 1 038<br>1 077<br>1 177<br>1 159 | 25<br>30<br>35<br>40 | 1 204<br>1 252<br>1 305<br>1 365 | 45<br>50 | 1 435<br>1 515 |

Only 1 'moderate degree of accuracy' is claimed for this table (Wright, C N 23 242)

Sp gr of HBr+Aq at 15°

| %<br>HBr                                                                                  | Sp gr                                                                                                                                                     | %<br>HBr                                                                                           | Sp gr                                                                                                                                        | %<br>HBr                                                                                     | Sp gr                                                                                                                                        |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 1 0082<br>1 0155<br>1 0230<br>1 0305<br>1 038<br>1 046<br>1 053<br>1 061<br>1 069<br>1 077<br>1 085<br>1 093<br>1 102<br>1 110<br>1 119<br>1 127<br>1 136 | 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34 | 1 145<br>1 154<br>1 163<br>1 172<br>1 181<br>1 190<br>1 200<br>1 209<br>1 219<br>1 229<br>1 239<br>1 260<br>1 270<br>1 281<br>1 292<br>1 303 | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50 | 1 314<br>1 326<br>1 338<br>1 350<br>1 362<br>1 375<br>1 388<br>1 401<br>1 415<br>1 429<br>1 444<br>1 459<br>1 474<br>1 490<br>1 496<br>1 513 |

### (Biel, C C 1882 148)

Absorbed by alcohol with formation of  $C_2H_5Br$ 

The composition of the hydrates formed by HBr at different dilutions is calculated from determinations of the lowering of the fr pt produced by HBr and of the conductivity and sp gr of HBr+Aq (Jones, Am Ch J 1905, 34 326)

+H<sub>2</sub>O (Roozeboom, R t c **5** 363) +2H<sub>2</sub>O (Berthelot, A ch (5) **14** 369)

(Pickering Chem Soc 1894, **64** (2) 232 Mpt —11 2° (Pickering, *l c*) +3H<sub>2</sub>O Mpt —48 0° (Pickering)

 $+3H_2O$  Mpt  $-480^\circ$  (Pickering)  $+4H_2O$  Mpt  $-55.8^\circ$  (Pickering)  $+5H_2O$  (Pickering)

# Bromhydric cyanhydric acid, 3HBr, 2HCN

Decomp by H<sub>2</sub>O and alcohol Insol in ether (Gautier, A ch (4) 17 141)

### Bromic acid, HBrOs

Known only in aqueous solution

Solution evaporated on water bath decomposes when it contains 4.26% HBrO<sub>3</sub>. In vicuo, in ied containing 50.59% HBrO<sub>3</sub> corresponding to formula HBrO<sub>3</sub>+7H O can be obtained

Not decomp by dil HNO3, or H2SO4+Aq

Conc H SO<sub>4</sub> decomposes

Alcohol and other are quickly oxidized by HBrO<sub>3</sub>

### **Bromates**

Most of the bromates are very sol in HO, a few are sl sol, but none are insol, the least sol being AgBrO<sub>3</sub> and Hg (BrO<sub>3</sub>)<sub>2</sub>

### Aluminum bromate, Al(BiO<sub>3</sub>)<sub>3</sub>

Deliquescent (Rammelsberg, Pogg 55 63) +9H () Mpt 62 3° I ess hygroscopic

(Dobrosserdow, C C 1907 than Al(ClO<sub>3</sub>)<sub>2</sub> I, 1723)

### Ammonium bromate, NH<sub>4</sub>BrO<sub>3</sub>

Decomposes spontaneously, sol in H<sub>2</sub>O (Rammelsberg, Pogg 52 85)

### Barrum bromate, Ba(BrO<sub>3</sub>)<sub>2</sub>

Solubility of Ba(BrO<sub>3</sub>)<sub>2</sub> in H<sub>2</sub>O 100 g sat Ba(BrO<sub>3</sub>)<sub>2</sub>+Aq at to contain g anhydrous Ba/BrO<sub>3</sub>)<sub>2</sub>

| t°                            | grams<br>Ba(BrO3)2 | t°      | Grums<br>Ba(BrO) |
|-------------------------------|--------------------|---------|------------------|
| Eutectic point -0 034°±0 002° | 0 280              | 50°     | 1 72             |
|                               | 0 286              | 60°     | 2 271            |
|                               | 0 439              | 70°     | 2 922            |
|                               | 0 652              | 80°     | 3 521            |
|                               | 0 788              | 90°     | 4 26             |
|                               | 0 95               | 98 7°   | 5 256            |
|                               | 1 31               | *99 65° | 5 39             |

\*99 65° is bpt at 740 mm = 100 39° at 760 mm

(Anschutz, Z phys Ch 1906, 56 240)

100 g sat Ba(BrO<sub>3</sub>)<sub>2</sub>+Aq contain 0 793 g  $Ba(Br\bar{O}_8)_2$  at  $25^{\circ}$ Sp gr of the solution at  $25^{\circ}/4^{\circ} = 10038$ (Harkins J Am Chem Soc 1911, 33 1815)

Solubility of Ba(BrO<sub>3</sub>)<sub>2</sub> in salts+Aq at 25° C = concentration of salt in salt+Aq in milliequivalents per l

 $d_1 = Sp$  gr at  $25^{\circ}/4^{\circ}$  of salt+Aq

S=solubility of Ba(BrO<sub>3</sub>)<sub>2</sub> in salt+Aq expressed in milliequivalents per l

 $d_2 = \text{sp}$  gr at  $25^{\circ}/4^{\circ}$  of  $Ba(BrO_3)_2 + \text{salt} + Aq$ 

| Salt                 | C                                   | dı                                   | b                                | d                                    |  |
|----------------------|-------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|--|
| None                 |                                     |                                      | 40 18                            | 1 0038                               |  |
| KNO <sub>3</sub>     | 25 018<br>50 032<br>99 970          | 0 9985<br>1 0030<br>1 0033           | 43 86<br>47 03<br>52 13          | 1 0059<br>1 0081<br>1 0120           |  |
| Ba(NO)2              | 25 018<br>50 039<br>99 97<br>199 95 | 1 0003<br>1 0025<br>1 0073<br>1 0183 | 36 77<br>34 74<br>32 63<br>30 95 | 1 0059<br>1 0083<br>1 0132<br>1 0233 |  |
| KBrO <sub>3</sub>    | 24 988<br>49 971<br>99 85           | 1 0001<br>1 0031<br>1 0093           | 26 53<br>17 37<br>8 76           | 1 0046<br>1 0062<br>1 0109           |  |
| Mg(NO <sub>3</sub> ) | 100 0                               |                                      | 52 57                            | 1 0114                               |  |
|                      |                                     |                                      |                                  |                                      |  |

(Harkins, J. Am. Chem. Soc. 1911. 33, 1515.)

+H<sub>2</sub>O Sol in 130 pts cold, and 24 pts boiling H<sub>2</sub>O (Rammelsberg, Pogg 52 51) Decomp by H<sub>2</sub>SO<sub>4</sub>, or H(1+Aq Insol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4329) Insol in methyl acetate (Naumann, B 1909, 42 3790)

Bismuth bromate

Known only in solution, which decom Ωn evaporation (Rammelsberg, Pogg 55 • )

Cadmium bromate, Cd(BrO<sub>3</sub>)<sub>2</sub>+H<sub>2</sub>O Sol in 08 pt cold H<sub>2</sub>O (Rammels erg.

Pogg 55 74)  $+2\mathrm{H}_2\mathrm{O}$ (Topsoe, J B 1872, 164)

Cadmium bromate ammonia,  $Cd(B_1 i_3)_2$  $3NH_3$ 

Decomp by H<sub>2</sub>O (Rammelsberg. ogg 55 74)

Ppt (Ephrain В  $Cd(BrO_3)_2$ ,  $4NH_3$ 1915, **48** 51)

Calcium bromate, Ca(BrO<sub>3</sub>)<sub>2</sub>+H<sub>2</sub>O Sol in 11 pts cold H<sub>2</sub>O (Rammel erg. Pogg **52** 98)

Cerous bromate, Ce(BrO<sub>3</sub>)<sub>3</sub>+9H<sub>2</sub>O

Easily sol in H<sub>2</sub>O (Rammelsberg. ogg **55** (3)

Mpt 49°, very sol in H<sub>2</sub>O with de imp (James, J Am Chem Soc 1909, 31 91

Cobaltous bromate, Co(BrO<sub>3</sub>)<sub>2</sub>+6H<sub>2</sub>O Sol in 2 2 pts cold H<sub>2</sub>O, sol in N 4OH

+Aq (Rammelsberg, Pogg 55 71) Cupric bromate, basic, 6CuO, Br<sub>2</sub>O<sub>4</sub>+1 4<sub>2</sub>O

(Rammelsberg, Pogg 55 78) Cupric bromate, Cu(BrO<sub>3</sub>)<sub>2</sub>+6H<sub>2</sub>O

Easily sol in H<sub>2</sub>O (Rammelsberg, 'ogg **52** 92)

Cupric bromate ammonia, Cu(BrO<sub>3</sub>) VH. Completely sol in a little HO, b decomp by dilution

Insol in alcohol (Rummelsberg, Po. z. 52

Didymium bromate, Di(Bi(););+9H() Sol m H O (Mungnuc)

Dysprosium bromate, Dy(Bi(););+9H > Mpt 75° Fisily sol in HO Dif ultly sol in alcohol (Lintsch, B. 1911. 44) 275)

Erbium bromate, Fi(Bi(),),+9H()

Very sol in alcohol and H ()

### Glucinum bromate

Deliquescent

Iron (ferrous) bromate, I ((Bi()))

Sol in HO, but solution decomp-

Iron (ferric) bromate,  $A \in (A, B_1(A) + A) \cap (A, B_2(A) + A)$ Putrilly sol in HO with separate n of a more basic salt Sol in HBO3+Aq Run mclsberg Pogg 55 68)

Lanthanum bromate, I 1(B1(););+911 Sol in 312 pts H<sub>2</sub>O at 15° (M Ann Min (5) 15 274)

Mpt 37.5° m its witer of crystal ition 416 pts are sol in 100 pts H () t 25° (James, J. Am. Chem. Soc. 1909, 31 13)

Lead bromate, basic, 3PbO, Pb(BrO<sub>8</sub>)<sub>2</sub>+  $2H_{\circ}O$ 

Ppt (Stromholm, Z anorg 1904, 38 441)

Lead bromate, Pb(BrO<sub>3</sub>)<sub>2</sub>

 $13~37 \times 10^{-1}$ g are contained O<sub>2</sub>H m lca 12 in 1 liter of sat solution at 20° (Bottger, Z phys Ch 1903, 46 603)

+H<sub>2</sub>O Sol in 75 pts cold H<sub>2</sub>O (Ram-

melsberg, Pogg 52 96)

Lithium bromate, LiBrO3

Very deliquescent, and sol in H<sub>2</sub>O (Rammelsberg, Pogg A 55 63)

Not deliquescent (Politilitzin, 23 545 R)

Sp gr of solution sat at 18°=1833. and contains 60 4% LiBrO<sub>3</sub> (Mylius, B 1897, **30** 1718)  $+H_2O$ Not deliquescent (Potilitzin)

Magnesium bromate,  $Mg(BrO_3)_2+6H_2O$ 

Efflorescent Sol in 14 pts cold H2O at 15° Melts in its water of crystallization when heated (Rammelsberg, Pogg 52 89)

Mercurous bromate, basic, 2Hg<sub>2</sub>O, Br<sub>2</sub>O<sub>5</sub> Insol in warm H<sub>2</sub>O Sol in HNO<sub>3</sub>+Aq (Rammelsberg, Pogg 55 79)

Mercurous bromate, Hg<sub>2</sub>(BrO<sub>3</sub>)<sub>2</sub>

Decomp by H<sub>2</sub>O into basic salt Difficultly sol in HNO3+Aq, easily sol in HCl+Aq (Rammelsberg)

Mercuric bromate, basic, 2HgO,  $Br_2O_5 + H_2O$ Slowly decomp by cold, quickly by hot H<sub>2</sub>O into oxide and an acid salt Easily sol in dil acids (Topsoe, W. A. B. 66, **2** 2)

Mercuric bromate, HgBrO<sub>3</sub>+2H<sub>2</sub>O

Sol in 650 pts\_cold, and 64 pts boiling H<sub>2</sub>O Sl sol in HNO<sub>3</sub>+Aq Easily sol in HCl + Aq(Rammelsberg, Pogg 55 79)

Mercuric bromate ammonia

Sol with decomp in HCl+Aq (Storer's Dict )

Neodymium bromate, Nd(BrO<sub>3</sub>)<sub>3</sub>+9H<sub>2</sub>O

Mpt 66 7° 146 pts are sol in 100 pts H<sub>2</sub>O it 25° (James, J Am Chem Soc **1909**, **31** 915)

Nickel bromate,  $N_1(BrO_3)_2 + 6H_2O$ 

Sol in 3.58 pts cold H<sub>2</sub>O (Rammelsberg, Pogg 55 69)

Nickel bromate ammonia, Ni(BrO<sub>3</sub>)<sub>2</sub>, 2NH<sub>3</sub> Sol in H<sub>2</sub>O, with decomposition of the major portion Insol in alcohol (Rammels berg, l  $\epsilon$ )

Ni(BrO<sub>3</sub>)<sub>2</sub>, 6NH<sub>3</sub> Ppt (Ephraim, B 1915, 48 50)

Potass um bromate, KBrO3

100 pts H<sub>2</sub>O dissolve 6 58 pts KBrO<sub>3</sub> at 15° (Rammelsberg) 100 pts H<sub>2</sub>O dissolve 5 83 pts KBrO<sub>3</sub> at 17 1° (Pohl W A B 6

595), at 0°, 3 11 pts, at 20°, 6 92 pts, at 40°, 13 24 pts, at 60°, 22 76 pts, at 80°, 33 90 pts, at 100° 49 75 pts KBrO<sub>3</sub> Sat solution boils at 104° (Kremers, Pogg 97 5) 104° (Kremers, Pogg 97 5) 1 1 H<sub>2</sub>O at 25° dissolves 0 4715 moles

KBrO<sub>3</sub> (Geffcken, Z phys Ch 1904, 49 296)

1 l H<sub>2</sub>O dissolves 0 478 mol KBrO<sub>2</sub> at 25° (Rothmund, Z phys Ch 1909, 69 539)

Sp gr of KBrO<sub>8</sub>+Aq at 195°

| %KBrO <sub>3</sub> | 1     | 2     | 3     | 4     | 5     |
|--------------------|-------|-------|-------|-------|-------|
| Sp gr              | 1 009 | 1 016 | 1 024 | 1 031 | 1 039 |
| %KBrO <sub>3</sub> | 6     | 7     | 8     | 9     | 10    |
| Sp gr              | 1 046 | 1 054 | 1 062 | 1 070 | 1 079 |

(Gerlach, Z anal 8 290)

Solubility of KBrO<sub>3</sub> in salts+Aq at 25°

|                   | Me       | Moles of KBrOs sol in 1 liter of |          |          |          |  |  |
|-------------------|----------|----------------------------------|----------|----------|----------|--|--|
| Salt              | 5-N      | N                                | 2-N      | 3-N      | 4-N      |  |  |
|                   | solution | solution                         | solution | solution | solution |  |  |
| NaNO <sub>3</sub> | 0 5745   | 0 6497                           | 0 7680   | 0 9026   | 1 031    |  |  |
| NaCl              | 0 5220   | 0 5616                           | 0 6042   | 0 6244   | 0 640    |  |  |
| (C. C. )          |          |                                  |          |          |          |  |  |

(Geffcken, Z phys Ch 1904, 49 296)

Easily sol in liquid HF (Franklin, Z anorg 1905, 46 2) Sl sol in alcohol (Rammelsberg)

Insol in absolute alcohol

Solubility in organic compds +Aq at 25°

| _ | Boluk                                     | mity in organic com                                                                                                                                                                                    | pus +Aq at 25               |
|---|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|   |                                           | Solv ent                                                                                                                                                                                               | Mol KBrO3 sol in<br>1 litre |
| 0 | 5-N " " " " " " " " " " " " " " " " " " " | Water Methyl alcohol Ethyl alcohol Propyl alcohol Tert amyl alcohol Acetone Ether Formaldehyde Glycol Glycerine Mannitol Glucose Sucrose Urea Dimethyl pyrone Ammonia Diethylamine Pyridine Piperidine |                             |
|   | "                                         | Urcthane<br>Formamide                                                                                                                                                                                  | 0 433<br>0 473              |
|   | "                                         | Acetamido                                                                                                                                                                                              | 0 445                       |
|   | "                                         | Glycocoll                                                                                                                                                                                              | 0 501                       |
|   | "                                         | Acetic acid                                                                                                                                                                                            | 0 456                       |
|   | "                                         | Phenol                                                                                                                                                                                                 | 0 426                       |
|   | "                                         | Methylal                                                                                                                                                                                               | 0 405                       |
| _ | "                                         | Methyl acetate                                                                                                                                                                                         | 0 420                       |

(Rothmund, Z phys Ch 1909, 69 539)

Insol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4329)
Insol in ethyl acetate (Naumann, B 1910, 43 314)

Insol in methyl acetate (Naumann, B 1909, 42 3790)

Praseodymium bromate, Pr(BrO<sub>3</sub>)<sub>3</sub>+9H<sub>2</sub>O

Mpt  $56.5^{\circ}$  190 pts are sol in 100 pts  $H_2O$  at  $25^{\circ}$  (James, J Am Chem Soc 1909, 31 914)

Samarium bromate, Sm(BrO<sub>3</sub>)<sub>3</sub>+9H<sub>2</sub>O

Mpt 75° 114 pts are sol in 100 pts H<sub>2</sub>O at 25° Very sl sol in alcohol (James, J Am Chem Soc 1909, 31 915)

### Scandium bromate

(Crookes, Roy Soc Proc 1908, 80, A, 518)

Silver bromate, AgBrO<sub>3</sub>

1 pt  $\rm H_2O$  dissolves 0 00810 pt  $\rm AgBrO_3$  at 24 5° (Noyes, Z phys Ch 6 246) Sol in 595 3 pts  $\rm H_2O$  at 25°

Sol in 320 4 pts HNO<sub>3</sub>+Aq (sp gr 121)

at 25° Sol in 22 pts NH<sub>4</sub>OH+Aq (sp gr 096) at 25° (Longi, Gazz ch it 13 87)

1 l H<sub>2</sub>O dissolves 171 g AgBrO<sub>3</sub> at 27° (Whitby, Z anorg 1910, 67 108)

Sl sol in H<sub>2</sub>O 159 x 10-4 g are contained in 1 liter of sat solution at 20° (Bottger, Z phys Ch 1903, **46** 603)

Insol in HNO<sub>3</sub> (Lowig) Easily sol in

ate ammonia, AgBrO<sub>3</sub>, 2NH<sub>3</sub> in air or by HO (Rammels **52** 94)

mate, NaBrOs

\_ pts H<sub>0</sub>O at 15° (Rammelsberg) 100 pts H<sub>2</sub>O dissolve at— 0° 20° 40° 60° 80° 100° 27 54 34 48 50 25 62 5 75 75 90 9 pts NaBrO<sub>3</sub> (Kremers, Pogg **94** 271)

Easily forms supersaturated solutions Sat solution boils at 109° (Kremers) NaBrO<sub>3</sub>+Aq containing 10 10% NaBrO<sub>3</sub> has sp gr  $20^{\circ}/20^{\circ} = 1.0818$ 

NaBrO<sub>3</sub>+Aq containing 11 09% NaBiO<sub>3</sub>

has sp gr  $20^{\circ}/20^{\circ} = 10900$ (Le Blanc and Rohland, Z phys Ch 1896

**19** 278)

Sp gr of NaBiO<sub>3</sub>+Aq at 195°

| %NaBrO <sub>3</sub> | 5     | 10    | 15    |
|---------------------|-------|-------|-------|
| Sp gr               | 1 041 | 1 083 | 1 129 |
| %NaBrO <sub>3</sub> | 20    | 25    | 30    |
| Sp gr               |       | 1 231 | 1 289 |

(Kremers, Pogg 97 5, calculated by Gerlach, Z anal 8 290)

Moderately sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 829)

Insol in methyl acetate (Naumann, B 1909, 42 3790)

Insol in ethyl acetate (Naumann. B 1910, 43 314)

Sodium bromate bromide, 3NaBrO<sub>3</sub>, 2NaBi  $+3H_2O$ 

Decomp by H<sub>2</sub>O or alcohol (Fritzsche) Strontium bromate, Sr(BrO<sub>8</sub>)<sub>2</sub>+H O

Sol in 3 pts H<sub>2</sub>O (Rammelsberg, Pogg 52 84), less sol in H<sub>2</sub>O than SrBr<sub>2</sub>+6H O (Low1g )

Thallous bromate, TIBrO3

Sl sol in hot  $H_2O$ , easily sol in  $HNO_3 + Aq$ (Oettinger) Easily sol in H2O and dil acids (Ditte.

A ch (6) 21 145)

Terbium bromate, Tb(BrO<sub>3</sub>)<sub>3</sub>+9H<sub>2</sub>O

Not deliquescent (Potratz, C N 1905. **92**, 3)

Thallous bromate, TlBrO<sub>3</sub>

1 l H<sub>2</sub>O at 39 75° dissolves 2 216 x 10-(Noyes and Abbott, Z phys Ch g mol 1895, **16** 130)

Sl sol in H<sub>2</sub>O 3 46 x 10-1 gram are contained in 1 liter of sat solution at 20° (Bottger, Z phys Ch 1903, **46** 603)

Thallic bromate, Tl(BrO<sub>3</sub>)<sub>3</sub>+3H O

Very hydroscopic Easily decomp by H<sub>2</sub>O (Gewecke, Z anorg 1912, 75 275)

Thulium bromate,  $Tm_2(BrO_3)_6 + 1 > H$  ()

Pptd from sat aqueous solution by 95% alcohol

NH<sub>4</sub>OH is the best precipit int (James, J Am Chem Soc 1911, **33** 1342)

Tin (stannous) bromate (?)

Insol in  $H_2O$ , sol in  $HCl + \Lambda q$ 

Uranyl bromate,  $4U()_3$ ,  $3B_1()_1 + 10H()$ Sol in HO (Rummelsberg)

Yttrium bromate,  $Y(B_1O_3)_3+9H(O_3)_3$ 

More easily sol in H O than  $Y(IO_1)_1 = SI$ sol in alcohol. Insol in other (Cleve)

Mpt 74° 168 pts ac sol in 100 pts 11 () at 25°

Sl sol in dechol (Junes, J Am Chem Soc 1909, **31** 916)

Zinc bromate,  $In(B_1()_3) + 6H()$ 

Sol in 1 pt cold H () (Runmelsberg, Pogg 52 90 )

Zinc bromate ammonia,  $Zn(B_1()_3)$  $2NH_3+$ 

Decomp by HO and dechol Sol in NH<sub>4</sub>OH+Aq (Rummelsberg, Pogg 52 90)  $Zn(BrO_3)_2$ ,  $4NH_3$ Ppt (I phr um, B 1915, **48** 51)

### Perbromic acid

See Perbromic acid

### Bromides

Most bromides are sol in H<sub>2</sub>O, many in alcohol, and some in ether

AgBr and Hg2Br2 are insol in H2O or acids. PbBr<sub>2</sub> and TlBr are sl sol therein Cu<sub>2</sub>Br<sub>2</sub> is insol in H2O, sol in acids

See under each element

(Dancer, Chem Soc 15 477)

### Bromine, Br.

1 pt Br dissolves at 15° in 33 pts H<sub>2</sub>O (Lowig, Pogg 14 485) 1 pt Br dissolves at 15° in 31 pts H<sub>2</sub>O

Solubility of Br in 100 pts H<sub>2</sub>O at t°

| t  | Pts Br | t° | Pts Br | t° | Pts Br |
|----|--------|----|--------|----|--------|
| 5  | 3 600  | 15 | 3 226  | 25 | 3 167  |
| 10 | 3 327  | 20 | 3 208  | 30 | 3 126  |

(Dancer, l c)

A sat aqueous solution of Br contains 405% Br at 0°, 380% Br at 3°, 333% Br at 10° (Roozeboom, R t c 3 29, 59, 73, 84)

11 H<sub>2</sub>O dissolves 34 g Br at 25° km, Z phys Ch 1896, **20** 25) (Jakow-

1 pt is sol in 30 pts H<sub>2</sub>O (Dietze, Chem Soc 1899, **76** (2) 150)

100 pts H<sub>2</sub>O dissolve at

10 34° 19 96° 30 17° 40 03° 49 85° 4 167 3 740 3 578 3 437 3 446 3 522 pts bromine

Liquid bromine as such is insol in H<sub>2</sub>O only the vapor dissolves (Winkler, Ch Z

1899, 23 688) 11 H<sub>2</sub>O dissolves 33 95 g Br<sub>2</sub> at 25° (Mc-Lauchlan, Z phys Ch 1903, 44 617)

Solubility of broming vipor in H O at to  $\mathbf{a} = coefficient of absorption$ 

|                       | $\sigma = 00000000$ | or mean | ption                                         |
|-----------------------|---------------------|---------|-----------------------------------------------|
| t                     | α                   | t       | a                                             |
| 0                     | 60-5                | 42      | 8 6                                           |
| 2                     | 54 1                | 44      | 7 9                                           |
| 4                     | 45 3                | 46      | $\begin{array}{c} 7 & 9 \\ 7 & 4 \end{array}$ |
| 0<br>2<br>4<br>6<br>5 | 43 3                | 45      | 6-9                                           |
| 5                     | 35 9                | 50      | 6.5                                           |
| 10                    | 35 1                | 52      | 61                                            |
| 1.2                   | 31.5                | 54      | 5 5                                           |
| 14                    | 25 4                | 56      | 5 S<br>5 4                                    |
| 16                    | 25 7                | 58      | 5 Î<br>4 9                                    |
| 18                    | ] 23.4              | 60      | 4 ()                                          |
| 20                    | 21 3                | 62      | 4 ()                                          |
| 22                    | 19.4                | 64      | 4 ()<br>4 4                                   |
| 24                    | 17 7                | 66      | 4 2<br>4 0                                    |
| 26                    | 16-3                | 68      | 4 ()                                          |
| 28                    | 15.0                | 70      | 3 %                                           |
| 30                    | 13.5                | 72      | 3 S<br>3 6                                    |
| 32                    | 12 7                | 74      | 3 4                                           |
| 34                    | 11 7                | 76      | 3 3                                           |
| 36                    | 10 9                | 78      | 3 4<br>3 3<br>3 1<br>3 0                      |
| 38                    | 10 1                | 80      | 3.0                                           |
| 40                    | 9 4                 |         |                                               |

(Winkler, Ch Z 1899, 23 688)

Solubility of bromine vapor (Mean of many determinations)

| Temp                                                                        | Pressure                                                                              | Absorption coefficient                                                   |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 0 0<br>9 94°<br>20 46<br>30 38<br>40 31<br>50 25<br>60 04<br>69 98<br>80 22 | 56-13mm<br>89-16<br>138-9<br>179-12<br>229-26<br>274-53<br>314-46<br>154-54<br>396-74 | 60 53<br>35 22<br>20 87<br>13 65<br>9 22<br>6 50<br>4 84<br>3 82<br>2 94 |
|                                                                             |                                                                                       |                                                                          |

Solubility of liquid bromine (The mean of many determinations)

| Temp                                                             | 0°   | 10 34° | 19 96 | 30 17° | 40 03° | 49 85° |
|------------------------------------------------------------------|------|--------|-------|--------|--------|--------|
| Pts H <sub>2</sub> O<br>that<br>dissolve<br>1 pt Br <sub>2</sub> | 24 0 | 26 74  | 27 94 | 29 10  | 29 02  | 28 38  |

Much less Br<sub>2</sub> is sol in ice cold H<sub>2</sub>O in the presence of bromine hydrate

Solubility in presence of bromine hydrate (The mean of many determinations)

| Temp                                                       | 0°    | 5 12° |
|------------------------------------------------------------|-------|-------|
| Pts H <sub>2</sub> O that dissolve<br>1 pt Br <sub>2</sub> | 42 39 | 26 26 |

(Winkler, Ch Z 1899, 23 688-689)

Solubility of Br<sub>2</sub> in H<sub>2</sub>O at  $25^{\circ} = 0.21$  mols ın 1 l (Bray, J Am Chem Soc 1910, 32 398)

Sp gr of Br<sub>2</sub>+Aq containing pts Br in 1000 pts solution

|                                  | 2000 Pub Bolution                        |                                                          |                                          |  |  |
|----------------------------------|------------------------------------------|----------------------------------------------------------|------------------------------------------|--|--|
| Pt= Br                           | Sp gr                                    | Pts Bi                                                   | Sp gr                                    |  |  |
| 10 72<br>10 68<br>12 05<br>12 21 | 1 00901<br>1 00931<br>1 00995<br>1 01223 | 18 74-19 06<br>19 52-20 09<br>20 89-21 55<br>31 02-31 69 | 1 01491<br>1 01585<br>1 01807<br>1 02367 |  |  |

(Slessor, N. Fdin Phil J. 7, 287)

Sp. op of Rr + Ag at 325°

| op groun Tag a | ر شر      |
|----------------|-----------|
| % Br by weight | >p gı     |
| 0 7214         | 0 999814  |
| 1 1172         | 1 002520  |
| 1 6448         | 1 006100° |
| 1 9956         | 1 008870  |
| 2 5960         | 1 013200  |

(Joseph, Chem Soc 1915, 107 3)

Sol in conc HCl, HBi, conc solutions of bromides, and in liquid SO (Sestini, Zeit Chem 1868 718)

Much more sol in HCl+Aq than in H<sub>2</sub>() 100 ccm HCl+Aq of 1 153 sp gr dissolve

36 4 g B1 at 12° More sol in SrCl<sub>2</sub>, and BaCl<sub>2</sub>+Aq than in

H<sub>2</sub>O (Berthelot, C R **100** 761)

Bromine is not more sol in KBr+Aq than in H<sub>2</sub>O (?) (Balard)

KBr+Aq containing 1 pt KBr to 6 pts H<sub>2</sub>O takes up as much Br as it already contains, when this solution is heated the dissolved Br is separated 1 pt KBr+1 pt H<sub>2</sub>O takes up twice as much Br as it already contains, much heat being evolved This solution loses Br on exposure to the air or when heated (Lowig)

### Solubility of Br<sub>2</sub> in KBr+Aq

| g Mols                                                | g at Br dissolved                                                                                | g at Br dissolved                                                                                |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| KBr per l                                             | per l at 18 5°                                                                                   | per l at 26 5°                                                                                   |
| 0 00                                                  | 0 4448                                                                                           | 0 4282                                                                                           |
| 0 01                                                  | 0 4634                                                                                           | 0 4490                                                                                           |
| 0 02                                                  | 0 4823                                                                                           | 0 4671                                                                                           |
| 0 03                                                  | 0 5049                                                                                           | 0 4925                                                                                           |
| 0 04                                                  | 0 5243                                                                                           | 0 5101                                                                                           |
| 0 05                                                  | 0 5431                                                                                           | 0 5301                                                                                           |
| 0 06                                                  | 0 5668                                                                                           | 0 5530                                                                                           |
| 0 07                                                  | 0 5895                                                                                           | 0 5636                                                                                           |
| 0 08                                                  | 0 6059                                                                                           | 0 5920                                                                                           |
| 0 09<br>0 1<br>0 2<br>0 3<br>0 4<br>0 5<br>0 6<br>0 7 | 0 6301<br>0 6533<br>0 8718<br>1 0549<br>1 3124<br>1 5436<br>1 7712<br>2 0006<br>2 2354<br>2 4851 | 0 5981<br>0 6488<br>0 8591<br>1 0787<br>1 2704<br>1 4731<br>1 6717<br>1 9197<br>2 1029<br>2 3349 |

The above figures indicate that below a concentration of 0.1 g mcl KBr per l just enough Br is dissolved to form KBr<sub>3</sub>, while above that concentration somewhat larger amounts of Br are dissolved, which is greater at the lower temp

(Worley, Chem Soc 1905, 87 1109)

Solubility of Br. in NaBr + Ac at 25°

| Solubility of Dr <sub>2</sub> in NaDr+Aq at 25 |                                           |                                           |  |
|------------------------------------------------|-------------------------------------------|-------------------------------------------|--|
| g NaBr per l                                   | g atoms Br2 per l                         | >p gr                                     |  |
| 92 6<br>160 5<br>205 8<br>255 8<br>319 7       | 2 479<br>4 345<br>6 195<br>8 575<br>13 65 | 1 213<br>1 372<br>1 515<br>1 678<br>1 997 |  |
| 359 0<br>408 3                                 | 16 04<br>19 23<br>20 85                   | 2 137<br>2 327<br>2 420                   |  |

(Bell, J Am Chem Soc 1912, 34 14)

Solubility in salts+Aq Solubility in 1 liter K<sub>2</sub>SO<sub>4</sub>+Aq it 25°

| K₂SO₄+Aq            | g Bromne |
|---------------------|----------|
| 1-N                 | 25 14    |
| 1/ <sub>2</sub> -N  | 29 44    |
| 1/ <sub>4</sub> -N  | 31 46    |
| 1/ <sub>8</sub> -N  | 32 70    |
| 1/ <sub>16</sub> -N | 33 10    |

(Jakowkin, Z phys Ch 1896, 20, 26)

Solubility in 1 liter Na<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| Na <sub>2</sub> SO <sub>4</sub> +Aq                                          | g Bromine                                 |
|------------------------------------------------------------------------------|-------------------------------------------|
| $1-N$ $^{1}/_{2}-N$ $^{1}/_{4}-N$ $^{1}/_{4}-N$ $^{1}/_{8}-N$ $^{1}/_{16}-N$ | 25 07<br>29 20<br>31 33<br>32 94<br>33 26 |

(Jakowkin, l c)

## Solubility in 1 liter NaNO<sub>3</sub>+Aq at 25°

| NaNO <sub>3</sub> +Aq                                        | g Bromine                                 |
|--------------------------------------------------------------|-------------------------------------------|
| $1-N \ ^{1/2}-N \ ^{1/2}-N \ ^{1/4}-N \ ^{1/8}-N \ ^{1/6}-N$ | 98 80<br>31 35<br>32 62<br>33 33<br>33 74 |

(Jakowkin, l c)

## Solubility in salts+Aq at 25°

| Salt +Aq                                                                                                                                                                                                                                                                         | g Br2 sol in 1 liter                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 1/2-N Na <sub>6</sub> SO <sub>4</sub> 1/2-N K <sub>2</sub> SO <sub>4</sub> 1/2-N K <sub>2</sub> SO <sub>4</sub> 1/2-N (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> N NaNC <sub>3</sub> N KNO <sub>3</sub> N NH <sub>4</sub> NO <sub>3</sub> N NACl N KCl N NH <sub>4</sub> Cl | 23 90<br>24 80<br>77 7<br>28 00<br>28 95<br>55 15<br>55 90<br>57 40<br>82 2 |

(McLauchlan, Z phys Ch 1903, 44 617)

Solubility in HgBr<sub>2</sub>+Aq at 25° 10 cem of the solution contain —

| Millimols Br | Millimols Hg |
|--------------|--------------|
| 2 125        | 0            |
| 2 204        | 0.0560       |
| 2 216        | 0 0793       |
| 2 226        | 0 1284       |
| 2 231        | 0 2120       |

(Herz and Paul, Z. anorg. 1914. 85, 215.)

1 l N NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O +Aq dissolves 340 5 g Br<sub>2</sub> at 25 $^{\circ}$  (MeI auchlan Z phys Ch 1903, **44** 617)

Miscible in all proportions with liquid NO (Frankland, Chem. Soc. 1901, 79, 1361.)

More sol in alcohol than in H (), miscible with other, CS<sub>2</sub>, CHCl<sub>3</sub> (Sestini, Zeit Chem **1868**, 718.)

Somewhat soluble in Alycerme (Pelouze) Sol in benzene (Mansfeld), insol in benzene (Morde, A ch (3) 39 452) Sol in warn chloral, bromal and iodal (Lowig, Pogg 14 485) Sol in SCI (Solly) and SBi Sol in cone HC<sub>2</sub>H<sub>3</sub>O + Aq (Balard) Sol in aqueous solution of potassium, sodium, or cal cium acetates (Cahours)

| Solubility in | $CS_2$                |                        |
|---------------|-----------------------|------------------------|
| 100 g of the  | sat solutio           | n contain at           |
| —95°          | —110 5°               | —116°                  |
| 45 4          |                       | 36 9 g Br <sub>2</sub> |
| (Arctowsk     | ı, Z anorg            | 1896, <b>11</b> 274)   |
| Cryst from    | CS <sub>2</sub> at —9 | 90° in fine needles    |
| Arctowski, Z  | anorg 1895            | 5, <b>10</b> 25)       |

| 90                   | 110                    | 9                       | -110                  |                |
|----------------------|------------------------|-------------------------|-----------------------|----------------|
| 45 4                 | 39                     | Ō                       | 36 9 g                | $Br_{\bullet}$ |
| (Arctov              | vski, Z ai             |                         | , 11 27               | 4)             |
| Cryst from           | om CS <sub>2</sub> a   |                         |                       | eedle          |
| •                    | _                      | •                       | •                     |                |
| Sp gr of             | $Br_2+CC$              | l <sub>4</sub> at 32 5° | •                     |                |
| % Br <sub>2</sub> by | weight                 |                         | Sp gr                 |                |
| $1\overline{54}$     |                        |                         | 1 58014               |                |
| 1 64                 | 54                     |                         | 1 58060               |                |
| 1 79                 | 90                     |                         | 1 58168               |                |
| 2 66                 |                        |                         | 1 58812               |                |
| 3 58                 |                        |                         | 1 59526               |                |
|                      | h, Chem                |                         |                       |                |
| Sp gr of             | f Br <sub>2</sub> +nit | robenzene               | e at 32 a             | 5°             |
| % Br <sub>2</sub> by |                        |                         | Sp gr                 |                |
| 156                  |                        |                         | $1 \hat{2}0\hat{2}25$ |                |
| 3 23                 |                        |                         | 1 21449               |                |
| 4 64                 |                        |                         | 1 22518               |                |
| 6 18                 |                        |                         | 1 23603               |                |
|                      | h, Chem                | Soc 1915                | , <b>107</b> 3        | )              |
| Very sol             | in benzo               | onitrile                | (Nauma                | nn, l          |

В 1914, **47** 1369) Sol in acetone (Eidmann, C C 1899, II, 1014, Naumann, B 1904, 37 4328)

Partition of Br<sub>2</sub> between water and other solvents W=millimols Bromine in 10 ccm of the aqueous layer

G=millimols Bromine in 10 ccm of the

| other layer                                                |                                                                            |                                                                              |                                                                      |
|------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Other solvent                                              | G                                                                          | w                                                                            | G/W                                                                  |
| CCl <sub>4</sub>                                           | 1 949<br>7 008<br>12 171<br>39 880<br>54 574                               | 0 0853<br>0 3085<br>0 5300<br>1 3132<br>1 5560                               | 22 73<br>22 71<br>23 13<br>30 32<br>35 01                            |
| 75% by vol CCl <sub>4</sub><br>+25% by vol CS              | 3 567<br>7 304<br>10 833<br>13 922<br>17 230<br>25 637<br>40 625<br>54 035 | 0 0985<br>0 1910<br>0 2900<br>0 3720<br>0 4580<br>0 6580<br>0 9940<br>1 2080 | 37 06<br>38 15<br>37 36<br>37 42<br>37 62<br>38 96<br>40 88<br>44 73 |
| 50% by vol CCl <sub>4</sub> +<br>50% by vol CS             | 3 592<br>6 820<br>10 148<br>13 866<br>16 616<br>42 975<br>55 965           | 0 0784<br>0 1487<br>0 2206<br>0 3065<br>0 3688<br>0 8086<br>0 9960           | 45 82<br>46 85<br>46 01<br>45 24<br>45 05<br>53 15<br>56 19          |
| 25% by vol CCl <sub>4</sub><br>+75% by vol CS <sub>2</sub> | 5 753<br>10 902<br>26 724<br>41 314<br>55 526                              | 0 0884<br>0 1682<br>0 4970<br>0 6331<br>0 8520                               | 65 05<br>64 82<br>65 65<br>65 26<br>65 17                            |

| Partition        | οf | Rr.  | etcContinued |
|------------------|----|------|--------------|
| T 201 (11(11(11) | Oī | D12, | ew commueu   |

| rartition of Br <sub>2</sub> , etc —Continued |                                                                   |                                                                    |                                                             |
|-----------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|
| Other solvent                                 | G                                                                 | w                                                                  | G/W                                                         |
| $\mathrm{CS}_2$                               | 7 750<br>10 600<br>14 696<br>17 999<br>26 345<br>40 625<br>57 038 | 0 1015<br>0 1387<br>0 1910<br>0 2352<br>0 3467<br>0 5194<br>0 7160 | 76 35<br>76 44<br>76 98<br>76 54<br>75 99<br>78 21<br>79 66 |
| (Hong 7 Flottmoshom 1010 16 971 )             |                                                                   |                                                                    |                                                             |

(Herz, Z Elektrochem, 1910, 16 871)

Partition coefficient for bromine between CS2 and H<sub>2</sub>O at 25°C

A = concentration of the water layer C = concentration of the CS<sub>2</sub> layer

| A      | С      | N =C/A |
|--------|--------|--------|
| 7 545  | 691 9  | 91 71  |
| 4 109  | 338 6  | 82 41  |
| 2 660  | 217 4  | 81 72  |
| 2 544  | 207 7  | 81 66  |
| 1 740  | 140 38 | 80 67  |
| 1 2878 | 103 7  | 80 51  |
| 0 8073 | 64 44  | 79 83  |
| 0 5046 | 39 64  | 78 38  |

Partition coefficient for bromine between CHBr3 and  $\rm H_2O$  at 25°C

A = concentration of the water layerC = concentration of the CHBr<sub>3</sub> layer

| A                                                  | C                                                  | N =C/A                                             |
|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 5 424<br>3 838<br>2 368<br>1 348<br>0 766<br>0 366 | 373 6<br>264 7<br>161 5<br>90 17<br>50 49<br>23 62 | 68 88<br>68 80<br>68 19<br>66 90<br>65 84<br>64 85 |
|                                                    | •                                                  |                                                    |

Partition coefficient for bromine between CCl4 and H<sub>2</sub>O at 25°C

A = concentration of the water layer C = concentration of the CCl4 layer

| o concentration or the o'clip or |              |                     |
|----------------------------------|--------------|---------------------|
| A                                | C            | N =C/A              |
| 14 42                            | 545 2        | 37 82               |
| 10 80                            | 372 2        | 34 44               |
| 7 901                            | 252 8        | 32 01               |
| 7 163                            | 225 8        | 31 52               |
| 6 803                            | 218 5        | 32 12               |
| 5 651                            | 172 6        | 30 54               |
| 3 216                            | 94 84        | 29 48               |
| 2 054                            | 58 36        | 28 41               |
| 1 266                            | 35 92        | 28 37               |
| 0 7711                           | 21 53        | 27 92               |
| 0 5761                           | 15 72        | 27 26               |
| 0 4476                           | 12 09        | 27 02               |
| 0 3803                           | 10 27        | 27 00               |
| 0 2478                           | 6 691        | 27 00               |
| (Jakowkin,                       | Z phys Ch 18 | 95, <b>18</b> 588 ) |

Partition of bromine between CCl, and salts+Aq

A = concentration of Br in H<sub>2</sub>O layer C = concentration of Br in CCl<sub>4</sub> layer

Partition of Br. between CCl<sub>4</sub> and NaNO<sub>3</sub>+Ac at 25°

| NaNOs+Aq                                 | A                                         | C                                         |  |
|------------------------------------------|-------------------------------------------|-------------------------------------------|--|
| 1-N<br>1/2-N<br>1/4-N<br>1/8-N<br>1/16-N | 7 905<br>8 763<br>9 033<br>9 200<br>9 399 | 316 7<br>319 5<br>315 7<br>316 7<br>319 3 |  |

(Jakowkin, Z phys Ch 1896, 20, 25)

Partition of Br. between CCl<sub>4</sub> and K<sub>2</sub>SO<sub>4</sub>+ Aq at 25°

| K SO₄+Aq                                                                                     | A                                         | C                                         |
|----------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| 1-N<br>1/ <sub>2</sub> -N<br>1/ <sub>4</sub> -N<br>1/ <sub>8</sub> -N<br>1/ <sub>16</sub> -N | 5 982<br>6 843<br>7 354<br>7 585<br>7 498 | 255 4<br>253 4<br>252 8<br>250 3<br>242 3 |
|                                                                                              |                                           |                                           |

(Jakowkin, l c)

Partition of Br<sub>2</sub> between CCl<sub>4</sub> and Na<sub>2</sub>SO<sub>4</sub>+ Aq at 25°

| Na SO <sub>4</sub> +Aq | A                                         | C                                         |
|------------------------|-------------------------------------------|-------------------------------------------|
| N<br>1/16-N            | 5 934<br>6 838<br>7 402<br>7 609<br>7 713 | 254 6<br>253 4<br>254 4<br>252 8<br>251 2 |

(Jakowkin, l c)

Cıystallızes at 4° with 10H O

Bromine chloride, BrCl

Sol in H<sub>2</sub>O, CS<sub>2</sub>, ether, etc

Bromine fluoride, BiF3

Fumes in the air Decomp by H O (Lebeau, C R 1905, 141 1019)

### Bromme oxides

No oxides of bromine are known in the face state See hypobromous, bromic, and per-bromic acids

### Bromiridic acid

Ammonium bromiridate, (NH<sub>4</sub>)<sub>2</sub>IrBr<sub>6</sub>

Less sol in cold H<sub>2</sub>O than the K silt (Birnbaum, Zeit Chem 1865 22)

Very sol in cold H O (Gutbier, B 1909, **42** 3910)

Cæsium bromiridate, Cb2 IrB16

Sol in H<sub>2</sub>O (Gutbier, B 1909, **42** 3911)

Potassium bromiridate, K<sub>2</sub>IrBr<sub>6</sub>

Moderately sol in cold, more easily in hot  $H_2O$ 

Insol in alcohol or ether Sol in cold H<sub>2</sub>O and in HBr+Aq (Gutbier, B 1909, **42** 3910)

Rubidium bromiridate, Rb2IrBr6

Very sol in cold H<sub>2</sub>O Sol in hot dil HBr+Aq (Gutbier, B 1909, **42** 3911)

Sodium bromindate

Deliquescent Easily sol in H<sub>2</sub>O, alcohol, or ether

Bromiridous acid,  $\rm H_6Ir_2Br_{12}+6H \cdot O$  Easily sol in H O, alcohol, or ether (Birrbaum, 1864)

Ammonium bromiridite,  $(NH_4)_6Ir_2Br_{12}+H_2O$ Difficultly sol in  $H_2O$  (Birnbaum)

Potassium bromiridite, K<sub>5</sub>Ir<sub>2</sub>Br<sub>1°</sub>+6H<sub>2</sub>O Efflorescent Sol in H<sub>2</sub>O

Silver bromindite, Ag<sub>6</sub>Ir<sub>2</sub>Br<sub>12</sub> Ppt Insol in H<sub>2</sub>O or acids

Sodium bromiridite, Na<sub>6</sub>Ir<sub>2</sub>Br<sub>12</sub>+24H<sub>2</sub>O Efflorescent Very sol in H<sub>2</sub>O

Bromocarbonatoplatindiamine carbonate,  $^{\text{CO}_3}_{\text{Br}_2}[\text{Pt}(\text{N}_2\text{H}_6)_2]_2(\text{CO}_3)_2 + 4\text{H}_2\text{O}$ 

Bromocarbonatoplatindiamine carbonate bromoplatindiamine nitrate,

Bromochloroplatindiamine chloride,

 $\frac{\mathrm{Br}}{\mathrm{Cl}}$  Pt(N H<sub>6</sub>)<sub>2</sub>Cl

Very sl sol in HO (Cleve)

----- chlorobromide, B1 Pt N H(C1)

Voysl sol in H ()

## Bromochlororoplatinic acid

Potassium bromochloropletinate, K PtCl Bi

(Pitkin, J Am Chem Soc 2 405) Mixture (Herty J Am Chem Soc 1890,

18 136)

K<sub>2</sub>PtCl<sub>4</sub>Bl<sub>2</sub> Sl sol in cold H () much more sol in hot H<sub>2</sub>O (Pitkin)

Mixture (Herty)

K2PtCl3Br3 As above

K PtCl<sub>2</sub>Br<sub>4</sub> (Pigeon, A ch 1894, (7) 2 488)

K PtClBr (Pitkin)

### Bromochromic acid

Potassium bromochromate, KC1() B<sub>1</sub> = CrO<sub>2</sub>(B<sub>1</sub>)OK

Decomp by  $H_2O$  (Heintze, J pr (2) 4 225)

# Dibromochromium chloride, [Cr(H<sub>2</sub>O)<sub>4</sub>Br<sub>2</sub>]Cl+2H<sub>2</sub>O

Ppt Nearly insol in fuming HCl (Bjerrum, B 1907, 40 2918)

## Bromohydroxyloplatindiamine bromide,

 $\frac{\mathrm{OH}}{\mathrm{Br}} \mathrm{Pt} (\mathrm{N_2H_6Br})_2$ 

Very sl sol in H<sub>2</sub>O (Cleve)

---- nutrate,  $_{\mathrm{Br}}^{\mathrm{OH}}\,\mathrm{Pt}(\mathrm{N_{2}H_{6}NO_{3}})_{2}$ 

Very sl sol in cold, moderately sol in hot H<sub>2</sub>O (Cleve)

## ${\bf Bromohydroxyloplatin} monodiamine$

nitrate,  $_{\mathrm{OH}}^{\mathrm{Br}}$  Pt  $_{\mathrm{NH_3NO_3}}^{\mathrm{(NH_3)_2NO_3}} + _{\mathrm{H_2O}}^{\mathrm{H_2O}}$  Easily sol in  $_{\mathrm{H_2O}}$  (Cleve)

### Bromomercurosulphurous acid

Ammonium bromomercurosulphite, NH<sub>4</sub>SO<sub>3</sub>HgBr

Sol in HO (Barth, Z phys Ch 9 215)

# Potassium bromomercurosulphite, KSO<sub>3</sub>HgB<sub>1</sub>

As above (B)

## Bromomolybdenum bromide,

B14Mo3B1 = molybdenum dibromide, MoBr

Insol in H O or reads, or even in boiling aqua regret be salvesol in dilute, decomp by cone alkalies  $+\mathrm{Aq}$  (Blomstrand, J pr. 82 436)

Bromomolybdenum chloride, Bi<sub>4</sub>Mo<sub>3</sub>Cl + 3H ()

Insol in reids (Blomstrand)

Bromomolybdenum chromate, B14Mo<sub>4</sub>C1O<sub>4</sub>+ 2H O

Insol in dil unds Sol in hot conc HCl +Aq Insol in ilk di chromates+Aq (At terberg)

Bromomolybdenum fluoride,  ${\rm Bi}_4{\rm Mo}_4F+{\rm 3H}$  ()

Insol m H C (Atterberg)

Bromomolybdenum hydroxide, Bi<sub>4</sub>Mo<sub>3</sub>(OH)

Completely sol in alkalies if not heated over 90° (Atterberg)

+2H<sub>2</sub>O +8H<sub>2</sub>O

Bromomolybdenum iodide hydroxide, 2Br<sub>4</sub>Mo<sub>3</sub>I<sub>2</sub>, Br<sub>4</sub>Mo<sub>3</sub>(OH)<sub>2</sub>+8H O

Precipitate (Blomstrand, J pr 77 92)

Bromomolybdenum molybdate,  $\mathrm{Br_4Mo_3MoO_4}$ 

Precipitate (Atterberg)

Bromomolybdenum phosphate, Br<sub>4</sub>Mo<sub>3</sub>H<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>

Precipitate Insol in H<sub>2</sub>O (Atterbeig)

Bromomolybdenum sulphate,  $Br_4Mo_3SO_4+3H_2O$ 

Precipitate Sl sol in boiling  $H_2SO_4$  (Atterberg)

Dibromomolybdous acid, MoOBr<sub>2</sub>(OH) +

Sol in H<sub>2</sub>O Very hydroscopic (Weinland, Z anorg 1905, **44** 86)

Tetrabromomolybdous acid, MoBr<sub>4</sub>(OH) + 2H<sub>2</sub>O

Sol in H O Hydroscopic (Weinland, l c)

Diammonium pentabromomolybdite, MoBi 5O(NH<sub>4</sub>)<sub>2</sub>

Hydroscopic Sol in H<sub>0</sub>O (Weinland, l c)

Dicæsium pentabromomolybdite, MoBr<sub>5</sub>OCs<sub>2</sub>

Hydroscopic Sol in  $H_{\bullet}O$  (Weinland, l c)

Calcium tetrabromomolybdite, (MoBr<sub>4</sub>O)<sub>°</sub>Ca +7H O

Hydroscopic Sol in H<sub>2</sub>O (Weinland, l c

Monolithium tetrabromomolybdite, MoBr<sub>4</sub>(OL<sub>1</sub>)+4H O

Hydroscopic Sol in  $H_2O$  (Weinland, l c)

Magnesium pentabromomolybdite, MoBi<sub>5</sub>(OMg)+7H<sub>2</sub>O

Hydroscopic Sol in H O (Weinland, l c)

Monopotassium tetrabromomolybdite, MoB14(OK)+2H ()

Hydroscopic Sol in HO (Weinland,

Dipotassium pentabromomolybdite,

MoBr<sub>b</sub>OK<sub>2</sub>
Hydroscopic Sol in HO (Weinland, let)

Dirubidium pentabromomolybdite, MoBr<sub>b</sub>()Rb<sub>2</sub>

Hydroscopic Sol in H O (Weinland,  $l \in$ )

Bromonitratoplatindiamine nitrate,

 ${
m ^{B_1}_{NO_3} Pt ^{N_2H_6NO_3}_{N_2H_6NO_3}}$ 

Decomp by HO (Cleve)

--- sulphate,  $\frac{Br}{NO_3}$  Pt(N<sub>4</sub>H<sub>6</sub>)  $SO_4$ +H O

Partition of bromine between CCl<sub>4</sub> and salts+Aq

 $\begin{array}{l} \text{salts+Aq} \\ \text{A} = \text{concentration of B}_1 \text{ in H}_2\text{O layer} \\ \text{C} = \text{concentration of Br in CCl}_4 \text{ layer} \end{array}$ 

Partition of Br<sub>2</sub> between CCl<sub>4</sub> and NaNO<sub>8</sub>+

| Aq at 25°                                |                                           |                                  |
|------------------------------------------|-------------------------------------------|----------------------------------|
| NaNO <sub>3</sub> +Aq                    | A                                         | С                                |
| 1-N<br>1/;-N<br>1/4-N<br>1/8-N<br>1/10-N | 7 905<br>8 763<br>9 033<br>9 200<br>9 399 | 316 7<br>319 5<br>315 7<br>316 7 |

(Jakowkin, Z phys Ch 1896, 20, 25)

Partition of B1, between CCl<sub>4</sub> and K<sub>2</sub>SO<sub>4</sub>+

| 114 20                                   |                                           |                                           |
|------------------------------------------|-------------------------------------------|-------------------------------------------|
| K SO <sub>4</sub> +Aq                    | A                                         | C                                         |
| 1-N<br>1/2-N<br>1/4-N<br>1/8-N<br>1/16-N | 5 982<br>6 843<br>7 354<br>7 585<br>7 498 | 255 4<br>253 4<br>252 8<br>250 3<br>242 3 |
|                                          |                                           |                                           |

(Jakowkin, l c)

Partition of Br<sub>2</sub> between CCl<sub>4</sub> and Na<sub>2</sub>SO<sub>4</sub>+

| Na SO <sub>4</sub> +Aq                                                        | A                                         | C                                         |  |
|-------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|--|
| 1-N<br>1/-N<br>1/ <sub>4</sub> N<br>1/ <sub>8</sub> -N<br>1/ <sub>11</sub> -N | 5 934<br>6 838<br>7 402<br>7 609<br>7 713 | 254 6<br>253 4<br>254 4<br>252 8<br>251 2 |  |
|                                                                               |                                           |                                           |  |

(Jikowkin, lc)

Crystallizes at 4° with 10H O

Bromine chloride, BiCl

Sol in H<sub>2</sub>O, CS, other, etc

Bromine fluoride, BiFa

Tumes in the in Decomp by H () (Lebe in C R 1905, 141 1019)

### Bromine oxides

No oxides of bromine we known in the free state. See hypobromous, bromie, and perbromic reads

### Bromiridic acid

Ammonium bromiridate, (NH<sub>4</sub>)<sub>2</sub>l<sub>1</sub>B<sub>16</sub>

Less sol in cold HO than the K salt (Burnbaum, Zeit Chem 1865 22) Very sol in cold HO (Gutbier, B 1909, 42 3910)

Cæsium bromiridate, Cs Ii Bic

Sol in H2() (Gutbier, B 1909, 42 3911)

Potassium bromiridate, K2IrBr6

Moder itely sol in cold, more easily in hot H ()

Insol in alcohol or ether Sol in cold H<sub>2</sub>O and in HBr+Aq (C tbier, B 1909, **42** 3910)

Rubidium bromiridate, Rb<sub>2</sub>IrBr<sub>6</sub>

Very sol in cold H<sub>2</sub>O Sol in hot if HBr+Aq (Gutbier, B 1909, **42** 3911)

Sodium bromindate

Deliquescent Easily sol in H<sub>2</sub>O, alco il, or ether

Bromiridous acid, H<sub>6</sub>Ir<sub>2</sub>Br<sub>12</sub>+6H<sub>2</sub>O

Easily sol in H O, alcohol, or ether (B rbaum, 1864)

Ammonium bromiridite, (NH<sub>4</sub>)<sub>6</sub>Ir<sub>2</sub>Br<sub>12</sub>+F Difficultly sol in H<sub>2</sub>O (Birnbaum)

Potassium bromiridite, K<sub>6</sub>Ir<sub>2</sub>Br<sub>12</sub>+6H<sub>2</sub>C Efflorescent Sol in H<sub>2</sub>C

Silver bromundite, Ag<sub>6</sub>Ir<sub>2</sub>Br<sub>12</sub>
Ppt Insol in H<sub>2</sub>O or acids

Sodium bromiridite, Na<sub>6</sub>Ir<sub>2</sub>Br<sub>12</sub>+24H<sub>2</sub>O Efflorescent Very sol in H<sub>2</sub>O

 $\begin{array}{lll} \textbf{Bromocarbonatoplatin} \textit{diamine} & \textbf{cart} & \textbf{n-} \\ \textbf{ate,} & \underset{Br_2}{CO_3} [Pt(N_2H_6)_2]_2 (CO_3)_2 + 4H_2O \end{array}$ 

Bromocarbonatoplatindiamine carbonatorio bromoplatindiamine nitrate,

 $\begin{array}{c}
CO_{3} [Pt(N_{2}H_{6})_{2}]_{2}(CO_{3})_{2}, & 2B_{1}_{2}Pt(N \ I) \\
(NO_{3})_{2}
\end{array}$ 

Bromochloroplatindiamine chloride,

 $\frac{\mathrm{Br}}{\mathrm{Cl}}$  Pt(N H<sub>t</sub>) Cl

Very sl sol in H() (Cleve)

--- chlorobromide, Bi Pt N H.Cl

Volv sl. sol in H O

### Bromochlororoplatinic acid

Potassium bromochloropletinate, K PtC B

(Pitkin J Am Chem Soc 2 408) Mixture (Herty J Am Chem Soc 1 96,

18 136)  $K_2PtCl_4Bl_2$  SI sol in cold II () 1 1ch more sol in hot  $H_2O$  (Pitkin)

Mixture (Herty)

K PtCl3B13 As above

Ix PtCl Br<sub>4</sub> (Pigeon, A ch 1894, ( 2488)

K PtClB1 (Pitkin)

### Bromochromic acid

Potassium bromochromate,  $KC_1(I)_3B_1 = CrO_2(B_1)OK$ 

Decomp by H<sub>2</sub>O (Heintze, J pr ( ) **4** 

# Dibromochromium chloride, [Cr(H<sub>2</sub>O)<sub>4</sub>Br<sub>2</sub>]Cl+2H<sub>2</sub>O

Ppt Nearly insol in fuming HCl (Bjerrum, B 1907, 40 2918)

## Bromohydroxyloplatindramine bromide,

 $_{\mathrm{Br}}^{\mathrm{OH}}$  Pt(N<sub>2</sub>H<sub>6</sub>Br)<sub>2</sub>

Very sl sol in H<sub>2</sub>O (Cleve)

---- mtrate,  $_{\mathrm{Br}}^{\mathrm{OH}} \mathrm{Pt}(\mathrm{N_2H_6NO_3})_2$ 

Very sl sol in cold, moderately sol in hot H<sub>2</sub>O (Cleve)

## ${\bf Bromohydroxyloplatin} monodiamine$

nitrate,  $_{\mathrm{OH}}^{\mathrm{Br}}$  Pt  $_{\mathrm{NH_3NO_3}}^{\mathrm{(NH_3)_2NO_3}} + _{\mathrm{H_2O}}^{\mathrm{H_2O}}$  Easily sol in  $_{\mathrm{H_2O}}$  (Cleve)

### Bromomercurosulphurous acid

Ammonium bromomercurosulphite, NH<sub>4</sub>SO<sub>3</sub>HgBr

Sol in H<sub>2</sub>O (Barth, Z phys Ch 9 215)

### Potassium bromomercurosulphite, KSO<sub>3</sub>HgBr

As above (B)

## Bromomolybdenum bromide,

 $Br_4Mo_3Br_2 = molybdenum \ di bromide, MoBr_2$ 

Insol in H<sub>2</sub>O or acids, or even in boiling aqua regia. Easily sol in dilute, decomp by cone alkalies+Aq (Blomstrand, J pr 82 436)

Bromomolybdenum chloride,  $Br_4Mo_3Cl_2+3H$  ()

Insol in reids (Blomstrand)

Bromomolybdenum chromate, B14Mo3CrO4+ 2H ()

Insol in dil wids Sol in hot cone HCl +Aq Insol in ilk ili chromates+Aq (Atterberg)

Bromomolybdenum fluoride,  $B_{14}Mo_4F_2+3H_2()$ 

Insol in H C (Attribute)

Bromomolybdenum hydroxide, B14Mo3(OH)2 Completely sol in alk alres if not he ated over 90° (Atterberg)

+2H<sub>2</sub>()

+8H O

Bromomolybdenum iodide hydroxide, 2Br<sub>4</sub>Mo<sub>3</sub>I<sub>2</sub>, Bi<sub>4</sub>Mo<sub>3</sub>(OH)<sub>2</sub>+8H O

Precipitate (Blomstr and, J pr 77 92)

Bromomolybdenum molybdate, Br<sub>4</sub>Mo<sub>3</sub>MoO<sub>4</sub>

Precipitate (Atterberg)

Bromomolybdenum phosphate, Br<sub>4</sub>Mo<sub>3</sub>H<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>

Precipitate Insol in H<sub>2</sub>O (Atterberg)

Bromomolybdenum sulphate,  $Br_4Mo_3SO_4 + 3H_2O$ 

Precipitate Sl sol in boiling  $H_2SO_4$  (Atterberg)

Dibromomolybdous acid, MoOBr (OH) +  $1\frac{1}{2}H_2O$ 

Sol in  $H_2O$  Very hydroscopic (Weinland, Z anorg 1905, 44 86)

Tetrabromomolybdous acid, MoBr<sub>4</sub>(OH) + 2H<sub>2</sub>O

Sol in  $H_2O$  Hydroscopic (Weinland, l c)

Drammonium pentabromomolybdite, MoB1<sub>5</sub>O(NH<sub>4</sub>)<sub>2</sub>

Hydroscopic Sol in H<sub>2</sub>O (Weinland, Cc)

Dicæsium pentabromomolybdite, MoBr<sub>5</sub>OCs<sub>2</sub>

Hydroscopic Sol in H O (Weinland, l c)

Calcium tetrabromomolybdite,  $(MoBr_4O)_2C_4 + 7H_2O$ 

Hydroscopic Sol in H<sub>2</sub>O (Weinland, l

Monolithium tetrabromomolybdite, MoBr<sub>4</sub>(OL<sub>1</sub>)+4H<sub>2</sub>O

Hydroscopic Sol in  $H_2O$  (Weinland, l c)

Magnesium pentabromomolybdite, MoBr<sub>5</sub>(OMg) +7H<sub>2</sub>O

Hydroscopic Sol in HO (Weinland, l c)

Monopotassium ttrabromomolybdite,  $MoBr_4(OK) + 2H O$ 

Hydroscopic Sol in H () (Weinland,  $l(\epsilon)$ )

Dipotassium pentabromomolybdite,

MoBr<sub>5</sub>() $K_2$ Hydroscopic Sol in H () (Weinlind,  $l \ \epsilon$ )

Dirubidium pentabromomolybdite, MoBi<sub>b</sub>()Rb<sub>2</sub>

Hydroscopic Sol in H O (Weinland,  $l(\epsilon)$ )

## Bromonitratoplatindiamine mitrate,

B<sub>1</sub> Pt N<sub>2</sub>H<sub>6</sub>NO<sub>3</sub> NO<sub>3</sub> Pt N H<sub>6</sub>NO<sub>3</sub> Decomp by H O (Cleve)

 $\frac{\text{Sulphate, } \underset{\text{NO}_3}{\text{Br}} \text{Pt}(\text{N}_4\text{H}_6) \text{ SO}_4 + \text{H } \text{O}_4}{\text{SO}_4 + \text{H } \text{O}_4}$ 

Sl sol in H<sub>2</sub>O

## Bromonitritoplatinsemidiamine nitrite, NO Br<sub>2</sub>Pt(NH<sub>3</sub>)<sub>2</sub>NO<sub>2</sub>

Sl sol in H<sub>2</sub>O (Blomstrand)

#### Bromonitrous acid

Platinum silver bromonitrite, PtAg<sub>2</sub>Br<sub>2</sub>(NO<sub>2</sub>)<sub>4</sub> Ppt (Miolati, Gazz ch it 1900, **30** 588)

## Bromopalladic acid

Ammonium bromopalladate, (NH<sub>4</sub>)<sub>2</sub>PdBr<sub>6</sub>

Difficultly sol in cold H<sub>2</sub>O Decomp by hot H<sub>2</sub>O and by hot cone H<sub>2</sub>SO<sub>4</sub> (Gutbuer, B 1905, **38** 1907)

## Cæsium bromopalladate, Cs<sub>2</sub>PdBr<sub>6</sub>

Difficultly sol in cold  $H_2O$  Decomp by hot  $H_2O$  or by hot cone  $H_2SO_4$  (Gutbier, l c)

## Potassium bromopalladate, K<sub>2</sub>PdBr<sub>6</sub>

Difficultly sol in cold  $H_2O$  Decomp by hot  $H_2O$  or by hot conc  $H_2SO_4$  (Gutbier,  $l\ c$ )

## Rubidium bromopalladate, Rb2PdBr6

Insol in cold  $H_2O$  Decomp by hot  $H_2O$  or by hot conc  $H_2SO_4$  (Gutbier, l c)

#### Bromopalladious acid

Ammonium bromopalladite, (NH<sub>4</sub>)<sub>2</sub>PdBr<sub>4</sub>
Very stable Sol in H<sub>2</sub>O (Smith, Z anoig 1894, 6 381)

Very sol in cold H<sub>2</sub>O

Can be cryst from a very small amount of hot HO (Gutbier, B 1905, 38 2387)

#### Barium bromopalladite

Not deliquescent Sol in H<sub>2</sub>O (v Bonsdorff)

## Cæsium bromopalladite, Cs<sub>2</sub>PdBr<sub>4</sub>

Very sol in  $H_2O$  (Gutbier, B 1905, 38 2388)

## Manganese bromopalladite, MnPdBr<sub>4</sub>

Sol in H<sub>2</sub>O and alcohol (v Bonsdorff) +7H<sub>2</sub>O Very sol in H<sub>2</sub>O (Smith, Z anorg 1894, **6** 382)

## Potassium bromopalladite, K PdBi 4

Easily sol in H<sub>2</sub>O (Joannis, C R **95** 295)

Very stable Sol in H<sub>2</sub>() (Smith, Z anorg 1894, 6 381) +2H O Unstable in the air (Smith, l c)

## Rubidium bromopalladite, Rb<sub>2</sub>PdBr<sub>4</sub>

Can be cryst from a very small amount of hot  $H_2O$  (Gutbier, B 1905, 38 2388)

Sodium bromopalladite,  $Na_2PdBr_4+4\frac{1}{2}H_2O$ Very deliquescent Sol in  $H_2O$  (Smith, l c) Strontium bromopalladite,  $SrPdBr_4+6H_2O$ Stable in the air Very sol in  $H_2O$  (Smit, l c)

#### Zinc bromopalladite

Sol in H<sub>2</sub>O (v Bonsdorff)

Bromophosphatoplatindnamine phosphate,  $BrPt(N_2H_6)_2+2H_9O$ 

PO<sub>4</sub>
Sl sol in H<sub>2</sub>O (Cleve)

## Bromophosphoric acid

Thorium bromophosphate, ThBr<sub>4</sub> 3(3ThO<sub>2</sub>, 2P<sub>2</sub>O<sub>5</sub>)

Insol in most acids and in fused alk 1 carbonates Decomp by long boiling  $w_1$  1 conc  $H_2SO_4$  (Colani, C R 1909, 149 20 )

## Bromoplatinamine bromide,

 $\mathrm{Br_2Pt}(\mathrm{NH_3Br})_2$ 

Sl sol in  $H_2\mathbb{C}$  (Cleve, Sv V A H 10, 31)

— nitrite, Br<sub>2</sub>Pt(NH<sub>3</sub>NO<sub>2</sub>)<sub>2</sub> Very sl sol in H<sub>2</sub>O (Cleve)

## Bromoplatindiamine bromide.

 $\mathrm{Br}_{2}\mathrm{Pt}(\mathrm{N}_{2}\mathrm{H}_{6})_{2}\mathrm{Br}_{2}$ Only sl sol in hot  $\mathrm{H}_{2}\mathrm{O}$  (Cleve)

--- chloride, Br<sub>2</sub>Pt(N<sub>2</sub>H<sub>6</sub>)<sub>2</sub>Cl<sub>2</sub> Very sl sol in H<sub>2</sub>O (Cleve)

mtrate, Br<sub>2</sub>Pt(N<sub>2</sub>H<sub>6</sub>NO<sub>3</sub>)

Sl sol in cold, rather easily sol in hot H (Cleve)

--- phosphate,  $B_{12}Pt[N_2H_1PO_2(OH)] + 2H_2O$ 

Rather casily sol in hot H() (Cleve)

--- sulphate, Br<sub>2</sub>Pt(N H<sub>6</sub>) SO<sub>4</sub> Very sl sol in H<sub>2</sub>O

## Bromoplatin monodiamine nitrate,

Br Pt (NH<sub>3</sub>)<sub>2</sub>NO<sub>3</sub> +H O NH<sub>3</sub>NO<sub>3</sub> +H O

--- sulphate, B<sub>12</sub>Pt (NH<sub>3</sub>) S()<sub>4</sub>+H ()

Moderately sol in H () (Cleve)

Bromonlatinsemulamine bromide

#### Bromoplatinsemidiamine bromide, Br,Pt(NH,),Br Sl sol in cold H<sub>2</sub>O (Cleve)

Bromodiplatindiamine anhydronitrate

Br<sub>2</sub>Pt<sub>2</sub> (N<sub>2</sub>H<sub>f</sub>)<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub> (NH<sub>3</sub>NH<sub>2</sub>) Sol in HNO<sub>4</sub>+Aq Bromodiplatindiamine chloride, Br<sub>2</sub>Pt<sub>2</sub>(N<sub>2</sub>H<sub>6</sub>)<sub>4</sub>Cl<sub>4</sub> Ppt (Cleve)

— nitrate,  $Br_2Pt_2(N_2H_6)_4(NO_3)_4+2H_2O$ Moderately sol in hot  $H_2O$ 

Bromoplatinic acid, H<sub>2</sub>PtBr<sub>6</sub> +9H<sub>2</sub>O

Very deliquescent, and sol in  $\rm H_2O$ , alcohol, ether, chloroform, or acetic acid (Topsoe, J B 1868 273)

Ammonium bromoplatinate, (NH<sub>4</sub>)<sub>2</sub>PtBr<sub>6</sub>
Sol in 200 pts H<sub>2</sub>O at 15° (Topsoe)
100 pts (NH<sub>4</sub>)<sub>2</sub>PtBr<sub>6</sub>+Aq sat at 20° contain 0 59 pt dry salt (Halber-tadt, B 17
2965)

Barium bromoplatinate, BaPtBr<sub>6</sub>+10H<sub>2</sub>O Sl deliquescent Very sol in H<sub>2</sub>O

Cæsium bromoplatinate,  $Cs_2PtBr_6$  Sl sol in dil  $HBr+A\eta$  (Obermaier, Dissert )

Calcium bromoplatinate, CaPtBr<sub>6</sub>+12H<sub>2</sub>O Sl deliquescent Very sol in H<sub>2</sub>O

Cobalt bromoplatinate, CoPtBr<sub>6</sub>+12H<sub>2</sub>O Deliquescent

Copper bromoplatinate, CuPtBr<sub>6</sub>+8H<sub>2</sub>O Very deliquescent, sol in H<sub>2</sub>O

Lead bromoplatinate, PbPtB16

Easily sol in H<sub>2</sub>O, but decomp by large amount

Lead totrabromoplatinate, [PtB1<sub>4</sub>(OH)<sub>2</sub>]Pb, PbOH

Insol in HO (Mioliti, C C 1900, II 810)

Magnesium bromoplatinate,  $MgPtB_{1c}+12H_2O$ 

Not deliquescent

Manganese bromoplatinate, MnPtB1c+

Sol in H () +12H<sub>2</sub>() Sol in H ()

Mercuric tetrabromoplatinate, [PtB14(OH)]H<sub>F</sub>

Insol in H O (Mioliti, C C 1900, II 510)

Nickel bromoplatinate, NiPtBi<sub>1</sub>+12H () Deliquescent

Potassium bromoplatinate, K PtBir Sl sol in H O Insol in alcohol (v Bonsdorff, Pogg 19 344) Sol in 10 pts boiling  $H_2O$  (Pitkin, C N 41 218) 100 pts  $K_2PtBr_6+Aq$  sat at 20° contain 2 02 pts dry salt (Halberstadt, B 17 2962)

Praseodymium bromoplatmate, PrBr<sub>3</sub>,PtBr<sub>3</sub> +10H<sub>2</sub>O

Deliquescent, very sol in H<sub>2</sub>O, sol in HBr (Von Schule, Z anorg 1898, **18** 353)

Rubidium bromoplatinate, Rb<sub>2</sub>PtBr<sub>6</sub>

Sl sol in dil HBr+Aq (Obermaier Dissert)

Silver bromoplatinate, Ag<sub>2</sub>PtB<sub>1e</sub> Insol in H<sub>2</sub>O (Miolati, C C 1900, II 810)

Silver tetrabromoplatinate, [PtBr<sub>4</sub>(OH)]Ag<sub>2</sub> Ppt, insol in H<sub>2</sub>O (Miolati, l c)

Sodium bromoplatinate, Na<sub>2</sub>PtB<sub>16</sub>+6H<sub>2</sub>O Easily sol in H<sub>2</sub>O and alcohol

Strontium bromoplatmate, SrPtBr<sub>6</sub>+10H<sub>2</sub>O Sl deliquescent Very sol in H<sub>2</sub>O

Thallium tetrobromoplatinate, [PtBr<sub>6</sub>(OH)<sub>2</sub>]Tl

Insol in H O (Miolati, C C 1900, II 810)

Ytterbium bromoplatinate, YbBr<sub>3</sub>,3H PtBr<sub>6</sub> +30H<sub>2</sub>O

Ppt (Cleve, Z anorg 1902, **32** 138)

Zinc bromoplatinate, ZnPtB1, +12H2O Sol in H2O

Bromoplatinocyanhydiic acid,

 $H_2Pt(CN)_4B_1$ 

Sec Perbromoplatinocyanhydric acid

Potassium bromoplatinocyanide, 5K<sub>2</sub>Pt(CN)<sub>4</sub>
K Pt(CN)<sub>4</sub>Bi +1SH<sub>2</sub>O
Sol in H O

## Bromoplatinous acid

Potassium bromoplatinite, K<sub>2</sub>PtBr<sub>4</sub>+2H O Extremely sol in H<sub>2</sub>O (Billin inn ind Anderson B 1903, **36** 1506)

Bromopurpureochromium bromide, Bi Ci (NH<sub>3</sub>)<sub>1</sub>Bi

Tess sol in HO than chloropurpured chromium chloride (Jorgensen, J. pr. (2) 25/83)

— - bromoplatinate, BiCi(NH<sub>3</sub>),PtBi<sub>1</sub> (Joigensen, l c)

--- chloride, BiCi(NH3)6Cl2

More sol in H O than the brounde (Jorgensen, l c)

#### Bromopurpureochromium chromate, BrCr(NH<sub>3</sub>)<sub>5</sub>CrO<sub>4</sub>

Precipitate (Jorgensen, l c)

---- mtrate, BrCr(NH<sub>3</sub>)<sub>5</sub>(NO<sub>3</sub>)<sub>2</sub>

More sol than bromide and less than chloride (Jorgensen, l c)

#### Bromopurpureocobaltic bromide, CoBr(NH<sub>3</sub>)<sub>5</sub>Br<sub>2</sub>

Sol in 530 pts  $\rm H_2O$  at 16° Insol in alcohol, NH<sub>4</sub>Br, KBr, or HBr+Aq More sol in hot  $\rm H_2O$  containing a little HBr (Jorgensen, J pr (2) 19 49)

# Bromopurpureocobaltic mercuric bromide, CoBr(NH<sub>3</sub>)<sub>5</sub>Br<sub>2</sub>, 3HgBr<sub>2</sub>

More sol in  $H_2O$  than the corresponding  $HgCl_2$  salt (J)

#### --- bromoplatinate

Very sl sol in cold H<sub>2</sub>O (J)

--- chloride, CoBr(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>

Difficultly sol in cold H<sub>2</sub>O, but much more easily than the bromide Insol in dil HCl+Aq, and in alcohol

mercuric chloride, CoBr(NH<sub>3</sub>)<sub>5</sub>Cl 3HgCl<sub>2</sub>

Sl sol in H2O

#### ---- chloroplatinate

Nearly or quite insol in  $H_2O$  (J)

---- chromate, CoBr(NH<sub>3</sub>)<sub>5</sub>CrO<sub>4</sub>

Nearly insol in H<sub>2</sub>O

— dithionate, CoBr(NH<sub>3</sub>)<sub>5</sub>S<sub>2</sub>O<sub>6</sub>

Nearly insol in H O

---- fluosilicate, CoBr(NH3)5S1F,

Very sl sol in cold H<sub>2</sub>O, insol in alcohol

---- nitrate, CoBr(NH<sub>3</sub>)<sub>5</sub>(NO<sub>3</sub>)<sub>2</sub>

More sol in H<sub>2</sub>O than the bromide, but less than the chloride Wholly insol in dil HNO + Aq or alcohol

--- oxalate, CoB1(NH3) C O4

Nearly insol in H<sub>2</sub>O

---- sulphate, CoB1(NH3)55(14

Can be crystallized from very dil H2SO4+ Aq Insol in alcohol +6H O Ffflorescent

#### Bromopurpureorhodium bromide, BrRh(NH<sub>d</sub>)<sub>b</sub>Bi

Much less easily sol in H O than the chloro chloride Insol in dil HBr+Aq and alcohol (Jorgensen, J pr. (2) 27 433)

--- bromoplatinate, B1Rh(NH<sub>d</sub>)<sub>5</sub>PtB1,

Almost insol in H ()

--- fluosilicate, BiRh(NH3)5511,

Sl sol in  $H_2O$  Sol in boiling  $N_3OH + Aq$  as roseo salt

Bromopurpureorhodium nitrate, BrRh(NH<sub>3</sub>)<sub>5</sub>(NO<sub>3</sub>)<sub>2</sub>

Sl sol in H<sub>2</sub>O, but much more sol than ie bromide

#### Bromorhodous acid

Ammonium bromorhodite, (NH<sub>4</sub>)<sub>2</sub>RhBr<sub>5</sub> Sol in H<sub>2</sub>O (Goloubkine, Chem & c

1911, **100** (2) 45) Sol in H<sub>2</sub>O (Gutbier, B 1908, **41** 215

Barium bromorhodite, BaRhBr<sub>5</sub>
Sol in H<sub>2</sub>O (Goloubkine, l c)

Cæsium bromorhodite, Cs<sub>2</sub>RhBr<sub>5</sub>
Difficultly sol in H<sub>2</sub>O (Gutbier, *l c*)

Potassium bromorhodite, K<sub>2</sub>RhBr<sub>5</sub>

Very sol in  $H_2O$  (Goloubkine, l c) Sol in  $H_2O$  (Gutbier, l c)

Rubidium bromorhodite,  $Rb_2RhBr_5$ 

Sol in  $H_2O$  (Goloubkine, l c) Difficultly sol in  $H_2O$  (Gutbier, l c

Sodium bromorhodite, Na<sub>2</sub>RhBr<sub>5</sub> Very sol in H<sub>2</sub>O (Goloubkine, *l c*)

#### Bromoruthenic acid

Potassium bromoruthenate, K2RuBr6

Very sol in  $H_2O$  (Howe, J Am Cl m Soc 1904, **26** 946)

Potassium aquobromoruthenate,

 $K_2Ru(\bar{H}_2O)Br_5$ 

Ppt (Howe, l c)

Rubidium bromoruthenate, Rb RuBr. Sol in H<sub>2</sub>O (Howe, l c)

Rubidium aquobromoruthenate, Rb<sub>2</sub>Ru(H<sub>2</sub>O)B<sub>15</sub>

Ppt (Howe, l c)

#### Bromoruthenious acid

Cæsium bromoruthenite, CsRuBi +II (
Ppt (Howe, J Am Chem Soc 190) 26
945)

Potassium bromoruthenite, K RuBi

Very sol in HO with decomp—Ver—sol in dil HBr = (Howe, l=e)

Rubidium bromoruthenite, Rb RuBi + ()
Sol in dil HBi (Howe / e)

#### Bromoselenic acid

Ammonium bromoselenate, (NII4) St B1

Sol in H<sub>2</sub>O with decomp (Muthm in and Schuler, B **26** 1008)

Cæsium bromoselenate, Ca Sc Bic

Sl sol in H O (1 cnher J Am C icm Soc 1898, **20** 571)

Potassium bromoselenate, K ScBi, As NH, Silt (M and S) Rubidium bromoselenate, Rb<sub>2</sub>SeBr<sub>6</sub>

Less sol in H<sub>2</sub>O than K salt (Lenher, l c)

Bromopyroselemous acid

Ammonium bromopyroselenite, NH<sub>4</sub>Br, 2SeO<sub>2</sub> +2HO

More easily sol in HO than corresponding Cl compound (Muthmann and Schafer, B 1893, **26** 1014)

Potassium bromopyroselenite, KBr, 2SeO<sub>2</sub>+

Sol in HO (Muthmann and Schafer, B **26** 1008)

Bromosmic acid

Ammonium bromosmate, (NH<sub>4</sub>)<sub>2</sub>OsBr<sub>6</sub> Only sl sol in H<sub>2</sub>O (Rosenheim, Z anorg

1899, **21** 135)

Cæsium bromosmate, Cs<sub>2</sub>OsBr<sub>6</sub>

Nearly insol in H2O and dil HBr (Gutbier, B 1913, 46 2103)

Potassium bromosmate, K<sub>2</sub>OsBr<sub>6</sub>

Only sl sol in  $H_2O$  (Rosenheim, l c)

Rubidium bromosmate, Rb<sub>2</sub>OsBr<sub>6</sub>

Difficultly sol in HO and in dil HBr (Gutbier, l c)

Silver bromosmate, Ag<sub>2</sub>OsBr<sub>6</sub>

Ppt insol in  $H_{2}O$  (Rosenheim, l c)

Sodium bromosmate, Na<sub>2</sub>OsBr<sub>6</sub>+4H<sub>2</sub>O Sol in H O (Rosenheim, l c)

Bromostannic acid, H<sub>2</sub>SnBr<sub>6</sub> +8H O Very deliquescent Sol in H2O (Seubert,

B **20** 794)

Ammonium bromostannate, (NH<sub>4</sub>) SnBr<sub>6</sub> Very deliquescent, and sol in H2O (Raymann and Picis, A 223 323)

Cæsium bromostannate

Sol in H O (Raymann and Picis)

Calcium bromostannate, C iSnBio+6H () Sol m H O (Ray-Very deliquescent mann and Piers)

Cobalt bromostannate, CoSnB1, +10H() (Raymann and Preis) Deliquescent

Ferrous bromostannate, I (SnB16+6H () (Raymann and Picis) Deliquescent

Lithium bromostannate, I i SnBi +6H O Extremely deliquescent (Leteur, C **113** 541)

Magnesium bromostannate, MgSnB16+ 10H2O

Deliquescent (Raymann and Preis)

Manganous bromostannate, MnSnBr<sub>6</sub>+  $6H_{2}O$ 

Deliquescent (Raymann and Preis)

Nickel bromostannate, NiSnBr<sub>6</sub>+8H<sub>2</sub>O

Deliquescent (Raymann and Preis)

Potassium bromostannate, K SnBr<sub>6</sub> Sol in H<sub>2</sub>O (Topsoe)

Rubidium bromostannate

Sol in H<sub>2</sub>O (Raymann and Preis)

Sodium bromostannate, Na SnBr<sub>6</sub>+6H<sub>2</sub>O Not deliquescent, but extremely sol in H<sub>2</sub>O (Seubert, B 20 796)

Strontium bromostannate, SrSnBr<sub>6</sub>+6H O

Very hydroscopic, and sol in HO (Raymann and Preis )

Bromosulphatoplatindiamine sulphate,

 $\frac{\mathrm{Br}}{\mathrm{N}} > \mathrm{Pt}(\mathrm{N}_{2}\mathrm{H}_{6}) \stackrel{\mathrm{SO}}{\sim} + \mathrm{H}_{2}\mathrm{O}$  $SO_{4} > Pt(N_{2}H_{6})_{2}SO_{4}$ 

Rather easily sol in hot H2O

Bromosulphobismuthous acid

Cuprous bromosulphobismuthite, 2Cu<sub>2</sub>S, B<sub>12</sub>S<sub>3</sub>, 2B<sub>1</sub>SBr

Stable in the air and insol in H<sub>0</sub>O at ord Partially decomp by boiling H<sub>2</sub>O Decomp by mineral acids with the evolution of H S (Ducatte, C R 1902, 134 1212)

Lead bromosulphobismuthite, PbS,Bi S<sub>3</sub>' 2BıSBr

lnsol in H<sub>2</sub>O Decomp by boiling H<sub>2</sub>O Decomp by dil mineral acids with evolution of  $H_2S$  (Ducatte, l c)

Bromotantalum bromide, (Ta<sub>6</sub>B<sub>11°</sub>)Br +  $7H_{2}O$ 

Stable in the air when in the solid state Sol in H<sub>2</sub>O without decomp Sol in propyl alcohol (Chapin, J Am Chem Soc 1910, **32** 328)

Bromotantalum chloride, (Ta<sub>6</sub>Br<sub>12</sub>)Cl + 7H O

(Ch upin, l c)

Bromotantalum hydroxide,  $(Ta_6Bi_1)(OH)_2+$ 10H O

Stable in the air below Sl sol in HCl 100°

Sol in alcohol Insol in other (Ch ipin l(c)

Bromotantalum iodide, (TabBi 1)I +7H O (Chapin, l c)

Bromotelluric acid

Ammonium bromotellurate,  $(NH_4)$ ,  $\Gamma eBi_6$ 

Less sol in HO than K salt (Muthmann and Schmidt, B 1893, 26 1011)

## Cæsium bromotellurate, Cs<sub>2</sub>TeBr<sub>6</sub>

Decomp by H<sub>2</sub>O

100 pts HBr+Aq (sp gr 149) dissolve 0 02 pt at 22°

100 pts HBr+Aq (sp gr 108) dissolve 0 13 pt at 22°

Insol in alcohol (Wheeler, Sill Am J **145** 267)

Potassium bromotellurate, K<sub>2</sub>TeBr<sub>6</sub>+3H<sub>2</sub>O Sol in little, decomp by much H<sub>2</sub>O Hauer)

Contains 2H<sub>2</sub>O (Wheeler, Sill Am J **145** 267)

Efflorescent

Anhydrous

100 pts HBr+Aq (sp gr 149) dissolve 6 57 pts at 22°

100 pts HBr+Aq (sp gr 1 08) dissolve 62 90 pts at 22° Stable on air (Wheeler)

## Rubidium bromotellurate, Rb, TeBr

Sol in a little hot H<sub>2</sub>O, but H<sub>2</sub>TeO<sub>3</sub> separates on cooling

100 pts HBr+Aq (sp gr 149) dissolve  $0.25 \text{ pt at } 22^{\circ}$ 100 pts HBr+Aq (sp gr 108) dissolve

388 pts at 22° (Wheeler)

#### Bromotetramine chromium bromide, $CrBr(NH_3)_4Br_2+H_2O$

Easily sol in H<sub>2</sub>O (Cleve)

- chloride,  $CrBr(NH_3)_4Cl + H_2O$ Sol in H<sub>2</sub>O (Cleve)

- sulphate,  $CrBr(NH_3)_4SO_4+H_2O$ Easily sol in HO (Cleve)

## Bromotetramine cobaltic sulphate,

 $BrCo(NH_3)_4SO_4$ , or  $BrCo_2(NH_3)_8(SO_4)$ Sol in H<sub>2</sub>O (Vortmann and Blasberg, B **22** 2652)

#### Cadmium, Cd

Not attacked by H<sub>2</sub>O Sol in HCl, or dil  $H_2SO_4+Aq$ , but more casaly in  $HNO_3+Aq$ Sol in HC<sub>2</sub>H<sub>8</sub>O +Aq

Chemically pure Cd like Zn is almost insol in dil acids, with the exception of HNO,

(Weeren, B 1891, 24 1798)

Sol in HClO3+Aq without evolution of H (Hendrixson, J Am Chem Soc 1904, 26 756)

Cadmium is sol in molten CdCl and can be recryst therefrom (Aucibuch, Z morg 1901, 28 42)

From 4 g Cd in 32 g molten CdCl it 650° 2 197 g were dissolved in ½ hi stein, Z anorg 1900, 23 295) (Helfen

Moderately quickly sol in KSO<sub>8</sub>+Aq More slowly sol in  $(NH_4) S_2O_8 + Aq$  (I evi, Gazz ch it 1908, 38 (1) 583)

Sol in (NH<sub>3</sub>)<sub>2</sub>S O<sub>3</sub>+Aq without evolution of gas (Turrentine, J phys Chem 1907, 11 627)

Sol in sulphostannates+Aq 1883, **16** 2015)

½ ccm oleic acid dissolves 0 0293 g Cc n 6 days (Gates, J phys Chem 1911, 15 14 Not attacked by sugar solution (K n and Berg, C R 102 1170)

#### Cadmium amalgam, Cd<sub>2</sub>Hg<sub>7</sub>

Stable from 0°-44° Can be cryst fin Hg without decomp if temp does not exc d (Kerp Z anorg 1900, 25 68)

#### Cadmium amide, Cd(NH<sub>2</sub>)<sub>2</sub>

Decomp by H<sub>2</sub>O (Bohart, J phys Ch n 1915, **19** 543)

#### Cadmium arsenide, Cd<sub>3</sub>As

(Descamps, C R 86 1022)

Cd<sub>3</sub>As<sub>2</sub> Sol in dil cold HNO<sub>8</sub> Attac by aqua regia (Granger, C R 1904,

#### Cadmium azoimide, $Cd(N_3)_2$

(Curtius, J pr 1898, (2) 58 294

#### Cadmium subbromide, Cd<sub>4</sub>Br<sub>7</sub>

Decomp by H<sub>2</sub>O (Morse and Jones, Ch J 1890, 12 490)

#### Cadmium bromide, CdBr<sub>2</sub>

Deliquescent Very sol in H<sub>2</sub>O

#### Solubility in HO at to

| t°              | % CdBr | t   | 9 CdI |
|-----------------|--------|-----|-------|
| $\overline{-4}$ | 32 0   | 48  | 60 (  |
| 1               | 34 7   | 71  | 61    |
| +1              | 36 3   | 104 | 61 }  |
| 2               | 36 0   | 155 | 63    |
| 9               | 41 9   | 170 | 65    |
| 14              | 46 0   | 215 | 69 (  |
| 25              | 52 6   | 232 | 70    |
| 35              | 59 6   | 245 | 71 '  |

Solid phase above 100° is CdBi +11 II ) (Ft ad, A ch 1894 (7) 2 541) See also under CdB12+H () and CdB + 4H()

Sp gr of CdBr + \q it 19 5° cont in ig 20 25 G Cd 1, 10 15 1 199 1.260 1 ()43 1.0901 141 4() 45 30 35 50 G Cd 1 1 400 1 481 | 1 575 | 1 650

(Kremers calculated by Gerlach Z in 8 280.)

CdBr +Aq containing 1806', CdPr sp gi  $20^{\circ}/20^{\circ} = 1.1375$ 

CdBr + \q cont uning 21 39°, CdBr 115

96.

sp gr  $20^{\circ}/20^{\circ} = 1.1666$ (I c Blane and Rohl and, Z phys Ch.

**19** 252 ) Sp gr of CdBi +Aq containing 35

 $CdBr_2 = 1.4231$  at  $19.4^{\circ}/4^{\circ}$  (Hallwach Ann 1599, 68 27)

Sp gr of CdBr<sub>2</sub>+Aq at 18°/4° 33 289 %CdBr<sub>2</sub> 23 973 20 552 11 983 1 384 1 252 Sp gr 1 209 1 112 % CdBr<sub>2</sub> 6 543 3 734 1 927 Śp gr 1 106 1 030 1 017 (de Muynck, W Ann 1894, 53 561)

Sp gr of CdBr<sub>2</sub>+Aq at 18° % CdBr<sub>2</sub> 1 5 10 20 15 Sp gr 1 0072 1 0431 1 0907 1 1432 1 1991 % CdBr<sub>2</sub> 35 40 1 2605 1 3296 1 4052 1 4915 1 5467 Sp gr (Grotrian, W Ann 1883, 18 193)

Sp gr of CdBr<sub>2</sub>+Aq

| % CdBr2 | t°                                                    | Sp gr st t°        | Sp gr at 18 |
|---------|-------------------------------------------------------|--------------------|-------------|
| 0 0324  | 17 90                                                 | 0 99901            | 0 99900     |
| 0 0748  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0 99702<br>0 99949 | 0 99935     |
| 0 0748  | 21 50                                                 | 0 99863            | 0 99955     |
| 0 154   | 17 67                                                 | 1 00008            | 1 00002     |
| 0 253   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | 0 99896<br>1 00119 | 0 00100     |
| 0 200   | 22 95                                                 | 0 99986            | 0 00100     |
| 0 506   | 18 07                                                 | 0 00308            | 1 00310     |
| 1 013   | 22 65<br>18 00                                        | 1 00212            | 1 00750     |
| 7010    | 10 00                                                 | l                  | 7 00100     |

(Wershofen, Z phys Ch 1890, 5 493)

Sp gi of CdBi<sub>2</sub>+Ag at 20°

| - F 6-                                |                                   |                                      |  |  |  |
|---------------------------------------|-----------------------------------|--------------------------------------|--|--|--|
| Normality of<br>CdBr <sub>2</sub> +Aq | %CdBr                             | Sp gr                                |  |  |  |
| 2 774<br>1 997<br>0 973<br>0 5138     | 46 574<br>37 53<br>22 53<br>12 46 | 1 6198<br>1 4469<br>1 2293<br>1 1211 |  |  |  |

(Forchheimer, Z phys Ch 1900, **34** 29)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 827)

Sol in AlBr<sub>3</sub> (Isbekow, Z anoig 1913, 84, 27)

Sol in HCl+Aq, HC2H3O2, alcohol, or

ther (Berthemot, A ch 44 387)

Sol in 0.94 pt HO, 34 pts abs alcohol, 250 pts (the), and 16 pts alcohol-ether (1 1) (Fder, Dingl **221** 89)

CdBr2 is sol in acctone ٦m (Krug and M Firov )

1 g CdBr2 is sol in 64.5 g acctone at 18° Sp gr of sit solution  $18^{\circ}/4^{\circ} = 0.8073$ mann, B 1904, **37** 4337)

Sol in acctone (Fidmann, C C 1899. II 1014)

Insol in must ud oil (Mathews, J phys Chem 1905, 9, 647)

(Nau-Difficultly sol in methyl acetite mann, B 1909, 42, 3790)

Insol in othyl acetate (Naumann, B 1910, **43** 314)

Sol in chinoline (Beckmann and Gabel, Z anorg 1906, 51 236) 100 g benzomtrik dissolve 0 857 g CdBr<sub>2</sub>

at 18° (Naumann, B 1914, 47 1370) Mol weight determined in piperidine (Ferchland, Z anorg 1897, 15, 17)

+H<sub>2</sub>O Solubility in H<sub>2</sub>O 100 g of the sat solution contain at 35° 45° 80° 100° 40° 60°

60 29 60 65 60 75 61 10 61 29 61 63 g CdBr<sub>2</sub> (Dietz, Z anorg 1899, 20 261)

 $+1\frac{1}{2}H_2O$ (Etard, A ch 1894, (7) 2 541)  $+4H_2O$ Efflorescent (Rammelsberg, Pogg 55 241)

Solubility in H<sub>2</sub>O

100 g of the sat solution contain at 18° 30° 38° 37 92 48 90 56 90 61 84 g CdBr<sub>2</sub> Sp gr of sat solution at  $18^{\circ} = 1683$ 

(Dietz, Z anorg 1899, 20 261)

100 g sat solution of CdBr<sub>2</sub>+4H<sub>2</sub>O in absolute alcohol contain 20 93 g CdBr<sub>2</sub> at 15°

100 g sat solution of CdBr2+4H2O in absolute ether contain 04 g CdBr<sub>2</sub> at 15° (Eder, Dingl 221 89)

Cadmium hydrogen bromide

Decomp by H<sub>2</sub>O (Berthelot, C R 91 1024)

Cadmium cæsium bromide, CdBr<sub>2</sub>, CsBr

Easily sol in H<sub>2</sub>O (Wells and Walden, Z anorg 5 270)

CdBr<sub>2</sub>, 2CsBr Decomp by HO into above comp (W and W)

 $CdBr_{\bullet}.3CsBr$ Decomp by H<sub>2</sub>O into CdBr<sub>2</sub>, CsBr (W and W)

Cadmium potassium bromide, CdBr<sub>2</sub>, KBr+ 1⁄2**H**2O

Sol in 0 79 pt H<sub>2</sub>O at 15°, pptd by alcohol and ether (Eder, Dingl 221 89)

 $+\mathrm{H}_2\mathrm{O}$ Sol in H<sub>2</sub>O without decomp from 0 4°-112 5° (Rimbach, B 1905, 38, 1554)

100 pts of the solution contain at 158°  $50^{\circ}$ 112 5°

53 75 58 68 68 25 78 10 pts of the salt CdB12, 4KBr Sol in 1 40 pts H2O at 15° putd by alcohol and other (Eder, Dingl **221** 89)

Cannot be prepared in a pure state as it is decomp by H<sub>2</sub>O below 160° (Rimbuch, B 1905**, 38** 1560 )

Cadmium rubidium bromide, CdBi , RbBi

Sol in HO without decomp from 04° to 107 5°

100 pts of the solution contain at

 $0.4^{\circ}$ 14 5° 49 2° 107 5°

41 87 58 54 75 77 pts of the salt (Rimbach, B 1905, **38** 1556)

CdBr<sub>2</sub>, 4RbBr Sol in H<sub>2</sub>O without decomp from 0.5° to 114.5° 100 pts of the solution contain at

13 5° 51 5° 0 5° 114 5°

 $68\ 82$ 47 95 55 17 79 04 pts of the salt (Rimbach, B 1905, 38 1561)

Cadmium sodium bromide, CdBr<sub>2</sub>, NaBr+ 2½H<sub>2</sub>O

Sol at 15° in 1 04 pts H<sub>2</sub>O, 3 7 pts abs alcohol, and 190 pts ether (sp gr 0 729) (Eder, Dingl **221** 89)

3CdBr<sub>2</sub>, 2NaBr+6H<sub>2</sub>O Stable in conc solutions and decomp only by great dilution (Jones and Knight, Am Ch J 1899, **22** 134)

Cadmium bromide ammonia, CdBr<sub>2</sub>, 2NH<sub>3</sub>
Can be crystallized out of warm NH<sub>4</sub>OH+
Aq (Croft, Phil Mag **21** 356)
CdBr<sub>2</sub>, 3NH<sub>3</sub> (Tassily, C R 1897, **124**1022)

CdBr<sub>2</sub>, 4NH<sub>3</sub> Decomp by H<sub>2</sub>O (Croft)

Cadmium bromide cupric oxide, CdBr<sub>2</sub>, 3CuO+3H<sub>2</sub>O (Mailhe, A ch 1902, (7) 27 383)

Cadmium bromide hydrazine,  $CdBr_2$ ,  $2N_2H_4$  Easily sol in  $NH_4OH+Aq$  (Franzen, Z anorg 1908, 60 280)

Cadmium bromide hydroxylamine,  $CdBr_2$ ,  $2NH_2OH$ 

Sol in hot H<sub>2</sub>O with formation of a basic salt Sol in dil acids Insol in alcohol and ether (Adams, Am Ch J 1902, **28** 218)

Cadmium subchloride, Cd<sub>4</sub>Cl<sub>7</sub>

Decomp by H<sub>2</sub>O and by acids and Jones, Am Ch J 1890, 12 490)

Cadmium chloride, CdCl.

Sol at 20° 40° 60° 80° 100° in 0 71 0 72 0 72 0 70 0 67 pts H<sub>2</sub>O (Kremers Pogg 103 57)

Sat CdCl<sub>2</sub>+Aq contains % CdCl<sub>2</sub> at t°

| t°            | %CdCl | t°  | %CdCl |
|---------------|-------|-----|-------|
| <del>-7</del> | 43 5  | 120 | 63 0  |
| +1            | 47 6  | 150 | 64 8  |
| 6             | 49 7  | 165 | 68 2  |
| 7             | 51 3  | 170 | 68 4  |
| 10            | 51 6  | 180 | 70 1  |
| 19            | 52 7  | 190 | 71 9  |
| 25            | 52 9  | 200 | 72 0  |
| 61            | 57 9  | 235 | 76 0  |
| 82            | 58 8  | 270 | 77 7  |
|               |       |     |       |

(Etard, A ch 1894, (7) 2 536)

100 mol H<sub>2</sub>O dissolve at

19 3° 29 7° 40 1° 54 5°

10 94 12 74 13 15 13 16 mol CdCl (Sudhaus, Miner Jahrb Beil-Bd 1914, 37

19)

See also under CdCl +H(), CdCl + 2½H O, and CdCl +4H<sub>2</sub>O

Sp gr of  $CdCl_2+Aq$  containing pts  $CdCl_2$ to 100 pts  $H_2O$ 13 26 9 41 pts  $CdCl_3$ 

1 1068 1 2106 1 3100 55 8 72 5 114 2 pts CdCl 1 4060 1 5060 1 7266

(Kremers, Pogg 103 57)

CdCl<sub>2</sub>+Aq containing 8 91% CdCl<sub>2</sub> has sp gr 20°/20°=1 0715 (Le Blanc and Rohland, Z phys Ch 1896, **19** 282)

on-

Sp gr of CdCl<sub>2</sub>+Aq at room temp

% CdCl 11 09 16 30 24 786 Sp gr 1 1093 1 1813 1 3199 (Wagner, W Ann 1883, **18** 266)

| Sp gr of CdCl<sub>2</sub>+Aq at 18°/4° % CdCl<sub>2</sub> 57 524 41 547 29 977 Sp gr 1 852 1 515 1 330 % CdCl<sub>2</sub> 21 431 14 761

% CdCl<sub>2</sub> 21 431 14 761 Sp gr 1 210 1 142

(de Muynck, W Ann 1894, 53 561

Sp gr of CdCl<sub>2</sub>+Aq at 18° % CdCl<sub>2</sub> Sp gr % CdCl<sub>2</sub> Sp gr % CdCl<sub>2</sub> Sp gr 1 0063 1 0436 1 0919 1 443 20  $^{25}$ 30 1 2620 1 3305 1 2007 1 075 40 45 50 1 4878 1 5775 16799

(Grotrian, W Ann 1883, 18 193)

Sp gr of CdCl +Aq

| %CdCl  | t°    | Sp_ratt | Sp gr | t 18° |
|--------|-------|---------|-------|-------|
| 0 0503 | 17 59 | 0 99920 | 0     | 3910  |
|        | 24 27 | 0 99781 | İ     |       |
| 0 0999 | 17 70 | 0 99964 | 0     | 9955  |
|        | 22 06 | 0 99533 |       |       |
| 0 200  | 15 31 | 1 00038 | 1     | 0044  |
|        | 24 00 | 0 99920 |       |       |
| 0 399  | 16 86 | 1 00239 | 1     | 022   |
|        | 24 21 | 1 00083 | 1     |       |
| 0 599  | 17 49 | 1 00466 | 1     | 039   |
|        | 25 12 | 1 00235 | ł     |       |
| 0 769  | 17 55 | 1 00580 | 1     | 057   |
| ı      | 21 76 | 1 00496 |       |       |
| 0 997  | 17 55 | 1 00754 | 1     | 1075  |
|        | 19/65 | 1 00713 | 1     |       |
|        |       | 1       | i     |       |

(Wershofen Z phys Ch 1890, 5 4 →)

Sp gr of CdCl +Aq at t

| t    | Normality of<br>CdCl +Aq | g CdCl in<br>100 g of v lution | /4 <sup>1</sup> |
|------|--------------------------|--------------------------------|-----------------|
| 20 5 | 3 50                     | 44 42                          | 5645            |
| -    | 2 61                     | 34 22                          | 3941            |
| "    | 1.76                     | 25 90                          | 24 35           |
| "    | 1 29                     | 19-91                          | 1977            |
| "    | 0.93                     | 14 55                          | 1404            |
| "    | 0 52                     | 5 84                           | 0801            |
|      | 1 ,                      | 1 (1 1/00 05                   | 454             |

(Oppenheimer, Z phys Ch 1898 **27** 454)

|                                |                                           |                                                                                           | CAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MIUM                                           | CHLO. | KIDE                            | j<br>          |                                          | 101                                                                                                                                                                                                                         |
|--------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|---------------------------------|----------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Sp gr                                     | of CdC                                                                                    | l <sub>2</sub> +Aq at t°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |       | Solu                            | bılı           | ty m Na                                  | aCl+Aq at t°                                                                                                                                                                                                                |
| 1° 22                          |                                           |                                                                                           | CdCl +Aq<br>458 pts H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sp gr<br>1 6128                                | t°    |                                 |                | dissolve<br>g NaCl                       | Solid phase                                                                                                                                                                                                                 |
| 18 7<br>17 2<br>16<br>17<br>22 | 1 " " " " " " " " " " " " " " " " " " "   | " " 27<br>" " 53<br>" " 54<br>" " 57<br>" " 77                                            | 7005 " "   988 " "   18 " "   479 " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 2896<br>1 0155<br>1 0152<br>1 0136<br>1 0076 | 19 3  | 111 8<br>116 6<br>85<br>40<br>5 | 34<br>15<br>01 | 7 52<br>12 19<br>25 67<br>36 76<br>35 84 | CdCl <sub>2</sub> +2½H <sub>2</sub> O<br>CdCl <sub>2</sub> +2½H <sub>2</sub> O +CdCl <sub>2</sub><br>2NaCl+3H <sub>2</sub> O<br>CdCl 2NaCl+3H <sub>2</sub> O<br>CdCl <sub>2</sub> 2NaCl+3H <sub>2</sub> O +<br>NaCl<br>NaCl |
|                                | Solubi                                    | lity in F                                                                                 | Cl+Aq at t°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                | 29 7  | 129<br>132                      |                | 9 63                                     | CdCl <sub>2</sub> +2½H O<br>CdCl +2½H O+CdCl <sub>2</sub><br>2NaCl+3H O                                                                                                                                                     |
| t° (.                          | 100 g H O                                 | dissolve<br>g KCl                                                                         | Solid pha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rse                                            |       | 123<br>106<br>91                | 16             | 10 10<br>12 92<br>15 41                  | CdCl 2NaCl+3H <sub>2</sub> O                                                                                                                                                                                                |
| 19 3                           | 111 30<br>59 59<br>26 98                  | 6 70<br>11 09                                                                             | CdCl +2½<br>CdCl +2½H2<br>KCl+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) +CdCl <sub>2</sub><br>20                     |       | 43                              |                | 27 46<br>37 54<br>35 88                  | CdCl2 2NaCl+3H2O+<br>NaCl<br>NaCl                                                                                                                                                                                           |
|                                | 11 61                                     | 30 04<br>34 76<br>33 94                                                                   | CdCl <sub>2</sub> KCl<br>CdCl KCl+H<br>4KCl<br>CdCl 4KC<br>KCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O+CdCl <sub>2</sub>                            | 40 1  | 133<br>137                      | 03             | 15 14                                    | CdCl <sub>2</sub> +H O<br>CdCl +H O +CdCl <sub>2</sub><br>2NaCl+3H <sub>2</sub> O                                                                                                                                           |
| 29 7                           | 129 65<br>97 62<br>65 23                  | 0 70<br>7 08                                                                              | CdCl +3 <sup>1</sup> . CdCl*+2 <sup>1</sup> . CdCl +2 <sup>1</sup> /.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≨H O                                           | -     |                                 | 17<br>31       | 29 50<br>38 16<br>36 18                  | CdCl <sub>2</sub> 2NaCl+3H O<br>CdCl <sub>2</sub> 2NaCl+3H <sub>2</sub> O+<br>NaCl<br>NaCl                                                                                                                                  |
|                                | 47 12<br>32 67<br>24 26<br>15 99<br>15 47 | 9 \$9<br>13 06<br>16 10<br>25 97<br>33 5\$                                                | KCI+H<br>(dCl KCI<br>(dCl <sub>2</sub> KCI+H<br>4KC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O+CdCl                                         | 54 5  | 140                             |                | 19 10<br>32 97                           | CdCl 2NaCl+3H O+<br>NaCl                                                                                                                                                                                                    |
|                                | 2 42                                      | 37 66<br>57 21                                                                            | CdCl 4KC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | At 3  | 4 5°, (                         | CdC            | $\frac{1}{1_2+2\frac{1}{2}}$             | H <sub>2</sub> O →CdCl +H O and                                                                                                                                                                                             |
| 40 1                           | 155 55 92 15                              | 2 70<br>11 50                                                                             | (d(1+H t)<br>(d(1+H t)<br>(d(1+K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +( dC1                                         |       |                                 |                | mei Ji                                   | atter<br>hrb Bcil –Bd 1914, <b>37</b><br>28)                                                                                                                                                                                |
| 54 5<br>(Suc                   | 37 91<br>24 45<br>18 97<br>19 92<br>2 98  | 15 21<br>21 73<br>35 51<br>57 65<br>10 56<br>2 5<br>1 18 37<br>1 18 37<br>1 45 5<br>43 00 | Insol in SbCl, (Riemensiewiez, C A   1909, 269 )   Insol in liquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927 )   Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927     Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927     Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927     Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927     Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927     Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927     Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927     Insol in sliquid NII, (Frinklin, Am Ch   1898, 20   927     Insol in sliqu |                                                |       |                                 |                |                                          |                                                                                                                                                                                                                             |

(Centnerszwer, Z phys at the critical temp Ch 1910, **72** 437

(Krug and Somewhat sol in acetone M'Elroy)

Sol in acetone, insol in methylal mann, C C 1899, II, 1014) (Eid-Insol in methyl acetate (Naumann, B

1909, 42 3790)

Sol in ethyl acetate (Naumann, B 1904,

37 3601)

Difficultly sol in ethylacetate (Naumann, B 1910, 43 314)

Sol in urethane (Castoro, Z anorg 1899, **20** 61)

At 18°, 100 g benzonitrile dissolve 0 06332 g CdCl<sub>2</sub> (Naumann, B 1914, 47, 1370) (Baxter and Hines, Am Insol in toluene Ch J 1904, 31 222)

(Beckmann and Gabel, Sol in chinolin

Z anorg 1906, 51 236)

Solubility in H<sub>2</sub>O  $+\mathrm{H}_2\mathrm{O}$ 

100 g of the sat solution contain at  $20^{\circ}$ 40° 60° 10° 57 47 57 35 57 51 577780° 100°

59 52 g CdCl<sub>2</sub> 5841

110° is bpt of the sat solution (Dietz, Z anorg 1899, 20 257)

+2½H<sub>2</sub>O Solubility in H<sub>2</sub>O 100 g of the sat solution contain at —10° 18° 30° 36° 44 35 47 37 52 53 56 27 57 91 g CdCl<sub>2</sub> Sp gn of sat solution = 1.741(Dietz, Z anorg 1899, 20 257)

+4HO Solubility in H<sub>2</sub>O 100 g of the sat solution contain at --9° 0°  $+10^{\circ}$  $+15^{\circ}$ 43 58 49 39 55 58 59 12 g CdCl (Dietz, Z anorg 1899 **20** 257)

+5H O (Worobieff, Z morg 1898, 18 386)

Cadmium hydrogen chloride, CdCl<sub>2</sub>, 2HCl+  $7H_2O$ 

Decomp in all (Borthelot, C R 91 1024)

Cadmium (æsium chloride, CdCl2, 2CsCl

Easily sol in HO and dil HCl+Aq, insol in conc HCl+Aq (Godeffroy, B 8 9)

Nearly insol in CsCl+Aq (Wells and Walden, Z anorg 5 266)

CdCl, CsCl Sl sol in H<sub>2</sub>O, nearly insol in CdCl<sub>2</sub>+Aq (Wells and Walden)

Cadmium calcium chloride, 2CdCl, CaCl<sub>2</sub>+ 7H<sub>2</sub>O

Rather deliquescent, and very sol in H<sub>2</sub>O When ignited is only sl sol in H<sub>2</sub>O with evolution of heat (v Hauer, J pr 63 432)  $CdCl_2$ ,  $2CaCl_2+12HO$ Very deliquescent (v Hauer)

Cadmium cobaltous chloride, 2CdCl<sub>2</sub>, CoCl  $+12H_{\bullet}O$ 

Deliquescent Sol in H<sub>2</sub>O (v Hauer, W A B 17 331)

Cadmium cupric chloride, CdCl. CuCl - $4H_{2}O$ 

Sol in H<sub>2</sub>O (v Hauer, W A B 17 331

Cadmium hydrazine chloride, CdCl<sub>2</sub>, N<sub>2</sub>H<sub>4</sub>HCl

Unstable in the air when moist Very so in H<sub>2</sub>O, sl sol in alcohol, sol in NH<sub>3</sub>+A<sub>6</sub> (Curtius, J pr 1894, (2) **50** 334) CdCl<sub>2</sub>,2N<sub>2</sub>H<sub>4</sub>HCl+4H<sub>2</sub>O Ver

Very sol H<sub>2</sub>O, sl sol m alcohol (Curtius, J pr 189

(2) **50** 335)

Cadmium iron (ferrous) chloride, 2CdCl  $FeCl_2 + 12H_2O$ 

Sol in  $H_2O$  (v Hauer, W A B 17 331

Cadmium lithium chloride, CdCl, LiCl- $3\frac{1}{2}H_2O$ 

Very deliquescent Decomp by solutio in  $H_2O$ , but not in alcohol (Chassevant, ch (6) **30** 39)

Cadmium magnesium chloride, 2CdCl,  $MgCl_2+12H_2O$ 

Deliquescent in moist, stable in dry u Easily sol in H2O with absorption of hea Much more sol in hot than in cold H () Hauer)

Solubility 11 H<sub>2</sub>O at t°

| 1     | G Cd₂MgCl in<br>100 g solution | G Cd MgCl m<br>100 g H O |
|-------|--------------------------------|--------------------------|
| 2 4   | 45 61                          | \$3 %                    |
| 2( 5  | 49 69                          | 9\$ 77                   |
| 45 5  | 53 51                          | 115 10                   |
| 67 2  | 58 14                          | 138 90                   |
| 121 8 | 65 48                          | 159 69                   |

(Rimbach, B 1897, 30 3084)

Cadmium manganese chloride, 2011 MnCl<sub>2</sub>+12H ()

Deliquescent in moist, efflorescent in d Sol in HO (v Hauer)

Cadmium nickel chloride, (d)  $2N_1(1$ 12H O

Sol in H<sub>2</sub>O (v H aucr, W \ B 20 40 r 2CdCl<sub>2</sub>, NiCl +12H O Sol in H O ( Hauer)

Cadmium potassium chloride, CdCl, KCl ½H₂O

Sol in H2O without decomp (v Hauer

100 mol H O dissolve at +H<sub>2</sub>O 19 3° 29 7° 40 1° 54 5° 265 321 372 433 mol CdCl<sub>2</sub>, KCl+H<sub>2</sub>O (Sudhaus, Miner Jahib Beil-Bd 1914, 37

Solubility in H<sub>2</sub>O at t°

| t°    | G CdKCl <sub>3</sub> in<br>100 g solution | G CdhCl <sub>3</sub> in<br>100 g H <sub>2</sub> O |
|-------|-------------------------------------------|---------------------------------------------------|
| 2 6   | 21 87                                     | 27 99                                             |
| 15 9  | 26 60                                     | 36 4                                              |
| 41 5  | 35 66                                     | 55 34                                             |
| 60 6  | 40 67                                     | 68 55                                             |
| 105 1 | 51 67                                     | 106 91                                            |

(Rimbach, B 1897, 30 3079)

CdCl<sub>2</sub>, 2KCl 100 pts H<sub>2</sub>O at 155° dissolve 33 45 pts Sl sol in alcohol (Croft, Phil Mag (3) 21 356)

Solubility in salts + Aq at 16°

CdCl2, 2hCl is sol without decomp in the following salt solutions at 16°

| Salt                             | Mols<br>salt in<br>100 mole | In 1 liti               | rc of the<br>mole | Sp gr<br>of the |                           |
|----------------------------------|-----------------------------|-------------------------|-------------------|-----------------|---------------------------|
|                                  | HO                          | CdCl                    | KCl               | RCI             | solution                  |
| L <sub>1</sub> Cl<br>CaCl<br>KCl | 9 3<br>3 8<br>2 375         | 0 166<br>0 270<br>0 507 |                   | 4 483<br>1 887  | 1 1380<br>1 2333<br>1 214 |

(Runbach, B 1905, 38 1568,)

CdCl<sub>2</sub> 4KCl More sol in HO than CdCl, KCl (v H mcr) 100 g H O dissolve at

19 3° 20.7° 10 1°

54 5° 41 65 49 05 57 5) 69 91 g CdCl 4KCl (Sudhaus Miner Jahrb Beil-Bd 1914, 37 24)

Solubility in II O at to

| 1      | 100 pt | solution cor | itain pts |
|--------|--------|--------------|-----------|
|        | (1     | (1           | l k       |
| 1 ()   | > 61   | 9.51         | 5 31      |
| 2 6    | 5 66   | 14 02        | 11 52     |
| 50-2   | 9 10   | 15 09        | 13 60     |
| 105 5  | 11 97  | 23 05        | 17 10     |
| 109 () | 11 91  | 23 15        | 17 22     |
|        | 1      | -            | ·         |

(Rimbach B 1897 30 3080)

Decomp by H O

Can be recryst without decomp from LiCl, CaCl or MgCl +  $\lambda_q$  (Rumbach, B 1905)

The salt is sol-without decompout HCl+ \q containing 19.8 mole HCl per 100 mole H O

1 l of the solution contains ()()33 mole CdCl, 0 132 mole KCl and 5 525 mole HCl sp gr of the solution = 1 1403 (Rimbuch, B 1905, 38 1565)

Cadmium rubidium chloride, CdCl<sub>2</sub>, 2RbCl Sol in H<sub>2</sub>O and HCl+Aq (Godeffroy, B

CdCl<sub>2</sub>, RbCl Solubility in H<sub>2</sub>O at t° 100 pts by wt of the solution contain pts by wt RbCl, CdCl<sub>2</sub>

| t°    | Pts RbCl CdCl |
|-------|---------------|
| 1 2   | 12 97         |
| 14 5  | 16 80         |
| 41 4  | 25 31         |
| 57 6  | 30 83         |
| 103 9 | 46 62         |

CdCl<sub>2</sub>, RbCl is sol in H<sub>2</sub>O without decomp from 0-104° (Rimbach, B 1902, 35 1303)

CdCl<sub>2</sub>, 4RbCl

Solubility of CdCl<sub>2</sub>, 4RbCl and CdCl<sub>2</sub>, RbCl m H<sub>2</sub>O at t°

|                                             | In 10                                        | 00 pts by<br>the solution                       | wt of                                              | Composition of<br>the solid phase |                            |
|---------------------------------------------|----------------------------------------------|-------------------------------------------------|----------------------------------------------------|-----------------------------------|----------------------------|
| t°                                          | Pts by<br>wt Cd                              | Pts by<br>wt Cl                                 | Pts by<br>wt Rb                                    | Mol %<br>mono<br>salt             | Mol -%<br>tetra<br>salt    |
| 0 7<br>8 8<br>13 8<br>42 4<br>59 0<br>108 4 | 0 65<br>1 07<br>1 32<br>3 21<br>4 61<br>8 94 | 6 52<br>7 37<br>7 86<br>11 35<br>13 41<br>18 57 | 14 73<br>16 13<br>16 93<br>22 45<br>25 31<br>31 15 | 30<br>24<br>16<br>14<br>33        | 70<br>76<br>84<br>86<br>67 |

(Rimbach, B 1902, **35** 1305)

Decomp by HO between 0° and 108°

(Rimbach, B 1905, 38 1571)
Sol in conc HCl without decomp bach, B 1905, 38 1571) (Rım

Not sol in CaCl +Aq and I iCl+Aq without decomp (Rimbach, B 1905, 38 1571)

Cadmium sodium chloride, CdCl, 2NaCl+ 3H()

Sol in 14 pts H<sub>2</sub>O at 16° (Croft) 100 mol H O dissolve at

40 1° 19 3° 29 7° 54 5° 393 4 29 473 5.15 mol CdCl. 2N (Cl+3H ()

Stable between 19 and 55°

(Sudhaus, Minci Jahrb Boll-Bd 1914, 37 25)

SI sol in alcohol or wood alcohol (Croft)

Cadmium strontium chloride, 2CdC1, SiC1+ 7H ()

Sol in II () (v Huici)

Cadmium chloride ammonia, CdCl, 2NH;

Nearly insol in H<sub>2</sub>O (v Huuer)

CdCl, 3NH<sub>3</sub>+1<sub>4</sub>H (CdCl, 4NH<sub>3</sub>+1<sub>2</sub>H O

CdCl , 5NH<sub>3</sub> (Andre, C R 104 908) CdCl , 6NH<sub>4</sub> Difficultly sol in cold H<sub>2</sub>O

(Schuler, A 87 34)

Cadmium chloride cupric oxide, CdCl<sub>2</sub>,  $3CuO + 3H_2O$ 

Not decomp by H<sub>2</sub>O (Mailhe, A ch 1902, (7) **27** 378 and 174)

Cadmium chloride hydrazine, CdCl<sub>2</sub>, 2N<sub>2</sub>H<sub>4</sub>

Insol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq (Franzen, Z anorg 1908, **60** 279)

 $+\mathrm{H}_2\mathrm{O}$ Insol in  $H_2O$ , easily sol  $NH_4OH+Aq$  (Curtius, J pr 1894, (2) 50 345)

#### Cadmium chloride hydroxylamine, CdCl<sub>2</sub>, 2NH<sub>2</sub>OH

Sl sol in cold, somewhat more in warm H<sub>2</sub>O Very sol in hydroxylamine+Aq Very sl sol in alcohol and other organic solvents (Crismer, Bull Soc (3) 3 116) Aq solution sat at 20° contains about 1%

(Antonoff, C C 1905, II 810)

#### Cadmium fluoride, CdF<sub>2</sub>

Difficultly sol in H<sub>2</sub>O Easily sol in HF+ (Berzelius, Pogg 1 26)

Very sol in H<sub>2</sub>O, insol in 95% alcohol, sol in HCl, H<sub>2</sub>SO<sub>4</sub>, or HNO<sub>3</sub>+Aq with evolution of HF (Poulenc, C R 116 582)

1 l H<sub>2</sub>O dissolves 0 289 mol CdF<sub>2</sub> at 25° or 100 cc sat aqueous solution contains 4 36 g CdF<sub>2</sub> at 25° (Jaeger, Z anorg 1901, 27 35)

1 l of 108-N HF dissolves 0372 mol CdF<sub>2</sub> at 25° (Jaeger, Z anorg 1901, 27 35) Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 827 )

Cadmium ceric fluoride, CdF<sub>2</sub>,2CeF<sub>4</sub>+7H<sub>2</sub>O Decomp by H<sub>2</sub>O (Rimbach, A Ppt 1909, **368** 106)

Cadmium columbium fluoride See Fluocolumbate, cadmium

Cadmium molybdenyl fluoride See Fluoxymolybdate, cadmium

Cadmium silicon fluoride See Fluosilicate, cadmium

Cadmium stannic fluoride See Fluostannate, cadmium

Cadmium titanium fluoride Sec Fluotitanate, cadmium

Cadmium zirconium fluoride See Fluozirconate, cadmium

#### Cadmous hydroxide, CdOH

Decomp by seids into Insol in HO cadmic salt (Morse and Jones, Am Ch J **12** 488)

#### Cadmium hydroxide, CdO<sub>2</sub>H<sub>2</sub>

Insol in H O 11 CdO H<sub>2</sub>+Aq contains 0 0026 g CdO H<sub>2</sub> at 25° (Bodlander, Z phys Ch 1898, 66)

Solubility in  $H_2O = 2.6 \times 10^{-4}$  anorg 1900, 24 126) (Herz,

Sol in acids, very sol in NH<sub>4</sub>OH+ insol in KOH, NaOH, Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>,  $(NH_4)_2CO_3+Aq$ 

Easily sol in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, NH<sub>4</sub>Cl, NH<sub>4</sub>N 3,

and NH<sub>4</sub> succenate + Aq (Wittstein)
Freshly pptd CdO<sub>2</sub>H<sub>2</sub> is sol in al haloids+Aq (Bersch, Z phys Ch 1891 8 392)

Solubility in NH<sub>4</sub>OH+Aq increases v increase in concentration of NH4OH (Et 1, B 1903, **36** 3401)

#### Solubility in NH<sub>4</sub>OH+Aq at 25°

| NH <sub>3</sub> norm     | g CdO per l                  |  |
|--------------------------|------------------------------|--|
| 0 5<br>1 0<br>1 8<br>4 6 | 0 24<br>0 62<br>1 33<br>4 92 |  |
|                          |                              |  |

(Bonsdorff, Z anorg 1904, 41 187)

Insol in ethyl, and methyl amine+ q (Wurtz)

Very sl sol in HCN+Aq even when fre dy pptd (Schuler, A 87 48)

Not pptd in presence of Na citrate (Spil r), and many non-volatile organic substar es (Rose)

#### Cadmium iodide, Cdl<sub>2</sub>

Sol in 1 13 pts H<sub>2</sub>O it 15° (Edei, D gl **221** 89) Sol at 20° 40° 60° 80° 100° in 1 08 1 00 0 93 0 86 0 75 pts 1 O (Kremers Pogg 103 57)

Sit CdI + Ag contains it 24° -4°  $+2^{\circ}$  $+10^{\circ} 13^{\circ}$ 437 44 8 474', ( ] 424 45 2 46 5 135° 54° 64° 76° 94° 95° 629°, C I 547 49 5 50 1 524 55 1 255° 202° 155° 202° 14()° 165 734 732 54 54 ( 631 68 1 70.7 (Ftud A ch 1894 (7) 2 545)

Solubility in H O 100 g of the sat solution contain at 5()° 7 ° 52.65 56.05 g C H 44 39 46 02 49 35 (Dietz / morg 1899, 20 262)

Sp g1 of (dI + \q cont uning pts (c 2 to 100 pts H O

21 4 437 55 5 pts CdI 1 328 1 6139 1 1681

(Kiemeis Pogg 111 60)

Sp gr of CdI<sub>2</sub>+Aq at 19 5° containing 5 10 15 20 25 %CdI<sub>2</sub>, 1 044 1 088 1 138 1 194 1 253

(Grotman, W Ann 1883, **18** 193) Sp gr of CdI<sub>2</sub>+Aq

| g CdI per l    | Sp gr         | g CdI <sub>2</sub> per l | Sp gr          |
|----------------|---------------|--------------------------|----------------|
| 98 85<br>197 7 | 1 08<br>1 162 | 289 5<br>400             | 1 237<br>1 328 |

(Barbier and Roux, Bull Soc 1890, (3) 3 425)

Sp gr of CdI<sub>2</sub>+Aq

| % CdI <sub>2</sub> | t°             | Sp gr at to        | Sp gr at 18° |
|--------------------|----------------|--------------------|--------------|
| 0 0429             | 17 68          | 0 99915            | 0 99908      |
| 0 100              | 22 88<br>17 55 | 0 99807<br>0 99965 | 0 99956      |
| 0 204              | 22 91<br>17 76 | 0 99363<br>1 00052 | 1 0005       |
| 0 399              | 22 79<br>17 40 | 0 99948<br>0 00223 | 1 0021       |
| 0 600              | 24 30<br>18 00 | 1 00082            | 1 0038       |
| 0 500              | 17 44<br>23 11 | 1 00564<br>1 00442 | 1 0056       |
| 1 00               | 18 00          | - 50112            | 1 0072       |

(Washofen, Z phys Ch 1890, 5 493)

(de Muynek, W Ann 1894, 53 561)

CdI +  $\sqrt{q}$  if i i = 10.97% CdI<sub>2</sub> has sp gi  $20^{\circ}/20^{\circ} = 0.052$ CdI +  $\sqrt{q}$  contuning 16.53% CdI has sp

CdI + Vq continuing 16.53% CdI has sp  $EI = 20^{\circ}/20^{\circ} = 1.1562$ 

(I c Blane and Rohland, Z phys Ch 1896, 19 282)

Sp gr of CdI2+Aq at 20°

| Normality of<br>(dI + Aq | % CdI2 | Sp gr  |
|--------------------------|--------|--------|
| 1 924                    | 44 53  | 1 5807 |
| 0 951                    | 27 07  | 1 2837 |
| 0 447                    | 14 40  | 1 1355 |
| 0 211                    | 7 26   | 1 0630 |

(Forchhamer, Z phys Ch 1900, 34 29)

 $CdI_2+Aq$  containing 1 pt  $CdI_2$  in 2 2691 pts  $H_2O$  at 17° has sp gr = 1 3341 (Hittorf, Z phys Ch 1902, 39 628)

Sol in sat HI+Aq Sol in warm NH<sub>4</sub>OH+Aq

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

1898, **20** 827 5 Sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 827 )

Sol in S<sub>2</sub>Cl<sub>2</sub> (Walden, Z anorg 1900, 25 217)

Difficultly sol m POCl<sub>3</sub> (Walden, Z anorg 1900, 25 212)

Nearly insol in AsBr<sub>3</sub> (Walden, Z anorg 1902, **29** 374)

Sol in SO<sub>2</sub>Cl<sub>2</sub> (Walden, Z anorg 1900, **25** 215)
Sol in 15 pts alcohol (Vogel, N Rep

Sol in 15 pts alcohol (Vogel, N Rep Pharm 12 393)

Sol m 0 98 pt abs alcohol (Eder, Dingl 221 89)

 $\begin{array}{cccc} \text{Sp} & \text{gr} & \text{of} & \text{CdI}_2 + \text{alcohol} \\ \% \text{CdI}_2 & \text{Sp} & \text{gr} & 20^\circ / 20^\circ \\ & 0 & 0 & 7949 \\ & 7 & 28 & 0 & 8470 \\ \end{array}$ 

(Le Blanc and Rohland, Z phys Ch 1896, 19 284)

Sol in 52 mols methyl, 7 mols ethyl, and 98 mols propyl alcohol at 20° (Timofejew, C R 112 1224)

Sol in 36 pts ether (Edei, l c)

Sol in 20 pts alcohol-ether (1 1) (Eder, lc)

Very sl sol in anhydrous abe (Hampe, Ch Z 1887, 11 847) 100 g of sat solution in abs ether con 0 143 g CdI<sub>2</sub> at 12° (Tyrer, Proc Che

0 143 g Cdl<sub>2</sub> at 12° (Tyrer, Proc Che Soc 1911, **27** 142)

Solubility in ether + Aq at 12°

| % H <sub>2</sub> O<br>in other | % CdI | % H O | % CdI | %H <sub>2</sub> O<br>in ether | % CdI2 |
|--------------------------------|-------|-------|-------|-------------------------------|--------|
| 0 0                            | 0 143 | 0 50  | 3 36  | 1 10                          | 7 30   |
| 0 10                           | 0 78  | 0 70  | 4 77  |                               | 8 27   |
| 0 30                           | 2 07  | 0 90  | 6 46  |                               | 8 68   |

(Tyrer, Proc Chem Soc 27 142)

Solubility in benzene at  $16^{\circ} = 0.01\%$ "  $35^{\circ} = 0.02\%$ 

Solubility in (thyl) other at  $0^{\circ} = 0.03\%$ " 15.5° = 0.04%

"  $20 \hat{3}^{\circ} = 0.05\%$ 

(I inchage), Am J Sci 1895 (3) 49 52) Sol in actone (Fidmann, C C 1899, II 1014)

1 g CdI<sub>2</sub> is sol in 4 g actione at 18° Sp gr of sat solution 18°/4°=0 994 (Naumun, 13 1904, **37** 4338)

Sp gr of CdI<sub>2</sub>+ action

| CdI     | 5p gr 20°/20     |  |  |
|---------|------------------|--|--|
| 0 12 02 | 0 7998<br>0 8929 |  |  |
|         | 1 // 1 1006      |  |  |

(I c Blune and Rohl and, Z phys Ch 1896, 19 284)

| Sol in chinolin (Beckmann and Gabel,                  |
|-------------------------------------------------------|
| Z anorg 1906, 51 236)                                 |
| 100 g benzonitrile dissolve 1 6295 g CdI <sub>2</sub> |
| at 18° (Naumann, B 1914, 47 1370)                     |
| Insol in methylene iodide (Retgers, Z                 |
| anorg 3 343)                                          |
| SI sol in ethylamine (Shinn, J phys                   |
| Chem 1907, <b>11</b> 538)                             |
| Insol in CS <sub>2</sub> (Arctowski, Z anorg 1849.)   |
| 6 257)                                                |
| Solubility in methyl acetate = 0.7-1.5%,              |
| 21% at bpt (Schroder and Steiner, J pr                |
| 1909, (2) <b>79</b> 49)                               |
|                                                       |

Sol in methyl acetate (Naumann, B 1909, 42 3790)

1 pt is sol in 54 3 pts ethyl acetate at 18°. The sat solution has  $D18^{\circ}/4^{\circ}=0$  9145 (Naumann, B 1910, 43 318)

Insol in mustard oil (Mathews, J phys Chem 1905, 9 647)

Mol weight determined in piperidine, pyridine, methyl and ethyl sulphide (Werner, Z anorg 1897, 15 17)

Cadmium hydrogen iodide, CdI<sub>2</sub> HI+3H<sub>2</sub>O Decomp in air (Dobroserdow, C C 1900, II 527)

Cadmium cæsium iodide, CdI<sub>2</sub>, CsI+H<sub>2</sub>O

n H<sub>2</sub>O without decomp (Wells and
, Z anorg 5 271)

2CsI As above

3CsI Decomp by H<sub>2</sub>O into the

Cadmium hydrazine iodide, CdI ,2N H<sub>4</sub>HI Sol in H<sub>2</sub>O (Ferratini, C A 1912 1612)

#### Cadmium mercuric iodide

Very sol in H() (Berthemot, J Phirm 14 613)
Cdl 3HgI, Sol in H<sub>2</sub>() Can be recrystallized in alcohol (Cluke and Kebler, Am Ch J 5 235)

Cadmium potassium iodide, CdI, KI+II () Sol in 0.94 pt H<sub>2</sub>() at 15° (Fder, Dingl 221 89)

CdI, 2kI+2H<sub>2</sub>() Deliquescent Fx tremely sol in H<sub>2</sub>() Sol it 15 in 0.73 pt H<sub>2</sub>() Sl sol in alcohol and wood spirit, but less than CdI<sub>2</sub> (Croft)

Sol at  $15^\circ$  in 14 pts absolute alcohol, 24.5 pts ether (0.729 sp. gr.), and 4.5 pts alcohol ether (1...1). (Feer, l.  $\epsilon$ .)

Sp gi of K CdI<sub>4</sub>+ \q at 18° % K<sub>2</sub>CdI<sub>4</sub> 1 5 10 15 20 Sp gi 1 0005 1 0384 1 0808 1 1269 1 1770

| Sp gr of K₂CdI₄+Aq                  |                                  |                    |                              |                      |  |
|-------------------------------------|----------------------------------|--------------------|------------------------------|----------------------|--|
| %K2CdI4                             | t°                               | Sp gr at to        | Sp gr at                     | 89                   |  |
| 0 0328<br>0 0596<br>0 0804<br>0 100 | 18<br>18<br>18<br>17 12<br>21 82 | 0 99962<br>0 99872 | 0 99<br>0 99<br>0 99<br>0 99 | )5<br>11<br>38<br>15 |  |
| 0 250<br>0 500<br>1 003             | 18<br>18<br>17 32<br>20 63       | 1 0068<br>1 0061   | 1 00<br>1 00<br>1 00         | ,                    |  |

(Wershofen, Z phys Ch 1890, 5 493)

Sol in ethyl acetate (Naumann, B 1 4, 37 3601)

Cadmium sodium iodide,  $CdI_2$ , 2NaI+6H)
Deliquescent (Croft)

Sol at 15° in 0 63 pt  $H_2O$ , 0 86 pt salcohol, and 10 1 pts ether (sp gr 0 7 ) (Eder, Dingl **221** 89)

Cadmium strontium iodide, CdI<sub>2</sub>, Srl + 8H<sub>2</sub>O

Deliquesces in moist, effloresces in dry r, sol in  $H_2O$  (Croft)

Cadmium iodide ammonia, CdI<sub>2</sub>, 2NH<sub>3</sub>

Decomp by H<sub>2</sub>O (Rammelsberg) CdI<sub>2</sub>, 4NH<sub>3</sub> (Dawson and McCrae, Ch n Soc 1900, 77 1246)

CdL<sub>2</sub>, 6NH<sub>3</sub> Decomp by H<sub>2</sub>O, sol in waim, less sol in cold NH<sub>4</sub>OH+Aq (R n-melsberg)

Cadmium iodide hydrazine, CdI, 2N<sub>2</sub>H<sub>4</sub>

Easily sol in warm  $NH_4OH+Aq$  (Fi n-zen, Z anorg 1908, **60** 281)

Cadmium iodide hydroxylamine, Cill 3NH OH

Sol in H<sub>2</sub>O and alcohol Insol in et r (Adams, Am Ch J 1902, 28 215)

Cadmium iodide selenide, CdI 3CdSc Fisily decomp (Fonzes-Discon, C F 1900 131 897)

Cadmium iodosulphide, CdI, 2CdS Ppt (Naumum, B 1904 37 4338)

Cadmium suboxide, Cd4()

Decomp by HO, acids and NH<sub>4</sub>O + Aq (1 mater, Z anoig 1901, **27** 433) Cd () Properties as endmous hydrox le (Morse and Jones)

Cadmium oxide, CdO

Insol in  $H_2O$  Sol in units Sol in  $NH_4OH+Aq$  Insol in  $(NH_4)CO_3+q$  Lasily sol in  $NH_4Cl+Aq$ , less in  $NH_4NC+Aq$  (Brett, **1837**)

Insol in KOH, NaOH, K2CO3, and Na2CO3 | Cadmium sulphide, CdS See also Cadmium hydroxide Solubility in (calcium sucrate+sugar)+ 1 l solution containing 4186 g sugar and 34 3 g CaO dissolves 0 22 g CdO 1 l solution containing 174 4 g sugar and 14 1 g CaO dissolves 0 48 g CdO (Bodenbender, J B 1865 600) Insol in acetone (Naumann, B 1904, 37 Insol in methyl acetate (Naumann, B 1909, **42** 3790) Insol in ethyl acetate (Naumann, B **1904**, **37** 3601) Cadmium peroxide,  $Cd_5O_8$  or  $Cd_3O_5(?)$ (Haas)  $CdO_2$ , Cd(OH)(Kouriloff, A ch (6) 23 431) Very stable towards H<sub>2</sub>O Insol in NH<sub>4</sub>OH +Aq (Haas, B 1884, 17 2253) 4CdO<sub>2</sub>, Cd(OH)<sub>2</sub> Ppt Insol in NaOH+ Aq (Eykmann, C C 1905, I 1629) 5CdO<sub>2</sub>, CdO+3H<sub>2</sub>O Ppt (Teletow, C A **1912**, 43)

Cadmium oxybromide, CdO, CdBr<sub>2</sub>+H<sub>2</sub>O Decomp by  $H_2O$  (Tassily, C R 1897, **124** 1023) +2H<sub>2</sub>O Stable in dry air, insol in H<sub>2</sub>O (Tassily, C R 1897, 124 1022) Slowly decomp by H<sub>2</sub>O +3H<sub>2</sub>O (Tas sily, C R 1897, 124 1022) +7HO (Mailhe, C R 1901, 132 1561)

Cadmium oxychloride, CdCl<sub>2</sub>, CdO+H<sub>2</sub>O Sl sol in hot H<sub>2</sub>O (Habermann, M Ch **5** 432) (Mulhe, Bull Soc 1901, (3) 25 +7H () 791

2CdO, CdCl Insol in H<sub>2</sub>O, but slowly decomp thereby (Cunzoneri, Gazz ch it 1897, **27** (2) 486)

Cadmium oxyiodide, CdO, CdI<sub>2</sub>+H<sub>2</sub>O Decomp by H () (Lassily, C R 1897, **124** 1023)

+3H<sub>2</sub>() Stable in dry air, insol in H<sub>2</sub>O (1 issily C R 1897, **124** 1022)

Cadmium phosphide, Cd<sub>3</sub>P<sub>2</sub>

Sol in HCl+Aq with evolution of PH3

(Lmmei CaP 5 in conc HCl+Aq ling, B 12 152) Fisily decomp by seids (Kulisch, A 231 327)

CdP, Decomp by boiling cone HCl+Aq (Ren sult, C R 76 283)

Cadmium selenide, CdSe

Sol in HCl+Aq (Uelsmann, A 116 122) Lasily decomp by acids (Fonzes-Diacon, C R 1900, 131 897)

Insol in H<sub>2</sub>O

Solubility in  $H_2O$  at  $16-18^\circ = 6.6 \times 10^{-6}$ mols per l (Biltz, Z phys Ch 1907, 58

1 l H<sub>2</sub>O dissolves 9 00 x 10-6 mols CdS (artificial greenockite) at 18°

1 l H<sub>2</sub>O dissolves 8 86 x 10<sup>-6</sup> mols pptd CdS at 18° (Weigel, Z phys Ch 1907, 58 294)

Difficultly sol in hot dil HCl+Aq Easily sol in cold conc HCl+Aq (Stromeyer Sol in HNO<sub>3</sub>+Aq (Meissner), and boiling dil H<sub>2</sub>SO<sub>4</sub>+Aq (1 6) (A W Hoffmann, A **115** 286) Very sl sol in NH<sub>4</sub>OH+Aq (Wackenroder, Repert **46** 226) Insol in KOH or (NH) SLAA KOH, or (NH<sub>4</sub>) S+Aq Appreciably sol in an acid solution of NH<sub>4</sub>Cl (Baxter and Hines, Z anorg 1905, 44 160)

Much more sol in (NH<sub>4</sub>)<sub>2</sub>S+Aq than usually supposed (Ditte, C R 85 402) Solubility increases by warming, and at 68° is twice that at ordinary temperatures A sat solution of (NH<sub>4</sub>)<sub>2</sub>S dissolves about 2 g CdS to a litre Alkalı sulphides dissolve much less (Ditte)

Fresenius (Z anal 20 236) could not confirm the above According to Fresenius, CdS is not appreciably sol in (NH<sub>4</sub>) S+Aq Insol in Na<sub>2</sub>SO<sub>3</sub> or KCN+Aq (Fresenius)

Insol in NH<sub>4</sub>Cl or NH<sub>4</sub>NO<sub>3</sub>+Aq (Brett) Sol in alkalı sulpho-molybdates, -tungstates, -vanadates, -arsenates, -antimonates, -stannates+Aq (Storch, B 16 2015) Insol in liquid NH3 (Franklin, Am Ch

J 1898, **20** 827)

Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014) (Naumann, B

Insol in ethyl acetate 1910, **43** 314)

Min Greenockite Sol in HCl+Ag

Colloidal -Solution of 4 g colloidal C in a litre H<sub>2</sub>O remains transparent several days If it contains 11 g CdS in a litre, it is completely coagulated in 24 hours Solutions of salts of the following concentration cause an immediate coagulation in an aqueous solution of CdS containing 3 62 g in a litre

> KCI 1 1615727 KBr 1 ΚI 1 57 **KCN** 1 166 KClO<sub>3</sub> 1 1666  $KNO_3$ 1 1000 1 5000 K 520c K2801 1 833 K<sub>3</sub>Fe(CN)<sub>6</sub> 1 166 K<sub>4</sub>Fe(CN)<sub>6</sub> <1 100 K₂CrO₄ 1 400 K₂Cr () 3571 2666 NaCl  $Na_2S_2O_3$ 98 333NaHCO<sub>3</sub> 166 Na<sub>2</sub>CO<sub>3</sub> 202Na<sub>2</sub>HPO<sub>4</sub>

| NaC <sub>2</sub> H <sub>3</sub> O <sub>2</sub> | 1                          | 2451    |
|------------------------------------------------|----------------------------|---------|
| Na benzoate                                    | 1                          | 10,000  |
| $(\mathrm{NH_4})_2\mathrm{C}_2\mathrm{O}_4$    | 1                          | 588     |
| $BaCl_2$                                       | 1                          | 11,764  |
| $Ba(NO_3)_2$                                   | 1                          | 8032    |
| $BaS_2O_6$                                     | 1                          | 5617    |
| $MgSO_4$                                       | 1                          | 41,666  |
| MnSO <sub>4</sub>                              | 1                          | 22,222  |
| $CdSO_4$                                       | ī                          | 250,000 |
| $Cd(NO_3)_2$                                   | ĵ                          | 285,714 |
| $Pb(ClO_3)_2$                                  | î                          | 209     |
| $Pb(C_2H_3O_2)_2$                              | î                          | 147,058 |
| TD(C2H3C2)2                                    | <i< td=""><td>20</td></i<> | 20      |
| $Hg(CN)_2$                                     |                            |         |
| $A\bar{l_2}(SO_4)_3$                           | 1                          | 232,558 |
| Alum                                           | 1                          | 192,377 |
| Chrome alum                                    | 1                          | 42,555  |
| HCl                                            | 1                          | 4807    |
| $H_2SO_4$                                      | 1                          | 8000    |
| $HC_2H_3O_2$                                   | 1                          | 15      |
| $H_2C_2O_4$                                    | 1                          | 23,255  |
| Succinic acid                                  | <1                         | 100     |
| Tartaric acid                                  | Ĩ                          | 333     |
| T ON OWNER O MOTOR                             |                            |         |

#### Cadmium pentasulphide, CdS<sub>5</sub>

Insol in H<sub>2</sub>O (Schiff, A 115 74) Mixture of CdS and S (Follenius, Z anal 13 412)

(Prost, Belg Acad Bull (3) 14 312, J B

**1887** 537)

Cadmium potassium sulphide,  $K_2Cd_3S_4$ , anorg 1904, **42** 439)

by H<sub>2</sub>O (Schneider, J pr (2)

# Cadmium sulphoiodide See Cadmium iodosulphide

See Cadmium lodosupm

admium telluride, CdTe
Not attacked by dil acids

Not attacked by dil acids Attacked in he cold only by HNO<sub>3</sub> (Γibbals, J Am Chem Soc 1909, **31** 908)

#### Cadmic acid

#### Potassium cadmate

Insol in  $H_2O$ , but gradually decomp when in contact therewith (Meunici, C R 63 330)

## Cæsium, Cs

Decomp H O with great violence (Setter beig, A 211 100)

Very sol in liquid NH<sub>3</sub> (Franklin, Am Ch. J. 1898, **20**, 827.)

Cæsium acetylide acetylene, Cs C C II

Insol in C<sub>6</sub>H<sub>6</sub> and in CHCl<sub>4</sub> (Moissan,
C R 1903, **136** 1218)

#### Cæsium amide, CsNH

Decomp by  $H_2()$  Very sol in liquid  $\backslash H_3$  (Rengade, C R 1905, **140** 1185)

Cæsium ammonia, Cs,NH3

Sol in liquid NH<sub>3</sub> (Moissan, C R 1903, **136** 1177)

#### Cæsium azoimide, CsN3

#### Cæsium bromide, CsBr

Ppt (Chabrie, C R 1901, **132** 679) Sat CsBr+Aq at 25° contains 55 23% CsBr (Foote, Am Ch J 1907, **37** 125)

#### Cæsium tribromide, CsBr3

Sol in H<sub>2</sub>O, decomp by alcohols (Wells, Sill Am J **143** 17)

Cæsium pentabromide, CsBr<sub>5</sub>

Very unstable (Wells and Wheeler, Sill Am J 144 42)

## Cæsium cobalt bromide, Cs2CoBr4

Decomp by  $H_2O$  (Campbell, Z anorg 1894, **8** 126)

Decomp by H<sub>2</sub>O and by alcohol (Campbell, Am J Sci 1894, (3) **48** 418)
Cs<sub>8</sub>CoBr<sub>5</sub> Decomp by H<sub>2</sub>O (Campbell, Z anorg 1894, **8** 126)

Decomp by H<sub>2</sub>O and by alcohol (Campbell, Am J Sci 1894, (3) **48** 418)

## Cæsium copper bromide, CsBi, CuBr

Sol in H<sub>2</sub>O without decomp (Wells and Walden, Z anorg **5** 304)
2 CsBr, CuBr<sub>2</sub> (W and W)

#### Cæsium iridium bromide

See Bromiridate, cæsium

Cæsium iron (ferric) bromide, Csl cBi<sub>1</sub>
Sol in H<sub>2</sub>O (Walden, Z morg 1894, **7**332)
Cs le Bi + H<sub>2</sub>O (Walden, Z morg 1894 **7** 332)

#### Cæsium lead bromide, CsBi, 2PbBi

Nearly stable in aqueous solution (Walden, Sill Am. J. 145, 127) CsBr. PbBr. Decomp by H.O. (Walden)

4C<sub>5</sub>B<sub>1</sub>, PbB<sub>1</sub> As above

Solubility determinations show that the double salts formed by crisium and lead broundes at 25° are CsPb Br, CsPbBr, and Cs4PbBr<sub>6</sub> (Foote, Am Ch J 1907 **37** 125

# Cæsium magnesium bromide, CsBi, MgBi +

Sol in HO (Wheeler and Campbell, / mong 5 275)

Cæsium mercuric bromide, CsBr, 2HgBr<sub>2</sub>

Not decomp by H<sub>2</sub>O 100 pts solution sat at 16° contain 0 807 pt CsBr, 2HgBr<sub>2</sub> Sl sol in hot strong alcohol, from which CsBr, HgBr<sub>2</sub> separates on cooling (Wells, Sill Am J 144 221)

Sill Am J 144 221)

CsBr, HgBr<sub>2</sub> Decomp by H<sub>2</sub>O into above salt Sol in alcohol without decomp (Wells)

2CsBr, HgBr<sub>2</sub> Decomp by H<sub>2</sub>O into

CsBr, 2HgBr<sub>2</sub> 3CsBr, HgBr<sub>2</sub> As above

Cæsium molybdenyl bromide, 2CsBr, MoOBrs

(Weinland and Knoll, Z anoig 1905, 44 107)

Cæsium nickel bromide, CsNiBr3

Decomp by  $H_2O$  (Campbell, Z anorg 1894, 8 126)

Décomp by  $H_2O$  and by alcohol (Campbell, Am J Sci 1894, (3) **48** 418)

Cæsium osmium bromide See Bromosmate, cæsium

Cæsium palladium bromide

See Bromopalladate, cæsium and bromopalladite, cæsium

Cæsium platinum bromide See Bromoplatinate, cæsium

Cæsium ruthenium bromide See Bromoruthenite, cæsium

Cæsium selenium bromide See Bromoselenate, cæsium

Cæsium tellurium bromide See Bromotellurate, cæsium

Cæsium thallic bromide, CsB1, TlB13

Sol in  $H_2O$  with decomp (Prixt, Z inoig 1895, 9 19)

By recryst from H O, forms 3CsBr, 21 lBr<sub>4</sub> (Pratt, Am. J. Sci. 1895, (3) **49**, 403.)

3CsBr 211Br, Can be recryst unchanged from H O (Pratt, Am J Sci 1895, (3) 49 402)

Cæsium tin (stannic) bromide

Cæsium zinc bromide, 3C5Br, ZnBi

Sol in H<sub>2</sub>() (Wells and Cumpbell, Z anorg 5 275)

2CsBr, ZnBı As ıbove

Cæsium bromide columbium oxybromide, 2CsB1, CbOB13

Unstable in moist air Decomp by H<sub>2</sub>O (Weinland, B 1906, **39** 3059)

Cæsium bromochloride, CsBi Cl

Properties as CsBr<sub>3</sub> (Wells) CsBrCl<sub>2</sub> As above (Wells)

Cæsium mercuric bromochloride, Cs<sub>3</sub>HgCl<sub>3</sub>Br<sub>2</sub>

Decomp by H<sub>2</sub>O finally to HgBr (Wells, Sill Am J 144 121)

Cs<sub>2</sub>HgCl<sub>2</sub>Br As above CsHgClBr<sub>2</sub> As above CsHg<sub>2</sub>ClBr<sub>4</sub> As above CsHg<sub>5</sub>ClBr<sub>10</sub> As above

Cæsium bromochloroiodide, CsBrClI

More sol in H<sub>2</sub>O than in alcohol Not decomp at once by ether (Wells)

Cæsium bromoiodide, CsBrI2

Decomp by H<sub>2</sub>O Sol in alcohol Decomp by ether with residue of CsBr (Wells, Sill Am J 143 17)

Sill Am J 143 17)
CsBr<sub>2</sub>I More sol in H<sub>2</sub>O than in alcohol
Not decomp by ether
CsBr<sub>2</sub>I+Aq sat at 20° contains about

4 45% CsBr<sub>2</sub>I (Wells)

Cæsium carbide, Cs. C2

Decomp by cold H<sub>2</sub>O (Moissan, C R 1903, **136** 1221)

Cæsium chloride, CsCl

Very deliquescent, sol in HO and alcohol

Solubility of CsCl at t°

| t°                    | Pts by wt of CsCl<br>in 100 pts solution |  |  |  |
|-----------------------|------------------------------------------|--|--|--|
| 0 3<br>10<br>20<br>30 | 61 9<br>63 5<br>64 9<br>66 3             |  |  |  |
| 40                    | 67 4                                     |  |  |  |

(Hinrichsen, Z phys Ch 1904, 50 99)

Solubility of CsCl it to

| 1  | % (5(1 | t     | (((  |
|----|--------|-------|------|
| 0  | 61 7   | 60    | 69 7 |
| 10 | 63 6   | 70    | 70   |
| 20 | 65 1   | 80    | 71 4 |
| 30 | 66 4   | 90    | 72 2 |
| 40 | 67 5   | 100   | 75 0 |
| 50 | 68 0   | 119 4 | 74 4 |

(Barkeley, Irans Roy Soc 1904, **203** 208)

A normal solution of CsCl has sp gr at 25°=1 1076 (Wagner, Z phys Ch 1890, 5 36)

Sp gr at 20°/4° of a normal solution of CsCl=1 125815 (Haigh, J Am Chem Soc 1912, **34** 1151)

| Sp gr of CsCl+Aq                 |                                          |                                          |                                          |
|----------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| G equiv<br>CsCl per<br>l at 18°  | Sp gr<br>at 6°/6°                        | Sp gr<br>at 18°/18°                      | Sp gr<br>at 30°/30°                      |
| 0 504<br>1 602<br>2 007<br>3 994 | 1 06556<br>1 12962<br>1 25705<br>1 50514 | 1 06483<br>1 12825<br>1 25452<br>1 50100 | 1 06452<br>1 12750<br>1 25307<br>1 49859 |

(Clausen, W Ann 1914, (4) 44 1071)

Solubility of CsCl+FeCl<sub>3</sub> in H<sub>2</sub>O at 21°

| Substance added                   |                                                                     | Pts by weigh<br>of sol                                                          | nt in 100 pts<br>lution                                                                  |
|-----------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| FeCl <sub>3</sub><br>grams        | CsCl<br>grams                                                       | FeCla                                                                           | CsCl                                                                                     |
| 0 6 1 4 2 2 2 0 3 8 4 6 6 2 35 35 | 65<br>11 6<br>10 2<br>8 8<br>7 4<br>6 0<br>4 6<br>2 8<br>1 4<br>0 2 | 0 45<br>2 1<br>5 24<br>7 8<br>8 93<br>15 34<br>21 65<br>27 96<br>48 71<br>83 89 | 65 0<br>55 18<br>52 38<br>51 44<br>47 70<br>41 15<br>25 25<br>14 96<br>8 42<br>0 94<br>0 |
|                                   |                                                                     |                                                                                 |                                                                                          |

(Hurrichsen, Z phys Ch 1904, 50 96)

bility of CsCl+HgCl2 in H2O at 25°

| 4t10   | n contains | Solid phase                                                          |
|--------|------------|----------------------------------------------------------------------|
| % CsCl | % HgCl2    | bond phase                                                           |
| 65 61  | 0 00       | CsCl                                                                 |
| 65 78  | 0 215      | CsCl+Cs3HgCl                                                         |
| 62 36  | 0 32       | Cs₃HgCl                                                              |
| 57 01  | 0 64       | ,,,                                                                  |
| 52 35  | 1 23       | 46                                                                   |
| 51 05  | 1 44       | Cs <sub>3</sub> HgCl <sub>5</sub> +Cs <sub>2</sub> HgCl <sub>4</sub> |
| 49 30  | 1 49       | $Cs HgCl_4$                                                          |
| 45 95  | 1 69       |                                                                      |
| 45 23  | 1 73       | Cs HgCl <sub>4</sub> +CsHgCl <sub>3</sub>                            |
| 38 63  | 1 32       | CsHgCl                                                               |
| 17 03  | 0 51       | , ,                                                                  |
| 1 5>   | 0 42       | "                                                                    |
| 0 61   | 2 64       | CsHgCl <sub>3</sub> +CsHg Cl <sub>5</sub>                            |
| 0 49   | 2 91       | C sHg <sub>2</sub> Cl                                                |
| 0 40   | 3 78       | CsHg Cl5+CsHg5Cl11                                                   |
| 0 44   | 4 63       | ,                                                                    |
| 0 41   | 4 68       | $C_5Hg_5Cl_{11}$                                                     |
| 0.25   | 5 65       | 7                                                                    |
| 0 18   | 7 09       | CsHg Cl <sub>11</sub> +HgCl                                          |
| 0 00   | 6 90       | HgCl                                                                 |
|        |            | CI 7 100 \ 00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                          |

(Foote, Am Ch J 1903 30 340)

Insol in acetone (Naumann, B 1904, 37 4329, Fidmann, C. C. 1899, II. 1014) 100 g solution in acetone sat it 25° contun 0032 g CsCl (Footc and Hugh, J Am Chem Soc 1911, 33 461)

Solubility of CsCl+HgCl in acetone at 2'

| Solution contains                                                                                        |                                                                                              | Solid mb                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| % HgCl                                                                                                   | % CsCi                                                                                       | Solid phase                                                                                                                                                                                                                               |
| 57 74<br>57 79<br>57 74<br>52 54<br>49 83<br>44 32<br>44 46<br>39 65<br>28 48<br>26 96<br>27 32<br>27 32 | 0 00<br>0 13<br>0 20<br>0 22<br>0 32<br>0 50<br>0 44<br>0 48<br>0 48<br>0 52<br>0 61<br>0 46 | HgCl <sub>2</sub> HgCl <sub>2</sub> +CsHg <sub>5</sub> Cl <sub>11</sub> CsHg <sub>5</sub> Cl <sub>11</sub> " CsHg <sub>5</sub> Cl <sub>11</sub> +CsHg <sub>2</sub> Cl <sub>1</sub> CsHg <sub>2</sub> Cl <sub>5</sub> +CsHgCl <sub>5</sub> |
| 13 08                                                                                                    | 0 45                                                                                         | $\mathrm{CsHgCl}_3$                                                                                                                                                                                                                       |
| $\begin{array}{c} 0 & 16 \\ 0 & 17 \\ 0 & 02 \end{array}$                                                | 0 19<br>0 25<br>0 11                                                                         | Mixtures of salts                                                                                                                                                                                                                         |
| 0 00                                                                                                     | 0 032                                                                                        | CsCl                                                                                                                                                                                                                                      |

(Foote and Haigh, J Am Ch Soc 1911,

Insol in methyl acetate (Naumann, 1909, 42 3790)

Solubility in glycol at ord temp = 1010.8%(de Coninck, Belg Acad Bull 19)

359)

Insol in anhydrous pyridine and in 9. % pyridine+Aq Sl sol in 95% pyridine+ and in 93% pyridine+Aq (Kahlenberg, Am Chem Soc 1908, **30** 1107)

Cæsium chromium chleride, 2CsCl,CrCl - $H_2O$ 

Stable in the air Sol in H O (Wells, anoig 1895, 10 182) 2CsCl,CrCl,+4H O, hydroscopic, very in  $H_2O$  (Wells, l c)

Cæsium tetra-aquochromium chloride,  $C_1Cl_2(OH_2)_4$  Cl, 2CsCl

Ppt (Weiner, B 1901, 34 1602)

Cæsium cobalt chloride, CsCoCl<sub>3</sub>+2H ()

Decomp by HO and alcohol (Campb Z morg 1894, 8 126) Decomp by HO and by Cs CoCl<sub>1</sub>

cohol (Cumpbell Z morg 1894 8 126 Cs<sub>3</sub>CoCl Decomp by HO and by cohol (Campbell / anorg 1894 8 126

Cæsium cuprous chloride, ( \( \) ( \) ( \) Decomp by HO into CuCl, CsCl (We s,

L anoig 5 306) 3CsCl, Cu Cl (Wells) 6CsCl Cu Cl (Wells)

Cæsium cupric chloride, 20 50 l, CuOl

Easily sol in HO and dil insol in conc HCl+Aq (Crodeffroy, 89)

(Walden)

Sol in small amount H<sub>2</sub>O without decomp (Wells and Dupee, Z anorg 5 300) +2H<sub>2</sub>O Efflorescent (W and D)

3CsCl, 2CuCl<sub>2</sub>+2H<sub>2</sub>O

CsCl, CuCl<sub>2</sub> Sol in H<sub>2</sub>O without decomp (W and D)

Cæsium gold chloride See Chloraurate, cæsium

Cæsium iridium tetrachloride See Chloriridate, cæsium

Cæsium iron (ferric) chloride, CsFeCl<sub>4</sub>+ 1⁄2H2O

(Wal-Sol in H<sub>2</sub>O Decomp in the air den, Z anorg 1894, 7 332)  $Cs_2FeCl_5+H_2O$  Sol m  $H_2O$ (Walden)

Cæsium lanthanum chloride, Cs<sub>3</sub>LaCl<sub>6</sub>+ 4H<sub>2</sub>O

Easily sol in H<sub>2</sub>O Very hydroscopic (R J Meyer, Z anorg 1914, 86 273)

Cæsium lead chloride, CsCl, 2PbCl<sub>2</sub>

Cs<sub>3</sub>FeCl<sub>6</sub>+H<sub>2</sub>O Sol in H<sub>2</sub>O

Nearly stable in aqueous solution (Campbell, Sill Am J 145 126) CsCl, PbCl<sub>2</sub> Decomp by H<sub>2</sub>O (Campbell)

4CsCl, PbCl, As above (Campbell)

Cæsium lead tetrachloride See Chloroplumbate, cæsium

Cæsium magnesium chloride, CsCl, MgCl<sub>2</sub>+ 6H<sub>2</sub>O

(Wells and Campbell, Z Sol in HO morg **5** 275)

Cæsium manganous chloride, CsCl, MnCl<sub>2</sub>+

Not deliquescent, sol in H2O (Saunders, Am Ch J 14 143)

2CsCl MnCl2 (Godeffroy)  $+2\frac{1}{2}H_2()$  (Godeffroy)

Conc HCl+Aq +3H () Sol in HO precipitates inhydrous salt from aqueous solution (Godeffroy, B 8 9)

The only salt which exists contains 2H () (Saunders Am Ch J 14 143)

Cæsium manganic chloride, 2C5Cl, MnCl<sub>3</sub> Fasily decomp (Meyer and Best, Z morg 1899, 22 187)

## Cæsium mercuric chloride, CaCl, HgCl

100 pts solution sat at 17° contain 1 400 pts CsHgCl<sub>3</sub> Not decomp by H<sub>2</sub>O Insol in absolute alcohol, but sol on diluting with <sup>1</sup>/<sub>3</sub> vol H<sub>2</sub>O (Wells, Sill Am J **144** 221) 2CsCl, HgCl<sub>2</sub> Lasily sol in H<sub>2</sub>O and dil HCl+Aq, insol in conc HCl+Aq (Godeffroy)

3CsCl, HgCl<sub>2</sub> Decomp by H O, on recrystallizing from H O, CsCl, HgCl<sub>2</sub> is finally formed (Wells, Sill Am J 144 221)

CsCl, 5HgCl2 Decomp by H2O (Wells) Solubility determinations show that the only double salts of CsCl and HgCl2 which exist at 25° are Cs<sub>3</sub>HgCl<sub>5</sub>, Cs<sub>2</sub>HgCl<sub>4</sub>, CsHgCl<sub>3</sub>, CsHg<sub>2</sub>Cl<sub>5</sub>, CsHg<sub>5</sub>Cl<sub>11</sub> (Foote, Am Ch J 1903, **30** 340)

Cæsium molybdenum chloride, Cs2MoCl5+ H<sub>2</sub>C

Sol in H<sub>2</sub>O Nearly insol in alcohol and ether (Chilesotti, C C 1903, II 652)

Cæsium molybdenyl chloride, CsCl,  $M_0O_2Cl_2+H_2O$ 

Hygroscopic Decomp by H<sub>2</sub>O (Weinland and Knoll, Z anorg 1905, 44 93)

2CsCl, MoO<sub>2</sub>Cl<sub>2</sub> Hygroscopic Decomp (Weinland and Knoll, Z anorg by H<sub>2</sub>O 1905, 44 92)

2CsCl, 6MoO<sub>2</sub>Cl<sub>2</sub>+22H O Very hygroscopic Decomp by H<sub>2</sub>O (Weinland and Knoll, Z anorg 1905, 44 94)
2CsCl, MoOCl<sub>3</sub> Only sl sol in H<sub>2</sub>O (Nordenskjold, B 1901, 34 1573)

Cæsium neodymium chloride, Cs<sub>3</sub>NdCl<sub>6</sub>+ 5H<sub>2</sub>O

Easily sol in HO Very hydroscopic (R J Meyer, Z anorg 1914, 86 273)

Cæsium nickel chloride, 2CsCl, NiCl As the corresponding Cu salt CsN1Cl3 Decomp by H2O and by alcohol (Campbell, Am J Sci 1894, (3) 48 418)

Cæsium palladium dichloride See Chloropallad te, cæsium

Cæsium palladium tetrachloride See Chloropalladate, cæsium

Cæsium praseodymium chloride, CziPrCl6+ 5H<sub>2</sub>()

Fisily sol in HO Very hydroscopic (R. J. Meyer, Z. morg. 1914, 86, 273)

Cæsium rhodium chloride See Chlororhodite, cæsium

Cæsium ruthenium chloride

See Chlororuthenite, cæsium and chlororuthenate, cæsium

Cæsium oxyruthenium chloride, Cs<sub>2</sub>RuO<sub>2</sub>Cl<sub>4</sub>

Ppt , decomp by HO, sol in cold HCI (Howe, J Am Chem Soc 1901, 23 779)

Cæsium samarium chloride, Cs35mCl6+ 5H<sub>2</sub>()

Lasily sol in H<sub>2</sub>O Very hydroscopic (R J Meyer, Z anorg 1914, 86 273)

Cæsium silver chloride, 2CsCl, AgCl

Easily decomp by H<sub>2</sub>O (Wells and Wheeler, Sill Am J **144** 155)

## Cæsium tellurium chloride See Chlorotellurate, cæsium

Cæsium thallic chloride, 2CsCl, TlCl<sub>3</sub>

By recryst from H<sub>2</sub>O forms 3CsCl, 2TlCl<sub>3</sub> (Pratt, Am\_J Sci 1895, (3) 49 398)

+H<sub>2</sub>O Readily sol in hot H<sub>2</sub>O but 3CsCl, 2TlCl<sub>3</sub> cryst from the solution (Pratt, Am

J Sci 1895, (3) **49** 399 )

3CsCl, 2TlCl<sub>3</sub> Can be recryst from H<sub>2</sub>O

without change (Pratt, Am J Sci 1895, (3) **49** 401 )

3CsCl, TlCl<sub>3</sub>+2H<sub>2</sub>O Sol in 36 4 pts H<sub>2</sub>O at 17° and 3 pts at 100° (Godeffroy, Zeitsch d allgem osterr Apothekerv 1880 No 9)

## Cæsium tin (stannic) chloride See Chlorostannate, cæsium

Cæsium titanium chloride, TiCl<sub>2</sub>, 2CsCl+ H<sub>2</sub>O Difficultly sol in H<sub>2</sub>O (Stahler, B 1904,

## ungsten chloride, Cs<sub>3</sub>W<sub>2</sub>Cl<sub>9</sub>

1y insol in cold H2O

bo. in a hot mixture of equal pts H<sub>2</sub>O and conc HCl

Nearly insol in conc HCl Sol in very dil NaOH+Aq

Nearly insol in most organic solvents (Olsson, B 1913, **46** 574)

## Cæsium uranous chloride, Cs2UCl6

As K salt (Alov, Bull Soc 1899, (3) 21 264)

## Cæsium uranyl chloride, 2CsCl, (UO)Cl

Sol in  $H_2O$  (Wells, Z anorg 1895, 10 183)

100 pts of the solution contain at 29 75°, 56 07 pts UO<sub>2</sub>Cl<sub>2</sub>, 2CsCl (Rimbach, B 1904, **37** 468)

Pptd from aq solution by gascous HCl (Wells, Am J Sci 1894, (3) 50 251)

#### Cæsium vanadium chloride, Cs VdCl<sub>5</sub>+H () Difficultly sol in H () and alcohol (St thlei, B 1904, **37** 4412)

## Cæsium zinc chloride, 3CsCl, ZnCl

Sol in H<sub>2</sub>O (Wells and Campbell, Z anorg 5 275)

anorg 6 275)

2CsCl, ZfCl<sub>2</sub> Easily sol in H O and dil
HCl+Aq Insol in conc HCl+Aq (Godeffroy)

Cæsium chloride chromic oxychloride, 2CsCl, CrOCl<sub>3</sub>

Decomp in the air

Sol in conc HCl without decomp (Wein land, B 1906, 39 4045)

Cæsium chloride columbium oxychloride 2CsCl,  $CbOCl_3$ 

Decomp by H<sub>2</sub>O (Weinland, B 1906 **39** 3057)

#### Cæsium chloroiodide, CsCl2I

Properties as CsBrCII (Wells)

CsCl<sub>4</sub>I Sl sol in  $H_2O$ , from which it can be recrystallized without decomp (Well and Wheeler)

Cæsium mercuric chloroiodide, Cs<sub>2</sub>HgCl<sub>2</sub>I,

Decomp instantly by H<sub>2</sub>O to HgI<sub>2</sub> (Wells

#### Cæsium fluoride, CsF

Ppt (Chabrié, C R 1901, **132** 680) +1½H<sub>2</sub>O 100 g H O dissolve 366 5 g CsI at 15° (de Forcrand, C R 1911, **152** 1210

Cæsium hydrogen fluoride, CsHF,

Ppt (Chabrie, C R 1901, 132 680)

Cæsium tantalum fluoride See Fluotantalate, cæsium

Cæsium tellurium fluoride, CsF, lel 4

Decomp by H O (Wells, Am J Sci 1901 (4) 12 190)

Cæsium titanium fluoride

See Fluotitanate, cæsium

Cæsium zirconium fluoride See Fluozirconate, cæsium

#### Cæsium hydride, CsH

Decomp by HO with evolution of H (Moiss in, C R 1903, 136 589)

#### Cæsium hydroxide, CsOH

Very deliquescent and sol in H O So in alcohol

79.41°, CsOH is contained in a sat ag solution at 15° (de Forciand C. R. 1909. **14°** 

1344)
75 ()\$\(^{\}\_{\}\) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \)

## Cæsium iodide, Csl

11)

Sol in H O 100 pts H O dissolve 44 pts CsI it 0 60 3 pts at 14 5°, 160 pts it 61° Sp gr of CsI+Aq sat it 14°=1 39 (Betekoff, Bull Soc Péters (4) 2 197)

#### Cæsium periodide

Solubility determinations show that  $CsI_3$  and  $CsI_5$  are the only periodides of cæsium existing between  $-4^{\circ}$  and  $+73^{\circ}$  (Foote, Am Ch J 1903, **29** 203)

#### Cæsium triodide, CsI3

1 ccm sat CsI+Aq dissolves 0 0097 g CsI<sub>3</sub>, and sp gr of solution is 1 154 Only sl decomp by solution in H<sub>2</sub>O Much more sol in alcohol than in H<sub>2</sub>O Not immediately decomp by ether (Wells, Sill Am J 143 17)

#### Cæsium pentaiodide, CsI5

#### Cæsium cobalt iodide, Cs2CoI4

Decomp by  $H_2O$  (Campbell, Z anorg 1894, 8 12)

Deliquescent, decomp by  $H_2O$  and by alcohol (Campbell, Am J Sci 1894, (3) 48 418)

#### Cæsium lead iodide, CsPbI<sub>2</sub>

Sl sol in hot CsI+Aq (Wheeler, Sill Am J 145 129)

#### Cæsium mercuric iodide, CsI, 2HgI<sub>2</sub>

Decomp by H O finally into  $HgI_2$  (Wells, Sill Am J 144 221)

2CsI, 3HgI Decomp by H<sub>2</sub>O finally into HgI

CsI, HgI2 As above

2Csl HgI Decomp by H<sub>2</sub>O insol in

3CsI, HgI<sub>2</sub> As above

## Cæsium silver iodide, CsI, AgI

(Penfield, Z morg 1 100)

CsI, 2AgI More sol in hot than in cold acctone (Mush, Chem Soc 1913, 103 782)

## Cæsium tellurium iodide

See Iodotellurate, cæsium

#### Cæsium thallic iodide, CSI, III.

Decomp by H O (Pritt Am J Sci 1895, (3) **49** 403)

#### Cæsium zinc iodide, 3CsI, ZnI

Sol in H O (Wells and Campbell, Z morg  $[\mathbf{5}, 275)$ 

2CsI, ZnI As above

#### Cæsium oxide, (82()

Absorbs H O and CO<sub>2</sub> from the un Decomp by  $\rm H_2O$  and by liquid  $\rm NH_3$  (Rengule, C R 1906, **143** 593)

#### Cæsium dioxide, C52()

Decomp by H<sub>2</sub>O (Rengade, C R 1905, **140** 1537)

## Cæsium trioxide, Cs2O3

Decomp by  $H_2O$  (Rengade, C R 1905, 140 1537)

#### Cæsium tetroxide, Cs2O4

Decomp by H<sub>2</sub>O (Rengade, C R 1905, **140** 1538)

#### Cæsium sulphide, Cs<sub>2</sub>S+4H<sub>2</sub>O

Deliquescent, very sol in  $H_2O$  (Biltz, Z anorg 1906, 48 300)

#### Cæsium disulphide, Cs<sub>2</sub>S<sub>2</sub>

 $\begin{array}{cccc} Anhydrous & Sol & in & H_2O & Hydroscopic \\ (Biltz, Z & anorg & 1906, \textbf{50} & 72 \ ) \\ & + H_2O & From & Cs_2S_2 + Ag & Hydroscopic \end{array}$ 

(Biltz, Z anorg 1906, **50** 72)

#### Cæsium trisulphide, Cs<sub>2</sub>S<sub>3</sub>

Anhydrous Sol in  $H_2O$  Not hydroscopic (Biltz, Z anorg 1906, 50 75) + $H_2O$  From  $Cs_2S_3+Aq$  (Biltz, Z anorg 1906, 50 76)

#### Cæsium tetrasulphide, Cs<sub>2</sub>S<sub>4</sub>

Sol in H<sub>2</sub>O Insol in abs alcohol (Biltz, Z anorg 1906, **48** 305)

#### Cæsium pentasulphide, Cs<sub>2</sub>S<sub>5</sub>

Mpt 2° Not hydroscopic Very sol in cold 70% alcohol (Biltz, B 1905, 38 129)

#### Cæsium hydrogen sulphide, CsHS

Deliquescent, very sol in  $H_2O$  (Biltz, Z anoig 1906, 48 300)

#### Cæsium copper tetrasulphide, CsCuS<sub>4</sub>

Sl sol in cold H<sub>2</sub>O

Decomp by cone and dil HCl, H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub>

Sl sol m alcohol (Biltz, B 1907, 40 978)

#### Calcium, Ca

Decomp H<sub>2</sub>O violently Slowly attacked by cold H SO<sub>4</sub> Dil H<sub>2</sub>SO<sub>4</sub>+Aq or HCl+Aq attack violently and dissolve Dil HNO<sub>3</sub>+Aq oxidizes, but fuming HNO<sub>3</sub> scarcely attacks even on boiling (Bunsen and Matthiessen) Not attacked by unhydrous alcohol (Lu-Bodut and Jobin, A. ch. (3) **54** 364)

Pure C<sub>4</sub> is only very slowly decomp by H O at ordinary temp, sol in HCl, HNO<sub>3</sub>,

II () it ordinary temp, sol in IICl, HNO<sub>3</sub>, II SO<sub>4</sub> (Morssan, C R 1898, **129** 589) Insol in liquid NH<sub>4</sub> (Core, Am Ch J

1898, **20** \$27 ) \$\forall \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \color \co

#### Calcium amalgam, Ci, Hg4

Decomp H () 16 idily (1616, C R 1898, 127 619)

CaHg<sub>5</sub> Rapidly decomp in moist air (Schurger, Z anoig 1900, **25** 425)

## Calcium amide, Ca(NH<sub>2</sub>)<sub>2</sub>

(Moissan, A ch 1899, (7) 18 326)

## Calcium ammonia, Ca, 4NH<sub>3</sub>

Decomp at ordinary temp, takes fire in contact with the air, sl sol in liquid NH<sub>3</sub> (Moissan, C R 1898, 127 691)
Ca,6NH<sub>3</sub> (Kraus, J Am Chem Soc

1908, 30 665)

#### Calcium arsenide, Ca<sub>3</sub>As<sub>2</sub>

Decomp by cold HO, insol in cold furning HNO3, very sol in hot HNO3 (Lebeau, C R 1899, 128 98)

#### Calcium azoimide, Ca(N<sub>3</sub>)<sub>2</sub>

Hydroscopic, explosive 38 1 pts sol in 100 pts  $H_2O$ at 0° " 15 2 " 100  $H_2O$ **45** 0 0 211 " " "100 " abs alcohol "16 Sol in H<sub>2</sub>O, decomp when heated and on standing in the air (Dennis, Z anorg 1898, Insol in pure ether (Curtius, J pr 1898, (2) **58** 286 Ĵ

#### Calcium boride, CaB<sub>6</sub>

Not decomp by H<sub>2</sub>O at 250°, sol in fused oxidizing agents

Insol in aq acids, sl sol in conc H<sub>2</sub>SO<sub>4</sub>, sol in dil or conc HNO<sub>3</sub> (Moissan, C R 1897, **125** 631–32)

#### Calcium bromide, CaBr

 $\begin{array}{cc} 100 \; \mathrm{pts} \;\; \mathrm{H}_{2}\mathrm{O} \; \mathrm{dissolve-} \\ 60^{\circ} \;\;\; 105^{\circ} \end{array}$ Very deliquescent 105° at 0°  $20^{\circ}$ 40° 125 213 278 312 pts CaBr 143 (Kremers, Pogg 103 65)

Sat CaBr<sub>2</sub>+Aq contains at -22° -22° -14° -7° -92° 50 5 50 2 52 5 52 6 52 6% CaBi2 ⊦8° 11° 9° 20° 50°

55 1 55 7 57 1 62 6% C B1 (Étard, A ch 1894, (7) 2 540) Sp g1 of CaBr<sub>2</sub>+Aq at 19 5° containing

20 25 %CaBı , 1 259 15 10 11941 044 1 089 1 139

30 35 40 45 50 % C Bi 1 549 1 641 1 315 1 385 1 461

(Kremers, Pogg 99 444, calculated by Galach, Z anal 8 285)

Sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 827)

Very sol in alcohol (Henry) Sol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4328)

Sol in methyl acetate (Naumann, B

1909, 42 3790)

Sol in ethyl acetate (Naumann, B 1910 43 314)

Insol in benzonitrile (Naumann, B 1914 **47** 1370)

 $+4H_2O$ (Kuznetzov, C A 1911 842) +6H<sub>2</sub>O

Calcium manganous bromide, CaMnBr<sub>4</sub>+  $4H_2O$ 

Sl hydroscopic Unstable (Ephraim, Z anorg 1910, **67** 377)

#### Calcium mercuric bromide

Decomp by H<sub>2</sub>O (v Bonsdorff)

Calcium molybdenyl bromide, CaBr.  $2\text{MoOBr}_3 + 7\text{H}_2\text{O}$ 

(Weinland and Knoll, Z anorg 1905, 44 112)

#### Calcium stannic bromide

See Bromostannate, calcium

Calcium bromide ammonia, CaBr., 6NH. Sol in H<sub>2</sub>O (Rammelsberg, Pogg 55 239)

Calcium bromide hydrazine, CaBr<sub>2</sub>, 3N<sub>2</sub>H<sub>4</sub> Easily sol in H<sub>0</sub>O (Franzen, Z anoig 1908, 60 288)

### Calcium bromofluoride, CaB1, CaF

Decomp by H<sub>2</sub>O (Defacqz, A ch 1904, (8) 1 357

#### Calcium carbide, CaC

Sp gr 2 22 at 18° Insol in fuming HNO<sub>3</sub> and cone H SO<sub>4</sub> but readily decomp by dil acids and H<sub>2</sub>O (Moissin, Bull So<sub>2</sub> 1894, (3) **11** 1005)

Insol in HCl in the cold, but decomp it red heat. Strong mm reids do not ret m the cold sol in glicial acctic in the cold, sol in fused alkali (Venable, J. Am. Chem. Soc 1895, **17** 307-310)

#### Calcium chloride, CiCl

Very deliquescent - Very sol in H () with evolution of heat

Anhydrous CaCl is sol in 1 199 pts HO (Cerlich) Anhydrous CaCl is sol in 1 18 pts HO at 102

(Ktemers Poll, 103 b)
Anhydrous CaCl is sol in 13 ppts H O at 20 0 83 pt H O at 40 0 72 pt H O at 60 CaCl +6H O i sol in 0 pt H O at 0 and 2 0 pt at 16 (Cmclin) CaCl is sol in 1 ppts cold and 0 Spt b thing H O (Fourcroy)

CaCl2+Aq sat in the cold contains 40.7 (Fourcrov)

CaCl + Aq sat at 125 contains 538, CiCl (Hassenfritz)

100 pts H O dissolve 1657 pts C  $\iota Cl+6H_2O$  it 0°, 7141 pts at 40° (Tilden Chem Soc **45** 409)

100 pts H<sub>2</sub>O dissolve 60 3 pts CaCl<sub>2</sub> from  $CaCl_2+6H O$  at 0°, and solution has sp gr = 1 367 (Engel, Bull Soc (2) 47 318)

Solubility of CaCl<sub>2</sub>+6H<sub>2</sub>O in H<sub>2</sub>O at t°

| ţ°                                                                       | Sat solution<br>contains<br>% CaCl <sub>2</sub>                               | Sat solution<br>contains<br>% CaCl <sub>2</sub> +6H <sub>2</sub> O            |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| -22<br>0<br>+ 7 39<br>13 86<br>19 35<br>23 46<br>24 47<br>27 71<br>29 53 | 32 24<br>36 91<br>38 77<br>41 03<br>42 50<br>44 15<br>45 33<br>46 30<br>50 67 | 63 61<br>72 82<br>76 49<br>80 95<br>83 85<br>87 11<br>89 44<br>91 35<br>99 97 |

(Hammerl, WAB 72, 2 287)

Solubility in 100 pts H<sub>2</sub>O at t°

| t°   | Pts CaCl <sub>2</sub> | t°    | Pts CaCl |
|------|-----------------------|-------|----------|
| 0    | 59 39                 | 13 86 | 69 49    |
| 5    | 64 83                 | 19 35 | 73 91    |
| 7 88 | 66 20                 | 21 89 | 79 77    |

Solubility in 100 pts H<sub>2</sub>O at t°

|                  |                          | -5              | 0 P 00 ==                |       |                          |
|------------------|--------------------------|-----------------|--------------------------|-------|--------------------------|
| t°               | Pts<br>CaCl <sub>2</sub> | t°              | Pts<br>CaCl <sub>2</sub> | t°    | Pts<br>CaCl <sub>2</sub> |
| 0                | 49 6                     | 19              | 72                       | 38    | 108                      |
|                  | 50                       | 20              | 74                       | 39    | 109                      |
| 2                | 51                       | $\overline{21}$ | 75                       | 40    | 110                      |
| 1<br>2<br>3<br>4 | 52                       | 22              | 77                       | 41    | 111                      |
| 4                | 53                       | 23              | 79                       | 42    | 112                      |
| 5                | 54                       | 24              | 80                       | 43    | 113                      |
| 6                | 55                       | 25              | 82                       | 44    | 114                      |
| 7                | 56                       | 26              | 84                       | 45    | 115                      |
| 8                | 57                       | 27              | 87                       | 46    | 116                      |
| 9                | 58                       | 28              | 89                       | 47    | 117                      |
| 10               | 60                       | 29              | 91                       | 48    | 118                      |
| 11               | 61                       | 30              | 93                       | 49    | 119                      |
| 12               | 62                       | 31              | 96                       | 50    | 120                      |
| 13               | 63                       | 32              | 98                       | 51    | 121                      |
| 14               | 65                       | 33              | 100                      | 52    | 122                      |
| 15               | 66                       | 34              | 103                      | 53    | 123                      |
| 16               | 68                       | 35              | 104                      | 54    | 124                      |
| 17               | 69                       | 36              | 105                      | 55    | 125                      |
| 18               | 71                       | 37              | 107                      | 56    | 126                      |
| 57               | 127                      | 72              | 1 37                     | 87    | 145                      |
| 55               | 127<br>128<br>129<br>129 | 72<br>73        | 138                      | 88    | 146                      |
| 9                | 129                      | 74              | 138                      | 89    | 147                      |
| 60               | 129                      | 75              | 139                      | 90    | 147                      |
| 61               | 130                      | 76              | 139                      | 91    | 148                      |
| 62               | 131                      | 77              | 140                      | 92    | 149                      |
| 63               | 131                      | 78              | 141                      | 93    | 150                      |
| 64               | 132                      | 79              | 141                      | 94    | 150                      |
| 65               | 133                      | 80              | 142                      | 95    | 151                      |
| 66               | 133                      | 81              | 142                      | 96    | 152                      |
| 67               | 134                      | 8.2             | 143                      | 97    | 152                      |
| 68               | 135                      | 83              | 143                      | 98    | 153                      |
| 69               | 135                      | 84              | 144                      | 99    | 154                      |
| 70               | 136                      | 85              | 144                      | 179 5 | 325                      |
| 71               | 136                      | 86              | 145                      |       |                          |

If solubility S=pts anhydrous  $CaCl_2$  in 100 pts solution, S=32+0.2148t from  $-18^\circ$  to  $+6^\circ$ , S=54.5+0.0755t from 50° to 120° (Étard, C. R. 98.1432.)

According to Bakhuis Roozeboom, the solubility of CaCl<sub>2</sub> varies according to the hydrate employed, and the following data were obtained as the result of very exact experiments

Solubility of CaCl<sub>2</sub>+6H<sub>2</sub>O in 100 pts H<sub>2</sub>O at t°

| t°                                                 | Pts<br>CaCl <sub>2</sub> | t°   | Pts<br>CaCl <sub>2</sub> | t°   | Pts<br>CaCl <sub>2</sub> |
|----------------------------------------------------|--------------------------|------|--------------------------|------|--------------------------|
| $\begin{array}{ccc} 20 & 4 \\ 25 & 05 \end{array}$ | 75 1                     | 28 0 | 88 8                     | 29 5 | 96 07                    |
|                                                    | 81 67                    | 28 9 | 92 05                    | 30 2 | 102 7                    |

There are two modifications of  $CaCl_2+4H_2C$ ,  $\alpha$  and  $\beta$ 

Solubility of  $CaCl_2+4H_2O\beta$  in 100 pts  $H_2O$  at  $t^{\circ}$ 

| t°                   | Pts CaCl <sub>2</sub>   | t°           | Pts CaCl2        |
|----------------------|-------------------------|--------------|------------------|
| 18 4<br>25 0<br>30 0 | 103 3<br>108 8<br>114 1 | 35 0<br>38 4 | 122 74<br>127 50 |

Solubility of  $CaCl_2+4H_2Oa$  in 100 pts  $H_2O$  at  $t^{\circ}$ 

| t°   | Pts CaCl <sub>2</sub> | t°    | Pts CaCl |
|------|-----------------------|-------|----------|
| 22 0 | 92 67                 | 35 95 | 107 21   |
| 24 7 | 95 59                 | 40 00 | 115 3    |
| 29 8 | 100 6                 | 45 00 | 129 9    |

Solubility of CaCl<sub>2</sub>+2H<sub>2</sub>O in 100 pts H<sub>2</sub>O at t°

| t                              | I ts<br>CaCl2 | t°                        | Pts<br>CaCl <sub>2</sub>         | t°                       | Pts<br>CaCl                      |
|--------------------------------|---------------|---------------------------|----------------------------------|--------------------------|----------------------------------|
| 40<br>45<br>50<br>59 5<br>80 5 | 1             | 95 8<br>115<br>124<br>137 | 156 5<br>169 5<br>176 0<br>187 6 | 139<br>155<br>165<br>174 | 191 0<br>214 3<br>236 2<br>275 7 |

Solubility of  $C_1Cl_2+H_2O_1$  in 100 pts  $H_1O_1$  it  $t^{\circ}$ 

| t°  | I to CaCl2 |
|-----|------------|
| 191 | 306        |
| 235 | 331        |

(Mulder, Scheik Verhandel 1864 107) (Bakhuis Roozeboom, R t c 81)

| Sρ | gr | of | CaCl2+Aq  |
|----|----|----|-----------|
| ъp | gr | OI | CaC12 TAQ |

| %<br>CaCl <sub>2</sub> | Sp gr | CaCl <sub>2</sub> | Sp gr | CaCl <sub>2</sub> | Sp gr |
|------------------------|-------|-------------------|-------|-------------------|-------|
| 3 95                   | 1 03  | 20 85             | 1 18  | 34 57             | 1 33  |
| 7 66                   | 1 06  | 23 93             | 1 21  | 36 49             | 1 36  |
| 11 23                  | 1 09  | 26 86             | 1 24  | 38 31             | 1 39  |
| 14 42                  | 1 12  | 29 67             | 1 27  | 40 43             | 1 42  |
| 17 60                  | 1 15  | 32 35             | 1 30  | 41 91             | 1 45  |

(Richter)

Sp gr of CaCl +Aq at 19 5° containing pts CaCl to 100 pts H<sub>2</sub>O

| Pts<br>CaCl | Sp gr  | Pts<br>CaCl <sub>2</sub> | Sp gr  |
|-------------|--------|--------------------------|--------|
| 6 97        | 1 0545 | 36 33                    | 1 2469 |
| 12 58       | 1 0954 | 50 67                    | 1 3234 |
| 23 33       | 1 1681 | 62 90                    | 1 3806 |

(Kremers Pogg 99 444)

Sp gr of CaCl<sub>2</sub>+Aq G=sp gr at 15° if % is CaCl<sub>2</sub>, according to Gerlach, S=sp gr at 18 3° if % is CaCl<sub>2</sub>+6H<sub>2</sub>O, according to Schiff

|                 | to perm            |                  |          |                    |                  |
|-----------------|--------------------|------------------|----------|--------------------|------------------|
| %               | G                  | S                | %        | G                  | S                |
| 1<br>2<br>3     | 1 00852<br>1 01704 | 1 0039<br>1 0079 | 36<br>37 | 1 35610<br>1 36790 | 1 1575<br>1 1622 |
| 3               | 1 02555            | 1 0119           | 38       | 1 37,970           | 1 1671           |
| 4               | 1 03407            | 1 0159           | 39       | 1 39150            | 1 1719           |
| 5<br>6          | 1 04259            | 1 0200           | 40       | 1 40330            | 1 1768           |
| 6               | 1 05146            | 1 0241           | 41       |                    | 1 1816           |
| 7               | 1 06033            | 1 0282           | 42       |                    | 1 1865           |
| 8               | 1 06921            | 1 0323           | 43       |                    | 1 1914           |
| 9               | 1 07808            | 1 0365           | 44       |                    | 1 1963           |
| 10              | 1 08695            | 1 0407           | 45       |                    | 1 2012           |
| 11              | 1 09628            | 1 0449           | 46       |                    | 1 2062           |
| 12              | 1 00561            | 1 0491           | 47       |                    | 1 2112           |
| 13              | 1 10494            | 1 0534           | 48       |                    | 1 2162           |
| 14              | 1 12427            | 1 0577           | 49       |                    | 1 2212           |
| 15              | 1 13360            | 1 0619           | 50       |                    | 1 2262           |
| 16              | 1 14332            | 1 0663           | 51       |                    | 1 2312           |
| 17              | 1 15305            | 1 0706           | 52       |                    | 1 2363           |
| 18              | 1 16277            | 1 0750           | 53       |                    | 1 2414           |
| 19              | 1 17250            | 1 0794           | 54       |                    | 1 2465           |
| 20              | 1 18222            | 1 0838           | 55       |                    | 1 2516           |
| 21              | 1 19251            | 1 0882           | 56       |                    | 1 2567           |
| 22              | 1 20279            | 1 0927           | 57       |                    | 1 2618           |
| 23              | 1 21308            | 1 0972           | 58       |                    | 1 2669           |
| 24              | 1 22336            | 1 1017           | 59       |                    | 1 2721           |
| 25              | 1 23365            | 1 1062           | 60       |                    | 1 2773           |
| 26              | 1 24450            | 1 1107           | 61       |                    | 1 2825           |
| 27              | 1 25535            | 1 1153           | 62       |                    | 1 2877           |
| <b>2</b> 8      | 1 26619            | 1 1199           | 63       |                    | 1 2929           |
| 29              | 1 27704            | 1 1246           | 64       |                    | 1 2981           |
| 30              | 1 28789            | 1 1292           | 65       |                    | 1 3034           |
| 31              | 1 29917            | 1 1339           | 66       |                    | 1 3087           |
| $\frac{32}{32}$ | 1 31045            | 1 1386           | 67       |                    | 1 3140           |
| 33              | 1 32174            | 1 1433           | 68       |                    | 1 3193           |
| 34              | 1 33602            | 1 1480           | 69       |                    | 1 3246           |
| 35              | 1 34430            | 1 1527           | 70       |                    | 1 3300           |

Sp gr of  $CaCl_2+Aq$  a=no of half molect s in grammes dissolved in 1000 g H ), b=sp gr at 24 3° when a=CaCl + 6H<sub>2</sub>O (½ mol =109 5 g), c=sp gr it 24 3° when a=CaCl<sub>2</sub> (½ mol =55 5 )

| a                          | b                                                  | c                                                  | а                       | b                                         | c   |
|----------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------|-------------------------------------------|-----|
| 1<br>2<br>3<br>4<br>5<br>6 | 1 041<br>1 076<br>1 106<br>1 133<br>1 157<br>1 179 | 1 043<br>1 084<br>1 122<br>1 159<br>1 193<br>1 227 | 7<br>8<br>9<br>10<br>11 | 1 198<br>1 214<br>1 229<br>1 242<br>1 255 | 1 2 |

(Favre and Valson, C R 79 968)

Sp gr of CaCl<sub>2</sub>+Aa at 18°

| % CaCl2             | Sp gr                                | % CaCl2        | Sp gr                                  |
|---------------------|--------------------------------------|----------------|----------------------------------------|
| 5<br>10<br>15<br>20 | 1 0409<br>1 0852<br>1 1311<br>1 1794 | 25<br>30<br>35 | 1 230 <sup>‡</sup><br>1 2841<br>1 342( |

(Kohlrausch, W Ann 1879 1)

 $CaCl_2+Aq$  sat at 0° has sp gr = 1 (Engel, Bull Soc 1887, (2) 47 318)

Sp gr of CaCl +Aq at 9 5°C

| Mass of salt per unit<br>mass of solution | Density of solution (g per ce) |
|-------------------------------------------|--------------------------------|
| 0 00191                                   | 1 00165                        |
| 0 00381                                   | 1 00317                        |
| 0 00570                                   | 1 00465                        |
| 0 00759                                   | 1 00615                        |
| 0 00947                                   | 1 00765                        |
| 0 01320                                   | 1 01050                        |

(McGregor, C. N. 1887, 55 6)

Sp gr of CiCl +Aq it 25

| Concentration of Ca(1+1q | 7b Ft  |
|--------------------------|--------|
| 1-norm il                | 1 0446 |
| 1/- 4                    | 1 0215 |
| 1/1-                     | 1 0105 |
| 1/4- '                   | 1 0050 |

(Wagner, Z phys Ch 1890 5 36)

Sp gr at 16°/4° of CaCl + Aq cont u ng 12 1638% CaCl = 1 10489 (Schomock Z phys Ch 1895 11 768)

(Calculated by Gerlach, Z unil 8, 283)

| Sp | gr | of | CaCl. | + Aa | at | 17 | 925°0 | Z |
|----|----|----|-------|------|----|----|-------|---|
|----|----|----|-------|------|----|----|-------|---|

|                                        | 9                                                                                                                                                                                       |                                                                                                          |                                                                                                                                                                                         |                                                                                                          |                                                                                                                                                                                         |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CaCl₂                                  | Sp gr                                                                                                                                                                                   | CaĈ1                                                                                                     | Sp gr                                                                                                                                                                                   | CaCl <sub>2</sub>                                                                                        | Sp gr                                                                                                                                                                                   |
| 0 0 1 2 0 3 4 0 0 8 0 1 1 5 6 7 8 9 10 | 0 99869<br>0 99954<br>1 00037<br>1 00116<br>1 00201<br>1 00539<br>1 00703<br>1 01127<br>1 01548<br>1 02386<br>1 03238<br>1 04089<br>1 04951<br>1 05822<br>1 06680<br>1 07569<br>1 08467 | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 1 11206<br>1 12130<br>1 13067<br>1 14016<br>1 14969<br>1 15926<br>1 16920<br>1 17910<br>1 18897<br>1 19901<br>1 20901<br>1 22941<br>1 23969<br>1 25030<br>1 26092<br>1 27182<br>1 27182 | 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50 | 1 31562<br>1 32689<br>1 33821<br>1 34956<br>1 36100<br>1 37242<br>1 38400<br>1 40641<br>1 41770<br>1 42882<br>1 44007<br>1 45124<br>1 46238<br>1 47329<br>1 48450<br>1 49573<br>1 50676 |
| 11<br>12                               | 1 09373<br>1 10288                                                                                                                                                                      | $\begin{vmatrix} 31\\32 \end{vmatrix}$                                                                   | 1 29360<br>1 30461                                                                                                                                                                      | 51                                                                                                       | 1 51778                                                                                                                                                                                 |

(Pickering, B 1894, 27 1385)

Sp g1 of CaCl2+Aq at to

| t        | Concentration of CaCl2+Aq                            | Sp gr            |
|----------|------------------------------------------------------|------------------|
| 20<br>20 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 1062<br>1 0032 |

(Hittorf, Z phys Ch 1902, 39 628)

Sp gi of CiCl + Aq at 20°

| g mol CiCl per l | אם פל    |
|------------------|----------|
| 0 010            | 1 000982 |
| 0 025            | 1 002539 |
| 0-050            | 1 004874 |
| 0 075            | 1 006514 |
| 0 10             | 1 005971 |
| 0.25             | 1 02267  |
| () 5()           | 1 04451  |
| 0.75             | 1 06641  |
| 1 00             | 1 05744  |

(Jones and Pearce, Am. Ch. J. 1907, 38 696)

Sit CiCl + Aq forms i crust it 150°, and contains 17S pts CiCl to 100 pts H O (Cirlich).

Sit CiCl + Aq boils it 180 (Rudorff)

B-pt of CaCl<sub>2</sub>+Aq containing pts CaCl<sub>2</sub> to 100 pts H<sub>2</sub>O G=according to Gerlach (Z anal 26 440), L=according to Legrand (A ch (2) 39 43)

| grand (A cn (2) 35 45) |          |       |       |       |       |
|------------------------|----------|-------|-------|-------|-------|
| B pt                   | G        | L     | B pt  | G     | L     |
| 101°                   | 6 0      | 10    | 134°  |       | 117 2 |
| 102                    | 11 5     | 16 5  | 135   | 119   |       |
| 103                    | 16 5     | 21 6  | 136   |       | 123 5 |
| 104                    | 21 0     | 25 8  | 138   |       | 129 9 |
| 105                    | 25 0     | 29 4  | 140   | 137 5 | 136 3 |
| 106                    | 29 0     | 32 6  | 142   |       | 142 8 |
| 107                    | 32 5     | 35 6  | 144   |       | 149 4 |
| 108                    | 35 5     | 38 5  | 145   | 157   |       |
| 109                    | 38 5     | 41 3  | 146   |       | 156 2 |
| 110                    | 41 5     | 44 0  | 148   |       | 163 2 |
| 111                    |          | 46 8  | 150   | 178   | 170 5 |
| 112                    |          | 49 7  | 152   |       | 178 1 |
| 113                    |          | 52 6  | 154   |       | 186 0 |
| 114                    |          | 55 6  | 155   | 200   |       |
| 115                    | 55 0     | 58 6  | 156   |       | 194 3 |
| 116                    |          | 61 6  | 158   |       | 203 0 |
| 117                    |          | 64 6  | 160   | 222   | 212 1 |
| 118                    |          | 67 6  | 162   |       | 221 6 |
| 119                    |          | 70 6  | 164   |       | 231 5 |
| 120                    | 69 0     | 73 6  | 165   | 245   |       |
| 121                    |          | 76 7  | 166   |       | 241 9 |
| 122                    | 1        | 79 8  | 168   |       | 252 8 |
| 123                    |          | 82 9  | 170   | 268   | 264 2 |
| 124                    | l        | 86 0  | 172   | 1     | 276 1 |
| 125                    |          | 89 1  | 174   |       | 285 5 |
| 126                    |          | 92 2  | 175   | 292   |       |
| 128                    |          | 98 4  | 176   |       | 301 4 |
| 130                    | 101      | 104 6 | 178   | 305   | 314 8 |
| 130 4                  | 102 67   |       | 179 5 |       | 325 0 |
| 132                    | _        | 110 9 |       |       | 1     |
|                        | <u>'</u> |       |       |       | ·     |

B-pt of CaCl +Aq

| D-pt of Odol2   riq |                    |              |             |  |
|---------------------|--------------------|--------------|-------------|--|
| % CaCl2             | B pt               | % CaCl       | B pt        |  |
| 5 6<br>10 3<br>14 5 | 101°<br>102<br>103 | 17 5<br>20 0 | 104°<br>105 |  |

(Skinner, Chem Soc 61 340)

I cas sol in HCl+Aq than in H<sub>2</sub>O HCl+Aq sit at 12° dissolves 27% CaCl which crystallizes out with 2H O (Ditte, C R 92 242)

Solubility of CaCl in HCl+Aq at 0°

| Sp gr of                                                    | g per 100 ce solution                                       |                                                         |
|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| olutions                                                    | CiCl                                                        | HCI                                                     |
| 1 367<br>1 344<br>1 326<br>1 310<br>1 255<br>1 250<br>1 238 | 51 45<br>46 45<br>42 80<br>36 77<br>29 84<br>20 12<br>11 29 | 0 0<br>3 32<br>5 53<br>10 66<br>15 54<br>23 05<br>34 62 |

(Fingel, C. R. 1887, 104, 434)

CaCl<sub>2</sub>+CaO<sub>2</sub>H<sub>2</sub> Solubility of CaCl<sub>2</sub>+ CaO<sub>2</sub>H<sub>2</sub> in H<sub>2</sub>O at 25°

| %<br>CaCl₂   | СаО Н | Solid phase                                                    |  |  |
|--------------|-------|----------------------------------------------------------------|--|--|
| 5 02         | 0 101 | CaO_H                                                          |  |  |
| 10 00        | 0 115 |                                                                |  |  |
| 12 94        | 0 128 |                                                                |  |  |
| 15 14        | 0 140 |                                                                |  |  |
| 17 20        | 0 145 |                                                                |  |  |
| 18 15        | 0 148 | CaO <sub>2</sub> H <sub>2</sub> +CaCl <sub>2</sub> 4CaO 14H O  |  |  |
| 18 01        | 0 152 | CaCl <sub>2</sub> 4CaO 14H O                                   |  |  |
| 21 02        | 0 147 |                                                                |  |  |
| 23 80        | 0 146 |                                                                |  |  |
| 24 33        | 0 147 |                                                                |  |  |
| 28 37        | 0 170 |                                                                |  |  |
| 29 54        | 0 180 |                                                                |  |  |
| 32 67        | 0 225 | CaO H <sub>2</sub> (?)                                         |  |  |
| 33 21        | 0 245 | CaCl 4CaO 14H <sub>2</sub> O                                   |  |  |
| 33 72        | 0 254 | CaCl <sub>2</sub> 4CaO 14H <sub>2</sub> O +CaCl <sub>2</sub>   |  |  |
|              | i     | CaO 2H <sub>2</sub> O                                          |  |  |
| 34 36        | 0 173 | CaCl <sub>2</sub> CaO 2H O                                     |  |  |
| 38 61        | 0 060 |                                                                |  |  |
| 41 32        | 0 048 |                                                                |  |  |
| <b>44</b> 30 | 0 030 |                                                                |  |  |
| <b>44</b> 60 | 0 029 | CaCl <sub>2</sub> 6H O+CaCl <sub>2</sub> CaO 2H <sub>2</sub> O |  |  |
| 44 77        |       | CaCl <sub>2</sub> 6H <sub>2</sub> O                            |  |  |

(Schreinemakers and Figee, Chem Weekbl 1911, 8 685)

## See also under Calcium hydroxide

CaCl<sub>2</sub>+KCl 100 pts H<sub>2</sub>O dissolve 56 pts CaCl<sub>2</sub> at 7°, 100 pts H<sub>2</sub>O dissolve 31 pts KCl at 7°, 100 pts H<sub>2</sub>O dissolve 63 5 pts CaCl<sub>2</sub>+4 9 pts KCl at 7° (Mulder, J B **1866** 67)

100 pts H<sub>2</sub>O dissolve 53 CaCl<sub>2</sub>+NaCl  $CaCl_2+NaCl$  100 pts  $H_2O$  dissolve 53 pts  $CaCl_2$  at 4°, and 56 pts at 7°, 100 pts  $H_2O$  dissolve 35 7 pts NaCl at 4°, and 35 7 pts at 7°, 100 pts H<sub>2</sub>O dissolve 57 6 pts CaCl<sub>2</sub>+2 4 pts NaCl at 4°, 100 pts H<sub>2</sub>O dissolve 59 5 pts CaCl +4 6 pts NaCl at 7° (Mulder, l c)
100 g H<sub>2</sub>O dissolve 72 6 g CaCl<sub>2</sub>+16 0 g

NaCl at 15° (Rudorff)

Sol in sat KNO.+Aq (Fourcroy) (Buchner, Z phys Insol in liquid CO Ch 1906, **54** 674)

Insol in liquid NH<sub>d</sub> (Franklin, Am Ch J 1898, **20** 827)

Sol in 1 pt strong boiling alcohol zel)

Sol in 8 pts alcohol it 15°, and in 1 pt spirits of wine (Beigm in )

Sol in 0.7 pt boiling absolute alcohol (Otto)

Sol in 143 pts boiling absolute decohol it 78 3° (Graham)

Solubility of CiCl in methyl alcohol CaCl2 forms with methyl alcohol two complexes CaCl 4CH3OH and CaCl 3CH3OH

| t° | % by weight of CaCl | 4CH <sub>3</sub> OH |
|----|---------------------|---------------------|
| 0  | 33 3                |                     |
| 10 | 37 6                |                     |
| 20 | 42 2                |                     |
| 30 | 47 0                |                     |
| 40 | 52 0                |                     |
| 50 | 57 3                |                     |
| 55 | 60 0                |                     |
| 56 | 61 3                |                     |

## Solubility of CaCl<sub>2</sub>, 3CH<sub>3</sub>OH in CH<sub>3</sub>OH

| t°         | % by weight of CaCl2 | 3CH₃OH |
|------------|----------------------|--------|
| 55         | 60 5                 |        |
| 75         | 63 1                 |        |
| 95         | 66 3                 |        |
| 115        | 70 3                 |        |
| 135        | 75 <b>2</b>          |        |
| 155        | 81 8                 |        |
| 165        | 86 2                 |        |
| 170        | 89 5                 |        |
| 174        | 93 5                 |        |
| 177 (mpt ) | 100                  |        |

(Menschutkin, Z anorg 1907, **52** 21)

Solubility of CaCl<sub>2</sub> in ethyl alcohol CaCl<sub>2</sub> forms with ethyl alcohol a complex CaCl<sub>2</sub> 3C<sub>2</sub>H<sub>5</sub>OH

Solubility of CaCl<sub>2</sub> 3C<sub>2</sub>H<sub>5</sub>OH in C H<sub>5</sub>OF at to

| t° | % by weight of<br>CaCl 3C2H5OH | t      | (      |
|----|--------------------------------|--------|--------|
| 0  | 34 8                           | 80     | \$6 \$ |
| 20 | 46 0                           | 85     | \$9 2  |
| 40 | 58 7                           | 90     | 91 9   |
| 60 | 73 0                           | 95     | 96 2   |
| 70 | 80 8                           | 97 mpt | 100    |

(Menschutkin, Z anorg 1907, 52 25)

Sp gr at 16°/4° of C1Cl2+1lcohol con taining 5 668% CaCl<sub>2</sub>=0 83636 (Schoniocl Z phys Ch 1893, 11 768)

B-pt of an alcoholic solution of CaCl

| 4 ( i(1 | B pt          |
|---------|---------------|
| 2 4     | 78 43 + 0 70  |
| 5 39    | 78 43 + 2 11  |
| \$ 01   | 78 32 + 4 18  |
| 9 93    | 78 43 + 5 11  |
| 15 94   | 78 43 + 11 71 |

(Skinner, Chem Soc 61 340)

Sl sol in propyl alcohol (Berthelot) 100 g propyl alcohol dissolve 10.75 g CaCl (Schlamp Z phys Ch 1894, 14, 276) SI sol in imyl alcohol (Bours) Pptd from alcoholic solution by other (Dobberemer)

Sol in wood-spirit, sol in lignone (Liebig), (Gmelin) insol in lignone

Insol in acetone, sol in butyl alcohol

(Wurtz)

Very sl sol in acetone (Krug and M'Elroy, J Anal Ch 6 184) Solubility in acetone+Ac at 20°

CaCl, will salt out acetone from aqueous solution The table shows the composition of the solutions at the points at which inhomogeneous solutions of CaCl<sub>2</sub>, acetone and H2O just become homogeneous at 20° 100 g of the solution contain

| 60 db at 20                                 | 100 8 01 010 000                                     | TOTOL COHOLIL  |
|---------------------------------------------|------------------------------------------------------|----------------|
| g CaCl <sub>2</sub>                         | g H <sub>2</sub> O                                   | g acetone      |
| 13 03                                       | 52 49                                                | 34 48          |
| 8 5                                         | 45 37                                                | 46 15          |
| 6 38                                        | 39 51<br>35 95                                       | 54 11<br>58 70 |
| 5 35<br>4 11                                | 35 95<br>31 8                                        | 64 09          |
| 4 11<br>3 58                                | 29 88                                                | 66 54          |
| 3 31                                        | 28 59                                                | 68 10          |
| 3 04                                        | 27 03                                                | 69 93          |
| $\frac{3}{2}$ $7\overline{7}$               | 26 67                                                | 70 56          |
| 13 90                                       | 53 47                                                | 32 63          |
| $10 \ 12$                                   | 48 86                                                | $41 \ 02$      |
| 8 47                                        | 45 59                                                | 45 94          |
| 6 92                                        | 41 24                                                | 51 84          |
| 6 31                                        | 39 15                                                | 54 54          |
| 5 28<br>4 94                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 58 63<br>60 34 |
| $\begin{array}{c}4 & 94\\4 & 37\end{array}$ | 33 8                                                 | 61 83          |
| 1 99                                        | 23 38                                                | 74 63          |
| 1 6                                         | 21 4                                                 | 77 00          |
| 1 35                                        | 19 92                                                | 78 73          |
| 18 787                                      | 55 301                                               | 25 913         |
| 12 443                                      | 52 153                                               | 35 404         |
| 10 70                                       | 49 61                                                | 39 69<br>42 66 |
| 9 59                                        | 47 75<br>46 04                                       | 45 14          |
| 5 82<br>7 48                                | 42 75                                                | 49 77          |
| 7 07                                        | 41 54                                                | 51 39          |
| 6 72                                        | 40 48                                                | 52 8           |
| 30 04                                       | 49 39                                                | 20 57          |
| 15 23                                       | 55 01                                                | 26 76          |
| 15 49                                       | 54 00                                                | 30 51          |
| 13 15                                       | 52 52<br>50 20                                       | 34 3<br>38 40  |
| 11 40<br>28 09                              | 50 20                                                | 20 20          |
| 26 S1                                       | 52 01                                                | 21 18          |
| 22 67                                       | 55 66                                                | 21 67          |
| 15 159                                      | 56 21                                                | 25 60          |
| 31 21                                       | 48 00                                                | 20 81          |
| 2 23                                        | 24 93                                                | 72 84          |
| 1 82                                        | 22 27<br>15 57                                       | 75 89<br>83 44 |
| 0.65                                        | 15 S7<br>14 93                                       | 84 49          |
| 0 55<br>0 45                                | 13 55                                                | 86 00          |
| 0 48                                        | 14 49                                                | 85 13          |
| 0 27                                        | 12 31                                                | 87 42          |
| 0.20                                        | 9 95                                                 | 89 85          |
| 0 15                                        | 9 05                                                 | 90 81          |
|                                             |                                                      | C 1014 26      |

(Frankforter, J Am Chem Soc 1914, 36

Sol in many compound ethers, as ethyl acetate (Liebig), ethyl lactate (Strecker) Sol in considerable quantity in amyl sul-locyanide (Medlock, Chem Soc 1 374) phocyanide Sol in valvl (Kolbe) Very sol in conc HC<sub>2</sub>H<sub>3</sub>O (Liebig) Solubility of CaCl in acetic acid

CaCl<sub>2</sub>, 4CH<sub>3</sub>COOH Solubility of CaCl<sub>2</sub>, 4CH<sub>3</sub>COOH in CH<sub>3</sub>COOH at t

CaCl<sub>2</sub> forms with acetic acid a complex,

| 11 1 42 0<br>30 47 6<br>35 50 0<br>40 54 7<br>45 63 0<br>50 69 5<br>60 79 5<br>65 84 5<br>70 91 2<br>73 100 0 | t°                                           | % by wt CaCl2 4CH3COOH                                       |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|
|                                                                                                               | 30<br>35<br>40<br>45<br>50<br>60<br>65<br>70 | 47 6<br>50 0<br>54 7<br>63 0<br>69 5<br>79 5<br>84 5<br>91 2 |

(Menschutkin, Z anorg 1907, 54 95)

Insol in benzonitrile (Naumann, B 1914, **47** 1370) Insol in ethyl acetate (Naumann, B

1910, 43 314) Sl sol in anhydrous pyridine

Sol in 97%, 95% and 93% pyridine+Aq (Kahlenberg, J Am Chem Soc 1908, 30 1107)

100 g sat solution of CaCl<sub>2</sub> in sat sugar+Aq at 31 25° contain 42 84 g sugar+25 25 g CaCl<sub>2</sub>, or 100 g H<sub>2</sub>O dissolve 135 1 g sugar +79 9 g CaCl<sub>2</sub> at 31 25° (Kohler, Z Ver Zuckerind, 1907, **47** 447)

+H2O (Bakhuis Roozeboom) See above (Bakhuis Roozeboom) See above +2HOTwo modifications (Bakhuis +4HORoozeboom) See above

 $\alpha$  and  $\beta$  modifications ( $\alpha = \text{stable form}$ ) (Kuznetzov, C A 1911, 842) +6H<sub>2</sub>O Very deliquescent

Sol in HO with absorption of much heat

250 pts CaCl<sub>2</sub>+6H<sub>2</sub>O with 100 pts H<sub>2</sub>O at 108° lower the temp 232° (Rudorff, B

2 68) Melts in crystal H () it 28° (Tilden, Chem Soc 45 409), at 30 2° (Bakhuis Rooz (boom)

Sat solution in H.O contains at  $+4^{\circ}$ —17° -22° —5° ---5° 36 5% salt, 35 2 31 5 35 1 32 4 35° 49° 29°

49 0 55 1% salt, 37 9 42 1 46 1 115° 80° 104° 63°

58 6% salt 58 5 57 5 55 9 (Etard, A ch 1894, (7) 2 532)

solution of CaCl +6H O contains Sat

44 77 g CaCl<sub>2</sub> at 25° (Schreinema Figee, Chem Weekbl 1911, 8 685) (Schreinemakers and See also above

Solubility of CaCl<sub>2</sub>+6H<sub>2</sub>O in ethyl alcohol+ Aq under addition of increasing amounts of CaCl

| 04012                               |                              |                                                                      |
|-------------------------------------|------------------------------|----------------------------------------------------------------------|
| Per cent of alcohol<br>by volume    | G CaCl <sub>2</sub><br>added | Grams CaCl <sub>2</sub> in<br>5 cc of solution                       |
| 92 3<br>97 3<br>99 3<br>"<br>"<br>" | 1<br>2<br>3<br>4<br>5        | 1 430<br>1 409<br>1 429<br>1 529<br>1 561<br>1 590<br>1 641<br>1 709 |

(Bodtker, Z phys Ch 1897, 22 510)

Calcium hydroxylamine chloride, CaCl<sub>2</sub>, 3NH<sub>2</sub>OH, HCl

(Antonow, J Russ Phys Chem Soc 1905, **37** 479)

Calcium iodine trichloride, 2ICl<sub>3</sub>, CaCl<sub>2</sub>+  $8H_{9}O$ 

Hydroscopic (Weinland, Z anorg 1902, **30** 142)

Calcium mercuric chloride, CaCl<sub>2</sub>, 5HgCl +

Decomp by cold H<sub>2</sub>O, which dissolves out CaCl<sub>2</sub>, but all dissolves on heating (v Bonsdorff, **1829**)

2HgCl<sub>2</sub>+6H<sub>2</sub>O CaCl<sub>2</sub>, Deliquescent

Very sol in H<sub>2</sub>O (v Bonsdorff)

CaCl<sub>2</sub>, 6HgCl<sub>2</sub>+6H<sub>2</sub>O Very deliquescent Decomp by HO (Stromholm, J pr 1902, (2) 66 521)

Calcium lead chloride, basic See Calcium lead oxychloride

Calcium magnesium chloride, CiCl, 2MgCl +12H<sub>2</sub>O

Min Fachhydrite Deliquescent 100 pts HO dissolve 160 3 pts at 15 75° By dissolving 20 pts in 80 pts H O the temp is i used 7.75° (Bischof)

Calcium mercuric chloride, basic, CiCl 2Hg()+4H ()

See Calcium mercuric oxychloride

Calcium thallic chloride, 21 lCl<sub>3</sub>,C iCl + 6H ()

Can be cryst from HO (Gewecke A 1909, **366** 222)

Calcium tin (stannic) chloride See Chlorostannate, calcium Calcium uranium chloride, CaCl<sub>2</sub>,UCl<sub>4</sub> Decomp by H<sub>2</sub>O (Aloy, Bull Soc 1899, (3) **21** 265 )

Calcium zinc chloride

CaZnCl<sub>4</sub>+5½H<sub>2</sub>O, and Ca<sub>2</sub>ZnCl<sub>6</sub>+6H O Very hydroscopic (Ephraim, Z anorg 1910) **67** 379)

Calcium chloride ammonia, CaCl<sub>2</sub>, 8NH<sub>3</sub> Sol in H<sub>2</sub>O with decomp (Faraday)

Calcium chloride hydrazine, CaCl<sub>2</sub>, 2N<sub>2</sub>H<sub>4</sub>(?) Ppt (Franzen, Z anorg 1908, 60 288)

Calcium chloride hydroxylamine, CaCl  $NH_2OH + 5H_2O$ 

Not hygroscopic (Antonow, J Russ Phys Chem Soc 1905, 37 479)

CaCl<sub>2</sub>, 2NH<sub>2</sub>OH Aqueous solution sat at 20° con  $+H_2O$ 

tains 56 6 pts salt (Antonow, l c)  $+2\mathrm{H}_2\mathrm{O}$ 2CaCl<sub>2</sub>, 3NH<sub>2</sub>OH+6H<sub>2</sub>O (Antonow, l c $2CaCl_2$ ,  $5NH_2OH+4H_2O$  (Antonow, l c

Calcium chloride lead oxide, CaCl., 3PbO- $3H_2O$ 

See Calcium lead oxychloride

Calcium chloroferrite, CaO, CaCl<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub> Insol in H<sub>2</sub>O (le Chatelier, C R 99 276

Calcium chlorofluoride, Cal., CaCl

Decomp by H<sub>2</sub>O, by very dil HCl, HNC or acetic acid, by hot dil or conc H S() Sol in cone HCl or HNO3 Insol in, and no decomp by cold or boiling decohol (Defue) A (h 1904, (8) 1 355)

Calcium cyanamide, basic, CN (( i()H)  $6H_2O$ 

Sl sol in H O (Meyer J pr 1878, (2) 1 42)

Calcium cyanamide, ( iC \ Decomp by H<sub>2</sub>O (Meyer, J pr. 1878, c **18** 42))

Calcium subfluoride, C il

Decomp by H O

Sol in hot dil HCl ind somewhat sol a dil actic acid

Somewhat sol in boiling absolute alcoh (Wohler, Z. anorg 1909, 61 S1)

Calcium fluoride, Cal-

Sol in 26,923 pts HO it 15.5° (Wilse, Ch Gaz 1850 366)

1 1 H<sub>2</sub>O dissolves 16 mg C<sub>4</sub>F at 1 (Kohli usch, Z phys Ch 1904, 50 o56) 16 3 mg in 1 l of sat solution at 1 (Kohlrausch, Z phys Ch 1908, 64 168)

When pptd not completely insol in H<sub>2</sub>O, scarcely sol in dil, more sol in conc HCl+ Aq, decomp by conc H<sub>2</sub>SO<sub>4</sub>, not decomp by dil alkaline solutions (Fresenius)

Not decomp by conc H<sub>2</sub>SO<sub>4</sub> below 40°, but forms a transparent syrup CaF<sub>2</sub> is pptd

from this solution by addition of H2O

Sol in conc HCl, and HNO3+Aq in the same way, but the liquid is not viscid. Very sl sol in HF Boiling HCl+Aq dissolves slightly Decomp by boiling HNO3+Aq

Sol in NH<sub>4</sub> salts +Aq (Rose) Partly decomp by boiling K<sub>2</sub>CO<sub>3</sub>, and Na<sub>2</sub>CO<sub>3</sub>+Aq (Dulong, A ch 82 278)

Insol in liquid HF (Franklin, Z anorg 1905, 46 2)

Insol in acetone (Naumann, B 1904, 37 (Naumann, B

Insol in methyl acetate 1909, **42** 3790

Insol in ethyl acetate (Naumann, B

1910, 43 314)

Min Fluorite (Fluorspar) Calculated from electrical conductivity of CaF<sub>2</sub>+Aq, 11 H<sub>2</sub>O dissolves 14 mg CaF<sub>2</sub> at 18° (Kohlrausch and Rose, Z phys Ch 12 241)

Calcium hydrogen fluoride, CaH<sub>2</sub>F<sub>4</sub>+6H<sub>2</sub>O Decomp by boiling H<sub>2</sub>O Sol in HF+Aq (Fremy, A ch (3) 47 35)

#### Calcium tantalum fluoride Sec Fluotantalate, calcium

Calcium stannic fluoride See Fluostannate, calcium

## Calcium titanium fluoride See Fluotitanate, calcium

## Calcium fluoiodide, Cil ,Cal2

Very deliquescent Decomp by cold HO, more rapidly by hot HO, by dil HCl, HNO, H SO4 conc H SO4, and by alcohol and by other if these reagents are not absolute. (De fucqz, A. ch. 1904, (8) 1 358.)

#### Calcium hydride, Cull

Decomp by HCl+Aq (Winkler, B 24 1975 (Moldenhauer, Z inoig 1913, 82 136)

CaH Readily decomp by HO and dilacids, almost insol in concacids. Insol in benzene, turpentine und alkyl huloids (Morssm, C R 1898 **127** 30-31)

Decomp H<sub>2</sub>O and other, sol in dil H<sub>2</sub>SO<sub>4</sub> and HNO3, almost insol in conc. H SO4 and HNO; (von Lengyll, C. C. 1898, H. 262)

Insol in CCl4, CS2, ilcohols and others No known solvent (Moissan, CC 1903, I 563)

#### Calcium hydrosulphide, CaS<sub>2</sub>H

Cryst with 6H<sub>2</sub>O Extremely sol in H<sub>2</sub>O and alcohol 4 of its weight of H2() at or- Arch Pharm (3) 4 558)

dinary temp more than suffices to hold it in solution (Divers and Shimidzu, Chem Soc 45 271)

Sp gr of aqueous solution containing 32%anhydrous  $CaS_2H_2$  (64%  $CaS_2H_2+6H_2O$ ) = 1.255, 37.5%  $CaS_2H_2$  (75.5%  $CaS_2H_2+$  $6H_2O) = 1310$  (Divers and Shimidzu)

#### Calcium hydroxide, CaO<sub>2</sub>H<sub>2</sub>

See also Calcium oxide

Sl sol in cold, and less in hot H<sub>2</sub>O

1 pt CaO dissolves at to in pts H2O

| t°                                                                                                                                     | Pts H <sub>2</sub> O                                                                                                    | Authority                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20<br>0<br>13<br>18<br>19<br>5<br>23<br>18<br>75<br>54<br>4<br>15<br>6<br>15<br>6<br>15<br>6<br>100<br>100<br>100<br>100<br>100<br>100 | 450<br>656<br>700<br>785<br>780<br>806<br>814<br>980<br>972<br>778<br>752<br>731<br>741<br>1270<br>1280<br>1330<br>1340 | Davy Philips (A Phil 17 107) Bergman (Essays etc) Paves and Rotondi (B 7 817) Bineau (A ch (3) 51 290) P and R (l c) P and R (l c) Abl Dalton (Syst 2 231) Dalton (l c) Philips (l c) Wittstein (Repert Pharm 1 182) Tichborne (Bull Soc (2) 17 24) Dalton (l c) Wittstein (l c) Wittstein (l c) Bineau (l c) Tichborne (l c) Bineau (l c) Tichborne (l c) |

#### Solubility in H<sub>2</sub>O 1000 pts $CaO_2H_2+Aq$ sat at to contain pts CaO

| t.º | Pts CaO      |        |         |  |  |
|-----|--------------|--------|---------|--|--|
| L-  | From Nitrate | Marble | Hydrate |  |  |
| 0   | 1 362        | 1 381  | 1 430   |  |  |
| 10  | 1 311        | 1 342  | 1 384   |  |  |
| 15  | 1 277        | 1 299  | 1 344   |  |  |
| 30  | 1 142        | 1 162  | 1 195   |  |  |
| 45  | 0 996        | 1 005  | 1 033   |  |  |
| 60  | 0 884        | 0 868  | 0 885   |  |  |
| 100 | 0 562        | 0 576  | 0 584   |  |  |

(Lamy, C R 86 333)

#### Solubility of CaO2H2 in H2O at t°

| 1                               | Its H ()<br>to I pt<br>(a()              | Pts (a()<br>in 100<br>pts H ()                     | ı                           | I ts H <sub>2</sub> O<br>to 1 pt<br>CaO | Pts CaO<br>in 100<br>pts H O              |
|---------------------------------|------------------------------------------|----------------------------------------------------|-----------------------------|-----------------------------------------|-------------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>50 | 759<br>770<br>791<br>\$62<br>932<br>1019 | 0 131<br>0 129<br>0 126<br>0 116<br>0 107<br>0 098 | 60<br>70<br>80<br>90<br>100 | 1136<br>1235<br>1362<br>1579<br>1650    | 0 088<br>0 080<br>0 073<br>0 063<br>0 060 |

(Maben, Pharm J Trans (3) 14 505)

1 pt CaO<sub>2</sub>H<sub>2</sub> is sol in 640 pts H<sub>2</sub>O at 19°, and 3081 pts at 150° (Shenstone and Cundall, Chem Soc **53** 550)

1000 g H<sub>2</sub>O dissolve 1 251 g CaO (Carles,

Solubility of  $CaO_2H_2$  in  $H_2O$  100 pts  $H_2O$  dissolve pts CaO at  $t^{\circ}$ 

| t°             | Pts CaO                    | t         | Pts CaO          |
|----------------|----------------------------|-----------|------------------|
| 20<br>40<br>60 | 0 1374<br>0 1162<br>0 1026 | 80<br>100 | 0 0845<br>0 0664 |

(Zahorsky, Z anorg 3 34)

1 pt CaO is sol in pts H<sub>2</sub>O at t° t° 15° 20° 25° 30° 35° 40° 45° pts H<sub>2</sub>O 776 813 848 885 924 962 1004

t° 50° 55° 60° 65° 70° 75° 80° pts H<sub>2</sub>O 1044 1108 1158 1244 1330 1410 1482 (Herzfeld, C C **1897**, I, 932)

100 g sat CaO<sub>2</sub>H<sub>2</sub>+Aq contain g CaO at t°
t° 5 10 15 20 25
g CaO 0 135 0 1342 0 132 0 1293 0 1254

t° 30 35 40 50 60
g CaO 0 1219 0 1161 0 1119 0 0981 0 0879

t° 70 80 90 100 g CaO 0 0781 0 074 0 0696 0 0597 O '- J Soc Chem Ind 1901, **20** 223)

ty in  $\rm H_2O$  at high temp of the solution contains at '0° 150° 190° 0 305 0 169 0 084 g CaO (Herold, Z elektrochem 1905, 11 421)

Solubility in H<sub>2</sub>O at t°

| t° | 1 g CaO is sol in & H2O at t |
|----|------------------------------|
| 2  | 768 5                        |
| 10 | 786 8                        |
| 15 | 804 3                        |
| 20 | 826 4                        |
| 25 | 868 7                        |
| 30 | 908 2                        |
| 40 | 988 1                        |
| 50 | 1083 0                       |
| 60 | 1179 0                       |
| 70 | 1274 8                       |
| 80 | 1368 1                       |

(Moody, Chem Soc 1908, 93 1772)

Sat CaO<sub>2</sub>H<sub>2</sub>+Aq contains at 95° 76° 0 0580 0 0705% by wt CaO (Tschugaeff, Z anorg 1914, **86** 159)

100~g sat solution of  $\text{CaO}_2\text{H}_2$  in  $\text{H}_2\text{O}$  at  $25^\circ$  contain 0 117 g  $\text{CaO}_2\text{H}_2$  (Cameron and Potter, J phys Ch 1911, 15 70) Readily sol in most acids

Sol in H<sub>3</sub>BO<sub>3</sub>+Aq at 30° (Sborgi, Real Ac Linc 1913, (5) **22** I, 715 and 798) Sol in NH<sub>4</sub>Cl+Aq Much more sol ii NaCl+Aq than in H<sub>2</sub>O (Rose)

Solubility of CaO<sub>2</sub>H<sub>2</sub> in NH<sub>4</sub>Cl+Aq at 25°

| Concentration of NH4Cl +Aq | Solubility of CaO <sub>2</sub> H <sub>2</sub> is |
|----------------------------|--------------------------------------------------|
| in millimols per liter     | millimols per liter                              |
| 0 00                       | 20 22                                            |
| 21 76                      | 29 08                                            |
| 43 52                      | 39 23                                            |
| 87 03                      | 59 68                                            |

(Noyes and Chapin, Z phys Ch 1899, 28 520)

Solubility of CaO<sub>2</sub>H<sub>2</sub> in CaCl<sub>2</sub>+Aq 100 pt CaCl<sub>2</sub>+Aq of given strength dissolve pt CaO at t°

| t°  | CaCl2+Aq | CaCl <sub>2</sub> +Aq |
|-----|----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|     | 5% CaCl2 | 10% CaCl <sub>2</sub> | 15% CaCl <sub>2</sub> | 20% CaCl <sub>2</sub> | 25% CaCl <sub>2</sub> | 30% CaCl <sub>2</sub> |
| 20  | 0 1370   | 0 1661                | 0 1993                | 0 1857*               | 0 1661*               | 0 163(                |
| 40  | 0 1160   | 0 1419                | 0 1781                | 0 2249                | 0 3030*               | 0 3684                |
| 60  | 0 1020   | 0 1313                | 0 1706                | 0 2204                | 0 2989                | 0 3664                |
| 80  | 0 0936   | 0 1328                | 0 1736                | 0 2295                | 0 3261                | 0 412                 |
| 100 | 0 0906   | 0 1389                | 0 1842                | 0 2325                | 0 3710                | 0 492                 |

\*In these cases ppts of 3CaO CaCl<sub>2</sub>+1oH<sub>2</sub>O wer formed

(Zahorsky, Z anorg 3 34)

See also CaCl +CaO<sub>2</sub>H<sub>2</sub> under Calcius chloride

Solubility in Ca(NO<sub>3</sub>)<sub>2</sub>+Aq at 25°

| Sp. gr<br>25°/25                                                                                           | g CaO as<br>Ca(OH);<br>m 100 g H <sub>2</sub> O                                                | g Ca(NO <sub>3)</sub><br>in 100 g H O                                                           | Solut phase                                                                                       |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1 0249<br>1 0484<br>1 0940<br>1 1383                                                                       | 0 096<br>0 109<br>0 125<br>0 181                                                               | 3 38<br>5 52<br>13 42<br>20 73                                                                  | Ca(OH) and solid solution                                                                         |
| 1 1840<br>1 2101<br>1 2287<br>1 2290<br>1 2541<br>1 2581<br>1 2826<br>1 290,<br>1 3337<br>1 3735<br>1 419, | 0 187<br>0 198<br>0 212<br>0 213<br>0 224<br>0 230<br>0 260<br>0 263<br>0 332<br>0 429<br>0 54 | 28 98<br>32 84<br>36 83<br>37 22<br>40 22<br>41 98<br>47 00<br>47 16<br>58 67<br>69 40<br>83 03 | Solid solution  (aO xN O vH O  Solid solution (aO xN ( vH <sub>3</sub> O and Ca(NO <sub>0</sub> ) |
| 1 4840<br>1 5330<br>1 5809                                                                                 | 0 449<br>0 371<br>0 303<br>0 000                                                               | 99 70<br>115 50<br>135 30<br>139 30                                                             | 3½H ()<br>Ca(NO <sub>3</sub> ) 3½H ()<br>Ca(NO) 1 ( nd 4H ) 1 ( 1                                 |

(Cameron and Robinson, J phys Cher 1907, **11** 275)

Solubility of  $CaO_2H_2$  in  $Ca(NO_3)_2+Aq$  $Temp = 25^{\circ}$ 

| G per 100 g sat<br>solution                                                                                                                        |                                                                                                                         | Solid phase                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| СаО                                                                                                                                                | Ca(NO3)2                                                                                                                |                                                                                                               |
| 0 1150<br>0 0978<br>0 1074<br>0 1193<br>0 1444<br>0 1650<br>0 1931<br>0 2579<br>0 3060<br>0 2802<br>0 2314<br>0 1659<br>0 1486<br>0 0836<br>0 0836 | 0<br>4 84<br>9 36<br>13 77<br>22 46<br>27 83<br>32 94<br>40 66<br>44 45 28<br>47 79<br>51 07<br>53 20<br>55 72<br>57 98 | CaO H <sub>2</sub> Ca <sub>2</sub> N <sub>2</sub> O <sub>7</sub> 3H O  Ca(NO <sub>3</sub> ) <sub>2</sub> 4H O |

 $Temp = 100^{\circ}$ 

|          |                                | ·                                      |
|----------|--------------------------------|----------------------------------------|
| 0 0561   | 0                              | CaO H                                  |
| 0 0550   | $\overset{\circ}{2}$ 42        |                                        |
| 0 0624   | $\overline{4}$ $\overline{91}$ |                                        |
| 0 1110   | 15 39                          |                                        |
| 0 1200   | 16 10                          |                                        |
| 0 155    | 21 86                          |                                        |
| 0 269    | 33 03                          |                                        |
| 0 480    | 42 26                          | į                                      |
| 0 973    | 50 94                          |                                        |
| 1 261    | 53 75                          |                                        |
| 1 477    | 55 <b>4</b> 0                  | •                                      |
| 1 476    | 55 <b>4</b> 3                  |                                        |
| 1 491    | 55 65                          |                                        |
| 1 635    | 56 89                          | CaO2H+Ca2N2O 2H O                      |
| 1 686    | 57 03                          | Ca <sub>2</sub> N <sub>2</sub> O 2H () |
| 1 596    | 57 91                          |                                        |
| 1 576    | 58 67                          | ì                                      |
| 1 348    | 60 44                          |                                        |
| 1 167    | 62 82                          |                                        |
| 1 077    | 66 44                          |                                        |
| 1 141    | 69 12                          |                                        |
| $1\ 252$ | 70 60                          | Ca N2O7 2H O+Ca N O7 1/H O             |
| 1 203    | 70 40                          | (a N O <sub>7</sub> 1/H O              |
| 1 103    | 71 44                          |                                        |
| 0 937    | 73 85                          |                                        |
| 0 849    | 75 74                          |                                        |
| 0 815    | 76 94                          |                                        |
| 0 804    | 77 62                          | Ca(NO <sub>3</sub> )                   |
| 0.412    | 77 74                          |                                        |
| 0        | 78 43                          | 1                                      |

(Bassett and Laylor, Chem Soc 1914, **105** 1926)

Solubility of CaO in KCl and NaCl+Aq Curves are given which show that the solubility of lime in solutions of either NaCl or

KCl is a maximum for all temps when the solution contains about 60 g of salt per l It is a minimum at any fixed temp when the solution is sat, the solubility then being much less than in pure  $H_2O$  of the same temp A solution of NaCl dissolves more lime at all temps and concentrations than a corresponding solution of KCl. In all cases the maximum solubility of lime occurs when the temp is lowest. With solutions of all concentrations the solubility decreases regularly as the temp increases (Cabot, J. Soc. Chem. Ind. 1897, 16 417–419)

Solubility in KCl+Aq increases with increased quantities of KCl and then diminishes, becoming less than the solubility in H<sub>2</sub>O alone (Kernot, Gazz ch it 1908, 38 (1) 532)

KOH or NaOH+Aq containing 1 pt KOH or NaOH in 100 pts H<sub>2</sub>O do not dissolve more than <sup>1</sup>/<sub>50000</sub> pt CaO<sub>2</sub>H<sub>2</sub>, but it is sol in NH<sub>4</sub>OH+Aq (Pelouze, A ch (3) **33** 11)

Solubility in NaOH+Aq at to

| G NaOH                                                   | Solubility of CaO in g per liter at                  |                                                        |                                               |                                                     |  |
|----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|--|
| per l                                                    | 20°                                                  | 50°                                                    | 70°                                           | 100°                                                |  |
| 0<br>0 400<br>1 600<br>2 666<br>5 000<br>8 000<br>20 000 | 1 17<br>0 94<br>0 57<br>0 39<br>0 18<br>0 11<br>0 02 | 0 88<br>0 65<br>0 35<br>0 20<br>0 06<br>0 02<br>traces | 0 75<br>0 53<br>0 225<br>0 11<br>0 04<br>0 01 | 0 54<br>0 35<br>0 14<br>0 05<br>0 01<br>traces<br>0 |  |

(d'Anselme, Bull Soc 1903, (3) 29 936)

## Solubility of CaO in NaCl+NaOH+Aq

| G NaCl | G Ca() per l of solution containing |                      |                      |  |
|--------|-------------------------------------|----------------------|----------------------|--|
| per l  | No NaOH                             | 0 59 g<br>NaOH per l | 4 09 g<br>NaOH per I |  |
| 0      | 1 3                                 | 0.8                  | 0 22                 |  |
| 5      | 1 4                                 | 0.9                  |                      |  |
| 10     | 16                                  | 1 0                  |                      |  |
| 25     | 17                                  | 1 1                  |                      |  |
| 50     | 1.8                                 | 1 25                 |                      |  |
| 75     | 19                                  | 1 4                  | 0 55                 |  |
| 100    | 1 85                                | 1 4                  |                      |  |
| 150    | 1 65                                | 1 25                 | 0 44                 |  |
| 175    | 16                                  | 1 2                  |                      |  |
| 182    | 16                                  | 1 2                  |                      |  |
| 225    | 1 4                                 | 1 0                  |                      |  |
| 250    | 13                                  | 0 9                  |                      |  |
| 300    | 11                                  | 0 7                  | 0 22                 |  |
|        |                                     |                      |                      |  |

(Maigret, Bull Soc 1905, (3) 33 631)

Solubility of CaO<sub>2</sub>H<sub>2</sub> in H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve pts CaO at t°

| t°             | Pts CaO                    | t°        | Pts CaO          |
|----------------|----------------------------|-----------|------------------|
| 20<br>40<br>60 | 0 1374<br>0 1162<br>0 1026 | 80<br>100 | 0 0845<br>0 0664 |

(Zahorsky, Z anorg 3 34)

t° 50° 55° 60° 65° 70° 75° 80° pts H<sub>2</sub>O 1044 1108 1158 1244 1330 1410 1482 (Herzfeld, C C **1897**, I, 932)

t° 30 35 40 50 60 g CaO 01219 01161 01119 00981 00879

t° 70 80 90 100 g CaO 0 0781 0 074 0 0696 0 0597 (Guthrie, J Soc Chem Ind 1901, **20** 223)

Solubility in  $\mathrm{H}_2\mathrm{O}$  at high temp 1 litre of the solution contains at  $120^\circ$   $150^\circ$   $190^\circ$  0.305 0.169 0.084 g CaO

(Herold, Z elektrochem 1905, **11** 421)

Solubility in H<sub>2</sub>O at t°

| t° | 1 g CaO is sol in g H2O at to |  |  |
|----|-------------------------------|--|--|
| 2  | 768 5                         |  |  |
| 10 | 786 8                         |  |  |
| 15 | 804 3                         |  |  |
| 20 | 826 4                         |  |  |
| 25 | 868 7                         |  |  |
| 30 | 908 2                         |  |  |
| 40 | 988 1                         |  |  |
| 50 | 1083 0                        |  |  |
| 60 | 1179 0                        |  |  |
| 70 | 1274 8                        |  |  |
| 80 | 1368 1                        |  |  |

(Moody, Chem Soc 1908, 93 1772)

Sat CaO<sub>2</sub>H<sub>2</sub>+Aq contains at 95° 76° 0 0580 0 0705% by wt CaO (Tschugaeff, Z anorg 1914, **86** 159)

100 g sat solution of  $CaO_2H_2$  in  $H_2O$  at 25° contain 0 117 g  $CaO_2H_2$  (Cameron and Potter, J phys Ch 1911, **15** 70)
Readily sol in most acids

Sol in  $H_3BO_3+Aq$  at 30° (Sborgi, I al Ac Linc 1913, (5) **22** I, 715 and 798) Sol in NH<sub>4</sub>Cl+Aq Much more so in NaCl+Aq than in  $H_2O$  (Rose)

Solubility of CaO<sub>2</sub>H<sub>2</sub> in NH<sub>4</sub>Cl+Aq at

| Concentration of NH <sub>4</sub> Cl +Aq<br>in millimols per liter | Solubility of CaO<br>millimols per lit |  |
|-------------------------------------------------------------------|----------------------------------------|--|
| 0 00<br>21 76<br>43 52<br>87 03                                   | 20 22<br>29 08<br>39 23<br>59 68       |  |

(Noyes and Chapın, Z phys Ch 1899 **28** 520)

Solubility of  $CaO_2H_2$  in  $CaCl_2+Aq$  100 ats  $CaCl_2+Aq$  of given strength dissolv ats CaO at  $t^\circ$ 

| t°  | CaCl <sub>2</sub> +Aq<br>5% CaCl <sub>3</sub> | CaCl <sub>2</sub> +Aq<br>10% CaCl <sub>2</sub> | CaCl <sub>2</sub> +Aq<br>15% CaCl <sub>2</sub> | CaCl <sub>2</sub> +Aq<br>20% CaCl <sub>2</sub> | CaCl2+Aq<br>20% CaCl2 |       | 30% CaCl2 |
|-----|-----------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------|-------|-----------|
| 20  | 0 1370                                        | 0 1661                                         | 0 1993                                         | 0 1857*                                        | 0 1661*               | 00000 | 630*      |
| 40  | 0 1160                                        | 0 1419                                         | 0 1781                                         | 0 2249                                         | 0 3030*               |       | 684*      |
| 60  | 0 1020                                        | 0 1313                                         | 0 1706                                         | 0 2204                                         | 0 2989                |       | 664       |
| 80  | 0 0936                                        | 0 1328                                         | 0 1736                                         | 0 2295                                         | 0 3261                |       | 122       |
| 100 | 0 0906                                        | 0 1389                                         | 0 1842                                         | 0 2325                                         | 0 3710                |       | 922       |

\* In these cases ppts of 3CaO CaCl $_2+1_2H_2$ ( were formed

(Zahorsky, Z anorg 3 34)

See also CaCl +CaO H under Ca num chloride

Solubility in Ca(NO<sub>3</sub>)<sub>2</sub>+Aq at 25°

| 5p gr<br>25°/25                                                              | g CaO as<br>Ca(OH) <sub>2</sub><br>m 100 g H <sub>2</sub> O          | g Ca(NO <sub>8</sub> )<br>in 100 g H O                               | Solid phase                                                                                            |            |
|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------|
| 1 0249<br>1 0484<br>1 0940<br>1 1383                                         | 0 096<br>0 109<br>0 125<br>0 181<br>0 187                            | 3 38<br>5 52<br>13 42<br>20 73<br>28 98                              | Ca(OH) and solid                                                                                       | ution      |
| 1 2101<br>1 2287<br>1 2290<br>1 2541<br>1 2581<br>1 2826<br>1 2905<br>1 3337 | 0 198<br>0 212<br>0 213<br>0 224<br>0 230<br>0 260<br>0 263<br>0 332 | 32 S4<br>36 83<br>37 55<br>40 25<br>41 98<br>47 00<br>47 16<br>58 67 | S lid s lutici<br>(nO xN O vH                                                                          | )          |
| 1 3735<br>1 419,                                                             | 0 429                                                                | 69 10<br>83 03                                                       | <br>  Solid Schitten (a0<br>  vH () and Ca(N(<br>  3                                                   | N ()       |
| 1 4840<br>1 5330<br>1 5809<br>1 5842                                         | 0 449<br>0 371<br>0 303<br>0 000                                     | 99 70<br>115 30<br>135 30<br>139 30                                  | $ \begin{cases} Ca(NO_3) - 3^{1}2H \\ Ca(NO_3) - 3^{1}-H O \\ Ca(NO_3) \\ Ca(NO_3)2 - 4H \end{cases} $ | иd<br>4H О |

(Cameron and Robinson, J phys 1907, 11 275) hem

Solubility of  $CaO_2H_2$  in  $Ca(NO_3)_2+Aq$  $Temp = 25^\circ$ 

| G per 100<br>soluti                                                                                        |                                                                                                             | Solid phase                                                       |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| CaO C                                                                                                      | Ca(NO3)                                                                                                     |                                                                   |
| 0 1444<br>0 1650<br>0 1931<br>0 2579<br>0 3060<br>0 2802<br>0 2314<br>0 1894<br>0 1659<br>0 1486<br>0 0836 | 0<br>4 84<br>9 36<br>13 77<br>22 48<br>32 94<br>40 66<br>44 44<br>45 79<br>51 07<br>53 20<br>55 25<br>57 98 | Ca N <sub>2</sub> O <sub>7</sub> 3H O  Ca (NO <sub>3</sub> ) 4H O |

 $Temp = 100^{\circ}$ 

| 0 0561 | 0     | CaO H                                 |
|--------|-------|---------------------------------------|
| 0 0550 | 2 42  | · ·                                   |
| 0 0624 | 4 91  |                                       |
| 0 1110 | 15 39 |                                       |
| 0 1200 | 16 10 |                                       |
| 0 155  | 21 86 |                                       |
| 0 269  | 33 03 |                                       |
| 0 480  | 42 26 |                                       |
| 0 973  | 50 94 |                                       |
| 1 261  | 53 75 |                                       |
| 1 477  | 55 40 |                                       |
| 1 476  | 55 43 |                                       |
| 1 491  | 55 65 |                                       |
| 1 635  | 56 89 | CaO2H+Ca N2O7 2H O                    |
| 1 686  | 57 03 | Ca <sub>2</sub> N <sub>2</sub> O 2H O |
| 1 596  | 57 91 |                                       |
| 1 576  | 58 67 |                                       |
| 1 348  | 60 44 |                                       |
| 1 167  | 62 82 |                                       |
| 1 077  | 66 44 |                                       |
| 1 141  | 69 12 |                                       |
| 1 252  | 70 60 | Ca N2O7 21120+Ca N2O7 1/2H O          |
| 1 203  | 70 40 | Ca N O7 1 H O                         |
| 1 103  | 71 44 |                                       |
| 0 937  | 73 85 |                                       |
| 0 849  | 75 74 | ļ                                     |
| 0 815  | 76 94 |                                       |
| 0 804  | 77 62 | (a(NO3)                               |
| 0 412  | 77 74 |                                       |
| 0      | 78 43 |                                       |

(Bassett and Laylor, Chem Soc 1914, 105 1926)

Solubility of CaO in KCl and NaCl+Aq Curves are given which show that the solubility of lime in solutions of either NaCl or

KCl is a maximum for all temps when the solution contains about 60 g of salt per l It is a minimum at any fixed temp when the solution is sat, the solubility then being much less than in pure  $\rm H_2O$  of the same temp much less than in pure H<sub>2</sub>O of the same temps and concentrations than a corresponding solution of KCl In all cases the maximum solubility of lime occurs when the temp is lowest. With solutions of all concentrations the solubility decreases regularly as the temp increases (Cabot, J Soc Chem Ind 1897, 16 417–419)

Solubility in KCl+Aq increases with increased quantities of KCl and then diminishes, becoming less than the solubility in H<sub>2</sub>O alone (Kernot, Gazz ch it 1908, **38** (1) 532)

KOH or NaOH+Aq containing 1 pt KOH or NaOH in 100 pts H<sub>2</sub>O do not dissolve more than <sup>1</sup>/<sub>50000</sub> pt CaO<sub>2</sub>H<sub>2</sub>, but it is sol in NH<sub>4</sub>OH+Aq (Pelouze, A ch (3) **33** 11)

Solubility in NaOH+Aq at to

| G NaOH                                                   | Soluh                                                | Solubility of CaO in g per liter at                    |                                               |                                                     |  |  |
|----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|--|--|
| per l                                                    | 20°                                                  | 20°   50°   70°                                        |                                               |                                                     |  |  |
| 0<br>0 400<br>1 600<br>2 666<br>5 000<br>8 000<br>20 000 | 1 17<br>0 94<br>0 57<br>0 39<br>0 18<br>0 11<br>0 02 | 0 88<br>0 65<br>0 35<br>0 20<br>0 06<br>0 02<br>traces | 0 75<br>0 53<br>0 225<br>0 11<br>0 04<br>0 01 | 0 54<br>0 35<br>0 14<br>0 05<br>0 01<br>traces<br>0 |  |  |

(d'Anselme, Bull Soc 1903, (3) 29 936)

## Solubility of CaO in NaCl+NaOH+Aq

| G NaCl                                       | G Ca() per l of solution containing                    |                                                        |                      |  |  |
|----------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------|--|--|
| per l                                        | No NaOH                                                | 0 89 g<br>NaOH per l                                   | 4 09 g<br>NaOH per l |  |  |
| 0<br>5<br>10<br>25<br>50<br>75<br>100<br>150 | 1 3<br>1 4<br>1 6<br>1 7<br>1 8<br>1 9<br>1 85<br>1 65 | 0 8<br>0 9<br>1 0<br>1 1<br>1 25<br>1 4<br>1 4<br>1 25 | 0 22<br>0 55<br>0 44 |  |  |
| 175<br>182<br>225<br>250<br>300              | 1 6<br>1 6<br>1 4<br>1 3<br>1 1                        | 1 2<br>1 2<br>1 0<br>0 9<br>0 7                        | 0 22                 |  |  |

(Maigret, Bull Soc 1905, (3) 33 631)

| Solubility | of | $CaO_2H_2$ m | $CaSO_4 + Aq$ | at $25^{\circ}$ |
|------------|----|--------------|---------------|-----------------|
|------------|----|--------------|---------------|-----------------|

| G per 100 cc sat                                                                                           |                                                                                                            | Solid phase                                                                                                      |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| CaSO:                                                                                                      | CaO                                                                                                        |                                                                                                                  |
| 0 0391<br>0 0666<br>0 0955<br>0 1214<br>0 1588<br>0 1634<br>0 1722<br>0 1853<br>0 1918<br>0 2030<br>0 2126 | 0 1166<br>0 1141<br>0 1150<br>0 1215<br>0 1242<br>0 1222<br>0 0939<br>0 0611<br>0 0349<br>0 0176<br>0 0062 | CaO <sub>2</sub> H  CaO <sub>2</sub> H <sub>2</sub> ¬CaSO <sub>4</sub> 2H <sub>2</sub> O  CaSO <sub>4</sub> 2H O |

(Cameron and Bell, J Am Chem Soc 1906, 28 1220)

Insol in liquid NH $_3$  (Franklin, Am Ch J 1898, **20** 827)

Alcohol dissolves traces

Methyl alcohol forms colloidal solution containing 1 125 g per l (Neuberg and Rewald, Biochem Z 1908, 9 545)

Insol in ether

Insol in acetone (Naumann, B 1904, 37 4329)

Insol in acetone and in methylal (Eidmann, C C 1899, II 1014)

Insol in methyl acetate (Naumann, B 1909, 42 3790)

Insol in ethyl acetate (Naumann, B 1904. 37 3601)

Much more sol in glycerine, or sugar+Aq

## Solubility of CaO in glycerine

| Wt of                  | Wt Ca()<br>contained in<br>100 ccm of | Relation of (a() to<br>glycerine                |          |  |
|------------------------|---------------------------------------|-------------------------------------------------|----------|--|
| 100 ccm of<br>solution | liquid at<br>with C ()                | (a()                                            | Clycerne |  |
| 10 00                  | 0 370                                 | 3 6                                             | 96 4     |  |
| 5 00                   | 0 240                                 | 4 6                                             | 95 4     |  |
| 2 86                   | 0 196                                 | $\begin{array}{c c} 6 & 4 \\ 7 & 1 \end{array}$ | 93 6     |  |
| 2 50                   | 0 192                                 |                                                 | 92 9     |  |
| 2 00                   | 0 186                                 | \ \ 5 5 \\ 14 2                                 | 91 5     |  |
| 1 00                   | 0 165                                 |                                                 | 85 8     |  |

(Berthelot, A ch (3) 46 176)

 $1000~\mathrm{g}$  H O dissolve 1 251 g C aO, 1000 g H O+50 g glycerine dissolve 1 865 g CaO, 1000 g H O+100 g glycerine dissolve 2 583 g CaO, 1000 g H<sub>2</sub>O+200 g glycerine dissolve 4 040 g CaO, 1000 g H<sub>2</sub>O+400 g glycerine dissolve 6 569 g CaO (Carles, Arch Pharm (3) 4 558)

Insol in pure glycerine

Solubility of CaO<sub>2</sub>H<sub>2</sub> in glycerine+Aq at

G=g glycerine in 100 g glycerine+A ½Ca(OH)=millimols sol in 100 cc; yeerine+Aq

| G     | ½CaO_H2 | Sp gr  |
|-------|---------|--------|
| 0     | 4 3     | 1 0003 |
| 7 15  | 8 13    | 1 0244 |
| 20 44 | 14 9    | 1 0537 |
| 31 55 | 22 5    | 1 0842 |
| 40 95 | 40 1    | 1 1137 |
| 48 7  | 44 0    | 1 1356 |
| 69 2  | 95 8    | 1 2027 |

(Herz and Knoch, Z anoig 1905, 46

## Solubility in glycerine+Aq at 25°

3)

ιch

οf

u

| Solution contains                               |                                               |                                           | a                        |
|-------------------------------------------------|-----------------------------------------------|-------------------------------------------|--------------------------|
| % Ca(OH)2                                       | % glycerine                                   | %H <sub>2</sub> O                         | Sp į                     |
| 0 117<br>0 178<br>0 413<br>0 48<br>0 88<br>1 34 | 0<br>3 50<br>15 59<br>17 84<br>34 32<br>55 04 | 96 32<br>80 28<br>81 68<br>64 80<br>43 62 | 1 0<br>1 0<br>1 0<br>1 1 |

Solid phase in this system is CaO H  $_{\circ}$  (Cameron and Patten, J phys Chem 1  $_{\circ}$  1 15 71)

100 pts sugar dissolvel in H<sub>2</sub>O dissolve in the CaO (Osann) 50 pts CaO (Ure) 496 pts aO (Daniell) 29-306 pts CaO (Hunton) 23 pts aO (Souberran)

Sugar solution at 100 takes up ¼ mol Ca() for mol sugar at 0° if it contuns not less than 25 sugar it takes up 2 mols Ca() to 1 mol sugar brunfaut)

Amount dissolved is proportional to the dursity and temperature of the solutions

#### Solubility of CaO in ugar + Aq

| Pt ugar<br>di solved in | Relation of CaO to jugar |                   |  |
|-------------------------|--------------------------|-------------------|--|
| 100 pt H O              | ( 1()                    | >u <sub>n</sub> u |  |
| 40                      | 21 0<br>20 S             |                   |  |
| 3) 0                    | 20 3<br>20 3             | -0.2              |  |
| 30-0                    | 20 3<br>20 1<br>19 )     | -; 6              |  |
| 27 )<br>23 0            | 19.5                     | S0 1<br>S0 2      |  |
| 22 3<br>20 0            | 19 3<br>15 5             | \$0.7<br>\$1      |  |
| 17 )<br>15 0            | 15 7<br>15 3             | \$1.3             |  |
| 12 )<br>10 0            | 15 3<br>15 1             | \$1.7<br>\$1.9    |  |
| 7 →<br>> 0              | 16 9<br>15 3             | \$3.1<br>\$4.7    |  |
| 2 ,                     | 13.5                     | N 2               |  |

(I chaot ( R 32 33))

100 g olution of sugar sat with CaO between 10 and 24 4° contain 22 2 to 23 2% CaO (Hunton 1 7

| Solubility | of | CaO | ın | $\mathbf{d}\mathbf{n}$ | sugar | solutions |
|------------|----|-----|----|------------------------|-------|-----------|

| Wt of sugar<br>in 100 ccm<br>of solution | Wt of CaO<br>contained in<br>100 ccm of |                                                           | of CaO<br>ugar       |
|------------------------------------------|-----------------------------------------|-----------------------------------------------------------|----------------------|
| or solution                              | liquid sat<br>with CaO                  | CaO                                                       | Sugar                |
| 4 850<br>2 401                           | 1 031<br>0 484                          | 17 5<br>16 8                                              | 82 5<br>83 2         |
| 2 000<br>1 660                           | 0 433<br>0 364                          | 17 8<br>18 0                                              | 82 2<br>82 0         |
| 1 386<br>1 200<br>1 058                  | 0 326<br>0 316<br>0 281                 | $\begin{array}{c} 19 \ 0 \\ 20 \ 8 \\ 21 \ 0 \end{array}$ | 81 0<br>79 2<br>79 0 |
| 0 960<br>0 400                           | 0 264<br>0 194                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$      | 78 4<br>67 3         |
| 0 191<br>0 096<br>0 000                  | 0 172<br>0 154                          | 47 4<br>61 6                                              | 52 6<br>78 4         |
| 0 000                                    | 0 148                                   |                                                           | <br>                 |

(Berthelot, A ch (3) 46 176)

Solubility in sugar+Aq at t°

| t°     | G sugar in 100 ccm<br>of solution                                                                                  | G CaO dissolved<br>per 100 g sugar                                                                   |  |
|--------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| 16–17° | 0 7814<br>0 9120<br>1 4000<br>1 6930<br>4 754<br>5 730<br>10 159<br>11 200<br>12 500<br>13 930<br>14 487<br>16 410 | 37 9 32 3 30 5 28 9 27 7 27 1 27 5 27 2 27 3 27 9 27 5 28 0                                          |  |
| 15°    | 0 625<br>0 964<br>2 084<br>3 028<br>3 451<br>4 168<br>4 880<br>5 73<br>6 12<br>6 25<br>6 51<br>7 55<br>8 20        | 71 6<br>53 4<br>36 0<br>32 3<br>31 7<br>30 2<br>28 7<br>28 3<br>27 4<br>27 7<br>27 5<br>27 9<br>27 3 |  |

(Weisberg, Bull Soc 1899, (3) 21 775)

Solubility in sugar+Aq at 25°

| Sc                                                                       |                                                                       |                                                                      |                                                                               |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|
| % Са(ОН)                                                                 | % sugar                                                               | % H O                                                                | Sp gr                                                                         |
| 0 117<br>0 188<br>0 730<br>1 355<br>2 31<br>3 21<br>4 57<br>5 38<br>6 07 | 0<br>0 62<br>4 82<br>7 50<br>9 87<br>11 90<br>15 10<br>17 42<br>19 86 | 99 19<br>94 50<br>91 12<br>87 85<br>84 89<br>80 33<br>76 93<br>73 07 | 0 983<br>1 000<br>1 021<br>1 037<br>1 051<br>1 067<br>1 092<br>1 109<br>1 123 |

The solid phase in this system consists of a series of solid solutions with Ca(OH) a limit-

(Cameron and Patter, J phys Chem 1911, 15 70)

Solubility of CaO in sugar+Aq at 80°

|                       | ·                       |                         |                         |
|-----------------------|-------------------------|-------------------------|-------------------------|
| % sugar               | % CaO                   | % Sugar                 | % CaO                   |
| 4 90<br>9 90<br>14 75 | 0 117<br>0 189<br>0 230 | 19 50<br>24 60<br>29 70 | 0 358<br>0 458<br>1 017 |

Solid phase, CaO<sub>2</sub>H<sub>•</sub> (von Ginneken, Proc Kon Akad v Wetensch, Amsterdam, 1911, **14** 457)

## Solubility of CaO in mannite+Aq

| · · · · · · · · · · · · · · · · · · ·                                                           |                                                                                                          |                                                                                   |                                                                                      |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Wt of<br>mannite in<br>100 ccm of                                                               | Wt of CaO<br>contained in<br>100 ccm of                                                                  | Relation of CaO to<br>mannite                                                     |                                                                                      |
| solution                                                                                        | liquid sat<br>with CaO                                                                                   | CaO                                                                               | Mannite                                                                              |
| 9 60<br>4 80<br>2 40<br>1 92<br>1 60<br>1 37<br>1 20<br>1 07<br>0 96<br>0 192<br>0 096<br>0 000 | 0 753<br>0 372<br>0 255<br>0 225<br>0 207<br>0 194<br>0 193<br>0 190<br>0 186<br>0 155<br>0 154<br>0 148 | 7 3<br>7 2<br>9 6<br>10 5<br>11 4<br>12 5<br>13 9<br>15 1<br>16 2<br>44 6<br>61 6 | 92 7<br>92 8<br>90 4<br>89 5<br>88 6<br>87 5<br>86 1<br>84 9<br>86 8<br>55 4<br>38 4 |
| 300                                                                                             |                                                                                                          |                                                                                   |                                                                                      |

(Berthelot, A ch (3) 46 176)

Solutions of CaO in sugar, mannite, or glyceime afford in abundant ppt on being heated, but this redissolves on cooling (Berthelot)

Sol in sorbite+Aq (Pelouze), sl sol in quercite+Aq Sol in monobasic Ci su charate+Aq (Peligot) Much more sol in gelitine+Aq than in pure HO

# Calcium hydroxyhydrosulphide, Ca(()H)SH+3H.O

Lasily sol in H<sub>2</sub>O with almost immediate decomposition. Insol in alcohol, but slowly

decomp thereby (Divers and Shimidzu, Chem Soc 45 270)

#### Calcium subiodide, CaI

Decomp by moisture (Wohler, Z anorg 1909, **61** 76)

#### Calcium iodide, CaI2

Deliquescent 100 pts H<sub>2</sub>O dissolve-43° at 0° 20° 40° 92° 192 204 228 286 435 pts CaI<sub>2</sub> (Kremers, Pogg 103 65)

Sp gr of CaI<sub>2</sub>+Aq at 19 5° containing 20 25 10 15 30% CaI<sub>2</sub>, 1044 109 1 14 1 198 1 26 1 321

55 60% CaI<sub>2</sub> 40 45 50 1 477 1 567 1 665 178 191 (Kremers, calculated by Gerlach, Z anal 8 285)

Sol in absolute alcohol (Gay-Lussac, A ch 91 57)

Sol in acetone (Naumann, B 1904, 37 4328, Eidmann, C C 1899, II 1014) Sol in ethyl acetate (Naumann, B 1910,

**43** 314) +4HO(Kuznetzov, C A 1911 842)

Sat aq solution contains at +7° 10° 19° +6H<sub>2</sub>O--22° 616 650 65 1 66 3% salt

51° 64° 130° 248° 69 4 759 813 87 1% salt (Etard. A ch 1894 (7) 2 543)

+7HO(Kuznetzov)

#### Calcium periodide, CaI<sub>3</sub>+15H<sub>2</sub>O

(Mosnier, A ch 1897, (7) 12 401) Cal<sub>4</sub> (Herz and Bulla, Z anorg 1911, 71 255)

Calcium mercuric iodide, CaI<sub>2</sub>,HgI<sub>2</sub>+8H<sub>2</sub>O

Very deliquescent Sol in H<sub>2</sub>O, alcohols, allyl iodide, aldehyde, acetic acid, ethyl oxalate and iniline SI sol in nitrobenzene Completely insol in CHCl<sub>2</sub>, CCl<sub>4</sub>, ethyl iodide ethylene bromide, C6H6, monochlorbenzene and toluene (Duboin, C R 1906, **142** 573)

 $3C II + 4HgI_2 + 24H_2O$ Sol in HO with

pptn of red HgI

Very sol in alcohols, glycerine, ethyl acetate, methyl and isobutyl propionate, allyl iodide, ildehyde, acetone, aniline and ethyl oxalite Insol or sl sol in nitrobenzene Insol in CHCl<sub>3</sub>, C<sub>6</sub>H<sub>6</sub>, ethyl iodide, monochlorbenzene, etc (Duboin, C R 1906, **142** 397) CaI<sub>2</sub>, 2HgI<sub>2</sub>

Decomp by H<sub>2</sub>O (Boullay)

 $CaI_2$ ,  $5HgI_2+8HO$  Decomp by  $H_2O$ , B 16 997)

alcohols, glycerine, aldehyde, and acetic ıd. slowly by nitrobenzene and ethyl oxe ite Insol in monochlorbenzene, toluene, C Cl3 and ethylene bromide (Duboin, l c)

Calcium silver iodide,  $CdI_2$ ,  $2AgI+6H_2$ 

Immediately decomp by H<sub>2</sub>O (Simt on. Roy Soc Proc 27 120)

Calcium zinc iodide, CaI<sub>2</sub>, ZnI<sub>2</sub>+8H<sub>2</sub>O

Very hydroscopic (Ephraim, Z ai rg 1910. 67 384)

Calcium iodide ammonia, CaI<sub>2</sub>, 6NH<sub>3</sub> (Isambert, C R 66 1259)

#### Calcium nitride, Ca<sub>2</sub>N<sub>2</sub>

Sol in dil acids, insol in conc (water acids (Moissan, C R 1898, 127 499)

#### Calcium oxide, CaO

Decomp by H2O, with evolution of n ch heat, to form CaO2H2, which see for solub ty ın H₂C, etc

#### Calcium peroxide, CaO<sub>2</sub>

Very sl sel in H<sub>2</sub>O, easily sol in a ls. and NH4 salts+Aq Insol in NH4OH+

(Conroy, Chem Soc (2) 11, 808) +2H<sub>2</sub>O True composition is True composition is CaO<sub>2</sub>F H<sub>2</sub>O<sub>2</sub> (de Forcrand, C R 1900, **130** 13 +8H<sub>2</sub>O Efflorescent Difficultly sol Efflorescent Difficultly sol in H<sub>2</sub>O with gradual decomp Insol in alc iol or ether (Gay-Lussac and Thenard, A (2) 8 313)

Calcium oxybromide, 3CaO, CaBr<sub>2</sub>+16F )

Decomp by H<sub>2</sub>O and alcohol Very co ly sol in hydracids and dil HNO3 (las y. C R 1894, **119** 372)

Calcium oxychloride, C<sub>4</sub>()<sub>3</sub>Cl +15H ( = 3CaO, CaCl<sub>2</sub>+15H<sub>2</sub>O

Decomp by H<sub>2</sub>() or alcohol (Rose) Formula is Ca2HO Cl+7H () (Grimsh 1,

C N 30 280)

+16H<sub>2</sub>O Decomp by H() into Ca() 1 and CaCl<sub>2</sub> until 1 maximum of 85 g C ne dissolved per litre (Ditte, CR 91 5

(Schreinemal rs 4CaO, (aCl  $+14H_2O$ and Figee, Chem Weekbl 1911, 8 685) CaO, CaCla (Schreinemakers and Fige )

Calcium lead oxychloride, CiCl CiO, 21<sup>1</sup> ()

+4H2() Sol in H2O with decomp (Andre, C &

**104** 359)  $CaCl_2$ ,  $3PbO + 3H_2O$  (Andre)

Calcium mercuric oxychloride, CiCl2, 2H )

+4HODecomp immediately by HO

Calcium oxyiodide, 3CaO, CaI<sub>2</sub>+16H<sub>2</sub>O

Decomp by  $\rm H_2O$ , alcohol, and acids Sol in hydracids and in very dil HNO $_3$  (Tassily, C R 1894, 119 372)

Calcium oxysulphide,  $Ca_4O_3S_4+12H_2O=3CaO$ ,  $CaS_4+12H_2O$ 

Decomp by H<sub>2</sub>O Not acted on by absolute alcohol (Schone, Pogg 117 77)

According to Geuther (A 224 178) = CaS<sub>3</sub>, 2CaO+10, or 11H<sub>2</sub>O Sel in dil HCl+Aq with separation of S

 $Ca_5O_3S_4+18H_2O=4CaO$ ,  $CaS_4+18H_2O$ Decomp by  $H_2O$ , but not acted on by absolute alcohol (Schone, Pogg 117 82)

According to Geuther (A 224 178) =  $CaS_3$ , 3CaO+14, or  $15H_2O$ 

 $Ca_6O_5S_5 + 20H_2O = 5CaO, CaS_5 + 20H_2O$ 

(Rose, Pogg **55** 433)

Sol in 400 pts cold, decomp by boiling  $\rm H_2O$  (Buchner), sl sol in cold, much more in hot  $\rm H_2O$ , but it is not deposited on cooling Aqueous solution sat at 6°-72° has sp gr = 10105 (Herschel), sol in alcohol (Gay-Lussac), insol in alcohol (Gmelin)

#### Calcium phosphide, CaP

Deliquescent Decomp in moist air or with H<sub>2</sub>O Not attacked by conc HNO<sub>3</sub>, but decomp by dil HNO<sub>3</sub>+Aq (Thénard, A ch (3) 14 14)

Ca<sub>3</sub>P<sub>2</sub> Crystallized Decomp by H<sub>2</sub>O

Not attacked by conc H.SO. Violently

attacked by dil H<sub>2</sub>SO<sub>4</sub>

Not attacked by abs alcohol, ether, benzene or oil of turpentine (Moissan, C R 1899, 128 792)

 $Ca_2P_3$  Insol in liquid  $CO_2$  (Buchner, Z phys Ch 1906, **54** 674)

#### Calcium selenide, CaSc

Sl sol in  $H_2O$  Very easily decomp (Fabre, C R **102** 1469)

#### Calcium silicide, CaSi2

Slowly decomp by H O, sol in conc H<sub>2</sub>SO<sub>4</sub> and dil HNO<sub>5</sub> with evolution of H<sub>2</sub> With conc HCl it gives H<sub>2</sub>, Si and silicon hydride with dil HCl, H<sub>2</sub> and a yellow substance Sol in alkali+Aq or NH<sub>3</sub>+Aq with evolution of H<sub>2</sub> (Morssan, C R 1902, **134** 505)

I we modifications
(a) Only slasol in HNO<sub>1</sub>, decomp H<sub>2</sub>O to

give an insol ppt on addition of HCl

(b) Easily sol in HNO, and acetic acid, decomp HCl to give a ppt which is sol in KOH+Aq (de Chalmot, Am Ch J 1896, 18, 320)

Ca<sub>3</sub>S<sub>12</sub> Slowly decomp by H<sub>2</sub>O, 1 apidly by dil acetic acid or by H<sub>2</sub>SO<sub>3</sub>+Aq without evolution of spontaneously inflammable gas (Hongschmid, M 1909, **30** 497)

Decomp by dil min acids, with evolution

of spontaneously inflammable gas (Hackspill, Bull Soc 1908, (4) 3 619)
CasSin Insol in all solvents Decomp by boiling H<sub>2</sub>O, by cone HCl and by acetic acid Sol in dil alkali and alkali carbonates +Aq Hardly attacked by cone H<sub>2</sub>SO<sub>4</sub> or HNO<sub>3</sub> (Kolb, Z anorg 1909, 64 349)

Ca<sub>11</sub>S<sub>110</sub> Easily decomp by boiling with H<sub>2</sub>O Decomp by dil acetic acid, dil or cone HCl (Kolb, Z anorg 1909, **64** 349

and 356)

#### Calcium siliconitride, CaS12N3

(Kolb, Z anorg 1909, 64 363)

Ca<sub>2</sub>Si<sub>2</sub>N<sub>4</sub> Slowly decomp by boiling with  $H_2O$ , somewhat more rapidly with dil NaOH +Aq Slowly decomp by cone HCl (Kolb, l c)

 $Ca_{11}Sl_{10}N_1$  Completely decomp by HCl (Kolb, l c)

#### Calcium sulphide, CaS

500 pts  $H_2O$  dissolve 1 pt CaS completely, less  $H_2O$  dissolves out  $CaS_2H_2$  and leaves  $CaO_2H_2$  Very much  $H_2O$  decomposes completely into  $CaO_2H_2$  and  $H_2S$  (Béchamp, A ch (4) 16 222)

Not decomp by H<sub>2</sub>O, and only sl sol

therein at ordinary temp (Pelouze)
After 48 hours contact with CaS, 1 l H O

contains at

10° 18° 40° 60° 90° 0 15 0 23 0 30 0 48 0 33 g CaS

After boiling for 2 hours, 0.27 g CaS is dissolved, addition of NaCl diminishes solubility, but Na<sub>2</sub>SO<sub>4</sub> increases it Lime-water dissolves at 14° 0.18 g CaS, the same amount which H<sub>2</sub>O dissolves at 60° Milk of lime dissolves 0.55 g at 60° H<sub>2</sub>O containing 3 to 79 g Na<sub>2</sub>O per litre dissolves only traces of CaS at 10°, but at 40–60°, or by boiling, a large amount of Na<sub>2</sub>S is formed (Kolb, A ch (4) 7 126)

Sol in 12,500 pts H<sub>2</sub>O at 12 6° (Scheurer-Kestner, Répert chim appl **1862** 331)

Sat Na<sub>2</sub>CO<sub>3</sub>+Aq has scarcely my action on CaS, but a dilute solution has more action (Kolb)

Sol in H<sub>2</sub>O and sulphui, forming C<sub>1</sub>S<sub>4</sub> Insol in liquid NH<sub>1</sub> (Franklin, Am Ch J 1898, **20** 827)

Insol in methyl acetate (Naumann B 1909, 42 3790)

Insol in ethyl acetate (Naumann B 1904, 37 3601)

Insol in methylal (Fidmann, C C 1899,

II 1014)
Sol in 10 pts glycrine (Cup and Guot J Pharm (3) 26 81)

J. Pharm. (3) 26 81.)
Sol. in sugar + Aq. (Stolle, C. C. 1900, I.

## Calcium tetrasulphide, Caba

known only in solution

### Calcium pentasulphide, CaS<sub>5</sub>

Sol in H<sub>2</sub>O and alcohol (Berzelius) Exists only in aqueous solution (Schone, Pogg 117 73)

# Calcium hydroxyl sulphide, Ca(OH)SH+

Easily sol in H<sub>2</sub>O with immediate decomp and separation of Ca(OH)<sub>2</sub> Insol in alcohol, but slowly decomp thereby (Divers and Shimidzu, Chem Soc 45 270)

### Calcium stannic sulphide

See Sulphostannate, calcium

### Calomel

See Mercurous chloride

### Carbamic acid

Ammonium carbamate acid carbonate (commercial carbonate of ammonia)

See Carbonate carbamate, ammonium hydrogen

- (salts of hartshorn),  $2NH_4HCO_3$ ,

NH4CONH2 See Carbonate carbamate, ammonium hydrogen

# Carbazote silicon, C SiN

Insol in acids, even HF, also in boiling KOH+Aq (Schutzenberger and Colson, C R 92 1508)

### Carbon, C

Insol in all solvents

Diamond is unacted upon by KClO<sub>3</sub>+fum HNO<sub>3</sub>, graphite forms graphitic acid by KClO, +tum HNO<sub>3</sub>, amorphous (arbon is sol in KClO3+fum HNO, (Berthelot, A ch (4) 19 399)

Diamond is sol in molten iron at 1160° Amorphous carbon is insol in molten iron it 1160°, but becomes sol therein by heating to 1400° (Hempel B 18 and ) (Hempel, B 18 998)

Insol in liquid CO<sub>2</sub> (Buchner Z phys

Ch 1905 **54** 674)

Chucoulus insol in liquid NH,

Am Ch J 1898 20 830)

The quantity of carbon dissolved by nondimmishes by increasing phosphorus, falling by about 0.5% for each additional 2.0% of phosphorus (Fettweis, Metallurgic 1906,

Solubility in non is reduced by the presence of tin and of sulphur (Wust, Metallurgic 1906 **3** 169)

The solubility of C in iron is increased by the presence of chromium 92° Cdissolved when 62% Cr is present in the mixture (Goerens, Met illingie 1907, 4 15)

### Carbon boride, CB<sub>6</sub>

Insol in boiling HNO<sub>3</sub>+Aq (Joly,  $\mathbf{R}$ **97** 456)

### Carbon suboxide, $C_3O_2$

B-pt +7° at 761 mm Sol in H2O with formation of malonic cid Slowly decomp on standing in a tube (Diels, B 1906, 39 696)

### Carbon monoxide, CO

Sol in 50 vols recently boiled H<sub>2</sub>O (Dav.) Sol in 16 vols H<sub>2</sub>O (de Saussure) Sol in 27 vols H<sub>2</sub>O (Dalton) 100 vols H O dissolve 6 2 vols CO at 18° (d saus

Solubility of CO in HO 1 vol H<sub>2</sub>O at dıssolves V vols CO reduced to 0° and 76 mm

| t° | v       | t° | v       | t° |       |      |
|----|---------|----|---------|----|-------|------|
| 0  | 0 03287 | 7  | 0 02796 | 14 | 0 0 0 | 2466 |
| 1  | 0 03207 | 8  | 0 02739 | 15 |       | 2432 |
| 2  | 0 03131 | 9  | 0 02686 | 16 |       | 2402 |
| 3  | 0 03057 | 10 | 0 02635 | 17 |       | 2374 |
| 4  | 0 02987 | 11 | 0 02588 | 18 | 0     | 2350 |
| 5  | 0 02920 | 12 | 0 02544 | 19 | 0     | 2329 |
| 6  | 0 02857 | 13 | 0 02504 | 20 | 0     | 2312 |

(Bunsen's Gasometry, pp. 287, 128, 1-6)

Coefficient of absorption = 0.0328740.00081632t + 0.000016421t(Bunser and Pauli, A 93 16)

### Solubility of CO in H<sub>2</sub>O

 $\beta$  = Vol CO absorbed by 1 vol H ( at a partial pressure of 760 mm

 $\beta^1 = \text{Vol CO}$  (reduced to 0° and 760 nm) absorbed by 1 vol of H() under a tot pres sure of 760 mm

q = g CO dissolved by 100 g. H ( at a total pressure of 760 mm

| t        | ß       | βι      |     |            |
|----------|---------|---------|-----|------------|
| 0        | 0 03537 | 0 03516 | 0 ( | )44        |
| 5        | 0 03149 | 0 03122 |     | )30        |
| 10       | 0 02816 | 0 02782 | 0 1 | B)         |
| 15       | 0 02543 | 0 02501 |     | B1         |
| 20<br>25 | 0 02319 | 0 02266 | 0   | 125<br>126 |
| 30       | 0 01998 | 0 01915 | ()  | )24        |
| 40       | 0 01775 | 0 01647 | ()  | )21        |
| 50       | 0 01615 | 0 01420 | ()  | )18        |
| 60       | 0 01488 | 0 01197 | 0   | )15        |
| 70       | 0 01440 | 0 00998 |     | )13        |
| 50       | 0 01430 | 0 00762 | 0   | )10        |
| 90       | 0 01420 | 0 00435 |     | )06        |
| 100      | 0 01410 | 0 00000 | 0   | )()()      |

(Winkler, B. 1901, **34**, 1416)

168

Solubility in H<sub>2</sub>O at various pressures V = Volume of the absorbing liquid P = Hg pressure in metres  $\lambda = Coefficient$  of solubility

| v          | t°   | P                                                                                                                                                  | λ                                                                                                                                                      |
|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 830 ccm | 17 7 | 0 9202<br>1 1438<br>1 4624<br>1 7986<br>2 3659<br>2 8390<br>3 2622<br>4 0114<br>4 6017<br>5 1953<br>5 8717<br>6 5462<br>7 0983<br>7 6470<br>8 0184 | 0 02791<br>0 02787<br>0 02788<br>0 02783<br>0 02782<br>0 02776<br>0 02771<br>0 02770<br>0 02763<br>0 02761<br>0 02756<br>0 02744<br>0 02738<br>0 02723 |
| 31 939 ccm | 19 0 | 0 9176<br>1 1506<br>1 3897<br>1 7044<br>2 1239<br>2 7173<br>3 2576<br>3 9311<br>4 4584<br>5 2470<br>6 0346<br>6 6303<br>7 1842<br>7 9542           | 0 02716<br>0 02717<br>0 02715<br>0 02712<br>0 02708<br>0 02701<br>0 02693<br>0 02689<br>0 02680<br>0 02673<br>0 02665<br>0 02654<br>0 02636<br>0 02617 |

(Cassuto, Phys Zeit 1904, 5 236)

Coefficient of absorption of CO in H<sub>2</sub>O at 25° equals 0 0154 (Findlay and Creighton, Brochem J 1911, 5 294)

Luprous chloride in an hydrochloric acid or ummoniacal solution, and ammoniacal solutions of cuprous salts absorb large amounts of CO (Libling, C. R. 30 488)

Cuprous chloride dissolved in HCl+Aq absorbs 15-20 vols CO (Berthelot, A ch (3)

Absorbed by KOH, NaOH, Ba(OH) and  $(\iota(OH) + \Lambda q \text{ more readily by ether, alcohol,})$ and wood spirit with formation of formic acid (Berthelot, A.ch. (3) 61 463)

(Bottinger, B 10 1122) Sol in HCN 1 vol. alcohol absorbs 0 20443 vols CO gas at all temperatures between 0° and 25° (Curus, A 94 135)

100 vol. dcohol (0.54 sp. gr.) dissolve 14 ) vols. ( O. to vol incomo (0.5) sp. gr.) and (0.784 sp. gr.) 20.0 vols (0.118 100 vol oil of lavender (0.88 sp. gr.) 1.0 vol (1.118 100 vol oil of lavender (0.88 sp. gr.) 1.5 vol (1.118 100 vol ohvo oil (0.91 sp. gr.) 14 vol (0.3118 100 vols sat KCl+4q (1.168 p. gr.) 2 vols CO at 18 (de Saussur 1814) 1 vol oil of turpentine absorbs 0.16-0.20 vol CO (de San ure)

Sol in other (Regnault) Insol in caoutchine

Solubility in alcohol+Aq % alcohol by weight 0.00 9 09 16 67 23.08Solubility 241 187 175 % alcohol by weight 28 57 33.3350 00 Solubility 1 50 194 320(Lubarsch, W Ann 1889, 37 524)

| Solubility of CO in organic solvents                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Solvent                                                                                                                                                                                                             | Solubility at 20° C                                                                                                   | Solubility at<br>25° C                                                                                                                                           |  |  |
| Glycerine  Water Aniline Carbon bisulphide Nitrobenzene Benzene Glacial acetic acid Amyl alcohol Xylene Toluene Ethyl alcohol (99 8%) Chloroform Methyl alcohol Amyl acetate Acetone Isobutyl acetate Ethyl acetate | Not measurable 0 02404 0 05358 0 08314 0 09366 0 1707 0 1714 0 17781 0 1808 0 1921 0 1955 0 2140 0 2225 0 2365 0 2516 | 0 02586<br>0 05055<br>0 08112<br>0 09105<br>0 1645<br>0 1689<br>0 1706<br>0 1744<br>0 1742<br>C 1901<br>0 1897<br>0 1830<br>0 2108<br>0 2128<br>0 2314<br>0 2419 |  |  |

(Just, Z phys Ch 1901, 37 361)

Solubility of CO in ether at  $0^{\circ} = 0.3618$ , and at  $10^{\circ} = 0.3842$ (Christoff, Z phys Ch 1912, **79** 459)

Solubility of CO in organic mixtures CO in benzene and naphthalene at 25°C

| Per cent by weight<br>of naphthalenc                             | Percent by weight of benzene                                       | * Solubility of<br>CO                                       |
|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|
| 0<br>11 52<br>11 65<br>23 95<br>23 60<br>32 35<br>32 74<br>33 79 | 100<br>88 48<br>88 35<br>76 02<br>76 40<br>67 65<br>67 26<br>66 21 | 0 174<br>0 164<br>0 163<br>0 149<br>0 148<br>0 142<br>0 143 |

(Skirrow, Z. phys. Ch. 1902 41 144)

See under Oxygen

CO in benzene and phen anthrene at 25° C

| Percent by weight lof phenanthrene | of benzene | Solubility of |
|------------------------------------|------------|---------------|
| 0                                  | 100        | 0 174         |
| 10 45                              | \$9 52     | 0 144         |
| 10 45                              | S9 52      | 0 144         |
| 19 22                              | 80.78      | 0 132         |
| 18 99                              | \$1 01     | 0 133         |
| 27 04                              | 72 96      | 0 128         |
| 27 39                              | 72 61      | 0 127         |

(Skiriow)

| CO in benzene and a naphthol at 25° C       |                                                  |                                                    |  |
|---------------------------------------------|--------------------------------------------------|----------------------------------------------------|--|
| Per cent by weight of a naphthol            | Per cent by weight of benzene                    | Solubility of<br>CO                                |  |
| 0<br>3 48<br>6 75<br>6 59<br>12 10<br>11 81 | 100<br>96 52<br>93 25<br>93 41<br>87 90<br>88 19 | 0 174<br>0 149<br>0 145<br>0 144<br>0 139<br>0 139 |  |

(Skirrow)

# CO in benzene and $\beta$ -naphthol at 25° C

| Per cent by weight of $\beta$ naphthol | Per cent by weight of benzene | Solubility of<br>CO |
|----------------------------------------|-------------------------------|---------------------|
| 0                                      | 100                           | 0 174               |
| 2 06                                   | 97 94                         | 0 158               |
| 4 14                                   | 95 86                         | 0 151               |
| 4 36                                   | 95 64                         | 0 149               |

(Skirrow)

# CO in benzene and nitrobenzene at 25° C

| of nitrobenzene                                                                                | Per cent by weight<br>of benzene                                                          | Solubility of<br>CO                                                                                               |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 0<br>14 5<br>14 12<br>28 18<br>28 14<br>40 58<br>40 63<br>54 9<br>54 9<br>83 33<br>83 2<br>100 | 100<br>85 5<br>85 88<br>71 82<br>71 86<br>59 42<br>59 37<br>45 1<br>45 1<br>16 67<br>16 8 | 0 174<br>0 162<br>0 162<br>0 152<br>0 152<br>0 152<br>0 140<br>0 140<br>0 126<br>0 127<br>0 101<br>0 102<br>0 093 |

(Skirrow)

# CO in benzenc and aniline at 25° C

| creent by weigh<br>of aniline | Percent by weight of benzene | Solubility of<br>CO |
|-------------------------------|------------------------------|---------------------|
| 0                             | 100                          | 0 174               |
| 12 69                         | 87 31                        | 0 156               |
| 12 03                         | 87 97                        | 0 158               |
| 19 57                         | 80 43                        | 0 145               |
| 19 43                         | 80 57                        | 0 144               |
| 28 43                         | 71 57                        | 0 131               |
| 28 26                         | 71 74                        | 0 131               |
| o7 68                         | 42 32                        | 0 0945              |
| 57 38                         | 42 62                        | 0 0953              |
| 78 90                         | 21 10                        | 0 0689              |
| 78 80                         | 21 20                        | 0 0684              |
| 100                           | 0                            | 0 053               |

(Skirrow)

# CO in toluene and naphthalene at 25 C

| Per cent by weight of naphthalene | Per cent by weight of toluene | Solubili<br>CC | of |
|-----------------------------------|-------------------------------|----------------|----|
| 0                                 | 100                           | 0 18           |    |
| 7 13                              | 92 87                         | 0 16           |    |
| 7 10                              | 92 9                          | 0 1            |    |
| 15 10                             | 94 9                          | 0 16           |    |
| 15 13                             | 84 87                         | 0 16           |    |
| 22 75                             | 77 25                         | 0 16           |    |
| 22 58                             | 77 42                         | 0 17           |    |

(Skirrow)

# CO in toluene and phenanthrene at 2

| Per cent by weight of phenanthrene | Per cent by weight of toluene | Solubili<br>CC | of |
|------------------------------------|-------------------------------|----------------|----|
| 0                                  | 100                           | 0 1            | ,  |
| 5 59                               | 94 41                         | 0 1            |    |
| 5 58                               | 94 42                         | 0 1            |    |
| 11 16                              | 88 84                         | 0 1            |    |
| 11 20                              | 88 8                          | 0 1            |    |
| 21 62                              | 78 38                         | 0 1            |    |
| 21 93                              | 78 07                         | 0 1            |    |

(Skirrow)

# CO in toluene and nitrobenzene at 2<sup>t</sup> C

| Per cent by weight of nitrobenzene | Per cent by weight of toluene | Solubili<br>C( | of |
|------------------------------------|-------------------------------|----------------|----|
| 0                                  | 100                           | 0 1            |    |
| 8 86                               | 91 14                         | 0 10           |    |
| 8 87                               | 91 13                         | 0 10           |    |
| 18 27                              | 81 73                         | 0 10           |    |
| 18 19                              | 81 81                         | 0 10           |    |
| 26 82                              | 73 18                         | 0.1            |    |
| 26 76                              | 73 24                         | 0 1            |    |
| 49 14                              | 50 86                         | 0 1            |    |
| $49 \ 02$                          | 50 98                         | 0.1            |    |
| 76 31                              | 23 69                         | 0 10           |    |
| 76 31                              | 23 69                         | () 1(          |    |
| 100                                | 0                             | 0.0            |    |
|                                    |                               |                |    |

(Skiriow)

### CO in toluene and aniline at 25° C

| ,<br>l_ | weight<br>enc | Sclubili | ot |
|---------|---------------|----------|----|
|         | 100           | () 1     |    |
|         | 93-39         | () 1(    | 1  |
| ĺ       | 93 39         | 0 10     |    |
| - 1     | 86 44         | 0.1      |    |
| - 1     | \$6.45        | () 1     |    |
| - 1     | 80 09         | 0.1      |    |
|         | 80 04         | 0.1      |    |
|         | 55 36         | 0.1      |    |
|         | 55 69         | 0.1      |    |
| ĺ       | 25 37         | 0.0      | 5  |
| l       | 24 97         | 0.0      | 3  |
| - }     | 0             | 0.0      |    |

(Skiriow)

| CO in toluene and a-naphthol a |
|--------------------------------|
|--------------------------------|

| Per cent by weight of a naphthol Per cent by weight of toluene |       | Solubility of<br>CO |
|----------------------------------------------------------------|-------|---------------------|
| 0                                                              | 100   | 0 182               |
| 4 46                                                           | 95 54 | 0 171               |
| 4 44                                                           | 95 56 | 0 171               |
| 8 75                                                           | 91 25 | 0 162               |
| 8 89                                                           | 91 11 | 0 163               |

## (Skirrow)

# CO in acetone and naphthalene at 25° C

| Per cent by<br>weight of<br>naphthalene | Per cent by<br>weight of<br>acetone | Measured<br>vapor<br>pressure | Solubility<br>of CO |
|-----------------------------------------|-------------------------------------|-------------------------------|---------------------|
| 0                                       | 100                                 | 229 6                         | 0 238               |
| 13 31                                   | 86 69                               | 212 4                         | 0 199               |
| 27 40                                   | 72 60                               | 196 6                         | 0 187               |

# (Skirrow)

# CO in acetone and phenanthrene at 25°C

| Percent by<br>weight of<br>phenanthrene | Percent by<br>weight of<br>acetone | Measured<br>vapor<br>pressure | Solubility<br>of CO |
|-----------------------------------------|------------------------------------|-------------------------------|---------------------|
| 0                                       | 100                                | 229 6                         | 0 238               |
| 12 77                                   | 87 23                              | 218                           | 0 205               |
| 25 04                                   | 74 96                              | 207 5                         | 0 183               |

# (Skirrow)

# CO in acetone and $\beta$ -naphthol at 25° C

| Per cent by weight of β naphthol | Per cent by<br>weight of<br>acetone | Measured<br>vapor<br>pressure | Solubility<br>of CO |
|----------------------------------|-------------------------------------|-------------------------------|---------------------|
| 0                                | 100                                 | 229 6                         | 0 238               |
| 13 95                            | 86 05                               | 213                           | 0 190               |
| 26 58                            | 73 12                               | 195                           | 0 169               |

### (Skirrow)

# CO in acctone and nitrobenzene at 25° C

| l er cent by<br>weight of<br>nitrobenzene | ler cent by<br>weight of<br>acctone | Mcasured<br>vapor<br>pressure | Solubility<br>of CO              |
|-------------------------------------------|-------------------------------------|-------------------------------|----------------------------------|
| 0<br>21 59<br>55 20<br>100                | 100<br>78 4<br>16 8<br>0            | 229 6<br>201<br>152           | 0 238<br>0 207<br>0 157<br>0 093 |

### (Skirrow)

# CO in acctone and aniline at 25° C

| lercent by weight of aniline | lereent by<br>weight of<br>nectone | Measured<br>vapor<br>pressure | Solubility<br>of CO              |
|------------------------------|------------------------------------|-------------------------------|----------------------------------|
| 0<br>20 83<br>55 10<br>100   | 100<br>79 17<br>44 9<br>0          | 229 6<br>192<br>120           | 0 238<br>0 179<br>0 110<br>0 053 |

### (Skirrow)

# CO in acetic acid and nitrobenzene at 25° C

| Per cent by weight<br>of nitrobenzene | Per cent by weight<br>of acetic acid | Solubility of CO                 |
|---------------------------------------|--------------------------------------|----------------------------------|
| 0<br>21 65<br>51 03<br>100            | 100<br>78 35<br>48 97<br>0           | 0 173<br>0 156<br>0 130<br>0 093 |

### (Skirrow)

### CO in acetic acid and aniline at 25° C

| Per cent by weight<br>of aniline            | Per cent by weight<br>of acetic acid   | Solubility of CO                                      |
|---------------------------------------------|----------------------------------------|-------------------------------------------------------|
| 0<br>13 5<br>41 64<br>60 77<br>82 21<br>100 | 100<br>86 5<br>58 36<br>39 23<br>17 79 | 0 173<br>0 110<br>0 0699<br>0 0618<br>0 0580<br>0 053 |

### (Skirrow)

# CO in methyl alcohol and glycerine at 25°C

| Per cent by<br>weight of<br>glycerine | Per cent by<br>weight of<br>methyl<br>alcohol | Measured<br>vapor<br>pressure | Solubility<br>of CO                               |
|---------------------------------------|-----------------------------------------------|-------------------------------|---------------------------------------------------|
| 0<br>39 6<br>60 5<br>77 1<br>100      | 100<br>60 4<br>39 5<br>22 9                   | 122<br>106<br>91<br>63        | 0 196<br>0 0964<br>0 0515<br>0 0246<br>very small |

### (Skurrow

# CO in acetone and chloroform at 25° C

| Per cent by<br>weight of<br>chloroform                        | Per cent by<br>weight of<br>acetone                            | Measured<br>vapor<br>pressure                                 | Solubility<br>of CO                                                           |
|---------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|
| 0<br>33 38<br>53 2<br>65 03<br>73 46<br>79 83<br>87 3<br>94 4 | 100<br>66 62<br>46 8<br>34 97<br>26 54<br>20 17<br>12 7<br>5 6 | 229 6<br>202<br>179<br>167<br>162<br>163<br>168<br>178<br>188 | 0 238<br>0 226<br>0 219<br>0 220<br>0 212<br>0 204<br>0 207<br>0 205<br>0 207 |

### (Skirrow)

# CO in acetone and carbon bisulphide at 25° C

| Per cent by<br>weight of<br>carbon<br>bisulphide               | Per cent by<br>weight of<br>acetone                              | Measured<br>vapor<br>pressure                                 | Solubility<br>of CO                                                            |
|----------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|
| 0<br>8 18<br>18 02<br>49 46<br>62 6<br>74 05<br>85 51<br>96 42 | 100<br>91 82<br>81 98<br>50 54<br>37 4<br>25 95<br>14 49<br>3 58 | 229 6<br>306<br>367<br>443<br>457<br>457<br>433<br>382<br>356 | 0 238<br>0 236<br>0 236<br>0 227<br>0 210<br>0 187<br>0 144<br>0 114<br>0 0959 |

(Skirrow)

CO

Per ce of c

C

ī

CO in benzene and ethyl alcohol at 25° C

| Per cent by<br>weight of<br>acetic acid | Per cent by<br>weight of<br>chloroform | Measured<br>vapor<br>pressure | Solubility<br>of CO |
|-----------------------------------------|----------------------------------------|-------------------------------|---------------------|
| 0                                       | 100                                    | 95 9                          | 0 174               |
| 15 43                                   | 84 56                                  | 125                           | 0 179               |
| 52 34                                   | 47 66                                  | 119                           | 0 181               |
| 100                                     | 0                                      | 59                            | 0 192               |

(Skirrow)

CO in chloroform and methyl alcohol at 25° C

| Per cent by<br>weight of<br>alcohol | Per cent by<br>weight of<br>chloroform | Measured<br>vapor<br>pressure | Solubility<br>of CO |
|-------------------------------------|----------------------------------------|-------------------------------|---------------------|
| 0                                   | 100                                    | 188                           | 0 207               |
| 13                                  | 87                                     | 233                           | 0 202               |
| 100                                 | 0                                      | 122                           | 0 196               |

(Skurrow)

CO in acetic acid and benzene at 25° C

| Percent by<br>weight of<br>acetic acid | Percent by<br>weight of<br>benzene | Measured<br>vapor<br>pressure | Solubility<br>of CO |
|----------------------------------------|------------------------------------|-------------------------------|---------------------|
| 0                                      | 100                                | 95 9                          | 0 174               |
| 19 17                                  | 80 83                              | 87 5                          | 0 190               |
| 33 54                                  | 66 46                              | 82                            | 0 198               |
| 67 51                                  | 32 49                              | 64 5                          | 0 199               |
| 100                                    | 0                                  | 14                            | 0 172               |

(Skirrow)

CO in acetic acid and toluene at 25° C

| Per cent by<br>weight of<br>acetic acid | Per cent by<br>weight of<br>toluenc | Measured<br>vapor<br>pressure | Solubility<br>of ( () |
|-----------------------------------------|-------------------------------------|-------------------------------|-----------------------|
| 0                                       | 100                                 | 9                             | 0 152                 |
| 20 48                                   | 79 52                               | 31 6                          | 0 190                 |
| 56 89                                   | 43 11                               | 28                            | 0 195                 |
| 74 71                                   | 25 29                               | 25 6                          | 0 191                 |
| 100                                     | 0                                   | 14                            | 0 172                 |

(Skirrow)

CO in acetic acid and chloroform at 25° (

| Per cent by<br>weight of<br>acetic acid | Per cent by<br>weight of<br>chloroform | Measured<br>vapor<br>pressure | Schibility<br>of CO |
|-----------------------------------------|----------------------------------------|-------------------------------|---------------------|
| 0                                       | 100                                    | 188                           | 0 206               |
| 26 67                                   | 73 33                                  | 144 5                         | 0 207               |
| 56 46                                   | 43 54                                  | 88 5                          | 0 196               |
| 100                                     | 0                                      | 14                            | 0 172               |

(Skirrow)

CO in carbon bisulphide and chloride at 25° (

| Per cent by<br>volume of<br>carbon<br>bisulphide | Per cent by<br>volume of<br>cthylene<br>dichloride | Measure<br>Vapor<br>pressure |
|--------------------------------------------------|----------------------------------------------------|------------------------------|
| 0                                                | 100                                                | 77                           |
| 25                                               | 75                                                 | 231                          |
| 49                                               | 51                                                 | 294                          |
| 81 6                                             | 18 4                                               | 338                          |
| 100                                              | 0                                                  | 356 5                        |

(Skirrow)

Coefficient of absorption for 0 123 at 20°, and 0 134 at 10° and Walfisz, Zeit phys Ch 1

Carbon dioxide, CO

Gas -H O dissolves about its own vol CO temperature (the solution obtained beir gr) and pressure and an additional vol of each additional atmosphere to which

The power of H O to absorb ( O2 docs precisely the same ratio as the pressure evols CO dissolve in I vol H O at 7 a and much greater pressure is necessary crease the amount of gis dissolved bu atmospheres the amount of gas dissolver proportional to the pressure 121)

100 vols H O at 1278 absorb 116 vol dish) if 2) H St vol (O (Henry) vols (O (Sius ur ) if 1 if 105 vol of 105 vols at 1 st 10) v l (O) (Dalton)

100 v l H O at t C rl V vals reluced t 60 I and 30 in pre

| 1      | \ \                              | 1                     |
|--------|----------------------------------|-----------------------|
| 0<br>{ | 11 11<br>11 11<br>12 27<br>100 0 | -(<br>3-<br>5-<br>100 |
| / [    |                                  |                       |

110 d ri whit m 1.1 1 x 1 ir i tilli a (() hr 1001 + 1 1 it ı t 1 4 7 III rear mar (4 1 me th luti n t lul ril t mi ritur hmm h 11 nunlri u r 1 11 that balars ta 1 11 1 11 us ti pl+1Linus

Solubility of CO in HO 1 10 and 760 mm dissolves V

reduced to 0 and 760 mm

| 1       |                  | `                                    | t i                     |         | 1                                    | t                | V 44                                           |
|---------|------------------|--------------------------------------|-------------------------|---------|--------------------------------------|------------------|------------------------------------------------|
| 0 1 2 . | 1<br>1<br>1<br>1 | 7967<br>7207<br>6181<br>5787<br>5126 | 7<br>5<br>9<br>10<br>11 | 1 1 1 1 | 37,9<br>2809<br>2311<br>1817<br>1416 | 1<br>1<br>1<br>1 | 1 0321<br>1 0020<br>0 9753<br>0 9519<br>0 9318 |
| 5       | 1                | 1197<br>3901                         | ( i2  <br>  15          | 1       | 1015<br>0653                         | 1 2              | 0 9150<br>0 9014                               |
| .1)     |                  | 1 7                                  |                         |         |                                      |                  | 10 150                                         |

(Bunsen's Gasometry, pp. 257,

Coefficient of absorption = 1.796 -0.07761t+0 0016424t (Bunsen)

thylene d

etroleum (Gniewas

the ordinary of 1 0018 sp the pressure is subjected it increase it (Souberran) order to in ip to 4 or very nearly Pharm 26

(Caven 1,56° 106 O2 (Henry)

CO gas ure

> > than 1 vol

higher temp

t of the CO he air the But is CO cly held so April 1t com

IIO at to CO

'8, 152)

Solubility in  $H_2O$  at various pressures P = pressure in atmospheres

| Р                  | Vol gas                         | in 1 ccm                       | Ъ              | P Vol gas in 1 ccr      |                         |
|--------------------|---------------------------------|--------------------------------|----------------|-------------------------|-------------------------|
| r                  | at 0                            | at 12 43°                      |                | at 0°                   | at 12 43°               |
| 1<br>5<br>10<br>15 | 1 797<br>8 65<br>16 03<br>21 95 | 1 086<br>5 15<br>9 65<br>13 63 | 20<br>25<br>30 | 26 65<br>30 55<br>33 74 | 17 11<br>20 31<br>23 35 |

(Wroblewski, C R 94 1355)

Absorption of  $CO_2$  in  $H_2O$  at various pressures P= pressure in mm , V= vols  $CO_2$ , reduced to  $0^\circ$  and  $760^\circ$  mm , absorbed by 1 vol  $H_2O$ 

| P       | v      | P       | V      |
|---------|--------|---------|--------|
| 697 71  | 0 9441 | 2188 65 | 3 1764 |
| 809 03  | 1 1619 | 2369 02 | 3 4857 |
| 1289 41 | 1 8647 | 2554 00 | 3 7152 |
| 1469 95 | 2 1623 | 2738 33 | 4 0031 |
| 2002 06 | 2 9067 | 3109 51 | 4 5006 |

(Khanikoff and Longuinine, A ch (4) 11 412)

C = coefficient of absorption in H<sub>2</sub>O at t° and 760 mm

| t°   | C     | t°    | C     | t° | С     |
|------|-------|-------|-------|----|-------|
| 15 2 | 1 00° | 18 38 | 0 8º6 | 21 | 0 838 |
| 17 6 | 0 930 | 18 3  | 0 885 | 23 | 0 798 |

(Setschenow, Mém Acad St Petersb 22 Nos 6, 7)

Absorption coefficient of  $CO_2$  in  $H_2O$  at  $0^\circ = 17308$  (Prytz and Holst, W Ann 1895, 54 136)

Absorption of  $CO_0$  by  $H_2O$  at  $t^0$ a = coefficient of absorption

| t°                                   | α                                                                             | t°                                                 | a                                                                     |
|--------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 1 713<br>1 646<br>1 584<br>1 527<br>1 473<br>1 424<br>1 377<br>1 331<br>1 282 | 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 0 902<br>0 878<br>0 854<br>0 829<br>0 \$04<br>0 781<br>0 738<br>0 738 |
| 9<br>10<br>11<br>12<br>13<br>14      | 1 237<br>1 194<br>1 154<br>1 117<br>1 083<br>1 050                            | 28<br>29<br>30<br>35<br>40<br>45                   | 0 699<br>0 682<br>0 665<br>0 592<br>0 530<br>0 479                    |
| 15<br>16<br>17<br>18                 | 1 019<br>0 985<br>0 956<br>0 928                                              | 50<br>55<br>60                                     | 0 436<br>0 394<br>0 359                                               |

(Bohr, W Ann 1899, 68 504)

Solubility in  $H_2O$  at  $25^\circ = 0.8255$ , at  $15^\circ = 1.070$  (Geffcken, Z phys Ch. 1904, 49, 273.) 75 cc.  $H_2O$  absorb 0.1381 g.  $CO_2$  at 15.5° and 720 mm. (Christoff, Z phys Ch. 1905, 53, 329.)

Absorption-coefficient of  $CO_2$  in  $H_2O$  at  $20^\circ = 0.877$ , or 1000 g  $H_2O$  dissolve 878 cc CO (Usher, Chem Soc 1910, 97 72)

Solubility of CO in  $H_2O=1$  158 at 12° and 0 825 at 25° (Findlay and Shenn, Chem Soc 1911, 99 1315)

Absorption of CO<sub>2</sub> by H<sub>2</sub>O at high pressure Amount of H<sub>2</sub>O used  $\begin{cases} a = 0.210 \text{ ccm} \\ b = 0.102 \text{ ccm} \end{cases}$ 

V=ccm of CO<sub>2</sub> absorbed by H<sub>2</sub>O at t°, reduced to a pressure of 1 kg per sq cm

| $V_1 = \text{ccm}$ of CO <sub>2</sub> absorbed by 1 ccm of H <sub>2</sub> O  |      |                                                                                                          |                                                                               |  |
|------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Pressure                                                                     | to   |                                                                                                          |                                                                               |  |
| kg/sq cm                                                                     |      | a                                                                                                        | b                                                                             |  |
| 25<br>30<br>40<br>50<br>55                                                   | 20°  |                                                                                                          | 17 77<br>19 77<br>21 52<br>28 09<br>29 75                                     |  |
| 30<br>40<br>50<br>60<br>70<br>80                                             | 35°  | 11 77<br>14 82<br>18 96<br>22 90<br>27 18                                                                | 13 57<br>20 00<br>24 64<br>22 50<br>27 62<br>32 85                            |  |
| 40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120                        | 60°  | 10 88<br>12 24<br>14 46<br>16 80<br>19 74<br>22 74<br>26 21<br>28 92<br>30 20                            | 9 798<br>13 72<br>15 28<br>17 46<br>22 67<br>21 16<br>27 85<br>28 79<br>33 90 |  |
| 60<br>70<br>50<br>90<br>100<br>140<br>120<br>130<br>140<br>150<br>160<br>170 | 100° | 8 965<br>10 11<br>11 05<br>12 63<br>15 65<br>14 88<br>16 40<br>17 93<br>19 56<br>20 58<br>22 07<br>22 78 | 6 39)<br>9 591<br>10 85<br>12 40<br>16 51<br>15 78<br>16 89<br>17 71<br>17 49 |  |

(Sinder, Z phy Ch 1912, 78 >>7)

Solubility of carbon dioxide in water at 25°

P = Pressure in mm Hg

S = Solubility calculated according to formula for which see the original article (Findlay, Chem Soc 1910, 97 538)

|                                        |                                                    | ·                                            |                                                    |
|----------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|
| P                                      | S                                                  | P                                            | S                                                  |
| 743<br>752<br>800<br>841<br>955<br>955 | 0 816<br>0 817<br>0 815<br>0 817<br>0 816<br>0 817 | 1059<br>1064<br>1153<br>1243<br>1351<br>1351 | 0 817<br>0 819<br>0 818<br>0 819<br>0 820<br>0 820 |

(Findlay and Creighton, Chem Soc 1910, 97 538)

Solubility of carbon dioxide in water at 25° P = Pressure in mm Hg

S = Solubility See above

| P                                      | s                                                  | P                                            | S                                                           |
|----------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|
| 755<br>759<br>836<br>841<br>927<br>934 | 0 826<br>0 825<br>0 825<br>0 826<br>0 826<br>0 824 | 1069<br>1084<br>1210<br>1211<br>1350<br>1350 | 0 823<br>0 825<br>0 825<br>0 825<br>0 825<br>0 824<br>0 826 |

(Findlay and Creighton, Chem Soc 1912, 101 1460)

Solubility of carbon dioxide in water at 25°
P=Pressure in mm Hg
S=Solubility See above

| P   | 5     | P   | 5     |
|-----|-------|-----|-------|
| 263 | 0 817 | 495 | 0 816 |
| 271 | 0 816 | 651 | 0 816 |
| 382 | 0 814 | 667 | 0 817 |
| 392 | 0 811 | 752 | 0 818 |
| 479 | 0 816 | 768 | 0 817 |

(Findlay and Creighton, Chem Soc 1913, 103 638)

Sl sol in HCl+Aq

100 vols H 504 of 1840 sp gr absorb 4 vol (0) (de Saussure)

Hiso4 of ordinary density at 15 % and common pressure absorbs 94% of its vol of () fuming H SO4 125% the absorption for pure H<sub>2</sub>O under the same conditions being 98% (Rogers Am J Sci (2) 5 115)

 $H_2SO_4$  absorbs 7–10% (O (Hlasıwetz, W A B **20** 193)

Coefficient of absorption by conc  $H_2SO_4 = 0.932$ , which is the same as that by  $H_2O$ , but this diminishes on diluting, and is at its lowest limit 0.666, when the composition of the solution is  $H_2SO_4$ ,  $H_2O$ , upon further dilution the coefficient of solubility gradually increases, and when 58  $H_2O$  are present to 1  $H_2SO_4$ , the

coefficient of absorption is 0.857 schenow, J B 1876 46)

Absorption of CO<sub>2</sub> by H<sub>2</sub>SO<sub>4</sub>+Aq

Set

| Solution                                                                                                                                             | Grams CO <sub>2</sub> absorbed by<br>at 15 5° and 720 mm | ) ec |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------|
| ½-N H <sub>2</sub> SO <sub>4</sub><br>1-N H <sub>2</sub> SO <sub>4</sub><br>2-N H <sub>2</sub> SO <sub>4</sub><br>4-N H <sub>2</sub> SO <sub>4</sub> | 0 1273<br>0 1179<br>0 1092<br>0 1003                     |      |
|                                                                                                                                                      |                                                          |      |

(Christoff, Z phys Ch 1905, 53 32)

| 2 5% H <sub>2</sub> SO <sub>4</sub> 5% " 10% " 20% " 30% " 40% " 45% " 70% " | 0 1282<br>0 1179<br>0 0833<br>0 0755<br>0 0751<br>0 0713<br>0 0725<br>0 0918<br>0 1433 |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|

(Christoff, l c)

Coefficient of absorption for 96 % H<sub>2</sub>  $\rm O_4=0.926$  at 20 2° (Bohr, Z phys Ch 19) , 71 48 )

Absorption of CO<sub>2</sub> by acids

M = Content in gram-equivalents per iter
S = Solubility (see under oxygen)
Absorption of CO<sub>2</sub> by HNO<sub>3</sub>+Aq

| М                                                                    | ۲                                                                            | 715                                                          |
|----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|
| 0 472<br>0 475<br>0 557<br>0 704<br>1 382<br>1 387<br>1 860<br>2 519 | 0 8382<br>0 8366<br>0 8387<br>0 8447<br>0 8620<br>0 8622<br>0 8752<br>0 8839 | 1 07<br>1 07<br>1 06<br>1 08<br>1 06<br>1 06<br>1 06<br>1 10 |
| 2 539                                                                | 0 8865                                                                       | 1 11                                                         |

(Geffcken, Z phys Ch 1904, 49 27 )

Absorption of CO by HCl+Aq

| \1                                                 | ` .                                                      | 71                                                     |
|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|
| 0 499<br>0 511<br>1 212<br>1 249<br>2 080<br>2 180 | 0 8047<br>0 8074<br>0 7973<br>0 7984<br>0 7951<br>0 7951 | 1 04<br>1 04<br>1 02<br>1 02<br>1 02<br>0 98 4<br>1 00 |
|                                                    |                                                          |                                                        |

(Geffcken)

| Absorption of CO b | by $\frac{\text{H}_2\text{SO}_4}{2} + \text{Aq}$ |
|--------------------|--------------------------------------------------|
|--------------------|--------------------------------------------------|

| М     | $S_2$  | Sı °   |
|-------|--------|--------|
| 0 512 | 0 7923 | 1 016  |
| 0 517 | 0 7936 | 1 016  |
| 0 995 | 0 7693 | 0 9772 |
| 1 039 | 0 7685 | 0 9775 |
| 1 067 | 0 7672 | 0 9756 |
| 1 956 | 0 7302 | 0 9175 |
| 2 088 | 0 7273 | 0 9143 |
| 3 790 | 0 6736 | 0 8354 |
| 3 800 | 0 6747 | 0 8385 |

### (Geffcken)

In collecting  $\rm CO_2$  gas in pneumatic operations a saturated solution of common salt is better than  $\rm H_2O$  for filling the trough This solution will only absorb about  $^{1/s}$  of the amount of  $\rm CO_2$  absorbed by pure  $\rm H_2O$ (de Saussure l c)

100 vols of the following solutions at 18° and ordinary pressure absorb vols CO<sub>2</sub>—

Sat NaCl+Aq (containing 29% of NaCl)
Sat NH4Cl +Aq (containing 27 53% of NH4Cl)
Sat KCl+Aq (containing 26% of KCl)
Sat KCl +Aq (containing 26% of KCl)
Sat CaCl +Aq (containing 40 2% of CaCls)
Sat LaCl +Aq (containing 40 2% of CaCls) K2SO4+Aq (containing 942% of Sat K2SO4) 1 077 62 Na SO4+Aq (containing 11 14% of 1 105 58 at K.Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+Aq (containing 9 14% of K Al (SO<sub>4</sub>)<sub>4</sub>+24H () Sat 1 047 70 Sat K. . KNO3) KNO3+Aq (containing 206% of 1 139 57 NaNOs+Aq (containing 264% of NaNO3) 1 206 Sat H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+Aq (containing 53 37% of H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub> 1 288 (de Siussure Gilbert's Ann Phys 47 167)

About half as sol in NaCl+Ag (15% NaCl) as in H<sub>2</sub>O

Much more sol in Na<sub>2</sub>HPO<sub>4</sub>+Aq or Na<sub>2</sub>CO<sub>3</sub>+Aq th in in H<sub>2</sub>O<sub>3</sub>, the quantity dissolved increasing with the amount of salt in the solution I he solubility in these solutions depends on the coefficient of solubility in H O plus the product of a constant coefficient multiplied by the amount of salt in the solu tion, this constant in the for Na<sub>2</sub>HPO<sub>4</sub>, and 0.085 for N  $\iota$  C U1. , A ch (3) 47 307)

Lemet's determinations are not accurate Meyer, A Suppl 2 157)

1 mol N<sub>12</sub>HPO<sub>4</sub> in dil Na HPO<sub>4</sub>+Aq

absorbs 2 mols CO (Setschenow)

Solutions of salts of similar constitution are equivalent in regard to their power of absorption of CO, when they contain the same per-centage of crystal water. Experiments were made with solutions of alum, MgSO4, 7H O, and ZnSO<sub>4</sub>, 7H<sub>2</sub>O, containing 10% of the The MgSO<sub>4</sub> solution absorbed the greatest proportional amount of CO2, and I he further rule was dethe alum the least duced that with salts of similar constitution and the same amount of crystal water, the

absorptiometric equivalents are identical with the chemical equivalents (Setschenow, B

**6** 1461 ) Salts can be divided into two classes, according as CO<sub>2</sub> has chemical action on the salt or not In the first case, i e, when there is chemical combination or action of CO2 on the salt in solution, the amount of CO2 absorbed increases with increasing concentration of the solution, in the second case, however, the amount of CO2 decreases with the strength of the solution Several salts can be arranged in a series as regards their power of absorption, beginning with that which has the greatest, as follows Na<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>, Na<sub>2</sub>HPO<sub>4</sub>, NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, Na<sub>3</sub>C<sub>6</sub>H<sub>5</sub>O<sub>7</sub>, Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, NaC<sub>2</sub>H<sub>5</sub>O<sub>3</sub>, MNO<sub>3</sub>, MCl, M<sub>2</sub>SO<sub>4</sub> The division sion between the two classes occurs in this series at Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>

The matter is discussed at length in the original papers (Setschenov Acad St Petersb **22** No 6 (Setschenow. Mémoires Also further, Setschenow, ib 34 No 3, and 35 No 7 See also Ostwald, Allgemeine Chemie, 2<sup>te</sup>

Aufl vol 1, p 629)

Solubility of CO<sub>2</sub> in salts+Aq at 15 2°  $CO_2 = cc$   $CO_2$  (at 0° and 760 mm) dissolved per cc of salt solution

| Solubility of CO <sub>6</sub> in saits + Aq at 15 2 - Cont                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                      |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Salt                                                                                                                                    | g salt per l                                                                                                                                                                              | CO                                                                                                                                                                                                                   |  |  |
| KSCN<br>KNO <sub>3</sub> " NaCl  " NaBr  " NaNO <sub>3</sub> " NaNO <sub>3</sub> " " NaNO <sub>3</sub> " " " Tasso <sub>4</sub> " " " " | 978<br>58 8<br>117 5<br>235 1<br>12 9<br>64<br>128<br>192<br>115 1<br>460 4<br>89 3<br>125<br>208 4<br>416 8<br>625 2<br>233 3<br>349 9<br>699 8<br>14 2<br>94 8<br>284 4<br>38 3<br>76 7 | 0 387<br>0 959<br>0 890<br>0 781<br>0 978<br>0 760<br>0 580<br>0 466<br>0 775<br>0 364<br>0 221<br>0 835<br>0 762<br>0 621<br>0 385<br>0 244<br>0 625<br>0 506<br>0 257<br>0 950<br>0 620<br>0 234<br>0 903<br>0 783 |  |  |
| ${ m ZnSO_4}$                                                                                                                           | 284 4<br>38 3                                                                                                                                                                             | 0 234<br>0 903                                                                                                                                                                                                       |  |  |

(Setschenow, A ch 1892, (6) 25 226)

 $\rm CO_2$  is not disengaged at ordinary temp from  $\rm H_2O$ , in which  $^{1}/_{1000}$  pt of  $\rm CaCO_3$  or  $\rm MgCO_3$  is held in solution thereby. These solutions have a great power of retaining  $\rm CO_2$  even at a boiling temp or with diminished pressure, and they also absorb  $\rm CO_2$  from the air in much larger quantity than pure  $\rm H_2O$  (Bineau )

BaCO<sub>3</sub> in H<sub>2</sub>O also retains CO<sub>2</sub> even after

long boiling (Storer)

CO<sub>2</sub> is also absorbed from the air by Na<sub>2</sub>CO<sub>3</sub>, or K<sub>2</sub>CO<sub>3</sub>+Aq, especially if dilute Absorption of CO<sub>2</sub> by NaCl+Aq at t°

Absorption of  $CO_2$  by NaC1+Aq at t a = Coefficient of absorption for a 6.52% NaCl solution

 $\alpha_1\!=\!\text{Coefficient}$  of absorption for a 17 62% NaCl solution

| t° | а     | αι    |
|----|-------|-------|
| 0  | 1 234 | 0 678 |
| 5  | 1 024 | 0 577 |
| 10 | 0 875 | 0 503 |
| 15 | 0 755 | 0 442 |
| 20 | 0 664 | 0 393 |
| 25 | 0 583 | 0 352 |
| 30 | 0 э17 | 0 319 |
| პ5 | 0 460 | 0 288 |
| 40 | 0 414 | 0 263 |
| 45 | 0 370 | 0 235 |
| о6 | 0 335 | 0 215 |
| o5 | 0 305 | 0 198 |
| 60 |       | 0 183 |

(Bohr, W Ann 1899, **68** 504)

Absorption of  $CO_2$  by CsCl+Aq M=Content in g equiv per l S=Solubility (See under Oxygen)

|                | •                | • • •             |
|----------------|------------------|-------------------|
| M              | S25°             | S <sub>15</sub> ° |
| 0 552<br>0 554 | 0 7771<br>0 7769 | 1 001<br>0 999    |

(Geffcken, Z phys Ch 1904, 49 273

Absorption of CO<sub>2</sub> by KNO<sub>3</sub>+Aq

| М     | S <sub>25</sub> ° | 5 <sub>15</sub> ° |
|-------|-------------------|-------------------|
| 0 536 | 0 7832            | 1 002             |
| 0 537 | 0 7818            | 0 999             |
| 1 022 | 0 7452            | 0 943             |
| 1 033 | 0 7447            | 0 942             |

(Geffcken)

Absorption of CO2 by KI+Aq

| M     | S25    | S1 °  |
|-------|--------|-------|
| 0 559 | 0 7678 | 0 980 |
| 0 573 | 0 7676 | 0 983 |
| 1 043 | 0 7236 | 0 914 |
| 1 119 | 0 7166 | 0 909 |

(Geffcken)

Absorption of CO<sub>2</sub> by RbCl+Aq

| M     | S25    | 71     |
|-------|--------|--------|
| 0 479 | 0 7705 | 0 9908 |
| 0 481 | 0 7698 | 0 9910 |
| 1 007 | 0 7190 | 0 9210 |
| 1 012 | 0 7157 | 0 9200 |

(Geffcken)

Absorption of (O by KB1+ \q

| M              | 72                                              | 71                 |
|----------------|-------------------------------------------------|--------------------|
| 0 550          | 0 7621                                          | 0 978              |
| 0 565<br>1 056 | $\begin{array}{c} 0.7619 \\ 0.7030 \end{array}$ | () 976€<br>() 910€ |
| 1 064          | 0 7068                                          | () 906*            |

(Geffeken)

Absorption of CO2 by K(I+Aq

| M                                | `                                    | `1                                   |
|----------------------------------|--------------------------------------|--------------------------------------|
| 0 423<br>0 432<br>1 045<br>1 058 | 0 7695<br>0 7667<br>0 6920<br>0 6961 | 0 9892<br>0 9865<br>0 8875<br>0 8910 |
|                                  |                                      |                                      |

(Geffcken)

| Absorption | of | CO <sub>2</sub> | bv | salts- | -Aa |
|------------|----|-----------------|----|--------|-----|
|            |    |                 |    |        |     |

| Absorption of CO2 by saits #Aq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Grams CO <sub>2</sub> absorbed by 7<br>cc of salt solution at 15 5<br>and 720 mm                                                                                                                                                                     |  |
| Salt  1-N KBr 1-N KNO <sub>3</sub> 1-N KCl 1-N KI 1-N LiCl 1-N NaCl 1-N (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> 1-N (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> 1-N (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> 1-N K <sub>2</sub> SO <sub>4</sub> 1-N K <sub>2</sub> SO <sub>4</sub> 1-N K <sub>2</sub> SO <sub>4</sub> 1-N K <sub>2</sub> SO <sub>4</sub> 1-N M <sub>2</sub> SO <sub>4</sub> 1-N M <sub>2</sub> SO <sub>4</sub> 1-N M <sub>2</sub> SO <sub>4</sub> 1-N M <sub>2</sub> SO <sub>4</sub> 2-N M <sub>2</sub> SO <sub>4</sub> 2-N M <sub>2</sub> SO <sub>4</sub> 2-N M <sub>2</sub> SO <sub>4</sub> 1-N M <sub>2</sub> SO <sub>4</sub> 2-N M <sub>2</sub> SO <sub>4</sub> 2-N KHSO <sub>3</sub> 2-N KHSO <sub>3</sub> 2-N KHSO <sub>4</sub> 1-N KH <sub>2</sub> ASO <sub>4</sub> 1-N KH <sub>2</sub> ASO <sub>4</sub> 1-N KH <sub>2</sub> PO <sub>4</sub> 1/ <sub>2</sub> -N K <sub>2</sub> HASO <sub>4</sub> 1-N K <sub>2</sub> HPO <sub>4</sub> 1/ <sub>2</sub> -N Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> 1/ <sub>4</sub> -N Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> 1/ <sub>4</sub> -N Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> 1/ <sub>4</sub> -N Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> 1/ <sub>4</sub> -N Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> 1/ <sub>4</sub> -N Na <sub>2</sub> PO <sub>4</sub> +12H <sub>2</sub> O N-Na <sub>2</sub> PO <sub>4</sub> +12H <sub>2</sub> O | cc of salt solution at 15 s and 720 mm  0 1280 0 1231 0 1213 0 1204 0 1087 0 1050 0 1093  0 0991 0 1002  0 1054 0 1140 0 1209 0 1047 0 0656 0 0527 0 0751 0 0720 0 1017 0 0999 0 0808 0 0852 0 1111 0 4989 0 2205 0 5317 0 8511 0 8124 0 7672 0 5828 |  |
| N-NaPO <sub>3</sub><br>N-KPO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 8457<br>0 2081<br>0 2618                                                                                                                                                                                                                           |  |

(Christoff, Z phys Ch 1905, 53 338-340)

Solubility of CO in KCl+Aq at 25° Concentration, 7.45 g in 100 cc of solution, sp gr = 1.043

Pressure 756 \$50 953 1116 1249 1362 Solubility 0 694 0 693 0 688 0 700 0 709 0 710

Concentration 5 g in 100 cc of solution, sp gr = 1.031

Pressure 756 \$32 901 1050 1150 1223 Solubility 0 731 0 727 0 724 0 726 0 735 0 736

Concentration, 2.56 g in 100  $\alpha$  of solution, Sp. gr = 1.016

Pressure 756 \$52 981 1079 1190 1362 Solubility 0.767 0.761 0.761 0.762 0.768 0.766 (Findley and Creighton, Chem Soc 1910, 97 557)

Solubility of CO<sub>2</sub> in NH<sub>4</sub>Cl+Aq at 25° Concentration (C) denotes number of grams of solute in 100 cc of solution

Density (D) equals the specific gravity of the solution

Solubility (S) calculated by formula given in the original article

| C     | D     | s     |
|-------|-------|-------|
| 2 35  | 1 005 | 0 791 |
| 5 05  | 1 013 | 0 754 |
| 8 24  | 1 022 | 0 732 |
| 10 02 | 1 027 | 0 712 |
| 17 09 | 1 045 | 0 665 |

(Findlay and Shenn, Chem Soc 1912, **101** 1461)

Solubility of CO<sub>2</sub> in KCl+Aq at 25°

| С    | D     | s     |
|------|-------|-------|
| 1 84 | 1 008 | 0 792 |
| 3 05 | 1 017 | 0 764 |
| 4 58 | 1 026 | 0 749 |
| 7 46 | 1 044 | 0 701 |

(Findlay and Shenn)

Solubility of CO<sub>2</sub> in BaCl<sub>2</sub>+Aq at 25°

| С    | D     | S     |
|------|-------|-------|
| 2 80 | 1 018 | 0 789 |
| 5 81 | 1 040 | 0 741 |
| 8 15 | 1 054 | 0 710 |
| 9 97 | 1 070 | 0 676 |

(Findlay and Shenn)

Solubility of CO in  $(NH_4)$  Fe(SO<sub>4</sub>)<sub>2</sub>+Aq at

| С     | D     | S     |
|-------|-------|-------|
| 9 51  | 1 052 | 0 641 |
| 10 26 | 1 057 | 0 629 |
| 22 47 | 1 124 | 0 460 |

(Findly and Shenn)

Solubility of  $CO_2$  in solutions of sucrose at  $25^{\circ}$ 

| C     | n     | 5     |
|-------|-------|-------|
| 2 63  | 1 009 | 0 813 |
| 5 16  | 1 018 | 0 798 |
| 9 68  | 1 038 | 0 767 |
| 12 33 | 1 051 | 0 744 |

(Findlay and Shenn)

Solubility of CO in solutions of chloral hydrate at 25°

| C     | р     | 5     |
|-------|-------|-------|
| 5 08  | 1 019 | 0 815 |
| 10 12 | 1 041 | 0 795 |

(I indlay and Shenn)

Solubility of CO<sub>2</sub> in alcohol 1 vol alcohol at t° and 760 mm dissolves V vols CO<sub>2</sub> gas reduced to 0° and 760 mm

| t°                                        | v                                                                                      | t°                                                | v                                                                                      | t                                      | v                                                                  |
|-------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 4 3295<br>4 2368<br>4 1466<br>4 0589<br>3 9736<br>3 8908<br>3 8105<br>3 7327<br>3 6573 | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 3 5844<br>3 5140<br>3 4461<br>3 3807<br>3 3178<br>3 2573<br>3 1993<br>3 1438<br>3 0908 | 18<br>19<br>20<br>21<br>22<br>23<br>24 | 3 0402<br>2 9921<br>2 9465<br>2 9034<br>2 8628<br>2 8247<br>2 7890 |

(Bunsen's Gasometry, pp 287, 128, 153)

Coefficient of absorption = 432955—  $009395t+000124t^2$  (Bunsen)

Much less sol in 30% alcohol than in pure alcohol or pure H<sub>2</sub>O (Muller, W Ann 37 24)

# Solubility of CO in 99% alcohol at to

 $\alpha$ =Coefficient of absorption, i e, the no of ccm of CO<sub>2</sub> measured at 0° and 760 mm which are absorption pressure of 760 mm by 1 ccm alcohol

 $\alpha_1$ =Coefficient of absorption corrected for increase in the volume of the alcohol used due to absorption of CO

| t°                | α     | <b>a</b> 1   |
|-------------------|-------|--------------|
| 65                | 38 41 | 35 93        |
| 25                | 8 75  | 8 61         |
| 20                | 7 51  | 7 41         |
| -25<br>-20<br>-15 | 6 59  | 6 51         |
| —10<br>—5         | 5 75  | 5 69         |
| 5                 | 5 01  | 4 96         |
| $^{0}_{+5}$       | 4 44  | 4 4()        |
| +5                | 3 96  | 3.95         |
| 10                | 3 57  | 3 55         |
| 15                | 3 25  | s 23         |
| 20                | 2 95  | 2 96         |
| <i>2</i> 5        | 2 76  | 2 74<br>2 56 |
| 30                | 2 57  | 2 56         |
| 35                | 2 41  | 2 39         |
| 40                | 2 20  | 2 19         |
| 45                | 2 01  | 2 19<br>2 00 |

(Bohr, W Ann 1900, (4) 1 249)

Solubility in 98 7% alcohol at t°  $\alpha$  = Coefficient of absorption

 $\alpha_1$  = Coefficient of absorption corrected increase in volume of the alcohol used disabsorption of CO<sub>2</sub>

| t°                                                | α                                                                         | <b>a</b> <sub>1</sub>                                                     |
|---------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>65<br>67 | 4 35<br>5 43<br>7 25<br>9 97<br>14 25<br>21 28<br>31 25<br>39 89<br>44 07 | 4 31<br>5 38<br>7 16<br>9 79<br>13 89<br>20 49<br>29 59<br>37 22<br>40 83 |
|                                                   |                                                                           |                                                                           |

(Bohr, W Ann 1900, (4) 1 253)

### Solubility in alcohol + Aq at to

| t°   | % by wt of<br>alcohol in the<br>solvent | Solubility of<br>CO <sub>2</sub> in<br>alcohol +Aq | Solubilit<br>CO2 in ] | of<br>O |
|------|-----------------------------------------|----------------------------------------------------|-----------------------|---------|
| 1 4  | 6 325                                   | 1 5864                                             | 1 69                  | ,       |
| 3 2  | 4 464                                   | 1 4878                                             | 1 56                  |         |
| 9 2  | 7 276                                   | 1 1829                                             | 1 22                  |         |
| 13 8 | 2 870                                   | 1 0268                                             | 1 03                  |         |

(Langer, C C 1904, I, 1583)

Solubility of CO<sub>2</sub> in ethyl alcohol at 25 Concentration 2 95 g alcohol in 100 cc of solution Sp gr 25°/15°=0 99308 Pressure 737 836 929 1073 1213 38 Solubility 0 812 0 813 0 812 0 811 0 813 0 11

 $\begin{array}{cccccccccc} Concentration & 8.83 & g & alcohol & in & 100 & c \\ of solution & Sp & gr & 25^\circ/15^\circ = 0.98342 & & & \\ Pressure & 747 & 846 & 942 & 1090 & 1231 & 60 \\ Solubility & 0.786 & 0.786 & 0.784 & 0.785 & 0.786 & 0.88 \\ (Findlay & and & Shenn, & Chem. & Soc. & 1911, & 1915) & & & \\ & & & & & & & & & & & & & \\ \end{array}$ 

Solubility of CO in organic solvents at intemperatures

Solvent Lthyl alcohol

| t = -78 up $Lr = 0.872$  |                                  |                              |  |
|--------------------------|----------------------------------|------------------------------|--|
| I ressure                | Coefficient of absorption        | Solubility                   |  |
| 100<br>200<br>400<br>700 | 111 8<br>115 7<br>123 8<br>138 6 | 68 4<br>69 5<br>71 4<br>74 7 |  |

temperatures —Continued

| t=59° sp gr =0856        |                                  |                                  |  |
|--------------------------|----------------------------------|----------------------------------|--|
| Pressure                 | Solubility                       |                                  |  |
| 100<br>200<br>400<br>700 | 40 85<br>41 00<br>42 35<br>44 15 | 27 27<br>27 16<br>27 65<br>28 10 |  |

#### Solvent Methyl alcohol

| t                                     | $t = -78^{\circ} \text{ Sp gr} = 0.884$            |                                           |  |  |  |
|---------------------------------------|----------------------------------------------------|-------------------------------------------|--|--|--|
| Pressure                              | Coefficient of absorption                          | Solubility                                |  |  |  |
| 50<br>100<br>200<br>400<br>500<br>740 | 194 0<br>195 0<br>202 9<br>221 5<br>226 4<br>260 0 | 120 5<br>119 6<br>120 1<br>122 2<br>126 8 |  |  |  |

### $t^{\circ} = -59^{\circ} \text{ sp gr} = 0.866$

| Pressure | Coefficient of absorption | Solubility |
|----------|---------------------------|------------|
| 100      | 63 0                      | 42 5       |
| 200      | 64 2                      | 42 7       |
| 400      | 66 3                      | 43 1       |
| 700      | 69 0                      | 43 3       |

#### Solvent Acetone

### $t = -78^{\circ} \text{ sp gr} = 0.900$

| Pressure          | Coefficient of absorption | Solubility                |
|-------------------|---------------------------|---------------------------|
| 50<br>100         | 311<br>322                | 196 6<br>198 1            |
| 200<br>400<br>640 | 344 5<br>400<br>487       | $201 5 \\ 208 8 \\ 215 7$ |
| 700               | 545 5                     | 215 7                     |

### t = -0.9 sp gr = 0.879

|                          | •                                |                              |
|--------------------------|----------------------------------|------------------------------|
| Liessur                  | Coefficient of absorption        | Solubility                   |
| 100<br>200<br>460<br>700 | 97 \$<br>101 2<br>106 6<br>115 8 | 67 2<br>68 0<br>72 8<br>72 8 |

### Solvent - Ethyl act ite

| = | 75 | 41) | or | == | 017 |
|---|----|-----|----|----|-----|

| Irestr | Coefficient of absorption | Solubility |
|--------|---------------------------|------------|
| 50     | 250 2                     | 177 5      |
| 100    | 255 6                     | 177 1      |
| 200    | 271 \$                    | 179 2      |
| 400    | 310 9                     | 183 2      |
| 650    | 386 9                     | 191 2      |

### Solubility of CO2 in organic solvents at low | Solubility of Co in organic solvents at low temperatures -Continued

| t=59° sp gr =0 994       |                               |                              |  |
|--------------------------|-------------------------------|------------------------------|--|
| Pressure                 | Coefficient of absorption     | Solubility                   |  |
| 100<br>200<br>400<br>700 | 85 3<br>86 3<br>91 6<br>101 5 | 65 6<br>65 3<br>66 7<br>69 7 |  |

#### Solvent Methyl acetate

| t=-78° sp gr =1 056            |                                           |                                           |  |
|--------------------------------|-------------------------------------------|-------------------------------------------|--|
| Pressure                       | Coefficient of absorption                 | Solubility                                |  |
| 50<br>100<br>200<br>400<br>650 | 304 9<br>315 0<br>337 4<br>389 3<br>498 1 | 224 1<br>224 3<br>223 1<br>225 6<br>231 2 |  |

### $t = --09^{\circ} \text{ sp gr} = 1032$

| Pressure | Coefficient of absorption | Solubility |
|----------|---------------------------|------------|
| 100      | 94 3                      | 75 8       |
| 200      | 98 45                     | 77 1       |
| 400      | 103 6                     | 77 6       |
| 700      | 112 9                     | 79 0       |

(Stern, Z phys Ch 1912, 81 468)

Solubility of  $CO_2$  in ether at  $0^{\circ}=733$ , at 10°=6 044, at 15°=5 46 (Christoff, Z phys Ch 1912 **79** 459)

Coefficient of absorption in chloroform is 0 20376 at 36 57 mm, and 4 43757 at 762 mm (Woukoloff, C R 109 62)

100 vols of following liquids absorb vols CO2 at 18 -

| · -                                 | Sp gr | Vols CO |
|-------------------------------------|-------|---------|
| Ether                               | 0 727 | 217     |
| Rectified naphtha                   | 0 784 | 169     |
| Oil of turpentine                   | 0.860 | 166     |
| Oil of lavender (freshly distilled) | 0.850 | 191     |
| Oil of thyme                        | 0.890 | 188     |
| Linseed oil                         | 0.940 | 156     |
| Olive oil                           | 0.915 | 1 1     |
| ( um arabic +Aq (containing 25%     |       |         |
| of the gum)                         | 1 092 | 7)      |
| Cane sugar + Aq (containing 2)      |       | -       |
| of sugar)                           | 1 104 | 7.2     |
| (de Saussure 1)                     | • 1   |         |

1 vol. oil of turpentine absorbs 17-19 vols CO (Saussure)

1 vol. spirit at 10. absorbs 2 vols. CO (de Saussurc) 1 vol olive oil at 10 absorbs 1+vol CO sure)

1 vol oil of turpentine at 10 absorbs 2 vols CO (Bergman) 1 vol caoutchine absorbs 11 vols CO (Bergman)

Coefficient of absorption for petroleum is 117 at 20° and 131 at 10° (Gniewasz and Walfisz, Zeit phys Ch 1 70) 100 vols petroleum absorb 70 vols CO, at

(Robinet, C R 58 608)

Solubility of CO<sub>2</sub> in  $\frac{N}{2}$  solutions of various organic substances at 20°

| Substance                                                                                                                                                 | $\frac{\text{Sp gr of}}{\frac{N}{2}} \text{solution}$ | Coeff of<br>absorp-<br>tion | cc CO <sub>2</sub><br>dissolved<br>in 1000<br>g H <sub>2</sub> O |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|------------------------------------------------------------------|
| Dextrose Mannite Glycerine Pyrogallol Hydrochinon Resorcin Pyrocatechin Urethane Carbamide Thiocarbamide Antipyrine Acetamide Acetic acid N Propylic acid | 1 0328                                                | 0 792                       | 841                                                              |
|                                                                                                                                                           | 1 03031                                               | 0 782                       | 833                                                              |
|                                                                                                                                                           | 1 01413                                               | 0 843                       | 864                                                              |
|                                                                                                                                                           | 1 01718                                               | 0 853                       | 894                                                              |
|                                                                                                                                                           | 1 00946                                               | 0 887                       | 928                                                              |
|                                                                                                                                                           | 1 00958                                               | 0 901                       | 945                                                              |
|                                                                                                                                                           | 1 0107                                                | 0 868                       | 908                                                              |
|                                                                                                                                                           | 1 0037                                                | 0 869                       | 907                                                              |
|                                                                                                                                                           | 1 00715                                               | 0 864                       | 884                                                              |
|                                                                                                                                                           | 1 00917                                               | 0 859                       | 885                                                              |
|                                                                                                                                                           | 1 01339                                               | 0 859                       | 935                                                              |
|                                                                                                                                                           | 1 005                                                 | 0 879                       | 906                                                              |
|                                                                                                                                                           | 1 0026                                                | 0 868                       | 893                                                              |
|                                                                                                                                                           | 0 9939                                                | 0 869                       | 902                                                              |

(Usher, Chem Soc 1910, 97 73)

Absorption of CO<sub>2</sub> by ethyl alcohol Amount of alcohol used =0 093 ccm V=ccm of CO<sub>2</sub> absorbed by the solvent at  $t^\circ$ , reduced to a pressure of 1 kg per sq cm  $V_1=ccm$  of CO<sub>2</sub> absorbed by 1 ccm of the solvent

| sorvent                                                       |      |                   |                                                                                        |                                                                                        |
|---------------------------------------------------------------|------|-------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Pressure<br>kg/sq cm                                          | t°   | Gas volume<br>ccm | v                                                                                      | V <sub>1</sub>                                                                         |
| 30<br>40<br>50                                                | 20°  | 57 31             | 9 462<br>15 15<br>23 04                                                                | 104 8<br>149 7<br>188 8                                                                |
| 30<br>40<br>50<br>60<br>70                                    | 35°  | 60 05             | 7 114<br>10 52<br>14 73<br>19 63<br>27 39                                              | 77 87<br>113 1<br>144 5<br>173 0<br>210 8                                              |
| 40<br>50<br>60<br>70<br>50<br>90<br>100                       | 60°  | 64 44             | 6 429<br>9 023<br>12 27<br>15 64<br>19 11<br>20 64<br>23 88                            | 72 82<br>97 09<br>122 5<br>145 2<br>167 9<br>180 7<br>195 7                            |
| 50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130<br>140 | 100° | 72 19             | 3 809<br>6 034<br>8 374<br>10 76<br>13 06<br>14 90<br>16 22<br>18 93<br>20 48<br>20 61 | 42 49<br>66 05<br>88 67<br>111 2<br>129 0<br>145 7<br>155 0<br>174 6<br>182 6<br>180 0 |
|                                                               |      |                   |                                                                                        |                                                                                        |

Absorption of  $CO_2$  by propyl alco of Amount of alcohol used =0 103 cm V and  $V_1$  See under absorption of  $CO_2$  by ethyl alcohol

| by emil                                               | arcono | 1                 |                                                                               |                                                                          |
|-------------------------------------------------------|--------|-------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Pressure<br>kg/sq cm                                  | t°     | Gas volume<br>ccm | v                                                                             | V <sub>1</sub>                                                           |
| 20<br>30<br>40<br>50                                  | 20°    | 60 59             | 4 867<br>8 472<br>13 46<br>21 62                                              | 6 16<br>6 62<br>2 1<br>4 6                                               |
| 20<br>30<br>40<br>50<br>60<br>70<br>80                | 35°    | 62 96             | 3 493<br>6 307<br>9 296<br>13 99<br>18 90<br>35 03<br>49 23                   | 0 00<br>4 08<br>8 16<br>2 8<br>9 9<br>8 2<br>9 6                         |
| 20<br>30<br>40<br>50<br>60<br>70<br>80<br>90          | 60°    | 68 08             | 2 602<br>4 722<br>6 723<br>9 810<br>13 05<br>17 15<br>19 61<br>24 75<br>30 19 | '4 73<br>17 68<br>14 65<br>18 54<br>1 5<br>14 4<br>19 2<br>14 3<br>13 9  |
| 40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120 | 100°   | 76 27             | 2 592<br>5 669<br>8 025<br>10 44<br>13 13<br>15 72<br>17 10<br>20 95<br>23 55 | 76 50<br>74 19<br>74 51<br>72 17<br>77 7<br>32 3<br>44 7<br>73 5<br>75 4 |

(Sander)

Absorption of  $CO_2$  by ether Amount of ether used = 0.131 cem V and  $V_1$ . See under absorption of  $CO_2$ 

by alcohol

| I ressure<br>kg/sq em             | t    | Cas volume | \ \                                                | \ <sub>1</sub>                               |
|-----------------------------------|------|------------|----------------------------------------------------|----------------------------------------------|
| 45<br>50<br>60                    | 35°  | 62 06      | 42 62<br>46 51<br>57 53                            | )5 6<br>17 3<br>41 6                         |
| 50<br>60<br>70<br>50<br>90<br>160 | 60°  | 67 11      | 28 49<br>35 24<br>42 01<br>46 64<br>50 72<br>56 63 | 71 6<br>95 4<br>10 0<br>21 4<br>55 0<br>48 7 |
| 60<br>70<br>80<br>90<br>100       | 100° | 71 03      | 12 57<br>20 00<br>26 34<br>32 16<br>35 70          | 01 0<br>34 6<br>42 8<br>66 4<br>75 4         |

(Sander, Z phys Ch 1912, 78 524)

(Sander)

| Absorption of CO <sub>2</sub> by benzene                        |   |
|-----------------------------------------------------------------|---|
| Amount of benzene used = 0 080 ccm                              |   |
| V and V <sub>1</sub> See under absorption of CO <sub>2</sub> by | r |

| etnyi aiconoi                                         |      |                   |                                                                               |                                                                               |  |
|-------------------------------------------------------|------|-------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Pressure<br>kg/sq cm                                  | t°   | Gas volume<br>ccm | v                                                                             | Vı                                                                            |  |
| 15<br>20<br>30<br>40<br>50                            | 20°  | 55 14             | 2 728<br>4 845<br>9 618<br>18 70<br>30 10                                     | 46 89<br>71 16<br>125 3<br>192 4<br>264 3                                     |  |
| 15<br>20<br>30<br>40<br>50<br>60<br>70                | 35°  | 58 17             | 2 225<br>3 373<br>6 879<br>11 56<br>17 09<br>25 73<br>35 80                   | 39 94<br>48 65<br>94 39<br>138 3<br>186 6<br>243 1<br>269 0                   |  |
| 20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100   | 60°  | 61 86             | 2 140<br>3 880<br>6 699<br>10 28<br>13 57<br>17 71<br>22 50<br>28 09<br>33 76 | 34 57<br>55 97<br>88 71<br>128 5<br>156 6<br>184 6<br>215 0<br>246 6<br>284 4 |  |
| 40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120 | 100° | 73 75             | 2 822<br>3 981<br>6 440<br>8 398<br>11 96<br>14 57<br>17 79<br>20 60<br>23 98 | 46 52<br>58 46<br>91 27<br>119 0<br>155 8<br>182 5<br>212 9<br>237 7<br>258 2 |  |
|                                                       |      | (Sander           | 1                                                                             |                                                                               |  |

(Sander)

Absorption of CO2 by chlorbenzene Amount of chlorbenzene used = 0.106 ccm V and V<sub>1</sub> See under absorption of CO<sub>2</sub> by ethyl alcohol

| Pressure<br>kg/sq em             | t°  | C as volume | v                                                  | V <sub>1</sub>                                     |
|----------------------------------|-----|-------------|----------------------------------------------------|----------------------------------------------------|
| 20<br>30<br>40<br>50             | 20° | 61 03       | 5 813<br>10 25<br>17 17<br>26 59                   | 62 61<br>95 22<br>137 3<br>187 5                   |
| 20<br>30<br>40<br>50<br>60<br>70 | 35° | 64 16       | 4 650<br>7 705<br>11 81<br>16 83<br>22 82<br>32 83 | 46 66<br>72 73<br>101 5<br>137 3<br>168 3<br>205 5 |
| 20<br>30<br>40                   | 60° | 69-38       | 3 685<br>5 510<br>7 982                            | 35 86<br>53 94<br>73 69                            |

| Absorpt                                                            | ion of | CO₂ by chl        | orbenzene                                                                                       | -Cont                                                                                            |
|--------------------------------------------------------------------|--------|-------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Pressure<br>kg/sq cm                                               | t°     | Gas volume<br>cem | v                                                                                               | V <sub>1</sub>                                                                                   |
| 50<br>60<br>70<br>80<br>90<br>110                                  |        |                   | 11 16<br>13 74<br>16 65<br>19 50<br>22 23<br>31 64                                              | 99 06<br>118 1<br>134 5<br>149 3<br>165 5<br>204 4                                               |
| 30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130 | 100°   | 77 73             | 3 562<br>5 008<br>7 106<br>8 701<br>10 37<br>12 05<br>13 88<br>14 89<br>16 35<br>17 77<br>18 54 | 33 65<br>48 16<br>63 78<br>77 24<br>91 02<br>103 00<br>121 2<br>121 5<br>130 7<br>140 7<br>146 8 |

(Sander)

Absorption of CO<sub>2</sub> by brombenzene Amount of brombenzene used = 0 113 ccm V and  $V_1$  See under absorption of CO by ethyl alcohol

| Pressure<br>kg/sq cm                                       | t°   | Gas volume<br>ccm | v                                                                                      | <b>V</b> 1                                                                              |
|------------------------------------------------------------|------|-------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 20<br>30<br>40<br>50                                       | 20°  | 60 84             | 4 531<br>7 793<br>12 22<br>17 37                                                       | 50 83<br>82 29<br>121 1<br>160 0                                                        |
| 20<br>30<br>40<br>50<br>60<br>70<br>80                     | 35°  | 63 96             | 3 947<br>5 782<br>8 508<br>11 96<br>16 00<br>22 56<br>41 26                            | 43 38<br>62 69<br>90 43<br>116 4<br>146 0<br>184 1<br>233 9                             |
| 20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110 | 60°  | 69 16             | 2 650<br>3 714<br>5 971<br>7 406<br>9 718<br>10 27<br>13 99<br>16 70<br>20 06<br>23 13 | 30 58<br>46 15<br>62 64<br>77 19<br>98 73<br>108 4<br>131 4<br>144 3<br>169 7<br>190 6  |
| 30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110       | 100° | 77 48             | 2 970<br>4 032<br>5 833<br>7 239<br>8 330<br>9 714<br>11 14<br>12 79<br>13 80<br>15 50 | 30 56<br>41 49<br>59 64<br>72 64<br>\$2 56<br>92 86<br>107 1<br>118 0<br>125 3<br>140 7 |

(Sander)

| Absorption of C                             | O <sub>2</sub> by nitrobenzene     |
|---------------------------------------------|------------------------------------|
|                                             | nzene used $= 0.164$ ccm           |
| v and v <sub>1</sub> See u by ethyl alcohol | nder absorption of CO <sub>2</sub> |

| Pressure<br>kg/sq cm                   | t°   | Gas volume<br>ccm | v                                                           | Vı                                                          |  |  |
|----------------------------------------|------|-------------------|-------------------------------------------------------------|-------------------------------------------------------------|--|--|
| 15<br>20<br>30<br>40<br>50             | 20°  | 57 65             | 5 459<br>7 354<br>12 14<br>15 93<br>21 71                   | 41 60<br>57 12<br>92 50<br>115 9<br>155 9                   |  |  |
| 20<br>30<br>40<br>50<br>60<br>70<br>80 | 35°  | 59 86             | 5 644<br>8 658<br>11 98<br>15 59<br>19 94<br>25 57<br>34 95 | 44 48<br>68 23<br>94 39<br>113 4<br>145 1<br>179 6<br>227 0 |  |  |
| 20<br>30<br>40<br>50<br>60<br>70<br>80 | 60°  | 64 73             | 3 787<br>4 519<br>6 308<br>7 750<br>8 887<br>10 15<br>10 80 | 31 38<br>38 23<br>52 26<br>64 21<br>72 15<br>82 40<br>85 03 |  |  |
| 20<br>30<br>40<br>50<br>60<br>70<br>80 | 100° | 75 52             | 2 749<br>4 162<br>5 393<br>6 832<br>7 763<br>9 048<br>10 65 | 24 67<br>41 00<br>50 36<br>63 80<br>70 85<br>75 75<br>86 86 |  |  |
|                                        |      | (Sander)          |                                                             |                                                             |  |  |

### Absorption of $CO_2$ by toluene Amount of toluene used = 0 114 ccm V and $V_1$ See under absorption of COby ethyl alcohol

Gasvolume

Pressure

| kg/sq cm                                      | t-  | cem   | `                                                                    | V 1                                                                  |
|-----------------------------------------------|-----|-------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| 20<br>30<br>40<br>50                          | 20° | 59 97 | 7 420<br>13 31<br>23 25<br>45 10                                     | 57 91<br>103 3<br>155 9<br>235 8                                     |
| 20<br>30<br>40<br>50<br>60<br>70              | 35° | 63 O5 | 6 018<br>10 13<br>16 03<br>23 34<br>31 39<br>44 17                   | 49 60<br>82 63<br>118 8<br>155 8<br>192 1<br>225 \$                  |
| 30<br>40<br>50<br>60<br>70<br>80<br>90<br>100 | 60° | 68 17 | 6 735<br>9 885<br>13 98<br>19 00<br>22 66<br>26 60<br>31 66<br>38 86 | 54 67<br>78 67<br>104 6<br>128 1<br>150 1<br>171 9<br>191 5<br>210 0 |

| Absorp                                                             | tion of | CO <sub>2</sub> by to | luene —C                                                                                        | onti                                                 | ued                                                     |
|--------------------------------------------------------------------|---------|-----------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| Pressure<br>kg/sq cm                                               | t°      | Gas volume            | v                                                                                               |                                                      | 1                                                       |
| 30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130 | 100°    | 76 37                 | 3 356<br>5 945<br>8 703<br>11 18<br>13 72<br>16 30<br>18 88<br>21 85<br>24 86<br>26 80<br>28 21 | 2<br>4<br>6<br>8<br>10<br>11<br>13<br>14<br>16<br>17 | 68<br>25<br>93<br>98<br>7<br>6<br>6<br>0<br>9<br>8<br>7 |

(Sander)

Absorption of CO<sub>2</sub> by ethyl acetate Amount of ethyl acetate used =  $0.15^{\circ}$  cm V and V<sub>1</sub> See under absorption o CO<sub>2</sub> by ethyl alcohol

| Pressure<br>kg/sq cm                    | t°   | Gas volume<br>ccm | v                                                           |                                       | 1                                |
|-----------------------------------------|------|-------------------|-------------------------------------------------------------|---------------------------------------|----------------------------------|
| 25<br>30<br>40                          | 20°  | 60 30             | 29 43<br>37 91<br>51 26                                     | 15<br>18<br>22                        | 6<br>2<br>9                      |
| 30<br>40<br>50<br>60                    | 35°  | 63 40             | 26 54<br>38 69<br>48 35<br>51 88                            | 14<br>18<br>21<br>21                  | 2<br>4<br>9<br>8                 |
| 30<br>40<br>50<br>60<br>70<br>80        | 60°  | 68 55             | 18 12<br>25 67<br>33 21<br>40 12<br>45 47<br>49 16          | 10<br>14<br>16<br>18<br>20<br>22      | 0<br>5<br>2<br>7<br>1<br>4       |
| 40<br>50<br>60<br>70<br>80<br>90<br>100 | 100° | 76 80             | 12 76<br>18 80<br>24 12<br>28 99<br>32 96<br>36 92<br>42 75 | 8<br>11<br>13<br>15<br>16<br>17<br>19 | 70<br>1<br>0<br>0<br>3<br>1<br>5 |

(Sunder)

| Absorption of CO | by CH <sub>3</sub> COOH+C | l |
|------------------|---------------------------|---|
|                  |                           |   |

| Solvent                                                   | cc CO absor  |
|-----------------------------------------------------------|--------------|
| 1 mol CH <sub>3</sub> COOH<br>0 8 " CH <sub>4</sub> COOH+ | 58.5         |
| 0 2 " CCl <sub>4</sub><br>0 5 " CH <sub>4</sub> COOH+     | 61 0         |
| 0 5 " CCl <sub>4</sub><br>0 2 " CH <sub>3</sub> COOH+     | 62 4         |
| 0 8 " CCl <sub>4</sub><br>1 " CCl <sub>4</sub>            | 60 2<br>57 6 |

# Absorption of CO<sub>2</sub> byC<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>+CS<sub>2</sub>

| Solvent                                                                                                      | or CO <sub>2</sub> absorbed |
|--------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1 mol C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub><br>0 8 " C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> + | 209 7                       |
| 0 2 " CS <sub>2</sub><br>0 5 " C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> +                               | 173 4                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                         | 140 0                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                        | 71 9<br>19 9                |

(Christoff)

Solubility of CO<sub>2</sub> in organic solvents

 $\frac{ds}{dt}$  = change of solubility for 1° increase in

|                                |          |            | _   |              | _   |            |                |              |
|--------------------------------|----------|------------|-----|--------------|-----|------------|----------------|--------------|
|                                |          | Sol        |     | Sol          |     | Sol        | 1              |              |
| Solvent                        | u        | ulity      | u   | bility       | u   | bility     | l              | ds           |
| Solveno                        | ٦        | at         | ١., | at           | ١., | at         |                | dt           |
|                                | 2;       | C          | Z   | o C          | 14  | 5°°C       | 1              |              |
| Glycenne                       | 0        | 0302       | Γ   |              | _   |            |                |              |
| Water                          | lŏ       | 8256       | l   |              | ı   |            |                |              |
| Carbon bisulphide              | lŏ       | 8699       | n   | 8888         | lo  | 9446       | 0              | 00747        |
| Iodoben zene                   | lī       | 301        | ī   | 371          | ľ   | 440        | ⊸ŏ             | 0139         |
| Anılıne                        | ١ī       | 324        | ī   | 434          | ī   | 531        | اصّ            | 0207         |
| o Toluidine                    | ١ī       | 381        | 1   | 473          | lī  | 539        | lŏ             | 0158         |
| m Toluidine                    | 1        | 436        | Ιī  | 581          | ۱ī  | 730        | ⊸ŏ.            | 0244         |
| Fugenol                        | lī       | 539        | lī  | 653          | lī  | 762        | l—ŏ            | 0223         |
| Benzotrichloride               | Ιī       | 643        | Ι-  |              | Ι-  |            | Ĭ              |              |
| Cumene                         | 1        | 782        | 1   | 879          | 1   | 978        | -0             | 0196         |
| Carvene                        | 1        | 802        | 1   | 921          | 2   | 034        | <b> </b> 0     | 0232         |
| Dichlorhydrin                  | 1        | 810        | 1   | 917          | 2   | 020        | -0             | 0210         |
| Amyl alcohol                   | 1        | 831        | 1   | 941          | 2   | 058        | -0             | 0227         |
| Brombenzene                    | 1        | 842        | 1   | 964          | 2   | 092        | -0             | 0250         |
| Isobutyl alcohol               | 1        | 849        | 1   | 964          | 2   | 088        | <b> 0</b>      | 0239         |
| Benzyl chloride                | 1        | 938        | 2   | 072          | 2   | 180        | <del> </del> 0 | 0242         |
| m Xylone                       | 2        | 090        | 2   | 216          | 2   | 346        | <b> </b> 0     | 0256         |
| Ethylene bromide               | 2        | 157        | 2   | 294          | 2   | 424        | <b> </b> 0     | 0267         |
| Chlorobenzone                  | 2        | 265        | 2   | 420          | 2   | 581        | -0             | 0316         |
| Carbon tetrachloride           | 2        | 294        | 2   | 502          | 2   | 603        | -0             | 0309         |
| Propylene broinide             | 12       | 301        | 2   | 453          | 2   | 586        | 0              | 0281         |
| Toluene                        | 2        | 305        | 2   | 426          | 2   | 557        | <b> </b> 0     | 0256         |
| Benzenc                        | 12       | 425        | 2   | 540          | 2   | 710        | <del></del> 0  | 0285         |
| Amyl brounde                   | 12       | 455        | 2   | 638          | 2   | 803        | -0             | 0348         |
| Nitrobenzene                   | 22222222 | 456        | 2   | 655          | 2   | 845        | 0              | 0389         |
| Propyl alcohol                 | 14       | 495        | ٦   |              | _   |            |                |              |
| Carvol<br>I thyl alcohol (97%) | 12       | 498        | 2   | 690          | 2   | 914        | <u></u> 0      | 0416         |
| Benzaldehyde                   | 13       | 706<br>541 | 3   | 923          | 3   | 130        | ö              | 0424         |
| Amyl chloride                  | 12       | 910        | 13  | $057 \\ 127$ | 3   | 304<br>363 | -0<br>-0       | 0463<br>0453 |
| Isobutyl chloride              | 3        | 105        | 13  | 388          | 3   | 659        | 3              | 0554         |
| Chloroform                     | 3        | 430        | 13  | 681          | 3   | 956        | 10             | 0526         |
| Butyricacid                    | 13       | 478        | 3   | 767          | 4   | 084        | <u></u> 0      | 0606         |
| I thylene chloride             | 13       | 225        | 13  | 795          | 4   | 061        | 1-0            | 0536         |
| Lyriding                       | 13       | 656        | 3   | 862          | 1   | 291        | <u>_</u> 0     | 0635         |
| Methyl alcohol                 | k        | 537        | 4   | 20.          | 1   | ดีดดี      | 1—ŏ            | 0769         |
| Amyl formate                   | lí       | 026        | 4   | 329          | 4   | 646        | l-ő            | 0620         |
| I ropionic acid                | li       | 078        | 4   | 417          | 4   | 787        | ا <u>~</u> ة   | 0709         |
| Amylacetate                    | 14       | 119        | 4   | 411          | 1   | 850        | <u>ن</u>       | 0731         |
| Clacial actic acid             | li       | 679        | Ľ   | 129          | 5   | 614        | l-ŏ            | 0935         |
| Isobutyl actate                | 14       | 691        | 14  |              | 1   |            | 1-ö            | 0,,4         |
| Acctic anhydride               | 15       | 206        | 15  |              | 6   | 218        | -ö             | 1012         |
| Acctonc                        | 16       | 295        | 6   |              | 1"  |            | -0             | 12,2         |
| Methyl actate                  | 6        | 494        | ľ   | /            |     |            | 1              |              |
|                                |          |            |     |              |     |            |                |              |

(Just, / phys Ch 1901 37 354)

Absorption of  $CO_2$  by organic substances+ Aq at  $15^{\circ}$ 

P = % On the organic substance in the sol-

°=Coefficient of absorption at 15°

| S <sub>15</sub> = Solubility at 15 |                                                                                                              |                                                                                                                   |                                                                                                                            |  |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Organic substance<br>used          | P                                                                                                            | β <sub>15</sub> °                                                                                                 | S <sub>15</sub> °                                                                                                          |  |  |  |
| Chloral hydrate                    | 0<br>0<br>17<br>21<br>31<br>37<br>38<br>38<br>49<br>51<br>52<br>61<br>61<br>61<br>71<br>68<br>74<br>64<br>79 | 0 996 0 992 1 012 0 885 0 860 0 803 0 790 0 761 0 760 0 765 0 780 0 797 0 812 0 848 0 903                         | 1 056<br>0 935<br>0 908<br>0 848<br>0 825<br>0 802<br>0 812<br>0 807<br>0 808<br>0 824<br>0 842<br>0 857<br>0 895<br>0 953 |  |  |  |
| Glycerine                          | 0<br>0<br>26 11<br>27 69<br>43 72<br>46 59<br>62 14<br>73 36<br>77 75<br>87 74<br>90 75<br>96 64<br>99 26    | 1 003<br>1 013<br>0 785<br>0 800<br>0 639<br>0 620<br>0 511<br>0 449<br>0 430<br>0 422<br>0 404<br>0 415<br>0 410 | 1 064<br>0 829<br>0 845<br>0 675<br>0 655<br>0 540<br>0 474<br>0 454<br>0 446<br>0 427<br>0 438<br>0 438                   |  |  |  |

(Hammel, Z phys Ch 1915, 90 123)

Solubility of carbon dioxide in solutions of aniline at 25°

I Concentration, 0 206 g aniline in 100 c c of solution

P = Pressure

S=Solubility calc according to formula given in original article

| Р   | 5     | Р    | ٦,    |
|-----|-------|------|-------|
| 748 | 0 865 | 1053 | 0 855 |
| 808 | 0 855 | 1159 | 0 862 |
| 920 | 0 857 | 1243 | 0 860 |

II Concentration, 0 425 g aniline in 100 c of solution

| P   | 5     | P    | 5     |
|-----|-------|------|-------|
| 760 | 0 909 | 1150 | 0 897 |
| 816 | 0 897 | 1236 | 0 902 |
| 921 | 0 897 | 1380 | 0 908 |

Solubility of carbon dioxide in solutions of aniline at 25° -Continued

III Concentration, 0 566 g aniline in 100 c c of solution

| P   | S     | P    | s     |
|-----|-------|------|-------|
| 760 | 0 935 | 1082 | 0 923 |
| 823 | 0 929 | 1223 | 0 924 |
| 941 | 0 925 | 1341 | 0 930 |

### IV Concentration, 0743 g aniline in 100 c c of solution

| P   | S     | P    | S     |
|-----|-------|------|-------|
| 760 | 0 953 | 1063 | 0 94C |
| 895 | 0 941 | 1223 | 0 940 |
| 983 | 0 940 | 1302 | 0 942 |

(Findlay and Creighton, Chem Soc 1910, 97 555)

Solubility of  $CO_2$  in  $CS_2$  increases approx proportionally with the pressure The absorption is greater at lower temp and less at higher temp than is required by Dalton's (Woukoloff, C R 1889, 108 674)

### Absorption of CO<sub>2</sub> by sugar+Aq

| Sugar +Aq                              | Grams CO absorbed by<br>75 cc of solution at 15 5°<br>and 720 mm |
|----------------------------------------|------------------------------------------------------------------|
| 1/10-N sugar solution 1/-N " " 1-N " " | 0 1225<br>0 1089<br>0 0931                                       |

(Christoff, Z phys Ch 1905, 53 329)

Absorption of CO<sub>2</sub> in sugar+Aq at 20°

| Conc of solution                           | Sp gr                                    | Coefficient of absorption        |
|--------------------------------------------|------------------------------------------|----------------------------------|
| 1/8 mol per l<br>1/4 " " " "<br>1/ " " " " | 1 01518<br>1 03125<br>1 06372<br>1 12809 | 0 846<br>0 815<br>0 756<br>0 649 |

(Usher, Chem Soc 1910, 97 72)

Liquid -Not miscible with H<sub>2</sub>O, though slightly sol therein, or with fatty oils, miscible with alcohol, ether, CS2, and the essential oils (Thilorier, Mitchell)

Unacted upon by H<sub>2</sub>O, sol in alcohol, ethers, petroleum, oil of turpentine, and CS2

(Mareska and Donny)

Petroleum dissolves 5 to 6 vols liquid CO<sub>2</sub> (Cailletet, C R 75 1271)

Sl sol in CS<sub>2</sub> (Cailletet)

Solul -When immersed in H<sub>2</sub>O, rapidly volatilizes and dissolves With alcohol or ether it forms a semi-fluid mixture (Channing, Am J Sci (2) 5 186)

Only slightly sol in anhydrous ether, but may be mixed therewith to a paste (Thil-

Sol in methyl chloride below —65° ı the point of sat without decomp (Villard, 1895, **120** 1413)

+6H<sub>2</sub>O (Villard, C R 1894, 119 <sub>2</sub>9)

Carbon selenide, C<sub>4</sub>Se

Sol only in hot cone H<sub>2</sub>SO<sub>4</sub> (v l rtal, Ch Z 1906, 30 810)

C<sub>5</sub>Se Insol in H<sub>2</sub>O, CS<sub>2</sub>, and ther Easily sol in hot cone H<sub>2</sub>SO<sub>4</sub>, sol in one NaOH+Aq from which it is pptd by HCl (v Bartal)

### Carbon silicide CSi

(Carborundum) Not attacked by any acids, even HF, sl attacked by caus alkalles or carbonates (Acheson, C 68

Not attacked by KOH + Aq(Sch zen-

berger, C R 114 1089)

### Carbon monosulphide, CS

Insol in H<sub>2</sub>O, alcohol, oil of turpent benzene, somewhat sol in CS2 or ethe sol in warm HNO<sub>3</sub>, sol in conc KOH (Sidot, C R 81 32) Αa

Readily absorbed by alcohol and a line (Deninger, J pr 1895, (2) 51 349)

### Carbon disulphide, CS<sub>2</sub>

Very sl sol in H<sub>2</sub>O

1 l H<sub>2</sub>O dissolves 2-3 g CS<sub>2</sub> (Ckiandi Soc **43** 562), 3 5-4 52 g (Peligot, *vb* **43** 30 ccm CS<sub>2</sub> shaken with 8690 ccm F 3ull <sub>1</sub>63) O at 20-23° for 18 days decreased 11 ccm in ' lays and 14 ccm in the next 3 days by di used light, and 0 6 ccm in the last 5 days (no rht) Part of the CS<sub>2</sub> was decomp and 78<sup>t</sup> cmwere dissolved, therefore H<sub>2</sub>O dissolve  $^{1}/_{1000}$ of its weight CS (Sestini, Gizz ch t 1 473)

### Solubility of CS2 in H O

100 pts H<sub>2</sub>O dissolve 0 203 pts CS<sub>2</sub> at 1 13° " " " 0 191 16° 1 " 0 168 " " 27° " 0 145 33°

(Pige, C N 41 195)

com solution it to CS ii 1000 Solubility of C5 in H<sub>2</sub>()

| a                            | t                  | a.                           | t                    | 11.                  | t              |
|------------------------------|--------------------|------------------------------|----------------------|----------------------|----------------|
| 2 04<br>1 99<br>1 94<br>1 87 | 0<br>5<br>10<br>15 | 1 79<br>1 69<br>1 55<br>1 37 | 20<br>25<br>30<br>35 | 1 11<br>0 70<br>0 14 | 40<br>45<br>49 |

(Chancel and Parmentier, C R 100 , 3)

100 g H₂O dissolve at t°

10 20 0 258 0 239 0 201 0 195 g CS (Rex, Z phys Ch 1906, 55 365)

Absorption of CS, vapor by H2O at to

| t  | Coefficient of absorption |
|----|---------------------------|
| 0  | 3 573                     |
| 10 | 2 189                     |
| 20 | 1 346                     |
| 30 | 0 799                     |

Calc from data of Chancel and Parmentier, C R 100 733) (Winkler, Z phys Ch 1906, 55 352)

Vapors of  $CS_2$  are most easily absorbed by alcoholic solution of KOH Sl absorbed by KOH+Aq, and very slowly by CuSO<sub>4</sub>,  $Pb(C_2H_3O_2)_2+Aq$ , conc  $H_2SO_4$ , or  $CaCl_2$  in HCl+Aq (Berthelot, A ch (3) 51 74)

Solubility in alcohol S=strength of alcohol in per cent by weight, P=pts CS<sub>2</sub> which dissolve in 10 ccm alcohol at 17°

| S                                      | P                               | S                                         | P                                    |
|----------------------------------------|---------------------------------|-------------------------------------------|--------------------------------------|
| 100<br>98 5<br>98 15<br>96 95<br>93 54 | 18 20<br>13 20<br>10 00<br>7 00 | 91 37<br>84 12<br>76 02<br>48 40<br>47 90 | 5 00<br>3 00<br>2 00<br>0 20<br>0 00 |

(Tuchschmidt and Follenius, B 4 583)

Miscible with absolute alcohol, ether, ethereal and fatty oils, and liquid  $CO_2$ 

### Incarbon disulphide, C<sub>3</sub>S<sub>2</sub>

Insol in H O, easily sol in alcohol ether, chlorofoim, benzene, and  $CS_2$  The alcoholic and ethereal solutions decomp on standing (Lengyel, B 26 2960)

Sol in alcohol with decomp Sol in CS<sub>2</sub> and in benzene (Stock, B 1912, **45** 3575)

Solid modification Insol in H<sub>2</sub>O and ordinary solvents Sol in KOH+Aq (Lengtel)

# Carbon sulphoselenide, CSSc

Mpt -55°, bpt +84°

Decomp by light Not attacked by H<sub>2</sub>O Sol in hot conc HNO<sub>3</sub> Decomp by B<sub>12</sub> to in oil Sol in alcohol with decomp Miscible with CS (Stock, B 1914, **47** 150)

# Carbon sulphotelluride, CS1e

Mpt -94° V(ry unstable Miscible with CS and benzene without decomp (Stock, B 1914, 47, 142)

# Carbonatochloroplatindiamine carbonate chloroplatindiamine nitrate

 $\begin{array}{c} {\rm CO_3} \left[ {\rm Pt} \begin{array}{l} {\rm N_2H_6} \\ {\rm N_2H_6} \end{array} \right]_2 ({\rm CO_3})_2, \ {\rm Cl_2Pt}({\rm N_2H_6NO_3})_2 \\ {\rm Precipitate} \end{array} \quad ({\rm Cleve}, \ J \ B \ \ \textbf{1867} \ \ \textbf{321} \ ) \end{array}$ 

Carbonatonitratoplatindiamine carbon-

ate,  $^{\text{CO}_3}_{(\text{NO}_3)_2}[\text{Pt}(\text{N}_2\text{H}_6)_2]\circ(\text{CO}_3)_2$ 

Sol in boiling H<sub>2</sub>O (Cleve)

Carbonatotetramine cobaltic bromide, Co(NH<sub>8</sub>)<sub>4</sub>CO<sub>8</sub>Br

Much less sol than chloride (Jorgensen, Z anorg 2 279)

----- carbonate,  $[Co(NH_3)_4CO_3]_2CO_3+3H_2O$ Very sol in  $H_2O$  (Jorgensen)

--- chloraurate,  $[Co(NH_3)_4CO_3]_2AuCl_4+$  $\frac{1}{2}H_2O$ 

Somewhat sol in  $H_2O$ , nearly absolutely insol in alcohol (Jorgensen)

---- chloride, Co(NH<sub>3</sub>)<sub>4</sub>CO<sub>3</sub>Cl

Easily sol in  $H_2O$ , insol in alcohol (Jorgensen)

---- chloroplatmate,  $[Co(NH_3)_4CO_3]_2PtCl_6+2H_2O$ 

Nearly insol in  $\mathbf{H}_2\mathrm{O}$  and alcohol (Jorgensen)

—— chloroplatinite, [Co(NH<sub>3</sub>)<sub>4</sub>CO<sub>3</sub>]<sub>2</sub>PtCl<sub>4</sub> Nearly insol in H<sub>2</sub>O, wholly in alcohol (Jorgensen)

----- dithionate,  $[Co(NH_3)_4CO_3]_2S_2O_6$ Ppt (Jorgensen)

—— 10dide, Co(NH<sub>3</sub>)<sub>4</sub>CO<sub>3</sub>I Much less sol than bromide or chloride (Jorgensen)

— nitrate, Co(NH<sub>2</sub>)<sub>4</sub>CO<sub>3</sub>NO<sub>3</sub>+½H O
Sol in about 15 pts cold H<sub>2</sub>O, insol in alcohol (Jorgensen)

—— sulphate, [Co(NH<sub>3</sub>)<sub>4</sub>CO<sub>3</sub>]<sub>2</sub>SO<sub>4</sub>+3H<sub>2</sub>O Considerably less sol in H O than the nitrate (Jorgensen)

Carbonic acid, H CO3

See Carbon dioxide

### Carbonates

Carbonates of Na, K, Rb, and Cs are easily sol in H<sub>2</sub>O, carbonates of Li and 11 are much less sol, other carbonates are nearly or quite insol. All carbonates are sol to some extent in H<sub>2</sub>O containing CO<sub>2</sub>. All carbonates, except those of NH<sub>4</sub>, Rb, and Cs, are insol in alcohol.

Sol in those acids which are themselves sol in H<sub>2</sub>O, except HCN and H<sub>2</sub>BO<sub>3</sub>

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 824)

Aluminum carbonate, basic

 $5Al_2O_3$ ,  $6CO_2 + 37H_2O = 34I(OH)_3$ ,  $Al_2(CO_3)_8 + 14H_2O$ (Seubert, anorg 1893, 4 67

Al<sub>2</sub>O<sub>3</sub>, CO<sub>2</sub> (Parkmann, Sill Am J (2) **34** 324)

3Al<sub>2</sub>O<sub>3</sub>,

2CO<sub>2</sub>+16H<sub>2</sub>O (Muspratt and Danson, A 72 120)  $2CO_2 + 9H_{\circ}O$ 3Al<sub>2</sub>O<sub>2</sub> (Wallace, Chem. Gaz 1858 410)

 $5Al_2O_3 \quad 3CO_2 + 18H_2O$ (Bley, J pr 39 11)

2Al<sub>2</sub>O<sub>3</sub> CO<sub>2</sub>+6H<sub>2</sub>O =10Al(OH)<sub>3</sub> Al<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> +3H<sub>2</sub>O Sol m cold dil acids (Schlumberger Bull Soc 1895, (3) **13** 46)

+8H<sub>2</sub>O (Urbain and Renoul J Pharm (4) 30 340) =  $10\text{Al}(OH)_3$ ,  $Al_2(CO_3)_3 + 9H_2O$ (Seubert Z anorg 1893 4 67)  $8Al_2O_3$ ,  $3CO_2+40H_2O$ (Langlois, A ch

(3) **48** 505)

All are precipitates, insol in H<sub>2</sub>O, sol in acids, and give off CO2 at slight heat

There are no definite carbonates of alum-(Cameron, J phys Chem 1908, 12 572)

Aluminum ammonium carbonate, Al<sub>2</sub>O<sub>3</sub>, CO<sub>2</sub>,  $(NH_4)_2CO_3+4H_2C$ 

Precipitate (Rose, Pogg 91 460)

Aluminum sodium carbonate, Al<sub>2</sub>O<sub>3</sub>, CO<sub>2</sub>,  $2Na_2CO_3+24H_2O$ 

Precipitate Sol in cold dil acids (Bley, J pr **39** 22)

Ammonium carbonate, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+H<sub>2</sub>O

Sol at 15° in its own weight H<sub>2</sub>O Solution in  $H_2O$  gives off gas at 70-75°, and boils at 75-80° Sl sol in cold dil  $NH_4OH+Aq$ , more sol at ordinary temp Insol in conc NH<sub>4</sub>OH +Aq (Divers, Chem Soc (2) 8 171, 259, and 364)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, **20** 826) Insol in alcohol

Insol in CS<sub>2</sub> (Aictowski, Z anorg 1894, 6 257

Insol in ethyl acetate (Naumann, B 1910, **43** 314)

100 g pure glycerine dissolve 20 g (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> at 15° (Ossendowski, Pharm J 1907, **79** 575)

Ammonium hydrogen carbonate, NH<sub>4</sub>HCO<sub>8</sub> Sol at 15° in about 8 pts H<sub>2</sub>O (Berthollet, J Phys 66 168)

Sol at 128° in about 6 pts H<sub>2</sub>O (J Davy, N Edinb J **16** 245)

Solution decomp on air or by gentle heat or by addition of the solid salt (Berthollet)

100 pts H<sub>2</sub>O dissolve at 0°, 11 9 pts, at 10°, 15 85 pts, at 20°, 21 pts, at 30°, 27 pts NH<sub>4</sub>HCO<sub>3</sub> (Dibbits J pr (2) **10** 417)

Solubility of NH4HCO3 in NH4Cl- q, sat with CO<sub>2</sub>, at t°

| t   | g per 10                                                               | 00 g H <sub>2</sub> O                                                     | Sp g                            | of sat                                             |
|-----|------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|----------------------------------------------------|
|     | /H4CI                                                                  | \H4HCO2                                                                   | so                              | tion                                               |
| 0°  | 0<br>29 08                                                             | 11 9<br>3 6                                                               | 1                               | 77                                                 |
| 15° | 0<br>2 99<br>6 06<br>8 51<br>11 68<br>18 30<br>26 93<br>33 25<br>34 35 | 18 64<br>16 29<br>14 22<br>12 69<br>11 68<br>9 33<br>7 73<br>6 64<br>6 42 | 1<br>1<br>1<br>1<br>1<br>1<br>1 | 64<br>63<br>62<br>62<br>65<br>69<br>76<br>85<br>85 |
| 30° | 0<br>39 7                                                              | 27 0<br>9 1                                                               |                                 |                                                    |
| /   |                                                                        |                                                                           |                                 |                                                    |

(Fedotieff, Z phys Ch 1904. 49 1 )

Solubility of NH, HCO3 in NaHCC + Aq, sat with CO2 at to

| t°  | g per 100 g H O    |                | Sp gr | of sat |
|-----|--------------------|----------------|-------|--------|
|     | \aHCO <sub>3</sub> | VH1HCO3        | sol   | ดา     |
| 0°  | 0<br>4 82          | 11 90<br>10 94 | 1     | 2      |
| 15° | 0<br>5 92          | 18 64<br>17 06 | 1 (   | 14     |
| 30° | $\frac{0}{7}$ 0    | 27 0<br>23 0   |       |        |

(Fedotieff, Z phys Ch 1904, 49 1( )

Solubility of  $NH_4HCO_3$  in  $NH_4NO_3+A$  at t°

| t°  | g per 10                                       | 00 g H O                                        | ∽p gr 1 sat                                        |
|-----|------------------------------------------------|-------------------------------------------------|----------------------------------------------------|
|     | \H4\O3                                         | /H⁴HC0                                          | clu on                                             |
| 0°  | 0<br>118                                       | 11 90<br>4 52                                   | 1 25                                               |
| 15° | 0<br>23 26<br>49 82<br>103 4<br>128 9<br>166 9 | 18 64<br>12 91<br>10 33<br>8 25<br>7 79<br>7 49 | 1 ( 4<br>1 1 3<br>1 1 4<br>1 - 2<br>1 - 9<br>1 3 2 |
| 30° | 0<br>231 9                                     | 26 96<br>12 57                                  |                                                    |
|     |                                                | ** ~                                            |                                                    |

(Fedotieff and Koltunoff, Z anoig 191, 85 251)

Insol in alcohol (J Davy) Insol in acetone (Eidmann, C C 899, II 1014, Naumann, B 1904, 37 4329)

# Ammonium dihydrogen carbonate, $(NH_4)_4H_2(CO_3)_3+H_2O$

Sol m 5 pts  $H_2O$  at 15°, decomp by more  $H_2O$  or by heat (Divers, Chem Soc (2) 8 171, 359, and 364)

Si sol in alcohol

### Ammonium hydrogen carbonate carbamate, 2NH<sub>4</sub>HCO<sub>3</sub>, NH<sub>4</sub>CONH<sub>2</sub> (Salts of hartshorn)

1 pt salt dissolves at

13° m 4 pts H<sub>2</sub>O 16 7° "3 3 " 32 2° "2 7 " 40 6° "2 4 " 49° "2 "

(J Davy, N Edinb J 16 245)

Strong alcohol dissolves out carbamate, and the carbonate remains undissolved

NH4HCO3, NH4CO2NH2 (Commercial

carbonate of ammonia)

Sol at 15° in 4 pts  $H_2O$ , at 65° in  $1\frac{1}{2}$  pts  $H_2O$  (Divers)

30 pts salt+100 pts  $H_2O$  lower temp from 15 3° to 3 2° (Rudorff, B 2 68)

Sol in 1 667 pts cold and 0 833 pt hot H<sub>2</sub>O (Four crov)

100 pts H<sub>2</sub>O at 13° dissolve 25 pts 17° 30 37° 37 41° 40 49° 50

(Berzehus)

100 pts H<sub>2</sub>O at I<sub>2</sub> 5° dissolve 33 pts at 100° 100 pts (Ure s Dict)
50l in 2 pts H O at 15 5° and in less than 1 pt
boiling H O sat solution at 15 5° contains 33 3% and
sat boiling solution 50% (Abl.)

sat boiling solution 50% (Abl)
Sat aqueous solution at 10 contains 15.7% (Cller)
at aqueous solution at (?) contains 6.1% (Mus

sembrock)

cold "" (Fourcroy)

as st | II (NH4)2C01 dis

sorves out first and NH4HCO3 later (Scanlan)

sp gr of carbonate of ammonia+Aq at 12°

| Deg Iw                                                      | Sp Lr at                                                                                                 | % Carb<br>ammon                                                                                             | Change of<br>sp fr<br>for 1 C                                                                    |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 1 005<br>1 010<br>1 015<br>1 020<br>1 025<br>1 030<br>1 035<br>1 040<br>1 045<br>1 050<br>1 055<br>1 060 | 1 66<br>3 18<br>4 66<br>6 04<br>7 49<br>8 93<br>10 35<br>11 86<br>13 36<br>14 83<br>16 16<br>17 70<br>19 18 | 0 0002<br>0 0002<br>0 0003<br>0 0003<br>0 0004<br>0 0004<br>0 0004<br>0 0005<br>0 0005<br>0 0005 |
| 14<br>15<br>16<br>17                                        | 1 070<br>1 075<br>1 080<br>1 085                                                                         | 20 70<br>22 25<br>23 78<br>25 31                                                                            | 0 0005<br>0 0006<br>0 0006<br>0 0006                                                             |

Sp gr of carbonate of ammonia+Aq at 12°—Continued

| Deg Tw                                                               | Sp gr at<br>12°                                                                                          | % Carb<br>ammon                                                                                          | Change of<br>sp gr<br>for 1° C                                                                             |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29 | 1 090<br>1 095<br>1 100<br>1 105<br>1 110<br>1 115<br>1 120<br>1 125<br>1 130<br>1 135<br>1 140<br>1 144 | 26 82<br>28 33<br>29 93<br>31 77<br>33 45<br>35 08<br>36 88<br>38 71<br>40 24<br>42 20<br>44 29<br>44 90 | 0 0007<br>0 0007 |

(Lunge, Chem Ind 1883 2)

Sp gr of aqueous solution of salt with composition 31 3% NH<sub>3</sub>, 56 6% CO<sub>2</sub>, 12 1% H<sub>2</sub>O 100 pts of solution contain—6 58 9 96 14 75 19 83 25 71 pts salt 1 0219 1 0337 1 0497 1 0672 1 0863 sp gr

29 74 35 85 40 23 44 90 pts salt 1 0995 1 1174 1 1297 1 1414 sp gr (J H Smith, Chem Ind **1883** 3)

Conc alcohol dissolves out carbamate and leaves carbonate (Hunefeld, J pr 7 25) Insol m acetone (Naumann, B 1904, 37 4328)

Ammonium cerous carbonate, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, Ce<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>+6H<sub>2</sub>O

Ppt Very sl sol in conc  $(NH_4)_2CO_3+Aq$  (Meyer Z anorg 1904, 41 104)

Ammonium chromous carbonate,  $(NH_4)_2CO_3$ ,  $CrCO_3+H_2O$ 

Decomp by moist air, sol in dil HCl and H<sub>2</sub>SO<sub>4</sub> (Bauge, C R 1896, **122** 476)

Ammonium cobaltous carbonate, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, CoCO<sub>3</sub>+4H<sub>2</sub>O

Permanent Sol in  $H_2O$  (Deville, A ch (3) 35 460)

 $(NH_4)_2O$  2CoO,  $4CO_2+9H_2O$  Quickly decomp on air, sol in  $H_2O$  (Deville)  $+12H_2O$  Sol in  $H_2O$ 

Ammonium didymium carbonate,  $(NH_4)_2CO_3$ ,  $D_{12}(CO_3)_3+3H_2O$ 

Insol in H<sub>2</sub>O (Cleve)

Ammonium dysprosium carbonate, NH<sub>4</sub>Dy(CO<sub>3</sub>)<sub>3</sub>+H<sub>2</sub>O

Only sl sol in  $H_2O$  (Jantsch, B 1911, 44 1277)

Ammonium glucinum carbonate,  $2(NH_4)_2CO_3$ ,  $3GlCO_3(?)$ 

Very sol in cold decomp by hot H<sub>2</sub>O Nearly insol in alcohol (Debray)

Composition is (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, 2GlCO<sub>3</sub>, Gl(OH)<sub>2</sub>+2H<sub>2</sub>O (Humpidge, Royal Soc Proc **39** 1)

Ammonium lanthanum carbonate,  $La_2(CO_3)_3$ ,  $(NH_4)_2CO_3+4H_2O$ 

Ppt (Meyer, Z anorg 1904, 41 102)

Ammonium magnesium carbonate, (NH<sub>4</sub>)<sub>2</sub>Mg(CO<sub>3</sub>)<sub>2</sub>+4H<sub>2</sub>O

Sol m 71 pts  $H_2O$  with decomp , more sol m  $NH_4Cl+Aq$  (Divers, Chem Soc 51 196)

H<sub>2</sub>O containing (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> dissolves very slightly, more sol in H<sub>2</sub>O containing NH<sub>4</sub>Cl (Favre, A ch (3) 10 473)

Ammonium magnesium hydrogen carbonate, (NH<sub>4</sub>)<sub>2</sub>Mg<sub>2</sub>H<sub>2</sub>(CO<sub>3</sub>)<sub>4</sub>+8H<sub>2</sub>O, or 12H<sub>2</sub>O

Decomp on air (Deville, A ch (3) 35 454)

Ammonium neodymium carbonate, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, Nd<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>+4H<sub>2</sub>O

Ppt Sl sol in cone  $(NH_4)_2CO_3+Aq$  (Meyer, Z anorg 1904, **41** 106)

Ammonium nickel carbonate, NH<sub>4</sub>HCO<sub>3</sub>, NiCO<sub>3</sub>+4H<sub>2</sub>O

Insol in  $H_2O$  (Deville, A ch (3) 35 452)

Ammonium praseodymium carbonate, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, Pr<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>+4H<sub>2</sub>O

Ppt Insol in  $(NH_4)_2CO_3+Aq$  (Meyer Z anorg 1904, 41 105)

Ammonium samarium carbonate, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, Sm<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>+4H O

Ppt

Ammonium scandium carbonate,  $(NH_4)_2CO_3$ ,  $2Sc_2(CO_3)_3+6H_2O$ 

Difficultly sol in  $H_2O$  Sol in cold alkalicarbonate +Aq, less sol in hot (R Meyer, Z anoig 1910, 67 410)

Ammonium tin (stannous) carbonate, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, 2SnCO<sub>3</sub>+3H<sub>2</sub>O

Decomp by cold HO (Deville, A ch (3) 35 456)

Ammonium uranyl carbonate, 2(NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, UO<sub>2</sub>CO<sub>3</sub>

Sol at 15° in 20 pts  $\rm H_2O$  more abundantly in  $\rm H_2O$  containing (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (Ebelmen) Insol in pure  $\rm H_2O$ , sol in  $\rm H_2O$  containing (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> Solution is decomp by boiling (Berzelius)

Sol in SO<sub>2</sub>+Aq (Berthier A ch 3) 7 76) 3(NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, 2(UO<sub>2</sub>)CO<sub>3</sub>+4H<sub>2</sub>O S in H<sub>2</sub>O (Giolitti C C **1905**, II 227)

Ammonium vanadyl carbonate, 3(NI)<sub>2</sub>O, 7VO<sub>2</sub>, 5CO<sub>2</sub>+16H<sub>2</sub>O

Sl sol in H<sub>2</sub>O

Sol in acids and alkalies (Kopp , Z anorg 1905, 45 350)

Ammonium yttrium carbonate,  $(NH_4)$   $\mathcal{N}_3$ ,  $Y_2(CO_3)_3+2H_2O$ Insol in  $(NH_4)_2CO_3+Aq$  (Mosand)

Ammonium zinc carbonate, basic, nO, NH<sub>4</sub>OH, 2CO<sub>2</sub>+H<sub>2</sub>O

Insol in H<sub>2</sub>O (Kassner, Arch Phari (3) **27** 673)

Ammonium zinc carbonate, (NH<sub>4</sub>) 10<sub>3</sub>, ZnCO<sub>3</sub>

Insol in H<sub>2</sub>O (Deville)

Quite sol in H<sub>2</sub>O, more sol han
(NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, MgCO<sub>3</sub> Tolerably perm lent
in the air Slowly decomp by cold, r ldly

by hot H<sub>2</sub>O

Very sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq Not att ked
by alcohol (Favre, A ch (3) 10 481

Barium carbonate, BaCO<sub>3</sub>

Sol in 4304 pts cold, and 2304 pts b ling H<sub>2</sub>O (Fourcroy)

Sol in 47 620 pts  $H_2O$  (Bineau, 1 ch (3) 51 290)

Sol in 14,137 pts H O at 16-20° and 15,421 pts at 100° (Fresenius)

Sol in 12 027 pts H<sub>2</sub>O at 15° (Krε ers, Pogg **85** 247)

Calculated from electrical conductiv y of solution, 1 pt BaCO<sub>3</sub> is sol in 64,070 pts 4 O at 8 8° and 45,566 pts at 24 2° (Holler inn, Z phys Ch 12 125)

# Solubility in H O at to

| bolubility in 11 0 at t |                                                    |
|-------------------------|----------------------------------------------------|
| t°                      | g sol in 100 g H                                   |
| 14                      | 4 32 x 10-1                                        |
| $\frac{18}{2}$          | 4 57 x 10 <sup>-1</sup><br>4 89 x 10 <sup>-1</sup> |
| 27                      | 5 22 x 10 <sup>-1</sup>                            |
| 32<br>38                | 5 69 x 10 <sup>-1</sup><br>6 27 x 10 <sup>-1</sup> |
| <i>,</i> 7 7            | 0 27 X 10                                          |

(Weissenberger, Z phys Ch 1914, 88 )6)

"Solubility product"=81 x 10- m l (McCoy and Smith, J Am Chem Soc 311, 33 473)

Sol in H<sub>2</sub>CO<sub>3</sub>+Aq (See barrum hya rgen curbonate)

Fasily sol in dil acids Not reted up i by cone HNO.+Aq

Not decomp by 1 pt H<sub>2</sub>SO<sub>4</sub>+6 pt absolute alcohol Slowly decomp by pt

HNO<sub>3</sub>+6 pts absolute alcohol Slowly decomp by 1 pt H C<sub>2</sub>O<sub>4</sub>+6 pts absolute alcohol

Not decomp by absolute alcoholic solutions of racemic, tartaric, citric, or glacial acetic acids (Babington and Phillips, 1816)

Almost completely insol in H<sub>2</sub>O containing NH<sub>4</sub>OH and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> when digested in such a solution and allowed to stand 1 pt BaCO<sub>3</sub> dissolves in 141 000 pts of such a solution (Fresenius)

Not more sol in NaCl+Aq than in H<sub>2</sub>O

(Karsten)

Sol in cold NH4Cl, NH4NO3, or NH4 succinate+Aq (Vogel, J pr 7 453)

2 mols NH<sub>4</sub>Cl dissolved in H<sub>2</sub>O dissolve 1 mol BaCO<sub>3</sub> by continued boiling Phil Mag J 9 540)

Solubility in H<sub>2</sub>O increases by addition of NH<sub>4</sub>Cl, at first strongly, then less strongly and finally strongly again (D'Agustino and

Pellegrino, Gazz ch it 1908 38 (1) 532) Somewhat sol in K<sub>2</sub>CO<sub>3</sub>+Aq (Wack (Wacken-

roder, A 24 30)

Solubility of BaCO<sub>8</sub> in KCl+Aq at bpt of solution

| ~~~~~~          |                                     |  |
|-----------------|-------------------------------------|--|
| g KCl ner 100 g | g BaCO <sub>3</sub> per 1000 cc sat |  |
| solution        | solution                            |  |
| 0 15            | 0 0847                              |  |
| 1               | 0 1781                              |  |
| 3               | 0 2667                              |  |
| 10              | 0 4274                              |  |
| 30              | 0 5550                              |  |

(Cantoni and Goguelia, Bull Soc 1905, (3) **33** 13)

Solubility of BiCO; in NiCl+Aq it bpt of solution

| g NaCl per 100 g<br>olution | g BaCOs per 1000 cc sat<br>solution |
|-----------------------------|-------------------------------------|
| 0.15                        | 0 0587                              |
| 1                           | 0 0787                              |
| )                           | 0 1056                              |
| 10                          | 0 1575                              |
| 30                          | 0 2784                              |

(Cintoni and Goguelia, Le)

Solubility of BaCO<sub>2</sub> in 10% KCl+Ag at t°

| 1  | g BaCO per 1000 ec sat<br>solution |
|----|------------------------------------|
| 10 | 0 2175                             |
| 20 | 0 2405                             |
| 40 | 0 2972                             |
| 60 | 0 3491                             |
| 80 | 0 4049                             |

(Cantoni and Goguelia, l c)

Solubility of BaCO<sub>3</sub> in 10% NaCl+Aq at t°

| t°                         | g BaCO, per 1000 cc sat<br>solution            |
|----------------------------|------------------------------------------------|
| 10<br>20<br>40<br>60<br>80 | 0 1085<br>0 1126<br>0 1231<br>0 1303<br>0 1418 |

(Cantoni and Goguelia, l c)

Slowly sol in conc Na<sub>2</sub>SO<sub>4</sub>, MgSO<sub>4</sub>, ZnSO<sub>4</sub>, Ca(NO<sub>3</sub>)<sub>2</sub>, or CaCl<sub>2</sub>+Aq, but insol in ZnCl<sub>2</sub> (Karsten) +Aq

Sl decomp by boiling K<sub>2</sub>SO<sub>4</sub>+Aq SI decomp in the cold by 1 pt K<sub>2</sub>SO<sub>4</sub>+2 pts Na<sub>2</sub>SO<sub>4</sub>+Aq

Decomp by salts of Al, Mn, Cr, Fe, U, Bı Cd Cu, Hg, Pb Sn<sup>u</sup>, Sn<sup>iv</sup>, Hg<sub>2</sub>, Rh, Ir, Au, with pptn of oxide of metal (Rose, Tr)

Pptn of BaCO<sub>3</sub> is hindered by presence of

alkalı citrates or metaphosphates

Sol in solutions of various salts, as in the case of calcium carbonate (see Calcium car-The solvent power of these solutions for barium carbonate is somewhat less than for calcium carbonate

Insol in acetone (Naumann B 1904, 37

4329)

Insol in methyl acetate (Naumann, B B 1909, 42 3790), ethyl acetate (Naumann, B 1904, **37** 3602) Insol in acetone and in methylal (Eid-

mann, C C 1899, II 1014)

Min Witherite

Barium hydrogen carbonate, BaH<sub>2</sub>(CO<sub>3</sub>), (?) 100 pts H<sub>2</sub>O containing CO<sub>2</sub> dissolve 0 079

pt BaCO<sub>3</sub> (Bineau) 100 pts H<sub>2</sub>O containing CO<sub>2</sub> dissolve 0 17 pt BaCO<sub>3</sub> (Lassaigne)

100 pts H<sub>2</sub>O sat with CO<sub>2</sub> under a pressure of 4-6 atmospheres dissolve 0 725 pt BaCO<sub>3</sub>

Upon evaporating, BaCO<sub>3</sub> is deposited (Wagner, Z anal 6 167) BaCO3 is sol in 833 pts H2O sat with CO2

it 10° (Lassaigne)

BaCO<sub>3</sub> is sol in 830 pts HO sat with CO ıt 10° (Fourcroy)

BaCO, is sol in 1550 pts H2O sat with CO

ıt 10° (Bergman) 100 cc H O 5 tt with CO2 dissolve 0.73 g B 1H (CO3)2 (McCoy and Smith, J Am Chem Soc 1911, 33 473)

Barium calcium carbonate, BaCO3, CaCO3

Sol in dil Min Barytocalcite Bromlite reids

Barium uranyl carbonate, BiO, 2UO, 2CO Decomp by HO +5H<sub>2</sub>O (Blınkoff Dissert 1900)

+8HO Decomp by HO (Blinkoff)

Bismuth carbonate, basic, (BiO)<sub>2</sub>CO<sub>3</sub>+ ½H₂O

Insol in H<sub>2</sub>O, sol in acids Insol in CO<sub>2</sub>+ (Bergman)

Completely sol in  $(NH_4)_2CO_3+Aq$ , sl sol in K<sub>2</sub>CO<sub>3</sub>+Aq, insol in Na<sub>2</sub>CO<sub>3</sub>+Aq

Absolutely insol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq unless H<sub>3</sub>PO<sub>4</sub> or H<sub>3</sub>AsO<sub>4</sub> are present (Berzelius)

Insol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>, or Na<sub>2</sub>CO<sub>3</sub>+ (Rose

Sol in NH<sub>4</sub>Cl+Aq (Wackenroder) In-(Brett) sol in NH<sub>4</sub>NO<sub>3</sub>+Aq

Sol in CaCl<sub>2</sub>+Aq (Pearson)

Min Bismuthosphaerite

 $3B_{12}O_3$ ,  $CO_2$ Min Bismuthite Easily sol in acids

Bismuth $4B_{12}O_3$ ,  $3CO_2 + 4\frac{1}{2}H_2O$  $M_{in}$ spar Easily sol in acids

Bismuth potassium carbonate, Bi<sub>2</sub>OK<sub>4</sub>(CO<sub>3</sub>)<sub>4</sub>  $+H_2O$ 

Decomp by large quantities of H<sub>2</sub>O (Revnolds, Chem Soc 1898, 73 266)

### Cadmium carbonate, CdCO<sub>3</sub>

Insol in H2O, easily sol in acids, insol in K<sub>2</sub>CO<sub>3</sub>, and Na<sub>2</sub>CO<sub>3</sub>+Aq, very sl sol in

(NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Fresenius) Easily sol in NH<sub>4</sub> sulphate, nitrate, and

succinate + Aq (Wittstein)

Sol in KCN+Aq, sol in cold NH4Cl+Aq, less sol in NH<sub>4</sub>NO<sub>3</sub>+Aq (Brett, 1837)

Not prevented from pptn by non-volatile organic substances (Rose)

Not pptd from solutions containing sodium (Spiller) citrate

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 827

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate (Naumann, B 1910, 43 314)

Insol in acetone (Naumann, B 1904, 37 4329)

 $+\frac{1}{2}H_2O$  (Lefort, J B **1847** 346)

(Kraut, Z anorg 1897, 13 14)

Cadmium carbonate hydrazine, CdCO<sub>3</sub>, 2N<sub>2</sub>H₄

Easily sol in cold  $NH_4OH + Aq$  (Franzen, Z anorg 1908, 60 281)

### Cæsium carbonate, Cs<sub>2</sub>CO<sub>3</sub>

Very deliquescent, and sol in H<sub>2</sub>O 100 pts absolute alcohol dissolve 11 1 pts Cs<sub>2</sub>CO<sub>3</sub> at 19°, 20 1 pts Cs<sub>2</sub>CO<sub>3</sub> at boiling temp (Bunsen)

Cæsium hydrogen carbonate, CsHCO<sub>3</sub> Not deliquescent Sol in H<sub>2</sub>O

Calcium carbonate basic, CaO CaCO<sub>3</sub>+H<sub>2</sub>O Hardened by H<sub>2</sub>O, but not dissolved (Raoult, C R 92 189)

Calcium carbonate, CaCO3

More sol in cold than in hot H2O (Gmeli When recently pptd sol in 8834 pts bo 10 601 pts cold H<sub>2</sub>O much less sol in H<sub>2</sub>O ( NH<sub>4</sub>OH and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> 65 246 pts of which pt CaCO<sub>3</sub> (Fresenius (1846) A 59 122 Sol in 16 000 pts pure H<sub>2</sub>O (Brandes 1 ng and itaining dissolve

5) Pogg Sol in 12 858 pts pure H2O at 15° (Krem **85** 247) Sol in 16 000-24 000 pts pure H<sub>2</sub>O (Bucl z)

1 1 H<sub>2</sub>O dissolves 34 mg CaCO<sub>2</sub> `heva-414) let, Z anal 8 91, Hoffmann, Z anal 11 H<sub>2</sub>O may contain 0 016 g CaC ıе, 1 pt is sol in 62500 pts  $H_2O$  $(\mathbf{Bn}$ au, A

ch (3) 51 290) 1 l H<sub>2</sub>O dissolves 0 02 g CaCO<sub>3</sub>, z 1 pt CaCO<sub>3</sub> is sol in 50 000 pts H<sub>2</sub>O (I ligot) Solubility is much affected by CO<sub>2</sub> of ie air 1 l H<sub>2</sub>O at 16° dissolves 13 1 mg aCO<sub>3</sub>

ity of

dıs-

ınd

(Schlesing, C R 74 1552) Calculated from electrical conduct  $CaCO_3+Aq$ , 1 pt  $CaCO_3$  is sol in 99,

0 pts H<sub>2</sub>O at 8 7°, and 80,040 pts at 23 8° Hollemann, Z phys Ch 12 125) By continued boiling CaH<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub>, o mg CaCO<sub>3</sub> remain in solution (Weltzien, 136

165)

Solubility in H<sub>2</sub>O at different pressues Pressure in atmos Solubility 1079 2 1403 4 1820 6 2109

(Engel, C R 101 949)

100 pts H<sub>2</sub>O dissolve C 0005 pt (calc lated as CaO) from pptd CaCO<sub>3</sub> and 0 00 from calcspar (Lubavin, J russ S pt **24** 389)

1 l H<sub>2</sub>O dissolves 13 mg CaCO<sub>3</sub> 18° (Kohlrausch, Z phys Ch 1893, **12** 24 CaO 1 l CO<sub>2</sub> free water dissolves 17 4 m or 310 mg CaCO<sub>3</sub> (Gothe Ch Z 1915,

**39** 305) CaCO<sub>3</sub> dissolves in 9662 pts H<sub>2</sub>O 12°

(Pollacci C C 1896, II 946) 1 1 H<sub>2</sub>O free from CO<sub>2</sub> dissolves 9 mg CaCO<sub>3</sub> (McCoy and Smith J Am hem Soc 1911, **33** 473)

Found dissolved in 10,000 pts sea ater

Pptd amorphous C1CO3 dissolves in 1600 pts sea water Pptd crystalline CaC( solves in 8000 pts sea water (Irvit Young, Chem Soc 56 344)

Artificial sea water sat with CO<sub>2</sub> di olves CaCO<sub>3</sub> corresponding to 57 27 mg of bined CO<sub>2</sub> per litre at 15° om-

Sea water which contains 52-55 mg n itral combined CO<sub>2</sub> per litre must be sat  $CaCO_3$ (Cohen Chem Soc 1900, a 725)

For action of H<sub>2</sub>CO<sub>3</sub>+Aq, see Ce ium hydrogen carbonate

Sol in H<sub>2</sub>SO<sub>4</sub>, even when native Sol in adds generally When treated with acids in acids generally closed vessels effervescence ceases on increase of pressure, but is renewed at once on removing it (Link, **1814**)

Unacted upon by conc HNO, even when boiling, as  $Ca(NC_3)_2$  is insol in conc. HNO<sub>3</sub>

Not decomp by mixture of 1 pt H<sub>2</sub>SO<sub>4</sub> and 6 pts absolute alcohol, but immediately by HNO<sub>3</sub>+absolute alcohol

Not decomp by absolute alcoholic solutions of oxalic, racemic, tartaric, citric, or glacial acetic acids (Babington and Phillips, 1816) Unacted upon by glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, even

when boiling

Freshly pptd CaCO3 is sol in cold NH4Cl+ Aq, but the solution becomes cloudy on exposure to air, a portion, however, of CaCO<sub>8</sub> remains dissolved, which cannot be pptd even by boiling If ppt is washed and allowed to stand 24 hours, it is not as sol in NH4Cl as at first, but natural CaCO<sub>3</sub> is not wholly insol in NH<sub>4</sub>Cl+Aq, it is, however, much less sol than MgCO<sub>3</sub> (Vogel, J pr 7 453)

Sol in boiling NH<sub>4</sub>Cl+Aq with evolution

of NH<sub>3</sub> (Demarcay, 1834)

When NH<sub>4</sub>OH+Aq, incompletely sat with CO<sub>2</sub>, is mixed with CaCl<sub>2</sub>+Aq, no ppt occurs even during several days if kept in a closed vessel, and only a slight ppt if the mixture is exposed to the air, but CaCO<sub>3</sub> is pptd if the solution is boiled

NH<sub>4</sub>OH+Aq wholly sat with CO<sub>2</sub> produces ppt when mixed with CaCl<sub>2</sub>+Aq, but pptn is not complete until heat is applied Also when an excess of CaCl<sub>2</sub>+Aq is added to a solution of crystallized carbonate of ammonia, orly a portion of the CaCO<sub>3</sub> is pptd until the solution is boiled (Vogel, 1814)

When CaCl, +Aq mixed with NH<sub>4</sub>OH+Aq is exposed to an atmos of pure CO2, no ppt occurs for several hours, but CaCO<sub>3</sub> is completely pptd in several days (Vogel)

When recently pptd , readily sol in NH<sub>4</sub>Cl, ind NH<sub>4</sub>NO<sub>3</sub>+Aq (Brett 1837, Wacken-

roder, A 41 315)

When recently pptd, readily sol in (NH<sub>4</sub>) CO<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, NH<sub>4</sub>NO<sub>3</sub>, NH<sub>4</sub>Cl, and NH<sub>4</sub> succinate+Aq (Wittstein)

Sol in NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Thomson) More sol in NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>3</sub>+Aq, or in neutral potassium, or sodium salts+Aq than in H.O (Fresenius)

From solutions in NH4 salts, NH4OH, and (NH<sub>4</sub>) CO<sub>3</sub>+Aq precipitate CaCO<sub>3</sub> more completely than BaCO<sub>3</sub> (Fresenus)

When boiled with NH4Cl+Aq, CaCO3 is dissolved, and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> given off Smith)

C 1Cl2+Aq prevents pptn of CaCO3 in the cold is do ilso NH4Cl, KCl, or NaCl+Aq, but it is pptd when boiled, if the latter solutions are not too conc K2SO2, KNO3, (NH<sub>4</sub>) SO<sub>4</sub>, or Na<sub>2</sub>SO<sub>4</sub>+Aq have a similar effect A large excess of (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Berju and Kosminiko, Landw Vers Sta when quickly added to CaCl2+Aq produces

no ppt in the cold Na<sub>2</sub>CO<sub>3</sub>, or K<sub>2</sub>CO<sub>3</sub>+Aq act likewise (Storer, Am J Sci (2) **25** 41) 1 g CaCO<sub>3</sub> requires 13 98 g NH<sub>4</sub>Cl, 8 380 g  $(NH_4)_2SO_4$ , or 14 438 g  $NH_4NO_3$  to effect solution (Bertrand, Monit Sci (3) 10 477)

Less sol in Na than in NH4 salts, but more

than in K salts (Berthelot)

When NH4OH+Aq, partially neutralized by CO<sub>2</sub>, is mixed with CaO<sub>2</sub>H<sub>2</sub>+Aq, no cloudiness appears until the mixture is boiled, when more  $\overline{\text{CO}}_2$  has been added to NH<sub>4</sub>OH+ Aq a ppt appears at first, which disappears and only reappears on addition of much CaO<sub>2</sub>H<sub>2</sub>+Aq, but NH<sub>4</sub>OH+Aq does not dissolve pptd CaCO<sub>3</sub> (Vogel)

Solubility in NH salts+Ag at 25°

| NH4 salt            | Mıllımols<br>NH4 salt<br>per l | Mıllımols<br>CaO dıs-<br>solved per l |  |
|---------------------|--------------------------------|---------------------------------------|--|
| NH₄Cl               | 1000<br>500<br>250<br>125      | 6 770<br>5 008<br>3 724<br>2 743      |  |
| NH4NO3              | 500<br>250<br>125<br>62 5      | 5 267<br>3 830<br>2 779<br>2 004      |  |
| Triammonium citrate | 500<br>250<br>125<br>62 5      | 66 87<br>39 80<br>22 64<br>14 92      |  |

(Rindell, Z phys Ch 1909, 70 454)

Solubility of CaCO<sub>3</sub> in NH<sub>4</sub>Cl+Aq at 12-18° Time, 98 days

| g per l of sat solution |                         |  |
|-------------------------|-------------------------|--|
| NH4C1                   | CaCO;                   |  |
| 53 5<br>100<br>200      | 0 423<br>0 609<br>0 645 |  |

(Cantoni and Goguelia, Bull Soc 1905, (3)

Solubility of CaCO<sub>3</sub> in NH<sub>4</sub>NO +Aq it 15°

| NH <sub>4</sub> NO <sub>3</sub> | CaC() |
|---------------------------------|-------|
| 0                               | 0 131 |
| 5                               | 0 211 |
| 10                              | 0 258 |
| 20                              | 0 340 |
| 40                              | 0 462 |
| 80                              | 0 584 |

1904, **60** 422)

CaO<sub>2</sub>H<sub>2</sub>+Aq dissolves a little CaCO<sub>3</sub>

(Welter and Berthollet, 1789) CaO<sub>2</sub>H<sub>2</sub>+Aq retains a little CaCO<sub>3</sub> in solu-

tion at ordinary temperature, which is pptd on boiling (Eliot and Storer, Proc Am Acad 1860, **5** 63)

CaO<sub>2</sub>H<sub>2</sub>+Aq, mixed with dil NaOH, KOH, or NH<sub>4</sub>OH+Aq, gives no immediate ppt when CO2 is passed through it, unless boiled Sol in boiling  $MgCl_2+Aq$  even when dilute Cousté)

Not decomp when boiled with K<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>, CaSO<sub>4</sub>, MgSO<sub>4</sub>, and Na<sub>2</sub>B<sub>4</sub>O +Aq, but partially decomp by boiling with Na<sub>2</sub>HPO<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>, K<sub>2</sub>HPO<sub>3</sub>, Na<sub>2</sub>HPO<sub>3</sub>, Na<sub>2</sub>HPO<sub>3</sub>, Na<sub>2</sub>HPO<sub>3</sub>, Na<sub>2</sub>HPO<sub>3</sub>, Na<sub>2</sub>HPO<sub>3</sub>, NH<sub>4</sub>)<sub>2</sub>HPO<sub>3</sub>, K<sub>2</sub>HAsO<sub>4</sub>, Na<sub>3</sub>AsO<sub>4</sub>, K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, NaF, and K<sub>2</sub>CrO<sub>4</sub>+Aq With the NH<sub>4</sub> salts the decomposition is complete (Dulong, A ch 82 286)

Not decomp by alkalı sulphates+Aq

(Malaguti)

Precipitation of CaCO<sub>3</sub> is much hindered by alkalı citrates or metaphosphates

# Solubility in KCl+Aq at 25°

| Sp gr 25°/25°                                                                 | % KCl                                                                      | % CaCO3                                                                                |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1 000<br>1 024<br>1 046<br>1 072<br>1 092<br>1 101<br>1 122<br>1 133<br>1 179 | 0 00<br>3 90<br>7 23<br>11 10<br>13 82<br>15 49<br>18 21<br>19 84<br>26 00 | 0 0013<br>0 0078<br>0 0078<br>0 0076<br>0 0076<br>0 0076<br>0 0070<br>0 0072<br>0 0060 |
| · · · · · · · · · · · · · · · · · · ·                                         | T 1                                                                        | 1 01                                                                                   |

(Cameron and Robinson, phys Chem 1907, **11** 578)

Solubility in NaCl+Aq in contact with CO2 free air at 25°

| 6 0 13      | g per 100 + H() |        |  |
|-------------|-----------------|--------|--|
| Sp gr 2)/20 | NaCl            | CaCOs  |  |
| 1 0079      | 1 60            | 0 (079 |  |
| 1 0314      | 5 18            | 0 6086 |  |
| 1 0466      | 9 25            | 0 0094 |  |
| 1 0734      | 11 48           | 0 0104 |  |
| 1 0949      | 16 66           | 0 0106 |  |
| 1 1346      | 22 04           | 6 0115 |  |
| 1 1794      | 30 50           | 0 0119 |  |

1907, **11** 396)

Solubility of C<sub>3</sub>CO<sub>3</sub> in N<sub>3</sub>OH + Aq

| b to 4                                              | 1 litre dissolves |                                                    |  |
|-----------------------------------------------------|-------------------|----------------------------------------------------|--|
| Solvent                                             | at 18             | at 95 100                                          |  |
| H O (a 0 0001 n NaOH (a 0 001 n NaOH (a 0 01 n NaOH | 87<br>42          | 20 7 mg C <sub>4</sub> CO <sub>3</sub> 9 6 6 9 5 7 |  |

(Le Blanc, Z anorg 1906, 51 185)

| Solubility in K <sub>2</sub> SO <sub>4</sub> +Aq at 25° |                                                 |                                                   |  |  |
|---------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--|--|
| Sp gr 25 /25°                                           | % K <sub>2</sub> SO <sub>4</sub>                | % C O3                                            |  |  |
| 1 010                                                   | 1 60                                            | 0 ( 04                                            |  |  |
| 1 021<br>1 033                                          | $\begin{array}{c} 3 \ 15 \\ 4 \ 73 \end{array}$ | $egin{pmatrix} 0 & (16 \ 0 & (32 \ \end{bmatrix}$ |  |  |
| 1 048<br>1 061                                          | 6 06<br>7 85                                    | 0 (48                                             |  |  |
| 1 069<br>1 083                                          | 8 88<br>10 18                                   | 0 ( 92<br>0 ( 92                                  |  |  |

10 48

0 (88

hem

4+Aq

s with

lution

with

(Cameron and Robinson, phys 1907, 11 578)

The solubility of CaCO<sub>3</sub> in Na<sub>2</sub>S in equilibrium with air steadily increaincreasing amounts of CaSO4 in the up to saturation point of the CaSO<sub>4</sub> In the presence of solid CaSO<sub>4</sub> the solub ty of CaCC<sub>3</sub> is much decreased (Camer 1 and Seidell, J phys Chem 1902, 6 56)

See under CaH<sub>2</sub>(CO<sub>3</sub>)

1 084

Solubility in Na<sub>2</sub>SO<sub>4</sub>+Aq in conta CO<sub>2</sub> free air at 25°

g per 100 g H<sub>2</sub>O Na290 CaCO 0 0151 0 97 1 65 0 0180 4 90 0 0262 12 69 0 0313 14 55 0 0322 19 38 0 0346 23 90 0.0360

(Cameron, Bell and Robinson, J. ph., 1907, 11 396)

| Solubility in silts+Aq                                                 |                      |      |
|------------------------------------------------------------------------|----------------------|------|
| £ silt idded per litre                                                 | mg CaO h<br>per lit  | lved |
| 0 000                                                                  | 17 4                 |      |
| 0 585 g \ \(\ichticle{\chi}\) 1 17 g ' 2 93 g '                        | 20 0<br>24 9<br>31 1 |      |
| 0 85 g N iNO;<br>1 70 '<br>4 25 '                                      | 24<br>27 7<br>31 5   |      |
| 0 805 g N t SO <sub>4</sub> , 10H O<br>1 61 g<br>4 03 g                | 25 9<br>31 1<br>40 7 |      |
| 0 53 g \ \ \ \ CO;<br>1 06 g "<br>2 65 g "                             | 5 4<br>7 2<br>4 4    |      |
| 0 55 g C (Cl <sub>2</sub> , 6H <sub>2</sub> O)<br>1 10 g "<br>2 75 g " | 9 ()<br>5 4<br>8 4   |      |

The solubility of CaCO3 in CO2-fre water

is therefore increased by the addition of NaCl, NaNO<sub>3</sub> or Na<sub>2</sub>SO<sub>4</sub>, 10H<sub>2</sub>O, but decreased by the addition of Na<sub>2</sub>CO<sub>3</sub> or CaCl<sub>2</sub>,  $6H_2O$ 

(Gothe, Ch Z 1915, 39 306)

Sol in ferric chloride or nitrate+Aq with evolution of CO2 and pptn of Fe2O6H6 (Fuchs, 1831), also in chlorides or nitrates of Al, Mn, Cr, or U, but not in FeCl<sub>2</sub>+Aq

Sol in cold SnCl<sub>4</sub>+Aq with pptn of SnO<sub>2</sub> Insol in conc Na<sub>2</sub>SO<sub>4</sub>, MgSO<sub>4</sub>, BaCl<sub>2</sub>, MgCl<sub>2</sub>, Pb(NO<sub>3</sub>)<sub>2</sub>, or AgNO<sub>3</sub>+Aq (Kar-

sten) Abundantly sol when freshly precipitated in CaCl +Aq, and  $MgSO_4+Aq$  (Hunt)

Absolutely insol at 15-19° in BaO<sub>2</sub>H<sub>2</sub>+ Aq, also on boiling

11 H<sub>2</sub>O containing 3-4 g MgSO<sub>4</sub> dissolves 1-2 g CaCO<sub>3</sub>, and also 1 g MgCO<sub>3</sub> (Hunt, Am J Sci (2) 26 109)

100 pts NaCl+Aq (2 525% NaCl) dissolve 0 0037 pt (calculated as CaO) pptd CaCO<sub>3</sub>, and 0 0053 pt calcspar (Lubavin, J russ Soc 24 389)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 827)

Insol in liquid CO, (Buchner, Z phys. Ch 1906, 54 674)

Alcohol dissolves traces of CaCO<sub>3</sub> (Grischow)

Sol in Na citiate+Aq (Spiller)

(Barreswill) Sol in Ca sucrate + Aq Insol in acetone (Naumann, B 1904, 37

Insol in acetone and in methylal (Eid-

munn, C C 1899, II 1014) Insol in methyl acetate (Naumann, B

1909, **42** 3790) (Naumann, B Insol in (thyl acetate

1910, **43** 314)

Amorphous Solubility in H2O cannot be determined because of its instability dull Phil Mug 1912, (6) 23 972)

In contact with air free from Mm Calcite ( () 11 H O dissolves at

100° 5()° 0.01433 0.01504 () 01779 g calcite (Kendall, Phil Mag 1912, (6) 23 964)

In contact with an containing 3.7 pts CO2 per 10,000 the solubility of exlerte in H<sub>2</sub>O was found to be 0.04608 g per 1 at  $25^\circ$  and 0.02925 g per 1 at  $50^\circ$  (Kendall, Phi Mag 1912 (6) 23 973)

In contact with air free Min Aragonite

from (O<sub>2</sub> 11 H O dissolves at

2 )° 100° () ()1525 () ()1617 () ()1902 g aragonite (Kendall, Phil Mag 1912, (6) 23 964) +5H<sub>2</sub>OEfflorescent  $+6H_{\bullet}O$ (Pelouze)

Calcium hydrogen carbonate, CaH<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub> Known only in aqueous solution CaCO<sub>3</sub> dissolves in CO<sub>2</sub>+Aq

CaCO<sub>3</sub> is sol in 1428 pts  $\rm H_2O$  sat with CO at 0° and 1136 pts at 10 (Lassaigne J ch med 4 312) Bineau could dissolve even r ,  $\nu_i$  quentities of  $\rm H_2O$  sat with CO only  $v_i$   $v_i$  (CO to form CaH<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub>

Chalk dissolves in 994 5 pts HO sat with CO<sub>2</sub> while Iceland spar requires 3149 pts (Bischof) CaCO<sub>3</sub> is sol in 1015 pts H<sub>2</sub>O sat with CO at 21° and 7483 mm (Warington Chem Soc 6 296)

Solubility of  $CaCO_3$  in  $CO_2 + Aq$  at p pressure in atmospheres  $CaO + CO_2 = mg CO_2$ and CaC dissolved, corresponding to  $CaCO_3 = mg CaCO_3$ 

| р         | CaO+CO2 | CaCO <sub>3</sub> |
|-----------|---------|-------------------|
| 0 000504  | 60 96   | 74 6              |
| 0 000808  | 72 11   | 85 0              |
| 0 00333   | 123     | 137 2             |
| 0 03187   | 218 4   | 223 1             |
| 0 0282    | 310 4   | 296 5             |
| 0 05008   | 408 5   | 360               |
| $0\ 1422$ |         | 533               |
| 0 2538    | 1072    | 663 4             |
| 0 4167    | 1500    | 787 5             |
| 0 5533    | 1846    | 885 5             |
| 0 7297    | 2270    | 972               |
| 0 9841    | 2864    | 1086              |
|           |         |                   |

(Schlosing, C R 74 1522)

With high pressure, 11  $\rm H_2O$  containing  $\rm CO_2$  dissolves at most 3 g  $\rm CaCO_3$  This maximum is reached at 5° under 4 atmospheres' pressure, at 10-13° under 5 atmospheres, and at 20° under 7 atmospheres (Caro, Arch Pharm (3) 4 145)

CaCO<sub>3</sub> is sol in about 1000 pts H<sub>2</sub>CO<sub>3</sub>+ Aq, and solubility is considerably increased

by Na<sub>2</sub>SO<sub>4</sub> or MgSO<sub>4</sub>

1000 pts H<sub>2</sub>O sat with CO<sub>2</sub> dissolve pts Carrara marble at t°, and B = height of barometei in millimeties

| t°   | В   | Pts CaCO: | t                                                                                | В   | Pts<br>CaCO <sub>3</sub> |
|------|-----|-----------|----------------------------------------------------------------------------------|-----|--------------------------|
| 7 5  | 754 | 1 224     | $\begin{array}{c} 22 \ 0 \\ 26 \ 0 \\ 26 \ 5 \\ 27 \ 0 \\ 28 \ 0 \\ \end{array}$ | 746 | 0 920                    |
| 8 5  | 752 | 1 202     |                                                                                  | 740 | 0 875                    |
| 9 5  | 754 | 1 115     |                                                                                  | 743 | 0 860                    |
| 20 5 | 741 | 0 975     |                                                                                  | 741 | 0 885                    |
| 21 5 | 744 | 0 935     |                                                                                  | 737 | 0 770                    |

Or, from 75-95°, 1000 pts H<sub>2</sub>O sat with CO<sub>2</sub> dissolve 1181 pts CaCO<sub>3</sub>, from 205-22°, 0 9487 pt CaCO, from 26-28°, 0 855 pt  $|CaCO_3|$ 

Other varieties of CaCO<sub>3</sub> are dissolved as follows in 1000 pts H<sub>2</sub>O sat with CO<sub>2</sub>

| t°                         | В                                                        | Pts<br>CaCO:                                                                               |
|----------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 18<br>18<br>18<br>12<br>12 | 740<br>740<br>735<br>754<br>754                          | 0 835<br>0 950<br>1 970<br>1 223<br>212                                                    |
| 11 5                       | 749                                                      | 0 654                                                                                      |
| 11 5                       | 755                                                      | 0 725                                                                                      |
| 11                         | 746                                                      | 224                                                                                        |
| 11<br>15<br>15 5           | 749<br>747<br>740                                        | 1 073<br>252<br>573                                                                        |
|                            | 18<br>18<br>18<br>12<br>12<br>11 5<br>11 5<br>11 5<br>11 | 18 740<br>18 735<br>12 754<br>12 754<br>11 5 749<br>11 5 755<br>11 746<br>11 749<br>15 747 |

(Cossa, Z anal 8 145)

Solubility of CaCO<sub>3</sub> in H<sub>2</sub>O containing CO<sub>2</sub> at various pressures

CO<sub>2</sub> pressure in atm 1079 1403 1820 2109 Solubility (Engel, C R 1885, 101 951)

11 of sat CaH<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub>+Aq, obtained from g CaCO<sub>3</sub> at 15° (Treadwell, Z anorg 1898, 17 189) pure or impure limestone, contains 1 13-1 17

Solubility of CaH<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub> in H<sub>2</sub>O containing CO<sub>2</sub> at 15°

| % carbonic acid in gas at 0 and 760 mm                                       | Hg<br>partial<br>pressure<br>mm                                          | Free car-<br>bonic acid<br>mg                                       | mg<br>CaH (CO <sub>3</sub> ) <sub>2</sub><br>in 100 cc of<br>the solution                                   | mg Ca                                                                                     |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 8 94<br>6 04<br>5 45<br>2 18<br>1 89<br>1 72<br>0 79<br>0 41<br>0 25<br>0 08 | 67 9<br>45 9<br>41 4<br>16 6<br>14 4<br>13 1<br>6 0<br>3 1<br>1 9<br>0 6 | 157 4<br>86 3<br>52 8<br>48 5<br>34 7<br>24 3<br>14 5<br>4 7<br>2 9 | 187 2<br>175 5<br>159 7<br>154 0<br>149 2<br>133 1<br>124 9<br>82 1<br>59 5<br>40 2<br>38 5<br>38 5<br>38 5 | 46 2<br>43 3<br>39 4<br>38 0<br>36 8<br>32 9<br>30 8<br>20 3<br>14 7<br>9 5<br>9 5<br>9 5 |

(Treadwell and Reuter, Z anorg 1898, **17** 185)

1 l H<sub>0</sub>O sat with carbonic acid di 130 g CaCO<sub>3</sub> at 132°, 145 g a (Treadwell, Z anorg 1898, **17** 189)
At 30° C in equilibrium with the

olves

, not

pera-

cent-

car-

more than 3 per cent of the calcium 1 is combined as CaCO<sub>3</sub> At lower te tures and lesser concentrations the p age of normal carbonate is even less, an practically all the calcium present is cor fined as Ca(HCO<sub>3</sub>)<sub>2</sub> (Cameron and Bris s, J phys Chem 1901, 5 549) With pressures less than 4 5 atmosheres

of CO2 no other than normal calcius bonate or a hydrate of the normal car mate can exist as the solid phase at 0° (Cai eron. J phys Chem 1908, 12 566)

Solubility in H<sub>2</sub>O in contact with an taining CO<sub>2</sub> with varying partial sures at t°

P=partial pressure of CO<sub>2</sub>

|                                                         | t=15                                                                 |                                                              |
|---------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|
| P                                                       | g                                                                    | per l                                                        |
| r                                                       | CaCO                                                                 | CO³                                                          |
| 0 8<br>1 5<br>1 7<br>6 8<br>9 9<br>13 6<br>14 6<br>31 6 | 0 193<br>0 193<br>0 238<br>0 445<br>0 627<br>0 723<br>0 686<br>1 050 | 0 11<br>0 1'<br>0 1.<br>0 3:<br>0 4:<br>0 5:<br>0 6:<br>1 11 |
|                                                         | t = 25                                                               |                                                              |

g per l P CaCO: (() 0 7 0 159 0 08 16 0 177 0 11 4 6 0.3410.50 7 8 0 30 0 446 0 52 16 5 0 539 30 1 0 743 0.71 35 5 0 755 0.80

| Р            | g p    | (rl   |
|--------------|--------|-------|
|              | (a(t)  | (()   |
| 0.6          | 0 136  | 0 07  |
| 1 7          | () 143 | 0 08  |
| 2 9          | 0 175  | 0.10  |
| 3 5          | 0 232  | 0.16  |
| 7            | 0 284  | 0.23  |
| l <b>4</b> 9 | 0 354  | 0.29  |
| 22 - 2       | 0 427  | () 33 |
| 31 7         | 0 480  | 0 47  |

t -40

Similar results at 20°, 30°, and 35° u ilso gıven

(Leather and Sen, Mem Dept Agric (1 dia) Chem Ser 1909, 1 117, Seidell, Sc ibilities, 1919)

Solubility of calcite in  $H_2O$  at 25°, in contact with  $CO_2$  under varying pressures P = approximate pressure of  $CO_2$  in atmospheres

| g per l sat solution                      |                                             |                                              |                                                      |
|-------------------------------------------|---------------------------------------------|----------------------------------------------|------------------------------------------------------|
| P                                         | H CO <sub>3</sub>                           | Ca (HCO <sub>3</sub> ) <sub>2</sub>          | Solid phase                                          |
| 0 1<br>1 1<br>9 9<br>13 2<br>16 3<br>25 4 | 0 22<br>2 3<br>20 6<br>27 5<br>34 1<br>53 2 | 0 67<br>1 58<br>3 62<br>4 04<br>4 21<br>4 22 | CaCO <sub>3</sub> Ca(HCO <sub>3</sub> ) <sub>2</sub> |

(McCoy and Smith, J Am Chem Soc 1911, **33** 468)

1 l  $H_2O$  dissolves 2 3374 g  $C_aCO_3$  at 5° under a  $CO_2$  pressure of 2 atmos (Ehlert, Z Elektrochem 1912, **18** 727)

Solubility data for calcute in  $\rm H_2O$  containing CO, with and without the presence of salts are given by Seyler and Lloyd (Chem Soc 1909, **95** 346)

A critical analysis and recalculation of results of Schloesing and others is given by Johnston (J Am Chem Soc 1915, 37 2001)

CaCO<sub>3</sub> is not dissolved by CO<sub>2</sub> and H<sub>2</sub>O in presence of MgCO<sub>3</sub> (Leather and Sen, C A 1915 181)

1 l of 1/10-normal NaCl+Aq dissolves 0.3320 g CaH<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub> at 15° (Treadwell and Reuter Z anorg 1898, 17 193)

Solubility of CaH<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub> in NaCl+Aq sat with carbonic acid at 15°, containing 5 g NaCl per l of NaCl+Aq

| % carbonic<br>acid in g is<br>at 0 and<br>760 mm | mm Hg =<br>partial<br>pressure              | mg<br>fr∈∈CO2                                | mg<br>CiH CO<br>i ' (<br>the solution                                            | mg<br>Ca                                                                 |
|--------------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 16 9 )<br>11 47<br>6 07<br>3 16<br>0 50<br>0 41  | 128 8<br>87 2<br>46 1<br>24 0<br>3 5<br>3 4 | 132 5<br>110 1<br>23 5<br>13 5<br>2 7<br>0 3 | 218 4<br>214 3<br>149 2<br>119 3<br>73 9<br>49 0<br>34 9<br>33 7<br>32 9<br>33 2 | 53 9<br>52 9<br>36 8<br>29 2<br>18 2<br>12 1<br>8 6<br>8 3<br>8 1<br>8 2 |

(Treadwell and Reuter, Z anorg 1898, **17** 193) Solubility in NaCl+Aq at 25° C and in equilibrium with air

| Ca(HCO <sub>3</sub> ) <sub>2</sub>                                                               |                                                                                                            | NaC                                                                                               | yı                                                                                     |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Grams<br>per liter                                                                               | Reacting wts<br>per liter                                                                                  | Grams<br>per liter                                                                                | Reacting<br>wts per<br>litre                                                           |
| 0 1046<br>0 1770<br>0 2051<br>0 2152<br>0 2252<br>0 2212<br>0 2172<br>0 1971<br>0 1569<br>0 1227 | 0 00065<br>0 00110<br>0 00128<br>0 00134<br>0 00140<br>0 00138<br>0 00135<br>0 00123<br>0 00095<br>0 00076 | 0 000<br>9 720<br>21 010<br>30 301<br>50 620<br>69 370<br>98 400<br>147 400<br>234 500<br>262 300 | 0 000<br>0 168<br>0 362<br>0 522<br>0 872<br>1 195<br>1 695<br>2 540<br>4 040<br>4 520 |

(Cameron and Seidell, J phys Chem 1902, 6 51)

Solubility in various salts+Aq under a CO<sub>2</sub> pressure of 2 atmos at 5°

| g salt per<br>1000 g H <sub>2</sub> O | g CaCO3 sol<br>in 1 l of solvent                                                                                                                                                   |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | 2 3374                                                                                                                                                                             |
| 6 08                                  | 2 3518                                                                                                                                                                             |
|                                       | 3 4045                                                                                                                                                                             |
|                                       | 4 0826                                                                                                                                                                             |
| 350 0                                 | 3 3009                                                                                                                                                                             |
| 700 0                                 | 2 7357                                                                                                                                                                             |
| 1150 0                                | 4 0826<br>3 3009<br>2 7357<br>2 2054                                                                                                                                               |
| 1725 0                                | 1 7058                                                                                                                                                                             |
| 2300 (sat )                           | 1 4060                                                                                                                                                                             |
| 27 96                                 | 3 2796                                                                                                                                                                             |
| 50 0                                  | 3 7399                                                                                                                                                                             |
| 86 0                                  | 3 7828                                                                                                                                                                             |
| 106 9                                 | 3 6900                                                                                                                                                                             |
| 175 6                                 | 3 3495                                                                                                                                                                             |
| 263 4                                 | 28107                                                                                                                                                                              |
| 351 2                                 | 2 1625 at 8°                                                                                                                                                                       |
| 105 3 (14°)                           | 2 1768                                                                                                                                                                             |
| sat at 14°                            | 0 91356                                                                                                                                                                            |
| 137 7 (14°)                           | 1 4060                                                                                                                                                                             |
| sat at 14°                            | 1 9199                                                                                                                                                                             |
|                                       | 6 08<br>50 0<br>86 0<br>350 0<br>700 0<br>1150 0<br>1725 0<br>2300 (sat )<br>27 96<br>50 0<br>86 0<br>106 9<br>175 6<br>263 4<br>351 2<br>105 3 (14°)<br>sat at 14°<br>137 7 (14°) |

(Ehlert and Hempel, Z Elektrochem 1912, 18 727)

Solubility of CaCO<sub>3</sub> in KCl+Aq at 25° sat with CO at atmospheric pressure

| % KCI | % CaCO3 |
|-------|---------|
| 3 90  | 0 145   |
| 7 23  | 0 150   |
| 11 10 | 0 166   |
| 13 82 | 0 165   |
| 15 49 | 0 167   |
| 18 21 | 0 154   |
| 19 84 | 0 140   |
| 26 00 | 0 126   |

(Cameron and Robinson, J phys Chem 1907, 11 579)

Solubility in NaCl+Aq in contact with CO<sub>2</sub> at atmospheric pressure at 25°

| g per 100 g H <sub>2</sub> O                              |                                                             |  |
|-----------------------------------------------------------|-------------------------------------------------------------|--|
| NaCl                                                      | CaCO <sub>3</sub>                                           |  |
| 1 45<br>5 69<br>11 08<br>15 83<br>19 62<br>29 89<br>35 85 | 0 150<br>0 160<br>0 174<br>0 172<br>0 159<br>0 123<br>0 103 |  |

(Cameron, Bell and Robinson, J phys Ch 1907, 11 396)

Solubility in  $K_2SO_4+Aq$ , sat with  $CO_2$  at atmospheric pressure and 25° temp

| % SO3 | % CaO  |
|-------|--------|
| 0 69  | 0 69   |
| 1 37  | 0 69   |
| 1 67  | 0 47 * |
| 2 18  | 0 30 * |
| 2 99  | 0 24 * |

\* Solid phase, CaSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub> (Cameron and Robinson)

Solubility in Na<sub>2</sub>SO<sub>4</sub>+Aq at 24° in equilibrium with air

| Total Ca calc<br>as Ca(HCO <sub>3</sub> ) <sub>2</sub><br>Grams per liter                        | Ca actually<br>dissolved as<br>Ca(HCO <sub>3</sub> ) <sub>2</sub><br>Grams per liter                | Na <sub>2</sub> SO <sub>4</sub><br>Grams per liter                                     |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 0 0925<br>0 1488<br>0 1729<br>0 2330<br>0 3240<br>0 3960<br>0 4580<br>0 5630<br>0 5910<br>0 6650 | 0 0925<br>0 1488<br>0 1729 +<br>0 2210<br>0 3020<br>0 3440<br>0 3660<br>0 3940<br>0 4060<br>0 4 300 | 0 000<br>2 800<br>5 235<br>11 730<br>36 860<br>74 010<br>116 100<br>184 200<br>213 700 |

(Cameron and Seidell, J phys Chem 1902, 6 53)

Data are also given for solubility of C<sub>1</sub>C()<sub>3</sub> m NaCl+Na<sub>2</sub>SO<sub>4</sub>+Aq, and CaCO<sub>3</sub>+CaSO<sub>4</sub> m NaCl+Na<sub>2</sub>SO<sub>4</sub>+Aq (C<sub>1</sub>me<sub>1</sub>on, Bell and Robinson)

Calcium copper uranium carbonate, CaC(), 3CuCO<sub>3</sub>, 4U(CO<sub>3</sub>)<sub>2</sub>+24H<sub>2</sub>O
Sol in acids

Calcium lead carbonate, xCaCO<sub>3</sub>, yPbCO<sub>3</sub> Min Plumbocalcite Calcium magnesium carbonate, CaCi ,, MgCO<sub>3</sub>

Min Dolomite 1 l H<sub>2</sub>O sat with C 1<sub>2</sub> at 18° and 750 mm dissolves 0 31 g dol nite (Cossa, B 2 697)

Not obtained by evaporating solutio but can be crystallized from CO<sub>2</sub>+Aq be veen 100° and 200° (Hoppe-Seyler)

Dolomite is dissolved by CO<sub>2</sub> and LO, but solution is prevented partially by C CO<sub>3</sub>, and wholly by MgCO<sub>3</sub> (Leather and Sen, C A 1915 181)

Insol in cold dil acids (Dolomie, J Phys 39 1)

Insol in cold acetic acid (Forchham ier)

Calcium potassium carbonate, Ca.K<sub>2</sub>(C()<sub>2</sub>
Decomp by H<sub>2</sub>C (Reynolds, Chem 3oc
1898, **73** 265, Butschli, C. A. **1907** 23)

1898, **73** 265, Butschli, C A **1907**  $^{\circ}$  23  $2\text{CaCO}_3$ ,  $3\text{K}_2\text{CO}_3 + 6\text{H}_2\text{O}$  (Butschli)

Calcium sodium carbonate, CaNa<sub>2</sub>(CO<sub>3</sub>
Anhydrous Decomp by H<sub>2</sub>O

 $+2 \dot{\rm H}_2 {\rm O}$  (Butschli, C A 1907 2225 +5 ${\rm H}_2 {\rm O}$  Min Gaylussite Sparingl sol in  ${\rm H}_2 {\rm O}$ 

Calcium uranyl carbonate,  $CaCO_3$ ,  $UOC_3 + 20H_2O$ 

Min Liebiqite Sol in HCl+Aq +xH<sub>2</sub>O Decomp by HO (Blii off, Dissert 1900)

2CaO,  $4\text{UO}_3$ ,  $3\text{CO}_2+24\text{H}_2\text{O}$  Decom by  $\text{H}_2\text{O}$  (Blinkoff, Dissert 1900)

Calcium carbonate chloride, C iCO<sub>3</sub>, C i( 2+6H<sub>2</sub>O

Sol in H<sub>2</sub>() with immediate dee np (Fritzsche, J pi 83 213)

Cerous carbonate, Co (CO<sub>3</sub>)<sub>3</sub>+5, and 9I )
Insol in H<sub>2</sub>O<sub>3</sub> and solution of (O<sub>2</sub> in ()

(Vauquelin)
Somewhat sol in (NH<sub>4</sub>) CO<sub>3</sub>+ Aq (Jc n)
Insol in neutral salt solutions and not ral
alkali carbon (tes+Aq, cisily sol in Sc +
Aq (Berther A ch (3) 7 77)

Ceric carbonate,  $C((C(1)) + 1_2H(1)$ 

Precipitate (Hisinger,  $\Lambda$  ch 94 108 Insol in HO Sol in slight trace in Na<sub>2</sub>CO<sub>3</sub>+Aq, sl sol in NaHCO<sub>3</sub>+Aq, and in (NH<sub>4</sub>) CO<sub>3</sub>+Aq (Rose)

### Cerous lanthanum carbonate fluoride

Min Batnasile, Hamartile Hydrofluore te Slowly decomp by  $HCl+\Lambda q$  easily by  $HSO_4$ 

Cerous potassium carbonate, Ce (C( )<sub>3</sub>, h C()<sub>3</sub>+3H<sub>2</sub>()

Ppt (John) Ce<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>, k CO<sub>3</sub>+12H<sub>2</sub>() Ppt Sol in 30% k<sub>2</sub>CO<sub>3</sub>+Aq (Meyer, Z anorg 1904, **41** 103) Perceric potassium carbonate, Ce<sub>2</sub>O<sub>3</sub>(CO<sub>3</sub>)<sub>3</sub>,  $4K_{2}CO_{3}+12H_{2}O$ 

Crystalline Sl sol in  $\rm H_2O$  containing  $\rm K_2CO_3$ , sol in dil  $\rm H_2SO_4$  with decomp (Job, C R 1899, **128** 1098)

Cerous sodium carbonate,  $Ce_2(CO_3)_3$ ,  $2Na_2CO_3+2H_2O$ 

Ppt (Jolin)  $3Na_2CO_3 + 24H_2O(?)$  $2Ce_2(CO_3)_3$ , Ppt Easily decomp (Meyer, Z anorg 1904, 41 103)

Chromous carbonate, CrCO<sub>2</sub>

Sol in much H<sub>2</sub>O, sl sol in KHCO<sub>3</sub>+Aq (Moberg, J pr 44 328, Moissan, A ch (5) **21** 199

Chromic carbonate, basic, Cr<sub>2</sub>O<sub>3</sub>, 2CO<sub>2</sub>

Precipitate (Parkmann, Sill Am J (2) **34** 321)

 $Cr_2O_3$ ,  $CO_2+4H_2O$  Insol in  $H_2O$ , sol in acids, when freshly pptd is sol in K2CO3, or (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq, and still more sol in KOH

+Aq (Meissner) Insol in ethyl Insol in ethyl acetate (Naumann, B 1910, 43 314), methyl acetate (Naumann, B 1909, **42** 3790)

2C<sub>12</sub>O<sub>3</sub>, CO<sub>2</sub>+6H<sub>2</sub>O Precipitate (Langlois, A (h (3) 48 502)

Chromous potassium carbonate,  $CrCO_3$ ,  $KCO_3+1\frac{1}{2}HO$ 

Sol in H O when freshly prepared, slowly polymerizes stable in dry an, decomp in moist air sol in 10ids with decomp (Bauge, C R 1595, **126** 1568)

Chromous sodium carbonate,  $C_1 Na_2(C()_3)_2 +$ H()

Decomp when heated In Aq solution, passes into the hydrate containing 10 mols

H O (Bauge C R 1897 **125** 1179) +10 H O Very sol m cold H O, Aq solu tion decomp below 100° effloresces in the air, sol in  $HC1+\Lambda q$  and  $HSO_1+\Lambda q$  (B ugc, ( R 1897, **125** 1175)

Cobaltous carbonate, basic, o(0), o(1), o(2)4H ()

Insol in HO sol in (NH<sub>4</sub>) SO<sub>4</sub>,  $(NH_4)(O_3, NH_4NO_3, \text{ and } NH_4Cl+Aq$ 

Sol in cold NH4NO3, and NH4Cl+Aq

(Biett 1837)

Sol in (  $O + \Lambda q$  and reid alkali curbonates + Aq from which it is pptd on boiling Very's sol in cone N 12CO 5 or K2CO 5+Aq, lugely sol in  $(NH_4)$   $CO_3+Aq$ , and partly sol

in NH40H+Aq (Berzelius) Not pptd from solutions containing Ni

citrate (Spiller)

4(00), C() + 4HO Ppt (Beetz) +3H(O) (Meigen, C C 1905, I 1363) Cobaltous carbonate, basic, 3CoO, CO<sub>2</sub>+  $2H_2O$ 

(Meigen, C C 1905, I 1363)

3H<sub>2</sub>O (Rose, Pogg **84** 551) 3CoO, 2CO<sub>2</sub>+4H<sub>2</sub>O (Bratin, **Z** anal **6** 

2CoO.  $CO_2 + 3\frac{1}{2}H_2O$ Converted into 5CoO, 2CO + 4H<sub>2</sub>O by H<sub>2</sub>O (Beetz)

Cobaltous carbonate, CoCO<sub>3</sub>

AnhudrousNot attacked by cold conc HCl, or HNO<sub>3</sub>+Aq (Senarmont, A ch (3) **30** 129)

Insol in liquid NH<sub>3</sub> 1898, **20** 827) (Gore, Am Ch J

Min Sphærocobaltite Sl attacked by cold  $\frac{\mathrm{HNO_3}}{\mathrm{s}}$ , or  $\frac{\mathrm{HCl} + \mathrm{Aq}}{\mathrm{cl}}$ + $\frac{2}{3}\mathrm{H_2O}$  Sol in acids (Deville, A ch (3)

**33** 95)

+6H<sub>2</sub>O (Deville)

Decomp by H<sub>2</sub>O with formation of a basic (Berzelius) carbonate

Cobaltous potassium carbonate, CoCO<sub>3</sub>,  $K_{\circ}CO_{\circ}+4H_{\circ}O$ 

Decomp by H<sub>0</sub>O (Deville, A ch (a) 33

Ppt Decomp by H<sub>2</sub>O (Reynolds, Chem Soc 1898, 73 264)  $C_0CO_3$ , KHCO +4H O Decomp

Cobaltous sodium carbonate, CoCO<sub>3</sub>, Na CO<sub>3</sub> +4H<sub>2</sub>O, and 10H<sub>2</sub>O

Decomp by  $H_2O$  (Deville, A ch (3) 33 75)

Cupric carbonate, basic

 $H_2O$  (Deville)

The compounds produced by pptn of copper solutions by carbonates are unstable and possess varying solubilities in solutions of CO<sub>2</sub> On treatment with solutions of CO these substances pass over into an apparently stable compound possessing a definite solubility in solutions of CO of definite concentration, which solubility increases with the concentration of CO<sub>2</sub> Solubility of this compound in vinous silts-Aq is recorded (Free, J. Am. Chem. Soc. 1908, 30, 1374.)

8CuO, CO  $+5H_2O$  (Deville, A ch (3) **33** 75)

6CuO, CO (Field, Chem Soc 14 70) 3Cu(0), C(0) + 2H(0) (Figure, A ch (3) 10

119) 5CuO, 2CO<sub>2</sub>+6H O (Struve)

2CuO, CO2+H2O Insol in H2O, cisily sol in tends, even H<sub>2</sub>CO<sub>3</sub>+Aq, sl sol in H<sub>2</sub>CO<sub>4</sub>+Aq, 30,720 pts of the solution con tuning 1 pt (uO) (Julin) Sol in 4690 pts  $H_2CO_3 + Aq$  set at 4-6 atmos pressure (Wigner) Sol in 3833 pts sat  $H_2CC + Aq$ (Lussaigne, J ch med 4 312)

Sol in NH<sub>4</sub> salts+Aq Partially sol in Na<sub>2</sub>CO<sub>3</sub>, or k<sub>2</sub>CO<sub>3</sub>+Aq, and more sol in

+Aq (Favre, A ch (3) 10 18) Less sol in (NH<sub>4</sub>) CO<sub>8</sub>+Aq than CuO in q (Thomson, **1831**) Sol in (Berzelius) Sol in NH<sub>4</sub>Cl, or NH<sub>4</sub>OH+Aq KCN+Aq  $NH_4NO_8+Aq$  (Brett)

Sol in ferric salts with pptn of Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub> Insol in liq NH<sub>3</sub> (Franklin and Kraus,

Am Ch J 1898, 20 827)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1910, **43** 314)

Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014)

ın ethyl amıne Sol carbonate+Aq (Wurtz)

Sol in cane sugar + Aq (Peschier, Repert 1820, 6 85)

Not pptd from solutions containing sodium

citrate (Spiller)

Insol in pyridine (Schroeder, Dissert 1901) Min Malachite Sol in acids, and NH<sub>4</sub>OH

+Aq $+2H_2O$ (Favre)

8CuO, 5CO<sub>2</sub>+7H<sub>2</sub>O(Groger, Z anorg

1900, **24** 137) 3CuO, 2CO<sub>2</sub>+H<sub>2</sub>O Insol in H<sub>2</sub>O in NH<sub>4</sub>CH+Aq, also in hot conc NaHCO<sub>3</sub>+

Min Azurte

opper potassium carbonate, basic, 8CuO,  $2K_2CO_3$ ,  $7CO_2+17H_2O$ 

Ppt, decomp by H<sub>2</sub>O (Groger, B 1901, **34** 430)

Mixture (Wood and Jones, C A 1907)

2667) 5CuO,  $4CO_2$ ,  $K_2CO_3+10H_2O$  Decomp by H O (Deville, A ch (3) 33 102)

Cupric potassium carbonate, CuCO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub> Decomp by H<sub>2</sub>O (Wood and Jones, C A **1907** 2667)

 $+H_{2}O$ (Wood and Jones)

Decomp by H<sub>2</sub>O  $+4H_{\circ}O$ (Reynolds. Chem Soc 1898, 73 263)

Could not be obtained (Wood and Jones) 2CuCO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>+4H<sub>2</sub>O Decomp by H<sub>2</sub>O (Wood and Jones)

Cupric sodium carbonate, CuCO<sub>3</sub>, Na CO<sub>3</sub> Not decomp by cold H<sub>2</sub>O (Debray, C R 49 218) +3H<sub>2</sub>O

Cupric zinc carbonate, 2CuO, 3ZnO, 2CO<sub>2</sub>+ 3H O, or 3CuO, 9ZnO, 4CO<sub>2</sub>+8H<sub>2</sub>O Min Aurichalcite Easily sol in HCl+Aq

Cupric carbonate ammonia (cuprammonium carbonate), CuCO<sub>3</sub>, 2NH<sub>3</sub>

Decomp by H<sub>2</sub>O Insol in alcohol and ether Sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Favre, A ch (3) **10** 116)

 $NaHCO_{3}$  or  $KHCO_{3}+Aq$ , sol in  $(NH_{4})_{2}CO_{3}$  | Didymium carbonate,  $Di_{2}(CO_{3})_{8}+H_{2}O$ , or  $6H_2O$ 

> Insol in  $H_2O$  Only traces dissolve in  $O_2$ +Aq Insol in solutions of alkali carbon es or bicarbonates + Aq (Marignac, A ch 3) 38 166) Very sl sol in conc NH<sub>4</sub>Cl+ (Rose)

Insol in acetone (Naumann, B 1904, 4329)

+8H<sub>2</sub>O (Cleve, Bull Soc (2) **43** 363

Didymium potassium carbonate,  $D_{12}(CC_{3},$  $K_2CO_3+4H_2O$ 

Insol in H<sub>2</sub>O (Cleve, Bull Soc (2) 3 363)

+12H<sub>2</sub>O (Cleve)

Didymium sodium carbonate, 2D12(CO 3, 3Na<sub>2</sub>CO<sub>3</sub>+9H<sub>2</sub>O

(Cleve) Ppt  $D_{12}(CO_3)_3$ ,  $2Na_2CO_3+8H_2O$  Ppt (Cle

Dysprosium carbonate,  $Dy_2(CO_3)_3 + 4H_2O$ Insol in H<sub>2</sub>O (Jantsch, B 1911, 1277)

Erbium carbonate,  $Er_2O_3$ ,  $2CO_2+2H_2O_3$ Insol in HO (Hoglund)

Erbium sodium carbonate,  $E_1$  ( $CO_3$ )<sub>3</sub>,  $5Na_2CO_3+36H_2O$ Efflorescent Decomp by H<sub>2</sub>O

Gadolinium carbonate, basic, Gd(OH)CO + $H_{2}O$ Ppt (Benedicks, Z anorg 1900, **22** 41 )

Glucinum carbonate, basic, 3GlO, CO<sub>2</sub>, 4G ), (O<sub>2</sub>, 5GlO, CO +5H O, ctc

Not perceptibly sol in H O or  $H_2CO_4$ + Decomp by boiling H O F isily sol in ic Sol in NH4 salts, and KOH, or NiOH+ in alkili carbonites, Sol Sl\_sol  $(NH_4)_2CO_3 + Aq$  (Vauguelin) K<sub>2</sub>CO<sub>3</sub>+Aq When solution in (NH<sub>4</sub>)<sub>2</sub>C )<sub>3</sub> is boiled, a more basic carbonate is pp 1 (Rose)

Glucinum carbonate,  $GlCO_3+4HO$ 

Efflorescent Sol in 278 pts H() (Klat), J pi **106** 242)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch | 1898, **20** 828)

No definite carbonate of glucinum exi (Cameron, J phys Chem 1908, 12 572)

Glucinum potassium carbonate, 3GlCO<sub>3</sub>, 2K2CO3

Easily sol in H<sub>2</sub>O, but decomp by boiling (Debray) Less easily sol in alcohol

## Indium carbonate, In<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>

Insol in K<sub>2</sub>CO<sub>3</sub>, or Na<sub>2</sub>CO<sub>3</sub>+Aq Sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Winkler, J pr 94 1)

### Iron (ferric) carbonate, basic

9Fe<sub>2</sub>O<sub>3</sub>, CO<sub>2</sub>+12H<sub>2</sub>O Gaz **1858** 410) (Wallace, Chem  $3\text{Fe}_2\text{O}_3$ ,  $\text{CO}_2+4\text{H}_2\text{O}$ , and  $8\text{H}_2\text{O}$  (Barrat,

C N 1 110)

 $+6H_{\circ}O$ (Wallace) 2Fe<sub>2</sub>O<sub>3</sub> CO<sub>2</sub>+1½H<sub>2</sub>O (Rother, Pharm J Trans (3) 4 576)

Fe<sub>2</sub>O<sub>3</sub>, CO<sub>2</sub> (Parkmann, Sill Am J (2) **34** 321 ) These and other similar basic salts are ppts, easily decomp on standing into Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub>

# Iron (ferrous) carbonate, FeCO<sub>3</sub>

Insol in H<sub>2</sub>O

Sol in acids, even in H<sub>2</sub>CO<sub>3</sub>+Aq See Carbonate, ferrous hydrogen

Min Siderite Spathic ore SI attacked by dil acids Sol in H<sub>2</sub>CO<sub>3</sub>+Aq under pressure Insol in NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>3</sub>+Aq (Brett)  $+H_2O$  Sl sol in  $H_2O$ , easily sol in acids, sol in H<sub>2</sub>CO<sub>3</sub>+Aq

Sol in NH4Cl+Aq Sol in ferric salts+Aq with evolution of CO2 and pptn of Fe2O6H6 Soluble in an aqueous solution of cane sugar

### Solubility in salts+Aq free from CO<sub>2</sub>

| Salt                        | g salt per 1000<br>g H <sub>2</sub> () | l l of solvent<br>dissolves<br>g FeCO <sub>3</sub> |
|-----------------------------|----------------------------------------|----------------------------------------------------|
| N ıCl                       | 351 2                                  | 0 35042                                            |
| MgCl <sub>2</sub> +         | 2300 0                                 | 4 2049                                             |
| N 12SO4<br>+10H2O           | 137 7<br>sat it +14°                   | 0 70085<br>0 93444                                 |
| MgSO <sub>4</sub> +<br>7H₂O | 105 3<br>sit it +18°                   | 1 4667<br>2 9334                                   |
|                             |                                        | 1010 10 700 )                                      |

(Fhlat, Z Flektrochem 1912, 18 728)

### Iron (ferrous) hydrogen carbonate, F6H2(CO3)2(?)

known only in aqueous solution

By conducting CO2 at ordinary pressure through H2O, in which Fe is suspended, a solution containing 9 1 pts FeCO<sub>3</sub> to 10,000 pts H<sub>2</sub>O is obtained (v Hauer, J pr 81 391)

100 pts H<sub>2</sub>CO<sub>3</sub>+Aq dissolve 0.72 pt FeCO<sub>3</sub> (Wagner)

FeCO3 dissolves in 1381 pts H2O saturated

with CO<sub>2</sub>, under a pressure of 4-6 atmospheres (Wagner, J B **1867** 135) 1 l H<sub>2</sub>O dissolves 6 1907 g FeCO<sub>3</sub> (pure) under a CO<sub>2</sub> pressure of 2 atmos (Ehlert, Z Elektrochem 1912, 18 728)

Solubility in various salts+Aq in presence of CO<sub>2</sub> under pressure of 2 atmos

|                                                    | and probbane                                          |                                                          |  |
|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--|
| 1                                                  | With CO of 2 atmos pressure                           |                                                          |  |
| Salt                                               | g salt per 1000<br>g H•O                              | 1 l of solvent<br>dissolves<br>g FeCO;                   |  |
| H₂O                                                |                                                       | 6 1907                                                   |  |
| NaCl                                               | 50<br>106 9<br>175 6<br>263 4<br>351 2                |                                                          |  |
| MgCl <sub>2</sub> +<br>6H <sub>2</sub> O           | 86 9<br>700 0<br>1150 0<br>1437 5<br>1725 0<br>2300 0 | 5 8403<br>4 5553<br>4 4587<br>4 6934<br>5 3975<br>9 0524 |  |
| $\overline{{{\rm Na_2SO_4}\atop {+10{\rm H_2O}}}}$ | 137 7<br>sat at +14°                                  | 7 9428<br>9 5780                                         |  |
| ${ m MgSO_4+} \ { m 7H_2O}$                        | 105 3<br>sat at +18°                                  | 6 2423<br>7 3922                                         |  |
|                                                    |                                                       | 1010 40 500 )                                            |  |

(Ehlert, Z Elektrochem 1912, 18 728)

A bicarbonate of ferrous iron is not formed under pressures of CO2 up to 5 atmospheres at 0° (Cameron, J phys Chem 1908, 12 571)

Iron (ferrous) magnesium carbonate, FeCO<sub>3</sub>, MgCO<sub>3</sub>

Min Prstomesite FeCO<sub>3</sub>, 2MgCO<sub>3</sub> Min Mesitite

Iron (ferrous) potassium carbonate, Fek  $(CO_3)_2+4HO$ 

Ppt Decomp by H<sub>2</sub>O (Reynolds Chem Soc 1898, 73 265)

Lanthanum carbonate, La (CO<sub>3</sub>)<sub>3</sub>+H O, 3HO, and 8H<sub>2</sub>O

CO<sub>2</sub>+Aq dissolves traces Insol in H<sub>2</sub>O Insol in (NH<sub>4</sub>) CO<sub>3</sub>+Aq

Insol in acetone (Naumann, B 1904, 37 4329)

Min Lanthanite

Lanthanum potassium carbonate, La<sub>2</sub>(CO<sub>5</sub>)<sub>3</sub>,  $K CO_3 + 12H_2O$ 

 $1n 30\% K_2CO_3+Aq$ (Meyer, Z anorg 1904, 41 101)

Lanthanum sodium carbonate,  $2La_2(CO_3)_3$ ,  $3\text{Na}_2\text{CO}_3 + 20\text{H}_2\text{O}(?)$ 

Ppt Easily decomp (Meyer, Z anorg 1904, **41** 102 )

Lead carbonate, basic, 2PbCO<sub>3</sub>, PbO<sub>2</sub>H<sub>2</sub>, 5PbCO<sub>3</sub>, 3PbO<sub>2</sub>H<sub>2</sub>, 3PbCO<sub>3</sub>, PbO<sub>2</sub>H<sub>2</sub>, 5PbCO<sub>3</sub>, PbO<sub>2</sub>H<sub>2</sub>

Insol in H<sub>2</sub>O White Lead Nearly insol in H<sub>2</sub>CO<sub>3</sub>+Aq, even under pressure Sol in dil, insol in conc KOH+Aq Insol in normal, or acid alkali carbonates + Ao (Bott-

Sol in cold dil NH<sub>4</sub>Cl+Aq (Brett) PbCO<sub>3</sub>, PbO<sub>2</sub>H<sub>2</sub> Very sl sol in H<sub>2</sub>O

(Yorke)

2PbCO<sub>3</sub>, PbO<sub>2</sub>H<sub>2</sub>

Solubility is less than 0 0002 millimol Pb in 1 liter H<sub>2</sub>O at 18° (Pleissner, C C 1907, II 1056)

When not exposed to air, sol in 32,000 pts  $(NH_4)_2SO_4+Aq$  (0 2 g per 1), 26,000 pts  $KNO_3+Aq$  (0 2 g per 1), 23,000 pts  $CaCl_2+Aq$  (0 2 g per 1), 4600 pts  $NH_4NO_3+Aq$  (0 2 g per 1), 4300 pts  $H_2O$  sat with CO,

When exposed to air in beakers, sol in 43,000 pts  $(NH_4)_2SO_4+Aq$  (0 2 g per 1), 43,000 pts  $KNO_3+Aq$  (0 2 g per 1), 26,000pts  $CaCl_2+Aq$  (0 2 g per 1), 26,000 pts  $NH_4NO_3+Aq$  (0.2 g per 1), 4300 pts  $H_2O$ sat with CO<sub>2</sub> (0 2 g per l) (Muir, Chem Soc **31** 664)

Insol in methyl acetate (Naumann, B 1909, **42** 3790)

3PbO, 4PbCO₃+2H₂O Ppt (Stromholm, **Z** anorg 1904, **38** 446)

### Lead carbonate, PbCO<sub>3</sub>

Sol in 50,551 pts H<sub>2</sub>O at ordinary temp Sol in 23,450 pts H<sub>2</sub>O with little ammonium acetate, carbonate and free ammonia, and in somewhat less H<sub>2</sub>O, containing much ammonium nitrate with carbonate and free ammonia (Frescaus, A 59 124)

Calculated from electrical conductivity of PbCO<sub>3</sub>+Aq, 11 H<sub>2</sub>O dissolves 3 mg PbCO<sub>3</sub> at 10° (Kohlrausch and Rose, Z phys Ch

**12** 241)

Solubility is 0 0002 millimol Pb in 1 liter H<sub>2</sub>() at 18° (Pleissner, C C 1907, II 1056) Sl sol in H<sub>2</sub>O 15 x 10<sup>-1</sup> g are contuned in 1 l of sat solution at 20° (Bottger, Z phys Ch 1903, 46 604)

E usily sol in acids, even HC2H3O2, but not decomp by cone HNO3+Aq on account of insolubility of Pb(NO<sub>3</sub>)<sub>2</sub> in HNO<sub>3</sub>+Aq Insol in a mixture of 1 pt HSO<sub>4</sub> and 6 pts absolute alcohol, or in an alcoholic solution of racemic or tartaric acids

Insol in  $H_2CO_3+Aq$  (Jahn, A 28 Very sl sol in  $H_2CO_3+Aq$ , but solu 117)on 18 Tunprevented by traces of various salts nerman) Sol in 7144 pts sat  $H_2CO$  (Lassaigne, J ch méd 4 312)  $H_2O$  sa -Aq CO<sub>2</sub> under 4-6 atmos pressure dissolve traces of Pb, 1000 pts of solution cont nıng 05 pt PbCO<sub>3</sub> (Wagner, Z anal 6 1 7)

with

only

Solubility of PbCO<sub>3</sub> in H<sub>2</sub>CO<sub>3</sub>+Aq a 18°

| mg per l                                     |                                           |  |
|----------------------------------------------|-------------------------------------------|--|
| CO                                           | PbCO:                                     |  |
| 0<br>2 8<br>5 4<br>14 4<br>26<br>43 5<br>106 | 1 75<br>6 7<br>8 2<br>9 9<br>10 9<br>15 4 |  |

(Pleissner, C C 1907, II 1056)

Sol in  $NH_4C_2H_3O_2+Aq$ , and  $NH_4Cl$  (Weppen, 1837) Sol in KOH+Aq, n Αq absolutely insol at ord temp in an exc ∙s of K<sub>2</sub>CO<sub>3</sub>, or Na<sub>2</sub>CO<sub>3</sub>+Aq, and still more ıl at 100° but absolutely insol in Nal CO3,  $KH\dot{C}O_3$ , or  $(NH_4)_2CO_3+Aq$ (Rose) nsol in NH<sub>4</sub>OH+Aq, sol in KOH or NaOH Aq, decomp by boiling  $Ca(NO_3)_2 + Aq$ rzelius)

Sl decomp (Persoz), not at all de mp

(Malaguti) by alkalı sulphates + Aq Partially decomp by boiling with I SO4, Na<sub>2</sub>SO<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, CasO<sub>4</sub>, M Na<sub>2</sub>HPO<sub>4</sub>, NaNH,HPO<sub>4</sub>, k<sub>2</sub>SO<sub>3</sub>, N (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, Na<sub>2</sub>HPO<sub>4</sub>, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>, K Na<sub>3</sub>AsO<sub>4</sub>, K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, N v<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, NaF, 504, M  $SO_3$ , sO4, and K CrO<sub>4</sub>+Aq With the NH4 salts the decomp is complete (Dulong, A cl 82 290)

Fasily sol in hot NH<sub>4</sub>Cl+Aq (rett,

When 1 mol PbCO; is boiled with mol K2C O4, 15% of the PbCO; is decomp with 1 mol K CO<sub>3</sub>, 93.28% is decomp

Not decomp by K SO<sub>4</sub>+Aq (Rose) Insol in liquid NH; (Franklin, An J 1898, **20** 828)

Sol in an aqueous solution of accutes (Mercer, 1844)

Insol in methyl rectite (Numur, B 1909, **42** 3790)

Not pptd in presence of Ni ci ite (Spiller)

Min Carussile

Lead sodium carbonate, 4PhCO, NiC Insol in H<sub>2</sub>O (Berzelius, Pogg 47) 19)

Lead carbonate bromide, PbCO<sub>3</sub>, PbBr Insol in HO (Storer's Dict)

Lead carbonate chloride, PbCO<sub>3</sub>, PbCl<sub>2</sub> Insol in H<sub>2</sub>O (Miller, Chem Soc (2) 8 37)

Min Phosgenite Easily sol in acids

Lead carbonate 10dide, PbCO<sub>3</sub>, PbI<sub>2</sub> Insol in H<sub>2</sub>O (Poggiale)

Lead carbonate sulphate, PbCO<sub>3</sub>, PbSO<sub>4</sub>

Min Lanarkite Sol in HNO3+Aq with residue of PbSO<sub>4</sub>

3PbCO<sub>3</sub>, PbSO<sub>4</sub> Min Leadhillite As above

### Lithium carbonate, Li<sub>2</sub>CO<sub>3</sub>

100 pts H<sub>2</sub>O dissolve 1 pt L<sub>12</sub>CO<sub>3</sub> (Vau-

quelin, A ch 7 284)
100 pts H<sub>2</sub>O at 13° dissolve 0 769 pt
L<sub>12</sub>CO<sub>3</sub>, at 102°, 0 778 pt L<sub>12</sub>CO<sub>3</sub> (Kremers, Pogg 99 48)

100 pts  $H_2O$ , cold or hot, dissolve 1 2 pts  $L_{12}CO_3$  (Troost, A ch (3) 51 103)

100 pts H<sub>2</sub>O dissolve 1 4787 pts at 15°, 7162 pt at 100° (Draper, C N **55** 169) 07162 pt at 100°

# 100 pts H<sub>2</sub>O dissolve pts L<sub>12</sub>CO<sub>3</sub> at t<sup>o</sup>

| t                   | Pts Li <sub>2</sub> CO <sub>3</sub> | t°               | Pts L <sub>12</sub> CO <sub>3</sub> |
|---------------------|-------------------------------------|------------------|-------------------------------------|
| 0<br>10<br>20<br>50 | 1 539<br>1 406<br>1 329<br>1 181    | 75<br>100<br>102 | 0 866<br>0 728<br>0 796             |

0.796 pt is dissolved at 102° in less than 1/4 hour, and 0 955 in 1 hour (Beketow, J russ Soc 1884 591)

Sit solution at 15° has sp gr 1014, and cont uns 1 g I 1 CO3 to 70 g H2O, while solution sit it 0° his sp gr 1 0168 and contains 1 g 1 i CO, in 64 6 g H<sub>2</sub>O By long spontineous eviporition at 15° a solution can be obtained of 1 0278 sp. gr. containing 1 g L<sub>1</sub> CO<sub>3</sub> in 45 57 g H<sub>2</sub>O (Fluckiger, Arch Phum (3) 25 549)

By boiling for an instant with HO a solution is obtained, which has spigr 1 0074 and cont uns 1 g Ti CO3 to 139 g H2O (Fluckiger, Arch Phum (3) 26 543)

0 1687 mol is sol in 11 H O at 25° mund Z phys (h 1909, **69** 531)

Sit I (CO) + Aq cont uns at

950 0833% by wt 112CO; 0723

(Ischug iff, Z. morg. 1914, 86, 159)

Sit solution boils at 102° (Kiemeis) More sol in CO +Aq thin in H<sub>2</sub>O 100 J 1898, 20 828)

pts sat CO2+Aq dissolve 5 25 pts L12CO3 (Troost) See LiHCO3 Sol in NH4 salts+Aq

Solubility in salts + Aq at 25°

C=concentration of salt solution in gequiv per l

S=solubility of Li<sub>2</sub>CO<sub>3</sub> in g-equiv per l

| Salt                                       | С                                                            | s                                                                            |
|--------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|
| KNO₃                                       | 0 25<br>0 50<br>0 75<br>1 00<br>1 50<br>2 00                 | 0 3647<br>0 3688<br>0 3676<br>0 3656<br>0 3490<br>0 3268                     |
| KCl                                        | 0 10<br>0 25<br>0 50<br>0 75<br>1 00<br>1 50<br>2 00         | 0 3553<br>0 3590<br>0 3782<br>0 3832<br>0 3835<br>0 3731<br>0 3558           |
| NaCl                                       | 0 10<br>0 25<br>0 50<br>0 75<br>1 00<br>1 50<br>2 00         | 0 3569<br>0 3691<br>0 3867<br>0 3956<br>0 3946<br>0 3901<br>0 3776           |
| $\frac{\mathrm{K}_2\mathrm{SO}_4}{2}$      | 0 25<br>0 50<br>1 00                                         | 0 4028<br>0 4356<br>0 4860                                                   |
| $\frac{\mathrm{Na}_{2}\mathrm{SO}_{4}}{2}$ | 0 50<br>1 00<br>2 00                                         | 0 4411<br>0 4926<br>0 5534                                                   |
| NH4Cl                                      | 0 10<br>0 25<br>0 50<br>0 75<br>1 00<br>1 50<br>2 00<br>4 00 | 0 3902<br>0 4677<br>0 5659<br>0 6270<br>0 6810<br>0 7463<br>0 7739<br>0 7881 |
| (NH <sub>4</sub> ) SO <sub>4</sub>         | 0 25<br>0 50<br>1 00<br>1 50<br>2 00                         | 0 5059<br>0 7863<br>0 9804<br>1 109<br>1 174                                 |
| KClO <sub>3</sub>                          | 0 1<br>0 2<br>0 4                                            | 0 3500<br>0 3570<br>0 3616                                                   |

(Creffeken, Z. morg. 1905, 43, 198.)

Insol in liquid NH; (Franklin Am Ch

| 192                                                 | CARBONATE, L                 |                                      |  |  |
|-----------------------------------------------------|------------------------------|--------------------------------------|--|--|
| Solubility in org<br>Solubility in H <sub>2</sub> C | ganic compds ) at 25°=0 16   | +Aq at 25°<br>87 mols litre          |  |  |
| Organic compd                                       | Normality of<br>the solution | Mol Li <sub>2</sub> CO<br>sol in 1 l |  |  |
| Methyl alcohol                                      | 0 250<br>0 5<br>1 0          | 0 1604<br>0 1529<br>0 1394           |  |  |
| Ethyl alcohol                                       | 0 125<br>0 250<br>0 5<br>1 0 | 0 1614<br>0 1555<br>0 1417<br>0 1203 |  |  |
| Propyl alcohol                                      | 0 125<br>0 250<br>0 5<br>1 0 | 0 1604<br>0 1524<br>0 1380<br>0 1097 |  |  |
| Tertiary amyl<br>alcohol                            | 0 125<br>0 250<br>0 5<br>1 0 | 0 1564<br>0 1442<br>0 1224<br>0 0899 |  |  |
| Acetone                                             | 0 125<br>0 250<br>0 5<br>1 0 | 0 1600<br>0 1515<br>0 1366<br>0 1104 |  |  |
| Ether                                               | 0 125<br>0 250<br>0 5        | 0 1580<br>0 1476<br>0 1300           |  |  |
| Formaldehyde                                        | 0 125<br>0 250<br>0 5<br>1 0 | 0 1668<br>0 1653<br>0 1606<br>0 1531 |  |  |
| Glycol                                              | 0 125<br>0 250<br>0 5<br>1 0 | 0 1660<br>0 1629<br>0 1565<br>0 1472 |  |  |
| Glycerine                                           | 0 125<br>0 250<br>0 5<br>1 0 | 0 1670<br>0 1647<br>0 1613<br>0 1532 |  |  |
|                                                     |                              |                                      |  |  |

0 125

0 250 0 5

0 125

0.250

0 125

0 250

0 5

10

0 125

0 250 0 5

ĭŏ

0 5

10

0 1705

0 1737 0 1778

0 1702

0 1728

01752

0 1778

0 1693

0 1689

0 1661

0 1557

0 1686

0 1673

0 1643

0 1605

Mannitol

Glucose

Sucrose

Urea

| Solubility | ın | organic | compds | +Aq |
|------------|----|---------|--------|-----|
| at         | 2  | 5°—Cont | rnued  |     |

| at 25 — Continued |                              |                                                  |  |  |
|-------------------|------------------------------|--------------------------------------------------|--|--|
| Organic compd     | Normality of<br>the solution | Mol L O3                                         |  |  |
| Thio-urea         | 0 125<br>0 250<br>0 5<br>1 0 | 0 16 7<br>0 16 3<br>0 16 0<br>0 15 3             |  |  |
| Dimethyl-pyrone   | 0 125<br>0 250<br>0 5<br>1 0 | 0 15 ?<br>0 14 )<br>0 12 4<br>0 09 ?             |  |  |
| Ammonia           | 0 125<br>0 250<br>0 5<br>1 0 | 0 16 3<br>0 16 )<br>0 1° 7<br>0 14 5             |  |  |
| Diethylamine      | 0 125<br>0 250<br>0 5<br>1 0 | 0 15 9<br>0 14 1<br>0 12 3<br>0 0 <sup>c</sup> 7 |  |  |
| Pyridine          | 0 125<br>0 250<br>0 5<br>1 0 | 0 1; 2<br>0 1; 3<br>0 1, 7<br>0 1( 1             |  |  |
| Piperidine        | 0 125<br>0 250<br>0 5<br>1 0 | 0 1° 4<br>0 1′ 8<br>0 1 0<br>0 1( 9              |  |  |
| Urethane          | 0 125<br>0 250<br>0 5<br>1 0 | 0 16 4<br>0 1' 5<br>0 1 7<br>0 1 3               |  |  |
| Acetamide         | 0 250<br>0 5<br>1 0          | 0 16 4<br>0 1 0<br>0 1 8                         |  |  |
| Acetonitrile      | 0 125<br>0 250<br>0 5<br>1 0 | 0 1 8<br>0 1 6<br>0 1 9<br>0 1 8                 |  |  |
| Mercuric cyanide  | 0 125<br>0 250               | 0 1 7<br>0 1 4                                   |  |  |
| (Rothmund, Z p    |                              |                                                  |  |  |

Insol in methyl acetate (Naum. n, B 1909, 42 3790), ethyl acetate (Naumann, B 1904, 37 3601) Insol in acetone (Naumann, B 19 4, 37 4329, Eldmann, C C 1899, II 1014)

Lithium hydrogen carbonate, LiHCO<sub>3</sub> 100 pts H<sub>2</sub>O dissolve 5 501 pts . 13° (Bewad, B 17 406 R)  $\begin{array}{cccc} \textbf{Magnesium} & \textbf{carbonate,} & \textbf{basic,} & Mg_3C_2O_7 + \\ & 3H_2O = 3MgO, 2CO_2 + 3H_2O \text{ or } 2MgCO_2, \\ & MgO_2H_2 + 2H_2O & (Fritzsche, Pogg \ \textbf{37} \\ & 310 \ ) \end{array}$ 

Mcgnesia alba, 3MgCO<sub>3</sub>, Mg(OH)<sub>2</sub>+ 4H<sub>2</sub>O, 4MgCO<sub>3</sub>, Mg(OH)<sub>2</sub>+5H<sub>2</sub>O, or 5MgCO<sub>2</sub> 2Mg(OH)<sub>2</sub>+7H<sub>2</sub>O

5MgCO<sub>3</sub>, 2Mg(OH)<sub>2</sub>+7H<sub>2</sub>O Very sl sol in H<sub>2</sub>O Sol in 10,000 pts

hot or cold H<sub>2</sub>O (Bineau)

Sol m 2500 pts cold, and 9000 pts hot H<sub>2</sub>O (Fyfe)

Sol in H<sub>2</sub>O containing CO<sub>2</sub> Very easily sol in acids Easily sol in dil HCl+Aq

Easily sol in NH<sub>4</sub> sulphate, intrate, or succinate+Aq, also in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Wittstein) Sol in cold Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>5</sub>, K<sub>2</sub>SO<sub>4</sub>, KCl, or KNO<sub>3</sub>+Aq (Longchamp), also in NH<sub>4</sub>Cl+Aq, separating out on heating (Vogel, J pr 7 455) Slowly sol in cone BaCl<sub>2</sub>, CaCl<sub>2</sub>, or ZnSO<sub>4</sub>+Aq (Karsten)

Sol in MgSO<sub>4</sub>+Aq (Dulong) Sol in ferric salts+Aq with evolution of CO<sub>2</sub> and pptn of Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub> (Fuchs)

Sol in boiling Co, Ni, Žn, Mn, or Cu

nitrates or chlorides + Aq Min Hydromagnesite,

C R 100 911)

Mm Hydromagnesie, 4MgO, 3CO<sub>2</sub>+4H<sub>2</sub>O +10H<sub>2</sub>O Sol in considerable amount in H<sub>2</sub>CO<sub>3</sub>+Aq as MgH<sub>2</sub>(CO<sub>2</sub>)<sub>2</sub>+Aq (Engel,

# Magnesium carbonate, MgCO8

At hydrous Insol in H<sub>2</sub>O 1 1 H<sub>2</sub>O dissolves 106 mg MgCO<sub>3</sub> (Chevalet, Z anal 8 91) Sol in 5071 pts H<sub>2</sub>O at 15° (Kremers) MgCO<sub>3</sub> combines with H<sub>2</sub>O to form MgCO<sub>3</sub>+3H<sub>2</sub>O, and +5H<sub>2</sub>O, which are less sol in H<sub>2</sub>O than anhydrous salt (Engel, C R 101 814)

Very hydroscopic About 20 g are sol in 11 H<sub>2</sub>O (Engel, C R 1899, **129** 598)

0.7156 g are sol in 11 H<sub>2</sub>O at 15°

0.627 g are sol in 1 l  $H_2O$  at 15° with vapour pressure of  $CO_2$  equal to zero

 $\hat{6}$  977 grams are sol in  $\hat{1}$  1 H<sub>2</sub>O at 15° with vapour pressure CO<sub>2</sub> equal to 1 atmos (Treadwell and Reuter,  $\hat{Z}$  anorg 1898, 17 202)

944 mg are sol m 1 l of CO<sub>2</sub>-free water

(Gothe, Ch Z 1915, **39** 306)

Solubility in  $II_2O$  in equilibrium with  $Mg(HCO_3)_2$  and  $CO_2$ 

System MgCO<sub>3</sub>, Mg(HCO<sub>3</sub>)<sub>2</sub> and CO<sub>2</sub> at 30° C

| Lotal Mg          | Mg as MgCOs       | (FI N LI |  |
|-------------------|-------------------|----------|--|
| (grams per liter) | (grams per liter) | At ILCO  |  |
| 0 02410           | 0 01205           | 0 01205  |  |
| 0 13135           | 0 06820           | 0 06314  |  |
| 0 16087           | 0 08676           | 0 07411  |  |

Solubility in  $H_2O$  in equilibrium with  $Mg(HCO_3)_2$  and  $CO_2$ —Continued

System MgCO<sub>3</sub>, Mg(HCO<sub>3</sub>) and CO<sub>2</sub> at 30° C

| Total Mg (gram   | Mg as MgCO <sub>3</sub> | Mg as Mg(HCO <sub>3</sub> ) <sub>2</sub> |  |
|------------------|-------------------------|------------------------------------------|--|
| atoms per liter) | Per cent                | Per cent                                 |  |
| 0 00100          | 50 00                   | 50 00                                    |  |
| 0 00545          | 51 92                   | 48 08                                    |  |
| 0 00667          | 53 93                   | 46 07                                    |  |

| Total salts                       | MgCO <sub>3</sub>          |                      | Mg(HCO <sub>8</sub> ) <sub>2</sub> |                      |
|-----------------------------------|----------------------------|----------------------|------------------------------------|----------------------|
| in solution<br>Grams per<br>liter | Grams<br>per liter         | Per cent             | Grems<br>per liter                 | Per cent             |
| 0 1144<br>0 6174<br>0 7479        | 0 0418<br>0 2368<br>0 3012 | 36 5<br>38 2<br>40 3 | 0 0726<br>0 3806<br>0 4467         | 63 5<br>61 7<br>59 7 |

In a solution near the saturation point and m equilibrium with atmospheric air upwards of 50 per cent of the magnesium is in the form of the normal carbonate. When the solution is brought in contact with the solid phase, the proportion of the base combined as normal carbonate falls to about 34 per cent, or lower (Cameron and Briggs, J phys Chem 1901, 5 552-3)

For solubility in H<sub>2</sub>CO<sub>8</sub>+Aq, see Magnesium hydrogen carbonate

Scarcely acted upon by HCl+Aq (Senarmont)

The solubility of MgCO<sub>3</sub> in NaCl+Aq when in contact with ordinary air increases with increasing concentration of NaCl up to a maximum, and then decreases (Cameron and Seidell, J phys Chem 1903, 7 579)

Solubility of MgCO<sub>3</sub> in salts+Aq in equilibrium with an atmosphere free from CO<sub>2</sub>

NaCl+Aq,  $t=23^{\circ}$ 

| Weight of<br>liter of<br>solution | C rams<br>NaCl per<br>liter | Grams<br>MgCOs<br>per liter | Reacting<br>weights<br>NaCl<br>per liter | Reacting<br>weights<br>MgCO <sub>2</sub><br>per liter |
|-----------------------------------|-----------------------------|-----------------------------|------------------------------------------|-------------------------------------------------------|
| 996 92                            | 0 0                         | 0 176                       | 0 000                                    | 0 00210                                               |
| 1016 82                           | 28 0                        | 0 418                       | 0 482                                    | 0 00500                                               |
| 1041 09                           | 59 5                        | 0 527                       | 1 025                                    | 0 00630                                               |
| 1070 50                           | 106 3                       | 0 585                       | 1 831                                    | 0 00699                                               |
| 1094 53                           | 147 4                       | 0 544                       | 2 539                                    | 0 00650                                               |
| 1142 48                           | 231 1                       | 0 460                       | 3 981                                    | 0 00550                                               |
| 1170 14                           | 272 9                       | 0 393                       | 4 701                                    | 0 00470                                               |
| 1199 28                           | 331 4                       | 0 293                       | 5 709                                    | 0 00350                                               |

(Cameron and Seidell, J. phys. Chem. 1903, 7 585.)

| Solubility | of MgCO <sub>3</sub> in salts+Aq—Continued |
|------------|--------------------------------------------|
|            | $N_{a} SO_{a} + A_{\alpha} t = 24^{\circ}$ |

|                                                                                                | 1/a2504 TAQ, 6-22                                                                 |                                                                               |                                                                               |                                                                                      |  |  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| Weight of<br>liter of<br>solution                                                              | Grams<br>Na <sub>2</sub> SO <sub>4</sub><br>per liter                             | Reacting<br>wts MgCO<br>per liter                                             |                                                                               |                                                                                      |  |  |
| 997 52<br>1021 24<br>1047 60<br>1080 95<br>1133 85<br>1157 34<br>1206 03<br>1223 91<br>1241 99 | 0 00<br>25 12<br>54 76<br>95 68<br>160 80<br>191 90<br>254 60<br>278 50<br>305 10 | 0 216<br>0 586<br>0 828<br>1 020<br>1 230<br>1 280<br>1 338<br>1 338<br>1 388 | 0 000<br>0 178<br>0 388<br>0 678<br>1 140<br>1 360<br>1 804<br>1 973<br>2 162 | 0 00258<br>0 00700<br>0 00990<br>0 01219<br>0 01470<br>0 01530<br>0 01600<br>0 01660 |  |  |

#### $t \approx 35.5^{\circ}$

| Weight of<br>liter of<br>solution                                                              | Grams<br>Na <sub>2</sub> SO <sub>4</sub><br>per liter                              | Grams<br>MgCO <sub>3</sub><br>per liter                                       | Reacting<br>weights<br>Na <sub>2</sub> SO <sub>4</sub><br>per liter  | Reacting<br>weights<br>MgCOs<br>per liter                                                       |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 995 15<br>1032 89<br>1067 23<br>1094 77<br>1120 38<br>1151 70<br>1179 82<br>1196 32<br>1236 52 | 0 32<br>41 84<br>81 84<br>116 56<br>148 56<br>186 70<br>224 00<br>247 20<br>199 20 | 0 131<br>0 577<br>0 753<br>0 904<br>0 962<br>1 047<br>1 088<br>1 100<br>1 130 | 0 296<br>0 579<br>0 826<br>1 052<br>1 323<br>1 587<br>1 751<br>2 120 | 0 00156<br>0 00689<br>0 00900<br>0 01080<br>0 01149<br>0 01251<br>0 01300<br>0 01314<br>0 01350 |

# (Cameron and Seidell)

# $Na_2CO_3+Aq$ , $t=25^\circ$

| Weight of<br>liter of<br>solution | Grams<br>Na CO <sub>3</sub><br>per liter | Grams<br>MgCO <sub>3</sub><br>per liter | Reacting<br>weights<br>Na <sub>2</sub> CO <sub>3</sub><br>per liter | Reacting<br>weights<br>MgCO <sub>3</sub><br>per liter |
|-----------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|
| 996 84                            | 0 00                                     | 0 223                                   | 0 000                                                               | 0 00266                                               |
| 1019 89                           | 23 12                                    | 0 288                                   | 0 220                                                               | 0 00344                                               |
| 1047 72                           | 50 75                                    | 0 510                                   | 0 482                                                               | 0 00620                                               |
| 1082 47                           | 86 42                                    | 0 879                                   | 0 820                                                               | 0 01027                                               |
| 1118 91                           | 127 30                                   | 1 314                                   | 1 209                                                               | 0 01570                                               |
| 1147 66                           | 160 80                                   | 1 636                                   | 1 526                                                               | 0 01955                                               |
| 1166 05                           | 181 90                                   | 1 972                                   | 1 727                                                               | 0 02357                                               |
| 1189 38                           | 213 20                                   | 2 317                                   | 2 024                                                               | 0 02770                                               |

#### (Cameron and Seidell)

#### Solubility in salts+Aq

| g salt added per litre   | mg MgCO3 dissolved<br>per litre |
|--------------------------|---------------------------------|
| 0 0                      | 94 4                            |
| 0 585 g NaCl             | 128 3                           |
| 1 17 g "                 | 134 4                           |
| 2 93 g "                 | 120 95                          |
| 0 85 g NaNO <sub>3</sub> | 122 85                          |
| 1 70 g "                 | 138 80                          |
| 4 25 g "                 | 137 20                          |

| Solubility in salts+A                                        | Lq —Continuec                |
|--------------------------------------------------------------|------------------------------|
| g salt added per litre                                       | mg MgCO3 diss v<br>per litre |
| 0 805 g Na <sub>2</sub> SO <sub>4</sub> , 10H <sub>2</sub> O | 145 05                       |
| 1 61 g "                                                     | 162 05                       |
| 4 03 g "                                                     | 150 75                       |
| 0 53 g Na <sub>2</sub> CO <sub>3</sub>                       | 98 6                         |
| 1 06 g "                                                     | 53 5                         |
| 2 65 g "                                                     | 15 7                         |
| 0 51 g MgCl <sub>2</sub> , 6H <sub>2</sub> O                 | 47 0                         |
| 1 02 g "                                                     | 39 5                         |
| 2 55 g "                                                     | 35 3                         |

The solubility of MgCO<sub>3</sub> in CO<sub>2</sub>-free ater is increased by the addition of NaCl, N 4O3 or Na<sub>2</sub>SO<sub>4</sub>, 10H<sub>2</sub>O but decreased by the tion of Na<sub>2</sub>CO<sub>3</sub> or MgCl<sub>2</sub>, 6H<sub>2</sub>O

(Gothe, Ch Z 1915, 39 306)

Insol in liquid NH3 (Franklin, Am ChJ 1898, 20 828) Insol in acetone (Naumann. B 904. **37** 4329)

Insol in acetone and in methylal ∃ıdmann, C C 1899, II 1014)

Insol in methyl acetate (Nauman В 1909. 42 3790), ethyl acetate (Naur ınn, B 1904, **37** 3601)

Min Magnesite Very sl attacke by warm conc HCl+Aq 100 pts H<sub>2</sub>O d<sub>1</sub> olve 0 0027 pt, calculated as MgO (Lubay )

Solution in  $H_2O$  contains 0 018 g M 0 065 g  $CO_2$  per l at 20° (Wells, J Chem Soc 1915, 37 1705) and Am

Solution in H<sub>2</sub>O containing 27 2 g [aCl per l contains 0 028 g Mg and 0 086 g CO2 per l at 20° (Wells, J Am Chem Soc 1915, **37** 1705)  $+H_2O$ 

 $+2H_2O$ Decomp by suspension if H<sub>2</sub>O into basic salt (Engel, C R 100 911  $+3H_2O$ 

Small quantities of this sa wholly dissolved by much H<sub>2</sub>O (Bine 1) The solution contains in 100 pts at-

U° 6 5° 8° 4 16° F7 0 15 0 153 0 155 0 179 pts MgCO<sub>3</sub>+ (Norgaard, 1850)

are

Decomp by boiling H2O into a basic usol salt and CO<sub>2</sub> 100 pts H<sub>2</sub>O dissolve ( 1518 pt at 19° (Fritzsche, Pogg 37 304) Sol in 48 pts H2O, and decomp by arge

(Fourcrov)

100 pts  $H_2O$  dissolve 0 1518 pt at 1 °, or sol in 658 pts  $H_2O$  at 19° (Beckurts J B

**1881** 212) 100 pts H<sub>2</sub>O dissolve 0 0812 pt, calc ated as MgO (Lubavin, J russ Soc 24 3 ))

Solution in H<sub>2</sub>O contains 0.36 g M and 101 g CO<sub>2</sub> per l at 20° Chem Soc 1915, **37** 1707) (Wells, J Am

Solubility in H<sub>2</sub>O sat with CO<sub>2</sub> has been determined at 20°, 25°, 30°, 34° and 3°

at CO<sub>2</sub> pressures corresponding with 0.5 to 30.3% CO<sub>2</sub> in the gas phase (Leather and Sen, Chem Soc 1915, 108 (2) 13.)

Easily sol in acids even when dil

Not decomp by 1 pt  $H_2SO_4+6$  pts alcohol, or by alcoholic solutions of glacial acetic, racemic, or tartaric acids, but is slowly decomp by alcoholic solution of citric acid,

or HNO<sub>3</sub>+abs alcohol (Butını, 1827) 100 pts NaCl+Aq (2 525%) dissolve 0 1250 pt, calculated as MgO (Lubavin)

1% Na<sub>2</sub>CO<sub>3</sub>+Aq, when mixed with 1% MgSO<sub>4</sub>+Aq, cause no ppt, but 15-2% solutions ppt this salt (Brandes, 1825)

More sol in NH4Cl+Aq than CaCO3 Sol in NH4NO3+Aq, but less easily than in

NH₄Cl+Aq

Solubility in KHCO<sub>3</sub>+Aq at t° Values are given in mol/litre

| , and or one of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of th |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| t°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K                                                                                                               | Mg                                                                                                                   | Solid phase                                                                                                                                                                                       |  |  |
| 15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0<br>0 0992<br>0 1943<br>0 3992<br>0 2681                                                                     | 0 0095<br>0 0131<br>0 0167<br>0 0211<br>0 0192                                                                       | MgCO <sub>3</sub> +3H <sub>2</sub> O<br>labile<br>MgCO <sub>3</sub> +3H <sub>2</sub> O+MgCO <sub>3</sub><br>KHCO <sub>3</sub> +4H <sub>2</sub> O                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 5243<br>0 6792<br>0 9810                                                                                      | 0 0097<br>0 0074<br>0 0028                                                                                           | MgCO <sub>3</sub> KHCO <sub>3</sub> +4H <sub>2</sub> O                                                                                                                                            |  |  |
| 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0<br>0 0985<br>0 2210<br>0 3188<br>0 3434<br>0 4216<br>0 4985<br>0 3906<br>0 5893<br>0 6406<br>0 788<br>1 125 | 0 0087<br>0 0115<br>0 0149<br>0 0175<br>0 0181<br>0 0205<br>0 0207<br>0 0196<br>0 0128<br>0 0117<br>0 0089<br>0 0061 | MgCO <sub>1</sub> +3H <sub>2</sub> O  labile  M <sub>L</sub> CO <sub>3</sub> +3H O+MgCO <sub>3</sub> KHCO <sub>3</sub> +4H <sub>2</sub> O  M <sub>L</sub> CO <sub>1</sub> KHCO <sub>3</sub> +4H O |  |  |
| 35°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0<br>0 1092<br>0 2001<br>0 2811<br>0 3704<br>0 4847<br>0 5867<br>0 5088<br>0 6231<br>0 8435                   | 0 0071<br>0 0098<br>0 0132(?)<br>0 0142<br>0 0165<br>0 0177<br>6 0195<br>0 0154<br>0 0153<br>0 0119                  | M <sub>K</sub> CO <sub>1</sub> +3H O  M <sub>C</sub> CO <sub>4</sub>   II O + M <sub>K</sub> CO <sub>4</sub> KIICO <sub>4</sub> +4H O  M <sub>C</sub> CO <sub>4</sub>   KIICO <sub>1</sub> +4H O  |  |  |

The experiments were performed in such way as to prevent, as far as possible, loss of CO from the solutions (Auerbach, Z Elektrochem 1904, 10 164)

a little NaCl, dissolves 5 g MgCO<sub>3</sub> (Hunt. Sill Am J (2) 42 49) More sol in cold alkalı borates+Aq than

in hot (Wittstein) Sol in Na citrate+Aq

 $+4H_{\circ}O$ Efflorescent

 $+5H_{\bullet}O$ Two modifications

a Plates Sol in 600 pts H<sub>2</sub>O at 0-7°, solution gradually separates out MgCO<sub>3</sub>+ 2H<sub>2</sub>O H<sub>2</sub>CO<sub>3</sub>+Aq sat at 3-4 atmos pres-sure dissolves 9% at 0-4° MgSO<sub>4</sub>+Aq dissolves 4% moist salt at 3-4°, and it is easily sol in Na<sub>2</sub>CO<sub>3</sub>, or NaHCO<sub>3</sub>+Aq (Norgaard)

 $\beta$  Prisms More efflorescent than a Sol in 600 pts H<sub>2</sub>O but not in MgSO<sub>4</sub>, or Na<sub>2</sub>CO<sub>3</sub> +AqBoth forms are decomp by boiling

H<sub>2</sub>O (Norgaard)

#### Magnesium hydrogen carbonate, $MgH_2(CO_3)_2(7)$

Known only in solution

1 l H<sub>2</sub>CO<sub>3</sub>+Aq sat at 1 atmos pressure dissolves 23 5 g MgCO<sub>3</sub> (Bineau)

1 l carbonic acid water dissolves 0 115 g magnesite at 18° and 0 75 m pressure (Cossa, B 2 697)

1 pt MgOO3 dissolves in H2O saturated with CO2 at 5° and a pressure of-

6 atmospheres in 161 144 134 100 7 110 76 pts H<sub>2</sub>O (Merkel, Techn J B 1867 213)

H<sub>2</sub>CO<sub>3</sub>+Aq sat at 3-4 atmos pressure and 0-4° dissolved 9% MgCO<sub>3</sub>+5H<sub>2</sub>O (Norgaard) MgCO<sub>3</sub>+3H<sub>2</sub>O is sol in 72 4 pts H<sub>2</sub>CC<sub>3</sub>+ Aq sat at 20° and ord pressure, 30 5 pts H<sub>2</sub>CO<sub>3</sub>+Aq sat at 2 atmos pressure, 260 pts  $H_2CO_3+Aq$  sat at 3 atmos pressure, 21.1 pts  $H_2CO_3+Aq$  sat at 4 atmos pressure, 17 09 pts H<sub>2</sub>CO<sub>3</sub>+Aq sat at 5 atmos pressure (Beckurts, J B **1881** 212)

1 H<sub>2</sub>O sat with CO<sub>2</sub> at p pressure and t° dissolves g MgCO

| CIDDOLACD & INTRO CAR                                |                                                              |                                                                  |                                                             |                                                           |                                                                     |  |
|------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|--|
| p<br>atmos                                           | t                                                            | M <sub>h</sub> CO <sub>3</sub>                                   | p<br>mm                                                     | 1°                                                        | MgCO₃                                                               |  |
| 1 0<br>2 1<br>3 2<br>4 7<br>5 6<br>6 2<br>7 5<br>9 0 | 19 5<br>19 5<br>19 7<br>19 0<br>19 2<br>19 2<br>19 5<br>18 7 | 27 79<br>33 11<br>37 3<br>43 5<br>46 2<br>48 51<br>51 2<br>56 5) | 751<br>760<br>762<br>764<br>764<br>765<br>765<br>765<br>765 | 13 4<br>19 5<br>29 3<br>46<br>62<br>70<br>82<br>91<br>100 | 28 45<br>25 79<br>21 95<br>15 7<br>10 4<br>8 1<br>4 9<br>2 4<br>0 0 |  |

(Engel and Ville, C R 93 34)

The low figures of other observers are due to their using basic carbonates By very care-11 H<sub>2</sub>O, containing 6% MgSO<sub>4</sub>+7H<sub>2</sub>O and ful experiments it was found that 1 I H<sub>2</sub>O

sat with CO2 at 1 atmos pressure and to dis- Solubility in NaCl+Aq at 23°C in eq solved the following amts of MgCO3

| t°                                         | MgCO <sub>3</sub> | t° | MgCO <sub>3</sub> | t° | MgCO3 |
|--------------------------------------------|-------------------|----|-------------------|----|-------|
| $\begin{array}{c} 3 \ 5 \\ 12 \end{array}$ | 35 6              | 18 | 22 1              | 40 | 22 1  |
|                                            | 26 5              | 30 | 15 8              | 50 | 9 5   |

(Engel, C R 100 444)

1 9540 g are sol 1 l H<sub>2</sub>O at 15° (Tre well and J euter, Z anorg 1898, 17 202) (Tread-

MgH<sub>2</sub>(CO<sub>8</sub>)<sub>2</sub> is not stable except in the

presence of free CC2

At 15° and 760 mm, a solution having the partial pressure of CO<sub>2</sub>=0, contains 19540 g MgH<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub> and 07156 g MgCO<sub>3</sub> per liter (Treadwell and heuter, Z anorg 1898, 17 204)

Solubility of MgH<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub> in H<sub>2</sub>O containing carbonic acid, at 15°

| % carbonic acid in the gas at 0° and 760 mm                                   | partial pressure<br>mm Hg                                                  | mg free CO <sub>2</sub> | mg MgH2(CO3);<br>in 100 cc of the<br>solution                                                                                                                       | mg MgCOs in<br>100 cc of the<br>solution           | mg Mg                                                                                                                                               |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 18 86<br>5 47<br>4 45<br>1 54<br>1 35<br>0 62<br>0 60<br>0 33<br>0 14<br>0 03 | 143 3<br>41 6<br>33 8<br>11 7<br>10 3<br>8 2 7<br>4 6<br>2 5<br>1 1<br>0 3 | 119 0<br>86 6<br>223 5  | 1210 5<br>1210 5<br>1210 5<br>1210 5<br>1076 6<br>762 9<br>595 2<br>366 3<br>341 7<br>263 2<br>222 2<br>222 9<br>216 9<br>203 6<br>203 3<br>196 6<br>195 4<br>195 4 | 77 3 76 5 77 8 77 1 77 1 1 1 68 5 70 2 5 61 6 64 1 | 201 6<br>201 6<br>201 6<br>201 6<br>201 6<br>149 2<br>122 4<br>86 5<br>78 8<br>65 5<br>59 4<br>56 6<br>54 5<br>53 6<br>52 9<br>52 0<br>51 1<br>51 8 |

(Treadwell and Reuter, Z anorg 1898, 17 200)

No bicarbonate of magnesium is formed under pressures of CO2 up to five atmospheres at 0° (Cameron, J phys Chem 1908, **12** 570)

A critical analysis and recalculation of results of Engel and others is given by Johnston (J Am Chem Soc 1915, 37 2001)

lıbrium with an atmosphere of CO<sub>2</sub>

| g NaCl per liter | g Mg(HCO <sub>3</sub> ) <sub>2</sub> per |
|------------------|------------------------------------------|
| 7 0              | 30 64                                    |
| 56 5             | 30 18                                    |
| 119 7            | 27 88                                    |
| 163 9            | 24 96                                    |
| <b>224</b> 8     | 20 78                                    |
| 306 6            | 10 75                                    |

(Cameron and Seidell, J. phys. Chem. 103.

Solubility in Na<sub>2</sub>SO<sub>4</sub>+Aq at 23° C in eq hbrium with an atmosphere of CO<sub>2</sub>

| Strength of Na <sub>2</sub> SO <sub>4</sub> +Aq | g Mg(HCO <sub>3</sub> ) <sub>2</sub> in 100 | m |
|-------------------------------------------------|---------------------------------------------|---|
| 0 0                                             | 1 463                                       |   |
| 12%                                             | 1 916                                       |   |
| saturated                                       | 1 612                                       |   |
|                                                 |                                             |   |

(Cameron and Seidell)

Magnesium potassium carbonate,  $MgK_2(CO_s)_2+4H_2O$ 

Quickly decomp by rold H<sub>2</sub>O A ch (3) 33 87) Ppt Decomp by H<sub>2</sub>O (Reyno (De lle.

(Reynolds, C

Soc 1898, 73, 264)

 $MgKH(CO_3)_2+4H_2O$ Insol in H<sub>2</sub>O decomp thereby into an insol basic Mg bonate, and MgH2(CO3)2 and KHCO3, v dissolve (Berzelius)

Magnesium rubidium hydrogen carbo  $MgRbH(CO_3)_2+4H_2O$ 

Decomp in the air (Erdmann, A 97, **294** 75)

Magnesium sodium carbonate, MgCO Na<sub>2</sub>CO<sub>2</sub>

Quickly decomp with H<sub>2</sub>() (Deville A ch (3) 33 89)

+15H<sub>2</sub>O (Norgaard)

Magnesium sodium carbonate'sodium i loride, MgCO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, NaCl

Decomp by HO (de Schulten, C 1896, **122** 1427)

Manganous carbonate, MnCO<sub>3</sub>

Permanent Practically insol in H<sub>2</sub>O ol. in H<sub>2</sub>CO<sub>3</sub>+Aq and in acids generally

1 l H<sub>2</sub>O dissolves 0 065 g at 25° (A no and Valla, Att Accad I inc 1911 20, Il 6)

Insol in liquid NH3 (Franklin, Am J 1898, **20** 828)

'n

Insol in ethyl acetate (Naumann 1910, 43 314)

Min Rhodochrosite

 $+\frac{1}{2}$ , or  $1H_2O$ Insol in H<sub>2</sub>O Sol in H<sub>2</sub>CO<sub>8</sub>+Aq 1 pt Mr requires 2000 pts H2CO2+Aq for solu on

(Lassaigne) Sol in 7680 pts H<sub>2</sub>O, and 3840 pts H<sub>2</sub>O containing CO<sub>2</sub> (Jahn) When freshly precipitated is sol in NH4 salts+Aq (Wittstein) Not more sol in H<sub>2</sub>O containing Na<sub>2</sub>CO<sub>3</sub> or K<sub>2</sub>CO<sub>3</sub> than in pure H<sub>2</sub>O (Ebelmen) Insol in NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>3</sub>+

Aq (Brett)
Sol in ferric salts+Aq, with evolution of CO<sub>2</sub> and pptn of Fe<sub>2</sub>C<sub>6</sub>H<sub>6</sub> (Fuchs)

Not pptd in presence of Na citrate (Spiller)

## Manganous potassium carbonate, $MnK_2(CO_3)_2+4H_2O$

Ppt Decomp by  $H_2O$  alone Si sol in  $Mn(C_2H_3O_2)_2+Aq$  or  $K_2CO_3+$ Aq (Reynolds, Chem Soc 1898, 73 264)

# Manganous carbonate hydroxylamine, $4MnCO_3$ , $3NH_3O + 2H_2O$

(Goldschmidt and Sol in acids Syngros, Z anorg 5 138)

## Mercurous carbonate, Hg<sub>2</sub>CO<sub>3</sub>

Ppt Decomp by hot H<sub>2</sub>O Sol in hot or warm NH4Cl+Aq, but less easily than mercuric carbonate, less sol in NH4NO3+Aq (Brett, 1837)

Sl sol in K<sub>2</sub>CO<sub>3</sub>+Aq, partially sol with decomp in NH<sub>4</sub>OH + Aq (Wittstein)

#### Mercuric carbonate, basic, 4HgO, CO

Can be washed with cold HO without decomp (Millon, A ch (3) 19 368)
3HgO, CO<sub>2</sub> Insol in cold H<sub>2</sub>O Sol in
CO<sub>2</sub>+Aq, sl sol in K CO<sub>3</sub>+Aq Lasily sol
in NII<sub>4</sub>Cl+Aq (Berzelius) Sol in

Neodymium potassium carbonate, Nd<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>, **人2( ()3** 十12H ()

Sol in 30% K<sub>2</sub>CO<sub>3</sub>+Aq (Meyer, Z anoig 1904, 41 105)

Neodymium sodium carbonate,  $2Nd_2(CO_3)_3$ ,  $3Na_2CO_3+22II_2O(?)$ 

Ppt Fasily decomp SI sol in conc Na CO<sub>3</sub>+Aq (Meyer, Z morg 1904, **41** 106)

Nickel carbonate, basic, 3NiO, CO<sub>2</sub>+5H<sub>2</sub>O Min Zaratite It isily sol in HCl+Aq Pptd nickel carbonate is a basic salt of varying composition Insol in H<sub>2</sub>O or H<sub>2</sub>CO<sub>3</sub> +Ao Sol in acids Sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq,

very sl sol in Na<sub>2</sub>CO<sub>3</sub>+Aq, sol in warm (Rose)  $NH_4Cl+Aq$ , and KCN+AqNot pptd in presence of Na citrate (Spil-

Nickel carbonate, NiCO<sub>3</sub>

1 1  $H_0O$  dissolves 0 0925 g at 25% (Ageno and Valla, Att Accad Linc 1911, **20**, II 706)

Not attacked by cold conc HCl, or HNO: +Aq\_(Senarmont, A ch (3) 30 138) +6H<sub>2</sub>OSol in acids (Deville, A ch

(3) **35 446** ) See also Carbonate, nickel, basic

Nickel potassium carbonate, NiCO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>+  $4H_2O$ 

Ppt (Deville, A ch (3) 33 96) NiCO<sub>3</sub>, KHCO<sub>3</sub>+4H<sub>2</sub>O Decomp by H<sub>2</sub>O, but may be washed by KHCO<sub>3</sub>+Aq without decomp (Rose, Pogg 84 566)

Nickel sodium carbonate, NiCO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>+  $10H_2O$ 

Ppt (Deville)

Nickel carbonate hydroxylamine, 2Ni(OH)2,  $4N_1CO_3$ ,  $5NH_2OH + 7H_2O$ 

(Goldschmidt and Syngros, Z anorg Ppt 1894, 5 143)

2N<sub>1</sub>(OH)<sub>2</sub>, 4N<sub>1</sub>CO<sub>3</sub>, 6NH<sub>2</sub>OH+6H<sub>2</sub>O Ppt (Goldschmidt and Syngros)

Palladious carbonate, PdCO<sub>2</sub>, 9PdO+  $10H_2O$ 

Insol in H<sub>2</sub>O, partly sol in NH<sub>4</sub>OH+Aq, sl sol in Na<sub>2</sub>CO<sub>3</sub>+Aq, sol in acids (Kane, **1842**)

## Potassium carbonate, K<sub>2</sub>CO<sub>3</sub>

Dut )

Deliquescent Very sol in H O with evolution of heat

Sol in 1 05 pts H O at 3 0 962 pt at 6 0 900 pt at 12 6 0 747 pt at 26 and 0 190 pt at 70

(Osann)

Sann )
Sol in 0 92 pt H () (M R and P)
Sol in 0 922 pt H () at 15 (Gerlach)
Sol in 1 pt H () (Abl)
100 pts H () at 15 5 dis observed pts K ( ()) (Ure s

Solubility in 100 pt H2O at to

|                     |                                   | - 5                  | -                                    |                        |                                      |
|---------------------|-----------------------------------|----------------------|--------------------------------------|------------------------|--------------------------------------|
| t°                  | I ts<br>K2CO1                     | t                    | Pts<br>K COa                         | t                      | Pts<br>K CO3                         |
| 0<br>10<br>20<br>30 | 83 12<br>88 72<br>94 06<br>100 09 | 40<br>50<br>60<br>70 | 106 20<br>112 90<br>119 24<br>127 16 | 80<br>90<br>100<br>135 | 134 25<br>143 18<br>153 66<br>205 11 |
|                     |                                   |                      |                                      |                        |                                      |

(Poggiale, A ch (3) 8 468)

| Solubility in 100 pts H <sub>2</sub> O at t°                                                                                                |                                                                                |                                                                                                                                                                                        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| t°                                                                                                                                          | Pts<br>K CO <sub>3</sub>                                                       | ll to                                                                                                                                                                                  | Pts<br>K CO                                                                                                                                     | s to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pts<br>K CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0 1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 17 18 9 20 1 2 2 3 2 4 2 5 2 6 7 2 8 9 30 1 3 2 2 3 3 3 4 5 3 6 3 7 3 3 9 4 4 1 4 2 4 3 4 4 4 4 5 (M | 89 4 94 97 100 102 104 105 106 107 108 109 109 110 110 111 111 111 111 111 111 | 46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>60<br>61<br>62<br>63<br>64<br>66<br>66<br>67<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77 | 119 120 120 121 121 122 122 123 124 125 126 127 128 129 130 130 131 132 133 134 135 136 137 137 138 139 140 141 141 142 143 144 144 145 146 147 | 91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116<br>117<br>118<br>119<br>120<br>121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>130<br>131<br>131<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>130<br>131<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>138<br>139<br>130<br>131<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>138<br>138<br>139<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130 | 148<br>149<br>150<br>151<br>151<br>152<br>153<br>154<br>155<br>156<br>157<br>160<br>161<br>162<br>163<br>164<br>166<br>167<br>168<br>169<br>171<br>172<br>173<br>175<br>176<br>178<br>179<br>181<br>182<br>184<br>185<br>187<br>188<br>199<br>191<br>193<br>195<br>196<br>191<br>193<br>195<br>196<br>197<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198 |  |  |

(Mulder, Scheik Verhandel 1864 97) 112 g are sol in 100 g H<sub>2</sub>O at 20° (Frankforter, J Am Chem Soc 1914, 36 1106)

| Sp gr of K CO <sub>3</sub> +Aq at 15                                                                      |                                                                                                                      |                                                                                                                     |                                                                                                                      |  |  |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| ℃ K CO3                                                                                                   | ∽p gr                                                                                                                | % K CO3                                                                                                             | Sp gr                                                                                                                |  |  |
| 0 489<br>0 979<br>1 958<br>2 934<br>3 916<br>4 895<br>5 874<br>6 853<br>7 832<br>8 811<br>9 790<br>10 769 | 1 0048<br>1 0098<br>1 0108<br>1 0299<br>1 0401<br>1 0505<br>1 0611<br>1 0719<br>1 0829<br>1 0940<br>1 1052<br>1 1166 | 11 748<br>12 727<br>13 706<br>14 685<br>1 664<br>16 643<br>17 622<br>18 601<br>19 580<br>20 539<br>21 538<br>22 517 | 1 1282<br>1 1400<br>1 1520<br>1 1642<br>1 1766<br>1 1892<br>1 2020<br>1 2150<br>1 2282<br>1 2417<br>1 2554<br>1 2694 |  |  |

| Sp | gr | of K2CO3+Aq at 15°-Continued |  |
|----|----|------------------------------|--|
|----|----|------------------------------|--|

| F -G                                                                                             |                                                                                                  |                                                                                        |                                                                                      |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| % K CO3                                                                                          | Sp gr                                                                                            | % K CO3                                                                                | Sp r                                                                                 |
| 23 496<br>24 475<br>25 454<br>26 432<br>27 412<br>28 391<br>29 360<br>30 349<br>31 328<br>32 807 | 1 2836<br>1 2980<br>1 3078<br>1 3177<br>1 3277<br>1 3378<br>1 3480<br>1 3585<br>1 3692<br>1 3803 | 33 286<br>34 265<br>35 244<br>36 223<br>37 202<br>38 181<br>39 160<br>40 139<br>40 a04 | 1 17<br>1 4 30<br>1 4 47<br>1 4 62<br>1 4 34<br>1 4 24<br>1 4 26<br>1 4 30<br>1 4 12 |

(Tünnerman)

Sp gr and boiling point of K2CO3+Aq

| %<br>K2CO₃                                                                         | Sp gr                                                                                        | B pt                                                                                                                 | K₂CO₁                                                                          | Sp gr                                                                                | В                                                                         |             |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|
| 4 7<br>9 0<br>13 2<br>16 8<br>20 5<br>24 0<br>27 3<br>30 6<br>36 2<br>39 0<br>41 7 | 1 06<br>1 11<br>1 15<br>1 19<br>1 22<br>1 25<br>1 28<br>1 31<br>1 34<br>1 38<br>1 41<br>1 44 | 100 56°<br>100 56<br>101 11<br>101 11<br>101 6<br>102 22<br>102 78<br>103 33<br>104 44<br>105 56<br>107 22<br>108 33 | 43 3<br>45 8<br>48 8<br>52 1<br>560 4<br>65 5<br>71 8<br>79 2<br>88 4<br>100 0 | 1 46<br>1 50<br>1 54<br>1 58<br>1 63<br>1 70<br>1 80<br>1 95<br>2 15<br>2 40<br>2 60 | 109<br>111<br>112<br>114<br>116<br>117<br>119<br>122<br>125<br>129<br>137 | 10154154274 |

(Dalton)

Sp gr of K<sub>2</sub>CO<sub>3</sub>+Aq at 17 5°

|                                                                                           |                                                                                                                                              |                                                                                                    | 0 1 4                                                                                                                                                          |                                                                                                    |                                                 |                                          |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|
| к со.                                                                                     | Sp gr                                                                                                                                        | K₂CO₃                                                                                              | Sp sr                                                                                                                                                          | K <sub>2</sub> CO <sub>3</sub>                                                                     | Sp                                              | _                                        |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 1 009<br>1 018<br>1 027<br>1 036<br>1 045<br>1 064<br>1 073<br>1 082<br>1 092<br>1 102<br>1 112<br>1 122<br>1 132<br>1 141<br>1 151<br>1 161 | 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35 | 1 182<br>1 192<br>1 203<br>1 213<br>1 224<br>1 235<br>1 245<br>1 256<br>1 267<br>1 278<br>1 389<br>1 300<br>1 312<br>1 312<br>1 323<br>1 345<br>1 345<br>1 357 | 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52 | 1 3 3 1 4 4 1 1 4 4 1 1 1 4 4 1 1 5 5 1 5 5 5 5 | 5)31,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 18                                                                                        | 1 172                                                                                                                                        |                                                                                                    |                                                                                                                                                                |                                                                                                    |                                                 |                                          |

(Hager, Comm 1883)

The sp gr increases of diminushes between  $8^\circ$  and  $20^\circ$  by a decrease or increase of term of  $1^\circ$  by the following amounts —

| % K CO3                          | (orr                                 |
|----------------------------------|--------------------------------------|
| 40-50<br>30-40<br>20-30<br>10-20 | 0 0007<br>0 0005<br>0 0003<br>0 0002 |
|                                  | <del></del>                          |

(Hager)

| $\mathbf{Sp}$ | gr | of | K2CO3+A9 | at 15° | 2 |
|---------------|----|----|----------|--------|---|
|---------------|----|----|----------|--------|---|

| Sp gr of K <sub>2</sub> CU <sub>3</sub> +Aq at 15° |         |         |             |  |  |
|----------------------------------------------------|---------|---------|-------------|--|--|
| € I CO3                                            | db FL   | % K2CO3 | Sp gr       |  |  |
| 1                                                  | 1 00914 | 28      | 1 27893     |  |  |
| 2                                                  | 1 01829 | 29      | 1 28999     |  |  |
| 3                                                  | 1 02743 | 30      | 1 30105     |  |  |
| 4                                                  | 1 03658 | 31      | 1 31261     |  |  |
| 5                                                  | 1 04572 | 32      | 1 32417     |  |  |
| 6                                                  | 1 05513 | 33      | 1 33573     |  |  |
| 7                                                  | 1 06354 | 34      | 1 34729     |  |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9               | 1 07396 | 35      | 1 35885     |  |  |
|                                                    | 1 08337 | 36      | 1 37082     |  |  |
| 10                                                 | 1 09278 | 37      | 1 38279     |  |  |
| 11                                                 | 1 10258 | 38      | 1 39476     |  |  |
| 12                                                 | 1 11238 | 39      | 1 40673     |  |  |
| 13                                                 | 1 12219 | 40      | 1 41870     |  |  |
| 14                                                 | 1 13199 | 41      | 1 43104     |  |  |
| 15                                                 | 1 14179 | 42      | 1 44388     |  |  |
| 16<br>17                                           | 1 15200 | 43      | 1 44573     |  |  |
| 17                                                 | 1 16222 | 44      | 1 46807     |  |  |
| 18                                                 | 1 17243 | 45      | 1 48041     |  |  |
| 19                                                 | 1 18265 | 46      | 1 49314     |  |  |
| 20                                                 | 1 19286 | 47      | 1 50588     |  |  |
| 21<br>22                                           | 1 20344 | 48      | 1 51861     |  |  |
| 22                                                 | 1 21402 | 49      | 1 53135     |  |  |
| 23                                                 | 1 22459 | 50      | 1 54408     |  |  |
| 24                                                 | 1 23517 | 51      | 1 55728     |  |  |
| 25                                                 | 1 24575 | 52      | 1 57048     |  |  |
| 26                                                 | 1 25681 | 52 024  | 1 57079     |  |  |
| 27                                                 | 1 26787 | ļ       |             |  |  |
|                                                    |         |         | <del></del> |  |  |

(Gerlach, Z anul 8 279)

Sp gt of K CO2+Ag at 15°

| K(O | 2b 11  | K ( ()a | pb Pr  |
|-----|--------|---------|--------|
| 5   | 1 0449 | 30      | 1 3002 |
| 10  | 1 0919 | 40      | 1 4170 |
| 20  | 1 1920 | 50      | 1 5428 |

(Kohli iusch, W. Ann. 1879. 1)

K (O<sub>3</sub> + Aq continuing 10% K<sub>2</sub>CO<sub>3</sub> boils at 100 S

K ( ()<sub>3</sub> + \q cont uning 20° \(\eta\) K<sub>2</sub>CO<sub>3</sub> boils at 102-2 K ( ()<sub>1</sub> + \q cont uning 30° \(\eta\) K CO<sub>3</sub> boils it

 $K(C_1)$   $A_1$  containing  $A_2$   $A_3$   $A_4$   $A_4$   $A_5$   $A_4$   $A_5$   $A_6$   $A_6$   $A_6$   $A_7$   $A_8$   $A_8$   $A_8$   $A_9$   $A_$ 

108.6 K (  $O_4$  +  $\Lambda_{\rm Q}$  containing  $50^{\circ}$   $_{o}$  K  $_{2}$ CO $_{3}$  boils at 115.2

(Garlich)

Sat K ( (), † Aq continuing 156 pts K<sub>2</sub>CO<sub>3</sub> to 100 pts H () forms a crust at 126°, highest temp observed 1,49 (Gerlach, Z anal 26 427)

B-pt of K<sub>2</sub>CO<sub>3</sub>+Aq containing pts K<sub>2</sub>CO<sub>3</sub> to 100 pts H<sub>2</sub>O G=according to Gerlach (Z anal **26** 459), L=according to Legrand (A ch (2) **59** 438)

| B pt                                                                                                             | G                                                                  | L                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 101° 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | 11 5 5 32 40 47 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                | 13<br>22 5<br>31<br>38 8<br>46 1<br>53 6<br>65 9<br>71 9<br>77 6<br>83 2<br>93 2<br>98 2<br>98 2<br>102 8<br>112 3<br>117 1<br>122 0<br>132 0<br>142 0<br>147 1<br>152 2<br>157 3<br>166 7 |
| 119<br>120<br>121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129                                        | 137 5<br>142 5<br>147 5<br>152 5<br>158<br>163 5<br>169 5<br>175 5 | 147 1<br>152 2<br>157 3<br>162 5<br>167 7<br>172 9                                                                                                                                         |
| 130<br>131<br>132<br>133<br>133<br>134<br>135                                                                    | 181 5<br>187 5<br>193 5<br>199 5<br>202 5                          | 178 1<br>183 4<br>188 8<br>194 2<br>199 6<br>205 0                                                                                                                                         |

When K<sub>2</sub>CO<sub>3</sub>+Aq is sat with NH<sub>3</sub>, two layers form When K<sub>2</sub>CO<sub>3</sub> is added to NH<sub>4</sub>OH+Aq, it dissolves with formation of two layers and evolution of NH<sub>3</sub>. The same takes place ilso when sat K<sub>2</sub>CO<sub>3</sub>+Aq and NH<sub>4</sub>OH+Aq are brought together (Girard, Bull Soc (2) 43 552)

Solubility of K CO<sub>3</sub>+KHCO<sub>3</sub> in H<sub>2</sub>O at 0°

| £ [ cr 100                                                          | ce selution                                                     |                                                                               |
|---------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|
| K <sub>i</sub> ( ()                                                 | KHCO <sub>3</sub>                                               | ∽р дг                                                                         |
| 0 0<br>11 8<br>16 7<br>23 5<br>34 0<br>43 0<br>51 6<br>60 5<br>81 4 | 21 2<br>15 3<br>12 6<br>10 3<br>7 6<br>5 9<br>4 9<br>3 8<br>0 0 | 1 133<br>1 182<br>1 200<br>1 241<br>1 298<br>1 350<br>1 398<br>1 448<br>1 542 |

(Fingel A ch 1888, (6) 13 348)

| Equilibrium between K2CO3 and KHCO3 in                                                |
|---------------------------------------------------------------------------------------|
| H <sub>2</sub> O and in contact with the air Sys-                                     |
| tem K <sub>2</sub> CO <sub>3</sub> , KHCO <sub>3</sub> , and CO <sub>2</sub> at 25° c |

|                               |                                          |                                                                       | 02 40 20 0                                               |
|-------------------------------|------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|
| Grams<br>atoms K<br>per liter | Amount of solution used for titration cc | Amount K<br>combined<br>as K <sub>2</sub> CO <sub>3</sub><br>Per cent | Amount K<br>combined<br>as KHCO <sub>3</sub><br>Per cent |
| 0 393                         | 5                                        | 77 5                                                                  | 22 5                                                     |
| 0 553                         | 2 5                                      | 83 9                                                                  | 16 1                                                     |
| 1 025                         | 5525222222222111                         | 86 8                                                                  | 13 2                                                     |
| 1 865                         | 2                                        | 91 4                                                                  | 8 6                                                      |
| 2 820                         | 2 2                                      | 89 0                                                                  | 11 0                                                     |
| 3 710                         | $\tilde{2}$                              | 88 6                                                                  | 11 4                                                     |
| 4 310                         | ī                                        | 89 6                                                                  | 10 4                                                     |
| 5 695                         | 1                                        | 88 7                                                                  | 11 3                                                     |

(Cameron and Briggs, J phys Chem 1901, 5 546)

Solubility of  $K_2CO_3 + Na_2CO_3$  in  $H_2O$  at

| g per 100 g<br>solution                                                                                                                                                                                        | g per<br>H                                                                                                        | 100 g<br>О                                                                                                                                      |                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Is CO <sub>3</sub>                                                                                                                                                                                             | IA CO3                                                                                                            | Na CO                                                                                                                                           | Solid phase                                                                                                                                                                    |
| 52 82 0<br>52 0 10<br>50 7 2 6<br>46 5 4 3<br>46 2 5 2<br>41 0 6 3<br>37 7 7 0<br>31 0 10 5<br>29 8 11 3<br>29 8 11 4 1<br>22 4 16 6<br>19 8 18 7<br>19 1 19 7<br>19 1 19 7<br>10 7 22 4<br>4 7 21 9<br>0 22 7 | 112<br>110 7<br>108 7<br>10 5<br>94 6<br>94 5<br>77 6<br>66 3<br>3 0<br>50 , 11 4<br>36 8<br>32 1<br>31 2<br>24 , | 0<br>2 2<br>7 7<br>10 0<br>8 8<br>10 6<br>11 5<br>12 6<br>17 9<br>19 1<br>23 2<br>27 3<br>30 3<br>32 1<br>37 6<br>36 4<br>31 0<br>33 7<br>29 37 | Na (O <sub>1</sub> K (O <sub>1</sub> 12H O  Na (O <sub>1</sub> K (O <sub>1</sub> 12H O  Na (O <sub>1</sub> K (O <sub>1</sub> 12H O  Na (O <sub>1</sub> K (O <sub>1</sub> 12H O |

(Osaka, J lok Chem Soc 1911, 32 870)

|                                                                                                                                                                                                                                                          |                                                                                                               | ·                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Solid phase                                                                                                                                                                                                                                              | ccm HO                                                                                                        | In 1000                                                                                                |
| Solid phase                                                                                                                                                                                                                                              | K <sub>2</sub> CO <sub>3</sub>                                                                                | Na <sub>2</sub> CO <sub>3</sub>                                                                        |
| Na <sub>2</sub> CO <sub>3</sub> " Na <sub>2</sub> CO <sub>3</sub> , K <sub>2</sub> CO <sub>3</sub> 6H O  " " " " " Na <sub>2</sub> CO <sub>3</sub> , K <sub>2</sub> CO <sub>3</sub> 6H )+ Na <sub>2</sub> CO <sub>3</sub> K <sub>2</sub> CO <sub>3</sub> | 150 03<br>226 6<br>243 5<br>282 7<br>344 9<br>483 9<br>921 5<br>982 6<br>1074 0<br>1085 1<br>1108 6<br>1125 7 | 28 35<br>354 2<br>369 7<br>363 0<br>330 8<br>273 8<br>187 2<br>130 0<br>137 9<br>112 3<br>95 2<br>25 5 |

(Kremann and Zitek, M 1909, 30 3 1)

10°

Solubility of K<sub>2</sub>CO<sub>3</sub>+Na<sub>2</sub>CO<sub>3</sub> in H<sub>2</sub>O

| Solid phase                                                                                                                          | In 1000 ccm H O                    |                                |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|
| ona piase                                                                                                                            | k CO₃                              | Na CO3                         |
| Na <sub>2</sub> CO <sub>3</sub><br>''<br>''<br>Na <sub>2</sub> CO <sub>3</sub> , K <sub>2</sub> CO<br>K <sub>2</sub> CO <sub>3</sub> | 354 1<br>500 1<br>0052 9<br>1084 0 | 119 8<br>176 4<br>108<br>61 19 |

(Kremann and Zitek, M 1909, 30 3 1)

Solubility of K<sub>2</sub>CO<sub>3</sub>+KNO<sub>8</sub> in H<sub>2</sub>O at 5

| Mol. K.COa | Mol KNO |
|------------|---------|
| MOLK CO3   | VIOLENO |
| 0 00       | 3 217   |
| 0 59       | 2 62    |
| 1 35       | 1 97    |
| 2 10       | 1 46    |
| 2 70       | 1 14    |
| 3 58       | 0.79    |

(Touten, C. R. 1900, 131, 259)

Solubility of K CO<sub>3</sub> + KNO<sub>3</sub> in H O

| In 1000 ccm H O  |                  | S. J. Ladara                                                                |
|------------------|------------------|-----------------------------------------------------------------------------|
| KNO <sub>3</sub> | K ( () ;         | Shil phric                                                                  |
| 208 9<br>26 62   | 1076 0<br>1084 0 | KNO <sub>3</sub><br>KNO <sub>3</sub> K C(<br>K <sub>2</sub> CO <sub>3</sub> |

(Kremann and Zitck, M 1909, 30 3 ))

| Solubility of K <sub>2</sub> CO <sub>3</sub> +KNO <sub>3</sub> in H <sub>2</sub> O at 24 2 | Solubility of K | CO <sub>3</sub> +KNO <sub>3</sub> | ın H <sub>0</sub> O at | 24.2° |
|--------------------------------------------------------------------------------------------|-----------------|-----------------------------------|------------------------|-------|
|--------------------------------------------------------------------------------------------|-----------------|-----------------------------------|------------------------|-------|

|                                                                 |                                                     | 1211 O 8 III 112() at 24 2                                      |
|-----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|
| In 1000 ccm H <sub>2</sub> O                                    |                                                     |                                                                 |
| KNO <sub>3</sub>                                                | K CO <sub>3</sub>                                   | Solid phase                                                     |
| 376 85<br>285 00<br>161 67<br>141 80<br>73 04<br>38 78<br>31 11 | 130 3<br>348 4<br>371 9<br>688 1<br>878 3<br>1112 2 | KNO " " " " " KNO <sub>3</sub> , K <sub>2</sub> CO <sub>3</sub> |
| /TZ                                                             | 107                                                 |                                                                 |

(Kremann and Zitek, M 1909, 30 316) Solubility of K<sub>2</sub>CO<sub>3</sub>+KCl in H<sub>2</sub>O at 30°

| K2CO2 | KČI   | Solid phase                                       |
|-------|-------|---------------------------------------------------|
| 53 27 | 0     | K <sub>2</sub> CO <sub>3</sub> 1½H <sub>2</sub> O |
| 52 22 | 1 03  | K <sub>2</sub> CO <sub>3</sub> 1½H O+KCl          |
| 51 66 | 1 07  | KCl                                               |
| 1 64  | 26 22 | KCI                                               |
| 0     | 28 01 | "                                                 |

\* Author gives intermediary data (de Waal, Dissert 1910)

Solubility of K<sub>2</sub>CO<sub>3</sub>+KOH in H<sub>2</sub>O at 30° 50 KOH | % K<sub>2</sub>CO<sub>3</sub> | Solid phase 55 75 0 KOH 2H<sub>2</sub>O 55 14 2 05 KOH 2H<sub>2</sub>O+K<sub>2</sub>CO<sub>3</sub> 1½H<sub>2</sub>O \* CO<sub>3</sub> 1½H<sub>2</sub>O \* K<sub>2</sub>CO<sub>3</sub> 1½H<sub>2</sub>O

\* Author gives intermediary data (de Waal, Dissert 1910)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20**, 828)

Sol in 9 pts alcohol of 17° B Insol in absolute alcohol

Not decomp by 1, pt H<sub>2</sub>SO<sub>4</sub>+6 pts absolute alcohol Not decomp by 1 pt HNO<sub>3</sub>+ to pts absolute alcohol Not decomp by an alcoholic solution of HCl, oxalic, racemic, tartaric, or glacial acetic acids, but is decomp by alcoholic solution of citric acid

Solubility in methyl alcohol Composition of liquids in equilibrium with solid K<sub>2</sub>CO<sub>3</sub> at t°

|              | (I                                            | pperla                      | (r           | l ower layer         |                                                        |                    |
|--------------|-----------------------------------------------|-----------------------------|--------------|----------------------|--------------------------------------------------------|--------------------|
| t            | C W CO                                        | H HJ 23                     | с H О        | % hano               | новно ы                                                | % H2O              |
| $-30 \\ -20$ | 21 7<br>13 S                                  | $\frac{42}{52} \frac{2}{1}$ | 36 1<br>34 1 |                      |                                                        |                    |
| 20<br>0<br>0 | 12 4<br>7 6<br>7 4                            | 66 3                        | 26 1         | 44 2<br>46 3<br>46 6 | $\begin{array}{c} 8 \ 2 \\ 6 \ 7 \\ 6 \ 6 \end{array}$ | 47 6<br>47<br>46 8 |
| $+17 \\ 35$  | $\begin{array}{c} 6 \ 2 \\ 5 \ 0 \end{array}$ | 69 6<br>72 9                | 24 2<br>22 1 | 48 3                 | $\begin{array}{c} 6 \ 6 \\ 5 \ 7 \\ 4 \ 3 \end{array}$ | 46<br>44 7         |

Solubility in ethyl alcohol Composition of liquids in equilibrium with solid  $K_2CO_3$  at  $t^\circ$ 

|                                   | Upper layer                                  |                                              |                                 | Lower layer                                  |                                               |                                              |  |
|-----------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|--|
| t                                 | 7, K CO.                                     |                                              | % н о                           | % K•CO3                                      | но пъз %                                      | 0% H₁O                                       |  |
| -18<br>0<br>+17<br>35<br>50<br>75 | 0 03<br>0 04<br>0 06<br>0 07<br>0 09<br>0 12 | 90 3<br>91 9<br>91 5<br>90 9<br>91 8<br>91 4 | 97<br>81<br>84<br>9<br>81<br>85 | 51 2<br>51 3<br>52 1<br>53 4<br>55 3<br>57 9 | 0 2<br>0 2<br>0 2<br>0 2<br>0 2<br>0 2<br>2 0 | 48 6<br>48 5<br>47 7<br>46 4<br>44 5<br>40 9 |  |

(de Bruyn )

Solubility in ethyl alcohol +Aq at 25°

When  $K_2CO_3$  is dissolved in ethyl alcohol+ Aq two layers are formed, the compositions of which are as follows

| τ                                         | pper lay                         | er                                   | I                                    | ower laye                                 | er                                        |
|-------------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|
| %<br>alcohol                              | ж<br>н о                         | к со:                                | %<br>alcohol                         | %<br>Н О                                  | %<br>K₂CO₃                                |
| 81 25<br>71 67<br>56 98<br>53 92<br>50 21 | 18 61<br>27 91<br>41 55<br>44 13 | 0 14<br>0 42<br>1 47<br>2 05<br>2 55 | 0 82<br>1 79<br>4 02<br>4 88<br>5 54 | 55 42<br>61 61<br>65 73<br>66 87<br>67 06 | 43 76<br>36 60<br>30 25<br>28 25<br>27 41 |

28 20 | 02 0 |

(Cuno, W Ann 1909, (4) 28 664)

Solubility of K<sub>2</sub>CO<sub>3</sub> in alcohol+Aq at 30°

| к соз          | %<br>Alcohol | %<br>H O            | Solid phase                          |  |  |  |
|----------------|--------------|---------------------|--------------------------------------|--|--|--|
| 53 27<br>53 09 | 0<br>0 1     | 46 73<br>46 81<br>* | K CO <sub>3</sub> 1½H O              |  |  |  |
| 0 13           | 90 49        | 9 38                | K CO <sub>3</sub> 1½H <sub>2</sub> O |  |  |  |
| 0 04           | 99 92        | 0 04                | "<br>K CO +K₂CO₃<br>1½H•O            |  |  |  |

\* Solution separates into two layers (de Waal, Dissert Leiden, 1910)

20 | 12 4 | 60 3 | 26 1 | 44 2 8 2 | 47 6 | 60 3 | 26 1 | 44 3 6 7 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47 6 | 47

K<sub>2</sub>CO<sub>3</sub> will "salt out" acetone from aqueous The table shows the composisolution tion of the solutions at the points at which inhomogeneous solutions of  $K_2CO_3$ , acetone and H<sub>2</sub>O just become homogeneous at 20° 100 g of the solution contaın

| K <sub>2</sub> CO <sub>3</sub> H <sub>2</sub> O         acetone         K <sub>2</sub> CO <sub>3</sub> H <sub>2</sub> O         acetone           18         84         73         22         7         94         2         43         55         36         42         21           13         32         71         38         15         30         22         29         72         81         4         90           11         83         70         34         17         83         17         86         73         12         9         02           10         13         69         03         20         84         15         81         72         53         11         66           8         24         67         31         24         45         14         39         71         89         13         72           7         22         65         99         26         79         10         29         69         46         20         25 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 32 71 38 15 30 22 29 72 81 4 90<br>11 83 70 34 17 83 17 86 73 12 9 02<br>10 13 69 03 20 84 15 81 72 53 11 66<br>8 24 67 31 24 45 14 39 71 89 13 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6 04 64 39 29 57 1 91 54 05 44 04 28 87 69 08 2 05 1 76 52 86 45 38 23 94 71 98 4 08 1 60 51 60 46 80 21 52 72 75 5 33 1 29 49 57 49 14 19 60 73 10 7 70 1 08 47 86 51 06 6 46 65 34 28 20 0 94 46 73 52 33 5 91 64 65 29 44 0 75 44 72 54 53 5 60 63 93 30 47 0 66 43 31 56 03 5 04 62 80 32 16 0 60 42 49 56 91 4 50 61 48 34 02 0 54 41 73 57 33 80 59 79 36 41 0 50 40 69 58 81 3 18 57 95 38 87 0 46 40 48 60 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

(Frankforter and Cohen, J Am Chem Soc 1914, 36 1121)

Insol in benzonitrile (Naumann, B 1914, **47** 1370)

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acctate (Naumann, B 1910, **34** 314)

Sol in phenol

Sol in 13 5 pts glycerine of 1 225 sp gr

(Vogel, N Repert 16 557)

100 g sat K CO<sub>3</sub>+sugar+Aq contains 22 44 g K<sub>2</sub>CO<sub>3</sub> and 56 g sugar at 31 25° (Kohler, Z Ver Zuckennd 1897, 47 447)

 $+H_2O$  $+1\frac{1}{2}H_{2}O$ Very deliquescent (Pohl) Deliquescent only in very moist (Stadeler)

Sol in HO with evolution of heat (Pohl) Sol at 176° with absorption of heit, it 32° with evolution of heat, and at 25° with neither absorption nor evolution of heat (Berthelot, C R 78 1722)

Sat solution of K2CO3+112H2O in HO contains 53 27 g unhydrous K<sub>2</sub>CO<sub>3</sub> in 100 g solution at 30° (de Wirl, Dissert **1910**)

+2HOSilt usually given as containing 1½H O contains 2H O (Gerlach, Z an il **26** 460)

Sat solution of  $K_2CO_3+2H_2O$  contains 112 g unhydrous K CO in 100 g H O it 25° (Osaka, J. Lok Ch. Soc. 1911, 32, 870)

+4H O Not deliquescent in closed vessels (Gerlach, l \(\epsi\))

Potassium hydrogen carbonate, KHCO

Not deliqueseent

(Redwood) So Sol in 35 pts HO at 15° m 4 pts H<sub>2</sub>O at moderate temperatures (Bergmann in 0 8333 pt boiling H<sub>2</sub>O (Pelletier) in 4 pts col 12 pts boiling H<sub>2</sub>O (M R and P s Pharm) 4 pts H O at 18 75 (Abl) 100 pts H O at dissolve 30 pts and at 100 83 pts (Ure s Dict 100 pts H O at 10-11 2° dissolve 26 1 pts K and the surge of solutions 1 1536 (Apthon

Sol

and

°Os

ıngl

and the sp gr of solution is 1 1536 (Anthon 161 216)

100 pts H<sub>2</sub>O dissolve at-0° 10° 20° 30° 23 23 26 91 30 57 pts KHCO 19 61 50° 60° 40° 70° 34 15 379241 35 45 24 pts KHCO (Poggiale, A ch (3) 8 468)

100 pts H<sub>2</sub>O dissolve pts KHCO<sub>3</sub> at

| t°      | Pts KHCO3    | t°       | Pts kI   | c |
|---------|--------------|----------|----------|---|
| 0<br>20 | 22 4<br>33 2 | 40<br>60 | 45<br>46 |   |
|         |              |          |          | _ |

(Dibbits, J pr (2) 10 417)

Sp gr of KHCO<sub>3</sub>+Aq at 15° conta  $5\% \text{ KHCO}_3 = 10328$ , containing 10% KICO. =1 0674 (Kohlrausch, Z anal 28 472 Sol in 1200 pts boiling alcohol (Bei iol-

let ) Insol in alcohol (Dumas) 100 pts H<sub>2</sub>O dissolve 19 3 pts KHCO and 83 pts NaHCO3 if the sat solution of is sat with former, and 26 1 pts KHCO 60 pts NaHCO<sub>3</sub>, if the sat solution c the former is sat with the latter, all at (Mulder, J B 1866 67)

Insol in sat  $K_2CO_3+Aq$ (Engel, (  $\mathbf{R}$ **102** 365)

Solubility of KHCO<sub>3</sub>+KNO<sub>3</sub> in H<sub>2</sub>O an atmosphere of CO

| 1         | litre | of the se | olution | i entur | 15  |  |  |
|-----------|-------|-----------|---------|---------|-----|--|--|
| rt 11     |       |           |         | 1t ~ )  |     |  |  |
| Mol KHCO: | Mel   | KNO       | Vici    | KHCO    | Mal |  |  |
| 0 60      | 2     | 33        | 0       | (0)     | 3   |  |  |
| 0.39      | 2     | 17        | 0       | 59      | 2   |  |  |
| 0.76      | 2     | () }      | 1       | - 53    | 2   |  |  |
| 1 16      | 1     | 92        | 1       | 91      | 2   |  |  |
| 1 55      | 1     | <b>S1</b> |         |         |     |  |  |

This case is complicated by the fact KNO3 is more sol in II () sit with C() m pure H O

(Louren, C. R. 1900, **131**, 261.)

Insol in benzonitrile (Niuminn, B )14. **47** 1370)

Insol in methyl restrice (Naumani B 1909, 42 3790) othyl actite (Naur nn, B 1910, 43 314)

Potassium praseodymium carbonate, k  $Pr (CO_3)_3 + 12H_2O$ 

Ppt Sol in  $0\% \text{ K}_2\text{CO}_3 + \text{A}_q$  (Mey , Z morg 1904, 41 104)

Potassium samarium carbonate, K<sub>2</sub>CO<sub>3</sub>,  $Sm_2(CO_3)_3 + 12H_2O$ (Cleve)

Potassium silver carbonate, KAgCO<sub>3</sub> Decomp by H<sub>2</sub>O (de Schulten, C R **105** 811 )

Ppt Decomp by H<sub>2</sub>O (Reynolds, Chem Soc 1898, **73** 265)

Potassium sodium carbonate, KNaCO<sub>3</sub>+  $6H_2O$ 

Slightly efflorescent Sol in 0.75 pt H<sub>2</sub>O at 12 5°, in 0 54 pt H<sub>2</sub>O at 15°

Sat solution at  $15^{\circ}$  has sp gr = 1 366

(Stolba, J pr 94 406)
Decomp by recrystallizing from H<sub>2</sub>O, but crystallizes undecomposed from sat K<sub>2</sub>CO<sub>3</sub>+

Sol in H<sub>2</sub>O (Osaka, C A **1911** 2601) See K<sub>2</sub>CO<sub>3</sub>+Na<sub>2</sub>CO<sub>3</sub> under Na<sub>2</sub>CO<sub>3</sub> +3H<sub>2</sub>O (Kremann and Zitek, M 1909)

30 317) Does not exist (Osaka) K<sub>2</sub>CO<sub>3</sub>, 2Na<sub>2</sub>CO<sub>3</sub>+18H<sub>2</sub>O SI efflorescent Very sol in H<sub>2</sub>O (Marignac)

Potassium stannous carbonate, K<sub>2</sub>CO<sub>3</sub>,  $2SnCO_3+2H_2O$ 

Decomp by H<sub>2</sub>O (Deville)

Potassium uranyl carbonate, 2K<sub>2</sub>CO, (UO<sub>2</sub>)CO<sub>3</sub>

Sol without decomp in 135 pts H<sub>2</sub>O at 15°, and in somewhat less warm H<sub>2</sub>O Sol in boiling H<sub>2</sub>O with decomp

More sol in K<sub>2</sub>CO<sub>3</sub>, or KHCO +Aq than

in H<sub>2</sub>O (Rose)

Insol in alcohol (Ebelmen, A ch (3) 5 189)

Potassium zinc carbonate, 4K<sub>2</sub>O, 6ZnO,  $11CO_2 + 8H_2O$ 

Can be washed with cold H2O without decomp (Deville, A ch (3) 33 99)

Praseodymium carbonate, Pr<sub>2</sub>(CO)<sub>3</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O (von Schule, Z anorg 1898, **18** 362)

Prasecdymium sodium carbonate,  $2Pr_2(CO_3)_3$ ,  $\exists Na_2CO_3 + 22H_2O(?)$ 

Ppt Easily decomp (Meyer, Z anorg **1904**, **41** 105)

#### Radium carbonate

(Bunsen)

Less sol in H<sub>2</sub>O than corresponding Ba comp (Curie, Dissert 1903)

# Rubidium carbonate, Rb<sub>2</sub>CO<sub>3</sub>

Very deliquescent, and sol in H<sub>2</sub>O 100 pts absolute alcohol dissolve 0 74 pt Rb<sub>2</sub>CO<sub>3</sub> (Bunsen)

Rubidium hydrogen carbonate, RbHCO3 Not deliquescent Easily sol in H<sub>2</sub>O

Samarium carbonate, Sm (CO)<sub>3</sub>+3H O Insol in H<sub>2</sub>O (Cleve, Bull Soc (2) 43

168)

Samarium sodium carbonate, Sm (CO<sub>3</sub>)<sub>2</sub>,  $Na_2CO_3+16H_2O$ Ppt (Cleve)

Scandium carbonate, Sc (CO<sub>2</sub>)<sub>2</sub>+12H<sub>2</sub>O (Crookes, Roy Soc Proc 1908, 80, A 518)

Scandium sodium carbonate, Sc<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>,  $4Na_2CO_3+6H_2O$ 

Difficultly sol in H<sub>2</sub>O

Sol in cold, less sol in hot alkalı carbonates +Aq (R Meyer, Z anorg 1910, 67 410)

#### Silver carbonate, Ag<sub>2</sub>CO<sub>3</sub>

Somewhat sol in  $H_2O$  Sol in 31,978 pts  $H_2O$  at 15° (Kremers, Pogg 85 248) 1 g Ag<sub>2</sub>CO<sub>3</sub> dissolves in 21 boiling H<sub>2</sub>O (Joulin, A ch (4) 30 260)

Solubility in  $H_2O$  at  $25^\circ = 1.16 \times 10^{-4}$ mol /l (Spencer and Le Pla, Z anorg 1910,

**65** 14)

1 l  $H_2O$  at 25° dissolves 12 x 10-4 gram (Abegg and Cox, Z phys atoms of silver Ch 1903, 46 11)

Insol in H<sub>2</sub>CO<sub>3</sub>+Aq (Bergman) Sol in 961 pts H<sub>2</sub>CO<sub>3</sub>+Aq (Lassaigne) 1 l sat H<sub>2</sub>CO<sub>3</sub>+Aq dissolves 0 846 g Ag CO<sub>3</sub> at 15° (Johnson, C N 54 75)

Sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq or NH<sub>4</sub>OH+Aq, sl sol in K<sub>2</sub>CO<sub>3</sub>+Aq (Wittstein) Easily sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Herschel, **1819**) Sol in hot NH4Cl+Aq, and sl sol in NH4NO3+Aq (Brett, 1837) Not pptd in presence of Na citrate (Spiller) Decomp by HCl+ Aq, and chlorides+Aq

Somewhat sol in conc NaNO<sub>3</sub>+Aq Connck, Belg Acad Bull 1909, 333) Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829)

Insol in alcohol Insol in methyl acetate (Naumann B 1909, 42 3790), ethyl acetate (Naumann,

B 1910, **43** 314) Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014)

#### Silver carbonate ammonia

Easily sol in HO Sol in \H4OH+Aq from which it is precipitated by absolute alcohol (Berzelius)

 $Ag_2CO_3$ ,  $4NH_3$  Ppt Insol in alcohol (Keen, C N **31** 231)

# Sodium carbonate, Na CO3

Anhydrous Sol in HO with evolution of

Sol in 196" pts H () at 15 (Freemu : 100 pt H<sub>2</sub>O at 14 b di solve 7.74 pts \1 C () or 20.04 pt Na<sub>2</sub>CO<sub>3</sub> 10H () is sol in rather less than 1 pt boiling H<sub>2</sub>O (Thomson 1831) Sol in 2 pts H () it 18.75 (Abl

|               | Solubility in 100 pts H <sub>2</sub> O at t° |                                                  |                   |                                        |                                                               |  |  |  |
|---------------|----------------------------------------------|--------------------------------------------------|-------------------|----------------------------------------|---------------------------------------------------------------|--|--|--|
| t°            | Pts<br>Na <sub>2</sub> CO <sub>3</sub>       | Pts<br>Na <sub>2</sub> CO <sub>3</sub><br>+10H O | t°                | Pts<br>Na <sub>2</sub> CO <sub>3</sub> | Pts<br>Na <sub>2</sub> CO <sub>3</sub><br>+10H <sub>2</sub> O |  |  |  |
| 0<br>10<br>20 | 7 08<br>16 66<br>30 83                       | 21 52<br>61 98<br>123 12                         | 25<br>30<br>104 6 | 35 90<br>35 90<br>48 50                | 171 33<br>241 57<br>420 68                                    |  |  |  |

(Poggiale A ch (3) 8 468)

Possesses four different degrees of sol bility, according to different states of mole constitution and degrees of hydration (L vel. A ch (3) 44 330)

Little more sol at 34-38° than at 104° maximum of solubility is probably at (Lowel)

Solubility of Na<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>+10H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>+7H<sub>2</sub>O (a), and Na<sub>2</sub>CO<sub>3</sub>+7H<sub>2</sub>O (b) in

|                                              | Na <sub>2</sub> CO <sub>3</sub>                                     | ution of<br>+10H <sub>2</sub> O<br>uns—                                   | Sat solution of $Na_2CO_3 + 7H_2O$ (b) contains—       |                                                                                                  |                                                                                               |                                                          |                                                                                                  |                                                         |                            |
|----------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------|
| t°                                           | Pts                                                                 | Pts<br>Na CO <sub>3</sub> +<br>10H O in<br>100 pts H <sub>2</sub> O       | Pts Na <sub>2</sub> CO <sub>3</sub> in 100 pts $H_2$ O | Pts<br>Na <sub>2</sub> CO <sub>3</sub> +<br>7H <sub>2</sub> O (b) in<br>100 pts H <sub>2</sub> O | Pts<br>Na <sub>2</sub> CO <sub>3</sub> +<br>10H <sub>2</sub> O in<br>100 pts H <sub>2</sub> O | Pts<br>Na <sub>2</sub> CO <sub>3</sub> in<br>100 pts H O | Pts<br>Na <sub>2</sub> CO <sub>3</sub> +<br>7H <sub>2</sub> O (a) in<br>100 pts H <sub>2</sub> O | Pt<br>Na <sub>2</sub> C(<br>10H <sub>2</sub><br>100 pts | +<br>m<br>H <sub>2</sub> O |
| 0<br>10<br>15<br>20<br>25<br>30<br>38<br>104 | 6 97<br>12 06<br>16 20<br>21 71<br>28 50<br>37 24<br>51 67<br>45 47 | 21 33<br>40 94<br>63 20<br>92 82<br>149 13<br>273 64<br>1142 17<br>539 63 | 20 39<br>26 33<br>29 58<br>38 55<br>38 07<br>43 45     | 58 93<br>83 94<br>100 00<br>122 25<br>152 36<br>196 93                                           | 84 28<br>128 57<br>160 51<br>210 58<br>290 91<br>447 93                                       | 31 93<br>37 85<br>41 55<br>45 79                         | 112 94<br>150 77<br>179 90<br>220 20                                                             | 188<br>286<br>381<br>556                                | 7<br>3<br>9<br>1           |

(Lowel, A ch (3) 33 382)

100 pts H<sub>2</sub>O at 14° dissolve 604 pts | Solubility in 100 pts H<sub>2</sub>O at t°--Contin ed Na<sub>2</sub>CO<sub>3</sub>+10H<sub>2</sub>O, at 36°, 833 pts, at 104°, 445 pts Solubility increases to 36°, then then diminishes (Payen, A ch (3) 43 233)

There are apparently two maxima of solubility, the one occurring at 15°, or even lower, as warm solutions cool, the other at 34-38°, when cold solutions he warmed A ch (3) 44 330)

Solubility in 100 pts H<sub>2</sub>O at t°

| t°                                             | Pts<br>Na CO3     | t        | I ts Na. ( ()3 | t  | I ts<br>N i CO3              |
|------------------------------------------------|-------------------|----------|----------------|----|------------------------------|
| 0                                              | 7 1               | 22<br>23 | 23.8           | 43 | 46 2                         |
| 1                                              | 7 1<br>7 5<br>7 5 | 23       | 25 1           | 41 | 46 2                         |
| 2                                              | 75                | 21       | 26 5           | 45 | 46 2                         |
| 3                                              | 8.4               | 25       | 28 0           | 46 | 46 2                         |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 89                | 26       | 29 7           | 47 | 46 2                         |
| 5                                              | 95                | 27       | 31.6           | 45 | 46 2                         |
| 6                                              | 10 0              | 28       | 33 6           | 49 | 46 2                         |
| 7                                              | 10 6              | 29       | 35 %           | 50 | 46 2                         |
| 8                                              | 11 2              | 30       | 35 1           | 51 | 46 2                         |
| 9                                              | 11 9              | 31       | 1111           | 52 | 46 2<br>46 2<br>46 2<br>46 2 |
| 10                                             | 12 6              | 32       | 46 2           | 53 | 46 2                         |
| 11                                             | 13 3              | 32 5     | 59 0           | 51 | 46 2                         |
| 12                                             | 14 0              | 33       | 46 2           | 5) | 46.2                         |
| 13                                             | 14 5              | 34       | 16 2           | 56 | 46.2                         |
| 14                                             | 15 6              | 35       | 46 2           | 57 | 46 2                         |
| 15                                             | 16 5              | 36       | 46 2           | 55 | 46 2                         |
| 16                                             | 174               | 37       | 46 2           | 59 | 46 2                         |
| 17                                             | 18 3              | 35       | 46 2           | 60 | 46 2                         |
| 18                                             | 193               | 39       | 46 2           | 61 | 46 2                         |
| 19                                             | 203               | 40       | 46 2           | 62 | 46 2                         |
| 20                                             | 21 4              | 41       | 46 2           | 63 | 46 2                         |
| 21                                             | 22 6              | 42       | 46 2           | 64 | 46 2                         |

| t                                                        | Pts<br>Na <sub>2</sub> CO <sub>3</sub>                       | t°                                                       | Pts<br>Na <sub>2</sub> CO <sub>3</sub>                               | t°                                                                        | Nε                                                  | бОз           |
|----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|---------------|
| 65<br>66<br>67<br>68<br>69<br>70<br>71<br>72<br>73<br>74 | 46 2<br>46 2<br>46 2<br>46 2<br>46 2<br>46 2<br>46 2<br>46 2 | 79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88 | 46 2<br>46 1<br>46 1<br>46 0<br>46 0<br>45 9<br>45 8<br>45 8<br>45 7 | 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104 | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 6666555544332 |
| 76<br>77<br>78                                           | 46 2<br>46 2<br>46 2                                         | 90<br>91<br>92                                           | 45 7<br>45 7                                                         | 105                                                                       | 4                                                   | ī             |

(Mulder, Scherk Verhandel 1864 120)

Liable to form supersaturated solution Supersat Ni CO<sub>3</sub>+Aq (2 pts Ni Oa. 10HO 1 pt HO) may be kept in a closed with cotton wool (Schroder)

When supers it N i CO3+Aq is expose to low temperatures, the 10HO salt crysta zes out, but under other encumstances two hcr salts are formed, each contuning 71120 one is four times as sol at 10° as the 10H O alt, and the other twice as sol See above (I vel, 1 ch (3) 33 337)

See also Na (O3+HO, 7HO, and 10

Sp gr of Na<sub>2</sub>CO<sub>3</sub>+Aq at 15°

| % Na <sub>2</sub> CO <sub>3</sub>                                                                                                                                                | Sp gr                                                                                                                                                                                                | % Na <sub>2</sub> CO <sub>3</sub>                                                                                                                                          | Sp gr                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 372<br>0 744<br>1 116<br>1 488<br>1 850<br>2 232<br>2 504<br>2 976<br>3 348<br>3 720<br>4 090<br>4 464<br>4 836<br>, 208<br>0 580<br>0 972<br>6 324<br>6 396<br>6 768<br>7 440 | 1 0040<br>1 0081<br>1 0121<br>1 0163<br>1 0204<br>1 0245<br>1 0286<br>1 0327<br>1 0368<br>1 0410<br>1 0452<br>1 0494<br>1 0537<br>1 0576<br>1 0625<br>1 0669<br>1 0713<br>1 0757<br>1 0802<br>1 0847 | 7 812<br>8 184<br>8 556<br>8 928<br>9 300<br>9 672<br>10 044<br>10 788<br>11 160<br>11 532<br>11 904<br>12 276<br>12 648<br>13 020<br>13 392<br>14 136<br>14 508<br>14 880 | 1 0892<br>1 0987<br>1 0987<br>1 0982<br>1 1028<br>1 1074<br>1 1120<br>1 1167<br>1 1214<br>1 1261<br>1 1308<br>1 1356<br>1 1404<br>1 1452<br>1 1509<br>1 1549<br>1 1549<br>1 1698<br>1 1698<br>1 1698<br>1 1748 |

#### (Tünnerman)

Sp. gr. of Na<sub>2</sub>CO<sub>2</sub>+Aq at 15°

| DI.                                                                                                                                  | gr of Na <sub>2</sub> CO <sub>3</sub> +                                                                                  | ad at 19                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| %                                                                                                                                    | Sp gr if % is<br>Na <sub>2</sub> CO <sub>3</sub>                                                                         | Sp gr if % is<br>Na <sub>2</sub> CO <sub>2</sub> +10H <sub>2</sub> O                                                                                                                                                                                                                 |
| 78<br>12<br>3 4<br>5 6<br>6 7 8 9<br>10 11<br>12 13<br>14 15<br>16 17<br>18 19 20<br>21 22 32 24<br>25 26 27<br>28 29 30 31<br>32 34 | Sp gr if % 18 N8a2CO3  1 0105 1 0210 1 0315 1 0420 1 0525 1 0631 1 0737 1 0843 1 0950 1 1057 1 1165 1 1274 1 1384 1 1495 | Sp gr if % 18 Na <sub>2</sub> CO <sub>3</sub> +10H <sub>2</sub> O  1 004 1 008 1 012 1 016 1 020 1 023 1 027 1 031 1 035 1 039 1 043 1 047 1 050 1 054 1 054 1 058 1 062 1 066 1 070 1 074 1 078 1 082 1 086 1 090 1 094 1 099 1 103 1 106 1 110 1 114 1 119 1 123 1 126 1 130 1 135 |
| 35<br>36<br>37<br>38                                                                                                                 |                                                                                                                          | 1 139<br>1 143<br>1 147<br>1 150                                                                                                                                                                                                                                                     |

# (Gerlach, Z anal 8 279)

Sp gr of Na<sub>2</sub>CO<sub>3</sub>+Aq at 175°

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                  |                                                    |                                 |                                                    |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------|----------------------------------------------------|---------------------------------|----------------------------------------------------|-------------------------------------------|
| 1     2     70     1     010     9     24     30     1     095       2     5     40     1     020     10     27     00     1     105       3     8     10     1     031     11     29     70     1     116       4     10     18     1     041     12     32     40     1     127       5     13     50     1     052     13     35     10     1     137       6     16     20     1     063     14     37     80     1     148       7     18     90     1     073     15     40     50     1     157 | %<br>Na CO₃ | %<br>Na CO3<br>+10H O                            | Sp gr                                              | \a co.                          | -10H (                                             | an gr                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6<br>7      | 5 40<br>8 10<br>10 18<br>13 50<br>16 20<br>18 90 | 1 020<br>1 031<br>1 041<br>1 052<br>1 063<br>1 073 | 9<br>10<br>11<br>12<br>13<br>14 | 24 30<br>27 00<br>29 70<br>32 40<br>35 10<br>37 80 | 1 105<br>1 116<br>1 127<br>1 137<br>1 148 |

# (Hager)

Sp gr of  ${\rm Na_2CO_3}{+}{\rm Aq}$  increases or diminishes by a change of temperature of 1° by the following amounts-

| Corr    | % Na <sub>2</sub> CO <sub>3</sub> |
|---------|-----------------------------------|
| 0 0004  | 13-15                             |
| 0 00033 | 8-12                              |
| 0 00026 | 3-7                               |

## (Hager, Comm 1883)

Sp gr of cone Na<sub>2</sub>CO<sub>3</sub>+Aq at 30°

| ł |                                                                               |                                                                               |                                                                               |                                                                               |                                                                               |                                                                               |
|---|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|   | Sp gr                                                                         | Na CO:                                                                        | \a CO₂<br>ın 1 l                                                              | Sp gr                                                                         | \2°C03                                                                        | Na <sub>2</sub> CO<br>in 1 l                                                  |
|   | 1 310<br>1 300<br>1 290<br>1 280<br>1 270<br>1 260<br>1 250<br>1 240<br>1 230 | 28 13<br>27 30<br>26 46<br>25 62<br>24 78<br>23 93<br>23 08<br>22 21<br>21 33 | 368 5<br>354 9<br>341 3<br>327 9<br>314 7<br>301 5<br>288 5<br>275 4<br>262 3 | 1 220<br>1 210<br>1 200<br>1 190<br>1 180<br>1 170<br>1 160<br>1 150<br>1 140 | 20 47<br>19 61<br>18 76<br>17 90<br>17 04<br>16 18<br>15 32<br>14 47<br>13 62 | 249 7<br>237 3<br>225 1<br>214 0<br>201 1<br>189 3<br>177 7<br>166 4<br>155 3 |

## (Lunge, Chem Ind 1882 320)

|                                                                               | Sp gr of Na <sub>2</sub> CO <sub>3</sub> +Aq at 23°                                                                         |                                                                                                                                                    |                                                                                        |                                                                                                                                |                                                                                                                                                    |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| % Na CO3<br>+10H2O                                                            | %<br>N3 CO₃                                                                                                                 | 5p gr                                                                                                                                              | % Na2(O <sub>1</sub><br>+10H O                                                         | √a ço₃                                                                                                                         | Sp gr                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 0 370<br>0 741<br>1 112<br>1 48°<br>1 853<br>2 229<br>2 594<br>2 965<br>3 335<br>3 706<br>4 076<br>4 4817<br>5 188<br>5 558 | 1 0038<br>1 0076<br>1 0114<br>1 0153<br>1 0192<br>1 0231<br>1 0271<br>1 0309<br>1 0348<br>1 0428<br>1 0428<br>1 0468<br>1 0508<br>1 0548<br>1 0588 | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 5 929<br>6 299<br>6 670<br>7 041<br>7 412<br>7 782<br>8 153<br>8 523<br>8 894<br>9 635<br>10 005<br>10 376<br>10 746<br>11 118 | 1 0628<br>1 0668<br>1 0708<br>1 0748<br>1 0789<br>1 0836<br>1 0871<br>1 0912<br>1 0953<br>1 0994<br>1 1035<br>1 1076<br>1 1117<br>1 1158<br>1 1200 |

17 789 1 1959

18 530 1 2045

18 159

1 2002

38

39

40

| Sp gr of NA <sub>2</sub> CO <sub>3</sub> +Aq at 23°—Continued |                                                                    |                                                                    |                                        |                                                                    |                                                                    |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| % Na2CO3<br>+10H2O                                            | Na COs                                                             | Sp gr                                                              | %Na2 CO3<br>+10 H20                    | %<br>Na <sub>2</sub> CO <sub>3</sub>                               | Sp gr                                                              |  |  |
| 31<br>32<br>33<br>34<br>35<br>36<br>37                        | 11 488<br>11 859<br>12 230<br>12 600<br>12 971<br>13 341<br>13 712 | 1 1242<br>1 1284<br>1 1326<br>1 1368<br>1 1410<br>1 1452<br>1 1494 | 41<br>42<br>43<br>44<br>45<br>46<br>47 | 15 195<br>15 556<br>15 936<br>16 307<br>16 677<br>17 048<br>17 418 | 1 1662<br>1 1704<br>1 1746<br>1 1788<br>1 1830<br>1 1873<br>1 1916 |  |  |

# (Schiff, A 113 186)

49

14 082 | 1 1536 | 48

14 824 | 1 1620 | 50

1 1578

14 530

Sp gr of Na<sub>2</sub>CO<sub>3</sub>+Aq at 23 3° a=number of grms  $\times$  ½ mol wt, dissolved in 1000 grms H<sub>2</sub>O, b=sp gr if a=Na<sub>2</sub>CO<sub>3</sub>, 10H<sub>2</sub>O (½ mol wt =143), c=sp gr if a=Na<sub>2</sub>CO<sub>3</sub> (½ mol wt =53)

| a                | ь                                | c                                | a           | b                       | С     |
|------------------|----------------------------------|----------------------------------|-------------|-------------------------|-------|
| 1<br>2<br>3<br>4 | 1 048<br>1 086<br>1 117<br>1 142 | 1 052<br>1 100<br>1 145<br>1 187 | 5<br>6<br>7 | 1 163<br>1 182<br>1 198 | 1 226 |

(Favre and Valson, C R 79 968)

# Sp gr of Na<sub>2</sub>CO<sub>3</sub>+Aq at 18°

| Na <sub>2</sub> CO <sub>3</sub> | Sp gr            | %<br>Na <sub>2</sub> CO <sub>3</sub> | Sp gr  |
|---------------------------------|------------------|--------------------------------------|--------|
| 5<br>10                         | 1 0511<br>1 1044 | 15                                   | 1 1590 |

(Kohlrausch, W Ann 1879 1)

# Sp gr of Na<sub>2</sub>CO<sub>3</sub>+Aq

| gequivalents   t   Sp kr t /t   0 002524   16 004   1 0001418   0 005041   16 026   1 0002844   0 01006   16 049   1 000568   0 02501   16 028   1 001413   0 04954   16 050   1 002789   0 10188   16 030   1 005699   0 24646   16 041   1 013598   0 002628   16 051   1 0001473   0 003948   16 088   1 0002216   0 009182   16 081   1 0005181   0 01830   16 089   1 001033   0 10842   16 042   1 006488                                                                                                   |                                                                                                                                                |                                                                                                                               |                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 005041         16 026         1 0002844           0 01006         16 049         1 000568           0 02501         16 028         1 001413           0 04954         16 050         1 002789           0 10188         16 030         1 005699           0 24646         16 041         1 013598           0 002628         16 051         1 0001473           0 003948         16 088         1 0002216           0 009182         16 081         1 0005181           0 01830         16 089         1 001033 |                                                                                                                                                | t                                                                                                                             | Sp gr t/t                                                                                                                                                   |
| 0 21570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 005041<br>0 01006<br>0 02501<br>0 04954<br>0 10188<br>0 24646<br>0 002628<br>0 003948<br>0 009182<br>0 01830<br>0 10842<br>0 21570<br>0 4297 | 16 026<br>16 049<br>16 028<br>16 050<br>16 030<br>16 041<br>16 051<br>16 088<br>16 081<br>16 042<br>16 042<br>16 055<br>15 14 | 1 0002844<br>1 000568<br>1 001413<br>1 002789<br>1 005699<br>1 013598<br>1 0001473<br>1 0002216<br>1 0005181<br>1 001033<br>1 006048<br>1 011910<br>1 02346 |
| 2 5015 16 05 1 12533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 5015                                                                                                                                         | 16 05                                                                                                                         | 1 12533                                                                                                                                                     |

(Kohlrausch, W Ann 1894, 53 26)

| Sp gr of Na | $a_2CO_3+Aq$ at t°                        | $\mathrm{H}_2\mathrm{O}$ at 4             |
|-------------|-------------------------------------------|-------------------------------------------|
| t°          | % Na <sub>2</sub> CO <sub>3</sub>         | Sp gr                                     |
| 60°         | 28 74<br>25 20<br>22 25<br>18 23<br>14 06 | 1 297<br>1 254<br>1 219<br>1 174<br>1 127 |
| 80°         | 28 59<br>18 26                            | 1 280,<br>1 160,                          |

(Wegscheider, M 1905, 26 690)

Sp gr of dil Na<sub>2</sub>CO<sub>3</sub>+Aq at 20 004' Conc =g equiv Na<sub>2</sub>CO<sub>3</sub> per 1 at 20 0 and 730 mm

Sp gr compared with H<sub>2</sub>O at 20 004

| 0 0000         1 000,000,0           0 0001         1 000,005,6           0 0002         1 000,011,2           0 0004         1 000,022,5           0 0005         1 000,028,1           0 0010         1 000,056,3           0 0020         1 000,112,7           0 0040         1 000,225,8           0 0050         1 000,28,4           0 0100         1 000,584,8 | Conc                                                                         | Sp gr                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                        | 0 0001<br>0 0002<br>0 0004<br>0 0005<br>0 0010<br>0 0020<br>0 0040<br>0 0050 | 1 000,005,6<br>1 000,011,2<br>1 000,022,5<br>1 000,028,1<br>1 000,056,3<br>1 000,112,7<br>1 000,225,8 |

(Lamb and Lee, J Am Chem Soc 1913 35 1685)

Na<sub>2</sub>CO<sub>3</sub>+Aq containing 5% Na<sub>2</sub>CO<sub>3</sub> l ils at 100 5°, 10% Na CO<sub>3</sub>, at 101 1°, 1 % Na<sub>2</sub>CO<sub>3</sub>, at 101 8° (Gerlach)

Sat solution boils at 104 4° (Griffi is, 1825), 106° (Kremers), 104° (Payen) Sat solution forms a crust at 104 1°, id

Sat solution forms a crust at 104 1°, ad contains 42 2 pts Na<sub>2</sub>CO<sub>3</sub> to 100 pts F O, highest temperature observed, 105° (1° r-lach, Z anal 26 427)

B-pt of Na<sub>2</sub>CO<sub>3</sub>+Aq containing pts Na<sub>2</sub>t to 100 pts H<sub>2</sub>O G=according to C lach (Z anal **26** 458), L=according Legrand (A ch (2) **59** 426)

| B pt                                                | G                                           | I                                           | B pt                                        | (                            |       |     |
|-----------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------|-------|-----|
| 100 5°<br>101 0<br>101 5<br>102 0<br>102 5<br>103 0 | 5 2<br>10 4<br>15 6<br>20 8<br>26 0<br>31 1 | 7 5<br>14 4<br>20 8<br>26 7<br>32 0<br>36 8 | 103 5°<br>104 0<br>104 5<br>104 63<br>105 0 | 36 2<br>41 2<br>46 2<br>51 2 | 4 4 4 | ( ; |

Less sol in dil NH<sub>4</sub>OH+Aq than in H ) (Fresenius)

See also under Ammonia

Solubility of Na<sub>2</sub>CO<sub>3</sub>+NH<sub>4</sub>Cl Sec un r Ammonium Chloride Solubility of Na<sub>2</sub>CO<sub>3</sub>+K<sub>2</sub>CO<sub>3</sub> See un r

Carbonate, potassium

The reciprocal solubility of sodium carbonate and sodium hydrogen carbonate in  $\rm H_2O$  has been determined (de Paepe, C A 1911, 2603, and 1912, 2723)

Solubility of  $Na_2CO_3+NaHCO_3$  in  $H_2O$  at  $25^{\circ}$ 

| g per 100 g H <sub>2</sub> O                 |                                                    | G-1-1                                                                                                                                                      |
|----------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NaH <b>C</b> O3                              | Na <sub>2</sub> CO <sub>3</sub>                    | Solid phase                                                                                                                                                |
| 0<br>2 1<br>4 2<br>5 7<br>7 3<br>9 0<br>10 1 | 28 3<br>27 3<br>26 5<br>19 2<br>12 4<br>6 2<br>1 0 | Na <sub>2</sub> CO <sub>3</sub> 10H <sub>2</sub> O<br>Na <sub>2</sub> CO <sub>3</sub> 10H <sub>2</sub> O + NaHCO <sub>3</sub><br>NaHCO <sub>3</sub><br>" " |

(de Paepe, Bull Soc Chim Belg 1911, 25

Solubility of Na<sub>2</sub>CO<sub>3</sub>+NaHCO<sub>3</sub> in H<sub>2</sub>O at Solubility in NaCl+Aq 25° solve pts NaCl and p

| g per l              |                                                                  | Solid phase                                                                                                                                                                          |  |
|----------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NaHCO <sub>3</sub>   | Na <sub>2</sub> CO <sub>3</sub>                                  | bond phase                                                                                                                                                                           |  |
| 98 7<br>50 8<br>27 6 | $\begin{array}{c} 0 & 0 \\ 216 & 6 \\ 276 & 3 \end{array}$ 276 4 | NaHCO;<br>NaHCO3+Na <sub>2</sub> CO3 NaHCO3 2H O<br>Na <sub>2</sub> CO3 NaHCO2 2H <sub>2</sub> O+Na <sub>2</sub> CO3<br>10H <sub>2</sub> O<br>Na <sub>2</sub> CO3 10H <sub>2</sub> O |  |

(McCoy and Test, J Am Chem Soc 1911,

Equilibrium between Na  $CO_3$ , NaH $CO_3$  and  $CO_2$  See under Carbonate, sodium hydrogen

Solubility of NaNO3 in Na2CO3+Aq at 10°

| In 1000        | ccm H ()      | 6 -1.1 -1                                                                                                   |
|----------------|---------------|-------------------------------------------------------------------------------------------------------------|
| NaNO3 Na CO3   |               | Solid ph 140                                                                                                |
| 805 0<br>704 8 | 87 5<br>119 8 | NaNO <sub>3</sub><br>NaNO <sub>3</sub> , Na <sub>2</sub> CO <sub>3</sub><br>Na <sub>2</sub> CO <sub>3</sub> |
|                |               |                                                                                                             |

(Kremann, M 1909, 30 325)

Solubility of NaNO<sub>3</sub> in Na<sub>2</sub>CO<sub>3</sub>+Aq at 24 2°

| In 1000                                      | cm H ()                                      | tulal alam                                                                                                                                                                                                                                                  |
|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NaNO <sub>3</sub>                            | N 12( O;                                     | Solid phase                                                                                                                                                                                                                                                 |
| 913 58<br>844 50<br>627 75<br>544 3<br>459 6 | 59 61<br>217 85<br>246 30<br>263 30<br>28 55 | NaNO <sub>3</sub><br>"NaNO <sub>3</sub> +Na <sub>2</sub> CO <sub>3</sub> 7H <sub>2</sub> O<br>Na <sub>2</sub> CO <sub>3</sub> 7H <sub>2</sub> O<br>Na <sub>2</sub> CO <sub>3</sub> 10H <sub>2</sub> O<br>Na <sub>2</sub> CO <sub>3</sub> 10H <sub>2</sub> O |
|                                              | · / T                                        |                                                                                                                                                                                                                                                             |

(Kremann)

Solubility of Na<sub>2</sub>CO<sub>3</sub>+NaBr in H<sub>2</sub>O at 30°

| %<br>Na <sub>2</sub> CO <sub>3</sub>     | %<br>NaBr                                  | Solid phase                                                              |
|------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------|
| 27 98<br>27 54                           | $\begin{array}{c} 0 \\ 2 \ 41 \end{array}$ | Na CO3 10H O                                                             |
| 26 72<br>26 23<br>23 40                  | 4 06<br>6 26<br>11 00                      | Na CO3 10H O+Na2CO3 7H O<br>Na CO3 7H2O                                  |
| 22 68<br>19 86<br>19 57<br>18 11<br>8 45 | 12 22<br>16 88<br>16 95<br>19 32<br>33 39  | Na CO3 7H O+Na2CO3 H2O<br>Na CO3.H O                                     |
| 6 90<br>3 04<br>2 99<br>2 60<br>0        | 36 13<br>44 75<br>45 31<br>45 68<br>49 40  | NaBr 2H O +Na <sub>2</sub> CO <sub>3</sub> H O<br>NaBr 2H <sub>2</sub> O |

(Cocheret, Dissert 1911)

Solubility in NaCl+Aq 100 pts H<sub>2</sub>O dissolve pts NaCl and pts Na<sub>2</sub>CO+10H<sub>2</sub>O, when that salt is in excess at 15°

| Pts<br>NaCl                                     | Pts<br>Na <sub>2</sub> CO <sub>3</sub><br>+10H O   | Pts<br>NaCl                                      | Pts<br>Na <sub>2</sub> CO <sub>3</sub><br>+10 <b>H</b> O |
|-------------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|
| 0 00<br>4 03<br>8 02<br>12 02<br>16 05<br>19 82 | 61 42<br>53 86<br>48 00<br>43 78<br>40 96<br>39 46 | 23 70<br>27 93<br>31 65<br>35 46<br>sat<br>37 27 | 39 06<br>39 73<br>41 44<br>43 77<br>45 32                |

Solubility of anhydrous Na<sub>2</sub>CO<sub>3</sub> in 100 pts NaCl+Aq containing % NaCl at 15°

| % NaCl                               | Pts Na <sub>2</sub> CO <sub>3</sub>                                          | % NaCl                                       | Pts Na CO <sub>3</sub>                                                  |
|--------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 16 408<br>15 717<br>15 060<br>14 438<br>13 851<br>13 299<br>12 783<br>12 305 | 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 10 488<br>10 244<br>10 041<br>9 880<br>9 762<br>9 686<br>9 655<br>9 667 |
| 8<br>9<br>10<br>11                   | 11 864<br>11 461<br>11 097<br>10 773                                         | $egin{array}{c} 20 \ 21 \ 22 \ \end{array}$  | 9 725<br>9 828<br>9 997                                                 |

(Reich, W A B 99, 2b 433)

Solubility of Na<sub>2</sub>CO<sub>3</sub>+NaCl in H<sub>2</sub>O at 30°

| Na (Os                                             | '%<br>NaCl                               | Solid phase                                               |
|----------------------------------------------------|------------------------------------------|-----------------------------------------------------------|
| 27 98<br>27 48<br>27 12<br>26 82<br>25 59<br>24 26 | 0<br>0 9<br>3 33<br>4 15<br>5 17<br>5 93 | Nn ( (), 10H4() N1 ( () 10H ()+N1 ( (),7H () Nn C(),7H () |

# Solubility of Na<sub>2</sub>CO<sub>3</sub>+NaCl in H<sub>2</sub>O at 30°—Continued

| %<br>Na <sub>2</sub> CO <sub>3</sub>                  | %<br>NaCl                                                   | Solid phase                                                                                                                                                          |
|-------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22 75<br>20 72<br>18 00<br>14 81<br>9 71<br>5 05<br>0 | 10 24<br>11 49<br>14 12<br>16 26<br>18 76<br>21 94<br>26 47 | Na CO 7H <sub>2</sub> O +Na CO <sub>3</sub> H O<br>Na <sub>2</sub> CO <sub>3</sub> H <sub>2</sub> O<br>NaCl+Na <sub>2</sub> CO <sub>3</sub> H <sub>2</sub> O<br>NaCl |

(Cocheret, Dissert 1911)

# Solubility of Na<sub>2</sub>CO<sub>3</sub>+NaI in H<sub>2</sub>O at 30°

| %<br>a <sub>2</sub> CO <sub>3</sub>              | %<br>NaI                                | Solid phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27 4<br>26 5                                     | 0                                       | Na <sub>2</sub> CO <sub>3</sub> 10H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 25 5                                             | 2 4<br>4 7<br>5 2<br>8 6<br>9 5<br>11 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{cc} 25 & 2 \\ 24 & 4 \end{array}$ | 8 6                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24 3<br>23 0                                     | 11 2                                    | Na <sub>2</sub> CO <sub>3</sub> 10H O+Na CO <sub>3</sub> 7H O<br>Na CO <sub>3</sub> 7H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20 8<br>20 0                                     | 14 0<br>15 7                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18 7<br>15 3                                     | 18 4<br>25 4                            | Na CO3 7H O -, Na2CO3 H O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 1                                             | 29 1                                    | Va CO <sub>3</sub> H <sub>2</sub> ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} 10 \ 4 \\ 6 \ 4 \end{array}$   | 33 3<br>40 4                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c}4&2\\3&1\\2&7\end{array}$       | 46 0<br>49 5                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $egin{array}{ccc} 2 & 7 & 1 & 5 & 1 \end{array}$ | 51 0<br>54 6                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 4<br>4 2<br>3 1<br>2 7<br>1 5<br>0 6<br>0 3    | 57 6<br>61 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 3                                              | 65 6<br>65 5                            | National Nation II of National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National |
| 0.0                                              | 00 0                                    | Val 24 ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

(Cocheret, Dissert 1911)

Insol in liquid CO<sub>2</sub> (Buchner, Z phys Ch 1906, **54** 674)
Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, **20** 829) Insol in alcohol (Fresenius) Sl sol in absolute alcohol, apparently insol

(Duffy,

in an alcoholic solution of soap Chem Soc 5 305)

# Solubility of Na<sub>2</sub>CO<sub>3</sub> in ethyl alcohol at 20°

| Alcohol wt percent         | L Na COa per 100 L<br>solution     |
|----------------------------|------------------------------------|
| 44<br>46<br>48<br>50<br>54 | 1 7<br>1 13<br>0 9<br>0 84<br>0 80 |
|                            |                                    |

(Linebarger, A Ch J 1892, 14 380)

Solubility of Na<sub>2</sub>CO<sub>3</sub> in alcohol+H<sub>2</sub>O at 30

| % Na <sub>2</sub> CO <sub>3</sub>                       | % alcohol                                          | Solid phase                                                                                                                                |
|---------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 27 4<br>26 61<br>26 14*<br>1 38<br>0 62<br>0 61<br>0 53 | 44 81 52 99 53 26 55 70                            | Na <sub>2</sub> CO <sub>3</sub> 10H <sub>2</sub> O  Na CO <sub>3</sub> 10H O +Na <sub>2</sub> CO <sub>3</sub> 7H                           |
| 0 51<br>0 47<br>0 40<br>0 15                            | 56 56<br>62 61<br>63 20<br>72 80                   | Na CO 7H₂O                                                                                                                                 |
| 0 11<br>0 07<br>0 07<br>0 06<br>0 06<br>0 04            | 73 06<br>78 19<br>82 26<br>86 76<br>90 95<br>93 09 | Na <sub>2</sub> CO <sub>3</sub> 7H <sub>2</sub> O +Na <sub>2</sub> CO <sub>3</sub> H <sub>2</sub> ·<br>Na CO <sub>3</sub> H <sub>2</sub> O |
| 0 03                                                    | 95 06<br>95 65<br>98 46                            | Na CO3 H2O +Na2CO3<br>Na CO3                                                                                                               |

\* Conjugated liquid phases

(Cocheret, Dissert 1911)

See also under  $Na_2CO_2+H_2O$ ,  $+7H_2O$  at  $1+10H_2O$ 

Not decomp by 1 pt H<sub>2</sub>SO<sub>4</sub>+6 pts a solute alcohol

Not decomp by alcoholic solutions of racmin, tartaric, or glacial acetic acids, slow of decomp by HNO<sub>3</sub>+absolute alcohol

Solubility of Na<sub>2</sub>CO<sub>3</sub>+NaBr, NaCl at l NaI in alcohol Numerical data given t τ Cocheret (Dissert 1911), reported in Γabl 3 annuelles internationales des Constants, et for 1911

Solubility of Na<sub>2</sub>CO<sub>3</sub> in propyl alcohol at 20

| Alcohol wt percent | L Na ( )   (r 100 L<br>solition |
|--------------------|---------------------------------|
| 28                 | 1 4                             |
| }9<br>44           | 2 7<br>1 7                      |
| 46<br>48           | 1 5<br>1 3                      |
| 50<br>54           | 1 2                             |
| 62                 | 0 4                             |

(I mebarger, A Ch J 1892, 14 380)

A full discussion of the solubility of Na Ce in propyl and allyl alcohol is given by Fran forter and Lemple (J. Am. Ch. Soc. 1915, 3, 2697)

Insol in CS (Arctowski, Z morg 189 6 257)

Insol in benzonitrile (Naum inn, B 191, 47, 1370)

Insol in methyl acetate (Naumann, 1909, 42 3790), ethyl acetate (Nauman , B 1904, 37 3602)

Solubility in mixtures of pyridine and H<sub>2</sub>O from -65° to +200° Solubility curves are given (Limbosch, Chem Soc 1909, 96 (2), **472**)

Insol in acetone and in methylal

mann, C C 1899, II 1014)

100 g glycerme (sp gr = 1262) dissolve 98 3 g Na<sub>2</sub>CO<sub>3</sub> at 15-16° (Ossendowski, Pharm J 1907, 79 575)

100 g sat solution in glycol contain 3 28-3 4 g Na<sub>2</sub>CO<sub>3</sub> 1907, **21** 141) (de Coninck, Bull Soc Belg

100 g sat Na CO<sub>3</sub>+sugar+Aq contam 6 89 g Na<sub>2</sub>CO<sub>3</sub>+64 73 g sugar at 31 25° (Kohler, Z Ver Zuckerınd 1897, 47 447) +H<sub>2</sub>O Takes up H<sub>2</sub>O from the air Less

sol in H<sub>0</sub>O at 104° than at 38°, at 15-20°, 100 pts H<sub>2</sub>O dissolve 52 4 pts of this salt, calculated as Na<sub>2</sub>CO<sub>2</sub> Insol ın alcohol (Lowel)

# Solubility in 100 pts H2O at to

| Corrected t° (Hydrogen scale)         Pts anhydrous salt           29 86         50 53           29 89         50 75           31 80         50 31           35 17         49 63           35 37         49 67           35 66         49 37           35 86         49 44           36 45         49 36           30 90         49 29           37 91         49 11           38 92         49 09           40 94         48 51           40 93         48 52           43 94         47 98 | .,                                                                      | P 00 1120 W0 0                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 29     89       31     80       35     17       49     63       35     37       35     66       49     37       35     86       49     44       36     45       49     36       30     90       49     29       37     91       49     11       38     92       40     94       48     51       40     93       48     52                                                                                                                                                                    |                                                                         |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29 89 31 80 35 17 35 37 35 66 35 86 36 45 36 90 37 91 38 92 40 94 40 93 | 50 75<br>50 31<br>49 63<br>49 67<br>49 37<br>49 44<br>49 36<br>49 29<br>49 11<br>49 09<br>48 51<br>48 52 |

(Wells and McAdam, J Am Chem Soc 1907, 29 726)

#### Solubility in alcohol + Aq

Composition of the alcohol and water layers in contact with the solid phase Na<sub>2</sub>CO<sub>3</sub>+H<sub>2</sub>O

|                            | Alcohol layer                        |                                 |                                      | Water layer                                                               |                                      |                                      |
|----------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| 10                         | rlcohol °                            |                                 | %<br>water                           | %<br>alcohol                                                              | %<br>salt                            | %<br>water                           |
| 68<br>49<br>40<br>36<br>35 | 55 8<br>61 0<br>61 0<br>62 0<br>62 9 | 0 9<br>0 4<br>0 4<br>0 3<br>0 3 | 43 3<br>38 6<br>38 6<br>37 7<br>36 8 | $\begin{bmatrix} 2 & 3 \\ 1 & 2 \\ 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$ | 28 8<br>31 5<br>31 9<br>32 1<br>32 4 | 68 9<br>67 3<br>66 9<br>66 8<br>66 6 |

(Ketner, Z phys Ch 1902, 39 651)

+3H() (Schickendantz, A 155 359)

+5H () (Persoz, Pogg 32 303) Not (fflorescent Sol in H<sub>2</sub>O

(Mitscherlich, Pogg 8 441) Lffloiescent Two salts, 7H<sub>2</sub>O +6H<sub>2</sub>O+7H<sub>2</sub>O(b) (=+8 H O of Thomson), and  $7 \text{H}_2 \text{O}$ 

See also under Na<sub>2</sub>CO<sub>3</sub>

| Solubility in 100 pts H <sub>2</sub> O at t° |                         |  |  |
|----------------------------------------------|-------------------------|--|--|
| Corrected to<br>(Hydrogen scale)             | Pts<br>anhydrous alt    |  |  |
| 30 35<br>31 82<br>32 86<br>34 37             | 43 50<br>45 16<br>46 28 |  |  |

34 76 48 98 35 15 49 23 35 17 49 34 35 62 50 08

(Wells and McAdam, J Am Chem Soc 1907, **29** 726 )

Composition of the solutions which can be in equilibrium with  $Na_2CO_3+7H_2O\beta$  at different temperatures

| t°   | % Na <sub>2</sub> CO <sub>3</sub> |
|------|-----------------------------------|
| 32 1 | 31 8                              |
| 32 5 | 32 1                              |
| 33 3 | 32 7                              |
| 33 9 | 33 0                              |
| 34 5 | 33 9                              |

(Ketner, Z phys Ch 1902, 39 646)

Composition of the alcohol and water layers in contact with the solid phase, Na<sub>2</sub>CO<sub>3</sub>+  $7H_2O\beta$ , at different temperatures

|                                       | Alcohol layer                        |                                 | y er                                 | Water layer       |                                      |                      |
|---------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|-------------------|--------------------------------------|----------------------|
| t°                                    | alcohol                              | o%<br>salt                      | %<br>water                           | % al<br>cobol     | %<br>salt                            | water                |
| 33 2<br>32 3<br>31 9<br>31 45<br>31 2 | 58 1<br>56 1<br>54 8<br>53 5<br>52 4 | 0 5<br>0 6<br>0 7<br>0 7<br>0 8 | 42 4<br>43 3<br>44 5<br>45 8<br>46 8 | 1 4<br>1 5<br>1 7 | 31 0<br>30 2<br>29 8<br>29 3<br>29 3 | 67 6<br>68 3<br>68 5 |

(Ketner)

Composition of the two liquid layers which at different temperatures can be in metastabile equilibrium with Na<sub>2</sub>CO<sub>3</sub>+  $7H O\beta$ 

| Alcohol layer        |                      | yer               | ν                    | Vater lay         | , er                 |                      |
|----------------------|----------------------|-------------------|----------------------|-------------------|----------------------|----------------------|
| t                    | alcohol              | %<br>salt         | %<br>water           | ℃ al<br>cohol     | c~<br>salt           | water                |
| 28 9<br>26 6<br>23 0 | 46 9<br>39 1<br>24 5 | 1 3<br>1 3<br>6 7 | 51 8<br>59 6<br>68 8 | 2 3<br>3 3<br>7 0 | 26 3<br>25 4<br>20 2 | 71 4<br>71 3<br>72 8 |

(Ketner)

Efflorescent Sol in 105 pts  $+10\mathrm{H}_2\mathrm{O}$ H<sub>2</sub>O at 23°, and sat solution has sp gr 1 1995 (Schiff, A 109 326)

Melts in crystal  $H_2O$  at  $34^{\circ}$  Chem Soc 45 409) (Tılden,

See above under Na<sub>2</sub>CO<sub>3</sub> for further data

| Solubility ii | 100 pts | H <sub>2</sub> O at t° |
|---------------|---------|------------------------|
|---------------|---------|------------------------|

| Corrected to     | Pts            |
|------------------|----------------|
| (Hydrogen scale) | anhydrous salt |
| 27 84            | 34 20          |
| 29 33            | 37 40          |
| 29 85            | 38 89          |
| 30 35            | 40 12          |
| 31 45            | 43 25          |
| 31 66            | 43 95          |
| 31 72            | 44 21          |
| 32 06            | 45 64          |

(Wells and McAdam, J Am Chem Soc 1907, **29** 726)

Sat solution at 25° contains 29 37 g anhyd Na<sub>2</sub>CO<sub>3</sub> in 100 g H<sub>2</sub>O (Osaka, J Tok Ch Soc 1911, 32 870)

Sat solution at 25° contains 28 3 g anhyd Na<sub>2</sub>CO<sub>3</sub> in 100 g H<sub>2</sub>O (de Paepe, Bull Soc

Chim Belg 1911, 25 174)
Sat solution at 30° contains 27 4–27 98 g anhyd Na<sub>2</sub>CO<sub>3</sub> in 100 g of the solution

(Cocheret, Dissert 1911)

Sat solution at 25° contains 27 64 g anhyd Na<sub>2</sub>CO<sub>3</sub> in 100 cc of the solution (McCoy and Test, J Am Chem Soc 1911, 33 474)

# Solubility in alcohol

Composition of the alcohol and water layers in contact with the solid phase, Na<sub>2</sub>CŌ<sub>3</sub>+ 10H<sub>2</sub>O, at different temperatures

|      | Alcohol layer |      | Water layer |       |      |       |
|------|---------------|------|-------------|-------|------|-------|
| t    | %             | %    | %           | % al  | %    | %     |
|      | alcohol       | salt | water       | cohol | salt | water |
| 30 6 | 47 8          | 1 2  | 51 0        | 2 3   | 27 8 | 69 9  |
| 29 7 | 40 0          | 2 1  | 57 9        | 2 9   | 25 5 | 71 6  |
| 29 0 | 32 7          | 3 8  | 63 5        | 4 3   | 22 7 | 73 0  |
| 28 2 | 23 5          | 7 3  | 69 2        | 7 9   | 18 6 | 73 5  |

(Ketner, Z phys Ch 1902, 39 651)

Solubility in alcohol+Aq

Liquids which can be in equilibrium with Na<sub>2</sub>CO<sub>3</sub>+10H<sub>2</sub>O at 21°

| % alcohol                                                | % salt                                                  | % water                                                       |
|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|
| 0<br>6 2<br>15 3<br>26 1<br>39 2<br>58 2<br>67 1<br>73 3 | 18 5<br>12 7<br>6 9<br>3 2<br>1 2<br>0 2<br>0 1<br>0 06 | 81 5<br>81 1<br>77 8<br>70 7<br>59 6<br>41 6<br>32 8<br>26 64 |
|                                                          | (Ketner)                                                |                                                               |

Composition of the alcohol liquids which be in equilibrium with  $Na_2CO_3+1$ and  $Na_2CO_3 + 7H_2O\beta$  at different peratures

| 1                 | •                    |                    |                |        |
|-------------------|----------------------|--------------------|----------------|--------|
| t°                | % alcohol            | % salt             | % w            | er     |
| 29°<br>26°<br>21° | 62 3<br>67 8<br>73 3 | C 3<br>O 1<br>C 06 | 37<br>32<br>26 | E<br>L |

car

H<sub>2</sub>O

(Ketner)

See also under Na<sub>2</sub>CO<sub>3</sub> +15H<sub>2</sub>O (Jacquelain, A 80 241)

Sodium hydrogen carbonate, NaHCO<sub>3</sub>

100 pts cold H2O dissolve 7 7 pts NaHCO3 Schw J 6 52) 100 pts H<sub>2</sub>O at 11 25° dissolve 8 27 pts NaHC ) a to form solution of 1 0613 sp gr (Anthon Dingl 161 216)

100 pts H<sub>2</sub>O dissolve at-30° 10°  $20^{\circ}$ 8 95 10 04 12 24 pts NaHCC, 11 15 40° 50° 60°  $70^{\circ}$ 13 35 14 45 16 69 pts NaHCC 15.57(Poggiale, A ch (3) 8 468)

100 pts H<sub>2</sub>O dissolve pts NaHCO<sub>3</sub> at

| t°                                                                                                               | Pts<br>NaHCO:                                                                                                                                                        | t°                                                                                                                   | Pts<br>NaHCO <sub>3</sub>                                                                                                                                                               | t°                                                                                                             | P<br>Naf                                                                         | Ο,                                                                               |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | 6 90<br>7 00<br>7 10<br>7 20<br>7 35<br>7 45<br>7 60<br>7 70<br>7 85<br>8 00<br>8 15<br>8 25<br>8 40<br>8 55<br>8 70<br>8 85<br>9 00<br>9 15<br>9 30<br>9 40<br>9 60 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 9 75<br>9 90<br>10 05<br>10 20<br>10 35<br>10 50<br>10 65<br>10 50<br>11 95<br>11 40<br>11 55<br>11 40<br>11 55<br>11 70<br>11 90<br>12 05<br>12 20<br>12 35<br>12 50<br>12 70<br>12 90 | 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>57<br>58<br>60 | 13<br>13<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>16<br>16 | )50<br>05<br>50<br>00<br>55<br>00<br>00<br>55<br>00<br>00<br>00<br>00<br>00<br>0 |
|                                                                                                                  | (5) 11                                                                                                                                                               |                                                                                                                      |                                                                                                                                                                                         |                                                                                                                |                                                                                  |                                                                                  |

(Dibbits, J pr (2) 10 417)

Experiments with solutions of sodium drogen carbonate show that they gradu lγ decompose after a time (I re ulwell Z and 1898, 17 204)

The source of error of many solubility terminations of this substance is due to 1 of CO<sub>2</sub> Solutions exposed to the air lose C 1.

(McCoy, Am Ch J 1903, 29 435) 1 1 sat solution at 25° contains 98 4 NaHCO3 (McCoy and I est, J Am Che n Soc 1911, **33** 474)

|                                 |                                                            | CARBO                                                          | NATE, SOI                                                  | DIUM HY                                                        | DROGEN                                |                                 |                                 |                   | 211                                    |
|---------------------------------|------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------|---------------------------------|---------------------------------|-------------------|----------------------------------------|
| NaHC<br>1 06904                 | O <sub>3</sub> +Aq sat<br>(Stolba)                         | at 16° ha                                                      | as sp gr =                                                 |                                                                | Temper                                | ature, 7                        | 75° C                           |                   |                                        |
| Nearly<br>(Balmain<br>Equilibri | insol in sat<br>, B 5 121)<br>um between                   | Na₂COs ai                                                      | nd NaHCO.                                                  | Gram<br>atoms Na<br>per liter                                  | Amount solution used for titration cc | l Na cor<br>as Na               | ount<br>nbined<br>22CO3<br>cent | Na c              | mount<br>combined<br>NaHCOs<br>er cent |
| ın H                            | $_{12}^{O}$ and in com $_{12}^{O}$ $_{12}^{O}$ $_{13}^{O}$ | ontact with                                                    | the air                                                    | 0 003                                                          | 50<br>25<br>25                        | 25                              | 7                               | 7                 | 74 3                                   |
| Gram<br>atoms Na                | Amount<br>solution used<br>for titration                   | as Na <sub>2</sub> CO <sub>3</sub>                             | Amount Na<br>combined as<br>NaHCOs                         | 0 019                                                          | 20<br>20                              |                                 | 8                               |                   | 35 <b>2</b>                            |
| per liter                       | cc                                                         | Per cent                                                       | Per cent                                                   | 0 036                                                          | 10<br>10                              | 55                              | 7                               | 4                 | 4 3                                    |
| 0 0044                          | 50                                                         | 8 7                                                            | 91 3                                                       | 0 270                                                          | 5<br>5                                | 79                              | 5                               | 2                 | 20 5                                   |
| 0 0143                          | 50<br>20<br>20                                             | 20 0                                                           | 80 0                                                       | 0 702                                                          | 1<br>1                                | 85                              | 0                               | 1                 | 5 0                                    |
| 0 0562                          | 10                                                         | 37 3                                                           | 62 7                                                       | 6 56                                                           | 1                                     | 84                              | 8                               | 1                 | 5 2                                    |
| 0 2248                          | 10<br>10<br>10                                             | 59 3                                                           | 40 7                                                       |                                                                |                                       |                                 |                                 |                   |                                        |
| 0 8847                          | 2                                                          | 64 0                                                           | 36 0                                                       | System                                                         | Na <sub>2</sub> CO <sub>3</sub> ε     | ind Na                          | HCO3                            | at 2              | 5° C                                   |
|                                 | 2<br>პ                                                     |                                                                |                                                            | Total salts Na <sub>2</sub> CO <sub>3</sub> NaHCO <sub>3</sub> |                                       |                                 | O3                              |                   |                                        |
|                                 | Tempera                                                    | ture, 37° C                                                    |                                                            | grams                                                          | Weight<br>Grams                       | Per cent                        | Weig<br>Grai                    |                   | Per cent                               |
| Cram<br>it mis Na<br>per liter  | Amount solution used for titration                         | Amount Na combined as Na <sub>2</sub> CO <sub>3</sub> Per cent | Amount<br>Na combined<br>as NaHCO <sub>3</sub><br>Per cent | 0 3555<br>1 1053<br>4 0443<br>14 6558                          | 0 0203<br>0 1505<br>1 1041<br>7 0212  | 5 71<br>13 62<br>27 30<br>47 91 | 0 33<br>0 93<br>2 94<br>7 63    | 548<br>402<br>346 | 94 29<br>86 38<br>72 70<br>52 09       |
| 0 0019                          | 50<br>50                                                   | 10 5                                                           | 89 5                                                       | 56 3982                                                        | 29 8223                               | 52 88                           | 26 5                            | 759               | 47 12                                  |
| 0 0071                          | 20<br>20                                                   | 21 1                                                           | 78 9                                                       | (Cameron                                                       | and Brigg<br><b>5</b>                 | gs, J p<br>540)                 | hys (                           | Chem              | 1901,                                  |
| 0 0276                          | 1(<br>10                                                   | 41 3                                                           | 58 7                                                       | 100 σ α                                                        | lcohol of 0                           | 041 sn                          | or di                           | معراء             | - 12 a                                 |
| 0 030                           | 10                                                         | 64 5                                                           | 35 5                                                       | NaHCO <sub>3</sub>                                             | at 155°                               | _                               | _                               |                   | _                                      |
| 0 421                           | 10<br>2<br>2                                               | 81 9                                                           | 18 1                                                       |                                                                | glycerol di<br>Ossendowsk             |                                 |                                 |                   |                                        |
| 0.515                           | 2                                                          | 86 5                                                           | 13 5                                                       |                                                                | n acetone                             | (Naun                           | ann,                            | B 19              | 904, <b>37</b>                         |

16 6

issolve 12 g NaHCO<sub>3</sub> at J 1907, **79** (Naumann, B 1904, 37 4329)

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate B 1910, **43** 314) (Naumann,

Insol in acctone and in methylal (Eidmann, C C 1899, II 1014)

#### Lemperature, 50° C Cinn \mount \mount Amount dution used Na combane l Na combined as NaIICO; dom for titrati n prliter Lercent Icr cent " 0 0017 50 22 2 77 8 2) 0.007120 32 9 67 1 20 10 50.7 49 3 0.0266 20 10 70 0 30 0 1011 10 19 0 1066 10 81 0 13 2 5005 56 5 7486 57 1 12 9

53 4

795

#### Sodium dihydrogen tricarbonate, $N_{d_4}H_2(CO)_3+3H_2O$

More sol than NaHCO3, less sol than Na<sub>2</sub>CO, in H O (Rose, Pogg 34 160)

100 pts H<sub>2</sub>() dissolve, calculated as 2Na<sub>2</sub>O, 3C()2--

| it 0° 1263 pts                 | ut 60° 29 68 pts              |
|--------------------------------|-------------------------------|
| " 10° 15 50 "<br>" 20° 18 30 " | " 70° 32 55 "<br>" 80° 35 8 " |
| " 30° 21 15 "                  | " 90° 38 63 "                 |
| " 40° 23 95 "                  | " 100° 41 59 "                |
| " 50° 26 78 "<br>(Poggiale, A  |                               |

See Na<sub>3</sub>H(CO<sub>3</sub>)<sub>2</sub>+ Trona, Urao Mın 2H<sub>2</sub>O

Trisodium hydrogen carbonate, Na<sub>3</sub>H(CO<sub>3</sub>)<sub>2</sub>  $+2H_2Q$ 

Sol in H<sub>2</sub>O

True formula of "Trona" and "Urao" (Zepharovich, Zeit Kryst 13 135, de Mondesir, C R 104 1505)

Sodium thorium carbonate, 3Na<sub>2</sub>CO<sub>3</sub>,  $Th(CO_3)_2+12H_2O$ Decomp by H<sub>2</sub>O (Cleve)

Sodium uranyl carbonate, 2Na<sub>2</sub>CO<sub>3</sub>,  $(UO_2)CO_3$ 

Slowly sol in H<sub>2</sub>O Solution sat at 15° has sp gr = 1 161 (Anthon, Dingl 156 207)

Sodium yttrium carbonate, Na<sub>2</sub>CO<sub>3</sub>, Y<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>  $+4H_2O$ 

Ppt Not decomp by cold H<sub>2</sub>O (Cleve)

Sodium zinc carbonate, 3Na<sub>2</sub>O, 8ZnO 11CO<sub>2</sub>  $+8H_2O = 3Na_2CO_8, 8ZnCO_3 + 8H_2O$ 

Sl decomp by pure  $H_2O$  (Wohler) Less easily decomp by H2O than most double carbonates (Deville, A ch (3) 33 101)

Na<sub>2</sub>O, 3ZnO, 4CO<sub>2</sub>+3H<sub>2</sub>O anorg 1897, **13** 13)

Sodium carbonate sulphite, Na<sub>2</sub>CO<sub>3</sub>, 2Na<sub>2</sub>SO<sub>3</sub> +21H<sub>2</sub>O

(Kraut, Z

Sol in hot H<sub>2</sub>O, sl sol in cold H<sub>2</sub>O (Johnson, J Soc Chem Ind 1895, 14 271)

Strontium carbonate, SrCO<sub>3</sub>

Sol in 18,045 pts H<sub>2</sub>O at ordinary temp (Fresenius)

Sol in 12.522 pts H<sub>2</sub>O at 15° (Kremers. Pogg 85 247)

Sol in 33,000 pts H<sub>2</sub>O (Bineau, C R 41 511)

Less sol in H O than SrSO<sub>4</sub> (Dulong) Sol in 1536 pts boiling H O (Hcpe, Edinb Trans 4 5)

Calculated from electrical conductivity of S<sub>1</sub>CO<sub>3</sub>+Aq, S<sub>1</sub>CO<sub>3</sub> is sol in 121,760 pts H<sub>2</sub>O at 8 8° and 91,468 pts at 24 3° (Hollemann, Z phys Ch 12 130)

1 l H<sub>2</sub>O dissolves 11 mg SrCO<sub>3</sub> at 18° (Kohlrausch and Rose, Z phys Ch 12 241) "Solubility product" = 15 67  $\times$  10<sup>-10</sup> mol

(McČoy and Smith, J Am Chem Soc 1911, 33 473)

Sol in 833 pts  $H_2CO_3 + Aq$  at  $10^\circ$ (Gmelin)

Sol in 56,545 pts H O containing NH<sub>4</sub>OH

and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>

Quite sol in  $NH_4Cl+Aq$  or  $NH_4NO_3+Aq$ , but reprecipit ited on addition of NH4OH and

 $(NH_4)_2CO_3+Aq$  (Freenius)

Partially decomp by boiling with aqueous K<sub>2</sub>SO<sub>4</sub>, CaSO<sub>4</sub>,  $\mathbf{of}$ Na<sub>2</sub>SO<sub>4</sub>, solutions (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, MgSO<sub>4</sub>, Na<sub>2</sub>HPO<sub>4</sub>, (NH<sub>4</sub>) HPO<sub>4</sub>, K<sub>2</sub>SO<sub>3</sub>, Na<sub>2</sub>SO<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>,

Na<sub>2</sub>AsO<sub>2</sub>, K<sub>2</sub>AsO<sub>2</sub>, K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, NaF and K<sub>2</sub>CrO<sub>4</sub> Decomp is complete with the NH<sub>4</sub> salts (Dulong, A ch 82 286)

Sl decomp by Na<sub>2</sub>SO<sub>4</sub>, or K<sub>2</sub>SO<sub>4</sub>+Aq

(Persoz) Easily sol in NH4 chloride, nitrate, succinate+Aq, but less so than BaCO (Fresenius) Sol in ferric salts+Aq, with pptn of Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub> Sol in Na citrate+Aq (Spiller) Not decomp by a mixture of 1 pt H<sub>2</sub>SO<sub>4</sub> and 6 pts absolute alcohol, or by al coholic solutions of tartaric, racemic, citric or glacial acetic acids, immediately decomp by  $HNO_3$ +absolute alcohol, or  $H_2C_2O_4$ abs alcohol

## Solubility of SrCO<sub>3</sub> in NH<sub>4</sub>Cl+Aq

| % NH <sub>4</sub> Cl | % SrCO3                 |
|----------------------|-------------------------|
| 5 35<br>10<br>20     | 0 179<br>0 259<br>0 358 |

(Cantoni and Goguelia, Bull Soc 1905. ( **33** 13)

Insol in liquid NH<sub>3</sub> (Franklin, Am C) J 1898, **20** 829)

Insol in methyl acetate (Naumann, I 1909, 42 3790), ethyl acetate (Nauman B 1904, 37 3602)

Insol in acetone (Naumann, B 1904, 3, 4329)

Insol in acetone and in methylal mann, C C 1899, II 1014)

Min Strontianite

#### Strontium hydrogen carbonate

SrCO3 is sol in 850 pts of a sat solution f CO<sub>2</sub> in H<sub>2</sub>O

Strontium uranyl carbonate, 510, 2UO<sub>3</sub>, 2Cl +16H O

As Br comp (Blinkoff, Dissert 1900)

#### Terbium carbonate

in excess  $(NH_4)CO_3+A$ Ppt Insol(Potratz, C N 1905, 92 3)

#### Thallous carbonate, 11(();

100 pts H () dissolve pts  $11 (O_3 (C =$ cording to Crookes, I = according to Lam ) at-

15 5° 18° 62° 100° 100 S°

42 5 23 1285 27 2 22.4 pts 11<sub>2</sub>C( ,

Insol in absolute ilcohol (1), and other (C) Insol in acctone and pyridine (N iumai 1, B 1904, **37** 4329)

Insol in methyl accepte (Naumann, 1909, **42** 3790)

Thallous carbonate, acid, 11(), 2CO<sub>2</sub>

Rather easily sol in cold HO (Carst 1-

TIHCO<sub>3</sub> (Giorgis, Gazz ch it 1894, 24 474-479)

Thallous carbonate platinocyanide, Tl<sub>2</sub>CO<sub>3</sub>,  $Tl_2Pt(CN)_4$ 

Sl sol in hot, insol in cold H<sub>2</sub>O (Friswell, Chem Soc (2) 9 461)

Thorium carbonate, basic, 2ThO2, CO2+  $3H_2O$ 

Insol in CO<sub>2</sub>+Aq, but sol in excess of alkalı carbonates+Aq, if conc

Tin (stannous) carbonate, 2SnO, CO2

Easily decomp on air, insol in H2O or  $H_2CO_3+Aq$  (Deville, A ch (3) 35 448)

Uranyl carbonate, basic, 5(UO2)(OH)2,  $3(\mathrm{UO_2})\mathrm{CO_3} + 6\mathrm{H_2O}$ 

(Seubert and Elten, Z anorg 1893, 4 80)

Ytterbium carbonate, basic, Yb(OH)CO<sub>3</sub>+  $H_2O$ 

Ppt (Cleve, Z anorg 1902, **32** 146)

Ytterbium carbonate,  $Yb_2(CO_8)_3+4H_2O$ Ppt (Cleve, Z anorg 1902, **32** 146)

Yttrium carbonate,  $Y_2(CO_3)_3+3H_2O$ 

Insol in H<sub>2</sub>O, very sl sol in H<sub>2</sub>CO<sub>3</sub>+Aq Sol in SO<sub>2</sub>+Aq and all mineral acids Sol in NH4 salts, and alkalı carbonates+Aq to More sol in  $(NH_4)_2CO_3+Aq$ some extent than in K<sub>2</sub>CO<sub>3</sub>+Aq (Berlin) More sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq than cerium, but 5 or 6 times less sol than glucinum carbonate (Vauquelin) Sol in large excess of KHCO<sub>3</sub>+ (Rose) Slowly sol in NH<sub>4</sub> salts+Aq (Berzelius)

Zinc carbonates, basic, 8ZnO, CO<sub>2</sub>+2H<sub>2</sub>O, 5ZnO, 2CO<sub>2</sub>+3, or 7H<sub>2</sub>O, 3ZnO, CO<sub>2</sub>+ H<sub>2</sub>O, 11ZnO, 4CO<sub>2</sub>+14H<sub>2</sub>O, 14ZnO, 5CO<sub>2</sub>+9H<sub>2</sub>O, 2ZnO, CO<sub>2</sub>+H<sub>2</sub>O, 8ZnO,  $3CO_2 + 5H_2O$ , etc

All ppts formed from Zn salts and carbonates+Aq Sol in 2000-3000 pts cold H<sub>2</sub>O, separates out on heating and does not redissolve on cooling pts H<sub>2</sub>O at 15° (Schindler) Sol in 20,895 (Kremers, Pogg 85 248) Sol in 44,600 pts H<sub>2</sub>O at ord temp (Fresenius)

Sol in 1428 pts sat H<sub>2</sub>CO<sub>3</sub>+Aq (Las saigne) Sol in 189 pts H<sub>2</sub>CO<sub>3</sub>+Aq sat at 4-6 atmos (Wagner, Z anal 6 107) Easily sol in KOH, NaOH, NH40H, (NH4)2CO<sub>8</sub>+Aq, and in acids Somewhat sol in alkali bicarbonates and NH<sub>4</sub> salts+Aq nius) Sol in hot (Fuchs), also cold (Brett, 1837) NH<sub>4</sub>Cl+Aq, less sol in NH<sub>4</sub>NO<sub>3</sub>+Aq (Brett)

Sol in all NH<sub>4</sub> salts+Aq excepting (NH<sub>4</sub>)<sub>2</sub>S +Aq (Terreil, Bull Soc (2) 9 441)

Insol in Na CO<sub>3</sub>, or K CO<sub>3</sub>+Aq ferric salts+Aq with pptn of Fe,O.H. (Fuchs, 1831)

The carbonates described by Boussingault. Wackenroder, Rose, and probably all salts between ZnO, CO<sub>2</sub> and 5ZnO, 2CO<sub>2</sub> are mixtures (Kraut, Z anorg 1897, 13 1-15) 3ZnO, CO<sub>2</sub>+2H<sub>2</sub>O Min Zinc bloom, Hy-

drozincite

ZnCO<sub>3</sub>, 3ZnO<sub>2</sub>H<sub>2</sub> Min 4 uricalcute

Zinc carbonate, ZnCO<sub>2</sub>

 $1~l~H_2O$  at  $15^{\circ}$  dissolves 0 01 g , 1 l  $H_2O$  dissolves 1 64 x 10-1 mols , or 0 206 g ZnCOs

at 25° (Ageno and Valla, 4tt acc Linc 1911, 20, 11 706)

1 1 5 85% NaCl+Aq dissolves 0 0586 g, 11 7 45% KCl+Aq dissolves 0 0477 g ZnCO: (Essen, Gm-K 4, 1 680)

Sol in acids, KOH+Aq, and NH, salts+ Aq Sol ın H<sub>2</sub>CO<sub>3</sub>+Aq

# Solubility in various salts+Aq

| Solvent                                 | g ZnCO; sol in 11 of<br>the solvent |
|-----------------------------------------|-------------------------------------|
| 10% NaNO <sub>3</sub> +Aq               | 0 058981                            |
| sat NaNO <sub>3</sub> +Aq               | 0 149000                            |
| 5% NaCl+Aq                              | 0 021730                            |
| 10% NaCl+Aq                             | 0 046564                            |
| sat NaCl+Aq                             | 0 130380                            |
| 10% Na <sub>2</sub> SO <sub>4</sub> +Aq | 0 009313                            |
| sat Na SO <sub>4</sub> +Aq              | 0 015521                            |

(Ehlert, Z Elektrochem 1912, 18 728)

Insol in liquid NH<sub>8</sub> (Franklin, Am Ch J 1898, **20** 830)

Insol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4329) Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1910, 43 314)

Min Calamine, Smithsonite Calamine is sol in NH40H+Aq only in the presence of NH, salts Zert angew Ch 1904, 17 513) (Brandhorst,

 $+\frac{1}{2}$ H<sub>2</sub>O (Mikusch, Z anorg 1908, 56) 366)

+HO(Belar, Zeit Kryst 1890, 17 126)

Zinc carbonate ammonia, ZnCO<sub>3</sub>, \H<sub>3</sub>

Slowly decomp by HO, but not on the an or by boiling with alcohol (Favre, A ch (3) **10** 474)

Zinc carbonate hydroxylamine,  $ZnCO_3$ ,

2NH<sub>3</sub>O Insol in HO Decomp by acids (Goldschmidt and Syngros, Z anorg 5 129)

Zirconium carbonate, 3ZiO, CO +6H<sub>2</sub>O

Decomp by hot HO, all CO being given off (Hermann)

Sol in alkali carbonates + Aq

# Percarbonic acid See Percarbonic acid

Carbonic anhydride, CO<sub>2</sub>
See Carbon droxide

# Carbonophosphoric acid

Potassium carbonophosphate, (K<sub>2</sub>HPO<sub>4</sub>)<sub>2</sub>, 2CO<sub>2</sub>, 2KHCO<sub>3</sub>

Known only in solution (Barillé, C R 1903, 137 566)

## Carbonyl bromide, COBr2

Decomp by  $H_2O$  (Besson, C R 1895, **120** 192)

# Carbonyl platinous bromide, CO, PtBr<sub>2</sub>

Sol in  $H_2O$  with almost instant decomp Sol in absolute alcohol (Pullinger, Chem Soc **59** 603)

Quite easily sol in hot  $C_6H_6$ , insol in ligroine, and can be crystallized from  $CCl_4$  Very easily sol in HBr+Aq (Mylius and Forster, B 24 2432)

# Carbonyl bromochloride, COClBr Decomp by HO (Besson)

## Carbonyl chloride, COCl2

Phosgene Cold H<sub>2</sub>O dissolves 1–2 vols COCl<sub>2</sub> gas with slow decomposition Alcohol decomp immediately Immediately absorbed by KOH, or NH<sub>4</sub>OH+Aq Very sol in glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, benzene, and most liquid hydrocarbons (Berthelot, Bull Soc (2) 13 14) Sol in SCl<sub>2</sub>

1 vol AsCl<sub>3</sub> absorbs 10 vols COCl<sub>2</sub>

 $D_{2}$ carbonyl cuprous chloride,  $Cu_{2}Cl_{2}$ ,  $2CO+4H_{2}O$ 

Decomp by ur (Jones, Am Ch J 1899, **22** 305)

Carbonyl platinous chloride, 2COCl, PtCl Sl dcliquescent Fasily sol in H<sub>2</sub>O without dccomp, sl sol in ilcohol. Almost insol in CCl<sub>4</sub> (Pullinger, Chem. Soc. **59** 600)

Monocarbonyl platinous chloride, CO, PtCl
Decomp by H<sub>2</sub>O and alcohol, sol in hot
CCl<sub>4</sub> (Schutzenberger, A (h (4) 15 100)

Sol in conc HCl+Aq (Mvhus and Forster)

Dicarbonyl platinous chloride, 2CO, PtCl<sub>2</sub>
Decomp by H<sub>2</sub>O and alcohol Sol in CCl<sub>4</sub>
(Schutzenberger)

Decomp by conc HCl+Aq into CO and CO, PtCl<sub>2</sub> (Mylius and Forster)

Sesquicarbonyl platinous chloride, 3CO, 2PtCl.

Decomp by H<sub>2</sub>O or alcohol Much mosol in CCl<sub>4</sub> than 2CO, PtCl<sub>5</sub>

## Carbonyl platinous iodide, CO, PtI2

Not hygroscopic Insol in, but slowly comp by,  $\rm H_2O$  Easily sol in benzene ether, also in alcohol, which decomp on waring, sol in  $\rm HI+Aq$  (Mylius and Forster)

# Carbonyl platinous sulphide, CO, PtS

Easily decomp Insol in ordinary solven (Mylius and Forster)

# Carbonyl sulphide, COS H<sub>2</sub>O absorbs 1 vol COS

# Absorption of COS by H<sub>2</sub>O at t°

| t° | Coefficient of absorption |
|----|---------------------------|
| 0  | 1 333                     |
| 10 | 0 835                     |
| 20 | 0 561                     |
| 30 | C 403                     |

(Winkler, Z phys Ch 1906, 55 351)

1 ccm H<sub>2</sub>O at 13 5° and 756 mm pr dissolves 0.8 ccm COS (Hempel, Zangew ch 1901, 14 867)

I com of a hydrochloric read solution f Cu<sub>2</sub>Cl<sub>2</sub> absorbs about 0.2 cm COS (He pel)

#### Carbonyl ferrocyanhydric acid H<sub>3</sub>Fe(CO)((N)<sub>5</sub>

Very sol in II<sub>2</sub>O, decomp on heati (Muller, A ch (6) 17 94)

#### Cobalt carbonyl ferrocyanide

Sl sol in HO, very sol in dil HNO3+/ [

# Cupric carbonyl ferrocyanide,

 $\operatorname{Cu}_3[\operatorname{I}_{\mathfrak{C}}(\operatorname{CO})((\operatorname{N})_{\mathfrak{l}}]$ 

Insol in H O H SO, or dil HNO,  $\dagger$  (M)

#### Iron (ferric) carbonyl ferrocyanide, lielic(CO(CN))

Insol in H () Sol in H ( O<sub>4</sub> + Aq In l in acctic, lactic, succinic, tuturic, and ci cacids+Aq but casily sol in the neutrals sof those acids Insol in KCl, or KNO<sub>3</sub>+ put sensibly sol in N i HPO<sub>4</sub>+Aq Ir player on warming in very dil H SO<sub>4</sub>, or H<sub>4</sub>P +Aq (Muller)

# Potassium carbonyl ferrocyanide,

K₃Fε(CO)(CN)₅+3½H O

100 pts  $H_2$ 0 dissolve 148 pts at (Muller, C R 104 992)

Silver carbonyl ferrocyanide,  $Ag_{3}Fe(CO)(CN)_{5}$ 

Insol in H<sub>2</sub>O, sl sol in dil H<sub>2</sub>SO<sub>4</sub>, HCl, or HNO<sub>8</sub>+Aq, scarcely attacked by conc  $HC_2H_3O_2+Aq$  (Muller)

Sodium carbonyl ferrocyanide,  $Na_3Fe(CO)(CN)_5+6H_2O$ Sol in H<sub>2</sub>O (Muller)

Uranyl carbonyl ferrocyanide,  $(UO_2)_{8}[FeCO(CN)_{5}]_2 + 5H_2O$ 

Sl sol in H<sub>2</sub>O, but more easily if H<sub>2</sub>O is acidified with HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>

## Cericotungstic acid

Ammonium cericotungstate, 2(NH<sub>4</sub>)<sub>2</sub>O,  $Ce_2O_3$ ,  $16WO_3 + 2H_2O$ 

Insol in H<sub>2</sub>O, but decomp by boiling therewith (Smith, J Am Chem Soc 1904, **26** 1481)

#### Cerium, Ce

Decomp pure H<sub>2</sub>O very slowly at ordinary temp Not attacked by cold conc H2SO4 or red fuming HNO<sub>3</sub> Sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq, HNO<sub>3</sub>+Aq, and conc or dil HCl+Aq (Hillebrand and Norton, Pogg **155** 633)

## Cerous bromide, CeBr<sub>3</sub>

Anhydrous As the chloride (Robinson, Proc Roy Soc 37 150)

Sol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4328)

Sol in methyl acetate (Naumann, B 1909, **42** 379C)

Very deliquescent (John)  $+xH_2O$ 

Cerium gold bromide, CeBr<sub>3</sub>, AuBr<sub>3</sub>+8H<sub>2</sub>O Sec Bromaurate, cerium

Cerium carbide, CeC<sub>2</sub>

Decomp by fused alkali nitrates, chlorates, hydroxides and carbonates, and by conc H<sub>2</sub>SO<sub>4</sub> on heating Insol in conc HNO<sub>3</sub>, decomp by H<sub>2</sub>O and dil acids (Moissan, C R 1896, **122** 359)
CeC<sub>3</sub> Not attacked by hot conc acids

(Del fontaine, J B 1865 176)

#### Cerous chloride, CcCl<sub>3</sub>

Deliquescent Sol in H<sub>2</sub>C A nhy Irous with hissing and evolution of heat, sol in alcohol

Sol in acctone (Eidmann, C C 1899, IJ 1614, Naumann, B 1904, 37 4328)

Difficultly scl in methyl acetate (Naumann, B 1909, 42 3790)

Insol in NH<sub>4</sub>OH+Aq (Den- | Aq +7H<sub>2</sub>O nis, Z anorg 1894, 7 260)

+7½H2O Deliquescent (Berzelius) Decomp by boiling with H2O Sol in 1 pt H<sub>2</sub>O at ord temp and 3-4 pts alcohol (Dumas)

#### Ceric chloride

Known only in solution, which decomposes by slight heat (Berzelius)

#### Cerous mercuric chloride

Not deliquescent (v Bonsderff) CeCl<sub>3</sub>, 4HgCl<sub>2</sub>+10H<sub>2</sub>O Permanent, easly sol in H<sub>2</sub>C (John, Bull Sec (2) 21 533)

Cerium stannic chloride See Chlorostannate, cerium

Cerous chloride zinc iodide

Sol in H<sub>2</sub>O and alcohol (Holzmann, J pr 84 76)

Cerous fluoride, CeF<sub>3</sub>

Insol ppt  $+\frac{1}{2}H_{2}O$ 

Ceric fluoride, CeF4

Insoluble precipitate (Berzelius) +H<sub>2</sub>O Insol in H<sub>2</sub>O (Brauner, B 14 1944)

Ceric cobaltous fluoride, 2CeF<sub>4</sub>, CoF<sub>2</sub>+7H<sub>2</sub>O Ppt Easily decomp by HO (Rimbach, A 1909, 368 107)

Ceric cupric fluoride, 2CeF<sub>4</sub>, CuF<sub>2</sub>+7H<sub>2</sub>O Ppt Decomp by  $H_2O$  (Rimbach, l c)

Ceric nickel fluoride, 2CeF<sub>4</sub>, N<sub>1</sub>F<sub>2</sub>+7H<sub>2</sub>O Ppt Decomp by  $H_2O$  (Rimbach, l c)

Ceric potassium fluoride, 2CeF<sub>4</sub>, 3KF+2H<sub>2</sub>O Insol in H<sub>2</sub>O (Brauner, B 14 1944, 15 109)

Could not be obtained pure (Rimbach, 1 c)

Ceric zinc fluoride, 2CeF<sub>4</sub>, ZnF<sub>2</sub>+7H<sub>2</sub>O Ppt Decomp by  $H_2O$  (Rimbach, l c)

Ceroceric fluoride 2CeF<sub>3</sub>, CeF<sub>4</sub> Min Fluocerite

#### Cerium hydride, CeH<sub>2</sub>

Decomp by acids (Winkler, B 24 873) CeH<sub>8</sub> Decomp in moist air, decomp by hot or cold H2O, sol in acids with evolution of H<sub>2</sub>O Decomp by alkalis (Muthmann, A 1902, **325** 266)

## Cerous hydroxide, $Ce_2O$ , $xH_2O$

Easily sol in acids Insol in excess of alkalı hydroxides + Aq Sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+

100 ccm of a solution in glycerine+Aq containing about 60% by vol of glycerine contain 79 g Ce<sub>2</sub>O<sub>3</sub> (Muller, Z anorg 1905, **43** 322)

Exists in two modifications one insol in

cold HCl+Aq, the other sol in cold HCl+ Aq (Brauner, C N 1895, 71 283)

Ceric hydroxide, 2CeO<sub>2</sub>, 3H<sub>2</sub>O

Sol in HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub>, also in HCl+Aq, forming cerous chloride and free chlorine Insol in hydrofluoric, acetic, or formic acids+Aq Somewhat sol in dil HNO<sub>5</sub>, or HCl+Aq (Ordway, Am J Sci (2) 26 205) Insol in NH<sub>2</sub>OH, KOH, and NaOH+Aq Sl sol in alkalı carbonates+Aq (Dumas)

Sl sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Ordway) 100 ccm of a solution in glycerine+Aq containing about 60% by vol of glycerine contain 0 08 g CeO2 (Muller, Z anorg 1905, 43 232)

#### Cerous 10dide, Cel

Sol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4328) +9H₂O Very deliquescent and sol in

H<sub>2</sub>O (Lange, J pr 82 134) Sol m alcohol

# Cerum nitride, CeN

Decomp by H<sub>2</sub>O and alkalı Sol in mineral acids with formation of cerous and ammonium salts (Muthmann, A 1902, 325 272)

## Cerous oxide, Ce<sub>2</sub>O<sub>3</sub>

When ignited, insol in HCl+Aq, when long digested with H<sub>2</sub>SO<sub>4</sub>, is sol in HCl+Aq with addition of alcohol

## Ceric oxide, CeO<sub>2</sub>

When ignited, is only dissolved in traces, even on heating, by HCl or HNO<sub>3</sub>+Aq Sol in conc H<sub>2</sub>SO<sub>4</sub> when warmed Sol in the cold in a solution of Kl in HCl+Aq (Bunsen), in a mixture of HCl and FeCl<sub>2</sub>+Aq, or any reducing substance

# Cerium peroxide, Ce<sub>4</sub>O<sub>9</sub>

Insol in boiling cone acids Sol in H SO<sub>4</sub> by long digestion (Popp, A 131 361)

Probably does not exist (Rammelsberg,

Pogg 108 40) Ce<sub>2</sub>O<sub>5</sub> (Hermann, J pr 30 184)

Probably does not exist (Rammelsberg) CeO<sub>3</sub>+xH<sub>2</sub>O Sol in HCl+Aq (Popp, A 131 361), (Lecoq de Boisbaudran, C R **100** 605)

 $CeO_2+H_2O_2$ , according to Cleve (Bull Soc (2) 43 57)

## Cerium oxycarbide, CeC<sub>2</sub>, 2CeO<sub>2</sub>

Stable in the air Slowly attacked by cold H<sub>2</sub>O With hot H<sub>2</sub>O and with acids, it gives unsat hydrocarbons (Sterba, C R 1902, **134** 1058)

## Cerium oxychloride, CeOCl

Slightly attacked by hot conc HCl+Aq Slowly sol in conc HNO<sub>2</sub>+Aq (Wohler)

Easily sol in dil acids (Didier, C R 1 L

Cerium oxychloride tungsten trioxide, CeO 1. WO<sub>2</sub>

(Didier, C R 102 823)

#### Cerium selenide

Insol in H<sub>2</sub>O, difficultly sol in act; (Berzelius)

#### Cerium silicide, CeS12

Insol in  $H_2O$ , by which it is acted up  $\alpha$ only very slowly

Sol in HCl and HF+Aq with evolution f

Not attacked by alkalis+Aq or NH4OH -

Aq Insol in organic solvents (Sterba, C 1902, **135** 170)

## Cerium silicide, Ce<sub>2</sub>S<sub>13</sub>

Insol in acids (Ullik, W A B 52. 115)

## Cerium disulphide, Ce<sub>2</sub>S<sub>4</sub>

Not decomp by cold H<sub>2</sub>O

Slowly sol in cold dil H SO4, HCl al I acetic acid Rapidly sol in wirm dil H2S( . HCl and acetic acid with decomp (Biltz, 1908, 41 3342)

#### Cerium sesquisulphide, Co S3

Insol in, and not decomp by HO, b easily decomp by the weakest reids (M sander), (Didici, C R 100 1161)

# Monochloramine, NII ('1

Easily sol in HO (Ruschig Ch. Z. 190) **31** 926)

# Chlortet amine comps

See Chlorotetramine comps

## Melachlorantimonic acid, 115h( la + 41 H ()

Hydroscopic – Sol in HO with decomp sol in ilcohol actions and actionen (Weinland, Z. morg. 1905. 44. 1.)

Metachlorantimonic acid ammonia, HSbCi  $2NH_{2}$ 

Sol in HO and in alcohol (Weinland in Schmid, Z. morg. 1905, **44**-59)

Aluminum metachlorantimonate, \[\]\(\)\(\)\[\]\[\] +15H O

Hydroscopic

Sol in dil HCl+Aq (Weinland, B 190 36 254)

Ammonium metachlorantimonate, NH<sub>4</sub>SbCl<sub>6</sub> +H<sub>2</sub>O

Hydroscopic

Sol in H<sub>2</sub>O Solution decomp slowly when cold, rapidly on warming

Sol in dil HCl (Weinland, B 1903, 36 251)

Cadmium metachlorantimonate ammonia, Cd(SbCl<sub>6</sub>)<sub>2</sub>, 7NH<sub>3</sub>

Ppt (Weinland and Schmid, Z anorg 1905, 44 56)

Calcium metachlorantimonate,  $Ca(SbCl_6)_2 + 9H_2O$ 

Hydroscopic

Sol in dil HCl+Aq (Weinland, B 1903, 36 253)

Chromium metachlorantimonate,  $Cr(SbCl_6)_8 + 13H_2O$ 

Hydroscopic

Sol in dil HCl+Aq (Weinland)

Chromium orthochlorantimonate, CrSbCl<sub>8</sub>+  $10H_2O$ 

Hydroscopic

Sol in dil HCl+Aq (Weinland)

Cupric metachlorantimonate ammonia, Cu(SbCl<sub>6</sub>)<sub>2</sub>, 5NH<sub>2</sub>

(Weipland and Schmid, Z anorg 1905, 44 55)

Glucinum melachlorantimonate,  $Gl(SbCl_6)_2 + 10H_2O$ 

Very hydroscopic Sol in dil HCl (Weinland, B 1903, 36 252)

Iron (ferric) orthochlorantimonate, FeSbCl<sub>8</sub> +8II<sub>2</sub>O

Hydroscopic

Can casaly be cryst from dil HCl+Aq (Weinland)

Lithium metachlorantimonate, LiSbCl<sub>6</sub>+411 O

Very hydroscopic

Sol in dil IICl $+\Lambda a$  (Weinland, l c)

Magnesium pipochlorantimonate, MgSbCl<sub>7</sub> +911 ()

Hydroscopic

Sol in dil HCl+Aq (Weinland)

Nickel metachlorantimonate ammonia, Ni(SbCl<sub>0</sub>)<sub>2</sub>, 6NII<sub>3</sub>

Sol in HO (Wanland and Schmid, Z morg 1905, 44 57)

Potassium metachlorantimonate, KSbCl<sub>6</sub>+

Hydroscopic

Sol 1n  $H_2\hat{O}$  Solution decomp slowly when cold rapidly when warmed

Sol m dil HCl+Aq (Weinland, B 1903, 36 250)

Rubidium metachlorantimonate, RbSbCl6

Hydroscopic Sol in dil HCl+Aq (Weinland)

Silver metachlorantimonate ammonia,  $AgSbCl_6$ ,  $2NH_3$ 

Decomp by  $H_2O$  (Weinland and Schmid)

Zinc metachlorantimonate ammonia, Zn(SbCl<sub>6</sub>)<sub>2</sub>, 4NH<sub>3</sub>

(Weinland and Schmid)

Chlorarsemous acid See Arsenyl chloride

Chlorauric acid, HAuCl<sub>4</sub>+4H<sub>2</sub>O

Sol in H<sub>2</sub>O, alcohol, and ether Sol in POCl<sub>3</sub> (Walden, Z anorg 1900, 25

212)

Difficultly sol in PCl<sub>3</sub> (Walden) Cryst with 3H<sub>2</sub>O as stated by Weber and Schottlander and not with 4H<sub>2</sub>O as stated by Thomsen (Schmidt, C C 1906, II 855)

Chloraurates

All chloraurates are easily sol in H<sub>2</sub>O and in alcohol (v Bonsdorff, **1829**)

Ammonium chloraurate, NH<sub>4</sub>AuCl<sub>4</sub>+H<sub>2</sub>O Very easily sol in H<sub>2</sub>O +2H<sub>2</sub>O Very easily sol in H<sub>2</sub>O

Barium chloraurate, Ba(AuCl<sub>4</sub>)<sub>2</sub>+xH<sub>2</sub>O
Deliquescent in moist air Sol in H<sub>2</sub>O and alcohol (v Bonsdorff, Pogg 17 261)

Cadmium chloraurate

Not deliquescent Sol in  $H_2O$  and alcohol (v Bonsdorff)

Cæsium chloraurate, CsAuCl4

100 pts aqueous sat solution contain at 10° 20° 30° 40° 50°

0 5 0 8 1 7 3 2 5 4 pts anhydrous salt, 60° 70° 80° 90° 100°

8 2 12 0 16 3 21 7 27 5 pts anhydrous salt (Rosenbladt, B 19 2538)

 $+\frac{1}{2}H_2O$  (Wells and Wheeler, Am J (3)  $44\ 157$  )

Calcium chloraurate, Ca(AuCl<sub>4</sub>)<sub>2</sub>+6H<sub>2</sub>O

Deliquescent Sol in H<sub>2</sub>O and alcohol (v Bonsdorff)

Cerium chloraurate, CeCl<sub>3</sub>, AuCl<sub>3</sub>+10H<sub>2</sub>O

Extremely deliquescent Easily sol in H<sub>2</sub>O and absolute alcohol (Holzmann, C C **1863** 206)

+13H<sub>2</sub>Ó (John, Bull Soc (2) 21 534)

Cobalt chloraurate, Co(AuCl<sub>4</sub>)<sub>2</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O and alcohol (Topsoe)

Didymium chloraurate, DiCl<sub>3</sub>, AuCl<sub>3</sub>+10H<sub>2</sub>O Very deliquescent (Cleve, Bull Soc (2) 43 361) 2DiCl<sub>3</sub>, 3AuCl<sub>3</sub>+20H<sub>2</sub>C (Cleve)

251018, 5114018 | 251120 (01000)

Gadolinium chloraurate, GdCl<sub>2</sub>, AuCl<sub>2</sub>+ 10H<sub>2</sub>O

Sol in  $H_2O$  (Benedicks, Z anorg 1900, 22 404)

Lanthanum chloraurate, LaCl<sub>8</sub>, AuCl<sub>8</sub>+5H<sub>2</sub>O

Deliquescent in moist air Sol in H<sub>2</sub>O

(Cleve, B 8 128)

Lithium chloraurate, LiAuCl4

**1894,** I 409)

100 pts aqueous solution contain at 10° 20° 30° 40° 53 1 57 7 62 5 67 3 pts anhydrous salt,

50° 60° 70° 80° 72 0 76 4 81 0 85 7 pts anhydrous salt (Rosenbladt)

+2H<sub>2</sub>O (Antony and Lucchesi, Gazz ch it 1890, **20** 601) +4H<sub>2</sub>O Not stable Sol in H<sub>2</sub>O and alcohol (Fasbender, C C

Magnessum chloraurate, Mg(AuCl<sub>4</sub>)<sub>2</sub>+8H<sub>2</sub>O Somewhat deliquescent Sol in H<sub>2</sub>O and alcohol (Topsoe) +12H<sub>2</sub>O

Manganese chloraurate, Mn(AuCl<sub>4</sub>)<sub>2</sub>+ 8H<sub>2</sub>O

Deliquescent Sol in  $H_2O$  and alcohol (Topsoe)  $+12H_2O$ 

Nickel chloraurate, Ni(AuCl<sub>4</sub>)<sub>2</sub>+8H<sub>2</sub>O

Deliquescent Sol in H<sub>2</sub>O and alcohol (Topsoe)

Potassium chloraurate, KAuCl4

Anhydrous Very stable (Lamer, W A B 99, 2b 247)

100 pts solution in  $H_2O$  contain at  $10^{\circ}$  20° 30° 277 38 2 48 7 pts anhydrous salt,  $40^{\circ}$  50° 60°

59 2 70 0 80 2 pts anhydrous salt (Rosenbladt, B **19** 2538)

Sol in  $\rm H_2O$  and alcohol, insol in ether (Fasbender, C C 1894, I 409)

1 pt is sol in 4 pts 98% alcohol (Fasbender, C C 1894, II 609) +2H<sub>2</sub>O Efflorescent +½H<sub>2</sub>O Praseodymium chloraurate, PrCl<sub>3</sub>, AuCl<sub>3</sub> - 10H<sub>2</sub>O

Very sol in H<sub>2</sub>O, sol in conc HCl (v<sub>1</sub> L Schule Z anorg 1898, **18** 354)

Rubidium chloraurate, RbAuCl.

100 pts sat RbAuCl<sub>4</sub>+Aq contain at 10° 20° 30° 40° 50° 46 9 0 13 4 17 7 22 2 pts anhydrous sal

60° 70° 80° 90° 100° 26 6 31 0 35 3 39 7 44 2 pts anhydrous sal (Rosenbladt)

1 pt sol in 54 pts 98% alcohol Insol ether (Fasbender, C C 1894, II 609)

Samarıum chloraurate, SmCl<sub>3</sub>, AuCl<sub>3</sub>+ 10H<sub>2</sub>O

Deliquescent Easily sol in  $H_2O$  (Clev Bull Soc (2) 43 165)

Scandium chloraurate,  $3ScCl_3$ ,  $2AuCl_2$  $21H_2O$ 

Very deliquescent (Crookes, Phil Tran. 1910, **210** A, 365)

Silver chloraurate, AgAuCl4

Decomp in the air

Decomp by H<sub>2</sub>O, HCl and NH<sub>3</sub> (Hernmann, B 1894, **27** 597)

Sodium chloraurate, NaAuCl<sub>4</sub>+2H<sub>2</sub>O

Easily sol in H<sub>2</sub>O and absolute alcohol 100 pts aqueous solution contain at 10° 20° 30°

58 2 60 2 64 0 pts anhydrous salt,

40° 50° 60° 69 4 77 5 90 0 pts anhydrous silt (Rosenbladt)

Hasily sol in NiCl+Aq Hasily sol in H<sub>2</sub>O, alcohol and other (Fasbender, C. C. **1894**, I. 409.)

Strontium chloraurate

Sol m H<sub>2</sub>O (v Bonsdorfi)

Thallium chloraurate

(Carstingen)

Ytterbium chloraurate, YbCl<sub>3</sub> \uCl<sub>3</sub>+9H<sub>2</sub>O Ppt (Cleve, Z anorg 1902, **32** 138)

Yttrium chloraurate, YtCl<sub>3</sub> 2\uCl<sub>3</sub>+16H<sub>2</sub>() Very sol in H<sub>2</sub>O (Cl<sub>1</sub>V<sub>1</sub>)

Zinc chloraurate, Zn(AuCl<sub>4</sub>)<sub>2</sub>+8H<sub>2</sub>O

Sol m H<sub>2</sub>O (Topsoc) +12H<sub>2</sub>O Sol m H<sub>2</sub>O and alcohol (v Bonsdorff)

# Chlorauricyanhydric acid

Barium chlorauricyanide, Ba[Au(CN)2Cl2]2+

Very sol in H<sub>2</sub>O or alcohol (Lindbom, Lund Univ Arsk 12 No 6)

Potassium chlorauricyanide, KAu(CN)2Cl2+

Very sol in H<sub>2</sub>O or alcohol

Strontium chlorauricyanide, Sr[Au(CN)2Cl2]2 +8H<sub>2</sub>O

Sol in H<sub>2</sub>O

Zinc chlorauricyanide, Zn[Au(CN)2Cl2]2+  $7H_2O$ 

Very sol in H<sub>2</sub>O

# Chlorhydric acid, HCl

Liquid Miscible with liquid CO2, and H2S Gas Absorbed by H<sub>2</sub>O with production of much heat

H<sub>2</sub>O absorbs 400-500 vols at ord temp and pressure or a little less than 1 pt by weight (Dalton)
1 vol H<sub>2</sub>O absorbs 480 vols at 0° sp gr of sat solu

1 vol H<sub>2</sub>O absorbs 480 vols at 0° sp gr of sat solution is 1 210°) (Davv)
1 vol H O absorbs 417 822 vols at 20 the vol in creasing to 1 41 38 vols 1 vol of HCl+Aq then contains 311 vols HCl has sp gr 1 1958 and contains 40 39% HCl by weight (Thomson 1831)
1 vol H O absorbs 464 vols and sat solution has 1 21 sp gr and contains 42 4% HCl by weight (Wittstein)
H O sit at 0 contains 480 times its vol of HCl and sp gr = 1 2109 sat at ori temp contains 38 3% of its weight in HCl and sp gr = 1192 (Berzelius)
1 vol H O absorbs V vols HCl at t° and 760 mm pressure and the liquid formed has the given sp gr and contains the given per cent HCl

and contains the given per cent HCl

| t     | V                      | p gr קל                    | % HCl            |
|-------|------------------------|----------------------------|------------------|
| 0     | 525 2<br>494 7         | 1 2257<br>1 2265           | 45 148<br>44 361 |
| 12    | 480 3<br>471 3         | 1 218)<br>1 2148           | 43 828<br>43 277 |
| iī    | 462 4                  | 1 2074<br>1 2064           | 42 829<br>12 344 |
| 15,25 | 151 2<br>150 7<br>13 0 | 1 2004<br>1 2056<br>1 2014 | 42 283<br>41 536 |

(Deicke Logg 119 156)

At 760 mm pressure 1 g H<sub>2</sub>O absorbs g HCl it t

| ť                                                         | F H(1                                                                                           | t                                                              | P H()                                                                                           | t                                                  | g HCl                                                                         |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|
| 0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20 | 0 825<br>0 814<br>0 804<br>0 793<br>0 783<br>0 772<br>0 762<br>0 752<br>0 742<br>0 731<br>0 721 | 22<br>24<br>26<br>28<br>30<br>32<br>34<br>36<br>38<br>40<br>42 | 0 710<br>0 700<br>0 691<br>0 682<br>0 673<br>0 665<br>0 657<br>0 649<br>0 641<br>0 633<br>0 626 | 44<br>46<br>48<br>50<br>52<br>54<br>56<br>58<br>60 | 0 618<br>0 611<br>0 603<br>0 596<br>0 589<br>0 582<br>0 575<br>0 568<br>0 561 |

(Roscoe and Dittmar)

Conc HCl+Aq loses HCl, and dil HCl+ Aq loses H<sub>2</sub>O on warming, until an acid of constant composition is formed, containing 20 18% HCl, with a sp gr of 1 101 at 15, which can be distilled unchanged at 110° (Bineau, A ch (3) 7 257)

The above is true if barometer is at 760 mm, but the composition changes with the

pressure as follows-

| Mm<br>Hg | % HCl | Mm<br>Hg | % HCI | VIm<br>Hg | % HCl |
|----------|-------|----------|-------|-----------|-------|
| 50       | 23 2  | 800      | 20 2  | 1700      | 18 8  |
| 100      | 22 9  | 900      | 19 9  | 1800      | 18 7  |
| 200      | 22 3  | 1000     | 19 7  | 1900      | 18 6  |
| 300      | 21 8  | 1100     | 19 5  | 2000      | 18 5  |
| 400      | 21 4  | 1200     | 19 4  | 2100      | 18 4  |
| 500      | 21 1  | 1300     | 19 3  | 2200      | 18 3  |
| 600      | 20 7  | 1400     | 19 1  | 2300      | 18 2  |
| 700      | 20 4  | 1500     | 19 0  | 2400      | 18 1  |
| 760      | 20 24 | 1600     | 18 9  | 2500      | 18 0  |

(Roscoe and Dittmar)

Conc HCl+Aq gradually gives off HCl on the air until it has a sp gr 1 128 at 15°, and contains 25 2% HCl (Bineau, l c)

According to Roscoe and Dittmar, this depends on the temperature If a current of an is passed through HCl+Aq, acid or water is given off according as the acid is strong or weak, until an acid of constant composition for a given temperature is formed, as follows-

| Temp                | % HC1 | Temp | % HCl | Temp | 7 HCl |
|---------------------|-------|------|-------|------|-------|
| 0° 5 10 15 20 25 30 | 25 0  | 35°  | 23 9  | 70°  | 22 6  |
|                     | 24 9  | 40   | 23 8  | 75   | 22 3  |
|                     | 24 7  | 45   | 23 6  | 80   | 22 0  |
|                     | 24 6  | 50   | 23 4  | 85   | 21 7  |
|                     | 24 4  | 55   | 23 2  | 90   | 21 4  |
|                     | 24 3  | 60   | 23 0  | 95   | 21 1  |
|                     | 24 1  | 65   | 22 8  | 100  | 20 7  |

From the above it is seen that the acid which distils unchanged at a given pressure, that is, boils at a certain constant temperature, is identical with the acid which undergoes no change in composition by a current of dry air at the same temperature, and under the ordinary pressure, thus—

| Mm<br>He                               | B pt                                        | % HCl                                        | Temp of air current         | % HCl                                |
|----------------------------------------|---------------------------------------------|----------------------------------------------|-----------------------------|--------------------------------------|
| 100<br>200<br>300<br>380<br>490<br>620 | 61–62°<br>76–77<br>84–85<br>91<br>97<br>103 | 22 8<br>22 1<br>21 7<br>21 3<br>20 9<br>20 6 | 62°<br>77<br>85<br>91<br>98 | 22 9<br>22 2<br>21 7<br>21 4<br>21 1 |

(Roscoe and Dittmar)

| Solubility of HCl in H <sub>2</sub> O at 0° under different |
|-------------------------------------------------------------|
| degrees of pressure P=partial pressure                      |
| in mm Hg, $i e$ , total pressure minus the                  |
| tension of aqueous vapour at the given                      |
| temp, G=grammes of HCl dissolved in                         |
| 1 g H <sub>2</sub> O at the pressure P and 0° temp          |

| P                                                                                                        | G                                                                                                                                            | P                                                                                                 | G                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 60<br>70<br>80<br>90<br>100<br>110<br>120<br>130<br>140<br>150<br>175<br>200<br>225<br>250<br>275<br>300 | 0 613<br>0 628<br>0 640<br>0 649<br>0 657<br>0 664<br>0 670<br>0 676<br>0 681<br>0 686<br>0 697<br>0 707<br>0 716<br>0 724<br>0 732<br>0 738 | 350<br>400<br>450<br>500<br>550<br>600<br>650<br>700<br>750<br>800<br>900<br>1100<br>1200<br>1300 | 0 751<br>0 763<br>0 772<br>0 782<br>0 791<br>0 800<br>0 808<br>0 817<br>0 824<br>0 831<br>0 844<br>0 856<br>0 869<br>0 882<br>0 895 |

(Roscoe and Dittmar, A 112 334)

1 vol  $H_2O$  dissolves 560 vols HCl at  $-12^{\circ}$  " 0° " 0° " +20° (Berthelot, C R **76** 779)

 $1~vol~H_2O$  absorbs 480~vols~HCl at  $15^\circ$  to form a solution containing 42.85%~HCl with a sp ~gr~of~1.215~~(Hager~)

Solubility of HCl at low temperatures, and 760 mm pressure

| t    | Pts HCl<br>in 1 pt H <sub>2</sub> O | t°                                                                                                     | Pts HCl<br>in 1 pt H <sub>2</sub> O |
|------|-------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------|
| 0    | 0 842                               | $     \begin{array}{r}       -18 \\       -19 \\       -20 \\       -21 \\       -24     \end{array} $ | 0 957                               |
| - 5  | 0 864                               |                                                                                                        | 0 965                               |
| - 10 | 0 898                               |                                                                                                        | 0 974                               |
| - 15 | 0 933                               |                                                                                                        | 0 983                               |
| - 17 | 0 949                               |                                                                                                        | 1 012                               |

(Roozeboom, R t c 1884, 3 79)

Solubility in H2O at to

| %нст  |
|-------|
| 61 65 |
| 61 76 |
| 62 27 |
| 62 90 |
| 63 21 |
| 64 19 |
| 64 70 |
| 65 18 |
| 65 48 |
| 65 85 |
| 66 44 |
| 66 71 |
| 67 29 |
| 67 65 |
|       |

(Rupert, J Am Chem Soc 1909, 31 860)

Sp gr of HCl+Aq

| Sp gr | % HCI | Sp gr  | % HCl | Sp gr  | % H |
|-------|-------|--------|-------|--------|-----|
| 1 203 | 40 66 | 1 1285 | 27 21 | 1 0960 | 20  |
| 1 179 | 37 00 | 1 1197 | 25 52 | 1 0902 | 19  |
| 1 162 | 33 95 | 1 1127 | 24 03 | 1 0860 | 18  |
| 1 149 | 31 35 | 1 1060 | 22 70 | 1 0820 | 17  |
| 1 139 | 29 13 | 1 1008 | 21 51 | 1 0780 | 17  |

(Thomson in his System 2 189)

Sp gr of HCl+Aq

| Sp gr                                                                                | % HCl                                                                                           | Sp gr                                                                        | % HCI                                                                              |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1 21<br>1 20<br>1 19<br>1 18<br>1 17<br>1 16<br>1 15<br>1 14<br>1 13<br>1 12<br>1 11 | 12 43<br>40 50<br>38 38<br>36 36<br>34 34<br>32 32<br>30 30<br>28 28<br>26 26<br>24 24<br>20 30 | 1 10<br>1 09<br>1 08<br>1 07<br>1 06<br>1 05<br>1 04<br>1 03<br>1 02<br>1 01 | 20 20<br>18 18<br>16 16<br>14 14<br>12 12<br>10 10<br>8 08<br>6 06<br>4 04<br>2 02 |

(Edm Davy)

Sp gr of HCl+Aq

| Sp gr                                                                | % HCl                                                                | B pt                                              | Sp gr                                                       | % HCl                                                   | Вр                                             |
|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|
| 1 199<br>1 181<br>1 166<br>1 154<br>1 144<br>1 136<br>1 127<br>1 121 | 34 01<br>31 09<br>28 29<br>26 57<br>24 94<br>23 25<br>21 06<br>20 74 | 49°<br>65<br>76<br>87<br>100<br>103<br>105<br>109 | 1 094<br>1 075<br>1 064<br>1 047<br>1 035<br>1 018<br>1 009 | 16 08<br>13 16<br>11 16<br>8 62<br>6 92<br>3 52<br>1 86 | 111°<br>109<br>107<br>105<br>104<br>102<br>101 |

(Kirwan and Dilton)

Sp gr of HCl+Aq ut 1,

| % HCl                                                                     | >p էr                                                                                  | 17 11C1                                                             | 70 F                                                                        |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 2 22<br>5 80<br>6 26<br>11 02<br>15 20<br>18 67<br>20 91<br>23 "2<br>2 96 | 1 0103<br>1 0159<br>1 0310<br>1 0557<br>1 0751<br>1 0912<br>1 1045<br>1 1196<br>1 1305 | 29 72<br>31 50<br>31 24<br>36 63<br>38 (7<br>40 1<br>41 72<br>13 09 | 1 1504<br>1 1588<br>1 1730<br>1 1511<br>1 135<br>1 2021<br>1 2074<br>1 2121 |

(Kalb ( R 74 33")

Sp ir of HCI+A pit 1

| l  |       |     |       |      |       |       |       |     |     |      |       |       |
|----|-------|-----|-------|------|-------|-------|-------|-----|-----|------|-------|-------|
| ,  | 5p _r |     | ПСІ   | `    | D EI  |       | H()   | 5   | ъ   | 1    |       | ПС    |
| 1  | 2000  | 10  | 777   | 1    | 16.0  | ,     | ( 1   | 1   | 1   | OH   | 1     | 160   |
| 1  | 1952  | 40  | 3() ) | 1    | 1 11  | 3     | _1    | 1   | 1.1 | 15   | -1    | () ,5 |
| l  | 1964  | (3) | 961   | 1    | 1.75  | l ı   | 50    | llι | 11  | 1.1  | - 3   | 1,1   |
| 1  | 1946  | 39  | 1     | 1    | 1 57  | 31    | 395   | 1   | 11  | 1    | -     | 21    |
| 1  | 1925  | 3)  | 140   | ш    | 1 36  | 30    | ) (0  | 1   | 11  | _    |       | 531   |
| 1  | 1910  | 35  | 735   | lΙı  | 1 - 1 | 30    | \_ \  | Шì  | 11  |      | -     | 1.1   |
| 1  | 1593  | 38  | 3 3() | 1    | 1494  | 30    | 171   | Ηi  | 10  |      | l _   | 019   |
| li | 187 > | 37  | 923   | 1    | 1473  | 20    | 71-   | Τi  |     | 1    | 1     | 611   |
| Ιi | 1511  | 37  | )16   | 1    | 11)_  | 9     | - ))  | Ιi  |     | 110  | i     | 03    |
| 1  | 1546  | 37  |       | Ιi   | 1131  | 25    | 91    | l i |     | 0 0  | l ö   | 796   |
| li | 1822  | 36  |       | Ιi   | 1110  | 1 - 5 | iil   | l i |     | 00   | -0    | - 55  |
| Ιì | 1502  | 36  |       | l i  | 1353  | 25    | 130   | l i |     | 15() | l i i | 950   |
| i  | 1752  | 35  |       | ll i | 13(9) | 2-    | ~_(\) | Ιi  |     | (()  | lii   | 12    |
| i  | 1762  | 1   | 476   | l i  | 131)  | 2-    | 21    | Ιi  |     | 59   | lii   | 165   |
| i  | 1741  | Ŕ   | 065   | Ιi   | 1.28  | 20    | J13   | Ιi  | 0)  |      |       | 757   |
| i  | 1721  | 34  | 660   | Ιi   | 1305  | 20    | -761  | l i | (15 |      | lis   | 319   |
| i  | 1701  | 34  | 252   | l i  | 1257  | 2     | 095   | Ιi  | 05  |      | l i i | 911   |
| i  | 1681  | 133 | 815   | l i  | 12(7  | 2,    | 790   | Ιi  | 05  |      | 17    | 331   |
| i  | 1661  | 33  | 437   | l i  | 1247  | 25    | 252   | 1 : |     | 38   | 17    | 176   |
| ì  | 1641  | 33  | 029   | li   | 1226  | 24    | 574   | 1 ; |     |      |       |       |
| 1  | 1041  | ) ) | ()2') | 1    | 1220  | 21    | 7/4   | 1   | ()5 | 17   | 10    | 718   |

| Sp gr of HCl+Aq at 15 —C ntnued                                                                                                |                                                                                                                                          |                                                                                                                      |                                                                                                                     |                                                                                                                                |                                                                                                                   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| Sp gr                                                                                                                          | % HCl                                                                                                                                    | Sp gr                                                                                                                | % HCl                                                                                                               | Sp gr                                                                                                                          | % HCl                                                                                                             |  |  |  |
| 1 0798<br>1 0778<br>1 0778<br>1 0758<br>1 0738<br>1 0718<br>1 0697<br>1 0657<br>1 0637<br>1 0617<br>1 0597<br>1 0557<br>1 0557 | 16 310<br>15 902<br>15 494<br>15 087<br>14 679<br>14 271<br>13 363<br>13 456<br>13 409<br>12 641<br>12 233<br>11 820<br>11 418<br>11 010 | 1 0517<br>1 0497<br>1 0497<br>1 0477<br>1 0457<br>1 0417<br>1 0397<br>1 0337<br>1 0337<br>1 0338<br>1 0298<br>1 0279 | 10 602<br>10 194<br>9 768<br>9 379<br>8 971<br>8 563<br>8 155<br>7 747<br>7 340<br>6 932<br>6 524<br>6 116<br>5 709 | 1 0259<br>1 0239<br>1 0220<br>1 0220<br>1 0180<br>1 0160<br>1 0140<br>1 0120<br>1 0100<br>1 0080<br>1 0060<br>1 0040<br>1 0020 | 5 301<br>4 893<br>4 486<br>4 078<br>3 670<br>3 262<br>2 854<br>2 447<br>2 039<br>1 631<br>1 224<br>0 916<br>0 408 |  |  |  |

(Ure Handworterbuch)

Sp gr of HCl+Aq U=sp gr at 15 55° according to Ure, K=sp gr at 15° according to Kremers

| %HCl                                                                                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K                                                                                                                                                                                         | %HCl                                                                                                     | Ն                                                                                                                                                              | K                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21 | 1 005<br>1 010<br>1 015<br>1 020<br>1 025<br>1 030<br>1 034<br>1 039<br>1 044<br>1 059<br>1 059<br>1 064<br>1 069<br>1 074<br>1 1 07 | 1 005<br>1 010<br>1 015<br>1 020<br>1 025<br>1 030<br>1 034<br>1 039<br>1 044<br>1 048<br>1 053<br>1 059<br>1 065<br>1 070<br>1 075<br>1 080<br>1 085<br>1 090<br>1 095<br>1 100<br>1 100 | 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>40 | 1 109<br>1 114<br>1 114<br>1 124<br>1 128<br>1 138<br>1 138<br>1 147<br>1 153<br>1 157<br>1 163<br>1 169<br>1 174<br>1 173<br>1 188<br>1 193<br>1 197<br>1 203 | 1 111<br>1 116<br>1 121<br>1 126<br>1 131<br>1 136<br>1 141<br>1 146<br>1 151<br>1 157<br>1 169<br>1 179 |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           | 11                                                                                                       | ,                                                                                                                                                              | 1                                                                                                        |

(Calculated by Gerlach, Z anal 8 292)

Sp gr of IICl+Aq it 15° (H O at 0°=1)

| 1 1 00503 16 1 08042 31 1 15583<br>2 1 01005 17 1 08545 32 1 16084<br>3 1 01508 18 1 09047 33 1 1658<br>4 1 02010 19 1 09550 34 1 17084<br>5 1 02513 20 1 10052 35 1 17596<br>6 1 03016 21 1 10555 36 1 18094<br>7 1 03518 22 1 11058 37 1 1859<br>8 1 04021 23 1 11560 38 1 191<br>9 1 04524 24 1 12063 39 1 196                   | H(1                                                         | , b −1                                                                                                                                      | il Cl                                                                      | >b ₹1                                                                                                                           | п'n                                                                  | Sp gr                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|
| 10     1     05026     25     1     12566     40     1     200       11     1     05529     26     1     13068     41     1     204       12     1     06031     27     1     13571     42     1     208       13     1     06534     28     1     14074     43     1     212       14     1     07037     29     1     14516     1 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 1 00503<br>1 01005<br>1 01508<br>1 02010<br>1 02513<br>1 03016<br>1 03518<br>1 04021<br>1 04524<br>1 05026<br>1 05529<br>1 06031<br>1 06534 | 16<br>17<br>15<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 1 08042<br>1 08545<br>1 09047<br>1 09550<br>1 10052<br>1 10555<br>1 11058<br>1 12063<br>1 12566<br>1 13068<br>1 1377<br>1 14074 | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 1 17592<br>1 18095<br>1 18597<br>1 191<br>1 196<br>1 200<br>1 204<br>1 208 |

(Kolb, recalculated by Gerlach, Z anal 27 316)

Sp gi of HCl+Aq at 15°

| 70<br>HČl | Sp gr  | HČ1 | Sp gr  | %<br>HČl | Sp gr  |
|-----------|--------|-----|--------|----------|--------|
| 5         | 1 0244 | 20  | 1 0982 | 35       | 1 1739 |
| 10        | 1 0488 | 25  | 1 1234 | 40       | 1 1969 |
| 15        | 1 0733 | 30  | 1 1488 | 41       | 1 2013 |

(Hager, Adjumenta varia, Leipzig, 1876)

Sp gr of HCl+Aq at 15° (H<sub>2</sub>O at 15°=1)

| % HCl                                                    | Sp gr                                                          | %HCl                                          | Sp gr                                               |
|----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 44 345<br>43 136<br>41 901<br>41 212<br>39 831<br>37 596 | 1 21479<br>1 21076<br>1 20430<br>1 20204<br>1 19703<br>1 18687 | 34 464<br>25 260<br>19 688<br>14 788<br>6 382 | 1 17138<br>1 12479<br>1 09675<br>1 07255<br>1 03150 |

(Pickering, B 26 277)

Most accurate table

Sp gr of HCl+Aq at 15° (H O at 4°=1)

(I unge and Marchlewski, Z. ungew. Ch. 1891 133.)

Sp g1 of HCl+Aq it 100m temp

| '% H(1 | p gr   |
|--------|--------|
| 8 14   | 1 0370 |
| 16 125 | 1 0843 |
| 23 045 | 1 1138 |

(Wagner, W Ann 1883, 18 264)

| Relation of sp | r of HCl+A | at to to sp | gr at $19.5^{\circ} = 1.0$ |
|----------------|------------|-------------|----------------------------|
|----------------|------------|-------------|----------------------------|

|                                    |                                                                | _ <u> </u>                                                     |                                                                |                                                                |                                          |
|------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|
| t                                  | 8 9 % HCl<br>sp gr =1 0401                                     | 16 6 % HCl<br>sp gr =1 0704                                    | 25 5 % HCl<br>sp gr =1 101                                     | 30 8% HCl<br>sp gr =1 133                                      | 46 6 % HCl<br>sp gr =1 1608              |
| 0<br>19 5<br>40<br>60<br>80<br>100 | 0 99557<br>1 00000<br>1 00707<br>1 01588<br>1 02639<br>1 03855 | 0 99379<br>1 00000<br>1 00781<br>1 01665<br>1 02676<br>1 03801 | 0 99221<br>1 00000<br>1 00877<br>1 01794<br>1 02791<br>1 03867 | 0 99079<br>1 00000<br>1 00990<br>1 01969<br>1 02986<br>1 04059 | 0 98982<br>1 00000<br>1 01063<br>1 02180 |

(Kremers, Pogg 108 115)

| Sp gr | of HC | l+Aq |
|-------|-------|------|
|-------|-------|------|

| G equivalents<br>HCl per liter                                                                           | t°                                                                                             | Sp gr t°/t°                                                                                                           |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 0 005036<br>0 01006<br>0 02008<br>0 04990<br>0 09885<br>0 19641<br>0 29247<br>0 48278<br>0 4994<br>4 994 | 17 111<br>17 125<br>17 148<br>17 138<br>17 133<br>17 162<br>17 147<br>17 140<br>17 28<br>17 35 | 1 0000943<br>1 0001892<br>1 0003775<br>1 000935<br>1 001843<br>1 003633<br>1 005382<br>1 008811<br>1 00908<br>1 08390 |
|                                                                                                          |                                                                                                |                                                                                                                       |

(Kohlrausch, W Ann 1894, 53 28)

Sp gr of a normal solution of HCl+Aq at  $18^{\circ}/4^{\circ}=1$  0165 (Loomis, W Ann 1896, 60 550)

Sp gr of HCl+Aq at 195°, when p =per cent strength of solution, d= observed density, w = volume conc in grams

per cc (pd/pic = w)

| p     | d      | w      |
|-------|--------|--------|
| 36 0  | 1 1818 | 0 4255 |
| 29 97 | 1 1511 | 0 3450 |
| 24 35 | 1 1207 | 0 2729 |
| 18 55 | 1 0910 | 0 2024 |
| 12 22 | 1 0587 | 0 1294 |
| 9 148 | 1 0433 | 0 0954 |
| 6 559 | 1 0305 | 0 0676 |
| 3 540 | 1 0159 | 0 0360 |
| 5 345 | 1 0246 | 0 0548 |
| 1 356 | 1 0C51 | 0 0136 |

(Barnes, J Phys Chem 1898, 2 546)

Sp gr of HCl+Aq it 18°/4°

| HCl in 100 g of solution                    | pp Et                                    |
|---------------------------------------------|------------------------------------------|
| 0 12149<br>0 C60757<br>0 040609<br>0 030328 | 0 99928<br>0 99900<br>0 99887<br>0 99881 |
| (Jahn, Z phys C                             | h 1900, <b>33</b> 567)                   |

Sp gr of HCl+Aq at 20°

| 1 0                                                       |                                                         |                                                                    |
|-----------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|
| Normality of<br>HCl+Aq                                    | % HCl                                                   | Sp gr                                                              |
| 8 42<br>5 784<br>3 77<br>2 031<br>1 588<br>1 138<br>0 523 | 27 10<br>19 30<br>12 94<br>7 17<br>5 65<br>4 05<br>1 90 | 1 1336<br>1 0936<br>1 0618<br>1 0334<br>1 0261<br>1 0187<br>1 0076 |

(Forchheimer, Z phys Ch 1900, 34 28)

Sp gr at 20° of HCl+Aq containing M g mols HCl per liter
M 0 025 0 05 0 075 0 10
Sp gr 1 00034 1 00101 1 00135 1 00180

M 0 25 0 50 0 75 1 0 Sp gr 1 00425 1 00849 1 01264 1 01746

M 15 20 Sp gr 102542 103414 (Jones and Pearce, Am Ch J 1907, **38** 730

HCl is not absorbed by cone II<sub>2</sub>SO<sub>1</sub>+Aq but in large amounts by unhydrous II SO<sub>4</sub> (Aimé)

Absorption of HCl by H SO<sub>4</sub>+Aq

 $1 \text{ cmp} = 17^{\circ}$ 

| ,                                                                                                                 | Ьp                                                                                                           | er l                                                                                            | g per 100 g                                                                                           |                                                                                      |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Sp gr                                                                                                             | HCl                                                                                                          | 11501                                                                                           | HCI                                                                                                   | H 501                                                                                |
| 1 211<br>1 220<br>1 220<br>1 235<br>1 260<br>1 305<br>1 355<br>1 430<br>1 545<br>1 580<br>1 660<br>1 735<br>1 815 | 517 8<br>487 3<br>478 8<br>455 3<br>418 0<br>371 4<br>306 6<br>215 3<br>96 7<br>51 3<br>10 3<br>1 89<br>1 24 | 22 7<br>58 0<br>99 3<br>161 7<br>273 2<br>417 7<br>638 2<br>917 6<br>1033 5<br>1224 0<br>1615 3 | 12 7<br>39 9<br>39 2<br>36 9<br>33 2<br>28 5<br>22 6<br>15 0<br>6 26<br>3 25<br>0 62<br>0 11<br>0 068 | 1 86<br>4 75<br>8 04<br>12 8<br>20 9<br>30 8<br>44 6<br>59 4<br>65 4<br>73 7<br>77 7 |

Absorption of HCl by  $H_2SO_4+Aq$ —Cont Temp =  $40^{\circ}$ 

| Sp gr                                                                                                    | g per l                                                                                                   |                                                                                                                      | g per 100 g                                                                                     |                                                                                                      |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| ~p ≥-                                                                                                    | HCl                                                                                                       | H <sub>2</sub> SO <sub>4</sub>                                                                                       | HCl                                                                                             | H <sub>2</sub> SO <sub>4</sub>                                                                       |
| 1 185<br>1 195<br>1 210<br>1 255<br>1 255<br>1 340<br>1 400<br>1 520<br>1 575<br>1 650<br>1 725<br>1 770 | 421 4<br>416 4<br>392 1<br>346 3<br>325 4<br>247 4<br>161 6<br>50 9<br>18 5<br>2 9<br>1 4<br>0 57<br>0 52 | 42 2<br>70 0<br>107 7<br>211 2<br>236 3<br>383 7<br>619 4<br>929 3<br>1046 0<br>1207 6<br>1370 5<br>1428 4<br>1478 4 | 35 6<br>34 8<br>32 4<br>27 6<br>25 9<br>18 5<br>11 5<br>3 35<br>1 17<br>0 081<br>0 032<br>0 029 | 3 56<br>5 86<br>8 90<br>16 8<br>18 8<br>28 6<br>44 2<br>61 1<br>66 4<br>73 2<br>79 4<br>81 4<br>83 5 |

 $Temp = 70^{\circ}$ 

| 20110                                                                                                             |                                                                                                            |                                                                                                                   |                                                                                                |                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| Sp gr                                                                                                             | gp                                                                                                         | er l                                                                                                              | g per 100 g                                                                                    |                                                                                        |  |
| P &                                                                                                               | HCl                                                                                                        | H₂SO₄                                                                                                             | HCl                                                                                            | H <sub>2</sub> SO <sub>4</sub>                                                         |  |
| 1 145<br>1 150<br>1 160<br>1 180<br>1 225<br>1 230<br>1 315<br>1 380<br>1 510<br>1 560<br>1 700<br>1 745<br>1 745 | 374 1<br>357 3<br>353 8<br>341 3<br>277 7<br>274 3<br>173 7<br>96 5<br>23 6<br>8 4<br>0 86<br>0 62<br>0 57 | 18 4<br>38 9<br>55 7<br>93 6<br>231 9<br>246 4<br>476 7<br>661 8<br>946 1<br>1055 0<br>1371 3<br>1448 2<br>1455 2 | 32 7<br>31 1<br>30 5<br>28 9<br>22 8<br>22 3<br>13 2<br>6 99<br>1 56<br>0 05<br>0 035<br>0 032 | 1 61<br>3 38<br>4 80<br>7 93<br>18 9<br>20 0<br>36 2 7<br>67 6<br>80 7<br>83 0<br>83 4 |  |

(Coppadoro, Gazz ch it 1910, 39 II, 626)

100 pts alcohol of 36° B absorb 68 pts HCl at 12 5° (Boullay)

Alcohol of 0836 sp gr dissolves 327 vols HCl at 175° and 758 mm pressure, and the solution has sp gr = 1005 (Pierre, A ch (3) 31 135)

Solubility of HCl in methyl alcohol (absolute)

| 10 0                   |              |            |            |  |
|------------------------|--------------|------------|------------|--|
| t                      | { HC1        | l t        | % HCl      |  |
| 10 3                   | 51 6<br>51 3 | 18<br>31 7 | 46 9<br>43 |  |
| (1. Days D + o 11 112) |              |            |            |  |

(de Bruyn, R t c 11 112)

Solubility of HCl in ethyl alcohol (absolute)

| t°   | ( 11(1 | t                                                                         | % HCl |
|------|--------|---------------------------------------------------------------------------|-------|
| 0    | 45 4   | $ \begin{array}{c cccc}  & 19 & 2 \\  & 23 & 5 \\  & 32 & 0 \end{array} $ | 41    |
| 6 5  | 44 2   |                                                                           | 40 2  |
| 11 5 | 42 7   |                                                                           | 38 1  |

(de Bruyn, lc)

Solubility of HCl in ether at t° and 760 mm pressure

| t°                                                                                  | % HCl                                  | t°                   | % HCl                           |
|-------------------------------------------------------------------------------------|----------------------------------------|----------------------|---------------------------------|
| $   \begin{array}{r}     -92 \\     -5 \\     0 \\     +5 \\     10   \end{array} $ | 37 51<br>37 0<br>35 6<br>33 1<br>30 35 | 15<br>20<br>25<br>30 | 27 62<br>24 9<br>22 18<br>19 47 |

(Schuncke, Z phys Ch 1894, 14 336)

Sol in glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, ether, hexane,

benzene, xylene, etc Oil of turpentine absorbs 50% HCl (Thénard)

Oil of turpentine absorbs 163 vols HCl at 22° and 724 mm, isoterebenthene absorbs 34% at 24° and 724 mm, metaterebenthene absorbs 177% at 24° and 724 mm (Berthelm)

Oil of lavender absorbs 68 7 vols at 24° (Thonard)

(Thenard)
(In of lavender absorbs 210 vols without being saturated, oil of rosemary absorbs 218 vols at 22°, sol in 04 vol petroleum

(Saussure)
Absorbed by caprylic alcohol (Bous)
Fuming HCl+Aq is sol in glycerine and
miscible with conc HC<sub>2</sub>H<sub>3</sub>C<sub>2</sub>

Solubility of HCl in phenol+Aq at 12°

| Comp of H <sub>2</sub> O layer |                                  | Comp of phenol laver             |                                  |  |
|--------------------------------|----------------------------------|----------------------------------|----------------------------------|--|
| % HCl                          | % phenol                         | ~ HCl                            | % phenol                         |  |
| 0<br>3 1<br>6 6<br>8 0<br>10 7 | 7 45<br>6 6<br>5 3<br>5 1<br>4 8 | 0<br>0 09<br>0 2<br>0 36<br>0 52 | 72<br>78<br>80 3<br>82 6<br>84 5 |  |

Composition of solution in contact with solid phenol

| Composition of total                              |                                              |                                            |  |  |
|---------------------------------------------------|----------------------------------------------|--------------------------------------------|--|--|
| °, H <sub>2</sub> O                               | % HCl                                        | co phenol                                  |  |  |
| 11 22<br>14 98<br>84 5<br>80 38<br>72 43<br>60 25 | 0<br>C 52<br>10 7<br>15 64<br>24 37<br>36 25 | 88 78<br>84 5<br>4 8<br>3 98<br>3 2<br>3 5 |  |  |

(Schreinemakers, Z phys Ch 1912, 79 553)

+H<sub>2</sub>O F-pt-15 35° Very sol m H O but only slightly sol m HCl (Rupert, J Am Chem Soc 1909, **31** 866)

+2H<sub>2</sub>O M -pt -17 4° +3H<sub>2</sub>O M -pt -24 8° (Picketing, B

1893 26 280)
The composition of the hydrates formed by HCl at different dilutions is calculated

from determinations of the lowering of the f -pt produced by HCl, and of the conductivity and sp gr of HCl+Aq (Jones, Am Ch J 1905, 34 323)

# Chlorhydric cyanhydric acid, 3HCl, 2HCN

by H<sub>2</sub>O or alcohol, sol in Insol in ether, chloroform, or  $HC_2H_3O_2$ 

acetic ether (Claisen, B 16 309) HCl, HCN Sol in  $H_2O$ , absolute alcohol,  $HC_2H_3O_2$ , and  $CHCl_3$ , with decomp, decomp is especially rapid in H.O (Gautier, A ch (4) 17 130)

#### Chloric acid, HClO<sub>3</sub>

Known only in aqueous solution, which can be concentrated in vacuo to a sp gr of 1 282 at 142°, and then contains 40 10% HClO<sub>3</sub>, corresponding to HClO<sub>3</sub>+7H<sub>2</sub>O, if left longer in vacuo over H<sub>2</sub>SO<sub>4</sub> an acid corresponding to HClO<sub>3</sub>+4½H<sub>2</sub>O is obtained Aqueous solution of HClO<sub>3</sub> decomp at 40° (Kammerer, Pogg 138 390)

#### Chlorates

All chlorates except mercurous chlorate are sol in H2O, most of them are deliquescent, many are sol in alcohol

## Aluminum chlorate, $Al(ClO_3)_3+6H_2O$

Very hygroscopic (Dobroserdow, C C

1904, II 177) +9H O Very sol in cold but much less than in hot H<sub>2</sub>O (Dobioseidow)

#### Ammonium chlorate, NH<sub>4</sub>ClO<sub>3</sub>

Fasily sol in HO less sol in alcohol Much less sol in HO at 0° than NaClO3

(Storer) Very sl sol in absolute alcohol (Wachter, J pr **30** 321)

#### Barium chlorate, Bi(ClO<sub>3</sub>) +II O

Sol in 4 pts cold, and less hot HO (Chevenix)

100 pts H O dissolve it 0 20° 40 60 80° 100 22.8 37 0 52.1 77 5 98.0 126 4 pts Bu(ClO<sub>3</sub>)

100 grums sat  $B_{ij}(ClO_{ij}) + Aq$  at t contain grams inhydrous Bi(ClO<sub>3</sub>)

| t°                                                             | Crim<br>Bi(ClOi) | t      | (1 tm<br>B t((10)2 |
|----------------------------------------------------------------|------------------|--------|--------------------|
| lutctic point   -2.749   ± 0.004   0   +10   20   25   50   40 | 15 2S            | 50     | 56 69              |
|                                                                | 16 90            | 60     | 40 05              |
|                                                                | 21 23            | 76     | 43 04              |
|                                                                | 25 26            | 80     | 45 90              |
|                                                                | 27 55            | 90     | 48 70              |
|                                                                | 29 45            | 99 1   | 51 17              |
|                                                                | 33 16            | 4104 6 | 52 67              |

<sup>\* 104 6°</sup> is bpt at 740 mm pressure = 105 0° it 760 mm pressure

(Anschutz, Z phys Ch 1906, 56 238)

|                     | J                                                    |                                  |
|---------------------|------------------------------------------------------|----------------------------------|
| t°                  | g Ba(ClO <sub>3</sub> ) in<br>100 g H <sub>2</sub> O | Sp gr                            |
| 0<br>20<br>40<br>60 | 25 5<br>39 3<br>55 9<br>74 1                         | 1 195<br>1 274<br>1 355<br>1 433 |
| 80                  | 92 1                                                 | 1 508                            |

113 2

120

1 580

1 600

Solubility of Ba(ClO<sub>3</sub>)<sub>2</sub> in H<sub>2</sub>O

\*Bpt of sat solution (Carlson, Dissert 1910)

Only slight traces dissolve in absolute alcohol (Wachter, J pr 30 334)

Sol in acetone (Eidmann, C C 1899,

Difficultly sol in acetone (Naumann. 1904, **37** 4328)

Insol in methyl acetate (Naumann, 3 1909, 42 3790), ethylacet ate (Nauma 1, B 1910, **43** 314)

#### Bismuth chlorate

100

105 6 \*

Known only in solution, which decomp evaporation

## Cadmium chlorate, $Cd(ClO_3) + 2HO$

Very deliquescent, sol in HO and alcol 1 Melts in crystal H<sub>2</sub>O it 80° (Wichter, J **30** 321)

Solubility in H O

Sat solution contains at

וא נות of solution containing 76-30  $Cd(ClO_3)$  it  $15^{\circ} = 2.251$  (Meusser B 19.2). **35** 1422)

Sol in acctone (Naumann B 1904, 1325)

Cadmium chlorate ammonia, (d)()  $6NH_{\odot}$ 

Ppt (I phrum P 1915 48 49)

# Cæsium chlorate, ( <( )()

100 g H O dissolve it

99 19 40 11 65 76 ) k (s(10) (Culzolari, Acc Se med di lenur 1º 1 85 (1)(1)

Calcium chlorate, (1(10) + 2110)

Deliquescent, very sol in HO and alco of (Wachter, J pr 30 323)

100°

Sp gr of solution sat at 18°=1729, containing 64% Ca(ClO<sub>3</sub>)<sub>2</sub> (Mylius B 1897, **30** 1718)

Sol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4328)

#### Chromic chlorate

Easily sol in H<sub>2</sub>O (Prudhomme, C C **1890,** 1 668)

Cobaltous chlorate, Co(ClO<sub>3</sub>)<sub>2</sub>+2H<sub>2</sub>O (Meusser, B 1902, 35 1418) +4 $\mathrm{H}_2\mathrm{O}$  Solubility in  $\mathrm{H}_2\mathrm{O}$ Sat solution contains at

21° 18° 35° 47° 61° 64 19 64 39 67 09 69 66 76 12% Co(ClO<sub>3</sub>)<sub>2</sub>

gr of solution containing 64 19% Co(ClO<sub>3</sub>)<sub>2</sub> at 18°=1861 (Meusser, B 1902, **35** 1418

+6H<sub>2</sub>OVery deliquescent Sol in H<sub>2</sub>O and alcohol Melts in crystal H<sub>2</sub>O at 50° (Wachter, J pr 30 321)

Solubility in H<sub>2</sub>O Sat solution contains at

0° +10 5° 57 45 61 83  $-21^{\circ}$ - 19° 61 83% Co(ClO<sub>3</sub>)<sub>2</sub> 53 30 53 61 (Meusser, B 1902, **35** 1418)

Cupric chlorate, basic, Cu(ClO<sub>3</sub>)<sub>2</sub>, 3Cu(OH)<sub>2</sub> Insol in H2O Very sol in dil acids Sol in warm conc Cu(ClO<sub>3</sub>)<sub>2</sub>+Aq, the solubility rere - n\_ with the cone and temp , Bul Soc 1898, (3) **19** 950)

#### Cupric chlorate, Cu(ClO<sub>3</sub>) +4H O Solubility in H O

Sit solution contains at

 $45^{\circ}$ - 21°  $+0.8^{\circ}$ 18° - 31° 54 59 57 12 58 51 62 17 66 17 71° 59 6°

76 9% Cu(ClO<sub>3</sub>)2 69 42

Sp gr of the solution containing 62 17%  $Cu(ClO_2)$  at  $15^\circ = 1.695$  (Meusser, B. 1902, **35** 1420)

Very deliquescent Easily sol +6H O in II () and alcohol Melts in its crystal H2O ut 65° (Wuchter, J pr 30 321)

Sp gi of Cu(ClO<sub>3</sub>) +Aq at 15° 6 945 4 778 2 106 % Cu(ClO<sub>3</sub>) 1 05714 1 01620 1 03857 Sp gi 14 387 % Cu(ClO3) 10 016 1 12531 1 0844 Sp gr (Ir tube, Gm -K 5 1, 921)

Sol in acetone (Naumann, B 1904, 37 4328)

Melts in its water of crystallization at over | Cupric chlorate ammonia, Cu(ClO<sub>3</sub>), 4NH<sub>2</sub> Ppt Not hydroscopic Insol in alcohol Cu(ClO<sub>3</sub>)<sub>2</sub>,6NH<sub>3</sub> Not hydroscopic (Ephraım, B 1915, 48 46)

> Erbium chlorate, Er(ClO<sub>3</sub>)<sub>3</sub>+8H O Deliquescent Sol in H<sub>2</sub>O and alcohol

# Glucinum chlorate

Known only in aqueous solution, which decomposes on evaporation

#### Ferrous chlorate

Known only in solution

Ferric chlorate, Fe(ClO<sub>3</sub>)<sub>3</sub>

Sol in H<sub>2</sub>O Basic salt Insol in H.O

Lanthanum chlorate, La(ClO<sub>3</sub>);

Deliquescent (Cleve)

Lead chlorate, Pb(ClO<sub>3</sub>)<sub>2</sub>+H O

Deliquescent, easily sol in H<sub>2</sub>O and alcohol (Wachter, J pr **30** 321)

Sp gr of solution sat at 18°=1947 and contains 60 2% Pb(ClO<sub>3</sub>) 1897, **30** 1718) (Mylius, B.

100 g H O dissolve 440 g Pb(ClO<sub>3</sub>)<sub>2</sub> at 18°, sp gr of sat solution = 163 (Carlson, Dissert 1910)

# Lithium chlorate, LiClO<sub>3</sub>+½H O

Very deliquescent and sol in HO Very easily sol in alcohol Melts at 50° in its crystal water (Wachter, J pr 30 321) LiClO<sub>3</sub>+Aq sat at 18° contains 75 8%

Sp gr = 1.815 (Myhus, B 1897,  $L_1ClO_3$ **30** 1718)

483 g LıClO₃ dissolve in 100 g H O at 15°, sp gr of solution = 182 (Carlson, Dissert 1910)

Contains 3HO, and is not deliquescent (Lagorio, Zeit f Kryst 15 80)

Salt is anhydrous (Retgers, Z phys Ch **5** 449)

#### Magnesium chlorate, Mg(ClO<sub>3</sub>)

128 1 g Mg(ClO<sub>3</sub>) dissolve in 100 g H O at 19°, sp gr of solution = 1 59 (Carlson, Dissert 1910)

Sp gr of solution containing 565°0  $Mg(ClO_3)_2$  at  $18^c = 1.564$  (Meusser, lc)

Sp gr of solution sat at 18°=1 594, containing 56 3% Mg(ClO<sub>3</sub>) (Myhus, B 1897,

**30** 1718) (Naumann, B 1904, 37 Sol in acetone

4328)(Eidmann, C C 1899, Sol in acetone II 1014)

 $+2H_2O$ Solubility in H<sub>2</sub>O Sat solution contains at

61° 39 5° 68° 70 69 73 71% Mg(ClO<sub>3</sub>) 65 37 69 46 (Meusser, B 1902, 35 1416)

+4H<sub>2</sub>O Solubility in H<sub>2</sub>O Sat solution contains at

 $+6\mathrm{H}_2\mathrm{O}$  Very deliquescent and sol in  $\mathrm{H}_2\mathrm{O}$  Very easily sol in alcohol Melts at  $40^\circ$  in its crystal water (Wachter, J pr 30 325)

Solubility in H<sub>2</sub>O Sat solution contains at

# Manganous chlorate, Mn(ClO<sub>8</sub>)<sub>2</sub>

Known only in solution which decomposes on evaporation (Wachter)

#### Mercurous chlorate, Hg<sub>2</sub>(ClO<sub>3</sub>)<sub>2</sub>

 $\alpha$  Easily sol in alcohol and  $H_2O$  (Wachter, J pr 30 321)  $\beta$  Insol in  $H_2O$ , easily sol in  $HC_2H_3O_2+$  Aq (Wachter) Decomp by boiling  $H_2O$ 

# Mercuric chlorate, 2HgO, Cl<sub>2</sub>O<sub>5</sub>+H<sub>2</sub>O

Deliquescent Decomp by H<sub>2</sub>O into oxide and an acid salt (Wachter)
Sol in 4 pts cold H<sub>2</sub>O (Chevenix, 1802)

Nıckel chlorate,  $N_1(ClO_3)_2+4H_2O$ 

Solubility in H<sub>2</sub>O Sat solution contains at

48 5° 55° 65° 79 5° 67 60 68 78 69 05 75 50% N<sub>1</sub>(ClO<sub>3</sub>)<sub>2</sub> (Meusser, B 1902, **35** 1419)

+6H<sub>2</sub>O Deliquescent Easily sol in H<sub>2</sub>O and alcohol Melts in crystal H<sub>2</sub>O at 80° (Wachter, J pr **30** 321) Solubility in H<sub>2</sub>O

Sat solution contains at

 $-18^{\circ}$   $-8^{\circ}$   $0^{\circ}$   $+18^{\circ}$   $40^{\circ}$  49 55 51 52 52 60 56 74 64 47% N<sub>1</sub>(ClO<sub>3</sub>)<sub>2</sub>

Sp gr of solution containing 56.74%N<sub>1</sub>(ClO<sub>3</sub>)<sub>2</sub> at  $18^{\circ} = 1.661$ 

Goes over into  $4H_2O$  salt at 39° (Meusser) 156 g Ni(ClO<sub>3</sub>)<sub>2</sub> dissolve in 100 g  $H_2O$  at 16°, sp gr of solution = 176 (Carlson, Dissert 1910)

Nickel chlorate ammonia, Ni(ClO<sub>3</sub>)<sub>2</sub>, 6NH<sub>3</sub> Ppt (Ephraim, B 1915, **48** 47)

Potassium chlorate, KClO<sub>3</sub>

Sol 1n H2O with absorption of heat

% of in about 16 pts cold and in much less hot  $H_2O$  (Chevenix 1802) % of in 30 03 pts  $H_2O$  at 0 17 85 pts at 13 3 and in 166 pts at 104 78 (M. R. and P.)

Sol in 16 pts  $\rm H_2O$  at 18 70° (Abl) 100 pts  $\rm H$  O at 15 5° dissolve 6 2 pts at 100° 40 pts (Ure s Dict)

100 pts H2O dissolve pts KClO3 at t -

| Pts KClO <sub>3</sub> | 28  | 35   | 40   | 47   | 6э   |
|-----------------------|-----|------|------|------|------|
|                       | 9 5 | 12 3 | 14 1 | 18 3 | 29 1 |

(Gerardin)

100 pts H2O dissolve pts KClO3 at to

| t°    | Pts<br>KClO <sub>3</sub> | t°     | Pts<br>IxClOs |
|-------|--------------------------|--------|---------------|
| 0     | 3 33                     | 35 0   | 12 05         |
| 13 32 | 5 60                     | 49 08  | 18 96         |
| 15 37 | 6 03                     | 74 89  | 35 40         |
| 24 43 | 8 44                     | 104 78 | 60 24         |

(Gay Lussa A ch 11 314)

#### 100 pts H<sub>2</sub>O dissolve pts KClO<sub>3</sub> at t°

| t°  | Pts<br>KClO <sub>3</sub> | to  | Pts<br>AClO <sub>3</sub> |
|-----|--------------------------|-----|--------------------------|
| 0   | 3 3                      | 130 | 88 5                     |
| 100 | 56 5                     | 180 | 190                      |

(Tilden and Shenstone, Roy Soc Proc 31 345)

#### 100 pts H<sub>2</sub>O dissolve pts LClO<sub>3</sub> at t°

| t   | Pts<br>KClO <sub>3</sub> | t   | I ts<br>I\ClO <sub>d</sub> |
|-----|--------------------------|-----|----------------------------|
| 120 | 73 7                     | 160 | 148                        |
| 136 | 98 9                     | 190 | 183                        |

(Tilden and Shenstone, Phil Trans 1884 23

Coefficient of solubility is 3.2+0.109t 0.0043t<sup>2</sup> between 0° and 35° (Blarez, C. ]

## Sat KClO3+Aq contains 1/0 KClO3 at to

| -0 5                             | 2 6 | 92  | 31 2 |
|----------------------------------|-----|-----|------|
| -0 3                             | 2 4 | 106 | 37 2 |
| +4 5                             | 3 5 | 130 | 47 0 |
| 4 5                              | 2 9 | 171 | 59 8 |
| 11                               | 4 7 | 180 | 62 1 |
| 19                               | 6 1 | 190 | 63 1 |
| 29                               | 8 9 | 200 | 64 2 |
| 19<br>29<br>36<br>42<br>56<br>58 |     |     |      |

(Étard, A ch 1894, (7) 2 528)

| Solubility i | n H <sub>2</sub> O |
|--------------|--------------------|
|--------------|--------------------|

| Temp % KClOs Pts sol in Pts HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| in a sat sol 100 pts HO 1 pt KCle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |
| 0°         3 06         3 14         31 8           5         3 67         3 82         26 2           10         4 27         4 45         22 5           15         5 11         5 35         18 5           20         6 76         7 22         13 6           25         7 56         8 17         12 2           30         8 46         9 26         10 8           35         10 29         11 47         8 7           40         11 75         13 31         7 5           45         13 16         14 97         6 6           50         15 18         17 95         5 6           55         16 85         20 27         4 9           60         18 97         23 42         4 2           65         20 32         25 50         3 9           70         22 55         29 16         3 4           75         24 82         32 99         3 0           80         26 97         36 93         2 6           85         29 25         41 35         2 4           90         31 36         46 11         2 1           95         < | 2<br>5<br>5<br>5<br>5<br>6<br>6<br>6<br>9<br>2<br>9<br>4<br>0<br>8<br>4<br>1<br>9 |

(Pawlewski, B 1899, 32 1041)

1 l KClO<sub>3</sub>+Aq at 25° contains 675 millimols KClO<sub>3</sub> (Calvert, Z phys Ch 1901, **38** 541)

100 g H<sub>2</sub>O dissolve at

O٥  $20^{\circ}$ 40° 60° 74 24 0 g KClO<sub>8</sub> 138 1 115 Sp gr 1021 10451 073

80° 100° 104° \* 37 7 56 5 59 9 g KClO<sub>3</sub>, 12301219Sp gr  $1\ 165$ 

4 Bpt of sat solution

(Carlson, Dissert 1910)

100 g H O dissolve at 19 S° 30° ggo 7 15 10 27 57 3 g KClO<sub>3</sub> 148

(Calzolari, Acc Sc med di Ferrara, 1911, **85** 150)

Sat KClO<sub>3</sub>+Aq contains at 53° 68° 81° 56° (?) 30 46% KClO<sub>3</sub> 17 37 23 25 23 53 (Ischugaeff, Z. morg. 1914, **86**, 161.)

Sp gr of K(10;+Aq, according to Kremer's experiments (Pogg 96 62), and Gerlach's calculations (Linal 8 290)

| KClO <sub>3</sub> | וש פור | Co KCIO | >p եւ |
|-------------------|--------|---------|-------|
| 1                 | 1 007  | 6       | 1 039 |
| 2                 | 1 014  | 7       | 1 045 |
| 3                 | 1 020  | 8       | 1 052 |
| 4                 | 1 026  | 9       | 1 059 |
| 5                 | 1 033  | 10      | 1 066 |

Sp gr of  $KClO_3+Aq$  at 20° containing 1 mol  $KClO_3$  to 100 mols  $H_2O=1$  04122 (Nicol, Phil Mags (5) 16 122)

Sp gr of KClO<sub>3</sub>+Aq at 15° containing 5% KClO<sub>3</sub>=1 0316 (Kohlrausch, W Ann 1879 1)

B-pt of KClO<sub>3</sub>+Aq containing pts KClO<sub>3</sub> to 100 pts H<sub>2</sub>O

| 1 1 1                                                                                                                                                                                                                                                             | B pt                       | Pts<br>KClO <sub>3</sub> | B pt                    | Pts<br>KClO <sub>3</sub> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|-------------------------|--------------------------|
| 6 5         100 5°         44 6         103 0°           13 2         101 0         53 4         103 5           20 2         101 5         62 2         104 0           27 8         102 0         69 2         104 4           35 8         102 5         104 4 | 03 <b>5</b><br>04 <b>0</b> | 53 4<br>62 2             | 101 0<br>101 5<br>102 0 | 13 2<br>20 2<br>27 8     |

(Gerlach, Z anal 26 450)

Saturated solution boils at 105° (Kremers) Saturated solution boils at 104 2°, and contains 61 5 pts KClO<sub>3</sub> to 100 pts H<sub>2</sub>O (Legrand)

Saturated solution boils at 103 3°, and contains 66 6 pts KClO<sub>3</sub> to 100 pts H<sub>2</sub>O (Griffiths)

Saturated solution boils at 1044°

lach, Z anal 26 427)

Sol in pure HNO, without decomp, but decomp at once by HNO3 containing NO2 (Millon, A ch (3) 6 92)

Sol in sat NH<sub>4</sub>Cl+Aq without causing

pptn

1 mol (=129 pts) KClO<sub>3</sub> dissolves in 2493 vols H<sub>2</sub>O, in 2208 vols H<sub>2</sub>O when 1 mol (=59 pts) NaCl is added, in 2060 vols H<sub>2</sub>O with 2 mols (=118 pts) NaCl, and in 1910 vols H<sub>2</sub>O with 4 mols (=236 pts) NaCl (Gladstone, Chem Soc 15 302)

KClO<sub>3</sub> is sol in about—

29 50 pts H<sub>2</sub>O 35 50 pts NH<sub>4</sub>OH+Aq conc

39 00 pts dil NH4OH+Aq (1 vol conc 3 vols H<sub>2</sub>O)

30 50 pts HNO<sub>3</sub>+Aq (1 vol cone HNO<sub>3</sub>

5 vols H<sub>2</sub>O) 330 pts HCl+Aq (1 vol conc HCl 4 vols

 $H_2(0)$ 48 00 pts IfC<sub>2</sub>H<sub>4</sub>O<sub>2</sub>+Aq (1 vol commercial HC H<sub>3</sub>O 1 vol H<sub>2</sub>O)

31 50 pts  $NH_4Cl + Aq (1 pt NH_4Cl 10 pts$ 

H () 18 00 pts  $NH_4NO_3 + \Lambda q (1 pt NH_1NO_3 10)$ pts H<sub>2</sub>O)

34 00 pts NH<sub>4</sub>C H<sub>3</sub>O<sub>2</sub> +  $\lambda$ q (dıl NH<sub>4</sub>OH+

Aq+dıl HC H<sub>3</sub>O +Aq)

3250 pts NiCHO + Aq (commercial IIC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+N<sub>12</sub>CO<sub>3</sub>, diluted with 4 vols H<sub>2</sub>O) 31 50 pts  $Cu(C_2\Pi_3O_2) + Aq$  (See Stolba, Z anal 2 390)

33 50 pts canc-sug ii (1 pt canc-sug ii

pts H<sub>2</sub>O)

36 50 pts grape-sug ir (1 pt grape-sugar 10 pts H<sub>2</sub>O) (Pearson, Zeit Chem 1869 662) Addition of K salts to sat KClO<sub>3</sub>+Aq ppts KClO<sub>3</sub> in such a way, that the sum of the KClO<sub>3</sub> remaining in solution and the K in the salt added, is a constant, which constant is equal to the solubility of KClO<sub>3</sub>, so that the following formula represents the coefficiency of solubility of KClO<sub>3</sub> after addition of a K salt, 32+0109t+00043t2-K of salt added (Blarez, C R 112 1213)

#### Solubility of KClO<sub>3</sub>+TlClO<sub>3</sub>

| 100 g H <sub>2</sub> O dissolve g salts |                            |                            |  |  |
|-----------------------------------------|----------------------------|----------------------------|--|--|
| t°                                      | g TlClO <sub>3</sub>       | g KClO <sub>3</sub>        |  |  |
| 0<br>15<br>50<br>100                    | 2 8<br>10<br>12 67<br>57 3 | 3 3<br>1 5<br>16 2<br>48 2 |  |  |

(Rabe, Z anorg 1902, 31 156)

Solubility of KClO<sub>3</sub> in KNO<sub>3</sub>+Aq

|       | ·                                          |                                           |  |
|-------|--------------------------------------------|-------------------------------------------|--|
| t.º   | g per l                                    |                                           |  |
| · ·   | KNO <sub>8</sub>                           | KClO <sub>3</sub>                         |  |
| 19 85 | 0 00<br>12 65<br>25 29<br>101 19<br>202 38 | 69 88<br>64 86<br>60 33<br>45 85<br>40 20 |  |
| 23 87 | 0 00<br>50 59                              | 79 09<br>63 14                            |  |

# (Arrhenius, Z phys Ch 1893, 11 397) Solubility in KCl+Aq at 20° C

|                     |                                   | 1            |
|---------------------|-----------------------------------|--------------|
| G KCl in<br>1 litre | G KClO <sub>3</sub><br>in 1 litre | Sp gr        |
| 0                   | 71 1                              | 1 050        |
| 10                  | 58                                | 1 050        |
| 20                  | .49                               | 1 050        |
| 30                  | 43                                | 1 050        |
| 40                  | 39 5                              | 1 054        |
| 5C                  | 36 5                              | 1 058        |
| 60                  | 34                                | 1 064        |
| 70                  | 32                                | 1 070        |
| 80                  | 30                                | 1 075        |
| 90                  | 28                                | 1 081        |
| <b>10</b> 0         | 27                                | 1 086        |
| <b>1</b> 10         | <b>25</b> 5                       | 1 091        |
| 120                 | 24 5                              | 1 098        |
| 130                 | 23 5                              | 1 103        |
| 140                 | $22\ 5$                           | 1 108        |
| 15C                 | 21 5                              | 1 113        |
| 160                 | 21 0                              | 1 119        |
| 170                 | 20 5                              | 1 124        |
| 180                 | 20 0                              | 1 130        |
| 190                 | 20 0                              | 1 135        |
| 200                 | 20                                | 1 140        |
| 210                 | 20                                | 1 145        |
| 220                 | 20                                | 1 150        |
| 230                 | 20                                | 1 156        |
| 240                 | 20                                | 1 161        |
| 250                 | 20                                | 1 168        |
| (Winteler, Z        | Elektrochen                       | 1900. 7 361) |

# Solubility in KOH+Ag at 25°

| pA+HOX     | Millimols KClO3 per liti<br>of the solulion |
|------------|---------------------------------------------|
| 1/8-normal | 624                                         |
| 1/4-normal | 573                                         |

(Calvert, Z phys Ch 1901, 38 541)

Solubility in H<sub>2</sub>O<sub>2</sub> at 25°

| Concentration of H <sub>2</sub> O <sub>2</sub> | Millimols KClOs per lit |  |
|------------------------------------------------|-------------------------|--|
| millimols per litre                            | of the solution         |  |
| 1260                                           | 730                     |  |
| 1310                                           | 737                     |  |

#### (Calvert, lc)

#### Solubility in 1/4 normal KOH+Aq in presence of H<sub>2</sub>O<sub>2</sub> at 25°

| Concentration of H <sub>2</sub> O <sub>2</sub> millimols per litre | Millimois KClO <sub>3</sub> per litr<br>of the solution |  |
|--------------------------------------------------------------------|---------------------------------------------------------|--|
| 15                                                                 | 578                                                     |  |
| 276                                                                | 584                                                     |  |
| 954                                                                | 616                                                     |  |
| 1073                                                               | 673                                                     |  |

#### (Calvert, l c)

Moderately sol in liquid NH<sub>3</sub> (Franklı

Am Ch J 1898, 20 828)

Neither dissolved nor attacked by liqui NO<sub>2</sub> (Frankland, Chem Soc 1901, **79** 1361 Sol in 120 pts alcohol of 83% at 16 (Wittstein)

Sol in 120 pts alcohol of 77 1% W A B 6 595) (Poh

Insol in absolute alcohol (Gerardin)

Solubility of  $KClO_3$  in dil alcohol  $D=s_1$ gr of alcohol, S=solubility in 100 pt alcohol at to

| D =0 9904                              |                                                  | D = 0 9845                             |                                                   | D =0 9~93                              |                                                   |
|----------------------------------------|--------------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------|---------------------------------------------------|
| t                                      | 5                                                | t°                                     | ۲,                                                | t                                      |                                                   |
| 13<br>21<br>25<br>30<br>35<br>44<br>50 | 4 9<br>6 3<br>7 5<br>9 1<br>10 2<br>13 6<br>16 2 | 14<br>26<br>39<br>47<br>55<br>65<br>66 | 4 7<br>7 1<br>9 3<br>12 8<br>16 1<br>22 3<br>22 5 | 14<br>26<br>38<br>46<br>51<br>63<br>65 | 3 2<br>5 4<br>7.9<br>10 8<br>12 2<br>17 5<br>19 0 |
|                                        |                                                  | 1                                      |                                                   |                                        |                                                   |

| - | D =0 9726                        |                                          | D =0 9573                              |                                                | 1) = 0.9390                        |                                  |
|---|----------------------------------|------------------------------------------|----------------------------------------|------------------------------------------------|------------------------------------|----------------------------------|
|   | t                                | 5                                        | t                                      | 7                                              | 1                                  | 5                                |
|   | 13<br>20<br>33<br>43<br>56<br>59 | 2 2<br>3 3<br>5 8<br>7 2<br>11 4<br>12 9 | 13<br>20<br>29<br>36<br>55<br>60<br>63 | 1 9<br>2 7<br>3 6<br>4 3<br>7 9<br>9 7<br>10 5 | 14 5<br>28<br>40<br>50<br>62<br>67 | 11<br>22<br>34<br>43<br>66<br>76 |

## Solubility of KClO<sub>3</sub> in dil alcohol—Continued

| D =                  | 0 9111                       | D=                   | -0 8967                      | D=0                  | 8429                         |
|----------------------|------------------------------|----------------------|------------------------------|----------------------|------------------------------|
| t                    | s                            | t°                   | S                            | t°                   | s                            |
| 13<br>25<br>32<br>52 | 0 74<br>1 08<br>1 78<br>3 35 | 12<br>31<br>43<br>58 | 6 46<br>1 28<br>1 95<br>3 10 | 25<br>34<br>56<br>64 | 0 09<br>0 12<br>0 24<br>0 32 |

(Gerardin, A ch (4) 5 148)

# Solubility of KClO<sub>8</sub> in alcohol+Aq

|              | •           | · · · · · · · · · · · · · · · · · · · |
|--------------|-------------|---------------------------------------|
| wt % alcohol | g KClO3 per | 100 g solution                        |
| wt % arconor | t =30°      | t =40°                                |
| 0            | 9 23        | 12 23                                 |
| 5            | 7 72        | 10 48                                 |
| 10           | 6 44        | 8 84                                  |
| 20           | 4 51        | 6 40                                  |
| 30           | 3 21        | 4 67                                  |
| 40           | 235         | 3 41                                  |
| 50           | 1 64        | 2 41                                  |
| 60           | 1 01        | 1 41                                  |
| 70           | 0 54        | 0 78                                  |
| 80           | 0 24        | 0 34                                  |
| 90           | 0 06        | 0 12                                  |
|              |             |                                       |

(Taylor, J phys Ch 1897, 1 301)

Insol in benzonitrile (Naumann, 1914, 47 1370)

Very sl sol in acetone roy, J Anal Ch 6 184) (Krug and M'El

Insol in acetone (Naumann, B 1904, 37 4329, Eidminn, C C 1899, II 1014)

#### Solubility of KClO<sub>3</sub> in acetone+Aq

|             | μ KClO₃ per 100 g solution |        |  |
|-------------|----------------------------|--------|--|
| wt % aceton | t = 30                     | t =40° |  |
| 0           | 9 23                       | 12 23  |  |
| 5           | 8 32                       | 11 10  |  |
| 9 09        | 7 63                       | 10 28  |  |
| 20          | 6 09                       | 8 27   |  |
| 30          | 4 93                       | 6 69   |  |
| 40          | 3 90                       | 5 36   |  |
| 50          | 2 90                       | 4 03   |  |
| 60          | 2 03                       | 2 86   |  |
| 70          | 1 24                       | 1 68   |  |
| 80          | 0 57                       | 0.79   |  |
| 90          | 0.18                       | 0 24   |  |

(Laylor, J phys Ch 1897, 1 301)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1904, **37** 3601)

Solubility in glycol=09% at ord temp (de Coninck, Belg Acad Bull 1905 359) 100 g glycerol (sp gr 1 256) dissolve 3 54 g KClO<sub>3</sub> at 15–16° (Ossendowski, Pharm J 1907, **79** 575)

Potassium silver chlorate, KClO<sub>3</sub>, AgClO<sub>3</sub> (Pfaundler, W A B 46, 2 266)

#### Rubidium chlorate, RbClO<sub>3</sub>

100 pts H<sub>2</sub>O dissolve 2 8 pts at 47°, 3 9 pts at 13°, 4 9 pts at 18 2°, 5 1 pts at 19° (Reissig, A 127 33)

100 g H<sub>2</sub>O dissolve 3 1 RbClO<sub>8</sub> at 15°, sp gr of solution = 107 (Carlson, Dissert 1910)

100 g H<sub>2</sub>O dissolve at

O° 19 8°  $30^{\circ}$ 2 138 3 07 5 36 800 g RbClO<sub>2</sub>,

42 2° 50° 76° 99°

12 48 15 98 34 12 628g RbClO<sub>3</sub> (Calzolari, Acc Sc med di Ferrara, 1911, 85 **150**)

#### Scandium chlorate

(Crookes, Roy Soc Proc 1908, 80 A, 518)

#### Silver chlorate, AgClC<sub>3</sub>

Sol in 10–12 pts cold  $\rm H_2O$  (Vauquelin), in 8–10 pts cold, and 2 pts hot  $\rm H_2O$  (Chevenix), in 5 pts cold  $\rm H_2O$  (Wachter) Sl sol in alcohol (Chevenix), easily sol in alcohol (Wachter)

Silver chlorate ammonia, AgClO<sub>3</sub>, 2NH<sub>3</sub> Easily sol in H<sub>2</sub>O or alcohol (Wachter, **1843**)

# Sodium chlorate, NaClO<sub>3</sub>

Deliquescent

(Wachter Sol in 3 pts cold and less hot HO Chevenix ) Sol in 3 pts H2O at 15 75° (Abl)

100 pts H2O dissolve 35 5 pts NaClO3 (Ure s Diet )

100 pts H<sub>2</sub>O dissolve at

40° 20° 60° 147 1 pts N 1ClO3, 123 5 81 9 99

80° 100° 120° 2326 333 3 pts NaClO<sub>3</sub> (Kremers, Pogg 97 4)

100 pts H<sub>2</sub>O dissolve 89 3 pts NaClO<sub>3</sub> at 12° (Schlosing)

100 g H2O dissolve at

40°  $-15^{\circ}$ 20° 126 pts NaClOs, 72 79 101 Sp gr 1 380 1 389 1 430 1 472

80° 100° 122° +  $60^{\circ}$ 230 286 pts NaClO<sub>3</sub> 155 189 Sp gr 1514 1559 1604 1654

\* Bpt of sat solution

(Carlson, Dissert 1910)

100 g NaClO<sub>3</sub>+Aq contain at 4 78° 19 85° 30 05° 35 10° 44 72° 45 47 48 91 51 22 52 36 54 50 g NaClOs (Le Blanc and Schmandt, Z phys Ch 1911, 77 614)

Sp g1 of NaClO<sub>3</sub>+Aq, containing 25% NaClO<sub>3</sub> 15 20 25 30 1 070 1 108 1 147 1 190 1 235 1 282 (Gerlach, Z anal 8 290)

Sp gı of NaClO<sub>3</sub>+Aq at 20° containing 1 mol NaClO<sub>3</sub> in 100 mols  $H_2O=1$  03844 (Nicol, Phil Mag (5) 16 122)

NaClO<sub>3</sub>+Aq containing 723% NaClO has sp gr 20°/20°=10496 (Le Blanc and Rohland, Z phys Ch 1896, 19 278) (Le Blanc and

Sat solution boils at 132°, and temp can be raised to 135° by supersaturation (Kremers, Pogg 97 4)
Easily sol in liquid HF (Franklin, Z

anorg 1905, 46 2)

NaClO<sub>3</sub>+NaCl

100 pts H<sub>2</sub>O dissolve 50 75 pts NaClO<sub>3</sub>+ 24 4 pts NaCl at 12°, 100 pts H2O dissolve 249 6 pts NaClO<sub>3</sub>+11 5 pts NaCl at 122°, and when cooled to 12° contain 68 6 pts NaClO<sub>3</sub>+11 5 pts NaCl (Schlosing, C R 73 1979 )

## pulity in NaCl+Aq at 20° C

| -                                                                                                |     |                                                                                                                                                                                    |                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                  |     | G NaClO                                                                                                                                                                            | Sp gr                                                                                                                                                                                                                                           |
| 510<br>1520<br>2530<br>3540<br>4550<br>5550<br>6570<br>7580<br>8590<br>95100<br>115120<br>125130 |     | 668<br>661<br>653<br>645<br>638<br>630<br>622<br>615<br>607<br>599<br>582<br>574<br>566<br>559<br>551<br>544<br>537<br>529<br>522<br>514<br>507<br>499<br>491<br>484<br>476<br>467 | 1 426<br>1 424<br>1 423<br>1 421<br>1 419<br>1 418<br>1 417<br>1 415<br>1 414<br>1 412<br>1 411<br>1 409<br>1 408<br>1 406<br>1 405<br>1 404<br>1 402<br>1 401<br>1 399<br>1 398<br>1 396<br>1 394<br>1 392<br>1 391<br>1 389<br>1 387<br>1 385 |
| 140<br>145                                                                                       |     | 459<br>451                                                                                                                                                                         | 1 385<br>1 383<br>1 381                                                                                                                                                                                                                         |
|                                                                                                  | - 1 | 101                                                                                                                                                                                | 1 901                                                                                                                                                                                                                                           |

Solubility in NaCl+Ag at 20° C -Continue

| G NaCl in 1 litre         G NaClOs in 1 litre         Sp gr           150         442         1 379           155         43?         1 377           16C         423         1 374           165         414         1 372           170         403         1 369           175         393         1 365           180         382         1 362           185         371         1 359           190         360         1 355           195         349         1 350           200         338         1 345           205         326         1 340           210         315         1 335           215         302         1 330           220         287         1 324           225         271         1 319           235         243         1 307           240         228         1 301           245         211         1 295           255         184         1 289           255         184         1 289           265         150         1 270           265         150         1 270 <th>oranimity in r</th> <th>act frique 20</th> <th>0 00.000</th> | oranimity in r                                                                                                                                                                     | act frique 20                                                                                                                                                                                 | 0 00.000                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 155         43°         1 377           16C         423         1 374           165         414         1 372           170         403         1 369           175         393         1 365           180         382         1 362           185         371         1 359           190         360         1 355           195         349         1 350           200         338         1 345           205         326         1 340           210         315         1 335           215         302         1 330           220         287         1 324           225         271         1 319           230         257         1 313           235         243         1 307           245         211         1 295           245         211         1 295           255         184         1 289           265         150         1 270           265         150         1 270           270         135         1 263           275         120         1 256           280 <td></td> <td></td> <td>Sp gr</td>                                               |                                                                                                                                                                                    |                                                                                                                                                                                               | Sp gr                                                                                                                                                                                                                         |
| 300 67 1 226<br>55 1 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 155<br>160<br>165<br>170<br>175<br>180<br>185<br>190<br>195<br>200<br>205<br>210<br>215<br>220<br>225<br>230<br>245<br>240<br>245<br>250<br>265<br>270<br>275<br>280<br>295<br>290 | 439<br>423<br>414<br>403<br>393<br>382<br>371<br>360<br>349<br>338<br>326<br>315<br>302<br>287<br>271<br>257<br>243<br>228<br>211<br>197<br>184<br>170<br>150<br>150<br>105<br>91<br>78<br>67 | 1 377<br>1 374<br>1 372<br>1 369<br>1 365<br>1 362<br>1 359<br>1 355<br>1 350<br>1 345<br>1 340<br>1 335<br>1 330<br>1 324<br>1 319<br>1 313<br>1 307<br>1 283<br>1 270<br>1 263<br>1 249<br>1 241<br>1 241<br>1 235<br>1 226 |

(Winteler, Z Elektrochem 1900, 7 361)

Very sol in liquid NH (Frinklin, Am Ch J 1898, **20** 829)

Sol in 34 pts alcohol of 83% at 16° and in

less hot alcohol (Wittstein)

Somewhat more easily sol in ilcohol than NaCl (Berzelius)

## Solubility of NaClO, in alcohol (g NaClO<sub>3</sub> per l of solution)

| ,                    |                      | Mechol                             |                         |
|----------------------|----------------------|------------------------------------|-------------------------|
| <u> </u>             | 90 %                 | 7) (                               | 0 ,                     |
| 20<br>40<br>60<br>70 | 16 1<br>22 9<br>29 0 | 110 °C<br>133 5<br>155 °C<br>161 3 | 311 3<br>321 5<br>326 5 |

(Carlson, Dissert 1910)

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate (Nummin B 1910, 43 314)

100 g glycerol dissolve 20 g NaClO3 at 15 5° (Ossendowski, Pharm J 1907, 79 575)

## Strontium chlorate, Sr(ClO<sub>3</sub>)<sub>2</sub>+5H<sub>2</sub>O

Very deliquescent, and sol in H<sub>2</sub>O soe, W A B **66, 2** 29) (Top-

Sp gr of solution sat at 18° containing 63 3% Sr (ClO<sub>3</sub>)<sub>2</sub>=1 839 (Myhus, B 1897, **30** 1718)

Easily sol in H<sub>2</sub>O, less in alcohol, but more sol in alcohol than SrCl<sub>2</sub> (Souchay, A 102 381)

Insol in absolute alcohol (Wachter)

## Thallous chlorate, TlClO<sub>3</sub>

Sol in H<sub>2</sub>O, but decomp by heating

 $\begin{array}{ccc} 100 \text{ pts } H_2O \text{ dissolve at} \\ 0^{\circ} & 20^{\circ} & 50^{\circ} & 80^{\circ} & 1 \end{array}$ 100° 280 392 1267 3665 5731 pts TIClO<sub>3</sub> (Muir, Chem Soc 29 857)

1 1 TlClO<sub>3</sub>+Aq sat at 10° contains 25 637 g TiClO<sub>3</sub> (Roozeboom, Z phys Ch 8 532) 1 1 H<sub>2</sub>O dissolves 0 134 equivalents TiClO<sub>3</sub> at 20°, or 38 51 g m 1 l of the solu-tion (mean of 10 experiments) (Noyes and Farrell, J Am Chem Soc 1911, 33 1657)

## Solubility in Tl<sub>2</sub>SO<sub>4</sub>+Aq at 20°

| G (quiv      | per l  | Solid phase                                         |  |
|--------------|--------|-----------------------------------------------------|--|
| IKIO3 TI SO4 |        | Sond plaso                                          |  |
| 0 1058       | 0 1366 | TlClO <sub>3</sub> +Tl <sub>2</sub> SO <sub>4</sub> |  |

(Noyes and Farrell, lc)

## Thallic chlorate, $11(ClO_3)_3+4H_2O$

Very deliquescent, sol in H<sub>2</sub>O Decomp slowly in the air (Geweeke, Z anorg 1912, **75** 273)

#### Ytterbium chlorate

Sol in H O (Popp, A 131 179)

## Yttrium chlorate, Y(ClO<sub>3</sub>)<sub>3</sub>+8H<sub>2</sub>O

Deliquescent Easily sol in alcohol sol mether (Cleve)

#### Zinc chlorate, Zn(('l()<sub>3</sub>) +4H O

Solubility in H O

Sit solution contains it

 $55^{\circ}$ 30° 1()° +15° 75 44% Zn(ClO<sub>3</sub>)<sub>2</sub> 69 06 67 66 66 52

of solution containing 66.52% $Zn(ClO_1)$  at  $15^{\circ} = 1916$ 

(Mcusser, B 1902, 35 1417)

More sol in H2O than chlorates of Mg, Co, Ni oi Cu, less sol than chlorate of Cd, more sol th in  $\text{Zn}(\text{NO}_3)$  (Meusser,  $l\,c$ ) +6 $\text{H}_2\text{O}$  Very deliquescent Easily sol in  $\text{H}_2\text{O}$  and alcohol Melts in crystal  $\text{H}_2\text{O}$  at 60° (Vauquelin, A ch 95 113)

Solubility in H<sub>2</sub>O Sat solution contains at

–18° 0° 55 62 59 19 60 20 67 32% Zn(ClO<sub>3</sub>)<sub>2</sub> (Meusser, lc)

Sp gr of solution sat at 18° containing 65% Zn(ClO<sub>3</sub>)<sub>2</sub>=1 914 (Mylius, B 1897, **30** 1718)

Zinc chlorate ammonia, Zr(ClO<sub>3</sub>), 4NH<sub>3</sub>  $Zn(ClO_3)_2$ ,  $6NH_3$ Ppt (Ephram, B 1915, 48 48)

Perchloric acid See Perchloric acid

#### Chlorides

Most chlorides are sol in H<sub>2</sub>O, a few, however, are insol or nearly so therein, the chief of which are AgCl, Hg<sub>2</sub>Cl<sub>2</sub>, Cu<sub>2</sub>Cl<sub>2</sub>, PtCl<sub>2</sub>, and AuCl Several chlorides are decomp into insol basic salts or hydroxides, either by the addition of H<sub>2</sub>O, as in the case of BiCl<sub>3</sub> and SbCl<sub>3</sub>, or on evaporating the aqueous solution, as AlCl<sub>3</sub>, ZnCl<sub>2</sub>, MgCl<sub>2</sub>, etc Some chlorides are sol in alcohol or ether

See under each element

## Chlorine, Cl<sub>2</sub>

The maximum solubility of Cl in H O is at 10° (Schonfeld), at 8-10° (Gay-Lussac), at 9-10° (Pelouze)

Solubility decreases from 9-0°, at 100° the solubility =0 (Gay-Lussac) Cl<sub>2</sub>+Aq sat at 6° has sp gr =1 003 (Ber-

thelot)

1 vol H2O at to absorbs vols Cl reduced to 0° and 760 mm pressure

| t                                                                                            | Vols Cl                                                                                                                                                                | t                                                                                      | Vols Cl                                                                                                                                            |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25 | 2 5852<br>2 5413<br>2 4977<br>2 4543<br>2 4111<br>2 3681<br>2 3253<br>2 2828<br>2 2405<br>2 1984<br>2 1565<br>2 1148<br>2 0734<br>2 0734<br>2 0322<br>1 9912<br>1 9504 | 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 1 9099<br>1 8695<br>1 8295<br>1 7895<br>1 7499<br>1 7104<br>1 6712<br>1 6322<br>1 5934<br>1 5550<br>1 5166<br>1 4785<br>1 4406<br>1 4029<br>1 3655 |

(Schonfeld, A 93 26)

## 1 vol H<sub>2</sub>O absorbs vols Cl at t° (not corrected)

| Vols Cl                      | t°                 | Vols Cl                      | t°                  | Vols Cl              | t°              |
|------------------------------|--------------------|------------------------------|---------------------|----------------------|-----------------|
| 1 43<br>1 52<br>2 08<br>2 17 | 0<br>3<br>6 5<br>7 | 3 04<br>3 00<br>2 37<br>1 61 | 8<br>10<br>17<br>35 | 1 19<br>0 71<br>0 15 | 50<br>70<br>100 |

(Gay-Lussac, A ch (3) 7 124)

1 vol H O at 8° absorbs 3 04 vols. Cl. which is the maximum of solubility. At 50° 1 09 vols are absorbed and at 0  $\,$  1 5 vols. (Pelouze and Fremy.)

1 vol H2O at t dissolves vols CI (not corrected)

|    | Vols Ci   |    |           |    |           |
|----|-----------|----|-----------|----|-----------|
| 0  | 1 75–1 80 | 12 | 2 50-2 60 | 40 | 1 55-1 60 |
| 9  | 2 70–2 75 | 14 | 2 45-2 50 | 50 | 1 15-1 20 |
| 10 | 2 70–2 75 | 30 | 2 00-2 10 | 70 | 0 60-0 65 |

(Pelouze A ch (3) 7 188)

1 vol H O absorbs vols Cl at to

|   | Vols Cl  | 1  |           | I  |           |
|---|----------|----|-----------|----|-----------|
| 0 | 1 5 -1 6 | 9  | 2 65-2 70 | 14 | 2 6 -2 65 |
| 5 | 2 05-2 1 | 10 | 2 9 -3 0  | 16 | 2 35-2 4  |
| 8 | 2 5 -2 6 | 12 | 2 65-2 75 | 30 | 1 8 -1 85 |

(D ~ l and Walz Berz J B 1846 72)

Solubility in  $H_2O$   $\alpha = coefficient of solubility$ 

| to  | a      | to   | a      | t°   | a      |
|-----|--------|------|--------|------|--------|
| 6 9 | 2 2931 | 10 1 | 2 8741 | 21 7 | 2 0422 |
| 8 4 | 2 5469 | 11 2 | 2 7267 | 32 1 | 1 5766 |
| 9 3 | 2 7135 | 13 7 | 2 5079 | 36 7 | 1 3802 |

(Goodwin, B 15 3040)

Goodwin also gives tables for solubility of Cl in HCl and various chlorides, but they do not show evidence of accurate work (A M C)

Cl<sub>2</sub>+Aq contains at 760 mm pressure

1 44% Cl at 0° 1 07% " " 6° 0 95% " " 9° 0 87% " " 12°

(Roozeboom, R t c 1884, 3 29)

See also Cl<sub>2</sub>+8H<sub>2</sub>O

Solubility of Cl<sub>2</sub> in H<sub>2</sub>O

 $\beta^1$ =Vol of Cl (reduced to 0° and 760 mm) absorbed by 1 vol H<sub>2</sub>O under a total pressure of 760 mm

q=g Cl<sub>2</sub> absorbed by 100 g H<sub>2</sub>O under a total pressure of 760 mm

| t°              | βı    | đ     | t°  | βι    | ą     |
|-----------------|-------|-------|-----|-------|-------|
| 10              | 3 095 | 0 980 | 25  | 1 985 | 0 630 |
| 11              | 2 996 | 948   | 26  | 1 937 | 615   |
| 12              | 2 900 | 918   | 27  | 1 891 | 600   |
| 13              | 2 808 | 889   | 28  | 1 848 | 587   |
| 14              | 2 720 | 861   | 29  | 1 808 | 574   |
| 15              | 2 635 | 835   | 30  | 1 769 | 562   |
| 16              | 2 553 | 809   | 35  | 1 575 | 501   |
| 17              | 2 474 | 784   | 40  | 1 414 | 451   |
| 18              | 2 399 | 760   | 45  | 1 300 | 415   |
| 19              | 2 328 | 738   | 50  | 1 204 | 386   |
| 20              | 2 260 | 716   | 60  | 1 006 | 324   |
| 21              | 2 200 | 698   | 70  | 0 848 | 274   |
| $\frac{21}{22}$ | 2 143 | 680   | 80  | 0 672 | 219   |
| 23              | 2 087 | 662   | 90  | 0 380 | 125   |
| 23<br>24        | 2 035 | 646   | 100 | 0 000 | 000   |

(Winkler, Landolt and Bornstein, Tab 4th Ed 1912, 597)

1 l HCl+Aq (38% HCl) dissolves 17 3 g Cl, 1 l HCl+Aq (33% HCl) dissolves 11 g Cl, 1 l HCl+Aq (3% HCl) dissolves 6 5 g Cl (Berthelot, C R  $\bf 91$  191)

Solubility of  $Cl_2$  in HCl+Aq at 20–21° and 759–761 mm pressure

| g HCl per l | g Cl2 per l | Coefficient<br>of<br>absorption | Solubility |
|-------------|-------------|---------------------------------|------------|
| 0           | 7 23        | 2 1157                          | 2 2799     |
| 3 134       | 5 30        | 1 5496                          | 1 6698     |
| 6 248       | 4 94        | 1 4483                          | 1 5607     |
| 9 402       | 4 76        | 1 3942                          | 1 5013     |
| 12 540      | 4 85        | 1 4200                          | 1 5292     |
| 15 670      | 5 10        | 1 4933                          | 1 6092     |
| 31 340      | 5 81        | 1 6736                          | 1 9033     |
| 62 680      | 6 38        | 1 8682                          | 2 0131     |
| 94 020      | 7 19        | 2 1044                          | 2 2677     |
| 125 360     | 7 76        | 2 2711                          | 2 4473     |
| 156 700     | 8 58        | 2 5095                          | 2 7043     |
| 188 040     | 9 23        | 2 7020                          | 2 9117     |
| 219 380     | 9 93        | 2 9243                          | 3 1312     |
| 250 720     | 10 68       | 3 1272                          | 3 3677     |
| 282 060     | 11 87       | 3 3278                          | 3 5859     |
| 313 401     | 12 03       | 3 5492                          | 3 8224     |

(Mellor, Chem Soc 1901, 75 227)

Solubility of Cl in NaCl+Aq  $\alpha = coefficient$  of solubility

NaCl = 9.97%

| t°                  | α                          | t            | a                |
|---------------------|----------------------------|--------------|------------------|
| 7 9<br>11 9<br>15 4 | 1 8115<br>1 5879<br>1 3684 | 18 8<br>22 6 | 1 2785<br>1 0081 |

## Solubility of Cl in NaCl+Aq —Continued NaCl = 16.01%

| t°                | α                          | t°           | α                |
|-------------------|----------------------------|--------------|------------------|
| 6<br>11 6<br>16 4 | 1 5866<br>1 2227<br>1 0121 | 21 4<br>26 9 | 0 8732<br>0 7017 |

## NaCl = 1966%

| t°                      | α                                    | t°                   | a                          |
|-------------------------|--------------------------------------|----------------------|----------------------------|
| 0<br>9 2<br>9 3<br>14 8 | 1 6978<br>1 2145<br>1 2068<br>0 9740 | 15 4<br>20 4<br>21 9 | 0 9511<br>0 7758<br>0 7385 |

(Kumpf, W Ann Beibl 6 276)

## Solubility of Cl in sat NaCl+Aq at to and 760 mm pressure

| • | t°   | Coefficient of absorp | Solubility at 0° and<br>760 mm |
|---|------|-----------------------|--------------------------------|
|   | 14 5 | 0 3607                | 0 3898                         |
|   | 29 0 | 0 3125                | 0 3458                         |
|   | 60 0 | 0 1332                | 0 1625                         |
|   | 82 0 | 0 C586                | 0 0763                         |

(Kohn and O'Buen, J Soc Chem Ind 1898, **17** 1100)

Sat KCl+Aq absorbs 1/3 less Cl at 15° than pure H<sub>2</sub>O (Dettmer, A 38 35)

11 of a solution of CaCl2 (1 pt in 15 pts HO) dissolves 2 45 g Cl at 12°

11 of a solution of MgCl<sub>2</sub> (1 pt in 15 pts H O) dissolves 2 33 g Cl at 12°
11 of a solution of MnCl<sub>2</sub> (1 pt in 15 pts

H O) dissolves 2 00 g Cl at 12 Sl sol m KOH+Aq (Fremy)

Somewhat sol in liquid NO (Frinkland, Chem Soc 1901, **79** 1361)

CCl<sub>4</sub> absorbs 10% of Cl at 13° (Perkins,

Chem Soc 1894 65 20)

1 mol CrOCl dissolves at 0°, 0 70 atom Cl, ut-14°, 1 24 utoms, at-21°, 2 31 atoms, and at-24, 3 00 utoms Cl (Roozeboom, R t c 4 379)

Sulphuryl chloride absorbs 71 vols Cl or 0 136 pt Čl by weight at (° (Schulze, J pr

(2) **27** 168)

Insol in benzene (Moride) SI sol in chloral and iodal (Dumas) Sol in perchlorethylene (Faraday)

Sol in a very large quantity of ether with

decomp

## Coefficient of solubility of Cl<sub>2</sub> in organic liquids at 15°

| Substance                                                                                            | Coefficient of Solubility                      |
|------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Carbon tetrachloride Acetic anhydride Acetic acid (99 84%)  " (90 vol %)  " (75 vol %)  " (65 vol %) | 51 7<br>39 6<br>36 7<br>25 3<br>16 43<br>13 43 |

(Jones, Chem Soc 1911, 99 392)

+8H<sub>2</sub>O Critical temp of decomposition in open vessel = 96°, in closed vessel = 287° Solubility in H<sub>2</sub>O

%  $Cl_2 = \%$  of  $Cl_2$  in  $Cl_2 + Aq$  sat at to and 760 mm in presence of Cl<sub>2</sub>+8H<sub>2</sub>O

| t°               | % Cl <sub>2</sub>               | t°                 | % CI                 |
|------------------|---------------------------------|--------------------|----------------------|
| 0<br>3<br>6<br>9 | 0 505<br>0 64<br>0 709<br>0 900 | 12 5<br>20<br>28 5 | 1 10<br>1 82<br>3 50 |

(Roozeboom, R t c 1884, 3 57)

## Chlorine monoxide, Il2O

Sol in H<sub>2</sub>O At 0°, H<sub>2</sub>O absorbs at least 200 times its volume of Cl2O gas

## Chlorine trioxide, Cl<sub>2</sub>O<sub>3</sub>

Decomp on air at 57° with explosion

H O absorbs 5-6 vols Cl<sub>2</sub>O<sub>3</sub> (Mıllon, A ch (3) 7 298)

H<sub>2</sub>C absorbs at 85° and 753 mm press 8 591 vols Cl<sub>2</sub>O<sub>3</sub> (Brandan)

100 g H<sub>2</sub>O dissolve at

85° and 7529 mm press 47655 g Cl O<sub>3</sub> 14° 7563 5 0117  $2\bar{1}^{\circ}$ " "

754 5 4447 93° 760 5 6508

(Brandan, A 151 340)

Does not exist, and above data are for mixture of ClO2 and Cl (Garzarolli-Thurnlakh, A **209** 184)

#### Chlorine teti oxide, ClO,

H<sub>2</sub>O at 4° absorbs about 20 vols Cl() with formation of HClO and HClO;

H<sub>2</sub>SO<sub>4</sub> at -18° absorbs about 20 vols ClO (Millon, A ch (3) 7 285)

## Solubility of ClO<sub>2</sub> in H ()

| t                                            | μ ClO₂ per l              |
|----------------------------------------------|---------------------------|
| $\begin{array}{c}1\\10\\7\\14\\0\end{array}$ | >108 6<br>116 7<br>>107 9 |

(Bray, Z phys Ch 1906, 54 569)

## $+8H_2O (\pm 1H_2O)$

## Solubility in H<sub>2</sub>O

| t°                     | g ClO <sub>2</sub> per l         | t°                 | g ClO <sub>2</sub> per l |
|------------------------|----------------------------------|--------------------|--------------------------|
| 0 79*<br>0<br>1<br>5 7 | 26 98<br>27 59<br>29 48<br>42 10 | 10<br>15 3<br>18 2 | 60 06<br>60 06<br>107 9  |

\* Entertic

(Bray)

#### Chlorine oxide, Cl<sub>6</sub>O<sub>17</sub>

Very easily decomp (Millon, A 46 281) Probably a mixture of  $ClO_2$  and O

#### Chlorine heptoxide, Cl<sub>2</sub>O<sub>7</sub>

Explosive, decomp by  $H_2O$ , sol in well cooled benzene with al decomp (Michael, Am Ch J 1909, 23 447)

## Chlorifidiamine chloride,

Cl<sub>2</sub>IrNH<sub>3</sub>NH<sub>3</sub>Cl

Sl sol in cold, easily in hot  $H_2O$  (Skoblikoff, A 84 275)

Sol in  $H_2O$  Sol  $H_2O$ 

SI sol in cold, much more easily in hot H O

## Chloriridic acid

#### Chloriridates

Most of the chlorifidates are very difficultly sol in HO, but a little more sol than the corresponding chloroplatinates. Insol or nearly so in alcohol, but not so difficultly sol as the chloroplatinates (Rose)

#### Ammonium chloriridate, (NH<sub>4</sub>)<sub>2</sub>IrCl<sub>6</sub>

Sol in 20 pts cold  $H_2O$  (Vauquelin), sl sol in cold, much more in hot  $H_2O$  (Claus), sol in HCl+Aq (Soblewsky), insol in cold  $NH_4Cl+Aq$  (Claus), insol in alcohol (Berzelius)

## Cæsium chloriridate, CsoIrCl6

Only sl sol in H O (Delepine, C R 1908, **146** 1268)

## Lithium chloriridate, Li2IrCl6

Somewhat deliquescent, very sol in H<sub>2</sub>' (Antony, Gazz ch it 23, 1 190)

#### Potassium chlorifidate, K<sub>2</sub>IrCl<sub>6</sub>

Sl sol m cold H<sub>2</sub>O, sol m 15 pts boils H<sub>2</sub>O, less sol m H<sub>2</sub>O containing HCl, inso m alcohol or sat KCl, and CaCl<sub>2</sub>+Aq Insol m liquid NH<sub>3</sub> (Gore, Am Ch 1898, 20 829)

## Rubidium chloriridate, Rb2IrCl6

Very sl sol in  $H_2O$  (Rimbach, Z anor 1907, **52** 408)

Sodium chloriridate, Na<sub>2</sub>IrCl<sub>6</sub>+6H<sub>2</sub>O

Easily sol in  $H_2O$ , sol in alcohol of 0.8 sp gr

## Thallium chloriridate, Tl<sub>2</sub>IrCl<sub>6</sub>

Decomp by hot HCl forming Tl₃IrC (Delépine, C R 1909, 149 1073)

## Chlorindium pentamine comps

See Iridopentamine chloro comps

## Chloriridosulphurous acid

Potassium chloriridosulphite, K<sub>4</sub>Ir<sub>2</sub>Cl<sub>2</sub>(SO<sub>3</sub>) 4KCl+12H<sub>2</sub>C

Insol in cold, decomp by hot  $H_2O$   $K_4Ir_2CI_2(SO_3)_4$ ,  $2K_2SO_3$  Decomp by  $H_2O$   $CI_2Ir_2(SO_3)_2$ ,  $8KCI+4H_2O$  Sol in  $H_2O$  insol in alcohol (Claus, J pi **42** 354)

#### Chloriridous acid

Ammonium chloriridite, (NH<sub>4</sub>)<sub>3</sub>IrCl<sub>6</sub>
Decomp by H<sub>2</sub>O (Delepine, C R 190

**146** 1268)

 $+1\frac{1}{2}H_2O$  Sol in H O (Claus) IrCl<sub>5</sub>(H<sub>2</sub>O) (NH<sub>4</sub>)<sub>2</sub> (Delepine)

Cæsium chloriridite, IrCl<sub>2</sub>(H<sub>2</sub>())Cs (Delépine)

## Lithium chloriridite, Li<sub>3</sub>I<sub>1</sub>Cl<sub>4</sub>+12H<sub>2</sub>O

Deliquescent, sol in HO ind alcoho (Delepine, C R 1914, **158** 1277)

## Lithium sodium chloriridite, li Nali Cl.

Stable in aq solution in the presence excess of lithium salt (Delepine, C R 1914 158 1278)

LiNa<sub>2</sub>IrCl<sub>6</sub>+12H O Stuble in aq solution in the presence of excess of sodium sulf (Delepine, C R 1914, **158** 1278)

## Potassium chlorifidite, K<sub>3</sub>IrCl<sub>6</sub>

Decomp by  $H_2O$  (Delepine) +3 $H_2O$  Easily sol in  $H_2O$ , insol in al cohol, insol in sat KCl+Aq (Berzelius) IrCl<sub>5</sub>( $H_2O$ ) $K_2$  (Delepine) Rubidium chlorifidite,  $IrCl_5(H_2O)Rb_2$  (Delepine)

Silver chloriridite, Ag<sub>3</sub>I<sub>1</sub>Cl<sub>6</sub>

Insol in  $H_2O$  or acids, sl sol in  $NH_4OH+Aq$ Ppt (Delépine, Bull Soc 1910, (4), 7 55)

Sodium chloriridite, Na<sub>3</sub>IrCl<sub>6</sub>+12H<sub>2</sub>O

Efflorescent, sol in  $\frac{1}{2}$  pt  $H_2O$  Insol in alcohol Melts in crystal  $H_2O$  at  $50^\circ$ 

Thallium chloriridite, Tl<sub>3</sub>IrCl<sub>6</sub>

Sol in hot HCl, pptd on cooling (Delepine, C R 1909, 149 1073)

Chlorotetramine chromium comps

See Chlorotetramine chromium comps

Chloro-azoimide, N<sub>3</sub>Cl

Sl sol in  $H_2O$  (Raschig, B 1908, 41 4194)

Chlorobromo comps

See Bromochloro comps

Chlorocarbonic acid See Carbonyl chloride

Chlorochromic acid CrO<sub>2</sub>OH

Known only in its salts CrO Cl<sub>2</sub> See Chromyl chloride

Ammonium chlorochromate, NH<sub>4</sub>C<sub>1</sub>O<sub>3</sub>Cl = CrO<sub>2ONH<sub>4</sub></sub>

More sol in H O than the K salt (Peligot, A ch 52 283)

Barium chlorochromate chloride, Ba(CrO<sub>3</sub>Cl), B iCl

Deliquescent Very sol in HO (Pritorius A 201 1)

+HO Not deliquescent

Calcium chlorochromate, Ci(('10) Cl)

Deliquescent (Peligot) +5H<sub>2</sub>() Very deliquescent (Pratorius)

Chromous chlorochromate

See I richromyl chloride

Cobalt chlorochromate, Co(C1O2C1) +9H O Deliquescent, inclts at 40° in crystal H O (Pratorius)

Lithium chlorochromate, LiCiO<sub>3</sub>Cl

Sol m H<sub>2</sub>O acidified with HCl without decomp (Lowenthal, Z anorg 1894, 6 357)

Magnesium chlorochromate, Mg(CrO<sub>3</sub>Cl)<sub>2</sub>

Deliquescent (Peligot) +9H<sub>2</sub>O Less deliquescent than the other chlorochromates (Pratorius, A **201** 1)

Very hydroscopic, sol in H<sub>2</sub>O acidified with HCl without decomp (Lowenthal, Z anorg 1894, 6 359)

Nickel chlorochromate, Ni(CrO<sub>3</sub>Cl) +9H<sub>2</sub>O

Deliquescent, melts in its crystal  $\rm H_2O$  at  $46-48^{\circ}$  (Pratorius)

Potassium chlorochromate, KCrO<sub>3</sub>Cl = CrO<sub>2</sub>(Cl)OK

Sol in H<sub>2</sub>O with decomp Cryst from H O containing HCl without decomp (Peligot)
Sol in acetone (Naumann B 1904, 37 4328)

Sodium chlorochromate, NaCrO2Cl

Deliquescent (Peligot) +2H<sub>2</sub>O Deliquescent (Pratorius)

Strontium chlorochromate,  $Sr(CrO_3Cl)_{\circ} + 4H_2O$ 

Deliquescent, melts in crystal H<sub>0</sub>O at 72° (Pratorius)

Thallous chlorochromate, TlCrO<sub>3</sub>Cl

Decomp by  $H_2\mathrm{O}$  (Lachaud and Lepierre, C R 103 198 )

Zinc chlorochromate, Zn(CrO<sub>3</sub>Cl) +9H<sub>2</sub>O

Deliquescent, melts at 37  $5^{\circ}$  in crystal H O (Pratorius )

Very hydroscopic, very sol in H<sub>2</sub>O and acids (Lowenthal, Z anorg 1894, 6 360)

Dichlorochromium bromide, [Cr(H<sub>2</sub>O)<sub>1</sub>Cl<sub>2</sub>]B<sub>1</sub>

Very deliquescent Sol in furning HBi in a mixture of equal volumes ether and furning HBr, in alcohol and in acctone (Bjerrum, B 1907, **40** 2919)

Chlorochromotetrammonium comps

See Chlorotetramine chromium comps

Chlorocolumbium bromide, (Ch<sub>0</sub>Cl<sub>12</sub>)B<sub>1</sub> + 711 ()

Sol in a small quantity of cold H() (Harned, J Am Chem Soc 1913, 35 1083)

Chlorocolumbium chloride, (CbrCl<sub>12</sub>)Cl + 7H O

Insol in cold, sol in boiling If ()
Not easily decomp by boiling with NH<sub>4</sub>OII
Conc HNO<sub>3</sub> decomp a boiling solution of
this comp Completely sol in conc alkalies
(Harned, J Am Chem Soc 1913, **35** 1080)

Chlorocolumbium hydroxide, (Cb<sub>6</sub>Cl<sub>12</sub>) (OH)<sub>2</sub> +8H<sub>2</sub>O

Insol in H<sub>2</sub>O Sol in acids and alkalies (Harned, J Am Chem Soc 1913, 35 1082)

## Chloroctamine cobaltic carbonate, Cl<sub>4</sub>Co<sub>2</sub>(NH<sub>3</sub>)<sub>8</sub>CO<sub>3</sub>+<sup>9</sup>H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Vortmann and Blasberg, B **22** 2651) Cl<sub>2</sub>Co<sub>2</sub>(NH<sub>3</sub>)<sub>8</sub>(CO<sub>3</sub>)<sub>2</sub>+H O (Vortmann and Blasberg)

#### Chloroferrous acid

Calcium chloroferrite, CaO, CaCl<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub> Insol in H<sub>2</sub>O (le Chatelier, C R **99** 276)

## Dichlorofulminoplatinum,

Pt<sub>4</sub>N<sub>4</sub>Cl<sub>2</sub>O<sub>1</sub> H<sub>22</sub>(?)
Insol in H<sub>2</sub>O (v Meyer, J pr (2) 18
305)

Tetrachlorofulm:noplatinum
Pt<sub>4</sub>N<sub>4</sub>Cl<sub>4</sub>O<sub>12</sub>H<sub>24</sub>(?)
Insol in H.O (v Meyer)

Chlorohydroxylonitritoplatinsemidiamine nitrite, (OH)ClNO<sub>2</sub>Pt(NH<sub>3</sub>)<sub>2</sub>NO<sub>2</sub> Easily sol in hot H O (Cleve)

# Chlorohydroxyloplatin $d\imath$ amine bromide, $\underset{Cl}{OH} Pt(N_2H_5Br)$

Sl sol m H<sub>2</sub>O

— chromate,  $_{\mathrm{Cl}}^{\mathrm{OH}}\mathrm{Pt}(\mathrm{N_{2}H_{6}})\ \mathrm{CrO_{4}}$ 

Nearly insol in H<sub>2</sub>O

Ppt (Cleve)

---- mtrate (Raewsky's mitrate), OH Cl Pt(N<sub>2</sub>H<sub>6</sub>NO<sub>3</sub>)

Sl sol in cold, more easily in hot H<sub>2</sub>O (Gerhardt)

Chlorohyposulphuric acid, S<sub>2</sub>O<sub>3</sub>Cl<sub>4</sub> See Sulphur oxytetrachloride Chloromanganic acid
Se, Manganic hydrogen chloride

## Chloromercurosulphrous acid

 $\begin{array}{c} {\bf Ammonium~chloromercurosulphite,} \\ {\bf NH_4SO_3HgCl} \\ {\bf Sol~in~H_2O~~(Barth,~Z~~phys~~Ch~~9~~205~)} \end{array}$ 

Barium chloromercurosulphite, Ba(SO<sub>3</sub>HgCl)<sub>2</sub>

Insol in  $H_2O$  (Barth)

Potassium chloromercurosulphite, KSO<sub>3</sub>HgCl Sol in H<sub>2</sub>O (Barth)

Sodium chloromercurosulphite, NaSO<sub>3</sub>HgCl +H<sub>2</sub>O Very sol in H<sub>2</sub>O (Barth)

#### Chloromolybdenum bromide, Cl<sub>4</sub>Mo<sub>3</sub>Br<sub>2</sub>+3H<sub>2</sub>O

Insol in  $\rm H_2O$  and dil acids, sol in alcohol  $+6\rm H_2O$  At first easily sol in  $\rm H_2O$ , but a precipitate soon forms. Can be crystallized from dil HBr+Aq. Sol in alcohol and ether (Blomstrand.)

## Chloromolybdenum potassium bromide, Cl<sub>4</sub>Mq<sub>3</sub>Br<sub>2</sub>, 2KBr+2H<sub>2</sub>O

Decomp by  $H_2O$  Can be cryst from HBr +Aq (Blomstrand)

Chloromolybdenum chloride,  $Cl_4Mo_3Cl_2 =$  molybdenum dichloride,  $MoCl_2$ 

Insol in H<sub>2</sub>O, easily sol in HCl+Aq or H<sub>2</sub>SO<sub>4</sub>+Aq, sl sol in HNO, sol in NH<sub>4</sub>OH +Aq, NaOH+Aq, or KOH+Aq, with sep aration of precipitate on boiling, sol in alcohol and ether (Blomstrand, J pr 77 96)

Very sol in conc HCl (Rosenheim and Kohn, Z anoig 1910 66 2)

+3HO Insol in  $H_2()$ 

+4½H<sub>2</sub>O Insol in H () (In this and Kempe, A 170 351)

+6H<sub>2</sub>O Sol in H<sub>2</sub>O, ilcohol, or other (Blomstrand)

#### Chloromolybdenum hydrogen chloride, Mo<sub>3</sub>Cl<sub>6</sub>, HCl+4II ()

Sol in H<sub>2</sub>O, but ppt forms after a few minutes (Rosenheim and Kohn, Z anorg 1910, **66** 5)

## Chloromolybdenum potassium chloride, Cl<sub>4</sub>Mo<sub>3</sub>Cl<sub>2</sub>, 2KCl+2H<sub>2</sub>O

Decomp by pure  $H_2O$ , can be recrystal lized from HCl+Aq (Blomstrand, J pr 77 108)

Chloromolybdenum hydroxide, Cl<sub>4</sub>Mo<sub>8</sub>(OH<sub>2</sub>) +2H<sub>2</sub>O

Insol in  $\rm H_2O$  or alcohol Easily sol in strong acids if fresh, and washed only with cold  $\rm H_2O$ . If washed with warm  $\rm H_2O$ , it is less sol in acids. If precipitated hot, is insol in acids, even  $\rm H_2SO_4$  or furning  $\rm HNO_3$  (Blomstrand, J pr 77 100)

+8H<sub>2</sub>O

Chloromolybdenum 10dide, Cl<sub>4</sub>Mo<sub>3</sub>I<sub>2</sub>+3H<sub>2</sub>O

Precipitate

+6H<sub>2</sub>C Sol in H<sub>2</sub>O and alcohol

Chloromolybdenum potassium iodide, Cl<sub>4</sub>Mo<sub>3</sub>I<sub>2</sub>, 2KI+2H<sub>2</sub>O

Decomp by  $H_2O$  Recryst from HI+Aq (Blomstrand)

Chloromolybdenum oxybromide, Cl<sub>4</sub>Mo<sub>8</sub> Br +2H<sub>2</sub>O

Insol in alcohol (Blomstrand, J pr 77 116)

Chlcromolybdic acid, MoOCl<sub>3</sub>(OH)+7H<sub>2</sub>O

Very hydroscopic (Weinland, B 1904, 37 572)

Diammonium tetrachloromolybdate, MoCl<sub>4</sub>(ONH<sub>4</sub>)<sub>2</sub>+2H<sub>2</sub>O

Hydroscopic Decomp by  $H_2O$  Sol in dilute acids, alkali s and ammonia (Weinland, Z anorg 1905, 44 83)

Cæsium chlorotrimolybdate, acid,

Mo<sub>6</sub>O<sub>11</sub>Cl<sub>14</sub>(Cs O)+22H<sub>2</sub>O

Hydroscopic Decomp by  $H_2O$  Sol in dilute acids, alk lies, and immonia (Weinland, lc)

Monocessum trichloromolybdate, MoOCl<sub>3</sub>(OCs)+H<sub>2</sub>O

Hydroscopic Decomp by H<sub>2</sub>O Sol in dilute reids, ilkilies and immoner (Weinland)

Dicæsium tetrachloromolybdate, MoCl<sub>4</sub>(OCs),

Hydroscopic Sol in H () with decomp Sol in dilute wids, ilkilies, ind immonities (Weinland, Z. morg. 1905, 44, 83.)

Monopotassium trichloromolybdate, MoOCl<sub>3</sub>(OK)+H<sub>2</sub>O

Hydroscopic Decomp by HO Sol in dilute reids, alkalis, and ammonia (Weinland)

Dipotassium tetrachloromolybdate, M  $Cl_4(OK) +2HO$ 

Hydroscopic Decomp by  $H_2O$  Sol in dilute acids, alkalies, and ammonia (Weinland)

Potassium hydrogen chlorotrimolybdate,  $Mo_6O_{11}Cl_{14},~K_2O+6H_2O$ 

Hydroscopic Decomp by  $H_2O$  Sol in dilute acids, alkalies, and ammonia (Weinland)

Monorubidium trichloromolybdate, MoOCl<sub>3</sub>(ORb)+H<sub>2</sub>O

Hydroscopic Decomp by H<sub>2</sub>O Sol in dilute acids, alkalies, and ammonia (Weinland)

Dirubidium tetrachloromolybdate, MoCl<sub>4</sub>(ORb)<sub>2</sub>

Hydroscopic Decomp by  $H_2O$  Sol in dilute acid, alkalies, and ammonia (Weinland)

Chloronitratoplatinamine nitrite,

 $_{\mathrm{NO_{3}}}^{\mathrm{Cl}}\mathrm{Pt(NH_{3}NO_{2})}.$ 

Easily sol in H<sub>2</sub>O

Chloronitratoplatindiamine nitrate,

 $\frac{\mathrm{Cl}}{\mathrm{NO_3}}\mathrm{Pt}(\mathrm{N_2H_6NO_3})_2$ 

Decomp by  $H_2O$  with formation of  $\stackrel{\hbox{\scriptsize Cl}}{OH} Pt[(NH_3)_2NO_3)]_2$ 

----- sulphate, Cl NO<sub>3</sub>Pt(N<sub>2</sub>H<sub>6</sub>) SO<sub>4</sub>+H<sub>2</sub>O
Sl sol in cold, more easily in hot H<sub>2</sub>O

Chloronitritotetramine cobaltic chloride, Cl(NO)Co(NH<sub>3</sub>)<sub>4</sub>Cl

Not very sol in cold  $H_2\mathrm{O}$  (Jorgensen, Z anorg  $\boldsymbol{5}$  195)

Chloronitritoplatinsemidiamine chloride, Cl<sub>2</sub>(NO<sub>2</sub>)Pt(NH<sub>3</sub>)<sub>2</sub>Cl

100 pts solution in  $\rm H_2O$  sat it 18° contain 18 pts salt, sat at 100°, 6 pts

Insol in abs alcohol or ether Not decomp by cone HNO, HCl, or H<sub>2</sub>C O<sub>4</sub>+Aq, and by H<sub>2</sub>SO<sub>4</sub> only at a high heat

Formula given was  $PtN_0H_1$  ( $l_0O_5$  (Peynone, J B **1855** 421)

Chlorophosphatoplatin $d^i$ amine phos-ClPt(N  $H_0$ )<sub>2</sub>

phate, PO, +2H O

Nouly insol in cold, and only very sl sol in hot  $H_2O$  (Raewsky)

Chloronitrous acid

Iridium potassium chloronitrite, Il 2Cl<sub>2</sub>(NO)4, 6KCl

Ppt, decomp by boiling  $H_2O$  Sol in cold  $H_2O$  (Leidié, C R 1902, 134 1583)

 $Ir_3K_{12}Cl_{16}(NO_2)_8+4H_2O$  Ppt (Quennessen, C R 1905, **141** 258)

## Chloropalladic acid

### Chloropalladates

The chloropalladates are generally very sol in H<sub>2</sub>O, and sol in alcohol (v Bonsdorff, Pogg 17 264)

Ammonium chloropalladate, (NH<sub>4</sub>)<sub>2</sub>PdCl<sub>6</sub> Sl sol in H<sub>2</sub>O (Berzelius)

## Barium chloropalladate

Sol in H<sub>2</sub>O and alcohol (v Bonsdorff)

## Cadmium chloropalladate

As above

## Cæsium chloropalladate, Cs2PdCl6

Nearly insol in cold  $H_2O$  Decomp by boiling with  $H_2O$  or by hot conc  $H_2SO_4$  (Gutbier, B 1905, 38 2386)

### Calcium chloropalladate

Deliquescent, sol in  $\rm H_2O$  and alcohol (v Bonsdorff, 1829)

Glucinum chloropalladate, GlPdCl<sub>6</sub>+8H<sub>2</sub>O ic, and sol in H<sub>2</sub>O

oropalladate, MgPdCl<sub>6</sub>+

cent, sol in H2O

Nickel chloropalladate, NiPdCl<sub>8</sub>+6H<sub>2</sub>O Extremely deliquescent

## Potassium chloropalladate, K2PdCl6

Sl sol in cold H<sub>2</sub>O Decomp by long boiling with H<sub>2</sub>O Sl sol in dil HCl+Aq without decomp Insol in NH<sub>4</sub>Cl, KCl, or NaCl+Aq Insol in alcohol (Berzelius)

## Rubidium chloropalladate, $\mathrm{Rb_2PdCl_6}$

Insol in cold H<sub>2</sub>O Decomp by boiling with H<sub>2</sub>O or by hot conc H<sub>2</sub>SO<sub>4</sub> (Gutbier, B 1905, **38** 2387)

Zinc chloropalladate, ZnPdCl<sub>6</sub>+6H<sub>2</sub>O Very deliquescent (v Bonsdorff)

## Chloropalladous acid

Aluminum chloropalladite, Al<sub>2</sub>Pd<sub>2</sub>Cl<sub>10</sub>+ 20H<sub>2</sub>O

Deliquescent Sol in H<sub>2</sub>O, alcohol, or ether (Welkow, B 7 804)

Ammonium chloropalladite, (NH<sub>4</sub>)<sub>2</sub>PdCl<sub>4</sub>+ H<sub>2</sub>O

Easily sol in  $H_2O$  Insol in alcohol Sol in  $NH_4Cl+Aq$  (Claus)

Easily sol in  $H_2O$  (Gutbier, B 1905, 38 2386)

Barium chloropalladite

Easily sol in H<sub>2</sub>O or alcohol

Cadmium chloropalladite

Not deliquescent

Cæsium chloropalladite, Cs2PdCl4

Can be cryst from hot  $H_2O$  (Gutbier, B 1905, 38 2386)

### Calcium chloropalladite

Deliquescent Sol in H<sub>2</sub>O or alcohol

Glucinum chloropalladite, GlPdCl<sub>4</sub>+6H<sub>2</sub>O Very hygroscopic, very sol in H<sub>2</sub>O, alcohol, or ether (Welkow)

## Magnesium chloropalladite

Deliquescent Easily sol in  $H_2O$  (v Bonsdorff)

## Manganese chloropalladite

Sol in H<sub>2</sub>O and alcohol

## Nickel chloropalladite

Sol in H<sub>2</sub>O

Potassium chloropalladite, K<sub>2</sub>PdCl<sub>4</sub>

Much more sol in hot than cold H<sub>2</sub>O (Joannis, C R 95 295) Sol in NH<sub>4</sub>OH+Aq (Berzelius) Sol in cold sat KCl+Aq (Gibbs, Sill Am J (2) 31 70) Insol in alcohol (Wollaston) Somewhat sol in alcohol of 0 84 sp gr, but insol in absolute alcohol, decomp on boiling (Berzelius)

Rubidium chloropalladite, Rb2PdCl4

Can be cryst from hot  $H_2O$  (Gutbier, B 1905, 38 2387)

#### Sodium chloropalladite

Deliquescent Sol in H () and alcohol

#### Zinc chloropalladite

Very deliquescent Sol in H<sub>2</sub>O and alcohol (v. Bonsdorff.)

Chlorophosphoarsenioiridic acid,  $2 IrCl_3$ ,  $3 H_8 PO_3$ ,  $3 H_8 PO_4$ ,  $5 H_3 AsO_4$ (?)

Very sol in H<sub>2</sub>O (Geisenheimer)

Lead chlorophosphoarsemouridate, 4IrCl<sub>3</sub>, 3Pb<sub>2</sub>H<sub>2</sub>(PO<sub>3</sub>)<sub>2</sub>, 3Pb<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, 5Pb<sub>2</sub>H<sub>2</sub>(AsO<sub>4</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O

Chlorophosphouridic acid, 2IrCl<sub>3</sub>, 3H<sub>3</sub>PO<sub>4</sub>, 3H<sub>3</sub>PO<sub>3</sub>

Very sol in H<sub>2</sub>O Insol in alcohol (Geisenheimer, A ch (6) **23** 254)
2IrCl<sub>3</sub>, 3H<sub>3</sub>PO<sub>4</sub> Sol in H<sub>2</sub>O and alcohol

Ammonium chlorophosphoiridate, 2IrCl<sub>s</sub>, 3(NH<sub>4</sub>)<sub>3</sub>PO<sub>4</sub>, 3(NH<sub>4</sub>)<sub>2</sub>HPO<sub>3</sub>

Very deliquescent Very sol in H<sub>2</sub>O (Geisenheimer)

Lead chlorophosphorridate, 4IrCl<sub>3</sub>, 3Pb<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, 3PbH<sub>2</sub>(PO<sub>3</sub>)<sub>2</sub>

Insol in  $H_2O$  or acetic acid, very sol in dil  $HNO_3+Aq$  (Geisenheimer)

Silver chlorophosphoiridate, 2IrCl<sub>3</sub>, 3AgH<sub>2</sub>PO<sub>4</sub>, 3AgH<sub>2</sub>PO<sub>3</sub>

Insol in H<sub>2</sub>O Sol in HNO<sub>3</sub>+Aq, and NH<sub>4</sub>OH+Aq (Geisenheimer)

Chlorophosphoplatinic acid

See Chloroplatinophosphoric acid

## Chlorophosphoric acid

Thorium chlorophosphate, 3ThO<sub>2</sub>,ThCl<sub>4</sub>, 2P<sub>2</sub>O<sub>5</sub>

Insol in  $\rm H_2O$  and acids, decomp by boiling with  $\rm H_2SO_4$  and fusing with alkali carbonates (Colani, C R 1909, **149** 208)

## Chloroplatinamine chloride, $Cl_2Pt_{\mathbf{NH_3}Cl}^{\mathbf{NH_3}Cl}$

Sol in about 700 pts  $\rm H_2O$  at 0°, and 33–34 pts at  $100^\circ$  Not attacked by boiling cone  $\rm HNO_3$  or  $\rm H_2SO_4$  Sol in boiling  $\rm KOH+Aq$  with decomp Sol in  $\rm NH_4OH+Aq$  (Cleve, Sv V A H 10, 9 30)

---- nitrite, Cl<sub>2</sub>Pt(NH<sub>3</sub>NO<sub>2</sub>)
Sl sol in cold, easily in hot H<sub>2</sub>O

mitrite silver nitrite, Cl<sub>2</sub>Pt(NH<sub>3</sub>NO<sub>2</sub>)<sub>2</sub>, AgNO<sub>2</sub>

Easily sol in hot, sl sol in cold  $\mathrm{H}_2\mathrm{O}$  (Cleve)

---- nitritochloride, Cl<sub>2</sub>Pt<sub>NH<sub>3</sub>NO<sub>2</sub> Sol in H O (Cleve)</sub>

#### Chloroplatindramine bromide, Cl<sub>2</sub>Pt(N<sub>2</sub>H<sub>6</sub>B<sub>1</sub>)

SI sol in hot HO (Cleve)

---- chloride ((1105' chloride), Cl<sub>2</sub>Pt(N<sub>2</sub>H<sub>1</sub>Cl)<sub>2</sub>

Nearly msol in cold, and only sl sol in hot HO Sol in hot cone KOH+Aq, with decomp (Grimin)

Sol in cold KOH+Aq without decomp Nearly insol in NH<sub>4</sub>OH+Aq (Buckton) +H<sub>2</sub>O (Ruwsky)

chloroplatinite, Cl<sub>2</sub>Pt(N<sub>2</sub>H<sub>6</sub>Cl)<sub>2</sub>, PtCl<sub>2</sub> Sl sol in H<sub>2</sub>O (Cleve) Chloroplatin $d_{l}$ amine chromate,  $Cl_2Pt(N_2H_6)_2CrO_4$ 

Nearly insol in H<sub>2</sub>O (Cleve)

----dichromate, Cl<sub>2</sub>Pt(N<sub>2</sub>H<sub>6</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> Sl sol in cold, more sol in hot H<sub>2</sub>O (Cleve)

—— nitrate (Gros' nitrate), Cl<sub>2</sub>Pt(N<sub>2</sub>H<sub>6</sub>NO<sub>3</sub>)<sub>2</sub>

Much more easily sol in hot than in cold
H<sub>2</sub>O Sol in hot KOH+Aq with decomp
Nearly insol in conc HNO<sub>3</sub>+Aq

---- phosphate

See Chlorophosphatoplatin $d\imath$ amine phosphate

- sulphate, Cl<sub>2</sub>Pt(N<sub>2</sub>H<sub>6</sub>)<sub>2</sub>SO<sub>4</sub>

SI sol in both cold or hot  $H_2O$  (Cleve) + $xH_2O$  SI sol in cold, easily in hot  $H_2O$  (Grimm)

## Chloroplatinmonodiamine chloride,

 $ext{Cl}_2 ext{Pt}_{ ext{NH}_3 ext{Cl}}^{ ext{(NH}_3)_2 ext{Cl}}$ 

Quite easily sol in H<sub>2</sub>O (Cleve)

Chloroplatinsemidiamine carbonate chloride, 2Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, Pt<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>(CO<sub>3</sub>)

Sl sol in H<sub>2</sub>O, insol in alcohol and ether Decomp by cold HCl+Aq (Schon, Z anorg 1897, 13 37)

## Chloroplatinsemidiamine chloride, Cl<sub>3</sub>Pt(NH<sub>3</sub>)<sub>2</sub>Cl

Sol in 300 pts  $\rm H_2O$  at 0°, and 65 pts at 100° Not decomp by conc  $\rm H_2SO_4$  Sol in  $\rm kOH + Aq$  without decomp (Cleve)

## Chloroplatinic acid, H<sub>2</sub>PtCl<sub>6</sub>+6H<sub>2</sub>O

Deliquescent Sol in H O, alcohol, or ether +4H<sub>2</sub>O Deliquescent (Pigeon, C R 112 1218) PtCl<sub>4</sub>, HCl+2H O (Pigeon)

Aluminum chloroplatinate, AlCl<sub>3</sub>, PtCl<sub>4</sub>+ 15H<sub>2</sub>O Very sol 1n H<sub>2</sub>O and dechol (Welkow, B

7 304) Insol in (thei

## Ammonium chloroplatinate, (NH<sub>4</sub>)<sub>2</sub>PtCl<sub>6</sub>

SI sol in cold, more easily in hot  $H_2O$  (Fresenus)

100 pts H O dissolve 0 666 pt at ord temp and 12 5 pts at 100° (Crookes, C N 9 37) Insol m cold HCl+Aq Separates out on cooling from solution in hot HCl, HNO<sub>3</sub>, or H<sub>2</sub>SO<sub>4</sub> (Fischer)

Very sl sol in cold, easily in hot NH<sub>4</sub>OH+

Aq (Fresenius)

Cone NH<sub>4</sub>Cl+Aq ppts it almost completely from aqueous solution (Bottger) Sol in NH<sub>4</sub> succenate+Aq (Dopping)

Less sol in H<sub>2</sub>PtCl<sub>6</sub>+Aq than in H<sub>2</sub>O (Rogojski, A ch (3) 41 452)

Sol in  $SnCl_2+Aq$  (Fischer)

Very sol with decomp in KCNS+Aq (Claus)

At 15-20°, sol in 26,535 pts 97 5% alcohol, in 1476 pts 76% alcohol, and in 665 pts 55% alcohol If free HCl is present, it is sol in 672 pts 76% alcohol (Fresenius, A 59 118) Insol in absolute alcohol or ether

Barium chloroplatinate, BaPtCl<sub>6</sub>+6H<sub>2</sub>O

Permanent, sol in H<sub>2</sub>O, decomp by alcohol (v Bonsdorff, Pogg 17 250)

Barium monochloroplatinate,  $PtCl(OH)_bBa+H_2O$ 

Insol in  $H_2O$  and in org solvents (Bellucei, C C 1903, I 131)

Barium pentachloroplatinate, OH PtCl<sub>6</sub>Ba+ $H_2O$ 

(Miolati, Chem Soc 1900, 78 (2) 732)

Cadmium chloroplatinate, CdPtCl<sub>6</sub>+6H O

Deliquescent, and casaly sol in HO (SBonsdorff)

Cæsium chloroplatinate, Cs PtCl.

100 pts H O dissolve it

0° 30° 10° 20° 0.0240.050 0.0790 110 pts Cs2PtCl6, 60° 70° 50° 40° 0 142 0 177 0.213 0 251 pts Cs PtCl<sub>6</sub>,

80° 90° 100° 0 291 0 332 0 377

(Bunsen, Pogg 113 337)

pts Cs PtCl

Sol m 1308 pts H () at 15°, and 261 pts at 100° (Crookes, C N 9 205)

Calcium chloroplatinate, CiPtCli+8H ()

Deliquescent, easily sol in H O  $\,$  (v Bonsdorff)

Calcium monochloroplatinate, PtCl(OII) Ci

Insol in H () and in org solvents (Belluco, C ( 1903, I 131 )

Cerium chloroplatinate, CcCl., PtCl<sub>1</sub>+13H O

Deliquescent, very sol in H O or alcohol, insol in ether V

4CeCl<sub>3</sub>, 3PtCl<sub>4</sub>+5rt O Deliquescent, casily sol in H O or alcohol, insol in ether (Holzmann, J pr 84 80)

Deliquescent (Nilson, B 9 1056)

 $+10 H_2 \rm O$  Very sol in  $\rm H_2 \rm O$  and alcohol Nearly insol in acctone (Higley, J Am Chem Soc 1904, 26 617)

Cobalt chloroplatmate, CoPtCl<sub>6</sub>+6H<sub>2</sub>O Very deliquescent (Jörgensen)

Copper chloroplatmate, CuPtCl<sub>6</sub>+6H<sub>2</sub>O
Deliquescent in moist aii (v Bonsdorff)

Didymium chloroplatinate, DiCl<sub>3</sub>, PtCl<sub>4</sub>+ 13H<sub>2</sub>O

Less deliquescent than the cerium salt (Mangnac)  $+10\frac{1}{2}H_2O$  Deliquescent (Cleve, Bull Soc (2) 43 361)

Erbium chloroplatmate, ErCl., PtCl<sub>4</sub>+ 11H<sub>2</sub>O

Very deliquescent (Clevc)

Gadolinium chloroplatinate, GdCl<sub>3</sub>, PtCl<sub>4</sub>+ 10H<sub>2</sub>O

Ppt (Benedicko, Z anoig 1900, 22 204)

Glucinum chloroplatinate, GlPtCl<sub>6</sub>+8H<sub>2</sub>O

Deliquescent in moist an Very sol in H<sub>2</sub>O, moderately in alcohol Insol in ether (Welkow, B 6 1288)

Indium chloroplatinate, 2InCl., 5PtCl<sub>4</sub>+ 36H O

Deliquescent (Nilson)

Iron (ferrous) chloroplatmate, l  $cPtCl_6+6H_2O$ 

Deliquescent (Topsoc)

Iron (ferric) chloroplatinate, Fe(1, Pt(1, 101/2H )

Deliquescent (Nilson)

Lanthanum chloroplatinate, l i(l, PtCl<sub>4 l</sub> 13H ()

Deliquescent, extremely sol in H () (Cleve)

Lead chloroplatinate, PhPt( | 1311 ()

Easily sol in H<sub>2</sub>O and deohol (Topsoci with decomp (Brinbium, Zeit Ch. 1867 520)

| Lead monochloroplatinate, | P(ChOH) | Ph

Ppt (Bellucci, Chem Soc 1902, **82**, 11 155)

Lead pentuchloroplatinate, basic, PtCl (()H)Ph, Ph(()H)

(Mioliti, Chem. Sec. 1900, 78 (2) 752)

Lithium chloroplatinate, I 1 Pt( lo + 611 ()

Extremely deliquescent (Jorgensen), efflorescent - Easily sol in H.O., dechol, or ether-dechol, insol in other (Scheibler)

Lithium pentachloroplatinate, OH Pt( l<sub>6</sub>I i Very hydroscopic (Mioliti, Chem Soi 1900, 78 (2) 732) Magnesium chloroplatinate, MgPtCls+6HO Sol in H<sub>2</sub>O and abs alcohol +12H<sub>2</sub>O Sol m H<sub>2</sub>O

Manganese chloroplatinate, MnPtCl<sub>6</sub>+6H<sub>2</sub>O Not deliquescent, sol in H<sub>2</sub>O +12H<sub>2</sub>O Sl efflorescent

Nickel chloroplatinate, NiPtCl<sub>6</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O

Potassium chloroplatinate, K2PtCl6 100 pts H<sub>2</sub>O dissolve at 10° 40° 20° 30° 50° 074 090 112 141 176 217 pts K2PtCl6, 60° 70° 90° 80° 100° 264 3 19 3 79 4 45 5 18 pts K<sub>2</sub>PtCl<sub>6</sub> (Bunsen, Pogg 113 337)

100 pts H<sub>2</sub>O dissolve 0 926 pt at 15°, and 5 26 pts at 100° (Crookes, C N 9 205)

100 g H<sub>2</sub>O dissolve at 35° 16° 25° 0 4812 0 6718 0 8641 1 132 1 745 g K<sub>2</sub>PtCl<sub>5</sub>,

59° 68° 78° 92° 2 396 2 913 3 589 4 484 g K<sub>2</sub>PtCl<sub>6</sub> (Archibald, J Am Chem Soc 1908, 30 752)

Not attacked by cold conc H<sub>2</sub>SO<sub>4</sub> (Las-

Sl sol in cold, more easily in hot dil acids Less sol in KCl+Aq than in H2O, and nearly insol in sat KCl+Aq (Schrotter, W A B **50, 2** 268)

## Solubility in KCl+Ag at 20°

| G mol KCl per l of KCl+Aq                                            | G K <sub>2</sub> PtCl <sub>6</sub> in 100 g<br>of solution                             |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| 0 00<br>0 20<br>0 25<br>0 50<br>1 00<br>2 00<br>3 00<br>4 00<br>s tt | 0 7742<br>0 0236<br>0 0207<br>0 0109<br>0 0046<br>0 0045<br>0 0043<br>0 0042<br>0 0034 |  |

(Archibald, J Am Chem Soc 1908, 30 757)

Solubility in NaCl+Aq at 16°

| ( mol NaCl per litre | G K PtCl <sub>b</sub> in 100 g |
|----------------------|--------------------------------|
| of NaCl+Aq           | of solution                    |
| 0 00                 | 0 672                          |
| 0 05                 | 0 700                          |
| 0 10                 | 0 729                          |
| 0 25                 | 0 758                          |
| 0 50                 | 0 775                          |
| 0 75                 | 0 791                          |
| 1 00                 | 0 805                          |
| 2 00                 | 0 834                          |

Sol in KOH+Aq Insol in cold or hot alkalı carbonates or bicarbonates + 1q (Rem Easily sol in warm \a25:01+11 Humly

Sol m NH<sub>2</sub>Cl+Aq (Brett Sol m NH<sub>3</sub>succenste+Aq (Dopping At 15-20°, sol m 12,083 pts absolute al cohol, in 3775 pts 76°; absolute alcohol, and m 1053 pts 55° absolute alcohol

Sol in 1835 pts 76% alcohol containing HCl at 15-20° (Fresenius)

Nearly absolutely insol in dechol containing ether

Sol in 42,600 pts absolute alrohol Precht Z anal 18 509)

11 methyl alcohol dissolves 0 072 g at 20 (Peligot, Monit Sci 1892, (4) 6 I 373)

## Solubility in methyl alcohol + 1q at 20

| % alcohol by wt                                              | C K PtCk it likt g o                                                                                                 |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 0<br>5<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | 0 7742<br>0 5350<br>0 4120<br>0 2642<br>0 1831<br>0 1165<br>0 0625<br>0 0325<br>0 0182<br>0 0124<br>0 0038<br>0 0027 |
| 100                                                          | 1 0 0021                                                                                                             |

(Archibald, J Am Chem Soc 1908 30 755 )

Solubility in ethyl alcohol—Aq = 20

| alcohol by w                    | GKIC                                                               |  |
|---------------------------------|--------------------------------------------------------------------|--|
| 0<br>10<br>20<br>30<br>40<br>50 | 0 7742<br>0 4910<br>0 3720<br>0 2180<br>0 1540<br>0 0756<br>0 0491 |  |
| 50<br>70<br>80<br>90<br>100     | 0 6265<br>0 0128<br>0 0088<br>0 0025<br>0 0009                     |  |

(Archibald, J Am Chem Soc 1968 30 75)

Solubility in isobutyl alconol - Ac at 20

h alcohe! 07742 0 ti250 8 20 U 5171 sat

(Archibald, J Am Chem Soc 1908, 30 757) (Archibald, J Am Chem Soc 1908 30 755

Potassium pentachlorohydroplatinate, K<sub>2</sub>(PtCl<sub>5</sub>OH)

Easily sol in  $H_2O$  (Ruff, B 1913 46 925)

Praseodymum chloroplatınate,  $PrCl_3$ ,  $PtCl_4$ +12 $H_2O$ 

Very sol in H<sub>2</sub>O Sol in conc HCl (vor Scheele, Z anorg 1898, **18** 353)

Rubidium chloroplatinate, Rb<sub>2</sub>PtCl<sub>6</sub>

| 100 pts | H <sub>2</sub> O dissolve a | at             |                                     |
|---------|-----------------------------|----------------|-------------------------------------|
| 0°      | 10°                         | 20°            |                                     |
| 0 184   | 0 154                       | 0 141 pts      | Rb <sub>2</sub> PtCl <sub>6</sub> , |
| 30°     | 40°                         | 50°            |                                     |
| 0 145   | 0 166                       | 0 203 pts      | Rb <sub>2</sub> PtCl <sub>6</sub> , |
| 60°     | 70°                         | 80°            |                                     |
| 0 253   | 0 329                       | 0 417 pts      | Rb₁PtCl₀,                           |
| 90°     | 100°                        |                |                                     |
| 0 521   | 0 634                       | pts            | $Rb_2PtCl_6$                        |
|         | (Bunsen, Pogg               | <b>113</b> 337 | )                                   |
|         |                             |                |                                     |

Sol m 740 pts  $H_2O$  at 15°, and 157 pts at 100° (Crookes, C N 9 205) Insol m alcohol

Samarium chloroplatinate, SmCl<sub>3</sub>, PtCl<sub>4</sub>+ 10½H<sub>2</sub>O

Deliquescent Very sol in H<sub>2</sub>O (Cleve, Bull Soc (2) **43** 165)

Silver chloroplatinate, Ag<sub>2</sub>PtCl<sub>6</sub>

Ppt Gradually decomp by H<sub>2</sub>O into AgCl and PtCl<sub>4</sub> (Jorgensen, J pr (2) **16** 345) Ag PtCl<sub>4</sub>(OH)<sub>2</sub> Ppt

Silver monochloroplatmate,  $[PtCl(OH)_5]Ag_2$ Ppt (Bellucci, Chem Soc 1902, 82 (2) 155)

Silver pentachloroplatmate, (OH)PtCl<sub>2</sub>Ag<sub>2</sub> Ppt, stable in boiling H<sub>2</sub>O (Miolati, Chem Soc 1900, **78** (2) 732)

Silver chloroplatinate ammonia,  $Ag_2PtCl_6$ ,  $2NH_8$ 

Insol in H<sub>2</sub>O\* (Birnbaum)

Sodium chloroplatinate, Na<sub>2</sub>PtCl<sub>6</sub>+6H<sub>2</sub>O

Easily sol in H<sub>2</sub>O Sat solution at 15° contains 39 77 g Na<sub>2</sub>PtCl<sub>5</sub> and has sp gr of 1368 Sol in NaCl+Aq More sol in absolute alcohol than in 95% alcohol Sat solution in abs alcohol contains 11 90%, 95% alcohol, 634% Mixture of equal parts of alcohol and ether dissolve 243% Insol in ether (Precht, Z anal 18 502)

Sodium pentachloroplatinate, (OH)PtCl<sub>5</sub>Na<sub>2</sub> Exists only in solution (Miolati, l c)

Strontum chloroplatmate, SrPtCl<sub>6</sub>+8H<sub>2</sub>O Very sol in H<sub>2</sub>O Strontium monochloroplatinate,  $PtCl(OH)_{\delta}Sl + H_2O$ 

Insol in  $H_2O$  and org solvents (Bellucci, C C 1903, I 131)

Thallium chloroplatinate, Tl<sub>2</sub>PtCl<sub>6</sub>

Very sl sol in  $\rm H_2O$  Sol in 15,585 pts  $\rm H_2O$  at 15°, and 1948 pts at 100° (Crookes)

Thallum monochloroplatinate, [PtCl(OH)<sub>5</sub>]Tl
Ppt (Bellucci, Chem Soc 1902, **82** (2) 155)

Thallium pentachloroplatinate, (OH)PtCl<sub>5</sub>Tl<sub>2</sub> (Miolati, Chem Soc 1900, 78 (2) 732)

Thorsum chloroplatinate, ThCl<sub>4</sub>, PtCl<sub>4</sub>+ 12H<sub>2</sub>O

Very deliquescent (Cleve, Bull Soc (2) 21 118)

Tin (stannic) chloroplatinate, SnCl<sub>4</sub>, PtCl<sub>4</sub>+ 12H<sub>2</sub>O (Nilson B 9 1142)

Ytterbium chloroplatinate, 2YbCl<sub>3</sub>, PtCl<sub>4</sub>+
22H<sub>2</sub>O, and +35H<sub>2</sub>O

Ppt (Cleve, Z anorg 1902, 32 137)

Vanadyl chloroplatinate, (VO)PtCl<sub>4</sub>+
10½H<sub>2</sub>O

Sol in  $\rm H_2O$ , cryst from  $\rm PtCl_4 + Aq$  (Brauner, M  $\bf 3$  58)

Yttrum chloroplatinate, 4YCl<sub>3</sub>, 5PtCl<sub>4</sub>+52H<sub>2</sub>O

Very deliquescent (Cleve) 2YCl<sub>3</sub>, 3PtCl<sub>4</sub>+30H<sub>2</sub>O (Nilson, B **9** 1059)

2YCl<sub>3</sub>, PtCl<sub>4</sub>+21H<sub>2</sub>O (N<sub>1</sub>lson)

Zinc chloroplatinate, ZnPtCl<sub>6</sub>+6H<sub>2</sub>O Deliquescent, sol in H<sub>2</sub>O and alcohol

Zinc tetrachloroplatinate, ZnPt(OH) Cl<sub>4</sub>+

Extremely sol in H<sub>2</sub>O and alcohol (M10-lati, Z anorg 1900, 22 458)

Zirconyl chloroplatinate, (ZrO) $PtCl_6+12H_2O$  (Nilson)

Chloroplatinoanhydropyrophosphoric acid, ClPtP O<sub>6</sub>H<sub>4</sub>=ClPt \bigcolon PO(OH)<sub>2</sub>

Not deliquescent Sol in H<sub>2</sub>O (Schutzen berger, Bull Soc (2) **18** 154)

Chloroplatinocyanhydric acid, H<sub>2</sub>Pt(CN)<sub>4</sub>Cl<sub>2</sub>

See Perchloroplatinocyanhydric acid

Potassium chloroplatinocyanide, 5K<sub>2</sub>Pt(CN)<sub>4</sub>, K<sub>2</sub>Pt(CN)<sub>4</sub>Cl<sub>2</sub>+21H<sub>2</sub>O Sol in H<sub>2</sub>O, insol in alcohol

Silver chloroplatinocyanide, Ag<sub>2</sub>(PtCl<sub>2</sub>(CN)<sub>4</sub>)<sub>2</sub>

Pot (Mioleti C C 1901 I 5

Ppt (Miolati, C C 1901, I 500)

## Chloroplatinophosphoric acid, Cl<sub>2</sub>PtP(OH)<sub>3</sub>

Very deliquescent, and sol in  $\rm H_2O$  (Schutzenberger, Bull Soc (2) 17 493)

Lead chloroplatinophosphate, Pb<sub>3</sub>(Cl<sub>2</sub>PtPO<sub>3</sub>)<sub>2</sub> +8H<sub>2</sub>O

Ppt Pb<sub>3</sub>(Cl<sub>2</sub>PtPO<sub>3</sub>)<sub>2</sub>, 2PbO+4H<sub>2</sub>O Ppt (Schutzenberger, Bull Soc (2) **17** 494)

Silver chloroplatinophosphate, Ag<sub>2</sub>HPO<sub>3</sub>, PtCl<sub>2</sub>

Ppt (Schutzenberger, Bull Soc (2) 17 494)

Chloroplatino diphosphoric acid, PtCl<sub>2</sub>, P<sub>2</sub>(OH)<sub>6</sub>

Very deliquescent, and easily sol in  $\rm H_2O$  (Schutzenberger, Bull Soc (2) 18 153)

Chloroplatinopyrophosphoric acid, /P(OH)<sub>2</sub>

ClPt P(OH), P(OH),

Less deliquescent than  ${\it chloroplatimodiphos-phoric}$  acid

## Chloroplatinous acid, H<sub>2</sub>PtCl<sub>4</sub>

Known only in solution

Aluminum chloroplatinite, AlPtCl<sub>5</sub>+10½H<sub>2</sub>O Very deliquescent, sol in H<sub>2</sub>O (Nilson, J pr (2) 15 260)

Ammonium chloroplatinite, (NH<sub>4</sub>)<sub>2</sub>PtCl<sub>4</sub>
Sl sol in cold, easily in hot H<sub>2</sub>O Insol in alcohol (Peyrone, A 55 206)

Barium chloroplatinite, BaPtCl<sub>4</sub>+3H<sub>2</sub>O

Not deliquescent, sol in  $H_2O$  Very sl sol in  $93\frac{e}{O}$  alcohol

Cadmium chloroplatinite ammonia,  $\mathrm{CdPtCl}_{4}, \\ 4\mathrm{NH}_{3}$ 

Insol in II O or NII<sub>4</sub>OH+Aq Sol in HCl+Aq (1 homson, B **2** 668)

Cæsium chloroplatinite, Cb2PtCl4

SI sol in cold, casily in hot H<sub>2</sub>O

100 pts H<sub>2</sub>O dissolve 3 4 pts salt at 20°
" 673 " " 40°
" 868 " " 60°
" 10 92 " " 80°
" 12 10 " " 100°
(Godeffroy, A 181 176)

Cs<sub>2</sub>PtCl<sub>5</sub> Ppt Very sensitive to sunlight Decomp by H<sub>2</sub>O into the higher and lower chlorides (Wohler, B 1909, **42** 4104)

Calcium chloroplatinite, CaPtCl<sub>4</sub>+8H<sub>2</sub>O Deliquescent, sol in H<sub>2</sub>O

Cerum chloroplatınıte,  $CeCl_3$ ,  $2PtCl_2+10\frac{1}{2}H_2O$ 

Deliquescent, easily sol in  $H_2O$  (Nilson, B 9 1847)

Chromium chloroplatimite, Cr<sub>2</sub>Pt<sub>3</sub>Cl<sub>12</sub>+ 18H<sub>2</sub>O Deliquescent

Cobalt chloroplatimite, CoPtCl<sub>4</sub>+6H<sub>2</sub>O Sl deliquescent in moist, efflorescent in dry

ar

Copper chloroplatinite, CuPtCl<sub>4</sub>+6H<sub>2</sub>O Extremely deliquescent (Topsoe)

Copper chloroplatinite ammonia (cuprammonium chloroplatinite), Cu(NH<sub>3</sub>)<sub>4</sub>PtCl<sub>4</sub>

Insol in H<sub>2</sub>O or NH<sub>4</sub>OH+Aq, easily sol in H<sub>2</sub>SO<sub>4</sub>+Aq (Millon and Commaille, C R **57** 822)

Didymium chloroplatinite, DiCl<sub>3</sub>, 2PtCl<sub>2</sub>+ 10H<sub>2</sub>O

Deliquescent, very sol in  $H_2O$  (Nilson)  $2D_1Cl_3$ ,  $3P_1Cl_2+18H_2O$  As above (Nilson)

Erbium chloroplatinite, Ei PtCl<sub>5</sub>+13½H<sub>2</sub>O

Deliquescent

 $\mathrm{Fr_2Pt_3Cl_{12}}{+24\mathrm{H}_2\mathrm{O}}$  Deliquescent in moist air

Glucinum chloroplatinite, GlPtCl<sub>4</sub>+5H<sub>2</sub>O

Deliquescent in moist air Sol in H<sub>2</sub>O in all proportions

Iron (ferrous) chloroplatınıte,  $\text{FePtCl}_4+7 \text{H}_2 \text{O}$ 

Deliquescent R then sl sol in cold, very sol in hot  $H_2O$  (Nilson)

Lanthanum chloroplatinite, I i Pt<sub>3</sub>Cl<sub>12</sub>+18, and 27H<sub>2</sub>O Deliquescent

Lead chloroplatimite, PbPtCl<sub>4</sub>
Insol in cold H<sub>2</sub>O

Lithium chloroplatimite, Li<sub>2</sub>PtCl<sub>4</sub>+6H O Sol in H O

Magnesium chloroplatinite, MgPtCl<sub>4</sub>+6H<sub>2</sub>O Not very deliquescent, very sol in H<sub>2</sub>O Manganese chloroplatimite, MnPtCl<sub>4</sub>+6H<sub>2</sub>O As the Mg salt

 $\begin{array}{c} \textbf{Mercurous chloroplatinite} \\ \textbf{Ppt} \end{array}$ 

Nickel chloroplatinite, NiPtCl<sub>4</sub>+6H<sub>2</sub>O As the Co salt

Potassium chloroplatinite, K<sub>2</sub>PtCl<sub>4</sub>
Moderately sol in H<sub>2</sub>O, insol in alcohol

Rubidium chloroplatinite, Rb<sub>2</sub>PtCl<sub>4</sub> Sl sol in cold, easily in hot H<sub>2</sub>O

Silver chloroplatinite, Ag<sub>2</sub>PtCl<sub>4</sub>
Insol in H<sub>2</sub>O NH<sub>4</sub>OH+Aq dissolves out
AgCl (Lang)
AgCl, PtCl<sub>2</sub>(?) As above (Commaille,
Bull Soc (2) 6 262)

Silver chloroplatinite ammonia, Ag<sub>2</sub>PtCl<sub>4</sub>, 4NH<sub>8</sub> (Thomsen)

Sodium chloroplatinite, Na<sub>2</sub>PtCl<sub>4</sub>+4H<sub>2</sub>O Deliquescent, very sol in H<sub>2</sub>O

Strontrum chloroplatimite, SrPtCl<sub>4</sub>+6H<sub>2</sub>O y sol in H<sub>2</sub>O

sol even in boiling H<sub>2</sub>O

. chloroplatinite,  ${\rm Th_2Pt_3Cl_{14}+24H_2O}$  very deliquescent

Yttrum chloroplatimite, Y<sub>2</sub>Pt<sub>3</sub>Cl<sub>12</sub>+24H<sub>2</sub>O Deliquescent

Zinc chloroplatinite, ZnPtCl<sub>4</sub>+6H<sub>2</sub>O Sl sol in cold, more easily in hot H<sub>2</sub>O, insol in alcohol

Zinc chloroplatinite ammonia,  $ZnPtCl_4$ ,  $4NH_3$ 

Sl sol in  $\rm H_2O$ , easily sol in  $\rm HCl+Aq$  Insol in alcohol (Thomsen, J B 1868 278)

Zirconyl chloroplatinite, (ZrO)PtCl<sub>4</sub>+8H<sub>2</sub>O (Nilson)

Trachloroplatinous acid, H<sub>2</sub>Pt(OH)Cl<sub>3</sub>
Sol in H<sub>2</sub>O (Miolati, Z anorg 1902, 33
265)

 $+H_2O$  (Nılson, J pr (2) 15 260)

Lead trichloroplatinite, PbPt(OH)Cl<sub>3</sub>
Ppt (Miolati)

Silver trichloroplatinite, Ag<sub>2</sub>Pt(OH)Cl<sub>3</sub> Ppt (Miolati) Chloroplatosulphurous acid

Ammonium chloroplatosulphite, acid, NH<sub>4</sub>PtClSO<sub>3</sub>, H<sub>2</sub>SO<sub>3</sub>+4H<sub>2</sub>O Sol in H<sub>2</sub>O (Birnbaum, A **152** 149)

Ammonium chloroplatosulphite chloride sul phite, NH<sub>4</sub>PtClSO<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>2</sub>, NH<sub>4</sub>Cl Very deliquescent (Birnbaum)

Ammonium chloroplatosulphite sulphite, NH<sub>4</sub>ClPtSO<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>+3H<sub>2</sub>O Sol in H<sub>2</sub>O (Birnbaum)

Barrum chloroplatosulphite chloride am monium chloride, Ba(ClPtSO<sub>3</sub>)<sub>2</sub>, Ba(PtClSO<sub>3</sub>)Cl, 6NH<sub>4</sub>Cl+3H<sub>2</sub>O Sol in H<sub>2</sub>O (Birnbaum)

Potassium chloroplatosulphite ammonium chloride, KPtClSO<sub>3</sub>, 2NH<sub>4</sub>Cl

Very deliquescent (Birnbaum, A 152 142)

Potassium chloroplatosulphite chloride, KPtClSO<sub>3</sub>, 2KCl

Deliquescent, sol in H<sub>2</sub>O (Birnbaum, A **152** 145)

Potassium chloroplatosulphite ammonium potassium sulphite, KPtClSO<sub>3</sub>, (NH<sub>4</sub>)KSO<sub>3</sub>+3H<sub>2</sub>O

Very deliquescent (Birnbaum, A 159 120)

Sodium chloroplatosulphite ammonium chloride, NaPtClSO<sub>3</sub>, 2NH<sub>4</sub>Cl Very deliquescent (Birnbaum, A **159** 117)

Chloroplumbic acid, H2PbCl6

Decomp in solution on standing (Gut bier, J pi 1914, (2) 90 497)

Ammonium chloroplumbate,  $(NH_4)_2PbCl_6$ 

Ppt Difficultly sol in  $\iota$  small amount o  $H_2O$  Solution decomp slowly when cold more rapidly when warmed

Decomp by a large amount of H<sub>2</sub>O Sol without decomp in 20% HCl Decomp b dil acids and alkalis (Elbs, Z Elektrochem 1903, 9 778)

Difficultly sol in small amount of H<sub>2</sub>O and solution decomp slowly in the cold, mor rapidly when warmed Decomp by a larg amount of H<sub>2</sub>O (Gutbier, J pr 1914, (2 90 498)

Sol in cold HNO<sub>3</sub> without decomp (Friedrich, M 1893, 14 511)

Insol in conc NH<sub>4</sub>Cl+Aq (Nikoljukin B 18 370 R)

5NH<sub>4</sub>Cl, 2PbCl<sub>4</sub> Not hygroscopic Dε comp by H<sub>2</sub>O with pptn of PbO<sub>2</sub> Sol 1 HCl+Aq and in cold HNO<sub>3</sub>+Aq withou

decomp (Classen and Zahorski, Z anorg 4 100)

Composition is 2NH<sub>4</sub>Cl, PbCl<sub>4</sub> (Friedrich, W A B **102**, **2b** 527)

## Cæsium chloroplumbate, Cs<sub>2</sub>PbCl<sub>6</sub>

Nearly absolutely insol in cone CsCl+Aq in presence of Cl (Wells, Z anorg 4 335)

1 ccm cone HCl+Aq containing PbCl<sub>4</sub> dissolves 0 000049 g Cs<sub>2</sub>PbCl<sub>5</sub> (Wells, Z anorg 4 341)

Reacts with H<sub>2</sub>O as the corresponding ammonium salt (Gutbier, J pr 1914, (2) 90 500)

## Potassium chloroplumbate, K2PbCl6

Decomp by  $\rm H_2O$ , sol in KCl+Aq (Wells, Z anorg 4 335) Readily decomp in the air (Gutbier, J pr 1914, (2) 90 499)

## Rubidium chloroplumbate, Rb<sub>2</sub>PbCl<sub>6</sub>

Decomp by H<sub>2</sub>O, sl sol in cone RbCl+ Aq (Wells, Z anorg 4 335)

1 ccm conc HCl+Aq containing PbCl<sub>4</sub> dissolves 0 003 g Rb<sub>2</sub>PbCl<sub>5</sub> (Wells, Z anorg 4 341)

Reacts with H<sub>2</sub>O as the corresponding ammonium salt (Gutbier, J pr 1914, (2) **90** 499)

Decomp by cone H<sub>2</sub>SO<sub>4</sub> Insol in 96% alcohol (Erdmann, A 1896, **294** 76)

## Chloropurpureochromium bromide, CrCl(NH<sub>3</sub>)<sub>5</sub>Br<sub>2</sub>

Somewhat more easily sol in  $H_2O$  than the chloride (Jorgensen, J pr (2) 20 105)

## --- chloride, CrCl(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>

Difficultly sol in cold, and decomp by hot  $\mathrm{H}_2\mathrm{O}$ 

1 pt dissolves in 154 pts H<sub>2</sub>O at 16° Insol in cone HCl+Aq More sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq than in H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq without decomp (Jorgensen, J pr (2) 20 105)

---- mercuric chloride,  $C_1Cl(NH_3)_5Cl$ ,  $3HgCl_2$ 

Very difficultly sol in H<sub>2</sub>O (Jorgensen)

## ---- chromate, CrCl(NH<sub>3</sub>)<sub>5</sub>(CrO<sub>4</sub>)

Sl sol in  $H_2O$ , sl more sol than chloropurpureocobalt chromate (Jorgensen)

## --- dithionate, CrCl(NH<sub>3</sub>)<sub>5</sub>(S<sub>2</sub>O<sub>6</sub>)

Very sl sol in cold, but much more easily in hot  $H_2O$  (Jorgensen)

Chloropurpureochromium ferrocyanide, [CrCl(NH<sub>3</sub>)<sub>5</sub>]<sub>2</sub>Fe(CN)<sub>6</sub>+4H<sub>2</sub>O

Very difficultly sol in cold  $H_2O$  (Jorgensen)

--- fluosilicate, CrCl(NH<sub>3</sub>)<sub>5</sub>(SiF<sub>6</sub>)

Very difficultly sol in  $H_2O$  Insol in  $H_2SiF_6+Aq$  (Jorgensen, J pr (2) 20 105)

mercuric iodide, CrCl(NH<sub>3</sub>)<sub>5</sub>I<sub>2</sub>, 2HgI<sub>2</sub>
Decomp by H<sub>2</sub>O, sol in alcohol and warm

KCN+Aq CrCl(NH<sub>3</sub>)<sub>5</sub>I<sub>2</sub>, HgI<sub>2</sub> Very difficultly sol m cold H<sub>2</sub>O, easily sol in KCN+Aq (Jorgensen, lc)

---- nitrate, CrCl(NH<sub>3</sub>)<sub>5</sub>(NO<sub>3</sub>)<sub>2</sub>

Sol m 71 pts H<sub>2</sub>O at 175° Insol m HNO<sub>3</sub>+Aq (Jørgensen)

--- oxalate, CrCl(NH<sub>3</sub>)<sub>5</sub>C<sub>2</sub>O<sub>4</sub>

Very sl sol in cold H<sub>2</sub>O (Jorgensen, lc)

sulphate, acid,  $[CrCl(NH_2)_5]_4SO_4(HSO_4)_6$ Quite sol in  $H_2O$  (Jorgensen, J pr (2) 20 185)

---- pentasulphide, CrCl(NH<sub>3</sub>)<sub>5</sub>S<sub>5</sub>

Very sl sol in cold, easily sol in warm  $H_2O$  Decomp by dil HCl+Aq Insol in alcohol (Jorgensen)

### Chloropurpureocobaltic bromide, CoCl(NH<sub>3</sub>)<sub>5</sub>Br<sub>2</sub>

Properties resemble the chloride very closely Sol in 214 pts  $\rm H_2O$  at 143° (Jorgensen, J pr (2) 18 205)

— bromoplatinate, CoCl(NH<sub>d</sub>)<sub>5</sub>Br<sub>2</sub>, PtBr<sub>4</sub> Very sl sol in H<sub>2</sub>O (J)

--- carbonate, CoCl(NH<sub>3</sub>)<sub>5</sub>CO<sub>3</sub>+4½H<sub>2</sub>O

Ffflorescent, very easily sol in H O (J)

---- chloride, CoCl(NH3)5Cl2

Very sl sol in cold, more easily in hot  $\rm H_2O$  Sol in 244 pts  $\rm H_2O$  at 15 5° (Claudet, Phil Mag J (4) 2 253) In 287 pts  $\rm H_2O$  at 10 2° and 255 pts at 11 5° (Rose, Pogg 20 152) 100 pts  $\rm H_2O$  dissolve 0 232 pt CoCl<sub>3</sub>, 5NH<sub>3</sub>, at 0°, and 1 031 pts at 46 6° (Kurnakoff, J Russ Soc 24 629)

Sl decomp by cold, completely by boiling H<sub>2</sub>O, decomp prevented by a little HCl Pptd from aqueous solution by alcohol, HCl,

or sat KCl or NaCl+Aq, not decomp by boiling HCl+Aq (Claudet, lc) Nearly insol in cold, but sol in hot H<sub>2</sub>O, to which a few drops of HCl have been added Less sol in dil HCl+Aq than luteocobaltic chloride (Rogojski, A ch (3) 41 447)

Insol in alcohol (Gibbs and Genth)

Chloropurpureocobaltic antimony chloride, 2CoCl(NH<sub>8</sub>)<sub>5</sub>Cl<sub>2</sub>, SbCl<sub>3</sub>

Ppt Decomp by H<sub>2</sub>O (Gibbs)

## --- bismuth chloride

Insol in conc HCl Easily decomp by  $H_2O$  (G1bbs)

- mercuric chloride, CoCl(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>, 3HgCl<sub>2</sub>

Insol in cold, less sol in hot H<sub>2</sub>O than chloropurpureocobaltic chloride Insol cold fuming HCl+Aq, sl sol in hot HCl+ Aq, separating on cooling, sl sol in hot aqua regia, moderately sol in hot HNO3+Aq, partly sol in cold cone H<sub>2</sub>SO<sub>4</sub>, wholly on warming Easily sol in warm H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq Insol in HgCl2+Aq

Moderately sol in NH4OH+Aq or

(NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Carstanjen) CoCl(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>, 2HgCl<sub>2</sub> Sl sol in cold, but much more easily in hot HO (Gibbs, Proc Am Acad 10 33)

- ---- chlcropalladite, CoCl(NH<sub>3</sub>)<sub>5</sub>Cl, PdCl<sub>2</sub> SI sol in cold, moderately sol in hot H<sub>2</sub>O (Carstanjen)
- --- chloroplatinate, CoCl(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>, PtCl<sub>4</sub> Nearly insol in cold Very sl sol in hot HO (Gibbs and Genth, Sill Am J (2) 23 319)
- ---- chromate, Co( l(NH<sub>3</sub>)<sub>5</sub>Cr()<sub>1</sub> Very sl sol in HO (J)
- ---- dichromate, CoCl(NH<sub>3</sub>),Ci O Much more easily sol in HO than the neutral salt (1)
- dithionate, Co( l( \II3) \ Oc Very sl sol in cold, more casily in hot  $\Pi_2O$  (J)
- --- manganic fluoride

Ppt SI sol m dil HF+Aq (Christens(n, J pr (2) 35 161)

- ---- fluosilicate, (o(l(NH<sub>3</sub>)<sub>6</sub>Sil<sub>6</sub> Very sl sol in  $HF + \Lambda q$
- --- iodide, (o(l(NII<sub>3</sub>)<sub>5</sub>I

Much more sol in H<sub>2</sub>O than bromide or chloride Sol in 545 pts II O at 156°, and 50 pts at 19 3° (J)

10dide. Chloropurpureocobaltic mercuric CoCl(NH<sub>3</sub>)<sub>5</sub>I<sub>2</sub>, 2HgI<sub>2</sub>

Sl sol in H<sub>2</sub>O (J)

CoCl(NH<sub>3</sub>)<sub>5</sub>l<sub>2</sub>, HgI<sub>2</sub> Very sl sol in cold  $H_2O$  (J)

— nitrate,  $CoCl(NH_3)_5(NO_3)_2$ 

Sol in 80 pts H<sub>2</sub>O at 15° Rather easily sol in hot  $H_2O$  (Joigensen J pr (2) 18 209)

— oxalate,  $CoCl(NH_3)_5C_2O_4$ 

Sl sol in H<sub>2</sub>O (J)

- pyrophosphate, CoCl(NH<sub>3</sub>)<sub>5</sub>(H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>)SI and very slowly sol in cold, much more easily in warm H<sub>2</sub>O (J)

 $[CoCl(NH_3)_5]_2P_2O_7+xH_2O$  Quite easily sol in H<sub>2</sub>O

— diphosphopentamolybdate,

[CoCl(NH<sub>3</sub>)<sub>5</sub>]<sub>2</sub>(5MoO<sub>3</sub>, 2HPO<sub>4</sub>)Ppt Nearly insol in pure H<sub>2</sub>O, more sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq without decomp (J) [CoCl(NH<sub>3</sub>)<sub>5</sub>]<sub>2</sub>(5MoO<sub>3</sub>, 2NII<sub>4</sub>PO<sub>4</sub>) Ppt As above

- sulphate,  $CoCl(NH_3)_tSO_4$ 

Anhydrous Slowly sol in 125-1319 pts H O at 16° +2H<sub>2</sub>O Sol m 1334 pts II O at 17 3° Rather easily sol in hot II O, and much more

silt (J) T( ( \1 \ \ 1 \ \ 1 Decomp by

H<sub>2</sub>O into neutral sulphate Sol in II SO<sub>4</sub>

- tartrate,  $CoCl(NII_3)$  ( $C_1II_6O_6)_2+$ 21/2H O Moderately sol in HO, insol in alcohol

- thiosulphate, CoCl(NII)  $> O_3$ 

Nearly msol in cold HO, very sl sol in boiling II O with partial decomp (1)

## Chloropurpureoiridium comps

See Iridopentamine comps

Chloropurpureorhodium carbonate,  $ClRh(NH_3) (O_3 + HO)$ 

Fasily sol in HO (Jorgensen)

---- chloride, ClRh(NH3) (1

Sol in 179 pts H O at 17° and more easily in hot  $\rm H_2O$  Sol in cone H  $\rm SO_4$  or boiling NaOH+Aq without decomp Very SI sol in cold dil HCl+Aq (1 1) SI sol in hot HC +Aq Insol in alcohol (Jorgensen, J pi (2) 27 433, 34 394)

--- rhodium chloride, 3ClRh(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>, 2RhCl<sub>3</sub> Ppt (Jorgensen, Z anorg 5 75)

## Chloropurpureorhodium chloroplatinate, ClRh(NH<sub>3</sub>)<sub>5</sub>PtCl<sub>6</sub>

Insol in cold H<sub>2</sub>O (J)

---- fluosilicate, ClRh(NH<sub>3</sub>)<sub>5</sub>S<sub>1</sub>F<sub>6</sub>

Very sl sol in cold H<sub>2</sub>O Sol in NaOH+ Aq as roseo salt (J)

- hydroxide, ClRh(NH<sub>8</sub>)<sub>5</sub>(OH)<sub>2</sub> Known only in solution (J)

--- nitrate, ClRh(NH<sub>3</sub>)<sub>5</sub>(NO<sub>3</sub>)<sub>2</sub>

Sl sol in cold H<sub>2</sub>O, but more easily than the chloride Sol in boiling NaOH+Aq as roseo salt (J)

--- sulphate, ClRh(NH<sub>3</sub>)<sub>5</sub>SO<sub>4</sub>+2H<sub>2</sub>C Sl sol in cold, more easily in hot  $H_2O$  (J)  $4ClRh(NH_3)_5SO_4$ ,  $3H_2SO_4$  Sl sol in cold, more easily in hot  $H_2O$  (J)

## Chlororhodous acid

Ammonium chlororhodite, (NH<sub>4</sub>)<sub>2</sub>RhCl<sub>5</sub>+  $H_{2}O$ 

(Gutbier, B 1908, 41 213) Sol in H<sub>2</sub>O, insol in alcohol

(Wollaston) Not obtainable (Leidié, A ch (6) 17 275) (NH<sub>4</sub>)<sub>3</sub>RhCl<sub>5</sub>+1½H<sub>2</sub>O Sol in H<sub>2</sub>O, but as easily than Na salt, insol in alcohol Sol less easily than Na salt, insol in alcohol in dil NH<sub>4</sub>Cl+Aq (Claus, J B 1855 423) (Gutbier, l c)

Ammonium chlororhodite nitrate,  $(NH_4)_2Rh_2Cl_6$ ,  $2NH_4NO_8$ 

Very sol in H<sub>2</sub>O Decomp by boiling with H<sub>2</sub>O Sl sol in HNO<sub>3</sub>+Aq (Leidié, C R **107** 234)

Barium chlororhodite, Ba<sub>3</sub>(RhCl<sub>6</sub>)

Resembles the Na salt (Bunsen, A 146 276)

Cæsium chlororhodite, Cs<sub>2</sub>RhCl<sub>5</sub>+H<sub>2</sub>O Difficulty sol in H<sub>2</sub>O (Gutbier, B 1908, **41** 214)

Lead chlororhodite, Pb3(RhCl6)2

Ppt Insol in H2O (Claus) Not obtainable (Leidi()

Mercurous chlororhodite, Hg<sub>3</sub>RhCl<sub>6</sub>

Ppt Insol in H2O (Claus) Not obtainable (Lcidic)

Potassium chlororhodite, K2RhCl5+H2O

Not efflorescent SI sol in H<sub>2</sub>O SI sol ın KCl—Aq (Gıbbs ) Insol or sl sol m alcohol (Berzelius )

Salt is anhydrous (Leidié) Contains 1H2O (Seubert and Kobbé, B **23** 2556)

Can be cryst from H<sub>2</sub>O containing a little

HCl (Gutbier, B 1908 41 212 K<sub>3</sub>RhCl<sub>6</sub>+3H O Efflorescent H2O Aqueous solution decomp to above on standing (Claus)

Not obtainable (Leidic)

Also obtained by Seubert and Kobbs н 23 2556) +1½H<sub>2</sub>O (Leidie, C R 111 106)

Rubidium chlororhodite, RbzRhCl4+HzO Difficulty sol in H<sub>2</sub>O Gutbur B 1908, **41**, 214

Silver chlororhodite, AgaRhCl. Ppt Insol in H<sub>2</sub>O (Claus) Not obtainable (Leidi()

Sodium chlororhodite, \aRh (1:15H2) NasRhCls+9H O

Efflorescent Sol in 15 pts H<sub>2</sub>O Melts in crystal H<sub>2</sub>O at 50° Insol in alcohol (Claus)

+12HO (Gutbier, B 1908 41 213

#### Chlororuthenic acid

Ammonium chlororuthenate, NII, RuCi,

Easily sol in H<sub>2</sub>O Claus Formula is (NH<sub>4</sub>) Ru; \O)Cl Joh C

R 107 994) Sol in HO with decomp sol in HCl (Howe, J Am Chem Soc 1904 26 )49

Ammonium aquochlororuthenate,

(NH<sub>4</sub>) Ru<sub>1</sub>H O<sub>2</sub>Cl<sub>5</sub>

Ppt (Howe J Am Chem >n 11894 26 548)

Cæsium chlororuthenate, Cs R.C

Sl sol in HO Sol in ho an HC'+1 (Howe, J Am Chem Soc 1901 23 75-

Potassium chlororuthenate, h P C

Very sol in HO Very NH4Cl+Aq Insol in 70°, as Formula is K Ru NO Cl Very sl sol in cold HO I -

ence of KCl Partially decomp in hot au (Antony, Gazz ch it 1500 29

Easily sol in HO with To Sol in HCl Howe I \ ( 1904, 26 54°)

Potassium aquochlororuthenate, K Ru(OH)Cl<sub>5</sub>

Hone J A C em 3 -Sol in HO 1904, 26 547)

Rubidium chlororuthenate, Pb I Cl. SI sol in HO, sol in hot dil HC'+1-(Howe, J Am Chem Soc 1901 23 34

#### Chlororuthenious acid

Ammonium chlororuthenite, (NH<sub>4</sub>)<sub>4</sub>Ru<sub>2</sub>Cl<sub>10</sub> Sl sol in H<sub>2</sub>O Insol in NH<sub>4</sub>Cl+Ag or alcohol (Claus, J pr 80 282)

Cæsium chlororuthenite, Cs2RuCl5+H2O Sl sol in H<sub>2</sub>O, sol in HCl+Aq (Howe, J Am Chem Soc 1901, 23 785)

Potassium chlororuthenite, K4Ru2Cl19 Moderately sol in cold, more easily in hot H<sub>2</sub>O Decomp easily by heating Insol in cone NH4Cl+Aq Insol in 80% alcohol

Rubidium chlororuthenite, Rb<sub>2</sub>RuCl<sub>5</sub>+H<sub>2</sub>O Sl sol in H<sub>2</sub>O, sol in HCl+Aq (Howe, J Am Chem Soc 1901, 23 786)

Sodium chlororuthenite. Na<sub>4</sub>Ru<sub>2</sub>Cl<sub>10</sub> Deliquescent Sol in H<sub>2</sub>O or alcohol

Trichlorosilicomercaptane See Silicon chlorohydrosulphide

#### Chlorosmic acid

llorosmate, (NH<sub>4</sub>)<sub>2</sub>OsCl<sub>6</sub> Insol in alcohol and H<sub>2</sub>O

am chlorosmate, K2OsCls rroperties as the NH4 salt

Potassium amino chlorosmate. (NH<sub>2</sub>)OsCl<sub>3</sub>,2KCl Ppt (Brizard, A ch 1900, (7) 21 375)

Potassium amino, chlorosmate hydrogen chloride, (NH<sub>2</sub>)CsCl<sub>3</sub>,2KCl,HCl (Brizard, A ch 1900, (7) 21 378)

Silver chlorosmate, Ag<sub>2</sub>OsCl<sub>6</sub> Insol in H2O or HNO3+Aq (Claus and Jacoby)

Silver ch'orosmate ammonia, Ag2OsCl6, 2NH3 Sol in much H<sub>2</sub>O Sl sol in KOH+Aq Easily sol in KCN+Aq (C and I)

Sodium chlorosmate, Na<sub>2</sub>OsCl<sub>6</sub>+2H<sub>2</sub>O Fasily sol in H<sub>2</sub>O or alcohol

#### Chlorosmious acid

Ammonium chlorosmite.  $(NH_4)_4Os_2Cl_{10} + 3H_2O$ Easily sol in H2O and alcohol, insol in ether (Claus and Jacoby, J pr 90 65)

Potassium chlorosmite, K<sub>6</sub>Os<sub>2</sub>Cl<sub>12</sub>+6H<sub>2</sub>O Very easily sol in  $\overline{H}_2O$  or alcohol in ether (C and J)

## Chlorosmisulphurous acid

Potassium hydrogen chlorosmisulphite, OsCl<sub>4</sub>(SO<sub>3</sub>)<sub>4</sub>K<sub>6</sub>H<sub>2</sub>

Ppt (Rosenheim, Z anorg 1900, 24 422)

Sodium chlorosmisulphite.  $OsCl_2(SO_8)_4Na_6+10H_2O$ (Rosenheim, Z anorg 1900, 24 Ppt 420)

## Chloropyroselemous acid

Ammonium chloropyroselenite, NH<sub>4</sub>Cl,  $2SeO_2+2H_2O$ 

Sol in H<sub>2</sub>Q (Muthmann and Schafer, B 26 1008)

Potassium chloropyroselenite, KCl, 2SeO<sub>2</sub>+ As NH4 salt (M and S)

Rubidium chloropyroselenite, RbCl,  $2SeO_2 + 2H_2O$ As NH<sub>4</sub> salt (M and S)

Chlorostannic acid, SnO(OH)Cl (Mallet, Chem Soc 35 524) H<sub>2</sub>SnCl<sub>6</sub>+6H<sub>2</sub>O Extremely deliquescent, sol in  $H_2O$  (Seubert, B 20 793)

Ammonium chlorostannate, (NH<sub>4</sub>) SnCl<sub>6</sub> (pink salt)

Sol in 3 pts H<sub>2</sub>O at 145° Solution decomp on boiling when dilute, but not when conc (Bolley)

Barium chlorostannate, BaSnCl<sub>6</sub>+5H<sub>2</sub>O Sol in H<sub>2</sub>O (Lewy, A ch (3) 16 308)

Cæsium chlorostannate, CzeSnCl6 Nearly insol in conc HCl+Aq les, Sill Am J (2) 47 178) (Sharp-

Calcium chlorostannate, CaSnCl<sub>6</sub>+5H<sub>2</sub>O Very deliquescent (Lowy, A ch (3) 16 308)

Cerium chlorostannate, CeSnCl<sub>7</sub>+9H O Deliquescent Sol in H<sub>2</sub>O (Cleve, Bull Soc (2) **31** 197)

Cobalt chlorostannate, CoSnCl<sub>6</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Jorgensen')

Didymium chlorostannate, DiCl<sub>3</sub>, SnCl<sub>4</sub>-10½H₂O Sol in H<sub>2</sub>O (Cleve)

Glucinum chlorostannate, GlSnCl<sub>6</sub>+8H<sub>2</sub>O Deliquescent Sol in H<sub>2</sub>O (Atterbers Sv V A Handl 12 No 4 14)

Lanthanum chlorostannate, 4LaCl<sub>3</sub>, 5SnCl<sub>4</sub>+ 45H<sub>2</sub>O

Deliquescent Sol in H<sub>2</sub>O (Cleve)

Lithium chlorostannate, Li<sub>2</sub>SnCl<sub>6</sub>+8H<sub>2</sub>O Sol in little H<sub>2</sub>O without decomp, but

decomp by dilution (Chassevant, A ch (6) **30** 42 )

Magnesium chlorostannate, MgSnCl<sub>6</sub>+6H<sub>2</sub>O Very deliquescent (Lewv)

Manganous chlorostannate, MnSnČl<sub>6</sub>+6H<sub>2</sub>O Deliquescent in moist, efflorescent in dry air (Jorgensen)

Nickel chlorostannate, NiSnCl<sub>6</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Jorgensen)

Potassium chlorostannate, K<sub>2</sub>SnCl<sub>6</sub> Sol in H<sub>2</sub>O

Sodium chlorostannate, Na<sub>2</sub>SnCl<sub>6</sub>+6H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Topsoe, Gm K Handb 6te aufl III 149)

Strontium chlorostannate, SrSnCl<sub>6</sub>+8H<sub>2</sub>O Sl deliquescent, and easily sol in H<sub>2</sub>O (Topsoe)

Yttrium chlorostannate, YCl<sub>3</sub>, SnCl<sub>4</sub>+8H<sub>2</sub>O Sol in  $H_2O$  (Cleve, Bull Soc (2) **31** 197)

Zinc chlorostannate, ZnSnCl<sub>6</sub>+6H<sub>2</sub>O (Biron, C C 1904, II 410)

## Chlorosulphobismuthous acid

Cuprous chlorosulphobismuthite, 2Cu<sub>2</sub>S, B<sub>12</sub>S<sub>3</sub>, 2B<sub>1</sub>SCl

Stable in air and insol in H2O at ord temp

Decomp by boiling H<sub>2</sub>O

Decomp by mineral acids with evolution of HS (Ducatte, C R 1902, 134 1212)

Lead chlorosulphobismuthite, PbS, B<sub>12</sub>S<sub>3</sub>, 2B<sub>1</sub>SC<sub>1</sub>

Stable in the air Insol in H2O, decomp by boiling H<sub>2</sub>O, sol in dil acids with decomp and evolution of H<sub>2</sub>S (Ducatte)

Chlorosulphonic acid, HClSO<sub>3</sub>

See Sulphuryl hydroxyl chloride

## Chloropyrosulphonic acid

Ammonium chloropyrosulphonate, ClS<sub>2</sub>O<sub>6</sub>NH<sub>4</sub>

Fumes in the air (Traube, Decomp by H<sub>2</sub>O and alcohol B 1913, 46 2519)

Sodium chloropyrosulphonate, ClS<sub>2</sub>O<sub>6</sub>Na

Fumes in the air

Decomp by H<sub>2</sub>O and alcohol (Traube)

Chlorosulphuric acid, HSO<sub>3</sub>Cl

See Sulphuryl hydroxyl chloride  $SO_2Cl_2$ See Sulphuryl chloride

Aluminum chlorosulphate, Al(SO<sub>4</sub>)Cl+6H<sub>2</sub>O Very sol in H<sub>2</sub>O Nearly insol in abs (Recoura, Bull Soc 1902, (3) 27 1155)

Chromium chlorosulphate, CrClSO<sub>4</sub>+5H<sub>2</sub>O Green (Weinland, Z anorg 1905, 48 253)

(Recoura, C R 1902, 135 164) Vrolet(Weinland, Z anorg 1905, 48

254)

Very sol in H<sub>2</sub>O Insol in a mixture of alcohol and acetone (Recoura, C R 1902, **135** 164)

+8H<sub>2</sub>O Two isomeric modifications (a) Green needles Easily sol in H<sub>2</sub>O (Weinland, Z anorg 1906, 48 251)

(b) Violet plates Easily sol in H<sub>2</sub>O (Weinland)

## Chlorosulphurous acid

Ammonium palladious trichlorosulphite, (NH<sub>4</sub>)<sub>8</sub>PdCl<sub>8</sub>SO<sub>3</sub>+H<sub>2</sub>O

Easily sol in H<sub>2</sub>O (Rosenheim, Z anorg 1900, **23** 30

#### Chlorotelluric acid

Ammonium chlorotellurate, (NH<sub>4</sub>)<sub>2</sub>TeCl<sub>6</sub> Sol without decomp in a small amt of H<sub>2</sub>O, but decomp by much H<sub>2</sub>O or alcohol

Cæsium chlorotellurate, Cs27 eCl6

Decomp by H2O Sol in dil HCl+Aq 100 pts HCl+Aq (sp gr 12) dissolve 0 05 pt at 22°

100 pts HCl+Aq (sp gi 105) dissolve

0 78 pt at 22°
Insol in alcohol (Wheeler, Sill Am J **145** 267)

## Potassium chlorotellurate, K<sub>2</sub>TeCl<sub>6</sub>

Deliquescent, decomp by H<sub>2</sub>O and absote alcohol (Berzelius) lute alcohol

The most sol in H<sub>2</sub>O of the chloro-or bromo-tellurates Easily sol in dil HCl+Aq, conc HCl+Aq ppts KCl (Wheeler, Sill' Am J **145** 267)

Rubidium chlorotellurate, Rb<sub>2</sub>I eCl<sub>5</sub>

Decomp by H<sub>2</sub>O Much more sol in dil HCl+Aq than Cs₂Te Γl₀

100 pts HCl+Aq (sp gr 12) dissolve 0 34 pt at 22°

100 pts HCl+Aq (sp gr 105) dissolve, 13 99 pts at 22°

Sl sol in alcohol (Wheeler)

## Chlorotetramine chromium bromide, ClCr(NH<sub>3</sub>)<sub>4</sub>(OH<sub>2</sub>)Br

Very easily sol in H<sub>2</sub>O (Cleve, 1861, (Jorgensen, J pr (2) 42 210)

## ----chloride, ClC1 (NH3)4(OH2)Cl2

Sol in  $H_2O$ , but decomp by boiling Sol in HCl+Aq, and this solution may be boiled without decomp (Cleve)

Sol in 15 7 pts H<sub>2</sub>O at 15° (Jorgensen, J pr **42** 208)

----chromate, ClCr(NH<sub>3</sub>)<sub>4</sub>(OH<sub>2</sub>)CrO<sub>4</sub> Precipitate (Cleve)

----fluosilicate, ClCr(NH<sub>3</sub>)<sub>4</sub>(OH<sub>2</sub>)S<sub>1</sub>F<sub>6</sub>
Sl sol in H<sub>2</sub>O (Jorgensen, J pr (2) **42**218)

---- iodide, ClCr(NH<sub>3</sub>)<sub>4</sub>(OH )I Easily sol in H<sub>2</sub>O (Cleve)

— nitrate, ClCr(NH<sub>3</sub>)<sub>4</sub>(OH)(NO<sub>3</sub>)

Very easily sol in H<sub>2</sub>O (Cleve), (Jorgensen, J pr (2) 42 209)

## Chlorotetramine cobaltic bromide, ClCo(NH<sub>3</sub>)<sub>4</sub>(OH )Br

More sol in H O than chloride Nearly insol in HBr+Aq (11) (Jorgensen, J pi (2) 42 215)

## ---- chloride, ClCo(NH)4(OH)Cl

Sol in about 40 pts H O, and is identical with octamine cobaltic purpure ochloride of Vortmann (Jorgensen, J pr. (2) 42 211)

---- chloroplatinate, ClCo(NH<sub>3</sub>)<sub>4</sub>(OH )Pt( l<sub>4</sub> +2H<sub>2</sub>()

SI sol in HO (Jorgensen)

--- chromate, ClCo(NH<sub>3</sub>)<sub>1</sub>(OH)CrO<sub>4</sub>

Easily solain cold H O (Jorgensen, J pr. (2) 42 216)

--- fluosilicate, ClCo(NH<sub>2</sub>)<sub>4</sub>(OH<sub>2</sub>)<sub>5</sub>H<sub>4</sub>
Sl sol in H O Neurly insol in H Sil<sub>4</sub> +
Aq (Jorgensen, J pr. (2) **42** 219)

--- sulphate, ClC o(NH<sub>3</sub>)<sub>4</sub>(OH )5O<sub>4</sub> Sol in H<sub>2</sub>O (Jorgenson, J pr (2) **42** 211)

Chlorotitanic acid, 11Cl<sub>4</sub>,2HCl=H<sub>2</sub>TiCl<sub>6</sub>
Known only in solution (Kowalewsky, Z anorg 1900, **25** 192)

## Chlorous acid, HClO2

Known only in aqueous solution 100  $\rm H_2O$  at 85° and 753 mm pressure dissol 47 g  $\rm Cl_2O_3$  Hydrate with 5007-6743 ,  $\rm H_2O$ , perhaps  $\rm HClO_2+H_2O$ , separates o at 0° (Brandan, A 151 340)

Pure HClO<sub>2</sub> is not known even in solutio (Garzarolli-Thurnlakh, A 209 184)

#### Chlorites

All chlorites are easily sol in H<sub>2</sub>O and alcohol, with gradual decomp

#### Ammonium chlcrite

Known only in aqueous solution, while decomposes on evaporation or long standin

## Barrum chlorite, Ba(ClO<sub>2</sub>)<sub>2</sub>

Deliquescent, easily sol in  $H_2O$  Soltion decomp on evaporation Easily solalcohol (Millon, A ch (3) 7 298)

## Lead chlorite, $Pb(ClO_2)_2$

Nearly insol in cold  $H_2O$ , and only sl so in hot  $H_2O$  Sol in KOH+Aq (Garzaro and Hayn, A 209 203)

Lead chlorite chloride, 6Pb(ClO),4PbC PbO

Rather difficulty sol in H O  $\,$  (Schiel, 109 317)

#### Potassium chlorite, KClO

Very deliquescent and sol in H O Solutohol of 35° (Millon,  $\lambda$  ch (3) 7 323 Sol in HClO  $+ \lambda q$ 

## Silver chlorite, AgClC

Sol in hot, less in cold H<sub>2</sub>() I sally decomp by heating above 1(0° Decomp I weakest reids (Millon, Veh. (\*) 7-329.)

## Sodium chlorite, NiClO

Very deliquescent, and sol in H O

#### Strontium chlorite, Si(Cl())

Deliquescent and sol in H O - Decomp 1 slow evaporation - (Millon  $\Lambda$  charge) **7** 327

## Chloroxyfulminoplatinum,

Pt₄Ň₄Cl(OH)ÕъH⇒

Insol in H O, sol in HCl + \q v Mey e I pr (2) 18 30 ; )

## Chloruranic acid, HUO, (1+211 ()

Sol in H O, sl sol in alcohol (Myhus, I 1901, **34** 2776)

## Chromacichloride, Cr() (1

See Chromyl chloride

## Chromatorodic acid

See Chromoiodic acid

## Chromic acid, H2CrO4

Very sol in  $H_2O$  (Moissan, C R 98 1851)

Does not exist except in solution (Field, Chem Soc 61 405)

The composition of the hydrates formed by H<sub>2</sub>CrO<sub>4</sub> at different dilutions is calculated from determinations of the lowering of the fr-pt produced by H<sub>2</sub>CrO<sub>4</sub> and of the conductivity and sp gr of H<sub>2</sub>CrO<sub>4</sub>+Aq (Jones, Am Ch J 1905, 34 333)

See also Chromium trioxide

#### Chromates

Chromates of the alkalı metals and of Ca, Mg, and Sr are sol in  $\rm H_2C$ , the others are generally insol or sl sol in  $\rm H_2O$ , but sol in  $\rm HNO_2+Aq$ 

Aluminum chromate, basic, Al<sub>2</sub>O<sub>3</sub>, CrO<sub>2</sub>+7H<sub>2</sub>O

Easily sol in NH<sub>4</sub>OH+Aq, alum, or acetic acid+Aq Insol in NH<sub>4</sub>Cl+Aq (Farrie, Chem Soc 4 300)

Insol as such as  $\rm H_2O$ , but easily decomp into  $\rm H_2CrO_4$  and a basic insol comp. Sol in alkaline solutions and acids. Decomp by many salts. (Eliot and Storer, Proc. Am Acad. 5 214.)

Aluminum sodium chromate silicate, 4Al<sub>2</sub>O<sub>3</sub>,5Na<sub>2</sub>O,CrO<sub>3</sub>,7SiO<sub>2</sub>

(Weyberg, C B Miner, 1904 727)

Ammonium chromate, basic,  $5(NH_4)_2O$ ,  $4CrO_3(?)$ 

Lasıly sol  $\, \text{in cold } H_2O \,$  (Pohl, W A B 6 592)

Ammonium chromate, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>

Very sol in H<sub>2</sub>O, pptd from aqueous solution by alcohol (Malaguti and Sarzeau) 100 g H<sub>2</sub>O dissolve 40 46 g at 30° (Schreinemakers, Chem Weekbl 1905, 1

Sol in H<sub>2</sub>O without decomp (Schreinemakers, C C 1905, II 1067)

Sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 826)

Difficulty sol in acetone (Naumann, B 1904, 37 4328)

Ammonium dichromate, (NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>

Less sol in  $H_2O$  than  $(NH_4)_2CrO_4$  (Moser)

100 g H<sub>2</sub>O dissolve 47 17g at 30° | 148 1465)

(Schreinemakers, Chem Weekbl 1905, 1 395)

Sol in alcohol (Ranitzer, Zeit angew ch\_1913, 26 456)

Insol in benzonitrile (\(\)aumann, B 1914, 47 1370)

Insol in acetone (Naumann, B 1904, 37 4328)

Ammonium trichromate, (NH<sub>4</sub>)<sub>2</sub>Cr<sub>5</sub>O<sub>10</sub>

Not deliquescent, but very sol in H<sub>2</sub>O (Siewert)

Decomp by H O into chromic acid and dichromate (Jager and Kruss, B 22 2036) Sol in acetone (Naumann, B 1904, 37 4328)

Ammonium tetrachromate, (NH<sub>4</sub>)-Cr<sub>4</sub>O<sub>13</sub>

Deliquescent Decomp by HO (Jager and Kruss, B **22** 2037)

(Eliot and Storer, Proc Am | Ammonium herachromate (NH4) Cr6O19+

Ammonium barium chromate, BaCrO<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>

Ppt Decomp by HO (Groger, Z anorg 1908, 58 414)

Ammonium cadmium chromate, NH<sub>4</sub>) O, 4CdO, 4CrO<sub>3</sub>+3H O

Ppt Decomp by boiling HO Groger, M 1904, 25 533

Ammonium cadmium chromate ammonia, (NH<sub>4</sub>) CrO<sub>4</sub>, CdCrO<sub>4</sub>, ½NH<sub>3</sub>+1½H<sub>2</sub>O Decomp by H<sub>2</sub>O (Groger, Z morg 1908,

58 418)  $(NH_4)$  Cd(CrO<sub>4</sub>)<sub>2</sub> 2NH<sub>3</sub> Insol in cold decomp by hot  $H_2O$ 

Sol m dil acids or in NH4OH+Aq (Briggs, Chem Soc 1903, 83 395)

Ammonium chromous chromate(?) (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>,CrCrO<sub>4</sub>=(NH<sub>4</sub>)<sub>2</sub>Cr(CrO<sub>4</sub>)

Difficultly sol in H<sub>2</sub>O Insol in alcohol, ether, chloroform, or glacial acetic acid Easily sol in conc acids, from which it is separated on dilution Decomp by NaOH—Aq (Heintze, J pi (2) 4 220)

Ammonium chromyl chromate, (3(NH<sub>4</sub>) O, 2CrO, 3CrO<sub>3</sub>

Nearly insol in HO (Pascal C R 1909,

Ammonium cobaltous chromate (NH<sub>4</sub>)<sub>2</sub>Co(CrO<sub>4</sub>)<sub>2</sub>+6H<sub>2</sub>O

Ppt Easily decomp (Briggs, Z anorg 1907, 56 247) (NH<sub>4</sub>)<sub>2</sub>O, 4CoO, 4CrO<sub>2</sub>+3H<sub>2</sub>O Insol in H<sub>2</sub>O Sol in cold dil H<sub>2</sub>SO<sub>4</sub> (Groger, Z anorg 1906, 49 202)

Ammonium cobaltous dichromate, CoCr<sub>2</sub>O<sub>7</sub>,(NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>+2H<sub>2</sub>O

Sl hydroscopic, sol in  $\rm H_2O$ , insol in alcohol (Kruss, Z anorg 1895, 8 454)

Ammonium cobaltous chromate ammonia, 3CoCrO<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, 2NH<sub>8</sub>+3H<sub>2</sub>O

Ppt , decomp by  $H_2O$  (Groger, Z anorg 1908, 58 422)

Ammonium cupric dichromate,  $2CrCr_2O_7,3(NH_4)_2Cr_2O_7+6H_2O$ Sol in  $H_2O$  (Kruss, Z anorg 1895, 8 455)

Ammonium cupric chromate ammonia, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>,CuCrO<sub>4</sub>,2NH<sub>3</sub>

Decomp by  $H_2O$  (Groger, Z anorg 1908, 58 420)

Insol in cold, decomp by hot H<sub>2</sub>O Sol in dil acids or in NH<sub>4</sub>OH+Aq (Briggs, Chem Soc 1903, 83 394)

Ammonium iron (ferric) chromate, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>,Fe<sub>2</sub>(CrO<sub>4</sub>)<sub>3</sub>+4H<sub>2</sub>O

More easily decomp by  $\rm H_2O$  than  $\rm K_2CrO_4$ ,  $\rm Fe_2(CrO_4)_3+4H_2O$  (Hensgen, B 12 1300) 6CrO<sub>3</sub>, 5Fe<sub>2</sub>O<sub>3</sub>, 6(NH<sub>4</sub>)<sub>2</sub>O, and 4CrO<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>,(NH<sub>4</sub>)<sub>2</sub>O+4H<sub>2</sub>O Ppts (Lepierre, C R 1894, 119 1217)

Ammonium lithium chromate, NH<sub>4</sub>LiCrO<sub>4</sub>+ 2H<sub>2</sub>O

Not deliquescent (Rammelsberg)

Ammonium lead chromate, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, PbCrO<sub>4</sub>

Ppt Decomp by H<sub>2</sub>O (Groger, Z anorg 1908, **58** 424)

Ammonium magnesium chromate, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, MgCrO<sub>4</sub>+6H<sub>2</sub>O

Much more sol in H<sub>2</sub>O than the corresponding sulphate (v Hauer)
Sol in H<sub>2</sub>O (Groger, Z anorg 1908, 58

Ammonium manganous chromate, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, 2MnCrO<sub>4</sub>

416)

Sol in H<sub>2</sub>O (Hensgen, R t c 3 433)

Ammonium nickel chromate, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, NiCrO<sub>4</sub>+6H<sub>2</sub>O

Sol m H<sub>2</sub>O (Groger, Z anorg 1906, **51** 353)

Can be cryst from H<sub>2</sub>O under 40° (Briggs, Chem Soc 1903, 83 392)

Ammonium nickel chromate ammonia, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>,NiCrO<sub>4</sub>,NH<sub>8</sub>+H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Groger, Z anorg 1906, 51 354)
(NH<sub>4</sub>)<sub>2</sub>N<sub>1</sub>(CrO<sub>4</sub>)<sub>2</sub>, 2NH<sub>3</sub> Insol in cold

(NH<sub>4</sub>)<sub>2</sub>N<sub>1</sub>(CrO<sub>4</sub>)<sub>2</sub>, 2NH<sub>3</sub> Insol in cold H<sub>2</sub>O Decomp by hot H<sub>2</sub>O Sol in dil acids or in NH<sub>4</sub>OH+Aq (Briggs, Chem Soc 1903, **83** 393)

+6H<sub>2</sub>O (Briggs, Proc Chem Soc 1902, **18** 254)

Ammonium potassium chromate, NH<sub>4</sub>KCrO<sub>4</sub>
Sol in H<sub>2</sub>O (E Kopp, C N 11 16)
+H<sub>2</sub>O (Étard, C R 85 443)
2(NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, 3K<sub>2</sub>CrO<sub>4</sub> Very sol in H<sub>2</sub>O
(Zehenter, M 1897, 18 51)

Ammonium silver chromate, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, 3Ag<sub>2</sub>CrO<sub>4</sub>

Decomp by  $H_2O$  (Groger, Z anorg 1908, 58 423)

Ammonium sodium chromate,  $NH_4NaCrO_4+2H_2O$ 

Very sol in  $H_2O$  (Zehenter, M 1897, 18 54)

Ammonium strontium chromate, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, SrCrO<sub>4</sub>

Ppt Decomp by  $H_2O$  (Groger, Z anorg 1908, **58** 415)

Ammonium uranyl chromate, (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, 2(UO<sub>2</sub>)CrO<sub>4</sub>+6H<sub>2</sub>O

Decomp by boiling with  $H_2()$  Sol in acidulated  $H_2O$  (Formanek, A 257, 106)  $+3H_2O$  (Formanek)

Ammonium zinc chromate, (NH<sub>4</sub>)<sub>2</sub>O, 2ZnO, 2CrO<sub>3</sub>+H<sub>2</sub>O

Decomp by hot H<sub>2</sub>O (Groger, M 1904, **25** 520)

Ammonium zinc chromate ammonia,  $(NH_4)_2Zn(C_1O_4)_2$ ,  $2NH_3$ 

Insol in cold, decomp by hot H<sub>2</sub>() Sol in dil acids or in NH<sub>4</sub>OH+Aq (Buggs, Chem Soc 1903, 83 394)

4ZnCrO<sub>4</sub>, 2(NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, 3NH<sub>3</sub>+3H<sub>2</sub>O Ppt Decomp by H<sub>2</sub>O (Groger, Z anorg 1908, **58** 416)

Ammonium dichromate chloride mercuric chloride, (NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>,2NH<sub>4</sub>Cl,4HgCl<sub>2</sub>+2H<sub>2</sub>O

Ppt Sol in cold, more sol in warm  $H_2O$  (Stromholm, Z anorg 1919, **75** 280)

Ammonium dichromate chloride mercuric cyanide, (NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, 4NH<sub>4</sub>Cl, 6Hg(CN) +4H<sub>2</sub>O (Stromholm, Z anorg 1913, 80 157)

Ammonium chromate chromyl fluoride,  $(NH_4)_2CrO_4$ ,  $CrO_2F_2$ 

Sol in H<sub>2</sub>O (Varenne, C R **91** 989)

## Ammonium chromate iodate See Chromoiodate, ammonium

Ammonium dichromate mercuric chloride, (NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, HgCl<sub>2</sub>

Cannot be recryst, from  $H_2O$  or  $H_2Cl_2 + Aq$ , but from  $(NH_4)_2Cr_2O_7+Aq$ (Jager and Kruss, B 22 2044)

+H<sub>2</sub>O (Richmond and Abel, Chem Soc

Q J 3 199)

Cannot be made to crystallize with H<sub>2</sub>O (Jäger and Kruss)

3(NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, HgCl<sub>2</sub> Decomp by H<sub>2</sub>O (J and K 4(NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, HgCl<sub>2</sub> Decomp by H<sub>2</sub>O (J and K)

 $(NH_4)_2Cr_2O_7$ ,  $3HgCl_2$ (J and K) (NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, 4HgCl<sub>2</sub> (J and K)

## Ammonium chromate phosphate See Phosphochromate, ammonium

## Ammonium chromate tellurate See Chromotellurate, ammonium

## Barium chromate, BaCrO<sub>4</sub>

Extremely sl sol m H O

Calculated from electrical conductivity of BaCrO<sub>4</sub>+Aq, 1 l H<sub>2</sub>O dissolves 38 mg BaCrO<sub>4</sub> at 18° (Kohlrausch and Rose, Z phys Ch **12** 241)

When not ignited, BaCrO4 is sol in 86,957 pts  $H_2O$ , 22.988 pts  $NH_4Cl+Aq$  (0.5%  $NH_4Cl$ ), 3670 pts  $HC_2H_3O_2+Aq$  (5%  $HC_2H_3O_2$ ), 1986 pts  $HC_2H_3O_2+Aq$  (10%  $HC_2H_3O_2+Aq$  (10%) 1813 pts  $HC_2H_3O_2$ ),  $H_2CrO_4+Aq(10\%)$ CrC<sub>3</sub>) When ignited, 160,000 pts H<sub>2</sub>O are necessary for solution (Schweitzer, by Fresenius, Ž anal **29** 414)

Sol in 23,000 pts boiling H<sub>2</sub>O (Mescher-

zerski, Z anal 21 399)

35 mg BaCrO4 are dissolved in 11 of sat solution at 18° (Kohlrausch, Z phys Ch 1908, **64** 168)

Easily sol in HNO3, HCl, or chromic acid+ Aq, from which it is precipitated by  $NH_4OH$ ,

or by dilution with H<sub>2</sub>O (Bahi)

Insol in K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>+Aq (Schweitzer) Sol in 49 381 pts NH<sub>4</sub>C H<sub>3</sub>O<sub>2</sub>+Aq (0 75 % salt) at 15°, in 23,355 pts  $NH_4C_2H_3O_2+Aq$  (15% salt) at 15°, in 45,162 pts  $NH_4NO_3+Aq$  (65% salt) at 15° (Fresenius, Z anal **29** 418)

Easily sol in alkali tartrates, or citrates +

Aq (Fleischer, J pr (2) 5 326)

0 22×10 4 g equiv BaCrO4 are dissolved in 11 of 45% alcohol at ord temp (Guerini, Dissert, 1912)

Insol in acetic acid and in M<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>+Aq Partly sol in a mixture of the two, except | Soc 31 24)

in presence of MC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Caron and Raquet, Bull Soc 1906, (3) 35 1064)

Not completely insol in acetic acid (Baubigny, Bull Soc 1907, (4) 1 58)

Insol in acetone (Naumann, B 1904, **37** 4329)

Insol in methyl acetate (Naumann, B 1909, **42** 3790)

## Barium dichromate, BaCr<sub>2</sub>O<sub>7</sub>+2H<sub>2</sub>O

Decomp by H<sub>2</sub>O with separation of Sol in H<sub>2</sub>CrO<sub>4</sub>+Aq (Bahr, J B BaCrO<sub>4</sub> **1853** 358)

Sol in cold H<sub>2</sub>O with formation of BaCrO<sub>4</sub> and CrO<sub>3</sub>

Insol in glacial acetic acid (Mayer, B 1903, **36** 1742)

Barium calcium chromate, BaCa(CrO<sub>4</sub>)<sub>2</sub> (Bourgeois Bull Soc Min 1879, 2 124)

Barium potassium chromate,  $BaK_2(CrO_4)_2$ Decomp by H<sub>2</sub>O (Groger, Z anorg

1907, 54 186) Decomp by HO Stable in K<sub>2</sub>CrO<sub>4</sub>+Aq,

containing 11 5° 2 181 pts K CrO<sub>4</sub> per 100 pts H<sub>2</sub>O at 27 5° 3 395 " " " " 50 0° " " 5 120 " " " " " 76 0° " " 7 119 " " " " 100 0° 9 036

(Barre, C R 1914, 158 497)

#### Barium potassium irichromate, $Ba_2K_2(Cr_3O_{10})_3+3H_2O$

Extremely deliquescent (Bahi)

#### Bismuth chromates, basic

These comps are insol in H<sub>2</sub>O even in presence of H<sub>2</sub>CrO<sub>4</sub>, sol in HCl or HNO<sub>3</sub>+

Aq (Lowe, J pr 67 288)

100 pts H<sub>2</sub>O dissolve 0 00008 pt "bismuth chromate", 100 pts acetic acid dissolve 0 00021 pt "bismuth chromate", 100 pts HNO<sub>3</sub>+Aq (sp gr = 1 038) dissolve 0 00024 pt "bismuth chromate", 100 pts GOH-Aq (sp gr = 1 038) dissolve 0 00024 pt "bismuth chromate", 100 pts GOH-Aq (sp gr = 1 22) dissolve 0 00024 KOH+Aq (sp gr = 133) dissolve 0 00016 pt "bismuth chromate" (Peaison, Phil Mag (4) 11 206)

Not insol in dil HNO3+ \q unless K C1O4 is present Less sol in hot NaOH+Aq th in

PbCrO<sub>4</sub> (Storer) "Bismuth chromate" is insol in acctone

(Naumann, B 1904, 37 4329)

 $3B_1 O_3 2CrO_3 = 2(B_1O)_2CrO_4$ ,  $B_1 O_3$  Insol in H<sub>2</sub>O, sol in HNO<sub>3</sub>+Aq

 $B_{12}O_3$ ,  $CrO_3 = (B_1O)_2C_1O_4$  Insol in  $H_2O_3$ , easily sol in dil HCl+Aq, less in dil  $HNO_3$ or H<sub>2</sub>SO<sub>4</sub>+Aq (Mur)

 $B_{12}O_3$ ,  $2CrO_3 = (B_1O) C_1 O_7$ Insol  $H_2O$ 

 $+\mathrm{H}_2\mathrm{O}$ 5B12O3,  $11C_1O_3 + 6H_2O$ (Muir, Chem

3B<sub>12</sub>O<sub>3</sub>, 7CrO<sub>3</sub> Insol in H<sub>2</sub>O, easily sol in Cadmium dichromate mercuric mineral acids, especially HCl+Aq Partly sol in KOH+Aq

Bismuth chromate, acid, Bi<sub>2</sub>O<sub>8</sub>, 4CrO<sub>8</sub>+H<sub>2</sub>O Insol in hot or cold H<sub>2</sub>O Sol in dil HCl or HNO<sub>3</sub>+Aq (Mur, Chem Soc 30 17)

Bismuth potassium chromate, B<sub>12</sub>(CrO<sub>4</sub>)<sub>3</sub>, K<sub>2</sub>CrO<sub>4</sub>

Insol in H<sub>2</sub>O Decomp with hot H<sub>2</sub>O  $B_{12}O_3$ ,  $K_2O$ ,  $6CrO_3+H_2O$  (Preis and Raymann, J B 1880 336)

Bromomolybdenum chromate (Atterberg)

Cadmium chromate, basic, 2CdO, CrO<sub>3</sub>+  $H_2O$ 

Very sl sol in H<sub>2</sub>O, very slowly sol in NH<sub>4</sub>OH+Aq with combination (Malagutı and Sarzeau, A ch (3) 9 431) Composition as above (Freese, B 2 478)

## Cadmium chromate, CdCrO<sub>4</sub>

Insol in H<sub>2</sub>O, sol in acids, decomp by heating with H<sub>2</sub>O (Schulz, Z anorg 1895,

> $O_4+Aq$ (Briggs,

mp boiling H2O (Schulz, 10 153)

lichromate, CdO, 2C1O<sub>3</sub>+H<sub>2</sub>O

in H<sub>2</sub>O without decomp, sol رسمس (Schulz, Z anorg 1895, 10 hydroscopic 152)

Easily sol in H<sub>2</sub>O but decomp on evaporation (Groger, Z anorg 1910, 66 11)

Cadmium trichromate, CdCr<sub>3</sub>O<sub>19</sub>+H<sub>2</sub>O Deliquescent (Groger, Z anorg 1910, 66 12)

Cadmium chromate ammonia, CdCrO<sub>4</sub>,  $4NH_3+3H_2O$ 

Decomp, by HO Sol m Efflorescent  $NH_4OH+Aq$ , insol in alcohol and ether (Malaguti and Sarzeau)

Cadmium potassium chromate, Cdk (CrO<sub>4</sub>)<sub>2</sub> +2H<sub>2</sub>O

Ppt Decomp by H2O (Groger, Z anorg 1907, 54 189)

 $3CdO, KO, 3C_1O_3 + 3H_2O$  $\operatorname{Ppt}$ (Preis and Raymann, Sitzungsb bohms Gesell 1880

4CdO, K<sub>2</sub>O, 4CrO<sub>3</sub>+3H<sub>2</sub>O Ppt decomp by H<sub>2</sub>O (Groger, M 1904, 25 533)

Cadmium potassium dichromate, CdCr<sub>2</sub>O<sub>7</sub>,K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>+2H<sub>2</sub>O

Sol in H<sub>2</sub>O, sl hydroscopic (Kiuss, Z anorg 1895, 8 454)

cvanide.  $CdCr_2O_7$ ,  $2Hg(CN)_2+7H_2O$ 

Sol in H<sub>2</sub>O without decomp (Kruss, Z anorg 1895, 8 460)

Cæsium chromate, Cs<sub>2</sub>CrO<sub>4</sub>

(Chabrié, C R 1901, **132** 680) Aq solution sat at 30° contains 47% (Schreinemakers, C C **1909**, I 11)

Cæsium dichromate, Cs<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>

(Chabrié, C R 1901, 132 680) Much more sol in hot H<sub>2</sub>O, than in cold (Fraprie, Am J Sci 1906, (4) 21 309)

Aq solution sat at 30° contains 52°

(Schreinemakers, C C 1909, I 11)

Cæsium trichromate, Cs<sub>2</sub>Cr<sub>3</sub>O<sub>10</sub>

Decomp by H.O (Schreinemakers, Chem Weekbl 1908, 5 811)
Sol. in H<sub>2</sub>O (Fraprie, Am J Sci 1906,

(4) **21** 315)

Cæsium tetrachromate, Cs<sub>2</sub>Cr<sub>4</sub>O<sub>13</sub>

Sol in H<sub>2</sub>O with decomp (Schreinemakers, Chem Weekbl 1908, 5 811)

Cæsium cobaltous chromate,  $Cs_2Co(CrO_4)_2 + 6H_2O$ (Briggs, Z anorg 1907, 56 248)

Cæsium magnesium chromate,  $Cs_2Mg(CrO_4)_2 + 6H_2O$ 

(Briggs, Chem Soc 1904, 85, 680)

Cæsium nickel chromate, Cs<sub>2</sub>N<sub>1</sub>(CrO<sub>4</sub>)<sub>2</sub> +6H<sub>2</sub>O

Sol in cold H<sub>2</sub>O without much change, but decomp by warm H<sub>2</sub>O (Briggs, Chem Soc 1904, **85** 679)

Calcium chromate basic, Ca<sub>2</sub>CrO<sub>3</sub>+3H<sub>2</sub>O Sol in 230 pts H<sub>2</sub>O without decomp (Mylius and Wrochem, Gm K 3 I, 1385)

Calcium chromate, CaCiO<sub>4</sub>

AnhydrousVery sl sol m H<sub>2</sub>O (Sicwert, J B **1862** 148)

Aq solution sat at 18° contains 23%  $CaCrO_4$ , sp gr = 1 023 (Mylius ૧nd Wrochem, B 1900, 33 3688)

Insol in acetone (Numann, B 1904, 37 4329)

+1/2H<sub>2</sub>O Aq solution sat at 18° contains 44% CaCrO<sub>4</sub>, sp gr = 1044 (Mylius and Wrochem, B 1900, 33 3688)

25°

91

+H<sub>2</sub>O Solubility in H<sub>2</sub>O at t° 0° 8° 13° 18° % CaCrO<sub>4</sub> 11 5 108 103 96

t° 40° 90° 100° 75° 60° % CaCrO<sub>4</sub> 78 57 46 36 31 (Mylius and Wrochem, Gm-K 3 I, 1386)

(Bahr)

Sp gr of solution containing 96% by wt CaCrO, at 18°=1 096 Wrochem, B 1900, **33**, 3688) (Mylius and +2H<sub>2</sub>O Sol in 2413 pts H<sub>2</sub>O at 14° (Siewert ) Sol in 34 pts H.O (Schwarz, Dingl 198

159)

Solubility of two modifications in H<sub>2</sub>O at t° a modification

0° 30° 45° 20° % CaCrO<sub>4</sub> 14 75 142213 89 12 53

β modification

14° 18° 195° 30° 40° 103 104 % CaCrO<sub>4</sub> 98 10 104 104 (Mylus and Wrochem Gm-K 3 I, 1387)

 $\alpha$  modification Sp gr of the solution containing 14 3% by wt CaCrO 4 at 18°=1 149 (Mylius and Wrochem, B 1900, 33 3688 )

 $\beta$  modification Sp gr of the solution containing 10 3% by wt CaCrO<sub>4</sub> at 18°=1 105 (Mylius and Wrochem, B 1900, 33 3688) Easily sol in H<sub>2</sub>O containing CrO<sub>3</sub>

Insol in absolute alcohol

50 cc of alcohol (29%) dissolve 0 608 g CaCrO<sub>4</sub>, 50 cc of alcohol (53%) dissolve 0 44 g CaCrO<sub>4</sub> (Fresenius, Z anal 30 672) Sol in acids and in dilute alcohol (Caron and Raquet, Bull Soc 1906, (3) 35 1064)

## Calcium dichromate, CaCr<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O

Very deliquescent (Bahr, J pr 60 60) In sat solution at 18°, 61% CaCr<sub>2</sub>O<sub>7</sub> is essent (Mylius and Wrochem, Gm -K 3 present I, 1387)

Sol in icctone (Naumann, B 1904, 37

Calcium potassium chromate, CaCrO<sub>4</sub>,  $K_2C_1O_1$ 

R 1914, **158** 495)

(Barre, ( R 1914, **158** 495) +H<sub>2</sub>O | Fusily sol in H O (Duncan) Insol in H () when ignited

+2H<sub>2</sub>O F suly sol in H<sub>2</sub>O, even after Insol in alcohol (Duncan, J B ignition **1850** 313)

Formed below 45° (Buic, C R 1914, **158** 495)

Sol in cold H () Sl sol in sat K<sub>2</sub>CrO<sub>4</sub>+

Aq (Groger, 1 morg 1907, **54** 187)
Two modifications Solubility of α modification is somewhat less than that of the (Wyrouboff, Bull  $\beta$  modification Min 1891, 14 255)

Solubility of two modifications in H<sub>2</sub>O at t°

0° 15° Solubility of a 23 06 250623 01 24.45

(Rakowski, C C 1909, I 133)

4CaCrO<sub>4</sub>, K CrO<sub>4</sub> 5CaCrO4, K.CrO4 Sol in much H<sub>0</sub>O

Calcium chromate potassium sulphate, CaCrO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub>+H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Hannay, Chem Soc **32** 399)

CaCrO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub>, K<sub>2</sub>CrO<sub>4</sub> As above (H)

Cerous chromate

Insol in H<sub>2</sub>O

Calcium strontium chromate, CaSr(CrO<sub>4</sub>)<sub>2</sub> (Bourgeois, Bull Soc Min 1879, 2 123)

Ceric dichromate, CeO<sub>2</sub>, 2CrO<sub>3</sub>+2H<sub>2</sub>O

Insol in H<sub>2</sub>O, sol in acids, decomp completely by boiling H<sub>2</sub>O (Bricout, C R 1894, 118 145)

Chromic chromate,  $CrO_2 = Cr_2O_3$ ,  $CrO_3$ 

Insol as such in H2O, but decomp thereby into CrO<sub>3</sub> and Cr<sub>2</sub>O<sub>3</sub>, decomp by alkaline and many saline solutions Easily sol in dil acids if recently pptd, but with difficulty if dried at a high temp (Eliot and Storer, Proc Am Acad 5 207)

Cr<sub>5</sub>O<sub>12</sub>=Cr<sub>2</sub>O<sub>3</sub>, 3CrO<sub>3</sub> Sol in HCl+Aq Very slowly sol in HNO<sub>3</sub>+Aq Slowly decomp by H2SO4 or NH4OH+Aq Easily decomp by KOH+Aq

(Ehot and Storer, lc) Does not exist Cr<sub>8</sub>O<sub>15</sub>=3Cr O<sub>3</sub> 2CrO<sub>3</sub> Easily sol in HCl or HNO<sub>3</sub>+Aq difficulty sol in acetic acid Easily sol in KOH+Aq (Traube, A 66

108)

Existence doubtful  $C_{f_5}O_9 = 2C_{12}O_3$ ,  $C_1O_3$  Insol in all acids, even aqua regia, slowly attacked by a boiling conc solution of alkali hydroxides (Geuther and Merz, A 118 62) Cr3O, according to Wohler

Chromic cupric chromate, CuCr<sub>4</sub>O<sub>9</sub>, Cr O<sub>3</sub>+ 12H O

Insol in H () and H<sub>2</sub>SO<sub>4</sub> Sol in HCl and HNO<sub>3</sub> (Rosenfeld, B 1879, 12 957)

6CuO, Cr<sub>2</sub>O<sub>3</sub>, CrO<sub>3</sub>+9H O H<sub>2</sub>O Sol in acids (Rosenfeld, B 1879, 12 958)

Chromic potassium chromate, ('1 H ((104),  $K_2CrO_4(?)$ 

Insol in H2O, alcohol, or acetic acid. Not attacked by cold HNO3+Aq, sl oxidized when hot Insol in cold, easily sol in hot H<sub>2</sub>SO<sub>4</sub> Sl sol in SO<sub>2</sub>+Aq Sol in conc HCl+Aq (Tomması, Bull Soc (2) 17 396)

Chromous potassium chromate,  $K_2CrO_4(CrO_2)_2 = K_2Cr(CrO_4)$  (?)

Sat cold solution in HO contains 9% of the salt Insol in alcohol and ether (Heintze, J pr (2) 4 212)

Cobaltous chromate, basic, 3CoO, CrO<sub>3</sub>+ Cupric tetrachromate, CuCr<sub>4</sub>O<sub>13</sub>+2H<sub>2</sub>O

4H<sub>2</sub>O (Malagutı and Decomp by H<sub>2</sub>O Ppt Sarzeau, A ch (3) 9 431) True formula is 2CoO, CrO<sub>8</sub>+2H<sub>2</sub>O (Freese, Pogg 140 252)

4CoO, 3CrO<sub>8</sub>+2H<sub>2</sub>O Decomp by H<sub>2</sub>O (Groger, Z anorg 1906,

**49** 203 )

Cobaltous chromate, CoCrO4

Much more sol in H<sub>2</sub>O than NiCrO<sub>4</sub> Easily sol in hot dil HNO3+Aq (Briggs, Z anorg 1909, 63 327) Ppt (Briggs, Z anorg 1909,  $+2H_{2}O$ **63** 328 )

Cobaltous dichromate, CoCr<sub>2</sub>O<sub>7</sub>+H<sub>2</sub>O

Deliquescent Very sol in H<sub>2</sub>O (Briggs, Z anorg 1907, 56 247)

Cobaltous potassium chromate, basic  $K_2O$ ,  $4C_0O$ ,  $4C_1O_3+3H_2O$ 

Sol m cold dil H<sub>2</sub>SO<sub>4</sub>+Aq (Groger. Z anorg 1906, 49 199)

Cobaltous potassium chromate, K<sub>2</sub>Co(CrO<sub>4</sub>)<sub>2</sub>  $+2H_2O$ 

Decomp by H<sub>2</sub>O (Groger, Z anorg 1906, 49 200)

> chromate, basic, 3CuO, CrO<sub>3</sub>+  $_{\rm H_2O}$

\_\_sol in H<sub>2</sub>O Easily sol in dil HNO<sub>3</sub>-Aq and in NH<sub>4</sub>OH+Aq Decomp by KOH +Aq (Malaguti and Sarzeau, A ch (3) 9 434)

7CuO, 2CrO₃+5H₂O Ppt (Rosenfeld, B 13 1469) 7CuO,  $CrO_3+5H_2O$  Ppt (R)

Cobaltous dichromate mercuric cyanide,  $CoCr_2O_7$ ,  $2Hg(CN)_2+7H_2O$ 

Very stable Sol in  $H_2O$  (Kruss, Z anorg 1895, 8 458)

Cupric chromate, CuCrO<sub>4</sub>

Insol in H<sub>2</sub>O, very sol in chromic acid and in other acids, decomp by boiling with  $H_2O$  (Schulz, Z anorg 1895, 10 152)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 827)

Cupric dichromate, basic, CuCr<sub>2</sub>O<sub>7</sub>, 2CuO (Stanley, C N 54 194)

Cupric dichromate, CuCr<sub>2</sub>O<sub>7</sub>+2H<sub>2</sub>O

Deliquescent Very easily sol in H<sub>2</sub>O, NH<sub>4</sub>OH+Aq, and alcohol (Droge, A 101)

Aqueous solution is decomp by boiling

(Malaguti and Sarzeau, A ch (3) 9 456) Very hygroscopic Very sol in H<sub>2</sub>O without decomp (Schulz, Z anorg 1895, 10 150)

Decomp when its solution Deliquescent in H<sub>2</sub>O is concentrated (Groger, Z anor 1910, 66 15)

Cupric lead chromate, 2(PbCrO4, PbO (2CuCrO<sub>4</sub>, CuO)

Min Vauquelinite Sol in acids

Cupric potassium chromate, basic,  $KCu_2(OH)(CrO_4)_2+H_2O$ 

Ppt (Groger, M 1903, 24 485) 3CuO, K<sub>2</sub>O, 3CrO<sub>3</sub>+2H<sub>2</sub>O Nearly mso

Sol in NH4OH or (NH4)2CO3+A ın H<sub>2</sub>O (Knop, A 70 52)

Does not exist (Rosenfeld, B 13 1472 4CuO, K<sub>2</sub>O, 4CrO<sub>3</sub>+H<sub>2</sub>O Decomp booling H<sub>2</sub>O (Gerhardt) Decomp by boiling H<sub>2</sub>O (Gr  $+3H_2O$ 

ger, Dissert **1880**)

Cupric potassium chromate ammonia, K<sub>2</sub>Cu(CrO<sub>4</sub>)<sub>2</sub>, 2NH<sub>3</sub>

Very sol in dil NH<sub>3</sub>+Aq decomp by H<sub>3</sub>(Briggs, Chem Soc 1904, **85** 672)

Cupric chromate ammonia, CuCrO4, 4NH

Decomp by H<sub>2</sub>O Sol in dil NH<sub>4</sub>OH (Parravano and Pasta, Gazz ch 1 1907, 37 (2), 255)

4CuCrO<sub>4</sub>, 3NH +5H O Sol in HCl ar NH<sub>4</sub>OH+Aq, insol in organic solvents, easi sol in AgNO<sub>3</sub>+Aq (Schuyten, C C 190

2CuCrO<sub>4</sub>, 7NH<sub>3</sub>+HO Decomp by H<sub>2</sub>( Very sol in dil  $NH_1OH + \Lambda q$ (Briggs, Cher Soc 1904, 85 673)

3CuO, 2C1O3, 10NH3+2HO Decom by H<sub>2</sub>O, sl sol or insol in alcohol, ether, NH4OH+Aq (Miliguti ind Sarzeau)

Decomp by hot HO, 1050l in alcoho (Bottger)

Cupric dichromate CuCr<sub>2</sub>C ammonia,  $4NH_3 + 2H_2()$ 

Decomp by H () Sol in dil NH40H (Purivino ind Pisti, Gizz ch Αq 19**07, 37** (2) 255)

Cupric dichromate mercuric cyanide, CuCr O,  $Hg(CN) + 5H_2O$ 

Not hygroscopic Sol in II () (Kruss, anorg 1895, **8** 461 )

Didymium chromate, 1)1 (( 1()4)3

SI sol in HO, cisily in dil acids (Fr richs and Smith, A 191 353) +7H<sub>2</sub>O (Cleve)

Didymium potassium chromate,  $D_{12}(CrO_4)_3$ ,  $K_2CrO_4$ 

Precipitate Decomp by H<sub>2</sub>O (Cleve, Dysprosium chromate, Dy2(CrO4)3 +10H<sub>2</sub>O

Very sl sol in H<sub>2</sub>O 1 0002 pt is sol in 100 pts H<sub>2</sub>O at 25° (Jantsch, B 1911, 44 1276)

Glucinum chromate, basic, GlCrO<sub>4</sub>, 13GlO+ 23H<sub>2</sub>O

 $\mathbf{Ppt}$ Insol in H<sub>2</sub>O (Creuzberg, Dingl **163** 449 )  $GlCrO_4$ ,  $6Gl(OH_2)$ 

Ppt Insol in H<sub>2</sub>O (Glassmann, B 1907, 40 2603)

Glucinum chromate, GlCrO<sub>4</sub>+H<sub>2</sub>O

Decomp by H2O with separation of the basic chromate (Glassmann, B 1907, 40 2603)

Gold (auric) chromate, Au<sub>2</sub>(CrO<sub>4</sub>)<sub>3</sub>,CrO<sub>3</sub> (Orloff, Ch Z 1907, **31** 1182)

Indum chromate

Ppt (Meyer)

Indium dichromate Very sol in HO Known only in solution

Iron (ferric) chromate, basic

(Maus) Decomp by H<sub>2</sub>O Fe<sub>2</sub>O<sub>3</sub>, CrO<sub>3</sub> Insol in H<sub>2</sub>O, but decomp thereby, or by saline solutions, easily sol in (Eliot and Sol in H CrO<sub>4</sub>+Aq Storer, Proc Am Acid 5 216)

Iron (ferric) dichromate

Sol in HO and alcohol (Maus, Pogg 9 132)

Iron (ferric) potassium chromate, basic,

2CrO₃, 6F (2O , 3K O 4CrO<sub>3</sub>, 3F(2O<sub>3</sub>, 4K<sub>2</sub>O) 10C1O3, 6Fc O3, 7K2O 11C<sub>1</sub>()<sub>3</sub>, 3Fe ()<sub>3</sub>, 4K<sub>2</sub>()+9H () 9Cr()<sub>3</sub>, 2Fe ()<sub>3</sub>, 6K ()+6H<sub>2</sub>() 9CrO<sub>3</sub>, 21 C<sub>2</sub>O<sub>3</sub>, 6K<sub>2</sub>O+10H<sub>2</sub>O 10CrO<sub>3</sub>, 3F<sub>4</sub> O<sub>3</sub>, 6K<sub>2</sub>O +5H<sub>2</sub>O 7CrO<sub>3</sub>, 2F<sub>4</sub>C<sub>2</sub>O<sub>3</sub>, 2K O +7H<sub>2</sub>O 4C<sub>1</sub>O<sub>3</sub>, F<sub>4</sub>O<sub>3</sub>, K O +4H O 6C1O3, 21+6 O3, 3K2O 16Cr(), 4F(2O3, 5K2O+8H2O

Above compounds are ppts, insol in H<sub>2</sub>O, alcohol and other (I epiene, C R 1894, 119,

1215-18)

Iron (ferric) potassium chromate,  $\text{I-C}_2(\text{CrO}_4)_3, \text{ K}_2\text{CrO}_4 + 4\text{H}_2\text{O}$ 

Decomp by much H2O, conc HCl, or Not decomp by alcohol NH<sub>4</sub>OH+Aq Not de (Hensgen, B **12** 1300)

Iron (ferric) sodium chromate, basic, 5CrO<sub>3</sub>, 7Fe<sub>2</sub>O<sub>3</sub>, 4Na<sub>2</sub>O Ppt (Lepierre, C R 1894, 119, 1217)

Lanthanum chromate, La<sub>0</sub>(CrO<sub>4</sub>)<sub>3</sub>

Sl sol in cold, more easily in hot H<sub>2</sub>O, easily sol in acids (Frerichs and Smith, A 191 355

 $+8H_{\bullet}O$  $\mathbf{Ppt}$ (Cleve)

Lanthanum potassium chromate (Cleve)

Lead chromate, basic, 2PbO, CrO<sub>3</sub> (chrome

Insol in H<sub>2</sub>O, acetic acid dissolves out ½ the PbO Sol in KOH+Aq (Badams. Pogg 3 221)

Insol in acetone (Naumann, B 1904, 37

3PbO, CrO<sub>3</sub> (Hermann, Pogg 28 162) +H2O Ppt (Stromholm, Z anorg 1904, **38** 443)

Sol Min Melanochroite, Phænicocroite in acids

PbO, PbCrO<sub>4</sub> Ppt (S)

Lead chromate, PbCrO<sub>4</sub>

Pptd from Pb(NO<sub>3</sub>)<sub>2</sub> in Insol in H<sub>2</sub>O presence of 70,000 pts H<sub>2</sub>O (Harting)

Calculated from electrical conductivity of PbCrO<sub>4</sub>+Aq, 1 l H<sub>2</sub>O dissolves 0.2 mg PbCrO<sub>4</sub> at 18° (Kohlrausch and Rose, Z phys Ch 12 241)

1 l H<sub>2</sub>O dissolves 12×10- g PbCrO<sub>4</sub> at 25° (Hevesy, Z anorg 1913, **82** 328) Sol in dil H SO<sub>4</sub>+Aq (Storer), sl sol in

dıl HNO<sub>3</sub>+Aq

Sol in 560 pts HNO<sub>3</sub>+Aq of 1 12 sp gr, in 150 pts HNO<sub>3</sub>+Aq of 1 225 sp gr, in 130 pts HNO<sub>3</sub>+Aq of 1 265 sp gr, in 80 pts HNO<sub>3</sub>+Aq of 1 395 sp gr (Storet's Dict )

Solubility of PbCrO<sub>4</sub> in HNO<sub>3</sub>+Aq at 18° (Millimols per l)

0 3 0.4N0 1N 0.2N1 44 1 13 0 506 0 844 (Beck and Stegmuller, lc)

Easily decomp by hot HCl+Aq (Frescinus)

## Solubility of PbCrO<sub>4</sub> in HCl+Aq (Millimols per l)

| t°             | 0 1N                    | 0 2N                    | 0 3N                           | 04\                  | Vc 0                 | 061                  |
|----------------|-------------------------|-------------------------|--------------------------------|----------------------|----------------------|----------------------|
| 18<br>25<br>37 | 0 186<br>0 239<br>0 357 | 0 393<br>0 485<br>0 744 | 0 3N<br>0 654<br>0 839<br>1 31 | 1 07<br>1 32<br>2 10 | 1 56<br>4 06<br>3 28 | 2 25<br>2 95<br>4 69 |

(Beck and Stegmuller, Arb K Gesund Amt 1910, 34 446)

Insol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Easily sol in KOH, or NaOH+Aq 1 l KOH+Aq (½ normal) dissolves 119 PbCrO<sub>4</sub> at 15°, 16 2 g at 60°, 26 1 g at 80°, (Lachaud and Lepierre, Bull

Sol in K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>+Aq, almost completely insol in NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, or NH<sub>4</sub>NO<sub>3</sub>+Aq

Not pptd in presence of Na citrate (Spil-

(Brett, 1837)

Magnesium chromate, MgCrO4

(Dufau, C R 1896, 123 888)

Sol in H<sub>2</sub>SO<sub>4</sub>, and HCl, insol in H O<sub>8</sub>

13

Sp gr of MgCrO<sub>4</sub>+Aq sat at t°/4°

Ag Sl sol in  $NH_4Cl+Aq$  or  $NH_4NO_3-Aq$ 

3Hg<sub>2</sub>O, CrO<sub>3</sub> Sol in HNO<sub>3</sub>+Aq (I ch-

Does not exist (Richter, B 15 148)

38 5 g at 102 Soc (3) 6 230)

(Rammelsberg)

 $L_{12}CrO_4+\frac{1}{2}H_2O$ 

Lithium potassium chromate, K2CrO4,

Hydroscopic (Zehenter, M 1897, 18 54) | ter)

Insol in NH4Cl+Aq

13 6° 14 5° ler) % MgCrO<sub>4</sub> Sp gr 1231 218627 Insol in liquid NH<sub>3</sub> (Franklin, Am Ch 1 170 1 0886 1 1641 J 1898, 20 828) (Slotte, W Ann 1881, 14 19) (Naumann, B 1904, Insol in acetone **37** 4329) Min Crocoite Sol in hot HCl+Aq, diffi-(Naumann, B 1904 Sol in acetone cultly sol in HNO3+Aq, sol in KOH+Aq +7H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Vauque 100 cm of solution sat at 18° contain Lead dichromate, PbCr<sub>2</sub>O<sub>7</sub> MgCrO<sub>4</sub> (Kohlrausch, B A B 1897 9 ) Decomp by H<sub>2</sub>O Sp gr of solution sat at 18 = 1 422, and +2H<sub>2</sub>O As above (Preis and Raymann, contains 42% MgCrO<sub>4</sub> chem, B 1897, **30** 1718) (Mylius and ro-B 13 340) +5H<sub>2</sub>O Very sol in H<sub>2</sub>O (Wyrot off, Lead lithium chromate, PbCrO<sub>4</sub>, Li<sub>2</sub>CrO<sub>4</sub> Bull Soc Min 12 60) (Lachaud and Lepierre, C R 110 1035) Magnesium dichromate, Mg<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> Lead potassium chromate, PbCrO<sub>4</sub>, K<sub>2</sub>CrO<sub>4</sub> Sol in  $H_2O$ Insol in hot or cold H<sub>2</sub>O or in alcohol Dil Sl sol in alcohol (Reinitzer, Zeit ar ew acids dissolve out K2CrO4 (Lachaud and 1913, **26** 456) Lepierre, C R 110 1035) Decomp by H<sub>2</sub>O Stable in contact with Magnesium potassium chromate, Mg( O<sub>4</sub>, solutions containing  $K_2CrO_4+2H_2O$ 8 950 pts K<sub>2</sub>CrO<sub>4</sub> per 100 pts H<sub>2</sub>O at 10° 100 pts H<sub>2</sub>O dissolve 28 2 pts at 20°, 27 5° 8 077 pts at 60° (Schweitzer) " " " " " 7 629 " 37 5° Sol in HO Sl sol in sat k<sub>2</sub>CrO<sub>4</sub>- Aq " " " " " " " 50 0° 7 150 (Groger, Z anorg 1907, **54** 188) " " " " 76 0° 6 145 Insol in alcohol " " " " 100 0° 4 940 +6H<sub>2</sub>OEfflorescent (Briggs, C (Barre, C R 1914, 158 497) Soc 1904, **85** 679 Lead sodium chromate, PbCrO<sub>4</sub>, NaCrO<sub>4</sub> Magnesium rubidium chromate, Sol in H<sub>2</sub>O(?) (Lachaud and Lepierre)  $MgRb_2(CrO_4)_2 + 6H_2()$ PbCrO<sub>4</sub>, 2PbO, Na<sub>2</sub>CrO<sub>4</sub> (L and L) (Briggs Chem Soc 1904, 85 679) (Ba sei. Chem Soc 1911, 99 1327) Lithium chromate, L<sub>12</sub>CrO<sub>4</sub> 100 cc of solution sat at 18° contain 85 g Magnesium sodium chromate anhydrous salt (Kohlrausch, B (Stanley, C N **54** 194) **1897** 90 ) 99 94 pts are sol in 100 pts H<sub>2</sub>O at 30° Manganous chromate, 2Mn(), (1()<sub>3</sub>+ Ppt Sol in dil II SO<sub>4</sub> or HN()<sub>3</sub>-<sub>2</sub>() (Schreinemakers, C C 1905 II, 1486) +2H<sub>2</sub>O Very easily sol in H<sub>2</sub>O (Ram-(Warrington and Reinsch Schw J 3 melsberg, Pogg 128 323)
100 g H<sub>2</sub>O dissolve 111 g salt at 20° 78) Manganous potassium chromate, Mn( () (Von Weimarn, C C 1911 II, 1300) Sp gr of solution sat at 18°=1574, and contains 526% I CrO<sub>4</sub> (Mylius and Wro-K<sub>2</sub>Cr()<sub>4</sub>+2H<sub>2</sub>() Decomp by H() Sol in dil (Groger Z anorg 1905, 44 459) chem, B 1897, 30 1718)  $2MnCrO_4$ ,  $K_2C_1O_4+4II()$  Sol in 2() (Hensgen, R t ( 3 4}}) Lithium dichromate, Li<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> 1304 pts are sol in 100 pts H<sub>2</sub>O at 30° Mercurous chromate, basic, 4Hg (), 3C (Schrememakers, C C 1905 II, 1486) Very sl sol in cold, more in boiling o  $+2H_2O$ Deliquescent Sol in H<sub>2</sub>O Sl sol in HNO3+Aq Decomp by H

(Brett)

 $3Hg_2O$ ,  $2CrO_3$  Ppt (Fichter, Z anorg 1912, **76** 350)

Mercurous chromate, Hg<sub>2</sub>CrO<sub>4</sub>

Very sl sol m cold, more readily in hot H<sub>2</sub>O Sl sol m dil HNO<sub>3</sub>+Aq, sol in conc HNO<sub>3</sub>, sol in KCN+Aq, insol in Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub> +Aq (Rose, Pogg 53 124)

Less sol in K<sub>2</sub>CrO<sub>4</sub>+Aq than in H<sub>2</sub>O (Fichter, Z anorg 1912, 76 349)

Insol in acetone (Naumann, B 1904, 37

4329)

Mercuric chromate, basic, 2HgO, CrO<sub>3</sub> Sol in HCl, and in HNO<sub>3</sub>+Aq (Geuther)

3HgO, CrO<sub>3</sub> Sl sol in H<sub>2</sub>O (Millon) The only true compound All others are mixtures of HgO or HgCrO<sub>4</sub> with this compound (Cox, Z anorg 1904, 40 155) 4HgO, CrO<sub>3</sub> Sl sol in H<sub>2</sub>O (Millon, A ch (3) 18 365)

7HgO, 2CrO<sub>3</sub> Easily sol in warm HNO<sub>3</sub>, when freshly precipitated Easily sol in HCl+Aq (Geuther, A 106 247)

Does not exist (Freese, B 2 477)
5HgO, CrO<sub>3</sub> Easily sol in HCl+Aq
Very sl sol in HNO<sub>3</sub>+Aq Decomp by
H<sub>2</sub>O into—

6HgO, CrO<sub>3</sub> Insol in H<sub>2</sub>O (Jager and Kruss, B **22** 2049)

Mercuric chromate, HgCrO4

Decomp by H<sub>2</sub>O and acids into basic salt (Geuther)

Salt (Geuther)
Sol in acids Sol in warm NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>3</sub>+Aq Sol in Hg(NO<sub>3</sub>)<sub>2</sub>, or HgCl<sub>2</sub>+

Insol in cthyl acetate (Naumann, B 1910, 43 314)

Insol in acetone (Naumann, B 1904, 37 4329)

Mercuric dechromate, HgCr<sub>2</sub>O<sub>7</sub>

Ppt (Giwilowski, C C 1906 II, 1307)

Mercurous potassium chromate,  $Hg_2K_2(\tilde{Cr}()_4)_2$ 

Ppt, decomp by H<sub>2</sub>O (Groger, Z anorg 1907, **54** 191)

Mercuric chromate, basic, ammonia, 12HgO, 3CrO<sub>3</sub>, 2NH<sub>3</sub>+3H<sub>2</sub>O

(Groger, Z morg 1908, 58 420)

Mercuric chromate ammonia, HgCrO<sub>4</sub>, 2NH<sub>3</sub>+H<sub>2</sub>O (Groger, Z anorg 1908, **58** 419)

Mercuric chromate sulphide, 2HgCrO<sub>4</sub>, HgS Not attacked by weak acids (Palm, C C 1863 121)

Nickel chromate, basic, 4NiO, CrO<sub>3</sub>+6H<sub>2</sub>O Insol in H<sub>2</sub>O, easily sol in NH<sub>4</sub>OH+Aq (Malaguti and Sarzeau, A ch (3) 9 451)

 $3N_{10}$ ,  $CrO_3+6H_{*}O$  Insol in  $H_{2}O$ , sol in  $NH_{4}OH+Aq$  (Freese, J B **1869** 271) 2N\_{10},  $CrO_3+6H_{2}O$  As above (Schmidt, A **156** 19) 5N\_{10},  $2CrO_3+12H_{*}O$  As above (Schmidt)

Nickel chromate, NiCrO4

Not attacked by boiling H<sub>2</sub>O Nearly msol in hot dil HNO<sub>2</sub> Slowly sol in conc HNO<sub>3</sub> and aqua regia Somewhat sol in NH<sub>2</sub>+Aq (Briggs, Z anorg 1909, **63** 326)

Nickel dichromate, 2NiCr<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O

Slowly sol in cold, rapidly sol in hot H O Deliquescent (Briggs, Z anorg 1907, **56** 246)

Nickel potassium chromate, NiCrO<sub>4</sub>, K<sub>2</sub>CrO<sub>4</sub> +2H<sub>2</sub>O

Decomp by  $H_2O$  (Groger, Z anorg 1906, 51 353) +6 $H_2O$  Efflorescent (Briggs, Chem

Soc 1904, 85 678)

Nickel rubidium chromate, NiRb(CrO<sub>4</sub>)<sub>2</sub>+6H<sub>2</sub>O

Sl efflorescent at ord temp (Briggs, Chem Soc 1904, 85 678)

Nickel chromate ammonia,  $N_1CrO_4$ ,  $6NH_3+4H_2O$ 

Decomp by H O Quite easily sol in  $NH_4OH+Aq$  of 0 96 sp gr (Schmidt ) Insol in alcohol or ether

Potassium chromate, K CrO<sub>4</sub>, K Cr O, etc System K O, CrO<sub>3</sub>, H O at 0°

|                                                                                                                                                               | ,                                                                                                                                                                 |                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 100 g of th<br>tion c                                                                                                                                         | e at solu<br>ontain                                                                                                                                               | olid phas                       |
| g k <sub>2</sub> O                                                                                                                                            | g СтЭз                                                                                                                                                            |                                 |
| 31 18<br>26 06<br>19 31                                                                                                                                       | 0 54<br>4 27                                                                                                                                                      | k CrO4                          |
| 17 73<br>17 06<br>17 18<br>17 62<br>17 63<br>17 61<br>17 79<br>17 80<br>10 90<br>8 07<br>1 87<br>1 41<br>1 42<br>0 97<br>0 78<br>1 02<br>1 26<br>1 36<br>1 22 | 5 50<br>11 77<br>11 91<br>18 71<br>18 72<br>18 91<br>19 10<br>19 10<br>11 93<br>8 93<br>3 13<br>3 00<br>3 01<br>3 94<br>22 38<br>38 83<br>40 10<br>40 41<br>41 70 | K Cr()4+K Ct ()  ""  K Cr ()  " |

| System .             | K <sub>2</sub> O, CrO <sub>3</sub> ,                 | H <sub>2</sub> O at 0°—Continued                                                               | Sys                   | tem K <sub>2</sub> O,  | CrO <sub>3</sub> , H <sub>2</sub> O at 30°                                     |
|----------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|------------------------|--------------------------------------------------------------------------------|
| 100 g of th          |                                                      |                                                                                                | 100 g of th<br>tion c | ne sat solu<br>ontain  | Solid phase                                                                    |
| tion co              |                                                      | Solid phase                                                                                    | g K <sub>2</sub> O    | g CrO <sub>3</sub>     |                                                                                |
| g K <sub>2</sub> O   | g CrO <sub>3</sub>                                   |                                                                                                | 16 8                  |                        | KOH MIO                                                                        |
| 1 28                 | 41 75                                                | K Cr.O.                                                                                        | 46 8<br>26 89         | 0 94                   | KOH, 2H₂O                                                                      |
| 1 40                 | 41 75                                                | $\mathbf{K_2Cr_{\circ}O_7}$                                                                    | 22 25                 | 3 06                   | K₂CrO₄                                                                         |
| 1 23                 | $\begin{array}{cccc} 42 & 10 \\ 42 & 11 \end{array}$ | "                                                                                              | 19 52                 | 6 99                   | **                                                                             |
| 1 33                 | 42 16                                                | "                                                                                              | 18 65                 | 13 72                  | "                                                                              |
| 1 31                 | 42 28                                                | "                                                                                              | 18 60                 | 17 00                  | 4                                                                              |
| 1 38                 | 42 48                                                | "                                                                                              | 18 70                 | 17 03                  | **                                                                             |
| 1 40                 | 42 68                                                | "                                                                                              | 19 12                 | 20 30                  |                                                                                |
| 1 47                 | 42 93                                                | K.Cz.Oz+K.Cz.Oz                                                                                | 19 35                 | 21 00                  | K <sub>2</sub> Cr <sub>Q4</sub> +K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> |
| $\hat{1} \hat{47}$   | 42 95                                                | K <sub>2</sub> C <sub>12</sub> O <sub>7</sub> +K <sub>2</sub> C <sub>13</sub> O <sub>10</sub>  | 15 04                 | 16 85                  | K Cr.O.                                                                        |
| $\hat{1}$ $\hat{47}$ | 43 09                                                | "                                                                                              | 14 77                 | 16 51                  | K Cr <sub>2</sub> O <sub>7</sub>                                               |
| $\bar{1}$ $\bar{25}$ | 44 52                                                | $ m K_2Cr_3O_{10}$                                                                             | 12 28                 | 14 57                  | ٤.                                                                             |
| 1 27                 | 44 95                                                | "                                                                                              | 11 20                 | 13 11                  | "                                                                              |
| 1 18                 | 45 84                                                | "                                                                                              | 4 98                  | 10 48                  | 46                                                                             |
| 1 17                 | 46 84                                                | "                                                                                              | 3 07                  | 19 34                  | "                                                                              |
| 1 36                 | 47 22                                                | K <sub>2</sub> Cr <sub>3</sub> O <sub>10</sub> +K <sub>2</sub> Cr <sub>4</sub> O <sub>13</sub> | 2 42                  | 28 21                  | "                                                                              |
| 1 36                 | 47 31                                                | "                                                                                              | 2 35                  | 33 77                  | "                                                                              |
| 1 40                 | 47 67                                                | '_                                                                                             | 2 30                  | 36 78                  | "                                                                              |
| 1 24                 | 48 23                                                | K <sub>2</sub> C <sub>r4</sub> O <sub>18</sub>                                                 | 2 30                  | 40 41                  | "                                                                              |
| 1 35                 | 51 66                                                | 1                                                                                              | 2 50                  | 44 50                  | $K_2Cr_2O_7+K_2Cr_3O_1$                                                        |
| 1 10                 | 53 81                                                | "                                                                                              | 2 25                  | 49 95                  | $K \operatorname{Cr}_3 O_{10} + K_2 \operatorname{Cr}_4 O_1$                   |
| 1 08                 | 55 63                                                |                                                                                                | 1 35                  | 53 39                  | K <sub>2</sub> Cr <sub>4</sub> O <sub>1</sub>                                  |
| 1 16                 | 56 93                                                | "                                                                                              | 0 69                  | 62 81                  | $I_1 C_{14}O_{13} + CrO_3$                                                     |
| 0 96                 | 57 63                                                | "                                                                                              |                       | 62 52                  | $CrO_3$                                                                        |
| 1 16                 | 59 46                                                |                                                                                                | (Koppel e             | nd Blumon              | thal, Z morg 1907,                                                             |
| 0 91                 | 59 87                                                |                                                                                                | (Ixopper a.           |                        | 35)                                                                            |
| 0 81<br>0 70         | 60 16<br>61 76                                       | K-C1-O+CrO-                                                                                    | 1                     | _                      | <i>(3)</i>                                                                     |
| 0 62                 | 61 77                                                | K <sub>2</sub> C <sub>14</sub> O <sub>13</sub> +CrO <sub>3</sub>                               |                       |                        |                                                                                |
| 0 57                 | 61 78                                                | "                                                                                              | Sys                   | tem K₂O,               | C1()3, II () at 60°                                                            |
| 0 67                 | 61 86                                                | "                                                                                              | 100 +-                | a unt unle             | 1                                                                              |
|                      | 61 51                                                | $CrO_3$                                                                                        |                       | ie sat solu<br>contain | Solid above                                                                    |
|                      | 61 52                                                |                                                                                                |                       | T                      | Solid phase                                                                    |
|                      | 61 55                                                | "                                                                                              | £ K₂O                 | g CiO                  |                                                                                |
|                      | 61 57                                                |                                                                                                | c 50 0                |                        | POH HO                                                                         |
|                      |                                                      |                                                                                                | 32 98                 | 0.53                   | KOH, H <sub>2</sub> O<br>K CrO <sub>4</sub>                                    |
| (Koppel w            |                                                      | thal, Z morg 1907, <b>53</b>                                                                   | 21 05                 | 9 15                   | ik Glo4                                                                        |
|                      | 2                                                    | 245)                                                                                           | 20 70                 | 8 99                   |                                                                                |
|                      |                                                      |                                                                                                | 20 25                 | 14 43                  |                                                                                |
|                      |                                                      |                                                                                                | 20 32                 | 16 56                  |                                                                                |
|                      |                                                      | C () 37 () 1 306                                                                               | 20 67                 | 21 94                  | "                                                                              |
| hys                  | tem KO,                                              | C <sub>1</sub> () <sub>3</sub> , H () it 20°                                                   | 20 72                 | 22 00                  |                                                                                |
|                      |                                                      |                                                                                                | 20 68                 | 23 49                  | K C1O1+K2Cr2O7                                                                 |
|                      | he sat solu                                          |                                                                                                | 20 55                 | 23 74                  | K Cr₂O <sub>7</sub>                                                            |
| tion                 | ontain                                               | Solid phic                                                                                     | 14 53                 | 20 82                  | "                                                                              |
| g K20                | L CrO                                                | l                                                                                              | 13 36                 | 20 93                  | "                                                                              |
|                      |                                                      |                                                                                                | 10 01                 | 21 24                  | "                                                                              |
| 2 21                 | 42 92                                                | K Cr <sub>2</sub> O <sub>7</sub> +K <sub>2</sub> Cr <sub>3</sub> O <sub>10</sub>               | 10 01                 | 21 24                  | "                                                                              |
| 2 20                 | 43 28                                                | 1 '                                                                                            | 8 39                  | 26 95                  | "                                                                              |
| 2 10                 | 44 02                                                | K₂Cr₃O₁0                                                                                       | 7 65                  | 31 49                  | "                                                                              |
| 2 02                 | 45 28                                                |                                                                                                | 7 54                  | 32 92                  | "                                                                              |
| 2 01                 | 46 24                                                |                                                                                                | 6 86                  | 39 64                  | 1                                                                              |
| 2 00                 | 48 46                                                | K <sub>2</sub> C <sub>13</sub> O <sub>10</sub> +K <sub>2</sub> C <sub>14</sub> O <sub>13</sub> | 7 06                  | 49 84                  | K(r() <sub>7</sub> +K <sub>2</sub> Cr <sub>8</sub> O <sub>1</sub>              |
| 1 94                 | 48 62                                                | K <sub>2</sub> Cr <sub>4</sub> O <sub>13</sub>                                                 | 6 51                  | 50 40                  | K <sub>2</sub> Cr <sub>3</sub> O <sub>10</sub>                                 |
| 1 62                 | 49 01                                                | Ka o Lao                                                                                       | 5 33                  | 52 70                  | "                                                                              |
| 0 62                 | 62 80                                                | $K_2Cr_4O_{13}+CrO_3$                                                                          | 5 49 5 06             | 52 79 53 42            | "                                                                              |
| -                    |                                                      |                                                                                                | 5 12                  | 53 58                  | u                                                                              |
| (Koppel a            | nd Blumen                                            | thal, Z anorg 1907, 53                                                                         | 5 30                  | 53 70                  | "                                                                              |
|                      | 2                                                    | 243)                                                                                           | <u> </u>              | 1                      | <u> </u>                                                                       |
|                      |                                                      |                                                                                                |                       |                        |                                                                                |

| System I                                                                                             | System K <sub>2</sub> O, CrO <sub>3</sub> , H <sub>2</sub> O at 60°—Continued                                              |                                                                                                                                                                                   |  |  |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 100 g of the sat solu<br>tion contain                                                                |                                                                                                                            | Solid phase                                                                                                                                                                       |  |  |
| g K <sub>2</sub> O                                                                                   | g CıOs                                                                                                                     |                                                                                                                                                                                   |  |  |
| 5 01<br>4 06<br>3 29<br>2 95<br>3 01<br>2 50<br>2 31<br>2 00<br>2 05<br>1 70<br>1 79<br>1 57<br>1 27 | 54 09<br>54 73<br>54 91<br>55 43<br>56 41<br>58 05<br>58 69<br>60 69<br>61 25<br>61 27<br>61 29<br>62 57<br>65 77<br>65 12 | K <sub>2</sub> Cr <sub>3</sub> O <sub>10</sub> +K <sub>2</sub> Cr <sub>4</sub> O <sub>13</sub> K <sub>2</sub> Cr <sub>4</sub> O <sub>13</sub> " " " " " " " " " " " " " " " " " " |  |  |

(Koppel and Blumenthal, Z anorg 1907, 53 240)

System K<sub>2</sub>O, CrO<sub>3</sub>, H<sub>2</sub>O at the cryohydric pt

| Cryohy  | 100 g of            | thc solu           | Solid phase                                                                                                               |  |
|---------|---------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| drie pt | tion c              | ontain             |                                                                                                                           |  |
|         | g J <sub>12</sub> O | g CrO <sub>3</sub> |                                                                                                                           |  |
| -11 5°  | 17 18               | 18 11              | $\begin{array}{c} K_2 CrO_4 + K_2 Cr_2O_7 \\ K_2 Cr_2O_7 + K_2 Cr_3O_{10} \\ K_2 Cr_3O_{10} + K_2 Cr_4O_{13} \end{array}$ |  |
| -30 0°  | 1 18                | 42 51              |                                                                                                                           |  |
| -39 0°  | 0 79                | 45 69              |                                                                                                                           |  |

(Koppel and Blumenthal, Z anoig 1907, 53 263-5)

B-pt of solutions of CrO<sub>3</sub>+K O+Aq

| B pt                                              | 100 g of<br>tion (                    |                                               | Solid phase                                                                                                                                                                                                                          |
|---------------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | g K()                                 | ь (r()                                        |                                                                                                                                                                                                                                      |
| 109°<br>105 8<br>106 8<br>104 8<br>114 0<br>127 0 | 30 01<br>23 8<br>24 3<br>16 4<br>16 8 | 11 92<br>25 3<br>30 5<br>35 6<br>59 2<br>71 2 | K C <sub>1</sub> O <sub>4</sub> K <sub>2</sub> CrO <sub>4</sub> +K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> K Cr <sub>2</sub> O <sub>7</sub> K Cr <sub>2</sub> O <sub>7</sub> +K Cr <sub>3</sub> O <sub>10</sub> CrO <sub>3</sub> |

(Koppel and Blumenthal, 2 anorg 1907, 53 255)

Potassium chromate, k C<sub>1</sub>O<sub>4</sub> Easily sol in H ()

Sol in 2 pts. H () at 18.7; (Abl., 100 pts. H O it 1; dissolve 43.8;7 pts. K CrO<sub>1</sub> and solution has sp. r of 13032 (Michel and Krafft A ch. (3) 41.478)

1 pt dissolves in 2 07 pts H<sub>2</sub>O at 15 5° (Thomson)

1 pt dissolves in 175 pts H<sub>2</sub>O at 175° and in 167 pts H O at 100° (Moser)

| 0°           | pts H <sub>2</sub> O<br>10°<br>60 92 | 20°          |                | K.CrO4,                         |
|--------------|--------------------------------------|--------------|----------------|---------------------------------|
| 40°<br>66 98 | 50°<br>69 00                         | 60°<br>71 02 |                | K₂CrO₄,                         |
| 80°<br>75 06 |                                      |              | pts            | K <sub>2</sub> CrO <sub>4</sub> |
|              | (Allua                               | ard, C R     | <b>59</b> 500) |                                 |
|              |                                      |              |                |                                 |

100 pts H<sub>2</sub>O dissolve at—
0° 10° 27 37° 42 1°
61 5 62 1 66 3 70 3 pts K<sub>2</sub>CrO<sub>4</sub>,
63 6° 93 6° 106 1°
74 9 79 7 81 8 pts K<sub>2</sub>CrO<sub>4</sub>

(Nordenskjold and Lindstrom, Pogg 136 314)

100 pts K<sub>2</sub>CrO<sub>4</sub>+Aq sat at 10-12° contain 37 14 pts salt (v Hauer, J pr 103 114)
100 pts H<sub>2</sub>O at 19 5° dissolve 62 3 pts

 $100~\rm pts~H_2O$  at 195° dissolve 623 pts  $\rm K_2CrO_4,$  and solution has sp gr of 13787 (Schiff, A 109 326)

100 cc sat K C1O<sub>4</sub>+Aq contain 53 g K<sub>2</sub>CrO<sub>4</sub> at 19° (Kohlrausch, B A B **1897** 

100 pts H<sub>2</sub>O dissolve 64 91 pts K<sub>2</sub>CiO<sub>4</sub> at 30°, or 100 g of solution contain 39 36 g K<sub>2</sub>CrO<sub>4</sub> (Schreinemakers, Chem Weekbl 1905, **1** 837)

100 g H₂O dissolve
54 57 g K CrO₄ ut − 11 37° (cryohydru pt )
57 11 g " " 0°
65 13 g " " 30°
74 60 g " " 60°
88 80 g " " 105 8° (b-pt of sat sol )

(Koppel, Z anorg 1907, 53 262)

64 62 g K<sub>2</sub>CrO<sub>4</sub> ane sol in 100 g H<sub>2</sub>O at 25° (Amadori, Real Att I inc 1912, (5) **21,** I 667)

|                                                                         | Sp gr of K <sub>2</sub> CrO <sub>4</sub> +Aq at 19 5°                                                                                    |                                                                            |                                                                                                                                |                                                                            |                                                                                                                                          |  |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| % K2C rO4                                                               | Sp gr                                                                                                                                    | % K2CrO4                                                                   | Sp gr                                                                                                                          | % K2CrO4                                                                   | Sp gr                                                                                                                                    |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | 1 0080<br>1 0161<br>1 0243<br>1 0325<br>1 0408<br>1 0492<br>1 0576<br>1 0663<br>1 0750<br>1 0837<br>1 0925<br>1 1014<br>1 1104<br>1 1195 | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 1 1287<br>1 1380<br>1 1474<br>1 1570<br>1 1667<br>1 1765<br>1 1864<br>1 1964<br>1 2066<br>1 2169<br>1 2274<br>1 2379<br>1 2485 | 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 1 2592<br>1 2700<br>1 2808<br>1 2921<br>1 3035<br>1 3151<br>1 3268<br>1 3386<br>1 3505<br>1 3625<br>1 3746<br>1 3868<br>1 3868<br>1 3991 |  |

(Kremers, and Schiff, calculated by Gerlach, Z anal 8 288)

 $\rm K_2CrO_4$  dissolved in 2 pts  $\rm H_2O$  has sp gr, 128, 3 pts, 121, 4 pts, 118, 5 pts, 115, 6 pts, 112, 7 pts, 111, 8 pts, 110 (Moser) Sp gr of sat solution at 8°=1368 (Anthon, 1837)

Sp gr of sat K CrO<sub>4</sub>+Aq containing 24 26% K<sub>2</sub>CrO<sub>4</sub>=1 2335 at 18°/4° (Slotte, W Ann 1881, 14 18)

Sp gr of K<sub>2</sub>CrO<sub>4</sub>+Aq at 25°

| Concentration of K <sub>2</sub> CrO <sub>4</sub> +Aq | Sp gr                                |
|------------------------------------------------------|--------------------------------------|
| 1-normal 1/,- '' 1/4- '' 1/8- ''                     | 1 0935<br>1 0475<br>1 0241<br>1 0121 |

(Wagner, Z phys Ch 1890, 5 36)

Sat K<sub>2</sub>CrO<sub>4</sub>+Aq boils at 107° (Kremers) Sat K<sub>2</sub>CrO<sub>4</sub>+Aq boils at 104 2° under 718 mm pressure (Alluard)

Freezing point of sat  $K_2CrO_4 + Aq = -12.5^{\circ}$  (Rudorff)

By dissolving K<sub>2</sub>Cr()<sub>4</sub> in 2 pts H(), the temp is lowered 10° (Mosei)

100 pts sat solution of  $K_2CrO_4$  and  $K_3CrO_4$  contain 37 14 pts of the two salts at 10-12° (v. Hauer, J. pr. 103, 114.)

Solubility of  $K_2CrO_4+K_2SO_4$  in  $H_2()$  it 25° (G per 100 g  $H_2O$ )

| h2Cr()4                                            | K 504                                        | k CrO <sub>4</sub>                     | K 50;                                  |
|----------------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------|
| 63 09<br>61 39<br>58 40<br>51 81<br>40 93<br>27 36 | 0 76<br>1 17<br>1 84<br>2 36<br>3 33<br>4 82 | 20 83<br>14 65<br>7 81<br>4 36<br>1 94 | 5 75<br>7 12<br>8 98<br>10 25<br>10 86 |

(Amadon, Real Att Line 1912, (5) 21,

Insol in liquid NH<sub>3</sub> (Franklin, Am ( )
J 1898, **20** 829)

100 g sat solution in glycol at 15 4° c; tain 1 7 g  $K_2CrO_4$  (de Coninck, C C 19 , II 183)

Insol in benzonitrile (Naumann, 1914, 47 1370)

Insol m methyl acetate (Naumann, 1909, **42** 3790), ethyl acetate (Nauman B 1904, **37** 3601)

Insol in acetone (Naumann, B 1904, 4329, Eidmann, C C 1899 II, 1014)

+4H<sub>2</sub>O Easily sol in H<sub>2</sub>O and in NH<sub>4</sub>C I +Aq (Wesch, Dissert 1909)

Potassium dichromate, K2Cr2O7

Sol in H<sub>2</sub>O, with slight absorption of he Less sol in H<sub>2</sub>O than K<sub>2</sub>CrO<sub>4</sub>

Sol in 9 6 pts H<sub>2</sub>O at 17 3° (Thompson) 10 18 7° (Moser)

 $100~pts~H_2O$  at  $15^{\circ}$  dissolve 9 126 p  $K_2Cr_2O_7,$  and solution has sp gr=1.06 (Michel and Krafft, A ch (3) 41 478 )

100 pts  $H_2O$  dissolve pts  $K_2Cr$   $O_7$   $A=\epsilon$  cording to Alluard (C R 59 500), K according to Kremers (Pogg 92 497)

| t°                              | 4                                          | K                           | t°                          | A                                    | к                     |
|---------------------------------|--------------------------------------------|-----------------------------|-----------------------------|--------------------------------------|-----------------------|
| 0<br>10<br>20<br>30<br>40<br>50 | 4 6<br>7 4<br>12 4<br>18 4<br>25 9<br>35 0 | 4 97<br>8 5<br>13 1<br>29 1 | 60<br>70<br>80<br>90<br>100 | 45 0<br>56 7<br>68 6<br>81 1<br>94 1 | 50 5<br>73 0<br>102 0 |

Solubility in H<sub>2</sub>O it high temperature 100 pts H<sub>2</sub>O dissolve pts K Cr O<sub>7</sub> at t°

| t   | It K(r() | t   | Its K(r( |
|-----|----------|-----|----------|
| 117 | 125 3    | 148 | 200 6    |
| 129 | 153 8    | 180 | 262 7    |

(Tilden and Shenstone, Phil Trans 1884 23

Solubility of K (10 in H 0 at to

| t        | KCrO                                            | t   | % KCrO       |
|----------|-------------------------------------------------|-----|--------------|
|          | 4 1                                             | 92  | 42 8         |
| +1       | 4 3                                             | 97  | 14 0         |
| 6<br>7   | 5.6                                             | 101 | 45 0         |
|          | $\begin{array}{c c} 6 & 1 \\ 7 & 2 \end{array}$ | 120 | 52 0<br>54 4 |
| 12<br>15 | 7 2                                             | 150 | 60.8         |
| 20       | 10 4                                            | 157 | 62 8         |
| 29       | 14.2                                            | 175 | 66-6         |
| 36       | 16 6                                            | 215 | 76 9         |
| 57       | 28.2                                            | 291 | 89 7         |
| 61       | 30 2                                            | 312 | 91 8         |
| 65<br>70 | $\frac{32}{34} \frac{0}{4}$                     | 360 | 97 4         |
| 70       | 9 <del>4 4</del>                                |     |              |
|          |                                                 |     |              |

(Étard, A ch 1894, (7) 2 550)

 $100~g~H_2O~dissolve~10~l~g~K_2Cr_2O_7~at~15~5°~(Greenish~and~Smith,~Pharm~J~1901,~\bf{66}~774~)$ 

100 pts  $\rm H_2O$  at 30° dissolve 18 12 pts  $\rm K_2Cr_2O_7$  (Schreinemakers, Chem Weekbl 1905 1 837)

100 g H<sub>2</sub>O dissolve

18 13 g " " 30°

45 44 g " " 60° 108 2 g " " 104 8° (b-pt of sat sol) (Koppel, Z anorg 1907, **53** 263)

100~c~c~ sat solution contain 1143 g  $\rm K_2Cr_5O_7$  at 20° (Sherrill and Eaton, J Am Chem Soc 1907, 29 1643 )

100 g sat K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> contain

5 52 g K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> at 4 81° 15 17 " 30 10° 17 77 " " 35 33°

(Le Blanc and Schmandt, Z phys Ch 1911, 77 614)

100 g sat  $K_2Cr_2O_7 + Aq$  at 35 03° contains 17 72 g  $K_2Cr_2O_7$  (Le Blanc, Z phys Ch 1913, 86 335)

K Cr () +Aq sat at S has sp gr 1065 (Anthon 1837)

Sp gi of K Cr<sub>2</sub>O<sub>7</sub>+Aq at 19 5°

| % K Cr2O7                            | ∽p gr                                                                | % K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> | Sp gr                                                       |  |
|--------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|--|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 1 007<br>1 015<br>1 022<br>1 030<br>1 037<br>1 043<br>1 050<br>1 056 | 9<br>10<br>11<br>12<br>13<br>14<br>15           | 1 065<br>1 073<br>1 080<br>1 085<br>1 097<br>1 109<br>1 110 |  |
|                                      |                                                                      | 1                                               |                                                             |  |

(Kremers, calculated by Gerlach, Z anal 8 288)

Sp gr of  $K_2C_{12}O_7 + Aq$  containing 4.71%  $K_2C_{12}O = 1.0325$  it  $11^\circ/4^\circ$ , containing 6.97% K.C.r.O = 1.0493 it  $10.6^\circ/4^\circ$  (Slotte, W Ann 1881, 14.18)

S at  $K_2C_{12}O_7 + \Lambda q$  boils at  $104^\circ$  (Kiemers),  $103.4^\circ$  (Alluard)

Insol in alcohol

Sl sol in liquid NH (Franklin, Am Ch. 1 1898, 20 829)

Insol in Mohol (Remitzer, Zeit ingew

Ch 1913, **26** 456)

100 g Sat Solution in glycol contain 6 g K.Ci.O., (dc Coninck, Bull acad roy Belg 1905, 257)

Insol in benzonitrile (Naumann, B

1914, **47** 1370) Insol in acetone (Naumann, B 1904, **37** 

4329)

Insol in acetone and in methylal (Eidmann, C C 1899 II, 1014)

Potassium trichromate, K<sub>2</sub>Cr<sub>3</sub>O<sub>10</sub>

Easily sol in  $H_2O$  and alcohol (Bothe, J pr 46 184)

Not deliquescent, decomp by  $\rm H_2O$  in chromic acid and  $\rm K_{^{\circ}}Cr_2O_7$  (Jager and Kruss, B ~22~ 2041)

Potassium tetrachromate, K<sub>2</sub>Cr<sub>4</sub>O<sub>13</sub>

Very deliquescent, and easily sol in H<sub>\*</sub>O (Schwarz, Dingl 186 31)

Not deliquescent Decomp by H<sub>2</sub>O (Jager and Kruss, B **22** 2042)

Potassium samarium chromate, K<sub>2</sub>Sm<sub>2</sub>(CrO<sub>4</sub>)<sub>4</sub>+6H<sub>2</sub>O

Precipitate (Cleve)

Insol in ethyl acetate (Naumann, B 1904, 37 3601)

Potassium sodium chromate, 3K<sub>2</sub>CrO<sub>4</sub>, Na<sub>2</sub>CrO<sub>4</sub>

Sol m  $\rm H_2O$  (v Hauer, J pr 83 359) 642 pts are sol in 100 pts  $\rm H_2O$  at 14° (Zehenter, M 1897, 18 49)

Potassium strontium chromate, K. Sr(CrO<sub>4</sub>)

Ppt Decomp by HO (Groger, Z anorg 1907, 54 187)

Decomp by H<sub>2</sub>O Stable in contact with solutions containing

Potassium thallium chromate, K CrO<sub>4</sub>, Tl<sub>2</sub>CrO<sub>4</sub>

(Lachaud and Lepierre, Bull Soc (3) 6 232)

+2H<sub>2</sub>O Rapidly hydrolyzed by H O un less a large excess of the CrO<sub>4</sub> ion is present

Readily sol in dil mineral acids Difficulty sol in  $K_2Cr O_7 + Aq$  (Hawley, J Am Chem Soc 1907, 29 304)

Potassium uranyl chromate, L<sub>2</sub>CrO<sub>4</sub>, 2(UO<sub>2</sub>)CrO<sub>1</sub>+6H O

Decomp by boiling with H<sub>2</sub>O Sol in acidified H<sub>2</sub>O (Formanck, A **257** 103)

K CrO<sub>4</sub>, (UO) CrO<sub>4</sub>+H O<sub>7</sub> 2k CrO<sub>4</sub>,

K CrO<sub>4</sub>, (UO )CrO<sub>4</sub>+H O, 2K CrO<sub>4</sub>, 3(UO<sub>2</sub>)CrO<sub>4</sub>+7H<sub>2</sub>O 3K<sub>3</sub>CrO<sub>4</sub>, 4(UO )CrO<sub>4</sub> +7H<sub>2</sub>O, and K CrO<sub>4</sub>, 3(UO )CrO<sub>4</sub>+14H O Precipitates (Wiesner, C C 1882 777)

Potassium ytterbium chromate, basic, 2KYb(CrO<sub>4</sub>)<sub>2</sub>+Yb(OH)<sub>3</sub>+15½H<sub>2</sub>O Ppt (Cleve, Z anorg 1902, **32** 151) Potassium yttrium chromate, K<sub>2</sub>CrO<sub>4</sub>, Y<sub>2</sub>(CrO<sub>4</sub>)<sub>3</sub>+xH<sub>2</sub>O Ppt (Cleve)

Potassium zinc chromate, basic,  $K_2O$ , 5ZnO,  $4CrO_3+6H_2O$ , or  $K_2O$ , 4ZnO,  $3CrO_3$ ,  $+3H_2O$ 

Slightly sol in cold, decomp by hot H O (Wohler)

 $K_2O$ , 4ZnO,  $3CrO_3+3H_2O$  Insol in cold, decomp by hot  $H_2O$  (Groger, M 1904, **25** 520)

Potassium zinc chromate,  $K_2Zn(CrO_4)_2 + 2H_2O$ 

Ppt Decomp by H<sub>2</sub>O (Groger, Z anorg 1907, **54** 189)

Potassium dichromate chloride mercuric chloride,  $K_2Cr_2O_{7,2}KCl_14HgCl_2+2H_2O$ Solution in  $H_2O$  sat at 20 5° contains 6 78% salt Salt is much more sol in hot  $H_2O$  (Stromholm, Z anorg 1912, 75 278)

Potassium chromate iodate See Chromoiodate, potassium

Potassium chromate magnesium sulphate, K<sub>2</sub>CrO<sub>4</sub>, MgSO<sub>4</sub>+9H<sub>2</sub>O Sol in H<sub>2</sub>O (Étard, C R **85** 443)

Potassium chromate mercuric chloride, K,CrO<sub>4</sub>, 2HgCl<sub>2</sub>

Easily sol in H<sub>2</sub>O Sol in dil HCl+Aq (Darby)

Potassium dichromate mercuric chloride,  $K_2Cr_2O$ ,  $HgCl_2$ 

Ether or absolute alcohol dissolves out HgCl<sub>2</sub> (Millon, A ch (3) 18 388)

Can be crystallized from H<sub>2</sub>O (Jager and Kruss, B **22** 2046)

Potassium chromate mercuric cyanide, 2K<sub>2</sub>C<sub>1</sub>O<sub>4</sub>, 3Hg(CN)<sub>2</sub>

Easily sol in H<sub>2</sub>O +H<sub>2</sub>O (Dexter)

Formula is K  $CrO_4$ , 2Hg(CN) (Clarke and Sterne, Am Ch J 3 352)

Potassium dichromate mercuric cyanide, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, Hg(CN) +2H<sub>2</sub>O Sol in H<sub>2</sub>O (Wyrouboff, J B **1880** 309)

Potassium chromate phosphate
See Phosphochromate, potassium

Potassium chromate sulphate,  $K_2CrO_4$ ,  $6K_2SO_4$ 

Easily sol in H<sub>2</sub>O (Boutron-Chalara)

Potassium chromate tellurate

See Chromotellurate, potassium

Rubidium chromate, Rb<sub>2</sub>CrO<sub>4</sub>
Sol in H<sub>2</sub>O (Piccard, J pr 86 455)

| Solubility in H <sub>2</sub> O at t°           |                                                                      |  |  |
|------------------------------------------------|----------------------------------------------------------------------|--|--|
| t°                                             | % Rb₂CrO₁                                                            |  |  |
| 7<br>0<br>10 3<br>20<br>30<br>40<br>50<br>60 4 | 36 65<br>38 27<br>40 22<br>42 42<br>44 11<br>46 13<br>47 44<br>48 90 |  |  |

(Schreinemakers and Filippo, Chem Weekbl 1906, **3** 157)

Rubidium dichromate, Rb<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>

Sol in  $H_2O$  (Grandeau, A ch (3) 67 227)

Very sl sol in  $H_2O$ , 5% at 10°, 8% at 26°, 35% at 60° (Wyrouboff, Bull Soc Min 1881, 4 129)

100 pts  $\rm H_2O$  dissolve 10 46 pts  $\rm Rb_2Cr_2O_7$  at 30° The solution contains 9 47% salt (Schreinemakers and Filippo, Chem Weekbl 1906, 3 157)

Two forms of crystals Figures denote pts salt per 100 pts H<sub>2</sub>O 14° 26° 43°

Monoclinic form 4 45 8 00 16 52 Triclinic form 4 40 7 91 16 57 (Wyrouboff, Bull Soc 1908, (4) 3 7)

Solubility of monoclinic and triclinic forms

| Гетр              | Pts of salt in<br>100 pts H <sub>2</sub> O |                      | Тепр              |                        | Pts of salt in<br>100 pts H <sub>2</sub> O |  |
|-------------------|--------------------------------------------|----------------------|-------------------|------------------------|--------------------------------------------|--|
|                   | Mono<br>clinic                             | Trı<br>clınıc        |                   | Mono<br>clinic         | Tri<br>clinic                              |  |
| 18°<br>24°<br>30° | 5 42<br>6 94<br>9 08                       | 4 96<br>6 55<br>8 70 | 40°<br>50°<br>60° | 13 22<br>18 94<br>28 1 | 12 90<br>18 77<br>27 3                     |  |

(Stortenbeker, C C 1907, II 158)

Rubidium dichromate chloride mercuric chloride, Rb Cr<sub>2</sub>O<sub>7</sub>, 2RbCl, 4HgCl<sub>2</sub>+2H<sub>2</sub>O

Sol in HO

Solution sat at 20 5° contains 5.35% salt (Stromholm, Z anorg 1912, **75** 284)

Silver (argentous) chromate, Ag<sub>4</sub>Cr()<sub>4</sub>

Sol in dil acids (Wohler ind Rautenberg)

Existence very doubtful

Silver chromate, Ag CrO<sub>4</sub>

Absolutely insol in H<sub>2</sub>O Sol in acids, ammonia, and alkali chiomates + Aq (Warington, A 27 12)

Appreciably sol in cold, and still more in hot  $H_2O$  (Meineke, A **261** 341)

100 ccm H<sub>2</sub>O dissolve 0 064 grain Ag<sub>2</sub>CrO<sub>4</sub> at 100°, 100 ccm H<sub>2</sub>O containing 50 grains

of the following salts dissolve the given amts of Ag<sub>2</sub>CrO<sub>4</sub> at 100° NaNO<sub>3</sub>, 0 064 grain, KNO3, 0 192 grain, NH4NO3, 0 320 grain, Mg(NO<sub>8</sub>)<sub>2</sub>, 0 256 grain (Carpenter, J S C I 5 286)

According to electrical conductivity of Ag<sub>2</sub>CrO<sub>4</sub>+Aq, 1 l H<sub>2</sub>O dissolves 28 mg Ag<sub>2</sub>CrO<sub>4</sub> at 18° (Kohlrausch and Rose, Z

phys Ch 12 241)
11 H<sub>2</sub>O dissolves 25 mg Ag<sub>2</sub>CrO<sub>4</sub> at 18° (Kohlrausch, Z phys Ch 1904, **50** 356)

25 mg are contained in 1 l of sat solution at 18° Solubility increases unusually rapidly with temp (Kohlrausch, Z phys Ch 1908, **64** 168)

Sol in 26,378 pts cold H<sub>2</sub>O and 9116 pts H<sub>2</sub>O at 100° (Koninck and Nihoul, Zeit

angew Ch 1891, 5 295)

1 l H<sub>2</sub>O dissolves 1 2×10<sup>-4</sup> gram atoms (Abegg and Cox, Z phys of silver at 25° Ch 1903, 46 11)

1 l H<sub>2</sub>O dissolves 0 029 g Ag<sub>2</sub>CrO<sub>4</sub> at 25°

(Schafer, Z anorg 1905, **45** 310) 1 1 H<sub>2</sub>O dissolves 0 0256 g Ag<sub>2</sub>CrO<sub>4</sub> at 18°, 0 0341 g at 27°, 0 0534 g at 50° (Whitby Z anorg 1910, 67 108)
Sol in hot NH<sub>4</sub>OH+Aq of sp gr 0 94

(15 63% NH<sub>3</sub>), sl sol in cold NH<sub>4</sub>OH+Aq of sp gr 0 91 (24 99% NH<sub>3</sub>) (Margosches, Z anorg 1904, 41 73)

Solubility of Ag<sub>2</sub>CrO<sub>4</sub> in NH<sub>4</sub>OH+Aq at 25°

| Mols NH4OH per l | Mols ×103 Ag CrO4 per l |
|------------------|-------------------------|
| 0 01             | 2 004                   |
| 0 02<br>0 04     | 4 169<br>8 595          |
| 0 08             | 17 58                   |

(Sherrill and Russ, J Am Chem Soc 1907, **29** 1662)

SI sol in very cone K<sub>2</sub>CrO<sub>4</sub>+Aq Practically insol in  $AgNO_3 + Ag$  (Margosches) Solubility of Ag<sub>2</sub>C<sub>1</sub>O<sub>4</sub> in HNO<sub>3</sub>+Aq at 25°

| Mols<br>IINO3<br>per l Cr             |                                           | A <sub>E</sub>                            | Solid Phase           |  |
|---------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------|--|
| 0 01<br>0 015<br>0 02<br>0 025        | 3 157<br>3 730<br>4 177<br>4 567          | 6 315<br>5 356                            | Ag ('r() <sub>4</sub> |  |
| 0 03<br>0 04<br>0 05<br>0 06<br>0 07  | 5 200<br>5 803<br>6 380<br>6 833<br>7 333 | 11 62                                     | ,<br>,<br>,,          |  |
| 0 075<br>0 08<br>0 10<br>0 13<br>0 14 | 7 477<br>7 260<br>5 647<br>4 293<br>3 948 | 14 85<br>15 45<br>19 01<br>23 89<br>25 63 | " +Ag C1 2O7          |  |

(Sherrill and Russ, J Am Chem Soc 1907, **29** 1663)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 829)

1 l 65% alcohol dissolves 0 0129 g Ag<sub>2</sub>CrO<sub>4</sub> at ord temp (Guerini, Dissert 1912)
Insol in H<sub>2</sub>O containing acetic acid in

presence of large excess of AgNO<sub>3</sub> and Weed, Am J Sci 1908, (4) 26 85)

Practically insol in glacial acetic acid but somewhat sol in dil acetic acid haves in a similar manner toward propionic, lactic and other organic acids The red modification is more sol than the greenish-black (Margosches, Z anorg 1906, **51** 233)

Silver dichromate, Ag<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>

Easily sol in HNO<sub>8</sub>, or Sl sol in H<sub>2</sub>O (Warington)

PA+HO<sub>4</sub>HN Decomp by boiling with HO into CrO3

and Ag<sub>2</sub>CrO<sub>4</sub> (Jager and Kruss, B 22 2050) (Autenrieth, B

Decomp by cold H O 1902, **35** 2061)

1 pt is sol in 12,000 pts  $H_2O$  at 15° (Mayer, B 1903, 36 1741)

Solubility in H<sub>2</sub>O at 25° = 7 3×10<sup>-3</sup> atoms Ag per l Decomp by HNO<sub>3</sub>+Aq (less than 0 06 N) with separation of Ag<sub>2</sub>CrO<sub>4</sub> (Sherrill and Russ, J Am Chem Soc 1907, 29 1674)

Solubility of Ag CrO<sub>7</sub> in HNO<sub>3</sub>+Aq at 25°

|                     | Mols HNOs per l                                   | Milliat        | Solid Phase    |                                        |
|---------------------|---------------------------------------------------|----------------|----------------|----------------------------------------|
| 111015 111108 per 1 |                                                   | Cr             | Ag             |                                        |
|                     | 0                                                 | 32 20          | 5 390          | ${ m Ag_2CrO_4+} \atop { m Ag_2CrO_7}$ |
|                     | 0 01                                              | 25 06          | 6 131          | "                                      |
|                     | $\begin{array}{ccc} 0 & 02 \\ 0 & 04 \end{array}$ | 20 21<br>13 59 | 7 148          | "                                      |
|                     | 0 06<br>0 08                                      | 11 10<br>11 10 | 11 10<br>11 10 | Ag <sub>2</sub> Cr O <sub>7</sub>      |
|                     | 0 08 +0 1 AgNO <sub>3</sub>                       |                | 11 10          | '                                      |

(Sherrill and Russ, J Am Chem Soc 1907, **29** 1664)

Silver uranyl chromate, 2Ag C1O4, UO2CrO4 Ppt (Forminek, A 257 110)

Silver chromate ammonia, Ag<sub>2</sub>CrO<sub>4</sub>, 4NH<sub>3</sub> Decomp by HO Sol in warm conc NH<sub>4</sub>OH+Aq (Mitscherlich, Pogg 12 141)

Silver dichromate mercuric cyanide, Ag<sub>2</sub>C<sub>1</sub> O<sub>7</sub>, Hg(CN)

Sol m cold H O very sol m hot H O without decomp (Kruss, Z morg 1895, 8 456)

Ag<sub>2</sub>C<sub>12</sub>O<sub>7</sub>, 2Hg(CN)<sub>2</sub> Scarcely sol in cold more readily in hot HO Sol in hot HNO3+ Aq, - putting on cooling (Durby, Chem Soc 1 24 )

Sodium chromate, basic, Na<sub>4</sub>CrO<sub>5</sub>+13H<sub>2</sub>O

Sol without decomp in HO

solution at 30° contains 41 3% Sat

Na<sub>4</sub>CrO<sub>5</sub> (Schreinemakers, Z phys Ch 1906, **55** 93)

Deliquescent Solubility in H<sub>2</sub>O at t° 10° 20 5° 33 87 38 05 % Na<sub>4</sub>CrO<sub>5</sub> **35 58** ta 27 7° 35° 37° 44 09 % Na<sub>4</sub>CrO<sub>5</sub> 400945 13(Mylius and Funk, Gm -K 3 I, 1379)

 $Na_4CrO_5+Aq$  sat at 18° contains 37 50%  $Na_4CrO_5$ , and has sp gr =1 446 (Mylius and Funk, B 1900, **33** 3688)

## Sodium chromate, Na<sub>2</sub>CrO<sub>4</sub>

100~ccm of solution sat at 18° contain 54 g  $\rm Na_2CrO_4$  (Kohlrausch, B A B 1897 90 )

### Solubility in H2O at to

| t°  | % Na <sub>2</sub> CrO <sub>4</sub> |
|-----|------------------------------------|
| 70  | 55 15                              |
| 80  | 55 53                              |
| 100 | 55 74                              |

(Mylius and Funk, Gm -K 3 I, 1379)

 $Na_2CrO_4+Aq$  sat at 18° contains 40 10%  $Na_2CrO_4$ , and has sp gr=1 432 (Mylius and Funk, B 1900, **33** 3686)

See also +4, 6, and 10H<sub>2</sub>O Sp gr of Na<sub>2</sub>CrO<sub>4</sub>+Aq at t°/4° t° 17 4° 17 1° 20 7° % Na<sub>2</sub>CrO<sub>4</sub> 5 76 10 62 14 81 Sp gr 1 0576 1 1125 1 1644

(Slotte, W Ann 1881, 14 18)

 $+4H_2O$  Sat solution at 30° contains 46 62% Na<sub>2</sub>CrO<sub>4</sub> (Schreinemakers, Z phys Ch 1906, **55** 93)

# Solubility in H<sub>2</sub>O at t°

| t                              | % Na CrOi                                 | 1                          | %Na CrOa                         |
|--------------------------------|-------------------------------------------|----------------------------|----------------------------------|
| 25 6<br>31 5<br>36<br>40<br>45 | 46 08<br>47 05<br>47 98<br>48 97<br>50 20 | 49 5<br>54 5<br>59 5<br>65 | 50 93<br>52 28<br>53 39<br>55 25 |

(Mylius and Funk Gm-k 3 I, 1379)

## Solubility in H () at to

| t    | % Na2(1()1 | Mcl HO to<br>1 mol anhy<br>drous Silt | Mols inhy<br>drou alt to<br>100 mols H () |
|------|------------|---------------------------------------|-------------------------------------------|
| 28 9 | 46 47      | 10 37                                 | 9 64                                      |
| 29 7 | 46 54      | 10 34                                 | 9 67                                      |
| 31 2 | 47 08      | 10 12                                 | 9 88                                      |

(Salkowski B 1901, **34** 1948)

+6H<sub>2</sub>O

# Solubility in H<sub>2</sub>O at t°

| t°   | % Na CrOı | Mols H <sub>2</sub> O to<br>1 mol anhy<br>drous salt | Mols anhy<br>drous salt to<br>100 mols H |
|------|-----------|------------------------------------------------------|------------------------------------------|
| 17 7 | 43 65     | 11 60                                                | 8 62                                     |
| 19 2 | 44 12     | 11 40                                                | 8 77                                     |
| 21 2 | 44 64     | 11 16                                                | 8 96                                     |
| 23 2 | 45 27     | 10 88                                                | 9 19                                     |
| 24 7 | 45 75     | 10 77                                                | 9 37                                     |
| 26 6 | 46 28     | 10 45                                                | 9 57                                     |

(Salkowski, B 1901, 34 1948)

+10H<sub>2</sub>O Deliquescent (Kopp, A 4. 99) Easily sol in H<sub>2</sub>O Melts in cryst H<sub>2</sub>O at 23° (Berthelot)

Sp gr of solution sat at 18°=1 409, an contains 38 1% Na<sub>2</sub>CrO<sub>4</sub> (Mylius and Funl B 1897, **30** 1718)

#### Solubility in H<sub>2</sub>O at t°

| t°   | %Na <sub>2</sub> CrO <sub>4</sub> |
|------|-----------------------------------|
| 0    | 24 04                             |
| 10   | 33 41                             |
| 18 5 | 41 65                             |
| 19 5 | 44 78                             |
| 21   | 47 40                             |

(Myhus and Funk, Gm - 1 3 I, 1379)

Sp gr of solution at 15° containing 40 1′  $Na_2CrO_4=1$  432 (Mylius, B 1900, **3** 3688)

Sl sol in alcohol (Mosci )

100 g absolute methyl deohol dissolv 0.345 g Na<sub>2</sub>CrO<sub>4</sub> at 25° (de Bruyn, Z phy Ch 10.783)

Insol in action (Naumann B 1904, 3: 4329)

# Sodium dichromate, Ni(1() More sol in II() than Ni(1())

#### Solubility in H O at t

| t   | Ni(i0  |
|-----|--------|
| 93  | \$1.19 |
| 95° | \$1.25 |
|     |        |

(Mylius and Funk (am 18 3 I 1380)

Sp gr of equeous solution containing 1 5 10 15 20 25', NaCa O 1 007 1 035 1 071 1 105 1 141 1 171

30 35 40 45 50 (NaGr() 1 208 1 245 1 280 1 313 1 345

(Stinley C N 54 194)

Sp gr of sit solution continuing 63 9.2° Va Cr<sub>2</sub>O<sub>7</sub> it 18° = 1 745 (Mylius and Funk B 1900, **33** 3688) Sl sol in liquid NH<sub>3</sub> (Frinklin Am Cl J 1898, **20** 829)

Sol in acetone (Naumann, B 1904, 37) 4328)  $+2H_2O$ Deliquescent

100 pts H<sub>2</sub>O dissolve at- $15^{\circ}$ 30° 80° 100° 139° 107 2 109 2 116 6 142 8 162 8 209 7 pts salt (Stanley, C N 54 194)

Solubility in H<sub>0</sub>O at t°

| t    | % Na <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> |
|------|--------------------------------------------------|
| 0    | 61 98                                            |
| 17   | 63 82                                            |
| 34 5 | 67 36                                            |
| 52   | 71 76                                            |
| 72   | 76 90                                            |
| 81   | 79 80                                            |

(Mylius and Funk, Gm-K 3 I, 1380)

 $100 \text{ g H}_2\text{O} \text{ at } 30^\circ \text{ dissolve } 197 \text{ 6 g Na}_2\text{Cr}_2\text{O}_7$ solution at 30° contains 66 4% or sat Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> (Schreinemakers, Z phys Ch 1906, 55 97)

100 ccm of a solution of sodium dichromate in alcohol contain 5 133 g Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>+2H<sub>2</sub>O at 19 4° The solution decomp rapidly (Reinitzer, Zeit angew Ch 1913, 26 456)

The composition of the hydrates formed by Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> at different dilutions is calculated from determinations of the lowering of the fr = pt produced by Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> and of the conductivity and sp gr of Na<sub>2</sub>Cr O + Aq (Jones, Am ch J 1905, **34** 317)

# Sodium trichromate, NaCr<sub>3</sub>O<sub>10</sub>

Deliquescent Very sol in H<sub>2</sub>O (Stanley, C N 54 194) solution at 30° contains  $_{80\%}^{+\rm H_{2}O}$  Sat  $_{80\%}^{\rm Na_{2}Cr_{3}O_{10}}$ (Schreinem ikers, Z phys Ch 1906, **55** 94)

Solubility in H2() at to 15° 55° 99° 50 03 80 44 52 68 85 78 % Na2Cr3O10 (Mylius and Funk Gm-k 3 I, 1380)

Sp gr of sat solution containing 80 6%  $Na_2Cl_3O_{10}$  at  $19^\circ = 2.050$  (Mylius and Funk B 1900, **33** 3655)

Sodium tetrachromate, Na Cr<sub>4</sub>O<sub>13</sub>+4H O Solubility in HO at to 22° 16° 76 01 74 19 72 19% Na Cr<sub>4</sub>O<sub>11</sub> (Mylius and Funk, Gm-K 3 1, 1380)

Deliquescent solution at 18° contains 746%  $Na_2Cr_4O_{13}$  and has sp gr = 1 926 (Mylius and Funk, B 1900, 33 3688)

Sodium uranyl chromate, Na, CrO, 2(UO₂)CrO₄+10H O

Easily sol in H<sub>2</sub>O (Formánek, A 257

100 pts of the solution in H<sub>2</sub>O contun 52 52 pts of the anhydrous salt at 20° (Rimbach, B 1904, 37 482)

Sodium chromate silicate, Na O, Cr O; 2S<sub>1</sub>O +14H<sub>2</sub>O

Not decomp by HCl+Aq (Singer, Dissert 1910 )

2Na<sub>2</sub>O, 3Cr O<sub>3</sub>, 6SiO<sub>2</sub> Not decomp by C B Miner, 1908 519)

5Na<sub>2</sub>O, 2Cr<sub>2</sub>O<sub>3</sub>, 11S<sub>1</sub>O (Weyberg )

3Na<sub>2</sub>O, 2Cr O<sub>3</sub>, 9 5S<sub>1</sub>O (Weyberg )

### Strontium chromate, SrCrO<sub>4</sub>

Somewhat sol in H<sub>2</sub>O Sol in 840 pts H<sub>2</sub>O (Meschezerski, Z anal 21 399), sol in 831 8 pts H<sub>2</sub>O at 15° (Fresenius, Z anal 29 419)

100 cc H<sub>2</sub>O dissolve 0 4651° at 10°

1% at 20°, 2417% at 50°, 3% at 100° (Reichard, Ch Z 1903, 27 877)

Easily sol m HCl, HNO<sub>3</sub>, or H CrO<sub>4</sub>+ Aq

Sol m 512 pts 05% NH<sub>2</sub>Cl+ Aq at 15°

Sol m 537 pts 1% HC H<sub>2</sub>O + Aq at 15°

Sol m 248 8 pts solution contaming 0.75° Sol in 348 8 pts solution containing 0 75° c NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, 4 drops HC H<sub>3</sub>O, and 6 drops

 $(NH_4)_2CrO_4 + Aq$ (Fresenius) 100 ccm NH4Cl+Aq sat at bpt dissolve 1 g SrCrO<sub>4</sub> (Dumesnil, A ch 1900 (7) 20

50 ccm alcohol (29%) dissolve 0 0066 g SrCrO<sub>4</sub>

50 ccm alcohol (53° dissolve 0001 g SrCrO<sub>4</sub> (Fresenius, Z anal 30 672)

Strontum dichromate, SrCr O Easily sol in H O

Strontium trichromate, SrCr3O ,+3H O Very deliquescent, and sol in HO (Preis and Raymann, B 13 340)

Strontium chromate mercuric hydrogen chloride, SrCrO4, 2HgCl, HCl

According to Stromholm is SrCl SrCr O 4HgCl +H O

Recryst from HO (Imbert and Belugon Bull Soc 1897 (3) 17 471 2SrCrO<sub>4</sub> 6HgCl, HCl (Imbert and Belu-

gon )

Thallous chromate, TlCrO4 100 pts HO dissolve 00s pt at 60 (Rupp and Zimmer, Z anorg 1902 33 157) Ppt Insol in cold moderately conc HCH<sub>3</sub>O + Aq or in very dil HNO + Aq and very sl sol on bolling therewith Dil NH<sub>4</sub>OH, and \a CO<sub>3</sub> + Aq have the same action Attacked by very dil HCl + Aq Sol in hot conc HCl+Aq Decomp by dil H SO<sub>4</sub>+Aq (Carstanjen)

11 KOH+Aq (112 g per 1) dissolves about 3 5 g Tl<sub>2</sub>CrO<sub>4</sub> on boiling, which separates out on cooling

Boiling conc KOH+Aq (31% KOH) dissolves 18 g Tl<sub>2</sub>CrO<sub>4</sub> per litre (Lepierre and Lachaud, C R 113 196)

#### Thallous dichromate, Tl-Cr O7

Insol in H<sub>2</sub>O, etc Has the same properties as Tl<sub>2</sub>CrO<sub>4</sub>

# Thallous truchromate, Tl<sub>2</sub>Cr<sub>3</sub>O<sub>10</sub>

Sol in 2814 pts  $H_2O$  at 15°, and 438 7 pts at 100° (Crookes)

# Thallic chromate

 $\operatorname{Ppt}$ 

Thorum chromate, basic, Th(OH) CrO<sub>4</sub>
Ppt, unstable in solution (Palmer, Am
Ch J 1895, 17 278)

# Thorium chromate, Th(CrO<sub>4</sub>)<sub>2</sub>+H<sub>2</sub>O

Ppt Sol in HCl and NH<sub>4</sub>Cl+Aq 1 pt is sol in 284 pts H<sub>2</sub>O at 22° (Palmer, Am Ch J 1895, 17 375 and 278)

+3H<sub>2</sub>O 'Ppt (Haber, M 1897, **18** 689) +8H<sub>2</sub>O Insol in H<sub>2</sub>O (Chydenius, Pogg **119** 54)

## Tin (stannous) chromate

Ppt Sol in dil acids (Beizelius)

#### Tin (stannic) chromate

Ppt (Leykauf, J pr 19 127)

Uranyl chromate, basic, UO3, 2(UO3)CrO4 +8H O

Ppt (Orloff, Ch Z 1907, **31** 375) UO<sub>3</sub>, (UO) CrO<sub>4</sub>+6H O (Orloff)

#### Uranyl chromate, (UO)C1O4+3H2O

1 pt is sol in 13 3 pts H<sub>2</sub>O at 15°, slowly sol in alcohol to give a solution which is decomp on boiling (Oiloff, Ch. Z. 1907, **31** 375.)

+11H<sub>2</sub>O Very sol in H O (Formánck, 1 257 108)

#### Yttrium chromate

Deliquescent Fisily sol in HO (Bei lin)

Zinc chromate, basic, 4Zn(), C1();+3II() (Groger, Z. morg 1911, 70 135)

+5H<sub>2</sub>O Insol in H<sub>2</sub>O, sol in hot H<sub>2</sub>CrO<sub>4</sub> +Aq, slowly sol in NH<sub>4</sub>OH+Aq (Ma liguti and Sarzeau, A ch (3) 9 431) 3ZnO, CrO<sub>3</sub>+2H<sub>2</sub>O (Groger)

2ZnO, CrO<sub>3</sub>+H<sub>2</sub>O (Briggs, Z anorg 1907, **56** 254)

+1½HO Ppt Insol in H<sub>2</sub>O Sol in hot H<sub>2</sub>CrO<sub>4</sub>+Aq (Prussen and Phillipona, A **149** 92)

 $+2H_2O$  Ppt Not wholly insol in E ) (Prussen and Phillipona )  $3ZnO,\,2CrO_3+H_*O$  (Gröger )

## Zinc chromate, ZnCrO4

Insol in  $H_2O$ , very sol in acids, decorpt by boiling with  $H_2O$  (Schulze, Z and  $\zeta$  1895, 10 154)

Insol in liquid NH<sub>3</sub> (Franklin, Am 1 J 1898, **20** 830)

Insol in acetone (Naumann, B 1 4, 37 4329)

+H<sub>2</sub>O (Groger, Z anorg 1911, **70** 1

# Zinc dichromate, ZnCr<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O

Hygroscopic

Very sol in  $H_2O$  and sl decomp by boil g (Schulze, Z anorg 1895, **10** 153)

Zinc trichromate, ZnCr<sub>3</sub>O<sub>10</sub>+3H<sub>2</sub>O

Deliquescent, very sol in H<sub>2</sub>O (Gro r, Z anorg 1910, 66 10)

Zinc chromate ammonia, ZnCrO<sub>4</sub>, NH + H<sub>2</sub>O

Decomp by  $\mathrm{H}_2\mathrm{O}$  (Groger, Z and g 1908, 58 417)

ZnCrO<sub>4</sub>, 4NH<sub>3</sub>+5H<sub>2</sub>O Decomp by H ) Sol in NH<sub>4</sub>OH+Aq Insol in alcohol d ether (Malaguti and Sarzeau, A ch (3 <del>)</del> 431)

+3H<sub>2</sub>O Efflorescent Decomp by H )
Easily sol in dil acids and NH<sub>4</sub>OH+ 1

(Bieler, A 151 223) 2ZnO, 3CrO<sub>3</sub>, 10NH<sub>3</sub>+10H O P (Malaguti and Saizeau)

Zinc dichromate mercuric cyanide, ZnCr  $_{7}$ ,  $_{2}$ Hg(CN) +7H ()

Very sol in  $\rm H_2O$  Stable in aqueous solution at 100° (Kiuss, Z anorg 1895, 3 460)

#### Perchromic acid

See Perchromic acid

Chromicomolybdic acid, ('i (); 12M )<sub>3</sub> +28H<sub>2</sub>()

Slowly sol in H<sub>2</sub>O (Hall, J Am Ch Soc 1907, **29** 708)

Ammonium chromicomolybdate,  $3(NH_4)$  ),  $C_{12}O_3$ ,  $12MoO_4+20H_2O$ 

Sol in H<sub>2</sub>O (Struce J pr **61** 457, H l, J Am Chem Soc 1907, **29** 695) +26H<sub>2</sub>O (Marchwald, Dissert, **1895** 

Ammonium barium chromicomolybdate (NH<sub>4</sub>)<sub>2</sub>O, 22B<sub>4</sub>O, Cr O<sub>3</sub>, 12MoC + 20H<sub>2</sub>O

(Hall, J Am Chem Soc 1907, 29 707

(Hall)

Barium chromicomolybdate, 4BaO, Cr<sub>2</sub>O<sub>3</sub>, 12MoO<sub>3</sub>+15H<sub>2</sub>O, 4BaO, Cr<sub>2</sub>O<sub>3</sub>, 12MoO<sub>3</sub>+18H<sub>2</sub>O, 5BaO, Cr<sub>2</sub>O<sub>3</sub>, 12MoO<sub>3</sub>+16H<sub>2</sub>O

Ppts (Hall, J Am Chem Soc 1907, 29 705)

Lead chromicomolybdate, 4PbO, Cr<sub>2</sub>O<sub>3</sub>, 12MoO<sub>3</sub>+22H<sub>2</sub>O, and +24H<sub>2</sub>O Ppts (Hall, J Am Chem Soc 1907, **29** 706)

 $\begin{array}{ccccc} \textbf{Mercurous} & \textbf{chromicomolybdate}, & 8Hg_2O, \\ & Cr_2O_3, & 12MoO_3 + 16H_2O \\ & Ppt & (Hall, J Am Chem Soc 1907, \\ \textbf{29} & 707 \end{array}$ 

Potassium chromicomolybdate,  $K_2O$ ,  $Cr_2O_3$ ,  $3MoO_3$ 

Sol in HCl+Aq with evolution of Cl (Bradbury, Z anorg 1894, 7 46)  $3K_2O$ ,  $Cr_2O_3$ ,  $12MoO_3+20H_2O$  Sol in 3851 pts  $H_2O$  at  $17^\circ$  (Struve, Hall)  $+24H_2O$  (Hall)  $4K_2O$ ,  $Cr_2O_3$ ,  $12MoO_3+15H_2O$  (Hall, J Am Chem Soc 1907, 29 709)

 $7KO, 2Cr_2O_3, 24MoO_3 + 32H_2O$ 

Silver chromicomolybdate, 5 Ag O,  $Cr_2O_3$ ,  $12 MoO_3 + 17 H O$ Ppt (Hall)

 $\begin{array}{cccc} \textbf{Sodium} & \textbf{chromicomolybdate,} & 3Na_2O, \\ & Cr_2O_3, & 12MoO_3 + 21H_2O \\ & \textbf{Efflorescent} & \textbf{Easily sol in $H_2O$} & (\textbf{Struve} \ ) \end{array}$ 

Chromic sulphuric acid See Sulphochromic acid

Chromicyanhydric acid,

 $\rm H_3Cr(CN)_6(\ref{inter})$  Insol in  $\rm H_2O$  (Kilber, A. Suppl 3 163)

Ammonium chromicyanide, (NH<sub>4</sub>)<sub>3</sub>C<sub>1</sub>(CN)<sub>6</sub> Easily sol in H<sub>2</sub>O (Kuiser, A Suppl **3** 163)

Cupric chromicyanide, Cu<sub>3</sub>[C<sub>1</sub>(CN)<sub>6</sub>]<sub>2</sub>
Ppt Insol in dil or cone acids, except on heating Insol in NH<sub>4</sub>OH, or KOH+Aq (Kaiser)

Lead chromicyanide, basic, 3Pb(CN)<sub>2</sub>, 2C<sub>I</sub>(CN)<sub>3</sub>, Pb(OH)

Ppt Sol in HNO<sub>3</sub>, NaOH+Aq, or Pb salts+Aq (Kaiser)

Potassium chromicyanide, K<sub>3</sub>C<sub>1</sub>(CN)<sub>6</sub>

Very sol in  $H_2O$ 100 pts cold  $H_2O$  dissolve 30 9 pts salt Insol in absolute alcohol, but somewhat sol in dil alcohol

Sol in conc  $H_2SO_4$  without decomp (Kaiser, A Suppl 3 170)

Silver chromicyanide, Ag<sub>3</sub>Cr(CN)<sub>6</sub>

Insol in all solvents, excepting KCN+Aq (Kaiser)

Sol in large excess of HCl+Aq Sl sol in cold, easily sol in hot conc HNO<sub>3</sub> Very sol in conc H<sub>2</sub>SO<sub>4</sub> Insol in hot or cold acetic acid (Cruser, Dissert 1896)

Chromisulphocyanhydric acid H<sub>3</sub>Cr(SCN)<sub>6</sub>

Known only in aqueous solution

Ammonium chromisulphocyanide, (NH<sub>4</sub>)<sub>3</sub>Cr(SCN)<sub>6</sub>+4H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Rossler, A **141** 185)

Barium chromisulphocyanide,  $Ba_{\delta}[Cr(SCN)_{\delta}]_2 + 16H_2O$ 

Deliquescent, and sol in H<sub>2</sub>O (R)

 $\begin{array}{c} \textbf{Lead chromisulphocyanide,} & Pb_3[C_1(SCN)_6] \; , \\ & 4PbO_2H_2 + 8H_2O \end{array}$ 

Insol in  $H_2O$ , but decomp thereby into—Pb<sub>2</sub>[Cr(SCN)<sub> $\delta$ </sub>]<sub>2</sub>,  $4PbO_2H_2+5H_3O$  Insol in  $H_2O$ 

Potassium chromisulphocyanide,  $K_6Cr(SCN)_6 + 4H_2O$ 

Sol in 072 pt H<sub>2</sub>O and 094 pt alcohol

Silver chromisulphocyanide,  $Ag_6Cr(SCN)_{\ell}$ Insol in  $H_2O$  or conc  $HNO_3+Aq$  Insol in  $NH_4OH+Aq$  Sol in ACN+Aq

Sodium chromisulphocyanide, Na<sub>6</sub>Cr(SCN)<sub>6</sub> +7H<sub>2</sub>O

Deliquescent, sol in H<sub>2</sub>()

#### Chromium,

Two modifications—(a) Not itticked by H<sub>2</sub>O Easily sol in cold HCl+Aq Sl sol in dil H SO<sub>4</sub>+Aq (Deville) Easily sol in a hot mixture of 1 pt H<sub>2</sub>SO<sub>4</sub> and 20 pts H<sub>2</sub>O (Regnault, A ch 62 357) Easily sol in warm conc H<sub>2</sub>SO<sub>4</sub> (Gmelin) Very slowly sol in hot HNO<sub>3</sub>+Aq (Vauquelin) Insol in dil or conc HNO<sub>3</sub>+Aq (Deville) Very slowly (Richter), not at all (Berzelius) sol in hot aqua regia Easily sol in HF+Aq (Fremy), probably contains Si

(Fremy), probably contains Si
Pure Ci is sol in cone H SO<sub>4</sub>, HCl and dil

HNO<sub>3</sub>, sol in HgCl<sub>2</sub>+Aq

Insol in fuming HNO3 and iqua regit

(Moissan, C R 1894 119, 187)

Cr prepared by aluminothermic method is sol in haloid acids to form chromic and chromous salts, even in absence of an (Doring, J pr 1902, (2) 66 65, 1906, (2) 73 393)

Aluminothermic Cr is active in contact

with HCl, HBr, HI, HF, H<sub>2</sub>SO<sub>4</sub>, H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>,  $\iota$  e, sol m cold cone or warm dil acids. Is mactive in contact with cone HNO<sub>3</sub>, H<sub>2</sub>Or<sub>2</sub>O<sub>4</sub>, HClO<sub>3</sub>, HClO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub>, KOH, etric, formic, acetic and tartaric acids cause attributed to a different electric state (Hittorff, Z phys Ch 1898, 25 729)

# Chromium ammonia compounds See—

Bromotetramine chromium compounds, BrCr(NH<sub>3</sub>)<sub>4</sub>X<sub>2</sub>

Bromopurpureochromium compounds,  $BrCr(NH_3)_5X_2$ 

Chlorotetramine chromium compounds, ClCr(NH<sub>3</sub>)<sub>4</sub>X<sub>2</sub>

Chloropurpureochromium compounds,  $ClCr(NH_3)_5X_2$ 

Diamine chromium sulphocyanides,  $Cr(NH_8)_2(SCN)_4M$ 

Erythrochromium compounds,  $(HO)Cr_2(NH_3)_{10}X_2$ 

Iodopurpureochromium compounds,  $ICr(NH_3)_5X_2$ 

Iodotetramine chromium compounds,  $ICr(NH_3)_4X_2$ 

Luteochromium compounds,  $Cr(NH_2)_8X_3$ Rhodochromium compounds,  $(HO)Cr_2(NH_2)_{10}X_5$ 

Rhodoschromium compounds,  $(HO)_3Cr_2(NH_3)_6X_3$ 

Roseochromium compounds,  $Cr(NH_3)_5(OH_2)X_4$ 

Xanthochromium compounds, (HO<sub>2</sub>)Cr(NH<sub>3</sub>)<sub>5</sub>X,

#### Chromium arsenide, CrAs

Insol in mineral acids (Dieckmann, Z

anorg 1914, 86 294)
Cr<sub>2</sub>As<sub>3</sub> Insol in mineral acids (Dieckmann)

#### Chromium azoimide, CrN<sub>3</sub>

Pptd by addition of alcohol and ether Insol in H<sub>2</sub>O (Curtius, J pi 1900, (2) **61** 410)

#### Chromium boride, CrB

Insol in HCl, dil H<sub>2</sub>SO<sub>4</sub>, HF, HF+HNO<sub>3</sub> Sl sol in HNO<sub>3</sub> and in aqua regia (Wede-kind, B 1907, **40** 299)

Sol in cold dil or cone HCl, HF, and H<sub>2</sub>SO<sub>4</sub> (Jassonneix, C R 1906, **143** 1151) Cr<sub>3</sub>B<sub>2</sub> Sol in cone of dil HF, HCl, H<sub>2</sub>SO<sub>4</sub>, insol in HNO<sub>3</sub> or alkalis+Aq (Jassonneix)

#### Chromous bromide, CrBr<sub>2</sub>

Sol in  $H_2O$  Not deliquescent in dry air (Moissan, C R 92 1051)

Chromic bromide, CrBr<sub>3</sub>

Anhydrous Insol in H<sub>2</sub>O, but diss ves at once in presence of the least trace of C 3r<sub>2</sub>

(Bauck, A 111 382) +6H<sub>2</sub>O Deliquescent Very sol m <sub>2</sub>O H<sub>2</sub>O dissolves more than 2 pts crysts at ord temp Very sol m alcohol lins in ether (Recoura, C R 110 1029)

Blue modification Insol in alc iol (Recoura, C R 110 1193)

Very hygroscopic Easily sol in all hol

and acetone Insol in ether (Werne A 1902, 322 343)
+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Varenne, C F 93 727)

#### Chromium molybdenyl bromide, CrMo<sub>3</sub>O<sub>4</sub>Br<sub>4</sub>

Apparently wholly insol in dil a ds Sol in hot conc HCl+Aq with decc ip Insol in M<sub>2</sub>CrO<sub>4</sub>+Aq (Atterberg) +2H<sub>2</sub>O Apparently wholly insol in dil acids

Sol in hot cone HCl+Aq with dece ip Insol in M<sub>2</sub>CrO<sub>4</sub>+Aq (Atterberg)

## Chromic rubidium bromide, CrBr<sub>3</sub>, 2R Br +H<sub>2</sub>O

Sol in  $H_2O$  with decomp (Werner A 1902, 322 345)

## Chromic bromide ammonia

See Bromotetramine chromium bromid

# Chromous bromide hydrazine, CrBr, 2N<sub>2</sub>H<sub>4</sub>

Insol in H<sub>2</sub>O Sol in acids Insol in alcohol, other and similar solvents (Tru e, B 1913, **46** 1507)

# Chromium carbide, Cr<sub>4</sub>C

(Moissan C R 1594, 119 187)

C<sub>1</sub>C<sub>2</sub> Does not decomp HO at ordin y temp or at 100°, insol in conc HCl, HI D<sub>1</sub> and iquarter sol in dil HCl (slowly), in il in fu d kOH sol in fused kNO<sub>1</sub> (Mois in, Bull Soc 1894 (3) 117 1016)

# Chromium iron carbide, 3Fe3C 2Cr3C

Decomp by H<sub>2</sub>(), sol in gaseous ydracids, insol in HNO, and aquaregia (Vlams, C R 1898, **127** 484)

Chromium tungsten carbide, CW, 3Cr

Not attacked by reids

Slowly ittacked by fused KOH or al. In carbonates R ipidly decomp by fu dalkuli nitrates or KClO<sub>3</sub> (Moissan, C & 1903, **137** 294)

# Chromous chloride, CrCl<sub>2</sub>

Deliquescent Very sol in H<sub>2</sub>O with evention of much heat (Moberg, J pr 29 1 )

Practically insol in ether Moderately sol in absolute alcohol, methyl alcohol, and acetaldehyde (Rohland, Z anorg 1899, 21 39)

+1½H<sub>0</sub>O (Moissan, A\_ch\_(5) 25 40) (Knight and Rich, Chem Soc +2H<sub>2</sub>O 1911, **99** 89) +3H<sub>2</sub>O (Knight and Rich)

Chromous hydrogen chloride, 3CrCl<sub>2</sub>, 2HCl+ 13H<sub>2</sub>O

Decomp by H<sub>2</sub>C (Recoura, C R 100 1227)

Sl sol in liquid NH; (Gore, Am Ch J 1898, **20** 827)

### Chromic chloride, CrCl<sub>3</sub>

Anhydrous —Peach-blossom-colored modi-Insol in pure H<sub>2</sub>O (Peligot), but by long continued boiling of the finely divided salt with H<sub>2</sub>O, traces are dissolved with decomp Not decomp by boiling conc H<sub>2</sub>SO<sub>4</sub>, or other acids, even aqua regia

Easily sol with evolution of heat in H<sub>2</sub>O containing only 1/40,000 pt CrCl<sub>2</sub> (Peligot, J pr 36 150) Also sol in presence of traces of SnCl<sub>2</sub> (5 mg SnCl<sub>2</sub> cause 1 g CrCl<sub>3</sub> to dissolve), FeCl<sub>2</sub>, Cu<sub>2</sub>Cl<sub>2</sub>, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, and other reducing substances, chlorides without reducing properties have no effect (Pelouze, A ch (3) 14 251) TiCl<sub>3</sub> and SO<sub>2</sub> have similar solvent action (Ebelmen, A ch (3) 20 390), ulso Zn+dil acids (Moberg)

Insol in dil alkalies+Aq, very slowly decomp by boiling conc alkalies or alkali carbonates+Aq (Fellenberg, Pogg 50 76)

Difficulty sol in methyl acetate

mann, B 1909, 42 3790)

Insol in CS (Arctowski, Z anorg 1894, 6 257)

Insol in acctone (Eidmann, C C 1899) II, 1014)

Practically insol in absolute ethyl alcohol, methyl alcohol, acctaldehyde and ether (Rohland, Z anoig 1899, 21 39)

Yellow SI sol in benzonitrile (Nau-

mann, B 1914, 47 1369)

Violet modification Very sol in HO to form a green solution (Moberg, J pr 44 325 )

The violet mod is almost insol in H<sub>2</sub>O but if 1/20,000 pt chromous chloride is present, it is readily sol (Rohland, Z anoig 1899, 21 39)

Very sol in +4H2O SI deliquescent H<sub>2</sub>O, alcohol and thyl acetate (Godeffroy, Bull Soc (2) 43 229)

Sol in H<sub>2</sub>O, but +6H<sub>2</sub>O = Delique scent

probably decomp to CrOCl2

Prictically insol in ether Moderately sol in absolute ethyl ilcohol, methyl alcohol (Rohland, Z anorg and acetaldehyde 1899, **21** 39)

"Monochlorochromic chloride" is sol in ther and fuming HCl(11) (Bjerrum, B 1906, 39 1599)

Green modification

Solubility in H<sub>2</sub>O at 25°

25 g green CrCl<sub>3</sub>+6H<sub>2</sub>O and 10 g H<sub>2</sub>O

| Time                               | Total Solu<br>bility in % | Composition of the sat solution  |                                  |
|------------------------------------|---------------------------|----------------------------------|----------------------------------|
|                                    |                           | % violet salt                    | % green salt                     |
| 1/4 hr<br>1/2 hr<br>4 hrs<br>1 day | 58 36<br>63 27<br>68 50   | 8 30<br>12 57<br>24 80<br>37 64  | 91 70<br>87 43<br>75 20<br>62 36 |
| 2 days<br>3 "<br>11 "<br>13 "      | 68 95                     | 40 90<br>42 78<br>42 84<br>42 39 | 59 10<br>57 22<br>57 16<br>57 61 |
| 19 "                               | 68 58                     | 42 62                            | 57 38                            |

(Ohe, Z anorg 1906, **51** 55)

Solubility of green CrCl<sub>3</sub>+6H<sub>2</sub>O in HO at

 $10 \text{ g CrCl}_3 + 6\text{H}_2\text{O} \text{ and } 4 \text{ g H}_2\text{O}$ 

| _                         | Total<br>solubility                       | Composition dissolved su                  | Solid                                     |                                 |
|---------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------|
| Time                      | in %                                      | % violet salt                             | % green<br>salt                           | phase                           |
| 7' 45' 2h 5' 48h * 11 dys | 63 69<br>66 24<br>69 53<br>69 33<br>70 81 | 12 87<br>21 43<br>34 53<br>45 27<br>45 27 | 87 13<br>78 57<br>65 47<br>54 73<br>54 73 | Almost<br>all<br>dis-<br>solved |

\* First 8 days at 35°

(Ohe, Z anorg 1907, **53** 276)

Solubility of green CrCl<sub>3</sub>+6HO in HO at

#### $10 \text{ g CrCl}_3 + 6\text{H}_2\text{O} \text{ and } 3 \text{ g H}_2\text{O}$

| Time                                                                                                      | Total solubil                                               | Composition of the dissolved substance                      |                                                             |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                           | 113 111 /2                                                  | % violet salt                                               | % green salt                                                |
| 8'<br>38'<br>1 <sup>h</sup><br>2 <sup>h</sup> 10'<br>4 <sup>h</sup><br>23 <sup>h</sup><br>72 <sup>h</sup> | 65 85<br>66 74<br>66 21<br>68 90<br>70 79<br>71 34<br>70 79 | 16 47<br>25 02<br>25 45<br>31 47<br>36 28<br>42 95<br>42 88 | 83 53<br>74 98<br>74 55<br>68 53<br>63 72<br>57 05<br>57 12 |

(Olie, l c)

If a solution saturated with the green hexahydrate below 32° is cooled, the decahydrate separates out, if the solution is saturated above 32°, both the decahydrate and hexahydrate separate out on cooling (Olie, l c)

# Violet modification

Solubility in H O at 25°

25 g violet CrCl<sub>3</sub>+6H<sub>2</sub>O and 10 ccm of a 35% solution of green CrCl<sub>3</sub>+6H<sub>2</sub>O

| Time                                                        | Time Total Solu |                         | Composition of the sat solution |  |
|-------------------------------------------------------------|-----------------|-------------------------|---------------------------------|--|
|                                                             | bility in %     | % violet salt           | % green salt                    |  |
| 1 <sup>1</sup> / <sub>6</sub> hr<br>5 "                     | 65 49           | 84 05<br>84 47          | 15 95<br>15 53                  |  |
| $\begin{array}{ccc} 29 & ``\\ 2 & \mathrm{dys} \end{array}$ | 70 47           | 78 16<br>73 19<br>68 71 | 21 84<br>26 81<br>31 29         |  |
| 4 "<br>5 "<br>5 dys, 6 hrs                                  | 76 38           | 60 66<br>60 36          | 39 34<br>39 64                  |  |
| 6 dys<br>8 "                                                | 73 26           | 65 10<br>65 80          | 34 90<br>34 20                  |  |
| 10 "<br>12 "                                                | 71 14           | 58 08<br>41 40          | 41 92<br>58 60                  |  |

(Ohe, Z anoig 1906, 51 57)

Solubility in H O at 25° 25 g violet CrCl<sub>2</sub>+6H<sub>2</sub>O and 10 g H<sub>2</sub>O

| Time     | Total Solu  | Composition of the sat solution |              |
|----------|-------------|---------------------------------|--------------|
|          | bility in % | % violet salt                   | % green salt |
| 1/6 hr   | 61 99       | 98 47                           | 1 53         |
| 41/2 hrs |             | 96 70                           | 3 30         |
| 1 dy     | 63 88       | 91 54                           | 8 46         |
| 2 "      |             | 83 37                           | 16 63        |
| 4 "      | 70 68       | 69 11                           | 30 89        |
| 5 "      |             | 62 20                           | 37 80        |
| 7 "      | 72 11       | 62 72                           | 37 28        |
| 8 "      |             | 54 63                           | 45 37        |
| 12 "     |             | 46 39                           | 53 61        |
| 13 "     |             | 47 66                           | 52 34        |
| 26 "     | 70 62       | 48 55                           | 51 45        |

(Olie,  $l \ \epsilon$ )

+6½H₂O 100 pts Green modification H<sub>2</sub>O dissolve 130 pts salt at 15° Sol in ilcohol (Recoura, C R 102 518)

Graysh-blue modification Very sol in

 $H_2O$ (Recoura, C R 102 548)

+10H<sub>2</sub>O Very deliquescent, melts in crystal H<sub>2</sub>O at 6-7° Very sol in H<sub>2</sub>O, alcohol, and ethyl acetate (Godeffroy)

Lasily sol in H2(), can be recryst from H<sub>2</sub>O Sol in alcohol and other (Werner, B) 1906, **39** 1827)

Green modification

Solubility of green CrCl<sub>3</sub>+10H O in H<sub>2</sub>O Lt

14 2 g CrCl<sub>3</sub>+10H<sub>2</sub>O and 2 5 g H<sub>2</sub>O

| Total                     |                | Composition of<br>the dissolved<br>substance |                 | Solid phase            |   |
|---------------------------|----------------|----------------------------------------------|-----------------|------------------------|---|
|                           | ın %           | % violet                                     | % green<br>salt | -                      | _ |
| 7′                        | 61 35          | 8 71                                         | 91 29           | CrCl <sub>3</sub> +10F | O |
| 20′<br>1 <sup>h</sup> 55′ | 62 46<br>65 04 | 9 90                                         | 90 10<br>74 95  | "                      |   |
| 4h 30'                    | 65 04<br>67 41 | 25 05<br>32 90                               | 67 10           | CrCl <sub>3</sub> +6H  | ) |
| $24^{\rm h}$              | 69 44          | 42 93                                        | 57 07           | all dissolve           |   |
| $28^{\rm h}$              |                | 31 78                                        | 68 22           | CrCl <sub>2</sub> +10E | O |
| $29^{\rm h}$              | 67 59          | 33 65                                        | 66 36           | CrCl <sub>3</sub> +6H  | • |
| 48 <sup>h</sup>           | 69 42          | 42 17                                        | 57 83           | "                      |   |
| $72^{\mathrm{h}}$         | 68 69          | 43 80                                        | 56 20           | e c                    |   |
|                           |                |                                              |                 |                        |   |

(Olie, Z anorg 1907, 53 275)

The composition of the hydrates form d byCrCl<sub>3</sub> at different dilutions is calculat from determinations of the lowering of t fr pt produced by CrCl3 and of the cc ductivity and sp gr of CrCl<sub>1</sub>+Aq (Jon ,, Am Ch J 1905, 34 310)

Chromic glucinum chloride, CiCl<sub>2</sub>, Gl( )  $+H_2C$ 

Sol in HO with decomp (Neumann, **244** 329)

Chromic lithium chloride, CiCl, 2LiCl -4H<sub>2</sub>O

Very hygroscopic

Sol in ice water but solution soon decor Easily sol in alcohol (Weiner, B 190,

**34** 1603)  $[C_1(OH_2)Cl_5]I_1 + 4H_2()$ 

Very hygroscopic Sol in ice cold H and in alcohol (Warner, B 1901, 34 160

Chromic magnesium chloride, (1(13, Mg( +H()

Decomp by H<sub>2</sub>O (Neum um )

Chromic phosphoric chloride, (rCl, PC Decomp by H () (Cron index)

Chromium platinum chloride See chloroplatinate, chromium

Chromic potassium chloride, C1(18, K( Decomp by H<sub>2</sub>O

CrCl<sub>3</sub>, 2kCl+H<sub>2</sub>O (Neumann, A 24 329)

CrCl<sub>3</sub>, 3KCl Easily sol in H O with c comp (Fremy, A ch (3) 12 361)

Chromic rubidium chloride, CrCl<sub>3</sub>, 2RbCl+ H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Neumann, A 244

Slowly sol in cold, rapidly sol in hot H<sub>2</sub>O with decomp (Werner, B 1901, 34 1603) CrCl<sub>3</sub>, 3RbCl+8H<sub>2</sub>O Unstable Decomp by alcohol (Werner, B 1906, 39 1830)

Chromic sodium chloride, CrCls, NaCl Sol m H<sub>2</sub>O (Berzehus) CrCl<sub>3</sub>, 3NaCl Sol in H<sub>2</sub>O (Berzelius)

Chromic thallium chloride, CrCl<sub>3</sub>, 3TlCl Sol with decomp in H<sub>2</sub>O (Neumann, A **244** 329 )

Chromic chloride ammonia See Chlorotetramine chromium chloride

Chromous chloride hydrazine, CrCl<sub>2</sub>, 2N<sub>2</sub>H<sub>4</sub>

Insol in H<sub>2</sub>O Sol in acids Insol in alcohol, ether and sımılar solvents (Traube. B 1913, 46 1506

Chromic chloride ferric oxide

Fe,O<sub>3</sub> is easily sol in dil, difficultly sol in conc CrCl<sub>3</sub>+Aq (Béchamp A, ch (3) **57** 311 )

Chromous fluoride, CrF<sub>2</sub>

Sl sol in HO, hot H<sub>2</sub>SO<sub>4</sub> or dil HNO<sub>3</sub> Sol in boiling HCl Insol in alcohol Insol in alcohol (Poulenc, C R 1893, 116 254)

Chromic fluoride, CiF3

Perfectly sol in H2O (Berzelius) (Gore, Am Ch J Insol in liquid NH<sub>3</sub> 1898, **20** 827)

Insol in methyl acetate (Naumann, B 1909, **42** 3790), (thyl acetate (Naumann, B 1910, **43** 314) +3H<sub>2</sub>() Insol in H<sub>2</sub>O (Werner and

(Werner and Cost wheseu, B 1908, 41 4243)

+31/2II O Sol in HO (Poulenc, C R

1893, **116** 255) +6H O Sl Sol in H O (Werner and Costachescu, B 1908, 41 4242)

Vay sl sol +9II () Violet modification Insol in dechol Sol in HCl, and m H.O KOH+ Aq (Fabris, Gazz ch it 20 582)

Chromium he raffuoride, Ci I 6

Decomp by II O with evolution of heat (Berzelius)

(Oliveri, Correct composition is CrO<sub>2</sub>F Gazz (h. it. 16 218)

Chromic cobaltous fluoride, CrF<sub>3</sub>, CoF<sub>2</sub>+ 7H₂O

(Petersen, J pr (2) Lasily sol in H<sub>2</sub>O **40** 60 )

Chromic cupric fluoride, CrCuF<sub>5</sub>+5H<sub>2</sub>O

Can be cryst from HF+Aq (Higley, J Am Chem Soc 1904, 26 630)

Chromic nickel fluoride, CrF<sub>3</sub>, NiF +7H<sub>2</sub>O Somewhat more sol in H2O than CrF3,  $CoF_2+7H_2O$  (Petersen, J pr (2) 40 61)

Chromic potassium fluoride, CrF<sub>3</sub>, 3KF

Nearly insol in H<sub>2</sub>O (Christensen, J pr (2) **35** 161) CrF<sub>3</sub>, 2KF+H<sub>2</sub>O Nearly insol in H<sub>2</sub>O Sol in conc HCl+Aq (Christensen)

Chromic sodium fluoride, CrF<sub>3</sub>, 2NaF+H<sub>2</sub>O (Wagner, B 19 896)

Chromic thallous fluoride, 2CrF<sub>3</sub>, 3TlF

Sol in hot H<sub>2</sub>O, less sol in cold in HF (Ephraim, Z anorg 1909, 61 242)

Chromic zinc fluoride, CrF<sub>3</sub>, ZnF<sub>2</sub>+7H<sub>2</sub>O Can be cryst from HF+Aq (Higley, J Am Chem Soc 1904, 26 630)

Colloidal solution is perfectly (Bıltz, B 1902, 35 4433)

Chromous hydroxide, CrO<sub>2</sub>H<sub>2</sub>

Decomp by H<sub>2</sub>O, especially if hot ligot, A ch (3) 12 539 )

Slowly sol in cold cone acids, even aqua regia, almost insol in dil acids (Moberg, J pr 43 119)

Chromic hydroxide, Cr<sub>2</sub>O<sub>3</sub>, xH<sub>2</sub>O, probably Cr<sub>2</sub>O<sub>6</sub>H<sub>6</sub>

Insol in H<sub>2</sub>O Easily sol in acids Easily sol in cold KOH, or NaOH+Aq, much less sol in cold NH<sub>4</sub>OH+Aq, the presence of NH<sub>4</sub>Cl has no influence upon solubility in NH<sub>4</sub>OH+Aq (Fresenius) Insol in NH<sub>4</sub>OH+Aq if it has been thoroughly washed

Insol in KCN+Aq, but sl sol in KCN+HCN+Aq (Rodgers, 1834)
Gradually sol in dil FeCl<sub>3</sub>+Aq, after three

months, 2 mols Cr<sub>2</sub>O<sub>6</sub>H<sub>6</sub> are dissolved by 1 mol FeCl<sub>3</sub> without pptn of Fe O<sub>6</sub>H<sub>6</sub> champ, A ch (3) 57 296)

Alsl sol in CrCl<sub>3</sub>+Aq, in four months, 11/2 mols C<sub>1</sub> O<sub>6</sub>H<sub>6</sub> are dissolved by 1 mol CrCl<sub>3</sub>

(Béchamp Sol in Cr(NO<sub>3</sub>)<sub>3</sub>+Aq, and clear solution formed as long as 3 mols HNO<sub>3</sub> are present for 8 mols Cr<sub>2</sub>O<sub>3</sub> (Ordway, Sill Am J (2)

**27** 197 ) Chromic hydroxide, pptd by alkalies is easily sol in excess of the reagent, after being dried in a vacuum, however, it is insol in

alkalies (Herz, Z anorg 1901, 28 344)
Freshly pptd it is sol in aq alkali, but it is readily changed into a modification which is insol (Herz, Z anorg 1902, 31, 352)

The solubility of chromic hydroxide in an

aqueous solution of red chromic chloride is not directly proportional to the concentration of the latter—a basic chloride is probably (Fischer, Z anorg 1904, 40 43)

Not pptd in presence of Na citrate (Spiller)

Insol in amylamine+Aq, not pptd in

presence of alkalı tartrates, sugar, etc

Cr<sub>2</sub>O<sub>6</sub>H<sub>6</sub>+4H<sub>2</sub>O Difficultly sol in acids  $Cr_2O_6H_6+H_2O$ Extremely hygroscopic Exists in a soluble modification, obtained by dialysis, solution can be diluted with pure H<sub>2</sub>O, but gelatinizes with traces of salts (Graham, Roy Soc Trans 1861 183)

 $Cr_2O_2(OH)$ Insol in boiling dil HCl+

Cr<sub>2</sub>O(OH)<sub>4</sub> (Guignet's green) Scarcely sol in boiling HCl+Aq (Salvetat, C R 48 295) Guignet gave formula as  $2Cr_2Q_3+3H_2Q$ 

Chromochromic hydroxide, Cr<sub>3</sub>O<sub>4</sub>, H<sub>2</sub>O(?)

Slightly attacked by acids (Peligot, A ch (3) 12 539)

hromous 10dide, CrI Easily sol in H<sub>2</sub>O (Moissan, A ch (5) **25** 401)

# Chromic iodide, CrI<sub>3</sub>(?)

Insol in cold, sol in hot H2O, but no separation occurs on cooling (Berlin)

+9HO Hygroscopic Sol in alcohol and acetone Insol in CHCl3 (Higley, J Am Chem Soc 1904, 26 628)

Chromous iodide hydrazine, Crl 2N H. (Traube, B 1913, 46 1507)

# Chromium nitride, CrN

Insol in dil acids and alkalics, conc IINO3, HCl or HF+Aq, even on heating Slowly sol in hot iqu'i regia or cold H SO4 Sol in cold solutions of ilk ili hypochlorites (Ufer, A 112 281)

Insol in HCl, IINO, and equi regire theree, Bull Soc 1901 (3) 25 618)

Unacted upon by reids at ordin my temperitures (Smits, Chem Soc 1897, 72 (2) 33)

Slowly attacked by cone HNO; and by HNO; +HCl All other reagents are without action (Henderson and Galletly, J Soc Chem Ind 1905, 27 357)

CrN<sub>3</sub> See Chromium azoimide

#### Chromous oxide, CrO

Insol in HNO3 and dil H2SO4+Aq Sol m HCl (Ferce, Bull Soc 1901, (3) **25** 619)

Chromic oxide, Cr<sub>2</sub>O<sub>3</sub>

When ignited is nearly insol in acids, dissolves in H2SO4 by long boiling in liquid HCl (Gore)

(Fidmann, C C 1 19 Insol in acetone

II, 1014) Solubility in (calcium sucrate+suga +

Αq 1 l solution containing 418 6 g sugar 343 g CaO dissolves 107 g Cr<sub>2</sub>O<sub>3</sub>, 1 l tion containing 296 5 g sugar and 24 2 g dissolves 0 56 g Cr<sub>2</sub>O<sub>3</sub>, 1 l solution com ming 1744 g sugar and 141 g CaO disso es 0 20 g Cr<sub>2</sub>O<sub>3</sub> (Bodenbender, J B 1 )5 600)

See also Chromic hydroxide

+H<sub>2</sub>O The compound to which Bu en gave the formula Cr<sub>5</sub>O<sub>6</sub> Insol in acids, ut easily attacked by HNO<sub>3</sub> (Férée, Bull 1901, (3) **25** 620 )

Chromochromic oxide, Cr<sub>3</sub>O<sub>4</sub>=CrO, Cr<sub>2</sub> <sub>4</sub> Known only in form of hydroxide, w ch

Decomy in +3H<sub>2</sub>OStable in dry air moist air (Bauge, C R 1898, 127 552)  $Cr_4O_5$ , or  $Cr_5O_6$  (?) Insol in acids ( in aqua regia (Bunsen, Pogg 91 622)

Not obtainable (Geuther, A 118 66) Formula is Cr O<sub>3</sub>+H<sub>2</sub>O (Feree)

# Chromium trioxide, CrO<sub>3</sub>

Deliquescent, and very sol in H O to form solution of  $H_2Cr_0A_0$  or  $H_2Cr_2O_7$ 

Solubility in HO it to

t.° 00 15° 50° % CrO 62 08 € 39 62.3864 55

(Mylius and Funk, Gm K 3 1 1332

Sit (rO; + 1q contains it

60° 62 52 61.54 65 12% (10)

(Koppel and Blumenthal Z among 1907 3 228 )

The system CrO3-HO has been stu-ed it temp from 0°to-74° In the limi concentration investigated from 0-71CrO3, no hydrate of CrO3 cryst from aq solution (Kreminn, M 1911, 32 62 Sat CrO<sub>1</sub>+Aq contains it

> 100° 82° 115° 66 67 4 68 4% C1O<sub>3</sub>

(Kremann, M 1911, 32 620)

| Solubility |   | $\mathbf{T} \wedge$        | ~+0 |
|------------|---|----------------------------|-----|
| Solubility | m | $\mathbf{H}_{2}\mathbf{U}$ | at- |

| t°                          | % by wt CrO3                   | Solid phase |
|-----------------------------|--------------------------------|-------------|
| -0 9°                       | 3 6                            | Ice         |
| -19                         | 7 8                            | 46          |
| $-\bar{3}\bar{7}$           | 11 5                           | "           |
| -48                         | 14 1                           | "           |
| $-10^{\circ}95$             | $2\overline{4}$ $\overline{9}$ | "           |
| -117                        | 25 2                           | "           |
| -1875                       | 33 5                           | "           |
| -25 25                      | 39 2                           | "           |
| $-\frac{13}{43}\frac{1}{5}$ | 49 1                           | "           |
| 60                          | 53 3                           | "           |
| -20                         | 61 7                           | $CrO_3$     |
| 0                           | 62 24                          | "           |
| +248                        | 62 88                          | "           |
| 40                          | 63 50                          | "           |
| 65                          | 64 83                          | "           |
| 90                          | 68 5                           | "           |
| 122                         | 70 7                           | 4           |
| 193–196                     | 100                            | "           |
|                             |                                |             |

Buchner and Prins, Z phys Ch 1912, **81** 114)

Sp gr of CrO3+Aq at t°

| 1 0606<br>1 0679<br>1 0694<br>1 0957<br>1 1569<br>1 20269 | 8 25<br>8 79<br>8 79<br>12 34<br>19 33 |
|-----------------------------------------------------------|----------------------------------------|
| 1 0694<br>1 0957<br>1 1569                                | 8 79<br>12 34<br>19 33                 |
| 1 0957<br>1 1569                                          | 8 79<br>12 34<br>19 33                 |
| 1 1569                                                    | 12 34<br>19 33                         |
|                                                           |                                        |
| 1 20269                                                   |                                        |
|                                                           | 31 83                                  |
| 1 20264                                                   | 31 83                                  |
| 1 20714                                                   | 31 83                                  |
| 1 20940                                                   | 32 59                                  |
| 1 21914                                                   | 32 59                                  |
|                                                           | 32 59                                  |
|                                                           | 32 59                                  |
|                                                           | 37 77                                  |
| . ,                                                       | 37 82                                  |
|                                                           | 37 82                                  |
|                                                           | 62 23                                  |
|                                                           | 1 20264<br>1 20714<br>1 20940          |

(Zettnow Pogg 143 474)

The gr of  $(10_4 + \text{Aq})$  (H  $C_1O_4 + \text{Aq})$  M = according to Mendeleyeff at 15°, Z = u cording to Acttnow, calculated by Green luch (Z and 27 300)

| ~ ~  |       | 1     | 1     |                                              |       |
|------|-------|-------|-------|----------------------------------------------|-------|
| CrO3 | M     | / /   | (r(); | M                                            | /     |
|      |       |       |       |                                              |       |
| 5    | 1 036 | 1 037 | 35    | 1 324                                        | 1 312 |
| 10   | 1 076 | 1 076 | 10    | 1 383                                        | 1 373 |
| 15   | 1 119 | 1 118 | 45    | 1 445                                        | 1 440 |
| 20   | 1 166 | 1 162 | 50    | 1 510                                        | 1 512 |
| 25   | 1 215 | 1 208 | 55    | 1 579                                        | 1 587 |
| 30   | 1 268 | 1 258 | 60    |                                              | 1 656 |
|      |       |       |       | <u>'                                    </u> |       |

B-pt of CrO<sub>3</sub>+Aq at ord pressure

| B pt  | G CrO <sub>3</sub> in 100 g of the solution |
|-------|---------------------------------------------|
| 102°  | 10 81                                       |
| 104   | 24 08                                       |
| 107   | 36 47                                       |
| 110 5 | 45 15                                       |
| 116   | 54 56                                       |
| 120   | 61 54                                       |
| 127   | 71 24 sat solution                          |

(Koppel and Blumenthal, Z anorg 1907, 53 254)

Sol in  $\rm H_2SO_4$ , the solubility is least when the acid contains 66% H SO<sub>4</sub> (Schrotter), 84.5% H<sub>2</sub>SO<sub>4</sub> (Bolley)

Verv sol in H<sub>2</sub>SO<sub>4</sub> of 1 85 sp gr Sl sol in cold KHSO<sub>4</sub>+Aq (Fritzsche)

The statement that CrO<sub>3</sub> is insol in acids is incorrect 2.85 g (ignited) are sol in HNO<sub>3</sub> to the extent of 2.58 g 0.81 g (ignited) are sol in HNO<sub>3</sub> to the extent of 0.77 g (Jovitschitsch, M 1909, **30** 48)

Practically insol in POCl<sub>3</sub> (Walden, Z anorg 1910, 68 312)

Sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 827)

Sol in alcohol with decomp

Sol in anhydrous ether

Sol in acetic anhydride (Fry, J Am

Chem Soc 1911, 33 700 \ Sol in acetone (Nε

Sol in benzonitrile , ...,

47, 1369)
Sol in methyl acetate (Naumann, B 1909, 42 3790)

Difficultly sol in ethyl acetate (Nauminn, B 1910, 43 314)

Chromium oxide,  $Cr_5O_9 = 2C_1 O_3 CrO_3$ 

 $C_{1}, O_{1} = 3C_{12}O_{1}, 2C_{1}O_{1}$   $C_{1}O = C_{12}O_{2}, C_{1}O_{1}$   $C_{12}O_{12} = C_{11}O_{13}, 3C_{10}O_{11}$   $C_{16}O_{11} = C_{12}O_{13}, 4C_{10}O_{3}$  $\delta_{12}O_{12}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O_{13}O$ 

Chromium peroxide,  $C_1(?)$ 

More sol in etha than in HO. I there solution is somewhat more stable than aqueous solution. (Aschoff, J. pr. 81, 401.)

Tormula is CiO HO (Moissan C R 97 96)

Chromium peroxide ammonia, CrO<sub>1</sub>, 3NH<sub>3</sub>

Sol in H O with partial decomp

SI sol in NH<sub>4</sub>OH+\q Sol with decomp in 20% actic and (Hofmann, B 1905 **38** 3060)

Chromium tetroxide potassium cyanide,

C<sub>1</sub>O<sub>4</sub>, 3kCN

Sol in HO Insol in other ordinary solvents (Wiede, B 1899, 32, 381)

Chromic oxychloride

From Cr<sub>2</sub>O<sub>3</sub> Sol in H<sub>2</sub>O as long as 1 mol CrCl<sub>3</sub> is present for 2½ mols Cr<sub>2</sub>O<sub>6</sub>H<sub>6</sub> (Ordway, Sıll Am J (2) 27 197)

Cr<sub>2</sub>O<sub>3</sub>, 2CrCl<sub>3</sub> Sol in H<sub>2</sub>O Zeit Ch **1866** 277) (Kletzinsky,

Cr<sub>2</sub>O<sub>3</sub>, CrCl<sub>3</sub>=CrOCl Anhydrous Only partly sol in H<sub>2</sub>O +3H O Very deliquescent, and sol in

 $H_2O$ 

(Peligot )  $O_3$ ,  $4CrCl_3+6H_2O = Cr_2OCl_4+2H_2O$ Cr<sub>2</sub>O<sub>3</sub>, 4CrCl<sub>3</sub>+61 (Peligot, J pr **37** 38)

 $+9H_{\bullet}O = Cr_2OCl_4 + 3H_2O$ Sol ın H<sub>2</sub>O (Moberg),  $=Cr_2(OH)_2Cl_4+2H_2O$ (Schiff, **4 124** 157)

 $Cr_2O_3$ ,  $7CrCl_3 = Cr_3OCl_7$  Very sol in  $H_2O$ with decomp (Besson and Fournier, C R 1909, **148** 1194)

 $\text{Cr} \circ O_3$ ,  $8\text{CrCl}_3 + 24\text{H}_2\text{O}$  Sol in  $\text{H}_2\text{O}$  (Moberg),  $=\text{Cr}_2(\text{OH})\text{Cl}_5 + 4\text{H}$  O (Schiff, l c) (CrO<sub>2</sub>)<sub>3</sub>Cl<sub>2</sub> (Pascal, C R 1909, 148 1464)

Cr<sub>6</sub>O<sub>9</sub>Cl<sub>4</sub> Insol in H<sub>2</sub>O (Pascal, C R 1909, 148 1464)

From CrO<sub>8</sub>

See Chromyl chloride

# Chromic oxychloride potassium chloride, CrOCl<sub>3</sub>, 2KCl

Decomp in the air Sol in conc HCl without decomp (Weinland, B 1906, 39 4043)

# Chromic oxychloride rubidium chloride, CrOCl<sub>3</sub>, 2RbCl

Decomp in the air Sol in conc HCl without decomp (Weinland, B 1906, 39 4045)

Chromium oxyfluoride, CrO<sub>2</sub>F<sub>2</sub> See Chromyl fluoride

# Chromium phosphide, CrP

Insol in acids, but a trace dissolves in aqua regia Insol in HF+Aq (Berzelius)
Not attacked by acids or by aqua regia (Granger, C. N. 1898, 77, 228)

Insol in all acids except a mixture of HNO<sub>3</sub> and HF (Maronneau, C R 1900, 130

658) Insol in mineral acids (Dieckmann, Z

anorg 1914, 86 295) Insol in aqua regia (Granger, C R

1897, 124, 191) Cr P<sub>3</sub> Insol in mineral acids (Dieckmann Z anorg 1914, 86 295)

Chromous selenide, CrSe (Moissan, C R 90 817)

Chromic selenide, Cr<sub>2</sub>Se<sub>3</sub>

Chromic potassium selenide, K.Cr2Se4

Insol in HCl Easily sol in conc HN a (Milbauer, Z anorg 1904, 42 451)

Chromium silicide, Cr<sub>2</sub>Si

Sol in fused KNO3, insol in cold HCl aqua regia

Insol in HF+Aq (Moissan, C R 18 ),

**121** 625) Sol in HF Insol in HCl & d  $CrS1_2$ aqua regia (Chalmot, Am Ch J 1897, 69)

Insol in dil HCl, sol in wa n cone HCl and in HF, insol in HNO<sub>3</sub> & d H<sub>2</sub>SO<sub>4</sub> (Lebeau, C R 1903, **136** 1330) Cr<sub>3</sub>S<sub>1</sub> Sol in HF, insol in other act i,

sol in fused KOH and fused alkalı nıtra 's and carbonates (Zettel, C R 1898, 1 834)

## Chromous sulphide, CrS

Insol in H<sub>2</sub>O or K<sub>2</sub>S+Aq (Peligot) Easily sol in acids (Moissan, C R 817)

Sol in cold conc acids

Sol in molten alkalies (Mourlot, C 1895, **121** 944 )

Min Daubrelite

# Chromic sulphide, Cr<sub>2</sub>S<sub>3</sub>

Insol in  $H_2O$  or alkali sulphides +Aqattacked by HCl+Aq (W Muller, Po **127** 404)

HNO<sub>3</sub>+Aq decomposes or not recording to method of preparation. Fisily deconby aqua regia

Insol in caustic alkalics  $+ \lambda q$ Insol in KS+Aq (Bazelius)

Chromochromic sulphide,  $C_1 \otimes_i = C_1 \otimes_i$  $Cr_2S_3$ 

Insol in HO, HCl, or dil II SO<sub>4</sub>+1 Easily sol in HNO3+Aq (Groger, W A **81** (2) 531 )

Chromic zinc sulphide, Ci Zin (Groger W A B 1880, 81 534)

# Chromicyanhydric acid

# Cadmium chromicyanide, ( d. ( N),

Readily sol in in cacess of IsCN and NH4OH+Aq Decomp by cone HC HNO, or H2SO4 Slowly decomp by co rapidly by hot dil HCl, HNO, or H2SC Quickly dissolved by aquiring it Decon by boiling with  $N_{12}O_2$ , by  $N_{1}OH + Aq$  a 1 by N<sub>2</sub>CO<sub>3</sub>+Aq Slowly decomp by boiling acetic acid (Cruser and Miller, J. A. Chem Soc 1906, 28 1136)

Cobaltous chromicyanide,  $Co_3[C_1(CN)_6]$ Sol in cold, readily sol in hot conc H l

Insol in HO (Moissan, C R 90 817) or H<sub>2</sub>SO<sub>4</sub> Sl sol even in boiling cor

HNO<sub>3</sub> Slowly sol in cold dil H<sub>2</sub>SO<sub>4</sub>, HCl Lithium chromisulphocyanide, OI HNO<sub>3</sub> Readily sol in boiling dil HCl or L<sub>13</sub>Cr(SCN)<sub>6</sub>+H<sub>2</sub>O H SO4 Decomp but not entirely dissolved by aqua regia Readily sol in an excess of KCN Decomp by NH<sub>2</sub>OH, NaOH or Na<sub>2</sub>CO<sub>3</sub>+Aq Decomp by boiling with Na<sub>2</sub>O<sub>2</sub> Insol in cold or boiling acetic acid (Cruser and Miller)

Cuprous chromicyanide, Cu<sub>3</sub>Cr(CN)<sub>6</sub>

Sol in KCN, cold cone or boiling dil HNO3+Aq Slowly sol in cold cone H2SO4, still more slowly sol in dil H<sub>2</sub>SO<sub>4</sub> but rapidly sol in hot dil and conc H<sub>2</sub>SO<sub>4</sub> Readily decomp by aqua regia Decomp by dil or conc HCl, slowly going into solution in the cold, but quickly on boiling (Cruser and Miller)

Cupric chromicyanide, Cu<sub>3</sub>[Cr(CN)<sub>6</sub>]<sub>2</sub>

Slowly sol in cold dil HCl, HNO3 or H2SO4 on boiling the first two readily dissolve it, but the H SO<sub>4</sub> dissolves it only slowly Sol in aqua regia or cold conc H2SO4 Readily sol in cold or hot cone HCl Decomp by cold, dissolved by boiling HNO<sub>3</sub> Decomp by boiling Na<sub>2</sub>O<sub>2</sub>+Aq Decomp by NH<sub>4</sub>OH, NaOH or Na<sub>2</sub>CO<sub>3</sub>+Aq Readily sol in an excess of LCN+Aq Insol in cold acetic acid (Cruser and Miller)

Nickel chromicyanide, N<sub>13</sub>[C<sub>1</sub>(CN)<sub>6</sub>]<sub>2</sub>

Slowly sol in cold, readily sol in hot dil HCl, HNO, or H<sub>2</sub>SO<sub>4</sub> Slowly sol in cold, 1 (adily sol in hot cone H<sub>2</sub>SO<sub>4</sub>, HCl or IINO<sub>3</sub> Slowly decomp by cold, 1apidly by boiling iqua regia Readily sol in excess of KCN Sol in NH4OH+Aq Decomp by NOH, No (O)+Aq or Na2O2+Aq Insol in cold sl sol in boiling actic reid (Cruser and Miller

Potassium thallous chromicyanide, K<sub>2</sub>HC<sub>1</sub>(CN)<sub>0</sub>

(Fischer and Benzian, Ch. Z. 1902, 26, 50)

Thallous chromicyanide, Il<sub>3</sub>C<sub>1</sub>(CN)<sub>6</sub>

Lasily sol in HO (Fischer and Benzian, Ch Z 1902, 26 50)

Zinc chromicyanide, Zni [Ci(CN)c]

Insol in II () Sol in (x(ess of NH4OH, Na()H and KCN+Aq Decomp by Na CO3 + 1g Sol in cold dil HCl Slowly sol in dil H SO4 und in dil HNO3 By boiling with dil wids with solution is quickly obtained (Cruser, Dissert 1906)

# Chromisulphocyanhydric acid

Cæsium chromisulphocyanide,  $C_{s_3}C_r(SCN)_6 + 2H_2O$ 

(Osann, Less sol in H<sub>2</sub>O than K salt Dissert 1907)

Extremely deliquescent (Osann)

Rubidium chromisulphocyanide, Rb<sub>3</sub>Cr(SCN)<sub>6</sub>+4H<sub>2</sub>O

Appreciably less sol in H<sub>2</sub>O and alcohol than the K salt (Osann)

Chromocyandric acid, H<sub>4</sub>Cr(CN)<sub>6</sub>

Decomp rapidly on air Sol in H<sub>2</sub>O (Moissan, A ch (6) 4 144)

Potassium chromocyanide, K<sub>4</sub>Cr(CN)<sub>6</sub>

Very sol in H<sub>2</sub>O, 100 pts H<sub>2</sub>O dissolve 32 33 pts at 20° Much more sol in hot  $H_2O$  Insol in alcohol, ether, benzene, or chloroform (Moissan, A ch (6) 4 136) Above salt was  $K_3Cr(CN)_6$  (Christensen)  $+3H_2O$  (Christensen, J pr (2) 31 166)

Chromoiodic acid, CrO<sub>3</sub>, HIO<sub>3</sub>+2H<sub>2</sub>O Deliquescent (Berg, C R 104 1514)

Ammonium chromoiodate, CrO<sub>3</sub>, NH<sub>4</sub>IO<sub>3</sub>+  $H_{9}O$ Moderately sol in HO (Berg)

Lithium chromoiodate, CiO<sub>3</sub>, LiIO<sub>3</sub>+H<sub>2</sub>O Very sol in H<sub>2</sub>O (Berg )

Magnesium chromoiodate Sol in HO (Berg)

Potassium chromoiodate, CrO<sub>3</sub>, KIO<sub>3</sub>

Sol in HO (Berg)  $+H_2O = KCrIH_2O_7$ SI decomp by H<sub>2</sub>O (Blomstrand, J pr (2) 40 331)

Silver chromoiodate, CiO3, AgIO3

Sl attacked by cold, rapidly decomp by hot H O (Berg, C R 11142)

Sodium chromoiodate, CrO<sub>3</sub>, NaIO<sub>3</sub>+H O Very sol in H<sub>2</sub>O (Berg)

Chromosulphocyanhydric acid

Sodium chromosulphocyanide,

Na<sub>3</sub>C<sub>1</sub>(SCN) +10, or 11H O

Unstable Decomp by HO (Koppel, & morg 1905, **45** 360)

Chromosulphuric acid, H<sub>2</sub>Cr (SO<sub>4</sub>)<sub>4</sub>

Sol in H2O in all proportions, but solution is easily decomp on standing or boiling (Recoura, Bull Soc (3) 9 586)

H<sub>4</sub>Cr<sub>2</sub>(SO<sub>4</sub>)<sub>5</sub> As above

H<sub>6</sub>Cr<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub> As above

Ammonium chromosulphate,  $(NH_4)_2Cr_2(SO_4)_4 + 5H_2O$ 

Sol in H<sub>2</sub>O after a few minutes (Recoura)

Chromium potassium chromosulphate,  $[Cr_2(SO_4)_3CrO_4]K_2, [Cr_2(SO_4)_3(CrO_4)_2]K_4,$ and  $[Cr_2(SO_4)_3(CrO_4)_3]K_6$ 

Sol in H<sub>2</sub>O (Recoura, Bull Soc 1897, (3) **17** 934)

Potassium chromosulphate,  $K_2Cr_2(SO_4)_4$ +

Sol in H<sub>2</sub>O in a few minutes (Recoura, Bull Soc (3) 9 590)

Sodium chromosulphate,  $Na_2Cr_2(SO_4)_4$ +  $10H_2O$ As K salt (Recoura)

#### Chromotelluric acid

Ammonium chromotellurate,  $2(NH_4)_2O$ ,  $4CrO_3$ ,  $TeO_3$ Sol in H<sub>2</sub>O (Berg, C R 1911, **152** 1588)

Potassium chromotellurate, 2K<sub>2</sub>O, 4CrO<sub>3</sub>, TeO

Sl sol in cold H2O without decomp Sol in boiling H<sub>2</sub>O (Berg, Bull Soc 1911, (4) **9** 583 )

Chromous acid,  $H_2Cr_2O_4 = Cr_2O_3$ ,  $H_2O$ 

Chromic hydroxide shows slightly acid properties, and salts corresponding to the above acıd are known

Aluminum ferrous magnesium chromite (chrome iron ore), (Fe, Mg)O,  $(Cr, Al_2)O_3$ 

Insol in H2O or acids, even a mixture of H<sub>2</sub>SO<sub>4</sub> and HF (Ebelmen)

Barium chromite, BaCi O.

Insol in HO (Gaber Bull Soc (2) 27 436)

Barium tetra chromite, BaO 4Ci O<sub>3</sub>

Undecomp by steam at red heat insol in HCl, H SO<sub>4</sub>, HNO<sub>3</sub>, sol in fused KOH+ KNO3 decomp in the ur (Dufui C R 1896, **122** 112( )

Cadmium chrcmite, CdC1 ()4 Not attacked by unds (Vind C R 109 142)

Calcium chromite, (aCi ()4

Insol in HO (Gaber, Bull Soc (2) 27 436)

Insol in HCl, HF HNO3, H2SO4, sol in gaseous HCl and HF at red heat, sol in fused KOH, KNO<sub>3</sub>, KClO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub> (Dufau, C R 1895, **121** 690)

2CaO,  $Cr_2O_3$  Insol in H O, KOH, (  $NH_4OH+Aq$ , slowly decomp by  $H_2CO$  or  $M_2CO_3+Aq$ , insol in sugar solution (Pelouze, A ch (3) **33** 9) 
4CaO,  $Cr_2O_3$  Attacked by H O (Moi san, C R 1894, **119** 188)

Cobaltous chromite, CoCr<sub>2</sub>O (Elliot, Dissert, Gottingen, 1862)

Cuprous chromite, Cu<sub>2</sub>O, Cr<sub>2</sub>O<sub>3</sub>

Insol in HNO<sub>3</sub>+Aq(sp gr 14) (Wohle Z phys Ch 1908, 62 445

Cupric chromite basic, 5CuO, 4Cr<sub>2</sub>O (Wohler, Z phys Ch 1908, **62** 445)

Cupric chromite, CuCr<sub>2</sub>O<sub>4</sub>

Not attacked by  $HNO_3+Aq$  (Persoz,  $\iota$ 

ch (3) 25 283) Not attacked by conc HCl

Insol in dil acids (Wohler, Z phy Ch 1908, 62 446)
CuO, 3Cr<sub>2</sub>O<sub>3</sub> (Rosenfeld, B 1879, 1

958)

Glucinum chromite, GlCr<sub>2</sub>O<sub>4</sub>

Insol in H O (Mallard, C R 105 1260

Iron (ferrous) chromite (chrome iron ore) See Chromite, aluminum ferrous magne sıum

Iron (ferroferric) chromite, Fc(), Fe O<sub>3</sub>, Cr<sub>2</sub>() Not attacked by  $HCl + \lg$  (Ebelmen

Iron (ferrous) magnesium chromite

Insol in HCl+Aq Sciectly ittacked b  $H SO_4$ 

Lead chromite, PbCi<sub>2</sub>O<sub>1</sub>

Ppt Insol in KOH+Aq (Chince C R 43 927)

Lithium chromite, I12C1 (),

Very sl. sol in reids (Weyberg, C. C. **1906** H 1659 )

Magnesium chromite, Mg() 2(10);

Insol in H O (Nichols Sill Am J ( 47 (6)

MgCrO<sub>1</sub> Insol in reids or dkilles, e cept boiling H SO<sub>4</sub> (Schweitzer, J pr. 3) 259)

Could not be obtained (Viud, Bull So (3) 5 934)

Figure 11 SO4+Action II SO4+Actions of SO4+Action II SO4+Action III FAq not a tacked by boiling HNO<sub>3</sub> (Dufau, C 1896, **123** 886)

 $2M_5O$ ,  $C_1O_5$ Insol in HO or read (Nichols)

5Mg(), 4Cr (), C R **112** 1003) Insol in reids (Viare 3 MgO, 2Cr<sub>2</sub>O As above (V)

Manganese chromite, MnCr.O.

Entirely insol in acids (Fbelmen, A ch (3) 33 44)

Zinc chromite, ZnC12O4

Insol in acids and alkalies (Viard, C R 109 142

 $+xH_9O$ (Chancel, C R 43 927) 3ZnO, 2Cr<sub>2</sub>O<sub>3</sub> As above (Viard, C R **112** 1003)

6ZnO, 5Cr<sub>2</sub>O<sub>3</sub> As above 8ZnO, 3Cr O<sub>3</sub> (Groger M 1904. 25. 520)

#### Chromovanadic acid

Ammonium chromovanadate, 2(NH<sub>4</sub>)<sub>2</sub>O.  $2CrO_3, V_2O_5 + 7H_2O$ Sol in H<sub>2</sub>O (Ditte, C R 102 1105)

Chromyl amide, CrO<sub>2</sub> (NH<sub>2</sub>).

Sol in H O (Ohlv. C N 1899, 80 134)

Chromyl subchloride, (CrO<sub>2</sub>)<sub>5</sub>Cl<sub>6</sub>

Deliquescent, sol in H2O with decomp insol in dry ether (Pascal, C R 1909). **148**, 1463 )

Chromyl chloride (chlorochromic acid) CrO<sub>2</sub>Cl

Decomp by H<sub>2</sub>O with evolution of much heat Sol in glacial acetic acid without decomposition

Sol in CCl<sub>4</sub>, C<sub>7</sub>H<sub>6</sub>, (mol wt det) (Oddo, Gazz ch it 1899, **29** (2) 318, Chem Soc 1900, 78 (2) 75)

Trichromyl chloride, Cr<sub>3</sub>()<sub>6</sub>Cl<sub>2</sub>

Sol in HO with gradual Delique scent Sol in cone HCl+Aq decomposition (Thorpe, Chem Soc (2) 8 31)

Scarcely sol in CS Sol in alcohol and other (Rawson, C N 1889 59 155)

Chromyl chlorides

From Cr O: See Chromium oxychlorides

Chromyl chloride nitrogen /c/roxide,  $C_{1_1}(1_5(0_7, 2N0))$ 

Sol in H O with decomp (Thom is, C R 1599, 129 535)

Chromyl fluoride, (1() le

Decomp by H2O with evolution of heat (Oliveri, Gazz ch. it 16 218)

Clay

Scc Silicate, aluminum, Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>+ 2H ()

Cobalt, Co

Not attacked by H<sub>2</sub>O

Sol in dil HCl, or H SO<sub>4</sub>, or HNO<sub>3</sub>+Aq Conc hot H<sub>2</sub>SO<sub>4</sub>, and HNO<sub>3</sub> decomp with evolution of SO<sub>2</sub> or NO gas

Exists also in passive state See Iron (Nickles, J pr 61 186)

Sol in conc KOH+Aq when in finely divided state (Winkler, J pr 91 211)

Sol in NH<sub>4</sub>OH+Aq in presence of an (Hodgkinson and Bellairs, C N 1895, **71** 73)

Cobalt ammonia compounds

Anhydrooxycobaltamine compounds.

Bromotetramine cobaltic compounds, BrCo(NH<sub>3</sub>)<sub>4</sub>X<sub>2</sub>

Bromopurpureocobaltic compounds,  $B_1C_0(N\bar{H}_3)_5\bar{X}_2$ 

Carbonatotetramine cobaltic compounds,

 $(CO_3)Co(NH_3)_4X$ Chlorotetramine cobaltic compounds,

ClCo(NH<sub>3</sub>)<sub>4</sub>X<sub>9</sub> Chloropurpureocobaltic compounds. ClCo(NH<sub>3</sub>)<sub>5</sub>X<sub>9</sub>

Croceocobaltic compounds,

 $C_0(NH_3)_4(NO_2)_2X$ Decamine cobaltic sulphite,

 $Co_2(NH_3)_{10}(SO_3)_3$ Diamine cobaltic nitrites,

 $Co(NH_3)_2(NO_2)_4M$ 

Dichrocobaltic compounds, Co(NH<sub>3</sub>)<sub>3</sub>X<sub>3</sub> Flavocobaltic compounds,  $(NO_2)_2Co(NH_3)_4X$ 

Fuscocobaltic compounds,

 $(OH)Co(NH_3)_4X_2$ 

Iodotetramine cobaltic compounds,  $ICO(NH_3)_4X_2$ 

Luteocobaltic compounds, Co(NH<sub>3</sub>)<sub>6</sub>X<sub>3</sub> Melanocobaltic compounds,

[Co(NH<sub>3</sub>)<sub>3</sub>Cl ]<sub>2</sub>, NH<sub>3</sub>Cl

Nitratotetramine cobaltic compounds.  $(NO_3)Co(NH_3)_4X_2$ 

Nitratopurpureocobaltic compounds,

 $(NO)_3Co(NH_3)_5X$ Nitritocobaltic compounds,

 $(NO)Co(NH_3)_5X$ 

Octamine cobaltic compounds,

 $Co(NH_3)_8 X_6$ (=Tetramine cobaltic compounds,

Co(NH<sub>3</sub>)<sub>4</sub>X<sub>3</sub>

Oxycobaltamine compounds,

 $C_0 (NH_3)_{10} (OOH)X_4$ 

Praseocobaltic compounds, Co(NH<sub>3</sub>)<sub>4</sub>X<sub>3</sub> Purpureocobaltic compounds,

 $Co(NH_3)_5X_3$ 

Roseocobaltic compounds.

 $Co(NH_3)_5(OH_2)X_3$ Sulphatotetramine cobaltic compounds,

 $(SO_4)$ Čo $(NH_3)_4X$ Sulphatopurpureocobaltic compounds,  $(SO_4)Co(NH_3)_5X$ 

"Tetramine cobaltic" compounds,  $Co(NH_3)_2X_3$ 

Xanthocobaltic compounds  $(NO_2)Co(NH_3)_5X_2$ 

Cobalt arsenide, CoAs

As Co<sub>3</sub>As<sub>2</sub> (Ducelliez, C R 1908, 147 425)

CoAs<sub>2</sub> (Ducelliez, C R As Co<sub>3</sub>As<sub>2</sub> 1908, 147 425)

(Ducelliez, C R

As Co<sub>3</sub>As<sub>2</sub> Co<sub>2</sub>As<sub>3</sub> 1908, 147 425)

Very sl attacked by hot conc Co<sub>3</sub>As<sub>2</sub> HCl, less by H<sub>2</sub>SO<sub>4</sub> Easily sol in HNO<sub>3</sub> and aqua regia Sl attacked by fused alkalies and alkali carbonates (Ducelliez, kalies and alkali carbonates (Ducelliez, C R 1908, 147 425)
CoAs<sub>3</sub> Min Shutterudite Sol in HNO<sub>3</sub>

+Aq, with separation of As<sub>2</sub>O<sub>3</sub>

Cobalt arsenide sulphide, CoAs<sub>2</sub>, CoS<sub>2</sub>

Min Cobaltite Sol in HNO3+Aq, with separation of S and As<sub>2</sub>O<sub>3</sub> Glaucodote Completely sol in HNO<sub>3</sub>+

Cobalt azomide, basic, Co(OH)N<sub>3</sub>

Insol in H<sub>2</sub>O Sol in HN<sub>3</sub>+Aq (Curtius, J pr 1898, (2) **58** 300)

Cobalt potassium azoimide,  $KN_3$ ,  $Co(N_3)_2$ 

Sol in H<sub>2</sub>O, Aq solution decomp on boiling (Curtius, J pr 1898, (2) 58 301)

Cobalt boride, Co<sub>2</sub>B

Attacked by HNO<sub>3</sub> (Jassonneix, C R

1907, 145 240)
CoB Decomp by moist air and by alkalı nitrates, chlorates, hydroxides and carbonates, decomp by steam at red heat and by acids (Moissan, C R 1896, 122 425)

Not attacked by HCl, rapidly attacked by HNO<sub>3</sub> Not attacked by dil but decomp by cone  $\rm H_2SO_4$  Rapidly attacked by aqualegia (Moissan, A. (h. 1896, (7) 9 272.) CoB<sub>2</sub> (Jassonners, C. R. 1907, 145 241.)

# Cobaltous bromide, CoB12

Deliquescent Sol in H<sub>2</sub>O, alcohol, and ether

Sat CoB12+Aq contains at 59° 75° 97° 97° 68 1% CoBr **56** 7 668 (Ltard, A (h 1894, (7) 2 542)

Nearly insol in AsBi<sub>8</sub> (Walden, Z anorg 1902, **29** 374)

Sol in SO<sub>2</sub>Cl(OH) (Walden)

Sol in quinoline (Beckmann and Gabel, Z anorg 1906, 51 236)

1g CoBr<sub>2</sub> is sol in 974g methyl acetate at 18° Sp gr 18°/4° of sat solution = 1 013 (Naumann, B 1909, 42 3792)

Difficultly sol in ethyl acetate (Na mann, B 1910, 43 314)

Sol m acetone (Endmann, C C 189, II 1014, Naumann, B 1904, 37 4328)

Mol weight determined in pyridir

(Werner, Z anorg 1897, 15 24) +2, and 6H<sub>2</sub>O (Hartley, Chem Soc ()

**12** 214)

Cobaltous hydrazine bromide hydrazin, 2CoBr<sub>2</sub>, 4N<sub>2</sub>H<sub>4</sub>HBr, N<sub>2</sub>H<sub>4</sub>(?)

Sol in H<sub>2</sub>O with decomp (Ferratini, C **1912** 1613)

Cobaltous mercuric bromide, basic,  $CoBr_2$ ,  $HgBr_2$ ,  $6CoO + 20\dot{H}_2O$ (Mailhe, A. ch. 1902, (7) 27 369)

Cobalt stannic bromide

See Bromostannate, cobalt

Cobaltous bromide ammonia, CoBr<sub>2</sub>, 6NH<sub>2</sub> Sol in H<sub>2</sub>O with residue of cobalt hydro ide (Rammelsberg, Pogg 55 245)

Cobaltous bromide hydrazine, CoBr<sub>2</sub>, 2N<sub>2</sub>H Decomp by boiling with HO (Franze . Z anorg 1908, 60 270)

Cobalt carbonyl, Co(CO)<sub>4</sub>

Insol in H<sub>2</sub>O More of less sol in CS ether, alcohol and N1(CO)4 Relative stable with non-oxidizing acids Quick decomp by oxiding acids (Mond, Hir and Cowap, C N 1908, 98 165)

#### Cobaltous chloride, CoCl

Deliquescent Sol in HO with evolution of heat 100 pts II O dissolve 45 5 pts CoC at 0° (Fingel, A ch (6) 17 355)

100 pts sat CoCl + \q at to contun pt

| t                                                            | I ts<br>CoCl | t  | l ts<br>(>Cl | ı   | lt<br>CoCl |
|--------------------------------------------------------------|--------------|----|--------------|-----|------------|
| $ \begin{array}{r} -22 \\ -4 \\ +7 \\ 11 \\ 12 \end{array} $ | 24 7         | 25 | 31 1         | 56  | 48 1       |
|                                                              | 28 0         | 34 | 57 5         | 78  | 15 5       |
|                                                              | 31 2         | 41 | 50 5         | 94  | 50 5       |
|                                                              | 31 3         | 15 | 41 7         | 96  | 51 2       |
|                                                              | 32 5         | 49 | 16 7         | 112 | 52 5       |

(Find, C R 113 699)

25% CoC1 1 0496 1 0997 1 1579 1 2245 1 3002 Sat solution, 1 3613

(Franz J pr (2) 5 281)

Sp gr of CoCl + Aq containing in 1000 i H<sub>2</sub>O, g CoCl +6H () 119 g (=  $\frac{1}{2}$  mol ) 238 357 476 1 055 1 101 1 141 1 177 952 1071 1190 1 238

1 287

1 309

1 264

Containing g CoCl<sub>2</sub> (anhydrous)—
65 g (=½ mol) 130 195 260 325 390
1 058 1 112 1 164 1 213 1 260 1 304

(Gerlach, Z anal 28 466)

Sp gr of CoCl<sub>2</sub>+Aq at room temp containing
7 97 14 858 22 27% CoCl<sub>2</sub>
1 0807 1 1613 1 2645
(Wagner, W Ann 1883, 18 267)

Sp gr of CoCl<sub>2</sub>+Aq at 20° containing M g mols of salt per liter

M 10 15 20 Sp gr 111847 117502 123637 (Jones and Pearce, Am Ch J 1907, **38** 711)

Sp gr of CoCl<sub>2</sub>+Aq at 25°

| Concentration of CoCl +Aq        | Sp gr                                |
|----------------------------------|--------------------------------------|
| 1—normal  1/0— "  1/4— "  1/8— " | 1 0571<br>1 0286<br>1 0144<br>1 0058 |

(Wagner, Z phys Ch 1890, 5 37)

Solubility in HCl+Aq at 0°  $\frac{\text{CoCl}_2}{2} = \frac{1}{2}$  mols CoCl<sub>2</sub> in mgs in 10 ccm of solution

CoCl<sub>2</sub> in mgs in 10 ccm of solution HCl=mols HCl in mgs in ditto H<sub>2</sub>O =g H<sub>2</sub>O

| CoCl                                                             | HC 1                                                         | CoCl<br>+HCl                                                       | Sp gr                                                                | но                                          |
|------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|
| 62 4<br>58 525<br>50 8<br>37 25<br>12 85<br>4 75<br>12 0<br>25 0 | 0<br>3 7<br>11 45<br>25 2<br>55 0<br>74 75<br>104 5<br>139 0 | 62 4<br>62 2<br>62 25<br>62 45<br>67 85<br>79 50<br>116 5<br>164 0 | 1 343<br>1 328<br>1 299<br>1 248<br>1 167<br>1 150<br>1 229<br>1 323 | 9 36<br>9 34<br>9 27<br>9 13<br>8 46<br>7 5 |

(Engel, A ch (6) 17 355)

Insol in liquid NH<sub>8</sub> (Fianklin, Am Ch J 1898, **20** 827)

Sol in alcohol

Sat solution in alcohol (0.792 sp. gr.) contains 23.66 % CoCl<sub>2</sub> and has sp. gr. = 1.0107 (Winkler, J. pr. 91.209)

Very sol in ether 100 pts absolute ether dissolve only 0 021 g CoCl<sub>2</sub> (Bodtker, Z phys Ch 1897, 22 511)

100 g formic acid (95 $^{\circ}$ <sub>c</sub>) dissolve 6 2 g CoCl at 202 $^{\circ}$  (Aschan, Ch Z 1913, 37 1117)

1g CoCl. is sol in 271g methyl acetate at 18° Sp gr 18°/4° of sat solution = 0 938 (Naumann, B 1909, 42 3791)

Difficultly sol in ethyl acetate (\au-mann, B 1910, 43 314)

100 pts acetone dissolve 8 62 pts anhydrous CoCl<sub>2</sub> (Krug and M'Elroy, J Anal Ch 6 184)

0 08 pts sol m 100 pts ethyl acetate at 14° 0 26 " " " 100 " " " " 79° 9 11 " " " 100 " acetone " 0° 9 28 " " " 100 " " " " 22 5°

(Laszczynski, B 1894, 27, 2286)

Sol in acetone (Eidmann, C C 1899, II 1014)

1 g CoCl<sub>2</sub> is sol in 36 4 g acetone at 18° Sp gr of sat solution 18°/4° = 0 825 (Naumann, B 1904, 37 4334)

100 g acetonitrile dissolve 4 08 g CoCl, at 18° (Naumann and Schier, B 1914, 97 249) Sol in quinoline (Beckmann and Gabel, Z anorg 1906, 51 236)

Solubility in paridine at to

| t°                                                            | G CoCl sol in<br>100 g pyridine                                               | Solid phase               |
|---------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------|
| -50 3<br>-45 0<br>-30 0<br>-19 6<br>-10 0<br>0<br>+23 0       | 0 4200<br>0 4204<br>0 4221<br>0 4227<br>0 4329<br>0 4326<br>0 572             | CoCl, oCsH.               |
| 25 0<br>34 6<br>37 6<br>44 6<br>47 2<br>55 0<br>60 0<br>64 2  | 0 578<br>0 755<br>0 760<br>0 959<br>1 029<br>1 122<br>1 206<br>1 342<br>1 483 | CoCl, 4C <sub>5</sub> H \ |
| 68 C<br>74 8<br>78 2<br>79 8<br>88 0<br>96 5<br>98 8<br>106 0 | 1 597<br>2 079<br>2 350<br>2 488<br>3 397<br>7 817<br>8 852<br>14 340         | CoCl 2C H <sub>5</sub> N  |
| 110 0                                                         | 16 500                                                                        | J                         |

(Pearce and Moore, Am Ch J 1913 50 226)

Mol weight determined in piperidine, and pyridine (Werner Z amorg 1897, 15 18 and 23)

Sol in urethane (Castoro, Z anorg 1899, 20 61)

 $+H_2O$ 

 $+2H_2O$  Very deliquescent (Bersch, J B **1867** 291)

17 16 pts sol in 100 pts acetone at 0° 17 06 " " 100 " " " 25°

(Laszczynski, B 1894, 27 2287) +4H<sub>2</sub>O Deliquescent (Bersch) +6H<sub>2</sub>O Not deliquescent Easily sol

in H<sub>2</sub>O Solubility of CoCl<sub>2</sub>+6H<sub>2</sub>O in ethyl alcohol +Aq at 11 5° under addition of increasing amounts of CoCl<sub>2</sub>

P=Percent of alcohol by volume

G=Grams of CoCl2 added

C<sub>c</sub> = Grams of CoCl<sub>2</sub> in 5 cc of the solution C<sub>w</sub> = Grams of water in 5 cc of the solution, calculated from

(1) the water content of the alcohol

(2) the water of crystallization which had gone into solution

(3) the water held mechanically in CoCl<sub>2</sub> +6H<sub>2</sub>O

| P                                 | G                                                                                                | Cw                                                                                                       | Cc                                                                                                       |
|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 91 3<br>98 3<br>98 3<br>99 3<br>" | 0 0<br>0 0<br>0 0<br>0 0<br>0 194<br>0 400<br>0 612<br>0 813<br>1 022<br>1 240<br>1 446<br>0 650 | 1 3?5<br>1 134<br>1 068<br>1 045<br>0 899<br>0 829<br>0 764<br>0 688<br>0 634<br>0 553<br>0 483<br>0 500 | 1 168<br>1 214<br>1 181<br>1 199<br>1 204<br>1 325<br>1 459<br>1 568<br>1 713<br>1 831<br>1 943<br>2 186 |
|                                   |                                                                                                  | 1                                                                                                        |                                                                                                          |

(Bodtker, Z phys Ch 1897, 22 508)

Easily soluble in absolute ethyl alcohol 100 pts absolute alcohol dissolve at 100m temperature 56 20 pts  $CoCl_2$  Water precipitates  $CoCl_2+oH_2O$  from a solution of  $CoCl_2$  in absolute alcohol (Bodtker)

100 pts absolute ether dissolve 0 291g CoCl<sub>2</sub>+6H<sub>2</sub>O (Bodtker, Z phys Ch 1897, **22** 511)

Anhydrous ethylene glycol dissolves 10 6% CoCl<sub>2</sub>+6H<sub>2</sub>O ut 16 4° (de Connek, Chem Soc 1904, **86**, (2) 741)

Cobaltous hydrazine chloride, CoCl<sub>2</sub>, 2N<sub>2</sub>H<sub>4</sub>HCl+2½H ()

Sol in H<sub>2</sub>O (Faratini, C A 1912 1613)

Cobaltous 10dine chloride, CoCl, 2ICl:+ 8H O

II - Decomp by H () CCI<sub>4</sub> separates ICI<sub>3</sub> (Weinland and Schlegel milch, Z anorg 1902 **30** 157)

Cobalt lithium chloride, CoCl , LiCl+ $_{0}H_{2}O$ 

Very deliquescent Sol in HO with de comp Sol in ItCl+Aq without decomp Sol in alcohol without decomp (Chassevant, A ch (6) 30 27)

Cobaltous mercuric chloride basic,  $CoCl_2$   $HgCl_2$ ,  $6CoO+20H_2O$ 

(Mailhe, A ch 1902, (7) 27 369)

Cobaltous mercuric chloride, CoCl<sub>2</sub>, HgCl<sub>2</sub> Very deliquescent (v Bonsdorff)

Cobaltous thallic chloride,  $2TlCl_3$ ,  $CoCl + 8H_2O$ 

Hydroscopic, can be cryst from  $H_2O$  (Gewecke, A 1909, 366 222)

Cobaltous tin (stannic) chloride, CoCl<sub>2</sub>, SnCl<sub>4</sub> +6H<sub>2</sub>O See Chlorostannate, cobaltous

Cobaltous chloride ammonia, CoCl<sub>2</sub>, 2NH<sub>3</sub>

Decomp by H<sub>2</sub>O (F Rose) CoCl<sub>2</sub>, 4NH<sub>3</sub> Decomp by H<sub>2</sub>O (H

Rose-)
CoCl<sub>2</sub>, 6NH<sub>1</sub> Decomp by H<sub>2</sub>O Sol in dil NH<sub>4</sub>OH+Aq with ease, but difficultly in conc NH<sub>4</sub>OH+Aq Insol in absolute alcohol (Fremy)

Cobaltous chloride hydrazine, CoCl<sub>2</sub>, 2N H<sub>4</sub> Insol in cold H<sub>2</sub>O

Slowly decomp by cold, rapidly by hot

Easily sol in dil acids and NH<sub>1</sub>OH+Aq (Franzen, Z anorg 1908, 60 270)

Cobaltous chloride hydroxylamine, CoCl<sub>2</sub>, 2NH OH

Decomp in the ur, sol in H () (Feldt, B 1894, 27 403)

Cobaltic chloride hydroxylamine, CoCl<sub>3</sub>, 6NH OH

Insol in ilcohol

Sol in addited H O without decompsol in conc. H SO<sub>4</sub> without decomp (Feldt B 1894 **27** 404)

Cobaltous fluoride, ( ol

SI sol in HO insol in dechol and other, slowly attacked by cold HC1 H SO<sub>4</sub> or HNO<sub>3</sub> +Aq (Poulenc C R 114 1129)

Insol in liquid NH<sub>3</sub> (Cross Am Ch J

1898, 29 \$27) +2H() Sol in a little H() without decomp Decomp into oxyfluoride by boiling with much H() Sol in HI+Aq (Berzchus)

+4H O I we modifications Solubility of a mod at '=2.2325% $'\beta$  " '=2.5203%

(Cost whescu Ann Ser Univ 1 1889, 1912 7, 1, 10)

Cobaltic fluoride, Col.,

Sol in cone H SO<sub>4</sub> (Bubien, Chem Soc 1905, **88**, (2) 393)

Cobaltous hydrogen fluoride, CoF2, 5HF+

Easily sol in H<sub>2</sub>O and dil acids Sol in NH4OH+Aq with decomp (Bohm, Z anorg 1905, 43 330)

Cobalt columbium fluoride See Fluocolumbate, cobalt

Cobaltous iron (ferric) fluoride.  $CoF_2$ ,  $FeF_3+7H_2O$ 

Sol in dil HF+Aq (Weinland, Z anorg 1899, **22** 269)

Cobaltous manganic fluoride, 2CoF, Mn<sub>2</sub>F<sub>6</sub>  $+8H_{*}O$ 

(Christensen, J pr (2) 34 41)

Cobalt molybdenyl fluoride See Fluoxymolybdate, cobalt

Cobaltous potassium fluoride, CoF<sub>2</sub>, KF

Sl sol in H<sub>2</sub>O, less in ethyl or methyl alcohol, insol in amyl alcohol or benzene Decomp by hot H<sub>2</sub>SO<sub>4</sub> (Poulenc, C R 114

+H<sub>2</sub>O Sl sol in H O (Wagner, B 19 896)

CoF, 2KF

Cobaltous sodium fluoride, CoF<sub>2</sub>, NaF+H<sub>2</sub>O Sol m H<sub>2</sub>O (Wagner, B 19 896)

Cobaltous stannic fluoride See Fluostannate, cobaltous

Cobalt vanadium fluoride See Fluovanadate, cobalt

Cobaltous hydroxide, CoO<sub>2</sub>H<sub>2</sub>

Insol in H<sub>2</sub>O Sol in acids Insol in Sol in ammonium sulphate, KOH + Aqchloride, nitrate, or succinate+Aq (Brett) Sol in warm acctic acid, insol in NH4OH +Aq and cold NH<sub>4</sub>Cl+Aq, but sol in warm NH<sub>4</sub>Cl+Aq (de Schulten, C R 109 266)

Insol in II () and dil KOH+Aq, somewhat sol in conc KOH+Aq easily sol in NH4 sults+Aq (Freschius)

Fisily sol in KCN +Aq (Rodgers, 1834) Sol in conc K CO<sub>3</sub>+Aq (Gmelin) Not pptd by KOH+Aq in presence of

H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub> or NH<sub>4</sub> (strate (Spiller)

Sol in luge amt in boiling NH4SCN+Aq (Grossmann, Z anorg 1908, 58 269) Insol in methyl, or amyl amine +Aq (Wurtz)

Many non-volutile organic substances prevent its pptn

Cobaltic hydroxide, 3Co<sub>2</sub>O<sub>3</sub>, 2H<sub>2</sub>O (Mılls, Phil Mag (4) 35 257) Co<sub>2</sub>O<sub>3</sub>, 2H<sub>2</sub>O Decomp by HCl+Aq,

gives brown solutions with cold HNO<sub>2</sub> or H<sub>2</sub>SO<sub>4</sub>+Aa, which soon decomp (Wernicke Pogg 141 120)

 $Co_2O_6H_6 = Co\ O_3$ , 3H O Sol in warm HCl HNO<sub>3</sub>, and H<sub>2</sub>SO<sub>4</sub>, with decomp (Proust Sol in cold H<sub>2</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>, H<sub>N</sub>O<sub>3</sub> or HCl+

Aq, but decomp on standing or warming (Winkelblech)

Sol in racemic, tartaric oxalic or citric acid as cobaltous salt

Sol in conc acetic acid without immediate decomp (Remele) Solution is not decomp by boiling Sol in warm sat 1 \ H4)2C2O4+ Ag with decomp

Not attacked by cold or hot  $NH_4OH + Aq$ Insol in boiling NH<sub>4</sub>Cl+Aq

Sol when freshly pptd in (\H.).SO.+ Ag (Geuther, A 128 157)

Cobaltocobaltic hydroxide, Co<sub>3</sub>O<sub>4</sub>, 3H<sub>2</sub>O

Insol in H<sub>2</sub>O Sol in oxalic acid, solution decomp by heat Sol in HCl+Aq with evolution of Cl (Gibbs and Genth, Sill Am

J (2) 23 257)
Co<sub>3</sub>O<sub>4</sub>, 7H<sub>2</sub>O Sol in weak acids, especially
HC H<sub>3</sub>O without decomp (Fremy)

Co5O7, 6HO Min Heterogenite Sol in dil HCl+Aq with evolution of Cl

Cobaltous 10d1de, CoI

Deliquescent, and very sol in HO

100 pts sat CoI + Ag at t contain pts CoI

| t                                                                                      | Pts<br>CoI | t  | Pt<br>CoI | τ   | Pts<br>CoI |
|----------------------------------------------------------------------------------------|------------|----|-----------|-----|------------|
| $     \begin{array}{r}       -22 \\       -8 \\       -2 \\       +9     \end{array} $ | 52 4       | 14 | 61 6      | 60  | 79 2       |
|                                                                                        | 56 7       | 25 | 66 4      | 82  | 80 7       |
|                                                                                        | 58 7       | 34 | 73 0      | 111 | 80 9       |
|                                                                                        | 61 4       | 46 | 79 0      | 156 | 83 1       |

(Etard C R 113 699)

Sol in SO (OCH<sub>3</sub>) Wilden 7 anorg 1902, 29 388

Sol in SOCl (Walden Z morg 1900) **25** 216)

(Walden / norg 1900) Sol in POCl **25** 212) (Walden Z morg 1900 25

Sol in S Cl

Yearly insol in AsBi Walden Z anorg 1902, 29 374)

Sol in AsCl (Wilden / morg 1900

**25** 214) Easily sol in alcohol

Sol in acetone (Fidmann ( C 1800) II 1014) (\aumann, B 1904 37 452\state= Sol in quinoline (Beckmann and Gabel

Z anorg 1906, 51 236) Sol in methylacetate (Nium inn B 1909

**42**, 3790) +2H O I tard)  $+4H_{2}O$ Very deliquescent

(Hartley, Chem Soc (2) 12  $+6H_{*}O$ 214)

+9H₂O Very hydroscopic (Bolschakoff, C C 1898, II 660)

Cobaltous lead 10dide, 2 CoI<sub>2</sub>, PbI<sub>2</sub>+3H<sub>2</sub>O Decomp by H<sub>2</sub>O (Mosnier, A ch 1897, (7) **12** 412)

Cobaltous mercuric iodide, CoI2, HgI +

Partially decomp by H<sub>2</sub>O Sol in alcohol and acetone (Dobroserdoff, C C 1901, II 332)

 ${
m CoI_2, 2HgI_2+6H_2O}$  Decomp by  ${
m H_2O, sol}$  in alcohol and acetone (Dobroserdoff, C C 1901, II 332)

Cobaltous iodide ammonia, CoI<sub>2</sub>, 4NH<sub>3</sub>

Sol in NH<sub>4</sub>OH+Aq Decomp by H<sub>2</sub>O (Rammelsberg, Pogg 48 155) Col<sub>2</sub>, 6NH<sub>3</sub> Insol in NH<sub>4</sub>OH+Aq (Rammelsberg)

Cobaltous iodide hydrazine, CoI<sub>2</sub>, 2N H<sub>4</sub> Sl sol in H<sub>2</sub>O Easily sol in acids (Franzen, Z anorg 1911, 70 147)

Cobaltic octamine compounds See Octamine cobaltic compounds

Cobaltous oxide, CoO

Insol in H2O Easily sol in dil oi conc HCl or HNO<sub>3</sub>+Aq Slowly sol in cold, but easily in hot dil H<sub>2</sub>SO<sub>4</sub>+Aq, acetic, or tartaric acid +Aq Insol in NH<sub>4</sub>OH+Aq Sol in hot NH<sub>4</sub>Cl +Aq, KOH, or NaOH +Aq

Insol in NH<sub>4</sub>Cl or NH<sub>4</sub>NO<sub>3</sub>+Aq (Brett.

Insol in K<sub>2</sub>CO<sub>3</sub>+Aq Sol in boiling Ce and Ni nitrates +Aq, with pptn of the oxides (Persoz)

Easily sol in dil acids, even tartaric acetic, and ovalic acids Not attacked by NH<sub>4</sub>OH+Aq Sol in 13% NH<sub>4</sub>Cl+Aq with evolution of NH<sub>2</sub>, also in NH<sub>4</sub>SCN+Aq Sol in warm cone NaOH, and KOH+Aq (Zimmerman, A 232 324)

Solubility in (calcium sucr ite + sug ir) + Aq 1 l solution containing 418 6 g sugar and 34 3 g CaO dissolves 1 56 g CoO 1 l solu tion containing 296 5 g sugar and 24 2 g CaO dissolves 0 29 g CoO (Bodenbender, J B 1865 600)

Insol in liquid NH3 (Franklin, Am Ch J 1898, **20** 827)

See also Cobaltous hydroxide

## Cobaltic oxide, Co<sub>2</sub>O<sub>3</sub>

Decomp by most acids, even in the cold, with formation of cobaltous salts Sol in acetic acid without immediate decomp See also Cobaltic hydroxide

Cobaltocobaltic oxide, Co<sub>3</sub>O<sub>4</sub> = CoO, Co<sub>2</sub>O<sub>8</sub>

Insol in boiling cone HCl, HNO3, or aqu regia Sol by long standing with H<sub>2</sub>SO (Gibbs and Genth, Sill Am J (2) 23 257

See also Cobaltocobaltic hydroxide

Co<sub>4</sub>O<sub>5</sub> = 2CoO, Co<sub>2</sub>O<sub>3</sub>
Co<sub>6</sub>O<sub>7</sub> = 4CoO, Co<sub>2</sub>O<sub>3</sub>
Not attacked b boiling dil HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub>+Aq (Beetz Co<sub>5</sub>O<sub>9</sub> = 6CoO, Co<sub>2</sub>O<sub>3</sub>+20H<sub>2</sub>O Sol in di acids, with residue of Co<sub>2</sub>O<sub>3</sub>, which dissolves on warming (Gentele, J pr 69 131 +8H<sub>2</sub>O As above (Gentele)

Cobaltous oxychloride, CoCl. 3CoO+  $3\frac{1}{2}H_2O$ 

Ppt Very sl sol m H<sub>2</sub>O (Habermann M 5 432)

Cobaltous oxychloride hydroxylamine, CoOCl, 2NH2OH

Insol in H<sub>2</sub>O, unstable, insol in alcohol (Feldt, B 1894, 27 404)

Cobaltous oxyfluoride, CoO, CoF +H<sub>2</sub>O Ppt (Berzelius Pogg 1 26)

Cobaltous oxylodide, CoO, CoI<sub>2</sub> Insol in HO (Rammelsberg)

Cobaltous oxysulphide, CoO, CoS

Cold HCl+Aq dissolves out Co(), hot HCl+Aq decomp with (volution of H S (Arfvedson, Pogg 1 64)

Cobalt phosphide, Co P

Sol in cone HNO; Slowly attacked by HCl and H SO<sub>4</sub> (Majonneily, C R 1900) **130** 658)

Sol in HNO, iqui regii and in fused ilkalies (Granger, Bull Soc 1896, (3) 15 1089)

Co P<sub>i</sub> In ol in HNO and equal regia stable in the air even when he ited (Granger Bull Soc 1896, (5) **15** 1087

Co<sub>4</sub>P<sub>2</sub> Insol in cone  $H(1+\lambda q)$  $HNO_3 + \Lambda q$  (Rose Pogg 24 332)

Cobalt subselenide, ( o Sc

Sol in biomine witci Only slatticked by boiling furning HCl (Fonzes-Direon, ( R 1900 131 704)

Cobalt monoselenide, CoSc (Little, A 112 211)

# Cobalt diselenide Cobe

Sol in  $Br_2+Aq$ 

Only sl attacked by boiling fuming HCl (Fonzes-Diacon, C R 1900, 131 705)

# Cobalt sesquiselenide, Co2Se3

Sol in Br<sub>2</sub>+Aq

Only sl attacked by boiling fuming HCl (Fonzes-Diacon, C R 1900, 131 704)

# Cobalt selenide, Co<sub>3</sub>Se<sub>4</sub>

Sol in Br<sub>2</sub>+Aq

Only sl attacked by boiling fuming HCl (Fonzes-Diacon, C R 190, 131 704)

### Cobalt silicide, Co<sub>2</sub>S<sub>1</sub>

Sol in HF and aqua regia Insol in cold H<sub>2</sub>O Decomp by steam at red heat in fused alkali carbonates C R 1895, **121** 687) (Vigouroux,

Insol in HNO3 and H2SO4 CoSı Sol in aqua regia and HCl, and in fused KOH (Lebeau, C R 1901, 132 557)

Not attacked by dil or conc HNO3, or conc H2SO4 Sol in aqua regia and in conc HC

Not attacked by dil alkalı hydroxides -Aq, attacked by fused alkalı (Lebau, Bull

1901, (3), **25** 540)
Si<sub>2</sub> Sl sol in hot cone HCl and hot  $CoSl_2$ cone alkalı + Aq Sol ın HF, ınsol ın HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> (Lebeau, C R 1902, 135

#### Cobaltous sulphide, CoS

Easily sol in acids, even AnhydrousHC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, but only slowly in the latter case (Hjortdahl, C R 65 75)

Not attacked by cold dil HCl+Aq (Ebelmen, A ch (3) 25 94)

Min Seypoorite

 $+xH_2O^{-1}$  1 l  $H_2O$  dissolve 4162+10-6 moles CoS at 18° (Weigel, Z phys Ch 1907, 58 294)

Sol in conc mineral reids, very sl sol in cold dil acids, scarcely sol in acetic acid (Wackenroder)

Sol when still moist in SO +Aq

thier)

Easily sol in HNO<sub>3</sub>, but only very sl sol in HCl+Aq Not pptd from very dil acid solutions by H S

Insol in HO, alkalies and alkali carbonites, or sulphides + Aq (Fresenius)

in NH<sub>4</sub>Cl and NH<sub>4</sub>NO<sub>3</sub>+Aq Insol

When pptd by (NH<sub>1</sub>) S+Aq, shows a brown colour in presence of 200,000 pts H O (Pfaff)

Tartanc acid, ctc does not hinder the pptn by (NH<sub>4</sub>)<sub>2</sub>S+Aq (Rose)

Sol in potassium thiocarbonate + Aq (Rosenbladt, Z anal 26 15)

Sol in N 128x or K28x+Aq (de Koninck, Zeit angew Ch 1891 202)

# Cobaltic sulphide, Co<sub>2</sub>S<sub>3</sub>

Partially decomp by HCl+Aq, sol in

HNO3+Aq with decomposition

Sl attacked by HCl+Aq, and slowly even by aqua regia (Schneider, J pr (2) 9 209) Min Cobalt pyrite

 $+xH_2O$ Insol in KCN+Aq ı Fleck J pr 97 303) More sol in HCl+Aq than CoS (Dingler, Berz, J B 10 130)

Cobaltoccbaltic sulphide, Co<sub>3</sub>S<sub>4</sub>

Min Linnaite Sol in warm H\O2+Aq, with residue of S

Cobalt disulphide, CoS<sub>2</sub>

Not attacked by alkalies or acids except HNO<sub>3</sub> and aqua regia (Setterberg Pogg 7

Cobalt sulphide, Co<sub>4</sub>S<sub>3</sub>

Easily sol in hot HCl with evolution of H<sub>2</sub>S (and H<sup>2</sup>) (Proust)

Cobalt potassium sulphide, K Co<sub>11</sub>><sub>10</sub>

Slowly sol in cold HCl and aqua regia Quickly sol in warm aqua regia

Sol in HF and H-SO4 only on warming Insol in (NH<sub>4</sub>)<sub>2</sub>S, organic acids, alkalies, 12% HCl+Aq and KCN+Aq (Milbauer, Z anorg 1904, 42 447)

Cobalt telluride, CoTe (Fabre, C R 105 673)

Cobalt decamine sulphurous acid See Decamine cobaltisulphurous acid

#### Cobaltic acid

Potassium cobaltate, K Co<sub>9</sub>O<sub>16</sub>+2H O, or  $3H_{2}O$ 

Insol in HO (Pebal, A 100 262), but decomp by long boiling Sol in cone acids K<sub>2</sub>O, rCoO<sub>2</sub> Sol in H O Winkler, J pr 91 351)

Does not exist (Donath W A B 102, 2b 71)

Cobalticyanhydric acid, H  $Co(CN)_f + {}^{1}_{2}HO$ Deliquescent Very sol in HO and only sl decomp on boiling

Sol in HCl+Aq without decomp even on boiling SI sol in conc more sol in dil HNO3+Aq Vot decomp by boiling conc HNO<sub>3</sub>+Aq or aqua regia In-ol in conc sl sol in dil HSO<sub>4</sub>+Aq Sol in alcohol Insol in ether (Zwenger A 162 157)

Ammonium cobalticyanide, (NH) Co(CN +15H O

Very sol in HO, sl sol in alcohol

Ammonium barium cobalticyanide, NH<sub>4</sub>BaCo(C\)<sub>6</sub>+H O

Sol in HO (Weselsky)

Ammonium calcium cobalticyanide, NH<sub>4</sub>CaCo(C\)<sub>6</sub>+10H O Sol in HO

Ammonium lead cobalticyanide, NH<sub>4</sub>PbCo(CN)<sub>6</sub>+3H<sub>2</sub>O

Sol in 8 31 pts H<sub>2</sub>O at 18°, and sl sol in 93% alcohol (Schuler)

Ammonium mercuric cobalticyanide,  $(NH_4)_6Co_2Hg(CN)_{14}+H_2O$ 

Sol in HO with decomp Insol in alcohol (Soenderop, Dissert 1899)

Ammonium sodium cobalticvanide. NH<sub>4</sub>Na Co(CN)<sub>6</sub>

Only sl sol in H<sub>2</sub>O (Weselsky, B 2 598)

Ammonium strontium cobalticyanide,  $NH_4SrCo(CN)_6 + 9H_2O$ Sol m HO (W)

Barium cobalticyanide, basic, Ba<sub>3</sub>[Co(CN)<sub>6</sub>]<sub>2</sub>, BaO<sub>2</sub>H

Not very stable Cannot be recryst without partial decomp (W)

Barium cobalticyanide, Ba<sub>3</sub>[Co(CN)<sub>6</sub>] + 10H<sub>2</sub>O

Sl efflorescent Very sol in H<sub>2</sub>O Insol in alcohol

Barium cobalticyanide chloride,  $Ba_3[Co(CN)_6]_2$ ,  $BaCl + 16H_2O$ Sol in H O without decomp (W)

Barium lithium cobalticyanide, BaLiCo(CN)6 +15H O

The most sol of the double cobalticyunides (Weselsky)

Barium potassium cobalticyanide, BaKCo(CN)<sub>6</sub>+11H O Sol in H() (W)

Bismuth cobalticyanide BiCo(CN)<sub>c</sub> Ppt (Mathews J Am Chem Soc 1900, **22** 275)

+5H<sub>2</sub>O Moderately stable with dil min icids, more stable with cone acids than Cd or Zn comp

Decomp by NH<sub>3</sub> and alkalics (Fischer and Cuntze (h Z 1902, **26** 872)

Cadmium cobalticyanide, Cd [Co((N)] + 7½H ()

Attacked by strong min acids only when Behaves as Zn salt, toward conc H SO4 and dil and cone HCl

Insol in K<sub>3</sub>Co(CN)<sub>6</sub>+Aq Sol in NH<sub>4</sub>OH and NH<sub>4</sub>Cl+Aq (Fischer and Cuntze, Ch / 1902, 26 573)

Cadmium potassium cobalticyanide, KCdCo(CN)6

Not itticked by H2O (Fischer ind (untze, Ch Z 1902 26, 873)

Cadmium sodium cobalticvanide. NaCdCo(CN)6

(Fischer and Cuntze, Ch Z 1902 26 873

Cadmium cobalticyanide ammonia,  $Cd_3[Co(CN)_6]_2$ ,  $4NH_3+2H_2O$ 

(Fischer and Cuntze, Ch Z 1902, 26 873) (Fische

(Fischer ano

 $\begin{array}{c} \text{Cd}_{s}[\text{Co}(\text{CN})_{6}]_{z}, \quad 5\text{NH}_{s}+3\text{H}_{s}\text{O}\\ \text{and Cuntze}, \quad \text{Ch} \quad Z \quad 1902, \quad \textbf{26} \quad 873 \ )\\ \text{Cd}_{s}[\text{Co}(\text{CN})_{6}]_{\sigma}, \quad 7\text{NH}_{3} \qquad (\text{Fisch}\\ \text{Cuntze}, \quad \text{Ch} \quad Z \quad 1902, \quad \textbf{26} \quad 873 \ )\\ \text{Cd}_{s}[\text{Co}(\text{CN})_{6}]_{z}, \quad 9\text{NH}_{s}+2\text{H}_{2}\text{O}\\ \text{and Cuntze}, \quad \text{Ch} \quad Z \quad 1902, \quad \textbf{26} \quad 873 \ )\\ \end{array}$ (Fische

Calcium potassium cobalticyanide,  $CaKCo(CN)_6+9H_2O$ Sol in H<sub>0</sub>O (W)

Cobaltous cobalticyanide, Co<sub>3</sub>[Co(CN)<sub>6</sub>]<sub>2</sub>+ 14H<sub>2</sub>O

Insol in H<sub>2</sub>O and acids Sl sol in NH<sub>4</sub>OH +Aq Decomp by KOH+Aq

Cupric cobalticyanide,  $Cu_3[Co(CN)_6]_{\circ}+$  $7H_2O$ 

Insol in H<sub>2</sub>O and acids Sol in NH<sub>2</sub>OH+ +Aq

Cupric cobalticyanide ammonia,  $Cu_3[Co(CN)_6]_2$ ,  $4NH_3+7H_2O$ Sol in H<sub>2</sub>O (Zwenger)

Lead cobalticyanide, basic, Pb<sub>3</sub>[Co(CN)<sub>6</sub>]<sub>2</sub>,  $3PbO_{2}H_{2}+11H_{2}O$ 

Insol in H<sub>2</sub>O or alcohol, somewhat sol in hot  $Pb(C_2H_3O) + Aq$  (Schuler)

Lead cobalticyanide, Pb<sub>3</sub>[Co(CN)<sub>6</sub>] +4H O Very sol in HO Insol in alcohol (Zwenger)

+7H<sub>2</sub>O Sol in 1 77 pts H<sub>2</sub>O it 18°, and 1 63 pts at 19° Insol in absolute alcohol Sl sol in 93% ilcohol (Schuler, W A B **79** 302 )

Lead potassium cobalticyanide, PhKCo(CN), <u>+</u>3H₂O

Sol in 6.74 pts. H.O. it 18° and much more cisily in hot HO Insol in absolute, sl sol in 93% ilcohol (Schuler)

Lead cobalticyanide nitrate, Pb [Co(CN)6]2 Pb(NO) +12H()

Sol in 16.91 pts H () it 18°, 16.79 pts at 19°, and much less hot H O

Nearly insol in 93% alcohol (Schulci)

Mercurous cobalticyanide, Hg<sub>3</sub>Co(CN)<sub>6</sub>

Ppt Decomp by HCl Not attacked by cold, but by hot cone H<sub>2</sub>SO<sub>4</sub> Not attacked by HNO<sub>3</sub>, acetic or oxalic acid Decomp by alkalies+Aq (Miller and Mathews, J Am Chem Soc 1900 22 64)

Mercuric cobalticyanide,  $Hg_3[Co(CN)_6]_2$ 

Sl sol in H<sub>2</sub>O, decomp by boiling Insol in alcohol and ether Not attacked by HCl (Soenderop, Dissert, **1899**)

 $\begin{array}{cc} \textbf{Mercuric} & \textbf{potassium} & \textbf{cobalticyanide,} \\ & K_{\textbf{5}} \textbf{HgCo}_{\textbf{2}}(CN)_{\textbf{14}} \end{array}$ 

Sol in HO with decomp Insol in alcohol Sl sol in ether (Soenderop, Dissert, 1899)  $K_6Hg_3Co_4(CN)_{24}$  (Soenderop, Dissert

Mercuric sodium cobalticyanide, Na<sub>6</sub>Hg<sub>3</sub>Co<sub>4</sub>(CN)<sub>24</sub>+4H O

**1899** )

Extremely deliquescent (Soenderop, Dissert, 1899

Nickel cobalticyanide,  $N_{13}[Co(CN)_6]_2 + 12H_2O$ 

Insol in H<sub>2</sub>O and acids Not attacked by boiling HCl+Aq Sol in NH<sub>4</sub>OH+Aq Decomp by KOH+Aq

Nickel cobalticyanide ammonia, Ni<sub>3</sub>[Co(CN)<sub>6</sub><sup>1</sup><sub>2</sub>, 4NH<sub>3</sub>+7H<sub>2</sub>O Insol in H O

Potassium cobalticyanide, K<sub>3</sub>Co(CN)<sub>6</sub> Easily sol in HO Insol in alcohol

Potassium strontium cobalticyanide, KSrCo(CN)<sub>6</sub>+9H<sub>2</sub>O Sol in H O (Weselsky)

Potassium thallium cobalticyanide,  $K_3Tl$  [ $Co(CN)_6$ ]

More sol in  $H_2O$  than corresponding K salt (Fischer and Benzian Ch Z 1902, 26 49)

Potassium zinc cobalticyanide, KZnCo(CN)<sub>i</sub>+3H<sub>2</sub>() (Fischer and Cuntze, Ch. / 1902, **26** 873)

Potassium cobalticyanide mercuric chloride, 2K<sub>3</sub>Co(CN), 3HgCl

(Soenderop Dissert 1899)

Potassium cobalticyanide mercuric iodide,  $4K_3Co(\mbox{(N)}_{\ell},\mbox{ HgI}$ 

Sol in II () with subsequent decomp Sol in alcohol and other with decomp (Soenderop Dissert, 1899)

Silver cobalticyanide, Ag<sub>3</sub>Co(CN)<sub>6</sub>
Insol in H<sub>2</sub>() and acids. Sol in NH<sub>4</sub>()H+

Silver cobalticyanide ammonia, Ag<sub>3</sub>Co(CN), NH<sub>3</sub>+1/<sub>2</sub>H<sub>2</sub>O
Insol in H () (Zwenger)

Sodium cobalticyanide, Na<sub>3</sub>Co(CN)<sub>6</sub>+2H<sub>2</sub>O
Easily sol in H<sub>2</sub>O, insol in alcohol

Sodium zinc cobalticyanide, NaZnCo(CN)<sub>b</sub> +H<sub>2</sub>O

(Fischer and Cuntze, Ch Z 1902, 26 873)

 $\begin{array}{c} \text{Strontium} \\ 10\text{H}_2\text{O} \end{array} \\ \text{cobalticyanide,} \quad \operatorname{Sr}_3[\operatorname{Co}(CN)_{\delta}]_2 + \\ \end{array}$ 

Very sol in H<sub>2</sub>O (Weselsky)

Thallum cobalticyanude,  $Tl_3Co(CN)_6$ 100 pts  $H_2O$  dissolve 3 6 pts at 0°, 5 86 pts at 9 5°, 10 04 pts at 19 5° (Fronmuller, B 11 91)

Yttrium cobalticyanide, YCo(CN)<sub>6</sub>+2H<sub>9</sub>O Nearly insol in H<sub>2</sub>O (Cleve)

Zinc cobalticyanide, Zn<sub>5</sub>[Co(CN)<sub>6</sub>]<sub>2</sub>+12H<sub>2</sub>O Sol in HCl+Aq and salt is pptd by dilution with H<sub>2</sub>O Decomp by H<sub>2</sub>SO<sub>4</sub> Insol in K<sub>4</sub>Co(CN)<sub>6</sub>+Aq Sol in NH<sub>4</sub>OH and NH<sub>4</sub>Cl+Aq (Fischer and Cuntze, Ch Z 1902, **26** 873)

Zinc cobalticyanide ammonia,  $Zn_3[Co(CN)_6]_2$ ,  $5NH_3$ 

Decomp by H<sub>2</sub>O and acids (Fischer and Cuntze, Ch Z 1902, **26** 873)
Zn<sub>3</sub>(Co(CN)<sub>8</sub>), 6NH<sub>3</sub> (Fischer and

 $\operatorname{Zn_3[Co(CN)_6]}$ ,  $\operatorname{6NH_3}$  (Fischer and Cuntze)

 $+3H_2O$  (Fischer and Cuntze)  $Zn_4|Co(CN)_6|_2$ ,  $10NH_3+9H_2O$  Decomp by H O (Fischer and Cuntze)

Cobaltimolybdic acid

Ammonium barium cobaltous cobaltimolybdate,  $\frac{1}{2}(NH_4)_2O$ ,  $\frac{1}{2}EaO$  CoO, CoO,  $\frac{10MoO_3+1}{2}H_2O$ 

Difficultly sol in H<sub>2</sub>O (Friedheim and Keller B 1906 **39** 4306)

Ammonium cobaltous cobaltimolybdate, 2(NH<sub>4</sub>) O, CoO, CoO, 10 MoO<sub>4</sub>+12H O

Much more sol in H O than 3(NH<sub>4</sub>)<sub>2</sub>O CoO, CoO<sub>2</sub>, 12MoO<sub>3</sub>+20H O Sp gi of cold sit solution = 1 096 (Friedheim and Keller)

3(NH<sub>4</sub>) O, CoO, CoO, 12MoO<sub>3</sub>+20H O 100 cc cold sat aqueous solution contain 3g of the salt Sp gr of the solution = 1 0234

Sol in cone HCl
Decomp by cone H<sub>2</sub>SO<sub>3</sub>, by kOH+Aq
and by N<sub>1</sub>OH+Aq (Friedheim and Keller)

Barium cobaltous cobaltimolybdate, 3BaO, CoO, CoO<sub>2</sub>, 9MoO<sub>3</sub>+25H O Sl sol in H O (Friedheim and Kellei) Cobaltous potassium cobaltimolybdate, CoO, 3K<sub>2</sub>O, CoO<sub>2</sub>, 10MoO<sub>3</sub>+10H<sub>2</sub>O (Kurnakoff, Ch Z 1890, **14** 113) +11H<sub>2</sub>O Sol in conc HCl Decomp by KOH+Aq and by NaOH+Aq (Friedheim

and Keller)
3K-O, CoO, CoO<sub>2</sub>, 12MoO<sub>3</sub>+15H<sub>2</sub>O Sl
sol in H<sub>2</sub>O Sol in cone HCl Decomp by
KOH+Aq and by NaOH+Aq (Friedheim
and Keller)

+20H<sub>2</sub>O (Kurnakoff, Ch Z 1890, **14** 113)

Potassium cobaltimolybdate, 3K<sub>2</sub>O, CoO<sub>2</sub>, 9MoO<sub>8</sub>+6½H<sub>2</sub>O

Ppt (Hall, J Am Chem Soc 1907, 29 703)

# Cobaltinitrocyanhydric acid

Potassium cobaltinitrocyanide, K<sub>4</sub>Co<sub>2</sub>(CN)<sub>9</sub>NO<sub>2</sub>+3H<sub>2</sub>O

Very sol in H<sub>2</sub>O but quickly decomp Insol in alcohol (Rosenheim and Koppel, Z anorg 1898, **17** 68)

Silver cobaltimitrocyanide,

 $Co_2Ag_5NO_2(CN)_{10}+6H_2O$ , and  $+21H_2O$  (Rosenheim and Koppel)

Sodium cobaltinitrocyanide, Na<sub>6</sub>Co<sub>4</sub>(NO<sub>2</sub>)(CN)<sub>10</sub>+11H<sub>2</sub>O

Very deliquescent Sol in  $H_{\bullet}O$  (Rosenheim and Koppel)

Cobaltisulphurous acid, H<sub>6</sub>Co<sub>2</sub>(SO<sub>3</sub>)<sub>6</sub>

Not obtained in a solid state (Berglund, Acta Lund 1872)

Cobaltisulphites

The cobaltisulphites are insol or at least very sl sol in  $H_2O$  (Berglund, Acta Lund 1872 23)

Ammonium cobaltous cobaltisulphite,

 $(NH_4)_2SO_3$ ,  $2CoSO_3$ ,  $Co_2(SO_3)_3+14H_2O = (NH_4)_2Co_2Co_2(SO_3)_c+14H_2O$ 

Scarcely sol in  $H_2O$ , but decomp thereby Easily sol in acids, when finely divided, also in  $H_2SO_3+Aq$  (Berglund)

 $2(NH_4)_2SO_3$ ,  $CoSO_3$ ,  $Co(SO)_3+8H_2O = (NH_4)_4CoCo_2(SO_3)_5+8H_2O$  As above (Berglund )

Barium cobaltisulphite  ${}^3BaSO_3$ , Co  $(SO_3)_3+12H_2O=Ba_3Co_2(SO_3)_5+12H$  O

Ppt Insol in H<sub>2</sub>O Not attacked by cold acids even H<sub>2</sub>SO<sub>4</sub>, but is decomp by boiling therewirth (Berglund, Acta Lund 1872)

Bismuth cobaltisulphite, Bi<sub>2</sub>Co<sub>2</sub>(SO<sub>3</sub>)<sub>6</sub> Insol in H<sub>2</sub>O, dil HNO<sub>3</sub>, or HCl+Aq (Berglund, Acta Lund **1872** 31) Calcium cobaltisulphite, Ca<sub>3</sub>Co<sub>2</sub>(SO)<sub>3</sub>)<sub>6</sub>
Ppt. Insol in H<sub>2</sub>O or HCl+Aq. (Be)

Ppt Insol in  $H_2O$  or HCl+Aq (Berg lund, Acta Lund 1872 30)

 $\begin{array}{cccc} Cobaltous & cobaltisulphite, & Co_3Co_2(SO_3)_6 \\ & 3CoSO_3, & Co_2(SO_3)_8 \end{array}$ 

Ppt (Berglund, B 7 470)

Cobaltous potassium cobaltisulphite,  $\rm CoK_4Co_2(SO_3)_6$ 

Insol in  $H_2O$  (Berglund)

Silver cobaltisulphite,  $Co_2(SO_8)_3$ ,  $3Ag_2SO$ Properties as the following comp (Berglund)

Silver cobaltous cobaltisulphite,  $CoSO_3$ ,  $Co_2(SO_3)_3$ ,  $2Ag_2SO_3+9H_2O$ 

Insol in  $H_2O$  Insol in  $HNO_3+Aq$   $D\epsilon$  comp by HCl or  $H_2S+Aq$  (Berglund)

Sodium cobaltous cobaltisulphite

Decomp by  $H_2O$ , so that it has not bee obtained pure (Berglund, Acta Lund 1872 29)

Cobaltoctamine sulphurous acid

See Octamine cobaltisulphurous acid

Cobaltocobalticyanhydric acid, H<sub>3</sub>Co<sub>3</sub>(CN)<sub>11</sub>

Unstable (Jackson and Comey, Am Cl J 1897 19, 277)

Barium cobaltocobalticyanide, BaHCo<sub>3</sub>(CN)<sub>11</sub>+1½H<sub>2</sub>O

Somewhat sol in H<sub>2</sub>O when pure The crude salt is insol even in hot H<sub>2</sub>C (Jackson and Comey)

Cupric cobaltocobalticyanide,  $Cu_3Co_6(CN) + 4H_2O$ 

Ppt (Jackson and Comey)

Potassium hydrogen cobaltocobalticyanide  $K_2HCo_3(CN)_{11} + 2H_2O$ 

SI sol in cold casily sol in hot  $H_2O$ Insol in alcohol (Jackson and Comey)  $KH_2Co_3(CN)_{11}+H_2O$  Insol in cold c hot  $H_2O$  when impure

The pure salt is slowly sol in cold H<sub>2</sub>C More sol in warm HO (Jackson an Comey)

Silver cobaltocobalticyanide,  $\g_3\mathrm{Co}_3(\mathrm{CN})$  +H O

Ppt (Jackson and Comey, B 1896, 2° 1021)

Zinc cobaltocobalticyanide, ZnHCo<sub>3</sub>(CN) +3H<sub>2</sub>O

Ppt (Jackson and Comey)

# Cobaltocyanhydric acid, H<sub>4</sub>Co(CN)<sub>6</sub>

Sol in H<sub>2</sub>O Insol in Very unstable alcohol

#### Cuprous potassium cobaltocyanide, K<sub>8</sub>CuCo(CN)<sub>6</sub>

(Straus, Z anorg 1895, 9 17)

Potassium cobaltocyanide, K<sub>4</sub>Co(CN)<sub>6</sub>

Decomp on air Very deliquescent, and sol in H<sub>2</sub>O Insol in alcohol and ether (Descamps, Zeit Ch 1868 952)

#### Cobaltous acid

# Barium cobaltite, BaCoO<sub>2</sub>

Insol in H<sub>2</sub>O or dil HC<sub>2</sub>H<sub>3</sub>O<sub>4</sub>+Aq n HCl+Aq (Rousseau, C R 109 64) BaCo<sub>2</sub>O<sub>5</sub> As above (Rousseau)

Cobaltous potassium cobaltite, 3CoO<sub>2</sub>, CoO<sub>3</sub>

Rapidly hydrolysed by H<sub>2</sub>O

Sol in conc HCl (Bellucci, Chem Soc 1907, **92**, (2) 354)

# Magnesium cobaltite, MgCoO3

Insol in  $H_2O$ ,  $NH_4OH$ , or  $(NH_4)_2CO_3+Aq$ Easily sol in NH<sub>4</sub>Cl+Aq, from which it is pptd by KOH+Aq (Berzelius, Pogg 33 126 )

Sol in HF, HCl, HNO<sub>3</sub>+H<sub>2</sub>SO<sub>4</sub>, decomp and partially dissolved by NH<sub>4</sub>OH+Aq, quite stable when heated (Dufau, C R 1896, **123** 240)

#### Potassium cobaltite

According to Bellucci and Dominici the compounds formerly described are more or less decomp by hydrolysis (C C 1907 I, 1530)

#### Sodium cobaltite

Sol in NaOH+Aq, but pptd by diluting the solution

Columbic acid (Niobic acid), 3Cb<sub>2</sub>O<sub>5</sub>,  $4H_2O$ , or  $3Cb_2O_5$ ,  $7H_2O$ 

Fasily sol in HF, very sl sol in HCl+Aq, but is sol in H2O after being treated with HCl+Aq Sol in conc H<sub>2</sub>SO<sub>4</sub> Sol in KOH+Aq Insol in NaOH+Aq, but becomes sol in H<sub>2</sub>O by being treated with NaOH+Aq Sol in boiling Na<sub>2</sub>CO<sub>3</sub>+Aq NaOH + Aq(Rose, Pogg 113 109)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

1898, **20** 830

Cb<sub>2</sub>O<sub>5</sub>, 4H O Cb<sub>2</sub>O<sub>5</sub>, 7H<sub>2</sub>O (Santesson, Bull Soc (2) **24** 52)

Aluminum columbate,  $Al_2O_3$ ,  $3Cb_2O_5+12H_2O_3$ (E F Smith, J Am Chem Soc 1908, **30** 1652)

Barium columbate, 7BaO, 6Cb<sub>2</sub>O<sub>5</sub>+18H<sub>2</sub>O (Bedford, J Am Chem Soc 1905, Ppt **27** 1218)

# Cadmium columbate, CdO, Cb<sub>2</sub>O<sub>5</sub>

Sol in boiling cone H<sub>2</sub>SO<sub>4</sub>, insol in most acids, decomp by HKSO4 at red heat (Larsson, Z anorg 1896, **12** 199) +3½H<sub>2</sub>O Ppt (E F Smith, J Am Chem Soc 1908, **30** 1652)

Cæsium columbate,  $4Cs_2O$ ,  $3Cb_2O_5+14H_2O$ Very sol in H<sub>2</sub>O (E F Smith, J Am Chem Soc 1908, **30** 1654) 7Cs<sub>2</sub>O, 6Cb<sub>2</sub>O<sub>5</sub>+30H<sub>2</sub>O Ppt (E Smith, J Am Chem Soc 1908, **30** 1655)

Calcium columbate, 2CaO, Cb<sub>2</sub>O<sub>5</sub>

Insol in  $H_2O$  (Joly, C R 81 266) CaO, Cb<sub>2</sub>O<sub>5</sub> Sol in boiling cone H<sub>2</sub>SO<sub>4</sub>, insol in most acids, decomp by HKSO<sub>4</sub> at red heat (Larsson, Z anorg 1896, **12** 198)

## Cobalt columbate, CoO, Cb<sub>2</sub>O<sub>5</sub>

Sol in cone boiling H<sub>2</sub>SO<sub>4</sub>, insol in most acids, decomp by HKSO4 at red heat (Larsson)

# Copper columbate, CuO, Cb<sub>2</sub>O<sub>5</sub>

Chem Soc 1908, 30 1652)

Sol in boiling cone H<sub>2</sub>SO<sub>4</sub>, insol in most acids, decomp by HKSO4 at red heat (Lars- $+3\frac{1}{2}H_2O$ (E F Smith, J Am Ppt

Iron (ferrous) columbate, Fe(CbO<sub>8</sub>)<sub>2</sub> Min Columbite Insol in acids

# Iron (ferrous) columbate tantalate, $x \text{Fe}(\text{TaO}_3)_2, y \text{Fe}(\text{CbO}_3)_2$

Not attacked by acids Min Tantalite Fe(CbO<sub>3</sub>)<sub>2</sub>, 4Fe(TaO<sub>3</sub>)<sub>2</sub> Min Tapiolite

Lithium columbate, 7Li<sub>2</sub>O, 6Cb<sub>2</sub>O<sub>5</sub>+26H<sub>2</sub>O Ppt (E F Smith, J Am Chem Soc 1908, **30** 1655)

# Magnesium columbate, MgO, Cb<sub>2</sub>O<sub>5</sub>

Sol in boiling conc H<sub>2</sub>SO<sub>4</sub>, insol in most acids, decomp by KHSO4 at red heat (Larsson, Z anorg 1896, 12 196

+4H<sub>2</sub>O Precipitate (Rummelsberg) +7H<sub>2</sub>O Ppt (E F Smith, J Smith, J Am Chem Soc 1908, 30 1651)

4MgO, Cb<sub>2</sub>O<sub>5</sub> Insol in H<sub>2</sub>O (Joly, C R **81** 266)

3MgO, Cb<sub>2</sub>O<sub>5</sub> As above

### Manganous columbate

(Joly, C R 81 266) Insol in H<sub>2</sub>O 3MnO, 5Cb<sub>2</sub>O<sub>5</sub> Sol in boiling conc H<sub>2</sub>SO<sub>4</sub>, insol in most acids, decomp by HKSO4 at red heat (Larsson, Z anorg 1896, 12 201) Potassium columbate, KCbO<sub>8</sub>

Sol in H<sub>2</sub>O (Joly, in Fremy's Encyc Ch) K<sub>2</sub>Cb<sub>4</sub>O<sub>7</sub>+5½H<sub>2</sub>O Insol in H<sub>2</sub>O (San-

tesson ) Nearly insol in H<sub>2</sub>O (Sa  $K_2Cb_6O_{16} + 5H_2O$ K<sub>4</sub>Cb<sub>2</sub>O<sub>7</sub>+11H<sub>2</sub>O tesson, Bull Soc (2) 24 53)

 $K_4Cb_8O_{22} + 11H_2O$ (Santesson)  $K_6Cb_4O_{13}+13H_2O$ Sol in H<sub>2</sub>O

K<sub>8</sub>Cb<sub>6</sub>O<sub>10</sub>+16H<sub>2</sub>O Efflorescent Sol in

H<sub>2</sub>O (Marignac, A ch (4) 8 20) Very sol in H<sub>2</sub>O (E F Smith, J Am Chem Soc 1908, 30 1652) K<sub>14</sub>Cb<sub>12</sub>O<sub>37</sub>+27H<sub>2</sub>O So in alcohol (E F Smith) Sol m H<sub>2</sub>O Insol

 $K_{16}Cb_{14}O_{43} + 32H_2O$  Sol in  $H_2O$ 

Potassium sodium columbate, 3K<sub>2</sub>O, Na<sub>2</sub>O,  $3\text{Cb}_2\text{O}_5 + 9\text{H}_2\text{O}$ 

Very slightly sol in H<sub>2</sub>O Insol in alkalies (Marignac)

Rubidium columbate, 3Rb<sub>2</sub>O, 4Cb<sub>2</sub>O<sub>5</sub>+

(E F Smith, J Am Chem Soc 1908, 30 1655)

4Rb<sub>2</sub>O 3Cb<sub>2</sub>O<sub>5</sub>+14H<sub>2</sub>O Very sol in H<sub>2</sub>O (E F Smith)

Silver columbate, Ag<sub>2</sub>O, Cb<sub>2</sub>O<sub>5</sub>+2H<sub>2</sub>O

Ppt (E F Smith) 7Åg<sub>2</sub>O, 6Cb<sub>2</sub>O<sub>5</sub>+5H<sub>2</sub>O Insol in H<sub>2</sub>O (Bedford, J Am Chem Soc 1905, **27** 1218)

Sodium columbate, NaCbO<sub>3</sub>+3½H<sub>2</sub>O

Completely sol in H<sub>2</sub>O (Rose) Ppt (E F Smith, J Am Chem Soc 1908,

**30** 1651)

+2½H₂O SI sol in cold H<sub>2</sub>O Insol in NaOH+Aq (Santesson) Insol in H<sub>2</sub>O or

2Na<sub>2</sub>O, 3Cb<sub>2</sub>O<sub>5</sub>+9H<sub>2</sub>O NaOH + Aq(Santesson)

8Na<sub>2</sub>O, 7Cb<sub>2</sub>O<sub>5</sub> 1 pt is sol in 195-200 pts H<sub>2</sub>O at 14-20°, in ether 75-80 pts or in 103 pts boiling water (Rose)

 $7Na_2O$ ,  $6Cb_2O_5+32H_2O$  Very stable Sol in  $H_2O$  (Bedford, J Am Chem Soc 1905, 27 1217)

Thorium columbate, 5Th<sub>2</sub>O, 16Cb<sub>2</sub>O<sub>5</sub>

Sol in boiling conc H<sub>2</sub>SO<sub>4</sub>, insol in most acids, decomp by HKSO4 at red heat (Larsson, Z anorg 1896, 12 202)

Yttrium columbate, Y<sub>2</sub>O<sub>3</sub>, Cb O<sub>5</sub>

Insol in H<sub>2</sub>O (Joly, C R 81 1261)

Sol in boiling cone H2SO4, insol in most acids, decomp by HKSO4 at red heat (Larsson)

Zinc columbate, ZnO, Cb<sub>2</sub>O<sub>5</sub>

Sol in boiling conc H<sub>2</sub>SO<sub>4</sub>, insol in most acids, decomp by HKSO4 at red heat (Lars-

7ZnO, 6Cb<sub>2</sub>O<sub>5</sub>+25H<sub>2</sub>O Insol in H<sub>2</sub>O (Bedford, J Am Chem Soc 1905, 27 1218

Zirconium columbate, ZrO2, 5Cb2O5

Sol in boiling conc H2SO4, insol in mos acids, decomp by HKSO4 at red heat (Lars

Percolumbic acid

See Percolumbic acid

Columbium (Niobium), Cb

Scarcely attacked by HCl, HNO3, or aqua regia Conc H2SO4 dissolves easily on warm

Sol in fused oxidizing agents, sol in ho conc H<sub>2</sub>SO<sub>4</sub> and in HF, also in HF+HNO<sub>3</sub> insol in other acids (Moissan, C R 1901 **133** 24)

Columbium pentabromide, CbCr<sub>5</sub> (Rose, Pogg 104 422)

Columbium carbide nitride, 3CbC, 2CbN (Jolv. Bull Soc (2) 25 506)

Columbium trichloride, CbCl<sub>3</sub>

Not deliquescent, not attacked by H<sub>2</sub>O but easily oxidised by HNO<sub>1</sub>+Aq Insol ii NH<sub>4</sub>OH+Aq (Roscoe, C N **37** 25)

Columbium pentachloride, CbCl<sub>5</sub>

Decomp by H<sub>2</sub>O with separation of hydrate of Cb<sub>2</sub>O<sub>5</sub> Sol in cold HCl+A Sol in cold HCl+Aq forming a solution which soon gelitinises, inc separates out Cb O5 by heat or dilution, with hot HCl+Aq, forms a cloudy solution which does not gelatinise Sol in II SO, to form clear liquid which gelitimises on heiting Sol in KOH+Aq Sol in alcohol with slight residue (Rose, Pogg 104 132)

Columbium pentafluoride, Chl. 5

Very hydroscopic, sol in IIO without separation of columbic acid (Ruff, B 1909) **42** 492)

Columbium fluoride with MF See Fluocolumbate, M

Columbium hydride, ('bH(')

Insol in HCl, HNO, and dil HSO,  $+ \Delta q$ even on boiling Sol in boiling conc II SO and in fused KHSO4 Sol in cold III + Ac if not too dilute. Also attacked by KOH-Aq (Murignac N Arch Phys Nat 31 89

Not attacked by boiling H2O, or boiling

Oxidized by hot H SO, Insol in boiling HNO<sub>3</sub> (Muthmann, A 1907, **355** 90)

Columbium hydroxide Cb O<sub>5</sub>, rH<sub>2</sub>O See Columbic acid

#### Columbium nitride

Not attacked by boiling nitric acid or aqua regia, but sol in a cold mixture of HNO2 and

F (Rose, Pogg 111 426) Cb<sub>2</sub>N<sub>6</sub> Not attacked by boiling H<sub>2</sub>O or HCl Insol in conc HNO<sub>3</sub>, and H<sub>2</sub>SO<sub>4</sub>

Decomp by fused KOH Not attacked by boiling with KOH+Aq (Muthmann, A 1907, **355** 94)

### Columbium dioxide, Cb<sub>2</sub>O<sub>2</sub>

Sol when still moist in boiling dil HCl+ Insol in hot HNO3, less sol in aqua regia than in HCl+Aq regra than in a feet (Rose) after long heating (Rose) Insol in H<sub>2</sub>O, KOH, or conc acids, even booling (Delafontaine) Sol in conc H<sub>2</sub>SO<sub>4</sub>

### Columbium trioxide, Cb<sub>2</sub>O<sub>3</sub>

Insol in acids except HF (Smith, Z anorg 1894, 7 28)

### Columbium tetroxide, Cb<sub>2</sub>O<sub>4</sub>

Not attacked by cold or hot H<sub>2</sub>O, HCl, HNO<sub>2</sub>, H<sub>2</sub>SO<sub>4</sub>, or aqua regia Slightly attacked by boiling KOH+Aq (Delafon-(Delafontaine)

### Columbium pentoxide, Cb<sub>2</sub>O<sub>5</sub>

When ignited insol in hot conc H.SO. When it has not been ignited it forms a clear solution with H2SO4, which can be diluted without forming any precipitate Pogg 112 549)

Sol in fused KHSO4, which can be diluted with H<sub>2</sub>O without causing pptn Insol in

HF

#### Columbium oxybromide, CbOBr<sub>3</sub>

Decomp by H<sub>2</sub>O into Cb<sub>2</sub>O<sub>5</sub> and HBr Sol in hot H2SO4 and conc HCl+Aq (Rose, Pogg 104 442)

3H<sub>2</sub>O, Cb<sub>2</sub>O<sub>4</sub>, HBr(?) Eas (Smith, Z anorg 1894, **7** 97) Easily sublimed

Columbium oxybromide rubidium bromide, CbOBr<sub>3</sub>, 2RbBr

Decomp by H O Unstable in moist air (Weinland, B 1905 **39** 3059)

# Columbium oxychloride, CbOCl<sub>3</sub>

Attracts H<sub>2</sub>O from air without deliquescing Decomp with H<sub>2</sub>O with and decomposed evolution of heat Insol in hot or cold HCl+ Sol by long contact with H2SO4 to a cloudy liquid, which clears up on warming, but soon separates out Cb2O5 Sol in cold KOII+Aq and hot K CO3+Aq Sol in alcohol, from which it is precipitated

by ether (Blomstrand) (Smith, Sublimate

3H<sub>2</sub>O, Cb<sub>2</sub>O<sub>4</sub>, HCl Z anorg 1894, 7 97)

Columbium oxychloride rubidium chloride, CbOCl<sub>3</sub>, 2RbCl

(Weinland, B 1906, Decomp by H<sub>2</sub>O

**39** 3057)

Columbium oxyfluoride, CbOF:

(Joly, C R 81 1266)

Columbium oxyfluoride uith MF

See Fluoxycolumbate, and Fluoxyhypocolumbate, M

### Columbium oxysulphide, Cb<sub>2</sub>OS<sub>2</sub>

Insol in boiling HCl+Aq Slowly decomp into Cb O<sub>b</sub> by boiling with HNO<sub>1</sub> or aqua regia Insol in boiling dil  $H \cdot SO_4 + Aq$ Converted into columbic sulphate, sol in  $H_2O_4$ by boiling cone  $H_2SO_4$  Si sol in hot HF Insol in boiling K2S+Aq (Rose, Pogg 111

# Copper, Cu

Copper is not attacked by distilled H<sub>2</sub>O, or by  $NH_4NO_3$ ,  $KNO_3$ , or  $(NH_4)_2SO_4 + Aq$ , or by a mixture of those salts in solution (Muir, cited by Carnelly, Chem Soc 30 1)

Distilled H<sub>2</sub>O has slight action on Cu 100 ccm H2O dissolved from 2 sq dcm Cu from 0 035 mg Cu in one hour up to 0 280 mg in 72 hours 100 ccm H<sub>2</sub>O dissolved 0 44 mg from 6 sq dcm in 48 hours Presence of solder diminishes solubility about one-half At 90-100° the amount dissolved is about onehalf that at ord temp (Carnellev, Chem Soc 30 1)

100 ccm distilled HO dissolved only 1 mg Cu from 11 8 sq cm during a week while air free from CO2 was conducted through the solution When the air contained CO 3 mg were dissolved (Wagner, Dingl 221 259)

100 l sea water dissolved 12 96 g Cu from (Calvert and Johnson, C N 11 171

Solubility in H<sub>2</sub>SO<sub>4</sub>

Not attacked by dil H SO4+Aq (Vogel, Schw J **32** 301

Action of H SO4 at ordinary temp is very slight even after a long time Barruel J Pharm 20 13 [1834])

H<sub>2</sub>SO<sub>4</sub> has no action below 130 Calvert.

and Johnson, Chem Soc 19 455 H SO4 acts slightly even at 20 °

163 g H SO4 (1843 sp gr) dissolved the following amts from 3 g Cu having a surface of 65 sq cm at the given temp

| Suri                                          | ice of on ad citi                                                  |                                                                      |
|-----------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|
| Temp                                          | Time                                                               | Cud ohea                                                             |
| 19° 60 80 100 124 130 137 150 170 195 220 270 | 14 days 120 min 30 ' 30 ' 30 ' 30 ' 30 ' 30 ' 40 ' 2 ' few seconds | About 6 2 5 1 2 5 1 22 7 32 6 30 0 69 2 51 92 51 92 70 57 nearly 100 |
| 1                                             |                                                                    |                                                                      |

292 COPPER

With dilute acid the action was much less violent, as is seen in the following table—

| Tem                                                          | Time                                                                   | Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sp gr                                                                                   | % Cu<br>dissolved                                               |
|--------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 100°<br>100<br>100<br>100<br>130<br>130<br>130<br>165<br>165 | 30 min<br>30 "<br>30 "<br>30 "<br>30 "<br>30 "<br>30 "<br>15 "<br>30 " | H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> , 2H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> , 2H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> , 2H <sub>2</sub> O | 1 843<br>1 8295<br>1 780<br>1 620<br>1 843<br>1 780<br>1 620<br>1 843<br>1 780<br>1 620 | 2 380<br>0 585<br>0 0<br>32 6<br>1 18<br>0<br>70<br>16 5<br>2 7 |

# (Pickering, Chem Soc 33 112)

Cu is very sl attacked by cold HCl+Aq of 1 12 sp gr, but somewhat more on warming Even less sol in dil HCl+Aq (Lowe, Z anal 4 361)

Sol in warm conc HI+Aq (Rose)

Slowly attacked by H2SO2+Aq (Causse,

Bull Soc (2) 45 3)

More or less sol in all dil mineral acids and also in organic acids, as acetic, tartaric, etc, when supply of air is afforded, but absolutely insol in the latter acids when air is wholly excluded. The importance of this fact in the use of Cu cooking utensils is manifest.

Fasily attacked by ord HNO<sub>3</sub>+Aq With very conc HNO<sub>3</sub>+Aq (sp gr 1 52) it

becomes passive, as in the case of Fe

Pure dil HNO<sub>3</sub>+Aq of 1 07 sp gr on less does not attack Cu at 20°, but if NO<sub>2</sub> or KNO<sub>2</sub>, is added the action begins at once If HNO<sub>3</sub>+Aq is more cone the Cu is attacked HNO<sub>3</sub>+Aq of 1 10s sp gr begins to act at -2°, and of 1 217 sp gr at -10°

HNO<sub>3</sub>+Aq of 1 512 sp gr attacks Cu violently at 20°, but action soon ceases on account of formation of a crust of Cu(NO<sub>3</sub>), insol in pure HNO<sub>3</sub> (Millon, A ch (3) 6

Ensily sol in 2N-HClO<sub>4</sub>+Ag at 50°

(Hendrisson, J. Am. Chem. Soc. 1904, 26 756)

Not appreciably sol in inhydrous HF

(Poulenc, A ch 1894, (7) 2 12)
When in contact with the air, Cu is soon

oxidised by reids, alkalics (especially NH<sub>4</sub>OH +Aq), and many fatty bodies

Solon (NH<sub>4</sub>)  $CO_3 + Aq$  (Traube, B 18)

1857)

Slowly sol in NH<sub>4</sub>OH+Aq (Schonbein, B A B **1856** 580)

Sol in KI+Aq when waim and cone (Rose)

When finely divided, Cu is easily sol in hot FeCl,+Aq

Action of dilute solutions of salts on solulity of Cu in  $H_2O$ 

100 ccm solution of the following salts ( solve the amts of Cu given below, from a surface of 1 sq dcm in 48 hours

| Salts                              |   | G salt dissolved<br>in 100 ccm H <sub>2</sub> O | Mg Cu di<br>solved    |
|------------------------------------|---|-------------------------------------------------|-----------------------|
| H <sub>2</sub> O                   |   |                                                 | 0 11                  |
| KNO <sub>3</sub>                   | { | 0 01<br>0 05<br>5 00                            | 0 07<br>0 13<br>0 16  |
| NaNO <sub>3</sub>                  | { | 0 05<br>5 00                                    | 0 18<br>0 19          |
| CaSO <sub>4</sub>                  |   | 0 05                                            | 0 11                  |
| K <sub>2</sub> SO <sub>4</sub>     | { | 0 05<br>5 00                                    | 0 12<br>0 28          |
| MgSO <sub>4</sub>                  | { | 0 05<br>5 00                                    | 0 16<br>0 34          |
| Na <sub>2</sub> CO <sub>3</sub>    | - | 0 01<br>0 05<br>5 00                            | 0 05<br>0 11<br>2 80  |
| ${ m K_2CO_3}$                     | { | 0 05<br>5 00                                    | 0 14<br>2 35          |
| NaCl                               | [ | 0 01<br>0 05<br>5 00                            | 0 05<br>0 18<br>7 50  |
| kCl                                |   | 5 00                                            | 8 17                  |
| (NH <sub>4</sub> ) SO <sub>4</sub> | { | 0 05<br>5 00                                    | 0 66<br>28 50         |
| NH <sub>4</sub> N();               | - | 0 01<br>0 05<br>5 00                            | 0 17<br>0 66<br>60 00 |
| NH <sub>4</sub> Cl                 | { | 0 05<br>5 00                                    | 0 92<br>158 75        |

At 100° the action of KNO<sub>3</sub>, K<sub>2</sub>SO<sub>4</sub>, and NH<sub>4</sub>NO<sub>3</sub> is diminished while that of (NH<sub>4</sub>) SO<sub>4</sub>, Na (O<sub>3</sub>, and NaCl is more edited.

Tables are also given for mixtures of the above salts (Canelley Chem Soc 30 1)

Solubility of Cu in dilute salt solut ns 118 sq cm Cu were used, and the a ion continued one week, while air with or wit out CO<sub>2</sub> was passed through the solution ontinually

100 ccm solution of the following salts dis- in 110 cc dissolves 0 2050-0 2279 g Cu solved the given amts Cu

| Salt                                                                                                                                                                                       | G salt dis<br>solved in<br>100 ccm H <sub>2</sub> O                  | Mg Cu dis<br>solved with<br>out CO <sub>2</sub> | Mg Cu<br>dissolved<br>with CO <sub>2</sub> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------|
| NaCl<br>KCl<br>MgCl <sub>2</sub><br>NH <sub>4</sub> Cl<br>K <sub>2</sub> SO <sub>4</sub><br>KNO <sub>3</sub><br>Na <sub>2</sub> CO <sub>3</sub><br>NaOH<br>CaO <sub>2</sub> H <sub>2</sub> | 0 50<br>0 50<br>0 83<br>1 00<br>1 00<br>1 00<br>1 00<br>0 923<br>sat | 4<br>4<br>5<br>904<br>0<br>0<br>0<br>0          | 115<br>115<br>112<br>138<br>4<br>3         |

(Wagner, Dingl 221 260)

Distilled H<sub>2</sub>O dissolved no Cu from 420 sq mm in 150 hours at ord temp

NH4NO8+Aq with less than 04g per litre

showed the same result

KNO<sub>3</sub>+Aq or (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq containing 0 1 to 0 2 g per litre dissolved no Cu

H<sub>2</sub>O containing carbonates+nitrates, carbonates+sulphates. or chlorides+nitrates also dissolved no Cu

NH<sub>4</sub>NO<sub>3</sub>+Aq containing 04 g per litre dissolved 3 mg per litre after 150 hours

contact

From a surface of 2100 sq m of Cu, H<sub>2</sub>O charged with CO2 at ord pressure, and containing the following salts in solution, dis-solved the given amts Cu in 120 hours

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Salt                                                       | G salt dissolved<br>in 1 l H <sub>2</sub> O                                                                  | Mg Cu<br>dissolved                  |
|--------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------|
|                                                        | $egin{array}{c} K_2 \cccccccccccccccccccccccccccccccccccc$ | $\left.\begin{array}{c} 0 \ 2 \\ 0 \ 02 \\ 0 \ 04 \\ 0 \ 1 \\ 0 \ 02 \\ 0 \ 2 \\ 0 \ 04 \end{array}\right\}$ | 0 2<br>1 80<br>1 40<br>1 40<br>1 00 |

From a surface of 2100 sq m, H<sub>2</sub>O charged with CO<sub>2</sub> at pressure of 6 atmos dissolved 0 6 mg in 48 hours

H<sub>2</sub>O when charged with CO at 6 atmos and

containing 16 mg NH<sub>4</sub>NO<sub>3</sub> per litre, dissolved 0 8 mg ın 48 hours

80 mg NH<sub>4</sub>NO<sub>3</sub> per litre, dissolved 14 mg in 48 hours

40 mg K<sub>2</sub>CO<sub>3</sub>, per litre, dissolved 12 mg in 48 hours (Muir, Proc Soc Manchester, **15** 31)

Sol in KCN+Aq (Goyder, C N 1894, **69** 262)

A solution of  $(NH_4)_2S_2O_8$  containing 0 829 g

(Turrentine, J phys Chem 1907, 11 625)
Sl attacked by liquid NH; (Franklin,

Am Ch J 1898, 20 827)

Amts Cu dissolved by action of various oils on 8 sq in Cu by 10 days' exposure and subsequent 67 days-

|                          | Amt C<br>sclved in | u dis<br>10 davs |   |              | uent 67<br>s |
|--------------------------|--------------------|------------------|---|--------------|--------------|
| Linseed oil<br>Olive oil | 0 3000<br>0 2200   | grain            |   | 2435<br>0200 | grain        |
| Colza oil                | 0 0170             | "                |   | 1230         | 44           |
| Almond oil               | 0 1030             |                  | 0 | 1170         | **           |
| Seal oil                 | 0 0485             | 61               |   | 0315         | 24           |
| Sperm oil                | 0 0030             |                  |   | 0575         | 61           |
| Castor oil               | 0 0065             | "                | 0 | 0035         | "            |
| Neatsfoot oil            | 0 1100             |                  | _ |              | **           |
| Sesame oil               | 0 1700             |                  | 0 | 0015         |              |
| Paraffine oil            | 0 0015             | **               | l |              |              |

(Watson, C N 36 200)

Qualitative results of the action of various oils on Cu are also given by Thompson (C N 34 176, 200, 219)

½ ccm oleic acid dissolves 0 0157 g Cu (Gates, J phys Chem 1911, ın 6 days

**15** 143)

Sol in an alkaline solution of gelatine (3.54) %) copper gauze dissolved in 48 hour-(Lidoff, C C 1899, II 471)

Cuprous acetylide, Cu C2

Decomp by heating with H O or KCN+ Aq Decomp by HNO<sub>3</sub> (Keiser, Am Ch

J 1892, 14 289) Not decomp by H<sub>2</sub>SO<sub>4</sub>, NH<sub>4</sub>OH, KOH + Ag or acetic acid, even on warming dry salt is sol in very dil HCl+1q without evolution of gas Sol in conc KCV+1q (Bottger, A 1859, 109 356)

Cupric acetylide, CuC

Easily sol in HCl Turns brown in the air and becomes insol in acids (Phillips, Z anorg 1894, 6 241)

Solubility as that of  $3Cu_4C_8O + 2HO$ Cu<sub>8</sub>C<sub>1</sub> H<sub>4</sub>O<sub>3</sub> (Soderbaum B 1897 30 764)

Cu<sub>8</sub>C<sub>17</sub>H<sub>4</sub>O<sub>3</sub> Insol in H O

When dry is violently decomp by conc H2SO4 or not too dil HNO1 Rapidly decomp by warming with dil acids e-pecially HCl

Insol in VH4OH+Aq in ibsence of air

partially sol in presence of all

Insol in organic solvents B 1897, **30** 762)

Cuprous acetylide iodide, Cu C I CuI (Berthelot and Delepine A

1900, (7) **19** 54)

# Cupric arsenide, Cu<sub>5</sub>As<sub>2</sub>

(Reinsch, J pr 24 244)

 $Cu_4As_2$ 

(Gehlen)
Ppt Decomp by acids (Kane,  $Cu_3As_2$ Pogg 44 471)

 $Cu_3As$ Min Domeykite Insol in HCl +Aq, sol in HNO<sub>3</sub>

CuAs Min Algodonite Cu<sub>0</sub>As Min Darwinite

# Cuprous azoimide, CuN<sub>3</sub>

Insol in  $H_2O$ (Curtius) Sensitive to sunlight (Wohler, B 1913, **46** 2053)

Cupric azoimide, basic, CuO, CuN6 Insol in H<sub>2</sub>O (Wohler, B 1913, **46** 2055)

# Cupric azoimide, CuN6

Very explosive Very sl sol in H<sub>2</sub>O Decomp by boiling with H<sub>2</sub>O (Curtius, J pr 1898, (2) 58

# Copper azoimide ammonia, CuN<sub>6</sub>, 2NH<sub>3</sub>

Ppt Insol in H<sub>2</sub>O Easily sol in dil acids (Dennis, J Am Chem Soc 1907 29, 19)

# Copper boride, Cu<sub>3</sub>B<sub>2</sub>

(Marsden, J B . 1880 330)

#### Cuprous bromide, Cu<sub>2</sub>Br<sub>2</sub>

1 l H<sub>2</sub>O dissolves at 18°-20°

0 4320 millimols bromine

0 3157 cupric copper

" 0 1061 cuprous copper

(Bodlander, Z anorg 1902, **31** 460)

Sol in HBr, HCl without decomp, or HNO<sub>8</sub>+Aq with decomp, also in NH<sub>4</sub>OH +Aq Insol in boiling cone H<sub>2</sub>SO<sub>4</sub> or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Berthemot, A ch 44 385) Sol in H<sub>2</sub>SO<sub>3</sub>+Aq (I ean and Whatmough, Chem Soc 1898, 73 151)

Sol in NaCl, and Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Re-

nault, C R 59 319)

Solubility of Cu<sub>2</sub>Br<sub>2</sub> in KBr+Aq All values recorded in millimols per litre

| KBr                                       | Total copper                                                  | Cupur<br>copper                  | Cuprous<br>copper                                             |
|-------------------------------------------|---------------------------------------------------------------|----------------------------------|---------------------------------------------------------------|
| 25<br>40<br>60<br>80<br>100<br>120<br>500 | 0 119<br>0 200<br>0 310<br>0 423<br>0 5836<br>0 6934<br>8 719 | 0 012<br>0 013<br>0 025<br>0 012 | 0 107<br>0 187<br>0 285<br>0 411<br>0 5836<br>0 6934<br>8 719 |
|                                           |                                                               |                                  |                                                               |

(Bodlander and Storbeck, Z anorg 1902, 31 462)

Difficultly sol in methyl acetate (Nau mann, B 1909, 42 3790) Sol in ethyl acetate (Naumann, B 1910

**43** 314) Insol in acetone (Naumann, B 1904 37 4329, Eidmann, C C 1897, II 1014)

100 g acetonitrile dissolve 3 86 g Cu<sub>2</sub>Br at 18° (Naumann and Schier, B 1914, 47 (Naumann and Schier, B 1914, 47 249)

Sol in pyridine (Naumann, B 1904, 37 **4609**)

Molweight determined in pyridine methyl and ethyl sulphides (Werner, Z anorg 1897, 15 19, 26, and 28)

# Cupric bromide, CuBr<sub>2</sub>

Deliquescent Very sol in H<sub>2</sub>O Insol ii (Franchimont, B **16** 387) Very sl attacked by cold or even ho

H<sub>2</sub>SO<sub>4</sub> (V<sub>1</sub>ard, C R 1902, **135** 169) Moderately sol in liquid NH<sub>3</sub> (Horr

Am Ch J 1908, 39 219)

100 g 95% formic acid dissolve 0 16 g a 21° (Aschan, Ch Z 1913, 37 1117) 100 g acetonitrile dissolve 24 43 g CuBi at 18° (Naumann and Schier, B 1914, 47) (Naumann and Schier, B 1914, 47

Sol in benzonitrile (Naumann, B 1914 **47** 1369)

Sol in methyl acetate (Naumann, I 1909, **42** 3790) Sol in acetone (Naumann, B 1904, 3

4328) Sol in acetone with a brown color  $(\mathbf{E}_{\mathbf{K}})$ 

mann, C C 1899, II 1014)  $+2H_2O(?)$ (Berthemot, A 1830  $\mathbf{ch}$ **44** 385)

 $+4H_2O$ Very sol in H<sub>2</sub>O (Sabatie Bull Soc 1894, (3) **11** 677)

Cupric hydrogen bromide, CuBr, HBr  $2H_{2}O$ 

Decomp by H<sub>2</sub>O (Sabatier Bull So 1894, (3) **11** 681)

+10H<sub>2</sub>O (Weinland and Knoll, Z anor 1905, **44** 116)

Cupric lithium bromide, CuBr<sub>2</sub>, 2I iBr +6H ( Very hydroscopic (Sementschenko, anorg 1899, **19** 336)

Very hydroscopic, decomp by H<sub>2</sub> (Kurnakoff, C C 1899, I 16)

Cupric potassium bromide, CuBr<sub>2</sub>, KBr Decomp by HO (Sabatier, Bull Sc 1894, (3) **11** 683)

Cuprous bromide ammonia, Cu<sub>2</sub>Br<sub>2</sub>, 2NH<sub>3</sub>

Stable when dry

Lasily sol in HNO3 and NH4OH+A Other mineral acids and acetic acid separ Cu Br<sub>2</sub> (Richards, Z anoig 1898, **17** 24 ) Cu<sub>2</sub>Br<sub>2</sub>, 6NH<sub>8</sub> (Lloyd)

Cu<sub>2</sub>Br<sub>2</sub>, 3NH<sub>3</sub> (Lloyd, J phys Che 1908, **12** 399)

Cupric bromide ammonia, CuBr2, 2NH3

Sol in NH<sub>4</sub>Br+Aq without decomp (Richards, B 23 3790)

3CuBr<sub>2</sub>, 10NH<sub>3</sub> Decomp by H<sub>2</sub>O (Richards, Am Ch J **15** 651)

CuBr<sub>2</sub>, 3NH<sub>3</sub> Completely sol m a little H<sub>2</sub>O, but is decomp by dilution Insol in alcohol (Rammelsberg, Pogg **55** 246)

CuBr<sub>2</sub>,  $4NH_8+H_2O$  100 pts  $H_2O$  dissolve 69 03 pts CuBr<sub>2</sub>,  $4NH_8$  at 25° (Pudschies, Dissert)

CuBr<sub>2</sub>, 5NH<sub>3</sub> As above (Rammelsberg)

CuBr<sub>2</sub>, 6NH<sub>3</sub> Sol m small amts of H<sub>2</sub>O, but decomp on dilution (Richards)

Cupric bromide nitric oxide, CuBr<sub>2</sub>, NO
Decomp by H<sub>2</sub>O (Manchot, B 1914,
47 1607)

# Cuprous chloride, Cu<sub>2</sub>Cl<sub>2</sub>

1.53 g Cu<sub>2</sub>Cl<sub>2</sub> dissolve in 100 g H<sub>2</sub>O at 21.5°, 1.55 g at 26.5° (Kremann and Noss, M 1912, 33 1206.)

Solubility of Cu<sub>2</sub>Cl<sub>2</sub> in H<sub>2</sub>O in an atmosphere of hydrogen Solubility is recorded in mg-atoms per l

| t°                   | Total<br>Cu                      | CuCl <sub>2</sub><br>by<br>analysis | Cl                               | Cu Cl <sub>2</sub><br>cale       | Cu <sub>2</sub> Cl<br>by<br>analysis |
|----------------------|----------------------------------|-------------------------------------|----------------------------------|----------------------------------|--------------------------------------|
| 20 2<br>19 6<br>19 3 | 2 752<br>2 919<br>2 971<br>2 861 | 2 124<br>2 254<br>2 294<br>2 245    | 5 672<br>5 525<br>5 464<br>5 464 | 0 628<br>0 665<br>0 677<br>0 616 | 0 420<br>0 474<br>0 499              |

(Bodlander, Z anorg 1902, 31 12)

Solubility of Cu<sub>2</sub>Cl<sub>2</sub> in H<sub>2</sub>O in in atmosphere of CO<sub>2</sub>
Solubility is recorded in mg-atoms per l

| t            | Fotal<br>Cu                      | CuCl<br>by<br>m dysis   | Cl                               | Cu Cl<br>by<br>in ilvsis         | Cu Cl<br>calc           |
|--------------|----------------------------------|-------------------------|----------------------------------|----------------------------------|-------------------------|
| 20 6<br>21 7 | 2 818<br>2 805<br>2 880<br>2 805 | 2 243<br>2 258<br>2 138 | 5 235<br>5 430<br>5 312<br>5 390 | 0 525<br>0 516<br>0 391<br>0 336 | 0 562<br>0 662<br>0 667 |

(Bodlander, 1 c)

Sol in conc HCl+Aq, insol in dil HNO3, or  $\rm H_2SO_4+Aq$  Not attacked by cold conc  $\rm H_2SO_4$ , and only sl on warming (Rosenfeld, B 12 954) Sol in NH40H+Aq, sol in hot NaCl, KCl, FeCl3, ZnCl2, MnCl2, etc. +Aq 1 mol Na2S2O3 in aqueous solution dissolves 1 mol Cu2Cl2 (Winkl r, J pr 88 428) Sol in KI, I2, KCN, or (NH4)2SO4+Aq (Renault, C R 59 558)

Solubility in HCl+Aq at 17°  $\frac{\text{Cu}_2\text{Cl}_2}{2}$  =  $\frac{1}{2}$  mols CuCl<sub>2</sub> in mgs in 10 ccm solu-

1/2 mols CuCl<sub>2</sub> in mgs in 10 ccm solution HCl=mols HCl in ditto

| Cu <sub>2</sub> Cl <sub>2</sub> | HCl                   | Sp gr          |
|---------------------------------|-----------------------|----------------|
| 0 475<br>1 4<br>1 575           | 8 975<br>15 7<br>18 2 | 1 050          |
| 4 5<br>8 25<br>11 5             | 34 5<br>47 8<br>57 0  | 1 080<br>1 135 |

(Chatelier, calc by Engel, A ch (6) 17 377)

Solubility of Cu<sub>2</sub>Cl<sub>2</sub> in HCl+Ac at 0°

| Cu <sub>2</sub> Cl <sub>2</sub><br>2 | HCl   | Sp gr |
|--------------------------------------|-------|-------|
| 1 5                                  | 17 5  | 1 049 |
| 2 9                                  | 26 0  | 1 065 |
| 8 25                                 | 44 75 | 1 132 |
| 15 5                                 | 68 5  | 1 261 |
| 33 0                                 | 104 0 | 1 345 |

(Engel, l c)

Freshly pptd Cu<sub>2</sub>Cl<sub>2</sub> is sol in H<sub>2</sub>SO<sub>3</sub>+Aq (Lean and Whatmough, Chem Soc 1898, 73 150)

Sl sol in normal NH<sub>4</sub>OH+Aq only by shaking several hours, a 0 02 normal solution of cuprous copper being obtained (Gaus, Z anorg 1900, 25 258) Insol in Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub>+Aq (Siewert, Gm K

5 1, 893)
 Sol in alkyl triphosphites (Arbusoff,
 C C 1906, II 750)

Solubility in FeCl<sub>2</sub>, 4H<sub>2</sub>O+Aq at 21 5°

| L 1 eCl | In 100 g H O                                                                                       |                                                                                              | Solid phase                                                                                                           |
|---------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 6 015   | ь I eCl                                                                                            | բ Cu Cl                                                                                      |                                                                                                                       |
|         | 11 62<br>16 30<br>26 305<br>29 35<br>33 125<br>43 75<br>54 00<br>66 40<br>73 20<br>71 895<br>69 34 | 1 33<br>1 81<br>3 11<br>7 125<br>8 06<br>9 565<br>12 44<br>17 04<br>21 60<br>23 20<br>21 655 | " " " " " " Cu <sub>2</sub> Cl <sub>2</sub> +FeCl <sub>2</sub> 4H <sub>2</sub> O FeCl <sub>2</sub> ,4H <sub>2</sub> O |

(Kremann and Noss, M 1912, 33 1208)

# Solubility of Cu<sub>2</sub>Cl<sub>2</sub> in KCl+Aq at t° Determined in an atmosphere of CO<sub>2</sub>

| t°.  | g mol KCl per l | g atoms Cu per l |
|------|-----------------|------------------|
| 18 3 | 0 05            | 0 002411         |
| 16   | 0 1             | 0 004702         |
| 16   | 0 2             | 0 009458         |
| 19 2 | 1 0             | 0 0970           |
| 16 4 | 2 0             | 0 3840           |

(Bodlander and Storbeck, Z anorg 1902, 31

Solubility of Cu<sub>2</sub>Cl<sub>2</sub> in KCl+Aq at t° Determined in an atmosphere of CO<sub>2</sub>
All values recorded in millimols per litre

| t°                                         | KCl                                                                                      | Cupric<br>copper                                                                                         | Total<br>copper                                                                                                                    | Cuprous<br>copper<br>calc                                                              | CI                                                             |  |
|--------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
| 20° 19 19 19 19 16 18 20 19 19 16 18 16 16 | 0<br>1<br>2<br>2 5<br>3<br>5<br>10<br>15<br>20<br>30<br>50<br>100<br>200<br>1000<br>2000 | 2 222<br>1 901<br>1 571<br>1 421<br>1 523<br>1 008<br>0 475<br>0 322<br>0 324<br>0 1308<br>0 1088<br>0 0 | 2 851<br>2 385<br>2 150<br>1 955<br>1 983<br>1 522<br>1 236<br>1 344<br>1 446<br>1 761<br>2 411<br>4 702<br>9 485<br>97 0<br>384 0 | 0 589<br>0 534<br>0 460<br>0 514<br>0 761<br>1 022<br>1 122<br>1 630<br>2 302<br>4 702 | 5 614<br>6 015<br>6 247<br>7 525<br>11 735<br>16 437<br>21 356 |  |

(Bodlander and Storbeck, Z anorg 1902, 31

Solutions of 0.05=0.4 normal IACl dissolve  $Cu_2Cl_2$  with the formation of  $KCuCl_2$ , those of higher concentration with the formation of  $K_2CuCl_3$  (Bodl inder and Stoibeck, Z anorg 1902, 31 41)

### Solubility of Cu Cl<sub>2</sub>+KCl in H<sub>2</sub>O at 22°

|                                                                                                                                             | ~                                                                                                                                        |                    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| G in 1 g of solution                                                                                                                        |                                                                                                                                          | Solid Phis         |  |
| Cu Cl <sub>2</sub>                                                                                                                          | KCl                                                                                                                                      | MIKE THE           |  |
| 0 00115<br>0 00405<br>0 00861<br>0 0137<br>0 0219<br>0 0390<br>0 0484<br>0 0675<br>0 0719<br>0 0863<br>0 1043<br>0 1021<br>0 1021<br>0 1332 | 0 0387<br>0 0656<br>0 0824<br>0 0984<br>0 1133<br>0 1406<br>0 1530<br>0 1639<br>0 1747<br>0 1839<br>0 2027<br>0 2018<br>0 2031<br>0 2095 | Cu <sub>2</sub> Cl |  |
| 0 1002                                                                                                                                      | 0 2104                                                                                                                                   | l                  |  |

# Solubility of $Cu_2Cl_2+KCl$ in H O at $22^{\circ}-Continued$

|   | G in 1 g                        | of solution      |                                                                         |
|---|---------------------------------|------------------|-------------------------------------------------------------------------|
|   | Cu <sub>2</sub> Cl <sub>2</sub> | kCl .            | Solid Phase                                                             |
|   | 0 1621                          | 0 2330           | Cu Cl,                                                                  |
|   | 0 1723                          | 0 2384           | 46                                                                      |
|   | 0 1907                          | 0 2374           | "                                                                       |
| • | 0 2148                          | 0 2516           |                                                                         |
|   | 0 2145                          | 0 2506           | Cu <sub>2</sub> Cl <sub>2</sub> +Cu <sub>2</sub> Cl <sub>2</sub> , 4KCl |
|   | 0 2149                          | 0 2549           | $\mathrm{Cu_2Cl_2}$ , $\mathrm{4KCl}$                                   |
|   | 0 1548<br>0 1473                | 0 2387<br>0 2363 | "                                                                       |
|   | 0 1473<br>0 1399                | 0 2363<br>0 2357 | 66                                                                      |
|   | 0 1439                          | 0 2389           | "                                                                       |
|   | 0 1451                          | 0 2363           | "                                                                       |
|   | 0 1155                          | 0 2320           | "                                                                       |
|   | 0 1139                          | 0 2350           | £                                                                       |
| - | 0 0953                          | 0 2359           | ¢¢                                                                      |
| ; | 0 0735                          | 0 2349           | 66                                                                      |
| 7 | 0 0555                          | 0 2389           | <b>6</b> 6                                                              |
| Ę | 0 0453                          | 0 2404           | <b>6</b> 6                                                              |
| į | 0 0366                          | 0 2433           | 66                                                                      |
| 7 | 0 0314                          | 0 2503           | "                                                                       |
| , | 0 0285                          | 0 2499           | "                                                                       |
| í | 0 0265                          | 0 2523           | £¢                                                                      |
| , | 0 0220                          | 0 2628           | 66                                                                      |
| , | 0 0193                          | 0 2687           | <b>66</b>                                                               |
|   | 0 0176                          | 0 2698           | "                                                                       |
|   | 0 0193                          | 0 2703           | Cu₂Cl, 4KCl+KCl                                                         |
|   | 0 0160                          | 0 2706           | KCl                                                                     |
|   | 0 0124                          | 0 2668           | "                                                                       |
|   | 0 0058                          | 0 2632           | "                                                                       |
|   | 0 0000                          | 0 2568           | "                                                                       |
|   |                                 |                  |                                                                         |

(Bronsted, Z phys Ch 1912, 80 208)

Solubility in NaCl+Aq Sat NaCl+Aq dissolves 16 9 % Cu Cl 90°, 11 9 % at 40°, and 8 9 % it 11° 15 % NaCl+Aq dissolves 10 3 % Cu<sub>2</sub>Cl 90°, 6 0 % at 40°, and 3 6 % at 14° 5% NaCl+Aq dissolves 2 6 % Cu Cl<sub>2</sub>90°, and 11 % at 40° (Hunt, Sill Am

(2) **49** 154)

# Solubility in NaCl+Aq at 26 5°

| In 100                                                            | Schliphic                                                   |                              |
|-------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|
| Cu (1                                                             | NaCl                                                        | - an i pin i                 |
| 1 55<br>3 15<br>7 30<br>40 60<br>49 10<br>57 21<br>41 40<br>18 70 | 10 80<br>20 70<br>27 00<br>36 48<br>44 14<br>55 95<br>50 90 | Cu Cl " " Cu Cl +NaCl NaCl " |
|                                                                   |                                                             |                              |

(Kremann and Noss, M 1912, 33 1210

| Solubility of | of Cu <sub>2</sub> Cl <sub>2</sub> in CuSO <sub>4</sub> +Aq at to |  |
|---------------|-------------------------------------------------------------------|--|
| Values 1      | recorded in millimols per l                                       |  |

|                                                              | Por I                                                              |                                                                      |                                                                      |                                                                      |                                                                      |  |
|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--|
| t°                                                           | Conc of<br>CuSO:                                                   | Cupric<br>copper                                                     | Total<br>copper                                                      | Cuprous<br>copper<br>calc                                            | Ci                                                                   |  |
| 19 7<br>16 3<br>18 6<br>17 5<br>19 4<br>20 4<br>20 5<br>20 1 | 0 49375<br>0 9875<br>1 4812<br>1 975<br>2 4687<br>2 9625<br>4 9375 | 2 258<br>2 746<br>3 145<br>3 315<br>4 131<br>4 349<br>4 625<br>6 546 | 2 880<br>3 125<br>3 602<br>3 915<br>4 553<br>4 786<br>5 193<br>7 276 | 0 622<br>0 379<br>0 457<br>0 600<br>0 422<br>0 437<br>0 509<br>0 730 | 5 312<br>4 805<br>4 908<br>4 530<br>4 687<br>4 287<br>4 256<br>4 329 |  |
|                                                              |                                                                    |                                                                      |                                                                      |                                                                      |                                                                      |  |

(Bodlander and Storbeck, Z anorg 1902, 31 22)

Insol in SbCl<sub>3</sub> (Klemensiewicz, Bull Acad Crac 1908, 6, 485) Sl sol in liquid NH3 (Franklin, Am Ch J 1898, 20, 827)

Insol in alcohol

Sl sol in ether (Gehlen)

Sol in quinoline (Beckmann and Gabel, Z anorg 1906, **51** 236) Sol in pyridine (Schroeder, Dissert

1901) Insol in phosgene (Eidmann, Dissert 1899)

(Naumann, B 1904, Insol in acetone **37** 4329)

Insol in acetone and in methylal mann, C C 1899, II 1014) (Eid-(Nau-

Difficultly sol in methyl acetate mann, B 1909, 42 3790)

Insol in ethyl acetate (Alexander, Dissert 1899) (Naumann, B 1904, 37 3601) Difficultly sol in ethyl acetate (Nau-

mann, B 1910, 43 314) 100 g acetonitrile dissolve 13 33 g Cu Cl<sub>2</sub>

(Naumann and Schier, B 1914, 47

Sol in benzonitrile (Naumann, B 1914, **47** 1369)

Sol in hot benzonitrile and other aromatic nitriles (Werner, Z anorg 1897, 15

weight determined in pyridine (Werner, Z methyl and ethyl sulphides anorg 1897, 15 19, 25 and 28)

Min Nantokite Sol in HCl, HNO<sub>3</sub>, or

NH<sub>4</sub>OH+Aq

# Cupric chloride, CuCl<sub>2</sub>

Deliquescent 100 pts H<sub>2</sub>O dissolve 70 6 pts CuCl<sub>2</sub> at 0°, 100 pts CuCl<sub>2</sub>+Aq contain 41 4 pts CuCl<sub>2</sub> (Engel, A ch (6) 17 350) 100 pts H<sub>2</sub>O dissolve 76 2 pts CuCl at 16 1°, or 100 pts CuCl2+Aq sat at 16 1° con- given by Charpy

tain 43 25 pts CuCl<sub>2</sub> (Rudorff, B 6 484) 100 pts CuCl2+Aq sat at 17° contain CuCl<sub>2</sub>, at 31 5°, contain 44 7 pts Coefficient of solubility=41 4+ 43 06 pts  $CuCl_2$ (Reicher and Deventer, Z phys 0 105t

Ch 5 560)

Sat CuCl2+Aq contains at -20° -5° +12° 17° 32° 37 38 8 39 3 41 7 43 2° CuCls, 39° 68° 73° 91° 55° 44 0 46 5 47 9 48 6 51 0° CuCl (Etard, A ch 1894, (7) 2 536) Sp gr of CuCl<sub>2</sub>+Aq at 17 5°

| % CuCl <sub>2</sub> | Sp gr  | 11 C CuClz | ≻p gr  |
|---------------------|--------|------------|--------|
| 5                   | 1 0455 | 25         | 1 2918 |
| 10                  | 1 0920 | 30         | 1 3618 |
| 15                  | 1 1565 | 35         | 1 4447 |
| 20                  | 1 2223 | 40         | 1 5284 |

(Franz, J pr (2) 5 274)

Sp gr of CuCl<sub>2</sub>+Aq at 22 9°, containing in 1000 g H<sub>2</sub>O, g CuCl<sub>2</sub>+2H<sub>2</sub>O  $855(=\frac{1}{2} \text{ mol}) 171$ 255 5 g CuCl<sub>2</sub>+2H<sub>2</sub>O,

1 057 1 108 1 154 342 427.5513 g CuCl<sub>2</sub>+2H<sub>2</sub>O, 1 197 1 238 1 275

g CuCl2+2H2O, 598 5 684 1 309 1341 769 5 855 g CuCl<sub>2</sub>+2H<sub>2</sub>O,

1 371 1 399 9405 1 026 g CuCl<sub>2</sub>+2H O 14251 449

Containing CuCl (anhydrous)  $67.5 (= \frac{1}{2} \text{ mol}) 135$ 2025270 g CuCl<sub>2</sub>, 1 114 1 165 1 213 1 059

g CuCl 3375 405 4725 1 257 1 299 1 30 g CuCl 540 607 5 675 1 379 1 416 1 453

(Gerlach, Z anal 28 465

Sp gr of CuCl — Aq at 0 S=pts CuCl in 100 pts solution S = mols CuCl in 100 mols of solution

| s       | 5    | <b>~</b> n          |
|---------|------|---------------------|
| 39 4170 | 8 00 | 1 4 <sup>-9</sup> - |
| 35 3839 | 6 52 | 1 41 <sup>-5</sup>  |
| 30 9255 | 6 65 | 1 352 4             |
| 26 1129 | 4 51 | 1 251               |
| 20 6697 | 6 56 | 1 2204              |
| 14 5820 | 2 25 | 1 1494              |
| 8 0732  | 1 16 | 1 0 <sup>-9</sup> 0 |

(Charpy A ch (b 29 2)

Tables for 7°, 30 p 49 2 and by are a 9

Sp gr of CuCl - Aq at room temp containing

3ა 027° (CuCl 21 349 12 006 1 აა12 1 2154 1 1037 (Wagner, W Ann 1885 18 273)

| Sp                            | gr  | at 20° of Cuc<br>mols Cuc                           | Cl <sub>2</sub> +Aq con<br>Cl <sub>2</sub> per liter | taining M                                           |
|-------------------------------|-----|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
| $_{\rm Sp}^{\rm M}$           | gr  | $\begin{array}{c} 0 & 01 \\ 1 & 001208 \end{array}$ | 0 05<br>1 00637                                      | 0 075<br>1 009264                                   |
| $_{\mathrm{Sp}}^{\mathrm{M}}$ | gr  | $\begin{array}{c} 0 & 10 \\ 1 & 012614 \end{array}$ | 0 20<br>1 030991                                     | 0 50<br>1 051479                                    |
| $_{ m Sp}^{ m M}$             | gr  | 0.75 $1.090912$                                     |                                                      | $\begin{array}{c} 1 \ 0 \\ 1 \ 120249 \end{array}$  |
| M<br>Sp                       | gr  | 1 5<br>1 177618                                     |                                                      | $\begin{bmatrix} 2 & 0 \\ 1 & 234551 \end{bmatrix}$ |
| (Jo                           | nes | and Pearce, Ar                                      | m Ch J 190                                           | 7, 38 717)                                          |

| Concentration of CuCl <sub>2</sub> +Aq | Sp gr                                |  |
|----------------------------------------|--------------------------------------|--|
| 1—normal  1/2— "  1/4— "  1/8— "       | 1 0624<br>1 0313<br>1 0158<br>1 0077 |  |

Sp gr of CuCl<sub>2</sub>+Aq at 25°

(Wagner, Z phys Ch 1890, 5 38)

Much less sol in HCl+Aq than in  $\rm H_2O$  1 l HCl+Aq containing 45 pts HCl to 100 pts  $\rm H_2O$  dissolves only 290 g CuCl<sub>2</sub> at 12°, whereas 1 l H O at 12° dissolves 630 g CuCl<sub>2</sub> (Ditte, C R 1881, 92 353)

Solubility in HCl+Aq at  $0^{\circ}$   $\frac{\text{CuCl}_2}{2}$  =

12 mols in millignammes in 10 ccm solution HCl = mols HCl in ditto, H<sub>2</sub>O = g H<sub>2</sub>O

| <u>CuCl</u> | нс 1  | Sum of<br>equiv | אם קר | н () |
|-------------|-------|-----------------|-------|------|
| 91 75       | ()    | 91 75           | 1 490 | 9 73 |
| 56 5        | 1 5   | 91 3            | 1 475 | 5 74 |
| 53-2        | 7 S   | 91              | 1 458 | 5 64 |
| 79-35       | 10 5  | 89-85           | 1 455 |      |
| 68 4        | 20/25 | 55 65           | 1 359 | 5 )6 |
| 50 0        | 37 )  | \$7 )           | 1 319 | 5 47 |
| 22 5        | 70 25 | 93 ()           |       | 5 21 |
| 23 5        | 102 5 | 126             | 1 255 | 7 56 |
| 26 7        | 128   | 154-7           |       | 6 77 |
|             |       | . / . /         |       |      |

(Ingd A ch (6) 17 351)

Not decomp by cold H SO<sub>4</sub> Sol in NH<sub>3</sub>Cl+Aq Very sol in cone NiCl+Aq (Boussing rult)

Solubility of CuCl in NH<sub>4</sub>Cl+Aq at 30°

| XII CI | CuCl  | > hlphic                                                              |
|--------|-------|-----------------------------------------------------------------------|
|        |       |                                                                       |
| 29 5   | ()    | NH₄(1                                                                 |
| 28 6   | 1 0   | NH4C1+(uC1 2NH4C1 H ()                                                |
| 12 1   | 156   | NH4C1+CuC1 2NH4C1 H ()<br>CuC1 2NH4C1, H ()<br>CuC1 2NH4C1 H ()+CuC1, |
| 2 ()3  | 15.2  | Cu(1 2NH4C1 HO+CuCl,                                                  |
|        |       | 2H ()                                                                 |
| 0      | 13 95 | Gu(1 2H O                                                             |
| '      |       |                                                                       |

(Schremen ikers, Z. phys. Ch. 1909, 66, 688.)
See also NH<sub>4</sub>Cl+CuCl<sub>2</sub> under ammonium chloride

Solubility of CuCl<sub>2</sub>+HgCl<sub>2</sub> in H<sub>2</sub>O at 35°

| % HgCl                                                                                              | % CuCl <sub>2</sub>                                                                                   | Solid Phase                                                                                                   |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 0<br>21 03<br>37 30<br>44 47<br>50 47<br>52 44<br>52 54<br>52 81<br>51 03<br>49 50<br>23 87<br>8 51 | 44 47<br>33 50<br>26 07<br>23 31<br>21 50<br>19 40<br>18 46<br>18 06<br>14 73<br>5 94<br>2 64<br>8 51 | CuCl <sub>2</sub> , 2H <sub>2</sub> O  " CuCl <sub>2</sub> +HgCl <sub>2</sub> HgCl <sub>2</sub> " " " " " " " |
|                                                                                                     |                                                                                                       |                                                                                                               |

(Schreinemakers and Thonus, Proc K Akad Wet 1912, **15** 472)

Solubility of CuCl<sub>2</sub>+KCl in H<sub>2</sub>O at t°

| _                | Cl p                   | er g<br>lution | 100          | s per<br>mols<br>2O  |                            |
|------------------|------------------------|----------------|--------------|----------------------|----------------------------|
| t°               | 4s CuCl                | As IACI        | CuCl         | KCI                  |                            |
| 39 4             | 0 120                  | 0 107          | 5 56         | 9 93                 | CuCl 2K(12H 0+<br>KCl      |
| 10 0<br><u>t</u> | ln 120                 | ln 115<br>2    |              | 11 4<br>13 6<br>15 8 | IK (                       |
|                  | 0 158<br>0 19 <u>1</u> | 0 154<br>0 156 | 16 2<br>17 ) | 21 4<br>26 0<br>25 7 | Cu(1 k(1+kCl               |
| 0                | 1 ~                    | 1              | 9 84         | 1 94                 | (uCl 2KCl2H0+<br>(uCl 3II0 |
|                  | () 232<br>() 233       |                |              | 5 44<br>6 90         |                            |
|                  | () 241<br>() 246       |                |              | 7 G<br>8 19          | CuCl_KCl+CuCl<br>2H ()     |
| 7. 6<br>61 2     | 0 255                  | 0 063          | 16 5         | \$ 35<br>11 6        | CuCl 2KCl2H 0+             |
| ~2               |                        |                | 115          | 1 50                 | CuCL KCL<br>CuCL KCL       |

(Meyerhoffer Z phys (h 1890, 5 102)

100 g H O dissolve 72 6 g CuCl +16 0 g N iCl (Rudorff, B 6 684)

Solubility of CuCl +NaCl in II O at 30

| N iCl           | Cu()           | Schillhac                                        |
|-----------------|----------------|--------------------------------------------------|
| 0               | - 13 95        | CuCl PHO                                         |
| 3 10<br>1 25    | 11 14<br>11 06 |                                                  |
| 0 11            | 59 10          |                                                  |
| 10 25           | 36.56          | \ \(\(\lambda(1+\)\(\lambda(1+\)\(\lambda(1+\)\) |
| 12 02<br>12 25  | 32 35<br>32 40 | , , , ,                                          |
| 13 54           | 25 64          |                                                  |
| 1 ) 40<br>15 44 | 23 72<br>16 95 |                                                  |
| 20 61           | 11 03          | "                                                |
| 26 47           | 0              | '                                                |

(Schreinemakers and de Baat, Z phys Ch 1909, **65** 586)

| Composi                                                                                                                                                                                                                    | tion of the                                               | CuCl <sub>2</sub> in CuSO <sub>4</sub> +Aq at 30°                                          | Easily sol in acetone J Anal Ch 6 184) Insol in benzene                | . tring at                        | nd M Elroy,                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|--------------------------------------|
| %<br>by wt                                                                                                                                                                                                                 | % by wt<br>CuSO:                                          | Solid phase                                                                                | Solubility in or                                                       | ganıc solve                       | nts                                  |
| OuCl <sub>2</sub>                                                                                                                                                                                                          | 20 32                                                     | CuSO <sub>4,</sub> 5H <sub>2</sub> O                                                       | Solv ent                                                               | t                                 | Sat solution<br>contains C           |
| 6 58<br>15 68<br>25 67<br>39 48<br>42 77<br>42 47                                                                                                                                                                          | 13 62<br>8 93<br>4 77<br>3 21<br>2 89<br>2 90             | " " " CuSO <sub>4</sub> , 5H <sub>2</sub> O+CuCl <sub>2</sub> , 2H <sub>2</sub> O          | Methyl alcohol                                                         | 22<br>40<br>50<br>60              | 36 8<br>37 5<br>37 1<br>37 5         |
| 43 25<br>43 95                                                                                                                                                                                                             | 1 14                                                      | CuCl <sub>2/2</sub> , 2H <sub>2</sub> O                                                    | Abs ethyl alcohol                                                      | 0<br>19<br>20<br>38               | 32 0<br>35 7<br>35 9<br>38 5         |
| 1898, 2<br>Sl s<br>1905, 4<br>Sol<br>Sol                                                                                                                                                                                   | 20 827) ol in liq 16 2) in alcoho in 1 pt                 | und HF (Franklin, Z anorg<br>ol and ether<br>strong alcohol                                | Propyl alcohol                                                         | 50<br>—15<br>19<br>37<br>57<br>62 | 26 S<br>30 9<br>30 7<br>30 3<br>30 5 |
| 100 pts absolute methyl alcohol dissolve 68 pts CuCl <sub>2</sub> at 15 5°, 100 pts absolute ethyl alcohol dissolve 53 pts CuCl <sub>2</sub> at 15 5° (de Bruyn, Z phys Ch 10 783)  See also under CuCl +2H <sub>2</sub> O |                                                           | Allyl alcohol                                                                              | $ \begin{array}{r} -20 \\ -4 \\ 27 \\ 32 \end{array} $                 | 23 4<br>23 6<br>22 9<br>23 3      |                                      |
| Solubil                                                                                                                                                                                                                    | lity of C                                                 | uCl +KCl in absolute alcohol<br>at 25°                                                     | N-butyl alcohol                                                        | 0<br>23                           | 15 2<br>15 8                         |
| %<br>CuĈl₂                                                                                                                                                                                                                 | KČI                                                       | Solid Phase                                                                                |                                                                        | 37<br>55<br>84                    | 15 7<br>16 1<br>16 2                 |
| 1 27<br>1 51<br>2 15<br>5 25<br>30 16<br>34 17                                                                                                                                                                             | $\begin{bmatrix} 0 & 28 \\ 0 & 28 \end{bmatrix}$          | KCl+KCl, CuCl <sub>2</sub> KCl, CuCl <sub>2</sub> ""  KCl, CuCl +CuCl, C H <sub>6</sub> OH | Ethyl formate                                                          | 92<br>-20<br>+24<br>37<br>50      | 16 7<br>10 2<br>9 4<br>7 4<br>7 2    |
| 34 45<br>34 29<br>33 97                                                                                                                                                                                                    | $   \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | CuCl , C₂H₅OH                                                                              | Ethyl acetate                                                          | +20<br>40<br>72                   | 3 0<br>2 5<br>1 3                    |
|                                                                                                                                                                                                                            |                                                           | alden, J Am Chem Soc 1911,<br>33 1032)                                                     | Acetone                                                                | -20<br>-8                         | 18 4<br>18 8                         |
| Solubi                                                                                                                                                                                                                     | K(1                                                       | CuCl)+KCl in acctone at 25°                                                                | Isopropyl alcohol                                                      | 52<br>70<br>84                    | 11 0<br>25 3<br>28 7                 |
| 0 34<br>0 48<br>1 50<br>2 06<br>2 49<br>2 32                                                                                                                                                                               | 0 38                                                      | KCl+KCl, CuCl <sub>2</sub><br>KCl, CuCl <sub>2</sub><br>"<br>KCl, CuCl +CuCl , C₃H₀O       | (Etard, A ch See also under CuC  1 g CuCl is sol is at 18° Sp gr 18° 4 | 1 +2H O                           |                                      |
|                                                                                                                                                                                                                            | e and W                                                   | alden, J Am Chem Soc 1911<br>33 1032)                                                      | ' 1 g CuCl 15 sol                                                      | B 1909, <b>42</b>                 | ethyl acetat                         |

100 g of sat solution of CuCl<sub>2</sub> in ethyl alcohol contains 33 97 g CrCl<sub>2</sub> (Foote and Walden, J Am Chem Soc 1911, **33** 1032)

1 pt sol in 249 3 pts ethyl acetate at 10° (Alexander, Dissert 1899)

Solubility in acetone

34 7 g acetone dissolve 1 g CuCl<sub>2</sub> at 18° Sp gr of sat solution 18°/4° = 0 8154 (Naumann, B 1904, 37 4329)

1 40 pts are sol in 100 pts acetone at 56°

(Laszczynski, B 1894, 27 2287) Sol in acetone and methylal 1 gram dissolves in 34 08 grams of acetone at 18° (Eidmann, C C 1899, II, 1014)

100 pts absolute ether dissolve 0 043 g  $CuCl_2$ (Bodtker, Z phys Ch 1897, 22 511)

Mol weight determined in pyridine and methyl sulphide (Werner, Z anorg 1897, **15** 20 and 25)

100 g sat solution in acetonitrile contains 1 57 g CuCl (Naum inn and Schier, B

1914, 47 249) Sl sol in benzonitrile (Naumann, B

1914, 47 1369)

Sol in boiling dipropylamine Z anorg 1897, 15 34) (Werner,

Sol in urethane (Lcy, Z phys Ch 1897, 22 81), (Castoro Z anorg 1899, 20, 61)  $+H_2()$  (Ditte, A ch (2) 22 551)

Sol in H<sub>2</sub>O with slight decomp (Sabatier, Bull Soc 1895, (3) 13 601)

+2H<sub>2</sub>O Deliquescent 100 g H O dissolve 1214 g CuCl +2H O it 161° (Ru-

dorff) Aq sol at 35° contains 9 689 Mol C CuCl "15" " \$ 934

(Schrememakers, C ( 1911, II 349))

 $CuCl + 2HO + \sqrt{q}$  sit it 30° conturs 43.95% CuCl (Mecaburg C C 1904, II 1362)

13.95 g inhydrous CuCl are dissolved in 100 g CuCl + 1q it 30 Schrememikers

Arch neer Sc 1910 [2] 15 117)

44.47°, by weight anhydrous CuCl is dissolved in HO at 35° (Schrememakers and Thomas Verli k Akad Wet Amst 1912, **21** 333)

Solubility of CuCl +2H O in cthyl deohol + \q it 11 >

| -     |               |          |         |     |
|-------|---------------|----------|---------|-----|
|       | thy Late hall | (1111) ( | uCl h   | 1 1 |
| Ly vo | dum           |          | 111     |     |
|       |               |          |         |     |
| (I)   | }             |          | 1 175   |     |
| 95    | 3             | į i      | 1 116   |     |
| 96    | >             |          | 1 ()4)7 |     |
| 95    | 3             |          | 1 070   |     |
| 91    | 3             | I        | 1 () )9 |     |
|       |               | 1        |         |     |
|       |               |          |         |     |

Anhydrous salt dissolves readily in absolute ethyl alcohol, CuCl +2H () is precipitated by H ()

Solubility of CuCl<sub>2</sub>+2H<sub>2</sub>O in ethyl alcohol+ Aq at 115° C under addition of increasing amounts of CuCl

P=Percent of ethyl alcohol by volume

G = Grams of CuCl<sub>2</sub> added

 $C_c = Grams of CuCl_2 \text{ in 5 cc} of the solution}$  $C_w = Grams of water in 5 cc of the solution.$ calculated from

(1) the water content of the alcohol

(2) the water of crystallization which had gone into solution

(3) the water held mechanically in CuCl.  $+2H_2O$ 

| P         G         Cw         Cc           89 3         0 000         0 794         1 137           90 3         "         0 744         1 122           91 3         "         0 695         1 104           92 3         "         0 648         1 090           94 3         "         0 561         1 096           95 3         "         0 517         1 095           96 3         "         0 478         1 116           97 3         "         0 440         1 140           98 3         "         0 396         1 194           99 3         "         0 369         1 208           "         0 444         0 290         1 395           "         0 665         0 270         1 506           "         0 887         0 247         1 639           "         1 106         0 223         1 772 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 90 3     "     0 744     1 122       91 3     "     0 695     1 104       92 3     "     0 648     1 090       94 3     "     0 561     1 095       95 3     "     0 517     1 095       96 3     "     0 478     1 116       97 3     "     0 440     1 140       98 3     "     0 396     1 194       99 3     "     0 369     1 208       "     0 223     0 330     1 295       "     0 444     0 290     1 395       "     0 665     0 270     1 506       "     0 887     0 247     1 639                                                                                                                                                                                                                                                                                                                  |
| "     1 324     0 205     1 921       "     1 540     0 191     2 086       "     1 739     0 179     2 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| "   1 957   0 164   2 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

(Bodtker, Z phys Ch 1897, 22 506-507)

100 pts absolute other dissolve 0.061 g CuCl +2HO (Bodtker, Z phys Ch 1897 **22** 511)

0.11 pts ire sol in 100 pts other at ··· 100 35° 66 0 11 icctone " 0° " 100 ' " 5 56 " 13 5° 5 92 " " " 100 " (I iszczynski, B 1894 27 2286 and 2287

Solubility in organic solvents at to

| Salvert                                  | t                    | Its of solvent require to dis solve I pt ( uCl = H2O at t |
|------------------------------------------|----------------------|-----------------------------------------------------------|
| Luic m thyl alcohol                      | 20°<br>15-9          | 7 3<br>7 6                                                |
| 1 thyl al ahal (95-)                     | 20 3                 | 11 6                                                      |
| Iure rectanc                             | 19 6<br>22 1<br>20 0 | 11 9<br>43 6<br>44 2                                      |
| 9) pts (thyl alcohol (98) +10 pts<br>H O | 21 8<br>23 0         | 9 0<br>8 5                                                |

| Solubility in organic solvents                       | at t°—               | Cont                                      | • |
|------------------------------------------------------|----------------------|-------------------------------------------|---|
| Solvent                                              | t°                   | Pts of solvent required to dis solve 1 pt | t |
| 80 pts abs alcohol +20 pts HO                        | 28 1<br>20 7         | 6 0                                       | ٤ |
| 80 pts acetone +20 pts H <sub>2</sub> O              | 20 7<br>23 1<br>21 8 | 6 2<br>5 3<br>5 6                         | • |
| 80 pts acetone +20 pts methyl<br>alcohol             | 23 1<br>24 0         | 12 0<br>11 6                              |   |
| 10 pts methyl alcohol +90 pts<br>ethyl alcohol (98°) | 24 2<br>25 0         | 5 4<br>5 1                                | ٠ |
| 20 pts methyl alcohol +80 pts ord<br>ether           | 24 1<br>22 4         | 15 1<br>15 7                              |   |
| 80 pts abs alcohol +20 pts ord<br>ether              | 24 1                 | 8 8                                       |   |
| Comm methyl alcohol                                  | 25 0<br>23 9<br>23 0 | 8 5<br>5 4<br>5 6                         |   |
| 85 pts pyridine+15 pts H <sub>2</sub> O              | 24 4<br>23 6         | 63 4 63 7                                 |   |
| 60 pts pyridine +40 pts H <sub>2</sub> O             | 27 3<br>28 0         | 26 7<br>26 2                              |   |
| 75 pts a picoline+25 pts H O                         | 26 1<br>25 1         | 51 6<br>52 3                              |   |
| 70 pts a picoline+30 pts H O                         | 26 1                 | 47 3                                      |   |

(de Coninck, C R 1900, 131 59)

Solubility in organic solvents

Sol in propyl alcohol, hot glycol, hot glycerine, hot paraldehyde, hot crys acetic acid, pure acetone, 30% methylamine+Aq, pure pyridine, pure α-picoline, acetonitrile, sl sol in isobutyl and amyl alcohols, crystallizable formic acid, ethyl acetate, insol in cold glycol, cold glycerine, cold paraldehyde, benzaldehyde, cold crystallizable acetic acid, ord ether, abs ether, hot and cold CS2, cold aniline, cold orthotoluidine, methylene chloride, ethyl iodide, propyl iodide, ethylene bromide, benzene, toluene, xylene, ligroin, nitrobenzene, cold piperidine and essence of terebenthine (de Coninck, C R 1900, 131 59)

+5H<sub>2</sub>OAq sol at 35° contains 2 921 Mol % CuCl<sub>2</sub> 15° 1 11 (Schreinemakers, C C 1911, II 349)

Cuprous hydrogen chloride, CuCl, HCl Sol in H<sub>2</sub>O (Neumann, M 1894, 15 493)

Cupric hydrogen chloride, CuCl2, HCl+3H2O Decomp by  $\rm H_2O$  Sol in HCl+Aq below (Engel, C R 106 273)

CuCl , 2HCl Deliquescent H<sub>2</sub>O (Alexander, Dissert 1899)

+5H<sub>2</sub>O Properties as above batier, C R 106 1724) CuCl<sub>2</sub>,3HCl Sol in H<sub>2</sub>O (Ne (Neumann

M 1894, **15** 493)

Cupric gold (auric) chloride, 2AuCl<sub>2</sub>+6H<sub>2</sub>O

10% is sol in HO at 18° Mylius Z anorg 1911, 70 210 \

Cupric lithium chloride, CuCl<sub>2</sub>, LiCl+ 2½H O

Decomp on air Decomp by dissolving in H<sub>2</sub>O Sol in conc LiCl+ 1q without decomp Decomp by alcohol (Chassevant, A ch (6) 30 33) +2H<sub>2</sub>O (Meverhoffer, W A B 100, 2b 621)

Cupric mercuric chloride

Easily sol in H<sub>2</sub>O (v Bonsdorff)

Cupric mercuric potassium chloride, CuCl2, 3HgCl, 6KCl+2H<sub>2</sub>O

Deliquescent in moist air Sol in boiling HO without decomp, and recrustallises if cooled slowly Insol in absolute alcohol cooled slowly Insol m at (v Bonsdorff, Pogg 33 81)

Cuprous nitrosyl chloride, Cu₂Cl, 2NOCl

Very deliquescent and sol in H O with immediate decomp (Sudborough, Chem Soc **59** 658)

Cuprous potassium chloride, Cu Cl, 4kCl Sol in HO (Mitscherlich, A ch 73 384) For solubility data, ee Cu Cl - hCl under cuprous chloride

Cupric potassium chloride

CuCl , KCl (Meverhoffer, Z phvs Ch 3 336)

Sol m HO, only sl sol m conc HCl+Aq (Groger, Z anorg 1899 19 330 CuCl, 2kCl-2H () Sol in alcohol (Berzelius Pogg 13 45) Sol in H() and

The composition of the hydrates formed by this salt at different dilutions is calculated from determinations of the lowering or the fr pt produced by the salt and or the con ductivity and sp gr of its aqueous solution-(Jones, Am Ch J 1905 34 322)

For solubility data see CuCl -KCl under

cupric chloride

Cupric rubidium chloride, CuCl, 2RbCl Easily sol in HO and HCl-Aq Goderfrov, B 8 9)

Wyrouboff, J B Sol in HO +2H O 1887 538)

Cuprous sodium chloride

Very sol in HO

#### Cupric sodium chloride

Easily sol in conc NaCl+Aq Sol in alcohol of 0837 sp gr

No double salt exists (Schreinemakers and de Paat, Z phys Ch 1909, 65 586)

Cupric thallic chloride, CuCl<sub>2</sub>, 2TlCl<sub>3</sub> Sol in H<sub>2</sub>O (Willin, A ch (4) 5 55) Can be cryst from H<sub>2</sub>O +6H<sub>2</sub>O (Gewicke, A 1909, 366 225)

Cuprous chloride ammonia, Cu<sub>2</sub>Cl<sub>2</sub>, NH<sub>3</sub> (Lloyd, J phys Chem 1908, 12 399) Cu<sub>2</sub>Cl<sub>2</sub>, 2NH<sub>3</sub> Decomp by H<sub>2</sub>O or acids,

not by alcohol (Ritthausen, J pr 59 369) Cu<sub>2</sub>Cl<sub>2</sub>, 3NH<sub>3</sub> (Lloyd, J phys Chem 1908, 12 399)

Cu<sub>2</sub>Cl<sub>2</sub>, 6NH<sub>3</sub> (Lloyd, J phys Chem 1908

**12** 399)

## Cupric chloride ammonia, CuCl<sub>2</sub>, 2\H<sub>3</sub>

Decomp by H<sub>2</sub>O (Kane, A ch 72 273) CuCl<sub>2</sub>, 4NH<sub>3</sub> Sol in H<sub>2</sub>O (Bouzat, C R 1902, 135 294)

 $+H_{i}O$ (Cuprammonium chloride) in H<sub>2</sub>() and hot NH<sub>4</sub>OH+Aq

+2HO Sol m small amt of H<sub>2</sub>O Cu(OH)<sub>2</sub> is pptd by dilution A ch 1903, (7) 29 350) (Bouzat,

CuCl, 5NH<sub>3</sub> (Bouzat, 1 ch 1903, (7) 29 350)

+112HO Sol m HO On dilution Cu(OH) is pptd Sol in \H4OH+Aq, solubility decreases is M<sub>3</sub> concentration mercuses (Bouzet, A ch 1903, (7) 29 350)

CuCl<sub>23</sub> 6M<sub>3</sub> Completely sol in HO (Rose, Pogg 20 55)

Sol in HO but decomp by great dilution

with pptn of Cu(OH)

Insol in liquid NH<sub>2</sub> (Bouzit, A ch 1903 (7) 29 50)

#### Cuprocupric chloride ammonia, Cu Cl CuCl 1NH<sub>2</sub>+ H O

Decomp by H O or decohol Abundantly sol in \II (1+ \q but with partial decomposition (Ritthausen)

Cupric chloride ammonia platinous chloride, CuCl 4NH h PtCl

See Platodiamine cupric chloride

#### Cuprous chloride carbon monoxide, (u(l 200+H)0

Very sol in HCl (sp. sr. 1.19) with evolu-tion of CO – Sol in NH<sub>2</sub>OH+Aq. (Min chot and Friend, A 1908 359 110)

2( u (1, (0+2H ) Insol in H () (Ber-

thelot A ch 1556, (3) 46 455)

4Cu (1 5CO+7H O H(0). Insol but decomp therewith very quickly Sol  $m \in \{u \in I + H \in I\}$ 

Cupric chloride hydrazine, CuCl<sub>2</sub>, 2N<sub>2</sub>H<sub>4</sub> Easily decomp (Hofmann and Marburg, A 1899, 305 222)

Cuprous chloride mercuric sulphide, Cu<sub>2</sub>Cl<sub>2</sub>, 2HgS

Insol in H<sub>2</sub>O, sol in cone hot HCl+Aq, not decomp by boiling dil H<sub>2</sub>SO<sub>4</sub>+Aq, but decomp by conc H<sub>2</sub>SO<sub>4</sub> (Heumann, B 7 1390)

#### Cuprous fluoride, Cu<sub>2</sub>F<sub>2</sub>

Insol in H<sub>2</sub>O or HF Sol in conc HCl+ Aq, from which it is precipitated by H<sub>2</sub>O

Insol in alcohol (Berzelius, Pogg 1 28)

Decomp by H<sub>2</sub>O into sol CuF<sub>2</sub> Sol in boiling HCl+Aq and in HNO3+Aq Only sl attacked by warm H.SO4 (Poulenc, C R 116 1447)

#### Cupric fluoride, CuF<sub>2</sub>

Easily takes up H<sub>2</sub>O to form CuF<sub>2</sub>+2H<sub>2</sub>O Sol in HCl, HNO3, or HF+Aq (Poulenc, C R 116 1448)

#### Solubility at 25° in HF+Aq

| Normality of HF+Aq | g atoms Cu in 1000 c c<br>of solution |
|--------------------|---------------------------------------|
| 0 12               | 0 0307                                |
| 0 28               | 0 1164                                |
| 0 57               | 0 2494                                |
| 1 08               | 0 388                                 |
| 2 25               | 0 463                                 |

Solubility is decreased by presence of KI (Jueger, Z morg 1901, 27 29)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1595, **20** 527 )

Insol in methyl acctate (Naumann, B 1909 42 3790) othyl actate (Namana B 1910 43 311)

Insol in acctone (Fidminn ( C 1899 II 1014, Naumann B 1904, 37 4329)

+2HO St sol in cold, decomp by ho HO (Berzelius)

## Cupric hydrogen fluoride, (uk 5111 + 1110)

Deliquescent

Lisily sol in HO and dil acids Sol in  $NH_1OH + \Lambda q$  with decomp (Bohm Z morg 1905 **43,** 329)

## Cupric potassium fluoride, Cub, 2KI

T isily sol in H O Cul , KF Very sl sol in H O sl sol ii dil icids (Helmholt Z morg **3** 115)

#### Cupric rubidium fluoride, Culi Rbl As the K silt (Helmholt)

#### Cupric silicon fluoride See Fluosilicate, cupric

|                                                                                                                                                  | CUPKI                 | HIL              |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|
| Copper stannic fluoride See Fluostannate, copper                                                                                                 |                       | -                |
| Copper tantalum fluoride<br>See Fluotantalate, copper                                                                                            |                       | -                |
| Copper titanium fluoride<br>See Fluotitanate, copper                                                                                             |                       | -                |
| Copper tungstyl fluoride<br>See Fluoxytungstate, copper                                                                                          |                       |                  |
| Copper zirconium fluoride<br>See Fluozirconate, copper                                                                                           |                       |                  |
| Cupric fluoride ammonia, C<br>5H <sub>2</sub> O                                                                                                  | CuF <sub>2</sub> , 4N | H <sub>3</sub> + |
| Decomp rapidly in the air<br>Easily sol in H <sub>2</sub> O<br>Decomp by boiling with H<br>tion of NH <sub>3</sub><br>Easily sol in dil acids (B |                       | 1                |

Cuprous hydride, CuH

**1905, 43** 333)

Sol in HCl+Aq Insol in H<sub>2</sub>O R 18 102) Sol in warm conc HCl with decomp (Bartlett, Am Ch J 1895, 17 187)

Cupric hydride, CuH2

(Bartlett, Am Sol in HCl with decomp Ch J 1895, 17 187)

Copper hydrosulphide, 7CuS, H<sub>2</sub>S

(I inder and Picton, Chem Soc 1892, 61 120)

(Linder and Picton) 9CuS. H<sub>2</sub>S 22CuS, H2S (Linder and Picton)

Cuprous hydroxide, Cu<sub>2</sub>O, xH<sub>2</sub>O

Sol in acids as cupric salt—Insol in NaOH, or KOH+Aq Sol in NH<sub>4</sub>OH, and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq, sol n Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq

Cuprocupric hydroxide, CuOH, 3Cu(OH) +3H<sub>2</sub>OSol in acids (Francke, Dissert 1907)

Cupric hydroxide, 3CuO, HO Easily sol Insol in H<sub>2</sub>O or dil alkalies in warm NH4Cl+Aq (Rose)

Much more difficultly sol than CuO2H in KOH+Aq (Chodnew, J pr 28 220) True composition is 6CuO, H<sub>2</sub>O

See also Cupric oxide Insol in H2O, but decomp into  $CuO_2H_2$ 6CuO, H2O by being boiled therewith

Extremely easily sol in acids Sol in NH4OH, and NH4 salts + Aq

| VH3 ncrm           | g Cuperl     | egun Cur⊦H<br>I×ri |
|--------------------|--------------|--------------------|
| 2 63               | 3 05         | 0 096              |
| $^{2\ 00}_{1\ 32}$ | 2 12<br>1 06 | 0 067              |
| 2 540              | 6 26         | 0 197              |
| 1 965              | 6 28         | 0 166              |
| 1 280              | 4 13         | 0.129              |
| 0 973              | 3 36         | 0 106              |
| 0.870              | 3 08         | 0.097              |

Solubility in NH4OH+ Aq at 25°

2 36 0 074 0 540 2 04 0.0640 391 0 253 3 176. 8 06 0 180 2 070 5 72 1 272 4 75 0 149 2 54 0.080 0 451 2 13 0 067 0 320

The non-agreement of the results is due to the presence of different modifications of CuO<sub>2</sub>H<sub>2</sub>

(Bonsdorff, Z anorg 1904 41 182 )

Solubility in NH4OH+Aq at 18°

| \\ \text{Hi mols per l}  \text{Cag atom per l} \\ \text{0 20 } & 0 00054 \\ 0 00 & 0 00050 \\ 1 0 & 0 01094 \\ 1 0 & 0 0204 \\ 2 0 & 0 0514 \\ 2 5 & 0 04412 \\ 3 0 & 0 054 \\ 4 0 & 0 0754 \\ 4 0 & 0 0754 \\ 5 0 & 0 1041 \\ 6 0 & 0 1254 \\ 8 0 & 0 1594 \\ 9 96 & 0 1  \] |                                                                     |                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 0 50 0 0055 1 0 0 1094 1 5 0 0294 2 0 0 0514 2 5 0 0442 3 0 0 054 4 0 0 054 5 0 0 1041 6 0 0 1254 8 0 0 1597                                                                                                                                                                  | ∖H; mols per l                                                      | Cag atom per l                                                                                   |
|                                                                                                                                                                                                                                                                               | 0 50<br>1 0<br>1 0<br>2 0<br>2 5<br>3 0<br>4 0<br>5 0<br>6 0<br>8 0 | 0 0055<br>0 0104<br>0 0204<br>0 0514<br>0 0442<br>0 0545<br>0 0754<br>0 1041<br>0 1254<br>0 1264 |

(Dawson, Z phy- Ch 1404 69 111

Sol in cold \aOH or KOH+Ao Probut CuO is pptd on bon ig Ber not pptd (Chodnew J )" 28 221

Insol in \aOH or KOH-Ac anless contain organic matter Berze as contradicted by Volcher A 59 34

Entirely sol in conc KOH-Aq ba Frems, A o tion is decomp by hearing

(3) **12** 510 \ Sol in \aOH-Aq To \aOH

Z anal 9 463

The solubility in \(\cdot(0)\) or \(\cdot(0)\) H, repared either from Cu>(), or \(\cdot(0)\) , (screases with decrease in concentra i his b The solubility of CuO H in NaOH is only very slightly affected by the a div of sodium or potassium carbonate I seter Z anorg 1904, 40 41

Solubility of crystalline CuO<sub>2</sub>H<sub>2</sub> in ammoni- Solubility of crystalline CuO<sub>2</sub>H<sub>2</sub> in ammoni acal Ba(OH)<sub>2</sub> and NaOH solutions at

| Solvent contains per litre                                                                                                                                                                                                                            | Cu concentra<br>tion g atoms<br>per l                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1 mol NH <sub>8</sub> +0 mol Ba(OH)  " +0 0025 " " +0 005 " " +0 01 " +0 02 " 2 mols NH <sub>8</sub> +0 mol Ba(OH) 4 mols NH <sub>8</sub> +0 mol Ba(OH) " +0 01 " 1 mol NH <sub>8</sub> +0 mol NaOH " +0 01 " " +0 02 " " +0 03 " " +0 05 " " +0 10 " | 0 00907<br>0 00801<br>0 00633<br>0 00526<br>2 0 0314<br>0 0277 |

| S | Solubility of crystalline CuO <sub>2</sub> H <sub>2</sub> in ammoniacal salt solutions at 18° |        |                           |                                                 |      |                                 |
|---|-----------------------------------------------------------------------------------------------|--------|---------------------------|-------------------------------------------------|------|---------------------------------|
|   |                                                                                               | s      | olvent contains           | per litre                                       | solv | c of dis<br>ed Cu g<br>as per l |
| 1 | mo                                                                                            | l NI   |                           |                                                 | 0    | 0109                            |
| 0 | 05                                                                                            | mol    | NH <sub>3</sub> +0 01 mol | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> |      | 00129                           |
|   |                                                                                               |        | +0 025                    |                                                 | 0    | 00511                           |
| 0 | 1                                                                                             | mol    | NH <sub>3</sub> +0 01 mol | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | 0    | 00326                           |
|   |                                                                                               |        | +0 025                    |                                                 |      | $0108 \\ 0233$                  |
|   | _                                                                                             |        | +0 05                     | I ANTEL SOL                                     | 0    | 00054                           |
| U | 2                                                                                             | mol    | NH <sub>3</sub> +0 00 mo  | (NH4)2604                                       | l ŏ  | 00649                           |
|   |                                                                                               |        | +0 01<br>+0 025           |                                                 | ŏ    | 0175                            |
|   |                                                                                               |        | +0 023                    |                                                 | ŏ    | 0384                            |
|   |                                                                                               |        | +0 10                     |                                                 | ŏ    | 0690                            |
| 0 | 5                                                                                             | mul    | NH3+0 00 mol              | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | ŏ    | 0033                            |
| U | ,                                                                                             | 111()1 | +0 01                     |                                                 | 0    | 0127                            |
|   |                                                                                               |        | +0 02                     |                                                 | 0    | 0284                            |
|   |                                                                                               |        | +0 0)                     |                                                 | 0    | 0536                            |
|   |                                                                                               |        | +0 10                     |                                                 | 0    | 1013                            |
|   |                                                                                               |        | +0 20                     |                                                 | 0    | 1844                            |
| 1 | 0                                                                                             | mol    | NII3+0 00 mol             | (NH <sub>4</sub> ) 50 <sub>1</sub>              | 0    | 0109                            |
|   |                                                                                               |        | +0 01                     |                                                 | 0    | 0210                            |
|   |                                                                                               |        | +0 025                    |                                                 | 0    | 0386                            |
|   |                                                                                               |        | +0 0ა                     |                                                 | 0    | 0660                            |
|   |                                                                                               |        | +0 10                     |                                                 | 0    | 1185                            |
|   |                                                                                               |        | +0 20                     |                                                 | 0    | 2275                            |
|   |                                                                                               |        | +0 40                     |                                                 | 0    | 4135                            |
| 2 |                                                                                               | mol    | NH <sub>3</sub> +0 00 mo  | L (NH4)25O1                                     | 0    | 0314                            |
|   |                                                                                               |        | +0.01                     |                                                 | 0    | 0462                            |
|   |                                                                                               |        | +0 025                    |                                                 | 0    | 0605                            |
|   |                                                                                               |        | +0 0)                     |                                                 | 0    | 0886                            |
|   |                                                                                               |        | +0 10                     |                                                 | 0    | 1468                            |
|   |                                                                                               |        | +0 20                     |                                                 | 0    | 2591                            |
|   |                                                                                               |        | +0 40                     |                                                 |      | 4718                            |
| 3 |                                                                                               | mol    | NH3+0 00 mol              | (NH <sub>1</sub> ) 50 <sub>4</sub>              | 0    | $0548 \\ 0672$                  |
|   |                                                                                               |        | +0 01                     |                                                 | 0    | 0847                            |
|   |                                                                                               |        | +0 025                    |                                                 | 0    | 1156                            |
|   |                                                                                               |        | +0 0,                     |                                                 | 1 0  | 1100                            |

acal salt solutions at 18°—Continued

| Solvent contains per litre                                      | Conc of du<br>solved Cu i<br>atoms per l |
|-----------------------------------------------------------------|------------------------------------------|
| 3 mol NHs+0 10 mol (NH4) -SO4                                   | 0 1740                                   |
| +0 20                                                           | 0 2861                                   |
| +0 40                                                           | 0 5044                                   |
| 4 mol NH3+0 00 mol (NH4) SO4                                    | 0 0784                                   |
| +0 01                                                           | 0 0922                                   |
| +0 025                                                          | 0 1101                                   |
| +0 0a                                                           | 0 1397                                   |
| +0 10                                                           | 0 2002                                   |
| +0 20                                                           | 0 3188                                   |
| +0 40                                                           | 0 5451                                   |
| $5 \text{ mol } NH_3+0 00 \text{ mol } (NH_4)_2SO_4$            | 0 1041                                   |
| +0 01                                                           | 0 1154                                   |
| +0 02a                                                          | 0 1320                                   |
| +0 05                                                           | 0 1639                                   |
| +0 10                                                           | 0 2239                                   |
| +0 20                                                           | 0 3415                                   |
| +0 40                                                           | 0 5615                                   |
| 1 mol NH <sub>3</sub> +0 00 mol Na <sub>2</sub> SO <sub>4</sub> | 0 0109                                   |
| +0 025                                                          | 0 0134                                   |
| +0 10                                                           | 0 0162                                   |
| +0 20                                                           | 0 0192                                   |
| +0 40                                                           | 0.0784                                   |
| 4 mol NH <sub>3</sub> +0 10 mol Na SO <sub>4</sub>              | 0 0994                                   |
| +0 20                                                           | 0.1161                                   |
|                                                                 |                                          |

(Dawson, Chem Soc 1909, 95 373)

Sl sol in alkali carbonates + Aq, especial 7 KHCO<sub>3</sub> and NaHCO<sub>3</sub> (Berzelius) Sol in cold Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq, but pptd

warming (Field, Chem Soc (2) 1 28) Partially sol when freshly pptd in KC I +Aq (Rodgers, 1834) Sol in (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>+Aq (Moreau, Apot

Ztg 1901, 16 383)
Sol in MSCN+Aq, more difficultly s

in NH<sub>4</sub>SCN+Aq than ZnO<sub>2</sub>H mann, Z anorg 1908, 58 269) Very sol in hydroxylimine (Jannas 1

and Cohen, J pr 1905, (2), 72 14) Insol in acctone (Fidminn, C C 180).

II 1014)

Sol in large amt in NaC  $H_3O + \Lambda q$  (M cer, 1844)

Not pptd in presence of N i citi ite ler)

Insol in cane sugar + Aq, unless in alk ili 👊

alkaline earth is present (Peschier)
Recently pptd CuO<sub>2</sub>H<sub>2</sub> is a usily sol in a sugar with NaOH, KOH, or CaO2H +A less sol in presence of SrO<sub>2</sub>H<sub>2</sub> or BaO<sub>2</sub>l (Becquerel)

Not pptd by KOH+Aq in solutions co 1taining tartaric acid, cane sugar, and ma y other non-volatile organic substances

Sol in Ca, Ba, Sr, K or Na sucrates +1 and ppts of double sucrates form when sc 1tions of the first three bases are heated, but 10 ppt forms in the last two cases even at 100°

(Ĥunton )

Insol in simple Ca, Ba, or K sucrates + Aq, but immediately sol when an excess of cane sugar + Aq is present (Peligot)

Moderately sol in amylamine, easily sol in methyl, less in ethyl amine (Wurtz)

Sol in sorbine + Aq (Pelouze)

Not pptd in presence of aromatic oyxacids or phenols of the ortho series Thus in presence of salicylic acid, pyrocatechin, gallic acid, pyrogallic acid, etc., NaOH+Aq does not ppt CuO<sub>2</sub>H<sub>2</sub> from Cu solutions, but pptn is not prevented by benzoic acid, resorcin, hydroquinone, etc (Weith, B 9 342)

Sol in solutions of alkali salts of "spaltungsprodukte" of albumen (Kalle and

Co, Pat 1901)

Sol in starch emulsion which has become thin liquid in an alternating magnetic field (Rosenthal, C C 1908, I 593)
CuO, 2H<sub>2</sub>O (Rubénovitch, C R 1899,

(Rubénovitch, C R 1899, **129** 336

CuO, 3H₂O (Kosmann, Z anorg 1893, 3 373

2CuO, 3H₂O (Cross, Gm --- K 5 1, 753) 4CuO, H<sub>2</sub>O Insol in NH<sub>4</sub>OH+Aq (Mailhe, A ch 1902, (7) 27 393)

Cupric hydroxide ammonia, CuO<sub>2</sub>H<sub>2</sub>, 4NH<sub>3</sub> Present in ammoniacal solution of CuO<sub>2</sub>H<sub>2</sub> (Dawson, Z phys Ch 1909, 69 110)

## Cuprous imide, Cu<sub>2</sub>NH

Decomp at 160° forming Cu<sub>3</sub>N Readily hydrolysed by H<sub>2</sub>O Sol in liquid NH3 solutions of NH4NO3 (Franklin, J Am Chem Soc 1912, **34** 1502)

### Cuprous 10dide, Cu<sub>2</sub>I<sub>2</sub>

in H₂O, or dil acids Calculated from electrical conductivity of Cu<sub>2</sub>I<sub>2</sub>+Aq, 1 l H<sub>2</sub>O dissolves about 8 mg Cu<sub>2</sub>I<sub>2</sub> at 18° (Kohlrausch and Rose, Z phys Ch 12 241)

(Vıtalı, Gm ---K Sol in conc H<sub>2</sub>SO<sub>4</sub>

**5** 1, 947) Sol with difficulty in conc HCl+Aq Decomp by conc HNO<sub>3</sub>, or H<sub>2</sub>SO<sub>4</sub> Insol in NaCl, KNO<sub>3</sub>, Na<sub>2</sub>SO<sub>3</sub>, KBr, or NH<sub>4</sub>Cl+Aq Sol in NH<sub>4</sub>OH, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, KCN, or KI+ (Renault, C R 59 558)

Appreciably sol in N/10 HCl Practically  $msol_{1} N/10 H_2SO_4$  (Moser, Z anal 1904,

43 604

Results of experiments on solubility of Cu<sub>2</sub>I<sub>2</sub> in I<sub>2</sub>+Aq in presence of acids and salts are given by Bray and MacKay

Cu2I2 was found to be sl sol in H2O but a considerable amt dissolves in presence of I2, owing to formation of CuI2 and CuI3 (J Am Chem Soc 1910, 32 1207)

Solubility of Cu<sub>2</sub>I in I<sub>2</sub>+Aq at 20°

| g per l                                                                                                           |                                                                                                                   |                                                          |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Cu                                                                                                                | I                                                                                                                 | Solid Phase                                              |
| 0 285<br>0 482<br>0 583<br>0 678<br>0 756<br>0 844<br>0 898<br>0 964<br>1 032<br>1 090<br>1 112<br>1 232<br>1 040 | 0 585<br>1 305<br>1 922<br>2 557<br>3 204<br>3 954<br>4 436<br>5 085<br>5 685<br>6 292<br>6 530<br>7 653<br>6 449 | Cu <sub>2</sub> I <sub>2</sub>                           |
| 0 898<br>0 748<br>0 606<br>0 448<br>0 300<br>0 159<br>0 925 *<br>1 658**                                          | 5 594<br>4 711<br>3 856<br>2 949<br>2 069<br>1 230<br>5 461<br>11 366                                             | " " " " " Cu <sub>2</sub> I <sub>2</sub> +I <sub>2</sub> |

\* at 0° \*\* at 40°

(Fedotieff, Z anorg 1911, 69 2b)

#### Solubilit

| NH <sub>4</sub> Br+Aq | _      |
|-----------------------|--------|
| 2-N                   | 1 9068 |
| 3-N                   | 3 6540 |
| 4-N                   | 6 0588 |

(Kohn and Klein, Z anorg 1912, 77 254)

Sol in FeCl<sub>3</sub>+Aq (Fleischer, C N 1869, 19 206)

#### Solubility in KBr+Aq at t°

| t°   | kBr+4q | g Cu I in 1 I of<br>the solution |
|------|--------|----------------------------------|
| 19 5 | 2-N    | 1 4666                           |
| 24 0 | 2-N    | 1 5576                           |
| 19 5 | 3-N    | 3 4094                           |
| 23 0 | 3-N    | 3 5949                           |
| 22 0 | 4-N    | 7 1263                           |
| 22 0 | 4-N    | 6 9768                           |

The solutions undergo change in the course of a few days, iodine being set free, the solubility of the cuprous iodide is not markedly affected thereby

(Kohn, Z anorg 1909, 63 337)

1 l of a 02N solution of KI dissolves 0 000157 g mol Cu I anorg 1902, **31** 475) (Bodlander, Z

Very sol in liquid NH<sub>3</sub> (Franklin, Am

Ch J 1898, 20 827)

Insol in CS<sub>2</sub> (Arctowski, Z anorg 1894, 6 257)

Practically insol in methylene iodide (Retgers, Z anorg 1893, 3 347)

(Naumann, B Sol in methyl acetate

1909, **42** 3790)

Insol in acetone (Naumann, B 190 37 4329), (Eidmann, C C 1899, II 1014) 1904, 100 g acetonitrile dissolve 3 52 g Cu<sub>2</sub>I<sub>2</sub> at 18° (Naumann and Schier B 1014 47 (Naumann and Schier, B 1914, 47

249) Min Marshite (Gm -- K 5 1, 945)

Cupric iodide, CuI2

Exists only in very dil aqueous solution (Traube, B 17 1064)

Copper periodide, Cul

Sol in H<sub>2</sub>O (Walker and Dover, Chem Soc 1905, **87** 1588)

Copper ammonium iodide ammonia See Cupriammonium iodide ammonia

Cuprous mercuric iodide, Cu<sub>2</sub>I<sub>2</sub>, HgI<sub>2</sub> KI+Aq dissolves out HgI2

Cuprous mercuric iodide ammonia, CuI<sub>2</sub>, 2HgI<sub>2</sub>, 4NH<sub>3</sub>

Decomp by H<sub>2</sub>O or acids Sol in a mixture of acetic acid and alcohol

CuI<sub>2</sub>, HgI<sub>2</sub>, 4NH<sub>3</sub> As above (Jorgensen, J pr (2) 2 347)

Cupric nitrogen iodide, CuI<sub>2</sub>, N<sub>2</sub>H<sub>4</sub>I<sub>2</sub> Decomp by H<sub>2</sub>O, or NH<sub>4</sub>OH+Aq (Guyard, C R 97 526)

Cupric thallic iodide ammonia, CuI<sub>2</sub>, 2TlI<sub>3</sub>,  $4NH_{s}$ Decomp slowly by H O Sol in NH<sub>4</sub>OH+ Ag with decomp Sol in alcohol

Cuprous iodide ammonia, Cu I, NH<sub>3</sub> Ppt (Anderline, Gazz ch it 1912, 42 I, 321)Insol in HO  $+4\mathrm{H}_2\mathrm{O}$ Verv sol in NH<sub>4</sub>OH+Aq (Silberrad, Chem Soc 1905,

**87** 67) 3NH<sub>3</sub> (I loyd, J phys Chem Cu<sub>2</sub>I<sub>2</sub>, 1908, 12 399)

Cú<sub>2</sub>I, 4NH<sub>3</sub> (I evol, J Phum **4** 328) +H<sub>2</sub>O (Sagher, C R **104** 1440)  $Cu_2I_2$ ,  $6NH_3$  (Lloyd)

Cupric iodide ammonia, CuI, 4NH<sub>3</sub>+H<sub>2</sub>O Decomp by H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq without decomp

alcohol or ether (Berthemont, J P)  $\mathbf{rm}$ 15 445) (Pozzi-Escot, C R 1900, 130 Cul<sub>2</sub>, 6NH<sub>8</sub> Sol in liquid NH<sub>8</sub> (1 **30** ) m, Am Ch J 1908, 39 205)

 $3CuI_2$ ,  $10NH_3$  Decomp by  $H_2O$  (ards, Am Ch J 1895, **17** 302) ch-Sol in liq NH<sub>3</sub> (Horn, Am Ch J

108, **39** 204)

Cupriammonium iodide ammonia, 3Cu(NH<sub>3</sub>)<sub>2</sub>I<sub>2</sub>, 4NH<sub>3</sub>

Decomp by air and by H<sub>2</sub>O (Ricl rds. Am Ch J 1895, 17 302

Copper periodide ammonia, 2CuI, I<sub>4</sub>, lΗ,

Because of its insolubility it cann be recryst from any solvent (Silberrad, ( Soc 1905, 87 66)

Copper tetraiodide, ammonia, CuI4, 4N] (Jorgensen, J pr (2) 2 353)

Copper hexaiodide ammonia, Cul<sub>6</sub>, 4N Not decomp in H<sub>2</sub>O in closed v sels (Jorgensen)

Copper mercuric iodide ammonia, CuHg<sub>3</sub>I<sub>6</sub>, 5NH<sub>8</sub>

CuHgI<sub>3</sub>, 2NH<sub>3</sub> Decomp by H<sub>2</sub>O Ppt and by alcohol

Decomp by long CuHg<sub>2</sub>I<sub>5</sub>, 3NH<sub>3</sub> Ppt washing with H2O

CuHg<sub>2</sub>I<sub>5</sub>, 4NH<sub>3</sub> Ppt Decomp by I<sub>2</sub>O SI attacked by abs alcohol

CuI<sub>2</sub>, HgI<sub>2</sub> 4NH<sub>3</sub> Ppt (Anderline, ch it 1912, 42, (1) 321, C C 1912, I 95)

Copper nitride, Cu<sub>6</sub>N<sub>2</sub>

Decomp by dil or conc acids Easily decomp by H2O when findy powdered (Rossel, C R 1895, 121 942)

Copper suboxide, Cu<sub>4</sub>O

Not attacked by H () Decomp b dıl +AqH<sub>2</sub>SO<sub>4</sub>+Aq into Cu and CuSO<sub>4</sub>, dil HC  $HO_{1}$ has similar action. Not attacked by N +Aq or  $NH_4OH+(NH_4)CO_3+Aq$ lose. Pogg 120 1)

Cu<sub>3</sub>O Not attacked by dil or conc mın acids, even aqua regia Slowly sol in [F+ Aq (Bailey and Hopkins, Chem Soc 57 272) 890.

Is a solution of oxide in Cu rdis. Zeit angew Ch 1908, 21 51)

Cuprous oxide, Cu<sub>2</sub>O

Insol in H<sub>2</sub>O Decomp by H<sub>2</sub>SO Aq, H<sub>3</sub>PO<sub>4</sub>+Aq or cold very dil HNO<sub>3</sub>+A into a cupric salt and Cu Converted by Cl+Not attacked by cold Aq into cuprous chloride

| Solubility | of | Cu <sub>2</sub> O | ın | NH <sub>4</sub> OH+Ao | at 25° |
|------------|----|-------------------|----|-----------------------|--------|
|------------|----|-------------------|----|-----------------------|--------|

| Cone of total Cu               | Conc of                                                                                        | total NH <sub>3</sub>                                                                |
|--------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                | G in 1000 g                                                                                    | 0 1                                                                                  |
| of solution 1000 g of solution | of solution                                                                                    | G mol in<br>1000 g of<br>solution                                                    |
| Prepara                        | tion I                                                                                         |                                                                                      |
| 0 3593                         | 3 91<br>12 07<br>13 77<br>16 15<br>27 03<br>32 64<br>36 89<br>45 73<br>68 68<br>74 12<br>81 26 | 0 23<br>0 71<br>0 81<br>0 95<br>1 59<br>1 92<br>2 17<br>2 69<br>4 04<br>4 36<br>4 78 |

### Preparation II

122 40

7 20

0 02670

| 0 4229     0 00665       0 6678     0 01050       0 9890     0 01555       1 0494     0 01650       1 3528     0 02127       1 5047     0 02366       1 5963     0 02510       1 6555     0 02603 | 7 82<br>8 16<br>22 61<br>28 39<br>54 15<br>72 08<br>78 20<br>102 05 | 0 46<br>0 48<br>1 33<br>1 67<br>3 19<br>4 24<br>4 60<br>6 00 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|

(Donnan and Thomas, Chem Soc 1911, 99 1791)

Sol in boiling  $NH_4Cl+Aq$  (Rose) Sl sol in excess of KOH+Aq (Chodnew) Sol in conc MgCl<sub>2</sub>, and FeCl<sub>2</sub>+Aq (Hunt, C R 69 1357)

Sl attacked by liquid NH<sub>3</sub> (Gore, Am Ch J 1898, 20 827)

Min ('uprite Sol in HCl, HNO3, and  $NH_4OH + Aq$ 

1 6981

Cupric oxide, Cu()
Insol in H<sub>2</sub>() It is ily sol in acids in H<sub>2</sub>SO<sub>3</sub>+Aq Insol in NH<sub>4</sub>OH+Aq but dissolves on addition of a few drops of acid or (NH<sub>4</sub>) CO<sub>3</sub>+Aq Insol in dil, but sol in warm cone N iOII, ind KOII+Aq (Low, Z anal 9 463)

CuO prepared it a low temp is easily sol in dil acids, but when ignited is slowly sol in boiling conc acids, but moder itely rapidly in a cold mixture of NH<sub>4</sub>I+HCl (Joannis, C R 1586, 102 1161)

Solubility in N-HNO<sub>3</sub> 1 l of the solution contains 0 4802 g atoms Cu at 25° (Jaeger, Z anorg 1901, 27, 33)

Solubility of CuO in HF+ Ag at 25°

|          | Time                                       | G CuO m 10 ccm<br>of the solution              |  |
|----------|--------------------------------------------|------------------------------------------------|--|
| 0 25N-HF | 1½ hrs<br>3¾ "<br>25¼ "<br>71½ "<br>170½ " | 0 0431<br>0 0619<br>0 0812<br>0 0823<br>0 0907 |  |
| N-HF (a) | 5½ "<br>21½ "<br>52 "<br>201½ "<br>226½ "  | 0 3018<br>0 2797<br>0 2747<br>0 2339<br>0 2353 |  |
| N-HF (b) | 4½ "<br>44¼ "<br>117¾ "<br>167¾ "          | 0 3220<br>0 2930<br>0 2431<br>0 2219           |  |
| 2 02N-HF | 1½ "<br>5 "<br>71½ "<br>156½ "             | 0 3646<br>0 4533<br>0 3583<br>0 3311           |  |

(Deussen, Z anorg 1905, 44 421)

Solubility of CuO in HF at 25° Cu = g-atoms Cu in 1 l of the solution

| HF normality                         | Cu                                           |
|--------------------------------------|----------------------------------------------|
| 0 12<br>0 28<br>0 57<br>1 08<br>2 28 | 0 0307<br>0 1164<br>0 2494<br>0 388<br>0 463 |

(Jaeger, Z anorg 1901, 27 29)

Solubility of CuO in HF+KF at 25° Cu = g-atoms Cu in 1 l of the solution

| HF normality | Cu      |
|--------------|---------|
| 0 12         | 0 0356  |
| 0 28         | 0 06437 |
| 0 57         | 0 1442  |
| 1 11(1 08)   | 0 2451  |
| 2 17(2 28)   | 0 2517  |

(Jaeger, 1 c)

Sl sol in large excess of KOH+Aq (de Coninck, C C 1904, II, 65)

Slowly sol in boiling \H4Cl+Aq less casily in NH<sub>4</sub>NO<sub>3</sub>+4q Rose)

Sol in boiling H<sub>2</sub>O solutions of Al, Gl, U, Cr<sub>2</sub>, Fe<sub>2</sub>, or B<sub>1</sub> intrates and chlorides, Hg(NO<sub>3</sub>)<sub>2</sub>, Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>, SbCl<sub>3</sub>, SnCl, and SnCl<sub>4</sub>, with pptn of oxides of the bases of these are the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the Unacted upon by boiling H<sub>2</sub>O those salts Unacted upon by boiling H<sub>2</sub>O solutions of Mn, Mg \(\cdot\)1, Co, Zn, Ce, or Fe nitrates or chlorides, AgNO<sub>3</sub>, Pb(NO<sub>3</sub>)<sub>2</sub>, (Persoz Cd(NO<sub>3</sub>)<sub>2</sub>, and HgCl<sub>2</sub>

Pure CuO is very sl sol in NH4OH+Aq but the solution is greatly increased by the addition of NH4 salts (Muthmann, C C **1904** II, 410)

Sol in hot (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> or (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>+Aq (Jumau, Electrochem Ind 1908, 6 258)

15% dissolves in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq in 24 hrs (Schnabel, Z B H Sal 1880, 28 282) Sl attacked by liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 827) Solubility in N-acetic acid 1 l of the solu-

tion contains 0 1677 g-atoms Cu at 25° (Jaeger, Z anorg 1902, 27 33)

Insol in acetone (Naumann, B 1904, 37

4329, Eidmann, C C 1899, II 1014) SI sol in benzamide (Dessaignes, A ch 1852, (3), 34 146)

Insol in piperidine (Cahours, C R 1852, **34** 481)
Sol in acid amines as asparagin (Piria,

A ch 1848, (3), 22 160)

Sol in amines alone or mixed with NH<sub>3</sub> (Lance, Dissert 1905)

Slowly sol in Ca or any other alkalı sucrate+Aq, but not in cane sugar+Aq (Hunton)

Solubility in (calcium sucrate+sugar)+Aq 1 l solution containing 4186 g sugar and

34 3 g CaO dissolves 10 26 g CuO

1 l solution containing 296 5 g sugar and 24 2 g CaO dissolves 5 68 g CuO

1 l solution containing 174 4 g sugar and 14 1 g CaO dissolves 3 47 g CuO (Bodenbender, J B 1865 600)

Polypeptides in aqueous solution dissolve CuO by short boiling (Fischer, B 1906, 39

 $+\frac{1}{6}H_2O = 6CuO + H_2O$ Insol in dil, but sol in conc KOH or NaOH +Aq

Sol in volatile oils

See also Cupric hydroxide

Min Melaconite Sol in HCl, or HNO3+

Cuprocupric oxide, Cu<sub>5</sub>O<sub>3</sub>=2Cu<sub>2</sub>O, CuO

(Favre and Maumené)

Cu<sub>3</sub>O<sub>2</sub>+H<sub>2</sub>O=Cu<sub>2</sub>O, CuO+H<sub>2</sub>O When freshly pptd, sol in HCl+Aq, but insol after drying (Siewert, J B 1866 257)

Cu<sub>4</sub>O<sub>3</sub> = Cu<sub>2</sub>O, 2CuO (Siewert) All oxides of Cu except Cu<sub>4</sub>O, Cu<sub>2</sub>O, CuO, and CuO, are mixtures (Osborne, Sill Am J (3) 32 33, Debray, C R 99 583)

Copper dioxide, CuO<sub>2</sub>+H<sub>2</sub>O

Insol in  $H_2O$  Decomp by acids with formation of cupric salt and H<sub>2</sub>O<sub>2</sub> (Weltzien, A 140 207)

Cuprous oxide ammonia (cuprosammonium oxide)

Known only in solution (Wagner, C C **1863** 239)

Cupric oxide ammonia (cuprammonium hydroxide), 3CuO,  $4\mathrm{NH_8}{+}6\mathrm{H_2O}$ 

Insol m H<sub>2</sub>O (Kane, A ch **72** 283) CuO, 4NH<sub>2</sub>+4H<sub>2</sub>O Very deliquescent CuO, 4NH<sub>3</sub>+4H<sub>2</sub>O

Decomp in the air and by H<sub>2</sub>O (Malagutı and Sarzeau, A ch (3) 9 438)

Cuprous oxybromide, Cu<sub>2</sub>Br<sub>2</sub>, CuO+H<sub>2</sub>O (Spring and Lucion, Bull Ac Belg (3) **24** 21)

Cupric oxybromide, CuBr<sub>2</sub>, 3CuO+3H<sub>2</sub>O

Insol in H<sub>2</sub>O Easily sol in dil acids or NH<sub>4</sub>OH+Aq (Brun, C R 109 66) Insol in H2O but decomp by continued boiling Sol in cone acetic acid, sl sol in cone CuBr2+Aq Insol in dil KBr+Aq (Richards, Proc Am Acad 1890, 25 215)

Cupric oxybromide ammonia, 2CuO, CuBr<sub>2</sub>,  $2NH_8+3H_2O$ 

(Kohlschutter and Pudschies, B 1904, 37 1159)

Cuprous oxychloride, Cu<sub>2</sub>Cl<sub>2</sub>, CuO+3H<sub>2</sub>O (Spring and Lucion, Bull Ac Belg (3) **24** 21)

Cupric oxychloride, CuO, CuCl<sub>2</sub>+H<sub>2</sub>O

Decomp by H<sub>2</sub>O<sub>2</sub> (Rousseau, C R 1890, **110** 1263)

2CuO, CuCl<sub>2</sub> Insol in H<sub>2</sub>O Sol in HCl +Aq, from which it is reprecipitated by dilution with  $H_2O$ 

(Kane, A ch 72 277)  $+H_2O$ +4H<sub>2</sub>O (Gladstone, Chem Soc 8 211) 3CuO, CuCl<sub>2</sub>+2H<sub>2</sub>O (Miller and Ken-(Miller and Kenrick, Trans Roy Soc Can 1901, (2) 8, III

35) +3H<sub>2</sub>O (Dupont and Jansen, Bull

Soc 1893, (3), 9 193)

Insol in cold H<sub>2</sub>O, sl decomp  $+3\frac{1}{2}H_{2}O$ by boiling (Reindel, J pr 106 378) Insol in boiling H<sub>2</sub>O (Habermann, W A

B 90 2 268

 $+4\mathrm{H}_2\mathrm{O}$ Sol in alkaline solution of KNa tartrate (Groger, Z anorg 1902, **31** 327) (Brunswick green) Insol in H O Fasily

sol in acids Min Atacamite Sol in acids, and NH<sub>4</sub>OH

(Bolton,

Sol in cold sat citric acid+Aq B 1880, **13** 732)

4CuO, CuCl<sub>2</sub>+6H<sub>2</sub>O 5 1, 919) (Kane, Gm —K

+8H<sub>2</sub>OMin Tallingite (Church, Gm -K 5 1, 919)

5Cu(OH), Cu Cl<sub>2</sub>Cl(OH) Insol in H<sub>2</sub>O Decomp by hot H<sub>2</sub>O (Kuhling, B 1901, **34** 2852)

(Reindel) FIO Sol in 7CuO,  $2CuCl_2+9H_2O$  (Reindel) 6CuO,  $CuCl_2+9H_2O$  Insol in  $H_2O$ acetic acid (Neumann, Repert, 37 304)

8CuO, CuCl<sub>2</sub>+12H<sub>2</sub>O Min (Konig, Zeit Kryst 1891, **19** 601)

Cupric zinc oxychloride, ZnO. 2ZnCl<sub>2</sub>, 5CuO  $+6H_{2}O$ 

(André, C R 1888, 106 855)

Cupric oxychloride ammonia, 2CuO, CuCl<sub>2</sub>,  $2NH_{2}+3H_{2}O$ 

(Dehéram, Gm —K 5 1, 932)

Cupric oxyfluoride, CuO, CuF<sub>2</sub>+H<sub>2</sub>O (Berzelius) Insol in H<sub>0</sub>O (Balbiano, Gazz ch it 14 74)

Cupric oxyfluoride ammonia (cuprammonium oxyfluoride), Cu(OH)F, 2NH<sub>3</sub>

(Balbiano, Gazz ch it 14 74) 3CuO, CuI<sub>2</sub>+xH<sub>2</sub>O (Tschiriwinski, Gm --K, 5 1, 1584)

Cuprous oxylodide, Cu<sub>2</sub>I<sub>2</sub>, CuO+H<sub>2</sub>O (Spring and Lucion, Bull Ac Belg (3) **24** 21)

Cupric oxylodide, 2CuI<sub>2</sub>, CuO +4H<sub>2</sub>O Easily decomp by H<sub>2</sub>O (Carnegie, Watts' Dict II, 257)

Copper oxysulphide, 2Cu<sub>2</sub>S, CuO

Insol in H<sub>2</sub>O (Maumené, A ch (3) 18 311

5CuS, CuO Ppt (Pelouze) 2CuS, CuO Insol in H<sub>2</sub>O CuS, CuO Insol in H<sub>2</sub>O Above comps do not exist (Pickering. Chem Soc **33** 136)

Copper phosphide, Cu<sub>6</sub>P<sub>2</sub>

Easily sol in HNOs or aqua regia, insol in

HCl+Aq (Rose, Pogg 6 209)

Sol in HNO3 and Br +Aq Decomp by hot cone H<sub>2</sub>SO<sub>4</sub> (Rubenovitch, C R 1899, **128** 1399)

Cu<sub>2</sub>P Sol in HNO<sub>3</sub>+Aq (Granger, A ch 1898, (7), **14** 64)

CrystallizedCompletely sol in hot HNO<sub>3</sub>, aqua regia and HF+HNO<sub>3</sub> Slowly sol in hot HCl or H<sub>2</sub>SO<sub>4</sub> Not attacked by hot or cold HF or acetic acid (Maronneau, C R 1899, **128** 939)

Easily sol in HNO<sub>3</sub> Sol in hot conc H2SO4 Sol in conc HCl+Aq before the phosphide has been heated (Rose, Pogg

4 110)

Easily sol in HNO<sub>3</sub>, or HCl+Aq  $Cu_2P_2$ Sol in NH<sub>4</sub>OH+Aq (Granger, Bull Soc

(3) **9** 661)

Decomp by HNO3, not readily  $CuP_2$ sol in HCl Fasily attacked by Cl2 or Br4+ (Granger, C R 1895, **120** 924)

Cu<sub>5</sub>P<sub>2</sub> (Granger, C N 1898, 77 229) Very sol in HNO3 and Br2+Aq Decomp by hot conc H<sub>2</sub>SO<sub>4</sub> (Rubénovitch, C R

1899, **129** 339)

Cupric zinc phosphide,  $10Cu_6P_2$ ,  $Zn_6P_2(?)$ (Hvoslef, A 100 99)

Copper phosphoselenide, CuSe, P Se

Insol in H<sub>2</sub>O or HCl+Aq, sol in HNO<sub>3</sub>+ Insol in cold alkalies, but decomp slowly when heated therewith pr 93 436) (Hahn, J

2CuSe, P<sub>2</sub>Se<sub>3</sub> Attacked only by fuming  $HNO_{2}$ (Hahn)

2CuSe, P<sub>2</sub>Se<sub>5</sub> Sol only in HNO<sub>3</sub>+Aq (Hahn)

Copper phosphosulphide, 2Cu<sub>2</sub>S, P<sub>2</sub>S

Cu<sub>2</sub>S, P<sub>2</sub>S (Berzelius)

2Cu S, P<sub>2</sub>S<sub>3</sub> (Berzelius) CuS, P<sub>2</sub>S Insol in H<sub>2</sub>O and dil HCl +Aq Sol in conc HCl+Aq, from which it is precipitated by H<sub>2</sub>O (Berzelius, A 46  $25\hat{2}$ )

8CuS, P<sub>2</sub>S<sub>5</sub> (Berzelius) Cu<sub>4</sub>PS<sub>3</sub> Sol in conc HNO<sub>3</sub> and in aqua regia Insol in HCl Not attacked by hot H<sub>2</sub>SO<sub>4</sub> or conc NaOH+Aq (Ferrand, A ch 1899, (7), 17 407)

Cuprous selemide, Cu<sub>2</sub>Se

Ppt Sol in HCl and in H<sub>2</sub>SO<sub>4</sub> Decomp by HNO<sub>3</sub> Sol in NH<sub>4</sub>OH+Aq (Fonzes-Diacon, C R 1900, **131** 1207) Sol in KCN+Aq (Heyn and Ba

(Heyn and Bauer, Metall 1905, 3 84)

Min Berzelianite

Cupric selenide, CuSe

(Little, A 112 211)

Ppt Sol in HCl and in H2SO4 Decomp by HNO<sub>3</sub> (Fonzes-Diacon, C R 1900, 131 1207)

Cuprocupric selenide, Cu<sub>3</sub>Se<sub>2</sub>

Min Umangite Sol in HNO<sub>3</sub> (Klockmann, Zeit Kryst 1891 19, 270)

Cuprous lead selemide, 3Cu<sub>2</sub>Se, PbSe

Min Zorgite sol in cold conc HNO3+ Ag with separation of Se

Cupric lead selenide, CuSe, PbSe

Sol in cold conc HNO<sub>2</sub> with separation of (Karsten)

CuSc, 2PbSe As above CuSe. 4PbSe As above

Cuprous silver selenide, Cu<sub>2</sub>Se, Ag<sub>2</sub>Se

Min Eucainite Sol in hot HNO3 with decomp (Berzelius)

Cuprous silicide, Cu<sub>4</sub>Si

Sol in warm dil or conc HNO3 Only sl sol in HCl, H2SO4 and HI Sol in a mixture of HNO<sub>3</sub> and HF Not attacked by solutions of alkalies (Vigouroux, C R 1906, **142** 88)

Cu<sub>2</sub>S<sub>13</sub> Sol in aqua regia and fused sodium potassium carbonate (de Chalmot, Am Ch

J **1896**, 18, 95) Cu2S1 Decomp by water and moist air. and by acids and fused alkalı (Vigouroux, C R 1896, 122 319)

Cuprous sulphide, Cu<sub>2</sub>S

More sol in H<sub>2</sub>O than Ag<sub>2</sub>S, but much less (Bodlander, Z phys Ch 1898) than PbS 27,64)

11 H<sub>2</sub>O dissolves 31+10-6 moles Cu<sub>2</sub>S at

18° (Weigel, Z phys Ch 1907, 58 294)
Very slowly decomp by dil H<sub>2</sub>SO<sub>4</sub> in presence of oxygen (Thompson, Electropresence of oxygen chem, Ind 1904 2, 225

Decomp by conc H2SO4 (Pickering, C N

1878, 37, 37)
Cold HNO<sub>3</sub>+Aq dissolves out Cu and leaves CuS, hot HNO2 dissolves with separa-Sl sol in boiling cone HCl+

Insol in (NH<sub>4</sub>)<sub>2</sub>S+Aq

5N-HCl dissolves Cu2S very slightly  $(0.0038 \text{ g Cu in } 7\frac{1}{2} \text{ hrs})$  but it is more sol in presence of Cl, when 0672 g are dissolved in 7½ hours (Egli, Z anorg 1902,

Sol with exclusion of air in NH4OH+Aq

(Malzac, Pat 1904)

Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014)
Min Chalcocite Completely sol in warm HNO<sub>3</sub> with separation of S

Cupric sulphide, CuS

Almost absolutely insol in  $\rm H_2O$ , sol in 950,000 pts  $\rm H_2O$  When exposed to the air, dissolves in H2O as CuSO4 Easily sol in boiling HNO<sub>3</sub> with separation of S Difficultly sol in hot conc HCl+Aq Insol in dil  $H_2SO_4+Aq$  (1.6) (Hoffmann, A 115 286

Pptd by H<sub>2</sub>S or (NH<sub>4</sub>)<sub>2</sub>S+Aq in presence of 100,000 pts H<sub>2</sub>O (Pfaff), 200,000 pts H<sub>2</sub>O (Lassaigne) 15,000 pts H<sub>2</sub>O and 7500 pts HCl, but with 40,000 pts H<sub>2</sub>O and 20,000 pts HCl no colour is visible (Reinsch)

1 1 H<sub>2</sub>O dissolves 3 51+10 <sup>6</sup> moles CuS at 18° (Weigel, Z phys Cb 1007 50 204) Insol in H SO<sub>3</sub>+Aq (Guerout, C R

1872, **75** 1276) Decomp by conc H<sub>2</sub>SO<sub>4</sub> (Kliche, J B

**1890**, 593

Sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Berzelius) Sol in alkalı bicarbonates +Aq

In ol in NH<sub>4</sub>NO<sub>3</sub> or NH<sub>4</sub>Cl+Aq (Brett) Insol in acidified conc alkali chlorides+ Aq (Cushmann, Am Ch J 1895, 17, 382) Sol in FeCl<sub>3</sub>+Aq with separation of S (Cumenge and Wimmer, Dingl 1883, 250 123)

Decomp by boiling CuCl<sub>2</sub>+Aq in presence of HCl or NaCl (Raschig, Gm—K 5 1,819)

Sol in Fe<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>+Aq in presence of large excess of air (Thompson, Flectrochem Ind 1904, 2, 228)

Insol in KOH, or K2S+Aq, especially if boiling, appreciably sol in colourless and even more readily in hot yellow (NH<sub>4</sub>)<sub>2</sub>S+Aq

Sl sol in Na<sub>2</sub>S+Aq, more easily in NaSH+ (Becker, Sill Am J (3) 33 199)

100 cc sat  $Na_2S + Aq$  (sp gr = 1 225) dissolve 0 0032 g CuS (Holland, Ann Chim Anal 1897, 2 243)

Sol in K polysulphides (3-64%) Bull Soc Belg Chim 1897 103) (Prost.

Appreciably sol in alkalı polysulphides +

(Rossing, Z anal 1902, 41, 1) Sol in considerable quantity in alkali sulpharsenates, sulphantimonates, and sulpho Therefore when a mixed stannates+Aq ppt of CuS and As<sub>2</sub>S<sub>3</sub>, Sb<sub>2</sub>S<sub>3</sub>, or SnS is treated with K<sub>2</sub>S, a portion of the CuS is dissolved (Wohler, A 34 236)

Sol in alkalı sulphovandates, or sulphotungstates+Aq (Storch, B 16 2015)
Sol in alkalı sulphomolybdates + Aq

(Debrav, C R **96** 1616) Insol in K thiocarbonate + Aq (Rosen

bladt, Z anal 26 15)

Sol in KCN+Aq Insol in liquid  $NH_3$ (Franklin, Am Ch

J 1898, **20** 827 Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann,

B 1910, **43** 314) Insol in acetone

Insol in acetone (Naumann, B 1904, **37** 4329, Eidmann, C C **1899**, II 1014) Insol in Na xanthogenate (Ragg, Ch

Z 1908, **32** 677)

Solubility of CuS in sugar + Aq it t° g CuS per l of solution

| t°   | 1( % sugar | 30% sular | 50% Sugar |
|------|------------|-----------|-----------|
| 17 5 | 0 5672     | 0 \$632   | 0 9076    |
| 45   | 0 3659     | 0 7220    | 1 6559    |
| 75   | 1 1345     | 1 2033    | 1 2509    |

(Stolle, Z. Vci. Zuckerind. 1900: **50** 331)

Min Covellite

Colloidal Aqueous solution is stable when it contains 5 g CuS in a litre, when it cont uns 4 or 5 times that amount it is decomposed in an hour

Solutions of salts of the following concentration cause a precipitate in the above solution Salts of univalent elements-

Salts of univalent elements—

| $K_3$ Fe(CN) <sub>6</sub>        | • | l | 62   |
|----------------------------------|---|---|------|
| $K_4Fe(CN)_6$                    |   | 1 | 127  |
| $Na_2S_2O_3$                     |   | 1 | 157  |
| $Na_2CO_3$                       |   | 1 | 200  |
| Na <sub>2</sub> HPO <sub>4</sub> |   | 1 | 252  |
| $Na_2SO_4$                       |   | 1 | 333  |
| $ m K_2Cr_2O_7$                  |   | 1 | 2083 |
| KI                               |   | 1 | 80   |
| $\mathrm{KBr}$                   |   | 1 | 133  |
| $KClO_3$                         |   | 1 | 166  |
|                                  |   |   |      |

| Salts of univalent elements-               | -Cor                            | itinued   |
|--------------------------------------------|---------------------------------|-----------|
| $ m NaC_2H_3O_2$                           | 1                               | 221       |
| $(NH_4)_2C_2O_4$                           | 1<br>1<br>1<br>1<br>1<br>1<br>1 | 255       |
| NaCl                                       | ī                               | 400       |
| $NaHCO_3$                                  | ī                               | 2500      |
| $K_2\mathrm{SO}_4$                         | 1                               | 117       |
| $ m K_2CrO_4$                              | 1                               | 133       |
| $NaC_7H_5O_2$                              | 1                               | 166       |
| $ m K_2S_2O_6$                             | 1                               | 222       |
| KCl                                        | 1                               | 333       |
| $\mathrm{KNO}_{8}$                         | 1                               | 500       |
| Salts of bivalent metals—                  |                                 |           |
| $\mathrm{BaS}_2\mathrm{O}_6$               | 1                               | 2242      |
| $Cd(NO_3)_2$                               | 1<br>1<br>1<br>1<br>1           | 3483      |
| $MgSO_4$                                   | î                               | 6830      |
| $Ba(NO_3)_2$                               | î                               | 2677      |
| $BaCl_2$                                   | î                               | 3921      |
| $Pb(ClO_3)_2$                              | î                               | 6988      |
| $CdSO_4$                                   | ī                               | 3442      |
| $MnSO_4$                                   | ī                               | 5518      |
| Colta of trusplant matel                   |                                 |           |
| Salts of trivalent metals—<br>Ammonia alum | -                               | 01.004    |
| Chrome alum                                | 1                               | 31,896    |
| $Al_2(SO_4)_3$                             | 1                               | 58,889    |
|                                            | 1                               | 90,909    |
| Acids—                                     |                                 | 100       |
| Succinic                                   | 1                               | 100       |
| Oxalic                                     | 1                               | 162       |
| HCl                                        | Ţ                               | 733       |
| H SO <sub>4</sub>                          | 1<br>1<br>1                     | 208       |
| Citric                                     |                                 | 20        |
| Acetic                                     | N                               | ot at all |
| Tartaric                                   | •                               | • ••      |

(Spring and de Bocck, Bull Soc (2) 58 165)

Copper polysulphide, Cu<sub>2</sub>S<sub>3</sub>

Amorphous Ppt Decomp by boiling alcohol (Rossing, Z anorg 1900, 25 413)

Cu<sub>4</sub>S<sub>5</sub> Amorphous Ppt can be boiled with H O without decomposition (Rossing, Z anorg 1900, **25** 4, 11)

Cu S<sub>5</sub> Ppt, insol in alkali sulphides, decomp by cone HN()<sub>3</sub> (Bodroux, C R 1900, 130 1398)

Could not be obtained (Rossing, Z anorg 1900, 25 414)

Cu<sub>2</sub>S Ppt Decomp by H<sub>2</sub>O Sol in alk di and barium polysulphides+Aq Decomp by colorless all di sulphides+Aq (Rossing, Z morg 1900, **25** 407)

Cuprous iron (ferric) sulphide, Cu<sub>2</sub>S, Fe<sub>2</sub>S<sub>3</sub>
Decomp by conc HCl+A<sub>1</sub> Sol in boiling
HNO<sub>3</sub>+A<sub>2</sub> of 1.2 sp gr (Schneider, J pr
(2) **38** 569)

Min Chalcopyrite Insol in HCl+Aq When heated in a sealed tube with H<sub>2</sub>S+Aq, a portion of it dissolves with difficulty and subsequent deposition of S (Senarmont, A ch (3) 32 168)

Cuprocupric iron (ferric) sulphide, Cu<sub>2</sub>S, CuS, FeS

Min Bornite Sol in HCl+Aq with a residue of S

Cupric iron (ferric) sulphide, CuS, Fe<sub>2</sub>S<sub>3</sub> Min Cubanite

Copper iron potassium sulphide, K<sub>2</sub>FeCu<sub>2</sub>S<sub>4</sub>
Sl attacked by cold dil HCl+Aq Decomp by warming (Schneider, Pogg 138
318)

Copper iron sodium sulphide, Na<sub>2</sub>FeCu<sub>3</sub>S<sub>4</sub>
Sl attacked by cold dil, easily decomp by hot HCl+Aq (Schneider, Pogg 138 318)

Cuprous lead sulphide, 9Cu<sub>2</sub>S, 2PbS 3Cu<sub>2</sub>S, 2PbS 2Cu<sub>2</sub>S, 2PbS Min Cuproplumbite

Copper phosphorus sulphide See Copper phosphosulphide

Cupric platinum sulphide
See Sulphoplatinate, cupric

Cuprous potassium sulphide, 4Cu S, K<sub>2</sub>S (Ditte, C R 98 1429)

Cuprocupric potassium sulphide, 3Cu<sub>2</sub>S, 2Cu<sub>5</sub>, K<sub>2</sub>S

Not decomp by very dil HCl+Aq, but easily by conc HCl+Aq on warming (Schneider, Pogg 138 311)

Copper potassium polysulphide, KCuS<sub>4</sub>

SI sol in cold  $H_2O$  Decomp by hot  $H_2O$  Decomp by conc and dil HCl,  $H_2SO_4$  and  $HNO_3$  Sl sol in alcohol (Biltz and Herms, B 1907, 40 977)

2CuS<sub>3</sub>, k S Decomp by H O, NH<sub>4</sub>OH, or NH<sub>4</sub>SH+Aq (Pilwoznik, B **5** 1291) K<sub>2</sub>Cu<sub>3</sub>S<sub>10</sub> Easily sol in H O 1 g is sol in less than 5 ccm H O Rapidly decomp by dil acids, slowly by cone acids Sl sol in decohol (Biltz and Heims, B 1907, **40** 983)

Cupric rubidium polysulphide, RbCuS<sub>4</sub>

As K salt (Biltz and Herms, B 1907, 40 978)

Rb<sub>2</sub>Cu<sub>3</sub>S<sub>10</sub> Easily sol in H O Decomp by acids Sl sol in alcohol Biltz and Herms, B 1907, **40** 985)

Cuprous silver sulphide, Cu<sub>2</sub>S, Ag<sub>2</sub>S

Min Stromeyerite Sol in HNO<sub>3</sub>+Aq
with separation of S

Cu<sub>2</sub>S, 3Ag<sub>2</sub>S Min Jalpaite As above

Cuprous sodium sulphide, Na<sub>2</sub>S, Cu<sub>2</sub>S (Bodlander, Z Elektrochem 1905, **11** 181) Na<sub>2</sub>S, 2Cu<sub>2</sub>S (Bodlander, Z Elektrochem 1905, **11** 181) Cuprocupric sodium sulphide, Cu<sub>2</sub>S, CuS, Na<sub>2</sub>S

Scarcely decomp by cold dil HCl+Aq, conc HCl+Aq decomp easily on warming, without, however, dissolving all the Cu<sub>2</sub>S Completely decomp by warm HNO<sub>2</sub>+Aq (Schneider, Pogg 138 315)

Copper zinc sulphide, CuS, 3ZnS

Copper sulphophosphide
See Copper phosphosulphide

Cupric telluride, CuTe

Cu<sub>2</sub>Te<sub>3</sub> Insol in H<sub>2</sub>O (Parkmann, Sill Am J (2) 3 335)

Cu<sub>2</sub>Te. (Brauner, M 1889 423)

Croceocobaltic bromide, Co(NH<sub>3</sub>)<sub>4</sub>(NO<sub>2</sub>)<sub>2</sub>Br

Very sl sol in cold, easily in hot  $\rm H_2O$  (Gibbs, Proc Am Acad 10 1)

---- chloride, Co(NH<sub>2</sub>)<sub>4</sub>(NO<sub>2</sub>)<sub>2</sub>Cl

Very sl sol in cold easily in hot  $H_2O$ , but more sol than the sulphate (Gibbs)

Can be recrystallised without decomp with difficulty (Gibbs and Genth, Sill Am J (2) 24 91)

- chromate,  $[Co(NH_3)_4(NO_2)_2]_2CrO_4$ Sl sol in  $H_2O$  (Gibbs)
- —— periodide, Co(NH<sub>3</sub>)<sub>4</sub>(NO<sub>2</sub>)<sub>2</sub>I, I<sub>2</sub>
  Difficultly sol in cold H<sub>2</sub>O and alcohol
  Decomp by hot H<sub>2</sub>O (Gibbs)
- ---- nitrate, Co(NH<sub>8</sub>)<sub>4</sub>(NO<sub>2</sub>)<sub>2</sub>NO<sub>3</sub>

Sl sol in cold, easily sol in hot  $H_2O$  or dilacids. Much more sol than the sulphate (Gibbs)

Sol in about 400 pts cold H<sub>2</sub>O (Jorgensen, Z anorg 5 163)

—— nitrite cobaltic nitrite, 3Co(NH<sub>3</sub>)<sub>4</sub>(NO<sub>2</sub>)<sub>2</sub>, Co(NO<sub>2</sub>)<sub>3</sub>

Somewhat sol in H<sub>2</sub>O (Jorgensen, Z anorg 5 178)

—— nitrite diamine cobaltic nitrite, Co(NH<sub>3</sub>)<sub>4</sub>(NO<sub>2</sub>)<sub>2</sub>, (NO<sub>2</sub>)<sub>2</sub>(NH<sub>3</sub>)<sub>2</sub>Co(NO<sub>2</sub>)<sub>2</sub> Nearly insol in cold, very sl sol in boiling H<sub>2</sub>O (Jörgensen)

Croceocobaltic phosphomolybdate,  $[Co(NH_3)_4(NO_2)_2]_2O$ ,  $24MoO_3$ ,  $P_2O_5$ 

Sl sol in cold, easily in hot  $H_2O$  (Gibbs, Am Ch J 3 317)

Very sl sol in cold or hot  $H_2O$  more easily in hot dil  $H_2SO_4+Aq$ 

Cuprammonium compounds
See Copper compounds, ammonia

Cuprotetrammonium tetraiodide See Cupric tetraiodide ammonia

Cupric acid

Known only in solution (Kruger, Pogg 62 445)

Calcium cuprate

Decomp by  $H_2O$  with evolution of oxygen (Kruger and Crum, A 55 213)

Cyanhydric acid, HCN

Miscible with  $\mathrm{H}_2\mathrm{O},$  alcohol, and ether with absorption of heat

Sp gr of HCN+Aq

| % HCN | Sp gr  | % HCN | Sp gr  |
|-------|--------|-------|--------|
| 1 60  | 0 9979 | 4 0   | 0 9940 |
| 1 68  | 0 9978 | 4 6   | 0 9930 |
| 1 77  | 0 9975 | 5 0   | 0 9923 |
| 2 0   | 0 9974 | 5 3   | 0 9914 |
| 2 1   | 0 9973 | 5 8   | 0 9900 |
| 2 3   | 0 9970 | 6 4   | 0 9890 |
| 2 5   | 0 9967 | 7 3   | 0 9870 |
| 2 7   | 0 9964 | 8 0   | 0 9840 |
| 3 0   | 0 9958 | 9 1   | 0 9815 |
| 3 2   | 0 9952 | 10 6  | 0 9768 |
| 3 6   | 0 9945 | 16 0  | 0 9570 |

(Ure, Quar J Sci 13 321)

2HCN mixed with 3H<sub>2</sub>O causes a diminution of temp of 975° (Bussy and Buignet, A ch (4) 3 231)

Miscible with volatile oils and other organic compounds

Cyanhydric iodhydric acid, HI, HCN

Easily sol in H<sub>2</sub>O or alcohol, with rapid decomp SI sol in ether (Gal, A 138 38)

Cyanides

The alkalı cyanides are easily sol in  $\rm H_2O$ , those of the alkalı-earths are less sol, while all others are insol with the exception of  $\rm Hg(CN)_2$  All cyanides are sol in KCN+Aq

Ammonium cyanide, NH<sub>4</sub>CN

Unstable, easily sol in H<sub>2</sub>O and alcohol

Ammonium cobaltic mercuric cyanide
See Cobalticyanide, ammonium mercuric

Ammonium cuprous cyanide, NH<sub>4</sub>CN, Cu<sub>2</sub>(CN)<sub>2</sub>

Ppt Decomp by acids +H<sub>2</sub>O Sol in H<sub>2</sub>O, less sol in alcohol Decomp by acids and alkalies (Treadwell and Girsewald Z aporg 1904 39 90)

and Girsewald, Z anorg 1904, 39 90)
2NH<sub>4</sub>CN, Cu<sub>2</sub>(CN)<sub>2</sub> Sl sol in H<sub>2</sub>O, but decomp by long boiling therewith Sol in HCN+Aq (Dufau, A 88 278)

Ammonium cuprous cyanide ammonia, NH<sub>4</sub>CN, 2Cu<sub>2</sub>(CN)<sub>2</sub>, NH<sub>3</sub>

Easily decomp (Treadwell and Girsewald, Z anorg 1904, 39 90)

+2H<sub>2</sub>O Insol in cold, decomp by boiling H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq (Fleurent, C R 1893, 116 191)

NH<sub>4</sub>CN, Cu<sub>2</sub>'CN)<sub>2</sub>, 3NH<sub>3</sub> Insol in cold, sl sol in boiling H<sub>2</sub>O without decomp Sol in NH<sub>4</sub>OH+Aq (Fleurent, C R 1891, 113 1046)

 $NH_4CN$ ,  $2Cu_2(CN)_2$ ,  $2NH_8+2H_2O$  (Fleu-

rent, B 25 498R)

Ammonium gold (aurous) cyanide  $NH_4CN$ , AuCN

Easily sol in cold or warm  $\mathrm{H}_2\mathrm{O}$  or in alcohol Insol in ether

Ammonium gold (auric) mercuric cyanide, basic, 3NH<sub>4</sub>CN, 2Au<sub>2</sub>O, Hg(CN)<sub>2</sub>, HgO (Schmidt, Ch Z 1896, **20** 633)

Ammonium mercuric silver cyanide, basic, NH<sub>4</sub>CN, 2Ag<sub>2</sub>O, 3AgCN, 4Hg(OH)CN+ ½H<sub>2</sub>O

(Schmidt, Z anorg 1895, 9 431)

Ammonium nickel cyanide, 2NH<sub>4</sub>CN, Ni(CN)<sub>2</sub>

Easily decomposed

Ammonium tungsten cyanide
See Tungstocyanide, ammonium

Ammonium zinc cyanide, 2NH<sub>4</sub>CN, Zn(CN)<sub>2</sub> Sol in H<sub>2</sub>O

Ammonium cyanide mercuric nitrate silver cyanide basic, 2Hg(OH)NO<sub>3</sub> 3NH<sub>4</sub>CN, 4AgCN (Schmidt, Z anorg 1895, 9 431)

Arsenic tricyanide, As(CN)<sub>3</sub>

Decomp by  $\rm H_2O$  Not attacked by cold conc  $\rm H_2SO_4$  Decomp on heating (Guenez, C R 1892, 114 1188)

Barium cyanide, Ba(CN)2

Rather sl sol in  $H_2O$ , more easily in KCN +Aq (Schulz, J pr 68 257) 10 pts  $H_2O$  dissolve 8 pts, and 10 pts 70% alcohol dissolve 18 pts  $Ba(CN)_2$  at 14° (Joannis, A ch (5) 26 489)

Insol in methyl acetate (Naumann, B

1909, 42 3790) +2H<sub>2</sub>O Very deliquescent Ba(CN)<sub>2</sub>, BaO (Drechsel, J pr (2) 21

Barium cadmium cyanide, Ba(CN)<sub>2</sub>, Cd(CN)<sub>2</sub>+H<sub>2</sub>O

Easily sol in H<sub>2</sub>O and in NH<sub>4</sub>OH+Aq Sl sol in alcohol (Loebe, Dissert, **1902**) 2Ba(CN)<sub>2</sub>, 3Cd(CN)<sub>2</sub>+10H<sub>2</sub>O Sol in H<sub>2</sub>O (Weselsky, B **2** 590)

Barium cobaltous cobaltic cyanide
See Cobaltocobalticyanide, barium

Barium cuprous cyanide, Ba(CN)<sub>2</sub>, Cu<sub>2</sub>(CN)<sub>2</sub>
Sol in H<sub>2</sub>O without decomp (Traube, Z anorg 1894, 8 21)
+H<sub>2</sub>O (Weselsky, B 2 590)

Could not be obtained (Grossmann, Z

anorg 1905, 43 101) +4 $H_2$ 0 Decomp by  $H_2$ 0 (Grossmann, Z anorg 1905, 43 101) 2Ba(CN)<sub>2</sub>,  $Cu_2$ (CN)<sub>2</sub>+6 $H_2$ 0 Decomp by  $H_2$ 0 (Grossmann, Z anorg 1905, 43 105)

Barrum gold (aurous) cyanide, Ba(CN)<sub>2</sub>, 2AuCN+2H<sub>2</sub>O

Sl sol in cold but easily sol in hot  $\rm H_2O$  Sl sol in alcohol (Lindbom, Lund Univ Arsk 12 No 6)

Barium iridium cyanide See Iridicyanide, barium

Barium manganous cyanide,  $Ba(CN)_2$ ,  $2Mn(CN)_2$ 

Ppt (Descamps)

See also Manganocyanide and Manganicyanide, barium

Barium mercuric cyanide,  $(Ba(CN)_2, Hg(CN)_2+3H_2O)$ 

Very hygroscopic Very sol in II O (Grossmann, B 1904, 37 4142)

Barium mercuric cyanide iodide,  ${\rm Ba(CN)}_{\mbox{\tiny ?}}$ ,  ${\rm HgI}_2{\rm +6H}_2{\rm O}$ 

(Vur.t, C R 1895, 121 499)

Barium palladium cyanide,  $Ba(CN)_2$ ,  $Pd(CN)_2+4H_2O$ 

See Palladocyanide, barium

Barium nickel cyanide,  $Ba(CN)_2$ ,  $Ni(CN)_2 + 3H_2O$ 

Sol in  $H_2O$ , decomp by acids with pptn of  $N_1(CN)_2$  (Weselsky, B 2 590)

Barium silver cyanide, BaCN)2, 2AgCN+

Sol in H<sub>2</sub>O (Weselsky, B 2 589)

Barrum zinc cyanide, Ba(CN)<sub>2</sub>, Zn(CN)<sub>2</sub>+  $2H_2O$ 

Sol m H<sub>2</sub>O

Cadmium cyanide, basic, CdO<sub>2</sub>H<sub>2</sub>, 2Cd(CN)<sub>2</sub> +4H<sub>2</sub>O

Sl sol in H<sub>2</sub>O, insol in alcohol (Loebe, Dissert, 1902)

Cadmium cyanide, Cd(CN)<sub>2</sub>

Sl sol in H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve 17 pts Cd(CN)2 at 15° (Joannis)

Easily sol in acids, sol in KCN+Aq Sol in warm NH<sub>4</sub>OH+Aq, but insol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Wittstein) Insol in benzonitrile 1914, 47 1370) (Naumann, B

Cadmium calcium cyanide, Cd(CN)<sub>2</sub>,  $4Ca(CN)_2 + 20H_2O$ 

Sol in H<sub>2</sub>O and in alcohol (Loebe, Dissert, 1902)

Cadmium chromic cvanide See Chromicyanide, cadmium

Cadmium cobaltic cyanide See Cobalticyanide, cadmium

Cadmium cuprous cyanide, 2Cd(CN)2,  $Cu_2(CN)_2$ 

Permanent Insol in  $H_2O$ Sl sol in cold, easily in warm HCl+Aq without decomp, except by long boiling Insol in NH<sub>4</sub>OH, or NH<sub>4</sub> salts+Aq (Schuler)

Cadmium cupric cyanide, Cd(CN)<sub>2</sub>, Cu(CN) Very unstable

Cadmium gold (aurous) cyanide, Cd(CN) , 2AuCN

Nearly insol in cold H<sub>2</sub>O Sl sol in boiling H<sub>2</sub>O Insol in alcohol (Lindbom)

Cadmium mercuric cyanide, 2Cd(CN)<sub>2</sub>,  $3Hg(CN)_2$ 

Permanent Readily sol in cold H<sub>2</sub>O (Schuler)

Cadmium mercuric cyanide mercuric iodide,  $Cd(CN)_2$ ,  $Hg(CN)_2$ ,  $HgI_2+8H_2O$ 

Very sol in H<sub>2</sub>O (Varet, Bull Soc (3) +7H<sub>2</sub>O Sol in H<sub>2</sub>O and in NH<sub>4</sub>OH+Aq (Varet, C R 1890, 111, 679)

Cadmium mercuric cyanide mercuric iodide,  $Cd(CN)_2$ ,  $Hg(CN)_2$ ,  $HgI_2+8H_2O$ Verv sol in H<sub>2</sub>O (Varet, Bull Soc (3) 58)

+7H<sub>2</sub>O Sol in H<sub>2</sub>O and in NH<sub>4</sub>OH+Aq (Varet, C R 1890, 111 679)

Cadmium mercuric cyanide mercuric iodide ammonia, Cd(CN)<sub>2</sub>, Hg(CN)<sub>2</sub>, HgI<sub>2</sub>,

Very easily decomp (Varet, Bull Soc (3) 6 22)

Cadmium molybdenum cyanide See Molybdocyanide, cadmium

Cadmium potassium cyanide, Cd(CN)2, 2KCN

Sol in 3 pts cold, and 1 pt boiling H<sub>2</sub>O Insol in absolute alcohol (Rammelsberg)

Cadmium sodium cyanide, Na<sub>2</sub>Cd<sub>2</sub>(CN)<sub>6</sub> +3H<sub>2</sub>O

Sol in H<sub>2</sub>O and in alcohol (Loebe, Dissert, 1902)

Cadmium strontium cyanide,  $Cd(CN)_2$ ,  $2Sr(CN)_2 + 3H_2O$ 

Sol in H<sub>2</sub>O and in alcohol (Loebe, Dissert 1902)

Cadmium tungsten cyanide,  $Cd_2W(CN)_8+$ 8H<sub>2</sub>O

Nearly insol in H<sub>2</sub>O

SI sol in dil HCl Sol in conc NH4OH+

Insol in organic solvents (Olsson, Z anorg 1914, **88** 68)

Cadmium cyanide dihydrazine,  $Cd(CN)_2$ ,  $(N_2H_4)_2$ 

Easily sol in dil acids (Franzen, Z anorg 1911, 70 152)

Cæsium cuprous cyanide, CsCN, CuCN+ 1½H<sub>2</sub>O

H<sub>2</sub>O separates CuCN (Grossmann, Z anorg 1905, 43 98) 2CsCN, CuCN+H<sub>2</sub>O Sol in  $H_2O$ 

(Grossmann, Z anorg 1905, 43 95)

2CsCN, 3CuCN Insol in, and not decomp by H<sub>2</sub>O (Grossminn, Z morg 1905. **43** 98)

Cæsium tungsten cyanide See Tungstocyanide, cæsium

Calcium cyanide, Ca(CN)<sub>2</sub>

Sol in H<sub>2</sub>O, but the solution is very unstable (Schulz)

 $Ca(CN)_2$ ,  $3CaO + 15H_2O$ Decomp  $H_2O$  (Joannis, A ch (5) **26** 496)

Calcium cuprous cyanide, Ca(CN)<sub>2</sub>, CuCN+  $4H_2O$ 

Easily decomp by HO Z anorg 1905, **43** 106) (Grossmann,  $Ca(CN)_2$ ,  $3CuCN + 8H_2O$ Immediately decomp by H<sub>2</sub>O (Grossmann, Z anorg 1905, **43** 99)

Calcium gold (aurous) cyanide, Ca(CN)2, 2AuCN+3H₂O

Easily sol in hot or cold  $H_2O$  or in alcohol (Lindbom)

Calcium manganous cyanide, Ca(CN)<sub>2</sub>, 2Mn(CN)<sub>2</sub>

Ppt (Descamps)

 $S \in e$  also Manganocyanide, calcium

Calcium mercuric cyanide, Ca(CN)<sub>2</sub>,  $2Hg(CN)_2 + 8H_2O$ 

Very deliquescent (Grossmann, B 1904, **37** 4143)

 $2Ca(CN)_2$ ,  $3Hg(CN)_2+6H_2O$ Verv sol in H<sub>2</sub>O (Grossmann, B 1904, 37 4143)

Calcium mercuric cyanide iodide,  $Ca(CN)_2$ ,  $HgI_2$ ,  $Hg(CN)_2+7H_2O$ 

(Varet, C R 1895, **121** 499)

Calcium nickel cyanide, Ca(CN)<sub>2</sub>, N<sub>1</sub>(CN)<sub>2</sub>+  $vH_2O$ Sol in H<sub>2</sub>O

Calcium tungsten cyanide See Tungstocyanide, calcium

Calcium zinc cyanide,  $(Ca(CN)_2, Zn(CN)_2 +$ 3½H₂O

Sol in H<sub>2</sub>O and in alcohol (Loebe, Dissert 1902)

Cerous cyanide (?)

Ppt Very casily decomp (Behringer, A **42** 139)

Chromic cyanide, with MCN See Chromicyanide, M

Chromous potassium cyanide See Chromocyanide, potassium

Cobaltous cyanide,  $(o(CN)_2 + II)$ 

Insol in H<sub>2</sub>() Fasily sol in NH<sub>4</sub>OH+Aq, and KCN+Aq, also in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, or NH<sub>4</sub> - ol in NII4NO3, or NH4Cl

Cobaltous cyanide with 4MCN See Cobaltocyanide, M

Cobaltic cyanide with 3MCN See Cobaltocyanide, M

Cobalt gold (aurous) cyanide, Co(CN), 2AuCN Insol in H<sub>2</sub>O or cold HCl+Aq

Cobalt hydrazine cyanide, (N<sub>2</sub>H<sub>4</sub>)<sub>4</sub>Co(CN)<sub>6</sub> Deliquescent (Franzen, Z anorg 1911, 70 155)

Cobaltous cyanide ammonia, Co(CN)<sub>2</sub>,  $2\mathrm{NH_{3}}$ Unstable (Peters, B 1908, 41 3178)

Cuprous cyanide, Cu<sub>2</sub>(CN)<sub>2</sub>

Insol in H<sub>2</sub>O and dil acids Sol in NH<sub>4</sub>OH, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, or NH<sub>4</sub> succunate + Aq, and in hot NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>8</sub>+Aq Sol in cone HCl+Aq Sol in KCN+Aq Easily sol in cone NH<sub>4</sub>SCN or KSCN+Aq

Si sol in NaSCN+Aq (Grossmann, Z anorg 1903, 37 408)

Sl sol in liquid NH<sub>2</sub> (Franklin, Am Ch J 1898, 20 827) Very sl sol in pyridine (Schroeder,

Dissert 1902) Molweight determined in pyridine (Werner, Z anorg 1897, 15 20)

Cupric cyanide, Cu(CN)<sub>2</sub>

Easily decomp Insol in H<sub>2</sub>O Sol in pyridine (Schroeder, Dissert 1901) Insol in methyl acetate (Naumann, B 1909, **42** 3790)

Cuprocupric cyanide, Cu(CN)<sub>2</sub>, Cu<sub>2</sub>(CN)<sub>2</sub>+ 5H<sub>2</sub>O

Insol in H<sub>2</sub>O, but decomp by boiling Sol in cold conc HCl+Aq Sol in NH<sub>4</sub>OH+Aq (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq, and in hot NH<sub>4</sub> salts+Aq Easily sol in KCN+Aq +H<sub>2</sub>O Ppt (Dufau)

 $+Cu(CN)_2$ ,  $2Cu_2(CN)_2+HO$ 

Cuprous hydrazine cyanide, Cu<sub>2</sub>(CN), N<sub>2</sub>H<sub>5</sub>CN

Insol in alcohol and H<sub>2</sub>O (Ferratini, C C **1912**, I 1281)

Cupric iridium cyanide See Iridicyanide, cupric

Cuprous lithium cyanide, Cu<sub>2</sub>(CN)<sub>2</sub>, LiCN+

Gradually decomp by H<sub>2</sub>O (Grossmann, Z morg 1905, 43 97)

Cuprous magnesium cyanide, Cu<sub>2</sub>(CN)<sub>2</sub>,  $Mg(CN)_2 + 11H_2O$ 

Decomp by HO (Grossmann, Z anorg 1905, **43** 103)

Cuprous mercuric cyanide bromide, Cu(CN), 2Hg(CN)<sub>2</sub>, HgB<sub>1</sub><sub>2</sub> Sol in H<sub>2</sub>O (Varet, C R 1890, 110 148)

Cupric molybdenum cyanide ammonia See Molybdocyanide ammonia, cupric Cuprous potassium cyanide, Cu (CN), 2KCN

Sl sol in H<sub>2</sub>O, with partial decomp Decomp by acids, but not by alkalies

Decomp by boiling H<sub>2</sub>O Sol in NH<sub>4</sub>OH Aq (Fleurent, C R 1893, 116 191) +Aq(Grossmann, Z anorg 1903, 37 407)
Sol without decomp

Sol without decomp in KCN+Aq (Treadwell and Girsewald, Z anorg 1904,

Cu<sub>2</sub>(CN)<sub>2</sub>, KCN+HO Almost insol in cold H<sub>2</sub>O 100 cc H<sub>2</sub>O dissolve 0 0594 g at Decomp by much hot H2O with separation of Cu2(CN)2 Sol in KCN+Aq or in NH<sub>4</sub>OH+Aq (Treadwell and Grsewald, Z anorg 1904, 38 93)
3Cu<sub>2</sub>(CN)<sub>2</sub>, 4KCN Sol in H<sub>2</sub>O
Cu<sub>2</sub>(CN)<sub>2</sub>, 6KCN Sol in H<sub>2</sub>O

Cuprous potassium cyanide ammonia, Cu<sub>2</sub>(CN)<sub>2</sub>, KCN, NH<sub>3</sub>

(Treadwell and Girsewald, Z anorg 1904,

rous potassium cyanide potassium sulphocyanide, Cu<sub>2</sub>(CN)<sub>2</sub>, 4KCN, 2KSCN,

Easily sol in cold H<sub>2</sub>O (Itzig, B 1902, **35** 108)

Cupric potassium cyanide, Cu(CN), 2KCN Sol in 3/4 pt HO at 15° and 1/3 pt at 100° (Buignet, J Pharm 1859, (3), 35 168)

Cuprocupric potassium cyanide Cu<sub>2</sub>(CN)<sub>2</sub>, Cu(CN)<sub>2</sub>, 2KCN

(Straus, Z anoig 1895, 9 15)

Cuprous rubidium cyanide, Cu (CN)<sub>2</sub>, 2RbCN

Sl sol in H<sub>2</sub>O Pure H O separates CuCN (Grossmann, Z anorg 1905, **43** 100) 3Cu (CN)<sub>2</sub>, 4RbCN Sl sol in HO Pure H<sub>2</sub>O separates CuCN (Grossmann, Z morg 1905, 43 98)

Cuprous silver cyanide, Cu (CN)2, 2AgCN Cu (CN)<sub>2</sub>, 6AgCN Sol in excess of Cu (CN)<sub>2</sub>, KCN+Aq (Rummelsberg)

Cuprous sodium cyanide, Cu (CN), 2NaCN (Ir tube, / morg 1594 8 21)

+4HO Decomp by HO Sol mexcess of NiCN+Aq (Grossminn Z morg 1905 43 96 )

 $Cu_2(CN)_2$ , NaCN +2H O Decomp by H O (Grossmann, Z anorg 1965, 43 96) Cu<sub>2</sub>(CN)<sub>2</sub>, 4NaCN+6H<sub>2</sub>O Very sol in H O without decomp (Grossmann, Z anorg 1905, **43** 96)

(u (CN)<sub>2</sub>, 6N<sub>4</sub>CN+6HO Very sol in 484)

H<sub>2</sub>O without decomp (Grossmann, Z anorg 1905, **43** 96)

Cuprous strontium cyanide, Cu<sub>2</sub>(CN)<sub>2</sub>,  $Sr(CN)_2 + 8H_2O$ 

H<sub>2</sub>O separates Cu<sub>2</sub>(CN)<sub>2</sub> (Grossmann, Z anorg 1905, 43 103)

Cuprous cyanide ammonia, Cu<sub>2</sub>(CN)<sub>2</sub>, 2NH<sub>3</sub>

Nearly insol in cold H<sub>2</sub>O Easily sol ir NH4OH+Aq in absence of oxygen Insol in alcohol and ether Decomp by hot H<sub>2</sub>C and acids (Treadwell and Girsewald, Z anorg 1904, 39 87)

Cuprocupric cyanide ammonia,  $Cu_2(CN)_2$ Cu(CN)<sub>2</sub>, 2NH<sub>3</sub>

(Malmberg, Arch Pharm 1898, 236 256 +H2O SI sol in cold, decomp by boiling  $H_2O$ Sol in NH<sub>4</sub>OH+Aq (Dufau, A 88 278)

 $Cu(CN)_2$ ,  $Cu_2(CN)_2$  3NH<sub>3</sub> (Mills, Z

Ch 1867 545)

Sl decomp by boiling H<sub>2</sub>O Sol 1r NH<sub>4</sub>OH+Aq and can be recryst therefrom Insol in alcohol and ether Decomp by alkalies and acids (Treadwell and Girse wald, Z anorg 1904, 39 96)
Cu(CN)<sub>2</sub> Cu<sub>2</sub>(CN)<sub>2</sub>, 4NH<sub>3</sub> Insol in cold

decomp by hot H<sub>2</sub>O Sol in NH4OH, or

(NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Treadwell and Girse wald, Z anorg 1904, 39 92)

2Cu<sub>2</sub>(CN)<sub>2</sub>, Cu(CN), 2NH<sub>3</sub> Insol in H<sub>2</sub>O, alcohol and ether Sol in NH<sub>4</sub>OH+Aq Decomp by boiling acids and alkales (Treadwell and Gusewald, Z morg 1904, 39

+H<sub>2</sub>O (Monthier, J Phum 11 257) Cu(CN)<sub>2</sub>, 2Cu (CN)<sub>2</sub>, 4NH<sub>3</sub> kamp, A **97** 215) (Hillen

 $Cu(CN)_2$ ,  $2Cu_2(CN)$ ,  $6NH_3$  (Schiff and Beechi, A 134 33)

2Cu(CN)<sub>2</sub>, Cu (CN), 2NH<sub>3</sub>+3H () (Fleurent C R 114 10b0)

2Cu(CN) , Cu (CN) ,  $4NII_3+II$  () Correct formula for  $Cu(CN)_2$  , Cu (CN) ,  $4NH_3$ (Bouve sult, Bull Soc (3) 4 641)

Cuprous cyanide ammonium sulphocyanide Cu (CN) , 3NH45( N

Decomp by H2O (Grossmann, Z anoig 1903, **37** 409

Cupric cyanide hydrazine, Cu(CN) (N H<sub>4</sub>) Insol in H2O and cold dil acids Sol in waim dil uds inoig 1911, **70** 154)

Cuprous cyanide mercuric iodide, Cu<sub>2</sub>(CN)<sub>2</sub>  $HgI_2$ 

Sol in HO (Varet, Bull Soc (3) 4 Cuprous cyanide potassium sulphocyanide, Cu<sub>2</sub>(CN)<sub>2</sub>, 3KSCN

Decomp by  $H_2O$  (Grossmann, Z anorg 1903, 37 409)

Gold (aurous) cyanide, AuCN

Insol in H<sub>2</sub>O, alcohol, or ether Not attacked by dil, or conc acids, even boiling aqua regia

Sol in NH<sub>4</sub>OH+Aq, also in soluble cy-

anides +Aq

Slowly decomp by boiling KOH+Aq, also by  $(NH_4)_2S+Aq$ Sol in  $K_4Fe(CN)_6+Aq$  (Bentel, Z anorg 1912, **78** 152)

Gold (auric) cyanide with MCN See Auricyanide, M

Gold (auroauric) mercuric cyanide auric mercuric chloride, 4AuCN, Au(CN)<sub>3</sub>, 5Hg(CN)<sub>2</sub>, 7AuCl<sub>3</sub>, 5HgCl<sub>2</sub> (Schmidt, Ch Z 1896, 20 633)

Gold (aurous) potassium cyanide, AuCN, KCN

Sol in 7 pts cold, and less than 0.5 pt boiling  $\rm H_2O$  Sl sol in cold, and somewhat more sol in boiling alcohol Insol in ether (Himly, A 42 160)

Decomp by warm acids, even tartaric, and acetic acids

Gold (aurous) sodium cyanide, AuCN, NaCN Sl sol in cold, more easily in hot H<sub>2</sub>O Sl sol in alcohol (Lindbom)

Gold (aurous) strontum cyanide, 2AuCN, Sr(CN)<sub>2</sub>+3H<sub>2</sub>O

As the Na salt

 $\begin{array}{ll} \textbf{Gold (aurous) zinc cyanide, } 2AuCN, Zn(CN)_2 \\ Nearly insol \ in \ hot \ or \ cold \ H_2O \\ Insol \ in \ cold \ HCl+Aq \end{array}$ 

Gold (auric) cyanide auric mercuric chloride, Au(CN)<sub>3</sub>, AuCl<sub>3</sub>, 2HgCl<sub>2</sub> (Schmidt, Ch. Z. 1896, **20**, 633.)

Gold (auroauric) cyanide aurous mercuric chloride, 12AuCN, 3Au(CN)<sub>3</sub>, 4AuCl, 2HgCl<sub>2</sub>

(Schmidt, Ch Z 1896, 20 633)

Gold (auroauric) cyanide mercuric chloride 15AuCN, 2Au(CN)<sub>3</sub>, 5HgCl<sub>2</sub> (Schmidt, Ch Z 1896, **20** 633)

Indium cyanide, Ir(CN)<sub>3</sub>
Insol in H<sub>2</sub>O Sol in HCN+Aq

Iridium cyanide with MCN See Iridicyanide, M Lanthanum cyanide, La(CN)<sub>3</sub>
Ppt (Frenchs and Smith, B 11 910, 1151)

Lead cyanide, Pb(CN).

SI sol m cold, more in hot H<sub>2</sub>O Sol m HNO<sub>3</sub>+Aq, and KCN+Aq Partially sol m NH<sub>4</sub>OH+Aq, and NH<sub>4</sub> salts+Aq Not pptd in presence of Na citrate Above compound is 2PbO, Pb(CN)<sub>2</sub>+

H<sub>2</sub>O (Joannis, A ch (5) **26** 204) 2PbO, Pb(CN)<sub>2</sub>+H<sub>2</sub>O Insol in H<sub>2</sub>O

Lead tungsten cyanide See Tungstocyanide, lead

Lead zinc cyanide, Pb(CN)<sub>2</sub>, 2Zn(CN)<sub>2</sub> Ppt (Rammelsberg)

Lead cyanide chloride, 2Pb(CN)<sub>2</sub>, PbCl<sub>2</sub>
Insol in H<sub>2</sub>O (Grissom and Thorp, Am
Ch J 10 229)

Lithium mercuric cyanide mercuric iodide, 2Li(CN), Hg(CN), HgI<sub>2</sub>+7H O Deliquescent, sol in H<sub>2</sub>O (Varet, C R 111 526)

Magnesium cyanide, Mg(CN)<sub>2</sub>

Known only in aqueous solution which decomposes on evaporation (Schulz)

Magnesium mercuric cyanide, 2Mg(CN)<sub>2</sub>, 3Hg(CN)<sub>2</sub>+5H<sub>2</sub>O (Grossmann, B 1904, **37** 4143)

Magnesium mercuric cyanide mercuric bromide, Mg(CN), Hg(CN)<sub>2</sub>, HgBr + 8H<sub>2</sub>O Very sol in H O (Veret Bull Soc (3)

Very sol in HO (Varet, Bull Soc (3) 7 170)

 $\begin{array}{cccc} \textbf{Magnesium} & \textbf{mercuric} & \textbf{cyanide} & \textbf{mercuric} \\ & \textbf{iodide,} & \textbf{Mg}(CN) \;, & \textbf{Hg}(CN) \;, & \textbf{HgI} + \\ & 8\text{H}_2\text{O} & \\ & \text{Sol in H}_2\text{O} & (\text{Varet, Bull Soc (3) 7 170}) \end{array}$ 

Magnesium platinum cyanide
See Platinocyanide, magnesium

Magnesium tungsten cyanide
See Tungstocyanide, magnesium

Manganous and manganic cyanides

See Manganocyanhydric, and Manganicyanhydric acids

Manganous strontium cyanide, 2Mn(CN)<sub>2</sub>, Sr(CN)<sub>2</sub>

Ppt (Descamps)
See also Manganocyanide, strontium

Manganous tungsten cyanide See Tungstocyanide, manganous

Manganic cyanide, with MCN See Manganicyanide, M

Manganous cyanide with MCN See Manganocyanide, M

Mercuric cyanide, basic, Hg(CN)<sub>2</sub>, HgO

Sl sol in cold, moderately sol in hot H<sub>2</sub>O Sol with decomp in KOH, KCN, or KCl+ (Johnston

Decomp by H<sub>2</sub>O over 80° (Holdermann,

Arch Pharm 1906, 244 135)

Cold H<sub>2</sub>O dissolves about 1%, boiling H<sub>2</sub>O about 5% (Borelli, Gazz ch it 1908, 38

(1), 361) 11% dissolves in H<sub>2</sub>O at ord (Richard, J Chim Phys (6) **18** 555)

0° 1/100 mol dissolve in 1 l H<sub>2</sub>O At 25° 1/32At 90° 1/10 "

(Borelli, Gazz ch it 1908, 38 (1), 361)

1000 cc cold H<sub>2</sub>O dissolve 1 35g (Holdermann, Arch Pharm 1906, 244 135)

Less sol in cold H<sub>2</sub>O than Hg(CN)<sub>2</sub> (Pieverling, J B 1899, 783)

Somewhat sol in dil alcohol

Practically insol in alcohol, ether, C6H6 and all organic solvents (Borelli, Gazz ch it 1908, **38**, (1), 361)

Sol in 110 pt alcohol of 90° Bé (Richard, J Chim Phys (6), 18 555)

3Hg(CN)<sub>2</sub>, HgO

(Joannis, A ch (5) 26 **4**69) Moderately sol in H<sub>2</sub>O (Barthe, J

Pharm 1896, (6), 3 186) Very sol in hot, less sol in cold H<sub>2</sub>O (Holdermann, Arch Pharm 1904, 242 32) Easily sol in HCl (Joannis A ch 1882,

(5) **26** 511 ) Hg(CN)<sub>2</sub>, 3HgO More sol in H<sub>2</sub>O than

 $Hg(CN)_2$ , HgO

## Mercuric cyanide, Hg(CN),

Moderately sol in H<sub>2</sub>O

100 pts Hg(CN)<sub>2</sub>+Aq sat at 101 1° contain 35 pts Hg(CN)<sub>2</sub>, or 100 pts H<sub>2</sub>O dissolve 53 85 pts Hg(CN)<sub>2</sub> at 101 1° (Grif-

Sol in 8 pts H<sub>2</sub>O at 15° (Abl.)

Sol in 11 pts cold, and 25 pts boiling H<sub>2</sub>O (Wittstein)

8 g are sol in 100 g H<sub>2</sub>O at  $-0.45^{\circ}$  (Guthrie, Phil Mag 1878, (5) 6 40)

100 g H O dissolve 9 3 g at 13 5° ( rimofelev, Dissert 1894)

100 cc sat solution contain 9 3 g at 20° (Konowalow, J russ Soc 1898, (4) 30 367)

Solubility in  $H_2O$  at  $25^{\circ}=0.44$  mol 1 (Sherrill, Z phys Ch 1903, **43** 735)

1 l H<sub>2</sub>O dissolves 0 3956 mol (Hofmann and Wagner, Z Elektrochem 1909, **15** 444) 100 g H<sub>2</sub>O dissolve 12 5 g at 15° (Marsh and Struthers, Chem Soc 1905, **87** 1879) 100 g H<sub>2</sub>O dissolve 11 27 g at 25° Sp gr

of solution = 1.0813(Herz and Anders, anorg 1907, 52 164)

Hg(CN)<sub>2</sub>+Aq containing 7 23% Hg(CN)<sub>2</sub>

has sp gr 20°/20°=1 0572 Hg(CN)<sub>2</sub>+Aq containing 9 07% Hg(CN)<sub>2</sub> has sp gr  $20^{\circ}/20^{\circ} = 10743^{\circ}$ 

(Le Blanc and Rohland, Z phys Ch 1896, 19

Sp gr at 16°/4° of Hg(CN)<sub>2</sub>+Aq containing 7 8921%  $Hg(CN)_2=106376$ , containing 5 4037%=104246, containing 7 5009%=106049 (Schonrock, Z phys Ch 1893, 11

Not decomp by acids except hot conc

 $H_2SO_4$ 

Sol without decomp in HNO<sub>3</sub>+Aq (Berzelius)

1 l  $NH_4OH+Aq$  (52%  $NH_3$ ) dissolves 2043 g at about 25° (Konowalow)

Solubility in bases 1 l H<sub>2</sub>O containing 0 3286 mols KOH dis-

solves 0 5179 mols Hg(CN)<sub>2</sub> 1 l H<sub>2</sub>O containing 0 2350 mols NaOH dissolves 0 4840 mols Hg(CN)<sub>2</sub>

1 l H<sub>2</sub>O containing 0 4775 mols NaOH dissolves 0 5977 mols Hg(CN)<sub>2</sub>

11 H<sub>2</sub>O containing 0 9475 mols NaOH dissolves 0 79603 mols Hg(CN)<sub>2</sub>

1 l H<sub>2</sub>O containing 0 970 mols LiOH dissolves 0 6543 mols Hg(CN)<sub>2</sub>

1 l H<sub>2</sub>O containing 0 480 mols LiOH dissolves 0 5500 mols Hg(CN)<sub>2</sub>

1 l H<sub>2</sub>O containing 0 243 mols LiOH dissolves 0 4840 mols Hg(CN)<sub>2</sub>

(Hofmann and Wagner, Z Elektrochem 1909, **15** 444)

## Solubility in KCN+Aq at 25°

| Concentration of KCN | Solubility of Hg(( N) |
|----------------------|-----------------------|
| Mols per litre       | Mols per litre        |
| 0 0493               | 0 4855                |
| 0 0985               | 0 5350                |
| 0 1970               | 0 627                 |

(Sherill, Z phys Ch 1903, 43 719)

## Solubility in Na<sub>2</sub>CO<sub>3</sub>+Aq

1 l H<sub>2</sub>O containing 0 4923 mols Na<sub>2</sub>CO<sub>3</sub> dissolves 0 4956 mols Hg(CN)<sub>2</sub> 1 l H<sub>2</sub>O containing 0 2443 mols Na<sub>2</sub>CO<sub>3</sub>

dissolves 0 4464 mols Hg(CN)<sub>2</sub>

1 l H<sub>2</sub>O containing 0 1250 mols Na CO dissolves 0 4147 mols Hg(CN)<sub>2</sub>

1 l  $\rm H_2O$  containing 0 0000 mols  $\rm Na_2CO_3$  dissolves 0 3952 mols  $\rm Hg(CN)$ (Hofmann and Wagner, Z Elektrochem,

1909, **15** 444)

Solubility in KNO<sub>3</sub>+Aq at 25°

1 I H<sub>2</sub>O containing 0.9574 mols KNO<sub>3</sub> dissolves 0.5383 mols Hg(CN)<sub>2</sub>

1 l H<sub>2</sub>O containing 0 4614 mols KNO<sub>3</sub> dissolves 0 4619 mols Hg(CN)<sub>2</sub>

11 H<sub>2</sub>O containing 0 0000 mols KNO<sub>3</sub> dissolves 0 3956 mols Hg(CN)<sub>2</sub>

(Hofmann and Wagner, Z Elektrochem 1909, 15 444)

Insol in liquid CO<sub>2</sub> (Buchner, Z phys Ch 1906, **54** 674)

Very easily sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829)

Solubility of Hg(CN)2 in ethyl alcohol at to

| t° | % HgCl <sub>2</sub> |
|----|---------------------|
| 0  | 8 3                 |
| 10 | 8 8                 |
| 20 | 9 25                |
| 30 | 9 8                 |
| 40 | 10 3                |

(Timofelev, Dissert 1894)

Solubility of Hg(CN)<sub>2</sub> in methyl alcohol at t° Hg(CN)<sub>2</sub>=g Hg(CN)<sub>2</sub> in 100 g of the solution

| t°   | Hg(CN) <sub>2</sub> |
|------|---------------------|
| 0 0  | 26 10               |
| 14 7 | 29 17               |
| 23 4 | 32 01               |
| 27 4 | 31 77               |
| 31 7 | 32 53               |
| 38 1 | 33 29               |
| 44 5 | 34 05               |

(Dukelski, Z anorg 1907, 53 337)

100 pts methyl alcohol dissolve 44 2 pts Hg(CN)<sub>2</sub> at 19 5°, 100 pts ethyl alcohol dissolve 2 09 pts at 19 5° (de Bruyn, Z phys Ch 1892, 10 784)

Sol in 25 pts methyl alcohol at 14°, in 20 pts ethyl alcohol at 15° (Marsh, Chem

Soc 1905, 87 1878)

Solubility of Hg(CN) in methyl alcohol+ Aq at 25°

 $P\!=\!g$  alcohol in 100 g alcohol +Aq Hg(CN)2=millimols Hg(CN)2 in 10 cc of the solution

| P     | Hg(CN) | Sp gr  |
|-------|--------|--------|
| 0     | 4 34   | 1 0813 |
| 10 60 | 4 37   | 1 0642 |
| 30 77 | 4 94   | 1 0484 |
| 37 21 | 5 40   | 1 0430 |
| 47 06 | 6 49   | 1 0426 |
| 64 00 | 8 13   | 1 0441 |
| 78 05 | 9 75   | 1 0484 |
| 100   | 13 60  | 1 0762 |

(Herz and Anders, Z anorg 1907, 52 165)

Solubility of Hg(CN)<sub>2</sub> in ethyl alcohol+Aq at 25°

P=g alcohol in 100 g alcohol+Aq Hg(CN)<sub>2</sub>=millimols Hg(CN)<sub>2</sub> in 10 cc of the solution

| P     | Hg(CN) | Sp gr  |
|-------|--------|--------|
| 0     | 4 34   | 1 0813 |
| 20 18 | 3 47   | 1 0339 |
| 40 69 | 3 58   | 1 0006 |
| 70 01 | 3 80   | 0 9419 |
| 100   | 3 25   | 0 8552 |

(Herz and Anders, l c)

Solubility of Hg(CN)<sub>2</sub> in mixtures of methyl and ethyl alcohol at 25°

P = % methyl alcohol in the solvent  $Hg(CN)_2 = g$   $Hg(CN)_2$  in 10 ccm, of the solution

 $S 25^{\circ}/4^{\circ} = Sp$  gr of the sat solution

| P     | Hg(CN)2 | S 25°/4° |
|-------|---------|----------|
| 0     | 0 819   | 0 8552   |
| 4 37  | 0 902   | 0 8618   |
| 10 4  | 1 01    | 0 8707   |
| 41 02 | 1 67    | 0 9267   |
| 80 69 | 2 82    | 1 024    |
| 84 77 | 2 96    | 1 034    |
| 91 25 | 3 09    | 1 052    |
| 100   | 3 43    | 1 076    |

(Herz and Kuhn, Z anorg 1908, 58 166)

100~g propyl alcohol dissolve 3.79~g  $Hg(CN)_{\mbox{\tiny $J$}}$  at  $13.5^{\circ}$  (Timofelev, Dissolt 1894)

Solubility in mixtures of propyl and methyl alcohol at 25°

P = % propyl alcohol in the solvent G = g  $Hg(CN)_2$  in 10 ccm of the solution S = Sp gr of the sat solution

| P C 52, /4°  0 3 43 1 0760 11 11 2 952 1 0327 23 8 2 448 0 9891 65 2 1 048 0 8800 91 8 0 504 0 8376 93 97 0 423 0 8335 96 6 0 398 0 8322 100 0 344 0 8283                                                                                                           |                                                |                                                    |                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|
| 11     11     2     952     1     0327       23     8     2     448     0     9891       65     2     1     048     0     8800       91     8     0     504     0     8376       93     97     0     423     0     8335       96     6     0     398     0     8322 | P                                              | C                                                  | 5 2 7 /40                                                |
|                                                                                                                                                                                                                                                                     | 11 11<br>23 8<br>65 2<br>91 8<br>93 97<br>96 6 | 2 952<br>2 448<br>1 048<br>0 504<br>0 423<br>0 398 | 1 0327<br>0 9891<br>0 8800<br>0 8376<br>0 8335<br>0 8322 |

(Herz and Kuhn, Z anorg 1908, 60 158)

Solubility in mixtures of propyl and ethyl alcohol at 25°

P = % propyl alcohol in the solvent G = g Hg(CN)<sub>2</sub> in 10 ccm of the solution S = Sp gr of the sat solution

| P                                                        | G                                                                    | S 25°/4°                                                                     |
|----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0<br>8 1<br>17 85<br>56 6<br>88 6<br>91 2<br>95 2<br>100 | 0 819<br>0 790<br>0 730<br>0 521<br>0 387<br>0 384<br>0 364<br>0 344 | 0 8552<br>0 8549<br>0 8527<br>0 8386<br>0 8311<br>0 8306<br>0 8293<br>0 8283 |

#### (Herz and Kuhn, l c)

Sp gr at  $16^{\circ}/4^{\circ}$  of  $Hg(CN)_2$ +alcohol, containing 82206 % $Hg(CN)_2$ =0 85273, containing 5.8652%=0.8348+

taining 5.8652% = 0.8348 +Sp gr of  $16^{\circ}/4^{\circ}$  of  $Hg(CN)_2 +$ pyridine containing  $29.6018\% Hg(CN)_2 = 1.28155$ , containing 23.2275% = 1.20198

(Schonrock, Z phys Ch 1893, 11 771)

1 l ether dissolves 0 01 mol at 25° (Sherrill, Z phys Ch 1903, 43 735))

Easily sol in acetone (Krug and M'Elroy, J Anal Ch 6 84) 100 g glycerol dissolve 27 g Hg(CN)<sub>2</sub> at 155° (Össendowski, Pharm J 1907, 79

575 ) Nearly insol in  $C_6H_6$  (Sherrill, Z phys Ch 1903, 43 735 )

Sol in methyl acetate (Naumann, B 1909, 42 3790)

100 g boiling methyl acetate dissolve 32 g (Steiner, Dissert, 1906)

Solubility of Hg(CN)<sub>2</sub> in ethyl acetate+Aq at 25°

P=g ethyl acetate in 100 g ethyl acetate
+Aq

 $Hg(CN)_2 = millimols Hg(CN)_2$  in 10 cc of the solution

| P     | Hg(CN)2 | Sp 4r   |
|-------|---------|---------|
| 0     | 4 34    | 1 0810  |
| 4 39  | 4 295   | 1 0797  |
| 96 76 | 1 056   | 1 9374  |
| 100   | 0 714   | 0 09097 |

(Herz and Anders, Z anorg 1907, 52 165)

Insol in ethyl acetate (Naumann, B 1910, 43 314)

Solubility in organic solvents at 18-20° 100 g tetrachlormethane dissolve 0 001 g

 $\frac{\mathrm{Hg(CN)_2}}{100}$  g bromoform dissolve 0.005  $\mathrm{Hg(CN)_2}$ 

100 g ethyl bromide dissolve 0 013 g Hg(CN)<sub>2</sub>

100 g ethylene dibromide dissolve 0 001 g  $Hg(CN)_2$ 

(Sulc, Z anorg 1900, **25** 401)

100 g acetonitrile dissolve 9 58 g Hg(( V)<sub>2</sub> at 18° (Naumann and Schier, B 1914 47 249)
Solubility in benzonitrile at 18°=10( g

in 100 g (Naumann, B 1914, 47 1370) SI sol in ethyl amine (Shinn, J r

Sl sol in ethyl amine (Shinn, J r ys Chem 1907, 11 538) Very sol in liquid methyl amine (G bs J Am Chem Soc 1906, 28 1419)

Sol in paratoluidine (Werner, Z ai rg 1897, 15 7)

Mol weight determined in pyridine and benzonitrile (Werner, Z anorg 1897, 15 20 and 32)

100 g pyridine dissolve 64 8 g Hg((  $\sqrt{}$ )<sub>2</sub> at 18° (Schroeder, Z anorg 1905, 44 ()

### Solubility in pyridine

| Mols per                                                                                                   | Temp of                                                                                                            | Mols per                                                                                     | Temr                                                                     | of |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----|
| .00 Hg(CN)                                                                                                 | Solidification                                                                                                     | 100 Hg(CN)2                                                                                  | Solidific                                                                |    |
| 7 1<br>8 7<br>10 1<br>10 4<br>11 3<br>12 9<br>13 8<br>15 8<br>15 9<br>17 3<br>18 4<br>19 3<br>20 6<br>22 3 | 9<br>11<br>12<br>3<br>12<br>2<br>13<br>13<br>5<br>14<br>5<br>16<br>5<br>20<br>5<br>22<br>28<br>5<br>32<br>38<br>42 | 22 9<br>23 7<br>25 3<br>26 0<br>26 6<br>27 5<br>27 7<br>29 0<br>32 0<br>33 4<br>34 4<br>38 3 | 45<br>46<br>53<br>54<br>56<br>68<br>70<br>86<br>111<br>122<br>125<br>141 |    |

(Staronka, Anz Ak Wiss Krakau, 1 10 372)

#### Solubility in quinoline

| Mols per                 | Temp of                       | Moly per                     | Temp                 | of  |
|--------------------------|-------------------------------|------------------------------|----------------------|-----|
| 100 Hg(CN)               | Solidification                | 100 H <sub>h</sub> (CN)      | Solidifie            | ion |
| 4 2<br>6 0<br>8 2<br>9 2 | 45°<br>54<br>89(61)<br>99(61) | 13 2<br>17 4<br>22 5<br>27 1 | 13<br>16<br>18<br>19 |     |

# (Staronka, l c) Solubility in iniline

| Mols per                        | Temp of                                 | Mols per                     | Temp         | of                   |
|---------------------------------|-----------------------------------------|------------------------------|--------------|----------------------|
| 100 Hg(CN) <sub>2</sub>         | Solidification                          | 100 Hg(CN)                   | Solidifi     | ion                  |
| 3 7<br>4 9<br>5 7<br>7 7<br>9 2 | 26° (?)<br>30 5(?)<br>35 (?)<br>38 5(?) | 14 2<br>18 2<br>19 7<br>23 4 | 77° 83 84 88 | ?)<br>?)<br>?)<br>?) |

(Staronka, l c)

Mercuric nickel cyanide ammonia,  $2\text{Hg}(\text{C} \text{ I})_2$ ,  $4\text{Ni}(\text{CN})_2$ ,  $5\text{NH}_3+2\text{H}_2\text{O}$ 

(Papiermeister, Dissert 1898) 5Hg(CN)<sub>2</sub>, 18N<sub>1</sub>(CN)<sub>2</sub>, 8NH<sub>3</sub>+15H ) (Papiermeister, Dissert 1898) Mercuric potassium cyanide,  $Hg(CN)_2$ , 2KCN

Sol in 44 pts cold H<sub>2</sub>O, sl sol in alcohol, decomp by acids

100 g H<sub>2</sub>O dissolve 22 7 g (Fronmuller, B 1878, **11** 92)

Abundantly sol in liquid NH3 (Franklin, Z phys Ch 1909, 69 295)

Mercuric silver cyanide, basic, Hg(CN)2, HgO, 7AgCN

Ppt (Bloxam, B 16 2669)

Mercuric silver cyanide mercuric sulphate, Hg(CN), 2AgCN,  $HgSO_4+H_2O$ 

Mercuric sodium cyanide, Hg(CN)2, NaCN  $+1\frac{1}{2}H_2O$ 

Sol m H<sub>2</sub>O (Grossmann, B 1904, 37 4141)

Mercuric strontium cyanide,  $Hg(CN)_2Sr(CN)_2+5H_2O$ 

Very hygroscopic Sol in HO (Grossmann, B 1904, 37 4142)

Mercuric strontium cyanide iodide, Sr(CN)<sub>2</sub>  $HgI_9$ ,  $Hg(CN)_2+7H_2O$ (Varet, C R 1895, 121 499)

Mercuric thallium cyanide, Hg(CN)2, 2TlCN Easily sol in HO 100 pts H<sub>2</sub>O dissolve 7 9 pts at 1°, and 10 3 pts at 10° (Fronmuller, B **11** 92)

Mercuric zinc cyanide, 4Zn(CN),  $Hg(CN)_2$ Insol in H () (Dunst in, Chem Soc 6 666)

Mercuric zinc cyanide mercuric bromide ammonia, Hg(CN)2, Zn(CN)2, HgBr, 4NII3

Decomp by H O Sl sol in cold NH4OH +Aq (Varet, C R 1889, 109 810)

Mercuric cyanide ammonia, Hg(CN)2, NH3 Very sol in II () NII4OII + Aq ind alcohol (Varct, C R 1889, 109 903) SI sol in H () (Schmidt, B 1894, 27

232) 5H5(C-X) 2811 4 1 11 () -1 isily decomp (Varet Bull Soc (5) 6 221)

Mercuric cyanide bromide, Hg(CN), HΩBr

Very sl. sol even in boiling H.O. (Prussia, Gazz ch it 1898, 28, (2), 114)

Mercuric cyanide barium bromide, 2Hg(CN)<sub>2</sub> BrBr +6H O

Easily sol especially in hot H<sub>2</sub>O and alcohol (Varet, C R 1895, 121 398)

Mercuric cyanide cadmium bromide.  $Hg(CN)_2$ ,  $CdBr_2+3H_2O$ 

Sol in H<sub>2</sub>O and NH<sub>4</sub>OH+Aq (Varet, Bull Soc (3) 5 8) 2Hg(CN)<sub>2</sub>, CdBr<sub>2</sub>+4 5 H<sub>2</sub>O Sol in H<sub>2</sub>O and in NH4OH+Aq (Varet, C R 1890. **111** 680 )

Mercuric cyanide cadmium bromide ammonia  $2Hg(CN)_2$ ,  $CdBr_2$ ,  $4NH_3+2H_2O$ Decomp by H<sub>2</sub>O

Sl sol m NH<sub>4</sub>OH+Aq (Varet, C R. 1891, 112 535)

Mercuric cyanide calcium bromide,  $2Hg(CN)_2$ ,  $CaBr_2+5H_2O$ 

Sol in 1 pt cold, and 0 25 pt boiling H<sub>2</sub>O, also in 2 pts cold, and 1 pt boiling 90% alcohol (Custer) +7H<sub>2</sub>O(Varet, C R 1895, 121 399)

Mercuric cyanide cupric bromide ammonia, 2Hg(CN)<sub>2</sub>, CuBr<sub>2</sub>, 4NH<sub>3</sub>

Decomp by H<sub>2</sub>O, sl sol m NH<sub>4</sub>OH+Aq (Varet, Bull Soc (3) 6 221)

Mercuric cyanide lithium bromide, 2Hg(CN)<sub>2</sub> 2L<sub>1</sub>Br+7H<sub>2</sub>O Deliquescent (Varet, C R 111 526)

Mercuric cyanide magnesium bromide See Magnesium mercuric cyanide mercuric bromide

Hg(CN)<sub>2</sub>, 2KBr Very sol in H<sub>2</sub>O (Harth, Z anorg 1897, 14 351)

Mercuric cyanide potassium bromide,  $Hg(CN)_2$ , KBr + 2HO

Sol in 13 34 pts H O at 18°, and less than 1 pt boiling H<sub>2</sub>O (Brett)

Sol without decomp in hot dil H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, or HCl+Aq (Brett)

Contains 1½H O (Berthelot, A ch (5) **29** 226)

Mercuric cyanide sodium bromide, Hg(CN)<sub>2</sub>,  $NaBr + 1\frac{1}{2}H_2O$ 

Sol in HO and alcohol

Mercuric cyanide strontium bromide, 2Hg(CN)<sub>2</sub>, SrB<sub>1</sub> +6H<sub>2</sub>O

Sol in HO and in alcohol (Varet, C R 1895**, 121** 399)

Mercuric cyanide zinc bromide, HgBr<sub>2</sub>  $Hg(CN)_2$ ,  $Zn(CN)_2+8H_2O$ 

Sol in H<sub>2</sub>O and NH<sub>4</sub>OH+Aq (Varet. Bull Soc (3) 5 8)

Mercuric cyanide zinc bromide ammonia, HgBr, Hg(CN), Zn(CN), 4NH<sub>3</sub> As the corresponding chloride (Varet) Mercuric cyanide chloride,  $Hg(CN)_2$ ,  $HgCl_2$ Sol in  $H_2O$  Decomp by alcohol, which dissolves out  $HgCl_2$ 

Mercuric cyanide ammonium chloride, Hg(CN)<sub>2</sub>, NH<sub>4</sub>Cl Sol in H<sub>2</sub>O and alcohol (Poggiale) Hg(CN)<sub>2</sub>, 4NH<sub>4</sub>Cl

Mercuric cyanide barium chloride,  $2\mathrm{Hg}(\mathrm{CN})_2$ ,  $\mathrm{BaCl_2} + 4\mathrm{H_2O}$ 

Efflorescent Easily sol in  $H_2O$  and alcohol  $+6H_2O$  (Dexter)

Mercuric cyanide barium chloride ammonia, 2Hg(CN)<sub>2</sub>, BaCl<sub>2</sub>, 4NH<sub>3</sub>

Decomp by H<sub>2</sub>O Sl sol in NH<sub>4</sub>OH+Aq (Varet, Bull Soc (3) 6 221)

Mercuric cyanide cadmium chloride, Hg(CN)<sub>2</sub>, CdCl<sub>2</sub>+2H<sub>2</sub>O

Sol in H<sub>2</sub>O and NH<sub>4</sub>OH+Aq (Varet, Bull Soc (3) 5 8)

Mercuric cyanide calcium chloride, 2Hg(CN)<sub>2</sub>, CaCl<sub>2</sub>+6H<sub>2</sub>O Efflorement Very sol in H<sub>2</sub>O (Var

Efflorescent Very sol in H<sub>2</sub>O (Varet, C R 1895, **121** 349)

Mercuric cyanide cerium chloride,  $3Hg(CN)_2$ ,  $CeCl_3+8H_2O$ 

Very sol in  $H_2O$  (Ahlén, Bull Soc (2) 27 365)

Mercuric cyanide cobaltous chloride, Hg(CN)<sub>2</sub>, 2CoCl<sub>2</sub>+4H<sub>2</sub>O Sol in H<sub>2</sub>O (Poggiale)

Sol in  $H_2O$  (Poggiale) 2 $Hg(CN)_2$ ,  $CoCl_2+7H_2O$  (Dexter)

Mercuric cyanide cupric chloride, Hg(CN)<sub>2</sub>, CuCl<sub>2</sub>+6H<sub>2</sub>O

Efflorescent Sol in  $H_2O$  and in  $NH_4OH+Aq$  (Varet, C R 1888, 107 1002) 2 $Hg(CN)_2$ ,  $CuCl_2+6H_2O$  Efflorescent Very sol in  $H_2O$  and in  $NH_4OH+Aq$  (Varet, C R 1888, 107 1002)

Mercuric cyanide cupric chloride ammonia, 2Hg(CN)<sub>2</sub>, CuCl<sub>2</sub>, 4NH<sub>3</sub> Decomp by H<sub>2</sub>O Sl sol in cold NH<sub>4</sub>OH

Decomp by H<sub>2</sub>O Sl sol in cold NH<sub>4</sub>OH +Aq (Varet, Bull Soc (3) 6 221)

Mercuric cyanide didymium chloride, 3Hg(CN)<sub>2</sub>, D<sub>1</sub>Cl<sub>2</sub>+8H<sub>2</sub>O Very sol in H<sub>2</sub>O (Ahlen)

Mercuric cyanide erbium chloride,  $3Hg(CN)_2$ ,  $ErCl_8+8H_2O$ 

Easily sol in H<sub>2</sub>O (Ahlen)

Mercuric cyanide hydrazine chloride, Hg(CN)<sub>2</sub>, N<sub>2</sub>H<sub>4</sub>, HCl Very sol in H<sub>2</sub>O Nearly insol in alcohol and ether (Ferratini, Gazz ch it 1912, 42 (1), 154)

Mercuric cyanide ferric chloride, 2Hg(CN) FeCl<sub>3</sub>+3½H<sub>2</sub>O (Dexter)

Mercuric cyanide lanthanum chloride, 3Hg(CN)<sub>2</sub>, LaCl<sub>2</sub>+8H<sub>2</sub>O Very sol in H<sub>2</sub>O (Ahlén)

Mercuric cyanide magnesium chloride,  $2\mathrm{Hg}(\mathrm{CN})_2$ ,  $\mathrm{MgCl}_2 + 2\mathrm{H}_2\mathrm{O}$ 

Easily sol in  $H_2O$  and dil alcohol (Pogiale)

Mercuric cyanide manganous chlorid, Hg(CN)<sub>2</sub>, MnCl<sub>2</sub>+3H<sub>2</sub>O Efflorescent Very sol in H<sub>2</sub>O (Poggial)

Mercuric cyanide nickel chloride, Hg(CN , NiCl<sub>2</sub>+6H<sub>2</sub>O

Deliquescent Sol in H<sub>2</sub>O (Poggial ) 2Hg(CN)<sub>2</sub>, NiCl<sub>2</sub>+7H<sub>2</sub>O (Dexter)

 $\begin{array}{c} \textbf{Mercuric cyanide chloride nickel chlori e} \\ \textbf{oxychloride, } 11Hg(CN)_2, 8HgCl_2, 2N_1C \\ \textbf{s}N_1(OH)Cl+76H_2O \end{array},$ 

(Papiermeister, Dissert 1898)

Mercuric cyanide potassium chloride, Hg(CN)<sub>2</sub>, KCl+H<sub>2</sub>O

Sol in 675 pts H<sub>2</sub>O at 18° (Bret ) Sol in alcohol

Mercuric cyanide sodium chloride, Hg(CN), NaCl

Easily sol especially in hot H<sub>2</sub>O, insol n alcohol (Poggiale)

Mercuric cyanide strontium chloride, 2Hg(CN)<sub>2</sub>, SrCl<sub>2</sub>+6H<sub>2</sub>O

Easily sol in  $\rm H_2O$  and dil alcohol (Va t, C R 1895, 121 349)

Mercuric cyanide yttrium chloride, 3 Hg(C)  $YCl_3 + 8 H_2O$ 

Easily sol in  $H_2O$  (Ahlen, Bull Soc ) 27 365)

Mercuric cyanide zinc chloride,  $2Hg(Cl_2, ZnCl_2+6H_2O)$ 

Efflorescent Sol in  $H_2O$  (Kane)  $HgCl_2$ ,  $Hg(CN)_2$ ,  $Zn(CN)_2+7H_2O$  fflorescent Very sol in  $H_2O$  (Varet, I ll Soc (3) 5 8)

Mercuric cyanide zinc chloride ammo ia, HgCl<sub>2</sub>, Hg(CN)<sub>2</sub>, ZnCl<sub>2</sub>, 4NH<sub>3</sub> Decomp by H<sub>2</sub>O Sol in NH<sub>4</sub>OH+ q

(Varet, Bull Soc (3) 6 221) Hg(CN)<sub>2</sub>, Zn(CN)<sub>2</sub>, HgCl<sub>2</sub>, 6NH<sub>3</sub> (V et,

C R 106 1080)

Mercuric cyanide potassium chromate See Chromate mercuric cyanide, potassium

Mercuric cyanide potassium ferrocyanide,  $3 \mathrm{Hg}(\mathrm{CN})_2$ ,  $K_4 \mathrm{Fe}(\mathrm{CN})_5 + 4 \mathrm{H}_2 \mathrm{O}$ Readily sol in  $\mathrm{H}_2 \mathrm{O}$ 

Very sol in H<sub>2</sub>O with partial decomp (Hofmann and Marburg, A 1899, **305** 215) Hg(CN), N<sub>2</sub>H<sub>4</sub> Ppt (Franzen, Z anorg 1911, **70** 154)

Mercuric cyanide potassium hydroxide, Hg(CN)<sub>2</sub>, KOH

(Hofmann and Wagner, B 1908, 41 321) +1½H<sub>2</sub>O (Hofmann and Wagner, B 1908, 41 1630) 2Hg(CN)<sub>2</sub>, KOH+H<sub>2</sub>O Very sol in H<sub>2</sub>O (Hofmann and Wagner, B 1908, 41 320)

Mercuric cyanide sodium hydroxide, Hg(CN)<sub>2</sub> NaOH+1½H<sub>2</sub>O or H<sub>2</sub>O (Hofmann and Wagner, B 1908, 41 1631)

Mercuric cyanide barium iodide, 2 Hg(CN),  $BaI_2 + 4H_2O$ 

Slowly deliquescent Sol in 165 pts cold, and 04 pt boiling  $\rm H_2O$  Sol in 225 pts cold, and 16 pts hot 90% alcohol Solution is decomp on boiling (Custer)

Mercuric cyanide cadmium iodide,  $Hg(CN)_2$ ,  $Cd(CN)_2$ ,  $HgI_2+8H_2O$ 

 $S_{\mbox{\footnotesize{ee}}}$  Cadmium mercuric cyanide mercuric iodide

Recryst from H<sub>2</sub>O without decomp Decomp by acids (Mathewson and Wells, Am Ch J 1903, **30** 433)

Mercuric cyanide calcium iodide,  $2\mathrm{Hg}(\mathrm{CN})_2$ ,  $\mathrm{CaI}_2 + 6\mathrm{H}_2\mathrm{O}$ 

Sl efflorescent More sol in  $H_2O$  than corresponding Sr comp (Custer)

Mercuric cyanide lithium iodide,  $Hg(CN)_2$ ,  $2Li(CN)_2$ ,  $HgI_2+7H_2O$ 

See Cyanide, lithium mercuric mercuric iodide

Mercuric cyanide magnesium iodide, Hg(CN)<sub>2</sub>, Mg(CN)<sub>2</sub>, HgI<sub>2</sub>+8H<sub>2</sub>O See Cyanide, magnesium mercuric mercuri

See Cyanide, magnesium mercuric mercuric iodide

Mercuric cyanide potassium iodide,  $\mathrm{Hg}(\mathrm{CN})_2$ ,  $\mathrm{KI}$ 

Sol in 16 pts cold, and less hot H<sub>2</sub>O Sol in 96 pts cold alcohol of 34° Baumé (Calllot) Sl sol in ether Decomp by acids 3Hg(CN)<sub>2</sub>, 2KI+½H<sub>2</sub>O (Berthelot)

Mercuric cyanide sodium iodide,  $Hg(CN)_2$ ,  $NaI+2H_2O$ 

Sol in  $4\frac{1}{2}$  pts  $H_2O$  at  $18^\circ$ , and  $6\frac{1}{7}$  pt boiling  $H_2O$ Sol in 2 pts boiling, and  $6\frac{1}{2}$  pts cold 90% alcohol (Custer)

Mercuric cyanide strontium iodide, 2Hg(CN)<sub>2</sub>, SrI<sub>2</sub>+6H<sub>2</sub>O

Sol in 7 pts H<sub>3</sub>O at 18°, and ½ pt at b -pt Sol in 4 pts 90% alcohol at 18°, and ½ pt at b -pt (Custer)

Mercuric cyanide zinc iodide,  $2\mathrm{Hg}(\mathrm{CN})_2$ ,  $\mathrm{ZnI}_2 + 6\mathrm{H}_2\mathrm{O}$ 

Efflorescent, sol in H<sub>2</sub>O

Mercuric cyanide iodide potassium cyanide, HgI<sub>2</sub>, Hg(CN)<sub>2</sub>, 2KCN

Easily decomp by dil acids (Rupp Apoth Ztg, 23 374)

Mercuric cyanide cadmium nitrate, 2Hg(CN)<sub>2</sub>, Cd(NO<sub>3</sub>)<sub>2</sub>+7H<sub>2</sub>O

Decomp by  $H_2O$ , not by alcohol (Nylander, J B 1859 271)

Mercuric cyanide cobalt nitrate,  $2Hg(CN)_2$ ,  $Co(NO_3)_2 + 7H O$ 

Decomp by HO, not by alcohol (Nylander)

Mercuric cyanide copper nitrate,  $Hg(CN)_2$ ,  $Cu(NO_3)_2+5H_2O$ 

Decomp by  $H_2O$ , not by alcohol (Ny lander)

Mercuric cyanide ferrous nitrate, 2Hg(CN),  $Fe(NO_{\downarrow})$  +7H O

Decomp by HO, not by alcohol (Ny lander)

Mercuric cyanide manganous nitrate, Hg(CN)<sub>3</sub>, Mn(NO<sub>3</sub>) +5H O

Decomp by H2O, not by alcohol (Nylander)

2Hg(CN), Mn(NO<sub>3</sub>) +7H O As above

Mercuric cyanide nickel nitrate, 2Hg(CN),  $N_1(NO_3)_2+7H_2O$ 

Decomp by HO not by alcohol (Nylander)

Mercuric cyanide silver nitrate, 2Hg(CN),  $AgNO_3+2H_2O$ 

Sl sol in cold, more readily in hot H O Sol with decomp in HNO<sub>3</sub>+Aq As sol in alcohol as in H<sub>2</sub>O

Mercuric cyanide zinc nitrate,  $2Hg(CN)_2$ ,  $Zn(NO_3)_2+7H_2O$ 

Sol in H<sub>2</sub>O with decomp Not decomp by alcohol (Nylander, J B 1859 271)

Mercuric cyanide nitrate silver cyanide, basic, Hg(NO<sub>3</sub>)CN, 10AgCN, Hg(OH)NO<sub>3</sub> (Schmidt, Z anorg 1895, 9 431)

Mercuric cyanide potassium selenocyanide,  $\mathrm{Hg}(\mathrm{CN})_2$ ,  $\mathrm{KSeCN}$ 

Sl sol in cold, much more easily sol in hot  $H_2O$  or alcohol Traces dissove in ether (Cameron and Davy, C N 44 63)

Mercuric cyanide nickel sulphate, Hg(CN)<sub>2</sub>, NiSO<sub>4</sub>+9H<sub>2</sub>O (Paniermeister, Dissert 1898)

Mercuric cyanide ammonium sulphocyanide, Hg(CN)<sub>2</sub>, NH<sub>4</sub>SCN

Easily sol in hot H<sub>2</sub>O (Cleve, Bull Soc (2) 23 71)

Mercuric cyanide barium sulphocyanide, 2Hg(CN)<sub>2</sub>, Ba(SCN)<sub>2</sub>+4H<sub>2</sub>O Permanent Sol in hot H<sub>2</sub>O (Cleve)

Mercuric cyanide cadmium sulphocyanide, 2Hg(CN)<sub>2</sub>, Cd(SCN)<sub>2</sub>+4H<sub>2</sub>O Permanent Sol in hot H<sub>2</sub>O (Cleve)

Mercuric cyanide calcium sulphocyanide, 2Hg(CN)<sub>2</sub>, Ca(SCN)<sub>2</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Cleve)

 $\begin{array}{cccc} \textbf{Mercuric} & \textbf{cyanide} & \textbf{cerium} & \textbf{sulphocyanide,} \\ & 3 \text{Hg(CN)}_2, & \text{Ce(SCN)}_3 + 12 \text{H}_2 \text{O} \\ & \text{Easily sol in hot } \text{H}_2 \text{O} & (\text{Jolin}) \end{array}$ 

Mercuric cyanide didymium sulphocyanide, 3Hg(CN)<sub>2</sub>, Di(SCN)<sub>3</sub>+6H O
Sl sol in cold, easily in hot H O (Cleve)

Mercuric cyanide erbium sulphocyanide, 3Hg(CN)<sub>2</sub>, 2Lr(SCN)<sub>3</sub>+12H<sub>2</sub>O Sl sol in cold, easily in hot H<sub>2</sub>O (Cleve)

Mercuric cyanide lanthanum sulphocyanide, 3Hg(CN), I a(SCN)<sub>4</sub>+12H ()
Very sol in H () (Cleve)

Mercuric cyanide magnesium sulphocyanide, 2Hg(CN), Mg(SCN)<sub>2</sub>+4H<sub>2</sub>() Permanent Fusily sol in hot H<sub>2</sub>O (Cleve)

Mercuric cyanide potassium sulphocyanide, Hg(CN), ASCN Permanent I usily sol in hot H<sub>2</sub>O

(Cleve) +2H () (Philip, Z Ch **1867** 552)

Mercuric cyanide rubidium sulphocyanide,

Hg(CN)<sub>2</sub> Rb(SCN)

ol m hot H<sub>2</sub>O without decomp (Grossmann, B 1904, **37** 1259)

Mercuric cyanide samarium sulphocyanid 3Hg(CN)<sub>2</sub>, Sm(SCN)<sub>2</sub>+12H<sub>2</sub>O Easily sol m H<sub>2</sub>O (Cleve)

Mercuric cyanide sodium sulphocyanid Hg(CN)<sub>2</sub>, NaSCN+2H<sub>2</sub>O

Efflorescent Sol in  $H_2O$  (Cleve, Bu Soc (2) 23 71)

Mercuric cyanide strontium sulphocyanid 2Hg(CN)<sub>2</sub>, Sr(SCN)<sub>2</sub>+4H<sub>2</sub>O Efflorescent (Cleve)

Mercuric cyanide yttrium sulphocyanid, 3Hg(CN)<sub>2</sub>, Y(SCN)<sub>3</sub>+12H<sub>2</sub>O
Sl sol in warm, much less in cold H<sub>2</sub>
(Cleve)

Mercuric cyanide zinc sulphocyanide, 2Hg(CN)<sub>2</sub>, Zn(SCN)<sub>2</sub>+4H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Cleve)

Mercuric cyanide zinc sulphocyanide ai monia, 2Hg(CN)<sub>2</sub>, Zn(SCN)<sub>2</sub>, 3NH<sub>3</sub> Not efflorescent Decomp by H<sub>2</sub>O

Mercuric cyanide potassium thiosulpha, Hg(CN)<sub>2</sub>, K<sub>2</sub>S<sub>2</sub>O<sub>3</sub>

Permanent Sol in H<sub>2</sub>O (Kessler) +H<sub>2</sub>O (Fock and Kluss, B **24** 1355

Molybdenum hydroxyl potassium cyani , K<sub>3</sub>Mo(OH)<sub>2</sub>(CN)<sub>5</sub> (Rosenheim and Koss, Z anorg 1906, ) 155)

 $K_5Mo(OH)_2(CN)$ , Very sol in H ) (Rosenheim and Koss)

Molybdenum cyanide with MCN
See Molybdocyanide M

Molybdenyl potassium cyanide,  $\mathrm{MoO_2(CN)}$  ,  $2\mathrm{KCN}$ 

Insol in alcohol (Pethard,\*C R 1 4, 118 805)

MoO (CN), MCN Sol in H () In al malcohol (Hofmann, Z anorg 1896, 2 287)

+H<sub>2</sub>O Sol in H () Insol in alcohol

 $+H_2O$  Sol in H () Insol in alco al (Hoffmann) +4H () Sol in H () Insol in alco al (Hoffmann)

Nickel cyanide, Ni(CN),+211,0

Insol in HO Insol in cone HCl, H'), or HNO<sub>3</sub>+ Aq but decomp by he iting the ewith Sol in NH<sub>4</sub>OH, wum (NH<sub>4</sub>); or NH<sub>4</sub> succinte+Aq, also in KCN+q Sl sol in NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>3</sub>+Aq (V tt-sten)

Insol in methyl acetate (Naumann B 1909, 42 3790)

 $+3H_2O$ ,  $+3\frac{1}{4}H_2O$ ,  $+3\frac{3}{4}H_2O$ ,  $+4\frac{1}{4}H_2O$ , and  $+5\frac{1}{4}H_2O$ (Papiermeister, Dissert 1898) +4H<sub>2</sub>O(Hofmann and Hochtlen, B

1903. 36 1149)

Nickel potassium cyanide, Ni(CN)<sub>2</sub>, 2KCN  $+H_{2}O$ 

Sol in H<sub>2</sub>O Decomp by acids with residue of insol Ni(CN)2 +½H<sub>2</sub>O (Rammelsberg)

Nickel sodium cyanide, Ni(CN)<sub>2</sub>, 2NaCN+  $3H_{2}O$ 

Sol in H<sub>2</sub>O, decomp by acids with residue of  $N_1(CN)_2$ 

Nickel strontium cyanide, Ni(CN)2, Sr(CN)2  $+xH_2O$ 

Sol in H<sub>2</sub>O (Handl, J B **1859** 273)

Nickel cyanide ammonia, Ni(CN)<sub>2</sub>, NH<sub>3</sub>+ ½H₂O

Scarcely attacked by H<sub>2</sub>O or dil acids Sol in conc H<sub>2</sub>SO<sub>4</sub> Sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+  $NH_4OH + Aq (NH_4)_2C_2O_4 + Aq$ , (NH<sub>4</sub>)<sub>2</sub>S+Aq, and KCN+Aq by boiling with NaOH or KOH Decomp (Bernoulli and Grether, Ch Z 1901, 25 436)

Nickel cyanide trihydrazine,  $Ni(CN)_2$ ,  $(N_2H_4)_3$ 

Ppt (Franzen, Z anorg 1911, 70 155)

Osmium cyanide, Os(CN) (?)

Insol in H2O, not attacked by acids See also Osmocyanhydric acid

Osmium potassium cyanide See Osmocyanide, potassium

Palladous cyanide, Pd(CN)

Insol in H<sub>2</sub>() Insol in dil acids Sol in KCN or NH<sub>4</sub>OH+Aq, also in cone HCN +Aq

Platinous cyanide, Pt(CN)<sub>2</sub>

Insol in H<sub>2</sub>O, alkilies, or acids Sol in KCN + AqWhen freshly pptd, sol NH<sub>4</sub>OH+Aq

Platinous cyanide with MCN See Platinocyanide, M

Potassium cyanide, KCN

Deliquescent Very sol in H<sub>2</sub>O

100 pts KCN+Aq, sat at b-pt 1033,° contain 55 pts KCN, i e 100 pts H<sub>2</sub>O dissolve 122 2 pts KCN at 103 3 ° (Griffiths) KCN+Aq containing 3 25% KCN has

sp gr = 10154, 65% KCN, 10316 (Kohlrausch, W Ann 1879 1)

KCN+Aq containing 964% KCN has sp gr  $20^{\circ}/20^{\circ} = 1.0514$ 

KCN+Aq containing  $14\,42\%$  KCN has sp gr  $20^{\circ}/20^{\circ}=1\,0768$  (Le Blanc and Rohland, Z phy ch  $1896,\,19\,\,278$ 

Moderately sol in liquid NH<sub>3</sub> (Franklin,

Am Ch J 1898, 20 829) Almost insol in absolute alcohol

Sol in 80 pts 95% alcohol when boiling, and easily sol in 35% alcohol (Geiger, A 1

100 pts absolute methyl alcohol dissolve 4 °I pts at 195°, 100 pts absolute ethyl alcohol dissolve 087 pt at 195° (de Bruyn,

Z phys Ch 10 783) Insol in methyl acetate (Naumann. B 1909, 42 3790), ethyl acetate (Naumann,

B 1904, 37 3601) 100 g glycerol dissolve 32 g KCN at 15 5°

(Ossendowski, Pharm J 1907, 79 575) Sol in CS<sub>2</sub> when pure (Loughlin, J B **1875** 234)

Wholly insol in CS<sub>2</sub> (Moldenhauer, Z anal 16 199)

Sl sol in benzonitrile (Naumann, B 1914, 47 1369)

Potassium chromium tetroxide pentacyanide,  $K_{5}[(CrO_{4})_{2}(CN)_{5}] + 5H_{2}O$ 

 $\operatorname{Very} \operatorname{hygroscopic}$ Sol in H<sub>2</sub>O (Riesenfeld, B 1908, 41 3548)

Potassium chromium tetroxide dicyanideammonia, K<sub>2</sub>[CrO<sub>4</sub>(CN) NH<sub>3</sub>]+5H<sub>2</sub>O

Hygroscopic in the air Easily sol in H<sub>2</sub>O and in NH<sub>4</sub>OH+Aq (Riesenfeld, B 1908, 41 3545)

Potassium rhodium cyanide See Rhodocyanide, potassium

Potassium ruthenium cyanide See Ruthenocyanide, potassium

Potassium silver cyanide, KCN, AgCN

Sol in 47 pts H<sub>2</sub>O at 15°, 4 pts at 20° and in much less at higher temp Sol in 25 pts 85% alcohol (Baup, A ch (3) 53 464)

Potassium silver sodium cyanide, 2KCN, NaCN, 3AgCN

Sol in 4.4 pts H O at 15°, and 22 pts 85%alcohol at 17° (Baup)

Potassium tungsten cyanide See Tungstocyanide, potassium

Potassium uranyl cyanide,

 $(UO_2)(CN)_2$ , 2kCNPpt Sol in HO Sl sol in presence of lugicisciss of KCN (Alox A ch 1901 (7) **24** 417)

Potassium vanadium cyanide, K<sub>3</sub>V(CN)

Readily sol in H<sub>2</sub>O, decomp slowly in neu-I tral aq solution, rapidly in acid aq solution, insol in alcohol (Locke, Am Ch J 1898, **20** 601)

 $K_4V(CN)_6+3H_2O$  Sol in  $H_2O$ 

Insol in alcohol and ether (Petersen, Z anorg 1904, 38 345)

Potassium zinc cyanide, 2KCN, Zn(CN)<sub>2</sub> 100 pts H<sub>2</sub>O dissolve 11 pts at 20° (Sharwood, Eng Min J 1904, 77 845)

Potassium cyanide molybdenum dioxide, 4KCN,  $MoO_2+5H_2O$ 

Sol in  $H_2O$ Insol in alcohol (Hofmann, Z anorg 1896, 12 287) +6H<sub>2</sub>O "Potassium dioxotetracyan-

omolybdate" Very sol in  $H_2O$ (Winkler, Dissert

1909) +8**H**₂O (Rosenheim, Kohn and Garfunkel, Z anorg 1910, 65 174)

+10H<sub>2</sub>O Decomp by conc HCl, HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>

Not acted upon by cold dil acids (v der Heide and Hofmann, Z anorg 1896, 12 285) 5KCN, MoO<sub>2</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O Insol in alcohol (Kalischer, Dissert 1902)

Potassium cyanide molybdenum dioxidehydroxylamine, 4KCN, MoO2, NH2OH  $+\mathrm{H}_2\mathrm{O}$ 

Sol in H<sub>2</sub>O

Decomp by dil acids (v der Heide and Hofmann, Z anorg 1896, 12 282)

Potassium cyanide molybdenum sulphide, 6KCN, Mo<sub>2</sub>S<sub>3</sub>+5H<sub>2</sub>O

Easily sol in H<sub>2</sub>O Decomp by dil acids (Hofmann, Z anorg 1896, 12 289)

Very sol in HO Slowly decomp in the cold by dil mineral acids (v der Heide and Hofmann, Z anoig 1896, 12 289)

Potassium cyanide molybdenum sulphocyanide, 2KCN, MoS<sub>2</sub>(CN)<sub>2</sub>

(Péchard, C R 1894, 118, 806)

5KCN, Mo<sub>3</sub>S<sub>4</sub>(CN)<sub>3</sub>+7H<sub>2</sub>O Sol in H<sub>2</sub>O Stable toward dil acids and alkalies (Hofmann, Z anorg 1896, 12 289)

Potassium cyanide molybdenum sulphoxycyanide, 4KCN,  $Mo_2SO(CN)_2+4H_2O$ Sol in H<sub>2</sub>O Stable toward dil acids

(Hofmann, Z anorg 1896, **12** 289)

Potassium cyanide nitrite, KCN, KNO<sub>2</sub>+ 

Sol in H<sub>2</sub>O, decomp slowly by H<sub>2</sub>O explosive (Hofmann, Z anorg 1895, 10 260-

Potassium cyanide sulphur dioxide, KCN,  $SO_2 + H_2O$ 

Much more sol in hot than cold  $H_2O$ (Etard, C R 88 649)

KCN, HCN, 2SO<sub>2</sub>+3H<sub>2</sub>O Very sl so in cold H<sub>2</sub>O, decomp by hot H<sub>2</sub>O (Etard

Rubidium tungsten cyanide See Tungstocyanide, rubidium

Rhodium cyanide, Rh(CN)<sub>3</sub>

Not decomp by acids Sol 1 KCN+Aq (Martius, A 117 361)

Rhodium cyanide with 3KCN See Rhodicyanide, potassium

Ruthenium cyanide with 4MCN See Ruthenocyanide, M

Silver cyanide, AgCN

Sl sol  $m H_2O$ 

22+10-4 g sol in 1 liter of H<sub>2</sub>O at 1996

(Bottger, Z phys ch 1903, 46 603) 1 l solution in  $H_2O$  contains 0 000043 AgCN at 17 5° (Abegg and Cox, Z phy Ch 1903, **46** 11)

Solubility in  $H_2O$  at  $25^{\circ}=222+10$ mol per l (Lucas, Z anorg 1904, 41 198) Insol in dil acids Decomp by con

acids Not sol to any extent in HCN + AFreshly pptd AgCN is not dissolved I cold dil HNO<sub>3</sub>, but is attacked by verv d HNO<sub>3</sub> on boiling From dry AgCN is di solved 5% by boiling 1 hour with 1% HNO +Aq Conc HNO<sub>3</sub> dissolves more (Brunc B 1901, **34** 1605)

Sol in NH<sub>4</sub>OH+Aq Sol in boilii KCl, NaCl, CaCl<sub>2</sub>, BaCl<sub>2</sub>, or MgCl<sub>2</sub>+Aq, b very slowly sol therein at ord temp Sol  $Na_2S_2O_3$ ,  $K_4Fe(CN)_6$ ,  $(NH_4)_2CO_3$ ,  $(NH_4)_2SC$ 

NH<sub>4</sub>NO<sub>3</sub>, and NH<sub>4</sub> succenate+Aq, and large amt of hot NH<sub>4</sub>Cl+Aq (Wittstem Sol in KCN, NaCN, Ba(CN)<sub>2</sub>, Ca(CN or Sr(CN)<sub>2</sub>+Aq Insol in KOH, or NaO +AqSol in conc boiling AgNO<sub>3</sub>+A (Wohler)

Sol m 431 7 pts 5% NH<sub>4</sub>OH+Aq (egr 0 998) at 12°, in 184 5 pts 10% NH<sub>4</sub>OH Aq (sp gr 0 96) at 18° (I ongi, Gazz, c ıt 13 87)

Sl sol in Na citrate+Aq Sol in  $Hg(NO_3)_2+Aq$ 

1 l of a 3-N solution of AgNO<sub>3</sub> dissolv 3 1 216 g AgCN at 25° (Hellwig, Z ano 1900, **25** 177)

Very sol in  $(NH_4)_2S_2O_3+Aq$ (Roscheim and Steinhauser, Z anorg 1900, 105)

Moderately sol in liquid NH<sub>3</sub> Am Ch J 1898 **20** 829)

Sl sol in liquid HF (Franklin, Z ano 1905, 46 2)

Abundantly sol in quinoline at 60° (Var, C R 1893, 116 60)

SI sol in ethyl amine Chem 1907, 11 538) (Shinn, J ph

Insol in methyl acetate (Bezold, Disse 1906, Naumann, B 1909, 42 3790), etl 1

(Hamers, Dissert 1906, Naumann, acetate B 1910, 43 314)

Silver hydrogen cyanide, AgCN, HCN (Euler, B 1903, 36 1859)

Silver sodium cyanide, AgCN, NaCN

Sol in 5 pts H2O at 20° and in much less hot H<sub>2</sub>O Sol in 24 pts 85% alcohol at 20° (Baup, A ch (3) **53** 468)

Silver thallous cyanide, AgCN, TlCN

Easily sol in H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve 47 pts at 0°, and 74 pts at 16° (Fronmuller, B 11 92)

Silver tungsten cyanide See Tungstocvanide, silver

Silver cyanide ammonia, AgCN, NH<sub>3</sub>

Efflorescent Decomp on air Very sol in ammonia at -10° (Joannis, C R 1894, 118 1151)

Silver cyanide hydrazine, AgCN, N<sub>2</sub>H<sub>4</sub>

Decomp in the air Decomp by H<sub>2</sub>O (Franzen, Z anorg 1911, **70** 153)

Silver cyanide nitrate, 2AgCN, AgNO<sub>3</sub> Decomp by H<sub>2</sub>O

Sodium cyanide, NaCN

Sol in  $H_2O$  and 75% alcohol  $+\frac{1}{2}H_2O$ , and  $2H_2O$  Very sol in  $H_2O$ , sl sol in alcohol (Joannis, A ch (5) 26 484)

Sodium tungsten cyanide See Tungstocyanide, sodium

Sodium zinc cyanide, NaCN, Zn(CN)<sub>2</sub>+ 21/2H<sub>2</sub>O

Much more sol in H<sub>2</sub>O than the corresponding K Zn salt (Rammelsberg) +8H<sub>2</sub>O (Loebe, Dissert 1902)

cyanıde molybdenum dioxide, Sodium 4NaCN,  $\text{MoO}_2 + 6\text{H}_2\text{O}$ 

(Winkler, Dissert 1909)

Sol in H<sub>2</sub>O (Rosenheim, +14H<sub>2</sub>OGarfunkel and Kohn, Z anorg 1910, 65 174)

Sodium cyanide molybdenum dioxide hydroxylamine, 4NaCN, MoO2, NH2OH  $+H_2O$ 

As K comp (Winkler, Dissert 1909)

Strontium cyanide, Sr(CN)<sub>2</sub>+4H<sub>2</sub>O

Very unstable, very deliquescent, and sol in  $H_2O$  (Joannis, A ch (5) **26** 496)

Strontium tungsten cyanide See Tungstocyanide, strontium Strontium zinc cyanide, 2Sr(CN)<sub>2</sub>, 3Zn(CN)2+H2O

Sol in H<sub>2</sub>O and alcohol (Loebe, Dissert 1902)

Thallous cyanide, TICN

100 pts H<sub>2</sub>O dissolve 168 pts at 285° (Fronmuller, B 6 1178)

Thallothallic cyanide,  $Tl_2(CN)_4 = TlCN$ , TI(CN)<sub>3</sub>

Easily sol in H<sub>2</sub>O

100 pts H<sub>2</sub>O dissolve 27 3 pts at 30°, 15 3 pts at 12°, 97 pts at 0° (Fronmuller, B 11 92)

Thallous tungsten cyanide See Tungstocyanide, thallous

Thallous zinc cyanide, 2TlCN, Zn(CN)<sub>2</sub>

Easily sol in H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve 8 7 pts at 0°, 15 2 pts at 14°, and 29 6 pts at 31° (Fronmuller, B 11 92)

Tungsten cyanide with MCN See Tungstocyanide, M

Zinc cyanide, Zn(CN)<sub>2</sub>

Insol in H<sub>2</sub>O and alcohol Sol in alkalies Easily sol in KCN+Aq Sol in hot NH4 salts+Aq (Wittstein)

Easily sol m (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Gore ) Sol in KOH+Aq Solution is when less than 1 mol Zn(CN)<sub>2</sub> to 2 KOH is present When proportion \_ ZnO<sub>2</sub>H<sub>2</sub> soon separates

Sol in dil KCN+Aq (Sharwood, J

Am Chem Soc 1903, 25 587)

Sl sol in conc Zn salts+Aq 1 l conc Zn(C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>)<sub>2</sub>+Aq dissolves 4 g, and 1 l conc ZnSO<sub>4</sub>+Aq dissolves 2 g Zn(CN)<sub>2</sub> Insol in HCN+Aq Easily sol in dil acids (Joannis)

Very sol in liquid NH<sub>3</sub> Ch J 1898, **20** 830) (Franklin, Am

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate (Naumann, B 1910, **43** 314)

Zinc cyanide ammonia, Zn(CN)<sub>2</sub>, 2NH<sub>3</sub>

Decomp on air (Varet, C R 105 1070) +H<sub>2</sub>O Decomp on air Decomp by H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq (Varet)

Zinc cyanide dihydrazine, Zn(CN)2, 2N2H4 Decomp by H<sub>2</sub>O (Franzen, Z anorg 1911, **70** 153)

Cyanogen, CN

H<sub>2</sub>O absorbs 4½ vols CN gas at 20° Alcohol absorbs 23 vols, and ether 5 vols at the same temperature (Gay-Lussac)

The solution gradually decomposes, but this is prevented by traces of acids

328CYCLOTRIBORENE Cadmium diamine chromium sulphocyanide. 0 221 mol litre are dissolved in H<sub>2</sub>O at 0° (Naumann, Z Electrochem 1910, 16  $Cd(SCN)_2$ ,  $[Cr(NH_3)_2(SCN)_3]_2 + H_2O$ 177) Nearly insol in cold, sl sol in hot H<sub>2</sub>O Oil of turpentine absorbs 5 vols Sl sol in boiling alcohol (Christensen, J Lussac) Absorbed by many essential oils pr (2) 45 371) Very sol in CuCl<sub>2</sub>+Aq Absorbed with decomp by NH4OH+Aq ric  $\frac{}{[\operatorname{Cr}(\operatorname{NH}_3)_2(\operatorname{SCN})_3]_2}$ ,  $\operatorname{Cu}(\operatorname{SCN})_2$ , Cupric -----and other alkaline liquids Absorbed by and (Jacquemain, C R Insol in H<sub>2</sub>O or dil acids (Reinecke, A **100** 1006) **126** 116) Cyclotriborene, B<sub>3</sub>H<sub>3</sub> Ferric -----Insol in  $H_2O$ (Ramsav and Hatfield, Proc Chem Soc 1901, 17 152) Luteocobaltic --- $Co(NH_3)_6(SCN)_3[Cr(NH_3)_2(SCN)_3]_8$ Decamine cobaltic sulphite,  $Co_2(NH_3)_{10}(SO_3)_3 + 3H_2O$ As good as insol in cold H<sub>2</sub>O Sl sol i hot H<sub>2</sub>O and alcohol (Christensen, J pr (2 Sol in H<sub>2</sub>O (Vortmann and Magdeburg, B 22 2636) **45** 370) Decamine cobaltisulphurous acid Mercuric – Hg(SCN)<sub>2</sub> Insol in H<sub>2</sub>O (N) Cobaltic decamine cobaltisulphite, Insol in H<sub>2</sub>O and dil acids (Reinecke  $Co_2(NH_3)_{10}(SO_3)_6Co_2 + 8H_2O$ (Vortmann and Magdeburg, B 22 Potassium -**2635**) KSCN Properties as the NH<sub>4</sub> salt (N) Sodium decamine cobaltisulphite, Cr(NH<sub>3</sub>)<sub>2</sub>(SCN)<sub>3</sub>, KSCN, I As the NF  $Co_2(NH_3)_{10}(SO_3Na)_6 + 2H_2O$ salt (N) Sol in H<sub>2</sub>O (Vortmann and Magdeburg, B 22 2635) Sodium ----, NaSCN,  $Cr(NH_3)_2(SCN)_3$ Diamide, N<sub>2</sub>H<sub>4</sub> Sol in H<sub>2</sub>O, alcohol, and ether (Reinecke See Hydrazine cobaltic nitrite ammoniui Diamine Diamine chromium sulphocyanhydric nitrite, CO(NH<sub>3</sub>)<sub>2</sub>(NO<sub>2</sub>)<sub>3</sub>, NH<sub>4</sub>NO<sub>2</sub> acid, Cr(NH<sub>3</sub>)<sub>12</sub>(SCN)<sub>3</sub>, HSCN+H<sub>2</sub>O Sol in H<sub>2</sub>O (Frdmann) Sol in H<sub>2</sub>O (Nordenskield, Z anoig 1 130) — nitrite lead nitrite,  $2\text{Co}(\text{NH}_3) (\text{NO}_2)_3, \text{Pb}(\text{NO}_2)$ Diamine chromium diaquo sulphocyanide, Sol in hot H2O with partial decomp  $Cr(NH_3)_2(SCN)_3 + 2H_2O$ 

Sol in H<sub>2</sub>O from which it is pptd by con HCl+Aq (Nordenskiold, Z anoig 1 137)

Ammonium diamine chromium sulphocyanide, Cr(NH<sub>3</sub>) (SCN)<sub>4</sub>, NH<sub>4</sub>SCN

(Reinecke's salt) Quite easily sol in H<sub>2</sub>O, less in alcohol, and insol in benzene Slowly decomp by boiling HO or dil acids (Noidenskiold, Z anorg 1 130) +H<sub>2</sub>O Insol in absolute ether (Christen-

sen, J pr (2) 45 218)

Ammonium diamine chromium sulphocyanide | mann ) 10dide, Cr(NH<sub>3</sub>)<sub>2</sub>(SCN)<sub>3</sub>, NH<sub>4</sub>SCN, I

Barium -------,  $[Cr(NH_3) (SCN)_3]_2$ , Ba(SCN)<sub>2</sub> Sol in H<sub>2</sub>O and alcohol (N)

--- nitrite mercurous nitrite,  $2\text{Co}(\text{NH}_3)_2(\text{NO}_2)_3$ ,  $\text{Hg}_2(\text{NO}_1)$ Ppt Not sol in hot II O without decom

--- nitrite potassium nitrite,  $Co(NH_3)$  (NO) 3,  $KNO_2$ Sol in H () (Frdmain, J pi 97 38'

- nitrite silver nitrite,  $Co(NH_3)_2(NO_2)_3$ , AgNO Ppt Crystallises out of hot HO (Li

--- nitrite thallium nitrite.  $Co(NH_3)_2(NO_2)_3$ ,  $11NO_2$ Crystallises out of hot H<sub>2</sub>O without ( comp

Dichrocobaltic carbonate,  $C_0(NH_3)_3(OH)CO_3+1\frac{1}{2}H_2O$ Sol in H<sub>2</sub>O (Vortmann, B 15 1901)

Dichrocobaltic chloride, Co(NH<sub>3</sub>)<sub>3</sub>Cl<sub>3</sub>+H<sub>2</sub>O Quite sol in cold H2O, dil acids, conc

H<sub>2</sub>ŠO<sub>4</sub>, or dil alcohol

From solution in cone H<sub>2</sub>SO<sub>4</sub>, the salt is precipitated by much HCl+Aq Composition is Co(NH<sub>3</sub>)<sub>3</sub>(OH<sub>2</sub>)Cl<sub>3</sub> (Jorgensen, Z anorg 5 189)

- nitrate,  $Co(NH_3)_3(NO_3)_3+4H_2O$ 

Sol in H<sub>2</sub>O More sol in Deliquescent dil HNO<sub>3</sub>+Aq than praseocobaltic nitrate (Vortmann, B 15 1897)

Anhydrous Insol in H2O as such, but converted into above salt thereby (Jorgensen, Z anorg 5 186)

— nitrite,  $Co(NH_3)_3(NO_2)_3$ 

Difficultly sol in cold, but rather easily sol in hot H<sub>2</sub>O

- sulphate,  $[Co(NH_3)_3]_2(SO_4)_3+6H_2O$ Easily sol in H<sub>2</sub>O (Vortmann, B 15 1900)

--- sulphite,  $[Co(NH_3)_3]_2(SO_3)_3 + H_2O$ 

Nearly insol in cold, slowly decomp by hot H<sub>2</sub>O Decomp by acids or KOH+Aq Insol in cold, sol in warm NH4OH+Aq (Kunzel, J pr (1) 72 209) According to Geuther (A **128** 157), is a double salt- $[Co(N\dot{H}_3)_3]_2(SO_3)_3$ ,  $Co_2(SO_3)_3 + 2H_2O$ 

Didymium, Di

Slowly decomp by H O Insol in cold cone H<sub>2</sub>SO<sub>4</sub> Sol in dil acids

Compound of two elements, neodymium and praseodymium (v Welsbach, W A B 92 317)

Didymium bromide, DiBr<sub>3</sub>+6H<sub>2</sub>O

Very deliquescent, and sol in H<sub>2</sub>O (Cleve)

Didymium nickel bromide, 2DiBi<sub>3</sub> 3NiBr + 18H<sub>2</sub>O

Deliquescent Very sol in H<sub>2</sub>O (Frenchs and Smith, A 191 342)

Didymium zinc bromide, DiBi 3ZnBr<sub>2</sub>+ 12H<sub>2</sub>O

Extremely deliquescent (Cleve, Bull Soc (3) 43 361) 2D<sub>1</sub>Br<sub>3</sub>, 3Z<sub>n</sub>B<sub>12</sub>+36H () (ŀ and S)

Didymium chloride, DiCla

Anhydrous Deliquescent Sol in H<sub>2</sub>O and alcohol (Marignac) +6HODeliquescent H<sub>2</sub>O and alcohol (Marignac)

Didymium mercuric chloride, 2DiCl<sub>3</sub>, 9HgCl<sub>2</sub>+24H<sub>2</sub>O

More sol in H2O than the corresponding La salt (Marignac)

DiCl<sub>3</sub>, 4HgCl<sub>2</sub>+11H<sub>2</sub>O Not deliquescent Easily sol in H.O

Didymium stannic chloride See Chlorostannate, didymium

Didymium fluoride, DiF<sub>3</sub>+½H<sub>2</sub>O Precipitate (Cleve)

Didymium hydrogen fluoride, 2DiF<sub>3</sub>, 3HF Precipitate (Smith) Does not exist (Cleve)

Didymium potassium fluoride, DiF<sub>3</sub>, KF+  $H_2O$ 

Sol in  $H_2O$  (Brauner, B 15 114)  $+^{1/3}H_2O$  As above (B) 2D<sub>1</sub>F<sub>3</sub>, 3KF+H<sub>2</sub>O As above (B)

Didymium hydroxide, Di<sub>2</sub>O<sub>6</sub>H<sub>6</sub>

Insol in KOH, or NaOH+Aq, but is sl sol in NH<sub>4</sub>Cl+Aq (Rose) See also D12O3

Didymium penthydroxide,  $D_1O_4H_3 = D_{12}O_5$ , 3H<sub>2</sub>O

Precipitate (Brauner, B 15 113)

Didymium zinc iodide, 2DiI<sub>3</sub>, 3ZnI<sub>2</sub>+24H<sub>2</sub>O Very deliquescent (Frenchs and Smith)

Didymium oxide, Di<sub>2</sub>O<sub>3</sub>

With H<sub>2</sub>O slowly forms D<sub>12</sub>O<sub>6</sub>H<sub>6</sub>

Sol in conc, or dil mineral acids (Marignac), and in acetic acid (Heimann) Sol in

ammonium salts+Aq

Slightly more slowly sol in conc NH4NO3 +Aq than La<sub>2</sub>O<sub>3</sub> (Damour and Deville) A solution of NII<sub>4</sub>NO<sub>3</sub> in H<sub>2</sub>O that can dissolve 2.9 mols I  $_1$   $O_3$  dissolves 1 mol  $D_{12}O_3$  (Brauner, B 15 114)

Insol in acctone (Naumann, B 1904,

**37** 4329)

Didymium peroxide, Di<sub>4</sub>O<sub>1</sub> Sol in acids with decomp (Fierichs, B 7 799)

Not obtained by Cleve (B 11 910)

The contradictory statements concerning the composition of Di peroxide are owing to the fact that praseodidymium is the only one of the constituents of Di which easily forms a peroxide (v Welsbach)

Didymium pentoxide, Di O<sub>5</sub>

Sol in dil HNO3, or HSO4+Aq in the cold without evolution of gas, but gas is evolved if treated with conc acids Easily sol in in HF+Aq Sl sol in cold NH4NO3+Aq  $| = D_{14}O_{9}$  (Cleve)

Didymium oxybromide, DiOBr (Frenchs and Smith)

Didymium oxychloride, DiOCl

us Insol in  $H_2O$  (Smith) Sol in cold dil  $HNO_3+Aq$ Anhudrous  $+3H_{\bullet}O$ (Marignac) SI sol in HCl+Aq (Hermann)

Didymium oxysulphide, Di<sub>2</sub>O<sub>2</sub>S

Insol in H<sub>2</sub>O Sol in HCl+Ag without residue (Marignac)

Didymium sulphide, Di<sub>2</sub>S<sub>3</sub>

Decomp by dil acids Insol in H<sub>2</sub>O (Marignac, A ch (3) 38 159) Insol in acetone (Naumann, B 1904, **37** 4329)

Disulphuric acid, H<sub>2</sub>S<sub>2</sub>O<sub>7</sub> See Disulphuric acid

Dithionic acid (Hyposulphuric acid),

Known only in aqueous solution, which is stable only when dil Can be evaporated in vacuo until sp gr = 1 347, but decomp upon further evaporation (Welter and Gay-Lussac, A ch 10 312)

#### Dithionates

All dithionates are sol in H<sub>2</sub>O

Aluminum dithionate,  $Al_2(S_2O_6)_3 + 18H_2O$ 

Extremely deliquescent Easily sol in H<sub>2</sub>O or absolute alcohol (Kluss, A 246 218)

Aluminum ammonium dithionate

 $Al_2(S_2O_6)_3$ ,  $(NH_4)_2S_2O_6+27H_2O$ Sl deliquescent Sol in H<sub>2</sub>O (Kluss, A **246** 303 )

Ammonium dithionate, (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>6</sub>

Very sol in H<sub>2</sub>O Sol in 0.79 pt H<sub>2</sub>O at 16°, with reduction of temp Not decomp on boiling Insol in absolute alcohol (Heeren, Pogg 7 172)

Contains 1/2H2O Sol in 0 56 pt H2O at

19° (Kluss, A 246 194)

Ammonium cadmium dithionate.  $2(NH_4)_2S_2O_6$ ,  $CdS_2O_6+4\frac{1}{2}H_2O$ Sol in H<sub>2</sub>O (Kluss, A 246 298)

Ammonium cobalt dithionate, 9(NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>6</sub>,  $2\text{CoS}_2\text{O}_6 + 16\frac{1}{2}\text{H}_2\text{O}$ Sol in H<sub>2</sub>O (Kluss)

Ammonium cupric dithionate,  $(NH_4)_2S_2O_6$ ,  $2\text{CuS}_2\text{O}_6 + 8\text{H}_2\text{O}$ Sol in H<sub>2</sub>O

Ammonium ferrous dithionate, 3(NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>5</sub>,  $Fe_2S_2O_6+6H_2O$ 

Sol in H<sub>2</sub>O (Kluss, A 246 300)

 $9(NH_4)_2S_2O_6$ ,  $2Fe_2S_2O_6+16\frac{1}{2}H_2O$ Sol in H<sub>2</sub>O (Kluss)

Ammonium manganous dithionate, 9(NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>6</sub>, 2MnS<sub>2</sub>O<sub>6</sub> Sol in H<sub>2</sub>O (Kluss, A 246 301)

Ammonium nickel dithionate, 9(NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>6</sub>,  $2N_1S_2O_6+16\frac{1}{2}H_2O$ Sol in H<sub>2</sub>O (Kluss)

Ammonium zinc dithionate,  $5(NH_4)_2S_2O_6$ .  $ZnS_2O_6 + 9H_2O$ 

Easily sol in H<sub>2</sub>O (Kluss, A 246 296)  $9(NH_4)_2S_2O_6$ ,  $2ZnS_2O_6+16\frac{1}{2}H_2O$  Easily sol in  $H_2O$  (Kluss)

Ammonium dithionate chloride, (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>5</sub>, NH<sub>4</sub>Cl

Sol in H<sub>2</sub>O (Fock and Kluss, B 24 3017)

Barium dithionate, BaS<sub>2</sub>O<sub>6</sub>+2H<sub>2</sub>O

Not efflorescent Sol in 7 17 pts H<sub>2</sub>O at 8°, 4 04 pts at 18°, and 1 1 pts H<sub>2</sub>O at 100° Insol in alcohol (Gay-Lussac, Heeren) Sol in 0994 pt H2O at 102°, the boilingpoint of the sat solution Soc (2) 44 166) (Baker, Bull

Insol in methyl acetate (Naumann, B

1909, 42 3790) +4H<sub>2</sub>O Very efflorescent (Heeren)

Barium magnesium dithionate, BaMg(S<sub>2</sub>O<sub>6</sub>)<sub>2</sub>  $+4H_2O$ 

Sol in H<sub>2</sub>O (Schiff, A 118 97)

Barium rubidium dithionate, BaRb<sub>4</sub>(S<sub>2</sub>O<sub>6</sub>)<sub>2</sub>  $+H_{2}O$ 

Sol in H<sub>2</sub>O Solubility is diminished by presence of excess of Rb<sub>2</sub>SO<sub>4</sub>, but increased by BaS<sub>2</sub>O<sub>6</sub> (Bodlander, Chem Ztg 14 1140)

Barium sodium dithionate,  $BaNa_4(S_2O_6)_3$ +  $4H_{9}O$ 

Sol in H<sub>2</sub>O Decomp by recrystallisation (Kraut, A 118 95) +6H<sub>2</sub>O (Schiff)

Barium dithionate chloride, BaS<sub>2</sub>O<sub>6</sub>, BaCl<sub>2</sub>+  $4H_2O$ 

(Fock and Kluss, B 23 3001)

Bismuth dithionate, basic,  $B_{12}O_3$ ,  $S_2O_5$ +  $+5H_2O$ 

Efflorescent Insol in H<sub>2</sub>O, but decomp thereby into the following salt Easily sol in dil acids, especially HCl+Aq (Kluss, A **246** 183)

 $4B_{12}O_8$ ,  $3S_2O_5+5H_2O$  Insol in  $H_2O$  Sol

in dil acids (Kluss)

#### Cadmium dithionate

Deliquescent in moist air, very sol in H<sub>2</sub>O (Heeren, Pogg 7 183)

CdS<sub>2</sub>O<sub>6</sub>, Cadmium dithionate ammonia, 4NH<sub>2</sub>

Decomp by alcohol, sol in NH4OH+Aq, but decomp on heating (Rammelsberg, Pogg 58 298)

Cæsium dithionate, Cs<sub>2</sub>S<sub>2</sub>O<sub>6</sub>

Easily sol in H<sub>2</sub>O (Chabrié, C R 1901. **133** 297)

Calcium dithionate, CaS<sub>2</sub>O<sub>6</sub>+4H<sub>2</sub>O Sol m 2 46 pts H<sub>2</sub>O at 19°, 0 8 pt at 100° Insol m alcohol (Heeren, Pogg 7 178) Insol m acetone (Naumann, B 1904, **37** 4329)

Cerous dithionate,  $Ce_2(S_2O_6)_8 + 24H_2O$ Very sol in H<sub>2</sub>O (John) +3, and 5H<sub>2</sub>O (Wyrouboff)

Chromic dithionate,  $Cr_2(S_2O_6)_3+18H_2O$ Sol in H<sub>2</sub>O and alcohol (Kluss, A 246 189)  $3Cr_2O_8$ ,  $4S_2O_5+24H_2O$  Easily sol in  $H_2O$ 

or alcohol Insol in ether (Kluss)

Cobaltous dithionate,  $CoS_2O_6+6H_2O$ 

Not deliquescent Very sol in H<sub>2</sub>O (Heeren) Sol in 049 pt H<sub>2</sub>O at 19° Sol +8H<sub>2</sub>O in absolute alcohol (Kluss, A 246 203)

Cupric dithionate basic, 4CuO, S<sub>2</sub>O<sub>5</sub>+4H<sub>2</sub>O Very sl sol in H<sub>2</sub>O (Heeren, Pogg 7 18)

Insol in H2O, easily sol in dil acids

(Kluss, A 246 208)

+3H<sub>2</sub>O Insol in H<sub>2</sub>O and NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+ Aq, sol in traces in conc CuS<sub>2</sub>O<sub>6</sub>+Aq Easily sol in dil acids, even HC<sub>2</sub>H<sub>5</sub>O<sub>2</sub>, or  $H_2S_2O_6+Aq$  (Kluss)

Cupric dithionate, CuS<sub>2</sub>O<sub>6</sub>+4H<sub>2</sub>O

Not efflorescent Very sol in H<sub>2</sub>O Insol in alcohol (Heeren) (Efflorescent Sol in 064 pt  $+5\mathrm{H}_2\mathrm{O}$ H<sub>2</sub>O at 185° (Kluss, A 246 204)

Cupric dithionate ammonia, CuS<sub>2</sub>O<sub>6</sub>, 4NH<sub>8</sub> Difficultly sol in cold H<sub>2</sub>O, moderately sol in H<sub>2</sub>O at 40° Decomp by much H<sub>2</sub>O or by heating the solution above 60° Decomp by (Heeren) HCl+Aq

Can be recryst from NH<sub>4</sub>OH+Aq Sol in liquid NH<sub>3</sub> (Horn, Am Ch J

1908, 39 213) CuS<sub>2</sub>O<sub>6</sub>, 9NH<sub>3</sub> Decomp at ord temp in the air

Insol in liquid NH<sub>2</sub> (Horn, Am Ch J 1908, **39** 213)

Didymium dithionate,  $D_{12}(S_2O_6)_2 + 24H_2O$ Extremely sol in H<sub>2</sub>O (Cleve)

Erbium dithionate, Er<sub>2</sub>(S<sub>2</sub>O<sub>6</sub>)<sub>3</sub>+18H<sub>2</sub>O Very sol in H<sub>2</sub>O or alcohol, insol in ether (Hoglund)

Glucinum dithonate, basic, 5GlO, 2S<sub>2</sub>O<sub>5</sub>+ 14H<sub>2</sub>O

Easily sol in H<sub>2</sub>O and absolute alcohol (Kluss, A 246 196)

Iron (ferrous) dithionate,  $FeS_2O_6+5H_2O$ 

Very sol in H<sub>2</sub>O Insol in alcohol Decomp in aqueous solution into FeSO4 by boiling (Heeren, Pogg 7 181) +7H<sub>2</sub>O Sol in 059 pt H<sub>2</sub>O at 185°

(Kluss, A 246 198)

Iron (ferric) dithionate, basic, 8Fe<sub>2</sub>O<sub>3</sub>, S<sub>2</sub>O<sub>5</sub>+

Insol in H<sub>2</sub>O or alcohol Very sl sol in H<sub>2</sub>S<sub>2</sub>O<sub>6</sub>+Aq, easily sol in HCl+Aq (Heeren)

Contains 14H<sub>2</sub>O (Kluss, A **246** 200) 3Fe<sub>2</sub>O<sub>8</sub>, S<sub>2</sub>O<sub>5</sub>+8H<sub>2</sub>O Insol in H<sub>2</sub>O Easily sol in acids (Kluss, A 246 201)

Lanthanum dithionate,  $La_2(S_2O_6)_3+16H_2O_7$ and 24H<sub>2</sub>O

Sol in H<sub>2</sub>O (Cleve)

Lead dithionate, basic, 2PbO, S<sub>2</sub>O<sub>5</sub>+2H<sub>2</sub>O Very difficultly sol in H<sub>2</sub>O Pogg **7** 171) (Heeren, 10PbO,  $S_2$ O<sub>5</sub>+2H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Heeren)

Lead dithionate, PbS<sub>2</sub>O<sub>6</sub>+4H<sub>2</sub>O

Easily sol in H<sub>2</sub>O (Heern) Sol in 0 869 pt H<sub>2</sub>O at 20 5° C N 36 203) (Baker,

Lead strontium dithionate, (Pb,Sr)S2O6+  $4H_2O$ (Rammelsberg)

Lithium dithionate, Li<sub>2</sub>S<sub>2</sub>O<sub>6</sub>+2H<sub>2</sub>O

Sl deliquescent, and easily sol in H O Insol in alcohol (Rammelsberg)

Magnesium dithionate, MgS<sub>2</sub>O<sub>6</sub>+6H<sub>2</sub>O Sol in 085 pt H<sub>2</sub>O at 13° Solution can be boiled without decomp (Heeren, Pogg 7 179)

Sol in 0 692 pt H<sub>2</sub>O at 17° (Baker, C N **36** 203)

Manganous dithionate, MnS<sub>2</sub>O<sub>6</sub>+3H<sub>2</sub>O Sol in H<sub>2</sub>O (Kraut, A 118 98) +6H<sub>2</sub>O Efflorescent Sol in H<sub>2</sub>O (Mar Ignac, J B 1855 380)

Mercurous dithionate, Hg<sub>2</sub>S<sub>2</sub>O<sub>6</sub>

SI sol in cold, decomp by hot H<sub>2</sub>O (Rammelsberg)

Mercuric dithionate, basic, 5HgO, 2S<sub>2</sub>O<sub>5</sub> Sl sol in cold, decomp by hot H<sub>2</sub>O Easily sol in HNO<sub>3</sub>+Aq (Rammelsberg, Pogg 59 472)

Mercuric dithionate,  $HgS_2O_6+6H_2O$ Decomp by H<sub>2</sub>O or on standing (Kluss, A 246 216)

Nickel dithionate, NiS<sub>2</sub>O<sub>6</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Topsoe) Sol in 0 897 pt H<sub>2</sub>O at 12° (Baker, C N **36** 203)

Nickel dithionate ammonia, NiS<sub>2</sub>O<sub>6</sub>, 6NH<sub>3</sub> Can be recryst from warm NH<sub>4</sub>OH+Aq Decomp by H<sub>2</sub>O (Rammelsberg, Pogg **58** 295)

Nickel dithionate hydrazine,  $N_1S_2O$ ,  $3N_2H_4$ 

Unstable Sol in NH<sub>4</sub>OH+Aq (Franzen, Z anorg 1908, 60 267)

Potassium dithionate, K<sub>2</sub>S<sub>2</sub>O<sub>6</sub>

Not deliquescent Sol in 16 5 pts H<sub>2</sub>O at 16°, and 158 pts at 100° Insol in alcohol (Heeren)

Sol in 2 65 pts H<sub>2</sub>O at 16° (Dumas) Sol in 165 pts H<sub>2</sub>O at 16°, in 158 pts boiling  $H_2O$ Insol in alcohol (Heeren, Pogg 1826, 7 72)

Praseodymium dithionate,  $Pr_2(S_2O)_3+$  $12H_2O$ 

Deliquescent, very sol in H<sub>2</sub>O (von Schule, Z anorg 1898, 18 361)

Rubidium dithionate, Rb.S O. Sol in HO (Topsoe and Christiansen)

Ruthenium dithionate, RuS O<sub>6</sub>

Ppt from 1q sol by alcohol (Antony, Gazz ch it 1898, 28 139-142)

Silver dithionate, Ag<sub>2</sub>S O<sub>6</sub>+2H O Sol in 2 pts H<sub>2</sub>O at 16° Sol in NH<sub>4</sub>OH+ Aq (Heeren, Pogg 7 191)

Silver sodium dithionate, AgS O6, Na<sub>2</sub>S<sub>2</sub>O6  $+4H_2O$ 

Sol in H<sub>2</sub>O (Kraut, A 118 96)

Silver dithionate ammonia, Ag S O<sub>6</sub>, 4NH<sub>3</sub> Sol in H<sub>2</sub>O without decomp (Rammelsberg, Pogg 58 298)

Sodium dithionate, Na<sub>2</sub>S<sub>2</sub>O<sub>6</sub>+2H<sub>2</sub>O

Sol in 21 pts H<sub>2</sub>O at 16°, and in 11 pts

boiling  $H_2O$  Insol in alcohol Furning HCl+Aq precipitates the salt from aqueous solution (Heeren, Pogg 7 76)

+6H<sub>2</sub>O (Kraut, A 117 97)

Strontium dithionate, SrS<sub>2</sub>O<sub>6</sub>+4H<sub>2</sub>O Sol in 45 pts H<sub>2</sub>O at 16°, 15 pts boiling  $_{\mathrm{H_2O}}$ Insol in alcohol (Heeren, Pogg 7 177)

Thallous dithionate, Tl<sub>2</sub>S<sub>2</sub>O<sub>6</sub> Very easily sol in H<sub>2</sub>O (Werther)

Thallous dithionate sulphate. 3Tl<sub>2</sub>S<sub>2</sub>O<sub>6</sub> Tl<sub>2</sub>SO<sub>4</sub> Sol in H<sub>2</sub>O (Wyrouboff, Ann Phys

Beibl 8 802) Thorum dithionate,  $Th(S_2O_6)_2+4H_2O$  (?)

Very unstable (Kluss, A 246 188)

Tin (stannous) dithionate, SnS<sub>2</sub>O<sub>6</sub> Known only in solution 8SnO,  $S_2O_5 + 9H_2O$  Insol in  $H_2O$ in dil acids, even dithionic acid+Aq (Kluss A **246** 186)

Uranous dithionate,  $6UO_2$ ,  $S_2O_5 + 10H_2O$ Insol in H<sub>2</sub>O, sol in warm HCl+Aq (Kluss, A 246 191) As above  $7UO_{2}, S_{2}O_{5} + 8H_{2}O$  $8UO_2$ ,  $S_2O_5 + 21H_2O$ As above

Divanadyl dithionate,  $(VO_2)_2S_2O_6$ Sol in H<sub>2</sub>O (Bevan, C N **38** 294)

Yttrium dithionate,  $Y_2(S_2O_6)_3+18H_2O$ 

Not deliquescent Easily sol in H<sub>2</sub>O, but difficultly sol in alcohol Insol in ether (Cleve, Bull Soc (2) 21 344)

Zinc dithionate,  $ZnS_2O_1 + 6HO$ Very sol in  $\rm H_2O,\ decomp$  on boiling (Heeren, Pogg  $\, 7\,$  183 )

Zinc dithionate ammonia, ZnS O<sub>1</sub>, 4NH<sub>3</sub>

Decomp with H<sub>2</sub>O, sol in warm, less sol in cold NH4OH+Aq (Rammelsbeig, Pogg 58 297) +HOPpt (Ephraim, B 1915, 48 640)

Dysprosium, Dy

(Lecoq de Boisbaudran, C R 102 1005)

Dysprosium chloride, DyCl<sub>3</sub>+6H<sub>2</sub>O Deliquescent, sol in H<sub>2</sub>O (Urbain, C R 1908, **146** 129)

#### Europium

## Europium chloride, EuCl<sub>2</sub>

Sol in H<sub>2</sub>O Stable in very dil aqueous solution, but decomp when the solution is concentrated at 100° (Urbain, C R 1911, **153** 1157)

### Erbium, Er

Decomposes H<sub>2</sub>O (Hoglund)

The so-called element "erbium ' can be further decomp into simple substances (Kruss, Z anorg 3 353)

### Erbium bromide, ErBr<sub>3</sub>+9H<sub>2</sub>O

Very deliquescent

#### Erbium chloride, ErCl<sub>3</sub>+6H<sub>2</sub>O

Deliquescent Sol in H<sub>2</sub>O and alcohol (Hoglund)

## Erbium mercuric chloride, ErCl<sub>3</sub>, 5HgCl<sub>2</sub>+

Deliquescent (Cleve)

#### Erbium fluoride, ErF<sub>3</sub>

Insol in H<sub>2</sub>O Verv sl sol in HF+Aq (Hoglund, Bull Soc (2) 18 193)

#### Erbium hydroxide, Er<sub>2</sub>O(OH)<sub>4</sub>

Insol in KOH, or NaOH+Aq

Easily sol in icids Decomp ammonium salts by boiling therewith

#### Erbium iodide, l'il.

Very deliquescent Very sol in H<sub>2</sub>O and alcohol Insol in ether (Hoglund)

## Erbium oxide, lei ()

Difficultly but completely sol in warm HNO3, H SO4, or HCl+Aq Decomp NH4 salts by boiling therewith

## Erbium peroxide, li ()

Promit ite (Cleve, Bull Soc (2) 43 53)

#### Erbium sulphide

Decomp in moist air and with reads

## Erythrochromium bromide,

 $HOC_1(NH_3)_1(B_1 + H)O$ 

Insol in IIBi+ Very cisily sol in H O Aq Sol in  $NH_1OH + \Lambda q$  (Jorgensen, J pr (2) **25** 598)

#### — bromide, basic, $HOC_{12}(NH_3)_{10}(OH)B_{14}$ +H O

Very sol in H<sub>2</sub>O (Jorgensen)

— chlorogodide,  $HOCr_2(NH_3)_{10}CII_4 + H_2O$ Sol in HO and in alcohol (Jorgensen) | (Fremy, l c)

Erythrochromium chloroplatinate,  $[HOCr (NH_3)_{10}]_2 (PtCl_6)_5 + 10H_2O$ Nearly insol in H<sub>2</sub>O (Jorgensen)

--- dithionate, basic,

 $HOCr_2(NH_3)_{10}(S_2O_6)_2(OH) + 2H_2O$ Insol in H<sub>2</sub>O Easily sol in very dil HNO<sub>8</sub>, HBr, HCl+Aq Sol in conc NH<sub>4</sub>Cl +Aq (Jorgensen)

- nitrate,  $HOCr_2(NH_3)_{10}(NO_3)_5 + H_2O$ 

Easily sol in H<sub>2</sub>O Insol in dil HNO<sub>8</sub>+ Aq Sol in conc HNO3 with decomp Very sol in dil NH4OH+Aq Insol in alcohol (Jorgensen)

- nitrate, basic, HOCr<sub>2</sub>(NH<sub>8</sub>)<sub>10</sub>(NO<sub>8</sub>)<sub>4</sub>OH  $+3\frac{1}{2}H_{2}O$ 

Sol in cold  $H_2O$  (Jorgensen)

- sulphate,  $[HOCr_2(NH_3)_{10}]_2(SO_4)_5$ Nearly insol in H<sub>2</sub>O (Jorgensen)

#### Tetraferriammonium, Fe<sub>2</sub>N See Iron nitride

#### Ferric acid

#### Barium ferrate, BaFeO<sub>4</sub>+H O

Ppt Can be boiled for some time with H O without decomp Decomp by mineral acids Sol in dil acetic acid (Fremy, A ch (3) **12** 373)

Insol in HO, not readily acted upon by acids when dry (Rosen, J Am Chem Soc 1895, 17 766)

Ppt Easily decomp by reids (Moesei, Arch Phurm 1895, **233** 526)

Insol in acctone (Naumann, B 1904, 37 4329)

## Calcium ferrate, C il 2O4

Sol m II O (Rosell, J Am Chem Soc 1895 **17** 760–69)

#### Potassium ferrate, Is I(1)4

Very deliquescent - Lisily sol in cold H O with evolution of much heat. Decomp by standing or warning. Decomp by reads or all dies (Liemy, A ch (5) 12 569)

Sol in II O, insol in alcohol (Mocsei,

Arch Phum 1895, 233 524)
Quielly decomp by potassium tartitie or recente, sugar, or albumen without separation of I c O(II), by alcohol with separation of  $I \in O_i H_i$ Pot issum oxilite, acctate, formate, and benzoate, also citrate decomp much more slowly. Insol in cone KOH+ Aq (Wackenroder, A 33 41)

#### Sodium ferrate, Nal eO4

Sol in HO and in cone NaOH+Aq

Strontium ferrate, SrFeO4

Sl sol in H<sub>2</sub>O by which it is decomp Decomp by acids

Sol in aqueous solutions of Na aud K salts with partial decomp

Insol in sat SrBr<sub>2</sub>+Aq, alcohol and ether (Eidmann, B 1903, **36**, 2290)

### Ferricomolybdic acid

Ammonium ferricomolybdate, 3(NH<sub>4</sub>)<sub>2</sub>O, Fe<sub>2</sub>O<sub>3</sub>, 12MoO<sub>3</sub>+19H<sub>2</sub>O Ppt. (Hall J Am Chem Soc 1907 39

Ppt (Hall, J Am Chem Soc 1907, 29 697)

Ferricyanhydric acid,

 $H_3Fe(CN)_3$ , (or  $H_6Fe_2(CN)_{12}$ )

Easily sol in H<sub>2</sub>O or alcohol Solution decomposes slowly by standing, more rapidly by heating Insol in ether

#### Ferricyanides

The alkalı, and alkalıne-earth ferricyanides are sol in  $H_2O$ , the others are insol. The ferricyanides of metals, the oxides of which are sol in  $NH_4OH$ , or KOH+Aq, are themselves sol in those reagents

Ammonium ferricyanide,  $(NH_4)_{\delta}Fe(CN)_{\delta}+3H_2O$ 

Permanent Readily sol in H<sub>2</sub>O (and alcohol?)

Ammonium ferrous ferricyanide, NH<sub>4</sub>FeFe(CN)<sub>6</sub>+1½H<sub>2</sub>O

Sol in  $H_2O$  and not pptd by alcohol from aqueous solution More stable than the corresponding K salt

Ammonium lead ferricyanide, NH<sub>4</sub>PbFe(CN)<sub>6</sub>+3H<sub>2</sub>O

Ammonium potassium ferricyanide, (NH<sub>4</sub>)<sub>2</sub>KFe(CN)<sub>6</sub>

Sol in  $H_2O$  (Schaller, Bull Soc (2) 1 275)

Barium ferricyanide,  $Ba_3[Fe(CN)_b]_2+20H_2O$ 

Easily sol in H<sub>2</sub>O, insol in alcohol (Schuler, W A B 77 692)

Barium potassium ferricyanide,  $BaKFe(CN)_6 + 3H_2O$ 

Permanent Easily sol in H<sub>2</sub>O, less in alcohol

Barium ferricyanide bromide,  $Ba_3[Fe(CN)_6]$ ,  $2BaBr_2+20H_2O$ 

Easily sol in  $H_2O$  Boiling alcohol does not dissolve out  $BaBr_2$  (Rammelsberg, J pr (2) 39 463)

Bismuth ferricyanide, Bis[Fe(CN)6]5

Insol in H<sub>2</sub>O, but decomp by boilt therewith (Muir, Chem Soc **32** 40)

Cadmium ferricyanide ammonia, Cd<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>, 6NH<sub>3</sub>+3H<sub>2</sub>O

Effloresces to form—  $Cd_3[Fe(CN)]_2$ ,  $4NH_3+2H_2O$  Inso- $H_2O$  (Wyrouboff, A he (5) 10 413)

Calcium ferricyanide, Ca<sub>8</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>+1 or 12H<sub>2</sub>O

Deliquescent Sol in H2O and dil alcoho

Calcium potassium ferricyanide,

Sol in H<sub>2</sub>O

Cerous ferricyanide,  $CeFe(CN)_6+4H_2O$ Sol in  $H_2O$ , easily decomp (John)

Chromic ferricyanide (?)
Ppt

Cobaltous ferricyanide, Co<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub> Insol in H<sub>2</sub>O and HCl+Aq Sol in NH<sub>4</sub>OH+Aq

Cobaltous ferricyanide ammonia, Co<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>, 4NH<sub>3</sub>+6H<sub>2</sub>O

Cobaltic ferricyanide ammonia

See Luteo,- purpureo,- etc cobaltic ferr
cyanide

Cuprous ferricyanide, (Cu<sub>2</sub>)<sub>8</sub>[Fe(CN)<sub>1</sub>]
Sol in NH<sub>4</sub>OH+Aq, insol in NH<sub>4</sub> salts
Aq (Wittstein)

Cupric ferricyanide, Cu<sub>3</sub>[Fe(CN)<sub>c</sub>]<sub>2</sub>
Insol in H<sub>2</sub>O or NH<sub>4</sub> salts+Aq Sol i
NH<sub>4</sub>OH, and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Wittstein
Insol in HCl+Aq

Iron (ferrous) ferricyanide,  $l \in {}_3[\operatorname{Fe}(CN)_i]_2$   $xH_2O$ 

(Turnbull's blue) Properties as ferriferrocyanide (Prussian blue), with which it is perhaps identical (Gintl, Z an il 21 110

Iron (ferrosoferric) ferricyanide,  $Fe_{13}(CN)_{36} = Fe_{4}^{11}Fc_{3}^{11}[Fe(CN)_{f}]_{f}$ 

(Prussian green) Insol in H<sub>2</sub>O or cond HCl+Aq, but slowly decomp by boilin therewith

 $Fe_3(CN)_8+4H_2O = Fe_3^{i}Fe_3^{i}[Fe(CN)_c]_4+12H_2O$  Properties as above (Reynold-Chem Soc 54 767)

Iron (ferrous) potassium ferricyanide,

KFe<sub>2</sub>(CN)<sub>6</sub> = KFeFe(CN)<sub>6</sub>+4, or 3H<sub>2</sub>O (Soluble Prussian blue) Sol in H<sub>2</sub>O, bu insol in salts+Aq or alcohol Salt of the same composition, called "Williamson's blue," is insol in  ${\rm H_2O}$ 

Lead ferricyanide, basic,  $Pb_3[Fe(CN)_6]_2$ ,  $3PbO_2H_2+11H_2O$  (Schuler)

Lead ferricyanide,  $Pb_{s}[Fe(CN)_{s}]_{2}+16H_{2}O$ Sl sol in  $H_{2}O$ , more sol in hot, than cold  $H_{2}O$ , but decomp on boiling (Gmelin)  $+4H_{2}O$  Easily sol in  $H_{2}O$ , sl sol in alcohol (Schuler, W A B 77 692)

Lead potassium ferricyanide, PbKFe(CN)<sup>6</sup> +3H<sub>2</sub>O

Sol in 475 pts H<sub>2</sub>O at 16°, and the solution decomp on standing (Schuler) +1½H<sub>2</sub>O Efficiescent Much more sol in H<sub>2</sub>O than the Pb salt Insol in alcohol (Wyrouboff)

Lead ferricyanide nitrate, Pb<sub>3</sub>[Fe(CN)<sub>r</sub>]<sub>2</sub>, Pb(NO<sub>3</sub>)<sub>2</sub>+12H<sub>2</sub>O Sol in 13 31 pts H<sub>2</sub>O at 16° (Schuler) +11H<sub>2</sub>O (Joannis, A ch (5) **26** 528)

 $\begin{array}{ll} \mbox{Magnesium ferricyanide,} & Mg_{\delta}[Fe(CN)_{\delta}]_{2} \\ \mbox{Sol in } H_{2}O \end{array}$ 

Magnesium potassium ferricyanide, MgKFe(CN)<sub>6</sub> (Reindel, J pr 103 166)

Manganous ferricyanide, Mn<sub>5</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>
Insol in H<sub>2</sub>O, acids, NH<sub>4</sub>OH, or NH<sub>4</sub> salts
+Aq

Mercurous ferricyanide, Hg<sub>8</sub>Fe(CN)<sub>6</sub>
Ppt (Fernekes, J Am Chem Soc 1906, 28 604)

Mercuric ferricyanide,  $Hg_{\mathfrak{g}}[Fe(CN)_{\mathfrak{g}}]_2$ Very sol in  $H_2O$  Solution quickly decomp (Fernekes, J Am Chem Soc 1906, **28** 603)

Nickel ferricyanide ammonia, Ni<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>, 4NH<sub>3</sub>+H<sub>2</sub>O

Sol in NII<sub>4</sub>OH+Aq (Reynoso, A ch (3) 30 254)

Nickel ferricyanide, Ni<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>(?) Ppt Insol in HCl+Aq

Potassium ferricyanide,  $K_3Fe(CN)_6$ , (or  $K_6Fe_2(CN)_{12}$ )

Permanent Lasily sol in HO

100 pts H<sub>2</sub>O dissolve pts K<sub>8</sub>Fe(CN)<sub>6</sub> at t°

| t°  | Pts<br>salt | t    | Pts<br>salt | t     | Pts<br>salt |
|-----|-------------|------|-------------|-------|-------------|
| 4 4 | 33 0        | 15 6 | 40 8        | 100   | 77 5        |
| 10  | 36 6        | 37 8 | 58 8        | 104 4 | 82 6        |

(Wallace, Chem Soc 7 80)

100 pts H<sub>2</sub>O at 13° dissolve 38 pts, and the solution has sp gr = 1 1630 (Schiff, A 113

350) 1 l sat solution in H O at 25° contains 385 5 g K₃Fe(CN)₅ (Grube, Z Electrochem 1914, 20 342)

Sp gr of K<sub>8</sub>Fe(CN)<sub>6</sub>+Aq at 13°

| %<br>salt | Sp gr  | %<br>salt | Sp gr  | %<br>salt | Sp gr  |
|-----------|--------|-----------|--------|-----------|--------|
| 1         | 1 0051 | 11        | 1 0595 | 21        | 1 1202 |
| 2         | 1 0103 | 12        | 1 0653 | 22        | 1 1266 |
| 3         | 1 0155 | 13        | 1 0712 | 23        | 1 1331 |
| 4         | 1 0208 | 14        | 1 0771 | 24        | 1 1396 |
| 5         | 1 0261 | 15        | 1 0831 | 25        | 1 1462 |
| 6         | 1 0315 | 16        | 1 0891 | 26        | 1 1529 |
| 7         | 1 0370 | 17        | 1 0952 | 27        | 1 1596 |
| 8         | 1 0426 | 18        | 1 1014 | 28        | 1 1664 |
| 9         | 1 0482 | 19        | 1 1076 | 29        | 1 1732 |
| 10        | 1 0538 | 20        | 1 1039 | 30        | 1 1802 |

(Schiff)

Sp gr of K<sub>8</sub>Fe(CN)<sub>6</sub>+Aq at 25°

| Concentration of K <sub>3</sub> Fe(CN) <sub>6</sub><br>+Aq | Sp gr                                |
|------------------------------------------------------------|--------------------------------------|
| 1—normal  1/2— "  1/4 "  1/8— "                            | 1 0574<br>1 0289<br>1 0143<br>1 0092 |

(Wagner, Z phys Ch 1890, 5 37)

Sat  $K_3Fe(CN)_6+Aq$  boils at 104 4° (Wallace)

1 l sat solution at 25° of  $K_3Fe(CN)_6+K_4Fe(CN)_6$  contains 338 l g  $K_3Fe(CN)_6$  and 79 02 g  $K_4Fe(CN)_6$  (Grube)

Solubility of  $K_3$ Fe(CN)<sub>6</sub>+ $K_4$ Fe(CN)<sub>6</sub> in KOH + Aq at 25°

| кон                       | g per l               |                         |  |
|---------------------------|-----------------------|-------------------------|--|
| Normality                 | K₃Fe(CN)6             | K₄Fe(CN)6               |  |
| 0 4687<br>0 9628<br>1 949 | 309<br>275 3<br>200 8 | 66 64<br>55 19<br>35 95 |  |

(Grube)

## Solubility in KOH+Aq at 25°

| KOH Normality | g k <sub>3</sub> Fe(CN) <sub>6</sub> per l |
|---------------|--------------------------------------------|
| 0 4687        | 342 7                                      |
| 0 9628        | 302 3                                      |
| 1 949         | 215 1                                      |

(Grube, Z Electrochem, 1914, 20 342)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828)

Insol in absolute alcohol, and only sl sol in dil alcohol

Sol in acetone (Naumann, B 1904, 37 4328)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1910, 43 314)

Insol in benzonitrile (Naumann, B 1914. 47 1370)

## Potassium sodium ferricyanide, $KNa_2Fe(CN)_6$

Sol in  $H_2O$  K NaFe(CN)<sub>6</sub> Sol in  $H_2O$   $K_3$ Na<sub>5</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub> Sol in  $H_2O$  $+3H_2O$ 

## Potassium ferricyanide iodide, $K_{\delta}Fe(CN)_{\delta}$ , KI

Very unstable

## Silver ferricyanide, Ag<sub>3</sub>Fe(CN)<sub>6</sub>

1 l H<sub>2</sub>O dissolves 0 00066 g Ag<sub>3</sub>Fe(CN)<sub>5</sub> at 20° (Whitby, Z anorg 1910, 67 108) Sol in NH<sub>4</sub>OH, and hot (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq, but insol in NH<sub>4</sub> salts+Aq Insol in Hg(NO<sub>3</sub>)<sub>2</sub>+Aq (Wackenroder,

A 41 317)
Silver ferricyanide ammonia, 2Ag<sub>3</sub>Fe(CN)<sub>6</sub>,

## Sodium ferricyanide, Na<sub>3</sub>Fe(CN)<sub>t</sub>+H O

Deliquescent Sol in 53 pts cold, and 15 pts boiling HO Insol in alcohol, but not pptd thereby from aqueous solution (Bette)

## Fermitrososulphydric acid

See Ferroheptanitrososulphydric acid

## Ferrocyanhydric acid, H<sub>4</sub>Fc(CN)<sub>6</sub>

Sol in H2O and alcohol

100 pts H O dissolve 15 pts acid at 14° (Joannis, A ch (5) **26** 514)

Insol in other, and much less sol in other alcohol than in alcohol Insol in conc HCl+Aq

#### Ferrocyanides

The ferrocy inides of the alkali and alk i line-earth metals are sol in  $H_2O$ , the others are insol, but sol in alkalies +Aq in case the base is sol therein

## Aluminum ferrocyanide, $Al_4[Fe(CN)]_3+17HO$

Sl sol in H<sub>2</sub>O

SI sol in HCl+Aq with partial decomp (Wyrouboff, A ch (5) 8 446)

Ammonium ferrocyanide, (NH<sub>4</sub>)<sub>4</sub>Fe(CN)<sub>6</sub>+

Very sol in H<sub>2</sub>O, insol in alcohol +H<sub>2</sub>O (Berzelius)

Ammonium cadmium ferrocyanide ammonia (NH<sub>4</sub>)<sub>2</sub>Cd<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>, 2NH<sub>3</sub>+H<sub>2</sub>O

Sol in  $H_2O$  (Wyrouboff, A ch (5) 10 413)

#### Ammonium calcium ferrocyanide, (NH<sub>4</sub>)<sub>2</sub>CaFe(CN)<sub>6</sub>

Sl sol in H<sub>2</sub>O (Kunheim and Zimmer man, Dingl **252** 478)

100 g sat solution in H O contain 0 258 g at 16° (Brown, J phys Ch 1898, 2 51

## Ammonium cuprous ferro cyanide, (NH<sub>4</sub>)<sub>2</sub>Cu<sub>2</sub>Fe(CN)<sub>6</sub>

Insol in H<sub>2</sub>O and alcohol Decomp in the air (Messner, Z anorg 1895, 8 382)

# Ammonium cupric ferrocyanide, (NH<sub>4</sub>)<sub>2</sub>CuFe(CN)<sub>6</sub>

Fig.  $+xH_2O$  Very unstable Insol in HO decomp by boiling HO (Messner, Z unorg 1895, 8 384)

#### Ammonium lithium ferrocyanide, (NH<sub>4</sub>) L<sub>12</sub>Fe(CN)<sub>6</sub>+3H<sub>2</sub>O

Sol in  $H_2O$  (Wyrouboff, A ch (4) 21 270)

## Ammonium magnesium ferrocyanide, $(NH_4) MgI \in (CN)_t$

1 | sat solution at 17° contains 2 ls (NII 3° | CN), (Robinson Chem Soc 190° 95

# Ammon um manganous ferrocyanide, $(NH_4)\ Mn \, F \, \varepsilon (CN)$ ,

Ppt (Blum, Z and 30 251)

#### Ammonium potassium ferrocyanide, NII<sub>4</sub>l<sub>3</sub>l<sub>4</sub>(CN)<sub>i</sub>+3II O

lessily sol in cold, more easily in hot II ()
Insol in dechol

 $(NH_4)_2 h Fc(CN)_1 + 3HO$  Sol in HO

#### 

Sol in H () (Et ud, J pr (2) 31 150)

# Ammonium ferrocyanide bromide, $(NH_4)_4 Fe(CN)_i$ , $2NH_4B_1$

Permanent Very sol in H O

#### Ammonium ferrocyanide chloride, (NH<sub>4</sub>)<sub>4</sub>Fe(CN), 2NH<sub>4</sub>Cl+3H<sub>2</sub>O

Permanent Very sol in H<sub>2</sub>O, but less solthan NH<sub>4</sub>Cl (Bunsen)

Antimony ferrocyanide,  $Sb_4[Fe(CN)_6]_3+$ 

Ppt (Atterberg)

Barium ferrocyanide, Ba<sub>2</sub>Fe(CN)<sub>6</sub>+6H<sub>2</sub>O

Permanent Sl sol m H<sub>2</sub>O
Sol m 584 pts cold, and 116 pts boiling
H<sub>2</sub>O (Duflos, 1832), sol m 1800 pts cold
H<sub>2</sub>O (Porrett, 1814), sol m 1920 pts cold,
and about 100 pts boiling H<sub>2</sub>O (Thomson),
sol m 2000 pts cold, and 100 pts boiling
H<sub>2</sub>O (Ure's Dict)
Sol m 1000 pts H<sub>2</sub>O at 15°, and 100 pts at

75° (Wyrouboff, A ch (4) 16 292) Sol in HNO<sub>3</sub>, HCl, or conc H<sub>2</sub>SO<sub>4</sub>+Aq

Barium cupric ferrocyanide, BaCuFe(CN) $_6$  Insol in  ${\rm H_2O}$  (Messner, Z anorg 1895, 8 389)

Barium potassium ferrocyanide, BaK<sub>2</sub>Fe(CN)<sub>6</sub>+3H<sub>2</sub>O

Sol in 38 pts cold, and 9 5 pts boiling  $H_2O$  (Duflos, 1832), in 36 4 pts  $H_2O$  at 14°, and 11 9 pts at b -pt (Mosander)

11 9 pts at b -pt (Mosander) Not more sol in NH<sub>4</sub>Cl+Aq than in H<sub>2</sub>O Sol in dil, insol in conc HCl+Aq (Rose) +5H<sub>2</sub>O Sol in 300 pts H<sub>2</sub>O at ord temp (Wyrouboff)

Bismuth ferrocyanide,  $B_{12}F_{\theta}(CN)_{\theta} + 5H_2O$  (?)

Sl sol in pure  $H_2O$  (Wyrouboff)  $B_{14}[Fe(CN)_6]_5$  Ppt (Muir, Chem Soc 31 657)

Bismuth potassium ferrocyanide, BiKFe(CN)<sub>6</sub>+7H<sub>2</sub>O, or 4H<sub>2</sub>O Ppt

Cadmium potassium ferrocyanide,  $CdK_2Fe(CN)_6+H_2O$ Insol in  $H_2O$ Formula given by Wyrouboff is  $Cd_5K_6|Fe(CN)_6|_4+11H_2O(?)$ 

Calcium ferrocyanide,  $C_{12}Fe(CN)_6+12H_2O$ Very sol in  $H_2O$  Sol in 0.66 pt  $H_2O$  at 90° and not pptd by cooling, and is apparently less sol in warm than cold  $H_2O$  (Wyrouboff, A ch (4) 16 280)

Calcium cuprous ferrocyanide,  $CaCu_2Fe(CN)_6$  (Messner, Z anorg 1894, 8 387)

Calcium cupric ferrocyanide, CaCuFe(CN)<sub>6</sub> Insol in H<sub>2</sub>O (Messner, Z anorg 1895 8 388)

Calcium potassium ferrocyanide, CaK<sub>0</sub>Fe(CN)<sub>6</sub>

Sl sol in  $\rm H_2O$  (Kunheim and Zimmerman, Dingl **252** 478)

+3H<sub>2</sub>O Sol in 795 pts H<sub>2</sub>O at 15°, and 145 pts at b-pt, with decomp in the latter case

Sol in dil, insol in conc HCl+Aq in HNO<sub>3</sub> of 1.2 sp gr (Mosander) Insol in NH<sub>4</sub>Cl+Aq

Calcium sodium ferrocyanide, CaNa<sub>6</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub> Sol in H<sub>2</sub>O

Calcium strontium ferrocyanide, CaSrFe(CN)<sub>6</sub>+10H<sub>2</sub>O

Efflorescent Sol in about 3 pts H<sub>2</sub>O (Wyrouboff, A ch (4) **21** 278)

Cerum ferrocyanide, Ce<sub>4</sub>[Fe(CN)<sub>6</sub>]<sub>3</sub>+
30H<sub>2</sub>O
Ppt (Wyrouboff)

Cerum potassium ferrocyanide, CeKFe(CN)<sub>6</sub>+3H<sub>2</sub>O Ppt (John) +4H<sub>2</sub>O (Wyrouboff)

Chromic ferrocyanide, Cr<sub>2</sub>[Fe(CN)<sub>e</sub>]<sub>3</sub>+ 20H<sub>2</sub>O Ppt

Cobaltous ferrocyanide, Co<sub>2</sub>Fe(CN)<sub>6</sub>+7H<sub>2</sub>O

Wholly msol in  $H_2O$  Sol in  $H_2SO_4$  with decomp Insol in HCl+Aq Sl sol in  $NH_4OH+Aq$  Sol in  $(NH_4)_2CO_3+Aq$  Insol in  $NH_4Cl+Aq$  Sol in KCN+Aq

Coaltous ferrocyanide ammonia, CoaFe(CN)6, 8NH3+10H0O

Ppt Decomp on standing (Curda, Z Ch 1869 369)
Co<sub>2</sub>Fe(CN)<sub>6</sub>, 12NH<sub>3</sub>+9H<sub>2</sub>O As above (Curda)

Cobaltous potassium ferrocyanide, CoK<sub>2</sub>Fe(CN)<sub>6</sub>

Ppt (Wyrouboff)  $C_0K_{\delta}[Fe(CN)_{\delta}]_{\delta}({}^{o})$  Ppt Insol only in presence of an excess of  $K_{\delta}Fe(CN)_{\delta}$  (Wyrouboff)

 $\begin{array}{ccc} & Sol & in \ H_2O & (Wyrouboff) \\ & Cb_{12}K_2Fe(CN)_6 + 39H_2O \ (?) & Sol & in \\ & H_2O & (W) & \\ & (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[Fe(CN)_6]_6 + 10H_2O \ (?) & Ppt \ (At \ (CbO)_5K_9[$ 

 $(CbO)_5 K_9 [Fe(CN)_6]_6 + 10H_2O(?)$  Ppt (Atterberg)

Cuprous ferrocyanide, Cu<sub>4</sub>Fe(CN)<sub>6</sub> Insol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH+Aq, insol in NH<sub>4</sub>Cl+Aq Cupric ferrocyanide, basic, CuFe(OH)4(CN)4 Pot (Bong, Bull Soc 23 231)

Cupric ferrocyanide, Cu<sub>2</sub>Fe(CN)<sub>6</sub>+7H<sub>2</sub>O

Insol in H<sub>2</sub>O or acids Insol lts+Aq Sol in NH<sub>4</sub>OH+Aq Insol in NH4 Sol in salts+Aq  $(NH_4)_2C_2O_4+Aq$  and in KCN+Aq

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 827 )

Sol in excess of K<sub>4</sub>Fe(CN)<sub>6</sub>+ +10H<sub>2</sub>OAg. especially if hot (Wyrouboff)

Cupric ferrocyanide ammonia (cuprammonium ferrocyanide), Cu<sub>2</sub>Fe(CN)<sub>6</sub>,  $4NH_8+H_2O$ 

Insol in H<sub>2</sub>O or alcohol Sol in NH<sub>4</sub>OH+ Aq (Bunsen)

 $Cu_2Fe(CN)_6$ ,  $8NH_2+H_2O$ 

Cuprous magnesium ferrocyanide, Cu<sub>2</sub>MgFe(CN)<sub>6</sub>

Very unstable Decomp in air Insol in H<sub>2</sub>O (Messner, Z anorg 1895, 8 385)

Cupric magnesium ferrocyanide, CuMgFe(CN)<sub>6</sub>

Decomp by boiling H<sub>2</sub>O Insol in H<sub>2</sub>O Very unstable (Messner, Z anorg 1895, 8 387)

Cuprous potassium ferrocyanide,  $Cu_2K_2Fe(CN)_6$ 

Insol in  $H_2O$  Decomp by boiling  $H_3O$  Decomp by acids Insol in alcohol (Messner, Z anorg 1895, 8 378)  $+1\frac{1}{2}H_2O$  Insol in  $H_2O$ , alcohol, or ether

Decomp by acids Sol in KCN+Aq

 $K_3Cu_2Fe(CN)_6+4H_2O$ (Wonfor)  $+5H_2O$  $+6H_2O$ (Wyrouboff)

Cupric potassium ferrocyanide, K<sub>2</sub>CuFe(CN)<sub>6</sub>  $+H_2O$ 

Insol in cold al decomp by boiling H<sub>2</sub>O  $K_2Cu_8[Fe(CN)_6]_2+12H_2O$  Ppt

Cuprous sodium ferrocyanide, Cu<sub>2</sub>Na<sub>2</sub>Fe(CN)<sub>6</sub>

Decomp by boiling H<sub>2</sub>O, insol in alcohol, insol in H<sub>2</sub>O, decomp by acids (Messner, Z anorg 1895, 8 373)

Cupric sodium ferrocyanide, CuNa<sub>2</sub>Fe(CN)<sub>6</sub>

Insol in cold H<sub>2</sub>O Decomp by boiling H<sub>2</sub>O (Moissan, Z anorg 1895, 8 376)

Cupric strontium ferrocyanide, CuSrFe(CN)<sub>6</sub>

Insol in  $H_2O$  (Messner, Z anorg 1895, **8** 389)

Didymium potassium ferrocyanide.  $D_1KFe(CN)_6+4H_2O$ 

Ppt (Cleve) +2H<sub>2</sub>O (Wyrouboff)

Erbium potassium ferrocyanide, ErKFe(1 N)6  $+xH_{\bullet}O$ 

(Hoglund)

Gallium ferrocyanide

Sol in boiling HCl+Aq (de Boisbau an. CR 99 526)

Glucinum ferrocyanide, Gl<sub>2</sub>Fe(CN)<sub>6</sub>, 4Gl <sub>2</sub>H<sub>2</sub>  $+7H_2O$  (?)

Sol in H<sub>2</sub>O (Atterberg)

Iron (ferric) ferrocyanide,  $Fe_7(CN)_1 =$  $Fe_4[Fe(CN)_6]_3+xH_2O$ 

(Prussian blue) Insol in H<sub>2</sub>O, ale hol, ether, or oils Decomp slowly by b ling Insol in dil mineral acids ın conc HCl+Aq, and conc H<sub>2</sub>SO<sub>4</sub> without comp Sol in H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> or NH<sub>4</sub> tartrate de-Αq ÓΗ, Insol in NH<sub>4</sub>OH+Aq Decomp by N or KOH+Aq Not pptd in presence c tartrates or citrates

 $\begin{array}{c} \textbf{Iron (ferrous) potassium ferrocyanide} \\ \textbf{FeK}_2\textbf{Fe}(CN)_6 \end{array}$ 

Insol in H<sub>2</sub>O Decomp on air

Iron (ferric) potassium ferrocyanide FeKFe(CN)6

Is probably ferrous potassium ferricy lide, which see

Iron (ferric) ferrocyanide ammonia,  $Fe_{4}[Fe(CN)_{6}]_{3}, 6NH_{3}+9H_{2}O$ Insol in NH<sub>4</sub> tartrate+Aq

Lanthanum potassium ferrocyanide, LaKFe(CN)<sub>6</sub>+4H<sub>2</sub>O

Ppt

Lead ferrocyanide, Pb<sub>2</sub>Fe(CN)<sub>6</sub>+3H<sub>2</sub>

Insol in  $H_2O$ , acids, or  $NH_4OI + Aq$  (Wyrouboff, A ch (5) 8 480) it is

Si sol in conc H<sub>2</sub>SO<sub>4</sub>, from whice pptd by H2O (Berzelius)

Sol in hot NH4Cl, or NH4 succinat +Aq, insol in other NH<sub>4</sub> salts+Aq (Witte in) Insol in NH<sub>4</sub>Cl+Aq (Brett)

Not pptd in presence of Na citrate (Spiller)

Lithium ferrocyanide,  $Li_4Fe(CN)_6+9$  <sub>2</sub>O Deliquescent Very sol in H<sub>2</sub>O

Lithium potassium ferrocyanide,  $L_{12}K_{2}Fe(CN)_{6}+3H_{2}O$ 

Very sol in H<sub>2</sub>O Sol in 15 pts ord temp (Wyrouboff, A ch (4) 2 274)  $\begin{array}{cc} \textbf{Magnesium} & \textbf{ferrocyanide,} & Mg_2Fe(CN)_6 + \\ 6H_2O & \end{array}$ 

Sol in 3 pts cold  $H_2O$  (Bette, A 22 148)

Magnesium potassium ferrocyanide,  $MgK_2Fe(CN)_6$ 

Sol in 1575 pts  $H_2O$  at 15°, and 238 pts at 100° Solution is decomp by boiling (Storer's Dict)

1 l sat solution at 17° contains 1 95 g MgK<sub>2</sub>Fe(CN)<sub>6</sub> (Robinson, Chem Soc 1909, **75** 1353)

Manganous ferrocyanide,  $Mn_2Fe(CN)_6+7H_2O$ 

Insol in H<sub>2</sub>O Sol in HCl+Aq Insol in NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>8</sub>+Aq

Manganic ferrocyanide, Mn<sub>2</sub>Fe<sub>3</sub>(CN)<sub>12</sub>

Insol in  $\rm H_2O$  Easily decomp in the air Sol in HCl (Straus, Z anorg 1895, 9 8)

Manganous potassium ferrocyanide,  $MnK_2Fe(CN)_6$ 

Ppt (Berzelius) 5Mn<sub>2</sub>Fe(CN)<sub>6</sub>, 4K<sub>4</sub>Fe(CN)<sub>6</sub>+4H<sub>2</sub>O(?) Ppt Sol in dil HCl+Aq (Wyrouboff)

 $\begin{array}{c} \textbf{Mercuric} \quad \textbf{potassium} \quad \textbf{ferrocyanide,} \\ \quad K_2HgFe(CN)_6 \end{array}$ 

Insol in HO Appreciably sol in  $K_4 Fe(CN)_6 + Aq$  (Fernekes, J Am Chem Soc 1906 28 87)

Molybdenum ferrocyanide,  $Mo_4Fe(CN)_6+20H_2O(?)$ 

Very sol in NH<sub>4</sub>OH+Aq (Wyrouboff)  $Mo_2Fe(CN)_6+8H_2O$  (?) (W) +14H<sub>2</sub>O (?) Very sol in H<sub>2</sub>O, insol in alcohol (W)

Molybdenum potassium ferrocyanide,  $K_4Mo_8[Fe(CN)_6]_2+40H_2O$  (?)

(Wyrouboff)

 $K_2(MoO_2)_3[Fe(CN)_6]_2$ ,  $2MoO_3+20H_2O$  (?) (Atterberg)

 $K_6Mo_2[l^4c(CN)_6]_2$ ,  $2MoO_3+12H_2O$  (?) (Atterberg)

Nickel ferrocyanide,  $Ni_2 l^i e(CN)_6 + 11 H_2 O$ , or  $14 H_2 O$ 

Ppt Insol in  $\rm II_2O$  or  $\rm HCl+Aq$  Sol in  $\rm NH_4OH+Aq$ , insol in  $\rm NH_4\,s\,lts+Aq$  Sol in  $\rm KCN+Aq$ 

Nickel ferrocyanide ammonia,  $N_{12}Fe(CN)_6$ ,  $4NH_3+H_2O$ 

Completely insol in H<sub>2</sub>O and not attacked thereby, sol in NH<sub>4</sub>OH+Aq to form— N<sub>12</sub>Fe(CN)<sub>6</sub>, 10NH<sub>3</sub>+4H<sub>2</sub>O Decomp by

hot  $H_2O$  (Reynoso, A ch (3) **30** 252)  $N_{12}Fe(CN)_6$ ,  $2NH_3+4$ , and  $9H_2O$  Hygro-

scopic Easily decomp (Gintl, J B 1868 304)

 $N_{12}$ Fe(CN)<sub>8</sub>,  $8NH_3+4H_2O$  Sol in  $NH_4OH+Aq$  (G)

NH<sub>4</sub>OH+Aq (G), N<sub>12</sub>Fe(CN)<sub>6</sub>, 12NH<sub>3</sub>+9H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq, but less so than the above compounds (G)

Nickel potassium ferrocyanide, NiK<sub>2</sub>Fe(CN)<sub>6</sub> +3H<sub>2</sub>O

Ppt (Wyrouboff)

Osmium ferrocyanide, Os<sub>2</sub>Fe(CN)<sub>6</sub> Ppt (Martius, A 117 368)

Potassium ferrocyanide, K<sub>4</sub>Fe(CN)<sub>6</sub>

Permanent Easily sol in cold, and more easily in hot H<sub>0</sub>O

Sol in 4 23 pts  $H_2O$  at 15°, or 100 pts  $H_2O$  dissolve 23 6 pts salt at 15° (Schiff, A 113 350)

100 pts H<sub>2</sub>O dissolve 27 8 pts at 12 2°, 65 8 pts at 37 7°, 87 6 pts at 65 5°, and 90 6 pts at 96 3° (Thomson)

Sol in 4 pts cold, and 2 pts boiling H<sub>2</sub>O

(Wittstein)

100 pts H<sub>2</sub>O dissolve 29 2 pts salt at 15°, and solution has sp gr = 1 1441 (Michel and Kraft, A ch (3) 41 478)

Solubility of K<sub>4</sub>Fe(CN)<sub>6</sub> in H<sub>2</sub>O at t° +7° 14° 56° –2° 30° 108 15 4 17 9 23 0 31.7%60° 75° 89° 98° 157° 34 0 39 1 41 9 42 6 46 8% (Étard, A ch 1894, (7) 2 546)

 $K_4Fe(CN)_6+Aq$  sat at 8° has sp gr=1 13 (Anthon)

Sp gr of K<sub>4</sub>Fe(CN)<sub>6</sub>+Aq at 15°

| C hydrous                       | Sp gr                                                              | % hydrous salt                       | Sp gr                                                              | % hy drous salt                  | Sp gr                                                    |
|---------------------------------|--------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|----------------------------------|----------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 1 0058<br>1 0116<br>1 0175<br>1 0234<br>1 0295<br>1 0356<br>1 0417 | 8<br>9<br>10<br>11<br>12<br>13<br>14 | 1 0479<br>1 0542<br>1 0605<br>1 0669<br>1 0734<br>1 0800<br>1 0866 | 15<br>16<br>17<br>18<br>19<br>20 | 1 0932<br>1 0999<br>1 1067<br>1 1136<br>1 1205<br>1 1275 |

(Schiff, A 113 199)

Sp gr of K<sub>4</sub>Fe(CN)<sub>6</sub>+Aq at 25°

| 15 th Grand and a Carrier 1 and a Carrier 1 |                                                |  |
|---------------------------------------------|------------------------------------------------|--|
| Concentration of K4I ((N)6+Aq               | Sp gr                                          |  |
| 1—normal  1/2— "  1/4— "  1/8— "  1/10— "   | 1 0617<br>1 0300<br>1 0150<br>1 0074<br>1 0037 |  |

(Wagner, Z phys Ch 1890, 5 37)

| Solubility in KOH+Aq at 25°                                       |                                                               |  |  |
|-------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| KOH Normality                                                     | g K <sub>4</sub> Fe(CN) <sub>5</sub> +3H <sub>2</sub> O per l |  |  |
| 0 09984<br>0 2496<br>0 4963<br>0 7036<br>0 9415<br>1 395<br>1 883 | 308 5<br>283 5<br>247 1<br>217 4<br>184 8<br>132 1<br>86 12   |  |  |

(Grube, Z Electrochem, 1914, 20 342)

K<sub>4</sub>Fe(CN)<sub>6</sub>+NaCl+Aq sat at 20° contains 26 6 g NaCl and 178 g K<sub>4</sub>Fe(CN)<sub>6</sub> per 100 g H<sub>2</sub>O, sat at 93° it contains 27 4 g Per 100 g H<sub>2</sub>O, sat at 95 it contains 27 4 g
NaCl and 35 9 g K<sub>4</sub>Fe(CN)<sub>6</sub> per 100 g H<sub>2</sub>O
(Conroy, J Soc Chem Ind 1898, 17 105)
K<sub>4</sub>Fe(CN)<sub>6</sub>+KCl+Aq sat at 21° contains 27 2 g KCl and 4 2 g K<sub>4</sub>Fe(CN)<sub>6</sub> per 100 g H<sub>2</sub>O, sat at 99° it contains 39 6 g
KCl and 17 0 g K<sub>4</sub>Fe(CN)<sub>6</sub> per 100 g H<sub>2</sub>O

(Conroy)

 $K_4$ Fe( $\acute{C}N$ )<sub>6</sub>+Na<sub>2</sub>CO<sub>3</sub>+Aq sat at 22° contains 299 g Na<sub>2</sub>CO<sub>3</sub> and 267 g K4Fe(CN), per 100 g H2O, sat at 97° it contains 42 0 g Na<sub>2</sub>CO<sub>3</sub> and 27 5 g K<sub>4</sub>Fe(CN)<sub>6</sub> per 100 g H<sub>2</sub>O (Conroy)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, **20** 829)

Insol in alcohol even when dilute

Insol in methyl acetate (Naumann, B 1909, **42** 3790)

Insol in ethyl acctate (Naumann, B 1904, **37** 3601) ın benzonitrile (Naumann, B Insol

1914, 47 1370) Sol in acetone (Naumann, B 1904, **37** 4328)

+3H<sub>2</sub>O 11 sat solution in H<sub>2</sub>O contains 319 4 g K<sub>4</sub>Fe(CN)<sub>6</sub>+3H<sub>2</sub>O trochem Z 1914, **20** 342) (Grube, Elec

I we modifications with different solubil

ities 250 g of a modification are contained in 100 g of solution at 20°

24.6 g of  $\beta$  modification are contained in 100 g of solution at 20° (Briggs, Chem Soc 1911, **99** 1024)

32 0 g K4Fe(CN)6 (inhydrous) arc dissolved in 100 g H<sub>2</sub>O it 25 (Wagner, Z phys Ch 1910, 71 428)

### Potassium samarium ferrocyanide, KSmFt(CN)6+5H2O

(Cleve) Precipitate

#### Potassium sodium ferrocyanide, $KN_{3}Fe(CN)_{6}+12H_{2}O$

Sol m H<sub>2</sub>O K Na<sub>2</sub>Fe(CN)<sub>6</sub>+8H<sub>2</sub>O Lasily sol in H<sub>2</sub>O  $K_3NaFe(CN)_6+3H_2O$ Eas-Permanent ily sol in H<sub>2</sub>O, insol in alcohol

### Potassium sodium ferrocyanide nitrate, K<sub>2</sub>Na<sub>2</sub>Fe(CN)<sub>6</sub>, 4KNO<sub>3</sub> Sol in H<sub>2</sub>O (Martius)

Potassium strontium ferrocvanide. K<sub>2</sub>SrFe(CN)<sub>6</sub>+3H<sub>2</sub>O

Easily decomp Sol in H<sub>2</sub>O, sl sol alcohol (Wyrouboff, A ch (4) 21 276)

Potassium stannic ferrocvanide.  $KSn_{3}[Fe(CN)_{6}]_{3}+68H_{2}O$  (?)

(Wyrouboff)  $\mathbf{P}\mathbf{p}\mathbf{t}$  $K_4Sn_{10}[Fe(CN)_6]_{11} + 230H_2O$  (?) (At berg)

Potassium titanium ferrocyanide,  $K_3T_{13}[Fe(CN)_6]_2+11H_2O$  (?)

Ppt Sol in  $K_4Fe(CN)_6+Aq$ (Wy: uboff)

K<sub>4</sub>Fe(CN)<sub>6</sub>,  $11T_{12}Fe(CN)_6 + 43H_2O$ Ppt (Wyrouboff)  $K_2(T_1O)_3[Fe(CN)_6]_2 + 23H_2O$ 

(Atterberg)  $K_2(T_1O)_{11}[Fe(CN)_6]_6 + 110H_2O$  (?) ١t.

(Atterberg)

Potassium tungsten ferrocyanide,  $KW_2Fe(CN)_6+7H_2O$  (?)

Sol in  $H_2O$ (Wyrouboff)  $K_2W_5Fe(CN)_6+20H_2O$  (?) Sol m 1 O (W)

Potassium uranium ferrocyanide,  $K_2U_3[Fe(CN)_6]_2+6H_2O(?)$ 

(Wyrouboff) Ppt

 $K_2(UO_2)_3[Fe(CN)_6]_2 + 6H_2O$  Ppt (A erberg)

 $K_6(UO_2)_5[Fe(CN)_6]_4+12H_2O$  Sol in (Atterberg)

Potassium vanadium ferrocyanide,  $K_{18}V[F_c(CN)_6]_6 + 39H_2O(?)$ 

Ppt Sl sol in H<sub>2</sub>O (Wyrouboff)  $K_6(VO) [Fe(CN)_6]_4 + 60H_2O(?) Ppt$ terberg)

Potassium ytterbium ferrocyanide, KYbFe(CN)<sub>6</sub>+3H<sub>2</sub>O

Ppt Sol in excess Kale(CN), Aq (Cleve, Z morg 1902, 32 140)

Potassium yttrium ferrocyanide,  $KYF \cup (CN)_e + 2H_2O$ 

Ppt (Wyrouboff, A ch (5) 8 444)

Potassium zinc ferrocyanide,  $K_4 Z n_6 [I \in (CN)_e]_4 + 12 I I_2 O$ 

Absolutely insol in  $H_2O$  (Wyroub 1, A ch (5) 8 485)

Potassium ferrocyanide carbonyl,  $K_{3}Fe(CN)_{5}(CO) + 3\frac{1}{2}H_{2}O$ See Carbonyl ferrocyanide, potassiui

Rubidium ferrocyanide, Rb<sub>4</sub>Fe(CN)<sub>6</sub>+ H<sub>2</sub>O Sol in less than 1 pt H<sub>2</sub>O at ord emp with great absorption of heat (Wyr iboff, A ch (4) 16 307

Silver ferrocyanide, Ag<sub>4</sub>Fe(CN)<sub>8</sub>+H<sub>2</sub>O
Insol in H<sub>2</sub>O or dil acids Insol in NH<sub>4</sub>OH, or NH<sub>4</sub> salts + Aq Sol in KCN + Aq
Decomp by warm NH<sub>4</sub>OH+A- (Weith, Z Ch (2) 5 381)

Silver ferrocyanide ammonia,  $Ag_4Fe(CN)_6$ ,  $2NH_3+H_2O$ (Wyrouboff)  $+6H_2O$  (Gintl)

Sodium ferrocyanide, Na<sub>4</sub>Fe(CN)<sub>6</sub>+12H<sub>2</sub>O
Efflorescent Less sol in H<sub>2</sub>O than
K<sub>4</sub>Fe(CN)<sub>6</sub> Sol in 4.5 pts H<sub>2</sub>O at 12°
(John)
100 pts H<sub>2</sub>O at 15.5° dissolve 22 pts
(Ure's Dict)

100 pts H<sub>2</sub>O dissolve at 18° 20° 42° 53° 30 2 16 7 17 875 60° 37 1 pts 80° Na<sub>4</sub>FeCN<sub>6</sub>. 58° 77° 41 7  $42\ 5$ 54 8 59 2 pts Na<sub>4</sub>FeCN<sub>6</sub>. 98° 98 5° 96° 61 6 6 30 pts Na<sub>4</sub>FeCN<sub>6</sub> (Conroy, J Soc Chem Ind 1898, 17 104)

 $+10\mathrm{H}_2\mathrm{O}$ 

18° 20° 42°
29 45 31 85 58 5 pts Na<sub>4</sub>Fe(CN)<sub>6</sub>+10H<sub>2</sub>O,
58° 58° 60°
75 9 88 4 90 2 pts Na<sub>4</sub>Fe(CN)<sub>6</sub>+10H<sub>2</sub>O,
77° 80° 96°
129 5 146 0 157 0 pts Na<sub>4</sub>Fe(CN)<sub>6</sub>+10H<sub>2</sub>O,
98° 98 5°
156 5 161 0 pts Na<sub>4</sub>Fe(CN)<sub>6</sub>+10H<sub>2</sub>O
(Conroy)

Strontum ferrocyanide, Sr<sub>2</sub>Fe(CN)<sub>6</sub>+15H<sub>2</sub>O

Efflorescent Sol in 2 pts cold, and less than 1 pt boiling H<sub>2</sub>O (Bette)

Excessively sol in H<sub>2</sub>O (Wyrouboff, A ch (4) 16 280)

+8H<sub>2</sub>O (Wyrouboff)

Thallous ferrocyanide, Tl<sub>4</sub>Fe(CN)<sub>6</sub>+2H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve 0 37 pt at 18°, and 3 93 pts at 101° (Lamy) Sol in KCN+Aq (Kuhlmann)

Thorium ferrocyanide, ThFe(CN)<sub>6</sub>+4H<sub>2</sub>O Ppt (Cleve, Bull Soc (2) 24 355)

Tin (stannous) ferrocyanide, Sn<sub>2</sub>Fe(CN)<sub>6</sub>+ 4H<sub>2</sub>O Insol in H<sub>2</sub>O or acids, sl sol in NH<sub>4</sub>OH+

Aq (Wyrouboff)

Tin (stannic) ferrocyanide, Sn<sub>5</sub>[Fe(CN)<sub>0</sub>]<sub>2</sub>+
18½H<sub>2</sub>O (?)
(Wyrouboff)

Titanium ferrocyanide, Ti<sub>7</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub> (?)
Ppt (Wyrouboff)

Uranium ferrocyanide, UFe(CN)<sub>5</sub>+10H<sub>2</sub>O Ppt (Wyrouboff)

Vanadyl ferrocyanide, (VO)<sub>2</sub>Fe(CN)<sub>6</sub>+
11H<sub>2</sub>O
Pot (Attorborg)

Ppt (Atterberg)

Yttrium ferrocyanide, Y<sub>4</sub>[Fe(CN)<sub>6</sub>]; Easily sol in H<sub>2</sub>O, insol in alcohol (Popp, A **131** 179)

Zinc ferrocyanide, Zn.Fe(CN)<sub>6</sub>+3H<sub>2</sub>O

Insol in  $H_2O$  or acids Insol in HCl+Aq (Lea, Sill Am J (2) 31 191)

Sol in NH<sub>4</sub>OH, or NH<sub>4</sub> salts+Aq (Wittstein)

Insol in NH<sub>4</sub>Cl, or NH<sub>4</sub>NO+Aq (Brett) Sl sol in boiling K<sub>4</sub>Fe(CN)<sub>6</sub>, or K<sub>5</sub>Fe(CN)<sub>6</sub> +Aq (Gore) Na<sub>4</sub>Fe(CN)<sub>6</sub>+NaCl+Aq sat at 21° contains 29 0 g Nacl and 5 8 g Na<sub>4</sub>Fe(CN)<sub>6</sub> per

tams 29 0 g Nacl and 5 8 g Na<sub>4</sub>Fe(CN)<sub>5</sub> per 100 g H<sub>2</sub>O, sat at 90° it contains 24 7 g Nacl and 21 3 g Na<sub>4</sub>Fe(CN)<sub>5</sub> per 100 g H<sub>2</sub>O

Very si soi in
Am Ch J 1898, 20 000,
Insol in alcohol
+4H<sub>2</sub>O Absolutely insol in HO
(Wyrouboff, A ch (5) 8 485)
+8H<sub>2</sub>O (Weith, A 147 329)
+10H<sub>2</sub>O (Pebal, A 233 165)

Ferrotetranitrososulphydric acid, H<sub>2</sub>S<sub>2</sub>(NO)<sub>4</sub>Fe

Insol in  $H_2O$ , sl sol in alcohol, more easily in ether, very sol in CS or CHCl<sub>3</sub> Not obtained in a pure state (Pawel, B 15 2600)

Ethyl ferrotetranitrososulphide,

 $(C_2H_5)S$  (NO)<sub>4</sub>Fe Insol in  $H_2O$ , difficultly sol in alcohol, more easily in ether, and very easily in CS, CHCl<sub>5</sub>,  $C_2H_5I$ , or  $C_6H_6$  (Pawel, B 15 2609)

Ferrous —,  $FeS_2(NO)_4Fe$ 

More difficultly sol in HO and alcohol than the hepta salt

Sol in ether

Potassium —, K<sub>2</sub>S<sub>2</sub>(NO)<sub>4</sub>Fe +4H O Sol in H<sub>2</sub>O Easily sol in alcohol, insol in ether (Pawel, B **15** 2600)

True composition of "introsulphide of

iron and potassium" of Roussin (3) **52** 297) (Pawel, B **13** 1949) (A ch

Sodium ferrotetranitrososulphide,  $Na_2S_2(NO)_4Fe_2 + 8H_2O$ 

Sol in H<sub>2</sub>O, easily sol in alcohol, insol in ether (Pawel)

True composition of "nitrosulphide of iron and sodium" of Roussin (Pawel)

Thallium —,  $Tl_2S_2(NO)_4Fe_2$ 

Insol in H<sub>2</sub>O, alcohol, or ether (Pawel)

Ferrohepianitrososulphydric acid, HS<sub>3</sub>(NO) Fe<sub>4</sub>

Insol in  $H_2O$ , alcohol, and ether Easily sol in  $CS_2$  or  $CHCl_3$  (Pawel, B 15 2604) May be called Ferrinitrososulphydric acid

Ammonium ferroheptanitrososulphide,  $NH_4S_8(NO)_7$   $Fe_4+H_2O$ 

Less easily sol in H<sub>2</sub>O than the K compound (Pawel, B 15 2600)

"Binitrosulphide of iron" of Roussin Sol m about 2 pts boiling  $\rm H_2O$ , very sl sol m cold  $\rm H_2O$  Very sol in alcohols, methyl, ethyl, or amyl, and in  $\rm HC_2H_3O_2$  Miscible Insol in CS2 or CHCl3 with ether

Decomp by conc HCl, HNO<sub>8</sub>, or H<sub>2</sub>SO<sub>4</sub> Not attacked by H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, or H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+

ol in NH4OH, and KOH+Aq (Roussш, л ch (3) **52** 286) Sol in H<sub>2</sub>O Insol in alcohol (Hofmann, Z anorg 1895, 9 299)

Barium ---

Easily sol in H<sub>2</sub>O (Pawel)

Cæsium ----,  $Fe_4(NO)_7 S_3Cs + H_2O$ 

Insol in H<sub>2</sub>O Difficultly sol in alcohol and ether (Pawel)

Sparingly sol in H2O (Hofmann, Z anorg 1895, 9 298)

Calcium ---

Easily sol in H<sub>2</sub>O (Pawel)

Ferrous —,  $Fe[S_3(NO)_7, Fe_4]_2 + 8H_2O$ More easily sol in H<sub>2</sub>O than Na salt (Pawel)

Lead ----

Difficultly sol in H<sub>2</sub>O (Pawel)

Magnesium ---

Easily sol in H<sub>2</sub>O (Pawel)

Potassium —, KS<sub>3</sub>(NO)<sub>7</sub> Fe<sub>4</sub> Sol in H<sub>2</sub>O, alcohol, and very sol in ether Barium ferrite, BaO, Fe<sub>2</sub>O<sub>3</sub> with slight decomp (Pawel, B 15 2600)

Rubidium ferroheptanitrososulphide, RbS<sub>3</sub>(NO)<sub>7</sub> Fe<sub>4</sub>

Less soluble in H<sub>2</sub>O than the NH<sub>4</sub> salt (Pawel)  $+H_2O$ 

Ppt (Hofmann, Z anorg 1895 9 298)

Sodium —,  $NaS_8(NO)_7$   $Fe_4+2H_2O$ More sol in H<sub>2</sub>O than the potassium salt (Pawel)

Thallium —, TIS<sub>8</sub>(NO)<sub>7</sub> Fe<sub>4</sub>+H<sub>2</sub>O

Very difficultly sol in H<sub>2</sub>O More casil sol in alcohol (Pawel) (Hofmann, Z anorg 1895, 9 297)

Ferrodinitrosothiosulphonic acid

Ammonium ferrodinitrosothiosulphonate,  $Fe(NO)_2S_2O_3NH_4+H_2O$ 

Can be cryst from warm H<sub>2</sub>O without de comp (Hofmann, Z anorg 1895, 8 321)

Cæsium —,  $Fe(NO)_2S_2O_3Cs$ Sparingly sol in H<sub>2</sub>O (Hofmann)

Potassium ----, Fe(NO)<sub>2</sub>S O<sub>3</sub>K+H<sub>2</sub>O Sl sol in H2O without decomp at 80 Sol in 50% alcohol Sol in H<sub>2</sub>SO<sub>4</sub> without decomp mann)

Rubidium —,  $Fe(NO)_2S_2O_3Rb+H_2O$ Less sol in H<sub>2</sub>O than the corresponding Na salt (Hofmann)

Sodium —,  $Fe(NO)_2S_2O_3Na + 2H_2O$ Closely resembles K salt, but is more so in H<sub>2</sub>O and alcohol (Hofmann)

Ferrotungstic acid

Sol in  $H_2O$  (Laurent, C R 31 693)

Ammonium manganous ferrotungstate  $12(NH_4)_2O$ , 6MnO,  $2Fe_2O_3$ ,  $3H_2O$ ,  $45WO_3 + 81H_2O$ 

Sol in H<sub>2</sub>O (Laurent)

Barium ferrotungstate, 21BaO, 2Fe<sub>2</sub>O<sub>3</sub>,  $45\mathrm{WO_3} + 27\mathrm{H_2O}$ 

Sol in H<sub>2</sub>O (I aurent)

Potassium ferrotungstate, 9k<sub>2</sub>O, 2Fe<sub>2</sub>O  $12H_2O$ ,  $45WO_3+54H_2O$ Sol in H<sub>2</sub>O (Laurent)

 $18K_2O$ ,  $2Fe_2O_3$ ,  $3H_2O$ ,  $45WO_3+54H_2C$ (Laurent)

Ferrous acid

Ppt (List, B 11 1512)

Calcium ferrite, 4CaO, Fe<sub>2</sub>O<sub>3</sub>

Insol in H<sub>2</sub>O, or sugar+H<sub>2</sub>O Decomp by the weakest acids, but not by boiling KOH+Aq (Pelouze, A ch (3) 33 5)

CaO, Fe<sub>2</sub>O<sub>3</sub> (List)

3CaO, Fe<sub>2</sub>O<sub>3</sub> Much less readily attacked

by  $H_2O$  and acids than the silicates (Hilpert, B 1909, 42 4581)

3CaO, 2Fe<sub>2</sub>O<sub>3</sub> 1909, **42** 4581) As above (Hilpert, B

Calcium ferrite chloride, CaO, Fe<sub>2</sub>O<sub>3</sub>, CaCl<sub>2</sub> Not decomp by H<sub>2</sub>O (Chatelier, C R 99 276)

Cupric ferrite, CuO, Fe<sub>2</sub>O<sub>3</sub>

Ppt (List)  $+5H_2\dot{O}$  (List)

Ferrous argentous ferrite, 2FeO, Ag<sub>4</sub>O,

Easily decomp by HCl+Aq Not completely sol in dil HNO<sub>3</sub>+Aq Easily sol in conc HNO<sub>3</sub> Decomp by acetic acid (Rose, Pogg 10 323)

Magnesium ferrite, MgO, Fe<sub>2</sub>O<sub>3</sub>

Not attacked by boiling Insol in H<sub>2</sub>O conc HNO<sub>3</sub> (Deville C R **52** 1264)

Min Magnesioferrite Difficultly sol in

(Rammelsberg, Pogg **107** 451) Ppt (List, B **11** 1512) HCl+Aq  $+4\mathrm{H}_2\mathrm{O}$ 6MgO,  $Fe_2O_3+9H_2O$  Ppt +15H<sub>2</sub>O Min Pyroaurite

Manganous ferrite, MnO, Fe<sub>2</sub>O<sub>3</sub> Ppt (List)

Nickel ferrite, NiO, Fe O3 Ppt (I st)

Potassium ferrite, 3k<sub>2</sub>O, 4k<sub>e2</sub>O<sub>3</sub>

Decomp by H<sub>2</sub>O, KOH+Aq, NaOH+Aq, etc, but only slowly by NH4Cl+Aq (Salm-Horstmar, J pr 55 349)  $K_2Fe_2O_4$  Decomp by  $H_2O$ 

(Rousseau and Bernheim, C R 107 240)

Silver (argentous) ferrite, Ag<sub>4</sub>O, Fe<sub>2</sub>O<sub>3</sub> (?) Decomp by dil HNO<sub>4</sub>+Aq (Rose, Pogg **10** 323)

Sodium ferrite, N i O, Fe<sub>2</sub>O<sub>3</sub>

Na<sub>2</sub>O is dissolved out by H<sub>2</sub>O Lasily sol in dil HCl+Aq Not casily decomp by NH<sub>4</sub>Cl+Aq (Salm-Horstmar)

Zinc ferrite, ZnO, Fe<sub>2</sub>O<sub>3</sub>

Sol in boiling cone HCl+Aq (Ebelmen, A ch (3) 33 47) Min Franklinite

# Flavocobaltic compounds

See also Xanthocobaltic compounds

Flavocobaltic chloraurate,  $(NO_2)_2Co(NH_3)_4AuCl_4$ 

More easily sol than the chloroplatinate Not wholly insol in absolute alcohol (Jorgensen, Z anorg 5 159)

--- chloroplatinate,  $[(NO_2)_2Co(NH_8)_4]_{\circ}PtCl_6$ As the chloroplatinite (Jorgensen)

- chloroplatimite,  $[(NO_2)_2Co(NH_3)_4]_2PtCl_4$ Somewhat sol in H<sub>2</sub>O, and not insol in 50% alcohol (Jorgensen)

--- chromate,  $[(NO_2)_2Co(NH_3)_4]_2Cr_2O_7$ Ppt (Jorgensen)

-- nutrate,  $Co(NO_2)_2(NH_8)_4NO_8$ Sol in about 33 pts cold H<sub>2</sub>O, insol in  $\frac{\mathrm{HNO_3}}{\mathrm{Co(NO_2)_2(NH_3)_4NO_3}}$ ,  $\frac{\mathrm{HNO_3}}{\mathrm{HNO_3}}$ Decomp by  $H_2O$  or alcohol (Jorgensen)

- cobaltic nitrite,  $3(NO_2)_2Co(NH_8)_4$ ,  $Co_2(NO_2)_6 + 2H_2O$ 

Sl sol in H<sub>2</sub>O (Jorgensen, Z anorg 5 179)

- diamine cobaltic nitrite, (NO<sub>2</sub>)<sub>2</sub>Co(NH<sub>3</sub>)<sub>4</sub>, $(NO_2)_2(NH_3)_2Co(NO_2)_2$ Very sl sol in H<sub>2</sub>O (Jorgensen)

- sulphate,  $[(NO_2)_2Co(NH_3)_4]_2SO_4$ Sl sol in  $H_2O$ , more easily in  $HC_2H_3O_2$ + Aq (Jorgensen)

Fluoborhydric acid, HBF4

Decomp by H<sub>2</sub>O very rapidly (Landolph, C R 86 603)

Aluminum fluoboride, 2AlF<sub>3</sub>, 3BF<sub>3</sub>

Sol in H<sub>2</sub>O only when reidulated, sol in acids (Berzelius)

Ammonium fluoboride, NH<sub>4</sub>Bl<sub>4</sub>

Fasily sol in H<sub>2</sub>O Sol in 4 pts II<sub>2</sub>O at 16°, and 102-105 pts boiling II20 (Stolba, Chem techn Cent Anz 7 459) Sl sol in alcohol

Barium fluoboride, Ba(Bl<sub>4</sub>)<sub>2</sub>+2H<sub>2</sub>O

Deliquescent, easily sol in H<sub>2</sub>O, decomp by alcohol (Berzelius)

Cæsium fluoboride, CsBF4

100 pts H<sub>2</sub>O dissolve 0 92 pt CsBF<sub>4</sub> at 20° and 0 04 pt at 100° (Godeffroy, B 9 1367) 0.02 pts arc sol in 100 pts 11 () it 20° (Erdmann, Arch Pharm 1894, 232 21)

Calcium fluoboride, Ca(BF4)

Decomp by H<sub>2</sub>O, with formation of a sol acid salt and an insol basic salt (Berzelius)

### Cupric fluoboride, Cu(BF<sub>4</sub>)<sub>2</sub>

Deliquescent, and very sol in H<sub>2</sub>O (Berzelius )

### Lead fluoboride, Pb(BF<sub>4</sub>)<sub>2</sub>

Sol in H<sub>2</sub>O Decomp by boiling with H<sub>2</sub>O or alcohol into an acid soluble, and a basic insoluble salt (Berzelius)

#### Lithium fluoboride, LiBF4

Hygroscopic Easily sol in H<sub>2</sub>O (Berzelius)

#### Magnesium fluoboride Easily sol in H<sub>2</sub>O (Berzelius)

### Potassium fluoboride, KBF4

Sol in 223 pts H<sub>2</sub>O at 20° (Stolba) Sol in 70 4 pts cold H<sub>2</sub>O (Berzelius)

Sol in 70 4 pts cold H<sub>2</sub>O (Berzelius)
Sol in 15 94 pts H<sub>2</sub>O at 100° (Stolba)
1 43 pts are sol in 100 pts H<sub>2</sub>O at 20°
(Erdmann, Arch Pharm 1894, 232 21)
Not more sol in NH<sub>4</sub>OH+Aq than in H<sub>2</sub>O,
sol in hot KOH, NaOH, or M<sub>2</sub>CO<sub>3</sub>+Aq
(Berzelius) More sol in NH<sub>4</sub>Cl+Aq 276) (Rose, Pogg 80 Insol in 20% KC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Stromeyer cold, sl sol in boiling alcohol (Stromeyer) Insol

### Rubidium fluoboride, RbBF4

100 pts H<sub>2</sub>O dissolve 0.55 pt at 20°, and 10 pt at 100° (Godeffroy, B 9 1337) 055 pts are sol in 100 pts H<sub>2</sub>O at 20° (Erdmann, Arch Pharm 1894, 232 21)

# Sodium fluoboride, NaBF4

Easily sol in H<sub>2</sub>O Very sl sol in alcohol (Berzelius)

### Yttrium fluoboride

Sol in H<sub>2</sub>O with excess of acid (Berzehus)

# Zinc fluoboride, Zn(BF<sub>4</sub>)<sub>2</sub>

Deliquescent Sol in H<sub>2</sub>O (Berzelius)

### Fluoboric acid, HBF4

See Fluoborhydric acid

 $H_4B_2O_7$ , 3HF and  $H_4B_2O_9$ , 2HF (?) Fume on air, and are decomp with H<sub>2</sub>O dolph, B 12 1583)
HBO<sub>2</sub>, 3HF Decomp by H<sub>2</sub>O (Lan-

(Berzelius, Pogg 59 644)

Is either a mixture, or a solution of HBO<sub>2</sub> in HF, and is decomp by distillation, and the salts are decomp by recrystallisation (Basarow, C R 78 1698)

### Potassium fluoborate, $K_2B_2O_8F_2$ (?)

Scarcely sol in boiling Sl deliquescent alcohol (Schiff, A Suppl 5 175)

See Boron trioxide potassium fluoride,  $B_2O_3$ , 2KF

### Fluochromic acid

Ammonium fluochromate, NH<sub>4</sub>CrO<sub>8</sub>F Sol in H<sub>2</sub>O (Varenne, C R 91 989)

Potassium fluochromate, KCrO<sub>3</sub>F Efflorescent Sol in H<sub>2</sub>O, with gradual decomp (Streng, A 129 225)

#### Fluocolumbic acid

See also Fluoxycolumbic acid

Ammonium fluocolumbate fluoxycolumbate, (NH<sub>4</sub>)<sub>2</sub>CbF<sub>8</sub>, 2CbOF<sub>8</sub>, NH<sub>4</sub>F

Cadmium fluocolumbate, Cd<sub>5</sub>H<sub>5</sub>Cb<sub>3</sub>F<sub>80</sub>+ 28H<sub>2</sub>O

(Streng) Insol in, and decomp by H<sub>2</sub>O

Cobalt fluocolumbate, Co<sub>5</sub>H<sub>5</sub>Cb<sub>3</sub>F<sub>30</sub>+28H<sub>2</sub>O Insol in, and decomp by H<sub>2</sub>O (Streng.)

Copper fluocolumbate, Cu<sub>2</sub>HCbF<sub>10</sub>+9H<sub>2</sub>O Insol in, and decomp by H2O

Ferrous fluocolumbate, Fe<sub>3</sub>H<sub>4</sub>Cb<sub>2</sub>F<sub>20</sub>+19H<sub>2</sub>O As above

Manganous fluocolumbate, Mn<sub>5</sub>H<sub>5</sub>Cb<sub>3</sub>F<sub>30</sub> + 28H<sub>2</sub>O

Mercuric fluocolumbate, Hg<sub>3</sub>CbF<sub>11</sub>+8H<sub>2</sub>O As above

Nickel fluocolumbate, Ni<sub>3</sub>H<sub>4</sub>Cb<sub>2</sub>F<sub>20</sub>+19H\_O As above

Potassium fluocolumbate, K<sub>2</sub>CbF<sub>7</sub>

Decomp by solution in H<sub>2</sub>O (Mariginal) A ch (4) 8 34)

#### Rubidium fluocolumbate, Rb Cbb

Sol in H₂O and HF+Aq Insol in 1 (Pennington, J Am Chem cohol 1896, **18** 58)

Zinc fluocolumbate, Zn<sub>5</sub>H<sub>5</sub>Cb<sub>3</sub>F<sub>30</sub>+28H<sub>2</sub>() Insol in cold HO, decomp by hot Ha() (Santesson, Bull Soc (2) 24 52)

#### Fluodithionic acid

# Cæsium monofluodithionate,

 $S_2O_5(OH)FCs_2+H_2O$ Easily sol in H2O with decomp

Sol in HF, very unstable (Weinland anorg 1899, **21** 66)

Potassium di fluodithionate,  $S_2O_5F_2K_2+3H$  CEasily sol in H<sub>2</sub>O with decomp Sol in HF, very unstable (Weinland )

Rubidium difluodithionate.  $S_2O_5F_2Rb_2+$  $3H_{\bullet}O$ 

Easily sol in  $H_2O$  with decomp Sol in HF, very unstable (Weinland)

# Fluogermanic acid, H<sub>2</sub>GeF<sub>6</sub>

Known only in solution (Winkler, J pr (2) 36 177)

Potassium fluogermanate, K<sub>2</sub>GeF<sub>6</sub>

Sol in 173 98 pts H<sub>2</sub>O at 18° (Winkler) Sol in 184 61 pts H<sub>2</sub>O at 18° (Kruss and Nilson, B 20 1696)

Sol in 34 07 pts  $\rm H_2O$  at 100  $^{\circ}$  (Winkler) Sol in 38 76 pts  $\rm H_2O$  at 100  $^{\circ}$  (Kruss and Nilson)

Insol in alcohol

### Difluorodic acid

Ammonium diffuoiodate, NH4IO2F2

Like K salt

Sol in 40% HF+Aq anorg 1899, 20 30) (Weinland, Z

Sol in H<sub>2</sub>O Easily decomp (Weinland, B 1897, **30** 868)

Cæsium difluoiodate, CsIO<sub>2</sub>F<sub>2</sub> (Weinland, Z anorg 1899, **20** 36)

Cæsium hydrogen difluoiodate,  $CsIO_2\tilde{F}_2$ ,  $\tilde{H}IO_2F_2+2H_2O$ 

Efflorescent Sol in H<sub>2</sub>O with decomp (Weinland, Z anorg 1899, 22 257)

Potassium difluoiodate, kIO<sub>2</sub>F<sub>2</sub>

Sol without decomp in 40% HF+Aq (Weinland, Z anorg 1899, 20 31

Rubidium diffuoiodate, RbIO<sub>2</sub>F<sub>2</sub>

Resembles K salt Sol in HF+Aq (Weinland, Z anorg 1899, 20 35)

Rubidium hydrogen difluoiodate, RbIO<sub>2</sub>F<sub>2</sub>,HIO<sub>2</sub>F<sub>2</sub>+2H<sub>2</sub>O

Sol in 40-60% HF+Aq (Weinland, Z anorg 1899, **22** 260)

Sodium diffuoiodate, NaIO<sub>2</sub>F<sub>2</sub>

Decomp by H<sub>2</sub>O (Weinland, B 1897, 30 868)

Sol in HF (Weinland, Z anorg 1899, 20 37)

# Fluomanganic acid, H<sub>2</sub>MnF<sub>6</sub>

Decomp by H<sub>2</sub>O Sol in alcohol and ether in absence of H<sub>2</sub>O (Nickles, C R 65 107) decomp rapidly when warmed, at ordinar

Ammonium fluomanganate, (NH<sub>4</sub>)<sub>2</sub>MnF<sub>6</sub> More sol than the K salt (Nicklès, C R **65** 107) True composition is  $(NH_4)_4Mn_2F_{10} = 4NH_4F$ ,  $Mn_2F_6$  (Christensen, J pr (2) 34 41)

Cobalt fluomanganate, 2CoF<sub>2</sub>, Mn<sub>2</sub>F<sub>6</sub>+

Sol in H<sub>2</sub>O (Christensen)

Nickel fluomanganate, 2NiF<sub>2</sub>,  $Mn_{2}F_{6}+$  $8H_{2}O$ 

Sol in H<sub>2</sub>O (Christensen)

Potassium fluomanganate, K<sub>2</sub>MnF<sub>6</sub>

Difficultly sol in H<sub>2</sub>O Decomp by much 2O (Nicklès, C R 65 107)

Composition is K<sub>4</sub>Mn<sub>2</sub>F<sub>10</sub>=4KF, Mn<sub>2</sub>F<sub>6</sub> Also with 2H<sub>2</sub>O (Christensen, J pr (2) 34

Decomp by H<sub>2</sub>O Sol in HCl, H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub> with decomp Can be recryst from 40% HF+Aq Insol in acetic acid (Weinland and Lauenstein, Z anorg 1899, 20 41)

Rubidium fluomanganate, Rb<sub>2</sub>MnF<sub>6</sub>+2H<sub>2</sub>O As the K salt (Weinland and Lauenstein, Z anorg 1899, 20 44)

Silver fluomanganate, Ag<sub>2</sub>Mn<sub>2</sub>F<sub>8</sub>+14H<sub>2</sub>O (Christensen, J pr (2) 34 41)

Sodium fluomanganate, 4NaF, Mn<sub>2</sub>F<sub>6</sub> Decomp by much H<sub>2</sub>O (Christensen)

Zinc fluomanganate, 2ZnF<sub>2</sub>, Mn<sub>2</sub>F<sub>6</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Christensen)

Fluomolybdic acid

See Fluoxyhypomolybdic, and Fluoxymolybdıç acıds

Fluopalladous acıd

Potassium fluopalladite,

Sl sol in H<sub>2</sub>O

Sodium fluopalladite

Sl sol in H<sub>2</sub>O (Berzelius)

Fluoperboric acid

Ammonium fluoperborate, NH<sub>4</sub>OOB(F)OOB(F)OONH<sub>4</sub>

 $\mathbf{Ppt}$ Insol in ether (Petrenko, C C 1902, I 1191)

Potassium fluoperborate, K<sub>4</sub>B<sub>4</sub>F<sub>4</sub>O<sub>11</sub>+H<sub>2</sub>O

Dry salt is rather stable

Easily sol in H<sub>2</sub>O Aqueous solutio temp the decomp proceeds slowly in alcohol (Melikoff, B 1899, 32 KOOB(F)OOB(F)OK+1½H<sub>2</sub>O Insol 3350 Ppt Insol in ether (Petrenko, C C 1902, I 1191, J Russ, phys chem Soc 34 37)

# Fluopernranic acid

Potassium fluoperuranate,  $K_4U_4F_6O_{15}+4H_2O=3UO_4KF$ ,  $UO_3F_2$ ,  $KF+4H_2O$ Ppt (Lordkipanidse, C C 1900, II 525

Sodium fluoperuranate, UO<sub>4</sub>NaF+5H<sub>2</sub>O Ppt (Lordkipanidse, C C 1900, II 525)

Fluophosphamide, PF<sub>3</sub>(NH<sub>2</sub>)<sub>2</sub> Sol in H<sub>2</sub>O (Poulenc, A ch (6) 24 566)

# Fluophosphoric acid

Monocæsium monofluophosphate, P(OH)<sub>3</sub>(OCs)F I ike the K salt (Weinland, Z anorg 1899.

\_ \_\_osphate,

Z anorg 1899, 21 44)

#### Potassium monofluophosphate, KHF PO<sub>3</sub>+H<sub>2</sub>Ô

Decomp by H<sub>2</sub>O, unstable (Weinland, B 1898, **31** 124–125)

Monorubidium monofluophosphate,  $P(OH)_{s}(ORb)F$ 

Sol in 40% HF+Aq (Weinland, Z anorg 1899, **21** 47)

Rubidium monofluophosphate, RbHFPO<sub>8</sub>+H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Weinland, B 1898, 31 124)

# Fluoplatinic acid

# Ammonium fluoplatinate

Secomp by H<sub>2</sub>O to a sol acid, and an insol basic salt Insol in alcohol (Berzelius)

### Potassium fluoplatinate

Deliquescent Insol in alcohol Decomp by H<sub>2</sub>O (Berzelius)

#### Sodium fluoplatinate

Decomp by H<sub>2</sub>O (Berzelius)

# Fluor- and Fluoro-

See Fluo-

Fluorhydric (Hydrofluoric) acid, HF or

Attracts H<sub>2</sub>O from air with great avidity. Very sol in H<sub>2</sub>O with evolution of much heat. Sat solution has sp gr 1 25 (H Davy)

On boiling the aqueous solution an acid of constant composition is obtained, which boils at 120°, has sp gr 1 15, and contains 35 37% HF (Bineau, A ch (3) 7 257) The residual acid after boiling contains 36 to 38% HF, and by standing over CaO gives off HF until an acid containing 32 5 to 32 7% HF is formed. Weaker acids increase their strength to 32 2 to 32 4% HF, while an acid containing 32 5% HF remains unchanged (Roscoe, A 116. 218)

Does not attack gutta-percha Sol un  $H_2SO_4$ 

Sp gr of HF+Aq at 15°

| Sp gr                                                                | % HF                                                                       | Sp gr                                                                | % HF                                                                          | Sp gr                                                | % HF                                                        |
|----------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|
| 1 01<br>1 02<br>1 03<br>1 04<br>1 05<br>1 06<br>1 07<br>1 08<br>1 09 | 2 90<br>5 80<br>8 70<br>11 60<br>14 50<br>17 40<br>20 30<br>23 20<br>26 10 | 1 10<br>1 11<br>1 12<br>1 13<br>1 14<br>1 15<br>1 16<br>1 17<br>1 18 | 29 00<br>31 90<br>34 80<br>37 70<br>40 60<br>43 50<br>46 40<br>49 30<br>52 20 | 1 19<br>1 20<br>1 21<br>1 22<br>1 23<br>1 24<br>1 25 | 55 10<br>58 00<br>60 90<br>63 80<br>66 70<br>69 60<br>72 50 |

(Hart, J Anal Ch 3 372)

# Sp gr of HF+Aq at ord temp

Sp gr of HF+Aq at ord temp—Continued

| ~p & 0. 11. | i rd ac ora com | p Continued |
|-------------|-----------------|-------------|
| Deg Baumé   | Sp gr           | % HF        |
| 28          | 1 2390          | 60 17       |
| 29          | 1 2497          | 62 32       |
| 30          | 1 2605          | 64 47       |
| 31          | 1 2716          | 66 61       |
| 32          | 1 2828          | 68 76       |
| 33          | 1 2943          | 70 91       |
| 34          | 1 3059          | 73 06       |
| 35          | 1 3177          | 75 21       |
| 36          | 1 3298          | 77 36       |
| 37          | 1 3421          | 79 51       |
| 38          | 1 3546          | 81 66       |
| 39          | 1 3674          | 83 81       |
| 40          | 1 3894          | 85 96       |
| 41          | 1 3937          | 88 10       |
| 42          | 1 4072          | 90 24       |
| 43          | 1 4211          | 92 39       |
| 44          | 1 4350          | 94 54       |
| 45          | 1 4493          | 96 69       |

(Eckelt, Ch Z 1898, 22 225)

Sp gr of HF+Aq at 0°

| % HF                                                                                                                                                                                   | Sp gr                                                                                                                                                                                              | % HF                                                                                                                                                                                       | Sp gr                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 484<br>1 504<br>2 48<br>4 80<br>7 75<br>15 85<br>24 47<br>28 48<br>29 83<br>34 23<br>38 50<br>41 15<br>41 92<br>47 52<br>48 49<br>50 97<br>55 09<br>55 39<br>57 66<br>61 66<br>65 19 | 1 005<br>1 009<br>1 012<br>1 017<br>1 035<br>1 065<br>1 097<br>1 110<br>1 120<br>1 130<br>1 145<br>1 155<br>1 155<br>1 157<br>1 182<br>1 187<br>1 200<br>1 217<br>1 220<br>1 230<br>1 245<br>1 255 | 71 73<br>72 21<br>78 05<br>84 27<br>87 72<br>88 11<br>88 82<br>89 02<br>89 15<br>89 82<br>90 20<br>90 64<br>91 04<br>92 09<br>92 81<br>92 91<br>94 26<br>95 84<br>97 50<br>98 52<br>100 05 | 1 262<br>1 260<br>1 260<br>1 235<br>1 212<br>1 210<br>1 207<br>1 202<br>1 200<br>1 190<br>1 185<br>1 175<br>1 165<br>1 152<br>1 135<br>1 130<br>1 095<br>1 065<br>1 035<br>1 022<br>1 0005 |
|                                                                                                                                                                                        |                                                                                                                                                                                                    | 11                                                                                                                                                                                         | I                                                                                                                                                                                          |

(Hill, Roy Soc Proc 1909, 83 A 144)

Sp gr of HI+Aq at 18°

| • • •                                  | •                                         |
|----------------------------------------|-------------------------------------------|
| <i>‰</i> ні                            | Sp gr                                     |
| 0 484<br>1 504<br>2 48<br>4 80<br>7 75 | 1 003<br>1 005<br>1 009<br>1 017<br>1 028 |
| $15 85 \\ 24 47$                       | 1 058<br>1 087                            |
| 29 83                                  | 1 103                                     |

(Hıll)

Aq solution of sp gr 1 138 at 18° contains 43 2% HF and has a constant bpt of 111° at 750 mm (Deussen, Z anorg 1906, 49 297)

The strongest acid that can be obtained by distillation contains 48 17% HF and boils

at 125-1255° (Gore)

#### Fluorides

The alkalı fluorides, also AgF and SnF<sub>2</sub>, are sol in H<sub>2</sub>O, the fluorides of Fe, Sr, and Cd are sl sol, the others are insol in H<sub>2</sub>O Most fluorides are sol in acids, especially HF+Aq Insol in liquid NH<sub>2</sub> (Franklin, Am Ch J 1898, **20** 822)

See under each element

### Fluorine, F2

Decomposes H<sub>2</sub>O and all organic solvent with great violence (Moissan, C R 103 202 and 256)

Liquified at —185° to a yellowish liquid which does not dissolve glass nor ignite cooled Si, B, C, S, P, or Fe (Moissan, C R 1897, 124 1202–1204)

### Fluomolybdic acid

Ammonium fluomolybdate,  $(NH_4)MoF_4+H_2O$ 

Somewhat more sol in H<sub>2</sub>O than the K salt Hydrolysed by H<sub>2</sub>O (Rosenheim, Z anorg 1905, **46** 321)

 $(NH_4)_3Mo_2F_9+2H_2O$  (Rosenheim)

Potassium fluomolybdate, KMoF<sub>4</sub>+H<sub>2</sub>O Nearly insol in H<sub>2</sub>O (Rosenheim)

#### Fluoselenic acid

# Ammonium monofluoselenate,

SeO<sub>3</sub>(OH)F(NH<sub>4</sub>)<sub>2</sub> Not hygroscopic

Lasily sol H<sub>2</sub>O with decomp

Sol in HF (Weinland, Z anoig 1899, **21** 58)

I repotassium difluodiselenate,  $Se_2O_7I^c$   $K_3H+H_2O$ 

Decomp in the air, sol in HO with decomp, sol in HF (Weinland)

Trirubidium difluodiselenate,  $Se_2O_7F_2Rb_3H + H_2O$ 

Decomp in the air, sol in H<sub>2</sub>O with decomp, sol in HF (Weinland, Z anorg 1899, 21 57)

### Fluosilicic acid, H<sub>2</sub>S<sub>1</sub>F<sub>5</sub>

Sp gr of H<sub>2</sub>S<sub>1</sub>F<sub>6</sub>+Aq at 175° (H<sub>2</sub>O at  $17.5^{\circ} = 1.000$ 

| % H <sub>2</sub> S <sub>1</sub> F <sub>8</sub> | Sp gr                                                                                  | % H <sub>2</sub> S <sub>1</sub> F <sub>6</sub> | Sp gr                                                                        |
|------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|
| 2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18 | 1 0161<br>1 0324<br>1 0491<br>1 0661<br>1 0834<br>1 1011<br>1 1190<br>1 1373<br>1 1559 | 20<br>22<br>24<br>26<br>28<br>30<br>32<br>34   | 1 1748<br>1 1941<br>1 2136<br>1 2335<br>1 2537<br>1 2742<br>1 2951<br>1 3162 |

(Stolba, J pr 90 193)

Very deliquescent, and sol in (Kessler, C R 90 1285) Solution decomp into HF and SiF, on evaporation, when it becomes concentrated

#### Fluosilicates

Most of the fluosilicates are sol in H<sub>2</sub>O, but the alkalı salts (especially K) and the Ba salt are only sl sol in H<sub>2</sub>O

### Aluminum fluosilicate, Al<sub>2</sub>(S1F<sub>6</sub>)<sub>3</sub>

Easily sol in H<sub>2</sub>O After evaporating to dryness, the residue is slowly but completely sol in  $H_2O$  (Deville, A ch (3) 61 327) Insol in acetone (Naumann, B 1904, 37 4328)

Aluminum fluosilicate silicate, Al<sub>2</sub>S<sub>1</sub>F<sub>10</sub>, 5Al<sub>2</sub>S<sub>1</sub>O<sub>5</sub>

Min Topaz Insol in acids

# Ammonium fluosilicate, (NH<sub>4</sub>)<sub>2</sub>S<sub>1</sub>F<sub>6</sub>

Sol in 5 38 pts H<sub>2</sub>O at 17 5° to form a solution of 10961 sp gr, sol in 18 pts hot H<sub>2</sub>O, sol in 45 5 pts alcohol of 31% (Stolba, C C 1877 418)

Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014)

 $3NH_4F_2$   $S_1F_4 = (NH_4)_2S_1F_6$ ,  $NH_4F$ (Marignac, Ann Min (5) 15 221)  $H_{9}O$ 

#### Barium fluosilicate, BaSiF6

Sol in 3802 pts cold H<sub>2</sub>O (Fresenius, A **59** 120)

Sol in 3731 pts H<sub>2</sub>O at 17 5° in 3315 pts at 21°, in 1175 pts at 100° (Stolba, J pr 96

Sol in 640-733 pts H<sub>2</sub>O containing a little HCl (Fresenius)

488 pts HCl+Aq containing 4 25% HCl dissolve 1 pt at 22° (Stolba)

More sol in HNO3+Aq than in H2O (Fresenius)

272 pts HNO<sub>3</sub>+Aq, containing 8% N O<sub>5</sub>, dissolve 1 pt at 22° (Stolba)

1 pt BaSiF<sub>6</sub> dissolves in 428 pts sat NH<sub>4</sub>Cl+Aq, in 589 pts sat NH<sub>4</sub>Cl+Aq+  $NH_4Cl+Aq,\ m$  589 pts sat  $NH_4Cl+Aq+$  in 150 pts of 85% at 20°, in 617 pts of 92% 2 vols  $H_2O$  (Mallet, Sill Am J (2) 28 48) at 20° (Stolba, J pr 102 7)

1 pt BaSiF<sub>6</sub> dissolves in 306 pts sat NH4Cl+Aq at 22°, in 361 pts 15% solution of NH<sub>4</sub>Cl, in 563 pts sat boiling NaCl+Aq, in 349 pts 10% solution of NaCl at boiling temp, in 2185 pts 10% solution of NaCl at 20°, in 1140 pts 5% solution of NaCl at 20° (Stolba)

Nearly absolutely insol in alcohol (Fresenius )

Solubility in a mixture of H<sub>2</sub>O, alcohol (96%), HCl+Aq (20%), H<sub>2</sub>SiF<sub>6</sub>+Aq (37%)' 1 pt BaSiF<sub>6</sub> is sol in pts of solutions of given composition

| H <sub>2</sub> O                                     | Alcohol                               | HCl+Aq                                     | $_{+\mathrm{Aq}}^{\mathrm{H_2S_1F_6}}$ | BaSıF6                                                          |
|------------------------------------------------------|---------------------------------------|--------------------------------------------|----------------------------------------|-----------------------------------------------------------------|
| 50<br>74 1<br>70 8<br>77 95<br>73 0<br>97 09<br>75 0 | 50<br>25<br>25<br>20<br>25<br>0<br>25 | 0<br>0 9<br>4 2<br>0 9<br>0 9<br>1 25<br>0 | 0<br>0<br>0<br>1 15<br>1 1<br>1 66     | 37,219<br>5,263<br>2,860<br>39,061<br>70,679<br>3,247<br>16,914 |

(Fresenius, Z anal 29 143)

### Cadmium fluosilicate, $CdS_1F_6+6H_2O$

Extremely sol in H<sub>2</sub>O Easily sol in 50% alcohol (Engelskirchen, Dissert 1903)

### Cæsium fluosilicate, Cs SiF

Sol in 166 pts H<sub>2</sub>O at 17°, and much less t H<sub>2</sub>O Insol in alcohol (Preis, J pr h2t H₂O 103 410)

#### Calcium fluosilicate, CaSiF<sub>6</sub>+2H<sub>2</sub>O

Sl sol in, and partly decomp by  $H_2O$  Sol in HF and HCl+Aq Sol in fluosilicic acid without decomp Easily sol in 60% alcohol (Fleischer)

#### Cerium fluosilicate

Very difficulty sol in HO, acetic, or fluosilicic acids Insol in alcohol (Stolba, C C **1874** 130)

### Chromium fluosilicate

Deliquescent (Berzelius) Lfflorescent Sol in H<sub>2</sub>O (Berlin)

Cobaltous fluosilicate, CoSiF<sub>6</sub>+6H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Berzelius)

### Cuprous fluosilicate, Cu<sub>2</sub>SiF<sub>6</sub>

Insol in H<sub>2</sub>O (Berzelius, Pogg 1 199)

#### Cupric fluosilicate, CuSiF<sub>6</sub>+6H<sub>2</sub>O

Deliquescent in moist, efflorescent in dry

Sol in 0428 pt HO at 17° Sp gr of solution sat at  $17^{\circ} = 16241$ 

Sol in 175 pts alcohol of 62 vol % at 20°

Insol in methyl acetate (Naumann, B 1909, 42 3790

Contains 6½ H<sub>2</sub>O (Stolba)  $+5\frac{1}{2}H_2O$  (Knop and Wolf)

Cupric fluosilicate phosphate, CuSiF6, Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O, but easily sol in dil HCl+ (Thorpe and Rodger, Chem Soc 55

# Glucinum fluosilicate

Known only in solution

Iron (ferrous) fluosilicate, FeSiF<sub>6</sub>+6H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Berzelius)

Iron (ferric) fluosilicate, Fe<sub>2</sub>(S<sub>1</sub>F<sub>6</sub>)<sub>3</sub> Sol in H<sub>2</sub>O (Berzelius)

Lead fluosilicate, PbSiF<sub>6</sub>+2H<sub>2</sub>O

Deliquescent Easily sol in H<sub>2</sub>O Insol in acetone (Naumann, B 1904, 37 4329)

+4H<sub>2</sub>O (Marignac)

## Lithium fluosilicate, $L_{12}S_1F_6+2H_2O$

100 pts H<sub>2</sub>O at 17° dissolve 73 pts crystalline salt (Marignac)

100 pts cold H<sub>2</sub>O dissolve 52 6 pts crystals Sol in dil alcohol (Stolba, J pr 91 456) 100 pts alcohol of 46 vol % dissolve about 4 pts, and 100 pts alcohol of 79 vol % dissolve about 0 4 pt crystals (Stolba, Z anal **3** 311

Insol in ether or benzene

Insol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4329)

Insol in methyl acetate (Naumann, B 1909, **42** 3790) (Naumann, B

Insol in ethyl acetate 1904, **37** 3601)

### Magnesium fluosilicate, MgSiF<sub>6</sub>+6H<sub>2</sub>O

Efflorescent Sol in 1534 pts cold H<sub>2</sub>O, forming a solution of 1 235 sp gr at 17 5° Separates out SiO2 on warming, which nearly all redissolves on cooling (Stolba, C C **1877** 578)

Magnesium fluosilicate silicate, Mg<sub>5</sub>Si<sub>2</sub>F<sub>18</sub>,  $xMg_5S_{12}O_9$ 

Min Humite Chondrodite Gelatinises with HCl, or H<sub>2</sub>SO<sub>4</sub>+Aq

Manganous fluosilicate, MnSiF<sub>6</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignae, J pr 83 202) 100 pts dissolve in 714 pts H<sub>2</sub>O at 17 5°, and sp gr of solution = 1 44825 Much more sol in hot H2O, and less sol in alcohol, the stronger the alcohol (Stolba, C C 1883 292)

Mercurous fluosilicate, Hg<sub>2</sub>S<sub>1</sub>F<sub>6</sub>

Sl sol in H<sub>2</sub>O without decomp (Lemaire, C C 1897, I 1046)

+2H<sub>2</sub>OSl sol in HO More easily sol in acidified H<sub>2</sub>O, but precipitated by HCl+ Aq (Berzelius)

Mercuric fluosilicate, basic, HgSiF6, HgO+ 3H₂O

Decomp by H<sub>2</sub>O, but sol in weakest acids (Berzelius, Pogg 1 200)

Mercuric fluosilicate, HgSiF<sub>6</sub>+6H<sub>2</sub>O Deliquescent, and easily sol in H<sub>2</sub>O (Finkener, Pogg 111 246)

Nickel fluosilicate, NiSiF<sub>6</sub>+6H<sub>2</sub>O

Easily sol in H<sub>2</sub>O (Marignac, Ann Min (5) **15** 262)

Potassium fluosilicate,  $K_2S_1F_6$ 

Sol m 833 1 pts  $\rm H_2O$  at 17 5°, and 104 8 pts at 100° (Stolba, J pr 103 396) Sol m 3800 pts cold, and more easily sol m hot H<sub>2</sub>O (Fresenius)

More sol in HCl+Aq than in HO
Sol in 337 pts HCl+Aq of 26 5% at 14°,
in 307 pts of 25 7% at 15°, in 340 pts of 14 1
% at 14°, in 303 pts of 13 6% at 15°, in 327
pts of 96% at 14°, in 313 pts of 9.2% at 15°, in 376 pts of 27% at 14°, in 319 pts of 24% at 15°, in 409 pts of 18% at 14°
(Stolba.l.c.) (Stolba, l c)

Sol in 428 pts sat, and 589 pts dil

NH₄Cl+Aq (Mallet)

Much less sol in K2SO4, KNO3, or KCl+ Aq, but more sol in NH<sub>4</sub>Cl+Aq than in H<sub>2</sub>O (Stolba)

Sol in 24,066 pts K SO<sub>4</sub>+Aq containing 9 92% K<sub>2</sub>SO<sub>4</sub> at 17°, in 17,858 pts containing 6% at 18°, in 19,530 pts containing 5% at 17°, in 10,721 pts containing 1% at 17°

Sol in 125,000 pts KNO<sub>3</sub>+Aq containing 18 4% KNOs at 15°, in 43,478 pts containing 87% at 15°, in 1735 pts containing 88% at 100°, in 35,814 pts containing 43% at 15°, in 10,203 pts containing 1 00% at 15°

Sol in 40,070 pts KCl+Aq containing 25% Sol in 40,000 pts KCl+ Aq containing 25% KCl at 17°, in 38,352 pts containing 18 4% at 17°, in 41,254 pts containing 13 4% at 14°, in 24,032 pts containing 6 7% at 12°, in 1200 pts containing 0 65% at 17°, in 1095 pts containing 0 45% at 18° Sol in 358 pts NH<sub>4</sub>Cl+Aq containing 26 3% NH<sub>4</sub>Cl at 17°, in 306 pts containing 15% in 339 pts containing 10% at 15° in 339 pts containing 10% at 15° in

at 15°, in 339 pts containing 10% at 15°, in 436 pts containing 5% at 15° (Stolba, J pr

**103** 306 ) (Buchner, Z phys Insol in liquid CO Ch 1906, **54** 674)

Insol in liquid NH<sub>3</sub> (Gore, Am ch J 1898, **20** 829 ) Completely pptd from aqueous solution by

an equal vol of alcohol

(Naumann, B Sl sol in benzonitrile 1914, 47 1369) Insol in methyl acetate (Naumann. B 1909, 42 3790)

Rubidium fluosilicate, Rb<sub>2</sub>SiF<sub>6</sub>

Sol in 625 pts  $\rm\,H_2O$  at 20°, and 73 05–74 5 pts at 100° More sol in acidified water (Stolba, J pr **101** 1) (Eggeling, Z anorg 1905, Insol in alcohol Insol in H<sub>2</sub>O **46** 175)

Less sol in H<sub>2</sub>O than K<sub>2</sub>S<sub>1</sub>F<sub>6</sub> (Gossner. Zeit Kryst 1904, 38 149)

Silver fluosilicate, Ag<sub>2</sub>S<sub>1</sub>F<sub>6</sub>+4H<sub>2</sub>O

Deliquescent Easily sol in H<sub>2</sub>O (Marignac, Ann Min (5) 15 221)

Sodium fluosilicate, Na<sub>2</sub>S<sub>1</sub>F<sub>6</sub>

Much more sol in H2O than K2SiF6, es-

pecially in hot H<sub>2</sub>O Addition of acid does not increase solubility (Berzelius)

Sol in 153 3 pts H<sub>2</sub>O at 17 5°, and 40 66 pts at 100° Easily forms supersaturated solutions (Stolba, Z anal 11 199)

Much less sol in NaCl+Aq than in H<sub>2</sub>O (Stolba, L and 165 (1) OC 26

(Stolba, J pr 1865 (1) 96 26)

Precipitated completely from aqueous solution by alcohol (Rose)

Insol in methyl acetate (Naumann, B 1909, **42** 3790)

Strontium fluosilicate, SrSiF<sub>6</sub>+2H<sub>2</sub>O

Sol in cold  $H_2O$ , but decomp somewhat on heating Sol in 31 06 pts  $H_2O$  (Fresenus) Easily sol in acidified H<sub>2</sub>O without decomp Sol in alcohol

Solubility in a mixture of H<sub>2</sub>O, alcohol (96%), HCl+Aq (20%), H<sub>2</sub>SiF<sub>6</sub>+Aq (37%) 1 pt SrSiF<sub>6</sub> is sol in pts of solutions of given composition

| H <sub>2</sub> O                                 | Alcohol                                     | HCl+Aq                                        | H S1F6<br>+Aq                           | SrS1F6                                                  |
|--------------------------------------------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------|---------------------------------------------------------|
| 50<br>74 1<br>70 8<br>77 95<br>73<br>75<br>95 24 | 50<br>25<br>25<br>25<br>20<br>25<br>25<br>0 | 0<br>0<br>4 2<br>0 9<br>0 9<br>0<br>0<br>2 04 | 0<br>0<br>0<br>1 15<br>1 1<br>0<br>2 72 | 15 29<br>82 93<br>50 9<br>55 0<br>82 97<br>147 4<br>7 3 |

(Fresenius, Z anal 29 143)

Thallous fluosilicate, Tl<sub>2</sub>S<sub>1</sub>F<sub>6</sub>+2H<sub>2</sub>O Very easily sol in H<sub>2</sub>O (Kuhlmann)

Thorum fluosilicate, Th(OH)<sub>2</sub>S<sub>1</sub>F<sub>6</sub> (?) (Cleve)

Tin (stannic) fluosilicate, SnF4, SiF4 Very easily sol in H<sub>2</sub>O (Berzelius) Uranyl fluosilicate

Very sl sol in acids (Berzelius) Sol m alcohol (Stolba, Z anal 3 71)

Vanadium fluosilicate

Deliquescent Sol in H<sub>2</sub>O (Guvard, Bull Soc (2) 25 352)

Yttrium fluosilicate

Insol in pure, sol in acidified H<sub>2</sub>O (Berzehus)

Zinc fluosilicate, ZnSiF<sub>6</sub>+6H<sub>2</sub>O Very easily sol in H<sub>2</sub>O (Berzelius)

Zirconium fluosilicate

Sol in H<sub>2</sub>O Solution clouds up on boiling (Berzelius)

Fluostannic acid

Ammonium fluostannate, (NH<sub>4</sub>)<sub>2</sub>SnF<sub>6</sub>

Sol in H<sub>2</sub>O (Marignae, Ann Min (5) 15 224)

4NH<sub>4</sub>F, SnF<sub>4</sub> Sol in H<sub>2</sub>O (Marignac)

Barrum fluostannate, BaSnF6

Slowly sol in H<sub>2</sub>O  $+3H_2O$  Sol in 18 pts  $H_2O$  at 18° (Marignac, Ann Min (5) **15** 246)

Decomp by warming with  $H_2SO_4$  with evolution of HF (Emich, M 1904, **25** 1912)

Calcium fluostannate, CaSnF<sub>6</sub>+2H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac, Ann Min (5) 15 250)

Cadmium fluostannate, CdSnF<sub>6</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac)

Cobaltous fluostannate, CoSnF<sub>6</sub>+6H<sub>2</sub>O (Gossner, Zeit Kryst 1907, 42 482)

Cupric fluostannate, CuSnF<sub>6</sub>+4H<sub>2</sub>O

Not deliquescent (Marignac, Ann Min (5) **15** 291)

Lithium fluostannate, Li<sub>2</sub>SnF<sub>6</sub>+2H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac, Ann Min (5) 15 242)

Magnesium fluostannate, MgSnF<sub>6</sub>+6H<sub>2</sub>O Not deliquescent Sol in H2O (Marignac, Ann Min (5) 15 256)

Manganous fluostannate, MnSnF<sub>6</sub>+6H<sub>2</sub>O Slowly efflorescent (Marignac)

Nickel fluostannate, NiSnF<sub>6</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac, Ann Min (5) 15 262)

Potassium fluostannate, K<sub>2</sub>SnF<sub>6</sub>+H<sub>2</sub>O

Two modifications—(a) Thin plates in 23 pts H<sub>2</sub>O at 100°, and in 15-16 pts at (Marignac)

(b) Octahedra Sol in 3 pts H<sub>2</sub>O at 100°,

and 27 pts at 18° (Marignac)

Sol in hot H<sub>2</sub>O Can be cryst from hot With conc H2SO4, HF is evolved (Emich, M 1904, 25 911)

Potassium hydrogen fluostannate, 3KF, HF,  $SnF_4$ 

Sol in H<sub>2</sub>O (Marignac)

Silver fluostannate, Ag<sub>2</sub>SnF<sub>6</sub>+4H<sub>2</sub>O Sl deliquescent Easily sol in H<sub>2</sub>O (Marignac)

Sodium fluostannate, Na<sub>4</sub>SnF<sub>6</sub> Sol in 18–19 pts H<sub>2</sub>O at 20° (Marignac)

Strontium fluostannate, SrSnF<sub>6</sub>+2H<sub>2</sub>O Sol m 55 pts H<sub>2</sub>O at 18° (Marignac)

Zinc fluostannate, ZnSnF<sub>6</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac)

Fluosulphonic acid, HSO<sub>3</sub>F See Sulphuryl hydroxyl fluoride

Ammonium fluosulphonate, FSO<sub>3</sub>NH<sub>4</sub>

Easily sol in H2O from which it can be cryst

Sol in ethyl alcohol, more sol in methyl alcohol Can be cryst from abs alcohol (Traube, B 1913, 46 2528)

Sodium fluosulphonate, FSO<sub>3</sub>Na

Hydroscopic Sol in ilcohol and acetone (Traube)

Fluosulphuric acid

Tricæsium difluodisulphate,  $S_2O_7I_2Cs_2H+$ H<sub>2</sub>O

As the K silt (Womland, Z anorg 1899, **21** 53)

Tripotassium difluodisulphate,  $S_2O_7I_1 K_3H+H_2O$ 

Sol in HF, quite stable in air, sol in H2O with decomp (Weinland, Z inoig 1899, **21** 51)

Trirubidium difluodisulphate, S2O7R21B3H  $+\mathrm{H}_{2}\mathrm{O}$ 

Sol in HF (Weinland, Z anoig 1899, 21 53)

Fluotantalic acid

Ammonium fluotantalate, (NH<sub>4</sub>)<sub>2</sub>TaF<sub>7</sub> Very sol in H<sub>2</sub>O (Marignac, A ch (4) 9 272)

(Balke, J Am Chem Soc  $(NH_4)_3TaF_8$ 1905, **27** 1151)

Cæsium fluotantalate, CsTaF6

Can be recryst from HF+Aq (Balke) Can not be recryst from H<sub>2</sub>O as it tends to go into CsF, TaF<sub>5</sub> Am Chem Soc 1905, 27 1151) (Balke, J

15CsF, TaF<sub>5</sub> Sl sol in H<sub>2</sub>O (Pennington, J Am Chem Soc 1896, 18 59)

Calcium fluotantalate

Difficulty sol in H<sub>2</sub>O (Berzelius)

Cupric fluotantalate, Cul aF<sub>7</sub>+4H O

Deliquescent Easily sol in  $H_2O$  (Marignac, A ch (4) 9 294

Lead fluotantalate

Difficulty sol in H<sub>2</sub>O (Berzelius)

Lithium fluotantalate, LiF, TaF<sub>5</sub>+2H<sub>2</sub>O

Can be recryst from conc HF (Balke, J Am Chem Soc 1905, 27 1143)

Potassium fluotantalate, K<sub>2</sub>TaF<sub>7</sub>

Sl sol in cold, much more easily in hot H<sub>2</sub>O Decomposes, with formation of a white precipitate on boiling (Berzelius)

Much more sol in HF+Aq 1 pt of the salt is sol in 200 pts HOO containing a trace of HF, and in 150-160 pts of H<sub>2</sub>O containing a little more HF (Marignac, A ch (4) 9

Potassium hydrogen fluotantalate, KF, HF,  $TaF_5$  (?)

Sol in H<sub>2</sub>O (Berzelius)

Rubidium fluotantalate, Rb<sub>2</sub>T<sub>4</sub>F<sub>7</sub>

Sol in HF+Aq (Pennington, J Am Ch

Soc 1896, **18** 58) 3RbF, 2TaF<sub>5</sub> (Balke, J Am Chem Soc 1905, 27 1151)

Sodium fluotantalate, 3NaF, 7 al 5

Lasily sol in H<sub>2</sub>O

Na<sub>2</sub> LaF<sub>7</sub>+H<sub>2</sub>O Sol in HO (Marignac)

Thallous fluotantalate, Il<sub>2</sub>I al<sub>7</sub>

Sol in H<sub>2</sub>O On boiling the aqueous solu-

tion tantalic acid separates

Decomp by cone H SO<sub>1</sub> Difficultly sol in cold, easily sol in hot HF (Ephrum B 1909, **42** 4461)

Zinc fluotantalate, ZnTaF<sub>7</sub>+7H O

Very deliquescent Sol in H<sub>2</sub>O (Mungnac, A ch (4) 9 249)

Fluotelluric acid

Ammonium fluotellurate, NH<sub>4</sub>1 el <sub>5</sub>+H<sub>2</sub>O

(Hogborn, Bull Soc Decomp by H<sub>2</sub>O (2) **35** 60)

Barium fluotellurate, Ba(TeF<sub>5</sub>)<sub>2</sub>+H<sub>2</sub>O As above

Potassium fluotellurate, KTeF5

As above

TeO<sub>3</sub>F<sub>2</sub>K<sub>2</sub>+3H<sub>2</sub>O Stable in dry air, only sl sol in H<sub>2</sub>O with decomp, sol in HF (Weinland, Z anorg 1899, **21** 61)

Rubidium diffuotellurate, TeO<sub>3</sub>F<sub>2</sub>Rb<sub>2</sub>+3H<sub>2</sub>O
Sl sol in H<sub>2</sub>O with decomp Sol in HF
(Weinland, Z anorg 1899, **21** 62)

#### Fluotitanic acid

Known only in solution as titanium hydrogen fluoride

 $\begin{array}{ccccc} \textbf{Ammonium fluotitanate,} & (NH_4)_2T_1F_6\\ & Sol & m & H_2O & (Marignac)\\ & 3NH_4F, & T_1F_4 & Sol & m & H_2O & (Marignac) \end{array}$ 

Ammonium fluosequititanate, 6NH<sub>4</sub>F, T<sub>12</sub>F<sub>6</sub>
Easily sol in H<sub>2</sub>O Sl sol in NH<sub>4</sub>F+Aq
(Petersen, J pr (2) 40 54)
Insol in NH<sub>4</sub>F+Aq (Piccini, C R 97 1064)

 $4NH_4F$ ,  $T_{12}F_6$  Properties as the corresponding K salt (Piccini, B 18 257 R)

e, BaTıF<sub>6</sub>

H<sub>2</sub>O More easily sol in Engelskirchen, Dissert

+½H<sub>2</sub>O (Emich, M 1904, **25** 907)

Cadmium fluotitanate, CdTiF<sub>6</sub>+6H<sub>2</sub>O Extremely sol in H<sub>2</sub>O Easily sol in 50% alcohol (Engelskirchen, Dissert **1903**)

# Cæsium fluotitanate, Cs. TiF6

More sol in hot than cold  $H_2O$  and much more sol than the Rb comp (Engels-kirchen, Dissert 1903)

4CsF,  $\text{TiF}_4$  More sol in  $\text{H}_2\text{O}$  than  $\text{Cs}_{15}\text{TaF}_{20}$  and is not decomp by pure  $\text{H}_2\text{O}$  (Pennington, J Am Chem Soc 1896, 18 60)

# Calcium fluotitanate, CaTiF<sub>6</sub>+3H<sub>2</sub>O

Decomp by pure H<sub>2</sub>O Sol without decomp in acidified H<sub>2</sub>O (Berzelius)

Separates a precipitate with cold H<sub>2</sub>O, which dissolves on heating (Marignac, Ann Min (5) **15** 250)

# Cupric fluotitanate, CuTiF<sub>6</sub>+4H<sub>2</sub>O

Sol in pure  $\rm H_2O$  with partial decomp , easily and completely sol in acidified  $\rm H_2O$  (Berzelius )

# Cupric fluoritanate ammonium fluoride, CuTiF<sub>6</sub>, NH<sub>4</sub>F+4H<sub>2</sub>O

Efflorescent Easily sol in H<sub>2</sub>O (Marignac, Ann Min (5) **15** 267)

Cupric fluoritanate potassium fluoride,  $CuT_1F_6$ ,  $KF+4H_2O$ 

As the above salt (Marignac)

Ferrous fluotitanate, FeTiF<sub>6</sub>+6H<sub>2</sub>O
Sol in H<sub>2</sub>O (Weber, Pogg 120 287)

#### Ferric fluotitanate

Decomp by H<sub>2</sub>O (Berzelius)

#### Lead fluotitanate

Easily sol in  $H_2O$  (Berzelius)

Lithium fluotitanate,  $\rm Li_2TiF_6+2H_2O$ Very sol in  $\rm H_2O$  (Engelskirchen, Dissert, 1903)

Magnesium fluotitanate, MgTiF<sub>5</sub>+6H<sub>2</sub>O
Easily sol in cold H<sub>2</sub>O (Marignac, Ann
Min (5) **15** 257)

Nickel fluotitanate, NiTiF<sub>6</sub>+6H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Weber, Pogg 120 282)

#### Potassium fluotitanate, K<sub>2</sub>T<sub>1</sub>F<sub>6</sub>

Difficultly sol in cold, much more easily in hot  $H_2O$ 

100 pts H<sub>2</sub>O dissolve at 0° 3° 6° 10° 14° 20° 0.556,0667,0.775,0,000,1,042,1,28 pts

0 556 0 667 0 775 0 909 1 042 1 28 pts K<sub>2</sub>T<sub>1</sub>F<sub>6</sub> (Marignac, A ch (4) **8** 65)

Sol in 78 6 pts H<sub>2</sub>O at 21° Sol in acids (Piccini, Gazz ch it 1886, **16** 104) Sol in 78 pts H<sub>2</sub>O at 20°, 94 pts at 100° By addition of small amount of HF, the

By addition of small amount of HF, the solubility is increased (Weiss and Kaiser, Z anorg 1910, 65 354)

Sol in HF (Marchetti, Z anorg 1895, 10 66)

 $+\mathrm{H}_2\mathrm{O}$  Much less sol in  $\mathrm{H}_2\mathrm{O}$  in presence of KBr or KI (Hall, J Am Chem Soc 1904, **26** 1246)

Sol in H<sub>2</sub>O or HF with decomp (Marchetti, Z anorg 1895, **10** 66)

Potassium fluosesquititanate, 4KF, Ti<sub>2</sub>F<sub>6</sub>

Scarcely sol in  $H_2O$ , sol in dil acids (Piccini, B 18 257 R)

#### Rubidium fluotitanate, Rb<sub>2</sub>T<sub>1</sub>F<sub>6</sub>

Very sl sol in cold, somewhat more sol in hot H<sub>2</sub>O (Engelskirchen, Dissert **1903**)

#### Silver fluotitanate

Very deliquescent (Marignac)

#### Sodium fluotitanate, Na<sub>2</sub>T<sub>1</sub>F<sub>6</sub>

Much more sol in H<sub>2</sub>O than the corresponding potassium salt (Marignac, Ann Min (5) **15** 238)

Sodium hydrogen fluotitanate,  $Na_2T_1F_6$ ,  $NaHF_2$ 

Sol in H<sub>2</sub>O (Marignac)

Strontium fluotitanate, SrTiF<sub>6</sub>+2H<sub>2</sub>O
Sol in cold H<sub>2</sub>O Solution clouds up on heating (Marignac)

Zinc fluotitanate, ZnTiF<sub>6</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac, A ch (3) 60 304)

#### Fluovanadic acid

Ammonium fluovanadate,  $3NH_4F$ ,  $VF_3$  Moderately sol in  $H_2O$  More easily sol in dil acids Nearly insol in alcohol or MF+Aq (Petersen, J pr (2) 40 52)  $2NH_4F$ ,  $VF_3+H_2O$  Easily sol in  $H_2O$  Sl sol in alcohol (Petersen)  $NH_4F$ ,  $VF_3+2H_2O$  As above (Peterson)

Cadmium fluovanadate, CdF<sub>2</sub>, VF<sub>3</sub>+7H<sub>2</sub>O Very sl sol in H<sub>2</sub>O (Piccini and Giorgis, Gazz ch it **22, 1** 89)

Cobalt fluovanadate,  $CoF_2$ ,  $VF_3+2H_2O$ Sol in  $H_2O$  without decomp (Petersen, l c)

Nickel fluovanadate, NiF<sub>2</sub>, VF<sub>3</sub>+2H<sub>2</sub>O As the Co salt (Petersen)

Potassium fluovanadate, 2KF, VF<sub>3</sub>+H<sub>2</sub>O Sl sol in H<sub>2</sub>O, easily sol in acids Insol in KF+Aq (Petersen, J pr (2) **40** 51)

Potassium fluovanadate fluoxyvanadate, 4KF, VF<sub>3</sub>, VOF<sub>3</sub>

Easily sol in  $H_2O$ , and still more easily in HF+Aq Sl sol in KF+Aq (Petersen, J pr (2) 40 274)

Sodium fluovanadate, 5NaF, 2VF<sub>3</sub>+H<sub>2</sub>O As the potassium salt (Petersen)

Thallous fluovanadate, TlF,  $VF_3+2H_2O$ 

Easily sol in H<sub>2</sub>O
Sol with decomp in conc H<sub>2</sub>SO<sub>4</sub>, dil
HNO<sub>3</sub> or cold dil HCl

Insol in NaOH+Aq (Ephraim, B 1909, 42 4460)

2TIF, VF<sub>3</sub>+H<sub>2</sub>O Easily sol in H<sub>2</sub>O Sol in conc H<sub>2</sub>SO<sub>4</sub>, dil HNO<sub>3</sub>, or cold dil HCl with decomp

Insol in cold or hot NaOH+Aq (Ephraim, B 1909, 42 4461)

Zinc fluovanadate, ZnF<sub>2</sub>, VF<sub>3</sub>+7H<sub>2</sub>O Sl sol in cold H<sub>2</sub>O Decomp on heating (Piccini and Giorgis) Fluoxycolumbic acid

Ammonium fluoxycolumbate,  $3NH_4F$ ,  $CbOF_8$ Cubic salt Sol in  $H_2O$  (Marignac, A ch (4) 8 38)  $2NH_4F$ ,  $CbOF_3$  Lamellar salt Much more sol in  $H_2O$  than 2KF,  $CbOF_3$  (M)

more sol in H<sub>2</sub>O than 2KF, CbOF<sub>3</sub> (M)
5NH<sub>4</sub>F, 3CbOF<sub>8</sub>+H<sub>2</sub>O Hexagonal salt
(M)

NH₄F, CbOF₃ Rectangular salt (M)

Ammonium fluoxycolumbate columbium fluoride, 3NH<sub>4</sub>F, CbOF<sub>3</sub>, CbF<sub>5</sub>
(Marignac)

Cupric fluoxycolumbate, CuF<sub>2</sub>, CbOF<sub>3</sub>+ 4H<sub>2</sub>O Sl deliquescent Sol in H<sub>2</sub>O (Marignac, A ch (4) 8 42)

Potassium fluoxycolumbate, 2KF, CbOF<sub>3</sub>+ $H_2O$ 

Sol in 12 5-13 pts H<sub>2</sub>O at 17-21° Much more sol in hot H<sub>2</sub>O, or H<sub>2</sub>O containing HF. (Marignac)

3KF, CbOF<sub>3</sub> Decomp by H<sub>2</sub>O into above salt (M)
5KF, 3CbOF<sub>3</sub>+H<sub>2</sub>O Sol in H<sub>2</sub>O (M)

5KF, 3CbOF<sub>3</sub>+H<sub>2</sub>O Sol in H<sub>2</sub>O (M) 4KF, 3CbOF<sub>3</sub>+ H<sub>2</sub>O Sol in H<sub>2</sub>O (M) 3KF, 2Cb<sub>2</sub>O<sub>5</sub>+5H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Petersen, J pr (2) 40 287)

KF, Cb<sub>2</sub>O<sub>5</sub>+3H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Petersen) 2KF, 3CbO<sub>2</sub>F Insol in H<sub>2</sub>O Sol in HF

(Kruss and Nilson, B 20 1689)
See also Fluoxypercolumbate, potassium

Potassium hydrogen fluoxycolumbate, 3KF, HF, CbOF<sub>3</sub> Sol in H<sub>2</sub>O (Marignac)

Sodium fluoxycolumbate, 2NaF, CbOF<sub>2</sub>+- $2H_2O$ 

Sol in H<sub>2</sub>O NaF, CbOF<sub>3</sub>+H<sub>2</sub>O (Marignae)

Zinc fluoxycolumbate, ZnF<sub>2</sub>, CbOF<sub>3</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac, A ch (4) 8. 41)

Fluoxyhypomolybdic acid

Ammonium fluoxyhypomolybdate, MoOF<sub>s</sub>,
2NH<sub>4</sub>F

Decomp by  $H_2O$  (Mauro, Gazz ch 1t 19 179)  $3M_0OF_3$ ,  $5NH_4F+H_2O$  Decomp by

H<sub>2</sub>O (Mauro)

Cupric fluoxyhypomolybdate, CuF<sub>2</sub>, MoOF<sub>2</sub>-1-

4H<sub>2</sub>O
Deliquescent Sol in H<sub>2</sub>O (Mauro, Real Ac Line 1892, 1 194)

Potassium fluoxyhypomolybdate, MoOF<sub>8</sub>. 2KF+H<sub>2</sub>O

Sol in H<sub>2</sub>O with decomp

Sol in HF or HCl+Aq (Mauro and Panabianco, Gazz ch it 12 80)

3MoOF<sub>3</sub>, 5KF+H<sub>2</sub>O Sol in H<sub>2</sub>O with decomp (Mauro, Gazz ch it 19 179)

Thallous fluoxyhypomolybdate, 2TlF, MoOF<sub>8</sub> (Mauro, B 1894, 27R 109)

Zinc fluoxyhypomolybdate, ZnF<sub>2</sub>, MoOF<sub>3</sub>+

Rapidly deliquescent Sol in H<sub>2</sub>O (Mauro, Real Ac Linc 1892 1 194)

Fluoxyhypovanadic acid See Fluoxyvanadic acid

# Fluoxymanganic acid

Ammonium fluoxymanganate, (NH<sub>4</sub>)<sub>2</sub>MnOF<sub>4</sub> Precipitate (Nicklès)

Potassium fluoxymanganate, K<sub>2</sub>MnOF<sub>4</sub> (Nicklès, C R 65 107) Precipitate

# Sesquifluoxymanganic acid

Potassium sesquifluoxymanganate,  $K_4Mn_2OF_8 = 4KF, Mn_2OF_4$ Precipitate (Nicklès)

# Fluoxymolybdic acid

See also Fluoxyhypomolybdic, and fluoxypermolybdic acids

Ammonium fluoxymolybdate, NH4F, MoO<sub>2</sub>F<sub>2</sub>

Sol in H<sub>2</sub>O (Mauro, Gazz ch it 20  $+H_{*}O$ More sol in H<sub>2</sub>O than 2NH<sub>4</sub>F,  $MoO_2\bar{F}_2$  (D nat **30** 250) (Delafontaine, N Arch Sci ph

Correct formula is 3NH<sub>4</sub>F, M<sub>0</sub>O<sub>2</sub>F<sub>2</sub> (Mauro, Gazz ch it 18 120)

 $2NH_4F$ ,  $MoO_2F_2$ 2KF,  $MoO_2F_2$  (Del Much more sol than (Delafontaine)

3NH4F, MoO2F2 Sol in H2O (Mauro)  $5NH_4F$ ,  $3M_0O_2F_2+H_2O$ Sol ın H<sub>2</sub>O (Mauro, Gazz ch it 20 109)

Ammonium fluoxymolybdate molybdate,  $M_0O_2F_2$ ,  $4NH_4F$ ,  $(NH_4)_2M_0O_4$ 

Sol in H<sub>2</sub>O, but with decomp (Mauro, Gazz ch it 18 120)

Cadmium fluoxymolybdate, CdF<sub>2</sub>, MoO<sub>2</sub>F<sub>2</sub>+  $6H_2O$ Sl efflorescent (Delafontaine, J B 1867 236)

Cobaltous fluoxymolybdate, CoF<sub>2</sub>, MoO<sub>2</sub>F<sub>2</sub>+  $6H_2O$ 

Sol in H<sub>2</sub>O (Delafontaine, J B 1867 236)

Cupric fluoxymolybdate, CuF2, MoO2F2+ 4H<sub>2</sub>O

Deliquescent (Mauro, Real Ac Linc **1892, 1** 194

Nickel fluoxymolybdate, NiF2, MoO2F2+ Sol in H<sub>2</sub>O (Delafontaine, J B 1867 236)

Potassium fluoxymolybdate, 2KF, MoO<sub>2</sub>F<sub>2</sub>+  $_{\text{O}}$ 

Easily sol in boiling H<sub>2</sub>O Sol in H O with decomp

Sol in HF (Marchetti, Z anorg 1895 10 68) Gradually efflores-

KF, MoO<sub>2</sub>F<sub>2</sub>+H<sub>2</sub>O cent (Delafontaine)

Rubidium fluoxymolybdate, 2RbF, 2MoO<sub>2</sub>F<sub>2</sub>  $+2H_2O$ 

Sol in cold, more sol in hot H<sub>2</sub>O (Delafontaine )

Sodium fluoxymolybdate, NaF, MoO<sub>2</sub>F<sub>2</sub>+ **⅓Η₂**Ο

Sol in H<sub>2</sub>O (Delafontaine)

Thallous fluoxymolybdate, 2TlF, MoO<sub>2</sub>F<sub>2</sub>+  $H_2O$ Sol in hot H<sub>2</sub>O (Delafontaine)

Zinc fluoxymolybdate, ZnF<sub>2</sub>, MoO<sub>2</sub>F<sub>2</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Delafontaine)

# Fluoxypercolumbic acid

Potassium fluoxypercolumbate, 2KF, CbO<sub>2</sub>F<sub>2</sub>  $+H_2O$ 

(Piccini, Z anorg 2 21) Sol in H<sub>2</sub>O with decomp Sol in HF (Marchetti, Z anorg 1895, **10** 67)

# Fluoxypermolybdic acid

Ammonium fluoxypermolybdate, MoO<sub>3</sub>F<sub>2</sub>, 3NH₄F

Sol in  $H_2O$  (Piccini, Z anorg 1 51)

Cæsium fluoxypermolybdate, MoO<sub>3</sub>F<sub>2</sub>, 2CsF  $+H_2O$ (Piccini)

Potassium fluoxypermolybdate, MoO<sub>3</sub>F<sub>2</sub>, 2KF+H<sub>2</sub>O

Not very sol in H<sub>2</sub>O, more sol in HF+ Aq without decomp (Piccini)

Rubidium fluoxypermolybdate, MoO<sub>2</sub>F<sub>2</sub>, 2RbF+H<sub>2</sub>O

Somewhat more sol in H<sub>2</sub>O than K salt Easily sol in HF+Aq (Piccini)

# Fluoxypertantalic acid

Potassium fluoxypertantalate, 2KF, TaO<sub>2</sub>F<sub>8</sub>  $+H_{0}O$ 

Sol in H<sub>0</sub>O (Piccini, Z anorg 2 21)

Fluoxypertitanic acid, T<sub>1</sub>O<sub>2</sub>F<sub>2</sub>, HF

Known only in solution (Piccini, B 18 255 R)

Ammonium fluoxypertitanate, TiO<sub>2</sub>F<sub>2</sub>, 2NH<sub>4</sub>F

Very unstable (Piccini, Gazz ch it 17 479)

 $TiO_2F_2$ ,  $3NH_4F$  Sol in  $H_2O$ Sol in  $H_2O_2$  (Piccini, Z anorg 1895, **10** 

2TiO<sub>2</sub>F<sub>2</sub>, 3NH<sub>4</sub>F Sol in H<sub>2</sub>O (Piccini, B 18 698 R)

Barium fluoxypertitanate, TiO<sub>2</sub>F<sub>2</sub>, BaF<sub>2</sub> Easily sol in acids (Piccini, Precipitate B 18 698 R)

2T1O<sub>2</sub>F<sub>2</sub>, 3BaF<sub>2</sub> Insol in H<sub>2</sub>O, sol in dil acids (Piccini, Gazz ch it 17 479)

Potassium fluoxypertitanate, TiO2F2, 2KF Sol in H<sub>2</sub>O (Piccini, B 21 1391) Sol in H<sub>2</sub>O<sub>2</sub> (Piccini, Z anorg 1895, 10 438)

# Fluoxypertungstic acid

Potassium fluoxypertungstate, 2KF, WO<sub>8</sub>F+  $H_2O$ 

(Piccini, Z anorg 2 11)

Fluoxytantalic acid

See also Fluoxypertantalic acid

Ammonium fluoxytantalate, 3NH<sub>4</sub>F, TaOF<sub>2</sub> Easily sol in H<sub>2</sub>O The solution clouds up by standing or on warming (Joly, C R 81 1266)

# Fluoxytitanic acid

See also Fluoxypertitanic acid

Barium fluoxytitanate, TiOF<sub>2</sub>, BaF<sub>2</sub> (Piccini, Insol in HO, sol in dil acids Gazz ch it 17 479)

# Fluoxytungstic acid

Ammonium fluoxytungstate, 2NH<sub>4</sub>F, WO<sub>2</sub>F<sub>2</sub> Very sol in H<sub>2</sub>O (Marignac, A ch (3) 69 65)

Decomp by H<sub>2</sub>O  $NH_4F$ ,  $WO_2F_2+H_2O$ Crystallises unchanged from H<sub>2</sub>O containing HF (Marignac)

Ammonium fluoxytungstate tungstate, 4NH<sub>4</sub>F, WO<sub>2</sub>F<sub>2</sub>, (NH<sub>4</sub>). WO<sub>4</sub>

Incompletely sol in H<sub>2</sub>O Residue dissolves in NH4OH+Aq (Marignac)

Cadmium fluoxytungstate

Very sol in H<sub>2</sub>O (Marignac)

Cupric fluoxytungstate, CuF<sub>2</sub>, WO<sub>2</sub>F<sub>2</sub>+4H<sub>2</sub>O Very sol in H<sub>2</sub>O (Marignac, C R 55 888

Cupric fluoxytungstate ammonium fluoride,  $CuF_2$ ,  $VO_2F_2$ ,  $NH_4F+4H_2O$ Sol in H<sub>2</sub>O (Marignac)

# Manganese fluoxytungstate

Very sol in H<sub>2</sub>O (Marignac)

Nickel fluoxytungstate,  $N_1F_2$ ,  $WO_2F_2+$ 10H<sub>2</sub>O

Deliquescent Very sol in H<sub>2</sub>O (Marignac)

Potassium fluoxytungstate, KF, WO<sub>2</sub>F<sub>2</sub>+

Can be recrystallised without decomp only from H<sub>2</sub>O containing HF (Marignac, A ch (3) **69**  $\overline{7}$ **0**)

2KF,  $\dot{W}O_2F_2+H_2O$ Difficultly sol in cold, more easily in hot H<sub>2</sub>O Sol in 17 pts H<sub>2</sub>O at 15° (Berzelius) (Marignac) Can be recrystallised without decomp from H<sub>2</sub>O, or H<sub>2</sub>O containing HF (Marignac)

Sol in H2O with decomp Sol in HF (Murchetti, Z anorg 1895, 10 71)

See also Fluoxypertungstate, potassium

# Silver fluoxytungstate

Very easily sol in H<sub>2</sub>O (Marignac)

Sodium fluoxytungstate, 2NaF, WO<sub>2</sub>F<sub>2</sub>

More sol in H<sub>2</sub>O than the corresponding K compound (Berzelius)

Thallous fluoxytungstate, TlF, WO F2

Insol in  $\rm H_2O$  Decomp by  $\rm H_2O$  (Ephraim and Heymann, B 1909, 42 4463) 211F, WO, F, Insol in H,O but decomp (Fphram and Heymann, B 1909, thereby **42** 4462)

3TlF, 2WO<sub>2</sub>F<sub>2</sub> Insol in H<sub>2</sub>O Decomp by acids (Ephraim and Heymann, B 1909, **42** 4462)

Zinc fluoxytungstate,  $ZnF_2$ ,  $WO_2F_2+10H_2O$ Very sol in H<sub>2</sub>O (Marignac)

Fluoxvuranic acid

Ammonium fluoxyuranate, 3NH<sub>4</sub>F, UO<sub>2</sub>F<sub>2</sub> Easily sol in H<sub>2</sub>O, less in HF Insol in

alcohol (Bolton)

100 g solution sat at 27° contain 10 11 g

100 g solution sat at 81 3° contain 20 71 g salt

(Burger, Dissert 1904)

Barium fluoxyuranate, 3BaF<sub>2</sub>, 2UO<sub>2</sub>F<sub>2</sub>+  $2H_2O$ 

Traces dissolve in hot H<sub>2</sub>O Easily sol in dil acids (Bolton)

Potassium fluoxyuranate, 3KF, UO<sub>2</sub>F<sub>2</sub>

Sol in 8 pts H<sub>2</sub>O at 21° Insol in alcohol and ether (Bolton, J pr 99 269)

Does not exist (Smithells, Chem Soc 43

4KF, UO2F2 Insol in H2O Easily sol in dil acids (Ditte, C R 91 115) 5KF, 2UO<sub>2</sub>F<sub>2</sub> (Baker, Chem Soc 35 760)

3KF,  $2UO_2F_2+2H_2O$  (Baker)

Sodium fluoxyuranate, NaF, UO<sub>2</sub>F<sub>2</sub>

Not efflorescent  $+2H_2O$ 

 $+4H_2O$ Insol in H<sub>2</sub>O and dil acids sol in conc HCl+Aq Sol in conc H2SO4 , J B 1866 212)

1, UO<sub>2</sub>F<sub>2</sub> (Ditte)

os not exist (Smithells, Chem Soc 43 125)

# Fluoxyvanadic acid

Ammonium fluoxyvanadate, 12NH<sub>4</sub>F, V<sub>2</sub>O<sub>5</sub>, 2VOF<sub>2</sub>

Easily sol in H<sub>2</sub>O, and not attacked by cold conc H<sub>2</sub>SO<sub>4</sub> (Baker, Chem Soc 33 388)

Formula is 3NH<sub>4</sub>F, VO<sub>2</sub>F (Petersen, J

pr (2) 40 289)

3NH<sub>4</sub>F, VO<sub>2</sub>F Sol in H<sub>2</sub>O (Petersen.

Much less sol in H2O in presence of NH4F (Piccini and Giorgis, Gazz ch it 27 1 65) +H<sub>2</sub>O (Piccini and Giorgis, Gazz ch it

1892, **22** 55) 3NH<sub>4</sub>F, VOF<sub>2</sub> "Hypovanadate" Quite sol in H<sub>2</sub>O Very sl sol in MF+Aq Less sol in alcohol than in H<sub>2</sub>O (Petersen, J

pr (2) 40 195) 2NH<sub>4</sub>F, VOF<sub>2</sub> Sol in H<sub>2</sub>O (Petersen) +H<sub>2</sub>O (Piccini and Giorgis)

7NH<sub>4</sub>F, 4VOF<sub>2</sub>+5H<sub>2</sub>O Very sol in H<sub>2</sub>O (Petersen)

3NH<sub>4</sub>F, 2VO<sub>2</sub>F Sol in H<sub>2</sub>O without decomp Sol in conc HF+Aq (Piccini and Giorgis, Gazz ch it 24 1 68)

3NH4F, 2VOF8+H2O Sol in H2O with decomp

 $V_2O_5$ , 2NH<sub>4</sub>F (Ditte, C R **106** 270)

 $V_2O_5$ ,  $8NH_4F+4H_2O$ As above V<sub>2</sub>O<sub>5</sub>, 4NH<sub>4</sub>F+4H<sub>2</sub>O As above Sol in H<sub>2</sub>O

hydrogen Ammonium fludroxyvanadate. 7NH.F. HF. 4VO.F

Verv sol in H<sub>2</sub>O (Petersen, J pr (2) 40 284)

Ammonium hydrogen trifluoxyvanadate, 3HF, 9NH4F, 5VOF

Easily sol in H<sub>2</sub>O Sl sol in MF+Aq (Petersen, J pr (2) 40 280) 3NH<sub>4</sub>F, 3HF, 2VOF<sub>3</sub> (Baker, Chem Soc 33 388) Sol in H<sub>2</sub>O

Identical with 3HF, 9NH4F, 5VOF3

(Petersen)

and Giorgis )

Barium fluoxyvanadate, BaF<sub>2</sub>, VO<sub>2</sub>F (Ephram, Z anorg 1903, 35 79)

Cadmium fluoxyvanadate, CdF2, VOF2+  $7H_{2}O$ 

"Hypovanadate" As the Co salt (Piccini and Giorgis )

Cobalt fluoxyvanadate,  $CoF_2$ ,  $VOF_2 + 7H_2O$ "Hypovanadate" Sol in H<sub>2</sub>O and Giorgis )

Nickel fluoxyvanadate,  $N_1F_2$ ,  $VOF_1+7H_2O$ "Hypovanadate" As the Co salt (Piccini

Potassium fluoxyvanadate, 7KF, 3VOF<sub>2</sub>

Very sl sol in H<sub>2</sub>O and MF+Aq Easily sol in dil acids (Petersen, J pr (2) 40 199)

2KF, VOF<sub>2</sub> As above (Petersen) 2KF,  $2V_2O_5 + 8H_2O$ Sol in H<sub>2</sub>O and

2KF, 2V<sub>2</sub>U<sub>5</sub>+8H<sub>2</sub>U Sol in H<sub>2</sub>/SO<sub>4</sub> (Ditte, C R **105** 1067)
2KF, 3V<sub>2</sub>O<sub>5</sub>+5H<sub>2</sub>O As above
2KF, 4V<sub>2</sub>O<sub>5</sub>+8H<sub>2</sub>O As above
4KF, V<sub>2</sub>O<sub>5</sub> Less sol than 4KF,
+2H<sub>2</sub>O, and +3H<sub>2</sub>O Sol in H<sub>2</sub>O
4KF, 3V<sub>2</sub>O<sub>5</sub>+4H<sub>2</sub>O, and +6H<sub>2</sub>O
sol than 2KF, 3V<sub>2</sub>O<sub>5</sub>+5H<sub>2</sub>O
8KF, V<sub>2</sub>O<sub>5</sub>+2H<sub>2</sub>O and ±3H<sub>2</sub>O Less

8KF,  $V_2O_5 + 2H_2O$ , and  $+3H_2O$ Sol in  $H_2O$ 

Potassium trifluoxyvanadate, 2KF, VOF<sub>3</sub> Ppt (Petersen, J pr (2) **40** 272) 6KF, V<sub>2</sub>O<sub>5</sub>, 2VOF<sub>3</sub>+2H<sub>2</sub>O Sol in H<sub>2</sub>O

Insol in cold conc H<sub>2</sub>SO<sub>4</sub> (Baker, Chem Soc **33** 300)

Formula is 3KF, 2VO<sub>2</sub>F (Piccini and Giorgis)

See also Fluovanadate fluoxyvanadate, potassium

Potassium fludioxyvanadate, 2KF, VO<sub>2</sub>F Easily sol in H<sub>2</sub>O (Petersen, J pr (2) 40 3KF, VO<sub>2</sub>F As above (Petersen) 3KF, 2VO<sub>2</sub>F Sol in H<sub>2</sub>O, scarcely attacked by H<sub>2</sub>SO<sub>4</sub> (Piccini and Giorgis)

Potassium hydrogen fluoxyvanadate, 3KF, HF,2VOF<sub>3</sub>

Sol in H<sub>2</sub>O (Petersen)

Sodium fluoxyvanadate, 8NaF,  $3VOF_2+2H_2O$ 

Sol in  $H_2O$  (Petersen, J pr (2) 40 200) 3NaF, VO<sub>2</sub>F, VOF<sub>3</sub> (?) Very easily decomp (Piccini and Giorgis) 2NaF,  $2V_2O_5+10H_2O$  Sol in  $H_2O$  (Ditte, C R 106 270) 4NaF,  $V_2O_5$  As above 4NaF,  $3V_2O_5+18H_2O$  As above 6NaF,  $V_2O_5+5H_2O$  As above 8NaF,  $V_2O_5+3H_2O$  (As above

### Thallous fluoxyvanadate, 2TlF, VOF2

Somewhat sol in cold  $\rm H_2O$  without decomp Sol in boiling  $\rm H_2O$  with exception of a black residue, which is easily sol in dil  $\rm H_2SO_4$  (Ephraim, B 1909, 42 4460) 3TIF,  $\rm 2VO_2F$  Insol in  $\rm H_2O$  Sol in  $\rm H_2O$  containing  $\rm H_2SO_4$  (Ephraim and Heymann, B 1909, 42 4459)

Zinc fluoxyvanadate,  $ZnF_2$ , ZnO,  $2VOF_3+14H_2O$ 

Decomp on air, sol in H<sub>2</sub>O (Baker, Chem Soc **33** 388)

True composition is represented by the for-

True composition is represented by the formula ZnF<sub>2</sub>, VO<sub>2</sub>F+7H<sub>2</sub>O (Petersen)
ZnF<sub>2</sub>, VO<sub>2</sub>F+7H<sub>2</sub>O Very sol in H<sub>2</sub>O (Piccini and Giorgis)

ZnF<sub>2</sub>, VOF<sub>2</sub>+7H<sub>2</sub>O "Hypovanadate" Sol in cold H<sub>2</sub>O, but decomp by boiling, sol in dil HF+Aq (Piccini and Giorgis)

#### Fluozirconic acid

Ammonium fluozirconate, (NH<sub>4</sub>)<sub>2</sub>ZrF<sub>6</sub>
Sol in H<sub>2</sub>O
3NH<sub>4</sub>F, ZrF<sub>4</sub> Sol in H<sub>2</sub>O (Marignac)

Cadmium fluozirconate, 2CdF<sub>2</sub>, ZrF<sub>4</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O, can be recrystalised therefrom (Marignac, A ch (3) 60 257) CdZrF<sub>6</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac)

Cæsium fluozirconate, CsF, ZrF<sub>4</sub>+ $H_2O$ Sol in  $H_2O$  without decomp (Wells, Z anorg 1895, 10 434) 2CsF, ZrF<sub>4</sub> Sol in  $H_2O$  without decomp (Wells, Z anorg 1895, 10, 434) 2CsF, 3ZrF<sub>4</sub>+ $2H_2O$  Only sl sol in  $H_2O$  (Wells, Z anorg 1895, 10 434)

Cupric fluozirconate, 2CuF<sub>2</sub>, ZrF<sub>4</sub>+12H<sub>2</sub>O

Easily sol in cold H<sub>2</sub>O (Marignac, A ch
(3) 60 296)

3CuF<sub>2</sub>, 2ZrF<sub>4</sub>+16H<sub>2</sub>O Sol in H<sub>2</sub>O
(Marignac)

Lithium fluozirconate, 2LiF, ZrF4

Ppt (Wells, Am J Sci 1897, (4) 3 468) 4LiF, ZrF<sub>4</sub>+½H<sub>2</sub>O Sol in H<sub>2</sub>O with

4LiF,  $ZrF_4+\frac{1}{2}H_2O$  Sol in  $H_2O$  with decomp (Wells, Am J Sci 1897, (4) 3 469)

 $\begin{array}{ccc} \textbf{Magnesium fluozirconate, } \ MgZrF_6 + 5H_2O \\ \text{Sol in } \ H_2O & (Marignac) \end{array}$ 

Manganous fluozirconate,  $MnZrF_6+5H_2O$ Sol in  $H_2O$  (Marignac, J pr 83 202)

Nickel fluozirconate,  $2N_1F_2$ ,  $ZrF_4+12H_2O$ Sol in  $H_2O$  (Marignac, A ch (3) 60 291)  $N_1ZrF_6+6H_2O$  Sol in  $H_2O$  (Marignac)

Nickel potassium fluozirconate, K<sub>2</sub>ZrF<sub>6</sub>, NiZrF<sub>6</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac)

Potassium fluozirconate, KF, ZrF<sub>4</sub>+H<sub>2</sub>O Much more sol in hot, than cold H<sub>2</sub>O (Marignac)

2KF, ZrF<sub>4</sub>=K<sub>2</sub>ZrF<sub>5</sub> 100 pts H<sub>2</sub>O dissolve at 2°, 0 781 pt , at 15°, 1 41 pts , at 19° 1 69 pts , at 100°, 25 0 pts K<sub>2</sub>ZrF<sub>5</sub> (Marignae)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 829) 3KF, ZrF<sub>4</sub>

Sodium fluozirconate, 5NaF, ZrF<sub>4</sub>
100 pts H<sub>2</sub>O dissolve 0 387 pt at 18°, and
1 67 pts at 100° (Marignac)
2NaF, ZrF<sub>4</sub> (Wells, Am J Sci 1897, (4)
3 469)
5NaF, 2ZrF<sub>4</sub> Sol in H<sub>2</sub>O with decomp (Wells)

Tellurium fluozirconate, TeF, ZrF4

Sol in H<sub>2</sub>O without decomp (Wells, Am J Sci 1897, (4) 3 470) +H<sub>2</sub>O Sol in H<sub>2</sub>O without decomp (Wells) 31 eF, ZrF<sub>4</sub> Sol in H<sub>2</sub>O without decomp (Wells) 51 eF, 3ZrF<sub>4</sub> Sol in H<sub>2</sub>O without decomp (Wells)

Zinc fluozirconate, ZnZrF<sub>6</sub>+6H<sub>2</sub>O
Sol in H<sub>2</sub>O (Marignac)
2ZnF<sub>2</sub>, ZrF<sub>4</sub>+12H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac, A ch (3) **60** 257)

Fulminating gold

See Auroamidoimide

Fulminating platinum See Fulminoplatinum

## Fulminating silver See Silver nitride

# Fulminoplatinum compounds

DichlorofulminoplatinumTrchlorofulminoplatinum Tetrachlorofulminoplatinum Chloroxyfulminoplatinum

# Fuscocobaltic chloride, Co(NH<sub>3</sub>)<sub>4</sub>(OH)Cl<sub>2</sub>

Sol in H<sub>2</sub>O, from which it is precipitated by NH<sub>4</sub>Cl+Aq, decomp by boiling H<sub>2</sub>O, pptd from aqueous solution by alcohol (Fremy, C R 32 501)

- mtrate,  $Co(NH_3)_4(OH)(NO_3)_2+H_2O$ Sol in H<sub>2</sub>O Properties as the chloride (Fremy)

- sulphate,  $Co(NH_3)_4(OH)SO_4+1\frac{1}{2}H_2O$ Sol in  $H_2O$  Insol in  $NH_4OH+Aq$  (Fremy, C R 32 501)

\_ Insol in  $H_2O$  Sol in cone HCl+Aq or H<sub>2</sub>SO<sub>4</sub>, from which it is precipitated by H<sub>2</sub>O (Vortmann, N 6 412)

# Fusible white precipitate See Mercuridiammonium chloride

Gadolinium, Gd (Marignac, C R **102** 92)

Gadolinium bromide, GdBr<sub>8</sub>+6H<sub>2</sub>O Sol in HBr (Benedicks, Z anorg 1900, **22** 403)

# Gadolinium chloride, GdCl<sub>3</sub>+6H<sub>2</sub>O Somewhat deliquescent Sol in H<sub>2</sub>O (Benedicks)

Gadolinium platinum chloride See Chloroplatmate, gadolmum

# Gadolinium fluoride, GdF<sub>3</sub>

Insol in  $H_2O$ , sl sol in hot HF (Popovici, B 1908, **41** 635)

### Gadolinium hydroxide, Gd(OH)<sub>3</sub> Ppt (Benedicks, Z anorg 1900, 22 402)

Gadolinium oxide, Gd<sub>2</sub>O<sub>3</sub> Sol in acids (de Boisbaudran, C R 111

394) Somewhat hydroscopic, easily sol in acids (Benedicks)

# Gallium, Ga

Not decomp by H<sub>2</sub>O, easily sol in cold HCl +Aq Slowly sol in warm dil HNOs+ Aq Not attacked by conc HNO<sub>3</sub> free from crystal H<sub>2</sub>O when warmed

 $\rm N_2O_3$  below 40–50°, and only slowly in presence of  $\rm N_2O_3$  (Dupré, C R 86 720 ) Easily sol in cold or warm KOH+Aq (de Boisbaudran, A ch (5) 10 100)

Gallium bromide, GaBr<sub>3</sub> Deliquescent, and sol in H<sub>2</sub>O

# Gallium dichloride, GaCl<sub>2</sub>

Deliquescent, and decomp by H<sub>2</sub>O (Nılson and Petersen, C R 107 527)

### Gallium chloride, GaCl<sub>3</sub>

Deliquescent, and very sol in little H<sub>2</sub>O Decomp by much H<sub>2</sub>O, with formation of basic salt, which is slowly sol in dil HCl +Aq

### Gallium hydroxide

Sol in acids, sol in KOH or NaOH+Aq, less easily in NH4OH+Aq, even in presence of ammonium salts

### Gallium iodide, Gal.

Deliquescent, and sol in H<sub>2</sub>O (de Boisbaudran and Jungfleisch, C R 86 578)

Gallium suboxide, GaO (?) Sol in  $HNO_3 + Aq$  (Dupré) Sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq

Gallium oxide, Ga<sub>2</sub>O<sub>3</sub> Sol in acids

# Germanium, Ge

Insol in HCl+Aq Easily sol in aqua gia Decomp by HNO<sub>3</sub>+Aq to oxide Easily sol in aqua Conc H<sub>2</sub>SO<sub>4</sub> decomp to sulphate Insol in boiling KOH+Aq (Winkler, J pr (2) 34 177, 36 177)

# Germanium tetrabromide, GeBr4 Decomp by H<sub>3</sub>O (Winkler)

Germanium dichloride, GeCl<sub>2</sub> Decompl by H<sub>2</sub>O (Winkler)

# Germanium tetrachloride, GeCl<sub>4</sub>

Sinks in H<sub>2</sub>O, and is gradually decomp thereby (Winkler, J pr 34 177)

Insol in and not attacked by hot conc <sub>2</sub>SO<sub>4</sub> (Friedrich, W A B 102, 2b 540)  $H_2SO_4$ 

# Germanium chloroform, GeHCl<sub>3</sub>

by  $H_2O$ Sol in HCl+Aq Decomp (Winkler)

# Germanium tetrafluoride, GeF4

Deliquescent, and sol in H<sub>2</sub>O  $+3H_2O$ Deliquescent Melts in (Winkler)

# Germanium potassium fluoride See Fluogermanate, potassium

# Germanium hydride, GeH4

SI sol in hot HCl Sol in NaOCl+Aq (Voegelen, Z anorg 1902, 30 327)

# Germanium tetraiodide, Gel4

Deliquescent, and sol in H<sub>2</sub>O with decomp (Winkler)

# Germanium monoxide, GeO

Not appreciably sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq Easily sol in HCl+Aq Insol in alkalies (Winkler, J pr (2) **34** 177) Somewhat sol in H<sub>2</sub>O, insol in H<sub>2</sub>SO<sub>4</sub>+Aq,

even when hot and conc (van Bemmelen, R

t c 6 205)

# Germanium dioxide, GeO2

Not very difficultly sol in H<sub>2</sub>O

Sol in 2471 pts  $H_2O$  at  $20^\circ$ , in 933 pts

at 100° (Winkler)

Easily sol in alkali carbonates or hydrates +Aq, sl sol in acids

# Germanium oxychloride, GeOCl2

Insol in H<sub>2</sub>O, sol in acids (Winkler, J pr (2) 36 177)

# Germanium monosulphide, GeS

Sol in 4029 pts H<sub>2</sub>O Sol in cone hot HCl+Aq Sol in KOH+Aq Sol (NH<sub>4</sub>)<sub>2</sub>S+Aq when precipitated (NH<sub>4</sub>)<sub>2</sub>S+Aq if crystalline Also exists in a colloidal state (Winkler)

# Germanium disulphide, GeS2

Sol in 221 9 pts H<sub>2</sub>O KOH+Aq, or NH<sub>4</sub>OH+Aq Easily sol in Insol in acids Exists also in a colloidal state (Winkler)

#### Glass

Numerous and extensive researches have been made on the action of H<sub>2</sub>O and various solutions on glass The older work has a certain historical interest, but only a brief statement of some of the more important results can be given here. For a very thorough résumé of the work before the year 1861, Storer's Dictionary, p 555, should be consulted

All glass is more or less attacked by H<sub>2</sub>O the more easily the greater the amount of alkalı present, the finer it is powdered, and

the higher the temperature

Glass as that of a flask is decomposed to a considerable extent by several days boiling with H<sub>2</sub>O a portion of the fixed alkali being dissolved but when powdered glass is rubbed with distilled H<sub>2</sub>O in a mortar the H<sub>2</sub>O remains pure and exhibits no alkalinity (Scheele)

Glass of alembics is partially dissolved by long boil ing with H<sub>2</sub>O (Lavoiser)
H<sub>2</sub>O extracts potash or soda from glass together with

a portion of the silica the decomposition taking place the more easily in proportion as the glass is noher in alkales more minutely divided or the temperature of the water higher (Bischof Kasin Arch. 1 443)

Powdered crown glass and some varieties of window

glass render cold H2O alkaline when in contact there-

(Dumas)

100 pts finely divided fint glass lose 7 pts potash when boiled one week with H<sub>2</sub>O (Griffiths Q J Sci.

Retorts of ordinary or flint glass are partially dissolved by H<sub>2</sub>O when it is evaporated therein reul 1811)

Finely powdered plate glass (Faraday Pogg 18 569) and Thuringian potash glass (Ludwig Arch Pharm. 91

47) redden moistened turmeric paper
The alkaline reaction disappears by continued washng but reappears when the glass is freshly rubbed (Griffiths)

Cold H2O takes up S1O2 as well as alkalı from glass powder (Fuchs)

Powdered lead glass gives up appreciable amounts of PbO to weakly acidified HO (Pelouze)

Powdered lead glass gives up appreciable amounts of PbO to weakly acidified H O (Pelouze)

When powdered white glass containing 12 4% Na<sub>2</sub>O 15 5% CaO and 72 1% SiO<sub>2</sub> is treated repeatedly with H O more than 3% of the glass is dissolved and the undissolved part gives up 1 5% CaO to HCl+Aq with effervescence A glass containing more alkal: 2 e 16 3% Na<sub>2</sub>O 6 4% CaO 77 3% SiO<sub>2</sub> lost with the same treatment 18 2% and the residue gave up 2% CaO to HCl+Aq (Pelouze C R 43 117)

In the above case the fineness of the glass has an influence as well as its composition When the same sample of glass was boiled I hour with H<sub>1</sub>O amounts were dissolved in the proportion 1 4 28 according as the glass was in form of a coarse fine or very fine powder Glass of the composition of the above samples as given by Pelouze lost 10 and 32% respectively

If powdered glass is boiled with H<sub>2</sub>O and CO<sub>2</sub> conducted into the solution it is absorbed if boiled with K<sub>2</sub>SO<sub>4</sub> Na<sub>2</sub>SO<sub>4</sub> is dissolved (Pelouze)

Glass tubes are converted into a white crystalline mass by heating with H<sub>2</sub>O several months to 75–150° lead glass and Bohemian glass most easily English crown glass least. A little H<sub>2</sub>O attacks glass more than much H O

than much HO

The action of  $H_2O$  is greatly increased by

finely pulversing the glass H<sub>2</sub>O dissolved 10% of a glass containing 12% Na<sub>2</sub>O, 15 5% CaO, and 72 5% SiO<sub>2</sub>, and 32% of another glass containing 16 3% Na<sub>2</sub>O, 6 4% CaO, and 77 3% SiO<sub>2</sub> (Vogel, B A Munchen, 1867 437)

Action of H<sub>2</sub>O on a glass containing 74%  $S_1O_2$ , 86% CaO, 14% Na<sub>2</sub>O, 06% K<sub>2</sub>O, with traces of  $Al_2O_3$ , Fe<sub>2</sub>O<sub>3</sub>, MnO, and MgO

By boiling with H<sub>2</sub>O a decrease of 3 9 mg was observed for the first hour, which soon became constant at 2.2 mg per hour The action was then proportional to the time, and also to the surface in contact with the liquid but independent of the amount of liquid evaporating

The action decreases rapidly with the temperature, so that at 90-100° only 1/4 as much glass is dissolved as by boiling  $H_2O$  (Emmer-

ling, A 150 257)

When steam condenses in tubes of Na glass, they are so strongly attacked that the H2O has an alkaline reaction, but tubes of hard or Bohemian K glass are not so strongly attacked (Tollens, B 9 1540)

The effect of H2O is so great as to impart a distinctly alkaline reaction to water condensing in a tube of ordinary glass By condensing water in long tubes of various kinds of glass the following results were obtained

Sur-Action of H<sub>2</sub>O on various kinds of Na glass I Easily fusible Thuringian glass face exposed = 324 sq cm 1 g of finely powdered glass was boiled 10-15 After 2 hours, 620 mg KOH were disminutes in a silver dish with 100 ccm H<sub>2</sub>O, and the per cent of Na<sub>2</sub>O (or K<sub>2</sub>O) in the solved After 3 hours more, 36 0 mg KOH were dissolution was determined %Na₂O solved After 3 hours more, 33 2 mg KOH were dis- $(K_2O)$ Orthoclase feldspar 0 17 solved Glass of a Bohemian combustion tube After 3 hours more, 20 8 mg KOH were dis-0 56 flask (German manuf) 0.69 solved After 3 hours more, 20 8 mg KOH were dischampagne bottle 1.7 1 32 solved Natrolite Or, in 14 hours, 172 8 mg KOH were dis-2 22 Glass of a wine bottle (Hungarian) Glass which was attacked by  $H_2O$ solved 3 7 II Less easily fusible Thuringian glass under pressure Surface exposed = 499 sq cm 38 Lead glass After 3 hours, 192 mg KOH were dis-48 Glass that broke easily Glass tubing that became rough when 6 1 After 3 hours more, 15 2 mg KOH were disfused Glass tubing that became opaque by 14 35 After 3 hours more, 12 4 mg KOH were disfusing 26 97 Solid water glass After 3 hours more, 11 2 mg KOH were dis-(Wartha, Z anal 24 220) solved The relative ease by which various kinds of Or, after 12 hours, 58 0 mg KOH were disglass are attacked by H2O is shown by the solved following table The glass was powdered and III Combustion tubing of very difficultly heated on a water bath with exclusion of atmospheric CO<sub>2</sub> Surface exposed = fusible Bohemian glass 1130 sq cm After 3 hours 416 mg KOH were dis-291 Potassium water glass 196 Sodium water glass solved After 3 hours more 4 16 mg KOH were dis-34 Yellow glass rich in alkalı 19 Thuringian glass solved After 3 hours more 4 16 mg KOH were dis-8 Ditto from Tittel and Co 8 solved Window glass 6 After 3 hours more 4 16 mg KOH were dis-Lead glass from Jena solved Bohemian glass from Kavalier 2 4 Or, after 12 hours, 16 64 mg KOH were dis-14 Lead crystal glass Thermometer glass, solved 16IV. IV Easily fusible Bohemian glass 10 Jena face exposed = 1394 sq cm Zinc glass, 362, from Jena 08 After 3 hours, 788 mg KOH were dis-0.6 Lead glass, 434, from Jena solved Lead glass, 483, from Jena 0 2 After 3 hours more, 8 56 mg KOH were dis-0 0 Heaviest lead silicate, from Jena (Mylius, C C 1888 1313) After 3 hours more, 1 97 mg KOH were dis-Solubility of various kinds of glass in H<sub>2</sub>O solved Or, after 9 hours, 24 32 mg KOH were dis-The amounts dissolved from various kinds (Kreusler and Henzold, B 17 34) solved of glass by heating 5 hours with  $H_2O$  were as From the above the following table has follows been calculated Yellow glass rich in alkalı (13% 50 ccm H<sub>2</sub>O dissolves from a surface of K<sub>2</sub>O, 15% Na<sub>2</sub>O) 249 mg1000 sq m in 1 hour -Poor Thuringian glass (66% KO, 960 mg from easily fusible Thuringian 91 4 16 5% Na<sub>2</sub>O) glass Glass from Tittel and Co (71% 12 8 mg from less fusible Thuringian glass " K<sub>2</sub>O, 14 3% Na<sub>2</sub>O) 30 4 12 mg from combustion tube of Bohemian Bottle glass from Schilling (42%) glass 13 0 K<sub>2</sub>O, 11 9% Na<sub>2</sub>O) 20 mg from harder tube of Bohemian Bohemian glass from Kavalier (13 3% K<sub>2</sub>O, 11 4% Na<sub>2</sub>O) glass " 10 1 (Kreusler and Henzold, B 17 34) Rhenish window glass (13.5%)" 8 4 100 ccm H<sub>2</sub>O dissolves so much glass from a  $Na_2O)$ 

flask every 2 seconds when in contact there-

with that 01 ccm 1/2 normal oxalic acid is

neutralised thereby

518)

(Bohlig, Z anal 23

Lead crystal glass from Ehrenfeld (12 1%  $K_2O$ )

Green bottle glass (13% K<sub>2</sub>O, 95

% Na<sub>2</sub>O)

8 5

65 "

Solubility of various kinds of glass in H2O-Continued

Thermometer glass 16III from Jena (140% Na<sub>2</sub>O, 7% ZnO) 6 4 mg Lead glass, No 483, from Jena (47% PbO, 73% K<sub>2</sub>O)

Lead silicate 0

(Mylius and Forster, B 22 1100)

By calculation from the electrical conductivity of the solutions formed, various data were obtained by Kohlrausch (B 24 3565), which showed that different varieties of glass were attacked in very different degree by cold H<sub>2</sub>O, and, moreover, the amount dissolved was proportionately much greater during the first few minutes of treatment with H<sub>2</sub>O than afterwards, and, furthermore, the rate of decrease was much faster for good glass than poor Increase of temperature increased the rate of solubility to a very great degree, the increase for 1° C being about 17% In 7 hours at 80° half as much was dissolved as in 6 months at 18° tensive tables are given (Kohlrausch, B 24 3651) See also Kohlrausch (W Ann 44

A very extensive research on the action of H<sub>2</sub>O on glass, with a historical review of the work previously done on the subject, has been published by Mylius and Forster (Z anal 31 241) The general results may be summed

up as follows

The solution of glass in H<sub>2</sub>O is caused by a decomposition, by which free alkali is

formed

2 The silicic acid of the glass is brought into solution by a secondary reaction of the free alkalı ın the solution

3 The constituents of the solution change according to the conditions of the diges-

4 The amount of alk ili going into solution from a given surface under certain conditions is a measure for the resistance of a glass under those conditions

The rate of attack of glass surfaces by cold H<sub>2</sub>O decreases rapidly with the length of time of digestion, and finally approaches a

constant value

The solubility increases very rapidly

with increase of temperature

- The ratio of the solubility of several kinds of glass is dependent on the temperature
- 8 From glasses which show the same ease of attack unequal amounts of substance may be dissolved
- 9 The solubility of a glass is influenced by the condition of the surface from "weathering" by prolonged exposure to the CO2 and H<sub>2</sub>O of the air
- 10 The poorer a glass is the less will its solubility decrease by prolonged treatment with H<sub>2</sub>O

11 A good glass is essentially less easily

attacked after having been previously treated with  $H_2O$ 

12 After treatment with H2O, glass surfaces have the property of fixing alkalı from the solutions formed, and giving it up again by a subsequent treatment with H<sub>2</sub>O

13 Potassium glass is much more sol than sodium glass (contrary to previous researches), but the difference decreases as

the glass becomes richer in CaO

14 In glass flasks which are to be only slightly attacked by cold or hot H<sub>2</sub>O, the CaO. alkalies, and SiO<sub>2</sub> must stand in a fixed relation to each other

15 Of the more common varieties of glass, lead flint glass is least sol in H<sub>2</sub>O, but its surface is corroded, and it is easily decomp by acids

(Mylius and Forster, Z anal 31 241)

Bottle glass containing much Al<sub>2</sub>O<sub>3</sub> is easily attacked by acids

From powdered fint glass boiling HCl+Aq extracts
K but no Pb (Griffiths)
Bottles of fint glass with (NH4)2CO2+Aq became so

fragile that on shaking pieces of glass were detached (Gnffiths)

All glass is decomp by HF Conc H<sub>3</sub>PO<sub>4</sub> also attacks all glass

Glass containing small amounts of SiO2 are attacked by H SO4 poorer glass by boiling HCl HNO3 and aqua regia (Berzelius)
Conc HNO3 does not act on flint glass at 145-150°
(Sorby C R 50 990)

Glass of ordinary chemical apparatus gives up traces of metals to HCl and  $\dot{\rm H}NO_3+{\rm Aq}$ , but hard Bohemian glass consisting of 75% SiO<sub>2</sub>, 15%K<sub>2</sub>O, 10% CaO, resists the action of warm conc acids, also an easily fusible Na K glass with 77 % SiO<sub>2</sub>, 77%  $K_2O$ , 5%  $Na_2O$ , 103% CaO, is not easily attacked (Stas)

KOH, and NaOH+Aq dissolve SiO<sub>2</sub> from glass the more easily the hotter and the more conc the solutions are (Muller) NH4OH, and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq attack many kinds of CaO<sub>2</sub>H<sub>2</sub> attacks glass, especially flint glass glass appreciably at 45° and lower, still more strongly on boiling (Lamy, A ch (5) 14

The action of various solvents on the glass mentioned on page 359 in Emmerling's experiments is as follows

The action of HCl+Aq containing 02 to 3% HCl is practically null, but is increased either by dilution or concentration small quantity (002%) HCl added to H<sub>2</sub>O almost wholly prevents its action on glass With HCl+Aq (11% HCl) a decrease of 42 mg was noticed in the first hour, and only 3-4 mg afterwards The same is the case for HNO<sub>3</sub>+Aq in still greater degree, 0 008% HNO<sub>3</sub> sufficing to nearly counteract the solvent action of H2O

H<sub>2</sub>SO<sub>4</sub>+Aq has about double the solvent

effect possessed by H2O Oxalic and acetic acids both diminish the solvent action of H<sub>2</sub>O

The addition of even traces (004%) of

Na<sub>2</sub>CO<sub>3</sub> increases the solvent action, and this is further rapidly increased by an increase in the amount of Na<sub>2</sub>CO<sub>8</sub> Na<sub>2</sub>CO<sub>3</sub>+Aq containing 1% Na<sub>2</sub>CO<sub>3</sub> dissolves about 10 times as much as pure H<sub>0</sub>O<sub>1</sub> e about 35 mg per hour

The above is also the case with KOH + Aq, but in even greater degree KOH+Ag containing 0 025% KOH dissolved three times as

much as pure H<sub>2</sub>O

 $(NH_4)_2CO_3+Aq$  has about the same action  $H_2O$ 

With NH<sub>4</sub>OH+Aq (9% NH<sub>8</sub>) 7 mg decrease for the first hour, and 3 mg afterwards The concentration of the was noticed NH<sub>4</sub>OH+Aq was apparently without effect The addition of NH<sub>4</sub>Cl decreases the solv-

ent action of H<sub>2</sub>O proportionately to the amount added, but with new flasks large

amounts are dissolved

With NH<sub>4</sub>Cl+Aq (7%NH<sub>4</sub>Cl) 42 mg were dissolved in the first hour, and the amount dissolved gradually decreased to null after 24 hours on account of the liberation of HCl by

the decomp of NH<sub>4</sub>Cl NaCl, KCl, KNO<sub>3</sub>, and Na<sub>2</sub>SO<sub>4</sub> show a similar behaviour to that of NH<sub>4</sub>Cl

Na<sub>2</sub>HPO<sub>4</sub>+Aq containing 04% Na<sub>2</sub>HPO<sub>4</sub>

has six times the solvent action of pure  $H_2O$ but the action is not increased by further

concentration

In general, those salts the acids of which form insol Ca salts, as Na<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>HPO<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, increase the solvent action of H<sub>2</sub>O, and this effect is greater the more concentrated the solution KCl, KNO<sub>8</sub>, NH<sub>4</sub>Cl, and CaCl<sub>2</sub> decrease the effect. and the stronger the solution the less is the action

All Na glass with approximately the above composition has the same power of resistance against H<sub>2</sub>O, Bohemian K glass shows a greater resistance, especially against acids (Emmerling, A 150 257)

Action of various reagents on hard Bohemian glass 100 ccm substance dissolved mg glass in 6 days at 100°

| $H_2O$                                    | 10 0           |
|-------------------------------------------|----------------|
| $H_2S+Aq$                                 | 8 7            |
| Dil $(NH_4)_2S + Aq$                      | $52\ 5$        |
| Conc (NH <sub>4</sub> ) <sub>2</sub> S+Aq | <b>47</b> 2    |
| Conc NH <sub>4</sub> OH+Aq                | 42 5           |
| Dıl NH4OH+Aq                              | 77             |
| $NH_4SH+Aq$                               | 51 <b>2</b>    |
| (Cowper, Chem Soc                         | <b>41</b> 254) |

Action of various solutions on glass of different composition (The figures denote decrease in weight in mg of a 100 ccm flask)

|                                                                                                                                                                                                                                                                                                                               | Time                              | 1               | 2               | 3                                 | 4                               | 5                             | 6                            | 7                            | 8                            | 9                            | 10                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|-----------------|-----------------------------------|---------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +Aq (25% H <sub>2</sub> SO <sub>4</sub> )<br>HCl+Aq (12% HCl)<br>NH <sub>4</sub> OH+Aq (10% NH <sub>3</sub> )<br>Na <sub>2</sub> HPO <sub>4</sub> +Aq (12% Na <sub>2</sub> HPO <sub>4</sub> )<br>Na <sub>2</sub> CO <sub>3</sub> +Aq (2% Na <sub>2</sub> CO <sub>3</sub> ) | 5 hrs<br>3 "<br>3 "<br>3 "<br>3 " | 62<br>85<br>283 | 31<br>43<br>160 | 29<br>35<br>27<br>62<br>81<br>130 | 17<br>8<br>4<br>11<br>64<br>124 | 13<br>7<br>2<br>8<br>40<br>50 | 9<br>6<br>1<br>7<br>35<br>45 | 7<br>5<br>1<br>7<br>34<br>42 | 7<br>5<br>1<br>6<br>30<br>42 | 5<br>5<br>0<br>5<br>15<br>26 | 4<br>3<br>0<br>5<br>12<br>25 |

# Composition of above varieties of glass

|                                         | 1                      | 2                                      | 3                                      | 4 | 5            | 6                                     | 7                                       | 8                                      | 9                                      | 10                                     |
|-----------------------------------------|------------------------|----------------------------------------|----------------------------------------|---|--------------|---------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| $S_1O_2$ $Al_2O_3$ $CaO$ $K_2O$ $Na_2O$ | 76 22<br>4 27<br>19 51 | 74 09<br>0 40<br>5 85<br>7 32<br>12 34 | 76 39<br>0 50<br>5 50<br>4 94<br>12 67 |   | 0 50<br>7 15 | 74 69<br>0 45<br>7 85<br>8 64<br>8 37 | 66 75<br>1 31<br>13 37<br>05 50<br>3 07 | 74 12<br>0 50<br>8 55<br>4 86<br>11 97 | 77 07<br>0 30<br>8 10<br>3 75<br>10 78 | 74 40<br>0 70<br>8 85<br>4 40<br>11 65 |

It is seen that glass which resists the attack of H<sub>2</sub>O also resists acids and alkalies, and that the relative resistance of all varieties to any of the solutions is the same. Therefore the action of H<sub>2</sub>O may be accepted as a criterion for judging of the resistance of a glass to all solvents Glass No 10, in which the molecular ratio of  $SiO_2$  CaO  $K_2O(Na_2O)$  is 8 1 1 5, is recommended as best suited for chemical es (Weber and Sauer, B 25 70) Mylius and Forster (B 25 97) recommend

a glass in which the molecular ratio of  $SiO_2$  CaO  $K_2O$  (Na<sub>2</sub>O) is 7.2 1 1.1 as the best suited for chemical apparatus

In an exhaustive research on the action of aqueous solutions on glass, which cannot be given in full on account of its great length. the following conclusions are reached -

1 Solutions of caustic alkalies act on glass much more strongly than H2O, dissolving all the constituents of the glass—that is, the glass Very dilute solutions form an exas such ception

2 Of the caustic alkalies, NaOH+Aq has the strongest action, then come KOH, NH<sub>4</sub>OH, and BaO<sub>2</sub>H<sub>2</sub>+Aq in the order named

3 Increase in temperature increases the

strength of the attack of alkalies very con-

siderably

4 At high temperatures, the ease with which glass is attacked increases at first rapidly with the concentration of the alkali, but afterwards more slowly

5 At ordinary temperatures very concentrated alkalı solutions have less action on

glass than dil solutions

6 Solutions of pure alkalies, if not too conc, act less on glass than when contamin-

ated with small amounts of SiO2

Alkalı carbonates+Aq attack glass much more than H2O, even when they are very dilute The action corresponds less to that of the caustic alkalies than to that of other salts With equivalent concentration, Na<sub>2</sub>CO<sub>3</sub>+Aq has a stonger action than K<sub>2</sub>CO<sub>3</sub>

8 The action of salt solutions on glass is a compound one, depending both on the con-centration and the kind of salt dissolved, and is made up of the action of the H<sub>2</sub>O and the

salt in solution

9 Each kind of attack is differently influenced by the composition of the glass

10 Solutions of those salts, the acids of which form insol Ca salts, have a stronger action than H2O, and the action increases with the concentration

11 Solutions of those salts, the acids of which form sol Ca salts, have less action than H<sub>2</sub>O, and the action decreases with the concentration (Forster, B 25 2494)

Data on this subject published since the first edition of this work have not been con-

sidered

#### Glucinic acid

# Potassium glucinate, K2GlO2

Very deliquescent Sol in H<sub>2</sub>O and acids (Kruss and Moraht B 23 733)

# Glucinum (Beryllium), Gl

Not attacked by hot or cold H<sub>2</sub>O Sol in cold dil HNO<sub>3</sub>+Aq (Wohler, Pogg 13 577)

Sol only in boiling conc HNO<sub>2</sub>+Aq

(Debray, A ch (3) 44 5)

Sol in dil HCl+Aq dil and cone H2SO4+ Aq, and KOH+Aq, but insol in NH<sub>4</sub>OH+ Aq (Wohler, Debray)

Sol in hot HCl, hot conc HNO<sub>3</sub>, and hot conc  $H_2SO_4$  (Lebeau, A ch 1899, (7) 16 474)

# Glucinium azoimide, GlN<sub>3</sub>

Decomp by hot H<sub>2</sub>O (Curtius, J pr 1898, (2), 58 292)

# Glucinum borocarbide, 3Gl<sub>2</sub>C, B<sub>6</sub>C

Insol in H<sub>2</sub>O Easily sol in mineral acids especially HNO<sub>3</sub> (Lebeau, A ch 1899, (7) **16** 481 )

C<sub>4</sub>B<sub>6</sub>Gl<sub>6</sub> Stable in air

Easily sol in mineral acids, conc and dil (Lebeau, C R 1898, **126** 1349)

### Glucinum bromide, GlBr<sub>2</sub>

Sol in H<sub>2</sub>O with evolution of much heat (Wohler) Sol m abs alcohol (Lebeau, A ch 1899, **(7) 16** 484 )

### Glucinum carbide, Gl<sub>2</sub>C

Decomp by H<sub>2</sub>O Slowly attacked by cold or hot conc HCl and HNO<sub>8</sub> Gradually but completely sol in dil acids (Lebeau, A ch 1899, (7), 16 476)

GlC<sub>2</sub> Not easily decomp by strong acids
Easily sol with decomp in dil acids

(Lebeau, C R 1895, 121 497)

#### Glucinum chloride, GlCl<sub>2</sub>

Anhydrous Fumes and deliquesces in air Sol in H<sub>2</sub>O with hissing and evolution of much heat Easily sol in alcohol

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

1898, **20** 828 )

Sol in alcohol and ether Sl sol in C<sub>6</sub>H<sub>6</sub>, CHCl<sub>8</sub>, Cl<sub>4</sub> and CS<sub>2</sub> (Lebeau, A ch 1899. (7) 16 493)

Insol in acetone (Naumann, B 1904, **37** 4329 )

+4H<sub>2</sub>Ó Very hydroscopic Easily sol in H<sub>2</sub>O and in alcohol (Mieleitner, Z anorg 1913, 80 73)

# Glucinum chloride ammonia, GlCl<sub>2</sub>, 4NH<sub>3</sub> (Mieleitner, Z anorg 1913, 80 73)

### Glucinum chloride iodine trichloride, 2ICl<sub>3</sub>, GlCl<sub>2</sub>+8H<sub>2</sub>O

Hygroscopie (Wonland, Z anorg 1902, **30** 140)

Glucinum ferric chloride, GlCl<sub>2</sub>, FeCl<sub>3</sub>+H O Decomp by H<sub>2</sub>O (Neumann, A 244 329)

Glucinum mercuric chloride, GlCl<sub>2</sub>, 3HgCl<sub>2</sub>+ 6H<sub>2</sub>O

Sol in H<sub>2</sub>O (Atterberg, B 6 1288)

Glucinum thallic chloride, 3GlCl<sub>2</sub>, 2TlCl<sub>3</sub> Cryst from HCl solution (Neumann, A **244** 348)

### Glucinum stannic chloride See Chlorostannate, glucinum

Glucinum fluoride, basic, 2GlO, 5GlF<sub>2</sub> Sol in H<sub>2</sub>O (Lebeau, A ch 1899, (7) 16 484)

### Glucinum fluoride, GlF<sub>2</sub>

Sol in H<sub>2</sub>O Deliquescent Insol in anhydrous HF Sol C R 1898, **126** 1421) Sol in alcohol (Lebeau.

Sol in H<sub>2</sub>O in all proportions Somewhat sol in abs alcohol Easily sol in 90% alcohol, also in a mixture of alcohol and ether Insol in anhydrous HF (Lebeau, A ch 1899, (7) 16 484)

### Glucinum potassium fluoride, GIF2, KF

(Awdejew) Much more Sl sol in H<sub>2</sub>O sol in hot than cold H2O (Berzelius)

GIF2, 2KF Sol in about 50 pts H2O at 20°, and 19 pts boiling H<sub>2</sub>O (Marignac)

# Glucinum sodium fluoride, GlF<sub>2</sub>, 2NaF

Sol in 34 pts H<sub>2</sub>O at 100°, and 68 pts at 18° (Marignac)

#### Glucinum hydroxide, GlO<sub>2</sub>H<sub>2</sub>

Easily sol in acids Sol in H<sub>2</sub>SO<sub>3</sub>+Aq Sol in CO<sub>2</sub>+Aq, 100 ccm sat CO<sub>2</sub>+Aq dissolve 0 0185 g GlO (Sestini, Gazz ch it 20 313)

Also sol in KOH, NaOH, NH4OH, or (NH<sub>4</sub>)<sub>2</sub>CO<sub>8</sub>+Aq, especially when freshly precipitated, also in Na<sub>2</sub>CO<sub>3</sub>, or K<sub>2</sub>CO<sub>3</sub>+Aq (Debray)

Insol in NH<sub>4</sub>OH+Aq containing NH<sub>4</sub>Cl+

Very sl sol in  $L_{12}CO_8 + Aq$  (Gmelin) Sol in  $H_2SO_4+Aq$  (Berthier)

Sol in BaO<sub>2</sub>H<sub>2</sub>+Ao, from which it is pptd by NH, salts, but not by boiling Sol in boiling NH, Cl+Aq when freshly pptd

Sol in NH<sub>4</sub>F+Aq (Helmholt, Z anorg 3 130)

### Solubility of GlO<sub>2</sub>H<sub>2</sub> in NaOH+Aq

| G Nam 20 ccm | G Gl in 20 ccm |
|--------------|----------------|
| 0 3358       | 0 0358         |
| 0 6717       | 0 0882         |
| 0 8725       | 0 1175         |
| 1 7346       | 0 2847         |

(Rubenbauer, Z anorg 1902, 30 334)

When glucinum hydroxide is treated with alkalı, more dissolves at first than corresponds with the true equilibrium under the prevailing conditions, for such solutions spontaneously deposit more or less glucinum hydroxide according to the concentration (Rubenbauer)

Solubility of freshly pptd GlO<sub>2</sub>H<sub>2</sub> in NaOH+ Ag at room temperature

| mıllımols Na per l                                   | G GlO dissolved in 1 l                                      |
|------------------------------------------------------|-------------------------------------------------------------|
| 649<br>540<br>540<br>483<br>383<br>388<br>386<br>390 | 3 6<br>2 92<br>2 53<br>1 69<br>1 64<br>1 53<br>1 45<br>1 24 |
|                                                      |                                                             |

In the first two cases the values were obtained by adding to GlCl2+Ag at 0°, ice cold NH4OH and treating the ppt with NaOH+ In the remaining cases by dissolving basic GlCO<sub>s</sub> in HCl and pouring into NaOH+ Αq (Haber, Z anorg 1904, 38 386)

Solubility of GlO<sub>2</sub>H<sub>2</sub>, which is one week old, in NaOH+Ag at to

| NaOH | t°                                                                       | G GlOm 11                                                                     |
|------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|      | 20-23°<br>20-23°<br>20-23°<br>50-53°<br>50-53°<br>50-53°<br>100°<br>100° | 0 060<br>0 170<br>0 570<br>0 080<br>0 230<br>0 900<br>0 080<br>0 290<br>1 020 |

#### (Haber)

# Solubility of GlO<sub>2</sub>H<sub>2</sub> in NaOH+Aq at 25°

| G i                                                         | mols                                                           |
|-------------------------------------------------------------|----------------------------------------------------------------|
| Na                                                          | Gl                                                             |
| 0 268<br>0 318<br>0 446<br>0 526<br>0 563<br>0 801<br>0 854 | 0 0330<br>0 0492<br>0 0841<br>0 089<br>0 101<br>0 143<br>0 202 |

(Wood, Chem Soc 1910, 97 884)

Insol in NH<sub>4</sub>OH+Aq and in alkyl amines (Renz, B 1903, **36** 2753)

Sol in GISO<sub>4</sub>+Aq (Parsons, J phys

Chem 1907, 11 658)

A form insol in acids and alkalies can be obtained by sufficiently long heating in boiling H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>+Aq, NH<sub>4</sub>OH+Aq, or solutions of NaOH or KOH so dil that the GlO<sub>2</sub>H<sub>2</sub> is either insol or very sl sol therein (van Oordt, C C 1906, I 108)

100 ccm of glycerine + Aq containing about 60% by vol of glycerine dissolve 0.1 g GlO (Muller, Z anorg 1905, 43 322)

Contains 1/8H2O (Schaffgotsch), 4/8H2O (Atterberg)

| Solubility of | G102H2. W | hich has | been boiled | with alkali | in various solvents |
|---------------|-----------|----------|-------------|-------------|---------------------|
|               |           |          |             |             |                     |

| Alkalı used                                                                                                                  | Time                            | Solvent                                                                                                             | Solubility                                                                                                                                                                                                                                                                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 10-N NaOH<br>NaOH<br>NaOH                                                                                                    | 2½ hrs Long time 2 hrs          | 039-N NaOH<br>097-N NaOH                                                                                            | 1 mol GlO <sub>2</sub> H <sub>2</sub> 331 mole NaOH<br>1 mol GlO <sub>2</sub> H <sub>2</sub> 183 mole NaOH<br>1 mol GlO <sub>2</sub> H <sub>2</sub> 91 8 mole NaOH<br>1 mol GlO <sub>2</sub> H <sub>2</sub> 49 mole NaOH<br>1 mol GlO <sub>2</sub> H <sub>2</sub> 49 mole NaOH<br>Insol<br>Sl sol<br>Slowly sol<br>Almost insol |  |
| кон                                                                                                                          | Till flocculent<br>ppt appeared | 1-N KOH<br>1-N NaOH<br>Warm dil HCl                                                                                 | Insol<br>"<br>Sol                                                                                                                                                                                                                                                                                                               |  |
| ½-N Na <sub>2</sub> CO <sub>3</sub> ½-N Na <sub>2</sub> CO <sub>3</sub> for then ½-N Na <sub>2</sub> CO <sub>3</sub> for for | 3 hrs<br>3 hrs and<br>4 hrs     | 1-N NaOH Dil HCl                                                                                                    | Easily sol Sl sol                                                                                                                                                                                                                                                                                                               |  |
| ½-N K <sub>2</sub> CO <sub>3</sub><br>10-N K <sub>2</sub> CO <sub>3</sub>                                                    | 6 hrs<br>Short time             | D <sub>1</sub> l HCl<br>10-N K <sub>2</sub> CO <sub>3</sub><br>1-N NaOH<br>Cold 10-N K <sub>2</sub> CO <sub>3</sub> | Slowly sol  Insol Easily sol Very slowly sol                                                                                                                                                                                                                                                                                    |  |
| NH <sub>4</sub> OH                                                                                                           | 5 hrs                           | ½-N NaOH                                                                                                            | Very sl sol                                                                                                                                                                                                                                                                                                                     |  |

(Haber)

### Glucinum iodide, GlI2

Sol in  $H_2O$  with evolution of much heat (Wohler)

Decomp in moist air and by H<sub>2</sub>O

Sol in abs alcohol Insol in most neutral organic solvents, as benzene, toluene, etc (Lebeau, C R 1898, 126 1273)

Insol in C<sub>6</sub>H<sub>6</sub>, C<sub>7</sub>H<sub>3</sub>, and oil of turpentine Easily sol in CS<sub>2</sub> Sol in anhydrous alcohols without evolution of heat (Lebeau, A ch 1899, (7) 16 490)

Glucinum iodide ammonia, 2GlI<sub>2</sub>, 3NH<sub>3</sub> Ppt (Leberu, A ch 1899, (7) **16** 492)

### Glucinum oxide, GlO

Crystalline Insol in acids except conc  $H_2SO_4$  (Ebelmen, C R 32 710)

Amorphous Absolutely insol in H<sub>2</sub>O The higher the temp to which the substance has been heated the more insol is it in acids Insol in NH<sub>4</sub>OH+Aq or (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq Insol in cone NH<sub>4</sub>Cl+Aq, or KOH, and NaOH+Aq (Rose)

When obtained by ignition of GISO<sub>4</sub>, it is very slowly but completely sol in HCl, and H<sub>2</sub>SO<sub>4</sub>+Aq (Rose)

Insol in hydracids Sol in conc H<sub>2</sub>SO<sub>4</sub> (Lebeau, C R 1896, **123** 819) Insol in liquid NH<sub>3</sub> (Gore, Am ch J 1898, **20** 828) Glucinum peroxide basic, 2GlO<sub>2</sub>, 3GlO

+8½H<sub>2</sub>O (Komarovski, Chem Soc 1913, **104** (2) 707)

#### Glucinum oxybromides

Sol in  $H_2O$  if three or less equivalents of base are present to one of acid, insol if more of the base is present (Ordway, Am J Sci (2) 26 207)

Glucinum oxychloride, Gl<sub>2</sub>OCl<sub>3</sub>=GlO, GlCl<sub>2</sub>

Insol in H<sub>2</sub>O

3GICI, 2GIO+2H<sub>2</sub>O (?) Sol in H<sub>2</sub>O

(Atterborg)

GCl<sub>2</sub>, 3GlO+3H O (?) Sol in H<sub>2</sub>O, but solution soon becomes cloudy and deposits a fine ppt By boiling the solution it is decompinto above salt, and GlCl<sub>2</sub>, 12GlO<sub>2</sub>H<sub>2</sub>+10H<sub>2</sub>O, which is insol in H<sub>2</sub>O, decompinto GlO<sub>2</sub>H<sub>2</sub> by washing Sol in acids (Atterbeig)

Glucinum oxyfluoride, 5GlF<sub>2</sub>, 2GlO

Readily sol in  $H_2O$  (Lebeau, C R 1898, 126 1419)

# Glucinum phosphide

Decomp by H<sub>2</sub>O (Wohler)

# Glucmum selenide

Sl sol in H<sub>2</sub>O (Berzelius)

Glucinum sulphide

Slowly sol without decomp in H<sub>2</sub>O, but easily decomp by acids (Wohler)

Gold, Au

Gold which has been pptd from AuCl<sub>3</sub>+ Ag by FeSO4 is sl sol in HCl (Awerkiew, Z anorg 1909, 61 10)

Not attacked by H<sub>2</sub>O Insol in HNO<sub>8</sub> or HCl+Aq Easily sol in aqua regia or any mixture evolving Cl or Br Sol in selenic acid, or antimonic acid+Aq, less easily in arsenic acid+Aq Sol in mixtures of HCl and nitrates, or HNO<sub>3</sub> and chlorides, also in (NaCl+KNO<sub>3</sub>+K<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>)+Aq (?) Insol in H<sub>2</sub>SO<sub>4</sub>, except in presence of KMnO<sub>4</sub>, HNO<sub>3</sub>, or HIO<sub>3</sub> Sol in a solution of I in ether in direct sunlight

Sol in solutions of ferric, and cupric salts

Sol m HCl+Aq containing H<sub>2</sub>CrO<sub>4</sub>, H<sub>2</sub>MnO<sub>4</sub>, H<sub>2</sub>SeO<sub>4</sub>, H<sub>3</sub>AsO<sub>4</sub>, or FeCl<sub>3</sub> (Wurtz) Attacked by fuming HCl (sp gr 1 178) at ord temp in direct light, especially in the presence of a trace of MnCl<sub>2</sub>, but not attacked in the dark even in the presence of this salt (Berthelot, C R 1904, 138 1298)

100 ccm hot conc HCl dissolve 0 008 g

yellow Au powder in 4 hours Raoult, C R 1912, 155 1086) (Hanriot and

Upon boiling 25 and 50 cc HCl+Aq (sp gr 1 178), dil to 125 cc with 250 mg sheet Au 1/8 in square, 0 009 in thick, weighing 250 mg for several hours, there was no loss of weight of Au (McCaughey, J Am Chem Soc 1909, 31 1263)

From 5 g finely divided ordinary yellow gold, 100 cc HNO<sub>3</sub> of 22° B dissolve 0 002 g

in 2 hrs

100 cc HNO<sub>2</sub> of 32° B dissolve 0 0119 g m 2 hrs

100 cc HNO<sub>s</sub> of 36° B dissolve 0 028 g

100 cc HNO<sub>3</sub> monohydrate dissolve 0 076 g in 2 hrs (Hanriot and Raoult, C R 1912, **155** 1085)

From 5 g brown gold 100 ccm HNO<sub>3</sub> of 22° Baume dissolve 0.006 g in 2 hrs

HNO<sub>3</sub> of 32° Baume dissolve 100 ccm 0 039 g in 2 hrs

100 ccm HNO<sub>3</sub> of 36° Baume dissolve

0078 g in 2 hrs 100 ccm HNO<sub>3</sub> monohydrate dissolve 1 540

g in 2 hrs (Hanriot and Raoult)

Sl sol in boiling  $HNO_3$  (sp gr = 142) The solution deposits Au by standing several (Dewey, J Am Chem Soc 1910, 32 days 32Ö)

Best composition of aqua regia for dissolving Au is 200 cc HCl (sp gr 1 1946) 45 cc HNO<sub>3</sub> (sp gr 14) and 245 cc H<sub>2</sub>O 1 pt Au is sol in 43 pts of such a mixture (Priwoznik, C C 1910, II 1743)

Sol in 1 pt HNO<sub>8</sub>+4 pts HCl as representing the most economical mixture woznik, Chem Soc 1911, 100 (2), 484)

Easily sol in nitrosulphonic acid from sulphuric acid manufacture, when mixed with equal parts conc HCl+Aq (Borntrager, Rep anal Ch 1887 741

Sol in hot conc H2SO4 in the presence of

MnO<sub>2</sub>, Mn<sub>2</sub>O<sub>3</sub>, Mn<sub>3</sub>O<sub>4</sub>, PbO<sub>2</sub>, Pb<sub>2</sub>O<sub>3</sub>, Pb<sub>3</sub>O<sub>4</sub>, CrO<sub>8</sub>, CrO<sub>4</sub> and N<sub>12</sub>O<sub>3</sub> Solution also takes place slowly in the cold Sol in hot H<sub>2</sub>SO<sub>4</sub>+ KMnO4 Slowly sol in cold, more rapidly in hot H.SO4+HNO3 (Lenher, J Am Chem Soc 1904, 26 550)

Sol in a hot solution of crystalline telluric

acid in H2SO4 or H3PO4

Sol in hot H<sub>3</sub>PO<sub>4</sub> in the presence of MnO<sub>2</sub>, Mn<sub>2</sub>O<sub>8</sub>, Mn<sub>3</sub>O<sub>4</sub>, the higher oxides of lead, CrO<sub>3</sub>, chromium tetroxide and nickelic Solution takes place more slowly in oxide Sol in hot H<sub>8</sub>PO<sub>4</sub> in the presence the cold of KMnO<sub>4</sub> Slowly sol in a cold, more rapidly sol in a hot mixture of H3PO4 and

Sol in hot arsenic acid in the presence of MnO<sub>2</sub>, Mn<sub>2</sub>O<sub>3</sub> and Mn<sub>3</sub>O<sub>4</sub> Am Chem Soc 1904, **26** 550) (Lenher, J

Gold leaf is not attacked by cold conc H<sub>2</sub>SeO<sub>4</sub>, when completely free from halogens, but is dissolved by conc H2SeO4 at 300° (Lenher, J Am Chem Soc 1902, 24 354)

Solubility of thin sheet Au in HCl solution of non alum

Mr. An dissolved

| $\mathbf{Time}$            | i                            | 1418 210                     |                                      |                              |
|----------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|
| hours                      | 1 g Fe<br>25 cc HCl          | 1 g Fe<br>50 cc HCl          | 2 g Fe<br>25 cc HCl                  | 2 g Fe<br>50 cc HCl          |
| -                          | Г                            | Cemp 38—                     | 43°                                  |                              |
| 16<br>22<br>40<br>46<br>64 | 1 00<br>1 12<br>1 52<br>1 71 | 1 30<br>1 55<br>2 15<br>2 34 | 1 08<br>1 20<br>1 82<br>2 02<br>2 60 | 1 47<br>1 81<br>2 75<br>2 95 |

| 16  | 1 00 | 1 30 | 1 08 | 1 47    |
|-----|------|------|------|---------|
| 22  | 1 12 | 1 55 | 1 20 | 1 81    |
| 40  | 1 52 | 2 15 | 1 82 | 2 75    |
| 46  | 1 71 | 2 34 | 2 02 | 2 95    |
| 64  | 1 96 | 3 10 | 2 60 | 3 79    |
| 72  | 2 12 | 3 30 | 2 83 | 4 05    |
| 89  | 2 32 | 3 65 | 3 22 | 4 65    |
| 100 | 2 40 | 3 76 | 3 38 | 4 81    |
| 113 | 2 45 | 3 95 | 3 51 | 5 12    |
| 124 | 2 60 | 4 09 | 3 63 | 5 39    |
| 161 | 2 78 | 4 36 | 3 95 | 5 96    |
| 185 | 2 90 | 4 49 | 4 11 | $6\ 22$ |
|     |      |      |      |         |

# Temp 98-100°

| 1               | 1 13  | 0 78  | 1 15  | 1 27  |
|-----------------|-------|-------|-------|-------|
| 2               | 1 99  | 1 74  | 2 56  | 2 86  |
| 4               | 3 46  | 3 31  | 4 55  | 5 06  |
| 16              | 10 09 | 11 37 | 13 15 | 15 56 |
| 20              | 12 20 | 13 72 | 15 59 | 19 41 |
| 24              | 14 37 | 16 49 | 17 96 | 23 29 |
| 36              | 17 38 | 23 27 | 22 07 | 31 73 |
| 42              | 18 79 | 26 30 | 24 62 | 35 29 |
| 54              | 20 94 | 31 39 | 29 49 | 42 11 |
| $59\frac{1}{2}$ | 21 64 | 33 12 | 30 64 | 44 43 |

The solution contained the given amounts of Fe as aron alum, the sp gr of the HCl was 1 178, and the solutions diluted to 125 cc (McCaughey, J Am Chem Soc 1909, 31 1263)

The solvent action of ferric salt occurs even in presence of a ferrous salt, but decreases with increase of concentration of ferrous salt (McCaughey)

Solubility of thin sheet Au in HCl solution of CuCl<sub>2</sub>

| Time  | Mg Au dissolved                                                                   |
|-------|-----------------------------------------------------------------------------------|
| hours | 1 g Cu   1 g Cu   2 g Cu   2 g Cu   25 cc HCl   50 cc HCl   25 cc HCl   50 cc HCl |
|       | Temp 38-43°                                                                       |
| 19    | 0 03   0 26   0 05   0 39                                                         |

| 10              | 0 00 | 0 20 | 0 00 | 0 50 |
|-----------------|------|------|------|------|
| 25              | 0 09 | 0 36 | 0 05 | 0 54 |
| 43              | 0 10 | 0 54 | 0 14 | 0 94 |
| $49\frac{1}{2}$ | 0 12 | 0 61 | 0 15 | 1 07 |
| $66\frac{1}{2}$ | 0 11 | 0 76 | 0 17 | 1 40 |
| 78              | 0 14 | 0 87 | 0 22 | 1 58 |
| 91              | 0 14 | 0 92 | 0 24 | 1 75 |
| 102             | 0 16 | 1 02 | 0 27 | 1 90 |
| 139             | 0 18 | 1 34 | 0 32 | 245  |
| 163             | 0 23 | 1 60 | 0 39 | 2 84 |
|                 |      |      |      |      |

Temp 98-100°

| 1  | 0 15 | 0 34  | 0 17 | 0 46  |
|----|------|-------|------|-------|
| 4  | 0 55 | 1 23  | 0 55 | 1 35  |
| 16 | 1 34 | 5 00  | 2 12 | 8 80  |
| 20 | 1 63 | 6 5°  | 2 78 | 11 86 |
| 26 | 2 17 | 9 13  | 3 59 | 15 70 |
| 38 | 3 13 | 13 9° | 5 07 | 23 14 |
| 43 | 3 61 | 16 54 | 5 77 | 26 62 |
| 48 | 4 07 | 19 26 | 6 26 | 30 80 |
| 60 | 4 82 | 26 37 | 7 47 | 39 09 |
| 60 | 4 82 | 26 37 | 7 47 | 39 09 |

Conditions the same as above for HCl+ ron alum (McCaughey)

Finely powdered gold is sol in conc HCl in the presence of alcohol, etc

0.0302 g Au is sol in 100 cc HCl+100 cc CH<sub>3</sub>OH

0 0230 g Au is sol in 100 cc HCl+100 cc

CHCl<sub>3</sub> 0 0066 g Au is sol in 100 cc HCl+100 cc

 $C_2H_sOH$ 0 0190 g Au 1s sol in 100 cc HCl+100 cc

C<sub>5</sub>H<sub>11</sub>OH 0 0125 g Au is sol in 100 cc HCl+50 cc CCl<sub>3</sub>CH(OH)<sub>2</sub>

(Awerkiew, C C 1908, II 1566)

Solubility of Au which has been pptd from AuCl<sub>2</sub>+Aq by various precipitants in HCl+formaldehyde

| HCHO<br>(40%)<br>ccm                                                                           | HCl<br>(1 19)<br>ccm                                                                                | Au dis<br>solved<br>g                                                                                                                   | Au used was<br>pptd from<br>AuCl <sub>8</sub> +Aq by                                                 |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 150<br>100<br>125<br>100<br>150<br>250<br>500<br>100<br>100<br>150<br>250<br>150<br>100<br>100 | 150<br>100<br>25<br>200<br>150<br>250<br>500<br>200<br>200<br>200<br>300<br>125<br>75<br>200<br>200 | 0 0007<br>0 0006<br>0 0008<br>0 0009<br>0 0003<br>0 0002<br>0 0008<br>0 0004<br>0 0006<br>0 001<br>0 0013<br>0 0006<br>0 0006<br>0 0005 | FeSO <sub>4</sub> "" sugar oxalic acid FeSO <sub>4</sub> oxalic acid "" sugar FeSO <sub>4</sub> HCHO |
| 180<br>360<br>360<br>209                                                                       | 540<br>720<br>720<br>400                                                                            | 0<br>0 001<br>0 0019<br>0 0013                                                                                                          | FeSO <sub>4</sub><br>sugar<br>FeSO <sub>4</sub>                                                      |

In the last four cases the solubility was determined at the ordinary temp, in the first sixteen the gold was boiled with the mixture of HCl and HCHO

(Awerkiew, Z anorg 1909, 61 3)

Solubility of Au in boiling HCl+ paraformaldehyde

| (CH <sub>2</sub> O) <sub>3</sub>                                                           | HCl<br>(1 19)<br>g                                                                                  | Dissolved<br>Au g                                                                                                                              | Au uscd was<br>pptd from<br>AuCl <sub>3</sub> +Aq by                                                                                                                 |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>5<br>25<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>10<br>10<br>60 | 25<br>25<br>125<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>300<br>300<br>200<br>200<br>120 | 0 0005<br>0 0004<br>0 006<br>0 0024<br>0 0034<br>0 003<br>0 0065<br>0 0044<br>0 0005<br>0 001<br>0 0024<br>0 003<br>0 0008<br>0 0006<br>0 0015 | FeSO <sub>4</sub> oxalic acid sugar CHOH CH <sub>3</sub> OH  sugar formic acid CH <sub>3</sub> OH FcSO <sub>4</sub> CH <sub>3</sub> OH oxalic acid FeSO <sub>4</sub> |
|                                                                                            |                                                                                                     | <u>' '</u>                                                                                                                                     |                                                                                                                                                                      |

(Awerkiew)

368 GOLD

# Solubility of Au in boiling HCl+methyl alcohol

#### (Awerkiew)

# Solubility of Au in boiling HCl+ethyl alcohol

| C <sub>2</sub> H <sub>5</sub> OH<br>(95%)<br>ccm                          | HCl<br>(1 19)<br>ccm                                              | Dissolved<br>Au g                                                                                        | Au used was<br>pptd from<br>AuCl <sub>3</sub> +Aq by                                                      |
|---------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 25<br>100<br>200<br>150<br>100<br>100<br>200<br>250<br>300<br>1000<br>150 | 50<br>200<br>400<br>50<br>300<br>100<br>250<br>300<br>1000<br>150 | 0 0006<br>0 0111<br>0 0017<br>0 0003<br>0 0004<br>0 0015<br>0 0055<br>0 0021<br>0 0197<br>0 007<br>0 008 | FeSO <sub>4</sub> " sugar " C <sub>2</sub> H <sub>2</sub> OH sugar FeSO <sub>4</sub> CH <sub>3</sub> OH " |

#### (Awerkiew)

# Solubility of Au in boiling HCl+amyl alcohol

| C <sub>5</sub> H <sub>11</sub> OH<br>g | HCl<br>(1 19)<br>g | Dissolved<br>Au g | Au used was<br>pptd from<br>AuCl <sub>3</sub> +Aq by                                            |
|----------------------------------------|--------------------|-------------------|-------------------------------------------------------------------------------------------------|
| 100                                    | 100                | 0 019             | FeSO <sub>4</sub> sugar " FeSO <sub>4</sub> C <sub>5</sub> H <sub>11</sub> OH FeSO <sub>4</sub> |
| 100                                    | 200                | 0 0048            |                                                                                                 |
| 150                                    | 150                | 0 0024            |                                                                                                 |
| 100                                    | 100                | 0 0027            |                                                                                                 |
| 150                                    | 50                 | 0 0032            |                                                                                                 |
| 300                                    | 100                | 0 0023            |                                                                                                 |
| 200                                    | 200                | 0 0067            |                                                                                                 |
| 500                                    | 500                | 0 028             |                                                                                                 |

(Awerkiew)

# Solubility of Au in boiling HCl+phenol

|                                                 | · · · · · · · · · · · · · · · · · · ·              |                                                                   |                                                                                                    |
|-------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| C <sub>6</sub> H <sub>5</sub> OH                | HCl<br>(1 19) g                                    | Dissolved<br>Au g                                                 | Au used was<br>pptd from<br>AuCl <sub>3</sub> +Aq by                                               |
| 10+25<br>10<br>20<br>25<br>25<br>50<br>25<br>25 | 100<br>40<br>50<br>100<br>150<br>200<br>250<br>250 | 0 001<br>0 0004<br>0 0003<br>0 0005<br>0 0005<br>0 0005<br>0 0012 | C <sub>6</sub> H <sub>5</sub> OH<br>oxalic acid<br>FeSO <sub>4</sub><br>HCOH<br>"FeSO <sub>4</sub> |

### (Awerkiew)

# Solubility of Au in boiling HCl+chloroform

| CHCl <sub>3</sub>                            | HCl<br>(1 19)<br>g                           | Dissolved<br>Au g                                                | Au used was<br>pptd from<br>AuCl <sub>3</sub> +Aq by |
|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------|------------------------------------------------------|
| 50<br>100<br>100<br>150<br>200<br>250<br>300 | 100<br>100<br>100<br>50<br>400<br>250<br>300 | 0 0009<br>0 023<br>0 0017<br>0 0012<br>0 0024<br>0 002<br>0 0106 | FeSO <sub>4</sub> " " sugar                          |

#### (Awerkiew)

Colloidal gold is sol in dil alkalies (Paal, B 1902, **35** 2236)

Rather quickly sol in 10-15% solution I in KI+Aq

Very slowly sol in 5% solution of I in KI+Aq

Scarcely sol in more dil solution of I in KI+Aq

Foothy sol in 1007 NH I | I assessible

Easily sol in 10% NH<sub>4</sub>I+I Less easily sol in 5% NH<sub>4</sub>I+I (Doring)

Sol in cold Na<sub>2</sub>S+Aq when Na<sub>2</sub>S is present in proportion of 843 pts Na<sub>2</sub>S to 1 pt Au (Becker, Sill, Am J (3) 33 199)

In finely divided state Au is sol in boiling KCN+Aq Not attacked by boiling HgCl<sub>2</sub>+Aq (Vogel, J pr 20 366)

| Solubility of Au (disks) in KCN+Aq with (A) oxygen passed through solution, and (B) agitated with oxygen

g Au dissolved in 24 hours % KCN В A 0 00845 1 0 0187 5 0 01355 0 0472 20 0 0115 0 0314 50 0 00505 0 108

(Maclaurin, Chem Soc 1893, **63** 729)

The solution of Au in KCN+Aq is essentially hastened by sunlight (Caldecott, Proc Chem Soc 1904, 20 199)

The presence of oxygen is necessary for the solution of Au in KCN+Aq The rate of solution of Au in KCN+Aq varies with the strength of the solution, being small for conc solutions, increasing as the solution becomes more dilute, reaching a maximum at 025% KCN, and then again diminishing (Maclaurin, Chem Soc 1895, 67 211)

Solubility of Au (strips) in dil KCN+Aq

| % KCN   | Mg Au dissolved in 24 hours |
|---------|-----------------------------|
| 0       | 0 010                       |
| 0 0005  | 0 043-0 07                  |
| 0 001   | 0 10-0 23                   |
| 0 0016  | 0 16                        |
| 0 002   | 0 44                        |
| 0 00325 | 1 77                        |
| 0 004   | 4 29                        |
| 0 008   | 48 43                       |
| 0 016   | 74 96                       |
| 0 0325  | 150 54                      |
| 0 065   | 168 12                      |

(Christy, Elektrochem Z 1901, 7 205)

Finely divided metallic gold is completely sol at the ord temp in solutions of potassium ferrocyanide Solution takes place very slowly even when the potassium ferrocyanide solution is boiling (Beutel, Z

anorg 1912, **78** 158) Sol in RbCl<sub>4</sub>I+Aq (Erdmann, Arch

Pharm 1894, 232, 30)

Not attacked by FeCls+Aq when air is excluded but very energetically attacked in presence of HCl and oxygen (McIlhiney,

Am J Sci, 1896, (4), 2 293)

Not attacked by several days heating with SOCl<sub>2</sub> at 150° At 200° there is sl action in 10 days (North, J Am Chem

Soc 1912, **34** 892)

SO<sub>2</sub>Cl<sub>2</sub> in excess dissolves pulverulent Au by several hours heating at 160° (North, Bull Soc (4), 9 647)

Sol in PCl<sub>3</sub> (Baudrimont, A ch (4) 2

Easily sol in acid solutions of thiocarbamide especially in presence of suitable oxidizing compounds 1906, 89 1345) (Moir, Chem Soc

#### Gold arsenide, AuAs

H<sub>2</sub>O or alcohol slowly extracts As, HNO<sub>3</sub>+ Aq converts into Au and H<sub>3</sub>AsO<sub>4</sub> Sol in aqua regia Not attacked by cold, decomp by hot cone H2SO4 (Tivoli, C C 1887 778, J B **1887** 610)

# Gold bismuthide, Au<sub>2</sub>Bi

Min Maldonite Sol in aqua regia

### Aurous bromide, AuBr

Insol in H<sub>2</sub>O (Thomsen, C C 1860 606)

Insol in  $H_2O$ ,  $HNO_3$ ,  $H_2SO_4$ 

Sol in NH,OH+Aq with decomp Decomp by HBr and KBr+Aq Sol in KCN+Aq without decomp Slowly decomp by alcohol, ether, acetone and moist CHCla (Lengfeld, Am Ch J 1901, 26 325)

# Gold (auroauric) bromide, Au<sub>2</sub>Br<sub>4</sub>

Not deliquescent  $H_2O$  or ether dissolves out AuBr; (Thomsen, C C 1860 606) Does not exist (Kruss, B 20 640) Existence is maintained by Petersen

pr (2) **46** 334)

#### Auric bromide, AuBr<sub>3</sub>

Not deliquescent Slowly sol in  $H_2O$ , more

readily in ether

Can be recryst from AsBr<sub>3</sub>, SbBr<sub>3</sub>, TiBr<sub>2</sub> or SnBr<sub>2</sub> (Lindet, Bull Soc 1886, (2) 45 Sol in methyl acetate (Naumann, B

1909**, 42** 3790)

Aurous phosphorus tribromide, AuBr, PBr $_{f s}$ Decomp by H<sub>2</sub>O (Lindet, J pr (2) 32 **494**)

Auric phosphorus pentabromide, AuBr.,  $PBr_{5}$ 

Decomp by H<sub>2</sub>O (Lindet)

Aurous bromide phosphorus trichloride, AuBr, PCl<sub>2</sub>

Decomp by H<sub>2</sub>O (Lindet)

#### Auric praseodymium bromide, PrBr<sub>8</sub>, AuBr<sub>8</sub>+10H<sub>2</sub>O

Very sol in H<sub>2</sub>O, sol in conc HBr (Von Schule, Z anorg 1898, 18 355)

# Aurous bromide ammonia,

AuBr, 2NH<sub>3</sub>

Decomp by H<sub>2</sub>O and dil HCl Sol in aqua regia (Meyer, C R 1906, **143** 281)

### Gold carbide, Au<sub>2</sub>C<sub>2</sub>

Decomp by boiling H<sub>2</sub>O without evolution of  $C_2H_2$  Decomp by HCI with evolution of  $C_2H_2$  (Mathews, J Am Chem Decomp by HCl with Soc 1900, 22 110)

#### Aurous chloride, AuCl

Insol in H2O, but gradually decomp thereby into Au and AuCla (Thomsen, J pr (2) **13** 341)

Insol in H<sub>2</sub>O and dil HNO<sub>3</sub>

Decomp by conc HNO<sub>3</sub> to Au and AuCl<sub>3</sub> Sol in HCl, HBr and in sol of alkali chloride and bromides, with decomp

Decomp by alcohol, ether and acetone

(Lengfeld, Am Ch J 1901, 26 324)

Gold (auric) chloride, AuCla

Deliquescent Very sol in H<sub>2</sub>O Sol in (Abl) Sol in cone HCl, or 147 pts H<sub>2</sub>O

HNO<sub>8</sub>+Aq without decomp

AsCl<sub>3</sub> dissolves about 22% at 160° and 25% at 15° Solubility in SbCl<sub>3</sub> is about the same Much less sol in SnCl<sub>4</sub> or TiCl<sub>4</sub>, SnCl<sub>4</sub> dissolving 4% at 160° and hardly a trace at 0° Very sl sol in hot or cold SiCl<sub>4</sub> (Lindet, Bull Soc (2) 45 149)
Sl sol in liquid NH<sub>3</sub> (Franklin and Kraus,

Am Ch J 1898, 20 829)

Sol in alcohol with gradual decomp (Gmelin) Sol in ether with decomp in light or on long standing Ether extracts AuCl. from AuCl<sub>8</sub>+Aq (Proust) Sol in volatile oils with gradual decomp Sol in ether (Mylius, Z anorg 1911, 70

207)

Very sol in ether (Willstätter, B 1903, **36** 1830)

Completely sol in ether (Frank, C C 1913, II 541)

Insol in or decomp by alcohol, ether, CS2, C.H., oil of turpentine, pentane, hexane, CHCl2, CCl4, ethyl nitrate, nitrobenzol, ethyl acetate, ethyl propionate and pyridine (Lenher, J Am Chem Soc 1903, 25 1138)

+2H<sub>2</sub>O (Thomsen)

### Auroauric chloride, Au<sub>2</sub>Cl<sub>4</sub>

Decomp by H<sub>2</sub>O into AuCl<sub>3</sub> and AuCl (Thomsen, J pr (2) 13 357)

Does not exist (Kruss and Schmidt, J

pr (2) **38** 77)

Existence is maintained by Christensen (J pr (2) 46 328)

Auric chloride with MCl See Chloraurate, M

Auric nitrosyl chloride, AuCl<sub>3</sub>, NOCl

Sol in H2O with decomp (Sudborough, Chem Soc 59 662)

Aurous phosphorus trichloride, AuCl, PCl<sub>2</sub> Decomp by  $H_2O$  Sol in about 100 pts  $PCl_3$  at 15°, and about 8 pts at 120° Sol in AsCl<sub>3</sub> (Lindet, C R 101 1492)

Auric phosphorus pentachloride, AuCl<sub>3</sub>, PCl<sub>5</sub> Decomp by H<sub>2</sub>O Nearly insol in PCl<sub>2</sub> Sol in AsCl<sub>3</sub> (Lindet)

Aurous potassium chloride, AuCl, KCl

Decomp by H<sub>2</sub>O or HCl+Aq into KCl, KAuCl<sub>4</sub>, and Au (Berzelius)

Auric potassium chloride See Chloraurate, potassium

Auric selenium chloride, AuCl<sub>3</sub>, SeCl<sub>4</sub>

Decomp by H<sub>2</sub>O Sol in AsCl<sub>3</sub> (Lindet, C R 101 1492)

Gold (aurous) sodium chloride, AuCl, NaCl Insol in H<sub>2</sub>O Sol in alcohol (Meillet. J Pharm 3 447)

Formula is 4NaCl, AuCl, AuCl<sub>3</sub> (Jorgensen )

Auric sodium chloride

See Chloraurate, sodium

Auric sulphur chloride, AuCla, SCl4

Easily decomp by H<sub>2</sub>O (Lindet, C R **101** 1492)

Aurous chloride ammonia, AuCl. NH.

Ppt Unstable (Diemer, J Am Chem Soc 1913, 35 554)

AuCl, 3NH<sub>3</sub> Decomp by H<sub>2</sub>O and dil acids

Sol in aqua regia Sol in conc H2SO4 with decomp (Meyer, C R 1906, 143 282) AuCl, 12NH<sub>3</sub> (Meyer)

### Auric fluoride, AuF<sub>8</sub>

Verv unstable

Is incapable of existence not only in presence of H<sub>2</sub>O but under the ordinary conditions met with in the laboratory and in nature (Lenher, J Am Chem Soc 1903, 25 1138)

Auric hydroxide, AuO<sub>3</sub>H<sub>8</sub>

Nearly insol in most acids Easily sol in very conc HNO<sub>3</sub>+Aq (Proust), from which all AuO3H3 is separated by dilution (Fremy) Extremely sl sol in fuming HNO<sub>3</sub> Sol in dil HNO<sub>3</sub>+Aq when pure (Kruss, A 237 281) Not attacked by H<sub>3</sub>PO<sub>4</sub> Insol in HF

Sol in HCl, or HBr+Aq (Fremy)
Sol in H<sub>2</sub>SeO<sub>4</sub>+Aq (Mitscherlich)
Sl sol in conc H<sub>2</sub>SO<sub>4</sub>, somewhat sol in

 $HC_2H_2O_3+Aq$  (Rose)

Nearly insol in cold KOH+Aq, but dissolved on boiling Insol in NH4OH+Aq or alkalı carbonates + Aq (Rose) Sl sol in boılıng CaCl<sub>2</sub>+Aq, NaCl+Aq, BaCl<sub>2</sub>+Aq (Pelletier) Sol in NH<sub>4</sub>CN, and KCN+Aq (Hımly)

SI sol in KCl, or NaCl+Aq (Pelletier) Sol in K<sub>4</sub>Fe(CN)<sub>8</sub>+Aq at ord temp rapidly on boiling (Beutel, Z anorg 1912,

**78** 154) AuO,  $OH = Au_2O_3$ ,  $H_2O$  (Kruss)

Auroauric hydroxide,  $Au_3O_2(OH)_2 = 3Au_2O_2$  $+2H_2O$ 

Insol in boiling conc KOH+Aq Decomp by cone HCl or HNO3+Aq into Au and Au<sub>2</sub>O<sub>3</sub>, which dissolves (Schottlander, A **217** 336)

#### Aurous iodide, AuI

Insol in cold, decomp by hot H<sub>2</sub>O, H<sub>2</sub>SO<sub>4</sub>, HCl, or HNO<sub>8</sub>+Aq, with separation of Au Decomp immediately by ether, more slowly by alcohol

Partially sol in KI, FeI<sub>3</sub>, or HI+Aq (Pelletier) Sl attacked by NH<sub>4</sub>OH, or NaCl+Aq at 35° (Fordos) Instantly decomp by KOH+Aq

### Gold (auric) iodide, AuIs

Insol in  $H_2O$  Sol in alkali iodides, and HI+Aq Decomp on air or by alkalies (Johnston, Phil Mag J 9 266)

#### Aurous iodide ammonia, AuI, NH3

Decomp by H<sub>2</sub>O or dil acids (Meyer, C R 1906, **143** 281) Sol in aqua regia AuI, 6NH<sub>3</sub> (Meyer)

#### Aurous oxide, Au<sub>2</sub>O

Insol in H<sub>2</sub>O or alcohol Decomp by boiling with HCl+Aq into Au and AuCl<sub>3</sub> H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq do not attack Sol in cold aqua regia Sol in HI+Aq Sol in KOH, or NaOH+Aq when freshly precipitated (Berzelius)

According to Kruss (A 237 281) all hitherto prepared Au<sub>2</sub>O is impure Pure Au<sub>2</sub>O is sollow in cold H<sub>2</sub>O when freshly precipitated, from which hydroxide is precipitated by boiling Partly sol in HCl, or HBr+Aq Sol in

KOH, or NaOH+Aq when freshly precipitated Not affected by any other acid or solvent (Kruss)

The so-called solution of Au<sub>2</sub>O in H<sub>2</sub>O is

in reality a coloidal suspension (Vanino, B 1905, 38 462)

# Auric oxide, Au<sub>2</sub>O<sub>3</sub>

See Auric hydroxide

# Auroauric oxide, Au<sub>2</sub>O<sub>2</sub>

Sol in cold HCl+Aq forms insol comp with HF (Piat, C R 70 842) Obtained pure by Kruss (A 237 296)

### Gold phosphide, Au<sub>4</sub>P<sub>6</sub>

Not attacked by HCl+Aq HNO<sub>3</sub> forms H<sub>3</sub>PO<sub>4</sub> and leaves undissolved Au (Schrotter I B 1849 247)

ter, J B 1849 247)
AuP Decomp on air or with H<sub>2</sub>O (Ca-

vazzi, Gazz ch it 15 40)

Au<sub>8</sub>P<sub>4</sub> Readily attacked by aqua regia or Cl<sub>2</sub>+Aq (Granger, C R 1897, **124** 498)

#### Gold purple (mixture of Au and $SnO_2$ )

Insol in H<sub>2</sub>O Lasily sol in aqua regia HCl+Aq dissolves all Sn and leaves Au Boiling HNO<sub>3</sub>+Aq dissolves a little Sn

Insol in boiling KOH+Aq (Berzelius) KOH+Aq extracts excess of SnO<sub>2</sub>, and the residue becomes sol in H<sub>2</sub>O, from which it is pptd by NH<sub>4</sub>Cl+Aq (Figurer, A ch (3) 11 353)

Sol, when still moist, in NH<sub>4</sub>OH+Aq, but

insol if it has been dried

Obtained in colloidal state in aqueous solution containing 0.58 g Au and 5.41 g SnO<sub>2</sub> (Antony ar

in a litre This solution may be concentrated without coagulation. The solution is coagulated by dil HNO3, or HCl+Aq, more easily by dil H2SO4+Aq, also by KCl, HgCl2, FeSO4+Aq, and many other salts. Not coagulated by alcohol, but easily when ether is added to the alcohol (Schneider, Z anorg 5 80)

# Gold (auric) selenide, Au<sub>2</sub>Se<sub>3</sub>

 $\mathrm{HNO_3}+\mathrm{Aq}$  dissolves out Se Sol in aqua regia or alkalı sulphides  $+\mathrm{Aq}$  (Uelsmann, J B 1860 90)

# Aurous sulphide, Au<sub>2</sub>S

Easily sol in  $H_2O$  when freshly prepared, but precipitated from aqueous solution by HCl, KCl, or NaCl+Aq When dried is insol in  $H_2O$ 

Insol in boiling dil or cone HCl, or H<sub>2</sub>SO<sub>4</sub> +Aq Easily sol in aqua regia, HCl+Aq with KClO<sub>5</sub>, etc Slowly sol in alkali monosulphides+Aq Easily sol in polysulphides

Insol in KOH+Aq Sol in KCN+Aq

(Kruss, B 20 2369)

Known also in colloidal state in aqueous solution containing 1.74 g Au<sub>2</sub>S per l (Schneider, B **24** 2241)

### Auric sulphide, Au<sub>2</sub>S<sub>3</sub>

Insol in H<sub>2</sub>O and acids except aqua regia, sol in alkali sulphides, or KOH+Aq (Berzelius)

Does not exist (Kruss, B 22 2369), but has since been made by Antony and Luchesi (Gazz ch it 20 601) Insol in HCl, or dil HNO<sub>3</sub>+Aq Decomp by conc HNO<sub>2</sub>, KOH, or NaOH+Aq with separation of Au SI decomp by NH<sub>4</sub>OH+Aq Easily sol in KCN+Aq, decomp by (NH<sub>4</sub>)<sub>2</sub>S+Aq Sol in cold Na<sub>2</sub>S or K<sub>2</sub>S+Aq, decomp on boiling (Antony and Luchesi, Gazz ch it 21, 2 209)

Insol in ether (Hofmann, B 1904, 37

#### | Auroauric sulphide, Au<sub>2</sub>S<sub>2</sub>

Insol in H<sub>2</sub>O or acids except aqua regia Sl sol in cold alkali monosulphides + Aq, but easily sol on warming Sol in cold polysulphides + Aq, but less in ammonium polysulphide than the other alkali polysulphides

Not attacked by cold, but easily sol in hot KOH+Aq Sol in KCN+Aq (Hoffmann and Kruss, B 20 2704)

Obtained also in colloidal state in aqueous solution containing 0.8 g per l (Schneider) Insol in Na<sub>2</sub>S+Aq sat with S (Ditte, A ch 1907, (8) **12** 273)

# Aurous potassium sulphide, Au<sub>2</sub>S, 3K<sub>2</sub>S

(Antony and Lucchesi, Gazz ch it 1896; 6 (2) 350)

Au<sub>2</sub>S,  $4K_2S+12H_2O$  Very sol in  $H_2O$  (Ditte, C R 1895, **120** 322)

Gold silver sulphide, Ag<sub>3</sub>AuS<sub>2</sub>

Ppt (Lucchesi, Gazz ch it 1896, 26 350-53)

Aurous sodium sulphide, NaAuS+4H<sub>2</sub>O

Sol in H<sub>2</sub>O and alcohol (Yorke, Chem Soc Q J 1 236)

 $+5\text{H}_2\text{O}$  Sol in  $\text{H}_2\text{O}$  (Ditte, C R 1895, 120 321)

Na<sub>3</sub>AuS<sub>2</sub> Sol in H<sub>2</sub>O (Lucchesi, Gazz ch it 1896, **26** 350-53)

Au<sub>2</sub>S, 2Na<sub>2</sub>S+20H<sub>2</sub>O Very sol in H<sub>2</sub>O (Ditte, C R 1895, **120** 321)

#### Gold telluride

Ppt (Berzelius, Pogg 8 178)

Gold silver telluride, Au<sub>2</sub>Te<sub>2</sub>, Ag<sub>2</sub>Te

Min Sylvanite Sol in HNO<sub>3</sub>+Aq with separation of Au, in aqua regia with separation of AgCl

3Ag<sub>2</sub>Te, Au<sub>2</sub>Te Min Petzite

# Hartshorn, salts of

See Carbonate carbamate, ammonium hydrogen

of absorption for H<sub>2</sub>O at (Ramsay, Z phys Ch 1906,

# Absorption of helium by H<sub>2</sub>O at t° and 760 mm pressure

| t°                                                            | Coefficient of absorption                                                                                  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 0<br>0 5<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45 | 0 01500<br>0 01487<br>0 01460<br>0 01442<br>0 01396<br>0 01386<br>0 01371<br>0 01382<br>0 01380<br>0 01387 |
| 50                                                            | 0 01404                                                                                                    |

(Estreicher, Z phys Ch 1899, **31** 184)
Absorption by H<sub>2</sub>O at t°

| t° | Coefficient of absorption |
|----|---------------------------|
| 0  | 0 0134                    |
| 10 | 0 0100                    |
| 20 | 0 0138                    |
| 30 | 0 0161                    |
| 40 | 0 0191                    |
| 50 | 0 0226                    |

Completely insol in benzene and in alcohol (Ramsay, Chem Soc 1895, 67 684)

Hexamine chromium compounds
See Luteochromium compounds

Hexamine cobaltic compounds,  $Co_2(NH_3)_6X_6$ 

See Dichrocobaltic compounds Co(NH<sub>3</sub>)<sub>6</sub>X<sub>3</sub> See Luteocobaltic compounds

Hexamine iridium chloride, Ir<sub>2</sub>(NH<sub>3</sub>)<sub>6</sub>Cl<sub>6</sub> See Iridotramine chloride

# Hexathionic acid, H<sub>2</sub>S<sub>6</sub>O<sub>6</sub>

Known only in aqueous solution, which decomposes rapidly, even in presence of free sulphuric acid (Debus, A 244 76)

Potassium hexathionate, K<sub>2</sub>S<sub>6</sub>O<sub>4</sub>

Sol in  $H_2O$ , with rapid decomp Not obtained in pure state (Debus, A 244 76)

Holmium, Ho

Holmium oxide, Ho<sub>2</sub>O<sub>8</sub>

(Cleve, C R 89 478, 91 328)

Consists of at least two elements (Lecoq de Boisbaudran, C R 102 1005)

Consists of seven elements (Kruss and Nilson)

Sesquehydraurylamine, (AuOH)<sub>3</sub>N, NH<sub>3</sub> =  $Au_3N_2+3H_2O$ 

Decomp by boiling with  $H_2O$  (Raschig, A 235 341)

# Hydrazidophosphoric acid

Barium hydrazidophosphate, OP(N<sub>2</sub>H<sub>3</sub>)O<sub>2</sub>Ba

(Ephram, B 1911, 44 3420)

Lead hydrazidophosphate,  $OP(N_2H_3)O_2Pb$ Easily sol in  $HNO_3$  (Ephraim)

Potassium hydrazidophosphate,  $OP(N_2H_3)(OK)_2$  (Ephraim)

Sodium hydrazidophosphate, OP(N<sub>2</sub>H<sub>3</sub>)(ONa)<sub>2</sub>

Can be cryst from dil alcohol (Ephraim)

Hydrazine,  $N_2H_4=NH_2-NH_2$ 

Very sol in H<sub>2</sub>O (Curtius, B **20** 1632) Very hydroscopic, decomp by H<sub>2</sub>O, solvent for sulphur, KCl, KBr, KNO<sub>3</sub> (de Bruyn, R t c 1894, **13** 433-40, Chem Soc 1895, **68** (2) 347)

Mixes in all proportions with alcohols, sl sol in organic solvents (Lobry de Bruyn,

(Antropoff, Roy Soc Proc 1910, 83 A 480) | Chem Soc 1897, 72 (2) 22)

### Hydrazine amidosulphonate, N<sub>2</sub>H<sub>4</sub>, HSO<sub>3</sub>, NH<sub>2</sub>

Very sol in  $H_2O$  (Sabanejeff, Z anorg 1899, **20** 22)

### Hydrazine azoimide, N2H4, HN3

Deliquescent Easily sol in H<sub>2</sub>O Sl sol in alcohol, and can be crystallised therefrom (Curtius, B **24** 2344)

### Hydrazine borate, (N<sub>2</sub>H<sub>4</sub>)<sub>2</sub>(B<sub>2</sub>O<sub>3</sub>)<sub>6</sub>

Sol in H<sub>2</sub>O (Dschawachow, C C 1902, I 1394)

(N<sub>2</sub>H<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>B<sub>4</sub>O<sub>7</sub>)<sub>3</sub> Sol in H<sub>2</sub>O (Dschawachow, Č C **1902**, I 1394) +5H<sub>2</sub>O Sol in H<sub>2</sub>O (Dschawachow,

C C 1902 I 1394) +10H<sub>2</sub>O Ppt (Dschawachow, C C 1902 I 1394)

### Hydrazine cuprous bromide chloride, N<sub>2</sub>H<sub>5</sub>Cl, N<sub>2</sub>H<sub>5</sub> Br, 3CuBr

(Ranfaldı, Real Ac Linc 1906 (5) 15, II, 95)

#### Hydrazine mercuric bromide, HgBr<sub>2</sub>, 2 (N<sub>2</sub>H<sub>4</sub>, HBr)+H<sub>2</sub>O

Very sol in  $H_2O$ , sol in alcohol and acetone Sl sol in acetic ether Insol in ethyl ether (Ferratini, C A 1912 1612)

### Hydrazine zinc bromide, 2N H<sub>4</sub>HBr, ZnBr<sub>2</sub> +H<sub>2</sub>O

Very sol in H<sub>2</sub>O, sol in alcohol and acetone (Ferratini, C A **1912** 1612)

#### Hydrazine carbonate

Very deliquescent, but only sl sol in H<sub>2</sub>O Sl sol in alcohol (Curtius and Jay, J pr 1889, (2) **39** 41)

### Hydrazine zinc carbonate hydrazine, Zn(CO, NH, NH<sub>2</sub>)<sub>2</sub>, 2N H<sub>4</sub>

Easily sol in  $H_2O$  (Lbler and Schott, J pr 1909, (2) 79, 72)

# Hydrazine chlorate, N<sub>2</sub>H<sub>4</sub>, HClO<sub>3</sub>

Very sol in H<sub>2</sub>O, sl sol in alcohol Insol in ether, CHCl<sub>3</sub> and benzol (Salvadori, Gazz ch it 1907, 37, (2) 32)

# Hydrazine dichlorate, N2H4, 2HClO3

Ppt Decomp in iq solution (lurichtine, J Am Chem Soc 1915, 37 1123)

### Hydrazme cupric chloride, N<sub>2</sub>H<sub>5</sub>Cl, CuCl<sub>2</sub>+ ½H<sub>2</sub>O

Decomp by  $H_2O$  (Ranfaldı, Real Ac | Very delic Linc 1906, (5) 15, II 95) sol in alcol  $+2H_2O$  Decomp by  $H_2O$  (Ranfaldı) (2) 42 536)

Hydrazine mercuric chloride, N<sub>2</sub>H<sub>5</sub>Cl, HgCl<sub>2</sub> (Hoffmann and Marburg, A 1899, **305** 221)

# Hydrazine dithionate, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>S<sub>2</sub>O<sub>6</sub>

Sol in  $H_2O$ , decomp on standing in aq solution (Sabanejeff, Z anorg 1899, 20 21)  $2N_2H_4$ ,  $H_2S_2O_6$  Sol in  $H_2O$  (Sabanejeff)

### Hydrazıne fluosilicate, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>S<sub>1</sub>F<sub>6</sub>

Easily sol in H<sub>2</sub>O

Difficultly sol in ethyl and methyl alcohol (Ebler, J pr 1910, (2) 81 552)

# Hydrazine fluotitanate, $(N_2H_4)_2$ , $H_2T_1F_6+2H_2O$

Ppt Sol m  $H_2O$  (Ebler, Jpr 1910, (2) **81** 555)

# Hydrazine monohydrobromide, N2H4, HBr

Very easily sol in H<sub>2</sub>O or hot alcohol (Curtius and Schultz, J pr (2) **42** 537)

# Hydrazine dihydrobromide, N<sub>2</sub>H<sub>4</sub>, 2HBr

Easily sol in H<sub>2</sub>O Sl sol in alcohol (Curtius and Schulz, J pr (2) **42** 535)

# Hydrazine monohydrochloride, N<sub>2</sub>H<sub>4</sub>, HCl

Extremely sol in  $H_2O$  Sl sol in boiling absolute alcohol (Curtius and Jay, J pr (2) 39 38)

#### Hydrazine dihydrochloride, N<sub>2</sub>H<sub>4</sub>, 2HCl

Easily sol in cold H<sub>2</sub>O, sl sol in hot alcohol (Curtius, l c)

Sol in 2 67 pts  $H_2O$  at 23° Sp gr of sat solution at 20°/4°=1 4226 (Schiff, Z phys Ch 1896, **21** 292)

### Sp gr of aqueous solution at 20°

| % salt                    | 5p gr                                          |
|---------------------------|------------------------------------------------|
| 25<br>20<br>15<br>10<br>5 | 1 1183<br>1 0923<br>1 0675<br>1 0436<br>1 0206 |

(Schiff, Z phys Ch 1896, 21 292)

Nearly insol in hot absolute alcohol (Curtius and Jay, J pr (2) 39 37)

### Hydrazine dihydrofluoride, N<sub>2</sub>H<sub>4</sub>, 2HF

Easily sol in  $H_2O$  Nearly insol in alcohol (Curtius and Schulz, J pr (2) **42** 533)

# Hydrazine monohydroiodide, N2H4, HI

Easily sol in H<sub>2</sub>O (Curtius and Schulz)

### Hydrazine dihydroiodide, N<sub>2</sub>H<sub>4</sub>, 2HI

|Very deliquescent Easily sol in H<sub>2</sub>O Sl sol in alcohol (Curtius and Schulz, J pr (2) 42 536)

## Trihydrazine dihydroiodide, $3N_2H_4$ , 2HI

Easily sol in H<sub>2</sub>O and alcohol (Curtius and Schulz, J pr (2) 42 540)

### Hydrazine hydroxide, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>O

Miscible with H<sub>2</sub>O or alcohol, but not with ether, chloroform, or benzene (Curtius and Schulz, J pr (2) 42 530)

# Hydrazine hypophosphate, $N_2H_4$ , $H_4P_2O_6$

Sl sol in  $H_2O$  15 pts dissolve in 100 s  $H_2O$  (Sabanejeff, Z anorg 1898, 17 pts  $H_2O$ 490)

#### Hydrazine hypophosphate ammonia, N<sub>2</sub>H<sub>4</sub>, H<sub>4</sub>P<sub>2</sub>O<sub>6</sub>, NH<sub>3</sub>

Sol in H<sub>2</sub>O (Sabanejeff, Z anorg 1899, **20** 23)

#### Hydrazine mercuric iodide, 2N<sub>2</sub>H<sub>5</sub>I, HgI<sub>2</sub>+H<sub>2</sub>O

Very sol in  $H_2O$ , alcohol, acetone, acetic ether

Insol in ether Excess of H2O decomp (Ferratını, Gazz ch it 1912, **42** (1), 172)

#### Hydrazine zinc iodide, $ZnI_2$ , $2N_2H_4$ , $HI+\frac{1}{2}H_2O$

Very sol in  $H_2O$ , sol in alcohol and acetone (Ferratini, C A **1912** 1612)

# Hydrazine nitrate, N<sub>2</sub>H<sub>4</sub>, HNO<sub>8</sub>

Very sol in  $H_2O$ , sl sol in abs alcohol (Sabanejeff, Z anorg 1899, 20 24)

#### Solubility in H<sub>2</sub>O at t°

| to | g N <sub>2</sub> H <sub>4</sub> HNO <sub>3</sub> per 100 g |                  |  |
|----|------------------------------------------------------------|------------------|--|
| Ü  | Sat solution                                               | H <sub>2</sub> O |  |
| 10 | 63 63                                                      | 174 9            |  |
| 15 | 68 47                                                      | 217 2            |  |
| 20 | 72 70                                                      | 266 3            |  |
| 25 | 76 61                                                      | 327 5            |  |
| 30 | 80 09                                                      | 402 2            |  |
| 35 | 83 06                                                      | 490 3            |  |
| 40 | 85 86                                                      | 607 2            |  |
| 45 | 88 06                                                      | 737 6            |  |
| 50 | 91 18                                                      | 1034             |  |
| 55 | 93 58                                                      | 1458             |  |
| 60 | 95 51                                                      | 2127             |  |

(Sommer, Z anorg 1914, 86 85)

N<sub>2</sub>H<sub>4</sub>, 2HNO<sub>3</sub> Very unstable

Sol in H2O but solution cannot be concentrated beyond 30% without decomp

Decomp by abs alcohol

Very sol in hydrazine hydroxide+Aq (Sabanejeff, Z anorg 1898, 20 25)

#### Hydrazine nitrite, N<sub>2</sub>H<sub>4</sub>, HNO<sub>2</sub>

Very sol in H<sub>2</sub>O Pptd by ether from solution in alcohol, insol in ether

Very hydroscopic (Sommer, Z anorg 1913, 83 125)

# Hydrazine perchlorate, N<sub>2</sub>H<sub>4</sub>, HClO<sub>4</sub>+2H<sub>2</sub>O

Sol in 148 pts H<sub>2</sub>O at 30° and 34 pts alcohol, crystallizes from boiling absolute (Salvadon, Ch Z 31 680) alcohol

+3H<sub>2</sub>O

#### Solubility in H<sub>2</sub>O at t°

| t° | % N <sub>2</sub> H <sub>4</sub> HClO <sub>4</sub> | Sp gr |
|----|---------------------------------------------------|-------|
| 18 | 41 72                                             | 1 264 |
| 35 | 66 9                                              | 1 391 |

(Carlson, Dissert 1910)

#### Hydrazine diperchlorate, $N_2H_4$ , $2HClO_4+$ $2H_2O$

Efflorescent

Deliquescent

102 pts salt sol in 100 pts H<sub>2</sub>O at 29° 2 8 pts salt sol in 100 pts alcohol 1 0 pt ""100" ether

(Turrentine, J Am Chem Soc 1915, 37 1123)

### Hydrazine phosphate, N<sub>2</sub>H<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub>

Verv sol in H<sub>2</sub>O (Sabanejeff, Z anorg 1898**, 17** 488 )

 $N_2H_4$ ,  $2H_3PO_4$  Sol in  $H_2O$  (Sabanejeff)

### Hydrazine phosphite, N<sub>2</sub>H<sub>4</sub>, H<sub>3</sub>PO<sub>3</sub>

Sol in H<sub>2</sub>O (Sabanejeff, Z anorg 1898, 17 468)

# Hydrazine hydrogen phosphite,

 $N_2H_4$ ,  $2H_3PO_3$ 

Less sol in H<sub>2</sub>O than the normal salt (Sabanejeff)

# Hydrazme selenate, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>SeO<sub>4</sub>

Sol in H<sub>2</sub>O with decomp (Rimini, C C **1907,** I 86)

# Hydrazine zinc selenate,

 $(N_2H_5)_2SeO_4$ ,  $ZnSeO_4$ 

Sl sol in H<sub>2</sub>O but more sol than Cu salt (Rimini and Malagnini, Gazz ch it 1907, **37** (1), 265)

#### Hydrazine sulphocyanide, N<sub>2</sub>H<sub>4</sub>, HSCN

Very deliquescent Sol in H<sub>2</sub>O and alcohol (Curtius and Herdenreich, J pr 1895, [2] 52 488)

# Hydrazine sulphate, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>

Sol with difficulty in cold, easily in hot  $H_2O$  Insol in alcohol (Curtius, l c) 100 pts H<sub>2</sub>O dissolve 3 055 pts salt at 22° (Curtius and Jay, J pr (2) 39 39) 2N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> Very deliquescent, and

sol in  $\rm H_2O$  Insol in alcohol (Curtius, J pr (2) 44 101)

Hydrazine sulphite,  $(N_2H_4)_2H_2SO_8$ (Sabanejeff, Z anorg 1899, 20, 24)

Hydrazine pyrosulphite,  $2N_2H_4$ ,  $H_2S_2O_5$ Sol in  $H_2O$  with decomp , insol in alcohol (Sabanejeff, Z anorg 1899, **20** 23)

Hydrazme thiosulphate, (N<sub>2</sub>H<sub>4</sub>)<sub>2</sub> H<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Ppt (Not pure) (Ferratmi, Gazz ch it 1912, **42** (1) 138)

 $\begin{array}{c} \textbf{Hydrazine lead thiosulphate,} \\ \textbf{PbS}_2\textbf{Os,} \ 2(\textbf{N}_2\textbf{H}_4)_2\textbf{H}_2\textbf{S}_2\textbf{Os} + \textbf{H}_2\textbf{O} \\ \textbf{Insol in } \textbf{H}_2\textbf{O} \ \text{and alcohol} \\ \textbf{Sol in } \textbf{HCl} + \textbf{Aq} \ \text{and in } \ \textbf{HNO}_8 + \textbf{Aq} \\ \textbf{(Ferratini, C A 1912 } 1612 \ ) \end{array}$ 

Hydrazine silver thiosulphate, Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, (N<sub>2</sub>H<sub>4</sub>)<sub>2</sub>H<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Insol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH+Aq and in HNO<sub>3</sub> (Ferratini)

# Hydrazine sulphinic acid

Barium hydrazine disulphinate,  $Ba_2N_2(SO_2)_2$ 

Insol in  $H_2O$ , sol in acids (Ephraim, B 1911, 44 390)

Hydrazinesulphonic acid, N2H3SO2OH

Sol in about 24 pts H<sub>2</sub>O at ord temp Decomp by miner il icids, nearly insol in alcohol and other organic solvents (Traube, B 1914, 47 941)

Ammonium hydrazinesulphonate, (N<sub>2</sub>H<sub>3</sub>SO<sub>3</sub>)NH<sub>4</sub>

Deliquescent, decomp by acids (1raube)

Barium hydrazinesulphonate, (N<sub>2</sub>H<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>B<sub>4</sub>+2II<sub>2</sub>O Sol in H<sub>2</sub>O, pptd by alcohol, of

Sol in  $H_2O$ , pptd by alcohol, decomp by acids (fraube)

Calcium hydrazinesulphonate,  $(N_2H_3SO_8)_2C_7+H_2O$ 

Sol in H () Decomp by reids Insol in alcohol (Ir tube)

Potassium hydrazinesulphonate,  $N_2H_8SO_8K$ Decomp by acids (Traube)

Silver hydrazinesulphonate, N<sub>2</sub>H<sub>3</sub>SO<sub>3</sub>Ag (Traube)

Sodium hydrazinesulphonate,  $N_2H_3SO_3Na+H_2O$ Decomp by acids (Traube) Strontium hydrazinesulphonate, (N<sub>2</sub>H<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>Sr+2H<sub>2</sub>O

Sol in H<sub>2</sub>O Decomp by acids Insol in alcohol (Traube)

Hydriodic acid, HI See Iodhydric acid

Hydrobromic acid, HBr See Bromhydric acid

Hydrochloric acid, HCl See Chlorhydric acid

Hydrofluorboric acid, HBF<sub>4</sub>
See Fluoborhydric acid

Hydrofluoric acid, HF See Fluorhydric acid

Hydrogen, H<sub>2</sub> Sl absorbed by H<sub>2</sub>O

Sol in 150 pts  $\rm H_2O$  1 vol  $\rm H_2O$  absorbs 0 016 vol  $\rm H$  Recently boiled  $\rm H_2O$  absorbs 1 53%  $\rm H$  (Henry 1803) 100 vols  $\rm H_2O$  at 18° absorb 4 6 vols  $\rm H$  (de Saussure 1814)

1 vol  $H_2O$  absorbs 0 0193 vol H at 760 mm and all temperatures between 0° and 23 6° (Bunsen)

Later work does not confirm the above statement

Absorption of H by  $H_2O$  at t and 760 mm  $\beta$ =coefficient of absorption,  $\beta_1$ ="solubility" (see under Oxygen)

| bility" (see under Oxygen)                     |         |         |  |
|------------------------------------------------|---------|---------|--|
| to                                             | β       | βι      |  |
| 0                                              | 0 02153 | 0 02140 |  |
| 1                                              | 0 02134 | 0 02120 |  |
| $ar{2}$                                        | 0 02115 | 0 02100 |  |
| $\overline{3}$                                 | 0 02097 | 0 02081 |  |
| 4                                              | 0 02079 | 0 02062 |  |
| 5                                              | 0 02061 | 0 02043 |  |
| 6                                              | 0 02044 | 0 02025 |  |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0 02027 | 0 02207 |  |
| 8                                              | 0 02010 | 0 01989 |  |
| 9                                              | 0 01994 | 0 01971 |  |
| 10                                             | 0 01978 | 0 01954 |  |
| 11                                             | 0 01962 | 0 01937 |  |
| 12                                             | 0 01947 | 0 01920 |  |
| 13                                             | 0 01932 | 0 01904 |  |
| 14                                             | 0 01918 | 0 01888 |  |
| 15                                             | 0 01903 | 0 01872 |  |
| 16                                             | 0 01889 | 0 01856 |  |
| 17                                             | 0 01876 | 0 01840 |  |
| 18                                             | 0 01863 | 0 01825 |  |
| 19                                             | 0 01850 | 0 01810 |  |
| 20                                             | 0 01837 | 0 01795 |  |
| 21                                             | 0 01825 | 0 01781 |  |
| 22                                             | 0 01813 | 0 01767 |  |
| 23                                             | 0 01802 | 0 01753 |  |
| 24                                             | 0 01791 | 0 01739 |  |
| 25                                             | 0 01780 | 0 01725 |  |
| 26                                             | 0 01770 | 0 01712 |  |

(Timofeleff, Z phys Ch 6 147)

Absorption of H by H<sub>2</sub>O at t° and 760 mm  $\beta$  = coefficient of absorption

| to                                                                                 | β                                                                                                                                        | t°                                                                                           | β                                                                                                                                                  | t°                                                                                            | β                                                                                                                                                  |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 0 0203<br>0 0202<br>0 0200<br>0 0199<br>0 0198<br>0 0196<br>0 0195<br>0 0194<br>0 0192<br>0 0191<br>0 0190<br>0 0189<br>0 0184<br>0 0184 | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31 | 0 0182<br>0 0180<br>0 0179<br>0 0178<br>0 0177<br>0 0174<br>0 0172<br>0 0171<br>0 0170<br>0 0168<br>0 0167<br>0 0166<br>0 0164<br>0 0163<br>0 0162 | 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>45<br>50<br>60<br>70<br>80<br>90<br>100 | 0 0161<br>0 0160<br>0 0159<br>0 0157<br>0 0156<br>0 0155<br>0 0153<br>0 0152<br>0 0149<br>0 0146<br>0 0144<br>0 0146<br>0 0149<br>0 0155<br>0 0166 |
| 10   0 0100    01   0 0102    100   0 0100                                         |                                                                                                                                          |                                                                                              |                                                                                                                                                    |                                                                                               |                                                                                                                                                    |

(Bohr and Bock, W Ann 44 318)

Absorption of hydrogen by H<sub>2</sub>O at t° and 760 mm pressure  $\beta = \text{coefficient of absorp}$  $\beta_1$  = "solubility" (see under Oxygen)

| gui,                             |                                                                                      |                    |
|----------------------------------|--------------------------------------------------------------------------------------|--------------------|
| t°                               | β                                                                                    | $oldsymbol{eta_1}$ |
| 0                                | 0 02148                                                                              | 0 02135            |
| 1                                | 0 02126                                                                              | 0 02112            |
| $ar{2}$                          | 0 02105                                                                              | 0 02090            |
| 3                                | 0 02084                                                                              | 0 02068            |
| ă                                | 0 02064                                                                              | 0 02047            |
| 5                                | 0 02044                                                                              | 0 02026            |
| 6                                | 0 02025                                                                              | 0 02006            |
| 123456789                        | 0 02007                                                                              | 0 01987            |
| ė                                | 0 01989                                                                              | 0 01968            |
| õ                                | 0 01972                                                                              | 0 01950            |
| 10                               | 0 01955                                                                              | 0 01932            |
| 10<br>11<br>12                   | 0 01930                                                                              | 0 01915            |
| 10                               | 0 01925                                                                              | 0 01899            |
| 13                               | 0 01911                                                                              | 0 01883            |
| 14                               | 0 01911                                                                              | 0 01867            |
| 74                               | 0 01883                                                                              | 0 01851            |
| 15                               | 0 01883                                                                              | 0 01836            |
| 16<br>17<br>18<br>19<br>20<br>21 | 0 01833<br>0 01869<br>0 01856<br>0 01844<br>0 01831<br>0 01819<br>0 01805<br>0 01772 | 0 01836            |
| 17                               | 0 01856                                                                              | 0 01821<br>0 01706 |
| 18                               | 0 01844                                                                              | 0 01706            |
| 19                               | 0 01831<br>0 01819                                                                   | 0 01792            |
| 20                               | 0 01819                                                                              | 0 01777            |
| 21                               | 0 01805                                                                              | 0 01761            |
| 22                               | 0 01792                                                                              | 0 01746            |
| 23                               | 0.011.19                                                                             | 0 01730            |
| 24                               | 0 01766                                                                              | 0 01715            |
| 25                               | 0 01754                                                                              | 0 01700            |
| 26<br>27                         | 0 01742                                                                              | 0 01685            |
| 27                               | 0 01731                                                                              | 0 01670            |
| 28<br>29                         | 0 01720                                                                              | 0 01656            |
| 29                               | 0 01709                                                                              | 0 01642            |
| 30                               | 0 01699                                                                              | 0 01630            |
| 31                               | 0 01692                                                                              | 0 01618            |
| 30<br>31<br>32<br>33             | 0 01685                                                                              | 0 01606            |
| 33                               | 0 01679                                                                              | 0 01596            |
| 34                               | 0 01672                                                                              | 0 01585            |
| 35                               | 0 01666                                                                              | 0 01574            |

Absorption of hydrogen by H<sub>2</sub>O at t° and 760 mm pressure—Continued

| t°        | β                  | $\beta_1$          |
|-----------|--------------------|--------------------|
| 36        | 0 01661            | 0 01564            |
| 37        | 0 01657            | 0 01554            |
| 38        | 0 01652            | 0 01544            |
| 39        | 0 01648            | 0 01535            |
| 40        | 0 01644            | 0 01525            |
| 41        | 0 01640            | 0 01515            |
| 42        | 0 01635            | 0 01504            |
| 43        | 0 01631            | 0 01493            |
| 44        | 0 01627            | 0 01482            |
| 45        | 0 01624            | 0 01475            |
| 46        | 0 01620            | 0 01460            |
| 47        | 0 01617            | 0 01449            |
| 48        | 0 01614            | 0 01437            |
| 49        | 0 01611            | 0 01425            |
| 50        | 0 01608            | 0 01413            |
| <b>52</b> | 0 01606            | 0 01392            |
| <b>54</b> | 0 01605            | 0 01369            |
| 56        | 0 01603            | 0 01343            |
| 58        | 0 01602            | 0 01316            |
| 60        | 0 01600            | 0 01287            |
| 62        | 0 01600            | 0 01256            |
| 64        | 0 01600            | 0 01223            |
| 66        | 0 01600            | 0 01188            |
| 68        | 0 01600            | 0 01150            |
| 70        | 0 01600            | 0 01109            |
| 72        | 0 01600            | 0 01065            |
| 74        | 0 01660            | 0 01017            |
| 76        | 0 01600            | 0 00966            |
| 78        | 0 01600            | 0 00912            |
| 80        | 0 01600            | 0 00853            |
| 82        | 0 01600            | 0 00790            |
| 84        | 0 01600            | 0 00723            |
| 86        | 0 01600            | 0 00652            |
| 88        | 0 01600            | 0 00575            |
| 90        | 0 01600            | 0 00494            |
| 92        | 0 01600            | 0 00407<br>0 00315 |
| 94        | 0 01600<br>0 01600 | 0 00315<br>0 00216 |
| 96        | 0 01600            | 0 00216            |
| 98<br>100 | 0 01600            | 0 0000             |
| 100       | ט טזסטט            | ט טטטט             |

(Winkler, B 24 99)

Critical t,—232° Ch 1895, **17** 43–48) (Natanson, Z phys

Coefficient of absorption for  $H_2O = 0.01750$ at 25°, 0 01905 at 20°, 0 02059 at 15°, 0 02213 at 10°, 0 02366 at 5° (Braun, Z phys Ch 1900, **33** 734)

Solubility in  $H_2O$  at  $25^\circ = 0.01926$ 

cken, Z phys Ch 1904, 49 267)
Coefficient of absorption for H<sub>2</sub>O = 0 01810
at 20 11 ° (Hufner, Z phys Ch 1907, 57 623)

Solubility in  $H_2O$  at  $25^\circ = 0.01962$ (Drucker and Moles, Z phys Ch 1910, 75 417)

Coefficient of absorption for H<sub>2</sub>O at 15°= 0 01892, at 20°=0 01829 (Muller, Z phys• Ch 1912, **81** 493)

Solubility of hydrogen in water at 25° S=Solubility calculated according to formula, for which see original article P=Pressure

| P                                      | s                                                        | P                                            | s                                                        |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|
| 756<br>757<br>850<br>877<br>986<br>992 | 0 0199<br>0 0198<br>0 0200<br>0 0193<br>0 0194<br>0 0198 | 1095<br>1097<br>1244<br>1252<br>1380<br>1393 | 0 0195<br>0 0197<br>0 0202<br>0 0196<br>0 0196<br>0 0198 |

(Findlay, Chem Soc 1912, 101 1465)

Absorption by  $H_2O$  at different pressures P = Hg-pressure in metres

 $\lambda = \text{coefficient of solubility}$ 

Table I Volume of the absorbing liquid = 32 32 ccm T=19 5°

| 02 02 CCIII                                                                            | 1-190                                                                                |                                                                                        |                                                                                                 |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| P                                                                                      | λ                                                                                    | P                                                                                      | λ                                                                                               |
| 0 9010<br>0 9967<br>1 0809<br>1 2133<br>1 3711<br>1 5448<br>1 8002<br>2 5208<br>2 9971 | 0 01798<br>0 01796<br>0 01799<br>0 01800<br>0 01794<br>0 01791<br>0 01793<br>0 01793 | 3 3926<br>4 1405<br>4 6629<br>5 4705<br>5 9580<br>6 6507<br>7 4548<br>7 8783<br>8 2439 | 0 01789<br>0 01776<br>0 01761<br>0 01748<br>0 01725<br>0 01706<br>0 01674<br>0 01652<br>0 01632 |

Table II Volume of the absorbing liquid =  $32\ 007\ \text{cem}$   $T=23^{\circ}$ 

| P      | λ       | P      | λ       |
|--------|---------|--------|---------|
| 1 1154 | 0 01736 | 4 6220 | 0 01716 |
| 1 3758 | 0 01739 | 5 1130 | 0 01702 |
| 1 7416 | 0 01733 | 5 9702 | 0 01687 |
| 2 1712 | 0 01731 | 7 1920 | 0 01649 |
| 2 8724 | 0 01734 | 7 4493 | 0 01631 |
| 3 4115 | 0 01732 | 7 8696 | 0 01618 |
| 4 0229 | 0 01728 | 8 1913 | 0 01603 |

(Cassuto, Phys Zeit 1904, 5 235)

Absorption of H<sub>2</sub> by acids+Aq M=content in gram-equivalents per liter S=solubility (See under Oxygen) Absorption of H<sub>2</sub> by HNO<sub>3</sub>+Aq

| M                                            | 5.25                                                |
|----------------------------------------------|-----------------------------------------------------|
| 0 741<br>0 753<br>1 22<br>1 45<br>2 09       | 0 01851<br>0 01868<br>0 01812<br>0 01782<br>0 01739 |
| 2 09<br>2 96<br>3 18<br>3 22<br>4 13<br>4 23 | 0 01690<br>0 01667<br>0 01633<br>0 01611<br>0 01589 |

(Geffcken, Z phys Ch 1904, 49 267)

| Absorption of H <sub>2</sub> by HCl+Aq                               |                                                                                      |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| M                                                                    | S 25°                                                                                |  |
| 0 426<br>0 432<br>1 063<br>1 602<br>1 802<br>1 928<br>2 338<br>2 438 | 0 01875<br>0 01868<br>0 01789<br>0 01732<br>0 01699<br>0 01688<br>0 01652<br>0 01627 |  |

(Geffcken)

0 01606

2 836

Absorption of  $H_2$  by  $\frac{H_2SO_4}{2}$  +Aq

| M                                                                                               | S 25°                                                                                                                 |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 0 527<br>0 562<br>0 985<br>1 122<br>1 866<br>1 905<br>2 605<br>3 045<br>3 174<br>3 962<br>3 989 | 0 01869<br>0 01838<br>0 01780<br>0 01768<br>0 01642<br>0 01632<br>0 01575<br>0 01496<br>0 01456<br>0 01422<br>0 01402 |

(Geffcken)

Solubility of H<sub>2</sub> in H<sub>2</sub>SO<sub>4</sub>+Aq at 20°

| % H <sub>2</sub> SO <sub>4</sub> | λ 20°   |
|----------------------------------|---------|
| 0                                | 0 0208  |
| 35 82                            | 0 00954 |
| 61 62                            | 0 00708 |
| 95 6                             | 0 01097 |

(Christoff, Z phys Ch 1906, **55** 627)

Solubility of  $H_2$  in colloid il ferric hydroxide solution is practically the same as its solubility in pure  $H_2O$ 

Solubility of  $H_2$  in a solution containing 18 11 g. Fr(OH)<sub>3</sub> per liter at  $25^{\circ} = 0.3085$ 

Solubility of H in a solution containing 18 309 g Fe (OH)<sub>3</sub> per liter at 25°=0 3083

(Geffcken, Z phys Ch 1904, 49 299)

Absorption of H<sub>2</sub> by bases+Aq

M = content in gram-equivalents per liter S = solubility (See under Oxygen)

Absorption of H<sub>2</sub> by KOH+Aq

| M     | S 25°   |
|-------|---------|
| 0 536 | 0 01658 |
| 0 715 | 0 01539 |
| 1 059 | 0 01378 |
| 1 056 | 0 01389 |
| 1 480 | 0 01195 |

(Geffcken, Z phys Ch 1904, 49 267)

| Absort                           | otion of H <sub>2</sub> by              | · NaOH+Aq                                | 1                               | Abs        | orption                                        | ı by s                                   | alts-                                     | <br>-Aq                                             |                                                                           |
|----------------------------------|-----------------------------------------|------------------------------------------|---------------------------------|------------|------------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|
| M                                |                                         | S 25°                                    |                                 | 1          | ##                                             |                                          |                                           | gg                                                  | वस स                                                                      |
| 0 543<br>0 57<br>0 695<br>0 974  | 1 2                                     | 0 01632<br>0 01608<br>0 01442<br>0 01409 | Salt                            | tı°        | Sp gr salt<br>+ Aq at<br>t°1/4°                | %<br>salt                                | t°2                                       | Absorption coefficient at to 2                      | Absorption coefficient at 15° (Calculated)                                |
| 1 059<br>1 137<br>1 850<br>3 400 | 9<br>7<br>0<br>0                        | 0 01372<br>0 01348<br>0 01018<br>0 00648 | KCI                             | 15°        | 1 1565<br>1 1294<br>1 0794<br>1 0480<br>1 0240 | 22 92<br>19 21<br>12 13<br>7 48<br>3 83  | 18 62<br>18 82<br>18 71<br>19 00<br>19 23 | 0 00869<br>0 00985<br>0 01246<br>0 01447<br>0 01618 | 0 00892<br>0 01012<br>0 01279<br>0 01489<br>0 01667                       |
| 3 430<br>4 68                    | 7                                       | 0 00639<br>0 00 <u>4</u> 83              | KNO3                            | 15°        | 1 1460<br>1 1101                               | 21 46<br>16 59                           | 17<br>17 -                                |                                                     | ſ                                                                         |
| Solubili                         | (Geffcker<br>ty of H <sub>2</sub> in sa | ı)<br>lts+Aq at 15°                      |                                 |            | 1 0936<br>1 0539<br>1 0295                     | 14 26<br>8 44<br>4 73                    | 16<br>17 58<br>17 82                      | 0 01531<br>0 01650                                  | 0 01559<br>0 01683                                                        |
| Salt                             | - % Salt                                | Coefficient of absorption                | K <sub>2</sub> CO <sub>3</sub>  | 15°        | 1 4395<br>1 3112<br>1 2353                     | 41 81<br>30 99<br>24 13                  | 13 17<br>12 77<br>12 62                   | 0 00162<br>0 00290<br>0 00470                       | 0 00160<br>0 00285<br>0 00462                                             |
| H <sub>2</sub> O                 | 0 00                                    | 0 01883                                  |                                 |            | 1 0807<br>1 0405<br>1 0248                     | 16 47<br>8 83<br>4 53                    | 12 51<br>11 32<br>12 29                   | 0 00775<br>0 01216<br>0 01532                       | 0 00160<br>0 00285<br>0 00462<br>0 00761<br>0 01183<br>0 01501<br>0 01628 |
| CaCl2                            | 3 47<br>6 10<br>11 33<br>17 52          | 0 01619<br>0 01450<br>0 01138<br>0 00839 | NaCl                            | 15°        | 1 1817<br>1 1088<br>1 0807                     | 23 84<br>14 78<br>11 09                  | 13 48<br>13 17<br>13 80                   | 0 00602<br>0 00938<br>0 01140<br>0 01565            | 0 00595<br>0 00925<br>0 1130                                              |
| $ m MgSO_4$                      | 26 34<br>4 94<br>10 19                  | 0 00519<br>0 01501<br>0 01159            | NaNO <sub>8</sub>               | 18°        | 1 2963<br>1 2099<br>1 1417<br>1 0765<br>1 0367 | 37 43<br>27 95<br>19 77<br>11 16<br>5 57 | 17<br>17<br>17<br>17<br>17                |                                                     | I <u>-</u>                                                                |
| LıCl                             | 23 76<br>3 48<br>7 34<br>14 63          | 0 00499<br>0 01619<br>0 01370<br>0 0099  | Na <sub>2</sub> CO <sub>3</sub> | 15°        |                                                | ·                                        |                                           | 0 01677                                             | 0 01639                                                                   |
| K <sub>2</sub> CO <sub>8</sub>   | 2 82<br>8 83                            | 0 01628<br>0 01183                       | Na <sub>2</sub> SO <sub>4</sub> | 18°<br>15° | 1 1608<br>1 0768<br>1 0412                     | 16 69<br>8 42<br>4 58                    | 18 41<br>18 57<br>18 51                   | 0 00757<br>0 01223<br>0 01482                       | 0 00775<br>0 01254<br>0 01519                                             |
|                                  | 16 47<br>24 13<br>41 81                 | 0 00761<br>0 00462<br>0 00160            | LiCl                            | 15°        | 1 0416                                         | 7 34<br>3 48                             | 12 40<br>10 47                            | 0 01676                                             | 0 01370<br>0 01619                                                        |
| KCI                              | 3 83<br>7 48<br>12 13                   | 0 01667<br>0 01489<br>0 01279            | MgSO <sub>4</sub>               | 15°        | 1 1064                                         | 10 19                                    | 17 30                                     | 0 00487<br>0 00783<br>0 01140<br>0 01479            | 0 00499<br>0 00797<br>0 01159<br>0 01501                                  |
|                                  | 19 21<br>22 92                          | 0 01012<br>0 00892                       | ZnSO <sub>4</sub>               | 18°        | 1 1394                                         | -<br>12 73<br>6 03                       | 17 95                                     | 0 01151<br>0 01495                                  | 0 01175                                                                   |
| $\mathrm{KNO}_3$                 | 4 73<br>8 44<br>16 59<br>21 46          | 0 01683<br>0 01559<br>0 01311<br>0 01180 | CaCl <sub>2</sub>               | 15°        | 1 2470                                         | 26 34                                    | 17 68                                     | 0 00510<br>0 00600<br>0 00821                       | 0 00 19                                                                   |
| NaNO <sub>3</sub>                | 5 57<br>11 16<br>19 77<br>37 43         | 0 01603<br>0 01370<br>0 01052<br>0 00578 | AlCls                           | 15°        | 1 2647<br>1 1589<br>1 0914                     | 32 30<br>20 75<br>12 46                  | 17 14<br>17 28<br>17 30                   | 0 01579<br>0 00525<br>0 00860<br>0 01190<br>0 01460 | 0 00533                                                                   |
| Na <sub>2</sub> CO <sub>3</sub>  | 2 15<br>8 64<br>11 53                   | 0 01639<br>0 01385<br>0 00839            | C12H22O11                       |            |                                                | 189                                      | 3 - 4 (2)                                 | , <b>52</b> 29                                      | 1)                                                                        |
| Na <sub>2</sub> SO <sub>4</sub>  | 4 58<br>8 42<br>16 69                   | 0 01519<br>0 0154<br>0 00775             | (See                            |            | ,, 1111                                        | _ 100                                    | ·                                         | , •= 20                                             | -,                                                                        |
| (Gordon                          | , Z phys Ch                             | 1895 <b>, 18</b> 14)                     | l                               |            |                                                |                                          |                                           |                                                     |                                                                           |

Solubility in salt solutions

C=concentration of the solution in terms of normal

a = coefficient of absorption

Absorption of hydrogen by NH<sub>4</sub>NO<sub>3</sub>+Aq at 20°

| P                                                   | С                                                        | a                                                              |
|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|
| 1 037<br>2 167<br>3 378<br>4 823<br>6 773<br>11 550 | 0 1308<br>0 2765<br>0 4363<br>0 6333<br>0 9069<br>1 6308 | 0 01872<br>0 01845<br>0 01823<br>0 01773<br>0 01744<br>0 01647 |

(Knopp, Z phys Ch 1904, 48 103)

## Absorption of hydrogen by KNO2+Aq at 20°

| P      | С      | α       |
|--------|--------|---------|
| 1 244  | 0 1245 | 0 01835 |
| 2 094  | 0 2114 | 0 01818 |
| 4 010  | 0 4127 | 0 01785 |
| 5 925  | 0 6225 | 0 01743 |
| 7 742  | 0 8293 | 0 01667 |
| 13 510 | 1 5436 | 0 01436 |

(Knopp)

Absorption of hydrogen by NaNO<sub>3</sub>+Aq at 20°

| P      | С      | α       |
|--------|--------|---------|
| 1 041  | 0 1236 | 0 01839 |
| 2 192  | 0 2634 | 0 01774 |
| 4 405  | 0 5416 | 0 01694 |
| 6 702  | 0 8442 | 0 01518 |
| 12 637 | 1 7394 | 0 01300 |

(Knopp)

Absorption of hydrogen by KCl+Aq at 20°

| P      | С      | а       |
|--------|--------|---------|
| 1 089  | 0 1475 | 0 01823 |
| 2 123  | 0 2907 | 0 01757 |
| 4 070  | 0 5687 | 0 01661 |
| 6 375  | 0 9127 | 0 01531 |
| 7 380  | 1 0682 | 0 01472 |
| 13 612 | 2 1222 | 0 01255 |

(Knopp)

Absorption of H by  $N \iota Cl + \Lambda q$  at  $\circ = coefficient$  of absorption at to

| Percent of<br>NaCl in<br>the solution | ر 22                                     | a20                                      | <b>a</b> 15                                                    | <b>a</b> 10                              | α,                                       |
|---------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------------------|------------------------------------------|------------------------------------------|
| 5 506                                 | 0 01395<br>0 01429<br>0 01476<br>0 01603 | 0 01532<br>0 01,87<br>0 01623<br>0 01754 | 0 01640<br>0 01665<br>0 01714<br>0 01760<br>0 01896<br>0 01914 | 0 01769<br>0 01817<br>0 01876<br>0 02030 | 0 01861<br>0 01920<br>0 01977<br>0 02155 |

(Braun, Z phys Ch 1900, 33 735)

Absorption of H by BaCl<sub>2</sub>+Aq at° = coefficient of absorption at t°

| Percent of<br>BaCl <sub>2</sub> in<br>the solution | a 25°              | a20°               | a15°               | α10°                                     | αɔ°                |
|----------------------------------------------------|--------------------|--------------------|--------------------|------------------------------------------|--------------------|
| 7 002<br>6 453<br>3 600<br>3 291                   | 0 01474<br>0 01562 | 0 01605<br>0 01700 | 0 01734<br>0 01839 | 0 01833<br>0 01857<br>0 01971<br>0 01983 | 0 01957<br>0 02089 |

(Braun)

1 vol alcohol at to and 760 mm absorbs V vols H gas reduced to 0° and 760 mm

| t°                                        | v                                                                                               | t°                                                | V                                                                                               | t°                                     | v                                                                         |
|-------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 0 06925<br>0 06910<br>0 06896<br>0 06881<br>0 06867<br>0 06853<br>0 06839<br>0 06826<br>0 06813 | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 0 06799<br>0 06787<br>0 06774<br>0 06761<br>0 06749<br>0 06737<br>0 06725<br>0 06713<br>0 06701 | 18<br>19<br>20<br>21<br>22<br>23<br>24 | 0 06690<br>0 06679<br>0 06668<br>0 06657<br>0 06646<br>0 06636<br>0 06621 |

(Bunsen's Gasometry, p 286)

One vol alcohol absorbs 0 06925  $0.000148t + 0.000001t_2$ vols  $\mathbf{H}$ (Bunsen)

Solubility in alcohol + Aq at 20° and 760 mm

| Wt %    | Vol H <sub>2</sub> | Wt %    | Vol H <sub>2</sub> |
|---------|--------------------|---------|--------------------|
| alcohol | absorbed           | alcohol | absorbed           |
| 0       | 1 93               | 28 57   | 1 04               |
| 9 09    | 1 43               | 33 33   | 1 17               |
| 16 67   | 1 29               | 50      | 2 02               |
| 23 08   | 1 17               | 66 67   | 2 55               |

(I ubarsch, W Ann 1889, (2) 37 525)

#### Absorption of hydrogen by alcohol

| t                                            | Coeff of<br>absorption | t°   | Coeff of<br>absorption |  |
|----------------------------------------------|------------------------|------|------------------------|--|
| $\begin{smallmatrix}0\\6&2\end{smallmatrix}$ | 0 0676                 | 13 4 | 0 0705                 |  |
|                                              | 0 0693                 | 18 8 | 0 0740                 |  |

(Imofeleff)

Solubility of H2 in ethyl ether at to

| t  | Solubility |
|----|------------|
| 0  | 0 1115     |
| 5  | 0 1150     |
| 10 | 0 1195     |
| 15 | 0 1257     |

(Christoff, Z phys Ch 1912, 79 459)

Coefficient of absorption in petroleum = 0 0582 at 20°, and 0 0652 at 10° (Griewasz and Walfisz, Z phys Ch 1 70) (Griewasz

Absorption of hydrogen by chloralhydrate+ Ag at 20°

| P C α  4 911 0 310 0 01839 7 69 0 504 0 01802 14 56 1 030 0 01712 18 77 1 397 0 01653 29 50 2 530 0 01542                                                            |                                                                     |                                                                      |                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 7 69 0 504 0 01802<br>14 56 1 030 0 01712<br>18 77 1 397 0 01653                                                                                                     | P                                                                   | С                                                                    | α                                                                                    |
| 32 00     2 845     0 01518       38 42     3 770     0 01440       49 79     6 000     0 01353       60 12     9 120     0 01324       63 90     10 700     0 01307 | 7 69<br>14 56<br>18 77<br>29 50<br>32 00<br>38 42<br>49 79<br>60 12 | 0 504<br>1 030<br>1 397<br>2 530<br>2 845<br>3 770<br>6 000<br>9 120 | 0 01802<br>0 01712<br>0 01653<br>0 01542<br>0 01518<br>0 01440<br>0 01353<br>0 01324 |

(Knopp, Z phys Ch 1904, 48 103)

Absorption of H<sub>2</sub> by chloralhydrate+Aq t°=temp of the solution

P = % chloralhydrate in the solution  $\beta t^{\circ} = \text{coefficient}$  of absorption at  $t^{\circ}$   $\beta 15^{\circ} = \text{coefficient}$  of absorption at  $15^{\circ}$ 

| t°                                                           | P                                                             | $oldsymbol{eta_{t^o}}$                                                               | β15°                                                                                 |
|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 15 0<br>16 4<br>15 8<br>15 0<br>15 6<br>16 2<br>15 5<br>15 0 | 10 0<br>16 1<br>33 35<br>39 4<br>51 0<br>60 8<br>70 7<br>79 0 | 0 01740<br>0 01719<br>0 01475<br>0 01470<br>0 01300<br>0 01281<br>0 01282<br>0 01320 | 0 01740<br>0 01737<br>0 01484<br>0 01470<br>0 01306<br>0 01230<br>0 01287<br>0 01320 |
|                                                              |                                                               |                                                                                      | β20°                                                                                 |
| 19 4<br>17 4<br>18 7<br>16 5<br>17 0<br>17 2<br>17 9<br>18 3 | 15 5<br>28 3<br>46 56<br>52 0<br>63 0<br>66 0<br>68 0<br>78 4 | 0 01732<br>0 01569<br>0 01388<br>0 01314<br>0 01270<br>0 01285<br>0 01286<br>0 01398 | 0 01724<br>0 01540<br>0 01375<br>0 01280<br>0 01243<br>0 01260<br>0 01270<br>0 01380 |

(Muller, Z phys Ch 1912, 81 499) Solubility of H<sub>2</sub> in glycerol+Aq

| t° | % glycerol                                  | Coefficient of absorption                                  |
|----|---------------------------------------------|------------------------------------------------------------|
| 14 | 0<br>2 29<br>5 32<br>8 57<br>10 83<br>15 31 | 0 0193<br>0 0189<br>0 0186<br>0 0182<br>0 01815<br>0 01765 |
| 21 | 0<br>2 29<br>5 68<br>6 46<br>10 40<br>18 20 | 0 0184<br>0 0181<br>0 0177<br>0 0176<br>0 0171<br>0 0160   |

(Henkel, in Landolt-Börnstein, 7 ab 4th Ed 602)

Absorption of  $H_2$  by glycerine + Aq  $t^{\circ}$  = temp of the solution P = % glycerine in the solution P = % glycerine at  $t^{\circ}$  absorption at  $t^{\circ}$   $\beta 15^{\circ}$  = coefficient of absorption at 15°

| t°   | P     | βtο     | β15°    |
|------|-------|---------|---------|
| 14 5 | 14 9  | 0 01654 | 0 01647 |
| 13 0 | 22 8  | 0 01532 | 0 01510 |
| 13 8 | 38 0  | 0 01226 | 0 01216 |
| 14 5 | 43 5  | 0 01117 | 0 01110 |
| 13 7 | 49 15 | 0 01019 | 0 01010 |
| 14 9 | 51 5  | 0 01026 | 0 01025 |
| 12 3 | 68 0  | 0 00822 | 0 00806 |
| 18 0 | 90 7  | 0 00853 | 0 00870 |

(Muller, Z phys Ch 1912, 81 496)

Solubility of H<sub>2</sub> in glycerine +Aq at 25° G=% by wt glycerine in the solvent S=Solubility of H<sub>2</sub>.

S=Solubility of H<sub>2</sub>
P=corrected pressure at end of experiment in mm Hg at 0°

| P                                                                                               | G                                                                                   | s                                                                                                          |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| 716 3<br>736 1<br>684 3<br>709 9<br>730 1<br>672 2<br>741 1<br>708 0<br>665 5<br>662 3<br>741 8 | 4 0<br>10 5<br>22 0<br>49 8<br>50 5<br>52 6<br>67 0<br>80 0<br>82 0<br>88 0<br>95 0 | 0 0186<br>0 0178<br>0 0154<br>0 0099<br>0 0097<br>0 0090<br>0 0067<br>0 0051<br>0 0051<br>0 0044<br>0 0034 |  |
|                                                                                                 |                                                                                     |                                                                                                            |  |

(Drucker and Moles, Z phys 1910, 75 417)

Absorption of  $H_2$  by glucose+Aq  $t^\circ$  = temp of the solution P = % glucose in the solution  $\beta t^\circ$  = coefficient of absorption at  $t^\circ$  $\beta 20^\circ$  = coefficient of absorption at  $20^\circ$ 

| t°   | P     | $oldsymbol{eta_{t}}$ | $\beta_{20}$ |
|------|-------|----------------------|--------------|
| 20 5 | 12 2  | 0 01595              | 0 01600      |
| 20 5 | 20 7  | 0 01445              | 0 01450      |
| 21 1 | 32 56 | 0 01243              | 0 01250      |
| 21 8 | 45 8  | 0 01000              | 0 01015      |
| 21 2 | 59 0  | 0 00775              | 0 00780      |

(Muller, Z phys Ch 1912, 81 494)

Solubility in sugar+Aq at 15°

| % Sugar | Absorption Coefficient |
|---------|------------------------|
| 16 67   | 0 01561                |
| 30 08   | 0 01284                |
| 47 65   | 0 00892                |

(Gordon, Z phys Ch 1895, 18 14)

Absorption of H<sub>2</sub> by sucrose+Aq t°= temp of the solution in the absorption vessel

P = % sucrose in the solution  $\beta t^{\circ}$  = coefficient of absorption at  $t^{\circ}$  $\beta_{15}$ ° = coefficient of absorption at 15°

| t°                                                 | P                                                         | βtο                                                                       | β15°                                                                      |
|----------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 12 7                                               |                                                           | 0 01862                                                                   | 0 01892                                                                   |
| 19 3                                               |                                                           | 0 01840                                                                   | $\beta 20^{\circ} = 0.01829$                                              |
| 15 2<br>11 6<br>12<br>12 7<br>11 8<br>13 3<br>12 6 | 5 04<br>14 7<br>20 26<br>29 86<br>31 74<br>39 65<br>42 94 | 0 01723<br>0 01547<br>0 01500<br>0 01290<br>0 01220<br>0 01047<br>0 00956 | 0 01726<br>0 01510<br>0 01462<br>0 01257<br>0 01185<br>0 01033<br>0 00939 |

(Muller)

Absorption of H2 by propionic acid+Aq at° = coefficient of absorption at t°

| Percent of propionic acid in the solution | a25°                        | a20°               | a15°                        | a10                | α5°                |
|-------------------------------------------|-----------------------------|--------------------|-----------------------------|--------------------|--------------------|
| 9 910<br>9 763<br>6 500<br>5 267          | 0 01602<br>0 01638          | 0 01782<br>0 01788 | 0 01908<br>0 019 <b>2</b> 9 | 0 02029<br>0 02042 | 0 02129<br>0 02120 |
|                                           | 0 01706<br>0 017 <i>2</i> 2 | 0 01866<br>0 01876 | 0 01987<br>0 2003           | 0 02120<br>0 02142 | 0 02221<br>0 02245 |

(Braun, Z phys Ch 1900, 33 735)

Absorption of H by organic acids+Aq M = content in gram-equivalents per liter S = solubility

Absorption of H<sub>2</sub> by CII<sub>3</sub>COOH+Aq

|                                                            | _                                                                         |
|------------------------------------------------------------|---------------------------------------------------------------------------|
| M                                                          | 52)                                                                       |
| 0 517<br>0 528<br>1 160<br>1 20<br>1 963<br>1 980<br>3 178 | 0 01925<br>0 01923<br>0 01903<br>0 01895<br>0 01885<br>0 01882<br>0 01862 |
| 3 220<br>4 157                                             | 0 01858<br>0 01849                                                        |
|                                                            | 1                                                                         |

(Geffcken, Z phys Ch 1904 49 267)

Absorption of H<sub>2</sub> by CH<sub>2</sub>ClCOOH+Aq

| М     | S25     |
|-------|---------|
| 0 527 | 0 01905 |
| 0 990 | 0 01852 |
| 1 773 | 0 01783 |

(Geffcken)

Absorption of H by organic substances+

V = absorbed volume reduced to 0° and  $760 \, \mathrm{mm}$ 

 $\alpha = \text{coefficient of absorption}$ 

| Substance | Grams<br>in 1<br>liter | Vol of solution used in cem | t°     | V    | x       |
|-----------|------------------------|-----------------------------|--------|------|---------|
| Glucose   | 174                    | 409 94                      | 20 28° | 5 48 | 0 01516 |
| Glucose   | 80 8                   |                             | 20 16° | 6 12 | 0 01649 |
| Glucose   | 41 45                  |                             | 20 00° | 6 36 | 0 01759 |
| Urea      | 60                     |                             | 20 17° | 6 26 | 0 01703 |
| Acetamide | 59                     |                             | 20 11° | 6 51 | 0 01795 |
| Alanine   | 89                     |                             | 20 08  | 5 57 | 0 01555 |
| Glycocoll | 75                     |                             | 20 16° | 5 67 | 0 01577 |

(Hufner, Z phys Ch 1907, 57 623-4)

Solubility in organic solvents

| Soldotho, in organito botvonos                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Solvent                                                                                                                                                                                                                              | Solubility at 25° C                                                                                                                              | Solu<br>bility at<br>20° C                                                                                                                             | $\frac{\mathrm{d}\mathbf{s}}{\mathrm{d}t}$                                                                                                          |  |
| Glycerine  Water Aniline Amyl alcohol Nitrobenzene Carbon bisulphide Glacial acetic Benzene Acetone Amyl acetate Kylene Ethyl acetate Toluene Ethyl alcohol (99 8%) Methyl alcohol Isobutyl acetate Chloroform Carbon tetra chloride | Not measurable 0 01992 0 02849 0 03708 0 03778 0 03778 0 07560 0 07641 0 07738 0 08185 0 08516 0 08742 0 08935 0 09449 0 09758 no constant value | 0 02000<br>0 03033<br>0 03533<br>0 03533<br>0 03358<br>0 06172<br>0 07071<br>0 07037<br>0 07432<br>0 07834<br>0 08384<br>0 08620<br>0 09016<br>0 09287 | -0 000016 -0 000368 +0 00035 +0 00079 +0 000316 +0 000978 +0 000702 +0 000702 +0 000702 +0 000703 +0 000703 +0 000703 +0 000704 +0 000866 +0 000842 |  |

(Just, Z phys Ch 1901, 37 359)

Extended investigations have been made (Chem Soc 1912, by Findlay and Shen 101 1465) on the effect of colloids on solubility of H<sub>2</sub> in H<sub>2</sub>O See original article

Hydrogen arsenide See Arsenic hydride

Hydrogen peroxide, H<sub>2</sub>O<sub>2</sub>

Miscible with H<sub>2</sub>O Not stable in conc solution Aqueous solution gives up its H<sub>2</sub>O<sub>2</sub> Ethereal solution is more stable than an aqueous solution of the same strength, and may be distilled without decomp cible with alcohol

Very stable in aq solution of various conc if perfectly free from impurity such as compds of heavy metals, etc (Woffenstein, B 1894, 27 3307)

Coefficient of distribution between ether and  $\rm H_2O$  determined at 3°, 7°, and 17 5° with varying quantities (17—5%) of  $\rm H_2O_2$  (Osipoff, C C 1903, II 1265)

As sol in ether as in H<sub>2</sub>O A 50% solution in H<sub>2</sub>O still contained about 25% H<sub>2</sub>O, after being shaken 6 times with large quantities of Hydrogen selenide, H2Se fresh ether

Insol in petroleum ether (Bruhl, B 1895. 28 2855)

+H<sub>2</sub>O, and +2H<sub>2</sub>O Does not solidify at -20° (Wolffenstein, B 1894, 27 3311)

#### Hydrogen phosphide, gaseous (Phosphine), PH<sub>3</sub>

Very slightly absorbed by H<sub>2</sub>O Statements as to solubility in H<sub>2</sub>O vary considerably

(a) Difficultly inflammable gas-1 vol H<sub>2</sub>O absorbs 0 1122 vol PH<sub>3</sub> (Dvb-

kowsky, J B **1866** 735) 1 vol H<sub>2</sub>O absorbs 0 125 vol PH<sub>3</sub>

Davy )

(b) Easily inflammable gas-1 vol H<sub>2</sub>O absorbs 0 018 vol PH<sub>3</sub>

gembre, Crell Ann 1 450)
1 vol H<sub>2</sub>O absorbs 0 0214 vol PH<sub>3</sub>

(Henry ) 1 vol H<sub>2</sub>O absorbs 0 025 vol PH<sub>3</sub> (Davy ) 1 vol H<sub>2</sub>O absorbs 0 125 vol PH<sub>3</sub> ton, Ann Phil 11 7)

1 vol H<sub>2</sub>O absorbs 0 255 vol PH<sub>3</sub> (Raymond, Scher J 5 389)

1 vol H<sub>2</sub>O dissolves 0.26 vols PH<sub>3</sub> at 17° (Stock, Bottger and Lenger, B. 1909, **42** 2855)

Sol in conc H<sub>2</sub>SO<sub>4</sub> without immediate decomp (Buff, Pogg 16 363)

1 vol 50% H<sub>2</sub>SO<sub>4</sub> dissolves 0 05 vol PH<sub>3</sub>
(S B and L)

Absorbed by CuSO<sub>4</sub>+Aq and by Br (Berthelot)

Absorbed rapidly by Cu<sub>2</sub>Cl<sub>2</sub>+Aq with formation of Cu<sub>2</sub>Cl<sub>2</sub>, 2PH<sub>3</sub>, and Cu<sub>2</sub>Cl<sub>2</sub>, 4PH<sub>3</sub> (Riban, C R **88** 581)

1 vol alcohol of 0 85 sp gr absorbs 0 5 vol, 1 vol ether absorbs 2 vols (Graham)

Sol in volatile oils, 1 vol oil of turpentine absorbs 3 25 vols (Graham)

Several varieties of blood absorb PH.

#### Hydrogen phosphide, liquid, P H4

Insol in H<sub>2</sub>O Apparently sol in alcohol and oil of turpentine, but solution is very quickly decomp (Thénard, A ch (3) 145)

#### Hydrogen phosphide, solid, P<sub>4</sub>H

Insol in H<sub>2</sub>O and alcohol (Leverrier, A ch 60 174)

Insol in all liquids except liquid PH<sub>2</sub> (Thénard, A ch (3) 14 5)

Instantly decomp by HNO<sub>3</sub>, or H SO<sub>4</sub>+ Aq Sol with decomp in alcoholic solution of KÔH (Thénard)

Somewhat solin liquid phosphorus (Buck, Dissert 1904)

 $P_9H_2$ Insol in all solvents Bottger and Lenger, B 1909, 42 2851)

P<sub>12</sub>H<sub>6</sub> Sol in liquid hydrogen phosphide and molten P There are no other solvents There are no other solvents which appreciably dissolve it Insol in liquid PH<sub>3</sub> (S B and L)

More sol in H2O than hydrogen sulphide (Berzelius)

#### Solubility coefficient of H<sub>2</sub>Se at t°

| t°   | Sol Coeff |
|------|-----------|
| 4    | 3 77 vols |
| 9 65 | 3 43      |
| 13 2 | 3 31      |
| 22 5 | 2 70      |

(Forcrand and Fonzes-Diacon, C R 1902. **134** 171 )

Sol in cold COCl<sub>2</sub> (Besson, C R 1869, 122 140)

# Hydrogen silicide

See Silicon hydride

#### Hydrogen sulphide, H<sub>2</sub>S

(a) Liquid Dissolves S on warming, which separates on cooling

(b) Gas

1 vol H2O absorbs 108 vols H2S at 10° (Henry 1803)

1 vol H2O absorbs 2 53 vols H2S at 15° (de Saus sure Ann Phil 6 340) 1 vol H<sub>2</sub>O absorbs 3 vols H<sub>2</sub>S at 11° (Gay Lussac and Thénard)

1 vol H2O absorbs 366 vols H2S at ord temp (Thompson 1 vol HO absorbs 25 vols H2S at ord temp (Dalton)

1 vol H<sub>2</sub>O absorbs 4 3706-0 083687t+ 0 0005213t2 vols H2S at temperatures between 2 and 43 3° (Bunsen and Schonfeld, A 93 26)

At 0° and about 820 mm pressure, 1 ccm H<sub>2</sub>O absorbs 100 ccm HS, while only about 4 ccm are absorbed at ord pressure Forcrand and Villard, C R 106 1402)

#### 1 vol H<sub>2</sub>O at 760 mm pressure and t° absorbs V vols H<sub>2</sub>S, reduced to 0° and 760 mm

| t                                                                      | v                                                                                                                                        | t°                                                                               | v                                                                                                                                        | t°                                                                         | v                                                                                                                              |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 4 3706<br>4 2874<br>4 2053<br>4 1243<br>4 0442<br>3 9652<br>3 8872<br>3 8103<br>3 7345<br>3 6596<br>3 5858<br>3 5132<br>3 4415<br>3 3708 | 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 3 3012<br>3 2326<br>3 1651<br>3 0986<br>3 0331<br>2 9687<br>2 9053<br>2 8430<br>1 7817<br>2 7215<br>2 6623<br>2 6091<br>2 5470<br>2 4909 | 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 2 4357<br>2 3819<br>2 3290<br>2 2771<br>2 2262<br>2 1764<br>2 1277<br>2 0799<br>2 0332<br>1 9876<br>1 9430<br>1 8994<br>1 8569 |
|                                                                        | (9.1                                                                                                                                     | adafal                                                                           | A 4 44                                                                                                                                   | 26 \                                                                       |                                                                                                                                |

(Schonfeld, A 93 26)

Absorption coefficient of H2S in H2O at  $0^{\circ} = 46796$ (Prytz and Holst, W Ann 1895, 54, 137)

1 l H<sub>2</sub>O dissolves 0 1004 mol H<sub>2</sub>S at 25° and 760 mm (Pollitzer, Z anorg 1909, **64** 145)

### Absorption of hydrogen sulphide by H<sub>2</sub>O at t°

| 0°         | 4.000                   |
|------------|-------------------------|
| 10°<br>20° | 4 686<br>3 520<br>2 672 |

[Calc fr data of Fauser (C C 1889, 1 754) (Winkler, Z phys Ch 1906, 55 350)

### Absorption of hydrogen sulphide by H<sub>2</sub>O at t°

|                                                                                                                               | t°                   | Coefficient of absorption                 |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------|
| 0     4 621       10     3 362       20     2 554       30     2 014       40     1 642       50     1 376       60     1 176 | 20<br>30<br>40<br>50 | 3 362<br>2 554<br>2 014<br>1 642<br>1 376 |

(Winkler, Z phys Ch 1906, 55 350)

### Solubility of H<sub>2</sub>S in H<sub>2</sub>O

| Layer rich in H <sub>2</sub> S |                                 |  |
|--------------------------------|---------------------------------|--|
| t                              | Mols H S per 100 mols H O       |  |
| 0<br>6<br>17<br>26<br>29 5     | 0 4<br>0 5<br>0 8<br>1 2<br>1 6 |  |

|                                                                                             | I ayer rich in HO                                                                     |  |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|
| t°                                                                                          | Mols H <sub>2</sub> 5 per 100 mols H O                                                |  |  |  |
| 29 4<br>28 5<br>26 9<br>26 3<br>23 8<br>23 8<br>23 3<br>22 9<br>17 2<br>13 7<br>11 4<br>5 3 | 96 3<br>96 9<br>97 3<br>97 5<br>98 1<br>98 1<br>98 2<br>98 8<br>99 1<br>99 25<br>99 5 |  |  |  |

(Scheffer, Proc K Ak Amsterdam, 1911, 14 198)

Difficultly sol in conc HoSO4 with decomp Instantly decomp by fuming HNO<sub>3</sub> Solubility of H2S in HI+Aq at 25° and 760

| HI Mol per l                                                                                       | H <sub>2</sub> S Mol per l                                                                                 |  |  |  |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
| 0 00<br>1 01<br>1 51<br>1 93<br>2 65<br>2 64<br>3 42<br>4 38<br>5 005<br>5 695<br>6 935<br>* (9 21 | 0 1004<br>0 111<br>0 113<br>0 125<br>0 130<br>0 138<br>0 142<br>0 163<br>0 165<br>0 181<br>0 197<br>0 267) |  |  |  |

\* Not exact

(Pollitzer, Z anorg 1909-64 145) -

#### Solubility in acids+Aq

l=value of H<sub>2</sub>S dissolved in acid+Aq as

determined by titration lo=value of H<sub>2</sub>S dissolved in H<sub>2</sub>O as determined by titration  $t^{\circ}=25^{\circ}$ 

| Acid                               | l/lo  |
|------------------------------------|-------|
| ½-N HCl                            | 0 975 |
| ½-N H <sub>2</sub> SO <sub>4</sub> | 0 905 |

(McLauchlan, Z phys Ch 1903, 44 615)

Less sol in NaCl, or CaCl<sub>2</sub>+Aq than in  $H_2O$ Sol in CdCl2+NH4OH+Aq (Crobaugh, Z anorg 1894, 5 321)

#### Solubility in salts+Aq

l=value of H<sub>2</sub>S dissolved in salt+Aq as determined by titration

lo=value of H<sub>2</sub>S dissolved in H<sub>2</sub>O as determined by titiation

 $t^{\circ} = 25^{\circ}$ 

| Salt +Aq                                                                                                                                 | 1/lo                                                                       | Salt +Aq                                        | l/lo                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|
| 1/2-N K <sub>2</sub> SO <sub>4</sub><br>1/2-N (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub><br>N NaCl<br>N KCl<br>N NH <sub>4</sub> Cl | 0 73<br>0 78<br>0 82<br>0 847<br>0 853<br>0 960<br>0 893<br>0 913<br>0 990 | 1½-N NaCl<br>N NaBr<br>N KBr<br>N NH₄Br<br>N KI | 0 855<br>0 890<br>0 91<br>0 930<br>0 935<br>0 945<br>1 00<br>0 98 |

(McLauchlan, Z phys Ch 1903, 44 615)

#### Solubility of H<sub>2</sub>S in NaSH+Aq (g mol H<sub>2</sub>S dissolved in 11)

| t°                   | 005 g mol      | 01g mol                 | 02g mol         |
|----------------------|----------------|-------------------------|-----------------|
|                      | NaSH per l     | NaSH per l              | NaSH per l      |
| 15<br>25<br>35<br>45 | 0 082<br>0 064 | 0 132<br>0 104<br>0 082 | 0 129<br>0 1035 |

(Goldschmidt and Larsen, Z phys Ch 1910, 71 449)

At 18° and ord pressure 100 vols alcohol of 0 84 sp gr absorb 606 mols  $\rm H_2S$  (de Saussure 1814)

1 vol alcohol absorbs 17 891–0 65598t+ 0 00661t<sup>2</sup> vols  $H_2S$  between 0 and 22° (Carus )

#### 1 vol alcohol at t° and 760 mm absorbs V vols H₂S reduced to 0° and 760 mm

| t°                                   | v                                                                                      | t°                                          | v                                                                                   | to                                     | v                                                           |
|--------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 17 891<br>17 242<br>16 606<br>15 983<br>15 373<br>14 776<br>14 193<br>13 623<br>13 066 | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 12 523<br>11 992<br>11 475<br>10 971<br>10 480<br>10 003<br>9 539<br>9 088<br>0 650 | 18<br>19<br>20<br>21<br>22<br>23<br>24 | 8 225<br>7 814<br>7 415<br>7 030<br>6 659<br>6 300<br>5 955 |

(Carius, A 94 140)

## Solubility in alcohol +Ag at 25°

| Molecules of<br>C <sub>2</sub> H <sub>5</sub> OH in 100<br>molecules C <sub>2</sub> H <sub>5</sub> OH<br>+H O | Molecules H <sub>2</sub> O in<br>100 molecules<br>C <sub>2</sub> H <sub>5</sub> OH+H <sub>2</sub> O | l/lo                                                   |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 0 00<br>1 60<br>5 18<br>9 25<br>23 60<br>47 75<br>* (100                                                      | 100<br>98 (?)<br>94 82<br>90 75<br>76 40<br>52 25<br>0                                              | 1 00<br>0 96<br>0 933<br>0 91<br>1 28<br>1 95<br>2 16) |

\* Carius

#### (McLauchlan)

Sol in methyl acetate (Marchand), ether (Higgins)

Insol in caoutchin

Sol in glycerine in less amount than in H<sub>2</sub>O If a certain vol of H<sub>2</sub>O dissolves 100 pts H<sub>2</sub>S, the same vol of glycerine (1 pt glycerine +1pt H<sub>2</sub>O) dissolves only 60 pts H<sub>2</sub>S, but the solution is very stable After standing a year there is no appreciable decomp (Lapage, J Pharm (4) 5 256)

According to Lindo (C N 57 173), the

According to Lindo (C N 57 173), the solution in glycerine is no more stable than

that in H<sub>2</sub>O Sol in CS<sub>2</sub>

Solubility in organic substances +Aq

l=value of H₂S dissolved in organic substance+Aq as determined by titration

lo = value of H<sub>2</sub>S dissolved in H<sub>2</sub>O as determined by titration

 $t^{\circ} = 25^{\circ}$ 

| Solution                                                       | I/lo  |
|----------------------------------------------------------------|-------|
| N-NH <sub>4</sub> C <sub>2</sub> H <sub>8</sub> O <sub>2</sub> | 1 09  |
| N-C <sub>4</sub> H <sub>6</sub> O <sub>6</sub>                 | 0 944 |
| 3-N-C <sub>4</sub> H <sub>6</sub> O <sub>6</sub>               | 0 858 |
| N-(NH <sub>3</sub> ) <sub>2</sub> CO                           | 1 02  |
| pure C <sub>4</sub> H <sub>8</sub> (OH) <sub>3</sub>           | 0 863 |

(McLauchlan, Z phys Ch 1903, 44 615)

Solubility in acetic acid+Aq at 25°

| Molecules of<br>CH <sub>2</sub> COOH in 100<br>molecules<br>CH <sub>2</sub> COOH +H <sub>2</sub> O | Molecules of H <sub>2</sub> O<br>in 100 molecules<br>CH <sub>3</sub> COOH +H <sub>2</sub> O | 1/lo                                                                           |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 0<br>8 85<br>16 7<br>21 0<br>35 5<br>53 5<br>55 7<br>67 8<br>81 0<br>98 58                         | 100<br>91 15<br>83 30<br>79<br>64 5<br>40 5<br>32 2<br>19 0<br>1 42                         | 1 00<br>0 98<br>0 955<br>1 00<br>1 035<br>1 21<br>1 29<br>1 40<br>1 83<br>3 81 |

#### (McLauchlan)

Hydrogen persulphide, H2S2 or H2S5

Decomp by contact with  $H_2O$ , in which it is apparently insol Sol in ether with subsequent decomp Sol in  $CS_2$  (Thénard, A ch 48 79)

H<sub>2</sub>S<sub>2</sub> Quickly decomp by ether, acetic ether, ethyl, or amyl alcohol H<sub>2</sub>S has no

action

Conc HCl, or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq have no action Sol in a solution of S in CS<sub>2</sub>, and in liquid hydrocarbons

Chloroform dissolves without decomp

(Sabatier, C R 100 1346, 1585)

Alkalies, and K<sub>2</sub>S+Aq decomp instantly Decomp by H<sub>2</sub>O, dil and cone HCl, cone H<sub>2</sub>SO<sub>4</sub>, alkali and alcohol Sol in alcohol containing HCl but soon decomp in this solution Miscible in all proportions and without decomp with benzene, ether and CS<sub>2</sub> (Bloch, B 1908, 41 1977)

Formula is H<sub>2</sub>S<sub>5</sub> (Rebs, A **246** 356) +7H<sub>2</sub>O Easily decomp by heat (de Forcrand and Villard, C R **106** 1402)

#### Hydrogen trisulphide, H<sub>2</sub>S<sub>3</sub>

Decomp by H<sub>2</sub>O, dil and conc HCl, conc H<sub>2</sub>SO<sub>4</sub>, alkali and alcohol Somewhat sol in alcohol containing HCl, but slowly decomp in this solution Miscible with ether, benzene and CS<sub>2</sub> and these solutions are relatively stable (Bloch, B 1908, 41 1974)

Hydrogen telluride, H<sub>2</sub>Te

Sl sol in H<sub>2</sub>O Decomp in the air (Ernyel, Z anorg 1900, 25 313)

Hydrosulphuric acid, H<sub>2</sub>S See Hydrogen sulphide

Hydrosulphurous acid, H<sub>2</sub>SO<sub>2</sub> See Hyposulphurous acid

#### Hydroxylamic acid

Calcium hydroxylamate, Ca(ONH<sub>2</sub>)<sub>2</sub>

Very explosive, decomp by H₂O (Ebler and Schott, J pr 1908, (2) 78 323)

Zinc hydroxylamate Zn(ONH<sub>2</sub>)<sub>2</sub> Decomp by H<sub>2</sub>O (Ebler and Schott)

Zinc hydroxylamate, hydroxylamine, Zn(H NO)<sub>2</sub>, 3NH<sub>3</sub>O

Very unstable Insol in abs alcohol (Ebler and Schott)

#### Hydroxylamine, $NH_3O = NH_2(OH)$

Known only in solution Sol in alcohol (Lossen, J pr 96 462) Prepared in free state by de Bruyn

Very deliquescent, and sol in H<sub>2</sub>O and alcohol Sl sol or insol in CHCl<sub>8</sub>, C<sub>6</sub>H<sub>6</sub>, ether, or ethyl acetate

Methyl alcohol at 5° dissolves 35%, ethyl alcohol at 15°, 15%, boiling dry ether, 12%, boiling ethyl acetato, 16% (de Bruyn, R t c 11 18)

Hydroxylamine arsenate, AsO<sub>4</sub>H<sub>3</sub>(NH<sub>3</sub>O)<sub>3</sub>

Sl sol in cold H2O, sol in hot HO from which it can be cryst (Hofmann, A 1899, **307** 331)

Hydroxylamine azoimide See Azcımıde, hydroxylamıne

Hydroxylamine bromide, NH2OII, HBr

Very sol in  $H_2()$ , insol in ether by which it is pptd from solution in alcohol (Adams, Am Ch J 1902, 28 205)

2NH2OH, HBi Eisily sol in HO, insol in ether and ligroin Sl sol in alcohol (Adams)

Hydroxylamine mercuric bromide hydroxylamine, 2NH<sub>2</sub>OH, 2HBr, HgBr<sub>2</sub>, 2NH<sub>2</sub>OH Decomp by H<sub>2</sub>O and methyl alcohol Readily decomp by alkalies (Adams)

Hydroxylamine calcium, HO Ca ONH<sub>2</sub>

Partially decomp by H<sub>2</sub>O at ordinary temp (Hofmann, Z anorg 1898, 16 464)

Hydroxylamine chloride, basic, NH<sub>2</sub>(OH)Cl. NH<sub>2</sub>OH

Sol in H<sub>2</sub>O Alcohol precipitates from aqueous solution Insol in ether (Lossen) 2NH<sub>3</sub>(OH)Cl, NH<sub>2</sub>OH Deliquescent, very sol in H<sub>2</sub>O, less in alcohol, and insol in ether (Lossen)

Hydroxylamine chloride, NH<sub>8</sub>(OH)Cl

Not deliquescent Very sol in  $H_2O$  and hot ordinary alcohol Sl sol in absolute alcohol Insol in ether (Lossen) Sol in 12 pts H<sub>2</sub>O at 17° (Schiff, Z phys

Ch 1896, 21 290)

Sp gr of aqueous solution at 17°

| % salt                                      | sp gr                                                                        |
|---------------------------------------------|------------------------------------------------------------------------------|
| 40<br>28<br>20<br>14<br>10<br>7<br>5<br>3 5 | 1 1852<br>1 1260<br>1 0888<br>1 0616<br>1 0437<br>1 0303<br>1 0214<br>1 6147 |

(Schiff, Z phys Ch 1896, 21 290)

100 pts absolute methyl alcohol dissolve 16 4 pts at 19 75°, 100 pts absolute ethyl alcohol dissolve 4 43 pts at 19 75° (de Bruyn, Z phys Ch 10 783)

Somewhat sol in alcohol (Adams, Am Ch J 1902, 28 204)

Hydroxylamine mercuric chloride, NH<sub>2</sub>OH. HCl, HgCl<sub>2</sub>

Very sol in H<sub>2</sub>O and alcohol Less sol in ether (Adams, Am Ch J 1902, 28 213) 5(NH<sub>2</sub>OH)<sub>2</sub>, HCl, 2HgCl<sub>2</sub> Sol in co Sol in cold HO sloohol and other More easily sol in methyl alcohol Sol in HCl The slightest trace of alkali causes decomp

Hevahydroxylamıne cobaltıc bromide, [Co(NH<sub>2</sub>OH)<sub>6</sub>]Br<sub>3</sub> (Werner, B 1905, 38 897)

Hexahydroxylamine cobaltic chloride,  $[Co(NH_2OH)_6]Cl_3$ 

Very stable toward HCl (Werner, B 1905, 38 895)

Hexahydroxylamine cobaltic nitrate,  $[Co(NH_2OH)_6](NO_3)_8$ (Werner)

Hexahydroxylamine cobaltic sulphate,  $[Co(NH_2OH)_6]_2(SO_4)_3 + 2H_2O$ Easily sol in H<sub>2</sub>O (Werner)

Hydroxylamine columbate, CbO<sub>6</sub>N<sub>8</sub>H<sub>10</sub>

Explosive Sl sol in H<sub>2</sub>O (Hofmann, Z. anorg 1898, 16 473)

# Hydroxylamine dithionate, $(NH_2OH)_2$ , $H_2S_2O_6$

Sol in  $H_2O$ , decomp on heating the aq solution (Sabanejeff,  $\bar{Z}$  anorg 1898, 17 485)

Hydroxylamine fluosilicate, (NH<sub>6</sub>O)<sub>2</sub>, H<sub>2</sub>SiF<sub>6</sub> +2H<sub>6</sub>O

Easily sol in  $H_2O$  Nearly insol in methyl and abs ethyl alcohol (Ebler, J pr 1908, (2), 78 338)

Hydroxylamine fluotitanate,  $(NH_3O)_3$ ,  $H_2TiF_5$ Sol in  $H_2O$  Sl sol in methyl alcohol (Ebler, J pr 1908, (2) 78 340)

#### Hydroxylamine hypophosphite, (NH<sub>8</sub>OH)H<sub>2</sub>PO<sub>2</sub>

Very sol in  $H_2O$  (Sabanejeff, Z anorg 1898, 17 483)

Sol in H<sub>2</sub>O and absolute alcohol Insol in ether (Hofmann and Kohlschutter, Z anorg 1898, **16** 469)

 $\begin{array}{ccc} Hydroxylamine & potassium & hypophosphite, \\ & (H_2PO_2)_2(NH_3O)_3K_2 \end{array}$ 

Easily sol in H<sub>2</sub>O, decomp on heating, sol in hot abs alcohol (Hofmann and Kohlschutter, Z anorg 1898, **16** 468)

# Hydroxylamine hypophosphate, $(NH_3OH)_2H_2P_2O_6$

Easily sol in  $H_2O$  (Sabanejeff, Z anorg 1898, 17 489)

# Hydroxylamine iodide, NH2OH, HI

Hydroscopic, sol in methyl alcohol Very explosive (Wolffenstein and Groll, B 1901, 34 2419)

# Dihydroxylamine iodide, (NH<sub>2</sub>OH)<sub>2</sub>, HI

Deliquescent More sol in H<sub>2</sub>O, methyl and ethyl alcohol than the tri compound. Is decomp when recryst from these solvents Insol in ether (Dunstan, Chem Soc 1896, 69 841)

# Trihydroxylamine iodide, (NH2OH)3, HI

Deliquescent in moist air Sol in  $H_2O$ , methyl and ethyl alcohol Insol in ether (Dunstan)

# Hydroxylamine nitrate, NH<sub>3</sub>(OH)NO<sub>3</sub>

Very sol in  $H_2O$  and absolute alcohol (Lossen)

#### Hydroxylamine orthophosphate, (NH<sub>3</sub>OH)<sub>2</sub>PO<sub>4</sub>

Sl sol in cold H<sub>2</sub>O (Lossen)

Only sl sol in  $H_2O$  (Hofmann, A 1899, 307 330)

Moderately sol in  $H_2O$  (Ross, Chem Soc 1906, 90, (2) 19)

Solubility in H<sub>2</sub>O

1 g of aqueous solution contains at 0° 10°

0 012 0 015 g hydroxylamine phosphate, 20° 30° 0 019 0 027 g hydroxylamine phosphate, 40° 50°

0 040 0 055 g hydroxylamine phosphate, 60° 70° 0 077 0 102 g hydroxylamine phosphate.

(NH<sub>3</sub>OH)H<sub>2</sub>PO<sub>4</sub> Hygroscopic Aq solution is decomp on heating (Sabanejeff, B 1897, **30** 287)

#### Hydroxylamine phosphite, (NH<sub>3</sub>OH)<sub>2</sub>HPO<sub>3</sub>

Sol in H<sub>2</sub>O and absolute alcohol (Hofmann and Kohlschutter, Z anorg 1898, **16** 467)

(NH<sub>3</sub>OH)H<sub>2</sub>PO<sub>3</sub> Sol in H<sub>2</sub>O Insol in alcohol (Sabanejeff, Chem Soc 1900, **78**, (2), 14)

#### Hydroxylamine phosphite ammonia, (NH<sub>3</sub>OH)H<sub>2</sub>PO<sub>3</sub>, NH<sub>3</sub>

Sol in  $H_2O$  (Sabanejeff, Chem Soc 1900, 78, (2) 14)

# Hydroxylamine sodium, NaONH2

Very hygroscopic (de Bruyn, R t c 1892, 11 18)

# Hydroxylamine sulphate, $(NH_3OH)_2SO_4$

Easily sol in H<sub>2</sub>O Precipitated from concentrated aqueous solution by alcohol (Lossen)

Sol in conc NH<sub>4</sub>OH+Aq Insol in alcohol and ether (Preibisch, J pr 1873, (2) 7 480)

Not deliquescent Sol in 3/4 of its wt of  $H_2O$  at  $20^\circ$  (Divers and Haga, Chem Soc 1896, **69** 1665)

1 g of aqueous solution contains at —8° 0° +10°

0 307 0 329 0 366 g hydroxylamine sulphate, 20° 30° 40°

0 413 0 441 0 482 g hydroxylamine sulphate, 50° 60° 90°

0 522 0 560 0 685 g hydroxylamine sulphate (Adams, Am Ch J 1902, **28** 203)

Dry hydroxylamine sulphate is insol in abs and almost insol in 95% alcohol (Adams )

For double salts, see under sulphuric acid NH<sub>2</sub>OH, H<sub>2</sub>SO<sub>4</sub> Deliquescent Sol in H<sub>2</sub>O (Divers, Chem Soc 1895, **67** 226)

Hydroxylamine tungstate,  $4NH_2OH$ ,  $3WO_3+3H_2O$ 

Moderately sol in H<sub>2</sub>O (Allen and Gott-schalk, Am Ch J 1902, **27** 338)

Hydroxylamine uranate,  $UO_4(NH_3O)_2 + H_2O$ Decomp by heat (Hofmann, Z anorg 1897, **15** 78)

Hydroxylamine uranate ammonia,  $UO_4(NH_3O)$ ,  $2NH_3$ 

Decomp by H<sub>2</sub>O (Hofmann, Z anorg 1897, **15** 79)

Hydroxylamine metavanadate, VO<sub>6</sub>N<sub>5</sub>H<sub>16</sub> Decomp by moisture (Hofmann, Z anorg 1898, 16 472)

Hydroxylamine metavanadate ammonia, VO<sub>3</sub>H, (NH<sub>3</sub>O)<sub>2</sub>, 2NH<sub>3</sub>

Easily decomp by H<sub>2</sub>O and HCl (Hofmann, Z anorg 1898, 16 471)

Hydroxylamine monosulphonic acid, HONH(SO<sub>3</sub>H)

"Sulphazidic acid" of Fremy "Sulphydroxylamic acid" of Claus Sol in H<sub>2</sub>O Slowly decomp on boiling (Raschig, A 241 161)

Ammonium hydroxylamine monosulphonate, (OH)HN, SO₃NH₄

(Sabanéjeff, Z anorg 1898, 17 491)

Monobarium —— ——, (HONHSO<sub>3</sub>),Ba+  $H_2O$ 

Easily sol in H<sub>2</sub>O (Divers and Haga, Chem Soc 55 760)

Dibarium —— , Ba(HONSO<sub>3</sub>)<sub>2</sub>Ba+  $H_2O$ 

Nearly insol in HO, sol in HCl+Aq (Divers and Haga, Chem Soc 55 760)

Potassium ——, HONH(SO<sub>3</sub>K)
"Potassium 1 ' ' ' ' ' ' ' ' ' of Claus

"Potassium sulphized itc of Fremy Sol in cold II2O I asily sol in hot H O without decomp Insol in alcohol (Ruschig +H<sub>2</sub>O (Divers and H 1ga, Chem Soc 55 760)

Hydroxylamine disulphonic acid, HON(SO<sub>3</sub>H)<sub>2</sub>

"Disulphydroazotic acid" of Claus "Sulph zotic acid" of Fremy Not known in free state (Raschig, A 241 161)

Barium hydroxylamine disulphonate,  $B_{3}(NS_{2}O_{7})_{2}+4H_{2}O$  and  $+8H_{2}O$ Practically insol in H<sub>2</sub>O Sol in NH<sub>4</sub>Cl+ Ag (Divers, Chem Soc 1894, 65 559)

Barium potassium ---- $Ba_8K_8H_4(NS_2O_7)_6+9H_2O$ BaKNS<sub>2</sub>O<sub>7</sub>+H<sub>2</sub>O  $(HO)_2Ba_6K_4H(NS_2O_7)_5+H_2O$ 

 $Ba_9K_3(NS_2O_7)_7 + 14H_2O_7$  $3Ba(OH)_2$ ,  $Ba_9K_8(NS_2O_7)_7$ Above salts are all ppts (Divers, Chem Soc 1894, 65 561)

Barium sodium hydroxylamine disulphonate,  $Ba_6Na_3(NS_2O_7)_5+7H_2O$  $Ba_9Na_8(NS_2O_7)_7 + 7H_2O$ 

 $Ba_{18}Na_{15}(NS_2O_7)_{17} + 24H_2O_7$ Above salts are ppts (Divers)

Potassium ——,  $HON(SO_3K)_2+2H_2O$ 

"Potassium disulphydroxyazotate" of Claus (A 158 75) Insol in cold H<sub>2</sub>O Very unstable Very difficultly sol in H<sub>2</sub>O, more easily in dil KOH+Aq (Raschig, A

**241** 161)  $HON(SO_3K)_2$ ,  $KON(SO_3K)_2+H_2O$  True composition of potassium sulphazotate of Fremy (Divers and Haga, Chem Soc 1900, **77** 432)

Potassium sodium - $3K_3NS_2O_7$ ,  $2Na_3NS_2O_7+2H_2O$ Sol in

 $6K_3NS_2O_7$ ,  $Na_3NS_2O_7$ ,  $H_3NS_2O_7+20H_2O$ Sol in H<sub>2</sub>O

 $K_2Na_{16}H_3(NS_2O_7)_7+5H_2O$  Less sol in H<sub>2</sub>O than the others

 $K_{15}Na_5H_4(NS_2O_7)_8+9H_2O$  Sol in  $H_2O$ KNa<sub>4</sub>H(NS<sub>2</sub>O<sub>7</sub>)<sub>2</sub>+H<sub>2</sub>O Readily sol in

 $H_2O$  $K_6NaH_2(NS_2O_7)_3+2H_2O$  Moderately sol ın H<sub>2</sub>O

KNaHNS<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O Sol in H<sub>2</sub>O (Divers, Chem Soc 1894, 65 552)

Potassium strontium – (HO, Sr)<sub>3</sub>NS<sub>2</sub>O<sub>7</sub>, 8(SrKNS O<sub>7</sub>, 2H<sub>9</sub>O) Ppt (Divers)

Potassium hydroxylamine disulphonate nitrite, HON(SO<sub>3</sub>K)<sub>2</sub>, KNO<sub>2</sub>

Very sl in H<sub>2</sub>O (Divers and Haga, Chem Soc 1900, 77 433) K<sub>5</sub>H(NS<sub>2</sub>O<sub>7</sub>)<sub>2</sub>, 3KNO<sub>2</sub>+H<sub>2</sub>O Decomp by

H<sub>2</sub>O (Divers and Haga)

 $2K()N(S()_3K)_2$ ,  $KNO_2+44H_2O$  Very sol in H<sub>2</sub>O which decomp it into its constituent salts (Divers and Haga)

+6H<sub>2</sub>O Very sol in H<sub>2</sub>O which decomp it into its constituent salts (Divers and

Haga)  $2K_5H(NS_2O_7)$ ,  $7KNO_2+3H_2O$  Decomp by H<sub>2</sub>O (Divers and Haga)

 $3K_5H(NS_2O_7)_2$ ,  $7KNO_2$  Decomp by  $H_2O$ (Divers and Haga)

Potassium hydroxylamine disulphonate sodium chloride, 5K2HNS2O7, 8NaCl+ 3H₂O

Decomp by H<sub>2</sub>O (Divers, Chem Soc | 1894, **65** 551 )

#### Sodium hydroxylamine disulphonate, HON(SO<sub>8</sub>Na)<sub>2</sub>

Sol in somewhat more than its own wt of H<sub>2</sub>O at 14° (Divers, Chem Soc 1894, 65 546)

 $Na_2HNS_2O_7$ ,  $2Na_8NS_2O_7+3H_2O$  Sol in less than 15 pts H<sub>2</sub>O at 14° (Divers)

#### Hydroxylamine isomonosulphonic acid, $NH_2$ , O, $SO_2$ , OH

Very hydroscopic Sol in water, sol in alcohol (Sommer, B 1914, 47 1226) [Compare Raschig, A 1887, 241 161]

#### Hydroxylamine isodisulphonic acid

#### Ammonium hydroxylamine isodisulphonate, (SO<sub>3</sub>NH<sub>4</sub>)ONH(SO<sub>3</sub>NH<sub>4</sub>)

3 pts are sol in 2 pts H<sub>2</sub>O at 18° Apt to form supersat solutions (Haga, Chem Soc 1906, 89 246)

 $D_i$  potassium ———,  $K_2HS_2O_7N$ 

Only sl sol in cold H<sub>2</sub>O Easily sol in boiling H<sub>2</sub>O Decomp by hot dil HCl (Raschig, B 1906, 39 246)

(Haga, Chem Soc 1906, 39 243)

Tripotassium -----, (SO<sub>3</sub>K)ONK(SO<sub>3</sub>K)+2H<sub>2</sub>O

Very sol in H<sub>2</sub>O, ppt by alcohol (Haga)

Disodium ———, (SO<sub>3</sub>Na)ONH(SO<sub>3</sub>Na) Very sol in  $H_2O$ , insol in alcohol by which it is ppt from aqueous solution (Haga)

Trisodium — — ----, (SO₃Na)ONNa(SO₃Na)  $+2H_2O$ 

Sol in H<sub>2</sub>O, ppt by alcohol (Haga) +3H<sub>2</sub>O Sol in 13 pts H<sub>2</sub>O at 20° sol in NaOH+Aq (Divers, Chem Soc 1894, 65 546)

# Hydroxylamine trisulphonic acid

Ammonium hydroxylamine trisulphonate,  $2(SO_3NH_4)ON(SO_3NH_4)_2+3H_2O$ 

Sol in 061 pts H<sub>2</sub>O at 16° (Haga, Chem Soc 1904, 85 84)

Potassium ——,  $2(SO_3K)ON(SO_2K)_2+$  $3H_2O$ 

1 pt is sol in 25 37 pts H<sub>2</sub>O at 18° (Haga)

Sodium --  $\longrightarrow$ , (SO<sub>8</sub>Na)ON(SO<sub>8</sub>Na)<sub>2</sub>+  $2H_2O$ 

Sol in 2.84 pts  $H_2O$  at 21.5°

Dihydroxylamine sulphonic acid,  $(HO)_2N(SO_3H)$ 

"Sulphazinous acid" of Fremy Known only in its salts (Raschig, A 241 161)

Potassium dihydroxylamine sulphonate. (HO)₂NSO₃K

Not obtained in pure state, forms basic salt  $\frac{\text{KO}}{\text{NSO}_3\text{K}}$ , which is quite sol in  $\text{H}_2\text{O}$ , and corresponds to "sulfazite de potasse" of Fremy (A ch (3) 15 421)

Sol in H<sub>2</sub>O, insol in alohol and ether

(Fremy)

Hydroxyliodoplatindiamine sulphate,  $(OH)IPt(NH_3)_4SO_4+H_2O$ 

Very sl\_sol, even in boiling H₂O (Carlgren, Sv V A F 47 312)

Hydroxylonitratoplatindiamine nitrate,  $\stackrel{\mathrm{OH}}{\mathrm{NO_3}}\mathrm{Pt}\stackrel{\mathrm{N_2H_6NO_3}}{\mathrm{NO_3H_6NO_3}}$ 

Sl sol in cold, more easily in hot H<sub>2</sub>O Very sl sol in  $H_2O$  containing  $HNO_3$  (Cleve)

 pyrophosphate,  $\left[^{
m OH}_{
m NO_8}{
m Pt}^{
m N_2H_6}_{
m N_2H_6}
ight]_{
m 2}{
m P_2O_7}{
m +H_2O}$ 

Very sl sol in H<sub>2</sub>O (Cleve)

#### Hydroxyloplatinamine hydroxide, $(OH)_2Pt(NH_3OH)_2$

Insol in  $H_2O$  Easily sol in dil acids, even  $HC_2H_3O_2+Aq$  Not decomp by boiling KOH+Aq (Gerhardt, Compt Chem 1849) 490)

Hydroxyloplatinamine nitrate,

 $(OH)_2Pt(NH_3NO_3)_2+2H_2O$ Sl sol in cold, easily in hot HO, not attacked by cold HCl+Aq (Cleve)

- oxalate,  $(OH)_{\circ}Pt(NH_3) C_2O_4 + H_2O$ Sol in hot H2O

- sulphate,  $(OH)_2Pt(NH_3)_2SO_4+HO$ Difficultly sol in H<sub>2</sub>O (Cleve)

#### Hydroxyloplatindiamine bromide, $(OH)_2Pt(NH_3)_4Br_2$

Sl sol, even in boiling  $\rm H_2O$  (Carlgren, Sv V A F 47 320)

- chloride,  $(OH)_2Pt(NH_3)_4Cl_2$ 

Sol in 206 pts cold, and 49 pts boiling  $\rm H_2O$  (Carlgren, Sv V A F 47~316) --- chromate,  $(OH)_2Pt(NH_3)_4Cr_2O_7$ 

Very sl sol in cold or hot H<sub>2</sub>O (Carlgren, Sv V A F 47 319)

# Hydroxyloplatindiamine 10dide, $(OH)_2Pt(NH_8)_4I_2$

Sl sol in hot or cold H<sub>2</sub>O (Carlgren)

nitrate, (OH)<sub>2</sub>Pt(NH<sub>3</sub>)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub> Sl sol m cold, moderately sol in hot H<sub>2</sub>O

(Gerhardt, A **76** 315)
Sol in 343 pts cold, and 38 pts boiling
H<sub>2</sub>O (Carlgren, Sv V A F **47** 318)

mitrite, (OH)<sub>2</sub>Pt(NH<sub>3</sub>)<sub>4</sub>(NO<sub>2</sub>)<sub>2</sub> Easily sol in H<sub>2</sub>O (Carlgren)

—— sulphate, (OH)<sub>2</sub>Pt(NH<sub>3</sub>)<sub>4</sub>SO<sub>4</sub> Very sl sol in boiling H<sub>2</sub>O (Cleve) +4H<sub>2</sub>O Efflorescent (Carlgren, Sv V A F **47** 313)

# Hydroxyloplatinmonodramine nitrate, $(OH)_2Pt_{NH_3NO_3}^{NH_3NH_3NO_3}$

Very easily sol in H<sub>2</sub>O (Cleve)

# Hydroxyloplatinsemidiamine nitrate,

(OH)<sub>3</sub>PtNH<sub>3</sub>NH<sub>3</sub>NO<sub>3</sub>(?) Easily sol in H<sub>2</sub>O (Cleve)

---- sulphate,
(OH)<sub>2</sub>PtNH<sub>3</sub>NH<sub>3</sub>
\ \ \ \ \ (?)

Sol in hot H2O

# Hydroxylodiplatindiamine chloride, (OH)<sub>2</sub>Pt<sub>2</sub>(N H<sub>0</sub>)<sub>4</sub>Cl<sub>4</sub>+H<sub>2</sub>O

Extremely sl sol in H<sub>2</sub>O

—— nitrate,  $(OH)_2Pt_2(N_2H_5)_4(NO_3)_4$ Very sl sol in cold, more easily in hot  $H_2O$ (Cleve )

phosphate, (OH)  $Pt_2(N_2H_6)_4(PO_4H)_2$ Ppt

Ppt Nearly insol in H2O

## Hydroxylosulphatoplatindnamine bromide, (OH)Pt(N<sub>2</sub>H<sub>6</sub>)<sub>2</sub>Br

\ \ / +2H₂O

Easily sol in H<sub>2</sub>O (Cleve)

--- chloride,  $(OH)Pt(N_2H_6)_2Cl$ SO<sub>4</sub> +2H<sub>2</sub>O

Moderately sol in cold, very sol in hot H<sub>2</sub>O

Hydroxylosulphatoplatındnamıne chloroplatınate,

$$2\begin{bmatrix} (OH)Pt(N_2H_6)_2Cl\\ & \checkmark\\ SO_4 \end{bmatrix}, PtCl_4+2H_2O$$
Ppt

\_

---- chromate,
$$\begin{bmatrix} (OH)Pt(N_2H_6)_2\\ & \\ & \\ SO_4 \end{bmatrix} CrO_4 + 2H_2O$$
Sl sol in  $H_2O$ 

---- nitrate, (OH)Pt(N<sub>2</sub>H<sub>6</sub>) NO<sub>3</sub>

Sol in hot H<sub>2</sub>O

--- sulphate,  $\begin{bmatrix} (OH)Pt(N_2H_6)_2\\ & \checkmark\\ & SO_4 \end{bmatrix}_2 SO_4 + 3H_2O$  SI sol in  $H_2O$  (Cleve)

# Hypoantimonic acid

Calcium hypoantimonate (?), Ca<sub>2</sub>Sb<sub>3</sub>O<sub>8</sub> Min Romeite Insol in acids

Potassium hypoantimonate, K<sub>2</sub>Sb<sub>2</sub>O<sub>5</sub>

Sol in hot  $H_2O$  Sol in 425 pts boiling  $H_2O$  (Brandes) Sol in boiling KOH+Aq (Berzelius)  $K_2Sb_4O_9$  Ppt

# Hypoboric acid

# Sodium hypoborate, $NaOBH_3$

Deliquescent, decomp in aq solution at room temp Decomp by acids SI sol in alcohol with decomp (Stock, B 1914, 47 821)

# Hypobromous acid, HBrO

Known only in aqueous solution Solution containing 6 21 pts Br as HBrO in 100 ccm H₂O decomposes at 30° If dilute solution is distilled in vacuo, an acid containing 0 736 pt Br as HBrO in 100 ccm is obtained at first, but the distillate slowly grows weaker Dil solution, stable at ordinary temp, decomp by heating over 60° (Dancer A 125 237)

#### Barium hypobromite

Known only in solution

#### Calcium hypobromite bromide

Deliquescent, and sol in H<sub>2</sub>O with partial decomp (Berzelius)

#### Potassium hypobromite, KBrO Known only in solution

# Sodium hypobromite

Known only in solution

# Strontium hypobromite

Known only in solution

#### Hypochlorous acid, HClO

Miscible with  $\rm H_2O$  Decomposes at 0° in the dark, more rapidly at higher temp or in light. The stronger the solution the more rapid the decomposition. Moderately strong acid may be distilled without any considerable decomp, a stronger acid distilling over at first, and afterwards an acid weaker than the original acid. Very cone or very dilacids decomp by distillation.

#### Ammonium hypochlorite

Known only in aqueous solution, which decomposes at once

#### Barium hypochlorite

Known only in solution

# Calcium hypochlorite, Ca(OCl)<sub>2</sub>+4H<sub>2</sub>O

Deliquescent, and sol in  $\rm H_2O$  (Kinzgett, Chem Soc (2) 13 404)

# Calcium hypochlorite chloride, etc. (bleaching powder), $Ca(OCl)_2$ , $CaCl_2$ , $Ca(OH)_2$ + $H_2O$

Not deliquescent Sol in  $H_2O$  Alcohol does not dissolve out  $CaCl_2$  Sol in 20 pts  $H_2O$  with a slight residue

Correct formula is CaOCl<sub>2</sub> (Lunge and Schappi, Kraut, A **214** 354), CaOCl (Stahlschmidt, B **8** 869), CaOCl, Cl (Odling)

CaCl<sub>2</sub> is dissolved out by alcohol Formula= $2Ca_{OCl}^{OH}$ CaCl+ $2H_2O$  (Dreyfuss, Bull Soc (2) 41 600)

# Didymium hypochlorite, Di(OCl)8

Difficultly sol in  $H_2O$  Easily sol in acids (Frenchs and Smith, A 191 348)

# Lanthanum hypochlorite, La(OCl);

Easily sol in H<sub>2</sub>O (Frerichs and Smith)

#### Lithium hypochlorite, LiClO

Known only in solution (Kraut, A 1882, 214 356)

# Magnesium hypochlorite

Known only in solution

## Potassium hypochlorite, KClO Known only in solution

#### Silver hypochlorite, AgClO

Very sol in H<sub>2</sub>O, and decomp very quickly (Stas, Acad R de Belg **35** 103)

#### Sodium hypochlorite, NaClO Known only in solution

Hypoiodic acid, I<sub>2</sub>O<sub>4</sub> See Iodine textroxide

#### Hypoiodous acid, HOI

Known only in solution which decomp on standing (Taylor, C N 1897, 76 97)

# Calcium hypoiodite iodide, Ca(OI)<sub>2</sub>, CaI<sub>2</sub> Not very unstable (Lunge and Shoch, B 15 1883)

Hyponitric acid, N<sub>2</sub>O<sub>4</sub> See Nitrogen tetroxide

# Hyponitrous acid, HNO, or better H<sub>2</sub>N<sub>2</sub>O<sub>2</sub>

Known only in aqueous solution Solution is quite stable (van der Plaats, B 10 1507) Very deliquescent, sol in H<sub>2</sub>O and alcohol, sol in ether, chloroform, benzene, sl sol in petroleum ether (Hantzsch and Kaufmann, A 1896, 292 323)

# Ammonium hyponitrite, (NH<sub>4</sub>)<sub>2</sub>N<sub>2</sub>O<sub>2</sub>

Sol in  $\rm H_2O$  and in alcohol  $\,$  (Jackson, C  $\,$  N 1893, 68 266 )

# Ammonium hydrogen hyponitrite, NH<sub>4</sub>HN<sub>2</sub>O<sub>2</sub>

Easily sol in  $\rm H_2O$  The solid salt slowly decomp at ord temp into ammonia,  $\rm H_2O$  and  $\rm N_2O$  (Hantzsch and Kaufmann, A 1896, **292** 328)

#### Barium hyponitrite, BaN<sub>2</sub>O<sub>2</sub>

Nearly insol in, but gradually decomp by  $H_2O$  Sol in conc acids with evolution of  $N_2O$ , but sol in dil  $HC_2H_3O_2+Aq$  without decomp (Zorn, B 15 1007)

 $+4 \dot{\rm H}_2 \rm O$  Sl sol in  $\rm H_2 \rm O$ , insol in alcohol and ether (Kirschner, Z anorg 1898, 16 424)

+xH<sub>2</sub>O Efflorescent (Maquenne, C R 108 1303)

# Barrum hydrogen hyponitrite, $BaH_2(N_2O_2)_2$ Easily sol in $H_2O$ (Zorn, B 1882, 15 1011)

# Calcium hyponitrite, CaN<sub>2</sub>O<sub>2</sub>+4H<sub>2</sub>O

Nearly insol in H<sub>2</sub>O, easily sol in dil acids (Maquenne, C R 108 1303) Sl sol in H<sub>2</sub>O, insol in alcohol (Kirschner, Z anorg 1898, 16 426)

Cupric hypomitrite, basic, CuN<sub>2</sub>O<sub>2</sub>, Cu(OH)<sub>2</sub> Insol in H2O, not decomp by hot H2O Sol in dil acids and in ammonia Decomp by NaOH (Divers, Chem Soc 1899, 75 121 Insol in  $H_2O$  Sol in dil acids and in NH<sub>4</sub>OH+Aq (Kırschner, Z anorg 1898. **16** 430)

Cuprous hyponitrite, CuoNoOo+2HoO Ppt (Kolotow, C C 1891, I 1859) Cannot be formed (Divers, Chem Soc 1899. 75 121)

## Lead hyponitrite, basic, PbN<sub>2</sub>O<sub>2</sub>, PbO

Insol in H<sub>2</sub>O Sol in dil acids from which it may be pptd by NaOH+Aq or NH4OH+ Aq (Kirschner, Z anorg 1898, 16 430)

#### Lead hyponitrite, PbN<sub>2</sub>O<sub>2</sub>

Insol in H<sub>2</sub>O, sol in dil acids from which it may be pptd by NaOH+Aq or NH<sub>3</sub>+Aq (Kırschner)

Mercuric hyponitrite, basic, 3HgO, HgN<sub>2</sub>O<sub>2</sub>  $+3H_{\bullet}O$ 

Sl sol even in boiling dil HNO2 Ppt Scarcely sol in conc, very sol in warm dil HCl (Ray, Chem Soc 1897, 71 349)

#### Mercurous hyponitrite, Hg<sub>2</sub>N<sub>2</sub>O<sub>2</sub>

Sol in dil HNO3 with slow decomp (Rav. Chem Soc 1907, 91 1404)

# Mercuric hyponitrite, HgN<sub>2</sub>O<sub>2</sub>

Sol in HCl, and in NaCl+Aq Sl sol in very dil alkalı (Divers, Chem Soc 1899, 75 119)

#### Potassium hyponitrite, K<sub>2</sub>N<sub>2</sub>O<sub>2</sub>

Sol in H<sub>2</sub>O (van der Plaats) Stable when dry

Sol in 90% alcohol, and sl sol in abs alcohol (Divers, Chem Soc 1899, 75 103)

#### Silver hyponitrite (nitrosyl silver), $Ag_2N_2O_2$

Insol in H<sub>2</sub>O Fasily sol in dil HNO<sub>3</sub>+

Aq or  $H_2SO_4+Aq$ Decomp by  $H_4PO_4$ ,  $H_2S$ , and boiling  $HC_2H_3O_2+Aq$  (v in der  $Pl_2$  its)
Insol in  $HC_2H_3O_2+Aq$ , sol in  $NH_4OH$ 

+Aq (Divers, C N 23 206)

Sol in dil HNO3 and H2SO4 and in conc NH<sub>4</sub>OH+Aq, decomp by HCl ner, Z anorg 1898, **16** 431) (Kırsch-

Sodium hyponitrite, Na<sub>2</sub>N<sub>2</sub>O<sub>2</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (van der Plaats)

#### Strontium hyponitrite, SrN<sub>2</sub>O<sub>2</sub>

Easily sol in H<sub>2</sub>O (Roederer, Bull Soc 1906, (3) 35 715)

+5H<sub>2</sub>O Nearly insol in H<sub>2</sub>O, easily sol

(Maguenne, C R 108 1303) abine lib m Sl sol in H<sub>2</sub>O. insol in alcohol ner, Z anorg 1898, 16 426)

#### Hypophosphomolybdic acid. MosOs. $7H_{\circ}PO_{\circ} + 3H_{\circ}O$

Very sl sol in cold H<sub>2</sub>O Scarcely sol in cold dil H<sub>2</sub>SO<sub>4</sub> Sol in cold conc H<sub>2</sub>SO<sub>4</sub> Sol in warm cone HCl Warm HNO: oxidizes forming clear solution (Mawrow, Z anorg 1901, 28 164)

Ammonium hypophosphomolybdate. 2(NH<sub>4</sub>)<sub>2</sub>O, 2H<sub>8</sub>PO<sub>2</sub>, 8M<sub>0</sub>O<sub>2</sub>+2H<sub>2</sub>O

Not very sol in cold H<sub>2</sub>O, readily in hot  $H_2O$  (Gibbs, Am Ch J 3 402)

#### Hypophosphoric acid, H<sub>4</sub>P<sub>2</sub>O<sub>6</sub>

Very deliquescent, and sol in the least amount of H<sub>2</sub>O (Joly, C R 101 1058) 100 cc H<sub>4</sub>P<sub>2</sub>O<sub>6</sub>+Aq, containing 41%P<sub>2</sub>O<sub>4</sub>

has sp gr = 1 036 100 cc  $H_4P_2O_6+Aq$ , containing 12 3%

 $P_2O_4$  has sp gr = 1 122

(Salzer, A 1878, **194** 28) +H<sub>2</sub>O (Sanger, A **232** 14) Does not exist (Joly)

Appears to be the only stable  $+2H_{\bullet}O$ 

hydrate between 0° and 60°  $H_4P_2O_6+H_2O_7$ Sanger's hydrate. and

Jolv's anhydride could not be obtained (Rosenheim, B 1908, 41 2711)

#### Aluminum hypophosphate, $Al_4(P_2O_6)_8$ + 23H<sub>2</sub>O

Easily sol in mineral acids Sol in Na<sub>4</sub>P<sub>2</sub>O<sub>6</sub> +Aq (Palm, Dissertation, Rostock, 1890)

Ammonium hypophosphate,  $(NH_4)_4P_2O_6+$  $H_2O$ 

Sol in 30 pts H<sub>2</sub>O (Salzer, A 194 32)

#### Ammonium hydrogen hypophosphate, $(NH_4)_2H_2P_2O_6$

Sol in 14 pts cold, and 4 pts boiling H<sub>2</sub>O (Salzer, A 194 32)

#### Ammonium trihydrogen hypophosphate, NH4H3P2O

Sol in H<sub>2</sub>O (Salzer, A 211 1)

#### Ammonium magnesium hypophosphate, $(NH_4)_2MgP_2O_6+6H_2O$

Precipitate (Salzer, A 232 114)

#### Barium hypophosphate, Ba<sub>2</sub>P<sub>2</sub>O<sub>6</sub>

Very slightly sol, but not wholly insol in Very slightly sol in acetic acid, but more soluble in hydrochloric, and hypophosphoric acids (Salzer, A 194 34)

#### Barium hydrogen hypophosphate, BaH<sub>2</sub>P<sub>2</sub>O<sub>6</sub> $+2H_2O$

Soluble in about 1000 pts H<sub>2</sub>O Solution decomposes by heating (Salzer, A 194 34) Bismuth hypophosphate,  $B_{14}(P_2O_6)_8$ + 81/4H<sub>2</sub>O

Completely sol in HCl+Aq, also in warm HNO<sub>3</sub>+Aq Insol in boiling dil H<sub>2</sub>SO<sub>4</sub>+Aq Sl sol by long boiling with conc H<sub>2</sub>SO<sub>4</sub> (Palm, Rostock, 1890)

Cadmium hypophosphate, Cd<sub>2</sub>P<sub>2</sub>O<sub>6</sub>+2H<sub>2</sub>O Insol in H2O Sol in dil acids (Drawe, B 21 3403)

Cadmium potassium hydrogen hypophosphate,  $CdK_2(H_2P_2O_6)_2 + 2\frac{1}{2}H_2O$ (Bausa, Z anorg 1894, 6 147)

Cadmium sodium hypophosphate, CdNa<sub>2</sub>P<sub>2</sub>O<sub>6</sub>

Insol in H<sub>2</sub>O, but decomp thereby Sol in dil acids (Drawe)

Calcium hypophosphate, Ca<sub>2</sub>P<sub>2</sub>O<sub>6</sub>+2H<sub>2</sub>O Insol in H<sub>2</sub>O, difficultly sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, easily sol in  $H_4P_2O_6$ , or HCl+Aq (Salzer, A 194 36)

Calcium hydrogen hypophosphate,  $CaH_2P_2O_6 + 6H_2O$ Sol in 60 pts  $H_2O$  (Salzer, A 232 114)

Chromic hypophosphate,  $Cr_4(P_2O_6)_3 + 34H_2O$ Sol in HCl+Aq on sl warming, also in HNO<sub>3</sub>+Aq Not completely sol in dil HSO<sub>4</sub>+Aq, but completely sol in conc (Palm, Dissertation, Rostock, 1890)

Cobaltous hypophosphate, Co<sub>2</sub>P<sub>2</sub>O<sub>6</sub>+8H<sub>2</sub>O Insol in H<sub>2</sub>O Easily sol in acids (Drawe, B 21 3403)

Cobaltous potassium hypophosphate,  $CoK_2P_2O_6+5H_2O$ Ppt (Bausa, Z anorg 1894, 6 156)

Cobaltous potassium hydrogen hypophosphate,  $CoH_2P_2O_6$ ,  $3K_2H_2P_2O_6 + 15H_2O_6$ 

Cobaltous sodium hypophosphate, CoNa<sub>2</sub>P<sub>2</sub>O<sub>6</sub>  $+1\frac{1}{2}H_2O$ 

Insol in H<sub>2</sub>O, but decomp thereby Sol in dil acids (Drawe, B 21 3403)

Cupric hypophosphate, Cu<sub>2</sub>P<sub>2</sub>O<sub>6</sub>+6H<sub>2</sub>O Insol in H2O Sol in dil acids (Drawe, B **21** 3403) Ppt (Bausa, Z anorg 1894, 6 145)

Cupric potassium hydrogen hypophosphate,  $CuH_2P_2O_6$ ,  $3K_2H_2P_2O_6+15H_2O_6$ (Bausa, Z anorg 1894, 6 152)

Glucinum hypophosphate, Gl<sub>2</sub>P<sub>2</sub>O<sub>6</sub>+7H<sub>2</sub>O Insol in H<sub>2</sub>O Moderately sol in all mineral acids (Palm, Rostock, 1890)  $+3H_2O$ (Rammelsberg)

Iron (ferrous) hypophosphate, Fe<sub>2</sub>P<sub>2</sub>O<sub>6</sub>+ 41/2H2O

Insol in H<sub>2</sub>O Sol in cold HCl+Aq Decomp by hot HNO<sub>3</sub>+Aq into Fe<sub>4</sub>(P<sub>2</sub>O<sub>6</sub>)<sub>8</sub> Insol in HNO<sub>8</sub>+Aq Insol in boiling dil H<sub>2</sub>SO<sub>4</sub>+Aq Somewhat sol in cold H<sub>2</sub>SO<sub>4</sub>, but a ppt separates out on heating (Palm, Rostock, 1890)

Iron (ferric) hypophosphate,  $Fe_4(P_2O_6)_3$ +

Easily sol in HCl+Aq Wholly insol in HNO<sub>8</sub>, and dil H<sub>2</sub>SO<sub>4</sub>+Aq Completely sol in conc H2SO4 by warming a short time, but a ppt separates out on boiling (Palm)

Lead hypophosphate, Pb<sub>2</sub>P<sub>2</sub>O<sub>6</sub> Insol in  $H_2O$ ,  $HC_2H_3O_2$ , or  $H_4P_2O_6+Aq$ . sol in dil HNO<sub>8</sub>+Aq (Salzer)

Lithium hypophosphate,  $L_{14}P_{2}O_{6}+7H_{2}O$ Very sl sol in H<sub>2</sub>O (Salzer, A 194 28) Sol in 120 pts H<sub>2</sub>O at ord temp (Rammelsberg, J pr (2) 45 153 )  $I_{12}H_{\circ}P_{2}O_{6}+2H_{2}O$  Deliquescent

(Rammelsberg)

Magnesium hypophosphate, Mg<sub>2</sub>P<sub>2</sub>O<sub>6</sub>+  $12H_2O$ 

Sol in 15,000 pts H2O, sl sol in acetic, easily in hypophosphoric, or mineral acids (Salzer, A 232 114) +24H<sub>2</sub>O (Rammelsberg)

Magnesium hydrogen hypophosphate,  $MgH_2P_2O_6+4H_2O$ Sol in 200 pts H<sub>2</sub>O (Salzer, A 232 114)

Manganese hypophosphate,  $Mn_2P_2O_6+$ 21/2H2O

Insol in H<sub>2</sub>O, sol in mineral acids, insol in acetic acid (Palm, Dissertation, Rostock, **1890**)

Manganous potassium hydrogen hypophosphate,  $MnH_2P_2O_6$ ,  $K_2H_2P_2O_6+3H_2O_6$ Ppt (Bausa, Z anorg 1894, 6 150)

Manganous sodium hypophosphate,  $Mn_2P_2O_6$ , Na<sub>4</sub>P<sub>2</sub>O<sub>6</sub>+11H<sub>2</sub>O Insol in H<sub>2</sub>O, sol in mineral acids (Palm)

Nickel hypophosphate,  $N_{12}P_2O_6+12H_2O$ Insol in H<sub>2</sub>O Sol in dil acids (Diawe, B 21 3401)

Nickel potassium hypophosphate,  $N_1K_2P_2O_6+6H_2O$ Ppt (Bausa, Z anorg 1894, 6 155)

Nickel potassium hydrogen hypophosphate,  $N_1\ddot{H}_2P_2O_6 \ 3K_2\dot{H}_2P_2O_6 + 15\dot{H}_2O$ Ppt (Bausa, Z anorg 1894, 6 144)

Nickel sodium hypophosphate,  $N_1N_{a_2}P_2O_6+12H_2O$ 

Insol in  $H_2O$ , but decomp thereby Easily sol in dil acids (Drawe)

Potassium hypophosphate, K<sub>4</sub>P<sub>2</sub>O<sub>6</sub>+8H<sub>2</sub>O Sol in ½ pt H<sub>2</sub>O, insol in alcohol (Salzer, A **211** 1)

Potassium hydrogen hypophosphate, K<sub>3</sub>HP<sub>2</sub>O<sub>6</sub>+3H<sub>2</sub>O
Sol in ½ pt H<sub>2</sub>O (Salzer, A 211 1)

Potassium dihydrogen hypophosphate,  $K_2H_2P_2O_6+3H_2O$ , and  $+2H_2O$ Sol in 3 pts cold, and 1 pt boiling  $H_2O$ (Salzer, A 211 1)

Potassium trihydrogen hypophosphate,  $KH_3P_2O_6$ 

Sol in  $1\frac{1}{2}$  pts cold, and  $\frac{1}{2}$  pt hot  $H_2O$  (Salzer, A 211 1)

Potassium pentahydrogen dihypophosphate, K<sub>3</sub>H (P<sub>2</sub>O<sub>6</sub>)<sub>2</sub>+2H<sub>2</sub>O

Sol in 2½ pts cold, and <sup>4</sup>/<sub>5</sub> pt boiling
H<sub>2</sub>O (Salzer, A **211** 1)

Potassium sodium hypophosphate,  $Na_2K_2P_2O_6+9H_2O$ 

Sol in about 25 pts cold, and 3 pts hot H<sub>2</sub>O (Bausa, Z anorg 1894, 6 158)

Potassium zinc hydrogen hypophosphate, ZnH<sub>2</sub>P<sub>2</sub>O<sub>6</sub> 3K<sub>2</sub>H<sub>2</sub>P<sub>2</sub>O<sub>6</sub>+15H<sub>2</sub>O Ppt (Bausa, Z anorg 1894, 6 148)

Silver hypophosphate, Ag<sub>4</sub>P<sub>2</sub>O<sub>6</sub>
Sl sol in H<sub>2</sub>O Lasily sol in HNO<sub>3</sub>, or NH<sub>4</sub>OH+Aq Very sl sol in H<sub>4</sub>P<sub>2</sub>O<sub>6</sub>+Aq (Salzer, A 232 114)

Sodium hypophosphate,  $N_{\rm a4}P_2O_8+10H_2O$ Sol in about 30 pts cold, much more easily in hot  $H_2O$  (Silzer)

Sodium hydrogen hypophosphate,  $Na_3HP_2O_6$  +9II ()

Sol in 22 pts H<sub>2</sub>O (Salzer)

Sodium duhydrogen hypophosphate, N 12II 12(), +6H2O

Sol in 45 pts cold, and 5 pts boiling  $H_2O$  More sol in dil  $H_2SO_4+Aq$  Insol in alcohol (Salzer, A 187 331)

Sodium trihydrogen hypophosphate, NaH<sub>3</sub>P<sub>2</sub>O<sub>6</sub> Sol in H<sub>2</sub>O (Salzer, A 211 1)

Sodium trihydrogen dihypophosphate, Very efflorescent Sol in 15 pts cold H<sub>2</sub>O (Salzer, A **211** 1)

Thallium hypophosphate, Tl<sub>4</sub>P<sub>2</sub>O<sub>6</sub> Sl sol m H<sub>2</sub>O Decomp m sunlight (Joly, C R 1894, **118** 650)

Thallium hydrogen hypophosphate, Tl<sub>2</sub>H<sub>2</sub>P<sub>2</sub>O<sub>6</sub> Sol in H<sub>2</sub>O (Joly)

Zinc hypophosphate, Zn<sub>2</sub>P<sub>2</sub>O<sub>6</sub>+2H<sub>2</sub>O
Insol in H<sub>2</sub>O Easily sol in dil acids
(Drawe, B **21** 3403)

Hypophosphorosomolybidc acid

Barium hypophosphorosomolybdate, BaO, Mo<sub>7</sub>O<sub>20</sub>, 3H<sub>3</sub>PO<sub>2</sub>+12H<sub>2</sub>O Very sol in H<sub>2</sub>O and BaCl<sub>2</sub>+Aq (Mawrow, Z anorg 1902, 29 156)

Hypophosphorous acid, H<sub>3</sub>PO<sub>2</sub> Very sol in H<sub>2</sub>O and alcohol (Rose)

Aluminum hypophosphite

Not deliquescent, but very sol in  $H_2O$  (Rose, Pogg 12 86)

Ammonium hypophosphite, NH<sub>4</sub>H<sub>2</sub>PO<sub>2</sub>

Sol in H<sub>2</sub>O, less deliquescent than the potassium salt (Wurtz, A ch (3) 7 193) Very sol in absolute alcohol (Dulong) Moderately sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 826)
Insol in acetone (Eidmann, C C **1899**, II 1014, Naumann, B 1904, **37** 4328)

Barium hypophosphite, Ba(H<sub>2</sub>PO<sub>2</sub>)<sub>2</sub>+H<sub>2</sub>O Sol in 3 5 pts cold, and 3 pts boiling H<sub>2</sub>O Insol in alcohol (Wurtz, A 43 323)

Bismuth hypophosphite, Bi(H<sub>2</sub>PO<sub>2</sub>)<sub>3</sub>

Ppt (Vanino, J pr 1906, (2) **74** 150)

+H<sub>2</sub>O Sol in acid Bi(NO<sub>3</sub>)<sub>3</sub>+Aq
(Haga, Chem Soc 1895, **67** 229)

Cadmium hypophosphite
Sol in H<sub>2</sub>O (Rose, Pogg 12 91)

Calcium hypophosphite,  $Ca(PH \circ O_2)_2$ Sol in 6 pts cold, and not much more sol in hot  $H_2O$  Insol in strong, very sol in weak alcohol (Rose, Pogg 9 361)

Calcium cobaltous hypophosphite 2Ca(PH<sub>2</sub>O<sub>2</sub>)<sub>2</sub>, Co(PH<sub>2</sub>O<sub>2</sub>)<sub>2</sub>+2H<sub>2</sub>O Efflorescent (Rose, Pogg 12 295)

Calcium ferrous hypophosphite
Sol in H<sub>2</sub>O (Rose, Pogg 12 294)

Cerous hypophosphite, Ce(PH<sub>2</sub>O<sub>2</sub>)<sub>3</sub>+H<sub>2</sub>O
Sl sol in H<sub>2</sub>O (Rammelsberg, B A B
1872 437)

Chromium hypophosphite, Cr<sub>2</sub>(OH)<sub>2</sub>(H<sub>2</sub>PO<sub>2</sub>)<sub>4</sub>

Anhydrous Insol in H<sub>2</sub>O or dil acids

+3H<sub>2</sub>O Sol in H<sub>2</sub>O (Wurtz, A ch (3)

16 196)

Cobaltous hypophosphite,  $Co(PH_2O_2)_2 + 6H_2O$ Efflorescent Easily sol in  $H_2O$  (Rose,

Pogg 12 87)

Cupric hypophosphite, Cu(PH<sub>2</sub>O<sub>2</sub>)<sub>2</sub> Very sol in H<sub>2</sub>O, but very easily decomp on heating (Wurtz, A ch (3) **16** 199)

Glucinum hypophosphite

Sol in H<sub>2</sub>O (Rose, Pogg 12 86)

Iron (ferrous) hypophosphite, Fe(PH<sub>2</sub>O<sub>2</sub>)<sub>2</sub>+6H<sub>2</sub>O
Sol in H<sub>2</sub>O (Rose, Pogg 12 294)

Iron (ferric) hypophosphite

Difficultly sol in H<sub>2</sub>O or acids Decomp on boiling Sl sol in H<sub>3</sub>PO<sub>2</sub>+Aq (Rose)

Lead hypophosphite, Pb(PH<sub>2</sub>O<sub>2</sub>)<sub>2</sub>

Difficultly sol in cold, more easily in hot  $\rm H_2O$  Insol in alcohol (Rose, Pogg 12 288)

Lithium hypophosphite, LiH<sub>2</sub>PO<sub>2</sub>+H<sub>2</sub>O
Sol in H<sub>2</sub>O (Rammelsberg, B A B **1872** 416)

 $\begin{array}{ccc} \text{Magnesium} & \text{hypophosphite,} & Mg(PH_2O_2)_2 + \\ 6H_2O & \end{array}$ 

Efflorescent in dry air Sol in  $H_2O$  (Rose)

 $\begin{array}{ccc} \textbf{Manganous} & \textbf{hypophosphite,} & Mn(H_2PO_2)_2 + \\ & H_2O \end{array}$ 

Permanent Very sol in H<sub>2</sub>O (Wurtz, A ch (3) 16 195)

Mercurous hypophosphite nitrate, HgH<sub>2</sub>PO<sub>2</sub>, HgNO<sub>3</sub>+H<sub>2</sub>O

Sl sol in H<sub>2</sub>O with rapid decomp Sol in hot conc HNO<sub>3</sub> (Haga, Chem Soc 1895, **67** 227)

Nickel hypophosphite, Ni(PH<sub>2</sub>O<sub>2</sub>)<sub>2</sub>+6H<sub>2</sub>O Efflorescent Sol in H<sub>2</sub>O (Rammelsberg, B **5** 494)

Nickel hypophosphite ammonia, Ni(H PO<sub>2</sub>), 6NH<sub>3</sub> (Ephraim, B 1913, **46** 3111)

Platinous hypophosphite  $Pt(PH_2O_2)_2$ Insol in  $H_2O$ , HCl,  $H_2SO_4+Aq$ , etc. Sol in  $HNO_3+Aq$  Insol in alcohol (Engel, C R 91 1068) Potassium hypophosphite, KH<sub>2</sub>PO<sub>2</sub>

Very deliquescent Very sol in H<sub>2</sub>O sol in weak, less in absolute alcohol Insol in ether (Wurtz, A ch (3) 7 192) Sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828)

Sodium hypophosphite, NaH<sub>2</sub>PO<sub>2</sub>+H<sub>2</sub>O

Very deliquescent Somewhat less sol than the K salt Very sol in absolute alcohol (Dulong)

Very sol in H<sub>2</sub>O, and somewhat less sol in alcohol (Rammelsberg, B A B **1872** 412) Sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch. J 1898, **20** 829)

Strontium hypophosphite, Sr(PH<sub>2</sub>O<sub>2</sub>)<sub>2</sub> Very easily sol in H<sub>2</sub>O (Dulong) Insol in alcohol (Wurtz)

Thallous hypophosphite,  $TlH_2PO_2$ Sol in  $H_2O$  (Rammelsberg, B A B 1872 492)

Uranyl hypophosphite,  $UO_2(H_2PO_2)_2+H_2O$ Sl sol in  $H_2O$  Easily sol in HCl, or  $HNO_3+Aq$  (Rammelsberg, Chem Soc (2) 11 1)

D2vanadyl hypophosphite,  $V_2O_2(H_2PO_2)_4+2H_2O$ 

Insol in cold, sl sol in hot H<sub>2</sub>O Sol in hot dil HCl, H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub> and in warm cone HCl and H<sub>2</sub>SO<sub>4</sub> Insol in oxalic acid (Mawrow, Z anorg

1907, **55** 147)

Zinc hypophosphite, Zn(H<sub>2</sub>PO<sub>2</sub>)<sub>2</sub>+H<sub>2</sub>O
Sol in H<sub>2</sub>O
+6H<sub>2</sub>O Efflorescent (Wurtz, A ch (3)
16 195)

Zirconium hypophosphite, Zr(OPH<sub>2</sub>O)<sub>4</sub>+H<sub>2</sub>O Sensitive to light Insol in alcohol, by which it is pptd from aqueous solution (Hauser, Z anorg 1913, **84** 93)

Hypophosphotungstic acid

Potassium hypophosphotungstate,  $4K_2O$ ,  $6H_3PO_2$ ,  $18WO_3+7H_2O$ 

Precipitate Sol in hot, very sl sol in cold  $H_2O$  (Gibbs, Am Ch J 5 361)

Hyposulpharsemous acid

Hyposulpharsenites,  $As_2S_2$ ,  $M_2S$ Difficultly sol in  $H_2O$  (Berzelius) Do not exist (Nilson, B 4 989)

Hyposulphuric acid, H<sub>2</sub>S<sub>2</sub>O<sub>6</sub> See Dithionic acid

## Hyposulphurous acid, H<sub>2</sub>S<sub>2</sub>O<sub>3</sub> See Thiosulphuric acid

# Hyposulphurous (Hydrosulphurous) acid, H<sub>2</sub>SO<sub>2</sub>

Known only in dil aqueous solution, which decomposes rapidly

Correct formula is H<sub>2</sub>S<sub>2</sub>O<sub>4</sub>, according to Bernthsen (A **211** 285)

More sol in alcohol than in H<sub>2</sub>O (Rossler, Arch Pharm (3) **25** 845)

### Ammonium hyposulphite, (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>4</sub>

Known only in solution (Prudhomme, Bull Soc 1899, (3) 21 326)

#### Ammonium hydrogen hyposulphite, NH<sub>4</sub>HS<sub>2</sub>O<sub>4</sub>

Known only in solution (Prudhomme, Bull Soc 1899, (3) **21** 326)

Calcium hyposulphite, CaS<sub>2</sub>O<sub>4</sub>+1 5H<sub>2</sub>O Difficultly sol in H<sub>2</sub>O (Bazlen, B 1905, **38** 1059)

 $\label{eq:magnesium hyposulphite, MgS2O4} \mbox{(Billy, C} \ \ R \ \ 1905, \ \mbox{140} \ \ 936 \ )$ 

Potassium hyposulphite, K<sub>2</sub>S<sub>2</sub>O<sub>4</sub>+3H<sub>2</sub>O
Easily decomp

Insol in alcohol (Bazlen, B 1905, **38** 1058)

# Sodium hyposulphite, Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>

Anhydrous Stable in dry air (Bazlen, B 1905, **38** 1061)

100 g H<sub>2</sub>O dissolve 24 1 g of the anhydrous salt at 20° (Jellinek Z anorg 1911, **70** 130) +2H<sub>2</sub>O Solubility in H<sub>2</sub>O

+2H<sub>2</sub>O Solubility in H<sub>2</sub>O

11 6 g of the solution contain at
20° 1 91 g Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>
10° 1 67 g
1° 1 49 g

(Jellinek, Z anorg 1911, **70** 128)

Insolution (Bazzon B 1905 3

Insol in alcohol (Bazlen, B 1905, 38 1058)

Sodium zinc hyposulphite, Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>, ZnS<sub>2</sub>O<sub>4</sub> Less sol in H<sub>2</sub>O than ZnS<sub>2</sub>O<sub>4</sub> (Bazlen, B 1905, **38** 1060)

Strontium hyposulphite, SrS<sub>2</sub>O<sub>4</sub>
Sol in H<sub>2</sub>O (Moissan, C R 1902, **135** 653)

Zinc hyposulphite, ZnS<sub>2</sub>O<sub>4</sub>

Easily sol in  $H_2O$ , about 1 pt in 7 pts  $H_2O$  Forms supersat solutions readily (Bazlen, B 1905, **38** 1060)

Hypovanadic acid, V<sub>2</sub>O<sub>2</sub>(OH)<sub>4</sub> See Vanadium tetrhydroxide Hypovanadic acid, H<sub>2</sub>V<sub>4</sub>O<sub>9</sub> See Vanadous acid

Hypovanadic acid with vanadic acid See Vanadicovanadic acid

Imidodimetaarsenic acid

Ammonium imidodimetaaresenate, (NH<sub>4</sub>O<sub>2</sub>As<sub>2</sub>O<sub>3</sub>NH

(Rosenheim and Jacobsohn, Z anorg 1906, **50** 307)

#### Imidochromic acid

#### Ammonium imidochromate, NHCrO(ONH<sub>4</sub>)<sub>2</sub>

Very sol in  $H_2O$  with decomp (Rosenheim and Jacobsohn, Z anorg 1906, 50 299)

# Ammonium potassium imidochromate, NH<sub>4</sub>KCrO<sub>8</sub>NH

Decomp on solution in H<sub>2</sub>O (Rosenheim, Z anorg 1906, **50** 302)

#### Imidodiimidochromic acid

#### Ammonium imidodiimido chromate, NH[CrO(NH)ONH<sub>4</sub>]<sub>2</sub>

(Rosenheim and Jacobsohn, Z anorg 1906, 50 303)

#### Imidomolybdic acid

Potassium imidomolybdate, NKMoO(OK)<sub>2</sub>

Unstable in air Very hygroscopic Very sol in H<sub>2</sub>O (Rosenheim, 7 anorg 1906, **50** 305)

# Dumidodiphosphormonamic acid,

$$HO-PO < NH > PO-NH_2$$

Correct formula for pyrophosphotramic acid of Gludstone (Monte, A 248 241)

# Imidodiphosphoric acid,

$$HO-PO < (1) > PO-OH$$

Correct name for pyrophosphamic acid (Mente, A 248 251)

Barium imidoliphosphate, Ba $\begin{pmatrix} 0 > P0 \\ 0 > P0 \end{pmatrix}$ NH

Sl sol in H<sub>2</sub>O (Mente, A 248 243)

Barium imidodiphosphate, basic,

 $^{2
m H_2O}_{
m Ppt}$  (Mente )

#### Ferric imidodiphosphate

Sl sol in conc acids (Mente, A 248 241)

# Silver imidod2phosphate, Ag3H2P2NO6

Insol in H<sub>2</sub>O (Stokes, Am Ch J 1896, **18** 660)

Ag4HP2NO6 Ppt (Stokes)

# Dumidodiphosphoric acid,

HO-PO<NH>PO-OH

Correct name for pyrophosphodiamic acid (Mente, A 248 241)

# Barium dimidodiphosphate,

$$NH < PO > NHO > Ba$$
SI sol in dil acids

(Mente, A 248 244)

# Sodium diimidodiphosphate, basic,

$$NaN < PO > NH$$
 $ONa$ 

Sl sol in H<sub>2</sub>O (Mente, A 248 245)

# Dumidotriphosphoric acid

# Silver dumidotriphosphate, Ag<sub>8</sub>H<sub>4</sub>P<sub>3</sub>N<sub>2</sub>O<sub>8</sub>

Insol in H<sub>2</sub>O Very sol in NH<sub>4</sub>OH+Aq Rather sl sol in dil HNO<sub>3</sub> (Stokes, Am

Ch J 1896, 18 657)
Ag<sub>5</sub>H<sub>2</sub>P<sub>3</sub>N<sub>2</sub>O<sub>8</sub> Insol in H<sub>2</sub>O Very sol in PA+HOHHA

Decomp by HNO<sub>3</sub> (Stokes)

# $Tr_i$ sodium $d_i$ imido $tr_i$ phosphate,

P<sub>3</sub>N<sub>2</sub>O<sub>8</sub>H<sub>4</sub>Na<sub>3</sub>

Sol in H<sub>2</sub>O

Insol in alcohol (Stokes)

# Trumidotetraphosphoric acid

# Silver trumidotetraphosphate

Ag4H5P4N8O10

Ppt (Stokes, Am Ch J 1898, 20 755)

# Sodium trimidotetraphosphate,

P4N3O10H5Na4

Easily sol in H2O, insol in sodium acetate solution and dil alcohol (Stokes, Am Ch J 1898, 20 754)

# Imidosulphamide, NH<sub>2</sub> SO<sub>2</sub> NH SO<sub>2</sub> NH<sub>2</sub>

"Sulphamide" of Traube

Very sol in H2O with decomp appreciably sol in cold, easily sol in hot methyl and ethyl alcohol Insol in C<sub>6</sub>H<sub>6</sub>, and CHCl<sub>3</sub> SI sol in ether, cold and hot acetic ether and glacial acetic acid Moderately stable toward alkalıes (Hantzsch and Stuer, B 1905, 38 1022)

# Ammonium imidosulphamide, NH<sub>4</sub>S<sub>2</sub>O<sub>4</sub>N<sub>3</sub>H<sub>4</sub>

(Hantzch and Stuer)

Ammondisulphonic acid of Claus Known only in aqueous solution (Divers and Haga. Chem Soc 61 943)

Very unstable (Berglund, B 9 252)

#### Ammonium imidosulphonate, basic, $(NH_4)N(SO_3NH_4)_2$

Sol in 9 pts of H<sub>2</sub>O Solution is stable

Insol in alcohol Sl sol in warm conc H2SO4 without decomp (Rose, Pogg 1834, 32 81)

Much less sol than the neutral salt (Berg-

lund, B 9 255)
="Parasulphatammon"

 $+H_2O$ Gradually efflorescent Sol in H<sub>2</sub>O with subsequent decomp (Divers and Haga )

#### Ammonium imidesulphonate, HN(SO<sub>3</sub>NH<sub>4</sub>)<sub>2</sub> Sol in H<sub>2</sub>O (Raschig, A 241 161)

#### Ammonium barium imidosulphonate, $NH_4BaN(SO_8)_2(?)$

Very sl sol in H<sub>2</sub>O (Divers and Haga)  $(NH_4)_2Ba_5N_4(SO_3)_8+8H_2O$  (D and H)

#### Ammonium calcium imidosulphonate (Divers, Chem Soc 1892, 61 968)

# Ammonium sodium imidosulphonate,

 $NH_4Na_5N_2(SO_3)_4+7H_2O$ , and  $2\frac{1}{2}H_2O$ Very sl sol in NH<sub>4</sub>OH+Aq (Divers and Haga)

#### Ammonium sodium imidosulphonate nitrate. HN(SO<sub>3</sub>NH<sub>4</sub>)<sub>2</sub>, NaNO<sub>3</sub>

Very sol in H<sub>2</sub>O (Divers and Haga)

#### Barium imidosulphonate, Ba[N(SO<sub>3</sub>)<sub>2</sub>Ba]<sub>2</sub>+ $5H_2O$

Sl sol in H<sub>2</sub>O (Berglund, B 9 255) Sol in dil\_HNO<sub>3</sub>+Aq without decomp

(Divers and Haga) HN(SO<sub>3</sub>)<sub>2</sub>Ba+H<sub>2</sub>O Moderately sol in  $H_2O$  (D and H)

#### Barium mercury imidosulphonate, $N_2Hg(SO_3)_4Ba_2$

Almost insol in cold H2O (Divers and Haga, Chem Soc 1892, **61** 977)

#### Barium sodium imidosulphonate, $Ba_{11}Na_8N_{10}(SO_3)_{20}+13H_2O$

Sparingly sol in H<sub>2</sub>O Readily sol in HNO<sub>3</sub> or HCl (Divers, Chem Soc 1892, 61 967)

Calcium imidosulphonate, Ca[N(SO<sub>3</sub>)<sub>2</sub>Ca]<sub>2</sub>+ | Potassium imidosulphonate, HN(SO<sub>3</sub>K)<sub>2</sub>  $6H_2O$ 

SI sol in  $H_2O$  (Berglund)

Calcium mercury imidosulphonate,  $N_2$ Hg[(SO<sub>8</sub>)<sub>2</sub>Ca]<sub>2</sub>

Very sol in H<sub>2</sub>O (Divers and Haga, Chem Soc 1896, 69 1629)

Calcium mercury imidosulphonate chloride,  $(NS_2O_6Ca)_3Hg_2Cl+12H_2O$ 

Decomp by H<sub>2</sub>O (Divers and Haga, Chem Soc 1896, 69 1629)

Calcium sodium imidosulphonate,  $NaN(SO_8)_2Ca + 3H_2O$ 

Sl sol in cold H<sub>2</sub>O (Divers and Haga, Chem Soc 61 968)

Lead imidosulphonate, (PbOHSO<sub>3</sub>)<sub>2</sub>NPbOH

Ppt (Berglund) Insol in H<sub>2</sub>O (Divers and Haga) (PbOH)<sub>3</sub>N(SO<sub>3</sub>)<sub>2</sub>, PbO Insol in H<sub>2</sub>O, easily sol in dil HNO<sub>3</sub>+Aq (D and H)

Mercurous imidosulphonate, basic,  $[Hg_2N(SO_3)_2Hg_2]_2O+6H_2O$ 

Much more sol in dil HNO3 than mer-Sol in cold cone KI+Aq, leaving half Hg as metal (Divers and Haga, Chem Soc 1896, 69 1631)

Mercuric imidosulphonate, basic, NH(SO<sub>3</sub>, HgO)<sub>2</sub>Hg

Easily decomp (Divers and Haga)

Mercuromercuric imidosulphonate,  $[Hg^{II}N(SO_3)_2Hg_2^I]O+3H_2O$ 

(Divers and High)  $\Pi_{\subseteq} \Pi \setminus \langle \cdot \rangle = \Pi_{\subseteq} \langle \cdot \rangle, \quad [\Pi_{g_2}^1 N(S()_3)_2 H g_2, \quad \cdot \rangle$ HgIIN(SO3)2Hg 10+6H O (Divers Haga)

Mercury sodium imidosulphonate, basic,  $Hg_2ON(SO_3) N_1+2H_2O$ 

Decomp by long Slightly efflorescent washing with HO Much more readily sol in HCl th in in HNO; or H2SO4 and is wholly decomp thereby (Divers and High, Chem Soc 1892, **61** 983)

Mercury sodium imidosulphonate,  $HgN_2(SO_3N_4)_4+6H_2O_3$ 

Spuringly sol in cold H O

Readily sol in HNO3 and in HCl Decomp by HCl immediately, but not by HNO<sub>3</sub> (Divers and Haga, Chem Soc 1892, 61 951)

Potassium imidosulphonate, basic,  $KN(SO_3K)_2+H_2O$ 

Sol in H<sub>2</sub>O (Raschig, A 241 161) Less sol than neutral salt (Berglund)

Sol in H<sub>2</sub>O (Raschig, A 241 161) = Potassium ammond sulphonate of Claus
Difficultly sol in cold H<sub>2</sub>O, sol in 64 pts
H<sub>2</sub>O at 23° (Fremy) Gradually decomp
by boiling (Claus)

Sl sol in H<sub>2</sub>O (Berglund, B 9 255)

Potassium mercury imidosulphonate,  $N_2Hg(SO_3K)_4+4H_2O$ See Mercurimidosulphonic acid.

Silver imidosulphonate, AgN(SO<sub>3</sub>Ag)<sub>2</sub> SI sol in H<sub>2</sub>O (Berglund)

Silver sodium imidosulphonate,  $NaN(SO_8Ag)_2$ 

Sl sol in H<sub>2</sub>O (Divers and Haga)  $AgNa_2N(SO_3)_2$  Sl sol in  $H_2O$ , but more sol than the two preceding salts (D and H)

Sodium imidosulphonate, HN(SO<sub>3</sub>Na)<sub>2</sub>+  $2H_2O$ 

Not efflorescent Very sol in H<sub>2</sub>O (Diver and Haga)

NaN(SO<sub>3</sub>Na)<sub>2</sub>+12H<sub>2</sub>O Efflorescent sol in cold H<sub>2</sub>O, but very sol in hot H<sub>2</sub>O Sol in 54 pts H<sub>2</sub>O at 275° (Divers and Haga)

Sodium strontium imidosulphonate,  $SrNaNS_2O_6+3H_2O$ 

Sl sol in  $H_2O$ (Divers, Chem Soc 1896, 69 1625)

Strontium imidosulphonate,

 $Sr[N(SO_3)_2Sr]_2+6H_2O$ Sl sol in H<sub>2</sub>O (Berglund)

+12H<sub>2</sub>O Somewhat sol in hot H<sub>2</sub>O (Divers, Chem Soc 1896, 69 1623)

Imidotrisulphoorthophosphoric acid, NH P(SH)<sub>3</sub>

Insol in CS<sub>2</sub> and readily decomp by H<sub>2</sub>O (Stock, B 1906, 39 1991)

Ammonium imidotrisulphooithophosphate,  $NIIP(SNH_4)_3$ 

Very hydroscopic Loses NH<sub>3</sub> in the air Somewhat sol in liquid NH<sub>3</sub>

Decomp by any other solvent in which it is sol (Stock, B 1906, 39 1983)

Diammonium hydrogen imidotrisulphoorthophosphate, SHP(SNH<sub>4</sub>)<sub>2</sub>NH (Stock, B 1906, 39 1983)

Ammonium dihydrogen —— SNH<sub>4</sub>P(SH)<sub>2</sub>NH

(Stock)

Disodium hydrogen imidotrisulphcorthophosphate, SHP(SNa)2NH

Very easily sol in H<sub>2</sub>O Decomp by H<sub>2</sub>O Somewhat sol in methyl and ethyl alcohol (Stock)

Dumidopentasulphopyrophosphoric acid, PoS5NoH6

(Stock, B Not known in pure state 1906, **39** 1967)

Ammonium diimidopentasulphopyrophosphate,  $S[P(SNH_4)_2NH]_2$ 

Very hydroscopic Sol in cold H<sub>2</sub>O with decomp (Stock, B 1906, **39** 1978)

#### Inidosulphurous acid

Ammonium imidosulphite, HN(SO<sub>2</sub>NH<sub>4</sub>)<sub>2</sub>

Somewhat deliquescent

Very unstable Easily sol in H<sub>2</sub>O with decomp into thiosulphate and amidosulphate

Insol in alcohol (Divers and Ogawa, Chem Soc 1901, 79 1100)

Ammonium barium imidosulphite, Ba(SO<sub>2</sub>NHSO<sub>2</sub>NH<sub>4</sub>)<sub>2</sub>

(Divers, Chem Soc 1901,  $H_2O$ 

Potassium imidosulphite, NH(SO<sub>2</sub>K)<sub>2</sub>

(Divers and Owaga, Proc Chem Soc 1900, 16 113)

Very sol in H<sub>2</sub>O (Divers, Chem Soc 1901, **79** 1101)

Imidosulphuryl amide,  $S_2O_4N_8H_5 =$ 

SO<sub>2</sub> < NH<sub>2</sub>  $\widetilde{SO}_2 < \widetilde{NH}_2$ 

Sol in NH<sub>4</sub>OH+Aq Decomp by conc HCl Insol in alcohol sat with NH3 (Mente, A 248 265)

#### Indic acid

Magnesium indate, MgIn<sub>2</sub>O<sub>4</sub>+3H<sub>2</sub>O

Insol in H<sub>2</sub>O Sol in HCl+Aq (Renz, B 1901, 34 2764)

#### Indium, In

Does not decomp hot H<sub>2</sub>O Sol in dil HCl, and H<sub>2</sub>SO<sub>4</sub>+Aq Decomp by conc H2SO4 Easily sol in HNO3+Aq Insol in acetic acid Insol in KOH+Aq (Winkler, J pr 102 273)

Insol in liquid NH<sub>8</sub> (Gore, Am Ch J

1898, **20** 830 ) ½ ccm oleic acid dissolves 0 0039 g In in 6 days (Gates, J phys Chem 1911, 15 143)

Indium monobromide, InBr

Decomp by hot H<sub>2</sub>O Easily sol in acids Easily sol in cold cone HCl (Thiel, Z anorg 1904, 40 328)

Indium dibromide, InBr<sub>2</sub>

Decomp by hot H<sub>2</sub>Q Easily sol in acids (Thiel, Z anorg 1904, 40 329)

Indium tribromide, InBra

Deliquescent Very sol in H<sub>2</sub>O

Indium monochleride, InCl

Deliquescent Decomp by H2O into InCla and In (Nilson and Pettersson, Chem Soc **43** 820)

Indium dichloride, InCl2

Deliquescent in moist air, decomp by H2O into InCl<sub>3</sub> and In (Nilson and Pettersson. Chem Soc 43 818)

Indium trichloride, InCla

Very deliquescent, sol in H<sub>2</sub>O with hissing and great evolution of heat

Indium lithium chloride

Extremely deliquescent Sol in H<sub>2</sub>O (Meyer, A 150 144)

Indium potassium chloride, 3KCl, InCl<sub>8</sub>+ 11⁄4H₂O

Easily sol in H<sub>2</sub>O (Meyer)

Indium trifluoride, InF3+3H2O

(Thiel, B Sol in H<sub>2</sub>O, readily decomp

1904, **37** 175) 1 1 H<sub>2</sub>O dissolves 86 4 g at 25° Decomp on boiling (Thiel, Z anorg 1904, 40 331) +9H<sub>2</sub>O Sl sol in cold H<sub>2</sub>O

Sol in HCl and in HNO3

Insol in alcohol and ether (Chabrié, C R 1905, 140 90)

Indium hydrosulphide

Decomp by acids (Meyer)

Indium hydroxide, In<sub>2</sub>O<sub>6</sub>H<sub>6</sub>

Sol in acids, also in KOH, or NaOH+Aq but the solution clouds up on standing or boiling, with separation of In<sub>2</sub>O<sub>6</sub>H<sub>6</sub> Insol in NH4OH, or NH4Cl+Aq

Sl sol in NH<sub>4</sub>OH+Aq (Renz, B 1904, 37

Sl sol in alkylamines but completely ppt by addition of the hydrochloride of the base (Renz, B 1903, **36** 2754)

#### Indium monoiodide, InI

Slowly decomp in moist air Not attacked by boiling H<sub>2</sub>O

Sol in dil HNO; in presence of AgNO; Very slowly sol in cold, more rapidly sol in hot acids with evolution of H<sub>2</sub> Very sol in sulphurous acid Insol in alcohol ether and chloroform (Thiel, Z anorg 1910, 66 302)

Indium diodide, InI<sub>2</sub> (Thiel, Z anorg 1910, 66 302)

Indium triodide, InI<sub>3</sub>

Deliquescent (Meyer) Sol in CHCl<sub>3</sub> (Decomp by xylene (Thiel, Z anorg 1904, 40 330)

Indium nitride, InN

Decomp by heat (Franz Fischer, B 1910, **43** 1469)

Indium monoxide, InO

Gradually sol in HCl+Aq (Winkler, J pr **94** 1)

Indium sesquioxide, In<sub>2</sub>O<sub>3</sub>

Slowly sol in cold, easily in hot acids Four modifications

(1) Yellow Amorphous Sol in acids Its hydroxide is insol in ammonia and NH<sub>4</sub>Cl Amorphous Insol in acids

(2) White Amorphous (3) White Amorphous Sol in acids Its hydroxide is sol in ammonia, but pptd by NH<sub>4</sub>Cl

(4) Crystallized Crystalline modification is insol in acids (Renz, B 1904, 37 2112) Insol in liquid NH<sub>3</sub> (Gore, Am Ch J **1898**, **20** 830)

Indium oxide,  $In_7O_9 = 3InO$ ,  $2In_2O_3$  (?) (Winkler)  $In_4O_5 = 2InO$ ,  $In_2O_3$  (?) (Winkler)

Indium oxybromide (?)

Not decomp by hot reids or alkalies (Meyer, A 150 137)

Indium oxychloride, InOCl

Very sl sol in H<sub>2</sub>O (Thicl, B 1904, 37

Very sl sol in cold or hot dil acids Quickly sol in hot cone ands (Thiel, Z anorg 1904, 40 327)

Indium triselenide, In Sei

Sol in strong acids with evolution of H<sub>2</sub>Se (Thiel, Z anorg 1910, 66 315)

Dundium sulphide, In<sub>2</sub>S

Sol in acids (Thiel, Z inorg 1904, 40 326)

Indium monosulphide, InS

Easily sol in HCl with evolution of H<sub>2</sub>S nitrogen (Thiel, Z anorg 1910, 66 314) 12 No 6)

Indium sesquisulphide, In<sub>2</sub>S<sub>3</sub> Partially sol in (NH<sub>4</sub>)<sub>2</sub>S+Aq

Indium potassium sulphide, In<sub>2</sub>S<sub>8</sub>, K<sub>2</sub>S Insol in  $\rm H_2O$ , decomp by weak acids with separation of  $\rm In_2S_3$ , sol in conc acids (Schneider, J pr (2) 9 209)

Indium silver sulphide, In<sub>2</sub>S<sub>3</sub>, Ag<sub>2</sub>S Insol in  $H_2O$  (Schneider, l c)

Indium sodium sulphide, In<sub>2</sub>S<sub>3</sub>, Na<sub>2</sub>S+2H<sub>2</sub>O Insol in  $H_2O$  (Schneider, l c)

Indium monotelluride, InTe Sol in HNO<sub>3</sub>, insol in HCl+Aq (Thiel. Z anorg 1910, 66 318)

Infusible white precipitate

Duodamıne, NHI<sub>2</sub> Decomp by H<sub>2</sub>O

Iodammonium iodide, NIH3I

Decomp by  $\mathrm{H_2O}$ , caustic alkalies, and acids Sol in  $\mathrm{KI} + \mathrm{Aq}$ , alcohol, ether  $\mathrm{CS_2}$ ,  $\mathrm{CHCl_2}$  (Guthrie, Chem Soc (2) 1 239)

Iodauric acid, HAuI4 (?) Not known with certainty

Ammonium iodaurate

Deliquescent Decomp by H<sub>2</sub>O (Johnston, Phil Mag (3) 9 266)

Barium iodaurate Sol in BaI<sub>2</sub>+Aq

Cæsium iodaurate, CsAuI4 (Gupta, J Am Chem Soc 1914, 36 748)

Ferrous iodaurate

Sol in H<sub>2</sub>O (Johnston)

Potassium iodaurate, KAul4 Decomp by H<sub>2</sub>O Sol in KI, and HI+A (Johnston)

Sodium iodaurate

Very deliquescent (Johnston)

Iodauricyanhydric acid, HAu(CN)<sub>2</sub>I Known only in its salts

Barium iodauricyanide,  $Ba[Au(CN)_2I_2]_2+$  $10H_{\bullet}O$ 

SI sol in cold, easily in hot H<sub>2</sub>O Easily Sol in HNO<sub>3</sub> with evolution of oxides of sol in alcohol (Lindborn, Lund Univ Arsk

Calcium iodauricyanide, Ca[Au(CN)<sub>2</sub>I<sub>2</sub>]<sub>2</sub>+ 10H₂O

Not stable (L)

#### Cobalt iodauricyanide, Co[Au(CN)<sub>2</sub>I<sub>2</sub>]<sub>2</sub>+ $10H_2O$

Most insol of all iodauricyanides, and only sl sol in warm H<sub>2</sub>O Easily sol in alcohol

Potassium iodauricyanide, KAu(CN)<sub>2</sub>I<sub>2</sub>+  $H_{2}O$ 

Sl sol in cold, easily sol in warm H<sub>2</sub>O and alcohol (L)

Strontium iodauricyanide, Sr[Au(CN)<sub>2</sub>I<sub>2</sub>]<sub>2</sub>+ 10H<sub>2</sub>O

Sl sol in cold, more easily in hot H<sub>2</sub>O

#### Iodhydric Acid, HI

Very easily and quickly absorbed by  $H_2O$ , with evolution of much heat

Solution is decomp on exposure to the air 1 vol H<sub>2</sub>O absorbs 450 vols HI at 10° (Thomson)

I vol H<sub>2</sub>O absorbs 425 vols HI at 10°

(Berthelot, C R 76 679)

Weak or strong solutions when boiled in an atmosphere of H leave a residue of constant composition, which distils unchanged at 126° (de Luynes), at 127° (Roscoe, Chem Soc 13 146, Naumann, Topsoe), at 128° (Bineau, A ch (3) 7 266), and has a sp gr of 1 67 (Naumann), of 1 70 (Bineau, de Luynes), of 1 708 (Topsoe), and contains 56 26 % HI (Bineau), 57 0% HI (Roscoe), 57 75% HI (Topsoe)

By conducting dry H gas through the aqueous solution of HI, a constant residue is obtained, containing 60 3-60 7% HI if temp is 15-19°, and 58 2-58 5% HI if temp is

100° (Roscoe)

Solubility of HI in H2O at to

| t                                                                           | % HI                                                                         | Solid Phase                                                                                    |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| -10<br>-20<br>-30<br>-40<br>-50<br>-60<br>-70<br>-80<br>-60<br>-40<br>-35 5 | 20 3<br>29 3<br>35 1<br>39<br>42<br>44 4<br>46 2<br>47 9<br>52 6<br>59<br>64 | Ice  ""  ""  ""  Ice+HI, 4H <sub>2</sub> O  HI, 4H <sub>2</sub> O  ""                          |
| -40<br>-49                                                                  | 65 5<br>66 3                                                                 | ",<br>HI, 4H <sub>2</sub> O+HI, 3H <sub>2</sub> O                                              |
| -48<br>-56<br>-52                                                           | 70 3<br>73 5<br>74                                                           | HI, 3H <sub>2</sub> O<br>HI, 3H <sub>2</sub> O +HI, 2H <sub>2</sub> O<br>HI, 2H <sub>2</sub> O |
|                                                                             |                                                                              |                                                                                                |

(Pickering, B 1893, **26** 2307)

Solution in  $H_2O$  sat at 0° has sp gr = 1 99 (de Luynes, A ch (4) 2 385), 20 (Vigier)

Sp gr of HI+Aq

(Topsoe, B 3 403)

| Sp gr of H1+Aq at 15°                                                                           |                                                                                                                                                                         |                                                                                                          |                                                                                                                                                                         |                                                                                                          |                                                                                                                                              |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| % HI                                                                                            | Sp gr                                                                                                                                                                   | % HI                                                                                                     | Sp gr                                                                                                                                                                   | % HI                                                                                                     | Sp gr                                                                                                                                        |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 1 008<br>1 015<br>1 022<br>1 029<br>1 037<br>1 045<br>1 053<br>1 061<br>1 069<br>1 077<br>1 085<br>1 093<br>1 102<br>1 110<br>1 118<br>1 127<br>1 137<br>1 146<br>1 155 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 | 1 175<br>1 185<br>1 195<br>1 205<br>1 216<br>1 227<br>1 238<br>1 249<br>1 260<br>1 271<br>1 283<br>1 295<br>1 307<br>1 320<br>1 333<br>1 346<br>1 359<br>1 359<br>1 386 | 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58 | 1 414<br>1 429<br>1 444<br>1 459<br>1 475<br>1 491<br>1 508<br>1 525<br>1 543<br>1 561<br>1 579<br>1 694<br>1 654<br>1 674<br>1 694<br>1 713 |
| 20                                                                                              | 1 165                                                                                                                                                                   | 40                                                                                                       | 1 400                                                                                                                                                                   |                                                                                                          |                                                                                                                                              |

(Topsoe, calculated by Gerlach, Z anal 27 316)

Sp gr of HI+Ag at 15°

| % ні                | Sp gr                            | % HI                 | qp gr                            | % HI           | Sp gr                   |
|---------------------|----------------------------------|----------------------|----------------------------------|----------------|-------------------------|
| 5<br>10<br>15<br>20 | 1 045<br>1 091<br>1 138<br>1 187 | 25<br>30<br>35<br>40 | 1 239<br>1 296<br>1 361<br>1 438 | 45<br>50<br>52 | 1 533<br>1 650<br>1 700 |

Only a "moderate degree of accuracy" is claimed for this table (Wright, C N 23 253)

+2H<sub>2</sub>OMpt-43° (Pickering, B 1893, 26 2308)

+3H₂Ó

Mpt —48° (Pickering) Mpt —36 5° (Pickerin  $+4H_2O$ (Pickering)

#### Iodic acid, HIO3

Very sol in H<sub>2</sub>O and alcohol

100 g H<sub>2</sub>O dissolve 286 1 g HIO<sub>8</sub> at 13 5° Sp gr of  $HIO_3 + Aq = 24256$ 100 g H<sub>2</sub>O dissolve 293 g HIO; at 18°

Sp gr of  $HIO_8 + Aq = 24711$ (Groschuff, Z anorg 1905, 47 337)

## Solubility of HIO<sub>3</sub> in H<sub>2</sub>O at t°

| Solid phase                                                                  | t°                | G HIO3 in<br>100 g of the<br>solution                                                                                                                             | G I <sub>2</sub> O <sub>5</sub> in<br>100 g of the<br>solution                                                                                                    |
|------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1ce '' '' '' '' '' '' '' '' HIO <sub>3</sub> +HI <sub>3</sub> O <sub>8</sub> |                   | 1 78<br>4 35<br>7 17<br>17 66<br>27 65<br>54 19<br>60 72<br>71 04<br>72 2<br>73 8<br>76 2<br>72 8<br>74 1<br>75 6<br>77 7<br>80 0<br>82 5<br>83 0<br>85 2<br>86 5 | 1 69<br>4 13<br>6 81<br>16 75<br>26 22<br>51 42<br>57 61<br>67 40<br>68 5<br>70 0<br>72 3<br>69 1<br>70 3<br>71 7<br>73 7<br>75 9<br>78 3<br>78 7<br>80 8<br>82 1 |
| HI <sub>3</sub> () <sub>8</sub>                                              | 125<br>140<br>160 | 87 2<br>88 3<br>90 5                                                                                                                                              | 82 7<br>83 8<br>85 9                                                                                                                                              |
|                                                                              | 100               | , ,,,                                                                                                                                                             | 1 000                                                                                                                                                             |

(Groschuff, L anorg 1905, 47 343)

Sat solution has sp gr 2842 at 125°, and boils at 104° (Ditte, B 6 1533) Sat solution has sp gr 2 1629 (1 874 pts  $1_2O_5$  in 1 pt  $H_2O$ ) at 13°, and boils at  $100^\circ$  (Kammerer, Pogg 138 400)

Sp gr of HIO<sub>3</sub>+Aq at 15°

| % I <sub>2</sub> O <sub>5</sub> | Sp gr  | % I <sub>2</sub> O <sub>5</sub> | Sp gr  |
|---------------------------------|--------|---------------------------------|--------|
| 1                               | 1 0053 | 35                              | 1 4428 |
| 5                               | 1 0263 | 40                              | 1 5371 |
| 10                              | 1 0525 | 45                              | 1 6315 |
| 15                              | 1 1223 | 50                              | 1 7356 |
| 20                              | 1 2093 | 55                              | 1 8689 |
| 25                              | 1 2773 | 60                              | 1 9954 |
| 30                              | 1 3484 | 65                              | 2 1269 |

(Kammerer)

According to Thomsen (B 7 71) solutions of HIO2 have sp gr

> $HIO_8 + 10H_2O = 16609$  $HIO_8 + 20H_2O = 13660$  $HIO_8 + 40H_2O = 11945$

 $HIO_8 + 80H_2O = 11004$  $HIO_3 + 160H_2O = 10512$ 

 $HIO_3 + 320H_2O = 10258$ 

H<sub>2</sub>SO<sub>4</sub> at nearly boiling temp dissolves <sup>1</sup>/<sub>8</sub> its weight of iodic acid (Millon)

Solubility in HNO<sub>3</sub> containing 27 73% HNO<sub>3</sub> 100 g of the sat solution contain at  $20^{\circ}$   $40^{\circ}$   $60^{\circ}$ 60° 18 21 27 38 g HIO<sub>2</sub>

Solubility in HNO<sub>3</sub> containing 40 88% HNO<sub>3</sub> 100 g of the sat solution contain at 0° 20° 40° 60° 10 18 g HIO<sub>3</sub> 14 (Groschuff, Z anorg 1905, 47 344)

Less sol in HNO<sub>3</sub> than H<sub>2</sub>O, nearly insol in anhydrous HNO<sub>3</sub> (Groschuff, Z anorg 1905, 47 347)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 830)

Unattacked and undissolved by liquid NO<sub>2</sub> (Frankland, Chem Soc 1901, 79 1362) Insol in absolute alcohol Alcohol of 35° B dissolves half its weight in HIO<sub>2</sub> (Kam-

merer) +4½H2O (Grosschuff, Z morg 1905, HIO, IO

# **47** 313) Iodates

I he alkalı iodates are sol in  $H_2O$ , the others un sl sol or insol therein

Aluminum iodate,  $Al(IO_8)_8$  (?) Deliquescent (Berzelius)

#### Ammonium iodate, NH<sub>4</sub>IO<sub>3</sub>

Sol in 38 5 pts H<sub>2</sub>O at 15°, Sl sol in H<sub>2</sub>O 69 pts at 100° (Rammelsberg, Pogg 44 555)

| of NH <sub>4</sub> IO <sub>8</sub> in HIO <sub>8</sub> +Aq at 30° |                                                                       |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| VH4IO3<br>1 the<br>lution                                         | Solid phase                                                           |  |  |
| 20<br>89                                                          | NH <sub>4</sub> IO <sub>8</sub>                                       |  |  |
| 83                                                                | NH4IO8+NH4IO8, 2HIO8                                                  |  |  |
| 86<br>75                                                          | "                                                                     |  |  |
| 53                                                                | NH4IO3, 2HIO3                                                         |  |  |
| 94                                                                | "                                                                     |  |  |
| 09                                                                | "                                                                     |  |  |
| 1 89                                                              | "                                                                     |  |  |
| 62                                                                | "                                                                     |  |  |
| ) 41                                                              | "                                                                     |  |  |
| 39                                                                | "                                                                     |  |  |
| ) 37                                                              | "                                                                     |  |  |
| 31                                                                | NH <sub>4</sub> IO <sub>3</sub> , 2HIO <sub>3</sub> +HIO <sub>3</sub> |  |  |

irg, Z anorg 1905, 45 341)

HIO:

Ditte, A ch (6) 21 146)

hiodate, NH<sub>4</sub>H(IO<sub>3</sub>)<sub>2</sub> old H<sub>2</sub>O (Ditte. A ch (6) 21

'raiodate, NH4H2(IO3)3 (Blomstrand, J pr (2) 42

solubility in HIOs, under Amte (Meerburg)

obalt 10date

by H<sub>2</sub>O Insol in alcohol rg )

manganic iodate, Mn(IO<sub>3</sub>)<sub>4</sub>

l in H<sub>2</sub>O Insol in HIO<sub>3</sub> (Berg. L28 675)

oxydimercuriammonium iodate mercuriammonium ammonium

ellurium iodate llurate, ammonium

odate selenate lenate, ammonium

e,  $Ba(IO_8)_2$ salt is sol in 1746 pts H2O at pts H<sub>2</sub>O at 100° (Rammelsberg ), in 3018 pts  $H_2O$  at 13 5°, and at 100° (Kremers, Pogg 84) Solubility of  $Ba(IO_3)_2$  in  $H_2O$  100 g sat  $Ba(IO_3)_2 + \Lambda q$  at to contain g anhydrous  $Ba(IO_3)_2$ 

| t°                                        | Grams<br>Ba(IO <sub>3</sub> ) <sub>2</sub> | t°  | Grams<br>Ba(IOs) | t°     | Grams<br>Ba(IO3)2 |
|-------------------------------------------|--------------------------------------------|-----|------------------|--------|-------------------|
| Eutectic point0 046° ±0 002° +10° 20° 25° | 0 008                                      | 30° | 0 031            | 70°    | 0 093             |
|                                           | 0 014                                      | 40  | 0 041            | 80°    | 0 115             |
|                                           | 0 022                                      | 50  | 0 056            | 90°    | 0 141             |
|                                           | 0 028                                      | 60° | 0 074            | *99 2° | 0 197             |

\*Bpt at 735 mm pressure = about 100° at 760 mm pressure

(Anschutz, Z phys Ch 1906, 56 241)

1 l sat ag solution contains 0 284 g  $_{a}(IO_{3})_{2}$  at room temp (Hill and Zink, J  $Ba(IO_3)_2$  at room temp Am Chem Soc 1909, 31 44) 1 1  $H_2O$  dissolves 0 3845 g  $B_8(IO_3)_2$  at

25° (Harkins and Winninghof, J Am Chem Soc 1911, 33 1828)

Easily sol in cold HCl+Aq, difficultly sol in warm HNO<sub>3</sub>+Aq (Ra Insol in H<sub>2</sub>SO<sub>4</sub> (Ditte) (Rammelsberg)

100 cc  $NH_4OH + Aq$  (sp gr = 0.90) dissolve 0 0199 g Ba(IO<sub>3</sub>)<sub>2</sub> (Hill and Zink)

Solubility in salts+Aq at 25°

C=concentration of salt in salt solution expressed in equivalents per l

S=solubility of Ba(IO<sub>3</sub>)<sub>2</sub> in salts+Aq expressed in equivalents per l

| · -                   |                                                             |                                                                                       |
|-----------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Salt                  | С                                                           | S                                                                                     |
| Ba(NO <sub>3</sub> ), | 0 001<br>0 002<br>0 005<br>0 020<br>0 050<br>0 100<br>0 200 | 0 001362<br>0 001212<br>0 0009753<br>0 0006744<br>0 0006131<br>0 0005659<br>0 0005580 |
| KNO <sub>3</sub>      | 0 002<br>0 010<br>0 050<br>0 200                            | 0 001624<br>0 001820<br>0 002640<br>0 003190                                          |
| KIO <sub>8</sub>      | 0 00010608<br>0 0005304<br>0 0010608                        | 0 001510<br>0 001242<br>0 0009418                                                     |
|                       |                                                             |                                                                                       |

(Harkins and Winninghof, J Am Chem Soc 1911, **33** 1829)

Insol in alcohol

100 cc 95% alcohol dissolve 0 0011 g Ba(IO<sub>3</sub>)<sub>2</sub> at 100m temp (Hill and Zink)

Insol in acetone (Eidmann, C C 1899, II 1014)

Sol in 3333 pts H2O at 18°, and  $+H_2O$ 625 pts H<sub>2</sub>O at 100° (Gay-Lussac, A ch 91 5)

Insol (Naumann, B 1904, ın acetone **37** 4329)

#### Barium manganic iodate, $Mn(IO_3)_4$ , $Ba(IO_3)_2$

Insol in H<sub>2</sub>O Insol in HIO<sub>3</sub> (Berg, C R 1899, 128 675)

#### Bismuth iodate, basic

Insol in  $H_2O$ Very difficultly sol in HNO<sub>3</sub>+Aq (Rammelsberg, Pogg 44 568)  $B_1(IO_8)_8+1\frac{1}{2}H_2O$  Insol in  $H_2O$ 

#### Cadmium iodate, Cd(IO<sub>3</sub>)<sub>2</sub>

Very sl sol in H2O Easily sol in HNO3, or NH<sub>4</sub>OH+Aq Sol in  $Cd(C_2H_3O_2)_2+$ Aq (Rammelsberg, Pogg 44 566)

-H<sub>2</sub>O Sl sol in H<sub>2</sub>O Very sol in dil  $HNO_8+Aq$  (Ditte, A ch (6) 21 145)

Cadmium iodate ammonia,  $Cd(IO_3)_2$ ,  $2NH_3$ Insol in  $H_2O$ , sol in  $NH_4OH + Aq$  (Ditte) A ch (6) 21 145)  $Cd(IO_3)_2$ ,  $2NH_3+H_2O$  As above (Ditte

#### Cæsium iodate, CsIO<sub>3</sub>

100 pts H<sub>2</sub>O dissolve 2 6 pts CsIO<sub>3</sub> at 24° Insol in alcohol (Wheeler, Sill Am J 144 123)

2CsIO<sub>3</sub>, I<sub>2</sub>O<sub>5</sub> 100 pts H<sub>2</sub>O dissolve 2 5 pts at 21° Not decomp by hot H<sub>2</sub>O (Wheeler) 2CsIO<sub>3</sub>, I<sub>2</sub>O<sub>5</sub>, 2HIO<sub>3</sub> Sl sol in cold H<sub>2</sub>O and decomp thereby into 2CsIO<sub>3</sub>, I<sub>2</sub>O<sub>5</sub> (Wheeler)

# Cæsium iodate chloride, CsCl, HIO3

by H<sub>2</sub>O into 2CsIO<sub>3</sub>, I<sub>2</sub>O<sub>5</sub> Decomp (Wheeler)

#### Cæsium hydrogen iodate periodate, $HCsIO_3$ , $IO_4+2II_2O$

Ppt Sol in dil IINO3 (Wells, Am Ch J 1901, **26** 250)

#### Calcium iodate, Ca(IO<sub>3</sub>)<sub>2</sub>

100 pts dissolve 0.22 pt at 18°, (Gry-Iussu) Sol in 0986 pt tt 100 conc HCl+Aq (I ilhol) Much more sol in HNO<sub>3</sub>+Aq th in II () (Runmelsberg) Insol in II2SO<sub>1</sub> (Ditte) Scarcely sol in (Sonstadt, C N **29** 209) sat  $KIO_3 + \Lambda q$ 

solution contains at  $+\mathrm{H}_2\mathrm{O}$ Sit 35° 21° 1()° 45° 0 54% C1(IO3)2, 0 37 0.480 52 ۷()° 50° 60° 100° 0 59 0 65 0 79 0 94% Ca(IO<sub>3</sub>)<sub>2</sub> (Myhus and Funk, B 1897, 30 1724)

+6H<sub>2</sub>OLfflorescent Sol in 253 pts H<sub>2</sub>O at 15°, and 75 pts at 100° (Rammelsberg)

Sat solution contains at 0° 10° 18°  $30^{\circ}$ 0 42% Ca(IO<sub>3</sub>)<sub>2</sub>, 0 1 0 17 0 25 40° 50° 54° 60° 0 61 0 89 0 14 1 36% Ca(IO<sub>8</sub>)<sub>2</sub> (Mylius and Funk, B 1897, **30** 1724)

Much more sol in HNO<sub>3</sub>+Aq Pptd by alcohol from  $Ca(IO_8)_2 + Aq$ 

Insol in H<sub>2</sub>SO<sub>4</sub> (Ditte)
Pptd by alcohol from aqueous solution (Henry)

#### Cerous 10date, Ce(IO<sub>8</sub>)<sub>8</sub>+2H<sub>2</sub>O

Sl sol in cold, easily sol in hot H<sub>2</sub>O and in

ids (Holzmann, J pr 75 321) Solubility in  $H_2O$  100 cc of 100 cc of the sat solution contain 0 1456 g at 25° (Rimbach,

Z phys Ch 1909, 67 199)

Calc from electrical conductivity of Ce(IO<sub>3</sub>)<sub>3</sub>+Aq, 100 cc of the sat solution contain 0 1636 g Ce(IO<sub>3</sub>)<sub>3</sub> at 25° (Rimbach, Z phys Ch 1909, 67 199)

#### Ceric iodate, Ce(IO<sub>3</sub>)<sub>4</sub>

Slightly hydrolyzed by H<sub>2</sub>O

034 g is sol in 100 cc hot conc HNO. (Barbieri, Chem Soc 1907, 92 (2) 467)

#### Cobaltous 10date, $Co(IO_3)_2$

Sol in warm dil H<sub>8</sub>PO<sub>4</sub>, or Anhydrous $H_2SO_4+Aq$  (Ditte, A ch (6) 21 14)

#### Solubility in H<sub>2</sub>O

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                                                  |                                                                                                                      |                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| ""     18°     0 83     0 038       ""     30°     1 03     0 046       ""     50°     1 46     0 065       ""     65°     2 17     0 098       Co(IO3)2+2H2O     0°     0 32     0 014       ""     18°     0 45     0 020       ""     30°     0 52     0 023       ""     50°     0 67     0 030       ""     75°     0 84     0 038       ""     100°     1 02     0 045       Co(IO1)     18°     1 03     0 046       ""     30°     0 89     0 040       ""     50°     0 85     0 030       ""     75°     0 75     0 033 | Form                                                                                                                             | Temp                                             | Co(IO3)                                                                                                              | water free<br>salt to 100                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Co(IO <sub>3</sub> ) <sub>2</sub> +2H <sub>2</sub> O  " " " " " " " " Co(IO <sub>1</sub> ) " " " " " " " " " " " " " " " " " " " | 18° 30° 60° 60° 60° 18° 30° 75° 100° 18° 30° 75° | 0 83<br>1 03<br>1 46<br>1 86<br>2 17<br>0 32<br>0 45<br>0 52<br>0 67<br>0 84<br>1 02<br>1 03<br>0 89<br>0 85<br>0 75 | 0 038<br>0 046<br>0 065<br>0 084<br>0 098<br>0 014<br>0 020<br>0 023<br>0 033<br>0 038<br>0 045<br>0 046<br>0 040<br>0 033 |

(Meusser, B 1901, **34** 2435)

 $+\mathrm{H}_2\mathrm{O}$  Sol in 148 pts  $\mathrm{H}_2\mathrm{O}$  at 15° and 90 pts at 100° Sol in NH<sub>4</sub>OH+Aq (Rammelsberg, Pogg 44 561) Does not exist (Meusser, B 1901, 34

2434)  $+2H_2O$ (Mcusser)

+4HO(Meusser) Cupric iodate, basic, 6CuO, 3I<sub>2</sub>O<sub>5</sub>+2H<sub>2</sub>O Insol in  $H_2O$ (Millon, A ch (3) 9 400) Mixture of CuO and Cu(IO<sub>3</sub>)<sub>2</sub> (Ditte,

A ch (6) 21 175) 2CuO, I<sub>2</sub>O<sub>5</sub>+H<sub>2</sub>O Slowly sol H<sub>2</sub>SO₄ (Granger and de Schulten, Bull Soc 1904, (3) **31** 1027)

Cupric iodate, Cu(IO<sub>3</sub>)<sub>2</sub>

1 1 H<sub>2</sub>O dissolves 3 32 $\times$ 10 3 mol Cu(IO<sub>3</sub>)<sub>2</sub> at  $25^{\circ}$ (Spencer, Z phys Ch 1913, 83 295)

Solubility in  $CuSO_4 + Aq = 3.28 \times 10^3$  mol per lat 25°

Solubility in  $KIO_3+Aq=3.29\times10^3$  mol per l at 25 (Spencer)

 $+H_2O$ (Ditte)

 $+2\mathrm{H}_2\mathrm{O}$ Sol in 302 pts H<sub>2</sub>O at 15°, and 154 pts at 100° Sol in HCl+Aq or NH<sub>4</sub>OH +Aq (Millon)

Cupric iodate ammonia, Cu(IO<sub>3</sub>)<sub>2</sub>, 2NH<sub>3</sub>+

Insol in  $H_2O$  (Ditte, A ch (6) 21 145) Cu(IO<sub>3</sub>)<sub>2</sub>, 4NH<sub>3</sub>+2H<sub>2</sub>O Ppt (Ephraim, B 1915, 48 52) +3H<sub>2</sub>O Partially sol in H<sub>2</sub>O

NH<sub>4</sub>OH+Aq Insol in alcohol (Rammels-

 $[O_3)_2$ ,  $5NH_3$  (Ephram)  $[O_8)_2$ ,  $8NH_8+4H_2O$  Sol in  $H_2O$  Sol  $_{-4}OH + Aq$  Insol in alcohol (Ditte, A ch (6) 21 145)

Decipium iodate,  $Dp(IO_3)_3 + 3H_2O(?)$ 

Precipitate, scarcely sol in H<sub>2</sub>O (Delafontaine)

Didymium iodate, Di(IO<sub>3</sub>)<sub>3</sub>+2H<sub>2</sub>O Ppt (Cleve)

Erbium iodate, Er(IO<sub>3</sub>)<sub>3</sub>+3H<sub>2</sub>O Very sl sol in H<sub>2</sub>O (Hoglund)

Glucinum iodate Deliquescent

Indium iodate,  $In(IO_s)_s$ 

1 pt is sol in 1500 pts H<sub>2</sub>O at 20° 1 pt is sol in 150 pts HNO<sub>3</sub> (15) at 80° Sol in dil Sol in HCl with decomp H<sub>2</sub>SO<sub>4</sub> (Mathers, J Am Chem Soc 1908, **30** 213)

Iodine iodate, I(IO<sub>8</sub>)<sub>8</sub>

Decomp by H<sub>2</sub>O or by alcohol (Fighter. Z anorg 1915, 91 142)

Iron (ferrous) 10date

Aq (Geiger, Mag Pharm 29 252)

Iron (ferric) iodate, Fe<sub>2</sub>O<sub>3</sub>, I<sub>2</sub>O<sub>5</sub>

Insol in acids (Ditte, A ch (6) **21** 145)  $Fe_2O_3$ ,  $2I_2O_5+8H_2O$  Sol in 500 pts  $H_2O$ Difficultly sol in HNO<sub>3</sub>+Aq Sol in FeCl<sub>3</sub>+ (Geiger)

 $3Fe_2O_3$ ,  $5I_2O_5+15H_2O$  Sol in HCl, or

 $HNO_3+Aq$  (Rammelsberg)

Lanthanum 10date, La(IO<sub>3</sub>)<sub>3</sub>+1½H<sub>2</sub>O

Sl sol in cold, easily sol in hot  $H_2O$ Very sol in warm HCl+Aq (Holzmann, J pr **75** 349)

100 cc of the sat solution in H<sub>2</sub>O contain 0 1681 g at 25° (Rimbach, Z phys Ch 1909, **67** 199)

Calc from electrical conductivity of La(IO<sub>8</sub>)<sub>8</sub>+Aq, 100 cc of the sat solution contain 0 1871 g La(IO<sub>3</sub>)<sub>3</sub> at 25° bach)

Lead iodate, basic, 3PbO,  $Pb(IO_3)_2 + 2H_2O$ Ppt (Stromholm, Z anorg 1904, 38 442)

Lead 10date, Pb(IO<sub>3</sub>)<sub>2</sub>

Very sl sol in H<sub>2</sub>O (Pleischl), and difficultly sol in HNO<sub>3</sub>+Aq (Rammelsberg) Insol in H<sub>2</sub>O and H<sub>2</sub>SO<sub>4</sub>+Aq Very sl sol in HNO<sub>3</sub>+Aq, and wholly insol therein after being heated to 100° (Ditte, A ch

(6) **21** 169) Sl sol in  $H_2O$  1 83×10<sup>-2</sup> are dissolved in

1 liter of sat solution at 20° (Bottger, Z phys Ch 1903, 46 603) 1 l H<sub>2</sub>O dissolves 19 mg Pb(IO<sub>3</sub>)<sub>2</sub> at 18°

(Kohlrausch, Z phys Ch 1904, 50 356) 178 mg are dissolved in 1 l sat solution at 18° (Kohlrausch, Z phys Ch 1908, 64

1 l  $H_2O$  dissolves 0 0307 g  $Pb(IO_3)_2$  at  $25^{\circ}$ (Harkins, J Am Chem Soc 1911, 33 1830)

Solubility of  $Pb(IO_3)_2$  in salts+Aq at 25° C = concentration of salt in salt solution

expressed in equivalents per l  $\hat{S} = \text{solubility of } Pb(I\hat{O}_8)_2 \text{ in salt solution}$ 

expressed in equivalents per l

| Salt                              | C                                                 | s                                                                       |
|-----------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|
| Pb(NO <sub>3</sub> ) <sub>2</sub> | 0 0001<br>0 001<br>0 010<br>0 100<br>0 500<br>3 0 | 0 0000870<br>0 0000411<br>0 0000185<br>0 000016<br>0 000028<br>0 000015 |
| KNO <sub>3</sub>                  | 0 002<br>0 010<br>0 050<br>0 200                  | 0 0001141<br>0 0001334<br>0 0002037<br>0 0002544                        |
| KIO <sub>3</sub>                  | 0 00005304<br>0 0001061                           | 0 0000697<br>0 0000437                                                  |

Ppt\_Sl sol in H<sub>2</sub>O, more sol in FeSO<sub>4</sub>+ | (Harkins and Winninghof, J Am Chem Soc 1911, **33** 1830)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 828)

#### Lithium iodate, LiIO<sub>3</sub>+½H<sub>2</sub>O

Deliquescent, and very sol in H<sub>2</sub>O Sol in 2 pts cold, and not much less hot H<sub>2</sub>O Insol in alcohol (Rammelsberg, Pogg 44 555)

Sp gr of solution sat at  $18^{\circ} = 1568$ , containing 44 6% LiIO<sub>8</sub> 100 g H<sub>2</sub>O dissolve 80 3 pts LiIO<sub>3</sub> (Mylius and Funk, B 1897, **30** 1718)

Insol in methyl acetate (Naumann, B

1909, **42** 3790)

+H<sub>2</sub>O Very deliquescent (Ditte, A ch (6) **21** 145)

#### Magnesium iodate, $Mg(IO_3)_2$

Anhydrous Insol in  $H_2O$ (Millon, A

ch (3) 9 422)

+4H<sub>2</sub>O Very sol in H<sub>2</sub>O (Ditte) Sol in 9 43 pts H<sub>2</sub>O at 15°, and 3 04 pts at 100° (Berzelius) Very sl sol in H<sub>2</sub>O (Serullas, A ch 45 279) Easily sol in dil  $H_2SO_4+Aq$  (Ditte)

#### Sat solution contains at

| 0°      | 10°         | 20°                                      |
|---------|-------------|------------------------------------------|
| 68      | 6 <b>4</b>  | 7 7% Mg(IO <sub>3</sub> ) <sub>2</sub> , |
| 35°     | 63°         | 100°                                     |
| 8 9     | 12 6        | 19 3% $Mg(IO_3)_2$                       |
| (Mylius | and Funk, B | 1897, <b>30</b> 1722)                    |

Sat aq solution at 18° contains 6 44%  $Mg(IO_3)_2$  or 6.88 g arc sol in 100 g  $H_2O$ Sp gr of sat solution = 1 078 (Mylius and Funk, B 1897, 30 1718)

+10H<sub>2</sub>O hat ag solution contains at 0° 20° 30° 35° 50° (m pt) 67 5% Mg(IO<sub>3</sub>)<sub>2</sub> 3 1 10 2  $17 \ 4$ 21 9 (Mylius and Funk, B 1897, 30 1723)

#### Manganous iodate, $Mn(IO_3)_2 + H_2O$

Sol in about 200 pts II () (Rammelsberg )

Insol in H<sub>2</sub>() and IIN()<sub>3</sub>+Aq, even on boiling Insol in NH<sub>4</sub>OH+Aa (Ditte)

#### Manganous manganic iodate,

 $Mn(IO_3)_4 Mn(IO_3)_2$ Insol in II O (Burg, C R 1899, 128 675)

#### Manganic potassium iodate,

Mn(IO<sub>3</sub>)<sub>4</sub>, 2KIO<sub>3</sub> Insol in and only slattacked by H<sub>2</sub>O Insol in HIO<sub>3</sub> (Berg, C R 1899, 128 674)

#### Mercurous iodate, Hg<sub>2</sub>(IO<sub>3</sub>)<sub>2</sub>

Insol in boiling H<sub>2</sub>O, or cold HNO<sub>3</sub>+Aq Easily sol in dil HCl+Aq Sol in very (Gay-Lussac)

cone HIO<sub>3</sub>+Aq (Lefort, J Pharm 1845

#### Mercuric iodate, Hg(IO<sub>3</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O or alcohol (Millon, A ch (3) 18 367) Sol in H<sub>2</sub>O (Berzelius) Sol in dil HCl+Aq (Rammelsberg) Nearly insol in H2O Easily sol in HCl, HBr, or HI+Aq, very sl sol in HNO<sub>8</sub>+Aq, insol in HF, H<sub>2</sub>SiF<sub>6</sub>, or HC<sub>2</sub>H<sub>8</sub>O<sub>2</sub>+Aq Sol in alkali chlorides, bromides, iodides, cyanides, and cyanates + Aq, also in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, dil MnCl<sub>2</sub>, and ZnCl<sub>2</sub>+Aq Insol in KOH, NaOH, NH<sub>4</sub>OH, Na<sub>2</sub>S, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>, Na<sub>2</sub>HPO<sub>4</sub>, and the alkali chlorates, bromates, and iodates +Aq (Cameron, C N 33 253)

#### Nickel iodate, $N_1(IO_3)_2$ Solubility in H<sub>2</sub>O

| Form $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5                                                                                            | •                                                                                                             |                                                                                                           |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| "   18°   1 01   0 04                                      | Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Гетр                                                                                          | N1(IO3)2<br>in solu                                                                                           | Mols water<br>free salt to<br>100 mols<br>H <sub>2</sub> O                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$      | (IO <sub>3</sub> ) <sub>2</sub> +2H <sub>2</sub> O (IO <sub>3</sub> ) <sub>2</sub> +2H <sub>2</sub> O (IO <sub>3</sub> ) <sub>2</sub> +2H <sub>2</sub> O (IO <sub>3</sub> ) <sub>2</sub> (IO <sub>3</sub> ) <sub>2</sub> (IO <sub>3</sub> ) <sub>2</sub> (IO <sub>3</sub> ) <sub>2</sub> (IO <sub>3</sub> ) <sub>2</sub> (IO <sub>3</sub> ) <sub>2</sub> (IO <sub>3</sub> ) <sub>2</sub> (IO <sub>3</sub> ) <sub>2</sub> (IO <sub>3</sub> ) <sub>3</sub> (IO <sub>3</sub> ) (IO <sub>3</sub> ) <sub>3</sub> (IO <sub>3</sub> ) (IO <sub>3</sub> ) <sub>3</sub> (IO <sub>3</sub> ) (IO <sub>3</sub> ) <sub>3</sub> (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO <sub>3</sub> ) (IO | 18°<br>30°<br>0°<br>18°<br>30°<br>50°<br>8°<br>18°<br>50°<br>75°<br>100°<br>30°<br>50°<br>75° | 1 01<br>1 41<br>0 53<br>0 68<br>0 86<br>1 78<br>0 52<br>0 55<br>0 81<br>1 03<br>1 12<br>1 135<br>1 07<br>1 02 | 0 045<br>0 063<br>0 023<br>0 030<br>0 039<br>0 080<br>0 023<br>0 0245<br>0 045<br>0 045<br>0 046<br>0 045 |

(Meusser, B 1901, 34 2440)

 $+H_2O$  Sol in 120 3 pts  $H_2O$  at 15°, and 77 35 pts at 100° (Rammelsberg, Pogg **44** 562)

Sol in HNO3, and dil H2SO4+Aq

(Ditte)

Sol in NH<sub>4</sub>OH+Aq

Does not exist (Meusser) Scc Meusser above +2H<sub>2</sub>O

Insol in H<sub>2</sub>O Sol in HNO<sub>3</sub> +3H<sub>2</sub>O

(Ditte, A ch 1890, (6) 21 160) +4H<sub>2</sub>O See Meusser above

#### Nickel iodate ammonia, $N_1(IO_3)_2$ , $4NH_3$

Sol in NH4OH+Aq Insol in alcohol (Rammelsberg, Pogg 44 562)

N<sub>1</sub>(IO<sub>3</sub>)<sub>2</sub>, 5NH<sub>3</sub> Ppt (Lphram, B 1915, **48** 53)

+3H<sub>2</sub>O (Ephram)

#### Potassium iodate, KIO<sub>2</sub>

1 pt KIO<sub>8</sub> dissolves in 13 pts H<sub>2</sub>O at 14°

Sat solution boils at 102° (Kremers, Pogg 97 5)

Sp gr of KIO<sub>3</sub>+Aq containing
1 2 3 4 5 %KIO<sub>3</sub>,
1 010 1 019 1 027 1 035 1 044
6 7 8 9 10 %KIO<sub>3</sub>
1 052 1 061 1 071 1 080 1 090
(Kremers, Pogg 96 62)

Stable at  $10^{\circ}$  in  $H_2O$  or potassium acetate +Aq (Eakle, C C 1896, II 649)

Solubility of KIO<sub>8</sub> in HIO<sub>8</sub>+Aq at 30°

| % HIO; % KIO; in the solution Solid phase |
|-------------------------------------------|
|                                           |
| 0 9 51                                    |

(Meerburg, Z anorg 1905, 45 330)

More sol in KI+Aq than in  $H_2O$  Sol in warm  $H_2SO_4+Aq$ 

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829)

1898, **20** 829 ) Insol in alcohol

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1910, 43 314)

 $+\frac{1}{2}H_2O$  (Ditte, C R **70** 621)

Potassium hydrogen iodate, KH(IO<sub>3</sub>)<sub>2</sub> Sol in 18 65 pts H<sub>2</sub>O at 17° (Meineke, A **261** 360) Sol in 75 pts H<sub>2</sub>O at 15° Insol in alcohol (Serullas, A ch **22** 181)

See also Meerburg under KIO<sub>3</sub>

Potassium dihydrogen iodate, KH<sub>2</sub>(IO<sub>3</sub>)<sub>2</sub> Sol in 25 pts H<sub>2</sub>O at 15° (Serullas, A ch 43 117) See also Meerburg under KIO<sub>2</sub>

Potassium tellurium iodate See Iodotellurate, potassium

Potassium uranyl iodate, KUO<sub>2</sub>(IO<sub>3</sub>)<sub>3</sub>+3H<sub>2</sub>O

Decomp by  $H_2O$ , dil salt solutions and  $UO_2(NO_3)_2 + Aq$  (Artmann, Z anorg 1913, 79 340)

Potassium iodate chloride, KH(IO<sub>3</sub>)<sub>2</sub>, 2KCl Sol in 19 pts H<sub>2</sub>O at 15° with decomp Cold alcohol dissolves out KCl

Potassium iodate molybdate, KIO<sub>3</sub>, MoO<sub>3</sub>+ 2H<sub>2</sub>O See Molybdatoiodate, potassium

Potassium iodate selenate

See Iodoselenate, potassium

Potassium iodate sulphate, KIO<sub>3</sub> KHSO<sub>4</sub> Decomp by H<sub>2</sub>O (Marignac, J B **1856** 

299)
KHIO<sub>3</sub>, KHSO<sub>4</sub> More sol in H<sub>2</sub>O than KHIO<sub>3</sub> (Serullas)

Potassium iodate tungstate See Tungstoiodate, potassium

Rubidium iodate, RbIO3

100 pts  $\rm H_2O$  dissolve 2 1 pts  $\rm RbIO_3$  at 23° Easily sol in cold  $\rm HCl+Aq$  (Wheeler Sill Am J 144 123)

Rubidium hydrogen iodate,  ${\rm RbH}({\rm IO_3})_2$ 

Sl sol in cold, more readily in hot H<sub>2</sub>O, RbIO<sub>3</sub> separating on cooling linsol in alcohol (Wheeler)

 $RbH_2(IO_8)_3$  As above (Wheeler)

Rubidium iodate chloride, RbIO<sub>3</sub>, HCl, or HIO<sub>3</sub>, RbCl

Decomp by cold H<sub>2</sub>O (Wheeler) 3RbCl, 2HIO<sub>3</sub> Sol in H<sub>2</sub>O, from which RbIO<sub>3</sub> separates (Wheeler)

Rubidium iodate selenate See Iodoselenate, rubidium

Samarium iodate, Sm(IO<sub>3</sub>)<sub>3</sub>+6H<sub>2</sub>O Precipitate (Cleve) Scandium iodate,  $Sc(IO_3)_3+10$ , 13, 15, and

Nearly insol in H<sub>2</sub>O (Crookes, Phil Trans 1910, 210 A, 361)

Silver iodate, AgIO3

 $1.89 \times 10^{-4}$  moles or  $5.36 \times 10^{-2}$  g AgIO<sub>3</sub> are sol in 1 liter H2O at 25° (Noves and Kohr, Z phys Ch 1903, 42 338)

SI sol in H<sub>2</sub>O 435×10<sup>-2</sup> g are dissolved in 1 liter of sat solution at 20° (Bottger, Z phys Ch 1903, 46 603)

 $1 l H_2O$  dissolves  $40 mg AgIO_8$  at  $18^\circ$ (Kohlrausch, Z phys Ch 1904, 50 356) 1 l H<sub>2</sub>O dissolves 0 0275 g AgIO<sub>3</sub> at 9 43° 0 039 g at 184°, 0 0539 g at 26 6° bility increases rapidly with temp (Kohlrausch, Z phys Ch 1908, 64 168

1 1 H<sub>2</sub>O dissolves 0 039 g AgIO<sub>3</sub> at 20° (Whitby, Z anorg 1910, **67** 108)

Not completely insol in H<sub>2</sub>O (Rose) Sol m NH<sub>4</sub>OH+Aq, sol in HNO<sub>2</sub>+Aq (Naquet, J B 1860 201) Sol in conc KI+Aq (Ladenburg, A 135 1) Sol in 27,700 pts H<sub>2</sub>O at 25°, in 42 4 pts

5% NH<sub>4</sub>OH+Aq at 25°, in 21 pts 10% NH<sub>4</sub>OH+Aq at 25°, in 1044 3 pts 35% HNO<sub>3</sub>+Aq (sp gr 121) at 25° (Longi, Gazz ch it **13** 87)

## Solubility in HNO<sub>3</sub>+Aq at 25°

| Normality HNO3 | G AgIO3 dissolved per l |
|----------------|-------------------------|
| 0 000          | 0 0503                  |
| 0 125          | 0 0864                  |
| 0 250          | 0 1075                  |
| 0 500          | 0 1414                  |
| 1 00           | 0 2067                  |
| 2 00           | 0 3319                  |
| 4 00           | 0 6985                  |
| 8 00           | 1 5875                  |

(Hill and Summons, & phys Ch 1909, 67 602)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 829)

Insol in methyl icetate (Bezold, Dis-, 3790), sert 1906, Num inn, B 1909, 42 (Humers, Dissert 1906, ethyl icclife Nauminn, B 1910, 43 314)

Silver iodate ammonia,  $2\Lambda gIO_3$ ,  $3NH_3+$ 1½H2O

Very sol in cold H<sub>2</sub>O (Ditte, A ch (6) **21** 145)

AgIO<sub>3</sub>, 2NH<sub>3</sub>

SI sol in cone NII4OH+Aq (Rosenheim, A 1899, 308 52)

#### Sodium iodate, NaIO<sub>3</sub>

100 pts H2O dissolve 7 25 pts NaIO3 at 145° (Gay-Lussac) 100 pts H<sub>2</sub>O dissolve 2 52 pts at 0°, 9 07 pts at 20°, 14 39 pts at 20°, 27 7 pts at 80°, 33 9 pts at 100° (Krem-202)

ers, Pogg 97 5) Sat solution boils at 102° (Kremers), 105° (Ditte)

Sol in warm H<sub>2</sub>SO<sub>4</sub>+Aq diluted with ½ vol H<sub>2</sub>O Crystallizes out on standing over  $H_2SO_4$ (Ditte)

Solubility of NaIO<sub>2</sub> in HIO<sub>2</sub>+Aq at 30°

| % HIOs<br>in the<br>solution                                                                                                                                                 | % NaIOs<br>in the<br>solution                                                                                                                                                      | Solid phase                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1 98<br>4 86<br>5 86<br>7 73<br>6 76<br>6 66<br>7 80<br>9 15<br>9 93<br>11 89<br>11 75<br>14 62<br>23 23<br>32 68<br>40 91<br>46 62<br>55 48<br>65 47<br>76 19<br>76 70 | 9 36<br>9 52<br>10 22<br>11 04<br>11 60<br>14 73<br>11 18<br>11 28<br>10 30<br>9 00<br>8 71<br>7 54<br>7 21<br>7 18<br>5 65<br>3 69<br>2 91<br>2 64<br>2 67<br>2 18<br>3 1 42<br>0 | NaIO <sub>3</sub> +1½H <sub>2</sub> O  " " " "   labile  NaIO <sub>3</sub> +1½H <sub>2</sub> O+  Na <sub>2</sub> O <sub>2</sub> N <sub>2</sub> O <sub>5</sub> Na <sub>2</sub> O <sub>3</sub> Z <sub>2</sub> O <sub>5</sub> Na <sub>2</sub> O <sub>4</sub> Z <sub>2</sub> O <sub>5</sub> " " " NaIO <sub>3</sub> , 2HIO <sub>3</sub> " " " " " " " " " " " " " " " " " " " |

(Meerburg, Z anorg 1905, 45 334)

Insol in alcohol Sol in dil HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+ Insol in methyl acetate (Naumann, B

1909, 42 3790)

 $+1\frac{1}{2}H_2O$ See Meerburg above

Sodium diodate, Na<sub>2</sub>O, 2I<sub>2</sub>O<sub>5</sub> See Mecrburg under NaIO3

Sodium triodate, Nil()<sub>3</sub>, 2HIO<sub>3</sub> +  $\frac{1}{2}$ H O Very sol in II () (Blomstrand, J pr (2) 337)

Scc also Meerburg under NaIO<sub>3</sub>

Sodium iodate bromide, NaIO<sub>3</sub>, 2NaBr+  $9H_{2}O$ 

Sol in H<sub>2</sub>O (Rammelsberg)

Sodium iodate chloride,  $NaIO_z$ ,  $NaCl+4H_2O_z$ and 2NaIO<sub>8</sub>, 3NaCl+18H<sub>2</sub>O

Cold H<sub>2</sub>O dissolves out NaCl

Sodium iodate iodide, NaIO<sub>8</sub>, NaI Hot H<sub>2</sub>O or alcohol dissolves out NaI  $+8H_2O$ 

+10H<sub>2</sub>O

 $2NaIO_3$ ,  $3NaI+20H_2O$ (Penny, A

Stable in a solution of NaI+NaOH+Aq (Eakle, C C 1896, II 650)

#### Strontium iodate, Sr(IO<sub>3</sub>)<sub>2</sub>

Anhydrous Insol in  $H_2SO_4$  (Ditte), easily sol in cold HCl+Aq (Rammelsberg, Pogg **44** 575 )

+H₂Ó Difficultly sol in H<sub>2</sub>O

+6H<sub>2</sub>O Sol in 416 pts H<sub>2</sub>O at 15°, and 138 pts at 100° (Gay-Lussac), 342 pts at 15°, and 110 pts at 100° Difficultly sol in warm HNO<sub>3</sub>+Aq (Rammelsberg, Pogg 44 575)

#### Thallous iodate, THO3

Difficultly sol in warm H<sub>2</sub>O (Oettinger) Insol in H<sub>2</sub>O, difficultly sol in HNO<sub>8</sub>+Aq

(Rammelsberg) Sl sol m H<sub>2</sub>O

0.58×10<sup>-1</sup> g are dissolved in 1 liter of sat solution at 20° (Böttger, Z phys Ch 1903) (Böttger, Z phys Ch 1903, **46** 603)

 $2.12 \times 10^{-3}$  mols = 0.667 g are sol in 1 l H<sub>2</sub>O at 25° (Spencer, Z phys Ch 1912, 80 707)

Sol in a little NH<sub>2</sub>OH+Aq, also in boiling HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, or HCl+Aq Insol in alcohol (Oettinger)

+½H<sub>2</sub>O Very sl sol in H<sub>2</sub>O or dil boiling acids (Ditte, A ch (6) 21 145)

hallic nodate, basic,  $Tl(OH)(IO_8) + H_2O =$  $Tl_2O_3$ ,  $2I_2O_5+3H_2O_5$ 

Insol in H<sub>2</sub>O, sol in cold HCl+Aq, and warm dil  $H_2SO_4+Aq$  (Ditte, A ch (6) 21 **145**)

## Thallic indate, $Tl(IO_3)_3 + 1\frac{1}{2}H_2O$

Insol in  $\rm H_2O$ , sl sol in  $\rm HNO_3+Aq$  Decomp by alkalies (Rammelsberg)  $+12\rm H_2O$  Difficultly sol in  $\rm H_2O$  Easily sol in dil acids (Gewecke, Z anorg 1912, **75**, 275)

#### Thorium iodate, Th(IO<sub>3</sub>)<sub>4</sub> Precipitate (Cleve)

#### Tin (stannous) iodate

Ppt Sol in SnCl<sub>2</sub>+Aq, insol in NaIO<sub>8</sub>+ Aα

#### Tin (stannic) iodate

Ppt

#### Uranous iodate

Very unstable (Rammels-Precipitate berg)

#### Uranyl 10date, UO2(IO3)2

Sol or insol in HNO3 and H3PO4+Aq, according to method of preparation (Ditte) +H<sub>2</sub>O Sl sol in HNO<sub>2</sub>+Aq (Rammelsberg)

Ytterbium iodate, Yb(IO<sub>3</sub>)<sub>3</sub>+6H<sub>2</sub>O (Cleve, Z anorg 1902, 32 136)

Yttrium iodate,  $Y(IO_8)_8+3H_2O$ Sol in 190 pts H<sub>2</sub>O (Berlin)

#### Zinc iodate, $Zn(IO_3)_2$

Anhydrous(Ditte, A ch (6) 21 145) +2H<sub>2</sub>O Sol in 114 pts cold, and 76 pts ot H<sub>2</sub>O (Rammelsberg, Pogg 43 665) Sol in HNO<sub>3</sub>, and NH<sub>4</sub>OH+Aq  $hot H_2O$ 

Exists also in a very sol modification (Mylius and Funk, B 1897, 30 1723)

#### Zinc iodate ammonia, $3Zn(IO_3)_2$ , $8NH_3$

Decomp by H<sub>2</sub>O, sol in NH<sub>4</sub>OH+Aq, from which it is pptd by alcohol (Rammelsberg, Pogg 44 563)

Zn(IO<sub>3</sub>)<sub>2</sub>, 2NH<sub>3</sub> Insol in H<sub>2</sub>O (Ditte, A ch (6) 21 145)

 $Zn(IO_3)_2$ ,  $3NH_3+H_2O$ Insol in H<sub>2</sub>O (Ditte)

 $Zn(IO_3)_2$ ,  $4NH_3$  (Ditte, A ch 1890, (6) 21 164) (Ephram, B 1915, 48 53)

#### Periodic acid

See Periodic acid

#### Iodides

The iodides are in general easily sol in H<sub>2</sub>O, exceptions are HgI<sub>2</sub>, PbI<sub>2</sub>, AgI, Cu<sub>2</sub>I<sub>2</sub>, and Bils, also the iodides of the Pt metals, all of which are insol SnI4, SbI3, and TlI2 are decomp by H2O Many iodides are more sol in solutions of salts than in H<sub>2</sub>O, and several are sol in alcohol or ether

See under each element

#### Iodine, I2

Sol in 5524 pts H2O at 0 12° (Wittstein J B

Sol in 352\* pts 11.0 at 0.12 (1887 123)
Sol in 7000 pts H O C \*
Sol in 3800 pts H O (Jacquelain)
Sol in 7196 4 pts B<sub>2</sub>O at 18.75 (A (Abl)

Pure H<sub>2</sub>O dissolves 0 01519173 g I per litre, or I is sol in 6582 pts H<sub>2</sub>O at 63° (Dossius and Weith, Zeit Ch 12 378)

Sol in about 4500 pts  $H_2O$ (Hager, Comm 1883)

Sol in 7000 pts H<sub>2</sub>O (Cap and Garot, J

Pharm (3) 26 80) 1 l H<sub>2</sub>O at 25° dissolves 0 3387 g I<sub>2</sub>

(Jakowkin, Z phys Ch 1895, 18 590) 1 l H<sub>2</sub>O dissolves 1 342 millimols of iodine

(Noyes, Z phys Ch 1898, 27 359) When iodine is shaken with  $H_2O$  at 15°, 1 pt dissolves in 3750 pts H<sub>2</sub>O, when iodine

and H<sub>2</sub>O are heated together and then cooled to 15°, 1 pt 10dme dissolves in 3500 pts H<sub>2</sub>O
At 30°, 1 pt 1s sol in 2200 pts H<sub>2</sub>O
(Dietz, Chem Soc 1899, **76**, (2) 150)
1 1 H<sub>2</sub>O dissolves 0 279 grams I<sub>2</sub> at 25°

(McLauchlan, Z phys Ch 1903, 44 617)

| Solubility of I2 in H2O at to |                                                |  |
|-------------------------------|------------------------------------------------|--|
| t°                            | g I per l H O                                  |  |
| 18<br>25<br>35<br>45<br>55    | 0 2765<br>0 3395<br>0 4661<br>0 6474<br>0 9222 |  |

(Hartley, Chem Soc 1908, 93 744)

#### Solubility of I<sub>2</sub> in H<sub>2</sub>O at t°

| to | g per l | milhat per l |
|----|---------|--------------|
| 0  | 0 1649  | 1 30         |
| 20 | 0 2941  | 2 30         |
| 40 | 0 5684  | 4 56         |

(Fedotieff, Z anorg 1910, 69 30)

1 32 millimol I<sub>2</sub> are sol in 1 l H<sub>2</sub>O

J Am Chem Soc, 1910, 32 938) Calculated from electrical conductivity of sat  $I_2+Aq$  1 l  $H_2O$  dissolves 0 0006383 mols  $I_2$  at 0° (Jones, J Am Chem Soc 1915, 37

256)

H<sub>2</sub>SO<sub>4</sub>, HCl, HNO<sub>3</sub>, H<sub>3</sub>PO<sub>4</sub>, Conc HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, tartaric, or citric acids+Aq dissolve I, but give it up to CS2 on shaking therewith (Tessier, Z anal 11 313)

Sol in 150 pts H<sub>2</sub>SO<sub>4</sub> on warming, but crystallizes out in part on cooling (Kraus)

Much more sol in HBr+Aq than in pure H<sub>2</sub>O, HBr+Aq of sp gr 1486 dissolves 3-4% (Bineau)

Sl sol in HCl+Aq Easily sol in even

dil HI+Aq 11 0 001 N-HCl+Aq sat with I<sub>2</sub> contains 0 338 g I (Bray and Mackay, J Am Chem Soc 1910, 32 1919)

11 01 N-HNO<sub>3</sub>+Aq sat with I<sub>2</sub> contains 340 g I (Summet, Z phys Ch 1905, **53** 0 340 g I

11 01 N-II SO4+Aq sat with I contains 0341 g l2 (Simmet)

Sol in H<sub>2</sub>SO<sub>3</sub>+Aq with decomp

1 l 0 9 N  $\rm \ddot{H}_3BO_3$  dissolves 0 300 g  $\rm I_2$  at  $^\circ$  (McLauchlan, Z phys Ch 1903, 44  $25^{\circ}$ 617)

100 cc of a 10% solution of BaBr<sub>2</sub> dissolve 0 231 g I2 at 13 5° (Meyer, Z anorg 1902, 30 114)

100 cc of a 10% solution of BaCl<sub>2</sub> dissolve 0 067 g I<sub>2</sub> at 185° (Meyer)

100 cc of a 10% solution of BaI, dissolve 6 541 g I<sub>2</sub> at 13 5° (Meyer)
100 cc of a 10% solution of CaBr<sub>2</sub> dissolve 0 274 g I<sub>2</sub> at 13 5° (Meyer)

100~cc of a 10% solution of CaCl dissolve 0 078 g  $\,\rm I_2$  at 18 5° (Meyer )

100~cc of a  $10\,\%$  solution of CaI  $_2$  dissolve 8~062~g I  $_2$  at  $13~5^\circ$  (Meyer ) Easily sol in boiling dil HgCl₂+Aq (Selmi)

Solubility in HgCl2+Aq at 25°

| 10 ccm of the solution contain                 |                                           |  |
|------------------------------------------------|-------------------------------------------|--|
| mıllımols I2                                   | mıllımols Hg                              |  |
| 0 0134<br>0 1294<br>0 1460<br>0 1806<br>0 2543 | 0<br>0 9444<br>1 2442<br>1 9542<br>3 3460 |  |

(Herz and Paul, Z anorg 1914, 85 214)

Sol in solutions of soluble iodides

100 pts KI+200 pts H<sub>2</sub>O dissolve 153 pts I, from this solution H<sub>2</sub>O precipitates ½ the dissolved I 100 pts KI+400 pts H<sub>2</sub>O dissolve quickly 76 5 pts I If more water is present, the solution takes place more slowly (Baup)

CS<sub>2</sub> extracts the I from the above solutions

#### Solubility of I in KI+Aq at 7-73°

| % KI m KI+Aq                                                                               | Pts I dissolved                                                                          | Sp gr of solution                                                                                |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1 802<br>3 159<br>4 628<br>5 935<br>7 201<br>8 663<br>10 036<br>11 034<br>11 893<br>12 643 | 1 173<br>2 303<br>3 643<br>4 778<br>6 037<br>7 368<br>8 877<br>9 949<br>11 182<br>12 060 | 1 0234<br>1 0433<br>1 0668<br>1 0881<br>1 1112<br>1 1382<br>1 1637<br>1 1893<br>1 2110<br>1 2293 |
|                                                                                            | 1                                                                                        | 1                                                                                                |

(Dossius and Worth, Zeit Ch (2) 5 379)

Solubility of I<sub>2</sub> in KI+Aq at 100m temperature, 14 5°-15 1°

| % KI                                                                             | /o I                                                                           | I/KI                                                                                   |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1 80<br>3 16<br>4 63<br>5 93<br>7 20<br>8 66<br>10 04<br>11 03<br>11 89<br>12 64 | 1 17<br>2 30<br>3 64<br>4 78<br>6 04<br>7 37<br>8 88<br>9 95<br>11 18<br>12 06 | 0 651<br>0 729<br>0 786<br>0 805<br>0 839<br>0 851<br>0 884<br>0 902<br>0 940<br>0 954 |
|                                                                                  |                                                                                |                                                                                        |

(Weith and Dossius, Z phys Ch 1898, 26

### Solubility of I2 in KI+Aq at 15°

| % KI                        | ccm 1/10 n iodine in<br>5cmm of the solution   | I/KI                                         |
|-----------------------------|------------------------------------------------|----------------------------------------------|
| 10<br>8<br>6<br>4<br>2<br>1 | 35 0<br>27 1<br>19 7<br>12 7<br>6 25<br>3 04 * | 35 0<br>33 9<br>32 8<br>31 8<br>31 2<br>30 4 |

\* Obtained with 1/100-normal iodine (Bruner, Z phys Ch 1898, 26 151)

### Solubility of I2 in KI+Aq at 25°

| Mıllımols KI per liter | Millimols dissolved iodine per liter |
|------------------------|--------------------------------------|
| 106 3                  | 55 28                                |
| 53 15                  | 28 03                                |
| 26 57                  | 14 68                                |
| 13 29                  | 8 003                                |
| 6 643                  | 4 667                                |
| 3 322                  | 3 052                                |
| 1 661                  | 2 235                                |
| 0 8304                 | 1 814                                |

(Noyes and Seidenstricker, Z phys Ch 1898, 27 359)

### Solubility in KI+Aq at 25°

| KI mol/l | I G atoms/l |
|----------|-------------|
| 1 91     | 3 29        |
| 2 85     | 5 45        |
| 4 51     | 11 52       |
| 5 36     | 17 12       |
| 5 55     | 17 16       |

(Abegg, Z anorg 1906, 50 427)

# Solubility of I2 in KI+Aq at 25°

| Millimol KI per l               | Mıllımol I2 dissolved                                       |
|---------------------------------|-------------------------------------------------------------|
| 100<br>50<br>20<br>10<br>5<br>2 | 51 35<br>25 77<br>11 13<br>6 185<br>3 728<br>2 266<br>1 788 |

(Bray and MacKay, J Am Chem Soc 1910, 32 919)

### Solubility in KI+Aq at 25°

| Sp gr | Analysis<br>ph | of liquid<br>ase | phase tog<br>adhering | of solid<br>ether with<br>mother<br>uor |
|-------|----------------|------------------|-----------------------|-----------------------------------------|
|       | % KI           | % I              | % KI                  | % I                                     |

### (a) In equilibrium with excess of KI

| 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 | 733  <br>888  <br>066  <br>216  <br>539  <br>560  <br>665  <br>232 | 54<br>49<br>44<br>38<br>37<br>35<br>29 | 39<br>415<br>045<br>82<br>065<br>655<br>805<br>71 | 23<br>31<br>44<br>45<br>49<br>62 | 63<br>085<br>01<br>56<br>55<br>61<br>81 | 85<br>80<br>78<br>77<br>39 | 56<br>32<br>99 | 4<br>6<br>10<br>15<br>16<br>56 | 23<br>73<br>10 |
|-----------------------------------------|--------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------|-----------------------------------------|----------------------------|----------------|--------------------------------|----------------|
|                                         | 246                                                                | 29<br>27                               |                                                   | 66                               |                                         | 38                         |                | 56                             |                |
| ~ •                                     | ,                                                                  |                                        | ~~                                                |                                  |                                         | , 50                       |                | , 50                           |                |

### (b) In equilbrium with excess of I

| 1      | 349 | 16 025 | 18 49  | 3 04 | 85 43 |
|--------|-----|--------|--------|------|-------|
| 1      | 516 | 19 705 | 26 16  | 4 48 | 83 87 |
| 1      | 769 | 22 88  | 36 06  | 3 70 | 89 33 |
| 1      | 910 | 23 55  | 40 515 | 6 49 | 83 62 |
| 2      | 403 | 24 78  | 53 605 | 8 62 | 83 81 |
| $^{2}$ | 904 | 24 995 | 63 125 | 4 82 | 92 41 |
| 3      | 082 | 25 18  | 66 04  | 4 00 | 94 39 |

# (c) Invariant point Excess of KI and I

| 3 316 | 26 05<br>25 96<br>26 04 | 68 06<br>68 01<br>68 16<br>68 13 | 16 14 | 83 77 |
|-------|-------------------------|----------------------------------|-------|-------|
|       | 25 92                   | 68 13                            | 11 32 | 86 56 |

(Parsons and Whittemore, J Am Chem 1911, 33 1934)

### Solubility in KI+Aq at 0°

| KI                                                                                                                                    | +Aq                                                                                                                                                   | KI+Aq sat with I                                                                                                                                                |                                                                                                                                           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Wt norm                                                                                                                               | Sp gr 0 /4°                                                                                                                                           | G I <sub>2</sub> in 1 g<br>of solution                                                                                                                          | Sp gr 0 /4°                                                                                                                               |  |  |
| 0 09871<br>0 09861<br>0 04969<br>0 04966<br>0 01992<br>0 01983<br>0 00998<br>0 004999<br>0 004991<br>0 002000<br>0 000909<br>0 000999 | (1 0123)<br>1 01231<br>(1 0061)<br>1 00610<br>1 00236<br>(1 0024)<br>(1 0011)<br>(1 0011)<br>(1 0005)<br>(1 0005)<br>(1 0001)<br>(0 9999)<br>(1 0000) | 0 01199<br>0 01199<br>0 006094<br>0 006083<br>0 002535<br>0 0025325<br>0 0013585<br>0 0007609<br>0 0007577<br>0 0004137<br>0 0004015<br>0 0002839<br>0 00028125 | (1 0219)<br>1 02187<br>(1 0109)<br>1 01089<br>1 00429<br>(1 0044)<br>(1 0020)<br>(1 0010)<br>(1 0011)<br>(1 0004)<br>(1 0002)<br>(1 0002) |  |  |
|                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                 |                                                                                                                                           |  |  |

Values in parentheses are found by interpolation

(Jones and Hartman, J Am Chem Soc 1915, 37 247)

1 mol KI in alcohol dissolves 2 atoms I, and the solution does not give up I to CS<sub>2</sub> (Jörgensen, J pr (2) 2 347)

| Soluk                                                | Solubility in KI+60% alcohol at 25°                 |                                                       | Solubility in KI+40% alcohol at 25° —                                     |                                                        |                                                      |                         |                         |                                                   |                                        |
|------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------|-------------------------|---------------------------------------------------|----------------------------------------|
|                                                      | Analysis                                            |                                                       | phase tog                                                                 | of solid<br>ether with                                 |                                                      | (                       | Continue                |                                                   | s of solid                             |
| Sp gr                                                | ph.                                                 | ase                                                   |                                                                           | mother<br>uor                                          | Sp gr                                                | Analy sis               |                         | phase tog                                         | ether with<br>g mother<br>uor          |
|                                                      | % KI                                                | % I                                                   | % I                                                                       | % KI                                                   |                                                      | % KI                    | % I                     | % KI                                              | % I                                    |
| (a)                                                  | <del>.</del>                                        |                                                       | h excess                                                                  |                                                        |                                                      | <del></del>             |                         | with excess                                       | ــــــــــــــــــــــــــــــــــــــ |
| 1 148<br>1 191                                       | 30 93  <br>29 87                                    | $\begin{array}{c} 0 \ 0 \\ 4 \ 51 \end{array}$        | 89 13                                                                     | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 0 962                                                | 0.0                     | 2 97                    | 00                                                | , 1                                    |
| 1 285                                                | 28 39                                               | 12 48                                                 | 86 60                                                                     | 2 27                                                   | $\begin{array}{ccc} 1 & 292 \\ 1 & 581 \end{array}$  | 8 45<br>12 56           | 28 70<br>40 63          | $\begin{array}{c c} 1 & 85 \\ 3 & 41 \end{array}$ | 84 51<br>84 02                         |
| $\begin{array}{c c} 1 & 368 \\ 1 & 427 \end{array}$  | 28 00  <br>27 60                                    | $\frac{18}{21} \frac{60}{80}$                         | 87 30<br>85 75                                                            | $\begin{vmatrix} 3 & 21 \\ 4 & 25 \end{vmatrix}$       | 1 991                                                | 15 20                   | 49 95                   | 4 98                                              | 83 81                                  |
| 1 533                                                | 27 00                                               | 28 00                                                 | 84 39                                                                     | 6 05                                                   | $\begin{array}{cccc} 2 & 000 \\ 2 & 173 \end{array}$ | 16 02<br>17 18          | 52 95<br>  57 38        |                                                   | 82 96<br>83 60                         |
| $\begin{array}{cccc} 1 & 776 \\ 2 & 250 \end{array}$ | $2590 \\ 2490$                                      | $\frac{40}{52}$ $\frac{52}{42}$                       | 81 05<br>76 21                                                            | 10 30<br>16 73                                         | $\frac{2}{1}\frac{173}{749}$                         | 19 20                   | 66 89                   |                                                   | 85 16                                  |
| 2 507                                                | 24 40                                               | 58 93                                                 | 73 20                                                                     | 21 04                                                  | 2 902                                                | 20 12                   | 69 10                   |                                                   | 88 81                                  |
| 2 845                                                | $\begin{array}{c c} 22 & 49 \\ 21 & 50 \end{array}$ | 65 75<br>68 95                                        | 71 66<br>70 04                                                            | $\begin{vmatrix} 24 & 15 \\ 26 & 42 \end{vmatrix}$     | (c) 1<br>3 246                                       | nvariant p<br>  22 50   |                         | Excess KI:                                        | and I<br>  76 24                       |
| (b                                                   | ) In equil                                          |                                                       | ٠_                                                                        | ٠                                                      | 3 240                                                | 22 43                   | 70 79<br>70 88          | 69 37                                             | 26 14                                  |
| 1 134<br>1 530                                       | 0 0 7 36                                            | 23 04<br>43 05                                        | 0 0                                                                       | I<br>88 76                                             | (Parson                                              |                         | 188, J A<br>32 1372     | m Chem 8                                          | Soc 1910,                              |
| 1 721                                                | 10 60                                               | 49 38                                                 | 2 50                                                                      | 88 21                                                  | See also                                             | under KI                | 02 1012                 | 2)                                                |                                        |
| $\begin{array}{c}1~90\\2~11\end{array}$              | 12 44<br>13 74                                      | 55 33<br>59 26                                        | $\begin{array}{ c c c c c }\hline 3 & 72 \\ 4 & 41 \\ \hline \end{array}$ | 87 10<br>86 60                                         | Sol                                                  |                         | -nitrob                 |                                                   | (Dawson,                               |
| $\begin{array}{cc}2&22\\2&80\end{array}$             | 15 20                                               | 62 66                                                 | 5 80                                                                      | 85 20                                                  | Solub                                                | Soc 1902,<br>ility in K | IO <sub>8</sub> +A      | q is the sa                                       | me as m                                |
| $egin{smallmatrix} 2 & 80 \ 2 & 99 \end{bmatrix}$    | $1772 \\ 1930$                                      | 69 10<br>71 90                                        | 7 15 7 45                                                                 | 85 49<br>88 96                                         | $H_2O$ (                                             | Lamı, C                 | A 1909                  | 1622)                                             |                                        |
| (c) I                                                | nvariant p                                          | oint Ex                                               | cess KI                                                                   | and I                                                  | So                                                   | lubility of             | I <sub>2</sub> in K     | Br+Aq at                                          | 25°                                    |
| 3 162                                                | 20 11 20 03                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 21 84                                                                     | 74 64                                                  | G                                                    | KBr per l               |                         | G atoms I                                         | per l                                  |
|                                                      | 20 03                                               |                                                       | 21 01                                                                     | KI+I                                                   |                                                      | 60 6                    |                         | 0 017                                             |                                        |
|                                                      | 20 05<br>19 98                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 7 40                                                                      | 89 81 I                                                |                                                      | 106 9<br>175 9          | į                       | 0 027<br>0 041                                    |                                        |
|                                                      | 20 08                                               | 7251                                                  | 20 61                                                                     | 74 09                                                  |                                                      | 229 8                   |                         | 0 053                                             | 2                                      |
|                                                      | 20 06                                               | 72 44                                                 |                                                                           | KI+I                                                   |                                                      | 281 9<br>330 6          |                         | 0 062<br>0 071                                    |                                        |
|                                                      | 20 05                                               | 72 48                                                 | 33 46                                                                     | 63 19 KI                                               |                                                      | 377 1                   | 1                       | 0 079                                             | 7                                      |
| (Parson                                              |                                                     |                                                       |                                                                           | Soc 1910,                                              |                                                      | 411 0<br>461 7          |                         | 0 086<br>0 094                                    |                                        |
|                                                      |                                                     | <b>32</b> 1370                                        | )                                                                         |                                                        |                                                      | 509 8                   |                         | 0 100                                             |                                        |
| Solu                                                 | bility in F                                         | I+40%                                                 | alcohol                                                                   | at 25°                                                 |                                                      | 548 0<br>567 9 sat      | į                       | 0 106<br>0 109                                    |                                        |
|                                                      | Analysis                                            | of liquid                                             |                                                                           | s of solid                                             | (Bell ar                                             | nd Buckle               | y, J Ar                 | n Chem 8                                          | oc 1912.                               |
| Sp gr                                                | ph                                                  |                                                       | adheri                                                                    | ng mother<br>quor                                      | Ì                                                    |                         | <b>34</b> 13            | •                                                 |                                        |
|                                                      | 4 KI                                                | , I                                                   | o KI                                                                      | 1 % 1                                                  |                                                      |                         | in N is:                | r+Aq it 2                                         |                                        |
| (a)                                                  | ) In equili                                         | brium wi                                              | th excess                                                                 | KI                                                     |                                                      | NaBr per l              |                         | C atoms I                                         |                                        |
| 1 339                                                | 42 10                                               | 0.0                                                   | ]                                                                         | 00                                                     |                                                      | 96 4<br>187 7           |                         | 0 020<br>0 042                                    |                                        |
| 1 377                                                | 40.83                                               | 3 76                                                  | 89 21                                                                     | 0 70                                                   | ļ                                                    | 271 8                   | Ì                       | 0 053                                             | 38                                     |
| 1 455<br>1 532                                       | 38 94                                               | 10 09                                                 | 88 80                                                                     | 1 90<br>3 02                                           | 1                                                    | 357 4<br>422 4          |                         | 0 059<br>0 063                                    |                                        |
| 1 605                                                | 36 25                                               | 20 52                                                 | 87 04                                                                     | 4 21                                                   |                                                      | 499 1                   |                         | 0 064                                             | 18                                     |
| 1 655<br>1 847                                       | 35 38<br>33 26                                      | 24 44<br>33 62                                        | 86 08<br>83 61                                                            | 5 11<br>8 41                                           |                                                      | 569 9<br>632 0          |                         | 0 064<br>0 062                                    |                                        |
| 2024                                                 | 31 71                                               | 39 99                                                 | 82 06                                                                     | 10 76                                                  |                                                      | 679 7                   |                         | 0 059                                             | 95                                     |
| 2 169<br>2 558                                       | 30 59<br>28 56                                      | 44 76<br>55 30                                        | 80 80<br>75 90                                                            | 12 35<br>18 63                                         | 1                                                    | 750 5                   |                         | 0 055                                             | 51                                     |
| 2 558<br>2 784                                       | 26 95                                               | 60 27                                                 | 74 77                                                                     | 20 86                                                  |                                                      | 756 1 sat               |                         | 0 058                                             |                                        |
|                                                      | 24 52<br>23 04                                      | 65 93<br>69 93                                        | 72 98<br>72 45                                                            | 23 61<br>25 04                                         | (Bell ar                                             | nd Buckle               | y, J Ar<br><b>34</b> 13 | n Chem                                            | 50c 1912                               |
|                                                      | 1 20 02                                             | . 00 00                                               |                                                                           | 01                                                     | ·                                                    |                         | O. 10                   | /                                                 |                                        |

100 cc of a 10% solution of SrBr<sub>2</sub> dissolve 0 270 g I<sub>2</sub> at 13 50 (Meyer, Z anorg 1902, 30 114)

100 cc of a 10% solution of SrCl<sub>2</sub> dissolve 0 066 g I<sub>2</sub> at 18 5° (Meyer)

100 cc of a 10% solution of  $SrI_2$  dissolve 6 616 g  $I_2$  at 13 5 (Meyer)

#### Solubility in salts+Aq at 25°

| Salt +Aq                                                                                                                                                                                                  | Grams<br>I <sub>2</sub> sol in<br>1 liter | Salt +Aq | Grams<br>I <sub>2</sub> sol in<br>1 liter |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|-------------------------------------------|
| 1/2-N Na <sub>2</sub> SO <sub>4</sub> 1/2-N K <sub>2</sub> SO <sub>4</sub> 1/2-N (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> N NaNO <sub>3</sub> N KNO <sub>3</sub> N NH <sub>4</sub> NO <sub>3</sub> | 0 160                                     | N NaCl   | 0 575                                     |
|                                                                                                                                                                                                           | 0 238                                     | N KCl    | 0 658                                     |
|                                                                                                                                                                                                           | 0 246                                     | N NH4Cl  | 0 735                                     |
|                                                                                                                                                                                                           | 0 257                                     | N NaBr   | 3 29                                      |
|                                                                                                                                                                                                           | 0 266                                     | N KBr    | 3 801                                     |
|                                                                                                                                                                                                           | 0 375                                     | N NH4Br  | 4 003                                     |

(McLauchlan, Z phys Ch 1903, 44 617)

1 14 g are sol in 100 ccm liquid  $H_2S$  (Antony, Gazz ch it 1905, 35, (1) 206)

Sol in liquid NH<sub>3</sub> (Franklin, Am ch J 1898, 20 822)

Sl sol in liquid CO<sub>2</sub> (Buchner, Z phys Ch 1906, **54** 674)
SO<sub>2</sub> (Sestini), and SO<sub>2</sub>

at I describe 9.49 pts. I at 00

AsCl<sub>3</sub> dissolve 8 42 pts I at 0°, I at 15°, 36 89 pts I at 96° V 46 194) In liquid SO<sub>2</sub>, AsCl<sub>3</sub>, SO<sub>2</sub>Cl<sub>2</sub>, and

m liquid SO<sub>2</sub>, AsCl<sub>3</sub>, SO<sub>2</sub>Cl<sub>2</sub>, and dehyde (Walden, Z phys Ch 1903, 43 407)

Very sol in liquid NO<sub>2</sub> (Frankland,

Very sol in liquid NO<sub>2</sub> (Frankland Chem Soc 1901, **79** 1361) Sol in 10-12 pts alcohol (Wittstein)

Sol in wood-spirit (Playfair)

Abundantly sol in amyl (Pelletan), and hexyl alcohol (Bouis)

Iodine is sol in 20 pts alcohol, 110 pts oil, 7000 pts  $H_2O$ , 100 pts glycerine (Cap and Garot, J Pharm (3) **26** 80)

# Solubility of I<sub>2</sub> in C<sub>2</sub>H<sub>6</sub>OH+Aq at room temperature (14 5°—15 1°)

| temperature (14 5 — 15 1°)                                                                                             |                                                                         |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| Volumes of C <sub>2</sub> H <sub>5</sub> OH in<br>100 volumes of C <sub>2</sub> H <sub>5</sub> OH<br>+H <sub>2</sub> O | Cem of 1/10 normal nodine in 5 ec of the solution                       |  |  |  |  |
| 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0                                                         | 61 7<br>29 4<br>16 6<br>9 2<br>4 45<br>3 4<br>1 0<br>0 4<br>0 25<br>0 2 |  |  |  |  |

(Bruner, Z phys Ch 1898, 26 150)

Solubility of  $I_2$  in  $C_8H_7OH+Aq$  at room temperature (14 5°-15 1°)

| Volumes of C <sub>3</sub> H <sub>7</sub> OH in<br>100 volumes of C <sub>3</sub> H <sub>7</sub> OH<br>+H <sub>2</sub> O | Ccm of 1/10 normal nodine in 5 cc of the solution                          |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10                                                              | 58 8<br>36 0<br>23 6<br>16 1<br>10 7<br>6 4<br>3 7<br>1 56<br>0 42<br>0 19 |

(Bruner, Z phys Ch 1898, 26 150)

Solubility in ethyl alcohol+Aq at 25°

| Molecules of<br>C <sub>2</sub> H <sub>5</sub> OH in 100<br>molecules<br>C <sub>2</sub> H <sub>5</sub> OH +H <sub>2</sub> O | Molecules of H <sub>2</sub> O<br>in 100 molecules<br>C <sub>2</sub> H <sub>5</sub> OH +H <sub>2</sub> O | Normality of the iodine solution                                                                |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 0 0<br>0 03<br>0 06<br>1 12<br>1 83<br>9 40<br>13 48<br>23 80<br>50 80                                                     | 100<br>99 7(?)<br>99 4(?)<br>98 88<br>98 27(?)<br>90 60<br>86 52<br>76 20<br>49 20<br>0                 | 0 0022<br>0 0024<br>0 0024<br>0 0023<br>0 0025<br>0 0059<br>0 0111<br>0 0617<br>0 4326<br>1 590 |

(McLauchlan, Z phys Ch 1903, 44 627)

### Solubility in acetic acid+Aq at 25°

| ì | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                            | and decease decade (                         | 114 40 20                                               |
|---|----------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|
|   | Molecules of<br>CH <sub>3</sub> COOH in 100<br>molecules<br>CH <sub>3</sub> COOH +H <sub>2</sub> O | in 100 molecules                             | Normanty of the                                         |
|   | 0 0<br>6 98<br>16 40<br>31 90<br>55 70<br>100                                                      | 100<br>93 02<br>83 60<br>68 10<br>44 30<br>0 | 0 0022<br>0 0049<br>0 0112<br>0 0331<br>0 0882<br>0 205 |

(McLauchlan, Z phys Ch 1903, 44 627)

Very sol in ether, chloroform, and bromoform

Solubility in ether

100 g of the sat solution contain at
-83° -90° -108°

15 39 14 58 15 09 g I<sub>2</sub> (Arctowski, Z anorg 1896, **11** 276)

About as sol in all fatty oils as in CHCl<sub>3</sub>, etc (Gruel, Arch Pharm **223** 431)

|                                                                                                                | IOD                                                                                  | INE                                                                                                        | 413                                                          |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Sol in 56 6 pts chloroform at 10° (Duncan, Pharm J Trans <b>51</b> 544)                                        |                                                                                      | Solubility of I <sub>2</sub> in CS <sub>2</sub> +CCl <sub>4</sub> at room temperature (14 5°—15 1°)        |                                                              |
| Solubility in CHCl <sub>3</sub><br>100  g of the sat so<br>$-49^{\circ}$ $-55 \text{ 5}^{\circ}$ $-60^{\circ}$ | lution contain at                                                                    | Volumes of CS <sub>2</sub> in 100 volumes of CS <sub>2</sub> +CCl <sub>4</sub>                             | Ccm of 1/10-normal todine<br>in 5 cc of the solution         |
| 0 188 0 144 0 129                                                                                              |                                                                                      | 100<br>90                                                                                                  | 69 1<br>56 9                                                 |
| Very sol in methy Z anorg 3 343)                                                                               | lene iodide (Retgers,                                                                | 80<br>70<br>60                                                                                             | 48 6<br>40 7<br>33 9                                         |
| Solubility of I <sub>2</sub> in C<br>temperature                                                               | <sup>6</sup> <sub>6</sub> H <sub>6</sub> +CHCl <sub>3</sub> at room<br>(14 5°—15 1°) | 50<br>40                                                                                                   | 26 9<br>21 8                                                 |
| Volumes of C <sub>6</sub> H <sub>6</sub> in 100 volumes of C <sub>6</sub> H <sub>6</sub> + CHCl <sub>3</sub>   | Ccm of 1/10 normal iodine<br>in 5 cc of the solution                                 | 30<br>20<br>10                                                                                             | 17 7<br>13 25<br>10 2                                        |
| 100<br>90                                                                                                      | 41 05<br>38 8                                                                        | 0<br>(Bri                                                                                                  | 8 1<br>mer)                                                  |
| 80<br>70<br>60                                                                                                 | $\begin{array}{c} 34 \ 6 \\ 30 \ 5 \\ 27 \ 4 \end{array}$                            | Solubility of I2 in C2                                                                                     | H <sub>5</sub> OH+CHCl <sub>3</sub> at room                  |
| 50<br>40<br>30                                                                                                 | 24 4<br>21 0<br>19 2                                                                 | Volumes of C2H5OH in                                                                                       | (14 5°—15 1°)   Ccm of 1/10 normal iodine                    |
| 20<br>10                                                                                                       | 17 8<br>16 0                                                                         | 100 volumes of C <sub>2</sub> H <sub>5</sub> OH + CHCl <sub>3</sub>                                        | in 5 cc of the solution                                      |
| (Bruner, Z phys                                                                                                | 14 3<br>Ch 1898, <b>26</b> 147)                                                      | 90<br>80                                                                                                   | 61 7<br>37 1<br>34 2                                         |
| Solubility of I <sub>2</sub> in Ci<br>temperature                                                              | S <sub>2</sub> +CHCl <sub>3</sub> at room<br>(14 5°-15 1°)                           | 70<br>60<br>50                                                                                             | 30 7<br>27 9<br>26 1                                         |
| Volumes of CS <sub>2</sub> in 100 volumes of CS <sub>2</sub> +CHCl <sub>3</sub>                                | Ccm of 1/10 normal iodine<br>in 5 cc of the solution                                 | 40<br>30<br>20                                                                                             | 24 6<br>22 7<br>19 9                                         |
| 100<br>90<br>80                                                                                                | 69 4<br>62 7<br>55 9                                                                 | 10 0                                                                                                       | 17 1<br>14 25                                                |
| 70<br>60                                                                                                       | 47 9<br>42 0                                                                         | (Br                                                                                                        | uner)                                                        |
| 50<br>40<br>30                                                                                                 | 35 8<br>30 4<br>25 3                                                                 | Solubility of I <sub>2</sub> in C <sub>3</sub> .  temperature                                              | H <sub>7</sub> OH+CHCl <sub>3</sub> at room<br>(14 5°—15 1°) |
| 20<br>10<br>0                                                                                                  | 20 8<br>17 0<br>14 3                                                                 | Volumes of C <sub>3</sub> H <sub>7</sub> OH in<br>100 volumes of C <sub>3</sub> H OH<br>+CHCl <sub>3</sub> | Cem of 1/10 normal iodine<br>in 5 cc of the solution         |
| ,                                                                                                              | un(r)                                                                                | 100<br>90                                                                                                  | 58 8<br>51 9                                                 |
| temper iture                                                                                                   | C <sub>1</sub> H <sub>6</sub> +CCl <sub>4</sub> it room<br>(14 5°-15 1°)             | 80<br>70<br>60                                                                                             | 44 2<br>35 4<br>31 8                                         |
| volumes of (,H,+((l4                                                                                           | C cm of 1/10 normal iodine<br>in > cc of the solution                                | 50<br>40<br>30                                                                                             | 30 8<br>27 9<br>25 3                                         |
| 100<br>90<br>80                                                                                                | 41 05<br>37 2<br>33 6                                                                | 20<br>10                                                                                                   | 21 8<br>17 8                                                 |
| 70<br>60<br>50                                                                                                 | 29 6<br>26 1<br>22 4                                                                 | 0 (Br                                                                                                      | 14 25<br>runei )                                             |
| 40<br>30                                                                                                       | 19 25<br>16 1                                                                        | Sol in acetone (                                                                                           | Naumann, B 1904, <b>37</b>                                   |
| $\frac{20}{10}$                                                                                                | 13 4                                                                                 | Sol in methyl acet                                                                                         | C 1999, II 1014)<br>ate (Naumann, B 1909,                    |

 $\begin{array}{c} 13 & 4 \\ 10 & 75 \end{array}$ 

8 1

(Bruner)

Sol in acetone (Naumann, B 1904, 37 4328), (Eidmann, C C 1999, II 1014) Sol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1904, 37 3601)
Sol in allyl mustard oil, phenyl mustard

oil, phenyl isocyanate, pyridine, and alcohol (Mathews, J phys Chem 1905, 9 649)

Solubility of  $I_2$  in glycerine+Aq at 25° G=g glycerine in 100 g glycerine+Aq  $I_2=g$   $I_2$  in 100 cc of the solution

| G                                                    | $I_2$                                                                     | Sp gr                                                                        |
|------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0<br>7 15<br>20 44<br>31 55<br>40 95<br>48 7<br>69 2 | 0 0304<br>0 0342<br>0 0482<br>0 0621<br>0 0875<br>0 135<br>0 278<br>1 223 | 0 9979<br>1 0198<br>1 0471<br>1 0750<br>1 0995<br>1 1207<br>1 1765<br>1 2646 |

(Herz and Knoch, Z anorg 1905, 45 269)

1 l  $N-NH_4C_2H_3O_2+Aq$  dissolves 0 440 g I<sub>2</sub> at 25°  $1107 \text{ N-}(\text{NH}_4)_2\text{C}_2\text{O}_4 + \text{Aq dissolves } 0980$ 

g I<sub>2</sub> at 25° (McLauchlan, Z phys Ch 1903, 44 617)

Very sol in benzonitrile (Naumann, B **1914, 47** 1369)

Solubility in CS<sub>2</sub> at t°

| t°                                                                                                                          | Grams iodine in 100 g of sat solution                                                                                                 |  |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| —100<br>— 95<br>— 90<br>— 85<br>— 80<br>— 75                                                                                | 0 32<br>0 37<br>0 41<br>0 46<br>0 51<br>0 55                                                                                          |  |
| $\begin{array}{c} -25 \\ -20 \\ -15 \\ -10 \\ -5 \\ 0 \\ +5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 36 \\ 40 \\ 42 \\ \end{array}$ | 3 47<br>4 14<br>4 82<br>5 52<br>6 58<br>7 89<br>9 21<br>10 51<br>12 35<br>14 62<br>16 92<br>16 92<br>19 26<br>22 67<br>25 22<br>26 75 |  |
| (A1                                                                                                                         |                                                                                                                                       |  |

(Arctowski, Z anorg 1894, 6 404)

1 l CS<sub>2</sub> dissolves 230 g I<sub>2</sub> at 25°

1 l CHBr<sub>3</sub> dissolves 189 55 g  $I_2$  at 25° 1 l CCl<sub>4</sub> dissolves 30 33 g  $I_2$  at 25°

(Jakowkin, Z phys Ch 1895, **18** 590)

Solubility in CS<sub>2</sub>

100 g of the sat solution contain at --87° --92 5° --94°

-80° 0 509 0 440 0 391 0 378 g I<sub>2</sub> (Arctowski, Z anorg 1896, 11 274)

When an aqueous solution of I is shaken with  $CS_2$ , 400 pts go into solution in  $CS_2$  for 1 pt remaining in H2O (Berthelot and Jungfleisch, C R 69 338)

Abundantly sol in methane (Villard, A ch 1897, (7) 10 387)
Easily sol in hot, less in cold naphtha (Villard,

(Pelletier and Walker) Sol in about 8 pts hot petroleum from

Amiano (de Saussure)

Sl sol in cold, more readily in hot ben-zene (Mansfield) Easily sol in benzene (Monde, A ch (3) 39 452)

Solubility in benzene

100 g of the sat solution contain at

4 7° 13 7° 6 6° 10 5° 16 3° 8 08 8 63 9 60 10 44 11 23 g l<sub>2</sub> (Arctowski, Z anorg 1896, 11 276)

11 benzene sat with iodine at 25° contains 139 g modine Abegg, Z anorg 1906, 50 409)

1 l nitrobenzene dissolves 50 62 g I<sub>2</sub> at 16-17° (Dawson and Gawler, Chem Soc 1902, **81** 524)

Solubility of I<sub>2</sub> in nitrobenzene+iodides at room temp

| room omp                                                                 |                                                                                                              |                                                                            |                                                                                                                       |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Salt                                                                     |                                                                                                              | G per l                                                                    |                                                                                                                       |
| Mary                                                                     | Sa                                                                                                           | lt                                                                         | I2                                                                                                                    |
| KI                                                                       | 12<br>45<br>115<br>155<br>135<br>57<br>109<br>228<br>85<br>217<br>84<br>48<br>223<br>69<br>4106<br>42<br>158 | 35<br>56<br>8<br>2<br>55<br>7<br>1<br>4<br>5<br>1<br>2<br>5<br>3<br>5<br>2 | 112 7<br>295 7<br>943 6<br>125 393<br>738 1251<br>421<br>1060<br>642<br>213<br>858<br>482<br>669<br>599<br>237<br>809 |
| Aniline hydriodide<br>Dimethyl aniline hydriodide<br>Tetramethylammonium | 164<br>160                                                                                                   |                                                                            | 721<br>626                                                                                                            |
| ıodıde "                                                                 | 49<br>51                                                                                                     | კ<br>4                                                                     | 266<br>280                                                                                                            |

(Dawson and Goodson, Chem Soc 1904, 85 796)

Sol in quinoline (Beckmann and Gabel, Z anorg 1906, 51 236)

Easily sol in oil of turpentine, but an explosion soon occurs (Walker)

Sol in oil of mandarin (Luca)

Sol in oil of arnica root (Zeller)

Very sol in CS<sub>2</sub>, lignone, furfurol, glycerine, aldehyde, chloral, warm retinole, toluene, salicylic acid, methyl nitrate, methyl salicylate, mercaptan, amyl carbamate, ethyl sulphydrate, allyl iodide, ethyl disulphocarbonate, carbon chloride, SCl<sub>2</sub>, ICl<sub>3</sub>, H<sub>2</sub>S<sub>5</sub>, chlorochromic acid, amyl valerianate, valerianic acid, warm butyric acid, creosote, aniline, quinoline, methylsalicylic acid Quickly sol in oil of dill, peppermint, sassafras, and tansy Slowly sol in oil of cloves, cinnamon, cajeput, and rue Other essential oils decompose it (Various authorities)

Sol in potassium croconate+Aq (Gmelin)
Sol in potassium antimony tartrate+Aq
176 pts H<sub>2</sub>O+6 pts potassium antimony
tartrate dissolve 2.75 pts I, 378 pts H<sub>2</sub>O
+6 pts potassium antimony tartrate dissolve -

4 12 pts I
More sol in tannic acid than in H<sub>2</sub>O 1 pt
I is sol in 450 pts H<sub>2</sub>O with 3 3 pts tannic
acid at 12°, 1 pt I is sol in 240 pts H<sub>2</sub>O with
0 015 pt tannic acid at about 30° (Koller,
Zeit Ch 1866 380)

200 g H<sub>2</sub>O containing 0 3 g tannic acid dissolve 1 0 g I (Hager, Comm 1883)

Sol in considerable quantity, especially on warming, in resorcin, orcin, or phloroglucin+Aq, without coloration or formation of HI+Aq. These solutions withdraw I from CS<sub>2</sub> solution, and do not give it up on boiling, but on evaporation in vacuo the I is sublimed in a pure state (Hlasiwetz, Z anal 6 447)

Partition coefficient for iodine between CS<sub>2</sub> and Aq at 25°C

A = concentration of the water layer C = concentration of the carbon bisulphide layer

| A      | C     | h=C/A |
|--------|-------|-------|
| 0 2571 | 167 6 | 651 8 |
| 0 2195 | 140 2 | 638 7 |
| 0 1947 | 122 0 | 626 4 |
| 0 1743 | 108 3 | 620 0 |
| 0 1605 | 98 27 | 612 2 |
| 0 1229 | 73 23 | 595 8 |
| 0 1104 | 65 81 | 596 0 |
| 0 0939 | 55 29 | 590 5 |
| 0 0518 | 30 36 | 586 2 |

Partition coefficient for iodine between CHBr<sub>3</sub> and Aq at 25°C

A = concentration of the water layer C = concentration of the CHBr<sub>3</sub> layer

| A      | C      | 6 = C/A |
|--------|--------|---------|
| 0 2736 | 144 36 | 527 6   |
| 0 1752 | 85 11  | 485 7   |
| 0 1084 | 49 93  | 460 5   |
| 0 0757 | 32 65  | 431 7   |
| 0 0517 | 22 19  | 429 3   |

Partition coefficient for iodine between CCl<sub>4</sub> and Aq at 25°C

A = concentration of the water layer C = concentration of the CCl<sub>4</sub> layer

| 4      | С     | h = C/A |
|--------|-------|---------|
| 0 2913 | 25 61 | 87 91   |
| 0 1934 | 16 54 | 85 51   |
| 0 1276 | 10 88 | 85 30   |
| 0 0818 | 6 966 | 85 13   |
| 0 0516 | 4 412 | 85 77   |

(Jakowkin, Z phys Ch 1895, 18 586-588)

| _                                                   |                                                        |
|-----------------------------------------------------|--------------------------------------------------------|
| G alcohol in 100 cc of<br>mixture                   | $\frac{\text{C aq alcohol}}{\text{CCS}_2} \times 10^2$ |
| 30 5<br>26 7<br>22 9<br>19 1<br>16 3<br>11 4<br>7 6 | 1 29<br>0 76<br>0 49<br>0 34<br>0 28<br>0 23<br>0 20   |

(Osaka, Chem Soc 1905, 88 (2) 811)

Division of iodine between CS<sub>2</sub> and Na<sub>2</sub>SO<sub>4</sub>+Aq at 25°

A = concentration of I in H<sub>2</sub>O layer C = concentration of I in CS<sub>2</sub> layer

| Na <sub>2</sub> SO <sub>4</sub> +Aq | Ą      | С     |
|-------------------------------------|--------|-------|
| 1-N                                 | 0 1518 | 142 4 |
| 1/ <sub>2</sub> -N                  | 0 1809 | 141 7 |
| 1/ <sub>4</sub> -N                  | 0 2022 | 143 6 |
| 1/ <sub>8</sub> -N                  | 0 2138 | 142 4 |

Division of iodine between CS<sub>2</sub> and NaNO<sub>1</sub> +A<sub>0</sub>

| ***Y                              |                            |                         |  |  |
|-----------------------------------|----------------------------|-------------------------|--|--|
| NaNO3+Aq                          | 4                          | C                       |  |  |
| 1-N<br>1/-N<br>1/ <sub>4</sub> -N | 0 1923<br>0 2090<br>0 2164 | 142 4<br>143 7<br>143 5 |  |  |
|                                   |                            |                         |  |  |

(Jakowkin, Z phys Ch 1896, 20 25)

Partition between CHCl<sub>3</sub> and glycerine C=millimols iodine in 10 g CHCl<sub>3</sub> laver W=millimols iodine in 10 g glycerine layer

| c                       | N                       | C/W                  |
|-------------------------|-------------------------|----------------------|
| 0 564<br>0 919<br>0 151 | 0 244<br>0 397<br>0 500 | 2 31<br>2 32<br>2 30 |
|                         |                         |                      |

(Herz, Z Elektrochem 1910, 16 870)

solvents

C=millimols iodine in 10 ccm of the CHCl<sub>3</sub> ıyer

W = millimols iodine in 10 ccm of the otherver

|                             |          |     | _                    |      |      |    |
|-----------------------------|----------|-----|----------------------|------|------|----|
| Other Solvent               |          | С   |                      | w    | C/1  | XV |
| Vater                       | 0        | 338 | 0                    | 0025 | 134  | 6  |
|                             | ĭ        | 546 |                      | 0120 |      | ŏ  |
|                             | 2        | 318 | 0                    | 0184 | 126  | 3  |
|                             | 3        | 207 | 0                    | 0242 | 132  | 8  |
|                             | 3        | 439 | 0                    | 0259 | 132  | 8  |
| 5% by vol H <sub>2</sub> O+ | 1        | 217 | 0                    | 0183 | 66   | 32 |
| 25% by vol glycerine        | 1        | 893 | 0                    | 0290 | 65   | 33 |
|                             | 2        | 434 | 0                    | 0367 | 66   | 31 |
| _                           | 3        | 219 | 0                    | 0483 | 66   | 65 |
| 0% by vol H <sub>2</sub> O+ | ī        | 217 | 0                    | 0405 | 30   | 0  |
| 50% by vol glycerine        | 1        | 835 | 0                    | 0609 | 30   | 1  |
|                             | 2        | 376 | 0                    | 0782 | 30   | 4  |
|                             | 3        | 294 | 0                    | 1020 | 32   | 2  |
| 5% by vol H <sub>2</sub> O+ | 1        | 188 | 0                    | 116  | 10   | 25 |
| 75% by vol glycerine        | 1        | 806 | 0                    | 173  | 10   | 45 |
|                             | 2        | 656 | 0                    | 249  | 10   | 66 |
|                             | 2        | 859 | 0                    | 265  | 10   | 80 |
|                             | 3        | 400 | 0                    | 312  | 10   | 93 |
| (Hong 7 Flolytmoches        | <u> </u> | 101 | $\overline{\Lambda}$ | 10 0 | 70 \ |    |

(Herz, Z Elektrochem 1910, 16 870)

Distribution of  $I_2$  between benzene and glycerine at to

 $M_1 = concentration of I_2$  in benzene layer pressed in g-mol per l

 $M_2$  = concentration of  $I_2$  in glycerine layer xpressed in g -mol ner l

| xpressed in g-mol per i |                                                                                                            |                                                                                                                |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| t°                      | M <sub>1</sub>                                                                                             | $M_2$                                                                                                          |  |  |
| 25°                     | 0 00757<br>0 01610<br>0 02719<br>0 04024<br>0 06255<br>0 07923<br>0 10243<br>0 12201<br>0 13342<br>0 16734 | 0 001604<br>0 002664<br>0 004115<br>0 005794<br>0 00834<br>0 01033<br>0 01324<br>0 01559<br>0 01668<br>0 02081 |  |  |
| 40°                     | 0 008545<br>0 01544<br>0 04432<br>0 095004<br>0 13271<br>0 18508                                           | 0 00181<br>0 002593<br>0 006242<br>0 012013<br>0 01632<br>0 02193                                              |  |  |
| 50°                     | 0 00865<br>0 01523<br>0 02683<br>0 04413<br>0 0620<br>0 07832<br>0 10153<br>0 12166<br>0 13199<br>0 18438  | 0 00184<br>0 00253<br>0 00390<br>0 00576<br>0 00744<br>0 00942<br>0 01214<br>0 0145<br>0 01560<br>0 02122      |  |  |

(Landau, Z phys Ch 1910, 73 202)

artition of I2 between CHCl3 and other Distribution of I2 between glycerine and CCl4

M1=concentration of I2 in CCl4 layer expressed in g-mol per l M<sub>2</sub>=concentration of I<sub>2</sub> in glycerine layer expressed in g-mol per l

| axpressed in g -mor per i |                                                                                  |                                                                                     |  |  |
|---------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| t°                        | M <sub>1</sub>                                                                   | $M_2$                                                                               |  |  |
| 25°                       | 0 002230<br>0 0024113<br>0 0048227<br>0 010452<br>0 038973<br>0 04598<br>0 05820 | 0 0014386<br>0 0014595<br>0 0027014<br>0 005581<br>0 019959<br>0 023948<br>0 030097 |  |  |
| 40°                       | 0 00227<br>0 00239<br>0 00461<br>0 01092<br>0 02540<br>0 04091<br>0 06074        | 0 00127<br>0 00138<br>0 00272<br>0 00482<br>0 01116<br>0 01749<br>0 02701           |  |  |
| 50°                       | 0 00257<br>0 00500<br>0 01363<br>0 02549<br>0 04167<br>0 06309                   | 0 00118<br>0 00225<br>0 00596<br>0 01050<br>0 01693<br>0 02502                      |  |  |
| /T.or                     | don 7 phys Ch                                                                    | 1010 79 009 \                                                                       |  |  |

(Landau, Z phys Ch 1910, 73 203)

Distribution of I<sub>2</sub> between ether and ethylene glycol at to

 $M_1 = concentration$  of  $I_2$  in ether layer, expressed in g-mol per l

 $M_2 = \text{concentration of } I_2 \text{ in } C_2H_6O_2 \text{ layer,}$ expressed in g-mol per l

| t°  | Мі                                                                        | M <sub>2</sub>                                                            |
|-----|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 0°  | 0 00843<br>0 03082<br>0 06551<br>0 08105<br>0 12528<br>0 31511            | 0 00571<br>0 01713<br>0 03736<br>0 04605<br>0 07148<br>0 17524            |
| 25° | 0 00870<br>0 01677<br>0 02710<br>0 03046<br>0 06385<br>0 11951<br>0 30820 | 0 00571<br>0 01001<br>0 01586<br>0 01713<br>0 03594<br>0 06725<br>0 17524 |

(Landau, Z phys Ch 1910, 73 205)

### Iodine monobromide, 1Br

Slowly sol in H<sub>2</sub>O with slight decomp Sol in CHCl<sub>8</sub>, CS<sub>2</sub>, ether, and alcohol +5H<sub>2</sub>O (Lowig, Pogg 14 485) not exist (Bornemann, A 189 183) Does

Iodine pentabromide, IBr<sub>5</sub>(?)

Sol in H<sub>2</sub>O with separation of iodine (Lowig, Pogg 14 485)

#### Iodine monochloride, ICl

Decomp by H2O, sol without decomp in alcohol, ether, and HCl+Aq Sol in CS<sub>2</sub>

#### Iodine hydrogen chloride, ICl. HCl

Unstable Sol in ether (Schutzenberger. C R 84 389)

#### Iodine trichloride, ICla

Deliquescent With H2O, a part is dissolved without decomp, and the rest is decomp The aqueous solution contains more un-changed ICl<sub>3</sub>, the more conc it is (Serullas) Precipitated from aqueous solution by H<sub>2</sub>SO<sub>4</sub> Sol in HCl+Aq Sol in warm conc H<sub>2</sub>SO<sub>4</sub> without decomp Sol in alcohol, and benzene Decomp by small amount of CS<sub>2</sub> (Christomanos, B 10 434) Ether does not remove it from aqueous solution (Serullas)

### Iodine lithium chloride, ICl<sub>3</sub>, LiCl+4H<sub>2</sub>O See Lithium chloroiodide

#### Iodine trichloride magnesium chloride, 2ICl<sub>3</sub>, $MgCl_2 + 5H_2O$

Very deliquescent and easily decomposed (Filhol, J Pharm 25 442) +8H<sub>2</sub>O Hydroscopic (Weinland, Z anorg 1902, 30 141)

### Iodine trichloride manganous chloride, 2ICl<sub>3</sub>, MnCl<sub>2</sub>+8H<sub>2</sub>O

Hydroscopic (Weinland, Z anorg 1902, **30** 139)

### Iodine trichloride nickel chloride, 2ICl3 N<sub>1</sub>Cl<sub>2</sub>+SH<sub>2</sub>O

CCl<sub>4</sub> dissolves out ICl<sub>3</sub> (Wanland, Z. morg. 1902, 30, 138)

### Iodine monochloride phosphorus pentachloride, ICl, PCl<sub>5</sub>

Very deliquescent, decomp by H<sub>2</sub>O

# Iodine potassium chloride, ICl<sub>3</sub>, KCl

Sol in II O with decomp

Ether dissolves out ICl<sub>3</sub> (Filhol, J Pharm **25** 433, 506)

See Potassium chloroiodide

### Iodine sodium chloride, ICl<sub>3</sub>, NaCl+2H<sub>2</sub>O See Sodium chloroiodide

## Iodine trichloride strontium chloride, 2ICl<sub>3</sub>, $SrCl_2 + 8H_2O$

Hydroscopic (Weinland, Z anorg 1902, 30 142)

Iodine trichloride sulphur tetrachloride, ICls. SCL

Very deliquescent in air, decomp by  $H_2O$ 

very deliquescent in air, decomp by H<sub>2</sub>O
Decomp with formation of clear solution by
dil HNO<sub>3</sub>+Aq (Weber, Pogg 128 459)
SCl<sub>2</sub>, 2ICl<sub>3</sub> (Jaillard, J B 1860 95)
Correct formula is as above (Weber, l c)
2ICl<sub>3</sub>, SCl<sub>4</sub> Sol in SO<sub>2</sub>Cl<sub>2</sub>, SOCl<sub>2</sub>, POCl<sub>3</sub>,
warm SCl<sub>2</sub>, petroleum ether, ligroin, CHCl<sub>3</sub>,
CCl<sub>4</sub>, CS<sub>2</sub> and abs ether (Ruff, B 1904, 37 4519)

# Iodine trichloride zinc chloride, 2ICl<sub>2</sub>, ZnCl<sub>2</sub>+

Unstable Hydroscopic (Weinland, Z anorg 1902, 30 140)

### Iodine pentafluoride, IF<sub>5</sub>

Fumes in air, decomp with H<sub>2</sub>O (Gore. N 24 291)

Decomp by H2O into iodic acid and HF Decomp by solutions of the alkalies (Moissan, C R 1902, 135 564)

### Iodine traoxide, I<sub>2</sub>O<sub>3</sub>

Decomp by HO (Ogier, C R 85 957, 86 722)

Probably a mixture

### Iodine tetroxide, I<sub>2</sub>O<sub>4</sub>(?)

Insol in cold, decomp by hot H<sub>2</sub>O, insol in alcohol Decomp by HNO<sub>3</sub>+Aq Sol in H<sub>2</sub>SO<sub>4</sub> (Millon, J pr **34** 319, 337)

#### Iodine pentoxide, I O<sub>5</sub>

Very sol in H<sub>2</sub>O, and in dil alcohol Insol in absolute alcohol, ether, CS<sub>2</sub>, chloroform, and hydrocarbons

Forms hydrates, nodic acid HIO3, and 312O5, H2O, insol in ordinary alcohol

For sp gr of aqueous solution see rodic acid

#### Iodine oxides, I<sub>10</sub>O<sub>19</sub>, I<sub>3</sub>O<sub>13</sub>

The compounds I10O19 (Millon, J pr 34 336), and  $\bar{I}_3O_{13}$  (Kummerer, J pr 83 81), are probably mixtures

Millon's oxides are impure I<sub>2</sub>O<sub>4</sub> (Kappeler, B 1911, **44** 3496)

### Iodine sulphur oxide, 5I<sub>2</sub>O<sub>1</sub>, SO<sub>3</sub>

Decomp by H<sub>2</sub>O (Kummerer) I<sub>2</sub>O<sub>5</sub>, 3SO<sub>3</sub> Decomp by H<sub>2</sub>O, sl sol in hot  $SO_4$  (Weber, B 20 86) =(IO)<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> Iodyl sulphate (?)

### Iodine oxyfluoride, IOF<sub>3</sub>+5H<sub>2</sub>O

Fumes in the air (Weinland, Z anorg 1908, 60 163)

#### Iodine sulphide, S I2

Sol in CS<sub>2</sub> (Linebarger, Am Ch J 1895, **17** 57)

Iodine sulphoxide, I<sub>2</sub>SO<sub>3</sub>(?)

Decomp by H<sub>2</sub>O (Schultz-Sellack)  $I_2(SO_3)_2(?)$  Decomp by  $H_2O$  (Weber, J

pr (2) 25 224) I<sub>2</sub>(SO<sub>3</sub>)<sub>6</sub>(?) As above (Weber) See also Iodosulphuric anhydride

#### Iodiridic acid

Ammonium iodiridate, (NH<sub>4</sub>)<sub>2</sub>IrI<sub>6</sub>

Very easily sol in cold H<sub>2</sub>O, decomp on warming Insol in alcohol (Oppler, J B **1857** 263)

Potassium iodiridate, K2IrI6

Very easily sol in H<sub>2</sub>O Insol in alcohol

Sodium iodiridate, Na<sub>2</sub>IrI<sub>6</sub>

Insol in cold, sl sol in hot H<sub>2</sub>O Easily sol in acids (Oppler)

#### Iodindous acid

Ammonium iodiridite, (NH<sub>4</sub>)<sub>6</sub>Ir<sub>2</sub>I<sub>12</sub>+H<sub>2</sub>O Very sol in  $H_2O$ , but decomp on warming (Oppler)

Potassium iodiridite, K<sub>6</sub>Ir<sub>2</sub>I<sub>12</sub>

Insol in H<sub>2</sub>O, or alcohol Slowly sol in acids, easily in warm alkalies + Aq

Silver iodiridite, Ag<sub>6</sub>Ir<sub>2</sub>I<sub>12</sub>

Ppt

Iodochloroplatindiamine chloride,

Pt(N2H6Cl)2

Sl sol in H<sub>2</sub>O

#### Iodochromic acid

Potassium iodochromate, KCrO<sub>3</sub>I

Decomp by boiling H<sub>2</sub>O (Guyot, C R 73 46)

See also Chromoiodic acid

Iodomolybdic acid

See Molybdoiodic acid

Iodonitratoplatinmonodiamine bromide,

 $_{\mathrm{NO_{3}Pt}}^{\mathrm{I}}_{\mathrm{NH_{3}Br}}^{\mathrm{(NH_{3})_{2}Br}}$ (?)

Very sl sol in H<sub>2</sub>O (Cleve)

Iodonitritoplatindiamine nitrate,

 $I(NO_2)Pt(N_2H_6)_2(NO_3)_2$ Quite easily sol in hot H<sub>2</sub>O (Cleve)

### Iodopalladous acıd

Potassium iodopalladite

Deliquescent (Lassaigne)

Iodophosphoric acid See Phosphoiodic acid

Iodoplatinamine iodide, I2Pt(NH3I)2

Sol in H<sub>2</sub>O, especially easily if boilin (Cleve)

Iodoplatindramine iodide,  $I_2Pt(N_2H_6I)_2$ Sol in H<sub>2</sub>O, especially when hot (Cleve

- mercuric iodide,  $I_2Pt(N_2H_6I)_2$ ,  $2HgI_2$ Extremely difficultly sol in cold H26 partly decomp by boiling (Jorgensen, Gi K 3 1214)

- nitrate,  $I_2Pt(N_2H_6NO_3)_2$ More sol in hot than cold H<sub>2</sub>O

— sulphate,  $I_2Pt(N_2H_6)_2SO_4$ Very sl sol in H<sub>2</sub>O (Jorgensen, J pr ( **15** 429)

Iodoplatinsemidiamine iodide,  $I_2Pt(NH_3)_2I(?)$ 

Sl sol in H<sub>2</sub>O (Jorgensen, J pr (2) 1 345)

— periodide,  $I_8Pt(NH_8)_2I$ ,  $I_2$ Moderately sl sol in H<sub>2</sub>O (Cleve)

Iododiplatinamine iodide, I2Pt2(N2H6)2I4 Insol in H<sub>2</sub>O

Iododiplatindiamine anhydroiodide,  $I_{\bullet}Pt_{2}(N_{2}H_{6})_{4}OI_{2}$ 

Insol in NH<sub>4</sub>OH+Aq

- anhydronitrate,  $I_2Pt_2(N_2H_6)_4O(NO_3)_2$ Easily sol in warm H<sub>2</sub>SO<sub>3</sub>+Aq (Cleve

- 10dide,  $I_2Pt_2(N_2H_6)_4I_4$ Ppt

- nitrate,  $I_2Pt_2(N_2H_6)_4(NO_3)_4+4H_2O_3$ Sl sol in cold, moderately sol in hot H<sub>2</sub>C (Cleve)

- phosphate,  $I_2Pt_2(N_2H_6)_4[O_3P(OH)]_2$ Nearly insol in H<sub>2</sub>O

- sulphate,  $I_2Pt_2(N_2H_6)_4(SO_4)_2$ Nearly insol in H<sub>2</sub>O

- platodiamine sulphate,  $I_2Pt_2(N_2H_6)_4SO$  $Pt(NH_3)_2SO_4$ 

Very sl sol in H<sub>2</sub>O (Carlgren Sv V A F **47** 306)

# Iodoplatinic acid, H<sub>2</sub>PtL +9H<sub>2</sub>O

Deliquescent Easily sol in H<sub>2</sub>O, with de comp into PtI4 and HI on standing or warm ing (Topsoe)

Ammonium iodoplatinate, (NH<sub>4</sub>)<sub>2</sub>PtI<sub>6</sub>
Easily sol in H<sub>2</sub>O (Topsoe)
NH<sub>4</sub>I, PtI<sub>4</sub> Sl sol in H<sub>2</sub>O, insol in alcohol (Lassaigne, A ch (2) **51** 128)

Barium iodoplatinate, BaPtI<sub>6</sub>
Deliquescent, but less so than Na<sub>2</sub>PtI<sub>6</sub>
which it otherwise resembles (Lassaigne)

Calcium iodoplatinate, CaPtI<sub>6</sub>+12H<sub>2</sub>O Not so deliquescent as Na salt

Cobalt iodoplatinate,  $CoPtI_6+9H_2O$ Very deliquescent

Lead tetranodoplatmate, [PtI<sub>4</sub>(OH)<sub>2</sub>]Pb, Pb(OH)<sub>2</sub> Ppt (Belluci, C C 1902, I 625)

Magnesium iodoplatinate,  $MgPtI_6+9H_2O$ Sol in  $H_2O$ 

Manganese iodoplatinate, MnPtI<sub>6</sub>+9H<sub>2</sub>O Very deliquescent

Mercuric tetraiodoplatinate, [PtI<sub>4</sub>(OH)<sub>2</sub>]Hg Ppt (Belluci, C C 1902, I 625)

Nickel iodoplatinate, NiPtI<sub>6</sub>+9H<sub>2</sub>O Very deliquescent

 $\begin{array}{ccc} \textbf{Potassium iodoplatinate,} & K_2PtI_6\\ \textbf{Easily sol in } H_2O & Insol in alcohol & Not\\ \textbf{attacked by cold conc} & H_2SO_4 \end{array}$ 

Silver tetraiodoplatinate, Pt[I<sub>4</sub>(OH)]Ag Ppt (Belluci, C C 1902, I 625)

Sodium iodoplatinate,  $Na_2PtI_0+6H_2O$ Not deliquescent, but easily sol in  $H_2O$ and alcohol (Vauquelin) Deliquescent (Lassaigne)

Thallium teti modoplatmate, [PtI<sub>4</sub>(OH)]Tl Ppt (Belluci C C 1902, I 625)

Zinc iodoplatinate, ZnPtI<sub>6</sub>+9II<sub>2</sub>O Easily sol in H<sub>2</sub>O

Iodoplatinocyanhydric acid, H<sub>2</sub>Pt(CN)<sub>4</sub>I<sub>2</sub>
See Periodoplatinocyanhydric acid

Silver iodoplatinocyanide,  $Ag_2(PtI_2(CN_4)_2)$ Ppt (Miolati, Gazz ch it 1900, **30** 588)

Strontium iodoplatinocyanide platinocyanide, SrPt(CN)<sub>4</sub>I<sub>2</sub>, 10SrPt(CN)<sub>4</sub>+xH<sub>2</sub>O (Holst)

Iodopurpureochromium chloride,  $ICr(NH_3)_5Cl_2$ 

Quite sol in  $H_2O$  (Jorgensen, J pr (2) 25 83)

—— 10dide,  $ICr(NH_s)_5I_2$ Difficultly sol in  $H_2O$  Insol in HI, or

KI+Aq, msol m alcohol (Jorgensen, l'c)
——nitrate, ICr(NH<sub>3</sub>)<sub>5</sub>(NO<sub>3</sub>)<sub>2</sub>

Much less sol in  $H_2O$  than the chloride (Jorgensen, l c)

Iodopurpureocobaltic iodide, CoI(NH<sub>3</sub>), I<sub>2</sub>
(Claudet)
Does not exist (Jorgensen, J pr (2) 25
94)

Iodopurpureorhodium chloride, IRh(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>

Relatively easily sol in  $H_2O$ , insol in HCl +Aq and alcohol Insol in KI+Aq (Jorgensen, J pr (2) 27 433)

----- fluosilicate, IRh(NH<sub>3</sub>)<sub>5</sub>SiF<sub>6</sub> Nearly insol in cold H<sub>2</sub>O

----- iodoplatinate,  $IRh(NH_3)_5PtI_6$ Ppt

—— 10d1de, IRh(NH<sub>3</sub>)<sub>5</sub>I<sub>2</sub>
Very sl sol in cold H<sub>2</sub>O, more sol in hot H<sub>2</sub>O, insol in dil HI+Aq, and alcohol (Jörgensen, J pr (2) 27 433)

mitrate, IRh(NH<sub>3</sub>)<sub>5</sub>(NO<sub>3</sub>)<sub>2</sub>

Sl sol in  $H_2O$ , more easily sol in hot  $H_2O$ , insol in dil  $HNO_3+Aq$ , and alcohol

Sl sol in even hot H<sub>2</sub>O (Jorgensen)

Iodoselenic acid

Ammonium iodoselenate, 2(NH<sub>4</sub>)<sub>2</sub>O, I O<sub>5</sub> 2SeO<sub>3</sub>+H O

Decomp by  $H_2O$  (Weinland, B 1903, 36 1400)

 $2(\mathring{N}H_4)_2O$ ,  $3I_2O_5$ ,  $2SeO_3+5H_2O$  Sol in  $H_2O$  with decomp (?) (Weinland)

Potassium iodoselenate,  $2K_2O$ , I  $O_5$ ,  $2SeO_3 + H_2O$ 

Decomp by H<sub>2</sub>O (Weinland) 2K<sub>2</sub>O, 3I<sub>2</sub>O<sub>5</sub>, 2SeO<sub>3</sub>+5H<sub>2</sub>O Sol in H<sub>2</sub>O with decomp (?) (Weinland) Rubidium iodoselenate, 2Rb<sub>2</sub>O, 3I<sub>2</sub>O<sub>5</sub>, 2SeO<sub>3</sub> +5H<sub>2</sub>O Sol in H<sub>2</sub>O (Weinland)

#### Iodostannous acid

Data concerning solubility of SnI<sub>2</sub> in HI+Aq indicate formation of this compound (Young, J Am Chem Soc 1897, 19 853)

# Iodosulphobismuthous acid

Cuprous iodosulphobismuthite,  $2Cu_2S$ ,  $Bl_2S_3$ ,  $2Bl_3SI$ 

Decomp by H<sub>2</sub>O at ord temp Decomp by mineral acids with evolution of H<sub>2</sub>S (Ducatte, C R 1902, **134** 1213)

Lead iodosulphobismuthite, PbS,  $B_{12}S_3$ ,  $2B_1SI$ Insol in  $H_2O$  Partially decomp by boiling  $H_2O$  Decomp by dil mineral acids with evolution of  $H_2S$  (Ducatte)

### Iodosulphuric acid

Ammonium iodosulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>I<sub>2</sub>(?) Very sol in H<sub>2</sub>O (Zinno, N Rep Pharm **20** 449)

 $\label{eq:mercuric} \begin{array}{c} \text{Mercuric iodosulphate, } Hg_2(SO_4)I_2 \\ \textit{See Mercuric sulphate iodide} \end{array}$ 

Potassium iodosulphate, K<sub>2</sub>SO<sub>3</sub>I<sub>2</sub>(?)
Sol in 7 14 pts H<sub>2</sub>O at 15° (Zinno, N
Rep Pharm **20** 449)

Sodium iodosulphate, Na SO<sub>3</sub>I<sub>2</sub>+10H<sub>2</sub>O Sol in 3 64 pts H<sub>2</sub>O at 15° and in dil alcohol (Zinno, N Rep Pharm **20** 449) Does not exist (Michaelis and Koethe, B **6** 999)

# Iodosulphuric anhydride, ISO3

Decomp very violently by  $H_2O$  (Weber, J pr (2) 25 224)

Duodosulphuric anhydride,  $I_2SO_3$ 

Decomp with  $H_2O$ , but not so violently as  $ISO_3$  (Weber, J pr (2) **25** 224)

Iodolrisulphuric anhydride,  $I(SO_3)_3$ Decomp by  $H_2O$  (Weber, J pr (2) 25 224)

#### Iodotelluric acid

Ammonium iodotellurate,  $(NH_4)_2O$ ,  $I_2O_5$ ,  $2TeO_3+6H_2O$ Sol in  $H_2O$  (Weinland, Z anorg 1901,

28 52) (NH<sub>4</sub>)<sub>2</sub>O, I<sub>2</sub>O<sub>5</sub>, 2TeO<sub>3</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Weinland, B 1900, **33** 1017)

Cæsium iodotellurate, Cs2TeI4

Insol in CsI, or HI+Aq Decomp slowl by cold, rapidly by hot H<sub>2</sub>O (Wheeler, Sil. Am J **145** 267)

Potassium iodotellurate, K<sub>2</sub>TeI<sub>6</sub>+2H<sub>2</sub>O

Sl efflorescent Somewhat sol in KI+Ac and dil HI+Aq (Wheeler)  $K_2O$ ,  $I_2O_5$ ,  $TeO_3+3H_2O$  Sol in  $H_2O_5$ 

K<sub>2</sub>O, I<sub>2</sub>O<sub>5</sub>, TeO<sub>3</sub>+3H<sub>2</sub>O Sol in H<sub>2</sub>O Partially decomp on recryst from H<sub>2</sub>C (Weinland, Z anorg 1901, 28 53)

 $K_2O$ ,  $I_2O_5$ ,  $2Te\bar{O}_3+6H_2O$  Sól in  $H_2O$  without decomp (Weinland)

Rubidium iodotellurate, Rb2TeI6

Sl sol in HI, or RbI+Aq Decomp b H<sub>2</sub>O Somewhat sol in alcohol (Wheeler Rb<sub>2</sub>O, I<sub>2</sub>O<sub>5</sub>, 2TeO<sub>3</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Weinland)

Iodotetramine chromium iodide, ICr(NH<sub>8</sub>)<sub>4</sub>I<sub>2</sub>+H<sub>2</sub>O

Sol in H<sub>2</sub>O Pptd by alcohol (Cleve)

Ico(NH<sub>3</sub>)<sub>4</sub>SO<sub>4</sub> (Vortmann and Blasberg, B 22 2652)

Iodotungstic acid

See Tungstoiodic acid

Iodous acid, I<sub>2</sub>O<sub>3</sub>
See Iodine trioxide

Iodovanadic acid, I<sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>5</sub>+5H<sub>2</sub>O Very easily sol in H<sub>2</sub>O

 $2V_2O_5$ ,  $3I_2O_5+18H_2O$  (Ditte, C R 102 757)

Ammonium iodovanadate,  $3(NH_4)_2O,\ 2V_2O_5$   $5I_2O_5{+}20H_2O$ 

Sol in H<sub>2</sub>O (Ditte, C R **102** 1019)

Irididiamine compounds, Cl. Ir(NH<sub>3</sub>)<sub>4</sub>X<sub>2</sub> See Chloriridiamine compounds

Iridic acid

Potassium iridate (?) Sol in H<sub>2</sub>O and HCl+Aq

Iridicyanhydric acid, HaIr(CN)6

Easily sol in  $H_2O$ , still more easily in al cohol, less in ether (Martius, A 117 369)

Barium iridicyanide,  $Ba_3[Ir(CN)_6]_2+18H_2O$ 

Efflorescent Easily sol in hot or cold H<sub>2</sub>O Nearly insol in alcohol Not decomp by acids

Cupric iridicyanide ammonia, Cu<sub>3</sub>Ir<sub>2</sub>(CN)<sub>12</sub>, 6NH<sub>3</sub>+4H<sub>2</sub>O

Ppt Decomp in air (Rimbach, Z anorg 1907, **52** 413)

Potassium iridicyanide, K<sub>3</sub>Ir(CN)<sub>6</sub> Easily sol in H<sub>2</sub>O

Silver iridicyanide ammonia,  ${\rm Ag_3Ir(CN)_6}, \ {\rm 2NH_3 + 3H_2O}$ 

Ppt Decomp in the light (Rimbach, Zanorg 1907, 52 414)

### Iridium, Ir

Insol in all acids, including aqua regia, except when in finely divided state, as "iridium black," when it is sol in aqua regia (Claus, J pr 42 251)

#### Iridium ammonia compounds

Iridium tribromide, IrBr<sub>3</sub>+4H<sub>2</sub>O

Easily sol in  $H_2O$  Insol in alcohol or ether (Birnbaum)

Iridium tetrabromide, IrBr<sub>4</sub>, or H<sub>2</sub>IrBr<sub>6</sub>
Deliquescent Sol in H<sub>2</sub>O and alcohol (Birnbaum)
See Bromiridic acid

Iridium hydrogen sesquibromide, 3HBr, IrBr<sub>3</sub>+H<sub>2</sub>O = H<sub>3</sub>IrBr<sub>6</sub>+3H<sub>2</sub>O See Bromindous acid

Iridium sesquibromide with MBr See Bromiridite, M

Iridium tetrabromide with MBr See Bromiridate, M

Iridium phosphorous bromide, IrBr<sub>3</sub>, 3PBr<sub>3</sub>
Pirti illy decomp by H () into a sol, and

insol modification. Sol in PBr<sub>3</sub> (Geisenheimer). IrBr<sub>3</sub> 2PBr<sub>4</sub>. Not easily attacked by H<sub>2</sub>O IrBr<sub>4</sub>, 2PCl<sub>3</sub>

See Iridium phosphorus chlorobromide

### Iridium carbide, IrC4(?)

(Berzelius)
Stable toward H<sub>2</sub>O, acids, and alcohol (Strecker, B 1909, **42** 1773)

Iridium monochloride, IrCl

Insol in acids and bases (Wohler, B 1913, 46 1584)

Iridium dichloride, IrCl2

Insol in acids and bases (Wohler, B 1913, 46 1585)

Iridium to schloride, IrCls

Insol in acids or alkalies (Claus, C C 1861 690)

Insol in  $H_2O$ , acids and alkalies, (Leidié, C R 1899, 129 1251)

+4H<sub>2</sub>O Sol in H<sub>2</sub>O (Claus)

Iridium tetrachloride, IrCl<sub>4</sub>, or H<sub>2</sub>IrCl<sub>6</sub>(?)
Deliquescent, and easily sol in H<sub>2</sub>O

Iridium trichloride with MCl See Chloriridite, M

Iridium tetrachloride with MCl See Chloriridate, M

Iridium chloride with potassium chloride and sulphite

See Chloriridosulphite, potassium

Iridium phosphorus chloride, IrP2Cl9

Insol in cold H<sub>2</sub>O Sl decomp by hot H<sub>2</sub>O (Geisenheimer, A ch (6) 23 254)

IrP<sub>2</sub>Cl<sub>10</sub> Very sol in chloroform (G) IrP<sub>3</sub>Cl<sub>12</sub> Easily sol in PCl<sub>3</sub>, or CHCl<sub>3</sub>, also in CS<sub>2</sub> with gradual decomp Sl sol in cold H<sub>2</sub>O Decomp by boiling into IrCl<sub>3</sub>, 3H<sub>3</sub>PO<sub>4</sub> Sl sol in benzene, ligroin and CCl<sub>4</sub> (Strecker, B 1909, 42 1772)

+H<sub>2</sub>O Insol in PCl<sub>3</sub> at 100° Very slowly sol in boiling H<sub>2</sub>O (Geisenheimer, A

ch (6) 23 266)

IIP<sub>3</sub>Cl<sub>15</sub> Decomp by H<sub>2</sub>O into 2IrCl<sub>3</sub>, 3H<sub>3</sub>PO<sub>3</sub>, 3H<sub>3</sub>PO<sub>4</sub> Violently decomp by alcohol SI sol in cold, more in hot POCl<sub>3</sub>, with decomp Very sol in PCl<sub>3</sub> with decomp into IiP<sub>3</sub>Cl<sub>12</sub>, similarly in PBr<sub>3</sub> Sol in AsCl<sub>3</sub> with combination Sol in CS<sub>2</sub> with decomp Sol in SCl<sub>2</sub> with combination E isily sol in cold C<sub>1</sub>H<sub>5</sub> with decomp Insol in CCl<sub>4</sub> Sol in CHCl<sub>3</sub> with decomp (Gerscheimer, A eh (6) **23** 254)

Iridium phosphorus arsenic chloride,  $2IrP_3Cl_{16}$ ,  $5AsCl_3$ 

Sol in HO with decomp into corresponding acid (Geisenheimer, C. R. 110, 1336). ItCls, 2PCls, 2AsCls, Very sol in H2O with decomp Sol in AsCls, insol in CCl4 (Geisenheimer).

Iridium phosphorus sulphur chloride, Ii Cl<sub>3</sub>, 2PCl<sub>3</sub>, 2SCl<sub>2</sub>

Very sol in sl amt H<sub>2</sub>O, with decomp into an acid analogous to chlorophosphorridic acid Sol in SCl (Geisenheimer)

Iridium phosphorus chlorobromide, IrBr<sub>4</sub>, 2PCl<sub>3</sub>

(Geisenheimer, C R 111 40)

Iridium dihydroxide, IrO2, 2H2O=IrO4H4

Insol in dil HNO<sub>3</sub>, or H<sub>2</sub>SO<sub>4</sub>+Aq Slowly but completely sol in HCl+Aq Sol in KOH, and NaOH+Aq (Claus, J pr 39 104)

### Iridium sesquihydroxide, Ir<sub>2</sub>O<sub>6</sub>H<sub>6</sub>

Not attacked by acids, except slightly by conc HCl+Aq (Claus, C C 1861 690)

#### Iridium truodide, IrI<sub>3</sub>

Very sl sol in cold, somewhat more in hot  $H_2O$  Insol in alcohol (Oppler, J B 1857 263)

### Iridium tetraiodide, IrI4

Insol in H<sub>2</sub>O or acids (Lassaigne) Sol in solutions of iodides (Oppler)

Indium truodide with MI See Iodiridite, M

Indium tetraiodide with MI See Iodiridate, M

### Iridium dioxide, IrO2

Very sl sol in acids Freshly pptd Sol in conc H<sub>2</sub>SO<sub>4</sub>, hot 2-N H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, HCl Insol in 2-N KOH and sl sol in hot 1-N KOH

Dried in a dessicator Sol in HCl Insol

in H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub> and KOH

Dried at 100° Sol in hot conc HCl

Insol in H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub> and KOH (Wohler,

Z anorg 1908, 57 334)

See also Iridium dihydroxide

# Iridium trioxide, IrO3

Unstable (Wohler, Z anorg 1908, 57 340)

# Iridium sesquioxide, Ir<sub>2</sub>O<sub>3</sub>

Insol in acids

Sol in cone H<sub>2</sub>SO<sub>4</sub>, and hot cone HCl Forms colloidal solution with dil HCl Cone HNO<sub>3</sub> converts it into the dioxide

Insol in KOH+Aq (Wohler, Z anorg 1908, **57** 339)

Iridium oxybromide, Ir<sub>3</sub>Br<sub>8</sub>O<sub>2</sub>=2IrBr<sub>4</sub>, IrO<sub>2</sub> Not decomp by H<sub>2</sub>O (Geisenheimer, A ch (6) 23 286)

# Iridium phosphide, Ir<sub>2</sub>P

(Clarke and Joslin, Am Ch J 5 231)

# Iridium sesquiselenide, Ir<sub>2</sub>Se<sub>3</sub>

Insol in HNO<sub>5</sub>, slowly sol in hot aqua regia (Chabrié and Bouchonnet, C R 1903, **137** 1060)

Iridium monosulphide, IrS

Inso<sup>1</sup> in HNO<sub>3</sub>+Aq, and very sl sol if at all in aqua regia (Berzelius)

Sol in K<sub>2</sub>S, and KSH+Aq +xH<sub>2</sub>O Sl sol in H<sub>2</sub>O, sol in cold HNO<sub>3</sub>+Aq Insol in NH<sub>4</sub>Cl+Aq or dil acids More sol in K<sub>2</sub>S+Aq than PtS<sub>2</sub> (Berzelius)

### Iridium disulphide, $IrS_2$

Not attacked by H<sub>2</sub>O, but decomp when exposed moist in air Not attacked by sat HCl+Aq or by conc HNO<sub>3</sub>+Aq, but is oxidised by fuming HNO<sub>3</sub>+Aq, and aqua regia Insol in NH<sub>4</sub> sulphides, or polysulphides+Aq Slowly sol in alkali polysulphides+Aq (Antony, Gazz ch it 23, 1 190)

Iridium sesquisulphide, Ir<sub>2</sub>S<sub>3</sub> Sl sol in H<sub>2</sub>O Sol in HNO<sub>3</sub>, or K<sub>2</sub>S+Aq

Iridotriamine chloride, Ir(NH<sub>3</sub>)<sub>3</sub>Cl<sub>3</sub>
Sl sol in H<sub>2</sub>O Not attacked by boiling H<sub>2</sub>SO<sub>4</sub> (Palmaer, B **22** 15)

Iridotetraamine chloride, Ir(NH<sub>3</sub>)<sub>4</sub>Cl<sub>3</sub> Very sol in H<sub>2</sub>O (Palmaer, B **22** 15)

----chlorosulphate,[Ir(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>]SO<sub>4</sub>+  $4H_2O$ (Palmaer)

Iridopentamine bromide, Ir(NH<sub>3</sub>)<sub>5</sub>Br<sub>3</sub> Sol in 352 pts H<sub>2</sub>O at 12 5° (Palmaer, B 23 3817)

bromochloride, Ir(NH<sub>2</sub>)<sub>5</sub>ClBr<sub>2</sub> Sol in H<sub>2</sub>O (Palmaer, B **24** 2090)

Sol in 179 pts H<sub>2</sub>O at 18° (Palmaer)

---- bromosulphate,  $Ir(NH_3)_5BrSO_4+H_2O$ Sol in  $H_2O$  (Palmaer)

carbonate,  $[Ir(NH_3)_5]_2(CO_3)_3+3H_2O$ Sol in  $H_2O$  (Claus, J pr 63 99)

Sol in hot H<sub>2</sub>O containing HCl (Claus, J pr 69 30)

Sol in 213 6 pts  $H_2O$  at 15° (Palmaer)

— chlorosodide,  $Ir(NH_3)_5CII_2$ Sol in 104 5 pts  $H_2O$  at 15° (Palmaer)

### Iridopentamine chloronitrate, Ir(NH<sub>3</sub>)<sub>5</sub>Cl<sub>3</sub>NO<sub>3</sub>)<sub>2</sub>

Sol in 51 54 pts H<sub>2</sub>O at 15 4° (Palmaer)

---- chloronitrite,  $Ir(NH_3)_5Cl(NO_2)_2$ 

Easily sol in H<sub>2</sub>O (Palmera)

- ---- chloroplatmate, Ir(NH<sub>3</sub>)<sub>5</sub>Cl<sub>3</sub>, PtCl<sub>4</sub> Very sl sol in H<sub>2</sub>O (Palmear)
- chlorosulphate, Ir(NH<sub>3</sub>)<sub>5</sub>ClSO<sub>4</sub>+2H<sub>2</sub>O Sol in 134 5 pts H<sub>2</sub>O at 15° (Palmaer)
- hydroxide,  $Ir(NH_3)_5(OH)_8$ Known only in solution, which decomp on evaporation (Claus)
- nitrate,  $Ir(NH_3)_5(NO_3)_3$ Moderately sol in H<sub>2</sub>O (Claus) Sol in 349 pts H<sub>2</sub>O at 16° (Palmaer)
- sulphate,  $[Ir(NH_3)_5]_2(SO_4)_8$ Sol in H<sub>2</sub>O (Claus)

#### Iridoaquopentamine bromide. $Ir(NH_3)_5(OH_2)Br_3$

Sol in 4 pts H<sub>2</sub>O Pptd from aqueous solution by HBr+Aq (Palmaer. B 24 2090)

---- chloride, Ir(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)Cl<sub>3</sub> Sol in 12 to 15 pts H<sub>2</sub>O at ord temp Pptd by HCl+Aq from aqueous solution (Palmaer, B 24 2090)

— nitrate,  $Ir(NH_3)_5(OH_2)(NO_3)_3$ Sol in about 10 pts H<sub>2</sub>O at 17° Pptd from aqueous solution by HNO<sub>3</sub>+Aq (Palmaer)

Iridonitrous acid, H<sub>6</sub>Ir<sub>2</sub>(NO<sub>2</sub>)<sub>12</sub> Easily sol in H<sub>2</sub>O (Gibbs, B 4 281)

Ammonium iridonitrite, (NH<sub>4</sub>)<sub>6</sub>Ir<sub>2</sub>(NO<sub>2</sub>)<sub>12</sub> Almost insol in cold H2O, decomp by hot H<sub>2</sub>O with evolution of N<sub>2</sub> Decomp by hot cone H<sub>2</sub>SO<sub>4</sub> or HCl Insol in sat NH<sub>4</sub>Cl+ Aq (I etdić, C R 1902, **134** 1583)

Barium iridonitrite iridochloride,  $Ba_3Ir_2(NO_3)_{12}$ ,  $Ba_3Ir_2Cl_{12}$ Sol in H<sub>2</sub>O (Lang)

Mercuric iridonitrite, Hg<sub>3</sub>Ir<sub>2</sub>(NO<sub>2</sub>)<sub>12</sub> Insol in H<sub>2</sub>O (Gibbs, B 4 280)

Potassium iridonitrite, K<sub>6</sub>Ir<sub>2</sub>(NO<sub>2</sub>)<sub>12</sub> Sl sol in cold, more sol in boiling H2O Decomp by hot HCl or H<sub>2</sub>SO<sub>4</sub> Insol in

KCl+Aq (Leidié, Bull Soc 1902, (3) 27 937)

+2H<sub>2</sub>O Moderately sol in H<sub>2</sub>O

Potassium iridonitrite iridochloride.  $K_6Ir_2(NO_2)_{12}$ ,  $K_6Ir_2Cl_{12}$ Sol in H<sub>0</sub>O

Silver iridonitrite, Ag<sub>6</sub>Ir<sub>2</sub>(NO<sub>2</sub>)<sub>12</sub> Difficultly sol in cold, more easily in hot  $H_2O$ 

Sodium iridonitrite, Na<sub>6</sub>Ir<sub>2</sub>(NO<sub>2</sub>)<sub>12</sub>+2H<sub>2</sub>O Sl sol in H<sub>2</sub>O Sol in cold H<sub>2</sub>O Decomp by hot conc H<sub>2</sub>SO<sub>4</sub> or HCl (Leidié, C R 1902, **134** 1583)

Sodium iridonitrite iridochloride.  $Na_4Ir_2Cl_2(NO_2)_8+2H_2O$ 

Sl sol in  $H_2O$  (Gibbs )  $Na_6Ir_2(NO_2)_{12}$ ,  $Na_6Ir_2Cl_6$  Insol in cold, sl sol in hot H<sub>2</sub>O (Lang)

Indosamine chloride, Ir(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> Nearly insol in H<sub>2</sub>O (Skoblikoff, A 84 275)

-- sulphate,  $Ir(NH_3)_2SO_4$ Easily sol in  $H_2O$  (Skoblikoff)

Iridosodiamine chloride,  $Ir(N_2H_6)_2Cl_2$ Insol in cold, decomp by hot H<sub>2</sub>O (Skoblikoff )

- nitrate,  $Ir(N_2H_6NO_3)_2$ Easily sol in H<sub>2</sub>O

- sulphate,  $Ir(N_2H_6)_2SO_4$ Sl sol in cold, easily in boiling H<sub>2</sub>O Sl sol in alcohol

# Iridosulphuric acid

Potassium iridosulphate,  $K_6 Ir_2(SO_4)_6$ Sol in H<sub>2</sub>O (de Boisbaudran, C R 96 1406)

# Iridosulphurous acid

Ammonium iridosulphite, (NH<sub>4</sub>)<sub>6</sub>Ir<sub>2</sub>(SO<sub>3</sub>)<sub>6</sub>+  $6H_2O$ 

Slightly sol in H<sub>2</sub>O (Birnbaum, A 136 179)

Potassium iridosulphite,  $K_6 Ir_2 (SO_3)_6 + 6H_2O$ Slightly sol in H<sub>2</sub>O

Sodium iridosulphite, Na<sub>6</sub>Ir<sub>2</sub>(SO<sub>3</sub>)<sub>6</sub>+8H<sub>2</sub>O Scarcely sol in H<sub>2</sub>O

Iron, Fe

Permanent in dry air, oxidises only slowly in moist air, but rapidly when in contact with air and  $H_2O$  simultaneously

Fe does not rust in contact with air and

424

H<sub>2</sub>O containing alkalies even in very small (Payen, A ch 50 305)

Not attacked at ord temp by H<sub>2</sub>O free More easily oxidised by NH4 salts from air +Aq than by H<sub>2</sub>O when exposed to air simultaneously (Persoz, A ch (3) 24 506)

Iron is slowly attacked by distilled H2O in presence of air 100 ccm distilled water removed 29 mg from 118 sq cm iron in one week, while air free from CO<sub>2</sub> was passed through the solution In presence of CO<sub>2</sub>, 54 mg were removed 260) (Wagner, Dingl 221

CO2 acts as a catalyst for the solution of (Whitney, J Am Chem Soc Fe by H<sub>2</sub>O

1903, 25 394)

Iron is most easily oxidised when it is exposed to air, and H2O is deposited on it at the

same time in liquid form

100 l sea water dissolve 27 37 g from 1 sq metre Fe, 29 16 g from 1 sq metre steel, 112 g from 1 sq metre galvanised Fe (Calvert and Johnson, C N 11) 171)
Readily sol in HCl, dil H<sub>2</sub>SO<sub>4</sub>+Aq, and

most other acids

Action of  $H_2SO_4+Aq$  (1 12) is very much accelerated by a few drops of PtCl4+Aq, the addition of As<sub>2</sub>O<sub>3</sub> arrests the action completely Tartar emetic and HgCl<sub>2</sub> diminish the action, but do not arrest it CuSO4+Aq strongly accelerates the action, and Ag<sub>2</sub>SO<sub>4</sub>+ Aq also to a less extent

In the case of HCl+Aq, the addition of small amts of metallic salts also influences Weak HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq has but the action little action, and the addition of PtCl4 increases 1t, As2O3 stops 1t, other solutions have With racemic and tartaric acids no effect

the phenomena are the same

With exalic acid, PtCl4 prevents the action Saline solutions and even distilled H<sub>2</sub>O, when mixed with PtCl<sub>4</sub>, have slight solvent action (Millon, C R 21 45)

Above phenomena are due to galvanic action from metal deposited on the iron

(Barreswill, C R 21 292)

H<sub>2</sub>SO<sub>4</sub> has only sl action on cast-iron at

ord temp with exclusion of air

Weak acids have a strong action at higher

temperatures

Charcoal pig-iron, and case-hardened castiron are much less attacked by weak acids at b-pt than other sorts of Fe Scotch pig-iron is most strongly attacked

998% H<sub>2</sub>SO<sub>4</sub> has very sl action on iron at ord temp when air is excluded (Lunge,

Dingl **261** 131)

Resistance against dil  $H_2SO_4+Aq$  is greatly increased by increase in amt of C if chemically\_combined, less so by P or Si (Ledebur, Dingl 223 326)

Passive Iron -When Fe is treated with pure conc HNO<sub>3</sub>+Aq of 1 512-1 419 sp gr, it soon becomes coated with a bluish or black coating, apparently FeO, and when thus in dil acid, after a longer or shorter time

covered Fe is not attacked by HNO<sub>3</sub>+Aq any strength at ord temp or at the tem of a freezing mixture, but action occurs Nor is Fe attacked at ord tem by acid of 1401 sp gr or even somewh weaker acid, though action begins at on on heating Very dil HNO3+Aq attac Fe at ord temp with formation of NH<sub>4</sub>N', and Fe(NO<sub>3</sub>)<sub>2</sub> The action of HNO<sub>3</sub>+Aq and Fe(NO<sub>3</sub>)<sub>2</sub> The action of HNO<sub>3</sub>+Aq influenced by PtCl<sub>4</sub> If acid containing 4 equivalents of H2O is diluted with 2-3 vo H<sub>2</sub>O, and then poured on Fe turnings, the dissolve at once with evolution of nitro fumes and formation of ferric salt, but if the acid one drop of PtCl4 be added, on H gas is evolved, and NH4NO3 and Fe(NO1 (Millon, C R 21 47) are formed

The more H<sub>2</sub>O the acid contains the low will be the temp at which the Fe remain Shaking the wire hastens the pa passive sivity Contact with Pt, Au, or C does no prevent it Fe wire becomes passive by r maining 10 min in HNO<sub>3</sub> vapour (Renar

C R 79 159)

Iron may be made passive by HClO HBrO<sub>3</sub>, HIO<sub>3</sub>, H<sub>2</sub>CrO<sub>4</sub>, in the same way : by HNO.

Iron may also be made passive by moderat

Passivity occurs with HNO<sub>3</sub>+Aq of 13 sp gr after a short time at 31°, but if temp 32°, passivity does not occur

32°, passivity does not occur
Colourless HNO<sub>3</sub>+Aq of 1 42 sp gr produces passivity at 55° but not at 56° Re fuming HNO<sub>3</sub>+Aq of 142 sp gr produce passivity at 82° but not at 83° (Ordwar Sill Am J (2) 40 316)

The passivity of Fe is destroyed when it placed in a magnetic field at a much lowe temperature than when in normal condition (Nichols and Franklin, Sill Am J (3) 34

Passivity depends on a coating of NO whice hinders the action of the acid All operation which remove this layer terminate the pas sivity, as shaking, rubbing, placing in vacuum, etc (Varenne, C. R. 89 783)

When Fe is plunged in HNO<sub>3</sub>+Aq of 14 sp gr there is a sudden evolution of gas whic ceases after 3 to 20 seconds, and the surfac becomes bright The same phenomena tak place with a more dilute acid, if of not les than 1 32 sp gr In the latter case, there 1 an immediate evolution of gas, which sud denly ceases and the metal becomes bright but soon the acid begins to act again at single point, and the action gradually spread over the whole surface, this, however, sooi ceases again, and we have an "intermitten passivity

If a part of a piece of iron is immersed ii strong acid, the whole of it is made passive This is explained by the NO spreading ove

the whole surface by capillarity

The passivity ceases when the Fe is placed

according to the dilution of the acid, -when the acid has sp gr = 130, after 11 days

1 28 " " 1 26 32 hours " 1 16

12 Iron may also be made passive by long standing in NO gas under pressure (Varenne, CR 90 998)

Fe is made passive by a coating of Fe<sub>3</sub>O<sub>4</sub>, not by NO (Schonbein, Pogg 39 342(Beetz, Pogg 67 286) (Ramann, B 14 1430)

Passivity may also be caused by NH4NO3 +Aq, ammonacal  $AgNO_3+Aq$ ,  $Fe(NO_3)_3$ ,  $Fe(NO_3)_2$ ,  $Al(NO_3)_3$ ,  $Co(NO_3)_2$ ,  $Ni(NO_3)_2$ , etc +Aq instead of  $HNO_3+Aq$  (Ramann, B **14** 1933)

Hardly attacked by either dil or conc acids when they are under high pressure (Cailletet CR 68 395)

Iron is dissolved by HNO<sub>3</sub>+Aq, even when very conc, but no gas is evolved and the process is very slow

HNO<sub>3</sub>+Aq of the following sp gr dissolves the given amts from strips of pure Fe

|                                      | Department of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sp gr of acid                        | Diminution of weight in 24 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 28<br>1 34<br>1 38<br>1 48<br>1 53 | 0 82%<br>0 75<br>0 29<br>0 34<br>5 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

(Gautier and Charpy, C R 113 1451)

Insol in liquid chloring below 90° Zeit angew Ch 1900, **13** 686)

Insol in liquid NH<sub>3</sub> (Gore, Am ch J

1898, **20** 828 )

Not attacked by alkalies

Sol in NaOH+Aq (34%) when air is blown through the liquid (Zirnité, Ch Ztg 12 355)

tor, Dingl **261** 133)

N tOH + Aq 1 1 n Fe between 15° and 100° **261** 131 ) Dι

Presence of - 1 iusting (n tucly, and fats and oils greatly hinder it (Wigner)

Sol in ilkili hydrogen cubonates+Aq (Berzehus)

Sit NaCl+Aq has sl but perceptible iction on I:c NII CI+Aq has stronger action than NiCl+Aq (Lunge)

100 ccm H2O containing 05 g NaCl or KCl removed 42 mg from 118 sq cm non in one week, while air free from CO2 was passed through the solution, and 72 mg in

presence of CO<sub>2</sub> 100 ccm H<sub>2</sub>O containing 1 g NH<sub>4</sub>Cl removed 45 mg, and 76 mg respectively under the above conditions

100 ccm H<sub>2</sub>O containing 0 8 g MgCl<sub>2</sub> re

moved 49 mg, and 65 mg respectively under the above conditions

Not attacked by 100 ccm H<sub>2</sub>O containing 1 g  $Na_2CO_3$ , or by  $CaO_2H_2+Aq$  (Wagner, Dingl 221 260)

Action of KClO<sub>3</sub>+Aq KClO<sub>3</sub>+Aq (6 3% KClO<sub>3</sub>) oxidised 11 21 g cast iron and 20 1 g pure iron from a surface of 1 sq metre in 7 hours, KClO<sub>3</sub>+Aq (25% KClO<sub>3</sub>) oxidised 24 59 g cast, and 44 90 g pure Fe under above conditions, Ca(ClO<sub>3</sub>)<sub>2</sub>, CaCl<sub>2</sub>+Aq (20° Baume) obtained by passing Cl through CaO<sub>2</sub>H<sub>2</sub>+Aq oxidised 85 g cast, and 95 g pure Fe under the above conditions (Lunge and Deggeler, J Soc Chem Ind 4 32)

Easily sol in organic acids

#### Comparative action of oils on Fe

|                                                        | Amount Fe dissolved                                                       |
|--------------------------------------------------------|---------------------------------------------------------------------------|
| Neatsfoot oil Colza " Sperm " Lard " Olive " Lunseed " | 0 0875 grains<br>0 0800 "<br>0 0460 "<br>0 0250 "<br>0 0062 "<br>0 0050 " |
| Seal "                                                 | 0 0050 "                                                                  |
| Castor "                                               | 0 0048 "                                                                  |
| Paraffine "                                            | 0 0045 "                                                                  |
| Almond "                                               | 0 0040 "                                                                  |
| "Lubricating" oil                                      | 0 0018 "                                                                  |

(Watson, C N 42 190)

½ ccm oleic acid dissolves 0 0097 g. Fe in 6 days (Gates, J phys Chem 1911, 15 143)

Fe dissolves in albumen solution to the extent of 1 to 2 per cent (Buchner, Arch

Pharm (3) 20 417)

Attacked by sugar+Aq at 115-120°, also by inverted sugar or malt extract, not by glycerine of mannite+Aq (Klein and Berg, C R **102** 1170)

Iron arsenide, FeAs<sub>2</sub>

Sol in HNO<sub>4</sub>+Aq with Min Lollingite sepuration of As<sub>2</sub>O<sub>8</sub>

Fe3As4 Min Leucopyrile

#### Iron arsenide sulphide, FeAs, FeS

Arsenopyrite Sol in HNO<sub>3</sub>+Aq with separation of S and As O3 wholly sol in aqui regii, not atticked by HCl+Aq

#### Iron boride, FolB

Decomp by  $H_2O$  Sol in hot dil HCl or H<sub>2</sub>SO<sub>4</sub> and in hot cone HCl or H SO<sub>4</sub> in hot dil or cold conc HNO<sub>3</sub> (Jassonneix, C R 1907, **145** 122)

Sol in molten alkalı carbonates, not sol in dil or conc H<sub>2</sub>SO<sub>4</sub> in the cold, sol in boiling H<sub>2</sub>SO<sub>4</sub> and in HNO<sub>3</sub> (Moissan, Bull Soc 1895, (3) 13 958)

Stable in dry air Decomp by aqua regia,

out not readily sol in cone H<sub>2</sub>SO<sub>4</sub> and HCl

Moissan, C R 1895, 120 176)
FeB<sub>2</sub> Decomp by H<sub>2</sub>O Sol in HNO<sub>3</sub>
and in hot conc HCl (Jassonneix, C R
907, 145 122)

### ron (ferrous) bromide, FeBr2

Sol in H<sub>2</sub>O Decomp by heating on air Sat FeBr<sub>2</sub>+Aq contains at

-21° -7°  $+10^{\circ}$ 21° 47 0 48 3 53 7% FeBr<sub>2</sub>. 52 3 37° 50° 65° 95° 56 0 58 0 59 4 63 3% FeBr<sub>2</sub> (Étard, A ch 1894, (7) 2 541)

+4H<sub>2</sub>O Very sol in H<sub>2</sub>O, pptd from coled aq solution (Volkmann, C C 1894, I 611)

 $+6H_2O$  Sol in  $H_2O$  (Löwig)  $+9H_2O$  (Volkmann)

#### erric bromide, FeBr<sub>3</sub>

Deliquescent Sol in H<sub>2</sub>O, alcohol, and ther (Lowig) Sl sol in liquid NH<sub>2</sub> (Franklin, Am Ch

1898, **20** 828) +6H<sub>2</sub>O Sol m alcohol and ether (Bolchakoff, C C **1898**, II 660)

### errous mercuric bromide

Deliquescent (v Bonsdorff)

verric rubidium bromide, Rb<sub>2</sub>FeBr<sub>5</sub>+H<sub>2</sub>O Sol in H<sub>2</sub>O (Walden, Z anorg 1894, 7 32)

### errous stannic bromide

See Bromostannate, ferrous

errous bromide nitric oxide, 3FeBr<sub>2</sub>, 2NO Sol in H<sub>2</sub>O Not isolated (Thomas, C R 896, **123** 944)

#### erric bromochloride, FeCl<sub>2</sub>Br

Very deliquescent, and sol in H<sub>2</sub>O, alcohol, nd ether Notably sol in chloroform, benene, and toluene Insol in CS<sub>2</sub> (Lenornand, C R **116** 820)

#### ron carbide, Fe<sub>8</sub>C

(Gurlt, J B 1856, 781) Mixture of Fe and FeC<sub>4</sub> (Tunner, Polyt Centralbl 1861 1227)

Fe<sub>4</sub>C (Karsten, J pr **40** 229)

Fe<sub>3</sub>C Sol in hot cone HCl, oxidized lowly by moist air (Campbell, Am Ch J 896, **18** 840-841)

 $Fe_2C_2$  (Rammelsberg, C C 1847 60)

ron molybdenum carbide, Fe<sub>3</sub>C, Mo<sub>2</sub>C Sol in hydracids, insol in HNO<sub>3</sub>

Sol in hydracids, insol in HNO<sub>3</sub> (Williams, C R 1898, **127** 484)

ron tungsten carbide, 2Fe<sub>3</sub>C, 3W<sub>2</sub>C

Insol in  $H_2O$  and hydracids, sol in  $HNO_3$  and  $H_2SO_4$  (Williams, C R 1898, 127 11)

Iron carbonyl, Fe(CO),

Slowly decomp on air Not attacked l'dil H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, or HCl+Aq Conc HNC Cl<sub>2</sub>+Aq, or Br<sub>2</sub>+Aq decomp easily Sol alcoholic solution of KOH or NaOH with su sequent decomp Sol in alcohol, ethe benzene, mineral oils, etc (Mond and La ger, Chem Soc 59 1090)

Fe<sub>2</sub>(CO)<sub>7</sub> Decomp on air Not attacke by H<sub>2</sub>SO<sub>4</sub> or HCl+Aq Sol in alcohol potash Very much less sol in organic so vents than Fe(CO)<sub>5</sub> (Mond and Langer)

#### Ferrous chloride, FeCl<sub>2</sub>

Deliquescent Easily sol in  $H_2O$  with evolution of heat, or in alcohol Insol in ether (Jahn.)

Sol in 2 pts H<sub>2</sub>O at 18 75° (Abl.) Sol in 1 pt strong alcohol (Wenzel.)

### Sp gr of FeCl<sub>2</sub>=Aq at 15 5°

| Sp gr                                                                   | of $FeCl_2 = Aq$ a                                    | t 15 5°                               |
|-------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------|
| Sp gr                                                                   | % FeCl <sub>2</sub>                                   | % FeCl <sub>2</sub> 4H <sub>2</sub> C |
| 1 05                                                                    | 5 40                                                  | 8 45                                  |
| 1 06                                                                    | 6 43                                                  | 10 09                                 |
| 1 07                                                                    | 6 43<br>7 47                                          | 11 69                                 |
| 1 08                                                                    | 8 48                                                  | 13 29                                 |
| 1 09                                                                    | 9 49                                                  | 14 86                                 |
| 1 10                                                                    | 10 47                                                 | 16 41                                 |
| 1 11                                                                    | 11 45                                                 | 16 41<br>17 86<br>19 46               |
| $\begin{array}{ccc} \overline{1} & \overline{12} \\ 1 & 13 \end{array}$ | 12 42<br>13 37                                        | 19 46                                 |
| 1 13                                                                    | 13 37                                                 | 20 96                                 |
| 1 14                                                                    | 14 31                                                 | 22 41                                 |
| 1 15                                                                    | 15 24                                                 | 23 87                                 |
| 1 16                                                                    | 16 15                                                 | 25 31                                 |
| 1 17                                                                    | 17 05                                                 | 26 73                                 |
| 1 18                                                                    | 17 94                                                 | 28 13                                 |
| 1 19                                                                    | 18 83                                                 | 29 51                                 |
| 1 20                                                                    | 19 68<br>20 50                                        | 30 85                                 |
| 1 21                                                                    | 20 50                                                 | 32 14                                 |
| 1 22                                                                    | 21 39                                                 | 33 53                                 |
| 1 23                                                                    | 21 39<br>22 24<br>23 05                               | 34 84                                 |
| 1 24                                                                    | 23 05                                                 | 36 11                                 |
| 1 25                                                                    | 23 86                                                 | 37 38                                 |
| $\begin{array}{cc}1&26\\1&27\end{array}$                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 38 67                                 |
|                                                                         |                                                       | 39 87                                 |
| $\begin{array}{cc}1&28\\1&29\end{array}$                                | 26 19<br>26 98                                        | 41 04<br>42 29                        |
| 1 30                                                                    | 27 75                                                 | 43 49                                 |
| 1 31                                                                    | 28 49                                                 | 44 65                                 |
| $\begin{array}{ccc} 1 & 31 \\ 1 & 32 \end{array}$                       | 29 23                                                 | 45 81                                 |
| 1 33                                                                    | 29 96                                                 | 46 94                                 |
| 1 34                                                                    | 30 68                                                 | 48 08                                 |
| $\tilde{1}$ $\tilde{3}\tilde{5}$                                        | 31 39                                                 | 49 18                                 |
| 1 36                                                                    | 32 10                                                 | 50 30                                 |
| 1 37                                                                    | 32 79                                                 | 51 39                                 |
| 1 38                                                                    | 33 47                                                 | 52 46                                 |
| 1 39                                                                    | 34 14                                                 | 53 50                                 |
| 1 40                                                                    | 34 80                                                 | 54 55                                 |
| $\overline{1}$ $\overline{41}$                                          | 35 46                                                 | 55 57                                 |
| 142                                                                     | 36 09                                                 | 56 56                                 |
| 1 43                                                                    | 36 73                                                 | 57 55                                 |
| 1 44                                                                    | 37 33                                                 | 58 51                                 |
|                                                                         |                                                       |                                       |

(Dunn, J Soc Chem Ind 1902, 21 390)

Insol in liquid HF (Franklin, Z anorg 1905, 46 2)

Sol in acetone, insol in methylal (Eidmann, C C 1899, II 1014)

Sol in acetone (Naumann, B 1904, 37 4328)

Sl sol in methyl acetate (Naumann, B 1909, 42 3790)

Sol in ethyl acetate (Naumann, B 1910, **43** 314)

Insol in ethyl acetate 1904, 37 3601) (Naumann, B

Yellow modification is sol in benzonitrile

(Naumann, B 1914, 47 1369) Mol weight determined in pyridine (Wer-

ner, Z anorg 1897, 15 21) +2H<sub>2</sub>O (Jonas)

Deliquescent  $+4H_2O$ Easily sol in alcohol Sol in 0 68 pt cold H<sub>2</sub>O (Reimann, Mag Pharm 17 215)

Sat aq solution contains at

25° 43° 16° 18° 40 5 40 9 41 0 42 5 44 4% FeCl<sub>2</sub>,  $72^{\circ}$ 89° 96° 118° 53° 50° 45 0 45 9 49 2 51 3 51 0 51 7% FeCl<sub>2</sub> (Etard, A. ch. 1894, (7) 2 537)

100 g FeCl<sub>2</sub>, 4H<sub>2</sub>O+Aq contain 17 54 g Fe at 22 8°, 18 59 g at 43 2° (Boecke, N Jahrb Min 1911, I, 61)

More sol in water containing NO than in pure H<sub>2</sub>O (Gay, Bull Soc (2) **44** 175) Sol in hot HCl+Aq (Sabatier, Bull Soc 1895, (3) **13** 599)

[Sabatier could not obtain FeCl<sub>2</sub>+6H<sub>2</sub>O of Lescœur ]

Ferroferric chloride, Fe<sub>2</sub>Cl<sub>8</sub>+18H<sub>2</sub>O

(Lefort, J Pharm (4) 10 Deliquescent 85)

Ferric chloride, Fe<sub>2</sub>Cl<sub>6</sub> or FeCl<sub>3</sub>

Very deliquescent, and sol in  $H_2O$  with evolution of great heat

100 mols H<sub>2</sub>O dissolve mols anhydrous Fe<sub>2</sub>Cl<sub>6</sub> at t°

| t°             | Mols Fe <sub>2</sub> Cl <sub>6</sub> | t°        | Mols Fe <sub>2</sub> Cl <sub>6</sub> |
|----------------|--------------------------------------|-----------|--------------------------------------|
| 66<br>70<br>75 | 29 20<br>29 42<br>28 92              | 80<br>100 | 29 20<br>29 75                       |

(Roozeboom, Z phys Ch 10 477)

See also hydrated salts below

Solution in H<sub>2</sub>O is decomp into colloidal Fe<sub>2</sub>O<sub>3</sub>, xH<sub>2</sub>O and HCl, upon heating if conc, and on simple standing if dil

## Krecke (J pr (2) 3 286) gives the following table

| % Fe <sub>2</sub> Cl <sub>5</sub> in solution                  | Temp at which Craham s<br>colloidal hydrate is formed                        |                                                                                                                | Temp at which<br>Saint Gilles<br>colloidal by<br>drate is formed | Temp at which oxychlorides are formed | Temp at which<br>Fe O <sub>3</sub> is formed |
|----------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------|----------------------------------------------|
| 32<br>16<br>8<br>4<br>2<br>1<br>0 5<br>0 25<br>0 125<br>0 0625 | 100-130°<br>100-120<br>100-110<br>90-100<br>87<br>83<br>75<br>64<br>54<br>36 | Fe <sub>2</sub> Cl <sub>6</sub> re- formed on cooling  Fe <sub>2</sub> Cl <sub>6</sub> not reformed on cooling | 100–130°<br>"<br>"<br>"                                          | 100°+<br>"'<br>90<br>87               | 140°<br>120<br>110                           |

### Sp gr of Fe<sub>2</sub>Cl<sub>5</sub>+Aq

|                                                                                      | op gi oi regoit TAq                                                |                                                                              |                                                                                                  |                                                                              |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| %<br>Fe <sub>2</sub> Cl <sub>6</sub>                                                 | Sp gr<br>it 48                                                     | Sp gr<br>at 9.7°                                                             | 5p gr<br>at 146                                                                                  | Sp gr<br>at 197°                                                             |  |
| 49 61<br>41 00<br>36 95<br>33 25<br>24 60<br>22 54<br>16 79<br>10 45<br>4 65<br>2 70 | 1 5609<br>1 4413<br>1 3381<br>1 2351<br>1 2140<br>1 1534<br>1 0939 | 1 5575<br>1 4387<br>1 3847<br>1 3359<br>1 2334<br>1 2129<br>1 1521<br>1 0930 | 1 5540<br>1 4361<br>1 3824<br>1 3339<br>1 2318<br>1 2107<br>1 1507<br>1 0918<br>1 0382<br>1 0221 | 1 5497<br>1 4335<br>1 3800<br>1 3317<br>1 2298<br>1 2090<br>1 1491<br>1 0901 |  |

(Schult, from Gerlach, Z anal 27 278)

| Sp gr of Fe<sub>2</sub>Cl<sub>6</sub>+Aq increases or diminishes between 8° and 24° for a decrease or increase of temp of 1° by the following amts

| / I €2Cl <sub>0</sub>   | Corr                       | % Fucls                 | Corr                       |
|-------------------------|----------------------------|-------------------------|----------------------------|
| 50-60<br>45-49<br>40-44 | 0 0008<br>0 0007<br>0 0006 | 30–39<br>20–29<br>10–19 | 0 0005<br>0 0004<br>0 0003 |
|                         | /T.T                       |                         |                            |

(Hager, l c)

### Solubility of Fe<sub>2</sub>Cl<sub>5</sub> in HCl+Aq —Continued

| t°      | Sat solution<br>per 100 m                                                                                                                                                                                                                                                              | n contains<br>ols H <sub>2</sub> O                                                                                                                                                                                                              | Solid phase                                                   |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| ·       | mols HCl mols FeCl3                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                 | Dona phase                                                    |  |  |
| - 4 5 6 | 20 50<br>20 66<br>23 42<br>29 10<br>26 18<br>24 41<br>23 25<br>21 73<br>19 73<br>24 42<br>28 20<br>20 48<br>24 90<br>28 25<br>28 25<br>24 50<br>28 25<br>24 50<br>28 25<br>24 50<br>28 31<br>28 25<br>24 50<br>28 25<br>24 50<br>28 27<br>20 31 08<br>34 13<br>33 93<br>30 08<br>28 70 | 24 50<br>25 74<br>27 40<br>24 73<br>21 75<br>21 50<br>21 35<br>21 84<br>25 50<br>28 45<br>27 04<br>20 54<br>18 94<br>28 53<br>30 25<br>30 25<br>30 50<br>11 63<br>11 63<br>11 63<br>11 63<br>11 51<br>12 90<br>31 77<br>32 76<br>32 88<br>11 99 | Fe <sub>2</sub> Cl <sub>5</sub> , 2HCl,<br>8H <sub>2</sub> O  |  |  |
|         | 12 01<br>19 78<br>20 95<br>20 25<br>17 73<br>15 44<br>22 14<br>21 30<br>24 50<br>9 96<br>13 32<br>16 90<br>18 97<br>20 56<br>23 40<br>24 85<br>25 20<br>25 59                                                                                                                          | 11 99<br>14 02<br>16 20<br>20 20<br>19 65<br>16 69<br>9 65<br>15 83<br>9 94<br>8 57<br>7 35<br>7 16<br>9 88<br>11 60<br>9 88<br>11 60<br>12 37<br>13 39                                                                                         | Fe <sub>2</sub> Cl <sub>8</sub> , 2HCl,<br>12H <sub>2</sub> O |  |  |

(Roozeboom and Schreinemakers, Z phys Ch 1894, 15 633)

Solubility of Fe<sub>2</sub>Cl<sub>6</sub>+NH<sub>4</sub>Cl See NH<sub>4</sub>Cl+Fe<sub>2</sub>Cl<sub>5</sub> under NH<sub>4</sub>Cl

Solubility of Fe<sub>2</sub>Cl<sub>6</sub> in CsCl See CsCl+Fe<sub>2</sub>Cl<sub>6</sub> under CsCl

### Solubility of FeCl<sub>2</sub>+KCl in H<sub>2</sub>O at 21°

| Substan                                                                      | e added                                                    |                                                                                    | ht sol in 100<br>solution                                                   |
|------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| FeCla grams                                                                  | KCl grams                                                  | FeCl <sub>3</sub>                                                                  | KCl                                                                         |
| 0<br>13<br>18<br>3<br>28<br>31<br>36<br>2<br>41<br>5<br>46<br>5<br>52<br>155 | 25<br>28<br>21<br>18 5<br>16<br>10 5<br>9<br>8<br>6<br>0 5 | 0<br>13 44<br>23 18<br>28 05<br>35 72<br>36 62<br>37 35<br>42 03<br>51 69<br>83 89 | 34 97<br>24 45<br>16 54<br>11 69<br>11 68<br>11 19<br>13 67<br>7 88<br>7 54 |

(Hinrichsen and Sachsel, Z phys Ch 1904, 50 95)

FeCl<sub>3</sub>+NaCl

Solubility of FeCl<sub>3</sub>+NaCl in H<sub>2</sub>O at 21°

| Substan                                              | ce added                                      | Pts by weights of                                                | ht sol in 100<br>solution                             |
|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|
| FeCl <sub>3</sub> grams                              | NaCl grams                                    | FeCl <sub>3</sub>                                                | NaCl                                                  |
| 0<br>1 8<br>3 6<br>5 5<br>7 2<br>9 0<br>10 8<br>10 8 | 3 6<br>3 0<br>2 5<br>2 0<br>1 5<br>1 0<br>0 5 | 0<br>24 27<br>25 40<br>26 40<br>38 15<br>43 38<br>46 75<br>83 39 | 36 10<br>9 10<br>8 45<br>5 25<br>3 90<br>2 45<br>2 11 |

(Hinrichsen and Sachsel, Z phys Ch 1904, 50 94)

### Solubility of FeCl<sub>3</sub> in NaCl+Aq at t°

| t°                                                             | Substan                                                     | ce added                                                       | % of Fe in                                                                      |  |  |  |  |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                | FeCl <sub>3</sub>                                           | NaCl                                                           | the solution                                                                    |  |  |  |  |  |  |  |
| 10<br>10<br>10<br>20<br>20<br>20<br>20<br>30<br>30<br>30<br>50 | 40<br>60<br>100<br>60<br>80<br>100<br>70<br>90<br>110<br>30 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>30<br>30<br>30<br>20 | 15 2<br>15 2<br>15 16<br>16 2<br>16 18<br>16 2<br>17 7<br>17 6<br>17 67<br>23 5 |  |  |  |  |  |  |  |
| 50<br>40<br>40<br>30<br>30<br>17 6<br>17 6                     | 45<br>35<br>50<br>30<br>45<br>30<br>50                      | 20<br>30<br>30<br>20<br>20<br>20<br>20                         | 23 9<br>25 4<br>25 5<br>23 8<br>24 0<br>24 47<br>24 5                           |  |  |  |  |  |  |  |

(Hinrichsen and Sachsel, Z phys Ch 1904, 50 95)

Difficultly sol in AsBr<sub>3</sub> anorg 1902, 29 374) (Walden, Z

Attacked by liquid NO2 in the presence of traces of moisture (Frankland, Chem Soc 1901, 79 1361)

Sol in liquid SO<sub>2</sub> (Walden, B 1899, 32 2864)

Sol in alcohol ether, acetic ether (Cann, C R 102 363), and acetone (Krug and M'Elroy, J anal Ch 6 184)
Sl sol in ethylamine (Shinn, J phys

Chem 1907, 11 538)

Sol in benzonitrile (Naumann, B 1914. **47** 1369)

Sol in methyl acetate (Naumann, B 1909, **42** 3790) Insol in ethyl acetate (Naumann, B 1910, 43 314)

1 g FeCl<sub>3</sub> is sol in 1 59 g acetone at 18° Sp gr of sat solution  $18^{\circ}/4^{\circ} = 1160$ 

mann, B 1904, 37 4333) Sol in acetone and in methylal (Eidmann.

C C 1899, II 1014) (Beckmann and Gabel, Sol in quinoline

Z anorg 1906, 51 236) Sl sol in CS<sub>2</sub> (Arctowski, Z anorg 1894, 6 257)

Mol weight determined in pyridine (Werner, Z anorg 1897, 15 22)

SublimedSol in AsCl<sub>3</sub>, POCl<sub>3</sub>, SO<sub>2</sub>Cl<sub>2</sub> and PBr<sub>3</sub>, sl sol in PCl<sub>8</sub> (Walden, Z anorg 1900, 25 214)

The salts with different amts of crystal H<sub>2</sub>O have different solubilities (Roozeboom +4H<sub>2</sub>O Melts in crystal H<sub>2</sub>O at 73 5°

100 mols H<sub>2</sub>O dissolve mols Fe<sub>2</sub>Cl<sub>6</sub> from Fe<sub>2</sub>Cl<sub>6</sub>+4H<sub>2</sub>O at t°

| t° | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub> | t°   | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub> | t°   | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub> |
|----|-----------------------------------------|------|-----------------------------------------|------|-----------------------------------------|
| 50 | 19 96                                   | 69   | 21 53                                   | 72 5 | 26 15                                   |
| 55 | 20 32                                   | 72 5 | 23 35                                   | 70   | 27 90                                   |
| 60 | 20 70                                   | 73 5 | 25 00                                   | 66   | 29 20                                   |

(Roozeboom, Z phys Ch 10 477)

+5H<sub>2</sub>O Correct formula for +6H<sub>2</sub>O salt

100 mols H<sub>2</sub>O dissolve mols Fe<sub>2</sub>Cl<sub>6</sub> from Fe<sub>2</sub>Cl<sub>6</sub>+5H<sub>2</sub>O at t°

| t° | Mols<br>Fc2( lo | t  | Mols<br>Fc₂Cl6 | t  | Mols<br>I e <sub>2</sub> Cl <sub>i</sub> |
|----|-----------------|----|----------------|----|------------------------------------------|
| 12 | 12 87           | 30 | 15 12          | 55 | 19 15                                    |
| 20 | 13 95           | 35 | 15 64          | 56 | 20 00                                    |
| 27 | 14 85           | 50 | 17 50          | 55 | 20 32                                    |

(Roozeboom)

Melts in crystal H<sub>2</sub>O at 31° (Engel, C R **104** 1708), at 56° (Roozeboom)  $+6H_2O$ Very deliquescent Sol in al-

cohol Ether dissolves out Fe<sub>2</sub>Cl<sub>6</sub>

M -pt is 31° (Ordway) Contains only 5H<sub>2</sub>O (Roozeboom)

+7H<sub>2</sub>O Melts in crystal H<sub>2</sub>O at 32 5°

100 mols H<sub>2</sub>O dissolve mols Fe<sub>2</sub>Cl<sub>5</sub> from Fe<sub>2</sub>Cl<sub>6</sub>+7H<sub>2</sub>O at t°

| to   | Mols<br>Fe <sub>2</sub> Cl <sub>5</sub> |      |       | t° | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub> |
|------|-----------------------------------------|------|-------|----|-----------------------------------------|
| 20   | 11 35                                   | 32   | 13 55 | 30 | 15 12                                   |
| 27 4 | 12 15                                   | 32 5 | 14 99 | 25 | 15 54                                   |

(Roozeboom)

 $+12H_2O$ Less deliquescent than Fe<sub>2</sub>Cl<sub>6</sub> or  $Fe_2Cl_6+5H_2O$ 

100 mols H<sub>2</sub>O dissolve mols Fe<sub>2</sub>Cl<sub>6</sub> from Fe<sub>2</sub>Cl<sub>6</sub>+12H<sub>2</sub>O at t°

| t°                                 | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub>      | t°                                    | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub>       | to                    | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub> |  |
|------------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------|-----------------------------------------|--|
| -55<br>-41<br>-27<br>0<br>10<br>20 | 2 75<br>2 81<br>2 98<br>4 13<br>4 54<br>5 10 | 30<br>35<br>36<br>5<br>37<br>36<br>30 | 5 93<br>6 78<br>7 93<br>8 33<br>9 29<br>10 45 | 27 4<br>20<br>10<br>8 | 11 20<br>12 15<br>12 83<br>13 70        |  |

(Roozeboom)

Sol in alcohol Ether dissolves out Fe<sub>2</sub>Cl<sub>6</sub> Melts in crystal H<sub>2</sub>O at 37° (Roozeboom), at 35 5° (Ordway)

Ferric hydrogen chloride, FeCl<sub>3</sub>, HCl+2H<sub>2</sub>O Decomp by H<sub>2</sub>O (Sabatier, Bull Soc (2) 197)

More sol in  $H_2O$  than  $FeCl_3$  (Engel, C. R. **104** 1708 )

For solubility, see FeCl<sub>3</sub>+HCl, under ferric chloride

(Roozeboom and Schreinemak- $+6H_2O$ ers)

For solubility, see FeCl<sub>3</sub>+HCl, under ferric chloride

Ferrous lithium chloride, FeCl<sub>2</sub>, LiCl+3H<sub>2</sub>O (Chassevant, A ch (6) 30 17)

Ferric magnesium chloride, FeCl<sub>3</sub>, MgCl<sub>2</sub>+  $H_2O$ 

Deliquescent (Neumann, B 18 2890)

Ferrous mercuric chloride, FeCl, HgCl<sub>2</sub>+ 4H<sub>2</sub>O

Deliquescent (v Bonsdorff)

Ferric nitrosyl chloride, FeCl<sub>3</sub>, NOCl

Very deliquescent (Weber, Pogg 118 477)

Ferric phosphoric chloride, FeCl<sub>3</sub>, PCl<sub>5</sub> Decomp by H<sub>2</sub>O (Baudrimont, A ch (4) 2 15)

429

| <b>12</b> 8                                                                                            |                                                                                                          |                                                                      |                                                                                                                                                                                              |                                                                      | IRON CE                                                                                                  | LLORID.                                                        | E.                                                                                    |                                                                                                                                                            |            |                                                      |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------|
|                                                                                                        | Sp gr                                                                                                    | of Fe₂C                                                              | l <sub>6</sub> +Aq a                                                                                                                                                                         | t 17 5                                                               | •                                                                                                        | S                                                              | olubility o                                                                           | of Fe <sub>2</sub> Cl <sub>6</sub> 1                                                                                                                       | n          | HCl+Aq                                               |
| FerCle                                                                                                 | Sp gr                                                                                                    | Fe <sub>2</sub> Cl <sub>6</sub>                                      | Sp gr                                                                                                                                                                                        | Fe <sub>2</sub> Cl <sub>6</sub>                                      | Sp gr                                                                                                    | t°                                                             | per 100 n                                                                             | on contains<br>nols H <sub>2</sub> O<br>mols                                                                                                               |            | Solid phase                                          |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | -                                                                                                        | of Fe <sub>2</sub> (                                                 | 1 1644<br>1 1746<br>1 1848<br>1 1950<br>1 2052<br>1 2155<br>1 2258<br>1 2365<br>1 2673<br>1 2778<br>1 2883<br>1 2988<br>1 3093<br>1 3199<br>1 3305<br>1 3411<br>1 3517<br>1 3622<br>or (2) 5 | t 17 5                                                               | <del></del>                                                                                              | 30<br>"" 25<br>"" 20<br>"" "" "" "" "" "" "" "" "" "" "" "" "" | mols HCl                                                                              | 12 70<br>16 07<br>20 90<br>10 90<br>23 72<br>24 50<br>10 20<br>25 70<br>9 10 23<br>60 25 70<br>9 10 23<br>8 25<br>6 33<br>15 40<br>16 70<br>22 75<br>23 40 |            | · Fe₂Cl₀+12H₂O                                       |
| % 1234<br>5678                                                                                         | 1 008<br>1 016<br>1 025<br>1 033<br>1 042<br>1 051<br>1 060<br>1 069                                     | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28                         | 1 191<br>1 202<br>1 212<br>1 223<br>1 234<br>1 245<br>1 256<br>1 268                                                                                                                         | Fe C 41 42 43 44 45 46 47 48                                         | 1 428<br>1 441<br>1 454<br>1 469<br>1 481<br>1 494<br>1 507<br>1 520                                     | -12 5<br>-15<br>-20                                            | 19 46<br>20 48<br>20 25<br>22 14<br>0<br>21 30<br>0<br>7 50<br>15 30<br>20 56         | 10 37<br>20 54<br>21 56<br>16 69<br>6 98<br>9 65<br>6 56<br>4 90<br>5 09<br>7 08                                                                           |            |                                                      |
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                    | 1 078<br>1 087<br>1 095<br>1 104<br>1 113<br>1 123<br>1 131<br>1 140<br>1 150<br>1 160<br>1 170<br>1 180 | 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 1 280<br>1 292<br>1 304<br>1 316<br>1 328<br>1 340<br>1 352<br>1 364<br>1 376<br>1 390<br>1 403<br>1 415                                                                                     | 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60 | 1 533<br>1 547<br>1 560<br>1 573<br>1 587<br>1 600<br>1 612<br>1 624<br>1 636<br>1 648<br>1 659<br>1 670 | 30<br>" 25<br>" 20<br>" " 15                                   | 0<br>4 25<br>0<br>0<br>2 33<br>7 50<br>0<br>0<br>5 60<br>11 05<br>11 05<br>0<br>10 75 | 25 20<br>27 80<br>30 24<br>23 50<br>23 72<br>29 75<br>31 50<br>22 50<br>23 60<br>29 20<br>29 20<br>32 00<br>23 50                                          |            | - Fe <sub>2</sub> Cl <sub>6</sub> +7H <sub>2</sub> O |
| Sp                                                                                                     | ,                                                                                                        | ager, Conc F                                                         | $\begin{array}{c} \text{fomm}  18 \\ \text{c}_2\text{Cl}_6 + \text{A} \end{array}$                                                                                                           | <b>83</b> )<br>qat 2                                                 | 0–21°                                                                                                    | 10                                                             | 14 90<br>13 80<br>17 80                                                               | 28 35<br>28 35<br>23 35<br>27 75                                                                                                                           |            |                                                      |
| Fe Cla                                                                                                 | Sp gr 1 669                                                                                              | Fe Cl <sub>6</sub>                                                   | -                                                                                                                                                                                            | Fe <sub>2</sub> C                                                    |                                                                                                          | 0                                                              | 17 80<br>18 05<br>19 50                                                               | 27 75<br>23 40<br>25 93                                                                                                                                    |            |                                                      |
| 61<br>62<br>63<br>64                                                                                   | 1 679<br>1 688<br>1 697<br>1 706                                                                         | 66<br>67<br>68<br>69                                                 | 1 715<br>1 724<br>1 733<br>1 742<br>1 750                                                                                                                                                    | 70<br>71<br>72<br>73<br>74                                           | 1 758<br>1 766<br>1 774<br>1 782<br>1 790                                                                |                                                                | 3 30                                                                                  |                                                                                                                                                            | <u>. ,</u> |                                                      |
|                                                                                                        | 1                                                                                                        | (Hag                                                                 | er, l c)                                                                                                                                                                                     |                                                                      |                                                                                                          | 1                                                              |                                                                                       |                                                                                                                                                            |            |                                                      |

|                |                                                    |                                                    | <del></del>                                        |         |                                                           |                                                        |                                                    |
|----------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------|-----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|
| Solubili       | ty of Fe <sub>2</sub> C                            | l <sub>6</sub> in HCl                              | +Aq —Continued                                     |         | Sat solution<br>per 100 m                                 |                                                        |                                                    |
| t°             | Sat solution<br>per 100 m                          | n contains<br>iols H <sub>2</sub> O                | Solid phase                                        | t°      | mols HCl                                                  | mols<br>FeCls                                          | Solid phase                                        |
| •              | mols HCl                                           | mols<br>FeCl <sub>3</sub>                          | Dona pando                                         | 33      | 30 45                                                     | 48 70                                                  | 7                                                  |
| 50             | 0                                                  | 35 00                                              | <u> </u>                                           | 30      | 17 15                                                     | 36 75                                                  |                                                    |
| "<br>44        | 3 25                                               | 39 95<br>33 50                                     |                                                    | "       | 31 20<br>33 80                                            | 43 49<br>47 80                                         |                                                    |
| "              | 3 04                                               | 33 80                                              |                                                    | "       | 32 60                                                     | 49 93                                                  |                                                    |
| "              | 10 62                                              | 34 64  <br>35 60                                   |                                                    | 25      | 19 50<br>20 60                                            | 35 25  <br>35 34                                       |                                                    |
| "              | 10 70                                              | 38 00                                              |                                                    | "       | 31 34<br>33 00                                            | 41 58<br>43 00                                         |                                                    |
| <del>4</del> 0 | 13 40                                              | 32 40<br>37 45                                     |                                                    | "       | 34 65                                                     | 44 80                                                  |                                                    |
| 33             | 0                                                  | 31 00                                              |                                                    | 20      | $egin{array}{c c} 21 & 25 \ 28 & 81 \ \hline \end{array}$ | 34 25<br>37 57                                         |                                                    |
| 30             | 15 70                                              | 37 06  <br>30 24                                   |                                                    | "       | 34 23                                                     | $42 \ 02$                                              | Fe <sub>2</sub> Cl <sub>6</sub> +4H <sub>2</sub> O |
| "              | 17 20                                              | 34 00                                              |                                                    | "<br>15 | 35 40<br>29 40                                            | 43 16<br>36 50                                         |                                                    |
| 25             | 17 15                                              | 36 75  <br>29 00                                   |                                                    | "       | 33 60                                                     | 40 03                                                  |                                                    |
| "              | 7 50                                               | 29 75                                              | $Fe_2Cl_6+5H_2O$                                   | 10      | 24 50  <br>35 04                                          | 32 75<br>39 95                                         |                                                    |
| 20             | 19 50                                              | $\begin{vmatrix} 35 & 25 \\ 27 & 90 \end{vmatrix}$ |                                                    | 0       | 26 00                                                     | 32 16                                                  |                                                    |
| "              | 11 05<br>15 80                                     | 29 20<br>30 68                                     |                                                    | —10     | 34 60<br>27 30                                            | 38 11<br>32 05                                         |                                                    |
| "              | 21 25                                              | 34 25                                              |                                                    | "       | 33 56                                                     | 36 25                                                  |                                                    |
| 15             | 14 90<br>16 40                                     | 28 35<br>29 32                                     |                                                    | 20      | 30 08<br>32 65                                            | $\begin{array}{c c} 32 & 76 \\ 35 & 44 \\ \end{array}$ |                                                    |
| 10             | 17 80                                              | 27 75                                              |                                                    | 45      | 0                                                         | 58 00                                                  |                                                    |
| "              | 18 80<br>24 50                                     | 28 70<br>32 75                                     |                                                    | "       | 31 28<br>40 65                                            | 50 08<br>48 60                                         | <u> </u>                                           |
| 0              | 24 12                                              | 30 04                                              |                                                    | 40      | 0                                                         | 58 00                                                  |                                                    |
| —10            | 26 00<br>24 95                                     | 32 16<br>29 60                                     |                                                    | "       | 27 00<br>42 01                                            | 50 80<br>48 64                                         | Fe <sub>2</sub> Cl <sub>6</sub>                    |
| "              | 26 05                                              | 30 50                                              |                                                    | 35      | $\begin{bmatrix} 0 \\ 29 & 01 \end{bmatrix}$              | 58 00<br>50 33                                         | anhydrous                                          |
| 70             | 27 30                                              | $\frac{32 \ 05}{44 \ 0}$                           | )                                                  | "       | 37 04                                                     | 49 20                                                  |                                                    |
| "              | 6 75                                               | 50 00                                              |                                                    | 30      | $\begin{vmatrix} 0 \\ 32 & 60 \end{vmatrix}$              | 58 00<br>49 93                                         |                                                    |
| 65             | $\begin{vmatrix} 0 \\ 0 \end{vmatrix}$             | 55 80<br>42 50                                     |                                                    | "       | 34 40                                                     | 49 72                                                  | ]                                                  |
| "              | 10 25                                              | 50 00                                              |                                                    | 40      | 42 50                                                     | 47 52                                                  |                                                    |
| "              | 3 75                                               | 57 25  <br>59 00                                   |                                                    | 35      | $\begin{vmatrix} 42 & 01 \\ 39 & 47 \end{vmatrix}$        | 48 64  <br>46 57                                       |                                                    |
| 60             | 0                                                  | 41 40                                              |                                                    | 30      | 37 04<br>40 21                                            | $\frac{49}{42} \frac{20}{54}$                          |                                                    |
| "              | 14 25<br>10 70                                     | 50 00<br>55 25                                     |                                                    | "       | 38 20                                                     | 44 70                                                  | }                                                  |
| "<br>55        | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$             | 61 00<br>40 64                                     |                                                    | "       | 35 55<br>34 40                                            | $\frac{47}{49} \frac{30}{72}$                          |                                                    |
| "              | 19 00                                              | 50 72                                              | <b>}</b>                                           | 25      | 40 41                                                     | 40 25                                                  |                                                    |
| "              | 16 71                                              | 53 60<br>62 00                                     | Fe <sub>2</sub> Cl <sub>6</sub> +4H <sub>2</sub> O | "       | 39 03<br>35 74                                            | 41 38<br>45 24                                         |                                                    |
| 50             | 0                                                  | 39 92                                              | 1.02016 1.41120                                    | 20      | 39 50                                                     | 39 25                                                  | Fe <sub>2</sub> Cl <sub>6</sub> , 2HCl,            |
| "              | $\begin{array}{c c} 3 & 25 \\ 21 & 24 \end{array}$ | 39 95<br>49 33                                     |                                                    | 10      | 35 40<br>38 62                                            | 43 16<br>37 48                                         | $H_2O$                                             |
| "              | 20 04                                              | 52 50                                              |                                                    | "       | 37 46                                                     | 38 33                                                  |                                                    |
| 44             | 10 70                                              | 39 00<br>38 00                                     |                                                    | "       | 36 30<br>35 04                                            | 38 70<br>39 93                                         |                                                    |
| "              | 14 80                                              | 38 70                                              |                                                    | 0       | 37 27                                                     | <b>36-60</b>                                           |                                                    |
| "<br>40        | 24 14<br>13 40                                     | 50 10<br>37 45                                     |                                                    | -10     | $\begin{vmatrix} 34 & 60 \\ 37 & 92 \end{vmatrix}$        | $\begin{array}{ccc} 38 & 11 \\ 35 & 32 \end{array}$    |                                                    |
| "              | 27 00                                              | 50 80                                              |                                                    | "       | 34 54                                                     | 36 00                                                  |                                                    |
| 33             | 15 70<br>29 20                                     | 37 06<br>42 70                                     |                                                    | -20     | 33 56<br>37 80                                            | 36 25<br>34 50                                         |                                                    |
| "              | 31 08                                              | 46 85                                              |                                                    | "       | 34 10                                                     | 34 84                                                  |                                                    |
| -46            | 30 81                                              | 47 65                                              | IJ                                                 | l       | 32 56                                                     | 35 44                                                  | <u> </u>                                           |

IRON CHLORIDE

|                                                                                                                   |                                                                                                                                                                                                      |                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                      | LILOIV CI                                                                                                                                                                                                      |                                                             |                                                                                      |                                                                                                                                                                |                                                     |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                                                                                                                   | Sp gr of Fe <sub>2</sub> Cl <sub>8</sub> +Aq at 17 5°                                                                                                                                                |                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                      |                                                                                                                                                                                                                | s                                                           | olubility o                                                                          | of Fe <sub>2</sub> Cl <sub>6</sub> 1                                                                                                                           | n HCl+Ag                                            |
| Fe <sub>2</sub> Cl <sub>2</sub>                                                                                   | Sp gr                                                                                                                                                                                                | Fe <sub>2</sub> Cl <sub>6</sub>                                                                                            | Sp gr                                                                                                                                                                                                 | Fe <sub>2</sub> Cl <sub>6</sub>                                                                                      | Sp gr                                                                                                                                                                                                          | t°                                                          | Sat solution per 100 m                                                               | nols H <sub>2</sub> O                                                                                                                                          | Solid phase                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>18<br>19<br>20 | 1 0073<br>1 0146<br>1 0219<br>1 0292<br>1 0365<br>1 0439<br>1 0513<br>1 0587<br>1 0661<br>1 0734<br>1 0894<br>1 1054<br>1 1134<br>1 1215<br>1 1297<br>1 1378<br>1 1378<br>1 1378<br>1 1458<br>1 1458 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>38<br>39<br>40 | 1 1644<br>1 1746<br>1 1848<br>1 1950<br>1 2052<br>1 2155<br>1 2258<br>1 2365<br>1 2464<br>1 25673<br>1 2778<br>1 2883<br>1 2988<br>1 3093<br>1 3199<br>1 3305<br>1 3411<br>1 3411<br>1 3517<br>1 3622 | 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60 | 1 3746<br>1 3870<br>1 3994<br>1 4118<br>1 4242<br>1 4367<br>1 4492<br>1 4617<br>1 4742<br>1 4867<br>1 5010<br>1 5153<br>1 5296<br>1 5439<br>1 5582<br>1 5729<br>1 5876<br>1 6023<br>1 6023<br>1 6170<br>1 6317 | 30<br>" 25<br>" 20<br>" 10<br>" " " " " " " " " "           | mols HCl  0 5 92 0 0 2 33 0 5 60 0 5 60 0 7 52 13 37 16 80 18 45 20 40 20 10         | mols<br>FeCl <sub>3</sub> 12 70 16 07 20 90 10 90 23 72 24 50 10 20 23 60 25 70 9 10 8 00 16 65 23 35 8 25 6 51 6 33 8 70 10 23 15 40 16 00                    | Fe <sub>2</sub> Cl <sub>6</sub> +12H <sub>2</sub> O |
|                                                                                                                   |                                                                                                                                                                                                      |                                                                                                                            | or (2) <b>5</b><br>Cl <sub>6</sub> +Aq a                                                                                                                                                              |                                                                                                                      | •                                                                                                                                                                                                              | "                                                           | 19 95<br>19 00                                                                       | $egin{array}{c c} 17 & 70 \ 22 & 75 \ 23 & 40 \ \end{array}$                                                                                                   |                                                     |
| %<br>Fe <sub>2</sub> Cl <sub>6</sub>                                                                              | Sp gr                                                                                                                                                                                                | %<br>Fe <sub>2</sub> Cl                                                                                                    | <del>,</del>                                                                                                                                                                                          | Fe C                                                                                                                 | <del> </del>                                                                                                                                                                                                   | 10                                                          | 18 05<br>0<br>19 46<br>20 48                                                         | 7 40<br>10 37                                                                                                                                                  |                                                     |
| 123456780                                                                                                         | 1 008<br>1 016<br>1 025<br>1 033<br>1 042<br>1 051<br>1 060<br>1 069                                                                                                                                 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28                                                                               | 1 191<br>1 202<br>1 212<br>1 223<br>1 234<br>1 245<br>1 256<br>1 268                                                                                                                                  | 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48                                                                         | 1 428<br>1 441<br>1 454<br>1 469<br>1 481<br>1 494<br>1 507<br>1 520                                                                                                                                           | -12 5<br>-15 "<br>-20 "                                     | 20 25<br>20 25<br>22 14<br>0<br>21 30<br>0<br>7 50<br>15 30<br>20 56                 | 20 54<br>21 56<br>16 69<br>6 98<br>9 65<br>6 56<br>4 90<br>5 09<br>7 08                                                                                        |                                                     |
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                               |                                                                                                                                                                                                      |                                                                                                                            | 1 280<br>1 292<br>1 304<br>1 316<br>1 328<br>1 340<br>1 352<br>1 364<br>1 376<br>1 403<br>1 415                                                                                                       |                                                                                                                      | 1 533<br>1 547<br>1 560<br>1 573<br>1 587<br>1 600<br>1 612<br>1 624<br>1 636<br>1 648<br>1 659                                                                                                                | 30<br>" 25<br>" 20<br>" " " " " " " " " " " " " " " " " " " | 0<br>4 25<br>0<br>2 33<br>7 50<br>0<br>5 60<br>11 05<br>11 05<br>0<br>10 75<br>14 90 | 25 20<br>27 80<br>30 24<br>23 50<br>23 72<br>29 75<br>31 50<br>22 50<br>23 60<br>29 20<br>29 20<br>32 00<br>23 50<br>23 50<br>23 50<br>23 50<br>23 50<br>23 50 | Fe <sub>2</sub> Cl <sub>6</sub> +7H <sub>2</sub> O  |
|                                                                                                                   |                                                                                                                                                                                                      |                                                                                                                            | e₂Cl <sub>6</sub> +Ac                                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                | 10                                                          | 13 80<br>17 80                                                                       | 23 35  <br>27 75                                                                                                                                               |                                                     |
| Fe <sub>2</sub> Cl <sub>6</sub>                                                                                   | -                                                                                                                                                                                                    | Feat la                                                                                                                    | -                                                                                                                                                                                                     | reict                                                                                                                |                                                                                                                                                                                                                | 0                                                           | 17 80<br>18 05<br>19 50                                                              | $egin{array}{c c} 27 & 75 \ 23 & 40 \ 25 & 93 \ \end{array}$                                                                                                   |                                                     |
| $60 \\ 61 \\ 62 \\ 63 \\ 64$                                                                                      | 1 669<br>1 679<br>1 688<br>1 697<br>1 706                                                                                                                                                            | 65<br>66<br>67<br>68<br>69                                                                                                 | 1 715<br>1 724<br>1 733<br>1 742<br>1 750                                                                                                                                                             | 70<br>71<br>72<br>73<br>74                                                                                           | 1 758<br>1 766<br>1 774<br>1 782<br>1 790                                                                                                                                                                      |                                                             | 19 90 1                                                                              | 20 Y3                                                                                                                                                          | J                                                   |
|                                                                                                                   | <u> </u>                                                                                                                                                                                             | (Hag                                                                                                                       | er, l c)                                                                                                                                                                                              |                                                                                                                      | - '                                                                                                                                                                                                            | l                                                           |                                                                                      |                                                                                                                                                                |                                                     |

|            |                                        |                                                    | IIION CI                                                                                        |                |                                              |                                                        | 429                                     |
|------------|----------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------|----------------------------------------------|--------------------------------------------------------|-----------------------------------------|
| Solubili   | ty of Fe <sub>2</sub> C                | 1                                                  | +Aq —Continued                                                                                  |                | Sat solution<br>per 100 m                    | n contains<br>lols H <sub>2</sub> O                    |                                         |
| t°         | per 100 m                              |                                                    | Solid phase                                                                                     | t°             | mols HCl                                     | mols<br>FeCl <sub>3</sub>                              | Solid phase                             |
| -50        | mols HCl                               | FeCl <sub>3</sub>                                  | <u> </u>                                                                                        | 33<br>30       | 30 45                                        | 48 70<br>36 75                                         |                                         |
| 44         | 3 25                                   | 39 95<br>33 50                                     |                                                                                                 | "              | 31 20<br>33 80                               | 43 49<br>47 80                                         |                                         |
| "          | 3 04                                   | 33 80                                              |                                                                                                 | "              | 32 60                                        | 49 93                                                  |                                         |
| "          | 10 62                                  | 34 64  <br>35 60                                   |                                                                                                 | 25             | 19 50<br>20 60                               | 35 25<br>35 34                                         | 4                                       |
| "          | 10 70                                  | 38 00                                              |                                                                                                 | "              | 31 34<br>33 00                               | 41 58                                                  |                                         |
| <b>4</b> 0 | 13 40                                  | 32 40<br>37 45                                     |                                                                                                 | "              | 34 65                                        | 43 00<br>44 80                                         |                                         |
| 33         | 0                                      | 31 00<br>37 06                                     |                                                                                                 | 20             | 21 25<br>28 81                               | 34 25  <br>37 57                                       |                                         |
| 30         | 15 70                                  | 30 24                                              |                                                                                                 | "              | 34 23                                        | 42 02                                                  | $Fe_2Cl_6+4H_2O$                        |
| "          | 17 20<br>17 15                         | 34 00<br>36 75                                     |                                                                                                 | 15             | 35 40<br>29 40                               | 43 16  <br>36 50                                       | }                                       |
| 25         | 0                                      | 29 00                                              |                                                                                                 | "              | 33 60                                        | 40 03                                                  | }                                       |
| "          | 7 50                                   | 29 75<br>35 25                                     | $Fe_2Cl_6+5H_2O$                                                                                | 10             | 24 50<br>35 04                               | 32 75  <br>39 95                                       |                                         |
| 20         | 0                                      | 27 90                                              |                                                                                                 | 0              | 26 00<br>34 60                               | 32 16<br>38 11                                         |                                         |
| "          | 11 05<br>15 80                         | 29 20<br>30 68                                     |                                                                                                 | 10             | 27 30                                        | 32 05                                                  |                                         |
| "<br>15    | 21 25<br>14 90                         | 34 25<br>28 35                                     |                                                                                                 | 20             | 33 56<br>30 08                               | 36 25  <br>32 76                                       |                                         |
| "          | 16 40                                  | 29 32                                              |                                                                                                 | "              | 32 65                                        | 35 44                                                  | <u> </u>                                |
| <b>10</b>  | 17 80<br>18 80                         | 27 75<br>28 70                                     |                                                                                                 | 45             | $\begin{vmatrix} 0 \\ 31 & 28 \end{vmatrix}$ | 58 00  <br>50 08                                       |                                         |
| "          | 24 50                                  | 32 75                                              |                                                                                                 | "              | 40 65                                        | 48 60                                                  |                                         |
| 0          | 24 12  <br>26 00                       | $\begin{vmatrix} 30 & 04 \\ 32 & 16 \end{vmatrix}$ |                                                                                                 | 40             | 27 00                                        | 58 00  <br>50 80                                       |                                         |
| 10         | 24 95<br>26 05                         | 29 60<br>30 50                                     |                                                                                                 | "<br>35        | 42 01                                        | 48 64                                                  | $\mathrm{Fe_2Cl_6}$                     |
| "          | 26 05<br>27 30                         | 32 05                                              |                                                                                                 | "              | 29 01                                        | 58 00<br>50 33                                         | anhydrous                               |
| 70         | 0 75                                   | 44 0                                               |                                                                                                 | 30             | 37 04                                        | 49 20  <br>58 00                                       |                                         |
| "          | 6 75                                   | 50 00<br>55 80                                     |                                                                                                 | "              | 32 60                                        | 49 93                                                  |                                         |
| 65         | 10 25                                  | 42 50<br>50 00                                     |                                                                                                 | $\frac{1}{40}$ | 34 40   42 50                                | $\frac{49}{47} \frac{72}{52}$                          | )                                       |
| "          | 3 75                                   | 57 25                                              |                                                                                                 | "              | 42 01                                        | 48 64                                                  |                                         |
| 60         | 0 0                                    | 59 00  <br>41 40                                   |                                                                                                 | 35             | 39 47<br>37 04                               | 46 57<br>49 20                                         |                                         |
| u          | 14 25                                  | 50 00                                              |                                                                                                 | 30             | 40 21                                        | 42 54                                                  |                                         |
| "          | 10 70                                  | 55 25  <br>61 00                                   |                                                                                                 | "              | 35 20 35 55                                  | 44 70  <br>47 30                                       |                                         |
| 55         | 19 00                                  | 40 64<br>50 72                                     |                                                                                                 | 25             | 34 40<br>40 41                               | 49 72<br>40 25                                         |                                         |
| "          | 16 71                                  | 53 60                                              |                                                                                                 | "              | 39 03                                        | 41 38                                                  |                                         |
| "<br>50    | $\begin{vmatrix} 0 \\ 0 \end{vmatrix}$ | 62 00<br>39 92                                     | $\left.\begin{array}{l} \text{F} \iota_2 \text{Cl}_6 + 4\text{H}_2 \text{O} \end{array}\right.$ | 20             | 35 74<br>39 50                               | $\begin{array}{c c} 45 & 24 \\ 39 & 25 \\ \end{array}$ | Fe <sub>2</sub> Cl <sub>6</sub> , 2HCl, |
| u          | 3 25                                   | 39 95                                              |                                                                                                 | "              | 35 40                                        | 43 16                                                  | 4H <sub>2</sub> O                       |
| "          | 21 24<br>20 04                         | 49 33<br>52 50                                     |                                                                                                 | 10             | 38 62<br>37 46                               | 37 48<br>38 33                                         |                                         |
| 44         | 0                                      | 39 00                                              |                                                                                                 | "              | 36 30                                        | 38 70                                                  |                                         |
| "          | 10 70<br>14 80                         | 38 00<br>38 70                                     |                                                                                                 | 0              | 35 04<br>37 27                               | 39 93<br>36 60                                         |                                         |
| "<br>40    | 24 14<br>13 40                         | 50 10<br>37 45                                     |                                                                                                 | 10             | 34 60<br>37 92                               | $\begin{array}{c c} 38 & 11 \\ 35 & 32 \end{array}$    |                                         |
| "          | 27 00                                  | 50 80                                              |                                                                                                 | "              | 34 54                                        | 36 00                                                  |                                         |
| 33         | 15 70<br>29 20                         | 37 06<br>42 70                                     |                                                                                                 | -20            | 33 56<br>37 80                               | 36 25<br>34 50                                         |                                         |
| "          | 31 08                                  | 46 85                                              |                                                                                                 | "              | 34 10                                        | 34 84                                                  |                                         |
|            | 30 81                                  | 47 65                                              | J                                                                                               |                | 32 56                                        | 35 44                                                  | J                                       |

| Solubility of | Fe <sub>2</sub> Cl <sub>6</sub> in | HCl+Aq | Continued |
|---------------|------------------------------------|--------|-----------|
|---------------|------------------------------------|--------|-----------|

| t°                                                              | Sat solutio<br>per 100 m                                                                                                                                                                                                                                 | n contains<br>ols H <sub>2</sub> O                                                                                                                                                                                                              | Solid phase                                                  |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
|                                                                 | mols HCl mols FeCl <sub>3</sub>                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 | -                                                            |  |
| - 4 5 " " " " " " " " " " " " " " " " " " "                     | 20 50<br>20 66<br>23 42<br>29 10<br>26 18<br>24 41<br>23 25<br>21 73<br>19 73<br>19 73<br>24 42<br>28 20<br>20 48<br>24 90<br>28 75<br>31 42<br>28 25<br>26 05<br>24 50<br>28 20<br>19 44<br>22 83<br>25 20<br>27 20<br>31 08<br>34 13<br>33 93<br>30 08 | 24 50<br>25 74<br>27 40<br>24 73<br>21 75<br>21 50<br>21 35<br>21 84<br>25 50<br>28 45<br>27 04<br>20 54<br>18 94<br>20 34<br>28 53<br>30 25<br>30 50<br>15 83<br>31 89<br>12 10<br>11 63<br>11 63<br>11 63<br>11 51<br>12 90<br>31 77<br>32 76 | Fe <sub>2</sub> Cl <sub>5</sub> , 2HCl,<br>8H <sub>2</sub> O |  |
| " -10 " " " " " -12 5 -15 " " " " " " " " " " " " " " " " " " " | 28 70<br>12 01<br>19 78<br>20 95<br>20 25<br>17 73<br>15 44<br>22 14<br>21 30<br>24 50<br>9 96<br>13 32<br>16 90<br>18 97<br>20 56<br>23 40<br>24 85<br>25 20<br>25 40                                                                                   | 11 99<br>14 02<br>16 20<br>20 20 70<br>19 65<br>16 69<br>9 65<br>15 83<br>9 94<br>8 57<br>7 35<br>7 16<br>7 08<br>7 20<br>9 88<br>11 60<br>12 37                                                                                                | Fe <sub>2</sub> Cl <sub>6</sub> , 2HCl, 12H <sub>2</sub> O   |  |

(Roozeboom and Schreinemakers, Z phys Ch 1894, 15 633)

Solubility of Fe<sub>2</sub>Cl<sub>6</sub>+NH<sub>4</sub>Cl See NH<sub>4</sub>Cl+Fe<sub>2</sub>Cl<sub>6</sub> under NH<sub>4</sub>Cl

Solubility of Fe<sub>2</sub>Cl<sub>6</sub> in CsCl See CsCl+Fe<sub>2</sub>Cl<sub>6</sub> under CsCl

### Solubility of FeCl<sub>3</sub>+KCl in H<sub>2</sub>O at 2

| Substan                                                                      | e added                                                    | Pts by weig                                                                        | ht sol in solution                                  |
|------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|
| FeCl <sub>8</sub> grams                                                      | KCl grams                                                  | FeCl <sub>3</sub>                                                                  | KC                                                  |
| 0<br>13<br>18<br>3<br>28<br>31<br>36<br>2<br>41<br>5<br>46<br>5<br>52<br>155 | 25<br>28<br>21<br>18 5<br>16<br>10 5<br>9<br>8<br>6<br>0 5 | 0<br>13 44<br>23 18<br>28 05<br>35 72<br>36 62<br>37 35<br>42 03<br>51 69<br>83 89 | 34 (<br>24 4<br>16 £<br>11 €<br>11 1<br>13 €<br>7 £ |

(Hinrichsen and Sachsel, Z phys Ch 1 )4, 50 95)

FeCl<sub>8</sub>+NaCl

### Solubility of FeCl<sub>3</sub>+NaCl in H<sub>2</sub>O at 21

| Substan                                              | ce added                                      | Pts by weight sol in pts of solution                             |                                                |  |  |
|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|------------------------------------------------|--|--|
| FeCl <sub>3</sub> grams                              | NaCl grams                                    | FeCl <sub>3</sub>                                                | NaCl                                           |  |  |
| 0<br>1 8<br>3 6<br>5 5<br>7 2<br>9 0<br>10 8<br>10 8 | 3 6<br>3 0<br>2 5<br>2 0<br>1 5<br>1 0<br>0 5 | 0<br>24 27<br>25 40<br>26 40<br>38 15<br>43 38<br>46 75<br>83 39 | 36 1<br>9 1<br>8 4<br>5 2<br>3 9<br>2 4<br>2 1 |  |  |

(Hinrichsen and Sachsel, Z phys Ch 1 4, 50 94)

### Solubility of FeCl<sub>3</sub> in NaCl+Aq at t°

| t°                                                                                             | Substan                                                                             | ce added                                                                   | % of Fe                                                                                                                  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                                                | FeCl <sub>3</sub>                                                                   | NaCl                                                                       | the solut                                                                                                                |
| 10<br>10<br>10<br>20<br>20<br>20<br>30<br>30<br>30<br>50<br>50<br>40<br>40<br>30<br>30<br>17 6 | 40<br>60<br>100<br>60<br>80<br>100<br>70<br>90<br>110<br>30<br>45<br>35<br>50<br>30 | 20<br>20<br>20<br>20<br>20<br>20<br>30<br>30<br>30<br>20<br>20<br>20<br>20 | 15 2<br>15 2<br>15 16<br>16 2<br>16 18<br>16 2<br>17 7<br>17 6<br>17 67<br>23 5<br>23 9<br>25 4<br>25 5<br>23 8<br>24 47 |
| 17 6                                                                                           | 50                                                                                  | 20                                                                         | 24 5                                                                                                                     |

(Hinrichsen and Sachsel, Z phys Ch 1 4, 50 95)

Difficultly sol in AsBr<sub>3</sub> anorg 1902, 29 374) (Walden, Z

Attacked by liquid NO2 in the presence of traces of moisture (Frankland, Chem Soc 1901, 79 1361)

Sol in liquid SO<sub>2</sub> (Walden, B 1899, 32 2864)

Sol in alcohol ether, acetic ether (Cann, C R 102 363), and acetone (Krug and M'Elroy, J anal Ch 6 184)
Sl sol in ethylamine (Shinn, J phys

Chem 1907, 11 538) Sol in benzonitrile (Naumann, B 1914, **47** 1369)

Sol in methyl acetate (Naumann, B 1909, 42 3790) Insol in ethyl acetate (Naumann, B 1910, **43** 314)

1 g FeCl<sub>3</sub> is sol in 159 g acetone at 18° Sp gr of sat solution 18°/4°=1 160 (Naumann, B 1904, 37 4333)

Sol in acetone and in methylal (Eidmann, C C 1899, II 1014)

(Beckmann and Gabel, Sol in quinoline Z anorg 1906, 51 236)

Sl sol in CS<sub>2</sub> (Arctowski, Z anorg 1894, **6** 257)

weight determined in pyridine Mol (Werner, Z anorg 1897, 15 22)

Sublimed Sol in AsCl<sub>3</sub>, POCl<sub>3</sub>, SO<sub>2</sub>Cl<sub>2</sub> and PBr<sub>3</sub>, sl sol in PCl<sub>3</sub> (Walden, Z anorg 1900, 25 214)

The salts with different amts of crystal H<sub>2</sub>O have different solubilities (Roozeboom +4H<sub>2</sub>O Melts in crystal H<sub>2</sub>O at 73 5°

100 mols H<sub>2</sub>O dissolve mols Fe<sub>2</sub>Cl<sub>6</sub> from Fe<sub>2</sub>Cl<sub>6</sub>+4H<sub>2</sub>O at t°

| t° | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub> |      |       | t°   | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub> |  |
|----|-----------------------------------------|------|-------|------|-----------------------------------------|--|
| 50 | 19 96                                   | 69   | 21 53 | 72 5 | 26 15                                   |  |
| 55 | 20 32                                   | 72 5 | 23 35 | 70   | 27 90                                   |  |
| 60 | 20 70                                   | 73 5 | 25 00 | 66   | 29 20                                   |  |

(Roozeboom, Z phys Ch 10 477)

+5H<sub>2</sub>O Correct formula for +6H O salt

100 mols H<sub>2</sub>O dissolve mols Fe<sub>2</sub>Cl<sub>6</sub> from Fe<sub>2</sub>Cl<sub>6</sub>+5H<sub>2</sub>O at t°

| t               | Mols<br>Fc2Cl6 | t  | Mols<br>Fc <sub>2</sub> Cl <sub>6</sub> | t  | Mols<br>I e <sub>2</sub> Cl <sub>6</sub> |  |
|-----------------|----------------|----|-----------------------------------------|----|------------------------------------------|--|
| $\frac{12}{20}$ | 12 87          | 30 | 15 12                                   | 55 | 19 15                                    |  |
|                 | 13 95          | 35 | 15 64                                   | 56 | 20 00                                    |  |
|                 | 14 85          | 50 | 17 50                                   | 55 | 20 32                                    |  |

(Roozeboom)

Melts in crystal H<sub>2</sub>O at 31° (Engel, C R 104 1708), at 56° (Roozeboom) +6H<sub>2</sub>O Very deliquescent Sol in alcohol Ether dissolves out Fe<sub>2</sub>Cl<sub>6</sub>

M-pt is 31° (Ordway) Contains only 5H<sub>2</sub>O (Roozeboom)

+7H<sub>2</sub>O Melts in crystal H<sub>2</sub>O at 32 5°

100 mols H<sub>2</sub>O dissolve mols Fe<sub>2</sub>Cl<sub>6</sub> from Fe<sub>2</sub>Cl<sub>6</sub>+7H<sub>2</sub>O at t°

| t°   | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub> | t°   | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub> | t° | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub> |  |
|------|-----------------------------------------|------|-----------------------------------------|----|-----------------------------------------|--|
| 20   | 11 35                                   | 32   | 13 55                                   | 30 | 15 12                                   |  |
| 27 4 | 12 15                                   | 32 5 | 14 99                                   | 25 | 15 54                                   |  |

(Roozeboom)

 $+12H_{2}O$ Less deliquescent than Fe<sub>2</sub>Cl<sub>8</sub> or Fe<sub>2</sub>Cl<sub>5</sub>+5H<sub>2</sub>O

100 mols H<sub>2</sub>O dissolve mols Fe<sub>2</sub>Cl<sub>5</sub> from Fe<sub>2</sub>Cl<sub>6</sub>+12H<sub>2</sub>O at t°

| t°                              | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub>      | t                                     | Mols<br>Fe Clc                                | t°                    | Mols<br>Fe <sub>2</sub> Cl <sub>6</sub> |
|---------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------|-----------------------------------------|
| 55<br>41<br>27<br>0<br>10<br>20 | 2 75<br>2 81<br>2 98<br>4 13<br>4 54<br>5 10 | 30<br>35<br>36<br>5<br>37<br>36<br>30 | 5 93<br>6 78<br>7 93<br>8 33<br>9 29<br>10 45 | 27 4<br>20<br>10<br>8 | 11 20<br>12 15<br>12 83<br>13 70        |

(Roozeboom)

Sol in alcohol Ether dissolves out Fe<sub>2</sub>Cl<sub>6</sub> Melts in crystal H<sub>2</sub>O at 37° (Roozeboom). at 35 5° (Ordway)

Ferric hydrogen chloride, FeCl<sub>3</sub>, HCl+2H<sub>2</sub>O Decomp by H<sub>2</sub>O (Sabatier, Bull Soc (2)

More sol in H<sub>2</sub>O than FeCl<sub>2</sub> (Engel. C. R. **104** 1708)

For solubility, see FeCl<sub>3</sub>+HCl, under ferric chloride

 $+6H_2O$ (Roozeboom and Schreinemakers )

For solubility, see FeCl<sub>3</sub>+HCl, under ferric chloride

Ferrous lithium chloride, FeCl<sub>2</sub>, LiCl+3H<sub>2</sub>O (Chassevant, A ch (6) 30 17)

Ferric magnesium chloride, FeCl<sub>3</sub>, MgCl<sub>2</sub>+  $H_2O$ 

Deliquescent (Neumann, B 18 2890)

Ferrous mercuric chloride, FeCl<sub>2</sub>, HgCl<sub>2</sub>+  $4H_2O$ Deliquescent (v Bonsdorff)

Ferric nitrosyl chloride, FeCl<sub>3</sub>, NOCl

Very deliquescent (Weber, Pogg 118 477)

Ferric phosphoric chloride, FeCl<sub>3</sub>, PCl<sub>5</sub> Decomp by H<sub>2</sub>O (Baudrimont, A ch (4) 2 15)

332)

Iron (ferrous) potassium chloride, FeCl<sub>2</sub>, 2KCl+2H₂O

Sol in H<sub>2</sub>O (Berzelius)

Ferric potassium chloride, FeCl<sub>3</sub>, 2KCl+

A little H<sub>2</sub>O dissolves out FeCl<sub>3</sub> (Fritzsche J pr **18** 483) Sol in H<sub>2</sub>O (Walden, Z anorg 1894, 71

Ferric rubidium chloride, FeCl<sub>3</sub>, 3RbCl

Insol in HCl+Aq Easily sol in H<sub>2</sub>O (Godeffroy, Arch Pharm (3) 9 343) FeCl<sub>3</sub>, 2RbCl+H<sub>2</sub>O Decomp by Decomp by H<sub>2</sub>O (Neumann, A 244 329) Sol in H<sub>2</sub>O (Walden, Z anorg 1894, 7

Ferric sulphur chloride, FeCl<sub>3</sub>, SCl<sub>4</sub>

Very sensitive toward heat and moisture (Ruff, B 1904, 37 4518)

Ferric thallium chloride, FeCl<sub>3</sub>, 3TlCl

Decomp by H<sub>2</sub>O Can be crystallised from HCl+Aq (Wohler, A 144 250)

Ferrous chloride ammonia, 3FeCl<sub>2</sub>, 2NH<sub>3</sub> Decomp by H<sub>2</sub>O (Rogstadius, J pr 86 310)

FeCl<sub>2</sub>, 6NH<sub>3</sub> Loses 4NH<sub>3</sub> at 100° (Miller. 5, 17 577) Decomp in the air (Miller)

rric chioride ammonia, FeCl<sub>3</sub>, NH<sub>3</sub>

Slowly deliquescent Sol in H<sub>2</sub>O with evolution of heat (Rose, Pogg, 24 302)

FeCl<sub>3</sub>, 6NH<sub>3</sub> Not deliquescent in H<sub>2</sub>O, sol in HCl with decomp Not deliquescent, not sol Am Ch J 1895, 17 577)

Loses NH<sub>3</sub> to give FeCl<sub>3</sub>, 5NH<sub>3</sub>, and FeCl<sub>3</sub>, 4NH<sub>3</sub>

Ferric chloride cyanhydric acid, FeCl<sub>8</sub>, 2HCN Deliquescent (Klein, A 74 85)

Ferrous chloride nitric oxide, FeCl<sub>2</sub>, NO

Sol in H<sub>2</sub>O without evolution of gas (Thomas, C R 1895, **121** 204) +2H<sub>2</sub>O Sol in cold H<sub>2</sub>O without decomp (Thomas, C R 1895, **120** 448)

2FeCl<sub>2</sub>, NO Very hydroscopic (Thomas, C R 1895, **121** 129)

10FeCl<sub>2</sub>, NO Very hygroscopic (Thomas C R 1895, **121** 128)

Ferric chloride nitric oxide, Fe<sub>2</sub>Cl<sub>6</sub>, NO

Very hygroscopic Loses NO when exposed to the air

Very hygroscopic In con-2Fe<sub>2</sub>Cl<sub>6</sub>, NO tact with H<sub>2</sub>O gives off NO (Γhomas, C R 1895, **120** 447)

Iron (ferrous) fluoride, FeF<sub>2</sub>

SI sol in H<sub>2</sub>O, insol in alcohol and ether Partly sol in hot HCl+Aq, slowly sol in cold, easily in hot HNO3, decomp by H2SO4 (Poulenc, C R 115 941)

+8**H₂**Ó Difficultly sol in H2O, more easily if it contains HF (Berzelius)

Ferroferric fluoride, FeF<sub>3</sub>, FeF<sub>2</sub>+7H<sub>2</sub>O Sol in dil HF+Aq (Weinland, Z anorg 1899, **22** 268)

Ferric fluoride, FeF<sub>3</sub>

Sl sol in H<sub>2</sub>O, insol in alcohol or ether Sl attacked by HNO<sub>8</sub>, HCl, or H<sub>2</sub>SO<sub>4</sub>+Aq (Poulenc, C R 115 941)

 $+4\frac{1}{2}H_2O$  More sol in hot than cold  $H_2O$ Insol in alcohol (Scheurer-Kestner, A ch (3) **68** 472)

Ferric nickel fluoride, FeF<sub>8</sub>, N<sub>1</sub>F<sub>2</sub>+7H<sub>2</sub>O Sl sol in dil HF+Aq (Weinland, Z anorg 1899, **22** 268)

Ferrous potassium fluoride, FeF2, KF+2H2O (Wagner, B 19 896) FeF<sub>2</sub>, 2KF SI sol in H<sub>2</sub>O (Berzelius)

Ferric potassium fluoride, FeF<sub>3</sub>, 2KF

Somewhat sol in H<sub>2</sub>O, especially if hot (Berzelius)  $+\mathrm{H}_2\mathrm{O}$  (Christensen, J pr (2) 35 164)

FeF<sub>3</sub>, 3KF Properties as above (Berzelius)

Ferric sodium fluoride,  $FeF_s$ ,  $2NaF + \frac{1}{2}H_2O$ Rather easily sol in H<sub>2</sub>O Solution decomp on heating Very sol in FeCl<sub>3</sub>+Aq (Nickles, J. Pharm (4) 10 14) Solution de-FeF<sub>3</sub>, 3NaF (Wagner, B 19 896)

Ferric thallous fluoride, 2FeF<sub>3</sub>, 3TlF

Sol in hot H<sub>2</sub>O, less sol in cold sol in HF (Ephraim, Z anorg 1909, 61 **239**)

Ferrous titanium fluoride See Fluotitanate, ferrous

Ferric zinc fluoride, FeF<sub>3</sub>, ZnF<sub>2</sub>+7H<sub>2</sub>O

Sl sol in dil HF+Aq (Weinland, Z anorg 1899, 22 269)

Ferrous hydroxide, FeO<sub>2</sub>H<sub>2</sub>

Sol in 150,000 pts H<sub>2</sub>O (Bineau, C R **41** 509 )

Insol in KOH, or NaOH+Aq NH4 salts+Aq Sl sol in NaC2H3O2+Aq (Mercer)

Not pptd in presence of Na citrate Insol in boiling cane sugar+Aq, but sl sol when KOH has been added Not pptd in presence of much  $H_2C_4H_4O_6$  (Rose)

Solubility in glycerine+Aq containing about 60% by vol of glycerine

100 ccm of the solution contain 10g FeO

(Muller, Z anorg 1905, 43 322)

### Iron (ferric) hydroxides, Fe<sub>2</sub>O<sub>3</sub>, xH<sub>2</sub>O

Many indefinite compounds of Fe<sub>2</sub>O<sub>3</sub> and H<sub>2</sub>O are known, and uncertainty exists as to their composition

According to van Bemmelen (R t c 7 106) there are probably no true definite compounds

of  $Fe_2O_3$  and  $H_2O$ 

According to Tommasi (B 12 1924, 2334) there are two series of Fe hydroxides, a, red

hydroxides, and  $\beta$ , yellow hydroxides a Hydroxides Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub> (unstable), Fe<sub>2</sub>O<sub>8</sub>,  $2H_2O$  (loses  $H_2O$  at  $50^\circ$ ), and  $Fe_2O_3$ ,  $H_2O$  (loses

H<sub>2</sub>O at 92°)

Sol in dil acids and in Fe<sub>2</sub>Cl<sub>5</sub>+Aq, and pptd from the latter solution by Na<sub>2</sub>SO<sub>4</sub>, or  $H_2SO_4+Aq$ 

 $\beta Hydioxides$  Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub> (stable below 70°) Fe<sub>2</sub>O<sub>3</sub>, 2H<sub>2</sub>O (loses H<sub>2</sub>O at 105°), Fe<sub>2</sub>O<sub>3</sub>, H<sub>2</sub>O (loses H<sub>2</sub>O at 150°)

Sl sol in acids, and insol in Fe<sub>2</sub>Cl<sub>6</sub>+Aq

(Tomması)

The following more or less uncertain data

are given

2Fe<sub>2</sub>O<sub>3</sub>, H<sub>2</sub>O Sol in HCl+Aq Very sl sol in HNO<sub>3</sub>+Aq (Davies, Chem Soc (2) **4** 69)

Min Turgite

Insol in cold acids, difficultly Fe<sub>2</sub>O<sub>3</sub>, H<sub>2</sub>O sol in warm HCl and H2SO4+Aq, and especially in warm HNO<sub>3</sub>+Aq (Schiff, A 114 199)

Min Gothite 2Fe O<sub>3</sub>, 3H<sub>2</sub>O Sl sol in tartaric, citric. or acetic reids, but easily sol in HCl+Aq

(Wittstein)

Scarcely attacked by cone HNO3, or HCl+ Aq Sol in rectic acid or dil HNO3, or HCl+ Aq, from which solution it is pptd by trace of alkılı salts (St Gilles)

Min Limonite

3Fe ()<sub>3</sub>, 5H () (Muck)

Fe<sub>2</sub>()<sub>3</sub>, 211<sub>2</sub>() It usily sol in IICl+Aq Min Xanthosiderite

Fe(), 3H() SI sol in acetic acid of 103 sp gr, but casaly sol if of 1 076 sp gr Sol in mineral reids (Limberger, J. B. 1853 70)

 $I(\zeta)()$ ,  $\chi II() = I(\zeta)()_{\xi}II_{\xi}(\zeta)$ Insol in H (), or in solutions of the ilk thes or NH4 When recently pptd is cisily sol in salts acids (Fresenius)

SI sol in NII4OII, and NII4 salts+Aq

(Odling)

App wently insol in NH4Cl, or (NH4) CO3

+Aq (Brett, 1837)

SI sol in cone, but insol in dil KOH+Aq (Chodnew, J pr 28 221) SI sol in very cone KOH+Aq free from

CO<sub>2</sub> (Volcker, A **59** 34)

Not at all sol in pure conc KOH+Aq, solubility noticed by previous observers being caused by the presence of silicic acid (Sandrock)

Sl sol in conc alkali carbonates + Aq

When freshly pptd, it is not acted upon by conc K<sub>2</sub>CO<sub>3</sub>+Aq (Grotthaus)

Readily sol in conc (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq, but pptd by addition of H<sub>2</sub>O

Sol in excess of (NH<sub>4</sub>)<sub>2</sub>CO<sub>8</sub>+Aq when

pptd by that reagent (Wohler)

Sol in solutions of the alkali bicarbonates (Berzelius)

Sol in aqueous solutions of water-glass (Ordway)

Immediately dissolved by H<sub>2</sub>SO<sub>3</sub>+Aq Sol in NH<sub>4</sub>F+Aq (Helmholt, Z anorg

124)Sol in conc  $Al_2(SO_4)_3+Aq$ (Schneider.

B 23 1352) Sl sol in a solution of MgCO<sub>3</sub>(?) (Bis-

Insol in ethylamine, or amylamine+Aq

(Wurtz, A ch (3) 30 472) Sol in boiling solution of Bi(NO<sub>8</sub>)8, with

pptn of B<sub>12</sub>O<sub>3</sub> (Persoz) Sol in Cr<sub>2</sub>Cl<sub>5</sub>+Aq, after 3 months 15 mols Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub> were dissolved by 1 mol Cr<sub>2</sub>Cl<sub>6</sub> (Béchamp, A ch (3) 57 296)

Insol in fumaric acid, even when freshly

pptd

When recently pptd, it is easily sol in KHC<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+Aq, but after drying it is difficultly sol therein

When moist easily sol in H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+Aq, but after drying is scarcely sol therein when cold, and only sl sol when hot (Werther)

Easily sol in acetic, citric, and other acids

(Wittstein)

Solubility in glycerine+Aq containing about 60% by vol of glycerine

100 ccm of the solution contain 08 g Fe O<sub>3</sub> (Muller, Z anorg 1905, 43 322)

Easily sol in aqueous solution of sucrates of Ca, Ba, Sr, K, Na (Hunton, 1837)

Unacted upon by cane sugar+Aq (Glad-

stone) Sl sol in cane sugar + Aq, from which it is pptd by (NH<sub>4</sub>)<sub>2</sub>S+Aq, but not by NH<sub>4</sub>OH, or  $K_4$ Fe $C_6N_6$ +Aq (Peschier)

Solubility of FQO6H6 in sugar solutions of sugar solution of given strength dissolves mg of he OrHe

| 0/ 5           |                   | M. I e O6H6       |                   |  |  |  |
|----------------|-------------------|-------------------|-------------------|--|--|--|
| % Sular        | ıt 17 1°          | at 4)             | at 75°            |  |  |  |
| 10<br>30<br>50 | 3 4<br>2 3<br>2 3 | 3 4<br>2 7<br>1 9 | 6 1<br>3 8<br>3 4 |  |  |  |

(Stolle Z Ver Zuckerind 1900 50 340)

Not pptd from solutions by alkalies or alkalı carbonates in presence of many organic substances, as tartaric acid, sugar, etc

Not pptd by NH4OH from solutions containing Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub> (Rose, Pogg **76** 19) Not pptd by NH4OH in presence of Na

citrate (Spiller)

Soluble (a) By dialysis Solutions containing 1% can be concentrated somewhat, Solutions conwhereupon they gelatinise They also gelatimes by cold, or addition of traces of H2SO4. alkalies, alkali carbonates or sulphates, or neutral salts, not, however, by HCl, HNO<sub>3</sub>, alcohol, or sugar (Graham, A 121 46)

When a dil solution of a solid organic acid, or an alkalı, or salt ıs added to a dıalysed solution of Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub>, a coagulum sol in H<sub>2</sub>O is formed, but if the solutions are conc the separating coagulum is no longer sol in H<sub>2</sub>O

(Athenstadt, C C 1871 822)

(b) Pean St Gilles' hydroxide, or meta-iron hydroxide Sol in H<sub>2</sub>O Pptd from solution by traces of H<sub>2</sub>SO<sub>4</sub>, HCl, HNO<sub>3</sub>+Aq, and alkalies, the ppt is insol in cold acids, but sol in pure H<sub>2</sub>O (Pean St Gilles, A ch (3) 46 47)

See also table by Krecke in the article on

ferric chloride

Iron (Ferroferric) hydroxide, Fe<sub>8</sub>O<sub>4</sub>, H<sub>2</sub>O (?) Sol in acids

 $Fe_3O_4$ ,  $4H_2O$ (Lefort)

### Ferrous 10dide, FeI2

Very deliquescent Sol in H<sub>2</sub>O Solution decomp on evaporating

Very deliquescent, sl sol in +4H₂O H<sub>2</sub>O, sol in ether 1900, 24 19) (Jackson, Am Ch J

Deliquescent  $+5H_2O$ Sol in alcohol Sol in sugar+Aq, and solution is much more stable than aqueous solution Easily sol in glycerine

Insol in methylene iodide (Retgers, Z

anorg 3 343)

 $\pm$ RH<sub>2</sub>O, and  $\pm$ 9H<sub>2</sub>O Very sol, pptd from aq solution (Volkmann, C C 1894, II 611)

#### Ferric iodide, FeI3

Has not been isolated Solution of I in FeI<sub>2</sub>+Aq in the molecular ratio of I FeI<sub>2</sub> probably contains FeI<sub>3</sub>

Very sol in liquid NH<sub>8</sub> (Franklin, Am

Ch J 1898, 20 828)

Ferrous mercuric iodide, FeI<sub>2</sub>, 2HgI<sub>2</sub>+6H<sub>2</sub>O As the corresponding Mg salt (Duboin, C R 1907, 145 714)

# Ferrous iodide ammonia, FeI2, 6NH3

Decomp by H<sub>2</sub>O (Jackson, Am Ch J 1900, **24** 27)

#### Ferrous mercuric iodide

Very deliquescent Decomp by H<sub>2</sub>O, sol  $10 \text{ HC}_2\text{H}_3\text{O}_2$  or alcohol

#### Iron molybdenide, FeMo2

Attacked by HCl+Aq with difficultly Sol in hot conc H<sub>2</sub>SO<sub>4</sub> (Steinacker)

Iron nitride

Easily decomp by H<sub>2</sub>O when finely p dered (Rossel, C R 1895, 121 942)
Fe<sub>2</sub>N Easily sol in HNO<sub>3</sub>, HCl, or H<sub>2</sub>

Very slowly decomp by H2O (St

schmidt, Pogg 125 37) Sol in HCl with decomp decomp steam and by H<sub>2</sub>S at 200° (Fowler, C 1894, 68 152)

Probably the same as the abo Fe<sub>5</sub>N<sub>2</sub> compound (Rogstadius, J pr 86 307)

# Iron nitrososulphantimonate, Fe<sub>4</sub>S(NO)<sub>6</sub>Sb

(Low, C C 1865 948)

Does not exist, but was impure sodium i rotetranitrososulphide (Pawel, B 15 260

#### Iron nitrososulphides

See Ferrotetranitrososulphydric acid a 1 Ferroheptanitrososulphide, ammonium

 $Fe_3S_5H_2(NO)_4$  (Roussin, C R **46** 224  $Fe_3S_3(NO)_4+2H_2O$ (Porczinsky, A 1 ) 302)

 $Fe_6S_5(NO)_{19}+4H_2O$ (Rosenberg, B 312)

The compound to which the above form were given was impure, according to Pawel ( 12 1407 and 1949, 15 2600), and contain more or less Na or NH4 Pawel considers t substance as NH<sub>4</sub> salt of ferroheptanitro sulphydric acid, which see

 $Fe_3S_2N_5O_6+1\frac{1}{2}H_2O$  Sol in  $H_2O$ , alcoh ether, CHCl3, acetone and ethyl aceta Insol in benzene and light petroleum (Mar

C R 1896, 122, 138)

Iron sodium nitrososulphide, 3Na<sub>2</sub>S, Fe<sub>2</sub>, 2NO

(Roussin)

Na<sub>8</sub>Fe<sub>8</sub>S<sub>9</sub>(NO)<sub>18</sub> (Rosenberg) Correct formula is Na<sub>2</sub>S<sub>2</sub>(NO)<sub>4</sub>Fe<sub>2</sub>, sodiu i

ferrotetranitrososulphide

#### Iron nitrososulphocarbonate, Fe<sub>4</sub>S(NO)<sub>6</sub>CS<sub>2</sub> $3H_2O$

(Low, C C 1865 948)

Correct formula is NaS<sub>8</sub>(NO)<sub>7</sub>Fe<sub>4</sub>+2H<sub>2</sub><sup>1</sup> sodium ferro*hepta*nitrososulphide B 15 2600)

#### Ferrous oxide, FeO

Insol in H<sub>2</sub>O Sol in acids Easily sol in HCl, and HNO<sub>3</sub>+Aq, near insol in H<sub>2</sub>SO<sub>4</sub>, even when heated (Tissaider, C R **74** 531)

#### Ferric oxide, Fe<sub>2</sub>O<sub>3</sub>

Attacked by acids with difficulty, the mor so the higher it has been heated HCl+A is the best solvent, in which it is more quickl sol by long digestion at a gentle heat tha by boiling (Fresenius)

Most easily sol in 16 pts of a mixture of 8 pts H<sub>2</sub>SO<sub>4</sub> and 3 pts H<sub>2</sub>O (Mitscherlich

J pr 81 110)

| Solubility of | οf | $Fe_2O_3$ | ın | HF+Aq | at | $25^{\circ}$ |
|---------------|----|-----------|----|-------|----|--------------|
|---------------|----|-----------|----|-------|----|--------------|

| , , , , , , , , , , , , , , , , , , , , |                                          |                                                                  |  |  |
|-----------------------------------------|------------------------------------------|------------------------------------------------------------------|--|--|
|                                         | Time                                     | G Fe <sub>2</sub> O <sub>3</sub> in<br>10 ccm of<br>the solution |  |  |
| N-HF                                    | 4½ hrs<br>21¾ "<br>45¾ "                 | 0 1581<br>0 2235<br>0 2279                                       |  |  |
| 0 5N-HF                                 | 284 "<br>8½ "<br>23½ "<br>56½ "          | 0 0579<br>0 0884<br>0 1045<br>0 1162                             |  |  |
| 0 25N-HF                                | 2½ "<br>8¼ "<br>24¾ "<br>142½ "          | 0 0180<br>0 0345<br>0 0475<br>0 0534                             |  |  |
| equal amts<br>N-HF+N-HCl                | 284 "<br>8½ "<br>2334 "<br>96 "<br>264 " | 0 1011<br>0 1611<br>0 1976<br>0 2223<br>0 2297                   |  |  |

(Deussen, Z anorg 1905, 44 414)

### Solubility of Fe<sub>2</sub>O<sub>3</sub> in HCl+Aq at 25°

|                          | Time                                                                                                                                       | G Fe <sub>2</sub> O <sub>3</sub> in<br>10 ccm of<br>the solution |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|
| N-HCl                    | 4¾ hrs<br>21½ "<br>45½ "                                                                                                                   | 0 0409<br>0 1230<br>0 2125                                       |  |  |  |
| 0 5N-HCl                 | 2 <sup>3</sup> / <sub>4</sub> "<br>8 <sup>1</sup> / <sub>2</sub> "<br>23 <sup>1</sup> / <sub>2</sub> "<br>56 <sup>1</sup> / <sub>2</sub> " | 0 0126<br>0 0188<br>0 0382<br>0 0672                             |  |  |  |
| 0 25N-HCl                | 2½ "<br>8½ "<br>24¾ "<br>142½ "                                                                                                            | 0 0040<br>0 0054<br>0 0120<br>0 0306                             |  |  |  |
| equal vol<br>N-HCl+N-Nal | 2¾ "<br>8½ "<br>23¾ "<br>72¼ "<br>215 "                                                                                                    | 0 0444<br>0 0640<br>0 0743<br>0 0757<br>0 0766                   |  |  |  |

(Deussen, l c)

## Solubility of Fe<sub>2</sub>O<sub>3</sub> in N-oxalic acid at 25°

| T ime  | ( I c2O3 in 10 ccm of<br>the solution |
|--------|---------------------------------------|
| 1¾ hrs | 0 0310                                |
| 6¾ "   | 0 0790                                |
| 22 "   | 0 1960                                |
| 94 "   | 0 2326                                |

(Deussen)

Absolutely insol in Br<sub>2</sub>+Aq (Balard) Insol in hot NH<sub>4</sub>Cl+Aq (Rose) Insol in KOH+Aq (Chodnew, J pr 28

Slowly sol in an aq solution of calcium hydrogen carbonate. The velocity of the reaction may be much increased by the addition of small amounts of alkali sulphate or CaSO<sub>4</sub> (Rohland, Z anal 1909, 48 629)

Insol in henzoutrile (Naumann B 1914

Insol in benzonitrile (Naumann, B 1914, 47 1370)

Insol in acetone (Eldmann, C C 1899, II 1014, Naumann, B 1904, 37 4329)

Solubility in (calcium sucrate + sugar) + Aq 1 1 solution containing 418 6 g sugar and 34 3 g CaO dissolves 626 g Fe<sub>2</sub>O<sub>3</sub>, 296 5 g sugar and 24 2 g CaO dissolves 471 g Fe<sub>2</sub>O<sub>3</sub>, 174 4 g sugar and 14 1 g CaO dissolves 3 08 g Fe<sub>2</sub>O<sub>3</sub> (Bodenbender, J B **1865** 600)

Solubility of  $Fe_2O_3$  in sugar solutions 1 l of sugar solution of given strength dissolves mg  $Fe_2O_3$ 

| % Sugar  | mg l       | Fe <sub>2</sub> O <sub>3</sub> |
|----------|------------|--------------------------------|
| 70 Dugai | at 17 5°   | at 45°                         |
| 10<br>30 | 1 4<br>1 4 | 2 0                            |
| 50<br>50 | 0 8        | 1 1                            |

(Stolle, Z Ver Zuckerind, 1900, **50** 340)

#### Calcined

Solubility of calcined Fe<sub>2</sub>O<sub>3</sub> in acids at 25°

| Acıd  | 1 ime                     | g Fe <sub>2</sub> O <sub>3</sub> in<br>10 ccm of the<br>solution |
|-------|---------------------------|------------------------------------------------------------------|
| N-HF  | 4½ hrs<br>43½ "<br>129½ " | 0 0889<br>0 2035<br>0 2194                                       |
| N-HCl | 4½ "<br>43½ "<br>139½ "   | 0 0224<br>0 1000<br>0 1910                                       |

(Deussen, Z anorg 1905, 44 413)

#### See also Ferric hydroxide

Min Hematile Rather easily sol in HCl +Aq, but not readily sol in other acids

#### Metairon oxide

See Ferric hydroxides

### Ferroferric oxide, 6FeO, Fe<sub>2</sub>O<sub>3</sub>

FcO, Fe<sub>2</sub>O<sub>3</sub> = Fc<sub>3</sub>O<sub>4</sub> With insufficient HCl +Aq for complete solution, FeO is dissolved and Fe O<sub>3</sub> left (Berzelius)

and Fe O<sub>3</sub> left (Berzelius)
Insol in HNO<sub>3</sub>+Aq at the ordinary temperature (Millon)

Insol in acetone (Naumann, B 1904, 37

4329)

Solubility of Fe<sub>2</sub>O<sub>4</sub> in sugar solutions 11 of sugar solution of given strength dissolves mg Fe O<sub>4</sub>

| % Sugar        |                      | mg Fe <sub>8</sub> O <sub>4</sub> |                      |
|----------------|----------------------|-----------------------------------|----------------------|
| 70 5 4 5 4     | at 17 5°             | at 45°                            | at 75°               |
| 10<br>30<br>50 | 10 3<br>12 4<br>14 5 | 10 3<br>10 3<br>10 3              | 12 4<br>12 4<br>14 5 |

(Stolle, Z Ver Zuckerind 1900, 50 340)

Min Magnetite Insol in HNO3, but sol in hot HCl+Aq

Iron sesquioxide zinc oxide, Fe<sub>2</sub>O<sub>3</sub>, ZnO See Ferrite, zinc

#### Ferric oxybromide

Basic ferric bromides containing three equivalents, or less, of base to one of acid may be obtained dissolved in H<sub>2</sub>O (Ordway, Am J Sci (2) 26 202)

The most basic soluble compound obtained by three months' digestion of Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub> with  $Fe_2Br_6+Aq$ , is  $Fe_2Br_6$ ,  $14Fe_2O_3$  (Béchamp)

#### Ferric oxychlorides

(a) Soluble  $Fe_2O_6H_6$  dissolves in  $Fe_2Cl_6+$ By digesting until the acid reaction of the chloride has disappeared a solution of Fe<sub>2</sub>Cl<sub>6</sub>, 2Fe<sub>2</sub>O<sub>3</sub> is obtained Repert (2) **41** 289) (Pettenkofer,

By digesting for several days in the cold, Fe<sub>2</sub>Cl<sub>6</sub>,5Fe<sub>2</sub>O<sub>8</sub> is obtained, and still more basic compounds by further addition of Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub> When the solution contains Fe<sub>2</sub>Cl<sub>6</sub>, 12Fe<sub>2</sub>O<sub>3</sub> 1t gelatinises, but still dissolves completely in The most basic soluble compound is Fe<sub>2</sub>Cl<sub>6</sub>, 20Fe<sub>2</sub>O<sub>3</sub> (Béchamp, A ch (3) 57 296

If the digestion is carried on several weeks, a solution containing Fe<sub>2</sub>Cl<sub>6</sub>, 23Fe<sub>2</sub>O<sub>3</sub> is obtained, this can be boiled and diluted without pptn, but Fe2O6H6 is precipitated by the addition of very many salts (Ordway, Sill Am J (2) 26 197)

Solutions containing 10 or less molecules Fe<sub>2</sub>O<sub>3</sub> to 1 mol Fe<sub>2</sub>Cl<sub>6</sub> can be dried without the oxychloride becoming insoluble

The above solutions do not become cloudy

by boiling or diluting (Phillips)

A very dil solution of Fe<sub>2</sub>Cl<sub>6</sub>, 10Fe<sub>2</sub>O<sub>3</sub> remains clear after protracted boiling, and may be boiled without decomp even when Fe<sub>2</sub>Cl<sub>6</sub>, 20Fe<sub>2</sub>O<sub>3</sub> is present (Béchamp)

HNO<sub>3</sub>, and HCl+Aq form precipitates in the above solutions, which are sol on addition H<sub>2</sub>SO<sub>4</sub>+Aq forms a precipiof more H<sub>2</sub>O tate insol in H<sub>2</sub>O (Béchamp)

Fe<sub>2</sub>Cl<sub>6</sub>, 9Fe<sub>2</sub>O<sub>3</sub> is easily sol in H<sub>2</sub>O, weak alcohol, and glycerine, but solutions are pptd | Fe<sub>2</sub>P<sub>3</sub> Insol in HCl, HNO<sub>3</sub> and aq by small amts of H<sub>2</sub>SO<sub>4</sub>, M<sub>2</sub>SO<sub>4</sub>, citric or regia Sol in potassium hypobromite so

tartanic acids, or a few drops of HCl, HNO<sub>3</sub>+Aq (Jeannel, C R 46 799) Solutions containing 5 mols Fe<sub>2</sub>O<sub>3</sub> to 1 n Fe<sub>2</sub>Cl<sub>5</sub> are completely precipitated by K<sub>2</sub>S Na<sub>2</sub>SO<sub>4</sub>, MgSO<sub>4</sub>, KNO<sub>3</sub>, NaNO<sub>3</sub>, Zn(NO KCl, NaCl, NH<sub>4</sub>Cl, CaCl<sub>2</sub>, MgCl<sub>2</sub>, Znt KBr, or KSCN (Béchamp)

Ba(NO<sub>8</sub>)<sub>2</sub> does not precipitate solutions

less than 18-20 Fe<sub>2</sub>O<sub>3</sub> to 1 Fe<sub>2</sub>Cl<sub>6</sub>
Pb(NO<sub>3</sub>)<sub>2</sub> or Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub> do not prectate solutions containing the composition Fe<sub>2</sub>Cl<sub>6</sub>, 12Fe<sub>2</sub>O<sub>3</sub>, but a mixture of the t

salts causes complete precipitation Solution has been obtained containing Fe<sub>2</sub>O<sub>3</sub> to 1 FeCl<sub>6</sub>, probably owing to a form tion of soluble colloidal Fe<sub>2</sub>O<sub>3</sub> (Magnier la Source, C R 90 1352)

Solubility determinations in the syst Fe<sub>2</sub>O<sub>3</sub>, HCl and H<sub>2</sub>O, show that at 25° definite basic chloride is formed, but that stable solid phase is one of a series of sc solutions containing Fe<sub>2</sub>O<sub>3</sub>, HCl and H (Cameron, J phys Chem 1907, 11 694)

 (β) Insoluble Fe<sub>2</sub>Cl<sub>5</sub>, 6Fe<sub>2</sub>O<sub>3</sub>+9H<sub>2</sub>O
 (1) By exposing FeCl<sub>2</sub>+Aq to air in H<sub>2</sub>O sl sol in HCl+Aq (Wittstein)

(2) From FeCl<sub>2</sub>+Aq and HNO<sub>3</sub> in H2O, and sl sol in HCl+Aq (Bécham 2Fe<sub>2</sub>Cl<sub>6</sub>, 25Fe<sub>2</sub>O<sub>3</sub>+41H<sub>2</sub>O Insol in H (Béchamp )

Fe<sub>2</sub>Cl<sub>6</sub>, 2Fe<sub>2</sub>O<sub>8</sub>+3H<sub>2</sub>O Decomp by H with residue of Fe<sub>2</sub>O<sub>3</sub>, sl sol in dil aci i

(Rousseau, C R 110 1032) Fe<sub>2</sub>Cl<sub>5</sub>, 3Fe<sub>2</sub>O<sub>3</sub> As abo C R 113 542) As above (Rousse ,

Ferric oxyfluoride, 3Fe<sub>2</sub>O<sub>3</sub>, 2FeF<sub>3</sub>+4H<sub>2</sub>O Ppt (Scheurer-Kestner)

Ferric oxysulphide, Fe<sub>2</sub>O<sub>3</sub>, 3Fe<sub>2</sub>S<sub>3</sub> (Rammelsberg)

Iron phosphide, FeP

Very slowly (Freese), not (Hvoslef, A 1 99) sol in hot HCl+Aq Still more insol dil H<sub>2</sub>SO<sub>4</sub>+Aq (Freese) Slowly sol in HNO<sub>3</sub>+Aq, and easily c

ın aqua regia (Struve)

Insol in ammonum citrate+Aq, sl s ın HCl (Dennis, J Am Chem Soc 18) **16** 483)

Fe<sub>2</sub>P Slowly but completely sol in He or dil H2SO4+Aq Sol in hot conc H2SO in HNO3, and in aqua regia (Freese, Po **132** 225)

Insol in all acids except in a mixture HNO<sub>3</sub> and HF (Maronneau, C R 190 130 657)

Fe<sub>3</sub>P<sub>4</sub> Very slowly sol in hot conc HCl 01 g dissolves by 4 days' heating w HCl+Aq, 03 g dissolves in hot conc H<sub>2</sub>S in  $1\frac{1}{2}$  hours, 0.4 g in 2 hours in  $HNO_3 + A$ Quite easily sol in aqua regia on warmii (Freese)

Insol in HCl, HNO3 and aq i

(Granger, Bull Soc 1896, (3) 15 tion 1086)

 $Fe_4P_3$ Very slowly sol in boiling HCl+ Easily sol in HNO3 or aqua regia (Struve, J B 1860 77)

Mixture (Freese, Pogg 132 225)

Almost insol in aqua regia Sol in fused

Fe<sub>3</sub>P Ness-1 Nearly insol in dil acids, rapidly sol in HNO<sub>3</sub> or aqua regia, decomp by conc HCl, or KOH+Aq (Schneider, J B 1886 2026)

Of the nine iron phosphides described the constitution has been established for only two, Fe<sub>3</sub>P and Fe<sub>2</sub>P

Sol in conc HCl  $Fe_sP$ 

 $Fe_2P$ Sol in hot aqua regia Insol in other acids (Le Chatelier, C R 1909, 149

#### Iron selenide, Fe<sub>2</sub>Se

Not attacked by HNO<sub>3</sub> or acetic acid attacked by conc HCl Readily attacked Sol in HF by aqua regia (Vigouroux, R 1905, 141 829)

 $FeSe + xH_2O$ Sol in HCl, HNO<sub>3</sub>, or  $HC_2H_3O_2+Aq$  Insol in alkalies, or  $(NH_4)_2S$ +Aq (Reeb, J Pharm (4) 9 173)

Fe<sub>2</sub>Se<sub>3</sub> Sol in dil HCl, or HNO<sub>3</sub>+Aq with evolution of H Se Sol in conc HNO<sub>3</sub>+Aq (Little, A 112 211)

Fe<sub>3</sub>Se<sub>4</sub> Decomp by fuming HNO<sub>3</sub> (Fonzes-Diacon, C R 1900, **130** 1711)

Fe<sub>7</sub>Se<sub>8</sub> Decomp by fuming HNO<sub>3</sub> (Fonzes-Diacon, C R 1900, **130** 1711) FeSe<sub>2</sub> Insol in conc HCl, decomp by

fuming HNO<sub>3</sub> (Fonzes-Diacon, C R 1900, **130** 1711)

#### Iron silicide, Fe<sub>4</sub>Si

Difficultly sol in HCl+Aq, easily sol even in dil HF+Aq (Hahn, A 129 57)

Not easily sol in cone HCl and HNO<sub>3</sub> but readily sol in HF (Moissan, C R 1595, **121** 623)

I c 10 S 19 Sol in hot HCl+Aq only when (Hahn)

by cone HI or H<sub>2</sub>SO<sub>4</sub> (Hihn)

Sol in cold HF (de Chalmot, Am Ch J 1897, **19** 123)

Existence questioned by Jouve, (Bull Soc 1901, **25** 290-293)

February Sof in HF and in fused KNO3 and KNaCO: (de Chalmot, J Am Chem Soc 1895, 17 924)

#### Iron semisulphide, Fe28

Sol in dil acids with decomposition vedson, Pogg 1 72)

#### Ferrous sulphide, FeS

Decomp by dil acids, with evolution of H<sub>2</sub>S and without separation of S, except with HNO<sub>3</sub>+Aq

Sl sol in H<sub>2</sub>O, especially if hot  $+x\mathrm{H}_2\mathrm{O}$ (Berzelius)

1 l H<sub>2</sub>O dissolves 70 l x 10-6 moles FeS at 18° (Weigel, Z phys Ch 1907, 58 294)

Very violently decomp, even by dil acids Sol in H<sub>2</sub>SO<sub>3</sub>+Aq Insol in H<sub>2</sub>S, or (NH<sub>4</sub>)<sub>2</sub>S +Aq Sl sol in Na<sub>2</sub>S, or K<sub>2</sub>S+Aq Sol in Na<sub>2</sub>S or K<sub>2</sub>S +Aq (de Koninck, Z angew Ch 1891 204)

Insol in NH<sub>4</sub>NO<sub>3</sub>, or NH<sub>4</sub>Cl+Aq (Brett) Not completely pptd in presence of Na citrate (Spiller)

Contrary to assertion of Persoz, it can be nearly completely pptd in presence of  $Na_4P_2O_7$  by  $(NH_4)_2S+Aq$  (Rose, Pogg 76 18)

Sol in alkalı sulpho-molybdates, -tungstates, -vanadates, -arsenates, -antimonates, and -stannates (Storch, B 16 2015)

Sol in KCN+Aq Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, 20 828) Insol in methyl acetate (Naumann, B 1909, **42** 3790)

Solubility of FeS in sugar solutions sugar of given strength dissolves mg FeS

| % Sugar        | mg FeS            |                    |                   |
|----------------|-------------------|--------------------|-------------------|
| 70 Sugar       | at 1" 5°          | at 45              | at 75°            |
| 10<br>30<br>50 | 3 8<br>7 1<br>9 9 | 3 8<br>9 1<br>19 8 | 5 3<br>7 2<br>9 1 |

(Stolle, Z Ver Zuckerind 1900, 50 300)

Colloidal —A very dilute solution has been obtained which coagulated very readily (Winssinger, Bull Soc (2) 49 452)

#### Ferric sulphide, Fe<sub>2</sub>S<sub>3</sub>

Decomp by dil HCl, or H2SO4+Aq with evolution of H2S, Ic wing a residue of FeS2

+1½H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq, also in alcoholic ammonia SI sol in (NH<sub>4</sub>)<sub>2</sub>S+very dil Na S<sub>2</sub>O<sub>4</sub>+Aq (Phipson, C N **30** 139)

#### Iron disulphide, Ics

Insol in dil HCl, or H SO<sub>3</sub>+Aq Decomp by HNO3 or aqualogus with separation of S Insol in a 10% solution of ilkali sulphide

Min Pyrite Marcasile Sol in a mixture of Na S and NaOH+Aq Na S+Aq, or mixture of Na<sub>2</sub>S and NaSH+Aq, insol in cold NaSH+Aq Maic site is more easily sol in above than pyrite (Becker, Sill Am J (3) **33** 199)

#### Ferroferric sulphide, Fe<sub>8</sub>S<sub>9</sub> or Fe<sub>7</sub>S<sub>8</sub>

Min Pyrrhotile Sol in dil icids with a residue of S Lytremely slowly sol in a 10% solution of alkali sulphides (Terreil, C R **69** 1360)

Iron (ferrous) nickel sulphide, 2FeS, NiS Min Pentlandite

Ferrous phosphorus sulphide, FeS, P<sub>2</sub>S

(Berzelius)
2FeS, P<sub>2</sub>S<sub>3</sub> Slowly decomp by H<sub>2</sub>O Insol in boiling HCl+Aq, decomp by aquaregia (Berzelius, A 46 256)

Iron potassium sulphide (potassium sulphoferrite),  $K_2Fe_2S_4=K_2S$ ,  $Fe_2S_3$ 

Insol in cold or hot H<sub>2</sub>O Violently attacked by dil acids Not decomp by boiling with alkalies, alkali carbonates, or sulphides+Aq Decomp by KCN, or Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Preis, J pr 107 16)

K<sub>2</sub>S, 2FeS (Schneider, Pogg 136 460)

N<sub>2</sub>5, 21 e5 (Schneider, Fogg 130 400)

Iron silver sulphide (silver sulphoferrite),  $\mathrm{Ag_2S},\ \mathrm{Fe_2S_3}$ 

Not attacked by dil HCl+Aq, decomp by conc HCl+Aq (Schneider) 2Ag<sub>2</sub>S, FeS<sub>2</sub> (Schneider, Pogg 138 305) Ag<sub>2</sub>S, 3FeS, FeS<sub>2</sub> Min Sternbergte Decomp by aqua regia

Iron sodium sulphide (sodium sulphoferrite),  $Na_2Fe_2S_4+4H_2O$ 

Insol in  $H_0O$  Decomp by very dil acids (Schneider, Pogg 138 302)

ophosphide, Fe<sub>2</sub>PS<sub>3</sub>

J by acids at 100° Decomp by boiling NaOH+Aq (Ferrand, A ch 1899, (7) 17 410)

Ferrous telluride, FeTe

Insol in  $H_2O$ , sol in acids (Fabre, C R 105 277)

### Kermes

See Antimony trisulphide

"Knallplatin" compounds
See Fulminoplatinum compounds

# Krypton, Kr

Absorption by H2O at to

| t° | Coefficient of absorption det by two series of experiment |        |  |
|----|-----------------------------------------------------------|--------|--|
| 0  | 0 1249                                                    | 0 1166 |  |
| 10 | 0 0965                                                    | 0 0877 |  |
| 20 | 0 0788                                                    | 0 0670 |  |
| 30 | 0 0762                                                    | 0 0597 |  |
| 40 | 0 0740                                                    | 0 0561 |  |
| 50 | 0 0823                                                    | 0 0610 |  |

Lanthanic acid

Barium metalanthanate, Ba(H<sub>9</sub>La<sub>5</sub>O<sub>15</sub>)<sub>2</sub> (Baskerville, J Am Chem Soc 1904, **2** 79)

Lithium metalanthanate, LiH<sub>0</sub>La<sub>5</sub>O<sub>15</sub>+2H<sub>2</sub>( (Baskerville)

Potassium metalanthanate, KH<sub>9</sub>La<sub>5</sub>O<sub>15</sub> 15H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Baskerville)

Sodium metalanthanate, NaH<sub>9</sub>La<sub>5</sub>O<sub>15</sub>+ 4H<sub>2</sub>O

Almost msol in H<sub>2</sub>O, but decomp by i (Baskerville)

Disodium tetralanthanate, Na<sub>2</sub>La<sub>4</sub>O<sub>7</sub> Insol in H<sub>2</sub>O (Baskerville)

### Lanthanicotungstic acid

Ammonium lanthanicotungstate, 2(NH<sub>4</sub>)<sub>2</sub>O, La<sub>2</sub>O<sub>3</sub>, 16WO<sub>3</sub>+16H<sub>2</sub>O

Ppt Insol in H<sub>2</sub>O (E F Smith, J Arr Chem Soc 1904, **26** 1481)

Barium lanthanicotungstate, 5BaO, La O<sub>3</sub>, 16WO<sub>3</sub>+16H<sub>2</sub>O Ppt (E F Smith)

Silver lanthanicotungstate, 5Ag<sub>2</sub>O, La<sub>2</sub>O<sub>3</sub>, 16WO<sub>3</sub>+4H<sub>2</sub>O Very insol in H<sub>2</sub>O (E F Smith)

# Lanthanum, La

Slowly decomp cold, rapidly hot H O Norattacked by cold conc H<sub>2</sub>SO<sub>4</sub>, but energet really by cold conc HNO<sub>3</sub>+Aq Sol in dil acids (Hillebrand and Norton, Pogg 155 633)

Lanthanum bromide, LaBr<sub>3</sub>+7H ()

Easily sol in H<sub>2</sub>O Not very sol in ib solute alcohol Insol in ether (Cleve, Sv V A H Bih **2** No 7)

Lanthanum nickel bromide,  $2LaBr_3$ ,  $3NiBi + 18H_2O$ 

Deliquescent (Frenchs and Smith, A 191 355)

Lanthanum zinc bromide, 2I  $aBr_{\text{3}},\ 3ZnBr+36H_{\text{2}O}$ 

Very deliquescent (F and S)

Lanthanum carbide, LaC<sub>2</sub>

Decomp by  $H_2O$  and dil acids (Pettersson, B 1895, 28 2422)

Sol in cone H<sub>2</sub>SO<sub>4</sub> and dil acids, insol in

(Antropoff, Roy Soc Proc 1910, 83 A 480) | conc HNO3

Sol in fused oxidizing agents, decomp by H<sub>2</sub>O at ordinary temps (Moissan, C 1896, 123 149)

Lanthanum chloride, LaCl<sub>3</sub>

AnhydrousDeliquescent (Hermann) Insol in acetone (Naumann, B 1904, 37 329)

+7½H<sub>2</sub>O Not deliquescent (Zschiesche) Easily sol in alcohol (Hermann)

Lanthanum mercuric chloride, 2LaCl<sub>3</sub>, HgCl<sub>2</sub>  $+8/_3H_2O$ 

Not deliquescent Very sol in H<sub>2</sub>O (Marignac, Ann Min (5) 15 272)

Lanthanum stannıc chloride

See Chlorostannate, lanthanum

Lanthanum fluoride, LaF<sub>3</sub>+-H<sub>2</sub>O

Precipitate SI sol in HCl+Aq (Cleve)

Lanthanum hydrogen fluoride, 2LaF<sub>3</sub>, 3HF Precipitate (Frenchs and Smith, A 191 355)

Does not exist (Cleve, B 11 910)

Lanthanum hydride, La<sub>2</sub>H<sub>3</sub>

Decomp by dil acids (Winkler, B 24 1966)

LaH<sub>3</sub> Decomp by H<sub>2</sub>O Sol in acids with evolution of H2 Decomp by alkalis (Muthmann, A 1902, 325 266)

Lanthanum hydroxide, La<sub>2</sub>O<sub>6</sub>H<sub>6</sub>

Insol in HO, easily sol in acids, insol in KOH, or NaOH+Aq

(Baskerville, J Am Sol in citric acid Chem Soc 1904, 26 49)

Lanthanum zinc iodide, 2LaI<sub>3</sub>, 3ZnI<sub>2</sub>+27H<sub>2</sub>O Very sol in H2O (Frenchs and Smith, A **191** 358)

Lanthanum nitride, LaN

Decomp by H2O with evolution of NH3 Sol in mineral reids Decomp by alkali (Muthmann, A 1902, 325 275)

Lanthanum oxide, L12();

It isily sol, even when ignited, in mineral, and actic aids (Hermann)

Sol in boiling cone NII4Cl+Aq (Mos-

inder) Sol in cold cone NH4NO3+Aq (Damour and Deville

Insol in (NH<sub>4</sub>) CO<sub>3</sub>+Aq (Mosander) Insol in action (Naumann, B 1904, 37 4329)

Lanthanum peroxide, I a4O0

Sol in HCl, H2SO4, HNO3, and HC2H3O2+ Aq with decomp (Cleve, Bull Soc (2) 43 359)

Sol in dil Unstable  $I \cup O_5 + x I I_2()$ (Melikoff, Z H SO<sub>4</sub>+Aq with decomp inorg 1899, 21 71)

Lanthanum oxybromide, LaOBr (Frerichs and Smith)

Lanthanum oxychloride, 3La<sub>2</sub>O<sub>3</sub>, 2LaCl<sub>3</sub>

Insol in H<sub>2</sub>O Difficultly and slowly sol in HCl, or HNO₃+Aq (Hermann)
LaOCl Boiling H.O dissolves only traces

(Frenchs and Smith)

Lanthanum sulphide, La<sub>2</sub>S<sub>3</sub>

Decomp by H<sub>0</sub>O and acids (Didier)

Lanthanum disulphide, LaS<sub>2</sub>

Decomp by heat (Biltz, Z anorg 1911, 71 435)

Lead, Pb

Lead in contact with HO and air free from CO2 gives a solution of PbO which turns litmus blue and turmenc red and is turned brown with H2S

H<sub>2</sub>O when conducted though a lead pipe 150 feet

no CO when conducted though a lead pipe 150 feet long dissolves so much lead that it turns brown with H<sub>2</sub>S (Yorke Phil Mag J 5 82) CO<sub>2</sub> or small amts of salts prevent the solution of Pb 1 vol HO with ¾ vol CO dissolves only a trace of Pb Spring H<sub>2</sub>O containing in 10 pounds 1 21 grains NaCl and CaCl and 6 4 grains CaCO<sub>3</sub> dissolved in CO<sub>2</sub> does not dissolve lead (Yorke)

If the amt of salts in solution equals \$\frac{1}{2400}\$ the amt of H<sub>2</sub>O and especially if they are carbonates very slight amts of Pb are dissolved (Christison Phil Mag J 21 158)

21 158)
CaCO<sub>3</sub> dissolved in CO<sub>2</sub> water decreases the solu

CaCO<sub>3</sub> dissolved in CO<sub>2</sub> water decreases the some bility of Pb more than any other salt Distilled H O quietly standing in a closed flash with lead and air free from CO deposits white flocks of PbO<sub>2</sub>H<sub>2</sub> and dissolves 70 deposits white flocks of an alkaline reaction (v. Bonsdorff Pogg 41 305) Water of 3 hardness does not take up enough Pb to become company (Clarke IR 1816, 608)

become injurious (Clarke J B 1856 608)
Soluble carbonates increase the solubility of Pb in HO (Nevins C C 1851 608) especially (NH4) CO2.

(Bottger)

(Horsford Chem Gaz 1849 247)
HO containing K SO: takes up only a trace of Pb
(Wetzlar Schw J 54 324)

Presence of sulphates diminishes (Christison) does not diminish (Graham Miller and Hoffmann) the action of H O on Pb

CaSO<sub>4</sub> protects Pb but it is attacked by much [gSO<sub>4</sub> (Nevins)

MgSO<sub>1</sub> (Nevins)
NaCl+Aq dissolves only a trace of Pb
NaCl+Aq dissolves only a trace of Pb
n H O is not sufficient to prearts pt
in H O Cl in in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl in Cl Presence of chlorides increases the cul lity ham Miller and Hoffmann (evins)

HO containing KNOs does not corrode Pb Nitrates hinder the action of HO ( Bonsdorff) Nitrates increase the action of HO (Graham Miller and Hoffman) Nitrates have no influence (Kersting)

10 lbs of H O dissolved the following amts from Pb pipes in 24 hours if distilled H2O+ 1% Na2CO3, 038 grain Pb, if Duna water, 0 19 grain Pb, if canal water, 0 15 grain Pb, if distilled H<sub>2</sub>O+1% NH<sub>4</sub>NO<sub>3</sub>, 0 15 grain Pb, if hard well water, 0 04 grain Pb, if distilled H<sub>2</sub>O+1% KNO<sub>3</sub>, 0 01 grain Pb (Kersting, Dingl 169 183)

2001 Manchester drinking water dissolved 2094 g from 1 sq metre Pb in 8 weeks, 91 well water dissolved 1 477 g from 1 sq metre Pb in 8 weeks, 11 l distilled H<sub>2</sub>O containing are dissolved 110 003 g from 1 sq metre Pb in 8 weeks, distilled H<sub>2</sub>O free from air dissolved 1829 g from 1 sq metre Pb in 8 weeks, sea water dissolved 0 038 g from 1 sq metre Pb in 8 weeks (Calvert and Johnson, C N 16 171)

A lead pipe taken up in Paris, which had been exposed to action of ordinary H<sub>2</sub>O for 200 years, was found perfectly smooth and uncorroded (Belgrand, C R 77 1055) Pb is attacked by all waters, hard or soft,

even highly calcareous water dissolves some lead (Mayençon and Bergeret, C R 78 484)

Pure distilled H<sub>2</sub>O does not act on Pb, but extremely small quantities of NH3, HNO3, etc cause an action, but for this action on Pb the presence of air and CO<sub>2</sub> is also required (Stallman, Dingl 180 366)

100 ccm distilled H<sub>2</sub>O dissolved 3 mg from 118 sq cm lead in one week when air without CO2 was passed through the solution 8 mg were dissolved when the air contained

CO<sub>2</sub> (Wagner, Dingl 221 260) Action of dil salt solutions on lead In 500 ccm of the solutions containing salt, bright sheets of lead of 5600 sq metres' surface were so suspended that the liquid reached all parts of the metal without hindrance, and the amts dissolved determined after 24, 48, and 72

hours of action

| Salt                                                                                                                           | Grammes<br>salt per                                                            | Dissolved Pb<br>per litre                     |                                                   |                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|----------------------------------------------------------|--|
|                                                                                                                                | litre                                                                          | after 24                                      | 48                                                | 72 hrs                                                   |  |
| NH <sub>4</sub> NO <sub>3</sub>                                                                                                | 0 020<br>0 040                                                                 | 13 0<br>15 0                                  |                                                   | 25<br>32                                                 |  |
| ∫ KNO₃+                                                                                                                        | $ \begin{bmatrix} 0 & 080 \\ 0 & 020 \\ 0 & 050 \end{bmatrix} $                | 15 0<br>2 0                                   | 2 0                                               | !                                                        |  |
| $\begin{array}{l} \operatorname{NaNO_3} \\ \operatorname{KNO_3} + \\ \operatorname{Na_2SO_4} \end{array}$                      | $\left\{ \begin{array}{ccc} 0 & 050 \\ 0 & 040 \\ 0 & 212 \end{array} \right.$ | 0.8                                           | 1 0                                               |                                                          |  |
| KNO <sub>3</sub> +<br>K <sub>2</sub> CO <sub>3</sub>                                                                           | 0 045                                                                          | 0.8                                           |                                                   | 0 3                                                      |  |
| KNO <sub>3</sub> +<br>K <sub>2</sub> SO <sub>4</sub>                                                                           | 0 070                                                                          |                                               |                                                   | 0 5                                                      |  |
| CaSO <sub>4</sub>                                                                                                              | 0 252<br>0 408                                                                 | $\begin{array}{c} 0 \ 4 \\ 0 \ 4 \end{array}$ | 1 0                                               | 0 8                                                      |  |
| $K_2CO_3$                                                                                                                      | 0 310<br>0 516                                                                 |                                               |                                                   | $\begin{array}{c c} 0 & 2 \\ 0 & 2 \\ 0 & 5 \end{array}$ |  |
| CaCl <sub>2</sub>                                                                                                              | 0 250<br>0 510                                                                 | $\begin{array}{c} 0.5 \\ 0.3 \end{array}$     | 0 5                                               | 0 4                                                      |  |
| Na <sub>2</sub> SO <sub>4</sub>                                                                                                | 0 200                                                                          |                                               |                                                   | 0 8<br>0 5                                               |  |
| $\left\{ egin{array}{l} \mathrm{NH_4NO_3} + \\ \mathrm{CaCl_2} \\ \mathrm{NH_4NO_3} + \end{array} \right.$                     | 0 020<br>0 060<br>0 020                                                        |                                               |                                                   | 18                                                       |  |
| $\begin{cases} K_2CO_3 + \\ Na_2SO_4 \end{cases}$                                                                              | $\left\{ \begin{array}{c} 0.020 \\ 0.100 \\ 0.200 \end{array} \right.$         |                                               |                                                   | 0 4                                                      |  |
| $\left\{ egin{array}{l} \mathrm{Na}_{2}\mathrm{SO}_{4}+\ \mathrm{K}_{2}\mathrm{CO}_{3}+\ \mathrm{CaCl}_{2} \end{array}  ight.$ | 0 200<br>0 040<br>0 100                                                        |                                               |                                                   | 0 1                                                      |  |
| Water from L<br>Distilled water                                                                                                | Katrine                                                                        | $\begin{array}{c} 1 \ 0 \\ 2 \ 0 \end{array}$ | $\begin{array}{ c c } 1 & 0 \\ 2 & 0 \end{array}$ | 1 5<br>3 0                                               |  |

(Mur, C N 25 294)

Action of salt solutions on 118 sq. cm. Pb in one week while air either with or without CO<sub>2</sub> was passed through the solution

Solubility of Pb in salt solutions

100 ccm solutions containing the given amts salts dissolve Pb in mg

| G-14                                                                                                                                                                                       | g salt ın                                                            | mg Pb dissolved                                    |                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|--------------------------------|--|
| Salt                                                                                                                                                                                       | 100 ccm                                                              | without CO2                                        | with CO                        |  |
| KCl<br>NaCl<br>NH <sub>4</sub> Cl<br>MgCl <sub>2</sub><br>K <sub>2</sub> SO <sub>4</sub><br>KNO <sub>3</sub><br>Na <sub>2</sub> CO <sub>3</sub><br>NaOH<br>CaO <sub>2</sub> H <sub>2</sub> | 0 5<br>0 5<br>1 0<br>0 83<br>1 0<br>1 0<br>1 0<br>0 923<br>Saturated | 21<br>21<br>12<br>20<br>0<br>14<br>0<br>430<br>137 | 12<br>12<br>5<br>35<br>0<br>20 |  |

(Wagner, Dingl 221 260)

Solubility of Pb in salt solutions 25 sq cm were acted upon by a solution

containing 0 2 g salt in a litre for 21 days Three series of experiments were carried on I In corked flasks II In beakers covered with porous paper, diameter of mouth of beaker = 11 5 cm III In basins covered with porous paper, diameter of mouth of basin = 145 cm IV In corked flasks with constant current of air V In beakers half filled and covered with porous paper, the lead being suspended so that equal amts of surface were above and beneath the liquid

The amts in mgs of Pb dissolved were as follows ---

| Salt used                                                                                                                                                                              | I                                      | II                                     | III                                      | IV                              | V                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|---------------------------------|-------------------|
| NH <sub>4</sub> NO <sub>3</sub><br>KNO <sub>3</sub><br>CaCl <sub>2</sub><br>(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub><br>K <sub>2</sub> CO <sub>3</sub><br>Dist H <sub>4</sub> O | 1 8<br>1 6<br>3 0<br>0 7<br>0 3<br>1 5 | 4 0<br>0 5<br>2 8<br>1 3<br>0 3<br>0 8 | 16 0<br>6 0<br>5 5<br>16 0<br>0 7<br>4 2 | 1 5<br>3 5<br>5 0<br>0 6<br>2 0 | 3 5<br>2 5<br>0 3 |

(Muir, Chem Soc **36** 660)

H<sub>2</sub>O sat with CO dissolves 0.012 g. Pb to a litro in 3 days (Murus, C R 77 1529)

Action of H O charged with CO under 760 mm pressure on Pb 3 mg of Pb were dis solved per litre in 24 hours, and the unit was not increased by further action. The addition of 100 mg K2CO3+20 mg NH4NO3 to 1 litro prevented all action

Action of H<sub>2</sub>O charged with CO under 6

atmos pressure on Pb

14.8 mg were dissolved per l in 24 hours, and 24 mg per l in 48 hours Action of various salt solutions added to

above solution of CO were as follows -

441

|                                                                                                                                                                                           | na solt                      | mg Pb dissolved                     |                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-------------------------------------|--|
|                                                                                                                                                                                           | mg salt<br>per l             | after<br>24 hrs                     | after<br>48 hrs                     |  |
| K <sub>2</sub> CO <sub>3</sub><br>K <sub>2</sub> CO <sub>3</sub><br>CaCl <sub>2</sub><br>NH <sub>4</sub> NO <sub>3</sub><br>NH <sub>4</sub> NO <sub>3</sub><br>Distilled H <sub>2</sub> O | 80<br>160<br>160<br>16<br>40 | 13 2<br>32 0<br>5 0<br>10 0<br>14 8 | 32 0<br>6 0<br>44 0<br>35 0<br>24 0 |  |

(Muir, C N 33 125)

The corrosion of Pb by ordinary distilled H<sub>2</sub>O depends upon the presence of CO<sub>2</sub> and O If the dissolved CO<sub>2</sub> is double the amt of the dissolved O, the action is most energetic When CO<sub>2</sub> is wholly absent and O present, the action is very slight, and when the H<sub>2</sub>O contains 1½ or more vol % CO<sub>2</sub> with normal amt of oxygen, there is no visible corrosion Pure distilled H O containing neither O nor CO<sub>2</sub> has no action on Pb In the above cases the greater part of the Pb remains in the form of a white ppt or crust on the Pb, but in the case where O and CO2 are both present in the ratio of 1 2, very small amts of Pb go into solution in a few days, the amt, however, diminishes on standing. As the amt of CO<sub>2</sub> increases, the amt of Pb dissolved in the H<sub>2</sub>O also increases

NH<sub>4</sub>OH alone does not protect Pb from corrosion, but when in combination with CO<sub>2</sub>

the action is much diminished

CaO<sub>2</sub>H<sub>2</sub>, and NaOH+Aq attack Pb much more actively in absence of CO and presence of air In absence of dissolved O neither CaO<sub>2</sub>H<sub>2</sub> nor NaOH attacks Pb

 $Na_2CO_3+Aq$  in absence of  $CO_2$  attacks Pb slightly, but  $NaHCO_3+Aq$  has not the slight-

est action

 $CaH_2(CO_3)_2+Aq$  also has not the slightest action on Pb, and the presence of  $CaCO_3$  and CO wholly prevents  $H_2O$  attacking Pb

CaSO<sub>4</sub>+Aq in presence of air forms a crust on Pb, but no Pb is found in solution, but if air is excluded there is no visible action Presence of CO<sub>2</sub> causes a strong corrosive action

HO contuning CaSO<sub>4</sub> and CaH<sub>2</sub>(CO<sub>3</sub>)

does not ittick Pb

The above reactions are not in the least altered by the presence of moderate amts of nitrates, chlorides, or ammonium, or organic compounds, but ammonium salts in excess have a strong solvent action on Pb (Muller, J pr (2) 36 317)

See also an extended report of the action of H<sub>2</sub>O on Pb mude to the Water Committee of Huddersheld, lengland, in 1886, by Messrs

Crookes, Odling, and Lidy

Very extended researches are published by Cornelley and Frew (Jour Soc Chem Ind 7 15), of which only the general conclusions can be given here

The action of slaked lime, limestone, sand calcium silicate, mortar, etc , was tested The

results were as follows -

1 In nearly all cases the corrosion is greater with free exposure to the air than when air is excluded. The difference is especially great in those cases where the greatest action on the lead takes place. Aluminum hydroxide and blue clay form exceptions, and exert a greater corrosive action when air is excluded. In the case of CaCO<sub>3</sub>, old mortar, CaSiO<sub>3</sub>, or a mixture of CaCO<sub>3</sub> and CaO<sub>2</sub>H<sub>2</sub>, the exclusion or presence of air makes no appreciable difference.

KNO<sub>3</sub>+Aq shows a peculiar behaviour In the presence of air it acts nearly as much on the Pb as pure H<sub>2</sub>O, but when air is excluded it exerts nearly as much retarding action as

CaSiO

2 In the presence of air the action of H<sub>2</sub>O on Pb is considerably increased by the presence of NH<sub>4</sub>NO<sub>3</sub> or CaO<sub>2</sub>H<sub>4</sub>, with exclusion of air, by CaSO<sub>4</sub>, also by a mixture of CaO<sub>2</sub>H<sub>2</sub> and sand All the other investigated substances, even KNO<sub>3</sub>, hinder the action of H<sub>2</sub>O on Pb either with or without exclusion of air

3 CaO<sub>2</sub>H<sub>2</sub>+Aq exerts in all cases a much greater corrosive action than pure H O, and although this action is diminished by sand yet fresh mortar very quickly destroys lead pipes when in contact therewith Old mortar, on the other hand, and also CaSiO<sub>3</sub> and

CaCO<sub>3</sub>, have a protective action

4 The fact is very important that sand, CaCO<sub>3</sub>, old mortar, CaSiO<sub>3</sub>, and a mixture of sand and CaCO<sub>3</sub> afford considerable protection to lead against H<sub>2</sub>O A mixture of limestone and sandstone has more effect than the

two substances separately

5 CaSiO<sub>3</sub> totally prevents the corrosive action of KNO<sub>3</sub> and NH<sub>4</sub>NO<sub>3</sub>, so that the lead is not attacked by solutions of those salts any more than by H<sub>2</sub>O containing CaSiO<sub>3</sub> alone Sand, and a mixture of sand and CaCO<sub>3</sub> have a similar effect, but not to such a degree

6 The protective influence of CaCO<sub>3</sub> does not appear to depend on the presence of CO<sub>2</sub>

and the formation of CaH<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub>

7 MgCO<sub>3</sub> prevents the corrosion of Pb as much is CaSiO<sub>3</sub> (Carnelley and Frew, Jour

Soc Chem Ind 7 15)

Pb in contact with Zn or I e is protected thereby from the solvent action of HO, and in fut the action is nearly null. Sn, on the other hand, increases the action. This is of importance in regard to the use of tin-coated lead pipes.

The presence of  $C_1$  sults does not influence the action of the  $H_2O$  on Pb, haid or soft H O provided it contains  $CO_2$  having 1 strong corrosive action Removal of air from  $H_2O$  diminishes the solvent action Simple filtration will remove all Pb from  $H_2O$  if suitable filters are used (Flogel, J B 1888

2645)

442 LEAD

Pure distilled H<sub>2</sub>O has strong corrosive action on Pb, which is very much weakened by addition of a solution of CaCO<sub>3</sub> in carbonic acid water, but the presence of sulphates in-Pb is not appreciably atcrease the action tacked by H<sub>2</sub>O in presence of chlorides alone, and Gucci, C C 1888 934)

but very strongly when CaSO<sub>4</sub> is also present H<sub>2</sub>O containing CO<sub>2</sub> also corrodes Pb conclusion was drawn that the absence of action of  $H_2O$  on Pb in lead pipes is due to the presence of traces of  $CaH_2(CO_3)_2$  (Barbaglia

### Solubility in H<sub>2</sub>O containing various solids in solution

| Water used                                                                                                                                                                                                     |      | Pts of lead per 100 000 |      |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------|------|------|--|
|                                                                                                                                                                                                                |      | 2                       | 3    | 4    |  |
| Water alone, unfiltered Water alone, filtered Water containing 0 049 g NaCl per 1, unfiltered """ filtered Water containing 0 49 g Na <sub>2</sub> SO <sub>4</sub> per 1, unfiltered """ filtered """ filtered | 8 19 | 12 98                   | 8 19 | 4 09 |  |
|                                                                                                                                                                                                                | 3 00 | 4 09                    | 2 07 | 2 32 |  |
|                                                                                                                                                                                                                | 1 36 | 2 73                    | 0 68 | 4 04 |  |
|                                                                                                                                                                                                                | 0 68 | 1 50                    | 0 67 | 1 36 |  |
|                                                                                                                                                                                                                | 3 41 | 6 83                    | 2 05 | 1 84 |  |
|                                                                                                                                                                                                                | 2 05 | 3 41                    | 1 64 | 1 77 |  |
| CaHCO <sub>3</sub> +Aq containing 0 04 g CaO as carbonate per l                                                                                                                                                | 2 45 | 3 14                    | 2 63 | 5 70 |  |
| CaHCO <sub>3</sub> +Aq with NaCl                                                                                                                                                                               | 2 05 | 3 41                    | 2 35 | 3 40 |  |
| CaHCO <sub>3</sub> +Aq with Na·SO <sub>4</sub>                                                                                                                                                                 | 2 18 | 3 32                    | 2 05 | 3 16 |  |
| CaSO <sub>4</sub> +Aq containing 0 095 g CaO as sulphate per l                                                                                                                                                 | 6 83 | 6 83                    | 3 41 | 1 35 |  |
| CaSO <sub>4</sub> +Aq with NaCl                                                                                                                                                                                | 5 46 | 6 57                    | 3 51 | 1 50 |  |
| CaSO <sub>4</sub> +Aq with Na <sub>2</sub> SO <sub>4</sub>                                                                                                                                                     | 4 78 | 5 87                    | 3 69 | 1 77 |  |

Column 1 gives the numbers for distilled water free from air, column 2 for distilled water aerated by agitation with air, column 3 for water continuously aerated by passing 1 litre of air through it per hour, column 4 for distilled water through which 1 litre of air and 400 cc of CO2 were passed per hour throughout the experiment (Antony and Benelli, Gazz ch it 1896, 26, (2) 97 and 352)

Almost insol in cold HCl+Aq, and only sl attacked when boiling Completely sol in HNO<sub>3</sub>+Aq if not too conc, but presence of H<sub>2</sub>SO<sub>4</sub> or HCl diminishes the solvent power to a great extent (Rose)

Granulated Pb is sl sol in conc HCl+Aq, addition of PtCl<sub>4</sub> makes the action very energetic Dil HCl+Aq may also be used with PtCl, (Millon, C R 21 49)

HCI+Aq of 12 sp gr, with Pb, gives off H at ord temp, more abundantly when heated Evolution of H is hastened by place ing Cu in contact with the Pb (Stolba, J pr 94 113)

Quickly decomp by hot HCl+Aq, slowly by cold (Sharples, C N 50 126)

Scarcely acted upon by boiling conc HCl+

Sol in aqua regia

HNO<sub>3</sub>+Aq is the best solvent, but Pb is as good as insol in a mixture of HNO; and

H<sub>2</sub>SO<sub>4</sub> (Berzelius)

Not acted upon by very conc HNO<sub>4</sub>+Aq Pb is only sl attacked by HNO<sub>3</sub>+Aq of any strength below 15° Above 15° it is most rapidly attacked by a rather weak acid (Montemartini, Gazz ch it 22 397)
Action of H<sub>2</sub>SO<sub>4</sub> on Pb

H<sub>2</sub>SO<sub>4</sub> of 1 842 sp gr dissolves 201 g from 1 sq metre pure lead at ordinary temp (time?), and H<sub>2</sub>SO<sub>4</sub> of 1 705 sp gr dissolves only 59 g

solubility (Calvert and Johnson, Chem Soc (2) 1 66)

Strongly attacked by 99 8% H<sub>2</sub>SO<sub>4</sub> at ord temp with exclusion of air (Lunge, Dingl **261** 131 )

When 0.2 g pure Pb was heated with 50 ccm H<sub>2</sub>SO<sub>4</sub> of 66°B there was no appreciable action below 175° At 230-250° all the Pb was suddenly converted into PbSO<sub>4</sub>, which dissolved (Bauer, B **8** 210)

Lead is slowly attacked by pure cold conc  $H_2SO_4+Aq$  (99 78%  $H_2SO_4$ ) Lead vessels which held the H2SO4 were gradually destroyed by long standing (Napier and 1 itlock, C N 42 314)

H<sub>2</sub>SO<sub>4</sub>+Aq (20%) does not evolve H under the same circumstances (Stolba)

Sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq when in contact with

the an

Strong NH<sub>4</sub>OH+Aq does not dissolve litharge, but lead immersed in  $NH_4OH + Aq$ 3 days gives an ammonia solution 0 0139% lead (Endemann, Am Ch

1897, **19** 892) Somewhat sol in NaCl+Aq

Dingl 172 155)

NaCl+Aq attacks Pb at high temp (Lunge, lc)

KClO₃+Aq (63% Action of KClO<sub>3</sub> KClO<sub>3</sub>) oxidised 64 31 g Pb from 1 sq metre surface by boiling 7 hours, KClO<sub>3</sub>+Aq (25%) KClO<sub>3</sub>) oxidised 151 12 g under same condi-Slight impurities in the lead lessen this tions, and Ca(ClO<sub>3</sub>)<sub>2</sub>, CaCl<sub>2</sub>+Aq (20° Baume)

and Ca(ClO<sub>3</sub>)<sub>2</sub>, tions, CaCl<sub>2</sub>+Aq Baume), obtained by passing Cl<sub>2</sub> through CaO<sub>2</sub>H<sub>2</sub>+Aq, oxidised 437 70 g (Lunge and Deggeler, Jour Soc Chem Ind 4 31)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

1898, **20** 828)

Sol in a solution of K in liquid NH<sub>3</sub> (Kraus, J Am Chem Soc 1907, 29 1562) ½ ccm oleic acid dissolves 0 0592 g Pb in

6 days (Gates, J phys Chem 1911, 15 143)

Solubility of Pb in petroleum

If b -pt is under 230°, only slightest trace is dissolved in 4 months if  $230-300^\circ$ , 0.0026% in 4 months, if over  $300^\circ$ , 0.0244% in 4 months in 4 months, if over 300°, 0 0244% in 4

Solubility of Pb in commercial oil of turpentine and resin oil

|                                                           |                                                               | % Pb dissolved                                              |                                                             |  |  |
|-----------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--|--|
|                                                           | Temp                                                          | ın 8 days                                                   | ın 14 days                                                  |  |  |
| Fresh oil of<br>turpentine<br>Old oil of tur-             | 15–20°                                                        | sl trace                                                    | 0 0722                                                      |  |  |
| pentine                                                   | 15–20                                                         | 0 0522                                                      | 0 1435                                                      |  |  |
| Fresh oil of<br>turpentine<br>Old oil of tur-             | 100                                                           | 0 265                                                       | 0 715                                                       |  |  |
| pentine                                                   | 100                                                           | 0 982                                                       | 1 851                                                       |  |  |
| Fresh oil of<br>turpentine<br>Old oil of tur-             | 130–150                                                       | 0 938                                                       | 2 045                                                       |  |  |
| pentine Fresh resin oil Old " Fresh " Old " Fresh " Old " | 130–150<br>15–20<br>15–20<br>100<br>100<br>130–150<br>130–150 | 1 738<br>trace<br>0 073<br>0 380<br>1 190<br>1 050<br>2 208 | 4 083<br>0 024<br>0 185<br>0 880<br>2 711<br>2 065<br>4 740 |  |  |

(Fingler and Kneis, Dingl 263 193)

(Am Chem 4 289)

The fitty oils dissolve Pb in considerable amt (Mudlim, J B 1878 1169)

Not itticked by sugar + Aq (Klein and Beig, C R 102 1176)

### Lead potassium amide

See Potassium ammonoplumbite

Lead azoimide, basic, PhO, PhN<sub>6</sub>

Insol in H () (Wohler, B 1913, 46 2054)

#### Lead azoimide, PbNc

Insol in cold HO, much less sol in boiling H O than PbCl<sub>2</sub> 1 l H O dissolves about ½ g PbN<sub>c</sub> Fasily sol in warm HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Insol in conc NH<sub>4</sub>OH+Aq (Curtius, B 24 3344)

### Lead bromide, PbBr<sub>2</sub>

Sl sol in cold, more easily in hot H<sub>2</sub>O, or in H<sub>2</sub>O containing HCl, HNO<sub>3</sub>, or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Lowig

1 l H<sub>2</sub>O dissolves 6 g PbBr<sub>2</sub> at 10°, addition of HBr causes a ppt which redissolves on further addition of HBr 1000 pts of a liquid containing 720 pts HBr dissolve 550 g This solubility increases by heating PbBr₀

(Ditte, C R 92 718) 1 1  $H_2O$  dissolves 26 28 millimols PbBr<sub>2</sub> at 25 2° (von Ende, Z anorg 1901, **26** 159)

Solubility in 100 g H<sub>2</sub>O at t°

| t°                                                         | G PbBr <sub>2</sub>                                                                              |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 0<br>15<br>25<br>35<br>45<br>55<br>65<br>80<br>95<br>* 100 | 0 4554<br>0 7305<br>0 9744<br>1 3220<br>1 7457<br>2 1376<br>2 5736<br>3 3430<br>4 3613<br>4 7510 |
|                                                            |                                                                                                  |

\* By extrapolation (Lichty, J Am Chem Soc 1903, 25 474)

Sl sol in H<sub>2</sub>O

 $8.34 \times 10^{-1}$  gram are dissolved in 1 liter of sat solution at 20° (Bottger, Z phys ch 1903, **46** 603)

Solubility of PbBr<sub>2</sub> in HNO<sub>3</sub>+Aq at 25 2° S = solubility in millimols per litre

| HNO <sub>3</sub> normal                                                    | s                                |
|----------------------------------------------------------------------------|----------------------------------|
| 0 001<br>0 01<br>0 051<br>0 04 KNO <sub>3</sub> +<br>0 01 HNO <sub>4</sub> | 39 1f<br>39 87<br>42 56<br>42 77 |

(von I nde, Z anorg 1901, 26 162)

Slowly sol in cold, easily in warm NH<sub>4</sub>Cl,

or NII<sub>4</sub>NO<sub>3</sub>+Aq (Wittstein)

Not pptd in presence of Na citrate (Spiller) Insol in H<sub>2</sub>O containing Pb(NO<sub>3</sub>)<sub>2</sub> (von

Fnde, Z anorg 1901, **26** 159) Insol in benzene (Franchimont, B 16

387)

Moderately sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828)

Insol in benzonitrile (Naumann, B 1914, 47 1370)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acctate (Naumann, B 1910, **43** 314)

Difficultly sol in acetone (Naumann, B 1904, **37** 4328)

 $+3H_2O$  (Ditte, l c)

Lead hydrogen bromide, 5PbBr<sub>2</sub>, 2HBr+ 10H<sub>2</sub>O

Sol in HBr+Aq (Ditte, C R 92 718)

Lead magnesium bromide, PbBr<sub>2</sub>, 2MgBr<sub>2</sub>+ 16H<sub>2</sub>O

Decomp immediately Very deliquescent by H<sub>2</sub>O or alcohol (Otto and Drewes, Arch Pharm 229 585)

Lead potassium bromide (potassium bromoplumbite, PbBr<sub>2</sub>, KBr+H<sub>2</sub>O

(Remsen and Herty, Am Ch J 14 124) +-H<sub>2</sub>O (Wells, Sill Am J 145 129)

PbBr2, 2KBr Sol in a little H2O without decomp, but decomp by an excess with separation of PbBr<sub>2</sub> (Lowig)

+HO (Wells, Sill Am J 145 129) 2PbBr<sub>2</sub>, KBr (Wells)

Lead potassium perbromide, K<sub>3</sub>Pb<sub>2</sub>Br<sub>8</sub>+

Decomp by H<sub>2</sub>O and alcohol (Wells, Z anorg 4 340)

Lead rubidium bromide, PbBr<sub>2</sub>, 2RbBr+ ½H₂O

(Wells, Sill Am J **146** 34) ophRr RhBr (Wells)

### aide y n<sub>2</sub>O (Lowig)

chloride, PbBrCl = PbBr<sub>2</sub>, PbCl<sub>2</sub> Can be recrystallised from H<sub>2</sub>O without

decomp (Iles, C N 43 216)
3PbCl<sub>2</sub> PbBr<sub>2</sub> Sol in H<sub>2</sub>O with decomp Sol in HCl and in HBr Insol in cold alcohol, sl, sol in boiling alcohol (Thomas, C R 1899, 128 1235)

# Lead bromoiodide, PbBrI = PbBr2, PbI2

Decomp by H<sub>2</sub>O Cryst from a solution of PbI2 in HBr (Grissom and Thorp, Am Ch J 10 229)  $3PbBr_2, PbI_2$ Decomp by H<sub>2</sub>O (Thomas

C R 1899, 128 1236) 6PbBr<sub>2</sub>, PbI<sub>2</sub> (G and T)

# Lead bromosulphide, PbBr<sub>2</sub>, PbS

Properties as chlorosulphide (Parmentier)

Lead chloride, PbCl<sub>2</sub>

Slowly sol in 135 pts H<sub>2</sub>O at 12, and in a much smaller quantity of hot H<sub>2</sub>O (Bischof)
Sol in 30 pts cold and 22 pts hot H O (Wittstein)
Sol in 30 pts H<sub>2</sub>O at 18 70 (Abl) 100 pts H2O dissolve 4 59 pts PbCl2 at 1,5 Dict )

100 pts H<sub>2</sub>O dissolve 0 9712 pt PbCl<sub>2</sub> at 20° (Formánek, C C 1887 270)

100 pts  $H_2O$  dissolve 0.946 pt PbCl<sub>2</sub> at 17.7° (Bell, Chem Soc (2) 6 355) Sol in 105 2 pts H<sub>2</sub>O at 16 5° (Bell, C N **16** 69)

100 pts H<sub>2</sub>O dissolve 08 pt PbCl<sub>2</sub> at 0°, 1 18 pts at 20°, 1 7 pts at 40°, 2 1 pts at 55°, 3 1 pts at 80° (Ditte, C R 92 718) 1 1 H<sub>2</sub>O dissolves 38 80 millimols PbCl<sub>2</sub> at 25 2° (von Ende, Z anorg 1901, **26** 148)

9 61 x 10<sup>-1</sup> gram are dissolved in 1 liter of sat solution at 20° (Bottger, Z phys ch

1903, **46** 603)

Solubility in H<sub>2</sub>O 100 g H<sub>2</sub>O dissolve g PbCl<sub>2</sub> at t°

| t°                                                         | G PbCl <sub>2</sub>                                                                              |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 0<br>15<br>25<br>35<br>45<br>55<br>65<br>80<br>95<br>* 100 | 0 6728<br>0 9090<br>1 0842<br>1 3244<br>1 5673<br>1 8263<br>2 1265<br>2 6224<br>3 1654<br>3 3420 |
|                                                            |                                                                                                  |

\* By extrapolation

(Lichty, J Am Chem Soc 1903, 25 474)

33 6 millimols Pb are dissolved in 1 liter H<sub>2</sub>O at 18° (Pleissner, C C 1907, II 1056) 1 l H<sub>2</sub>O dissolves 77 76 milliequivalents PbCl<sub>2</sub> at 25° Sp gr of the solution 25°/4° = 1 0069 (Harkins and Winninghoff, J Am Chem Soc 1911, 33 1816)

0 0388 mol mg PbCl<sub>2</sub> are sol in 1 l H<sub>2</sub>O (Kernot and Pomilio, Soc R Napoli, 1912,

(3), XVII, 353)

A colloidal modification is sol in hot water to give cryst modification (Van de Veide, Ch Z 1893, 17 1908)

Solubility in H<sub>2</sub>O is not much increased by

the addition of acids (Fresenius)

Sol in cone HCl+Aq, from which it is pptd by H<sub>2</sub>O, but less sol in dil HCl+Aq than in H<sub>2</sub>O (Berzelius)

Sol in 1636 pts H<sub>2</sub>O containing HCl (Bischof)

Sat solution of PbCl2 in HCl+Aq of 1 116 sp gr contains 2 566% PbCl<sub>2</sub> at 16.5°

Solubility in HCl+Aq 100 pts liquid contuning pts HCl of 1 1162 sp gr in 100 pts H<sub>2</sub>O dissolve pts PbCl<sub>2</sub> at 17 7°

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                        |                       |                                           |                           |                                           |                      |                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------|---------------------------|-------------------------------------------|----------------------|----------------------------------|
| 2     0 201     9     0 096     60     0 559       3     0 165     10     0 093     70     0 933       4     0 145     15     0 090     80     1 498       5     0 131     20     0 111     90     2 117       6     0 107     30     0 151     100     2 900 |                       |                                           |                           |                                           |                      |                                  |
|                                                                                                                                                                                                                                                               | 2<br>3<br>4<br>5<br>6 | 0 201<br>0 165<br>0 145<br>0 131<br>0 107 | 9<br>10<br>15<br>20<br>30 | 0 096<br>0 093<br>0 090<br>0 111<br>0 151 | 60<br>70<br>80<br>90 | 0 559<br>0 933<br>1 498<br>2 117 |

(Bell, Chem Soc 21 350)

| Solubility | of | PbCl <sub>2</sub> | ın | HCI |
|------------|----|-------------------|----|-----|
|------------|----|-------------------|----|-----|

| Amt HCl<br>in 100 pts                              | Amount PbCl <sub>2</sub> dissolved in 1000 pts of liquid |                                                  |                                           |                                           |                                              |  |  |
|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|--|--|
| H₂Ó                                                | At 0°                                                    | At 20                                            | At 40                                     | At 55°                                    | At 80°                                       |  |  |
| 0 0<br>5 6<br>10 0<br>18 0<br>21 9<br>31 5<br>46 0 | 8 0<br>2 8<br>1 2<br>2 4<br>4 7<br>11 9<br>29 8          | 11 8<br>3 0<br>1 4<br>4 8<br>6 2<br>14 1<br>30 0 | 17 0<br>4 6<br>3 2<br>7 2<br>10 4<br>19 0 | 21 0<br>6 5<br>5 5<br>9 8<br>12 9<br>24 0 | 31 0<br>12 4<br>12 0<br>19 8<br>23 8<br>38 0 |  |  |

(Ditte, C R 92 718)

Solubility in HCl+Aq at 0°  $\frac{\text{PbCl}_2}{2} = \frac{1}{2} \text{mols}$ 

PbCl<sub>2</sub> in mgs in 10 ccm solution, HCl = mols HCl in ditto

| $\frac{\mathrm{PbCl_2}}{2}$ | HCl   | PbCl <sub>2</sub> | HCl   |
|-----------------------------|-------|-------------------|-------|
| 0 42                        | 0     | 0 072             | 5 8   |
| 0 22                        | 0 35  | 0 088             | 11 7  |
| 0 135                       | 0 675 | 0 100             | 29 5  |
| 0 11                        | 1 125 | 0 209             | 46 7  |
| 0 105                       | 1 6   | 0 95              | 73 5  |
| 0 099                       | 2 3   | 1 5               | 89 0  |
| 0 090                       | 3 4   | 1 9               | 96 0  |
| 0 08                        | 4 5   | 3 01              | 111 5 |

It is seen that very little HCl+Aq is sufficient to diminish solubility very considerably, and, that on further addition of HCl+Aq, the solubility is nearly constant, and increases finally very much when large amts of HCl+Aq are present (Engel, A ch (6) 17 359)

Solubility of PbCl in HCl+Ag at 25°

| GOLUDILI           | ty of 1 bel 1                | 11101   119    | au 20                        |
|--------------------|------------------------------|----------------|------------------------------|
| G HCl<br>per l     | G PbCl <sub>2</sub><br>per l | G HCl<br>per l | C PbCl <sub>2</sub><br>pcr l |
| 0<br>0 5<br>1<br>2 | 10 79<br>9 0<br>7 6<br>6 0   | 3<br>6<br>10   | 5 0<br>3 1<br>1 8            |

(Noyes, Z phys (h 1892, 9 623) Solubility of PbCl<sub>2</sub> in HCl+Aq at 25 20° S=solubility in millimols per litre

| HCl normal | 5     | HCl normal                                                                      | S      |
|------------|-------|---------------------------------------------------------------------------------|--------|
| 0 0000     | 38 80 | 0 3714                                                                          | 6 35   |
| 0 0009     | 38 66 | 0 5142                                                                          | 5 37   |
| 0 0022     | 38 20 | 0 7386                                                                          | 4 73   |
| 0 0030     | 37 94 | 1 026                                                                           | 4 41   |
| 0 0045     | 37 35 | 1 538                                                                           | 4 61   |
| 0 0091     | 35 80 | 2 051                                                                           | 5 18   |
| 0 0114     | 34 99 | 2 564                                                                           | 6 25   |
| 0 0151     | 33 75 | 3 085                                                                           | 7 78   |
| 0 0226     | 31 46 | $\begin{array}{c c} 3 & 718 \\ 5 & 0 \\ 7 & 5 \\ 10 & 0 \\ 12 & 05 \end{array}$ | 8 16   |
| 0 0302     | 29 32 |                                                                                 | 19 38  |
| 0 0452     | 25 46 |                                                                                 | 65 86  |
| 0 0910     | 17 12 |                                                                                 | 141 35 |
| 0 1850     | 10 12 |                                                                                 | 164 3  |

(von Ende, Z anorg 1901, 26 148)

Solubility of PbCl<sub>2</sub> in HCl at 18°

| HCl Normality                                        | G PbCl <sub>2</sub> per l                         |
|------------------------------------------------------|---------------------------------------------------|
| 0<br>0 0001<br>0 0002<br>0 0005<br>0 00102<br>0 0102 | 9 34<br>9 305<br>9 300<br>9 243<br>9 200<br>8 504 |

(Pleissner, Arb Kais Gesundamt 1907, 26 384)

Sol in hot, insol in cold cone H<sub>2</sub>SO<sub>4</sub>

(Hayes)
Sol in dil HNO<sub>3</sub>+Aq, from which it is

pptd by HCl+Aq (Gladstone)
Easily and completely decomp by hot
HNO<sub>3</sub>+Aq (Wurtz)

Solubility of PbCl<sub>2</sub> in HNO<sub>3</sub>+Aq at 25 2° S=solubility in millimols per litre

| HNO <sub>3</sub> normal                                                    | S                                |
|----------------------------------------------------------------------------|----------------------------------|
| 0 001<br>0 01<br>0 051<br>0 04 KNO <sub>2</sub> +<br>0 01 HNO <sub>3</sub> | 38 87<br>39 71<br>42 92<br>43 36 |

(von Ende, Z anorg 1901, 26 162)

Solubility of PbCl<sub>2</sub> in NH<sub>4</sub>Cl+Aq at 25 20° S=solubility in millimols per litre

| NH <sub>4</sub> Cl normal | s    |
|---------------------------|------|
| 0 25                      | 9 47 |
| 0 50                      | 7 11 |
| 1 0                       | 4 35 |

(von Ende, Z anorg 1901, 26 152)

Solubility of PbCl<sub>2</sub>+NH<sub>4</sub>Cl at 22°

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                         |                                                                      |                                                                                       |                                                             |                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|
| 0 1     3 10     1 2     0 707       0 2     1 916     1 5     0 671       0 3     1 508     2 0     0 695       0 4     1 348     2 5     0 812       0 5     1 263     3 0     0 968       0 55     1 189     4 0     1 502 | perl H ()                                                            | O 100 (c H <sub>2</sub> O )                                                           | per I H2O                                                   |                                                                      |
| 0 6 1 092   5 0 2 338<br>0 65 1 012   6 0 3 550<br>0 7 0 956   7 0 5 628<br>0 8 0 837   7 29* 6 46                                                                                                                            | 0 1<br>0 2<br>0 3<br>0 4<br>0 5<br>0 55<br>0 6<br>0 65<br>0 7<br>0 8 | 3 10<br>1 916<br>1 508<br>1 348<br>1 263<br>1 189<br>1 092<br>1 012<br>0 956<br>0 837 | 1 2<br>1 5<br>2 0<br>2 5<br>3 0<br>4 0<br>5 0<br>6 0<br>7 0 | 0 671<br>0 695<br>0 812<br>0 968<br>1 502<br>2 338<br>3 580<br>5 628 |

\* Saturated

(Bronsted, Cong Appl Chem 1909, Sec X,

|                            | Solubility                                                                              | ın NH₄Cl                                            | +Aq at t°                                                             | Much mo                                                   | re sol ın H                                                        | gCl <sub>2</sub> +Aq th                                             | an in H <sub>2</sub> O                             |
|----------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|
| t°                         | G PbCl <sub>2</sub> in<br>100 g of<br>the solution                                      | G NH <sub>4</sub> Cl<br>in 100 g of<br>the solution | Solid phase                                                           | Grammes<br>HgCl <sub>2</sub> in<br>100 cem                | Grammes<br>PbCl <sub>2</sub><br>dissolved                          | After sub<br>tracting amt<br>dissolved by<br>H <sub>2</sub> O alone | Calculated no of my c fcr                          |
| 17°                        | 0 89<br>0 21<br>0 16<br>0 14<br>0 076<br>0 078<br>0 078                                 | 0 0<br>0 96<br>1 43<br>2 40<br>3 48<br>4 23<br>4 93 | PbCl <sub>2</sub> eutectic-pt 2PbCl <sub>2</sub> , NH <sub>4</sub> Cl | 0<br>4<br>2<br>1<br>0 5<br>0 25<br>0 125                  | 0 9712<br>1 8972<br>1 4874<br>1 2272<br>1 0808<br>1 0192<br>0 9926 | 0 9350<br>0 5208<br>0 2600<br>0 1134<br>0 0500<br>0 0226            | 23 37<br>26 04<br>26 00<br>22 68<br>20 00<br>18 08 |
|                            | 0 098<br>0 34<br>0 64                                                                   | 12 36<br>22 33<br>26 49                             | eutectic-pt                                                           | 1                                                         |                                                                    | C 1887 27                                                           |                                                    |
|                            | 0 52<br>0 33                                                                            | 26 68<br>26 91                                      |                                                                       | Solubility                                                |                                                                    | Pb(NO <sub>3</sub> ) <sub>2</sub> +                                 | -Aq at 20                                          |
|                            | 0 30                                                                                    | 27 03<br>27 14                                      | } NH₄Cl                                                               | Pb(I                                                      | NO <sub>3</sub> ) <sub>2</sub>                                     | Pb                                                                  | Cl <sub>2</sub>                                    |
| 50°                        | 1 69                                                                                    | 0 0                                                 | )                                                                     |                                                           | $0 \\ 2$                                                           | 0 0                                                                 |                                                    |
|                            | 1 08<br>0 67                                                                            | 0 51<br>1 45                                        | PbCl <sub>2</sub>                                                     | (Noye                                                     | es, Z phys                                                         | Ch 1892, 9                                                          | 623 )                                              |
|                            | 0 58<br>0 48<br>0 49<br>0 71                                                            | 2 45<br>4 86<br>12 45<br>19 42                      | eutectic pt                                                           | +Aq expre                                                 | entration of<br>essed in mill                                      | NO3).+Aq a<br>Pb(NO3)2 11<br>lequivalents                           | n Pb(NO3)2<br>per l                                |
|                            | 1 76<br>3 31                                                                            | 27 16<br>31 90                                      | 2PbCl <sub>2</sub> , NH <sub>4</sub> Cl                               | S=Solub                                                   | ollity of Ph                                                       | O <sub>3</sub> ) <sub>2</sub> +Aq at<br>oCl <sub>2</sub> in Pb(1    | 25°<br>NO₃)₂+Aq                                    |
|                            | 3 96<br>2 65<br>1 62                                                                    | 33 56<br>33 62<br>33 88                             | eutectic pt                                                           | $\begin{array}{c} expressed \\ d_2 = Sp \end{array}$ $Aq$ | n milliequiv<br>gr 25°/4° (                                        | ralents per l<br>of PbCl <sub>2</sub> +F                            | Pb(NO <sub>3</sub> ) <sub>2</sub> +                |
|                            | 0 32                                                                                    | 34 14<br>34 25                                      | } NH₄Cl                                                               | С                                                         | dı                                                                 | s                                                                   | d <sub>2</sub>                                     |
| 100°                       | 3 10<br>2 02                                                                            | 0 0<br>1 32                                         | PbCl <sub>2</sub>                                                     | 20 020<br>50 063<br>99 660                                | 1 0008<br>1 0045<br>1 0119                                         | 76 75<br>76 64<br>77 98                                             | 1 0095<br>1 0139<br>1 0210                         |
|                            | 1 85<br>1 80<br>1 76                                                                    | 5 33<br>6 01<br>8 59                                | eutectic pt                                                           | (Harkins ai                                               | nd Winning<br>1911, <b>3</b> 3                                     | hof, J Am (<br>1816)                                                | Chem Soc                                           |
|                            | 1 98<br>4 54                                                                            | 13 19<br>26 08                                      | ODLOL NH CI                                                           |                                                           |                                                                    | $Pb(NO_3)_2 +$                                                      |                                                    |
|                            | $\left[ \begin{array}{c ccc} 8 & 32 & 32 & 64 \\ 11 & 40 & 36 & 29 \end{array} \right]$ |                                                     | 2PbCl <sub>2</sub> , NH <sub>4</sub> Cl                               | G Pb(NC                                                   | J <sub>3</sub> ) <sub>2</sub> per 1                                | % PI                                                                |                                                    |
|                            | 12 67<br>12 50<br>11 60<br>10 70                                                        | 37 62<br>38 14<br>38 32<br>38 66                    | eutectic pt PbCl <sub>2</sub> , 2NH <sub>4</sub> Cl                   |                                                           |                                                                    | 1 (<br>1 1<br>1 (<br>1 1<br>1 2                                     | .0<br>)5<br>.1                                     |
|                            | 9 88<br>9 26<br>4 21                                                                    | 40 22<br>41 90<br>42 91                             | eutectic pt                                                           |                                                           | and Fyre,                                                          | Proc Roy                                                            |                                                    |
|                            | 3 06<br>1 61<br>0 0                                                                     | 43 20<br>43 42<br>43 51                             | NH <sub>4</sub> Cl                                                    |                                                           |                                                                    | 234 )<br>i KCl+Aq a<br>imols per lit                                |                                                    |
|                            |                                                                                         | <u> </u>                                            | the double self                                                       | KCl normal                                                | 5                                                                  | KCl normal                                                          | 5                                                  |
| PbCl <sub>2</sub> solution | , 2NH₄Cl<br>on at tempe                                                                 | can only e<br>rature abov                           | the double salt<br>exist in aqueous<br>ve 70°<br>3, <b>156</b> 894)   | 0 0000<br>0 001<br>0 0025<br>0 0049                       | 38 80<br>38 32<br>37 85<br>37 02                                   | 0 0999<br>0 5006<br>0 7018<br>0 9991                                | 16 90<br>7 40<br>7 38<br>4 90                      |

0 0049

0 0049

0 0099

0 0200

0 0599

(von Ende, Z anorg 1901, 26 151)

37 02

37 02

35 28 32 16

22 62

0 9991

0 9991

1 5018

2 0024 3 0036

4 90

4 90

4 83

5 56

9 74

### Solubility of PbCl<sub>2</sub>+KCl in H<sub>2</sub>O at 20° Values = g equivalents

| 8 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                          |                                                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| In 1000 g H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                          | Solid phase                                                             |  |  |
| PbCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KCl                                                                                                                                                                                                                                                                      | , some prime                                                            |  |  |
| 28 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 57                                                                                                                                                                                                                                                                     | $^{\mathrm{PbCl_2},\mathrm{KCl}}_{^{1}/_{3}\mathrm{H_2O}+\mathrm{KCl}}$ |  |  |
| 21 50<br>19 85<br>18 66<br>17 48<br>16 17<br>16 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 96<br>3 73<br>3 50<br>3 33<br>3 03<br>3 01                                                                                                                                                                                                                             | PbCl <sub>2</sub> , KCl <sup>1</sup> / <sub>3</sub> H <sub>2</sub> O    |  |  |
| 5 15 63<br>15 63<br>16 13 77<br>16 13 77<br>17 12 13<br>17 12 13<br>18 12 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13<br>18 13 | 2 86<br>2 78<br>2 77<br>2 70<br>2 64<br>2 62<br>2 55<br>2 49<br>2 41<br>2 31<br>2 20<br>1 79<br>1 472<br>1 348<br>1 347<br>1 1225<br>1 107<br>1 108<br>3 0 943<br>0 875<br>0 875<br>0 602                                                                                | 2PbCl₂, KCl                                                             |  |  |
| 3 12 85<br>5 13 04<br>8 12 95<br>5 13 65<br>9 14 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 502<br>40 497<br>50 475<br>50 387<br>80 306                                                                                                                                                                                                                           | $\mathrm{PbCl}_2$                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PbCl <sub>2</sub> 28 0 23 422 50 6 19 85 6 17 18 6 6 8 0 10 15 8 15 6 15 15 16 15 16 15 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | PbCl <sub>1</sub>                                                       |  |  |

(Bronsted, Z phys Ch 1912, **80** 208)

PbCl<sub>2</sub> is sol in 120 pts pure H<sub>2</sub>O, but on adding 5% NaCl 437 pts are required to effect solution When PbCl<sub>2</sub> is digested with conc NaCl+Aq, 1 pt dissolves in 129 pts of the liquid

A study of the equilibrium between lead chloride and sodium chloride in aqueous solution at 13°, 50° and 100° shows that at none of these temp do these chlorides form a double salt (Demassieux, C R 1914, 158 702)

### Solubility in salts+Aq at 25°

| Salt used                                                                                          | Concentration of<br>the salt<br>Equivalents per<br>liter                                                                | Solubility of PbCl <sub>2</sub><br>Equivalents per liter                                                                                 |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| None HCl " KCl " MgCl <sub>2</sub> " CaCl <sub>2</sub> " ZnCl <sub>2</sub> " znCl <sub>2</sub> " " | 0<br>0 05<br>0 1<br>0 2<br>0 05<br>0 1<br>0 2<br>0 05<br>0 1<br>0 05<br>0 1<br>0 2<br>0 05<br>0 1<br>0 2<br>0 05<br>0 1 | 0 07770 0 04786 0 03243 0 01927 0 0482 0 0341 0 0219 0 0503 0 0350 0 0503 0 0355 0 0219 0 0501 0 0349 0 0217 0 0220 0 0601 0 0481 0 0355 |
|                                                                                                    |                                                                                                                         | <del></del>                                                                                                                              |

(Noyes, Z phys Ch 1892, 9 623)

Sol in KOH+Aq (Rose) Less sol in dil salt solutions than in H2O. especially CaCl2+Aq, sol in 534 pts H2O

containing CaCl<sub>2</sub> (Bischof) More sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq than in H<sub>2</sub>O, but not as sol as AgCl (Herschell, 1819)

More sol in NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq than in H<sub>2</sub>O (Anthon)

Easily sol in NH<sub>4</sub>NO<sub>3</sub>+Aq

Sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828)

Insol in conc alcohol (Wittstein) Insol in 94% alcohol, very sl sol in cold or hot 76% alcohol Solubility in alcohol at 25°

Alcohol = g mol alcohol in 1 l of solvent PbCl<sub>2</sub> = g mol PbCl<sub>2</sub> in 1 l of solution Alcohol 0 0172 0 0257 0 0298 0 0330 0 0338 PbCl<sub>2</sub>

Alcohol 0 0367 0 0388  $PbCl_2$ 

(Kernot and Pomilio, Soc R Napoli, (3) 17 353)

Insol in benzene (Franchimont, B 16 387)

Insol in CS<sub>2</sub> (Arctowski, Z anorg 1894, 6 257)

Insol in benzonitrile (Naumann, B 1914, **47** 1370)

Insol in methyl acetate (Naumann, B

1909, 42 3790), ethyl acetate (Naumann, B 1910, 43 314)

(Eidmann, C C 1899, Insol in methylal II, 1014)

Insol in acetone (Naumann, B 1904, 37 4329 )

Glycerine dissolves 1 995% PbCl<sub>2</sub>

1 pt glycerine+1 pt H<sub>2</sub>O dissolves 1 32%

1 pt glycerine+3 pts H<sub>2</sub>O dissolves 1 0365 % PbCI<sub>2</sub>

Glycerine containing 87 5% H<sub>2</sub>O dissolves 0 91% PbCl<sub>2</sub> (Piesse, B **7** 599)

Solubility of PbCl<sub>2</sub> in mannite+Aq at 25° Mannite = g mol mannite in 11 of solvent 0 0408 0 0403 0 0394 0 0384 0 0385  $PbCl_2$ 

Mannite 1/64 0 0377 0 0388  $PbCl_2$ 

(Kernot and Pomilio, Soc R Napoli, (3) 17 353)

Min Cotunnite

Lead tetrachioride, PbCl4

Sol in H<sub>2</sub>O with subsequent decomp (Rivot, Beudant, and Daguin, Ann Min (5) 4 239)

Obtained in a pure state by Friedrich Sol in a little cold  $H_2O$ , but is decomp by warming or diluting Miscible with cone HCl+Aq, not attacked by cone  $H_2SO_4$  even on warming (Friedrich, W A B 102, 2b 534)

Lead tetrachloride with MCl See Chloroplumbate, M

Lead magnesium chloride, PbCl<sub>2</sub>, 2MgCl<sub>2</sub>+  $13H_2O$ 

Deliquescent Decomp by H<sub>2</sub>O (Otto and Drewes, Arch Pharm 228 495)

Lead potassium chloride (potassium chloroplumbite), PbCl<sub>2</sub>, KCl

(Remsen and Herty, Am Ch J 14 125) Contains 1/8 H<sub>2</sub>O (Wells, Sill Am J 145 130)

See also Demassieux, PbCl<sub>2</sub>+KCl under  $PbCl_2$ 

2PbCl<sub>2</sub>, KCl (Wells) See also Demassieux as above

Lead rhodium chloride See Chlororhodite, lead

Lead rubidium chloride, PbCl<sub>2</sub>, 2RbCl+ ½H₂O

(Wells, Sill Am J 146 34) 2 PbCl<sub>2</sub>, RbCl (Wells)

Lead sodium chloride Decomp by H<sub>2</sub>O

Lead sodium tetrachloride, 2PbCl4, 9NaCl Very sol in H<sub>2</sub>O (Sobrero and Selmi, A

ch (3) 29 165) See also Chloroplumbate, lead

Lead thallous chloride, PbCl<sub>2</sub>, 3TlCl

SI sol in cold, more in hot H<sub>2</sub>O (Noves. Z phys Ch 9 622) PbCl<sub>2</sub>, TlCl 1909, **61** 245) Ppt (Ephraim, Z anorg

Lead chloride ammonia, 2PbCl<sub>2</sub>, 3NH<sub>3</sub> (Rose, Pogg 20 157)

Lead tetrachloride ammonia, PbCl<sub>4</sub>, 4NH<sub>3</sub> Pptd from chloroform solution (Manuel Control of thews, J. Am. Chem. Soc. 1898, 20, 825) (Mat-PbCl<sub>4</sub>, 2NH<sub>3</sub> Fumes in the air Decomp by  $H_2O$  (Matthews)

Lead chloride arsenate, 3Pb<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>, PbCl<sub>2</sub> See Arsenate chloride, lead

Lead chloride borate,  $Pb(BO_2)_2$ ,  $PbCl_2+$  $H_2O$ See Borate chloride, lead

Lead chloride carbonate See Carbonate chloride, lead

Lead chloride chlorite See Chlorite chloride, lead

Lead chloride with fluoride and iodide See Lead chlorofluoride and Lead chloro-10dide

Lead chloride phosphate See Phosphate chloride, lead

Lead chloride phosphite, PbCl<sub>2</sub>, Pb P<sub>2</sub>O<sub>5</sub>(?) Ppt (Berzelius) Does not exist (Rose)

Lead chloride sulphate See Sulphate chloride, lead

Lead chloride sulphide, PbCl, 3PbS See Lead chlorosulphide

Lead chlorofluoride, PbClF

Sl sol in H<sub>2</sub>O without decomp Easily sol in HNO<sub>4</sub>+Aq (Berzelius) Solubility in H<sub>2</sub>O

100 g H<sub>2</sub>O dissolve 0 0211 g PbClF it 0°, 0 0370 g at 25°, 0 1081 g at 100° (Starck, Z anorg Ch 1911, 70 174) Solubility in HCl+Aq at 25°

Solution of PbClF in HCl+Aq containing

0.0535 g equiv per l contains 0.0758 g PbClF in 100 cc of solvent

Solution of PbClF in HCl+Aq containing

01069 g equiv per l contains 01006 g PbClF in 100 cc of solvent (Starck)

Solubility in acetic acid at 25°

Solution of PbClF in HC2H3O2 containing 0 0518 g equiv per l contains 0 05129 g PbClF in 100 cc of solvent

Solution of PbClF in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> containing 0 1055 g equiv per l contains 0 0561 g PbClF in 100 cc of solvent (Starck)

### Solubility in PbCl<sub>2</sub>+Aq

| t°                   | G equiv per l<br>PbCl <sub>2</sub>                        | G PbClF in<br>100 cc of solvent                          |
|----------------------|-----------------------------------------------------------|----------------------------------------------------------|
| 18°<br>"<br>25°<br>" | 0 0100<br>0 0195<br>0 0495<br>0 00996<br>0 0196<br>0 0392 | 0 0020<br>0 0016<br>0 0002<br>0 0030<br>0 0008<br>0 0005 |

(Starck)

### Lead chlorosodide, 2PbCl<sub>2</sub>, PbI<sub>2</sub>

Sol in hot NH<sub>4</sub>Cl+Aq (Poggiale, J pr **35** 329)

PbCl<sub>2</sub>, PbI<sub>2</sub> Sol in hot HCl+Aq (Engelhardt)

Sol in H<sub>2</sub>O (Thomas, C R 1898, 126 ۱351 ۱

#### Lead chloroselenide

Decomp by boiling H<sub>2</sub>O and by conc KOH+Aq (Fonzes-Diacon, C R 1900, 130 1133)

### Lead chlorosulphide, PbCl<sub>2</sub>, 3PbS

Partially decomp by hot H<sub>2</sub>O Not attacked by dil, but dccomp by conc HCI+

Aq (Huncfeld, J pr 7 27)

PbS, PbCl Decomp by H<sub>2</sub>O, acids, or alkalies (Parmential, C R 114 298)

CIPbS<sub>2</sub>PbS<sub>2</sub>PbS PbCl Ppt (Hofmann, B 1904, **37** 250)

#### Lead fluoride, Pbl 2

Very sl sol in HO, and not more in HF+ Aq (Berzelius, Pogg. 1 31)

5.5 millimols are sol in 1000 ccm. H O (Jacger, Z. morg 1901, 27 35)

1 l H<sub>2</sub>O dissolves 640 mg at 18°

(Kohl rausch, Z phys ('h 1901, 50 356) 641 mg in 1 l of sit solution at 18°

(Kohhausch, Z. phys. Ch. 1908, 64, 168) More sol in IINO3, or IICl+Aq Sl sol in KI + Aq (Herty, Am Ch J 14 107)

SI sol in dil III + Aq, insol in strong  $HF+\Lambda q$ 

0 (0150) g stoms Pb arc sol in 1000 cc III (Jaegei, Z. morg 1901, 27 37)

Insol in liquid III (Franklin, Z anorg 1905, **46** 2)

Insol in liquid NH<sub>3</sub> (Gore, Am J Ch 1898, **20** 828)

(Naumann, B Insol in ethylacetate 1910, 43 314) Insol in acetone (Naumann, B 1904, **37** 4329)

Lead potassium fluoride, 3KF, HF, PbF<sub>4</sub> Decomp H<sub>2</sub>O, stable in dry air (Brauner, Z anorg 1894, 7 7)

Lead silicon fluoride See Fluosilicate, lead

Lead tantalum fluoride See Fluotantalate, lead

Lead titanium fluoride See Fluotitanate, lead

Lead fluoride sulphate See Sulphate fluoride, lead

### Lead hydroxide, PbO<sub>2</sub>H<sub>2</sub>

Not appreciably sol in H<sub>2</sub>O Z anorg 1901, 27 38) 1 1 H<sub>2</sub>O dissolves 0 155 g PbO<sub>2</sub>H<sub>2</sub> at 20°

and 100° (Sehnal, C R 1909, 148 1396)

### Solubility in NaOH+Aq

| G Nam 20 ccm | G Pb in 20 ccm |
|--------------|----------------|
| 0 2024       | 0 1012         |
| 0 3196       | 0 1736         |
| 0 5866       | 0 3532         |
| 0 9476       | 0 4071         |
| 1 7802       | 0 5170         |

(Rubenbauer, Z anorg 1902, 30 336)

### Solubility of PbO<sub>2</sub>H<sub>2</sub> in NaOH+Aq at 25°

| G mol per l                                        |                                                     | Solid Phase                     |
|----------------------------------------------------|-----------------------------------------------------|---------------------------------|
| Na                                                 | Pb                                                  | Som Thase                       |
| 0 274<br>0 431<br>0 476<br>0 745<br>1 132<br>1 519 | 0 0181<br>0 287<br>0 319<br>0 489<br>0 711<br>0 101 | PbO <sub>2</sub> H <sub>2</sub> |

(Wood, Chem Soc 1910, 97 884)

(Naumann, B 1904. Insol in acctone **37** 4329)

2PbO, PbO<sub>2</sub>H<sub>2</sub>=3PbO, H<sub>2</sub>O Sol in 10,000 to 12,000 pts H<sub>2</sub>O (Yorke) Sol in

7000 pts H<sub>2</sub>O (v Bonsdorff, Pogg 41 307) 0 45 millimol Pb are sol in 1 liter H<sub>2</sub>O at 18° (Pleissner, C C 1907, II 1056) Sol in acids Insol in NH<sub>4</sub>OH+Aq Sol

in NaOH, or KOH+Aq Sol in hot NH<sub>4</sub>Cl+ Aq, and repptd by NH<sub>4</sub>OH+Aq

Solubility in KOH+Aq, according to Ditte (C R 94 130) When KOH+Aq is gradu-

ally added to lead hydroxide suspended in H<sub>2</sub>O, the lead hydroxide is at first dissolved proportional to the amount of KOH, until the strength reaches 200 g KOH to 1 litre  $H_2O$  The solubility then diminishes and increases again until 400 g KOH are dissolved in 1 litre  $H_2O$  The amorphous lead hydroxide is then converted into crystalline By further addition of  $2PbO(PbO_2H_2)$ KOH the solubility is suddenly decreased, and then increases again (Ditte)

Sol in triethyl toluenyl ammonium hy-

drate+Aq

Sol in sorbine + Aq (Pelouze)

Sol in Ca, Ba, Sr, K, or Na sucrate+Aq Not pptd in presence of Na citrate+Aq (Spiller

See also under Lead, and Lead oxide

### Lead perhydroxide, PbO<sub>2</sub>, H<sub>2</sub>O See Lead peroxide

### Lead imide, PbNH

Decomp by H<sub>2</sub>O and dilute acids (Franklin, Z anorg 1905, 46 27)

### Lead 10dide, PbI2

Sol in 187 pts boiling H<sub>2</sub>O (Berthemot) Sol in 1235 pts H<sub>2</sub>O at ord temp, and 194

pts at 100° (Denot, J pr 1 425)
Sol m 2400 pts H<sub>2</sub>O at 18 75° (Abl)
Sat PbI<sub>2</sub>+Aq at 20° contains 0 0017 pt,
at 27°, 0 002 pt, at 100°, 0 0039 pt PbI<sub>2</sub>
(Lassaigne, J chim med 7 364)

11 H<sub>2</sub>O dissolves 0 6 g PbI<sub>2</sub> at 10° (Ditte,

C R 92 718) 1 l H<sub>2</sub>O dissolves 1 58 millimols PbI<sub>2</sub> at 25 2° (Von Ende, Z anorg 1901, 26 159) 0 47 × 10<sup>-1</sup> gram are dissolved in 1 litre of sat solution at 20° (Bottger, Z phys Ch 1903, 46 603)

Solubility in 100 g H<sub>2</sub>O at t°

| t°                                                         | G PbI                                                                                            |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 0<br>15<br>25<br>35<br>45<br>55<br>65<br>80<br>95<br>* 100 | 0 0442<br>0 0613<br>0 0764<br>0 1042<br>0 1453<br>0 1755<br>0 2183<br>0 3023<br>0 3960<br>0 4360 |
|                                                            |                                                                                                  |

<sup>\*</sup> By extrapolation

(Lichty, J Am Chem Soc 1903, 25 474)

0 0013 g mol PbI2 are dissolved in 1 l H<sub>2</sub>O at 20° (Fedotieff, Z anorg 1911, 73 178)

Not more sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq than in  $H_2O$ , contrary to Henry (Denot, l c) Pptd from aqueous solution by little HI+ Aq, but redissolved by the addition of more (Ditte, C R 92 718)

Insol in cold, sol in hot HCl+Aq with decomp

Solubility of PbI2 in HNO2+Aq at 25 2° S=Solubility in millimols per litre

| HNO₃ normal                                                                | S                                |
|----------------------------------------------------------------------------|----------------------------------|
| 0 001<br>0 01<br>0 051<br>0 04 KNO <sub>2</sub> +<br>0 01 HNO <sub>2</sub> | 38 87<br>39 06<br>39 45<br>39 45 |

(von Ende, Z anorg 1901, 26 162)

Sol in KOH+Aq

Sol in conc KI, NaI, BaI2, SrI2, CaI2, and MgI<sub>2</sub>+Aq, from which it is pptd by H<sub>2</sub>O (Berthemot)

Very sol in KI+Aq, 2 mols PbI<sub>2</sub> being dissolved for 1 mol KI (Boullay)

Sol in NH<sub>4</sub>I+Aq Easily sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Werner, C N 53 51) Not pptd in presence of Na citrate (Spil

ler)

Solubility in sat  $I_2+Aq$  at  $20^\circ=0.00216$  g mol per l Solid phase PbI<sub>2</sub>+I<sub>2</sub> (Fedotieff Z anorg 1911, **73** 178)

Very easily sol in liquid NH<sub>3</sub> (Franklin Am Ch J 1898, **20** 828)

(Henry) Decomp by Sl sol in alcohol boiling ether (Vogel)

100 g formic acid dissolve 0 25 g at 19 5° (Aschan, Ch Ztg 1913, 37 1117) Insol in CS<sub>2</sub> (Arctowski, Z anoig 1894

257)

SI sol in benzonitrile (Naumann, B 1914, 47 1369)

Difficultly sol in methyl acetate (Nau mann, B 1909, 42 3790) Insol in ethyl acetate (Naumann, B

1910, **43** 314) Insol in acetone (Naumann, B 1904

**37** 4329) 0 02 pts arc sol in 100 pts acctone at 59°

0 02 pts are sol in 100 pts amyl ilcohol a

0 50 pts are sol in 100 pts aniline at 13° 1 10 pts are sol in 100 pts aniling it 154° (Laszczynski, B 1894, **27** 2287)

| Solubility of PbI <sub>2</sub> in pyridine at t°      |                                                                               |                                                                                                                                                                         |
|-------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t°                                                    | G PbI2 per 100<br>g pyridine                                                  | Solid phase                                                                                                                                                             |
| 37<br>20<br>9<br>0<br>+ 3<br>6                        | 0 166<br>0 175<br>0 186<br>0 200<br>0 215<br>0 225                            | PbI <sub>2</sub> , C <sub>5</sub> H <sub>5</sub> N  " " " " " " PbI <sub>2</sub> , C <sub>5</sub> H <sub>5</sub> N+ PbI <sub>2</sub> , 2C <sub>5</sub> H <sub>6</sub> N |
| 15<br>35<br>57<br>77<br>92<br>98<br>105<br>108<br>112 | 0 208<br>0 188<br>0 190<br>0 228<br>0 290<br>0 340<br>0 370<br>0 410<br>0 445 | PbI <sub>2</sub> , 2C <sub>8</sub> H <sub>5</sub> N  " " " " " " " " " " " " " "                                                                                        |

(Heise, J phys Ch 1912, 16, 273)

Lead hydrogen 10d1de, PbH<sub>2</sub>I<sub>4</sub>=PbI<sub>2</sub>, 2HI

Cold H<sub>2</sub>O dissolves out HI Sol in hot H<sub>2</sub>O, from which crystallizes PbI<sub>2</sub> (Guyot, J chim med 12 247)

+10 H<sub>2</sub>O Decomp by H<sub>2</sub>O (Berthelot, C R 91 1024)

Lead lithium iodide, PbI, LiI+5H<sub>2</sub>O

Loses 1 mol  $\rm H_2O$  at 95° and loses another mol  $\rm H_2O$  at 100° (Bogorodski, C C **1894**, II 515)

PbI<sub>2</sub>, 2L<sub>1</sub>I+6H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Mosnier, C R 1895, **120** 446)

Lead magnesium iodide, PbI2, 2MgI2

Decomp by H<sub>2</sub>O and by alcohol (Mos-

nier, A ch 1897, (7) 12 402)

+16H<sub>2</sub>O Véry hygroscopic Decomp immediately by H<sub>2</sub>O (Otto and Drewes, Arch Phaim **229** 180)

Lead nickel iodide, PbN12I6+3H2O

Decomp by  $H_2O$  (Mosnier, A ch 1897, (7) 12 411)

Lead potassium iodide (Potassium iodoplumbite), PbI<sub>2</sub>, KI

Permanent Completely decomp by  $H_2O$  Unacted upon by cold, but completely decomp by hot alcohol (Boullay, A ch (2) 34 366)

+2H<sub>2</sub>O I he only salt that could be obtained by Remsen and Herty (Am Ch J

14 110)
PbI<sub>2</sub>, 2KI Sl sol in boiling chloroform, easily sol in strong KI+Aq, insol in alcohol (Brooks, C N 1898, 77 191)

+2H<sub>2</sub>O Decomp by H<sub>2</sub>O (Berthelot,

A ch (5) 29 289)

Does not exist (R and H) +4H<sub>2</sub>O (Ditte, C R **92** 134) Does not exist (R and H)

PbI<sub>2</sub>, 4KI Decomp by H<sub>2</sub>O, insol in alcohol (Boullay) Does not exist (R and H) 3PbI<sub>2</sub>, 4KI+6H<sub>2</sub>O (Berthelot, l c) Does not exist (R and H)

Lead potassium periodide, K<sub>3</sub>Pb<sub>2</sub>I<sub>8</sub>+4H<sub>2</sub>O Decomp by H<sub>2</sub>O or alcohol (Wells, Z anorg 4 346)

Lead rubidium iodide, PbI<sub>2</sub>, RbI+2H<sub>2</sub>O (Wells, Sill Am J 146 34)

Lead silver iodide, PbI<sub>2</sub>, 2AgI (Ruff and Geisel, B 1905, **38** 2663)

Lead silver iodide ammonia, PbI<sub>2</sub>, 2AgI, 5NH<sub>3</sub> (Ruff and Geisel, B 1905, **38** 2663)

Lead sodium iodide, PbI2, NaI

(Moisnier, C R 1895, 120 445)

Decomp by  $H_2O$  (Poggiale, C R 20 1180) + $xH_2O$  (Remsen and Herty, Am Ch

J 14 124)
PbI<sub>2</sub> 2NaI+6H<sub>2</sub>O Sl sol in H<sub>2</sub>O

Lead 10dide ammonia, PbI<sub>2</sub>, 2NH<sub>3</sub>
Decomp by H<sub>2</sub>O (Rammelsberg, Pogg
48 166)

Lead iodide carbonate See Carbonate iodide, lead

Lead iodosulphide, PbS, 4PbI<sub>2</sub>

Decomp by light, heat, acids and alkalies (Lenher, J Am Chem Soc 1895, 17 512) Sol in conc HI, insol in dil HI+Aq (Lenher, J Am Chem Soc 1901, 23 681) IPbS<sub>2</sub>PbS<sub>2</sub>PbI Ppt (Hofmann, B 1904, 37 251)

#### Lead suboxide, Pb<sub>2</sub>O

Decomp by  $H_2O$  into  $PbO_2H_2$ Decomp by dil  $H_2SO_4$ , HCl,  $HNO_3$ ,  $HC_2H_3O_2+Aq$ , or alkalies, into PbO, which dissolves, and Pb, which dissolves or not, according to the reagent Sol in dil  $Pb(NO_3) + Aq$ 

Lead monoxide (Litharge), PbO

Sol in 7000 pts H<sub>2</sub>O (Horsford) Pune PbO is insol in H<sub>2</sub>O (Brandecke, Repert **53** 155, Subold, Repert, **53** 174, Herbergen, Repert **55** 55) Sl sol in H<sub>2</sub>O (Yorke, Phil Mag (3) **5** 82) 0 31 millimoles Pb are dissolved in 1 liter

0 31 millimoles Pb are dissolved in 1 liter H<sub>2</sub>O at 18° (Pleissner, C C 1907, II 1056) 171×10<sup>2</sup> g are dissolved in 1 litre of sat solution at 20° (Bottger, Z phys Ch 1903,

Easily sol in acids

l**46** 603)

Sol in KOH, or NaOH+Aq, also in CaO<sub>2</sub>H +Aq

Sol in boiling Cu(NO<sub>3</sub>)<sub>2</sub>+Aq with pptn of

Sol in CaCl<sub>2</sub>, and SrCl<sub>2</sub>+Aq (André, C R **104** 359)

Sol in MgCl<sub>2</sub>+Aq (Voigt, Ch Ztg 13 695)

Sol in boiling Cu(NO<sub>3</sub>)<sub>2</sub>+Aq with pptn of

C.10
Partially sol in Cd(NO<sub>3</sub>)<sub>2</sub>, and Mn(NO<sub>3</sub>)<sub>2</sub>
+Aq with pptn of CdO and MnO respec-

Not acted upon by Mg, Ag, Co, N1, or Ce

nitrates + Aq (Persoz) Very sol in Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub>+Aq (Rochle-

Insol in liquid NH<sub>8</sub> (Franklin, Am Ch J 1898, **20** 828)

Insol in acetone (Eidmann, C C 1899,

II, 1014)

When finely pulverised, sol in cane sugar +Aq, but less than Pb<sub>3</sub>O<sub>4</sub> (Peschier)
Sl sol in glycerine Readily sol in glucose +Aq (Persoz)

Sol in volatile oils (Schweitzer)
Yellow modification

### Solubility in H<sub>2</sub>O at 22°

|                                                                                                                | Solubility in g<br>eguiv per litre |
|----------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1 Yellow PbO, obtained by<br>boiling lead hydroxide<br>with 10%, NaOH                                          | 1 03 x 10-4                        |
| 2 Yellow PbO, obtained by<br>heating 1 at 630°                                                                 | 1 05 x 10 <sup>4</sup>             |
| 3 Yellow PhO, obt uned by<br>heating it 740° red PhO,<br>formed by boiling lead<br>hydrovide with cone<br>NaOH | 1 00 \ 10 '                        |
| 4 Yellow PbO obtained by<br>heating pure, commer-<br>eral, yellow-brown PbO<br>at 620°                         | 1 09 \ 10 1                        |

### (Ruci, Z. morg. 1906, **50**, 273.)

| Red medification | Obtained by boiling | lead hydroxide with cone | NOH + Vq | Solubility in HO at 22 = 0.56 \times 10^{-1} k.

equiv per l. (Ruer / morg 1906 50 273) Fellow brewn mod frestron. Solubility in H.O. it 22 - l. 10 < 10 ° g. equiv per litre (Ruer / morg 1906, 50 275)

See also Lead

### Lead oxide (Red lead), Pha(),

Insol in H ()

Converted by reads into PbO and salts of

Sol mailurge unt of glieral actic acid (Bazzelius) Insol in actic acid (Schonbern, J. pr. 74-325.)

Solution in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq may decompose or not according to concentration of acid When treated with an excess of HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq of 8° B, Pb<sub>3</sub>O<sub>4</sub> is quickly dissolved, but the solution soon deposits PbO<sub>2</sub>, this decomposition is facilitated by dilution But if Pb<sub>3</sub>O<sub>4</sub> is treated with a large excess of glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, it dissolves, and the solution is permanent if atmospheric air is excluded, and temp does not rise above 40° (Jacquelain, J pr 53 152)

Insol in acetone (Eidmann, C C 1899, I, 1014, Naumann, B 1904, 37 4329) Easily sol in cane sugar+Aq (Peschier)

Min Minium

### Lead sesquioxide, Pb<sub>2</sub>O<sub>3</sub>

Insol in H O or in KOH+Aq Decomp by strong acids into PbO<sub>2</sub> and corresponding salt of monoxide

### Lead peroxide, PbO<sub>2</sub>

Insol in H<sub>2</sub>O Sol in acids, also in conc alkali hydroxides+Aq The solutions in acids are very unstable, except when concentrated and kept at a low temperature

Decomp by cold HCl, HCN, HBr, and HI+Aq Not attacked by other acids when cold, but decomp thereby when hot Insol in moderately cone HNO<sub>3</sub>, II SO<sub>1</sub>, or HC<sub>2</sub>II<sub>3</sub>O +Aq

There are two forms of PbO, the amor

phous and the crystalline

11 of very cone II SO<sub>4</sub> dissolves 10 milli mols crystalline PbO

Solubility of amorphous PbO in II SO<sub>4</sub>+Ac

= 99.5 millimols PbO  $\alpha$  re-dissolved in 1.1  $\alpha$  and containing 1720 g. H SO<sub>4</sub>

4 millimols. I bO ore dissolved in 1.1 or acid containing 1097 g. H SO<sub>4</sub>

v = moles H SO<sub>4</sub> per mole of H O c - millimols PbO dissolved in 1 litre

| ١                    |                      | ١                    |                          |
|----------------------|----------------------|----------------------|--------------------------|
| 0 32<br>0 30<br>0 25 | 0 \s2<br>0 1<br>7 10 | 0 20<br>0 15<br>0 10 | 5 10 1<br>5 10 1<br>1 10 |
|                      |                      |                      |                          |

(Dolez ild. and Linckli / mor, 1906 **51** 525 5)

Decomp by  $NH_4OH + \Lambda q$  Sol in cone KOH, or  $N_4OH + \Lambda q$  Sol with decomp in  $H_{F_1}(NO_4) + \Lambda q$ 

(I evol.)
Insolain actions (I idmain) ( C. 1899)

II 1014 Nauman B 1901 **37** 2943) Min *Hattnerite* 

Lead manganese peroxide, PhO, 4MnO Ppt (Cabbs and Purkmann, Sill Am J

(2) 39 55)

Lead oxybromide, PbBr2, PbO Insol in H<sub>2</sub>O +1, 1½, and 3H<sub>2</sub>O (André, C R 96 1502  $6P\dot{b}O$ ,  $PbBr_2+2H_2O$  $\mathbf{Ppt}$ (Stromholm, Z anorg 1904, 38 436) Lead oxychloride, 2PbCl<sub>2</sub>, PbO+2H<sub>2</sub>O (André, C R 96 435)
PbCl<sub>2</sub>, PbO Absolutely insol in hot or cold H<sub>2</sub>O (André, A ch (6) 3 108) Mm Matlockite +H<sub>2</sub>O Sol in hot NaOH+Aq (André)
O 38 millimols Pb are dissolved in 1 litre
H<sub>2</sub>O at 18° (Pleissner, C C 1907, II 1055)
PbCl<sub>2</sub>, 2PbO Insol in H<sub>2</sub>O Sol in dil
KOH+Aq (about 110 g in 11) (Ditte, C R **94.** 1180) Min Mendipite Easily sol in HNO<sub>3</sub>+Aq +2H<sub>2</sub>O (André, A ch (6) 3 111) PbCl<sub>2</sub>, 3PbO Insol in H<sub>2</sub>O emer) + 1/2H<sub>2</sub>O Ppt (Stromholm, Z anorg 1904, 38 435) + 2H<sub>2</sub>O 0 10 millimols Pb are dissolved in 1 litre H<sub>2</sub>O at 18° (Pleissner, C C 1907, II 1056) 1000 )
+3H<sub>2</sub>O Ppt (André, C R 104 359 )
+4H<sub>2</sub>O Nearly msol in H<sub>2</sub>O Sl sol
IN NaOH+Aq (Vauquelm )
PbCl<sub>2</sub>, 5PbO (Doberemer )
6PbO, PbCl +2H<sub>2</sub>O Ppt (Stromholm,
Z anorg 1904, 38 434 )
PbCl<sub>2</sub>, 7PbO Cassel-yellow

Lead strontium oxychloride, 2PbO, SrCl +  $5H_2O$ 

(André, C R 104 359)

Lead oxychloride, iodide, PbCl, PbI, 4PbO Min Schwartzenbergite Sol ın HNO<sub>3</sub>+Aq

Lead oxyrodide, PbI2, PbO

Insol in boiling H<sub>2</sub>O or KI+Aq (Brandes, **A** 10 269) +1/2HO (Ditte, C R 92 145) +H<sub>2</sub>O PbI<sub>2</sub>, 2PbO Insol in H<sub>2</sub>O (Denot, J Pharm 20 1)

+H₂O PbI<sub>2</sub>, 3PbO+2H<sub>2</sub>O Ppt (Kuhn, C C 1847 593)

PbI<sub>2</sub>, 5PbO Insol in H<sub>2</sub>O +7H<sub>2</sub>O (Ditte, C R **92** 145) (Denot) Ppt (Stromholm,

6PbO,  $Pb\widetilde{I_2} + 2\widetilde{H_2O}$ Z anorg 1904, 38 437)
9PbO, PbI<sub>2</sub>+2H<sub>2</sub>O (Stromholm, Z anorg **19**04, **38** 437)

Lead oxyperiodide, PbO, PbI<sub>2</sub>I<sub>3</sub>

Sol in dil Decomp by boiling H<sub>2</sub>O HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Groger, W A B 100, 2b 415)

Lead phosphide, PbP.

Decomp by HO and dil acris. Bruit C R 1913, 157 721)

Lead phosphoselenide, Pb~ P~

Insol in H2O or HCl+Aq ~1 in H\(),-Insol. in cold, slowly decomp by hot al-

kalies + Aq (Hahn, J pr 2) 93 4 kn 2PbSe, P<sub>2</sub>Se<sub>2</sub> Insol in H<sub>2</sub>() H(1 or HNO<sub>2</sub>+ Aq Slowly sol in red furning HNO<sub>3</sub>+Aq Sle HNO<sub>3</sub> (Hahn)

2PbSe, P Se, Decomp by furning HNO. (Hahn)

Lead selenide, PbSe

Cold HNO2+Aq dissolves Pb with separation of Se, which dissolves on warming (Little, A 112 212)

Min Clausthalite Sol in HNO, +Aq with separation of Se, when warmed

Lead mercury selenide, Ph Hg > Min Lehrbachite

Lead sulphide, PbS

Very sl sol in H O

11 HO dissolves 30×10- males Pb- at 18° (Weigel, Z phys Ch 100)7 58 204 1 1 H O dissolves 3×10-4 g Pb- it 25

(Hevesy, Z anorg 1913 82 325

Insol in dilute acid- alkalis- in i alkali sulphides + Aq Decomp with solution in moderately dil HNO, - Aq With conc HNO, or aqua regia, PbSO, is ormed Sol in hot cone HCl-Aq

11 HO sat with HS dissolves 1 o x 10- 4 PbS at 25° (Hevest Z at 1-g 191) 82 328)

Insol in VH4Cl, or VH4NO -Aq Bret Somewhat sol in HS-Aq wha hied terewith in a sealed tube therewith in a sealed tube ch (3) 32 168)

Insol in potassium the rest of (Rosenbladt, Z anal 26 15 11 311 pr J 4531

Sol in NaSO -Aq Ch 5 646)

Insol in liquid \H Fran L Allen J 1898, **20** 828) Min Galena, Galer e

Lead polysulphide, Po-Ppt insol in alkali cone HNO Bodro x C P in 130 by conc HNO 1398)

Lead platinum sulphide See Sulphoplatinate, lead

Lead sulphide mercunc chloride 5Pos 4HgCl C P 96

Decomp by HO Leva 3 1666)

### Lead sulphobromide, chloride, or iodide See Lead bromosulphide, etc

# Lead disulphodiumide, PbN2S, NH3

Ppt

Very stable in the air or in a vacuum Sol in no solvent without decomp

When rapidly heated it explodes very violently at 140° (Ruff, B 1904, 37 1581)

### Lead telluride, PbTe

Insol in H<sub>2</sub>O Sol in cold HNO<sub>8</sub>+Aq (Rose, Pogg **18** 68)

Min Allaste Easily sol in HNO3+Aq

### " Leucone "

Wohler (A 127 268) gives this substance the formula  $H_{10}Sl_sO_{10}$ , but it is identical with silicoformic anhydride,  $Sl_2H_2O_3$ , which see

#### Lime

Quacklime, CaO See Calcium oxide Slaked lime, CaO<sub>2</sub>H<sub>2</sub> See Calcium hydroxide

### Lithium, Li

Decomposes H.O

J 1899, 20 520)

Easily sol in dil acids Slowly attacked by cone H<sub>2</sub>SO<sub>4</sub>, rapidly by cone HNO<sub>3</sub>+Aq Insol in hydrocarbons Sol in liquid NH<sub>3</sub>,

but not so easily as K
Sol in liquid NH<sub>3</sub> (Franklin, Am Ch

1 gram atom dissolves

at 0° in 3 93 mol liquid NH<sub>3</sub>
" —25° " 3 93 " " " "
" —50° " 3 93 " " " "
" —\00° " 3 93 " " " "
(Ruff, B 1906, **39** \10)

Sol in ethylamine Insol in propylamine and in second ary and tertiary amines (Kraus, J Am Chem Soc 1907, 29 1561)

### Lithium amalgam, I illgi

I iHg is obtained it ill temp up to 100° Can be cryst from Hg without decomp at any temp below 100° (Kerp, Z inorg 1900, 25 68)

### Lithium amide, I 1 NII

(Ruff, B 1911 44 505)

Decomp slowly in the in

Slowly decomp by cold, rapidly by hot

Slowly decomp by HCI

Slowly decomp by cold ripidly by hot ibs alcohol (litherles Chem Soc 1894, 65 )18)

### / rilithium amide, I 13NII

Hydroscopic decomp by H O (Dafert, M 1910, **31** 994)

Lithium ammonia, Li, NH:

Decomp by  $\rm H_2O$  at ordinary temp, sol in liquid  $\rm NH_3$  (Moissan, C R 1898, 127 689)

Li, 3NH<sub>3</sub> (Moissan, C R 1901, 133 716)

Trilithium ammonium, Li3NH4

Very hydroscopic, decomp by  $H_2O$  (Dafert, M 1910, **31** 992)

### Lithium antimonide, LisSb

Decomp by  $H_2O$  with evolution of  $H_2$  Sol in liquid NH<sub>3</sub> (Lebeau, C R 1902, **134** 285)

### Lithium arsenide, Li<sub>3</sub>As

Decomp by  $H_2O$ , decomp violently by fuming  $HNO_3$  (Lebeau, C R 1899, **129** 50)

### Lithium azoimide, LiNa

Deliquescent Stable in aq solution 36 12 pts are sol in 100 pts H<sub>2</sub>O at 10° " " " " 100 " 62 07 H<sub>2</sub>O "155° " 100 " 66 66 " H<sub>2</sub>O "16° 66 41 " 100 20 26 " " " " abs alcohol at 16°

Insol in ether (Curtius, J pr 1898, (2) 58 277)

+HO Very hydroscopic, decomp in the air Very sol in HO and alcohol (Dennis, Z anorg 1898, 17 18)

#### Lithium bromide, LiBr

Deliquescent

100 pts H O dissolve at

0° 34° 59° 82° 103° 143 196 222 244 270 pts LiBi

Sp gr of I 1Br + Aq at 19 5° ~~ 0 10 15 20 25 | | 1 035 1 072 1 113 1 150 1 204 1 254

35 40 45 50 50% I 1Br 1 309 1 308 1 4 32 1 500 1 580

(Kremers, Pogg 103 65 104 133 Gerlach, Z and 8 285)

| Lemp of maximum | Lemol LiBi dissolved | density of LiBr + \quad m 1000 g H<sub>2</sub>O

> 1 921° 0 2941 0 881° 0 4883 (de Coppet, C R 1900, **131** 178)

Moderately sol in liquid NII<sub>2</sub> (Frinklin, Am (h. J. 1898, **20**, 828.)

Sol in benzomtrile (Naumann, B. 1914, 47-1369)

Solubility in glycol at  $11.7^{\circ} = 37.5^{\circ}_{0}$  (Conincl., Belg Acad Bull 1905, 359)

Sol in actione (Naumann, B 1904, 37 4328, Lidmann, C C 1899, H 1014)

Sol in methyl acetate (Niuminn, B 1909, 42 3789) ethyl acetate (Niuminn, B 1904,

**37** 3601)

| Difficultly sol in ethyl acetate (Naumann, B 1910, 43 314)   |
|--------------------------------------------------------------|
| mann, B 1910, 43 314)                                        |
| $+H_2O$ 100 g $H_2O$ dissolve 209 g LiBr                     |
| at 44° (Bogorodski, C C 1894, II 514)                        |
| +2H <sub>2</sub> O (Bogorodski)                              |
| +3H <sub>2</sub> O 100 g H <sub>2</sub> O dissolve 80 g LiBr |
| at —30°, and 122 g at —10° (Bogorodski)                      |
|                                                              |

Lithium molybdenyl bromide, LiBr, MoOBr<sub>3</sub> +4H<sub>2</sub>O

Very hygroscopic (Weinland and Knoll, Z anorg 1905, 44 111)

## Lithium bromide ammonia

LaBr, NH<sub>3</sub> Sol in H<sub>2</sub>O with decomp LaBr, 2NH<sub>3</sub> " " " " " " LaBr, 3NH<sub>3</sub> " " " " " " LaBr, 4NH<sub>3</sub> " " " " " " " (1395)

## Lithium carbide, LiC2

In sol in conc acids Sol in fused oxidizing agents, decomp  $\rm H_2O$  in the cold (Moissan, C R 1896, 122 363)

# Lithium subchloride, Li<sub>2</sub>Cl

**D**ecomp by  $H_2O$  (Guntz, C R 1895, **121** 945)

### Lithium chloride, LiCl

Very deliquescent Most deliquescent salt known to Berzelius Very sol in H<sub>2</sub>O Sol in 1 315 pts H<sub>2</sub>O at 15° (Gerlach)

100 pts H<sub>2</sub>O dissolve at O 20° 65° 80° 69° 140° 160°

63 7 80 7 104 2 115 129 139 145 pts LiCl (Gerlach, Z anal 8 281)

Sp gr of LiCl+Aq at 15° containing 20% LiCl, 10 15 1 117 1 086 1 030 1 058 1 006 30 35 40% LiCl 1 219 12561.1821 148 (Gerlach, Z anal 8 281)

Sp gr of LiCl+Aq at 18° containing 5 10 20 30 40% LiCl 1 0274 1 0563 1 115 1 181 1 255 (Kohlrausch, W Ann 1879 1)

Sp gr of LiCl+Aq at 25°

| Concentration of I iCl+Aq     | ∽p gr                                |
|-------------------------------|--------------------------------------|
| 1-normal 1/,- " 1/4- " 1/8- " | 1 0243<br>1 0129<br>1 0062<br>1 0030 |
|                               | 1000 5 38 )                          |

(Wagner, Z phys Ch 1890, 5 38)

| Sp gr of LiCl+Aq                 |                                              |  |
|----------------------------------|----------------------------------------------|--|
| g LiCl in 1000 g<br>of solution  | 7] RT 1 165                                  |  |
| 0<br>2 3923<br>6 2360<br>10 1093 | 1 000000<br>1 001405<br>1 003647<br>1 005921 |  |

(Dijken, Z phys Ch 1897, 24, 109)

Sp gr of LaCl+Aq at 0° % LaCl 4 26 12 18 22 2 32 5 41 4 43.2 Sp gr 1 026 1 073 1 133 1 203 1 267 1 282 (Lemoine, C R 1897, 125 603)

Sp gr of LiCl+Aq at 20°

| Normality of LiCl+Aq | ℃ LiCl | ्रक हर |
|----------------------|--------|--------|
| 10 35                | 35 97  | 1 2230 |
| 7 17                 | 26 40  | 1 1550 |
| 5 57                 | 21 10  | 1 1215 |
| 2 98                 | 11 83  | 1 0091 |
| 1 06                 | 4 37   | 1 0232 |

(Forchheimer, Z phys Ch 1900, 34 25)

Sp gr 20° 4° of a normal solution of LiCl = 1.022375 (Haigh, J Am Chem Soc 1912, 34 1151)

Sp gr of dil LiCl + Aq at 20 004° Conc = g equiv LiCl per l at 20 004° Sp gr compared with H O at 20 004=1

| ~r 0 -                                                                       |                                                                                                                      |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Сове                                                                         | 7p 6                                                                                                                 |
| 0 0000<br>0 0001<br>0 0002<br>0 0005<br>0 0010<br>0 0020<br>0 0050<br>0 0100 | 1 000 000 0<br>1 000 002 5<br>1 000 005 0<br>1 000 012 6<br>1 000 025 8<br>1 000 025 5<br>1 000 125 5<br>1 000 251 0 |
|                                                                              |                                                                                                                      |

(Lamb and Lee J An. Chem See 1415 35

B-pt of LiCl-Aq

| - LıCl                | Вι                 |                        |                                |
|-----------------------|--------------------|------------------------|--------------------------------|
| 3 38<br>6 54<br>13 04 | 101°<br>102<br>105 | 16 66<br>19 55<br>21 8 | 10 <sup>-0</sup><br>109<br>111 |
|                       | ~1                 | Sec 61 341             |                                |

(Skinner, Chem Soc 61 341

Sat LiCl+Aq boils at 171° (Kremers)

B-pt of LiCl+Aq P=pts LiCl to
100 pts H<sub>2</sub>O

| 100 pts 1120 |      |      |       | l     |        |    |
|--------------|------|------|-------|-------|--------|----|
| B pt         | P    | B pt | P     | B pt  | P      | l  |
| 101°         | 3 5  | 124° | 48 5  | 147°  | 87 5   |    |
| 102          | 7    | 125  | 50    | 148   | 90     |    |
| 103          | 10   | 126  | 51 5  | 149   | 925    |    |
| 104          | 12 5 | 127  | 53    | 150   | 95     |    |
| 105          | 15   | 128  | 54 5  | 151   | 975    |    |
| 106          | 17 5 | 129  | 56    | 152   | 100    |    |
| 107          | 20   | 130  | 57 5  | 153   | 102 5  |    |
| 108          | 22   | 131  | 59    | 154   | 105    | ١. |
| 109          | 24   | 132  | 60 5  | 155   | 107 5  | ľ  |
| 110          | 26   | 133  | 62    | 156   | 1105   |    |
| 111          | 28   | 134  | 63 5  | 157   | 113 5  |    |
| 112          | 30   | 135  | 65    | 158   | 1165   | l  |
| 113          | 32   | 136  | 66 5  | 158 5 | 117 96 | l  |
| 114          | 33 5 | 137  | 68    | 159   | 1195   | l  |
| 115          | 35   | 138  | 69 75 | 160   | 122 5  | l  |
| 116          | 36 5 | 139  | 715   | 161   | 125 5  | l  |
| 117          | 38   | 140  | 73 25 | 162   | 128 5  | ١  |
| 118          | 39 5 | 141  | 75    | 163   | 131 5  | I  |
| 119          | 41   | 142  | 77    | 164   | 135    | ١  |
| 120          | 42 5 | 143  | 79    | 165   | 138 5  | ١  |
| 121          | 44   | 144  | 81    | 166   | 142 5  | ١  |
| 122          | 45 5 | 145  | 83    | 167   | 146 5  | ١  |
| 123          | 47   | 146  | 85    | 168   | 151    | ١  |

(Gerlach, Z anal 26 437)

Cl+Aq at 0°

|                             |                             | 1                            | Sp gr of                   |                                  |
|-----------------------------|-----------------------------|------------------------------|----------------------------|----------------------------------|
|                             | HCl                         | LıCl                         | HCl                        | solution                         |
| 120<br>97 5<br>67 0<br>58 0 | 0 0<br>22 5<br>66 0<br>81 0 | 51 0<br>41 4<br>28 5<br>24 6 | 0 0<br>8 2<br>24 1<br>29 5 | 1 255<br>1 243<br>1 249<br>1 251 |

(Engel, A ch (6) 13 385)

See also LiCl+H2O

SI sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 828)

Sol in absolute alcohol, ether, and alcoholether

B-pt of alcoholic solution of LiCl

| % LiCi              |                                    | % LiCl        |                           |
|---------------------|------------------------------------|---------------|---------------------------|
| 2 4<br>5 39<br>8 01 | 78 43°+0 70°<br>" +2 15<br>" +4 18 | 9 93<br>15 94 | 78 43°+ 5 55°<br>" +11 75 |

(Skinner)

Solubility in alcohol+Aq decreases to 40% alcohol+60% H<sub>2</sub>O Curve shows minimum at 30% H<sub>2</sub>O to 70% alcohol The sat pure H<sub>2</sub>O and pure alcohol solutions cooled to  $0^\circ$  deposit LiCl, H<sub>2</sub>O and LiCl,  $4\text{C}_2\text{H}_6\text{O}$  respectively (Pina de Rubies, C A **1914** 743, 3006)

20° 30° 40° 50° 60° 24 28 25 10 25 38 24 40 23 46 g LiCl The solid phase from 20°-60° is LiCl (Turner and Bissett, Chem Soc 1913, 103

Solubility in ethyl alcohol+Aq at 25°

| 100 g                                                                                                                                                                                                  | of the solution co                                                                                                                                                                                   | ntain                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G C₂H₅OH                                                                                                                                                                                               | G H₂O                                                                                                                                                                                                | G LıCl                                                                                                                                                                                                      |
| 0<br>5 96<br>11 07<br>17 46<br>18 56<br>22 16<br>26 29<br>28 97<br>29 27<br>30 10<br>30 51<br>32 79<br>38 40<br>49 27<br>50 32<br>53 50<br>58 15<br>59 78<br>63 09<br>70 74<br>70 70<br>70 74<br>79 26 | 55 10<br>51 52<br>48 73<br>43 90<br>43 70<br>41 17<br>39 51<br>37 42<br>36 89<br>36 64<br>35 67<br>34 95<br>31 58<br>24 67<br>24 04<br>20 94<br>18 47<br>17 46<br>14 83<br>8 66<br>8 26<br>7 78<br>0 | 44 90<br>42 52<br>40 20<br>38 64<br>37 74<br>36 67<br>34 70<br>33 61<br>33 84<br>33 26<br>33 82<br>32 26<br>30 02<br>26 06<br>25 64<br>25 56<br>23 38<br>22 76<br>22 08<br>21 10<br>21 04<br>21 48<br>20 74 |
|                                                                                                                                                                                                        | <del></del>                                                                                                                                                                                          | <del>'</del>                                                                                                                                                                                                |

The solid phase in the mixtures which are richest in alcohol is LiCl, in the other mixtures the solid phase is LiCl+H<sub>2</sub>O

(Pina de Rubies, C C 1915, I 521)

Sp gr of L<sub>1</sub>Cl in ethyl alcohol (L<sub>1</sub>Cl,  $2C_2H_6O$ )

| % salt | Sp gr at 14° | Sp gr at 0° |
|--------|--------------|-------------|
| 0      | 0 797        | 0 809       |
| 5 2    | 0 839        | 0 851       |
| 10 1   | 0 871        | 0 881       |
| 14 6   | 0 903        | 0 903       |

(Lemoine, C R 1897, 125 605)

| Solubility | ın | methyl | a | lcohol  | at  | ť° |
|------------|----|--------|---|---------|-----|----|
| t.º        |    | T      | % | LıCl ın | sat | 50 |

| t <b>°</b> | % LiCl in sat solution |
|------------|------------------------|
| 1          | 26                     |
| 23         | 27                     |
| 50         | 30                     |

(Lemoine, C R 1897, 125 604)

Sp gr of LiCl in methyl alcohol (LiCl, 3CH<sub>4</sub>O) % salt 52 145 221 Sp gr at 215° 0836 0910 0974 Sp gr "0° 0854 0926 0988 (Lemoine, C R 1897, 125 604)

15 86 g are sol in 100 g propyl alcohol (Schlamp, Z phys Ch 1894, 14 276) Sol in 15 pts fusel oil (Gooch, Am Ch J

9 33)

100 g methyl alcohol dissolve 42 36 g LiCl at 25° 100 g ethyl alcohol dissolve 25 83 g LiCl

at 25°
100 g propyl alcohol dissolve 25 83 g LiCl

at 25° 100 g isoamyl alcohol dissolve 9 03 g LiCl at 25°

(Turner and Bissett, Chem Soc 1913, **103** 1909)

Solubility of fused LiCl in alcohols at 25°

| Solvent                                                                                                | % I 1Cl                                                        |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Water Ethyl alcohol Propyl alcohol Butyl alcohol Amyl alcohol Allyl alcohol Glycerine Phenol (at 53°C) | 45 0<br>2 475<br>3 720<br>9 56<br>8 26<br>4 20<br>4 14<br>1 89 |

(Patten and Mott, J phys Chem 1904, 8 158)

100 pts pyridine dissolve 7 78 pts LiCl at 15°, 14 26 pts LiCl at 100° (Laszczynski, B 1894, 27 2288)

Soluble in anhydrous pyridine, 97% pyridine+Aq, 95% pyridine+Aq, and 93% pyridine+Aq (Kahlenberg, J Am Chem Soc 1908, **30** 1107)

Difficultly sol in methyl acetate (Naumann, B 1909, 42 3789), ethyl acetate (Naumann, B 1910, 43 314)

Sol in ethyl acetate (Naumann, B 1904,

**37** 3601)

Solubility in glycol at 15°=11% (de Coninck, Belg Acad Bull 1905, 359)
Insol in benzonitrile (Naumann, B

1914, 47 1370)

Sol in ethylamine (Shinn, J phys Chem 1907, 11 538)

Sol in acetone (Eidmann, C C 1899, II 1014)

| Solubility of LiCl in aceton | Solubility | y of LiCl | ın acetone |
|------------------------------|------------|-----------|------------|
|------------------------------|------------|-----------|------------|

| Pts sol in 100 pts acetone                   | t                               |
|----------------------------------------------|---------------------------------|
| 4 60<br>4 40<br>4 11<br>3 76<br>3 12<br>2 14 | 0<br>12<br>25<br>46<br>53<br>58 |

(Laszczynski, B 1894, 27 2287)

 $+\mathrm{H}_2\mathrm{O}$  13 536 millimols are contained in 1 l sat solution at 25° (Herz, Z anorg 1912, 73 274)

### Solubility in HCl+Aq at 25°

| Millimols HCl in 10 ccm | Millimols LiCl in 10 ccm             |
|-------------------------|--------------------------------------|
| 6 30<br>10 53<br>17 64  | 135 36<br>134 14<br>126 52<br>122 58 |

(Herz, Z anorg 1912, 73 274)

 $+2\rm{H}_2\rm{O}$  Sol in acetone (Krug and M'Elroy, J Anal Ch 6 184)  $+3\rm{H}_2\rm{O}$  (Bogorodski, C C 1894, II 514)

Lithium gold chloride See Chloraurate, lithium

Lithium manganous chloride, LiCl, MnCl<sub>2</sub>+ 3H<sub>2</sub>O

Decomp by  $H_2O$ , stable only in excess of LiCl (Chassevant, A ch (6) 30 10)

Lithium mercuric chloride, 2LiCl, HgCl.

Very deliquescent and sol in  $H_2O$  (Harth, Z anorg 1897, 14 323)

Lithium nickel chloride, LiCl, NiCl<sub>2</sub>+3H<sub>2</sub>O
Deliquescent Sol in H<sub>2</sub>O and alcohol (Chassevant)

Lithium thallic chloride, 3LiCl, TlCl<sub>3</sub>+ 8H<sub>2</sub>O

Very deliquescent Sol in H<sub>2</sub>O (Pratt, Am J Sci 1895, (3) **49** 404)

Lithium stannic chloride

See Chlorostannate, lithium

Lithium uranous chloride, Li<sub>2</sub>UCl<sub>6</sub>

As K salt (Aloy, Bull Soc 1899, (3) 21 264)

Lithium uranium chloride, UCl4, 2LiCl

Very hydroscopic, sol in H<sub>2</sub>O with decomp Sol in acetic acid Decomp by alcohol (Aloy, Bull Soc 1899, (3) **21** 264) Lithium zinc chloride, LiCl, ZnCl<sub>2</sub>+3H<sub>2</sub>O

Extremely deliquescent (Ephraim, Z anorg 1908, 59 68)
3LiCl, ZnCl<sub>2</sub>+10H<sub>2</sub>O (?) Not obtained

3LiCl, ZnCl<sub>2</sub>+10H<sub>2</sub>O (?) Not obtained in solid state (Ephraim, Z anorg 1908, **59** 69)

### Lithium chloride ammonia

LıCl, NH<sub>3</sub> LıCl, 2NH<sub>3</sub> LıCl, 3NH<sub>3</sub> LıCl, 4NH<sub>3</sub>

Above salts are all decomp by H<sub>2</sub>O (Bonnefoi, C R 1898, **127** 367–369)

### Lithium chloroiodide, LiCl<sub>4</sub>I+4H<sub>2</sub>O

Deliquescent (Wells and Wheeler, Sill Am J 144 42)

### Lithium fluoride, LiF

Very difficultly sol in H<sub>2</sub>O (Berzelius,

Pogg 1 17)

Two crystalline forms Only very sl sol in H<sub>2</sub>O Very sl decomp by H<sub>2</sub>O at red heat (Poulenc, Bull Soc 1894, (3) 11 17) Sp gr of solution sat at 18°=1 003 and contains 0 27% LiF (Mylius, B 1897, 30 1718)

Sol m 800 pts H<sub>2</sub>O, and the presence of NH<sub>4</sub>F and NH<sub>2</sub> decreases solubility to 1 3500 (Carnot, Bull Soc 1889, (3) 1 250)

Two crystalline forms are very sl sol in HCl, easily sol in HNO<sub>3</sub> (Poulenc, Bull (3) 11 17)

stalline forms are insol in 95% (Poulenc)

in methyl acetate (Naumann, B 3790)

Difficultly sol in ethyl acetate (Naumann, B 1910, 43 314)

Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014)

#### Lithium hydrogen fluoride, LiHF<sub>2</sub>

Difficultly sol in  $H_2O$ , but more easily than LiF (Berzelius)

Lithium silicon fluoride See Fluosilicate, lithium

Lithium stannic fluoride See Fluostannate, lithium

Lithium tantalum fluoride See Fluotantalate, lithium

Lithium uranyl fluoride, UO<sub>2</sub>F<sub>2</sub>, 4LiF (Ditte)

Lithium zirconium fluoride See Fluozirconate, lithium

## Lithium hydride, LiH

Not deliquescent Decomp by H<sub>2</sub>O (Guntz, C R 1896, **123** 997)

### Lithium hydrosulphide, LiSH (?)

Deliquescent Sol in H<sub>2</sub>O and alcohol (Berzelius, Pogg 6 439)

### Lithium hydroxide, LiOH

Not so deliquescent as NaOH, and apparently not more sol in hot than cold H<sub>2</sub>O (Gmelin, Gilb 62 399)

Not deliquescent (Arfvedson, A ch 10

The solubility of LiOH in  $\rm H_2O$  can be expressed by y=6 6750+0 00346t+0 0003t<sup>2</sup>, where y=the percentage of  $\rm Li_2O$  in a saturated solution (Dittmar, Jour Soc Chem Ind 7 730)

### Solubility of LiOH in H2O at to

| t°                                                       | G per 100                                                                     | g Solution                                                                             | G LiOH per                                                                   |
|----------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| U                                                        | Lı2O                                                                          | LiOH                                                                                   | 100 g H₂O                                                                    |
| 0<br>10<br>20<br>25<br>30<br>40<br>50<br>60<br>80<br>100 | 6 67<br>6 74<br>6 86<br>6 95<br>7 05<br>7 29<br>7 56<br>7 96<br>8 87<br>10 02 | 10 64<br>10 80<br>10 99<br>11 14<br>11 27<br>11 68<br>12 12<br>12 76<br>14 21<br>16 05 | 12 7<br>12 7<br>12 8<br>12 9<br>12 9<br>13 0<br>13 3<br>13 8<br>15 3<br>17 5 |

(Seidell's Solubilities, 1st Ed 174)

A sat aq solution contains 7 09% LiOH (Schreinemakers, C C 1905, II 1486)

Solubility in Li<sub>3</sub>SbS<sub>4</sub>+Aq it 30°

| %<br>LiOH                               | <i>o</i> 7₀<br>L₁₃SbS₄                           | Solid Phase                                                                                                                                                                    |
|-----------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 4<br>9 1<br>2 3<br>2 1<br>2 1<br>1 4 | 0<br>8 3<br>29 9<br>48 3<br>52 1<br>51 8<br>51 3 | I <sub>2</sub> OH, H <sub>2</sub> O<br>""  L <sub>1</sub> OH, H <sub>2</sub> O+L <sub>1</sub> ,SbS <sub>4</sub> , 10H <sub>2</sub> O  L <sub>13</sub> SbS <sub>4</sub> , 10H O |

(Donk, Chem Weekbl 1908, 5 529, 629, 767)

Sl sol in alcohol, insol in alcohol-ether (Mayer)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1904, 37 3601)

Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014)

Cryst also with  $H_2O$ , and  $\frac{1}{2}H_2O$  (Gottig, B 20 2912)

### Lithium imide, Li<sub>2</sub>NH

Decomp at high temp Insol in toluene, benzene, ether and ethyl acetate Decomp CHCl<sub>8</sub> (Ruff, B 1911, 44 506)

### Lithium iodide, Lil Deliquescent

Solubility in 100 pts H<sub>2</sub>O at 0° 19° 40° 59° 75° 80° 99° 120° 151 164 179 200 263 435 476 588 pts IaI

Sp gr of LiI+Aq at 195° containing 30% LiI, 15 20 251038 1079 1124 1172 1224 1280 60% LiI 40 45 50 55 1344 1414 1489 1575 1670 1777 (Kremers, Pogg 104 133, 111 60 Ger-

Sp gr of LiI+Aq at 18° containing 20 25% L<sub>1</sub>I 10 15 1 0361 1 0756 1 1180 1 1643 1 2138 (Kohlrausch, W Ann 1879 1)

lach, Z anal 8 295)

g-mol LiI dissolved Temp of maximum density of LiI+Aq ın 1000 g H<sub>2</sub>O 2 516° 0 1795 0 039° 0 4666 (de Coppet, C R 1900, **131** 178)

Very sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828) 100 g methyl alcohol dissolve 343 4 g LiI at 25°

 $100~{\rm g}$  ethyl alcohol dissolve  $250.8~{\rm g}$  LiI at  $25^{\circ}$ 

 $100~\mathrm{g}$  propyl alcohol dissolve 47 52 g  $~\mathrm{LiI}$  at  $25^{\circ}$ 

 $100~{\rm g}$ ısoamv<br/>l alcohol dissolve 112 $50~{\rm g}$  Li<br/>I at  $25^{\circ}$ 

In the case of propyl alcohol the solid phase at 25° is Lil, 4C<sub>4</sub>H<sub>8</sub>O (Turner and Bissett, Chem Soc 1913, 103 1909)

Solubility in organic solvents at t°

C=pts by wt of LiI in 100 ccm of the sat solution

L=no of liters which at the saturation temp hold in solution 1 mol LiI

| Solvent                  | t                | С                       | L                      |
|--------------------------|------------------|-------------------------|------------------------|
| Furfurol<br>Nitromethane | 25°<br>25°<br>0° | 45 86<br>2 519<br>1 219 | 0 292<br>5 32<br>10 98 |

(Walden, Z phys Ch 1906, 55 718)

Solubility in glycol at  $15.3^{\circ} = 28\%$ (de Coninck, Belg Acad Bull 1905, 359)

Sol in benzonitrile (Naumann, B 1914, **47** 1369) (Naumann, B Scl in methyl acetate

1909, **42** 3789) Difficultly sol in ethyl acetate (Naumann,

B 1910, 43 314)

Sol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4328) + H<sub>2</sub>O Mpt below 200° (Bogorodsky,

C C 1897, II 175

Mpt 86–88° (Bogorodsky) Mpt 75° (Bogorodsky)  $+2H_2O$ 

 $+3H_2O$ Sol in absolute alcohol without decomp

(Thirsoff, Chem Soc 1894, 66 (2) 234) The composition of the hydrates formed by LiI at different dilutions is calculated from determinations of the lowering of the fr-pt produced by Lil and of the conductivity and sp gr of LiI+Aq (Jones, Am Ch J 1905, **34** 301)

### Lithium mercuric iodide, 2LiI, HgI<sub>2</sub>+6H<sub>2</sub>O

Very deliquescent Decomp by H<sub>2</sub>O Very sol without decomp in alcohols, glycerine, acetone, fuming formic acid, acetic acid, ethyl acetate, ethyl oxalate, etc Less sol e Insol in benzene and (Duboin, C R 1905, 141 ın nıtrobenzene methyl 10d1de 1017

 $+8H_{2}O$ Decomp by H<sub>2</sub>O Very sol in alcohols, glycerine, acetone, fuming formic acid, acetic acid, ethyl acetate, etc without decomp Sl sol in nitrobenzene Insol in benzene and methyl iodide (Duboin, l c) Sol in alcohol Hydroscopic and acetone without decomp (Dobroserdoff,

C C 1901, I 664)

Lithium nitride, Li₃N Sol in H<sub>2</sub>O with decomp (Ouvrard, C R **114** 120)

Very hydroscopic (Dafert, M 1910, 31 987)

Lithium oxide, Li<sub>2</sub>O

Slowly sol in H<sub>2</sub>O to form LiOH See Lithium hydroxide

Lithium peroxide, Li<sub>2</sub>O<sub>2</sub>

(de Forcrand, C R 1900, 130 1467)

Lithium hydrogen peroxide, Li O2, H2O2+

(de For-Sol in H<sub>2</sub>O Insol in alcohol crand, C R 1900, 130 1466)

Lithium selenide, I 1.Se

Sol in H<sub>2</sub>O (Fabre, C R 103 269)  $+9H_2O$  Sol in  $H_2O$  (Fabre)

Lithium silicide, Li<sub>6</sub>Si

Decomp by H<sub>2</sub>O and by dil acids Decomp by aqueous solutions of alkalies with evolution of H (Moissan, C R 1902, 134 1083)

Lithium monosulphide, Li-S

More sol in H<sub>2</sub>O or alcohol than LiOH

Luteochromium bromide, Cr(NH<sub>3</sub>)<sub>6</sub>Br<sub>3</sub>

Less sol in H<sub>2</sub>O than the chloride (Jorgensen, J pr (2) 30 1)

----- bromoplatmate,  $[Cr(NH_3)_6]_2(PtBr_6)_3+4H_2O$ 

Sl sol in  $\mathrm{H}_2\mathrm{O}$  Insol in alcohol (Jorgensen)

chloride, Cr(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub>+H<sub>2</sub>O

Efflorescent, and very sol in  $\mathrm{H}_2\mathrm{O}$  (Jorgensen)

—— chloroplatmate

(a) [Cr(NH<sub>8</sub>)<sub>6</sub>]<sub>2</sub>(PtCl<sub>6</sub>)<sub>8</sub>+6H<sub>2</sub>O Nearly completely insol in H<sub>2</sub>O (Jorgensen)

(b) Cr(NH<sub>5</sub>)<sub>6</sub>Cl(PtCl<sub>6</sub>)+2½H<sub>2</sub>O Decomp by H<sub>2</sub>O into above, insol in alcohol (Jorgensen)

(c)  $[Cr(NH_3)_6]_2Cl_4(PtCl_6)+2H_2O$  Decomp by  $H_2O$  into (a) (Jorgensen)

— mercuric chloride, Cr(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub>, HgCl<sub>2</sub> Decomp by H<sub>2</sub>O, sl sol in dil HCl+Aq,

insol in alcohol

Cr(NH<sub>2</sub>)<sub>2</sub>Cl<sub>2</sub>. 3HgCl<sub>2</sub>+2H<sub>2</sub>O

Decomp

 $Cr(NH_3)_6Cl_3$ ,  $3HgCl_2+2H_2O$  Decomp by dil HCl+Aq into above salt (Jorgensen)

iromicyanide,  $Cr(NH_3)_6Cr(CN)_6$  lipitate

---- cobalticyanide, Cr(NH<sub>3</sub>)<sub>6</sub>Co(CN)<sub>6</sub>

Nearly insol in  $H_2O$  or in conc HCl+Aq (Jorgensen)

—— ferrocyanide, Cr(NH<sub>8</sub>)<sub>6</sub>Fe(CN)<sub>6</sub>

Very sl sol in cold H<sub>2</sub>O or dil acids (Jorgensen)

--- iodide, Cr(NH<sub>3</sub>)<sub>6</sub>I<sub>3</sub> Sl sol in H<sub>2</sub>O (Jorgensen, l c)

--- 10dosulphate, Cr(NH<sub>3</sub>)<sub>6</sub>So<sub>4</sub>I

Sol in H<sub>2</sub>O, nearly insol in dil NH<sub>4</sub>OH+Aq or alcohol (Jorgensen)

--- nitrate, Cr(NH<sub>3</sub>)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>

Sol in 35-40 pts  $\rm H_2O$  Insol in cold dil  $\rm HNO_3+Aq$  or alcohol Can be crystallised out of  $\rm H_2O$  containing a little  $\rm HNO_3$  (Jorgensen, J pr (2) 30 1)

---- nitrate chloroplatinate, Cr(NH<sub>3</sub>)<sub>6</sub>(NO<sub>3</sub>)PtCl<sub>5</sub>+H O

Insol in  $H_2O$  Sol in dil  $H_2SO_4+Aq$  (Jorgensen)

nitratosulphate, Cr(NH<sub>3</sub>)<sub>5</sub>(NO<sub>3</sub>)SO<sub>4</sub>
Sol in H<sub>2</sub>O, insol in alcohol (Jorgensen)

Luteochromium oxalate,  $[Cr(NH_3)_6]_2(C_2O_4)_3+4H_2O$ 

Nearly insol in cold  $H_2O$  (Jorgensen)

---- orthophosphate, Cr(NH<sub>3</sub>)<sub>6</sub>PO<sub>4</sub>+4H<sub>2</sub>O
Sl sol in H<sub>2</sub>O, easily sol in dil acids
(Jorgensen)

--- sodium pyrophosphate,  $Cr(NH_8)_6(NaP_2O_7)+11\frac{1}{2}H_2O$ 

Nearly insol in cold H<sub>2</sub>O, wholly insol in dil NH<sub>4</sub>OH+Aq (Jorgensen)

Quite sol in  $H_2O$ , insol in alcohol (Jórgensen)

---- sulphate chloroplatmate,

 $\begin{array}{c} [Cr(NH_3)_6(SO_4)]_2PtCl_6 \\ Nearly \ insol \ \ in \ H_2O \quad \ (Jorgensen \ ) \end{array}$ 

Luteocobalt diamine chromium sulphocyanide

See Diamine chromium luteocobalt sulphocyanide

Luteocobaltic bromide, Co(NH<sub>8</sub>)<sub>6</sub>Br<sub>3</sub>

Sol in  $H_2O$  Precipitated from saturated  $H_2O$  solution by dil HBr+Aq (Jorgensen, J pr (2) **35** 417)

--- bromopermanganate,

 $Co(NH_3)_6Br_2(MnO_4)$ Easily sol in  $H_2O$  (Klobb, A ch (6) **12** 

bromoplatmate, Co(NH<sub>3</sub>)<sub>6</sub>Br<sub>3</sub>, PtBr<sub>4</sub>+

Sl sol in H<sub>2</sub>O, can be recrystallised from hot H<sub>2</sub>O containing HBr (Jorgensen)

—— bromosulphate, Co(NH<sub>3</sub>)<sub>6</sub>Br(SO<sub>4</sub>)

Nearly insol in H<sub>2</sub>O Very sl sol in dil
NH<sub>4</sub>OH+Aq (Jorgensen)

---- carbonate,  $[Co(NH_3)_6]_2(CO_3)_3 + 7H_2O$ 

Efflorescent, easily sol in  $H_2O$  [Co(NH<sub>3</sub>)<sub>6</sub>]<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>,  $H_2CO_3+5H_2O$ 

 $[Co(NH_3)_6]_2(CO_3)_5$ ,  $H_2CO_3+5H_2O$  Less sol in  $H_2O$  than the neutral salt (Gibbs and Genth)

---- chloride, Co(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub>

Sol in 1709 pts  $\rm\,H_2O$  at 105°, 1681 pts at 114°, 1648 pts at 12°, and more easily in hot  $\rm\,H_2O$  (F Rose)

100 pts H O dissolve 4 26 pts at 0°, and 12 74 pts at 46 6° (Kurnakoff, J russ Soc 24 629)

Not appreciably sol in conc HCl+Aq (Jorgensen)

Insol in alcohol or solutions of the alkali chlorides (Gibbs and Genth)

Insol in NH<sub>4</sub>OH+Aq

Aqueous solution is pptd by alcohol, mineral acids, or alkalı chlorides

Luteocobaltic mercuric chloride, Co(NH<sub>8</sub>)<sub>6</sub>Cl<sub>3</sub>, HgCl<sub>2</sub>+1½H<sub>2</sub>O

Sol in hot H<sub>2</sub>O (Krok, 1870)

By recrystallizing from hot H2O containing HCl is converted into-

 $\begin{array}{c} \text{Co(NH}_3)_6\text{Cl}_3, 3\text{HgCl}_2 + \text{H}_2\text{O} \quad \text{Very sl sol} \\ \text{in cold } \text{H}_2\text{O} \quad \text{(Jorgensen)} \\ \text{Co(NH}_3)_6\text{Cl}_3, 2\text{HgCl}_2 + \text{1}_2\text{H}_2\text{O} \quad \text{Sol in hot} \\ \end{array}$ H<sub>2</sub>O, from which it crystallizes on cooling Insol in cold conc HCl+Aq, and is pptd from H<sub>2</sub>O solution by HCl or alcohol (Carstanjen)

Does not exist (Jorgensen)

+3H<sub>2</sub>O More easily sol in cold H<sub>2</sub>O and other solvents than the preceding comp (Carstanjen, Berlin, 1861)

Does not exist (Jorgensen)

- stannous chloride, 2Co(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub>,  $3SnCl_2+10H_2O$ +8H<sub>2</sub>O
- chloraurate, Co(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub>, AuCl<sub>3</sub> Very sl sol in cold, more easily in hot H<sub>2</sub>O containing HCl (Gibbs and Genth, Sill Am J (2) **23** 330)
- --- chloriodate,  $[Co(NH_3)_6Cl_2]_2I_4O_{11}+H_2O$
- chloriridite, Co(NH<sub>3</sub>)<sub>6</sub>, IrCl<sub>6</sub> Insol in boiling H2O or dil HCl+Aq (Gibbs)
- --- chloriridate, 2Co(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub>, 3IrCl<sub>4</sub> Insol in H<sub>2</sub>O (Gibbs)
- chlorochromate, Co(NH<sub>3</sub>)<sub>6</sub>CrO<sub>4</sub>Cl+  $3H_{2}O$

Sol in H<sub>2</sub>O (Klobb, Bull Soc 1901, (3) **25** 1027)

- --- chlorofluoride, Co(NH<sub>3</sub>)<sub>6</sub>Cl<sub>2</sub>F (Bohm, Z anorg 1905, 43 339)
- chloropalladite, 2Co(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub>, 3PdCl<sub>2</sub> Fasily sol in dil HCl+Aq (Gibbs, Sill Am J (2) 37 58)
- ---- chloroperchlorate, Co(NH<sub>3</sub>)<sub>6</sub>Cl(ClO<sub>4</sub>)<sub>2</sub> (Millosevich, Gazz ch it 1901, 31 (2) 285)
- --- chloropermanganate,  $Co(NH_3)_6Cl_2(MnO_4)$

Can be recrystallized from H<sub>2</sub>O (Klobb. C R 103 384)

 chloropermanganate ammonium chloride, Co(NH<sub>3</sub>)<sub>6</sub>Cl<sub>2</sub>(MnO<sub>4</sub>), NH<sub>4</sub>Cl Easily sol in H<sub>2</sub>O (Klobb)

Luteocobaltic chloropermanganate potassium chloride, Co(NH<sub>3</sub>)<sub>6</sub>Cl<sub>2</sub>(MnO<sub>4</sub>), KCl

Very easily sol in H<sub>2</sub>O, with decomp into constituents, sol in KCl+Aq (Klobb)

- chloropermanganate sodium chloride, Co(NH<sub>3</sub>)<sub>6</sub>Cl<sub>2</sub>(MnO<sub>4</sub>), NaCl Very sol in H<sub>2</sub>O (Klobb)
- chloroplatinate, 2Co(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub>, 3PtCl<sub>4</sub>+

Can be recrystallized from much hot H<sub>2</sub>O

(Gibbs and Genth)

enth ) (Gibbs and Genth ) (Cibbs and Genth ) Very sl sol  $+21\mathrm{H}_2\mathrm{O}$ 

Co(NH<sub>2</sub>)<sub>5</sub>Cl<sub>3</sub>, PtCl<sub>4</sub>+ ½H<sub>2</sub>O in cold, decomp by hot H<sub>2</sub>O into-2Co(NH<sub>3</sub>)<sub>5</sub>Cl<sub>3</sub>, PtCl<sub>4</sub>+2H<sub>2</sub>O By recrystallizing from hot H2O containing HCl this salt is converted into the above salt gensen)

### --- chlororhodite

Nearly insol in boiling H<sub>2</sub>O or dil acids Sol in conc HCl+Aq (Gibbs, Sill Am J (2) 37 57)

- chlororuthenate, 2Co(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub>, 3RuCl<sub>4</sub> Sol in dil acids (Gibbs)
- chloroselenate,  $Co(NH_2)_6ClSeO_4+3H_2O$ Decomp by H<sub>2</sub>O (Klobb, Bull Soc 1901, (3) **25** 1029)
- chlorosulphate, Co(NH<sub>3</sub>)<sub>6</sub>Cl(SO<sub>4</sub>) Sol in H<sub>2</sub>O

+3H O Only sl sol in cold H<sub>2</sub>O (Klobb, Bull Soc 1901, (3) 25 1025)

- ammonium chlorosulphate,  $[Co(NH_3)_6]_4Cl_2(SO_4)_5$ ,  $3(NH_4)_2SO_4+$ 6H O

Decomp by H<sub>2</sub>O (Klobb, Bull Soc 1901, (3) **25** 1027)

 chlorosulphate chloroplatinate, 2Co(NH<sub>3</sub>)<sub>6</sub>Cl(SO<sub>4</sub>), PtCl<sub>4</sub>

Very sl sol in cold pure HO Can be recrystallized out of H<sub>2</sub>O containing HCl (Krok)

chlorosulphate mercuric chloride,  $Co(NH_3)_6Cl(SO_4)$ ,  $HgCl_2$ 

Scarcely sol in pure H<sub>2</sub>O, but can be crys tallized from warm acidified H<sub>2</sub>O (Krok)

chlorosulphite, Co(NH<sub>3</sub>)<sub>6</sub>(SO<sub>3</sub>)Cl+  $3H_2O$ 

Sol in H<sub>2</sub>O (Vortmann and Magdeburg, B **22** 2637)

- chromate,  $[Co(NH_8)_6]_2(CrO_4)_3+5H_2O$ Ppt Sol in hot H O  $[\hat{C}_{O}(NH_{3})_{6}]_{2}(Cr_{2}O)_{3}+5H_{2}O$ Moderately

sol in hot H<sub>2</sub>O

Luteocobaltic chromicyanide, Co(NH<sub>3</sub>)<sub>6</sub>Cr(CN)<sub>6</sub>

Ppt (Braun)

 cobalticyanide, Co(NH<sub>3</sub>)<sub>6</sub>Co(CN)<sub>6</sub> Ppt

dithionate, basic,  $4[\text{Co}(\text{NH}_3)_6(\text{S}_2\text{O}_6)(\text{OH})], \text{Co}_2(\text{S}_2\text{O}_6)_2\text{O}$ Sol in H<sub>2</sub>O and dil alcohol

- ferricyanide, Co(NH<sub>3</sub>)<sub>6</sub>Fe(CN)<sub>6</sub>+ 1/2H2O

Insol in H<sub>2</sub>O (Braun)

--- fluoride, Co(NH<sub>3</sub>)<sub>6</sub>F<sub>2</sub> Sl sol in cold H<sub>2</sub>O Nearly insol in acids (Bohm, Z anorg 1905, 43 340)

--- hydrogen fluoride, Co(NH<sub>3</sub>)<sub>6</sub>H<sub>3</sub>F<sub>6</sub> Sl sol in H<sub>2</sub>O Decomp by hot H<sub>2</sub>O (Miolati and Rossi, Real Ac Linc 1896, (5) **5** II, 185)

- hydrogen boron fluoride, Co(NH<sub>3</sub>)<sub>6</sub>F<sub>3</sub>, 3BF<sub>3</sub>, HF

Cryst from H<sub>2</sub>O acidified with HF M10lati and Rossi)

— molybdenyl fluoride,  $Co(NH_3)_6F_3$ , 2  $MoO_2F_2$ 

Cryst from H<sub>2</sub>O containing HF (Miolati and Rossi)

 silicon fluoride. Co(NH<sub>3</sub>)<sub>6</sub>F<sub>3</sub>, 2S<sub>1</sub>F<sub>4</sub> (Miolati and Rossi)

- titanium hydrogen fluoride, 2Co(NH<sub>3</sub>)<sub>6</sub>F<sub>3</sub>, 3T<sub>1</sub>F<sub>4</sub>, 2HF (Miolati and Rossi)

— tungstyl fluoride,  $Co(\bar{N}H_3)_6F_3$ ,  $2\dot{W}O_2F_2$  (Miolati and Rossi )

--- uranvl fluoride  $Co(NH_3)_6F_3$ ,  $UO_2F_2$ 

Can be cryst from H<sub>2</sub>O containing HF (Miolati and Rossi)

— vanadyl fluoride, 2Co(NH<sub>3</sub>)<sub>6</sub>F<sub>3</sub>, 5VO<sub>2</sub>F, 7HF Ppt (Miolati and Rossi)

— fluoride nitrate,  $Co(NH_3)_6F(NO_3)_2$ (Bohm, Z anorg 1905, 43 336)

- hydroxide,  $Co(NH_3)_6(OH)_3$ Known only in aqueous solution Luteocobaltic mercuric hydroxychloride, CoN<sub>6</sub>H<sub>14</sub>(HgCl)<sub>3</sub>(HgOH)Čl<sub>3</sub>

Ppt Easily decomp Morgulis, B 22 2644) CoN<sub>6</sub>H<sub>14</sub>(HgOH)<sub>4</sub>Cl<sub>3</sub> (V and M) Ppt

(Vortmann and

(V and M) CoN<sub>6</sub>H<sub>16</sub>(HgOH)<sub>2</sub>Cl<sub>8</sub>  $\mathbf{Ppt}$ 

- 10dide,  $Co(NH_3)_6I_3$ 

Insol in cold, but moderately sol in hot

According to Jorgensen, contains HNOs and has the formula Co<sub>2</sub>(NH<sub>3</sub>)<sub>12</sub>I<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub>

- 10dosulphate, Co(NH<sub>3</sub>)<sub>6</sub>I(SO<sub>4</sub>)

Can be recrystallized from hot H<sub>2</sub>O sol in warm, nearly insol in cold H2O (Krok, B 4 711)

- mercuriodide, Co<sub>2</sub>N<sub>12</sub>H<sub>88</sub>(HgI)<sub>3</sub>I<sub>6</sub> Ppt (Vortmann and Borsbach) CoN<sub>6</sub>H<sub>16</sub>(HgI)<sub>2</sub>I<sub>8</sub> Ppt (V and B)

– mercuriodide, basic,

 $CoN_6H_{16}(HgOH)_2I_2(OH)$ Insol in H<sub>2</sub>O SI sol in H<sub>2</sub>O (Vortmann and Borsbach, B 23 2804)

- nitrate,  $Co(NH_3)_6(NO_3)_3$ 

Sol in H<sub>2</sub>O Can be recrystallised from boiling H<sub>2</sub>O Sol in about 60 pts H<sub>2</sub>O Insol in conc HNO<sub>2</sub>+Aq (Jorgensen, J pr (2), 35 417)

Almost insol in acids (Rogojski, A ch (3), 41 454)

Insol in NH<sub>4</sub>OH, HCl, and HNO<sub>3</sub>+Aq, decomp by H<sub>2</sub>SO<sub>4</sub>+Aq (Gibbs and Genth)  $Co(NH_3)_{\delta}(NO_3)_{\delta}$ ,  $HNO_3$  Decomp by  $H_2O$  or dil alcohol (Jorgensen, J pr (2), 44 Decomp by 63)

nitrate chloroplatinate,

 $Co(NH_3)_6(NO_3)Cl_2$ ,  $PtCl_4+H_2O$ Not decomp by H<sub>2</sub>O (Jorgensen)

- nitratosulphate,  $Co(NH_3)_6(NO_3)(SO_4)$ Sol in H<sub>2</sub>O (Jorgensen)

nitrite cobaltic nitrite,  $Co_2(NH_3)_{12}(NO_2)_6$ ,  $Co_2(NO_2)_6 =$  $Co(NH_3)_6(NO_2)_6Co$ 

Nearly insol in H<sub>2</sub>O (Jorgensen) Much less sol in H2O than the corresponding roseo salt (Gibbs)

— diamine cobaltic nitrite.  $Co(NH_3)_6[Co(NH_3)_2(NO_2)_4]_3$ 

(Gibbs)

 $= Co(NH_8)_6[(NO_2)_2(NH_3)_2Co(NO_2)_2]_3$ Nearly insol in cold, sl sol in boiling H2O (Jorgensen, Z anorg 5 179)

-- oxalate,  $[C_0(NH_3)_6]_2(C_2O_4)_3+4H_2O_1$ Insol in hot or cold H<sub>2</sub>O Easily sol in  $^{\mid}\mathrm{H_{2}C_{2}O_{4}+Aq}$ 

Luteocobaltic oxalate chloraurate, 2Co(NH<sub>3</sub>)<sub>6</sub>(C<sub>2</sub>O<sub>4</sub>)Cl, AuCl<sub>3</sub>+4H<sub>2</sub>O Easily sol in hot H<sub>2</sub>O (Gibbs)

—— perchlorate, Co(NH<sub>3</sub>)<sub>6</sub>(ClO<sub>4</sub>)<sub>3</sub> (Millosevich, Gazz ch it 1901, **31**, (2) 285)

— permanganate,  $[Co(NH_3)_6]_2(MnO_4)_8$ Nearly insol in  $H_2O$  100 pts  $H_2O$  at 0° dissolve only 0 072 pt salt Moderately sol in hot  $H_2O$  (Klobb, A ch, (6) 12 5)

persulphate sulphate,  $[Co(NH_3)_6]_2S_2O_8(SO_4)_2$ 

Much less sol in H<sub>2</sub>O than the sulphate Sol in 641 pts H<sub>2</sub>O at 188° and in 632 pts at 20° Not easily sol even in boiling H<sub>2</sub>O (Jorgensen, Z anorg 1898, 17 459)

---- orthophosphate,  $Co(NH_3)_6(PO_4) + 4H_2O$ 

Sl sol in cold  $H_2O$  Easily sol in dil acids (Jorgensen) [Co(NH<sub>3</sub>)<sub>6</sub>]<sub>3</sub>(PO<sub>4</sub>)(PO<sub>4</sub>H)<sub>8</sub>+5½H<sub>2</sub>O (?)

Ppt (Braun)  $[Co(NH_3)_6]_2(PO_4H)_3+4H_2O$  Ppt Easily sol in very dil HCl+Aq (Jorgensen)

----- metaphosphate
Ppt

---- pyrophosphate,  $[Co(NH_3)_6]_2P_4O_{13}+6H_2O$ 

(G1bbs, Am Acad Proc 11 29), or  $Co_2(NH_3)_{12}P_4O_{18}(ONa)_2$  (Vortmann, B 11 2181), or  $Co(NH_3)_6(P_2O_7Na) + 11\frac{1}{2}H_2O$  (Jorgensen, J pr (2) 35 438)

Very nearly insol in H<sub>2</sub>O With H<sub>2</sub>O at

80° it is decomp into-

 $[Co(NH_3)_6]_4(\tilde{P}_2O)_3+20H_2O$  Less easily sol than the preceding salt

—— pynophosphate, acid,  $Co(NH_3)_6(P_2O_7H)$ Wholly insol in  $H_2O$  Somewhat sol in dil  $HC_2H_3O_2+Aq$  Easily sol in HCl+Aq (Jorgensen)

---- sodium pyrophosphate,  $C_0(NH_3)_6(P_2O_7Na)+11\frac{1}{2}H_2O$ 

Ppt Not wholly insol in cold H<sub>2</sub>O Decomp by hot H<sub>2</sub>O Less sol in NH<sub>4</sub>OH+Aq than in H<sub>2</sub>O (Jorgensen)

 $\begin{array}{ll} [\text{Co(NH}_3)_6]_4(\text{P}_2\text{O}_7)_3, & 2\text{Co(NH}_3)_6(\text{NaP}_2\text{O}_7) \\ +39 \text{ H}_2\text{O} & \text{As above} & (\text{Jorgensen}) \end{array}$ 

— selenate, [Co(NH<sub>6</sub>)]<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>+5H<sub>2</sub>O Very sol in H<sub>2</sub>O (Klobb, Bull Soc 1901, (3) **25** 1028)

 Luteocobaltic ammonium selenate,  $[Co(NH_3)_6]_2(SeO_4)_3$ ,  $(NH_4)_2SeO_4+4H_2O$ 

Very sol in  $H_2O$ [Co(NH<sub>6</sub>]<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>SeO<sub>4</sub>+8H<sub>2</sub>O Very sol in  $H_2O$  (Klobb)

--- sulphocyanide, Co(NH<sub>3</sub>)<sub>6</sub>(SCN)<sub>8</sub>
Decomp by hot H<sub>2</sub>O (Miolati, Z anorg 1900, 23 241)

—— mercuric sulphocyanide, Co(NH<sub>3</sub>)<sub>6</sub>(SCN)<sub>3</sub>, 2Hg(SCN)<sub>2</sub> Decomp by H<sub>2</sub>O Cryst from dil NH<sub>4</sub>SCN+Ag (Miolati)

—— platinum sulphocyanide,
[Pt(SCN)<sub>4</sub>]<sub>8</sub>[Co(NH<sub>3</sub>)<sub>6</sub>(SCN<sub>3</sub>)]<sub>2</sub>
Decomp by hot H<sub>2</sub>O (Miolati)

----- hydrogen sulphate,  $Co(NH_3)_6H(SO_4)_2$ 

Decomp by alcohol to sulphate (Jorgensen, Z anorg 1898, 17 458)

 $4[(Co6NH_3)_2(SO_4)_3]$ ,  $5H_2SO_4+10H_2O$ Very sol in  $H_2O$  with decomp into the normal sulphate

When pulverized it seems to dissociate slowly in contact with abs alcohol (Klobb, Bull Soc 1901, (3) 25 1025)

ammonium sulphate,  $[Co_6(NH_3)_6]_2(SO_4)_3$ ,  $(NH_4)_2SO_4+8H_2O$ Sol in  $H_2O$  with decomp (Klobb)

cerum sulphate,  $[Co(NH_3)_6]_2(SO_4)_3$ ,  $Ce_2(SO_4)_3+1\frac{1}{2}H$  O

Very sl sol in cold, and practically insol in boiling H<sub>2</sub>O Sol in acids (Gibbs, Am Ch J 15 560)

 $[Co(NH_3)_6]$   $(SO_4)_3$ ,  $3Ce(SO_4)_2+H_2O$  A above (Wing, Sill Am J (2) **49** 363)

--- lanthanum sulphate,  $[Co(NH_3)_6]_2(SO_4)_5$ ,  $La_2(SO_4)_3 + H_2O$ 

Sl sol in H<sub>2</sub>O (Wing)

--- thalic sulphate,  $[Co(NH_3)_6]_2(SO_4)_3$ ,  $Tl_2O(SO_4)_2 + 5H_2O$ 

Decomp by cold H<sub>2</sub>O (Gibbs)

—— sulphate bromaurate, Co(NH<sub>3</sub>)<sub>6</sub>(SO<sub>4</sub>)(AuBr<sub>4</sub>) Very sl sol in H<sub>2</sub>O with apparent decomp Insol in alcohol (Jorgensen) Luteocobaltic sulphate chloraurate, Co(NH<sub>3</sub>)<sub>6</sub>(SŌ<sub>4</sub>)AuCl<sub>4</sub> SI sol in H<sub>2</sub>O (Jorgensen)

cobaltic sulphite,  $[Co(NH_3)_6]_2(SO_3)_3$ ,  $Co_2(SO_3)_3 + H_2O = dichrocobaltic$  sulphite,  $[Co(NH_3)_3]_2(SO_3)_3+2H_2O$ , which

 $[Co(NH_3)_6]_2(SO_3)_3$ ,  $2Co_2(SO_3)_3+15H_2O=$ diamine cobaltic sulphite, [Co(NH<sub>3</sub>)<sub>2</sub>]<sub>2</sub>(SO<sub>3</sub>)<sub>2</sub> +5H<sub>2</sub>O, which see

Luteorhodium bromide, Rh(NH<sub>3</sub>)<sub>6</sub>Br<sub>3</sub> Less sol in H<sub>2</sub>O than the chloride (Jor-

--- chloride, Rh(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub> Sol in 7 to 8 pts H<sub>2</sub>O at 8° (J) +H<sub>2</sub>O Extremely efflorescent

gensen, J pr (2) 44 51)

--- rhodium chloride, Rh(NH<sub>3</sub>)6Cl<sub>3</sub>, RhCl<sub>3</sub> Sol in H<sub>2</sub>O (Jorgensen, Z anorg 174)

- chloroplatinate, 2Rh(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub>, 3PtCl<sub>4</sub>+  $6H_{\bullet}O$ 

Insol in  $H_2O$  Sol in warm HCl+Aq (J)  $Rh(NH_3)_6Cl_3$ ,  $PtCl_4+\frac{1}{2}H_2O$ Decomp by H<sub>2</sub>O into chloride and above salt (J)

- nitrate,  $Rh(NH_3)_6(NO_3)_3$ 

Sol in 48 to 49 pts  $H_2O$  at ord temp  $HNO_8+Aq$  diluted with 5 vols  $H_2O$  ppts HNO3+Ad dilatest with 5 years 120 ppts the salt completely from aqueous solution (Jorgensen, J pr (2) 44 51)

Rh(NH<sub>2</sub>)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>, HNO<sub>3</sub> Decomp by H<sub>2</sub>O or dil alcohol (Jorgensen, J pr (2),

**44** 63)

- orthophosphate,  $Rh(NH_3)_6PO_4+4H_2O$ Sl sol in cold H<sub>2</sub>O (J)

 sodium pyrophosphate,  $[Rh(NH_3)_6]_2(P_2O_7)_3Na_2+23H_2O_7$ Nearly wholly insol in H<sub>2</sub>O Wholly insol in NH<sub>4</sub>OH+Aq (J)

- sulphate,  $[Rh(NH_3)_6]_2(SO_4)_8+5H_2O$ Sol in 43 pts H<sub>2</sub>O at 20° (J)

# Magnesium, Mg

Does not decomp  $H_2O$  at ord temp, but decomp slowly at  $100^\circ$   $H_2O$  containing acids dissolves Mg easily Sol in cold dil HC<sub>2</sub>H<sub>8</sub>O<sub>2</sub>+Aq Difficultly sol in cold H<sub>2</sub>SO<sub>4</sub>+Aq (Bunsen) Cold nitrosulphuric acid does not attack (Bunsen) Cold  $NH_4OH + Aq$ , KOH + Aq, or NaOH + Aq do not attack (Maak, Phippson ) Sol in NH4Cl or  $(NH_4)_2CO_3 + Aq$  (Wohler)

Very rapidly sol in K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>+Aq and (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>+Aq with violent evolution of gas (Levi, Gazz ch it 1908, **38** (1), 583) Attacked by aqueous solution of KCl, NH<sub>4</sub>Cl, NaCl, LiCl, CuCl<sub>2</sub>, CdCl<sub>2</sub>, CoCl<sub>2</sub>, PbCl<sub>2</sub>, HgCl<sub>2</sub>, FeCl<sub>3</sub>, CrCl<sub>3</sub>, PtCl<sub>4</sub>, AuCl<sub>8</sub>, CuSO<sub>4</sub>, ZnSO<sub>4</sub>, FeSO<sub>4</sub> and MnSO<sub>4</sub> Sl attacked by hot 30% CaCl<sub>2</sub>+Aq, not by 30% MgCl<sub>2</sub>+Aq, BaCl<sub>2</sub>+Aq and SrCl<sub>2</sub>+Aq (Tommasi, Bull Soc 1899, (3), **21** 886) Not attacked by NH<sub>4</sub>F+Aq, very slowly by solutions of BaCl<sub>2</sub>, CaCl<sub>2</sub>, KCl, K<sub>3</sub>Fe(CN)<sub>6</sub>, NaNO<sub>3</sub>. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and Na<sub>2</sub>HPO<sub>4</sub> Solutions

NaNO3, Na2S2O3 and Na2HPO4 Solutions of NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, Na<sub>2</sub>B<sub>4</sub>O, alum and chrome alum attack vigorously Solutions of (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, NH<sub>4</sub>Cl, (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>S and Na<sub>2</sub>CO<sub>3</sub> attack even more vigorously (Mouraour, C R 1900, **130** 140)
Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

1898, **20** 828 ) Insol in liquid HF (Franklin, Z anorg

1905, 46 2) Somewhat sol in liquid NH3, if a clean metallic surface is in contact with the pure solvent(Kraus, J Am Chem Soc, 1907, 29 1561)

½ccm oleic acid dissolves 0 0104 Mg in 6 days (Gates, J phys Chem 1911, **15** 143 )

Magnesium arsenide, Mg<sub>3</sub>As<sub>2</sub> Decomp on air (Parkinson, Chem Soc **5** 127)

Magnesium azoimide, Mg(N<sub>3</sub>)<sub>2</sub> Decomp by hot H<sub>2</sub>O (Curtius, J pr 1898, (2) 58 292)

Magnesium boride, Mg9B2 Sol in HCl+Aq (Winkler, B 23 774)

Magnesium bromide, MgBr<sub>2</sub> Deliquescent Very sol in H<sub>2</sub>O with evolution of heat

Sat MgBr<sub>2</sub>+Aq contains at –18°  $+17^{\circ}$ 48°  $62^{\circ}$ 97° 60 9 62 5 65 8% MgBr<sub>2</sub> 5258 (Etard, A ch 1894, (7), 2 541)

See also MgBr, +6H<sub>2</sub>O

Sp gr of MgBr<sub>2</sub>+Aq at 19 5° containing 20 15 25 % MgBr<sub>2</sub>, 1 043 1 087 1 137 1 191 1 247

45  $50 \% \text{MgBr}_2$ 1 377 1 451 1 535 1 625 (Kremers, Pogg 108 118, calculated by Gerlach, Z anal 8 285)

MgBr<sub>2</sub>+Aq is sl decomp by evaporation

Solubility of MgBr<sub>2</sub> in alcohols

 ${
m MgBr_2}$  forms with methyl alcohol a complex,  ${
m MgBr_2}$ ,  ${
m 6CH_8OH}$ 

Solubility of MgBr2, 6CH3OH in CH3OH at to

| t°  | % by weight<br>of MgBr <sub>2</sub><br>6CH <sub>3</sub> OH | t°      | % by weight<br>of MgBr <sub>2</sub><br>6CH <sub>3</sub> OH |
|-----|------------------------------------------------------------|---------|------------------------------------------------------------|
| 0   | 42 6                                                       | 130     | 63 6                                                       |
| 20  | 44 6                                                       | 140     | 66 8                                                       |
| 40  | 46 7                                                       | 150     | 70 2                                                       |
| 60  | 48 9                                                       | 160     | 74 0                                                       |
| 80  | 51 4                                                       | 170     | 78 5                                                       |
| 100 | 55 5                                                       | 180     | 84 5                                                       |
| 110 | 58 0                                                       | 185     | 88 0                                                       |
| 120 | 60 7                                                       | 190 mpt | 100                                                        |

(Menschutkin, Z anorg 1907, **52** 11)

 ${\rm MgBr_2}$  forms with ethyl alcohol a complex,  ${\rm MgBr_2, 6C_2H_5OH}$ 

Solubility of MgBr<sub>2</sub>, 6C<sub>2</sub>H<sub>5</sub>OH in C<sub>2</sub>H<sub>5</sub>OH at t°

| t°                                          | % by weight of MgBr <sub>2</sub> 6C <sub>2</sub> H <sub>5</sub> OH   | t°                                                     | % by weight of MgBr <sub>2</sub> 6C <sub>2</sub> H <sub>5</sub> OH |
|---------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70 | 17 2<br>24 9<br>32 7<br>40 3<br>47 8<br>55 1<br>62 2<br>68 8<br>71 4 | 80<br>85<br>90<br>95<br>100<br>103<br>106<br>108 5 mpt | 73 8<br>76 2<br>78 7<br>82 3<br>86 7<br>90 0<br>94 4<br>100        |

(Menschutkin)

 $MgBr_2$  forms with propyl alcohol a complex,  $MgBr_2,\,6C_3H_7OH$ 

Solubility of MgBr<sub>2</sub>,  $6C_8H_7OH$  in  $C_8H_7OH$  at t°

| t° | % by weight of MgBr <sub>2</sub> 6C <sub>2</sub> H <sub>7</sub> OH | t°     | % by weight of McBr2 6C3H7OH |
|----|--------------------------------------------------------------------|--------|------------------------------|
| 0  | 77 9                                                               | 43     | 93 0                         |
| 10 | 81 5                                                               | 46     | 94 3                         |
| 20 | 85 1                                                               | 48     | 95 8                         |
| 30 | 89 5                                                               | 50     | 97 8                         |
| 40 | 92 0                                                               | 52 mpt | 100                          |

(Menschutkin)

MgBr<sub>2</sub> forms with isobutylalcohol a complex, MgBr<sub>2</sub>, 6(180)C<sub>4</sub>H<sub>9</sub>OH

Solubility of MgBr<sub>2</sub>, 6(180)C<sub>4</sub>H<sub>9</sub>OH in C<sub>4</sub>H<sub>9</sub>OH at t°

| t°                              | % by weight of MgBr <sub>2</sub> 61soC <sub>4</sub> H <sub>9</sub> OH | t                                    | % by weight<br>of MgBr <sub>2</sub><br>6isoC <sub>4</sub> H <sub>9</sub> OH |
|---------------------------------|-----------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>50 | 55 8<br>60 5<br>65 2<br>69 8<br>74 3<br>78 5                          | 60<br>65<br>71<br>75<br>77<br>80 mpt | 82 4<br>84 2<br>88 0<br>92 0<br>94 6<br>100                                 |

(Menschutkın)

 ${
m MgBr_2}$  forms with isoamylalcohol a complex,  ${
m MgBr_2}$ ,  $6 ({
m iso}) {
m C}_6 {
m H_{11}OH}$ 

Solubility of MgBr<sub>2</sub>, 6(150)C<sub>5</sub>H<sub>11</sub>OH in C<sub>5</sub>H<sub>11</sub>OH at t°

| t° | % by weight of MgBr <sub>2</sub> 6180C <sub>5</sub> H <sub>11</sub> HO | to     | % by weight<br>of MgBr <sub>2</sub><br>61soC <sub>5</sub> H <sub>11</sub> OH |
|----|------------------------------------------------------------------------|--------|------------------------------------------------------------------------------|
| 0  | 70 2                                                                   | 38     | 88 7                                                                         |
| 10 | 75 6                                                                   | 40     | 90 0                                                                         |
| 20 | 80 2                                                                   | 42     | 92 0                                                                         |
| 30 | 84 5                                                                   | 44     | 94 2                                                                         |
| 35 | 86 7                                                                   | 46 mpt | 100                                                                          |

(Menschutkın)

Solubility in ether at to

| Solubility in coner as t |                                                          |                                                             |  |
|--------------------------|----------------------------------------------------------|-------------------------------------------------------------|--|
| t°                       | % MgBr <sub>2</sub>                                      | % MgBr <sub>2</sub> 2C <sub>4</sub> H <sub>10</sub> Q       |  |
|                          | 0 6<br>0 8<br>1 27<br>1 64<br>1 93<br>2 3<br>2 7<br>3 22 | 1 08<br>1 44<br>2 3<br>2 95<br>3 48<br>4 14<br>4 86<br>5 80 |  |
|                          |                                                          | <del></del>                                                 |  |

(Menschutkin, Z anorg 1906, 49, 36)

Solubility of MgBr<sub>2</sub>, 2C<sub>4</sub>H<sub>10</sub>O in ether at t° "Lower solution"=the melted MgBr<sub>2</sub>, 2C<sub>4</sub>H<sub>10</sub>O which does not mix with the ether above

| t°                                                              | Composition of lower solution                                                        |                                                                              | Composition of the upper layer      |                                                                             |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------|
|                                                                 | % MgBr <sub>2</sub>                                                                  | % MgBr <sub>2</sub><br>2C <sub>4</sub> H <sub>10</sub> O                     | % MgBr2                             | % MgBr <sub>2</sub><br>2C <sub>4</sub> H <sub>10</sub> O                    |
| -10<br>0<br>+10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | 42 0<br>41 0<br>40 1<br>39 3<br>38 7<br>38 2<br>37 8<br>37 6<br>37 6<br>37 8<br>38 1 | 75 7<br>73 9<br>72 2<br>70 8<br>69 8<br>68 8<br>68 0<br>67 7<br>68 0<br>68 6 | 1 8 2 3 3 2 8 3 3 8 4 3 7 5 5 6 5 7 | 3 2<br>4 1<br>5 0<br>5 9<br>6 8<br>7 7<br>8 5<br>9 2<br>9 7<br>10 0<br>10 2 |

(Menschutkin)

Solubility of MgBr<sub>2</sub> in formic acid MgBr<sub>2</sub> forms with formic acid a complex, MgBr<sub>2</sub>, 6HCOOH

Solubility of MgBr<sub>2</sub>, 6HCOOH in HCOOH at to

| t°     | % by wt MgBr <sub>2</sub> 6HCOOH |
|--------|----------------------------------|
| 0      | 49 8                             |
| 20     | 57 5                             |
| 40     | 65 1                             |
| 60     | 73 1                             |
| 70     | 78 1                             |
| 80     | 86 0                             |
| 86     | 95 0                             |
| 88 mpt | 100                              |
|        | <del></del>                      |

(Menschutkin, Z anorg 1907, 54 90)

Solubility of MgBr<sub>2</sub> in acetic acid MgBr<sub>2</sub> forms with acetic acid a complex, MgBr<sub>2</sub>, 6CH<sub>3</sub>COOH

Solubility of MgBr<sub>2</sub>, 6CH<sub>3</sub>COOH in CH<sub>3</sub>COOH at t°

| CALGO CALL MU U                                                              |                                                                                           |  |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| t°                                                                           | % by wt MgBr <sub>2</sub><br>6CH <sub>3</sub> COOH                                        |  |
| 17<br>30<br>50<br>60<br>70<br>80<br>85<br>90<br>100<br>105<br>110<br>112 mpt | 0 3<br>1 5<br>4 5<br>7 9<br>16 2<br>38 5<br>49 5<br>57 7<br>71 8<br>80 0<br>89 5<br>100 0 |  |
|                                                                              | 1                                                                                         |  |

(Menschutkin)

Solubility of MgBr<sub>2</sub> in acetic anhydride MgBr<sub>2</sub> forms with acetic anhydride a complex, MgBr<sub>2</sub>, 6(CH<sub>3</sub>CO)<sub>2</sub>O

Solubility of MgBr<sub>2</sub>, 6(CH<sub>3</sub>CO)<sub>2</sub>O in (CH<sub>3</sub>CO)<sub>2</sub>O at t°

| t°                                                      | % by wt MLBr <sub>2</sub><br>6(CH <sub>3</sub> CO) <sub>2</sub> O |
|---------------------------------------------------------|-------------------------------------------------------------------|
| 0<br>30<br>60<br>90<br>120<br>130<br>135<br>136–137 mpt | 26 4<br>30 0<br>37 7<br>44 5<br>57 8<br>69 8<br>85 0              |
| (3.6 1 1) 5                                             |                                                                   |

(Menschutkin, Z anorg 1909, 61 112)

Solubility of MgBr<sub>2</sub> in acetone MgBr<sub>2</sub> forms with acetone a complex, MgBr<sub>2</sub>, 3CH<sub>3</sub>COCH<sub>3</sub>

# Solubility of MgBr<sub>2</sub>, 3CH<sub>3</sub>COCH<sub>3</sub> in CH<sub>3</sub>COCH<sub>3</sub> at t°

| OII3COOII3 au t                                                               |                                                                                                |  |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| t°                                                                            | % by wt MgBr <sub>2</sub><br>3CH <sub>3</sub> COCH <sub>3</sub>                                |  |
| 0<br>30<br>60<br>70<br>72<br>73<br>74<br>75<br>76<br>80<br>84<br>88<br>92 mpt | 0 2<br>0 8<br>1 45<br>2 0<br>3 7<br>5 5<br>14 0<br>50 0<br>71 6<br>83 3<br>89 8<br>95 2<br>100 |  |

(Menschutkin, Z anorg 1907, 53 30)

Solubility of MgBr<sub>2</sub> in acetamide MgBr<sub>2</sub> forms with acetanide a complex, MgBr<sub>2</sub>, 6CH<sub>2</sub>CONH<sub>2</sub>

# Solubility of MgBr<sub>2</sub>, 6CH<sub>3</sub>CONH<sub>2</sub> in CH<sub>3</sub>CONH<sub>2</sub> at t°

| t°                                                             | % by wt MgBr <sub>2</sub><br>6CH <sub>3</sub> CONH                    |
|----------------------------------------------------------------|-----------------------------------------------------------------------|
| 50 5<br>70<br>90<br>110<br>130<br>150<br>160<br>165<br>169 mpt | 56 0<br>57 8<br>60 5<br>65 0<br>71 5<br>80 0<br>85 5<br>90 0<br>100 0 |

(Menschutkin, Z anorg 1909, **61** 106)

Solubility of MgBr<sub>2</sub> in acetanilide MgBr<sub>2</sub> forms with acetanilide a complex, MgBr<sub>2</sub>, 6CH<sub>2</sub>CONHC<sub>6</sub>H<sub>5</sub>

Solubility of MgBr<sub>2</sub>, 6CH<sub>3</sub>CONHC<sub>6</sub>H<sub>5</sub> in CH<sub>3</sub>CONHC<sub>6</sub>H<sub>5</sub> at t°

| t°      | t > t |
|---------|-------|
| 107 5   | 9 0   |
| 140     | 19 3  |
| 170     | 29 6  |
| 185     | 39 0  |
| 195     | 49 0  |
| 200     | 59 5  |
| 205     | 73 2  |
| 209 mpt | 100 0 |
| 209 mpt | 100 0 |

(Menschutkin, Z anorg 1909, 61 109)

Solubility of  $MgBr_2$  in aniline  $MgBr_2$  forms with aniline three complexes,  $MgBr_2$ ,  $6C_6H_5NH_2$ ,  $MgBr_2$ ,  $4C_6H_5NH_2$ ,

MgBr<sub>2</sub>, 2C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>

Solubility of these complexes in aniline Solubility of  $MgBr_2$ ,  $6C_6H_5NH_2$  in  $C_6H_5NH_2$ 

| t°    | % by weight of MgBr <sub>2</sub><br>6C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> |
|-------|------------------------------------------------------------------------------------|
| 10    | 3 2                                                                                |
| 30    | 3 9                                                                                |
| 50    | 5 1                                                                                |
| 70    | 7 5                                                                                |
| 90    | 12 8                                                                               |
| 100   | 18 5                                                                               |
| 103 5 | 27 5                                                                               |

### Solubility of MgBr<sub>2</sub>, 4C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub> in C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>

| t° % by | weight of MgBr <sub>2</sub><br>4C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> |
|---------|-------------------------------------------------------------------------------|
| 103     | 24 0                                                                          |
| 120     | 24 3                                                                          |
| 140     | 24 9                                                                          |
| 160     | 26 0                                                                          |
| 180     | 28 3                                                                          |
| 200     | 33 5                                                                          |
| 220     | 45 0                                                                          |
| 230     | 55 0                                                                          |
| 237     | 76 3                                                                          |

# Solubility of MgBr2, 2C6H5NH2 in C6H5 NH2

| t   | % by weight of MgBr <sub>2</sub><br>2C <sub>6</sub> H <sub>6</sub> NH <sub>2</sub> |
|-----|------------------------------------------------------------------------------------|
| 237 | 76 3                                                                               |
| 250 | 77 3                                                                               |
| 260 | 78 1                                                                               |
| 270 | 79 0                                                                               |

(Menschutkin, Z anorg 1907, 52 159)

Solubility of MgBr<sub>2</sub> in benzaldehyde MgBr<sub>2</sub> forms with benzaldehyde a complex, MgBr<sub>2</sub>, 3C<sub>6</sub>H<sub>5</sub>CHO

Solubility of MgBr<sub>2</sub>, 3C<sub>6</sub>H<sub>5</sub>CHO in C<sub>6</sub>H<sub>5</sub>CHO at t°

| t°                                       | % by wt MgBr <sub>2</sub><br>3C <sub>6</sub> H <sub>5</sub> CHO | t                                          | % by wt MgBr <sub>2</sub><br>3C <sub>6</sub> H <sub>5</sub> CHO |
|------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|
| 0<br>30<br>60<br>80<br>100<br>120<br>130 | 0 7<br>1 3<br>1 9<br>2 5<br>3 4<br>6 0<br>9 5                   | 140<br>145<br>146<br>148<br>153<br>159 mpt | 17 8<br>37 5<br>65 0<br>84 5<br>93 2<br>100                     |

(Menschutkin, Z anorg 1907, 53 26)

Solubility of MgBr<sub>2</sub> in methylal MgBr<sub>2</sub> forms with methylal a complex, MgBr<sub>2</sub>, 2CH<sub>2</sub>(OCH<sub>3</sub>)<sub>2</sub>

Solubility of MgBr<sub>2</sub>, 2CH<sub>2</sub>(OCH<sub>3</sub>)<sub>2</sub> in CH<sub>2</sub>(OCH<sub>3</sub>)<sub>2</sub> at t°

| t°                                                          | % by wt MgBr <sub>2</sub><br>2CH <sub>2</sub> (OCH <sub>3</sub> ) <sub>2</sub> |
|-------------------------------------------------------------|--------------------------------------------------------------------------------|
| 20<br>40<br>60<br>80<br>100<br>106<br>108<br>110<br>112 mpt | 0 3<br>0 45<br>0 6<br>0 75<br>0 9<br>1 1<br>86 2<br>90 8<br>95 4               |

(Menschutkin, Z anorg 1907, 53 32)

Solubility of MgBr<sub>2</sub> in dimethylcarbinol MgBr<sub>2</sub> forms with dimethylcarbinol a complex, MgBr<sub>2</sub>, 4(CH<sub>8</sub>)<sub>2</sub>CHOH

# Solubility of MgBr<sub>2</sub>, 4(CH<sub>3</sub>)<sub>2</sub>CHOH in (CH<sub>3</sub>)<sub>2</sub>CHOH at t°

| t°  | % by weight of MgBr <sub>2</sub><br>4(CH <sub>3</sub> ) <sub>2</sub> CHOH | to      | % by weight of MgBr <sub>2</sub> 4(CH <sub>3</sub> ) <sub>2</sub> CHOH |
|-----|---------------------------------------------------------------------------|---------|------------------------------------------------------------------------|
| 0   | 40 0                                                                      | 110     | 62 5                                                                   |
| 20  | 42 2                                                                      | 120     | 67 3                                                                   |
| 40  | 45 0                                                                      | 130     | 74 0                                                                   |
| 60  | 48 5                                                                      | 136     | 83 6                                                                   |
| 80  | 53 3                                                                      | 138     | 90 00                                                                  |
| 100 | 59 0                                                                      | 139 mpt | 100                                                                    |

(Menschutkin)

Solubility of MgBr<sub>2</sub> in trimethylcarbinol MgBr<sub>2</sub> forms with trimethylcarbinol a complex, MgBr<sub>2</sub>, 4(CH<sub>3</sub>)<sub>3</sub>COH

Solubility of MgBr<sub>2</sub>, 4(CH<sub>3</sub>)<sub>3</sub>COH in (CH<sub>3</sub>)<sub>3</sub>COH at t°

| t                                  | % by weight of MgBr <sub>2</sub> 4(CH <sub>3</sub> ) <sub>3</sub> COH | t°                                     | % by weight of MgBr <sub>2</sub> 4(CH <sub>3</sub> ) <sub>3</sub> COH |  |  |  |
|------------------------------------|-----------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------|--|--|--|
| 24 4<br>25<br>35<br>45<br>55<br>60 | 0 06<br>1 0<br>9 5<br>19 1<br>32 2<br>40 5                            | 65<br>70<br>75<br>77 5<br>79<br>80 mpt | 50 5<br>62 5<br>77 0<br>85 0<br>91 5<br>100                           |  |  |  |

Menschutkin)

Solubility of MgBr<sub>2</sub> in phenylhydrazine MgBr<sub>2</sub> forms with C<sub>6</sub>H<sub>5</sub>NHNH<sub>2</sub> a complex, MgBr<sub>2</sub>, 6C<sub>6</sub>H<sub>5</sub>NHNH<sub>2</sub>

| Solubility | of MgBr <sub>2</sub> , 6C <sub>6</sub> H <sub>5</sub> NHNH <sub>2</sub> in<br>C <sub>6</sub> H <sub>5</sub> NHNH <sub>2</sub> at t° |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| •          | C.H.NHNH, at to                                                                                                                     |  |

| C6H5NHNH2 at t                                         |                                                                                  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| t°                                                     | % by wt of MgBr <sub>2</sub><br>6C <sub>6</sub> H <sub>5</sub> NHNH <sub>2</sub> |  |  |
| 20<br>40<br>60<br>80<br>99<br>100<br>140<br>180<br>200 | 3 0<br>7 0<br>16 4<br>33 0<br>54 8<br>54 8<br>60 8<br>68 4<br>73 4               |  |  |

(Menschutkin, Z anorg 1907, 52 162)

Solubility of MgBr<sub>2</sub> in urea MgBr<sub>2</sub> forms with urea a complex, MgBr<sub>2</sub>, 6CO(NH<sub>2</sub>)<sub>2</sub>

Solubility of MgBr2, 6CO(NH2)2 in urea at to

| t°    | % by wt MgBr <sub>2</sub><br>6CO(NH <sub>2</sub> ) <sub>2</sub> |
|-------|-----------------------------------------------------------------|
| 108 5 | 24 2                                                            |
| 115   | 29 8                                                            |
| 120   | 35 0                                                            |
| 125   | 41 6                                                            |
| 127   | 45 5                                                            |
| 130   | 60 0                                                            |

(Menschutkin, Z anorg 1909, 61 116)

 ${
m MgBr_2,~6CO(NH_2)_2~decomposes~at~130^\circ}$  giving  ${
m MgBr_2,~4CO(NH_2)_2}$ 

Solubility of MgBr2, 4CO(NH2)2 in urea at to

| t°  | % by wt MgBr <sub>2</sub><br>4CO(NH <sub>2</sub> ) <sub>2</sub> |
|-----|-----------------------------------------------------------------|
| 130 | 58 0                                                            |
| 145 | 60 7                                                            |
| 160 | 67 2                                                            |
| 165 | 71 4                                                            |
| 170 | 83 7                                                            |
| 171 | 96 0                                                            |

(Menschutkin, Z anorg 1909, **61** 116)

Solubility of MgBr<sub>2</sub> in urethane MgBr<sub>2</sub> forms with urethane a complex, MgBr<sub>2</sub>,  $6NH_2COOC_2H_5$ 

Solubility of MgBr<sub>2</sub>, 6NH<sub>2</sub>COOC<sub>2</sub>H<sub>5</sub> in NH<sub>2</sub>COOC<sub>2</sub>H<sub>5</sub> at t°

| t°    | % by wt MgBr <sub>2</sub><br>6NH <sub>2</sub> COOC <sub>2</sub> H <sub>5</sub> |
|-------|--------------------------------------------------------------------------------|
| 35    | 43 3                                                                           |
| 50    | 45 6                                                                           |
| 70    | 51 3                                                                           |
| 80    | 56 2                                                                           |
| 85    | 59 8                                                                           |
| 90    | 66 5                                                                           |
| *91 5 | 75 5                                                                           |

\*Mpt of MgBr<sub>2</sub>, 6NH<sub>2</sub>COOC<sub>2</sub>H<sub>5</sub> (Menschutkin, Z anorg 1909, **61** 113) MgBr<sub>2</sub>, 6NH<sub>2</sub>COOC<sub>2</sub>H<sub>5</sub> decomposes 90 5-91° forming MgBr<sub>2</sub>, 4NH<sub>2</sub>COOC<sub>2</sub>H<sub>5</sub>

Solubility of MgBr<sub>2</sub>,  $4NH_2COOC_2H_5$  in  $NH_2COOC_2H_5$  at t°

| t       | % by wt MgBr <sub>2</sub><br>4NH <sub>2</sub> COOC <sub>2</sub> H <sub>5</sub> |
|---------|--------------------------------------------------------------------------------|
| 91      | 69 4                                                                           |
| 100     | 73 8                                                                           |
| 110     | 80 0                                                                           |
| 115     | 84 1                                                                           |
| 120     | 90 0                                                                           |
| 123 mpt | 100 0                                                                          |

(Menschutkın)

+6H<sub>2</sub>O

Solubility of MgBr<sub>2</sub>+6H<sub>2</sub>O in H<sub>2</sub>O at t°

| t°                               | % by weight of MgBr <sub>2</sub> +6H <sub>2</sub> O | t°                                  | % by weigh<br>of MgBr <sub>2</sub> +<br>6H <sub>2</sub> O |
|----------------------------------|-----------------------------------------------------|-------------------------------------|-----------------------------------------------------------|
| 0<br>20<br>40<br>60<br>80<br>100 | 76 0<br>78 1<br>80 2<br>82 3<br>84 4<br>86 6        | 120<br>140<br>150<br>160<br>164 mpt | 89 0<br>92 0<br>94 9<br>98 0<br>100                       |

(Menschutkin, Z anorg 1907, 52 153)

Sp gr of solution sat at 18°=1655, an contains 508% MgBr<sub>2</sub> (Mylius and Funl B 1897, **30** 1718)
Sl sol in liquid NH<sub>3</sub> (Franklin, Am Cl

J 1898, **20** 828)

Sol in alcohol Sol in acetone (Nau mann, B 1904, 37 4328, Eidmann, C C 1899, II 1014)

Difficultly sol in methyl acetate (Nau

mann, B 1909, 42 3790)

Insol in ethyl acetate (Naumann, B 1910, 43 314)  $+10H_2O$  Sol in  $H_2O$  (Panfiloff, Chem Soc 26 234)

Magnesium manganous bromide,  $MgBr_2$ ,  $2MnBr_2+12H_2O$ 

Deliquescent (Saunders, Am Ch J 14 150)

Magnesium mercuric bromide, MgBr<sub>2</sub>, HgBr Deliquescent

MgBr<sub>2</sub>, 2HgBr<sub>2</sub> Not deliquescent

Magnesium molybdenyl bromide, MgBr<sub>2</sub> MoOBr<sub>3</sub>+7H<sub>2</sub>O

(Weinland and Knoll, Z anorg 1905, 44

 $\begin{array}{ccc} \text{Magnesium} & \text{potassium} & \text{bromide,} & MgBr_2 \\ & 2KBr + 6H_2O \end{array}$ 

Easily sol in H<sub>2</sub>O, from which KBr crys tallises at 75 to 87° Alcohol dissolves out MgBr<sub>2</sub> (Lowig, Repert **29** 261)

Formula is MgBr<sub>2</sub>, KBr+6H<sub>2</sub>O Deliquescent (Lerch, J pr (2) **28** 338)

# Magnesium stannic bromide See Bromostannate, magnesium

### Magnesium chloride, MgCl<sub>2</sub>

Deliquescent Very sol in H<sub>2</sub>O with evolution of heat The solution decomposes on evaporation losing HCl, when less than 6 mols H<sub>2</sub>O are present to 1 mol MgCl<sub>2</sub> (Casaseca, C R 37 350)

Anhydrous Sol in 1857 pts H<sub>2</sub>O at 15° (Gerlach)

Sol in 1 pt cold  $\rm H_2O$  (Foureroy) Sat MgCl<sub>2</sub>+Aq at 12 5° contains 64 8% MgCl<sub>2</sub> (Hassenfratz) 100 pts H<sub>2</sub>O at 15 5° dissolve 200 pts MgCl<sub>2</sub> (Ure s Dict)

100 pts  $\rm H_2O$  dissolve 52 2 pts MgCl<sub>2</sub> at 0° and sp gr of sat solution=1 3619 at 15° (Engel, Bull Soc (2) 47 318) 1000 mols  $\rm H_2O$  dissolve 108 mols MgCl<sub>2</sub>

1000 mols H<sub>2</sub>O dissolve 108 mols MgCl<sub>2</sub> at 25°C (Lowenherz, Z phys Ch 1894, **13** 479)

100 mols MgCl<sub>2</sub>+Aq contain at t° t° 67 5 68 5 68 7 79 5 79 95 Mol MgCl<sub>2</sub> 11 58 11 92 11 71 12 28 12 39 t° 116 67 152 6 181-2 186 Mol MgCl<sub>2</sub> 16 2 18 24 23 8 24 1-24 4 (Vant Hoff and Meyerhoffer, B A B **1897**,

# Solubility of MgCl<sub>2</sub> in H<sub>2</sub>O at t°

| bolubility of MigOl2 III 112O at t |            |                                                           |  |  |
|------------------------------------|------------|-----------------------------------------------------------|--|--|
| t°                                 | %<br>MgCl₂ | Solid phase                                               |  |  |
| -10                                | 11 4       | Ice                                                       |  |  |
| 20                                 | 16         | 166                                                       |  |  |
| 20<br>30                           | 19 4       | "                                                         |  |  |
|                                    | 20 6       | Too I March 10TT O                                        |  |  |
| <del>-33</del> 6                   |            | Ice+MgCl <sub>2</sub> , 12H <sub>2</sub> O                |  |  |
| 20                                 | 26 7       | $ m MgCl_{2,12H_2O}$                                      |  |  |
| -164                               | 30 5       | M-CL 10TLO                                                |  |  |
| <b>—16</b> 8                       | 31 6       | MgCl <sub>2</sub> , 12H <sub>2</sub> O+                   |  |  |
|                                    |            | MgCl <sub>2</sub> , 8H <sub>2</sub> O                     |  |  |
| - 3 4                              | 34 3       | $MgCl_2$ , $8H_2O+MgCl_2$ ,                               |  |  |
|                                    |            | $6H_2O$                                                   |  |  |
| 0                                  | 34 6       | $MgCl_2$ , $6H_2O$                                        |  |  |
| 10                                 | 34 9       | "                                                         |  |  |
| 20                                 | 35 3       | "                                                         |  |  |
| 22                                 | 35 6       | "                                                         |  |  |
| 40                                 | 36 5       | "                                                         |  |  |
| 60                                 | 37 9       | "                                                         |  |  |
| 80                                 | 39 8       | "                                                         |  |  |
| 100                                | 42 2       | "                                                         |  |  |
| 116 7                              | 46 1       | MgCl <sub>2</sub> , 6H <sub>2</sub> O+MgCl <sub>2</sub> , |  |  |
|                                    | 1          | $4\mathrm{H}_2\mathrm{O}$                                 |  |  |
| 152 6                              | 49 1       | $MgCl_2$ , $4H_2O$                                        |  |  |
| 181 5                              | 55 8       | MgCl <sub>2</sub> , 4H <sub>2</sub> O+MgCl <sub>2</sub> . |  |  |
|                                    | -          | 2H <sub>2</sub> O                                         |  |  |
| 186                                | 56 1       | MgCl <sub>2</sub> , 2H <sub>2</sub> O                     |  |  |
|                                    |            | 1                                                         |  |  |

(Landolt-Bornstein, Tab 5th Ed 1912 480)

See also MgCl2+6H2O

Sp gr of MgCl<sub>2</sub>+Aq at 15°

| % MgCla                                                     | Sp gr                                                                                                                | % MgCl2                                                              | Sp gr                                                                                                                | % MgCl2                                                        | Sp gr                                                                                                      |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 1 0084<br>1 0169<br>1 0253<br>1 0338<br>1 0422<br>1 0510<br>1 0597<br>1 0684<br>1 0772<br>1 0859<br>1 0949<br>1 1040 | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 1 1130<br>1 1220<br>1 1311<br>1 1404<br>1 1498<br>1 1592<br>1 1686<br>1 1780<br>1 1879<br>1 1977<br>1 2076<br>1 2175 | 25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35 | 1 2274<br>1 2378<br>1 2482<br>1 2586<br>1 2690<br>1 2794<br>1 2903<br>1 3012<br>1 3121<br>1 3230<br>1 3340 |

(Gerlach, Z anal 8 281)

### Sp gr of MgCl<sub>2</sub>+Aq at 18°

| % MgCl2 | Sp gr            | % MgCl2  | Sp gr            | % MgCl2 | Sp gr  |
|---------|------------------|----------|------------------|---------|--------|
| 5<br>10 | 1 0416<br>1 0859 | 20<br>30 | 1 1764<br>1 2779 | 34      | 1 3210 |

(Kohlrausch, W Ann 1879 1)

Sp gr of MgCl<sub>2</sub>+Aq at 0° S=pts salt in 100 pts of solution, S<sub>1</sub>=mols salt in 100 mols solution

| S       | $\mathbf{S}_{\mathbf{l}}$ | Sp gr  |
|---------|---------------------------|--------|
| 29 2056 | 7 230                     | 1 2788 |
| 20 9293 | 4 762                     | 1 1927 |
| 15 7989 | 3 423                     | 1 1427 |
| 11 3249 | 2 355                     | 1 1007 |
| 6 2008  | 1 233                     | 1 0545 |

(Charpy, A ch (6) 29 23)

Sp gr of MgCl<sub>2</sub>+Aq at 19 5°

| Pts MgCl <sub>2</sub><br>in 100 pts<br>H <sub>2</sub> O | Sp gr  | Pts MgCl <sub>2</sub><br>in 100 pts<br>H <sub>2</sub> O | Sp gr  |
|---------------------------------------------------------|--------|---------------------------------------------------------|--------|
| $\begin{array}{c} 10 \ 7 \\ 22 \ 0 \end{array}$         | 1 0826 | 35 3                                                    | 1 2388 |
|                                                         | 1 1592 | 51 5                                                    | 1 3235 |

(Kremers, Pogg 104 155)

| Sp       | gr | of  | MgCl <sub>2</sub> +Aq a | t 14° |  |
|----------|----|-----|-------------------------|-------|--|
| $\sim P$ | -  | 0.1 | 1115014   114           |       |  |

|                                                                                      |                                                                                                                                                               | •                                                                                                  |                                                                                                                                                                        |                                                                            |                                                                                                                                                    |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| % MgCl <sub>2</sub><br>+6H <sub>2</sub> O                                            | Sp gr                                                                                                                                                         | % MgCl <sub>2</sub><br>+6H <sub>2</sub> O                                                          | Sp gr                                                                                                                                                                  | % MgCl <sub>2</sub><br>+6H <sub>2</sub> O                                  | Sp gr                                                                                                                                              |
| 0<br>12<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 0 9993<br>1 0033<br>1 0073<br>1 0113<br>1 0154<br>1 0194<br>1 0234<br>1 0274<br>1 0315<br>1 0355<br>1 0435<br>1 0476<br>1 05517<br>1 0558<br>1 0599<br>1 0641 | 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 1 0682<br>1 0724<br>1 0765<br>1 0807<br>1 0849<br>1 0891<br>1 0933<br>1 0976<br>1 1018<br>1 1061<br>1 1103<br>1 1146<br>1 1189<br>1 1232<br>1 1275<br>1 1319<br>1 1363 | 34<br>35<br>36<br>37<br>38<br>40<br>41<br>42<br>44<br>45<br>46<br>47<br>48 | 1 1407<br>1 1451<br>1 1495<br>1 1540<br>1 1584<br>1 1628<br>1 1673<br>1 1718<br>1 1763<br>1 1809<br>1 1855<br>1 1901<br>1 1948<br>1 1995<br>1 2042 |

(Oudemans, Z anal 7 420)

Sp gr of MgCl<sub>2</sub>+Aq at 24°

| % MgCl <sub>2</sub><br>+6H <sub>2</sub> O                                    | Sp gr                                                                                                                                    | % MgCl <sub>2</sub><br>+6H <sub>2</sub> O                                        | Sp gr                                                                                                                                    | % MgCl <sub>2</sub><br>+6H <sub>2</sub> O                            | Sp gr                                                                                                                |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>26<br>28 | 1 0069<br>1 0138<br>1 0207<br>1 0276<br>1 0345<br>1 0415<br>1 0485<br>1 0556<br>1 0627<br>1 0698<br>1 0770<br>1 0842<br>1 0915<br>1 0988 | 30<br>32<br>34<br>36<br>38<br>40<br>42<br>44<br>46<br>48<br>50<br>52<br>54<br>56 | 1 1062<br>1 1137<br>1 1212<br>1 1288<br>1 1364<br>1 1441<br>1 1519<br>1 1598<br>1 1677<br>1 1756<br>1 1836<br>1 1918<br>1 2000<br>1 2083 | 58<br>60<br>62<br>64<br>66<br>68<br>70<br>72<br>74<br>76<br>78<br>80 | 1 2167<br>1 2252<br>1 2338<br>1 2425<br>1 2513<br>1 2602<br>1 2692<br>1 2783<br>1 2875<br>1 2968<br>1 3063<br>1 3159 |

(Gerlach, Z anal 8 283 Calculated from Schiff)

Sp gr of MgCl +Aq at 25°

| Concentration of MnCl <sub>2</sub> +Aq | Sp gr                                |
|----------------------------------------|--------------------------------------|
| 1-normal  1/2- ""  1/4- ""  1/8- ""    | 1 1375<br>1 0188<br>1 0091<br>1 0043 |

(Wagner, Z phys Ch 1890, 5 38)

| $\operatorname{Sp}$ | $\operatorname{gr}$ | of MgCl <sub>2</sub> +Aq |
|---------------------|---------------------|--------------------------|
|                     |                     |                          |

| ··r 0 0 1 1                                                               |                                                                                              |  |  |  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| ⅓ MgCl <sub>2</sub> g in 1000 g<br>of solution                            | Sp gr 16°/16°                                                                                |  |  |  |
| 0<br>0 4400<br>0 8801<br>1 7780<br>3 4533<br>7 4691<br>14 7187<br>29 6307 | 1 000000<br>1 000372<br>1 000741<br>1 001458<br>1 002888<br>1 006219<br>1 012235<br>1 024647 |  |  |  |

(Dijken, Z phys Ch 1897, 24 108)

Sp gr of MgCl<sub>2</sub> at 20 1°

p=per cent strength of solution, d=o served duesity, w=volume conc in grar per cc  $\left(\frac{pd}{100}=w\right)$ 

| р                                                                                       | d                                                                                                | W                                                                                                          |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 28 83<br>25 59<br>20 31<br>15 79<br>10 185<br>8 058<br>5 919<br>3 913<br>3 903<br>1 743 | 1 2569<br>1 2241<br>1 1735<br>1 1324<br>1 0833<br>1 0650<br>1 0473<br>1 0304<br>1 0240<br>1 0126 | 0 36237<br>0 31327<br>0 23842<br>0 17877<br>0 11033<br>0 08583<br>0 06198<br>0 04022<br>0 03210<br>0 01765 |
|                                                                                         |                                                                                                  |                                                                                                            |

(Barnes, J Phys Chem 1898, 2 546)

Sp gr of MgCl<sub>2</sub>+Aq at t°

| t° | Concentration of MgCl2+Aq                             | Sp gr |
|----|-------------------------------------------------------|-------|
| 23 | 1 pt MgCl <sub>2</sub> in 8 1874 pts H <sub>2</sub> O | 1 090 |
| 24 | 1 pt " " 102 1 " "                                    | 1 006 |

(Hittorf, Z phys Ch 1902, 39 628)

Sp gr of MgCl at 0° G MgCl<sub>2</sub> in 100 ccm of solution 6 7158 9 950 Sp gr 1 0591 1 08

G MgCl<sub>2</sub> in 100 ccm of sol 13 8111 20 00 Sp gr 1 1106 1 16 ( (Bremer, C C 1902, I 293)

Sp gr 1 000344 1 000524 1 000842 1 0027 M 0 05108 0 07171 0 10 0 25

M 0 05108 0 07171 0 10 0 25 Sp gr 1 004224 1 006036 1 008505 1 02090

 MgCl<sub>2</sub>+Aq containing 10% MgCl<sub>2</sub> boils at 101 6°, containing 20% MgCl<sub>2</sub> boils at 106 2°, containing 30% MgCl<sub>2</sub> boils at 115 6° (Gerlach)

Sat MgCl<sub>2</sub>+Aq forms a crust at 122 5°, and contains 52 9 pts MgCl<sub>2</sub> to 100 pts H<sub>2</sub>O

(Gerlach, Z anal 26  $42\overline{6}$ )

| B-pt                                     | P    | B-pt | P    | B-pt | P    |
|------------------------------------------|------|------|------|------|------|
| 101° 102 103 104 105 106 107 108 109 110 | 4 9  | 111° | 34 6 | 121° | 50 8 |
|                                          | 9 2  | 112  | 36 6 | 122  | 52 2 |
|                                          | 13 2 | 113  | 38 4 | 123  | 53 6 |
|                                          | 16 7 | 114  | 40 2 | 124  | 55 0 |
|                                          | 19 9 | 115  | 41 8 | 125  | 56 4 |
|                                          | 22 5 | 116  | 43 4 | 126  | 57 7 |
|                                          | 25 0 | 117  | 44 9 | 127  | 59 0 |
|                                          | 27 5 | 118  | 46 4 | 128  | 60 3 |
|                                          | 29 9 | 119  | 47 9 | 129  | 61 6 |
|                                          | 32 3 | 120  | 49 4 | 130  | 62 9 |

(Gerlach, Z anal 26 440)

B-pt of MgCl<sub>2</sub>+Aq containing % MgCl<sub>2</sub>

| % MgCl <sub>2</sub> | B-pt | % MgCl <sub>2</sub> | B-pt |
|---------------------|------|---------------------|------|
| 4 6                 | 101° | 11 6                | 103° |
| 8 4                 | 102  | 14 3                | 104  |

(Skinner, Chem Soc 61 341)

Sol in KCl+Aq at  $50^{\circ}$  (Uhlig, C C 1913, II 749)

Sol in 7 pts alcohol at 15 $^{\circ}$  (Bergmann) moderate heat (B)

100 pts alcohol of given sp gr dissolve pts MgCl2

| >p ₅r | Pts MgCl | Sp gr | Pts MgCl <sub>2</sub> |
|-------|----------|-------|-----------------------|
| 0 900 | 21 25    | 0 834 | 36 25                 |
| 0 848 | 23 75    | 0 817 | 50 00                 |

(Kuwan)

 $M_LC \mid_2 + 6 H_2()$  is sol in 5 pts alcohol of 0 90 sp gr and in 2 pts alcohol of 0 817 sp gr Sol in 0 1828 pt strong alcohol at 82 5° (Wenzel)

B-pt of an alcoholic solution of MgCl<sub>2</sub>

| % MLCI | B-pt          |
|--------|---------------|
| 5 56   | 78 43° +0 73° |
| 6 53   | " +1 34       |
| 9 62   | " +1 77       |
| 13 84  | " +3 54       |

(Skinner, Chem Soc 61 341)

Even more sol in acetic ether than CaCl<sub>2</sub> (Cann, C R 102 363)

Sol in boiling amyl alcohol (Riggs, Sill Am J 144 103)

Sl sol in anhydrous pyridine Sol in 97%, 95% and 93% pyridine+Aq (Kahlenberg, J Am Chem Soc 1908, **30** 1107)

Insol in CS<sub>2</sub> (Arctowski, Z anorg 1894, 6 257)

Sl sol in benzonitrile (Naumann, B 1914, 47 1369)

Insol in methyl acetate (Naumann, B 1909, 42 3790) +2H<sub>2</sub>O Very deliquescent (Ditte, A

+2 $H_2O$  Very deliquescent (Ditte, A ch 1881, (5) 22 560) +4 $H_2O$  (van't Hoff and Meyerhoffer)

 $+4 {\rm H}_2{\rm O}$  (van't Hoff and Meyerhoffer) +6 {\rm H}\_2{\rm O} Deliquescent Sol in 0.6 pt cold, and 0.273 pt hot  ${\rm H}_2{\rm O}$  (Casaseca, l c)

Solubility in H<sub>2</sub>O at t°

| t°   | 1000 mols H <sub>2</sub> O<br>dissolve mols<br>MgCl <sub>2</sub> | 100 g H <sub>2</sub> O dis<br>solve g MgCl <sub>2</sub> |
|------|------------------------------------------------------------------|---------------------------------------------------------|
| 3 5  | 99 6                                                             | 52 65                                                   |
| 25 0 | 104 5                                                            | 55 26                                                   |
| 50 0 | 110 6                                                            | 58 66                                                   |

(Biltz and Marcus, Z anorg 1911, 71 169)

Solubility in KCl+NH<sub>4</sub>Cl+Aq at 25° has been studied (Biltz and Marcus, Z anorg 1911, 71 178)

When the solid phases are MgSO<sub>4</sub>+6H<sub>2</sub>O and MgCl<sub>2</sub>+6H<sub>2</sub>O, 1000 mols H<sub>2</sub>O dissolve 104 mols MgCl<sub>2</sub> and 14 mols MgSO<sub>4</sub> at 25° (Lowenherz, Z phys Ch 1894, **13** 480)

Solubility of  $MgCl_2+6H_2O$  in  $(NH_4)MgCl_3+6H_2O+Aq$  at  $t^{\circ}$ 

| t.º                 | Per 1000 mols H <sub>2</sub> O |                        |
|---------------------|--------------------------------|------------------------|
| ·                   | Mols NH <sub>4</sub> Cl        | Mols MgCl <sub>2</sub> |
| 3 5<br>25 0<br>50 0 | 0 5<br>0 5<br>0 8              | 99 5<br>103 8<br>111 2 |

(Biltz and Marcus, Z anorg 1911, 71 170)

Solubility data of MgCl<sub>2</sub>+KCl+MgKCl<sub>3</sub> are given by van't Hoff and Meyerhoffer (Z phys Ch 1899, 30 64)

+8H<sub>2</sub>O Pptd from an aqueous solution which contains about 10 mols H<sub>2</sub>O to 1 mol

 $MgCl_2$ +12H<sub>2</sub>O Pptd from an aq solution which contains 1 mol MgCl<sub>2</sub> in about 12 06 mols of H<sub>2</sub>O (Bogorodsky, C C 1899, I 246)

Magnesium manganous chloride, MgCl<sub>2</sub>, 2Mn(l<sub>2</sub>+12H<sub>2</sub>O

2MnCl<sub>2</sub>+12H<sub>2</sub>O

Deliquescent Very sol in H<sub>2</sub>O and al-

cohol (Saunders, Am Ch J 14 148) 2MgCl<sub>2</sub>, MnCl<sub>2</sub>+12H<sub>2</sub>O Ppt Deliquesces in the air (Gossner, C C 1904, I 707)

Magnesium mercuric chloride, MgCl<sub>2</sub>, HgCl<sub>2</sub> +6H<sub>2</sub>O

Very deliquescent More sol than the following salt (v Bonsdorff, Pogg 17 133) MgCl<sub>2</sub>, 3HgCl<sub>2</sub>+5H<sub>2</sub>O Sol in H<sub>2</sub>O without decomp Easily sol in alcohol (v Bonsdorff)

Magnesium phosphoryl chloride, MgCl<sub>2</sub>, POCl<sub>2</sub>

Sol in H<sub>2</sub>O with evolution Deliquescent of heat and decomposition Very sl sol in warm POCl<sub>3</sub> (Casselmann, A 98 223)

Magnesium potassium chloride, MgCl<sub>2</sub>, 2KCl+6H<sub>2</sub>O

Deliquescent, forming a solution of MgCl<sub>2</sub>, while KCl remains undissolved 100 pts H<sub>2</sub>O dissolve 64 5 pts at 18 75° 20 pts salt dissolved in 80 pts H<sub>2</sub>O lower the temp 1 75° (Bischof) Alcohol dissolves out MgCl<sub>2</sub> Decomp into the two salts by solution in  $\mathbf{H_2O}$ (Marcet)

A sat solution in contact with solid KCl and KCl, MgCl<sub>2</sub>, H<sub>2</sub>O at 50° contains 79 5 mol MgCl<sub>2</sub> and 14 9 mol KCl per 1000 mol A sat solution in contact with solid MgCl<sub>2</sub>, 6H<sub>2</sub>O and KCl, MgCl<sub>2</sub>, H<sub>2</sub>O at 50° contains 111 9 mol MgCl2 and 12 mol KCl per 1000 mol H<sub>2</sub>O (Uhlig, Chem Soc 1913, 104 (2) 775, C B Miner 1913, 417)

Min Carnallite

Magnesium rubidium chloride, MgCl<sub>2</sub>, RbCl  $+6H_2O$ 

Not decomp by a small quantity of H<sub>2</sub>O (Fest and Kubierscky, Ch. Ztg. 16, 335)

Magnesium sodium chloride, MgCl<sub>2</sub>, NaCl+  $2H_2O$ 

Sol in H<sub>2</sub>O (Poggiale)

Magnesium thallic chloride, 2TlCl<sub>3</sub>, MgCl<sub>2</sub>+ 6H<sub>2</sub>O

Hydroscopic Can be cryst from H<sub>2</sub>O (Gewecke, A 1909, 366 224)

Magnesium stannic chloride Sée Chlorostannate, magnesium

Magnesium vanadium chloride, MgCl<sub>2</sub>, VCl<sub>3</sub>  $+H_2O$ 

Difficultly sol in H<sub>2</sub>O and alcohol (Stahler, B 1904, 37 4412)

Magnesium zinc chloride, MgCl<sub>2</sub>, ZnCl<sub>2</sub>+  $6H_2O$ 

Deliquescent, sol in H<sub>2</sub>O (Warner, C N **27** 271)

Magnesium chloride ammonia, MgCl<sub>2</sub>, 4NH<sub>3</sub> Easily decomp (Clark, A 78 369)

Magnesium chloride hydroxylamine, MgCl<sub>2</sub>,  $2NH_2OH + 2H_2O$ 

100 g of solution in  $H_2O$  contain 44 4% at 20° (Antonow, J Russ Phys Chem (Antonow, J Russ Phys Chem Soc 1905, 37 478)

Magnesium fluoride, MgF<sub>2</sub>

1 l H<sub>2</sub>O dissolves 76 mg MgF<sub>2</sub> at 18° (Kohlrausch, Z phys Ch 1904, 50 356)

87 mg are dissolved in 1 l of sat solution at 18° (Kohlrausch, Z phys Ch 1908, 64

Scarcely sol in acids (Gay-Lussac and Thénard) Insol in excess of HF precipitated, is sol in aqueous solution of ammonium and magnesium salts Sol in dil HNO<sub>3</sub>+Aq, from which it is precipitated by alcohol

Insol in methyl acetate (Naumann, B 1909, 42 3790)

Min Sellarte

Magnesium potassium fluoride, MgF<sub>2</sub> KF Decomp by H<sub>2</sub>SO<sub>4</sub> (Duboin, C R 1895, **120** 679 )

MgF<sub>2</sub>, 2KF Decomp by H<sub>2</sub>SO<sub>4</sub> (Du-

boin )

Magnesium sodium fluoride, MgF2, NaF Insol in H<sub>2</sub>O (Geuther, J B 1865 173)

Magnesium stannic fluoride See Fluostannate, magnesium

Magnesium titanium fluoride See Fluotitanate, magnesium

Magnesium zirconium fluoride See Fluozirconate, magnesium

Magnesium hydrosulphide, MgS<sub>2</sub>H<sub>2</sub>

Known only in aqueous solution, which decomposes on warming Solution containing 16% MgS<sub>2</sub>H<sub>2</sub> has sp gr 1 118 at 12° (Divers and Shimidzu, Chem Soc 45 699)

Magnesium hydroxide, MgO<sub>2</sub>H<sub>2</sub>

MgO is sol in 55 368 pts H2O at ordinary temp and

MgO is soi in 55 508 pts H<sub>2</sub>O at ordinary temp and also at 100 (Fresenus A **59** 117)
MgO is sol in 5142 pts H<sub>2</sub>O at 15 5° (Fyfe) in 5800 pts at 15 8 (Henry J Pharm **13** 2) in 7900 pts (Kir wan) in 16 000 pts (Dalton) in 100 000-200 000 pts cold H<sub>2</sub>O (Bineau) in 36 000 pts boiling H<sub>2</sub>O (Fyfe Ed Phil J **5** 305)

Calculated from electrical conductivity of MgO<sub>2</sub>H<sub>2</sub>+Aq, 1 l H<sub>2</sub>O dissolves 9 mg MgO<sub>2</sub>H<sub>2</sub> at 18° (Kohlrausch and Rose, Z phys Ch 12 241)

Calculated from electrical conductivity, 1 1 H<sub>2</sub>O dissolves 00 076 g MgO<sub>2</sub>H<sub>2</sub> at 18° (Dupré and Brutus, Z angew Ch 1903, 16

55)

Presence of CaO<sub>2</sub>H<sub>2</sub> or CaSO<sub>4</sub> does not decrease the solubility (Henry) Presence of the salts of the alkalı metals, especially ammonium salts, increase the solubility in cone Na<sub>2</sub>SO<sub>4</sub>, NaNO<sub>3</sub>, NaCl, or KNO<sub>3</sub>+Aq (Karsten) Sol in NH<sub>4</sub>OH+Aq, but insol in KOH+Aq (Odling)

Easily sol in acids Sol in an aqueous solution of sugar Boiling alcohol dissolves

traces

| Solubility of | MgO <sub>2</sub> H <sub>2</sub><br>at 29° | ın NH <sub>4</sub> Cl+Aq |
|---------------|-------------------------------------------|--------------------------|
|---------------|-------------------------------------------|--------------------------|

| Jone of<br>LCI+Aq<br>Vormal)         | required<br>liberated<br>in 25 cc<br>ormal)      | Norma                                      | lity of                                    | G pe                                 | er l                                   |
|--------------------------------------|--------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------|----------------------------------------|
| SHS.                                 | Acad<br>for b<br>NH3                             | MgO <sub>2</sub> H                         | NH4Cl                                      | MgO <sub>2</sub> H <sub>2</sub>      | NH4Cl                                  |
| 0 7<br>0 466<br>0 35<br>0 23<br>0 17 | 0 09835<br>0 1108<br>0 09835<br>0 1108<br>0 1108 | 0 156<br>0 108<br>0 089<br>0 0638<br>0 049 | 0 388<br>0 250<br>0 172<br>0 106<br>0 0771 | 4 55<br>3 15<br>2 60<br>1 86<br>1 43 | 20 86<br>13 39<br>9 21<br>5 67<br>4 13 |

(Herz and Muhs, Z anorg 1909, 38 140)

## Solubility of MgO<sub>2</sub>H<sub>2</sub> in NH<sub>4</sub>NO<sub>8</sub>+Aq at 29°

| Conc of<br>NH <sub>4</sub> NO <sub>3</sub> | Acid re<br>quired<br>for liber  | Norms                           | ality of | G 1          | per I         |
|--------------------------------------------|---------------------------------|---------------------------------|----------|--------------|---------------|
| +Aq<br>(Nor<br>mal)                        | ated NHs<br>in 25ec<br>(Normal) | MgO <sub>2</sub> H <sub>2</sub> | NH4NO8   | MgO2H2       | NH4NO3        |
| 0 35<br>0 175                              |                                 | 0 0833<br>0 0495                |          | 2 43<br>1 45 | 14 69<br>6 09 |

### (Herz and Muhs)

Completely insol in 16% NaCl+Aq in presence of 08 g NaOH (Maigret, Bull Soc (3) 33 631)

Solubility of MgO<sub>2</sub>H in NaCl+NaOH+Aq

| G NaCl per l | G MgO per l of se | olution with added |
|--------------|-------------------|--------------------|
| G NaOrperi   | 08g NaOH per l    | 40g NaOH per l     |
| 125          | 0 07              | 0 03               |
| 140<br>160   | 0 045<br>None     | None               |

### (Maigret)

Freshly pptd Mg(OH)<sub>2</sub> is sol in Th(NO<sub>3</sub>)<sub>4</sub> +Aq forming a colloidal solution (Halla, Z anorg 1912, **79** 262)

Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II, 1014)

See also Magnesium oxide

Min Brucite Sol in cold citric acid+Aq (Bolton, C N 37 14) 2MgO, 3H<sub>2</sub>O (Bender, B 3 932)

2MgO, 31120 (Bender, B 3 932

### Magnesium iodide, MgI<sub>2</sub>

Very deliquescent

Solubility in  $H_2O$  See  $MgI_2+6$ , and  $8H_2O$  Sp gr of  $MgI_2+Aq$  at 19 5° containing 5 10 15 20 25 30%  $MgI_2$ , 1043 1088 1139 1194 1254 132

(Kremers, Pogg 111 62, calculated by Gerlach, Z anal 8 285)

MgI<sub>2</sub>+Aq decomp slightly on evaporation Very sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828)

Sol in alcohol, ether, and wood-spirit

Solubility of MgI2 in alcohols

MgI<sub>2</sub> forms with methyl alcohol a complex, MgI<sub>2</sub>, 6CH<sub>3</sub>OH

Solubility of MgI<sub>2</sub>, 6CH<sub>3</sub>OH in CH<sub>3</sub>OH at t°

| t°                               | % by weight of<br>MgI <sub>2</sub> CH <sub>3</sub> OH | t°                              | % by weight o<br>MgI <sub>2</sub> 6CH <sub>3</sub> OH |
|----------------------------------|-------------------------------------------------------|---------------------------------|-------------------------------------------------------|
| 0<br>20<br>40<br>60<br>80<br>100 | 49 6<br>52 6<br>55 3<br>58 0<br>60 6<br>63 3          | 120<br>140<br>160<br>180<br>200 | 66 2<br>69 5<br>73 2<br>77 1<br>81 5                  |

(Menschutkin, Z anorg 1907, 52 15)

 $MgI_2$  forms with ethyl alcohol a complex,  $MgI_2,\,6C_2H_5OH$ 

### Solubility of MgI<sub>2</sub>, 6C<sub>2</sub>H<sub>5</sub>OH in C<sub>2</sub>H<sub>5</sub>OH at t°

| t°  | % by weight<br>of MgI₂<br>6C2H5OH | t°        | % by weight of MgI <sub>2</sub> 6 C <sub>2</sub> H <sub>5</sub> OH |
|-----|-----------------------------------|-----------|--------------------------------------------------------------------|
| 0   | 21 9                              | 120       | 82 7                                                               |
| 20  | 33 2                              | 130       | 87 2                                                               |
| 40  | 44 4                              | 135       | 90 0                                                               |
| 60  | 55 3                              | 140       | 93 3                                                               |
| 80  | 65 5                              | 143       | 96 0                                                               |
| 100 | 74 7                              | 145       | 98 0                                                               |
| 110 | 78 8                              | 146 5 mpt | 100                                                                |

### (Menschutkın)

 $MgI_2$  forms with dimethylcarbinol a complex,  $MgI_2,\,6(CH_3)_2CHOH$ 

# Solubility of MgI<sub>2</sub>, 6(CH<sub>3</sub>)<sub>2</sub>CHOH in (CH<sub>3</sub>)<sub>2</sub>CHOH at t°

| t° | % by weight of MgI <sub>2</sub> 6(CH <sub>3</sub> ) <sub>2</sub> CHOH | t°      | % by weight of MgI <sub>2</sub><br>6(CH <sub>3</sub> ) <sub>2</sub> CHOH |
|----|-----------------------------------------------------------------------|---------|--------------------------------------------------------------------------|
| 10 | 57 1                                                                  | 110     | 76 2                                                                     |
| 30 | 60 0                                                                  | 120     | 79 4                                                                     |
| 50 | 63 3                                                                  | 130     | 84 8                                                                     |
| 70 | 67 0                                                                  | 136     | 91 7                                                                     |
| 90 | 71 2                                                                  | 138 mpt | 100                                                                      |

### (Menschutkin)

### Solubility of MgI2 in ether at to

| t°   | % MgI <sub>2</sub> | % MgI <sub>2</sub> 2C <sub>4</sub> H <sub>10</sub> O |
|------|--------------------|------------------------------------------------------|
| 5 4  | 1 45               | 2 2                                                  |
| 11 8 | 2 43               | 3 7                                                  |
| 15 6 | 3 46               | 5 3                                                  |
| 18 1 | 5 4                | 8 3                                                  |
| 20 4 | 7 55               | 11 6                                                 |
| 22 2 | 11 28              | 17 3                                                 |

(Menschutkin, Z anorg 1906, 49 41)

| t.º                                    | % MgI2                                       | % MgI <sub>2</sub> 2C <sub>4</sub> H <sub>10</sub> O |
|----------------------------------------|----------------------------------------------|------------------------------------------------------|
|                                        | ın lowe                                      | er layer                                             |
| 14 8<br>17 6<br>20<br>28 4<br>33<br>35 | 35 5<br>35 5<br>35 8<br>35 5<br>35 7<br>35 3 | 54 4<br>54 4<br>54 8<br>54 4<br>54 7<br>54 1         |
| ın upper layer                         |                                              |                                                      |
| 18 6<br>23 2<br>24 4<br>32 4           | 13 57<br>14 4<br>14 6<br>15 82               | 20 8<br>22 1<br>22 4<br>24 2                         |
| ın solution when two layers mix        |                                              |                                                      |
| 37 3<br>38 5<br>38 5<br>38 5<br>38 5   | 19 4<br>22 45<br>26 07<br>29 8<br>32 8       | 29 3<br>34 4<br>39 9<br>45 7<br>50 3                 |

### (Menschutkın)

Solubility of MgI<sub>2</sub> in acetic acid rms with acetic acid a complex, I<sub>3</sub>COOH

# Solubility of MgI<sub>2</sub>, 6CH<sub>3</sub>COOH in CH<sub>3</sub>COOH at t°

| t°                            | % by wt MgI <sub>2</sub> 6CH <sub>3</sub> COOH |
|-------------------------------|------------------------------------------------|
| 20                            | 0 6                                            |
| 40                            | 2 0                                            |
| 60                            | 5 0                                            |
| 70                            | 9 5                                            |
| 75                            | 13 0                                           |
| 80                            | 18 5                                           |
| 85                            | 27 1                                           |
| 95                            | 42 0                                           |
| 105                           | 54 5                                           |
| 115                           | 65 0                                           |
| 125                           | 73 8                                           |
| 135                           | 85 0                                           |
| 140                           | 94 0                                           |
| $1\overline{42}~\mathrm{mpt}$ | 100 0                                          |

(Menschutkin, Z anorg 1907, 54 93)

Solubility of MgI<sub>2</sub> in acetone MgI<sub>2</sub> forms with acetone a complex, MgI<sub>2</sub> 6CH<sub>2</sub>COCH<sub>3</sub>

# Solubility of MgI<sub>2</sub>, 6CH<sub>3</sub>COCH<sub>8</sub> in CH<sub>3</sub>COCH<sub>3</sub> at t°

| t°                                                                           | % by wt MgI <sub>2</sub> 6CH <sub>3</sub> COCE                                           |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 0<br>30<br>50<br>60<br>70<br>80<br>85<br>90<br>95<br>100<br>105<br>106 5 mpt | 4 9<br>6 7<br>8 3<br>10 2<br>15 2<br>28 6<br>40 0<br>59 2<br>80 0<br>92 5<br>98 5<br>100 |

(Menschutkin, Z anorg 1907, 53 30)

Solubility of  $MgI_2$  in acetal  $MgI_2$  forms with acetal a complex,  $MgI_2$ ,  $2CH_3CH(OC_2H_5)_2$ 

# Solubility of MgI<sub>2</sub>, $2CH_3CH(OC_2H_5)_2$ in $CH_3CH(OC_2H_5)_2$ at $t^{\circ}$

| t°                                               | % by wt MgI <sub>2</sub> 2CH <sub>3</sub> CH(OC <sub>2</sub> H <sub>6</sub> ) <sub>2</sub> |
|--------------------------------------------------|--------------------------------------------------------------------------------------------|
| 20<br>60<br>77<br>77<br>79<br>81<br>83<br>86 mpt | 0 15<br>0 45<br>0 6<br>92 0<br>93 7<br>95 5<br>97 3<br>100                                 |
|                                                  |                                                                                            |

(Menschutkin, Z anorg 1907, 53 33)

Solubility of MgI<sub>2</sub> in acetamide MgI<sub>2</sub> forms with acetamide a complex, MgI<sub>2</sub>, 6CH<sub>3</sub>CONH<sub>2</sub>

# Solubility of MgI<sub>2</sub>, 6CH<sub>3</sub>CONH in CH<sub>3</sub>CONH<sub>2</sub> at t°

| t       | % by wt of MgI <sub>2</sub><br>6CH <sub>3</sub> CONH <sub>2</sub> |
|---------|-------------------------------------------------------------------|
| 49      | 56 5                                                              |
| 80      | 63 4                                                              |
| 110     | 70 5                                                              |
| 130     | 76 0                                                              |
| 150     | 82 1                                                              |
| 160     | 85 5                                                              |
| 170     | 90 8                                                              |
| 175     | 96 2                                                              |
| 177 mpt | 100 0                                                             |

(Menschutkin, Z anorg 1909, 61 108)

Solubility of MgI<sub>2</sub> in acetonitrile MgI<sub>2</sub> forms with acetonitrile a complex, MgI<sub>2</sub>, 6CH<sub>2</sub>CN

Solubility of MgI<sub>2</sub>, 6CH<sub>2</sub>CN in CH<sub>2</sub>CN at t°

| t° | % by wt MgI <sub>2</sub> 6CH <sub>3</sub> CN |
|----|----------------------------------------------|
| 0  | 37 2                                         |
| 30 | 49 8                                         |
| 50 | 58 2                                         |
| 70 | 67 9                                         |
| 80 | 76 5                                         |
| 89 | 91 3                                         |

(Menschutkin, Z anorg 1909, 61 110)

Solubility of MgI<sub>2</sub> in benzaldehyde MgI<sub>2</sub> forms with benzaldehyde a complex, MgI<sub>2</sub>, 6C<sub>6</sub>H<sub>5</sub>CHO

Solubility of MgI<sub>2</sub>, 6C<sub>6</sub>H<sub>5</sub>CHO in C<sub>6</sub>H<sub>5</sub>CHO at t°

| t°                          | % by wt MgI <sub>2</sub> 6C <sub>6</sub> H <sub>5</sub> CHO |
|-----------------------------|-------------------------------------------------------------|
| 0                           | 3 2                                                         |
| 20                          | 3 8                                                         |
| 40<br>60                    | 5 3                                                         |
| 80                          | 11 0                                                        |
| 100                         | 18 5                                                        |
| 110                         | 26 5                                                        |
| 120                         | 40 0                                                        |
| 125                         | 53 0                                                        |
| 130                         | 74 5                                                        |
| 133                         | 86 0                                                        |
| $136$ $139 \; \mathrm{mpt}$ | 94 2<br>100                                                 |

(Menschutkin, Z anorg 1907, 53 28)

Solubility of  $MgI_2$  in methyl acetate  $MgI_2$  forms with methyl acetate a complex,  $MgI_2$ ,  $6CH_3COOCH_3$ 

Solubility of MgI<sub>2</sub>, 6CH<sub>3</sub>COOCH<sub>3</sub> in CH<sub>3</sub>COOCH<sub>3</sub> at t°

| t°      | % by wt MgI <sub>2</sub><br>6CH <sub>3</sub> COOCH <sub>4</sub> |
|---------|-----------------------------------------------------------------|
| 0       | 0 4                                                             |
| 30      | 0 555                                                           |
| 60      | 0 75                                                            |
| 90      | 0 9                                                             |
| 100     | 1 8                                                             |
| 103     | 2 4                                                             |
| 103     | 74 2                                                            |
| 110     | 81 7                                                            |
| 120     | 98 0                                                            |
| 121 mpt | 100 0                                                           |

(Menschutkin, Z anorg 1909, 61 101)

Solubility of MgI<sub>2</sub> in methyl acetate MgI<sub>2</sub> forms with ethyl acetate a complex, MgI<sub>2</sub>, 6CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub>

Solubility of MgI<sub>2</sub>, 6CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub> in CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub> at t°

| to       | % by wt MgI <sub>2</sub><br>6CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub> |
|----------|-------------------------------------------------------------------------------|
| 0        | 3 2                                                                           |
| 20       | 4 8                                                                           |
| 40       | 8 6                                                                           |
| 50       | 13 7                                                                          |
| 55       | 21 5                                                                          |
| 60       | 38 0                                                                          |
| 65       | 63 5                                                                          |
| 70       | 90 5                                                                          |
| 75       | 97 7                                                                          |
| 78 5 mpt | 100 0                                                                         |

(Menschutkın)

Solubility of MgI<sub>2</sub> in ethyl formate MgI<sub>2</sub> forms with ethyl formate a complex, MgI<sub>2</sub>, 6HCOOC<sub>2</sub>H<sub>5</sub>

# Solubility of MgI<sub>2</sub>, 6HCOOC<sub>2</sub>H<sub>5</sub> in HCOOC<sub>2</sub>H<sub>5</sub> at t°

| t°       | % by wt MgI <sub>2</sub> 6HCOOC <sub>2</sub> H <sub>5</sub> |
|----------|-------------------------------------------------------------|
| 0        | 15 1                                                        |
| 10       | 17 4                                                        |
| 20       | 20 5                                                        |
| 30       | 25                                                          |
| 40       | 31 8                                                        |
| 50       | 44                                                          |
| 60       | 68                                                          |
| 70 5 mpt | 100                                                         |

(Menschutkin)

Solubility of  $MgI_2$  in isoamylacetate MgI forms with isoamylacetate a complex,  $MgI_2$ ,  $6CH_3COO(iso)C_5H_{11}$ 

Solubility of MgI , 6CH<sub>3</sub>COO(1so)C<sub>5</sub>H<sub>11</sub> in CH<sub>3</sub>COO(1so)C<sub>5</sub>H<sub>11</sub> at t°

| t      | % by wt M <sub>4</sub> I<br>6CH <sub>4</sub> COO(180)C <sub>b</sub> H <sub>11</sub> |
|--------|-------------------------------------------------------------------------------------|
| 0      | 7 7                                                                                 |
| 20     | 11 5                                                                                |
| 40     | 20 9                                                                                |
| 45     | 25 5                                                                                |
| 50     | 33 2                                                                                |
| 55     | 47 8                                                                                |
| 57 5   | 63 0                                                                                |
| 60 mpt | 100 0                                                                               |

(Menschutkin)

Solubility of MgI<sub>2</sub> in isobutyl acetate MgI<sub>2</sub> forms with isobutylacetate a complex, MgI<sub>2</sub>, 6CH<sub>3</sub>COOC<sub>4</sub>H<sub>8</sub> Solubility of MgI<sub>2</sub>, 6CH<sub>3</sub>COO(180)C<sub>4</sub>H<sub>9</sub> in CH<sub>2</sub>COO(180)C<sub>4</sub>H<sub>9</sub>

| Oll3000(mo)Ofila                                              |                                                                                    |  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| t°                                                            | % by wt MgI <sub>2</sub><br>6CH <sub>3</sub> COO(180)C <sub>4</sub> H <sub>9</sub> |  |
| 0<br>20<br>40<br>50<br>60<br>70<br>75<br>80<br>85<br>87 5 mpt | 10 5<br>13 6<br>17 6<br>20 4<br>24 9<br>33 7<br>40 5<br>52 0<br>89 0<br>100 0      |  |
| v. v — <sub>F</sub> ·                                         |                                                                                    |  |

### (Menschutkın)

Solubility of MgI<sub>2</sub> in propyl acetate MgI<sub>2</sub> forms with propyl acetate a complex, MgI<sub>2</sub>, 6CH<sub>3</sub>COOC<sub>3</sub>H<sub>7</sub> Solubility of MgI<sub>2</sub>, 6CH<sub>3</sub>COOC<sub>3</sub>H<sub>7</sub> m

CH<sub>2</sub>COOC<sub>2</sub>H<sub>7</sub> at t°

| t°     | % by wt MgI <sub>2</sub><br>6CH <sub>3</sub> COOC <sub>3</sub> H <sub>7</sub> |
|--------|-------------------------------------------------------------------------------|
| 0      | 4 1                                                                           |
| 20     | 5 4                                                                           |
| 30     | 6 5                                                                           |
| 35     | 7 8                                                                           |
| 40     | 19 0                                                                          |
| 45     | 46 0                                                                          |
| 50     | 72 5                                                                          |
| 55     | 88 2                                                                          |
| 60     | 96 0                                                                          |
| 65 mpt | 100 0                                                                         |

### (Menschutkın)

Solubility of MgI<sub>2</sub> in urethane MgI<sub>2</sub> forms with urethane a complex, MgI<sub>2</sub>, 6NH<sub>2</sub>COOC<sub>2</sub>H<sub>5</sub>

Solubility of MgI<sub>2</sub>, 6NH<sub>2</sub>COOC<sub>2</sub>H<sub>5</sub> in NH<sub>2</sub>COOC<sub>2</sub>H<sub>5</sub> at t°

| t°                                   | % by wt MgI <sub>2</sub><br>6NH <sub>2</sub> COOC <sub>2</sub> H <sub>5</sub> |
|--------------------------------------|-------------------------------------------------------------------------------|
| 32<br>50<br>70<br>80<br>84<br>87 mpt | 51 8<br>59 4<br>70 7<br>78 8<br>85 0<br>100 0                                 |

## (Menschutkın)

 $+6H_2O$ Solubility of  $MgI_2+6H_2O$  in  $H_2O$  at t°

| t°   | % by weight of MgI <sub>2</sub> +6H <sub>2</sub> O | t°   | % by weight of MgI <sub>2</sub> +6H <sub>2</sub> O |
|------|----------------------------------------------------|------|----------------------------------------------------|
| 43°  | 89 8                                               | 160° | 91 7                                               |
| 80°  | 90 3                                               | 200° | 93 4                                               |
| 120° | 90 9                                               | 215° | 94 3                                               |

(Menschutkin, Z anorg 1907, 52 156)

 $+8H_2O$  Sp gr of solution of  $MgI_2+8H_2O$  sat at 18° containing 59 7%  $MgI_2=1$  909 (Mylus, B 1897, **30** 1718)

Solubility of MgI<sub>2</sub>+8H<sub>2</sub>O in H<sub>2</sub>O at t°

| t°                    | % by weight of MgI <sub>2</sub> +8H <sub>2</sub> O |
|-----------------------|----------------------------------------------------|
| 0<br>20<br>40<br>43 5 | 76 0<br>81 0<br>88 0<br>90 8                       |
|                       |                                                    |

### (Menschutkin)

+10H<sub>2</sub>O Sol in H<sub>2</sub>O (Panfiloff, C C **1894**, II 610)

Magnesium mercuric iodide, MgI2, HgI2

Known only in solution  $+9H_2O$  Very deliquescent (Duboin,

C R 1906, 142 1338)
Very sol in ethyl, methyl, propyl, butyl, isobutyl, amyl, isopropyl and allyl alcohols, ethyl, amyl, propyl and isobutyl acetates, ethyl cyanide and acetone Sol in benzyl alcohol Decomp by glycerine Sl sol in ethyl benzoate, amyl benzoate, nitrobenzene Decomp by ethyl oxalate Insol in toluene, benzene, ethyl iodide, CHCl<sub>3</sub>, CCl<sub>4</sub>, ethylene bromide, monochlor and monobrombenzene (Duboin, A ch 1909, (8) 16 276)

MgI<sub>2</sub>, 2HgI<sub>2</sub> Decomp by H<sub>2</sub>O into HgI<sub>2</sub> and above compound, which remains in solution (Boullay)

 $+7 \dot{\rm H}_2 \rm O$  Sat solution in  $\rm H_2 \rm O$  at 17 8° has the composition MgI<sub>2</sub>, 1 29 HgI<sub>2</sub>, 11 06 H<sub>2</sub>O (Duboin, C R 1906, **142** 1338)

Magnesium potassium iodide,  $MgI_2$ ,  $KI+6H_2O$ 

Deliquescent (Lerch, J pr (2) 28 338) Very hygroscopic (de Schulten, Bull Soc 1900 (3) 23 158)

Magnesium iodide ammonia, MgI<sub>2</sub>, 6NH<sub>3</sub>

Practically insol in liquid NH<sub>3</sub> (Franklin, J Am Chem Soc 1913, **35** 1459)

### Magnesium nitride, Mg<sub>3</sub>N<sub>2</sub>

Decomp by moist air or H<sub>2</sub>O Sol in dil or conc HCl+Aq, or HNO<sub>3</sub>+Aq Sol in warm H<sub>2</sub>SO<sub>4</sub> Insol in alcohol, ethyl iodide or phosphorus oxychloride (Briegleb and Geuther, A 123 236)

Decomp by  $H_2O$  (Smits, R t c 1894, 12 198)

Easily decomp H<sub>2</sub>O when finely powdered (Rossel, C R 1895, **121** 942)

### Magnesium suboxide (?)

Decomp H<sub>2</sub>O Sol in dil acids (Beetz, Pogg 127 45)

### Magnesium oxide, MgO

Sol in 50 000-100 000 pts H<sub>2</sub>O (Bineau C R 41 510) in 55 368 pts cold or hot H<sub>2</sub>O (Fresenius A 59 123) in 100 000-200 000 pts H<sub>2</sub>O (Bunsen) in 16 000 pts H<sub>2</sub>O at ord temp (Dalton) in 7900 pts H<sub>2</sub>O at ord temp (Kirwan) in 5760 pts H<sub>2</sub>O at 15 5° and 36 000 pts at 100° (Fyfe)

Calc from electrical conductivity of MgO

the avy MgO is more sol in H<sub>2</sub>O than "light" MgO The temp of preparation affects the rate of solution, the rate being diminished as the temp of preparation is increased (Anderson, Chem Soc 1905, 87 **265**)

Easily sol in acids, even in H<sub>2</sub>SO<sub>3</sub>+A<sub>0</sub>

Solubility in P<sub>2</sub>O<sub>5</sub>+A<sub>0</sub> at 25°

| Composit<br>solu                                                                                                                                                            | tion of the                                                                                                                                                                                      | Sp gr<br>25°/25°                                                              | Solid phase                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------|
| G MgO<br>per l                                                                                                                                                              | G P <sub>2</sub> O <sub>5</sub><br>per l                                                                                                                                                         | 45 / Z5*                                                                      | •                            |
| 0 207<br>0 280<br>0 553<br>1 438<br>2 23<br>4 73<br>11 19<br>17 33<br>26 09<br>37 40<br>75 5<br>109 5<br>122 9<br>140 0<br>146 8<br>147 3<br>150 3<br>155 5<br>87 1<br>70 6 | 0 486<br>0 732<br>1 917<br>4 85<br>7 35<br>16 84<br>38 59<br>61 21<br>93 09<br>130 7<br>281 8<br>439 0<br>498 4<br>546 5<br>584 0<br>623 3<br>625 9<br>645 8<br>680 7<br>779 6<br>809 6<br>835 1 | 1 006<br>1 017<br>1 042<br>1 069<br>1 109<br>1 144<br>1 285<br>1 470<br>1 595 | MgHPO4,<br>3H <sub>2</sub> O |

(Cameron, J phys Chem 1907, 11 364)

Sol in NH4 salts, NaCl, or KCl+Aq (Fresenius)

Solubility in MgCl<sub>2</sub>+Aq at 25°

| % MgCl <sub>2</sub>                                                                                                                      | % MgO as Mg(OH)2                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 36<br>4 47<br>6 79<br>9 02<br>13 14<br>15 15<br>17 53<br>18 52<br>22 04<br>23 78<br>25 13<br>26 88<br>28 34<br>29 80<br>30 04<br>34 22 | 0 00008<br>0 00028<br>0 00048<br>0 00080<br>0 00115<br>0 00195<br>0 00240<br>0 00250<br>0 00235<br>0 00235<br>0 00230<br>0 00250<br>0 00240<br>0 00250<br>0 00250<br>0 00240<br>0 00250<br>0 00250 |

(Robinson, J phys Chem 1909, 13 676)

More sol in K<sub>2</sub>SO<sub>4</sub>, and Na<sub>2</sub>SO<sub>4</sub>+ Aq than  $m H_2O$ (Warrington) Insol in liquid NH: (Franklin, Am Ch

J 1898, **20** 828) Sol in methyl alcohol to form a colloidal (\reuberg

solution containing 16% MgO (Neub and Rewald (Biochem Z 1908, 9 547) Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate \aumann,

B 1904, 37 3602) Insol in acetone (Naumann, B 1904, 37

4329) Insol in acetone and in methylal

mann, C C 1899, II 1014) Solubility in (calcium sucrate+sugar)+

I I solution containing 4186 g sugar and 343 g CaO dissolves 030 g MgO, containing 296 5 g sugar and 24 2 g CaO dissolves 0 24 g MgO containing 174 4 g sugar and 14 1 g CaO dissolves 0 22 g MgO (Bodenbender, J B 1865 600)

See also Magnesium hydroxide

Min Periclasite

### Magnesium peroxide, VigO:

Sol in 14,550 pts H<sub>2</sub>O at 20° Foregger and Philipp, J Soc Chem Ind 1906, 25 298)

5MgO, 2MgO<sub>2</sub>+3H O 3MgO, 2MgO +3H O  $2MgO, 2MgO_2+3HO$ 

4MgO, 2MgO + 3HOAbove salts are decomp by HO

(Carrasco, Gazz ch at 1909, 39, (1) 47)

### Magnesium oxybromide, MgBr 3MgO+ 12H O

Decomp in the air and also by HO, al cohol and most reagents (Tassilly, C R 1897, **125** 607)

# Magnesium oxychloride, Mg OCl -16H O

Easily decomp by HO and alcohol (Andre, A ch (6) 3 80)

+6H<sub>2</sub>O (Andre)

 $2 {
m MgO}$ , HCl, 5H O or  $3 {
m MgO}$ ,  ${
m MgCl} - 10 {
m H}_2 {
m O}$  Solubility determinations show that this salt is the solid phase in equilibrium at 25° with solutions of MgCl and MgO containing from 10-15° MgCl Robinson J phys Chem 1909, 13 677

Mg<sub>6</sub>O Cl +6, 8, 14 or 1~H O Decomp by H.O, which dissolves out MgCl ⊣Ben-

der, B 3 932)

Krause A Mg<sub>11</sub>O<sub>10</sub>Cl +14, or 18H O 165 38

MgCl +  $Mg_{10}O_9C1 + 24HO = 9MgO$ 24H2O HO removes all MgCl by long digesting (Bender, A 159 341) +10, and 15H O (Bender)

Magnesium oxysulphide, Mg OS

(Reichel, J pr (2) 12 o5)

Magnesium phosphide, Mg<sub>8</sub>P<sub>2</sub>

Decomp by H<sub>2</sub>O, dil HCl+Aq, or HNO<sub>3</sub> +Aq (Parkinson, Chem Soc 5 (2) 125 and 309)

Insol in moderately dil cold HCl+Aq, or boiling dil H<sub>2</sub>SO<sub>4</sub>+Aq Difficultly and slowly sol in aqua regia (Blunt, Chem Soc **3** (2) 106)

Decomp by H<sub>2</sub>O, HCl, conc H<sub>2</sub>SO<sub>4</sub> and by HNO<sub>3</sub> (Gautier, C R 1899, 128 1169)

### Magnesium silicide, Mg<sub>5</sub>Si<sub>3</sub>

Slowly decomp by warm H<sub>2</sub>O Slowly decomp by cold, rapidly by hot NH4Cl+Aq Decomp by cold dil HCl+Aq (Geuther, J pr 95 425

Mg<sub>2</sub>Si Decomp by HCl+Aq with residue of Si (Wohler, A 107 113) Slowly decomp by H<sub>2</sub>O at ord temp Violently decomp by HCl (Lebeau and Bossuet, C R 1908, 146 284)

Magnesium sulphide, MgS

Decomp by H<sub>2</sub>O (Reichel, J pr (2) 12 55)

 $Sl sol in H_2O$  with rapid decomp (Fremy) Sol in acids with decomp

Anhydrous Crustalline Only very sl sol in cold H<sub>2</sub>O Sol in HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> at ord temp Sol in PCl3 and in chromyl chloride (Mourlot, C R 1898, 127 182)

Magnesium polysulphide,  $MgS_x$ Known only in solution (Reichel)

# Magnus' green salt

See Platodramine chloroplatinite

## Manganese, Mn

Decomposes H<sub>2</sub>O even in the cold, more rapidly when hot (Regnault)

Decomposes cold water violently

(Bunsen ) Sol in all dil acids Slowly sol in cold

 $H_2SO_4$  (John)

Insol in cold, but rapidly sol in hot H<sub>2</sub>SO<sub>4</sub> Very easily sol in dil H<sub>2</sub>SO<sub>4</sub>, or HCl+Aq,  $HNO_3$ , or  $HC_2H_3O_2+Aq$  (Brunner)

Pure manganese is unaltered in dry air. even when finely powdered Slowly attacked by cold, quickly by hot H<sub>2</sub>O Very sl at tacked by cold H<sub>2</sub>SO<sub>4</sub>, rapidly on warming, rapidly attacked by cold dil H<sub>2</sub>SO<sub>4</sub>+Aq, violently by conc HNO<sub>3</sub>+Aq, and rapidly by dil HNO<sub>3</sub>, HCl, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq, and also NaOH+Aq Sol m NH<sub>4</sub>Cl+Aq (Prelinger, W A B 102, 2b 359)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

1898**, 20** 828 )

½ ccm oleic acid dissolves 0 0276 g Mn in 6 days (Gates, J phys Chem 1911, 15 143)

# Manganese antimonide, MnSb

(Wedekind, B Sol in hot aqua regia 1907, 40 1266)

Manganese azoimide, basic, Mn(OH)N<sub>3</sub> Only al sol in H<sub>2</sub>O with decomp (Curtius, J pr 1898, (2) 58 293)

### Manganese bismuthide, MnBi

Very sensitive towards acids with the exception of conc HCl (Wedekind, B 1911, 44 2665)

### Manganese boride, MnB

Attacked by cold H<sub>2</sub>O and by acids (Jas-

soneix, C R 1904, 139 1210)
Easily attacked by HCl, H<sub>2</sub>SO<sub>4</sub> and HF with evolution of BH<sub>3</sub> (Wedekind, B 1905, **38** 1231 ) Sol in acids, with evolution of H<sub>2</sub>  $MnB_2$ 

(Troost and Hautefeuille, A ch (5) 9 65) Slowly decomp by H<sub>2</sub>O Sol in dil HCl and other dil acids with evolution of BH3

(Wedekind, B 1905, 38 1229)

### Manganous bromide, MnBr<sub>2</sub>

Anhydrous Very deliquescent Sat MnBr2+Aq contains at 18° 38°

-21° +7° 11° 52° 64 2% MnBr<sub>2</sub>, 52 1 56 5 57 0 59 1 62 7

89° 64° 76° 97° 105° 68 2 70 1 69 7 69 2 70 2% MnBr<sub>2</sub> (Étard, A ch 1894, (7) 2 541)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 828)

 $+H_2O$ (Lescoeur, A ch 1894, (7) 2 104) More deliquescent than MnCl<sub>2</sub>  $+4H_{\circ}O$ Melts in crystal water when heated (Berthe-

+6H<sub>2</sub>O (Kuznetzoff, C C 1897, II 329)

# Manganous mercuric bromide

Deliquescent

Manganous palladium bromide See Bromopalladite, manganous

Manganous stannic bromide See Bromostannate, manganous

# Manganese carbide, MnC

(Brown, J pr 17 492)

MnC<sub>2</sub>

(Troost and Hautefeuille, A ch Mn<sub>3</sub>C (5) **9** 60)

Decomp by H<sub>2</sub>O and by dil acids (Mois san, C R 1896, 122 422)

Manganous chloride, MnCl<sub>2</sub> Anhydrous Deliquescent

| 100 pts             | H <sub>2</sub> O at t° o                          | lissolve pts   | MnCl <sub>2</sub>     | Sp gr of MnCl <sub>2</sub> +        | -Aq at room temp                     |
|---------------------|---------------------------------------------------|----------------|-----------------------|-------------------------------------|--------------------------------------|
| t°                  | Pts MnCl2                                         | t°             | Pts MnCl <sub>2</sub> | % MnCl <sub>2</sub>                 | Sp gr                                |
| 10<br>31 25<br>62 5 | 62 16<br>85 72<br>122 22<br>t MnCl <sub>2</sub> + | 87 5<br>106 25 | 122 22<br>123 81      | 8 007<br>15 650<br>30 330<br>40 132 | 1 0960<br>1 1963<br>1 3372<br>1 4530 |
| 01, 54              | 0 1V111C12 T-1                                    | iq as s con    | vaurs                 | /YTT                                | 1000 40 000                          |

| or, sat | MnCl <sub>2</sub> + | -Aq at | ť | contains |
|---------|---------------------|--------|---|----------|
|---------|---------------------|--------|---|----------|

| t°                  | % MnCl <sub>2</sub>    | t°             | % MnCl <sub>2</sub> |
|---------------------|------------------------|----------------|---------------------|
| 10<br>31 25<br>62 5 | 38 33<br>46 15<br>55 0 | 87 5<br>106 25 | 55 0<br>55 32       |

### (Brandes, Pogg 22 263)

See also below under  $+2H_2O$ , and  $+4H_2O$ 

Sp gr of MnCl<sub>2</sub>+Aq at 15° a=sp gr if % is MnCl<sub>2</sub>+ b=sp gr if % is MnCl<sub>2</sub>+ 4H<sub>2</sub>O

| %                                     | a                                                           | ъ                                                            | %                                      | а              | b                                                           |
|---------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|----------------|-------------------------------------------------------------|
| 5<br>10<br>15<br>20<br>25<br>30<br>35 | 1 045<br>1 091<br>1 138<br>1 189<br>1 245<br>1 306<br>1 372 | 1 0285<br>1 057<br>1 086<br>1 116<br>1 147<br>1 180<br>1 214 | 40<br>45<br>50<br>55<br>60<br>65<br>70 | 1 443<br>1 514 | 1 250<br>1 290<br>1 331<br>1 375<br>1 419<br>1 463<br>1 508 |

(Gerlach, Z anal 28 476)

(Wagner, W Ann 1883, 18 273)

Sp gr of MnCl2+Aq at t°

| t°   | % MnCl <sub>2</sub> | Sp gr  |
|------|---------------------|--------|
| 14 5 | 5 0                 | 1 0457 |
| 14 5 | 11 99               | 1 1076 |
| 14 0 | 14 98               | 1 1379 |
| 14 5 | 19 92               | 1 1891 |
| 14 0 | 23 10               | 1 2246 |
| 14 6 | 28 51               | 1 2888 |

(Long, W Ann 1880, 11 38)

Sp gr of MnCl<sub>2</sub>+Aq at 25°

| Concentration of MnCl <sub>2</sub> +Aq Sp gr 1-normal 1 0513                                                     |                           |        |
|------------------------------------------------------------------------------------------------------------------|---------------------------|--------|
| 1-normal 1 0513                                                                                                  | Concentration of MnCl2+Aq | Sp gr  |
| $\frac{1}{2}$ $\frac{1}{1}$ 0259 $\frac{1}{4}$ $\frac{1}{1}$ 0125 $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{1}$ 0063 | 1/4- "                    | 1 0125 |

(Wagner, Z phys Ch 1890, 5 38)

# Solubility of MnCl<sub>2</sub>+KCl in H<sub>2</sub>O at t°

| t°   | % MnCl <sub>2</sub>              | % KCl                           | Solid phase                                                                                                                                                                                                                                                                                        |  |
|------|----------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6    | 40 23<br>35 94                   | 9 41<br>23 06                   | MnCl <sub>2</sub> , 4H <sub>2</sub> O<br>MnCl <sub>2</sub> , 4H <sub>2</sub> O+MnCl <sub>2</sub> , KCl, 2H <sub>2</sub> O+KCl<br>KCl                                                                                                                                                               |  |
| 28 4 | 44 46<br>43 28<br>38 65          | 8 66<br>13 79<br>26 91          | MnCl <sub>2</sub> , 4H <sub>2</sub> O<br>MnCl <sub>2</sub> , 4H <sub>2</sub> O+MnCl <sub>2</sub> , KCl, 2H <sub>2</sub> O<br>MnCl <sub>2</sub> , 4H <sub>2</sub> O+MnCl <sub>2</sub> , 2KCl, 2H <sub>2</sub> O+KCl<br>KCl                                                                          |  |
| 52 8 | 50 14                            | 6 01                            | MnCl <sub>2</sub> , 4H <sub>2</sub> O+MnCl <sub>2</sub> , 2H <sub>2</sub> O+MnCl <sub>2</sub> , KCl, 2H <sub>2</sub> O                                                                                                                                                                             |  |
| 62 6 | 51 86<br>49 95<br>44 05<br>36 85 | 6 67<br>12 49<br>18 77<br>31 57 | MnCl <sub>2</sub> , 2H <sub>2</sub> O<br>MnCl <sub>2</sub> , 2H <sub>2</sub> O+MnCl <sub>2</sub> , KCl, 2H <sub>2</sub> O<br>MnCl <sub>2</sub> , KCl, 2H <sub>2</sub> O+MnCl <sub>2</sub> , 2KCl, 2H <sub>2</sub> O<br>MnCl <sub>2</sub> , 2KCl, 2H <sub>2</sub> O+MnCl <sub>2</sub> , 4KCl<br>KCl |  |

(Suss, Z Kryst Min 1912, 51 262)

Insol in liquid NH<sub>8</sub> J 1898, 20 828)

(Franklin, Am Ch | Solutions of MnCl<sub>2</sub> in 75% alcohol saturated at to contain

| t        | % MnCl2      | t                       | % MnCl       |
|----------|--------------|-------------------------|--------------|
| 10<br>25 | 23 1<br>36 1 | 43 75<br>87 5<br>(B-pt) | 37 5<br>32 2 |

Solutions of MnCl<sub>2</sub> in absolute alcohol saturated at to contain

| t°    | % MnCl <sub>2</sub> | t°      | % MnCl <sub>2</sub> |
|-------|---------------------|---------|---------------------|
| 11 25 | 33 3                | 76 25   | 36 2                |
| 37 5  | 33 3                | (B -pt) |                     |

(Brandes, l c)

MnCl<sub>2</sub> crystallises from above solutions on

standing

When 15–20 vols ether are added to 1 vol absolute alcohol sat with MnCl<sub>2</sub>, MnCl<sub>2</sub> is completely pptd (Doberemer)

Insol in oil of turpentine

Sol in urethane (Castoro, Z anorg 1899, 20 61)

Sl sol in benzonitrile (Naumann, B 1914. 47 1369 )

Difficultly sol in methyl acetate (Naumann, B 1909, 42 3790)

Insol in ethyl acetate 1910, 43 314) (Naumann, B

+H<sub>2</sub>O Solubility in HCl+Aq decreases with increasing amt of HCl It is greater when hot than cold, but is not inconsiderable even when HCl is conc 1 l conc HCl+Aq sat at 12° dissolves 190 g MnCl<sub>2</sub> from MnCl<sub>2</sub> +H<sub>2</sub>O (Ditte, C R 1881, 92 243)

+5/8H2O MnCl<sub>2</sub>+4H<sub>2</sub>O effloresces to MnCl<sub>2</sub>+5/<sub>3</sub>H<sub>2</sub>O in a dry atmosphere and under low pressure and not to MnCl<sub>2</sub>+ (Sabatier, Bull Soc 1894, (3) 11 547)

 $+2H_2O$ 

## Solubility in H<sub>2</sub>O at t°

| t°             | Pts MnCl <sub>2</sub> per<br>100 pts H <sub>2</sub> O | Sp gr of sat solution |
|----------------|-------------------------------------------------------|-----------------------|
| 60<br>70<br>80 | 108 6<br>110 6<br>112 7                               | 1 6108<br>1 6134      |

(Dawson and Williams, Z phys Ch 1899, **31** 63)

Sat aqueous solution of MnCl<sub>2</sub>+2H<sub>2</sub>O Contains 51 86% MnCl<sub>2</sub> at 62 6° (Suss Z Krist 1912, 51 262)

+4H<sub>2</sub>O Deliquescent

100 pts H<sub>2</sub>O at t° dissolve

| t°                 | Pts MnCl <sub>2</sub><br>+4H <sub>2</sub> () | t°             | Pts MnCl <sub>2</sub><br>+4H <sub>2</sub> O |
|--------------------|----------------------------------------------|----------------|---------------------------------------------|
| 8<br>31 25<br>62 5 | 151<br>265<br>641                            | 87 5<br>106 25 | 641<br>656                                  |

(Brandes, l c)

Sol in 0.8 pt  $H_2O$  at 18.75° (Abl.) Pptd from solution in 917 mols (Kuznetzoff, C C 1899, I 246)

Sat ag solution contains at -22°  $-5^{\circ} +7^{\circ}$ 17° 347 378 40 4 41 2 42 3% MnCl<sub>2</sub>

35° 55° 57° 80° 100° 140° 44 4 48 2 50 0 51 0 53 7 54 7% MnCl (Étard, A ch 1894, (7) 2 537)

### Solubility in H<sub>2</sub>O at t°

| t°     | Pts MnCl <sub>2</sub> per<br>100 pts H <sub>2</sub> O | Sp gr of sat<br>solution |
|--------|-------------------------------------------------------|--------------------------|
| 25     | 77 18                                                 | 1 4991                   |
| 30     | 80 71                                                 | 1 5049                   |
| 40     | 88 59                                                 | 1 5348                   |
| 50     | 98 15                                                 | 1 5744                   |
| *57 65 | 105 40                                                | 1 6097                   |

\* Temp of transition into MnCl<sub>2</sub>+2H<sub>2</sub>O (Dawson and Williams, Z phys Ch 1899, 31 63)

Sat aqueous solution of MnCl<sub>2</sub>+4H<sub>2</sub>( contains 40 23% MnCl<sub>2</sub> at 6°, 44 6% MnC at 28 4° (Suss, Z Krist 1912, 51 262)

### 100 pts 75% alcohol dissolve at t°

| t° | Pts MnCl <sub>2</sub><br>+4H <sub>2</sub> O | t°    | Pts MnCl <sub>2</sub><br>+4H <sub>2</sub> O |
|----|---------------------------------------------|-------|---------------------------------------------|
| 10 | 53                                          | 43 75 | 144                                         |
| 25 | 132                                         | 87 5  | 100 1                                       |

(Brandes, l c)

Insol in absolute ether, which also doe not abstract crystal H<sub>2</sub>O

Insol in boiling oil of turpentine (Brande Sol in conc HNO3+Aq

+5H<sub>2</sub>O(Muller-Erzbach, B 1889, 22 3181) +6H<sub>2</sub>O Pptd from solution in 117 mol

H<sub>2</sub>O at -21° (Kuznetzoff, C C 1899, **24**6)

## Manganese trichloride, MnCl<sub>3</sub>

Immediately decomp by H<sub>2</sub>O, sol in about ether and in abs alcohol (Holmes, J An Chem Soc 1907, 29 1285)

# Manganese tetrachloride, MnCl<sub>4</sub>

Has not been isolated Sol in H<sub>2</sub>O, alcohol, or ether J B **1865** 225)

Composition is Mn<sub>2</sub>Cl<sub>6</sub> (Christensen, pr (2) 34 41)

Manganese hydrogen tetrachloride (chlori manganic acid), MnCl<sub>4</sub>, 2HCl

Sol in ether, decomp by H<sub>2</sub>O (Frank (2) **36** 31)

## Manganese heptachloride, MnCl<sub>7</sub>(?)

Decomp by HO (Dumas, Berz J B 112)

Has the formula MnO<sub>8</sub>Cl (?) (Aschoff, J pr 81 29)

Manganous mercuric chloride, MnCl<sub>2</sub>, HgCl<sub>2</sub>  $+4H_2O$ 

Deliquescent in moist air Easily sol in H<sub>2</sub>O (v Bonsdorff)

MnCl<sub>2</sub>, 2HgCl<sub>2</sub> (Varet, C R 1896, 123, 422)

Manganous potassium chloride, MnCl<sub>2</sub>, KCl  $+2H_2O$ 

Deliquescent Very sol in H<sub>2</sub>O, but is decomp thereby (Remsen and Saunders,

Am Ch J 14 129) MnCl<sub>2</sub>, 2KCl+2H<sub>2</sub>O 1912, 51 262) (Suss, Z Kryst

Manganic potassium chloride, MnCl<sub>8</sub>, 2KCl+ ĦΟ

Decomp by H<sub>2</sub>O Sol in HCl apparently without decomp (Rice, Chem Soc 1898, 73 261)

Very easily decomp MnCl<sub>4</sub>, 2KCl (Meyer and Best, Z anorg 1899, 22 186) MnCl<sub>4</sub>, MnCl<sub>5</sub>, 5KCl Easily decom (Meyer and Best, Z anorg 1899, 22 185) Easily decomp

rubidium chloride, MnCl, Manganous 2RbCl

(Godeffroy) +3H<sub>2</sub>O Éasily sol in H<sub>2</sub>O Insol in alcohol, conc HCl+ppt anhydrous salt (Godeffroy, Arch from aqueous solution Pharm (3) 12 40) Contains only 2H<sub>2</sub>O (Saunders, Am Ch

J **14** 139)

Manganous thallic chloride, MnCl<sub>2</sub>, 2TlCl<sub>3</sub>+

Can be cryst from H<sub>2</sub>O (Gewecke, A 1909, **366** 224)

Manganous stannic chloride See Chlorostannate, manganous

Manganous chloride hydrazine, MnCl2,  $2N_2H_4$ Ppt (Franzen, 7 anorg 1908, 60 285)

Manganous chloride hydroxylamine, MnCl,

2NH<sub>2</sub>OH Very stable, insol in alcohol (Feldt, B 1894, **27** 405)

Manganous fluoride, MnF2

Only sol in H<sub>2</sub>O containing HF (Ber-

zelius) Insol in H2O, decomp by boiling with H2O, sl sol in liquid NH3, easily sol in cold or hot conc HNO<sub>3</sub> and HCl, slowly sol in dil HCl, decomp by fused K<sub>2</sub>CO<sub>3</sub>, KOH, KNO3, and KClO3, insol in alcohol and 35 161)

ether Slowly sol in acetic acid Woissan. C R 1900, 130 1160)

Insol in liquid NH<sub>3</sub> Gore, Am Ch J 1898, 20 828)

Insol in acetone (Naumann, B 1904, 37 4329)

Manganese trifluoride, MnF.

Completely sol in a little H.O, but decomp by dilution or boiling (Berzelius)

+6H<sub>2</sub>O Efflorescent (Christensen, J pr (2) 35 57)

Sol in H2SO4, HCl, HNO3, decomp by H<sub>2</sub>O, insol in most organic solvents (Moissan, C R 1900, 130 626)

Manganomanganic fluoride, Mn<sub>2</sub>F<sub>4</sub>+10H<sub>2</sub>O Sol in a little HO, but decomp by dilution (Nickles, C R 67 448)

Manganese tetrafluoride, MnF4

Not isolated Sol in absolute alcohol or ether, decomp by HO (Nickles, C R 65 107)

Probably does not exist (Christensen, J pr (2) **35** 161)

Manganese heptafluoride, MnF ° Sol in H2O with decomp Wohler ;

Manganese sesquifluoride with MF See also Fluomanganate, M

Manganic nickel fluoride, 2NiF, Mn  $F_{\epsilon}$ -8HO

(Christensen, J pr (2) 34 41)

Manganic potassium fluoride, Mn Fe 4KF-**2H** O

Decomp by HO Sol in conc HCl-Aq, dil HNO3+Aq, conc H SO4+Aq H PO4+ Aq. H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq, H C<sub>4</sub>H<sub>4</sub>O<sub>5</sub>-Aq, and on HF+Aq (Christensen, J pr 2 35 72 MnF<sub>4</sub>, 2KF Difficultly sol in H O De-

Nickles, C R 65 comp by much HO 107)

True composition is Mn Fe, 4KF, also with 2H<sub>2</sub>O (Christensen J pr 2 34 41  $MnF_4$ ,  $4K\Gamma$  (Nickles) See also Fluomanganate, potassium

Manganic rubidium fluoride See Fluomanganate, rubidium

Manganic silver fluoride, 24gl Vin F --14H₂O

Sol in HF+Aq (Christensen, J pr **34** 41)

Manganic sodium fluoride, Vin Ft 4\aF Decomp by much HO Not as sol in HF +Aq as the K salt (Christensen J pr 2) Manganomanganic thallous fluoride, 5TlF. 2MnF<sub>2</sub>, MnF<sub>2</sub>

Decomp by H<sub>2</sub>O

Sl sol in dil, easily sol in conc HF Sol in conc HCl, dil HNO3, and cold or hot conc H2SO4

Sol in warm H2O2 containing H2SO4 Sol in dil tartaric and oxalic acids (Ephram, B 1909, 42 4458)

Manganous stannic fluoride See Fluostannate, manganous

Manganic zinc fluoride, 2ZnF<sub>2</sub>, Mn<sub>2</sub>F<sub>6</sub>+8H<sub>2</sub>O See Fluomanganate, zinc

Manganous zirconium fluoride See Fluozirconate, manganous

Manganous fluoride ammonia, 3MnF<sub>2</sub>, 2NH<sub>3</sub> (Moissan, C R 1900, 130 1161)

Manganous hydroxide, MnO<sub>2</sub>H<sub>2</sub>

2 15 x  $10^{-5}$  g -mol are sol, in 1 l H<sub>2</sub>O at 18° (Sackur, Z Elektrochem, 1909, 15 846) Solubility in  $H_2O = 0.6 \times 10^{-4}$  g mol (Herz,

Z anorg 1899, 22 284)

1 l H<sub>2</sub>O dissolves 2 x 10<sup>-4</sup> mol MnO<sub>2</sub>H<sub>2</sub> (Tamm, Z phys Ch 1910, 74 500)

Very sl sol in H<sub>2</sub>O or alkalies (Fresenius) Easily sol in acids Insol in NaOH, or KOH+Aq Sol in NH4 salts+Aq Insol in NH4OH+Aq in NaOH+Aq in presence of glycerine (Donath, Dingl 229 542)

Not pptd by NH<sub>4</sub>OH+Aq in presence of H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>, by KOH+Aq in presence of cane sugar, by KOH+Aq in presence of Na citrate Solubility of MnO<sub>2</sub>H<sub>2</sub> in organic Na salts+

Aq (05 normal) Na tartrate, 0 0068 mol per l Na malate, 0 0042 Na citrate, 0 0126 " (Tamm, Z phys Ch 1910, 74 496) Min Pyrochroite

Manganomanganic hydroxide,  $Mn_3O_4$ ,  $xH_2O$ Not attacked by boiling NH<sub>4</sub>Cl+Aq haves towards acids as Mn<sub>2</sub>O<sub>3</sub>

Manganic hydroxide, Mn<sub>2</sub>O<sub>3</sub>, H<sub>2</sub>O

Insol in hot or cold dil H<sub>2</sub>SO<sub>4</sub>+Aq Sol in conc H<sub>2</sub>SO<sub>4</sub> at somewhat over 100°

(Carius)

Sol in tartaric, oxalic, and malic acids, with subsequent decomp Insol in formic, acetic, benzoic, or hippuric acids (Hermann, Pogg **74** 303)

Insol in NH<sub>4</sub>Cl+Aq Insol in cane sugar +Aq (Peschier)

Min Manganite Sol in conc HCl+Aq SI sol in conc H<sub>2</sub>SO<sub>4</sub>

Manganese dihydroxide, MnO<sub>2</sub>, H<sub>2</sub>O See Manganous acid.

Manganous 10dide, MnI2

Anhudrous Nearly insol AsBr. (Walden, Z anorg 1902, 29 374) Sol in POCl<sub>3</sub> (Walden, Z anorg 1900,

**25** 212)

Moderately sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 828)

+4H<sub>2</sub>O Very deliquescent, and sol in H<sub>2</sub>O (Kuznetzoff, C C 1900, II 525) +9H<sub>2</sub>O (Kuznetzoff)

Manganous mercuric iodide, MnI<sub>2</sub>, 2HgI<sub>2</sub>+  $6H_0O$ 

Decomp by H<sub>2</sub>O Sol without decomp in alcohol and acetone (Dobroserdoff, C C **1901,** I 363)

 $3MnI_2$ ,  $5HgI_2+20H_2O$ 

A sat solution in H<sub>2</sub>O at 17° has composition 1 4 MnI<sub>2</sub>, HgI<sub>2</sub>+10 22 H<sub>2</sub>O and sp gr = 298 (Duboin, C R 1906, 142 1338)

Very sol without decomp in methyl, propyl, isopropyl, isobutyl, and allyl alcohols, ethyl acetate and ethyl cyanide Somewhat less sol in amyl, propyl and isobutyl acetates, acetone, acetic acid, formic acid (with ppnt of HgI2), ethyl benzoate, ethyl oxalate, butyl alcohol, amyl alcohol and nitrobenzene Sl decomp by glycerine Insol in ethyl nitrate, ethylene bromide, toluene, benzene, CHCl<sub>3</sub>, CCl<sub>4</sub>, ethyl 10dide, monobrom- and monochlorbenzene (Duboin, A ch 1909, (8), **16** 278)

Manganese nitride, Mn<sub>3</sub>N<sub>2</sub>

Sol in HNO<sub>3</sub> only on heating HCl+Aa dissolves only in presence of Pt Aqua regia dissolves slowly H<sub>2</sub>SO<sub>4</sub> acts only when hot and conc Insol in acetic acid (Prelinger, and conc Insol 1 M 1894, 15 398)

Mn<sub>5</sub>N<sub>2</sub> Sol in NH<sub>4</sub>Cl+Aq and NH<sub>4</sub>OH+Aq, insol in HCl, sol in HNO<sub>3</sub>+Aq with decomp (Prelinger, M 1894, 15 398)

Mn7N2 Easily attacked by acids and alkalies (Wedekind, B 1908, 41 3772)

Manganous oxide, MnO

Insol in H<sub>2</sub>O Easily sol in acids Readily sol in NH<sub>4</sub>Cl+Aq

Manganic oxide (Manganese sesquioxide),  $Mn_2O_3$ 

Decomp by boiling with HNO<sub>3</sub>+Aq into MnO, which dissolves, and MnO<sub>2</sub>, which is insol (Berthier), also by boiling with dil H<sub>2</sub>SO<sub>4</sub>+Aq (Turner) Sol in hot cone H<sub>2</sub>SO<sub>4</sub> or HCl+Aq Sol in cold HCl+Aq without decomp If perfectly pure, is insol in dil H.SO4+Aq, but if it contains any MnO, it dissolves (Rose) Insol in boiling NH<sub>4</sub>Cl+Aq

Insol in acetone (Naumann, B 1904, 37

4329)

Solubility in (calcium sucrate+sugar)+

1 l solution containing 4186 g sugar and 34 3 g CaO dissolves 0 50 g Mn O<sub>3</sub>, containing 296 5 g sugar and 24 2 g CaO dissolves 0 37 g MnO<sub>3</sub>, containing 174 4 g sugar and 14 1 g CaO dissolves 0 32 g Mn<sub>2</sub>O<sub>3</sub> (Boden bender, J B 1865 600) Min Braunite

Colloidal Solution in H.O containing 0 21 g to a litre is precipitated by KNO<sub>3</sub>+Aq (1 1000), K<sub>2</sub>SO<sub>4</sub>+Aq (1 1100), (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq (1 1580), MgSO<sub>4</sub>+Aq (1 1500), NaCl+Aq (1 1580), MgSO<sub>4</sub> +Aq (1 40,983), BaCl<sub>2</sub>+Aq (1 58,823), MnSO<sub>4</sub>+Aq (1 147,929), (NH<sub>4</sub>)<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+ Aq (1 362,318), K<sub>2</sub>Cr (SO<sub>4</sub>)<sub>4</sub>+Aq (1 416, 668), HCl+Aq (1 61,350), HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (1 17,262), H<sub>2</sub>SO<sub>4</sub> (1 62,500) (Spring and de Boeck, Bull Soc (2) 48 170)

### Manganomanganic oxide, Mn<sub>3</sub>O<sub>4</sub>

Insol in H2O Boiling dil or conc HNO3+ Aq dissolves out MnO (Berthier), also boiling dil H<sub>2</sub>SO<sub>4</sub>+Aq (Turner) Sol in hot HCl +Aq (Otto) NH<sub>4</sub>Cl+Aq dissolves out (Rose) Sol without decomp in hot  $\mathbf{MnO}$ very conc H3PO4+Aq, and cold conc H SO4, HCl, oxalic, and tartaric acids+Aq Min Hausmannite

Manganese droxide, MnO<sub>2</sub>

Min Pyrolusite Insol in HO Verv slowly sol in conc H SO<sub>4</sub> with evolution of Sol in cold HCl+Aq, decomp by hot HCl+Aq Sol in aqua regia Sol in SO + Manganese oxysulphide, Vici V

Aq or N<sub>2</sub>O<sub>3</sub>+Aq (Karsten) Insol in HNO<sub>3</sub>, or dil H SO<sub>4</sub>+Aq, except in presence of organic reducing substances Decomp by citric acid, and more easily by oxalic acid (Bolton)

Sl sol in hot conc, but insol in dil H\O +Aq (Deville) When pure it is insol in cold dil H.SO4+Aq, but if a small quantity of MnO is added much MnO dissolves

Not decomp by boiling NH<sub>4</sub>Cl+Aq Easily sol in a mixture of nitrososulphuric acid and conc HCl+Aq (Borntrager, Rep anal Ch 1887 741)

(Naumann, B 1904, 37 Insol in acetone 4329, Eidmann, C C 1899, II 1014)

Manganese oxides, Mn<sub>3</sub>O<sub>5</sub>, Mn<sub>6</sub>O<sub>11</sub>, etc See Manganite, manganous

Manganese trioxide, MnO<sub>3</sub>

Sol in HO, with subse-Deliquescent Decomp by ether Sol in quent decomp conc H<sub>2</sub>SO<sub>4</sub> (Franke, J pr (2) 36 31)

Manganese tetroxide, MnO<sub>4</sub> (?)

Sl sol in H<sub>2</sub>O with decomp Decomp by H<sub>2</sub>SO<sub>4</sub> or ether (Franke, J pr (2) 36 166) (Hahn)

Manganese h proxide, Vingl)

Very unstable takes up HgO from air in HO with evolution of heat and rapid decomposition Sol in conc H without decomp | Aschoff )

Manganese oxychloride, 3 Mn/1, Mn/1, Insol in H<sub>2</sub>O Saint-Gilles C R 55 (29) MnCl, MnO ' Gorgeo, A ch o 4. 515)

VinO<sub>2</sub>Cl > Manganyl chlorade

Manganic oxyfluoride, Vin()}

Sol in absolute ether MnOF<sub>2</sub>, 2HF=fluorymangamic acad (Nickles, C R 659 107)

Manganic oxyfluoride potassium fluoride See Fluorymanganate, potassium.

Manganic sesquioxyfluoride potassium fluorıde Set Sesquiffuoxymanganate, potassium

Manganous oxyrodide, Mnl M ' - H ' Sol in H<sub>2</sub>O with decomp Lazietz f. Very C C 1913, I 1000

> Sol in acid Arries P .. 1

Manganese phosphide, Mr P

Insol in all 1 Wedekind B 1907 40 12 18 Sol 17 aqua \*\*\* re er C P 184 124 4 Mn P HC -4 5 H. leaves Mn P 11 **4 86** Wohler a

HNO Ica Vilai I (tWedekin) 11 to zMn P - Mn P 1 partly sol 1 H SO4 1(-

pr 79 521 Mn P In l HC - 1 Schrotter W A > 1849 1 — <del>1</del>a

Manganous phosphose'enide

Insol in HO Sal - HC -Aq Insol in c 13 +Aq Hahn J nr 93 45 2 VinSe, Pose in hot HCl-Aq Ins in NUT LE " 2MnSe, PSe Lus li

Manganese selenide, MnSe

Decomp by H<sub>2</sub>O and min acids (Wede-

kınd, B 1911, 44 2667)

Cryst Sl decomp by H<sub>2</sub>O at 100°, easily sol in dil acids (Fonzes-Diacon, C R 1900, 130 1025)

#### Manganese sılıcıde

Sol in HF, only very sl sol in other acids (Warren, C N 1898, 78 319)

Mg<sub>5</sub>S<sub>12</sub> Sol in HCl+Aq with evolution

of SiH<sub>4</sub> (Wohler, A 106 54) Mn-Si Insol in H<sub>2</sub>O (Vigouroux, C R 1895, 121 772)

Easily sol in HF (Wedekind, B 1911, 44\_2668)

Easily sol in dil acids, HF and HNO<sub>3</sub> Insol in KOH+Aq (Vigouroux, A ch 1897, (7) **12** 179)

Easily sol in HF when heated, in HCl when red hot Sol in dil min acids with decomp (Vigouroux, C R 1895, 121 772)

Insol in HNO<sub>3</sub>, sol in dil or conc HCl Slowly decomp by alkali hydroxides (Lebeau, C R. 1903, **136** 91)

beau, C R 1903, 136 91)
Mn<sub>2</sub>S<sub>1</sub> Easily sol in molten alkalı
(Vigouroux, C R 1895, 121 772)

MnSi Slowly attacked by hot cone HCl Not acted upon by dil or cone HNO<sub>3</sub> or

H<sub>2</sub>SO<sub>4</sub> (Lebeau, C R 1903, **136** 91)
MnS<sub>1</sub>, Not attacked by HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub>
Easily sol in cold HF, decomp by conc alkalies+Aq (Lebeau, C R 1903, **136** 

233)

#### Manganous sulphide, MnS

Anhydrous Insol in  $H_2O$  Sol in weak acids, even in acetic acid

1 l H<sub>2</sub>O dissolves 71 60 x 10-6 moles MnS at 18° (Weigel, Z phys Ch 1907, **58** 294) Insol in acetone (Naumann, B 1904, **37** 4329)

Min Alabandite Sol in HCl+Aq

+1/2H<sub>2</sub>O Green Decomp by boiling with H<sub>2</sub>O Sol in weak acids, as acetic or sulphurous acid Very sl sol in  $(NH_4)_2S+$ Aq (Wackenroder)

Sol in NH<sub>4</sub> salts+Aq 100 ccm of sat NH<sub>4</sub>Cl+Aq at 12° dissolve 0 43 g MnS (Clermont and Guyot, C R 85 37)

+8/2H2O Flesh colored Less sol in NH<sub>4</sub> salts, or acetic acid+Aq than the preceding salt 100 ccm of sat NH<sub>4</sub>Cl+Aq at 12° dissolve 0 088 g (Clermont and Guyot)

Neither green nor flesh-coloured MnS contains H<sub>2</sub>O (Antony and Donnini, Gazz ch

it **23** 560)

MnS is not pptd in presence of alkalicitrates, tartrates, or grape sugar, cane or milk sugar do not prevent precipitation (Spiller) Not pptd in presence of Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub> (Rose)

Manganese sulphide, Mn<sub>3</sub>S<sub>4</sub>

Decomp by  $\rm H_2O$  Sol in cold dil acids (Gautier and Hallopeau, C R 1889, 108 809)

Manganese disulphide, MnS<sub>2</sub>

(Senarmont, J pr 51 385)

Min Hauerite Decomp by hot HCl+Aq with separation of S

Manganous phosphorus sulphide, MnS, P<sub>2</sub>S Sol in HCl+Aq with decomp (Berzelius, A 46 147)

Manganous potassium sulphide, 3MnS, K<sub>2</sub>S Nearly insol in water, alcohol, or ether Easily sol in acids (Völcker, A. **59** 35)

Manganous sodium sulphide, 3MnS, Na<sub>2</sub>S Insol in H<sub>2</sub>O, alcohol, or ether Sol in dil acids, and SO<sub>2</sub>+Aq (Volcker)

2MnS, Na<sub>2</sub>S Decomp by H<sub>2</sub>O (Schneid er, Pogg 151 446)

Manganese telluride, MnTe

Decomp by  $\rm H_2O$  and min acids (Wedekind, B 1911, 44 2667)

Manganic acid, H<sub>2</sub>MnO<sub>4</sub>

Known only in solution, which decomposes rapidly (Franke, J pr (2) 36 31)

Barium manganate, BaMnO<sub>4</sub>

Insol in  $H_2O$ , decomp by acids (Mitscheilich)

Dıdymıum manganate,  $D\iota_2(MnO_4)_3$ 

Insol in  $\rm H_2O$  Sol in  $\rm H_2SO_4+Aq$ (Frerichs and Smith, A 191 331) Does not exist (Cleve, B 11 912)

Lanthanum manganate, La<sub>2</sub>(MnO<sub>4</sub>)<sub>3</sub>

Ppt (Frerichs and Smith, A 191 331) Does not exist (Cleve, B 11 912)

Manganese manganate,  $Mn_2O_3$ ,  $MnO_3 = 3MnO_2$ 

See Manganese droxide

Lead manganate, PbMnO<sub>4</sub>+2H<sub>2</sub>O Ppt (Jolles, C C 1888 58)

Potassium manganate, K<sub>2</sub>MnO<sub>4</sub>

Sol m water containing alkalies withou decomp, but decomp by pure H<sub>2</sub>O Can b recrystallised from dil KOH+Aq

| Solubility in KOH+Aq at t° |                                                         |                                                                                        |   |
|----------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|---|
| Solvent                    | t°                                                      | Mol K <sub>2</sub> MnO <sub>4</sub> in<br>1 l of sat solution                          |   |
| 2-N KOH                    | 0<br>10<br>20<br>30<br>45                               | 0 907<br>1 013<br>1 140<br>1 252<br>1 424                                              | I |
| 4-N KOH                    | 0<br>17<br>25<br>30<br>40<br>45<br>51<br>60<br>70<br>80 | 0 554<br>0 681<br>0 733<br>0 772<br>0 852<br>0 889<br>0 938<br>1 003<br>1 074<br>1 143 | 1 |
| 6-И КОН                    | 0<br>15<br>23<br>30<br>40<br>45<br>60<br>70<br>80       | 0 155<br>0 224<br>0 261<br>0 303<br>0 362<br>0 388<br>0 469<br>0 528<br>0 587          | 3 |
| 8-N KOH                    | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80       | 0 063<br>0 070<br>0 078<br>0 096<br>0 119<br>0 142<br>0 167<br>0 196<br>0 222          | 1 |
| 10-N KOH                   | 0<br>10<br>20<br>30<br>40<br>50<br>63<br>70<br>80       | 0 0145<br>0 0152<br>0 0160<br>0 0215<br>0 0305<br>0 0462<br>0 0620<br>0 0700<br>0 0830 | ] |

(Sackur, Z Flektrochem 1912, 18 724)
Sol in ethyl acetate (Naumann, B 1910, 43 314)

Potassium manganate permanganate, K<sub>2</sub>MnO<sub>4</sub>, KMnO<sub>4</sub>

Sol without decomp in 20% KOH+Aq (Gorgeu, A ch (3) 61 355)

Sodium manganate,  $Na_2MnO_4+10H_2O$ Sol in  $H_2O$ , with partial decomp (Gentele, J pr 82 58)

Strontium manganate, SrMnO<sub>4</sub> Insol in H<sub>2</sub>O (Fromherz) Permanganic acid
See Permanganic acid

Manganicyanhydric acid, H<sub>3</sub>Mn(CN)<sub>6</sub> Not known in the free state

Barium manganicyanide,  $Ba_3[Mn(CN)_6]_2$ Sol in  $H_2O$  (Fittig and Eaton)

Barium potassium manganicyanide barium cyanide, 2KBaMn(CN)6, 3Ba(CN)2+8H2O

Decomp by  $H_2O$  (Lehmann, Dissert 1898)

Calcium manganicyanide, Ca<sub>8</sub>[Mn(CN)<sub>6</sub>]<sub>2</sub> Sol in H<sub>2</sub>O (Fittig and Eaton)

Potassium manganicyanide,  $K_3Mn(CN)_6$ Sol in  $H_2O$  (Christensen, J pr (2) 31 163)

Sodium manganicyanide,  $Na_8Mn(CN)_6+2H_2O$ Sol in  $H_2O$  (Fittig and Eaton)

Manganimanganic acid

Barium manganimanganate, Ba<sub>3</sub>Mn<sub>2</sub>O<sub>8</sub>+

Insol in H<sub>2</sub>O Identical with Rosenstiehl's "basic barium manganate," (J Pharm 1864, **46** 344) (Auger and Billy, C R 1904, **138** 501)

Lithium manganimanganate, Li<sub>6</sub>Mn<sub>2</sub>O<sub>8</sub>+ H<sub>2</sub>O

Insol in H<sub>2</sub>O (Auger and Billy)

Manganiperiodic acid, H<sub>2</sub>O, Mn<sub>2</sub>O<sub>3</sub>, I<sub>2</sub>O<sub>7</sub>
Wholly insol in H<sub>2</sub>O, in hot dil or conc
HNO<sub>3</sub> and in hot dil H<sub>2</sub>SO<sub>4</sub> (Price, Am
Ch J 1903, **30** 182)

Potassium manganiperiodate,  $K_2O$ ,  $Mn_2O_3$ ,  $I_2O_7$ 

Apparently entirely insol and unchanged when boiled with HO, dil or conc HNO<sub>3</sub>, or dil H<sub>2</sub>SO<sub>4</sub> (Price)

Sodium manganiperiodate, Na O, Mn O<sub>3</sub>, I O<sub>7</sub>

Apparently insol and unchanged when treated with boiling H<sub>2</sub>O, boiling dil or cone HNO<sub>3</sub> and boiling dil H<sub>2</sub>SO<sub>4</sub> (Price)

Manganocyanhydric acid, H<sub>4</sub>Mn(CN)<sub>6</sub>

Most easily decomp Sl sol in alcohol Insol in ether (Descamps, A ch (5) 24 185)

Ammonium cuprous manganocyanide,  $(NH_4)_2Cu_2Mn(CN)_6$ 

Sol in H2O, decomp by acids and alkalies, very unstable (Straus, Z anorg 1895, 9 14 )

Ammonium manganous manganocyanide,

 $NH_4CN$ ,  $Mn(CN)_2 =$ 

alcohol (Fittig and Eaton)

(NH<sub>4</sub>)·MnMn(CN)<sub>6</sub> Sol in NH<sub>4</sub>CN+Aq (Fittig and Eaton, A 145 157)

Barium manganocyanide, Ba<sub>2</sub>Mn(CN)<sub>6</sub> Sol in cold H<sub>2</sub>O (Fittig and Eaton)

Calcium manganocyanide, Ca<sub>2</sub>Mn(CN)<sub>6</sub> Very deliquescent Sol in H<sub>2</sub>O, insol in

Cuprous potassium manganocyanide,

 $Cu_2K_2Mn(CN)_6$ Sol in H<sub>2</sub>O with sl decomp Easily decomp by acids and alkalies (Straus, Z anorg 1895, 9 12)

Cuprous sodium manganocyanide,

Cu<sub>2</sub>Na<sub>2</sub>Mn(CN)<sub>6</sub> Sol in H<sub>2</sub>O with only sl decomp Partially decomp by acids (Straus)

Manganous potassium manganocyanide,  $\overline{K}CN$ ,  $\overline{M}n(CN)_2 = K_0MnMn(CN)_6$ Ppt Sol in KCN+Aq

Potassium manganocyanide, K<sub>4</sub>Mn(ČN)<sub>6</sub>+

Very efflorescent Sol in H<sub>2</sub>O, decomp by

Potassium manganocyanide chloride, K<sub>4</sub>Mn(CN)<sub>6</sub>, KCl Easily sol in H<sub>2</sub>O (Descamps)

Sodium manganocyanide,  $Na_4Mn(CN)_6+$  $8H_2O$ 

Very efflorescent Fasily sol in HO (Fittig and Eaton)

Strontium manganocyanide, Sr<sub>2</sub>Mn(CN)<sub>6</sub> As the Ba comp (Descamps)

Permanganomolybdic acid See Permanganomolybdic acid

Permanganotungstic acid See Permanganotungstic acid

Manganosulphuric acid See Sulphate, manganic

Manganous acid,  $H_2MnO_3 = MnO_2$ ,  $H_2O$ Insol in  $H_2O$  (Franke, J pr (2) 36 451) 2MnO<sub>2</sub>, H<sub>2</sub>O (?) Min Wad

Barium manganite, BaO, 5MnO<sub>2</sub>

Sl sol in HCl+Aq, less sol in HNO<sub>3</sub>+Aq (Rissler, Bull Soc (2) 30 111) (Rousseau, C R 104 786) Ìnsol ın H́₂O

BaO, 7MnO<sub>2</sub>
BaO, 2MnO<sub>2</sub>
BaO, MnO<sub>2</sub>
C R 102 425) Insol in H<sub>2</sub>O (Rousseau,

Ba(H<sub>2</sub>Mn<sub>4</sub>O<sub>10</sub>)<sub>2</sub> (Morawski and Stingl, J pr (2) 18 92)

Calcium manganite, CaO, 5MnO<sub>2</sub>

Easily sol in HCl+Aq, less in HNO<sub>8</sub>+Aq (Rissler)

3CaO, MnO<sub>2</sub> (?) Decomp by H<sub>2</sub>O Sol in HCl+Aq with evolution of Cl Scarcely sol in cold HNOs, but sol on heating (Du fau, A ch 1897, (7) 12 275)

2CaO, MnO<sub>2</sub> Sol in dil min acids

2CaO, MnO<sub>2</sub> Sol in (Rousseau, C R **116** 1060)

CaO, 2MnO<sub>2</sub> (Rousseau, C R 102 425) CaO, 3MnO<sub>2</sub>

CaO, MnO<sub>2</sub> Sol in fuming HCl+Aa, but not in dil HNO<sub>3</sub>+Aq (Rousseau, C R 116 1060)

Chromium manganite, Cr<sub>2</sub>O<sub>3</sub>,  $3MnO_2 =$  $Cr_2(MnO_3)_3$ 

Slowly decomp by acids (Groger, Z anorg 1905, 44 458)

Cobaltous manganute, CoO, MnO<sub>2</sub>+2H<sub>2</sub>O Ppt (Salinger, Z anorg 1903, 33 352) +4H<sub>2</sub>O Ppt (Salinger)

Cobalt copper manganite, CoO, CuO, 2MnO +4H<sub>2</sub>O

Min Asbolite Sol in HCl+Aq, with evolution of Cl

Cupric manganite, CuO, 4MnO

(Gorgeu, Bull Soc 1903, (3) 29 1167) CuO, 8MnO<sub>2</sub>+3HO (Baubigny, C R 1897, **124** 955)

Cupric manganous manganite, 4CuO, MnC  $7MnO_2 + 8H_2O$ 

Ppt (Salinger, Dissert 1902) Mn<sub>2</sub>O<sub>3</sub>, 3CuO Sol in HCl+Aq (Schne der, Am Ch J 9 269)

Lead manganite, PbO, 5MnO<sub>2</sub>

Not attacked by conc acids, sol in aqu regia (Rissler)

Magnesium manganite, 2MgO, MnO<sub>2</sub> (Lemoine, Ann Min (7) 3 5)  $+xH_2O$  (Vollard)

Manganous manganite,  $Mn_3O_5 = MnO$ ,  $2MnO_2$ 

(Reissig, A 103 27)  $Mn_6O_{11} = MnO, 5MnO_2$ (Veley, Chen Soc 38 581)

3MnO<sub>2</sub>, 2MnO Decomp by dil H<sub>2</sub>SO<sub>4</sub>+ Aq (Franke, J pr (2) 36 166) 3MnO<sub>2</sub>, MnO+H<sub>2</sub>O Mm Varucite

Manganous zinc manganite, MnO, ZnO, MnO<sub>2</sub>

(Gorgeu, Bull Soc 1903, (3) 29 1168) 2MnO, ŹnO, 2MnO<sub>2</sub> (Gorgeu)

Potassium manganite, K<sub>2</sub>O, 2MnO<sub>2</sub>

Insol in H<sub>2</sub>O  $K_2O$ ,  $5MnO_2$   $K_2O$ ,  $7MnO_2+3H_2O$   $K_2O$ ,  $8MnO_2+3H_2O=KH_3Mn_4O_{10}$  (Morawski and Stingl, J pr (2) 18 91)
Does not exist (Wright and (Wright and Menke, Chem Soc **37** 22) K<sub>2</sub>O, 10MnO<sub>2</sub> K<sub>2</sub>O, 16MnO<sub>2</sub>+6H<sub>2</sub>O Sol in cone HCl+

Silver manganite, AgH<sub>3</sub>Mn<sub>4</sub>O<sub>10</sub>

Aq (Rousseau, C R 114 72)

(Morawski and Stingl, J pr (2) 18 92) Ag<sub>2</sub>MnO<sub>8</sub> Ppt (Gorgeu, C R 110 958)

Silver (argentous) manganite, Ag<sub>4</sub>O,  $Mn_2O_3$  (?)

Insol in cold dil HNO3+Aq, and separates Mn<sub>2</sub>O<sub>3</sub> on warming Insol in NH<sub>4</sub>OH+Aq (Rose, Pogg 101 229)

Silver (argentoargentic) manganite, Ag<sub>4</sub>O<sub>4</sub> 2Ag<sub>2</sub>O, Mn<sub>2</sub>O<sub>3</sub> (?) (Rose)

Sodium manganite, Na<sub>2</sub>O, 5MnO<sub>2</sub>

Insol in H<sub>2</sub>O (Rousseau, C R 103 261) Na<sub>2</sub>O, 12MnO<sub>2</sub> Insol in H<sub>2</sub>O (Rous-

seau) +4H<sub>2</sub>O (Rousseau, C R 112 525)  $Na_2O$ ,  $8MnO_2 + 5H_2O$  (Rousseau)  $Na_2O$ ,  $16MnO_2+8H_2O$  (Rousseau)

Strontium manganite, MnO<sub>2</sub>, SrO

Insol in H<sub>2</sub>O 2MnO<sub>2</sub>, SrO C R **101** 167) Insol in H<sub>2</sub>O (Rousseau, MnO2, 5SrO Sol in HCl, or HNO3+Aq (Rissler, Bull Soc (2) 30 110)

Zinc manganite, ZnO, 5MnO<sub>2</sub>

Insol in H<sub>2</sub>O (Rissler) ZnO, 4MnO<sub>2</sub> (3) **29** 1168) (Gorgeu, Bull Soc 1903,

3ZnO, MnO<sub>2</sub>+7½H<sub>2</sub>O (Salinger, Dissert

27ZnO, 2MnO<sub>2</sub>+25H<sub>2</sub>O Insol in H<sub>2</sub>O (Salinger)

Manganyl chloride, MnO<sub>3</sub>Cl

Decomp by H<sub>2</sub>O (Aschoff, J pr 81 29)

Melanocobaltic chloride, Co<sub>2</sub>(NH<sub>3</sub>)<sub>6</sub>Cl<sub>4</sub>NH Cl, or  $Co_2(NH_3)_6Cl_5NH_2$ 

Very sl sol in cold H<sub>2</sub>O or very dil HCl+ Aq Decomp by long standing or warming Cold conc HCl or dil H2SO4+Aq does not attack, but decomp on warming HNO<sub>3</sub>+ Aq decomp on warming Sol in cold H<sub>2</sub>SO<sub>4</sub> or NH OH + Aq, from both solutions it can be precipitated by HCl+Ag (Vortmann, B) 10 1455)

- chloroplatinate,  $Co_2(NH_3)_6NH_2Cl_5$ , PtCl<sub>4</sub>

Ppt (Vortmann, B 15 1902) Co<sub>2</sub>(NH<sub>3</sub>)<sub>6</sub>NH<sub>2</sub>Cl<sub>3</sub>(OH)<sub>2</sub>, PtCl<sub>4</sub> Ppt (Vortmann)

- mercuric chloride, Co<sub>2</sub>(NH<sub>3</sub>)<sub>6</sub>(NH<sub>2</sub>)Cl<sub>3</sub>(OH)<sub>2</sub>, 3HgCl<sub>2</sub>+  $H_2O$ 

Ppt Difficultly sol in cold  $H_2O$ , quite easily in warm  $H_2O$  acidified with HCl(Vortmann)

chloride chromate,  $Co_2(NH_3)_6NH_2Cl_3Cr_2O_7+H_2O$ Sol in hot H<sub>2</sub>O (Vortmann)

Mercurammonium comps See Mercury ammonium comps

Mercuriammonium bromide, Hg(NH<sub>2</sub>)Br See Dimercuriammonium ammonium bromıde

Mercuriammonium chloride, Hg(NH<sub>2</sub>)Cl See Dimercuriammonium ammonium chlorıde

Mercuriammonium oxydimercuriammonium chloride, 4Hg(NH<sub>2</sub>)Cl, NH<sub>2</sub>(HgOHg)Cl (Millon)

Correct composition is Dimercuriammonium ammonium chloride, NHg<sub>2</sub>Cl, NH<sub>4</sub>Cl, which see (Balestra, Gazz ch it 21, 2 294)

Hg(NH<sub>2</sub>)Cl, 2NH<sub>2</sub>(HgOHg)Cl (Millon) Correct composition is Dimercuriammonium mercuric chloride, 2NHg<sub>2</sub>Cl, HgCl<sub>2</sub>+  $H_2O$ , or  $D_i$  mercuriammonium hydrogen chloride, NHg<sub>2</sub>Cl, HCl (Balestra)

Mercuriammonium nitrate, 2NH<sub>3</sub>, 2HgO,  $N_2O_5 = NH_2HgNO_3 + \frac{1}{2}H_2O$ 

Easily decomp by HCl, or alkalı sulphides + Aq Sl sol in HNO+Aq Insol in H<sub>2</sub>SO<sub>4</sub>, NH<sub>4</sub>OH, or KOH+Aq (Mitscherlich)

Is dimercuriammonium ammonium nitrate, NHg<sub>2</sub>NO<sub>3</sub>, NH<sub>4</sub>NO<sub>3</sub>+H<sub>2</sub>O (Pesci,

| Gazz ch it 20 485)

Dimercuriammonium chloride, NHg<sub>2</sub>Cl

Not attacked by boiling H<sub>2</sub>O Sl attacked by cold dil HCl+Aq, but is gradually dissolved thereby Decomp by hot KOH+Aq (Weyl)

Sol in KI, or Na S<sub>2</sub>O<sub>3</sub>+Aq with evolution

of NH<sub>3</sub>

+H<sub>2</sub>O Nearly insol in H<sub>2</sub>O, easily sol in HNO<sub>3</sub>, and HCl+Aq Not decomp by KOH+Aq Decomp by KCl, NaCl, or KI+ Aq (Rammelsberg, Pogg 48 181)

- hydrogen chloride, NHg<sub>2</sub>Cl, 2HCl

Correct composition of mercuric chloramide chloride (Balestra, Gazz ch it 21, 2 299)

Decomp by H<sub>2</sub>O NHg<sub>2</sub>Cl, HCl Decomp by H<sub>2</sub>O (Balestra, l c

NHg<sub>2</sub>Cl, 4HCl Sol in H<sub>2</sub>O (Rây, Proc Chem Soc 1901, 17 96)

--- ammonium chloride, NHg<sub>2</sub>Cl, NH<sub>4</sub>Cl (Infusible white precipitate)

Correct composition of what has been called mercuric chloramide, Hg(NH2)Cl melsberg, J pr 38 558)

Insol in cold, decomp by hot H<sub>2</sub>O (Millon, A ch (3) 18 413) Sol in 600 pts H<sub>2</sub>O (Wittstein) Sol in 719 98 pts (Mıl⊦  $H_2^0$  at 18 75° (Abl.) Insol in alcohol Sol in acids, even in  $HC_2H_3O_2+Aq$ , also

in NH<sub>4</sub>NO<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, and NH<sub>4</sub>C<sub>2</sub>H $_3$ O<sub>2</sub>+

Aq (Pelouze and Fremy)

Sol in warm NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>3</sub>+Aq

SI sol in alkali chlorides + Aq, which partially decomp (Miahle, A ch (3) 5 180) Decomp by KOH+Aq Sol in KI, or Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq, with evolution of NH<sub>3</sub> lestra)

When freshly prepared is sol in conc, NH4OH+Aq (Saha and Choudhuri, Z

anorg 1910, 67 359)

Sol in excess of (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>+Aq Insol in excess of Na HPO4+Aq (Carnegie and Burt, C N 1897, 76 175)
Insol in excess of NH<sub>4</sub>OH+Aq

negre and Burt)

NHg<sub>2</sub>Cl, 3NH<sub>4</sub>Cl (Fusible white precipitate)

Correct composition of what has been called mercurid/ammonium chloride.  $Hg(NH_3)_2Cl_2$ (Rammelsberg, J pr **38** 558)

Decomp by hot H<sub>2</sub>O Sol in acids, even HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Not decomp by cold, but by boiling KOH+Aq (Weyl)

Sol in warm, less in cold NH<sub>4</sub>OH+Aq (Mitscherlich)

Sol in KI, or Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq, with evolution

of NH<sub>3</sub> (Balestra) Sol in 10% HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> and acetic ad (Hofmann and Marburg, A 1899, acid 305 198)

 $D_i$ mercuriammonium mercuric chloride, 2NHg<sub>2</sub>Cl, HgCl<sub>2</sub>

Insol in, and not decomp by boiling  $H_2O$ , alkalies, conc HNOs, or dil H2SO4+Aq Sol in boiling HCl+Aq (Mitscherlich, J pr **19** 453)

SI decomp by H<sub>2</sub>O, readily by KOH+Aq (Gaudechon, A ch. 1911, (8) 22 212)

Ppt Sol in HBr (Ray, Proc Chem Soc 1902, **18** 86)

chloride ammonia, NHg<sub>2</sub>Cl, ½NH<sub>3</sub> Decomp by water and by NH<sub>4</sub>OH+Aq (Gaudechon, A ch 1911, (8) 22 212)

— chromate

See Oxydimercuriammonium chromate

– hydroxide, NHg₂OH

Takes up H<sub>2</sub>O to form NHg<sub>2</sub>OH+H<sub>2</sub>O or (NHg<sub>2</sub>OH<sub>2</sub>)OH, oxydimercuriammonium hydroxide, which also see

Sol in warm HCl or HNO<sub>3</sub>+Aq

- 10date, NHg<sub>2</sub>IO<sub>3</sub>, 2NH<sub>4</sub>IO<sub>3</sub>

Insol in HNO<sub>3</sub> (Rammelsberg, J pr (2) **38** 568)

– 10dide, NHg₂I

Insol in H<sub>2</sub>O Sol in HCl+Aq comp by boiling with KOH+Aq or KCl+Aq (Weyl, Pogg 121 601) Decomp by hot KI, or Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Balestra) Decomp by dilute HCl Sol in ammonium salts+Aq (Franklin, Z anorg 1905, 46 21)

 $+H_{2}O$ SeeOxydimercuriammonium 10dide

– ammonium iodide, NHg<sub>2</sub>I, 3NH<sub>4</sub>I

Correct composition of mercuridiammonium iodide, Hg(NH<sub>3</sub>)<sub>2</sub>I<sub>2</sub> (Pesci, Gazz ch it 20 485)

3NHg<sub>2</sub>I, 8NH<sub>4</sub>I, 4HgI<sub>2</sub> Correct formula for mercuridiammonium mercuric iodide,  $Hg(NH_3)_2I_2$ ,  $HgI_2$  (Pesci)

--- nitrate, NHg2NO3

Insol in H<sub>2</sub>O (Rammelsberg, J pi (2) **38** 566)

Sol in KI, or N 12S O3 + Aq, with evolution of NH<sub>3</sub> (Balestri, Gazz ch it 22, 2 560)

 $+H_2O$ (Hofmann and Marburg, A 1899, **305** 212)

Sl sol in HNO<sub>3</sub> (Ray, Z anorg 1902, **33** 209)

– ammonium nitrate, NHg<sub>2</sub>NO<sub>3</sub> NH<sub>4</sub>NO<sub>3</sub>  $+H_2O$ 

Correct formula for mercunammonium nitrate, NH<sub>2</sub>HgNO<sub>3</sub>+½H<sub>2</sub>O (Pesci, Gazz ch it 20 485)

NHg<sub>2</sub>NO<sub>3</sub>, 2NH<sub>4</sub>NO<sub>3</sub>+2H<sub>2</sub>O Correct for-

Mercuriammonium oxydimercuriammonium nitrate, 3HgO, 2NH<sub>3</sub>, N<sub>2</sub>O<sub>5</sub> = NH<sub>2</sub>HgNO<sub>3</sub> (NHg<sub>2</sub>OH<sub>2</sub>)NO<sub>3</sub>+H<sub>2</sub>O

Decomp by boiling with H<sub>2</sub>O, which dissolves out NH<sub>4</sub>NO<sub>3</sub> Sol in NH<sub>4</sub>NO<sub>3</sub>+Aq containing NH<sub>4</sub>OH (Mitscherlich)

Is dimercuriammonium ammonium nitrate, 3NHg<sub>2</sub>NO<sub>3</sub>, NH<sub>4</sub>NO<sub>3</sub>+2H<sub>2</sub>O (Pesci, Gazz ch it **20** 485)

Mercuriammonium oxydimercuriammonium sulphate, (NH<sub>2</sub>Hg)<sub>2</sub>SO<sub>4</sub>, 3(NHg<sub>2</sub>OH<sub>2</sub>)<sub>2</sub>SO<sub>4</sub>

Boiling H<sub>2</sub>O dissolves out H<sub>2</sub>SO<sub>4</sub> Gradually decomp by boiling KOH+Aq Completely sol in NH<sub>4</sub>Cl+Aq Sol in cone or dil HCl, or very dil H<sub>2</sub>SO<sub>4</sub>+Aq Insol in cone or dil HNO<sub>3</sub>+Aq or cone H<sub>2</sub>SO<sub>4</sub> (Schneider)

Correct formula is  $7(NHg_2)_2SO_4$ ,  $(NH_4)_2SO_4$ +12H<sub>2</sub>O, d<sub>1</sub>mercuriammonium ammonium sulphate (Pesci, Gazz ch it 20 485)

# Mercuridiammonium chloride (fusible white precipitate), Hg(NH<sub>3</sub>) Cl<sub>2</sub>

Is dimercuriammonium ammonium chloride,  $\mathrm{Hg_2NCl}$ ,  $\mathrm{3NH_4Cl}$ , which see (Rammelsberg J pr 38 558)

Mercuridiammonium mercuric chloride, Hg(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, HgCl

Insol in H<sub>2</sub>O, but gradually decomp by boiling therewith (Rose, Pogg 20 158)
Partly sol in H O (Kane)

# Mercuridiammonium iodide, Hg(NH<sub>3</sub>)<sub>2</sub>I<sub>2</sub>

H O extracts all the  $NH_3$  Partly sol in little alcohol Partly sol in ether without decomp (Nessler)

Correct composition is dimercuriammonium ammonium iodide, NHg<sub>2</sub>I, 3NH<sub>4</sub>I (Pesci, Gazz ch it 20 485)

Mercuruliammonium cupric iodide,  $4NH_3$ ,  $CuI_2$ ,  $HgI_2$ 

Decomp by H O Sol in alcohol+ HC  $H_3O_2$  (Jorgensen, J pr (2) 2 347)  $_2H_2(NH_3)$  I Cul (Decomp by H O (Jorgensen)

## Mercuridiammonium iodide, Hg(NH<sub>3</sub>) I

Decomp by H<sub>2</sub>O Partly sol in a little alcohol Partly sol in other (Nessler)

Correct composition is dimercuriammonium ammonium iodide NHg I, 3NH<sub>4</sub>I (Pesci)

# Mercuridiammonium mercuric iodide, $Hg(NH_3)_2$ , $HgI_2$ , or $NH_3$ , $HgI_2$

Decomp by  $H_2O$  or dil acids (Caillot and Corriol, J Pharm 9 381)

Correct composition is dimercuri immonium ammonium mercuiic iodide, 3NHg<sub>2</sub>I, 8NH<sub>4</sub>I, 4HgI (Pesci, Gazz ch it 20 485)

 $\textbf{Mercuri} \textit{diammonium sulphate,} \ Hg(NH_3)_2SO_4$ 

Decomp with H<sub>2</sub>O Does not exist (Pesci, Gazz ch it 20

485) +H<sub>2</sub>O Decomp, by H<sub>2</sub>O Easily sol in HCl, very dil H<sub>2</sub>SO<sub>4</sub>+Aq, or HNO<sub>3</sub>+Aq Insol in conc HNO<sub>3</sub>+Aq Sol in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> +Aq or NH<sub>4</sub>Cl+Aq Decomp by KOH+ Aq (Schneider, J pr 75 136)

Correct composition is (NHg)<sub>2</sub>SO<sub>4</sub>, 3(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+12H<sub>2</sub>O, dimercuriammonium ammonium sulphate (Pesci)

D .....

#### Dimercuriammonium acetate, NHg<sub>2</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>

Insol in  $H_2O$  or alcohol Sol in HCl or  $NH_4C \cdot H_3O_2 + Aq$  (Balestra, Gazz ch it **22, 2** 563)

# $D_{2}$ mercuriammonium ammonium acetate $NHg_{2}C_{2}H_{3}O_{2}$ , $3NH_{4}C_{2}H_{3}O_{2}+H_{2}O$

Deliquescent, sol in a little  $H_2O$  without decomp, but decomp into  $NHg_2C_2H_3O_2$  and  $NH_4C_2H_3O_2$  by excess of  $H_2O$  (Balestra)

——bromate, NHg<sub>2</sub>BrO<sub>3</sub>+1½H<sub>2</sub>O Ppt (Rammelsberg, Pogg **55** 82) Is oxydimercuriammonium bromate, (NH<sub>2</sub>Hg O)BrO<sub>3</sub>

## ---- bromide, NHg<sub>2</sub>Br

Insol in H O or HNO<sub>3</sub> Sol in IICl+Aq (Pesci, Guzz ch it **19** 509)

Sol in KI, or Na S O<sub>3</sub>+Aq with evolution of NH<sub>3</sub> (Balestra, Gazz ch it 22, 2 558 Sol in ammoniacal solutions of ammonian salts and in aq acids (Franklin I Am Chem Soc 1905, 27 839)

ammonium bromide, NIIg Br, NII<sub>4</sub>Br Decomp by HO (Pesci, Guzz ch it 19

Decomp by H O (Pesci, Gazz chait 19 511)
4NHg<sub>2</sub>Br, 5NH<sub>4</sub>Br Decomp by H O

Insol in (NII<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq Sol in cone of dil IICl+Aq Insol in IINO<sub>3</sub>+Aq (Pesci NII<sub>2</sub>,Br, 3NII<sub>4</sub>,Br Decomp by II O leasily sol in IICl+Aq Insol in dechol (Pesci)

Sol in NII<sub>4</sub>Br, NII<sub>4</sub>Cl, or NII<sub>4</sub>I +  $\Lambda q$  sol in KI, or N  $\chi$  S<sub>2</sub>O<sub>3</sub> +  $\Lambda q$ 

— mercuric bromide, 2NHg Br, HgB<sub>1</sub>

Ppt Sol in HBr and in HCl (Ray Chem Soc 1902, **81** 649)

# - carbonate, (NHg<sub>2</sub>)<sub>2</sub>CO<sub>3</sub>+2H<sub>2</sub>O

Ppt Not decomp by KOH+Aq, bu easily by K<sub>2</sub>S, or KI+Aq (Rammelsberg J pr (2) **38** 567)

mula for oxydimercuriammonium ammonium |nitrate, (NHg<sub>2</sub>OH<sub>2</sub>)NO<sub>3</sub>, 2NH<sub>4</sub>NO<sub>3</sub>+H<sub>2</sub>O (Pesci)

NHg<sub>2</sub>NO<sub>3</sub>, 3NH<sub>4</sub>NO<sub>3</sub> Decomp by cold H<sub>2</sub>O, sol m NH<sub>4</sub>OH+Aq (Pesca)

3NHg2NO3, NH4NO3+2H2O Correct formula for mercuriammonium oxydimercuriammonium nitrate, NH2HgNO3, (NHg2OH2)NO3 +H<sub>2</sub>O (Pesci)

Dimercuriammonium nitrite, NHg2NO2 Readily sol in warm HCl or HBr (Rây,

Chem Soc 1902, 81 648) +1/2H\*O Ppt Sol in HCl (Ray, Proc Chem Soc 1902, 18 85)

+H<sub>2</sub>O (Hofmann and Marburg, A 1899, 305 214)

-- oxide,  $(NHg_2)_2O$ 

Slowly decomp by H2O Sol in HCl, or

HNO<sub>2</sub>+Aq Decomp by hot KOH, or KCl +Aq (Weyl, Pogg 121 601) Sol in KCN+Aq by heating 4-5 hours at 130° Not completely sol in HCl owing to formation of Hg<sub>2</sub>Cl<sub>2</sub> (Gaudechon, C R 1907, 144 1419)

- phosphate, (NHg<sub>2</sub>)<sub>2</sub>PO<sub>4</sub>, 2NHg<sub>2</sub>OH+

sberg, J pr (2) 38 567) mercuriammonium phosphate

--- ammonium salicylate, 2NHg<sub>2</sub>C<sub>6</sub>H<sub>4</sub>OHCO<sub>2</sub>, 5NH<sub>4</sub>C<sub>6</sub>H<sub>4</sub>OHCO<sub>2</sub> Decomp by H<sub>2</sub>O Sol in NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, HCl, or KI+Aq (Balestra)

-- selenate,  $(NHg)_2SeO_4+2H_4O$ Ppt Insol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH+Aq (Cameron and Davy, C N 44 63)

- sulphate,  $(NHg_2)_2SO_4+2H_2O$ Insol in H<sub>2</sub>O Easily sol in HCl+Aq (Rammelsberg, J pr (2) **38** 565) Sol (Kane), insol (Hirzel) in HNO<sub>3</sub>+Aq

Sol in KI, or Na S<sub>2</sub>O<sub>8</sub>+Aq with evolution of NH<sub>3</sub> (Balestra)  $+\mathrm{H}_2\mathrm{O}$ Insol in H<sub>2</sub>O, sol in HCl (Rây, Chem Soc 1905, 87 9)

--- ammonium sulphate,  $(NHg_2)_2SO_4$ ,  $3(NH_4)_2SO_4+4H_2O$ 

Correct formula for mercuridiammonium sulphate, 2NH<sub>3</sub>, HgO, SO<sub>3</sub>+H<sub>2</sub>O (Pesci, Gazz ch it 20 485)  $5(NHg_2)_2SO_4$ ,  $14(NH_4)_2SO_4+16H_2O$ 

(Pesci)  $7(NHg_2)_2SO_4$ ,  $(NH_4)_2SO_4+12H_2O_4$ rect formula for mercuriammonium oxydimercuriammonium sulphate,  $(NHg H_2)_2SO_4$  $3(NHg_2OH_2)_2SO_4$  (Pesci)

Dimercuriammonium tartrate,  $(NHg_2)_2C_4H_4O_6+2\frac{1}{2}H_2O$ Insol in H2O Sol in HCl, KI, Na2S2O3, NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, or (NH<sub>4</sub>)<sub>6</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+Aq estra, Gazz ch it 22, 2 563)

ammonium tartrate, 2(NHg<sub>2</sub>)<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>,  $(NH_4)_2C_4H_4O_6+H_2O$ 

As above (B)

Trimercuriammonium sulphate,  $(NHg_2)(NHgH_2)SO_4 + 2H_2O$ Decomp by H<sub>2</sub>O (Millon)

Does not exist (Pesci, Gazz ch it 20 485)

Dimercuriarsonium mercuric chloride.  $AsHg_3Cl_3 = AsHg_2Cl, HgCl_2$ 

Decomp by H<sub>2</sub>O Decomp by warm  $HNO_3 + Aq$  (Rose, Pogg 51 423)

Mercurimidosulphonic acid,  $(HO_3S)_4N_2Hg$ 

Very unstable (Berglund, B 9 256)

Barium mercurimidosulphonate,  $Ba_2(SO_3)_4N_2Hg+5H_2O$ (Berglund, B 9 256)

Cadmium —,  $Cd_2HgN_2(SO_3)_4+12H_2O$ Unstable, sl sol in H<sub>2</sub>O (Berglund, Bull Soc (2) 25 452)

Cobalt —,  $Co_2HgN_2(SO_3)_4+15H_2O$ Sol in H<sub>2</sub>O (B)

Copper —,  $Cu_2HgN_2(SO_3)_4+15H_2O$ Very sol in  $H_2O$  (B)

Magnesium —,  $Mg_2HgN_2(SO_3)_4+15H_2O$ Very sol in H<sub>2</sub>O (B)

Manganous —,  $Mn_2HgN_2(SO_3)_4+10H_2O$ Unstable (B)

Mercuric —,  $(Hg_2O)_2HgN_2(SO_3)_4$ Nearly insol in H<sub>2</sub>O (B)

Nickel —,  $N_{12}HgN_2(SO_3)_4 + 15H_2O$ (B)

Potassium —, (KO<sub>3</sub>S)<sub>4</sub>N<sub>2</sub>Hg+4H<sub>2</sub>O Precipitate (Raschig, A 241 161)

Potassium silver ——, (AgSO<sub>3</sub>)<sub>2</sub>(KSO<sub>3</sub>)<sub>2</sub>HgN<sub>2</sub>  $+3H_{9}O$ Sl sol in H<sub>2</sub>O (Berglund)

Sodium ----,  $(NaSO_3)_4HgN_2+5H_2O$ More sol in H<sub>2</sub>O than K salt (Berglund)

Strontium —,  $Sr_2(SO_3)_4HgN_2+15H_2O$ More sol than Ba salt (B)

Zinc mercurimidosulphonate,  $Zn_2(SO_8)_4HgN_2+15H_2O$ Very sol in H<sub>2</sub>O (B)

Dimercuriphosphonium mercuric bromide, 2PHg<sub>2</sub>Br, HgBr<sub>2</sub>

(Lemoult, C R 1907, 145 1176)

Dimercuriphosphonium mercuric chloride, HgCl<sub>2</sub>, PHg<sub>2</sub>Cl

(Lemoult, C R 1907, 145 1176) +1½H<sub>2</sub>O Decomp by hot, sl Decomp by hot, slowly by cold H<sub>2</sub>O into Hg, HCl, and H<sub>3</sub>PO<sub>3</sub> Decomp by acids or alkalies (Rose, Pogg 40 75)

Dimercuriphosphonium mercuric iodide,  $HgI_2$ ,  $PHg_2I$ 

Slowly decomp by cold or warm H2O, quickly by MOH+Aq Not attacked by HCl or H2SO4+Aq Rapidly attacked by HNO<sub>3</sub> and aqua regia (Lemoult, C R 1904, **139** 479 )

Dvmercuriphosphonium mercuric nutrate,  $P_2Hg_3$ , 6HgO,  $3N_2O_5 = 2[PHg_2NO_3,$  $Hg(NO_3)_2$ , 3HgO(Rose, Pogg 40 75)

Dimercuriphosphonium mercuric sulphate.  $P_2Hg_3$ , 6HgO,  $4SO_3+4H_2O=(PHg_2)_2SO_4$ , 3HgSO<sub>4</sub>, 2HgO+4H<sub>2</sub>O Sol in aqua regia (Rose, Pogg 40 75)

#### Mercuric acid

Calcium mercurate (?) (Berthollet, A ch 1 61)

Potassium mercurate, K<sub>2</sub>O, 2HgO

Gradually decomp by H2O, less rapidly by absolute alcohol (St Meunier, C R 60 557)

Sodium mercurate, Na<sub>2</sub>O, HgO (Bettekoff, Bull Soc (2) 34 328)

## Mercuroammonium chloride, Hg(NH<sub>3</sub>)Cl

(Rose, Pogg 20 158)

Mixture of Hg, HgNH<sub>2</sub>Cl, and NH<sub>4</sub>Cl (Barfoed, J pr (2) 39 201)

- nutrate, (NHg<sub>2</sub>H<sub>2</sub>)NO<sub>3</sub>, "Hahnemann's soluble mercury"

Sol in hot HCl, and HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Decomp by NH<sub>4</sub>OH+Aq, or NH<sub>4</sub> salts+Aq Probably mixture of mercurous salts and Hg

# Mercurodiammonium chloride,

 $\mathrm{Hg_2(NH_3)_2Cl_2}$ 

Easily decomp (Rose, Pogg 20 158) Mixture of Hg, NH<sub>2</sub>HgCl, and NH<sub>4</sub>Cl (Barfoed, J pr (2) 39 201)

Mercurodiammonium fluoride.

 $Hg_2(NH_3)_2F_2$  (?)

Decomp by H<sub>2</sub>O (Finkener, Pogg 110 147)

## Mercurosulphonic acid

Mercurosulphonates, Hg(SO<sub>3</sub>M)<sub>2</sub>

Correct composition for the double sulphites, HgSO<sub>3</sub>, M<sub>2</sub>SO<sub>3</sub> (Divers and Shimidzu, Chem Soc 49 583, Barth, Z phys Ch **9** 195)

Mercuroxy-comps

See Oxymercur- comps

## Mercury, Hg

Not attacked by H<sub>2</sub>O Not attacked by boiling cone HCl or dil H2SO4+Aq Easily sol in dil or conc HNO<sub>8</sub>+Aq, also in HBr or HI+Aq

Not attacked by pure HNO<sub>3</sub> unless heated. but readily attacked by cold dil HNO<sub>2</sub>+Aq containing NO (Millon)

Anhydrous H<sub>2</sub>SO<sub>4</sub> attacks Hg gradually at ord temp (Berthelot, C R 1897, **125** 749)

H<sub>2</sub>SO<sub>4</sub> attacks only when hot and conc (Ditte, A ch 1890, (6) 19 68)

Conc H SO4 does not attack dry or moist

Hg either with or without air (Pitman, J Am Chem Soc 1898, 20 100) H<sub>2</sub>SO<sub>4</sub> attacks Hg at 20° if it contains

997%, does not attack if it contains only 956% (Baskerville, J Am Chem Soc 1898, 20 515)

Insol in HSO3+Aq alone or in presence of HCl or dil H<sub>2</sub>SO<sub>4</sub> (Berthelot, A ch 1898, (7) 14 198)

Not attacked by HF+Aq at any temp (Gay-Lussac)

HI dissolves Hg rapidly at ord temp (Norris and Cottrell, Am Ch J 1896, 18

More rapidly attacked by HBr+Aq than by HCl+Aq Rapidly acted upon by HI in absence of O (Bailey, Chem Soc 1888, 53 760)

Not attacked by pure HCl+Aq, but in presence of O, Hg<sub>2</sub>OCl+H<sub>2</sub>O is formed Action is apparently less in sunlight than in the dark (Bailey, Chem Soc 1888, 53 759) Small amts of ferric salts hinder action

of HNO<sub>3</sub> on Hg, but it is hastened by presence of Mn(NO<sub>3</sub>)<sub>2</sub> or NaNO<sub>3</sub> (Rav, Chem Soc 1911, 99 1015)

HNO, under 33% does not attack Hg if metal and acid are kept in motion and HNO<sub>2</sub> is absent (Veley, B 1895, 28 928)

Rapidly sol in HClO (Balard, Dissert 1834)

Alkalı chlorides + Aq in presence of air decomp Hg, action is not increased by heat (Miahle)

Insol in alkali chlorides + Aq in neutral or

alkaline solution (Bhaduri, Z anorg 1897, **13** 407)

Very sol in conc solution of I in KI+Aq

(Varet, Bull Soc 1897, (3) 17 451) Slowly sol in KCl or KI+Aq in presence

of air (Palmaer, Z phys Ch 1907, 59 136)
Slowly sol in Na<sub>2</sub>S+Aq m presence of air
(Palmaer, Z phys Ch 1907, 59 137)
Hg is appreciably sol in the sulpho salts of
Mo, W, V, As, Sb and Sn (Storch, B 1883,
16 2015)

Persulphates in alkali or neutral solution attack Hg (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub> in NH<sub>4</sub>OH solution has strongest action This dissolves Hg by repeated shaking at high temp Gazz ch it 1903, 33, (1) 127)

Insol in KCN+Aq (Elmer, J pr 1888,

(2) 37 442)

Slowly sol in KCN+Aq in presence of air (Palmaer, Z phys Ch 1907, 59 136)

Sol in considerable quantity in 6% KCN+Aq (Goyder, C N 1894, 69 268)
Most sol in K<sub>4</sub>Fe(CN)<sub>6</sub>+Aq when KOH

is present (Smith, J Am Chem Soc 1905, **27** 544)

Hg dissolves in Br<sub>2</sub> in the presence of KBr sl faster than in I2 but in CuBr2 much more slowly (Van Name and Edgar, Am J Sci

1910, (4) 29 255) Not attacked by PCl<sub>3</sub> even at 350° (Moissan, A ch 1885 (6) 6 457)

Insol in liquid NH3 (Gore, Am Ch J 1898, **20** 829 5

½ ccm oleic acid dissolves 0 0075 g Hg in 6 days (Gates, J phys Chem 1911, 15 143)

Mercurous acetylide, Hg<sub>2</sub>C<sub>2</sub>+H<sub>2</sub>O

(Burkard and Travers, Chem Soc 1902, **81** 1271 )

Mercuric acetylide, basic, 2HgO, 3HgC<sub>2</sub>+  $2H_2O$ 

(Burkard and Travers, Chem Soc 1902, **81** 1272 )

Mercuric acetylide, HgC<sub>2</sub>

Very sol in HCl with evolution of H2C2

(Keiser, Am Ch J 1893, **15** 535) +1/<sub>3</sub>H<sub>2</sub>O Insol in H<sub>2</sub>O, alcohol and ether Sol in NH<sub>4</sub> acetate+Aq, and in KCN+Aq Sl attacked by cold HCl, easily by hot Easily sol in HNO<sub>3</sub> Dil H<sub>2</sub>SO<sub>4</sub> attacks slowly, conc causes explosion and Travers, Chem Soc 1894, 65 267)

Mercuric acetylide chloride, HgC<sub>2</sub>, HgCl<sub>2</sub>+ ½H₂O

Not acted upon by dil HCl Decomp by fuming HNO<sub>3</sub> or aqua regia Insol in alcohol and ether (Keiser, Am Ch J 1893, **15** 539)

Mercuric acetylide mercuromercuric chloride, HgC<sub>2</sub>, HgCl<sub>2</sub> HgCl<sub>2</sub>+H<sub>2</sub>O

Insol in all ordinary solvents (Biltz and Mumm, B 1904, **37** 4420)

Mercurous amidofluoride, HgNH2F

Insol in H<sub>2</sub>O, HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> Sol 11 dıl HCl

Probably dimercuriammonium ammonium fluoride, NHg<sub>3</sub>F, NH<sub>4</sub>F (Bohm, Z anorg 1904, **43** 327)

Mercury ammonium comps See-

Mercuroammonium comps, NH<sub>8</sub>HgR Dimercuroammonium comps, NH2Hg2R

Mercurous chloramide, Hg(NH2)Cl

Dimercuriammonium comps, NHgR

Mercuric chlor-, brom-, etc., amide.  $Hg(NH_2)R$ 

Mercuridiammonium comps, Hg(NH<sub>3</sub>)<sub>2</sub>R Mercuriammonium comps, HgNH<sub>2</sub>R

Dimercuridiammonium comps, Hg2N2H4R Trimercuriammonium comps, N2H2Hg2R

Oxydemercuriammonium comps,  $(NH_2Hg_2O)R$ 

Mercurous arsınchloride, AsHgCl

Decomp by H<sub>2</sub>O (Capitaine, J Pharm **25** 559)

Mercurous arsinchloride chloride, AsHg<sub>2</sub>Cl<sub>2</sub>  $=2AsHgCl, Hg_{\circ}Cl_{2}$  (?)

Decomp by H<sub>2</sub>O (Capitaine)

Mercurous azomide, HgN<sub>3</sub>

Wholly insol in H<sub>2</sub>O (Curtius, B 24 3324)

1 l H<sub>2</sub>O dissolves 0.25 g (Wohler and Krupko, B 1913 46 2050)

Mercuric azoimide, HgN6

Sol in H<sub>2</sub>O especially when hot (Ber thelot and Vieille, Bull Soc 1894, (3) 11 747)

Moderately sol in H<sub>2</sub>O (Wohler and Krupko, B 1913, 46 2050)

Mercuric bromamide, Hg(NH<sub>2</sub>)Br

Insol in H<sub>2</sub>O and alcohol Sl sol in NH<sub>4</sub>OH+Aq (Mitscherlich, J pr 19 455) Correct composition is dimercuriammonium ammonium bromide, Hg2NBr, NH4Br, which see (Pesci, Gazz ch it 19 511)

Mercurous bromide, Hg<sub>2</sub>Br<sub>2</sub>

Solubility in  $H_2O = 9.1 \times 10^{-7}$ er l (Bodlander, Z phys Ch 1898, 27 61) Solubility in  $H_2O = 7 \times 10^{-8}$  mols per liter at 25° (Sherrill, Z phys Ch 193, 430 735)

lents per l (Thompson, J Am Chem Soc 1906, 28 762) Solubility in  $H_2O$  at  $25^{\circ} = 1.4 \times 10^{-7}$  equivalents per l

Insol in HO and dil acids Decomp by Sol in hot conc H<sub>2</sub>SO<sub>4</sub> with HCl+Aqevolution of SO<sub>2</sub> Sl sol in hot HNO<sub>3</sub>+Aq of 142 sp gr (Stromann, B 20 2818)

Decomp into Hg and HgBr2 by boiling with NH4Br, or NH4Cl+Aq, also by ammonium carbonate or succinate, but not by ammonium sulphate or nitrate stem )

Sol in Hg(NO<sub>3</sub>)<sub>2</sub>+Aq (Wackenroder, A

**41** 317)

Partially decomp by alkali chlorides+Aq, when out of contact of air this decomp is slight and HgBr2 is formed, while in the air HgCl<sub>2</sub> is the resulting product Much more rapidly decomp in hot than cold solutions (Miahle, A ch (3) 5 177)

A solution of HgBr in 0 1-N KBr contains

about 1 mg Hg ions in 1300 l

Insol in alcohol

Insol in benzonitrile (Naumann, B 1914, 47 1370)

methyl acetate (Naumann, Insol $\mathbf{m}$ B 1909, 42 3790), ethyl acetate (Naumann. B 1910, 43 314)

Insol in acetone (Naumann, B 1904, 37 4329), (Eidmann, C C 1899, II 1014)

Mercuric bromide, HgBr<sub>2</sub>

Sol in 250 pts  $\rm H_2O$  at ordinary temp and 25 pts boiling  $\rm H_2O$  (Wittstein ) Sol in 240 pts  $\rm H_2O$  at 18 75° (Abl.)

Sol in 94 pts H2O at 9°, and in 4-5 pts at 100° (Lassaigne, J chim méd 12 177)

Solubility in g-equivalents per litre =  $2\times10^{-2}$  (Bodlander, Z phys Ch 1898, 27 61)

1 l H<sub>2</sub>O dissolves about 4 g at ord temp (Morse, Z phys Ch 1902, 41 731)

1 l H<sub>2</sub>O dissolves 0 017 mol at 25°

der, Dissert 1902)

Solubility in HO at 25°=0017 mol (Sherrill, Z phys Ch 1903, liter 735)

Solubility at ord\_temp = 08%, at bpt = 8-9% (Larine, J Pharm 1904, (6) 20 **450**)

Solubility in cold  $H_2O = 4\%$ , but solution prepared by heating contains more Hg on account of decomp into HBr and oxybrom-(Vicurio, C C 1907, II 1224)

1 l H<sub>2</sub>O dissolves about 5-6 g at ord temp (Gaudechon, A ch 1911, (8) 22

1 l aqueous solution at 25° contains 0 017 (Herz and Paul Z anorg 1913, 83  $\mathbf{mol}$ 

Decomp by warm HNO<sub>3</sub>, or H<sub>2</sub>SO<sub>4</sub>+Aq Sol in warm H<sub>2</sub>SO<sub>4</sub> (Ditte, A ch (5) **17** 124)

1 mol is sol in 1 mol warm HI+Aq in 1 mol cold cone HCl and in ½ mol hot conc HCl (Lowig)

Solubility of HgBr<sub>2</sub> in KBr+Aq at 25°

| Mols per liter                              |                                                                       |  |
|---------------------------------------------|-----------------------------------------------------------------------|--|
| KBr                                         | HgBr                                                                  |  |
| 0<br>0 05<br>0 10<br>0 5<br>0 866<br>2<br>3 | 0 017<br>0 055<br>0 088<br>0 0359<br>0 611<br>1 407<br>2 096<br>2 339 |  |

(Sherrill, Z phys Ch 1903, **43** 705) Solubility in various salts + Ag at 25°

| Solubility in various saits+Aq at 25° |                                                         |                                                       |  |
|---------------------------------------|---------------------------------------------------------|-------------------------------------------------------|--|
| Salt                                  | In 10 ccm of the solution                               |                                                       |  |
| ~~~·                                  | Millimols Hg Br                                         | Villimols salt                                        |  |
| NaBr                                  | 0 17<br>0 78<br>2 85<br>5 40<br>12 76<br>15 50<br>23 06 | 0<br>1 18<br>5 96<br>11 42<br>24 48<br>29 97<br>52 46 |  |
| KBr                                   | 0 17<br>0 98<br>4 72<br>13 60<br>19 30                  | 0<br>2 09<br>7 70<br>23 80<br>34 70                   |  |
| CaBr                                  | 0 17<br>1 17<br>5 76<br>13 58<br>27 66<br>36 66         | 0<br>0 72<br>6 45<br>18 92<br>24 79<br>37 54          |  |
| $\mathrm{SrBr_2}$                     | 0 17<br>1 04<br>4 71<br>9 02<br>17 70<br>22 38          | 0<br>0 62<br>3 28<br>6 68<br>14 01<br>18 72           |  |
| BaBı                                  | 0 17<br>3 70<br>5 40<br>7 59<br>14 78                   | 0<br>2 74<br>3 96<br>5 79<br>10 96                    |  |

(Herz and Paul, Z anorg 1913, 82 434)

Solubility in  $0.1-N Hg(NO_8)_2+Aq$  is about 20 g per liter (Morse, Z phys Ch 1902, 41 731)

Sol in KBr or NaBr+Aq (Jander, Dissert 1902)

Solubility in 10 cc Br<sub>2</sub> + Aq at 25°

Millimol Br<sub>2</sub> 0 753 1 797 2 2310 1844 0 1947 0 2120 Hg (Herz and Paul, Z anorg 1914, 85 215)

Sat solution in liquid SO<sub>2</sub> contains about 15% HgBr<sub>2</sub> at 1594° (Niggli, Z anorg 1912, **75** 182)

Moderately sol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 829)

Sol in AlBr<sub>3</sub> (Isbekow, Z anorg 1913, 84 27)

1 ccm of sat solution in abs alcohol at ord temp contains 0 0958 g HgBr<sub>2</sub>, at bpt contains 0 1262 g (Hamper, Ch Z 1887, 11 905)

## Solubility of HgBr2 in alcohols+Aq at to

| Alcohol          | to                                    | G HgBr2 per<br>100 g alcohol                           |
|------------------|---------------------------------------|--------------------------------------------------------|
| Methyl alcohol   | 0<br>10<br>19<br>22<br>39<br>65<br>97 | 41 15<br>49 5<br>66 3<br>60 9<br>71 3<br>90 8<br>139 1 |
| Ethyl alcohol    | 0<br>10<br>19<br>39<br>65<br>89       | 25 2<br>26 3<br>29 7<br>31 9<br>44 5<br>66 9           |
| , alcohol        | 0<br>10<br>19<br>39<br>65<br>86 5     | 14 6<br>15 6<br>15 5<br>20 8<br>31 3<br>42 7           |
| Isobutyl alcohol | 0<br>10<br>23<br>39<br>65             | 4 61<br>5 63<br>6 65<br>9 58<br>15 80                  |

(Timofelew, Dissert 1894)

Much more sol than  ${\rm HgI_2}$  in alcohol 100 g of solution sat at 0° contain 13 33–13 05 g  ${\rm HgBr_2}$ , 16 53 g at 25°, 22 63 g at 50° (Reinders, Z phys Ch 1900, **32** 522)

Solubility of  $HgBr_2$  in methyl alcohol+Aq at  $25^{\circ}$ 

P=g alcohol in 100 g alcohol+Aq  $HgBr_2=millimols$   $HgBr_2$  in 10 cc of the solution

| P              | HgBr <sub>2</sub> | Sp gr            | P                              | HgBr <sub>2</sub> | Sp gr  |
|----------------|-------------------|------------------|--------------------------------|-------------------|--------|
| 10 60<br>30 77 | 0 2010            | 0 9857<br>0 9588 | 47 06<br>64 00<br>78 05<br>100 | 1 90<br>4 07      | 0 9386 |

(Herz and Anders, Z anorg 1907, 52 165)

Solubility of  $HgBr_2$  in ethyl alcohol+Aq at 25° P=g alcohol in 100 g alcohol+Aq  $HgBr_2=millimols$   $HgBr_2$  in 10 cc of the solution

| P     | HgBr <sub>2</sub> | Sp gr  |
|-------|-------------------|--------|
| 0     | 0 167             | 1 0022 |
| 20 18 | 0 187             | 0 9717 |
| 40 69 | 0 440             | 0 9435 |
| 70 01 | 1 829             | 0 9214 |
| 100   | 6 337             | 0 9873 |

(Herz and Anders)

Solubility in mixtures of methyl and propyl alcohol at 25°

P = % propyl alcohol in the solvent  $G = g HgBr_2$  in 10 ccm of the solution S = Sp gr of the sat solution

| P                                                   | G                                                                   | S 25°/4°                                                                    |
|-----------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 0<br>11 11<br>23 8<br>65 2<br>91 8<br>93 75<br>96 6 | 5 02<br>4 728<br>4 153<br>2 530<br>1 635<br>1 586<br>1 466<br>1 873 | 1 227<br>1 1954<br>1 1524<br>1 0257<br>0 9437<br>0 9368<br>0 9275<br>0 9213 |

(Herz and Kuhn, Z anorg 1908, 60 158)

Solubility in mixtures of ethyl and propyl alcohol at 25°

P=% propyl alcohol in the solvent G=g HgBr<sub>2</sub> in 10 ccm of the solution S=Sp gr of the sat solution

| P     | G     | S 25 /4° |
|-------|-------|----------|
| 0     | 2 28  | 0 9873   |
| 8 1   | 2 225 | 0 9802   |
| 17 85 | 2 106 | 0 9740   |
| 56 6  | 1 763 | 0 9487   |
| 88 6  | 1 476 | 0 9269   |
| 91 2  | 1 464 | 0 9239   |
| 95 2  | 1 406 | 0 9227   |
| 100   | 1 378 | 0 9213   |

(Herz and Kuhn, Z anorg 1908, 60 161)

Solubility of HgBr<sub>2</sub> in mixtures of methyl and ethyl alcohol at 25°

P = % methyl alcohol in the mixtures  $HgBr_2 = g$   $HgBr_2$  in 10 ccm of the solution  $S25^{\circ} 4^{\circ} = sp$  gr of the sat solution

| P                                                            | HgBr <sub>2</sub>                                            | 52,/4                                                                  |
|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|
| 0<br>4 37<br>10 4<br>41 02<br>80 69<br>84 77<br>91 25<br>100 | 2 28<br>2 31<br>2 54<br>3 33<br>4 57<br>4 68<br>4 86<br>5 02 | 0 9873<br>0 9932<br>1 009<br>1 080<br>1 185<br>1 193<br>1 211<br>1 227 |
|                                                              |                                                              |                                                                        |

(Herz and Kuhn, Z anorg 1908, 58 163)

Cold sat solution in anhydrous ether contains 0 00567 g in 1 cc, hot solution contains 0 032 g (Hampe, Ch Z 1887, 11 905)
Solubility in organic solvents at 18°-20°

100 g chloroform dissolve 0 126 g HgBr<sub>2</sub> 100 g tetrachlormethane dissolve 0 003 g HgBr<sub>2</sub>

100 g bromoform dissolve 0 679 g HgBr<sub>2</sub> 100 g ethyl bromide dissolve 2 310 g HgBr<sub>2</sub>

100 g ethylene dibromide dissolve 2 340 g HgBr<sub>2</sub>

(Sulc, Z anorg 1900, 25 401)

## Solubility in CS2 at to

| t°           | 100 pts sat solution contain<br>pts HgBr <sub>2</sub> |
|--------------|-------------------------------------------------------|
| 10<br>5<br>0 | 0 049<br>0 068<br>0 087                               |
| + 5          | 0 105                                                 |
| 10           | 0 122                                                 |
| 15           | 0 140                                                 |
| 20           | 0 187                                                 |
| 25           | 0 232                                                 |
| 30           | 0 274                                                 |
|              |                                                       |

(Arctowski, Z anorg 1894, 6 267)

100 g boiling methyl acetate (bpt 562–567°) dissolves 24 g HgBr<sub>2</sub> (Schroeder and Steiner, J pr 1909, (2) 79 49)

1 g HgBr<sub>2</sub> is sol in 4 56 g methyl acetate at 18° Sp gr 18°/4° of sat solution = 1 09 (Naumann, B 1909, **42** 3795)

100 g anhydrous ethyl acetate or sat with H<sub>2</sub>O at 18° dissolve 1305-135 g HgBr<sub>2</sub> (Hamers, Dissert **1906**)

Solubility of  ${\rm HgBr_2}$  in ethyl acetate+Aq at  $^{25}$ °

P=g ethyl acetate in 100 g ethyl acetate +Aq

 $HgBr_2 = millimols HgBr_2$  in 10 cc of the solution

| P     | II <sub>k</sub> Br <sub>2</sub> | Sp gr  |
|-------|---------------------------------|--------|
| 0     | 0 167                           | 1 0022 |
| 4 39  | 0 159                           | 1 0018 |
| 96 76 | 7 42                            | 1 1159 |
| 100   | 3 93                            | 1 0113 |

(Herz and Anders, Z anorg 1907, 52 172)

1 pt HgBr<sub>2</sub> sol in 7 66 pts ethyl acetate at 18° (Naumann, B 1910, 43 315)

Easily sol in acctone (Oppenheim, B 2 572)

Sól in acetone (Eidmann, C C 1899, II 1014)

Acetone dissolves much more HgBr<sub>2</sub> than HgI<sub>2</sub> 100 g sat solution at 25° contain 34 58 g HgBr<sub>2</sub> (Reinders, Z phys Ch 1900, **32** 514)

Solubility in diethyl oxalate is much greater than that of HgI<sub>2</sub> and is equal to 12% at 100° (Reinders, Z phys Ch 1900, **32** 507) Solubility in benzene=0 0194 mol per

l at 25° (Sherrill, Z phys Ch 1903, **43** 735)

Sol in allyl mustard oil (Mathews, J phys Chem 1905, 9 647)

Sol in benzonitrile (Naumann, B 1914, 47 1369)

# Solubility in aniline S=temp of solidification

| Mols<br>HgBr <sub>2</sub><br>per 100      | s                                   | Mols<br>HgBr <sub>2</sub><br>per 100         | S                                         | Mols<br>HgBr<br>per 100      | s                        |
|-------------------------------------------|-------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------|--------------------------|
| 4 9<br>10<br>12 5<br>14 9<br>19 7<br>23 4 | 9°<br>43 5<br>57<br>68<br>89<br>106 | 25 4<br>33 9<br>39 5<br>41 9<br>43 9<br>46 2 | 115 5°<br>117<br>108<br>113<br>118<br>121 | 49 6<br>54 9<br>58 8<br>64 0 | 123<br>124<br>134<br>133 |

(Staronka, Anz Ak Wiss Krakau, 1910, 372)

Solubility of HgBr<sub>2</sub> in quinoline S=temp of solidification

Mol weight determined in ethyl sulphide (Werner, Z anorg 1897, 15 30)  $+4H_2O$  (Thomsen)

Mercuric perbromide, HgBr4

(Herz and Paul, Z anorg 1914, 85 216)

Mercuric hydrogen bromide (Bromomercuric acid), HgBr<sub>2</sub>, HBr=HHgBr<sub>3</sub>
Decomp by H<sub>2</sub>O (Neumann, M 10 236)

Mercuric nickel bromide, basic, HgBr<sub>2</sub>, NiBr<sub>2</sub>, 6NiO+20H<sub>2</sub>O (Mailhe, A ch 1902, (7) **27** 369)

Mercuric platinum bromide See Bromoplatinate, mercuric

Mercuric potassium bromide,  $HgBr_2$ , KBr Sol in  $H_2O$ , but decomp by a large amount, with separation of one half of the  $HgBr_2$  (v Bonsdorff, Pogg 19 339) 2 $HgBr_2$ ,  $KBr+2H_2O$  Permanent Sol in  $H_2O$  and alcohol (v Bonsdorff)

Mercuric sodium bromide, HgBr<sub>2</sub>, NaBr Deliquescent (v Bonsdorff)

Deliquescent (v Bonsdorff) (Varet, C R 1890, 111, 527)

HgBr<sub>2</sub>, 2NaBr Very sol in H<sub>2</sub>O (Vicario, J Pharm 1907, (6) **26** 145) 2HgBr<sub>2</sub>, NaBr+3H<sub>2</sub>O Sol in H<sub>2</sub>O and alcohol (Berthemot)

Mercuric strontium bromide, HgBr<sub>2</sub>, SrBr<sub>2</sub>
Sol in all proportions of H<sub>2</sub>O (Ldwig, Mag Pharm 33 7)
2HgBr<sub>2</sub>, SrBr<sub>2</sub> Decomp by H<sub>2</sub>O into HgBr<sub>2</sub> and HgBr, SrBr<sub>2</sub> (Ldwig)

# Mercuric zinc bromide

Deliquescent in moist air (v Bonsdorff)

Mercuric zinc bromide cyanide ammonia See Cyanide zinc bromide ammonia, mercuric

Mercuric bromide ammonia, HgBr<sub>2</sub>, 2NH<sub>3</sub> Decomp by boiling H<sub>2</sub>O Sol in min acids and acetic acid (Naumann, B 1910, 43 316)

Mercuric bromide cadmium oxide, HgBr<sub>2</sub>, CdO+H<sub>2</sub>O Mailhe, A ch 1902, (7) 27 371)

Mercuric bromide cupric oxide, HgBr<sub>2</sub>, CuO+3H<sub>2</sub>O (Malhe, Bull Soc 1901, (3) **25** 791)

Mercuric bromide hydrazine,  $HgBr_2$ ,  $N_2H_4$  (Hofmann and Marburg, A 1899, 305 215)

 $\begin{array}{cccc} \textbf{Mercuric bromide potassium chloride,} \\ & HgBr_2, 2KCl \\ Decomp & by & H_2O & (Harth, \ Z \ anorg \ 1897, \ \textbf{14} \ 345 \ ) \end{array}$ 

Mercuric bromide zinc oxide, HgBr<sub>2</sub>, ZnO+8H<sub>2</sub>O (Mailhe, C R 1901, **132**, 1274)

# Mercuric bromoiodide, HgBrI

Sol in alcohol and ether Can be recrystallised from ether without decomp (Oppenheim, B 2 571)

Mercurous chloramide, Hg<sub>2</sub>(NH<sub>2</sub>)Cl
Insol in boiling H<sub>2</sub>O or NH<sub>4</sub>OH+Aq
(Kane, A ch (2) 72 215)
Mixture of Hg and HgNH<sub>2</sub>Cl (Barfoed,
J pr (2), 39 201)

# Mercuric chloramide, Hg(NH2)Cl

Composition is dimercuriammonium im monium chloride, Hg<sub>2</sub>NCl, NH<sub>4</sub>Cl, v ich see

Mercuric chloramide oxymercuriammo um chloride, 4Hg(NH)Cl, (NHg<sub>2</sub>OH Cl (Millon)

Correct composition is dimercuriammo ammonium chloride, NHg<sub>2</sub>Cl, NH<sub>4</sub>Cl, w ich see (Balestra, Gazz ch it 21 (2) 294 Hg(NH<sub>2</sub>)Cl, (NHg<sub>2</sub>OH<sub>2</sub>)Cl (Millo) True composition is dimercuriammo mercuric chloride, 2Hg<sub>2</sub>NCl, HgCl<sub>2</sub>+1 O,

or dimercuri immonium hydrogen chlo de, NHg<sub>2</sub>Cl, HCl (Balestra)

 $\begin{array}{c} \text{Mercuric chloramide chloride, } \operatorname{Hg}(\operatorname{NH} \ \, \mathbb{C}l, \\ \operatorname{Hg}\mathbb{C}l_2 \end{array}$ 

Properties as mercuric chloramide

comp by cold HCl+Aq (Millon)
True composition is dimercuriammor imhydrogen chloride, NHg Cl, 2HCl islestra, Gazz ch it 21 (2) 294)

)e-

lestra, Gazz ch it 21 (2) 294)

# Mercuric chloramide chromate,

2Hg(NH )Cl, HgC1O<sub>4</sub>
Decomp by hot H<sub>2</sub>O I sally sol in H O<sub>3</sub>
or HCl+Aq (Juger and Kruss, B **22** 2( 3)

## Mercurous chloride, Hg Cl

Almost absolutely insol in cold, but given ally sledgeomp by boiling II ()

Calculated from electrical conductivit Hg<sub>2</sub>Cl<sub>2</sub>+Aq, 1 l II O dissolves 3 1 mg Hg 2 at 18° (Kohlrausch and Rose, Z phys 12 241)

1 l H<sub>2</sub>O dissolves 2 mg II g Cl at

(Kohhausch, Z. phys. (h. 1904-50-356) 11 H O dissolves 14 mg, et 0.5 - 21 mg, at 18°, 28 mg, et 21 0° 7 mg, et 15° (K. 1 rusch, Z. phys. (h. 1908-64-150)

When finely divided is 10°, more sol tom when coursely crystalline (Since Z pl s Ch 1904 47 184)

Solubility in II  $O = 0.5 \times 10^{-6}$  g mol (I y, Z Elektrochem 1904, 10 301)

SI sol with decomp in boiling II O from air, 20 ccm. II O iffording 0.002 flgCl after boiling 1 hour with IIg (Miahle, A ch (3) 5 176). IIg (NO<sub>3</sub>) f Aq containing 1 pt. IIg (NO<sub>4</sub>) to 250, (pts. II O give ppt. of IIg (1 with IICl+ p. Sol with decomp in conc. IICl+Aq, in IINO<sub>3</sub>+Aq, quarregia, or Cl<sub>2</sub>+Aq. (I senius). Insol in cold dil acids, but slo.

sol on heating

The solubility of II<sub>L</sub> (1 in HCl+Aq i creases slowly with time, and fin illy reache a point where it increases very implicit, who hakes place sooner the more did the ac l Presence of Hg<sub>2</sub>(NO<sub>1</sub>)<sub>2</sub>+Aq helps the scibility (Why not oxidation to HgC<sub>1</sub>) (Varenne, C R 92 1161)

Solubility of Hg<sub>2</sub>Cl<sub>2</sub> in HCl+Aq at 25° Solid phase = Hg<sub>2</sub>Cl<sub>2</sub>+0 1 g Hg

| G <sub>1</sub>                                                                | Sp gr of                                                                      |                                                             |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|
| HCl                                                                           | HCl Hg <sub>2</sub> Cl <sub>2</sub>                                           |                                                             |
| 31 69<br>36 46<br>95 43<br>158 4<br>209 2<br>267 3<br>278 7<br>317 3<br>364 6 | 0 034<br>0 048<br>0 207<br>0 399<br>0 548<br>0 654<br>0 675<br>0 670<br>0 673 | 1 042<br>1 069<br>1 091<br>1 114<br>1 119<br>1 132<br>1 153 |

(Richards and Archibald, Z phys Ch 1902, 40 385)

Cold conc H<sub>2</sub>SO<sub>4</sub> does not dissolve or decomp Boiling H<sub>2</sub>SO<sub>4</sub> dissolves with evolution of SO<sub>2</sub> (Vogel)

Solubility of Hg<sub>2</sub>Cl<sub>2</sub> in chlorides+Aq at 25° Solid phase=Hg<sub>2</sub>Cl<sub>2</sub>+0 1 g Hg

| Salt              | G pe                                                                           | r liter                                                                       | Sp gr of                                                    |
|-------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|
| 2411              | NaCl                                                                           | Hg <sub>2</sub> Cl <sub>2</sub>                                               | solutions                                                   |
| NaCl              | 5 85<br>58 50<br>119<br>148 25<br>222 3<br>292 5                               | 0 0041<br>0 041<br>0 129<br>0 194<br>0 380<br>0 643                           | 1 040<br>1 078<br>1 093<br>1 142<br>1 188                   |
| BaCl <sub>2</sub> | 104 15<br>156 22<br>208 30<br>312 54                                           | 0 044<br>0 088<br>0 107<br>0 231                                              | 1 088<br>1 134<br>1 174<br>1 263                            |
| CaCl <sub>2</sub> | 39 96<br>55 5<br>111<br>138 75<br>195 36<br>257 52<br>324 67<br>432 9<br>499 5 | 0 022<br>0 033<br>0 081<br>0 118<br>0 231<br>0 322<br>0 430<br>0 518<br>0 510 | 1 064<br>1 105<br>1 151<br>1 205<br>1 243<br>1 315<br>1 358 |

(Richards and Archibald, Z phys Ch 1902, **40** 385)

Sol in cold HCN+Aq with separation of

Hg

Sol in alkali chlorides+Aq NH<sub>4</sub>Cl+Aq dissolves out HgCl2 at ord temp, much more at 40-50° Dil NH<sub>4</sub>Cl+Aq decomposes more slowly than conc Access of air hastens (Miahle) reaction

When heated several hours to 40-50°, 100  $NH_4Cl+833$  pts  $H_2O$  form 0.75 pt HgCl<sub>2</sub> from 25 pts Hg<sub>2</sub>Cl<sub>2</sub>, 100 pts NaCl+ 833 pts H<sub>2</sub>O form 0 33 pt HgCl<sub>2</sub> from 25 pts Hg<sub>2</sub>Cl<sub>2</sub>, 100 pts KCl+833 pts H<sub>2</sub>O form | pts cold and 3 pts warm H<sub>2</sub>O (Dumas)

0 25 pt HgCl<sub>2</sub> from 25 pts HgCl<sub>2</sub>, 100 pts  $BaCl_2+833$  pts  $H_2O$  form 0.33 pt  $HgCl_2$  from 25 pts  $Hg_2Cl_2$  (M1ahle, J Pharm 26 108)

Other chlorides act as NH<sub>4</sub>Cl, only less

vigorously (Pettenkofer)

By boiling 1 pt Hg<sub>2</sub>Cl<sub>2</sub> 10 times with a solution of 1 pt NaCl each time, the Hg<sub>2</sub>Cl<sub>2</sub> is finally completely decomp (Henne)

Boiling BaCl2+Aq or CaCl2+Aq dissolve  $K_2SO_4+Aq$ ,  $KNO_8+Aq$ , KHC<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+Aq do not dissolve (Pettenkofer)

Sol in  $(NH_4)_2SO_4+Aq$ Insol in NH4 (Wittstein) nitrate, or succinate+Aq

Sol in hot Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>+Aq, and still more m hot Hg(NO<sub>2</sub>)<sub>2</sub>+Aq, on cooling it crystal-hses out completely 25 g Hg<sub>2</sub>Cl<sub>2</sub> dissolve in 151 H<sub>2</sub>O containing 50 g Hg(NO<sub>8</sub>)<sub>2</sub> (De-

bray, C R 70 995)
Sol in PtCl<sub>2</sub>+Aq
Decomp by NH<sub>4</sub>OH+Aq

Decomp by KOH, or NaOH+Aq Sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Faktor, 1905, I 1524)

(Witt-Very sl sol in NH4 succinate stem)

Insol in SbCl<sub>3</sub> (Klemensiewicz, C C 1908, II 1850)

Very sol in liquid NH<sub>3</sub> Ch J 1898, **20** 829) (Franklın, Am

More sol in Insol in alcohol or ether H<sub>2</sub>O containing pepsin and an acid than in H<sub>2</sub>O, and is not converted thereby into HgCl<sub>2</sub> (Torsellini, Ann Chim Ch farm (4) **4** 105)

Small amts are sol with decomp in alcohol, ether and CHCl<sub>2</sub> 1 g CHCl<sub>3</sub> dissolves 0 0046 g Hg<sub>2</sub>Cl<sub>2</sub> (Maclagan, Arch Pharm 1884, 222, 788)

Formic acid (95%) dissolves at 16 5, 002%, at 18, 00003% (Aschan, Ch Z 1913, 37 1117)

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate (Hamers, Dissert 1906, Naumann, B 1904, 37 3602) Somewhat sol in hydroxylamine hydro-

chloride (Adams, Am Ch J 1902, 28 1216) Insol in benzonitrile (Naumann, B. 1914,

**47** 1370) Insol in acetone and in methylal mann, C C 1899, II 1014)

Solubility in organic solvents at 18-20°

100 g chloroform dissolve traces of HgCl 100 g bromoform dissolve 0 055 g HgCl 100 g ethyl bromide dissolve traces of

100 g ethylene dibromide dissolve traces of HgCl (Sulc Z anorg 1900, 25 401)

#### Mercuric chloride, HgCl<sub>2</sub> Permanent

Sol in 18 5 pts  $\rm H^2O$  at 13 8° and 2-3 pts at 100 (J Davy 1822) Sol in 3 pts bolling  $\rm H^2O$  (Wenzel) Sol in 18 23 pts  $\rm H^2O$  at 10 and 3 pts at 100 (M R and P) Sol in 18 46 pts at 18 75 (Abl.) Sol in 16

100 pts H<sub>2</sub>O dissolve pts HgCl<sub>2</sub> at t°

| t°                  | Pts<br>HgCl <sub>2</sub>     | t°                   | Pts<br>HgCl <sub>2</sub>        | t°              | Pts<br>HgCl <sub>2</sub> |
|---------------------|------------------------------|----------------------|---------------------------------|-----------------|--------------------------|
| 0<br>10<br>20<br>30 | 5 73<br>6 57<br>7 39<br>8 43 | 40<br>50<br>60<br>70 | 9 62<br>11 34<br>13 86<br>17 29 | 80<br>90<br>100 | 24 30<br>37 05<br>53 96  |

(Poggiale, A ch (3) 8 468)

# Solubility of HgCl<sub>2</sub> in H<sub>2</sub>O

|                                                                      | % HgCl <sub>2</sub>                                             | t°                                                        | % HgCl <sub>2</sub>                                                          |
|----------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|
| + 1<br>4 5<br>4 5<br>7 5<br>13 8<br>25 1<br>29 5<br>38 0<br>49<br>61 | 3 9<br>4 8<br>4 8<br>5 1<br>5 7 1<br>7 6<br>9 9<br>11 3<br>15 1 | 80<br>87<br>100<br>121<br>127<br>140<br>150<br>159<br>160 | 23 6<br>28 2<br>39 3<br>59 7<br>69 7<br>77 0<br>78 4<br>80 2<br>81 7<br>81 8 |

(Étard, A ch 1894, (7) 2 557)

71 17 g HgCl, are sol in 1 l H<sub>2</sub>O at 25° (Morse, Z phys Ch 1902, 41 726)

Solubility at 25°=0 267 mol in 1 l H<sub>2</sub>O

(Jander, Z Elektrochem 1903, 8 688) Solubility in H<sub>2</sub>O at 25°=0 263 mol liter (Sherrill, Z phys Ch 1903 43 735)

(Sherrill, Z phys Ch 1903, 43 735)
Sat HgCl<sub>2</sub>+Aq at 25° contains 6 9%
HgCl<sub>2</sub> (Foote, Am Ch J 1906, 35 238)
HgCl<sub>2</sub>+Aq contains 3 95 g HgCl<sub>3</sub> in 100 g

HgCl<sub>2</sub>+Aq contains 3 95 g HgCl<sub>2</sub> in 100 g of solution at 0°, 7 67 g at 30° (Schreine makers, Ch Weekbl 1910, 7 202)

 ${\rm HgCl_2}+{\rm Aq}$  sat at (?) contains 6.8%  ${\rm HgCl_2}$  (Abe, J Tok Chem Soc 1912, 33 1087)

HgCl<sub>2</sub>+Aq sat at 35° contains 851% HgCl<sub>2</sub> (Schreinemakers and Thonus, Ver K Akad Wet Amsterdam, 1912, **21** 333)

1 l aqueous solution sat at 25° contains 0 265 mol HgCl<sub>2</sub> (Herz and Paul, Z anorg 1913, 82 431)

H<sub>2</sub>O dissolves 739% at 20° (Aschan, Ch Z 1913, **37** 1117)

HgCl<sub>2</sub>+Aq sat at 8° has 1041 sp gr (Anthon 1837)

Sp gr of HgCl<sub>2</sub>+Aq at 20°

| % HgCl <sub>2</sub> | Sp gr                      | % HgCl | Sp gr            |
|---------------------|----------------------------|--------|------------------|
| 1<br>2<br>3         | 1 0072<br>1 0148<br>1 0236 | 4<br>5 | 1 0323<br>1 0411 |

(Schroder, calculated by Gerlach, Z anal 27 306)

Sp gr of HgCl<sub>2</sub>+Aq at 15°

| % HgCl₂ | Sp gr  | % HgCl <sub>2</sub> | Sp gr  |
|---------|--------|---------------------|--------|
| 8       | 1 071  | 11                  | 1 1035 |
| 9       | 1 0815 | 12                  | 1 115  |
| 10      | 1 095  | 13                  | 1 127  |

(Mendelejeff, calculated by Gerlach, Z anal 27 306)

### Sp gr of HgCl<sub>2</sub>+Aq

| %<br>HgČl2        | Sp_gr |                    |                                          |                    |
|-------------------|-------|--------------------|------------------------------------------|--------------------|
| HgCl <sub>2</sub> | at 0° | at 10°             | at 20°                                   | at 30              |
| 2 42              |       | 1 03022<br>1 02018 | 1 03856<br>1 02885<br>1 01856<br>1 00835 | 1 02577<br>1 01585 |

(Schroder, B 19 161 R)

Sp gr of HgCl<sub>2</sub>+Aq at room temp con taining

0 226 3 55% HgCl 1 0233 1 0328 (Wagner, W Ann 1883, **18** 266)

# Sp gr of HgCl<sub>2</sub>+Aq at 25°

| Concentration of HgCl2+Aq | pp Pt  |
|---------------------------|--------|
| 1/4-normal                | 1 0275 |
| 1/8- "                    | 1 0138 |

(Wagner, Z phys Ch 1890, 5 39)

Sp gr at 16°/4° of HgCl<sub>2</sub>+Aq cont uning 4 5256% HgCl<sub>2</sub>=1 03806

Sp gr at 16°/4° of HgCl<sub>2</sub>+Aq contuning 4 2224% HgCl<sub>2</sub>=1 03491 (Schontock, Z phys Ch 1893, 11 768)

 $HgCl_2+Aq$  containing 6.04% Hg(1) has sp gr 20°/20° = 1.0523

HgCl<sub>2</sub>+Aq containing 6.08% Hg(1 hasp gr 20°/20°=1.0526 (Le Blanc and Rohland, Z phys ch 1896 19 282)

Sat HgCl2+Aq boils at 101 1 (( riffith )

# B-pt of HgCl +Aq

| % HgCl <sub>2</sub> | B-pt              | % HPCI        | B pt               |
|---------------------|-------------------|---------------|--------------------|
| 4 8<br>9 0          | 100 10°<br>100 16 | 11 04<br>15 2 | 100 20°<br>100 275 |
|                     |                   |               |                    |

(Skinner, Chem Soc 61 340)

Solubility in HCl+Aq is greater than in H<sub>2</sub>() (Dumas) Sol in 0.5 pt HCl+Aq of 1.158 sp. gr. at 23.3 form ing a solution of 2.412 sp. gr. (Davy 1822)

## Solubility of HgCl<sub>2</sub> in HCl+Aq

| Pts HCl<br>in 100 pts<br>H <sub>2</sub> O | Pts HgCl <sub>2</sub><br>dissolved<br>by 100 pts<br>liquid | Pts HCl<br>in 100 pts<br>H <sub>2</sub> O | Pts HgCl <sub>2</sub><br>dissolved<br>by 100 pts<br>liquid |
|-------------------------------------------|------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|
| 0 0                                       | 6 8                                                        | 21 6                                      | 127 4                                                      |
| 5 6                                       | 46 8                                                       | 31 0                                      | 141 9                                                      |
| 10 1                                      | 73 7                                                       | 50 0                                      | 148 0                                                      |
| 13 8                                      | 87 8                                                       | 68 0                                      | 154 0                                                      |

(Ditte, A ch (5) 22 551)

Solubility in HCl+Aq at 0°  $\frac{\text{HgCl}_2}{2} = \frac{1}{2} \text{mols}$ 

 $HgCl_2$  (in mgs ) in 10 ccm solution, HCl =mols HCl ditto,  $H_2O$  =grms  $H_2O$ present

| HgCl <sub>2</sub> | HCl    | Sp gr | H <sub>2</sub> O |
|-------------------|--------|-------|------------------|
| 9 7               | 4 3    | 1 117 | 9 704            |
| 19 8              | 9 9    | 1 238 | 9 340            |
| 35 5              | 17 8   | 1 427 | 9 816            |
| 55 6              | 26 9   | 1 665 | 8 135            |
| 68 9              | 32 25  | 1 811 | 7 714            |
| 72 37             | 34 25  | 1 874 | 7 679            |
| 85 5              | 41 5   | 2 023 | 7 131            |
| 88 65             | 48 1   | 2 066 | 6 893            |
| 95 675            | 70 875 | 2 198 | 6 431            |

(Engel, A ch (6) 17 362)

Not decomp by H SO<sub>4</sub> or HNO<sub>3</sub>+Aq

Sol in 630 pts  $\rm H_2SO_4$  and in more than 500 pts hot  $\rm HNO_3 + Aq$  of 141 sp gr without decomp (J Davy)

Sol in H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, HIO<sub>3</sub>, or H<sub>2</sub>CrO<sub>4</sub> without decomp (Millon, A ch (3) **18** 373) Very sl sol in HNO3, but not decomp thereby (Wurtz)

# Solubility of HgCl<sub>2</sub> in NH<sub>4</sub>Cl+Aq at 30°

| Composition of liquid phase                                                                                                     |                                                                                                                                             | hquid                                                                                                                                      | Solid phase                |  |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| %<br>НgСl                                                                                                                       | NH CI                                                                                                                                       | %н о                                                                                                                                       | John Jine                  |  |
| 0<br>15 68<br>22 80<br>31 96<br>42 45<br>50 05<br>50 60<br>53 08<br>55 97<br>58 91<br>56 83<br>56 83<br>55 83<br>55 70<br>55 58 | 29 5<br>27 56<br>26 91<br>26 16<br>25 05<br>24 79<br>24 31<br>22 77<br>21 42<br>20 06<br>19 98<br>18 86<br>18 56<br>17 70<br>17 13<br>16 82 | 70 5<br>56 76<br>50 29<br>41 88<br>32 50<br>25 16<br>25 9<br>24 15<br>22 61<br>21 03<br>21 13<br>24 61<br>25 12<br>26 47<br>27 17<br>27 60 | NH4Cl  { NH4Cl+HLCl 2NH1Cl |  |

### Solubility of HgCl<sub>2</sub> in NH<sub>4</sub>Cl+Aq at 30° -Continued

| Composition of liquid phase                                 |                                                             | liquid                                                      | Solid phase                                                                                                                            |  |
|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| %<br>HgCl2                                                  | NH4CI                                                       | % H <sub>2</sub> O                                          | Solid plase                                                                                                                            |  |
| 55 55<br>55 85                                              | 15 94<br>15 35                                              | 28 51<br>28 80                                              | HgCl <sub>2</sub> NH <sub>4</sub> Cl H <sub>2</sub> O                                                                                  |  |
| 56 71<br>57 04<br>56 98<br>56 83<br>56 26<br>56 43<br>56 70 | 14 22<br>14 10<br>14 14<br>13 90<br>13 04<br>11 88<br>11 05 | 29 07<br>28 86<br>28 88<br>29 27<br>30 70<br>31 69<br>32 23 | HgCl <sub>2</sub> NH <sub>4</sub> Cl H O +<br>3HgCl <sub>2</sub> 2NH <sub>4</sub> Cl H O<br>3HgCl <sub>2</sub> 2NH <sub>4</sub> Cl H O |  |
| 57 05<br>58 55<br>58 65<br>51 83<br>46 00<br>39 02          | 9 92<br>9 23<br>9 20<br>8 76<br>7 52<br>6 28                | 33 02<br>32 22<br>32 15<br>39 41<br>46 48<br>54 70          | {3HgCl <sub>2</sub> 2NH <sub>4</sub> Cl H O +<br>9HgCl 2NH <sub>4</sub> Cl<br>9HgCl <sub>2</sub> 2NH <sub>4</sub> Cl                   |  |
| 35 60<br>35 10<br>32 90<br>29 65<br>40 12<br>21 00<br>7 67  | 5 26<br>5 18<br>5 06<br>3 62<br>5 13<br>2 29<br>0           | 59 14<br>59 72<br>62 04<br>66 73<br>54 75<br>76 71<br>92 33 | 9HgCl <sub>2</sub> 2NH <sub>4</sub> Cl+HgCl<br>HgCl <sub>2</sub>                                                                       |  |

(Meerburg, Z anorg 1908, 59 139)

 $^{1}$  pt sat NaCl+Aq dissolves 129 pts  $^{1}$  HgCl $_{2}$  at 14° (Voit, A  $\,$  104  $\,$  354 )

Sat NaCl+Aq (20 grains H<sub>2</sub>O+7 grains NaCl) dissolves 32 grains HgCl<sub>2</sub> at 155 and 3 grains more on warmin. Sp gr of solution = 214 (Davy 1822) Sat KCl+Aq (21 grains H<sub>2</sub>O+7 grains KCl) dissolves 8 grains HgCl<sub>2</sub> on being gently heated (Davy) Sat BaCl<sub>2</sub>+Aq (20 grains H<sub>2</sub>O+7 grains BaCl<sub>2</sub>+2H<sub>2</sub>O) dissolves 16 grains H<sub>2</sub>O+7 grains BaCl<sub>2</sub>+2H<sub>2</sub>O) dissolves 16 grains H<sub>2</sub>Cl<sub>1</sub> at 155 and 4 grains more on heating Sp gr of solution = 19 (Davy) MgCl<sub>2</sub>+Aq (31 grains HCl+Aq of 158 sp gr outtralised with M<sub>2</sub>O) dissolves 40 grains H<sub>2</sub>Cl and grains contiled the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the

re on gently heating Sp gr of solution =

Sol in sat KCl NaCl+Aq and in MnCl<sub>2</sub> 7nCl<sub>2</sub> CoCl FcCl<sub>2</sub> NiCl and CuCl<sub>2</sub>+Aq (v Bonsdorff Pogg 17 123)

The solubility in HO is greatly increased by the addition of cupie chloride HgCl<sub>2</sub> is sol in pure H<sub>2</sub>O and 52.8% HgCl<sub>2</sub> 15 sol in 18 06% CuCl +Aq mikas, C C 1913, I 1858) (Schreine

| Solubility | of HgCl <sub>2</sub> +KCl | at 25% |
|------------|---------------------------|--------|
|------------|---------------------------|--------|

| Solubility of HgCl <sub>2</sub> +KCl at 25%                |                                           |                                  |                                           |                              |                                                                                       |
|------------------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------|------------------------------|---------------------------------------------------------------------------------------|
| Composition Composition of of solution undissolved residue |                                           | Solid phase                      |                                           |                              |                                                                                       |
| ‰<br>KČl                                                   | %<br>HgCl₂                                | %<br>KČl                         | %<br>HgCl₂                                | %<br>H2O                     |                                                                                       |
| 26 46<br>26 24                                             | 0<br>15 04                                | 100                              | 0<br>3 63                                 |                              | KCl<br>KCl+2KCl<br>HgCl <sub>2</sub> H <sub>2</sub> O                                 |
| 26 23<br>26 33<br>26 33<br>23 74                           | 15 02<br>15 02<br>14 92<br>18 91          | 34 61                            | 26 15<br>52 01<br>61 04<br>61 66          | 3 73                         | 2KCl HgCl <sub>2</sub>                                                                |
| 22 36<br>21 39<br>20 32                                    | 21 39<br>23 88<br>27 62                   | 34 77<br>34 05                   | 62 02<br>61 84<br>65 24                   | 3 21<br>3 35                 | 2KCl HgCl <sub>2</sub><br>H <sub>2</sub> O+KCl<br>HgCl <sub>2</sub> H <sub>2</sub> O  |
| 20 26<br>17 85                                             | 27 38<br>25 34                            | 21 89                            | 73 98<br>75 10                            | 3 01                         | KCl HgCl <sub>2</sub><br>H <sub>2</sub> O                                             |
| 9 26<br>7 80<br>6 84<br>6 66<br>6 52                       | 18 95<br>19 56<br>22 81<br>24 32<br>25 13 | 21 02<br>20 76<br>20 75<br>20 54 | 73 36<br>73 06<br>74 54<br>73 99<br>76 46 | 5 62<br>6 18<br>4 71<br>5 47 | KCl HgCl <sub>2</sub><br>H <sub>2</sub> O+KCl<br>2HgCl <sub>2</sub> 2H <sub>2</sub> O |
| 6 64<br>6 27                                               | 25 16<br>25 11                            | 12 09                            | 80 60<br>83 20                            | 4 71                         | KCl 2HgCl <sub>2</sub><br>2H <sub>2</sub> O                                           |
| 5 77<br>4 68                                               | 24 73<br>24 75                            | 11 87                            | 83 18<br>84 46                            | 4 95                         | KCl 2HgCl <sub>2</sub><br>2H <sub>2</sub> O+HgCl <sub>2</sub>                         |
| 4 66<br>4 69<br>0                                          | 25 17<br>24 82<br>6 90                    | 0                                | 93 58<br>98 50<br>100                     | 0                            | HgCl2                                                                                 |

(Foote and Levy, Am Ch J 1906, 35 239)

## Solubility of HgCl<sub>2</sub>+KCl at 20°

| G per 100 g H <sub>2</sub> O                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Solid phase                                                                                                                                                                                                   |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| KCl                                                                                                                                                                                                  | HgCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Solid plans                                                                                                                                                                                                   |  |  |
| 0<br>1 12<br>2 39<br>4 05<br>4 84<br>5 60<br>6 71<br>7 39<br>7 46<br>8 95<br>15<br>17 57<br>20 35<br>26 31<br>30 32<br>34 12<br>34 18<br>34 34<br>34 54<br>37 72<br>41 13<br>39 66<br>37 87<br>35 32 | 7 39<br>11 63<br>15 72<br>22 16<br>25 16<br>25 13<br>25 66<br>26 41<br>19 93<br>22 87<br>26 12<br>29 83<br>39 10<br>42 82<br>39 34 83<br>39 16<br>30 63<br>24 30<br>19 33<br>24 30<br>19 37<br>26 12<br>27<br>28 12<br>29 12<br>20 12<br>20 12<br>20 12<br>20 12<br>20 12<br>20 12<br>20 13<br>20 14<br>20 15<br>20 16<br>20 17<br>20 17<br>20 18<br>20  HgCl <sub>2</sub> " " " " HgCl <sub>2</sub> +2HgCl <sub>2</sub> , KCl 2HgCl <sub>2</sub> , KCl 2HgCl <sub>2</sub> , KCl+HgCl <sub>2</sub> , KCl HgCl <sub>2</sub> , KCl " " " " " " " " " " " " " " " " " " " |  |  |
| (Tichom                                                                                                                                                                                              | (Tichomiroff, J russ Phys Chem Soc 1907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |  |  |

**39** 731)

Solubility of HgCl<sub>2</sub>+RbCl in H<sub>2</sub>O Solubility data are given showing double salts formed at 25° (Foote and Levy, 1 c)

Solubility in NaCl+Aq 100 pts NaCl+Aq containing given % NaCl dissolve g HgCl<sub>2</sub>

| % NaCl | g HgCl <sub>2</sub> | g HgCl <sub>2</sub> | g HgCl <sub>2</sub> |
|--------|---------------------|---------------------|---------------------|
|        | at 15               | at 65°              | at 100°             |
| 26     | 128                 | 152                 | 208                 |
| 25     | 120                 | 142                 | 196                 |
| 10     | 58                  | 68                  | 110                 |
| 5      | • 30                | 36                  | 64                  |
| 1      | 14                  | 18                  | 48                  |
| 0 5    | 10                  | 13                  | 44                  |

(Homeyer and Ritsert, Pharm Ztg 33 738)

## Solubility of HgCl<sub>2</sub>+NaCl at 25%

| Composition of solution          |                                  | Composition of undissolved residue |                                  |                       | Solid phase                                              |
|----------------------------------|----------------------------------|------------------------------------|----------------------------------|-----------------------|----------------------------------------------------------|
| %<br>NaCl                        | %<br>HgCl <sub>2</sub>           | %<br>NaCl                          | %<br>HgCl                        | %<br>H <sub>2</sub> O | Solid phase                                              |
| 26 5<br>18 66                    | 0<br>51 35                       | 100                                | 0<br>16 39                       | 0                     | NaCl<br>NaCl+NaCl<br>HgCl <sub>2</sub> 2H <sub>2</sub> O |
| 18 71<br>18 64<br>18 87<br>14 97 | 51 32<br>51 42<br>51 26<br>57 74 | 16 38                              | 21 98<br>65 45<br>71 25<br>74 18 | 9 44                  | NaCl HgCl <sub>2</sub>                                   |
| 14 03<br>13 25<br>13 17<br>12 97 | 59 69<br>62 16<br>62 59<br>62 50 | 16 36<br>16 16<br>15 96            | 74 21<br>74 70<br>74 76<br>78 20 | 9 43<br>9 14<br>9 28  | NaCl HgCl                                                |
| 13 14<br>13 15                   | 62 48<br>62 55                   |                                    | 88 64<br>90 83                   |                       | 2H O+HgCl <sub>2</sub>                                   |

(Foote and Levy, Am Ch J 1906, 35 239)

 $105~0~g~HgCl_2$  are sol in 1 l of 0.1–N  $Hg(NO_3)_2 + Aq$  at 25° (Morse, Z phys Ch 1902, 4 726 )

## Solubility in MCl+Aq at 25°

| t =1t | In 10 ccm of the solution                                         |                                                                |  |  |
|-------|-------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| Salt  | Millimols H <sub>6</sub> Cl                                       | Millimols salt                                                 |  |  |
| LıCl  | 2 65<br>3 51<br>6 66<br>10 21<br>16 78<br>22 14<br>28 96<br>30 62 | 0<br>4 14<br>8 35<br>12 71<br>17 35<br>22 65<br>30 91<br>35 27 |  |  |
| NaCl  | 2 65<br>3 72<br>5 08<br>7 48<br>11 92<br>20 22<br>27 54<br>34 34  | 0<br>2 12<br>4 16<br>6 71<br>11 53<br>19 41<br>27 83<br>31 62  |  |  |

Solubility in MCl+Ag at 25° -Continued

| Solubility in MCI+Aq at 25°—Continued |                                                          |                                                     |  |
|---------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--|
| Salt                                  | In 10 ccm of the solution                                |                                                     |  |
|                                       | Millimols HgCl <sub>2</sub>                              | Millimols salt                                      |  |
| KCl                                   | 2 65<br>3 55<br>3 81<br>8 36                             | 0<br>1 74<br>2 21<br>6 83                           |  |
| $ m MgCl_2$                           | 2 65<br>3 74<br>7 19<br>11 31<br>18 64<br>25 69<br>32 06 | 0<br>1 68<br>4 15<br>5 70<br>9 97<br>13 20<br>17 28 |  |
| CaCl <sub>2</sub>                     | 2 65<br>3 64<br>7 66<br>11 08<br>18 11<br>26 45<br>33 04 | 0<br>1 90<br>4 02<br>6 56<br>9 64<br>14 29<br>17 23 |  |
| SrCl <sub>2</sub>                     | 2 65<br>3 15<br>5 63<br>8 29<br>13 42<br>17 76<br>22 93  | 0<br>1 64<br>3 11<br>5 19<br>7 24<br>10 46<br>13 86 |  |
| BaCl <sub>2</sub>                     | 2 65<br>6 97<br>11 67<br>16 20<br>26 45<br>53 48         | 0<br>3 85<br>5 72<br>7 76<br>13 36<br>30 30         |  |

(Herz and Paul, Z anorg 1913, 82 433)

Solubility in H<sub>2</sub>O is increased by presence of  $I_2$ (Herz and Paul, Z anorg 1914, 85 214)

Solubility in H<sub>2</sub>O is increased by presence of hydroxylamine hydrochloride (Adams, Am Ch J 1902, 28 213)

Moderately sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 829)

Insol in liquid CO<sub>2</sub> (Buchner, Z phys Ch 1906, **54** 674)

Abundantly sol in H<sub>2</sub>PtCl<sub>4</sub>+Aq (Nilson, B 1876, 9 1146)

Sol in 25 pts cold alcohol (Richter) 3 pts (Karl) 2, pts alcohol of 0.833 sp gr at ordinary temp and 1.167 pts on boiling (Berzelius) 2 pts alcohol of 0.816 sp gr at 15.5 (sp gr of solution=1.08) (J Davy Phil Trans 1822 358)

At 10° sol in 2.57 pts alcohol of 39° (Cartier) in 2.90 pts alcohol of 38 in 3.6 pts alcohol of 35 in 4.2

29 pts alcohol of 38 in 36 pts alcohol of 35 in 42 pts alcohol of 30° in 93 pts alcohol of 22 in 146 pts alcohol of 14° (N E Henry)

Sol in 25 mols methyl, 131 mols ethyl, and 203 mols propyl alcohol at 85°, m (Herz and Anders, Z anorg 1907, 52 170)

162 mols methyl, 124 mols ethyl, and 18 mols propyl alcohol at 20°, in 68 mols methyl, 106 mols ethyl, and 146 mols propyl alcohol at 382° (Timofejew, C R, **112** 1224)

100 pts absolute methyl alcohol dissolve 66 9 pts HgCl<sub>2</sub> at 25°, 100 pts absolute ethyl alcohol dissolve 49 5 pts HgCl<sub>2</sub> at 25° (de Bruyn, Z phys Ch 10 783)

At 15°, 1 pt by weight is sol in —

13 53 pts H<sub>2</sub>O

methyl alcohol of sp gr 0 7990 " " " " 0 8100 15 " " propyl " " " 0 8160 " 63 (Rohland, Z anorg 1899, 18 328)

100 g HgCl.+CH3OH contain 1 2 g HgCl2 at the critical temp (Centnerszwer, Z phys Ch 1910, **72** 437)

Solubility of HgCl<sub>2</sub> in methyl alcohol+Aq at 25°

P = g alcohol in 100 g alcohol +AqHgCl<sub>2</sub>=millimols HgCl<sub>2</sub> in 10 cc of the solution

| P     | HgCl  | Sp gr  |
|-------|-------|--------|
| 0     | 2 67  | 1 0565 |
| 10 60 | 2 92  | 1 0441 |
| 30 77 | 4 18  | 1 0420 |
| 37 21 | 4 96  | 1 0507 |
| 47 06 | 7 27  | 1 0809 |
| 64 00 | 14 19 | 1 2015 |
| 78 05 | 21 11 | 1 3314 |
| 100   | 17 95 | 1 2160 |

(Herz and Anders, Z anorg 1907, 52 165)

100 cc 90% ethyl alcohol dissolve 27 5° g HgCl<sub>2</sub> at 15 5° Sp gr 15° of sat solution = 1065(Greenish and Smith, Pharm J 1903, **71** 881)

 $100 \mathrm{~g}^{\prime}$  99 2% ethyl alcohol dissolve 33 4 g HgCl<sub>2</sub> at 25° (Osaka )

Solubility of HgCl in ethyl alcohol+Aq at

P=g alcohol in 100 g alcohol+Aq HgCl<sub>2</sub>=millimols HgCl<sub>2</sub> in 10 cc of the solution

| P     | HgCl <sub>2</sub> | Sp gr  |
|-------|-------------------|--------|
| 0     | 2 67              | 1 0565 |
| 20 18 | 2 49              | 1 0214 |
| 40 69 | 3 94              | 1 0180 |
| 70 01 | 8 70              | 1 0616 |
| 100   | 13 61             | 1 1067 |

Solubility of HgCl<sub>2</sub> in ethyl alcohol+Aq at 25°

| % C₂H₅OH                                                     | % HgCl <sub>2</sub>                                            | % C <sub>2</sub> H <sub>5</sub> OH                          | % HgCl2                                                     |
|--------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| 0<br>5 08<br>14 49<br>21<br>26 25<br>31 53<br>36 85<br>41 36 | 6 80<br>6 65<br>6 41<br>6 55<br>7 31<br>8 51<br>10 32<br>12 69 | 45 84<br>49 86<br>53 61<br>57 26<br>60 55<br>63 95<br>67 39 | 15 36<br>18 18<br>21 40<br>24 51<br>27 67<br>29 86<br>32 40 |

(Abe, J Tok Chem Soc 1912, 33 1087)

Solubility in alcohol is increased by presence of hydroxylamine hydrochloride (Adams, Am Ch J 1902, 28 213)

Solubility of HgCl<sub>2</sub> in a mixture of methyl and ethyl alcohol at 25°

P=% methyl alcohol in the mixture  $HgCl_2=g$   $HgCl_2$  in 10 ccm of the solution S=sp gr of the sat solution

| P     | HgCl <sub>2</sub> | S 25°/4° |
|-------|-------------------|----------|
| 0     | 3 686             | 1 107    |
| 4 37  | 3 943             | 1 130    |
| 10 4  | 4 261             | 1 157    |
| 41 02 | 5 837             | 1 294    |
| 80 69 | 6 167             | 1 321    |
| 84 77 | 5 782             | 1 288    |
| 91 25 | 5 385             | 1 254    |
| 100   | 4 862             | 1 216    |

(Herz and Kuhn, Z anorg 1908, 58 161)

Solubility in mixtures of methyl and propyl alcohol at 25°

P = % propyl alcohol in the solvent G = g  $HgCl_2$  in 10 ccm of the solution S = Sp gr of the sat solution

| Р                                                   | G                                                                    | S 25 /4                                                                      |
|-----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0<br>11 11<br>23 8<br>65 2<br>91 8<br>93 75<br>96 6 | 4 862<br>5 034<br>5 714<br>4 228<br>2 509<br>2 323<br>2 152<br>2 003 | 1 2160<br>1 2278<br>1 2848<br>1 1568<br>1 0090<br>1 0029<br>0 9851<br>0 9720 |

(Herz and Kuhn, Z anorg 1908, 60 157)

Solubility in mixtures of propyl and ethyl alcohol at 25°

P = % propyl alcohol in the solvent G = g HgCl<sub>2</sub> in 10 ccm of the solution S = Sp gr of the sat solution

| 1 0                                                      |                                                                      |                                                                              |
|----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| P                                                        | G                                                                    | S 25°/4°                                                                     |
| 0<br>8 1<br>17 85<br>56 6<br>88 6<br>91 2<br>95 2<br>100 | 3 686<br>3 667<br>3 406<br>2 711<br>2 166<br>2 160<br>2 087<br>2 003 | 1 1070<br>1 0988<br>1 0857<br>1 0272<br>0 9854<br>0 9824<br>0 9772<br>0 9720 |

(Herz and Kuhn, Z anorg 1908, 60 160)

Sp gr of HgCl<sub>2</sub>+alcohol

| % HgCl2           | Sp gr 25°/20°              |
|-------------------|----------------------------|
| 0<br>5 44<br>6 52 | 0 7948<br>0 8346<br>0 8431 |

(Le Blanc and Rohland, Z phys Ch 1896, 19 283)

Sp gr of alcoholic solution of HgCl

| ~                                                                        | Sp gr                                                                                   |                                                                                         |                                                                                     |                                                                                 |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $_{ m HgCl_2}^{\%}$                                                      | at 0°                                                                                   | at 10°                                                                                  | at 20                                                                               | nt 30                                                                           |
| 0 00<br>1 22<br>2 38<br>4 42<br>8 56<br>12 43<br>15 91<br>19 32<br>22 46 | 0 83135<br>0 8397<br>0 8484<br>0 8635<br>0 8966<br>0 9306<br>0 9629<br>0 9951<br>1 0285 | 0 82286<br>0 8312<br>0 8399<br>0 8549<br>0 8877<br>0 9213<br>0 9523<br>0 9852<br>1 0184 | 0 \$1435<br>0 \$22\$<br>0 \$314<br>0 \$463<br>0 \$789<br>0 9119<br>0 9425<br>0 9753 | 0 80594<br>0 8141<br>0 \$227<br>0 8375<br>0 \$689<br>0 9024<br>0 9329<br>0 9652 |

(Schroder, B 19 161 R)

Sp gr at  $16^{\circ}/4^{\circ}$  of HgCl +cthyl deohol containing 23 5489% HgCl = 0 99885 containing 11 891 (1885) (Schontock, Z phys Ch 1893, 11 768)
Sp gr at  $16^{\circ}/4^{\circ}$  of H ( deohol

Sol in 4 pts ether (Karls), in 41 pts (Henry), in 286 pts ether of 0.745 sp gr (sp gr of solution=108), the solvent power is not increased by elevating the temp, and b pt of ether is not raised (J D vv)

Ether extracts HgCl<sub>2</sub> from HgCl<sub>2</sub>+Aq (Orfila), very slightly if HgCl +Aq is dil (Lassaigne)

Very'sl sol in pure ether (Polis, B 20 717)

6 35 pts are sol in 100 pts ether at 0° 6 44 " " " 100 " " " 18 6 38 " " " " 100 " " " 35 5 (Laszczynski, B 1894, 27 2286)

Sol in  $7\frac{1}{2}$ -8 pts ether (Madsen, Ch Z Repert 1897, 21 169)

Solubility in 100 cc ether at  $17^{\circ} = 41-412$ (Stromholm, J pr 1902, (2), 66 450)

The solubility of HgCl2 in H2O is only sl affected by the presence of ether An aqueous solution sat with ether and HgCl2 contains about 10% less HgCl2 than a pure sat aqueous solution Partition coefficient for ether  $HgCl_2 \frac{3420}{H_2O} = 49$  at 0°, 3 02 at 14 6°, 2 80 at (Stromholm, Z phys Ch 1903, 44 70)

Solubility of HgCl<sub>2</sub> in ether+Aq at 25°

|                                   |                                      | _                                |
|-----------------------------------|--------------------------------------|----------------------------------|
| % Ether                           | % H <sub>2</sub> O                   | % HgCl <sub>2</sub>              |
| 87 86<br>1 2<br>5 2<br>5 4<br>5 4 | 5 22<br>93 6<br>90 5<br>91 8<br>93 1 | 6 92<br>5 2<br>4 3<br>2 8<br>1 5 |

(Abe, J Tok Chem Soc 1912, **33** 1087)

Solubility of HgCl2 in ether+ethyl alcohol

| co Alcohol                                         | % HgCl                                             | % Alcohol                            | % HgCl <sub>2</sub>                      |
|----------------------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------|
| 67 57<br>58 59<br>51 02<br>44 79<br>38 69<br>32 84 | 32 43<br>32 50<br>37 39<br>37 96<br>35 24<br>37 75 | 27 16<br>22 48<br>15 20<br>8 97<br>0 | 36 29<br>34 08<br>28 55<br>20 67<br>5 49 |

(Abe )

4 pts (ther dissolve 1 pt HgCl2, but 4 pts (ther+133 pts cumphor dissolve 133 pts HgCl 4 pts (the +4 pts camphor dissolve 2 pts IIg(1, 4 pts other +8 pts camphor dissolve 1 pts HgCl2, 4 pts ether+16 pts cumphor dissolve S pts HgCl2 (Karls, Pogg, 10 605)

3 pts alcohol dissolve 1 pt HgCl2, but 3 pts alcohol + 1 pt cumphor dissolve 2 pts Hg('1, 3 pts clohol+3 pts camphor dis solve 3 pts 11g(1 3 pts 11cohol+6 pts cumphor dissolve 6 pts IIgCl2 (Karls, l c)

Solution can be obtained contuning 25 pts cumphor, 16 pts HgCl, and only 4 pts alcohol Sp gr of solution = 1 326 (Simon, Pogg 37 553)

100 pts acctone dissolve 60 pts HgCl2 at (Krug and M'Elroy, J Anal Appl Ch 184)

98 35 pts HgCl<sub>2</sub> are sol in 100 pts acetone at 0°  $110~95~\mathrm{pts}~\mathrm{HgCl_2}~\mathrm{are\,sol}~\mathrm{in}~100~\mathrm{pts}~\mathrm{acetone}$ 

at 10°

126 80 pts HgCl2 are sol in 100 pts acetone at 18° (Lasczynski, B 1894, 27 2287)

1 g HgCl<sub>2</sub> is sol in 0 70 g acetone at 18° Sg gr of sat solution  $18^{\circ}/4^{\circ} = 1956$ ) (Naumann, B 1904, **37** 4334)

Sat solution in acetone contains 57 74 g

HgCl<sub>2</sub> in 100 g solution at 25° (Foote and Haigh, J Am Chem Soc 1911, 33 461)
Sp gr at 26 7°/4° of HgCl<sub>2</sub>+acetone containing 36 25% HgCl<sub>2</sub>=1 1585 (Schonrock, Z phys Ch 1893, 11 769

Sp gr of HgCl.+acetone

| % HgCl <sub>2</sub> | Sp gr 20°/20° |
|---------------------|---------------|
| 0                   | 0 8003        |
| 10 94               | 0 8847        |
| 21 05               | 0 9799        |

(Le Blanc and Rohland, Z phys Ch 1896, **19** 283 )

100 g methyl acetate dissolve 46 g at bpt (56 5°) (Schroeder and Steiner, J pr

1909, (2) 79 49)
1 g HgCl<sub>2</sub> is sol in 2 35 g methyl acetate at 18° Sp gr 18°/4° of the sat solution = 1 251 (Naumann, B 1909, 42 3793)

## Solubility in ethyl acetate

| Pts sol in 100 p                                   | ts ethyl acetate                |
|----------------------------------------------------|---------------------------------|
| Pts HgCl                                           | t°                              |
| 28 92<br>29 03<br>30 71<br>31 87<br>32 77<br>35 98 | 0<br>13<br>35<br>48<br>60<br>83 |

(I aszczynski, B 1894, 27 2286)

Solubility in ethyl acetate = 1 3466 at (Alexander, Dissert 1899)

# Solubility of HgCl<sub>2</sub> in ethyl acetate

| Гетр                                                                 | 0    | 13   | 30   | 4() )° | 50 2° |
|----------------------------------------------------------------------|------|------|------|--------|-------|
| Mol HgCl in 100<br>mols C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> | 15 4 | 15 9 | 16 0 | 16 1   | 16 3  |

(Linebarger, Am Ch J 1894, 16 214)

1 g HgCl2 is sol in 35 g ethyl acetate at Sp gr of sat solution  $18^{\circ}/4^{\circ} = 1110$ 18° (Naumann, B 1904, 37 3602)

| 504                                                                                                          |                                                                               |                                              |                                                                                 | MERCURIC                                                                                            | CILLOIGIDI       |                                                                           |                                                                                                   |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Solubi                                                                                                       | lity of                                                                       | HgCl <sub>2</sub> ir<br>acetone              | ethy<br>at t°                                                                   | yl acetate and                                                                                      | Solvent          | t°                                                                        | Sat solution<br>contains<br>C HgCl:                                                               |
| t°                                                                                                           | Molecule<br>HgCl <sub>2</sub> so<br>in 100 mo<br>ecules o<br>ethyl<br>acetate | HgCl <sub>2</sub> so                         |                                                                                 | Solid present in acetone                                                                            | Ethyl alcohol    | —60<br>—55<br>—43<br>—40<br>—30                                           | 3 0<br>7 8<br>8 8<br>9 8<br>14 3                                                                  |
| -15<br>0<br>+10<br>10<br>17<br>25                                                                            | 9 10<br>9 25<br>9 15                                                          | 14 5<br>14 3<br>18 7<br>23 5<br>23 2<br>22 8 | Hg(                                                                             | Cl <sub>2</sub> , CH <sub>3</sub> COCH <sub>3</sub> " HgCl <sub>2</sub> "                           |                  | -23<br>-21<br>-20<br>-17<br>-11<br>- 9<br>- 5                             | 18 6<br>19 1<br>21 9<br>22 1<br>24 7<br>27 0<br>29 7                                              |
| (Aten, Z phys Ch 1906, 54 121)                                                                               |                                                                               |                                              |                                                                                 |                                                                                                     |                  | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                    | 29 0<br>30 0<br>30 9<br>31 3                                                                      |
| Solubility of HgCl <sub>2</sub> in ethyl acetate+Aq at $25^{\circ}$ P=g ethyl acetate in 100 g ethyl acetate |                                                                               |                                              |                                                                                 |                                                                                                     |                  | 14<br>19<br>31                                                            | 31 3<br>32 0<br>34 2                                                                              |
| +Aq<br>Hg(<br>solution                                                                                       |                                                                               | ımols Hg                                     | Cl <sub>2</sub> u                                                               | 10 cc of the                                                                                        |                  | 43<br>51<br>62<br>63                                                      | 36 4<br>38 9<br>42 1<br>42 5                                                                      |
| :                                                                                                            | P                                                                             | HgCl <sub>2</sub>                            |                                                                                 | Sp gr                                                                                               |                  | 68<br>75                                                                  | 41 7<br>15 2                                                                                      |
|                                                                                                              | 39<br>76                                                                      | 2 67<br>2 72<br>15 34<br>9 75                |                                                                                 | 1 0565<br>1 0581<br>1 2371<br>1 1126                                                                |                  | 80<br>92<br>93<br>100                                                     | 48 0<br>51 0<br>51 1<br>53 6                                                                      |
| (Herz                                                                                                        | and An                                                                        | ders, Z aı                                   | org :                                                                           | 1907, <b>52</b> 172)                                                                                |                  | 115<br>127<br>138                                                         | 65 3                                                                                              |
| or 100                                                                                                       | g ethyl                                                                       | n 2 05 pts<br>acetate d<br>1910, <b>43</b>   | ssolve                                                                          | l acetate at 18°<br>e 48 7 g HgCl <sub>2</sub>                                                      | N-propyl alcohol | -32<br>-22<br>-11<br>0                                                    | 14 7<br>15 4<br>15 6<br>16 4                                                                      |
| Easi<br>glyceri<br>685 )                                                                                     |                                                                               |                                              |                                                                                 | ol in 14 pts<br>Scient (3) 9                                                                        |                  | 0<br>+ 16<br>- 41<br>- 53                                                 | 16 ÷ 2 × 2 × 9 × 27 × 9                                                                           |
| (Moles                                                                                                       | g glycer<br>s and M<br>1914, <b>12</b>                                        | laquina, A                                   | re 80 g<br>nn S                                                                 | g HgCl <sub>2</sub> at 25°<br>Soc Eshan fis                                                         |                  | 62<br>67<br>75                                                            | 29 4<br>32 7<br>36 4                                                                              |
|                                                                                                              | Solubil                                                                       | ity in org                                   | anic s                                                                          | olvents                                                                                             | Allyl alcohol    | 100 127                                                                   | 13 S<br>52 7<br>20 6                                                                              |
|                                                                                                              | Solvent                                                                       |                                              | to                                                                              | Sat solution<br>contains<br>% H <sub>h</sub> (1                                                     | •                | + 5                                                                       | 29 6<br>35 2<br>48 7                                                                              |
| Methy                                                                                                        | d alcohol                                                                     | +                                            | -34<br>-20<br>-15<br>- 2<br>- 4<br>12<br>36<br>51<br>62<br>64<br>74<br>00<br>27 | 7 6<br>11 5<br>12 8<br>18 7<br>23 2<br>27 6<br>53 1<br>61 0<br>63 6<br>63 7<br>64 3<br>68 7<br>75 2 | Acetone          | 23<br>15<br>-15<br>10<br>5<br>-1<br>1<br>+6<br>12<br>15<br>27<br>36<br>54 | 1 4<br>2 9<br>76 6<br>76 7<br>78 4<br>9 1<br>60 1<br>61 9<br>61 4<br>61 8<br>62 0<br>61 9<br>62 1 |

| Solubility in organ | nc solvents -                                                                                                  | —Continued                                                   | Solubility in organ                                         | uc solvents -                                           | Contrnued                                                           |
|---------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|
| Solvent             | t <b>°</b>                                                                                                     | Sat solution<br>contains<br>% HgCl <sub>2</sub>              | Solvent                                                     | t°                                                      | Sat solution contains                                               |
| N-butyl alcohol     | $     \begin{array}{r}       -21 \\       -6 \\       +9 \\       21 \\       59 \\       82     \end{array} $ | 12 4<br>13 0<br>14 3<br>15 9<br>25 8<br>33 1                 | Acetic acid                                                 | +21<br>22<br>33<br>43<br>50                             | % HgCl <sub>2</sub> 2 7 3 0 5 0 6 0 6 7                             |
| Isobutyl alcohol    | -11<br>-6<br>0<br>+11<br>63<br>98<br>127<br>145<br>155                                                         | 5 5 5 6 2 6 7 7 5 19 3 32 1 42 0 47 2 50 4                   |                                                             | 61<br>87<br>95<br>95<br>115<br>116<br>127<br>145<br>182 | 8 0<br>11 0<br>12 0<br>12 5<br>16 0<br>17 0<br>20 0<br>26 3<br>44 8 |
| Amyl alcohol        | -13<br>+26<br>50<br>90<br>106                                                                                  | 8 6<br>8 9<br>14 0<br>29 8<br>35 1                           | Formic acid                                                 | 207<br>21<br>50<br>90                                   | 55 2<br>2 0<br>3 2<br>7 3                                           |
| lether              | -47<br>-40<br>-35<br>-30<br>-19<br>0<br>+13<br>83                                                              | 5 6<br>5 8<br>6 1<br>5 9<br>5 6<br>5 8<br>5 8<br>8 4         | Very sl sol in acids  (Étard, A ch l                        | 1894, (7) 2 5                                           | 557 et seq )                                                        |
|                     | 100                                                                                                            | 8 7 9 0                                                      | Solvent                                                     | t°                                                      | % HgCl <sub>2</sub>                                                 |
| I thyl form ite     | -20<br>-3<br>+21                                                                                               | 29 6<br>29 2<br>30 0                                         | CHCl <sub>3</sub>                                           | -20 5<br>+44 2                                          |                                                                     |
| I thyl net ite -    | +46<br>50<br>20<br>-14<br>6                                                                                    | 31 0<br>39 6<br>40 5<br>40 2<br>40 0                         | $\left[\begin{array}{c} \mathrm{C_6H_6} \end{array}\right]$ | +6 5<br>18 0<br>34 1<br>54 1<br>69 0                    | 0 53<br>0 64<br>1 02                                                |
|                     | 0<br>+ 7<br>19<br>45<br>66<br>100<br>131<br>150                                                                | 39 5<br>39 9<br>40 2<br>41 6<br>14 0<br>47 5<br>50 1<br>57 0 | C II4Cl                                                     | 0<br>12 {<br>20 {<br>25 {<br>30 {<br>33 {<br>45 {       | 3 1 68<br>1 73<br>1 92<br>2 2 05                                    |
| Methyl rectate      | $ \begin{array}{c c}  & 150 \\  & -20 \\  & +24 \\  & 55 \\  & +22 \\ \end{array} $                            | 59 3<br>42 0<br>40 3<br>41 5<br>18 3                         | CH <sup>2</sup> COOC <sup>5</sup> H <sup>1</sup>            | 0<br>6<br>26<br>38<br>45                                | 1 22 8<br>5 23 5                                                    |
| I thyl butyrate     | +20<br>55<br>71                                                                                                | 15 5<br>12 6<br>13 5<br>15 1                                 | Dukelski, Z                                                 | anorg 1907                                              | <b>7, 53</b> 329                                                    |

| Solubility | of | $HgCl_2$ | ın  | mixed | organic | solvents |   |
|------------|----|----------|-----|-------|---------|----------|---|
|            |    |          | at. | +.0   |         |          | ı |

| Solv ent                                            | t°                                                                  | % HgCl                                                                        |
|-----------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|
| $\mathrm{C_6H_6}\!+\!\mathrm{C_2H_6OH}$             | -2 5<br>0 0<br>6 0<br>20 5<br>20 65<br>24 5<br>34 5<br>54 4<br>54 5 | 15 20<br>15 40<br>16 38<br>18 40<br>18 50<br>19 33<br>21 34<br>24 84<br>24 42 |
| $\mathrm{C_6H_6} + 2\mathrm{C_6H_6OH}$              | -5 2<br>0<br>+9 1<br>20 9<br>24 4<br>36 5<br>53 7<br>74 0           | 19 45<br>20 13<br>21 65<br>23 57<br>24 19<br>26 53<br>31 27<br>38 74          |
| CHCl <sub>8</sub> +C <sub>2</sub> H <sub>5</sub> OH | -20 5<br>-12 0<br>0 0<br>+8 0<br>23 0<br>38 5<br>44 2<br>45 6       | 3 82<br>4 43<br>4 89<br>5 37<br>7 12<br>8 51<br>9 51<br>9 98                  |
| CHCl₃+2C₂H₅OH                                       | -20 5<br>0 0<br>+8 0<br>23 0<br>38 5<br>44 2                        | 6 60<br>7 69<br>8 96<br>10 66<br>12 50<br>14 40                               |
| CHCl <sub>3</sub> +CH <sub>3</sub> OH               | -12 0<br>0 0<br>+8 0<br>23 0<br>24 9<br>30 6<br>38 5                | 1 73<br>3 51<br>5 63<br>10 15<br>10 71<br>11 40<br>12 02                      |
| CHCl₃+2CH₃OH                                        | -12 0<br>0 0<br>+8 0<br>23 0<br>24 9<br>30 6<br>38 5                | 3 33<br>6 73<br>8 21<br>16 56<br>18 45<br>19 70<br>20 83                      |
| CCl₄+2CH₃OH                                         | 0 0<br>7 7<br>24 9<br>30 6<br>35 5<br>36 1<br>48 5                  | 5 20<br>6 69<br>14 06<br>19 40<br>20 50<br>21 80<br>21 90                     |

### Solubility of HgCl2 in mixed organic solvents at to-Continued

| - | Solvent                                                                         | t°                                                          | $HgCl_2$                                                             |
|---|---------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|
|   | C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> +CH <sub>5</sub> OH               | 0 0<br>12 5<br>20 8<br>25 3<br>30 2<br>33 0<br>37 4<br>45 9 | 13 33<br>21 30<br>29 23<br>34 78<br>36 87<br>37 01<br>37 95<br>39 36 |
|   | CH <sub>8</sub> COOC <sub>2</sub> H <sub>5</sub> +C <sub>6</sub> H <sub>6</sub> | 0 0<br>6 5<br>25 7<br>27 6<br>35 5<br>45 3                  | 9 62<br>9 62<br>9 78<br>9 78<br>10 81<br>13 69                       |
|   | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub> +CHCl <sub>3</sub>             | 0 0<br>26 1<br>36 1<br>46 0<br>48 5                         | 3 34<br>4 07<br>4 78<br>5 38<br>5 10                                 |
|   | 2CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub> +CCl <sub>4</sub>             | 0 0<br>10 3<br>25 7<br>27 6<br>38 5<br>45 3                 | 9 24<br>9 05<br>9 32<br>9 50<br>9 89<br>11 70                        |
|   | (Dukelski, Z anorg                                                              | 1907, 53                                                    | 335)                                                                 |

Solubility in organic solvents at 18°/20° 100 g chloroform dissolve 0 106 g HgCl2 100 g tetrachlormethane dissolve 0 002 g 100 g bromoform dissolve 0 456 g HgCl

100 g ethyl bromide dissolve 2010 g  $HgCl_2$ 100 g ethylene dibromide dissolve 1 530 g HgCl<sub>2</sub> (Sulc Z anorg 1900, **25** 401)

Solubility of HgCl2 in various organic solvents at 25°

G =g HgCl<sub>2</sub> dissolved in 1 mol of solvent

| Solvent                                                                                                                                 | ( H <sub>E</sub> (1                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Ethylene chloride Tetrachlorethane Chloroform Dichlorethylene Pentachlorethylene Trichlorethylene Perchlorethylene Carbon tetrachloride | 1 216<br>0 146<br>0 120<br>0 110<br>0 039<br>0 036<br>0 012<br>Frace |

(Hofman, et al, B 1910, 43 188)

Very sl sol in nitromethane at ord temp Very sol on warming (Bruner, B 1903, 36 3298)

| Solubility in CS <sub>2</sub> at t°                                                                                                           |                                                                               |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| t°                                                                                                                                            | 100 pts sat solution<br>contain pts HgCl <sub>2</sub>                         |  |  |  |  |
| $     \begin{array}{r}      10 \\      5 \\       0 \\       +5 \\       10 \\       15 \\       20 \\       25 \\       30     \end{array} $ | 0 010<br>0 014<br>0 018<br>0 022<br>0 026<br>0 032<br>0 042<br>0 053<br>0 063 |  |  |  |  |

(Arctowski, Z anorg 1894, 6 267)

0 030 g is dissolved in 100 g sat solution in CS2 at 8° (Arctowski, Z anorg 1894, 6

Formic acid (95%) dissolves 21% at 19° (Aschan, Ch Z 1913, **37** 1117)

Sol in molten urethane (Castoro, Z anorg 1899, 20 61)

Sol in ethyl sulphocyanate (Kahlenberg, Z phys Ch 1903, 46 66)

Solubility of HgCl<sub>2</sub> in benzene 100 pts C<sub>t</sub>H<sub>t</sub> dissolve at -15° 41° 55° 84° 0 54 0 62 0 85 1 80 pts HgCl<sub>2</sub> (Laszcynski, B 1594, 27 2287)

in  $C_1 II_0 = 0.0197 \text{ mol /l at } 25^\circ$ / phys Ch 1903, **43** 735)

Sol in Calla, tolurne, xylene, and other aromatic hydrocubons. Insol or only sl sol in petroleum other hexane decane and CS2 (Gulewitsch, B 1904 37 1563)

\_\_\_\_

Sol in p toluidine (Weiner) Sol in quinoline (Beckminn and Gabel, Z morg [906, **51** 236)

Solubility of HgCl in pyridine t = point of fusion

Solid Phise = HgCl , 2CtH5N

| <b>21</b> 9   7 86   50 10   34 94   78 7   50 37                                                      | t                                                   | HECL                                                      | t                                                 | HECL                                                        | t                                    | HÉCI                                                        |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|
| 12 55 17 34 70 15 46 44 82 5 52 40 18 78 19 75 70 8 45 77 89 0 56 45 23 60 21 59 74 6 48 00 90 5 57 01 | -21 9<br>+ 0 02<br>12 58<br>18 78<br>23 60<br>27 23 | 2 76<br>7 86<br>13 14<br>17 34<br>19 78<br>21 59<br>22 65 | 5( 10)<br>60 03<br>7( 15)<br>70 8<br>74 6<br>75 2 | 29 29<br>34 94<br>40 36<br>46 44<br>45 77<br>48 00<br>48 38 | 75 7<br>80 2<br>82 5<br>89 0<br>90 5 | 49 72<br>50 37<br>51 52<br>52 40<br>56 45<br>57 01<br>60 09 |

Solubility of HgCl<sub>2</sub> in pyridine —Continued t = point of fusion

Solid Phase = HgCl<sub>2</sub>, C<sub>5</sub>H<sub>5</sub>N

| t°                           | %<br>HgCl₂                       | t                                       | %<br>HgCl₂                                | t°                             | HgCl                             |
|------------------------------|----------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------|----------------------------------|
| 74 7<br>83 5<br>86 5<br>87 3 | 48 38<br>50 53<br>52 37<br>52 02 | 90 61<br>75 0°<br>99 5<br>99 5<br>100 5 | 53 50<br>56 45<br>56 07<br>57 01<br>57 84 | 104 1<br>104 2<br>104 7<br>107 | 60 09<br>60 72<br>58 97<br>63 06 |

Solid Phase = 3HgCl<sub>2</sub>, C<sub>5</sub>H<sub>5</sub>N

| t°                             | %<br>HgCl₂                       | t                                | %<br>HgCl₂                       | t                       | %<br>HgCl₂              |
|--------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------|
| 94 7<br>95 2<br>106 4<br>109 8 | 60 72<br>60 77<br>61 93<br>62 58 | 113 6<br>114 0<br>115 7<br>118 2 | 63 06<br>63 18<br>63 37<br>64 09 | 124 2<br>129 4<br>145 5 | 65 00<br>65 63<br>69 66 |

(McBride, Z phys Ch 1910, 14 196)

Solubility in pyridine S=temp of solidification

| Mols<br>per 100 | s    | Mols<br>per 100 | s     | Mols<br>per 100 | s     |
|-----------------|------|-----------------|-------|-----------------|-------|
| 5 8             | 19   | 27 0            | 87    | 38 5            | 130   |
| 5 9             | 18 5 | 28 6            | (98)  | 41 0            | 137   |
| 10 2            | 39 5 | 30 3            | 91 5  | 43 2            | 142   |
| 14 1            | 52   | 31 2            | 92    | 44 0            | 143,5 |
| 21 4            | 74 5 | 33 1            | 108   | 47 5            | 159   |
| 25 0            | 83   | 35 1            | 115 5 | 52 8            | 173   |

(Staronka, Anz Ak Wiss Krakau, 1910 372)

Sp gr at 16°/4° of HgCl<sub>2</sub>+pyridine containing 17 530 HgC -1 1523, containing 6 57% Schonrock, Z phys Ch HgCl = 1 1355 1893, 11 768)

Mol weight determined in benzonitrile, methyl- and ethyl sulphide (Weiner, Z morg 1897, 15 31 26 ind 30)

Sol in benzonitrile (Naumann, B 1914, 47 1369)

It is ily sol in oil of turpentine and other essential oils, sl sol in cold benzene, but much more on heating, crystillising on cooling (In inchiment, B 16 387)

I salv sol in boiling creosote

Insol in olive oil

Insol in oils and fats but sol when first dissolved in alcohol, free other or anhydrous ketones (Glock, Ch Z Repert 36 315)

I xtracted from HgCl<sub>2</sub>+Aq by volatile oils

Mercuric hydrogen chloride (Chloromercuric acid), HgCl<sub>2</sub>, HCl = HHgCl<sub>3</sub>

Decomp by H<sub>2</sub>O (Boullay, A ch 34 243)

Easily decomposed (Neumann, M 236)

Decomp by H<sub>2</sub>O HgCl<sub>2</sub>, 2HCl+7H<sub>2</sub>O (Ditte, A ch (5) 22 551) 3HgCl<sub>2</sub>, 4HCl+14H<sub>2</sub>O 2HgCl<sub>2</sub>, HCl+6H<sub>2</sub>O 4HgCl<sub>2</sub>, 2HCl+9H<sub>2</sub>O 3HgCl<sub>2</sub>, HCl+5H<sub>2</sub>O As above As above As above As above

Mercuric hydrazine chloride, HgCl<sub>2</sub>, 2(N<sub>2</sub>H<sub>4</sub>, HCl)

Very sol in H<sub>2</sub>O More sol in hot alcohol than in cold, decomp by HNO; (Curtius, J pr 1894, (2) 50 332)

Mercuric nickel chloride, basic, HgCl<sub>2</sub>, 6N<sub>1</sub>O, N<sub>1</sub>Cl<sub>2</sub>+20H<sub>2</sub>O, and HgCl<sub>2</sub>, 7N<sub>1</sub>O, N<sub>1</sub>CI<sub>2</sub>

(Mailhe, A ch 1902, (7) 27 369)

Mercuric nickel chloride Deliquescent (v Bonsdorff)

Mercuric nitrosyl chloride, HgCl<sub>2</sub>, NOCl Sol in H<sub>2</sub>O without effervescence (Sudborough, Chem Soc 59 659)

Mercuric phosphoric chloride, 3HgCl<sub>2</sub>, 2PCl<sub>5</sub> Decomp and dissolved by H2O (Baudri mont, A ch (4) 2 45)

potassium chloride, 2HgCl<sub>2</sub>, KCl+

asily sol in warm H<sub>2</sub>O A clear at 18° is filled with crystals at 15° 1 alcohol (v Bonsdorff, Pogg 17

HgCl<sub>2</sub>, KCl+H<sub>2</sub>O Easily sol in H<sub>2</sub>O, sl sol in alcohol (v Bonsdorff, Pogg 19 336) HgCl2, 2KCl+HO As above

Solubility determinations show that the double salts formed by mercuric and potassium chlorides at 25° are

2KCl, HgCl<sub>2</sub>+H<sub>2</sub>O

KCl, HgCl<sub>2</sub>+H<sub>2</sub>O Can be recryst without decomp

KCl, 2HgCl<sub>2</sub>+2H<sub>2</sub>O Gives HgCl<sub>2</sub> on recryst from H<sub>2</sub>O (Foote and I evy, Am Gives HgCl<sub>2</sub> on Ch J 1906, 35 237)

Mercurous rhodium chloride

See Chlororhodite, mercurous

Mercuric rubidium chloride, HgCl, RbCl

Sol in H<sub>2</sub>O HgCl<sub>2</sub>, 2RbCl Sol in H<sub>2</sub>O and HCl+Aq (Godeffroy, Arch Pharm (3) 12 47) +2H<sub>2</sub>O Sol in H<sub>2</sub>O (Godeffroy)

2HgCl<sub>2</sub>, RbCl Sol in H<sub>2</sub>O (Godeffrov) Solubility determinations show that at 25° there exist five double mercuric rubidium chlorides with the following formulas

RbCl, 5HgCl<sub>2</sub> Gives HgCl<sub>2</sub> on recryst from H<sub>2</sub>O

3RbCl, 4HgCl<sub>2</sub>+H<sub>2</sub>O Gives RbCl. 5HgCl<sub>2</sub> on recryst from H<sub>2</sub>O

RbCl, HgCl<sub>2</sub>+H<sub>2</sub>O Gives 3RbCl, 4HgCl<sub>2</sub> on recryst from H<sub>2</sub>O

3RbCL Gives 3RbCl, 2HgCl<sub>2</sub>+2H<sub>2</sub>O 4HgCl2 on recryst from H2() 2RbCl, HgCl2+H2O Gives 3RbCl, 4HgCl<sub>2</sub> on recryst from H<sub>2</sub>()

(Foote and Levy, Am Ch J 1906, 35 241)

Mercurous silver chloride, HgCl, AgCl (Jones, J Soc Chem Ind 1893, 12 983) 2HgCl, AgCl Min Bordosite

J Soc Chem Ind 1893, 12 983) 3HgCl, AgCl (Jones, Chem Soc 1910. **97** 338)

Mercuric sodium chloride, HgCl2, NaCl

Sp gr at 16°/4° of aqueous solution containing 14 937% salt = 1 13310, containing 11 0736% = 1 09528 (Schönrock, Z phys Ch 1893, 11 782) +H<sub>2</sub>O (Linebarger, Am Ch J 1893, 15

344)  $+1\frac{1}{2}H_2O$  Sol in 033 pt  $H_2()$  at 15°

(Schindler, Repert 36 240)

Extremely easily sol in alcohol (Voit) Sol in 275 pts other lather dissolves the undecomposed salt out of H<sub>2</sub>() solution (Lassaigne, A ch 64 104)

HgCl<sub>2</sub>, 2NaCl Deliquescent Very sol in H<sub>2</sub>O (Voit, A 104 351) 2HgCl<sub>2</sub>, NaCl Decomp by H<sub>2</sub>O in the solution Sol in acctone and accton either (Lincbarger, Am Ch J 1593, 15 341)

Solubility determinations show that the only double salt formed by mercure and sodium chlorides between 103° and 25 as NaCl, HgCl +2H<sub>2</sub>O Can be recreat from H2O (Foote and I evs, Am Ch I 1988) 35 237)

Mercuric strontium chloride, basic, 51(1, HgO+6HO

Decomp by HO (Andre, CR 104 131)

Mercuric strontium chloride, 211g(1 >1/1, 2H ()

I saly sol in HO (x Bonsdorff) 3Hg(1 Si(1+56H)) Very sol HO (Swin, Am Ch J 1898 20 6 2)

Mercurous sulphur chloride See Mercurous sulphochloride

Mercuric thallous chloride, Hg( 1 I saly sol in HO (Jorgensen I pr 6 43)

Mercurous stannous chloride, Hg (1 \sin(1 Decomp by HO (Capitane J Pharm **25** 549)

Mercuric yttrium chloride, 3Hg( ] Y ( ], } 9H ()

Deliquescent Very sol in H () (Popp, A 131 179)

Mercuric zinc chloride, HgCl<sub>2</sub>, ZnCl<sub>2</sub>
Very sol in H<sub>2</sub>O (Harth, Z anorg 1897,
14 323)
2HgCl<sub>2</sub>, ZnCl<sub>2</sub> (Varet, C R 1896, 123

2HgCl<sub>2</sub>, ZnCl<sub>2</sub> (Varet, C R 1896, 123

Mercuric zinc chloride ammonia, HgCl<sub>2</sub>, 4ZnCl<sub>2</sub>, 10NH<sub>3</sub>+2H<sub>2</sub>O Insol in boiling H<sub>2</sub>O, but decomp thereby

(André, C R 112 995) HgCl<sub>2</sub>, 2ZnCl<sub>2</sub>, 6NH<sub>3</sub>+½H<sub>2</sub>O As above (André)

Mercuric chloride ammonia, HgCl<sub>2</sub>, 12NH<sub>3</sub>
Sl sol in ammonia (Franklin, Am Ch
J 1900, 23 300)

Mercuric chloride cadmium oxide, HgCl<sub>2</sub>, ('dO+H<sub>2</sub>O)

(Mailhe, 1 ch 1902, (7) 27 371)

Mercuric chloride cobaltous oxide, HgCl<sub>2</sub>, 3CoO+½H<sub>2</sub>O (Mailhe, C R 1901, 132 1274)

Mercuric chloride cupric oxide, HgCl<sub>2</sub>, 3CuO + H<sub>2</sub>()

Mailhe, Bull Soc 1901, (3) 25 791)

Mercuric chloride hydrazine, HgCl<sub>2</sub>, N<sub>2</sub>H<sub>4</sub> Verv unstable Decomp by H<sub>2</sub>O Pptd from alcohol solution by H O, very sol in

min acids with decomp
I asily sol in IfCl or HNO<sub>8</sub> Decomp by
alkalies Somewhat sol in actic acid (Hof-

Mercuric chloride hydroxylamine, IIgCl,

mann B 1597, 30 2020)

Completely sol in methyl and ethyl alcohol insol in other, decomp by HO and NiOH+Aq Sol in NHOH,HCl+Aq (Adam, Am Ch J 1902 28 210)

Mercuric chloride lead oxide, Ifg(1, 2Pb()+2H ()

Mathe A ch 1902 (7) 27 372)

Mercuric chloride strontium chromate, 2H<sub>E</sub>(1 H(1 S<sub>1</sub>(1))<sub>4</sub>

Sol in H O without decomp (Imbert, Bull Soc 1897 (2) 17 471)

Mercuric chloroiodide, 2HgCl HgI

Sol in HO (Lichia)

HgCl HgI SI sol in hot HO with partial decomp. More easily sol in alcohol-(Kohler B 12 1187)

Mercurous fluoride, Hg I

Decomp by H O with separation of Hg O

Mercuric fluoride, HgI +2H()

Decomp by cold H O, with separation of HgO Sol in dil HNO<sub>3</sub>+Aq, and HF+Aq (Linkener, Pogg 110 628)

Mercurous hydrogen fluoride,  $Hg_2F_2$ ,  $4HF+4H_2O$ 

Deliquescent Easily sol in  $H_2O$  Sol in dil acids and dil HF (Bohm, Z anorg 1905, 43 327)

Mercurous silicon fluoride See Fluosilicate, mercurous

Mercurous fluoride ammonia, Hg<sub>2</sub>F<sub>2</sub>, 2NH<sub>3</sub> Stable on air (Finkener, Pogg 110 142)

Mercurous hydroxide, HgOH

Nearly insol in cold, sol in hot H<sub>2</sub>O Sol in NaOH+Aq (Bhaduri, Z anorg 1897, **13** 410)

Mercurous 10damide, Hg2(NH2)I

(Rammelsberg, Pogg 48 184)
Is a mixture of Hg and Hg(NH<sub>2</sub>)1 (Barfoed)

Mercurous 10dide, Hg2I2

Sol in over 2375 pts H<sub>2</sub>O (Saladin, J chim méd 7 530)

Solubility in  $H_2O = 2.6 \times 10^{-8}$  g -equiv per liter (calculated) (Bodlander, Z phys Ch 1898, **27** 58)

Solubility in  $H_2O=3 \times 10^{-10}$  mols per litre at 25° (Sherrill, Z phys Ch 1903, 43 735)

Sol in Hg(NO<sub>3</sub>)<sub>2</sub>+Aq (Stromann, B 20 2815)

Sol in KI+Aq Fasily sol in Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>+Aq Sl sol in NH<sub>4</sub>OH+Aq Sol in hot NH<sub>4</sub>Cl+Aq, but less than HgI<sub>2</sub> Less sol in NH<sub>4</sub>NO<sub>3</sub> than in NH<sub>4</sub>Cl+Aq (Brett)

Partially sol with separation of Hg and formation of HgI, in cold KI+Aq, hot NaI, CiI<sub>2</sub>, SrI<sub>2</sub>, BaI<sub>2</sub>, MgI<sub>2</sub>, ZnI<sub>2</sub>, and NH<sub>4</sub>I+Aq, in warm NaCl, KCl and NH<sub>4</sub>Cl+Aq, and slowly in hot HCl+Aq (Boullay, A ch (2 34 35%)

Decomp by alkalichlorides + Aq (Miahle, A ch (3) 5 177)

Very easily sol in liquid NII<sub>3</sub> (Franklin, Am (h J 1898 **20** 829)

Not wholly insol in dechol, ether, or chloroform (M \_ I ep in d Ch 1884 378)

Decom i deohol, 1000 g boiling deohol decomp about 3 15 g Hg I<sub>2</sub> (Francois, C R 1896, **121** 890)

Boiling alcohol decomp Hg<sub>2</sub>I to Hg and HgI which dissolves until 0.220 g HgI<sub>2</sub> are contained in 100 g alcohol (François, C R 1896, **121** 889)

Insol in cold other (François, J. Phurm 1897, (6), 6, 445)

Insol in methylene iodide (Retgers, Zunorg 3 345)

Difficultly sol in methyl acetate (Nau-

mann, B 1909, 42 3790)

Phenol at 180° decomp it into Hg and HgI<sub>2</sub>
until a state of equilibrium is reached with

2 75 g HgI<sub>2</sub> to 100 g phenol, above which (0.05 g in 100 g) inpoint HgI is sl sol Decomp by cold phenol-HgI<sub>2</sub> mixture aniline more iapidly than by hot ibrium is reached when 26 35 g HgI<sub>2</sub> are present to 100 g aniline at bpt of aniline Aniline containing more than 26 g HgI2 to 100 g dissolves HgI in considerable quantity (François, C C 1896, I, 470)
Sl sol in benzonitrile (Naumann, B

1914, **47** 1369

Sl sol in allyl mustard oil (Mathews, J phys Chem 1905, 9 647)

#### Mercuric iodide, HgI2

Sol in 150 (?) pts H2O (Würtz)

1 l  $H_2O$  at 17 5° dissolves 0 0403 g  $HgI_2$ (Bourgoin, A ch (6) 3 429)

Sol in about 6500 pts H<sub>2</sub>O (Hager) According to calculation from electrical conductivity of HgI<sub>2</sub>+Aq, HgI<sub>2</sub> is much less sol, 1 l H<sub>2</sub>O dissolving only 0 5 mg HgI<sub>2</sub> at 18° (Kohlrausch and Rose, Z phys. Ch. 12 (Kohlrausch and Rose, Z phys Ch 12 241)

1 l H<sub>2</sub>O dissolves 0 054 g HgI<sub>2</sub> at 22°

(Rohland, Z anorg 1898, 15 412)

1 1 H<sub>2</sub>O at 25° dissolves about 0 06 g
(Morse, Z phys Ch 1902, 41 731)

1 1 H<sub>2</sub>O at 18° dissolves 4 x 10<sup>-6</sup> mol

(Abegg, Z Elektrochem 1903, 9 553) Solubility in HO at 25°=0 00013 mol

liter (Sherrill, Z phys Ch 1903, 43 735) ) dissolves 0.4 mg HgI<sub>2</sub> at 18° h, Z phys Ch 1904, **50** 356)

) at 18° dissolves 02 to 04 mg (Kohlrausch, Z phys Ch 1908, 64 168)

The yellow modification is always deposited from solution even in the presence of an (\cess of the red form (Gernez, C R 1903,

Sol in many acids, especially in HCl, and HI+Aq Insol in HC2H3O2+Aq (Beithemot) Scarcely sol in dil HNO3+1q

Not attacked by cold H2SO4 decomp by hot (Ditte, A ch 1579, (5) 17 124)

Sat solution in H<sub>2</sub>SO<sub>4</sub>+Aq contains at critical temp (158.2°), 0.7% HgI (Niggli Z anorg 1912, **75**.182.) Sol in hot (NH<sub>4</sub>) CO<sub>2</sub>, (NH<sub>4</sub>) SO<sub>4</sub> cold

NH4Cl, NH4NO3, or ammonium succinite +

(Wittstein)

Sol in HgCl ,  $\text{Hg}(N()_3)$  or  $\text{Hg}(C_2H_3()_2) + Q$  Easily sol in  $\text{Na}_2S_2O_3 + \text{Nq}$  I usily sol in soluble iodides + Aq More sol in hot thin in cold NaI or KI+Aq When cone 1 mol KI in hot solution dissolves 3 mols HgI, but a portion separates on cooling Bil, Sil MgI<sub>2</sub>, and CaI<sub>2</sub> act in the same way sol in cold, more sol in hot ZnI2+Aq, 2 mols HgI<sub>2</sub> being dissolved to 1 mol ZnI<sub>2</sub> In NH<sub>4</sub>I +Aq, 3 mols HgI<sub>2</sub> are dissolved to 2 mols NH<sub>4</sub>I Abundantly sol in hot KCl N<sub>4</sub>Cl Abundantly sol in hot KCl, NiCl NH4Cl+Aq, but separates out on cooling, and the trace remaining may be pptd by H (), 2 g KCl in solution dissolves 1 166 g HgI. alcoholic solution of HgCl<sub>2</sub> (Boullay, A ch (2) **34** 346)

Solubility in MI+Ag at 25°

| ,                |                                       |                                         |  |
|------------------|---------------------------------------|-----------------------------------------|--|
| Salt             | In 10 ccm of the solution             |                                         |  |
|                  | Millimols HgI <sub>2</sub>            | Millimols salt                          |  |
| NaI              | 4 12<br>6 22<br>9 45                  | 7 94<br>13 55<br>22 25                  |  |
| KI               | 1 27<br>1 80<br>5 10<br>7 00<br>12 24 | 3 03<br>3 90<br>10 34<br>15 54<br>25 19 |  |
| CaI <sub>2</sub> | 0 50<br>2 61<br>4 40<br>4 58<br>17 06 | 0 53<br>2 52<br>1 68<br>4 84<br>17 99   |  |
| SrI <sub>2</sub> | 2 12<br>3 20<br>5 82<br>6 94          | 2 54<br>3 55<br>5 39<br>6 08            |  |
| BaI              | 0 59<br>7 42<br>8 98<br>14 62         | 0 99<br>7 18<br>9 78<br>15 08           |  |
| (Horz a)         | nd Paul Z more                        | 1913 82 131)                            |  |

(Herz and Paul, Z inoig 1913, 82 131)

Solubility of HgI + KI in H ()

|                      | Icmp                 | ()                                           |
|----------------------|----------------------|----------------------------------------------|
| '{ KI                | H, I                 | Solid pha                                    |
| 50 9<br>44 4         | 19 3<br>32 4<br>45   | KI                                           |
| 39<br>37 1<br>37 5   | 53 6<br>52 6         | KI4 KH <sub>K</sub> I,<br>KH <sub>K</sub> I, |
| 35 1<br>35 5<br>26 7 | 52 2<br>51 2<br>50 3 | KHLI H O<br>KHLI + HLI                       |
| 26 6<br>23 7<br>14 9 | 49 4<br>40 2<br>22 5 | IILI                                         |
|                      | leng                 | 50                                           |
|                      | 1                    |                                              |

|      | 1 ( ) ( ) | ***        |
|------|-----------|------------|
| 60-6 |           | KI         |
| 40   | 53        | KI+KIILI,  |
| 39-6 | 52 7      | KHgf       |
| 4()  | 52.2      |            |
| 40 2 | 51 2      |            |
| 39 3 | 50 3      |            |
| 33 7 | 49 5      | •          |
| 33   | 52        |            |
| 31 4 | 51 7      | KHgI, H () |
| 29 1 | 52 2      |            |
|      |           |            |

Sol in HgCl<sub>2</sub>+Aq, and very easily sol in | (Dunningham, Chem Soc 1914, 105 368)

Very sol in KSCN+Aq (Philipp, Pogg 1867, **131** 93)

Sol in 109 pts cryst Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Eder and Ulm, M 1832, 3 197) Very sol in hot CaCl<sub>2</sub>+Aq, less sol in BaCl<sub>2</sub>, kCl and NaCl+Aq (Lea, Z anorg 1596, **12** 341 )

Solubility in normal  $Hg(NO_3)_2 + Aq =$ 480 g per litre (Morse, Z phys Ch 1902, 41 731)

Intermely sol in cold cone NH<sub>4</sub>Br+Aq (Grossmann, B 1903, **36** 1602)

Sol m alkalı sulphites+Aq (Barth, Z phys Ch 1592, 9 215)

Sol in Ca(OCl)2+Aq, sol in KOH+Aq (Melsens, A ch (3) 26 222)

Sol in liquid SO<sub>2</sub> (Walden and Cent-

nerszwei, C C 1902, I 344)

Very easily sol in liquid NH<sub>3</sub> (Franklin,

Am Ch J 1898, 20 829)

Sol in SOCl2, S2Cl, SO2Cl2, warm AsCl3, PBr<sub>s</sub>, warm POCl<sub>3</sub> 1900, **25** 212) (Walden, Z anorg

Easily sol in AsBr; (Walden, Z anorg 1902, 29 374)

Insol in liquid CO<sub>2</sub> (Buchner, Z phys. (h 1906, **54** 674)

More sol in alcohol than in H<sub>2</sub>O H O containing 10% of 90% alcohol dissolves 0.08 g HgI - 1 l of alcohol of 80° B dissolves 2 551 g HgI, 1 l absolute alcohol dissolves 11 So & Hgl (Bourgoin, A ch

(6) **3** 429 ) Sol in 130 pts cold, and 15 pts hot 90% dechol (Huger)

100 pts absolute methyl alcohol dissolve 3 l6 pts at 195° 100 pts absolute ethyl deohol dissolve 2 09 pts at 195° (de Bruyn / phys (h 10 783)

0.00812 pt is sol in 1 pt alcohol at 15° (Cruitier and Charpy R 1890, 111

617 1

100 g methyl deohol dissolve 37 g HgI at 19° ethyl alcohol 186 g propyl alcohol, 12) g isobutyl ilcohol, at 225°, 051 g (Innofered Dissert 1894)

At 15 20 100 g methyl deohol dissolve 3 24 g HgL ethyl deohol 142 g, propyl deohol 0 826 g (Kohland, Z morg 1898, 15 (12)

Solubility of HgL in ethyl deohol + Aq it 25° g alcohol in 100 g alcohol + Aq

HgI millimols HgI in 100 cc of the solution

| <b>\</b> | 1411  | 70 FL    |
|----------|-------|----------|
| ****     |       | 0.40005  |
| 100      | 3.86  | 0.50325  |
| 95 52    | 2 )6  | 0 80950  |
| 92 44    | 1/92  | 0 81536  |
| 86 74    | 1 35  | 0 \$2996 |
| 75 75    | 0 935 | 0 54651  |
| 67 63 -  | 0 45  | 0 57214  |
|          |       |          |

(Herz and Knoch, Z anoig 1905, 45 266)

Solubility of HgI2 in methyl alcohol+Aq at

P=g alcohol in 100 g alcohol+Aq HgI<sub>2</sub>=millimols HgI<sub>2</sub> in 10 cc of the solution

| P                                   | HgI2                                          | Sp gr                                |
|-------------------------------------|-----------------------------------------------|--------------------------------------|
| 0<br>47 06<br>64 00<br>78 05<br>100 | 0 0013<br>0 0098<br>0 0347<br>0 0981<br>0 571 | 0 9187<br>0 8834<br>0 8519<br>0 8155 |

(Herz and Anders, Z anorg 1907, 52 165)

Solubility of HgI2 in ethyl alcohol+Ag at 25°

P = g alcohol in 100 g alcohol +Ag $HgI_2 = millimols HgI_2$  in 10 cc of the solution

| P     | $HgI_2$ | Sp gr  |  |
|-------|---------|--------|--|
| 70 01 | 0 061   | 0 8636 |  |
| 100   | 0 386   | 0 8032 |  |

(Herz and Anders, Z anorg 1907, 52 170)

At 15°, 1 pt by weight is sol in — 24813 pts H<sub>2</sub>O

30 8 pts methyl alcohol of sp gr at 0 7990 70 3 " (thyl " " " " 0 8100 " " " 0 8160 121 0 " propyl "

(Rohland, Z. morg. 1899, 18, 328.)

Solubility of Hgl. in mixtures of methyl and of thyladcohol at 25°

P = % methyl alcohol in the mixtures  $H_{L}I = g HgI m 10 ccm of the solution$  $5.25^{\circ}/1^{\circ} = 5p$  gr of the set solution

| 1     | 1141  | 521/1  |
|-------|-------|--------|
| 0     | 0.150 | 0.5038 |
| 1 37  | 0.193 | 0.5039 |
| 10 1  | 0.208 | 0 8046 |
| 11 02 | 0 232 | 0 8077 |
| 80 69 | 0.289 | 0.8131 |
| 51 77 | 0.296 | 0.8140 |
| 91 25 | 0.298 | 0 5146 |
| 100   | 0.316 | 0.5156 |

(Herz and Kuhn, Z. morg. 1908, 58, 164)

Solubility in mixtures of methyl and propyl alcohol at 25°

P = % propyl alcohol in the solvent  $G = g HgI_2$  in 10 ccm of the solution S=Sp gr of the sat solution

| P                                         | G                                                  | S 25°/4°                                                 |
|-------------------------------------------|----------------------------------------------------|----------------------------------------------------------|
| 0<br>23 8<br>91 8<br>93 75<br>96 6<br>100 | 0 316<br>0 304<br>0 169<br>0 167<br>0 153<br>0 142 | 0 8156<br>0 8155<br>0 8101<br>0 8110<br>0 8108<br>0 8116 |
|                                           |                                                    |                                                          |

(Herz and Kuhn, Z anorg 1908, 60 158)

Solubility in mixtures of propyl and ethyl alcohol at 25°

P = % propyl alcohol in the solvent  $G = g HgI_2$  in 10 ccm of the solution S=Sp gr of the sat solution

| P                                                | G                                                           | S 25°/4°                                                              |
|--------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|
| 0<br>8 1<br>17 85<br>56 6<br>91 2<br>95 2<br>100 | 0 180<br>0 173<br>0 165<br>0 155<br>0 152<br>0 144<br>0 142 | 0 8038<br>0 8036(?)<br>0 8043<br>0 8075<br>0 8099<br>0 8108<br>0 8116 |

(Herz and Kuhn, Z anorg 1908, 60 161)

Solubility in 100 pts amyl alcohol equals

0 66 pts at 13°

71° 3 66 " 5 30 " " 100°

9 57 " " 133 5°

(Laszcynski, B 1894, 27 2287)

Sp gr at 16°/4° of HgI<sub>2</sub>+alcohol containing 18358% HgI = 080718, containing 17119% = 080597(Schonrock, Z Ch 1893, 11 770)

Somewhat sol in ether Sol in 77 pts (Saladın ) Sol in 60 pts ether ether

(Hager)

Sol in cold ether (François, J Pharm **1897**, (6) **6** 445)

Very sl sol in anhydrous ether (Hampe) 0 62 pt is sol in 100 pts ether at 0° 0 97 pt is sol in 100 pts ether at 36°

(Laszcynski, B 1894, 27 2286)

Solubility in ether = 0.3% at ord temp (Marsh, Chem Soc 1910, 97 2299)

Nearly insol in ether (Dunningham Chem Soc 1914, 105 368)

(Dunningham,

Data are given on the system  $HgI_2+KI+$ (Dunningham) ether

Solubility at  $\overline{23}^{\circ}$  in chloroform = 0.071%, m ether=0 551%, m acetone=2 005% m ethyl alcohol=2%, m methyl alcohol= 3 975%, in benzene = 0 247% (Beckmann and Stock, Z phys Ch 1895, **17** 130) Solubility in organic solvents at to

| Soldbard) 12 organic con the                                                                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                         |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Solvent                                                                                                                                                                                                                                                                             | t°                                                                                                                                             | 100 g of the<br>solvent dissolv<br>g HgI <sub>2</sub>                                                                                                                   |  |  |
| Chloroform Tetrachlormethane Ethylene dichloride Isobutyl chloride Ethyl bromide Methyl alcohol Ethyl alcohol Isopropyl alcohol Isobutyl alcohol Methyl formate Ethyl formate Ethyl formate Methyl acetate Ether Acetone Acetal Chloral Epichlorhydrin Hexane Benzene Ethyl acetate | 61<br>75<br>85 5<br>69<br>38<br>66<br>78<br>81<br>ca 100<br>36–38<br>52–55<br>56–59<br>35<br>56<br>ca 100<br>96<br>ca 100<br>67<br>80<br>74–78 | 0 163<br>0 094<br>1 200<br>0 328<br>0 773<br>6 512<br>4 325<br>2 266<br>2 433<br>1 166<br>2 150<br>2 500<br>0 470<br>3 249<br>2 000<br>6 113<br>0 072<br>0 825<br>4 200 |  |  |

(Sulc, Z anorg 1900, 25 402)

Solubility in organic solvents at 18-20° 100 g chloroform dissolve 0 040 g HgI<sub>2</sub> 100 g tetrachlormethane dissolve 0 006 g  $Hgl_2$ 

100 g bromoform dissolve 0 486 g HgI<sub>2</sub> 100 g ethyl bromide dissolve 0 643 g  $HgI_2$ 

100 g ethyl iodide dissolve 2 041 g HgI<sub>2</sub> 100 g ethylene dibromide dissolve 0 748 g  $HgI_2$ 

(Sulc, Z anorg 1900, 25 401)

1 pt ethylene bromide dissolves 0 00553 pts  $\mathrm{HgI}_2$  at 15° (Gautier and Charpy, C R 1890**, 111** 647)

100 pts methylene iodide CH I dissolve 2 5 pts HgI<sub>2</sub> at 15°, 16 6 pts at 100°, and 58 pts at 180° (Retgers, Z anorg 3 252)

1 l sat solution in CCl4 at 15° contains 0 170 g HgI<sub>2</sub> (Dawson, Chem Soc 1909,

**95** 874) Sol in 340 pts glycerine (Furley, Monit

Scient (3) 9 685)

100 pts acetone dissolve 2 09 pts HgI it (Krug and M'Flroy, J Anal Ch 6 84)

Sol in acctone and in methylal (Fidmann, C 1899, II, 1014)

Solubility in 100 pts acetone equals

2 83 pts HgI<sub>2</sub> at - 1°

15° 3 36 " " 40° 4 73

" " " 58° 6 07 (Laszczynski, B 1894, 27 2287)

100 g methyl acetate solution, sat at 18° contain 110 g HgI<sub>2</sub> (Bezold, Dissert **1906**)

100 g boiling methyl acetate slowly dissolve 23 g  $HgI_2$  (Schroeder and Steiner, J pr 1909, (2) 79 49)

Solubility in ethyl acetate at to

| Pts sol in 100 pts<br>ethyl acetate | t°    |
|-------------------------------------|-------|
| 1 49                                | — 2   |
| 1 56                                | +17 5 |
| 1 64                                | 21    |
| 2 53                                | 40    |
| 3 19                                | 55    |
| 4 31                                | 76    |

(Laszczynski, B 1894, 27 2286)

100 g ethyl acetate anhydrous, or sat with H<sub>2</sub>O at 18°, dissolve at 18°, 1470 g Solubility increases somewhat with  $HgI_2$ (Hamers, Dissert 1906) temp

Solubility of HgI2 in ethyl acetate+Aq at 25°

P=g ethyl acetate in 100 g ethyl acetate +Aq $HgI_2 = millimols$   $HgI_2$  in 10 cc of the solution

| I     | IIŁI   | Sp gr  |
|-------|--------|--------|
| 4 39  | 0 0028 | 0 9973 |
| 96 76 | 0 412  | 0 9063 |
| 100   | 0 241  | 0 9011 |

(Herz and Anders, Z anorg 1907, 52 172)

1 pt is sol in 68 03 pts ethyl acetate at 18° (Naumann, B 1910, 43 316)

Solubility in dictivel oxalate is 125% at bpt and 25% at 100° (Reinders, Z phys Ch 1900, **32** 507)

Solubility in CS2 at to

| t   | 100 pts sat solution contain pts HgI <sub>2</sub> |  |  |
|-----|---------------------------------------------------|--|--|
| 10  | 0 107                                             |  |  |
| 5   | 0 141                                             |  |  |
| 0   | 0 173                                             |  |  |
| + 5 | 0 207                                             |  |  |
| 10  | 0 239                                             |  |  |
| 15  | 0 271                                             |  |  |
| 20  | 0 320                                             |  |  |
| 25  | 0 382                                             |  |  |
| 30  | 0 445                                             |  |  |

(Arctowski, Z anorg 1894, 6 267)

Solubility in CS<sub>2</sub>

100 g of the sat solution contain at —86 5° ---93° --116° 0.0240.0230017 g HgI<sub>2</sub>

(Arctowski, Z anorg 1896, 11 274)

 $0.0028~\rm pt$  is sol in 1 pt CS2 at 15° (Gautier and Charpy, C R 1890, 111 647) 1 l sat solution in CS2 at 15° contains

3 127 g HgI<sub>2</sub> (Dawson, Chem Soc 1909, 95 874)

Very sol in liquid methylamine (Gibbs. J Am Chem Soc 1906, 28 1419) Abundantly sol in methylamine (Fitz-

gerald, J phys Chem 1912, 16 633) Somewhat sol in allyl mustard oil (Math-

ews, J phys Chem 1905 9 647) Sol in Sb(CH<sub>3</sub>)4I+Aq •

Very sl sol in Na citrate+Aq (Spiller) 1 pt  $C_6H_6$  dissolves 0 00217 pts  $HgI_2$  at 15° (Gautier and Charpy, C R 1890, 111 647)

Solubility in 100 pts benzene equals

0 22 pts at 15° " 60° 0.88 " " 65°

0 95 " "84° 1 24

(Laszczynski, B 1894, 27 2284)

1 l C<sub>6</sub>H<sub>6</sub> dissolves 0 00493 mol HgI<sub>2</sub> at (Sherrill, Z phys Ch 1903, 43 735)

100 g boiling phenol dissolve 10 g HgI<sub>2</sub> (François, C R 1895, **121** 769) Sl sol in phenol with 20% H<sub>2</sub>O Not very sol in acetic acid at 119°, in amyl acetate at 133°, in amyl bromide at 119° Rather sol in diethyl oxalate at 186°, in ethylene bromide at 131°, in amyl alcohol at 137°, in amyl iodide at 150°, in CHBr<sub>3</sub> at 151°, in iodobenzol at 190°, in oil of turpentine at 160° Very sol in benzaldehyde at 179°, in methylene iodide at 182° (Reinders, Z phys Ch 1900, **32** 506)

1000 pts oil of bitter almonds dissolve 4 pts Hgl at ord temp, 1000 pts olive oil, 4 pts, 1000 pts poppy oil, 10 pts, 1000 pts nut oil, 15 pts, 1000 pts castor oil, 20 pts, 1000 pts lard oil, 4 5 pts, 1000 pts vaseline, 25 pts, 1000 pts benzene, 4 pts Sol in phenol (Mehn, Pharm J 3 327, B 19 8

Solubility in aniline S = Temp of solidification

| Mols<br>per 100                    | s                               | Mols<br>per 100                      | s                                   | Mols<br>per 100              | ь                         |
|------------------------------------|---------------------------------|--------------------------------------|-------------------------------------|------------------------------|---------------------------|
| 5 9<br>8 2<br>10 3<br>14 9<br>16 6 | 12°<br>22 5<br>29<br>41 5<br>45 | 19 9<br>25 8<br>29 3<br>31 7<br>32 4 | 48 5°<br>53 5<br>105<br>122<br>(55) | 33 0<br>35 6<br>37 5<br>39 2 | 128°<br>140<br>147<br>156 |

(Staronka, Anz Ak Wiss Krakau, 1910 372)

## Solubility of HgI2 in aniline at to

| t°                                                                                                                                           | g HgI <sub>2</sub><br>per 100 g<br>anılıne                                                                                                          | Solid phase                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| -6 5<br>+0 4<br>17 8<br>21 1 9<br>30 1<br>36 2<br>42 8<br>46 8<br>48 8<br>63 6<br>70 82<br>76 2<br>95 9<br>108 *<br>115 7<br>137 2<br>1199 1 | 23 35<br>28 69<br>42 85<br>47 55<br>55 47<br>62 05<br>75 80<br>96 49<br>128 1<br>163 8<br>184 1<br>201 6<br>246 7<br>281 8<br>285 2<br>279<br>863 2 | HgI, 2C <sub>8</sub> H <sub>5</sub> NH <sub>2</sub> " " " " " " " " " " " " " " " " " " |

\*Transition point

(Pearce and Fry, J phys Ch 1914, 18 667)

Very sol in boiling alcoholic solution of aniline (Vohl, Dissert 1871)

Abundantly sol in hot benzonitrile and other aromatic nitriles (Werner, Z anorg

1897, 15 7)

Sol in benzonitrile (0.98 g in 100 g at so) 20 times more sol by addition of 18°) 20 times more sol by addition of 5 g KI to 100 cc benzonitrile (Naumann, B 1914, 47 1375)

Sol in pyridine (Naumann, B 1904, 37 4609)

Solubility of HgI<sub>2</sub> in pyridine S=temp of solidification

| Mols<br>per 100                           | s                                         | Mols<br>per 100                              | S                               | Mols<br>per 100                              | s                                       |
|-------------------------------------------|-------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|-----------------------------------------|
| 5<br>9 8<br>15 14<br>19 3<br>26 3<br>29 6 | 10°<br>42 5<br>66 5<br>83<br>102 5<br>107 | 34 6<br>38 0<br>43 0<br>46 7<br>48 5<br>50 6 | 107°<br>103<br>97<br>88 5<br>89 | 51 3<br>51 6<br>52 7<br>53 2<br>55 4<br>57 9 | 93 5°<br>96<br>108<br>109<br>122<br>135 |

(Staronka, Anz Ak Wiss Krakau, 1910 372)

Sp gr at 16°/4° of HgI<sub>2</sub>+pyridine containing 10.43% HgI<sub>2</sub>=1.1482, containing 799% = 11053(Schonrock, Z phys Ch 1893, 11 770)

Solubility of HgI2 in quinoline S=temp of solidification

| Mols<br>per 100 | s     | Mols<br>per 100 | s    | Mols<br>per 100 | s     |
|-----------------|-------|-----------------|------|-----------------|-------|
| 4 7             | 100°  | 29 8            | 151° | 43 0            | 165°  |
| 9 1             | 115 5 | 31 4            | 153  | 46 1            | 167   |
| 13 2            | 133 5 | 35 4            | 156  | 48 8            | 170   |
| 23 1            | 138   | 37 7            | 160  | 49 5            | 169 5 |
| 26 7            | 145   | 41 6            | 165  | 54 4            | 166 5 |

(Staronka, Anz Ak Wiss Krakau, 1910 372)

Mol weight determined in pyridine. methyl- and ethyl-sulphide (Werner, Z anorg 1897, 15 20)

More or less sol at high temp in petroleum (bpt 160-230°), bromnaphthalene, pyridine, toluidine and amyl alcohol (Reinders, Z phys Ch 1900, **32** 503)

Yellow modification

100 g of sat solution in acetone at 25° contain 30 g HgI<sub>2</sub> (Reinders, Z phys Ch 1900, 32 514)

Red modification

Solubility in alcohol equals

0717-0724 g in 100 g solution at 0° 1 044-1 084 g " 25° " 50° 2 10-2 20 g

(Reinders, Z phys Ch 1900, 32 522)

100 g of sat solution in acetone at 25° contain 195 g HgI<sub>2</sub> (Reinders, Z phys Ch 1900, **32** 514)

HgI<sub>2</sub> is moderately sol in abs alcohol at its b-pt The solution has a decided yellow color On cooling, yenow or so out They soon change to the red modifica-On cooling, yellow crystals scparate

Readily sol in hot amyl alcohol crystals separate from the solution when cooled

Readily sol in allyl alcohol, forming a yellow solution, from which yellow crystals separate on cooling

Sl sol in acetone, giving a yellow solution On cooling yellow plates separate from the solution and rapidly turn red

Sol in phenol at 150° C Solution has yellow color and yellow crystals separate out on cooling

Readily sol in boiling benzene Siturited solution is yellow. The yellow inclide separates out on cooling, and changes appliedly to the red

Sol in toluene giving yellow solution, from which yellow crystals separate on cooling

They rapidly change to red

Readily sol in naphth ilene at temperatures above its transition point Solution is yellow and on cooling yellow crystals separate out

Readily sol in hot pseudo-cumene giving a yellow solution On cooling gives yellow crystals

Readily sol in ethyl iodide giving very

yellow solution, from which yellow crystals separate on cooling, which change to red

rapidly

Only sl sol in ethyl bromide, giving yellow solution from which yellow crystals separate on cooling, which change rather slowly to the red

Sparingly sol in isopropyl bromide

Moderately sol in isobutyl bromide, giving a pink solution from which yellow crystals separate on cooling, which change slowly to red

SI sol in ethylidene chloride On sudden cooling at 18° the iodide crystallizes out in yellow plates, which quickly change to red

Sparingly sol in propyl chloride, giving a pink solution, from which yellow crystals

separate on cooling

Readily sol in ethyl cyanide, giving a vellow solution On cooling vellow crystals

separate and rapidly change to red

Moderately sol in benzene cyanide, giving a deep yellow solution On sudden cooling the solution deposits yellow crystals, which rapidly turn red

Rapidly sol in benzoic acid at high tem-

peratures

Sparingly sol in ethyl acetate, giving vellow solution

Sol in ethyl propionate

Very sol in ethyl butyrate, giving a yellow solution On cooling the iodide crystallized from the solution

Sl sol in ethyl isobutyrate

Readily sol in methyl salicylate, giving

a vellow solution

Sparingly sol in phenyl salicylate, giving On cooling yellow crystals vellow solution separate out, which gradually change to red (Kastle, Am Ch J 1899, 22 474)

Mercuromercuric iodide,  $Hg_4I_6 = Hg I_2$ , 2lIgl₂

Insol in H2O or alcohol Pirtially sol in KI+Aq, in hot NaCl, and NH4Cl+Aq, and in hot H(1+Aq, though very slowly (Boullay, A (h (2) **34** 345

Mercury periodide, HgI6

Sol in KI+Aq Decomp by cold H<sub>2</sub>O or alcohol (Jorgensen, J pr (2) 2 347)

Mercuric hydrogen iodide (Iodomercuric acid), HI, HgI<sub>2</sub>=HHgI<sub>3</sub>

Civstillises from III+Aq (Boullay) Easily decomp (Neumann, M 10 236) 3HgI<sub>2</sub>, 2HI+H<sub>2</sub>O (François, Dissert 1901)

Mercuric nickel iodide, HgI<sub>2</sub>, NiI<sub>2</sub>+6H<sub>2</sub>O

Sol in alcohol, ether, and acetone, not decomp by H<sub>2</sub>O (Dobroserdoff, C C 1901, II 332)

2HgI<sub>2</sub>, N<sub>1</sub>I<sub>2</sub>+6H<sub>2</sub>O Hydroscopic, decomp by H<sub>2</sub>O, sol in acetone and ether (Dobroserdoff, C C 1901, II 332)

Mercuric potassium iodide, HgI2, KI+ 1⅓H₀Ō

Deliquescent (v Bonsdorff) Permanent, decomp by H<sub>2</sub>O mto 2KI, HgI<sub>2</sub>, and HgI<sub>2</sub> (Boullay), sol m alcohol, ether, and conc HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, but decomp by other acids (Berthemot, J Pharm 14 186) Sp gr of sat solution in  $H_2O = 24$  to 3 1

 $+H_{3}O$ Sol in H<sub>2</sub>O with decomp Can be cryst from alcohol Very sl sol in dry ether Very sol in wet ether (Marsh, Chem

Soc 1910, 97 2297) HgI<sub>2</sub>, 2KI Sol in H<sub>2</sub>O (Thomsen and

Bloxam, Chem Soc 41 379)
Sat solution of KI+HgI<sub>2</sub> in H<sub>2</sub>O at 22 9°
contains 8 66% K, 22 49% Hg and 52 48% I,
corresponding to 0 22 mol K, 0 11 mol Hg
and 0 45 mol I (Duboin, C R 1905, 141 385)

Sp gr at 16°/4° of aqueous solution containing 12 2875% salt=1 10148, containing 122371% = 11038, containing 7 9843%= (Schonrock, Z phys Ch 1893, 11 1 06491 782)

Sol in methyl acetate (Bezold, Dissert

1906

Sol in ethyl acetate (Alexander, Dissert 1899, Hamers, Dissert 1906)

Sol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4328) Sol in methyl acetate (Naumann, B

(Naumann,

1909, **42** 3790), ethyl acetate B 1904, **37** 3601)

+2H<sub>2</sub>O Sol in alcohol, ether and acetone, decomp by H<sub>2</sub>O (Pawlow, C C 1901, I

Solubility determinations show that KHgI<sub>3</sub> and KHgI<sub>3</sub>+H<sub>2</sub>O are the only double salts formed at 20°-30° See HgI<sub>2</sub>+KI under HgI<sub>2</sub> (Dunningham, Chem Soc 1914, 105 368)

Mercuric rubidium iodide, HgI, RbI

Sol in alcohol, decomp by HO HgI<sub>2</sub>, 2RbI Very easily sol in H<sub>2</sub>O

(Grossmann, B 1904, 37 1258)

Very sol in acetic acid and alcohol, decomp by H<sub>2</sub>O Stable in ag solution in the presence of an excess of RbI (Erdmann, Arch Pharm 1894, 232 30)

Mercuric silver iodide, HgI, 2AgI

(Wegelius and Kilpi, Z anorg 1909, 61 416)

Mercuric sodium iodide, HgI<sub>2</sub>, NaI

Deliquescent, and decomp by much H<sub>2</sub>O (v Bonsdorff, Pogg 17 266)

Sol in alcohol, decomp by HO

HgI<sub>2</sub>, 2NaI Deliquescent, sol in H<sub>2</sub>O and

alcohol (Boullay

Sat solution of NaI+HgI<sub>2</sub> in H<sub>2</sub>O at 24 75° contains 4 59% Na, 25% Hg, and 58 25% I, corresponding to 0 20 mol Na.

0 12 mol Hg, and 0 45 mol I (Dubom, C R 1905, 141 385)

Extremely deliquescent (Du-+4H<sub>0</sub>O boin, C R 1906, 143 314)

Mercuric strontium iodide, HgI<sub>2</sub>, SrI<sub>2</sub> (?)

Sol in HO without decomp (Boullay) (Duboin, C R  $+8H_{\circ}O$ As Ca salt 1906, 142 573)

2HgI<sub>2</sub>, SrI<sub>2</sub> (?) Decomp by much H<sub>2</sub>O into sol HgI<sub>2</sub>, SrI<sub>2</sub> and insol HgI<sub>2</sub> (Boul-

Mercuric thorium iodide, 5HgI2, ThI4+ 18H<sub>2</sub>O

Easily decomp Very deliquescent H<sub>2</sub>O (Duboin, A ch 1909, (8) **16** 282) 5HgI<sub>2</sub>, 2ThI<sub>4</sub>+21H<sub>2</sub>O (Duboin) 2HgI<sub>2</sub>, ThI<sub>4</sub>+12H<sub>2</sub>O (Duboin)

#### Mercuric zinc iodide

Deliquescent Decomp by H<sub>2</sub>O (v Bonsdorff)

Mercuric iodide ammonia, HgI<sub>2</sub>, 2NH<sub>3</sub>

Decomp by NH<sub>3</sub> giving NHg<sub>2</sub>I and NH<sub>4</sub>I (François, C R 1900, 130 333)

Stable only in the presence of excess of ammonia Gives off NH<sub>8</sub> in the air (François J Pharm 1897, (6) 5 388, C C 1897,

Mercuric iodide hydrazine, HgI2, N2H4

Decomp by H<sub>2</sub>O (Hofmann and Marburg, A 1899, 305 215)

Mercuric iodide rubidium bromide,

HgI₂, 2RbBr

Decomp by H<sub>2</sub>O Sol in alcohol without decomp (Grosmann, B 1903, **36** 1603)

Mercuric iodide silver chloride, HgI2, 2AgCl Insol in H<sub>2</sub>O (Lea, Sill Am J (3) 7 34)

Mercury iodoantimonide, Hg<sub>3</sub>Sb<sub>4</sub>2HgI<sub>2</sub>

Sol in HNO3 aqua regia and hot H2SO4, insol in HCl (Granger, C R 1901, 132) 1116)

Mercury nitride, Hg<sub>3</sub>N<sub>2</sub>

Gradually decomp by H<sub>2</sub>O Decomp by conc HNO<sub>3</sub>, or HCl+Aq (H1rzel, J B **1852** 419)

Not attacked by cold, but decomp by hot  $dil H_2SO_4$ 

Sol in acids+Aq

Sol in ammoniacal solutions of ammonium salts

Insol in excess of KNH<sub>3</sub> (Franklin, Z anorg 1905, 46 18) Sol in ammonia solutions of ammonium

salts and in aq acid solutions

Very explosive (Franklin, J Am Chem Soc 1905, 27 835)

HgN<sub>3</sub> See Mercurous azoimide

HgN<sub>6</sub>

See Mercuric azoimide

Mercurous oxide, Hg<sub>2</sub>O

Insol in H2O Insol in dil HCl or HNO2 Sol in warm cone HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Sol in 150,000 pts H<sub>2</sub>O (Bhaduri Z

anorg 1897, 13 410) Decomp by H<sub>2</sub>O or weak bases (Rose), (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Wittstein), KNO<sub>3</sub>+Aq (Rose), KI+Aq (Berthemot), or conc NH<sub>4</sub>Cl+Aq (Pagenstecher) into HgO and

Hg, or HgCl<sub>2</sub>, etc Sl decomp by alkalı chlorides + Aq with formation of HgCl<sub>2</sub>, which dissolves

(Miahle) Sl sol in alkalı cyanides + Aq (Jahn)

Insol in KOH, and NaOH+Aq Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 829)

Insol in alcohol and ether

Mercuric oxide, HgO

Sol in 20,000 to 30,000 pts H<sub>2</sub>O (Bineau, C R 41 509)

Sol in 200,000 pts H<sub>2</sub>O (Wallace, Ch Gaz 1858 345)

Ordinary coarse HgO is sol in HO to the extent of 50 mg per l at 25°, but when finely powdered the solubility increases to 150 mg per l (Hulett, Z phys Ch 1901, **37** 406)

Red modification is —

Sol in 19,500 pts H O at 25°, in 2,600 pts H<sub>2</sub>O at 100° (Schick, Z phys C h 1903. (Schick, Z phys Ch 1903,

**42** 172) 1 l H<sub>2</sub>O dissolves 50 mg red modification of HgO at 25° (Hulett, Z phys Ch 1901, **37** 406)

Yellow modification is -Sol in 19,300 pts H O at 25° in 2400 pts at 100° (Schick, Z phys Ch 1903, 42 172)

Sol in acids Insol in H<sub>3</sub>PO<sub>4</sub> or H<sub>3</sub>AsO<sub>4</sub>+ Aq (Haack, A **262** 190)

Scarcely attacked by II C O4+ Aq lon, A ch (3) 18 352)

Solubility of HgO in III at 25°

Hg=g-atoms Hg in 11 of the solution

| Hr normal | HL      |
|-----------|---------|
| 0 12      | 0 01258 |
| 0 24      | 0 0247  |
| 0 57      | 0 0629  |
| 1 11      | 0 1168  |
| 2 17      | 0 2586  |

(Jaeger, Z anorg 1901, 27 26)

Solubility of HgO in HF is decreased by the addition of KF, which proves the nonexistence of complex fluorides (Jaeger)

Insol in H<sub>3</sub>AsO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub> and in primary and secondary alkalı salts of these acids (Haack, A 1891, 262 190)
Sol in hot NH<sub>4</sub>Cl+Aq, less in NH<sub>4</sub>NO<sub>3</sub>+

Aq (Brett)

Insol in KOH, or NaOH+Aq

Decomp by alkali chlorides + Aq into HgCl<sub>2</sub>, which dissolves (Miahle, A ch (3) **5** 177)

Sol in  $Fe(NO_3)_3$ , and  $Bi(NO_3)_3 + Aq$  with pptn of oxides Sol in KI+Aq (Persoz)

Very sol in acid sulphites+Aq (Barth,

Z phys Ch 1892, 9 192)
Completely sol in conc CaCl<sub>2</sub>, BaCl<sub>3</sub>,
MgCl<sub>2</sub>, and SrCl<sub>2</sub>+Aq (André, C R 1887,

**104** 431)

Solubility in Ag salts+Aq 100 g Ag<sub>2</sub>SO<sub>4</sub> in aqueous solution dissolve 13 g HgO Solubility in AgNO<sub>3</sub>+Aq is 15 6 100, in Ag acetate+Aq is 1 137 100 (Finci, Gazz

ch it 1911, 41 (2) 545)
Much\_less sol in KCl and NaCl+Aq

than in  $H_2O$ (Schoch) Sol in  $U(NO_3)_3$ , Al $(NO_3)_3$  and Fe $(NO_3)_3$ +

Aq (Malhe, A ch 1902, (7) 27 373)

Very sl sol in cold Hg(CN)<sub>2</sub>+Aq, abundantly sol at 75° with evolution of HCN (Barthe, J Pharm 1896, (6) 3 183)

Sol in cold or hot alcoholic NH4SCN in (Fleischer, A 1875, 179 large amounts **225**)

Completely sol in KI+Aq (Jehn, Arch

Pharm 1873, 201 97)

Solubility of red or yellow modification in N/50 KCl+Aq is about 25% greater than in pure  $\rm H_2O$  (Schick, Z phys Ch 1903, 42

(Franklin, Z anorg Insol in liquid HF

1905, 46 2)

(Gore, Am Ch J Insol in liquid NH<sub>3</sub> 1898, **20** 829)

(Franklin, Am Ch Insol in liquid NH<sub>3</sub>

1898, **20** 829)

Sol in alcoholic solution of hydroxylamine hydrobromide below 0° (Adams, Am Ch 1902, 28 216)

Insol in alcohol

Sol in trichloracetic acid+Aq (Brand. J pr 1913, (2) 88 342

Insol in acetone and in methylal (Eidmann, C C 1899, II 1014)

Insol in acctone (Naumann, B 1904,

**37** 4329)

When freshly pptd, is insol in acetone+Aq even on warming, but easily sol if liquid is made alkaline by NaOH Insol in acetophenone even after long warming at  $100^{\circ}$  Sol in acctaldehyde and much  $H_2O$  and a little NaOH (Auld and Hantzsch, B 1905, **38** 2680)

Sol in formamide (Fischer, Arch Pharm

1894, 232 329)

Very sol in ethylene diamine For 1 mol | Mitt (2) 2 177)

HgO, 7-10 mols ethylene diamine are necessary (Traube and Lowe, B 1914, 47 1910) Easily sol in benzamide (Dessaignes, A ch 1852, (3) 34 146)

When freshly pptd, is sol in picric acid+ (Varet, C R 1894, 119 560)

Sol in alkaline solution of phenol disulphonic acid (Lumiére and Chevrotier, C R 1901, 132 145

Sol in nucleic acid+Aq when freshly

(Schweckerath, Pat 1899) pptd

Sol in gum arabic+Aq (Peschier, J Pharm 1896, (6) 3 509)

Mercuric oxybromide, HgBr<sub>2</sub>, HgO

(André, A ch (6) 3 123)

HgBr<sub>2</sub>, 2HgO (André) HgBr<sub>2</sub>, 3HgO (a) Yellow Insol in cold, sl sol in hot H<sub>2</sub>O Easily sol in alcohol (Lowig)

(b) Brown Insol in alcohol (Rammelsberg, Pogg 55 248) HgBr<sub>2</sub>, 4HgO (Andre)

Insol in ord solvents Decomp by al-(Fischer and von Wartenkalies and acids

burg, Ch Z 1902, 26 894) 2HgBr<sub>2</sub>, 7HgO Readily decomp by acids and alkalies (Fischer and von Wartenburg)

Mercurous oxychloride, Hg<sub>2</sub>O, 2HgCl

E glestonite  $M_{in}$ 

Decomp by hot HCl and by HNO. (Moses, Am J Sci, 1903, (4) 16 253)

Mercuric oxychloride,

Less sol than HgCl2, but HgO, HgCl<sub>2</sub> not isolated (Thummel) Decomp ld H<sub>2</sub>O (André, A ch (6) 3 118) HgO, 2HgCl<sub>2</sub> Decomp by warm H<sub>2</sub>O or cold H<sub>2</sub>O

cold alcohol into 2HgO, HgCl2 (Thummel, Arch Pharm (3) 27 589)

Decomp by H<sub>2</sub>O Not decomp by alcohol (Arctowski, Z anorg 1895, 9 178)

2HgO, HgCl<sub>2</sub> I'wo modifications A Red Insol in HO, decomp by alkali carbonates, or chlorides + Aq into 4HgO,  $HgCl_2$ 

Acted upon by cold alkalı carbonates and alkalı chlorides + Aq (Schoch, Am Ch J 1903, **29** 335)

Not decomp by H2O at old temp (Thum-

mel)

Very sl sol in cold, completely sol in hot H<sub>2</sub>O (Haack, A 1891, **262** 189) A small amt of HNO<sub>3</sub> converts it into a

more HNO<sub>3</sub> dissolves it white powder, more HN0 (Haack, A 1891, 262 189)

B Black Not decomp by alkalı chlorides.

or carbonates+Aq (Thummel)

Not affected by boiling alkali carbonates or alkalı chlorides+Aq (Schoch, Am Ch J 1901, **29** 335)

Insol in cold and hot H2O and alcohol Sol in acid (Van Nest, Dissert 1909) Not changed by H<sub>2</sub>O (Blaas, Miner

(Blaas) Sol in HNO<sub>3</sub> or HCl+Aq Not changed by alcohol (Blass) +½H<sub>2</sub>O (R<sub>2</sub>y, A 1901, **316** 255) 3HgO, HgCl<sub>2</sub> Decomp by warm H<sub>2</sub>O (Thummel)

Not attacked by cold H<sub>2</sub>O (André) Ppt (Tarugi, Gazz ch it 1901, 31 313) Decomp by H<sub>2</sub>O Not decomp by alcohol (Arctowski, Z anorg 1895, 9 178)

Three modifications

Decomp by boiling H<sub>2</sub>O a Prisms

Brick-red, amorphous

c Yellow plates (Schoch, Am Ch J 1903, 29 337)

Yellow plates

Decomp by hot H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub> or NaOH+ Sol in KHCO<sub>3</sub>+Aq Insol in cold dil

HNO<sub>3</sub> (Tarugi)

4HgO, HgCl<sub>2</sub> Decomp by H<sub>2</sub>O Not decomp by alcohol (Arctowski, Z anorg 1895, 9 178) Decomp by H<sub>2</sub>O Not

Two modifications A Yellow plates

Easily sol in acids Insol in alcohol and Decomp by KOH (Dukelski, Z anorg 1906, 49 336)

B Brown, amorphous

Decomp by KOH Easily sol in acids Insol in alcohol and ether (Dukelski,

Z anorg 1906, 49 336)

5HaO HaCl<sub>2</sub> (Millon)

ıst (Thummel) Does not exist (T) sol in cold H<sub>2</sub>O (Roucher, A 353)

Does not exist (Roucher) 7HgO, 4HgCl<sub>2</sub> Does not exist

Mercuromercuric oxychloride, Hg<sub>2</sub>OCl

Min Terlinguaite

Decomp by HCl and HNO<sub>3</sub>

Slowly decomp by cold acetic acid when (Hillebrand and Schaller, J powdered Am Chem Soc 1907, 29 1190)

Mercuric strontium oxychloride, HgO, SrCl<sub>2</sub> +6H<sub>2</sub>O

Decomp by H<sub>2</sub>O (André, C R 104 431)

Mercuric oxyfluoride, HgO, HgF<sub>2</sub>+H<sub>2</sub>O Decomp by H<sub>2</sub>O Sol in dil HNO<sub>3</sub>+Aq (Finkener)

Mercuric oxylodide, 3HgO, HgI<sub>2</sub>

Decomp by H<sub>2</sub>O Sol in HI+Aq (Weyl, Pogg 131 524)

Mercuric oxyphosphide, Hg<sub>5</sub>P<sub>2</sub>O<sub>4</sub>

Decomp by H₂O (Partheil and van Haaren, Arch Pharm 1900, 238 35)

Mercuric oxyselenide, 2HgSe, HgO

Easily sol in aqua regia (Uelsmann, A **116** 122)

Mercury phosphide, Hg<sub>3</sub>P<sub>2</sub>

Insol in H<sub>2</sub>O, HNO<sub>3</sub>, or HCl+Aq Easily sol in aqua regia (Granger, C R 115 229) Hg<sub>3</sub>P<sub>4</sub> (Granger, C N 1898, 77 229)

Mercury phosphochloride, P2Hg3, 3HgCl3+ 3H₂O

See Dimercuriphosphonium mercuric chloride

Mercury phosphosulphide, 2HgS, P2S

(Berzelius)

HgS, P<sub>2</sub>S 2HgS, P S<sub>3</sub> 3HgS, P<sub>2</sub>S<sub>3</sub> 2HgS, P<sub>2</sub>S<sub>5</sub> (Baudrimont, C R 55 323) (Berzelius, A 47 256)

Mercuric selenide, HgSe

Sol in cold aqua regia when crystalline When precipitated shows the same properties towards solvents as mercuric sulphide (Reeb J Pharm (4) 9 173)

Min Tilmannite Sol only in aqua regia

Mercuric selenochloride, 2HgSe, HgCl<sub>2</sub>

Insol in boiling HCl, HNO<sub>3</sub>, or H<sub>2</sub>SO<sub>4</sub>+ Easily sol in aqua regia and a mixture of H<sub>2</sub>SO<sub>4</sub> and conc HNO<sub>3</sub>+Aq (Uelsmann, J B **1860** 92)

Mercurous sulphide, Hg<sub>2</sub>S

Insol in H2O, dil HNO3, hot NH4OH, or (NH<sub>4</sub>)<sub>2</sub>S+Aq Sol in KOH+Aq with separation of Hg (Rose)

Does not exist, only mixtures of Hg and HgS are formed (Barfoed, J pr 93 230) See also Baskerville, J Am Chem Soc

1903, 25 799)

Not attacked by HNO<sub>3</sub> below 0°, but attacked by dil HNO3 and HCl+Aq when temp is increased Sol in Ni S or I S but Hg soon ppts (Antony and Sestim, Gazz ch it 1894, 24, (1) 194)

Mercuric sulphide, HgS

Insol in H<sub>2</sub>O

Pptd as a brown coloration in presence of 20,000 pts  $H_2()$ , and as a green coloration in presence of 40,000 pts IIO (Inssugne) Much less sol in HO than Ag S or Cu S

(Bodlander, Z. phys. Ch. 1898, 27, 64)

1 1 H2O dissolves 0.05×10 6 mols HgS at (Weigel, Z phys Ch 1907 58 291)

Sol in cold cone, and in hot dil III + Aq or HBr+Aq (Kekulc, A Suppl 2 101) Very sl decomp by hot conc HCl+Aq Not ittacked by hot HNO3+Aq Sol in cold iqui

Not attacked by 4-N HNO<sub>3</sub> or 4-N HNO<sub>3</sub> +4-N H2SO4 at ord temp even after many days By action of a mixture of equal volumes of 4-N HNO3 and cone H2SO4, there was slight action on pptd HgS after 14, more action after 62 days If HgS is boiled with the 4-N acids, oxidation takes place most rapidly with 4-N HNO<sub>3</sub>, then the mixture 66 7% 4-N H<sub>2</sub>SO<sub>4</sub>+33 3% 4-N HNO<sub>3</sub>, then 33 3% 4-N H<sub>2</sub>SO<sub>4</sub>+66 7% 4-N HNO<sub>3</sub>, and lastly 4-N H<sub>2</sub>SO<sub>4</sub> alone (Moore, J Am Chem Soc 1911, 33 1094)

Cold conc H2SO4 does not attack red or black HgS, but they are attacked by hot acid (Berthelot, A ch 1898, (7) 14 198)

Freshly pptd HgS is insol in dil KCN+

(Berthelot)

Sol in K<sub>2</sub>S+Aq, but readily only in presence of free alkali (Brunner, Pogg 15 596) Insol in boiling KOH+Aq

Sol in KSH or NaSH+Aq Very sl sol in cold yellow (NH<sub>4</sub>)<sub>2</sub>S+Aq Insol in KCN

or  $Na_2S_2O_3+Aq$  (Fresenius) Easily sol in conc  $Na_2S$  or  $K_2S+Aq$ , even in absence of KOH or NaOH Insol in (NH<sub>4</sub>)<sub>2</sub>S+Aq Sol in CaS, BaS, or SrS+Aq Insol in NaSH or KSH+Aq (de Koninck, Z angew Ch 1891 51)

Solubility in NaSH is very small in comparison with that in Na2S+Aq

Trans Faraday Soc 1908, 4 30)
Solubility in BaS is practically equal to that in Na<sub>2</sub>S (Knox)

All cryst modifications are sol in conc  $K_2S$  and in conc  $Na_2S+Aq$  (Allen and Crenshaw, Am J Sci 1912, (4) 34 368) Sol in potassium thiocarbonate+Aq

(Rosenbladt, Z anal 26 15)

Sol in alkalı sulpho-molybdates, -tungstates, -vanadates, -arsenates, -antimonates, and -stannates (Storch, B 16 2015)

1 l BaS<sub>2</sub>H<sub>2</sub>+Aq containing 50 g Ba dissolves no HgS in the cold, but 50-60 g at 40-50°

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

1898, **20** 829)

Insol in acetone (Eidmann, C C 1899, II 1014)

Insol in pyridine (Schroeder, Dissert **1901**)

Insol in ethyl acetate (Naumann, B 1910, 43 314)

l'xists in a colloidal state, sol in H<sub>2</sub>O

(Winnsinger, Bull Soc (2) 49 452)

Min Cinnebar Insol in H<sub>2</sub>O, alcohol, dil reids or alkaline solutions

Decomp by hot dil HNO<sub>3</sub>+Aq Not decomp by HCl+Aq, but easily by hot H SO<sub>4</sub> or aqua regra Rasily sol in CuCl<sub>2</sub>+ Aq (Kursten)

Sol in a mixture of Na2S and NaOH when present in the proportion of HgS 2Na2S

Sol in pure N<sub>12</sub>S+Aq or in mixtures of Na S and NaSH+Aq Insol in cold NaSH+ Aq, but sol on warming with evolution of H<sub>2</sub>S (Becker, Sill Am J (3) 33 199)

Insol in acctone (Krug and M'Elroy) Cinnabar is easily sol in 20% HBr+Aq (Rising and Lenher, J Am Chem Soc 1896, **18** 96)

(Smith, J Am Chem Soc Sol in S<sub>2</sub>Cl<sub>2</sub>

1898, **20** 291)

Mercuric platinum sulphide See Sulphoplatinate, mercuric Mercuric potassium sulphide, K.S. 2HgS

Decomp into its constituents by H<sub>2</sub>O, decomp by HCl, and HNO<sub>2</sub>+Aq, and by hot KOH, and NH4OH+Aq (Schneider, Pogg 127 488

K<sub>2</sub>S, HgS+5H<sub>2</sub>O Decomp kalles (Weber, Pogg **97** 76) Decomp by H<sub>2</sub>O or

alkalies  $+H_2O$ 

(Ditte)  $+7H_2O$ Sol in K<sub>2</sub>S+Aq (Ditte, C R 98 1271)

 $K_2S$ ,  $5HgS+5H_2O$ Easily decomp by H<sub>2</sub>O (Ditte)

Mercuric sodium sulphide, HgS, Na<sub>2</sub>S+  $8H_2O$ 

Decomp by H<sub>2</sub>O or alkalies 5HgS, 2Na<sub>2</sub>S+3H<sub>2</sub>O Decomp by H (Knox, Trans Faraday Soc 1908, 4 36) Decomp by H<sub>2</sub>O

Mercuric sulphobromide, 2HgS, HgBr<sub>2</sub>

Insol in H<sub>2</sub>O Not attacked by boiling  $HNO_3$  or  $H_2SO_4$  (Rose)

Mercuric sulphochloride, 2HgS, HgCl<sub>2</sub>

Insol in H<sub>2</sub>O, cold or hot, dil or conc HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, or HCl+Aq (Rose, Pogg 13 59)

Decomp by hot aqua regia

By boiling with dil HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> and HCl, Hg and Cl go into solution (Hamers, Dissert 1906)

Insol in H<sub>2</sub>O and H<sub>2</sub>SO<sub>4</sub> Partly sol in HCl and HNO<sub>3</sub>, easily sol in aqua regia (Alexander, Dissert 1899)

(Deniges, Bull Soc Sol in aqua regia 1915, (4) **17** 356)

3HgS, HgCl<sub>2</sub> Properties as the abo comp (Poleck and Goercki, B 21 2415) 4HgS, HgCl<sub>2</sub> As above (P and G) 5HgS, HgCl<sub>2</sub> As above (P and G) Properties as the above

Insol in alkali sulphides and in fuming HNO<sub>3</sub>, decomp by NaOBr+Aq and by KOH (Bodroux, C R 1900, **130** 1399)

Sl sol in solutions of alkali sulphides unless

heated (Berzelius)

Easily sol in alkali sulphides+Aq, slowly sol in alkalies or alkali hydrosulphides+Aq (Atterberg, J B **1873** 258)

Mercurous sulphotetrachloride, Hg<sub>2</sub>SCl<sub>4</sub>

Decomp by H<sub>2</sub>O with separation of S HgCl<sub>2</sub> going into solution (Capitaine, J Pharm **25** 525)

Mercuric sulphofluoride, 2HgS, HgF<sub>2</sub>

Decomp by boiling H<sub>2</sub>O Not decomp by hot HCl or HNO3+Aq, but gives HF with hot H<sub>2</sub>SO<sub>4</sub>+Aq (Rose, Pogg 13 66)

Mercury sulpho dumide, HgN<sub>2</sub>S, NH<sub>3</sub> Ppt (Ruff, B 1904, **37** 1585)

Mercuric sulphoiodide, HgS, HgI<sub>2</sub>

Ppt (Rammelsberg, Pogg 48 175) 2HgS, HgI<sub>2</sub> (Palm, C C 1863 121)

Insol in min acids with exception of aqua regia (Hamers, Dissert 1906)

Mercuric sulphoiodide ammonia, 2HgS, HgI<sub>2</sub>, NĤ<sub>3</sub> (Foerster, Ch Z 1895, 19 1895)

Mercuric telluride, HgTe

Min Coloradorte Sol in boiling HNO<sub>2</sub>+ Aq with separation of H<sub>2</sub>TeO<sub>3</sub>

Metastannic acid See Stannic acid.

Molybdato10d1c ac1d See Molybdo10d1c acid

### Molvbdenum, Mo

Not attacked by HCl, HF, or dil H<sub>2</sub>SO<sub>4</sub>+ Sol in conc H<sub>2</sub>SO<sub>4</sub> Very easily sol in aqua regia Oxidised by HNO<sub>3</sub>+Aq either to molybdenum oxide, which dissolves in HNO<sub>3</sub>, or, if HNO<sub>8</sub> is in excess, to molybdic acid, which remains undissolved

Attacked by HNO<sub>3</sub>+Aq containing 3-70% HNO<sub>3</sub>, but only slowly by 70% acid, with formation of insol white powder, much more vigorously by 50% acid, in which case a clear solution is formed (Montemartini, Gazz ch it 22 384)

Not attacked by alkalies+Aq (Bucholz, Scher J 9 485)

With a sp gr 901, the metal is malleable and sol in a mixture of HF and HNO<sub>3</sub>, sol in fused KClO<sub>3</sub> (Moissan, Bull Soc 1895, (3) **13** 966)

Ductile Mo is moderately quickly attacked by HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> and HCI (Fink, Met Chem Eng 1910, 8 341)

Not immediately attacked by cold dil Not attacked by dil and conc  $\mathrm{HNO}_{8}$ Boiling dil HCl+Aq does not attack, conc dissolves traces by long heating Sol in aqua regia (Lederer, Dissert 1911) Dil HCl dissolves 203% Mo at 110° in

18 hrs More slowly sol in HCl (sp gr 1 15)

Insol in dil H<sub>2</sub>SO<sub>4</sub> at 110° Slowly sol in conc H<sub>2</sub>SO<sub>4</sub> (sp gr 182) at 110°, rapidly sol at 200°-250°

Slowly sol in conc HNO<sub>3</sub> (sp gr 140), rapidly sol in dil HNO<sub>3</sub> (sp gr 1 15)

Rapidly sol in hot aqua regia Insol in hot or cold HF (Ruder, J Am Chem Soc 1912, 34 388)

Insol in KOH+Aq Sol in fused KOH (Ruder, J Am Chem Soc 1912, 34 389) Insol in liquid NH<sub>8</sub> (Franklin, Am Ch J 1898, 20 828)

Molvbdenum acichloride See Molybdenyl chloride Molybdenum amide, OH MoO2 NH2

Verv unstable Insol in abs alcohol (Fleck, Z anorg 1894, 7 353)

Molybdenum amide nitride, Mo<sub>5</sub>N<sub>19</sub>H<sub>4</sub>=  $4\text{MoN}_2$ ,  $\text{Mo(NH}_2)_2$ 

Not attacked by HCl, or dil HNO<sub>3</sub>+Aq (Uhrlaub)

Molybdenum amidochloride, Mo<sub>2</sub>(NH<sub>2</sub>)<sub>3</sub>Cl<sub>3</sub> Insol in H<sub>2</sub>O and dil acids (Rosenheim, Z anorg 1905, 46 317)

Molybdenum amidochloride ammonia,  $Mo_2(NH_2)_3Cl_3$ ,  $10NH_3$ 

Unstable in the air (Rosenheim, Z anorg 1905, **46** 319)

Molybdenum boride, Mo<sub>3</sub>B<sub>4</sub>

Moderately attacked by hot conc acids and vigorously by hot aqua regia (Tucker and Moody, Chem Soc 1902, **81** 17)

Molybdenum dibromide, MoBr<sub>2</sub> = Mo<sub>8</sub>Br<sub>4</sub>Br<sub>6</sub> See Bromomolybdenum bromide

Molybdenum tribromide, MoBr<sub>3</sub>

Not decomp by H<sub>2</sub>O Boiling conc HCl, and cold dil ĤNO3+Aq do not attack appreciably Dil alkalies act slowly, but decomp with separation of Mo<sub>2</sub>O<sub>3</sub> on boiling (Blomstrand, J pr 82 435)

Molybdenum tetrabromide, MoBr4

Rapidly deliquescent, and easily sol in  $H_2O$  (Blomstrand, J pr 82 433)

Molybdenum bromochloride, etc See Bromomolybdenum chloride, etc.

Molvbdenum bronze

See Molybdate molybdenum oxide, sodium

Molybdenum carbide, Mo<sub>2</sub>C

Insol in HNO<sub>3</sub> (Moissan, Bull Soc

1895, (3) **13** 967)

MoC Does not decomp H<sub>2</sub>O even at 500-600° Slowly attacked by hot HCl, HF and hot conc H<sub>2</sub>SO<sub>4</sub> Easily decomp by HNO<sub>3</sub> Not attacked by NaOH+Aq or KOH+Aq (Moissan and Hoffmann, C R 1904, **138** 1559)

Molybdenum carbonyl, Mo(CO)<sub>6</sub>

Quickly attacked by bromine ether or benzene (Mond, Hirtz and Cowap, Chem Soc 1910, 97 808)

Molybdenum dichloride,  $MoCl_2 = Mo_3Cl_4Cl_2$ See Chloromolybdenum chloride

Molybdenum trichloride, MoCla

Insol in H<sub>2</sub>O or boiling conc HCl+Aq Easily sol, especially when heated, in HNO<sub>3</sub>+Aq Sol in H<sub>2</sub>SO<sub>4</sub> Decomp by NH<sub>4</sub>OH, KOH, or NaOH+Aq

Sl sol m alcohol (Leichti and Kempe)
Practically insol m alcohol and ether
(Hampe, Ch Z 1888, 12 5)

Molybdenum tetrachloride, MoCl4

Deliquescent Hisses with little H<sub>2</sub>O, but only partly sol in more H<sub>2</sub>O Only sl sol in conc HCI+Aq Sol in H<sub>2</sub>SO<sub>4</sub> or HNO<sub>2</sub>+Aq Partly sol in alcohol and ether (Liechti and Kempe)

Molybdenum pentachloride, MoCls

Very deliquescent Sol in H<sub>0</sub>O with extreme evolution of heat Sol in HCl, HNO3, or H<sub>2</sub>SO<sub>4</sub>+Aq

When freshly prepared, is incompletely sol in H<sub>2</sub>O, but after standing is easily sol with hissing (Kalischer, Dissert 1902)

Sol in a small amt of cone HCl (Hampe.

Ch Z 1888, 12 5)

Sol in absolute alcohol or ether (Liechti

and Kempe )

Sol in CHCl2 and in CCl4 Sol with hissing in many organic solvents (ethers, alcohols, ketones, aldehydes, acids, acid esters, acid anhydrides, amines) Sol in cinnamic aldehyde (Kalischer, Dissert 1902)

Molybdenum hydroxyl chloride, Mo(OH)<sub>2</sub>Cl<sub>2</sub> Easily sol in H<sub>2</sub>O (Debray, C R 46 1101)

Molybdenum tetrachloride phosphorus pentachloride, MoCl4, PCl5

Sol in H<sub>2</sub>O MoCl<sub>4</sub>, 2PCl<sub>5</sub> Sol in H<sub>2</sub>O (Cronander, Bull Soc (2) 19 500)

Molybdenum phosphorus pentachloride, MoCl<sub>5</sub>, PCl<sub>5</sub>

Easily decomp (Smith and Sargent, Z anorg 1894, 6 385)

Molybdenum phosphoryl chloride, MoCl<sub>5</sub>, POCl<sub>3</sub>

Decomp by HO, insol in CS<sub>2</sub>, sol in C6H6 and CHCl3

Molybdenum trichloride potassium chloride Efflorescent Decomp with H<sub>2</sub>O (Berzelius)

MoCl<sub>3</sub>, 3KCl Very sol in H<sub>2</sub>O Nearly insol in alcohol and ether (Chilesotti, C. C.

**1903,** II 652)

Fairly easily sol in cold H<sub>2</sub>O +2H₂O without any apparent decomp Decomp in aqueous solution, slowly in the cold but rapidly on boiling This decomp is prevented by the presence of HCl

(Henderson, Proc Sl sol in conc HCl Chem Soc 1903, 19 245)

Molybdenum rubidium chloride, Rb<sub>2</sub>MoCl<sub>5</sub>  $+H_2O$ 

Sol in H<sub>2</sub>O Nearly insol in alcohol and ether (Chilesotti, C C 1903, II 652)

Molybdenum pentachloride nitrogen sulphide, MoCls, N<sub>4</sub>S<sub>4</sub>

Decomp in moist air (Davis, Chem Soc 1906, **89**, (2) 1575)

Molybdenum hexafluoride, MoF6

Decomp by a little H<sub>2</sub>O with separation of blue oxide Sol in large amount of H<sub>2</sub>O forming a colorless solution

Absorbed by alkalies and NH<sub>4</sub>OH+Aq

(Ruff, B 1907, 40 2930)

Molybdenum fluoride with MF See Fluomolybdate, M

Molybdenum potassium trifluoride (?) Precipitate Sol in HCl+Aq

Molybdenum potassium tetrafluoride (?) Sl sol in H<sub>2</sub>O (Berzelius)

Molybdenum sesquihydroxide, Mo<sub>2</sub>O<sub>6</sub>H<sub>6</sub>

Difficultly sol in acids Insol in KOH. NaOH, NH<sub>4</sub>OH, or K<sub>2</sub>CO<sub>3</sub>+Aq Somewhat sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq, but pptd on boiling (Berzelius)

Molybdenum hydroxide, Mo<sub>3</sub>O<sub>8</sub>, 5H<sub>2</sub>O

Easily sol in H<sub>2</sub>O Insol ın CaCl, NH<sub>4</sub>Cl, or NaCl+Aq Sl sol in alcohol (Berzelius)

Molybdenum dihydroxide, MoO<sub>2</sub>, xH O

Slowly and not abundantly sol in H<sub>2</sub>O<sub>2</sub> from which it is precipitated by NH<sub>4</sub>Cl and other salts Gelatinises by standing in closed vessels or by evaporating on the air Sol in the ordinary acids Insol in KOH, or NaOH Sol in alkalı curbonates + Aq

Molybdenum duodide, MoI2

Insol in H<sub>2</sub>O and alcohol Sl attacked by cold H<sub>2</sub>SO<sub>4</sub> or HNO<sub>3</sub> (Guichard, A ch 1901, (7) 23 567)

Sl decomp H<sub>2</sub>O at ordinary temp Slowly sol in H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub> (Guichard, C R 1896**, 123** 822 )

Molybdenum tetraiodide (?)

Completely sol in water (Berzelius)

Molybdenum nitride, Mo<sub>5</sub>N<sub>3</sub>, and Mo<sub>5</sub>N<sub>4</sub>

(Uhrlaub) See Molybdenum amide

Mo<sub>3</sub>N<sub>2</sub> (Rosenheim, Z anoig 1905, 46 l 317)

Molybdenum monoxide, MoO

Known only as hydroxide (Blomstrand, J pr 77 90)

Molybdenum sesquioxide, Mo<sub>2</sub>O<sub>3</sub> Insol in acids or alkalies See Molybdenum sesquihydroxide

Molybdenum droxide, MoO<sub>2</sub>

Insol in HCl or HF+Aq Sl sol in conc 2SO<sub>4</sub> HNO<sub>3</sub> oxidises to MoO<sub>3</sub> Not at-Not at- $H_2SO_4$ tacked by KOH+Aq (Ullik, A 144 227) SI sol in KHC<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+Aq

Molybdenum trioxide, MoO3

Sol in 500 pts cold, and much less hot H<sub>2</sub>O (Bucholz)

Sol in 960 pts hot H<sub>2</sub>O (Hatchett) Sol in 570 pts cold, and much less hot H<sub>2</sub>O

Sol in acids before ignition Insol in acids, but sl sol in acid potassium tartrate+Aq Sol in alkalies or alkali carafter ignition bonates+Aq

Sol in NH<sub>4</sub>OH+Aq See also Molybdic acid Min Molybarte Sol in HCl+Aq

¹e, Mo<sub>2</sub>O<sub>5</sub> and HCl, only sl sol in B 1901, 34 151)

B 1901, 34 151)

Join H4O (2 g m 1 l)

H4Cl+Aq Insol in caustic al
Much Much

more sol in  $M_2CO_3+Aq$  and in  $(NH_4)_2CO_3+Aq$  (Klason, B 1901, 34 150) Mo<sub>4</sub>O<sub>10</sub>+3H<sub>2</sub>O (Smith and Oberholtzer,

Z anorg 1893, 4 243) Mo<sub>4</sub>O<sub>11</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Bailhache,

C R 1901, **133** 1212)  $Mo_5O_{14}+6H_2O$  Very sol in  $H_2O$  (Guich-

ard, C R 1900, 131 419)

 $Mo_7O_{20}$  Sol in  $H_2O$ (Junius, Z anorg 1905, **46** 447)

 $Mo_{20}O_{41} + 21H_2O = Mo_2O_5$ ,  $18MoO_2 + 21H_2O$  Easily sol in  $H_2O$  Insol in  $NH_4Cl$ 

+Aq (Klason, B 1901, **34** 160) Mo<sub>25</sub>O<sub>77</sub>+24H<sub>2</sub>O=Mo<sub>2</sub>O<sub>5</sub>, 24MoO<sub>3</sub>+

 $24 H_{\circ}O$ (Klason, B 1901, 34 159)  $3Mo_2O_3$ ,  $2Mo_7O_{24}+18H_2O$  Sol in  $H_2O$ (B)

It is probable that the five blue oxides of molybdenum described by Klason (B 34, 148, 158) and Bailhache are either the blue oxide Mo<sub>5</sub>O<sub>14</sub> prepared by the author or mixtures of this compd with molybdenum tri-oxide (Guichard, C R 1902, 134 173)

Mo<sub>5</sub>O<sub>12</sub> Not attacked by ammonia, easily oxidised by HNO<sub>5</sub>+Aq Not attacked by HCl or H<sub>2</sub>SO<sub>4</sub>+Aq (Wohler, A **110** 275)

Formula is Mo<sub>3</sub>O<sub>8</sub>, according to Wohler, but Muthmann (A 238 108) has shown that correct formula is Mo<sub>5</sub>O<sub>12</sub>

Not attacked by boiling alkalies, HCl, or dil H<sub>2</sub>SO<sub>4</sub>+Aq Sol in conc H<sub>2</sub>SO<sub>4</sub>, with and Rautenberg, A 109 374)

subsequent decomp Sol in aqua regia, and (Muthmann)  $Cl_2+Aq$ Sol in H<sub>2</sub>O (Muthmann, A  $Mo_8O_8$ 

238 108) Min Ilsemannite (?)

+5H<sub>2</sub>O Moderately sol in H<sub>2</sub>O chetti, Z anorg 1899, 19 393) Mo<sub>5</sub>O<sub>7</sub> (v d Pfordten, B **15** 1925)

Molybdenum troxide ammonia, MoOs, 3NHs Unstable in air Very sol in H<sub>2</sub>O with evolution of ammonia (Rosenheim, Z

anorg 1906, 50 303) 3MoO₃, NH₃+½H₂O True composition

of commercial molybdic acid (Klason, B 1901, **34** 156 ) NH<sub>4</sub>H<sub>3</sub>M<sub>05</sub>O<sub>12</sub> Very sl sol in cold, easily sol in hot H<sub>2</sub>O with partial decomp (Klason,

B 1901, **34** 156)  $3M_0O_3$ ,  $3NH_3+7H_2O=(NH_4)_3H_3M_0_3O_{12}$  $4H_2O$  True composition of Rammelsberg's  $+4H_2O$  $3(NH_4)_2O$ ,  $7MoO_8+12H_2O$ (Klason,

1901, **34** 155) 4MoO<sub>3</sub>, NH<sub>3</sub>+6H<sub>2</sub>O Very sl sol in cold, very easily sol in hot H<sub>2</sub>O An insol modification with less H<sub>2</sub>O gradually cryst out (Mylius, B 1903, 36 639)

 $4\text{MoO}_{8}$ ,  $2\text{NH}_{8} + 3\text{H}_{2}\text{O}$ (Klason, B 1901,

**34** 156) 6MoO<sub>3</sub>, 3NH<sub>3</sub>+5H<sub>2</sub>O Very sl sol in cold, more easily sol in hot H<sub>2</sub>O, with partial decomp (Klason, B 1901, 34 156)

12MoO<sub>3</sub>,  $3NH_3 + 12H_2O$ (Klason, 1901, 34 158

12MoO<sub>3</sub>, 3NH<sub>3</sub>, 12H<sub>2</sub>O+3MoO<sub>3</sub>, SHO Moderately sol in boiling H<sub>2</sub>O (Klason)  $15\text{MoO}_3$ ,  $3\text{NH}_3 + 6\text{H}_2\text{O}$ Insol in HO

4MoO3, MoO2, 2NH3+7HO Slowly sol in H<sub>2</sub>O, fairly stable, gradually decomp by dil acids (Hofmann, Z anorg 1896, 12 280)

Molybdenum trioxide ammonia hydrogen peroxide,  $18\text{MoO}_3$ ,  $14\text{NII}_3$ ,  $3\text{II}_2\text{O}_4$ + 18H<sub>2</sub>O

Sol in H<sub>2</sub>O Sp gr of sit solution = 1 486 at 17 4° (Bacrwald, B 1884, 17 1206)

Molybdenum oxybromide See Molybdenyl bromide

Molybdenum oxychloride See Molybdenyl chloride

Molybdenum oxyfluoride See Molybdenyl fluoride

Molybdenum oxyfluoride with MF

See Fluoxymolybdate, M, and Fluoxyhypomolybdate, M

Molybdenum phosphide, Mo<sub>2</sub>P<sub>2</sub>

Gradually sol in hot HNO<sub>3</sub>+Aq (Wohler

## Molvbdenum selenide, MoSes

Not obtained pure (Uelsmann, A 116 125)

## Molybdenum silicide

Sol in HF, only very sl sol in other acids (Warren, C N 1898, 78 319)

 $MoS_{1_2}$ Insol in all min acids, sol in a warm mixture of HF+HNO<sub>3</sub> (Defacqz, C R 1907, 144 1425)

Insol in min acids, sol in HF+HNO; Unattacked by 10-20% KOH+Aq Decomp by fused NaOH (Honigschmid, M 1907, 28 1020)

Not attacked by boiling HNO, aqua regia or HF (Watts, Trans Am Electrochem

Soc 1906, 9 106)

Mo<sub>2</sub>S<sub>13</sub> (Vigouroux, C R 129 1238)

## Molybdenum disulphide, MoS<sub>2</sub>

Insol in H<sub>2</sub>O Easily sol in aqua regia Easily oxidised by HNO<sub>8</sub> Sol in boiling H<sub>2</sub>SO<sub>4</sub> Sl attacked by KOH+Aq (Berzelius)

Min Molybdenite Sol in HNO<sub>3</sub>+Aq, with separation of MoO<sub>3</sub>, sol in aqua regia,

very sl sol in H<sub>2</sub>SO<sub>4</sub>

## Molybdenum trisulphide, MoS3

Somewhat sol in H<sub>2</sub>O, especially if hot, but pptd by an acid Difficultly sol except when boiled with KOH+Aq Sl sol in solutions of alkalı sulphides unless heated (Berzelius)

Easily sol in alkali sulphides + Aq, slowly sol in alkalies or alkalı hydrosulphides+Aq

(Atterberg, J B 1873 258)

## Molybdenum tetrasulphide, MoS4

Not decomp by hot HO or acids Sl sol in cold alkalı sulphides+Aq, but easily by boiling (Berzelius)
Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

1898, **20** 828)

## Molybdenum sesquisulphide, Mo<sub>2</sub>S<sub>3</sub>

Insol in HCl and H SO4, sol in hot cone HNO<sub>3</sub> and aqua regia (Guichard, C R 1900, **130** 135)

## Molybdenum sulphide with MS See Sulphomolybdate, M

## Molybenum sulphochloride, Mo<sub>5</sub>S<sub>8</sub>Cl<sub>9</sub>

Insol in H2O and alkalies Slowly sol in conc HNO<sub>3</sub> (Smith and Oberholtzer, Z anorg 1894, 5 67)

# Molybdenyl monamide, NH<sub>4</sub>MoO<sub>4</sub> or MoO<sub>2</sub> (OH NH<sub>2</sub> +H<sub>2</sub>O

(Rosenheim, Z anorg 1905, 46 318)

Molybdenyl bromide, MoO2Br.

Deliquescent, and sol in H2O with slight evolution of heat

Mo<sub>2</sub>O<sub>3</sub>Br<sub>4</sub> Unstable in air (Smith and Oberholtzer, Z anorg 4 236)

Molybdenyl potassium bromide, MoOBr2, 2KBr

(Weinland, Z anorg 1905, 44 109) MoOBr<sub>8</sub>, KBr+2H<sub>2</sub>O (Weinland (Weinland, Z anorg 1905, 44 110)

Molybdenyl rubidium bromide, MoOBr<sub>3</sub>, 2RbBr

(Weinland, Z anorg 1905, 44 108)

## Molydenyl chloride, MoO<sub>2</sub>Cl<sub>2</sub>

Sol in H<sub>2</sub>O and alcohol

Abundantly sol in abs alcohol Not very sol in abs ether (Hampe, Ch Z 1888, 12

+H<sub>2</sub>O Composition settled by mol wt determinations Dissociates in alcohol and in H<sub>2</sub>O (Vaudenberghe, Z anorg 1895, 10

Very hygroscopic Sol in acetone, ether

and alcohol (Vaudenberghe, l c) MoOCl<sub>4</sub> Deliquescent Sol in little H<sub>2</sub>O with violent action More H<sub>2</sub>O decomposes (Puttbach, A 201 123)

Formula is Mo<sub>9</sub>O<sub>8</sub>Cl<sub>32</sub>, according to Blom-

strand (J pr 71 460)

 $M_{02}O_3Cl_4$  (Puttbach, l c) Mo<sub>2</sub>O<sub>3</sub>Cl<sub>6</sub> Deliquescent Sol in H<sub>2</sub>O with very slight evolution of heat and subsequent formation of precipitate (Blomstrand) Sol in acids (Puttbach, A 201 129)

Mo<sub>2</sub>O<sub>3</sub>Cl<sub>5</sub> Deliquescent, and sol in H<sub>2</sub>O

(Blomstrand)

Mo<sub>3</sub>O<sub>5</sub>Cl<sub>8</sub> Insol in HCl and cold H<sub>2</sub>SO<sub>4</sub> Sol in hot H.SO4 and HNO3 (Puttbach, A **201** 123)

Mo<sub>3</sub>O<sub>3</sub>Cl<sub>7</sub> Difficultly sol in HCl Easily sol in HNO3, and alkalies+Aq (Puttbach)

Molybdenyl potassium chloride, MoO2Cl2, KCl+HO

(Weinland, Z anoig 1905, 44 97) +2H<sub>2</sub>O (Weinland, Z anorg 1905, 44

 $6M_0O_2Cl_2$ ,  $2KCl+6H_2O$  (Weinland, Z

anorg 1905, 44 97) MoOCl<sub>2</sub>, 2KCl+2H O Sol in H O (Nordenskjold, B 1901, **34** 1573)

Ppt (Henderson, Proc Chem Soc 1903, **19** 245)

Molybdenyl rubidium chloride, MoO2Cl,  $RbCl+H_2O$ 

MoO<sub>2</sub>Cl<sub>2</sub>, 2RbCl (Weinland, Z anorg 1905, 44 95)

MoOCl<sub>3</sub>, 2RbCl Sl sol in H<sub>2</sub>O Less sol than K salt (Nordenskjold, B 1901, 34 (1573)

Molybdenyl fluoride, MoO<sub>2</sub>F<sub>2</sub>

Decomp rapidly in moist air (Schulze, J pr (2) 21 442)

Very hydroscopic Sol in a little H2O giving a blue solution, in more H2O giving a colorless solution

Sol in AsCl<sub>3</sub>, SiCl<sub>4</sub>, SO<sub>2</sub>Cl<sub>2</sub> and PCl<sub>3</sub> warming these solutions, gas is evolved

Insol in toluene Nearly insol in ether, CHCl<sub>8</sub>, CCl<sub>4</sub>, and CS<sub>2</sub> Sol in warm pyridine and in ethyl and methyl alcohol (Ruff, B

1907, 40 2934)

MoOF<sub>4</sub> Very hydroscopic Decomp by H<sub>2</sub>O and conc H<sub>2</sub>SO<sub>4</sub> Decomp by alcohol Sol in ether and CHCl<sub>3</sub> with evolution of gas Insol in toluene Very sl sol in benzene and CS<sub>2</sub> (Ruff, B 1907, 40 2932)

Mo<sub>2</sub>O<sub>3</sub>F<sub>4</sub> Deliquescent Easily sol in HF +Aq, not in H<sub>2</sub>O (Smith and Oberholtzer)

### Molybdenyl fluoride with MF

See Fluoxymolybdate, M, and Fluoxyhypomolybdate, M

### Molybdenyl hydroxide, MoO(OH)<sub>3</sub>

2 g are sol in 1000 cc  $H_2O$ , insol in  $H_2O +$ NH4Cl, only sl sol in NH4OH and alkali carbonates + Aq (Klason, B 1901, 34 151)

## Molvbdic acid, H<sub>2</sub>MoO<sub>4</sub>

144 217)

insol in H<sub>2</sub>O (Vivier, C R 106

sparingly sol in cold  $H_2O$ , more sol in hot  $H_2O$  (Rosenheim and Bertheim, Zanorg 1903, 34 435)

a-modification

Solubility of MoO<sub>3</sub>, H<sub>2</sub>O (a-modification) in H<sub>2</sub>O at t°

1000 g H<sub>2</sub>O dissolve g MoO<sub>3</sub>

| t°                                                   | G MoO <sub>8</sub>                                          | t°                                           | G MoO <sub>3</sub>                                 |
|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|
| 14 8<br>15 2<br>24 6<br>25 6<br>30 3<br>36 0<br>36 8 | 2 117<br>2 131<br>2 619<br>2 689<br>2 973<br>3 085<br>3 295 | 42 0<br>45 0<br>52 0<br>60 0<br>70 0<br>80 0 | 3 446<br>3 661<br>4 184<br>4 685<br>4 231<br>5 212 |

(Rosenheim and Davidsohn, Z anorg 1903, **37** 318)

(β modification), MoO<sub>3</sub>, H<sub>2</sub>O From MoO<sub>3</sub>, 2H<sub>2</sub>O at 60°-70° (Rosenheim and Davidsohn)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828) (Ruegenberg and

Easily sol in H<sub>2</sub>SO<sub>4</sub> (Ruegenberg Smith, J Am Chem Soc 1900, 22 772) H<sub>4</sub>MoO<sub>5</sub> Sol in H<sub>2</sub>O and acids (Mıllingk)

Very sol in H<sub>2</sub>O (Mylius, B 1903, 36, 638)

Solubility of MoO<sub>3</sub>, 2H<sub>2</sub>O in H<sub>2</sub>O 1000 g H<sub>2</sub>O dissolve g MoO<sub>3</sub> at t°

| t° | G MoO <sub>3</sub> | t°   | G MoO3 |
|----|--------------------|------|--------|
| 18 | 1 066              | 59   | 11 258 |
| 23 | 1 856              | 60   | 12 057 |
| 30 | 2 638              | 66   | 17 274 |
| 40 | 4 761              | 70   | 20 550 |
| 48 | 6 360              | 74 4 | 20 904 |
| 50 | 6 873              | 75   | 20 920 |
| 2  | 7 855              | 79   | 21 064 |

(Rosenheim and Bertheim, Z anorg 1903, 34 430)

Solubility of MoO<sub>2</sub>, 2H<sub>2</sub>O in ammonium salts +Aq at t° 1000 g of the solvent dissolve g MoO2

| Solvent                                                                                     | t°                           | G MoO <sub>3</sub>               |
|---------------------------------------------------------------------------------------------|------------------------------|----------------------------------|
| 10% (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub><br>10% NH <sub>4</sub> HSO <sub>4</sub> | 29 6<br>31 5<br>41 8<br>49 7 | 19 27<br>27 53<br>34 36<br>37 69 |

(Rosenheim and Davidsohn, Z anorg 1903, **37** 315)

 $H_6MoO_6$  (?) Known only in solution  $H_2Mo_2O_7$  Easily sol in  $H_2O$  (Ullik)  $H_2Mo_4O_{13}$ Easily sol in HO (U)  $H_2Mo_8O_{25}$ Easily sol in HO (U) Molybdic acid also exists in a colloidal modification, sol in HO (Graham, C R **59** 174)

### Molybdates

The normal molybdates of the alkali metals are easily sol in H<sub>2</sub>O, while the others are sl sol or insol therein

The trimolybdates are sl sol in cold, but very easily sol in hot H<sub>2</sub>O

The teleamolybdates are easily sol in H O

### Aluminum molybdate, Al<sub>10</sub>Mo O 1

Precipitate (Gentele, J pr 81 414) Contains aluminum hydroxide and sul phate (Struve, J pr **61** 441)

Aluminum ammonium molybdate

See Aluminicomolybdate, ammonium

Aluminum barium molybdate

Ser Aluminicomolybdate, barium

Ammonium molybdate, (NH<sub>4</sub>)<sub>2</sub>MoO<sub>4</sub>

Efflorescent through loss of NH3, decomp by H<sub>2</sub>O into acid salt (Svanberg and Struve) Insol in liquid NH, (Franklin, Am Ch J 1898, **20** 826)

 $(NH_4)_2Mo_2O_7$  Sol in  $H_2O$ + $H_2O=NH_4HMoO_4$  Sol in  $H_2O$  Sol in 2-3 pts  $H_2O$  (Brandes, Mauro, Gazz ch it 18 120)

(NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>+4H<sub>2</sub>O (Commercial am-

monium molybdate)
Not efflorescent Sol in H<sub>2</sub>O (Delafon-

taine, N Arch Sc ph nat 23 17)
According to Struve and Berlin =

 $(NH_4)_4Mo_5O_{17}+3H_2O$ According to Marignac and Delffs=  $(NH_4)HMoO_4$  The true composition of commercial ammonium molybdate is  $(NH_4)_{10}Mo_{12}O_{41}$  (Junius, Z anorg 1905, 46 428)

+12H<sub>2</sub>O More sol than the above (Rammelsberg, Pogg 127 298)

Insol in acetone (Krug and M'Elroy, J

Anal Appl Ch 6 184)
(NH<sub>4</sub>)<sub>10</sub>Mo<sub>12</sub>O<sub>41</sub> True formula for commercial ammonium molybdate (Sand and Eisenlohr, Z anorg 1907, 52 68)

Essenlohr, Z anorg 1907, 52 68) +7 $H_2O$  (Junius, Z anorg 1905, 46 428) (NH<sub>4</sub>)<sub>4</sub>Mo<sub>5</sub>O<sub>17</sub>+ $H_2O$  (Jean, C R 78

436 ) (NH<sub>4</sub>)<sub>2</sub>Mo<sub>2</sub>O<sub>19</sub>+H<sub>2</sub>O Very difficultly sol in cold, easily sol in hot H<sub>2</sub>O (Berlin, J pr **49** 445 )

Easily sol in NH<sub>4</sub>OH+Aq (Kammerer, J pr (2) 6 358)

 $(NH_4)_2O$ ,  $4MOO_3$  Practically insol in cold, sl sol in hot  $H_2O$  (Westphal, Dissert 1995)

 $+2 \rm{H}_2O$  Very difficultly sol in cold, rather easily sol in hot  $\rm{H}_2O$  (Berlin) 100 cc  $\rm{H}_2O$  dissolve 3 5200 g at 15°, sp gr = 1 03, 3 6711 g at 18°, sp gr = 1 04, 4 5961 g at 32°, sp gr = 1 05 (Wempe, Z anorg 1912, 78 25°)  $+2 \rm{1} \rm{2} \rm{H}_2O$  (Junius, Z anorg 1905, 46

440) (NH<sub>4</sub>)<sub>2</sub>O, 8M<sub>0</sub>O<sub>3</sub>+13H<sub>2</sub>O (Rosenheim,

Z anorg 1597, 15 189 (NH<sub>4</sub>) O, 9MoO<sub>3</sub>+17H<sub>2</sub>O (Westphal, Dissert 1895)

See also Molybdenum trioxide ammonia

Ammonium barium molybdate, 3(NII<sub>4</sub>)<sub>2</sub>O, 3B<sub>2</sub>O, 14M<sub>2</sub>O<sub>3</sub>+12H<sub>2</sub>O (Westph il, Dissert 1895)

Ammonium bismuth molybdate, NII<sub>4</sub>B<sub>1</sub>(MoO<sub>4</sub>)<sub>2</sub>

(Ricderel, J. Am. Chem. Soc. 1903, 25 914)

Ammonium cadmium molybdate ammonia,  $(NH_4) Cd(MoO_4)_2$ ,  $2NH_3$ 

Decomp by H<sub>2</sub>O Sol in dil NH<sub>4</sub>OH+Aq (Briggs, Chem Soc 1904, **85** 674)

Ammonium cerium molybdate,  $(NH_4)_6CeMo_{14}O_{48}+24H_2O$ Sol in  $H_2O$  (Barbieri, C A 1909 293) Ammonium chromic molybdate

See Chromicomolybdate, ammonium

Ammonium cobaltous molybdate,  $3(NH_4)_2O$ ,  $7MoO_3$ , 3CoO,  $7MoO_3+xH_2O$   $5[3(NH_4)_2O$ ,  $7MoO_3]$ , 7[3CoO,  $7MoO_3]+$ 

 $xH_2O$ 2[3(NH<sub>4</sub>) O, 7MoO<sub>3</sub>], 3[3CoO, 7MoO<sub>5</sub>]  $+xH_2O$ 

 $3[3(NH_4)_2O, 7M_0O_3], 5[3C_0O, 7M_0O_3] + xH_2O$ 

 $3(NH_4)_2O$ ,  $7MoO_3$ , 5[3CoO,  $7MoO_3]+$  $xH_2O$  $9[2(NH_4)_2O$ ,  $5MoO_3]$ , 5[2CoO,  $5MoO_3]+$ 

118 H<sub>2</sub>O 4(NH<sub>4</sub>)<sub>2</sub>O, 2CoO, 15MoO<sub>3</sub>+20H<sub>2</sub>O (Marckwald, Dissert **1895**)

Ammonium cobaltous molybdate ammonia, (NH<sub>4</sub>)<sub>2</sub>Co(MoO<sub>4</sub>)<sub>2</sub>, 2NH<sub>3</sub>

Decomp by H<sub>2</sub>O Sol in dil NH<sub>4</sub>OH+Aq (Briggs, Chem Soc 1904, **85** 674)

Ammonium cobaltic molybdate

See Cobaltimolybdate, ammonium

Ammonium cupric molybdate, (NH<sub>4</sub>)<sub>2</sub>O, CuO,

5MoO<sub>3</sub>+9H<sub>2</sub>O Sl sol in cold, sol in boiling H<sub>2</sub>O without decomp (Struve)

Ammonium cupric molybdate ammonia, (NH<sub>4</sub>)<sub>2</sub>Cu(MoO<sub>4</sub>)<sub>2</sub>, 2NH<sub>3</sub>

Sol in dil NH<sub>4</sub>OH+Aq Decomp by H<sub>2</sub>O (Briggs, Chem Soc 1904, **85** 673)

Ammonium ferric molybdate,  $3(NH_4)_2Mo_2O_7$ ,  $Fe_2(MoO_4)_6+20H_2O$ 

Sol in H<sub>2</sub>O (Struve) See also Ferricomolybdate, ammonium

Ammonium lanthanum molybdate, (NH<sub>4</sub>)<sub>6</sub>La<sub>2</sub>Mo<sub>14</sub>O<sub>48</sub>+24H<sub>2</sub>O

Sol in  $H_2O$  (Barbieri, C A 1909 293)

Ammonium lithium molybdate, NH<sub>4</sub>LiMoO<sub>4</sub> +H O (Traube, N Jahrb Mmer 1894, I 194)

Ammonium magnesium molybdate, (NH<sub>4</sub>) O, MgO, 2MoO<sub>3</sub>+2H<sub>2</sub>O = (NH<sub>4</sub>) MoO<sub>4</sub>,

 $MgMoO_4+2H_2O$ Easily sol in  $H_2O$  (Ullik, A 144 344)

Ammonium manganous molybdate,

 $2(NH_4)_2O$ , MnO,  $3MoO_3+5H_2O$ Decomp by boiling  $H_2O$  (Marckwald, Dissert 1895)

 $(NH_4)_2O$ , 2MnO,  $6MoO_3+16H_2O$  Decomp by boiling  $H_2O$  (Marckwald, Dissert 1895)

 $(NH_4)_2O$ , 3MnO,  $6MoO_3+16H_2O$ Decomp by boiling H2O (Marckwald, Dissert 1895)

 $3(NH_4)_2O$ , 2MnO,  $12MoO_3+22H_2O$  (Marckwald, Dissert 1895)

Ammonium manganic molybdate See Permanganomolybdate ammonium.

Ammonium mercuric molybdate Sol in HCl+Aq Sol in boiling NH<sub>4</sub>Cl+Aq, separating out on cooling Sol in hot

Ammonium molybdenum molybdate,  $(NH_4)_2O$ ,  $2M_0O_2$ ,  $4M_0O_3 + 9H_2O$ 

 $(NH_4)_2SO_3+Aq$  (Hirzel)

Easily sol in H2O, but the solution soon becomes cloudy (Rammelsberg, Pogg 127 291)

Ammonium neodymium molybdate,  $(NH_4)_8NdM_0O_{24}+12H_2O$ Ppt (Barbieri, C C 1911, I 1043)

Ammonium nickel molybdate,  $(NH_4)_2O$ ,  $3N_1O$ ,  $9M_0O_3+25H_2O$ 

Very sl sol in cold, sol in hot H2O without decomp (Marckwald, Dissert 1895) 3(NH<sub>4</sub>)<sub>2</sub>O, 2N<sub>1</sub>O, 10M<sub>0</sub>O<sub>3</sub>+14H<sub>2</sub>O Very sl sol in cold, sol in hot H<sub>2</sub>O without de-Very

comp (Marckwald, Dissert 1895) 5(NH<sub>4</sub>)<sub>2</sub>O, 3NiO, 16MoO<sub>3</sub>+16H O (Hall, J Am Chem Soc 1907, 29, 702) 6(NH<sub>4</sub>)<sub>2</sub>O, 3NiO, 16MoO<sub>3</sub>+29H<sub>2</sub>O Very sl sol m cold, sol m hot H<sub>2</sub>O without de-

comp (Marckwald, Dissert 1895) 8(NH<sub>4</sub>)<sub>2</sub>O, 6NiO, 31MoO<sub>3</sub>+63H<sub>2</sub>O Very sl sol in cold, sol in hot H<sub>2</sub>O without de-

(Marckwald, Dissert 1895)  $3(NH_4)_2O$ ,  $9N_1O$ ,  $34M_0O_8+120H_2O$  Very sl sol in cold, easily sol in hot H<sub>2</sub>O without

decomp (Marckwald, Dissert 1895) Ammonium nickelic molybdate See Nickelimolybdate, ammonium

Ammonium nickel hydrogen molybdate,  $(NH_4)_4H_6[N_1(M_0O_4)_6]+5H_2O$ 

See Nickelomolybdate, ammonium hydro-

Ammonium praseodymium molybdate, (NH<sub>4</sub>)<sub>3</sub>PrMoO<sub>24</sub>+12H<sub>2</sub>O(Barbieri, C A 1911 1884)

Ammonium samarium molybdate,  $(NH_4)_8SmM_0O_{24} + 12H_2O$ (Barbieri, C A 1911 1884)

Ammonium sodium molybdate, 7(NH<sub>4</sub>)<sub>2</sub>O,  $2Na_2O$ ,  $21MoO_3+15H_2O$  (?)

Easily sol in H<sub>2</sub>O (Delafontaine, J pr **95** 136  $7(NH_4)_2O$ ,  $3Na_2O$ ,  $25MoO_3+30H_2O$  (?) (Delafontaine)

 $(NH_4, Na)_2O, 3MoO_3+H_0O$ Sol in H<sub>2</sub>O (Mauro, Gazz ch it 11 214)

Ammonium thorium molybdate See Thoromolybdate, ammonium

Ammonium titanium molybdate See Titanomolybdate, ammonium

Ammonium vanadium molybdate See Vanadiomolybdate, ammonium

Ammonium zinc molybdate Sol in H<sub>2</sub>O (Berzelius)

Ammonium zirconium molybdate See Zirconomolybdate, ammonium

Ammonium molybdate hydrogen dioxide,  $18\text{MoO}_3$ ,  $7(\text{NH}_4)_2\text{O}$ ,  $3\text{H}_2\text{O}_2 + 11\text{H}_2\text{O}$ Sol in H<sub>2</sub>O (Barwald, B 17 1206)

Barium molybdate, basic, 2BaO, MoO<sub>3</sub>+  $H_2O(?)$ 

Insol in H<sub>0</sub>O Sol in dil HCl+Aq or  $HNO_3+Aq$  (Heine, J pr 9 204)

Barium molybdate, BaMoO4

Difficultly sol in H<sub>2</sub>O, sol in dil HCl, and

HNO<sub>3</sub>+Aq (Svanberg and Struve)
Sol in 17,200 pts H<sub>2</sub>O at 23° More sol in NH<sub>4</sub>NO<sub>3</sub>+Aq than in H O (Sinith and Bradbury, B **24** 2930)
+3H<sub>2</sub>O (Westphal, Dissert **1895**)
BaMO<sub>3</sub>O<sub>19</sub>+3H<sub>2</sub>O Sl sol in H O

 $Ba_sMoO_{24}+9H_2O$ Appreciably sol in  $H_2O$ (Jorgensen)

Syanbeig and Struve = According to  $\mathrm{Ba_2Mo_5O_1} + 6\mathrm{H_2O}$ +12H<sub>2</sub>O or 5B<sub>3</sub>O, 12MoO;+20H O

(Junius, Z anorg 1905, **46** 433) +22H₄O Ppt (Westphal, Dissert

1895) BaO,  $4\text{MoO}_3 + 3\frac{1}{2}\text{H}_2\text{O}$  Ppt (Wempe, Z

anorg 1912, **78** 320) +12H<sub>2</sub>O Ppt (Rosenham, Z anorg

1913, 79 299)  $BaMo_9O_{28}+4H_2O$ Insol in cold or hot H<sub>2</sub>O or HNO<sub>3</sub>+Aq Fxtremely slightly de comp by H<sub>2</sub>SO<sub>4</sub>, or H<sub>2</sub>SO<sub>4</sub>+IINO<sub>3</sub>, or HCl+

(Svanberg and Struve) Barium paramolybdate, 5BaO, 12MoO<sub>3</sub>+  $10H_{\bullet}O$ 

Ppt Sol in excess of BaCl +Aq (Junius Z anorg 1905, 46 433)

Barium teli amolybdate,  $B_2H_2(M_{O_4}(O_{13})_2 +$  $17H_2O$ 

Insol in cold, apparently decomp by hot H<sub>2</sub>O, a small part dissolving, and the rest forming an insol residue (Ullik, A 144 336)

 $+14H_2O$ Insol in cold and hot H<sub>0</sub>O (Wempe, Z anorg 1912, 78 320) BaO,  $8\text{MoO}_{3}+17\text{H}_{2}\text{O}$ (Felix, Dissert 1912)

Barium chromic molybdate See Chromicomolybdate, barium

Barium cobaltic molybdate See Cobaltimolybdate, barium

Barium manganic molybdate See Permanganomolybdate, barium

Barium nickelic molybdate See Nickelimolybdate, barium

Barium nickel hydrogen molybdate,  $Ba_2H_6[N_1(M_0O_4)_6] + 10H_2O$ See Nickelomolybdate, barium hydrogen

Barium vanadium molybdate See Vanadiomolybdate, barium

Barium molybdate hydrogen dioxide, 8BaO,  $19\text{MoO}_3$ ,  $2\text{H}_2\text{O}_2 + 13\text{H}_2\text{O}$ Precipitate (Barwald)

Bismuth molybdate, Bi<sub>2</sub>O<sub>3</sub>, 3MoO<sub>3</sub> Somewhat sol in H<sub>2</sub>O Sol in 500 pts H<sub>2</sub>O and in the stronger acids (Richter)

Bromomolybdenum molybdate See under Bromomolybdenum comps

Cadmium molybdate, CdMoO4

Insol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH+Aq, KCN+ Aq, or acids (Smith and Bradbury, B 24 2390)

CdO,  $H_2O$ ,  $8M_0O_3+6H_2O$  Decomp by boiling with H<sub>2</sub>O (Wempe, Z anorg 1912, **78** 323)

Cæsium molybdate, Cs O, 3MoO<sub>3</sub>+H<sub>2</sub>O (Ephraim and Herschfinkel, Z anorg 1909, 64 270)

 $5\text{MoO}_3 + 3\text{H}_2\text{O}$ (Ephram and Cs<sub>2</sub>O, Herschinkel, Z anorg 1909, 64 270) +3½H<sub>2</sub>O Very sl sol in cold, easily sol (Wempe, Dissert 1911) in hot H<sub>2</sub>O

 $2Cs_2O$ ,  $5MoO_3+5H_2O$ (Ephraim and Herschfinkel, Z anorg 1909, 64 271) 3Cs<sub>2</sub>O, 10MoO<sub>3</sub>+3H<sub>2</sub>O (Ephrau (Ephraim and

Herschfinkel, Z anorg 1909, 64 271) Cs<sub>2</sub>O, 16MoO<sub>3</sub>+8H<sub>2</sub>O (Ephram (Ephram and Herschfinkel, Z anorg 1909, **64** 271) 3Cs<sub>2</sub>O, 10MoO<sub>8</sub>+3H<sub>2</sub>O (Ephran

(Ephram and Herschfinkel, Z anorg 1909, 64 271)

Cæsium tetramolybdate, Cs<sub>2</sub>O, 4MoO<sub>8</sub> Only sl sol in H<sub>2</sub>O (Muthmann, B 1898, **31** 1841) +2H<sub>2</sub>O Sl (Muthmann, Sl sol in H<sub>2</sub>O B 1898, **31** 1841)

 $+3H_{\bullet}O$ Easily sol in cold or hot H<sub>2</sub>O (Wempe, Z anorg 1912, 78 317)

(Wempe, D salorg 1912, 10 311) +5H<sub>2</sub>O Very sol in cold and hot H<sub>2</sub>O (Wempe, Dissert 1911) C<sub>\$2</sub>O, MoO<sub>3</sub>, C<sub>\$2</sub>O, 3MoO<sub>3</sub>+4 5H<sub>2</sub>O Sol in H<sub>2</sub>O (Wempe, Z anorg 1912, 78 317)

Cæsium paramolybdate, 5Cs<sub>2</sub>O, 12MoO<sub>3</sub>+ 11H<sub>2</sub>O

Efflorescent Easily sol in H<sub>2</sub>O (Wempe, Z anorg 1912, 78 317)

Calcium molybdate, CaMoO4

Insol precipitate (Ullik)

SI sol in H<sub>2</sub>O, insol in alcohol and Bradbury, B 24 2930)
+H<sub>2</sub>O (Westphal, Dissert 1895)

 $+2H_2O$ (Westphal, Dissert 1895) Difficultly sol in cold, easily in  $+6H_2O$ 

hot H<sub>2</sub>O (Ullik, A 144 231) CaMo<sub>4</sub>O<sub>18</sub>+9H<sub>2</sub>O Easily sol in cold H<sub>2</sub>O CaO, 2H<sub>2</sub>O, 12MoO<sub>3</sub>+21H<sub>2</sub>O Efflorescent Sl sol in cold, easily sol in hot H2O

(Wempe)

Calcium hydrogen tetramolybdate,  $CaH_2(Mo_4O_{13})_2+17H_2O$ 

Sl sol in cold, easily sol in hot H<sub>2</sub>O with decomp (Ullik)

+16H<sub>2</sub>OInsol in cold, difficultly sol in hot H<sub>2</sub>O (Wempe, Z anorg 1912, 78 318)

Cerum molybdate, Ce<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>

Insol in H<sub>2</sub>O, sol in acids Precipitate (Cossa, B 19 536 R)

Chromic molybdate

Insol in H2O, but sol in acids Sol in NH4 molybdate+Aq (Berzelius) See also Chromicomolybdic acid

Chromic molybdate, with M molybdate

See Chromicomolybdate

Cobaltous molybdate, CoMoO<sub>4</sub> Decomp by alkalies and strong acids

(Berzelius) +H<sub>2</sub>O SI sol in pure, easily sol in acidi-

(Colonano, Bull Soc (2) 50 fied H<sub>2</sub>O 451)

CoO, 2MoO<sub>3</sub>+2H O (Marckwald, Dissert 1895) Sl sol in H2O (Marckwald)

 $6\frac{1}{2}H_2O$ CoMo<sub>3</sub>O<sub>10</sub>+10H<sub>2</sub>O Very sl sol in cold but very easily sol in hot H<sub>2</sub>O (Ullik, W A B **55, 2** 767)

Cobaltic potassium molybdate See Cobaltimolybdate, potassium

Cobaltous sodium molybdate, Na<sub>2</sub>O, 2CoO, 6MoO<sub>3</sub>+18H<sub>2</sub>O

 $\begin{array}{c} (Marckwald,\ Dissert\ 1895\ )\\ 2Na_2O,\ CoO,\ 7MoO_3+20H_2O\\ cold\ H_2O\ without\ decomp \end{array} De$ Sol ın Decomp heating (Marckwald)

(Marck-3Na<sub>2</sub>O, 2C<sub>0</sub>O, 12M<sub>0</sub>O<sub>3</sub>+27H<sub>2</sub>O wald) 3Na<sub>2</sub>O, 3CoO, 14MoO<sub>3</sub>+50H<sub>2</sub>O much cold H<sub>2</sub>O (Marckwald) Sol in

4Na<sub>2</sub>O, 6CoO, 25MoO<sub>3</sub>+68H<sub>2</sub>O (Marckwald)

Cobaltous molybdate ammonia, CoMoO4,  $2NH_3+H_2O$ 

Sol in H<sub>2</sub>O (Sonnenschein, J pr 53 340)

Cupric molybdate, basic, 4CuO, 3MoO<sub>3</sub>+ 5H<sub>2</sub>O

Insol in H<sub>2</sub>O (Struve, J B 1854 350)

Cupric molybdate, CuMoO4

Sl sol in H<sub>2</sub>O, decomp by acids and alkaline solutions

 $CuMo_8O_{19}+6\frac{1}{2}H_2O$ Easily sol in cold

H<sub>2</sub>O (Ullık, A 144 233) +9H<sub>2</sub>O Very sl sol in cold, and extraordinarily easily sol in hot H<sub>2</sub>O (Ullik)

Cupric molybdate ammonia,  $CuMoO_4$ ,  $2NH_3+H_2O$ 

Gives off NH<sub>3</sub> at ord temp Decomp by H₂O

Sol in dil NH4OH+Aq from which it can be cryst (Briggs, Chem Soc 1904, 85 674) CuMoO<sub>4</sub>, 4NH<sub>8</sub> Decomp by H<sub>2</sub>O ın dıl NH₄OH+Aq (Jorgensen, Ch Z Repert 1896, 20 225)

Didymium molybdate, Di<sub>2</sub>(MoO<sub>4</sub>)<sub>8</sub>

Ppt Insol in H<sub>2</sub>O (Cossa, B 19 536R)  $D_{12}O_3$ ,  $6M_0O_3 + 3H_2O(?)$  Precipitate (Smith)

Glucinum molybdate, basic, 2GlO, MoO<sub>3</sub>+  $3H_2O$ 

Nearly insol in H<sub>2</sub>O (Atterberg, J B **1873** 258)

Glucinum molybdate, GlO, MoO<sub>3</sub>+2H<sub>2</sub>O Sol in H<sub>2</sub>O with decomp (Rosenheim, Z anorg 1897, 15 307)  $\widetilde{G}$ IM $\widetilde{O}O_4$ ,  $\widetilde{M}OO_3 + xH_2O$ Easily sol in H<sub>2</sub>O (Atterberg)

Gold (auric) molybdate (?)

Sl sol in H<sub>2</sub>O Sol in HCl, and HNO<sub>3</sub>+ Aq (Richter)

Hydroxylamine potassium molybdate  $M_0O_4H_2(NH_3O)_3(NH_2OK)$ 

Easily sol in H<sub>2</sub>O, pptd by alcohol (Hofmann, A 1899, 309 324)

Indium molybdate, In<sub>2</sub>(M<sub>0</sub>O<sub>4</sub>)<sub>3</sub>+2H<sub>2</sub>O Ppt Insol in H<sub>2</sub>O Easily sol in HCl (Renz, B 1901, 34 2765)

Iron (ferrous) molybdate, FeMoO4 Insol in H<sub>2</sub>O (Schultze, A 126 55)

Iron (ferric) molybdate, Fe<sub>2</sub>O<sub>3</sub>, 4MoO<sub>3</sub>+

Nearly insol in H<sub>2</sub>O Slowly sol in cold easily in hot HCl, or HNO<sub>8</sub>+Aq Dil acids gradually dissolve out Fe<sub>2</sub>O<sub>3</sub> in the cold When ignited, difficultly sol in all solvents (Stemacker)

Fe<sub>2</sub>O<sub>3</sub>, 5MoO<sub>3</sub>+16H<sub>2</sub>O Very sl sol m H<sub>2</sub>O (Struve, J B **1854** 346)

 $2\text{Fe}_2\text{O}_3$ ,  $7\text{MoO}_3 + 34\text{H}_2\text{O}$  Ppt (Hall, J Am Chem Soc 1907, 29 704)

Ferric potassium molybdate, Fe<sub>2</sub>O<sub>3</sub>, 3K<sub>2</sub>O  $12M_0O_3 + 20H_2O = 3K_2M_0O_3$  $Fe_2(Mo_2O_7)_3 + 20H_2O$ Sol in H<sub>2</sub>O (Struve)

Lanthanum molybdate,  $LaH_3(MoO_4)_3 =$  $La_2O_3$ ,  $MoO_3+3HO$  (?) Precipitate (Smith)

Lead molybdate, PbMoO4

Insol in H<sub>2</sub>O Sol in warm HNO<sub>3</sub>+Aq decomp by HSO<sub>4</sub>, sol in conc HCl+Aq, on KOH + Aq

Min Wulfenite As above

Lithium molybdate, Li MoO4

Moderately sol in cold, and only sl more sol in hot H<sub>2</sub>O (Ephrum, Z morg 1909, **64** 259)

+ / **Ý**₂O Easily sol in H O

 $5L_{12}O$ ,  $5MoO_3 + 2H_2O$  46 13 g are present in 100 ccm of the aqueous solution at 20°, and sp gr of the solution  $\approx 1.44$  (Wempe,

Z anorg 1912, **78** 309) Li<sub>2</sub>O, 2MoO<sub>3</sub>+5H O Sol in cold, casily sol in hot HO (Fphram, Z morg 1909, **64** 258)

Li<sub>2</sub>O, 3MoO<sub>3</sub>+II<sub>2</sub>O leasily sol in warm H<sub>2</sub>O (Wempe, Dissert 1911) +4II O (Wempe)

(Wempe)

+4¼H<sub>2</sub>O +7H () Neuly insol in cold, sol in hot H<sub>2</sub>() (Fphram, Z anong 1909, 64 258)

2L<sub>12</sub>O, 3MoO<sub>3</sub> Sl sol in H O (l'phrum, Z anorg 1909, 64 255)

Lithium paramolybdate, 311(),  $7M_0()_3$ + 12H<sub>2</sub>O

Sol in H2O (Rosenheim, Z inoig 1897, **15** 181)

+28H<sub>2</sub>O Easily sol in cold and hot H<sub>2</sub>O (Ephram, Z anorg 1909, 64 255)

Lithium tetramolybdate, Li<sub>2</sub>O, 4M<sub>0</sub>O<sub>3</sub>+7II<sub>2</sub>O Sol in cold H<sub>2</sub>O (Ephraim, Z anorg 1909, 64 258)  $L_{12}O$ ,  $H_{2}O$ ,  $8M_{0}O_{3}+10H_{2}O$ Easily sol m hot H<sub>2</sub>O (Wempe, Z anorg 1912, 78 **308** )

 $L_{12}O$ ,  $3H_{2}O$ ,  $16M_{0}O_{3} + 6\frac{1}{2}H_{2}O$ Easily sol in warm H<sub>2</sub>O (Wempe, Z anorg 1912, **78** 308)

Lithium potassium molybdate, KLiMoO4+ (Traube, N Jahrb Mmer, 1894, I 194)

Magnesium molybdate, MgMoO4

Mın Belonesia

Insol in HCl+Aq (Scaechi, Zeit Kryst 1888, 14 523)

Easily sol in cold, but still more  $+5\mathrm{H}_2\mathrm{O}$ sol in hot H<sub>2</sub>O (Delafontaine)

Sol in 12-15 pts cold H<sub>2</sub>O (Brandes) +7H<sub>2</sub>O Easily sol in hot or cold H<sub>2</sub>O (Ullık )

Difficultly sol in  $MgMo_3O_{19}+10H_2O$ cold, very easily in hot H<sub>2</sub>O (Ullik)

Magnesium paramolybdate, Mg<sub>3</sub>Mo<sub>7</sub>O<sub>24</sub>+  $20H_{2}O$ 

Quite sol in cold, more easily in hot H<sub>2</sub>O (Ullik)

Magnesium tetramolybdate, MgO,  $H_2O$ ,  $8MoO_3+19H_2O$ 

Magnesium hydrogen tetramolybdate,  $MgH_2(Mo_4O_{13})_2 + 19H_2O$ 

Easily sol in cold H<sub>2</sub>O (Ullik, A 144 335)

Sl sol in cold, easily sol in hot H<sub>2</sub>O (Wempe, Dissert **1911**) +20H<sub>2</sub>O Ppt (Wempe, Z anorg 1912,

Magnesium hydrogen octomolybdate,  $MgH_2(Mo_8O_{25})_2 + 29H_2O$ 

**78** 323)

Very difficultly sol in cold, very easily sol ın hot H<sub>2</sub>O (Üllık, W A B 60, 2 314)

Magnesium potassium molybdate, MgMoO4,  $K_2M_0O_4+2H_2O$ 

Slowly sol in cold, easily in hot H<sub>2</sub>O (Ullik, A 144 343)

Manganous molybdate, MnMoO4+HO

Insol in H<sub>2</sub>() Sl sol in pure, easily sol in actidified H<sub>2</sub>() Decomp by alkalies or alkalı carbonates+Aq (Coloriano, Bull Soc (2) **50** 451)

(Marchwald, Dissert 1895)  $+i/_{3}H_{2}O$ 

+10H2O (Marckwald)

Manganic potassium molybdate See Permanganomolybdate, potassium

Manganic silver molybdate See Permanganomolybdate, silver

Mercurous molybdate, Hg<sub>2</sub>Mo<sub>2</sub>O<sub>7</sub> Decomp by H<sub>2</sub>O (Struve, J B 1754 350,)

Sol in 500-600 pts H<sub>2</sub>O, decomp bv HNO<sub>3</sub>+Aq (Hatchett)

Molvbdenum molvbdate See Molybdenum oxides, Mo<sub>3</sub>O<sub>7</sub>, Mo<sub>4</sub>O<sub>0</sub>,

Neodymum molybdate, Nd2(MoO4)3 Very sl sol m H₂O

(Hitchcock, J Am Chem Soc 1895, 17 532)

Nickel molybdate,  $N_1M_0O_4 + \frac{2}{3}H_2O_7 + \frac{3}{4}H_2O_7$ and  $+5H_2O$ 

(Marckwald, Dissert 1895)

 $N_1O$ ,  $3M_0O_3 + 18H_2O$  Sl sol in cold, easily sol in hot  $H_2O$  (Marckwald) 5N1O, 14MoO<sub>8</sub>+57H<sub>2</sub>O, and +70H<sub>2</sub>O

Sl sol in cold, easily sol in hot H<sub>2</sub>O (Marckwald)

Nickel potassium molybdate, 3NiO, 5K<sub>2</sub>O  $16M_0O_3 + 21H_2O$ 

Can be cryst from H<sub>2</sub>O (Hall, J Am Chem Soc 1907, 29 701)

Nickelic potassium molybdate See Nickelimolybdate, potassium

Nickel potassium hydrogen molybdate,  $K_4H_6[N_1(M_0O_4)_6] + 5H_2O$ 

See Nickelomolybdate, potassium hydrogen

Nickel sodium molybdate, 2NiO, Na<sub>2</sub>O,  $6\text{M}_{0}\text{O}_{3} + 17\text{H}_{2}\text{O}$ 

Sol in cold H2O without decomp but decomp on warming (Marckwald, Dissert 1895)

Nickel molybdate ammonia, NiMoO4, 2NH3  $+\mathrm{H}_2\mathrm{O}$ 

Decomp by H<sub>2</sub>O (Sonnenschein, J pr **53** 341)

Potassium molybdate, K<sub>2</sub>MoO<sub>4</sub>

Very sol in Deliquescent in moist air Insol in alcohol (Svanberg and  $H_2O$ Struve, J pr 44 265)

184 6 grams are sol in 100 grams H O at 25° (Amadori, C A 1912 2878)

Solubility of K<sub>2</sub>MoO<sub>4</sub>+K<sub>2</sub>SO<sub>4</sub> at 25°

| 1 10 1 2                                              | G per 100 g H O                                     |  |  |
|-------------------------------------------------------|-----------------------------------------------------|--|--|
| 1 10 1 2                                              | 5O4 K2M0O4                                          |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 50 99 49<br>13 45 89<br>95 17 48<br>55 4 73<br>10 0 |  |  |

(Amadori, Att acc Line 1912, 21, I 467, 667)

Easily sol in H<sub>2</sub>O (Wempe, | +34 $H_2O$ Dissert 1911) K<sub>2</sub>O, 8MoO<sub>3</sub>+13H<sub>2</sub>O Easily sol

0 682 g at 100° (Felix, Dissert 1912) +15H<sub>2</sub>O Sol m H<sub>2</sub>O (Felix)

 $5K_2O$ ,  $12M_0O_3 + 8H_2O$ Sl sol in cold H<sub>2</sub>O (Junius, Z anorg 1905, 46 439)

#### Potassium trimolybdate, K<sub>2</sub>Mo<sub>3</sub>O<sub>10</sub>

Difficultly sol in cold, but much more easily in hot  $H_2O$  When ignited is absolutely insol in H<sub>2</sub>O (Svanberg and Struve)

+2H<sub>2</sub>O (Junius, Z anorg 1905, **46** 439) Sl sol in cold, easily sol in hot  $H_2O$ 

(Wempe, Dissert 1911)

(Wempe,  $+2\%\mathrm{H}_2\mathrm{O}$ Easily sol in H<sub>2</sub>O Dissert 1911)

+3H<sub>2</sub>O Very sl sol in cold, more easily sol in hot H<sub>2</sub>O (Wempe, Dissert 1911) +11H<sub>2</sub>O Practically insol in H<sub>2</sub>O (Westphal, Dissert 1895)

### Potassium hydrogen tetramolybdate, $K_6H_4[H_2(Mo_2O_7)_6]+18H_2O$

Sl sol in cold H<sub>2</sub>O Decomp by boiling H<sub>2</sub>O (Rosenheim, Z anorg 1913, **79** 298) KHMO<sub>4</sub>O<sub>13</sub>+6H<sub>2</sub>O Decomp by H<sub>2</sub>O

#### Potassium paramolybdate, K<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>+ $4H_9O$

Decomp even by cold H<sub>2</sub>O (Delafon-

Formula is  $K_8Mo_9O_{31}+6H_2O$ , according to Svanberg and Struve (?)

## Potassium selenium molybdate See Selenomolybdate, potassium

Potassium sodium molybdate, K<sub>2</sub>M<sub>0</sub>O<sub>4</sub>, 2Na<sub>2</sub>MoO<sub>4</sub>+14H<sub>2</sub>O

Very easily sol in cold, still more easily in hot H<sub>2</sub>O (Delafontaine)

## Potassium vanadium molybdate See Vanadiomolybdate, potassium

Potassium zinc molybdate Sol in H<sub>2</sub>O (Berzelius)

Potassium molybdate hydrogen dioxide,  $6K_2O$ ,  $16M_0O_3$ ,  $4H_2O_2+13H_2O$ Sol in H<sub>2</sub>O (Barwald, C C 1885 424)

Potassium molybdate sulphocyanide, KSCN,  $K_2Mo_8O_{10}+4H_2O_{10}$ 

Decomp by H<sub>2</sub>O Sol in dil HCl+Aq (Péchard, C R 1894, 118 806)

Praseodymium molybdate, Pr<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>

 $Very sl sol in H_2O$ 1 pt is sol in 65820 pts H<sub>2</sub>O at 23° 1 " " 69800 " " 75°

(Hitchcock, J Am Chem Soc 1895, 17

Rubidium molybdate, Rb<sub>2</sub>O, MoO<sub>3</sub>

Hygroscopic (Ephraim, Z anorg 1909 **64** 263)

Rb<sub>2</sub>O, 2MoO<sub>3</sub>+2H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Ephraim, Z anorg 1909, **64** 263)

Rb<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>+4H<sub>2</sub>O Very sl sol in cold much more easily sol in hot H<sub>2</sub>O (Delafontaine, N Arch Sc phys nat 30 233)

(Ephraim, Z anorg 1909, 64 263)  $+4^{2}/_{8}H_{2}O$  (Wempe, Dissert 1911)  $2Rb_2O$ ,  $7MoO_3+5H_2O$ Very sl sol ir cold, very easily sol in hot  $H_2O$  (Wempe  $5Rb_2O$ ,  $7MoO_3+14H_2O$  (Ephraim and

(Ephraim and Herschfinkel, Z anorg 1909, **64** 268) 3Rb<sub>2</sub>O, 8MoO<sub>3</sub>+6H<sub>2</sub>O (Ephrair (Ephraim and

Herschfinkel, Z anorg 1909, 64 269) 5Rb<sub>2</sub>O, 12MoO<sub>3</sub>+H<sub>2</sub>O 100 cc H<sub>2</sub>O dis solve 1 941 g at 24° (Wempe, Z anorg 1912, **78** 258)

Rb<sub>2</sub>O, 3MoO<sub>3</sub> Insol in H<sub>2</sub>O mann, B 1898, **31** 1839) (Muth

 $+H_2O$ (Muthmann, B 1898, **31** 1839) +3H<sub>2</sub>OSl sol in cold, easily sol in hor H<sub>2</sub>O (Wempe, Dissert 1911)

6½H<sub>2</sub>O (Ephram and Herschfinkel, Z

anorg 1909, 64 269) 2Rb<sub>2</sub>O, 3MoO<sub>3</sub>+4H<sub>2</sub>O Sl sol in cold easily in hot  $H_2O$  (Wempe, Disscrit 1911)  $Rb_2O$ ,  $4MoO_3$ Difficultly sol in cold easily in hot H<sub>2</sub>O (Wempe, Z anoig 1912

78 312) +½HO Practically insol in HO Very sol by addition of NH<sub>3</sub> (I phrum and

Herschfinkel, Z anorg 1909, 64 200) +25H<sub>2</sub>O Insol in HO (lephium, Z anorg 1909, **64** 263)

 $+4H_2O$ Sol in cold, more cisily sol in hot H<sub>2</sub>O (Wempe, 7 morg 1912 **78** 312 Rb<sub>2</sub>O, MoO<sub>3</sub>, Rb O 3MoO<sub>3</sub>+5H O 5ol m cold or hot H<sub>2</sub>O (Wempe Z morg 1912 78 312)

 $Rb_2O$ ,  $H_2O$ ,  $8MoO_3+3HO$ Diff cultly sol in cold, easily in hot II () anorg 1912, 78 312) W mac /

 $Rb_2O$ ,  $11MoO_3 + 55H_2O$  Ppt (1 phr um Z anorg 1909, 64 263)

 $Rb_2O$ ,  $13M_0O_3+4H_2O$ Ppt (I phr um Rb<sub>2</sub>O, 18MoO<sub>3</sub> Ppt (Fphrum)

Samarium molybdate,  $Sm_2(MoO_4)_3$ Insol in H<sub>2</sub>O (Cleve)

#### Samarium sodium molybdate, $Na_2Sm_2(MoO_4)_4$

Insol in H<sub>2</sub>O Easily sol in warm dil  $HNO_3+Aq$  (Cleve)

ver (argentous) molybdate, Ag<sub>4</sub>O, 2MoO<sub>3</sub> Sol in HNO<sub>3</sub>+Aq KOH+Aq dissolves oO<sub>3</sub> and Ag<sub>4</sub>O separates out Not decomp dil NH<sub>4</sub>OH+Aq (Wohler and Rautenrg, A 114 119) Does not exist (Muthmann, B 20 983)

ver (argentic) molybdate, Ag<sub>2</sub>MoO<sub>4</sub>
Somewhat sol in H<sub>2</sub>O, less when HNO<sub>8</sub> is esent (Richter)
Very sl sol in pure H<sub>2</sub>O, easily sol in O acidulated with HNO<sub>8</sub> (Struve and anberg)
Sol in KCN or NaOH+Aq (Smith and

adbury) Ag<sub>2</sub>O, 2MoO<sub>3</sub> Sl sol in H<sub>2</sub>O Sol in CN+Aq (Junius, Dissert 1905) 2Ag<sub>2</sub>O, 5MoO<sub>3</sub> Somewhat sol in H<sub>2</sub>O

vanberg and Struve, J B **1847-48** 412) Ag<sub>2</sub>O, 4MoO<sub>3</sub>+6H<sub>2</sub>O Sl sol in H<sub>2</sub>O with comp (Wempe, Z anorg 1912, **78** 322)

ver thorium molybdate See Thoromolybdate, silver

ver molybdate ammonia,  $Ag_2MoO_4$ ,  $4NH_3$  Sol in  $H_2O$  with rapid decomposition /idmann, Bull Soc (2) 20 64)

ver molybdate hydrogen dioxide,  $13Ag_2O$ ,  $2H_2O_2$ ,  $32MoO_3$ 

Ppt (Barwald, B 17 1206)

dum molybdate, Na<sub>2</sub>MoO<sub>4</sub>

Anhydrous Easily and completely sol in 20

+2H<sub>2</sub>O Sol in H<sub>2</sub>O +10H<sub>2</sub>O Efflorescent

Solubility in H<sub>2</sub>O at t°

| Solid phase                                                                         | t°  | Per cent of<br>anhydrou salt | Yols H <sub>2</sub> O to 1<br>mol of anhy drous<br>salt | Mols of anhy drou<br>salt to 100 mols<br>H <sub>2</sub> O |  |
|-------------------------------------------------------------------------------------|-----|------------------------------|---------------------------------------------------------|-----------------------------------------------------------|--|
| 12MoO <sub>4</sub> , 102HO  " 12MoO <sub>4</sub> , 2H <sub>2</sub> O  " " " " " " " | 6   | 30 63                        | 25 92                                                   | 3 86                                                      |  |
|                                                                                     | 90  | 33 83                        | 22 38                                                   | 4 47                                                      |  |
|                                                                                     | 10  | 35 58                        | 20 72                                                   | 4 83                                                      |  |
|                                                                                     | 15  | 38 16                        | 18 54                                                   | 5 39                                                      |  |
|                                                                                     | 5   | 39 28                        | 17 70                                                   | 5 65                                                      |  |
|                                                                                     | 32  | 39 27                        | 17 70                                                   | 5 65                                                      |  |
|                                                                                     | 51  | 39 82                        | 17 30                                                   | 5 78                                                      |  |
|                                                                                     | 5   | 41 27                        | 16 28                                                   | 6 14                                                      |  |
|                                                                                     | 100 | 45 57                        | 13 67                                                   | 7 32                                                      |  |

(Funk, B 1900, **33** 3699)

Insol in methyl acetate (Naumann, B 09, 42 3790)

 $N\acute{a}_2Mo_2O_7$  After ignition, very difficultly in cold, and very slowly sol in hot  $H_2O$  vanberg and Struve)

+H<sub>2</sub>O Easily sol in H<sub>2</sub>O

 $+3\frac{1}{2}H_2O$  Easily sol in cold or hot  $H_2O$  (Wempe, Dissert 1911)

 $+4\dot{\rm H}_2{\rm O}$  Easily and completely sol in cold  ${\rm H}_2{\rm O}$  (Ullik)

 $+6\frac{1}{2}H_2O$  SI sol in cold, very easily sol in hot  $H_2O$  (Wempe, Dissert 1911)

+7H<sub>2</sub>O Difficultly sol in cold H<sub>2</sub>O, but more easily than the corresponding K salt 100 pts H<sub>2</sub>O dissolve 3 878 pts at 20° and 13 7 pts at 100° (Ullik, 4 144 244)

 $+9 H_2 O$  Easily sol in cold, very easily sol in hot  $H_2 O$  (Wempe)

+11 H<sub>2</sub>O (Junius, Z anorg 1905, **46** 437)

3Na<sub>2</sub>O, 7MoO<sub>3</sub> Easily sol in cold, very easily sol in hot H<sub>2</sub>O (Ott, Dissert 1911) +20H<sub>2</sub>O (Westphal, Dissert 1895)

 $\begin{array}{cccc} +20 H_2 O & (Westphal, Dissert \ \textbf{1895}\ ) \\ +22 H_2 O & Efflorescent & Easily sol & H_2 O & (Ullik, A \ \textbf{144} & 219\ ) \end{array}$ 

Na<sub>2</sub>O,  $8MoO_3 + \frac{1}{2}H_2O$  Very sol in cold or hot  $H_2O$  (Wempe, Dissert **1911**)

+4H<sub>2</sub>O Insol in H<sub>2</sub>O (Ullik, W A B **60, 2** 312) +15H<sub>2</sub>O (Rosenheim, Z anorg 1897, **15** 

188)
Na<sub>2</sub>O, 10MoO<sub>3</sub>+6H<sub>2</sub>O Very sl sol in H<sub>2</sub>O 100 g H<sub>2</sub>O dissolve 0 842 g at 100°

| H<sub>2</sub>O 100 g H<sub>2</sub>O dissolve 0 842 g at 100° (Felix, Dissert 1912) +7H<sub>2</sub>O (Felix) Nearly insol in hot and

cold H<sub>2</sub>O (Rosenheim, Z anorg 1903, 37 323) +12H<sub>2</sub>O Difficultly sol in H<sub>2</sub>O

 $+12 H_2 O$  Difficultly sol in  $H_2 O$   $+21 H_2 O$  Abundantly but slowly sol in cold  $H_2 O$  = NaHNa<sub>5</sub>O<sub>16</sub>+10H<sub>2</sub>O (Ullik)  $5 Na_2 O$ ,  $12 MoO_3 +8 H_2 O$  Sl sol in cold, easily sol in hot  $H_2 O$  (Wempe, Dissert 1911)

 $+20H_2O$  Sl sol in cold, easily sol in hot  $H_2O$  (Wempe, Dissert 1911)

+36H<sub>2</sub>O (Junius, Z anorg 1905, **46** 436) +44H<sub>2</sub>O Sl sol in cold, easily sol in hot H<sub>2</sub>O (Wempe, Dissert **1911**)

Sodium tetramolybdate, Na<sub>2</sub>Mo<sub>4</sub>O<sub>13</sub>+6H<sub>2</sub>O

Difficultly sol in cold, easily in hot H<sub>2</sub>O (Ullik)

100 cc H<sub>2</sub>O dissolve at 21°, 28 39 g of the salt Sp gr of the solution = 1 47 (Wempe Z anorg 1912, 78 306) +17H<sub>2</sub>O (Felix, Dissert 1912)

Na<sub>c</sub>H<sub>4</sub>[H<sub>2</sub>(Mo<sub>2</sub>O<sub>7</sub>)<sub>6</sub>]+21H O Slowly sol in cold, easily sol in hot H<sub>2</sub>O (Rosenheim,

Z anorg 1913, **79** 298) NaHMo<sub>4</sub>O<sub>13</sub>+8H<sub>2</sub>O Very sol in hot or

cold  $H_2O$  (Ullık, A **144** 333)  $NaHMo_8O_{25} + 4H_2O$  Insol in  $H_2O$ 

(Ullık)

Sodium manganous molybdate,  $2Na_2O$ , MnO,  $6MoO_3+19H_2O$ 

(Marckwald, Dissert 1895)

Sodium molybdate molybdenum oxide,  $Na_2Mo_5O_{15}$ 

Insol in H<sub>2</sub>O Sol in HNO<sub>3</sub> and aqua regia Insol in HCl and in H<sub>2</sub>SO<sub>4</sub> Sol in

(Stavenhagen and Engels, B 1895, alkalıes 28 2280)

Strontium molybdate, SrMoO4

(Schultze) Sl sol in H<sub>2</sub>O

Sol in 9600 pts H<sub>2</sub>O at 17° (Smith and

Bradbury, B 24 2930)  $SrO, 3MoO_3+1/2H_2O$  Scarcely sol in cold, easily in hot  $H_2O$  (Wempe, Dissert 1911)  $SrO, H_2O, 8MoO_3+6H_2O$  Scarcely sol

in cold, easily in hot H<sub>2</sub>O (Wempe, Dissert 1911)

2SrO, 3H<sub>2</sub>O, 20MoO<sub>3</sub>+21H<sub>2</sub>O (Wempe, Z anorg 1912, 78 321)

Thallous molybdate, Tl<sub>2</sub>MoO<sub>4</sub>

Insol in H<sub>2</sub>O Sol in alkalies Insol in alcohol (Oettinger, J B 1864, 254) Sl sol in hot or cold H<sub>2</sub>O (Ullik, J B 1867, 234)

8Tl<sub>2</sub>O, 11MoO<sub>3</sub> Sol m hot H<sub>2</sub>O (Flemmg, J B 1868, 250)

3Tl<sub>2</sub>O, 8MoO<sub>3</sub> (Fleming)

Thallous tetramolybdate, Tl<sub>2</sub>O, 4MoO<sub>3</sub>+H<sub>2</sub>O Sl sol in H<sub>2</sub>O with decomp (Wempe, Z anorg 1912, 78 322)

Thallous paramolybdate, 5Tl<sub>2</sub>O, 12MoO<sub>3</sub> Insol in H<sub>2</sub>O Easily sol in mineral acids and in alkali hydroxides and carbonates (Junius, Z anorg 1905, 46 432)

Tin (stannic) molybdate

Insol in H<sub>2</sub>O Sol in dil or conc HCl+ Ag, or in KOH+Ag Not decomp by HNO<sub>3</sub> +Aq (Berzelius)

Uranous molybdate

Sol in HCl+Aq Decomp Precipitate by KOH+Aq (Lancien, C C 1908, I 1763)  $U(M_0O_4)$ 

Uranyl molybdate, (UO<sub>2</sub>)MoO<sub>4</sub>

Insol in H<sub>2</sub>O, methyl and ethyl alcohol, ether, acetic acid, CHCl<sub>8</sub>, C<sub>6</sub>H<sub>6</sub> and C<sub>7</sub>H<sub>8</sub> Sol in mineral acids (Lancien, C C 1907, I 784)

2UO<sub>3</sub>, 3MoO<sub>3</sub> (?) Insol in H<sub>2</sub>O Sol in strong acids and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Ber-

zelius 3UO<sub>3</sub>, 7MoO<sub>3</sub> Insol in hot and cold H<sub>2</sub>O Insol in NaOH, KOH, and NH<sub>4</sub>OH+Aq Sol in all min acids and decomp by an excess of H<sub>2</sub>O Insol m acetic acid (Lancien, C C 1908, I 1763)

UO<sub>s</sub>, 8MoO<sub>s</sub> (Lancien)

Insol in HNO<sub>8</sub> +13H<sub>2</sub>O(Lancien)

Ytterbium molybdate, Yb<sub>2</sub>O<sub>3</sub>, 7M<sub>0</sub>O<sub>3</sub>+6H<sub>2</sub>O Insol in hot H<sub>2</sub>O (Cleve, Z anorg 1902, **32** 152) 2Yb<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub> Ppt (Cleve)

Yttrium molybdate

Insol in H<sub>2</sub>O Sol in HNO<sub>3</sub>+Aq (Berlin)

Zinc molybdate, ZnMoO4

Difficultly sol in  $H_2O$ , easily in acids (Schultze, A 126 49)

 $+H_2O$ Sl sol in H<sub>2</sub>O Easily sol in (Coloriano, Bull Soc (2) 50 451) 19+10H<sub>2</sub>O Very difficultly sol dil acids  $Z_{n}Mo_{3}O_{19}+10H_{2}O$ in cold, but extraordinarily easily sol in hot H<sub>2</sub>O (Ullık, W A B **55, 2** 767)

Zinc tetramolybdate, ZnMo<sub>4</sub>O<sub>13</sub>+8H<sub>2</sub>O Easily sol in cold H<sub>2</sub>O (Ullik)

 $ZnO, H_2O, 8MoO_3+14H_2O$  Ppt (Wempe Z anorg 1912, 78 324)

Zinc molybdate ammonia, ZnMoO<sub>4</sub>, 2NH<sub>3</sub>+

(Sonnenschein, J pr 53 339)

Permolybdic acid

See Permolybdic acid

Molybdic sulphuric acid, MoO<sub>3</sub>, SO<sub>3</sub> Deliquescent (Schultz-Sellack, B 4 14

Very deliquescent Very sol in H<sub>2</sub>O (Muthmann, A 1886, **238** 126)

 $MoO_3$ ,  $3SO_3 + 2H_2O(?)$ 

Molybdocyanhydric acid, H<sub>4</sub>Mo(CN)<sub>8</sub>+  $6H_{2}O$ 

Easily sol in H<sub>2</sub>O and abs alcohol Solu tions are stable at ord temp (Rosenhein and Garfunkel, Z anorg 1910, 65 168)

Cadmium molybdocyanide, Cd<sub>2</sub>Mo(CN)<sub>8</sub>+ SH<sub>2</sub>O

Insol in H<sub>2</sub>O (Rosenheim)

Cadmium molybdocyanide ammonia,  $Cd_2Mo(CN)_8$ ,  $4NH_3+2H()$ (Rosenheim)

Cupric molybdocyanide ammonia,  $Cu_2Mo(CN)_8$ ,  $4NH_3+7H()$ (Rosenheim)

Potassium molybdocyanide, K<sub>4</sub>Mo(CN)<sub>8</sub>-2H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Rosenheim)

Thallous molybdocyanide, Tl<sub>4</sub>Mo(CN)<sub>8</sub> Very sl sol in H<sub>2</sub>O (Rosenheim)

Molybdoiodic acid,  $HIO_3$ ,  $H_2Mo()_4+II_2()$ Easily sol in HO (Blomstrind, J pr ( 40 320)

I<sub>2</sub>O<sub>5</sub>, 2MoO<sub>3</sub>+2H<sub>2</sub>O Very sol in H<sub>2</sub>C Insol in cold, sol in hot HNO<sub>3</sub> Sol in a cohol (Chrétien, A ch 1898, (7) 15 402)

Ammonium molybdoiodate, NH<sub>4</sub>IO<sub>3</sub>, H<sub>2</sub>MoO<sub>4</sub>

Somewhat more sol than K salt (Blomstrand)

(NH<sub>4</sub>)<sub>2</sub>O, I<sub>2</sub>O<sub>5</sub>, 2MoO<sub>3</sub> Very sl sol in cold H<sub>2</sub>O More sol in hot H<sub>2</sub>O (Rosenheim and Liebknecht, A 1899, **308** 50)

+H<sub>2</sub>O 1 1 H<sub>2</sub>O dissolves 5 39 g salt at 15°, 30 94 g at 100° More sol in dil HNO<sub>3</sub> +Aq (Chretien, A ch 1898, (7) **15** 409) 3(NH<sub>4</sub>)<sub>2</sub>O, (I<sub>2</sub>O<sub>5</sub>, 2MoO<sub>3</sub>)<sub>4</sub>+6H<sub>2</sub>O (Chrétien)

Barium molybdoiodate, BaO, I<sub>2</sub>O<sub>5</sub>, 2MoO<sub>8</sub>+ 2H<sub>2</sub>O

 $4\,23$  g are sol in 1 l  $\mathrm{H}_2\mathrm{O}$  at ord temp (Chrétien)

Cadmium molybdoiodate, acid, 3CdO, ( $I_2O_5$ ,  $2MoO_3$ ) $_5+16H_2O$ 

Sl sol in H<sub>2</sub>O (Chrétien)

Calcium molybdoiodate, CaO, I<sub>2</sub>O<sub>5</sub>, 2MoO<sub>5</sub>+6H<sub>2</sub>O

 $1~l~H_2O~dissolves~7.8~g~of~the~salt~at~15°, 20.89~g~at~90°~(Chrétien~)$ 

Cobaltous molybdoiodate, CoO, I<sub>2</sub>O<sub>5</sub>, 2MoO<sub>8</sub> +6H<sub>2</sub>O

 $5\,11~\mathrm{g}$  are sol in 1 l  $\,\mathrm{H}_2\mathrm{O}$  at 15°, 22 27 g at 100° (Chrétien )

Cobaltous molybdoiodate acid, CoO, (I<sub>2</sub>O<sub>5</sub>, 2MoO<sub>3</sub>)<sub>5</sub>+18H<sub>2</sub>O Very sol in H<sub>2</sub>O (Chrćtien)

Cupric molybdoiodate, CuO, I<sub>0</sub>O<sub>5</sub>,  $2\text{MoO}_3 + 3\text{H}_2\text{O}$ 

 $1~l~H_2{\rm O}$  dissolves 10~63~g of the salt at  $15^\circ,\,25~55~g$  at  $100^\circ$  (Chrétien )

L<sub>1</sub>th<sub>1</sub>um molybdoiodate,  $I_{12}O$ ,  $I_{2}O_{5}$ ,  $2MoO_{3}+2V_{2}H_{2}O$ 

197.83 g are sol in 1 l  $H_2O$  at 15° Sol in dil  $HNO_3+A$ g (Chrétien)

 $\begin{array}{c} \text{Magnesium molybdoiodate, MgO, $I_2O_5$,} \\ 2MoO_3 + 6H_2O \end{array}$ 

1 l  $\rm H_2O$  dissolves 3.85 g of the salt at 15°, 18.2 g at 100° (Chretien)

 $\begin{array}{ccc} \textbf{Manganous} & \textbf{molybdoiodate,} & 3MnO, & (I_2O_5, \\ & 2MoO_3)_4 + 9H_2O \end{array}$ 

 $1~l~H_2{\rm O}$  dissolves 17~05~g~ of the salt at  $15^\circ,\,55~05~g~$  at  $100^\circ~$  (Chrétien )

Nickel molybdoiodate, NiO,  $I_2O_5$ ,  $2MoO_3+6H_2O$ 

5 43 g are sol in 1 l H<sub>2</sub>O at 15°, 21 8 g at 100° (Chrétien)

 $2N_1O$ ,  $2I_2O_5$ ,  $3M_0O_3+23H_2O$  Easily sol in  $H_2O$  Not decomp by acids (Maass, Dissert 1901)

Nickel molybdoiodate, acid, 2N1O,  $(I_2O_5, 2M_0O_3)_5+15H_2O$ 

Very sol in H<sub>2</sub>O (Chrétien)

Potassium molybdoiodate,

KHO<sub>2</sub>IO<sub>2</sub>MoO<sub>3</sub>OH, or KIO<sub>3</sub>, MoO<sub>3</sub>+ $2H_2O$ 

Ppt Sl sol in H<sub>2</sub>O (Blomstrand, J pr (2) 40 320) KoO LO. 2MoO. Only all sol in cold

 $K_2O$ ,  $I_2O_5$ ,  $2M_0O_3$ . Only sl sol in cold  $H_2O$ , sol on long boiling 4 48 grs are sol in 1 l  $H_2O$  at 12° (Compare Blomstrand not identical) (Rosenheim, A 1899, 308

 $^{+}$ H<sub>2</sub>O Sl sol m H<sub>2</sub>O 3 45 g are sol m 1 l H<sub>3</sub>O at 15°, 28 38 g at 100° More sol m dil HNO<sub>8</sub>+Aq (Chrétien, A ch 1898, (7) **15** 404)

Potassium molybdoiodate, acid

 $\begin{array}{l} (I_2O_5,\,2MoO_3)_5,\,4K_2O+7H_2O\\ (I_2O_5,\,2MoO_3)_3,\,2K_2O+13H_2O\\ (I_2O_5,\,2MoO_3)_2,\,K_2O+4H_2O\\ (I_2O_5,\,2MoO_3)_3,\,K_2O+7H_2O\\ (I_2O_5,\,2MoO_3)_4,\,K_2O+5H_2O\\ (Chrétien\ ) \end{array}$ 

Silver molybdoiodate, Ag<sub>2</sub>O, I<sub>2</sub>O<sub>5</sub>,  $2MoO_3 + 1\frac{1}{2}H_2O$ 

Insol in  $H_2O$   $4Ag_2O$ ,  $4I_2O_5$ ,  $3MoO_3$  Sol in  $H_2O$  containing  $HNO_3$  (Chrétien)

Sodium molybdoiodate, Na O,  $I_2O_5$ ,  $2MoO_8+H_2O$ 

Sl sol in H<sub>2</sub>O Sol in HNO<sub>3</sub> with decomp (Chrétien, C R 1896, **123** 178) 11 H<sub>2</sub>O dissolves 6 97 g of the salt at 15°,

22 75 g at 90°
1 l HNO<sub>3</sub>+Aq (1 10) dissolves 23 78 g of the salt at ord temp (Chrétien, A ch 1898, (7) **15** 410)

 $+2\rm{H}_2O$  Only sl sol in cold  $\rm{H}_2O$ , sol on long boiling 3 35 grams are sol in 1 l H<sub>2</sub>O at 12° (Rosenheim, A 1899, 308 50)

Strontium molybdoiodate, SrO, I O<sub>5</sub>, 2MoO +  $3H_2O$ 

Very sol in H O (Chrétien, A ch 1898, (7) **15** 415)

Strontium molybdoiodate, acid, 3SrO, ( $I_2O_5$ ,  $2M_0O_3$ )<sub>4</sub>+15 $H_2O$ 

1 l  $\rm H_2O$  dissolves 2.94 g of the salt at 15°, 13.64 g at 100° (Chrétien )

Uranyl molybdoiodate,  $2\mathrm{UO_3}$ ,  $4\mathrm{I_2O_5}$ ,  $3\mathrm{MoO_3} + 3\mathrm{H_2O}$  (Chretien )

Zinc molybdoiodate, ZnO,  $I_2O_5$ ,  $2MoO_3+5H_2O$ 

Zinc molybdoiodate acid, ZnO, (I<sub>2</sub>O<sub>5</sub>, 2MoO<sub>5</sub>)<sub>3</sub> +16H<sub>2</sub>O Very sol in H<sub>2</sub>O (Chrétien)

## Molybdoperiodic acid

Ammonium molybdoperiodate, 5(NH<sub>4</sub>)<sub>2</sub>O, 12MoO<sub>3</sub>+12H<sub>2</sub>O

Sel in H<sub>2</sub>O (Blomstrand, Sv V A H

Bih 1892 No 6)

4(NH<sub>4</sub>)<sub>2</sub>O, 1<sub>2</sub>O<sub>7</sub>, 8MoO<sub>3</sub>+7H<sub>2</sub>O Very sl

sol in cold H<sub>2</sub>O (Blomstrand)

Ammonium sodium —,  $2(NH_4)_2O$ ,  $Na_2O$ ,  $I_2O_7$ ,  $2M_0O_8+10H_2O$ Very sl sol in  $H_2O$  (B)

Barrum sodium —, 9BaO, Na<sub>2</sub>O, 2I<sub>2</sub>O<sub>7</sub>,  $24MoO_3+28H_2O$  Very sl sol in  $H_2O$  (B)

Lithium —,  $5L_{12}O$ ,  $I_{2}O_{7}$ ,  $12MoO_{3}+30H_{2}O$ Not so efflorescent as Na salt Sol in  $H_{2}O$ (B)  $+18H_{2}O$ ) (B)

Manganous sodium —, 2MnO, 3Na<sub>2</sub>O,  $I_2O_7$ ,  $12MoO_3+32H_2O$ Sol in  $H_2O$  (B)

Potassium —, 5K<sub>2</sub>O, I<sub>2</sub>O<sub>7</sub>, 12MoO<sub>3</sub>+ 12H<sub>2</sub>O Not efflorescent (Blomstrand)

 $\begin{array}{c} \textbf{Sodium} & \longleftarrow, 5 \text{Na}_2 \text{O}, 1_2 \text{O}_7, 12 \text{MoO}_3 + 34 \text{H}_2 \text{O} \\ & \text{Efflorescent} \quad \text{Very sol in } \text{H}_2 \text{O} \quad \text{(Blomstrand, Sv V A H Bih 1892 No 6 24)} \\ & + 26 \text{H}_2 \text{O} \quad \text{Not efflorescent} \quad \text{Very sol in } \\ & \text{H}_2 \text{O} \quad \text{(Blomstrand)} \end{array}$ 

Sodium strontium —, Na<sub>2</sub>O, 4SrO, I<sub>2</sub>O<sub>7</sub>,  $12\text{MoO}_3+20\text{H}_2\text{O}$ Sol in H<sub>2</sub>O (B)

Molybdophosphoric acid See Phosphomolybdic acid

Molybdosubphosphoric acid

Sodium molybdosubphosphate, Na<sub>2</sub>[P(Mo<sub>2</sub>O<sub>7</sub>)<sub>3</sub>]+8H<sub>2</sub>O Ppt (Rosenheim, Z anorg 1913, **84** 222)

Molybdophosphorous acid

Potassium molybdophosphite, K<sub>2</sub>[HP(Mo<sub>2</sub>O<sub>7</sub>)<sub>3</sub>]+11H<sub>2</sub>O Difficultly sol in cold H<sub>2</sub>O (Rosenheim, Z anorg 1913, **84** 219)  $\begin{array}{c} \text{Sodium molybdophosphite,} \\ \text{Na}_2[\text{HP}(\text{Mo}_2\text{O}_7)_3] + 11\text{H}_2\text{O} \\ \text{Sl sol in H}_2\text{O} \quad \text{(Rosenheim, Z anorg 1913, 84 218)} \end{array}$ 

Molybdophosphovanadic acid See Phosphovanadiomolybdic acid

Molybdoselemous acid

Ammonium molybdoselenite, 4(NH<sub>4</sub>)<sub>2</sub>O, 3SeO<sub>2</sub>, 10MoO<sub>3</sub>+4H<sub>2</sub>O More sol in hot than cold H<sub>2</sub>O, insol in alcohol (Péchard, A ch (6) **30** 403)

Ammonium potassium molybdoselenite,  $2(\mathrm{NH_4})_2\mathrm{O}, \quad 2\mathrm{K_2O}, \quad 3\mathrm{SeO_2}, \quad 10\mathrm{MoO_3} + 5\mathrm{H_2O}$ 

Very sol in  $H_2O$ , insol in alcohol (Péch ard)

Barium molybdoselenite, 4BaO,  $3SeO_2$ ,  $10MoO_3+3H_2O$ 

Sl sol in cold, easily in warm  $\rm H_2O$  (Pechard )

Potassium molybdoselenite, 4K O, 3ScO<sub>2</sub> 10MoO<sub>2</sub>+5H<sub>2</sub>O

Very sol in  $\mathrm{H}_2\mathrm{O}$ , insol in alcohol (Pcch ard )

Sodium molybdoselenite, 4Na (), 3S(O, 10MoO<sub>3</sub>+15H<sub>2</sub>O

Very efflorescent, and sol in II (), insol i alcohol (Pechard)

Molybdosilicic acid See Silicomolybdic acid

Molybdosilicovanadic acid See Silicovanadiomolybdic acid

Molybdosulphuric acid

Appreciably sol in H() (Hoffmani Dissert 1903)

Ammonium molybdosulphate, (NII<sub>4</sub>) (), 2MoO<sub>3</sub>, SO<sub>3</sub>+4II (), and +9II () Decomp by II () (Wenland Z mor 1907, **54** 261 ) (NII<sub>4</sub>)<sub>2</sub>O, 2MoO<sub>3</sub>, 3SO<sub>3</sub>+10II () (Wenland I)

Ammonium molybdenyl molybdosulphat  $(NH_4)_2O, MoO, 7M_0O_3, SO_4+5IIO)$   $1\frac{1}{2}(NH_4)_2O, MoO_2, 7M_0O_3, SO_4+5IIO)$   $2(NH_4)_2O, MoO_2, 7M_0O_3, SO_3+14IIO)$  (Hoffmann, Dissert 1903)  $3NH_3, MoO_2, 7M_0O_3, SO_3+10II_2O$  Versol in  $H_2O$  Very sl sol in  $NH_4$  s ilts +A Very stable toward alkalı +Aq (PCchar C R 1893, 116 1441)

5NH<sub>3</sub>, MoO<sub>2</sub>, 7MoO<sub>3</sub>, SO<sub>3</sub>+8H<sub>2</sub>O chard, C R 1893, **116** 1441) (Pé-

Potassium molybdosulphate, K<sub>2</sub>O, 2M<sub>0</sub>O<sub>3</sub>,  $SO_3 + 2H_2O$ 

 $K_2O$ ,  $2MoO_3$ ,  $SO_3+6H_2O$   $K_2O$ ,  $2MoO_3$ ,  $3SO_3+6H_2O$  (Weinland, Z anorg 1907, 54 260)

Potassium molybdenyl molybdosulphate,  $K_2O$ ,  $MoO_2$ ,  $7MoO_3$ ,  $SO_3 + 8H_2O$ (Hoffmann, Dissert 1903)

## Molybdosulphurous acid

Ammonium molybdosulphite, 4(NH<sub>4</sub>)<sub>2</sub>O,  $3SO_2$ ,  $10M_0O_3 + 6H_2O$ 

Sl sol in cold, more easily in hot H<sub>2</sub>O Insol in alcohol (Péchard, A ch (6) 30 396)

3(NH<sub>4</sub>)<sub>2</sub>O, 8MoO<sub>3</sub>, 2SO<sub>2</sub>+5H<sub>2</sub>O Sl sol in cold, easily sol in warm H<sub>2</sub>O Easily decomp by H<sub>2</sub>O, and can be recryst only in presence of an excess of sulphurous acid (Rosenheim, Z anorg 1894, 7 177)

Ammonium potassium molybdosulphite,  $2(NH_4)_2O$ , 2KO,  $3SO_2$ ,  $10M_0O_3 + 9H_2O$ Sl sol in cold H2O Decomp on warming (Puchard)

Barium molybdosulphite, 2BaO, 5MoO<sub>3</sub>,  $250_2 + 10H_2O$ 

(Rosenheim, Z. anorg. 1897, 15, 185.)

Cæsium molybdosulphite, 2Cs<sub>2</sub>O, 5MoO<sub>8</sub>, 2SO + 6HO

Unstable As K salt (Rosenheim)

Potassium molybdosulphite, 4K<sub>2</sub>O, 3SO<sub>2</sub>,  $10 \text{MoO}_3 + 10 \text{H}_2\text{O}$ 

Very sl sol in HO, but decomp on warming (Pechud) 2KO, 5MoO<sub>3</sub>, 2SO +HO (Rosenheim)

Rubidium molybdosulphite, 2Rb O, 5MoO<sub>3</sub>,  $250 + {}^{1}2H()$ 

As K salt (Rosenheim)

Sodium molybdosulphite, 4N 12O, 3SO2, 10MoO3+12H2O

Very sol in cold H<sub>2</sub>O, insol in alcohol (Pech ud)

+16H () Very efflorescent (Pechard) 2N 1 (), 5Mo(), 2S() +SH () In dry state it gradually gives off SO2 and soon effloresces (Rosenheim)

Strontium molybdosulphite, 2SrO, 5MoO<sub>3</sub>,  $2S() + 12H_2O$ (Rosenheim)

Molybdotitanic acid See Titanomolybdic acid Molybdous acid

Magnesium molybdite, Mg<sub>2</sub>Mo<sub>8</sub>O<sub>8</sub>=2MgO,  $3M_0O_2$ 

Not attacked by KOH, and HCl+Aq (Muthmann, A 238 108)

Zinc molybdite,  $Zn_2Mo_3O_8=2ZnO$ ,  $3MoO_2$ Easily sol in aqua regia (Muthmann, A **238** 108)

Molybdovanadates

See Vanadiomolybdates

Neodymicotungstic acid

Ammonium neodymicotungstate, 3(NH<sub>4</sub>)<sub>2</sub>O,  $Nd_2O_3$ ,  $16WO_3 + 20H_2O$ 

Difficultly sol in H<sub>2</sub>O (E F Smith, J Am Chem Soc 1904, 26 1480)

Barium neodymicotungstate, 6BaO, Nd<sub>2</sub>O<sub>3</sub>, 16WO<sub>3</sub>+17H<sub>2</sub>O Insol in H<sub>2</sub>O (E F Smith)

Neodymium

See also under Didymium

Neodymium bromide, NdBr<sub>3</sub> (Matignon, C R 1905, 140 1638)

Neodymium carbide, NdC.

Decomp by H<sub>2</sub>O, insol in conc HNO<sub>3</sub>, decomp by dil HNO3 (Moissan, C R 1900, **131** 597)

Neodymium chloride, NdCl<sub>3</sub>

100 g H O dissolve 98 68 g NdCl<sub>3</sub> at 13°, 140 4 g at 100°

Sp gr at 15°/4° of the solution sat at 13°= 174 (Matignon, A ch 1906, (8) 8 249)

44 5 g are sol in 100 g abs alcohol at 20° 1 8 g " " " " pyridine at 15° Insol in ether, CHCl<sub>3</sub>, quinoline, toluidine, etc Sl sol in aniline and in phenylhydra-

zine (Matignon, A ch 1906, (8) 8 266) +6H O Deliquescent

At 13°, 100 pts H O dissolve 246 2 pts of the hydrated salt

At 100°, 100 pts HO dissolve 511 pts of hydrated salt

Sat solution at 13° has a sp gr 15°/4°= 1741 (Matignon, C R 1901, 133 289)

Neodymium chloride ammonia, NdCl<sub>3</sub>, 12NH<sub>3</sub>

Decomposes on heating into NdCl<sub>3</sub>+NH<sub>3</sub>,  $+2NH_3$ ,  $+4NH_3$ ,  $+5NH_3$ ,  $+8NH_3$ , and +11NH<sub>3</sub> (Matignon, C R 1906, 142 1043)

Neodymium hydroxide

Sol in citric acid (Baskerville, J Am Chem Soc 1904, 26 49)

Solubility in glycerine+Aq containing about 60% by vol of glycerine 100 ccm of the solution contain 45 g neodymium oxide (Muller, Z anorg 1905, 43 322)

Neodymium hydride, NdH<sub>2</sub> (?)

Slowly attacked by boiling  $H_2O$  Sol in acids with violent evolution of  $H_2$  (Muthmann, A 1904, **331** 58)

Neodymium iodide, NdIs

(Matignon, C R 1905, 140 1638)

Neodymium nitride, NdN

Decomp in moist air with evolution of NH<sub>3</sub> (Muthmann, A 1904, **331** 59)

Neodymium oxide, Nd<sub>2</sub>O<sub>3</sub>

Easily sol in acids (v Welsbach, M 6 477)

Neodymium oxychloride, NdOCl (Matignon, C R 1905, 140 1638)

### Neon, Ne

Less sol than argon in H<sub>2</sub>O, sol in liquid oxygen (Ramsay, B 1898, **31** 3118)

### Absorption by H<sub>2</sub>O at t°

| t° | Coefficient of absorption |
|----|---------------------------|
| 0  | 0 0114                    |
| 10 | 0 0118                    |
| 20 | 0 0147                    |
| 30 | 0 0158                    |
| 40 | 0 0203                    |
| 50 | 0 0317                    |

(Antropoff, Roy Soc Proc 1910, 83 A, 480)

## Nıckel, Nı

Not attacked by H<sub>2</sub>O Very slowly sol in dilute H<sub>2</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>, or HCl+Aq (Tupputi, A ch 78 133)

Very easily attacked by HNO<sub>3</sub>+Aq, and difficultly by hot H<sub>2</sub>SO<sub>4</sub> When pure, is converted into passive condition by conc HNO<sub>3</sub> (Nicklès, C R 38 284)

Very sl attacked by cold acids, except HNO<sub>3</sub>+Aq (Tissier, C R 50 106)

Not attacked by NaOH+Aq (Venator, Dingl 261 133)

Insol in liquid NH<sub>2</sub> (Gore, Am Ch J 1898, **20** 828)

#### Nickel amide, $N_1(NH_2)_2$

Decomp by  $H_2O$ , slowly sol in min acids Insol in liquid  $NH_3$  (Bohart, J phys Chem 1915, 19 560)

### Nickel antimonide, NiSb

Insol in HCl+Aq, easily sol in HNO<sub>3</sub>+Aq (Christofle, **1863**)

 $\begin{array}{ll} \text{Min } \textit{Breithauptite} & \text{Insol in acids, easily} \\ \text{sol in aqua regia} & \text{Ni}_8\text{Sb}_2 & (\text{Christofie} ) \end{array}$ 

Nickel antimonide sulphide,  $NiSb_2$ ,  $NiS_2 = NiSbS$ 

Min Nickel glance, Ullmannite Decomp by HNO<sub>3</sub>+Aq, completely sol in aqua regia with separation of S

#### Nickel arsenide, NiAs

Min Niccolite Sol in conc HNO<sub>3</sub>+Ac with separation of As<sub>2</sub>O<sub>3</sub>, more easily sol in aqua regia

NiAs<sub>2</sub> Min Chloanthite, Rammelsbergite Sol in HNO<sub>3</sub>+Aq

N<sub>12</sub>As<sub>2</sub> Sol in HNO<sub>3</sub> and in aqua regia Readily attacked by fused alkalı (Granger C R 1900, **130** 915)

Nickel arsenide sulphide, NiAs2, NiS2

Min Gersdorffite Partly sol in HNO<sub>3</sub>+Aq with separation of S and As<sub>2</sub>O<sub>3</sub>, not at tacked by KOH+Aq

Nickel azoimide, basic, Ni(OH)N<sub>3</sub>

Insol in  $H_2O$  (Curtius, J pr 1898, (2 58 300)

### Nickel azoimide, $N_1N_6+H_2O$

Sol in H<sub>2</sub>O, insol in alcohol and ether (Curtius, J pr 1900, (2) **61** 418)

Nickel potassium azoimide,  $N_1(N_3)_2$ ,  $KN_3$  (?) Sol in  $H_2O$  (Curtius, J pr 1898, (2) 58 302)

#### Nickel boride, Ni<sub>2</sub>B

Attacked by HNO<sub>3</sub> Slowly sol in ho HCl (Jassoneix, C R 1907, **145** 240)

NiB Decomp by moist air and by alka nitrates, chlorates, hydroxides and carbor ates, decomp by steam at red heat Nc attacked by HCl Easily attacked by HNC and aqua regia, by H<sub>2</sub>SO<sub>4</sub> only on heating (Moissan, C R 1896, 122 425)

N<sub>1</sub>B<sub>2</sub> (Jassoneix, C R 1907, **145** 241)

#### Nickel bromide, NiBr<sub>2</sub>

Deliquescent Slowly sol in H<sub>2</sub>O Sat N<sub>1</sub>Br<sub>2</sub>+Aq contains at —21° —6° +19° 38° 47 1 51 7 56 6 58 9% N<sub>1</sub>Br<sub>2</sub>,

58° 77° 98° 100° 140° 60 5 60 3 61 0 61 0 60 7% N<sub>1</sub>Br (Étard, A ch 1894, (7) **2** 542)

Somewhat hygroscopic Nearly insol 1 cold  $\rm H_2O$  but begins to dissolve appreciabl at 50°, and somewhat more rapidly at 90 but even at that temp 1 g requires  $\rm l-2$  hou for solution  $\rm HNO_3$  does not appreciabl hasten solution (Richards and Cushma Z anorg 1898, 16 169)

SI sol in benzonitrile (Naumann, B 1914, 47 1369)

Sol in quinoline (Beckmann and Gabel,

Z anorg 1906, 51 236)

 $+3H_2O$  Deliquescent Very sol in  $H_2O$ . HCl+Aq, NH4OH+Aq, alcohol, and ether (Berthemot, A ch 44 389)

(Bolschakoff, C C 1897, II  $+6\mathrm{H}_2\mathrm{O}$ 

331 and 726)

+9H<sub>2</sub>O(Bolschakoff, C C 1897, II 726 and 331)

## Nickel stannic bromide

See Bromostannate, nickel

### Nickel bromide ammonia, NiBr<sub>2</sub>, 6NH<sub>6</sub>

Sol in little H<sub>2</sub>O, but decomp by more (Rammelsberg, Pogg 55 243)

Sol in warm conc NH4OH+Aq, insol in (Richards and Cushmann, Z anorg 1898, 16 175)

### Nickel bromide cupric oxide, NiBr<sub>2</sub>, 3CuO+ $4H_2O$

Not decomp by H<sub>2</sub>O (Mailhe, A ch 1902, (7) **27** 377)

### Nickel bromide hydrazine, NiBr, 2N H<sub>4</sub>

Easily sol in dil acids and  $NH_4OH + Aq$ NiBr<sub>2</sub>, 3N<sub>2</sub>H<sub>4</sub> Sol in dil acids (Franzen, Z anorg 1908, 60 263-4)

#### Nickel carbonyl, Ni(CO)<sub>4</sub>

Insol in H<sub>2</sub>O, not attacked by dil acids or alkalies or conc HCl+Aq Easily sol in conc HNO<sub>3</sub>+Aq and in aqua regia Sol in alcohol, benzene, and chloroform (Mond, Langer, and Quincke, Chem Soc 57 749)

Sol in hydrocarbons, especially oil of tur-pentine (Berthelot, C R 1891, **112** 1346)

Sol in acetone, toluene, methyl and ethyl alcohol, etc (I enher and Loos, J Am Chem Soc 1900, 22 114)

#### Nickel chloride, NiCl<sub>2</sub>

Anhydrous Not immediately sol in  $H_2O$ , but gradually dissolves on boiling or by addition of HCl+Aq Deliquesces on air, and is then easily sol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq Sol in alcohol Sol in hot HCl+Aq only slowly

Sp gr of N<sub>1</sub>Cl<sub>2</sub>+Aq containing

25% NıCl<sub>2</sub> 15 20 10 1 0493 1 0995 1 1578 1 2245 1 3000 (B Franz, J pr (2) 5 285)

Sp gr of  $N_1Cl_2+Aq$  containing, in 1000 grms  $H_2O$ , g  $N_1Cl_2+7H_2O$  at 23 1°

 $128 g (= \frac{1}{2} mol) 256$ 384 5121 057 1 107 1 149 1 187 768 896 1024 1 276 1 220 1 249 1 301

Containing g NiCl. (anhydrous)  $65 \text{ g} \ (= \frac{1}{2} \text{ mol}) 130 \ 195 \ 260$ 325 390  $106\bar{1}$ 1 119 1 176 1 230 1 284 1 335 (Gerlach, Z anal 28 468)

Sp gr of N<sub>1</sub>Cl<sub>2</sub>+Aq at room temp containing 1144922 69 30 40% N1Cl<sub>2</sub>

1 1093 122641 3371 (Wagner, W Ann 1883, 18 269)

Sp gr of N<sub>1</sub>Cl<sub>2</sub>+Aq at 25°

| Concentration of NiCl2+Aq                                      | Sp gr                                |  |  |
|----------------------------------------------------------------|--------------------------------------|--|--|
| 1-normal $\frac{1}{2}$ - " $\frac{1}{4}$ - " $\frac{1}{8}$ - " | 1 0591<br>1 0308<br>1 0144<br>1 0067 |  |  |

(Wagner, Z phys Ch 1890, 5 39)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828)

100 pts absolute alcohol dissolve at room temperature 10 05 pts NiCl<sub>2</sub> (Bodtker, Z phys Ch 1897, **22** 511)

Sol in aumoline (Beckmann and Gabel.

Z anorg 1906, 51 236)

Difficultly sol in methyl acetate (Naumann, B 1909, 42 3790) (Naumann,

Insol in ethyl acetate 1910, 43 314)

Solubility in glycol = 16 1-16 3% Coninck, C C 1905, II 1234) (de

Sl sol in benzonitrile (Naumann, B 1914, **47** 1369 \

Anhydrous NiCl<sub>2</sub> is insol in acetone (Krug and M'Elroy, J Anal Ch 6 184) Insol in acetone and in methylal (Eidmann, C C 1899, II 1014)

+H<sub>2</sub>O (Baubigny) 11 sat HCl+Aq at 12° contains 40 g NiCl<sub>2</sub> dissolved from NiCl<sub>2</sub>, H<sub>2</sub>O (Ditte)

(Sabatier, Bull Soc (3) 1 88) +2H<sub>2</sub>O+6HODeliquescent in moist, efflorescent in dry air, sol in H<sub>2</sub>O with evolution of heat Sol in 15 to 2 pts H<sub>2</sub>O Easily sol

m alcohol (Tupputi)
1 l H<sub>2</sub>O dissolves 600 g N<sub>1</sub>Cl<sub>2</sub>+6H<sub>2</sub>O

(Ditte, A ch 1879, (5) 22 551)

Sat ag solution contains at -17° --16°  $+10^{\circ}$ 18° 38 5% N<sub>1</sub>Cl<sub>2</sub>, 29731 0 373

38° 59° 78° 96° 46 7% N1Cl2 419 450 466 (Etard, A ch 1894, (7) 2 539)

Solubility of  $N_1Cl_2+6H_2O=3753\%$   $N_1Cl_2$ at 25° (Foote, J Am Chem Soc 1912, 34 882)

100 pts absolute alcohol dissolve at room temperature 53 71 pts N<sub>1</sub>Cl<sub>2</sub>+6H<sub>2</sub>O (Bodtker, Z phys Ch 1897, 22 511)

 $+7\rm{H}_2\rm{O}$  100~g absolute alcohol dissolve 2 16 g NıCl₂+7H₂O at 17° and 1 4 g at 3° (de Bruyn, R t c 1892, 11 156)

Nickel hydrogen chloride,  $3\mathrm{NiCl_2},\ 2\mathrm{HCl} + 1\frac{1}{2}\mathrm{H_2O}$ 

(Reitzenstein, Z anorg 1898, 18 270)

Nickel rubidium chloride, NiCl<sub>2</sub>, 2RbCl Easily sol in H<sub>2</sub>O and HCl+Aq (Godeffrov, B 8 9)

Nickel thallic chloride, NiCl<sub>2</sub>, 2TlCl<sub>3</sub>+8H<sub>2</sub>O Deliquescent Can be cryst from H<sub>2</sub>O (Gewecke, A 1909, **366** 221)

Nıckel tın (stannous) chloride,  $\mathrm{NiCl_2}$ ,  $\mathrm{SnCl_2} + 6\mathrm{H}_{\circ}\mathrm{O}$ 

Sol in H<sub>2</sub>O (Jorgensen)

Nickel tm (stannic) chloride See Chlorostannate, nickel

Nickel chloride ammonia, NiCl<sub>2</sub>, 2NH<sub>3</sub>
Sol in H<sub>2</sub>O, decomp on boiling, insol in alcohol
NiCl 2NH 12HO (Andre, C R 1888,

Sol in cold H<sub>2</sub>O without in alcohol Very sl sol in Aq

m a sat solution of NH<sub>4</sub>Cl iii a sat solution of NH<sub>4</sub>Cl iii a sat solution of NH<sub>4</sub>Cl iii a sat solution of NH<sub>4</sub>Cl iii a sat solution of NH<sub>4</sub>Cl iii a sat solution of NH<sub>4</sub>Cl iii a sat solution of NH<sub>4</sub>Cl

Nickel chloride cupric oxide,  $NiCl_2$ ,  $3CuO+4H_2O$ 

Not decomp by  $H_2O$  (Mailhe, A ch 1902, (7) 27 377)

Nickel chloride hydrazine, NiCl<sub>2</sub>, 2N<sub>2</sub>H<sub>4</sub>
Sol in dil acids and NH<sub>3</sub>+Aq (Franzen, Z anorg 1908, **60** 262)
NiCl<sub>2</sub>, 3N<sub>2</sub>H<sub>4</sub> Sol in dil acids (F)

Nickel fluoride, NiF2

Sol in about 5000 pts  $H_2O$ , insol in alcohol and ether Not attacked by HCl, HNO<sub>3</sub>, or  $H_2SO_4$  even when hot (Poulenc, C R 114 1426)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 828)

+2H<sub>2</sub>O Decomp by pure H<sub>2</sub>O Sol in H<sub>2</sub>O acidulated with HF (Berzelius) +3H<sub>2</sub>O (Clarke, Sill Am J (3) **13** 291)

Nuckel hydrogen fluoride, N<sub>1</sub>F , 5HF+6H<sub>2</sub>O Easily sol in H<sub>2</sub>O and dil acids Sol in NH<sub>4</sub>OH+Aq with decomp (Bohm, Z anorg 1905, **43** 330)

Nickel potassium fluoride, NiF<sub>2</sub>, KF  $+H_2O$  Sol in  $H_2O$  (Wagner, B 19 896)

 $\rm NiF_2,\,2KF$  Sl sol in H<sub>2</sub>O Scarcely sol in methyl or ethyl alcohol or benzene (Poulenc, C R  $\,114\,\,747$  )

Nickel potassium zirconium fluoride See Fluozirconate, nickel potassium

Nickel manganic fluoride See Fluomanganate, nickel

Nickel sodium fluoride, NiF<sub>2</sub>, NaF+H<sub>2</sub>O Sol in H<sub>2</sub>O (Wagner, B **19** 896)

Nickel stannic fluoride See Fluostannate, nickel

Nickel titanium fluoride See Fluotitanate, nickel

Nickel tungstyl fluoride See Fluoxytungstate, nickel

Nickel vanadium fluoride See Fluovanadate, nickel

Nickel zirconium fluoride See Fluozirconate, nickel

Nickel fluoride ammonia, 5NiF,  $6NH_3+8H_2O$ 

Insol in cold  $H_2O$  Decomp by hot II O Easily sol in dil acids (Bohm, Z anoig 1905, **43** 334)

Nickelous hydroxide, 4Ni()2II, II ()

Very sl sol in H O Sol in icids Insol in KOH or NiOII+Aq Somewhit difficultly sol in (NII<sub>4</sub>) CO<sub>1</sub> or NII<sub>4</sub>OII+Aq, bu easily sol in presence of NII<sub>4</sub> salts Sol in NH<sub>4</sub> salts+Aq Sol in KCN+Aq (Rod gers, 1834)

Sol in boiling NII<sub>4</sub>Cl+Aq

N<sub>1</sub>O<sub>2</sub>H<sub>2</sub>

Solubility in NII4OII + \q it 25°

| NH <sub>3</sub> norm | C Nipet I | ( NOH p.i.) |
|----------------------|-----------|-------------|
| 1                    | 0 054     | 0 00287     |
| 2                    | 0 170     | 0 00579     |
| 3                    | 0 257     | 0 00875     |
| 4                    | 0 360     | 6 01227     |
| 4 911                | 2 580     | 0 0879      |
| 3 900                | 1 780     | 0 0607      |
| 2 101                | 0 835     | 0 0281      |
| 0 602                | 0 158     | 0 0054      |

The non-agreement of the results is due to the formation of different modifications of NiO<sub>2</sub>H<sub>2</sub>

(Bonsdorff, Z anorg 1904, 41 185)

Solubility in NH<sub>4</sub>OH+Aq

Cone of N<sub>1</sub>=0 014N in 1N NH<sub>4</sub>OH+Aq
" " =0 036N " 2N NH<sub>4</sub>OH+Aq

(Starck, B 1903, 36 3840) Sol in hot NH<sub>4</sub>F+Aq (von Helmolt, Z

anorg 1893, 3 133)

Insol in methyl or amyl amine (Wurtz) Not pptd in presence of Na citrate (Spiller)

Not pptd in presence of a large number of non-volatile organic substances, particularly  $H_2C_4H_4O_6$  (Rose)

## Nickelonickelic hydroxide, Ni<sub>3</sub>O<sub>4</sub>, 2H<sub>2</sub>O

Sol in acids, insol in H<sub>2</sub>O and alkalies (Dudley, J Am Chem Soc 1896, 18 901)

## Nickelic hydroxide, Ni<sub>2</sub>O<sub>3</sub>, 2H<sub>2</sub>O (?)

(Wernicke, Pogg 141 122)

 $N_{12}O_{3}$   $3H_{2}O$  (?) Sol in acids as nickelous salts Not attacked by boiling KOH or NaOH+Aq Slowly sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Sol in NH<sub>4</sub>OH, and NH<sub>4</sub> salts+Aq (Od-

### Nickel iodide, NiI2

Deliquescent and sol in H<sub>2</sub>O (Erdmann, J pr 7 254)

## Sat N<sub>1</sub>I<sub>2</sub>+Aq contains at

16° —23° --6°  $+11^{\circ}$ 578 59 0% N1I2, 518 543 43° 80° 85° 900

64 1 650 652657% N1I2 (Étard, A ch 1894, (7) 2 546)

 $+6H_2O$ Deliquescent Easily sol in H<sub>2</sub>O (Lrdmann)

## Nickel iodide ammonia, NiI2, 4NH3

(Rammelsberg, Pogg 48 119) N1I,  $6NH_3$  Decomp by  $H_2O$  Sol in warm dil  $NH_4OH+Aq$  Very sl sol in conc NH<sub>4</sub>OH+Aq (Frdmann)

## Nickel iodide hydrazine, NiI<sub>9</sub>(N<sub>2</sub>H<sub>4</sub>)<sub>2</sub>

Sol in acids (Franzen, Insol in H<sub>2</sub>O **Z** anorg 1911, **70** 150)

## Nickel suboxide, Ni<sub>3</sub>O +H O

Insol in H(), sol in HCl and HSO4 and HNO<sub>3</sub>, also in KCN+Aq (Moore, C N 1895, **71** 81)

#### Nickelous oxide, NiO

Insol in H<sub>2</sub>O Sol in conc acids, except when crystalline, when it is scarcely attacked by acids (I belmen, C R 33 256)

Very sl sol in boiling NH<sub>4</sub>Cl+Aq (De-

marçay)

Very slowly sol in NH<sub>4</sub>OH+Aq Insol in

KOH, and NaOH+Aq

Sol in min acids, especially HCl+Aq, when warmed, insol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, NH<sub>4</sub>Cl, 232)

and NH<sub>4</sub>SCN+Aq Insol in conc NaOH+Aq (Zimmerman, A 232 324)

11 solution containing 4186 g sugar and 34 3 g CaO dissolves 0 29 g NiO (Bodenbender, J B 1865 600)

Min Bunsenite

### Nickelonickelic oxide, Ni<sub>3</sub>O<sub>4</sub>

Sol in acids (Baubigny, C R 87 1082) +2H<sub>2</sub>O Insol in H<sub>2</sub>O, and in alkalies+ Aq Sol in acids (Dudley, J Am Chem Soc 1896, 18 901)

 $6N_{10}$ ,  $N_{12}O_3 + H_2O$  (Schonbein, J pr 93)

35)

## Nickelic oxide, Ni<sub>2</sub>O<sub>3</sub>

Sol in HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, or HCl+Aq with decomp, also in NH<sub>4</sub>OH and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+ Aq (Winkelblech, A 13 259)

## Nickel peroxide, Ni<sub>3</sub>O<sub>5</sub> (?)

(Bayley, C N 39 81)

Correct composition is Ni<sub>2</sub>O<sub>3</sub> (Carnot, C R 108 610

N<sub>14</sub>O<sub>7</sub> (?) (Wicke, Zeit Ch **1865** 303) N<sub>1</sub>O<sub>4</sub> (Hollard, C R 1903, **136** 230)

### Nickel oxychloride

Sl sol in H<sub>2</sub>O (Berzelius)

 $N_1Cl$ ,  $8N_1O+13HO$  (Raoult, C R 69 826)

## Nickel oxylodide, NiI., 9NiO+15H O

Insol in H<sub>2</sub>O Sol in HNO<sub>3</sub>+Aq or acetic acid Insol in NH<sub>4</sub>OH+Aq Alcohol dissolves out NiI (Erdmann)

#### Nickel oxyselenide

Almost insol in boiling HCl, decomp by  $HNO_3$ (Fonzes-Diacon, C R 1900, 131 557)

#### Nickel phosphide, Ni P

Sol in HNO<sub>3</sub>+Aq and aqua regia, insol ii HCl+Aq (Struve, J pt 79 321)

Sol in aqua regit and in HNO3, sol ii fused alkalı (Granger, Bull Soc 1896, (3) **15** 1089)

Easily sol in HNO<sub>3</sub> (Granger, C N 1898,

**77** 229)

When prepared by heating phosphorus, copper and nickel in electric furnace, is insol in ill acids except a mixture of HNO3 and HF (Maronneau, C R 1900, 130 657)

Sol in HNO<sub>3</sub>, decomp by fused NıΡ (Jolibois, C R 1910, **150** 107) NaOH

 $N_1P_3$ Sol in HNO<sub>3</sub>, decomp by fused

NaOH

N<sub>1</sub>,P<sub>3</sub> Insol in HNO<sub>3</sub>, HCl and aqua regia stable in the air even when heated (Granger, Bull Soc 1896, (3) 15 1086) N<sub>13</sub>P<sub>2</sub> Not attacked by HCl Easily at-

tacked by HNO<sub>3</sub> (Rose, Pogg 1832, 24

 $N_5P_2$  Sol in HNO3, aqua regia and in fused alkalı (Granger, C R 1896,  $\pmb{123}$  177)

Nickel phosphosulphide, Ni<sub>2</sub>PS<sub>2</sub>

Decomp by hot  $\rm H_2O$  or by aqua regia Sl attacked by  $\rm HNO_3$  (Ferrand, A ch 1899, (7) 17 417)

Nickel semiselenide, Ni<sub>2</sub>Se

Almost insol in boiling HCl, decomp by HNO<sub>3</sub> (Fonzes-Diacon, C R 1900, 131 557)

#### Nickel selenide, NiSe

Insol in H<sub>2</sub>O, dil or conc HCl+Aq, slowly sol in HNO<sub>3</sub>+Aq, easily in aqua regia (Little, A 112 211)

Almost insol in boiling HCl, decomp by HNO<sub>3</sub> (Fonzes-Diacon, C R 1900, **131** 557)

NiSe<sub>2</sub> (Fonzes-Diacon)

N<sub>12</sub>Se<sub>3</sub> Almost insol in boiling HCl, decomp by HNO<sub>3</sub> (Fonzes-Diacon)

### Nickel silicide, Ni<sub>2</sub>Si

Sol in HF and aqua regia, insol in cold  $\rm H_2O$ , decomp by steam at red heat, sol in fused alkali carbonates (Vigouroux, C R 1895, 121 687)

Nickel semisulphide, Ni<sub>2</sub>S

Sol in HNO<sub>3</sub>+Aq, with residue of S Difficultly sol in conc HCl+Aq, insol in dil HCl+Aq (Arfvedson, Pogg 1 65, Gautier, C R 108 1111)

Does not exist (Bornemann, C A 1908

1686)

Nickel monosulphide, NiS

Anhydrous Insol in H<sub>2</sub>O, HCl, or H<sub>2</sub>SO<sub>4</sub> +Aq Sol in HNO<sub>8</sub>+Aq or aqua regia

Min Millerite

 $+xH_2O$  Insol in  $H_2O$ , but decomp by  $H_2O$  in contact with the air (Clermont and Guiot, C R 84 714), or by boiling with  $H_2O$  (Geitner, A 139 354)

When pptd with  $(NH_4)_2S$ , is somewhat sol in  $H_2O$  1 1  $H_2O$  dissolves 39  $87 \times 10^6$  moles NiS at 18° (Weigel, Z phys Ch 1907, 58

294)

Very sl sol in dil HCl+Aq, and still less

 $\ln HC_2H_3O_2+Aq$  (Fresenius)

More sol in HNO<sub>3</sub>+Aq, and easily in aqua regia

Somewhat sol in NH<sub>4</sub>OH+Aq or solutions of alkali sulphides Insol in NH<sub>4</sub>SH+Aq (Fresenius)

Sol at moment of formation in Na<sub>2</sub>S but not in (NH<sub>4</sub>)<sub>2</sub>S+Aq (Villiers, C R 1894, **119** 1264)

Sol while yet moist in H<sub>2</sub>SO<sub>3</sub>+Aq (Berthier)

When recently pptd, sol in KCN+Aq (Haidlen)

Pptd in presence of non-volatile organic substances as tartaric acid, etc. (Rose)

Sol in potassium thiocarbonate+Aq (Rosenbladt, Z anal 26 15)

Exists in a colloidal form in a very dil solution (Winnsinger, Bull Soc (2) 49 452) a modification

Very sol in 2N-HCl+Aq sat with H<sub>2</sub>S β modification

0 033 g is sol in 1 l 2N-HCl+Aq sat with H<sub>2</sub>S, very sol in 2N-HCl+Aq  $\gamma$  modification

Insol in 2N-HCl+Aq sat with  $H_2S$  0013 g is sol in 2N-HCl+Aq (Thiel, C C 1914, I 19)

Nickel sulphide, Ni<sub>3</sub>S<sub>2</sub>

(Bornemann, C A 1908 1686)

 $N_{13}S_4$  (Bornemann)  $N_{15}S_5$  (Bornemann)

Ni<sub>4</sub>S<sub>4</sub> Min Polydymrte Insol in HCl+ Aq Sol in HNO<sub>3</sub>+Aq with separation of S Ni<sub>5</sub>S<sub>7</sub> Min Beyrichite Sol in HCl+Aq

Nickel disulphide, NiS2

(Fellenberg, Pogg 50 75) Does not exist (Bellucci, C A 1909 293)

Nickel potassium sulphide, 3NiS, K2S

Insol in  $H_2O$  (Schneider, J pr (2) 9 209)

 $\rm K_2N_{111}S_{10}$  Not attacked by hot  $\rm (NH_4)_2S$ , slowly attacked by HCl or cold aqua regna, quickly by hot aqua regna HF and H<sub>2</sub>SO<sub>4</sub> dissolve only on heating Insol in organic acids, alkalies and 12% HCl, also in KCN, AgNO<sub>3</sub> or CuSO<sub>4</sub>+Aq (Milbauer, Z anorg 1904, 42 447)

Nickel telluride, Ni<sub>2</sub>Te<sub>3</sub>

Min Melonite Sol in HNO<sub>3</sub>+Aq NiTe (Fabre, C R **105** 277)

## Nickelicotungstic acid

Ammonium nickelicotungstate,  $2(NH_4)_2O$ ,  $2N_{12}O_8$ ,  $8WO_3+14H_2O$ 

(Rogers and Smith, J Am Chem Soc  $1904,\,\mathbf{26}\,\,1476$ )

 $3(\dot{N}H_4)_2O$ ,  $\dot{N}l_2O_3$ ,  $16WO_3+22H$  O Very sl sol in  $\dot{H}_2O$  (Rogers and Smith)

Barium nickelicotungstate,  $19 \mathrm{BaO}$ ,  $\mathrm{N}_{12}\mathrm{O}_3$ ,  $16 \mathrm{WO}_3$ 

Ppt Very insol in H<sub>2</sub>O (E F Smith)

## Nickelimolybdic acid

Barium nickelimolybdate, 3BaO,  $N_1O_2$ ,  $9M_0O_3+12H_2O$ 

Ppt (Hall, J Am Chem Soc 1907, 29 702)

Potassium nickelimolybdate, 3K<sub>2</sub>O, N<sub>1</sub>O<sub>2</sub>, 9MoO<sub>3</sub>+6½H<sub>2</sub>O

Very insol even in hot H<sub>2</sub>O (Hall)

### Nickelomolybdic acid

Ammonium hydrogen nickelomolybdate,  $(NH_4)_4H_6[N_1(M_0O_4)_6]+5H_2O$ 

Sl sol in  $H_2O$ , easily in dil acids (Barbieri, C A 1915 897)

Barum hydrogen nickelomolybdate, Ba<sub>2</sub>H<sub>6</sub>[N<sub>1</sub>(MoO<sub>4</sub>)<sub>6</sub>]+10H<sub>2</sub>O Ppt (Barbieri)

Potassium hydrogen nickelomolybdate,  $K_4H_6[N_1(MoO_4)_6]+5H_2O$ Sl sol in  $H_2O$ , easily in acids (Barbieri)

Silver hydrogen nickelomolybdate, Ag<sub>4</sub>H<sub>6</sub>|N1(MoO<sub>4</sub>)<sub>6</sub>]+3H<sub>2</sub>O Insol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH, or HNO<sub>3</sub>+ Aq (Barbieri)

#### Nickelonickelous acid

Potassium nickelonickelite,  $K_2N_{12}O_4$  or  $K_2O$ ,  $N_1O$ ,  $N_1O_2$ 

(Hofmann and Hiendlmaier, B 1906, 39 3186)

Sodium nickelonickelite,  $Na_2 N1_3 O_6 = Na_2 O$ , N1O,  $2N1O_2$  (Bellucci and Rubegni, C C 1907, I 794)

#### Nickelous acid

Barium dinickelite, BaO, 2NiO2

Unstable, decomp by cold  $H_2O$ , slowly and very rapidly by hot  $H_2O$  (Dufau, C R 1896, **123** 496)

## Niobium, Nb

For niobium and its compounds, see columbium, Cb, and the corresponding compounds

## Nitramide, NH<sub>2</sub>NO<sub>2</sub>

Decomp by conc  $H_2SO_4$  Easily sol in  $H_2O$ , alcohol, ether and acetone I ess sol in benzol Almost insol in ligroin (Thiele and Lachman, A 1895, **288** 297)

Sol in ether, insol in petroleum ether Very unstable, decomp by hot H<sub>2</sub>O (Thiele and Lachman, B 1894, 27 1909)

Nitratochloroplatinamine comps See Chloronitratoplatinamine comps

Nitratocobalt octamine comps See Nitratoctamine cobaltic comps Nitratooctamine cobaltic carbonate,

(NO<sub>3</sub>)<sub>2</sub>Co<sub>2</sub>(NH<sub>3</sub>)<sub>3</sub>(CO<sub>3</sub>)<sub>2</sub>+H<sub>2</sub>O Less sol than other octamine carbonates (Vortmann and Blasberg, B **22** 2650)

---- chloride,  $(NO_3)_2Co_2(NH_3)_8Cl_4+4H_2O$ (Vortmann and Blasberg, B **22** 2652)

---- iodide,  $(NO_3)_2Co_2(NH_3)_8I_4+2H_2O$ (Vortmann and Blasberg)

--- nitrate

See Octamine cobaltic nitrate

+4H<sub>2</sub>O (Vortmann and Blasberg, B 22 2652)

Nitratoplatinamine nitrate, (NO<sub>3</sub>)<sub>2</sub>Pt(NH<sub>3</sub>NO<sub>3</sub>)<sub>2</sub>

Sl sol in cold, more easily in hot H<sub>2</sub>O, easily sol in dil HNO<sub>3</sub>+Aq (Cleve)

mtrite,  $(NO_3)_2Pt(NH_3NO_2)_2$ Easily sol in  $H_2O$  (Cleve)

Nitratoplatindiamine chloride, (NO<sub>3</sub>)<sub>2</sub>Pt(N<sub>2</sub>H<sub>6</sub>Cl)<sub>2</sub>+H<sub>2</sub>O

Moderately sol in cold, very easily in hot  $\rm H_2O$ 

---- chloroplatmate,  $(NO_3)_2Pt(N_2H_6Cl)_2$ ,  $PtCl_4+2H_2O$ Ppt

chromate, (NO<sub>3</sub>)<sub>2</sub>Pt(N<sub>2</sub>H<sub>6</sub>)<sub>2</sub>CrO<sub>4</sub>
Nearly insol in H<sub>2</sub>O (Cleve)

--- nitrate,  $(NO_3)_2Pt(N_2H_6NO_3)_2$ Sol in  $H_2O$  Insol in  $HNO_3+Aq$ 

--- phosphate, NO<sub>3</sub>Pt(N<sub>2</sub>H<sub>6</sub>) +H<sub>2</sub>O \ \ / PO<sub>4</sub> Very sl sol in H O (Cleve)

Nitratodiplatindiamin e nitrate, (NO<sub>3</sub>)<sub>2</sub>Pt<sub>2</sub>(N<sub>2</sub>H<sub>6</sub>)<sub>4</sub>(NO<sub>3</sub>)<sub>4</sub> Sol in H<sub>2</sub>O with decomp

Nitratopurpureocobaltic bromide,  $Co(NO_8)(NH_8)_5Br$ 

Resembles the chloride in its properties (Jorgensen, J pr (2) 23 227)

### Nitratopurpureocobaltic carbonate. $Co(NO_3)(NH_3)_5(CO_3)+H_2O$

Less sol in H2O than other purpureocarbonates (Vortmann and Blasberg, B 22 2648)

### --- chloride, Co(NO<sub>8</sub>)(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>

Sl sol in cold H<sub>2</sub>O, but more than nitrate, more easily sol in hot H2O, but is converted into roseo salt Insol in HCl+Aq or alcohol (Jorgensen, J pr (2) 23 227)

- mercuric chloride,  $Co(NO_3)(NH_3)_5Cl_2$ ,  $HgCl_2$ Not wholly insol in H<sub>2</sub>O (Jorgensen)

chloroplatinate, Co(NO<sub>3</sub>)(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>,

Ppt Nearly insol in cold H<sub>2</sub>O (Jorgensen )

- chromate,  $Co(NO_3)(NH_3)_5CrO_4$ Nearly insol in H<sub>2</sub>O (Jorgensen)

### – dichromate

Sl sol in H<sub>2</sub>O, but more easily than the neutral salt (Jorgensen)

— dithionate,  $Co(NO_8)(NH_8)_5S_2O_6$ Very sl sol in cold, more easily in hot H<sub>2</sub>O (Jorgensen)

- nutrate,  $C_0(NO_3)(NH_3)_5(NO_3)_2$ Sol in 273 pts H<sub>2</sub>O at 16° Much more sol in hot H2O containing HNO3 (Jorgensen, J pr (2) 23 227)

- cobaltic nitrite,  $3\text{Co(NO}_3)(\text{NH}_3)_{5}$ ,  $2\text{Co(NO}_2)_6 + 2\text{H}_2\text{O}$ 

Very sl sol in H<sub>2</sub>O (Jorgensen, Z anorg **5** 176)

- diamine cobaltic nitrite,  $Co(NO_3)(NH_3)_5$  $(NO_2)_4Co(NH_3)_2$ 

Ppt (Jorgensen)

- oxalate,  $Co(NO_3)(NH_3)_5C_2O_4$ Ppt

--- sulphate,  $Co(NO_3)(NH_3)_5SO_4+H_2O$ Rather difficultly sol in cold H2O gensen)

### Nitratopurpureorhodium chloride, $(NO_3)Rh(NH_3)_5Cl_2$

SI sol in cold H2O, but more easily than the nitrate (Jorgensen, J pr (2) 34 394)

- dithionate,  $(NO_3)Rh(NH_3)_5S_2O_6+H_2O$ Nearly insol in cold H2O (Jorgensen)

### Nitratopurpureorhodium nitrate, $(NO_3)Rh(NH_3)_5(NO_3)_2$

Very sl sol in cold  $H_2O$  Insol in alcohol (Jorgensen)

### Nitric acid, HNO3

Miscible with H<sub>2</sub>O When HNO<sub>3</sub>+Aq is distilled at 760 mm pressure, an acid containing 68% HNO3 is formed, which boils at 120 5° under 735 mm pressure By distilling at 150 mm pressure the acid contains 67 6% HNO<sub>3</sub>, at 70 mm (b-pt 65-70°) the acid contains 66 7% HNO<sub>3</sub> The percentage of HNO<sub>3</sub> in the liquid obtained by passing dry air into HNO<sub>3</sub>+Aq containing 64-68% HNO<sub>4</sub> varies with the temp, the higher the temp the greater the percentage of HNO<sub>3</sub> (Roscoe, Chem Soc 13 150)

HNOs+Aq of 1 51 sp gr contains 67% N2Os 1 35 1 315 44 4 38 6 (Dalton) 00 00~ N2O5 HNO<sub>8</sub>+Aq of 1 52 sp gr 1 522 1 41 (Mitscherlich)

HNO<sub>3</sub>+Aq of 1 298 sp gr contains 36 75% N<sub>2</sub>O<sub>5</sub> (Kirwan) HNO<sub>3</sub>+Aq of 1 298 sp gr contains 18% (Davi) HNO<sub>3</sub>+Aq of 1 298 sp gr contains 32-33% (Ber

For Ure's table of sp gr of HNO<sub>3</sub>+Aq, se Watt's Dict 1st ed

Sn or of HNO. + Ag at 0° and 15°

| sp gr                                                                                                                                                                                                                                            | of HMO3                                                                                                                                                                                                                                                  | +Aq at U a                                                                                                                                                                                                                    | ind 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HNO₃                                                                                                                                                                                                                                             | %<br>N2O₅                                                                                                                                                                                                                                                | Sp gr<br>at 0                                                                                                                                                                                                                 | Sp gr<br>at 15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100 00<br>99 84<br>99 72<br>99 52<br>97 89<br>97 00<br>96 00<br>95 27<br>94 00<br>93 01<br>92 00<br>91 00<br>90 00<br>89 56<br>88 00<br>87 45<br>86 17<br>85 00<br>84 00<br>83 00<br>82 00<br>80 96<br>80 00<br>77 66<br>76 00<br>75 00<br>74 01 | 85 71<br>85 57<br>85 57<br>85 30<br>83 90<br>83 14<br>82 28<br>81 66<br>80 57<br>79 72<br>78 85<br>78 00<br>77 15<br>76 77<br>75 43<br>74 95<br>72 86<br>72 86<br>72 00<br>71 14<br>70 28<br>69 39<br>68 77<br>67 71<br>66 56<br>65 14<br>64 28<br>63 44 | 1 559<br>1 559<br>1 558<br>1 557<br>1 551<br>1 548<br>1 544<br>1 542<br>1 537<br>1 529<br>1 526<br>1 522<br>1 521<br>1 514<br>1 513<br>1 507<br>1 503<br>1 499<br>1 495<br>1 484<br>1 484<br>1 481<br>1 476<br>1 469<br>1 462 | 1 530<br>1 530<br>1 530<br>1 529<br>1 523<br>1 520<br>1 516<br>1 514<br>1 500<br>1 503<br>1 499<br>1 495<br>1 488<br>1 488<br>1 480<br>1 475<br>1 470<br>1 463<br>1 460<br>1 451<br>1 445<br>1 446<br>1 446<br>1 446<br>1 445<br>1 445 |
| 7 = 01                                                                                                                                                                                                                                           | 00 44                                                                                                                                                                                                                                                    | 1 302                                                                                                                                                                                                                         | 1 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Sp gr of HNO <sub>3</sub> , etc —Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of HNO<br>% 18 N <sub>2</sub>                                                                                   | O <sub>3</sub> +Aq                                                                                                                                                                                                                                                                                                                                                                                       | at 15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a=%                                                                                                                                                                                                                                                 | b = sp                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HNO₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %<br>N₂O₅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sp gr<br>at 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sp gr<br>at 15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a a                                                                                                             | /0 18 1 12                                                                                                                                                                                                                                                                                                                                                                                               | c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a a                                                                                                                                                                                                                                                 | b                                                                                                                                                                                                                                                         | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 73 39<br>72 34 669 200 000 766 65 69 59 88 00 000 000 55 40 81 600 59 80 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 000 700 700 000 700 000 700 700 000 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 | 62 056 610 00 119 29 357 556 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 577 566 5 | 1 457 1 455 1 456 1 451 1 452 1 453 1 444 1 441 1 435 1 430 1 425 1 420 1 415 1 413 1 404 1 393 1 391 1 382 1 376 1 371 1 365 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 359 1 358 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 359 1 358 1 358 1 359 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 1 358 | 1 435<br>1 432<br>1 429<br>1 423<br>1 419<br>1 414<br>1 410<br>1 400<br>1 395<br>1 393<br>1 386<br>1 381<br>1 374<br>1 363<br>1 358<br>1 358<br>1 353<br>1 341<br>1 335<br>1 335<br>1 341<br>1 339<br>1 335<br>1 341<br>1 327<br>1 327<br>1 295<br>1 295<br>1 295<br>1 295<br>1 295<br>1 218<br>1 211<br>1 198<br>1 198 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 6 27 28 29 30 31 32 33 34 44 45 46 47 48 49 5 | 1 007<br>1 014<br>1 021<br>1 024<br>1 034<br>1 040<br>1 047<br>1 053<br>1 069<br>1 076<br>1 083<br>1 091<br>1 104<br>1 112<br>1 120<br>1 126<br>1 134<br>1 141<br>1 141<br>1 145<br>1 156<br>1 165<br>1 172<br>1 187<br>1 187<br>1 195<br>1 202<br>1 211<br>1 225<br>1 232<br>1 240<br>1 240<br>1 255<br>1 264<br>1 271<br>1 286<br>1 295<br>1 304<br>1 318<br>1 325<br>1 332<br>1 340<br>1 366<br>1 366 | 1 006<br>1 012<br>1 018<br>1 029<br>1 035<br>1 040<br>1 1 057<br>1 064<br>1 070<br>1 1 083<br>1 095<br>1 1 006<br>1 1 106<br>1 1 120<br>1 1 132<br>1 1 138<br>1 1 145<br>1 1 151<br>1 1 152<br>1 1 188<br>1 1 218<br>1 1 257<br>1 1 264<br>1 270<br>1 276<br>1 284<br>1 290<br>1 1 316<br>ed by Centrol of the control of t | 51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>77<br>77<br>77<br>88<br>18<br>88<br>99<br>99<br>99<br>99<br>100<br>61<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 1 372<br>1 378<br>1 385<br>1 396<br>1 401<br>1 407<br>1 413<br>1 418<br>1 423<br>1 427<br>1 432<br>1 436<br>1 449<br>1 457<br>1 466<br>1 474<br>1 474<br>1 478<br>1 482<br>1 486<br>1 494<br>1 503<br>1 515<br>1 515<br>1 515<br>1 515<br>1 530<br>2 anal | 1 323<br>1 329<br>1 335<br>1 346<br>1 356<br>1 358<br>1 369<br>1 380<br>1 395<br>1 400<br>1 405<br>1 414<br>1 419<br>1 422<br>1 435<br>1 445<br>1 452<br>1 460<br>1 463<br>1 474<br>1 478<br>1 484<br>1 484<br>1 495<br>1 506<br>1 509<br>1 526<br>1 530<br>1 530 |
| $\begin{array}{c} 11 \ 41 \\ 7 \ 72 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 77<br>6 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{ccc} 1 & 075 \\ 1 & 050 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 067<br>1 045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0_3 + \mathrm{Aq}  \epsilon$                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} 4 & 00 \\ 2 & 00 \\ 0 & 00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 42<br>1 71<br>0 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 026<br>1 013<br>1 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $egin{array}{ccc} 1 & 022 \\ 1 & 010 \\ 0 & 999 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %<br>N₂O₅                                                                                                       | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                    | %<br>N₂O₅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sp gr                                                                                                                                                                                                                                               | N2O6                                                                                                                                                                                                                                                      | Sp pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n (4) <b>10</b> 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>6<br>7<br>8                                                                                                | 1 032<br>1 038<br>1 045<br>1 053                                                                                                                                                                                                                                                                                                                                                                         | 9<br>10<br>11<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 060<br>1 068<br>1 075<br>1 082                                                                                                                                                                                                                    | 13<br>14<br>15<br>16                                                                                                                                                                                                                                      | 1 089<br>1 096<br>1 104<br>1 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| 011                                     |                                                    |                                 |                                                        |             |                                                     |                                                      |                                                       |                                                       |                                                     |
|-----------------------------------------|----------------------------------------------------|---------------------------------|--------------------------------------------------------|-------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|
| S                                       | p gr of                                            | HNO <sub>3</sub> ,              | etc —C                                                 | ontinue     | d                                                   |                                                      | curate tabl                                           |                                                       | _                                                   |
| % N <sub>2</sub> O <sub>5</sub>         | Sp gr                                              | % N2O5                          | Sp gr                                                  | %N2O5       | Sp gr                                               | Sp gr of                                             | HNO <sub>3</sub> +Ao                                  | q at 15°, H                                           | 2O at 4°=:                                          |
| 17<br>18                                | 1 118<br>1 125<br>1 132                            | 40<br>41                        | 1 294<br>1 301                                         | 63<br>64    | 1 434<br>1 438<br>1 442                             | Sp gr                                                | % N <sub>2</sub> O <sub>5</sub>                       | % HNO3                                                | Kg HNOs<br>in 1 l                                   |
| 19<br>20                                | 1 140                                              | 42<br>43                        | 1 308<br>1 315                                         | 65<br>66    | 1 447                                               | 1 000                                                | 0 08                                                  | 0 10                                                  | 0 001                                               |
| 21                                      | 1 147                                              | 44                              | 1 323                                                  | 67          | 1 451                                               | 1 005                                                | 0 85                                                  | 1 00<br>1 90                                          | 0 010                                               |
| 22                                      | 1 115<br>1 163                                     | 45                              | 1 330                                                  | 68          | 1 456<br>1 460                                      | 1 010                                                | $\begin{array}{c c} 1 & 62 \\ 2 & 39 \end{array}$     | 1 90<br>2 80                                          | 0 019                                               |
| $\frac{23}{24}$                         | 1 170                                              | 46<br>47                        | 1 338<br>1 345                                         | 69<br>70    | 1 465                                               | 1 020                                                | 3 17                                                  | 3 70                                                  | 0 038                                               |
| 25                                      | 1 178                                              | 48                              | 1 352                                                  | 71          | 1 469                                               | 1 025                                                | 3 94                                                  | 4 60                                                  | 0 047                                               |
| $\begin{array}{c} 26 \\ 27 \end{array}$ | 1 186<br>1 194                                     | 49                              | 1 358<br>1 364                                         | 72<br>   73 | $\begin{array}{c} 1 & 472 \\ 1 & 476 \end{array}$   | 1 030<br>1 035                                       | 4 71<br>5 47                                          | 5 50<br>6 38                                          | 0 057                                               |
| 28                                      | 1 201                                              | 50<br>51                        | 1 371                                                  | 74          | 1 480                                               | 1 040                                                | 6 22                                                  | 7 26                                                  | 0 075                                               |
| 29                                      | 1 209                                              | 52                              | 1 377                                                  | 75          | 1 484                                               | 1 045                                                | 6 97                                                  | 8 13                                                  | 0 085                                               |
| $\begin{array}{c} 30 \\ 31 \end{array}$ | $egin{array}{cccc} 1 & 217 \ 1 & 224 \end{array}$  | 53<br>54                        | 1 383<br>1 389                                         | 76<br>77    | $1488 \\ 1492$                                      | 1 050<br>1 055                                       | 7 71<br>8 43                                          | 8 99<br>9 84                                          | 0 094                                               |
| 32                                      | 1 232                                              | 55                              | 1 394                                                  | 78          | 1 496                                               | 1 060                                                | 9 15                                                  | 10 68                                                 | 0 113                                               |
| 33                                      | 1 239                                              | 56                              | 1 400                                                  | 79          | 1 500                                               | 1 065                                                | 9 87                                                  | 11 51<br>12 33                                        | 0 123                                               |
| $\frac{34}{35}$                         | $\begin{bmatrix} 1 & 247 \\ 1 & 255 \end{bmatrix}$ | 57<br>58                        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 80<br>  81  | 1 504<br>1 508                                      | 1 070<br>1 075                                       | 10 57<br>11 27                                        | 13 15                                                 | 0 141                                               |
| 36                                      | 1 263                                              | 59                              | 1 416                                                  | 82          | 1 512                                               | 1 080                                                | 11 96                                                 | 13 95                                                 | 0 151                                               |
| 37                                      | 1 271                                              | 60                              | 1 421                                                  | 83          | 1 516                                               | 1 085<br>1 090                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 14 74<br>15 53                                        | 0 160                                               |
| 38<br>39                                | $\begin{bmatrix} 1 & 279 \\ 1 & 287 \end{bmatrix}$ | 61<br>62                        | $\begin{vmatrix} 1 & 426 \\ 1 & 430 \end{vmatrix}$     | 84<br>85    | $\begin{array}{ccc} 1 & 519 \\ 1 & 523 \end{array}$ | 1 090                                                | 13 99                                                 | 16 32                                                 | 0 109                                               |
|                                         |                                                    |                                 | 1                                                      | <u> </u>    |                                                     | 1 100                                                | 14 67                                                 | 17 11                                                 | 0 188                                               |
|                                         | •                                                  | _ ,                             | omm <b>188</b><br>+Aq at                               | •           |                                                     | 1 105<br>1 110                                       | 15 34<br>16 00                                        | 17 89<br>18 67                                        | 0 198<br>0 207                                      |
| % N <sub>2</sub> O <sub>5</sub>         | Sp gr                                              | % N <sub>2</sub> O <sub>5</sub> | 1                                                      | % N2O5      | Sp gr                                               | 1 115<br>1 120                                       | 16 67<br>17 34                                        | 19 45<br>20 23                                        | 0 217<br>0 227                                      |
| 10                                      | 1 068                                              | 40                              | 1 293                                                  | 70          | 1 465                                               | 1 125<br>1 130                                       | 18 00<br>18 66                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c} 0 & 236 \\ 0 & 246 \end{array}$ |
| $\begin{array}{c} 15 \\ 20 \end{array}$ | 1 104<br>1 140                                     | 50<br>60                        | 1 361                                                  | 80          | 1 500<br>1 514                                      | 1 135                                                | 19 32                                                 | $\frac{21}{22}$ 54                                    | 0 256                                               |
| 30                                      | 1 217                                              | 00                              | 1 417                                                  | 85          | 1 914                                               | 1 140                                                | 19 98                                                 | 23 31                                                 | 0 266                                               |
| (Hag                                    | er, Adju                                           | ımenta                          | varia, Le                                              | eipzig, 1   | 1876)                                               | 1 145<br>1 150                                       | 20 64<br>21 29                                        | 24 08<br>24 84                                        | 0 276<br>0 286                                      |
|                                         | Sp gr                                              | of HN                           | O <sub>3</sub> +Aq :                                   | at 15°      |                                                     | 1 555<br>1 160                                       | $\begin{array}{ccc} 21 & 94 \\ 22 & 60 \end{array}$   | $\begin{vmatrix} 25 & 60 \\ 26 & 36 \end{vmatrix}$    | 0 296<br>0 306                                      |
| % HNO                                   | O <sub>8</sub>   S <sub>1</sub>                    | o gr                            | % HNC                                                  | s Sr        | gr                                                  | 1 165                                                | 23 25                                                 | 27 12                                                 | 0 316                                               |
| 1                                       |                                                    | 00581                           | 26                                                     |             | 5869                                                | 1 170                                                | 23 90                                                 | 27 88                                                 | 0 326                                               |
| 2<br>3                                  |                                                    | 01136<br>01713                  | 27<br>28                                               |             | 16660<br>17371                                      | 1 175<br>1 180                                       | 24 54<br>25 18                                        | 28 63<br>29 38                                        | 0 336                                               |
| 4                                       | 1 (                                                | 02286                           | 29                                                     |             | 8073                                                | 1 185                                                | 25 83                                                 | 30 13                                                 | 0 357                                               |
| 5                                       |                                                    | 02851<br>03439                  | 30<br>31                                               |             | 18830<br>19552                                      | 1 190                                                | 26 47                                                 | 30 88                                                 | 0 367                                               |
| 7                                       |                                                    | 04019                           | 32                                                     |             | 20276                                               | 1 195<br>1 200                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | 0 378                                               |
| 8                                       |                                                    | 04592                           | 33                                                     |             | 20635                                               | 1 205                                                | 28 56                                                 | 33 09                                                 | 0 399                                               |
| 9<br>10                                 |                                                    | 05234<br>05746                  | 34<br>35                                               |             | 21300<br>22013                                      | $\begin{array}{cccc} 1 & 210 \\ 1 & 215 \end{array}$ | 28 99<br>29 61                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | 0 400                                               |
| 11                                      |                                                    | 06330                           | 36                                                     |             | 22675                                               | 1 220                                                | 30 24                                                 | 35 28                                                 | 0 430                                               |
| 12                                      |                                                    | 06951                           | 37                                                     |             | 23347                                               | 1 225                                                | 30 88                                                 | 36 03                                                 | 0 441                                               |
| $\begin{array}{c} 13 \\ 14 \end{array}$ |                                                    | 07581<br>08126                  | 38<br>39                                               | 1           | 23980<br>24510                                      | $\begin{array}{c c} 1 & 230 \\ 1 & 235 \end{array}$  | 31 53<br>32 17                                        | 36 75<br>37 53                                        | 0 453                                               |
| 15                                      | 1 (                                                | 08843                           | 40                                                     | 1 2         | 25235                                               | 1 240                                                | 32 82                                                 | 38 29                                                 | 0 475                                               |
| 16<br>17                                |                                                    | 09500<br>10102                  | $\begin{vmatrix} 41 \\ 42 \end{vmatrix}$               |             | 25850                                               | 1 245                                                | 33 47                                                 | 39 05                                                 | 0 486                                               |
| 18                                      |                                                    | 10725                           | 43                                                     |             | $26475 \\ 27125$                                    | $egin{array}{cccc} 1 & 250 \\ 1 & 255 \end{array}$   | 34 13<br>34 78                                        | 39 82<br>40 58                                        | 0 495                                               |
| 19                                      | 1 1                                                | 11321                           | 44                                                     | 1 2         | 28895                                               | 1 260                                                | 35 44                                                 | 41 34                                                 | 0 521                                               |
| $\begin{array}{c} 20 \\ 21 \end{array}$ |                                                    | 12024<br>12714                  | 45<br>46                                               |             | 28450                                               | 1 265                                                | 36 09                                                 | 42 10                                                 | 0 533                                               |
| 22                                      |                                                    | 13349                           | 47                                                     |             | 29110<br>29780                                      | $\begin{array}{c c} 1 & 270 \\ 1 & 275 \end{array}$  | 36 75<br>37 41                                        | 42 87<br>43 64                                        | 0 544                                               |
| 23                                      | 1 1 1                                              | 13890                           | 48                                                     | 1 8         | 30443                                               | 1 280                                                | 38 07                                                 | 44 41                                                 | 0 568                                               |
| $\frac{24}{25}$                         |                                                    | l4460<br>l5164                  | 49<br>  50                                             |             | $31101 \\ 31722$                                    | 1 285<br>1 290                                       | 38 73                                                 | 45 18                                                 | 0 581                                               |
|                                         |                                                    |                                 | Era, Ja                                                | 1           |                                                     | 1 295                                                | 39 39<br>40 05                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0 593<br>0 605                                      |
| ()                                      | odmics,                                            | THOUTH                          | rara, Ja                                               | n TOAT      | ,                                                   | I ———                                                | 1                                                     | 1                                                     | 1                                                   |

Sp gr of N-HNO<sub>3</sub>+Aq at  $18^{\circ}/4^{\circ}=1~0324$  (Loomis, W Ann 1896, 60~550)

Sp gr (reduced to a vacuum) of HNO<sub>3</sub> from 78-100% concentration at 4°/4°, 14 2°/4° and 24 2°/4°

| % HNO3                                                                                                                     | Sp gr                                                                                                                 |                                                                                                            |                                                                                   |  |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| % HMO3                                                                                                                     | 4°/4°                                                                                                                 | 4°/4°   14 2°/4                                                                                            |                                                                                   |  |
| 78 22<br>79 14<br>79 59<br>81 97<br>84 90<br>85 21<br>85 80<br>87 55<br>87 90<br>89 73<br>92 34<br>94 04<br>95 62<br>96 64 | 1 47129<br>1 47496<br>1 48391<br>1 49495<br>1 49581<br>1 50211<br>1 50898<br>1 51804<br>1 51949<br>1 52192<br>1 52510 | 1 45504<br>1 46011<br>1 46680<br>1 47826<br>1 48491<br>1 49125<br>1 49968<br>1 50149<br>1 50358<br>1 50632 | 24 2°/4°  1 43964 1 44372 1 45092 1 46224 1 46891 1 48264 1 48516 1 48677 1 48887 |  |
| 97 33<br>98 07<br>99 97                                                                                                    | 1 53212<br>1 54212                                                                                                    | 1 50911<br>1 51298<br>1 52236                                                                              | 1 49137<br>1 49543<br>1 50394                                                     |  |

(Veley and Manley, Chem Soc 1903, 83 1016)

Sp gr at 20° of HNO<sub>3</sub>+Aq containing M g mols HNO<sub>3</sub> per liter
M 0 025 0 05 0 075 0 10
Sp gr 1 000926 1 001798 1 002653 1 003496

Sp gr 1 0670 (Jones and Pearce, Am Ch J 1907, 38 732)

For sp gr of HNO<sub>3</sub>+H SO<sub>4</sub>, see under H SO<sub>4</sub>

Partition coefficient for HNO<sub>3</sub> between ether and H<sub>2</sub>O is increased by the addition of nitrates (Tanret, C R 1897, **124** 464)

The hydrates described by Erdmann do not exist There are only two authentic hydrates, the mono- and the tri-hydrate (Kuster, Ch Z 1904, 28 132)

The composition of the hydrates formed by HNO<sub>3</sub> at different dilutions is calculated from determinations of the lowering of the fr-pt produced by HNO<sub>3</sub> and of the conductivity and sp gr of HNO<sub>3</sub>+Aq (Jones, Am Ch J 1905, **34** 328)

### Denitric acid, $H_2N_4O_{11} = 2N_2O_5$ , $H_2O$

Fumes on air Miscible with  $\rm H_2O$ , with evolution of much heat (Weber, J pr (2) 6 342)

#### Nitrates

(Lunge and Rey, Z f angew Ch 1891 165) All nitrates are sol in H<sub>2</sub>O except a few basic compounds Most nitrates are insol in

conc HNO<sub>8</sub>+Aq, many are sol in alcohol, some are sol in glycerine

Aluminum nitrate, basic,  $2Al_2O_8$ ,  $3N_2O_5+3H_2O$ 

Sol in  $H_2O$  (Ordway, Sill Am J (2) 26 203)

Basic aluminum nitrates containing 2 mols or less of Al<sub>2</sub>O<sub>3</sub> to one of N<sub>2</sub>O<sub>5</sub> may be obtained sol in H<sub>2</sub>O, but the compounds containing more than 2 mols Al<sub>2</sub>O<sub>3</sub> are insol in H<sub>2</sub>O (Ordway, *l* c)

2Al O<sub>3</sub>, N<sub>2</sub>O<sub>5</sub>+10H<sub>2</sub>O (Ditte, C R 110

782 )  $Al_6O_{14}H_{10}$ ,  $HNO_3$  Sol in  $H_2O$  (Schlumberger, Bull Soc 1895, (3) **13** 59 )

Aluminum nitrate, Al(NO<sub>3</sub>)<sub>3</sub>+9H<sub>2</sub>O

Deliquescent Very sol in H<sub>2</sub>O, HNO<sub>8</sub>+Aq, or alcohol (Berzelius)

Melts in its crystal H<sub>2</sub>O at 72 7° (Ordway Sol in 1 pt strong alcohol (Wenzel)

Difficultly sol in acetone (Naumann, B 1904, 37 4328)

Insol in ethyl acetate (Naumann, B 1910, 43 314)

## Ammonium nitrate, NH4NO3

Deliquescent

Sol m 0 502 pt H<sub>2</sub>O at 18° (Karsten)
Sol in 0 54 pt H<sub>2</sub>O at 10° (Harris C R 24 816)
Much more sol is bot than cold H<sub>2</sub>O (Harris)
Sol in 2 pts H<sub>2</sub>O at 15 5° and 0 5 pt boiling H<sub>2</sub>O
(Fourcroy)
Sol in 1 pt cold and 0 5 pt boiling H<sub>2</sub>O (Fourcroy)
Sol in 0 5 pt H<sub>2</sub>O at 18° (Berzelius)
Sol in 2 pts H<sub>2</sub>O at 18° (Abl)

Decomp by boiling H<sub>2</sub>O

Solubility in 100 pts H<sub>2</sub>O at t°

|                                        | Solubility in 100 pts H <sub>2</sub> O at t   |                                        |                                               |                                        |                                               |
|----------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------|
| t°                                     | Pts<br>NH4NO8                                 | t°                                     | Pts<br>NH4NO3                                 | t°                                     | Pts<br>NH4NO3                                 |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7   | 97<br>101<br>105<br>109<br>113<br>117         | 24<br>25<br>26<br>27<br>28<br>29       | 205<br>210<br>216<br>221<br>226<br>232        | 48<br>49<br>50<br>51<br>52<br>53       | 351<br>358<br>365<br>372<br>379               |
| 8<br>9<br>10                           | 121<br>125<br>130<br>134<br>139               | 30<br>31<br>32<br>33<br>34             | 238<br>244<br>250<br>256<br>262               | 54<br>55<br>56<br>57<br>58             | 387<br>395<br>402<br>410<br>418<br>425        |
| 11<br>12<br>13<br>14<br>15             | 143<br>148<br>152<br>157<br>161               | 35<br>36<br>37<br>38<br>39             | 268<br>274<br>280<br>286<br>292               | 59<br>60<br>61<br>62<br>63             | 433<br>441<br>449<br>457<br>465               |
| 16<br>17<br>18<br>19<br>20<br>21<br>22 | 166<br>170<br>175<br>180<br>185<br>190<br>195 | 40<br>41<br>42<br>43<br>44<br>45<br>46 | 298<br>304<br>311<br>317<br>324<br>331<br>337 | 64<br>65<br>66<br>67<br>68<br>69<br>70 | 473<br>481<br>490<br>499<br>508<br>517<br>526 |
| $\frac{23}{M}$                         | 200  <br>ulder, Sc                            | 47                                     | 344<br>Verbande                               | 1864                                   | 95.)                                          |

(Mulder, Scheik Verhandel 1864 95)

100 pts  $H_2O$  dissolve 183 pts  $NH_4NO_3$   $\epsilon$  19 5° (Mulder)

Solubility in H<sub>2</sub>O at t°

| Dolubinoj in 1120 ao o                                                                                                                                                                                             |                                                                                                                                                                                                                                              |                                                                                                                                                                                           |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| t°                                                                                                                                                                                                                 | Specific gravity<br>of the saturated<br>solution                                                                                                                                                                                             | Mols of NH <sub>4</sub> No<br>soluble in 100<br>mols of water                                                                                                                             |  |  |  |
| 12 2<br>20 2<br>23 0<br>25 0<br>27 7<br>28 0<br>30 0<br>30 2<br>31 9<br>32 1<br>32 7<br>34 0<br>35 0<br>35 1<br>35 6<br>36 6<br>36 6<br>37 5<br>38 0<br>39 0<br>39 0<br>39 0<br>30 0<br>30 0<br>30 0<br>30 0<br>30 | 1 2945<br>1 3116<br>1 3159<br>1 3197<br>1 3257<br>1 3260<br>1 3299<br>1 3308<br>1 3348<br>1 3344<br>1 3356<br>1 3375<br>1 3394<br>1 3498<br>1 3412<br>1 3420<br>1 3432<br>1 3438<br>1 3440<br>1 3448<br>1 3440<br>1 3448<br>1 3460<br>1 3464 | 34 50<br>43 30<br>46 57<br>48 19<br>51 67<br>51 86<br>54 40<br>57 20<br>57 60<br>57 90<br>58 89<br>59 80<br>60 00<br>60 62<br>61 00<br>62 90<br>63 60<br>64 10<br>65 09<br>65 08<br>66 80 |  |  |  |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                              | 1                                                                                                                                                                                         |  |  |  |

(Muller and Kaufmann, Z phys Ch 19 42 499)

## Solubility in H<sub>2</sub>O at t°

| t°                                                   |                         | H <sub>4</sub> NO <sub>3</sub><br>.00 g | Solid phase                             |  |
|------------------------------------------------------|-------------------------|-----------------------------------------|-----------------------------------------|--|
|                                                      | solution                | water                                   |                                         |  |
| $\begin{array}{c} 0 \\ 12 \ 2 \\ 20 \ 2 \end{array}$ | 54 19<br>60 53<br>65 80 | 118 3<br>153 4<br>192 4                 | NH4NO3 rhomb β                          |  |
| $\begin{array}{cc} 25 & 0 \\ 30 & 0 \end{array}$     | 68 17<br>70 73          | 214 2<br>241 8                          |                                         |  |
| 32 1                                                 | 71 97                   | 256 9                                   | $NH_1NO_3$ rhomb $\beta$                |  |
| 35<br>40<br>50                                       | 72 64<br>74 82<br>77 49 | 265 8<br>297 0<br>344 0                 | $NH_1NO_1$ rhomb $\alpha$               |  |
| 60<br>70<br>80                                       | 80 81<br>83 32<br>85 25 | 421 0<br>499 0<br>580 0                 |                                         |  |
| 90<br>100                                            | 88 08<br>89 71          | 740 0<br>871 0                          | NH <sub>1</sub> NO <sub>3</sub> rhomb ( |  |

(Seidell's Solubilities 1st ed 28 Culc fi m Muller & Kauffmann, see above, ad Schwarz, Ostwald's Lehrb, p 425)

100 g NH<sub>4</sub>NO<sub>3</sub>+Aq contain

54 19 g NH<sub>4</sub>NO<sub>3</sub> at 0° 70 10 g " " 30° 84 03 g " " 70°

(de Waal, Dissert Leiden, 1910)

70 19 g NH<sub>4</sub>NO<sub>3</sub> are contained in 100 g NH4NO3+Aq sat at 30° (Schreinemakers and de Baat, Arch neer Sc 1911, (2) 15

415)

60 pts NH<sub>4</sub>NO<sub>3</sub> mixed with 100 pts H<sub>2</sub>O lower the temperature from 136° to —136°, that is 272°, but if the initial temperature is 0° it will fall only to —167°, the freezingpoint of the mixture (Rudorff, B 2 68)

Sp gr of NH<sub>4</sub>NO<sub>3</sub>+A<sub>0</sub> at 18°

| Pts NH <sub>4</sub> NO <sub>3</sub> | Pts H <sub>2</sub> O | Sp gr  |
|-------------------------------------|----------------------|--------|
| 80                                  | 1800                 | 1 0180 |
| 80                                  | 900                  | 1 0331 |
| 80                                  | 360                  | 1 0743 |

(Thomsen and Gerlach, Z anal 28 520)

Sp gr of NH<sub>4</sub>NO<sub>3</sub>+Aq at 15°

| % NH4NO3 | Sp gr  | % NH4NO3 | Sp gr  |
|----------|--------|----------|--------|
| 5        | 1 0201 | 30       | 1 1304 |
| 10       | 1 0419 | 40       | 1 1780 |
| 20       | 1 0860 | 50       | 1 2279 |

(Kohlrausch, W Ann 1879 1)

Sn on of NH NO 1 Ac of 17 50

| Sp gr of NH <sub>4</sub> NO <sub>3</sub> +Aq at 17 5°                                |                                                                                                                                                    |                                                                                               |                                                                                                                                                    |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| % NH4NO3                                                                             | Sp gr                                                                                                                                              | % NH4NO3                                                                                      | Sp gr                                                                                                                                              |  |
| % NH <sub>4</sub> NO <sub>3</sub> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | Sp gr  1 0042 1 0085 1 0127 1 0170 1 0212 1 0255 1 0297 1 0340 1 0382 1 0425 1 0468 1 0512 1 0555 1 0599 1 0642 1 0686 1 0729 1 0773 1 0816 1 0860 | % NH <sub>4</sub> NO <sub>3</sub> 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | Sp gr  1 1454 1 1502 1 1550 1 1558 1 1646 1 1694 1 1742 1 1790 1 1841 1 1892 1 1942 1 1994 1 2045 1 2096 1 2147 1 2198 1 2249 1 2300 1 2353 1 2407 |  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30                       | 1 0860<br>1 0905<br>1 0950<br>1 0995<br>1 1040<br>1 1085<br>1 1130<br>1 1175<br>1 1220<br>1 1265<br>1 1310                                         |                                                                                               |                                                                                                                                                    |  |
| 31<br>32                                                                             | 1 1358<br>1 1406                                                                                                                                   | 64                                                                                            | 1 3059                                                                                                                                             |  |

(Gerlach, Z anal 27 310)

| % NH <sub>4</sub> NO <sub>8</sub>                    | Sp gr 16°/16°                                                        |  |  |  |
|------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| 0<br>0 6419<br>1 4101<br>2 7501<br>5 4890<br>11 7981 | 1 000000<br>1 000271<br>1 000593<br>1 001153<br>1 002300<br>1 004916 |  |  |  |
| 23 4480                                              | 1 009758                                                             |  |  |  |

Sp gr of NH,NO.+Aa

(Dijken Z phys Ch 1897, 24 107)

47 9500

1 019952

Sp gr 20°/4° of a normal solution of NH<sub>4</sub>NO<sub>3</sub> =1.030435, of a 0.5-normal solution 1=014505(Haigh, J Am Chem Soc 1912, 34 1151)

B-pt of NH<sub>4</sub>NO<sub>3</sub>+Aq containing pts NH<sub>4</sub>NO<sub>3</sub> to 100 pts H<sub>2</sub>O G = according to Gerlach (Z anal 26 445), L = accord-ing to Legrand (A ch (2) 59 426)

| ing to Legrand (A ch (2) 59 426)    |                                     |                |                                                           |              |        |
|-------------------------------------|-------------------------------------|----------------|-----------------------------------------------------------|--------------|--------|
| B-pt                                | G                                   | L              | В-pt                                                      | G            | L      |
| 101°<br>102                         | 10<br>20                            | 10<br>20 5     | 140°<br>141                                               | 682<br>719   | 770 5  |
| 103<br>104                          | 30<br>41                            | 31 3<br>42 4   | 142<br>143                                                | 737<br>765   | 840 6  |
| 105<br>106                          | 52<br>63                            | 53 8<br>65 4   | 144<br>145                                                | 793<br>823   | 915 5  |
| 107<br>108                          | 74<br>85                            | 77 3<br>89 4   | 146<br>147                                                | 853<br>883   | 995 5  |
| 109<br>110                          | 96<br>108                           | 101 9<br>114 9 | 148<br>149                                                | 914<br>945   | 1081 5 |
| 111<br>112                          | $\frac{100}{120}$ $\frac{132}{132}$ | 128 4<br>142 4 | 150<br>551                                                | 977<br>1009  | 1173 5 |
| 113<br>114                          | 145<br>158                          | 156 9<br>172   | 152<br>153                                                | 1043<br>1079 | 1273   |
| 115<br>116                          | 172<br>187                          | 188<br>204 4   | 154<br>155                                                | 1116<br>1155 | 1383   |
| 117<br>118                          | 202<br>217                          | 221 4<br>238 4 | 156<br>157                                                | 1196<br>1238 | 1504   |
| 119<br>120                          | 232<br>248                          | 256 8<br>275 3 | 158<br>159                                                | 1281<br>1325 | 1637   |
| $\frac{120}{121}$ $\frac{121}{122}$ | 265<br>283                          | 314            | 160<br>161                                                | 1370<br>1417 | 1775   |
| 123<br>124                          | 301<br>319                          | 354            | 162<br>163                                                | 1464<br>1511 | 1923   |
| 125<br>126                          | 337<br>356                          | 396            | 164<br>165                                                | 1558<br>1606 | 2084   |
| $127 \\ 128$                        | 376<br>396                          | 440 2          | 166<br>167                                                | 1653<br>1700 |        |
| 129<br>130                          | 417<br>439                          | 487 4          | 168<br>169                                                | 1748<br>1796 |        |
| 131<br>132                          | 461<br>484                          | 537 3          | 170<br>180                                                | 1844<br>2400 | · ∞    |
| 133<br>134                          | 507<br>530                          | 590            | 190<br>200                                                | 3112<br>4099 | ~      |
| 135<br>136                          | 554<br>578                          | 645            | $\begin{array}{ c c c } 200 \\ 210 \\ 220 \\ \end{array}$ | 5618<br>8547 |        |
| 137<br>138                          | 603<br>629                          | 705 5          | 230<br>240                                                | 16950        |        |
| 139                                 | 655                                 | .000           |                                                           |              |        |

Very sol in HNO<sub>3</sub>+Aq (Schulz, Zeit Ch 1869 531)

Solubility of NH<sub>4</sub>NO<sub>8</sub> in HNO<sub>8</sub>

| Bolubility of 141141408 in 111408                                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Solution<br>temp                                                                 | % by wt<br>NH4NO3                                                                                                              | Solid phase                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| +8° 23 0 28 5 5 * 27 5 27 0 23 5 23 0 17 5 16 5 4 0 9 5 11 0 11 5 12 0 11 5 14 5 | NH <sub>4</sub> NO <sub>8</sub> 21 1 28 7 34 5 34 5 34 5 34 6 45 8 49 4 50 0 54 3 45 8 49 4 51 7 52 7 54 3 54 7 57 6 54 0 54 3 | NH <sub>4</sub> NO <sub>3</sub> , 2HNO <sub>3</sub> (solution in HNO <sub>3</sub> )  (solution in NH <sub>4</sub> NO <sub>3</sub> )  (solution in NH <sub>4</sub> NO <sub>3</sub> )  ("  ""  ""  NH <sub>4</sub> NO <sub>3</sub> , HNO <sub>3</sub> labile  (solution in HNO <sub>3</sub> )  ""  (solution in NH <sub>4</sub> NO <sub>3</sub> )  NH <sub>4</sub> NO <sub>3</sub> (labile)  stable  ""  ""  ""  ""  ""  ""  ""  ""  "" |  |
|                                                                                  |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

\*Mpt of NH<sub>4</sub>NO<sub>3</sub>, 2HNO<sub>3</sub> (Groschuff Z anorg 1904, **40** 6)

Solubility of NH<sub>4</sub>NO<sub>3</sub> in NH<sub>4</sub>OH+Aq

| Grams of<br>NH <sub>4</sub> NO <sub>3</sub>                                                      | Grams of<br>NH <sub>3</sub>                                                                      | Molecules<br>of NH <sub>4</sub> NO <sub>3</sub><br>in 100<br>molecules<br>NH <sub>4</sub> NO <sub>3</sub> +<br>NH <sub>3</sub> | Temperature at which the solu tions are in equilibrium with the solid phase. |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0 7578<br>0 6439<br>4 2615<br>0 7746<br>0 9358<br>0 7600<br>0 9675<br>0 8308<br>0 9526<br>1 3918 | 0 0588<br>0 0665<br>0 7747<br>0 1857<br>0 2352<br>0 2607<br>0 3515<br>0 3700<br>1 2457<br>4 4327 | 100<br>74 2<br>67 3<br>53 8<br>47 0<br>45 9<br>38 3<br>36 9<br>32 3<br>13 9<br>6 25<br>0                                       | about 168° 109 8 94 0 68 8 35 9 33 3 0 -10 5 -30 0 -44 5 -60 about -80       |
| / * 7                                                                                            | 1 00 57 1                                                                                        | ~~                                                                                                                             |                                                                              |

(Kurıloff, Z phys Ch 1898, 25 109)

NH<sub>4</sub>NO<sub>3</sub>+NH<sub>4</sub>Cl

100 pts H<sub>2</sub>O dissolve 29 1 pts NH<sub>4</sub>Cl and 173 8 pts NH<sub>4</sub>NO<sub>3</sub> (Rudorff, B 6 484) Sol in sat NH<sub>4</sub>Cl+Aq with pptn of NH<sub>4</sub>Cl until a state of equilibrium is reached (Karsten)

Addition of KClO<sub>3</sub> to NH<sub>4</sub>Cl+Aq prevents pptn of NH<sub>4</sub>Cl, and dissolves any NH<sub>4</sub>Cl that may have been pptd (Margueritte, C R 38 306)

See also under Ammonium chloride NH4NO3+KNO3

100 pts H<sub>2</sub>O dissolve

|                | At 9° (2) |              | At 11° (3) (4) |      | At 15° (6)    |     |
|----------------|-----------|--------------|----------------|------|---------------|-----|
| KNO3<br>NH4NO3 | 20 2      | 40 6<br>88 8 | 143            | 26 0 | 46 2<br>130 4 | 161 |

2, Sat at 11° with NH<sub>4</sub>NO<sub>3</sub> and then at 9° with KNO<sub>5</sub>, 5, sat at 11° with NH<sub>4</sub>NO<sub>3</sub> and then at 15° with KNO<sub>3</sub> (Mulder)

Sol in sat HNO<sub>3</sub>+Aq without causing ppt (Karsten), with separation of KNO<sub>3</sub> (Rudorff) Composition of solution is dependent on the

relative excess of the salts present (Rudorff) 100 pts H<sub>2</sub>O dissolve 77 1 pts NaNO<sub>3</sub> and 162 9 pts NH<sub>4</sub>NO<sub>3</sub> at 16° (Rudorff B **6** 484)

If a sat solution of NH<sub>4</sub>NO<sub>3</sub>+Aq at 11° 1° sat with Ba(NO<sub>3</sub>)<sub>2</sub> at 9°, 100 pts H<sub>2</sub>O dissolve

|                               | At 11    |                                                 | At 9° |
|-------------------------------|----------|-------------------------------------------------|-------|
| $ m NH_4NO_3$ $ m Ba(NO_3)_2$ | 143      | $\begin{array}{c} 101 \ 3 \\ 6 \ 2 \end{array}$ | 6 8   |
|                               | (3.6.3.3 |                                                 |       |

(Mulder)

Solubility of NH<sub>4</sub>NO<sub>3</sub>+AgNO<sub>3</sub> in H O at to

|                       |   | <del></del>                     |                                 | 1910; 111 11 () 10 0                                                                    |
|-----------------------|---|---------------------------------|---------------------------------|-----------------------------------------------------------------------------------------|
| t°                    |   | AgNO <sub>3</sub>               | NH 1NO3                         | Solid phase                                                                             |
| - 7<br>10             |   | 47 1<br>44 52                   | 0<br>8 43                       | Icc+ALNO; thomb                                                                         |
| -14                   |   | 42 0                            | 16 80                           | Icc + AgNO <sub>1</sub> NH <sub>1</sub> NO <sub>2</sub><br>+AgNO <sub>1</sub> ib        |
| —14<br>—18            |   | 39 51<br>15 99                  | 18 79<br>37 30                  | $ \begin{array}{c} I\alpha + 4LNO_1 NH_1NO_2 \\ I\alpha + 4LNO_1 NH_1NO_2 \end{array} $ |
| 17                    | 4 | 0                               | 41 2                            | +NII <sub>1</sub> NO <sub>1</sub> β ib<br>lα + NII <sub>1</sub> NO <sub>1</sub> β ib    |
| 0                     |   | 50 36                           | 19 59                           | ALNO: NHINO:+                                                                           |
| 18<br>30<br>55<br>109 | 6 | 55 36<br>58 89<br>63 32<br>67 9 | 22 06<br>23 42<br>26 12<br>32 1 |                                                                                         |
| 0                     |   | 22 13                           | 44 87                           | AgNO: NH4NO:+<br>NH1NO: B 1b                                                            |
| 18<br>30<br>40        |   | 27 07<br>29 76<br>32 68         | 49 22<br>52 50<br>52 22         | AgNO: NH:NO:+                                                                           |
| 55                    |   | 36 60                           | 52 38                           | NH4NO3 a rb                                                                             |
| 101                   | 5 | 47 5                            | 52 5                            | AgNO3 NH1NO3+<br>NH4NO3 1bd                                                             |

(Schreinemakers and de Baat, Arch neer Sc 1911 (2) 15 414)

Solubility in NH<sub>4</sub>NO<sub>3</sub> and AgNO<sub>5</sub> in H<sub>2</sub>O Solubility of NH<sub>4</sub>NO<sub>3</sub>+(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> in H<sub>2</sub>O at 30°

| au 50                                                                                                                                                     |                                                                                                                                                  |                                                                                                           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| Composition of the solution                                                                                                                               |                                                                                                                                                  | Solid phase                                                                                               |  |  |  |
| NH4NO3                                                                                                                                                    | AgNO:                                                                                                                                            | Sond phase                                                                                                |  |  |  |
| 0<br>6 59<br>15 62<br>23 40<br>23 45<br>24 33<br>26 22<br>28 86<br>34 47<br>39 60<br>45 44<br>52 49<br>52 11<br>52 89<br>54 12<br>58 64<br>63 59<br>70 10 | 73 0<br>69 08<br>63 27<br>58 84<br>58 93<br>57 93<br>55 32<br>52 45<br>41 09<br>35 62<br>29 77<br>29 86<br>29 66<br>27 75<br>21 31<br>12 51<br>0 | AgNOs  "" AgNOs+AgNOs, NH4NOs  "" "" "" "" "" NH4NOs+AgNOs, NH4NOs "" "" "" "" "" "" "" "" "" "" "" "" "" |  |  |  |
| 400 7                                                                                                                                                     |                                                                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                     |  |  |  |

(Schreinemakers and de Baat, Z phys Ch 1909, **65** 572)

Solubility of NH4NO3+NaNO3 in H2O at to

| t°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                 | • •                                                                                    |                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| NH4NO3 NaNO3  0 0 73 33 1 354 105 5 66 1 407 118 4 0 1 264  15 0 83 9 1 375 24 03 81 21 1 386 42 81 79 34 1 392 64 6 78 06 1 401 110 9 75 81 1 417 152 75 35 1 428 155 3 75 38 1 429 156 1 60 76 1 405 159 36 50 1 364 160 27 79 1 350 162 3 17 63 1 330 167 4 0 1 298  30 0 96 12 1 401 220 8 88 31 1 450                                                                                                                                                                                                                                                                                                                                                                                                       | to | ⊾ per 100                                                                       | Sn gr                                                                                  |                                                                                        |
| 105 5         66         1 407           118 4         0         1 264           15         0         83 9         1 375           24 03         81 21         1 386           42 81         79 34         1 392           64 6         78 06         1 401           110 9         75 81         1 417           152         75 35         1 428           155 3         75 38         1 429           156 1         60 76         1 405           159         36 50         1 364           160         27 79         1 350           162 3         17 63         1 330           167 4         0         1 298           30         0         96 12         1 401           220 8         88 31         1 450 | •  | NH4NO3                                                                          | NaNO <sub>3</sub>                                                                      | ပစ္ နွေး                                                                               |
| 24 03 81 21 1 386<br>42 81 79 34 1 392<br>64 6 78 06 1 401<br>110 9 75 81 1 417<br>152 75 35 1 428<br>155 3 75 38 1 429<br>156 1 60 76 1 405<br>159 36 50 1 364<br>160 27 79 1 350<br>162 3 17 63 1 330<br>167 4 0 1 298<br>30 0 96 12 1 401<br>220 8 88 31 1 450                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 105 5                                                                           | 66                                                                                     | 1 407                                                                                  |
| 220 8 88 31 1 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | 24 03<br>42 81<br>64 6<br>110 9<br>152<br>155 3<br>156 1<br>159<br>160<br>162 3 | 81 21<br>79 34<br>78 06<br>75 81<br>75 35<br>75 38<br>60 76<br>36 50<br>27 79<br>17 63 | 1 386<br>1 392<br>1 401<br>1 417<br>1 428<br>1 429<br>1 405<br>1 364<br>1 350<br>1 330 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30 | 220 8                                                                           |                                                                                        | 1 450                                                                                  |

(Fedotleff and Koltunoff, Z anorg 1914, 85 251)

|                                                                                       | 2000                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| %<br>NH₄NO₃                                                                           | (NH4)2S04                                                                             | Solid phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 70 1<br>67 63<br>66 93<br>63 84<br>58 06<br>52 75<br>49 80<br>37 20<br>19 91<br>12 05 | 0<br>2 38<br>3 46<br>4 96<br>8 22<br>11 42<br>13 27<br>19 48<br>28 83<br>34 7<br>44 1 | NH <sub>4</sub> NO <sub>3</sub> NH <sub>4</sub> NO <sub>3</sub> +(NH <sub>4</sub> )·SO <sub>4</sub> ,  3NH <sub>4</sub> NO <sub>3</sub> (NH <sub>4</sub> )·SO <sub>4</sub> , 3NH <sub>4</sub> NO <sub>3</sub> (NH <sub>4</sub> )·SO <sub>4</sub> , 3NH <sub>4</sub> NO <sub>3</sub> +  (NH <sub>4</sub> )·SO <sub>4</sub> , 2NH <sub>4</sub> NO <sub>3</sub> (NH <sub>4</sub> )·SO <sub>4</sub> , 2NH <sub>4</sub> NO <sub>3</sub> +  (NH <sub>4</sub> )·SO <sub>4</sub> , 2NH <sub>4</sub> NO <sub>3</sub> +  (NH <sub>4</sub> )·SO <sub>4</sub> (NH <sub>4</sub> )·SO <sub>4</sub> "" |  |  |  |  |  |
|                                                                                       | <u> </u>                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |

(Schreinemakers and Haenen, Chem Weekbl 1909, 6 51)

Solubility of NH<sub>4</sub>NO<sub>3</sub>+(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> in H<sub>2</sub>O

Temp =0°

| NH4NO3         | '08°('HN)                                | Solid phase                                                                                                                                                                               |
|----------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29 81<br>31 04 | 41 4<br>37 89<br>41 64<br>21 33<br>20 40 | (NH <sub>4</sub> ) SO <sub>4</sub> + (NH <sub>4</sub> ) SO <sub>4</sub> 2NH <sub>4</sub> NO <sub>5</sub> (NH <sub>4</sub> ) <sub>5</sub> SO <sub>4</sub> 2NH <sub>4</sub> NO <sub>3</sub> |
| 30 87          | 20 43                                    | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> 2NH <sub>4</sub> NO <sub>3</sub> +(NH <sub>4</sub> ) SO <sub>4</sub><br>3NH <sub>4</sub> NO <sub>3</sub>                                  |
| 31 61          | 19 50                                    | (NH <sub>4</sub> ) SO <sub>4</sub> 3NH <sub>4</sub> NO <sub>3</sub>                                                                                                                       |
| 45 99          | 9 53                                     | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> 3NH <sub>4</sub> NO <sub>3</sub> +NH <sub>4</sub> NO <sub>3</sub>                                                                         |
| 49 12          | 6 00                                     | NH4NO3                                                                                                                                                                                    |
| 54 19          | 0                                        |                                                                                                                                                                                           |
|                |                                          |                                                                                                                                                                                           |

#### Temp = 70

| NH'NO3     | (NH <sub>4</sub> )2SO <sub>4</sub> | Solid phase                                                                                             |
|------------|------------------------------------|---------------------------------------------------------------------------------------------------------|
| 0<br>11 10 | 47 81<br>40 81                     | (NH <sub>4</sub> ) SO <sub>4</sub>                                                                      |
| 70 15      | 6 71                               | (NH4) SO4+(NH4) SO4 2NH4NO                                                                              |
| 71 58      | 5 82                               | (NH <sub>4</sub> ) SO <sub>4</sub> 2NH <sub>4</sub> NO <sub>3</sub>                                     |
| 73 48      | 5 14                               | (NH <sub>4</sub> ) SO <sub>4</sub> 2NH <sub>4</sub> NO <sub>3</sub> +(NH <sub>4</sub> ) SO <sub>4</sub> |
|            | (                                  | 3NH₄NO₃                                                                                                 |
| 76 01      | 3 96                               | (NH4) SO4 3NH4NO3                                                                                       |
| 80 25      | 2 68                               |                                                                                                         |
| 81 01      | 2 45                               | (NH <sub>4</sub> ) SO <sub>4</sub> 3NH <sub>4</sub> NO <sub>3</sub> +NH <sub>4</sub> NO <sub>3</sub>    |
| 81 38      | 2 41                               | NH4/O3                                                                                                  |
| 84 03      | 0                                  |                                                                                                         |
|            | l .                                |                                                                                                         |

Dissert Leiden 1910) (de Waal

Very easily sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 826)

 $^{1}$  pt  $\,NH_4NO_3$  dissolves in 2.29 pts alcohol of 66.8% at 25° (Pohl W A B 6 599)  $^{1}$  pt  $\,NH_4NO_3$  dissolves in 1.1 pt boiling alcohol (Wenzel)

 $100~\rm pts$  absolute methyl alcohol dissolve  $17.1~\rm pts$  at  $20.5^{\circ}$  (de Bruyn, Z phys Ch 10-783)

100 g absolute methyl alcohol dissolve 14 6 g NH<sub>4</sub>NO<sub>3</sub> at 14° and 16 3 g at 18 5° (Schiff and Monsacchi, Z phys Ch 1896, 21 277)

100 pts absolute ethyl alcohol dissolve 3 8 pts at 20 5° (de Bruyn, Z phys Ch 10 783)

100 g absolute ethyl alcohol dissolve 4 6 g at 14° (Schiff and Monsacchi, Z phys Ch 1896, 21 277)

Solubility of NH<sub>4</sub>NO<sub>3</sub> in H<sub>2</sub>O is decreased by presence of ethyl alcohol but increased by presence of methyl alcohol NH<sub>4</sub>NO<sub>3</sub> is only very sl sol in abs ethyl alcohol and the solubility increases slowly with rise in temp, it is more sol in abs methyl alcohol and the solubility increases rapidly with rise in temp (Fleckenstein, Phys Zeit 1905, 6 419)

Solubility in methyl alcohol+Aq at 30°

| % by wt H <sub>2</sub> O             | % by wt<br>alcohol                        | % by wt<br>NH4NO3                            |
|--------------------------------------|-------------------------------------------|----------------------------------------------|
| 29 9<br>21 6<br>20 6<br>16 5<br>11 5 | 0<br>24 5<br>31 3<br>46 0<br>59 4<br>83 3 | 70 1<br>53 9<br>48 1<br>37 5<br>29 1<br>16 7 |

(Schreinemakers, Z phys Ch 1909, **65** 556)

Solubility of NH<sub>4</sub>NO<sub>3</sub> in ethyl alcohol+Aq at 30° Composition of sat solution

| % by wt H2O                                       | % by wt alcohol | % by wt NH4NO3 |
|---------------------------------------------------|-----------------|----------------|
| 29 9                                              | 0               | 70 1           |
| $\begin{array}{ccc} 26 & 9 \\ 23 & 2 \end{array}$ | 18 6<br>39 3    | 54 5<br>37 5   |
| 18 3                                              | 58 5            | 23 2           |
| $\begin{array}{c} 11 \ 6 \\ 5 \ 8 \end{array}$    | 76 5<br>86 2    | 11 9           |
| Õ                                                 | 96 4            | 3 6            |

(Schreinemakers, Z phys Ch 1909 65 555)

| Solubility | of | $NH_4N$ | O <sub>3</sub> | m | alcohol |  |
|------------|----|---------|----------------|---|---------|--|
|            |    |         |                |   |         |  |

| t°                                    | % NH4NO8                                                                                              | % Alcohol                                                                                    | % H <sub>2</sub> O                                                                                |
|---------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 0<br>""<br>30<br>""<br>""<br>70<br>"" | 54 19<br>42 69<br>1 96<br>70 10<br>59 83<br>8 06<br>3 60<br>84 03<br>72 37<br>61 11<br>41 25<br>24 71 | 0<br>12 70<br>97 93<br>0<br>10 60<br>85 30<br>96 51<br>0<br>11 12<br>22 87<br>44 64<br>67 23 | 45 81<br>44 61<br>0 11<br>29 90<br>29 57<br>6 64<br>0<br>15 97<br>16 51<br>16 02<br>14 11<br>8 06 |
| "                                     | 7 51                                                                                                  | 92 49                                                                                        | 0                                                                                                 |

(de Waal Dissert Leiden, 1910)

Sp gr of alcoholic solution of NH<sub>4</sub>NO at 15°

| Pts<br>NH <sub>4</sub> NO <sub>8</sub> | Pts<br>alcohol        | Sp gr                                    |
|----------------------------------------|-----------------------|------------------------------------------|
| 0<br>2<br>4<br>6                       | 100<br>98<br>96<br>94 | 0 83904<br>0 84746<br>0 85604<br>0 86524 |

(Gerlach, Z anal 28 521)

Insol in benzonitrile (Naumann, B 1914 47 1370)

Insol in methyl acetate (Naumann, B 1909, 42 3790)

Very sl sol in acetone (Krug and M'El roy, J Anal Ch 6 184)
Sol in acetone (Eidmann, C C 1899
II 1014)

Ammonium hydrogen nitrate, NH<sub>4</sub>H(NO<sub>2</sub>)<sub>2</sub>
Sol in H<sub>2</sub>O (Ditte, C R 89 576, 641)
Decomp by H<sub>2</sub>O (Groschuff, B 1904, 37
1487)

Ammonium dihydrogen nitrate, NH<sub>4</sub>H<sub>2</sub>(NO<sub>8</sub>)<sub>8</sub> Sol in H<sub>2</sub>O (Ditte)

Solubility in H<sub>2</sub>O

| Solution % by wt % by wt temp NH <sub>4</sub> NO <sub>3</sub> HNO <sub>3</sub>                              | Dolubility in 1120                   |                                      |                                                       |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------------|--|--|--|--|
|                                                                                                             | % by wt<br>HNO₃                      | % by wt<br>NH4NO3                    | Solution<br>temp                                      |  |  |  |  |
| -8 0 34 2 53 9 -2 5 34 8 54 8 +3 0 35 4 55 8 3 5 36 0 56 8 19 5 37 4 58 9 25 0 38 1 60 0 29 5 mpt 38 8 61 2 | 54 8<br>55 8<br>56 8<br>58 9<br>60 0 | 34 8<br>35 4<br>36 0<br>37 4<br>38 1 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |  |  |  |

(Groschuff, Z anorg 1904, 40 7)

Ammonium cerous nitrate, 3NH<sub>4</sub>NO<sub>3</sub>, 2Ce(NO<sub>3</sub>)<sub>3</sub>+12H<sub>2</sub>O

Very deliquescent Very sol in H<sub>2</sub>O and alcohol (Holzmann, J pr 84 78) +10H<sub>2</sub>O Hygroscopic Sol in H<sub>2</sub>O

(Drossbach, B 1900, 33 3507)
2NH<sub>4</sub>NO<sub>3</sub>, Ce(NO<sub>3</sub>)<sub>8</sub>+4H<sub>2</sub>O As above
(Marignac, A ch (4) 30 64)

Solubility in H<sub>2</sub>O

100 g H<sub>2</sub>O dissolve at

8 75° 25° 45° 235 5 296 8 410 2 g anhydrous salt,

60° 65 06° 681 2 817 4 g anhydrous salt (Wolff, Z anorg 1905, **45** 98)

Ammonium ceric intrate, 2NH<sub>4</sub>NO<sub>3</sub>, Ce(NO<sub>3</sub>)<sub>4</sub> Very sol in H<sub>2</sub>O without decomp Sol in

HNO<sub>3</sub> (Meyer, B 1900, **33** 2137) Sol in alcohol (Meyer, Z anorg 1901, **27** 369)

Solubility in H<sub>2</sub>O

100 g H₂O dissolve at t°

25° 35 2° 45 3°

140 9 161 7 174 9 g anhydrous salt,

64 5° 85 60° 122° 201 6 226 8 735 4 g anhydrous salt (Wolff, Z anorg 1905, **45** 94)

 $+1\frac{1}{2}H_2O$  Very deliquescent (Holzmann, J pr 84 78)

Ammonium cobalt nitrate

Permanent Sol in H<sub>2</sub>O (Thenard)

Ammonium copper nitrate, 2NH<sub>4</sub>NO<sub>3</sub>, Cu(NO<sub>3</sub>)<sub>2</sub> Very sol in H<sub>2</sub>O

Ammonium didymium nitrate,  $2NH_4NO_3$ ,  $D_1(NO_3)_3+4H_2O$ 

Somewhat deliquescent

Ammonium gadolinium nitrate, 2NH<sub>4</sub>NO<sub>3</sub>, Gd(NO<sub>3</sub>)<sub>3</sub>

Deliquesces in the air (Benedicks, Z anorg 1900, 22 407)

Ammonium gold (auric) nitrate (Ammonium auronitrate),  $NH_4Au(NO_8)_4$ 

Extremely deliquescent

 $H(NH_4)_2\tilde{A}u(NO_3)_6$  (Schottlander, A 217 312)

 $\begin{array}{ccc} \text{Ammonium lanthanum} & \text{nitrate,} & 2NH_4NO_3, \\ & La(NO_3)_3 + 4H_2O \end{array}$ 

Not deliquescent Sol in  $H_2O$  (Marignac)

Ammonium magnesium nitrate, 2NH<sub>4</sub>NO<sub>3</sub>, Mg(NO<sub>3</sub>)<sub>2</sub>

Slowly deliquescent Sol in 10 pts  $H_2O$  at 12 5°, and much less hot  $H_2O$  (Fourcroy)

Ammonium mercurous nitrate, 4NH<sub>4</sub>NO<sub>3</sub>, Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>+5H<sub>2</sub>O

Sol in  $H_2O$  (Pagenstecher, Repert 14 188)

Ammonium nickel nitrate

Sol in 3 pts cold  $H_2O$  (Thénard, Scher J 10 428)

Ammonium praseodymium nitrate,  $2NH_4NO_3$ ,  $Pr(NO_3)_3+4H_2O$ 

Sol in  $H_2O$  (von Scheele, Z anorg 1898, 18 356)

Ammonium silver nitrate, NH<sub>4</sub>NO<sub>3</sub>, AgNO<sub>3</sub> Very sol in H<sub>2</sub>O (Russell and Maskelyne,

Roy Soc Proc 26 357)

Sol in  $H_2O$  without decomp (Schreine-makers and de Baat, Chem Weekbl 1910, 7 6)

See also solubility of NH<sub>4</sub>NO<sub>3</sub>+AgNO<sub>3</sub> under NH<sub>4</sub>NO<sub>3</sub>

Ammonium thorium nitrate, (NH<sub>4</sub>)<sub>2</sub>Th(NO<sub>3</sub>)<sub>6</sub> Soi in strong HNO<sub>3</sub> (Meyer, Z anorg 1901, **27** 383)

 $NH_4Th(NO_3)_5+5H_2O$  Sol in HNO<sub>3</sub> of sp gr 1 25 (Meyer, Z anorg 1901, 27 382)

Ammonium uranyl nitrate, NH<sub>4</sub>NO<sub>3</sub>, UO<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>

Decomp by  $\rm H_2O$  Sol in conc  $\rm HNO_3$  (Meyer, B 1903, 36~4057 )

Solubility in H<sub>2</sub>O at t°

|                            | In 100<br>of th                           | In 100 pts by wt<br>of the solution  |                         |                       |  |
|----------------------------|-------------------------------------------|--------------------------------------|-------------------------|-----------------------|--|
| t°                         | Pts by wt<br>LO2                          | Pts by wt<br>NH4                     | Pts by wt<br>total salt | Solid phase           |  |
| 0 5<br>13 5<br>24 9 a<br>b | 29 71<br>32 35<br>36 40<br>36 53<br>42 07 | 2 92<br>3 42<br>3 54<br>3 54<br>3 44 | 68 72<br>68 97          | Double salt+UO2(NO3)2 |  |
| 59 0<br>80 7 a<br>b        | 44 37<br>44 90<br>45 01                   | 2 90<br>2 98<br>2 98                 | 78 76<br>78 79          | Double salt           |  |

Ammonium urinyl nitrate is decomp by  $H_2O$  at temp below  $60^\circ$  above  $60^\circ$  it is sol in  $H_2O$  without decomp (Rimbach, B 1904, 37 475)

Ammonium nitrate ammonia, 2NH<sub>4</sub>NO<sub>5</sub>, 3NH<sub>3</sub>

Known only as a solution of NH<sub>3</sub> in NH<sub>4</sub>NO<sub>5</sub>+Aq (Troost, C R **94** 789) NH<sub>4</sub>NO<sub>5</sub>, 3NH<sub>3</sub> As above

| 002                                         | 74777                                                          | ,                            |                                     | 1111110011                                    | O CILIOIO                                |                         |                                                             |
|---------------------------------------------|----------------------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------------------|------------------------------------------|-------------------------|-------------------------------------------------------------|
|                                             | n nitrate mer                                                  | curic chlori                 | de,                                 | Solu                                          | bility in 100                            | pts H <sub>2</sub> O at | t t°                                                        |
| Insol in                                    | O <sub>3</sub> , 2HgCl <sub>2</sub> H <sub>2</sub> O Ethe      | r dissolves o                | out HgCl <sub>2</sub>               | t°                                            | Pts<br>Ba(NO <sub>3</sub> ) <sub>2</sub> | t°                      | Pts<br>Ba(NO <sub>3</sub>                                   |
| 2NH <sub>4</sub> NC                         | A ch (3) 2<br>) <sub>8</sub> , HgCl <sub>2</sub><br>Marburg, A | Sol in H <sub>2</sub>        | O (Hof-                             | 0                                             | 5 0<br>5 1                               | 52<br>53                | 17 7<br>18 1                                                |
| mann auu                                    | manug, n                                                       | 1099, 000                    | 199 )                               |                                               | 5 3<br>5 5                               | 54<br>55                | 18 4<br>18 7                                                |
| Ammonium<br>N <sub>2</sub> O <sub>5</sub> , | n nitrate<br>2SO <sub>3</sub> , H <sub>2</sub> O               | sulphate,                    | 2(NH <sub>4</sub> ) <sub>2</sub> O, | 2<br>3<br>4<br>5                              | 5 7<br>6 0                               | 56<br>57                | 19 0<br>19 3                                                |
| Very hyd                                    | droscopic and<br>norg 1894, 6                                  | d sol in H <sub>2</sub> (    | O (Fried-                           | 6<br>7                                        | 62                                       | 58<br>59                | 19 6<br>20 0                                                |
| 2NH₄NO<br>1910 )                            | $O_3$ , $(NH_4)_2SC$                                           | de Wa                        | al, Dissert                         | 8<br>9                                        | 66                                       | 60<br>61                | 20 3<br>20 6                                                |
| 3NH₄NC                                      | $0_3$ , $(NH_4)_2SO$ solubility of                             | ). (de Wa<br>NH.NO.+         | al)<br>(NH4).SO4                    | 10<br>11                                      | 7 0 7 3                                  | 62<br>63                | 20 9<br>21 0                                                |
| under NH                                    |                                                                |                              | (2122)2001                          | 12<br>13                                      | 7 5 7 7                                  | 64<br>65                | 21 6<br>21 0                                                |
|                                             | n nitrate me                                                   |                              | NH4NO3,                             | 14<br>15                                      | 7 9 8 1                                  | 66<br>67                | 22 3<br>22 6                                                |
|                                             | $_{4})_{2}$ W $_{4}$ O $_{18}$ +4 $_{1}$ Oses by recry         |                              | ut of H <sub>2</sub> O              | 16<br>17                                      | 8 3 8 5                                  | 68<br>69                | 22 9<br>23 3                                                |
| (Marignac,                                  | , A ch (3) 6                                                   | 9 61)                        |                                     | 18<br>19                                      | 8 8<br>9 0                               | 70<br>71                | 23 6<br>23 9                                                |
|                                             | nıtrate, Sb4O                                                  |                              |                                     | $\begin{array}{c} 20 \\ 21 \end{array}$       | 9 2<br>9 5                               | 72<br>73                | $\begin{array}{cc} 24 & 3 \\ 24 & 9 \end{array}$            |
| Aqueous                                     | by cold H <sub>2</sub><br>solution sat                         | O (Buchol<br>at 10° cont     |                                     | 22<br>23                                      | 9799                                     | 74<br>75                | $\begin{array}{c} 25 \ 0 \\ 25 \ 4 \end{array}$             |
|                                             | trong, less s                                                  |                              | INO <sub>3</sub> +Aq                | 24<br>25                                      | 10 1<br>10 4                             | 76<br>77                | $\begin{array}{ccc} 25 & 7 \\ 26 & 0 \end{array}$           |
| Insol ın                                    | ch (3) <b>20</b><br>acetone (1                                 |                              | 3 1904, <b>37</b>                   | 26<br>27                                      | 10 6<br>10 8                             | 78<br>79                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$        |
| 4329)                                       |                                                                |                              |                                     | 28<br>29                                      | 11 1                                     | 80<br>81                | $\begin{array}{c} 27 \ 0 \\ 27 \ 4 \\ 27 \ 7 \end{array}$   |
|                                             | rate, Ba(NO<br>I <sub>2</sub> O with abs                       |                              | neat                                | $\begin{array}{c} 30 \\ 31 \\ 32 \end{array}$ | 11 6<br>11 8<br>12 1                     | 82<br>83<br>84          | $\begin{array}{c c} 27 & 7 \\ 28 & 1 \\ 28 & 4 \end{array}$ |
| $100$ pts $Ba(NO_3)_2$                      | H <sub>2</sub> O at (                                          | O° dissolve<br>ac, A ch 1    | 50 parts                            | 33<br>34                                      | 12 3<br>12 6                             | 85<br>86                | 28 8<br>29 1                                                |
| $100$ pts $Ba(NO_8)_2$                      | H <sub>2</sub> O at (Mulder)                                   | O° dissolve                  | 52 parts                            | 35<br>36                                      | 12 8<br>13 1                             | 87<br>88                | 29 5<br>29 8                                                |
| Ba(NO <sub>3</sub> )                        | ) <sub>2</sub> + Aq sat a                                      | t 20° contai<br>[20, and has | ns 8 57 pts<br>s 1 0679 sp          | 37<br>38                                      | 13 4<br>13 7                             | 89<br>90                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$        |
| and contain                                 | to 100 pts H<br>en), sat at<br>ins 7 94 pts                    | $Ba(NO_8)_2$                 | 064 sp gr,<br>to 100 pts            | 39<br>40                                      | 14 0<br>14 2                             | 91<br>92                | 30 9<br>31 3                                                |
| $H_2O$ (M <sub>1</sub>                      | chel and Ki                                                    | afft)                        |                                     | 41<br>42                                      | 14 5<br>14 8                             | 93<br>94                | $\begin{array}{c} 31 \ 7 \\ 32 \ 0 \end{array}$             |
| 100 pts H                                   | I <sub>2</sub> O dissolve                                      | pts Ba(N                     | O <sub>3</sub> ) <sub>2</sub> at t° | 43<br>44                                      | 15 1<br>15 4                             | 95<br>96                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$        |
| t°                                          | Pts<br>Ba(NO <sub>3</sub> )                                    | t°                           | Pts<br>Ba(NO <sub>3</sub> )         | 45<br>46                                      | 15 6<br>15 9                             | 97<br>98                | 33 1<br>33 5                                                |
| 0                                           | 5 00                                                           | 52 11                        | 17 97                               | 47<br>48                                      | 16 2<br>16 5                             | 99<br>100               | 33 8<br>34 2                                                |
| 14 95<br>17 62<br>37 87                     | 8 18<br>8 54<br>13 67                                          | 73 75<br>86 21<br>101 65     | 25 01<br>29 57<br>35 18             | 49<br>50                                      | 16 8<br>17 1                             | 101<br>101 9            | 34 5<br>34 8                                                |
| 49 22                                       | 17 07                                                          | 101 09                       | 99 10                               | Mulder (                                      | 17 4                                     | om his own              | and oth                                                     |

(Gay-Lussac, A ch (2) 11 313)

(Mulder, calculated from his own and oth experiments, Scheik Verhandel 1864 50

| Sat | $Ba(NO_3)_2 + Aq$ | contains | % | $Ba(NO_3)_2$ |
|-----|-------------------|----------|---|--------------|
|     | a                 | .t. t°   |   |              |

| t°                                                                       | %<br>Ba(NO₃)                                                         | t°                                                                                  | %<br>Ba(NO <sub>3</sub> )                                                    |
|--------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0 4<br>2 1<br>6 0<br>6 5<br>11 0<br>15 3<br>18 0<br>28 5<br>45 5<br>52 0 | 4 3<br>4 9<br>5 6<br>5 6<br>6 4<br>7 1<br>7 7<br>9 7<br>12 8<br>14 9 | 60 0<br>73 0<br>92 0<br>110 0<br>132 0<br>134 0<br>150 0<br>152 0<br>171 0<br>215 0 | 16 1<br>19 4<br>23 4<br>27 4<br>31 8<br>32 5<br>34 9<br>35 4<br>38 3<br>45 8 |
|                                                                          |                                                                      | <del></del>                                                                         |                                                                              |

(Etard, A ch 1894, (7) 2 528)

100 g H<sub>2</sub>O dissolve 8 54 g Ba(NO<sub>3</sub>)<sub>2</sub> at 17° (Gmelin-Kraut, Handbuch der anorg Chemie)

100 g H<sub>2</sub>O dissolve 7 87 g Ba(NO<sub>3</sub>)<sub>2</sub> at 15°, 8 32 g at 17° (Euler, Z phys Ch 1904, 49 315)

1000 g H<sub>2</sub>O dissolve 0 72 gram-equivalents Ba(NO<sub>3</sub>)<sub>2</sub> at 21 5° (Euler, Z phys Ch 1904, 49 312)

10 30 g anhydrous  $Ba(NO_3)_2$  are sol in 100 g  $H_2O$  at 25° (Parsons and Colson, J Am Chem Soc 1910, **32** 1385)

474 g Ba(NO<sub>3</sub>)<sub>2</sub> are contained in 100 g Ba(NO<sub>3</sub>)<sub>2</sub> sat at 0° (Coppadoro, Gazz ch it 1911, 42, I 233)

Solubility of Ba(NO<sub>3</sub>) in  $H_2O = 0$  427 mol at 30° (Masson, Chem Soc 1911, 99

1136)
Solubility of Ba(NO<sub>3</sub>)<sub>2</sub> in H O at 30°=
10 33% (Coppadoro, Gazz ch it 1913, 43
I 240)

Solubility in H<sub>2</sub>O

100 g of the sat solution contain at

9 1° 21 1° 35°

6 25 8 46 11 39 g Ba(NO<sub>3</sub>)<sub>2</sub> (Findlay, Chem Soc 1914, **105** 780)

Sp gr of Ba(NO<sub>3</sub>) +Aq at 19 5°

| Ba(NO <sub>3</sub> ) 2 | Sp gr | %<br>Ba(NO₃)₂ | Sp gr |
|------------------------|-------|---------------|-------|
| 1                      | 1 009 | 6             | 1 050 |
| 2                      | 1 017 | 7             | 1 060 |
| 3                      | 1 025 | 8             | 1 069 |
| 4                      | 1 034 | 9             | 1 078 |
| 5                      | 1 042 | 10            | 1 087 |

(Calculated by Gerlach, Z anal 8 286, from Kremers, Pogg 95 110)

Sp gr of Ba(NO<sub>3</sub>)<sub>2</sub>+Aq at 18°

| % Ba(NO <sub>3</sub> ) <sub>2</sub> | Sp gr  |
|-------------------------------------|--------|
| 4 2                                 | 1 0340 |
| 8 4                                 | 1 0712 |

(Kohlrausch, W Ann 1879 1)

| Sp gr | of | $Ba(NO_3)_2 + Aq$ | at | 17 | 5° |
|-------|----|-------------------|----|----|----|
|-------|----|-------------------|----|----|----|

| - F 6-                |                                                |                                        |                                      |
|-----------------------|------------------------------------------------|----------------------------------------|--------------------------------------|
| %<br>Ba(NOs) 2        | Sp gr                                          | %<br>Ba(NO <sub>3</sub> ) <sub>2</sub> | Sp gr                                |
| 1<br>2<br>3<br>4<br>5 | 1 0085<br>1 0170<br>1 0255<br>1 0340<br>1 0425 | 6<br>7<br>8<br>Sat sol                 | 1 0510<br>1 0600<br>1 0690<br>1 0690 |

#### (Gerlach, Z anal 27 283)

Sp gr of  $Ba(NO_3)_2 + Aq$  at room temp

| % Ba(NO <sub>3</sub> ) <sub>2</sub> | Sp gr  |
|-------------------------------------|--------|
| 5 25                                | 1 0507 |
| 2 98                                | 1 0274 |

## (Wagner, W Ann 1883, **18** 264)

Sp gr of Ba(NO<sub>3</sub>)<sub>2</sub>+Aq at 25°

| Concentration of Ba(NO <sub>3</sub> ) <sub>2</sub> +Aq | Sp gr  |
|--------------------------------------------------------|--------|
| 1/2 normal                                             | 1 0518 |
| 1/4 "                                                  | 1 0259 |
| 1/8 "                                                  | 1 0130 |

(Wagner, Z phys Ch 1890, 5 35)

 $Ba(NO_3)_2 + Aq$  containing 6 08%  $Ba(NO_3)_2$  has sp gr  $20^{\circ}/20^{\circ} = 1$  0517

Ba(NO<sub>3</sub>)<sub>2</sub>+Aq containing 6 97% Ba(NO<sub>3</sub>)<sub>2</sub> has sp gr 20°/20° = 1 0597

(Le Blanc and Rohland, Z phys Ch 1896, 19 279)

Sp gr of Ba(NO<sub>3</sub>)<sub>2</sub>+Aq at 20° containing M g mols salt per liter

 $\begin{array}{cccccc} M & & 0.01 & & 0.025 & & 0.05 \\ \mathrm{Sp} \ \mathrm{gr} & & 1.002031 & & 1.005224 & & 1.010591 \end{array}$ 

M 0 075 0 10 0 15 Sp gr 1 015671 1 021143 1 031770 (Jones and Pearce, Am Ch J 1907, **38** 708)

## Sp gr of sat Ba(NO<sub>3</sub>)<sub>2</sub>+Aq at t°

| t  | g Ba(NO <sub>3</sub> ) <sub>2</sub> sol<br>in 100 g H O | Sp gr |
|----|---------------------------------------------------------|-------|
| 0  | 5 2                                                     | 1 043 |
| 10 | 7 0                                                     | 1 056 |
| 20 | 9 2                                                     | 1 073 |
| 30 | 11 6                                                    | 1 087 |
| 40 | 14 2                                                    | 1 104 |
| 50 | 17 1                                                    | 1 121 |
| 60 | 20 3                                                    | 1 137 |
| 70 | 23 6                                                    | 1 146 |

(Tschernal, J Russ Phys Chem Soc 1912, 44 1565)

Saturated BaNO<sub>3</sub>+Aq contains — 36 18 pts Ba(NO<sub>3</sub>)<sub>2</sub> to 100 pts H<sub>2</sub>O, and boils at 101 1° (Griffiths)

2 pts Ba(NO<sub>3</sub>)<sub>2</sub> to 100 pts H<sub>2</sub>O, and at 101 65° (Gay-Lussac) 8 pts Ba(NO<sub>3</sub>)<sub>2</sub> to 100 pts H<sub>2</sub>O, and at 101 9° (Mulder) 8 pts Ba(NO<sub>3</sub>)<sub>2</sub> to 100 pts H<sub>2</sub>O, and at 102 5° (Kremers) t Ba(NO<sub>3</sub>)<sub>2</sub>+Aq forms a crust at 101 1°, 2st temp observed was 101 5° (Gerlach, tal 26 427)

of Ba(NO<sub>3</sub>)<sub>2</sub>+Aq containing pts Ba(NO<sub>3</sub>)<sub>2</sub> to 100 pts H<sub>2</sub>O

| B-pt   | Pts Ba(NO <sub>3</sub> ) <sub>2</sub> |
|--------|---------------------------------------|
| 100 5° | 12 5                                  |
| 101 0  | 26 0                                  |
| 101 1  | 27 5                                  |

(Gerlach, Z anal 26 440)

sol in conc HNO<sub>8</sub>+Aq, and much less in dil HNO<sub>8</sub>+Aq or HCl+Aq than in

bility of  $Ba(NO_3)_2$  in  $HNO_3+Aq$  at 30°

Solid phase Ba(NOa)a

| gr of sat | G mo             | ol per l                          |
|-----------|------------------|-----------------------------------|
| olution   | HNO <sub>3</sub> | Ba(NO <sub>3</sub> ) <sub>2</sub> |
| 0891      | 0 0000           | 0 4270                            |
| 0811      | 0 1318           | 0 3282                            |
|           | 0 2496           | 0 3268                            |
| 0663      | 0 4995           | 0 2410                            |
| 0619      | 0 7494           | 0 1785                            |
| 0609      | 1 000            | 0 1353                            |
| 0633      | 1 247            | 0 1056                            |
| 0668      | 1 493            | 0 0847                            |
| 0783      | 1 998            | 0 0598                            |
| 1050      | 2 993            | 0 0334                            |
| 1341      | 3 986            | 0 0218                            |
| 1341      | 3 994            | 0 0223                            |
| 1645      | 5 012            | 0 0147                            |

Iasson, Chem Soc 1911, 99 1136)

ss sol in dil  $HC_2H_8O_2+Aq$  than in dil +Aq lubility in  $NH_4Cl+Aq$  is the same as in

ss sol in  $NH_4OH+Aq$ ,  $NH_4C_2H_3O_2+$  or  $NH_4NO_3+Aq$  than in  $H_2O$  (Pearson, Ch (2) 5 662)  ${}_{\lambda}(NO_3)_2$  is sol in about

33 pts  $H_2O$  at ord temp, and 4 67 pts  $H_2O$  at ord temp, and 4 67 pts  $H_2O$ 

67 pts  $NH_4OH + Aq$  (conc.) at ord 1, and 5 67 pts at  $100^\circ$ 50 pts  $NH_4OH + Aq$  (1 vol conc. +3  $H_2O$ ) at ord temp

00 pts HCl+Aq (1 vol conc HCl+4 H<sub>2</sub>O) at ord temp 00 pts HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (1 vol commer-

 $HC_2H_3O_2+1$  vol  $H_2O$ ) at ord temp

13 67 pts  $NH_4Cl+Aq$  (1 pt  $NH_4Cl+10$  pts  $H_2O$ ) at ord temp, and 4 67 pts at  $100^\circ$ 

24 00 pts NH<sub>4</sub>NO<sub>8</sub>+Aq (1 pt NH<sub>4</sub>NO<sub>8</sub>+

10 pts  $\rm H_2O$ ) at ord temp 17 33 pts  $\rm NH_4C_2H_3O_2+Aq$  (dil  $\rm NH_4OH$  neutralised by dil  $\rm HC_2H_3O_2$ ) at ord temp, and 4 33 pts at  $\rm 100^\circ$ 14 67 pts  $\rm NaC_2H_3O_2+Aq$  (dil  $\rm HC_2H_3O_2$ 

neutralised by Na<sub>2</sub>CO<sub>3</sub> and dil with 4 vols  $H_2O$ ) at ord temp, and 5 33 pts at 100° 17 33 pts  $Cu(C_2H_3O_2)_2+Aq$  (see Stolba, Z

17 33 pts  $Cu(\hat{C}_2\hat{H}_3O_2)_2+A\hat{q}$  (see Stolba, Z anal 2 390) at ord temp, and 6 00 pts at  $100^\circ$ 

18 67 pts grape sugar (1 pt grape sugar +10 pts H<sub>2</sub>O) at ord temp (Pearson, Zeit Ch 1869 662)

Sol in sat NH<sub>4</sub>Cl+Aq without pptn at first, but finally NH<sub>4</sub>Cl is pptd until a certain state of equilibrium is reached (Karsten)

Solubility in BaO<sub>2</sub>H<sub>2</sub>, 8H<sub>2</sub>O+Aq at 25°

| Sp gr 25°/25° | G BaO as<br>Ba(OH) <sub>2</sub> in<br>100 g H <sub>2</sub> O | G Ba(NO <sub>3</sub> ) <sub>2</sub><br>in 100 g H <sub>2</sub> O |
|---------------|--------------------------------------------------------------|------------------------------------------------------------------|
| 1 0797        | 0                                                            | 10 30                                                            |
| 1 1002        | 1 55                                                         | 10 66                                                            |
| 1 1210        | 3 22                                                         | 11 04                                                            |
| *1 1448       | 5 02                                                         | 11 48                                                            |

\* This solution is sat with respect to both Ba(OH)<sub>2</sub>, 8H<sub>2</sub>O and Ba(NO<sub>3</sub>)<sub>2</sub>
(Parsons J Am Chem Soc 1910, **32** 1385)

See also under BaO<sub>2</sub>H<sub>2</sub>

### Solubility in BaCl2+Aq at t°

| boldomby in DaOl2 Thq at t                    |                                                      |                                                      |  |
|-----------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|
| t°                                            | Sat solution contains                                |                                                      |  |
| ·                                             | % BaCl <sub>2</sub>                                  | % Ba(NO <sub>3</sub> ) 2                             |  |
| -7<br>-1<br>+1 5<br>2<br>10<br>21<br>32<br>35 | 21 4<br>23 0<br>22 6<br>24 7<br>24 5<br>26 6<br>26 4 | 4 0<br>4 0<br>4 4<br>5 0<br>6 1<br>5 6<br>7 7<br>7 7 |  |
| 38<br>48<br>53<br>53                          | 26 7<br>28 1<br>28 5<br>28 3                         | 7 8<br>8 0<br>9 0<br>9 2                             |  |
| 66<br>73<br>79<br>90<br>155                   | 28 0<br>30 0<br>30 3<br>32 1<br>32 5                 | 10 0<br>10 5<br>11 2<br>12 5<br>23 1                 |  |
| 162<br>210                                    | 33 1<br>32 5                                         | 23 4<br>31 9                                         |  |

(Étard, A ch 1894, (7) 3 287)

See also under BaCl<sub>2</sub>

 $\mathbf{Ba}(\mathrm{NO_8})_2 + \mathrm{Pb}(\mathrm{NO_8})_2$ 

Very sl sol m sat Pb(NO<sub>8</sub>)<sub>2</sub>+Aq (Karsten.)

100 pts sat Ba(NO<sub>3</sub>)<sub>2</sub>+Pb(NO<sub>3</sub>)<sub>2</sub>+Aq contain 33 95 pts of the two salts at 19-20° (v. Hauer, J pr 98 137)

Solubility of Ba(NO<sub>3</sub>)<sub>2</sub>+Pb(NO<sub>3</sub>)<sub>2</sub> at 25°

| G per l                                                                       |                                                                                             | Sp gr                                                                                           |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Ba(NO <sub>8</sub> ) <sub>2</sub>                                             | Pb(NO <sub>3</sub> ) <sub>2</sub>                                                           | Sp gr                                                                                           |
| 102 2<br>54 9<br>86 5<br>79 7<br>77 0<br>69 8<br>66 0<br>57 5<br>25 9<br>28 8 | 0<br>17 63<br>49 80<br>68 10<br>97 20<br>130 7<br>177 3<br>247 7<br>334 3<br>429 7<br>553 8 | 1 079<br>1 088<br>1 108<br>1 119<br>1 140<br>1 163<br>1 198<br>1 252<br>1 294<br>1 376<br>1 459 |

(Fock, Z Kryst Mm 1897, 28 365, 397)

100 ccm  $Ba(NO_3)_2+Pb(NO_3)_2+Aq$  sat at 17° contain 3 22 g  $Ba(NO_3)_2$  and 38 59 g  $Pb(NO_3)_2$  and solution has sp gr = 1 350 (Euler, Z phys Ch 1904, 46 313)

100 pts sat  $Ba(NO_3)_2+Pb(NO_3)_2+Sr(NO_3)_2+Aq$  contain 45 90 pts of the three salts at 19-20° (v Hauer, 1 c)

 $\mathbf{Ba(NO_3)_2} + \mathbf{Sr(NO_3)_2}$ 

100 pts sat  $Ba(NO_3)_2+Sr(NO_3)_2+Aq$  contain 45 96 pts of the two salts at 19-20° (v Hauer, l c)

 $\mathbf{Ba(NO_3)_2} + \mathbf{KNO_3}$ 100 pts  $\mathbf{H_2O}$  dissolve

|                                                       | (Mulder)    |      |         |          |            |     |             |
|-------------------------------------------------------|-------------|------|---------|----------|------------|-----|-------------|
|                                                       |             |      |         | (        | 1)         |     |             |
| KNO <sub>3</sub><br>Ba(NO <sub>3</sub> ) <sub>2</sub> |             | 29   | 7       |          | 8 8<br>5 4 |     | 8 9         |
|                                                       |             |      |         | 3        | 4 2        |     |             |
|                                                       | (           | Kars | t(n)    |          |            | (Ko | pp)         |
|                                                       | (2          | 2)   | (3)     |          | (          | 4)  | (5)         |
| KNO <sub>3</sub><br>Ba(NO <sub>3</sub> ) <sub>2</sub> | 13 3<br>6 9 |      | 29<br>1 | 03<br>00 | 5<br>33    |     | 3 5<br>36 3 |
|                                                       | 20 2        | 22   | 30      | 03       | 38         | 8   | 39 8        |

1 Sat  $Ba(NO_3)_2+Aq$  sat with  $KNO_3$  at 18 5°

2 To sat KNO<sub>3</sub>+Aq, Ba(NO<sub>3</sub>)<sub>2</sub>+Aq was added 3 To sat Ba(NO<sub>3</sub>)<sub>2</sub>+Aq, KNO<sub>3</sub> was

added
4 Both salts in excess+Aq at 21 5°

5 Both salts in excess + Aq at 23°

11 of the solution contains 59 1 g Ba(NO<sub>3</sub>)<sub>2</sub> +124 2 g KNO<sub>3</sub>=183 35 g mixed salts at 17° Sp gr Ba(NO<sub>3</sub>)<sub>2</sub>+KNO<sub>3</sub>+Aq=1 120 11 of the solution contains 88 7 g Ba(NO<sub>3</sub>)<sub>2</sub> +213 6 g KNO<sub>3</sub>=302 3 g mixed salts at 30° Sp gr Ba(NO<sub>3</sub>)<sub>2</sub>+KNO<sub>3</sub>+Aq=1 191 (Euler, Z phys Ch 1904, 49 313)

Solubility in KNO<sub>3</sub>+Aq at 25°

| 100 pts of solu<br>tion contain                                               |                                                      | Solid phase                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pts<br>KNO <sub>3</sub>                                                       | pts<br>Ba(NO3)2                                      |                                                                                                                                                                                                                                           |
| 15 24<br>14 69<br>14 79<br>16 30<br>21 99<br>27 66<br>27 81<br>27 94<br>27 64 | 6 60<br>6 62<br>5 49<br>3 04<br>2 01<br>2 09<br>1 92 | Ba(NO <sub>3</sub> ) <sub>2</sub> +2KNO <sub>3</sub> , Ba(NO <sub>3</sub> ) <sub>2</sub> ''  2KNO <sub>3</sub> , Ba(NO <sub>3</sub> ) <sub>2</sub> KNO <sub>3</sub> +2KNO <sub>3</sub> , Ba(NO <sub>3</sub> ) <sub>2</sub> ''  ''  ''  '' |

These results show that a double salt of potassium and barium nitrates is formed at 25°

(Foote, Am Ch J 1904, 32 252)

Solubility of Ba(NO<sub>3</sub>)<sub>2</sub>+KNO<sub>3</sub> at t°

| Solubility of Da(14O8)2 TK14O8 at t |                                                                    |                                                                        |                                                                                                                                                                                                                                                                                                |  |
|-------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| to                                  | %<br>Ba(NO1)2                                                      | KNO:                                                                   | Solid phase                                                                                                                                                                                                                                                                                    |  |
| 9 1                                 | 6 25<br>4 20<br>1 98<br>0 98                                       | 0<br>8 15<br>12 02<br>16 80<br>16 76                                   | Ba(NO <sub>3</sub> ) <sub>2</sub><br>Ba(NO <sub>3</sub> ) <sub>2</sub> +2KNO <sub>3</sub> ,<br>Ba(NO <sub>3</sub> ) <sub>2</sub><br>2KNO <sub>3</sub> , Ba(NO <sub>3</sub> ) <sub>2</sub><br>2KNO <sub>3</sub> , Ba(NO <sub>3</sub> ) <sub>2</sub> +<br>KNO <sub>3</sub><br>KNO <sub>3</sub>   |  |
| 21 1                                | 8 46<br>7 47<br>6 35<br>6 06<br>5 98<br>3 35<br>2 30<br>1 76       | 0<br>2 12<br>5 98<br>8 47<br>13 24<br>18 24<br>21 47<br>24 86<br>24 77 | Ba(NO <sub>3</sub> ) <sub>2</sub> " " " " " " " " " " Ba(NO <sub>3</sub> ) <sub>2</sub> +2KNO <sub>3</sub> , Ba(NO <sub>3</sub> ) <sub>2</sub> 2KNO <sub>3</sub> , Ba(NO <sub>3</sub> ) <sub>2</sub> 2KNO <sub>3</sub> , Ba(NO <sub>3</sub> ) <sub>2</sub> + KNO <sub>3</sub> KNO <sub>3</sub> |  |
| 35                                  | 11 39<br>8 18<br>8 08<br>8 42<br>5 85<br>5 02<br>3 02<br>1 77<br>0 | 0<br>12 99<br>17 48<br>19 75<br>24<br>26 05<br>34 87<br>34 98<br>35 01 | Ba(NO <sub>3</sub> ) <sub>2</sub> ""  Ba(NO <sub>3</sub> ) <sub>2</sub> +2KNO <sub>2</sub> ,  Ba(NO <sub>3</sub> ) <sub>2</sub> 2KNO <sub>3</sub> , Ba(NO <sub>3</sub> ) <sub>2</sub> 2KNO <sub>3</sub> , Ba(NO <sub>3</sub> ) <sub>2</sub> +  KNO <sub>3</sub> ""                             |  |

(Findlay, Chem Soc 1914, 105 779)

Ba(NO<sub>3</sub>)<sub>2</sub>+NaNO<sub>3</sub> Ba(NO<sub>3</sub>)<sub>2</sub> is sol in sat NaNO<sub>3</sub>+Aq without separation

100 pts H2O dissolve

|                                            | (Karsten)<br>At 18 75° |
|--------------------------------------------|------------------------|
| NaNO <sub>3</sub><br>Ba(NO <sub>3</sub> ), | 86 6 88 14<br>3 77 8 9 |
|                                            | (Kopp)<br>At 20 2°     |
|                                            | 87 7   88 6            |

olubility of Ba(NO<sub>3</sub>)<sub>2</sub>+NaNO<sub>3</sub> in H<sub>2</sub>O at 0°

| % NaNO3                                            | % Ba(NO <sub>3</sub> ) <sub>2</sub>                                  | Solid phase                                                                  |
|----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0 0 41 0 61 1 68 3 54 8 05 12 71 20 24 20 92 27 74 | 4 74<br>4 33<br>4 03<br>3 34<br>2 50<br>1 60<br>1 56<br>1 53<br>1 43 | Ba(NO <sub>8</sub> ) <sub>2</sub>                                            |
| 30 81<br>33 79<br>35 83<br>41 30<br>41 68<br>42 47 | 1 56<br>1 55<br>1 53<br>1 49<br>1 55<br>0 51                         | " " " Ba(NO <sub>3</sub> ) <sub>2</sub> +NaNO <sub>3</sub> NaNO <sub>3</sub> |

(Coppadoro, Gazz ch it, 1912, 42 (1) 233)

Solubility of Ba(NO<sub>3</sub>)<sub>2</sub>+NaNO<sub>3</sub> in H<sub>2</sub>O

| at 30°                                                                                             |                                                                                            |                                                                       |  |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| %<br>NaNOs                                                                                         | %<br>Ba(NO <sub>3</sub> ) <sub>2</sub>                                                     | Solid phase                                                           |  |  |
| 0<br>2 33<br>7 09<br>12 07<br>14 41<br>17 87<br>19 06<br>23 55<br>41 22<br>48 22<br>48 50<br>49 16 | 10 33<br>8 58<br>5 28<br>3 89<br>3 54<br>3 20<br>3 07<br>2 81<br>2 27<br>2 11<br>1 00<br>0 | Ba(NO <sub>3</sub> ) <sub>2</sub> " " " " " " " " " " " " " " " " " " |  |  |

(Coppadoro, Gazz ch it 1913, 43, I 240)

Moderately sol in liquid NH3 (Franklin, Am Ch J 1898, 20 827) 100 pts hydrazine dissolves 81 1 pts Ba(NO<sub>3</sub>)<sub>2</sub> at 12 5-13° (de Bruyn, R t c 1899**, 18** 297)

100 pts anhydrous hydroxylamine dissolv 11 4 pts Ba(NO<sub>3</sub>)<sub>2</sub> (de Bruyn, R t ( 1892, **11** 18 )

Insol in absolute alcohol

Solubility in dilute alcohol increases wit the temp (Gerardin, A ch (4) 5 145)

Solubility in ethyl alcohol + Aq at 25°

| % C <sub>2</sub> H <sub>5</sub> OH in | % C <sub>2</sub> H <sub>5</sub> OH in | % Ba(NO <sub>3</sub> ) <sub>2</sub> ir |
|---------------------------------------|---------------------------------------|----------------------------------------|
| the solvent                           | the solution                          | the solution                           |
| 0                                     | 0                                     | 9 55                                   |
| 10 25                                 | 9 5                                   | 7 63                                   |
| 18 60                                 | 17 5                                  | 6 02                                   |
| 25 05                                 | 23 7                                  | 5 25                                   |
| 40 20                                 | 38 8                                  | 3 53                                   |
| 58 00                                 | 57 0                                  | 1 85                                   |
| 78 70                                 | 78 2                                  | 0 62                                   |
| 90 10                                 | 89 9                                  | 0 18                                   |
| 99 40                                 | 99 39                                 | 0 005                                  |
|                                       |                                       |                                        |

(D'Ans and Siegler, Z phys Ch 1913, 82 37

Completely insol in boiling amyl alcoho (Browning, Sill Am J 143 314)

Solubility in organic solvents

| Solvent                                                                | % Ba(NO <sub>3</sub> ) <sub>2</sub> in the solution at 25° |
|------------------------------------------------------------------------|------------------------------------------------------------|
| Methyl alcohol<br>Ethyl alcohol<br>Acetone<br>Ether<br>Paracetaldehyde | 0 50<br>0 005<br>0 00;<br>very small                       |

(D'Ans and Siegler, Z phys Ch 1913, 82 44

Solubility in phenol + Aq at 25°

| Concentration of the phonol<br>Mol/Liter | Solubility of Bu(NO3)<br>Mol/Liter |
|------------------------------------------|------------------------------------|
| 0 000                                    | 0 3535                             |
| 0 045                                    | 0.3785                             |
| 0 082                                    | 0 3746                             |
| 0 146                                    | 0 3664                             |
| 0 310                                    | 0 3492                             |
| 0 401                                    | () 3400                            |
| 0 501                                    | () 3.299                           |
| 0 728 (sat)                              | 0 3098                             |
|                                          |                                    |

(Rothmund and Wilsmore, Z phys Ch 190 **40** 620 )

Insol in benzonitrile (Naumann, B 1914 **47** 1370)

Insol in methyl acetate (Naumann, F 1909, 42 3790), ethyl acetate (Naumanr B 1904, **37** 3602)

Insol in acetone (Krug and M'Elroy, Anal Ch 6 184)

Difficultly sol in acetone (Naumann, F 1904, **37** 4328)

Sol in acetone (Eidmann, C C 1899, I 1014)

Barium mercurous nitrate, 2BaO, 2Hg<sub>2</sub>O.  $3N_2O_5$ 

Decomp by H<sub>2</sub>O Sol in hot dil HNO<sub>8</sub>+ Aq and hot Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>+Aq, from which it crystallises on cooling (Stadeler, A 87 129)

Barium potassium nitrate, Ba(NO<sub>3</sub>)<sub>2</sub>, 2KNO<sub>3</sub> Ppt (Wallbridge, Am Ch J 1903, 30

154) Solubility determinations show that the only double salt formed by barum and potassium nitrates at 25° is Ba(NO<sub>3</sub>)<sub>2</sub>, 2KNO<sub>3</sub> See Ba(NO<sub>3</sub>)<sub>2</sub>+KNO<sub>3</sub> under Ba(NO<sub>3</sub>)<sub>2</sub>

(Foote, Am Ch J 1904, 32 252)

Barium nitrate metatungstate, 2Ba(NO<sub>3</sub>),  $BaW_4O_{18}+6H_2O$ 

Efflorescent Sol in warm H<sub>2</sub>O (Péchard, A ch (6) 22 198)

Bismuth nitrate, basic, Bi<sub>2</sub>O<sub>3</sub>, N<sub>2</sub>O<sub>5</sub>+2H<sub>2</sub>O

Sol in a large amount of H<sub>2</sub>O Sol in  $HNO_3+Aq$ (Heintz)

Sol in 135 pts  $H_2O$  at 90–93° (Ruge, J B **1862** 163)

 $+\frac{1}{2}H_{2}O$ Sol in much H<sub>2</sub>O (Yvon, CR 84 1161)

 $+\mathrm{H}_2\mathrm{O}$ 

(Ruge) N<sub>2</sub>O<sub>5</sub> Not acted upon by H<sub>2</sub>O 2B<sub>12</sub>O<sub>3</sub>, N<sub>2</sub>O<sub>5</sub> Not (Ditte, C R 84 1317)

 $+H_2O$  (Yvon)  $B_{12}O_3$ ,  $2N_2O_5+H_2O$  (Ruge)  $11B_{12}O_3$ ,  $5N_2O_5+16H_2O$  Not decomp by H<sub>2</sub>O (Yvon)

 $5B_{12}O_3$ ,  $4N_2O_5+8H_2O$  Ppt Not attacked by HO (Schulten, Bull Soc 1903, (3) 29 722)

Sol in H<sub>2</sub>O with  $5B_{12}O_3$ ,  $5N_2O_5+9H_2O$ 

(Schulten) decomp

 $6B_{12}O_{3}$ ,  $5N_{2}O_{5}+8H_{2}O$ , and  $+9H_{2}O$  (Rutten, Z anorg 1902, **30** 368)

At 25° the salt B<sub>11</sub>O<sub>13</sub>(NO<sub>3</sub>)<sub>10</sub>, 9H O is in equilibrium with HNO<sub>3</sub>+Aq from 0 03-0 32-N, the salt B<sub>10</sub>(NO<sub>3</sub>), H<sub>2</sub>O is in equilibrium with HNO<sub>3</sub>+Aq from 0 03-0 32-N, the salt B<sub>10</sub>(NO<sub>3</sub>), H<sub>2</sub>O is in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibrium with HNO<sub>3</sub>-N in equilibri

librium with HNO<sub>3</sub>+Aq from 0 425-0 72-N At 50° the salt B1<sub>2</sub>O<sub>5</sub>(NO<sub>3</sub>)<sub>2</sub>, H<sub>2</sub>O is in equilibrium with HNO<sub>3</sub>+Aq from 0 057-0.285-N, the salt  $B_{112}O_{13}(NO_3)_{10}$ ,  $9H_2O$  is in equilibrium with HNO<sub>3</sub>+Aq from 0 285-0 446-N

At 75° the salt  $B_{14}O_5(NO_3)_2$ ,  $H_2O$  is in equilibrium with HNO<sub>3</sub>+Aq from 0 109-0 314-N (Allan, Am Ch J 1901, 25 314)

### Bismuth nitrate, Bi(NO<sub>3</sub>)<sub>3</sub>

Permanent Decomp by little H<sub>2</sub>O with separation of a basic salt This decomposition is prevented by slight excess of HNO<sub>3</sub>, and then the salt is completely sol in a large amount of  $H_2O$  (Rose)

Sol in dil  $HNO_3+Aq$  Not decomp by  $H_2O$  in presence of  $HC_2H_3O_2$  or  $\frac{1}{100}$  pt

NH<sub>4</sub>NO<sub>3</sub> (Lowe, J pr 74 341) Completely sol in HNO3+Aq containing 83 g HNO<sub>3</sub> per liter (Ditte)

Solubility of B<sub>1</sub>(NO<sub>3</sub>)<sub>3</sub> in 2 3N-HNO<sub>3</sub>+Aq = 2.04 g at B<sub>1</sub> per l, in 0.922N-HNO<sub>3</sub>+Aq =223 g at Bi per l (Dubrisay, C R 1911, **153** 1077)

Insol in ethyl acetate (Naumann, B

1910, 43 314)

Insol in acetone (Krug and M'Elroy) Solubility of Bi(NO<sub>3</sub>)<sub>3</sub> in 6 67% acetone+ 2 3N-HNO<sub>3</sub>+Aq=1 89 g at B<sub>1</sub> per l, in 6 67% acetone+0 922N-HNO<sub>3</sub>+Aq=2 17 g at B<sub>1</sub> per l, in 13 33% acetone+0 922N-HNO<sub>3</sub>+Aq=2 08 g at B<sub>1</sub> per l (Dubrisay, C R 1911, 153 1077)

When B<sub>1</sub>(NO<sub>3</sub>)<sub>3</sub> is mixed with mannite (dulcite, sorbite) in proportion to the mol wts and H2O is added, a clear solution is obtained which is not pptd by addition of These solutions are more stable much H<sub>2</sub>O the greater the proportion of mannitol (Vanino and Hunser, Z anorg 1901, 28 211)

+1½H<sub>2</sub>O (Ditte) +5H<sub>2</sub>O If treated with increasing amts of H<sub>2</sub>O, the amt of B1 which dissolves decreases, and when 1 pt is treated with 50,000 pts HO, no Bi goes into solution (Antony and Gigli, Gazz ch it 1898, 28 245)

48 66 pts are sol in 100 pts acetone at  $0^{\circ}$  41 70 " " 100 " " " 19° (Laszczynski, B 1894, 27 2287)

(Yvon, C R 84 1161)  $+5\frac{1}{2}H_2O$ +10H<sub>2</sub>OMelts in crystal HO with decomp at 74° (Ordway)

Bismuth cæsium nitrate, Bi(NO<sub>3</sub>)<sub>3</sub>, 2CsNO<sub>3</sub> Ppt (Wells, Am Ch J 1901, 26 277)

Bismuth cobalt nitrate, 2Bi(NO<sub>3</sub>)<sub>3</sub>, 3Co(NO<sub>3</sub>) +24H O

100 cc sat solution in HNO<sub>3</sub>+Aq (sp gr 1 325) contain 54 67 g hydrated salt (Jantsch Z anorg 1912, **76** 321)

Bismuth magnesium nitrate, 2Bi(NO<sub>3</sub>)<sub>3</sub>,  $3Mg(NO_3) +24H O$ 

Effloresces in diy an Deliquescent Decomp by HO (Urbain and Lacombe, C R 1903, **137** 569) 100 cc sat solution in HNO<sub>8</sub>+Aq (sp gr 1 325) contain 41 69 g hydrated salt (Jantsch

Z anorg 1912, **76** 321)

Bismuth manganous nitrate, 2Bi(NO<sub>3</sub>)<sub>3</sub>, 3Mn(NO<sub>3</sub>),+24H O

Effloresces in dry Deliquescent Decomp by HO (Urbain and Lacombe, C R 1903, **137** 569)

100 cc sat solution in HNO<sub>3</sub>+Aq (sp gr 1 325) contain 65 77 g hydrated salt (Jantsch Z anorg 1912, 76 321)

Bismuth nickel nitrate, 2B1(NO<sub>3</sub>)<sub>3</sub>, 3N1(NO<sub>3</sub>)<sub>2</sub> +24H<sub>2</sub>OdryEffloresces in Deliquescent

(Urbain and Lacombe, Decomp by H<sub>2</sub>O

C R 1903, 37 569) 100 cc sat solution in HNO<sub>3</sub>+Aq (sp gr

1 325) contain 46 20 g hydrated salt at 16° (Jantsch)

Bismuth zinc nitrate, 2Bi(NO<sub>3</sub>)<sub>3</sub>, 3Zn(NO<sub>3</sub>)<sub>2</sub>+ 24H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Ur-Deliquescent bain and Lacombe, C R 1903, 137 569)

100 cc sat solution in HNO<sub>s</sub>+Aq (sp gr 1 325) contain 57 51 g hydrated salt at 16° (Jantsch)

Cadmium nitrate, basic, Cd(OH)NO<sub>8</sub>+H<sub>2</sub>O Decomp by H<sub>2</sub>O, or ordinary alcohol

(Klinger, B 16 997)  $12\bar{C}dO$ ,  $N_2O_5+11H_2O$ SI sol in  $H_2O$ , more sol in H2O than basic sulphate (Haber-

mann, 5 432 5 CdO, 2N<sub>2</sub>O<sub>5</sub>+8H<sub>2</sub>O Decomp by cold H<sub>2</sub>O (Rousseau and Tite, C R 114 1184)

Cadmium nitrate, Cd(NO<sub>3</sub>)<sub>2</sub>

Deliquescent, and very sol in H<sub>2</sub>O See +4, and 9H₂O

Sp gr of aqueous solution containing

25% Cd(NO<sub>3</sub>)<sub>2</sub>, 15 20 1 0528 1 0978 1 1516 1 2134 1 2842

(Franz, J pr (2) 5 274)

Sp gr of Cd(NO<sub>3</sub>)<sub>2</sub>+Aq at 18° % Cd(NO<sub>8</sub>)<sub>2</sub> 5 1 1 0069 Sp gr 1 0415 1 0869 1 136 % Cd(NO<sub>3</sub>)<sub>2</sub> 25 30 20 35 1 1903 1 25 1 3125 1 3802 Sp gr % Cd(NO<sub>3</sub>)<sub>2</sub> 40 45 48 Sp gr 1 459 1 543 1 5978

(Grotrian, W Ann 1883, 18 193)

Sp gr of Cd(NO<sub>3</sub>)<sub>2</sub>+Aq at room temp containing

22 36% Cd(NO<sub>3</sub>)<sub>2</sub> 781 15711 1593 124111 0744 (Wagner, W Ann 1883, 18 265)

Sp gr of  $Cd(NO_3)_2 + Aq$ 

Cd(NO<sub>3</sub>)<sub>2</sub> t Sp gr at to Sp gr at 18 0 0492 17 57 0 99912 0 99904 21 14 0 99839 0 100 18 00 0 99945 0 249 17 34 1 0008 1 0007 20 22 1 0002 0 464 18 00 1 0025 0 952 18 00 1 0065

(Wershofen, Z phys Ch 1890, 5 493)

| Sp | $\mathbf{gr}$ | of | Cd(NO <sub>3</sub> ) <sub>2</sub> +Aq at 25° |  |
|----|---------------|----|----------------------------------------------|--|
|    |               |    |                                              |  |

| Concentration of Cd(NOs)2+Aq      | Sp gr                                |
|-----------------------------------|--------------------------------------|
| 1-normal  1/2- "  1/4- "  1/16- " | 1 0954<br>1 0479<br>1 0249<br>1 0119 |

(Wagner, Z phys Ch 1890, 5 36)

Sp gr of  $Cd(NO_3)_2 + Aq$  at  $18^{\circ}/4^{\circ}$ 

% Cd(NO<sub>3</sub>)<sub>2</sub> Sp gr 43 716 30 84  $54\ 027$ 1 711 15151 32 % Cd(NO<sub>3</sub>)<sub>2</sub> Sp gr 8 68  $21\ 353$ 148991 204 1 134 104

(de Muynck, W Ann 1894, **53** 561)

 $Cd(NO_3)_2 + Aq containing 7 89\% Cd(NO_3)_2$ has sp gr  $20^{\circ}/20^{\circ} = 10673$ Cd(NO<sub>3</sub>)<sub>2</sub> + Aq cont containing

 $Cd(NO_3)_2$  has sp gr  $20^{\circ}/20^{\circ} = 1\ 1070$ (Le Blanc and Rohland, Z phys Ch 189

19 282 Sat Cd(NO<sub>3</sub>)<sub>2</sub>+Aq boils at 132°

Almost entirely insol in conc HNO<sub>3</sub>+A (Wurtz)

Moderately sol in liquid NH<sub>3</sub> Am Ch J 1898, **20** 827) Sol in alcohol

Sol in ethyl acetate (Naumann, B 190 **37** 3601)

Sol in acetone and in methylal mann, C C 1899, II 1014) +4H<sub>2</sub>O M-pt of Cd(NO<sub>3</sub>)<sub>2</sub>+4H<sub>2</sub>O 59 5° (Ordway, Tilden, Chem Soc **45** 409 Solubility in H<sub>2</sub>O

#### Solubility in H<sub>0</sub>O at t<sup>o</sup>

| t        | % Cd(NO1) in<br>the solution | Mols II () to<br>1 mol ( d(NO <sub>2</sub> ) |
|----------|------------------------------|----------------------------------------------|
| 0        | 52 31                        | 11 96                                        |
| 18       | 55 90                        | 10 34                                        |
| 30       | 58 40                        | 9 34                                         |
| 40       | 61 42                        | 9 24                                         |
| 59 5 mpt | 76 54                        | 4 00                                         |

(Funk, B 1899, 32 105)

Sat solution of  $Cd(N()_3) + 4II_2()$  in H contains 52 3% Cd(NO<sub>3</sub>) 55 9% Cd(NO<sub>3</sub>)<sub>2</sub> (Mvlius, Z inorg 191 74 411)

Sol in liquid NH<sub>a</sub> (Johnson and Wil more, Elektroch Z 1908, 14 227)

Sol in acetone (Naumann, B 1904, 3

Sol in ethyl acetate (Naumann, B 191 **43** 314)

+9H<sub>2</sub>OSolubility in H<sub>2</sub>O

Sat solution contains at

--13° --1° +1°  $37\ 37$ 47 33 52 73% Cd(NO<sub>3</sub>)<sub>2</sub>

(Funk, Cryohydrate is formed at —16° Z anorg 1899, 20 416)

The composition of the hydrates formed by  $Cd(NO_3)_2$  at different dilutions is calculated from determinations of the lowering of the fr -pt produced by Cd(NO<sub>3</sub>)<sub>2</sub> and of the conductivity and sp gr of Cd(NO<sub>3</sub>)<sub>2</sub>+Aq (Jones, Am Ch J 1905, **34** 308)

### Cadmium uranyl nitrate, Cd(NO<sub>3</sub>)<sub>2</sub>, $(UO_2)(NO_3)_2 + 30H_2O$

Sol in H<sub>2</sub>O and acids Insol in alcohol and alkalies+Aq (Lancien, C C 1912, I 208)

Cadmium nitrate ammonia, Cd(NO<sub>3</sub>), 6NH<sub>3</sub>  $+H_2O$ (André, C R 104 987)

Cadmium nitrate cupric oxide, Cd(NO<sub>3</sub>)<sub>2</sub>, CuO+5H<sub>2</sub>O

Ppt (Malhe, C R 1902, 134 235)

Cadium nitrate cupric oxide,  $Cd(NO_3)_2$ , 3CuO+5H<sub>2</sub>O (Mailhe, A ch 1902, (7) 27 383)

Cadmium nitrate hydrazine, Cd(NO<sub>3</sub>)<sub>2</sub>,  $3N_2H_4$ 

Decomp by hot H<sub>2</sub>O Sol in warm NH<sub>4</sub>OH (Franzen, Z anorg 1908, 60 282)

## Cæsium nitrate, CsNO<sub>3</sub>

100 pts H<sub>2</sub>O dissolve 10 58 pts CsNO<sub>3</sub> at Sl sol in absolute alcohol (Bunsen)

Solubility of CsNO<sub>3</sub> in H<sub>2</sub>O at t°

| t°                              |                                               | G CsNO <sub>3</sub><br>per 100 g             |                                      | G CsNO <sub>3</sub><br>per 100 g             |                                                   |
|---------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------------------|
| t-                              | Solu<br>tion                                  | Water                                        |                                      | Solu<br>tion                                 | Water                                             |
| 0<br>10<br>20<br>30<br>40<br>50 | 8 54<br>12 97<br>18 7<br>25 3<br>32 1<br>39 2 | 9 33<br>14 9<br>23 0<br>33 9<br>47 2<br>64 4 | 60<br>70<br>80<br>90<br>100<br>106 2 | 45 6<br>51 7<br>57 3<br>62 0<br>66 3<br>68 8 | 83 8<br>107 0<br>134 0<br>163 0<br>197 0<br>220 3 |

(Berkeley, Trans Roy Soc 1904, 203 A, 213)

100 g H₂O dissolve 26 945 g CsNO₃ at 25° (Haigh, J Am Chem Soc 1912, 34 1148)

Sp gr 20°/4° of a normal solution of CsNO<sub>3</sub> of a 05 normal solution =  $=1^{140905}$ (Haigh) 1 07001

Sol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4328) Solubility in glycol=8% at ord temp (de Coninck, Belg Acad Bull 1905, 359)

Cæsium hydrogen nitrate

CsNO<sub>3</sub>, HNO<sub>3</sub> Sol in H<sub>2</sub>O (Wells, Am Ch J 1901, 26 273) CsNO<sub>3</sub>, 2HNO<sub>3</sub> (W)

Cæsium cerium nitrate, Cs<sub>2</sub>Ce(NO<sub>3</sub>)<sub>6</sub>

Sol in H<sub>2</sub>O, very sl sol in HNO<sub>3</sub> (Meyer, Z anorg 1901, 27 371) Sol in HNO<sub>3</sub> (Meyer, B 1900, 33 2137)

Cæsium ferric nitrate, CsNO<sub>3</sub>, Fe(NO<sub>3</sub>)<sub>3</sub>+  $7H_2O$ 

Deliquescent (Wells, Am Ch J 1901, **26** 276)

Cæsium silver nitrate, CsNO<sub>2</sub>, AgNO<sub>3</sub>

(Russell and Maskelyne, Roy Sol in H<sub>2</sub>O Soc Proc 26 357)

Cæsium thorium nitrate, Cs<sub>2</sub>Th(NO<sub>3</sub>)<sub>6</sub> Decomp by H<sub>2</sub>O, sl sol in HNO<sub>3</sub> (Meyer, Z anorg 1901, 27 384)

Cæsium uranyl nitrate,  $Cs(UO)(NO_3)_3$ 

Decomp by H<sub>2</sub>O Sol in conc HNO<sub>2</sub>

(Meyer, B 1903, 36 4057)

Decomp by H<sub>2</sub>O at low temp, so that the solid phase in contact with the solution consists of the double salt and CsNO<sub>3</sub> At 16 1° 100 pts by wt of the solution in  $\rm H_2O$  contain 31 39 pts UO<sub>2</sub> and 6 59 pts Cs (Rimbach, B 1904, **37** 477)

Calcium nitrate, basic, Ca(NO<sub>3</sub>)<sub>2</sub>, CaO<sub>2</sub>H<sub>2</sub>+ 21⁄2H2O Decomp by H<sub>2</sub>O (Werner, A ch (6) 27

570) As above (Rousseau and Tite, +H<sub>2</sub>O As ab C R **114** 1184)

Calcium nitrate, Ca(NO<sub>3</sub>),

Deliquescent Very sol in H2O with evolution of much heat 100 pts  $H_2O$  at  $0^{\circ}$  dissolve 84.2 pts

 $Ca(NO_3)_2$ (Poggiale) H<sub>0</sub>O at 0° dissolve 931 pts 100 pts

(Mulder)  $Ca(NO_3)_2$ 

Sol in 0 25 pt cold H O with reduction of temp Sol in all proportions in boiling H O (Berzelius) Sol in 2 pts cold and 0 6667 pt boiling H O Sat Ca(NO<sub>3</sub>)<sub>2</sub>+Aq at 12 5° contains 33 8% (Has senfratz A ch 28 29)

Solubility in H<sub>2</sub>O 100 g of the solution contain at  $90^{\circ}$ 100° 80° 55° 78 43 g Ca(NO<sub>3</sub>),  $78\ 37$  $78\ 20$ 78 16

151° (bpt of sat solution at 147 5°  $125^{\circ}$ 760 mm)

78 80 79 00 g Ca(NO<sub>3</sub>)<sub>2</sub> 78 57

The anhydrous salt is the stable solid phase (Bassett and Taylor, Chem above 51 3° |Soc 1912, 101 580)

560 100 g sat Ca(NO<sub>3</sub>)<sub>2</sub>+Aq contain 773 g Ca(NO<sub>8</sub>)<sub>2</sub> at 25° (Taylor and Henderson, J Am Chem Soc 1915, 37 1692) See also +2, 3, and  $4H_2O$ Sp gr of Ca(NO<sub>8</sub>)<sub>2</sub>+Aq at room temp containing 40 13 % Ca(NO<sub>3</sub>)<sub>2</sub> 17 55 30 10 1 1714 1 2739 1.3857(Wagner, W Ann 1883, 18 270) Sp gr of Ca(NO<sub>3</sub>)<sub>2</sub>+Aq at 17 5° Ca(NOs)2 Ca(NO3)2 Sp gr Sp gr 35 1 328 1 1 009 1 045 40 1 385 5 1 447 10 1 086 45 50 1 515 15 129 20 1 174 55 1 588 25 222 1 666 1 60 30 1 272 (Franz, J pr (2) 5 274) Sp gr of Ca(NO<sub>3</sub>)<sub>2</sub>+Aq at 17 5° Ca(NO<sub>3</sub>)<sub>2</sub> Sp gr Ca(NO3)2 Sp gr 1 076 40 368 10 1 20 1 163 50 1 483 1 261 60 30 1 605 (Gerlach, Z anal 27 283) Sp gr of Ca(NO<sub>3</sub>)<sub>2</sub>+Aq at 18° Ca(NO<sub>3</sub>)<sub>2</sub> Ca(NO3) 2 Sp gr Sp gr 6251 0487 3546 12 5 1 1016 50 0 1 5102 25 0 1 2198 (Kohlrausch, W Ann 1879 1) Sp gr of Ca(NO<sub>3</sub>)<sub>2</sub>+Aq at 24 65° a = noof g ×½ mol wt dissolved in 1000 g  $H_2O$ , b = sp gr if a is  $Ca(NO_3)_2$ ,  $4H_2O$ ,  $\frac{1}{2}$  mol wt = 118, c = sp gr if a is  $\tilde{Ca}(NO_3)_2$ ,  $\frac{1}{2}$  mol wt = 82 b Я. h c c 1 056 1 1 059 6 1 243 1 286  $\frac{1}{2}$ 7 270 1 323 1 104 1 112 1 294 1 145 1 160 8 1 4 1 181 1 205 9 1 316 1 213 1 246 10 1 336 (Favre and Valson, C R 79 968) Sp gr of Ca(NO<sub>3</sub>)<sub>2</sub>+Aq at 25° Concentration of Ca(NO<sub>3</sub>) +Aq Sp gr

1-normal

"

"

(Wagner, Z phys Ch 1890, 5 36)

1/2

1/4

1 0596

1 0300

1 0151

1 0076

Sat  $Ca(NO_3)_2+Aq$  boils at 132° way, Sill Am J (2) **27** 14) (Ord-

Conc HNO<sub>3</sub> precipitates Ca(NO<sub>3</sub>)<sub>2</sub> from its aqueous solution (Mitscheilich, Pogg **18** 159)

Very sol in conc HNO<sub>3</sub> (Rawson, J

Soc Chem Ind 1897, 16 113)

| Solubility | ın | HNO <sub>8</sub> | +Aa | at | 259 |
|------------|----|------------------|-----|----|-----|
|------------|----|------------------|-----|----|-----|

| Solubility in HNO <sub>8</sub> +Aq at 25°                                                                                 |                                                                                                                                     |                                                                                                                                 |  |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| 100 g of the solut                                                                                                        | Salid - Las                                                                                                                         |                                                                                                                                 |  |
| G Ca(NO <sub>8</sub> ) <sub>2</sub>                                                                                       | G HNO <sub>3</sub>                                                                                                                  | Solid phase                                                                                                                     |  |
| 57 98<br>54 82<br>52 96<br>51 58<br>47 82<br>45 59<br>40 70<br>38 17<br>34 46<br>32 84<br>32 50<br>33 44<br>29 05         | 0 00<br>3 33<br>5 87<br>7 21<br>11 27<br>13 71<br>19 65<br>22 80<br>28 81<br>32 63<br>33 52<br>35 63<br>41 66                       | $\begin{cases} \text{Ca(NO}_{3})_{2} + 4\text{H}_{2}\text{O} \\ \\ \text{Ca(NO}_{3})_{2} + 3\text{H}_{2}\text{O} \end{cases}$   |  |
| 27 79<br>31 09<br>26 07<br>17 41<br>12 25<br>9 34<br>8 52<br>5 06<br>2 53<br>1 05<br>0 54<br>0 36<br>0 01 (about)<br>0 00 | 45 70<br>40 56<br>45 70<br>55 48<br>62 05<br>65 69<br>67 20<br>71 12<br>74 77<br>78 56<br>80 83<br>85 83<br>85 83<br>90 90<br>96 86 | $\begin{cases} \text{Ca}(\text{NO}_3)_2 + 2\text{H}_2\text{O} \\ \\ \text{Ca}(\text{NO}_3)_2 + 2\text{H}_2\text{O} \end{cases}$ |  |

These results show that the hydrates of  $Ca(NO_3)_2$  which are stable at 25° in contact with  $HNO_3+Aq$  are  $Ca(NO_3)_2+4H_2O$ ,  $+3H_2O$  and  $+2H_2O$  (Bassett and Taylor, Chem Soc 1912, 101 582)

Sol in glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Persoz) Sol in sat KNO<sub>3</sub>+Aq with elevation of temp and pptn of a portion of KNO<sub>3</sub> (Foureroy and Vauquelin, A ch 11 135)

Solubility of Ca(NO<sub>3</sub>)<sub>2</sub>+NaNO<sub>3</sub> at t°

| t° | %<br>Ca(NO₃)2                                               | %<br>NaNO3                                                 | Solid phase                                                                                        |
|----|-------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 9  | 47 51<br>46 08<br>26 67<br>11 76                            | 9 51<br>12 56<br>23 32<br>34 26                            | Ca(NO <sub>8</sub> ) <sub>2</sub> , 4H <sub>2</sub> O<br>" +NaNO <sub>8</sub><br>NaNO <sub>3</sub> |
| 25 | 54 58<br>53 22<br>52 73<br>52 40<br>37 31<br>26 91<br>14 61 | 7 25<br>10 70<br>12 08<br>11 58<br>19 48<br>24 98<br>36 12 | Ca(NO <sub>3</sub> ) <sub>2</sub> , 4H <sub>2</sub> O  " +NaNO <sub>3</sub> NaNO <sub>3</sub> "  " |

(Kremann and Rothmund, Z anorg 1914, 86 373)

Solubility of Ca(NO<sub>3</sub>)<sub>2</sub>+CaS<sub>2</sub>O<sub>3</sub> at t°

| _  |                                                            |                                                        |                                                                                                                                                                       |  |  |
|----|------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| t° | Ca(NO3)2                                                   | %<br>CaS•Os                                            | Solid phase                                                                                                                                                           |  |  |
| 9  | 46 02<br>45 68<br>27 92<br>10 49                           | 5 46<br>6 81<br>10 46<br>22 81<br>29 33                | Ca(NO <sub>3</sub> ) <sub>2</sub> , 4H <sub>2</sub> O<br>" CaS <sub>2</sub> O <sub>3</sub> , 6H <sub>2</sub> O<br>CaS <sub>2</sub> O <sub>3</sub> , 6H <sub>2</sub> O |  |  |
| 25 | 54 03<br>50 25<br>45 92<br>42 93<br>32 01<br>19 51<br>8 15 | 4 27<br>9 10<br>13<br>13 83<br>17 09<br>23 78<br>29 85 | Ca(NO <sub>3</sub> ) <sub>2</sub> , 4H <sub>2</sub> O "+CaS <sub>2</sub> O <sub>3</sub> , 6H <sub>2</sub> O CaS <sub>2</sub> O <sub>3</sub> , 6H <sub>2</sub> O " "   |  |  |

(Kremann and Rothmund, Z anorg 1914, 86 373)

Very easily sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 827)
Sol in 0.8 pt. alcohol (Macquer) 1 pt.

Sol in 08 pt alcohol (Macquer), 1 pt boiling alcohol (Bergmann)

Dry Ca(NO<sub>3</sub>)<sub>2</sub> is sol in 7 pts alcohol at 15° and 1 pt boiling alcohol (Bergmann)

Sp gr of Ca(NO<sub>8</sub>)<sub>2</sub>+alcohol

| % Ca(NO <sub>8</sub> ) <sub>2</sub> | Sp gr 20°/20° |
|-------------------------------------|---------------|
| 0                                   | 0 7949        |
| 4 96                                | 0 8278        |
| 6 47                                | 0 8383        |

(Le Blanc and Rohland, Z phys Ch 1896, 19 284)

## Solubility in ethyl alcohol+Aq at 25°

| % C H <sub>5</sub> OH in | % C <sub>2</sub> H OH in | % Ca(NO <sub>3</sub> ) <sub>2</sub> in |
|--------------------------|--------------------------|----------------------------------------|
| the solvent              | the solution             | the solution                           |
| *0                       | 0                        | 82 5                                   |
| *25 1                    | 5 8                      | 77 0                                   |
| *50 1                    | 15 2                     | 69 52                                  |
| *60 1                    | 20 4                     | 66 08                                  |
| *63 9                    | 22 4                     | 64 94                                  |
| 70 4                     | 26 5                     | 62 3                                   |
| 72 0                     | 27 39                    | 61 96                                  |
| 73 4                     | 28 5                     | 61 15                                  |
| 75 3                     | 29 9                     | 60 3                                   |
| *84 9                    | 35 9                     | 57 7                                   |
| *99 1                    | 48 1                     | 51 4                                   |

\* Metastable solutions

(D'Ans and Siegler, Z phys Ch 1913, 82 43)

### Solubility of Ca(NO<sub>8</sub>)<sub>2</sub>, 2C<sub>2</sub>H<sub>5</sub>OH in C<sub>2</sub>H<sub>5</sub>OH +Ag at 25°

| % C <sub>2</sub> H <sub>5</sub> OH in | % C <sub>2</sub> H <sub>5</sub> OH in | % Ca(NOs)2 in |  |
|---------------------------------------|---------------------------------------|---------------|--|
| the solvent                           | the solution                          | the solution  |  |
| 98 1                                  | 60 2                                  | 38 6          |  |
| 94 1                                  | 54 6                                  | 41 9          |  |
| 85 8                                  | 42 5                                  | 50 97         |  |
| 80 5                                  | 35 8                                  | 55 3          |  |
| 75 3                                  | 29 9                                  | 60 28         |  |

(D'Ans and Siegler, l c)

See also under +4H2O

### Solubility in organic solvents

| Solvent          | % Ca(NO3)2 in the<br>solution at 25° |
|------------------|--------------------------------------|
| Methyl alcohol   | 65 5                                 |
| Ethyl alcohol    | 52 0                                 |
| Propyl alcohol   | 36 5                                 |
| Isobutyl alcohol | 25 0                                 |
| Amyl alcohol     | 13 3                                 |
| Acetone          | 58 5                                 |

(D'Ans and Siegler, l c)

Sol in 187 pts ether-alcohol (1 1) (Fresenius, Z anal **32** 191)

Ether ppts Ca(NO<sub>3</sub>)<sub>2</sub> from its alcoholic lution Easily sol in boiling amyl alcohol (Browning, Sill Am J 143 53)

Sol in acetone (Naumann, B 1904, 37 **4328**)

Insol in benzonitrile (Naumann, B 1914, **47** 1370 )

Insol in methylal (Eidmann, C C 1899, II 1014)

1 g  $Ca(NO_3)_2$  is sol in 144 g methyl acetate at 18° Sp gr 18°/4° of sat solution =1313 (Naumann, B 1909, 42 3795)

Sol in ethyl acetate (Naumann, B 1910, **43** 314)

 $+2H_2O$ Solubility in H<sub>2</sub>O 100 g of the solution contain at

49° 51° 78 05 g Ca(NO<sub>3</sub>)<sub>2</sub>

Solutions in stable equilibrium with the dihydrate can only exist between the limits of temp 48 4° and 51 3° (Bassett and Taylor, Chem Soc 1912, 101 580)

+3H<sub>2</sub>O Solubility in H<sub>2</sub>O

100 g of the solution contain at 40° 45° 51° 50°

70 37 71 45 73 79 74 73 g Ca(NO<sub>3</sub>)<sub>2</sub> Mpt of  $Ca(NO_3)_2 + 3H_2O = 511^\circ$ 

(Bassett and Taylor, l c)

Ca(NO<sub>3</sub>)<sub>2</sub>+4H<sub>2</sub>O melts in its  $+4H_2O$ crystal H<sub>2</sub>O at 44° (Tilden, Chem Soc 45 **4**09)

Solubility in H<sub>2</sub>O at t°

100 g of the solution contain g Ca(NO, at to

| t°                                                                      | G Ca(NO <sub>3</sub> ) <sub>2</sub>                                                                                                                                        |   |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| -26 7 -10 0 0 0 +5 0 10 0 20 0 25 0 30 0 35 0 40 0 42 4 42 5 42 7 42 45 | 43 37<br>47 31<br>50 50<br>51 97<br>53 55<br>54 94<br>56 39<br>57 98<br>60 41<br>62 88<br>66 21<br>68 68<br>68 74<br>mpt of Ca(NO <sub>3</sub> ) <sub>2</sub> +4H<br>71 70 | ) |
|                                                                         |                                                                                                                                                                            | - |

(Bassett and Taylor, l c)

Solubility of  $\alpha$  and  $\beta$  modifications in H )

a modification is the stable form

| t°                                                                                                                    | in 100 g of<br>solution                                                                                                             | Solid phase                                                      |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 0<br>22 2<br>25 0<br>30 0<br>30 0<br>34 0<br>35 0<br>38 0<br>38 0<br>39 0<br>139 6<br>239 0<br>40 0<br>142 7<br>242 4 | 50 17<br>56 88<br>57 90<br>60 16<br>61 57<br>63 66<br>62 88<br>64 34<br>66 65<br>67 93<br>69 50<br>75 34<br>66 21<br>69 50<br>71 70 | α Ca(NO <sub>1</sub> ) +4H α α α α α β α α α β α α α β α α α α α |

1 mpt of hydrate

<sup>2</sup> reflex pt

(Taylor and Henderson, J Am Chem & c 1915, **37** 1692

Sp gr of solution sat at  $15^{\circ} = 1.548$ , c 1taining 54 8% Ca(NO<sub>3</sub>) (Mylius, B 18 7, **30** 1718)

| Solubility in ethyl alcohol+Aq at 25°                                             |                                                                                                 |                                                                                              | ۱ |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---|
| % C.H.OH in<br>the solvent                                                        | % C <sub>2</sub> H <sub>5</sub> OH in<br>the solution                                           | % Ca(NO <sub>3</sub> ) <sub>2</sub> in<br>the solution                                       | ١ |
| 0<br>18 3<br>39 2<br>59 2<br>80 4<br>90 4<br>99 4<br>99 4<br>60 1<br>60 1<br>60 1 | 0<br>3 5<br>8 1<br>14 1<br>22 3<br>29 4<br>31 1<br>31 2<br>29 5<br>28 3<br>27 8<br>27 3<br>26 5 | 57 5<br>56 1<br>55 2<br>52 9<br>50 2<br>49 0<br>49 7<br>52 0<br>56 2<br>58 9<br>60 0<br>62 3 |   |
|                                                                                   |                                                                                                 | 1                                                                                            | 1 |

(D'Ans and Siegler, Z phys Ch 1913, 82 42)

Calcium nitrate hydrazine,  $Ca(NO_3)_2$ ,  $2N_2H_4$ + $H_2O$ 

Ppt (Franzen, Z anorg 1908, 60 288)

Calcium nitrate tungstosilicate,  $Ca_2W_{12}SiO_{40}$ ,  $Ca(NO_3)_2$ 

 $+13 \rm{H}_2 \rm{O}$  and  $+15 \rm{H}_2 \rm{O}$  Decomp by  $\rm{H}_2 \rm{O}$  (Wyrouboff, Chem Soc 1897, 72 (2) 176)

#### Cerous nitrate, Ce(NO<sub>3</sub>)<sub>3</sub>+6H<sub>2</sub>O

Not very deliquescent (Jolin)

Very sol in H<sub>2</sub>O, sol in 2 pts alcohol (Vauquelin)

Sol in acetone (Eldmann, C C 1899 II 1014, Naumann, B 1904, 37 4328)

#### Ceric nitrate, Ce(NO<sub>3</sub>)<sub>4</sub>

Deliquescent Decomp by hot H<sub>2</sub>O (Berzelius)

Sol in alcohol (Dumas)

Basic compounds containing 12 mols or less CeO<sub>2</sub> to 1 mol N O<sub>5</sub> may be obtained, which are sol in H<sub>2</sub>O (Ordway)

Cerous cobaltous nutrate,  $2Ce(NO_3)_3$ ,  $3Co(NO_3)_2+24H_2O$ 

Deliquescent Lasily forms supersaturated

solutions (Lange, J pr 82 129) 1 l sat solution in HNO<sub>3</sub>+Aq (sp gr 1 325) contains 103 3 g hydrous salt at 16° (Jantsch, Z anorg 1912, 76 321)

Ceric cobaltous nitrate, CeCo(NO<sub>3</sub>)<sub>6</sub>+8II<sub>2</sub>O

Decomp by H<sub>2</sub>O when heated, sol in cold H<sub>2</sub>O, sl sol in HNO<sub>3</sub> (Meyer, Z anorg 1901, **27** 376)

Cerous magnesium nitrate,  $2\text{Ce}(NO_3)_3$ ,  $3\text{Mg}(NO_3)_2+24\text{H}_2\text{O}$ 

Slightly deliquescent Easily sol in H<sub>2</sub>O or alcohol, and easily forms supersaturated solutions (Holzmann, J pr 75 330)

1 l sat solution in HNO<sub>3</sub>+Aq (sp gr

1 l sat solution in HNO<sub>2</sub>+Aq (sp gr 1 325) contains 63 8 g hydrous salt at 16° (Jantsch, Z anorg 1912, **76** 321)

Ceric magnesium nitrate, CeMg(NO<sub>3</sub>)<sub>6</sub> +8H<sub>2</sub>O

Decomp by  $H_2O$ , sol in  $HNO_3+Aq$  without decomp (Meyer, Z anorg 1901, 27 373)

Cerous manganous nitrate, 2Ce(NO<sub>3</sub>)<sub>3</sub>, 3Mn(NO<sub>3</sub>)<sub>2</sub>+24H O

Sol in H<sub>2</sub>O (Lange, J pr 82 129) 1 l sat solution in HNO<sub>2</sub>+Aq (sp gr 1325) contains 193 l g hydrous salt at 16° (Jantsch)

Ceric manganous nitrate, CeMn(NO<sub>3</sub>)<sub>6</sub>+8H<sub>2</sub>O

Decomp by H<sub>2</sub>O and dil HNO<sub>3</sub>, sol in conc HNO<sub>3</sub> without decomp (Meyer, Z anorg 1901, **27** 377)

Cerous mickel mitrate,  $2\text{Ce}(\text{NO}_3)_3$ ,  $3\text{Ni}(\text{NO}_3)_2$ + $24\text{H}_2\text{O}$ 

Easily sol in H<sub>2</sub>O (Holzmann, J pr 75 321)

1 l sat solution in HNO<sub>3</sub>+Aq (sp gr 1 325) contains 80 3 g hydrous salt at 16° (Jantsch)

Ceric nickel nitrate, CeN1(NO<sub>3</sub>)<sub>6</sub>+8H O

Decomp by H<sub>2</sub>O when heated, sol in H O in the cold, sl sol in HNO<sub>3</sub> (Meyer, Z anorg 1901, **27** 375)

Cerous potassium nitrate,  $Ce(NO_3)_3$ ,  $2KNO_3 + 2H_2O$ 

Sol in H<sub>2</sub>O (Lange, J pr 82 136)

Ceric potassium nitrate, CeK (NO<sub>3</sub>)6

Sol in H<sub>2</sub>O with decomp (Meyer, Z anorg 1901, **27** 370) +11/H<sub>2</sub>O Efflorescent (Holzmann, J

pr **75** 324)

Ceric rubidium nitrate, CeRu, (NO<sub>3</sub>), Very sol in HO, sl sol in HNO<sub>3</sub> (Meyer)

#### Ceric sodium nitrate

Deliquescent Decomp by recrystallization (Holzmann)

Cerous thallous nitrate, [Ce(NO<sub>3</sub>)<sub>5</sub>]Tl + 4H O

Very hydroscopic Decomp by H<sub>2</sub>O (Jantsch, Z anorg 1911, **69** 229)

Cerous zinc nitrate, 2Ce(NO<sub>3</sub>)<sub>3</sub>, 3Zn(NO<sub>3</sub>) + 24H<sub>2</sub>O

Sol in HO Easily forms supersat solu-

tions (Lange, J pr 82 129) 1 l sat solution in HNO<sub>3</sub>+Aq (sp gr 1 325) contains 124 l g hydrous salt at 16° (Jantsch, Z anorg 1912, 76 321)

Ceric zinc nitrate, ZnCe(NO<sub>3</sub>)<sub>6</sub>+8H O

Decomp by H<sub>2</sub>O, sol in HNO<sub>3</sub>+Aq (Meyer, Z anorg 1901, **27** 374)

564 Sp gr of Co(NO<sub>3</sub>)<sub>2</sub>+Aq at 25° Ceroceric zinc nitrate (?), Ce<sub>8</sub>O<sub>4</sub>, 2ZnO,  $6N_2O_5 + 18H_2O$  (?) Concentration of Sp gr Easily sol in H<sub>2</sub>O (Holzmann, J pr 75 Co(NO3)2+Aq 321) 1 0728 1-normal Chromic nitrate, basic, Cr<sub>2</sub>O(NO<sub>3</sub>)<sub>4</sub> 1/2-1 0369 " 1/4-1 0184 Sol in H<sub>2</sub>O (Lowel) " 1/8-1 0094 +12H<sub>2</sub>O Sol in H<sub>2</sub>O (Ordway) Chromic nitrate, Cr(NO<sub>8</sub>)<sub>8</sub>+9H<sub>2</sub>O (Wagner, Z phys Ch 1890, 5 37) Very sol in H<sub>2</sub>O and alcohol (Lowel) Melts in its crystal H2O at 365° Sat Sp gr at 20° of Co(NO<sub>3</sub>)<sub>2</sub>+Aq containing Cr(NO<sub>3</sub>)<sub>3</sub>+Aq boils at 125 6° (Ordway) Mg mols Co(NO<sub>3</sub>)<sub>2</sub> per liter Sp gr of Cr(NO<sub>8</sub>)<sub>8</sub>+Aq 0.010.0250.050 075 M = concentration of solution in gram Sp gr 1 001496 1 003863 1 007579 1 011289 W=wt of 25 cc of solution M 0 0934 0 1868 0 3736 0 5604 М 0 10 0 25 0 75 0 9340 Sp gr 1015084 103737 1 07415 W 25 4300 25 8828 26 7302 27 5524 29 3072 1 8680 1 1208 1 3076 1 4944 W 30 0668 30 8464 31 6327 33 3379 Sp gr 1 14612 1 21720 1 28576 (Jones and Getman, Z phys Ch 1904, 49 (Jones and Pearce, Am Ch J 1907, 38 715) 426) Sol in liquid NH<sub>3</sub> (Guntz, Bull Soc (Naumann, B 1904, 37 Sol m acetone 1909 (4) 5 1009) 4328, Eidmann, C C 1899, II 1014) 100 g sat solution in glycol contains 80 g  $Co(NO_3)_2$ (de Coninck, C C 1905, II 883 Chromic nitrate chloride, CrCl<sub>2</sub>(NO<sub>3</sub>) Sol in ethyl acetate (Naumann, B 1904 Sol in H<sub>2</sub>O and alcohol (Schiff, A 124 **37** 3601) 177) +3H<sub>2</sub>Ó Solubility in H<sub>2</sub>O Cr(NO<sub>8</sub>)<sub>2</sub>Cl (Schiff) Sat solution contains at 62° 70° 84° 91° mpt Chromic nitrate sulphate,  $Cr_2(SO_4)(NO_8)_4$ 61 74 62 88 64 89 68 84 77 21% Co(NO<sub>2</sub>)<sub>2</sub> Hygroscopic Completely sol in H<sub>2</sub>O  $Cr_2(SO_4)_2(NO_8)_2$  Sol in  $H_2O$  (Schiff, A (Funk, Z anorg 1899, 20 403) **124** 174)  $+6 H_2 O$  Melts in its crystil H O it 56' (Ordway), 38° (Tilden) Cobaltous nitrate, basic, 6CoO, N<sub>2</sub>O<sub>5</sub>+5H<sub>2</sub>O Solubility in H<sub>2</sub>O Ppt Gradually sol in H<sub>2</sub>O with deposition of CoO (Winkelblech, A 13 155) Sat solution contains at Sol in cold HCl, and HNO<sub>3</sub>+Aq -21° -10° -4° comp by hot KOH+Aq 41 55 43 69 44 85 45 66 % Co(NO<sub>3</sub>), 4CoO,  $N_2\text{O}_5+6\text{H}_2\text{O}$  Ppt (Habermann, M 5 432) +18° 41° 56° mpt 4973 $55 \ 96$ 62 88% Co(NO<sub>3</sub>) Cobaltous nitrate, Co(NO<sub>3</sub>)<sub>2</sub> Deliquescent in moist air (Funk, Z anorg 1599, 20 408) Very sol in  $H_2O$ See +3, 6, and 9H<sub>2</sub>O Moderately sol in liquid NII<sub>3</sub> (Fi inklin Am Ch J 1898, 20 827)
Easily sol in alcohol Sol in 1 pt stron alcohol at 12 5° (Wenzel) Sp gr of aqueous solution at 175° containing 20% Co(NO<sub>3</sub>)<sub>2</sub>, Easily sol in acctone (King and M'Elroy 1 0462 1 0906 1 1378 1.1936J Anal Ch 6 184) 40% Co(NO<sub>3</sub>)<sub>2</sub> Sol in methyl acctate (Numunn, E 30 35 1909, **42** 3790) 1 2538 1 3190 1 3896 1 4662 Difficultly sol in ethyl acctite (Nau Sp gr of sat solution = 15382mann, B 1910, 43 314) (Franz, J pr (2) 5 274)  $+9H_2O$ Solubility in H<sub>2</sub>O Sat solution contains at Sp gr of Co(NO<sub>3</sub>)<sub>2</sub>+Aq at room temp containing ---26° -23 5° --20 5° 8 28 15 96 24 528% Co(NO<sub>3</sub>)<sub>2</sub> 39 45 40 40 42 77% Co(NO<sub>3</sub>)<sub>2</sub> 1 0732 1 1436 1 2288 Cryohydrate is formed at -29° (Wagner, W Ann 1883, 18 268) Z anorg 1899, 20 409)

Cobaltous didymium nitrate,  $3\text{Co(NO}_3)_2$ ,  $2\text{Di(NO}_3)_3 + 48\text{H}_2\text{O}$ 

Very deliquescent (Frenchs and Smith, A 191 331)

Cobaltous gadolinium nitrate,  $3\text{Co(NO}_3)_2$ ,  $2\text{Gd(NO}_3)_3+24\text{H}_2\text{O}$ 

1~l sat solution in HNO  $_3$  (sp gr 1~325) contains 451~4~g hydrous salt at  $16^{\circ}$  (Jantsch, Z anorg 1912, 76~303)

Cobaltous lanthanum nitrate,  $3\text{Co}(\text{NO}_3)_2$ ,  $2\text{La}(\text{NO}_3)_3 + 24\text{H}_2\text{O}$ 

1 l sat solution in  $\rm HNO_3+Aq$  (sp gr 1 325) contains 109 2 g hydrous salt at 16° (Jantsch, Z anorg 1912, 76 303)

Cobaltous neodymum nitrate,  $3\text{Co(NO_8)_2}$ ,  $2\text{Na(NO_3)_3} + 24\text{H}_2\text{O}$ 

1 l sat solution in  $\rm HNO_3+Aq$  (sp gr 1 325) contains 151 6 hydrous salt at 16° (Jantsch )

Cobaltous praseodymium nitrate, 3Co(NO<sub>3</sub>)<sub>2</sub>, 2Pr(NO<sub>3</sub>)<sub>3</sub>+24H<sub>2</sub>O

1 l sat solution in  $\rm HNO_3+Aq$  (sp gr 1 325) contains 12 99 g hydrous salt at 16° (Jantsch )

Cobaltous samarium nitrate,  $3\text{Co}(\text{NO}_3)_2$ ,  $2\text{Sm}(\text{NO}_3)_3+24\text{H}_2\text{O}$ 

1 I sat solution in HNO<sub>3</sub>+Aq (sp gr 1 325) contains 34 27 g hydrous salt at 16° (Jantsch)

Cobaltous thorium nitrate, CoTh(NO<sub>3</sub>)<sub>6</sub>+8H<sub>2</sub>O

Hydroscopic, sol in HNO<sub>3</sub>+Aq (Meyer, Z anorg 1901, **27** 387)

Cobaltous nitrate ammonia, Co(NO<sub>3</sub>)<sub>2</sub>, 6NH<sub>3</sub> +2H<sub>2</sub>O

Decomp by H<sub>2</sub>O with separation of basic nitrate (Fremy)
Sol in NH<sub>4</sub>OH+Aq (Hess)

Cobaltous nutrate cupric oxide, Co(NO<sub>3</sub>), 3CuO+3H<sub>2</sub>O

Ppt (Mailhe, C R 1902, **134** 234)

Cobaltous nitrate hydrazine,  $Co(NO_8)_2$ ,  $3N_2H_4$ 

Decomp by hot H<sub>2</sub>O (Franzen, Z anorg, 1908, 60 274)

Cupric nitrate, basic, 2CuO, N<sub>2</sub>O<sub>5</sub>

(Ditte, A ch 1879, (5) 18 339)  $_{4}$ CuO,  $N_{2}O_{5}+3H_{2}O$  Insol in  $H_{2}O$  Easily sol in acids (Graham, A 29 13) Insol in  $H_{2}O$ , easily sol in acids (Athan asesco, Bull Soc 1895, (3) 11 1113)

+3½H<sub>2</sub>O Insol in H<sub>2</sub>O, and decomp by heat (Casselman, Z anal 4 24)

Cupric nitrate, Cu(NO<sub>3</sub>)<sub>2</sub>

Deliquescent Very easily sol in H<sub>2</sub>O or alcohol, also in moderately cone HNO<sub>3</sub>+Aq, but is precipitated from cone aqueous solution by HNO<sub>3</sub>+Aq of 1 522 sp gr (Mitscherlich, Pogg 18 159)

Sat Cu(NO<sub>3</sub>)<sub>2</sub>+Aq contains at -10° -3° +3° 38 8 41 6 44 5% Cu(NO<sub>3</sub>)<sub>2</sub>, 8° 20° 32° 48 5 54 1 61 2% Cu(NO<sub>3</sub>)<sub>2</sub>

(Étard, A ch 1894, (7) **2** 528)

See +3, 6, and 9H<sub>2</sub>O

Sp gr of Cu(NO<sub>3</sub>),+Aq at 17 5° containing 5 15% anhydrous salt, 10 1 0452 1 0942 1 1442 25 30% anhydrous salt, 20 1 3298 1 2036 1 2644 45% anhydrous salt 35 40 1 4724 1 5576 1 3974 (B Franz, J pr (2) 5 274)

Sp gr of Cu(NO<sub>3</sub>)<sub>2</sub>+Aq at 15°

| Sp gr or Ou(14                                    | 03/2   114 40 10                                   |
|---------------------------------------------------|----------------------------------------------------|
| % Cu(NO3)2                                        | Sp gr                                              |
| 5 22<br>10 44<br>15 67<br>20 85<br>26 12<br>35 00 | 1 046<br>1 094<br>1 146<br>1 202<br>1 262<br>1 377 |

(Long, W Ann 1880, 11 39)

Sp gr of Cu(NO<sub>3</sub>),+Aq at room temp containing

18 99 26 68 46 71% Cu(NO<sub>3</sub>). 1 1774 1 2637 1 5363 (Wagner, W Ann 1883, **18** 272)

Sp gr of Cu(NO<sub>3</sub>) +Aq at 25°

| Sp gi oi Ou(140                           | 8) 1229 00 20                        |
|-------------------------------------------|--------------------------------------|
| Concentration of Cu(NO <sub>3</sub> ) +Aq | Sp gr                                |
| 1-normal  1/2- "  1/4- "  1/8- "          | 1 0755<br>1 0372<br>1 0185<br>1 0092 |
|                                           |                                      |

(Wagner, Z phys Ch 1890, 5 38)

Sp gr of Cu(NO<sub>3</sub>) + Aq at 12 5° 10 5 % Ĉu(NO3) 1 1 0916 1 0320 1 0655 1 0059 Sp gr 30  $\% \text{ Cu(NO}_3)_2 20$ Sp gr 1 1350 127121 1716 1 2320 Sp gr % Cu(NO<sub>3</sub>)<sub>2</sub> 40 152051 4440 1 3320 13749Śp gr (Hassenfratz, Muspratt, 1893, 4 2243)

Sp gr at 20° of Cu(NO<sub>8</sub>)<sub>2</sub>+Aq containing M g mols salt per liter 0.0250.050 075  $\mathbf{M}$ 0.01Sp gr 1 001504 1 004076 1 007859 1 011715

075 0.9350 50 0.25Sp gr 1 040290 1 07723 1 11469 1 14262

20 gr 15 1 22618 1 29262

1879 (5) **18** 339)

(Jones and Pearce, Am Ch J 1917, 38 719)

Sat Cu(NO<sub>3</sub>)<sub>2</sub>+Aq boils at about 173° (Griffiths) Insol in fuming HNO<sub>8</sub> (Ditte, A ch

Solubility of  $Cu(NO_3)_2+Pb(NO_3)_2$  in  $H_2O$ at 20°

|                                                                               | In 1 l of solution                                                           |                                                                               |                                                                           |                                                                               |                                                                                                 |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Sp gr                                                                         | Cu(                                                                          | (sO <i>V</i>                                                                  | Pb(                                                                       | NO3) 2                                                                        | Solid phase                                                                                     |
|                                                                               | g                                                                            | g mol                                                                         | g                                                                         | g mol                                                                         |                                                                                                 |
| 1 354<br>1 322<br>1 321<br>1 343<br>1 360<br>1 451<br>1 546<br>1 622<br>1 700 | 70 5<br>139 2<br>226 p<br>301 8<br>341 8<br>519 4<br>681 7<br>798 1<br>943 2 | 0 375<br>0 742<br>1 207<br>1 608<br>1 821<br>2 767<br>3 632<br>4 252<br>5 028 | 359 5<br>257 2<br>175 1<br>133 4<br>117 8<br>70 5<br>44 0<br>28 1<br>17 2 | 1 086<br>0 777<br>0 529<br>0 403<br>0 356<br>0 213<br>0 133<br>0 085<br>0 052 | Pb(NO <sub>3</sub> ) <sub>2</sub> Pb(NO <sub>3</sub> ) + Cu(NO <sub>3</sub> ) 6H <sub>2</sub> O |

(Fedotieff, Z anorg 1911, 73 178)

Very sol in liquid NH<sub>3</sub> (Guntz, Bull Soc 1909, (4) 5 1007)

Easily sol in liquid NH<sub>3</sub> (Franklin, Am

Ch J 1898, **20** 827

Insol in liquid HF (Franklin, Z anorg 1905, 46 2)

Insol in ethyl acetate (Naumann, B

1910, **43** 314) Sl sol in benzomtrile 1914, **47** 1369) (Naumann, B

+3H<sub>2</sub>O Melts in crystal H O at 1145° (Ordway, Tilden, Chem Soc 45 409)

Solubility in H<sub>2</sub>O

Sat solution contains at

 $25^{\circ}$ 40° 30° 50°  $60\ 01$ 60 44  $61\ 51$ 62 62% Cu(NO<sub>3</sub>)<sub>2</sub>,

60° 70° 80° 114 5° Mpt  $64\ 17$ 6579 $67\ 51$ 77 59% Cu(NO<sub>8</sub>)<sub>2</sub> (Funk, Z anoig 1899, 20 413)

100 pts HNO<sub>3</sub> dissolve 2 pts at 13°, considerably more on heating (Ditte, A ch 1879, (5) 18 339)

Sol in 1 pt strong alcohol at 12 5° (Wen-

Insol in methyl acetate (Naumann, B 1909, **42** 3790)

 $+6\mathrm{H}_2\mathrm{O}$ Efflorescent Melts in crystal

H<sub>2</sub>O at 38° (Ordway) Solubility in H<sub>2</sub>O Sat solution contains at

o°  $+10^{\circ}$ -21° ---10° 48 79 % Cu(NO<sub>8</sub>)<sub>2</sub>, 39 52 42 08 45 00

18°  $20^{\circ}$ 26 4° mpt 63 39% Cu(NO<sub>3</sub>)<sub>2</sub> 53 86 55 58 (Funk, Z anorg 1899, 20 413)

Sat solution of Cu(NO<sub>3</sub>)<sub>2</sub>+6H<sub>2</sub>O in H<sub>2</sub>O at 20° contains 5 04 g mol per l Sp gr of (Fedotieff, Z anorg sat solution = 1688 1911, 73 78)

Sat solution of Cu(NO<sub>3</sub>)<sub>2</sub>+6H<sub>2</sub>O in H<sub>2</sub>O contains 450 g Cu(NO<sub>3</sub>)<sub>2</sub> in 100 g solution at 0°, 53 9 g at 18° (Mylius, Z anorg 1912.

**74** 411) +9H<sub>2</sub>O

Solubility in H<sub>2</sub>O

Sat solution contains at -23° -21° ---20°

36 08 37 38 40 92% Cu(NO<sub>3</sub>)<sub>2</sub>

Cryohydrate is formed at —24° Z anorg 1899, 20, 414

Cupric nitrate ammonia (Cuprammonium nitrate), Cu(NO<sub>3</sub>)<sub>2</sub>, 4NH<sub>3</sub>

Easily sol in HO, from which it can be recrystallized Sol in alcohol (Berzelius) Sol in 1 pt liquid NH<sub>3</sub> (Hoin, Am Ch

J 1908, **39** 216) Cu(NO<sub>3</sub>)<sub>2</sub>, 5N (Horn, Am Ch J  $5NH_3$ 1907, 37 620 )

4Cu(NO<sub>3</sub>)<sub>2</sub>, 23NH<sub>3</sub> (Horn)

Cupric nitrate hydrazine, Cu(N()<sub>3</sub>), N H<sub>4</sub> Decomp by HO (Hofm un and Marburg, A 1899, **305** 221)

Cupric nitrate mercuric oxide, (u(NO<sub>3</sub>),  $HgO + 3II_2()$ 

Sol in HCl, HNO3 and H SO4 (I mzi, Gazz ch it 1913, 43 (2) 7(9)

Didymium nitrate, basic, 4Di(0), 3N(0)<sub>5</sub>+ 15H<sub>2</sub>O

Insol in  $H_2()$  (Mulishic) 2D<sub>12</sub>O<sub>3</sub>, 3N O<sub>5</sub> (Becquerel A ch (6) 14 257)

Didymium nitrate,  $D_1(N()_3)_3$ 

Anhydrous Very sol in II() As sol in 96% alcohol as in HO, and the solution is not precipitated by much ether Insol in pure ether (Marignac, A ch (3) 36 161)

Moderately sol in liquid NII<sub>3</sub> (Franklin,

Am Ch J 1898, 20 827)

Sol in acetone (Naumann, B 1904, 37 4328, Eidmann, C C 1899, II 1014) +6H<sub>2</sub>O Very deliquescent (Cleve, Bull

Soc (2) 43 361)

Didymium nickel nitrate,  $2D_1(NO_3)_3$ ,  $3N_1(NO_3)_2+36H_2O$ 

Very deliquescent (Frenchs and Smith, A 191 355)

See Neodymium and praseodymium

Didymium zinc nitrate,  $2D_1(NO_3)_3$ ,  $3Z_n(NO_3)_2$ +69H<sub>2</sub>O

Very deliquescent (F and S) See Neodymum and praseodymum

Dysprosium nitrate, Dy(NO<sub>3</sub>)+5H<sub>2</sub>O Very sol m H<sub>2</sub>O, less sol m H<sub>2</sub>O+HNO<sub>3</sub> Sol m alcohol (Urbain, C R 1908, 146 129)

Erbium nitrate, basic,  $2Er_2O_s$ ,  $3N_2O_5+9H_2O$ Decomp by  $H_2O$  Sl sol in  $HNO_3$ (Bahr and Bunsen)  $3Er_2O_3$ ,  $4N_2O_5+20H_2O$  (Cleve, Bull Soc (2) 21 344)

Erbium nitrate,  $Er(NO_3)_3+6H_2O$ 

Easily sol in H<sub>2</sub>O, alcohol, and ether (Hoglund) Sol in acetone (Naumann, B 1904, **37** 4328)

Gadolinium nitrate,  $Gd(NO_3)_3+61/2H_2O$ Sol in  $H_2O$  (Benedicks, Z anorg 1900, 22 406) +5H O Sol in  $HNO_3$  (B)

Gadolmium magnesium nitrate,  $2Gd(NO_8)_3$ ,  $3Mg(NO_3)_2+24H_2O$ 

1 l sat solution in  $\rm HNO_3+Aq$  (sp gr 1 325) contums 352 3 g hydrous salt at 16° (Jantsch, Z anorg 1912, 76 303)

Gadolinium nickel nitrate,  $2Gd(NO_8)_3$ ,  $3N_1(NO_3)_2+24H_2O$ 

1 l sat solution in  $HNO_3+Aq$  (sp gr 1 325) contains 400 8 g hydrous salt at 16° (Jantsch )

Gadolinium zinc nitrate,  $2Gd(NO_8)_8$ ,  $3Zn(NO_3)_2+24H_2O$ 

 $1~l~sat~solution~in~HNO_{\rm s}+Aq~(sp~gr~1~325)~contains~472~7~g~hydrous~salt~at~16° (Jantsch~)$ 

Gallium nitrate, Ga(NO<sub>3</sub>)<sub>3</sub> Very deliquescent, and sol in H<sub>2</sub>O (Dupré)

Glucinum nitrate, basic, 2GlO, N<sub>2</sub>O<sub>5</sub>+
3H<sub>2</sub>O<sub>2</sub>(?)

Sol in  $H_2O$ 3GlO,  $N_2O_5$  Sol in  $H_2O$  (Ordway, Sill Am J (2) **26** 205)

Compounds more basic than this are insolin  $H_2O$  (Ordway)

Glucinum nitrate, Gl(NO<sub>3</sub>)<sub>2</sub>+3H<sub>2</sub>O Very deliquescent (Joy, Sill Am J (2)

36 90)
Easily sol in H<sub>2</sub>O and alcohol (Vauquelin)
Melts in its crystal H<sub>2</sub>O at 29 4° (Ord-

Sat  $Gl(NO_3)_2+Aq$  boils at 140 5° (Ordway)

Gold (auric) nitrate, basic,  $Au_2O_3$ ,  $N_2O_5+\frac{2}{5}H_2O$ , or Auryl nitrate, (AuO)NO<sub>3</sub>+ $\frac{1}{6}H_2O$ 

(Schottlander, A 217 364)

 $2Au_2O_3$ ,  $N_2O_5+2H$   $O=Au_4O_5(NO_3)_2+2H_2O$  Slowly sol m  $HNO_3+Aq$  at 100°, (Schottlander, A 217 356)

Gold (auric) intrate, Au(NO<sub>3</sub>)<sub>3</sub>+xH O
Decomp by H<sub>2</sub>O Sol in acetone (Hannot and Raoult, C R 1912, **155** 1086)

Gold (auric) hydrogen intrate, Au(NO<sub>3</sub>)<sub>3</sub>, HNO<sub>3</sub>+3H<sub>2</sub>O

Decomp by  $H_2O$  Sol in  $HNO_3+Aq$  (Schottlander, A 217 356)

Gold (auric) potassium nitrate, KAu(NO<sub>3</sub>)<sub>4</sub>
Easily sol in H<sub>2</sub>O
HK Au(NO<sub>3</sub>)<sub>5</sub> Decomp immediately by

 $H_2O$   $2KAu(NO_3)_4$ ,  $K_5HAu(NO_3)_6$  (Schottlander, J B **1884** 453)

Gold (auric) rubidium nitrate, RbAu(NO<sub>8</sub>)<sub>4</sub>
Easily sol in H O
HRb<sub>2</sub>Au(NO<sub>3</sub>)<sub>6</sub> As above (Schottlander)

Gold (auric) thallium nitrate, TlAu(NO<sub>3</sub>)<sub>4</sub>
Easily sol in H<sub>2</sub>O

6Au O<sub>3</sub>, 2Tl O<sub>3</sub>, 3N<sub>2</sub>O<sub>5</sub>+15H O Ppt (Schottlander)

Indium nitrate, In(NO<sub>8</sub>)<sub>3</sub>+4½H O

Very deliquescent Easily sol in H<sub>2</sub>O and absolute alcohol (Winkler)
+1½H O

Iron (ferrous) nitrate, Fe(NO<sub>3</sub>) +6H<sub>2</sub>O

100 pts of crystals dissolve in 50 pts H O at 0°, sp gr of solution = 1 44, 40 8 pts  $H_2O$  at 15°, sp gr of solution = 1 48, 33 3 pts  $H_2O$  at 25°, sp gr of solution = 1 50 (Ordway, Sill Am J (2) 40 325)

Sat solution contains at

-9° 0° +18° 24° 60 5° Mpt 39 68 41 53 45 14 46 51 62 50% Fe(NO<sub>3</sub>)<sub>2</sub> (Funk, Z anorg 1899, **20** 406)

Sat solution of Fe(NO<sub>3</sub>)<sub>2</sub>+6H O in H<sub>2</sub>O contains 41 5% Fe(NO<sub>3</sub>) at 0°, 45 1% at 18° (Mylius, Z anorg 1912, **74** 411)

+9H<sub>2</sub>O Solubility in H<sub>2</sub>O Sat solution contains at

-27° --21 5° -19° -15 5°

37 17% Fe(NO<sub>3</sub>)<sub>2</sub> 36 10 36 56 35 66

Cryohydrate is formed at -28°

Z anorg 1899, 20 407) Fe(NO<sub>3</sub>)<sub>2</sub>+Aq decomposes on heating, less rapidly when dil, more readily in presence of excess of acid (Ordway)

Iron (ferric) nitrate, basic, 36Fe<sub>2</sub>O<sub>8</sub>, N<sub>2</sub>O<sub>5</sub>+ 48H<sub>2</sub>O (?)

Easily sol in H<sub>2</sub>O Sl sol in dil HNO<sub>8</sub>+ Aq, very sl sol in alcohol (Hausmann, A 89 111)

 $8Fe_2O_3$ ,  $N_2O_5+12H_2O$  Sl sol in  $H_2O_5$ very sl sol in cold or warm dil HNO2+ Aq, more easily sol in hot HCl+Aq (Hausmann )

 $+xH_2O$  Sol in  $H_2O$ , completely pptd from aqueous solution by NaCl, NH<sub>4</sub>Cl, KI, KClO<sub>3</sub>, Na<sub>2</sub>SO<sub>4</sub>, CaSO<sub>4</sub>, ZnSO<sub>4</sub>, CuSO<sub>4</sub>, KNO<sub>3</sub> NaNO<sub>3</sub>, Ba(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub>, or Zn(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub>+Aq More slowly pptd by NH<sub>4</sub>NO<sub>3</sub>, Mg(NO<sub>3</sub>)<sub>2</sub>, Ba(NO<sub>3</sub>)<sub>2</sub>, or Pb(NO<sub>3</sub>)<sub>2</sub>+Aq Not pptd by alcohol, Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub>, Cu(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub>, Hg(CN)<sub>3</sub>, ANO<sub>3</sub> Cast And Condenses Sulfar AgNO<sub>3</sub>, or As<sub>2</sub>O<sub>3</sub>+Aq (Ordway, Sill Am J (2) 9 30)

 $4\text{Fe}_2\text{O}_3$ ,  $N_2\text{O}_5 + 1\frac{1}{2}\text{H}_2\text{O}$ Easily sol in H<sub>2</sub>O, sl sol in dil HNO<sub>3</sub>+Aq, and in alcohol (Hausmann)

+3H<sub>2</sub>O Insol in H<sub>2</sub>O or HNO<sub>3</sub>+Aq, sol m HCl+Aq (Scheurer-Kestner, C R 87 927)

 $+9\mathrm{H}_2\mathrm{O}$ Not deliquescent, easily sol in

H<sub>2</sub>O (Ordway)

 $3Fe_2O_3$ ,  $N_2O_5+2H_2O_5$ Insol ın H<sub>2</sub>O (Scheurer-Kestner)

 $2\text{Fe}_2\text{O}_3$ ,  $N_2\text{O}_5 + H_2\text{O}$ Decomp by H<sub>2</sub>O

(Scheurer-Kestner)  $+8H_2O$  (S-K)

 $Fe_2O_3$ ,  $N_2O_5$  Decomp by  $H_2O$  (S-K) Fe<sub>2</sub>O<sub>3</sub>, 2N<sub>2</sub>O<sub>5</sub> Sol in H<sub>2</sub>O or alcohol in all proportions Insol in HNO<sub>3</sub>+Aq

N<sub>2</sub>O<sub>5</sub> with 1, 2, 3, 4, 5, 6, and 8Fe<sub>2</sub>O<sub>3</sub> forms compounds, sol in H<sub>2</sub>O (Ordway)

Solubility determinations show that there are no definite basic nitrates of iron formed from solutions at 25°, and that the solid phase under these conditions is a solid solution of Fe<sub>2</sub>O<sub>3</sub>, HNO<sub>3</sub> and H<sub>2</sub>O The normal salt, Fe<sub>2</sub>O<sub>3</sub>, 3N<sub>2</sub>O<sub>5</sub>, 18H<sub>2</sub>O is stable in solutions containing about 30-45% N<sub>2</sub>O<sub>5</sub> In higher concentrations of nitric acid it appears to be metastable and a new salt, Fe<sub>2</sub>O<sub>3</sub>, 4N<sub>2</sub>O<sub>5</sub>, 18(?)H<sub>2</sub>O is the stable form (Cameron, J phys Chem 1909, **13** 252)

Iron (ferric) nitrate, Fe(NO<sub>3</sub>)<sub>3</sub>

 $+\mathrm{H}_2\mathrm{O}$ (Scheurer-Kestner, A ch (3) 65 113)

Deliquescent, and sol in any amount of H<sub>2</sub>O (Schonbein, Pogg 39 141) Sol in acetone (Naumann, B 1904, 37 4328)

 $+9H_2O$ Sol in H<sub>2</sub>O ar Deliquescent alcohol Sl sol in HNO<sub>8</sub>+Aq 2 pts sa with 1 pt H<sub>2</sub>O lower the temperature 185 (Scheurer-Kestner)

Sp gr of solution at 17 5° containing 10 20 25% Fe(NO<sub>3</sub>) 15 1 0398 1 0770 1 1182 1 1612 1 2110

55 60 65% Fe(NO<sub>3</sub>)<sub>3</sub> 1 5722 1 6572 17532 (Franz, J pr (2) 5 274)

Nearly insol in conc HNO<sub>8</sub>+Aq at tem below 15 5°

Easily sol in alcohol

Melts in crystal H2O at 47 2° (Ordwav Sat Fe(NO<sub>3</sub>)<sub>3</sub>+Aq boils at 125° (Or way)

Lanthanum nitrate, La(NO<sub>3</sub>)<sub>3</sub>+6H<sub>2</sub>O

Very deliquescent, easily sol in H<sub>2</sub>O ar cohol (Mosander) Melts in its cryst alcohol H<sub>2</sub>O at 40°, boils at 124 5° (Ordway)

La(NO<sub>3</sub>)<sub>3</sub>+Aq sat at 25% contains 60 17 La(NO<sub>3</sub>)<sub>3</sub>, or 100 g H<sub>2</sub>O dissolve 151 1 La(NO<sub>3</sub>)<sub>3</sub> at 25° (James and Whittemor J Am Chem Soc 1912, **34** 1169)

Sol in acetone (Naumann, B 1904, 3 4328, Eidmann, C C 1899, II 1014)

Lanthanum magnesium nitrate, 2La(NO<sub>3</sub>)  $3Mg(NO_3)_2 + 24H O$ 

Deliquescent in moist air (Holzminn, pr **75** 350)

1 l sat solution in HNO<sub>3</sub>+Aq (sp 1 325) contains 63 8 g hydrous salt at 10 (Jantsch, Z anorg 1912, 76 321)

Lanthanum manganous nitrate, 2Ln(NO<sub>3</sub>  $3Mn(NO_3) + 24H O$ 

Sol in H<sub>2</sub>O (Damour and Deville) 1 l sat solution in HNO3+Aq (sp 1 325) contains 193 1 g hydrous salt at 10 (Jantsch)

Lanthanum nıckel nıtrate,  $3N_1(NO_3)_2 + 36H O$ 

Very sol in HO (Frenchs and Smith. **191** 355)

+24H<sub>2</sub>O1 l sat solution in HNO<sub>3</sub> Aq (sp gr 1325) contains 803 g hydro 3 salt at 16° (Jantsch)

Lanthanum rubidium hydrogen nitrate,  $[La(NO_3)_4]Rb$ ,  $HNO_3+6H$  ()

Sol in H<sub>2</sub>O and HNO<sub>3</sub> (Jantsch, Z ano) 1911, **69** 225)

Lanthanum thallous nitrate, [Li(NO3)5]Tl2  $4H_2O$ 

Hydroscopic (Jantsch, Z anorg 1911, 6

Lanthanum zınc nutrate. 2La(NO<sub>3</sub>)<sub>3</sub>,  $3Zn(NO_8)_2 + 24H_2O$ Very sol in H<sub>2</sub>O (Damour and Deville, J

B 1858 135)

1 l sat solution in HNO<sub>8</sub>+Aq (sp 1 325) contains 124 1 g hydrous salt at 16° (Jantsch, Z anorg 1912, 76 321)

+69H<sub>2</sub>O (Frerichs and Smith, A 191 355)

Lead nitrate, basic, 2PbO,  $N_2O_5+H_2O=$  $Pb(OH)NO_{s}$ 

Sol in 5 15 pts  $\rm H_2O$  at 19 2° (Pohl, W A B 6 597) Very sl sol in cold, much more in hot  $\rm H_2O$  (Berzelius) Sol in  $\rm Pb(C_2H_3O_2)_2$ +Aq (Guignet, C R 56 358)

Insol in H<sub>2</sub>O, sol in acids Bull Soc 1895, (3) 13 178) (Athanesco.

+2H<sub>2</sub>O (André, C R **100** 639) 3PbO, N<sub>2</sub>O<sub>5</sub>+1½H<sub>2</sub>O Sl sol in pure H<sub>2</sub>O Insol in H<sub>2</sub>O containing HCl (Berzelius)

+3H<sub>2</sub>O Sol in 119 2 pts cold, and 10 5 pts boiling  $H_2O$  Sol in  $Pb(C_2H_3O_2)_2+Aq$ but sl sol in KNO<sub>3</sub>+Aq (Vogel, jr A 94

 $=10PbO, 3N_2O_5+5H_2O$ (Wakemann and Wells, Am Ch J 9 299) (André, C R 100 639)  $O_5+H_2O$  Nearly insol in  $H_2O$  $+4\mathrm{H}_2\mathrm{O}$  $6PbO, N_2O_5 + H_2O$ 

(Lowe, J pr 98 385) 10PbO, 3N<sub>2</sub>O<sub>5</sub>+4H<sub>2</sub>O Less sol in H<sub>2</sub>O than Pb(NO<sub>2</sub>)OH, and not decomp by boiling

 $H_2O$ (Wakemann and Wells, Am Ch J 9 299)

## Lead nutrate, Pb(NO<sub>3</sub>)<sub>2</sub>

Sol in H<sub>2</sub>O with absorption of much heat (Rose)

1 pt Pb(NO<sub>3</sub>) dissolves in 7½ pts cold H<sub>2</sub>O (Mitscherlich)

(Mitscherlich)
1 pt Ph(NO<sub>3</sub>)<sub>2</sub> dissolves in 1 989 pts H<sub>2</sub>O at 17 b
and forms a liquid of 1 3978 sp gr (Karsten)
1 pt Ph(NO<sub>3</sub>)<sub>2</sub> dissolves in 1 707 pts H<sub>2</sub>O at 22 3
in 1 585 pts H O at 24 7 (Kopp)
Sol in 1 87 pts H O at 17 5 (Schiff A 109 325 5)
100 pts Pb(NO<sub>3</sub>)<sub>2</sub>+Aq sat at 102 2° contain 52 5
pt Pl(NO<sub>3</sub>)<sub>2</sub> = 100 pt H<sub>2</sub>O dissolve 110 526 pts
P (Criffiths)
Cold H<sub>2</sub>O and much less hot H<sub>2</sub>O

cold H2O and much less hot H2O

(Wittstein)
100 pts boiling H<sub>2</sub>O dissolve 13 pts Pb(NO<sub>3</sub>)<sub>2</sub> (Ure s Dict )

100 pts Pb(NO<sub>3</sub>)<sub>2</sub>+Aq sat at 19-20° contain 35 80 pts salt (v Hauer, W A B 53, 2 221)

1 pt dissolves at 0° 10° 25° 45° 65° 85° 100° in 2 58 2 07 1 65 1 25 0 99 0 83 0 72 pts H<sub>2</sub>O

(Kremers, Pogg 92 497)

1 l Pb(NO<sub>3</sub>)<sub>2</sub>+Aq sat at 15° contains 461 49 g Pb(NO<sub>3</sub>)<sub>2</sub> and 928 58 g H<sub>2</sub>O, and has sp gr 139 (Michel and Krafft, A ch (3) **41**  $\bar{4}71$ 

Solubility in 100 pts H O at to

| t°                                                                                   | Pts<br>Pb(NO <sub>3</sub> )                                                                                                            | t°                                                                                                                                                                               | Pts<br>Pb(NOs)2                                                                                                                                                                                                           | t°                                                                                                                                                                                               | Pts<br>Pb(NOs)2                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 1 2 3 4 5 6 7 8 9 10 112 13 14 5 16 17 18 9 22 1 22 22 24 25 27 28 9 33 1 33 34 35 | 36 5 4<br>37 3 3 1 8 5 2 0 8 6 4 2 0 8 5 3 1 9 7 5 3 1 9 7 6 4 3 1 0 8 7 6 4 3 1 0 8 7 6 4 3 1 0 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 36<br>37<br>38<br>39<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>50<br>51<br>52<br>53<br>54<br>55<br>66<br>66<br>66<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67 | 65 9<br>66 7 6<br>67 6 5 69 3<br>771 2 10 0 9 9 8 7 7 7 7 8 8 1 2 1 1 0 0 0 9 9 9 8 8 8 7 7 7 7 7 7 8 8 2 3 3 2 2 1 1 0 0 0 9 9 9 1 9 2 8 8 8 9 0 9 9 1 9 2 9 3 9 4 9 5 7 7 7 7 9 8 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 72<br>73<br>74<br>75<br>76<br>77<br>78<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>7 | 99 7<br>100 7<br>101 6<br>103 6<br>104 6<br>105 6<br>107 6<br>108 6<br>109 6<br>110 5<br>112 5<br>113 5<br>114 5<br>115 4<br>116 4<br>117 4<br>118 4<br>119 4<br>119 3<br>121 3<br>122 3<br>123 2<br>124 2<br>125 2<br>126 1<br>128 9<br>130 9<br>131 5 |

(Mulder, Scheik Verhandel 1864 66)

100 g H<sub>2</sub>O dissolve 52 76 g Pb(NO<sub>3</sub>)<sub>2</sub> at 100 g H<sub>2</sub>O dissolve 52 70 g Fb(NO<sub>3</sub>)<sub>2</sub> at 17° (Euler, Z phys Ch 1904, **49** 315) Solubility of Pb(NO<sub>3</sub>)<sub>2</sub> in H<sub>2</sub>O at 20° = 152 g mol per l Sp gr of sat solution = 1419 (Fedotieff, Z anorg 1911, **73** 178) Sat Pb(NO<sub>3</sub>)<sub>2</sub>+Aq at 0° contains 26 7% Pb(NO<sub>3</sub>)<sub>2</sub>, at 18°, 29 1% Pb(NO<sub>3</sub>), (Myhus, 7 anorg 1012, 74 411)

Sp gr of Pb(NO<sub>3</sub>) +Aq at 19 5°

Z anorg 1912, **74** 411)

| Pb(NO <sub>3</sub> ) | Sp gr                            | Pb(\(\frac{7}{\text{VO}_3}\)_2 | Sp gr                   |
|----------------------|----------------------------------|--------------------------------|-------------------------|
| 5<br>10<br>15<br>20  | 1 045<br>1 093<br>1 144<br>1 203 | 25<br>30<br>35                 | 1 266<br>1 334<br>1 414 |

(Kremers, calculated by Gerlach, Z anal 8

| Sp gr of Pb(NO <sub>3</sub> ) <sub>2</sub> +Aq at 17 5° |                                  |                           |                                  |
|---------------------------------------------------------|----------------------------------|---------------------------|----------------------------------|
| %<br>Pb(NO <sub>3</sub> ) <sub>2</sub>                  | Sp gr                            | Pb(NO3)2                  | Sp gr                            |
| 5<br>10<br>15<br>20                                     | 1 044<br>1 092<br>1 144<br>1 200 | 25<br>30<br>35<br>sat sol | 1 263<br>1 333<br>1 409<br>1 433 |

(Gerlach, Z anal 27 283)

Sp gr of  $Pb(NO_3)_2+Aq$  sat at  $8^\circ=1372$  (Anthon)

Sp gr of Pb(NO<sub>3</sub>)<sub>2</sub>+Aq at 17 5°

| Pb(NOs)2                                                                          | Sp gr                                                                                                                                                                                      | Pb(NOs)2                                                                                                 | Sp gr                                                                                                                                                                            |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pb(NO <sub>3</sub> ) <sub>2</sub> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 1 0080<br>1 0163<br>1 0247<br>1 0331<br>1 0416<br>1 0502<br>1 0591<br>1 0682<br>1 0775<br>1 0869<br>1 0963<br>1 1059<br>1 1157<br>1 1257<br>1 1359<br>1 1463<br>1 1569<br>1 1677<br>1 1788 | 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37 | 1 1902<br>1 2016<br>1 2132<br>1 2251<br>1 2372<br>1 2495<br>1 2620<br>1 2747<br>1 2876<br>1 3907<br>1 3140<br>1 3276<br>1 3416<br>1 3558<br>1 3702<br>1 3848<br>1 3996<br>1 4146 |

(Schiff, calculated by Gerlach, Z anal 8 286)

Sp gr of Ph(NO<sub>2</sub>)<sub>2</sub>+Aq at t°

| op gr or ro(1103)2 - Aq ac c   |                                    |                                                          |  |
|--------------------------------|------------------------------------|----------------------------------------------------------|--|
| t°                             | % Pb(NO3)                          | Sp gr                                                    |  |
| 14<br>14<br>14 5<br>14 3<br>15 | 5<br>10<br>15<br>20<br>25<br>32 28 | 1 0451<br>1 0939<br>1 1468<br>1 2045<br>1 2678<br>1 3716 |  |

(Long, W Ann 1880, 11 40)

Sp gr of  $Pb(NO_8)_2+Aq$  at room temp containing

17 93 32 22% Pb(NO<sub>3</sub>)<sub>2</sub> 1 1786 1 3619

(Wagner, W Ann 1883, 18 267)

Sp gr of Pb(NO<sub>3</sub>)<sub>2</sub>+Aq at 25°

Concentration of Pb(NO<sub>3</sub>)<sub>2</sub>+Aq

Sp gr

| Pb(NO <sub>d</sub> ) <sub>2</sub> +Aq | Sp gr                                |
|---------------------------------------|--------------------------------------|
| 1-normal 1/2- " 1/4- " 1/8- "         | 1 1380<br>1 0699<br>1 0351<br>1 0175 |

(Wagner, Z phys Ch 1890, 5 36)

Pb(NO<sub>3</sub>)<sub>2</sub>+Aq containing 15 93% Pb(NO<sub>3</sub>)<sub>1</sub> has sp gr 20/°20°=1 1558

Pb(NO<sub>3</sub>)<sub>2</sub>+Aq containing 30 57% Pb(NO<sub>3</sub>)<sub>2</sub> has sp gr  $20^{\circ}/20^{\circ}=13436$ Pb(NO<sub>3</sub>)<sub>2</sub>+Aq containing 30 69% Pb(NO<sub>3</sub>)<sub>3</sub>

Pb(NO<sub>3</sub>)<sub>2</sub>+Aq containing 30 69% Pb(NO<sub>3</sub>)<sub>2</sub> has sp gr 20°/20°=1 3465 (Le Blanc and Rohland, Z phys Ch 1896, 19 279)

Sat Pb(NO<sub>3</sub>)<sub>2</sub>+Aq boils at 103 5° (Krem

Sat Pb(NO<sub>3</sub>)<sub>2</sub>+Aq boils at 102 2°, and contains 140 pts Pb(NO<sub>3</sub>)<sub>2</sub> to 100 pts H<sub>2</sub>O (Griffiths)

Sat  $Pb(NO_3)_2+Aq$  boils at 103 5° (Ger lach, Z anal 26 427)

B-pt of  $Pb(NO_3)_2+Aq$  containing pts  $Pb(NO_3)_2$  to 100 pts  $H_2O$ , according to Gerlach (Z anal 26 449)

| B-pt                          | Pts<br>Pb(NO <sub>8</sub> ) <sub>2</sub> | B-pt                   | Pts<br>Pb(NOs)   |
|-------------------------------|------------------------------------------|------------------------|------------------|
| 100 5°<br>101<br>101 5<br>102 | 11<br>26<br>44<br>65                     | 102 5°<br>103<br>103 5 | 87<br>111<br>137 |

Insol in cone HNO<sub>3</sub>+Aq Solubility of Pb(NO<sub>3</sub>)<sub>2</sub>+Ba(NO<sub>3</sub>)<sub>2</sub>

See under Ba(NO<sub>3</sub>)<sub>2</sub> Solubility of Pb(NO<sub>3</sub>)<sub>2</sub>+Cu(NO<sub>3</sub>)<sub>2</sub>

Solubility of  $PO(NO_3)_2 + Cu(NO_3)_2$ See under  $Cu(NO_3)_2$ Sol\_in sat  $KNO_3 + Aq$  without pptn, 100

pts H<sub>2</sub>O at 18 75° dissolving 114 pts mixed salt, viz 84 1 pts Pb(NO<sub>3</sub>)<sub>2</sub> and 29 9 pts KNO<sub>3</sub> (Karsten)

100 pts H<sub>2</sub>O dissolve 119 6 pts Pb(NO<sub>3</sub>)<sub>2</sub> and 67 1 pts KNO<sub>3</sub> at 21 2° (Rudorff, B 6 484)

100 g H<sub>2</sub>O dissolve 95 39 g Pb(NO<sub>3</sub>)<sub>2</sub> and 61 05 g KNO<sub>3</sub> at 20° (Le Blanc and Noyes Z phys Ch 1890, 6 386)

Sol in sat  $NaNO_3+Aq$  without pptn, 100 pts H O at 18 75° dissolving 121°9 pts inixed salt, viz 87 8 pts  $Pb(NO_3)_2$  and 34°1 pts  $NaNO_3$  (Karsten)

## Solubility of Pb(NO<sub>8</sub>)<sub>2</sub>+NaNO<sub>8</sub>

| Solid phase=Pb(NO <sub>3</sub> ) <sub>2</sub>            |                                                                               |                                                                               |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| to of saturation                                         | to of saturation   % NaN()3   % Ph(N()3)                                      |                                                                               |  |  |
| 32<br>35 5<br>39 5<br>44<br>49 1<br>55<br>58<br>62<br>65 | 34 42<br>34 15<br>33 71<br>33 35<br>32 94<br>32 60<br>32 47<br>32 33<br>32 14 | 19 69<br>20 33<br>21 35<br>22 19<br>23 15<br>23 93<br>24 24<br>24 57<br>24 89 |  |  |

#### Solubility of Pb(NO<sub>3</sub>)<sub>2</sub>+NaNO<sub>3</sub>-Continued

| Solid phase = $NaNO_8$ |         |                                     |  |  |
|------------------------|---------|-------------------------------------|--|--|
| to of saturation       | % NaNO3 | % Pb(NO <sub>3</sub> ) <sub>2</sub> |  |  |
| 21                     | 40 97   | 13 62                               |  |  |
| 26 5                   | 42 04   | 13 38                               |  |  |
| 31                     | 43 18   | 12 88                               |  |  |
| 38 8                   | 44 63   | 12 78                               |  |  |
| 41                     | 45 11   | 12 94                               |  |  |
| 44 25                  | 46 03   | 12 45                               |  |  |
| 51                     | 47 28   | 12 50                               |  |  |
| 58                     | 49 03   | 11 76                               |  |  |
| 64                     | 49 92   | 11 56                               |  |  |

(Isaac, Chem Soc 1908, 93 398)

Also sol in KNO<sub>3</sub>+NaNO<sub>3</sub>+Aq 100 pts sat  $Pb(NO_3)_2+Sr(NO_3)_2+Aq$  contain 45 98 pts of the two salts at 19 20° (v Hauer, J pr 98 137)

### Solubility of Pb(NO<sub>3</sub>)<sub>2</sub>+Sr(NO<sub>3</sub>)<sub>2</sub> at 25°

| G per 100 cc                                                     |                                                                | Mol per cent                                              | ın solıd phase                                      |
|------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|
| Pb(NO <sub>3</sub> ) <sub>2</sub>                                | Sr(NO3)2                                                       | Pb(NO <sub>3</sub> )                                      | Sr(NO3)2                                            |
| 46 31<br>50 47<br>53 92<br>45 34<br>44 48<br>25 23<br>19 13<br>0 | 0<br>4 56<br>8 14<br>17 81<br>18 74<br>35 03<br>37 54<br>71 04 | 100<br>99 05<br>98 11<br>97 02<br>96 06<br>83 84<br>32 88 | 0<br>0 95<br>1 89<br>2 98<br>3 94<br>16 16<br>67 12 |

(Fock, Z Kryst Min 1897, 28 365)

Very casily sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 828) 100 pts ulcohol of 0 9282 sp gr dissolve at 4° 8° 22° 40° 50° 4 96 5 82 8 77 12 8 14 9 pts Pb(NO<sub>3</sub>)<sub>2</sub> (Gerardin, A ch (4), 5 129)

 $100~{\rm pts}$  absolute methyl alcohol dissolve  $1.37~{\rm pts}$  at  $20.5^{\circ}$ 

100 pts absolute ethyl alcohol dissolve 0 04 pt at 20 5° (de Bruyn Z phys Ch 10 783)

Very sl sol in acetone (Krug and M'El roy, J Anal Ch 6 184)

Insol in cold, sl sol in hot CS<sub>2</sub> (Arctow ski, Z anoig 1894, 6 257)

Insol in benzonitrile (Naumann, B 1914, 47 1370)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1910, 43 314)

Mol weight determined in pyridine (Werner, Z anorg 1897, 15 21)

Solubility of Pb(NO<sub>8</sub>)<sub>2</sub> in pyridine at t°

| Columnity of 1 D(11 O 8/2 in pyriams as t |                                                                                                                   |                                                                                                                       |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| t°                                        | G Pb(NO3)2<br>per 100 g<br>C5H5N                                                                                  | Solid phase                                                                                                           |  |  |
|                                           | 2 93<br>2 14<br>1 90<br>3 54<br>3 93<br>5 39<br>6 13<br>6 78<br>8 56<br>10 98<br>13 20<br>16 94<br>22 03<br>29 37 | Pb(NO <sub>8</sub> ) <sub>2</sub> , 4C <sub>8</sub> H <sub>6</sub> N                                                  |  |  |
| 59 52<br>70<br>80                         | 36 70<br>47 29<br>61 60                                                                                           | Pb(NO <sub>8</sub> ) <sub>2</sub> , 3C <sub>5</sub> H <sub>5</sub> N                                                  |  |  |
| 89 93<br>94 94                            | 90 21<br>128 06                                                                                                   | " " " " " " " " " " " " " " " " " " "                                                                                 |  |  |
| 96 tr pt<br>99 89<br>104 90<br>109 90     | 143 36<br>152<br>163 80                                                                                           | $ \begin{array}{c} \text{"+Pb(NO_8)_2, 2C_5H_5N} \\ \text{Pb(NO_8)_2, 2C_5H_5N} \\ \text{"} \\ \text{"} \end{array} $ |  |  |

(Walton and Judd, J Am Chem Soc 1911, 33 1036)

Lead mercurous nitrate, 2PbO, 2Hg<sub>2</sub>O, 3N<sub>2</sub>O<sub>5</sub>
Decomp by H<sub>2</sub>O Sol in warm dil HNO<sub>3</sub>,
or Hg (NO<sub>3</sub>)<sub>2</sub>+Aq without decomp (Stadeler, A 87 129)

Lead silver nitrate, Pb(NO<sub>3</sub>)<sub>2</sub>, 2AgNO<sub>3</sub> Sol in H<sub>2</sub>O (Sturenberg, Pogg **74** 115)

Lead silver nitrate iodide, Pb(NO<sub>3</sub>)<sub>2</sub>, 8AgNO<sub>3</sub>, 4AgI

Decomp by H O (Sturenberg)
Pb(NO<sub>3</sub>)<sub>2</sub>, 2\gNO<sub>3</sub>, 2AgI Decomp by
H O (Sturenberg)

Lead nitrate nitrite, basic, 4PbO, N<sub>2</sub>O<sub>5</sub>, N O<sub>3</sub> +2H ()=Pb(OH)NO<sub>3</sub>, Pb(OH)NO

SI sol in cold, easily in hot  $H_2O$  Sol in 80 pts  $H_2O$  at 23° (Chevreuil), 85 pts at oid temp (Bromeis, A 72 38), 10 6 pts at 100° (Chevreuil)

+2H<sub>2</sub>O Solubility in acetic acid

| Normality<br>of neid | g Pb() per<br>100 cc at<br>solution | Normality<br>of acid | g 1 bO per<br>100 cc at<br>solution |
|----------------------|-------------------------------------|----------------------|-------------------------------------|
| 0                    | 0 601                               | 0 25                 | 5 450                               |
| 0 05                 | 1 323                               | 0 50                 | 9 690                               |
| 0 10                 | 2 185                               | 0 75                 | 15 874                              |

(Chilesotti, Att Acad Linc 1908, (5) 17, II 475)

Formula is 3Pb(OH)NO<sub>3</sub>, 5Pb(OH)NO<sub>2</sub>+ H<sub>2</sub>O (v Lorenz, W A B 84, 2 1133) +3H<sub>2</sub>O (v Lorenz)  $4PbO, N_2O_5, 3N_2O_8+4H_2O$ Sol in H<sub>2</sub>O

(Bromeis)

 $6PbO, N_2O_5, 2N_2O_8 + 3^2/_8H_2O = Pb(OH)NO_3,$  $2Pb(OH)NO_{2}^{2}+^{2}/_{3}H_{2}O$  (v Lorenz)  $6PbO_{2}^{2}$   $2N_{2}O_{5}$   $N_{2}O_{3}$  +  $3^{2}/_{3}H_{2}O$  = 2Pb(OH)NO3,  $Pb(OH)NO_2 + \frac{1}{3}H_2O$ 

Lorenz)

7PbO, N<sub>2</sub>O<sub>3</sub>, N<sub>2</sub>O<sub>5</sub>+3H<sub>2</sub>O Less sol in H<sub>2</sub>O than 4PbO, N<sub>2</sub>O<sub>5</sub>, N<sub>2</sub>O<sub>3</sub>+2H<sub>2</sub>O, sol in cold conc HNO<sub>3</sub>+Aq (Peligot, A **39** 338) 8PbO, N<sub>2</sub>O<sub>5</sub>, 3N<sub>2</sub>O<sub>5</sub>+4<sup>2</sup>/<sub>3</sub>H<sub>2</sub>O=Pb(OH)NO<sub>3</sub>,

3Pb(OH)NO<sub>2</sub>+1/<sub>3</sub>H<sub>2</sub>O (v Lorenz) 10PbO, N<sub>2</sub>O<sub>5</sub>, 4N<sub>2</sub>O<sub>3</sub>+5H<sub>2</sub>O=Pb(OH)NO<sub>3</sub>, 4Pb(OH)NO<sub>2</sub> (v Lorenz

12PbO, N<sub>2</sub>O<sub>5</sub>, 5N<sub>2</sub>O<sub>3</sub>+6H<sub>2</sub>O=Pb(OH)NO<sub>3</sub>, 5Pb(OH)NO<sub>2</sub> (v Lorenz) 10PbO, N<sub>2</sub>O<sub>5</sub>, 2N<sub>2</sub>O<sub>3</sub>+4H<sub>2</sub>O=Pb(OH)NO<sub>3</sub>, 2Pb(OH)NO<sub>2</sub>, 2PbO+1/2H<sub>2</sub>O (v Lorenz) 14PbO, N<sub>2</sub>O<sub>5</sub>, 3N<sub>2</sub>O<sub>3</sub>+6H<sub>2</sub>O=Pb(OH)NO<sub>3</sub>, 3Pb(OH)NO<sub>2</sub>, 3PbO+H<sub>2</sub>O (Bromes)

 $14PbO_{5}$ ,  $3N_{2}O_{5}$ ,  $N_{2}O_{3}+6H_{2}O=$  $3Pb(OH)NO_3$ ,  $Pb(OH)NO_2$ ,  $3PbO+H_2O$ 

(Bromeis) 16PbO,  $2N_2O_5$ ,  $3N_2O_3+6H_2O =$ 4Pb(OH)NO<sub>3</sub>, 6Pb(OH)NO<sub>2</sub>, 5PbO, Pb(OH)<sub>2</sub>

(v Lorenz)

 $16PbO, 3N_2O_5, 5N_2O_3 + 10H_2O = Pb(OH)NO_3, 5Pb(OH)NO_2 + H_2O$ 3Pb(OH)NO<sub>3</sub>, (v

26PbO,  $6\text{N}_2\text{O}_5$ ,  $7\text{N}_2\text{O}_3 + 21\text{H}_2\text{O} = 6\text{Pb(OH)}\text{NO}_3$ ,  $7\text{Pb(OH)}\text{NO}_2 + 4\text{H}_2\text{O}$ (v Lorenz )

#### Lead nitrate phosphate, Pb(NO<sub>3</sub>)<sub>2</sub>, Pb<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> $+2H_2O$

Completely insol in cold H<sub>2</sub>O Decomp by Sol in a boiling H<sub>2</sub>O into its constituents little conc HNO<sub>3</sub>+Aq without decomp (Gerhardt, A **72** 83)

Lead nitrate phosphite, Pb(NO<sub>3</sub>)<sub>2</sub>, PbHPO<sub>3</sub>

Decomp by  $H_2O$  Sol in  $Pb(NO_3)_2 + Aq$ Pb(NO<sub>3</sub>)<sub>2</sub>+Aq (33 3 g per litre) dissolves 1 g salt at 15° If less than 31 g per litre of Pb(NO<sub>3</sub>)<sub>2</sub> are present the salt is decomp (Amat, A ch (6) 24 317)

Lead nitrate potassium nitrite, Pb(NO<sub>3</sub>)<sub>2</sub>,  $2KNO_2 + H_2O$ 

Difficultly sol in H<sub>2</sub>O (Lang, J B 1862) 102)

 $3\dot{P}bO$ ,  $3K_2O$ ,  $4N_2O_3$ ,  $2N_2O_5+3H_2O$  $In H_2O$  (Hayes, Sill Am J (2) 31 226)

#### Lithium nitrate, LiNO<sub>3</sub>

Very deliquescent, and sol in  $H_2O$ 100 pts  $H_2O$  dissolve at 0° 20° 40° 70° 1 70° 100° 110° 48 3 75 7 169 4 196 1 227 3 256 4 pts LiNO<sub>3</sub> (Kremers, Pogg 99 47)

Forms supersaturated solutions with e which crystallize when temp is lowered to +1° (Kremers, Pogg 92 520)

Sat solution boils at over 200° (Krem s. Pogg 99 43)

1 pt LiNO₃ dissolves in 200 pts HN (Schultz, Zeit Ch (2) 5 531)

100 pts of the sat solution contain at

64 2° 70 9° 649 66 1 pts anhydrous salt

(Donnan and Burt, Chem Soc 1903, 339)

See  $+\frac{1}{2}H_2O$ , and  $3H_2O$ 

Sp gr of LiNO<sub>3</sub>+Aq at 195° contain g pts LiNO<sub>3</sub> in 100 pts H<sub>2</sub>O

127 142 264 418 pts LiN 3, 1 069 1077 1 134 1 197 57 5 774 548 79 4 pts LiN ; 1 245 1 255 1 315

(Kremers, Pogg 114 45)

#### Sp gr of LiNO<sub>3</sub>+Aq

| g LiNO3 in 1000 g<br>of solution | Sp gr 16/16° |
|----------------------------------|--------------|
| 0                                | 1 000000     |
| 4 8526                           | 1 002469     |
| 10 9128                          | 1 0055495    |
| 17 9016                          | 1 009113     |

(Dijken, Z phys Ch 1897, 24 109)

Sp gr 20°/4° of a normal solution of LiNe =1 03803, of a 0 5-normal solution =1 0183(Haigh, J Am Chem Soc 1912, 34 1151)

Very easily sol in liquid NH<sub>3</sub> (Frankli Am Čh J 1898, **20** 828)

Sol in strong alcohol

Sol in acetone (Eidmann, C C II 1014, Naumann, B 1904, 37 4328)

Solubility in acetone=0 343 g mol per at 18° (Roshdestwensky and McBrid Chem Soc 1911, 99 2140)

Insol in benzonitrile (Naumann,

1914, 47 1370)

Difficultly sol in ethyl acetate (Nai mann, B 1910, 43 314)

+½H2O Solubility in H2O 100 pts of the sat solution contain at

43 6° 50 5° 55 0° 60 0° 608 61.3630 636 pts anhydrous sal

61 1° is the temp at which LiNO<sub>8</sub>+ $\frac{1}{2}$ H<sub>2</sub>( goes over into LiNO<sub>3</sub> (Donnan and Buri Chem Soc 1903, **83** 339)

#### +3H<sub>2</sub>O

#### Solubility in H<sub>2</sub>O

100 pts of the sat solution contain pts anhydrous salt at to

| t                               | Pts anhydrous salt |
|---------------------------------|--------------------|
| 0 10                            | 34 8               |
| 10 50                           | 37 9               |
| 12 10                           | 38 2               |
| $\overline{13}$ $\overline{75}$ | 39 3               |
| 19 05                           | 40 4               |
| 22 10                           | 42 9               |
| $\frac{1}{27} \frac{1}{55}$     | $\tilde{47}$ 3     |
| 29 47                           | 53 67              |
| $\tilde{29}  \tilde{78}$        | 55 09              |
| 29 87                           | 56 42              |
| 29 86                           | 56 68              |
| 29 64                           | 57 48              |
| 29 55                           | 58 03              |

Mpt of LiNO<sub>3</sub>+3H<sub>2</sub>O is 29 88°

(Donnan and Burt, Chem Soc 1903, **83** 337)

# Magnesium nitrate, basic, Mg<sub>3</sub>N<sub>2</sub>O<sub>8</sub>

Insol in H<sub>2</sub>O and alcohol Sol in acids (Chodnew, A 71 241) +5H<sub>2</sub>O Decomp by HO (Didier, C R 1896, **122** 936)

### Magnesium nitrate, Mg(NO<sub>3</sub>). Anhydrous Deliquescent

Sol in 1 pt H<sub>2</sub>O at 15 6° Sol in 4 pts abs alcohol at 15 6 and 2 pts at boiling temp More sol in alcohol of 0 817 sp <sub>L</sub>r than in that of 0 900 (Kirwan) Sol in 0 3458 pt strong alcohol at 82 5° (Wenzel) Sol in 10 pts strong alcohol at 15° (Bergmann) Sol in 9 pts stlong alcohol on heating (Bergmann)

Solubility in H<sub>2</sub>O in presence of the anhydrous salt

Sat solution contains at

89° 77.5° 67° 63 14 65 67 67 55% Mg(NO<sub>8</sub>)<sub>2</sub> (Funk, Z anorg 1899, 20 396) See +6, and  $9H_2O$ 

Sp gr of Mg(NO<sub>3</sub>)<sub>2</sub>+Aq at 14°

| % Mg(NO <sub>3</sub> ) <sub>2</sub><br>6H <sub>2</sub> O | Sp gr                                                    | % Mg(NO <sub>3</sub> ) <sub>2</sub><br>6H <sub>2</sub> O | Sp gr                                          |
|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>5<br>10<br>15<br>20<br>25                           | 1 0034<br>1 0202<br>1 0418<br>1 0639<br>1 0869<br>1 1103 | 30<br>35<br>40<br>45<br>49                               | 1 1347<br>1 1649<br>1 1909<br>1 2176<br>1 2397 |

(Oudemans, Z anal 7 419)

| Sp g | r of | Mg(N | $O_3)_2 +$ | Aqε | at 21° |
|------|------|------|------------|-----|--------|
|------|------|------|------------|-----|--------|

| % Mg(NOs)2   Sp. gr.   % Mg(NOs)2   Sp. g                                                                           |                                                          |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| $\frac{\% \text{ Mg(NO3)}^2}{+6\text{H}_2\text{O}}$ Sp gr, $\frac{\% \text{ Mg(NO3)}^2}{+6\text{H}_2\text{O}}$ Sp g | r                                                        |
| $egin{array}{c cccc} 6 & 1 & 0239 & 32 & 1 & 14 \\ 8 & 1 & 0321 & 34 & 1 & 15 \\ \hline \end{array}$                | 12<br>10<br>08<br>08<br>09<br>11<br>14<br>19<br>24<br>31 |

anal (Schiff, calculated by Gerlach, Z 286)

### Sp gr of Mg(NO<sub>3</sub>)<sub>2</sub>+Aq at 18°

| % Mg(NO <sub>8</sub> ) <sub>2</sub> | Sp gr  | % Mg(NO <sub>3</sub> ) <sub>2</sub> | Sp gr  |
|-------------------------------------|--------|-------------------------------------|--------|
| 5                                   | 1 0378 | 15                                  | 1 1181 |
| 10                                  | 1 0763 | 17                                  | 1 1372 |

### (Kohlrausch, W Ann 1879 1)

Sp gr of Mg(NO<sub>3</sub>)<sub>2</sub>+Aq at room temp containing

18 62 34 19 39 77% Mg(NO<sub>3</sub>)<sub>2</sub> 1 2000 1 4298 1 1025

(Wagner, W Ann 1883, 18 273)

## Sp gr of Mg(NO<sub>8</sub>)<sub>2</sub>+Aq at 25°

| Concentration of Mg(NO <sub>3</sub> ) <sub>2</sub> +Aq | Sp gr                                |
|--------------------------------------------------------|--------------------------------------|
| 1-normal  1/2- "  1/4- "  1/8- "                       | 1 0512<br>1 0259<br>1 0130<br>1 0066 |

(Wagner, Z phys Ch 1890, 5 38)

Sp gr of solution sat at 18°=1 384, con taining 43 1% Mg(NO<sub>3</sub>)<sub>2</sub> (Mylius, B 1897, **30** 1718)

## Sp gr of $Mg(NO_3) + Aq$

| 1/2 Mg(NO <sub>3</sub> ) <sub>2</sub> g in 1000 g<br>of solution | Sp gr 16°/16° |
|------------------------------------------------------------------|---------------|
| 0                                                                | 1 000000      |
| 0 8099                                                           | 1 000660      |
| 1 5621                                                           | 1 001253      |
| 3 3398                                                           | 1 002539      |
| 7 4410                                                           | 1 005523      |
| 15 161                                                           | 1 011151      |
| 29 356                                                           | 1 021580      |
| 58 353                                                           | 1 043329      |
| 81 025                                                           | 1 060773      |

(Dijken, Z phys Ch 1897, 24 107)

Sp gr of Mg(NO<sub>3</sub>)<sub>2</sub>+Aq at 20 1° p=per cent strength of solution, d=observed density, w=volume concentration in

grams per cc  $\left(\frac{\text{pd}}{100} = \text{w}\right)$ 

| р     | d      | w       |
|-------|--------|---------|
| 35 02 | 1 3110 | 0 46695 |
| 31 15 | 1 2655 | 0 39420 |
| 25 03 | 1 2057 | 0 30172 |
| 19 55 | 1 1551 | 0 22585 |
| 13 43 | 1 1028 | 0 14815 |
| 10 09 | 1 0753 | 0 10850 |
| 6 650 | 1 0480 | 0 06968 |
| 4 672 | 1 0330 | 0 04826 |
| 4 001 | 1 0276 | 0 04112 |
| 1 372 | 1 0085 | 0 01383 |

(Barnes J phys Chem 1898, 2 545)

Sp gr of Mg(NO₂)₂+Aq at 20° containing M g mols of salt per liter M 0 02 0 05 0 10 0 15 Sp gr 1 00224 1 005626 1 011118 1 016557

M 0 20 0 50 1 00 1 274 Sp gr 1 022026 1 054804 1 107865 1 136615 (Jones and Pearce, Am Ch J 1907, **38** 707)

Less sol in  $Ca(NO_3)_2+Aq$  than in  $H_2O$  (Dijonval)

Very easily sol in liquid NH<sub>3</sub> (Franklin,

Am Ch J 1898, 20 828) +2H<sub>2</sub>O Mpt 127° (Wasiljew, C C 1909, II 1966)

+4H<sub>2</sub>O Mpt 455° (W)

+6H<sub>2</sub>O Deliquescent Sol in H<sub>2</sub>O and alcohol Sol in 0.5 pt cold H<sub>2</sub>O, and 9 pts cold alcohol of 0.84 sp gr, very sl sol in abs alcohol (Graham)

Melts in its crystal H<sub>2</sub>O at 90°, and the resulting liquid boils at 143 4° (Ordway, Sill

Am J (2) 27 14)

Solubility in H<sub>2</sub>O

Sat solution contains at

-18° -45° 0° 18° 38 03 39 50 39 96 42 33% Mg(NO<sub>3</sub>)<sub>2</sub>, 40° 80° 90° (mpt)

45 87 53 69 57 81% Mg(NO<sub>3</sub>)<sub>2</sub>

(Funk, Z anorg 1899, 20 395)

+9H<sub>2</sub>O Solubility in H<sub>2</sub>O Sat solution contains at

-23° -20 5° -18° 35 44 36 19 38 03%

 $35\,44$   $36\,19$   $38\,03\%$  Mg(NO<sub>3</sub>)<sub>2</sub> Cryohydrate is formed at  $-29^{\circ}$  (Funk

Cryohydrate is formed at -29° (Funk, Z anorg 1899, 20 398)

Magnesium neodymium nitrate, 3Mg(NO<sub>3</sub>)<sub>2</sub>, 2Nd(NO<sub>3</sub>)<sub>3</sub>+24H<sub>2</sub>O

1 l sat solution in  $\rm HNO_3+Aq$  (sp gr 1 325) contains 97 7 g hydrous salt at  $16^\circ$  (Jantsch, Z anorg 1912, **76** 303)

Magnesium praseodymium nitrate, 3Mg(NO<sub>3</sub>)<sub>2</sub>, 2Pr(NO<sub>3</sub>)<sub>3</sub>+24H<sub>2</sub>O

1 l sat solution in HNO<sub>3</sub>+Aq (sp 1325) contains 7 70 g hydrous salt at l (Jantsch)

Magnesium samarium nitrate, 3Mg(NO 2 Sm(NO<sub>3</sub>)<sub>3</sub>+24H<sub>2</sub>O (Demarçay, C R 1900, **130** 1187)

1 l sat solution in HNO<sub>3</sub>+Aq (sp 1 325) contains 24 55 g hydrous salt at 1 (Jantsch)

Magnesium thorium nitrate, MgTh(NO<sub>3</sub>) + H<sub>2</sub>O

Hydroscopic, sol in HNO<sub>3</sub> (Meyer, anorg 1901, 27 385)

Magnesium nitrate ammonia, Mg(NO 2) 6NHs

Sl sol in liquid NH<sub>3</sub> (Franklin, J A 1 Chem Soc 1913, **35** 1459)

Manganous nitrate, basic, 2MnO,  $N_2O$  +  $3H_2O$ 

Sol in H<sub>2</sub>O (Gorgeu)

Manganous nitrate, Mn(NO<sub>3</sub>)<sub>2</sub>

Deliquescent Easily sol in  $H_2O$  2 calcohol

See +3, and  $6H_2O$ 

Sp gr of Mn(NO<sub>3</sub>)<sub>2</sub>+Aq at 8°

| % Mn(NO <sub>3</sub> ) <sub>2</sub><br>+6H <sub>2</sub> O | Sp gr                                                                        | % Mn(NO <sub>3</sub> ) <sub>2</sub><br>+6H <sub>2</sub> O | Sp g                                                        |
|-----------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|
| 5<br>10<br>15<br>20<br>25<br>30<br>35<br>40               | 1 0253<br>1 0517<br>1 0792<br>1 1078<br>1 1137<br>1 1688<br>1 2012<br>1 2352 | 45<br>50<br>55<br>60<br>65<br>70<br>71                    | 1 27(<br>1 30,<br>1 34,<br>1 38(<br>1 428<br>1 472<br>1 481 |

(Oudemans, Z anal 7 421)

Sp gr of aqueous solutions containing 10 20 30 % Mn(NO<sub>3</sub>)<sub>2</sub>+6H<sub>2</sub> 6 237 12 474 18 711% Mn(NO<sub>3</sub>)<sub>2</sub>, 1 052 1 107 1 165

40 50 60 % Mn(NO<sub>3</sub>) +6H 124 948 31 185 37 422% Mn(NO<sub>3</sub>)<sub>2</sub>, 1 230 1 302 1 381

70 80 % Mn(NO<sub>3</sub>)<sub>2</sub>+6H<sub>2</sub>O 43 659 49 896 % Mn(NO<sub>3</sub>)<sub>2</sub> 1 466 1 558

(Gerlach, Z anal 28 477)

Sp gr of  $Mn(NO_3)_2+Aq$  at room ten containing

18 309 29 602 49 309 % Mn(NO<sub>3</sub>)<sub>2</sub> 1 1482 1 3227 1 5056

(Wagner, W Ann 1883, 18 271)

| Sp gr of Mn(NO <sub>3</sub> ),+Aq at 25°                     |                                      |  |
|--------------------------------------------------------------|--------------------------------------|--|
| Concentration of Mn(NO <sub>3</sub> ) <sub>2</sub> +Aq Sp gr |                                      |  |
| 1-normal 1/2- " 1/4- " 1/8- "                                | 1 0690<br>1 0349<br>1 0174<br>1 0093 |  |

(Wagner, Z phys Ch 1890, 5 39)

Sol in liquid NH; (Guntz, Bull Soc **1909**, (4) **5** 1006)

Very sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 828) +H<sub>2</sub>O Deliquescent (Guntz, Bull Soc

1909 (4) 5 1005)

+3H<sub>2</sub>O From solution in HNO<sub>3</sub> (Schultz-Sellack, Zeit Ch 1870 646)

Solubility in H<sub>2</sub>O Sat solution contains at

27° 29° 30° 34° 35 5° mpt 65 66 66 99 67 38 71 31 76 82% Mn(NO<sub>3</sub>)<sub>2</sub> (Funk, Z anorg 1899, 20 403)

+6H<sub>2</sub>O Melts in its crystal H<sub>2</sub>O at 25 8° and boils at 1294° (Ordway)

Solubility in H<sub>2</sub>O Sat solution contains at

-29° --26° --21° --16° --5°

42 29 43 15 44 30 45 52 48 88% Mn(NO<sub>3</sub>)<sub>2</sub>,

+11° 18° 258° mpt 50 49 54 50 57 33 62 37% Mn(NO<sub>3</sub>)<sub>2</sub>

Cryohydrate is formed at -36° (Funk, Z anorg 1899, 20 403)

Manganous neodymium nitrate,  $3Mn(NO_3)_2$ , 2Nd(NO<sub>8</sub>)<sub>8</sub>+24H<sub>2</sub>O

1 l sat solution in HNO<sub>3</sub>+Aq (sp 1 325) contains 296 g hydrous salt at 16° (Jantsch, Z anorg 1912, 76 303)

Manganous praseodymium nitrate,  $3Mn(NO_3)_2$ ,  $2Pr(NO_3)_3 + 24H_2O_3$ 

l sat solution in HNO<sub>3</sub>+Aq (sp 1 325) contains 23 4 g hydrous salt at 16° (Jantsch)

Manganous samarium nitrate,  $3Mn(NO_3)_2$ ,  $2\text{Sm}(\text{NO}_3)_8 + 24\text{H}_2\text{O}$ 

1 l sat solution in HNO<sub>3</sub>+Aq (sp 1 325) contains 50 04 g hydrous salt at 16° (Jantsch)

Manganous thorium nitrate, MnTh(NO<sub>3</sub>)<sub>6</sub>+  $8H_2O$ 

Ppt (Meyer, Z anorg 1901, 27 388)

Manganous nitrate cupric oxide, Mn(NO<sub>3</sub>)<sub>2</sub>,  $3CuO + 3H_2O$ 

Ppt (Mailhe, C R 1902, 134 234)

Manganous nitrate hydrazine, Mn(NO<sub>3</sub>)<sub>2</sub>, ŽN<sub>2</sub>H<sub>4</sub>

Not decomp by H<sub>2</sub>O (Franzen, Z anorg 1908, **60** 286)

Mercurous nitrate, basic, 2Hg<sub>2</sub>O, N<sub>2</sub>O<sub>5</sub>+  $H_{9}O$ 

Ppt Decomp by boiling with H<sub>2</sub>O (Marignac, A ch (3) 27 332)

Slowly sol in cold, rapidly in hot HCl+Aq, insol in NH<sub>4</sub>Cl, and NH<sub>4</sub>NO<sub>3</sub>+Aq +10H<sub>2</sub>O Slowly sol in normal HNO<sub>3</sub>

(Reuss, Dissert 1886)

4Hg<sub>2</sub>O, 3N<sub>2</sub>O<sub>5</sub>+H<sub>2</sub>O Sol in a small quantity of H<sub>2</sub>O, decomp by a large amt of H<sub>2</sub>O or by warm H<sub>2</sub>O (Rose, Pogg 83 154) Is 3HgO, 2N<sub>2</sub>O<sub>5</sub>+H<sub>2</sub>O according to Ger-

hardt

+5H<sub>2</sub>O (Reuss, Dissert 1886) 5Hg<sub>2</sub>O, 3N<sub>2</sub>O<sub>5</sub>+2H<sub>2</sub>O (Marignac) Is 2Hg<sub>2</sub>O, N<sub>2</sub>O<sub>5</sub>+H<sub>2</sub>O (Lefort, A 56 247) Sol in boiling, less sol in cold H2O (Marignac, lc)

 $+4H_2O$ , and  $+6H_2O$ (Reuss. Dissert 1886)

 $8Hg_2O$ ,  $5N_2O_5+5H_2O$ , and  $+11H_2O$ 

 $11 Hg_2O$ ,  $6N_2O_5 + 25H_2O$ (Reuss)  $16H\tilde{g}_{2}O$ ,  $9\tilde{N}_{2}O_{5}+19\tilde{H}_{2}O$ ,  $+23H_{2}O$ , and (Reuss) +31H<sub>2</sub>O $3Hg_2O, N_2O_5 + 2H_2O$  (Cox, Z anorg 1904,

Mercurous nitrate, HgNO<sub>3</sub>

40 177)

Very sol in liquid NH3 (Franklin, Am

Ch J 1898, **20** 829)
Fairly sol in boiling CS<sub>2</sub> (Arctowski, Z

anorg 1894, 6 257)
Sl sol in benzonitrile (Naumann, B 1914, 47 1369)

Sol in methylamine (Franklin, J Am Chem Soc 1906, 28 1419)

Completely sol in a little warm  $+\mathrm{H}_2\mathrm{O}$ H<sub>2</sub>O, but decomp by more H<sub>2</sub>O Completely sol as acid salt in H2O containing HNO3 (Marignac, A ch (3) 27 332)

Sol in methyl acetate (Naumann, B 1909, 42 3790)

 $+1^{1}/_{3}H_{2}O$ ,  $+1^{1}/_{2}HO$ , etc  $+1^{1}/_{4}H_{2}O$ (Reuss, Dissert 1896)

Mercuric nitrate, basic, 6HgO, N<sub>2</sub>O<sub>5</sub> (?)

Insol in hot H<sub>2</sub>O (Kine)

Decomp to oxide by  $3 \text{HgO}, N_2 \text{O}_5 + \text{H}_2 \text{O}$ washing with cold HO Sol in dil HNO3+ Aq (Millon, A ch (3) 18 361)

2HgO, N2O5+HO SI deliquescent Decomp by H2O, sol in dil HNO3+Aq (Millon)

Decomp by cold HO Deli- $+2H_2O$ Sol in H<sub>2</sub>O containing HNO<sub>3</sub> quescent (Marignac)

(Ditte, J B 1854 366) +3H<sub>2</sub>O

Mercuric nitrate, Hg(NO<sub>3</sub>)<sub>2</sub>

Very sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 829)

Neither dissolved nor attacked by liquid NO<sub>2</sub> (Frankland, Chem Soc 1901, **79** 1361)

Sol in benzonitrile (Naumann, B 1914, 47 1369)

Sol in acetone (Naumann, B 1904, 37 4328)

Difficultly sol in ethyl acetate (Naumann, B 1910, 43 314)

Sol in methylal (Eidmann, C C 1899

II, 1014)  $+\frac{1}{2}H_2O$  Deliquescent Very sol in a little  $H_2O$   $H_2O$  precipitates basic salt from conc  $Hg(NO_3) + Aq$  Insol in alcohol Decomp by ether (Millon)

+H<sub>2</sub>O Extraordinarily sol in H<sub>2</sub>O (Cox, Z anorg 1904, 40 159) +8H<sub>2</sub>O Melts at 6° in crystal H<sub>2</sub>O

(Ditte)

Mercuromercuric nitrate, Hg<sub>2</sub>O, 2HgO, N<sub>2</sub>O<sub>5</sub> Boiling H<sub>2</sub>O gradually dissolves out Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>, and leaves residue of HgO and Hg (Brooks, Pogg 66 63) 2Hg<sub>2</sub>O, HgO, N<sub>2</sub>O<sub>5</sub>+H<sub>2</sub>O (Rây, Chem Soc 1905, 87 175) Hg<sub>2</sub>O, 2HgO, N<sub>2</sub>O<sub>5</sub>+H<sub>2</sub>O (Rây)

Mercurous hydrogen nitrate,  $4 \text{HgNO}_3$ ,  $4 \text{HgNO}_4$   $+ 8 \text{HgNO}_2$ 

(Reuss, Dissert 1886) 5 $HgNO_3$ ,  $3HNO_3+26H_2O$  (Reuss)

Mercuric silver nitrate, Hg(NO<sub>3</sub>)<sub>2</sub>, 2AgNO<sub>3</sub> Easily sol in H<sub>2</sub>O without decomp (Berzelius)

Mercurous strontium nitrate, 2SrO,  $2Hg_2O$ ,  $3N_2O_5$ 

Decomp by H<sub>2</sub>O Much more sol in H<sub>2</sub>O than the corresponding Ba compound

Readily sol in warm dil HNO<sub>3</sub>+Aq or Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>+Aq without decomposition (Stadeler, A 87 131)

Mercurous thallous nutrate, HgNO<sub>3</sub>, TlNO<sub>3</sub> Miscible with H<sub>2</sub>O (Retgers, N Jahrb Miner, **1896** II, 183)

Mercuric nitrate bromide, Hg(NO<sub>3</sub>)<sub>2</sub>, HgBr<sub>2</sub> (Morse, Z phys Ch 1902, **41** 733)

Mercuric nitrate cadmium oxide, Hg(NO<sub>3</sub>)<sub>2</sub>, CdO+2H<sub>2</sub>O

Ppt (Mailhe, Bull Soc 1901, (3) 25 788)  $+3H_2O$  Decomp by  $H_2O$  (Mailhe)

Mercuric nitrate cobaltous oxide, Hg(NO<sub>3</sub>)<sub>2</sub>, CoO+3H<sub>2</sub>O

Ppt (Mailhe, C R 1901, **132** 1275)  $+4H_2O$  Decomp by  $H_2O$  (Mailhe, A ch 1902, (7) **27** 369)

Mercuric nitrate cupric oxide, Hg(NO<sub>3</sub>) CuO+2H<sub>2</sub>O, and +4H<sub>2</sub>O

(Mailhe, Bull Soc 1901, (3) **25** 791) +5H<sub>2</sub>O Decomp by H<sub>2</sub>O (Mailhe, A ch 1902, (7) **27** 365)

Mercuric nitrate cyanide, Hg(NO<sub>3</sub>)<sub>2</sub>, Hg(CN)<sub>2</sub>

Very sol in H<sub>2</sub>O Very sol in methyl a cohol and solution is not decomp at bp Ethyl alcohol apparently decomp it (Prusia, Gazz ch it 1898, 28 (2) 115)

Mercurous nitrate hydrazine, 2HgNO<sub>3</sub>, N<sub>2</sub>H Decomp by H<sub>2</sub>O Stable in dil HNO<sub>3</sub> Aq solution (Hofmann and Marburg, 1 1899, **305** 215)

Ppt, very unstable (Hofmann, B 189' 30 2021)

Hg(NÓ<sub>3</sub>)<sub>2</sub>, N<sub>2</sub>H<sub>4</sub> Sol in dil HCl an HNO<sub>3</sub> (Hofmann and Marburg, A 189' **305** 215)

Ppt, sol in acids, decomp by alkal (Hofmann, B 1897, 30 2021)

Mercuric nitrate iodide, Hg(NO<sub>3</sub>)<sub>2</sub>, 2HgI<sub>2</sub>
Decomp by long boiling with H<sub>2</sub>O (Rigel, Jahrb Pharm 11 396)

2Hg(NO<sub>3</sub>)<sub>2</sub>, 3HgI<sub>2</sub> Easily decomp b H<sub>2</sub>O, less easily by alcohol or ether (Riegel Hg(NO<sub>3</sub>)<sub>2</sub>, HgI<sub>2</sub> Decomp very quickl by HNO<sub>3</sub>+Aq or alcohol of 0814 sp g (Souville, J Pharm 26 474)

Mercuric nitrate manganous oxide, Hg(NO<sub>3</sub>) MnO+2H<sub>2</sub>O

+4H<sub>2</sub>O (Mailhe, A ch 1902, (7) 2, 370)

Mercuric nitrate nickel oxide,  $Hg(NO_3)_2$ ,  $N_1$ '  $+2H_2O$ 

(Mailhe, Bull Soc 1901, (3) **25** 788) +4H<sub>2</sub>O Decomp by H<sub>2</sub>O (Mulhe, Act 1902, (7) **27** 369)

Mercurous nitrate phosphate, HgNO<sub>3</sub>, Hg<sub>3</sub>PO<sub>4</sub>+H O

Insol in H<sub>2</sub>O, but decomp by boiling ther with Insol in H<sub>3</sub>PO<sub>4</sub>+Aq or alcohol Conpletely sol in hot NH<sub>4</sub>Cl+Aq Decomp b cold KOH+Aq, and warm K<sub>2</sub>CO<sub>3</sub>+A<sub>4</sub> (Wittstein)

2HgNO<sub>8</sub>, Hg<sub>2</sub>O, 5Hg<sub>3</sub>PO<sub>4</sub>+H<sub>2</sub>O (Haacl A **262** 192)

Mercuric nitrate silver bromide, Hg(NO<sub>3</sub>) AgBr (Morse, Z phys Ch 1902, **41** 733) Mercuric nutrate silver cyanide, basıc, Hg(OH)NO<sub>3</sub>, AgCN+2H<sub>2</sub>O

(Schmidt, Z anorg 1895, 9 431)

 $\dot{H}g(OH)\dot{N}O_3$ ,  $5\bar{A}g_2O$ ,  $20AgC\dot{N}+7H_2O$ (Schmidt)

Mercuric nitrate silver iodide, Hg(NO<sub>3</sub>)<sub>2</sub>,  $2AgI + \frac{1}{2}H_2O$ 

Decomp by H<sub>2</sub>O (Preuss, A 29 328)

Mercuric nitrate sulphide, Hg(NO<sub>3</sub>)<sub>2</sub>, 2HgS Very sl sol in hot  $H_2O$  Insol in  $HNO_3+$ Decomp by hot H2SO4 or aqua regia, also by hot HCl+Aq (Barfoed, J pr 93 230)

Sol in aqua regia (Denigès, Bull Soc

1915, (4) **17** 355)  $2Hg(NO_3)_2$ , HgO,  $6HgS+12H_2O$ Insol in H<sub>2</sub>O, and HNO<sub>3</sub>+Aq of 12 sp gr (Gramp, J pr (2) 14 299)

Mercuric nitrate zinc oxide, Hg(NO<sub>3</sub>)<sub>2</sub>, ZnO+  $H_2O$ 

Decomp by H<sub>2</sub>O (Mailhe, C R 1901, **132** 1274)

Molybdenum nitrate, Mo<sub>2</sub>O<sub>8</sub>, N<sub>2</sub>O<sub>5</sub> (?) Sol in dil  $HNO_3+Aq$  (Berzelius) MoO<sub>2</sub>, 2N<sub>2</sub>O<sub>5</sub> (?) Sol in dil HNO<sub>3</sub>+Aq

Neodymum nickel nitrate, 2Nd(NO<sub>8</sub>)<sub>8</sub>,  $3N_1(NO_3)_2 + 24H_2O$ 

1 l sat solution in HNO<sub>3</sub>+Aq (sp g 1 325) contains 116 6 g hydrous salt at 16° (Jantsch. Z aport 1019 72 200 (Jantsch, Z anorg 1912, 76 303)

Neodymium rubidium nitrate, [Nd(NO<sub>3</sub>)<sub>5</sub>]Rb<sub>2</sub> +4H<sub>2</sub>O

(Jantsch, Z anorg 1911, Hydroscopic **69** 230)

Neodymium zinc nitrate, 2Nd(NO<sub>3</sub>)<sub>3</sub>,  $3Zn(NO_3)_2+24H_2O$ 

1 1 sat solution in HNO<sub>3</sub>+Aq (sp gr 1 325) contains 177 g hydrous salt at 16° (Jantsch)

Nickel nitrate, basic

(Berzelius)

(Proust) Insol in H<sub>2</sub>O

SN1O, 2N2O5+5H2O Insol in cold or hot

H O (Habermann, M 5 432)
5N<sub>1</sub>O, N<sub>2</sub>O<sub>5</sub>+4H<sub>2</sub>O Not decomp by boiling H<sub>2</sub>O (Rousseau and Tite, C R 114 1184)

Nickel nitrate, Ni(NO<sub>3</sub>)<sub>2</sub>

See +3, 6, and  $9H_2O$ Solubility in H<sub>2</sub>O Sp gr of aqueous solution at 17 5° containıng

 $20 \% N_1(NO_3)_2$ 1 1935 1 1375 1 0903 1 0463

% N1(NO<sub>3</sub>)<sub>2</sub> 35 40 30 1 3193 1 3896 1 4667 1 2534

(Franz, J pr (2) 5 295)

gr of N1(NO<sub>3</sub>)<sub>2</sub>+Aq containing g N1(NO<sub>3</sub>)<sub>2</sub> (anhydrous) in 1000 g H<sub>2</sub>O at 24 4°  $91.5g = \frac{1}{2} \mod 1183 274.5 369 460.5 549$ 10731 141 1 205 1 266 1 324 1 378

(Gerlach, Z anal 28 468) Sp gr of  $N_1(NO_3)_2 + Aq$  at room temp containing

40 953% N1(NO<sub>3</sub>)<sub>2</sub> 16 493 30 006 1 1363 1 2776 1 3879

(Wagner, W Ann 1883, 18 269)

Sp gr of N1(NO<sub>8</sub>)<sub>2</sub>+Aq at 25°

| Concentration of N1(NO <sub>3</sub> ) <sub>2</sub> +Aq | Sp gr                                |
|--------------------------------------------------------|--------------------------------------|
| 1-normal 1/2- " 1/4- " 1/8- "                          | 1 0755<br>1 0381<br>1 0192<br>1 0096 |

(Wagner, Z phys Ch 1890, 5 39)

Sp gr at 20° of N1(NO<sub>3</sub>)<sub>2</sub>+Aq containing M g mols of salt per liter

M 0 01 0.0250.05Sp gr 1 001521 1 003882 1 007792 1 011541

M 0.2505 0 75 01

Sp gr 1 015307 1 03837 1 07611 1 11310 20

Sp gr 1 14562 1 22134 1 29459

(Jones and Pearce, Am Ch J 1907, **38** 720)

(Guntz, Bull Soc Sol in liquid NH<sub>3</sub> 1909 (4) 5 1008) Moderately sol in liquid NH<sub>3</sub> (Franklin,

Am Ch J 1898, 20 828) (de Coninck,

Solubility in glycol = 7.5%C C 1905, II 1234)

Insol in benzonitrile (Naumann, B 1914, **47** 1370

+3H<sub>2</sub>O Solubility in H<sub>2</sub>O Sat solution contains at

70°  $64^{\circ}$ 58° 60°

61 61 61 99 62 76 63 95% N<sub>1</sub>(NO<sub>3</sub>)<sub>2</sub>,

90° 95° mpt 70 16 77 12% N1(NO<sub>3</sub>)<sub>2</sub>

(Funk, Z anorg 1899, 20 411)

+6H<sub>2</sub>O Not deliquescent in dry air Sol in 2 pts cold H2O and in alcohol (Tupputi) Mpt of  $N_1(NO_3)_2 + 6H_2O = 56 \, 7^{\circ}$  (Ordway, Tilden, Chem Soc 45 409)

Sat solution boils at 136 7° (Ordway)

Solubility in H<sub>2</sub>O Sat solution contains at

—12 5° ---10° ---6° -21° 43 00% N1(NO<sub>3</sub>)<sub>2</sub>, 41 59 42 11 39 94

41° 56 7° mpt  $+20^{\circ}$ 0° 55 22 62 76% N<sub>1</sub>(NO<sub>3</sub>)<sub>2</sub> 44 32 49 06

(Funk, Z anorg 1899, 20 410)

Sat solution of N1(NO<sub>8</sub>)<sub>2</sub>+6H<sub>2</sub>O contains 44 3% N1(NO<sub>3</sub>)<sub>2</sub> at 0°, and 48 7% N1(NO<sub>3</sub>)<sub>2</sub> at 18° (Mylnus, Z anorg 1912, 74 411) Sp gr of N<sub>1</sub>(NO<sub>3</sub>)<sub>2</sub>+Aq containing in 1000 g H<sub>2</sub>O at 24 4°, g N<sub>1</sub>(NO<sub>3</sub>)<sub>2</sub>+6H<sub>2</sub>O  $1455g (= \frac{1}{2} \text{ mol}) 291$ 436 5 582 12241 179 1 069

> 1018 5 1164 873 727.51 329 1 357 1 299 1 264 (Gerlach, Z anal 28 468)

Sol in NH<sub>4</sub>OH+Aq Insol in absolute alcohol SI sol in acetone (Krug and M'Elroy) Difficultly sol in methyl acetate (Naumann, B 1909, 42 3790)

(Naumann, B Insol in ethyl acetate 1910, **43** 314) +9H<sub>2</sub>O Solubility in H<sub>2</sub>O

Sat solution contains at –23° ---21° -10 5°

44 13% N1(NO<sub>3</sub>)<sub>2</sub> 39 48 39 02

Cryohydrate is formed at -27° (Funk, Z anorg 1899, 20 411)

M alai presendymum nitrate, 3Ni(NO<sub>8</sub>)<sub>2</sub>,  $_{3})_{3}+24H_{2}O$ 

tains 9 28 g hydrous salt at 16° Z anorg 1012 70 000 salt solution in HNO<sub>3</sub>+Aq (sp uch, Z anorg 1912, 76 303)

Nickel samarium nitrate, 3Ni(NO<sub>3</sub>)<sub>2</sub>,  $2Sm(NO_s)_s + 24H_2O$ 

1 l sat solution in HNO<sub>8</sub>+Aq (sp 1 325) contains 29 11 g hydrous salt at 16° (Jantsch)

Nickel thorium nitrate, NiTh(NO<sub>2</sub>)<sub>6</sub>+8H<sub>2</sub>O Sol in HNO<sub>3</sub>+Aq (Meyer, Z anoig 1901, 27 387)

Nickel uranyl nitrate, 10N1(NO<sub>3</sub>)<sub>2</sub>,  $3(\mathrm{UO_2})(\mathrm{NO_3})_2$ 

Sol in H<sub>2</sub>O and acids, insol in aq alkalı (Lancien, C C 1912, I 208)

Nickel nitrate ammonia, Ni(NO<sub>3</sub>)<sub>2</sub>, 4NH<sub>3</sub>+  $2H_2O$ 

Easily sol in cold H<sub>2</sub>O, oiling Insol in alcohol Efflorescent decomp by boiling (Erdmann, J pr 97 395, Ephraim, B 1913, **46** 3106)

 $+1\frac{1}{2}H_2O$  (André, C R 106 936)

Nickel nitrate chloride ammonia,  $6N_1(NO_3)_2$ ,  $N_1Cl_2$ ,  $30NH_3+16H_2O$ 

Sol in H<sub>2</sub>O with decomp (Schwarz, W A B 1850 272)

Nickel nitrate cupric oxide, Ni(NO<sub>3</sub>)<sub>2</sub>, 3CuO+  $3H_2O$ 

Ppt (Maihle, C R 1902, 134 234)

Nickel nitrate hydrazine, N1(NO<sub>3</sub>)<sub>2</sub>, 3N<sub>2</sub>H Insol in H<sub>2</sub>O Decomp by hot H Easily sol in dil acids (Franzen, Z anc, 1908, 60 267)

Palladium nitrate, basic,  $Pd(NO_3)_2$ , 3F )  $+4H_2O$ 

Ppt Insol in H<sub>2</sub>O (Kane)

Palladium nitrate,  $Pd(NO_3)_2 + xH_2O$ 

Very deliquescent, and sol in H<sub>2</sub>O comp by much H<sub>2</sub>O or alcohol (Kane) Decomp by cold or hot H<sub>2</sub>O (Rose, A 143)

Platinic nitrate,  $Pt(NO_3)_4$  (?)

Known only in solution, which is deco p on evaporating (Berzelius)

Pt(NO<sub>3</sub>)<sub>2</sub>, 3PtO<sub>2</sub>+5H<sub>2</sub>O (Prost, Bull Soc (2) **46** 156) Insol in F )

Platinum nitrate sulphocarbamide, Pt(N( )2  $4CS(NH_2)_2$ 

Very sol in H<sub>2</sub>O Unstable (Kurnol w, J pr 1894, (2) **50** 490)

Potassium nitrate, KNO<sub>3</sub>

Not deliquescent, but, according to Mul 100 pts KNO<sub>3</sub> under a bell jar with H<sub>2</sub>O up 339 pts  $H_2O$  in 22 days, and small amo its finally deliquesce completely

Sol in H<sub>2</sub>O with absorption of heat 16 pts KNO<sub>3</sub>+100 pts H<sub>2</sub>O at 13 2° le the temperature 10 2° If the initial tem er 23° it falls to 12 8°, if 0° it does not fall b —27°, which is the freezing-point of DW mixture (Rudorff, Pogg 136 276)

KNO<sub>3</sub>+Aq sat at 181 has 1 1601 sp gr and tams 22 72% KNO<sub>3</sub> or 100 pts H<sub>2</sub>O at 18 1° di 29 45 pts KNO<sub>3</sub> (Karsten 1841)

Sol m 3 745 pts H<sub>2</sub>O at 15° (Cerlach) on

Sol in 3 pts H2O at 21 (Schiff A 109 326) ınc solution has 1 1683 sp gr Sol in 3 pts cold and 0.5 pt boiling H O (

eroy)
KNO<sub>3</sub>+Ag sat at 18 has sp. r. 1 1.1 and co.
21 63% KNO<sub>3</sub> or 100 pts H<sub>2</sub>O dissolve 27 60
KNO<sub>3</sub> at 18° T pts

Sol in 4 pts H2O at 10 and 0 2 pt at b pt Rıf

fault) 100 pts H<sub>2</sub>O at 114 o dissolve 284 61 pts (Crif Sol in 7 pts cold and 1 pt boiling H<sub>2</sub>() mann)

Sol in 6 15 pts cold H<sub>2</sub>O at 187, (Abl.)
100 pts H<sub>2</sub>O at 15 5 dissolve 26 6 pts at 106
s (Ure s Dictionary) 100

pts (Ure's Dictionary) KNO3+Aq sat at 10° (ontains 33 3/<sub>0</sub> (1 KNO3+Aq sat in the cold contains 2)<sub>70</sub>

OUL

croy) KNO<sub>3</sub>+Aq sat at 125 contains 248% (H sen

Solubility of KNO<sub>3</sub> in 100 pts H<sub>2</sub>O

| t°                                | Pts KNO3                             | t                                         | I ts ]                   | 102                   |
|-----------------------------------|--------------------------------------|-------------------------------------------|--------------------------|-----------------------|
| 0<br>5<br>11 67<br>17 91<br>24 94 | 13 2<br>16 7<br>22 2<br>29 3<br>38 4 | 45 10<br>54 72<br>65 45<br>79 72<br>97 66 | 7<br>9<br>12<br>16<br>23 | 7<br>1<br>5<br>2<br>4 |

(Gay-Lussac, A ch 11 314)

Solubility of KNO<sub>3</sub> in 100 pts H<sub>2</sub>O at to

| t°                 | Pts KNO <sub>3</sub> |
|--------------------|----------------------|
| 16 0<br>29<br>44 2 | 26 7<br>43 5<br>71 4 |

(Nordenskjold, Pogg 136 312)

 $100 \text{ pts } \text{H}_2\text{O} \text{ dissolve at} \\ 10^{\circ} 18^{\circ} 27^{\circ} 41^{\circ} 53^{\circ} \\ 21 2 27 9 40 1 66 3 93 3 \text{ pts } \text{KNO}_3 \\ \text{(Gerardin, A ch (4) 5 150)}$ 

100 pts  $KNO_3+Aq$  sat at 14° contain 16 34 pts  $KNO_3$ , at 15°, 18 81 pts  $KNO_3$  (v Hauer, J pr 98 177)

100 pts H<sub>2</sub>O dissolve at 4° 16 3° 68 3° 16 27 2 132 1 pts KNO<sub>3</sub> (Andreae, J pr (2) 29 456)

| Solubility in 100 pts H <sub>2</sub> O at t°                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t°                                                                                                                                                                                                                                                                                                      | Pts<br>KNO3                                                                                                                                                                                                                                  | t°                                                                                                                                                                         | Pts<br>KNO <sub>3</sub>                                                                                                                                                                                                   | t°                                                                                                                | Pts<br>KNO <sub>3</sub>                                                                                                                                                                                 |
| 0<br>1<br>1<br>2<br>3<br>4<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>14<br>15<br>16<br>17<br>18<br>19<br>19<br>20<br>21<br>22<br>22<br>23<br>24<br>22<br>25<br>26<br>27<br>28<br>29<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 13 3<br>13 8<br>14 6<br>15 5<br>16 4<br>17 8<br>18 5<br>19 3<br>20 2<br>21 1<br>22 0<br>23 0<br>24 0<br>25 0<br>26 0<br>27 0<br>28 1<br>29 1<br>29 1<br>30 2<br>31 2<br>31 2<br>32 3<br>33 5<br>34 0<br>40 4<br>42 9<br>44 5<br>48 5<br>48 5 | 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>50<br>51<br>52<br>53<br>54<br>55<br>57<br>58<br>60<br>61<br>62<br>63<br>64<br>66<br>67<br>68<br>69<br>70<br>71<br>72 | 62<br>64<br>66<br>68<br>70<br>72<br>74<br>76<br>78<br>81<br>83<br>86<br>88<br>91<br>93<br>96<br>98<br>101<br>103<br>106<br>108<br>111<br>113<br>116<br>119<br>121<br>124<br>127<br>130<br>133<br>136<br>139<br>142<br>146 | 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | 165<br>168<br>172<br>175<br>182<br>185<br>189<br>192<br>208<br>206<br>210<br>214<br>218<br>222<br>226<br>230<br>234<br>247<br>252<br>252<br>261<br>266<br>272<br>278<br>284<br>289<br>295<br>307<br>313 |
| 27<br>28<br>29<br>30<br>31<br>32                                                                                                                                                                                                                                                                        | 40 0<br>41 4<br>42 9<br>44 5<br>46 0<br>48                                                                                                                                                                                                   | 66<br>67<br>68<br>69<br>70<br>71                                                                                                                                           | 127<br>130<br>133<br>136<br>139<br>142                                                                                                                                                                                    | 105<br>106<br>107<br>108<br>109<br>110                                                                            | 272<br>278<br>284<br>289<br>295<br>301<br>307                                                                                                                                                           |

(Mulder, Scheik Verhandel 1864 89)

100 pts  $\rm H_2O$  dissolve 493 pts KNO<sub>3</sub> at 125° (Tilden and Shenstone, Phil Trans 1884 23)

Rhombohedral KNO<sub>3</sub> is more easily soluble than the prismatic, and easily forms supersaturated solutions (Frankenheim)

Sat KNO<sub>3</sub>+Aq contains at

139° 158° 160° 175° 180°

798 837 839 840 842% KNO3

190° 215° 225° 258° 283°

86 0 89 0 90 4 91 6 96 5% KNO<sub>3</sub> (Étard, A ch 1894, (7) **2** 526)

Solubility in 100 pts H<sub>2</sub>O at t°

| t°                                                      | G LNO₃                                                         | Sp gr t°/4°                                                        |
|---------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|
| 0 40<br>14 90<br>30 80<br>44 75<br>60 05<br>76<br>91 65 | 13 43<br>25 78<br>47 52<br>74 50<br>111 18<br>156 61<br>210 20 | 1 0817<br>1 1389<br>1 2218<br>1 3043<br>1 3903<br>1 4700<br>1 5394 |
| 114*                                                    | 311 64                                                         | 1 6269                                                             |

\*B-pt of sat solution (Berkeley, Phil Trans 1904, **203**, A 189)

100 g H<sub>2</sub>O dissolve 37 79 g KNO<sub>3</sub> at 25° 100 g H<sub>2</sub>O dissolve 308 g equiv KNO<sub>3</sub> at 20°, 327 at 215° (Euler, Z phys Ch 1904, 49 312)

1 l H<sub>2</sub>O dissolves 384 48 g KNO<sub>3</sub> at 25° (Armstrong and Eyre, Proc Roy Soc 1910,

A, 84 123)
11 sat KNO<sub>3</sub>+Aq contains 28 g mols
KNO<sub>3</sub> (Rosenherm and Weinheber, Z

anorg 1911, **69** 263) 100 g H<sub>2</sub>O dissolve 38 485 g KNO<sub>3</sub> at 25° (Haigh, J Am Chem Soc 1912, **34** 1148)

Sat KNO<sub>3</sub>+Aq contains at 50° 58° 62° 68°

50 55 62 68 46 39 51 55 53 64 57 04% KNO<sub>3</sub> (Tschugaeff, Z anorg 1914, **86** 160)

Solubility in H<sub>2</sub>O

100 g of the sat solution contain at

91° 211° 35° 1676 2477 3501 g KNO<sub>3</sub>

(Findlay, Chem Soc 1914, **105** 780)

Sp gr of solution sat at  $15^{\circ}=1$  134 (Michel and Krafft)

Sp gr of solution sat at 16°=1 138 (Stolba, J pr 97 503)

Sp gr of solution sat at 18° = 1 1601, and contains 29 45% KNO<sub>3</sub> (Karsten)

Sp gr of KNO<sub>3</sub>+Aq at 19 5°

| % KNO3                   | Sp gr                      | % KNO3           | Sp gr            |
|--------------------------|----------------------------|------------------|------------------|
| 4 871<br>9 618<br>14 044 | 1 0307<br>1 0618<br>1 0920 | 17 965<br>21 488 | 1 1198<br>1 1457 |

(Kremers, Pogg 95 120)

| Sp gr of KNO <sub>8</sub> +Aq at 21°                        |                                                                                                                      |                                                                            |                                                                                                                      |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| % KNO3                                                      | Sp gr                                                                                                                | % KNO3                                                                     | Sp gr                                                                                                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 1 0058<br>1 0118<br>1 0178<br>1 0239<br>1 0300<br>1 0363<br>1 0425<br>1 0490<br>1 0555<br>1 0621<br>1 0686<br>1 0752 | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>22<br>23<br>24 | 1 0819<br>1 0887<br>1 0956<br>1 1026<br>1 1097<br>1 1169<br>1 1242<br>1 1316<br>1 1390<br>1 1464<br>1 1538<br>1 1613 |

(Schiff, A 110 75)

Sp gr of KNO<sub>3</sub>+Aq at 15°

|                                             | ip gr %                                                              | KNO3                                                                      | Sp gr                                                                                  |
|---------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1 1                                         |                                                                      |                                                                           |                                                                                        |
| 2 1<br>3 4<br>5 6 1<br>7 8 1<br>9 1<br>10 1 | 01283<br>01924<br>02566<br>03207<br>03870<br>04534<br>05197<br>05861 | 12 1<br>13 1<br>14 1<br>15 1<br>16 1<br>17 1<br>18 1<br>19 1<br>20 1<br>1 | 07905<br>08596<br>09286<br>09277<br>10701<br>11426<br>12150<br>12875<br>13599<br>14361 |
|                                             |                                                                      | 21   1                                                                    | 14361                                                                                  |
|                                             |                                                                      |                                                                           |                                                                                        |

(Gerlach, Z anal 8 286)

Sp gr of KNO<sub>3</sub>+Aq at 17 5°

| KNO:                            | Sp gr                                                       | KNO:                                 | Sp gr                                                       | KNO2                             | Sp gr                                              |
|---------------------------------|-------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|----------------------------------|----------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 1 006<br>1 012<br>1 019<br>1 025<br>1 032<br>1 038<br>1 045 | 8<br>9<br>10<br>11<br>12<br>13<br>14 | 1 051<br>1 058<br>1 065<br>1 072<br>1 078<br>1 085<br>1 092 | 15<br>16<br>17<br>18<br>19<br>20 | 1 099<br>1 106<br>1 113<br>1 120<br>1 127<br>1 134 |

(Hager, Comm 1883)

Sp gr of KNO<sub>3</sub>+Aq at 18°

|                    |                           |          | _              |
|--------------------|---------------------------|----------|----------------|
| % KNO <sub>8</sub> | Sp gr                     | % KNO3   | Sp gr          |
| 5<br>10<br>15      | 1 0305<br>1 0632<br>1 097 | 20<br>22 | 1 133<br>1 148 |

(Kohlrausch, W Ann 1879 1)

Sp gr of KNO<sub>3</sub>+Aq at 20°, containing mols KNO<sub>3</sub> in 100 mols H<sub>2</sub>O

| Mols<br>KNOs                                      | Sp gr                         | Mols<br>KNO3 | Sp gr              |
|---------------------------------------------------|-------------------------------|--------------|--------------------|
| $\begin{smallmatrix}0&5\\&1\\2&\end{smallmatrix}$ | 1 01730<br>1 03373<br>1 06524 | 4<br>5       | 1 12264<br>1 14888 |

(Nicol, Phil Mag (5) 16 122)

Sp gr of KNO<sub>3</sub>+Aq at 25°

| Concentration of KNOs+Aq            | Sp gr                                |
|-------------------------------------|--------------------------------------|
| 1-normal  1/2- ''  1/4- ''  1/8- '' | 1 0605<br>1 0305<br>1 0161<br>1 0075 |

(Wagner, Z phys Ch 1890, 5 37)

Sp gr of KNO<sub>3</sub>+Aq at 20 1°

p=per cent strength of solution, d = - served density, w=volume conc in grass per cc  $\left(\frac{pd}{pq} = w\right)$ 

| р     | d      | w       |
|-------|--------|---------|
| 25 54 | 1 1783 | 0 30095 |
| 21 95 | 1 1510 | 0 25270 |
| 17 88 | 1 1200 | 0 20033 |
| 13 93 | 1 0913 | 0 15203 |
| 8 706 | 1 0553 | 0 09186 |
| 5 393 | 1 0331 | 0 05571 |
| 4 389 | 1 0264 | 0 04506 |
| 2 848 | 1 0165 | 0 02895 |
| 2 030 | 1 0113 | 0 02053 |
| 0 741 | 1 0030 | 0 00743 |

(Barnes, J Phys Chem 1898, 2 544)

Sp gr 20 $^{\circ}$ /4 $^{\circ}$  of a normal solution of K1 ); =1 05954, of a 0 5 normal solution = 1 029  $^{\circ}$  (Haigh, J Am Chem Soc 1912, **34** 1151

Sp gr of sat KNO3+Aq at t°

| t°                                          | G kNO <sub>3</sub> sol in 100 g H <sub>2</sub> O                       | Sp Kr                                                       |
|---------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70 | 13 27<br>20 89<br>31 59<br>45 85<br>63 90<br>85 51<br>109 00<br>138 00 | 1 054<br>1 120<br>1 161<br>1 212<br>1 282<br>1 339<br>1 403 |

(Tschernaj, J Russ Phys Chem Soc 1 2, 44 1565)

The saturated solution boils at 114 1° (N ilder), 114 5° (Griffiths), 115 9° (Legrand, (rardin), 117° (Magnus), 118° (Kremers), 6° (Le Page)

The saturated solution forms a crus 111°, and boils at 115°, highest temp served, 115 3° (Gerlach, Z anal 26 426

B-pt of KNO+Aq containing pts KNO<sub>8</sub> to 100 pts H<sub>2</sub>O G=according to Gerlach (Z anal 26 444), L=according to Legrand (A ch (2) 52 426)

| B pt                                                                    | G                                                                      | L                                            | B pt                                       | G                                                                | L                                                                                      |
|-------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 100 5°<br>101 5<br>102 5<br>102 5<br>103 5<br>104 5<br>104 5<br>105 106 | 7 5<br>15 2<br>23<br>31<br>39<br>47 5<br>56<br>64 5<br>73<br>82<br>101 | 12 2<br>26 4<br>42 2<br>59 6<br>78 3<br>98 2 | 107° 108 109 110 111 112 113 114 115 115 9 | 120 5<br>141 5<br>164 188 5<br>215<br>243<br>274<br>306<br>338 5 | 119 0<br>140 6<br>163 0<br>185 9<br>209 2<br>233 0<br>257 6<br>283 3<br>310 2<br>335 1 |

1 pt KNO $_3$  dissolves in 1 4 pts HNO $_3$ , at 20° in 3 8 pts , and at 123° in 1 pt HNO $_3$ +Aq of 1 423 sp gr (Composition  $2HNO_3$ ,  $3H_2O$ ) (Schultz, Zeit Ch (2) 5 531)

### Solubility of KNO<sub>3</sub> in HNO<sub>3</sub> at 0°

| G per 100                                                        | Sp gr                                                             |                                                             |
|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|
| KNO <sub>3</sub>                                                 | KNO <sub>8</sub> HNO <sub>8</sub>                                 |                                                             |
| 12 65<br>10 02<br>8 38<br>7 49<br>7 49<br>7 68<br>10 42<br>28 64 | 0 00<br>3 71<br>8 38<br>13 58<br>19 47<br>30 04<br>42 86<br>75 95 | 1 079<br>1 093<br>1 117<br>1 144<br>1 202<br>1 289<br>1 498 |

(Engel, C R, 1887, 104 913)

## Salubility in HNO. + Ac

| Solubility in HNO₃+Aq                             |                 |                                                                               |  |  |
|---------------------------------------------------|-----------------|-------------------------------------------------------------------------------|--|--|
| Solution<br>temp                                  | % by wt<br>KNO3 | Solid phase                                                                   |  |  |
| <u>6°</u>                                         | 24 4            | KNO <sub>3</sub> , 2HNO <sub>3</sub> (solution in HNO <sub>3</sub> ) (stable) |  |  |
| +14.0                                             | 32 6            | "                                                                             |  |  |
| $\begin{array}{c} 17 \ 0 \\ 19 \ 5 \end{array}$   | 34 8<br>37 2    | u u                                                                           |  |  |
| 22 0                                              | 44 5            | (mpt)                                                                         |  |  |
| 21 5                                              | 47 8            | (Solution in KNO <sub>3</sub> ) (labile)                                      |  |  |
| $\frac{21}{20}$                                   | 48 6            | ı.                                                                            |  |  |
| $-{}^{20}_{4}{}^{0}$                              | 50 9<br>37 2    | KNO3, HNO3 (labile)                                                           |  |  |
| +16.5                                             | 44 5            | 11103, 111                                                                    |  |  |
| 22 5                                              | 47 2            | (stable)                                                                      |  |  |
| 23 5                                              | 47 8            | 1                                                                             |  |  |
| $\frac{25}{25}$                                   | 48 6            | "                                                                             |  |  |
| $\begin{array}{ccc} 27 & 0 \\ 29 & 0 \end{array}$ | 49 4<br>50 1    | (labile)                                                                      |  |  |
| 30 5                                              | 50 9            | (20,7-5)                                                                      |  |  |
| $2\overset{\circ}{1}\overset{\circ}{0}$           | 49 4            | KNO <sub>3</sub> (labile)                                                     |  |  |
| 39 0                                              | 50 9            | (stable)                                                                      |  |  |
| 50 O                                              | 51 7            | · ·                                                                           |  |  |

(Groschuff, Z anorg 1904, 40 10)

Sol in sat NH<sub>4</sub>Cl+Aq Solution thus obtained contains 43 07 pts mixed salts, or 100 pts H<sub>2</sub>O dissolve 75 66 pts mixed salts, viz 38 62 pts KNO3 and 39 84 pts NH4Cl (Karsten) See also under NH4Cl

Solubility of KNO<sub>3</sub>+K<sub>2</sub>CO<sub>3</sub> and KHCO<sub>3</sub> in H<sub>2</sub>O, see under K<sub>2</sub>CO<sub>3</sub> and KHCO<sub>3</sub>

Sol in sat BaCl<sub>2</sub>+Aq with pptn Ba(NO<sub>3</sub>)<sub>2</sub>

Sol in sat NH4NO3+Aq, at first without pptn, but afterwards NH4NO3 is pptd (Karsten)

Sol in NH<sub>4</sub>NO<sub>3</sub>+Aq with pptn NH<sub>4</sub>NO<sub>3</sub> (Rudorff, B 6 485) See also under NH<sub>4</sub>NO<sub>3</sub>

Sol m sat Ba(NO<sub>3</sub>)<sub>2</sub>+Aq, but soon a double salt separates (Karsten)

See also under Ba(NO<sub>3</sub>)<sub>2</sub> (Longchamp) Sol in Ca(NO<sub>3</sub>)<sub>2</sub>+Aq

See also under Ca(NO<sub>2</sub>)<sub>2</sub> Sol in sat Pb(NO<sub>8</sub>)<sub>2</sub>+Aq without pptn

100 pts H<sub>2</sub>O dissolve 119 6 pts Pb(NO<sub>2</sub>)<sub>2</sub> and 67 1 pts KNO<sub>3</sub> at 21 2° (Rudorff, B 6 484) See also under Pb(NO<sub>8</sub>)<sub>2</sub>

### Solubility in AgNO<sub>3</sub>+Aq at t°

| to                                                             | Sat solution contains                                |                                                      |                                                                              |  |
|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|--|
| ·                                                              | % KNOs                                               | % AgNO3                                              | % total sal                                                                  |  |
| -7<br>-7<br>5<br>-4<br>+20<br>33<br>34<br>36<br>38<br>46<br>54 | 10 5<br>10 5<br>11 3<br>23 6<br>26 3<br>27 3<br>29 4 | 39 4<br>40 5<br>42 5<br>46 4<br>50 9<br>51 1<br>52 0 | 49 9<br>51 0<br>53 8<br>70 0<br>77 2<br>78 4<br>81 4<br>81 7<br>82 3<br>88 1 |  |
| 54<br>54<br>61<br>68<br>96<br>105<br>142                       | 34 3<br>37 8<br>38 5<br>41 5                         | 55 8<br>54 6<br>55 4<br>55 6<br>55 8                 | 89 5<br>88 9<br>93 2<br>94 1<br>97 3                                         |  |
| 15.                                                            | 1 4 1 1                                              | 004 (7) 9                                            | 206 \                                                                        |  |

(Étard, A ch 1894, (7) 3 286)

## Solubility of mixed crystals of KNO3 and AgNO<sub>3</sub> in H<sub>2</sub>O at 25°

| 1                                                          |                                                             |                                                     |                                                      |                                                            |                                                                |
|------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|
| G p                                                        | er l                                                        | Mg mols per l                                       |                                                      | Mol %<br>AgNOs<br>in solu                                  | Mol %<br>AgNO3<br>in solid                                     |
| AgNO <sub>3</sub>                                          | KNO3                                                        | AgNOs                                               | KNO3                                                 | tion                                                       | phase                                                          |
| 45 9<br>110 7<br>176 8<br>259 6<br>365 6<br>507 9<br>745 9 | 321 8<br>322 6<br>333 7<br>364 0<br>456 4<br>387 2<br>398 6 | 270<br>6513<br>1040<br>1258<br>2151<br>2988<br>4388 | 3180<br>3184<br>3298<br>3597<br>4511<br>3816<br>3960 | 7 83<br>16 96<br>23 97<br>29 81<br>32 28<br>43 85<br>57 70 | 0 2896<br>0 6006<br>0 9040<br>1 054<br>1 604<br>2 439<br>8 294 |

(Herz, Z Kryst Min 1897, 28 405)

#### Solubility of KNO<sub>3</sub>+AgNO<sub>3</sub> at 30°

| Composition of the solution                                                                |                                                                                            | Solid phase                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| % KNOs                                                                                     | % AgNO <sub>8</sub>                                                                        |                                                                                                                                                                                                                                  |
| 0<br>5 53<br>11 22<br>13 44<br>17 38<br>25 05<br>25 00<br>26 58<br>29 22<br>30 45<br>31 30 | 73 0<br>71 65<br>69 01<br>65 08<br>57 85<br>46 32<br>46 45<br>39 09<br>23 59<br>11 51<br>0 | AgNO <sub>3</sub> AgNO <sub>3</sub> +AgNO <sub>3</sub> , KNO <sub>3</sub> AgNO <sub>3</sub> , KNO <sub>3</sub> KNO <sub>3</sub> +AgNO <sub>3</sub> , KNO <sub>3</sub> KNO <sub>3</sub> +AgNO <sub>3</sub> , KNO <sub>3</sub> " " |

(Schrememakers, Z phys Ch 1909, 65 576)

KNO3+NaNO3

100 pts H<sub>2</sub>O dissolve 34 53 pts KNO<sub>3</sub> and 91 16 pts NaNO<sub>3</sub> at 15 6°, and solution has sp gr = 1 478 (Page and Keightley)

100 pts KNO<sub>3</sub>+NaNO<sub>3</sub>+Aq sat at 14° contain 52 17 pts of the two salts, sat at 13° contain 53 15 pts of the two salts. (v. Hauer.)

contain 53 15 pts of the two salts (v Hauer) 100 pts H<sub>2</sub>O dissolve at 18 75° 29 45 pts KNO<sub>3</sub> and 89 53 pts NaNO<sub>3</sub>, if sat KNO<sub>3</sub>+Aq is treated with NaNO<sub>3</sub>, and 35 79 pts KNO<sub>3</sub> and 88 00 pts NaNO<sub>3</sub> by the opposite process 134 38 pts of the two salts are dissolved if a mixture of the salts is treated with H<sub>2</sub>O at 18 75° (Karsten)

100 pts H<sub>2</sub>O dissolve 39 34 pts KNO<sub>3</sub> and 94 60 pts NaNO<sub>3</sub>, or 133 94 pts of the two salts at 20° (Nicol, Phil Mag (5) **13** 385)

# Solubility of mixtures of KNO<sub>3</sub> and NaNO<sub>3</sub>

| NaNOs in<br>mixture<br>before<br>solution                    | Total amt mixed salts dis solved in 100 pts H <sub>2</sub> O at 20                        | Pts<br>NaNOs<br>dis<br>solved                                       | Pts<br>KNOs<br>dis<br>solved                                      | NaNOs in<br>mixture<br>after solu<br>tion and<br>evap to<br>dryness |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|
| 100<br>90<br>80<br>70<br>60<br>50<br>45 7*<br>40<br>30<br>20 | 86 8<br>109 6<br>136 5<br>136 3<br>137 6<br>106 1<br>88 0<br>81 1<br>73 5<br>54 1<br>40 9 | 86 8<br>96 4<br>98 0<br>90 0<br>66 0<br>53 3<br>45 6<br>20 8<br>9 4 | 0<br>13 2<br>38 5<br>47 6<br>40 1<br>34 7<br>35 6<br>33 3<br>31 5 | 100<br>88<br>71 8<br>65 4<br>62 2<br>60 6<br>56 2<br>38 5<br>22 9   |
| 0                                                            | 33 6                                                                                      | 0                                                                   | 33 6                                                              | 0                                                                   |

\* NaNO<sub>3</sub>+KNO<sub>8</sub>

(Carnelley and Thomson, Chem Soc 53 782)

Solubility of KNO3+NaNO3 in H2O at 10°

| In 1000 ccm H <sub>2</sub> O |                | Solid phase                                                                   |
|------------------------------|----------------|-------------------------------------------------------------------------------|
| NaNO <sub>8</sub>            | KNO₃           | Sond phase                                                                    |
| 805 0<br>848 3               | 301 9<br>208 9 | NaNO <sub>3</sub><br>NaNO <sub>3</sub> , KNO <sub>3</sub><br>KNO <sub>3</sub> |

(Kremann and Zitek, M 1909, 30 325)

| Solubility of                                              | KNO <sub>3</sub> +Na                                     | $NO_3$ in $H_2O$ at $24.2^\circ$  |
|------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|
| In 1000 c                                                  | cm H <sub>2</sub> O                                      | Solid phase                       |
| NaNO <sub>3</sub>                                          | KNO <sub>8</sub>                                         | Sond phase                        |
| 913 58<br>910 60<br>1019 65<br>1018 40<br>931 30<br>346 70 | 123 60<br>435 85<br>437 70<br>422 00<br>390 00<br>377 35 | NaNOs<br>NaNOs, KNOs<br>KNO,<br>" |

(Kremann and Zitek)

Solubility of KNO3+NaNO3 in H2O at 25°

| % KNO8                                    | % NaNOs                                    | Solid phase                                                            |
|-------------------------------------------|--------------------------------------------|------------------------------------------------------------------------|
| 38 70<br>41 60<br>46 35<br>39 08<br>20 98 | 39 62<br>66 31<br>100 10<br>98 99<br>94 44 | KNO <sub>3</sub> KNO <sub>3</sub> +NaNO <sub>3</sub> NaNO <sub>3</sub> |

(Uyeda, Mem Col Sc K10to, 1910, 2 245

Solubility in NaNO<sub>3</sub>+Aq at 20°, 30°, 40 and 91° Data, given in the original, show that each salt increases the solubility of thother (Leather, Mem Dept Agric India 1914, 3 177, Chem Soc 1915, 108 (2), 13) 100 pts H<sub>2</sub>O dissolve 28 92 pts KNO<sub>3</sub> 53 68 pts NaNO<sub>3</sub>, and 26 44 pts NaCl a 15 6°, and solution has sp gr = 1 44 (Pag and Keightley, Chem Soc (2) 10 566)

Solubility of KNO<sub>3</sub>+NaNO<sub>3</sub>+NaCl in H<sub>2</sub>( at 25°

| NaNO3   NaCl   Solid phase                                                                                                                                                                             | ı |                                  |                                  |                                  | <del></del>                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------|----------------------------------|----------------------------------|-------------------------------------------|
| 38 51   44 40   27 67   ""<br>  42 55   63 26   23 59   NaNO <sub>3</sub> , KNO <sub>3</sub> +NaO <sub>3</sub>   17 77   61 12   23 94   ""   28 08   62 92   23 70   ""   ""   ""   ""   ""   ""   "" |   | KNO3                             | %<br>NaNOs                       | %<br>NaCl                        | Solid phase                               |
|                                                                                                                                                                                                        |   | 38 57<br>42 55<br>17 77<br>28 08 | 44 40<br>63 26<br>61 12<br>62 92 | 27 67<br>23 59<br>23 94<br>23 70 | NaNO <sub>3</sub> , KNO <sub>3</sub> +NaC |

(Uyeda, Mem Col Sc Kioto, 1910, 2 245

 $KNO_8 + Sr(NO_3)_2$ 

1 l  $\rm H_2O$  sat with both salts at 25° contain 552 g KNO<sub>3</sub>+1074 g Sr(NO<sub>3</sub>)<sub>2</sub> (Le Blan and Noyes, Z phys Ch 1890, 6 386)

|    | Solubility of KNO <sub>3</sub> +Sr(NO <sub>3</sub> ) <sub>2</sub> at t°    |                                                                             |                                                                                                                                                                |  |
|----|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| to | KNO3                                                                       | Sr(NO <sub>3</sub> ) <sub>2</sub>                                           | Solid phase                                                                                                                                                    |  |
| 20 | 22 90<br>21 70<br>21 01<br>19 60<br>19 49<br>19 69<br>17 56<br>12 65<br>10 | 5 49<br>9 17<br>17 10<br>31 24<br>34 91<br>39 56<br>40 37<br>41 12<br>40 70 | KNO <sub>3</sub> " " " " " " KNO <sub>3</sub> +Sr(NO <sub>3</sub> ) <sub>2</sub> , 4H <sub>2</sub> O Sr(NO <sub>3</sub> ) <sub>2</sub> , 4H <sub>2</sub> O " " |  |
| 40 | 30 26<br>26 90<br>22 50<br>11 19<br>0                                      | 23 70<br>38 52<br>40 22<br>44 19<br>47 7                                    | KNO <sub>3</sub><br>KNO <sub>3</sub> +Sr(NO <sub>3</sub> ) <sub>2</sub> , 4H <sub>2</sub> O<br>Sr(NO <sub>3</sub> ) <sub>2</sub> , 4H <sub>2</sub> O<br>"      |  |

(Findlay, Morgan and Morris, Chem Soc 1914, **105** 779)

 $\frac{\rm KNO_3+TINO_3}{\rm 100~g~H_2O~dissolve~43~5~g~TINO_3+104~2~g~KNO_3~at~58^\circ~(Rabe,~Z~anorg~1902,~31~156~)}$ 

Solubility of mixed crystals of KNO<sub>3</sub>+TINO<sub>3</sub> in H<sub>2</sub>O at 25°

| G p                                                                                 | Sp gr                                                                                |                                                                                                  |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| TlNO <sub>3</sub>                                                                   | TINO3 KNO3                                                                           |                                                                                                  |
| 0 00<br>2 37<br>6 15<br>17 64<br>49 74<br>63 60<br>86 18<br>123 8<br>101 3<br>116 1 | 351 0<br>329 0<br>332 4<br>333 7<br>333 3<br>321 0<br>330 5<br>428 3<br>245 1<br>0 0 | 1 2632<br>1 1903<br>1 1956<br>1 2050<br>1 2196<br>1 2436<br>1 2617<br>1 2950<br>1 2050<br>1 0964 |

(Herz, Z Kryst Min 1897, 28 405)

KNO₄+KBr

Solubility in KBr+Aq

| 1 litre of the solution contains                          |                                                             |                                                     |                                                             |  |
|-----------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|--|
| at                                                        | 14 5                                                        | at 2                                                | 5 2                                                         |  |
| Mol KBr                                                   | Mol KNO3                                                    | Mol KBr                                             | Mol KNO3                                                    |  |
| 0 0<br>0 356<br>0 784<br>1 092<br>1 577<br>2 542<br>3 536 | 2 228<br>2 026<br>1 835<br>1 730<br>1 589<br>1 406<br>1 308 | 0 0<br>0 38<br>0 93<br>1 37<br>2 08<br>2 87<br>3 55 | 3 217<br>3 026<br>2 689<br>2 492<br>2 216<br>1 958<br>1 807 |  |

(Touren, C R 1900, 130 910)

KNO<sub>2</sub>+KCl

100 pts H<sub>2</sub>O dissolve pts of the two salts

|                  | At 12 9° | At 15 3° |
|------------------|----------|----------|
| KNO <sub>8</sub> | 18 8     | 18 9     |
| KCl              | 28 5     | 29 8     |

(Kopp)

100 pts  $\rm H_2O$  dissolve 315 2 pts KCl and 19 1 pts KNO<sub>3</sub> at 20 0° (Rudorff, B 6 484) 100 pts  $\rm H_2O$  dissolve 18 95 pts KNO<sub>3</sub>+32 84 pts KCl, or 51 79 pts of the mixed salts at 20° (Nicol, Phil Mag (5) 31 385)

Solubility of KCl with addition of KNO<sub>3</sub> at 17 5°

| Sp gr                                                                        | 100 ccm of solution contain g                                        |                                                                      |                                                                |
|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|
| op gr                                                                        | KCl                                                                  | H₂O                                                                  | KNO:                                                           |
| 1 1730<br>1 1980<br>1 2100<br>1 2250<br>1 2360<br>1 2390<br>1 2388<br>1 2410 | 29 39<br>27 50<br>27 34<br>26 53<br>25 98<br>25 96<br>25 95<br>26 24 | 87 85<br>85 68<br>84 76<br>83 58<br>82 84<br>82 65<br>82 43<br>82 63 | 0<br>6 58<br>8 83<br>12 48<br>14 83<br>15 22<br>15 49<br>15 33 |

 $\mathrm{KNO}_3$  separated out in last four solutions

Solubility of KNO<sub>3</sub> with addition of KCl at 20 5°

| Sp gr                                                                        | 100 ccm                                                              | 100 ccm of solution contain g                                        |                                                                |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|--|
| pp gr                                                                        | KNO <sub>3</sub>                                                     | H <sub>2</sub> O                                                     | KCl                                                            |  |
| 1 1625<br>1 1700<br>1 1765<br>1 1895<br>1 1983<br>1 2150<br>1 2265<br>1 2400 | 27 68<br>24 39<br>22 44<br>20 23<br>18 96<br>17 67<br>17 11<br>16 79 | 88 51<br>87 89<br>87 47<br>86 48<br>85 69<br>84 23<br>83 40<br>82 24 | 0<br>4 72<br>7 74<br>12 23<br>15 15<br>19 61<br>22 17<br>24 96 |  |

(Bodlander, Z phys Ch 7 359)

#### Solubility in KCl+Aq at to

| t°                                                                                 | Sat                                                                   | solution cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ains                                                                                                                                                                                         |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t°                                                                                 | % KNO <sub>8</sub>                                                    | % KCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % total salt                                                                                                                                                                                 |
| -11 4<br>-11 -10 -4 5 5 5 5 10 5 5 13 5 5 14 17 23 27 29 34 36 37 5 52 53 56 81 81 | 4 0 3 8 8 6 3 3 7 8 8 9 10 2 14 9 11 18 9 2 21 8 3 8 29 5 5 4 40 47 1 | 18 4<br>18 1<br>18 6<br>19 7<br>19 9<br>20 8<br>20 2<br>21 8<br>21 8<br>21 6<br>21 6<br>21 6<br>21 6<br>21 9<br>20 8<br>20 8<br>20 9<br>21 8<br>21 5<br>21 6<br>21 6<br>21 6<br>21 6<br>21 7<br>21 8<br>21 8 | 22 4<br>22 0<br>22 5<br>26 2<br>28 0<br>27 6<br>28 8<br>29 4<br>30 7<br>31 5<br>32 3<br>34 3<br>36 2<br>37 3<br>40 5<br>40 8<br>42 0<br>42 6<br>49 1<br>48 7<br>49 6<br>49 1<br>49 6<br>52 8 |
| 85<br>90<br>96<br>97<br>104<br>105                                                 | 48 2<br>52 8<br>54 1<br>56 6<br>59 9                                  | 15 3<br>13 3<br>12 6<br>12 4<br>10 8<br>10 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63 5<br>66 1<br>68 7<br>69 0<br>70 7                                                                                                                                                         |
| 120<br>120                                                                         | 69 6<br>69 1                                                          | 7 7<br>7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77 3<br>76 7                                                                                                                                                                                 |

(Etard, A ch 1894, (7) 3 285)

# Solubility in KCl+Aq

| 1 litre of the solution contains at                                |                                                                      |                                                     |                                                             |  |
|--------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|--|
| 14 5°                                                              |                                                                      | at 2                                                | 25 2                                                        |  |
| Mol KCl                                                            | Mol KNO3                                                             | Mol KCl                                             | Mol KNO3                                                    |  |
| 0 0<br>0 182<br>0 424<br>0 880<br>1 778<br>2 204<br>2 635<br>3 172 | 2 228<br>2 172<br>2 057<br>1 830<br>1 576<br>1 515<br>1 423<br>1 355 | 0 0<br>0 26<br>0 66<br>1 35<br>2 08<br>2 78<br>3 04 | 3 217<br>3 086<br>2 853<br>2 510<br>2 218<br>2 015<br>1 946 |  |

(Touren, C R 1900, 130 909)

Solubility of KCl in KNO<sub>3</sub>+Aq

| t°        | Concentra<br>tion of<br>KNO <sub>3</sub><br>% mol per l | G salt<br>dissolved in<br>1 l H <sub>2</sub> O | Molecular<br>solubility       |
|-----------|---------------------------------------------------------|------------------------------------------------|-------------------------------|
| <u>0°</u> | 0                                                       | 283 55                                         | 3 81                          |
| "         | 1/4                                                     | 284 25                                         | 3 81                          |
| "         | 1/2                                                     | 283 60                                         | 3 81                          |
| "         | ĺĺ                                                      | 287 60                                         | 3 86                          |
| 25°       | 0                                                       | 364 15                                         | 4 89                          |
| "         | 1/4                                                     | 365 00                                         | 4 90                          |
| "         | 1/2                                                     | 361 65                                         | 4 86                          |
| "         | l Î                                                     | 358 80                                         | 4 81                          |
| "         | 1½                                                      | 355 20                                         | $\frac{1}{4}$ $\frac{77}{77}$ |

(Armstrong and Eyre, Proc R Soc (A) 191 **84** 127)

Solubility in KCl+Aq at 20°, 30°, 40° an Data, given in the original, show the each salt diminishes the solubility in H2O the other (Leather, Mem Dept Agric India 1914, 3 177 Chem Soc 1915, 108 (2) 13)

KŃO<sub>3</sub>+NaCl NaCl is sol in sat KNO3+Aq, and th mixed solution is capable of dissolving mo An amount of H2O, which, whe pure, could only dissolve 100 pts KNO3, ca in this way be made to take up 152 64 pt (Longchamp, A ch (2) 9 8) Sol in sat NaCl+Aq

100 pts H<sub>2</sub>O dissolve

|                          | Longchamp      | Rúc          | lorff        | Page ai<br>Keightl |
|--------------------------|----------------|--------------|--------------|--------------------|
|                          | <b>4°</b> (1)  | 14°<br>(2)   | 18°<br>(3)   | 15 6°<br>(4)       |
| NaCl<br>KNO <sub>3</sub> | 35 96<br>26 01 | 38 5<br>28 7 | 38 9<br>36 1 | 39 5,<br>32 3      |
|                          | 61 97          | 67 2         | <b>75</b> 0  | 71 80              |

|                          |                | Karston<br>18 75 |                | Mulder<br>At b pt |
|--------------------------|----------------|------------------|----------------|-------------------|
|                          | (5)            | (6)              | (7)            | (8)               |
| NaCl<br>KNO <sub>3</sub> | 36 53<br>33 12 | 38 25<br>29 45   | 39 19<br>38 53 | 37 ° 306 '        |
|                          | 69 65          | 67 70            | 77 72          | 344 (             |

1, 2, 3, 4, and 8 Both salts in excess 5 Sat NaCl+Aq treated with KNO<sub>3</sub>

6 Sat KNO<sub>s</sub>+Aq treated with NaCl 7 The two salts simultaneously treate with H2O

100 pts H<sub>2</sub>O dissolve 31 44 pts KNO<sub>3</sub>, 13 pts KCl, and 38 58 pts NaCl at 15 6°, an solution has sp gr = 1.33(Page an Keightley)

| Solubility in NaCl+Aq at | Solubility | ш | NaCI- | +Aa | ат | <b>Շ</b> ՟ |
|--------------------------|------------|---|-------|-----|----|------------|
|--------------------------|------------|---|-------|-----|----|------------|

| t°  -22 -19 5 -15 5 -7 -6 -1 +11 17 18 18                                                                     | Sat  % KNO:  7 3 7 9 8 7 10 1 10 9 12 7                                                                                        | % NaCl  22 5 22 6 22 1 22 5 23 0                    | 29 8<br>30 5<br>31 8<br>32 6                                                                                             |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| -22<br>-19 5<br>-15 5<br>-7<br>-6<br>-1<br>+11<br>17                                                          | 7 3<br>7 9<br>8 7<br>10 1<br>10 9<br>12 7                                                                                      | 22 5<br>22 6                                        | 29 8<br>30 5<br>31 8                                                                                                     |
| —19 5<br>—15 5<br>—7<br>—6<br>—1<br>+1<br>+11                                                                 | $10 9 \\ 12 7$                                                                                                                 | 22 5<br>22 6<br>22 1<br>22 5<br>23 0                | 30 5<br>31 8                                                                                                             |
| 20 5 22 22 26 27 30 5 32 5 33 35 39 42 2 50 54 58 5 70 76 79 84 90 96 105 106 107 115 122 127 127 127 128 132 | 12 9 6 0 8 9 4 8 7 7 0 9 7 9 8 1 5 4 9 7 9 8 2 8 6 9 0 2 7 7 2 8 6 9 0 2 7 7 7 2 8 6 9 0 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 23 8 8 8 8 8 22 2 2 2 5 3 2 2 2 2 2 2 2 2 2 2 2 2 2 | 33 9 0 7 4 8 8 5 7 5 0 0 4 2 1 4 1 8 5 5 6 3 7 5 7 0 8 2 0 2 7 2 8 1 1 5 5 6 6 3 7 5 7 7 9 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 |
| 145<br>170<br>171                                                                                             | 77 7<br>80 7<br>79 1                                                                                                           | 7 6<br>5 8<br>5 9                                   | 85 3<br>86 5<br>85 0                                                                                                     |

(Étard, A ch 1894, (7) 3 283)

100 g H<sub>2</sub>O dissolve 41 14 g KNO<sub>3</sub> and 38 25 g NaCl at 25°, 168 8 g KNO<sub>3</sub> and 39 81 g NaCl at 80° (Soch, J phys Ch 1898, **2** 46)

See also under NaCl

Sol in sat CuSO<sub>4</sub>+Aq, forming a double salt, which soon separates out

Very slowly and slightly sol in MgSO<sub>4</sub>+Aq with pptn of MgSO<sub>4</sub> (Karsten)

KNO<sub>3</sub>+K<sub>2</sub>SO<sub>4</sub> Sat KNO<sub>2</sub>+Aq dissolves some K<sub>2</sub>SO<sub>4</sub>, and sat K<sub>2</sub>SO<sub>4</sub>+Aq slowly dissolves some KNO<sub>3</sub>

without pptn , but  $K_2SO_4$  is afterwards pptd (Karsten )

100 pts H<sub>2</sub>O dissolve

|                                 | Mulder<br>18 75°<br>(1) | Karsten<br>18 75°<br>(2) | 20°<br>(3)  | 40°<br>(4)    | Mulder<br>18 75°<br>(5) |
|---------------------------------|-------------------------|--------------------------|-------------|---------------|-------------------------|
| $	ext{KNO}_3 	ext{K}_2	ext{SO}$ | 29 90                   | 29 42<br>4 0             | 26 9<br>6 6 | 59 35<br>5 75 | 10 8                    |

2 H<sub>2</sub>O sat with KNO<sub>3</sub> and K<sub>2</sub>SO<sub>4</sub> simultaneously, or to a sat solution of one salt the other was added

3 and 4 H<sub>2</sub>O sat with both salts simultaneously

Mulder doubts the results of 3 and 4

## Solubility in K<sub>2</sub>SO<sub>4</sub>+Aq at t°

| t°       | In 100 ccm o   | In 100 ccm of the solution       |                |  |  |  |
|----------|----------------|----------------------------------|----------------|--|--|--|
|          | G KNOs         | G K <sub>2</sub> SO <sub>4</sub> | solution       |  |  |  |
| 15<br>25 | 216 5<br>308 5 | 50 7<br>47 66                    | 1 165<br>1 210 |  |  |  |

(Euler, Z phys Ch 1914, 40 313)

Slowly sol in sat  $Na_2SO_4$  at first without pptn, but afterwards  $K_2SO_4$  or  $NaSO_4$  separates out

Sol in sat ZnSO<sub>4</sub>+Aq with pptn of double salt (Karsten)

Sol in sat KClO<sub>8</sub>+Aq, from which solution it is not pptd by salts which would ppt it from aqueous solution (Karsten)

Hydrazine dissolves 21 7 pts KNO<sub>3</sub> at 12 5-13° (de Bruyn, R t c 1899, **18** 297) Neither dissolved nor attacked by liquid NO<sub>2</sub> (Frankland, Chem Soc 1901, **79** 1361 Very sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829)

Insol in absolute alcohol, in dilute alcohol it dissolves proportional to the amount of H<sub>2</sub>O present, but always less is dissolved than the H<sub>2</sub>O would dissolve by itself (Gerardin)

100 pts alcohol containing % by weight of alcohol dissolve pts  $\rm \,KNO_8$  at 15°

(Schiff, A 118 365)

Solubility in 100 pts alcohol at t° D=sp gr of alcohol, S=solubility

| D=                                     | =0 9904                                              | D =                        | 0 9848                               | D=                                                                         | =0 9793                                                                                                           | D =                              | 0 9726                                      |
|----------------------------------------|------------------------------------------------------|----------------------------|--------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------|
| t°                                     | s                                                    | t°                         | s                                    | t°                                                                         | s                                                                                                                 | to                               | s                                           |
| 12<br>21<br>33<br>43<br>53<br>61<br>62 | 18 1<br>25 0<br>40 4<br>58 6<br>79 1<br>94 5<br>95 7 | 12<br>21<br>36<br>41<br>56 | 14 6<br>21 7<br>37 8<br>45 0<br>72 9 | 10<br>10<br>13<br>18<br>20<br>31<br>34<br>40<br>41<br>50<br>53<br>61<br>62 | 10 20<br>10 19<br>11 74<br>14 52<br>16 35<br>25 81<br>28 63<br>36 66<br>37 20<br>50 14<br>56 01<br>72 24<br>73 36 | 14<br>25<br>34<br>44<br>47<br>60 | 8 8<br>13 6<br>20 3<br>31 3<br>34 2<br>52 3 |

| D=                               | 0 9573                                     | D:                               | =0 9390                                          | D=                   | 0 8967                       | D =                        | 0 8429                               |
|----------------------------------|--------------------------------------------|----------------------------------|--------------------------------------------------|----------------------|------------------------------|----------------------------|--------------------------------------|
| t°                               | s                                          | t°                               | s                                                | t°                   | s                            | to                         | s                                    |
| 14<br>25<br>33<br>44<br>57<br>65 | 5 4<br>9 0<br>13 2<br>19 1<br>29 1<br>36 2 | 16<br>24<br>40<br>51<br>60<br>64 | 4 13<br>6 00<br>10 94<br>16 51<br>21 54<br>24 22 | 12<br>33<br>47<br>57 | 1 61<br>3 62<br>5 77<br>6 97 | 15<br>22<br>40<br>54<br>60 | 0 29<br>0 39<br>0 62<br>0 78<br>1 10 |

(Gerardin, A ch (4) 5 151)

## Solubility of KNO<sub>3</sub> in alcohol at 18°

| ~                                                                                                                              | 100 ccm contain g                                                                                     |                                                                                                                   |                                                                                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Sp gr                                                                                                                          | Alcohol                                                                                               | Water                                                                                                             | KNO <sub>3</sub>                                                                                            |  |
| 1 1475<br>1 1085<br>1 1010<br>1 0805<br>1 0655<br>1 0490<br>1 0375<br>0 9935<br>0 9585<br>0 9456<br>0 9050<br>0 8722<br>0 8375 | 3 30<br>5 24<br>8 69<br>14 08<br>16 27<br>19 97<br>28 11<br>37 53<br>42 98<br>51 23<br>61 65<br>69 60 | 89 63<br>87 44<br>86 26<br>83 18<br>77 93<br>76 36<br>72 93<br>64 74<br>54 21<br>48 15<br>27 32<br>24 74<br>13 95 | 25 12<br>20 11<br>18 60<br>16 18<br>14 54<br>12 27<br>10 85<br>6 50<br>4 11<br>3 37<br>1 95<br>0 83<br>0 20 |  |

(Bodlander, Z phys Ch 7 316)

#### Solubility in alcohol

| Wt % alcohol         G KNOs per 100 g alcohol           0         45 6         64 5           8 25         32 3         47 1           17 0         22 4         33 3           25 7         15 1         24 1           35 0         11 4 (34 5°)         16 7           44 9         7 0         11 6 (44°)           54 3         4 5         7 2 (55°)           65 0         2 7         4 4           75 6         1 3         2 0 (76 3°           88 0         0 4         0 6 (88 5° |                                                              |                                                                  |                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|--|
| at 30°         at 40°           0         45 6         64 5           8 25         32 3         47 1           17 0         22 4         33 3           25 7         15 1         24 1           35 0         11 4 (34 5°)         16 7           44 9         7 0         11 6 (44°)           54 3         4 5         7 2 (55°)           65 0         2 7         4 4           75 6         1 3         2 0 (76 3°                                                                       | W+ % elcohol                                                 | G KNOs per 100 g alcohol                                         |                                                         |  |
| 8     25     32     3     47     1       17     0     22     4     33     3       25     7     15     1     24     1       35     0     11     4 (34     5°)     16     7       44     9     7     0     11     6 (44°)     7     2 (55°)       65     0     2     7     4     4       75     6     1     3     2     0 (76     3°                                                                                                                                                            | 77 alconor                                                   | at 30°                                                           | at 40°                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 25<br>17 0<br>25 7<br>35 0<br>44 9<br>54 3<br>65 0<br>75 6 | 32 3<br>22 4<br>15 1<br>11 4 (34 5°)<br>7 0<br>4 5<br>2 7<br>1 3 | 47 1<br>33 3<br>24 1<br>16 7<br>11 6 (44°)<br>7 2 (55°) |  |

(Bathrick, J phys Ch 1896, **1** 160)

Solubility of KNO<sub>3</sub> in ethyl alcohol+Aq a

| % by wt H <sub>2</sub> O                                                    | % by wt alcohol                                                           | % by wt KNO                                                              |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 68 7<br>69 2<br>67 3<br>64 1<br>58 8<br>50 8<br>39 8<br>33 9<br>22 3<br>7 5 | 0<br>10 1<br>17 0<br>23 8<br>32 2<br>43 1<br>56 9<br>63 8<br>76 8<br>92 3 | 31 3<br>20 7<br>15 7<br>12 1<br>9 0<br>6 1<br>3 3<br>2 3<br>0 88<br>0 15 |
| ı                                                                           | ŗ                                                                         |                                                                          |

(Schreinemakers, Z phys Ch 1909, 65 556

# Solubility in ethyl alcohol at 25°

| Concentration of alcoholing mol per l H <sub>2</sub> () | Solubility in<br>1 l H <sub>2</sub> O | Mol<br>solubility |
|---------------------------------------------------------|---------------------------------------|-------------------|
| 0                                                       | 384 48                                | 3 80              |
| 1/4                                                     | 368 30                                | 3 64              |
| 1/2                                                     | 354 40                                | 3 50              |
| 1                                                       | 327 00                                | 3 22              |

(Armstrong and Lyre, Proc R Soc 191 (A) 84 127)

Solubility of KNO<sub>3</sub> in methyl alcohol+Aq 30°

| % by wt H2O | % by wt alcohol | h by wt KN |
|-------------|-----------------|------------|
| 68 7        | 0               | 31 3       |
| 68 9        | 7 8             | 23 3       |
| 66 4        | 17 3            | 16 3       |
| 61 0        | 27 8            | 11 2       |
| 53 9        | 38 4            | 7 7        |
| 39 2        | 57 0            | 3 8        |
| 0 99        | 98 58           | 0 43       |

(Schreinemakers, Z phys Ch 1909, 65 556)

| Solubility | of KNO <sub>3</sub> +AgNO <sub>3</sub><br>C <sub>2</sub> H <sub>5</sub> OH+Aq at 30° | m | 51 6% |
|------------|--------------------------------------------------------------------------------------|---|-------|
|            |                                                                                      |   |       |

| KNO:                                     | %<br>AgNOs                                 | Solid phase                                                                                                                                           |
|------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 8<br>4 55<br>4 11<br>4 26<br>2 62<br>0 | 0<br>5 15<br>16 47<br>21 28<br>36 94<br>37 | KNO <sub>3</sub> " " KNO <sub>3</sub> +AgNO <sub>3</sub> , KNO <sub>3</sub> AgNO <sub>3</sub> , KNO <sub>3</sub> +AgNO <sub>3</sub> AgNO <sub>3</sub> |

(Schreinemakers, Z phys Ch 1909, 65 556)

100 g 40% ethyl alcohol sat with KNO<sub>3</sub>+ NaCl at 25° contain 13 74 g KNO<sub>3</sub>+15 78 g NaCl (Soch, J phys Ch 1898, 2 43) Insol in propyl alcohol (Schlamp, Z phys Ch 1894, 14 277)

Almost insol in ether (Braconnot)
Very sl sol in acetone (Krug and
M'Elroy)

Sol in acetone (Eidmann, C C 1899 II, 1014)

#### Solubility in acetone+Aq at 40°

| Wt % acetone | G KNO3 per 100 g solvent |
|--------------|--------------------------|
| 0            | 64 5                     |
| 8 5          | 51 3                     |
| 16 8         | 38 9                     |
| 25 2         | 22 8                     |
| 34 3         | 24 7                     |
| 44 1         | 17 0                     |
| 53 9         | 11 9                     |
| 64 8         | 7 2                      |
| 76 0         | 3 0                      |
| 87 6         | 0 7                      |

(Bathrick, J phys Ch 1896, 1 160)

100 pts glycerine (sp gr 1 225) dissolve 10 pts KNO<sub>3</sub> (Vogel, N Rep Ph 16 557)
100 g trichlorethylene dissolve 0 01 g
KNO<sub>3</sub> at 15° (Wester and Bruins, Pharm
Weekbl 1914, 51 1443)

Insol in CS<sub>2</sub> (Arctowski, Z anorg 1894, 6 257)

Insol in benzonitrile (Naumann, B 1914, 47 1370)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1910, 43 314)

100 g  $\rm H_2O$  sat with sugar and KNO<sub>3</sub> dissolve 224 7 g sugar + 41 9 g KNO<sub>3</sub>, or sat solution contains 61 36 g sugar + 11 45 g KNO<sub>3</sub> at 31 25° (Kohler, Z Ver Zuckerind 1897, **47** 447)

Potassium hydrogen nitrate, KNO<sub>3</sub>, HNO<sub>3</sub>

Very hygroscopic Decomp by H<sub>2</sub>O (Groschuff, B 1904, **37** 1489)

Potassium dihydrogen nitrate, KNO<sub>3</sub>, 2HNO<sub>3</sub> Decomp by H<sub>2</sub>O (Ditte, A ch (5) 18 320)

| Solubility in | Н | 0 |
|---------------|---|---|
|---------------|---|---|

| Solution temp               | % by wt<br>KNO:                              | % by wt<br>HNO:                              | Coby wt                              |
|-----------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|
| mpt +22° 20 5 18 0 12 0 6 0 | 44 5<br>44 1<br>43 8<br>43 0<br>42 3<br>41 6 | 55 5<br>55 0<br>54 5<br>53 6<br>52 7<br>51 8 | 0<br>0 9<br>1 7<br>3 4<br>5 0<br>6 6 |

(Groschuff, Z anorg 1904, 40 11)

Potassium silver nitrate, KNO<sub>3</sub>, AgNO<sub>3</sub> Sol in H<sub>2</sub>O (Russell and Maskelvne, Rov

Soc Proc 26 357)
3KNO<sub>3</sub>, AgNO<sub>3</sub> Sol m H<sub>2</sub>O (Rose, Pogg 106 320)

Potassium thallic nitrate, 2KNO<sub>2</sub>, Tl(NO<sub>2</sub>)<sub>2</sub>+ H<sub>2</sub>O

Decomp by  $H_2O$  (Meyer, Z anorg 1900, 24 361)

Potassium thorium nitrate, 4KNO<sub>3</sub>, Th(NO<sub>3</sub>)<sub>4</sub>
Very sol in H<sub>2</sub>O and alcohol (Berzelius)
Hydroscopic, very unstable (Meyer, Z
anorg 1901, 27 379)

Hydroscopic, sol in dil HNO<sub>3</sub>+Aq (Meyer, Z anorg 1901, **27** 378)

Potassium thorium hydrogen nitrate, 3KNO<sub>3</sub>, Th(NO<sub>3</sub>)<sub>4</sub> 3HNO<sub>3</sub>

Decomp in the air (Meyer, B 1900, 33 2140)  $+4H_2O$  Sol in HNO<sub>3</sub> of 1 2 sp gr Effloresces in the air (Meyer, Z anorg 1901, 27 380)

Potassium uranyl nitrate, K(UO)(NO<sub>3</sub>)<sub>3</sub> Decomp by H<sub>\*</sub>O Sol in conc HNO<sub>3</sub> (Mever, B 1903, 36 4057)

### Solubility in H<sub>2</sub>O at t°

| Solubines in 11.00 at a       |                                  |                              |                |               |  |
|-------------------------------|----------------------------------|------------------------------|----------------|---------------|--|
| t                             | In 100 pts<br>of the olution     |                              | Solid phase    |               |  |
| ι                             | Pts by                           | Pt by                        | Pt by          | •             |  |
| 0 5                           | 31 98                            | 1 72                         |                | Double salt + |  |
| 13 0<br>25 0 a)<br>b)         | 33 40<br>37 08<br>37 06          | 2 74<br>4 05<br>3 98         | 23 49<br>23 46 |               |  |
| 45 0<br>59 0<br>80 6 a)<br>b) | 42 18<br>41 65<br>43 72<br>43 70 | 5 16<br>6 03<br>6 42<br>6 34 |                | Double salt   |  |

Potassium uranyl nitrate is decomp by H<sub>2</sub>O at temp below 60°, above 60° it is sol in H<sub>2</sub>O without decomp
(Rimbach, B 1904, **37** 473)

| Potassium | nıtrate | barium | sulphate, | KNO <sub>3</sub> , |
|-----------|---------|--------|-----------|--------------------|
| 2BaSC     |         |        |           |                    |

Easily decomp Sol in conc  $H_2SO_4$  (Silberberger, M 1904, 25 251)

# Potassium nitrate phosphomolybdate

See Phosphomolybdate nitrate, potassium

Potassium nitrate sulphate, KNO<sub>3</sub>, KHSO<sub>4</sub> Decomp by H<sub>2</sub>O and alcohol (Jacquelain)

#### Potassium nitrate sulphotungstate, 2KNO<sub>3</sub>, K<sub>2</sub>WS<sub>4</sub> (?)

Very sol in hot or cold H<sub>2</sub>O Insol in alcohol (Berzelius)

#### Potassium nitrate tungstate (?)

100 pts boiling  $H_2O$  dissolve 5 pts salt (Storer's Dict, p 393)

#### Potassium nitrate zinc iodide

Permanent Easily sol in  $H_2O$  Insol in alcohol (Anthon)

Praseodymium nitrate, Pr(NO<sub>3</sub>)<sub>3</sub>+6H<sub>2</sub>O
Sol in H<sub>2</sub>O (von Schule, Z anorg 1898,
18 355)

# Praseodymium rubidium nitrate,

 $[Pr(NO_3)_5]Rb_2+4H_2O$ 

Hydroscopic (Jantsch, Z anorg 1911, 69 230)

#### Praseodymium sodium nitrate, Pr(NO<sub>3</sub>)<sub>3</sub>, 2NaNO<sub>3</sub>+H O

Sol in  $H_2O$  (von Schule, Z anorg 1898, 18 356)

# Praseodymium zinc nitrate, $2Pr(NO_3)_3$ , $3Zn(NO_3)_2+24H_2O$

1 l sat solution in  $HNO_3+Aq$  (sp. gr 1 325) contains 14 69 g hydrous salt at 16° (Jantsch, Z anorg 1912, 76 321)

#### Radium nitrate

Has apparently the same solubility in  $\rm H_2O$  as the corresponding Ba comp (Curie, Dissert 1903)

# Rhodium nitrate, Rh(NO<sub>3</sub>)<sub>3</sub>+2H<sub>2</sub>O (?)

Deliquescent Sol in H.O Insol in alcohol (Claus)

# Rhodium uranyl nitrate,

 $2(UO_3)(NO_3)_2Rh_2(NO_3)_6+10H_2O$ 

Sol in  $\rm H_2O$  and acids, insol in aq alkalies (Lancien, C C 1912, I 208)

#### Rubidium nitrate, RbNO<sub>3</sub>

100 pts  $\rm\,H_2O$  dissolve 20 1 pts at 0°, 43 5 pts at 10° (Bunsen)

| Solubility | ın | $H_2O$ | at t | • |
|------------|----|--------|------|---|
|------------|----|--------|------|---|

| • • • • • • • • • • • • • • • • • • • |                                                 |                                              |                                      |                                        |                                  |  |
|---------------------------------------|-------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------|--|
| +o                                    | t° G PbNOs per 100 g  H <sub>2</sub> O Solt tio |                                              |                                      | G RbNOs<br>per 100 g                   |                                  |  |
| ·                                     |                                                 |                                              | t°                                   | H <sub>2</sub> O                       | Sol<br>tac                       |  |
| 0<br>10<br>20<br>30<br>40<br>50       | 19 5<br>33 0<br>53 3<br>81 3<br>116 7<br>155 6  | 16 3<br>24 8<br>34 6<br>44 8<br>53 9<br>60 9 | 60<br>70<br>80<br>90<br>100<br>118 3 | 200<br>251<br>309<br>375<br>452<br>617 | 66<br>71<br>75<br>78<br>81<br>86 |  |

(Berkeley, Trans Roy Soc 1904, **203** 207)

100 g H<sub>2</sub>O dissolve 66 855 g RbNO<sub>2</sub> ( 25° (Haigh, J Am Chem Soc 1912, 1148)

Sp gr 20°/4° of a normal solution of RbN a =1 100835, of a 0 5 normal solution =1 049 (Haigh, J Am Chem Soc 1912, 34 1151 Sp gr of RbNO<sub>3</sub>+Aq

G -equiv RbNO<sub>3</sub> per l

at 18° = 0 5035 1 008 Sp gr at 6°/6° 1 05342 1 10° 6 Sp gr at 18°/18° 1 05226 1 10 1 Sp gr at 30°/30° 1 05156 1 10° 2

#### G-equiv RbNO<sub>3</sub> per l

at 18° = 2 000 2 68'
Sp gr at 6°/6° 1 20655
Sp gr at 18°/18° 1 20302 1 27(
Sp gr at 30/30° 1 20036 1 26'
(Clausen, W Ann 1914, (4) 44 1069)

Easily sol in HNO<sub>3</sub> (Schultz, Zeit (1) (2) 5 531)

Sol in acetone (Eidmann, C C 1899, I 1014, Naumann, B 1904, 37 4328)

Insol in methyl acetate (Naumann, 3 1909, 42 3790)

Rubidium hydrogen nitrate, RbNO<sub>3</sub>, HN( Fairly stable in air (Wells, Am Ch J 1901, **26** 273)

#### Rubidium dihydrogen nitrate, RbNO<sub>3</sub>, 2HNO<sub>3</sub>

Decomp rapidly in air (Wells, Am Cl J 1901, 26 273)

2RbNO<sub>3</sub>, 5HNO<sub>3</sub> Decomp by H ) Known only in solution in HNO<sub>3</sub>+ q (Ditte, A ch (5) **18** 320)

# Rubidium silver nitrate, RbNO<sub>3</sub>, AgNO<sub>3</sub>

Sol in  $H_2O$  (Russell and Maskelyne, F y Soc Proc 26 357)

#### Rubidium thorium nitrate, Rb<sub>2</sub>Th(NO<sub>3</sub>)<sub>6</sub> Sl sol in HNO<sub>3</sub>, decomp by H<sub>2</sub>O (Me r, Z anorg 1901, 27 384)

#### Rubidium uranyl nitrate, Rb(UO<sub>2</sub>)(NO<sub>3</sub>)<sub>3</sub> Decomp by H<sub>2</sub>O Sol in conc HNO<sub>3</sub> (Meyer, B 1903, **36** 4057)

Solubility of H<sub>2</sub>O at t°

|    | In 10                            |                     |                        |                               |                        |
|----|----------------------------------|---------------------|------------------------|-------------------------------|------------------------|
| t° | Pts by<br>wt UO <sub>2</sub>     | Pts<br>by wt<br>NOs | Pts<br>by wt<br>Rb     | Pts<br>by wt<br>total<br>salt | Solid phase            |
| 25 | a) 35 42                         | 19 72               | 4 63                   | 59 57                         | Double salt +<br>RbNOs |
| 80 | b) 35 40<br>a) 34 64<br>b) 34 68 | 19 76               | 4 67<br>11 01<br>11 01 | 59 64<br>69 46<br>69 52       | Double salt            |

Rubidium uranyl nitrate is decomp by  $\rm H_2O$  at low temp , at 80° it is sol in  $\rm H_2O$  without decomp

(Rimbach, B 1904, 37 476)

#### Samarium nitrate, $Sm(NO_3)_3+6H_2O$

Easily sol in  $H_2O$  (Cleve, C N 48 74) Very hydroscopic (Demarçay, C R 1900, 130 1187)

# Samarium zinc nitrate, $2Sm(NO_3)_3$ , $3Zn(NO_3)_2 + 24H_2O$

1 l sat solution in  $HNO_2+Aq$  (sp. gr 1 325) contains 36 47 g hydrous salt at 16° (Jantsch, Z anorg 1912, **76** 321)

#### Scandium nitrate, basic

Sol in H<sub>2</sub>O (Nilson, B **13** 1444) ScOH(NO<sub>3</sub>) +H<sub>2</sub>O (Crookes, Roy Soc Proc 1908, **80** A 518) Sc<sub>2</sub>O(NO<sub>3</sub>)<sub>4</sub> (Crookes)

#### Scandium nitrate, Sc(NO<sub>3</sub>)<sub>3</sub>

(Crookes, Roy Soc Proc 1908, **80** A, 518) +4H<sub>2</sub>O Very sol in H<sub>2</sub>O (Crookes)

#### Silver nitrate, AgNO<sub>8</sub>

 $100~\rm pts~H_2O$  at 11° dissolve 127 7 pts (Schnauss, Arch Pharm (2) 82~260 )  $100~\rm pts~H_2O$  dissolve at

0° 19 5° 54° 85° 110° 121 9 227 3 500 714 1111 pts AgNO<sub>3</sub>

(Kremers, Pogg 92 497)

100 pts H<sub>2</sub>O dissolve 1622 5 pts at 125°, and 1941 4 pts at 133° (Tilden and Shenstone, Phil Trans 1884 23)

Sat solution boils at 125° (Kremers)

Solubility in H<sub>2</sub>O at t° Sat AgNO<sub>3</sub>+Aq contains % AgNO<sub>3</sub> at t°

| t°                                                                  | % AgNO3                                                                              | t°                                                               | % AgNO3                                                                                      |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| -7<br>-7<br>-5<br>-1<br>+5<br>10<br>15<br>5<br>20<br>26<br>29<br>31 | 46 2<br>46 0<br>47 6<br>52 4<br>51 9<br>56 3<br>61 2<br>66 1<br>71 1<br>73 0<br>73 8 | 36 5<br>40 5<br>45 48<br>73 122<br>134 135<br>135 148<br>160 182 | 75 7<br>76 8<br>77 1<br>78 5<br>84 0<br>88 7<br>92 1<br>92 8<br>92 7<br>93 3<br>95 2<br>96 9 |

(Étard, A ch 1894, (7) 2 526)

100 g sat AgNO<sub>3</sub>+Aq at 155° contain 655 g AgNO<sub>3</sub> (Greenish and Smith, Pharm Jour 1903, 71 881)

Solubility of  $AgNO_3$  in  $H_2O$  at  $30^\circ = 10.31$  mol-litre (Masson Chem Soc. 1911. 99

rausch by Mendelejeff (Z anal 27 284), and K=Kohlrausch (W Ann 1879 1), containing

25 30 35 40% AgNO<sub>3</sub>, C K 1 206 1 251 K M 1 2555 1 3213 1 3945 1 4773

45 50% AgNO<sub>3</sub> K 1 5705 1 6745

Sp gr of AgNO<sub>3</sub>+Aq at 25°

| Concentration of AgNO3        | ∽p gr                                |
|-------------------------------|--------------------------------------|
| 1-normal 1/2- " 1/4- " 1/8- " | 1 1386<br>1 0692<br>1 0348<br>1 0173 |

(Wagner, Z phys Ch 1890, 5 40)

Sol in 500 pts HNO<sub>3</sub>, 30 pts 2HNO<sub>3</sub>, 3H<sub>2</sub>O at 20°, and 6 pts 2HNO<sub>3</sub>, 3H<sub>2</sub>O at 100° (Schultz, Zeit Ch **1869** 531)
Insol in conc HNO<sub>3</sub> (Warren, C C

Insol in conc HNO<sub>3</sub> (Warren 1897 I, 438)

Solubility of AgNO<sub>3</sub> in HNO<sub>3</sub>+Aq at 25°

| G mo                                                                     | l per l                                                                    | G AgNOs                                                                   | Sp gr 25°                                                                              |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| HNOs                                                                     | AgNO <sub>3</sub>                                                          | per l                                                                     | 50 gt 20                                                                               |  |
| 0<br>0 404<br>0 962<br>1 698<br>2 834<br>4 497<br>5 992<br>8 84<br>12 53 | 10 31<br>9 36<br>8 08<br>6 54<br>4 526<br>2 590<br>1 698<br>0 843<br>0 347 | 1752<br>1591<br>1373<br>1111<br>769 1<br>440 1<br>288 6<br>143 2<br>58 90 | 2 3921<br>2 2754<br>2 1243<br>1 9402<br>1 7052<br>1 4980<br>1 4195<br>1 3818<br>1 3976 |  |

(Masson, Chem Soc 1911, 99 1132)

AgNO<sub>3</sub>+NH<sub>4</sub>NO<sub>3</sub> Solubility of AgNO<sub>8</sub> in NH4NO3+Aq See under NH4NO3 AgNO<sub>3</sub>+KNO<sub>3</sub> Solubility of AgNO<sub>3</sub> +KNO<sub>3</sub> in H<sub>2</sub>O See under KNO<sub>3</sub>

AgNO<sub>3</sub>+AgNO<sub>2</sub> Solubility of AgNO<sub>8</sub>+AgNO<sub>2</sub> at 18°

| G per I                             |                                  | G per !                  |                         |  |
|-------------------------------------|----------------------------------|--------------------------|-------------------------|--|
| AgNO <sub>3</sub> AgNO <sub>2</sub> |                                  | AgNO <sub>3</sub>        | AgNO2                   |  |
| 0 000<br>0 439<br>0 878<br>1 756    | 3 184<br>3 042<br>2 926<br>2 601 | 3 512<br>7 024<br>14 048 | 2 201<br>1 799<br>1 480 |  |

(Naumann and Rucker, B 1905, 38 2293) See also under AgNO<sub>2</sub>

Insol in liquid CO2 (Buchner, Z phys Ch 1906, **54** 674)

Very sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829)

Sol in 4 pts boiling alcohol

Sol in 10 pts alcohol (Dumas)

Sol in 11 pts alcohol of 90% (Hager)

Solubility in 100 pts alcohol of given vol % at t°

| t°       | 95%         | 80%   | 70%   | 6   | 0%           |
|----------|-------------|-------|-------|-----|--------------|
| 15       | 3 8         | 10 3  | 22    |     | 30 5         |
| 50<br>75 | 7 3<br>18 3 | 42 0  |       |     | 88 1<br>89 0 |
| t.°      | 50%         | 40%   | 30%   | 20% | 10%          |
|          | 4070        | 10 /0 | 00 70 | 20% | 10%          |

(Eder, J pr (2) 17 44)

100 pts absolute methyl alcohol dissolve 3 72 pts at 19°, 100 pts absolute ethyl alcohol dissolve 3 1 pts at 19° (de Bruyn, Z phys Ch 10 783)

Only traces are sol in absolute alcohol 100 pts of a mixture of 1 vol alcoh (95 vol %)+1 vol pure ether dissolve 1 pts AgNO<sub>3</sub> at 15°, 100 pts of 2 vols alcoh | +1 vol ether dissolve 2 3 pts AgN( (Eder, J pr 1878, (2) 17 45)

Solubility of AgNO<sub>3</sub> in ethyl alcohol+1 1 at 30°

| % by wt H <sub>2</sub> O                                                    | % by wt alcohol                                                    | % by wt AgN                                                                 |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 27 0<br>27 71<br>30 80<br>32 10<br>31 40<br>28 95<br>27 91<br>20 92<br>6 83 | 2 8<br>13 67<br>20 13<br>25 85<br>37 26<br>44 54<br>64 42<br>86 54 | 73 0<br>69 49<br>55 53<br>47 77<br>42 75<br>33 79<br>27 55<br>14 66<br>6 63 |

(Schreinemakers, Z phys Ch 1909, 65 57

Solubility of AgNO3+KNO3 in alcoh-See under KNO<sub>3</sub>

Sol in methyl, ethyl, and isobutyl alcoho  $\mathrm{CCl_4}$ ,  $\mathrm{CHCl_3}$ , acetone and pyridine (Wilcon) J phys Chem 1910, **14** 587)

100 pts H<sub>2</sub>O sat with ether dissolve 88 pts AgNO<sub>3</sub> at 15° (Eder, l c)

Sol in glycerine

Sol in benzonitrile 100 g benzonitr dissolve about 105 g AgNO<sub>3</sub> at 18° mann and Schier, B 1914, **47** 1369)

1 pt acetonitrile dissolves about 15 p  $AgNO_3$  (Scholl and Steinkopf, B 1906, 4398)

Easily sol in methyl, ethyl, and an I amine (Shinn, J phys Chem 1907, 11 53 ) Sol in acetone (Krug and M'Elroy, Anal Ch 6 184)

0 35 pts are sol in 100 pts acetone at 1 0 35 " " " " 100 " " " 5

(Laszyznski, B 1894, **27** 2287)

Sol in acetone and in methylal (Lidmar, C C 1899, II 1014)

1 g AgNO<sub>3</sub> is sol in 227 g acctone at 1 Sp gr of sat solution 18°/4° = 0.798 (N mann, B 1904, 37 4339)

Insol in CS<sub>2</sub> (Arctowski, Z anoig 18)

Difficultly sol in methyl acetate mann, B 1909, **42** 3790)

Insol in methyl acetate (Naumann, 1909, **42** 3790), ethyl acetate (Naumai B 1904, **37** 3601)

Sol in urethane (Castoro, Z anorg 18), 20 61)

100 g C<sub>6</sub>H<sub>6</sub> dissolve 0 022 g AgNO<sub>3</sub> at 3 0044 g at 405° (Linebarger, Am J & i 1895, **49** 48)

Mol weight determined in piperidi pyridine and benzonitrile (Werner, Z anc ;

1897, **15** pp 17, 23 and 32)

| t°   G AgNos per 100 g   Solid phase    -48 5°*   0 | Solub                                                                                                           | Solubility of AgNO <sub>3</sub> in pyridine at t°                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| -50 5                                               | t°                                                                                                              | per 100 g                                                                                                                                                                                                                                                                               | Solid phase                                                                                                                                                                                                             |  |  |
| 90   241 9   "   "   100   253 8   "   "            | -48 5°* -50 5 -50 5 -50 5 -51 25 -65 25 -44 -40 -35 -30 -24 -20 -10 -30 -48 -48 -48 -48 -48 -48 -48 -48 -48 -48 | Per 100 g<br>C <sub>5</sub> H <sub>5</sub> N<br>0<br>3<br>6<br>9<br>11 11 7<br>12 2<br>12 6<br>13 9<br>17 6<br>18 8<br>20 03<br>22 34<br>27 21<br>33 64<br>40 86<br>53 52<br>62 26<br>63 06<br>66 35<br>70 85<br>72 25<br>78 60<br>89 10<br>121 21<br>215 02<br>228 5<br>230 4<br>230 4 | C <sub>6</sub> H <sub>6</sub> N  " " " C <sub>5</sub> H <sub>5</sub> N +AgNO <sub>5</sub> , 6C <sub>5</sub> H <sub>6</sub> N  AgNO <sub>5</sub> , 6C <sub>5</sub> H <sub>6</sub> N  " " " " " " " " " " " " " " " " " " |  |  |
|                                                     | 90<br>100                                                                                                       | 241 9<br>253 8                                                                                                                                                                                                                                                                          | u                                                                                                                                                                                                                       |  |  |

\* M pt (Kahlenberg and Brewer, J phys Ch 1908, **12** 283)

Silver nitrate acetylide, AgNO<sub>8</sub>, AgHC<sub>2</sub> (Willgerodt, B 1895, 28 2108) AgNO<sub>3</sub>, Ag<sub>2</sub>C<sub>2</sub> Ppt (Chavastelon, C R 1897, **124** 1365) 2AgNO<sub>3</sub>, Ag<sub>2</sub>C<sub>2</sub> (Chavastelon)

Silver nitrate ammonia, AgNO<sub>3</sub>, NH<sub>3</sub>

Partly sol in H<sub>2</sub>O, rather sol in alcohol SI sol in ether (Reychler, B 16 990) Very sol in liquid ammonia below —10° (Joannis, C R 1894, 118 1151) AgNO<sub>3</sub>, 2NH<sub>3</sub> Easily sol in H<sub>2</sub>O (Mitscherlich ) 11 alcohol dissolves 0 0383 g mols (Kurilow, C C 1903 II, 97)  $AgNO_3$ ,  $3NH_3$  Completely sol in  $H_2O$ (Rose, Pogg 20 153)

Silver nitrate antimonide, AgNO<sub>8</sub>, Ag<sub>2</sub>Sb Decomp at once by H<sub>2</sub>O (Poleck and Thummel. B 16 2435

Silver nutrate arsenide, AgNO<sub>8</sub>, Ag<sub>3</sub>As Decomp at once by H<sub>2</sub>O (Poleck and Thummel)

Silver nitrate bromide, AgNO<sub>8</sub>, AgBr

Decomp immediately by H2O or alcohol, with separation of AgBr (Risse, A 111 39)

Silver nitrate chloride, AgNO<sub>3</sub>, AgCl

Quickly decomp with H<sub>2</sub>O, more slowly with absolute alcohol, not decomp by etheralcohol (Reichert, J pr 92 237)

Silver nitrate cyanide, 2AgNO<sub>3</sub>, AgCN

Decomp by H<sub>2</sub>O, not by alcohol (Hellwig, Z anorg 1900, **25** 177)

Silver nitrate iodide, AgNO<sub>3</sub>, AgI

Cold H O separates AgI, which redissolves on heating (Sturenberg, Arch Pharm (2) 143 12) Sol in little H<sub>2</sub>O without decomp, more H<sub>2</sub>O separates AgI (Kremers, J pr 71 54) Insol in absolute alcohol

conc ÁgNO<sub>3</sub>+Aq 2AgNO<sub>3</sub>, AgI Sol in little but decomp by more boiling H<sub>2</sub>O (Risse, A 111 39)

Silver nitrate mercuric oxide, AgNO<sub>3</sub>, 2HgO Decomp by H<sub>2</sub>O Sol in HNOs and  $H_2SO_4$  (Finel, Gazz ch it 1910, 41 (2)

Silver nitrate phosphide, 3AgNO<sub>3</sub>, Ag<sub>3</sub>P (Warren, C N 56 113)

Silver nitrate silicide, 4AgNO<sub>3</sub>, AgSi (Buchner, Ch Ztg 9 484)

Silver nitrate silicate, 2AgNO<sub>3</sub>, 3Ag<sub>4</sub>SiO<sub>4</sub>

Sol in dil HNO<sub>3</sub>+Aq, but SiO<sub>2</sub> separates out after heating (Rousseau and Tite, C R **114** 294)

Silver nitrate sulphide, AgNO<sub>3</sub>, Ag<sub>2</sub>S

Decomp by H<sub>2</sub>O (Poleck and Thummel. B 16 2435)

Silver nitrate sulphocyanide, 2AgNO<sub>3</sub>, AgSCN

Decomp by H<sub>2</sub>O, not by alcohol (Hellwig, Z anorg 1900, 25 178)

Sodium nitrate, NaNO<sub>3</sub>

Deliquescent in moist air Sol in H<sub>2</sub>O with absorption of heat 75 pts NaNO $_3$  mixed with 100 pts  $\rm H_2O$  at 13 2° lower the temperature 18 5° (Rudorff, B 2 68)

```
Sol in 158 pts H2O at -- 6°
                                       (Marx)
                          +119°
       0 46
       2 89
                             28
47°
                                       (Osann)
       0 79
                             18 5
                                      (Kopp)
       1 14
                            20° (Schiff A 109 326)
1875° (Abl \
       1 16
```

| 592                                                                                                           |                                                                       |                                          | NITRATE                                                            | , SODIUM                                     | [                                                    |                                                        |                                                        |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 100 pts                                                                                                       | H₂O at t° d                                                           | hssolve pts                              | NaNO <sub>3</sub>                                                  | Solt                                         | ıbılıty ın 10                                        | 0 pts H <sub>2</sub> O                                 | at t°                                                  |
| t°                                                                                                            | Pts NaNOs                                                             | t                                        | Pts NaNOs                                                          | t°                                           | Pts NaNO3                                            | t°                                                     | Pts NaN                                                |
| -6<br>0<br>10<br>16<br>20<br>30<br>40                                                                         | 68 80<br>79 75<br>84 30<br>87 63<br>89 55<br>95 37<br>102 31          | 50<br>60<br>70<br>80<br>90<br>100<br>120 | 111 13<br>119 94<br>129 63<br>140 72<br>153 63<br>168 20<br>225 30 | 0<br>1<br>2<br>3<br>4<br>5                   | 72 9<br>74 7<br>75 4<br>76 0<br>76 7<br>77 4<br>78 1 | 60<br>61<br>62<br>63<br>64<br>65<br>66                 | 122<br>124<br>125<br>126<br>127<br>128<br>130          |
| (1                                                                                                            | Poggiale, A                                                           | ch (3) 8 46                              | 39)                                                                | 7<br>8                                       | 78 7<br>79 4                                         | 67<br>68                                               | 131<br>132                                             |
| 100 pts H<br>fiths)                                                                                           | [2O at 119° disso                                                     | lve 150 pts N                            | aNO3 (Grif                                                         | 9<br>10                                      | 80 1<br>80 8                                         | 69<br>70                                               | 133<br>134                                             |
| NaNO <sub>3</sub> +<br>pts H <sub>2</sub> O hasten)                                                           | Aq sat at 18 75<br>ave dissolved 8                                    | ° has 1 3769 s<br>38 001 pts N           | p gr and 100<br>aNOs (Kar                                          | 11<br>12                                     | 81 4<br>82 0                                         | 71<br>72                                               | 136<br>137                                             |
| NaNO <sub>3</sub> +<br>(Fourcroy)<br>NaNO <sub>3</sub> +<br>(Hassenfratz<br>100 pts H<br>NaNO <sub>3</sub> (U | Aq sat in colors $Aq$ sat at $12z$ , $12O$ at $155°$ dissorres Dict.) | 5° contains<br>olve 33 pts               | 34% NaNOs<br>at 52° 100 pts                                        | 13<br>14<br>15<br>16<br>17<br>18             | 82 7<br>83 4<br>84 0<br>84 7<br>85 4<br>86 1         | 73<br>74<br>75<br>76<br>77<br>78                       | 138<br>139<br>140<br>142<br>143<br>145                 |
| t                                                                                                             | Pts NaNO3                                                             | t°                                       | Pts NaNOs                                                          | 19<br>20                                     | 86 8<br>87 5                                         | 79<br>80                                               | 146<br>148                                             |
| 0<br>13 9<br>44 65                                                                                            | 73 0<br>81 6<br>110 5                                                 | 60 65<br>99 9<br>119 7                   | 125 5<br>173 6<br>211 4                                            | 21<br>22<br>23<br>24                         | 88 3<br>89 0<br>89 7<br>90 3                         | 81<br>82<br>83<br>84                                   | 149<br>151<br>152<br>153                               |
| (No                                                                                                           | ordenskjold,                                                          | Pogg 136                                 | 312)                                                               | 25<br>26                                     | 91 0<br>91 8                                         | 85<br>86                                               | 155<br>156                                             |
| 100 pts                                                                                                       | H <sub>2</sub> O dissolv                                              | re pts NaN                               | O <sub>3</sub> at t°                                               | 27<br>28                                     | $\begin{array}{cccc} 92 & 5 \\ 93 & 2 \end{array}$   | 87<br>88                                               | 158<br>159                                             |
| t°                                                                                                            | Pts NaNO <sub>3</sub>                                                 | t°                                       | Pts NaNOs                                                          | 29                                           | 94 0                                                 | 89                                                     | 161                                                    |
| 0<br>10<br>20<br>30<br>40<br>50                                                                               | 70 94<br>78 57<br>87 97<br>98 26<br>109 01<br>120 00<br>131 11        | 70<br>80<br>90<br>100<br>110<br>119 4    | 142 31<br>153 72<br>165 55<br>178 18<br>194 26<br>213 43           | 30<br>31<br>32<br>33<br>34<br>35<br>36<br>37 | 94 9<br>96 0<br>96<br>97<br>98<br>99<br>100<br>100   | 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97           | 162<br>164<br>166<br>168<br>169<br>171<br>173<br>175   |
| (                                                                                                             | (Maumené, C                                                           | C R 58 81                                | .)                                                                 | 38<br>39                                     | $101 \\ 102$                                         | 98<br>99                                               | 177<br>178                                             |
| 43 88 pts<br>(v Hauer,<br>100 pts                                                                             | 156°, and s<br>8 (Page a                                              | l5°, 44 53 p<br>37 )<br>olve  84 21-     | -84 69 pts<br>has sp gr                                            | 40<br>41<br>42<br>43<br>44<br>45<br>46       | 102<br>103<br>104<br>105<br>106<br>107<br>108        | 100<br>101<br>102<br>103<br>104<br>105<br>106          | 180<br>182<br>184<br>186<br>188<br>190<br>192          |
| 100 pts                                                                                                       | H <sub>2</sub> O dissolv                                              | e pts NaN                                | O <sub>s</sub> at t°                                               | 47<br>48                                     | 109<br>110                                           | 107<br>108                                             | 194<br>196                                             |
| to                                                                                                            | Pts NaNO <sub>3</sub>                                                 | t°                                       | Pts NaNOa                                                          | 49<br>50                                     | 111<br>112                                           | 109<br>110                                             | 198<br>200                                             |
| 0<br>2<br>4<br>8<br>10<br>13<br>15                                                                            | 66 69<br>70 97<br>71 04<br>75 65<br>76 31<br>79 00<br>80 60           | 18<br>21<br>26<br>29<br>36<br>51<br>68   | 83 62<br>85 73<br>90 33<br>92 93<br>99 39<br>113 63<br>125 07      | 51<br>52<br>53<br>54<br>55<br>56<br>57<br>58 | 113<br>114<br>115<br>116<br>117<br>118<br>119<br>120 | 111<br>112<br>113<br>114<br>115<br>116<br>117<br>117 5 | 202<br>204<br>207<br>209<br>211<br>213<br>215<br>216 4 |
| Solubili                                                                                                      | tr is constan                                                         | + from 0°                                | 15 70                                                              | 59                                           | 211                                                  |                                                        |                                                        |

Solubility is constant from 0° to —15 7°, when NaNO<sub>3</sub>+7H<sub>2</sub>O separates out (Ditte, C R 80 1164)

 $\bar{2}\bar{1}\bar{1}$ 

59

Sat solution at b pt contains 2164 pts NaNO<sub>3</sub> (Mulder) 218 5 pts NaNO<sub>3</sub> (Marx) 2134 pts NaNO<sub>3</sub> (Maumené) 2114 pts NaNO<sub>3</sub> (Nordenskold) 224 8 pts NaNO<sub>3</sub> (Legrand) 150 pts NaNO<sub>3</sub> (Griffiths)

| Sat  | NaNO <sub>8</sub> | +Aq d | contains | at                                    |
|------|-------------------|-------|----------|---------------------------------------|
| 120° | 130°              | 172°  | 180°     | 199°                                  |
| 66 8 | 67 5              | 77 1  | 78 1     | 82 0% NaNO <sub>8</sub> ,             |
| 220° | 250°              | 255°  | 290°     | 313° (mpt )                           |
| 83 5 | 89 5              | 91 5  | 97 5     | 313° (mpt )<br>100% NaNO <sub>3</sub> |
|      | (Étard.           | A ch  | 1894. (  | 7) 2 527)                             |

100 g sat NaNO<sub>3</sub>+Aq contain 42 47 g NaNO<sub>3</sub> at 0° (Coppadoro, Rass Mm 1911, XVII, **35** 123)

100 g sat NaNO<sub>3</sub>+Aq contain 49 16 g NaNO<sub>3</sub> at 30° (Coppadoro, Rass Min 1912, 37 7)

100 g H<sub>2</sub>O dissolve 92 14 g NaNO<sub>3</sub> at 25° (Haigh, J Am Chem Soc 1912, **34** 1148)

The solubility of crystals on different faces has been determined by Lebrun (Belg Acad Bull 1913 953)

Sp gr of NaNO<sub>8</sub>+Aq at 19 5°

| % NaNO:                    | Sp gr                      | % NaNOs          | Sp gr            |
|----------------------------|----------------------------|------------------|------------------|
| 12 057<br>22 726<br>31 987 | 1 0844<br>1 1667<br>1 2450 | 39 860<br>46 251 | 1 3176<br>1 3805 |

(Kremers, Pogg 95 120)

Sp gr of NaNO<sub>3</sub>+Aq at 20 2°

| % NaNO3                                                                                         | Sp gr                                                                                                                                                                                      | % NaNOs                                                                                                        | Sp gr                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 1 0065<br>1 0131<br>1 0197<br>1 0264<br>1 0332<br>1 0399<br>1 0468<br>1 0537<br>1 0606<br>1 0676<br>1 0746<br>1 0817<br>1 0889<br>1 0962<br>1 1035<br>1 1109<br>1 1184<br>1 1260<br>1 1338 | 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44 | 1 1904<br>1 1987<br>1 2070<br>1 2154<br>1 2239<br>1 2325<br>1 2412<br>1 2500<br>1 2589<br>1 2679<br>1 2770<br>1 2863<br>1 3055<br>1 3155<br>1 3225<br>1 3456<br>1 3557 |
|                                                                                                 | 1 1338<br>1 1418                                                                                                                                                                           | 44<br>45                                                                                                       | 1 3659                                                                                                                                                                 |
| $\begin{array}{c} 21 \\ 22 \end{array}$                                                         | 1 1498<br>1 1578                                                                                                                                                                           | 46<br>47                                                                                                       | 1 3761<br>1 3864                                                                                                                                                       |
| 23<br>24<br>25                                                                                  | 1 1659<br>1 1740<br>1 1822                                                                                                                                                                 | 48<br>49<br>50                                                                                                 | 1 3968<br>1 4074<br>1 4180                                                                                                                                             |
| /CI 3 M                                                                                         |                                                                                                                                                                                            | ~ , ,                                                                                                          | 71 0                                                                                                                                                                   |

(Schiff, calculated by Gerlach, Z anal 8 280)

| Sp gr of NaNO <sub>3</sub> +Aq at 18° |        |          |                  |  |  |
|---------------------------------------|--------|----------|------------------|--|--|
| % NaNO:                               | Sp gr  | % NaNOs  | Sp gr            |  |  |
| 5                                     | 1 0327 | 20<br>30 | 1 1435<br>1 2278 |  |  |

(Kohlrausch, W Ann 1879 1)

Sp gr of NaNO<sub>3</sub>+Aq at 20°, containing mols NaNO<sub>3</sub> in 100 mols H<sub>2</sub>O

| Mols NaNO3 | Sp gr   |
|------------|---------|
| 2          | 1 05980 |
| 5          | 1 13813 |

(Nicol, Phil Mag (5) 16 122)

The saturated solution boils at 117 5° (Mulder)
118 9° (Griffiths)
119° (Marx)
119 4° (Maumené)
119 7° (Nordenskjold)
121° (Legrand)
122-123° (Kremers)

NaNO<sub>3</sub>+Aq forms a crust at 118°, and contains 194 pts NaNO<sub>3</sub> to 100 pts  $H_2O$ , highest temp observed, 120 5° (Gerlach,  $\Sigma$  anal 26 427)

B-pt of NaNO<sub>3</sub>+Aq containing pts NaNO<sub>3</sub> to 100 pts H<sub>2</sub>O G=according to Gerlach (Z anal **26** 433), L=according to Legrand (A ch (2) **59** 431)

| B pt                                                                | G                                                                      | L                                                                                    | B pt                                                                | G                                                                   | L                                                                                      |
|---------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 101°<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110 | 9<br>18 5<br>28<br>38<br>48<br>58<br>68<br>78 5<br>89<br>99 5<br>110 5 | 9 3<br>18 7<br>28 2<br>37 9<br>47 7<br>57 6<br>67 7<br>77 9<br>88 3<br>98 8<br>109 5 | 112°<br>113<br>114<br>115<br>116<br>117<br>118<br>119<br>120<br>121 | 121 5<br>133<br>144 5<br>156<br>168 5<br>181<br>194<br>207 5<br>222 | 120 3<br>131 3<br>142 4<br>153 7<br>165 2<br>176 8<br>188 6<br>200 5<br>212 6<br>224 8 |
|                                                                     |                                                                        |                                                                                      |                                                                     |                                                                     |                                                                                        |

 $50~\rm pts~NaNO_3~mixed~with~100~pts~snow~at~-1^\circ~give~a~temp~of~-17~5^\circ~(Rudorff, Pogg~122~337~)$ 

Sp gr of NaNO<sub>3</sub>+Aq at t°

| • -                                                |                                       |                       |                            |
|----------------------------------------------------|---------------------------------------|-----------------------|----------------------------|
| G NaNOs dis<br>solved in 100 g<br>H <sub>2</sub> O | G NaNOsin<br>100 g of the<br>solution | t                     | Sp gr                      |
| 4 166<br>11 111<br>25 000                          | 4<br>10<br>20                         | 17 8°<br>13 9°<br>12° | 1 0276<br>1 0704<br>1 1441 |

(de Lannoy, Z phys Ch 1895, 18 465)

Sp gr of NaNO +Aq at 20 1°, when p = per cent strength of sol, d = observed density, w=volume conc in grams

per cc  $\left(\frac{\text{pd}}{100} = \text{w}\right)$ 

| p                                                                                        | d                                                                                                | w                                                                                                          |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 42 05<br>35 65<br>31 72<br>23 24<br>17 370<br>11 915<br>9 665<br>7 039<br>4 241<br>1 589 | 1 3380<br>1 2765<br>1 2407<br>1 1696<br>1 1228<br>1 0819<br>1 0656<br>1 0468<br>1 0273<br>1 0096 | 0 56267<br>0 45510<br>0 39365<br>0 27180<br>0 19505<br>0 12888<br>0 10300<br>0 07369<br>0 04357<br>0 01604 |
|                                                                                          |                                                                                                  |                                                                                                            |

(Barnes, J phys Chem 1898, 2 545)

Sp gr  $20^{\circ}/4^{\circ}$  of a normal solution of NaNO<sub>3</sub> = 105386, of a 0 5 normal solution = 102646 (Haigh, J Am Chem Soc 1912, **34** 1151)

Sp gr of sat NaNO<sub>3</sub>+Aq at t°

| t° G NaNO3 sol sp gr In 100 g H2O Sp gr                                                                                                                                                                                                                                                                                                                          |                                 |                                                         |                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                  | t°                              |                                                         | Sp gr                                                       |
| 10         68 0         1 342           0         43 0         1 358           10         80 5         1 377           20         88 0         1 387           30         96 2         1 406           40         104 9         1 418           50         114 0         1 437           60         124 6         1 456           70         136 0         1 467 | 0<br>10<br>20<br>30<br>40<br>50 | 43 0<br>80 5<br>88 0<br>96 2<br>104 9<br>114 0<br>124 6 | 1 358<br>1 377<br>1 387<br>1 406<br>1 418<br>1 437<br>1 456 |

(Tschernaj, J Russ Phys Chem Soc 1912, 44 1565)

Sol in 66 pts  $\rm HNO_3$ , in 32 pts  $\rm 2HNO_3$ ,  $\rm 3H_2O$  at 32°, in 4 pts  $\rm 2HNO_3$ ,  $\rm 3H$  O at 123° (Schultz, Zeit Ch (2) 5 531)

Solubility in HNO<sub>3</sub>+Aq at 0°

|                                                                                                        |                                                                                                     | -1                                                                                                       |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| G per 100 d                                                                                            | ec of solution                                                                                      | Sp gr                                                                                                    |
| NaNO <sub>8</sub>                                                                                      | HNO <sub>3</sub>                                                                                    | ap gr                                                                                                    |
| 56 5<br>54 2<br>51 48<br>48 42<br>44 88<br>41 44<br>33 61<br>29 86<br>26 46<br>20 00<br>15 32<br>10 97 | 0 00<br>1 67<br>3 59<br>5 55<br>7 92<br>10 65<br>17 02<br>20 33<br>23 48<br>30 26<br>36 09<br>44 76 | 1 341<br>1 338<br>1 331<br>1 324<br>1 312<br>1 308<br>1 291<br>1 285<br>1 282<br>1 276<br>1 276<br>1 291 |

(Engel, C R 1887, 104 911)

Solubility of NaNOs in NH4OH+Aq at 1

| G per 10                | Sp gr                   |                         |
|-------------------------|-------------------------|-------------------------|
| NH3                     | NaNO <sub>3</sub>       |                         |
| 13 87<br>17 28<br>20 38 | 75 03<br>73 99<br>73 18 | 1 253<br>1 233<br>1 212 |

(Fedotieff and Koltunoff, Z anorg 1914, 5 251)

NaNO<sub>3</sub>+Na<sub>2</sub>CO<sub>3</sub> (See Na<sub>2</sub>CO<sub>3</sub>) Sol m sat NH<sub>4</sub>Cl+Aq

Very rapidly sol in sat BaCl<sub>2</sub>+Aq v th

pptn of Ba(NO<sub>3</sub>)<sub>2</sub>
Sol in sat KCl+Aq, with formation of KNO<sub>3</sub>

Sol in sat  $NH_4NO_3+Aq$  (See  $NH_4NO_3$ ) Sol in sat  $Ba(NO_3)_2+Aq$ , with partial pptn of  $Ba(NO_3)_2$  (See  $Ba(NO_3)_2$ )

Sol in sat  $Pb(NO_3)_2 + Aq$ , with subsequent pptn of  $Pb(NO_3)_2$  (See  $Pb(NO_3)_2$ )

NaNO<sub>3</sub>+KNO<sub>3</sub> Sol m sat KNO<sub>3</sub>+Aq, solution thus m de at 18° contains 54 33% mixed salt, or 100 ts H<sub>2</sub>O dissolve 118 98 pts mixed salt 12 89 53 pts NaNO<sub>3</sub> and 29 45 pts Kl O<sub>3</sub> (See KNO<sub>3</sub>)

NaNO<sub>3</sub>+Sr(NO<sub>3</sub>)<sub>2</sub>

If  $Sr(NO_3)_2 + Aq$  sat at 14 5° is sat 1th NaNO3, 100 pts H<sub>2</sub>O dissolve

| NaNO <sub>3</sub><br>Sr(NO <sub>3</sub> ) | 83 7 | 66 4<br>51 0 | 62 | ) |
|-------------------------------------------|------|--------------|----|---|
|                                           |      | 117 4        |    |   |

(Mulder)

NaNO<sub>3</sub>+NaNO<sub>2</sub> See under NaNO NaNO<sub>3</sub>+NaCl

100 pts H () dissolve 24 91 pts N i 1-54 55 pts NaNO<sub>3</sub>=79 46 pts of the two alt at 20° (Nicol, Phil Mag (5) **31** 386)

#### 100 pts H<sub>2</sub>O dissolve at 18 75°

|                           | 1  | 2              | 3              | 4              | ,    | 6          |
|---------------------------|----|----------------|----------------|----------------|------|------------|
| NaCl<br>NaNO <sub>3</sub> | 36 | 25 22<br>52 89 | 24 96<br>52 84 | 24 95<br>52 82 | 86-6 | 4 6<br>6 8 |

- 2 Sat NaCl+Aq treated with NaN( 3
- 3 Sat NaNO<sub>3</sub>+Aq treated with Na l 4 Simultaneous treatment of the two alts
- | by H<sub>2</sub>O (Karsten) | 6 Excess of both salts+Aq warmed and | cooled to 20° (Rudorff, B 6 484)

Solubility of NaCl with addition of NaNO<sub>3</sub> at 15.5°

| Sp gr                                                                        | 100 ccm contain in g                                                 |                                                                       |                                                                    |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|--|
| ~₽ 8-                                                                        | NaCl                                                                 | H <sub>2</sub> O                                                      | NaNO:                                                              |  |
| 1 2025<br>1 2305<br>1 2580<br>1 2810<br>1 3090<br>1 3345<br>1 3465<br>1 3465 | 31 78<br>27 89<br>26 31<br>23 98<br>22 30<br>20 40<br>19 40<br>19 67 | \$8 47<br>87 63<br>86 25<br>82 66<br>80 42<br>79 25<br>77 37<br>77 34 | 0 00<br>7 53<br>13 24<br>21 58<br>28 18<br>33 80<br>37 88<br>37 64 |  |

NaNO<sub>3</sub> separated in last two solutions

Solubility of NaNO<sub>3</sub> with addition of NaCl at 15°

| Sp gr                                                                        | 100 ccm contain in g                                                 |                                                                      |                                                                |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|--|
| ~p g.                                                                        | NaNO <sub>3</sub>                                                    | H <sub>2</sub> O                                                     | NaCl                                                           |  |
| 1 3720<br>1 3645<br>1 3585<br>1 3530<br>1 3495<br>1 3485<br>1 3485<br>1 3485 | 62 38<br>56 56<br>52 09<br>47 08<br>42 66<br>39 90<br>38 73<br>38 02 | 74 82<br>75 69<br>75 71<br>76 86<br>76 96<br>77 14<br>77 15<br>77 49 | 0<br>4 00<br>7 24<br>11 36<br>15 33<br>17 81<br>18 97<br>19 34 |  |

NaCl separated in last two solutions (Bodlander, Z phys Ch 7 360)

Solubility of NaNO<sub>3</sub> in NaCl+Aq at 15°

| Sp gr                                                                        | G per 100 cc sat solution                                       |                                                                        |                                                                      |
|------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|
| Sp gi                                                                        | NaCl                                                            | NaNO <sub>3</sub>                                                      | H <sub>2</sub> O                                                     |
| 1 3720<br>1 3645<br>1 3585<br>1 3530<br>1 3495<br>1 3485<br>1 3485<br>1 3485 | 0<br>4 0<br>7 24<br>11 36<br>15 33<br>17 81<br>18 97*<br>19 34* | 62 38<br>56 76<br>52 09<br>47 08<br>42 66<br>39 90<br>38 73*<br>38 02* | 74 82<br>75 69<br>75 71<br>76 86<br>76 96<br>77 14<br>77 15<br>77 49 |

\*Solutions sat with both salts (Bodlander, Z phys Ch 1891, **7** 361)

Solubility of  $NaNO_3+NaCl$  (g in 100 g H O) at 25°

| NaNO3                                     | NaCl                                     | Solid phase                        |
|-------------------------------------------|------------------------------------------|------------------------------------|
| 79 20<br>68 38<br>56 56<br>39 20<br>20 17 | 8 39<br>16 32<br>23 74<br>27 56<br>31 48 | NaNO3<br>"NaNO3+NaCl<br>NaCl<br>"" |

(Uyeda, Mem Col Sc Kioto, 1910, 2 245)

Solubility in NaCl+Aq at 20°, 30°, 40° and 91° Tables given in the original show that each salt diminishes the solubility of the other (Leather, Mem Dept Agric India, 1914, 3 177, Chem Soc 1915, 108 (2) 13)

See also under NaCl

NaNO<sub>3</sub>+NaOH

Solubility in NaOH+Aq at 0° NaNO<sub>3</sub>=
mols NaNO<sub>3</sub> (m mg) in 10 ccm of solution, Na<sub>2</sub>O=mols Na<sub>2</sub>O (m mg) in 10
ccm of solution

| NaNO3 | Na <sub>2</sub> O | NaNOs<br>+Na2O | Sp gr |
|-------|-------------------|----------------|-------|
| 66 4  | 0                 | 66 4           | 1 341 |
| 62 5  | 2 875             | 65 375         | 1 338 |
| 57 15 | 6 1               | 63 25          | 1 333 |
| 47 5  | 12 75             | 60 25          | 1 327 |
| 29 5  | 26                | 55 5           | 1 326 |
| 17 5  | 39                | 56 5           | 1 332 |
| 13 19 | 45 875            | 59 065         | 1 356 |
| 6 05  | 60 875            | 66 925         | 1 401 |

(Engel, Bull Soc (3) 6 16) Solubility in NaOH+Aq at 0°

| G per 100                                                        | Sp gr                                                               |                                                                      |
|------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| NaOH                                                             | NaNO3                                                               | -, -                                                                 |
| 0 0<br>2 30<br>4 89<br>10 21<br>20 83<br>31 25<br>36 76<br>48 75 | 56 50<br>53 19<br>48 63<br>40 42<br>25 10<br>14 89<br>11 22<br>5 15 | 1 341<br>1 338<br>1 333<br>1 327<br>1 326<br>1 332<br>1 356<br>1 401 |

(Engel, l c)

Easily sol in K<sub>2</sub>SO<sub>4</sub>+Aq without pptn Easily sol in Na<sub>2</sub>SO<sub>4</sub>+Aq without pptn Sol in MgSO<sub>4</sub>+Aq, at first to a clear solu-

tion, but afterwards NaNO<sub>3</sub> is pptd Very sol in sat CuSO<sub>4</sub>+Aq, but double

sulphate separates out

Very sol in ZnSO<sub>4</sub>+Aq with pptn of double sulphate (Karsten)

Solubility of NaNO3 in Na S2O3+Aq at t°

|   | t  | cz<br>NaNO3                              | Va 5 03                                   | Solid phase                                                                                                                                 |
|---|----|------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|   | 9  | 33 31<br>22 57<br>4 22                   | 12 26<br>23 41<br>34 77                   | NaNO <sub>3</sub><br>" +Na <sub>2</sub> S O <sub>3</sub> , 5H <sub>2</sub> O<br>Na S O <sub>3</sub> , 5H <sub>2</sub> O                     |
| • | 25 | 35 42<br>25 40<br>19 90<br>18 02<br>4 33 | 12 72<br>24 25<br>31 81<br>32 83<br>40 50 | NaNO <sub>3</sub> " +Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , 5H <sub>2</sub> O Na S <sub>2</sub> O <sub>3</sub> , 5H <sub>2</sub> O |

(Kremann and Rothmund, Z anorg 1914, 86 373)

Very sol in liquid  $NH_3$  (Franklin, Am Ch J 1898, **20** 829)

Easily sol in liquid HF (Franklin, Z anorg 1905, 46 2)

Hydrazine dissolves 26 6 pts NaNO<sub>3</sub> at 12 5-13° (de Bruyn, R t c 1899, **18** 297)

100 pts alcohol of 0 9 sp gr dissolve 10 5 pts NaNOs 0 872 sp gr 6 pts 0 834 sp gr 0 38 pt insol in alcohol of 0 817 sp gr (Kirwan)
100 pts alcohol of 61 4% by weight dissolve 21 2 pts NaNOs at 26° (Pohl W A B 6 600)
100 pts alcohol of 62° Tr dissolve 7 4 pts NaNOs at 19 5°
100 pts alcohol of 93° Tr dissolve 0 93 pt NaNOs at 19 5° (Wittstein)

100 pts alcohol containing % alcohol by weight dissolve pts NaNO<sub>3</sub> at 15°, or 100 pts solution contain % NaNO<sub>3</sub>

10 20 30 40 60 80% alcohol 65 3 48 8 35 5 25 8 11 4 2 8 pts NaNO<sub>3</sub> 39 5 32 8 26 2 20 5 10 2 2 7% NaNO<sub>3</sub> (Schiff)

100 pts wood-spirit of 40% dissolve 323 pts NaNO<sub>3</sub> (Schiff, A 118 365)

Solubility in alcohol at 16 5°

| Sp gr                                                                                                      | 100 ccm contain in g                                                                       |                                                                                                 |                                                                                              |  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| op gr                                                                                                      | Alcohol                                                                                    | Water                                                                                           | NaNO3                                                                                        |  |
| 1 3745<br>1 3162<br>1 2576<br>1 2140<br>1 1615<br>1 0855<br>1 0558<br>1 0050<br>0 9420<br>0 9030<br>0 8610 | 0<br>6 16<br>11 60<br>16 49<br>22 17<br>32 22<br>37 23<br>43 98<br>52 60<br>60 00<br>63 16 | 75 25<br>70 82<br>68 10<br>65 04<br>61 67<br>52 92<br>48 50<br>42 78<br>32 13<br>25 65<br>21 31 | 62 20<br>54 64<br>46 06<br>39 87<br>32 31<br>23 41<br>19 85<br>13 74<br>9 47<br>4 65<br>1 63 |  |

(Bodlander, Z phys Ch 7 317)

 $100~\rm pts$  absolute methyl alcohol dissolve  $0.41~\rm pt$  at  $25\,^\circ$ 

100 pts absolute ethyl alcohol dissolve 0 036 pt at 25° (de Bruyn, Z phys Ch 10 783)

Solubility in alcohol at 40°

| Wt % alcohol | G NaNO3 per 100 g<br>alcohol + Aq |
|--------------|-----------------------------------|
| 0            | 104 5                             |
| 8 22         | 90 8                              |
| 17 4         | 73 3                              |
| 26 0         | 61 6                              |
| 36 0         | 48 4                              |
| 42 8         | 40 6                              |
| 55 3         | 27 1                              |
| 65 1         | 18 1                              |
| 77 0         | 9 4                               |
| 87 2         | 4 2                               |

(Bathrick, J phys Ch 1896, 1 162)

Solubility in alcohol at 30°

| Wt % alcohol                                     | G NaNOs per 100 g                                                                    |                                                                                        |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| in solvent                                       | Solution                                                                             | Water                                                                                  |  |
| 0<br>5<br>10<br>20<br>30<br>40<br>50<br>60<br>70 | 49 10<br>46 41<br>43 50<br>37 42<br>31 31<br>25 14<br>18 94<br>12 97<br>7 81<br>1 21 | 96 45<br>91 15<br>85 55<br>74 75<br>65 10<br>55 95<br>46 75<br>37 25<br>28 25<br>12 25 |  |

(Taylor, J phys Ch 1897, 1 723)

Solubility in ethyl alcohol at 25°

(Concentration of alcohol in g mol 1000 g H<sub>2</sub>O)

| Normality           | Solubility in 1000 g H <sub>2</sub> O          | Mol solubil                              |
|---------------------|------------------------------------------------|------------------------------------------|
| 14<br>1/2<br>1<br>2 | 920 30<br>908 80<br>896 60<br>870 95<br>825 35 | 10 83<br>10 70<br>10 54<br>10 24<br>9 70 |

(Armstrong and Eyre, Proc R Soc 1910 ( ), 84 127)

Very sl sol in acctone (Kiug and M. I-roy, J. Anal Ch. 6, 184)

Solubility of NaNO<sub>3</sub> in acetone at 40°

| Wt % acetone | G NaNOaper 100 a<br>acctone + Aq |
|--------------|----------------------------------|
| 0 0          | 105                              |
| 8 47         | 91 2                             |
| 16 8         | 78 3                             |
| 25 2         | 66 4                             |
| 34 3         | 57 9                             |
| 44 1         | 46 2                             |
| 53 9         | 32 8                             |
| 64 8         | 23 0                             |
| 76 O         | 10 8                             |
| 87 6         | 3 2                              |

(Bathrick, J phys Ch 1896, 1 162)

Solubility of NaNO<sub>3</sub> in acetone at 30°

| Wt % acetone                                             | G NaNOs per 100 g                                                                             |                                                                                                 |  |  |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| ın solvent                                               | Solution                                                                                      | Water                                                                                           |  |  |
| 0<br>5<br>9 09<br>20<br>30<br>40<br>50<br>60<br>70<br>80 | 49 10<br>46 96<br>45 11<br>40 10<br>35 08<br>29 80<br>24 34<br>18 55<br>13 15<br>7 10<br>1 98 | 96 45<br>93 20<br>90 40<br>83 70<br>77 20<br>70 75<br>64 40<br>59 95<br>50 50<br>38 20<br>20 20 |  |  |

(Taylor, Z phys Ch 1897, 2 723)

Sol in glycerine

Insol in ethylamine (Shinn, J phys Chem 1907, 11 538)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1910, 43 314)

Insol in benzonitrile (Naumann, B 1914, 47 1370)

Sodium thorium nitrate,  $NaTh(NO_3)_5 + 9H_2O$ 

Hydroscopic, sol in dil HNO3 and Aq (Meyer, Z anorg 1901, 27 331)

Sodium nitrate sulphate, NaNO<sub>3</sub>, Na<sub>2</sub>SO<sub>4</sub>+ $^{3}/_{2}H_{2}O$ 

Sol in H<sub>0</sub>O (Marignac, Ann Min (5) 12

+H<sub>2</sub>O Min Darapskite

Sodium nitrate tungstosilicate,  $3Na_4W_{12}SiO_{40}$  $4NaNO_3+45H$  O

(Wyruboff, Chem Soc 1897, 72 (2) 174)

Strontium nitrate, Sr(NO<sub>8</sub>)<sub>2</sub>

Sol in 5 pts cold and 0.5 pt boiling H<sub>2</sub>O (Dumas)

2 0.5 (Wittstein)

2 at 18 75 (Abl)

2 at 18 75 (Abl)
100 pts sat Sr(NO<sub>3</sub>)<sub>2</sub>+Aq at 19-20° contain 45 49
pts Sr(NO<sub>3</sub>) (v Hauer J pr 98 137)

1 pt Sr(NO<sub>3</sub>) dissolves in pts H<sub>2</sub>O at to

| t° | Pts H <sub>2</sub> O | t° | Pts H <sub>2</sub> O | t°  | Pts H <sub>2</sub> O |
|----|----------------------|----|----------------------|-----|----------------------|
| 0  | 2 32                 | 25 | 1 10                 | 75  | 0 99                 |
| 10 | 1 73                 | 50 | 1 02                 | 100 | 0 94                 |

(Kremers Pogg 92 499)

100 pts  $H_2O$  dissolve at 0°, 39 5 pts  $Sr(NO_3)_2$  (Mulder), at 0°, 40 16 pts  $Sr(NO_5)_2$  (Poggiale), at 0°, 43 1 pts  $Sr(NO_3)$  (Kremers), at 100°, 101 1 pts  $Sr(NO_3)_2$  (Mulder), at 100°, 106 5 pts  $Sr(NO_3)_2$  (Kremers, Pogg 92 499), at 100°, 119 25 pts  $Sr(NO_3)_2$  (Poggiale)

Solubility in 100 pts  $H_2O$  at to

| 1                                                                             | Pts                                                                                                                                                                                       |                                                                                    |                                                                                                                                          |                                                                                                                     | Solubility in 100 pts H <sub>2</sub> O at t°                                                                                                                                                                                                                    |  |  |  |  |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| t° Sı                                                                         | r(NO <sub>3</sub> ) <sub>2</sub>                                                                                                                                                          | t°                                                                                 | Pts<br>Sr(NO <sub>3</sub> )                                                                                                              | t                                                                                                                   | Pts<br>Sr(NO <sub>3</sub> )                                                                                                                                                                                                                                     |  |  |  |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 39 5<br>341 2 8 3 8 4 4 5 5 1 8 4 9 5 5 5 5 5 5 5 6 6 2 8 4 6 6 6 7 9 8 8 5 5 7 7 7 7 7 9 8 2 2 3 5 6 6 6 6 6 7 9 8 8 5 7 7 7 7 7 7 8 8 2 4 1 8 6 5 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 367 378 39 40 412 433 444 445 447 448 45 51 52 53 55 55 55 56 66 66 66 66 67 77 72 | 90 7 8 9 9 1 1 3 4 5 6 8 9 9 1 2 3 5 6 8 9 9 2 3 5 6 8 9 9 3 3 5 6 8 9 9 3 3 5 6 8 9 9 3 3 5 6 8 9 9 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 107 9 | 96 0<br>96 2<br>96 4<br>96 5<br>96 7<br>96 8<br>97 9<br>97 2<br>97 4<br>97 5<br>97 9<br>98 0<br>98 2<br>98 4<br>98 8<br>99 0<br>99 2<br>99 4<br>99 6<br>99 8<br>100 0<br>100 2<br>100 4<br>100 6<br>100 9<br>101 1<br>101 6<br>102 0<br>102 5<br>102 7<br>102 9 |  |  |  |  |  |

(Mulder, Scheik Verhandel 1864 114)

Sat Sr(NO<sub>3</sub>)<sub>2</sub>+Aq contains at --6° +14° 20° 32° 24 5 35 9 39 8 46 9% SrNO<sub>5</sub>,

53° 56° 76° 94° 110° 47 2 47 8 49 1 50 4 50 2% SrNO<sub>3</sub> (Étard, A ch 1894, (7) **2** 528)

79 27 g anhydrous  $Sr(NO_3)_2$  are sol in 100 g  $H_2O$  at 25° (Parsons and Carson, J Am Chem Soc 1910, **32** 1385)

| Solubility | of | $Sr(NO_3)_2$ | ın | $H_2O$ | at t° |  |
|------------|----|--------------|----|--------|-------|--|
|------------|----|--------------|----|--------|-------|--|

| Bolub                                                                  | Solubility of SI(14O8)2 III 112O at 6                                                                                 |                                                                                                            |  |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| t°                                                                     | G Sr(NO <sub>3</sub> ) <sub>2</sub> m<br>100 g H <sub>2</sub> O                                                       | Sp gr                                                                                                      |  |  |
| 0 58 14 71 26 40 29 06 30 28 32 58 39 74 47 73 61 34 68 96 78 98 88 94 | 40 124<br>60 867<br>82 052<br>87 648<br>88 577<br>88 943<br>90 086<br>91 446<br>93 856<br>95 576<br>97 865<br>100 136 | 1 2856<br>1 3938<br>1 4883<br>1 5110<br>1 5144<br>1 5128<br>1 5115<br>1 5105<br>1 5106<br>1 5109<br>1 5117 |  |  |
|                                                                        |                                                                                                                       |                                                                                                            |  |  |

(Berkeley and Appleby, Proc R Soc 1911, (A) **85** 503)

100 g of the sat solution contain at 20°, 41 43 g  $Sr(NO_8)_2$  (Findlay, Chem Soc 1914, 105 782)

Sp gr of Sr(NO<sub>3</sub>)<sub>2</sub>+Aq at 19 5°

| op gr of Sr(NO <sub>3</sub> ) <sub>2</sub> +Aq at 19 5                                                |                                                                                                                                                                         |                                                                                                                      |                                                                                                                                                                                  |  |  |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| %<br>Sr(NO <sub>3</sub> ) <sub>2</sub>                                                                | Sp gr                                                                                                                                                                   | %<br>Sr(NO <sub>8</sub> ) <sub>2</sub>                                                                               | Sp gr                                                                                                                                                                            |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>20 | 1 009<br>1 017<br>1 025<br>1 034<br>1 041<br>1 049<br>1 059<br>1 068<br>1 076<br>1 085<br>1 103<br>1 113<br>1 122<br>1 131<br>1 140<br>1 150<br>1 160<br>1 170<br>1 181 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 1 192<br>1 202<br>1 213<br>1 223<br>1 233<br>1 246<br>1 257<br>1 268<br>1 280<br>1 292<br>1 304<br>1 316<br>1 330<br>1 340<br>1 354<br>1 367<br>1 381<br>1 395<br>1 410<br>1 422 |  |  |

(Kremers, calculated by Gerlach, Z anal 8 286)

Sp gr of  $Sr(NO_3)$  +Aq at 23 4° a=no of grms  $\times \frac{1}{2}$  mol wt dissolved in 1000 grms  $H_2O$ , b=sp gr if a is  $Sr(NO_3)_2$ ,  $4H_2O$ ,  $\frac{1}{2}$  mol wt =142, c=sp gr if a is  $Sr(NO_3)_2$ ,  $\frac{1}{2}$  mol wt =106

| a                                      | b              | С                                | а | b                       | С              |
|----------------------------------------|----------------|----------------------------------|---|-------------------------|----------------|
| $\begin{matrix}1\\2\\3\\4\end{matrix}$ | 1 146<br>1 205 | 1 081<br>1 155<br>1 224<br>1 284 |   | 1 303<br>1 345<br>1 383 | 1 350<br>1 407 |

(Favre and Valson, C R. 79 968)

Sp gr of Sr(NO<sub>3</sub>)<sub>2</sub>+Aq at 17 5°

| % Sr(NOs)2     | Sp gr                   | % Sr(NO3)2    | Sp gr         |
|----------------|-------------------------|---------------|---------------|
| 10<br>20<br>30 | 1 083<br>1 180<br>1 294 | 40<br>Sat sol | 1 422<br>1 52 |

(Gerlach, Z anal 27 283)

Sp gr of Sr(NO<sub>8</sub>)<sub>2</sub>+Aq at t°

| t°    | % Sr(NO <sub>3</sub> ) <sub>2</sub> | Sp gr  |
|-------|-------------------------------------|--------|
| 14 0° | 5                                   | 1 0420 |
| 14 3° | 10                                  | 1 0859 |
| 14 5° | 15                                  | 1 1319 |
| 14 5° | 20                                  | 1 1816 |
| 14 5° | 25                                  | 1 2364 |
| 14 4° | 34 33                               | 1 3470 |

(Long, W Ann 1880, 11 39)

Sp gr of Sr(NO<sub>3</sub>)<sub>2</sub>+Aq at room tem containing

10 29 21 19 32 61% Sr(NO<sub>3</sub>)<sub>2</sub> 1 0885 1 124 1 3067

(Wagner, W Ann 1883, 18 266)

# Sp gr of Sr(NO<sub>8</sub>)<sub>2</sub>+Aq at 25°

| Concentration of<br>Sr(NO <sub>3</sub> ) <sub>2</sub> +Aq | Sp gr                                |
|-----------------------------------------------------------|--------------------------------------|
| 1-normal  1/2- "  1/4- "  1/8- "                          | 1 0822<br>1 0419<br>1 0208<br>1 0104 |

(Wagner, Z phys Ch 1890,  $\mathbf{5}$  40)

 $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing 10 50%  $\rm Sr(NO_3)_2 + Aq$  containing

 $Sr(NO_3)_2+Aq$  containing 25 51%  $Sr(NO_3)_2+Aq$  containing 25 51%  $Sr(NO_3)_2+Aq$  containing 25 51%  $Sr(NO_3)_3+Aq$  containing 25  $Sr(NO_3)_3+Aq$ 

(Le Blanc and Rohland, Z phys Ch 18<sup>c</sup> 19 279)

Sp gr of  $Sr(NO_3)_2+Aq$  at 20° contains M g mols of salt per liter

M 0 01 0 025 0 05 0 075 Sp gr 1 001525 1 004207 1 008391 1 0126

M 0 10 0 25 0 50 0 75 Sp gr 1 016834 1 04201 1 08312 1 12380

M 100 Sp gr 116354

(Jones and Pearce, Am Ch J 1907, 38 70')

 $\mathbf B$  -pt of Sr(NO<sub>8</sub>)<sub>2</sub>+Aq, containing pts  $Sr(NO_3)_2$  to 100 pts  $H_2O$ 

| B-pt                                           | Pts<br>Sr(NO <sub>3</sub> ) <sub>2</sub>       | B pt                                          | Pts<br>Sr(NO <sub>8</sub> ) <sub>2</sub>      |
|------------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| 100 5°<br>101 5<br>102 5<br>102 5<br>103 103 5 | 12<br>24<br>34 8<br>45<br>54 4<br>63 6<br>72 6 | 104°<br>104 5<br>105<br>105 5<br>106<br>106 3 | 81 4<br>89 6<br>97 6<br>105<br>112 2<br>116 5 |

#### (Gerlach, Z anal 26 448)

Sat  $Sr(NO_3)_2 + Aq$  boils at 106 8°, and contains 112 9 pts salt to 100 pts H<sub>2</sub>O fiths )

Sat  $Sr(NO_3)_2 + Aq$  boils at 107 5-108°

(Kremers), 107 9° (Mulder)

Sat Sr(NO<sub>3</sub>)<sub>2</sub>+Aq forms a crust at 106 3° and contains 116 5 pts Sr(NO<sub>3</sub>)<sub>2</sub> to 100 pts H<sub>2</sub>O, highest temp observed was 107° (Gerlach, Z anal 26 427)

Very sl sol in conc HNOs or HCl+Aq (Wurtz)

Insol in HNO<sub>3</sub>+Aq (Schultz, Zeit Ch (2) **5** 537)

## Solubility in Sr(OH)<sub>2</sub>, 8H<sub>2</sub>O+Aq at 25°

| Sp gr 25/25 | G SrO as<br>Sr(OH)2 in 100 g<br>H <sub>2</sub> O | G Sr(NO <sub>3</sub> ) <sub>2</sub> in<br>100 g H <sub>2</sub> O |
|-------------|--------------------------------------------------|------------------------------------------------------------------|
| 1 492       | 0 38                                             | 79 47                                                            |
| 1 494       | 0 78                                             | 80 83                                                            |

(Parsons, J Am Chem Soc 1910, **32** 1388)

Very sol in liquid NH<sub>3</sub> Ch J 1898, **20** 829) (Franklin, Am

Sol in 8500 pts absolute alcohol Sol in 60,000 pts of i mixture of 1 pt ether and 1 pt alcohol (Rose, Pogg 110 296)

Sol in 4189 pts alcohol and in 19987 pts ordinary rectified spirits (Hill, Pharm J 1888 (3) **19** 420)

#### Solubility in ethyl alcohol + Aq at 25°

| (NO3)2 1n                                              |
|--------------------------------------------------------|
| solution                                               |
| 0 02<br>2 60<br>0 5<br>0 5<br>3 2<br>4 3<br>5 7<br>6 7 |
| 0 05<br>2 7<br>6 6                                     |
|                                                        |

 $Sr(NO_3)_2$  is the solid phase in the solutions which are rich in alcohol,  $Sr(NO_3)_2+4H_2O$  in [1014)

the solutions which contain small amounts of alcohol

(D'Ans and Siegler, Z phys Ch 1913, 82 39)

Not completely insol in boiling amyl alcohol, 30 ccm dissolving about 1 mg (Browning, Sill Am J 143 52)

Perfectly anhydrous Sr(NO<sub>3</sub>)<sub>2</sub> is sol 83044 pts absolute ether-alcohol (1 (Fresenus, Z anal 32 190)

#### Solubility in organic solvents

| Solvent                                                                           | % Sr(NO <sub>3</sub> ) <sub>2</sub> in the solution at 25° |
|-----------------------------------------------------------------------------------|------------------------------------------------------------|
| Methyl alcohol Ethyl alcohol Propyl alcohol Isobutyl alcohol Amyl alcohol Acetone | 1 26<br>0 02<br>0 02<br>0 02<br>0 01<br>0 003<br>0 02      |

(D'Ans and Siegler, Z phys Ch 1913, **82** 44)

Insol in methyl acetate (Naumann, B 1909, **42** 3790)

Insol in benzonitrile (Naumann, B 1914, **47** 1370)

Sol in acetone (Eidmann, C C 1899 II, 1014)

Difficultly sol in acetone (Naumann, B

1904, **37** 4328) The composition of the hydrates formed by Sr(NO<sub>3</sub>)<sub>2</sub> at different dilutions is calculated from determinations of the lowering of the fr-pt produced by  $Sr(NO_3)_2$  and of the conductivity and sp gr of Sr(NO<sub>3</sub>)<sub>2</sub>+Aq (Jones, Am Ch J 1905, 34 305)

+4H<sub>2</sub>O Efflorescent

## Solubility in ethyl alcohol +Aq at 25°

| % C2H5OH in         | % C <sub>2</sub> H <sub>5</sub> OH in                        | % Sr(NO3)2 in                 |  |  |
|---------------------|--------------------------------------------------------------|-------------------------------|--|--|
| the solvent         | the solution                                                 | the solution                  |  |  |
| 0<br>4<br>6<br>10 8 | $\begin{array}{c} 0 \\ 1 & 7 \\ 2 & 6 \\ 4 & 95 \end{array}$ | 44 25<br>42 5<br>42 1<br>40 4 |  |  |
| 16 0                | 7 95                                                         | 37 6                          |  |  |
| 20                  | 12 35                                                        | 34 3                          |  |  |

(D'Ans and Siegler, Z phys Ch 1913, 82 39)

Tellurium nitrate, basic,  $4 \, \text{FeO}_2$ ,  $N_2 O_5 +$ 11/2H2O

Very hygroscopic Easily decomp by H<sub>2</sub>O Sol in HNO3+Aq, but more sol when dil than cone (Klein and Morel, Bull Soc (2) **43** 205)

#### Tellurium nitrate, ΓeNO<sub>3</sub>

Sol in acetone (Eidmann, C C 1899 II,

Terbium nitrate, Tb(NO<sub>3</sub>)<sub>3</sub>+6H<sub>2</sub>O
Sol in H<sub>2</sub>O Sol in alcohol (Urbain, C
R 1908, 146 128)

#### Thallous nutrate, TINO3

1 pt TINO<sub>3</sub> dissolves, according to C= Crookes, L=Lamy

at 15° 18° 58° 107° in 9 4 10 3 2 3 0 17 pts H<sub>2</sub>O C L L L

Sat TINO<sub>8</sub>+Aq contains at 18° 32° 58°  $3.5^{\circ}$ 95° 132 74 5% TINO<sub>8</sub> 42 88 304 150° 155° 107° 135° 145° 85 95 952 965 97% TINO<sub>3</sub> (Etard, A ch 1894, (7) 2 527)

#### Solubility in H<sub>2</sub>O at t°

| t°                                                                   | G TlNO <sub>3</sub><br>m 100 g H <sub>2</sub> O                                          | g mol TlNO:<br>in 1 l                                                                                       |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 0<br>10<br>20<br>25<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100 | 3 91<br>6 22<br>9 55<br>14 3<br>20 9<br>30 4<br>46 2<br>69 5<br>111<br>200<br>414<br>594 | 0 149<br>0 230<br>0 357<br>0 433<br>0 522<br>0 755<br>1 07<br>1 58<br>2 29<br>3 40<br>5 32<br>8 29<br>10 25 |

(Berkeley, Trans Roy Soc 1904, **203** A, 211)

Sp gr of TlNO<sub>3</sub>+Aq at 25°

| Concentration of<br>TINOs+Aq | Sp gr  |
|------------------------------|--------|
| 1/4-normal                   | 1 0562 |
| 1/8- "                       | 1 0283 |

(Wagner, Z phys Ch 1890, 5 40)

Solubility of TINO<sub>8</sub>+KNO<sub>8</sub> (See KNO<sub>8</sub>) Insol in alcohol (Lamy) Sol in acetone (Eldmann, Dissert **1899**, Naumann, B 1904, **37** 4328)

Thallous hydrogen nitrate, TlNO<sub>3</sub>, 2HNO<sub>3</sub> (Wells, Am Ch J 1901, 26 273) TlNO<sub>3</sub>, 3HNO<sub>3</sub> (Ditte)

Thallic nitrate,  $TI(NO_8)_8+3H_2O$ Effloresces in the air (Meyer, Z anorg 1900, 24 361)  $+6H_2O$ , or  $8H_2O$  Deliquescent Sol in  $H_2O$  Thallous thallic nitrate, 2TlNO<sub>3</sub>, Tl(NO<sub>3</sub>),
Decomp by H<sub>2</sub>O (Wells, Am Ch J
1901, **26** 278)

Thallous uranyl nitrate, Tl(UO2)(NO3)3

Decomp in moist air Decomp by H ) (Meyer, B 1903, 36 4058)

Thorium nitrate, ThO<sub>2</sub>, 2N<sub>2</sub>O<sub>5</sub>+6H<sub>2</sub>O

Crystallized Sl hydroscopic (Ful , Zeit angew Ch 1897, 10 116) +12H<sub>2</sub>O Very deliquescent, and sol n

H<sub>2</sub>O and alcohol Difficultly sol in acetone (Naumann,

Difficultly sol in acetone (Naumann, 3 1904, 37 4328)

Thorum zinc nitrate, ZnTh(NO<sub>3</sub>)<sub>6</sub>+8H<sub>2</sub>O
Sol in HNO<sub>3</sub>, very hydroscopic (Me<sup>1</sup> r, Z anorg 1901, **27** 386)

Thulium nitrate, Tm<sub>2</sub>(NO<sub>3</sub>)<sub>6</sub>+8H<sub>2</sub>O

Deliquescent Can readily be cryst find HNO<sub>3</sub> (James, J Am Chem Soc 1911, 3 1344)

Tm (stannous) nitrate, basic, 2SnO,  $N_2O_5$ Difficultly sol with partial decomp in H ) (Weber, J pr (2), 26 121)

Tm (stannous) nitrate,  $Sn(NO_3)_2+20H_2O$ Deliquescent, and easily decomp (Wel r, J pr (2) 26 121)

Tin (stannic) nitrate, basic, 4SnO<sub>2</sub>, N<sub>2</sub>O + 4H<sub>2</sub>O

(Thomas, Bull Soc 1896 (3) 15 312)

Tin (stannic) nitrate, Sn(NO<sub>3</sub>)<sub>4</sub>

Sol in H<sub>2</sub>O, but decomp very soon in standing Stable in presence of conc HNO |- Aq at 90°, but decomp at 100° (Mor - martini, Gazz ch it 22 384)

Insol in moderately conc HNO<sub>3</sub>, reac y decomp by H<sub>2</sub>O (Engel, C R 1897, 1)

Titanium nitrate, 5TiO2, N2O5+6H2O

Sol to a slight milkiness in cold H ) Decomp on boiling (Merz, J pr 99 157

Uranyl nitrate, basic

Sol in  $H_2O$  (Ordway, Sill Am J (2) , 209)

Uranyl nitrate, UO2(NO3)2

+H<sub>2</sub>O (de Forcrand, C R 1913, 1 )

Sol in fuming HNO<sub>3</sub> from which it in be cryst

+2H<sub>2</sub>O 52 39% is sol in dry ether at 54 25% " " " " " " " " "

(Lebeau, Bull Soc 1911, (4) 9 300)

 $+2H_2O$  (Vasileff, C C 1910, II 1527) +3H<sub>2</sub>O Mpt 121 5° (Vasileff)

Cryst out of hot HNO<sub>3</sub>+Aq (Ditte) 100 pts HNO<sub>3</sub> dissolve 39 pts at 14° (Ditte, A ch 1879, (5) 18 337)

+4H<sub>2</sub>O (de Coninck, C C 1901, I 1354) +6H<sub>2</sub>O Deliquescent in moist, and effloescent in dry air Sol in 0.5 pt. cold H<sub>2</sub>O. in

rescent in dry air Sol in 0.5 pt cold H<sub>2</sub>O, in 0.3 pt absolute alcohol, and in 4.0 pts ether (Bucholz)

Melts in crystal H<sub>2</sub>O at 59 4° (Ordway) 1 pt is sol in 2 pts H<sub>2</sub>O at 12 9°-14 2° (de Coninck, C R 1900, **131** 1220)

# Solubility in H<sub>2</sub>O at t°

| t°                                                                                                          | % by wt | UO2(NO3)2 6H2O                                                                |
|-------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------|
| $\begin{array}{c} -18\ 1 \\ -12\ 1 \\ -2\ 2 \\ 0 \\ +12\ 3 \\ 25\ 6 \\ 36\ 7 \\ 45\ 2 \\ 71\ 8 \end{array}$ |         | 54 90<br>58 00<br>62 13<br>63 01<br>67 36<br>72 83<br>78 05<br>82 96<br>86 32 |

(Vasilieff, J Russ Phys Chem Soc 1910, 42 570)

Sp gr of (UO<sub>2</sub>)(NO<sub>3</sub>)<sub>2</sub>+Aq at t°

| -1 9 (1)(                                                                                    |                      |                                                                                                                                           |  |  |
|----------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| t°                                                                                           | % salt               | Sp gr                                                                                                                                     |  |  |
| 11 5<br>12 4<br>15 1<br>14 1<br>16 7<br>14 1<br>15 7<br>16 5<br>16 5<br>15 2<br>13 7<br>11 5 | 7 8 9 10 11 12 13 14 | 1 0049<br>1 0096<br>1 01401<br>1 0187<br>1 0230<br>1 8281<br>1 0236<br>1 0378<br>1 0410<br>1 0462<br>1 0504<br>1 0550<br>1 0594<br>1 0643 |  |  |
| 11 3<br>12 5<br>13 2                                                                         | 15<br>16             | 1 0043<br>1 0680<br>1 0718                                                                                                                |  |  |
|                                                                                              |                      | `                                                                                                                                         |  |  |

(de Coninck, C R 1900, 131 1219)

Sp gr of a sat aq solution = 1 7536 at 17°,

containing 54 77%  $UO_2(NO_3)_2$ Sp gr = 1 0257 when 2 80%  $UO_2(NO_3)_2$ is present (Vassiliev, C C 1912 I, 1430)

# Sp gr of solution in HNO<sub>3</sub>+Aq

| Pts of salt in<br>100 pts HNOs<br>sp gr 1 153 | 1      | 2      | 3      | 4      | 5      |
|-----------------------------------------------|--------|--------|--------|--------|--------|
| Temp                                          | 11 0°  | 11 8°  | 11 3°  | 12 0°  | 11 6°  |
| Sp gr of the so<br>lution                     | 1 1585 | 1 1614 | 1 1663 | 1 1698 | 1 1751 |

(de Coninck, C R 1901, 132 90)

Sp gr of solution in H<sub>2</sub>SO<sub>4</sub>+Aq

| Pts of salt in<br>100 pts H <sub>2</sub> SO <sub>4</sub><br>sp gr 1 138 | 1 pt   | 2 pts  | 3 pts  | 4 pts  | 5 pts  |
|-------------------------------------------------------------------------|--------|--------|--------|--------|--------|
| Temp                                                                    | 11 2°  | 11 8°  | 10 7   | 12 0°  | 11 4°  |
| Sp gr of solution                                                       | 1 1427 | 1 1450 | 1 1511 | 1 1540 | 1 1576 |

(de Connck)

Very sol in dil HBr and selenic acid (d=14) Sol in conc H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, dil HCl and less sol in conc HCl (de Cominck, C R 1900, **131** 1220)

Sp gr of solution in HBr+Aq of sp gr 1 21

| Sp gr  | % salt dissolved |
|--------|------------------|
| 1 2122 | 1                |
| 1 2168 | 2                |
| 1 2198 | 3                |
| 1 2250 | 4                |
| 1 2305 | 5                |

(de Coninck, Belg Acad Bull 1901 222)

Insol in KOH+Aq, NaOH+Aq or NHOH +Aq Sol in lime water (de Coninck, C R 1900, 131 1220)

Sl attacked by liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 830)

At 15°, uranyl nitrate is sol in comm methyl alcohol, dil and cone ethyl alcohol, propyl and isobutyl alcohol, comm amyl alcohol, acetone, ether, ethyl acetate, dil and cone formic acid and dil acetic acid, sl sol in comm essence of terebenthine, insol in benzene (cryst), comm toluene and xylene, ligroin, CHCli, glycerine and CS<sub>2</sub> (de Coninck, C R 1900, 131 1220)

1 pt is sol in 55 pts methyl alcohol at ca 118°

1 pt is sol in 30 pts ethyl alcohol (85°) at

1 pt is sol in 65 pts acetone at ca 120° 1 pt is sol in 56 pts acetic acid (d=1 035) at ca 1425°

(de Coninck, C R 1900, 131 1304)

1 pt sol in 23 5 pts methyl alcohol at 11 2° 1 " "16 0 " ether "11 9° 1 " "18 4 " ethyl acetate "10 3°

1 " " 184 " ethyl acetate " 10 1 1 " " " 53 " cone formic acid at 151°

(de Coninck, C R 1901, 132 91)

Sp gr of solution in comm methyl alcohol at t°

| 200 0                              |                       |                                                |  |  |
|------------------------------------|-----------------------|------------------------------------------------|--|--|
| t°                                 | % salt                | Sp gr referred<br>to H <sub>2</sub> O          |  |  |
| 11<br>12 9<br>12 2<br>10 7<br>12 8 | 1<br>2<br>3<br>4<br>5 | 0 8902<br>0 8938<br>0 9003<br>0 9068<br>0 9108 |  |  |
|                                    |                       | 404 4004                                       |  |  |

(de Coninck, C R 1900, 131 1304)

Sp gr of solution in ethyl alcohol (85°) at t°
d<sub>2</sub>=sp gr referred to alcohol
d<sub>1</sub>=sp gr referred to H<sub>2</sub>O

| t°   | % salt | d <sub>1</sub> | $d_2$  |
|------|--------|----------------|--------|
| 11 9 | 1      | 0 8918         | 1 0060 |
| 12 2 | 2      | 0 8979         | 1 0127 |
| 11 6 | 3      | 0 9023         | 1 0177 |
| 13 1 | 4      | 0 9056         | 1 0227 |
| 11 7 | 5      | 0 9131         | 1 0280 |

(de Coninck, C R 1900, 131 1219)

Sp gr of solution in acetic acid (d=1.055) at  $t^{\circ}$ 

d<sub>1</sub>=sp gr referred to H<sub>2</sub>O d<sub>2</sub>=sp gr referred to acetic acid

| t°   | % salt | d <sub>1</sub> | d <sub>2</sub> |
|------|--------|----------------|----------------|
| 14 0 | 1      | 1 0387         | 1 0034         |
| 13 8 | 2      | 1 0434         | 1 0080         |
| 14 8 | 3      | 1 0469         | 1 0100         |
| 16 9 | 4      | 1 0505         | 1 0148         |
| 14 6 | 5      | 1 0564         | 1 0205         |
| 10 4 | 6      | 1 0626         | 1 0265         |
| 11 7 | 7      | 1 0662         | 1 0300         |

(de Coninck, C R 1900, 131 1304)

When excess of  $\rm UO_2(NO_3)_2$  is shaken with ether at 7°, two layers are formed, the ether layer containing 59 g salt per 100 g solution and the aqueous layer 62 5 g salt per 100 g solution (Lebeau, C R 1911, 152 440)

Sol in nearly all proportions in glycerine (Postans, Pharm J 1883, (3) 13 752)

Sol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1904, 37 3601)

Sol in acetone (Eidmann, C C 1899 II, 1014, Naumann, B 1904, 37 4328)

+18H<sub>2</sub>O Sat aq solution has D17'/17° = 1 7536 (Vasilieff, J Russ phys Chem Soc 1911, **43** 1183)

Uranyl nitrate ammonia,  $(\mathrm{UO_2})(\mathrm{NO_3})_2$ ,  $2\mathrm{NH_3}$ 

(v Unruh, Dissert 1909) (UO<sub>2</sub>)(NO<sub>3</sub>)<sub>2</sub>, 3NH<sub>3</sub> (v Unruh) (UO<sub>2</sub>)(NO<sub>3</sub>)<sub>2</sub>, 4NH<sub>3</sub> (v Unruh)

 $\begin{array}{ccc} \text{Uranyl} & \text{nitrate} & \text{phosphate,} & \mathrm{UO_2H_4(PO_4)_2,} \\ & \mathrm{UO_2(NO_3)_2}{+}14\mathrm{H_2O} \end{array}$ 

Lasily sol in warm  $\rm H_2O$ , with gradual decomp Easily sol in  $\rm HNO_3$ ,  $\rm HCl$ , or  $\rm H_2SO_4 + Aq$  Sol in acetic acid with decomp (Heintz, A 151 216)

#### Divanadyl nitrate (?)

Known only in solution Decomp on evaporation

Ytterbium nitrate, basic Easily sol in H<sub>2</sub>O Ytterbium nitrate

Very sol in  $H_2O$ +3 $H_2O$  Ppt (Cleve, Z anorg 190 32 140) +4 $H_2O$  (Cleve)

Yttrium nitrate, basic,  $2Y_2O_3$ ,  $3N_2O_5+9H_2($  Deliquescent in moist air Decomp b cold or boiling  $H_2O$  Sol in a solution (yttrium nitrate without decomp (Bahr an Bunsen, A 137 1)

Yttrium nitrate,  $Y(NO_3)_3+6H_2O$ 

Easily sol in  $H_2O$ , alcohol, or ethe (Cleve)

141 6 grams are sol in 100 grams H<sub>2</sub>O 25° (James, J Am Chem Soc 1910, 3' 876)

Zinc nitrate, basic, 8ZnO, N<sub>2</sub>O<sub>5</sub>+2H<sub>2</sub>O Insol in H<sub>2</sub>O (Grouvelle, A ch **19** 137

6ZnO, N<sub>2</sub>O<sub>5</sub>+8H<sub>2</sub>O = Zn(NO<sub>3</sub>)<sub>2</sub>, 5Zn(OH +3H<sub>2</sub>O (Bertels, J B **1784** 274)

5ZnO,  $N_2O_5+5\frac{1}{2}H_2O$  Insol in cold somewhat sol in hot  $H_2O$  (Havermann  $+6H_2O$  Slowly decomp by cold  $H_2O$  (Rousseau and Tite)

9ZnO, 2N<sub>2</sub>O<sub>5</sub> Decomp by H<sub>2</sub>O (Vog and Reischauer, N Jahrb Pharm 11 137

4ZnO, N<sub>2</sub>O<sub>5</sub>+2H<sub>2</sub>O (Schindler) +3H<sub>2</sub>O (Ordway, Sill Am J (2) **32** 14 Gerhardt, J Pharm (3) **12** 61)

Insol in H<sub>2</sub>O, sol in dil acids (Athan

asesco, Bull Soc 1896, 15 1080)  $2ZnO, N_2O_5+3H_2O$  Decomp by  $H_2O$ , an slowly by alcohol (Wells, Am Ch J 9 304  $7ZnO, 4N_2O_5+14H_2O=4Zn(NO_3)_2$ ,  $3Zn(OH)_2+11H_2O$  (Bertels)

Zinc nitrate, Zn(NO<sub>3</sub>),

Very deliquescent Easily sol in H<sub>2</sub>O (alcohol

Sp gr of  $Zn(NO_3)_2+Aq$  F=a cording t Franz (J pr (2) 5 274) at 17 5°, O=a cording to Oudemans (Z anal 7 410) at 14°

|              | 5         | 10         | ] | 15%Zn(NO <sub>3</sub> ) |
|--------------|-----------|------------|---|-------------------------|
| F            | 1 0496    | 1 0968     | 1 | 1476                    |
| O            | $1\ 0425$ | 1 087      | 1 | 1355                    |
|              | 20        | 25         |   | 30%Zn(NO <sub>3</sub> ) |
| $\mathbf{F}$ | 1 2024    | 1 2640     | 1 | 3265                    |
| O            | 1 1875    | 1 245      | 1 | 305                     |
|              | 35 4      | 0 45       |   | 50%Zn(NO <sub>3</sub> ) |
| $\mathbf{F}$ | 1 906 1 4 | 572 1 5258 | 1 | 5984                    |

 $\begin{array}{ccccc} \text{Calculated for } Zn(NO_3)_2 + 6H_2O \\ 10 & 20 & 30 & 40 & 50\% \text{ sal} \\ 1 \ 05361 \ 1 \ 1131 \ 1 \ 1782 \ 1 \ 2496 \ 1 \ 3292 \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$ 

 $Zn(NO_3)_2+Aq$  when heated soon decon poses, with formation of an insol basic sal (Ordway)

|        |      |    | $Zn(NO_3)_2 + Aq$ | at | ${\tt room}$ | temp |  |
|--------|------|----|-------------------|----|--------------|------|--|
| contar | nını | Ž. |                   |    |              |      |  |

44 5% Zn(NO<sub>3</sub>)<sub>2</sub> 15 955 30 626 1 2291 1 1155 1 4367

(Wagner, W Ann 1883, 18 270)

Sp gr of Zn(NO<sub>8</sub>)<sub>2</sub>+Aq at 25°

| Concentration of Zn(NOs)2+Aq  | Sp gr                                |
|-------------------------------|--------------------------------------|
| 1-normal 1/2- " 1/4- " 1/8- " | 1 0758<br>1 0404<br>1 0191<br>1 0096 |

(Wagner, Z phys Ch 1890, 5 40)

Sp gr of Zn(NO<sub>3</sub>)<sub>2</sub>+Aq at 16°

| ½ Zn(NO <sub>3</sub> ) <sub>2</sub> g per 1000<br>g of solution | Sp gr 16°/16° |
|-----------------------------------------------------------------|---------------|
| 0 0000                                                          | 1 000000      |
| 0 9950                                                          | 1 000814      |
| 2 0061                                                          | 1 001646      |
| 4 1535                                                          | 1 003413      |
| 8 1824                                                          | 1 006733      |
| 17 7760                                                         | 1 014702      |
| 34 5920                                                         | 1 028890      |
| 68 6780                                                         | 1 058644      |

(Dijken, Z phys Ch 1897, 24 108)

Sp gr of  $Zn(NO_3)_2 + Aq$  at 17 3°, when p =per cent strength of solution, d=observed density, w=volume conc in grams per co

| p         d         w           47 28         1 5504         0 73310           41 32         1 4579         0 60240           30 86         1 3136         0 40535           29 21         1 2933         0 37780           19 65         1 1830         0 23246           14 39         1 1284         0 16232           11 36         1 0988         0 12478           7 091         1 0597         0 07515           5 923         1 0491         0 06213           1 574         1 0118         0 01593           1 210         1 0087         0 01221 |                                                                               |                                                                                        |                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 41     32     1     4579     0     60240       30     86     1     3136     0     40535       29     21     1     2933     0     37780       19     65     1     1830     0     23246       14     39     1     1284     0     16232       11     36     1     0988     0     12478       7     091     1     0597     0     07515       5     923     1     0491     0     06213       1     574     1     0118     0     01593                                                                                                                           | р                                                                             | d                                                                                      | w                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41 32<br>30 86<br>29 21<br>19 65<br>14 39<br>11 36<br>7 091<br>5 923<br>1 574 | 1 4579<br>1 3136<br>1 2933<br>1 1930<br>1 1284<br>1 0988<br>1 0597<br>1 0491<br>1 0118 | 0 60240<br>0 40535<br>0 37780<br>0 23246<br>0 16232<br>0 12478<br>0 07515<br>0 06213<br>0 01593 |

(Barnes, J Phys Chem 1898, 2 545)

Very easily sol in liquid NH<sub>3</sub> (Franklin, Am Čh J 1898, **20** 830)

+1½H<sub>2</sub>O 100 pts HNO<sub>3</sub> dissolve 28 pts at 13°, 55 pts at 55° (Ditte, A ch 1879, (5) **18** 335) 100 pts HNO<sub>3</sub> dissolve 28

(Vasilieff, C C 1909, II 1966) +2H<sub>2</sub>O

+3H<sub>2</sub>OSolubility in H<sub>2</sub>O

Sat solution contains at

37° 41°  $43^{\circ}$ 40° 45 5° mpt 66 38 67 42 68 21 69 26 77 77% Zn(NO<sub>3</sub>)<sub>2</sub>

(Funk, Z anorg 1899, 20 401)

+6H<sub>2</sub>O

Solubility in H<sub>2</sub>O Sat solution contains at

-18° --12° -15° -13° 45 75%Zn)NO3)2. 44 63 45 26 45 51

18° Ω° +12 5° 48 66 52 00 53 50 55 90% Zn(NO<sub>3</sub>)<sub>2</sub>,

36 4° (mpt) 36° 33 5° 65 83% Zn(NO<sub>3</sub>)<sub>2</sub> 63 63 64 73 (Funk, Z anorg 1899, 20 400)

100 g Zn(NO<sub>3</sub>)<sub>2</sub>+Aq sat at 0° contain 48 7 g Zn(NO<sub>3</sub>)<sub>2</sub>, at 18°, 53 5 g Zn(NO<sub>3</sub>)<sub>2</sub> (Mylius, Z anorg 1910, 74 411 Melts in its crystal H2O at 36 4° (Ordway).

50° (Pierre), boils at 131° (Ordway) Sp gr of solution sat at 18°=1664, and contains 53.9% Zn(NO<sub>3</sub>)<sub>2</sub> (Myhus, B

1897, 30 1718) Sol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1910, 43 314)

+9H<sub>2</sub>O

Solubility in H<sub>2</sub>O Sat solution contains at

-18° -25° –22 5° --20°

40 12 42 03 43 59% Zn(NO<sub>3</sub>)<sub>2</sub> 40 75 Cryohydrate is formed at -29°

(Funk, Z anorg 1899, 20 401)

Zinc nitrate ammonia, Zn(NO<sub>3</sub>)<sub>2</sub>, 4NH<sub>3</sub> (Ephram, B 1915, 48 638) Ppt

 $+^{2}/_{3}H_{2}O$ Deliquescent Sol in H<sub>2</sub>O (André, C R **100** 639)

13ZnO,  $3N_2O_5$ ,  $2NH_3+18H_2O$ Insol in cold, decomp by warm H<sub>2</sub>O (André, C R 1885, **100** 640)

Zinc nitrate cupric oxide.  $Zn(NO_3)$ ,  $3CuO + 3H_2O$ (Mailhe, A ch 1902, (7) 27 169)

Zinc nitrate hydrazine, Zn(NO<sub>3</sub>)<sub>2</sub>, 3N<sub>2</sub>H<sub>4</sub> Decomp by hot H2O Sol in NH<sub>4</sub>OH

(linnzen, Z nnoig 1908, 60 279)

Zirconium nitrate, basic, 3ZrO<sub>2</sub>, 2N O<sub>5</sub> Insol in H₂O

ZrO<sub>2</sub>, N<sub>2</sub>O<sub>5</sub> Easily sol in H<sub>2</sub>O and alcohol +H<sub>2</sub>O As above

Zirconium nitrate,  $Zr(NO_3)_4 + 5H_2O$  (?) Deliquescent, and sol in H<sub>2</sub>O

Nitric oxide, NO See Nitrogen droxide

#### Nitrilobromosmic acid

# Ammonium nitrilopentabromosmate, [OsNBr<sub>5</sub>](NH<sub>4</sub>)<sub>2</sub>+H<sub>2</sub>O

Very sol in  $H_2O$  Decomp in dil aq solution

Stable in HBr+Aq

Insol in organic solvents (Werner, B 1906, 39 501)

# Cæsium hydrogen nitrilopentabromosmate, $[OsNBr_5]_2Cs_3H$

Sl sol in H<sub>2</sub>O (Werner)

# Potassium nitrilotetrabromosmate, [OsNBr<sub>4</sub>]K+2H<sub>2</sub>O

Very sol in H<sub>2</sub>O Decomp in aq solution Stable in HBr+Aq Insol in organic solvents (Werner)

# Rubidium nitrilopeniabromosmate, [OsNBr<sub>5</sub>]Rb<sub>2</sub>

Sol in H<sub>2</sub>O Decomp in dil aq solution after a short time (Werner)

#### Nitrilochlorosmic acid

#### Ammonium nitrilopentachlorosmate, (OsNCl<sub>5</sub>)(NH<sub>4</sub>)<sub>2</sub>

Sol in  $H_2O$ , insol in conc HCl+Aq (Werner, B 1901, **34** 2702)

#### Cæsium nitrilopentachlorosmate, (OsNCl<sub>5</sub>)Cs<sub>2</sub>

Sol in H<sub>2</sub>O (Werner)

#### Potassium nitrilopentachlorosmate, (OsNCl<sub>5</sub>)K<sub>2</sub>

Sol in  $H_2O$ , pptd by HCl, insol in organic solvents (Werner)

# Rubidium nitrilo pentachlorosmate, (OsNCl<sub>5</sub>)Rb<sub>2</sub>

Sol in H<sub>2</sub>O, decomp in dil neutral solution (Werner)

# Nitrilotrimetaphosphoric acid, H<sub>2</sub>NP<sub>3</sub>O<sub>7</sub> =

PO OH N PO OH PO OH

Known only in solution (Mente, A 248 260)

#### Aluminum nitrilotrimetaphosphate

Insol in H<sub>2</sub>O, conc HCl, or HNO<sub>3</sub>+Aq Slowly sol in boiling conc H<sub>2</sub>SO<sub>4</sub> Sol in warm NaOH+Aq or Na<sub>2</sub>CO<sub>3</sub>+Aq without decomp Insol in NH<sub>4</sub>OH+Aq (Mente)

# Barium —, BaNP<sub>3</sub>O<sub>7</sub>

Insol in dil or conc acids Decomp by boiling NaOH or  $Na_2CO_3+Aq$  Insol in  $NH_4OH+Aq$  (Mente)

#### Cadmium nitrilotrimetaphosphate

Easily sol in  $NH_4OH+Aq$ , or boiling  $(NH_4)_2CO_3$ , or NaOH+Aq (Mente)

#### Calcium ----, CaNP<sub>3</sub>O<sub>7</sub>+H<sub>2</sub>O

Sol in conc HCl+Aq by long boiling, ar more easily in fuming HNO<sub>8</sub>+Aq Insol NH<sub>4</sub>OH or NaOH+Aq (Mente)

#### Chromium ----

Slowly sol in dil acids Easily sol ammonia Sol in cold NaOH+Aq (Mente

# Cobalt ----, CoNP<sub>8</sub>O<sub>7</sub>+H<sub>2</sub>O

Insol in  $H_2O$  Sl sol in dil acids Easi sol in  $NH_4OH+Aq$  Decomp by NaOH  $Na_2CO_3+Aq$  (Mente)

#### Copper ----

Sol in NH<sub>4</sub>OH+Aq Decomp by NaO +Aq (Mente)

#### Ferric —, $Fe_2(NP_3O_7)_3$

Insol in conc acids Easily sol in NH<sub>4</sub>O +Aq or (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq Decomp k NaOH or Na<sub>2</sub>CO<sub>3</sub>+Aq (Mente)

#### Lead ---

Insol in dil acids Sol in fuming HNC Insol in NH<sub>4</sub>OH+Aq Sol in NaOH+A (Mente)

# Magnesium ----, MgNP<sub>3</sub>O<sub>7</sub>+H<sub>2</sub>O

Slowly sol in HCl+Aq Sol in H<sub>2</sub>SO<sub>4</sub> fuming HNO<sub>3</sub> with addition of Br<sub>2</sub> Insc in NH<sub>4</sub>OH or (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Mente)

#### Manganous ----, MnNP<sub>3</sub>O<sub>7</sub>+H<sub>2</sub>O

Insol in dil acids Very sl sol in NaOH Aq Insol in Na<sub>2</sub>CO<sub>3</sub> or (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+A Easily sol in NH<sub>4</sub>OH+Aq (Mente)

#### Mercurous ----, Hg<sub>2</sub>NP<sub>3</sub>O<sub>7</sub>

Insol in dil acids, NH<sub>4</sub>OH, NaOH, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq Easily sol in fumir HNO<sub>3</sub> (Mente)

## Nickel ----, NiNP<sub>3</sub>O<sub>7</sub>+H<sub>2</sub>O

Insol in dil acids, NH<sub>4</sub>OH, or (NH<sub>4</sub>)<sub>2</sub>CO +Aq (Mente)

# $Z_{inc}$ -----, $Z_{nNP_8O_7}$ +2 $H_{2O}$

Easily sol in NH<sub>4</sub>OH, NaOH, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Mente)

#### | Nitrilosulphonic acid, N(SO<sub>3</sub>H)<sub>3</sub>

Not known in free state (Raschig, A 24 161)

# Potassium nitrilosulphonate, $N(SO_3K)_3 + 2H_2O$

Soluble in  $\rm H_2O$  (Raschig, A **241** 161) Is identical with "potassium ammont" phonate" of Claus

Insol in cold  $H_2O$  (Claus), sol in 50 pts  $H_2O$  at 23° (Fremy), in  $H_2O$  at scarcely 40° without change Decomp by boiling (Claus)

#### Potassium sodium nitrilosulphonate, N(SO<sub>3</sub>K)<sub>2</sub>(SO<sub>3</sub>Na)

Nearly insol in cold  $H_2O$  (Raschig, A 241 161)

## Sodium nitrilosulphonate, N(SO<sub>3</sub>Na)<sub>3</sub>

Not isolated on account of its extreme solubility in  $H_2O$  (Raschig, A 241 161)

#### Nitrilodisulphophosphoric acid, NP(SH)<sub>2</sub>

Decomp by H<sub>2</sub>O (Stock, B 1906, 39 2001)

# Ammonium nitrilodisulphophosphate, $NP(SNH_4)_2$

Easily sol in H<sub>2</sub>O Not decomp by boiling with alkali Decomp by acid (Stock)
Easily sol in liquid NH<sub>3</sub> (Stock, B 1903, 36 315)

#### Ammonium hydrogen nitrilodisulphophosphate, SHP(SNH<sub>4</sub>)N

Not decomp by boiling with alkali Decomp by acids (Stock, B 1906, 39 1999)

#### Barium nitrilodisulphophosphate, BaNPS<sub>2</sub>+ H<sub>2</sub>O

Sol in  $H_2O$  with decomp Decomp by hot  $H_2O$  Not decomp by warming with alkali Decomp by acid (Stock)

## Lead nitrilodisulphophosphate, NPS2Pb

Sol in liquid NH<sub>3</sub> Solution decomp rapidly with separation of PbS (Stock)

# Sodium nitrilodisulphophosphate, NPSNa<sub>2</sub> Not decomp by boiling with alkali Decomp by acid (Stock)

# Nitrilosulphuric acid

# Ammonium nitrilosulphate, $N(SO_3NH_4)_3 + 2H_2O$

Rather sl sol in H<sub>2</sub>O, but much more sol than K salt (Divers and Haga, Chem Soc 1901, 79 1094)

#### Sodium nitrilosulphate, N(SO<sub>3</sub>Na)<sub>3</sub>+5H<sub>2</sub>O Very sol in H<sub>2</sub>O (Divers and Haga, Chem Soc 1901, **79** 1097)

# Nitrilosulphurous acid

# Ammonium nitrilosulphite, NH(SO<sub>2</sub>NH<sub>4</sub>)<sub>2</sub>

Somewhat deliquescent Very sol in H<sub>2</sub>O Slowly decomp in solution Decomp by boiling with HCl (Divers, Proc Chem Soc 1901, 17 163)

# Nitritocobaltic chloride

Sol in 200 pts cold  $H_2O$  (Jorgensen, Z anorg 5 172)

#### Nitritoplatindiamine nitrate, (NO<sub>2</sub>)<sub>2</sub>Pt(N H<sub>6</sub>NO<sub>3</sub>)<sub>2</sub>

Sol in cold  $H_2O$  with decomp, violently decomp on warming (Hadow, Chem Soc (2) 4 345)

# Nitritopurpureocobaltic comps

See Xanthocobaltic comps

# Nitritopurpureorhodium comps See Xanthorhodium comps

#### Nitrocarbamic acid

Potassium nitrocarbamate, NO<sub>2</sub> NK COOK Decomp by H<sub>2</sub>O (Thiele, B 1894, 27 1909)

## Nitro cobalt, Co2NO2

Decomp by  $\mathrm{H}_2\mathrm{O}$  (Sabatier and Senderens, C R 115 236)

## Nitro copper, CuNO2

Violently decomp by  $H_2O$  (Sabatier and Senderens, C R 116 756)

#### Nitroferricyanhydric acid See Nitroprussic acid

# Nitrogen, N2

Nearly insol in all known solvents
1 vol recently boiled H O absorbs 0 0147 vol N at
15 5° (Henry 1803)
1 vol recently boiled H<sub>2</sub>O absorbs 0 02, vol N
(Dalton)
1 vol recently boiled H<sub>2</sub>O absorbs 0 01,6 vol N at
ord temp (Dalton)

#### 1 vol H<sub>2</sub>O at t° and 760 mm absorbs V vols N gas reduced to 0° and 760 mm

| t°                              | v                                                                         | t                                   | V                                                                         | t                                      | V                                                                         |
|---------------------------------|---------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6 | 0 02035<br>0 01981<br>0 01932<br>0 01884<br>0 01838<br>0 01794<br>0 01752 | 7<br>8<br>9<br>10<br>11<br>12<br>13 | 0 01713<br>0 01675<br>0 01640<br>0 01607<br>0 01577<br>0 01549<br>0 01523 | 14<br>15<br>16<br>17<br>18<br>19<br>20 | 0 01500<br>0 01475<br>0 01458<br>0 01441<br>0 01426<br>0 01413<br>0 01403 |
|                                 |                                                                           |                                     |                                                                           |                                        |                                                                           |

#### (Bunsen)

Coefficient of absorption =  $0.020346-0.00053887t+0.000011156t^2$  (Bunsen)

15

16

| 1 l | $H_2O$ | absorbs ccm | N from   | atmospheric | aır |
|-----|--------|-------------|----------|-------------|-----|
|     | _      | at 760 mm   | pressure | and to      |     |

| t° | ccm N | t° | cem N |
|----|-------|----|-------|
| 0  | 19 29 | 15 | 13 95 |
| 5  | 17 09 | 20 | 12 80 |
| 10 | 15 36 | 25 | 11 81 |

# (Dittmar, Challenger Exped Report, vol 1)

| to | cem N | to | ccm N |
|----|-------|----|-------|
| 0  | 19 14 | 15 | 13 73 |
| 5  | 16 93 | 20 | 12 63 |
| 10 | 15 14 | 25 | 11 80 |

# (Hamberg, 1885)

# Absorption of N by $H_2O$ at t° and 760 mm $\beta$ = coefficient of absorption

| t°            | β       | t°              | β       | t°  | β       |
|---------------|---------|-----------------|---------|-----|---------|
| 0             | 0 02388 | 18              | 0 01696 | 36  | 0 01252 |
| 1             | 2337    | 19              | 1667    | 37  | 1233    |
| 2             | 2288    | 20              | 1639    | 38  | 1215    |
| $\frac{1}{2}$ | 2241    | 21              | 1611    | 39  | 1198    |
|               | 2196    | 22              | 1584    | 40  | 1182    |
| 4<br>5        | 2153    | $\overline{23}$ | 1557    | 41  | 1166    |
| 6             | 2111    | 24              | 1530    | 42  | 1151    |
| 7             | 2070    | 25              | 1504    | 43  | 1137    |
| 8             | 2031    | 26              | 1478    | 44  | 1124    |
| 9             | 1993    | 27              | 1453    | 45  | 1111    |
| 10            | 1956    | 28              | 1428    | 46  | 1099    |
| 11            | 1920    | 29              | 1404    | 47  | 1088    |
| 12            | 1885    | 30              | 1380    | 48  | 1078    |
| 13            | 1851    | 31              | 1357    | 49  | 1069    |
| 14            | 1818    | 32              | 1334    | 50  | 1061    |
| 15            | 1786    | 33              | 1312    | 60  | 1000    |
| 16            | 1755    | 34              | 1291    | 100 | 1000    |
| 17            | 1725    | 35              | 1271    |     | 1000    |
|               |         |                 |         |     |         |

# (Bohr and Bock, W Ann 44 318)

# Absorption of N by $H_2O$ at t° and 760 mm $\beta=$ coefficient of absorption, $\beta_1=$ "Solubility" (see under Oxygen)

| t             | β       | $oldsymbol{eta}_1$ |
|---------------|---------|--------------------|
| 0             | 0 02348 | 0 02334            |
| 1             | 2291    | 2276               |
| $\frac{2}{3}$ | 2236    | 2220               |
| 3             | 2182    | 2166               |
| 4             | 2130    | 2113               |
| 5             | 2081    | 2063               |
| 6             | 2032    | 2013               |
| 7             | 1986    | 1966               |
| 8             | 1941    | 1920               |
| 9             | 1898    | 1877               |
| 10            | 1857    | 1834               |
| 11            | 1819    | 1795               |
| 12            | 1782    | 1758               |
| 13            | 1747    | 1722               |
| 14            | 1714    | 1687               |

| Absorption | of N by H2O at | t° —Continue |
|------------|----------------|--------------|
| t°         | β              | $\beta_1$    |

0 1682

1651

0 1654

1622

| 16              | 1651                   | 1622<br>1591   |
|-----------------|------------------------|----------------|
| 17              | 1622<br>1594           | 1562           |
| 18<br>19        | 1567                   | 1534           |
| 20              | 1542                   | 1507           |
| $\frac{20}{21}$ | 1519                   | 1482           |
| $\frac{21}{22}$ | 1496                   | 1457           |
| 23              | 1473                   | 1433           |
| $\overline{24}$ | 1452                   | 1410           |
| 25              | 1432                   | 1387           |
| 26              | 1411                   | 1365           |
| 27              | 1392                   | 1344           |
| 28              | 1374                   | 1323           |
| 29              | 1356                   | 1303           |
| 30              | 1340                   | 1284           |
| 31              | 1321                   | 1263<br>1243   |
| 32              | 1304<br>1287           | $1245 \\ 1224$ |
| 33<br>34        | 1270                   | 1204           |
| 35              | 1254                   | 1185           |
| 36              | 1239                   | 1167           |
| 37              | 1224                   | 1149           |
| 38              | 1210                   | 1131           |
| 39              | 1196                   | 1114           |
| 40              | 1183                   | 1097           |
| 41              | 1171                   | 1082           |
| 42              | 1160                   | 1067           |
| 43              | 1149                   | 1052           |
| 44              | 1139                   | 1037           |
| 45              | 1129                   | 1023<br>1009   |
| 46<br>47        | 1120<br>1111           | 0995           |
| 47<br>48        | 1102                   | 0982           |
| 49              | 1094                   | 0968           |
| 50              | 1087                   | 0955           |
| 52              | 1072                   | 0929           |
| $\overline{54}$ | 1058                   | 0902           |
| 56              | 1045                   | 0876           |
| 58              | 1033                   | 0849           |
| 60              | 1022                   | 0822           |
| 62              | 1011                   | 0794           |
| 64              | 1001                   | 0765           |
| 66              | 0992                   | 0736<br>0707   |
| 68<br>70        | 0983<br>0976           | 0676           |
| $\frac{70}{72}$ | 0970                   | 0645           |
| 74              | 0965                   | 0614           |
| 76              | 0961                   | 0581           |
| 78              | 0959                   | 0546           |
| 80              | 0957                   | 0510           |
| 82              | 0956                   | 0472           |
| 84              | 0955                   | 0432           |
| 86              | 0954                   | 0388           |
| 88              | 0953                   | 0343           |
| 90              | 0952                   | $0294 \\ 0242$ |
| $\frac{92}{94}$ | 0951<br>0950           | 0187           |
| 94<br>96        | 0949                   | 0128           |
| 98              | 0948                   | 0066           |
| 100             | 0947                   | 0000           |
|                 |                        | 3 \            |
| (Wr             | nkler, B <b>24</b> 360 | ט )            |
|                 |                        |                |
|                 |                        |                |

Coefficient of absorption for  $H_2O=0.01432$  at 25°, 0.01621 at 20°, 0.01789 at 15°, 0.02003 at 10°, 0.02173 at 5° (Braun, Z phys Ch 1900, 33 730)

Solubility in  $\mathrm{H}_2\mathrm{O}$  at various pressures

V = volume of the absorbing liquid P = Hg-pressure in metres  $\lambda = coefficient$  of solubility

| v          | t°   | P                                                                                                                                                            | λ                                                                                                                                                                 |
|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33 134 ccm | 19 4 | 0 8910<br>1 0453<br>1 2488<br>1 4764<br>1 8111<br>2 3961<br>2 9074<br>3 3411<br>4 1382<br>4 5958<br>5 1103<br>5 8349<br>6 2767<br>7 1059<br>7 5815<br>8 1074 | 0 01617<br>0 01616<br>0 01611<br>0 01602<br>0 01692<br>0 01597<br>0 01585<br>0 01570<br>0 01561<br>0 01546<br>0 01515<br>0 01515<br>0 01499<br>0 01487<br>0 01473 |
| 32 152 ccm | 24 9 | 0 8977<br>1 0129<br>1 1887<br>1 5573<br>1 9846<br>2 5171<br>2 8781<br>3 2956<br>4 0947<br>4 5581<br>5 0529<br>5 5935<br>6 1956<br>7 1956<br>7 1846           | 0 01498<br>0 01493<br>0 01491<br>0 01487<br>0 01482<br>0 01478<br>0 01463<br>0 01455<br>0 01440<br>0 01434<br>0 01426<br>0 01413<br>0 01408<br>0 01377<br>0 01369 |

(Cassuto, Phys Zeit 1904, 5 236)

Coefficient of absorption for  $H_2O=0.01565$  at 20 18° (Hufner, Z phys Ch 1907, **57** 615)

Absorption of  $N_2$  by distilled  $H_2O$  at  $t^\circ$  a=ccm of  $N_2$  absorbed by 1 l of  $H_2O$  at  $t^\circ$  and 760 mm

| t°                                                                                       | α                                                                                                                                                     | t°                                                                                                 | a                                                                                                                                             | t°                                                                                                 | a                                                                                                                                            |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 23 00<br>22 50<br>22 02<br>21 55<br>21 09<br>20 64<br>20 20<br>19 77<br>19 35<br>18 94<br>18 54<br>18 16<br>17 46<br>17 46<br>17 14<br>16 84<br>16 56 | 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 16 29<br>16 03<br>15 78<br>15 54<br>15 529<br>15 06<br>14 84<br>14 63<br>14 23<br>14 04<br>13 87<br>13 71<br>13 55<br>13 39<br>13 23<br>13 08 | 34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50 | 12 93<br>12 79<br>12 65<br>12 52<br>12 39<br>12 27<br>12 15<br>12 04<br>11 92<br>11 68<br>11 57<br>11 46<br>11 35<br>11 24<br>11 13<br>11 02 |
| (Fc                                                                                      | Trans                                                                                                                                                 | Farac                                                                                              | lay Soc                                                                                                                                       | 1909 5                                                                                             | 73 )                                                                                                                                         |

(Fox, Trans Faraday Soc 1909, 5 73)

Solubility in  $\rm H_2O$  at 25°=0 1561 (Drucker and Moles, Z phys Ch 1910, 75 418) Solubility of  $\rm N_2$  in  $\rm H_2O$  at 25°=0 0231 (Calculated according to special formula, for which see original article) (Findlay and Creighton, Chem Soc 1911, 99 1315) Coefficient of absorption for  $\rm H_2O$ =0 01689

at 15°, 0 01670 at 16 2°, 0 01622 at 17 2° (Muller, Z phys Ch 1912, **81** 493)

1 l sea water (sp gr 1 027) absorbs ccm N from atmosphere at t° and 760 mm pressure—

| t                              | According to                     | According to                                      | According to                                      |
|--------------------------------|----------------------------------|---------------------------------------------------|---------------------------------------------------|
|                                | Tornoe                           | Dittmar                                           | Hamberg                                           |
| 0<br>5<br>10<br>15<br>20<br>25 | 14 40<br>13 25<br>12 10<br>10 95 | 15 60<br>13 86<br>12 47<br>11 34<br>10 41<br>9 62 | 14 85<br>13 32<br>12 06<br>11 04<br>10 25<br>9 62 |

No of ccm of  $N_2$  (containing 1 185% argon) absorbed by a 1 of sea-water from a free dry atmosphere of 760 mm pressure at given temperatures

| Cl<br>pcr 1000                | 0 | 4 | 8 | 12 | 16 | 20           | 24 | 28           |
|-------------------------------|---|---|---|----|----|--------------|----|--------------|
| 0<br>4<br>8<br>12<br>16<br>20 | , | , | , |    | I  | ,<br>1<br>12 | -  | 9 80<br>9 41 |

(Fox, Trans Faraday Soc 1909, 5 77)

Absorption of  $N_2$  by  $H_2SO_4+Aq$  at t° a = coefficient of absorption

| Normality of the acid | t°   | α      |
|-----------------------|------|--------|
| 0                     | 20 9 | 0 0156 |
| 4 9                   | 20 9 | 0 0091 |
| 8 9                   | 20 9 | 0 0072 |
| 10 7                  | 21 2 | 0 0066 |
| 20 3                  | 21 1 | 0 0049 |
| 24 8                  | 21 5 | 0 0048 |
| 29 6                  | 20 8 | 0 0051 |
| 34 3                  | 20 9 | 0 0100 |
| 35 8                  | 21 1 | 0 0129 |

(Bohr, Z phys Ch 1910, 71 49)

# Absorption of N<sub>2</sub> by BaCl<sub>2</sub>+Aq at°=coefficient of absorption at t°

| Per cent of<br>BaCl <sub>2</sub> in<br>the solution | a25°                                     | a20°                                     | a15°                                                           | α10°                                     | a5°                                      |
|-----------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------------------|------------------------------------------|------------------------------------------|
| 6 903<br>6 738<br>3 870                             | 0 00855<br>0 01044<br>0 01036<br>0 01137 | 0 00976<br>0 01184<br>0 01182<br>0 01323 | 0 01036<br>0 01139<br>0 01317<br>0 01340<br>0 01480<br>0 01502 | 0 01249<br>0 01474<br>0 01494<br>0 01660 | 0 01368<br>0 01598<br>0 01628<br>0 01802 |

(Braun, Z phys Ch 1900, 33 733)

# Absorption of N<sub>2</sub> by NaCl+Aq at°=coefficient of absorption at t°

| Per cent of<br>NaCl in<br>the solution                                                                     | a25° | a20°                                                                                            | a15°                                                                                            | α10°                                                                                                       | a5°                                                                                             |
|------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 11 732<br>10 945<br>8 135<br>8 033<br>6 595<br>6 400<br>4 196<br>3 880<br>2 120<br>2 100<br>0 686<br>0 671 |      | 0 00703<br>0 00872<br>0 00871<br>0 00972<br>0 00975<br>0 01151<br>0 01311<br>0 01314<br>0 01477 | 0 00824<br>0 01014<br>0 00995<br>0 01120<br>0 01134<br>0 01294<br>0 01316<br>0 01469<br>0 01640 | 0 00912<br>0 01131<br>0 01125<br>0 01252<br>0 01259<br>0 01451<br>0 01475<br>0 01638<br>0 01656<br>0 01833 | 0 01266<br>0 01248<br>0 01380<br>0 01375<br>0 01579<br>0 01615<br>0 01795<br>0 01805<br>0 01994 |

(Braun, l c)

At —1915° liquid oxygen dissolves 458 times its vol or 507 per cent of its weight of gaseous nitrogen (Erdmann, B 1904, 37 1191)

At 18° and 760 mm 100 vols H<sub>2</sub>O or alcohol of 0 84 sp gr absorb 4 2 vols N gas (de Saussure **1814**)

1 vol alcohol at t° and 760 mm dissolves vols N gas reduced to 0° and 760 mm

| t°                                                               | V                                                                                                                                           | t°                                                                   | V                                                                                                                                |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 0 12634<br>0 12593<br>0 12553<br>0 12514<br>0 12476<br>0 12440<br>0 12405<br>0 12371<br>0 12338<br>0 12306<br>0 12276<br>0 12247<br>0 12219 | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 0 12192<br>0 12166<br>0 12142<br>0 12119<br>0 12097<br>0 12076<br>0 12056<br>0 12030<br>0 12021<br>0 12005<br>0 11990<br>0 11976 |

(Bunsen's Gasometry)

1 vol alcohol absorbs 0 126338-0 000418t - 0 0000060t² vols N gas (Carrus, A **94** 13 )

#### Solubility in alcohol at 25°

| Vol H₂O | Vol % alcohol | Solubility |
|---------|---------------|------------|
| 100     | 0             | 0 01634    |
| 80      | 20            | 0 01536    |
| 67      | 33            | 0 01719    |
| 0       | 100           | 0 1432     |

(Just, Z phys Ch 1901, 37 361)

1 vol ether absorbs 0 15 vol N (Doberemer) 1 caoutchine absorbs 5 vols N in 5 weeks (Himly)

Solubility of N<sub>2</sub> in ether = 0 2580 at (0 2561 at 10° (Christoff, Z phys Ch 19 **79** 459)

#### Solubility in organic solvents

| Dolubulty in organio porvoiss |                              |                           |                                                     |  |  |  |
|-------------------------------|------------------------------|---------------------------|-----------------------------------------------------|--|--|--|
| Solvent                       | Solubility<br>at 25 C        | Solu<br>bility<br>at 20 C | $\frac{\mathrm{d}\mathbf{s}}{\mathrm{d}\mathbf{t}}$ |  |  |  |
| Glycerine<br>Water            | Not<br>measurable<br>0 01631 | 0 01705                   | 0 000                                               |  |  |  |
| Anılıne                       | 0 03074                      | 0 02992                   |                                                     |  |  |  |
| Carbon bisulphide             | 0 05860                      | 0 05290                   |                                                     |  |  |  |
| Nitrobenzene                  | 0 06255                      | 0 06082                   |                                                     |  |  |  |
| Benzene                       | 0 1159                       | 0 114                     | +0 000                                              |  |  |  |
| Glacial acetic acid           | 0 1190                       | 0 1172                    | +0 000                                              |  |  |  |
| Xylene                        | 0 1217                       | 0 1185                    | +0 000                                              |  |  |  |
| Amyl alcohol                  | 0 1225                       | 0 1208                    | +0 000                                              |  |  |  |
| Toluene                       | 0 1235                       | 0 1186                    | +0 000                                              |  |  |  |
| Chloroform                    | 0 1348                       | 0 1282                    | +0 001                                              |  |  |  |
| Methyl alcohol                | 0 1415                       | 0 1348                    | +0 001                                              |  |  |  |
| Fthvl alcohol (998%)          | 0 1432                       | 0 1400                    | +0 000                                              |  |  |  |
| Acetone                       | 0 1460                       | 0 1383                    | +0 001                                              |  |  |  |
| Amyl acetate                  | 0 1542                       | 0 1512                    | +0 000                                              |  |  |  |
| Ethyl acetate                 | 0 1727                       | 0 1678                    | +0 000                                              |  |  |  |
| Isobutyl aceate               | 0 1734                       | 0 1701                    | +0 000                                              |  |  |  |
|                               |                              |                           |                                                     |  |  |  |

(Just, Z phys Ch 1901, 37 361)

Coefficient of absorption for petroleum 0 117 at 20°, 0 135, at 10° (Gniewasz a Walfisz, Z phys Ch 1 70)

Absorption of N<sub>2</sub> by propionic acid+Aq at° = coefficient of absorption at t°

| Per cent of<br>propionic<br>acid in the<br>solution  | a25°    | α20°    | a15°    | α10°    | a5°     |
|------------------------------------------------------|---------|---------|---------|---------|---------|
| 11 220<br>11 023<br>9 537<br>9 155<br>6 066<br>5 891 | 0 01329 | 0 01469 | 0 01630 | 0 01845 | 0 02026 |

(Braun, Z phys Ch 1900, 33 732)

3 816

Solubility of  $N_2$  in isobutyric acid +Aq at  $t^{\circ}$ P=Corrected pressure at end of experiment in mm Hg at 0° S=Solubility of N<sub>2</sub>

| Solvent                                                       | t°    | P                                                  | ន                                                           |
|---------------------------------------------------------------|-------|----------------------------------------------------|-------------------------------------------------------------|
| Pure isobutyric acid                                          | 25 05 | 262 6<br>388 3<br>566 1<br>662 4<br>783 5<br>832 2 | 0 1609(?)<br>0 1640<br>0 1647<br>0 1656<br>0 1656<br>0 1656 |
| 37 5% solution of isobutyric acid+Aq Vapor pressure = 21 6 mm | 23 02 | 246 2<br>492 2<br>563 6<br>836 3<br>867 3          | 0 0393<br>0 0393<br>0 0393<br>0 0400<br>0 0401              |
| Vapor pressure = 30 6 mm                                      | 29 02 | 231<br>468 4<br>480 7<br>536<br>656<br>720         | 0 0373<br>0 0384<br>0 0383<br>0 0385<br>0 0384<br>0 0386    |

(Drucker and Moles, Z phys Ch 1910, 75 434)

Absorption of N<sub>2</sub> by chloralhydrate+Aq  $t^{\circ}$  = temp of the solution P = % chlor the solution

βt° = coefficient of absorption at t°  $\beta 15^{\circ} = coefficient of absorption at 15^{\circ}$ 

| t°   | P     | $oldsymbol{eta_t}^{f \circ}$ | β15°    |
|------|-------|------------------------------|---------|
| 15 6 | 15 8  | 0 01574                      | 0 01580 |
| 15 4 | 28 2  | 0 01418                      | 0 01422 |
| 16 4 | 37 25 | 0 01288                      | 0 01300 |
| 16 9 | 47 0  | 0 01260                      | 0 01275 |
| 17 0 | 56 52 | 0 01230                      | 0 01245 |
| 15 3 | 71 5  | 0 01415                      | 0 01420 |
| 14 8 | 78 8  | 0 01447                      | 0 01495 |

(Muller, Z phys Ch 1912, 81 499)

Absorption of N2 by organic substances+Aq at 15°

P=% of the organic substance in the solvent \$15° = coefficient of absorption at 15°

| 1e 425                                    | u20 (                                                                     | 215                                                | 10 45                                                       | S15°=Solubili          | ty at 1                                                                            | 5°                                                                                                            |                                                                                         |
|-------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| la arnaole                                | 27.40010                                                                  | 07.00010.0                                         | 01845 0 02026                                               | Organic substance used | P                                                                                  | β15°                                                                                                          | 815°                                                                                    |
| 0 01365 0<br>0 01371 0<br>aun, Z ph       | 0 01541 0 01547 0 0 01547 0 0 01547 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 01688 0 0<br>01674 0 0                             | 01919 0 02095<br>01915 0 02087                              | Chloralhydrate         | 0<br>0<br>0<br>6 9<br>14 0<br>15 0<br>23 6<br>26 1<br>37 6<br>48 9<br>49 3<br>61 3 | 0 01725<br>0 01675<br>0 01706<br>0 0164<br>0 0152<br>0 0134<br>0 0141<br>0 0123<br>0 0115<br>0 0118<br>0 0114 | 0 01796<br>0 0162<br>0 0160<br>0 0141<br>0 0149<br>0 0130<br>0 0121<br>0 0124<br>0 0120 |
| vent                                      | t°                                                                        | P                                                  | s                                                           |                        | 70 9                                                                               | 0 0131                                                                                                        | 0 0138<br>0 0137                                                                        |
| obutyric<br>ad                            | 25 05                                                                     | 262 6<br>388 3<br>566 1<br>662 4<br>783 5<br>832 2 | 0 1609(?)<br>0 1640<br>0 1647<br>0 1656<br>0 1656<br>0 1656 | Glycerine              | 71 2<br>78 3<br>79 1<br>0<br>0<br>15 7                                             | 0 0130<br>0 0152<br>0 0156<br>0 01707<br>0 01708<br>0 01425                                                   | 0 0160<br>0 0165                                                                        |
| olution<br>utyric<br>Aq<br>essure =<br>mm | 23 02                                                                     | 246 2<br>492 2<br>563 6<br>836 3<br>867 3          | 0 0393<br>0 0393<br>0 0393<br>0 0400<br>0 0401              |                        | 15 7<br>29 9<br>46 6<br>57 6<br>67 1<br>72 8                                       | 0 01376<br>0 01087<br>0 00840<br>0 00695<br>0 00635<br>0 00552                                                |                                                                                         |
| ressure =                                 | 29 02                                                                     | 231<br>468 4<br>480 7<br>536<br>656<br>720         | 0 0373<br>0 0384<br>0 0383<br>0 0385<br>0 0384<br>0 0386    |                        | 74 7<br>77 0<br>85 1<br>87 3<br>88 5<br>99 25                                      | 0 00597<br>0 00527<br>0 00482<br>0 00192<br>0 00536<br>0 00521                                                |                                                                                         |

(Hammel, Z phys Ch 1915, 90 121)

Absorption of  $N_2$  by glycerine  $+ \Lambda c_1$ 

t°=temp of the solution P = % glycerine in the solution  $\beta t^{\circ} = \text{coefficient of absorption at } t^{\circ}$ \$15° = coefficient of absorption at 15

| t°                                                   | P                                                     | $eta_{ m t}^{\circ}$                                                      | /31                                                           |
|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|
| 16 1<br>15 6<br>14 7<br>14 9<br>15 9<br>16 2<br>18 0 | 25 0<br>42 2<br>51 5<br>58 0<br>80 25<br>90 0<br>95 0 | 0 01240<br>0 00966<br>0 00759<br>0 00703<br>0 00520<br>0 00570<br>0 00578 | 0 01266<br>0 00976<br>0 00759<br>0 0070<br>0 00550<br>0 00585 |

(Muller, Z phys Ch 1912, 81

Solubility of N<sub>2</sub> in glycerine+Aq at 25° G = % by wt of glycerine in the solvent  $S = \text{solubility of } N_2$ 

P = corrected pressure at end of experiment

ın mm Hg at 0°

| G                                  | P                                                                             | S                                                                                      |
|------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 16<br>29 7<br>48 9<br>74 5<br>84 1 | 598 4<br>915 5<br>556 5<br>846 5<br>617 7<br>859 8<br>588 5<br>637 3<br>757 0 | 0 0103<br>0 0103<br>0 0067<br>0 0068<br>0 0052<br>0 0051<br>0 0025<br>0 0024<br>0 0024 |

(Drucker and Moles, Z phys Ch 1910, 75 **418**)

Absorption of N<sub>2</sub> by sucrose+Aq t°=temp of the solution P = % sucrose in the solution  $\beta t^{\circ} = \text{coefficient of absorption at } t^{\circ}$  $\beta 15^{\circ}$  = coefficient of absorption at 15°

| t°   | P     | βt°     | β15°    |
|------|-------|---------|---------|
| 16 2 |       | 0 01670 | 0 01700 |
| 17 2 |       | 0 01622 | 0 01688 |
| 16 8 | 11 38 | 0 01432 | 0 01480 |
| 16 9 | 20 00 | 0 01233 | 0 01280 |
| 17   | 29 93 | 0 01025 | 0 01053 |
| 17 8 | 30 12 | 0 01033 | 0 01090 |
| 18   | 47 89 | 0 00742 | 0 00785 |
| 17 7 | 48 57 | 0 00658 | 0 00700 |

(Muller, Z phys Ch 1912, 81 493)

Absorption of N<sub>2</sub> by organic substances+Aq

V = absorbed volume reduced to 0° and 760 mm

 $\alpha = \text{coefficient of absorption}$ 

| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vol of solution cem                                         |                                        | t                          |                                             | V<br>ccm |                                               | α        |                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|----------------------------|---------------------------------------------|----------|-----------------------------------------------|----------|----------------------------------------------------------------------------------------|
| N-dextrose 1/2N-dextrose 1/4N-dextrose 1/4N- | 409<br>409<br>409<br>409<br>409<br>409<br>409<br>409<br>409 | 94<br>94<br>94<br>94<br>94<br>94<br>94 | 20<br>20<br>20<br>20<br>20 | 21<br>2<br>25<br>21<br>25<br>19<br>16<br>18 | 55444445 | 14<br>51<br>27<br>40<br>87<br>445<br>47<br>37 | 00000000 | 01215<br>01380<br>01480<br>01221<br>01203<br>01321<br>01213<br>01212<br>01477<br>01475 |

(Hufner, Z phys Ch 1907, 57 618-621)

Nitrogen bromide, NBr<sub>3</sub> Decomp under H<sub>2</sub>O

## Nitrogen bromophosphide, PBr<sub>2</sub>N

Insol in H<sub>2</sub>O Sol in ether, less sol in C : or CHCl<sub>3</sub> (Besson, C R 114 1479)

## Nitrogen bromosulphide

See Nitrogen sulphobromide

#### Nitrogen chloride, NCl<sub>3</sub>

Very unstable Explodes when heated 93° or by contact with other substanc Insol in H<sub>2</sub>O, but is decomp thereby (in hours by cold H<sub>2</sub>O) Sol in CS<sub>2</sub>, PCl<sub>3</sub>, a i S<sub>2</sub>Cl<sub>2</sub> (H Davy, Phil Trans **1813**, 1. 24 ) Sol in C<sub>5</sub>H<sub>5</sub>, CS<sub>2</sub>, CHCl<sub>5</sub>, CCl<sub>4</sub> (Hentsel J B 1897, **30** 1434)

#### Nitrogen chlorophosphide, N<sub>2</sub>P<sub>3</sub>Cl<sub>6</sub>

Insol in H<sub>2</sub>O, but slowly decomp therek Insol in hot H<sub>2</sub>SO<sub>4</sub>, HCl, or HNO<sub>3</sub>+A Decomp by hot fuming HNO<sub>3</sub> Sol in -cohol, very sol in ether, but these solutic s gradually decompose Sol in CS<sub>2</sub>, CHC , C<sub>6</sub>H<sub>6</sub>, and oil of turpentine Sol in POCl<sub>3</sub> (Gladstone, Chem Soc 138)

# Nitrogen chlorosulphide

See Nitrogen sulphochloride

#### Nitrogen fluoride

Very explosive (Warren, C N 55 289

#### Nitrogen monoiodamine, NH<sub>2</sub>I

Very rapidly decomp by H<sub>2</sub>O into N<sub>2</sub>H <sub>3</sub> (Raschig, A 230 212)

# Nitrogen diodamine, NHI<sub>2</sub>

Properties as trioddiamine

#### Nitrogen trioddiamine, NH<sub>3</sub>, NI<sub>3</sub>

Decomp by H<sub>2</sub>O (Raschig, A 230 21 Insol in absolute alcohol Sol with comp in HCl+Aq (Bunsen)

# Nitrogen iodide, N<sub>3</sub>I

See Triazoiodide

#### Nitrogen iodide, NI3

Insol in H<sub>2</sub>O, but slowly decomp there y Sol in HCl+Aq Sol in KCN+Aq lon, J pr 17 1) Sol in Na S<sub>2</sub>O<sub>3</sub>+Aq (Guyard, C R

Sol in KSCN+Aq (Raschig, A 230 2 ')

Nitrogen iodide ammonia, NI<sub>3</sub>, 3NH<sub>3</sub>, 1 [<sub>3</sub>, 2NH<sub>3</sub>, and NI<sub>3</sub>, NH<sub>3</sub>

(Hugot, C R 1900, 130 507)

NI<sub>3</sub>, 12NH<sub>3</sub> Ppt, insol in ether (R ff, [B 1900, **33** 3028]

#### Nitrogen monoxide, N<sub>2</sub>O

- (a) Liquid Miscible with alcohol or ether
- (b) Gas

1 vol  $\rm H_2O$  absorbs 0.78–0.86 vol  $\rm N_2O$  at ordinary temp (Henry) 0.80 vol at ordinary temp (Dalton) 0.76 vol at ordinary temp (de Saussure) 0.708 vol at 18 (Pleisch) 0 54 vol (Davy)

1 vol H<sub>2</sub>O at t° and 760 mm absorbs V vols  $N_2O$ , reduced to 0° and 760 mm

(Bunsen's Gasometry)

1 vol H O absorbs 1 30521-0 0453620t+ 0 00068430t2 vols N2O at to and 760 mm (Bunsen)

Coefficient of absorption by  $H_2O = 0.01883$ Coefficient of absorption by 1120 = 0 01505 at 15° (Steiner, Z phys Ch 1895, 18 14) Coefficient of absorption by H O = 0 600 at 23 5°, 0 773 it 15 5°, 0 951 at 8 1° (Gordon, Z phys Ch 1895, 18 4)

Absorption of N<sub>2</sub>O by H<sub>2</sub>O at t°

| t  | Coefficient of absorption |
|----|---------------------------|
| 25 | 0 5752                    |
| 20 | 0 6654                    |
| 15 | 0 7896                    |
| 10 | 0 9479                    |
| 5  | 1 1403                    |

(Roth, Z phys Ch 1897, 24 123)

Solubility in  $H_2()$  at  $25^{\circ} = 0.5942$ , at  $20^{\circ} =$ 0.6756, at  $15^{\circ} = 0.7784$ , at  $10^{\circ} = 0.9101$ , at (For formula for "solubility  $5^{\circ} = 1.067$ see under oxygen) (Geffeken, Z phys Ch 1904, 49 278)

Solubility of  $N_2()$  in  $H_2O = 0.592$  at 25° and 758–136° mm (Findlay pressure Creighton, Chem Soc 1910, 97 538)

100 vols  $H_2SO_4$  (sp gr = 184) absorb 75 7 vols  $N_2O_1$  100 vols  $H_2SO_4+Aq$  (sp gr = 180) absorb 66 0 vols  $N_2O_1$  100 vols  $H_2SO_4$ + Aq (sp gr = 1 705) absorb 39 1 vols N<sub>2</sub>O, 100 vols H<sub>2</sub>SO<sub>4</sub>+Aq (sp gr = 1 45) absorb 41 6 vols N<sub>2</sub>O, 100 vols H<sub>2</sub>SO<sub>4</sub>+Aq (sp gr = 1 25) absorb 33 0 vols N<sub>2</sub>O

CaCl<sub>2</sub>+Aq, and NaCl+Aq absorb considerable amounts of N<sub>2</sub>O (Lunge, B 14 2188)

Absorption by acids+Aq

M = content in gram-equivalents per liter S =solubility (see under Oxygen)

Absorption of N<sub>2</sub>O by HNO<sub>3</sub>+Aq

| М     | S 25   | S 15°  |
|-------|--------|--------|
| 0 610 | 0 5969 | 0 7770 |
| 0 614 | 0 5980 | 0 7766 |
| 1 253 | 0 6045 | 0 7767 |
| 1 254 | 0 6061 | 0 7767 |
| 2 405 | 0 6156 | 0 7735 |
| 2 435 | 0 6149 | 0 7737 |

(Geffcken, Z phys Ch 1904, 49 278)

Absorption of N<sub>2</sub>O by HCl+Aq

| М     | S 25°  | S 15°  |
|-------|--------|--------|
| 0 549 | 0 5775 | 0 7550 |
| 0 550 | 0 5759 | 0 7528 |
| 1 089 | 0 5670 | 0 7360 |
| 1 093 | 0 5657 | 0 7347 |
| 2 300 | 0 5546 | 0 7103 |
| 2 340 | 0 5564 | 0 7122 |

(Geffcken)

Absorption of  $N_2O$  by  $\frac{H_2SO_4}{2}$  +Aq

| 0 523     0 5648     0 7328       0 526     0 5657     0 7340       1 050     0 5426     0 6997       1 054     0 5419     0 6984       2 042     0 5083     0 6440       2 047     0 5087     0 6428       2 971     0 4819     0 6024       2 963     0 4820     0 6030       3 897     0 4577     0 5649       2 963     0 5649 | М     | S 25   | S 15   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|
|                                                                                                                                                                                                                                                                                                                                    | 0 526 | 0 5657 | 0 7340 |
|                                                                                                                                                                                                                                                                                                                                    | 1 050 | 0 5426 | 0 6997 |
|                                                                                                                                                                                                                                                                                                                                    | 1 054 | 0 5419 | 0 6984 |
|                                                                                                                                                                                                                                                                                                                                    | 2 042 | 0 5083 | 0 6440 |
|                                                                                                                                                                                                                                                                                                                                    | 2 047 | 0 5087 | 0 6428 |
|                                                                                                                                                                                                                                                                                                                                    | 2 971 | 0 4819 | 0 6024 |
|                                                                                                                                                                                                                                                                                                                                    | 2 963 | 0 4820 | 0 6030 |

(Geffcken)

#### Absorption of N<sub>2</sub>O by H<sub>3</sub>PO<sub>4</sub>+Aq at t°

| t        |                            | % of H <sub>3</sub> PO <sub>4</sub> |                  |                            |                            |  |  |
|----------|----------------------------|-------------------------------------|------------------|----------------------------|----------------------------|--|--|
|          | 3 38%                      | 472/0                               | 8 84%            | 9 89%                      | 13 35%                     |  |  |
| 15<br>20 | 0 8827<br>0 7358<br>0 6253 | 0 8665<br>0 7258                    | 0 6977<br>0 5926 | 0 8101<br>0 6826<br>0 5810 | 0 7711<br>0 6505<br>0 5555 |  |  |

(Roth, Z phys Ch 1897, 24 134)

100 vols conc FeSO<sub>4</sub>+Aq absorb 19 5 vols

 $N_2O$ Solubility of N<sub>2</sub>O in a solution containing 47 7 g Fe(OH)<sub>3</sub> per litre at 25°=0 5799, 47 9 g Fe(OH)<sub>3</sub> per litre at 25°=0 5787 (Geffcken, Z phys Ch 1904, 49 299)

0 541

0 542

1 074

1 082

0 6591

0 6595

0 5427

0 5392

Coeff of absorption at

100 vols KOH+Aq (sp gr = 1 12) absorb 18 7 vols  $N_2O$ , 100 vols KOH+Aq sat with pyrogallol absorb 18 1 vols  $N_2O$ , 100 vols NaOH+Aq (sp gr =1 1) (7% NaOH) absorb 23 1 vols  $N_2O$ , 100 vols NaOH+Aq sat with pyrogallol absorb 28 0 vols N2O

Absorption of N<sub>2</sub>O by KOH+Aq M = content in gram-equivalents per litre S=solubility (see under oxygen)

M S 25° S 15°

0 5087

0 5093

0 4252

0 4221 (Geffcken, Z phys Ch 1904, 49 278)

Coefficient of solubility of  $N_2O$  in salts+Aq at  $t^{\circ}$ 

Concentration

of salt

|                                 |                                                   |                      |        |                          |   |                   | _ |                          |   |                   |   |                          |
|---------------------------------|---------------------------------------------------|----------------------|--------|--------------------------|---|-------------------|---|--------------------------|---|-------------------|---|--------------------------|
| Salt                            | G ]<br>100<br>sol<br>tic                          | g<br>u               | 1      | G<br>nol<br>er l         |   | 5°                |   | 10°                      |   | 15°               |   | 20°                      |
| CaCl <sub>2</sub>               | 5<br>9<br>13                                      | 79<br>86<br>99       |        | 547<br>964<br>416        | 0 | 819<br>608<br>510 | 0 | 697<br>586<br>441        | 0 | 591<br>509<br>380 | 0 | 500<br>435<br>328        |
| LıCl                            | 1<br>3<br>11                                      | 35<br>85<br>48       | 0      | 319<br>928<br>883        | 0 | 986<br>878<br>606 | 0 |                          | 0 | 629               | 0 | 599<br>536<br>382        |
| L <sub>12</sub> SO <sub>4</sub> | 2<br>5<br>8                                       | 37<br>46<br>56       | 0      | 219<br>521<br>836        | 0 | 934<br>795<br>646 | 0 | 792<br>665<br>555        | 0 |                   | 0 |                          |
| MgSO <sub>4</sub>               | 5<br>7<br>10                                      | 90<br>66<br>78       | 0      | 521<br>687<br>997        | 0 | 766<br>708<br>569 | 0 | 664<br>586<br>491        | 0 | 561<br>486<br>417 | 0 | 471<br>414<br>346        |
| KCI                             | $\begin{array}{c} 4 \\ 7 \\ 14 \\ 22 \end{array}$ | 90<br>64<br>58<br>08 | 1<br>2 | 676<br>037<br>187<br>414 | 0 |                   | 0 | 751<br>693<br>574<br>459 | 0 |                   | 0 | 555<br>494<br>430<br>339 |
| $\overline{\mathrm{K_2SO_4}}$   | 2<br>4                                            | 62<br>78             |        | 154<br>285               |   |                   |   | 831<br>763               |   |                   |   | 605<br>542               |
| NaCl                            | 6<br>8<br>12                                      | 20<br>88<br>78       | 1      | 107<br>614<br>391        | 0 | 713               | 0 | 603                      | 0 |                   | 0 |                          |
| Na <sub>2</sub> SO <sub>4</sub> | 5<br>8<br>12                                      | 76<br>53<br>44       | 0      | 427<br>646<br>974        | 0 | 692               | 0 | 574                      | 0 | 584<br>482<br>417 | 0 |                          |
| SrCl <sub>2</sub>               | 3<br>5<br>13                                      | 31<br>73<br>24       | 0      |                          | Ō | 848               | 0 |                          | 0 | 610               | 0 | 556                      |

(Gordon, Z phys. Ch 1895, 18 5)

Absorption of N<sub>2</sub>O by salts+Aq at 15° M = number of molecules of salt per litre.

| $\alpha = coefficient$          | of absorption                                               | 1                                                                  |
|---------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|
| Salt                            | М                                                           | α                                                                  |
| KCl                             | 3 554<br>2 909<br>1 755<br>1 051<br>0 526                   | 0 0892<br>0 1012<br>0 1279<br>0 1489<br>0 1667                     |
| $\mathrm{KNO}_3$                | 2 430<br>1 820<br>1 541<br>0 879<br>0 482                   | 0 1180<br>0 1311<br>0 1391<br>0 1559<br>0 1683                     |
| K <sub>2</sub> CO <sub>3</sub>  | 4 352<br>2 939<br>2 156<br>1 376<br>0 690<br>0 341<br>0 209 | 0 0160<br>0 0285<br>0 0462<br>0 0761<br>0 1183<br>0 1501<br>0 1628 |
| NaCl                            | 4 815<br>2 801<br>2 049<br>0 825                            | 0 0595<br>0 0925<br>0 1130<br>0 1548                               |
| NaNO <sub>2</sub>               | 5 711<br>3 980<br>2 656<br>1 413<br>0 679                   | 0 0578<br>0 0810<br>0 1052<br>0 1370<br>0 1603                     |
| Na <sub>2</sub> CO <sub>3</sub> | 1 218<br>0 819<br>0 438<br>0 207                            | 0 0839<br>0 1082<br>0 1385<br>0 1639                               |
| Na <sub>2</sub> SO <sub>4</sub> | 1 364<br>0 638<br>0 335                                     | 0 0775<br>0 1254<br>0 1519                                         |
| LıCl                            | 3 734<br>1 800<br>0 835                                     | 0 0990<br>0 1370<br>0 1619                                         |
| MgSO <sub>4</sub>               | 2 501<br>1 631<br>0 936<br>0 433                            | 0 0499<br>0 0797<br>0 1159<br>0 1501                               |
| ZnSO <sub>4</sub>               | 2 180<br>1 277<br>0 899<br>0 397                            | 0 0605<br>0 0961<br>0 1175<br>0 1525                               |
| CaCl <sub>2</sub>               | 2 962<br>2 556<br>1 827<br>1 122<br>0 578<br>0 321          | 0 0519<br>0 0619<br>0 0839<br>0 1138<br>0 1450<br>0 1619           |
| (Steiner, Z                     | рпув Сп 1898                                                | 5, <b>18</b> 14-5)                                                 |

# Coefficient of absorption of N<sub>2</sub>O by NaCl+Aq at t°

| t.º                       | Per cent of NaCl                               |                                                |                                                |                                                |  |
|---------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--|
|                           | 0 990                                          | 1 808                                          | 3 886                                          | 5 865                                          |  |
| 5<br>10<br>15<br>20<br>25 | 1 0609<br>0 8812<br>0 7339<br>0 6191<br>0 5363 | 1 0032<br>0 8383<br>0 7026<br>0 5962<br>0 5190 | 0 9131<br>0 7699<br>0 6495<br>0 5520<br>0 4775 | 0 8428<br>0 7090<br>0 5976<br>0 5088<br>0 4424 |  |

(Roth, Z phys Ch 1897, 24 139)

Absorption of N<sub>2</sub>O by salts+Aq at 20° C=concentration of the solution in terms of normal

a = coefficient of absorption

Absorption of N<sub>2</sub>O by KNO<sub>8</sub>+Aq at 20°

| P                                      | С                                    | a                                              |
|----------------------------------------|--------------------------------------|------------------------------------------------|
| 0<br>1 063<br>2 720<br>5 389<br>10 577 | 0 1061<br>0 2764<br>0 5630<br>1 1683 | 0 6270<br>0 6173<br>0 6002<br>0 5713<br>0 5196 |

## Absorption of N<sub>2</sub>O by NaNO<sub>3</sub>+Aq at 20°

| P                                     | С                                    | α                                              |
|---------------------------------------|--------------------------------------|------------------------------------------------|
| 0<br>1 124<br>2 531<br>5 077<br>8 701 | 0 1336<br>0 3052<br>0 6286<br>1 1200 | 0 6270<br>0 6089<br>0 5876<br>0 5465<br>0 4926 |

(Knopp, Z phys Ch 1904, 48 107)

Absorption of  $N_2O$  by salts+Aq M = content in gram-equivalents per litre S = solubility

| Salt  | M     | S 25°  | 8 1)   |
|-------|-------|--------|--------|
| NH₄Cl | 0 598 | 0 5532 | 0 7203 |
|       | 0 600 | 0 5504 | 0 7185 |
|       | 1 158 | 0 5223 | 0 6800 |
|       | 1 166 | 0 5200 | 0 6775 |
| KI    | 0 550 | 0 5367 | 0 6950 |
|       | 0 557 | 0 5344 | 0 6916 |
|       | 0 886 | 0 5025 | 0 6466 |
|       | 0 913 | 0 5012 | 0 6442 |
|       | 0 514 | 0 5428 | 0 7074 |
|       | 0 545 | 0 5406 | 0 7036 |
| LıCl  | 0 558 | 0 5276 | 0 6884 |
|       | 0 561 | 0 5278 | 0 6877 |
|       | 1 057 | 0 4760 | 0 6163 |
|       | 1 059 | 0 4773 | 0 6146 |

# Absorption of N<sub>2</sub>O by salts+Aq — Continued

| Salt     | М                                                                    | S 25°                                                                         | S 15°                                                                        |
|----------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| KBr      | 0 546<br>0 550<br>0 937<br>0 959                                     | 0 5306<br>0 5318<br>0 4908<br>0 4899                                          | 0 6877<br>0 6892<br>0 6352<br>0 6334                                         |
| RbCl     | 0 439<br>0 444<br>0 977<br>0 993<br>0 558<br>0 559<br>1 070<br>1 102 | 0 5399<br>0 5386<br>0 4873<br>0 4846<br>0 5218<br>0 5217<br>0 4673<br>0 4639, | 0 7050<br>0 7053<br>0 6306<br>0 6276<br>0 6782<br>0 6787<br>0 6046<br>0 6020 |
| /CI 00 7 |                                                                      | C1 1001                                                                       | 40                                                                           |

(Geffcken, Z phys Ch 1904, 49 278)

Solubility of  $N_2O$  in a solution containing 39 6 g As  $S_3$  per litre at  $25^\circ\!=\!0$  5819, 42 4 g As<sub>2</sub>S<sub>3</sub> per litre at  $25^\circ\!=\!0$  5833 (Geffcken)

1 vol alcohol at t° and 760 mm absorbs V vols  $N_2O$  gas reduced to 0° and 760 mm

| t°                                                         | v                                                                                                                              | t                                                                    | v                                                                                                                    |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 4 1780<br>4 1088<br>4 0409<br>3 9741<br>3 9085<br>3 8442<br>3 7811<br>3 7192<br>3 6585<br>3 5990<br>3 5403<br>3 4838<br>3 4279 | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 3 3734<br>3 3200<br>3 2678<br>3 2169<br>3 1672<br>3 1187<br>3 0714<br>3 0253<br>2 9805<br>2 9368<br>2 8944<br>2 8532 |

#### (Bunsen's Gasometry)

Coefficient of absorption = 4 17805-0 0698160t+0 0006090t<sup>2</sup> (Carius)

At 18 and 760 mm 100 vols H<sub>2</sub>O absorb 76 vols N<sub>4</sub>O 100 vols alcohol of 0.840 sp gr absorb 153 vols 100 vols rectified maphtha of 0.784 sp gr absorb 254 vols 100 vols oil of lavender of 0.880 sp gr absorb 275 vols 100 vols olive oil of 0.915 sp gr absorb 150 vols 100 vols sat KCl+Arl (2)% KCl) of 1.212 sp gr absorb 29 vols (de Saussum 1814)

1 vol oil of turpentine absorbs 2.5-2.7 vols NO (de Saussum)

Absorption of N<sub>2</sub>O by glycerine+Aq at t°

| t                         | % by weight of glycerine                       |                                                |                                                |                                                |  |
|---------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--|
| ٠                         | <b>3 460%</b>                                  | 6 726%                                         | 12 12 1%                                       | 16 244%                                        |  |
| 25<br>20<br>15<br>10<br>5 | 0 5558<br>0 6468<br>0 7672<br>0 9172<br>1 0967 | 0 5415<br>0 6303<br>0 7454<br>0 8871<br>1 0552 | 0 5268<br>0 6050<br>0 7098<br>0 8411<br>0 9990 | 0 5083<br>0 5851<br>0 6857<br>0 8102<br>0 9586 |  |

(Roth, Z phys Ch 1897, 24 128)

# Absorption of N2O by urea+Aq at t°

| to.            | % by weight of urea        |                            |                            |                                                |                            |
|----------------|----------------------------|----------------------------|----------------------------|------------------------------------------------|----------------------------|
| ·              | 3 312%                     | 4 974%                     | 6 366%                     | 7 296%                                         | 9 966%                     |
| 20<br>15<br>10 | 0 6533<br>0 7708<br>0 9209 | 0 6558<br>0 7732<br>0 9201 | 0 6539<br>0 7605<br>0 9086 | 0 7502<br>0 6553<br>0 7722<br>0 9208<br>1 1012 | 0 6508<br>0 7614<br>0 9007 |

(Roth, Z phys Ch 1897, 24 124)

# Absorption of N<sub>2</sub>O by sugar+Aq at 15°

| Number of molecules of C12H22O11 per litre | Coefficient of absorption |  |
|--------------------------------------------|---------------------------|--|
| 1 699                                      | 0 0892                    |  |
| 0 993                                      | 0 1284                    |  |
| 0 520                                      | 0 1561                    |  |

(Steiner, Z phys Ch 1895, 18 15)

Absorption of N<sub>2</sub>O by organic substances + A $\alpha$ 

C=concentration of the solution in terms of normal

 $\alpha = \text{coefficient of absorption}$ Absorption of N<sub>2</sub>O by chloral hydrate+Aq at 20°

| P                                                       | С                                                  | a                                                                  |
|---------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|
| 0<br>2 947<br>6 848<br>13 48<br>16 15<br>19 60<br>24 02 | 0 184<br>0 445<br>0 942<br>1 165<br>1 474<br>1 911 | 0 6270<br>0 6182<br>0 6128<br>0 5960<br>0 5891<br>0 5793<br>0 5675 |

(Knopp, Z phys Ch 1904, 48 106)

# Absorption of $N_2O$ by propionic acid+Aq at $20^{\circ}$

| P                                                 | С                                          | а                                                        |
|---------------------------------------------------|--------------------------------------------|----------------------------------------------------------|
| 0<br>1 492<br>5 702<br>13 680<br>15 011<br>25 589 | 0 2045<br>0 816<br>2 140<br>2 385<br>4 645 | 0 6270<br>0 6323<br>0 6369<br>0 6504<br>0 6534<br>0 7219 |

(Knopp, Z phys Ch 1904, 48 107)

Absorption of N2O by oxalic acid+Aq at to

| t°                        | Coeff of abs in H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> +Aq of given<br>% strength |                                                |  |
|---------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|--|
|                           | 8 122%                                                                                  | 3 699%                                         |  |
| 25<br>20<br>15<br>10<br>5 | 0 5786<br>0 6694<br>0 7940<br>0 9526<br>1 1450                                          | 0 5643<br>0 6538<br>0 7745<br>0 9264<br>1 1094 |  |

(Roth, Z phys Ch 1897, 24 130)

Coefficient of absorption for petroleum = 2 11 at 20°, 2 49 at 10° (Gmewasz and Walfisz, Z phys Ch 1 70)

The solubility of N<sub>2</sub>O m various colloida solutions has been determined by Findlar and Creighton (Chem Soc 1910, 97 538), fo which see original article

#### Nitrogen dioxide, NO

 $1\ vol\ H_2O\ absorbs\ 0\ 1\ vol\ NO\ gas\ at\ ordinary\ temp\ (Davy)\ 1\ vol\ absorb\ 0\ 05\ vol\ (Henry)\ 1\ vol\ absorb\ 1/27\ vol\ (Dalton\ )$ 

Absorption of NO by H<sub>2</sub>O at 760 mm

 $\beta$  = Coefficient of absorption  $\beta'$  = "Solubility"

| t°                             | β                                               | β′                                   | t°                               | β                                               | β′                                        |
|--------------------------------|-------------------------------------------------|--------------------------------------|----------------------------------|-------------------------------------------------|-------------------------------------------|
| 0<br>5<br>10<br>15<br>20<br>25 | 0 07381<br>6461<br>5709<br>5147<br>4706<br>4323 | 6406<br>5640                         | 55<br>60<br>65<br>70<br>75<br>80 | 0 03040<br>2954<br>2877<br>2810<br>2751<br>2700 | 0 0257<br>237<br>216<br>194<br>170<br>143 |
| 30<br>35<br>40<br>45<br>50     | 4004<br>3734<br>3507<br>3311<br>3152            | 3838<br>3529<br>3254<br>3000<br>2771 | 85<br>90<br>95<br>100            | 2665<br>2648<br>2638<br>2628                    | 114<br>081<br>043<br>000                  |

(Winkler, B 1901, 34 1414)

205 69 cc  $H_2O$  absorb 9 6798 cc N() at 20 and 760 mm (Hufner, Z phys Ch 190, 59 420)

Sol in cone HNO<sub>3</sub>+Aq

100 vols HNO<sub>3</sub>+Aq of 13 sp gr agitate with NO gas take up 20 vols NO If acid; twice as strong or one-half as strong, th quantity NO is proportional to the amour of HNO<sub>3</sub> Very dil HNO<sub>3</sub>+Aq absorb scarcely more NO than pure H<sub>2</sub>O (Dalton

100 pts  $\rm HNO_3+Aq$  of 14 sp  $_{17}$  absorb 90 pts N (Dalton) sol in Br and very sl sol in conc  $\rm H_2SC$  (Berthelot)

1 ccm conc H<sub>2</sub>SO<sub>4</sub> of 184 sp gr absort 0.035 ccm NO, of 150 sp gr, 0.017 ccn NO (Lunge, B **18** 1391) Absorption of NO by H<sub>2</sub>SO<sub>4</sub>+Aq at 18° and 760 mm

 $\alpha = \text{Coefficient of solubility}$ 

| H <sub>2</sub> SO <sub>4</sub> | α .          | H <sub>2</sub> SO <sub>4</sub> | а      |
|--------------------------------|--------------|--------------------------------|--------|
| 98%                            | not constant | 70%                            | 0 0113 |
| 90%                            | 0 0193       | 60%                            | 0 0118 |
| 80%                            | 0 0117       | 50%                            | 0 0120 |

(Tower, Z anorg 1906, 50 387)

Very sol in aqueous solutions of ferrous salts, especially the sulphate (Priestley)

1 vol FeSO<sub>4</sub>+Aq of 1081 sp gr, containing 1 grain FeSO<sub>4</sub> to 6 grains H<sub>2</sub>O, absorbs 6 vols NO (Dalton)

Absorption by ferrous salts+Aq is proportional to the amount of Fe present, irrespective of the acid or concentration of the solution. Between 0° and 10°, about 2 mols NO are absorbed for each atom of Fe, between 10° and 15°, 1 mol NO for 2 atoms of Fe, and at 25°, only 1 mol NO for 2½ to 3 atoms of Fe. The amount of NO absorbed also varies with the pressure. The sp gr of the ferrous salt solution is greater after the absorption of NO than before. The solutions are decomp by heat, and at 100° all NO is given off. (Gay, A ch. (6) 5 145)

Absorption of NO by FeSO<sub>4</sub>+Aq at 25°

 $A = vol H_2O$  (in litres) containing 1 mol  $FeSO_4$ 

V = vol NO (in litres) absorbed

| A    | v    | 4    | v     |
|------|------|------|-------|
| 1 2  | 1 47 | 7 2  | 5 52  |
| 1 8  | 2 01 | 12 0 | 6 46  |
| 2 4  | 2 55 | 18 6 | 8 01  |
| 4 82 | 4 40 | 36 0 | 10 40 |

(Kohlschutter, B 1907, 40 877)

Absorption of NO by FeSO<sub>4</sub>+Aq at t°

205 69 cc FeSO<sub>4</sub>+Aq contain 0 0221 g Fe Coefficient of absorption = 0 06067 at 20 09°

| t°                                                    | Pressure mm                                        | NO absorbed                                        |
|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 20 1<br>20 1<br>20 1<br>20 1<br>20 2<br>20 05<br>20 0 | 704 9<br>683 5<br>668 6<br>651 9<br>632 9<br>613 7 | 14 42<br>14 10<br>13 80<br>13 58<br>13 15<br>12 98 |

Absorption of NO by FeSO<sub>4</sub>+Aq at t°-Continued

20569 cc of FeSO<sub>4</sub>+Aq contain 0 0296 g

Coefficient of absorption = 0 06505

| t°    | Pressure mm | NO absorbed |
|-------|-------------|-------------|
| 20 05 | 677 5       | 14 30       |
| 20 05 | 655 3       | 14 07       |
| 20 04 | 639 1       | 13 81       |
| 20 00 | 620 2       | 13 39       |
| 20 15 | 600 5       | 13 20       |
| 20 14 | 581 2       | 12 92       |

205 69 cc of FeSO<sub>4</sub>+Aq contain 0 0409 g

Coefficient of absorption = 0 06684

| t°    | Pressure mm | NO absorbed<br>cem |
|-------|-------------|--------------------|
| 20 04 | 667 6       | 16 79              |
| 20 02 | 650 6       | 16 65              |
| 20 00 | 613 1       | 15 71              |
| 20 00 | 594 6       | 15 41              |
| 20 10 | 577 1       | 15 32              |

20569 cc of FeSO<sub>4</sub>+Aq contain 0 0513 g

Coefficient of absorption = 0 07981

| t°    | Pressure mm | NO absorbed<br>ccm |
|-------|-------------|--------------------|
| 20 10 | 644 8       | 18 82              |
| 20 10 | 623 8       | 18 47              |
| 20 08 | 606 4       | 18 02              |
| 20 10 | 589 7       | 17 56              |
| 20 10 | 571 1       | 17 19              |
| 20 10 | 553 1       | 16 95              |

 $_{205\,69}$  cc of FeSO<sub>4</sub>+Aq contain 0 0663 g

Coefficient of absorption = 0.08059

| t°                                                          | Pressure mm                                        | NO absorbed<br>cem                                 |
|-------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 20 10<br>20 10<br>20 10<br>20 10<br>20 08<br>20 04<br>20 00 | 697 3<br>678 9<br>660 4<br>638 2<br>620 7<br>602 5 | 21 91<br>21 60<br>21 18<br>20 71<br>20 28<br>19 87 |

205 69 cc of FeSO<sub>4</sub>+Aq contain 0 099 g Fe Coefficient of absorption = 0 11661

| t°                                                 | Pressure mm                                        | NO absorbed                                        |
|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 20 10<br>20 15<br>20 20<br>20 00<br>19 85<br>19 85 | 649 9<br>631 1<br>618 4<br>603 3<br>588 6<br>574 2 | 34 26<br>33 82<br>33 26<br>32 76<br>32 34<br>31 95 |
| /TT C D                                            | 1 01 100                                           | 7 FO (10)                                          |

(Hufner, Z phys Ch 1907, 59 419)

Absorption of NO by NiSO<sub>4</sub>+Aq at t° 205 69 cc NiSO4+Aq contain 0 0506 g Ni Coefficient of absorption = 0.08311

| t°                                     | Pressure mm                               | NO absorbed<br>ccm                        |
|----------------------------------------|-------------------------------------------|-------------------------------------------|
| 20 2<br>20 2<br>20 2<br>20 15<br>20 14 | 654 7<br>629 8<br>609 5<br>591 7<br>573 4 | 23 00<br>22 54<br>22 03<br>21 65<br>21 18 |

(Hufner, l c)

Absorption of NO by CoSO<sub>4</sub>+Aq at t° 205 69 cc CoSO<sub>4</sub>+Aq contain 0 0598 g Co Coefficient of absorption = 0 09146

| t°    | Pressure mm | NO absorbed |
|-------|-------------|-------------|
| 20 15 | 678 3       | 23 47       |
| 20 16 | 653 5       | 23 01       |
| 20 20 | 636 6       | 22 55       |
| 20 30 | 615 9       | 21 99       |
| 20 40 | 600 0       | 21 56       |

(Hufner, l c)

Absorption of NO by MnCl<sub>2</sub> 4H<sub>2</sub>O+Aq at t° 205 69 cc MnCl<sub>2</sub> 4H<sub>2</sub>O+Aq contain 0 0697 g Mn

Coefficient of absorption = 0.06111

| t°                                                 | Pressure mm              | NO absorbed<br>ccm      |
|----------------------------------------------------|--------------------------|-------------------------|
| 20 0<br>20 05<br>20 2                              | 711 96<br>686 5<br>657 4 | 14 25<br>13 99<br>13 49 |
| $\begin{array}{ccc} 20 & 3 \\ 20 & 45 \end{array}$ | 638 9<br>621 0           | 13 05<br>12 81          |

621 0 (Hufner, l c)

Coefficient of absorption for FeSO<sub>4</sub>+Aq of concentration used by Hufner (Z phys Ch 1907, 59 417) = 0 180 at  $20^{\circ}$ Hufner's results are incorrect because he assumed that the absorption-coefficient of NO always had the same value, whereas it does not NO is reduced by FeSO<sub>4</sub>+Aq (Usher, Z phys Ch 1908, 62 624)

Coefficient of absorption for CoSO<sub>4</sub>+Aq sat at 20° = 0 0288 (Usher, Z phys Ch 1908, 62 624)

Coefficient of absorption for NiSO<sub>4</sub>+Aq of the concentration used by Hufner (cf Z phys Ch 1907, 59 422) = 0.048 at  $20^{\circ}$ 

Coefficient of absorption for NiSO<sub>4</sub>+Aq sat at  $20^{\circ} = 0.0245$  (Usher, l.c.)

Coefficient of absorption for MnCl<sub>2</sub>+Aq sat at  $20^{\circ} = 0.0082$ (Usher, Z phys Ch **1908**, **62** 624)

Absorption of NO by FeCl<sub>2</sub>+Aq at 22° A=vol H<sub>2</sub>O (in litres) containing 1 mol FeCl<sub>2</sub> V = vol NO (in litres) absorbed

| 1 102 210 (=== ================================ |                                       |  |
|-------------------------------------------------|---------------------------------------|--|
| A                                               | v                                     |  |
| 2 5<br>5 18<br>10 35<br>20 7<br>51 8            | 3 30<br>4 83<br>6 56<br>8 32<br>11 89 |  |

(Kohlschutter, B 1907, **40** 878)

Absorption by HCl+FeCl<sub>2</sub>+Aq 10 37 l 30% HCl containing 1 mol FeCl in solution absorb 15 64 l NO

10 37 l 10% HCl containing 1 mol FeCl in solution absorb 6 17 l NO

(Kohlschutter, l c)

Absorption by salts+ $FeCl_2+Aq$ 10 37 l sat NaCl+Aq containing 1 mol FeCl. in solution absorb 6 549 l NO 10 37 l sat NH<sub>4</sub>Cl+Aq containing 1 mol FeCl<sub>2</sub> in solution absorb 6 549 l NO (Kohlschutter, l c)

Solubility of NO in Fe(NO<sub>3</sub>)<sub>2</sub>+Aq at 23°  $A = vol H_2O$  (in litres) containing 1 mol  $Fe(NO_3)_2$ 

V = vol NO (in litres) absorbed

| A     | v    |
|-------|------|
| 3 25  | 2 77 |
| 6 50  | 4 16 |
| 13 00 | 5 54 |
| 26 00 | 6 61 |

(Kohlschutter, l c)

Absorption of NO by CuCl<sub>2</sub>+Aq A=vol H<sub>2</sub>O (in litres) containing 1 mo  $CuCl_2$ 

V = vol NO (in litres) absorbed

| A     | V     |
|-------|-------|
| 0 231 | 0 120 |
| 0 277 | 0 098 |
| 0 371 | 0 052 |

(Kohlschutter, l c)

Absorption of NO by CuCl2+cone HCl A = vol conc HCl (in litres) containin 1 mol CuCl

V=vol NO (in litres) absorbed

| A                                         | v                                         | A                                   | v                                |
|-------------------------------------------|-------------------------------------------|-------------------------------------|----------------------------------|
| 0 389<br>0 410<br>0 840<br>1 230<br>2 462 | 0 801<br>0 933<br>2 838<br>3 426<br>3 989 | 7 499<br>12 500<br>18 750<br>28 650 | 3 931<br>3 606<br>3 153<br>1 976 |

(Kohlschütter, l c)

Absorption of NO by CuCl<sub>2</sub>+acetic acid A=vol acetic acid (in litres) containing 1 mol CuCl<sub>2</sub>

V = vol NO (in litres) absorbed

| A    | v     |
|------|-------|
| 252  | 51 77 |
| 504  | 39 67 |
| 1269 | 81 60 |

(Kohlschutter, l c)

Absorption of NO by CuCl<sub>2</sub>+98% formic acid

A=vol 98% formic acid (in litres) containing 1 mol CuCl<sub>2</sub>
V=vol NO (in litres) absorbed

A V

27 9 12 76
56 0 13 17
140 0 14 34

(Kohlschutter, l c)

18 68 27 29

Absorption of NO by CuCl<sub>2</sub>+acetone A=vol acetone (in litres) containing 1 mol CuCl<sub>2</sub>

V=vol NO (in litres) absorbed

280 0

1400 0

| A     | v     | A       | v     |
|-------|-------|---------|-------|
| 4 667 | 14 04 | 291 60  | 40 99 |
| 29 16 | 24 01 | 583 20  | 67 22 |
| 58 33 | 24 60 | 1166 40 | 81 96 |

(Kohlschutter, l c)

Absorption of NO by CuCl<sub>2</sub>+methyl alcohol A=vol methyl alcohol (in litres) containing 1 mol CuCl<sub>2</sub>

V = vol NO (in litres) absorbed

| A    | ١    | A     | V    |
|------|------|-------|------|
| 1 60 | 3 30 | 20 50 | 6 15 |
| 8 22 | 5 60 | 82 25 | 4 90 |

(Nohlschutter, l c)

Absorption of NO by CuCl<sub>2</sub>+ethyl alcohol A=vol ethyl alcohol (in litres) containing 1 mol CuCl<sub>2</sub>

V=vol NO (in litres) absorbed

| A     | v     | A      | v     |
|-------|-------|--------|-------|
| 1 50  | 8 70  | 38 41  | 18 15 |
| 3 84  | 12 38 | 76 83  | 18 05 |
| 12 80 | 15 43 | 192 10 | 15 92 |

(Kohlschutter, l c)

Absorption of NO by CuBr<sub>2</sub>+Aq A=vol H<sub>2</sub>O (in litres) containing 1 mol

CuBr<sub>2</sub> V=vol NO (in litres) absorbed

| A     | v     |
|-------|-------|
| 0 37  | 0 515 |
| 0 62  | 0 120 |
| 0 925 | 0 000 |

(Kohlschutter, l c)

Absorption of NO by CuBr<sub>2</sub>+ethyl alcohol A=vol alcohol (in litres) containing 1 mol CuBr<sub>2</sub>

V=vol NO (in litres) absorbed

| A                               | v                                | A                          | V                       |
|---------------------------------|----------------------------------|----------------------------|-------------------------|
| 2 625<br>5 25<br>13 12<br>43 74 | 16 02<br>19 26<br>20 51<br>21 13 | 131 20<br>262 50<br>656 10 | 22 23<br>23 46<br>30 46 |

(Kohlschutter, l c)

Sol in stannous and chromous salts+Aq (Peligot )

Not absorbed by Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+Aq (Dalton) 1 vol absolute alcohol absorbs 031606-0003487t+0000049t<sup>2</sup> vols NO between 0° and 25° (Bunsen)

1 vol alcohol at t° and 760 mm absorbs V vols NO gas reduced to 0° and 760 mm

| t°                                 | v                                                                         | t°                               | v                                                              |
|------------------------------------|---------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5         | 0 31606<br>0 31262<br>0 30928<br>0 30604<br>0 30290<br>0 29985            | 13<br>14<br>15<br>16<br>17<br>18 | 0 27901<br>0 27685<br>0 27478<br>0 27281<br>0 27094<br>0 26917 |
| 6<br>7<br>8<br>9<br>10<br>11<br>12 | 0 29690<br>0 29405<br>0 29130<br>0 28865<br>0 28609<br>0 28363<br>0 28127 | 19<br>20<br>21<br>22<br>23<br>24 | 0 26750<br>0 26592<br>0 26444<br>0 26306<br>0 26178<br>0 26060 |

(Bunson's Gasometry)

Abundantly absorbed by CS<sub>2</sub> (Friedburg, C N 48 97)

Nitrogen trioxide, N2O3

Sol in  $H_2O$  at  $0^\circ$  If large amt of  $H_2O$  is present, the solution is quite stable at ordinary temp (Fremy, C R 79 61)

Sol in HNO3+Aq

Sol in conc H<sub>2</sub>SO<sub>4</sub> to form HNOSO<sub>4</sub>

Sol in ether

Nitrogen trioxide stannic chloride, N2O3,  $SnCl_4$ 

Decomp by H<sub>2</sub>O (Weber, Pogg 118 471)

Nitrogen tetroxide, NO2 or N2O4

Sol in H<sub>2</sub>O at 0° with decomp Mıscıble with very conc HNO, Absorbed abundantly by CS<sub>2</sub>, CHCl<sub>3</sub>, and C<sub>6</sub>H<sub>5</sub>Cl (Friedburg, C N 47 52)

Sol in C6H5NO2

Sl sol in H<sub>2</sub>S+Aq

Sol in H<sub>2</sub>SO<sub>4</sub> or conc HNO<sub>3</sub>+Aq H<sub>3</sub>PO<sub>4</sub> absorbs some liquid NO<sub>2</sub> (Frankland, Chem Soc 1901, 79 1362)

#### Nitrogen pentoxide, N<sub>2</sub>O<sub>5</sub>

Very deliquescent Combines with H<sub>2</sub>O to form HNO<sub>3</sub> with evolution of heat

#### Nitrogen hexoxide, NO<sub>3</sub>

Decomposes upon air or with H<sub>2</sub>O (Hautefeuille and Chappins, C R 92 80, 134, 94 1111, 1306)

## Nitrogen oxybromide

See Nitrosyl and Nitroxyl bromide

## Nitrogen oxychloride

See Nitrosyl and Nitroxyl chloride

## Nitrogen oxyfluoride

See Nitrosyl fluoride and Nitroxyl fluoride

# Nitrogen phosphochloride, P<sub>8</sub>N<sub>3</sub>Cl<sub>6</sub> See Nitrogen chlorophosphide

# Nitrogen selenide, NSe

Very explosive Insol in H<sub>2</sub>O Sol in HNO<sub>8</sub>+Aq, and NaClO+Aq (Espenschied, A 113 101

Insol in H<sub>2</sub>O, ether, absolute alcohol, very sl sol in CS<sub>2</sub>, C<sub>6</sub>H<sub>6</sub>, and glacial acetic acid Decomp by HCl or KOH+Aq (Verneuil, Bull Soc (2) 38 548)

## Nitrogen sulphide, N<sub>4</sub>S<sub>4</sub>

Insol in HO Decomp by hot H<sub>2</sub>O sol in alcohol, ether, wood alcohol, oil of turpentine Easily sol in  $\mathrm{CS}_2$  Slowly decomp by HCl+Aq or KOH+Aq, rapidly by HNO<sub>3</sub>+Aq 15 g dissolve in 1 kilo of CS<sub>2</sub> (Fordos and Gélis, C R **31** 702)

Sol in CHCl<sub>3</sub> (Demarcay, C R 91 854) Sol in warm glacial acetic acid with decomp on boiling (Ruff and Geisel, B 1904, **37** 1591)

# Nitrogen pentasulphide, N<sub>2</sub>S<sub>5</sub>

Sol in ether and most organic solvents, insol in H<sub>2</sub>O, fairly stable in ethereal solution, but decomp by light (Muthmann, Z anorg 1897, 13 206)

Nitrogen sulphobromide, N<sub>2</sub>S<sub>4</sub>Br

Decomp by boiling H<sub>2</sub>O and by dil alkali also by boiling with alcohol (Muthman

B 1897, **30** 630) Decomp by moist air (Cleve,  $N_4S_4Br_4$ B 1896, **29** 340-341)

 $N_4S_4Br_6$ Decomp by moist air unstable (Clever)

 $N_4S_5Br_2$ Insol most solvents, unstab (Clever)

#### Nitrogen sulphochloride, N<sub>4</sub>S<sub>4</sub>Cl<sub>4</sub>

Unstable on air Sol in warm CHC crystallizes out on cooling (Demarçay, C **91** 854, 1066)

Demarcay calls this comp thiazyl chloric Sol in hot dry benzene, and in CC decomp by moist air (Andreocci, Z anoi 1897, **14** 249)

N<sub>4</sub>S<sub>6</sub>Cl<sub>2</sub> Partly sol in H<sub>2</sub>O (Demarcs , C R 92 726)

Demarcay calls this compound dithiotetr thiazyl dichloride

 $N_2S_3Cl_2=N_2S_2$ ,  $SCl_2$ Decomp on a (Fordos and Gélis)

Demarçay (C R 92 726) calls this com thiodythiazyl dychloride

N<sub>2</sub>S<sub>4</sub>Cl<sub>2</sub> Sol in H<sub>2</sub>O with subsequent c comp More sol than S in CS<sub>2</sub> (Souberra, A ch 67 71)

Is a mixture of S<sub>2</sub>Cl<sub>2</sub> and N<sub>4</sub>S<sub>4</sub> (Ford 3 and Gélis, C R 31 702)

N<sub>3</sub>S<sub>3</sub>Cl Sl sol in warm, insol in cc l

CHCl<sub>3</sub> (Demarçay, C R **92** 726) "Thiotriazyl chloride" (Demarçay) N<sub>3</sub>S<sub>4</sub>Cl Sol in H<sub>2</sub>O Insol in Insol in mo Sl sol in CHCl<sub>3</sub> Easily sol thionyl chloride (Demarçay, C R 91 8 1066)

Demarçay calls the compound thiot thiazyl chloride = (NS)3 = S-Cl

 $N_4S_5Cl_2=2N_2S_2$ ,  $SCl_2$  Decomp on a (Michaelis)

 $N_6S_7Cl_2=3N_2S_2$ ,  $SCl_2$  Not decomp air Decomp by H2O contuning unmoni

## Nitrogen sulphoiodide, N<sub>3</sub>S<sub>4</sub>I

Readily decomp by  $H_2()$  and Seitter, B 1897, **30** 627) (Muthma 1

# Nitrohydroxylaminic acid, $H_2N()_3$

Known only in solution (Angeli Gazz e it 1897, **27** (2) 357 )

# Barium nitrohydroxylaminate, $B i N_2 O_3 + H_2$

More stable in the air than t Ppt Not decomp by prolong I sodium salt boiling with H2O (Angeli, Gizz ch 1896, **26** 17–25)

#### Cadmium nitrohydroxylaminate, CdN<sub>2</sub>O $H_2O$

As Ba salt (Angelico and Fanara, Ga ch it 1901, **31** (2) 21)

Calcium nitrohydroxylaminate, CaN  $O_3+\frac{1}{2}H_2O$ 

(Angeli, Gazz ch it 1900, 30 (1) 593)

Calcium nitrohydroxylaminate, CaN $_2$ O $_3+3\frac{1}{2}H_2$ O

(Angelico and Fanara, Gazz ch it 1901, **31** (2) 15)

 $\begin{array}{l} \textbf{Lead nitrohydroxylaminate, $PbN_2O_3$} \\ \textbf{(Angeli, Gazz ch it 1900, 30 (1) 593)} \end{array}$ 

Potassium nitrohydroxylaminate, K<sub>2</sub>N<sub>2</sub>O<sub>3</sub>
Like Na salt More hygroscopic (Angeli, Gazz ch it 1897, **27** (2) 357)
Sol in H.O (Angeli, Gazz ch it 1900, **30** (1) 593)

Silver nitrohydroxylaminate,  $Ag_2N_2O_8$ Ppt (Angeli, C C 1901, I 1192)

Sodium nitrohydroxylaminate,  $Na_2N_2O_3$ 

Very sol in  $\rm H_2O$  Pptd by alcohol Aqueous solution is readily decomp by boiling (Angeli, Gazz ch it 1896, **26** (2) 17)

Strontium nitrohydroxylaminate,  $SrN_2O_3+H_2O$ 

(Angeli, Gazz ch it 1900, 30 (1) 593) + $1\frac{1}{2}$ H<sub>2</sub>O (Angelico and Fanara, Gazz ch it 1901, 31 (2) 15)

Nitroiodic acid, I<sub>2</sub>O<sub>4</sub>(NO)<sub>2</sub> See Nitrosoiodic acid

Nitronitrous acid

Platinum potassium nitronitrite,  $K_2Pt(NO_4)_4$   $N_2O_4$ 

Decomp by he it (Miolati, C C 1896, II 1088)

Nitroplatinous acid

See Platonitrous acid

Nitroprussic acid,  $H_2 \text{FcC}_6 \text{N}_6 \text{O} + H_2 \text{O} = H_2 \text{Fc}(\text{CN})_5 \text{N}(\text{O} + H_2 \text{O})$ 

Deliquescent It is sol in HO, alcohol, or ether (Playfur, A 74 317)

**Nitroprussides** 

The alkalı and alkalı earth nitropiussides are sol in  $H_2\mathrm{O}$ , and the solutions are not pptd by alcohol. I he others are mostly insol in  $H_2\mathrm{O}$ 

Ammonium nitroprusside, (NH<sub>1</sub>)<sub>2</sub>Fe(CN)<sub>5</sub>(NO)

Deliquescent Very sol in H<sub>2</sub>O, not pptd therefrom by alcohol (Playfair)

Barium nitroprusside, BaFe(CN) $_5$ NO+  $_4$ H $_2$ O

Verv sol in  $H_2O$ +6 $H_2O$ 

Cadmium nitroprusside, CdFe(CN)<sub>5</sub>NO

Insol in  $\rm H_2O$  Sol in  $\rm HCl+Aq$  Insol in dil or conc  $\rm HNO_3+Aq$  even when boiling Not attacked by  $\rm NH_4OH$  or  $\rm KOH+Aq$  (Norton, Am Ch J 10 222)

Calcium nitroprusside,  $CaFe(CN)_5NO+4H_2O$ 

Very sol in H<sub>2</sub>O (Playfair)

Cobalt nitroprusside, CoFe(CN)<sub>5</sub>NO Ppt (Norton, Am Ch J 10 222) +4H<sub>2</sub>O

Copper nitroprusside, CuFe(CN)<sub>5</sub>NO+2H<sub>5</sub>O Insol in H<sub>2</sub>O or alcohol

Ferrous nitroprusside, FeFe(CN)<sub>5</sub>NQ+ xH<sub>2</sub>O(?) Insol in H<sub>2</sub>O

Mercurous nitroprusside, Hg<sub>2</sub>Fe(CN)<sub>5</sub>NO Insol in H<sub>2</sub>O Unstable (Norton, Am Ch J 10 222)

Nickel nitroprusside, NiFe(CN)<sub>5</sub>NO As the Co salt (Norton)

Potassium nitroprusside,  $K_2Fe(CN)_5NO+2H_2O$ 

Sl deliquescent Sol in 1 pt  $H_2O$  at 16°  $K_2Fe(CN)_5NO$ , 2KOH Very sol in H O

Silver nitroprusside, Ag<sub>2</sub>Fe(CN)<sub>5</sub>NO Insol in H<sub>2</sub>O, alcohol, or HNO<sub>3</sub>+Aq Sol in NH<sub>4</sub>OH+Aq

Sodium nitroprusside, Na<sub>2</sub>Fe(CN)<sub>5</sub>NO+2H<sub>2</sub>O

Sol in  $2\frac{1}{2}$  pts  $H_2O$  at  $16^\circ$ , and in less hot  $H_2O$ 

Zinc nitroprusside, ZnFe(CN)<sub>5</sub>NO Very sl sol in cold, more in hot H<sub>2</sub>O

Nitrosisulphonic acid

Cupric nitrosisulphonate, NO SO<sub>3</sub> Cu

Decomp by  $H_2O$  (Raschig, B 1907, **40** 4583)

Nitrosobromoruthenic acid

Silver nitrosobromoruthenate ammonia, Ag<sub>2</sub>Ru(NO)Br<sub>5</sub>, NH<sub>3</sub>

Decomp by H<sub>2</sub>O Sl sol in NH<sub>4</sub>OH+ Aq Very sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Brizard, Bull Soc 1895, (3) **13** 1093)

#### Nitrosobromosmic acid

Potassium nitrosobromosmate, K<sub>2</sub>Os(NO)Br<sub>5</sub> Stable in aqueous solution (Wintrebert, A ch 1903, (7) 28 132)

#### Nitrosochloroplatinic acid

Potassium nitrosochloroplatinate, K<sub>2</sub>PtCl<sub>5</sub>(NO) Sol m H<sub>2</sub>O (Vèzes, C R 110 757)

# Nitrosochlororuthenic acid

Ammonium nitrosochlororuthenate, (NH<sub>4</sub>)<sub>2</sub>Ru(NO)Cl<sub>5</sub>

Sol in H<sub>2</sub>O (Joly, C R 107 991) 5 pts are sol in 100 pts H<sub>2</sub>O at 25° 22 " " " " " " " " 60° (Howe, J Am Chem Soc 1894, 16 390)

#### Cæsium nitrosochlororuthenate, Cs<sub>2</sub>Ru(NO)Cl<sub>5</sub>

0 20 pt is sol in 100 pts H<sub>2</sub>O at 25° 0 56 """""""""100° (Howe) +2H<sub>2</sub>O Very sol in H<sub>2</sub>O 105 8 pts are sol in 100 pts H<sub>2</sub>O (Howe)

#### Potassium nitrosochlororuthenate, K<sub>2</sub>Ru(NO)Cl<sub>5</sub>

Sol in  $H_2O$  (Joly) 12 pts are sol in 100 pts  $H_2O$  at 25° 80 " " " " " " " " 60° (Howe)

# Rubidium nitrosochlororuthenate, $Rb_2Ru(NO)Cl_5$

Sol in boiling  $H_2O$  without decomp 0.57 pt is sol in 100 pts  $H_2O$  at 25° 2 13 " " " " " " " " 60° (Howe)

# Silver nitrosochlororuthenate ammonia, $Ag_2Ru(NO)Cl_5$ , $NH_8$

Decomp by  $\rm H_2O$  Sl sol in NH<sub>4</sub>OH+Aq Very sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Brizard, Bull Soc 1895, (3) **13** 1092)

# Nitrosoiodic acid, $I_2O_4(NO)_2$ (?)

Decomp with H<sub>2</sub>O, alcohol, ether, or acetic ether Slowly sol in H SO<sub>4</sub> (Kammerer, J pr 83 65

# Nitrososulphonic acid

Potassium dimitrososulphonate,  $N_2OOK$   $SO_3K$ 

Sol in  $H_2O$  Very unstable (Hantzsch, B 1894, 27 3268)

Potassium nitrosodisulphonate, ON(SO<sub>3</sub>K). Sol in H<sub>2</sub>O Very explosive (Hantzsch, B 1895, **28** 996 and 2744)

Potassium nitrosotrisulphonate, ON(SO<sub>3</sub>F <sub>8</sub> +H<sub>2</sub>O
Sol in H<sub>2</sub>O (Hentroph B 1805 **29** 275)

Sol in H<sub>2</sub>O (Hantzsch, B 1895, **28** 2750)

Sodium nitrosotrisulphonate, NO<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub>N Decomp by H<sub>2</sub>O (Traube, B 1913, 4 2521)

Nitrososulphuric acid,  $H_2N_2SO_5 = H_2SO_3(NO)_2$ Not known in free state

# Ammonium dinitrososulphate, (NH<sub>4</sub>)<sub>2</sub>(NO)<sub>2</sub>SO<sub>3</sub>

Sol in  $\rm H_2O$  Insol in hot alcohol (Houze, A 15 240)

Barium ——, Ba(NO)<sub>2</sub>SO<sub>3</sub> Sol in H<sub>2</sub>O (Divers and Haga, Chem So 47 364)

Barium potassium ——, BaK<sub>2</sub>(SN<sub>2</sub>O<sub>5</sub>)<sub>2</sub>
Sol in much H<sub>2</sub>O to form a clear liquibut the solution gradually deposits BaSC (Hantzsch, B 1894, **27** 3271)

Cupric nitrosodisulphate, Cu(NO)(SO<sub>3</sub>)<sub>2</sub> (Sabatier, Bull Soc 1897, (3) **17** 787)

## Lead dimitrososulphate

Insol in  $H_2O$  (Divers and Haga, Chel Soc 47 364)

Potassium —, K<sub>2</sub>(NO)<sub>2</sub>SO<sub>3</sub>

Decomp by H<sub>2</sub>O at ordinary temp Insum alcohol (Pelouze, A ch 60 160)
Sol in about 8 pts H<sub>2</sub>O at 14 5° I ess su

Sol in about 8 pts  $\rm H_2O$  at 14 5° I ess so in presence of KOH (Divers and Hag Chem Soc 1895, 67 455)

Sodium ----, Na<sub>2</sub>(NO)<sub>2</sub>SO<sub>3</sub>

More sol than K salt (Pclouze) Sl sol in H<sub>2</sub>O, very unstable moist or dr decomp by H<sub>2</sub>O (Divers, C N 1895, 7 266)

# Nitrososulphurous acid

Ruthenium sodium nitrososulphite, O[Ru(SO<sub>3</sub>)<sub>2</sub>(NO)Na<sub>2</sub>]+2H O

Sl sol in cold H<sub>2</sub>O (Miolati, Gazz c it 1900, **30** 511)

# Nitrosulphide of iron

 $See \ {f Ferro} tetra$ nitrososulphonic acid

## Binitrosulphide of iron

Roussin's comp is ammonium ferrohept nitrososulphonate, which see

# Nitrosulphonic acid, $HNSO_5 = \frac{HO}{NO_2}SO_2$

(Lead chamber crystals) Rapidly sol in H<sub>2</sub>O with decomp When brought into large amount of H<sub>2</sub>O, no gas is evolved (Fremy, C R 70 61)

Sol in H<sub>2</sub>SO<sub>4</sub> without decomp Sol in cold H<sub>2</sub>SO<sub>4</sub>+Aq of sp gr 17-155 (Weber, J

pr **100** 37)

SI sol in H<sub>2</sub>SO<sub>4</sub>+Aq of 1 6 sp gr (Dana) More difficultly sol in dil than conc H<sub>2</sub>SO<sub>4</sub>+Aq (Muller)

Potassium nitrosulphonate, KOSO<sub>2</sub>NO<sub>2</sub>(?)
Decomp by H<sub>2</sub>O (Schultz-Sellack, B 4
113)

Nitrosulphonic anhydride (?),  $N_2O_3$ ,  $2SO_8$ = $S_2O_5(NO_2)_2$ 

Rapidly sol in  $\rm H_2O$  with decomp Abundantly sol in cold  $\rm H_2SO_4$  (Rose, Pogg 47 605)

Insol in cold, slowly sol in warm H<sub>2</sub>SO<sub>4</sub> (Prevostaye, A ch **73** 362)

# Nitrosulphonic chloride, NO<sub>4</sub>SCl = NO<sub>2</sub>SO<sub>2</sub>Cl (?)

Decomp by  $\rm H_2O$  Sol in fuming  $\rm H_2SO_4$  without decomp Decomp by cone  $\rm H_2SO_4$  (Weber, Pogg 123 333)

# Dinitrosulphuric acid

See Dinitrososulphuric acid

# Nitrosyl bromide, NOBr

Decomp with cold  $H_2\mathrm{O}$  (Landolt, A 116 177)

## Nitrosyl tribromide, NOBr<sub>3</sub>

Decomp by H<sub>2</sub>O or cold alcohol Miscible with ether (Landolt, A 116 177) Mixture of NOBr and Br<sub>2</sub> (Frohlich, A 224 270)

Nitrosyl platinic bromide, 2NOBr, PtBr<sub>4</sub>
Deliquescent Decomp by H<sub>2</sub>O (Topsoe, J B 1868 274)

## Nitrosyl chloride, NOCl

Decomp by H<sub>2</sub>O Absorbed by fuming H<sub>2</sub>SO<sub>4</sub> without decomp

Nitrosyl boron chloride, NOCl, BCl<sub>3</sub>
See Boron nitrosyl chloride

# Nitrosyl platinic chloride, 2NOCl, PtCl4

Very deliquescent, and sol in  $\rm H_2O$  with evolution of NO (Rogers and Boye, Phil Mag J 17 397)

Nitrosyl thallium chloride, 2NOCl, TlCl, TlCl<sub>3</sub>

Very deliquescent, and sol in H<sub>2</sub>O with decomp (Sudborough, Chem Soc **59** 657)

Nitrosyl stannic chloride, 2NOCl, SnCl4

Decomp by H<sub>2</sub>O, chloroform, or benzene, not by carbon disulphide (Jorgensen)

Nitrosyl titanium chloride, 2NOCl, TiCl<sub>4</sub> Decomp by H<sub>2</sub>O (Weber, Pogg 118 476)

Nitrosyl zinc chloride, NOCl, ZnCl2

Very deliquescent, and sol in  $H_2O$  with evolution of NO (Sudborough, Chem Soc 59 656)

Nitrosyl chloride sulphur trioxide, NOCl, SO<sub>3</sub> Decomp by H<sub>2</sub>O Sol in conc H<sub>2</sub>SO<sub>4</sub> with evolution of HCl (Weber, Pogg 123 233)

#### Nitrosyl fluoride, NOF

Sol in H<sub>2</sub>O Solution decomp on standing with formation of NO and HNO<sub>3</sub> (Ruff and Stauber, Z anorg 1905, 47 190)

Nitrosyl sulphate, acid, H(NO)SO<sub>4</sub>
See Nitrosulphonic acid.

Nitrosyl sulphate, anhydro, (NO)<sub>2</sub>S O<sub>7</sub> See Nitrosulphonic anhydride

Nitrosyl selenic acid, SeO<sub>2</sub>(ONO)<sub>2</sub>

Decomp by H<sub>2</sub>O (Lenher and Mathews, J Am Chem Soc 1906, 28 516)

Nitrosyl sulphuric acid, H(NO)SO<sub>4</sub> See Nitrosulphonic acid

# Nitrous acid, HNO2

Known only in aqueous solution See Nitrogen trioxide

#### Nitrites

Normal nitrites, except AgNO, are sol in H O and alcohol, but, as a rule, they are less sol than the corresponding nitrates

#### Ammonium nitrite, NH<sub>4</sub>NO<sub>2</sub>

Very deliquescent, and sol in H O H<sub>2</sub>O solution decomp at 50° (Borzelius) Voly dil solution can be evapor ited on witei bath without decomp (Bohlig, A 125 25) Solution containing 1/100,000 pt NH<sub>4</sub>NO<sub>2</sub> can be evaporated to ½ its vol without decomp Solution containing 1/500 pt gives a distillate containing 8 6% of NH<sub>4</sub>NO<sub>2</sub>, while residue contains 82% of original quantity, 9 4% being lost (Schoyen)

Very deliquescent, sol in H<sub>2</sub>O, slowly but easily sol in alcohol, insol in ether (Soren-

sen, Z anorg 1894, 7 38)

Ammonium barium cupric nitrite,
(NH<sub>4</sub>)<sub>2</sub>BaCu(NO<sub>2</sub>)<sub>6</sub>
(Praibylle

Ppt, decomp readily (Przibylla, Z anorg 1897, 15 424)

Ammonium bismuth silver nitrite, (NH<sub>4</sub>)<sub>2</sub>BiAg(NO<sub>2</sub>)<sub>6</sub>

Moderately sol in  $\rm H_2O$  Rapidly hydrolyzed by  $\rm H_2O$  (Ball and Abram, Chem Soc 1913, 103 2120)

Ammonium bismuth sodium nitrite, 2NH<sub>4</sub>NO<sub>2</sub>, B<sub>1</sub>(NO<sub>2</sub>)<sub>3</sub>, NaNO<sub>2</sub>

Easily decomp (Ball, Chem Soc 1905, 87 761)

Ammonium cadmium nitrite ammonia, basic, 2NH<sub>4</sub>NO<sub>2</sub>, Cd(NO<sub>2</sub>)<sub>2</sub>, Cd(OH)<sub>2</sub>, 2NH<sub>3</sub> Decomp by H<sub>2</sub>O (Morin, C R 100 1497)

Ammonium calcium cupric nitrite, (NH<sub>4</sub>)<sub>2</sub>CaCu(NO<sub>2</sub>)<sub>6</sub>

Ppt, decomp easily Sol in H<sub>2</sub>O Sl sol m alcohol (Przibylla, Z anorg 1897, **15** 423)

Ammonium cobaltic nitrite,  $3(NH_4)_2O$ ,  $Co_2O_8$ ,  $6N_2O_8+1\frac{1}{2}H_2O$ 

Sl sol in H<sub>2</sub>O, decomp in aq solution on heating (Rosenheim, Z anorg 1898, **17** 45) +3H<sub>2</sub>O

Somewhat sol in cold H<sub>2</sub>O, decomp by boiling Decomp by conc H<sub>2</sub>SO<sub>4</sub>, not by acetic or dil mineral acids (Erdmann, J pr **97** 405)

Ammonium cupric lead nitrite, CuPb(NH<sub>4</sub>)<sub>2</sub>(NO<sub>2</sub>)<sub>6</sub>

Stable at ordinary temp, sol in HNOs with decomp

2 575 pts are sol in 100 pts  $\rm H_2O$  at 20°, or 2 51% salt in sat solution at 20° (Przibylla, Z anorg 1897, **15** 420)

Ammonium cupric strontium nitrite, (NH<sub>4</sub>)<sub>2</sub>CuSr(NO<sub>2</sub>)<sub>6</sub>

Ppt , sol in  $H_2O$  with decomp (Przibylla, l c)

Ammonium iridium nitrite
See Iridonitrite, ammonium

Ammonium lead nickel nitrite, (NH<sub>4</sub>)<sub>2</sub>PbN1(NO<sub>2</sub>)<sub>6</sub>(?) Ppt (Przibylla, Z anorg 1897, **15** 433)

Ammonium osmium nitrite
See Osminitrite, ammonium

Ammonium osmyl oxymitrite
See Osmyloxymitrite, ammonium

Ammonium platinum nitrite See Platonitrite, ammonium

Ammonium rhodium nitrite
See Rhodonitrite, ammonium

Ammonium ruthenium hydrogen nitri,  $Ru_2H_2(NO_2)_4$ ,  $3NH_4NO_2+3H_2O$ See Rutheninitrite, ammonium hydrogen

Barium nitrite,  $Ba(NO_2)_2+H_2O$ Permanent Very sol in  $H_2O$ 

Solubility in H<sub>2</sub>O at t°

| t° | G in 100 cc Ba(NO2)2 | Sp gr |
|----|----------------------|-------|
| 0  | 58                   | 1 40  |
| 20 | 63                   | 1 45  |
| 25 | 71                   | 1 50  |
| 30 | 82                   | 1 52  |
| 35 | 97                   | 1 61  |

(Vogel, Z anorg 1903, **35** 389)

40° 50° 60° 70° 113 136 170 202 pts Ba(NO<sub>2</sub>)<sub>2</sub>+H

80° 90° 100° 110° 254 331 461 765 pts Ba(NO<sub>2</sub>)<sub>2</sub>+H

The sat solution at 17° contains 40  $Ba(NO_2)_2$ , and has sp gr  $17^{\circ}/0^{\circ}=148^{\circ}$  (Oswald, A ch 1914, (9) 1 62)

(Oswald, A ch 1914, (9) 1 62) 100 g H<sub>2</sub>O at 13 5 dissolve 64 g Ba(NC <sub>2</sub> +10 2 g AgNO<sub>2</sub> with excess of AgNO<sub>2</sub>, a d 75 6 g Ba(NO<sub>2</sub>)<sub>2</sub>+9 5 g AgNO<sub>2</sub>, with cess of AgNO<sub>2</sub> (Oswald)

Sol in 64 pts 94% alcohol, nearly in absolute alcohol (Lang, Pogg 118 28

Solubility in alcohol+Aq at t°

| t°                                                                           | Solvent                                                                      | 100 cm of the sa<br>solution contain a<br>B (NO) +H <sub>2</sub> O               |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 19 5<br>21 0<br>20 5<br>20 5<br>20 5<br>20 0<br>19 0<br>19 5<br>20 0<br>20 0 | 10% alcohol 20% " 30% " 40% " 50% " 60% " 70% " 80% " 90% " absolute alcohol | 49 30<br>29 30<br>18 41<br>13 33<br>9 11<br>4 54<br>2 66<br>0 98<br>0 00<br>0 00 |

(Vogel, Z anorg 1903, **35** 390)

Insol in acetone (Naumann B 1904, 4329)

Insol in ethyl acetate (Naumann, 1910, 43 314)

Barium cæsium nitrite, CsBa<sub>2</sub>(NO<sub>9</sub>)<sub>5</sub>

Sol in H<sub>2</sub>O (Jamieson, Am Ch J 1907, 38 616)

 $Cs_2Ba(NO_2)_4+H_2O$  Very sol m  $H_2O$  (Jamieson, Am Ch J 1907, 38 616)

Barium cæsium silver nitrite,  $Cs_3AgBa(NO_2)_6$ +2 $H_2O$ 

Decomp by cold  $H_2O$  (Jamieson, Am Ch J 1907, **38** 616)

Barium cobaltic nitrite, 2BaO, Co<sub>2</sub>O<sub>3</sub>, 4N<sub>2</sub>O<sub>3</sub> +10H<sub>2</sub>O

Sol in moderately warm H<sub>2</sub>O without decomp but not recryst therefrom (Rosenhem, Z anorg 1898, 17 51-54)

3BaO,  $Co_2O_3$ ,  $6N_2O_3+H_2O$  Ppt, very unstable Nearly msol in  $H_2O$  (Rosenheim, Z anorg 1898, 17 47)

Barium cobaltous potassium nitrite, Ba(NO<sub>2</sub>)<sub>2</sub>, Co(NO<sub>2</sub>)<sub>2</sub>, 2KNO<sub>2</sub>

Decomp by  $H_2O$  (Erdmann, J pr 97 385)

Barium cupric nitrite,  $Ba[Cu(OH)(NO_2)_2]_2$ 

Ppt Insol in  $\rm H_2O$  Decomp by  $\rm H_2O$  Insol in alcohol, but slowly decomp by it (Kurtenacker, Z anorg 1913, 82 208)

Barium cupric potassium nitrite, BaCuK<sub>2</sub>(NO<sub>2</sub>)<sub>6</sub>

Stable when dry, easily decomp when most, sol in H<sub>2</sub>O with decomp

45 % pts are sol in 100 pts H<sub>2</sub>O at 20°, or 31 45% salt is contained in sat solution at 20° (Przibylla, Z anorg 1897, 15 424)

Barium cupric thallium nitrite, BaCuIl<sub>2</sub>(NO<sub>2</sub>)<sub>6</sub>

Sl sol in H O (Przibylla, Z anorg 1898, 18 461)

Barium iridium nitrite

See Iridonitrite, barium

Barium mercuric nitrite, 2Bn(NO<sub>2</sub>)<sub>2</sub>, 3Hg(NO)<sub>2</sub>+5H<sub>2</sub>O

Very sol in H O and easily decomp (Rây, Chem Soc 1910, 97 327)

Barium nickel nitrite, 2Ba(NO<sub>2</sub>)<sub>2</sub>, Ni(NO<sub>2</sub>)<sub>2</sub> Somewhat more easily sol in H<sub>2</sub>O than nickel potassium nitrite (Lang)

Barium nickel potassium nitrite, Ba(NO<sub>2</sub>)<sub>2</sub>, Ni(NO<sub>2</sub>)<sub>2</sub>, 2KNO<sub>2</sub>

Sl sol in cold, easily in hot H<sub>2</sub>O without apparent decomp (Lang)

Barium nickel thallium nitrite, NiBaTl<sub>2</sub>(NO<sub>2</sub>)<sub>6</sub>

Ppt (Przibylla, Z anorg 1898, 18 462)

Barium osmium nitrite
See Osminitrite, barium

Barium osmyl oxynitrite
See Osmyloxynitrite, barium

Barium potassium nitrite, Ba(NO<sub>2</sub>)<sub>2</sub>, 2KNO<sub>2</sub> +H<sub>2</sub>O

Easily sol in  $H_2O$ , insol in alcohol (Lang, Pogg, 118 293)

Barium rhodium nitrite,  $3Ba(NO_2)$ ,  $Rh_2(NO_2)_6$ 

See Rhodonitrite, barium

Barium silver nitrite,  $Ba(NO_2)_2$ ,  $2AgNO_2+H_2O$ 

Resembles the potassium salt (Fischer) Less stable than the Na salt (Oswald)

Bismuth nitrite, basic, (BiO)NO<sub>2</sub>+½H<sub>2</sub>O Sol in HCl (Vanino, J pr 1906, (2) 74 150)

Bismuth cæsium silver nitrite, Cs<sub>2</sub>BiAg(NO<sub>2</sub>)<sub>6</sub> Very sl sol in H<sub>2</sub>O Slowly decomp by H<sub>2</sub>O (Ball and Abram, Chem Soc 1913, 103 2122)

Bismuth potassium nitrite,  $B_1(NO_2)_3$ ,  $3KNO + H_2O$ 

Decomp by  $H_2O$  (Ball, Chem Soc 1905, 87 762)

Bismuth potassium silver nitrite,  $K_2B_1Ag(NO_2)_6$ 

Less sol in H<sub>2</sub>O than NH<sub>4</sub> salt (Ball and Abram, Chem Soc 1913, **103** 2121)

Bismuth rubidium silver nitrite,

Rb<sub>2</sub>B<sub>1</sub>Ag(NO<sub>2</sub>)<sub>6</sub>

Sl sol in  $H_2O$  with slow hydrolysis (Ball and Abram)

Bismuth silver thallous nitrite,  $BiAgTl_2(NO_2)_6$ Insol in  $H_2O$ , but decomp thereby (Ball and Abram)

Cadmium nitrite, basic, 2CdO, N<sub>2</sub>O<sub>3</sub> Insol in H<sub>2</sub>O (Hampe, A 125 335)

Cadmium nitrite, Cd(NO<sub>2</sub>)<sub>2</sub>+H O

Cadmium potassium nitrite, Cd(NO<sub>2</sub>)<sub>2</sub>, KNO<sub>2</sub>
Easily sol in H<sub>2</sub>O Very difficultly sol in absolute alcohol, and only sl sol in 90%

alcohol (Hampe, A 125 334) Cd(NO<sub>2</sub>)<sub>2</sub>, 2KNO<sub>2</sub> Easily sol in H<sub>2</sub>O Insol in alcohol (Lang, J B 1362 99)

Cd(NO<sub>2</sub>)<sub>2</sub>, 4KNO<sub>2</sub> More sol in H<sub>2</sub>O than the above salt (Lang)

Cæsium nitrite, CsNO<sub>2</sub>

Very sol in H<sub>2</sub>O Very hydroscopic (Ball, Chem Soc 1913, 103 2130)

Cæsium calcium nitrite, Cs<sub>2</sub>Ca(NO<sub>2</sub>)<sub>4</sub>+H<sub>2</sub>O Ppt (Jamieson, Am Ch J 1907, 38 617)

Cæsium cobaltic nitrite, Cs<sub>3</sub>Co(NO<sub>2</sub>)<sub>6</sub>+H<sub>2</sub>O Sol in 20,100 pts H<sub>2</sub>O at 17° (Rosenbladt, B 19 2531)

#### Cæsium lead nitrite, CsPb(NO<sub>2</sub>)<sub>8</sub>+H<sub>2</sub>O

Sol in cold H<sub>2</sub>O without decomp solution is heated, some basic lead salt separates (Jamieson, Am Ch J 1907, 38 618)

Cæsium lead silver nitrite, Cs<sub>8</sub>AgPb(NO<sub>2</sub>)<sub>6</sub>+  $2H_2O$ 

Ppt (Jamieson)

Cæsium silver nitrite, CsAg(NO<sub>2</sub>)<sub>2</sub> Decomp by H<sub>2</sub>O (Jamieson)

Cæsium silver strontium nitrite,  $Cs_3AgSr(NO_2)_6+2H_2O$ 

Partially decomp by H<sub>2</sub>O (Jamieson)

Cæsium strontium nitrite, CsSr(NO<sub>2</sub>)<sub>3</sub>+H<sub>2</sub>O Ppt Sol in H<sub>2</sub>O (Jamieson)

Calcium nitrite, Ca(NO<sub>2</sub>)<sub>2</sub>+H<sub>2</sub>O

Very deliquescent Insol in dil alcohol (Fischer, Pogg 74 115)

100 ccm of the sat solution contain 1116 g Ca(NO<sub>2</sub>)<sub>2</sub>+H<sub>2</sub>O at 20 5° (Vogel, Z anorg 1903, **35** 395)

#### Solubility in H<sub>2</sub>O at t°

| t°                                                  | %Ca(NO2)2                                                          | Solid phase                                                                                                                                                                |
|-----------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>18 5<br>42<br>44<br>54<br>64<br>70<br>73<br>91 | 38 3<br>43<br>51 8<br>53 5<br>55 2<br>58 4<br>60 3<br>61 5<br>71 2 | Ca(NO <sub>2</sub> ) <sub>2</sub> , 4H <sub>2</sub> O  "+Ca(NO <sub>2</sub> ) <sub>2</sub> , H <sub>2</sub> O Ca(NO <sub>2</sub> ) <sub>2</sub> , H <sub>2</sub> O " " " " |

(Oswald, A ch 1914, (9) 1 32)

Sat solution of Ca(NO<sub>2</sub>)<sub>2</sub>+AgNO<sub>2</sub> contains 92 4 g  $Ca(NO_2)_2$  and 11 2 g  $AgNO_2$  per 100 g  $H_2O$  at 14° (Oswald) Solubility in alcohol

100 ccm of sat solution in 90% alcohol contain 39 0 g Ca(NO<sub>2</sub>)<sub>2</sub>+H<sub>2</sub>O at 20°

100 ccm of sat solution in absolute alcohol contain 11 g  $Ca(NO_2)_2+H_2O$  at  $20^\circ$ (Vogel)

Insol in ethyl acetate (Naumann, B 1910, 43 314)

 $+4H_2O$ The sat solution at 16° conta s 42 3% Ca(NO<sub>2</sub>)<sub>2</sub> and has sp gr at 16°/(14205 (Oswald, A ch 1914, (9) 1 66)

Calcium cobaltous potassium nitrite,  $Ca(NO_2)_2$ ,  $Co(NO_2)_2$ ,  $2KNO_2$ Decomp by H<sub>2</sub>O (Erdmann)

Calcium cupric potassium nitrite, CaCuK<sub>2</sub>(NO<sub>2</sub>)<sub>6</sub>

Ppt, insol in alcohol, sol in H<sub>2</sub>O w<sub>1</sub> i decomp

14 97 pts are sol in 100 pts H<sub>2</sub>O at 20° 13 02 per cent of salt is contained in a solution (Przibylla, Z anorg 1897, 15 42

Calcium mercuric nitrite, Ca(NO<sub>2</sub>)<sub>2</sub>,Hg(NC<sub>1</sub>)<sub>2</sub> +5H<sub>2</sub>OVery sol in H<sub>2</sub>O (Rây, Chem Soc 19).

**97** 327 )

Calcium nickel potassium nitrite, Ca(NO 1,  $N_1(NO_2)_2$ ,  $2KNO_2$ 

Very sl sol in cold, easily in hot H) Insol in alcohol Sl sol in dil HC2H3O |-Aq (Erdmann)

Calcium osmium nitrite

See Osminitrite, calcium

Calcium potassium nitrite,  $CaK(NO_2)$  - $3H_2O$ 

Sol in  $H_2O$  (Topsoe, W A B 73, 2 1) Deliquescent (Lang)

Cobaltous nitrite

Known only in solution

Cobaltic lead nitrite, 3PbO, Co O<sub>3</sub> 6N<sub>2</sub>O + 12H<sub>2</sub>O

Insol in H<sub>2</sub>O (Rosenheim, Z inorg 18 3. **17** 48)

Cobaltic lead potassium nitrite, 3K O. 3P  $2\text{Co}_2\text{O}_3$ ,  $10\text{N}_2\text{O}_3 + 4\text{H}_2\text{O}$ 

Sol by boiling in much H<sub>2</sub>O Sol in acids with evolution of N2O3 (Stiomcycr 1 96 228)

Cobaltous potassium nitrite, 2Co(NC 2, 2KNO<sub>2</sub>+H<sub>2</sub>O

Ppt (Sadtler)

 $Co(NO_2)_2$ ,  $2KNO_2 + H_2()$ Ppt (Sadtl  $3\text{Co(NO}_2)_2$ ,  $6\text{KNO}_2 + \text{H}_2\text{O}$ Insol in c sol in hot  $H_2O$  Sl sol in  $K({}_2H_3O_2 +$ (Erdmann, J pr 97 397)

Insol in ethyl acetate (N aumann, 1904, **37** 3602)

Cobaltic potassium nitrite (cobalt yellc ),  $Co_2(\bar{N}O_2)_6$ ,  $6KNO_2+3H_2O$ 

Very sl sol in cold H2O Insol in alco ol and ether Sol in traces in CS<sub>2</sub> (St E

C R 35 552) Insol in boiling conc K2SO4, KCl, KNO<sub>3</sub>, or KC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq

Sol in 1120 pts H<sub>2</sub>O at 17° (Rosenbladt.

B 1886, 19 2535)

Decomp when heated in aq solution (Rosenheim, Z anorg 1898, 17 42)

More sol in NH<sub>4</sub>Cl or NaCl+Aq than in

H<sub>2</sub>O (Stromeyer) SI decomp by KOH+Aq, except when very conc, easily decomp by NaOH or Ba(OH)2+Aq

Very al sol in KC<sub>2</sub>H<sub>8</sub>O<sub>2</sub>+Aq, or KNO<sub>2</sub> +Aq (Fresenius) Sol in HCl+Aq Sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, or H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq (Stro-

meyer)

Small quantity of HC2H3O2+Aq does not dissolve (Fresenius)

Cobaltic potassium silver nitrite, KCoAg<sub>2</sub>(NO<sub>2</sub>)<sub>6</sub>, and K<sub>2</sub>CoAg(NO<sub>2</sub>)<sub>6</sub>

Very sl sol in H<sub>2</sub>O Less sol than Na (Burgess and Karum, J Am Chem Soc 1912, 34 653)

Cobaltous potassium strontium nitrite,  $Co(NO_2)_2$ ,  $2KNO_2$ ,  $Sr(NO_2)_2$ 

Decomp by H<sub>2</sub>O (Erdmann, J pr 97 385)

Cobaltic rubidium nitrite, Rb<sub>3</sub>Co(NO<sub>2</sub>)<sub>6</sub>+

Sol in 19,800 pts H<sub>2</sub>O (Rosenbladt, B **19** 2531)

Cobaltic silver nitrate, CoAg<sub>3</sub>(NO<sub>2</sub>)<sub>6</sub>

Fairly sol in H<sub>2</sub>O (Cunningham and Perkin, Chem Soc 1909, 95 1568  $2Ag_2O$ ,  $Co_2O_3$ ,  $3N_2O_3+3H_2O$ 

H<sub>2</sub>O, decomp by boiling H<sub>2</sub>O (Rosenheim, Z anorg 1898, 17 56)

Cobaltic silver hydroxynitrite,  $\text{Co}_2\text{Ag}_3(\text{OH})_3(\text{NO}_2)_6$ 

Sl sol in H<sub>2</sub>O (Suzuki, Chem Soc 1910, 97 729)

Cobaltic silver nitrite ammonia, Co<sub>2</sub>O<sub>3</sub>, Ag<sub>2</sub>O, 4N<sub>2</sub>O<sub>3</sub>, 4NH<sub>3</sub>

See Cobalt ammonium comps

Cobaltic sodium nitrite, 2Na<sub>2</sub>O, Co<sub>2</sub>O<sub>3</sub>, 4N<sub>2</sub>O<sub>3</sub> Sol in H<sub>2</sub>O and alcohol (Rosenheim, Z anorg 1898, 17 50)

+H<sub>2</sub>O Ppt (Sadtler, Sill Am J (2) 49 196)

3Na<sub>2</sub>O, Co<sub>2</sub>O<sub>3</sub>, 6N<sub>2</sub>O<sub>3</sub>+xH<sub>2</sub>O Sol in H<sub>2</sub>O, decomp on heating, insol in alcohol (Rosenheim, Z anorg 1898, 17 43)

Cobaltic strontium nitrite, 2SrO, Co<sub>2</sub>O<sub>3</sub>, 4N<sub>2</sub>O<sub>3</sub> +11H<sub>2</sub>O

Ppt (Rosenheim, Z anorg 1898, 17 54)

Cobaltic thallium nitrite, Co2(NO2)6, 6TINO2 (Rosen-Sol in 23,810 pts H<sub>2</sub>O at 17° bladt, B 19 2531)

Cobaltic zinc nitrite, 2ZnO, Co<sub>2</sub>O<sub>3</sub>, 3N<sub>2</sub>O<sub>3</sub>+ 11H<sub>2</sub>O

(Rosenheim, Z Sol in dil acetic acid anorg 1898, 17 56)

Cobalt nitrate nitrate, 2CoO, Co2Os, 3N2Os,  $Co(NO_3)_2+14H_2O$ 

(Rosenheim, Z anorg 1898, 17. 58) Ppt

Cupric nitrite, basic, 2CuO, N<sub>2</sub>O<sub>3</sub>

(Hampe, A **125** 345) Cu(NO<sub>2</sub>)<sub>2</sub>, 3Cu(OH)<sub>2</sub> Very sl sol in H<sub>2</sub>O or alcohol Easily sol in dil acids or ammonia (van der Meulen, B 12 758)

Cupric nitrite

Known only in solution

Cupric lead potassium nitrite,  $CuPbK_2(NO_2)_6$ (van Lessen, R t c 10 13) 3 056 pts are sol in 100 pts H<sub>2</sub>O at 20°, or 2 51% salt is contained in sat solution at 20° p 429 (Przibylla, Z anorg 1897, 15 429)

Cupric potassium strontium nitrite, CuSrK<sub>2</sub>(NO<sub>2</sub>)<sub>6</sub>

Sol in H<sub>2</sub>O with decomp 10 82 pts are sol in 100 pts H<sub>2</sub>O at 20°, or 9 77 per cent salt is contained in sat solution at 20° (Przibylla, Z anorg 1897, 15 425)

Cupric rubidium nitrite, Rb<sub>8</sub>Cu(NO<sub>2</sub>)<sub>5</sub> Easily sol in H<sub>2</sub>O Sol in alcohol (Kurtenacker, Z anorg 1913, 82 206)

Cupric nitrite ammonia, Cu(NO<sub>2</sub>)<sub>2</sub>, 2NII<sub>3</sub>+  $2H_2O$ 

Sol in little H<sub>2</sub>O with absorption of much Decomp by much H<sub>2</sub>O (Peligot, C R **53** 209 3CuO,  $N_2O_3$ ,  $2NH_3+H_2O$ As above

(Peligot)

Iridium hydrogen nitrite, Ir<sub>2</sub>H<sub>6</sub>(NO<sub>2</sub>)<sub>12</sub> See Iridonitrous acid

Iridium nitrite with MNO<sub>2</sub> See Iridonitrite, M

Iron (ferrous) lead potassium nitrite,  $FePbK_2(NO_2)_6$ 

Ppt, msol in cold H2O, stable at ordinary temp (Przibylla, Z anorg 1897, 15 439)

Iron (ferrous) lead thallous nitrite,  $FePbTl_2(NO_2)_6$ 

Ppt (Przibylla, Z anorg 1898, 18 463)

Lead nitrite, basic, 4PbO,  $N_2O_3+H_2O=Pb(OH)NO_2$ , PbO

Sol in 143 pts H<sub>2</sub>O at 23°, and 33 pts at 100° (Chevreul)

Sol in 1250 pts cold H<sub>2</sub>O, and 34 5 pts at 100° (Peligot)

Sol in cold HNO<sub>3</sub> or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Composition is 3PbO, N<sub>2</sub>O<sub>3</sub>+H<sub>2</sub>O (Meiss-

ner, J B 1876 194) Composition is as above (v Lorenz, W A B **84, 2** 1133)

3PbO,  $N_2O_3 = Pb(NO_2)_2$ , 2PbO Sol m H<sub>2</sub>O (Bromeis, A **72** 38, v Lorenz) 2PbO. N<sub>2</sub>O<sub>2</sub>+H<sub>2</sub>O Sl sol m H<sub>2</sub>O (Bromeis)

 $+3\rm{H}_2O$  (Messner)  $4\rm{PbO},3\rm{N}_2O_3+2\rm{H}_2O$  Sol in  $\rm{H}_2O$  (Messner, J B 1876 195)

Lead nitrite, Pb(NO<sub>2</sub>)<sub>2</sub>+H<sub>2</sub>O

Easily sol in H<sub>2</sub>O (Peligot, A ch 77 87)

Lead nickel potassium nitrite, Pb(NO<sub>2</sub>)<sub>2</sub>,  $KNO_2$ ,  $N_1(NO_2)_2$ 

Insol in H<sub>2</sub>O (Baubigny, A ch (6) 17 111) Ppt (Przibylla, Z anorg 1897, 15 432)

Lead nickel thallous nitrate, NiPbTl<sub>2</sub>(NO<sub>2</sub>)<sub>6</sub> Ppt (Przibylla, Z anorg 1898, **18** 462)

Lead potassium nitrite, 4Pb(NO<sub>2</sub>)<sub>2</sub>, 6KNO<sub>2</sub>+  $3H_2O$ 

Easily sol in H<sub>2</sub>O and in absolute alcohol (Hampe, A 125 334)

 $Pb(NO_2)_2$ ,  $2KNO_2+H_2O$  Easily sol in 2O Insol in alcohol (Lang, J B 1862) Easily sol in  $H_2O$ 102)

Lead potassium silver nitrite, K<sub>3</sub>AgPb(NO<sub>2</sub>)<sub>6</sub>

Ppt (Jamieson, Am Ch J 1907, 38 619)

Lead nitrite nitrate

See Nitrate nitrite, lead

Lithium nitrite, LiNO<sub>2</sub>+½H<sub>2</sub>O

Deliquescent Easily sol in alcohol and H<sub>2</sub>O (Vogel, Z anorg 1903, **35** 403)

Sat solution of LiNO<sub>2</sub>+½H<sub>2</sub>O in H<sub>2</sub>O contains at

 $65^{\circ}$ 81 5° 91° 96° 925° 63 8 68 7 72 4 91 8 94 3% LiNO<sub>2</sub> (Oswald)

+H<sub>2</sub>O Very sol in H<sub>2</sub>O, readily forming supersat solutions Very sol in abs alcohol (Ball, Chem Soc 1913, 103 2133)

100 pts H<sub>2</sub>O dissolve at

O° 10° 20° 125 156 189 pts  $L_1NO_2 + H_2O$ 

30° 40°

242 316 459 pts LiNO<sub>2</sub>+H<sub>2</sub>O LiNO<sub>2</sub>, H<sub>2</sub>O +Aq sat at 19° contains 48 9°

LiNO<sub>2</sub> and has sp gr = 1 3186 (Oswald, 1 ch 1914, (9) 1 61) 100 g H<sub>2</sub>O dissolve 78 5 g LiNO<sub>2</sub>+10 5 AgNO<sub>2</sub> at 14° (Oswald)

Lithium mercuric nitrite, LiNO<sub>2</sub>, Hg(NO<sub>2</sub>)<sub>2</sub>

(Rây, Chem Soc 1907, 91 2033)  $4L_1NO_2$ ,  $Hg(NO_2)_2+4H_2O$ Extreme deliquescent (Rây)

Magnesium nitrite,  $Mg(NO_2)_2 + 2H_2O$ 

Deliquescent, and sol in H<sub>2</sub>O Soluti Easily sol in absolu decomp by boiling alcohol (Hampe, A 125 334) Insol in absolute alcohol (Fischer)

+3H<sub>2</sub>O Sol in H<sub>2</sub>O and absolute alcoh Very deliquescent (Vogel, Z anorg 190,

**35** 397)

Magnesium osmium nitrite

See Osminitrite, magnesium

Magnesium potassium nitrite Deliquescent, and easily sol in H<sub>2</sub>O Ins in alcohol (Lang)

Magnesium silver nitrite

Sol in H<sub>2</sub>O with decomp (Spiegel, Ch., 1895**, 19** 1423)

Manganous nitrite

Deliquescent, and sol in H<sub>2</sub>O (Mitsch lich) Not obtained in a solid state, as solution decomp on evaporation (La 5, Pogg 118 290)

Mercurous nitrite, Hg<sub>2</sub>(NO<sub>2</sub>)<sub>2</sub>

Sol in H<sub>2</sub>O with partial decomp to Hg d  $Hg(NO_2)_2$  (Rây, A 1901, 316 252)

Sol in cold conc HNO<sub>3</sub> Very slowly in cold dil HNO3 (Rây, Chem Soc 18 7, **71** 339)

Decomp by boiling H2O and by cold H<sub>2</sub>SO<sub>4</sub> (Rây, Z anorg 1896, **12** 366)

+H<sub>2</sub>O Slowly decomp by HO (R y, Chem Soc 1897, 71 340)

Mercuric nitrite, basic, Hg(NO<sub>2</sub>)<sub>2</sub>, 2Hg(+  $H_2O$ 

Ppt (Lang) 12HgO, 5N<sub>2</sub>O<sub>3</sub>+24H<sub>2</sub>O (Ray, Chem & c 1897, 71 341)

Mercuric nitrite, Hg(NO<sub>2</sub>)<sub>2</sub>

Deliquescent Partly sol in boiling F 3. but the greater part is decomp into Hg HNO<sub>2</sub> (Rây, Proc Chem Soc 1904, 20

Mercuromercuric nitrite, basic

 $9Hg_2O$ , 4HgO,  $5N_2O_3+8H_2O$ 

 $\beta$  Hg<sub>2</sub>O, 2HgO, N<sub>2</sub>O<sub>3</sub>+2H<sub>2</sub>O (Rây, Chem Soc 1897, 71 341) Mercuric potassium  $Hg(NO_2)_2$ , nutrite, 2KNO<sub>2</sub>

Easily sol in H<sub>2</sub>O Insol in alcohol

(Lang, 1860) KHg(NO<sub>2</sub>)<sub>3</sub> Obtained from K<sub>3</sub>Hg(NO<sub>2</sub>)<sub>5</sub>,

H<sub>2</sub>O+Aq containing a small excess of KNO<sub>2</sub> Decomp by H<sub>2</sub>O (Rosenheim, Z anorg 1901, 28 173)

 $K_3Hg(NO_2)_5+HO$ Sol in H<sub>2</sub>O Formula of Lang is incorrect (Rosenheim, Z amorg 1901, 28 172)

Mercuric sodium nitrite, Na<sub>2</sub>Hg(NO<sub>2</sub>)<sub>4</sub>

Very hydroscopic Decomp by hot H<sub>2</sub>O (Rosenheim, Z anorg 1901, 28 173) +2H<sub>2</sub>O Deliquescent (Rây, Chem Soc

1907, 91 2032)
2Hg(NO<sub>2</sub>)<sub>2</sub>, 3NaNO<sub>2</sub> Decomp by H<sub>2</sub>O (Rây, Chem Soc 1907, 91 2032)

Mercuric strontium nitrite, 3Hg(NO<sub>2</sub>)<sub>2</sub>,  $2Sr(NO_2)_2 + 5H_2O$ 

Very sol in H<sub>2</sub>O (Rây, Chem Soc 1910. **97** 327)

Mercuric nitrite hydrazine, Hg(NO<sub>2</sub>)<sub>2</sub>, N<sub>2</sub>H<sub>4</sub> Ppt Decomp by H<sub>2</sub>O (Hofmann and Marburg, A 1899, 305 215)

Nickel nitrite, basic, 2NiO, N2O3 (Hampe, A 125 343)

Nickel nitrite, Ni(NO<sub>2</sub>)<sub>2</sub>

Sol in H<sub>2</sub>O and alcohol (Lang, J B 1862) 100)

Nickel potassium nitrite, Ni(NO<sub>2</sub>)<sub>2</sub>, 4KNO<sub>2</sub> Moderately sol in H<sub>0</sub>O (Fischer, Pogg 74 115) Extremely sol in H<sub>2</sub>O (Hampe, A 125 346) Insol in absolute alcohol

Nickel potassium strontium nitrite, Ni(NO<sub>2</sub>)<sub>2</sub>, 2KNO<sub>2</sub> Sr(NO<sub>2</sub>)<sub>2</sub>

Sl sol in cold, easily sol in hot H<sub>2</sub>O

Nickel nitrite ammonia, Ni(NO<sub>2</sub>)<sub>2</sub>, 4NH<sub>3</sub>

Sol in cold H2O Decomp on standing or Insol in alcohol Can be reby heating crystallized by dissolving in NH4OH+Aq, and adding much absolute alcohol mann, J pr 97 395)

 $N_1(NO_2)$ ,  $5NH_3$  Decomp in the air giving  $N_1(NO_2)_2$ ,  $4NH_3$  (Ephraim, B 1913, Decomp in the air

**46** 3110)

Osmium nitrite, Os(NO2)3

Ppt (Wintrebert, C R 1905, 140 587)

Osmium nitrite with MNO See Osminitrite, M

Osmyl nitrite with MNO<sub>2</sub> See Osmvlnitrite, M

Osmyl oxynitrite with MNO<sub>2</sub> See Osmyloxynitrite, M

Osmyl nitrite ammonia, OsO2(NO2)2, 4NH3 (Wintrebert, A ch 1903, (7) 28 56)

Palladious nitrite with MNO2 See Palladonitrite, M

Platinous hydrogen nitrite, H<sub>2</sub>Pt(NO<sub>2</sub>)<sub>4</sub> See Platonitrous acid

Platinous nitrite with MNO. See Platonitrite, M

Potassium nitrite, KNO<sub>2</sub>

Deliquescent Sol in H<sub>2</sub>O Pure KNO<sub>2</sub> is not deliquescent (Oswald. A ch 1914, (9) 1 32) Sol in about 1/8 its wt of H<sub>2</sub>O (Divers,

Chem Soc 1899, **75** 86)

100 pts H2O dissolve at

٥°  $20^{\circ}$ 10° 30° 40° 281 325 pts KNO. 291 302 313

50° 70° 80° 90° 60° 337 5 351 365 380 396 pts KNO<sub>2</sub>,

100° 110° 120° 130° 451 473 pts KNO<sub>2</sub> 413 432

Bpt of sat KNO +Aq is 132° at 758 5 mm pressure

(Oswald, A ch 1914, (9) 1 58)

Sp gr of KNO<sub>2</sub>+Aq at 17 5° containing 40% KNO, 10 20 30 1 208 1 295 1 049 1 126

60 70 715% KNO<sub>2</sub> 1 377 1 491 1 599 1 646 (Oswald)

100 g  $H_2O$  at 13 5° dissolve 18 g  $KNO_2+$ 2 36 g  $\stackrel{2}{\text{AgNO}_2}$ , at 25°, 23 1 g  $\stackrel{2}{\text{KNO}_2}$ +5 3 g  $\stackrel{2}{\text{AgNO}_2}$  with excess of  $\stackrel{2}{\text{AgNO}_2}$ 

100 g H<sub>2</sub>O at 13 5° dissolve 276 g KNO<sub>2</sub>+ 26 3 g AgNO<sub>2</sub>, at 25°, 279 g KNO<sub>2</sub>+39 3 g AgNO<sub>2</sub> with excess of KNO<sub>2</sub> (Oswald)

See also under AgNO2 Very sol in liquid NH3 (Franklin, Am

Ch J 1898, **20** 829)

Deliquesces in 90% alcohol, insol in cold 94% alcohol More sol in H2O than KNO3, but less sol in alcohol (Fischer)

Ppt from its conc aq solution by the addition of methyl alcohol Addition of ethyl alcohol to a conc aq solution of KNO2 causes separation into two layers, of which the lower aq solution contains 71 9% KNO<sub>2</sub> while the upper alcoholic layer contains 69% KNO<sub>2</sub> (Donath, Ch Z 1911, 35 773)

Very sl sol in acetone (Krug and M'El-

roy, J Anal Ch 6 184)

| Insol in acetone            | Eidmann,          | C C 1  | 899, |
|-----------------------------|-------------------|--------|------|
| II 1014, Naumann, I         | 3 1904. <b>37</b> | 4329)  |      |
| Insol in methyl a           | cetate (N         | aumann | , в  |
| 1909, <b>42</b> 3790), ethy | l acetate         | (Nauma | ann, |
| B 1904, <b>37</b> 3602)     |                   |        |      |

# Potassium rhodium nitrite, 6KNO<sub>2</sub>, $\mathrm{Rh_2(NO_2)_6}$

See Rhodonitrite, potassium

### Potassium ruthenium nitrite See Ruthenonitrite, potassium

Potassium silver nitrite, KNO2, AgNO2+
½H O

Completely sol in a little H<sub>2</sub>O, but decomp by more H<sub>2</sub>O Sol in KNO<sub>2</sub>+Aq without decomp Insol in alcohol (Lang)

#### Potassium strontium nitrite, 2KNO<sub>2</sub>, Sr(NO<sub>2</sub>)<sub>2</sub>

Sol in H<sub>2</sub>O, insol in alcohol (Lang, Pogg 118 293)

# Potassium zinc nitrite, 2KNO<sub>2</sub>, Zn(NO<sub>2</sub>)<sub>2</sub>+

Deliquescent Easily sol in  $H_2O$  (Lang, J B 1862 101)

 $K_4Zn(NO_2)_5+3H_2O$  Very hydroscopic Decomp by  $H_2O$  (Rosenheim, Z anorg 1901, 28 174)

## Rhodium nitrite with MNO<sub>2</sub> See Rhodonitrite, M

## Rubidium nitrite, RbNO<sub>2</sub>

Deliquescent, very sol in H<sub>2</sub>O, sl sol in hot alcohol, almost insol in acetone (Ball, Chem Soc 1913, 103 2131)

## Ruthenium nitrite with MNO<sub>2</sub> See Ruthenonitrite, M

## Silver nitrite, AgNO2

Sol in 120 pts cold  $H_2O$  (Mitscherlich), in 300 pts (Fischer), and more abundantly in hot  $H_2O$ 

1 l H<sub>2</sub>O dissolves 3 1823 g or 0 02067 g mols at 18° (Naumann and Rucker, B 1905, **38** 2294)

1 litre H<sub>2</sub>O dissolves at—

| 0°         | 0 0113 r | nol | $AgNO_2$ |
|------------|----------|-----|----------|
| 8°         | 0.0159   | "   | · · ·    |
| 14°        | 0.0189   | "   | "        |
| 16°        | 0 0203   | "   | "        |
| 18°        | 0 0216   | "   | "        |
| 25°<br>33° | 0 0260   | "   | "        |
| 330        | 0.0370   | "   | "        |

(Pick and Abegg, Z anorg 1906, 51 3)

1 1 H<sub>2</sub>O dissolves 3 609 g AgNO<sub>2</sub> at 21 (Oswald, A ch 1914, (9) 1 33)

| Solubility in H <sub>2</sub> O at t° |                                                          |  |  |
|--------------------------------------|----------------------------------------------------------|--|--|
| t°                                   | % AgNO2                                                  |  |  |
| 1<br>15<br>25<br>35<br>51<br>60      | 0 1589<br>0 2752<br>0 4125<br>0 6016<br>1 0240<br>1 3625 |  |  |

## (Creighton and Ward, J Am Chem 1915, 37 2335)

#### Solubility in AgNO<sub>8</sub>+Aq at 18°

| Mols AgNO3 per l | Mols AgNO dissol |
|------------------|------------------|
| of the solution  | per l            |
| 0                | 0 0207           |
| 0 0026           | 0 0198           |
| 0 0052           | 0 0190           |
| 0 0103           | 0 0169           |
| 0 0207           | 0 0144           |
| 0 0413           | 0 0117           |
| 0 0827           | 0 0096           |

(Abegg and Pick, B 1905, 38 2573

1 l 0.2-N NaNO<sub>2</sub>+Aq dissolves 4.9i AgNO<sub>2</sub> at  $25^{\circ}$  (Ley and Schaefer, B 1.0 39 1263)

11 sat KNO<sub>2</sub>+Aq dissolves 26% Ag O<sub>2</sub> at 13 5° (Oswald, A ch 1914, (9) 1 3)

#### Solubility in salts + Aq at 25°

| Salt             | Cone of the salt<br>mols per l                      | C 1 \0 n )g                                   |
|------------------|-----------------------------------------------------|-----------------------------------------------|
|                  |                                                     | 0 4135                                        |
| $ m AgNO_3$      | 0 00258<br>0 00588<br>0 01177<br>0 02355<br>0 04710 | 0 3991<br>0 3738<br>0 3432<br>0 294<br>0 2495 |
| KNO <sub>2</sub> | 0 00258<br>0 00558<br>0 01177<br>0 02355<br>0 04710 | 0 3974<br>0 3820<br>0 3560<br>0 3110<br>0 276 |

(Creighton and Ward, J Am Chem 30c 1915, 37 2336)

See also under KNO<sub>2</sub>

AgNO<sub>2</sub>+NaNO<sub>2</sub> 1 1 0 02 N-NaNO<sub>2</sub>+Aq dissolves 3 1 5 g AgNO<sub>2</sub> at 25° 0 2-N NaNO<sub>2</sub>, 3 016 g A<sub>4</sub> IO<sub>2</sub> (Ley and Schaefer, B 1906, 39 1263)

100 g  $H_2O$  sat with  $AgNO_2$  and  $Sr(1)O_2$  contain 109 g  $AgNO_2$  and 783 g  $Sr(1)O_2$ 

at 14° (Oswald)

|                                                                                                                                                   |                                                                                                                           | NITRITE,                                                                                    | SODIUM                                               |                                                                                               | 029                                                                                      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| Very sol in liquid NH <sub>3</sub> (Franklin, Am Ch J 1898, 20 829)                                                                               |                                                                                                                           |                                                                                             | Solubility in NaNO <sub>3</sub> +Aq at t° —Continued |                                                                                               |                                                                                          |  |
| Insol in alcohol                                                                                                                                  | G G 4000                                                                                                                  | t° _                                                                                        | 100 pts H <sub>2</sub> O dissolve                    |                                                                                               |                                                                                          |  |
| Sol in acetor<br>II 1014, Naum                                                                                                                    | ie (Eidmann,<br>ann. B 1904. 3                                                                                            | C C 1899,                                                                                   |                                                      | NaNO2                                                                                         | NaNO <sub>8</sub>                                                                        |  |
| 100 pts acetor<br>temp, 40 pts at<br>B 1906, 39 439;<br>Sl sol in me<br>sert 1906)<br>Insol in ethy:<br>1906, Naumann                             | nitrile dissolve 2<br>81 6° (Scholl 2<br>3)<br>thyl acetate<br>l acetate (Ha<br>, B 1910, <b>43</b> 3                     | 23 pts at ord<br>and Steinkopf,<br>(Bezold, Dis-<br>mers, Dissert<br>14)                    | 21                                                   | 84 75<br>81 1<br>79 7<br>73 8<br>73 1<br>64 2<br>46 8<br>21 6                                 | 0<br>9 6<br>23 5<br>50 8<br>54 5*<br>56 7<br>62 8<br>74 7                                |  |
| Silver sodium ni                                                                                                                                  | l in a little H <sub>2</sub> C                                                                                            |                                                                                             |                                                      | 0                                                                                             | 89 3                                                                                     |  |
| by more H <sub>2</sub> O +1/2H <sub>2</sub> O (C 75)  Silver nitrite am SI sol in H <sub>2</sub> e insol in ether AgNO <sub>2</sub> , 2NH         | (Fischer) Swald, A ch  monia, AgNO <sub>2</sub> O, less sol in a (Reychler, B 1 2 (Reychler) Deliquescent                 | 1914, (9) <b>1</b> , NH <sub>3</sub> , lcohol, nearly 16 2425)                              | 52                                                   | 108 8<br>107 9<br>104 3<br>101 8<br>99 5<br>98 0<br>97 8<br>65 2<br>44 2<br>27 2<br>14 7<br>0 | 0<br>6 7<br>20 6<br>34 5<br>43 2<br>62 6*<br>82 0<br>88 0<br>92 9<br>101 4<br>109<br>118 |  |
| Not deliquese<br>More sol in lalcohol<br>6 pts H <sub>2</sub> O d<br>(Divers, Chem<br>100 g H <sub>2</sub> O di<br>(Niementowski<br>1897, 22 146) | ent Very sol<br>$\mathrm{H}_2\mathrm{O}$ than NaN<br>issolve 5 pts I<br>Soc 1899, 75 8<br>ssolve 83 25 g<br>and Roszkowsk | O <sub>3</sub> , but less in<br>NaNO <sub>2</sub> at 15°<br>36)<br>NaNO <sub>2</sub> at 15° | 65 '                                                 | 120 7<br>111 5<br>108 5<br>107 8<br>78 3<br>49 5<br>28 4<br>14 7                              | 0<br>34 8<br>62 8<br>90 6*<br>96<br>104 1<br>113 4<br>121 4<br>131                       |  |
| 100 pts $H_2O$                                                                                                                                    |                                                                                                                           | 20                                                                                          | 81                                                   | 137 1                                                                                         | 0                                                                                        |  |
| 90° 100° 1                                                                                                                                        | 4 91 5 98<br>0° 80°<br>5 5 136 pts 1<br>10° 120°                                                                          | 5 pts NaNO <sub>2</sub> ,<br>NaNO <sub>2</sub> ,                                            | or .                                                 | 125 7<br>122 7<br>122 6<br>79 1<br>50 0<br>27 2                                               | 38 8<br>69 8<br>101 0*<br>111 5<br>121 0<br>131 7<br>150                                 |  |
| 147 160 5 1                                                                                                                                       | 78 198 5 pts                                                                                                              | IVAIVO2                                                                                     | 92                                                   | 149 7                                                                                         | 0                                                                                        |  |
| mm pressure<br>gr = 1 3585 (<br>59)                                                                                                               | NaNO <sub>2</sub> +Aq =<br>Sat solution a<br>Oswald, A ch                                                                 | t 20° has a sp<br>1 1914, (9) <b>1</b>                                                      |                                                      | 141 2<br>134 6<br>132 3<br>60 2<br>30 3                                                       | 23 6<br>57 6<br>107 8*<br>130 6<br>145 0<br>163 5                                        |  |
| 1                                                                                                                                                 |                                                                                                                           | <sub>2</sub> O dissolve                                                                     |                                                      |                                                                                               |                                                                                          |  |
| t°                                                                                                                                                | NaNO <sub>2</sub>                                                                                                         | NaNO <sub>3</sub>                                                                           | 103                                                  | 166<br>153 3<br>148 8                                                                         | 0<br>33 2<br>58 8                                                                        |  |
| 0                                                                                                                                                 | 73<br>68 5<br>67 1<br>64 9                                                                                                | 0<br>19<br>36 3<br>41 7*                                                                    |                                                      | 142 4<br>100 0<br>60 1<br>0                                                                   | 116 0*<br>126 8<br>142 9<br>181 2                                                        |  |
|                                                                                                                                                   | 50 3<br>30 2                                                                                                              | 46 8<br>55 4                                                                                | * Both salts                                         | ın solıd phase                                                                                |                                                                                          |  |
|                                                                                                                                                   | 0                                                                                                                         | 74 2                                                                                        |                                                      | l, A ch 1914, (                                                                               | 9) 1 71)                                                                                 |  |
|                                                                                                                                                   |                                                                                                                           |                                                                                             |                                                      |                                                                                               |                                                                                          |  |

Solubility in  $H_2O$  is decreased by presence of  $Na_2SO_4$  100 pts  $H_2O$  dissolve 11 8 pts  $Na_2SO_4+53$  9 pts  $NaNO_2$  (Oswald) Very sol in liquid NH<sub>3</sub> (Franklin, Am

Ch J 1898, **20** 829)

Neither dissolved nor attacked by liquid (Frankland, Chem Soc 1901, 79 1361)

Sol in warm 90% alcohol (Hampe, A **125** 336)

100 pts absolute methyl alcohol dissolve 443 pts at 195°, 100 pts absolute ethyl alcohol dissolve 031 pt at 195° (de Bruyn, Z phys Ch 10 783)

Însol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann,

B 1910, 43 314)

#### Strontium nitrite, $Sr(NO_2)_2$

Very sol in H<sub>2</sub>O, and very sl sol in boiling alcohol (Lang, Pogg 118 287) Easily sol in 90% alcohol

(Hampe, A **125** 340)

 $+H_2O$ Hydroscopic 100 ccm of the sat solution contain 62 83 g Sr(NO<sub>2</sub>)<sub>2</sub>+H<sub>2</sub>O at 195° (Vogel, Z anorg 1903, **35** 393)

100 pts H<sub>2</sub>O dissolve at

O° 10° 20°  $30^{\circ}$ 

676 84 pts  $Sr(NO_2)_2 + H_2O_1$ 58 9 755

40° 50 60° 70°

105 130 pts  $Sr(NO_2)_2 + H_2O_1$ 94 116

80° 90° 100°

162 182 pts  $Sr(NO_2)_2 + H_2O$ 145

Bpt of sat solution is 112 5° at 763 mm pressure. The sat solution at 19° contains 39 3%  $Sr(NO_2)_2$  and has sp gr at  $19^\circ/0^\circ = 14461$  (Oswald, A ch 1914, (9) **1** 64)

Solubility in alcohol 100 ccm of the solution in 90% alcohol contain 0 42 g Sr(NO<sub>2</sub>)<sub>2</sub> +H<sub>2</sub>O at 20° 100 ccm of the solution in absolute alcohol contain 0.04 g  $Sr(NO_2)_2$ + H<sub>2</sub>O at 20° (Vogel, Z anorg 1903, **35** 393)

#### Thallous nitrite, TlNO2

Sol in H<sub>2</sub>O Ppt from solution in H<sub>2</sub>O by absolute alcohol (Vogel, Z anorg 1903, **35** 404)

Very sol in H<sub>2</sub>O, insol in alcohol (Ball. Chem Soc 1913, 103 2131)

Zinc nitrite, basic, 2ZnO, N<sub>2</sub>O<sub>3</sub> (Hampe, A 125 334)

## Zinc nitrate, $Zn(NO_2)_2 + 3H_2O$

Deliquescent Sol in H<sub>2</sub>O and alcohol (Lang, J B 1862 99)

## Nitrous oxide, N2O

See Nitrogen monoxide

## Nitroxyl bromide, NO<sub>2</sub>Br

Decomp spontaneously or with F O (Hasenbach, J pr (2) 4 1) Does not exist (Frohlich, A 224 270

## Nitroxyl chloride, NO<sub>2</sub>Cl

Decomp by H<sub>2</sub>O without evolution of Probably does not exist (Geuther, A ' 5

#### Nitroxyl fluoride, NO<sub>2</sub>F

Absorbed by  $H_2O$  with formation of  $H_2O$ Decomp by H<sub>2</sub>O, alcohol, ether (Moissan and Lebeau, C R 1 )5, **140** 1624)

#### Nitroxypyrosulphuric acid, $(HO)S_2O_5(NO_8)$ , $H_2O$

Very deliquescent Sol in H<sub>2</sub>O with lecomp (Weber, Pogg 142 602)

#### Nitryl chloride, NO<sub>2</sub>Cl See Nitroxyl chloride

#### Octamine cobaltic compounds

The formulæ of the following octa inc cobaltic compounds should be reduced half, and they should be classed with the tetramine cobaltic compounds (Jorge en Z anorg 2 279)

#### Octamine cobaltic carbonate. $Co_2(NH_3)_8(CO_3)_6 + 3H_2O$

Easily sol in H<sub>2</sub>O (Vortmann and las

berg, B 22 2654) See Carbonatotetramine carbonate

 $Co_2(NH_3)_8O_3(CO_3)_4 + 3H_2O$ ıffi cultly sol in H<sub>2</sub>O

- chloride (?), Co  $(NH_3)_8 (OH)_2$  4+ $2H_2O$ Ppt

 $Co_2(NH_3)_8(OH)_2Cl_4$ ,  $2HgCl_2$ 

Co<sub>2</sub>(NH<sub>3</sub>)<sub>8</sub>(OH)<sub>2</sub>Cl<sub>4</sub>, PtCl<sub>4</sub>+H O mann and Blasberg, B **22** 2654)

- mercuric chloride, ( o<sub>2</sub>(NH  $Cl_{\ell}$ 3HgCl<sub>2</sub>+H<sub>2</sub>O

 $\operatorname{ort}$ 

 $\text{Co}_2(\text{NH}_3)_8\text{Cl}_6, \text{HgCl}_2$ Difficultly so cold H<sub>2</sub>O, decomp on warming (Vortm in

- chlorosulphite,  $\mathrm{Co}_2(\mathrm{NH_3})_8(\mathrm{SO}_2\mathrm{Cl})$ +4H<sub>2</sub>O

Sol in H<sub>2</sub>O (Vortmann and Magde 1rg B **22** 2635)

 chromate,  $Co_2(NH_3)_8(CrO_4)_3(H_2O)_2 + 2H_2O$ 

Sol in H<sub>2</sub>O or acetic acid

 $+8H_2O$ Sol in warm H<sub>2</sub>O or acetic cid  $\dot{\text{Co}}_2(\ddot{\text{N}}\text{H}_3)_8(\text{CrO}_4)\ \text{Cr}_2\text{O}_7(\text{H}_2\text{O})_2 + \text{H}_2\text{O}$  Las ily sol in H<sub>2</sub>O, from which it is precipitite by dil  $HNO_8+Aq$  (Vortmann, B **15**  $\stackrel{?}{\downarrow}$  95

```
Octamine cobaltic nitrate, Co<sub>2</sub>(NH<sub>3</sub>)<sub>8</sub>(NO<sub>3</sub>)<sub>6</sub>
      +2H_2O
   Sol in H<sub>2</sub>O, precipitated by conc HNO<sub>3</sub>+
Aq (Vortmann)

    nıtratocarbonate,

      Co_2(NH_3)_8(NO_3)_2(CO_3)_2 + H_2O
   Less sol than other octamine carbonates
(Vortmann and Blasberg, B 22 2650)
   See Carbonatotetramine cobaltic nitrate

purpureochloride.

     \mathrm{Co_2(NH_3)_8Cl_6(H_2O)_2}
   Easily sol in H_2O, partly precipitated from
aqueous solution by conc HCl+Aq (Vort-
mann, B 10 1451)
   =Chlorotetramine
                               cobaltic
                                               chloride.
ClCo(NH<sub>3</sub>)<sub>4</sub>(OH<sub>2</sub>)Cl<sub>2</sub>, wich see
                                               (Jorgen-
sen, J pr (2) 42 211)

    purpureomercuric chloride.

     Co_2(NH_3)_8Cl_6(H_2O)_2, 6HgCl_2
   Sl sol in cold, easily in hot H_2O
                                               (Vort-
mann)
   = Chlorotetramine cobaltic mercuric chlo-
ride (Jorgensen, J pr (2) 42 211)

    purpureomercuric hydroxychloride,

     Co<sub>2</sub>N<sub>8</sub>H<sub>16</sub>(HgCl)<sub>4</sub>(HgOH)<sub>4</sub>Cl<sub>6</sub>
   \mathbf{P}\mathsf{pt}
            (Vortmann and Morgulis, B 22
2647)
     Co_2N_8H_{16}(HgOH)_8Cl_6 (V and M)
     Co<sub>2</sub>N<sub>8</sub>H<sub>16</sub>(HgOH)<sub>8</sub>Cl<sub>4</sub>(OH)<sub>2</sub> (V and M)

    purpureomercuriodide, basic,

     Co N<sub>8</sub>H<sub>18</sub>(HgOH)<sub>6</sub>I<sub>6</sub>
  (Vortmann and Borsbach, B 23 2805)
    — purpureochloroplatinate
  Very sl sol in H<sub>2</sub>O
                              (Vortmann)
   = Chlorotetraming cobaltic chloroplatinate,
ClCo(NH<sub>3</sub>)<sub>4</sub>(OH<sub>2</sub>)PtCl<sub>6</sub>+2H<sub>2</sub>O (Jorgensen,
J pr (2) 42 215)
           - roseochloride, \text{Co}_2(\text{NH}_3)_8\text{Cl}_6(\text{H}_2\text{O})_2
     +2H_2O, or 4H_2O
  Sol in H<sub>2</sub>O (Vortmann, B 15 1891)
  See Roseotetramine cobaltic chloride

    roseomercuric chloride,

     Co_2(NH_3)_8Cl_c(HO)_2, 6HgCl_2+3H_2O
  Ppt (Vortmann)

    roseomercuric hydroxychloride,

     Co_2N_8H_{1f}(HgCl)_6(HgOH)_2Cl_6
  (Vortmann and Morgulis, B 22 2647)
  Co<sub>2</sub>N<sub>8</sub>H<sub>16</sub>(HgOH)<sub>8</sub>Cl<sub>6</sub> (V and M)
  C_{02}N_8H_{16}(HgOH)_8Cl_4(OH)_2 (V and M)
```

roseomercuric iodide,

Co<sub>2</sub>N<sub>8</sub>H<sub>21</sub>(HgI)<sub>3</sub>I<sub>6</sub>

and Borsbach, B 23 2806)

Ppt Sol in HCl or HNO<sub>8</sub>

```
\text{Co}_2\text{N}_8\text{H}_{20}(\text{HgI})_4\text{I}_4(\text{OH})_2 Ppt (V and B)
               Octamine cobaltic sulphate,
                    Co_2(NH_3)_8(OH)_2(SO_4)_2 + 3H_2O (?)
                  Insol in H<sub>2</sub>O or dil H<sub>2</sub>SO<sub>4</sub>+Aq Sol in
               moderately conc HCl+Aq (Vortmann and
               Blasberg, B 22 2653)
                  Co_2(NH_3)_8(SO_4)_3 + 6H_2O
                                                   Sol in H_2O
               (Vortmann)
                   +4\mathrm{H}_2\mathrm{O}
                             Easily sol in H<sub>2</sub>O
                  See Roseotetramine cobaltic sulphate

    sulphatocarbonate,

                    Co_2(NH_3)_8SO_4(CO_3)_2 + 3H_2O
                  Sol in H<sub>2</sub>O (Vortmann, B 10 1458)
                  See Carbonatotetramine cobaltic sulphate
                  Co<sub>2</sub>(NH<sub>3</sub>)<sub>8</sub>(SO<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+4H<sub>2</sub>O Sol in H<sub>2</sub>O<sub>-</sub>
               (Vortmann and Blasberg, B 22 2650)
                          – ammonium sulphite.
                    Co_2(NH_3)_8(SO_3NH_4)_6 + 10H_2O
                  See Octamine cobaltisulphite, ammonium
               Octamine cobaltisulphurous acid
               Ammonium octamine cobaltisulphite,
                    Co_2(NH_3)_8(SO_3NH_4)_6 + 10H_2O
                  Sol in H<sub>2</sub>O
                                 (Vortmann and Magdeburg.
               B 22 2632)
                  Co_2(NH_3)_8(SO_3)_2(SO_3NH_4)_2+4H_2O
               Ammonium barium -
                    Co_2(NH_3)_8(SO_3)_6Ba_2(NH_4)_2+7H_2O
                 Ppt (V and M)
               Barıum
                                ---, Co_2(NH_3)_8(SO_3)_6Ba_3+
                    7H_2O
                 Ppt (V and M)
                    Co_2(NH_3)_8(SO_3)_6Co_2+36H_2O_1, and
                    24H<sub>2</sub>O
               Luteocobaltıc –
                    Co_2(NH_3)_8(SO_3)_6(NH_3)_{12}Co_2 + 8H_2O
                 Ppt (V and M)
               Octamine iridium chloride,
                 Ir<sub>2</sub>(NH<sub>3</sub>)<sub>8</sub>Cl<sub>6</sub>
                 Very sol in H_2O (Palmaer, B 22 16)
               Octamine iridium chlorosulphate,
                 Ir_2(NH_8)_8Cl_4SO_4+4H_2O
                 (Palmaer)
               Osmiamic acid, H<sub>2</sub>N<sub>2</sub>Os<sub>2</sub>O<sub>6</sub>, or
                 H_2N_2Os_2O_5(?)
                 Known only in aqueous solution, which is
(Vortmann
              unstable
```

 $Co_2N_8H_{20}(HgI)_4I_6$  Ppt (V and B)

## Ammonium osmiamate

(Fritzsche Easily sol in H<sub>2</sub>O or alcohol and Struve, J pr 41 97)

## Barrum osmiamate, BaN2Os2O5 Moderately sol in H<sub>2</sub>O

#### Lead osmiamate

Ppt Sol in acids without decomp

## Lead osmiamate chloride

Ppt

## Mercurous osmiamate

Ppt

#### Mercuric osmiamate

#### Potassium osmiamate. $K_2N_2Os_2O_5$ or $K_2N_2Os_2O_6$

Sl sol in cold, much more easily in hot H<sub>2</sub>O Sl sol in alcohol Insol in ether

#### Silver osmiamate, Ag<sub>2</sub>N<sub>2</sub>Os<sub>2</sub>O<sub>5</sub>

Extremely sl sol in H<sub>2</sub>O or cold HNO<sub>8</sub>+ Aq Sol in NH<sub>4</sub>OH+Aq

#### Sodium osmiamate

Easily sol in H<sub>2</sub>O or alcohol

#### Zinc osmiamate, ZnN<sub>2</sub>Os<sub>2</sub>O<sub>5</sub>

Decomp by H<sub>2</sub>O Nearly insol in NH<sub>4</sub>OH +Aq

#### Osmic acid, H<sub>2</sub>OsO<sub>4</sub>

Stable in H<sub>2</sub>O containing alcohol Sol in HNO3 or HCl+Aq Not attacked by H2SO4 +Aq (Moraht and Wischin, Z anorg 3 153

100 g H<sub>2</sub>O dissolve 5.88 g H<sub>2</sub>OsO<sub>4</sub> at 15° (Squire and Cains, Pharm J 1905, **74** 720) Attacked by liquid NH<sub>3</sub> (Gore, Am Ch J 1898, 20 828)

## Barium osmate, BaOsO<sub>4</sub>+H<sub>2</sub>O

Insol in H<sub>2</sub>O (Claus, Pogg 65 205)

#### Calcium osmate, CaOsO4

Insol in H<sub>2</sub>O (Fremy, J pr 33 411)

#### Lead osmate

Insol in H<sub>2</sub>O (Fremy)

#### Potassium osmate, K<sub>2</sub>OsO<sub>4</sub>+2H<sub>2</sub>O

Sl sol in cold, much more sol in hot H2O, but is decomp thereby Sl sol in KNO2+ Aq Insol in dil or conc alcohol and ether Fremy, A ch (3) 12 516)
Insol in conc saline solutions

(Gibbs.

Am J Sci (2) 31 70)

## Sodium osmate, Na<sub>2</sub>OsO<sub>4</sub>

Sol in  $H_2O$ , insol in alcohol and eth r (Fremy, l c)

#### Perosmic acid

See Perosmic acid

#### Osminitrous acid

#### Ammonium osminitrite, $(NH_4)_2Os(NO_2)$ |- $2H_2O$

Decomp when solution is Sol in H<sub>2</sub>O warmed (Wintrebert, C R 1905, 140 58

# Barium osminitrite, BaOs(NO<sub>2</sub>)<sub>5</sub>

 $+H_2O$ ,  $+4H_2O$  (Wintrebert)

#### Calcium osminitrite, CaOs(NO<sub>2</sub>)<sub>5</sub>+4H<sub>2</sub>O (Wintrebert)

#### Magnesium osminitrite, MgOs(NO<sub>2</sub>)<sub>5</sub>+ $4H_2O$ (Wintrebert)

Potassium osminitrite, K<sub>2</sub>O<sub>5</sub>(NO<sub>2</sub>)<sub>5</sub>

Verv hygroscopic Very sol in H) Decomp by HCl, HBr and HI (Wintreb t, A ch 1903, (7) 28 135)

## Silver osminitrite, Ag<sub>2</sub>Os(NO<sub>2</sub>)<sub>5</sub>+2H<sub>2</sub>O

Sl sol in H<sub>2</sub>O with partial decomp (W 1trebert, C R 1905, 140 586)

Sodium osminitrite, Na<sub>2</sub>Os(NO<sub>2</sub>)<sub>5</sub>+2H<sub>2</sub>O Sol in H<sub>2</sub>O (Wintrebert)

Strontium osminitrite, SrOs(NO<sub>2</sub>)<sub>5</sub>+2H<sub>2</sub>O (Wintrebert)

Zinc osminitrite,  $ZnOs(NO_2)_5 + \frac{1}{2}H_2O$ (Wintrebert)

#### Osmyloxymitrous acid

## Ammonium osmyloxynitrite,

 $(NH_4)_2OsO_3(NO_2)_2$ 

Decomp by boiling conc HCl and by K H +Aq (Wintrebert, A ch 1903, (7) 28 10 )

Barium osmyloxynitrite,  $BaOsO_3(NO_2) +$ 4H<sub>2</sub>O (Wintrebert)

Potassium osmyloxynitrite,  $K_2OsO_3(NO_2)$  +  $3H_2O$ 

Sl sol in cold H<sub>2</sub>O Aqueous solution ecomp slowly Sol with decomp in dil K H +Aq (Wintrebert)

Silver osmyloxymitrite,  $Ag_2OsO_3(NO_2)_2+H$ (Wintrebert)

Strontium osmyloxynitrite, SrOsO<sub>3</sub>(NO<sub>2</sub>)<sub>2</sub>+ 3H<sub>2</sub>O (Wintrebert)

## Osmylmtrous acid

Potassium osmylnitrite, K<sub>2</sub>O<sub>8</sub>O<sub>2</sub>(NO<sub>2</sub>)<sub>4</sub>

Decomp by H<sub>2</sub>O and by excess of KOH+ Aq (Weinland, A ch 1903, (7) 28 54)

## Osmisulphurous acid

Potassium osmisulphite, [Os(H<sub>2</sub>O)(SO<sub>3</sub>)<sub>5</sub>]K<sub>6</sub>  $+4H_2O$ 

Ppt (Rosenheim, Z anorg 1899, 21 144)

Potassium hydrogen osmisulphite,  $[Os_2(H_2O)(SO_3)_{11}]K_{11}H_3+5H_5O$ 

Sol in H<sub>2</sub>O without decomp (Rosenheim) [Os(SO<sub>8</sub>)<sub>6</sub>]K<sub>5</sub>H<sub>2</sub>+2H<sub>2</sub>O Sol in H<sub>2</sub>O without decomp (Rosenheim)

Sodium osmisulphite, [Os(SO<sub>3</sub>)<sub>6</sub>]Na<sub>8</sub>+8H<sub>2</sub>O

Only sl sol in H<sub>2</sub>O

[Os(H<sub>2</sub>O)(SO<sub>3</sub>)<sub>5</sub>]Na<sub>6</sub>+4H<sub>2</sub>O Ppt  $[\mathrm{OsO}(\mathrm{SO_3})_4]\mathrm{Na_6} + 3\mathrm{H_2O}$ (Rosen-Ppt heim )

#### Osmum, Os

When finely divided and not ignited to a very high temperature, Os is sol in  $HNO_3+$ Aq or aqua regia When ignited it is not attacked by any acid

Insol in liquid NH<sub>3</sub> (Gore, Am ch J 1898, **20** 828)

Osmium ammonium comps

See-

Oxyosmiumamine comps, OsO(NH<sub>8</sub>)<sub>2</sub>X Oxyosmium $d_1$ amine comps,  $OsO_2(NH_3)_4X_2$ 

Osmium bromide with MBr See Bromosmate, M

## Osmium dichloride, OsCl<sub>2</sub>

Deliquescent Sol in little, but decomp by more H<sub>2</sub>O, with pptn of Os Sol in conc alkalı chlorides+Aq with combination and partial decomp (Berzelius)

Sol in alcohol and ether

Insol in H<sub>2</sub>O Insol in HCl and H<sub>2</sub>SO<sub>4</sub> SI sol in HNO<sub>3</sub> and aqua regia Slowly sol ın strong alkalı Insol ın lıquıd Cl<sub>2</sub> İnsol in alcohol and formaldehyde (Ruff, Z anorg **1910, 65** 455)

#### Osmium trichloride, OsCl<sub>3</sub>

Hydroscopic Sol in conc H2SO4, HCl and conc HNO<sub>8</sub> Sol in alkali and in NH<sub>4</sub>OH Insol in liquid Cl2 Easily sol in alcohol Sl sol in ether (Ruff, Z anorg 1910, 65 **453**)

+3H<sub>2</sub>O Sol in H<sub>2</sub>O (Moraht and Wis-

chin, Z anorg 3 153)

Osmium tetrachloride, OsCl4

Sol in a little H<sub>2</sub>O, but decomp by further addition of that solvent Sol in conc HCl+ Αq

Osmium trichloride with MCl See Chlorosmite, M

Osmium tetrachloride with MCl See Chlorosmate, M

Osmium sodium chloride, Na<sub>2</sub>OsCl<sub>6</sub>+2H<sub>2</sub>O

Very sol in H<sub>2</sub>O and in alcohol (Rosenheim, Z anorg 1899, **21** 133)

Osmium tetrafluoride, OsF<sub>4</sub>

Sol in H<sub>2</sub>O (Ruff, B 1913, **46** 948)

Osmium hexafluoride, OsF<sub>6</sub>

Decomp by H<sub>2</sub>O and cone H<sub>2</sub>SO<sub>4</sub> Sol in NaOH+Aq (Ruff, B 1913, **46** 945)

Osmium octofluoride, OsF<sub>8</sub>

Sol in H<sub>2</sub>O, but is somewhat hydrolyzed Sol in conc H<sub>2</sub>SO<sub>4</sub> with decomp Sol in NaOH+Aq (Ruff, B 1913, 46 944)

Osmium monohydroxide, OsO,  $xH_2O$ 

Insol in H<sub>2</sub>O Sl sol in KOH+Aq Slowly but completely sol in acids zelius)

Osmium dihydroxide, OsO<sub>2</sub>, H<sub>2</sub>O

Sol in HCl+Aq while still moist Insol in H<sub>2</sub>SO<sub>4</sub> or HNO<sub>3</sub>+Aq +2H<sub>2</sub>O Sol in HCl, HNO<sub>3</sub>, or H<sub>2</sub>SO<sub>4</sub>+

Aq while still moist (Claus and Jacoby)

Osmium sesquihydroxide, Os<sub>2</sub>O<sub>6</sub>H<sub>6</sub>

Sol in acids, and partly sol in KOH+Aq (Claus and Jacoby)

Osmium iodide, OsI4

Extremely deliquescent Sol in H<sub>2</sub>O of alcohol, but solution is unstable (Moraht and Wischin, Z anoig 3 153)

Osmium potassium nitrosochloride,  $K_2Os(NO)Cl_5$ 

Stable in aqueous solution Only sl attacked by hot HNO<sub>3</sub> (Wintrebert, A ch 1903, (7) **28** 132)

Osmium monoxide, OsO

Insol in H<sub>2</sub>O or acids (Claus and Jacoby)

Osmum  $d_i$ oxide, OsO<sub>2</sub> Insol in H<sub>2</sub>O or acids

Osmium sesquioxide, Os<sub>2</sub>O<sub>3</sub>

Insol in acids (Claus and Jacoby)

(v

Osmium trioxide, "Osmic acid," OsOs See Osmic acid

Osmium tetroxide, "Perosmic acid," OsO4 Slowly but abundantly sol in H<sub>2</sub>O Sol in alcohol and ether with gradual decomposition Sol in NH4OH+Aq, the solution undergoing decomposition on heating

Osmium oxide ammonia, OsO<sub>2</sub>, 2NH<sub>8</sub>+H<sub>2</sub>O See Oxyosmiumamine hydroxide

Osmium oxysulphide, Os<sub>3</sub>S<sub>7</sub>O<sub>5</sub>+2H<sub>2</sub>O Unstable

OsSO<sub>8</sub>+1½H<sub>2</sub>O Insol in H<sub>2</sub>O

Meyer, J pr (2) 16 77)

Os<sub>2</sub>O<sub>2</sub>S<sub>2</sub>+H<sub>2</sub>O Decomp and dissolved by
HNO<sub>3</sub>, HCl, or H<sub>2</sub>SO<sub>4</sub>+Aq (Moraht and
Wischin, Z anorg 3 153)

Osmium sulphide, Os<sub>2</sub>S<sub>3</sub> (?)

(Berzehus)

Min Laurite Insol in all acids, even in aqua regia

Osmium disulphide, OsS<sub>2</sub>

Sl sol in H2O, not more sol in alkali hydrates or carbonates+Aq Insol in alkalies after drying (Fremy, A ch (3) 12 521)

Osmium tetrasulphide, OsS<sub>4</sub>+xH<sub>2</sub>O

Insol in alkali sulphides, carbonates, or hydroxides+Aq Sol in cold dil HNOs+ Aq (Claus)

Osmocyanhydric acid, H<sub>4</sub>Os(CN)<sub>6</sub>

Easily sol in H<sub>2</sub>O and alcohol ether (Martius, A 117 361) Insol in

Barium osmocyanide, Ba<sub>2</sub>Os(CN)<sub>6</sub>+6H<sub>2</sub>O Easily sol in H<sub>2</sub>O and dil alcohol (M)

Barium potassium osmocyanide.  $BaK_2Os(CN)_6 + 3H_2O$ 

Efflorescent Sl sol in cold, easily in hot  $H_2O$ 

Ferric osmocyanide,  $Fe_4[Os(CN)_6]_3 + xH_2O$ Insol in H<sub>2</sub>O

Potassium osmocyanide, K<sub>4</sub>Os(CN)<sub>6</sub>+3H<sub>2</sub>O Moderately sol in boiling, less in cold H<sub>2</sub>O Insol in alcohol and ether

Osmosyl ammonium comps

See Oxyosmium amine comps

Osmyl pottasium bromide, K<sub>2</sub>OsO<sub>2</sub>Br<sub>4</sub>+  $2H_{\bullet}O$ 

Same properties as the chloride (Wintrebert, A ch 1903, (7) 28 94)

Osmyl potassium chloride, K<sub>2</sub>OsO<sub>2</sub>Cl<sub>4</sub>

Very sol in H<sub>2</sub>O Solution is stable o y in the presence of a small amt of HCl comp by hot conc HCl

+2H<sub>2</sub>O As the anhydrous salt (Win → bert, A ch 1903, (7) 28 86)

Osmvl ditetramme comps See Oxyosmium diamine comps

Oxamidosulphonic acid

See Hydroxylamine monosulphonic acid

Oximidosulphonic acid

See Hydroxylamine disulphonic acid

Oxvamidosulphonic acid

See Hydroxylamine sulphonic acid

Oxvammonium salts

See Hydroxylamine salts

Oxycobaltamines, acid comps (Maquenne, C R 96 344)

Are anhydrooxycobaltamine comps, with (Vortmann, M ch 6 404)

Oxycobaltamine chloride,

Co<sub>2</sub>(NH<sub>3</sub>)<sub>10</sub>O(OH)Cl<sub>4</sub>

(Vortmann, M ch 6 404) Co<sub>2</sub>(NH<sub>3</sub>)<sub>10</sub>O<sub>2</sub>Cl<sub>4</sub>, HCl+3H<sub>2</sub>O Is an ydrooxycobaltamine chloride, which see

 chloronitrate hydrochloride,  $\operatorname{Co_2(NH_3)_{10}(OH)(OOH)(NO_3)_2Cl_2}$ 4HCl+3H<sub>2</sub>O

Is anhydrooxycobaltamine chloronitr e. which see

— chlorosulphate,

 $\operatorname{Co}_2(\operatorname{NII}_3)_{10} \left( \begin{array}{c} \operatorname{OH} \\ \operatorname{O(OH)} \end{array} \right) (\operatorname{SO}_4) \subset l_2$ , 4HCl

Easily decomp

– 10dide,  $\operatorname{Co_2(NH_3)_{10}}\left( \begin{smallmatrix} 1 & 1 & 1 \\ O(OH) \end{smallmatrix} \right) I_4$ 

Sl sol in H() Decomp by much I 0 (Vortmann)

- nitrate,  $Co_2(NH_3)_{10}(OH)(OOH)(N_1)_4$  $+H_2O$ 

Decomp by H<sub>2</sub>O  $Co_2(N\dot{H}_3)_{10}(O\dot{H})(OO\dot{H})(NO_3)_4$ ,  $HNO_3$ 2H<sub>2</sub>O Decomp by H<sub>2</sub>O

· nıtratosulphate,  $\text{Co}_2(\text{NH}_8)_{10}(\text{OH})(\text{O OH})(\text{SO}_4)(\text{NO}_3)_2$ 4HNO<sub>3</sub>

Decomp at once by H<sub>2</sub>O

|                                                                                                                          |                                                                                                           | OXYG                                                                                             | EN                                     |                                                      | 63                                                   |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Oxycobaltamine s                                                                                                         | sulphate,                                                                                                 | 1                                                                                                | Absorption                             | on of O by H <sub>2</sub> O - C                      | ontinued                                             |
| ${ m Co_2(NH_3)_{10}O}$                                                                                                  | $_{2}(\tilde{\mathrm{SO}}_{4})_{2},\mathrm{H}_{2}\mathrm{SO}$                                             | 4+H <sub>2</sub> O                                                                               | t°                                     | β                                                    | βι                                                   |
| Verv sl sol m<br>easily sol m aci<br>(Maquenne, C R                                                                      | dified H <sub>2</sub> O<br><b>8 96</b> (344 )                                                             | lecomp , more Sol in acids                                                                       | 14<br>15<br>16                         | 0 3486<br>3415<br>3347                               | 0 3431<br>3358<br>3288                               |
| $\mathrm{Co_2(NH_8)_{10}}\left( \mathrm{O}_0^{\mathrm{O}} \right)$                                                       | ${ m COH \choose { m (OH)}} ({ m SO_4})_2 +$                                                              | +3H₂O                                                                                            | 17<br>18                               | 3283<br>3220                                         | 3220<br>3155                                         |
| $\mathrm{Co_2(NH_3)_{10}}\Big(\mathrm{O}_0^{-1}$                                                                         | $(OH)$ $(HSO_4)$                                                                                          | 4 Decomp                                                                                         | 19<br>20                               | 3161<br>3102                                         | 3093<br>3031                                         |
| violently by H <sub>2</sub> O                                                                                            |                                                                                                           |                                                                                                  | 21<br>22                               | 3044<br>2988                                         | 29 <b>70</b><br>2911                                 |
| Oxygen, O <sub>2</sub> 100 vols H <sub>2</sub> O abs (Otto Graham) Sol in 27 pts H Fremy) 100 vols H <sub>2</sub> O diss | 12O at ord tem                                                                                            | p (Pelouze and                                                                                   | 23<br>24<br>25<br>26<br>27             | 2934<br>2881<br>2831<br>2783<br>2736                 | 2853<br>2797<br>2743<br>2691<br>2641                 |
| 1 vol H <sub>2</sub> O at t° a<br>O gas, redu                                                                            | and 760 mm a<br>ced to 0° and                                                                             |                                                                                                  | 28<br>29<br>30                         | 2691<br>2649<br>2608                                 | 2592<br>2545<br>2500                                 |
| to V                                                                                                                     | t° V                                                                                                      | t° V                                                                                             | 31<br>32                               | 2572<br>2537                                         | 2459<br>2419                                         |
| 4 0 03717<br>5 0 03628                                                                                                   | 7   0 03465<br>8   0 03389<br>9   0 03317<br>10   0 03250<br>11   0 03189<br>12   0 03133<br>13   0 03082 | 14 0 03034<br>15 0 02989<br>16 0 02949<br>17 0 02914<br>18 0 02884<br>19 0 02858<br>20 0 02838   | 33<br>34<br>35<br>36<br>37<br>38<br>39 | 2503<br>2471<br>2440<br>2410<br>2382<br>2355<br>2330 | 2380<br>2342<br>2306<br>2270<br>2236<br>2203<br>2171 |
| (Buns                                                                                                                    | sen's Gasomet                                                                                             | erv)                                                                                             | 40<br>41                               | 2306<br>2280                                         | $\frac{2140}{2107}$                                  |
| 0 04115-0 001089<br>sen and Pauli, A                                                                                     | 99t +0 000022<br>93 21)<br>absorption of<br>at 12 6°=0 030                                                | fOm H <sub>2</sub> Oat                                                                           | 42<br>43<br>44<br>45<br>46<br>47       | 2256<br>2232<br>2209<br>2187<br>2166<br>2145         | 2075<br>2043<br>2012<br>1981<br>1952<br>1922         |
| Absorption of O  i e, the ame  760 mm) w  the liquid w  760 mm p                                                         | by $H_2O$ $\beta_1$<br>ount of gas (rewhich is absorbed when the baro<br>ressure, $\beta = 0$             | "="solubility," duced to 0° and bed by 1 vol of meter indicates pefficient of ab- bsorbed by the | 48<br>49<br>50<br>52<br>54<br>56       | 2126<br>2108<br>2090<br>2057<br>2026<br>1998         | 1894<br>1865<br>1837<br>1782<br>1728<br>1674         |
| liquid when<br>without the                                                                                               | the pressure                                                                                              | of the gas itself<br>liquid amounts                                                              | 58<br>60<br>62<br>64                   | 1971<br>1946<br>1921<br>1897                         | 1619<br>1565<br>1508<br>1450                         |
|                                                                                                                          | 760<br>of solvent at t                                                                                    | _                                                                                                | 66<br>68                               | 1874<br>1853                                         | $\frac{1392}{1332}$                                  |
| t°                                                                                                                       | β                                                                                                         | $\beta_1$                                                                                        | 70<br>72                               | 1833<br>1815                                         | 1270<br>1208                                         |
| 1                                                                                                                        | () 04890<br>4759                                                                                          | 0 04860<br>4728                                                                                  | 74<br>76<br>78                         | 1799<br>1785<br>1772                                 | 1144<br>1078<br>1010                                 |
| 2<br>3<br>4                                                                                                              | 4633<br>4512<br>4397                                                                                      | 4601<br>4479<br>4362                                                                             | 80<br>82<br>84                         | 1761<br>1752<br>1743                                 | 0939<br>0865<br>0788                                 |
| 4<br>5<br>6<br>7<br>8                                                                                                    | 4286<br>4181<br>4080                                                                                      | 4250<br>4142<br>4040                                                                             | 86<br>88                               | 1736<br>1729                                         | 0707<br>0622                                         |
| 8 9                                                                                                                      | 3983<br>3891                                                                                              | 3941<br>3847                                                                                     | 90<br>92<br>94                         | 1723<br>1717<br>1712                                 | 0532<br>0437<br>0337                                 |
| 10<br>11                                                                                                                 | 3802<br>3718                                                                                              | 3756<br>3670                                                                                     | 96<br>98                               | 1712<br>1708<br>1704                                 | 0231<br>0119                                         |
| 12<br>13                                                                                                                 | 3637<br>3560                                                                                              | 3587<br>3507                                                                                     | 100                                    | 7001<br>(Winkler B 24 36                             | 0000                                                 |
|                                                                                                                          |                                                                                                           |                                                                                                  |                                        | (11 THE G. 12 W# 90                                  | 00)                                                  |

Absorption of O by  $H_2O$  at t° and 760 mm  $\beta$  = coefficient of absorption

|             | •       | <b>-</b> |         |     |         |
|-------------|---------|----------|---------|-----|---------|
| t°          | β       | t°       | β       | t°  | β       |
| 0           | 0 04961 | 23       | 0 03006 | 46  | 0 02163 |
|             | 4838    | 24       | 2956    | 47  | 2139    |
| $\tilde{2}$ | 4720    | 25       | 2904    | 48  | 2115    |
| 1<br>2<br>3 | 4606    | 26       | 2855    | 49  | 2092    |
| 4           | 4496    | 27       | 2808    | 50  | 2070    |
| 4<br>5      | 4389    | 28       | 2762    | 51  | 2049    |
| 6           | 4286    | 29       | 2718    | 52  | 2029    |
| 6<br>7      | 4186    | 30       | 2676    | 53  | 2009    |
| 8           | 4089    | 31       | 2635    | 54  | 1990    |
| 9           | 3994    | 32       | 2596    | 55  | 1972    |
| 10          | 3903    | 33       | 2558    | 56  | 1955    |
| 11          | 3816    | 34       | 2521    | 57  | 1938    |
| 12          | 3732    | 35       | 2486    | 58  | 1922    |
| 13          | 3651    | 36       | 2452    | 59  | 1907    |
| 14          | 3573    | 37       | 2419    | 60  | 1893    |
| 15          | 3497    | 38       | 2387    | 65  | 1832    |
| 16          | 3425    | 39       | 2356    | 70  | 1787    |
| 17          | 3357    | 40       | 2326    | 75  | 1752    |
| 18          | 3292    | 41       | 2297    | 80  | 1726    |
| 19          | 3230    | 42       | 2269    | 85  | 1707    |
| 20          | 3171    | 43       | 2241    | 90  | 1693    |
| 21          | 3114    | 44       | 2214    | 95  | 1684    |
| 22          | 3059    | 45       | 2188    | 100 | 1679    |
|             |         |          |         |     |         |

(Bohr and Bock, W Ann (2) 44 318)

Coefficient of absorption of O by  $\rm H_2O$  between 0° and 30°=0 04890—0 0013413t+0 0000283t²—0 0000029534t³ (Winkler, l c) Solubility in  $\rm H_2O$  at 25°=0 03080, at 15°=0 03630 (Geffcken, Z phys Ch 1904, **49** 269)

Absorption of  $O_2$  by distilled  $H_2O$  at  $t^\circ$  a = ccm of  $O_2$  absorbed by 1 l of  $H_2O$  at  $t^\circ$  and 760 mm

(Fox, Trans Faraday Soc 1909, 5 74)

Solubility in H<sub>2</sub>O at various pressures

V=volume of the absorbing liquid

P = Hg-pressure in metres  $\lambda = coefficient$  of solubility

| v          | t°    | P                                                                                                                                                                                                    | λ                                                                                                                                                                                                                                                                                                                                                             |  |
|------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 33 320 ccm | 23°   | 0 9595<br>1 0941<br>1 2883<br>1 4976<br>1 7638<br>2 0838<br>2 5011<br>3 0402<br>3 8675<br>4 2504<br>4 6301<br>5 6973<br>6 1857<br>6 7343<br>7 3051<br>7 7138<br>8 1406                               | 0 029<br>0 029<br>0 029<br>0 029<br>0 029<br>0 029<br>0 029<br>0 028<br>0 028<br>0 028<br>0 028<br>0 027<br>0 027                                                                                                                                                                                                                                             |  |
| 32 003 ccm | 25 9° | 0 8611<br>0 9808<br>1 0833<br>1 2039<br>1 4112<br>1 6602<br>2 3854<br>2 6482<br>2 8995<br>3 2883<br>3 9133<br>4 2720<br>4 6905<br>5 0559<br>5 6141<br>6 0120<br>6 5687<br>7 1056<br>7 4729<br>8 1889 | 0 0284 0 0284 0 0284 0 0284 0 0284 0 0288 0 0282 0 0281 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 0 0270 |  |

(Cassuto, Phys Zeit 1904, 5 236)

Solubility of O in  $H_2O$  it  $25^\circ = 0.029$  (Findlay and Creighton, Bioch J 1911, 294)

Coefficient of absorption for  $H_2() = 0.033^{\circ}$  at 15°, 0.03375 at 153°, 0.03330 at 16.2 (Muller, Z phys Ch. 1912, **81**, 494.)

Solubility in H<sub>2</sub>O at t°

 $l_{760} =$ solubility of atmospheric  $O_2$  in  $H_2O$  at 760 mm and  $t^{\circ}$ 

| t°                                                         | l <sub>780</sub>                                                                                      | t°                                                                         | 1760                                                                                                 |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 10 26<br>9 99<br>9 73<br>9 48<br>9 25<br>9 02<br>8 80<br>8 59<br>8 39<br>8 20<br>8 02<br>7 84<br>7 67 | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25 | 7 51<br>7 36<br>7 21<br>7 07<br>6 93<br>6 80<br>6 67<br>6 55<br>6 43<br>6 32<br>6 21<br>6 10<br>6 00 |

(Carlson, Zeit angew Ch 1913, 26 714)

Solubility of atmospheric  $O_2$  in mixtures of distilled  $H_2O$  with sea water diminishes regularly with the proportion of sea water present (Clowes, J Soc Chem Ind 1904, **23** 359)

No of ccm of O<sub>2</sub> absorbed by 1 l of sea water from a free dry atmosphere of 760 mm pressure

| Cl<br>per<br>1000 | t= | =0° |   | 4° |   | 8  | 1 | .2° | ] | 16 | 2 | 30° | 2 | 4° | 2 | 8° |
|-------------------|----|-----|---|----|---|----|---|-----|---|----|---|-----|---|----|---|----|
| 0                 |    |     |   | 26 |   |    |   |     |   |    |   |     |   |    |   |    |
| 4                 | 9  | 83  | 8 | 85 | 8 | 04 | 7 | 36  | 6 | 80 | 6 | 33  | 5 | 91 | 5 | 53 |
| 8                 |    |     |   | 45 |   |    |   |     |   |    |   |     |   |    |   |    |
| 12                | 8  |     |   | 04 |   |    |   |     |   |    |   |     |   |    |   |    |
| 16                | 8  | 43  | 7 | 64 | 6 | 97 | 6 | 43  | 5 | 96 | 5 | 56  | 5 | 20 | 4 | 86 |
| 20                | 7  | 97  | 7 | 23 | 6 | 62 | 6 | 11  | 5 | 69 | 5 | 31  | 4 | 95 | 4 | 62 |
|                   |    |     |   |    |   |    |   |     | _ |    | _ |     | _ |    | _ |    |

(Fox, Irans Faraday Soc 1909, 5 77)

For O absorbed from the air, see also an, atmospheric, p 1

Absorption of  $O_2$  by acids+Aq M = content in gram-equivalents per litte S = solubility

HNO + Aq

| M                                                | S 25°                                               | S 15°                                                          |
|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|
| 0 492<br>0 494<br>1 00<br>1 008<br>1 88<br>1 901 | 0 03021<br>0 03016<br>0 02954<br>0 02963<br>0 02853 | 0 03478<br>0 03490<br>0 03354<br>0 03365<br>0 03175<br>0 03166 |

Absorption of O<sub>2</sub> by acids+Aq —Continued HCl+Aq

| M                                                  | S 25°                                                          | S 15°                                                          |
|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| 0 578<br>0 579<br>1 170<br>1 176<br>1 736<br>1 982 | 0 02963<br>0 02960<br>0 02817<br>0 02833<br>0 02733<br>0 02674 | 0 03431<br>0 03410<br>0 03217<br>0 03109<br>0 03069<br>0 02988 |

 $\frac{\mathrm{H_2SO_4}}{2}$  + Aq

| M                                                                                      | S 25°                                                                                           | S 15°                                                                                                      |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 0 489<br>0 527<br>0 977<br>1 017<br>1 896<br>1 829<br>2 947<br>3 512<br>4 951<br>5 293 | 0 02887<br>0 02875<br>0 02757<br>0 02745<br>0 02545<br>0 02577<br>0 02285<br>0 02198<br>0 01918 | 0 03366<br>0 03375<br>0 03210<br>0 03217<br>0 02886<br>0 02930<br>0 02584<br>0 02399<br>0 02174<br>0 02067 |
|                                                                                        |                                                                                                 |                                                                                                            |

(Geffcken, Z phys Ch 1904, 49 269)

Absorption of O by  $H_2SO_4+Aq$  at t°  $\alpha = \text{coefficient}$  of absorption

| Normality of the acid | t°       | α      |
|-----------------------|----------|--------|
| 0                     | 20 9     | 0 0310 |
| 4 9                   | 20 9     | 0 0195 |
| 8 9                   | 20 9     | 0 0155 |
| 10 7                  | $21 \ 2$ | 0 0143 |
| 20 3                  | 21 1     | 0 0119 |
| 24 8                  | 21 5     | 0 0103 |
| 29 6                  | 20-8     | 0 0117 |
| 34 3                  | 20-9     | 0 0201 |
| 35 8                  | 21 2     | 0 0275 |

(Bohr, Z phys Ch 1910, 71 49)

Absorption of O by N (OIH + \q M = content in grum-equivalents per little S = solubility

| M     | 52,0    | 51,     |
|-------|---------|---------|
| 0 559 | 0 02434 | 0 02777 |
| 0 601 | 0 02424 | 0 02754 |
| 1 033 | 0 02020 | 0 02291 |
| 1 059 | 0 01991 | 0 02262 |
| 2 077 | 0 01295 | 0 01479 |
| 2 089 | 0 01272 | 0 01456 |

| Absorption of O <sub>2</sub> by KOH+Aq |                                          |                                          |  |  |  |  |
|----------------------------------------|------------------------------------------|------------------------------------------|--|--|--|--|
| M                                      | S 25°                                    | S 15°                                    |  |  |  |  |
| 0 577<br>0 579<br>1 157<br>1 170       | 0 02447<br>0 02435<br>0 01920<br>0 01914 | 0 02791<br>0 02791<br>0 02191<br>0 02181 |  |  |  |  |

(Geffcken, Z phys Ch 1904, 49 270)

NaCl+Aq with a chlorine content of 1,930 per 100,000 dissolved 82 9% of the amount of O<sub>2</sub> dissolved by distilled H<sub>2</sub>O alone (Clowes, J Soc Chem Ind 1904, **23** 359)

Absorption of  $O_2$  by salts+Aq M = content in gram-equivalents per litre S = solubility

Absorption of  $O = by \frac{K_2SO_4}{2} + Aq$ 

| М                                | S 25                          | S 15°                                    |
|----------------------------------|-------------------------------|------------------------------------------|
| 0 499<br>0 506<br>0 968<br>0 970 | 0 02528<br>0 02530<br>0 02096 | 0 02944<br>0 02922<br>0 02395<br>0 02377 |

#### Absorption of O<sub>2</sub> by NaCl+Aq

| _                                                           |                                                                | -                                                                         |
|-------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|
| M                                                           | S 25                                                           | S 15                                                                      |
| 0 530<br>0 535<br>1 020<br>1 034<br>1 880<br>1 890<br>1 921 | 0 02598<br>0 02604<br>0 02226<br>0 02202<br>0 01663<br>0 01654 | 0 03045<br>0 03052<br>0 02601<br>0 02557<br>0 01898<br>0 01904<br>0 01869 |
|                                                             |                                                                |                                                                           |

(Geffcken, Z phys Ch 1904, 49 270)

Solubility of O<sub>2</sub> in NaCl+Aq
Data indicate cc O<sub>2</sub> dissolved per l at
760 mm and 0°

| t° | NaCl+Aq      | NaCl+Aq       | NaCl+Aq    |
|----|--------------|---------------|------------|
|    | lg mol per l | 2 g mol per l | sat at 20° |
| 0  | 6 50         | 3 14          | 1 27       |
| 5  | 5 80         | 2 84          | 1 22       |
| 10 | 5 25         | 2 59          | 1 17       |
| 15 | 4 77         | 2 41          | 1 12       |
| 20 | 4 39         | 2 25          | 1 07       |
| 25 | 4 06         | 2 13          | 1 02       |
| 30 | 3 76         | 2 01          | 0 97       |

(Winkler, Z anorg 1911, 24 342)

1 vol alcohol absorbs 0 28397 vol O at al temperatures between 0° and 24° (Bunsen

Absorption by alcohol (99 7%) at t°  $\beta$  = coefficient of absorption,  $\beta_1$  = solubility (See p. 635)

| 1. 4 |         | , p 000 ,          |
|------|---------|--------------------|
| t°   | β       | $oldsymbol{eta_1}$ |
| 0    | 0 23370 | 0 22978            |
| 1    | 0 23296 | 0 22878            |
| 2    | 0 23222 | 0 22777            |
| 3    | 0 23149 | 0 22675            |
| 4    | 0 23077 | 0 22572            |
| 5    | 0 23005 | 0 22469            |
| 6    | 0 22934 | 0 22365            |
| 7    | 0 22863 | 0 22260            |
| 8    | 0 22793 | 0 22155            |
| 9    | 0 22724 | 0 22047            |
| 10   | 0 22656 | 0 21937            |
| 11   | 0 22588 | 0 21827            |
| 12   | 0 22581 | 0 21715            |
| 13   | 0 22455 | 0 21601            |
| 14   | 0 22389 | 0 21484            |
| 15   | 0 22324 | 0 21365            |
| 16   | 0 22259 | 0 21245            |
| 17   | 0 22195 | 0 21122            |
| 18   | 0 22132 | 0 20994            |
| 19   | 0 22069 | 0 20862            |
| 20   | 0 22007 | 0 20733            |
| 21   | 0 21946 | 0 20600            |
| 22   | 0 21886 | 0 20459            |
| 23   | 0 21826 | 0 20317            |
| 24   | 0 21767 | 0 20172            |

(Timofejew, Z phys Ch 6 151)

Solubility of O2 in alcohol at 20° and 760 mm

| DOIGOZILIJ O                           | 02144100                             | ioi at 20 an                   | id 100 iiii                  |
|----------------------------------------|--------------------------------------|--------------------------------|------------------------------|
| Wt %<br>alcohol                        | Vol %<br>abs O <sub>2</sub>          | Wt %<br>alcohol                | Vol %<br>abs O <sub>2</sub>  |
| 0 0<br>9 09<br>16 67<br>23 08<br>28 57 | 2 98<br>2 78<br>2 63<br>2 52<br>2 49 | 33 33<br>50 0<br>66 67<br>80 0 | 2 67<br>3 50<br>4 95<br>5 66 |

(Lubarsch, W Ann 1889, (2) 37 525)

Solubility of O2 in methyl alcohol at to

| t                        | 1                                                   | t                    | 1                                        |
|--------------------------|-----------------------------------------------------|----------------------|------------------------------------------|
| 0<br>5<br>10<br>15<br>20 | 0 31864<br>0 30506<br>0 29005<br>0 27361<br>0 25574 | 25<br>30<br>40<br>50 | 0 23642<br>0 21569<br>0 16990<br>0 11840 |

(Levi, Gazz ch it 1901, 31 II, 513)

Solubility of  $O_2$  in ether at  $0^\circ = 0.4235$ , a  $10^\circ = 0.4215$  (Christoff, Z phys Ch. 1912 **79** 459)

### Solubility of O2 in acetone at to

| t°                       | I                                              | t°                   | 1                                    |
|--------------------------|------------------------------------------------|----------------------|--------------------------------------|
| 0<br>5<br>10<br>15<br>20 | 0 2997<br>0 2835<br>0 2667<br>0 2493<br>0 2313 | 25<br>30<br>40<br>50 | 0 2127<br>0 1935<br>0 1533<br>0 1057 |

(Levi, Gazz ch it 1901, 31 II, 513)

#### Absorption of O2 by chloralhydrate+Aq

 $t^{\circ}$  = temp of the solution P = % chlorally drate in the solution  $\beta t^{\circ}$  = coefficient of absorption at  $t^{\circ}$   $\beta 15^{\circ}$  = coefficient of absorption at 15°

 $\beta 20^{\circ} = \text{coefficient of absorption at } 20^{\circ}$ 

| t°                                                                   | P                                                                      | βt°                                                                                             | β 15°                                                                                           |
|----------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 18 3<br>16 9<br>15 4<br>16 6<br>12 8<br>16 2<br>15 9<br>17 2<br>16 9 | 22 9<br>28 0<br>36 6<br>38 6<br>51 3<br>58 44<br>70 0<br>80 85<br>80 9 | 0 02759<br>0 02690<br>0 02590<br>0 02402<br>0 02439<br>0 02350<br>0 02659<br>0 03200<br>0 03140 | 0 02940<br>0 02800<br>0 02560<br>0 02477<br>0 02339<br>0 02407<br>0 02710<br>0 03300<br>0 03250 |
|                                                                      |                                                                        |                                                                                                 | β 20°                                                                                           |
| 20 0<br>21 0<br>21 0<br>20 4<br>21 8<br>21 0<br>22 2                 | 16 9<br>32 0<br>52 9<br>61 08<br>65 5<br>71 4<br>78 0                  | 0 02795<br>0 02443<br>0 02375<br>0 02390<br>0 02500<br>0 02680<br>0 03090                       | 0 02795<br>0 02495<br>0 02325<br>0 02410<br>0 02580<br>0 02730<br>0 03280                       |

(Muller, / phys Ch 1912, 81 499)

#### Absorption of O by glycerinc+Aq

 $t^{\circ}$  = temp of the solution P = % glycerme in the solution  $\beta$   $t^{\circ}$  = coeff eight of absorption at  $t^{\circ}$   $\beta$  15° = coeff eight of absorption at 15°

| t°   | P    | βt°     | β 15°   |
|------|------|---------|---------|
| 12 2 | 20 5 | 0 02904 | 0 02742 |
| 12 5 | 25 0 | 0 02654 | 0 02521 |
| 14 6 | 37 3 | 0 02038 | 0 02022 |
| 13 5 | 45 0 | 0 01800 | 0 01744 |
| 12 4 | 52 0 | 0 01623 | 0 01570 |
| 12 1 | 71 5 | 0 01010 | 0 00950 |
| 13 3 | 88 5 | 0 00906 | 0 00886 |

(Muller)

Absorption of O2 by glucose+Aq

t°=temp of the solution

P = % glucose in the solution  $\beta$  t° = coefficient of absorption at t°  $\beta$  20° = coefficient of absorption at 20°

| t°   | P     | β t°    | β 20°   |
|------|-------|---------|---------|
| 21 2 | 10 84 | 0 02650 | 0 02690 |
| 21 5 | 20 7  | 0 02202 | 0 02250 |
| 19 9 | 33 8  | 0 01814 | 0 01815 |
| 20 5 | 51 9  | 0 01378 | 0 01390 |
| 21 7 | 58 84 | 0 01221 | 0 01250 |

(Muller)

Absorption of O<sub>2</sub> by sucrose+Aq

t°=temp of the solution

P = % sucrose in the solution

 $\beta$  t° = coefficient of absorption at t°  $\beta$  15° = coefficient of absorption at 15°

| t°   | P     | βt°     | β 15°   |
|------|-------|---------|---------|
| 15 3 |       | 0 03375 | 0 03400 |
| 16 2 |       | 0 03330 | 0 03397 |
| 16 0 | 12 1  | 0 02911 | 0 02969 |
| 15 6 | 24 38 | 0 02367 | 0 02396 |
| 16 6 | 28 44 | 0 02113 | 0 02181 |
| 15 6 | 42 96 | 0 01582 | 0 01600 |
| 16 2 | 49 25 | 0 01348 | 0 01380 |
| 17 2 | 50 0  | 0 01302 | 0 01359 |

(Muller)

Abundantly absorbed by oil of turpentine Oil of turpentine absorbs its own vol O when exposed two weeks to the air, but does not give it off on boiling (Brandes)

Absorbed by other oils, but this is decomposition rather than absorption, as the oils

are oxidized (See Storer's Dict )

100 vols arterial blood dissolve 10-13 vols

(Magnus)

Coefficient of absorption for petroleum = 0 202 at 20°, 0 229 at 10° (Gniewasz and Walfisz, Z phys Ch 1 70)

The author examined the solubility of O and  $N_2$  it low temp in alcohols ethers, acctone, CHCl<sub>3</sub>, petroleum, be nzene and various morganic liquids, at low temp the solubility of the  $N_2$  increases at the same rate as that of the  $O_2$  (Claude, C R 1900, 131 448)

## Oxydimercuriammonium bromate,

 $(NHg_2OH_2)BrO_3$ 

(Rammelsberg, Pogg 55 82)

---- carbonate,  $(NHg_2OH_2)_2CO_3 + \frac{1}{2}H_2O$ 

Insol in H<sub>2</sub>O Decomp by HCl+Aq only when conc Not decomp by boiling KOH+Aq Decomp by KI or K<sub>2</sub>S+Aq (Hirzel)

+H<sub>2</sub>O As above (H<sub>1</sub>rzel)

#### Oxydimercuriammonium chloride, (NHg<sub>2</sub>OH<sub>2</sub>)Cl

Is dimercuriammonium chloride. NHg<sub>2</sub>Cl+  $H_2O$ , which see

 oxytrimercuriammonium chloride,  $(NHg_2OH_2)Cl$ ,  $(NHg_3O_2H_2)Cl$  (?)

Insol in H<sub>2</sub>O Easily sol in dil HCl+Aq More difficultly sol in very dil H HNO<sub>3</sub>+Aq Insol in conc H<sub>2</sub>SO<sub>4</sub> H<sub>2</sub>SO<sub>4</sub> or Sol m boiling NH<sub>4</sub>Cl+Aq, or (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq Decomp by KOH+Aq (Schmieder)

---- chromate,  $(NHg_2OH_2)_2CrO_4$ 

Not decomp by KOH+Aq (Hirzel, J B **1852** 421)

--- mercuric chromate, (NHg<sub>2</sub>OH<sub>2</sub>)<sub>2</sub>CrO<sub>4</sub>, 4HgO, 3CrO<sub>3</sub>

Decomp by HNO<sub>3</sub> without going into solu

tion Easily sol in HCl (Hirzel) Composition is  $(NHg_2OH_2)_2O$ ,  $2CrO_3$ ,  $3[(NH_4)_2O$ ,  $2Cr_2O_3] = (NHg_2OH_2)_2O_7$ , 2CrO<sub>3</sub>,  $3(NH_4)_2Cr_2O_7$  (Hensgen, R t c 5 187) Probably (NHg<sub>2</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, 3(NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>+

 $2H_2O$ 

--- fluoride, acid, (NHg<sub>2</sub>OH<sub>2</sub>)F, HF (Finkener, Pogg 110 632) Probably NHg<sub>2</sub>F, HF+H<sub>2</sub>O

-hydroxide, (NHg OH<sub>2</sub>)OH = NHg<sub>2</sub>OH +

(Millon's base) Sl sol in H<sub>2</sub>O, especially if warm Sol in 13,000 pts H2O at 17°, and 1700 pts at 80° Insol in alcohol or ether (Gerresheim, A 195 373)

Insol in H<sub>2</sub>O or alcohol Sol in traces in NH<sub>4</sub>OH+Aq Not decomp by cold KOH+Aq, sl decomp if hot (Millon)

- ammonium iodate, (NHg<sub>2</sub>OH<sub>2</sub>)IO<sub>3</sub>, 2NH<sub>4</sub>IO<sub>8</sub>

Insol in H<sub>2</sub>O (Millon, A ch (3) **18** 410)

– 10d1de,  $(\mathrm{NHg_2OH_2})\mathrm{I}$ 

Sol in warm HCl+Aq Not decomp by boiling KOH+Aq Sol in warm KI+Aq (Rammelsberg, Pogg 48 170)

Correct formula is NHg<sub>2</sub>I+H<sub>2</sub>O (Ram melsberg)

--- nitrate, (NHg<sub>2</sub>OH<sub>2</sub>)NO<sub>3</sub>

Insol in H<sub>2</sub>O, not decomp by boiling KOH+Aq Sol in cold HCl+Aq, from which it is precipitated by H<sub>2</sub>O Sl sol without decomp in HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub>+Aq Easily sol in NH<sub>4</sub>OH+Aq (Souberran) Is dimercuriammonium nitrate, NHg<sub>2</sub>NO<sub>3</sub>

(Pesci, Gazz ch it 20 485)

ammonium nitrate, NHg<sub>2</sub>OH<sub>2</sub>)NO<sub>3</sub>,  $2NH_4NO_3+H_2O$ 

Decomp by H<sub>2</sub>O Kane, A ch 72 242) Is dimercuriammonium ammonium nitrate,  $NHg_2NO_3$ ,  $2NH_4NO_3+2H_2O$  (Pesci)

Oxydimercuriammonium oxide,  $(NHg_2OH_2)_2O$ 

Insol in H<sub>2</sub>O or alcohol, not attacked boiling cone KOH+Aq Sol in hot NH4] )8 + Aq, NH<sub>4</sub>Cl + Aq, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq, (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq lon, A ch (3) **18** 397)  $(NH_4)_2SO_4 +$ 

- mercuric phosphate,  $\mathrm{Hg}(\mathrm{NHg_2OH_2})\mathrm{I}$  )4 Insol in H<sub>2</sub>O Slowly sol in hot HNC Aq, not decomp by boiling with KOH+ but by KI or K2S+Aq Sol in HCl+A or much hot  $(NH_4)_2HPO_4+Aq$  (Hirzel)

- mercuric sulphite,  $(NHg_2OH_2)_2SO_3$ HgSO<sub>3</sub>

Insol in  $H_2O$  Sol in much  $(NH_4)_2SC$  + Aq Sol in HCl+Aq with decomposit n Insol in boiling KOH+Aq (Hirzel)

– sulphate,  $(NHg_2OH_2)_2SO_4$ 

Sol in traces in H<sub>2</sub>O Easily sol in HC or HNO<sub>3</sub>+Aq (Kane) Insol in HNO<sub>3</sub>+Aq

(Hırzel) Slowly sol in boiling cone H2SO4

zel)

Insol in conc, easily sol in dil H<sub>2</sub>SC + q (Schmieder, J pr **75** 147) Moderately sol in much (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> or h l-Αq

ing NH<sub>4</sub>Cl+Aq Not decomp by bor ig KOH+Aq (Hirzel)

Easily decomp by boiling with dil KOI +

(Schmieder) (Pesci) Does not exist

2NH<sub>3</sub>, 2HgO, SO<sub>3</sub>

See Dimercuriammonium sulphate

## Oxytramercuriammonium chloride, $(NHg_3O_2H_2)Cl$ (?)

Insol in H<sub>2</sub>O

- nitrate, (NHg<sub>3</sub>O<sub>2</sub>H<sub>2</sub>)NO<sub>3</sub>

Sol in cold HCl+Aq, from which it is 1 cipitated by NH<sub>4</sub>OH+Aq Sol in NH<sub>4</sub>OF Aq without decomp Not decomp by H2 1 or warm KOH+Aq (Pagenstecher)
Does not exist (Pesci, Gazz ch it **485**)

Oxytrimercuridiammonium sulphate, 2NH<sub>3</sub>, 3HgO, SO<sub>3</sub>

See Trimercuriammonium sulphate

Oxytrimercurioxydimercuriammonium sulphate,  $_{\mathrm{NH_2Hg_2O}}^{\mathrm{NH_2Hg_3O_2}}{>}_{\mathrm{SO_4}}$ 

in NH<sub>4</sub>Cl+Aq Completely sol (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq Sol in dil or conc HC + Aq, and very dil H<sub>2</sub>SO<sub>4</sub>+Aq Insol in H1 )<sub>3</sub> +Aq or conc H<sub>2</sub>SO<sub>4</sub> (Schmieder) Does not exist (Pesci)

Oxytetramercuriammonium mercuric nitrate (?), 2(NHg<sub>4</sub>O<sub>2</sub>)NO<sub>3</sub>, HgNO<sub>3</sub> (?)

Completely insol in HNO<sub>3</sub>+Aq Sol in warm HCl+Aq Slowly decomp by boiling KOH+Aq Gradually sol in hot conc NH<sub>4</sub>NO<sub>3</sub>+Aq (Hırzel)

Does not exist (Pesci, Gazz ch it 20

# Oxymitrosulphonic anhydride,

 $\sim S_2Q_5 < \stackrel{NO_2}{ONO_2} (?)$ 

Sol in H<sub>2</sub>O with decomp (Weber, Pogg **123,** 339)

## Oxyosmiumamine hydroxide (Osmosyldramine hydroxide),

OsO(NH<sub>3</sub>OH)<sub>2</sub> Insol in H<sub>2</sub>O

Sl sol in acids Sol in KOH+Aq When moist, sol in NH<sub>4</sub>OH+

## Oxyosmium diamine chloride (Osmyltetramine chloride), OsO<sub>2</sub>(N<sub>2</sub>H<sub>6</sub>Cl)<sub>2</sub>

SI sol in cold, more easily in hot H<sub>2</sub>O Insol in NH<sub>4</sub>Cl+Aq (Gibbs, Am Ch J **3** 233)

- chloroplatinate,  $O_5O_2(N_2H_6Cl)_2$ , PtCl<sub>4</sub> Sl sol in HO (Gibbs)
- hydroxide,  $OsO_2(N H_6OH)_2$ Known only in solution
- --- nitrate,  $OsO_2(N_2H_6NO_3)_2$
- sulphate,  $O_5O_2(N_2H_6)_2SO_4+H_2O_1$ (Gibbs, Am Ch J 3 233)

#### Oxyphosphuretted hydrogen (?), P<sub>4</sub>H(OH)

P4O of I everrer, and Goldschmidt has this formula according to Franke (J pr (2) 35 341) Decomp slowly by H<sub>2</sub>O or alkalies Forms pot issium salt, P4H(OK), sol in H2O

– hydro1od1de, P4H(()H), HI Decomp it 80°

## Sesquioxyplatisulphuric acid, Pt<sub>2</sub>O<sub>3</sub>, $35O_3$ , $5O_4H_2+11\frac{1}{2}H_2O$

Sol in H<sub>2</sub>O (Blondel, A ch 1905, (8) 6 113)

Barium sesquioxyplatisulphate, Pt<sub>2</sub>O<sub>3</sub>, 3SO<sub>3</sub>,  $SO_4Ba + 8H_2O$ 

Very sol in H<sub>2</sub>O (Blondel)

Potassium sesquioxyplatisulphate, Pt<sub>2</sub>O<sub>3</sub>,  $3SO_3$ ,  $SO_4\bar{K}_2+2\bar{H}_2O$ (Blondel)

Sodium sesquioxyplatisulphate, Pt2Os, 3SOs,  $SO_4Na_2 + 8H_2O$ 

(Blondel) Very sol in H<sub>2</sub>O

Oxysulphantimonic acid See Sulphoxyantimonic acid

# Oxysulpharsenic acid

See Sulphoxyarsenic acid

## Oxysulphazotic acid, $H_4S_4N_2O_{14} =$

(SO<sub>3</sub>H)<sub>3</sub> = N NO-SO<sub>3</sub>H Known only in its salts (Claus, A **158** 52, 194)

Has formula  $(SO_3H)_2N \underbrace{O}_{O}N(SO_3H)_2$ 

(Raschig, A 241 161)

Potassium oxysulphazotate, NO(SO<sub>3</sub>K)<sub>2</sub>

Insol in alcohol (Fremy, A ch (3) 15

According to Raschig the formula is

$$(SO_8K)_2N \underbrace{O}_O N(SO_8K)_2$$

Very sol in water, with rapid decomposi-(Raschig)

See also Peroxylaminesulphonate, potassium

#### Oxysulphotungstic acid See Sulphotungstic acid

## Oxysulphovanadic acid See Sulphoxyvanadic acid

## Ozone, Os

Not appreciably sol in H<sub>2</sub>O (Schonbein) Imparts its taste and properties to H<sub>2</sub>O (Williamson)

Later, Carius (B 5 520) found that 1000 vols H2O at 1-25° absorb 5 11 vols O3 (red to 0° and 760 mm) He also still later (A 174 1) found, by conducting the gis for 9-12 hours through H<sub>2</sub>O, that 1000 vols, H<sub>2</sub>O absorb a maximum of 28 160 vols O<sub>3</sub>. The ozonized oxygen used contained 3 44 vols O<sub>3</sub> in 100 vols O<sub>2</sub> Since gases are absorbed in proportion to their partial pressure, which is very small for the O<sub>s</sub>, the amount of absorption of water for the gas is very considerable Carrus calculated the coefficient of absorption at  $+1^{\circ}$  to be 0.834

Ozone is not at all absorbed by H<sub>2</sub>O, the H<sub>2</sub>O through which ozone had been passed gave no reactions for ozonc (Rammcisberg, B 6 603)

Schone (B 6 1224) corroborates Carus, and finds 881 vols to 1000 vols H<sub>2</sub>O as a maximum amount absorbed Sol in  $H_2O$  (Leeds, B 12 1831)

 $\rm H_2O$  takes up  $^2/_3$  of its vol of  $\rm O_3$  at 0° and 760 mm pressure and  $^1/_2$  of its vol at 12°, or about 15 times that of oxygen at the same pressure and temp (Mailfert, C R 1894, 119 951)

Solubility in H<sub>2</sub>O at t°

| Temp | Wt O2 dis<br>solved in 1 l<br>H2O | Wt Os in<br>gaseous mix<br>ture above<br>the solution | Coefficient<br>of solubility<br>of O <sub>3</sub> |
|------|-----------------------------------|-------------------------------------------------------|---------------------------------------------------|
| 0    | 39 4 mgr                          | 61 5 mgr                                              | 0 641                                             |
| 6    | 34 3                              | 61                                                    | 0 562                                             |
| 11 8 | 29 9                              | 59 6                                                  | 0 500                                             |
| 13   | 28                                | 58 1                                                  | 0 482                                             |
| 15   | 25 9                              | 56 8                                                  | 0 456                                             |
| 19   | 21                                | 55 2                                                  | 0 381                                             |
| 27   | 13 9                              | 51 4                                                  | 0 270                                             |
| 32   | 7 7 7                             | 39 5                                                  | 0 195                                             |
| 40   | 4 2                               | 37 6                                                  | 0 112                                             |
| 47   | 2 4                               | 31 2                                                  | 0 077                                             |
| 55   | 0 6                               | 19 2                                                  | 0 031                                             |
| 60   | 0 0                               | 12 3                                                  | 0 000                                             |

(Mailfert, C R 1894, 119 952)

Solubility of ozone in acidulated H<sub>2</sub>O

| Temp                          | Coefficient<br>of solubility<br>of ozone  | Composition of solution                                                                             |
|-------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 30°<br>33<br>42 7<br>49<br>57 | 0 240<br>0 224<br>0 174<br>0 156<br>0 096 | } 11 H <sub>2</sub> O+07 cc H <sub>2</sub> SO <sub>4</sub> 11 H <sub>2</sub> O+09 cc " 11 "+03 cc " |

(Mailfert)

0 00002 pt by weight is sol in 1 pt by weight H<sub>2</sub>O at ordinary temp and pressure

Ladenburg, B 1898, 31 2510

The solution of O<sub>3</sub> in H<sub>2</sub>O cannot be brought into equilibrium, because when the gas is blown through the liquid, a portion is continually decomposed, although the concentration remains constant (Inglis, Chem Soc 1903, 83 1012)

About 10 mg ozone are sol in 1 l  $H_2O$  at  $+2^{\circ}$ , 15 mg ozone are sol at  $+28^{\circ}$  (Moufang, C C 1911, II 1674)

Solubility in 0 1-N H<sub>2</sub>SO<sub>4</sub>

C solution C gas = 0 23 at 20°, 0 44 at 0° (Luther, Z Elektrochem 1905, **11** 833)

The absorption coefficient of the g is in 0 1 N H SO<sub>4</sub> solution is 0 487 (Rothmund, C C 1912 I, 1261)

Sol in H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq (Jeremin, B 11 988) Completely absorbed by oil of turpentine and oil of cinnamon (Soret, A ch (4) 17 113)

Dipalladamine chloride,  $Cl_2Pd_2(NH_3)_4Cl_4 = NH_3Cl_4$ 

 $\begin{array}{c} \mathrm{Cl-Pd} < \mathrm{NH_{3}Cl} \\ \mathrm{NH_{3}Cl} \\ \mathrm{Cl-Pd} < \mathrm{NH_{3}Cl} \\ \mathrm{NH_{3}Cl} \end{array}$ 

Sl sol in  $H_2O$  (Deville and Debray, C R 86 296)

Palladium, Pd

Not attacked by H<sub>2</sub>O Sl attacked HC+Aq, but Pd sponge or filmgs are eas dissolved in warm HCl+Aq, with access air HNO<sub>3</sub>+Aq of 1 2 sp gr dissolves slightly, but it is easily sol in HNO<sub>3</sub>+Aq 1 35 sp gr (Rose)

Easily sol in aqua regia Sl sol in cor but insol in dil HI+Aq Sol in conc but ing H<sub>2</sub>SO<sub>4</sub> Sol in boiling FeCl<sub>3</sub>+Aq S in HBr+Aq with a little HNO<sub>3</sub>

Insol in liquid NH<sub>3</sub> (Gore, Am Ch

1898, **20** 828

Palladium ammonium compounds

Depailadamme comps,  $Cl_2Pd_2(NH_3)_4Cl_4$ Pailadodiamme "Pd(NH $_3$ ) $_4Cl_2$ Palladosamme "Pd(NH $_3$ ) $_2Cl_2$ 

Palladıum dibromıde

Not known in pure state

Palladium bromide with MBr See Bromopalladite, M

Palladium tetrabromide with MBr See Bromopalladate, M

Palladous phosphorus bromide, Pd<sub>2</sub>P<sub>2</sub>Br<sub>10</sub> Properties as the corresponding chlori (Strecker, B 1909, **42** 1776)

Palladium subchloride, Pd<sub>2</sub>Cl<sub>2</sub>

Deliquescent Decomp by H<sub>2</sub>O, NH l, KI, or NH<sub>4</sub>OH+Aq Kane)
Sol in acetone Naumann, B 1904, 4328)

Palladium dichloride, PdCl2

Slowly but completely sol in H2O

+2H<sub>2</sub>O Not deliquescent when pre Slowly sol in HO Much more sol in FO containing HCl

Sol in acetona (Eidmann, C. C. 1899, I. 1014)

Sol in ethyl acet itc Naum inn B 19, 37 3601)

Palladium dichloride with MCl See Chloropalladite, M

Palladium tetrachloride with MCl

See Chloropalladate, M

Palladous phosphorus chloride, PdC 12, PC 3
Decomp by H<sub>2</sub>O into deliquese at P(O) 13
PdCl<sub>2</sub> Decomp by alcohol (Fink, C R
115 176)

Decomp by H<sub>2</sub>O Sol in CHCl<sub>3</sub> and C I<sub>6</sub> Insol in ligroin and CCl<sub>4</sub> (Strecker, B 1 19, 42 1775)

 $PdCl_2$ ,  $2PCl_3$  Sol in  $C_6H_6$ , and deec p by  $H_2O$  (Fink)

Palladous chloride carbon monoxide, PdCl2, 2CO

Decomp by heat (Fink, C R 1898, 126 **648**)

2PdCl<sub>2</sub>, 3CO Decomp by H<sub>2</sub>O Sol in CCl<sub>4</sub> (Fink)

#### Palladium diffuoride, PdF.

Sl sol in  $H_2O$  or HF+Aq Sl sol while moist, in  $NH_4OH+Aq$ , insol after drying, in  $NH_4OH+Aq$  Insol in boiling NaF or NaHF<sub>2</sub>+Aq (Berzelius)

#### Palladium hydride, Pd<sub>2</sub>H (?)

#### Palladous hydroxide, PdO, $xH_2O$ (?)

Easily sol in acids or excess of alkali hydrates, and carbonates+Aq Sol in hot NH<sub>4</sub>Cl+Aq (Rose) Insol in Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>, and Na<sub>2</sub>HPO<sub>4</sub>+Aq

(Claus)

#### Palladic hydroxide, $PdO_2$ , $xH_2O$

Slowly sol in acids Sol in conc HCl+Aq without decomp With dil HCl+Aq, Cl2 is evolved (Berzelius)

#### Palladous hydroxide hydroxylamine, $Pd(NH_3O)_4(OH)_2$

Sl sol in H<sub>2</sub>O Sol in dil HCl and in dil  $H_2SO_4$  (Zeisel, A 1907, **351** 445)

#### Palladous iodide, PdI<sub>2</sub>

Insol in H<sub>2</sub>O Can be detected as a brown coloration in presence of 400,000 pts H<sub>2</sub>O (Lassaigne)

Sl sol in HI+Aq Easily sol in KI+Aq

(Lassaigne, J ch med 11 57)

Insol in dil HCl+Aq, but slightly sol in saline solutions (Fresenius)

Sl sol in hot conc HNO<sub>3</sub>+Aq Sol in H<sub>2</sub>SO<sub>2</sub>+Aq, Cl<sub>2</sub>+Aq, Br<sub>2</sub>+Aq, I +Aq, and CN+Aq, also in HCN, and MCN+Aq Insol in dil H<sub>2</sub>SO<sub>4</sub>, HCl, H<sub>2</sub>PO<sub>4</sub>, HNO<sub>3</sub>, or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq, or in the K, Na, or NH<sub>4</sub> salts of those cids Insol in CuCl<sub>2</sub>, ZnCl<sub>2</sub>, or Pb(C  $H_3O_2$ )<sub>2</sub>+Aq Insol in KBr+Aq except in presence of a free mineral acid, but not Insol in sugar or starch+Aq, HC₂H₃O urie acid, alcohol, ether, or oil of lemon Somewhat sol in urine Eisily sol in NH4OH +Aq, even when dil with evolution of heat and decomposition (Kersten, A 87 28)

Insol in alcohol or ether (Naumann, B Sol in methyl rectate

1909, **42** 3790)

#### Palladous potassium iodide See Iodopalladite, potassium

#### Palladium suboxide, Pd<sub>2</sub>O

Decomp by acids into palladious salt and Pd (Kane, Phil Trans 1842, 1 276)

Insol in acids, even boiling aqua regia (Willm B 25 220)

Palladous oxide, PdO

Slowly sol in acids by boiling (Wohler, A 174 160)

Palladic oxide, PdO<sub>2</sub>

Very sl attacked by acids

#### Palladopalladic oxide, 4PdO, PdO<sub>2</sub>

Not attacked by aqua regia Pogg 141 528)

Palladous oxychloride, 3PdO, PdCl<sub>2</sub>+ 4H2O(?)

Sol in dil acids (Kane)

Palladous oxychloride ammonia, PdO, PdCl<sub>2</sub>,  $6NH_3(?)$ 

Sol in HCl+Aq 3PdO, PdCl<sub>2</sub>, 2NH<sub>3</sub>+3H<sub>2</sub>O (?) Ppt (Kane)

#### Palladium selenide, PdSe

Insol in HNO<sub>3</sub> and aqua regia (Rossler, A 180 240)

### Palladium subsulphide, Pd<sub>2</sub>S

Not attacked by acids except aqua regia, which attacks slightly (Schneider, Pogg **141** 530)

#### Palladium monosulphide, PdS

Insol in  $H_2O$  or  $(NH_4)_2S+Aq$ HCl+Aq Pptd in presence of 10,000 pts H<sub>2</sub>O (Fellenberg, Pogg **50** 65)

Sol in potassium thiocarbonate+Aq (Rosenbladt, Z anal 26 15)

A sol colloidal form was obtained in very

247)

dilute solution (Winnsinger, Bull Soc (2) **49** 452) Does not exist (Kritschenko, Z anorg 4

#### Palladium disulphide, PdS<sub>2</sub>

HNO<sub>3</sub> dissolves out part of the S Lisily sol in equalifying without separation of S (Schneider)

Palladium sulphide with M S

See Sulphopalladate, M

## Palladodiamine bromide, Pd(N<sub>2</sub>H<sub>6</sub>B<sub>1</sub>)<sub>2</sub>

Lasily sol in H₂O

--- bromopalladite, Pd(N<sub>2</sub>H<sub>6</sub>B<sub>1</sub>)<sub>2</sub>, PdBr<sub>2</sub>

Properties as the corresponding chloropalladite

--- carbonate

Sol in H<sub>2</sub>O

- chloride,  $Pd(N_2H_6Cl)_2$ Easily sol in H<sub>2</sub>O

Magnesium ----, MgPd(CN)<sub>4</sub>

Very sol in H<sub>2</sub>O

Magnesium ---- platinocyanide, MgPd(C)4, Palladodiamine chloropalladite, Pd(N<sub>2</sub>H<sub>6</sub>Cl)<sub>2</sub>,  $MgPt(CN)_4+14H_2O$ PdCl, "Vauquelin's red salt" Insol in cold H2O Extremely sol in H<sub>2</sub>O (Fischer) Sol in boiling H<sub>2</sub>O with decomp Sol in Potassium —,  $K_2Pd(CN)_4+3H_2O$ HCl or HNO3+Aq Ffflorescent Sol in H.O. +H<sub>2</sub>O Not efflorescent ---- fluoride Easily sol in H<sub>2</sub>O (Muller) Silver ----, Ag<sub>2</sub>Pd(CN)<sub>4</sub> fluosilicate Sodium ----, Na<sub>2</sub>Pd(CN)<sub>4</sub> Sl sol in cold easily in warm H<sub>2</sub>O Insol n alcohol Not efflorescent Sol in H<sub>2</sub>O  $+H_2O$ hydroxide, Pd(N<sub>2</sub>H<sub>6</sub>OH)<sub>2</sub> Palladoiodonitrous acid ol in H<sub>2</sub>O Potassium palladoiodonitrite,  $10d_1d_e$ ,  $Pd(N_2H_6I)_2$  $Pd(NO_{2})_{2}I_{2}K_{2}+3H_{2}O$ ol in H<sub>2</sub>O Effloresces in the air Decomp by H<sub>2</sub>O and dil acids (Ro nnitrate, Pd(N H<sub>6</sub>NO<sub>3</sub>)<sub>2</sub> heim, Z anorg 1900, 23 28) asily sol in H<sub>2</sub>O, HNO<sub>3</sub>, or NH<sub>4</sub>OH+Aq Insol in alcohol Palladonitrous acid - palladous nitrite,  $Pd(N_2H_6NO_2)_2$ , Potassium palladonitrite, K<sub>2</sub>Pd(NO<sub>2</sub>)<sub>4</sub>  $Pd(NO_2)_2$ Fasily sol in H2O Efflorescent, sol in H<sub>2</sub>O (Lang, J pr 3 415) ----- sulphate,  $Pd(N_2H_6)_2SO_4+H_2O$ Easily sol in H2O Insol in alcohol Silver palladonitrite, Ag<sub>2</sub>Pd(NO<sub>2</sub>)<sub>4</sub> Easily sol in hot H<sub>2</sub>O (Lang) - sulphite,  $Pd(N_2H_6)_2SO_3$ Sl sol in H<sub>2</sub>O Sodium ---, Na<sub>2</sub>Pd(NO<sub>2</sub>)<sub>4</sub> (Fischer) Palladochloronitrous acid Palladosamine bromide, Pd(NH<sub>3</sub>Br)<sub>2</sub> Potassium palladochloronitrite, Insol in cold, al sol in hot H2O E ∍lv  $Pd(NO_2)_2Cl_2K_2$ sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, H<sub>2</sub>SO<sub>3</sub>, K()H, NH<sub>4</sub>OH alkalı carbonates+Aq (Muller, A **86** or Sol in 2 pts hot, and 3 pts cold H2O (Vezes, C R 115 111) -- carbonate, Pd(NH<sub>3</sub>)<sub>2</sub>CO<sub>3</sub> Palladocyanhydric acid Moderately sol in H<sub>2</sub>O Ammonium palladocyanide, - chloride, Pd(NH3Cl)2 (NH<sub>4</sub>)<sub>2</sub>Pd(CN)<sub>4</sub> (?) Insol in HO but very gradually decc ip Sol in hot  $H_2O$  (Rossler, Z ch 1866 175) by boiling therewith Sol in warm HCl of HNO<sub>2</sub>+Aq So in Barium —, BaPd(CN)4+4H2O cold NH<sub>4</sub>OH+Aq Sol in KOH+Aq v hout evolution of NH<sub>3</sub> Not efflorescent Sol in H<sub>2</sub>O +2H<sub>2</sub>OFfflorescent Insol in I O Calcium —, CaPd(CN)<sub>4</sub>+4H O (Baubigny, A Suppl 4 253) Sol in H O - cyanide, Pd(NH<sub>3</sub>CN)<sub>2</sub> Cupric —, CuPd(CN)<sub>4</sub> Sol in NH<sub>4</sub>OH+Aa Ppt --- fluoride Lead ----, PbPd(CN)4 Known only in solution

- hydroxide, Pd(NH3OH)2

Easily sol in H<sub>2</sub>O Slowly decomp

boiling with H<sub>2</sub>O (Muller, A 86, 341)

Palladosamine iodide, Pd(NH<sub>3</sub>I)<sub>2</sub>

Insol in  $H_2O$  Sol in boiling HNO<sub>3</sub> with evolution of  $I_2$  (Fehling, A 39 106)

#### --- nutrate

Known only in solution, which decomp on evaporation

mitrite, Pd(NH<sub>3</sub>NO<sub>2</sub>)<sub>2</sub>
Moderately sol in H<sub>2</sub>O (Lang)

palladous nitrite, Pd(NH<sub>3</sub>NO<sub>2</sub>)<sub>2</sub>, Pd(NO<sub>2</sub>)<sub>2</sub>

Slowly sol in cold, easily in hot  $\mathrm{H}_2\mathrm{O}$  (Lang)

—— sulphite, Pd(NH<sub>3</sub>)<sub>2</sub>SO<sub>3</sub> Easily sol in H<sub>2</sub>O (Muller)

## Pentamine chromium compounds

See-

Bromopurpureochromium compounds Chloropurpureochromium compounds Iodopurpureochromium compounds Xanthochromium compounds Roseochromium compounds

## Pentamine cobaltic compounds

See-

Bromopurpureocobaltic compounds, Chloropurpureocobaltic compounds Nitratopurpureocobaltic compounds Nitratocobaltic compounds, Purpureocobaltic compounds Roseocobaltic compounds Sulphatopurpureocobaltic compounds Xanthocobaltic compounds

# Pentamine dicobaltic sulphite See Roseocobaltic cobaltic sulphite

Pentamine iridium compounds

See Iridopentamine, and Iridoaquopentamine compounds

## Pentamine rhodium compounds

Soo-

Bromopurpureorhodium compounds Chloropurpureorhodium compounds Iodopurpureorhodium compounds Nitratopurpureorhodium compounds Roseorhodium compounds Xanthorhodium compounds

#### Pentathionic acid, H<sub>2</sub>S<sub>5</sub>O<sub>6</sub>

Known only in aqueous solution Conc solution is decomp by boiling, but made stable by addition of acids

Sp gr of aqueous solution of pentathionic acid at 22° Sp gr 1 233 1 320 1 474 1 506  $\%H_2S_5O_6$  32 1 41 7 56 59 7

O<sub>6</sub> 32 1 41 7 56 59 7 (Kessler, Pogg **74** 279)

Does not exist (Spring, Bull Acad roy

Existence proven by Smith (Chem Soc 43 355)

Barium pentathionate, BaS<sub>5</sub>O<sub>6</sub>+2H<sub>2</sub>O

Easily sol in H<sub>2</sub>O Aqueous solution is precipitated by alcohol

Contains 3H<sub>2</sub>O (Lewes, C N 43 41)

Barrum pentathionate tetrathionate,  $BaS_5O_6$ ,  $BaS_4O_6+6N_2O$ 

Easily sol in  $\rm H_2O$  Not precipitated from aqueous solution by two vols alcohol (Ludwig, Arch Pharm (2) 51 264)

Cupric pentathionate, CuS<sub>5</sub>O<sub>6</sub>+4H<sub>2</sub>O

Easily sol in H<sub>2</sub>O (Debus, Chem Soc

53 360)  $H_2O$  (Debus, Chem Soc

Lead pentathionate, PbS<sub>5</sub>O<sub>6</sub>+4H<sub>2</sub>O Ppt

Potassium pentathionate,  $K_2S_5O_6$ 

Sol in  $H_2O$  (Rammelsberg, J B 1857)

Solution decomposes very quickly when neutral, but is more stable in presence of salts or acids

Sol in about 2 pts H<sub>2</sub>O Insol in alcohol (Debus, Chem Soc **53** 

295) + $H_2O$  (Shaw, Chem Soc **43** 351) + $1\frac{1}{2}H_2O$  (Debus, A **244** 76) + $2H_2O$  (Lewes, C N **43** 41)

#### Perarsenic acid

Sodium perarsenate, N iAsO<sub>4</sub> (Alvarez, C N 1906, **94** 270)

#### Perboric acid

Ammonium perborate, NH<sub>4</sub>BO<sub>3</sub>

(Constam and Bennett, Z anorg 1900, **25** 

+½H<sub>2</sub>O Stable in dry air 100 pts H O

at 17.5° dissolve 1.55 g anhydrous salt

Decomp in aqueous solution at ord temp

Decomp by dil and cone H.504 and by

Decomp by dil and cone H SO<sub>4</sub> and by HCl (Melikoff, B 1898, **31** 953) +H<sub>2</sub>O (Bruhat, C R 1905, **140** 508) Much more sol in H<sub>2</sub>O than the Na silt (Tanatar, Z phys Ch 1898, **26** 133)

+3H<sub>2</sub>O (Melkoff, B 1898, **31** 954) NH<sub>4</sub>BO<sub>3</sub>, NH<sub>4</sub>BO<sub>4</sub>+H<sub>2</sub>O (Petienko, C C **1902**, I 1192) Barrum perborate, Ba(BO<sub>8</sub>)<sub>2</sub>+7H<sub>2</sub>O Difficultly sol in H<sub>2</sub>O (Melikoff, B 1898, 31 954)

Cæsium perborate, CsBO<sub>3</sub>+H<sub>2</sub>O As NH<sub>4</sub> salt (Christensen)

Calcium perborate

Sl sol in  $\rm H_2O$  Decomp in water much more rapidly than the Ba salt (Melikoff, B 1898, **31** 954)

Copper perborate

Very unstable Insol in H<sub>2</sub>O (Melikoff, B 1898, **31** 954)

Nickel perborate

Very unstable Insol in H<sub>2</sub>O (Melikoff)

Potassium perborate, 2KBO<sub>3</sub>+H<sub>2</sub>O 1 25 pts are sol in 100 pts H<sub>2</sub>O at 0°, 2 5 pts, at 15° Insol in alcohol and ether (Girsewald.

B 1909, 42 867)

Potassium perborate hydrogen peroxide,  $2KBO_3$ ,  $H_2O_2$ 

070 pt is sol in 100 pts  $H_2O$  at 15° (Girsewald, B 1909, 42 868)

Potassium perdiborate, KB<sub>2</sub>O +2H<sub>2</sub>O Ppt (Bruhat, C R 1905, **140** 508)

Rubidium perborate, RbBO<sub>3</sub>+H<sub>2</sub>O
As Na salt (Christensen)

Sodium perborate, Na<sub>2</sub>B<sub>4</sub>O<sub>5</sub>+10H<sub>2</sub>O

100 g H<sub>2</sub>O dissolve 42 g at 11°,71 g ut 22°, 138 g at 32° (Jaubert C R 1904, **134** 796)

+4H<sub>2</sub>O Slowly decomp in cold solution, rapidly when boiled (Tanatar, Z phys Ch 1898, 26 132)

Sol in H<sub>2</sub>O 100 g H<sub>2</sub>O dissolve 1 17 g Aq solution decomp on warming (Melikoff, B 1898, **31** 679)

100 g H<sub>2</sub>O dissolve 2 55 g at 15°, 2 69 g at 21°, 2 85 g at 26°, 3 78 g at 32° (Jaubert and Lion, Rev gén Chim 1905, (7) 8 163)

Uranyl perborate, UBO<sub>4</sub> (Bruhat, C R 1905, **140** 508)

Perbromic acid, HBrO4

Known only in aqueous solution, which can be concentrated to a thick liquid on water bath Not decomp by HCl, SO<sub>2</sub>, or H<sub>2</sub>S (Kammerer, J pr 85 452, 90 190)
Does not exist (Mur, C N 33 256, MacIvor, C N 33 35)

Barium perbromate, Ba(BrO<sub>4</sub>)<sub>2</sub> Very sl sol in boiling H<sub>2</sub>O (Kammerer, J pr **90** 190)

Does not exist (Wolfram, A 198 95)

Potassium perbromate, KBrO<sub>4</sub>

Less sol in H<sub>2</sub>O than KBrO<sub>3</sub>, but more sol than KClO<sub>4</sub> (Kammerer, J pr **90** 190) Does not exist (Wolfram, A **198** 95)

Silver perbromate, AgBrO<sub>4</sub>

Sl sol in cold, more abundantly in hot H<sub>2</sub>O (Kammerer, J pr 90 190)

Does not exist (Wolfram, A 198 95)

Perbromoplatinocyanhydric acid, H<sub>2</sub>Pt(CN)<sub>4</sub>Br<sub>2</sub>+xH<sub>2</sub>O

Deliquescent Easily sol in  $H_2O$ , alcohol, and ether (Holst, Bull Soc (2) 22 347)

Aluminum perbromoplatinocyanide, Al<sub>2</sub>[Pt(CN)<sub>4</sub>Br<sub>2</sub>]<sub>3</sub>+22H<sub>2</sub>O Deliquescent Very sol in H<sub>2</sub>O

Ammonium —,  $(NH_4)_2Pt(CN)_4B_{12}$ Sol in  $H_2O$ 

Barium —, BaPt(CN)<sub>4</sub>Br<sub>2</sub>+5H<sub>2</sub>O Very sol in H<sub>2</sub>O or alcohol

Cadmium —,  $CdPt(CN)_4Br_2+xH_2O$ Very sol in  $H_2O$ 

Calcium —, CaPt(CN)<sub>4</sub>Br<sub>2</sub>+7H O Sol in H<sub>2</sub>O

Cobaltous —, CoPt(CN)<sub>4</sub>Br +5H ()
Sol in H () Sl sol in alcohol

Glucinum —, GlPt(CN)<sub>4</sub>Bi Deliquescent Sol in H<sub>2</sub>()

Ferrous —

Very sl sol in H2O

Lead —, PbPt( $(N)_4B_1 + 2H()$ Sl sol in H()

Lithium —, I 12Pt(C N)4B1 Deliquescent Sol in H2O

Magnesium —,  $MgPt(CN)_4Bi_2+iH_2O$ Sol in  $H_2O$ 

Nickel —, NiPt(CN)<sub>4</sub>Bi +rH () Sl sol in H<sub>2</sub>O Sol in NH<sub>1</sub>OH+Aq

Potassium —, K<sub>2</sub>Pt(CN)<sub>4</sub>Br<sub>2</sub> Sol in H<sub>2</sub>O +2H<sub>2</sub>O Efflorescent

#### Silver perbromoplatinocyanide, $Ag_2PtBr_2(CN)_A$

Ppt (Miolati, Gazz ch it 1900, 30 588)

Sodium —, Na<sub>2</sub>Pt(CN)<sub>4</sub>Br<sub>2</sub> Deliquescent Sol in H2O

Strontum —, SrPt(CN)<sub>4</sub>Br<sub>2</sub>+7H<sub>2</sub>O Sol in H<sub>2</sub>O

Zinc ---,  $ZnPt(CN)_4Br_2+5H_2O$ Not very sol in H<sub>2</sub>O

#### Percarbonic acid

#### Ammonium percarbonate, (NH<sub>4</sub>)<sub>2</sub>CO<sub>4</sub>+ $2H_2O$

Sol in H<sub>2</sub>O with evolution of NH<sub>3</sub> Insol in alcohol and ether (Kasanezky, C C **1902,** I 1263)

## Barium percarbonate, BaCO<sub>4</sub>

Insol in H<sub>2</sub>O (Merck, C C 1906, II

Decomp slowly in the air Not rapidly decomp by  $H_2O$  Rapidly decomp by acids (Wolffenstein, B 1908, 41 280)

#### Potassium percarbonate, K<sub>2</sub>CO<sub>4</sub>

Sol in H<sub>2</sub>O with decomp Sl sol in alcohol (v Hansen, Z Elektrochem 1897, 3 448)

K<sub>2</sub>C<sub>2</sub>O<sub>6</sub> Sol in H<sub>2</sub>O at 0° with only slight decomp but is decomp at ord temp sol in alcohol (Treadwell, Ch Z 1901, 25 1008)

#### Rubidium percarbonate, Rb<sub>2</sub>CO<sub>4</sub>, 2H<sub>2</sub>O<sub>2</sub>+ $H_2O$

Hydroscopic, decomp by H<sub>2</sub>O, pptd by alcohol

Rb<sub>2</sub>CO<sub>4</sub>, H O +2H O Hydroscopic, decomp by H<sub>2</sub>O, pptd by alcohol

Rb  $CO_4 + 2\frac{1}{2}H_2O$ Hydroscopic, decomp by HO, pptd by alcohol (Peltner, B 1909, **42** 1782

Rb C₂O<sub>ℓ</sub> (Constam Very deliquescent and Hansen, Z. Flektrochem 1897, 3 144)

## Sodium percarbonate, N<sub>12</sub>CO<sub>4</sub>+1½H<sub>2</sub>O Sol in HO with gradual decomp (Tana-

tar, B 1899, **32** 1544)

#### Sodium hydrogen percarbonate, 4Na<sub>2</sub>CO<sub>4</sub>, H<sub>2</sub>CO<sub>3</sub>

(Merck, Chem Soc 1908, 94 (2) Ppt 180)

#### Perchloric acid, HClO4

Combines with H<sub>2</sub>O with a hissing sound and evolution of much heat

Solution in H<sub>2</sub>O is very stable

When dil HGlO<sub>4</sub>+Aq is distilled, H<sub>2</sub>O and HClO4 distil off until a temp of 203° is reached, when an acid of constant composition containing 71 6-72 2% HClO<sub>4</sub> (=HClO<sub>4</sub> +2H<sub>2</sub>O) is obtained Forms hydrate HClO<sub>4</sub> +H<sub>2</sub>O, which is deliquescent, and dissolves in H<sub>2</sub>O with evolution of much heat HClO<sub>4</sub> is very unstable, HClO<sub>4</sub>+H<sub>2</sub>O more stable, and HClO4+2H2O is very stable (Roscoe, A 121 346)

## Sp gr of HClO<sub>4</sub>+Aq at 15°/4°

| Sp gr                                                                                                                                                                                                                   | HClO₄                                                                                                                                                                                                                                                                                                                                                   | Sp gr                                                                                                                                                                                                                                                             | нсіо4                                                                                                                                                                                                                                                                                                                               | Sp gr                                                                                                                                                                                                       | HClO.                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 005 1 010 1 015 1 020 1 035 1 030 1 035 1 040 1 045 1 055 1 060 1 065 1 075 1 080 1 085 1 100 1 105 1 110 1 115 1 120 1 125 1 130 1 145 1 155 1 160 1 165 1 175 1 180 1 185 1 190 1 195 1 200 1 205 1 210 1 225 1 230 | 1 00<br>1 90<br>2 77<br>3 61<br>4 43<br>5 6 07<br>6 88<br>9 68<br>9 28<br>10 06<br>10 83<br>11 53<br>13 08<br>11 53<br>13 13 08<br>14 56<br>16 72<br>17 45<br>18 16 00<br>16 72<br>17 45<br>18 18 88<br>19 57<br>20 26<br>21 23<br>22 29 95<br>24 30<br>24 94<br>25 57<br>26 27<br>26 82<br>27 44<br>28 05<br>29 86<br>30 45<br>31 61<br>32 18<br>33 74 | 1 235 1 240 1 245 1 255 1 260 1 255 1 260 1 265 1 270 1 285 1 290 1 285 1 300 1 305 1 310 1 315 1 345 1 350 1 350 1 365 1 360 1 365 1 360 1 375 1 380 1 385 1 360 1 365 1 370 1 375 1 380 1 385 1 340 1 415 1 420 1 425 1 430 1 435 1 440 1 445 1 450 1 455 1 460 | 33 29<br>33 34 40<br>34 95<br>36 03<br>36 56<br>37 08<br>38 60<br>39 60<br>40 59<br>41 50<br>38 40<br>40 59<br>41 50<br>42 49<br>42 42 43<br>43 44 45 26<br>44 45 26<br>45 45 16<br>46 61<br>47 47 49<br>48 48 48 49<br>49 49 49 49 49 49 49 49 49 49 49 49 48 80<br>49 68 60<br>50 50 51<br>51 51 51 51 51 51 52 51 55 53 31 54 11 | 1 465 1 470 1 475 1 480 1 485 1 490 1 495 1 500 1 505 1 510 1 515 1 520 1 525 1 540 1 555 1 560 1 565 1 575 1 580 1 585 1 595 1 600 1 605 1 615 1 620 1 625 1 630 1 645 1 650 1 655 1 660 1 655 1 670 1 675 | 54 50<br>54 89<br>55 18<br>55 56 32<br>56 69<br>57 06<br>57 41<br>58 51<br>58 17<br>58 54<br>58 91<br>59 66<br>60 04<br>60 78<br>61 15<br>61 52<br>61 89<br>62 63<br>63 00<br>63 37<br>64 12<br>64 50<br>66 67 13<br>67 51<br>67 51<br>67 59<br>68 68 69<br>69 40<br>69 77<br>70 15 |

(Emster, Z anorg 1907, **52** 278)

| S                                | Sp gr of HClO₄+Aq                    |                   |                                      |  |  |
|----------------------------------|--------------------------------------|-------------------|--------------------------------------|--|--|
| , HClO4                          | Sp gr<br>at 15°/4°                   | Sp gr<br>at 30°/4 | Sp gr<br>at 50°/4°                   |  |  |
| 11 14<br>35 63<br>55 63<br>69 81 | 1 0670<br>1 2569<br>1 4807<br>1 6708 | 1 2451<br>1 4637  | 1 0507<br>1 2292<br>1 4421<br>1 6284 |  |  |

(Emster, Z anorg 1907, 52 279)

Sp gr of HClO4+Aq

|                                                                      | Sp                                                                                                                   | gr                                                                                     |                                                                                                                      | @ b                                                                                                    |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| corre                                                                | ected                                                                                                                | uncor                                                                                  | rected                                                                                                               | % by wt<br>HClO4 in<br>the liquid                                                                      |
| 20°                                                                  | 50°                                                                                                                  | 20°                                                                                    | 50°                                                                                                                  | the liquid                                                                                             |
| 7676<br>7817<br>8059<br>7386<br>6471<br>5353<br>4078<br>2901<br>1778 | 1 7098<br>1 7259<br>1 7531<br>1 7690<br>1 7756<br>1 7619<br>1 7023<br>1 6110<br>1 5007<br>1 3779<br>1 2649<br>1 1574 | 1 7716<br>1 7858<br>1 8100<br>1 7425<br>1 6508<br>1 5386<br>1 4108<br>1 2927<br>1 1800 | 1 7312<br>1 7475<br>1 7751<br>1 7912<br>1 7979<br>1 7840<br>1 7237<br>1 6311<br>1 5194<br>1 3949<br>1 2804<br>1 1715 | 100<br>98 62<br>94 67<br>90 80<br>84 81<br>81 07<br>75 59<br>68 42<br>60 38<br>50 51<br>39 73<br>27 07 |

(v Wyk, Z anorg 1905, 48 45)

pt of HClO<sub>4</sub>+Aq at atmospheric pressure

| , by wt HClO4<br>in the liquid                                           | % by wt HClO <sub>4</sub><br>in the vapor | Initial bpt                                                         |
|--------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------|
| 72 4<br>70 06<br>65 2<br>61 2<br>56 65<br>50 67<br>38 90<br>24 23<br>0 0 | 72 4<br>40 11<br>6 06<br>0 9              | 203°<br>198 7<br>181 2<br>162 3<br>148 0<br>132 4<br>114 8<br>105 8 |

(v Wyk, Z anorg 1905, 48 33)

pt of  $HClO_4+Aq$  at 18 mm pressure

| % by wt HClO4 in the liquid                 | Bpt                     |
|---------------------------------------------|-------------------------|
| 100<br>94 8<br>92 0<br>84 8<br>79 8<br>70 5 | 16 0° 24 8 35 70 92 107 |
|                                             |                         |

(v Wyk, Z anorg 1905, 48 36)

 and boils at 200° (Serullas), has 1 72-1 82 sp gr and boils at 200° (Nativelle, J pr 26

Sol in alcohol with decomp, often explo-

sive  $+2\frac{1}{2}H_2O$  (v Wyck)  $+3H_2O$  (v Wyck)  $+3\frac{1}{2}H_2O$  (v Wyck)

#### Perchlorates

All perchlorates are sol in  $H_2O$ ,  $KClO_4$ ,  $RbClO_4$ , and  $CsClO_4$  somewhat difficultly They are all deliquescent, and sol in alcohol, excepting  $NH_4ClO_4$ ,  $KClO_4$ ,  $Pb(ClO_4)_2$ , and  $Hg_2(ClO_4)_2$  (Serullas, A ch (2) **46** 296)

#### Aluminum perchlorate, Al(ClO<sub>4</sub>)<sub>3</sub>+6H<sub>2</sub>O

Very deliquescent (Weinland, Z anorg 1913, 84 370)

Aluminum sodium perchlorate, AlNa(ClO<sub>4</sub>)<sub>4</sub> +12H<sub>2</sub>O

Sl hygroscopic (Weinland, Z anorg 1913, 84 370)

Sol in acetone (Naumann, B 1904, 37 4328)

#### Ammonium perchlorate, NH<sub>4</sub>ClO<sub>4</sub>

Permanent Sol in 5 pts H<sub>2</sub>O, somewhat sol in alcohol (Mitscherlich, Pogg **25** 300)

#### Solubility of NH<sub>4</sub>ClO<sub>4</sub> in H<sub>2</sub>O at t°

| t°                                      | G per l solution                                                   | Sp gr                                                       |
|-----------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|
| 0<br>20<br>40<br>60<br>80<br>100<br>107 | 115 63<br>208 45<br>305 77<br>390 50<br>481 86<br>570 06<br>591 15 | 1 059<br>1 099<br>1 128<br>1 158<br>1 193<br>1 216<br>1 221 |
|                                         |                                                                    |                                                             |

(Carlson, Festsk Stockholm 1911 262)

 $100~\rm g~H_2O$  dissolve 18.5 g  $\rm NH_4ClO_4$  (Hofmann, Hobald and Quoos, A 1912, 386 304 )

100 g sat solution in  $H_2O$  contain 1 735 (17 35?) g NH<sub>4</sub>ClO<sub>4</sub> at 14 2° (Thin and Cumming, Chem Soc 1915, 107 361)

Insol in conc HClO<sub>4</sub>+Aq

100 g sat solution in 98 8% ethyl alcohol contain 1 96 g NH<sub>4</sub>ClO<sub>4</sub> at 25  $2^{\circ}$  (Thin and Cumming)

Sol in acetone Eidmann, C C 1899, II 1014)

## Barium perchlorate, Ba(ClO<sub>4</sub>)<sub>2</sub>+4H<sub>2</sub>O

Deliquescent Easily sol in H<sub>2</sub>O and alcohol

+3H₂O H<sub>2</sub>O at t°

| t°         G per 100 g H₂O         Sp gr           0         206         1 782           20         289         1 912           40         358         2 009           60         432         2 070           80         497         2 114           100         564         2 155           120         645         2 195           140         758         2 230 | - |                              |                                        |                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------|----------------------------------------|----------------------------------------------------|
| 20     289     1 912       40     358     2 009       60     432     2 070       80     497     2 114       100     564     2 155       120     645     2 195                                                                                                                                                                                                      |   | t°                           | G per 100 g H <sub>2</sub> O           | Sp gr                                              |
|                                                                                                                                                                                                                                                                                                                                                                    |   | 40<br>60<br>80<br>100<br>120 | 289<br>358<br>432<br>497<br>564<br>645 | 1 912<br>2 009<br>2 070<br>2 114<br>2 155<br>2 195 |

(Carlson, Festsk Stockholm, 1911 262)

B<sub>1</sub>smuth perchlorate, (B<sub>1</sub>O)ClO<sub>4</sub>

Insol in H<sub>2</sub>O Easily sol in HCl or HNO<sub>3</sub> +Aq, less easily in  $H_2SO_4+$ Aq (Muir, C N **33** 15)

Cadmium perchlorate, Cd(ClO<sub>4</sub>)<sub>2</sub>

Sol in H2O and al-Very deliquescent cohol (Serullas, A ch 46 305) (Salvadori, C C 1912, II 414) +4H<sub>2</sub>O

+6H<sub>2</sub>O

Cadmium perchlorate ammonia,  $Cd(ClO_4)_2$ ,  $6NH_3$ 

Cd(ClO<sub>4</sub>)<sub>2</sub>, 4NH<sub>3</sub> (Salvadori, C C 1912, **II** 414)

Cæsium perchlorate, CsClO<sub>4</sub>

Very sl sol in H<sub>2</sub>O (Retgers, Z phys Ch **8.** 17)

Solubility in H<sub>2</sub>O 100 g H<sub>2</sub>O dissolve at  $42^{\circ}$ 8 5° 14° 33 7° 50° 5 47 g CsClO<sub>4</sub>, O 91 1 19 2 99 4 09

70°  $60^{\circ}$ 84° 99°

16 51 28 57 g CsClO₄ **7** 30 9 79 (Calzolan, Acc Sc Med Ferrara, 1911, 85 150)

## Solubility in H<sub>2</sub>O at t°

| t  | C per 100 g H () | Sp gr |
|----|------------------|-------|
| 5  | 0 97             | 1 007 |
| 25 | 2 05             | 1 010 |
| 80 | 17 05            | 1 084 |

(Carlson, Festsk Stockholm, 1911 262)

Calcium perchlorate,  $Ca(ClO_4)_2$ 

Very deliqueseent Very sol in H2O and alcohol (Scrullas, A ch 46 304)

Cerous perchlorate, Cc(ClO<sub>4</sub>)<sub>3</sub>+8H<sub>2</sub>O Very deliquescent (John)

Chromic perchlorate, Cr(ClO<sub>4</sub>)<sub>3</sub>+6H<sub>2</sub>O (Weinland, Z anorg Very hygroscopic

**19**13, **84** 371) (Wein-+9H<sub>2</sub>O Can be cryst from H<sub>2</sub>O land)

Solubility of Ba(ClO<sub>4</sub>)<sub>2</sub>+3H<sub>2</sub>O in | Cobaltous perchlorate, Co(ClO<sub>4</sub>)<sub>2</sub>+9H<sub>2</sub>O Solubility in H<sub>2</sub>O at t°

| t°                                                                                   | G anhydrous salt<br>in 100 ccm                                   | Sp gr of sat<br>solution at t /4°              |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|
| $ \begin{array}{r} -30 & 7 \\ -21 & 3 \\ 0 \\ +7 & 5 \\ 18 \\ 26 \\ 45 \end{array} $ | 83 14<br>90 57<br>100 13<br>101 92<br>103 80<br>113 45<br>115 10 | 1 5639<br>1 5658<br>1 5670<br>1 5811<br>1 5878 |

(Golblum and Terlikowsky, Bull Soc 1912, (4) **11** 146)

(Salvadori, Gazz ch it 1912,  $+6H_2O$ **42** (1) 458)

 $C_0(ClO_4)_2$ Cobalt perchlorate ammonia, 6NH<sub>3</sub>

 $Co(ClO_4)_2$ ,  $5NH_3$ 

 $Co(ClO_4)_2$ ,  $4NH_3$ , and  $+2H_2O$ 

 $Co(ClO_4)_2$ ,  $3NH_3$ , and  $+3H_2O$  $Co(ClO_4)_2$ ,  $3NH_3+2HO$ 

(Salvadori, Gazz ch it 1912, 42 (1) 458)

Cupric perchlorate, basic,  $Cu(ClO_4)_2$ ,  $Cu(OH)_2$ Ppt (Salvadori, C C 1912, II 414)

Cupric perchlorate, Cu(ClO<sub>4</sub>)<sub>2</sub>

Deliquescent Sol in H<sub>2</sub>O and alcohol (Serullas, A. ch 46 306)

+4H<sub>2</sub>O (Salvadori, C C 1912, II 414)

Cupric perchlorate ammonia, Cu(ClO<sub>4</sub>)<sub>2</sub>,  $4NH_3+2H_2O$ 

Not deliquescent Sol in NH<sub>4</sub>OH+Aq (Roscoe, A 121 346)

 $Cu(ClO_4)_2$ ,  $NH_3+H_2O$ 

Cu(ClO<sub>4</sub>)<sub>2</sub>, 2CuO+2H<sub>2</sub>O, NH<sub>3</sub> Cu(ClO<sub>4</sub>)<sub>2</sub>, 2CuO+2H O, 2NH<sub>3</sub>

 $Cu(ClO_4)_2$ ,  $Cu(OH)_2 + 2H_2O$ ,  $6NH_3$ 

 $Cu(ClO_4)_2$ ,  $Cu(OH)_2+2HO$ , 4NH,

(Salvadori, C C 1912, II 414)

Didymium perchlorate,  $D_1(ClO_4)_3 + 9H_2O$ Very deliquescent - Very sol in H () and alcohol (Cleve)

Erbium perchlorate, Fr(ClO<sub>4</sub>)<sub>3</sub>+8H O Very deliquescent

Glucinum perchlorate,  $Gl(ClO_4)_2+4H_2O$ Very deliquescent, and sol in H<sub>2</sub>O (Atterberg)

Hydrazine perchlorate,  $(N_2H_4)(HClO_4)$  +  $3H_2O$ 

11 of sat solution in H2O contains 4172 g at 18°, sp gr = 1 264, 669 g at 35°, sp gr = 1 391 (Carlson, Festsk Stockholm, 1911 262)

825)

Indium perchlorate, In(ClO<sub>4</sub>)<sub>3</sub>+8H<sub>2</sub>O

Deliquescent  $\rm H_2O$  solution decomp at  $40^\circ$  with separation of basic salt. Sol in  $\rm H_2O$  and easily forms sat solutions. Sol in abs alcohol, but much less sol in ether (Mathers, J. Am. Chem. Soc. 1908, 30 212.)

#### Iodine perchlorate, I(ClO<sub>4</sub>)<sub>3</sub>+2H<sub>2</sub>O

Decomp by  $\rm H_2O$  Indifferent toward organic solvents (Fichter, Z anorg 1915, 91 135)

Iron (ferrous) perchlorate, Fe(ClO<sub>4</sub>)<sub>2</sub>
Tolerably permanent, sol in H<sub>2</sub>O (Serullas, A ch 46 335)

Iron (ferric) perchlorate, Fe(ClO<sub>4</sub>)<sub>3</sub> Sol in H<sub>2</sub>O (Serullas)

Iron (ferric) sodium perchlorate,  $[Fe(ClO_4)_4]Na+6H_2O$ 

Hydroscopic Can be cryst from  $\rm H_2O$  (Weinland, Z anorg 1913, 84 366)

Lanthanum perchlorate, La(ClO<sub>4</sub>)<sub>3</sub>+9H<sub>2</sub>O
Extremely deliquescent Sol in H<sub>2</sub>O and absolute alcohol (Cleve)

Lead perchlorate, basic, 2PbO,  $Cl_2O_7 + 2H_2O$ 

Decomp by H<sub>2</sub>O into an insol more basic salt, and sol Pb(ClO<sub>4</sub>)<sub>2</sub> (Marignac)

Lead perchlorate, Pb(ClO<sub>4</sub>)<sub>2</sub>+3H<sub>2</sub>O

Permanent, extremely easily sol in H<sub>2</sub>O (Roscoe, A **121** 356) Sol in about 1 pt H<sub>2</sub>O (Serullas)

Lithium perchlorate, LiClO<sub>4</sub>

Deliquescent Sol in H<sub>2</sub>O and alcohol (Serullas)

+3H<sub>2</sub>O (Wyrouboff, Zeit Kryst 10 626)

Magnesium perchlorate, Mg(ClO<sub>4</sub>)<sub>2</sub>

Deliquescent, and sol in H<sub>2</sub>O and alcohol (Serullas)

 $+6\mathrm{H}_2\mathrm{O}$  (Weinland, Z anorg 1913, 84 372)

Manganous perchlorate, Mn(ClO<sub>4</sub>)<sub>2</sub>

Very deliquescent Sol in  $H_2O$  and alcohol (Serullas, A ch 46 335) +6 $H_2O$  Sol in 0 342 pts  $H_2O$  (Salvadori, C C 1912, II 414)

Manganous perchlorate ammonia,  $Mn(ClO_4)_2$ ,  $5NH_3+H_2O$ 

Sol in HCl insol in HNO<sub>3</sub> (Salvadori, C C 1912, II 414)

Mercurous perchlorate,  $(HgClO_4)_2+4H_2O$ Very sol in  $H_2O$  Gradually decomp by H<sub>2</sub>O Decomp by alcohol (Chikashigé, Chem Soc 1895, **67** 1016) +6H<sub>2</sub>O Very deliquescent (Roscoe, A **121** 356) Permanent (Serullas)

Mercuric perchlorate, basic, HgO, 2Hg(ClO<sub>4</sub>)<sub>2</sub>
Anhydrous Ppt Insol in either HCl or
HNO<sub>3</sub> Decomp and dissolved by a mixture
of the two (Chikashigé, Chem Soc 1905,
87 824)

+12H<sub>2</sub>O Very sol in H<sub>2</sub>O (Chikashigé) 2HgO, Hg(ClO<sub>4</sub>)<sub>2</sub>

a-salt Decomp by H<sub>2</sub>O Sol m acids (Chikashigé, Chem Soc 1895, 67 1015)
β salt Insol in H<sub>2</sub>O, insol in HCl or HNO<sub>3</sub> (Chikashigé, Chem Soc 1905, 87

Mercuric perchlorate, Hg(ClO<sub>4</sub>)<sub>2</sub>

Very deliquescent Sol in H<sub>2</sub>O, sl sol with decomp in alcohol (Serullas, A ch 34 243)
+6H<sub>2</sub>O Very hygroscopic Very sol in H<sub>2</sub>O Slowly decomp by H<sub>2</sub>O, more easily

H<sub>2</sub>O Slowly decomp by H<sub>2</sub>O, more easily by alcohol (Chikashigé, Chem Soc 1895, 67 1014)

Mercuric perchlorate bromide, HgClO<sub>4</sub>Br

Decomp by  $H_2O$  (Borelli, Gazz ch it 1908,  $\pmb{38}$  (2) 421 )

 $\begin{array}{ccc} \textbf{Mercuric} & \textbf{perchlorate} & \textbf{cyanide,} & Hg(ClO_4)_2, \\ & & Hg(CN)_2 \end{array}$ 

Very sol in H<sub>2</sub>O Sol in alcohol (Borelli)

Mercuric perchlorate iodide, Hg(ClO<sub>4</sub>)I

Deliquescent Decomp by H<sub>2</sub>O Sol in much alcohol Decomp by HNO<sub>3</sub> Completely sol in KI or KCN+Aq (Borelli)

Mercuric perchlorate sulphocyanide, Hg(ClO<sub>4</sub>)<sub>2</sub>, Hg(SCN)<sub>2</sub>

Insol in H<sub>2</sub>O and conc acids Sol in aqua regia (Borelli) +6H<sub>2</sub>O (Salvadori, C C **1912**, II 414)

Nickel perchlorate, Ni(ClO<sub>4</sub>)

Deliquescent easily sol in alcohol and H<sub>2</sub>O (Groth, Pogg 133 226)

Solubility in HO it to

| t°                                                                                  | C anhydrous<br>salt in 100 ccm                                   | bp gr of the                                   |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|
| $ \begin{array}{rrrr}30 & 7 \\21 & 3 \\ 0 \\ +7 & 5 \\ 18 \\ 26 \\ 45 \end{array} $ | 89 98<br>92 48<br>104 55<br>106 76<br>110 05<br>112 15<br>118 60 | 1 5726<br>1 5755<br>1 5760<br>1 5841<br>1 5936 |

(Golblum and Terlikowsky, Bull Soc 1912, (4) 11 147)

(Golblum and Terlikowsky) +5H<sub>2</sub>O $+6H_2O$ (Salvadori, C C 1912, II 414) (Golblum and Terlikowsky) +9H<sub>2</sub>O

Nickel perchlorate, ammonia, Ni(ClO<sub>4</sub>)<sub>2</sub>, 6NH<sub>8</sub>

(Salvadori) Ppt

Nitrosyl perchlorate, NO O ClO<sub>3</sub>+H<sub>2</sub>O Ppt, sl hydroscopic, decomp by H<sub>2</sub>O (Hofmann, B 1909, 42 2032)

Platinum perchlorate, Pt<sub>6</sub>ClO<sub>9</sub>+15H<sub>2</sub>O Insol in H<sub>2</sub>O (Prost, Bull Soc (2) 46 156)

## Potassium perchlorate, KClO<sub>4</sub>

Sol in 579 pts  $\rm H_2O$  at 213° (Longuinine A 121 123) in 65 pts  $\rm H_2O$  at 15 (Serullas A ch (2) 46 297) in 88 pts  $\rm H_2O$  at 10° in 55 pts  $\rm H_2O$  at 100° (Hutstein J B 1851 331)

Solubility in H<sub>2</sub>O

1 pt KClO<sub>4</sub> dissolves in 142 9 pts H<sub>2</sub>O at  $6^{\circ}$ , and solution has sp gr = 1 0005, in 52 5 pts H<sub>2</sub>O at 25°, and solution has sp gr = 10123, in 155 pts H2O at 50°, and solution has sp gr = 1 0181, in 5 04 pts  $H_2O$  at 100° and solution has sp gr = 1 0660 (Muir, C

1 l H<sub>2</sub>O dissolves 78 07 millimols KClO<sub>4</sub> at 10°, 1204 millimols at 20°, 1799 millimols at 30° (Noyes and Sammet, Z phys Ch 1903, 43 538)

1 l H<sub>2</sub>O dissolves 0 1475 mol KClO<sub>4</sub> at 25° (Rothmund, Z phys Ch 1909, 69 539)

Solubility in H<sub>2</sub>O at t°

| t°                    | ( K(l() <sub>4</sub><br>in 100 g<br>H () | t°             | G KClO <sub>4</sub><br>in 100 g<br>H O |
|-----------------------|------------------------------------------|----------------|----------------------------------------|
| 0<br>10<br>15<br>20 5 | 0 70<br>1 14<br>1 54<br>1 90             | 50<br>70<br>99 | 6 45<br>12 3<br>22 2                   |

(Calzolui, Acc Sci Med Ferrara, 1911, 85 150)

| t   | ( per 100 g H O | Sp gr |
|-----|-----------------|-------|
| 0   | 0 79            | 1 007 |
| 20  | 1 80            | 1 011 |
| 40  | 4 81            | 1 022 |
| 60  | 8 71            | 1 033 |
| 80  | 14 78           | 1 053 |
| 100 | 20 98           | 1 067 |

(Carlson, Festsk Stockholm, 1911 262)

1 l H<sub>2</sub>O dissolves 0 1481 equivalents KClO<sub>4</sub> at 25° (Noyes and Boggs, J Am Chem Soc 1911, 33 1652

tains 2 085 g KClO4 at 25 2° (Thin and Cumming, Chem Soc 1915, 107 361)

KClO4 19 sol in 22 C pts H.O at ord temp, and 400 pts at 100°, in 296 pts NH4OH+ Aq (conc) at ord temp, m 30 4 pts NH<sub>4</sub>OH +Aq (1 vol conc +3 vols H<sub>2</sub>O) at ord temp, in 224 pts HNO<sub>3</sub>+Aq (1 vol conc + 5 vols H2O) at ord temp, and 500 pts at 100°, in 30 4 pts HCl+Aq (1 vol conc + 4 vols H2O) at ord temp, 45 2 pts HC2H3O2 +Aq (1 vol commercial acid+1 vol H2O) at ord temp, in 24 4 pts NH<sub>4</sub>C<sub>2</sub>H<sub>5</sub>O<sub>2</sub>+Aq (dil HC<sub>2</sub>H<sub>5</sub>O<sub>2</sub>+dil NH<sub>4</sub>OH+Aq) at ord temp, and 6 00 pts at 100°, in 25 6 pts NH<sub>4</sub>Cl+Aq (1 pt NH<sub>4</sub>Cl+ 10 pts H<sub>2</sub>O) at ord temp, and 6 00 pts at 100°, in 16 0 pts NH<sub>4</sub>NO<sub>3</sub>+Aq (1 pt NH<sub>4</sub>NO<sub>3</sub>+10 pts H<sub>2</sub>O) NH<sub>4</sub>NO<sub>3</sub>+Aq (1 pt NH<sub>4</sub>NO<sub>5</sub>+100°, in 25 6 at ord temp, and 4 00 pts at 100°, in 25 6 N<sub>2</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+ pts  $NaC_2H_3O_2+Aq$  (conc  $HC_2H_3O_2+Na_2CO_3+4$  vols  $H_2O$ ) at ord temp, and 7 00 pts at  $100^\circ$ , in 29 2 pts  $Cu(C_2H_3O_2)_2+$ Aq (Stolba, Z anal 2 390) at ord temp, and 700 pts at  $100^\circ$ , in 272 pts cane sugar (1 pt +10 pts  $H_2O$ ) at ord temp, in 368 pts grape sugar (1 pt +10 pts H<sub>2</sub>O) at ord temp (Approximate) (Pearson, Zeit Chem **1869** 662 )

# Solubility of KClO4 in HClO4 at 25 2°

| 0 01 1 999<br>0 10 1 485<br>1 00 0 527 | Normality of HClO4 | % KClO4 |
|----------------------------------------|--------------------|---------|
|                                        | 0 10               | 1 485   |

(Thin and Cumming, Chem Soc 1915, 107 361)

# Solubility in KCl+Aq at 25°

| Concentration of KCl  | Solubility of KClO <sub>4</sub> |
|-----------------------|---------------------------------|
| Equivalents per litre | Equivalents per litre           |
| 0 04973               | 0 1282                          |
| 0 09933               | 0 1123                          |
| OT I Pogge I A        | m Chem Soc 1911.                |

(Noves and Boggs, J Am Chem Soc 1911, **33** 1652)

# Solubility in K SO<sub>4</sub>+Aq at 25°

| [Concentration of K 5()4 | Solubility of KClO <sub>4</sub> |
|--------------------------|---------------------------------|
| Equivalents per litre    | Equivalents per litre           |
| 0 04976                  | 0 1315                          |
| 0 09922                  | 0 1181                          |

(Noves and Boggs )

Very sl sol in abs alcohol, and insol if alcohol contains trace of an acetate (Roscoe) Insol in alcohol of 0 835 sp gr (Schlosing, C R 73 1269)

Sol in 6400 pts 97 2% alcohol, in 5000 pts 958% alcohol, in 2500-3000 pts 90% alcohol, in 25,000 pts alcohol-ether (2 pts 100 cc of sat solution of KClO<sub>4</sub> in H<sub>2</sub>O con- 97% alcohol 1 pt ether) Practically insol

m an alcoholic solution of HClO<sub>4</sub> (Wenze' Z angew Ch 1891 691)

Solubility of KClO<sub>4</sub> in ethyl alcohol+Aq at 25 2°

| Vol % alcohol | G KClO <sub>4</sub><br>sol in 100 g alcohol |
|---------------|---------------------------------------------|
| 51 2          | 0 754                                       |
| 93 5          | 0 051                                       |
| 98 8          | 0 019                                       |

(Thin and Cumming, Chem Soc 1915, 107 361)

Solubility in organic compds +Aq at 25°

| condition in organic comp                                                                                                                                                                                                         | 7 LLQ 20 20                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solvent                                                                                                                                                                                                                           | Mol KClO4 sol in<br>1 litre                                                                                                                                                                |
| 0 5-N methyl alcohol  "ethyl alcohol propyl alcohol tert amyl alcohol acetone ether glycol glycerine urea ammonia dethylamine pyridine urethane formamide acetamide acetamide acetamide aceta acid phenol methylal methyl alcohol | 0 1402<br>0 1356<br>0 1343<br>0 1279<br>0 1451<br>0 1336<br>0 1416<br>0 1404<br>0 1510<br>0 1474<br>0 1342<br>0 1410<br>0 1400<br>0 1539<br>0 1447<br>0 1462<br>0 1362<br>0 1400<br>0 1429 |
|                                                                                                                                                                                                                                   |                                                                                                                                                                                            |

(Rothmund, Z phys Ch 1909, 69 539)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1910, 43 314)

#### Potassium rubidium perchlorate, KRb<sub>2</sub>(ClO<sub>4</sub>)<sub>3</sub>

15 5 g are contained in 1 l solution sat at 20°, sp gr = 1 013 (Carlson)

#### Rubidium perchlorate, RbClO<sub>4</sub>

Sol in 92 1 pts  $H_2O$  at 21 3° (Longuinine, A 121 123)

1 pt sol in 92 1 pts H<sub>2</sub>O at 21° as compared with 1 pt KClO<sub>4</sub> sol in 57 9 pts H<sub>2</sub>O at 21° (Erdmann, Arch Pharm 1894, **232** 23)

Solubility in H<sub>2</sub>O at t°

|                      | Soldonity in 1120 20 t                               |                        |                                                      |  |  |  |
|----------------------|------------------------------------------------------|------------------------|------------------------------------------------------|--|--|--|
| t°                   | G RbClO <sub>4</sub><br>in 100 g<br>H <sub>2</sub> O | t                      | G RbClO <sub>4</sub><br>in 100 g<br>H <sub>2</sub> O |  |  |  |
| 0<br>8<br>19 8<br>30 | 2 46<br>3 50<br>6 28<br>9 53                         | 42 2<br>50<br>77<br>99 | 14 94<br>19 40<br>41 65<br>76 5                      |  |  |  |

(Calzoları, Acc Sci Med Ferrara, 1911, 85

| t°                               | G in 100 g H <sub>2</sub> O                    | Sp gr                                              |
|----------------------------------|------------------------------------------------|----------------------------------------------------|
| 0<br>20<br>40<br>60<br>80<br>100 | 1 10<br>1 56<br>3 26<br>6 27<br>11 04<br>15 75 | 1 007<br>1 010<br>1 017<br>1 028<br>1 050<br>1 070 |

(Carlson, Festsk Stockholm, 1911 262)

#### Scandium perchlorate

(Crookes, Roy Soc Proc 1908, 80 A, 518)

### Silver perchlorate, AgClO4

Deliquescent Sol in H<sub>2</sub>O and alcohol (Serullas, A ch 46 307)

## Sodium perchlorate, NaClO4

Deliquescent, and very sol in H<sub>2</sub>O and alcohol (Serullas)

Not deliquescent (Potilitzin, J russ Soc

1889, 1 258)

#### Solubility in H<sub>2</sub>O at t°

| t°  | G in 1 l of solution | Sp gr |
|-----|----------------------|-------|
| 15  | 1076                 | 1 666 |
| 50  | 1234                 | 1 731 |
| 143 | 1414                 | 1 789 |

(Carlson, Festsk Stockholm, 1911 262)

+H<sub>2</sub>O Not deliquescent (Potilitzin)

## Strontium perchlorate, Sr(ClO<sub>4</sub>)<sub>2</sub>

Very deliquescent Sol in  $H_2\mathrm{O}$  and alcohol (Serullas, A ch 46 304)

#### Terbium perchlorate

Very sol in H<sub>2</sub>O and in alcohol (Potratz, C N 1905, 92 3)

#### Thallous perchlorate, TlClO<sub>4</sub>

1 pt salt dissolves in 10 pts  $\rm H_2O$  at 15°, and 0.6 pt at 100° (Roscoe, Chem Soc (2) 4 504)

#### Solubility in H<sub>2</sub>O at t°

| t° | G per 100 g H <sub>3</sub> 0 | Sp gr |
|----|------------------------------|-------|
| 0  | 6 00                         | 1 060 |
| 10 | 8 04                         | 1 075 |
| 30 | 19 72                        | 1 146 |
| 50 | 39 62                        | 1 251 |
| 70 | 65 32                        | 1 430 |
| 80 | 81 49                        | 1 520 |

(Carlson, Festsk Stockholm 1911 262)

Sl sol in alcohol (Roscoe)

Thallic perchlorate, Tl(ClO<sub>4</sub>)<sub>3</sub>+6H<sub>2</sub>O

Very hydroscopic, sol in H<sub>2</sub>O Decomp in moist air (Gewecke, Z anorg 1912, 75 274)

Uranyl perchlorate,  $(UO_2)(ClO_4)_2 + 4H_2O$ (Salvadori, Ch Z 1912, **36** 513) +6H<sub>2</sub>O (Salvadori)

Yttrium perchlorate, Y(ClO<sub>4</sub>)<sub>3</sub>+8H<sub>2</sub>O Very deliquescent Sol in H<sub>2</sub>O and alcohol (Cleve)

Zinc perchlorate,  $Zn(ClO_4)_2$ 

Deliquescent Sol in H<sub>2</sub>O and alcohol (Serullas, A ch 46 302) +4H<sub>2</sub>O, and 6H<sub>2</sub>O (Salvadori, C C **1912,** II 414)

Zinc perchlorate, ammonia, Zn(ClO<sub>4</sub>)<sub>2</sub>, 4NH<sub>3</sub> Ppt (Salvadori, C C 1912, II 414) Zn(ClO<sub>4</sub>)<sub>2</sub>, 6NH<sub>3</sub> (Ephram, B 1915, 48 643)

#### Perchromic acid

Sol in ethyl acetate and valerate, in amyl chloride, formate, acetate, butyrate, and valerate (All give blue solutions)
Insol in CS<sub>2</sub>, C<sub>6</sub>H<sub>6</sub>, CHCl<sub>5</sub>, CCl<sub>4</sub>, C<sub>6</sub>H<sub>6</sub>NH<sub>2</sub>, C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub> and toluene (Grosvenor, J Am Chem Soc 1895, 17 41-43) H<sub>8</sub>CrO<sub>8</sub>+2H<sub>2</sub>O Decomp above -30° (Riesenfeld, B 1914, 47 552)

Ammonium perchromate, (NH<sub>4</sub>)<sub>3</sub>CrO<sub>8</sub>

Very unstable Sl sol in cold H<sub>2</sub>O comp by conc H<sub>1</sub>SO<sub>4</sub> Insol in pure alcohol and pure ether Decomp by boiling alcohol containing more than 50% H<sub>2</sub>O (Wohlers, B 1905, 38 1888)

CrO<sub>4</sub>, 3NH<sub>3</sub> Sol in 10% NH<sub>4</sub>OH+Aq, sol in H<sub>2</sub>() with decomp, insol in other solvents (Wiede B 1897, **30** 2181)

NH<sub>4</sub>CrO<sub>5</sub>, H<sub>2</sub>O<sub>2</sub> Decomp in the air Sol in ice cold H<sub>2</sub>O, decomp when warmed Insol in alcohol, ethci, ligroin and CHCl<sub>3</sub> (Wiede, B 1898, **31** 518)

Ammonium hydrogen perchromate,  $\operatorname{Cr}(O_2(O \cap \operatorname{NH}_4)(O \cap \operatorname{H})$ 

Sol in H<sub>2</sub>() with decomp Difficultly sol in cold abs alcohol (Hofmann, B 1904, 37 3406)

Barium perchromate, BiCr ()<sub>8</sub> (Byers and Rad, Am Ch J 1904, 32 513)

Calcium perchromate, CaCr<sub>2</sub>O<sub>8</sub>

Very sol in H<sub>2</sub>O (Mylius B 1900, 33 3689, Byers and Reid, Am Ch J 1904, 32 513)

Lithium perchromate, Li<sub>2</sub>Cr<sub>2</sub>O<sub>8</sub> (Byers and Reid, Am Ch J 1904, 32 511) | 1908, 30 1658)

Magnesium perchromate, MgC12(), (Byers and Reid )

Potassium perchromate, K<sub>3</sub>CrO<sub>8</sub>

Sl sol in cold H<sub>2</sub>O Decomp by cone H<sub>2</sub>SO<sub>4</sub> Insol in pure alcohol and pur ether Decomp by boiling alcohol contain mg more than 50% H<sub>2</sub>O (Wohldes, B 199)

**38** 1888 ) Sol in H2O at 0° without de  $+xH_2O$ (Riesenfeld and Kutsch, B 190%, 41 comp3948)

Decomp in th  $K_2Cr_2O_8$ Sol in  $H_2O$ (Byers and Reid, Am Ch J 1904, 32 air 505)

Sol mac col KCrO<sub>5</sub>, H<sub>2</sub>O<sub>2</sub> or KH<sub>2</sub>CrO<sub>7</sub> H<sub>2</sub>O, decomp when warmed (Vilosite (Wiede, B 1898, **31** 520)

Sodium perchromate, Na<sub>3</sub>C1O<sub>4</sub>

Decomp by com Sl sol in cold H<sub>2</sub>O H2SO4 Insol in pure alcohol and pure that Decomp by boiling with alc containing month than 50% H<sub>2</sub>O (Wohlers, B 1905, 38 155)

Na<sub>6</sub>Cr<sub>2</sub>O<sub>15</sub>+28H<sub>2</sub>O Efflorescent S solution cold, easily in hot H<sub>2</sub>O, with decomp Not decomp by NaOH+Aq (Haussermann J pr (2) 48 70)

 $N_{82}Cr_2O_8$  (Byers and Read, Am ( la 1904, 32 511 )

Perchloroplatinocyanhydric acid,  $H_2Pt(CN)_4Cl_2+4H_2O$ 

Very sol in H<sub>2</sub>O and alcohol

Ammonium perchloroplatinocyanicie,  $(NH_4)_2 Pt(CN)_4 Cl + 2H O$ Sol in H<sub>2</sub>O

Barrum ----, BaPt(CN)4(1 + 511 () Very sol in H O

Calcium —, CiPt(CN), Cl Sol in H<sub>2</sub>O

Magnesium —,  $MgP((('N)_i(1+i)))$ Sol in H O

Manganous —,  $MnPt((N)_1(1+iH))$ Sol in H<sub>2</sub>O and alcohol

Potassium ----, K Pt(( N),(1 + 211 () Very efflorescent, and sol in HO at alcohol

Percolumbic acid,  $HCb()_4+nH()$ 

Sol with decomp in vain Insol in H<sub>2</sub>O H<sub>2</sub>SO<sub>4</sub> (Melikoff, Z anorg 1500 20

Cæsium percolumbate, Cs3Ch(), (E F Smith, J Am Chem See Ppt

Cæsium magnesium percolumbate,  $MgCsCbO_8 + 8H_2O$ Sol in H<sub>2</sub>O without decomp (E F

Smith)

Calcium potassium percolumbate, CaKCbO<sub>8</sub>+4H<sub>2</sub>O

Difficultly sol in H<sub>2</sub>O (E F Smith)

Calcium sodium percolumbate, CaNaCbOs+  $4H_{9}O$ 

Difficultly sol in H<sub>2</sub>O (E F Smith)

Magnesium potassium percolumbate, MgKCbO<sub>8</sub>+7H<sub>2</sub>O

Sol in H<sub>2</sub>O without decomp (E F Smith)

Magnesium rubidium percolumbate, MgRbCbO<sub>8</sub>+7½H<sub>2</sub>O

Sol in  $H_2O$  without decomp (E F Smith)

Magnesium sodium percolumbate,  $MgNaCbO_8 + 8H_2O$ 

Sol in H<sub>2</sub>O without decomp (E F Smith)

Potassium percolumbate, K<sub>3</sub>CbO<sub>8</sub>

Sol in H<sub>2</sub>O Ppt from ag solution by alachol (F F Smith) Sol with decomp in

Sol in KOH+H<sub>2</sub>O<sub>2</sub> anorg 1899, **20** 342)

Rubidium percolumbate, Rb<sub>8</sub>CbO<sub>8</sub>

Sol in H<sub>2</sub>O Insol in alcohol Œ F Smith)

Sodium percolumbate, Na<sub>3</sub>CbO<sub>8</sub>

Œ F Sol in  $H_2O$ Insol in alcohol Smith)

## Perferricyanhydric acid

Potassium perferricyanide,  $K_2Fe(CN)_6+$ H<sub>2</sub>O (?)

Very hygroscopic, and sol in H<sub>2</sub>O Nearly insol in absolute alcohol Decomp by hot H<sub>2</sub>O (Skraup, A **189** 368)

#### Periodic acid, H<sub>5</sub>IO<sub>6</sub>

Deliquescent in moist air, very sol in H<sub>2</sub>O (Bengieser, A 17 254)

Rather easily sol in alcohol and ether (Bengieser)

Rather easily sol in alcohol, less in ether (Langtoch)

Sl sol in alcohol, still less in ether (Langlois, J pr **56** 36)

Sp gr of H<sub>5</sub>IO<sub>6</sub>+Aq  $H_5IO_6 + 20H_2O = 14008$  $H_5IO_6 + 40H_2O = 12165$   $H_5IO_6 + 80H_2O = 11121$   $H_5IO_6 + 160H_2O = 10570$  $H_5IO_6 + 320H_2O = 10288$ (Thomsen, B 7 71)

#### Periodates

Most periodates are insol or sl sol in H<sub>2</sub>O. all are insol or very sl sol in alcohol, but they all dissolve in dil HNO3+Aq (Bengieser)

Aluminum metaperiodate,  $Al(IO_4)_3 + 3H_2O$ Stable in solution containing HNO<sub>3</sub> (Eakle, C C 1896 II, 649)

Ammonium metaperiodate, NH4IO4

Sl sol in HO Cryst with 3H<sub>2</sub>O (Ihre, B 3 316), 2H<sub>2</sub>O (Langlois, A ch (3) 34 257) Stable in solution containing free ammonia (Eakle, Zeit Kryst 1896, 26 258-88)

100 pts H<sub>2</sub>O dissolve 2.7 pts NH<sub>4</sub>IO<sub>4</sub> at 16°, sp gr of sat solution at 16°/4°=1 0178 (Barker, Chem Soc 1908, 93 17)

Ammonium dimesoperiodate, (NH<sub>4</sub>)<sub>4</sub>I<sub>2</sub>O<sub>9</sub>+  $3H_{2}O$ 

Sol in H<sub>2</sub>O (Rammelsberg, Pogg 134 379)

Stable in solution containing free ammonia Two modifications (Eakle, Zeit Kryst 1896, **26** 558–88, C C **1896** II, 649)

Ammonium lithium dimesoperiodate,  $(NH_4)_2L_{12}I_2O_9+7H_2O$ Sol in H<sub>2</sub>O (Ihre)

Ammonium magnesium mesoperiodate, NH<sub>4</sub>MgIO<sub>5</sub>+3H<sub>2</sub>O

(Rammelsberg, Pogg Precipitate 134 510)

Barium metaperiodate, Ba(IO<sub>4</sub>) Known only in solution

Barium dimesoperiodate, Ba<sub>2</sub>I<sub>2</sub>O<sub>9</sub>

Sl sol in H<sub>2</sub>O, easily sol in dil HNO<sub>3</sub>+ Aq (Rammelsberg, Pogg 134 391) Cryst also with 3H<sub>2</sub>O, 5H O, and 7H O

Barium mesoperiodate, Bi (IO<sub>5</sub>) +6H () (Ihre)

Barium orthoperiodate, B  $\iota_5(IO_t)$ 

Insol in  $H_2O$  Sol in  $HNO_3 + \Lambda q$  (Rammelsb(rg)

Barium dimesodi periodate,  $Ba_5I_4()_1 + 5H_2()$ 

m dil HNO3+Aq Precipitate Sol (Rammelsberg, Pogg 134 395)

Barium periodate tungstate

See Tungstoperiodate, barium

Cæsium metaperiodate, CsIO<sub>4</sub>

Sl sol in cold H<sub>2</sub>O, readily sol in hot H O (Wells, Am Ch J 1901, 26 279)

2 15 pts are sol in 100 pts H<sub>2</sub>O at 15° Sp gr of the sat aq solution at  $15^{\circ}/4^{\circ} =$ 1 0166 (Barker, Chem Soc 1908, 93 17) Cæsium periodate hydrogen fluoride,  $2CsIO_4$ ,  $3HF+H_2O$ 

Sol in 40-60% HF+Aq Decomp by H<sub>2</sub>O Efflorescent (Weinland, Z anorg 1899, **22** 263)

Cadmium metaperiodate, Cd(IO<sub>4</sub>)<sub>2</sub> Ppt (Rammelsberg, Pogg **134** 516)

Cadmium dimesoperiodate,  $Cd_2I_2O_9+9H_2O$ Insol in  $H_2O$  (Rammelsberg)

Cadmium mesoperiodate, Cd<sub>3</sub>(IO<sub>5</sub>)<sub>2</sub>+5H<sub>2</sub>O Ppt CdHIO<sub>5</sub> (Kimmins, Chem Soc **55** 151)

Cadmium diperiodate, Cd<sub>4</sub>I<sub>2</sub>O<sub>11</sub>+3H<sub>2</sub>O Insol in H<sub>2</sub>O (Rammelsberg)

Cadmium periodate,  $Cd_{10}I_6O_{31}+15H_2O$ Insol in  $H_2O$  (Rammelsberg)

Calcium metaperiodate,  $Ca(IO_4)_2$ Sol in  $H_5IO_6+Aq$  and acids (Rammelsberg, Pogg 134 405)

Calcium dimesoperiodate,  $Ca_2I_2O_9+7H_2O$ , and  $9H_2O$ 

Sl sol in H<sub>2</sub>O (Rammelsberg) +3H<sub>2</sub>O (Langlois)

 $\begin{array}{cccc} \textbf{Calcium} \ \textit{orthoperiodate}, \ Ca_5(IO_6)_2 \\ & Insol \ in \ H_2O & Sol \ in \ HNO_3 + Aq & (Rammelsberg, \ Pogg \ \ \textbf{44} \ \ 577 \ ) \end{array}$ 

Cobaltous periodate, 7CoO, 21<sub>2</sub>O<sub>7</sub>+18H<sub>2</sub>O
Attacked by HCl, and sol on warming Slowly but completely sol in NHO<sub>3</sub> (Lautsch, J pr 100 89)
Could not be obtained by Rammelsberg

Cupric dimesoperiodate, Cu<sub>2</sub>I<sub>2</sub>O<sub>9</sub>+6H<sub>2</sub>O
Decomp by II<sub>2</sub>O without dissolving (Rammelsberg)

Cupric orthoperiodate, ( u HIO<sub>6</sub> Very sol in HNO<sub>3</sub>+Aq (Kimmins, Chem Soc **55** 150)

Cupric diperiodate, Cu<sub>4</sub>I  $O_{11}+H_2O$ Insol in  $II_2O$ , sol in dil  $HNO_3+\Lambda q$ (Rammelsberg)  $+7H_2O$  (R)

Cupric periodate, 5Cu(), I<sub>2</sub>()<sub>5</sub>+5H<sub>2</sub>O
Wholly insol in H<sub>2</sub>O (Rammelsberg, B
1 73)

Didymium peroidate, Di<sub>2</sub>O<sub>2</sub>(IO<sub>4</sub>)<sub>2</sub>
Precipitate
DiIO<sub>5</sub>+4H<sub>2</sub>O Ppt (Cleve, Bull Soc (2)

43 362)

Erbium periodate

Sol in H<sub>2</sub>O (Hoglund)

Glucinum periodate,  $Gl_3(IO_5)_2+11H_2O$ Decomp by  $H_2O$  without dissolving Easily sol in  $HNO_3+Aq$  $+13H_2O$  Nearly insol in  $H_2O$  (Atterberg, B 7 474)

Iron (ferrous) orthoperiodate,  $Fe_{\delta}(IO_{\delta})_2$  (Kimmins, Chem Soc 55 150)  $FeH_3IO_{\delta}$  (Kimmins)

Iron (ferric) periodate, 2Fe<sub>2</sub>O<sub>3</sub>, I<sub>2</sub>O<sub>7</sub>+21H<sub>2</sub>O Ppt (Rammelsberg)

Iron (ferric) dimesoperiodate, FeHI<sub>2</sub>O<sub>9</sub>
Insol in dil HNO<sub>3</sub>+Aq (Kimmins, Chem Soc **55** 149)

Iron (ferric) metaperiodate, Fe(IO<sub>4</sub>)<sub>3</sub> (Kimmins)

Lanthanum periodate, La(IO<sub>4</sub>)<sub>3</sub>+2H<sub>2</sub>O Precipitate (Cleve)

Lead metaperiodate, Pb(IO<sub>4</sub>)<sub>2</sub> Sol in HNO<sub>3</sub>+Aq (Kimmins)

Lead orthoperiodate,  $Pb_3H_4(IO_6)_2$ Sol in  $HNO_3+Aq$  (Kimmins, Chem Soc 55 149)

Lead mesoperiodate, Pb<sub>3</sub>(IO<sub>5</sub>) +2H<sub>2</sub>O

Insol in H<sub>2</sub>O or excess of periodic acid+

Ag Decomp by dil H<sub>2</sub>SO<sub>4</sub>+Aq (Ben-

Aq Decomp by dil H<sub>2</sub>SO<sub>4</sub>+Aq (Bengleser, A 17 254)

Lithium metaperiodate, I i IO<sub>4</sub>

1 132)
Somewhat deliquescent
+H<sub>2</sub>O, sol in H<sub>2</sub>O (Buker, Chem Soc
1911, 99 1326)

Difficultly sol in H<sub>2</sub>O (Rammelsberg, B

Lithium dimesoperiodate, Li<sub>4</sub>I O<sub>9</sub>+3H<sub>2</sub>O Very sl sol in H<sub>2</sub>O (Rammelsberg, Pogg 134 387)

Lithium orthoperiodate, I 151(),

H<sub>2</sub>O dissolves out a slight amount of I iI Easily sol in HNO<sub>3</sub>+Aq (Rammelsberg, Pogg **137** 313)

Magnesium metaperiodate,  $Mg(IO_4) + 10H_2O$ Easily sol in  $H_2O$  (Rummelsberg)

Magnesium diperiodate,  $Mg_4I_2O_{11}+6H_2O$ , or  $9H_2O$ 

Sl efflorescent Insol in H<sub>2</sub>O (Rammelsberg)

Magnesium dimesoperiodate, Mg<sub>2</sub>I<sub>2</sub>O<sub>9</sub>+ 3H<sub>2</sub>O

(Rammelsberg, Pogg 134 499) +15H<sub>2</sub>O Insol in H<sub>2</sub>O Sol in periodic acid+Aq (Langlois)

Manganic periodate See Manganiperiodic acid

Mercurous diperiodate,  $5\mathrm{Hg}_2\mathrm{O}$ ,  $I_2\mathrm{O}_7$ , or  $4\mathrm{Hg}_2\mathrm{O}$ ,  $I_2\mathrm{O}_7=\mathrm{Hg}_8I_2\mathrm{O}_{11}$ 

Insol in H<sub>2</sub>O Easily sol in HNO<sub>3</sub>+Aq and in HCl+Aq (Lautsch, J pr 100 86)

Mercuric orthoperiodate, Hg<sub>5</sub>(IO<sub>6</sub>)<sub>2</sub> Insol in H<sub>2</sub>O Easily sol in HCl Sl sol

in HNO<sub>3</sub> (Lautsch) Mercuric potassium periodate, 10HgO, 5K<sub>2</sub>O,  $6I_{2}O_{7}$ 

Difficultly sol in warm Insol in  $H_2O$ HNO<sub>3</sub> without decomp (Rammelsberg, Pogg 134 526)

Nickel dimesoperiodate, Ni<sub>2</sub>I<sub>2</sub>O<sub>9</sub> (Kimmins, Chem Soc 55 151)

Nickel mesoperiodate, Ni<sub>3</sub>(IO<sub>5</sub>)<sub>2</sub> (Kimmins)

W alred nervodate, 7N1O, 4I2O7+63H2O Easily sol in H<sub>5</sub>IO<sub>6</sub>+Aq z, Pogg 134 514)

Potassium metaperiodate, KIO<sub>4</sub>

Sl sol in H<sub>2</sub>O Sol in 290 pts cold H<sub>2</sub>O (Rammelsberg, Pogg 134 320) Almost insol in KOH+Aq

0 66 pt is sol in 100 pts H<sub>2</sub>O at 13° Sp or of the sat sol at  $13^{\circ}/4^{\circ} = 10051$  (Barker, Chem Soc 1908, 93 16)

Insol in methyl acetate (Naumann, B 1909, **42** 3790)

Potassium mesoperiodate, K<sub>3</sub>IO<sub>5</sub>+4H<sub>2</sub>O Deliquescent Easily sol in H<sub>2</sub>O (Ihre )

Potassium dimesoperiodate, K<sub>4</sub>I<sub>2</sub>O<sub>9</sub>+9H<sub>2</sub>O Sol in 97 pts cold H<sub>2</sub>O (Rammelsberg, Pogg **134** 320) Sol in KOH+Aq

+3H<sub>2</sub>O

Potassium hydrogen dimesoperiodate, K<sub>8</sub>HI<sub>2</sub>O<sub>9</sub>

Less sol in H<sub>2</sub>O than KIO<sub>4</sub> (Kimmins, Chem Soc **51** 356)

Potassium manganic periodate See Manganiperiodate, potassium

Potassium zinc periodate, K<sub>2</sub>O, 4ZnO, 2I<sub>2</sub>O<sub>7</sub> +4H<sub>2</sub>O

Ppt (Rammelsberg, Pogg 134 368)

Potassium periodate tungstate See Tungstoperiodate, potassium

Rubidium periodate, RbIO<sub>4</sub>

065 pt is sol in 100 pts H<sub>2</sub>O at 13° gr of the sat aq solution at 13°/4°=1 0052 (Barker, Chem Soc 1908, 93 16)

Samarium periodate,  $Sm(IO_5)+4H_2O$ Precipitate (Cleve)

Silver metaperiodate, AgIO<sub>4</sub>

Decomp by cold  $H_2O$  into  $Ag_4I_9O_9+3H_2O_7$ and by warm H<sub>2</sub>O into Ag<sub>4</sub>I<sub>2</sub>O<sub>9</sub>+H O (Ammermuller and Magnus, Pogg 28 516) +H<sub>2</sub>O Insol ppt (Kımmıns)

Silver mesoperiodate, Ag<sub>3</sub>IO<sub>5</sub>

(Fernlunds, J pr **100** 99)

Ag<sub>2</sub>HIO<sub>5</sub> Insol ppt (Kimmins, Chem Soc 51 358)

Ppt by dil HNO<sub>3</sub>, sol in HNO<sub>3</sub> (Rosenheim, A 1899, 308 57)

Silver dimesoperiodate,  $Ag_4I_2O_9 + H_2O_1$ , or 3HO

Insol ppt (Kimmins) Decomp by boiling  $H_2O$  into  $Ag_5IO_6$ (Rammelsberg)

Silver orthoperiodate, Ag<sub>5</sub>IO<sub>6</sub>

Sol in HNO<sub>8</sub> or NH<sub>4</sub>OH+Aq (Rammelsberg, Pogg 134 386) Sol in excess NH4OH+Aq, pptd by

HNO<sub>3</sub> (Rosenheim, A 1899 308 56)  $Ag_3H_2IO_6$ Insol ppt (Kimmins, Chem

Soc **51** 358) Ag<sub>2</sub>H<sub>3</sub>IO<sub>6</sub> As above (Kimmins)

Sol in dil HNO<sub>3</sub> (Rosenheim, A 1899, **308** 53)

Silver diperiodate,  $Ag_8I_2O_{11}$ 

Sl sol in HNO<sub>3</sub>+Aq, insol in NH<sub>4</sub>OH+ Aq (Lautsch, J pr 100 75)

Silver dimesodiperiodate, Agiol (O)

HNO<sub>3</sub>+Aq dissolves out Ag<sub>2</sub>() Insol in  $NH_4OH + Aq$  (I autsch)

Sodium metaperiodate, N iI()<sub>4</sub>

Fasily sol in H<sub>2</sub>O +2H<sub>2</sub>O (I anglos)

+3H<sub>2</sub>O Ffflorescent, sol in 12 pts H<sub>2</sub>O at ord temp (Rammelsberg, J pr 103 278)

Sodium dimesoperiodate,  $N_{4}I()_{9}+3II_{2}()$ 

Scarcely sol in cold, sl sol in hot H<sub>2</sub>O (Magnus and Ammermuller, Pogg 28 514) Very sol in dil HNO<sub>3</sub>+Aq (Langlois)

Sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq with decomp (Bengieser, A 17 254) Insol in methyl acetate (Naumann, B

1909, **42** 3790)

+4H<sub>2</sub>O

Sodium mesoperiodate,  $Na_3IO_5+5/_4H_2O$ Sol in  $H_2O$  (Ihre)  $+H_2O=Na_3H_3IO_6$  Less sol in  $H_2O$  than  $Na_4I_2O_9+3H_2O(=Na_2H_3IO_6)$  (Kimmins, Chem Soc 51 357)

 $\begin{array}{lll} \textbf{Sodium} & \textit{orthoperiodate, Na}_5 IO_6 \\ & Na_2 H_3 IO_6 & \textit{Correct composition for} \\ & Na_4 I_2 O_9 + 3 H_2 O & (\textit{Kimmins}) \\ & Na_8 H_2 IO_6 & \textit{Correct composition for Na}_3 IO_5 \\ & + H_2 O & (\textit{Kimmins}) \end{array}$ 

Strontium metaperiodate, Sr(IO<sub>4</sub>)<sub>2</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O

Strontum dimesoperiodate, Sr<sub>2</sub>I<sub>2</sub>O<sub>9</sub>
Decomp by H<sub>2</sub>O
+3H<sub>2</sub>O

Strontium mesoperiodate, Sr<sub>3</sub>(IO<sub>5</sub>)<sub>2</sub> Precipitate

Strontium orthoperiodate,  $Sr_{\delta}(IO_{\theta})$ (Rammelsberg, Pogg 44 577)

Thalic periodate, 3Tl<sub>2</sub>O<sub>3</sub>, I<sub>2</sub>O<sub>7</sub>+30H<sub>2</sub>O

Insol in H<sub>2</sub>O Decomp by alkalies (Rammelsberg, B **3** 361)

Thorium periodate
Precipitate Sol in HNO<sub>3</sub>+Aq

Uranous periodate
Precipitate, which quickly decomposes

136)

Ytterbium periodate, YbIO<sub>5</sub>+2H<sub>2</sub>O Hydroscopic (Cleve, Z anorg 1902, **32** 

Yttrium periodate, Y2(IO) +9HO

Verv slightly sol (Cleve)
3Y O3, 2I2O7+0HO Precipitate (Cleve)

Zinc dimesoperiodate, Zn<sub>2</sub>I<sub>2</sub>O<sub>3</sub>+6H O (Rammelsberg, Pogg 134 513)

Zinc periodate, 3Zn(),  $2\text{I}_2\text{O}_7+7\text{II}_2\text{()}$  (Langlois)

Zinc diperiodate,  $Zn_4I_2O_{11}+H_2O$ Easily sol in  $H_2O$ , sl acid with  $HNO_3$ (Langlois, A ch (3) **34** 257)

Zinc dimesodiperiodate,  $Zn_5I_4O_{19}+14H_2O$  (?) (Rammelsberg)

Zmc periodate, 9ZnO, 2I<sub>2</sub>O<sub>7</sub>+12H<sub>2</sub>O (Rammelsberg)

## Periodoplatinocyanhydric acid

Barium periodoplatinocyanide, BaPt(CN)<sub>4</sub>I<sub>2</sub> +xH<sub>2</sub>O

Easily sol in H<sub>2</sub>O or alcohol (Holst, Bull Soc (2) **22** 347)

Potassium periodoplatinocyanide, K<sub>2</sub>Pt(CN)<sub>4</sub>I<sub>2</sub> Permanent Easily sol in H<sub>2</sub>O or alcohol

Permanganic acid, HMnO4

Known only in solution, which decomposes by evaporation or warming

Permanganates

All permanganates are sol in  $\mathbf{H}_2\mathrm{O}$ , excepting AgMnO<sub>4</sub>, which is sl sol

Ammonium permanganate, NH<sub>4</sub>MnO<sub>4</sub> Sol in 12 6 pts H<sub>2</sub>O at 15° (Aschoff)

Sol in H<sub>2</sub>O with decomp (Christensen, Z anorg 1900, **24** 206)

Barrum permanganate, Ba(MnO<sub>4</sub>)<sub>2</sub> Sol in H<sub>2</sub>O

Cadmium permanganate, Cd(MnO<sub>4</sub>)<sub>2</sub>+8H<sub>2</sub>O Stable (Klobb, Bull Soc 1894, (3) **11** 607)

Cadmium permanganate ammonia,  $Cd(MnO_4)_2$ ,  $4NH_3$ 

Sol in HO with decomp (Klobb, Bull Soc (3) 3 510)

Cæsium permanganate, CsMnO4

Sl sol in cold, somewhat more easily sol in hot H<sub>2</sub>O (Muthmann, B 1893, **26** 1018) Solubility in H O

100 ccm of the sit solution contain at

1° 19° 59° 0 097 0 23 1 25 g CsMnO<sub>4</sub>

(Patterson, J. Am. Chem. Soc. 1906, 28 1735)

Calcium permanganate, Ca(MnO<sub>4</sub>)<sub>2</sub>+5H<sub>2</sub>O Deliquescent

Cupric permanganate
Deliquescent

Cupric permanganate ammonia, Cu(MnO<sub>4</sub>)<sub>2</sub>, 4NH<sub>2</sub>

Sol in H<sub>2</sub>O with slow decomp (Klobb, Bull Soc (3) 3 509)

 $\begin{array}{cc} \textbf{Didymium} & \textbf{permanganate,} & Di(MnO_4)_3 + \\ & 21H_2O \end{array}$ 

Sl sol in H.O (Frerichs and Smith, A 191 331)

Has not been prepared (Cleve, B 11 912)

Lanthanum permanganate,  $La(MnO_4)_3 + 21H_2O$ 

Ppt (Frenchs and Smith, A 191 331) Has not been prepared (Cleve, B 11 910)

## Lead permanganate

Sol in HNO<sub>3</sub>+Aq (Forchhammer)

Lithium permanganate, LiMnO<sub>4</sub>+3H<sub>2</sub>O Sol in 14 pts H<sub>2</sub>O at 16° (Aschoff)

Magnesium permanganate, Mg(MnO<sub>4</sub>)<sub>2</sub>

n, ether and CS<sub>2</sub> Sol in acetone, pyridine, and readily cetic acid. Only pyridine and cold are sufficiently stable to the salt to be of any practical use for oxidation purposes. (Michael and Garner, Am Ch J 1906, 35 268.)

+6H<sub>2</sub>O Easily deliquescent.

Nickel permanganate ammonia,  $N_1(MnO_4)_2$ ,  $4NH_8$ 

Sol in  $H_2O$  with decomp (Klobb, Bull Soc (3)  ${\bf 3}$  509)

## Potassium permanganate, kMnO<sub>4</sub> Sol in 16 pts H<sub>2</sub>O at 15° (Mitscheilich)

Solubility in 100 pts H<sub>2</sub>O at t°

| t                                                                        | Pts kMnO,                                                                                  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 0<br>9 8<br>19 8<br>24 8<br>29 8<br>34 8<br>40 0<br>45 0<br>50 0<br>65 0 | 2 83<br>4 31<br>6 34<br>7 59<br>9 03<br>10 67<br>12 56<br>14 58<br>16 89<br>19 33<br>25 03 |

(Baxter, J Am Chem Soc 1906, 28 1343) Edwards)

Solubility in H<sub>2</sub>O at t°

| <b>p</b> = | = pts                                                                                                      | KMr | O <sub>4</sub> sol                                                                                                                       | ın 10                                                                                  | 00 pts                                    | H <sub>2</sub> O                                                                             | at t°                                                                                                                                                 |
|------------|------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| t°         | р                                                                                                          | t°  | p                                                                                                                                        | t°                                                                                     | р                                         | t°                                                                                           | р                                                                                                                                                     |
| 16<br>17   | 2 76<br>3 90<br>3 22<br>3 38<br>3 54<br>3 70<br>3 80<br>4 4 22<br>4 40<br>4 58<br>4 4 98<br>5 5 80<br>5 60 | 36  | 6 26<br>6 48<br>6 70<br>6 94<br>7 18<br>7 42<br>7 68<br>7 94<br>8 20<br>8 48<br>8 77<br>9 37<br>9 69<br>10 01<br>10 34<br>10 02<br>11 38 | 38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>55<br>55<br>56 | 17 23<br>17 71<br>18 21<br>18 71<br>19 23 | 58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>68<br>70<br>71<br>72<br>73<br>74 | 20 29<br>20 83<br>21 39<br>21 96<br>22 55<br>23 15<br>23 76<br>24 38<br>25 67<br>26 34<br>27 03<br>27 84<br>28 56<br>29 05<br>30 81<br>31 57<br>31 95 |

(Worden, J Soc Chem Ind 1907, 26 453)

Solubility in  $\rm H_2O$  100 ccm of the sat solution contain it 0° 15° 153° 30° 284 522 530 869 g KMnO<sub>4</sub> Sp gr of sat solution at 15°=1035 (Patterson, J Am Chem Soc 1906, 28 1735)

1 1 sat KMnO<sub>4</sub>+Aq cont uns ut 6° 10° 20° 30° 40° 0 176 0 278 0 411 0 573 0 792 mol KMnO<sub>4</sub>,

53° 63° 70° 75° 1 154 1 429 1 812 2 047 mol KMnO<sub>4</sub> (Sackur, Z Elektrochem 1912, **18** 723)

## Solubility of KMnO4 in II2O at to

| 0 58 0 18 1 01 0 27 2 02 - 0 48 2 91 - 0 58 4 22 +10 5 20 +1 5 7 53 +25 11 61 +40 16 75 +50 | Grams KMnO4 sol in<br>100 grams H <sub>2</sub> O      | 1                                                     |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
|                                                                                             | 1 01<br>2 02<br>2 91<br>4 22<br>5 20<br>7 53<br>11 61 | 0 27<br>- 0 48<br>- 0 58<br>+10<br>+1 5<br>+25<br>+40 |

(Voerman, C C 1906, I 125)

Sol in cone  $H_2SO_4$  Deliquesees in liquid HCl, but does not dissolve (Gore) Slowly sol in  $H_3PO_4+Aq$  (Chevillot and

Solubility in KOH+Ao at to expressed in mol per l of the sat solution

| t°                                                                  | H <sub>2</sub> O                                                                  | 1 n KOH                                                                                   | 2 n KOH                                                                                        | 4 n KOH                                                                                        | 6 n KOH                                                                                                 | 8 n KOH                                                                                        | 10 n KOH                                                             |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>50<br>63<br>70<br>75<br>80<br>84<br>90 | 0 176<br>0 278<br>0 411<br>0 573<br>0 792<br>53° 1 154<br>1 429<br>1 812<br>2 047 | 0 050<br>0 112<br>0 179<br>32° 0 316<br>50° 0 638<br>61° 0 904<br>1 172<br>1 513<br>1 655 | 0 031<br>0 068<br>0 119<br>32° 0 213<br>0 306<br>0 462<br>60° 0 639<br>0 869<br>1 190<br>1 352 | 0 027<br>0 048<br>0 079<br>32° 0 149<br>0 211<br>0 304<br>0 427<br>0 572<br>0 651<br>83° 0 803 | 0 023<br>0 042<br>19° 0 074<br>0 114<br>0 161<br>0 219<br>0 291<br>0 390<br>0 500<br>85° 0 572<br>0 649 | 0 017<br>0 028<br>0 032<br>32° 0 062<br>0 084<br>0 111<br>61° C 143<br>0 188<br>0 231<br>0 297 | 0 012<br>0 016<br>0 029<br>0 040<br>0 052<br>0 071<br>0 082<br>0 089 |

(Sackur, Z Elektrochem 1912, 18 723)

#### Solubility in salts+Aq at to

| Solubility in saits+Aq at t    |               |                                                    |  |  |  |
|--------------------------------|---------------|----------------------------------------------------|--|--|--|
| Solvent                        | t°            | Mol KMnO <sub>4</sub><br>in 1 l of sat<br>solution |  |  |  |
| $0 \ 1-n \frac{K_2CO_3}{2}$    | 0<br>25<br>40 | 0 1462<br>0 4375<br>0 7380                         |  |  |  |
| 1-n <sup>K₂CO₃</sup> 2         | 0<br>25<br>40 | 0 0629<br>0 2589<br>0 5007                         |  |  |  |
| $2-n\frac{\mathrm{K_2CO}}{2}$  | 0<br>40       | 0 0446<br>0 3519                                   |  |  |  |
| $4-n \frac{\mathrm{K_2CO}}{2}$ | 0<br>25       | 0 0270<br>0 0930                                   |  |  |  |
| $6-n\frac{\mathrm{K_2CO}}{2}$  | 0             | 0 0156                                             |  |  |  |
| 0 1-n KCl                      | 0<br>25<br>40 | 0 1395<br>0 4315<br>0 7380                         |  |  |  |
| 0 5–n KCl                      | 0<br>25<br>40 | 0 0760<br>0 3060<br>0 5840                         |  |  |  |
| 1-n KCl                        | 0<br>25<br>40 | 0 0532<br>0 220<br>0 444                           |  |  |  |
| 2-n KCl                        | 0<br>25<br>40 | 0 0379<br>0 1432<br>0 288                          |  |  |  |

(Sackur, Z Flektrochem 1912, 18 723)

Very sol in liquid NH<sub>3</sub> (Moissan, A ch 1895 (7) 6 428, Franklin, Am Ch J 1898, **20** 829)

Decomp immediately by alcohol Sol in etone (Eidmann, C C 1899 II, 1014, Naumann, B 1904, 37 4328)

## Solubility in acetone+Aq at 13°

A=ccm acetone in 100 ccm acetone+Aq 1/5 KMnO4 = millimols KMnO4 in 100 ccm of the solution

| Α                                                       | ¹/5 KMnO4                                                                                      |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | 148 5<br>162 2<br>177 3<br>208 2<br>257 4<br>289 7<br>316 8<br>328 0<br>312 5<br>227 0<br>67 6 |
|                                                         |                                                                                                |

(Herz and Knoch, Z anorg 1904, 41 317)

Sol in benzonitrile (Naumann B 1914, **47** 1369)

Difficultly sol in methyl acetate mann, B 1909, 42 3795) Sol in ethyl acetate (Naumann, B 1904,

**37** 3601)

## Rubidium permanganate, RbMnO<sub>4</sub>

Solubility in H<sub>2</sub>O lies between K and Cs silts (Muthmann, B 1893 26 1018) Solubility in H<sub>2</sub>O 100 ccm of the sit solution contain at

60° 19°

4 68 g RbMnO<sub>4</sub> 106 0.46 (Patterson, J Am Chem Soc 1906, 28 1735)

## Silver permanganate, Ag<sub>2</sub>MnO<sub>4</sub>

Sol in 109 pts cold H2O and much less hot Decomp by boiling (Mitscheilich, ΗО Pogg 25 301)

## Silver permanganate ammonia

Sl sol in cold, more easily in hot H O (Klobb, C R 103 384)

Sodium permanganate, NaMnO<sub>4</sub>+3H<sub>2</sub>O
Deliquescent Extremely sol in H<sub>2</sub>O
Moderately sol in liquid NH<sub>3</sub> (Franklin,
Am Ch J 1898, **20** 829)

 $\begin{array}{ccc} \textbf{Strontium permanganate,} & Sr(MnO_4)_2 + 4H_2O \\ Deliquescent & Sol \ in \ H_2O & (Fromherz \ ) \end{array}$ 

Thallous permanganate, TlMnO4

Sol in H<sub>2</sub>O with decomp (R Meyer, Z anorg 1899, **22** 188)

Zmc permanganate, Zn(MnO<sub>4</sub>)<sub>2</sub>+6H<sub>2</sub>O
Deliquescent Very sol in H<sub>2</sub>O (Martenson, J B **1873** 274)

Zinz permanganate ammonia, Zn(MnO<sub>4</sub>)<sub>2</sub>, 4NH<sub>3</sub>

Sol in  $H_2O$  with decomp (Klobb, Bull Soc (3) 3 509)

Permanganomolybdic acid, MnO<sub>2</sub>, 12MoO<sub>3</sub>+10H<sub>2</sub>O

Sol in H.O Decomp by alkalis Sol in alcohol (Péchard, C R 1897, 125 31)

inO<sub>2</sub>, 7MoO<sub>3</sub>+5H<sub>2</sub>O

d Samelson, Z anorg 1900,

 $$\it M{\rm nO}_2$, $9{\rm MoO_3}{\rm +6H_2O}$$  (Fried-Allemann, Mit d Nat Ges Bern  $\it JU4$  23 )

/04 23) +7H<sub>2</sub>O (Friedheim and Samelson, Z

anorg 1900, **24** 70) 4(NH<sub>4</sub>)<sub>2</sub>O, MnO<sub>2</sub>, 11MoO<sub>3</sub>+7H<sub>2</sub>O (Fried-

heim and Samelson)  $3(NH_4)_2O$ ,  $MnO_2$ ,  $12MoO_3+5H_2O$  Sl sol in cold  $H_2O$  Decomp by alkalis Insol in alcohol (Péchard, C R 1897, **125** 30)

Ammonium manganous permanganomolybdate, 3[(NH<sub>4</sub>)<sub>2</sub>, Mn]O, MnO<sub>2</sub>, 9MoO<sub>3</sub>+6H<sub>2</sub>O and +7H<sub>2</sub>O

(Friedheim and Allemann, Mitt d Nat Ges Bern **1904** 23)

 $3](NH_4)_2$ , Mn]O, MnO<sub>2</sub>,  $10MoO_3+10H_2O$  (Friedheim and Samelson, Z anorg 1900, **24** 94 )

4[(NH<sub>4</sub>)<sub>2</sub>, Mn]O, MnO<sub>2</sub>, 10MoO<sub>3</sub>+6H<sub>2</sub>O (Friedheim and Samelson, Z anorg 1900, 24

4[(NH<sub>4</sub>)<sub>2</sub>, Mn]O, MnO<sub>2</sub>, 11MoO<sub>3</sub>+8H<sub>2</sub>O (Friedheim and Samelson, Z anorg 1900, **24** 72)

Ammonium manganous potassium permanganomolybdate,  $2(NH_4)_2O$ , MnO,  $K_2O$ , MnO<sub>2</sub>,  $10MoO_3+5H_2O$ 

Very sl sol in cold, easily sol in  $H_2O$  at  $70-80^\circ$  (Rosenheim, Z anorg 1898, 16 79)  $3[(NH_4)_2,~K_2,~Mn]O,~MnO_2,~9MoO_3+7H_2O$  (Friedheim and Allemann, Mitt d Nat Ges Bern 1904 23)

4[(NH<sub>4</sub>), K<sub>2</sub>, Mn]O, MnO<sub>2</sub>, 10MoO<sub>2</sub>+ 5H<sub>2</sub>O (Friedheim and Samelson, Z anorg 1900, **24** 97) 3[(NH<sub>4</sub>)<sub>2</sub>, K<sub>2</sub>, Mn]O, MnO<sub>2</sub>, 10MoO<sub>3</sub>+ 6H<sub>2</sub>O, and +10H<sub>2</sub>O (Friedheim and Samelson, Z anorg 1900, **24** 92)

Ammonium potassium permanganomolybdate,  $3[(NH_4)_2,~K_2]O,~MnO_2,~8MoO_3+4H_2O$ 

(Friedheim and Samelson)

Barrum permanganomolybdate, 3BaO,  $MnO_2$ ,  $9MoO_3+12H_2O$ 

Ppt (Hall, J Am Chem Soc 1907, 29 700)

True formula for 5K<sub>2</sub>O, Mn<sub>2</sub>O<sub>3</sub>, 16MoO<sub>3</sub>+ 12H<sub>2</sub>O of Struve (Friedheim and Samelson, Z aporg 1900 24 86)

Z anorg 1900, 24 86) 3[K<sub>2</sub>,Mn]O, MnO<sub>2</sub>, 9MoO<sub>3</sub>+6H<sub>2</sub>O (Friedheim and Allemann, Mitt d Nat Ges Bern 1904 23)

2 6 K<sub>2</sub>O, 0 4 MnO, MnO<sub>2</sub>, 9MoO<sub>3</sub>+7H<sub>2</sub>O Ppt (Hall, J Am Chem Soc 1907, **29** 700)

 $4[K_2, Mn]O, MnO_2, 11MoO_3+7H_2O$  (Friedheim and Samelson, Z. anorg. 1900, **24** 80.)

Manganous potassium sodium permanganomolybdate,  $3[K \ , \ Na_2, \ Mn]O, \ MnO_2, \\ 8MnO_3+4H_2O$ 

(Friedheim and Allemann, Mitt d Nat Ges Bern 1904 48)

Manganous sodium permanganomolybdate, 3[Na, Mn]O, MnO<sub>2</sub>, 9MoO<sub>3</sub>+15H<sub>2</sub>O (Friedheim and Allemann)

Potassium permanganomolybdate, 3K(),  $MnO_2$ ,  $8MoO_3+3H()$ 

Much less sol in  $H_2O$  than  $NH_4$  comp (Friedheim and Samelson, Z. anoig 1900, **24** 78.)

+5II O Nearly insol in cold or hot II<sub>2</sub>O (Rosenham and Itzis, Z anorg 1898, **16** 81) 3K<sub>2</sub>O, MnO<sub>2</sub>, 9MoO<sub>3</sub>+5II () (Findham and Samelson, Z anorg 1900, **24** 81)

+6H<sub>2</sub>O (Hall, J Am Chem Soc 1907, **29** 700)

 $3K_2O$ , MnO<sub>2</sub>,  $12M_0O_3+4H$  () Nearly insol in cold  $H_2O$  Decomp by ilkalis Insol in alcohol (Péchard, C R 1897, **125** 31)

Silver permanganomolybdate, 3Ag<sub>2</sub>O, MnO<sub>2</sub>, 9MoO<sub>3</sub>+6H<sub>2</sub>O

Ppt (Hall, J Am Chem Soc 1907, 29 700)

Sodium permanganomolybdate, 3Na<sub>2</sub>O.  $MnO_2$ ,  $12MoO_3 + 13H_2O$ 

Efflorescent Very sol in H<sub>2</sub>O Decomp by alkalies Insol in alcohol (Péchard, C R **125** 31)

### Permanganotungstic acid

Ammonium manganous permanganotungstate, 4(NH<sub>4</sub>)<sub>2</sub>O, MnO, MnO<sub>2</sub>, 12WO<sub>3</sub>+ 23H O

Readily sol in H<sub>2</sub>O Can be cryst there-(Rogers and Smith, J Am Chem Soc 1904, 26 1475)

Sodium permanganotungstate, 3Na<sub>2</sub>O, MnO<sub>2</sub>, 5WO<sub>3</sub>+18H<sub>2</sub>O

Rather easily sol in hot H<sub>2</sub>O Solution decomp on long boiling with separation of manganese perovide (Just, B 1903, 36 3621)

Permolybdic acid,  $Mo_2O_7$ ,  $5H_2O =$ HMoO₄+2H₂O

Very sol in H<sub>2</sub>O, and not decomp by boil-

ing (Péchard, A ch (6) 28 550)  $H_2MoO_5+1^1/2H_2O$  "Ozo-molybdic acid" Only very sl sol in  $H_2O$  after being dried in the air Sol in fairly conc H2SO4 (Muth-

mann, B 1898, 31 1838)  $H_2Mo_2O_7$ , H  $O_2$  Sl sol in cold, more easily sol in hot  $H_2O$ , but does not separate on Sol in dil acids, also in H<sub>3</sub>PO<sub>4</sub> (Cammerer, Ch Z 1891, 15 957)

Ammonium permolybdate,  $NH_4M_0O_4+$  $2H_{9}O$ 

Very sol in H2O, sl sol in alcohol, but alcohol extracts it from H2O, forming a very conc supers it solution, which is pptd by i crystal of NH4MoO4, and only 1 sl amount remains in solution (PCch ird)

3(NH<sub>4</sub>)<sub>2</sub>O, 5MoO<sub>3</sub>, 2MoO<sub>4</sub>+6H O (Muth-

mann, B 1895, 31 1837)

 $3(NH_4) O 7M_0O_4 + 12H O$ Ppt (Muthmann, Z morg 1898, 17 76)

(Muth- $3(NH_4) \bigcirc 5M_0\bigcirc_4 + 6H \bigcirc Ppt$ mann)

Ammonium nickel permolybdate ammonia,  $(NH_4) N_1(M_0O_4)_2$ ,  $2NH_3$ 

Decomp by H<sub>2</sub>O Sol in dil NH4OH (Briggs, Chem. Soc. 1904, 85, 674)

Barium permolybdate,  $Ba(MoO_4) + 2H_2O$ 

(Péchard, A. ch. 1893, (6) 28 537) 8BaO,  $19MoO_3$ ,  $2H_2O_2+13H_2O$ wald, Dissert 1885)

Cæsium permolybdate, Cs<sub>2</sub>O, 4MoO<sub>4</sub>+6H<sub>2</sub>O Sol hot HO (Muthmann, B 1898, 31

1841)  $3C_{82}O$ ,  $7M \circ O_3$ ,  $3M \circ O_4 + 4H \circ O$ (Muthmann)

Copper permolybdate,  $Cu(M_0O_4)_2 + H_2O$ 

Insol in H<sub>2</sub>O, easily sol in acids Sol in NH4OH+Aq with decomp (Pechard)

Magnesium permolybdate,  $Mg(MoO_4)_2$ + 10H<sub>2</sub>O

Very sol in H<sub>2</sub>O, sl sol in alcohol (Péchard)

Mercurous permolybdate

Insol in H<sub>2</sub>O or NH<sub>4</sub>NO<sub>3</sub>+Aq (Péchard)

Potassium permolybdate, KM<sub>0</sub>O<sub>4</sub>+2H<sub>2</sub>O

Sl sol in cold, more in hot H<sub>2</sub>O Sl sol ın alcohol (Péchard)

K<sub>2</sub>O, 2MoO<sub>3</sub>, MoO<sub>4</sub>+3H<sub>2</sub>O Ppt mann, Z anorg 1898, **17** 77)

K<sub>2</sub>O<sub>2</sub>, MoO<sub>4</sub>, H<sub>2</sub>O<sub>2</sub> Decomp by H<sub>2</sub>O (Melikoff and Pissarjewsky, B 1898, **31** 2449)

 $K_2M_0O_5 + 3H_2O$ Nearly insol in cold, easily sol in hot HO (Mazzuchelli and Zangrilli, Gazz ch it 1910, 40 (2) 56)

Rubidium permolybdates

"Rubidium ozo-molybdate"  $3Rb_2O$ ,  $10M_0O_4+14H_2O$  Ppt

Rb<sub>2</sub>O, 2MoO<sub>3</sub>, MoO<sub>4</sub>+3H<sub>2</sub>O May be recryst from H<sub>2</sub>O<sub>2</sub>+Aq

3Rb O, 5MoO<sub>3</sub>, 2MoO<sub>4</sub>+6H O Ppt Rb<sub>2</sub>O, 3MoO<sub>3</sub>, MoO<sub>4</sub>+4H<sub>2</sub>O Ppt (Muthmann, B 1898, 31 1839-41)

Silver permolybdate, AgMoO4 (Péchard)

Sodium permolybdate, NaMoO<sub>4</sub>+3H<sub>2</sub>O

Very sol in HO, insol in alcohol, but behaves similarly to K salt (Péchard)

Thallous permolybdate

Insol in H<sub>2</sub>O (Péchard, A ch 1893, (6) **28** 559)

Pernitric acid, NO<sub>8</sub>

See Nitrogen heaoxide

Silver pernitrate, basic,  $3Ag_2O_2$ , AgNODecomp H<sub>2</sub>O (Mulder, R t c 1898, 17 142)

Perosmic acid

Potassium perosmate (')

Sol in H<sub>2</sub>O, but very easily decomp

Peroxymtric acid

Silver peroxymitrate

Analysis of the black compound formed, under certain circumstances, in a silver voltameter when an aqueous solution of AgNO<sub>3</sub> 1s electrolyzed, points to the composition 3Ag<sub>2</sub>O, 5O, 4gNO<sub>3</sub>, perhaps 2Ag<sub>3</sub>O<sub>4</sub>, AgNO<sub>3</sub> monia, (1 or 3Ag<sub>2</sub>O<sub>2</sub>, 4gNO<sub>5</sub> (Mulder, Chem Soc 1896, 70 (2) 561)

### Peroxylaminesulphonic acid

#### Potassium peroxylaminesulphonate, N<sub>2</sub>O<sub>2</sub>(SO<sub>3</sub>K)<sub>4</sub>

Very unstable in H<sub>2</sub>O Very sl sol in cold H<sub>2</sub>O More stable in N/10 KOH+Aq

100 pts N/10 KOH+Aq dissolve 0 62 pt of the salt at 3°, 6 6 pts at 29° (Haga, Chem Soc 1904, 85 86)

### Perstannic acid, H<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>

Known in colloidal state, sol in H<sub>2</sub>O (Spring, Bull Soc (2) **51** 180)

### Potassium perstannate, KSnO<sub>4</sub>+2H<sub>2</sub>O

Sol in H<sub>2</sub>O Insol in alcohol (Tanatar, B 1905, **38** 1185)

### Sodium perstannate, NaSnO<sub>4</sub>+2H<sub>2</sub>O

Difficultly sol in  $H_2O$  with decomp (Tanatar)

### Persulphuric acid, S<sub>2</sub>O<sub>7</sub> See Sulphur heptoxide

H<sub>2</sub>S<sub>2</sub>O<sub>8</sub>

Sp gr of H<sub>2</sub>S<sub>2</sub>O<sub>8</sub>+Aq

| Sp gr 14°/14° | % H <sub>2</sub> S <sub>2</sub> O <sub>8</sub> | g H <sub>2</sub> S <sub>2</sub> O <sub>5</sub> per l |
|---------------|------------------------------------------------|------------------------------------------------------|
| 1 042         | 7 2                                            | 75                                                   |
| 1 096         | 15 4                                           | 169                                                  |
| 1 154         | 23 6                                           | 272                                                  |
| 1 246         | 35 2                                           | 438                                                  |

(Elbs and Schonherr, Z Elektrochem 1896, 2 245)

#### Ammonium persulphate, (NH<sub>4</sub>) S<sub>2</sub>O<sub>8</sub>

Very sol in  $H_2O$  100 pts  $H_2O$  at 0° dis solve 58 2 pts  $(NH_4)_2S_2O_8$  (Marshall, Chem Soc 59 771)

Solubility in  $H_2O$  equals 58% at  $8^\circ$  (Moreau, C C 1901, II 56)

100 pts H<sub>2</sub>O dissolve 65 pts at old temp (Elbs, J pr 1893, (2) **48** 185)

### Ammonium lead persulphate,

 $(NH_4)_2Pb(SO_4)_3$ 

Decomp by H<sub>2</sub>O Almost insol in cold H<sub>2</sub>SO<sub>4</sub> of sp gr = 1.7 Sl sol in H<sub>2</sub>SO<sub>4</sub> (sp gr = 1.7) at 50° Sol in fuming H<sub>2</sub>SO<sub>4</sub> and in cold cone HCl Sol in acetic acid, in Na acetate +Aq acidified with acetic acid and in excess of cold 20%NaOH+Aq (Elbs, Z Elektrochem 1900, 7 346)

Ammonium mercurous persulphate an monia, (NH<sub>4</sub>)HgS<sub>2</sub>O<sub>8</sub>, 2NH<sub>3</sub>

Decomp by H<sub>2</sub>O Insol in dil or cond hot or cold H<sub>2</sub>SO<sub>4</sub> or HNO<sub>3</sub> Sol in HC (Tarugi, Gazz ch it 1903, **33** (1) 131)

#### Barium persulphate, $BaS_2O_8+4H_2O$

Very sol in  $\rm H_2O$  100 pts  $\rm H_2O$  at 0° di solve 39 1 pts  $\rm BaS_2O_8$ , or 52 2 pts  $\rm BaS_2O_8$  $\rm 4H_2O$  Sol in absolute alcohol with pptn  $\rm BaS_2O_8+H_2O$  Insol in alcohol (Marshæll

 $\begin{array}{ccc} Cadmium & persulphate & ammonia, & CdS_2O \\ 6NH_3 & & & \end{array}$ 

Sol in  $H_2O$  (Barbieri, Z anorg 1911, **7** 350)

### Cæsium persulphate, Cs<sub>2</sub>S<sub>2</sub>O<sub>8</sub>

Sol m H<sub>2</sub>O 871-898 pts are sol m 10 pts H<sub>2</sub>O at 23° (E F Smith, J Am Chen Soc 1899, **21** 935)

#### Calcium persulphate

Very sol in H<sub>2</sub>O (Maishall, J Soc Chen Ind 1897, **16** 396)

Copper persulphate ammonia, CuS<sub>2</sub>O<sub>8</sub>, 4NH Sol in H<sub>2</sub>O (Baibieri, Z anorg 1911, 7 351)

### Lead persulphate, PbS2O8

Decomp by H<sub>2</sub>O SI sol in H SO<sub>4</sub>, and 1 pyrosulphune acid Sol in cold cone HC Insol or sol with decomp in ill ord solvent (Flbs, Z Elektrochem 1900, 7 345)

Solubility of  $Pb(SO_4)_2$  in II  $SO_4+Aq$  at 22° v=moles of  $H_2SO_4$  per mole of  $H_2O$  c=millimols  $Pb(SO_4)_2$  in 1 l

| v                                                           | r                                                | v                                                         | c                                                    |
|-------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|
| 0 304<br>0 348<br>0 387<br>0 407<br>0 435<br>0 477<br>0 515 | 0 00<br>1 %<br>3 0<br>3 9<br>5 3<br>14 4<br>23 3 | 0 55\$<br>0 699<br>0 917<br>1 11<br>1 54<br>2 0\$<br>2 13 | 37 2<br>40 5<br>23 3<br>23 7<br>49 6<br>83 5<br>88 2 |
|                                                             |                                                  | <del>`</del>                                              |                                                      |

(Dolezalek and Finckli, Z anorg 1906, **51** 321)

+3H<sub>2</sub>O Deliquescent Very sol in H<sub>2</sub>O (Marshill)

#### Lead potassium persulphate, K<sub>2</sub>Pb(SO<sub>4</sub>)<sub>3</sub>

Decomp by  $H_2()$  Almost insol in cold  $H_2 SO_4$  of sp gr = 1.7 Sl sol in  $H_2 SO_4$  (sp gr = 1.7) at 50° Sol in fuming  $H_2 SO_4$ , cold cond HCl, excess of cold 20% NaOH+Aq accetic acid and in Na accetic +Aq acidified with accetic acid (Elbs, Z Elektrochem 1900, 7 346)

Nickel persulphate ammonia, NiS<sub>2</sub>O<sub>8</sub>, 6NH<sub>3</sub> Unstable in the air Sol in H<sub>2</sub>O with decomp (Barbieri, Z anorg 1911, 71 351)

Potassium persulphate, K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>

100 pts  $\rm H_2O$  at 0° dissolve 1 77 pts  $\rm K_2S_2O_8$ , more sol in hot  $\rm H_2O$  with very sl decomp Less sol in  $\rm H_2O$  than any other persulphate (Marshall)

Rubidium persulphate, Rb<sub>2</sub>S<sub>2</sub>O<sub>8</sub>

Sol in  $H_2O$  3 32-3 49 pts are sol in 100 pts  $H_2O$  at 22 5° (E F Smith, J Am Chem Soc 1899, 21 934)

Silver persulphate, basic, 5Ag<sub>2</sub>O<sub>2</sub>, 2Ag<sub>2</sub>SO<sub>7</sub> Decomp by H<sub>2</sub>O and acids (Mulder, C C **1899** I, 16)

Sodium persulphate,  $Na_2S_2O_8$ Very sol in  $H_2O$  (Lowenherz)

Strontium persulphate

Verv sol in  $H_2O$  (Marshall, J Soc Chem Ind 1897, 16 396)

Thallium persulphate, Tl<sub>2</sub>S<sub>2</sub>O<sub>8</sub>

Very sol in H<sub>2</sub>O (Smith, J Am Chem Soc 1898, **21** 936)

Zinc persulphate ammonia,  ${\rm ZnS_2O_8}, {\rm 4NH_3}$ Sol in H O (Barbieri, Z anorg 1911, **71** 350)

Persulphomolybdic acid See Persulphomolybdic acid

Pertantalic acid, HTaO<sub>4</sub>+nH<sub>2</sub>O

Ppt (Mclikoff, Z morg 1899, 20 345)

Cæsium pertantalate, ('5, 1 10)8

Ppt (F F Smith, J Am Chem Soc 1908, **30** 1667)

Calcium potassium pertantalate,  $CiklaO_8+4\frac{1}{2}HO$ 

Insol in cold H (), decomp by hot H () (Melikoff, Z inoig 1899,  $\bf 20$  347)

Calcium sodium pertantalate, CaNalaO<sub>8</sub>+ 4½II ()

Difficultly sol in HO (E.F. Smith, J. Am. Chem. Soc. 1908, 30, 1668)

Magnesium potassium pertantalate,

 $MgK 1 aO_8 + 7H_2O$ Somewhat sol in  $H_2O$  (F F Smith)

Magnesium rubidium pertantalate, MgRb7aO<sub>8</sub>+9H<sub>2</sub>O Somewhat sol in H<sub>2</sub>O (E F Smith)  $\begin{array}{c} \textbf{Magnesium sodium pertantalate, MgNaTaO_8} \\ +8 \text{H O} \end{array}$ 

Somewhat sol in H<sub>2</sub>O (E F Smith)

Potassium pertantalate, K<sub>3</sub>TaO<sub>8</sub>+½H<sub>2</sub>O

Sol in H<sub>2</sub>O with decomp, sol in KOH+ H<sub>2</sub>O<sub>2</sub>+Aq, pptd by alcohol (Melikoff, Z anorg 1899, **20** 346)

Rubidium pertantalate, Rb<sub>3</sub>TaO<sub>8</sub> Somewhat sol in H<sub>0</sub>O (E F Smith)

Sodium pertantalate, Na<sub>3</sub>T<sub>2</sub>O<sub>8</sub>+H<sub>2</sub>O

Pptd by alcohol SI sol in  $H_2O$ , decomp on heating with  $H_2O$  (Melikoff, Z anorg 1899, **20** 348)

NaTaO<sub>4</sub>+NaOTaO<sub>4</sub>+13H<sub>2</sub>O Sol in  $H_2O_2+Aq$ , pptd by alcohol (Melikoff, Z anorg 1899, **20** 349)

#### Pertitanic acid

Ammonium pertitanate,  $(NH_4)_2O_2$ ,  $T_1O_3 + H_2O_2$ 

Fairly stable, decomp rapidly in aq solution (Melikoff, B 1898, **31** 955)

Barium pertitanate, BaO<sub>2</sub>, TiO<sub>3</sub>+5H<sub>2</sub>O

Sl sol in H<sub>2</sub>O (Melikoff and Pissarjewsky, Z anorg 1898, **18** 59)

Potassium pertitanate,  $K_2O$ ,  $T_1O_3$ ,  $K_2O_4$ +  $10H_2O$ 

Stable at zero, deliquesces and decomp at ordinary temp (Melikoff, B 1898, 31 680)

Sodium pertitanate, Na<sub>2</sub>O<sub>2</sub>, TiO<sub>3</sub>+3H O
Sol in H<sub>2</sub>O Pptd in alcohol (Melikoff,

B 1899 **31** 955) 4Na<sub>2</sub>O<sub>2</sub>, Tl<sub>2</sub>O<sub>7</sub>+10H<sub>2</sub>O Decomp by H<sub>2</sub>O (Melikoff)

### Pertungstic acid

Barium pertungstate, BaO, 2WO<sub>2</sub> O+6H<sub>2</sub>O Insol in H<sub>2</sub>O Decomp by roids (Kellner, Disseit 1909)

Cæsium pertungstate, 3Cs<sub>2</sub>(), 12WO<sub>3</sub>, 2O+

Sl sol in cold, easily sol in warm HO (Kellner)

5Cs<sub>2</sub>O, 12WO<sub>3</sub>, 24O+11H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Kellner)

Calcium pertungstate, 3C iO 6WO<sub>3</sub>, 8O+8H<sub>2</sub>O

Sol in H<sub>2</sub>O (Kellner)

Lithium pertungstate,  $\text{Li}_2\text{O}$ ,  $2\text{WO}_8$ ,  $2\text{O} + 6\text{H}_2\text{O}$ 

Sl sol in H<sub>2</sub>O (Kellner) 3L<sub>12</sub>O, 4WO<sub>3</sub>, O+9H<sub>2</sub>O Sol in H<sub>2</sub>O (Kellner) Magnesium pertungstate, 2MgO, 4WO<sub>3</sub>, 6O+  $9H_2O$ 

Easily sol in H<sub>2</sub>O (Kellner)

Potassium pertungstate, K<sub>2</sub>O<sub>4</sub>, WO<sub>4</sub>+H<sub>2</sub>O

Sol in H<sub>2</sub>O with decomp, explodes in the air at 80° (Melikoff, B 1898, 31 634)

K<sub>2</sub>O, 2WO<sub>3</sub>, 4O+4H<sub>2</sub>O Sol in H<sub>2</sub>O from which it is ppt by alcohol and ether (Kell-

 $7K_2O$ ,  $10WO_3$ ,  $5O+22H_2O$ Very sl sol in H<sub>2</sub>O (Kellner)

Rubidium pertungstate, 2Rb<sub>2</sub>O, 4WO<sub>3</sub>, O+ 3H<sub>2</sub>O

Sol in H2O with slow decomp (Kellner) 5Rb<sub>2</sub>O, 12WO<sub>3</sub>, 3O+12H<sub>2</sub>O H<sub>2</sub>O (Kellner) Insol in

Sodium pertungstate, NaWO<sub>4</sub>+H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Péchard, C R 112 1060) +2H₂0 Sol in H<sub>2</sub>O but easily decomp

(Kellner)

 $Na_2W_2O_9+6H_2O$ Sol in HO and can be cryst therefrom (Pissarjewsky, Z anorg 1900, **24** 113)

Na<sub>2</sub>O<sub>2</sub>, WO<sub>4</sub>+H<sub>2</sub>O<sub>2</sub>, (Na<sub>2</sub>O<sub>2</sub>)WO<sub>4</sub>+7H<sub>2</sub>O Decomp in the air Sol in H<sub>2</sub>O with decomp (Melikoff, B 1898, **31** 633) Na<sub>2</sub>O<sub>2</sub>, WO<sub>4</sub>, H<sub>2</sub>O<sub>2</sub> Very unstable Decomp in the air and by H<sub>2</sub>O (Melikoff)

Strontium pertungstate, SrO, 2WO<sub>3</sub>, O+  $6H_{9}O$ (Kellner)

Peruranic acid,  $UO_6$ ,  $xH_2O$  (?)

Known only in its salts

Ammonium peruranate,  $(NH_4)_2O_2$ ,  $(UO_4)_2+$ 

in H2O, decomp by acids and by Al(OH); in aq solution (Melikoff, B 1897, **30** 2904)

Ammonium uranyl peruranate,  $(NH_4)_2(UO_2)UO_8 + 8H_2O(?)$ 

Easily sol in H<sub>2</sub>O (Fairley, Chem Soc (2) **31** 134)

Barium peruranate, BaUO<sub>5</sub>

As K salt (de Coninck, C C 1909, I 1970)

(BaO<sub>2</sub>)<sub>2</sub>UO<sub>4</sub>+8H<sub>2</sub>O Decomp by H<sub>2</sub>SO<sub>4</sub> and H<sub>2</sub>CO<sub>3</sub> (Melikoff, B 1897, 30 2905) BaO<sub>2</sub>(UO<sub>4</sub>)<sub>2</sub>+9H<sub>2</sub>O Ppt (Melikoff)

·Calcium peruranate, CaUO<sub>5</sub> As K salt (de Coninck)

Calcium peruranate,  $(CaO_2)_2UO_4+10H_2O$ Ppt (Melikoff, B 1897, **30** 2906)

Copper peruranate, (CuO<sub>2</sub>)<sub>2</sub>UO<sub>4</sub> Ppt (Melikoff)

Lead peruranate, (PbO)<sub>2</sub>UO<sub>4</sub>, PbO, UO<sub>3</sub> (Melikoff)

Lithium peruranate,  $(L_{12}O_2)(UO_4)_2 + 8H_2O$ Sol in H<sub>2</sub>O, decomp by acids and by Al(OH)<sub>8</sub> in ag solution, very unstable (Melikoff)

Nickel peruranate, (NiO)2UO4 Ppt (Melikoff)

Potassium peruranate,  $K_4UO_8+10H_2O$  (?)

Unstable (Fairley) (de Coninck, C R 1909, 148  $K_2UO_5$ 1769)

Decomp by H2O, HCl and dil +3H<sub>2</sub>OHNO<sub>3</sub> (Aloy, Bull Soc 1903, (3) 29 293)

Silver peruranate,  $Ag_2U_2O_{11}$  (?) (Guyard, Bull Soc (2) 1 95) Does not exist (Alibegoff, A 233 117)

Sodium peruranate, Na<sub>4</sub>UO<sub>8</sub>+8H<sub>9</sub>O

Sol in H<sub>2</sub>O Sl sol in alcohol (Fairley) Na<sub>2</sub>UO<sub>5</sub> As K salt (de Coninck, C C 1909, I 1970)  $+5H_2O$ Decomp by H<sub>2</sub>O and HCl

(Aloy, Bull Soc 1903, (3) 29 293) (Na<sub>2</sub>O<sub>2</sub>)<sub>2</sub>UO<sub>4</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O, decomp by dil HCl, H<sub>2</sub>SO<sub>4</sub>, and by Al(OH): in aq solution (Melikoff, B 1897, **30** 2903)

Sodium uranyl peruranate, Na<sub>2</sub>(UO<sub>2</sub>)UO<sub>8</sub>+ 6H<sub>2</sub>O (?)

Sol in H<sub>2</sub>O (Fairley)

Pervanadic acid, HVO<sub>4</sub> (?)

Sol in H<sub>2</sub>O (Pissarjewsky, C C 1902, II 565)

Ammonium pervanadate,  $NH_4VO_4$ 

Sol in H<sub>2</sub>O +Aq, insol in alcohol (Scheuer Z anorg 1898, 16 294) (NH<sub>4</sub>)<sub>3</sub>VO<sub>6</sub>+2½H<sub>2</sub>O

Sol in HO, insol in alcohol (Melikoff, B 1909, **42** 2292)

 $(NH_4)_4V_2O_{11}$  Sol in HO +Aq, ppt from aq solution by ilcohol (Mclikoff, Z inorg 1899, **19** 406)

Barium pervanadate,  $Ba(VO_4)_2$ 

SI sol in H<sub>2</sub>O<sub>2</sub>+Aq free from H SO<sub>4</sub>, insol in alcohol (Scheuer, Z anorg 1898, **16** 288 )

Cadmium pervanadate, Cd(VO<sub>4</sub>)

Sl sol in H<sub>2</sub>O<sub>2</sub>+Aq, insol in alcohol (Scheuer)

Calcium pervanadate,  $Ca(VO_4)_2$ 

 $\operatorname{Sol}$ ın H<sub>2</sub>O<sub>2</sub>+Aq, insol in alcohol (Scheuer)

### Lead pervanadate, Pb(VO<sub>4</sub>)<sub>2</sub>

Sl sol in H<sub>2</sub>O +Aq free from H<sub>2</sub>SO<sub>4</sub>, insol in alcohol (Scheuer)

### Lithium pervanadate, LiVO4

Sol in  $H_2O_2 + A_0$ , insol in alcohol (Scheuer)

#### Potassium pervanadate, KVO<sub>4</sub>

Sol in  $H_2O_2+Aq$  acidified with  $H_2SO_4$ , insol in alcohol (Scheuer)

 $K_3VO_6+2\frac{1}{2}H_9O$ Sol in H<sub>2</sub>O, insol in alcohol (Melikoff, B 1909, 42 2293)

3K<sub>2</sub>O<sub>2</sub>VO<sub>4</sub>, 2KVO<sub>4</sub>+2H<sub>2</sub>O 0 855 g is sol m 100 g H<sub>2</sub>O at 19°, sl sol m KOH+ Aq, very stable in the air (Melikoff and Pissarjewsky, Z anorg 1899, 19 408)  $K_4V_2O_{12}+2H_2O$  (Melikoff and Pissar-

lewsky, Z anoig 1899, 19 411)

 $K_4V_2O_{13}+3\frac{1}{2}H_2O$  Moderately sol H<sub>2</sub>O with slow decomp (Melikoff and Pissarlewsky, Z anorg 1899, 19 410)

### Silver pervanadate, AgVO<sub>4</sub>

Sl sol in H<sub>2</sub>O<sub>2</sub>+Aq free from H<sub>2</sub>SO<sub>4</sub>, sol in alcohol (Scheuer)

### Sodium pervanadate, NaVO4

Sol in H<sub>2</sub>O<sub>2</sub> acidified with H<sub>2</sub>SO<sub>4</sub>, insol in alcohol (Scheuer)

### Strontium pervanadate, Sr(VO<sub>4</sub>)<sub>2</sub>

Sl sol in  $H_2O_2+Aq$  free from  $H_2SO_4$ , insol in alcohol (Scheuer)

### Philippium, Ph (?)

(Delafontaine, C R 87 559) Consists of terbium and yttrium (Roscoe, B 15 1274)

### Phosgene, CoCl<sub>2</sub>

See Carbonyl chloride

### Phosphame, PN<sub>2</sub>H (?)

Insol in dil HNO3+Aq, Insol in H<sub>2</sub>O gradually decomp by cone HNO3 (Rose,

Pogg 24 308) Insol in conc HNO<sub>3</sub> (Pauli, A 123 236) Sol in H<sub>2</sub>SO<sub>4</sub> with decomp (Rose) Insol in dil, but decomp by conc KOH

or NaOH+Aq Insol in alcohol or ether

Formula is perhaps P<sub>3</sub>N<sub>3</sub>H<sub>4</sub> (Salzmann, B 6 494)

# Phosphamic acid, PO NH

(Schiff ) Does not exist, but was impure pyrophosphodiamic acid (Gladstone) Also Mente (A. 248 245)

### $Pyrophosphamic acid, P_2NH_5O_6 =$ $P_2O_3(OH)_3NH_2$

Deliquescent in moist air, easily sol in H<sub>2</sub>O or alcohol, sl sol in ether (Gladstone, Chem Soc 3 152)

Correct composition is imidodiphosphoric acid,  $P_2NH_4O_5 = HO - PO < \frac{O}{NH} > PO - OH$ (Mente, A 248 232)

### Barium pyrophosphamate, Ba<sub>3</sub>(P NH<sub>2</sub>O<sub>6</sub>)<sub>2</sub> Sol in HCl or HNO<sub>3</sub>+Aq, not in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Gladstone and Holmes, Chem Soc (2) 2 233)

### Cupric ——, $Cu_8(P_2NH_2O_6)_2+2H_2O$

Ppt Decomp by cold KOH+Aq (Gladstone, Chem Soc 3 135)

### Ferric —, $Fe_{\circ}(P_{\circ}NH_{\circ}O_{6})_{2}+2H_{2}O$

Sol in conc H<sub>2</sub>SO<sub>4</sub>, Insol in dil acids and decomp by warming Easily sol in NH<sub>4</sub>OH+Aq Decomp by KOH+Aq Easily sol in (Gladstone, Chem Soc 3 142)

### Lead ——, $Pb_8(P_2NH_9O_6)_2+4H_9O_6$ Insol in NH<sub>4</sub>OH+Aq

#### Potassium —, K<sub>3</sub>P<sub>4</sub>NH<sub>2</sub>O<sub>6</sub>

Sol in HO Insol in Deliquescent alcohol (Gladstone A 76 85)

Silver —,  $Ag_8P NH_2O_6+5H O$ Ppt

### $Z_{inc}$ —, $Z_{n_3}(P_2NH O_6)_2$

(Gladstone and Holmes, Chem Soc (2) 2 225)

### Phosphamide, PON

See Phosphoryl nitride PN<sub>2</sub>H<sub>3</sub>O

See Phosphoryl imidoamide

# Triphosphamide, PON<sub>2</sub>H<sub>6</sub>

See Phosphoryl triamide

### Trimetaphosphimic acid, P<sub>3</sub>N<sub>3</sub>H<sub>6</sub>O<sub>6</sub>

Sol in H<sub>2</sub>O, aq solution does not coagulate albumen (Stokes, Am Ch J 1895, 17 275)

### Ammonium trimetaphosphimate, $(NH_4)_8P_3N_8O_6H_3$

Sol in H<sub>2</sub>O, insol in alcohol, unstable (Stokes, Am Ch J 1896, 18 643)

### Barium trimetaphosphimate, Ba<sub>3</sub>(P<sub>3</sub>N<sub>3</sub>O<sub>6</sub>H<sub>3</sub>)<sub>2</sub> +4H<sub>2</sub>O

 $+6\mathrm{H}_2\mathrm{O}$  Sl sol in  $\mathrm{H}_2\mathrm{O}$  Easily sol in NH4Cl+Aq and in NaCl+Aq (Stokes)

Barium sodium trimetaphosphimate, P<sub>3</sub>N<sub>3</sub>O<sub>6</sub>H<sub>3</sub>NaBa+1½H<sub>2</sub>O

Almost insol in H<sub>2</sub>O, easily sol in NH<sub>4</sub>Cl+ Aq and in NaCl+Aq (Stokes)

Magnesium trimetaphosphimate,  $(P_3N_3O_6H_3)_2Mg_3$  (?)

Sol in H<sub>2</sub>O, insol in alcohol, aq solution decomp on boiling (Stokes)

Potassium trimetaphosphimate, K<sub>3</sub>P<sub>3</sub>N<sub>3</sub>O<sub>6</sub>H<sub>3</sub> Sol in H<sub>2</sub>O, insol in alcohol (Stokes)

Silver trimetaphosphimate, Ag<sub>3</sub>P<sub>3</sub>N<sub>3</sub>O<sub>6</sub>H<sub>3</sub> Ppt, sol in NH<sub>4</sub>OH+Aq, insol in H<sub>2</sub>O, sl sol in HNO<sub>3</sub>+Aq (Stokes)

a Sodium trimetaphosphimate,  $P_8N_8O_6H_8Na_8+4H_2O$ 

18 3 pts are sol in 100 pts H<sub>2</sub>O at 20°, very sol in hot H<sub>2</sub>O, decomp by alkali on long boiling (Stokes)

 $\beta$  Sodium trimetaphosphimate,  $P_3N_3O_6H_3Na_3 + H_2O$ 

Sol in H<sub>2</sub>O, insol in alcohol (Stokes)

Tetrametaphosphimic acid, P<sub>4</sub>N<sub>4</sub>O<sub>8</sub>H<sub>8</sub>+2H<sub>2</sub>O

Very sl sol in H<sub>2</sub>O, decomposes the sol salts of HCl, H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub> (Stokes, Am Ch J 1895, **17** 290)

100 pts H<sub>2</sub>O at 20° dissolve 0 64 pt crystallized acid Somewhat more sol in boiling H<sub>2</sub>O (Stokes)

H<sub>2</sub>O (Stokes) 100 pts 10% HNO<sub>3</sub>+Aq at 20° dissolve 0 26 pt of crystallized acid (Stokes)

Not decomp by boiling alkalies+Aq (Stokes, Am Ch J 1896, 18 785)
Insol in alcohol (Stokes, Am Ch J 1896, 18 784)

Ammonium tetrametaphosphimate, P<sub>4</sub>N<sub>4</sub>O<sub>8</sub>H<sub>6</sub>(NH<sub>4</sub>)<sub>2</sub>

Only sl sol in boiling  $H_2O$ , sol in excess of hot 5% HNO<sub>2</sub> (Stokes)

 $P_4N_4O_8H_4(NH_4)_4+4H_2O$  Readily sol in  $H_2O$ , sl sol in  $NH_4OH+Aq$  (Stokes)

Barium tetrametaphosphimate,  $P_4N_4O_8H_4B_{12}$  $+2H_2O$ 

Ppt, insol in H2O (Stokes)

Potassium tetrametaphosphimate, P<sub>4</sub>N<sub>4</sub>O<sub>8</sub>H<sub>6</sub>K<sub>2</sub>

Sl sol in boiling  $H_2O$ , sol in cold dil KOH +Aq (5tokes)  $P_4N_4O_2H_4K_4$  (?) Very sol in  $H_2O$ (Stokes)

Silver tetrametaphosphimate, P<sub>4</sub>N<sub>4</sub>O<sub>8</sub>H<sub>4</sub>Ag<sub>4</sub> Ppt, insol in H<sub>2</sub>O, sl sol in HNO<sub>3</sub>+Aq (Stokes)  $P_4N_4O_8Ag_8$  Ppt, sol in  $NH_4NO_8+Aq$  (Stokes)

Sodium tetrametaphosphimate, P<sub>4</sub>N<sub>4</sub>O<sub>8</sub>H<sub>4</sub>Na<sub>4</sub> +2½ (?) H<sub>2</sub>O

Sl sol in cold  $H_2O$  Easily sol in hot  $H_2O$  Ppt from aqueous solution by excess of alkali (Stokes)

Pentametaphosphimic acid,

PO (OH)  $\langle NH PO (OH)NH PO (OH) \rangle NH$ =  $H_{10}P_6N_6O_{10}$ 

Sol m  $H_2O$ , pptd by alcohol (Stokes, Am Ch J 1898, 20 748)

Magnesium pentametaphosphimate,  $(P_5N_5O_{10}Hg)_2Mg$ 

 $\begin{array}{c} Ppt \quad (Stokes) \\ P_5N_5O_{10}H_6Mg_2 + 5H_2O \quad Ppt \ , \ insol \ in \ alcohol, \ almost \ insol \ in \ H_2O, \ sl \ sol \ in \ conc \ acetic \ acid \ \ (Stokes) \end{array}$ 

Silver pentametaphosphimate,  $P_5N_5O_{10}H_5Ag_5$ Ppt, sol in cold  $\rm kOH+Aq$  with decomp (Stokes)

Sodium pentametaphosphimate,

 $P_5N_5O_{10}H_5Na_5+2H_2O$ 

Sol in  $H_2O$ , insol in alcohol (Stokes)  $P_5N_5O_{10}H_5Na_4+2H_2O$  Sol in 80% acetic acid, pptd by alcohol (Stokes)

Hexametaphosphimic acid

Silver hexametaphosphimate,  $P_6N_6O_1$   $H_6Ag_6$ 

Ppt, decomp by cold NOH + Aq (Stokes, Am Ch J 1805, 20 707)

Sodium hexametaphosphimate, P<sub>1</sub>N<sub>1</sub>()<sub>1</sub> H<sub>6</sub>N<sub>d6</sub> +2H<sub>2</sub>O

Sol in HO, pptd by ilcohol (Stokes)

Phosphine

See Hydrogen phosphide

Pyrophosphodiamic acid,

 $P_2N_2H_6O_5 = P_2O_3(OH)'(NII)$ 

Deliquescent Fisily sol in HO, ilcohol, or other Sol in cold cone H<sub>2</sub>SO<sub>4</sub> without decomp (Glidstone, Chem Soc **3** 353)

Correct composition is dismidodiphosphone wid, P N<sub>2</sub>II<sub>4</sub>()<sub>4</sub>+H<sub>2</sub>()=II() -P()=(NII) = PO—OH (Mente)

Aluminum pyrophosphodiamate

Precipitate Sol in NII<sub>4</sub>OII+Aq Insol in acids (Gladstone, A 76 82)

Ammonium —,  $P O_3(NH_4)$ 

Very deliquescent in moist an Sol in H<sub>2</sub>O (Schiff, A 103 168)

Barium pyrophosphodiamate,  $BaP_2O_5(NH_2)_2$ 

Sl sol m H<sub>2</sub>O Sol in Precipitate NH<sub>4</sub>OH+Aq (Gladstone)

Calcium —,  $CaP_2O_5(NH_2)_2$ 

Insol in NH<sub>4</sub>OH+Aq Sol in NH<sub>4</sub>Cl+ Aq and acids (Gladstone and Holmes)

Lead -

Ppt Decomp by H<sub>2</sub>O

Magnesium -

Ppt (Gladstone and Holmes)

Silver —,  $Ag_2P_2O_5(NH_2)_2$ 

SI sol in H<sub>2</sub>O Sol in HNO<sub>3</sub>+Aq (Gladstone and Holmes)

Strontium -

Sol in acids and NH<sub>4</sub>Cl+Aq Insol in (Gladstone and Holmes,  $PA+HO_{\downarrow}HM$ Chem Soc (2) 4 295)

Zinc —,  $ZnP_2O_5(NH_2)_2$ 

Ppt (Gladstone and Holmes)

Pyrophosphotriamic acid,  $P_2N_3H_7O_4 =$ 

 $P_2\mathrm{O_3}(\overset{\smile}{\mathrm{NH_2}})_3$  $_{\rm OH}$ 

Decomp by boiling H<sub>2</sub>O or HCl conc H2SO4 upon heating (Gladstone and Holmes)

Correct formula is HO -PO < NH > PO-

 $NH_2 = dimidodiphosphomonamic$  reid (Mente, A 248 241)

Ammonium pyrophosphotriamate,

 $P_2O_3 {\stackrel{ONH_4}{(NII)_3}}$ 

Insol in H<sub>2</sub>() (Glidstone and Holmes)

Barium ----, BaP<sub>2</sub>N<sub>3</sub>H O<sub>4</sub>

BaH<sub>2</sub>(P<sub>2</sub>N<sub>3</sub>H<sub>5</sub>O<sub>4</sub>)<sub>2</sub> Decomp by HCl+Aq (Gladstone, (hem Soc 4 6)

Cobaltous ---, CoP N<sub>3</sub>H<sub>5</sub>O<sub>4</sub>

Slowly decomp by dil H2SO4+Aq, not by HCl+Aq (Glidstone and Holmes, Chem Soc (2) 4 1)

Cupric —, CuP<sub>2</sub>N<sub>3</sub>H<sub>5</sub>O<sub>4</sub>

Insol in  $H_2()$  or  $NH_4()H+Aq$  (Gladstone and Holmes, Chem Soc (2) 4 1)

Ferrous —,  $FeH_6(P_2N_3H_3O_4)_2$ 

Insol in dil acids (Gladstone, Chem Soc (2) **4** 1)

Lead —,  $H_2Pb_3(P_2N_3H_3O_4)_2$ Ppt (Gladstone and Holmes, Chem Soc  $(2) \bar{4} 1)$ 

 $H_4Pb_2(P N_3H_3O_4)_2$  Ppt (G and H)  $H_6Pb(P_2N_3H_3O_4)_2$  (G and H)

Mercuric pyrophosphotriamate, Hg<sub>2</sub>P<sub>2</sub>N<sub>3</sub>H<sub>3</sub>O<sub>4</sub>

Insol in H<sub>2</sub>O or dil HCl or HNO<sub>3</sub>+Aq (Gladstone and Holmes, Chem Soc (2) 4 1)

Platınum —,  $Pt_2P_2N_3H_3O_4$ 

Decomp by H<sub>2</sub>O when freshly pptd (G and  $\mathbf{H}$ )

Potassium —,  $KP_2N_3H_6O_4$ 

Almost insol in H<sub>2</sub>O (Gladstone, Chem Soc 4 10)

Silver —,  $Ag_3P_2N_3H_4O_4$ 

Ppt Sl attacked by HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, decomp by HNO<sub>8</sub> or NH<sub>4</sub>OH+Aq into-AgH<sub>2</sub>P<sub>2</sub>N<sub>3</sub>H<sub>4</sub>O<sub>4</sub> Insol in H<sub>2</sub>O Decomp by HCl (Gladstone, Chem Soc (2) 4 1)

Zinc ---

Insol in H<sub>2</sub>O (Gladstone and Holmes)

 $Tetraphosphodiamic acid, P_4N_2H_8O_{11} =$ 

 $P_4O_7(OH)_4 (NH_2)_2$ 

Known only as NH<sub>4</sub> salt

Ammonium tetraphosphodiamate,

 $P_4O_7O_4H(NH_4)_3$  $(NH_2)$ 

Very deliquescent, and sol in H₂O (Gladstone)

Ammonium dihydrogen tetraphosphodiamate,  $P_4N_4H_{16}O_1 = P_4O_7O_4H_2(NH_4)$  (?)  $(NH_2)_2$ 

Insol in cold, easily sol in hot H O and dil icids (Gladstone)

Tetraphosphotetramic acid,

 $P_4N_4H_{10}O_9 = P_4O_7\frac{(OH)_2}{(NII)_4}$ 

Sol in HO Insol in alcohol (Gladstone)

Ammonium tetraphosphotetramate,

 $P_4O_7^{(()} HNH_4) \over (NH_2)_4$ 

Sol in H<sub>2</sub>O, and precipitated from solution by alcohol (Gladstone)

Silver —,  $Ag_6P_4N_4H_4O_9$ 

Ppt Ag H<sub>4</sub>P<sub>4</sub>N<sub>4</sub>H<sub>4</sub>O<sub>9</sub> Ppt

Ammonium phosphoarsemovanadicovanadiotungstate

Arseniophosphovanadicovanadictungstate, ammonium

retraphosphopentazotic acid,  $P_4N_5H_9O_7 = P_4O_7 \frac{(NH_2)_4}{NH}$ 

Insol in H<sub>2</sub>O Decomp gradually by boilng with H<sub>2</sub>O (Gladstone)

mmoniotetraphosphopentazotic acid (?),  $(N\bar{H}_2)_4$ P4O7NH NH3

Decomp by H<sub>2</sub>O (Gladstone)

'upric tetraphosphopentazotate (Gladstone, Chem. Soc. (2) 6 261)

ead ----(Gladstone, Chem Soc (2) 6 261)

otassium —, KOP<sub>4</sub>N<sub>5</sub>H<sub>8</sub>O<sub>6</sub> Insol in H<sub>0</sub>O (Gladstone, Chem Soc (2) 268)

Phosphoboric acid, H<sub>3</sub>BO<sub>3</sub>, H<sub>3</sub>PO<sub>4</sub>=BPO<sub>4</sub> +3H<sub>2</sub>O

Not decomp by boiling H<sub>2</sub>O or conc acids ol in boiling solution of caustic alkalies Vogel, N Repert Pharm 18 611)

Phosphochloroplatinous acid, P(OH)<sub>3</sub>, PtCl<sub>2</sub> See Chloroplatinophosphoric acid

### Phosphochromic acid

ummonium phosphochromate, 3(NH<sub>4</sub>)<sub>2</sub>O,  $P_2O_5$ ,  $8CrO_3+H_2O$ 

Sol in H<sub>2</sub>O with decomp (Friedheim, Z norg 1894, 6 284)

otassium phosphochromate, 2K2O, P2O5,  $4\text{CrO}_8 + \text{H}_2\text{O}$ 

Sol in H<sub>2</sub>O but cannot be cryst therefrom vithout decomp Can be cryst without deomp from H<sub>2</sub>O containing phosphoric acid Friedheim)

3K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 8CrO<sub>3</sub> Sol in H<sub>2</sub>O but annot be cryst therefrom without decomp Blondel, C R 1894, 118 194)

### Phosphohypophosphotungstic acid

otassium sodium phosphohypophosphotungstate,  $9K_2O$ ,  $Na_2O$ ,  $4PO_5$ ,  $2PO_2H_3$ , 26WO<sub>3</sub>+23H<sub>2</sub>O

Precipitate Easily sol in hot H<sub>2</sub>O Gibbs, Am Ch J 7 313)

retraphosphotetrimidic acid,

 $P_4N_4H_6O_7 = P_4O_7\frac{(NH_2)_2}{(NH)_2}$ 

Known only in its salts (Gladstone)

Silver tetraphosphotetrimidate

Ppt (Gladstone)

11H<sub>2</sub>O

Phosphoiodic acid,  $P_2O_5$ ,  $18I_2O_5 + 4H_2O_5$ Decomp by H<sub>2</sub>O (Chrétien, A ch 1898,

(7) **15** 389)

Ammonium phosphoiodate, 4(NH<sub>4</sub>)<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>,  $18I_2O_5 + 12H_2O$ Sol in H<sub>2</sub>O Sl sol in conc H<sub>3</sub>PO<sub>4</sub>+Aq

(Chrétien) Lithium phosphoiodate, 3Li<sub>2</sub>O<sub>5</sub>, P<sub>2</sub>O<sub>5</sub>, 18I<sub>2</sub>O<sub>5</sub>+

Sol in H<sub>2</sub>O Sl sol in conc H<sub>3</sub>PO<sub>4</sub>+Aq (Chrétien)

Potassium phosphoiodate, 4KO, P<sub>2</sub>O<sub>5</sub>,  $18I_2O_5 + 5H_2O$ 

Decomp by a small amt of H<sub>2</sub>O, sol in a large amt Sl sol in conc H<sub>3</sub>PO<sub>4</sub>+Aq (Chrétien)

Sodium phosphoiodate, 6Na<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 18I<sub>2</sub>O<sub>5</sub> +5H<sub>2</sub>O

Sol in H<sub>2</sub>O Sl sol in cone H<sub>3</sub>PO<sub>4</sub>+Aq (Chrétien)

Phosphoiridic acid See Chlorophosphoiridic acid

Phospholuteotungstic acid, H<sub>5</sub>PW<sub>8</sub>O<sub>29</sub> See under Phosphotungstic acid

Phosphomolybdic acid, P<sub>2</sub>O<sub>5</sub>, 18MoO<sub>3</sub>  $+xH_2O$ 

"Phospholuteomolybdic acid"

Deliquescent Sol in H<sub>2</sub>O in all proportions (Kehrmann, Z anorg 1894, 7 418)

3H<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 20MoO<sub>3</sub>+21H<sub>2</sub>O Very sol in H<sub>2</sub>O Sol in ether By evaporation of H<sub>0</sub>O solution crystals with 44H (), or from a strong solution in cone HNO<sub>3</sub>+Aq, with 19H<sub>2</sub>O, are obtained, also crystals with 38, and 48H<sub>2</sub>O are known (Debiay, C R 66) 704)

According to Rammelsberg (B 10 1776) formula is 3H<sub>2</sub>O P<sub>2</sub>O<sub>5</sub>, 22MoO<sub>3</sub>

According to Gibbs (Am Ch J 3 317) formula is 3H<sub>2</sub>O, P<sub>2</sub>O, 24MoO<sub>3</sub>+59H<sub>2</sub>O Finkener (B 11 1038) gives the formula as

 $P_2O_5$ ,  $24MoO_3+58H_2O$ , also with 3H O.

29H<sub>2</sub>Ó P<sub>2</sub>O<sub>5</sub>, 20MoO<sub>8</sub>+52H<sub>2</sub>O Sol in dry ether with evolution of heat, and subsequent separation into two layers, the upper consisting of

pure ether, and lower of a solution of acid in ether Sp gr of lower layer, when sat at 13°, is 13 On warming lower layer, other separates out and forms an upper layer redissolves on cooling and shaking The lower layer is insol in H<sub>2</sub>O and miscible with al-

cohol

100 pts ether thus dissolve 80 6 pts acid at 0°, 84 7 pts at 81°, 96 7 pts at 19 3°, 103 9 pts at 27 4°, 107 9 pts at 32 9° (Parmentier, C R 104 688)

P<sub>2</sub>O<sub>5</sub>, 22MoO<sub>5</sub>+57H<sub>2</sub>O, and +58H<sub>2</sub>O

(Pohl, Dissert 1906)

 $P_2O_5$ ,  $23M_0O_3+61H_2O$ (Pohl) P<sub>2</sub>O<sub>5</sub>, 24MoO<sub>8</sub>+61H<sub>2</sub>O 1903, 11 789) (Miolati, C C

+64H<sub>2</sub>O (Pohl)

Diphosphopentamolybdic acid,  $H_6P_2Mo_5O_{28} = 3H_2O, P_2O_5, 5MoO_8$ Not known in free state

Ammonium phosphomolybdate, (NH<sub>4</sub>)<sub>2</sub>O,  $P_2O_5$ ,  $2M_0O_3 + 2H_2O_3$ 

(Meschorier, Dissert 1894)

 $2(NH_4)_2O$ ,  $P_2O_5$ ,  $4M_0O_8+5H_2O$ (Friedheim, Z anorg 1894, 6 33)

+6H<sub>2</sub>O (Perlberger, Dissert 1904)

 $(NH_4)_3PO_4$ ,  $11M_0O_3+6H_2O$ Formula is  $(NH_4)_3PO_4$ ,  $10M_0O_3+1\frac{1}{2}H_2O$ ,

according to the older authorities

Scarcely sol in H<sub>2</sub>O or aqueous acid solu-Easily sol in ammonia, and alkalies+ (Svanberg and Struve, J pr 44 291)

It is almost completely insol in a mixture of (NH<sub>4</sub>)<sub>2</sub>MoO<sub>4</sub>+Aq, and dil HNO<sub>8</sub>+Aq Absolutely insol in a dil nitric acid solution of ammonium nitiate (Richters, Z anal 10

471)

Solubility is increased even in presence of ammonium molybdate and free HNO<sub>3</sub> by HCl, ammonium, and other chlorides, tartaric acid, or large quantities of ammonium oxalate or citrate. Not precipitated in presence of excess of H<sub>3</sub>PO<sub>4</sub> (Fresenius, Z anal **3** 446)

Sol in 10,000 pts H<sub>2</sub>O at 16°, in 6600 pts H<sub>2</sub>O containing 1 vol % HNO<sub>3</sub>, in 550 pts HCl+Aq of 1 12 sp gr, in 620 pts alcohol of 0.80 sp gr, in 190 pts  $HNO_3+Aq$  (sp gr = 1.2) at 50°, in 5 pts conc  $H_2SO_4$  at 100°, in 3 pts NH<sub>4</sub>OII+Aq of 0 95 sp gr (Lggert, J pr **79** 496)

Sol in 21,186 pts H<sub>2</sub>O, 38,117 pts dil alcohol, and 13,513 pts strong alcohol

(Hehner, Analyst, 1879 23)

According to Sonnenschein, the solubility is increased by much H<sub>2</sub>O or alcohol, alkaline hydroxides, carbon ites, ortho-, pyio-, and metaphosphates, sodium borate, hyposul phate, thiosulphate, acetate, arsenate, and arsenite, potassium sodium taitiate, ammonium oxalate, orthophosphoric acid, and sul-phuric acid. It is not increased by ammonium molybdate or sulphate, potassium sulphate, acid tartiate, acid oxalate, nitrate, or chlorate, iodide, chloride, or bromide, sodium bromide or nitrate, nitric, hydrochloric, boric, tartaric, oxalic, and dilute sulphuric acids (Sonnenschein, J pi 53 342)

Sol in hot H<sub>2</sub>O Sol in cold caustic alkalies, alkali carbonates, and phosphates, (Peilberger)

NH<sub>4</sub>Cl, and (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq, sl sol in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, KNO<sub>3</sub>, and KCl+Aq, very sl sol in NH<sub>4</sub>NO<sub>3</sub>+Aq Sol in K<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>, NaCl, MgCl2, H2SO4, HCl, and cone or dil HNO<sub>8</sub>+Aq

Presence of (NH<sub>4</sub>)<sub>2</sub>MoO<sub>4</sub> totally changes the effect of acid liquids, insol in dil HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub>+Aq containing (NH<sub>4</sub>) MoO<sub>4</sub>, but somewhat sol in HCl+Aq, even in presence of that salt Tartaric acid and similar organic substances totally prevent the precipitation of this salt (Eggertz in Fresenius' Quant anal)

5(NH<sub>4</sub>)<sub>2</sub>O, 48MoO<sub>3</sub>,  $2P_2O_5 + 17H_2O =$  $3(NH_4)_2O_5$ ,  $24M_0O_3$ ,  $P_2O_5+2(NH_4)_2O_5$ ,  $H_2O_5$  $24\text{MoO}_{3}, P_{2}\text{O}_{5} + 16\text{H}_{2}\text{O}$ Formula of above salt according to Gibbs

 $3(NH_4)_2O$ ,  $22M_0O_3$ ,  $P_2O_5+9H_2O$ , or

12H<sub>2</sub>O

 $8(NH_4)_2O$ ,  $H_2O$ ,  $60M_0O_3$ ,  $3P_2O_5+11H_2O$ Sl sol m H<sub>2</sub>O

3(NH<sub>4</sub>)<sub>2</sub>O, 16MoO<sub>3</sub>, P<sub>2</sub>O<sub>5</sub>+14H<sub>2</sub>O Insol in cold, sol with decomp in hot H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq (Gibbs, Am Ch J 3 317)  $5(NH_4) O, P_2O_5, 16M_0O_8$ (Meschourer,

Dissert 1894)  $3(NH_4)_2O$ ,  $P_2O_5$ ,  $18M_0O_3+14H_4O$ I he aqueous solution is stable at  $_{\rm in}~{\rm H}_{\rm 2}{\rm O}$ ordinary temp for several days, but when warmed ordinary ammonium phosphomoly b-date separates (Kehrmann, Z anorg 1894, 7 414

 $3(N\dot{H}_4)_2O$ ,  $P_2O_5$ ,  $29MoO_3 + 8H_2O$  $H_2O$  dissolve 0 0238 g at 15° 1 pt 100 g 1 pt is sol at 15° m 4206 pts  $H_2O$ , 7300 pts 5%  $NH_4NO_8+Aq$ , 4930 pts 1%  $HNO_8+Aq$  (de Lucchi, Rass Min 1910, 32 21)

 $9(NH_4)_2O$ ,  $2P_2O_5$ ,  $28M_0O_3 + 8H_2O$ 

choirer, Dissert 1894)

Ammonium diphosphopentamolybdate,  $2(NH_4)_3PO_4$ ,  $5MoO_3+7HO=3(NH_4)_2O_7$  $5\text{MoO}_3$ ,  $P_2\text{O} + 7\text{H}_2\text{O}$ 

Easily sol in hot, less in cold H<sub>2</sub>O (Zenl -

n(1, J pr 58 256)  $5(\text{NH}_4)_2\text{O}$ ,  $H_2\text{O}$ ,  $10\text{MoO}_3$ ,  $2\text{P O}_5+6\text{H}_2\text{O}$   $=3(\text{NH}_4)$  O, 5MoO,  $P_2\text{O}_5+2(\text{NII}_4)$  O, H O,  $5\text{MoO}_3$ ,  $P_2\text{O}_5+6\text{H}_2\text{O}$  Sol in H O (Gibbs, Am Ch J 1895, **17** 87)

+8HO (Perlberger)

+18H<sub>2</sub>O (Mazzuchelli and Zingrilli, G 122 ch 1t 1910 40 (2) 55)

 $5(NH_4)_2O$ ,  $P_2O_5$ ,  $10MoO_3+13H_2O$ , and +14H<sub>2</sub>O (Perlberger, Dissert 1904)

Ammonium barium phosphomolybdate,  $3(NH_4)$  O, 30B  $\overline{1}O$ ,  $\overline{P}$  O<sub>5</sub>,  $30M_0O_3$ 

Insol precipitate (Seligsohn, J pr 478)

Ammonium cadmium phosphomolybdate,  $5(NH_4)_2O$ , CdO,  $P_2O_5$ ,  $6M_0O_3+8H$  O (Perlberger, Dissert 1904)  $3(NH_4)_2$ , 2CdO, 2P O<sub>5</sub>, 9MoO<sub>3</sub> + 141H O Ammonium cobaltous phosphomolybdate, (NH<sub>4</sub>)<sub>2</sub>O, 2CoO, P<sub>2</sub>O<sub>5</sub>, 5MoO<sub>4</sub>+10H<sub>2</sub>O

Decomp by cold  $H_2O$  Sol in acids and hot  $H_2O$  (Arnfeld, Dissert 1898)  $4(NH_4)_2O$ , CoO,  $2P_2O_5$ ,  $10MoO_3+12H_2O$  SI sol in cold, easily sol in hot  $H_2O$  (Arnfeld)

Ammonium manganous phosphomolybdate, (NH<sub>4</sub>)<sub>2</sub>O, 2MnO, P<sub>2</sub>O<sub>5</sub>, 5MoO<sub>3</sub>+20H<sub>2</sub>O Decomp by H<sub>2</sub>O, but dissolves clear on

heating (Arnfeld)

4(NH<sub>4</sub>)<sub>2</sub>O, MnO, 2P<sub>2</sub>O<sub>5</sub>, 10MoO<sub>3</sub>+13H O (Arnfeld) 5(NH<sub>4</sub>)<sub>2</sub>O, 10MnO, 2P<sub>2</sub>O<sub>5</sub>, 20MoO<sub>3</sub>+ 10H<sub>2</sub>O Very sl sol in H<sub>2</sub>O (Gibbs, Am

Ch J 1895, 17 87)

 $\begin{array}{ccccc} \textbf{Ammonium} & \textbf{nickel} & \textbf{phosphomolybdate,} \\ & (NH_4)_2O, & 2NiO, & P_2O_5, & 5MoO_3+10H_2O \\ \textbf{Decomp} & \textbf{by cold, but sol in hot } H_2O \\ \textbf{(Arnfeld)} & & (NH_4)_2O, & NiO, & 2PO_5, & 10MoO_3+12H_2O \\ \textbf{Very sol in } H_2O & & (Arnfeld) \\ \end{array}$ 

Ammonium potassium phosphomolybdate,  $6(NH_4)_2O$ ,  $15K_2O$ ,  $2P_2O_5$ ,  $60M_0O_3 + 12H_2O$ 

Sol in  $H_2O$  Insol in alcohol (Seligsohn, J pr 67 477)

Ammonium sodium phosphomolybdate,  $6(\mathrm{NH_4})$ O,  $15\mathrm{Na_2O}$ ,  $2\mathrm{P_2O_5}$ ,  $60\mathrm{MoO_3} + 18\mathrm{H_2O}$ 

Sol in much boiling  $H_2O$  Insol in alcohol (Seligsohn, J pr 67 474)

Barium phosphomolybdate, 3BaO,  $P_2O_5$ ,  $24MoO_3+xH_2O$ 

Moderately sol in cold, very easily sol in hot HO Decomp in aqueous solution at ordinary temp on standing (Kehrmann, Z anoig 1894, 7 414)

Cæsium phosphomolybdate,  $3Cs_2O$ ,  $P_2O_3$ ,  $6MoO_3+8H_2O$ 

Ppt (Ephraim, Z anorg 1910, **65** 240)  $2Cs_2O$ ,  $P_2O_5$ ,  $14MoO_3+3HO$  Difficultly sol in  $H_2O$  (Ephraim)  $3Cs_2O$ ,  $P_2O_5$ ,  $21MoO_3+4HO$  (')

(Ephrum)

Calcium potassium phosphoinolybdate, 2CaO, 3K<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub>, 10MoO<sub>4</sub>+22H O (Friedheim, Z. anorg. 1893, **4**, 293.)

Cobaltous phosphomolybdate, 2Co(), P2O ,  $4MoO_3+\lambda H$  O

(Arnfeld, Dissert 1898)

3CoO, P<sub>2</sub>O<sub>5</sub>, 5MoO<sub>3</sub>+16½H<sub>2</sub>O, and +17½ H<sub>2</sub>O Extremely sol in H<sub>2</sub>O (Arnfeld) 3CoO, P<sub>2</sub>O<sub>5</sub>, 18MoO<sub>3</sub>+38H O Sol in H<sub>2</sub>O (Arnfeld)

3CoO,  $P_2\text{O}_5$ ,  $24\text{MoO}_3+58\text{H}_2\text{O}$ , and  $+60\text{H}_2\text{O}$ Sol in  $\text{H}_2\text{O}$  (Arnfeld) Cobaltous potassium phosphomolybdate, K<sub>2</sub>O, 2CoO, P<sub>2</sub>O<sub>5</sub>, 5MoO<sub>3</sub>+15H<sub>2</sub>O (Arnfeld)

 $4K_2O$ , CoO,  $2P_2O_5$ ,  $10M_0O_3+12H_2O$  Sl sol in cold, easily sol in hot  $H_2O$  (Ainfeld)

Croceocobaltic phosphomolybdate,  $24 MoO_{\text{3}}, \\ P_2O_5, [Co(NH_3)_4(NO_2)_2]_2O, 2H_2O + \\ 21H_2O$ 

Sl sol in cold, easily in hot  $H_2O$  (Gibbs, Am Ch J 3 317)

Gold phosphomolybdate ammonia, 12Au<sub>2</sub>O<sub>3</sub>, 7P<sub>2</sub>O<sub>5</sub>, 3M<sub>2</sub>O<sub>3</sub>, 24NH<sub>3</sub>+21H<sub>2</sub>O
Insol in H<sub>2</sub>O (Gibbs, Am Ch J 1895,

17 172)

Gold sodium phosphomolybdate ammonia, 5Au<sub>2</sub>O<sub>8</sub>, Na<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 11MoO<sub>3</sub>, 15NH<sub>3</sub>+ 10H<sub>2</sub>O

Sol in dil HCl Almost insol in NH<sub>4</sub>OH+ Aq (Gibbs)

Lead phosphomolybdate, 23PbMoO<sub>4</sub>, P<sub>2</sub>O<sub>6</sub>, 2PbPO<sub>4</sub>+7H<sub>2</sub>O

Sol in 500,000 pts H<sub>2</sub>O Insol in NH<sub>4</sub>OH +Aq Fasily sol in KOH, N<sub>2</sub>OH, or HNO<sub>3</sub> +Aq, somewhat less sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Beuf, Bull Soc (3) **3** 852)

Lithium phosphomolybdate,  $12L_{12}O$ ,  $4P_{2}O_{5}$ ,  $5M_{2}O_{3}+18H_{2}O$ 

Partially sol in H<sub>2</sub>O (Ephrum, Z anorg 1909, **64** 233)

3L<sub>1</sub>,O, P<sub>2</sub>O<sub>5</sub>, 5M<sub>0</sub>O<sub>3</sub>+16H<sub>2</sub>O Ppt (Ephram, Z anorg 1910, **65** 233-6)

Manganous phosphomolybdate, 3MnO,  $PO_{\delta}$ ,  $5MoO_3+20H_2O$ 

Very sol in H<sub>2</sub>O Sl sol in alcohol (Arnfeld)

3MnO, P ()<sub>5</sub> 18MoO<sub>3</sub>+3SII () Sol in  $H_2O$  (\rightarrow (\rightarrow PO) 2MnO<sub>1</sub> +5SII () and +6O<sub>2</sub>

3MnO, PO<sub>r</sub>,  $24MnO_3 + 58H$  O, and +60 H<sub>2</sub>O Fasily sol in H O (Arnfeld )

Manganous potassium phosphomolybdate, 2MnO, 3K (), 2P (), 10MoO<sub>3</sub> + 30H () Sol in hot H<sub>2</sub>O (Arnfeld )

Manganous sodium 71 -- 54 7MnO, 9N t O, H

Nearly insol in cold  $H_2O$  Sol in boiling  $H_2O$  but decomp thereby (Gibbs, Am Ch J 1895, 17 85)

Nickel phosphomolybdate,  $2N_1()$ ,  $P()_5$ ,  $4M_0O_3+xH_2()$ 

Ppt (Arnfeld)

 $3N_{1}O$ ,  $P_{2}O_{5}$ ,  $5M_{0}O_{3}+90H_{2}O$  Decomp by  $H_{2}O$  (Arnfeld)

 $3N_1O$ ,  $P_2O_5$ ,  $_2O$  (Arnfeld)  $18\text{MoO}_3 + 34\text{H}_2\text{O}$ Sol in  $H_2O$ 3N1O, P2O5, 24M0O3+58H2O, and+60H2O Efforescent Sol in H<sub>2</sub>O (Arnfeld)

Nickel potassium phosphomolybdate,  $K_2O$ ,  $2N_1O$ ,  $P_9O_5$ ,  $5M_0O_8+13H_2O_9$ 

Decomp by cold H2O, but goes into solution by boiling (Arnfeld)

 $4K_2O$ , N<sub>1</sub>O,  $2P_2O_5$ ,  $10M_0O_3 + 12H_2O$  Sol  $m H_2O$  (Arnfeld)

Potassium phosphomolybdate, K<sub>3</sub>PO<sub>4</sub>,  $11\text{MoO}_3 + 1\frac{1}{2}\text{H}_2\text{O} = 3\text{K}_2\text{O}, \text{P}_2\text{O}_5, 22\text{MoO}_3$ 

Insol in H<sub>2</sub>O Easily sol in alkalies

(Svanberg and Struve)

 $100~g~H_2O~dissolve~0~007~g~at~30^\circ,~100~g~10\%~HNO_3+Aq~dissolve~0~204~g~at~30^\circ$  (Donk, Bull 90, Bur of Chem , U S Dept of Agric 1905)

According to older authorities the formula is  $\rm K_3PO_4$ ,  $\rm 10MoO_3 + 1\, \frac{1}{2}H_2O$ 

 $+6H_2O$  (Rammelsberg)

 $2K_2O_2H_2O$ ,  $24M_0O_3$ ,  $P_2O_5+3H_2O$  SI sol ın cold H<sub>2</sub>O

5K<sub>2</sub>O, H<sub>2</sub>O, 44MoO<sub>3</sub>, 2P<sub>2</sub>O<sub>5</sub>+21H<sub>2</sub>O (Gibbs Am Ch J **3** 317) 5K₂O,  $3K_2O$ ,  $P_2O_5$ ,  $18M_0O_3+11H_2O$ , and  $+15H_2O$ 

+14H<sub>2</sub>O Sl sol in cold, very easily sol in hot H<sub>2</sub>O Can be cryst from hot H O (Kehrmann, Z anorg 1894, 7 416)

3K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 17MoO<sub>3</sub>+12H<sub>2</sub>O Mo ately sol in H<sub>2</sub>O (Flux, Dissert **1906**) 5K<sub>2</sub>O, P O<sub>7</sub>, 17MoO<sub>3</sub>+xH O Aque Moder-

Aqueous solution decomp rapidly in the cold (Kehrmann, Z anorg 1894, 7 423)

 $P O_5 + 18H_2O$ 4K<sub>2</sub>O, 2H O, 9MoO<sub>3</sub>,

(Zenkner)

5K<sub>2</sub>O, HO, 10M<sub>0</sub>O, P<sub>2</sub>O<sub>5</sub>+19H<sub>2</sub>O Fasily sol in H () (Rummelsberg, B 10 1776) 6K<sub>2</sub>O, 15M<sub>0</sub>O<sub>3</sub>, P<sub>2</sub>O<sub>1</sub> Insol in HO Sol in KOH+Aq (Rammelsberg) KO, PO, 2MoO3+13HO

Very sol in

H<sub>2</sub>O (Friedheim Z morz 4 287) 2KO, PO 4MoO<sub>3</sub>+8HO Sol in H<sub>2</sub>O

(Friedheim)

Potassium diphosphopentamolybdate, 3k O, P () , 5MoO₃+7H ()

Sol in H O, precipitated by HNO3 or HCl (Zenkner, I pr 58 261)  $2KO, PO = 5MoO_3 + 6HO = (1 )$ 

-- hante nitrate, Potassium - 1, - 25c  $2 \text{K}_{3} \text{PO}$ (Debray, ( R 66 706)

Rubidium phosphomolybdates

7Rb<sub>2</sub>O, 3P<sub>2</sub>O<sub>5</sub>, 10MoO<sub>3</sub>+15H<sub>2</sub>O (Ephraim, Z anorg 1910, 65 237 9)

Sılver phosphomolybdate,  $7Ag_2O$ , P<sub>2</sub>O<sub>5</sub>,  $20M_0O_3+24H_2O$ 

Sol in dil HNO3+Aq, forming- $2\text{Ag}_2\text{O}$ ,  $P_2\text{O}_5$ ,  $20\text{MoO}_3+7\text{H}_2\text{O}$  Sl sol in H<sub>2</sub>O (Rammelsberg)

Formula of first salt is-

 $7Ag_2O$ ,  $22MoO_3$ ,  $P_2O_5+14H_2O$  Sol in hot H<sub>2</sub>O, but solution is quickly decomp (Gibbs, Am Ch J 3 317)

7Ag<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 24MoO<sub>3</sub> Ppt pr 1908 (2) **77** 451 ) (Miolati, J

Silver  $d_i$ phosphopentamolybdate,  $Ag_6Mo_5P_2O_{23}+7H_2Q$ 

Easily sol in  $H_2O$  (Debray, C R 66 705)

Sodium phosphomolybdate

Sol in H<sub>2</sub>O and HNO<sub>3</sub>+Aq (S schein, A **104** 45) Na<sub>2</sub>O<sub>5</sub> 5H O<sub>1</sub> P<sub>2</sub>O<sub>5</sub>, 18M<sub>2</sub>O<sub>3</sub>+xH<sub>2</sub>O (Sonnen-

 $2Na_2O$ , 4HO,  $P_2O_5$ ,  $18MoO_3+xH_2O$  $3Na_2O$ ,  $P_2O_5$ ,  $18MoO_3+26H_2O$ (Fried-

heim )  $3Na_2O$ ,  $P_2O_5$ ,  $24MoO_8+42HO$ (Rosenheim and Pinsker, Z anorg 1911, 70 79)

Sodium diphosphopentamolybdate, 3Na<sub>2</sub>O,  $P_2O_5$ ,  $5M_0O_3+14H_9O_1$ Easily sol in H<sub>2</sub>O (Debray)

Sodium auramine phosphomolybdate, Na<sub>2</sub>O, 5Au<sub>2</sub>O<sub>3</sub>, 2P O<sub>5</sub>, 11MoO<sub>3</sub>, 15NH<sub>3</sub> Sol in hot H<sub>2</sub>O Very sol in hot HCl (Gibbs, Am Ch J 1895, 17 171)

### Metaphosphomolybdic acid

Ammonium monometaphosphomolybdate,  $3(NH_4) O_1 4NH_4PO_3$ ,  $10M_0O_3 + 9H_2O_3$ Very sol in HO (Gibbs, Am Ch J 7 392)

Barium hexametaphosphomolybdate,  $Ba_3(P()_3)_6$ , 14Mo()<sub>4</sub>+55II ()

Sol in HO (Gibbs)

Pyrophosphonitrylic acid, P HN() =  $PO_{OH}^{3N}$ 

Not I nown in fice stite

Ammonium pyrophosphonitrylate,

PONH4

Insol but gradually decomp by  $\mathrm{H}_2\mathrm{O}$ (Gladstone)

Potassium ----, kP2NO4 Insol in H<sub>2</sub>O (Gladstone)

Silver ----, AgP<sub>2</sub>NO<sub>4</sub> Ppt

### Triphosphonitrilic chloramide, P<sub>8</sub>N<sub>3</sub>Cl<sub>4</sub>(NH<sub>2</sub>)<sub>2</sub>

Sol in  $H_2O$  without decomp, sol in ether, alcohol, sl sol in benzene (Stokes, Am Ch J 1895, **17** 287)

# Triphosphonitrilic tetrachlorhydrin, P<sub>8</sub>N<sub>3</sub>Cl<sub>4</sub>O<sub>2</sub>H<sub>2</sub>

Sol in ether, alcohol, and H<sub>2</sub>O insol in benzene and CS<sub>2</sub> (Stokes, Am Ch J 1895, **17** 286)

#### Triphosphonitrilic chloride, P<sub>3</sub>N<sub>3</sub>Cl<sub>6</sub>

Sol in glacial acetic acid and H<sub>2</sub>SO<sub>4</sub> 100 pts ether dissolve 46.5 pts at 20° (Liebig)
Insol in light petroleum, sol in benzene (Stokes, Am Ch J 1997, 19 783)

### Tetraphosphonitrilic chloride, P<sub>4</sub>N<sub>4</sub>Cl<sub>8</sub>

Sol in alcohol, ether, benzene, H<sub>2</sub>SO<sub>4</sub> Sl sol in H<sub>2</sub>O with decomp 100 pts ether dissolve 12 3 pts at 20° (Stokes, Am Ch J 1895, **17** 281)

# Pentaphosphonitrilic chloride, $(PNCl_2)_5 = P_5N_5Cl_{10}$

Sol in benzene, light petroleum, acetic acid, ether,  $CS_2$ , insol in  $H_2O$  (Stokes, Am Ch J 1897, 19 790)

# Hexaphosphonitrilic chloride, $(PNCl_2)_6 = P_6N_6Cl_{10}$

Sol in benzene, light petroleum, ether,  $CS_2$ , insol in  $H_2O$  (Stokes)

# Heptaphosphonitrilic chloride, $(PNCl_2)_7 = P_7N_7Cl_{14}$

Sol in benzene, light petroleum, ether,  $\mathrm{CS}_2$  insol in  $\mathrm{H}_2\mathrm{O}$ , sol in alcohol with decomp (Stokes )

### Poly phosphonitrilic chloride, $(PNCl_2)x$

Depolymenzes on distillation, insol in benzene and light petroleum and all neutral solvents, sol in H<sub>2</sub>O with decomp (Stokes)

### Phosphonitrilochloramide, P2N Cl3(NH2)

Slowly sol in H<sub>2</sub>O with decomp In<sub>S</sub>Ol in ether and CS Sl sol in boiling CCl<sub>4</sub> (Besson and Rosset, C R 1908, **146** 1149)

### Phosphonium bromide, PH4Br

Decomp violently by H<sub>2</sub>O

### Phosphonium chloride, PH<sub>4</sub>Cl (Ogier, Bull Soc (2) **32** 483)

Phosphonium titanium chloride, 2PH<sub>4</sub>Cl, 3T<sub>1</sub>Cl<sub>4</sub>

Decomp by  $H_2O$ , HCl, or alkalies +Aq R ose)

### Phosphonium iodide, PH4I

Decomp by  $H_2O$ , alkalies, alcohol, etc (Rose, Pogg 46 636) Decomp by PCl (Wilde, B 16 217)

### Phosphonium sulphate (?)

Deliquescent, very unstable (Besson, C R 109 644)

### Phosphoramide, P(NH<sub>2</sub>)<sub>8</sub>

Insol in NH<sub>4</sub>Br, 3NH<sub>5</sub>, sol in NH<sub>4</sub>I, 3NH<sub>5</sub> (Hugot, C R 1905, **141** 1235)

### Phosphortriamide, PON<sub>8</sub>H<sub>6</sub>

See Phosphoryl triamide

Phosphoric acid, anhydrous, P2O5

See Phosphorus pentoxide

### Metaphosphoric acid, HPO<sub>8</sub>

Sol in H<sub>2</sub>O Not isolated (Fleitmann, Pogg **78** 362)

Deliquescent Sol in H<sub>2</sub>O, but aqueous solution decomp into H<sub>2</sub>PO<sub>4</sub>, slowly in the cold, but more rapidly on heating Conc solutions decomp more rapidly than when dil (Giran, A ch 1903, (7) 30 203)

Insol in liquid CO<sub>2</sub> (Buchner, Z phys Ch 1906, **54** 674)

### Dimetaphosphoric acid, H<sub>2</sub>P<sub>2</sub>O<sub>6</sub>

Not isolated (Fleitmann)

### Trimetaphosphoric acid, H<sub>3</sub>P<sub>3</sub>O<sub>9</sub>

Sol in H<sub>0</sub>O, the solution is permanent in the cold, but on evaporation it is quickly decomp to H<sub>3</sub>PO<sub>4</sub>

### Tetrametaphosphoric acid, H<sub>4</sub>P<sub>4</sub>O<sub>12</sub>

Not isolated

# Hexamelaphosphoric acid, H<sub>6</sub>P<sub>6</sub>O<sub>18</sub> (Glacial phosphoric acid)

Deliquescent, easily sol in II () with evolution of heat and conversion into II,PO<sub>4</sub> Not easily sol in presence of slight impurities

Insol in liquid NH (Gore \mathbb{\text{m}} Ch J 1898, **20** 828)

### Orthophosphoric acid, H<sub>3</sub>PO<sub>4</sub>

Very sol in H<sub>2</sub>O

100 pts of the solution contain at 26.23° 27.02° 29.42° 29.77° 95.9 95.98 96.15 96.11 pts H<sub>3</sub>PO<sub>4</sub>,

37 65° 39 35 42 30° (mpt ) 97 5 98 48 100 pts H<sub>3</sub>PO<sub>4</sub>

(Smith and Menzies, J Am Chem Soc 1909, 31 1186)

See also  $10H_3PO_4+H_2O$ , and  $2H_3PO_4+H_2O$ 

Sp gr of  $H_3PO_4+Aq$  containing 10 20 30 40 50 %P<sub>2</sub>O<sub>5</sub> 11 123 139 16 185

(Dalton)

|                                                                                                                                              | Sp gr of H <sub>3</sub> PO <sub>4</sub> +Aq                                                                                    |                                                                                                                                              |                                                                                                                                                       |                                                                                                                                     |                                                                                                                             | Ī |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---|
| Sp gr                                                                                                                                        | % P O₅                                                                                                                         | Sp gr                                                                                                                                        | % P <sub>2</sub> O <sub>5</sub>                                                                                                                       | Sp gr                                                                                                                               | % P <sub>2</sub> O <sub>5</sub>                                                                                             |   |
| 1 508<br>1 492<br>1 476<br>1 464<br>1 453<br>1 442<br>1 434<br>1 426<br>1 418<br>1 401<br>1 384<br>1 376<br>1 369<br>1 356<br>1 356<br>1 339 | 49 60<br>48 41<br>47 10<br>45 63<br>45 38<br>44 43 95<br>43 28<br>42 61<br>40 66<br>40 12<br>39 66<br>39 21<br>38 707<br>36 74 | 1 328<br>1 315<br>1 302<br>1 293<br>1 285<br>1 276<br>1 268<br>1 257<br>1 247<br>1 236<br>1 221<br>1 197<br>1 185<br>1 173<br>1 162<br>1 153 | 36 15<br>34 82<br>33 49<br>32 71<br>31 94<br>31 93<br>30 13<br>29 16<br>28 24<br>27 30<br>26 36<br>26 79<br>23 23<br>22 07<br>20 91<br>19 73<br>18 81 | 1 144<br>1 136<br>1 124<br>1 113<br>1 109<br>1 095<br>1 081<br>1 073<br>1 066<br>1 056<br>1 047<br>1 031<br>1 022<br>1 014<br>1 006 | 17 89<br>16 95<br>15 64<br>14 33<br>13 25<br>12 18<br>10 44<br>9 53<br>8 62<br>7 39<br>6 17<br>4 15<br>3 03<br>1 91<br>0 79 |   |
|                                                                                                                                              | 1   155   16   81                                                                                                              |                                                                                                                                              |                                                                                                                                                       |                                                                                                                                     |                                                                                                                             |   |

PO₄+Aq containing 18 % H₃PO₄, 12 1 0333 1 0388 1 1065 % H<sub>3</sub>PO<sub>4</sub> 11463 1 2338 1 3840 (Schiff, A 113 183)

Sp gr of  $H_3PO_4+Aq$  at 15° a=sp gr if % is  $P_2O_5$ , b=sp gr if % is  $H_3PO_4$ 

| 15 1 20 5, 5 — 5p gr 11 /0 15 11 31 O4    |                                                                      |                                                                              |                                              |                                                                      |                                                                              |
|-------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| %                                         | 8.                                                                   | b                                                                            | %                                            | 8.                                                                   | b                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1 009<br>1 017<br>1 025<br>1 032<br>1 039<br>1 047<br>1 055<br>1 063 | 1 0054<br>1 0109<br>1 0164<br>1 0220<br>1 0276<br>1 0333<br>1 0390<br>1 0449 | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 | 1 288<br>1 299<br>1 310<br>1 321<br>1 333<br>1 345<br>1 357<br>1 369 | 1 1962<br>1 2036<br>1 2111<br>1 2186<br>1 2262<br>1 2338<br>1 2415<br>1 2493 |
| 10<br>11<br>12                            | 1 071<br>1 080<br>1 089<br>1 098                                     | 1 0508<br>1 0567<br>1 0627<br>1 0688                                         | 39<br>40<br>41<br>42                         | 1 381<br>1 393<br>1 407<br>1 420                                     | 1 2572<br>1 2651<br>1 2731<br>1 2812                                         |
| 13<br>14<br>15                            | 1 106<br>1 115<br>1 124                                              | 1 0749<br>1 0811<br>1 0874                                                   | 43<br>44<br>45                               | 1 432<br>1 445                                                       | 1 2894<br>1 2976<br>1 3059                                                   |
| 16<br>17<br>18                            | 1 133<br>1 142<br>1 151<br>1 161                                     | 1 0937<br>1 1001<br>1 1065<br>1 1130                                         | 46<br>47<br>48<br>49                         |                                                                      | 1 3143<br>1 3227<br>1 3313<br>1 3399                                         |
| 19<br>20<br>21<br>22                      | 1 171<br>1 182<br>1 192                                              | 1 1196<br>1 1262<br>1 1329                                                   | 50<br>51<br>52                               |                                                                      | 1 3486<br>1 3573<br>1 3661                                                   |
| 23<br>24<br>25                            | 1 202<br>1 212<br>1 223                                              | 1 1397<br>1 1465<br>1 1534                                                   | 53<br>54<br>55                               |                                                                      | 1 3750<br>1 3840<br>1 3931<br>1 4022                                         |
| 26<br>27<br>28<br>29                      | 1 233<br>1 244<br>1 254<br>1 265                                     | 1 1604<br>1 1674<br>1 1745<br>1 1817                                         | 56<br>57<br>58<br>59                         |                                                                      | 1 4114<br>1 4207<br>1 4301                                                   |
| 30                                        | 1 277                                                                | 1 1889                                                                       | 60                                           | 1                                                                    | 1 4395                                                                       |

(Schiff, calculated by Gerlach, Z anal 8 292) solves 0 0886 grams H<sub>3</sub>PO<sub>4</sub>

| Sp gr of H <sub>3</sub> PO <sub>4</sub> +Aq at 17 5°                                                        |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                  |                                                                                        |                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| %<br>P₂O₅                                                                                                   | Sp gr                                                                                                                                                           | P205                                                                                                                 | Sp gr                                                                                                                                                                            | P 05                                                                                   | Sp gr                                                                                                                                        |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | 1 007<br>1 014<br>1 021<br>1 028<br>1 036<br>1 044<br>1 053<br>1 061<br>1 070<br>1 078<br>1 108<br>1 108<br>1 1120<br>1 120<br>1 139<br>1 148<br>1 158<br>1 168 | 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43 | 1 208<br>1 219<br>1 229<br>1 240<br>1 251<br>1 261<br>1 272<br>1 282<br>1 293<br>1 304<br>1 315<br>1 326<br>1 338<br>1 352<br>1 362<br>1 374<br>1 386<br>1 386<br>1 410<br>1 423 | 47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>61<br>62<br>63<br>64<br>66 | 1 476<br>1 491<br>1 505<br>1 521<br>1 536<br>1 551<br>1 566<br>1 581<br>1 629<br>1 645<br>1 661<br>1 693<br>1 709<br>1 725<br>1 741<br>1 775 |
| 21<br>22                                                                                                    | 1 178<br>1 188                                                                                                                                                  | 44 45                                                                                                                | 1 436<br>1 448                                                                                                                                                                   | 67<br>68                                                                               | 1 792<br>1 809                                                                                                                               |

(Hager, Adjumenta varia, Leipzig, 1876)

Table for correction to be added or subtracted for 1° change in temperature

| % P2O5 | Corr    | % P <sub>2</sub> O <sub>5</sub> | .Corr   |
|--------|---------|---------------------------------|---------|
| 10-14  | 0 00035 | 36–45                           | 0 00068 |
| 15-25  | 0 0004  | 46–55                           | 0 00082 |
| 26-35  | 0 00052 | 56–68                           | 0 001   |

(Hager)

Sp gr of H<sub>3</sub>PO<sub>4</sub>+Aq

| pp gr 01 1131 04   1-14                                                                                                                  |                                                                                                                    |                                                                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| G equivalents<br>H <sub>3</sub> PO <sub>4</sub> per litre                                                                                | t°                                                                                                                 | Sp gr t°/t°                                                                                                                                             |  |
| 0 002572<br>0 005142<br>0 01025<br>0 02042<br>0 03056<br>0 04065<br>0 77<br>0 10046<br>0 19951<br>0 29716<br>0 49057<br>0 5070<br>5 0700 | 17 714<br>17 706<br>17 685<br>17 683<br>17 683<br>17 663<br>17 696<br>17 749<br>17 701<br>17 719<br>17 58<br>17 84 | 1 001552<br>1 0003051<br>1 000595<br>1 001158<br>1 001708<br>1 002252<br>1 002790<br>1 005412<br>1 010560<br>1 015584<br>1 025469<br>1 02627<br>1 25162 |  |
|                                                                                                                                          |                                                                                                                    |                                                                                                                                                         |  |

(Kohlrausch, W Ann 1894, 53 29)

Miscible with conc HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Sol in 30 pts warm creosote 1 cc of a sat solution of ether in H<sub>2</sub>O dis-

1 cc of a sat solution of H<sub>2</sub>O in ether dis-

solves 0 000033 grams H<sub>3</sub>PO<sub>4</sub>

Solutions of H<sub>2</sub>PO<sub>4</sub> in H<sub>2</sub>O containing less than 0 434 grams acid per 1 cc lose an insignificant amount of acid to ether when agitated therewith (Berthelot, C R 1896, 123 345

The composition of the hydrates formed by H<sub>2</sub>PO<sub>4</sub> at different dilutions is calculated from determinations of the lowering of the fr-pt produced by H<sub>3</sub>PO<sub>4</sub> and of the conductivity and sp gr of H<sub>3</sub>PO<sub>4</sub>+Aq (Jones, Am Ch J 1905, 34 331)

10H<sub>2</sub>PO<sub>4</sub>+H<sub>2</sub>O Solubility in H<sub>2</sub>O 100 pts of the solution contain at 24 11° 24 38° 24 40°

94 78 94 84 pts H<sub>8</sub>PO<sub>4</sub>, 94 80

24 81° 25 41° 25 85° 952695 54 pts H<sub>8</sub>PO<sub>4</sub> 94 95

(Smith and Menzies, J Am Chem Soc 1909, 31 1186)

2H<sub>2</sub>PO<sub>4</sub>+H<sub>2</sub>O Solubility in H<sub>2</sub>O 100 pts of the solution contain at -16 3° 0 5° 14 95° 24 03° 27 0° 767 787 817 857 87 7 pts H<sub>3</sub>PO<sub>4</sub>,

> 29 15° 29 35° (mpt) pts H<sub>3</sub>PO<sub>4</sub>, 90 5 916

28 5° 27 0° 25 41° 92 5 934 94 1 pts H<sub>3</sub>PO<sub>4</sub>

Retroflex part of curve (Smith and Menzies, J Am Chem Soc 1909, **31** 1186)

#### Pyrophosphoric acid (Diphosphoric acid), $H_4P_2O_7$

Very sol m H<sub>2</sub>O The solution may be kept without change, but on heating it is converted into H<sub>3</sub>PO<sub>4</sub>

The acid in solution gradually changes to H<sub>3</sub>PO<sub>4</sub>, the conversion being more rapid with more concentrated solutions (Montemartini and Egidi, Gazz ch it 1902, 32 (1) 381)

### Phosphoric acid, H<sub>8</sub>P<sub>2</sub>O<sub>9</sub> (?)

Sol in H<sub>2</sub>O (Joly, C R 100 447)

#### **Phosphates**

The phosphates of NH<sub>4</sub>, K, Na, I<sub>1</sub>, Cs, and Rb are sol in H<sub>2</sub>O, with the exception of certain metaphosphates, the other phosphates excepting neutral Tl salts, are nearly insol in  $H_2O$ , excepting when an excess of  $H_3PO_4$  is present The latter are all sol in HNO<sub>3</sub>+Aq

#### (a) Metaphosphates

Monometaphosphates Only alkalı monometaphosphates are known, and they are all insol in H<sub>2</sub>O

Alkalı dimetaphos-Dimetaphosphates phates and some doublt salts containing an alkalı as one of the bases are sol in H<sub>2</sub>O, the rest are sl sol or insol in H<sub>2</sub>O

Trametaphosphates All salts are sol in  $H_{2}O$ 

Tetrametaphosphates The alkalı salts are sol in H<sub>2</sub>O, the others are insol

*Hexa*metaphosphates The alkalı salts are sol, the others insol, in  $H_2O$ , but are mostly sol in Na hexametaphosphate + Aq

(b) Orthophosphates K, Na, L1, Cs, and Rb orthophosphates are sol in H2O All the others are insol in H2O, but sol in excess of H<sub>3</sub>PO<sub>4</sub>, and HNO<sub>3</sub>+Aq, less easily sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Pb, Al, and Fe<sub>2</sub> phosphates are insol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Sl sol in NH<sub>4</sub> salts+Aq, especially NH<sub>4</sub>Cl+Aq, from which solution they are pptd by NH<sub>4</sub>OH+Aq Orthophosphates insol in H2O are also insol in an excess of alkali orthophosphates + Aq

All orthophosphates are insol, or very sl

sol in alcohol

(c) Pyrophosphates Alkalı py rophosphates are sol in H<sub>2</sub>O, the others are insol in H<sub>2</sub>O, but are mostly sol in an excess of Na pyrophosphate+Aq

### Aluminum metaphosphate, $Al_2(PO_3)_6$

Insol in H<sub>2</sub>O and cone acids (Middiell, A 61 59)

Aluminum orthophosphate, basic,  $3Al_2O_3$ ,  $P_2O_5 + 18H_2\bar{O}$ 

Min Evansite

 $4Al_2O_3$ ,  $3P_2O_5+18H_2O$ Ppt Insol in  $H_2O$ (Rammelsberg)

2Al<sub>2</sub>O<sub>3</sub>, P<sub>2</sub>O<sub>5</sub>

+3H₂Ó Min Angelite

 $+5H_2O$ Min Kalarte (Turquoise) Sol

in  $\dot{H}Cl+\dot{A}q$   $+6H_2O$  Decomp by  $H_2O$  (Hautefeuille, pr (2) **37** 111)

Min Peganite More or less sol in HCl, and HNO3+Aq

+8H<sub>2</sub>O Ppt (Munroc, A 159 275)

Min Fischerite Stattacked by II(1 or HNO3+Aq, sol in H2SO1+Aq

 $3\text{Al}_2\text{O}_3$ ,  $2\text{P} \text{O}_6 + 8\text{H}_2\text{O}$ , or 12H OSol in acids, even after ignition (Millot, C R 82 89)

+10H₄O Min Coentleolactite Sol in acids

+12H<sub>2</sub>O Min Wavellite

### Aluminum orthophosphate, Al (PO<sub>4</sub>)

Crystalline Not attacked by conc HCl or HNO<sub>8</sub>+Aq, difficultly by hot conc H SO<sub>4</sub> (de Schulten, C R 98 1583)

Ignited Al<sub>2</sub>(PO<sub>4</sub>) is sl decomp by H<sub>2</sub>O, so that solubility determinations are viriable For an extended discussion, see original paper (Cameron and Hurst, 1904, 26 898)

+4H<sub>2</sub>O Easily sol in mineral acids, insol | Aluminum calcium phosphate, Al O<sub>3</sub>, 3CaO, in acetic and other organic acids Easily sol in KOH+Aq, but is reprecipitated by NH<sub>4</sub>Cl+Aq Sol in NH<sub>4</sub>OH+Aq Sol in a large amount of alum+Aq (Rose), in aluminum acetate and other aluminum salts +Aq (Fleischer, Z anal 6 28) than ferric phosphate in ammonium oxalate or citrate+Aq (Millot)

Acid NH4 citrate+Aq dissolves 3% of the P2O5, reutral NH4 citrate+Aq dissolves 6 6 % of the P2O5, ammoniacal NH4 citrate+Aq dissolves completely in 25 min (Erlenmeyer,

B **14** 1869

Sol in NH<sub>4</sub>OH+Aq, especially in presence of alkalı phosphates (de Koninck, Z anal **23** 90)

Not pptd in presence of alkali tartrates or citrates, sugar, glycerine, etc.

(Naumann, B

Insol in ethyl acetate **1910**, **43** 314)

Min Variscite Very quickly sol in warm conc HCl+Aq

+5H<sub>2</sub>OMin Zepharovitchite

+8H<sub>2</sub>O Min Gibbsite

Aluminum orthophosphate, acid, 2Al<sub>2</sub>O<sub>3</sub>,  $3P_2O_5 + 16H_0O$ 

Insol in acids after being ignited (Millot, Bull Soc (2) 22 244)

+4H<sub>2</sub>O, and 6H<sub>2</sub>O Insol in H<sub>2</sub>O or alcohol (Hautefeuille and Margottet, J pr (2) **37** 111)

 $Al_2O_3$ ,  $2PO_5+8H_2O$  Insol in acids or aqua regia after being ignited (Millot)

 $2Al_2O_3$ ,  $5P_2O_5+14H_2O$  Decomp by cold H<sub>2</sub>O into-

4Al<sub>2</sub>O<sub>8</sub>, 7P<sub>2</sub>O<sub>5</sub>+9H<sub>2</sub>O Decomp by hot  $H_2O$ 

(Erlenmeyer, A 194 200)

 $Al_2O_3$ ,  $3P_2O_5 + 3HO = Al_2(H_2PO_4)_6$  Deliquescent, completely sol in a little cold  $\hat{\mathbf{H}}_{2}\mathbf{O}$ , and conc solution can be boiled without decomp, but dil solution (1 20) separates Al<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub> on boiling, which redissolves on cooling, the more quickly the more dilute the original solution (Eilenmeyer, A 194 198)

#### Aluminum pyrophosphate, $Al_4(P O_7)_3+$ 10H<sub>2</sub>O

Sol in mineral acids, and Precipit ite Na<sub>4</sub>P<sub>2</sub>O + Aq, insol in acetic acid Sol in KOH+Aq, sol in NH4OH+Aq, but when dissolved in HCl+Aq is reprecipitated by NH4OH+Aq, and is not redissolved in an (Schwarzenberg, A 65 147) excess thereof Sol in alum + Aq (Rose, Pogg 76 19)

Aluminum pyrometaphosphate, Al<sub>2</sub>O<sub>3</sub>, 2P<sub>2</sub>O<sub>5</sub> (Hautefeuille and Margottet, C R 96 849)

Aluminum ammonium dihydrogen orthophosphate, NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub>, AlPO<sub>4</sub>

Partially decomp by HO Sol in acids and alkalies Nearly insol in 50% acetic acid (Cohen, J Am Chem Soc 1907, 29 720)

 $P_2O_5 + 3H_2O$ 

Min Tavistockite

2Al<sub>2</sub>O<sub>3</sub>, 6CaO, 3P O<sub>5</sub>+3H O Min Kirro-

Aluminum calcium phosphate sulphate.  $3Al_2O_3$ ,  $SO_3$ ,  $Ca_3(PO_4) + 6H_2O$ 

Min Svanbergite Scarcely attacked by HCl+Aq, and only sl by H2SO4+Aq

Aluminum ferrous magnesium phosphate,  $(Mg, Fe) Al_2P_2O_{10}+4H O$ 

Min Childrenite Slowly sol in HCI+Aq Sol in HNO<sub>3</sub> or HCl+ Min Eosphorite

(Mg, Fe)Al<sub>2</sub>P<sub>2</sub>O<sub>9</sub>+H<sub>2</sub>O Min Lazulite Only sl attacked by acids, when not previously ignited

Aluminum lithium phosphate, Al  $(PO_4)_2$ ,  $4L_{13}PO_4+30H_2O$ 

Precipitate (Berzelius) Insol in H<sub>O</sub>, easily sol in acids

Aluminum magnesium phosphate Min Lazulite

See Phosphate, aluminum ferrous magnesium

Aluminum potassium phosphate, Al O<sub>3</sub>, K<sub>2</sub>O<sub>4</sub> 2P2O5

Insol in acids (Ouvrard, A ch (6) 16

 $2\text{Al}_2\text{O}$ , 2K O, 3P O<sub>5</sub> (Ouvrard)

Aluminum silver metaphosphate,  $2Al_2O_3$ ,  $Ag_2O$ ,  $4P_2O_5$ 

(Hautefeuille and Margottet, C R 96 849, 1142)

Aluminum sodium pyrophosphate, Al Na (PO)

Insol in H O and acids (Wallroth) (Ouvrard A ch Nearly insol in acids

(6) **16** 338)  $2Al O_3$ ,  $3Na_2O$ ,  $3P O_5$  Sol in  $HNO_3 + Aq$  (Ouv rard)

Al<sub>4</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>3</sub>, 2Na<sub>4</sub>P O<sub>7</sub>+30H O

Very difficultly sol in HO (Pahl, Bull Soc (2) 22 122)

Aluminum phosphate lithium fluoride, 2Al (PO<sub>4</sub>)<sub>2</sub>, 3L<sub>1</sub>F

Sl attacked by HCl+ Min Amblygonite Aq, more easily by H<sub>2</sub>SO<sub>4</sub>+Aq

Ammonium metaphosphate, NH4PO3 Insol in H<sub>2</sub>O (Fleitmann, Pogg 78 345)

Ammonium dimetaphosphate, (NH<sub>4</sub>) (PO<sub>3</sub>)<sub>2</sub> Sol in 1 15 pts cold or hot H<sub>2</sub>O (Fleitmann, Pogg 78 245) More sol in dil (Fleitalcohol than Na or K salt

Sol in 0.9 pts  $H_2O$ , easily sol in acids especially by boiling with conc  $H_2SO_4$  (Glatzel, Dissert 1880)

Ammonium trimetaphosphate, (NH<sub>4</sub>)<sub>8</sub>P<sub>8</sub>O<sub>9</sub> Very sol in H<sub>2</sub>O (Lindbom, Acta Lund 1873 15)

### Ammonium tetrametaphosphate,

 $(NH_4)_4P_4O_{12}$ 

Sol in H<sub>2</sub>O (Warschauer, Z anorg 1903, 36 177) +4H<sub>2</sub>O Much more sol in H<sub>2</sub>O than the K or Na salt 1 pt is sol in 8 pts H<sub>2</sub>O (Glatzel, Dissert 1880)

# Ammonium pentametaphosphate, $(NH_4)_5 P_5 O_{15}$

Sol in H<sub>2</sub>O (Tammann, J pr 1892, (2) **45** 455)

### Ammonium dekametaphosphate,

 $(NH_4)_{10}P_{10}O_{30}$ 

Very sl sol in  $H_2O$ , 100 g  $H_2O$  dissolved 1 20-1 54 g in 2 months Easily sol in hot  $H_2O$  with decomp (Tammann, J pr 1892, (2) 45 448)

+12H<sub>2</sub>O (Tammann, J pr 1892, (2) **45** 465)

#### Ammonium orthophosphate, (NH<sub>4</sub>)<sub>3</sub>PO<sub>4</sub>+ 3H<sub>2</sub>O

Difficultly sol in H<sub>2</sub>O

Less sol in H<sub>2</sub>O than (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> (Berzelius)

Insol in alkalies+Aq (Berzelius) Sl sol in  $H_2O$  Decomp in the all (Schottlander, Z anorg 1894, 7 344)

### Solubility in H<sub>3</sub>PO<sub>4</sub>+Aq at 25°

| In 1000 g of the solution mols               |                                               |  |
|----------------------------------------------|-----------------------------------------------|--|
| NH4 PO4                                      |                                               |  |
| 7 42<br>5 02<br>2 95<br>3 04<br>3 32<br>4 78 | 0 084<br>0 20<br>0 46<br>1 02<br>1 32<br>2 32 |  |

(D'Ans and Schreiner, Z phys Ch 1910, **75** 105)

Insol in acetone (Eidmann, C C **1899**, II 1014, Naumann, B 1904, **37** 4329) +5H<sub>2</sub>O (Sestini, Gazz ch it **9** 298)

## Ammonium hydrogen orthophosphate, $(NH_4)_2HPO_4$

Easily sol in H<sub>2</sub>O Effloresces to form NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> (Schiff, A 112 88)
Sol in 4 pts cold, and less hot H<sub>2</sub>O Solu-

100 g H<sub>2</sub>O dissolve 131 g at 15°, sp gr of sat solution=1343 (Greenish and Smith, Pharm J 1901, 66 774)

#### Solubility in H<sub>3</sub>PO<sub>4</sub>+Aq at 25°

| In 1000 g of th                              | ne solution mols                             |
|----------------------------------------------|----------------------------------------------|
| NH4                                          | PO <sub>4</sub>                              |
| 6 42<br>6 46<br>6 56<br>6 78<br>7 26<br>7 16 | 3 23<br>3 74<br>4 01<br>4 34<br>4 83<br>4 82 |

(D'Ans and Schreiner, Z phys Ch 1910, 75

Insol in acetone (Eidmann, C C 1899 II, 1014, Naumann, B 1904, 37 4329)

Ammonium dihydrogen orthophosphate,  $NH_4H_2PO_4$ 

Does not effloresce

Less easily sol in H<sub>2</sub>O than (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> (Mitscherlich, A ch 19 385)

Sol in 5 pts cold, and less hot H<sub>2</sub>O

#### Solubility in H<sub>8</sub>PO<sub>4</sub>+Aq at 25°

| In 1000 g of the solution mols                                       |                                                                      |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| NH₄                                                                  | PO <sub>4</sub>                                                      |  |  |
| 6 72<br>5 62<br>4 62<br>2 72<br>2 50<br>2 58<br>2 76<br>3 06<br>3 10 | 4 54<br>3 88<br>3 36<br>2 59<br>2 51<br>4 29<br>6 21<br>7 70<br>7 86 |  |  |

(D'Ans and Schreiner, Z phys Ch 1910, **75** 106)

Insol in acetone (Fidmann, C. C. 1899, II 1014, Naumann, B. 1904, 37, 4329.)

#### Ammonium orthophosphate, acid

Decomp into NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> at 77-78° (Parravano and Mieli, Gazz ch it 1908, 38, II 536)

Ammonium pyrophosphate,  $(NH_4)_4P_2()_7$ 

Easily sol in H<sub>2</sub>O Alcohol practipit ites it from the aqueous solution (5chw ir/cnberg, A 65 141)

Insol in acctone (Eidminn, C. C. 1899, II 1014, Naumann, B. 1904, 37, 4329)

## Ammonium hydrogen pyrophosphate (NH<sub>4</sub>)<sub>2</sub>H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>

Sol in 4 pts cold, and less hot H<sub>2</sub>O Solution loses NH<sub>3</sub> by boiling Insol in alcohol (Schwarzenberg, A 65 141)

Ammonium barium trimetaphosphate.  $(NH_4)BaP_3O_9+H_2O$ 

Easily sol in H<sub>2</sub>O (Lindbom)

Ammonium cadmium dimetaphosphate,  $(NH_4)_2O$ , CdO,  $2P_2O_5 + 3H_2O =$  $(NH_4)_2Cd(P_2O_6)_2$ 

Efflorescent (Fleitmann, Pogg 78 347)

Ammonium cadmium orthophosphate, NH<sub>4</sub>CdPO<sub>4</sub>+1½H<sub>2</sub>O

Easily sol in NH<sub>4</sub>OH+Aq and acids (Drewson, Gm K Handb 6<sup>te</sup> Aufl III 74)

Ammonium calcium dimetaphosphate,  $(NH_4)_2Ca(P_2O_6)_9 + 2H_2O$ 

Very sl sol in H<sub>2</sub>O Not decomp by acids (Fleitmann, Pogg 78 344)

Ammonium calcium phosphate, NH<sub>4</sub>CaPO<sub>4</sub>+  $xH_2O$ 

Ppt (Herzfeld and Feuerlein, Z anal 20 191) +7H<sub>2</sub>O Not completely decomp by cold

H<sub>2</sub>O in ¾ hour, rapidly by hot H<sub>2</sub>O (Lasne, Bull Soc 1902, (3) 27 131)

Ammonium chromium orthophosphate, basic, 5(NH<sub>4</sub>)H PO<sub>4</sub>, 2CrPO<sub>4</sub>, 4Cr(OH)<sub>8</sub>

(Cohen, J Am Chem Soc 1907, 29 1196) (NH₄)₂HPO₄,  $2CrPO_4+3H_2O$ (Cohen)

Ammonium chromic pyrophosphate,  $NH_4(CrP_2O_7)+6H_2O_7$ 

Sl sol in cold HO Decomp by boiling H<sub>2</sub>O (Rosenheim, B 1915, 48 586)

Ammonium cobaltous metaphosphate

Extremely sol in H<sub>2</sub>O and in NH<sub>4</sub>OH+Aq (Persoz, J pr 3 215)

Ammonium cobaltous orthophosphate, NH<sub>4</sub>CoPO<sub>4</sub>+H O

Not decomp by boiling H.O (Debray, J Pharm (3) 46 121) +12H.O Ppt (Chancel, 1862) Co(NH<sub>4</sub>) H<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>+4H O Insol in H<sub>2</sub>O

(Debray)

Ammonium copper dimetaphosphate,  $(NH_4)_2P_2O_6$ , CuP  $O_6+2H_2O_6$ 

Very sl sol in H.O, insol in alcohol (Fleitmann, Pogg 78 345)

Very sl sol m  $+4\mathrm{H}_2\mathrm{O}$ I fflorescent

H<sub>2</sub>O, insol in alcohol (F)
Sol in 50 pts H<sub>2</sub>O Slowly attacked by acids Only boiling H SO4 attacks easily (Glatzel, Dissert 1880)

Ammonium glucinum orthophosphate, NH4GlPO4

Insol in cold, sl sol in hot H<sub>2</sub>O (Rossler, Z anal 17 148)

Ammonium glucinum sodium orthophosphate,  $(NH_4)_2GlNa_2(PO_4) + 7H_2O$ (Scheffer, A 109 146)

Ammonium iron (ferrous) orthophosphate,  $NH_4FePO_4+H_2O$ 

Insol even in boiling H<sub>2</sub>O When still moist, easily sol in dil acids, but sparingly and slowly sol after drying, even in conc acids Decomp by NH<sub>4</sub>OH, KOH, and NaOH+Aq Insol in alcohol (Otto, J pr **2** 409)

 $(NH_4)_2$ FeH  $(PO_4)_2+4H_2O$  (Debray)

Ammonium iron (ferric) hydrogen orthophosphate, basic, 2(NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>, 3FePO<sub>4</sub>, 3Fe(OH)<sub>3</sub>

Insol in 95% alcohol Ppt (Cohen. J Am Chem Soc 1907, 29 719)

Ammonium iron (ferric) hydrogen orthophosphate, NH<sub>4</sub>H<sub>2</sub>Fe(PO<sub>4</sub>),

(Wein-Ppt Same properties as Na salt land, Z anorg 1913, 84 356)

Partially hydrolyzed by H<sub>2</sub>O Readily sol in HCl, HNO3, H2SO4 and H3PO4 Partially hydrolyzed by cold NH<sub>4</sub>OH+Aq Sol in excess of hot NH<sub>4</sub>OH+Aq Completely hydrolyzed by caustic alkalies Practically insol in 50% acetic acid (Cohen, J Am Chem Soc 1907, 29 718)

Ammonium lead dimetaphosphate,  $(NH_4)_{\circ}Pb(P_2O_6)_2$ 

Very difficultly sol in HO and acids (Fleitmann, Pogg 78 343)

Ammonium lithium metaphosphate, Li O,  $2(NH_4) O$ ,  $3P O_5 + 8H_2O$ 

Not appreciably sol in cold  $H_2O$  but rapidly and abundantly sol in  $H_2O$  at  $70^{\circ}$ (Tammann, J pr 1892, (2) 45 442 )

Ammonium lithium phosphate, (NH4) LiPO4 Sl sol in H<sub>2</sub>O (Berzelius)

magnesium metaphosphate, Ammonium  $(NH_4)$  O, 2MgO,  $2PO_5+9HO(?)$ 

Sol with difficulty in HO or acids when heated Easily sol in HO before heating (Wach, Schw J 59 29)

Precipitated from aqueous solution by alcohol

Ammonium magnesium dimetaphosphate,  $(NH_4)_2Mg(P_2O_6) + 6H_2O$ 

Efflorescent (Fleitmann, Pogg 78 346)

Ammonium magnesium phosphate, NH<sub>4</sub>MgPO<sub>4</sub>, and +6H<sub>2</sub>O

1 l H<sub>2</sub>O dissolves 66 mg anhydrous NH<sub>4</sub>MgPO<sub>4</sub> at 15° (Fresenius, A 55 109) 1 l H<sub>2</sub>O dissolves 74 l mg anhydrous

NH<sub>4</sub>MgPO<sub>4</sub> at 20 5-22 5° (Ebermayer)

H<sub>2</sub>O dissolves 106 mg anhydrous

NH<sub>4</sub>MgPO<sub>4</sub> (Liebig)
Insol in H<sub>2</sub>O<sub>2</sub> but when boiled with H<sub>2</sub>O it loses NH<sub>3</sub> and H<sub>2</sub>O (Struve, Z anal 1898, **37** 485)

Solubility of NH<sub>4</sub>MgPO<sub>4</sub>+6H<sub>2</sub>O in H<sub>2</sub>O at t°

| 2014211111 01 11111                   | ~ COLUMNITY OF 1 (1124) 12 CT   CT   CT   CT   CT   CT   CT   CT   |  |  |  |
|---------------------------------------|--------------------------------------------------------------------|--|--|--|
| t°                                    | G salt in 100 g H <sub>2</sub> O                                   |  |  |  |
| 0<br>20<br>40<br>50<br>60<br>70<br>80 | 0 0231<br>0 0516<br>0 0359<br>0 0303<br>0 0401<br>0 0163<br>0 0195 |  |  |  |

(Wenger, Dissert Geneva, 1911)

Aqueous solution is precipitated by NH<sub>4</sub>OH, but not by Na<sub>2</sub>HPO<sub>4</sub>+Aq

semus)

Sol in 44,600 pts H<sub>2</sub>O containing ammonia More sol in H<sub>2</sub>O containing NH<sub>4</sub>Cl, and is sol in 7548 pts of a solution containing I pt NH<sub>4</sub>Cl to 5 pts H O and ammonia, and in 15,627 pts of a solution containing 1 pt of NH<sub>4</sub>Cl to 7 pts H<sub>2</sub>O and ammonia senius)

According to Kremers (J pr 55 190), a solution of 3 pts H<sub>2</sub>O to 1 pt NH<sub>4</sub>OH+Aq of 0 96 sp gr is best suited for washing the

precipitated NH4MgPO4

According to Ebermayer (J pr 60 41), pt anhydrous salt is sol in 13,497 pts H<sub>2</sub>O at 23°, in 31,098 pts NH<sub>4</sub>OH+Aq (4 h<sub>2</sub>O at 25°, in 31,096 pts Nh<sub>4</sub>OH+Aq (4) at 21 25°, in 36,764 pts NH<sub>4</sub>OH+Aq (3 pts H<sub>2</sub>O 1 pt NH<sub>4</sub>OH+Aq) at 20 6°, in 43,089 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 1 pt NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 1 pt NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq) at 22 5°, in 45,206 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq) at 22 5°, in 45,206 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq) at 22 5°, in 45,210 NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq) at 22 5°, in 45,210 NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq) at 22 5°, in 45,210 NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq) at 22 5°, in 45,210 NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 2 pts NH<sub>4</sub> 52,412 pts NH<sub>4</sub>OH+Aq (1 pt H<sub>2</sub>O 3 pts NH<sub>4</sub>OH+Aq) at 22 5°, in 60,883 pts pure NH<sub>4</sub>OH +Aq (sp gr 0 961) at 22 5

Almost absolutely insol in H<sub>2</sub>O containing 1/4 vol NH<sub>4</sub>OH+Aq (sp gr 0 96) and NH<sub>4</sub>Cl, 2 e, much more insol than given by Fresenius

(Kubel, Z anal 8 125)

According to Kissel (Z anal 8 173), 1 l NH<sub>4</sub>OH+Aq (3 pts H<sub>2</sub>O 1 pt NH<sub>4</sub>OH+Aq of 0.96 sp gr ) dissolves 4.98 mg in 24 hours, while 139 mg are dissolved if 18 g NH<sub>4</sub>Cl to a litre of H<sub>2</sub>O are also present

(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq containing 2 2 g per litre dissolves 71 7 mg, 30 g, 113 mg, 10 g, 147 mg, NaCl+Aq containing 2 g NaCl per l dissolves 123 4 mg, NaNO<sub>3</sub>+Aq containing 3 g NaNO<sub>3</sub> per l dissolves 93 1 mg A **106** 196)

Completely insol in water containing ammonium phosphate or ammonium sodium phosphate (Berzelius)

800 ccm H<sub>2</sub>O, sat with CO<sub>2</sub>, dissolve 1 425

(Liebig Easily sol in H<sub>2</sub>SO<sub>3</sub>+Aq, acetic and other [186]

acids, also in boiling solution of ammonium citrate (Millot, Bull Soc (2) 18 20)

When in presence of Fe or Al salts it is sol to a considerable extent in H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+Aq

6 g NH<sub>4</sub>Cl in 100 ccm H<sub>2</sub>O containing 10 ccm 634% NH<sub>4</sub>OH+Aq dissolve pptd salt =0 0029 g  $Mg_2P_2O_7$  1 g  $(NH_4)_2C_2O_4$  in 100 ccm  $H_2O_2$  and  $NH_4OH+Aq$  dissolve= 0 0061 g Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> 2 g citric acid in excess of NH<sub>4</sub>OH+Aq dissolve =  $0.0147 \text{ g Mg}_2P_2O_7$ Solubility prevented by excess of magnesia mixture (Lindo, C N 48 217)

Solubility of NH<sub>4</sub>MgPO<sub>4</sub>+6H<sub>2</sub>O in salts+Aq at t°

(G salt dissolved in 100 g solvent)

| t°                                    | 5% NH4NO≥<br>+Aq                                                             | 5%<br>NH₄Cl+Aq                                                               | 1 pt NH <sub>4</sub> OH<br>(D=0 96)<br>+4 pts H <sub>2</sub> O     |
|---------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 0<br>20<br>30<br>40<br>50<br>60<br>70 | 0 1100<br>0 0463<br>0 0546<br>0 0645<br>0 0723<br>0 0846<br>0 0834<br>0 1009 | 0 0597<br>0 1055<br>0 1133<br>0 0713<br>0 0931<br>0 1728<br>0 1239<br>0 1913 | 0 0087<br>0 0098<br>0 0135<br>0 0153<br>0 0174<br>0 0178<br>0 0145 |

| t° | 4% NH <sub>4</sub> OH+Aq and<br>5% NH <sub>4</sub> Cl+Aq | 4% NH <sub>4</sub> OH +Aq and<br>10% NH <sub>4</sub> Cl +Aq |
|----|----------------------------------------------------------|-------------------------------------------------------------|
| 20 | 0 0165                                                   | 0 0541                                                      |
| 60 | 0 0274                                                   | 0 0731                                                      |

(Wenger, Dissert Geneva, 1911)

About 3 times as sol in  $Ca(C_2H_3O_2)_2+Aq$ as in NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq, but solubility is prevented by excess of MgCl<sub>2</sub> (Ville, Bull Soc (2) 18 316

SI sol in ammonium citrate + Aq containing 400 g ammonium citrite in a litre Solubility = 0 457% at ord temp and 0 58% at 50° (Bolis, Ch Z 1903, **27** 1151)

Min Struvite

Insol in H<sub>2</sub>O or citize acid + Aq  $+\mathrm{H}_{2}\mathrm{O}$ (Millot and Maguenne, Bull Soc (2) 23 238)

Ammonium magnesium hydrogen orthophosphate,  $(NH_4)_2MgH_2(PO_4)_2+3H(O(?)$ (Graham)

Ammonium magnesium phosphate, 5 MgO,  $(N \dot{H}_4)_2 O$ ,  $2 \dot{P}_2 O_5 + 24 \dot{H}_2 O$ (Gawalovsky, C C 1885 721)

Ammonium magnesium sodium pyrophosphate, (NH<sub>4</sub>)<sub>3</sub>Mg<sub>6</sub>Na(P<sub>2</sub>O<sub>7</sub>)<sub>4</sub>

Insol in H<sub>2</sub>O and not decomp thereby (Berthelot and André, A ch 1897, (7) 11 Ammonium manganous dimetaphosphate,  $(NH_4)_2Mn(\bar{P}O_3)_4+4H_2O$ 

Relatively easily attacked by acids (Glatzel, Dissert 1880)

+6H<sub>2</sub>O

Efflorescent (Fleitmann, Pogg 78 346)

### Ammonium manganous orthophosphate, NH<sub>4</sub>MnPO<sub>4</sub>+H<sub>2</sub>O

Sol in 32,092 pts cold, and 20,122 pts boiling H<sub>2</sub>O, and in 17,755 pts NH<sub>4</sub>Cl+Aq

(14% NH<sub>4</sub>Cl) (Fresenius) Insol in H<sub>2</sub>O below 70°, at 70°  $+7H_2O$ 100 g H<sub>2</sub>O dissolve 0 0052 g salt, at 80°, 0 0067 (Wenger, Dissert Geneva, 1911)

Easily sol in dil acids Decomp by KOH+Aq, but not by NH4OH+Aq or K2CO3+Aq Insol in NH4OH or NH4 salts +Aq (Gibbs)

> Solubility in salts+Aq at t° (G in 100 g solvent)

|                                             | (                                                                            | 8 502.0000                                                                   |                                                                    |
|---------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|
| t°                                          | 5%<br>NH4NO s<br>+Aq                                                         | 5%<br>NH4Cl+Aq                                                               | 1 pt NH <sub>4</sub> OH<br>D = 0 96<br>+4 pts H <sub>2</sub> O     |
| 0<br>20<br>30<br>40<br>50<br>60<br>70<br>80 | 0 0206<br>0 0200<br>0 0226<br>0 0209<br>0 0226<br>0 0270<br>0 0281<br>0 0326 | 0 0020<br>0 0255<br>0 0345<br>0 0386<br>0 0355<br>0 0384<br>0 0414<br>0 0451 | 0 0116<br>0 0122<br>0 0118<br>0 0132<br>0 0193<br>0 0191<br>0 0197 |

(Wenger, l c)

Insol in alcohol Insol in acetone (Naumann, B 1904, 37 4329)

Ammonium manganic pyrophosphate,

 $NH_4MnP_2O_7 + 3H_2O$ Decomp by cold H2O with separation of Mn<sub>2</sub>O<sub>3</sub> (Rosenheim, B 1915, **48** 584)

Ammonium manganous sodium pyrophosphate, NH<sub>4</sub>N 1MnP<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O

Insol in H () or alcohol Fasily sol in very dıl\_acıds (Otto, J pr 2 418)

Formula is  $Na_4(NH_4)_4Mn_2(P_2O_7)_3+$ 12H<sub>2</sub>O, according to Berzelius

#### Ammonium mercuric metaphosphate

Sol in H<sub>2</sub>O, or at least in NH<sub>4</sub>OH+Aq (Persoz, J pr 3 216)

#### Ammonium nickel metaphosphate

Insol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq, from which it is repptd on evaporation of the NH3 (Persoz, J pr 3 215)

#### Ammonium nickel dimetaphosphate, $(NH_4)_2N_1P_4O_{12}+4H_2O$

Sol in 125 pts H<sub>2</sub>O (Glatzel, Dissert 1880)

Ammonium nickel orthophosphate, NH<sub>4</sub>N<sub>1</sub>PO<sub>4</sub>+2H<sub>2</sub>O

(Debray, C R 59 40) +6H<sub>2</sub>O Decomp by boiling H<sub>2</sub>O (Debray)

Ammonium potassium dimetaphosphate,  $(NH_4)_{10}K_4(P_2O_6)_7$ 

More sol in H2O than following salt (Fleitmann, Pogg 78 341)

NH<sub>4</sub>K<sub>3</sub>P<sub>4</sub>O<sub>12</sub>+2H<sub>2</sub>O Difficultly sol in  $H_2O$  (Fleitmann)

### Ammonium potassium pyrophosphate, $NH_4K_2HP_2O_7 + \frac{1}{2}H_2O$

Sol in H<sub>2</sub>O Decomp on Deliquescent boiling (Schwarzenberg)

### Ammonium sodium dimetaphosphate, NH<sub>4</sub>NaP<sub>2</sub>O<sub>6</sub>+H<sub>2</sub>O

More sol in H<sub>2</sub>O than Na<sub>2</sub>P<sub>2</sub>O<sub>6</sub>, but less than (NH<sub>4</sub>)<sub>2</sub>P O<sub>6</sub> Less sol in alcohol than ın H<sub>2</sub>O (Fleitmann, Pogg 78 340)

### Ammonium sodium orthophosphate, $(NH_4)_2NaPO_4+4H_2O$

Decomp by H<sub>2</sub>O Cryst from NH<sub>4</sub>OH+ Aq of 0.96 sp gr From H<sub>2</sub>O solution, NaNH<sub>4</sub>HPO<sub>4</sub>+4H<sub>2</sub>O separates out (Uels-mann, Arch Pharm (2) 99 138) Insol in acetone (Naumann, B 1904, 37 From H<sub>2</sub>O solution,

4329)

 $+5H_2O$ 

 $\mathrm{NH_4Na_2PO_4} + 12\mathrm{H_2O}$ (Herzfeld, Z anal **20** 191 )

 $(NH_4)_5N_2(PO_4)_2+6H_2O$  Sol in H O with decomp Cryst from hot cone NH4OH+Aq (Uelsmann, Arch Pharm (2) 99 138)

### Ammonium sodium hydrogen phosphate (Microcosmic salt), NH4NaHPO4+4H2O

Efflorescent Easily sol in H<sub>2</sub>O Sol in 6 pts cold, and 1 pt boiling H<sub>2</sub>O Insol in alcohol

Aqueous solution gives off NII<sub>3</sub>, especially ıf hot

Insol in acetone (Fidmann, C C 1899, II 1014)

Min Stercorite

+5H<sub>2</sub>O (Uelsmann)

The composition of the hydrates formed by this salt at different dilutions is calculated from determinations of the lowering of the fr-pt produced by the salt and of the conductivity and sp gr of its aqueous solutions (Jones Am Ch J 1905, 34 319)

(NH<sub>4</sub>)<sub>3</sub>Na<sub>3</sub>H<sub>6</sub>(PO<sub>4</sub>)<sub>4</sub>+3H<sub>2</sub>O Decomp by H<sub>2</sub>O (Filhol and Senderens, C R 93 388)

### Ammonium sodium pyrophosphate, $(NH_4)_2Na_2P_2O_7+5H_2O$

Easily sol in H<sub>2</sub>O Aqueous solution de-(Schwarzenberg, A 65 comp by boiling 142)

(Rammelsberg)  $+6\mathrm{H}_2\mathrm{O}$ 

Ammonium sodium glucinum orthophosphate,  $(NH_4)_2Na_2Gl(PO_4)_2+7H_2O$ 

Precipitate (Scheffer)

Ammonium thallous orthophosphate, (NH<sub>4</sub>)<sub>3</sub>PO<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>TIPO<sub>4</sub>, or H<sub>2</sub>NII<sub>4</sub>PO<sub>4</sub>, HTl₂PO₄

Sol in H<sub>2</sub>O (Lamy, Rammelsberg)

Ammonium uranyl phosphate,  $NH_4(UO_2)PO_4+xH_2O$ 

Insol in H<sub>2</sub>O and HC H<sub>3</sub>O<sub>2</sub>+Aq Sol in mineral acids, from which it is precipitated by NH<sub>4</sub>C<sub>2</sub>H<sub>8</sub>O<sub>2</sub>+Aq, in which it is insol (Knop)

+3**H**₂O Insol in H<sub>2</sub>O and acetic acid Sol in all mineral acids, oxalic acid and M<sub>2</sub>CO<sub>3</sub>+Aq (Lienau, Dissert 1898)

Ammonium vanadium phosphate See Phosphovanadate, ammonium

Ammonium zinc dimetaphosphate,  $(NH_4)_2Zn(P_2O_6)_2+6H_2O_6$ 

Efflorescent (Fleitmann, Pogg 78 347) +4H<sub>2</sub>O Sol in 70 pts H<sub>2</sub>O Decomp by H<sub>2</sub>SO<sub>4</sub> (Glatzel, Dissert 1880)

Ammonium zinc orthophosphate, basic,  $3NH_3$ , 2ZnO,  $P_2O_5 + 8H_2O$ 

(Rother, A 1867, 143 356)  $4(NH_4)O$ , 6ZnO,  $3P_2O_5+4H_2O$  (Schweikert, A. 1868, 145 57)

Ammonium zinc orthophosphate, NH<sub>4</sub>ZnPO<sub>4</sub>  $+H_2O$ 

Insol in H<sub>2</sub>O Sol in acids, and caustic alkalies (Bette, A 15 129)

Ammonium zinc hydrogen phosphate, NH4H2PO4, ZnHPO4+H3O

Insol in H<sub>2</sub>O (Debray)

4(NH<sub>4</sub>)<sub>2</sub>O, 6ZnO, 3P<sub>2</sub>O<sub>5</sub> (Schweikert, A **145** 57)

 $3(NH_4)_2O$ , 4ZnO,  $2P_2O_5 + 13H_2O$  (Rother, A 143 356)

Ammonium phosphate selenate See Selenophosphate, ammonium

Barium triphosphate, 5BaO, 3P<sub>2</sub>O<sub>5</sub>

Insol in H2O, insol in acids after heating to a high temp (Schwarz, Z anorg 1895, 9 264)

Barium metaphosphate, Ba(PO<sub>3</sub>)<sub>2</sub>

Insol in HO or dil acids (Maddrell, A **61** 61)

Not decomp by boiling with acids or alkali carbonates + Aq (Fleitmann, Pogg 78 352)

Barium dimetaphosphate, BaP<sub>2</sub>O<sub>6</sub>+2H<sub>2</sub>O

More difficultly sol in H<sub>2</sub>O than Ba<sub>3</sub>(P<sub>3</sub>O<sub>9</sub>)<sub>2</sub> Slightly attacked by boiling conc HCl+Aq or HNO<sub>8</sub>+Aq Fasily decomp by H<sub>2</sub>SO<sub>4</sub> (Fleitmann, Pogg 78 254)

Barium trimetaphosphate, Bas(PsOs) +2HoO Somewhat sol in H<sub>2</sub>O (Fleitmann, A 65

313)

+6H<sub>2</sub>O Easily sol in HCl+Aq (Lindbom )

1 I H<sub>2</sub>O dissolves 2 589 g at ord temp (Wiesler, Z anorg 1901, 28 198)

Barium hexametaphosphate, Ba<sub>3</sub>P<sub>6</sub>O<sub>18</sub> (?)

Sol in H<sub>2</sub>O only after boiling several hours Nearly insol in H2O (Ludert, Z anorg

**5** 15) Insol in NH<sub>4</sub>Cl+Aq (Wackenroder) Sol in HNO<sub>3</sub>+Aa Sol in  $Na_6P_6O_{18}+Aq$ After ignition it is nearly insol in HNO<sub>3</sub>+Aq

Barium orthophosphate, Ba<sub>3</sub>(PO<sub>4</sub>)

Precipitate Very sl sol or insol in H<sub>2</sub>O (Graham, Pogg 32 49)

Sol in HCl+Aq Decomp by SO<sub>2</sub>+Aq Insol in methyl acetate (Naumann, B 1909, 42 3790)

Barium hydrogen phosphate, BaHPO<sub>4</sub>

Sol in 10,000 pts H<sub>2</sub>O (Malaguti, A ch (3) **51** 346 )

Sol in 20,570 pts H<sub>2</sub>O at 20° 1833)

Not completely soluble in water containing CO<sub>2</sub>, but BaCl<sub>2</sub> causes no ppt in Na<sub>2</sub>HPO<sub>4</sub>+ Aq containing 7 16 g or less N 12HPO4 in a litre after it has been saturated with CO<sub>2</sub> (Setschenow, C C 1875 97)

Easily sol in H<sub>3</sub>PO<sub>4</sub>+Aq, and dil HCl+

Aq HNO<sub>3</sub>+Aq of 1 275 sp gr if not diluted has scarcely any solvent action, but more dis solves on dilution until a miximum is ic whed, when 10 vols of H2O have been added (Bischof, Schw J 67 39)

Sol in 367-403 pts wette wid (1032 sp gr) at 225° (Bischof, lc) Easily sol in H<sub>2</sub>O containing NH<sub>4</sub>Cl, NH4NO3, or NH4 succinate, from which solu tions it is completely pptd by NII4()II+Aq (Rose)

Insol in Na<sub>2</sub>HPO<sub>4</sub> or BaCl +  $\Lambda$ q (Rose,

Pogg 76 23)

More sol in BiCl2 or NaCl+Aq thin in HO, 1 pt BaHPO<sub>4</sub> being sol in 4362 pts H2O containing 12% N iCl and 08% Bill (I udwig Arch Pharm (2) 56 265)

Sol in Na citrate+Aq (Spiller)

Barium tetrahydrogen phosphate, BaH<sub>4</sub>(PO<sub>4</sub>)

Sol in H<sub>2</sub>O (Mitscheilich, 1821) Decomp by much H<sub>2</sub>() into B<sub>2</sub>HP()<sub>4</sub> Sol in phosphoric and certain other reids (Berzelius, A ch 2 153)

Barium pyrophosphate,  $Ba_1P_2()_7 + xH_2()$ 

Somewhat sol in H<sub>2</sub>O, in much H<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+ Aq, also in HCl+Aq or IINO3+Aq Insol in  $HC_2H_3O_2+Aq$  or  $Na_4P_2O_7+Aq$  (Schwar zenberg)

Insol in NH<sub>4</sub>Cl+Aq (Wackenroder)

Barium hydrogen pyrophosphate, BaH<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, Ba<sub>2</sub>P<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O Ppt (Knorre and Oppelt, B 21 773)

Barium tetraphosphate, Ba<sub>3</sub>P<sub>4</sub>O<sub>13</sub>

Insol in H<sub>2</sub>O or acids when strongly heated (Fleitmann and Henneberg, 4 65 331)

Barium manganic pyrophosphate,  $Ba(MnP_2O_7)_2 + 5H_2O$ 

Almost insol in H<sub>2</sub>O (Rosenheim, B 1915, 48 585 \

Barium potassium trimetaphosphate, BaKP<sub>3</sub>O<sub>9</sub>+H<sub>2</sub>O

Much less sol in H<sub>2</sub>O than NH<sub>4</sub>BaP<sub>3</sub>O<sub>9</sub> or NaBaP<sub>3</sub>O<sub>9</sub> (Lindbom) Sol in HCl+Aq after ignition

Barium potassium orthophosphate, BaKPO4 Insol in H<sub>2</sub>O (Ouvrard, A ch (6) 16 297) +10H<sub>2</sub>O (de Schulten, C R 96 706)

Barium sodium dimetaphosphate,  $BaNa_{2}(P O_{6})_{2}+4H_{2}O$ (Glatzel, Dissert 1880)

Barium sodium trimetaphosphate, BaNaPaOa  $+4H_2O$ 

More easily sol in H<sub>2</sub>O than Ba<sub>3</sub>(P<sub>3</sub>O<sub>9)<sub>2</sub></sub> Sol in acids, unless ignited (Fleitmann and Henneberg, A 65 314)

Sol in HCl+Ag after igni-Efflorescent tion only by long boiling When fused it is easily sol in IICl+Aq (Lindbom, Acta Lund 1873 21)

Barium sodium orthophosphate, BaNaPO<sub>4</sub>+ 10H<sub>2</sub>()

(de Schulten, C R 96 706)

Not attacked by cold but decomp by hot H<sub>2</sub>O (Villiers, C R 104 1103)
Sl sol in H<sub>2</sub>O (Quartinoli, C A 1911 2375)

Barium sodium pyrophosphate,

Ba<sub>4</sub>Na<sub>4</sub>(P O<sub>7</sub>)<sub>4</sub>

(lammann, | 39 ol6) Sol in hot HCl and HNO<sub>3</sub>

J pr 1892, (2) 45 469) 6Ba<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+6H<sub>2</sub>O Completely insol in Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq, but not insol in H<sub>2</sub>O or NH4OH+Aq Easily sol in HNO3 or HCl Insol in alcohol (Baer, Pogg 75 +Aq164)

Barium uranous metaphosphate, UO2, BaO,  $P_2O_5$ (Colani, A ch 1907, (8) 12 142)

Barium uranyl orthophosphate.  $Ba(UO_2)_2(PO_4)_2 + 8H_2O$ Min Uranocircite

Barium phosphate chloride, 3Ba<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, BaČl<sub>2</sub>

Min Barytapatrie (Deville and Caron, A. ch (3) 67 451)

4BaH<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>, BaCl<sub>2</sub> (Frlenmever, J B 1857 145)

15BaO, 6P<sub>2</sub>O<sub>5</sub>, BaCl<sub>2</sub>+6H<sub>2</sub>O (') Sol in 18,000 pts cold H<sub>2</sub>O Much more sol in H<sub>2</sub>O containing BaCl<sub>2</sub>, NH<sub>4</sub>Cl, and NH<sub>4</sub>OH (Ludwig Arch Pharm (2) 56 271)

Bismuth orthophosphate, basic, 2BiPO4, 3B12O3

Insol in H<sub>2</sub>O Sol in HCl+Aq (Cavazzi, Gazr ch it **14** 289)

Bismuth orthophosphate, BiPO4

Insol in  $H_2O$  or  $HNO_3+Aq$  Sl sol in  $NH_4$  salts+Aq (Chancel, C R 50 416) Not decomp by  $H_2O$  Other phosphates of  $B_1$  are decomp by  $H_2O$  (Montmartini,

C C 1900, II 1256)

Not hydrolyzed by hot H<sub>2</sub>O, sl sol in BiCl +Aq, decomp by boiling alkalı (Caven. J Soc Chem Ind 1897, 16 30) More sol in HCl+Aq than in HNO<sub>3</sub>+Aq (Rose)

Sol in UO  $(NO_3)_2 + Aq$  (M'Curdy, Am J Sci (2) 31 282)

Insol in MNO<sub>3</sub>+Aq

Insol in Bi salts+Aq (Rose, Pogg 76

Sol in NH<sub>4</sub>Cl+Aq, but insol in NH<sub>4</sub>NO<sub>3</sub>+ Aq (Brett, 1837)

+116H2O (Kuhn) +3H<sub>2</sub>O Ppt Decomp by H<sub>2</sub>S or KOH +Aq (Vanino, J pr 1906, (2) 74 151)

Bismuth pyrophosphate, basic, 2Bi O<sub>3</sub>, P O<sub>5</sub> Insol in H2O and HC H4O +Aq sol in hot HCl and HNO3+Aq Insol in Na4P O7 + Aq, and NH<sub>4</sub> citiate + Aq (Passerini, Cim 9 84)

Bismuth pyrophosphate, Bi4(PO)3

Insol in HO or HNO3+Aq (Chancel. C R 50 416)

Decomp by H<sub>2</sub>O (Wallroth, Bull Soc (2)

Sol in Na<sub>4</sub>P O<sub>7</sub>+Aq (Stromever)

Bismuth sodium pyrophosphate, NaBiP O +3H<sub>2</sub>O

Insol in H<sub>2</sub>O (Rosenheim, B 1915, 48 588

Boron phosphate, BPO4

Insol in H<sub>2</sub>O Not attacked by boiling alkalies (Mever, B 22 2919)

# Bromomolybdenum phosphate See under Bromomolybdenum comps

Cadmium triphosphate, Cd<sub>5</sub>(P<sub>3</sub>O<sub>10</sub>).

Insol in H<sub>2</sub>O and acids (Gluhmann, Dissert 1899)

Cadmium tetraphosphate, 6CdO, 4P<sub>2</sub>O<sub>5</sub>+18H<sub>2</sub>O Insol in acids (Gluhmann)

Cadmium metaphosphate

Verv sol in NH<sub>4</sub>OH+Aq (Persoz, 4 ch **56** 334)

Cadmium dimetaphosphate, Cd(PO<sub>3</sub>)<sub>2</sub>+2H<sub>2</sub>O
Sol in 32 pts H<sub>2</sub>O Scarcely attacked by acids, especially conc H<sub>2</sub>SO<sub>4</sub> (Glatzel, Dissert 1880)

Cadmium tetrametaphosphate

Insol in H<sub>2</sub>O Easily decomp by Na<sub>2</sub>S+Aq (Fleitmann, Pogg 78 358) Cd<sub>2</sub>(PO<sub>3</sub>)<sub>4</sub>+10H<sub>2</sub>O Not so very difficultly attacked by acids but in-ol after ignition (Glatzel, Dissert 1880)

Cadmium orthophosphate, Cd<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>

Ppt Insol in H<sub>2</sub>O Sol in Cd salts+Aq (Stromeyer)

Estionleyer)
Lasily sol in NH<sub>4</sub> sulphate, chloride, nitrate, or succinate+Aq (Wittstein, Repert

 $H_2Cd_5(PO_4)_4+4H_2O$  Sol in dil  $H_3PO_4+$  Aq (de Schulten, Bull Soc (3) **1** 473)

Cadmium tetrahydrogen phosphate, CdH<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>+2H<sub>2</sub>O

Decomp by great excess of  $\mathrm{H}_2\mathrm{O}$  (de Schulten)

Cadmium pyrophosphate, Cd<sub>2</sub>P<sub>2</sub>O<sub>7</sub>+2H O Insol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH, Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+ Aq, or acids Insol in KOH+Aq Sol in SO<sub>2</sub>+Aq (Schwarzenberg, A 65 183)

Cadmium hydrogen orthophosphate hydrazine,  $CdHPO_4$ ,  $2N_2H_4$ 

Decomp by light (Franzen, Z anorg 1908, 60 283)

Cadmium potassium tetrametaphosphate, CdK<sub>3</sub>(PO<sub>3</sub>)<sub>4</sub>+3H O

Sol in 135 pts  $H_2O$  Difficultly decomp by acids (Glat/el, Dissert 1880)

Cadmium potassium orthophosphate, CdKPO<sub>4</sub>

Insol in  $H_2O$ , sol in dil HCl+Aq (Ouvrard, A ch (6) 16 321)

Cadmium potassium pyrophosphate,  $CdK_2P_2O_7$ 

Insol in H<sub>2</sub>O, sol in dil HCl+Aq (Ouv-

5Cd<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, 4K<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+30H<sub>2</sub>O Much more easily sol in H<sub>2</sub>O than the CdN<sub>2</sub> salt (Pahl, Sv V A F **30**, **7** 39)

Cadmium sodium trphosphate, Na<sub>3</sub>CdP<sub>3</sub>O<sub>10</sub> +12H<sub>2</sub>O

Sol in acids even after ignition (Glühmann, Dissert 1899)

Cadmium sodium trimetaphosphate, Na<sub>4</sub>Cd(PO<sub>3</sub>)<sub>6</sub>+4H<sub>2</sub>O

Sl sol in  $\rm H_2O$  Insol in alcohol (Wiesler, Z anorg 1901, 28 204)

Cadmium sodium tetrametaphosphate, Na<sub>2</sub>Cd'PO<sub>3</sub>)<sub>4</sub>+3H<sub>2</sub>O

Completely insol in  $H_2O$  (Glatzel, Dissert 1880)

Cadmium sodium orthophosphate, CdNa<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub> Insol in H<sub>2</sub>O, very sol in dil acide

 $\begin{array}{lll} Insol \ in \ H_2O, \ very \ sol \ \ in \ dil \ \ acids \\ CdNaPO_4 & As \ above & (Ouvrard\ ) \end{array}$ 

Cadmium sodium pyrophosphate, CdNa<sub>2</sub>P<sub>2</sub>O<sub>7</sub>

Sol in dil acids, even acetic acid (Wallroth)  $+4H_2O$  Insol in  $H_2O$  (Pahl, Sv V A F 30, 7 39)

Cadmium phosphate bromide, 3Cd<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>,

Sol in cold very dil HNO:+Aq (de Schulten, Bull Soc (3) 1 472)

 $\begin{array}{c} \textbf{Cadmium} \quad \textbf{phosphate} \quad \textbf{chloride,} \quad 3Cd_3(PO_4)_2 \textbf{,} \\ CdCl_3, \end{array}$ 

Sol in dil HNO3+Aq (de Schulten)

Cæsium metaphosphate, CsPO<sub>3</sub> Sol in H<sub>2</sub>O (von Berg, B 1901, **34** 4185)

Cæsium orthophosphate, Cs<sub>3</sub>PO<sub>4</sub>+5H<sub>2</sub>O Deliquescent, very sol in H O (von Berg)

Cæsium hydrogen orthophosphate, Cs HPO<sub>4</sub>
+H<sub>2</sub>O

Very sol in H<sub>2</sub>O (von Berg)

Cæsium dihydrogen orthophosphate, CsH<sub>2</sub>PO<sub>4</sub>

Sol in H<sub>2</sub>O, insol in alcohol (von Berg)

Crsium pyrophosphate, Cs<sub>4</sub>P<sub>2</sub>O<sub>7</sub>

Very sol in H<sub>2</sub>O, very hydioscopic (von Beig)

## Calcium irrphosphate, 5CaO, 3P<sub>2</sub>O<sub>5</sub>

Insol in  $H_2O$  (Schwarz, Z anoig 1895, 9 264)

## Calcium monometophosphate, Ca(PO<sub>3</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O and dil acids (Maddrell, A 61 61)

Not decomp by digestion with alkali carbonates +Aq (Fleitmann)

# Calcium dimetaphosphate, $Ca_2(P_2O_6)_2 + 4H_2O$

In sol in  $\rm H_2O$  Decomp by warm  $\rm H_2SO_4$ , but not appreciably by conc HCl or  $\rm HNO_3+Aq$  (Fleitmann, Pogg 78 255)

### Calcium hexametaphosphate (?)

Insol in  $H_2O$  Sol in  $Na_5P_6O_{18}+Aq$  and in HCl+Aq (Rose, Pogg 76 3)  $Ca_3P_6O_{18}$  Nearly insol in  $H_2O$ , sol in dil

 $Ca_3P_6O_{18}$  Nearly insol in  $H_2O$ , sol in dil acids (Ludert, Z anorg 5 15)

# Calcium orthophosphate, basic, $3Ca_3(PO_4)_2 + CaO_2H_2$

(Warington, J B 1873 253) 4CaO, P<sub>2</sub>O<sub>5</sub> (Hilgenstock)

### Calcium orthophosphates,

Equilibrium in system CaO+P<sub>2</sub>O<sub>5</sub>+H<sub>2</sub>O

### Solubility of CaO in P2O5+Aq at 25°

| g CaO per l<br>of solution                                                                                                                   | g P <sub>2</sub> O <sub>5</sub> per l<br>of solution                                                                                         | Solid phase                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1 71<br>7 48<br>8 10<br>11 57<br>12 88<br>18 77<br>19 25<br>23 31<br>23 69<br>32 41<br>35 90<br>39 81<br>40 89<br>43 82                      | 4 69<br>22 39<br>23 37<br>36 14<br>41 24<br>59 35<br>63 03<br>75 95<br>79 10<br>109 8<br>129 8<br>139 6<br>142 7<br>154 6                    | CaHPO <sub>4</sub> , 2H <sub>2</sub> O                              |
| 49 76<br>55 52<br>59 40<br>70 31<br>72 30<br>69 33<br>65 46<br>63 53<br>59 98<br>59 25<br>57 74<br>53 59<br>48 78<br>44 52<br>41 86<br>39 89 | 191 0<br>216 5<br>234 6<br>279 7<br>351 9<br>361 1<br>380 3<br>395 1<br>419 7<br>424 6<br>428 0<br>451 7<br>475 8<br>505 8<br>528 9<br>538 3 | CaH <sub>4</sub> (PO <sub>4</sub> ) <sub>2</sub> , H <sub>2</sub> O |

(Cameron and Seidell, J Am Chem Soc 1905, **27** 1508)

### Solubility of CaO in P<sub>2</sub>O<sub>5</sub>+Aq at 25°

| g CaO per l<br>of solution                                                                                                     | P C port                                                                                                                         | Solid phase                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 61<br>6 51<br>5 01<br>3 42<br>2 42<br>1 58<br>0 544<br>0 400<br>0 291<br>0 232<br>0 145<br>0 062<br>0 049<br>0 0587<br>0 789 | 19 96<br>16 52<br>12 82<br>8 16<br>5 75<br>3 66<br>1 516<br>1 108<br>0 773<br>0 662<br>0 381<br>0 109<br>0 088<br>0 015<br>0 013 | CaHPO <sub>4</sub> Solid phases are evidently solid solutions  Ca <sub>8</sub> (PO <sub>4</sub> ) <sub>2</sub> Solid phase is probably a solid solution |

(Cameron and Seidell, J Am Chem Soc 1905, 27 1513)

### Solubility of CaO in P2O5+Aq at 50 7°

| 100 g of the solution contain                                               |                                                                             | Solid phase                                                                                                                                                           |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| g P <sub>2</sub> O <sub>5</sub>                                             | g CaO                                                                       | •                                                                                                                                                                     |  |
| 62 01<br>58 08<br>54 67<br>50 25<br>46 15<br>41 92<br>37 33                 | 0 336<br>0 635<br>0 939<br>1 428<br>2 100<br>2 974<br>3 898                 | CaH <sub>4</sub> P <sub>2</sub> O <sub>8</sub> +CaH <sub>4</sub> P O <sub>8</sub> H <sub>2</sub> O<br>CaH <sub>4</sub> P <sub>2</sub> O <sub>8</sub> H <sub>2</sub> O |  |
| 33 18<br>29 61<br>15 48<br>9 465<br>6 157                                   | 4 880<br>5 725<br>3 507<br>2 328<br>1 563<br>0 852                          | CaH <sub>4</sub> P <sub>2</sub> O <sub>8</sub> H <sub>2</sub> O +CaHPO <sub>4</sub><br>CaHPO <sub>4</sub>                                                             |  |
| 2 946<br>2 281<br>0 1521<br>0 1527<br>0 1331<br>0 0942<br>0 0309<br>0 00068 | 0 852<br>0 692<br>0 0588<br>0 0596<br>0 0514<br>0 0351<br>0 0106<br>0 00071 | CaHPO4 2H O<br>CasP2O H2O                                                                                                                                             |  |

(Bassett, Z anorg 1908, 59 15)

| Solubility | of CaO in | P2O5+Aq | at $40^{\circ}$ |
|------------|-----------|---------|-----------------|
|------------|-----------|---------|-----------------|

| 100 g of the solution contain                                                                                                                                            |                                                                                                                                                                                        | Solid phase                                                                                                                                                                                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| g P <sub>2</sub> O <sub>5</sub>                                                                                                                                          | g CaO                                                                                                                                                                                  |                                                                                                                                                                                                                                                                  |  |
| 45 42<br>41 33<br>36 79<br>32 46<br>28 27<br>21 67<br>17 78<br>16 35<br>9 905<br>6 979<br>4 397<br>1 819<br>0 423<br>0 294<br>0 158<br>0 146<br>0 128<br>0 0262<br>trace | 1 768<br>2 588<br>3 584<br>4 505<br>5 501<br>4 813<br>4 100<br>3 810<br>2 536<br>1 847<br>1 267<br>0 576<br>0 156<br>0 110<br>0 0592<br>0 0519<br>0 0508<br>0 0709<br>0 0814<br>0 0829 | CaH <sub>4</sub> P <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> O  " " " " CaHPO <sub>4</sub> " " " " " " " " " " " " " Ca <sub>2</sub> P <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> O Ca <sub>4</sub> P <sub>2</sub> O <sub>9</sub> , 4H <sub>2</sub> O " " " |  |
|                                                                                                                                                                          | 0 0840                                                                                                                                                                                 |                                                                                                                                                                                                                                                                  |  |

(Bassett, Z anorg 1908, 59 18)

### Solubility of CaO in P<sub>2</sub>O<sub>5</sub>+Aa at 25°

| Solubility of CaO in 1 205 Thy at 20                                                                             |                                                                                                                   |                                                                                                                                 |  |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| 100 g the solution contain                                                                                       |                                                                                                                   | Solid phase                                                                                                                     |  |
| g P <sub>2</sub> O <sub>5</sub>                                                                                  | g CaO                                                                                                             |                                                                                                                                 |  |
| 36 11<br>31 97<br>28 34<br>27 99<br>25 45<br>22 90<br>17 55<br>15 34<br>9 10<br>6 049<br>3 613<br>2 387<br>0 417 | 3 088<br>4 128<br>4 908<br>4 930<br>5 489<br>5 523<br>4 499<br>4 497<br>2 638<br>1 878<br>1 181<br>0 826<br>0 165 | CaH <sub>4</sub> P <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> O  " " " CaHPO <sub>4</sub> " " " " " " " " " " " " " " " " " " |  |
| 0 417<br>0 178<br>0 0332<br>0 0948<br>0 0571<br>0 0525<br>0 0468<br>trace                                        | 0 165<br>0 0696<br>0 0126<br>0 0352<br>0 0211<br>0 0175<br>0 0186<br>0 1131<br>0 118                              | Ca <sub>4</sub> P O <sub>9</sub> , 4H <sub>2</sub> O +Ca(OH) <sub>2</sub> Ca(OH) <sub>2</sub>                                   |  |

(Bassett, Z anorg 1908, 59 20)

### Calcium orthophosphate, Ca<sub>8</sub>(PO<sub>4</sub>)<sub>2</sub>

Decomp by long boiling with H<sub>2</sub>O into basic salt, 3Ca<sub>3</sub>(PÖ<sub>4</sub>)<sub>2</sub>, CaO<sub>2</sub>H<sub>4</sub> This decomp begins with cold HO, so that the solubility at 6-8° varies from 9 9 to 28 6 mg in a litre (Warington, Chem Soc (2) 11 983)

1 l cold H<sub>2</sub>O dissolves in 7 days 31 mg ignited, and 79 mg freshly precipitated Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (Volcker, J B **1862** 131)

100,000 pts H<sub>2</sub>O dissolve 2 36 pts gelatinous Ca phosphate, 2 56 pts ignited Ca phos-

phate, 3 00 pts Ca phosphate from bone dust (Maly and Donath, J pr (2) 7 416)

Solubility of bones in various solvents is given by Maly and Donath, l c

0 009 g Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> is sol in 1 in H<sub>2</sub>O 0 153

sat with CO<sub>2</sub> (Joffre, Bull Soc 1898, (3) 19 372)

Determinations of solubility in H2O as stated in the literature vary because Ca<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub> is apparently a solid solution of CaHPO, and When placed in contact with H<sub>2</sub>O more PO4 10ns dissolve than Ca 10ns, the resulting solution is acid and solid phase incher in Ca than before addition of H<sub>2</sub>O For material of the approximate composition,  $Ca_s(PO_4)_2$  the amt dissolved by  $CO_a$  free  $H_2O$ at ord temp is 001-010 g per l depending on conditions of experiment H<sub>2</sub>O sat with CO<sub>2</sub> dissolves 0.15-0.30 g per l (Cameron and Hurst, J Am Chem Soc 1904, 26 903)

The decomposition of Ca<sub>3</sub>(PO<sub>4</sub>) in H<sub>2</sub>O is increased by presence of CaSO<sub>4</sub>, decreased by presence of CaCO<sub>3</sub> or of CaSO<sub>4</sub> and CO increases the amount of PO4 dissolved in the solution of water alone and the sat CaSO<sub>4</sub> solutions, but has no other effect than to increase the amount of Ca in the solutions in contact with CaCO<sub>3</sub> (Cameron and Seidell,

J Am Chem Soc 1904, 26 1458)

Sol in  $CO_2+Aq$ 

1 l H<sub>2</sub>O containing 1 vol CO dissolves in 12 hours at 10°, 0.75 g precipitated C  $\iota_3(PO_4)_2$ , 0.166 g  $Ca_3(PO_4)_2$  from bonc  $\iota_3$ sh, 0.300 g Ca<sub>3</sub>(PO

<sub>4</sub>)<sub>2</sub> from bones which had been builed 20 years (Lassaigne, J ch mcd (3) 3 11)

1 1 H<sub>2</sub>O containing 0.8 vol CO<sub>2</sub> dissolves 0 61 g Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (Liebig, A **106** 196) H<sub>2</sub>O sat with CO at 5-10° and 760 mm

pressure dissolves 0 527-0 60 g C 13(PO<sub>4</sub>)2, or, if containing 1% NII<sub>4</sub>Cl, 0.739 g (  $\iota_3(PO_4)$ (Warington, Chem Soc (2) 9 50)

Solubility varies according to form of

 $Ca_3(PO_4)_2$ 

In apatite, 1 pt Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> dissolves in 222,222 pts H O sat with CO2, in riw bones, in 5698 pts, in bone ash, in 5029 pts, in So Carolina phosphate, in 6983 pts in phosphatic guano from Orchilla Id, in 8009 pts (Williams, C N 24 306)

Al<sub>2</sub>O<sub>6</sub>H<sub>6</sub> and Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub> prevent the solubility of Ca<sub>3</sub>(PO<sub>4</sub>) in H<sub>2</sub>O containing CO

under a CO2-pressure of 2 atmos at 14° (Ehlert, Z Elektrochem 1912, 18 728)

Sol in SO<sub>2</sub>+Aq, forming a liquid of 1 3 sp gr at 9° from freshly precipitated Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, and of 1 188 sp gr from bone ash

Sol in H<sub>2</sub>S+Aq 1 l H<sub>2</sub>O sat with H<sub>2</sub>S

dissolves 190-240 mg Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (Béchamp, A ch (4) 16 241

Easily sol in HNO3 or HCl+Aq

100 pts very dil HCl+Aq dissolve 198-225 pts Ca<sub>8</sub>(PO<sub>4</sub>)

(Crum, A 63 294) 100 pts HCl of 1 153 sp gr (containing 31% HCl) dissolve at 17° when diluted with

7 pts H<sub>2</sub>O 253 450 623 64 7 pts Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, 10 13 16 19 pts H<sub>2</sub>O 680 719 69 5 69 7 pts Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (Bischof, Schw J 67 39)

Decomp by H2SO4

Completely decomp to CaSO4 and H3PO4 by a mixture of H.SO<sub>4</sub> and alcohol

Solubility in HNO<sub>8</sub>+Aq

1 pt of Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> dissolves at 16 25-17 5° in pts HNO<sub>3</sub>+Aq which contain pts H<sub>2</sub>O to 1 pt  $HNO_3$  (sp gr = 1 23)

| Pts<br>HNO:+Aq                                   | Pts H <sub>2</sub> O                        | Pts<br>HNO3+Aq                             | Pts H <sub>2</sub> O                   |
|--------------------------------------------------|---------------------------------------------|--------------------------------------------|----------------------------------------|
| 2 72<br>4 23<br>10 25<br>15 45<br>20 34<br>20 82 | 0<br>0 827<br>3 309<br>5 791<br>8 273<br>10 | 30 64<br>26 48<br>32 14<br>36 06<br>127 81 | 10 754<br>13<br>13 236<br>15 718<br>40 |

(Bischof, 1833)

More sol in acetic, lactic, malic, and tartaric acids than in HCl or HNO<sub>3</sub>+Aq (Crum)

Solubility in H<sub>2</sub>PO<sub>4</sub>+Aq

| G H <sub>3</sub> PO <sub>4</sub> in 100 cc of | G Ca <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> dissolved |
|-----------------------------------------------|-------------------------------------------------------------|
| H <sub>3</sub> PO <sub>4</sub> +Aq            | by 100 cc of solvent                                        |
| 5                                             | 3 85                                                        |
| 10                                            | 7 28                                                        |
| 15                                            | 9 45                                                        |
| 20                                            | 12 50                                                       |
| 25                                            | 13 79                                                       |
| 30                                            | 15 10                                                       |
| // / 1)                                       | 1502 114 414)                                               |

(Causse, C R 1892, **114** 414)

Very small quantities of the salts of the alkalı metals increase the solubility in H<sub>2</sub>O (Lassaigne, J chim méd (3) 3 11

1 litre cold HO with 2 g NaCl dissolves 45 7 mg Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, with 3 g NaNO<sub>3</sub>, 33 mg  $Ca_8(PO_4)_2$  (I tebig)

1 litre H.O cont uning 8 75% NaCl dissolves

 $317.5 \text{ mg } \text{Ca}(PO_4)_2 \text{ (Lassaigne)}$ 

NH4 salts have even more effect, especially NH<sub>4</sub>Cl+Aq, which dissolves Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> in the cold, also ammonium nitrate and succinate (Wittstein)

 $(NH_4)_2SO_4 + Aq$  dissolves  $Ca_3(PO_4)_2$  as easily as  $CaSO_4$  (Liebig, A 61 128)

1 litre H<sub>2</sub>O containing 2 g NaCl dissolves at 7-12 3° 45 7 mg Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, 3 g NaNO<sub>3</sub> (Ehlert and Hempel, Z Elektrochem 1912, 2 G Z Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, 2 2 g (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, (Ehlert and Hempel, Z Elektrochem 1912, 2 G Z Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, 2 Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, 2 Ca<sub>3</sub>(PO<sub>4</sub>)<sub>3</sub> (PO<sub>4</sub>)<sub>4</sub> (PO<sub>4</sub>)<sub>5</sub> (PO<sub>4</sub>)<sub></sub> 76 7 mg Ca<sub>3</sub>(PO<sub>4</sub>), (Liebig, A 106 185)

Dry Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> also dissolves by long boiling with solutions of ammonium chloride, nitrate, succinate (Wittstein), or sulphate (Delkeskamp)

Sol in 89,448 pts H O (boiled) at 7°, 19,628 pts H<sub>2</sub>O (boiled) containing 1% NH<sub>4</sub>Cl at 10°, 4324 pts H O (boiled) containing 10% NH<sub>4</sub>Cl at 17°, 1788 pts H O sat with CO<sub>2</sub> and containing 10% NH<sub>4</sub>Cl at 10°, 1788 pts H O sat with CO<sub>2</sub> and containing 10% NH<sub>4</sub>Cl at 10°, 1788 pts H O sat with CO<sub>2</sub> and containing 10% NH<sub>4</sub>Cl at 10°, 1788 pts H O sat with CO<sub>2</sub> and containing 10% NH<sub>4</sub>Cl at 10°, 1788 pts H O sat with CO<sub>2</sub> and containing 10% NH<sub>4</sub>Cl at 10°, 1788 pts H O sat with CO<sub>2</sub> and containing 10% NH<sub>4</sub>Cl at 10°, 1788 pts H O sat with CO<sub>2</sub> and containing 10% NH<sub>4</sub>Cl at 10°, 1788 pts H O (boiled) at 7°, 1788 pts H O (boiled) at 10°, 1888 pts H O (boiled) a and 751 mm pressure, 1351 pts H<sub>2</sub>O sat with CO<sub>2</sub> and containing 1% NH<sub>4</sub>Cl at 12° and 745 mm pressure, 42,313 pts HO sat with CO2 and containing CaCO3 at 21° and 756 3 mm pressure, 18,551 pts H O sat with CO<sub>2</sub> and containing CaCO<sub>3</sub> and 1% NH<sub>4</sub>Cl at 16° and 746 1 mm pressure (Warington, 16° and 7461 mm pressure Chem Soc (2) 4 296)

Aqueous solutions of the following NH4 salts dissolve the given amts of Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, calculated for 100 pts of the corresponding acid NH<sub>4</sub>Cl, 0 655 pt , NH<sub>4</sub>NO<sub>3</sub>, 0 306 pt , (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 1 050 pts , NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, 0 255 pt , NH4 tartrate, 456 pts, NH4 citrate, 7015 pts, NH4 malate, 1 125 pts Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (Terreil, Bull Soc (2) **35** 578)

Solubility in various salts+Aq under a CO<sub>2</sub> pressure of 2 atmospheres, at 14°

| Salt                                                                                         | G salt per<br>100 g H <sub>2</sub> O | G Cas(PO <sub>4</sub> )<br>sol in 1 l of the<br>solvent |  |
|----------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------|--|
| H•0                                                                                          |                                      | 0 22848                                                 |  |
| NaCl                                                                                         | 50<br>conc                           | 1 3208<br>0 64089                                       |  |
| MgCl <sub>2</sub> +6H <sub>2</sub> O                                                         | 86 9<br>conc                         | 1 2873<br>2 8923                                        |  |
| KMgCl <sub>3</sub> +6H <sub>2</sub> O                                                        | 79 2<br>conc                         | 1 5771<br>1 1536                                        |  |
| K <sub>2</sub> SO <sub>4</sub> , MgSO <sub>4</sub> ,<br>MgCl <sub>2</sub> +6H <sub>2</sub> O | 70 95<br>conc                        | 1 7777<br>2 4911                                        |  |
| NaNO <sub>3</sub>                                                                            | 72 7<br>conc                         | 1 5827<br>0 8638                                        |  |
| K SO <sub>4</sub>                                                                            | 74 5<br>conc                         | 4 9041<br>4 7649                                        |  |
| (NH <sub>4</sub> ) SO <sub>4</sub>                                                           | 56 5<br>conc                         | 2 4131<br>5 8849                                        |  |
| Na_SO <sub>4</sub> +10H O                                                                    | 137 7<br>conc                        | 2 4911<br>3 2267                                        |  |
| MgSO <sub>4</sub> +7H <sub>2</sub> O                                                         | 105 3<br>conc                        | 1 9728<br>3 6001                                        |  |
| NH4Cl                                                                                        | 45 74<br>conc                        | 1 3710<br>1 2929                                        |  |
|                                                                                              |                                      |                                                         |  |

 $Ca_3(PO_4)_2$  is sol in K  $C_9O_4+Aq$  100 ccm  $K_2C_2O_4 + Aq (1\frac{1}{2}\% K_2C_3O_4)$  dissolves 57 1% of the P2O1 from phosphorite, 71% from guano by boiling 25 min At ord temp bone meal gives up 50-80% of its P<sub>2</sub>O<sub>5</sub> to K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq in 36 hours (Liebig, Landw J B 1881 603) (Bobierre, C R Sol in Ca sucrate+Aq

**32** 859)

More sol in H<sub>2</sub>O containing starch, glue, or other animal substances than in pure H2O

(Vauquelin, Pogg 85 126)

Sol in H<sub>2</sub>O containing organic matter, therefore when bones decay under H<sub>2</sub>O, Ca<sub>8</sub>(PO<sub>4</sub>), is dissolved in considerable quan-(Hayes, Edin Phil J 5 378)

Sol in sodium citrate+Aq (Spiller) Solubility in NH4 citrates + Aq

Ammonium citrate solution of 109 sp at 30-35° dissolves precipitated Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> completely, but not phosphorite (Frese-

Dried on the air, with 21/5H2O Sol in 40 min in diammonium citrate+Aq (sp gr = 109) dissolves 553% of the P2O5, citric acid +Aq (14%) dissolves 83.8% of the P<sub>2</sub>O<sub>6</sub> (Erlenmeyer, B 14 1253)

Dried at 50°, with 17/8H2O Sol in 45 min in diammonium citrate + Aq (sp. gr = 109), triammonium citrate+Aq dissolves 52 3% of the P2O5 (Lrlenmeyer)

IgnitedDiammonium citrate+Aq (sp. gr. 1 09) dissolves 93% of the P<sub>2</sub>O<sub>5</sub>, triammonium citrate+Aq (sp gr 109) dissolves 32% of the P<sub>2</sub>O<sub>5</sub>, citric acid (½%) dissolves 53 4% of the P<sub>2</sub>O<sub>5</sub> (Erlenmeyer)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 827)

Insol in alcohol and ether

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate (Naumann, B 1910, 43 314)

Insol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4329)

Min Apatite

0 002 g is sol in 1 l H<sub>2</sub>O 0 014 "" " 1 l H<sub>2</sub>O sat with CO<sub>2</sub> 109), triammonium citrate+Aq (sp gr = 1 (Joffre, Bull Soc 1898, (3) 19 374)

 $+H_2O$  Solubility in  $H_2O$ , in  $H_2O$  sat with  $CO_2$ , and in  $H_2O$  containing  $CO_2+CaH_2(CO_3)_2$ Temp 16°-20°

| 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | In 1 l of                        | the filtrate |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|--------------|
| Solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | P <sub>2</sub> O <sub>5</sub> mg | CaO mg       |
| (1) Boiled distilled H <sub>2</sub> O (2) 1200 cc distilled H <sub>2</sub> O+50 cc H <sub>2</sub> O sat with CO (3) 1000 cc " "+250 cc " " " " (4) 1250 cc H <sub>2</sub> O sat with CO <sub>2</sub> Solutions of CO <sub>2</sub> +CaH <sub>2</sub> (CO <sub>3</sub> ) <sub>2</sub> 1 1 (filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                               | 0 74<br>6 9<br>48 5<br>91 9      |              |
| (5) { Calcium carbonate Bicarbonate   Carbonate   Carbonic acid   Free carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carbonic acid   Carboni | 13 mg<br>166 "<br>73 "<br>9 "   | 0 38                             | 100 0        |
| $ \begin{array}{c} \text{(6)} & \left\{ \begin{array}{l} \text{Calcium carbonate} \\ \text{Bicarbonate} \end{array} \right. \left\{ \begin{array}{l} \text{Carbonate} \\ \text{Carbonic acid} \end{array} \right. \\ \text{Free carbonic acid} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 "<br>277 "<br>122 "<br>49 "  | 1 1                              | 162 3        |
| $ \begin{cases}                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13 "<br>376 "<br>165 "<br>105 " | 0 80                             | 218 8        |
| $ \begin{cases}  \text{Calcium carbonate} \\  \text{Bicarbonate} \\  \text{Free carbonic acid} \end{cases}                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 "<br>475 "<br>209 "<br>206 " | 1 77                             | 273 3        |
| $ \begin{cases} \text{Calcium carbonate} \\ \text{Bicarbonate} \\ \text{Free carbonic acid} \end{cases} \begin{cases} \text{Carbonate} \\ \text{Carbonic acid} \end{cases} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 "<br>545 "<br>240 "<br>301 " | 1 30                             | 312 7        |

Calcium hydrogen phosphate, CaHPO<sub>4</sub>, and

Insol or nearly so in H<sub>2</sub>O Gradually decomp by cold, more quickly by hot H2O

1000 pts H<sub>2</sub>O dissolve 0 135-0 152 pt CaHPO<sub>4</sub>+2H<sub>2</sub>O Solution clouds up on boil-(Birnbaum)

1000 pts H<sub>2</sub>O dissolve 0.28 pt, and if sat with CO<sub>2</sub>, 0 66 pt CaHPO<sub>4</sub>+2H<sub>2</sub>O (Dusart

and Pelouze)

When this salt dissolves in H<sub>2</sub>O, decomp takes place and a very considerable time is necessary to establish equilibrium (Rindell, C R 1902, 134 112)

Much less decomp by H<sub>2</sub>O than Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> or CaH<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>, and the decomposition of this salt in water depends only slightly upon the relative amounts of solid and solvent which are present The decomposition is increased by the addition of CO<sub>2</sub> The presence of CaSO<sub>4</sub> or of CaCO<sub>3</sub> decreased the amount of phosphoric acid which dissolved original paper (Cameron and Seidell, J. Am. Chem Soc 1904, 26 1460)

When the ratio of  $P_2O_5$  CaO is above 10 or below 1 27, H<sub>2</sub>O dissolves 0 40-0 54 g CaO and  $1\,11-1\,52$  g P  $O_5$  (see original paper) (Cameron and Bell, J Am Chem Soc 1905,

**27** 1512)

### Solubility in H<sub>8</sub>PO<sub>4</sub>+Aq

| G H <sub>3</sub> PO <sub>4</sub> in 100 cc | G CaHPO4 dissolved by |  |  |
|--------------------------------------------|-----------------------|--|--|
| H <sub>3</sub> PO <sub>4</sub> +Aq         | 100 cc of solvent     |  |  |
| 5                                          | 4 30                  |  |  |
| 10                                         | 7 15                  |  |  |
| 15                                         | 9 30                  |  |  |
| 20                                         | 11 86                 |  |  |
| 25                                         | 13 40                 |  |  |
| 30                                         | 15 10                 |  |  |

(Causse, C R 1892, 114 415)

1 1 H<sub>2</sub>O contuning 2 2 g (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 2 g NaCl, or 3 g NaNO<sub>3</sub> dissolves 79 2, 66 3, or 78 9 mg CaP<sub>2</sub>O<sub>7</sub>, which is present in form of CaHPO<sub>4</sub> (Liebig, A 106 185) Slowly but completely sol in boiling NH<sub>4</sub>Cl+Aq (Kraut, Arch Pharm (2) 111 102) Easily sol in H<sub>2</sub>SO<sub>3</sub>+Aq (Gerland, J pr (2) 4 123) Very sol in HCl or HNO<sub>3</sub>+Aq I ess sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Berzelius) More sol in dil than conc HC2H3O +Aq, but 60 pts HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (1 mol) dissolve at most 23 1 pts  $P_2O_5$  (1 mol = 142 pts) from this compound Aqueous solution of sodium acetate dissolves more easily than H<sub>2</sub>O, and becomes turbid on boiling (Birnbaum)

Completely sol in K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq Landw J B **1881** 603) (Liebig,

II 1014)

11 of sat solution in N/200 acid K tartrate +Aq at 25° contains 0 235 g CaHPO<sub>4</sub>

Insol in alcohol Sol in many organic substances, as starch or gelatine+Aq Insol in acetone (Eidmann, C C 1899,  $+1/_3H_2O$  (Vorbringer, Z anal 9 457)

 $+H_2O$ (Gerlach, J pr (2) 4 104)  $+2H_2O$ Mın Brushıte

 $+3H_2O$ Min Metabrushite

 $+5H_{\circ}O$ (Dusart, C R 66 327)

#### Calcium tetrahydrogen orthophosphate, $CaH_4(PO_4)_2 + H_2O$

Very deliquescent Crystals take up 977 pts H<sub>2</sub>O in 16 days, and 226 pts H<sub>2</sub>O in 28 days from air saturated with moisture (Birnbaum, Zeit Ch (2) 7 131)

Not hygroscopic when pure (Stocklasa.

B 23 626 R)

Completely sol in 100 pts H<sub>2</sub>O, but decomp by 10-40 pts H<sub>2</sub>O with separation of CaHPO<sub>4</sub>, which slowly dissolves meyer, J B **1873** 254)

Erlenmeyer says Later (B 9 1839) CaH<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>+H<sub>2</sub>O is sol in 700 pts H<sub>2</sub>O and decomp into CaHPO4 by a less amount of H<sub>2</sub>O Wattenberg (Z anal 19 243) says that the decomposition by small amts of H<sub>2</sub>O down to 144 pts H<sub>2</sub>O to 1 pt salt is mapprecıable

Completely sol in 200 pts H<sub>2</sub>O if pure, and in less H<sub>2</sub>O in presence of H<sub>3</sub>PO<sub>4</sub> (Stocklasa) Sol in 25 pts H<sub>2</sub>O at 15° Solution begins

to decompose when warmed to 50° (Otto.

O C **1887** 1563)

Greatly decomp by H<sub>2</sub>O and the resulting solution is to be regarded as a solution of the decomposition products rather than of the substance itself The presence of an excess of CaSO<sub>4</sub> does not materially affect the amount of phosphoric acid entering the solu-(Cameron, J Am Chem Soc 1904, 26 tion 1462)

Violently decomp by H<sub>2</sub>O in conc solution, only sl decomp when dissolved in 200 pts HO (Stocklasa, Z anorg 1892, 1 310)

### Solubility of CaH<sub>4</sub>P<sub>2</sub>O<sub>8</sub> in H<sub>8</sub>PO<sub>4</sub>+Aq at pressure of 745 mm at high temp

| Td.                  | 100 g<br>of the solution<br>contain |                         | Solid phase                                                                                                                                                                                                                                                 |  |
|----------------------|-------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| æ                    | G<br>P <sub>2</sub> O <sub>5</sub>  | G<br>CaO                |                                                                                                                                                                                                                                                             |  |
| 115°<br>132°<br>169° | 43 60<br>53 43<br>63 95             | 5 623<br>4 327<br>4 489 | CaH <sub>4</sub> P <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> O+CaHPO <sub>4</sub><br>CaH <sub>4</sub> P <sub>2</sub> O <sub>8</sub> +CaH <sub>4</sub> P <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> O<br>CaH <sub>4</sub> P <sub>2</sub> O <sub>8</sub> |  |

(Bassett, Z anorg 1908, 59 26)

Glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> ppts it completely from aqueous solution even in presence of HNO<sub>3</sub> (Persoz)

Decomp by 50 pts absolute alcohol at b pt in 1 hour, by 30 pts in 2 hours Sol in absolute ether (Erlenmeyer, l c)

Calcium pyrophosphate, Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>+4H<sub>2</sub>O

Somewhat sol in H<sub>2</sub>O, completely sol in mineral acids, less sol in acetic acid, and insol in Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq (Schwarzenberg, A 65 145) Less sol in warm than in cold acetic acid (Baer, Pogg 75 155)

Insol in NH4Cl+Aq (Wackenroder, A **41** 316)

Insol in CaCl.+Aq Min Pyrophosphorite

Calcium hydrogen pyrophosphate, CaH<sub>2</sub>P<sub>2</sub>O<sub>7</sub> +2HO

Sol in H<sub>2</sub>O (Pahl, B 7 478) 2CaH<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>+6H<sub>2</sub>O Decomp by boiling with H<sub>2</sub>O into-CaH<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O Insol in hot H<sub>2</sub>O (Knorre and Oppelt, B 21 771)

#### Tetracalcium hydrogen phosphate, $Ca_4H(PO_4)_3+H_2O$

Ppt Insol in H<sub>2</sub>O, but decomp by boiling therewith Sol in acids (Warington, Chem Soc (2) 4 296)  $+2H_2O$ 

Calcium tetraphosphate, Ca<sub>3</sub>P<sub>4</sub>O<sub>13</sub>

Insol in acids when ignited (Fleitmann and Henneberg, A 65 331)

Calcium lithium phosphate, CaLiPO<sub>4</sub> Insol in H<sub>2</sub>O (Rose, Pogg 77 298)

Calcium potassium dimetaphosphate,  $CaK_2(P_2O_6)_2+4H_2O$ 

As Bak comp (Glatzel, Dissert 1880)

Calcium potassium orthophosphate, CaKPO<sub>4</sub> Insol in H<sub>2</sub>O (Rose, Pogg 77 291) Easily sol in acids (Ouvrard, A ch (6) **16** 308)

Calcium potassium pyrophosphate, CaK<sub>2</sub>P<sub>2</sub>O<sub>7</sub> Insol in H<sub>2</sub>O, easily sol in dil acids (Ouvrard, C R **106** 1599)

Calcium sodium dimetaphosphate,  $CaNa_2(P_2O_6)_2+4H_2O$ As BaNa comp (Glatzel)

Calcium sodium trimetaphosphate, CaNaP<sub>3</sub>O<sub>9</sub>+3H<sub>2</sub>O

Sl sol in H<sub>2</sub>O (Fleitmann, A 65 315) Easily sol in H<sub>2</sub>O Difficultly sol in HCl+ Aq when heated to redness Easily sol in boiling HCl+Aq after being fused (I indbom )

Calcium sodium orthophosphate, CaNaPO Insol in  $H_2O$  (Rose, Pogg 77 292) Easily sol in dil acids (Ouvrard, A ch (6) 16 308) 3CaO, 3Na<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub> Sol in (Ouvrard, C R 1888, **106** 1599) Sol in dil acids Calcium sodium pyrophosphate, CaNa<sub>2</sub>P<sub>2</sub>O<sub>7</sub>

Insol in Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq Easily sol in HCl+Aq, HNO<sub>3</sub>+Aq, and also in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> +Aq (Baer, Pogg 75 159)
Ca<sub>10</sub>Na<sub>16</sub>(P<sub>2</sub>O<sub>7</sub>), Sol m acids (Wallroth,

Bull Soc (2) 39 316)
3CaO, 3Na<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub> Easily sol in acids (Ouvrard, A ch (6) 16 307)

Calcium thorium metaphosphate, ThO<sub>2</sub>, CaO,  $P_2O_5$ (Colani, C R 1909, **149** 209)

Calcium uranous metaphosphate, UO<sub>2</sub>, CaO, P<sub>2</sub>O<sub>5</sub>

Insol in acids (Colani, A ch 1907, (8) **12** 140)

Calcium uranyl phosphate,  $Ca(UO_2)H_2(PO_4)_2$ +2, 3, or  $4H_2O$ 

Sol in HNO<sub>3</sub>+Aq (Debray)  $Ca(UO_2)_2(PO_4)_2 + 8H_2O$ Sol in HNO<sub>3</sub>+Aq Uranıte (Blinkoff,

3CaO,  $5UO_{5}$ ,  $2P_{2}O_{5}+16H_{2}O$ Dissert 1900) Calcium phosphate chloride,  $Ca_3(PO_4)_2$ ,  $CaCl_2$ 

(Deville and Caron, A ch (3) 67 458) 3Ca<sub>8</sub>(PO<sub>4</sub>)<sub>2</sub>, CaCl<sub>2</sub> Chlorapatite Insol in H<sub>2</sub>O (Daubrée, Ann Mm (4) 19 684)  $7CaH_4(PO_4)_2$ ,  $CaCl_2+14H_2O$ HCl+Aq

4CaH<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>, CaCl<sub>2</sub>+8H<sub>2</sub>O CaH<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>, CaCl<sub>2</sub>+2H<sub>2</sub>O

Partly sol in H<sub>2</sub>O with decomp Also with 8H<sub>2</sub>O (Erlenmeyer, J B **1857** 145)

Calcium phosphate chloride fluoride, 3Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, CaClF

Boiling H<sub>2</sub>O dissolves out Min Apatrte CaCl<sub>2</sub>, dil mineral acids dissolve easily, acetic acid with more difficulty. Fasily soluble in molten NaCl, crystallizing on cooling (Forchhammer)

Calcium phosphate silicate, Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Ca<sub>2</sub>SiO<sub>4</sub>

Insol in H<sub>2</sub>O, decomp by HCl+Aq (Carnot and Richard, C R 97 316) 4Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Ca<sub>3</sub>SiO<sub>5</sub> (Bucking and Linck, C C 1887 562)

 $4Ca_3(PO_4)_2$ ,  $3Ca_3S_1O_5$  (B and I) Ca(PO<sub>3</sub>)<sub>2</sub>, CaSiO<sub>3</sub> (Stead and Ridsdatc, Chem Soc 51 601)

Calcium dihydrogen phosphate sulphite,  $CaH_2(PO_4)_2$ ,  $CaSO_3 + H_2O$ 

Not decomp by cold, slowly by boiling H<sub>2</sub>O Slightly sol in NH<sub>4</sub>OH+Aq Sol in mineral acids Insol in cold, slowly sol in boiling acetic acid More sol in a solution of oxalic acid (Gerland, C N 20 268)

Cerous metaphosphate, Ce(PO<sub>3</sub>)<sub>3</sub>

(Rammelsberg)

 $Ce_2O_8$ ,  $5P_2O_5$ Insol in H<sub>2</sub>O or acids (Johnsson, B 22 976)

Cerous orthophosphate, CePO4

Insol in H<sub>2</sub>O Easily sol in acids (Grandeau, A ch (6) 8 193)

Insol in acids (Hartley, Proc Roy Soc **41** 202)

 $+2H_2O$ Insol in H<sub>2</sub>O Sol in acids (Jolin )

Insol in H<sub>3</sub>PO<sub>4</sub>+Aq, sl sol in HCl or HNO₃+Aq (Hısınger)

Insol in HNO<sub>3</sub>+Aq (Boussingault, A ch (5) 5 178)

Min Cryptolite Completely decomp by H<sub>2</sub>SO<sub>4</sub> when finely powdered Insol in dil HNO<sub>3</sub>+Aq

Ceric orthophosphate, 4CeO<sub>2</sub>, 6P<sub>2</sub>O<sub>5</sub>+26H<sub>2</sub>O Ppt (Hartley, Proc Roy Soc 41 202)

Cerous pyrophosphate, Ce<sub>2</sub>H<sub>2</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>6</sub>+6H<sub>2</sub>O Sol in cerous nitrate+Aq

 $Ce_4(P_2O_7)_3 + 12H_2O$ Sol in excess of sodium pyrophosphate+Aq Easily sol in HCl (Rosenheim, B 1915, 48 592)

Cerous lanthanum thorium phosphate, (Ce, La, Th)2(PO4)2

Sol in HCl+Aq with Min Monazite white residue

Cerous potassium orthophosphate, 2Ce<sub>2</sub>O<sub>3</sub>,  $3KO_{1}3P_{2}O_{5}=2CePO_{4}, K_{3}PO_{4}$ 

Insol in H<sub>2</sub>O, sol in acids (Ouvrard, C R 107 37)

Cerous sodium orthophosphate, Ce<sub>2</sub>O<sub>3</sub>, 3Na<sub>2</sub>O,  $2P_2O_5 = CePO_4$ ,  $Na_3PO_4$ 

Insol in H<sub>2</sub>O (Ouvrard, C R 107 37)

Cerous sodium pyrophosphate, CeNaP<sub>2</sub>O<sub>7</sub>

Insol in acetic, and cold dil mineral acids Sol in warm acids (Wallroth)

Chromous phosphate,  $Cr_3(PO_4)_2$ 

Insol in H<sub>2</sub>() Lasily sol in citric, tarturic and acetic acids Sl sol in H<sub>2</sub>CO<sub>3</sub>+Aq (Moissan, A ch 1882, (5) 25 415) +H<sub>2</sub>O Precipitate Easily sol in icids

(Moberg, Moissan, A ch (5) 21 199)

Chromic metaphosphate, Cr<sub>2</sub>(PO<sub>3</sub>)<sub>6</sub>

Insol in H<sub>2</sub>O or conc acids (Maddrell, A **61** 53)

Chromic or hophosphate, CrPO<sub>4</sub>

Hvdrolvzed by hot H<sub>2</sub>O Somewhat sol in NH<sub>4</sub>OH+Aq and in  $Cr_2(SO_4)_3 + Aq$ (Caven, J Soc Chem Ind 1897, 16 29) Insol in methyl acetate (Naumann, B | HCl+Aq (Maddrell, A 58 61)

1909, 42 3790), ethvl acetate (Naumann, B 1910, 43 314)

Chromic phosphate, Cr<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>+12H<sub>2</sub>O

Vrolet modification Precipitate (Rammelsberg, Pogg 68 383)

 $+6\mathrm{H}_2\mathrm{O}$ Green modification Very sl sol in H<sub>2</sub>O and still less in NH<sub>4</sub>NO<sub>3</sub> or NH<sub>4</sub>C<sub>2</sub>H<sub>8</sub>O<sub>2</sub>+Aq (Carnot, C R **94** 1313) Insol in acetic, but easily sol in mineral acids Easily sol in cold KOH or NaOH+ Aq, from which it is separated on boiling (Dowling and Plunkett, Chem Gaz 1858)

Chromic hydrogen phosphate,  $Cr_2H_6(PO_4)_4+$ 16H<sub>2</sub>O

Sol in H<sub>2</sub>O (Haushofer)

Chromic pyrophosphate, Cr<sub>4</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>3</sub>

Anhydrous Insol in H<sub>2</sub>O or acids (Ouvrard, A ch (6) 16 344)

 $+7H_2O$ Precipitate Sol in strong mineral acids, SO2+Aq, KOH+Aq, and Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq (Schwarzenberg, A 65 149) Insol in  $Na_4P_2O_7+Aq$  (Stromeyer)

Chromic potassium phosphate, Cr<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O<sub>4</sub> 2P<sub>2</sub>O<sub>5</sub>

Insol in H<sub>2</sub>O and in acids (Ouvrard, A ch (6) **16** 289)

Chromic potassium pyrophosphate,  $K(CrP_2O) + 5H_2O$ 

Sl sol in cold H<sub>2</sub>O Decomp by boiling HO (Rosenheim, B 1915, 48 586)

 $Cr_2K_2H_4(P_2O_7)_3$  Insol in  $H_2O$ , acids, or alkalies SI decomp by boiling conc H<sub>2</sub>SO<sub>4</sub> (Schjerning, J pr (2) **45** 515)

Chromic silver phosphate,  $2Cr_2O_3$ ,  $2Ag_2O_3$  $5P_2O_5$ 

(Hautefeuille and Mirgottet, C R 96 1142)

Chromic sodium orthophosphate, Na<sub>2</sub>HPO<sub>4</sub>,  $2CrPO_4 + 5HO$ 

Decomp by HO (Cohen, J Am Chem Soc 1907, **29** 1197)

Chromic sodium pyrophosphate,  $Cr_2Na (P_2O_7)_2$ 

Insol in acids (Wallroth, Bull Soc (2) **39** 316)

+10H<sub>2</sub>O, and 16H<sub>2</sub>O Sl sol in cold H<sub>2</sub>O Decomp by boiling H<sub>2</sub>O (Rosenheim, B 1915, 48 586)

Cobaltous monometaphosphate,  $Co(PO_3)_2(?)$ Insol in H2O and dil acids Sol in conc Cobaltous dimetaphosphate,  $Co_2(P_2O_6)_2$ 

Insol in cold conc H<sub>2</sub>SO<sub>4</sub>, sl sol on warming, but sol in H<sub>2</sub>O after treating with H<sub>2</sub>SO<sub>4</sub> Sol in conc NH<sub>4</sub>OH+Aq Scarcely attacked by boiling Na<sub>2</sub>S+Aq (Fleitmann)

Cobaltous hexametaphosphate (?)

Ppt Sol in sodium hexametaphosphate+ Aq (Rose, Pogg 76 4)

Cobaltous orthophosphate,  $Co_3(PO_4)_2$ +  $xH_2O$ 

Sol in  $H_3PO_4 + Aq$  or  $NH_4OH + Aq$ , sl sol m NH4Cl or NH4NO8+Aq (Salvetat, C R 48 295) Sol in Co salts+Aq (Debray, A ch (3) **61** 438) (Revnoso, C R **34** 795)  $+2H_2O$ +8H<sub>2</sub>O

Cobaltous hydrogen orthophosphate,  $C_0HPO_4+1\frac{1}{2}H_2O$ 

Ppt (Debray)

-2½H₂O Ppt Insol in H<sub>2</sub>O Sol in  $H_3PO_4+Aq$  (Bodeker, A 94 357)

Cobaltous tetrahydrogen orthophosphate,  $CoH_4(PO_4)$ , Sol in H<sub>2</sub>O (Reynoso)

Cobaltous pyrophosphate

Ppt Sol in  $Na_4P_2O_7+Aq$  (Stromeyer) Sol in NH<sub>4</sub>OH+Aq (Schwarzenberg)

Cobaltous pyrometaphosphate, 3CoO, 2P<sub>2</sub>O<sub>5</sub> (Braun) 6CoO, 5P<sub>2</sub>O<sub>5</sub> (Braun)

Cobaltous potassium phosphate, CoKPO<sub>4</sub> Insol in H<sub>2</sub>O, easily sol in dil acids (Ouyrard, C R 106 1729) 3CoO, 3K2O, 2P2O5 As above

Cobaltous sodium triphosphate, NaCo<sub>2</sub>P<sub>3</sub>O<sub>10</sub> (Schwarz, Z anorg 1895, 9 260) Very sol in H<sub>2</sub>O, on Sol in acids  $Na_8CoP_8O_{10}+12H_2O$ decomp in aq solution (Schwarz, Z anorg 1895, 9 258)

Cobaltous sodium metaphosphate,  $Co_3Na_2(PO_3)_8$ 

Insol in H<sub>2</sub>O or acids, even conc H<sub>2</sub>SO<sub>4</sub> (Watts' Dict)

Cobaltous sodium monometaphosphate, 6Co(PO<sub>3</sub>)<sub>2</sub>, 2NaPO<sub>3</sub>

Insol in H<sub>2</sub>O and dil acids Sol in conc  $H_2SO_4$  (Maddrell, A 61 57)

Cobaltous sodium trimetaphosphate,  $CoNa_1(PO_3)_3 + 8H_2O$ 

(Fleitmann and Henneberg, Sol in  $H_2O$ A 65 315)

Cobaltous sodium orthophosphate, CoNaPO4 Insol in H<sub>2</sub>O (Ouvrard, C R 106 1729) Co<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, 2Na<sub>2</sub>HPO<sub>4</sub>+8H<sub>2</sub>O (Debray. J Pharm (3) 46 119)

Cobaltous sodium pyrophosphate,  $Co_{10}Na_{16}(P_2O_7)_9$ 

Insol in H<sub>2</sub>O Sol in acids (Wallroth) +xH O Sol in H<sub>2</sub>O (Stromeyer)

Cobaltous zinc phosphate, Co<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>,  $3Zn_3(PO_4)_2 + 12H_2O$ Ppt Sol in acids (Gentele)

 $CoZn_2(PO_4)_2 + 6H_2O$ Insol in H<sub>2</sub>O

Columbium phosphate (?) Insol in H<sub>2</sub>O (Blomstrand)

Cupric dimetaphosphate,  $Cu_2(P_2O_6)_2$ 

Insol in H<sub>2</sub>O Sol in conc H<sub>2</sub>SO<sub>4</sub> (Maddrell, A 61 62) Insol in most cone acids and in alkalies, except hot NH4OH+Aq or conc H<sub>2</sub>SO<sub>4</sub>, in which it is moderately sol Not decomp by  $H_2S$ , but by  $(NH_4)_2S + Aq$ , less easily by  $Na_2S$ , and  $K_2S + Aq$  (Flettmann, Pogg 78 242) +8 $H_2O$  Completely insol in  $H_2O$  (Flett-

mann)

Cupric hexametaphosphate (')

in  $Na_6P_6O_{18}+Aq$  or  $CuCl_2+Aq$ (Rose, Pogg 76 5)

Cu<sub>3</sub>P<sub>5</sub>O<sub>18</sub> Easily sol in H<sub>2</sub>O or acids, especially when freshly pptd (Ludert, Z anorg **5** 15)

Cupric orthophosphate, basic, 6CuO PoO<sub>5</sub>+ 3H<sub>2</sub>O

Min Phosphocalcite

5CuO,  $P_2O_5 + 2H_2O$ Min Dihydrite Min Ehlite Fisily sol in  $+3H_2O$ NH,OH+Aq, and HNO,+Aq

4 CuO, P2O5+H2O Slowly sol in NII4OH or  $(NH_4)_2CO_3+Aq$ , insol in cold  $N_1 > O_3+$ (Steinschneider, C C 1891, II 51)

SI sol in CuCl<sub>2</sub> | Aq and CuSO<sub>4</sub>+Aq Decomp by boiling H<sub>2</sub>O and boiling Aq pot ish (Caven, I Soc Chem Ind 1897, **16** 29)

Labethenrie uds Mın Sol

NH4OH+Aq +2H O Min Pseudolrhethenric Sol in

acids and NH4OH+Aq

+3H2O Min Tagilite Sol in reids and NH<sub>4</sub>OH+Aq

Cupric triphosphate, 5CuO,  $3P_2O_1 + 13H_2O$ Sol in H<sub>2</sub>O Sol in HNO<sub>3</sub> (Schwarz, Z anorg 1895, 9 262)

Cupric dimetaphosphate, CuP<sub>2</sub>O<sub>6</sub>+4H<sub>2</sub>O Sol in 78 pts H<sub>2</sub>O Easily decomp by hot cone H<sub>2</sub>SO<sub>4</sub> (Glatzel, Dissert 1880)

Cupric trimetaphosphate, Cu<sub>3</sub>(P<sub>3</sub>O<sub>9</sub>),+9H<sub>2</sub>O Verv sl sol in  $H_2O$  (0 04 g in 1 l at 20°) (Tammann, J pr 1892, (2) 45 425)

Cupric tetrametaphosphate, Cu<sub>2</sub>P<sub>4</sub>O<sub>12</sub>

Insol in H<sub>2</sub>O and in HCl Sl sol in boiling  $HNO_3$ Very sol in boiling cone H<sub>2</sub>SO<sub>4</sub> (Glatzel)

Nearly insol in H<sub>2</sub>O +8H<sub>2</sub>O Slowly attacked by acids except conc H<sub>2</sub>SO<sub>4</sub> (Glatzel)

Cupric orthophosphate, Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>+3H<sub>2</sub>O Insol m H<sub>2</sub>O, easily sol m acids, even H<sub>2</sub>PO<sub>4</sub>, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, or H<sub>2</sub>SO<sub>3</sub>+Aq Sol m NH<sub>4</sub>OH+Aq Sl sol m NH<sub>4</sub> salts+Aq Sl sol in Cu salts + Aq (Rose, Pogg 76

**2**5) Sol in cold Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Steinschnei-

der, C C 1891, II, 51)
Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 827)

Insol in methyl acetate (Naumann, B 1909, **42** 3790)

Cupric hydrogen phosphate, CuHPO<sub>4</sub>+ 1⅓H₂O(')

Insol in H<sub>2</sub>O, sol in H<sub>3</sub>PO<sub>4</sub>+Aq, and NH₄Cl, Insol in  $HC_2H_3O_2+Aq$ (Brett, Phil Mag (3) 10  $NH_4NO_3+Aq$ 98)

Cupric basic, pyrophosphate, Cu<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, 2CuO, H<sub>2</sub>O+3H<sub>2</sub>O Insol in H<sub>2</sub>O (Pahl, J B **1873** 229)

Cupric pyrophosphate, Cu<sub>2</sub>P<sub>2</sub>O<sub>7</sub>

Anhydrous Insol in H<sub>2</sub>O, and very sl (Fleitmann, Pogg 78 sol in conc ucids 244)

As insol as Cu metaphosphate, but decomp by II<sub>2</sub>S (Rose, Pogg 76 14) +2H2O Sol in mineral reids, and NH4OH +Aq, also in Na<sub>4</sub>F<sub>2</sub>O<sub>7</sub>+Aq (Schwarzen berg, A 65 156)

Sol in cold H<sub>2</sub>SO<sub>3</sub>+Aq without decomp, crystallizing out on boiling

Decomp by boiling KOH + AqSol in large excess of CuSO<sub>4</sub>+Aq

+2½H<sub>2</sub>O (Pahl, Sv V A F 30, 7 40) +5H<sub>2</sub>O V(1ysl sol in H<sub>2</sub>O Sol m dil reids (Wiesler, Z morg 1901,

**28** 202)

Cupric iron (ferric) pyrophosphate,  $Cu_3F \in (P_2O_7)_3 + 12H_2O$ Ppt (Pascal, C R 1908, 146 233)

Cupric potassium phosphate, 4CuO, K<sub>2</sub>O,  $3P_2O_5$ Insol in H<sub>2</sub>O (Ouvrard, C R 111 177) CuKPO<sub>4</sub> As above

Cupric potassium tetrametaphosphate,  $K_2CuP_4O_1$ ,  $+4H_2O$ 

Sol in 58 pts H<sub>2</sub>O Easily attacked by acids (Glatzel, Dissert 1880)

Cupric potassium pyrophosphate, CuK<sub>2</sub>P<sub>2</sub>O<sub>7</sub> Extremely easily sol in H<sub>2</sub>O (Persoz, A ch (3) 20 315)  $Cu_2P_2O_7$ ,  $3K_4P_2O_7+4H_2O$  Insol in  $H_2O$  (Pahl, Sv V A F **30, 7** 44)

Cupric sodium phosphate, Cu<sub>3</sub>Na<sub>6</sub>(PO<sub>4</sub>)<sub>4</sub> Insol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Sol in conc acids (Wallroth, Bull Soc (2) 39 316)

Cupric sodium triphosphate, CuNa<sub>8</sub>P<sub>8</sub>O<sub>10</sub>+12H O

Sl sol in H<sub>2</sub>O, very unstable Easily sol in acids (Stange, Z anorg 1896, **12** 458)

Cupric sodium tetrametaphosphate. CuNa<sub>2</sub>P<sub>4</sub>O<sub>1</sub>,

As insol in H<sub>2</sub>O as Cu dimetaphosphate Difficultly decomp by digestion with Na<sub>2</sub>S+ Aq (Fleitmann, Pogg 78 355) +4H<sub>2</sub>O Sol in 45 pts H<sub>2</sub>O (Glatzel, Dissert 1880)

Cupric sodium orthophosphate,  $3Cu_3(PO_4)_2$ , NaH2PO4

Decomp by H<sub>2</sub>O to 4CuO, P<sub>2</sub>O<sub>5</sub> (Steinschneider, C C 1891, II 52) 2Cu<sub>3</sub>(PO<sub>4</sub>), Na<sub>2</sub>HPO<sub>4</sub> Decomp by H<sub>2</sub>O into-

3Cu<sub>3</sub>(PO<sub>4</sub>), Na, HPO<sub>4</sub> Decomp by HO

Decomp by HO Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, NaH<sub>2</sub>PO<sub>4</sub> (S) Decomp by HO  $6Cu_3(PO_4)$ ,  $2Na_3PO_4$ 

Cupric sodium pyrophosphate, CuNa P O Insol in H<sub>0</sub>O (Fleitmann and Henneberg, A 65 387)

 $+\frac{2}{3}H_{2}O$ (F and H) Much more sol (Pahl) than the next salt

+6H.O (Persoz, A ch (3) **20** 315) Cu P O<sub>7</sub>, CuNa<sub>2</sub>P<sub>2</sub>O<sub>7</sub>+3½H () Very florescent, insol in H O (F and H) +101/2H,O (Pahl, Sv V A F 30, 7 42

CuN<sub>12</sub>P O<sub>7</sub>, Na<sub>4</sub>P O<sub>7</sub> Sol in H<sub>2</sub>O and  $\mathbf{H}$ 

+2H<sub>2</sub>O (F amd H)

Very efflorescent, and +12, and 16H,O sol in H<sub>2</sub>O (Pahl)

Cu<sub>3</sub>Na<sub>2</sub>P<sub>4</sub>O<sub>14</sub>+10H<sub>2</sub>O Insol in HO, sol in HCl and HNO<sub>3</sub> even after heating Insol in HO, (Stange, Z anorg 1896, 12 456)

Cupric uranyl phosphate, (UO2)2Cu(PO1) + 8HO

Insol in H<sub>2</sub>O, easily sol in acids (Debray)

Min Chalcolite Sol in HNO3+Aq

Cupric orthophosphate ammonia, Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, 4NH<sub>2</sub>

SI sol in H<sub>2</sub>O Easily sol in H<sub>2</sub>O contain-

Ing NH<sub>4</sub>OH (Schiff, A 123 41)

2CuO, 3P<sub>2</sub>O<sub>5</sub>, 20NH<sub>3</sub>+21H<sub>2</sub>O Easily sol in cold H<sub>2</sub>O, with subsequent decomp (Metzner, A 149 66)

2CuO, P<sub>2</sub>O, 6NH<sub>3</sub> (Maumené) Easily

Cupric pyrophosphate ammonia, 8CuO,  $3P_2O_5$ ,  $4NH_3+4H_2O$ Sl sol in H<sub>2</sub>O (Schwarzenberg, A 65

133)  $Cu_2P_2O_7$ ,  $4NH_8+H_2O$ Sl sol in H<sub>2</sub>O (Schiff, A 123 1)

Didymium metophosphate, Di(PO<sub>3</sub>)<sub>3</sub> Precipitate (Smith)  $D_{12}O_3$ ,  $5P_2O_5$  Insol in  $H_2O$  (Cleve)

Didymium phosphate, 2Di<sub>2</sub>O<sub>3</sub>, 3P<sub>2</sub>O<sub>5</sub> Insol in H<sub>2</sub>O (Ouvrard, C R 107 37)

Didymium orthophosphate, DiPO4

Insol in H2O Very sl sol in dil, easily sol in cone acids (Marignae) Insol H<sub>2</sub>O (Wallroth, Bull Soc (2) **39** 316) (Marignac) Insol in +H<sub>2</sub>O (Frenchs and Smith, A 191 355)

Didymium trihydrogen phosphate.  $D_{12}H_3(PO_4)_3$ 

Precipitate (Frerichs and Smith) Existence is doubtful (Cleve, B 12 910)

Didymium hexahydrogen phosphate,  $D_1H_3(PO_4)_2+HO$ Precipitate (Hermann)

Didymium pyrophosphate,  $Di_4(P_2O_7)_3$ + 6H<sub>2</sub>O

Precipitate (Cleve)

Didymium hydrogen pyrophosphate,  $D_1 H_6(P_2O_7)_3$ 

Precipitate Sol in disodium pyrophophate+Aq (Frenchs and Smith, A 191 355)

Does not exist (Cleve)

Didymium potassium phosphate, 2Di O3,  $3K_2O$ ,  $3P_2O_5 = 2D_1PO_4$ ,  $K_3PO_4$ Insol in H<sub>2</sub>O (Ouvrard, C R 107 37)

Didymium sodium orthophosphate, Di<sub>2</sub>O<sub>3</sub>,  $3Na_2O_1$ ,  $2P_2O_5 = D_1PO_4$ ,  $Na_3PO_4$ Insol in H<sub>2</sub>O (Ouvrard)

Didymium sodium pyrophosphate, Di<sub>2</sub>O<sub>3</sub>,  $Na_2O$ ,  $2PO_5 = D_1NaP_2O_7$ Insol in H<sub>2</sub>O (Ouvrard C R 107 37) Dysprosium orthophosphate, DyPO4+5H2O Nearly insol in H<sub>2</sub>O

Easily sol in dil acids or acetic acid (Jantsch, B 1911, 44 1276)

Erbium phosphate, ErPO4+H2O Precipitate

Erbium pyrophosphate, ErHP<sub>2</sub>O<sub>7</sub>+3½H<sub>2</sub>O Scarcely sol in boiling H<sub>2</sub>O Slowly sol in acids

Erbium sodium pyrophosphate, ErNaP<sub>2</sub>O<sub>7</sub> Precipitate (Wallroth)

Glucinum metaphosphate, Gl(PO<sub>3</sub>)<sub>2</sub> Insol in H<sub>2</sub>O and acids (Blever, Z anorg 1912, **79** 274

Glucinum orthophosphate, basic 2Gl<sub>2</sub>P<sub>2</sub>O<sub>8</sub>, GlO+13H<sub>2</sub>O

(Bleyer, Z anong 1912, 79 268)

Glucinum orthophosphate, Gl<sub>3</sub>(PO<sub>4</sub>) +6H<sub>2</sub>O Precipitate Insol in H<sub>2</sub>O Sol in acids (Atterberg, Sv V A Handl 12, 5 33) 1 1 2% HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq dissolves 0 55 g of the anhydrous salt, 1 1 10% HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq dissolves 1 725 g (Sestini, Gazz ch it 20 313)

+7H<sub>2</sub>O (Atterberg)

Glucinum hydrogen orthophosphate, GlHPO<sub>4</sub>  $+3H_2O$ 

GlH<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub> hydroscopic (Bleyer, Z anorg 1912, 79 266) Precipitated by alcohol (Atterberg)

Glucinum phosphate, 5GlO, 2P<sub>2</sub>O<sub>5</sub>+8H O Ppt Sol in H () with decomp (Scheffer) 3GlO, P<sub>2</sub>O<sub>5</sub>, 3H<sub>2</sub>O+H<sub>2</sub>O (Sestim, Gazz ch it 20 313)

Glucinum pyrophosphate, Gl<sub>2</sub>P<sub>2</sub>O<sub>7</sub>+5H<sub>2</sub>O (Scheffer)  $P_2O_7 + Aq$ (Stromeyer)

Glucinum potassium phosphate, GIKPO4

Insol in H () (Ouvrard, C R 110 1333) Glucinum sodium phosphate, GlNaPO4

Sl sol in cold, easily sol in hot wids (Wallroth) Insol in acetic acid Min Beryllomie GlO, 2Na<sub>2</sub>(), P<sub>2</sub>O<sub>5</sub> Insol in H<sub>2</sub>O (Ouv-1ard, Ć R **110** 1333)

Gold (Auric) sodium pyrophosphate (?),  $Au_4(P_2O_7)_3$ ,  $2Na_4P_2O_7 + H_2O$ Sol in H<sub>2</sub>O (Persoz)

Gold sodium pyrophosphate, ammonia,  $14\text{Au}_2\text{O}_8$ ,  $6\hat{P}_2\hat{\text{O}}_5$ ,  $3\hat{N}_2\hat{a}$  O,  $14\hat{N}_3 + 24\hat{H}_2\hat{O}$ Insol in H<sub>2</sub>O (Gibbs, Am Ch J 1895,

**17** 172)

Iron (ferrous) trimetaphosphate, Fe(P<sub>3</sub>O<sub>9</sub>)<sub>3</sub>+  $12H_2O$ 

Rather sl sol in cold, more easily in hot After ignition sol in HCl+Aq only after long boiling (Lindbom, Acta Lund **1873** 17

### Ferrous hexametaphosphate, Fe<sub>3</sub>P<sub>6</sub>O<sub>18</sub>

When freshly pptd is sol in H<sub>2</sub>O, and very sol in least traces of acids, or Na<sub>6</sub>P<sub>6</sub>O<sub>18</sub>+Aq (Ludert, Z anorg 5 15)

Ferrous phosphate, basic, 7FeO, 2P<sub>2</sub>O<sub>5</sub>+ 9H O

Sol in dil H<sub>2</sub>SO<sub>4</sub> or Min Ludlamite Decomp by boiling KOH or HCl+Aq NaOH+Aq

#### Ferrous orthophosphate, Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O, sol in acids

Sol in 1000 pts H<sub>2</sub>O containing more than 1 vol CO<sub>2</sub> (Pierre)

Sol in an excess of ferrous salts + Aq

Sol in 560 pts H<sub>2</sub>O containing <sup>1</sup>/<sub>560</sub> pt HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> Sol in 1666 pts H O containing 150 pts NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Pierre, A ch (3) 36 78)

Sol in NH<sub>4</sub> salts+Aq

Sol in NH<sub>4</sub>OH+Aq Not pptd in presence of Na citrate

Insol in acetone (Naumann, B 1904, 37

4329)

 $+ H_2O$ (Debray, A ch (3) 61 437) +9H₂O Min Vivianite Easily sol in HCl or HNO<sub>3</sub>+Aq Boiling KOH+Aq dissolves out phosphoric acid Sol in cold citric acid+Aq (Bolton, C N 37 14)

Insol in H<sub>2</sub>O Sol in acids (Evans, C C

**1897**, I 580)

Ferrous hydrogen orthophosphate, FcHPO<sub>4</sub>+ H<sub>2</sub>O

Ppt (Debray, A ch (3) **61** 437) Is impute Fc<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (Erlenmeyer and Heinrichs, A 194 176)

#### Ferrous tetrahydrogen orthophosphate, $FeH_4(PO_4)_2 + H_2O$

Easily sol in H<sub>2</sub>O Not changed by al-(Erlenmeyer and Heinrichs, A 194 cohol 176)

#### Ferrous pyrophosphate

Ppt Sol in an excess of Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub> or FeSO<sub>4</sub> +Aq (Schwarzenberg, A 65 153)

Ferric metaphosphate, Fe<sub>3</sub>(PO<sub>3</sub>)<sub>5</sub> or Fe(PO<sub>3</sub>)<sub>3</sub> Insol in H2O or dil acids Sol in conc H<sub>2</sub>SO<sub>4</sub> (Maddrell, Phil Mag (3) 30 322)

Iron (ferric) orthophosphate, basic, 2Fe<sub>2</sub>O<sub>3</sub>.  $P_2O_5+xH_2O$ 

Insol in NH4 citrate, sol in NH4 tartrate (Wittstein) +Aq

+3H O Min Krauri e Easily sol in HCl+Aq

+4H<sub>2</sub>O Ppt (Millot, C R 82 89) +5H<sub>2</sub>O Min Dufrenite

+12H<sub>2</sub>O Min Cacoxene Sol in HCl+ Αq

+18, or 24H<sub>2</sub>O Min Delvauxite

5Fe<sub>2</sub>O<sub>3</sub>, 3P<sub>2</sub>O<sub>3</sub>+14H<sub>2</sub>O Min Beraunite Sol in HCl+Aq

 $3\text{Fe}_2\text{O}_3$ ,  $2\text{P}_2\text{O}_5 + 8\text{H}_2\text{O}$ Min Eleonorite Sol in HCl+Aq

Ferric orthophosphate,  $Fe_{\circ}(PO_4)_2 + xH_2O$ , or  $2\text{Fe}_2\text{O}_3$ ,  $3\text{P}_2\text{O}_5 + x\text{H}_2\text{O}$ 

+4, or  $8H_2O$ (Pptd ferric phosphate) Insol in H<sub>2</sub>O Sol in 1500 pts boiling H<sub>2</sub>O (Bergmann, 1815) Sol in pure H<sub>2</sub>O when all traces of soluble salts are absent (Fresenius) Verv sl sol in, but decomp by HO (Lachowicz, W A B 101, 2b 374) For an extended discussion of solubility in and decomposition by H2O and effect of salts see Cameron and Hurst, (J Am Chem Soc 1904. **26** 888)

Easily sol in dil mineral acids, excepting Insol in cold HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq H<sub>3</sub>PO<sub>4</sub>+Aq 100 ccm cold H<sub>2</sub>O containing (Wittstein) 10% HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> dissolve 0 007 g salt tini. Gazz ch it 5 252) When freshly pptd easily sol in  $H_2SO_3+Aq$ , or  $(NH_4)_2SO_3+Aq$ (Berthier) Fasily sol in tartaric or citic acid+Aq, also in NH<sub>4</sub> salts of those acids, and Na citrate+Aq (Heydenreich, C N 4 158) See below

Sol m 12,500 pts H<sub>2</sub>O sat with CO (Pierre, A ch (3) 36 78) Insol m NH<sub>4</sub> salts+Aq (Wittstein (Wittstein) Sol in NH<sub>4</sub>OH+Aq in presence of Na<sub>2</sub>HPO<sub>4</sub> insol in hot Na<sub>2</sub>HPO<sub>4</sub>+Aq, sol in (NH<sub>4</sub>) CO<sub>3</sub> +Aq (Berzelius) NH<sub>4</sub>OH, KOH, or NaOH+Aq dissolve out H₃PO₄

Sol in feiric salts+Aq, even ferric acetate,

but insol in ferrous acetate + Aq

Partially sol in large amt of Na CO<sub>3</sub>+Aq Not pptd in presence of Na citiate (Spiller)
Arth (Bull Soc (3) 2 324) obtained a modification of Γe (PO<sub>4</sub>), insol in HNO<sub>3</sub>+ Aq, but sol in hot cone HCl+Aq

 $+4\mathrm{H}_2\mathrm{O}$ Min Strengite Easily sol in HCl+Aq, insol in HNO₃+Aq

+5H<sub>2</sub>O Only sl sol in H<sub>2</sub>O Slowly sol in HNO<sub>3</sub>, easily sol in HCl (Weinland, Z anorg 1913, **84** 361)

Diammonium citrate + Aq dissolves 4.8%of the P<sub>2</sub>O<sub>5</sub>, triammonium citrate, 5 8% P O<sub>5</sub>, and with an excess of NH4OH, 21 2% PO5 is dissolved (Erlenmeyer, B 14 1253)

Dissolves in 35 min in diam-+9H<sub>2</sub>Omonium citrate +Aq (sp gr 109) in 55 min in triammonium citrate + Aq (sp gr 109), citric acid +Aq (1/4% citric acid) dissolves 17 5% of the  $P_2O_5$  (Erlenmeyer, l c) Iron (ferric) phosphate, acid, 8Fe<sub>2</sub>O<sub>3</sub>, 9P O<sub>5</sub>  $+3H_2O$ 

Insol in H<sub>2</sub>O (Rumpler, Z anal 12 151)

 $6Fe_2O_3$ ,  $7P_2O_5 + 3H_2O_4Fe_2O_3$ ,  $5P_2O_5 + 3H_2O_2Fe_2O_3$ ,  $3P_2O_5 + 8H_2O_3$ Ppt Decomp by  $H_2O$  finally into  $Fe_2(PO_4)_2$ (Erlenmeyer and Heinrich, A 194 176)

 $8\text{Fe}_2\text{O}_3$ ,  $11\text{P}_2\text{O}_5 + 9\text{H}_2\text{O}_3$ As above  $(\mathbf{E}$ and H)

 $4\text{Fe}_{2}\text{O}_{3}$ ,  $7\text{P}_{2}\text{O}_{5}+9\text{H}_{2}\text{O}$  As above (E and  $\mathbf{H}$ 

Insol in H<sub>2</sub>O or  $Fe_2O_3$ ,  $2P_2O_5 + 8H_2O$ HC2H3O2+Aq, sol in NH4 citrate, alkalı hydrates, or carbonates+Aq (W1 Slowly decomp by H<sub>2</sub>O (E and H) (Winkler) Slowly decomp by H<sub>2</sub>O (E and H) +10H<sub>2</sub>O (Waine, C N 36 132)

 $2 \text{Fe}_2 \text{O}_3$ ,  $5 \text{P}_2 \text{O}_5 + 17 \text{H}_2 \text{O}$   $\text{Fe}_2 \text{O}_3$ ,  $3 \text{P}_2 \text{O}_5 + 6 \text{H}_2 \text{O} = \text{Fe} \text{H}_6 (\text{PO}_4)_8$ Delı-Insol in H<sub>2</sub>O, but decomp into  $\tilde{\mathrm{Fe}}_{2}(\mathrm{PO}_{4})_{2}$ (F and H)

 $+4H_2O$ (Hautefeuille and Margottet, C R 106 135)

Ferric pyrophosphate, Fe<sub>4</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>3</sub>

Two modifications—(a) Sol in acids,  $Na_4P_2O_7+Aq$ ,  $FeCl_3+Aq$ ,  $NH_4OH+Aq$ , and in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq

Insol in acetic, sulphurous acid, or NH4Cl +Aq Sol in NH4 citiate+Aq (Schwarzen-

berg, A 65 153)
(b) Insol in dil acids, Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq, FeCl<sub>3</sub> Sol in NH<sub>4</sub>OH+Aq (Gladstone, Chem Soc (2) 5 435)

Solubility of  $Fe_4(P_2O_7)_8$  in  $NH_4OH+Aq$  at  $0^\circ$ 

| 100 g sat so                                  | lution contain                                                  | 100 g sat solution contain              |                                                      |  |
|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|--|
| G NH <sub>3</sub>                             | G Fe <sub>4</sub> (P <sub>2</sub> O <sub>7</sub> ) <sub>3</sub> | G NH <sub>3</sub>                       | G Γι <sub>4</sub> (P <sub>2</sub> O <sub>7</sub> ) 3 |  |
| 0 884<br>1 59<br>3 71<br>4 72<br>5 93<br>7 91 | 5 606<br>9 75<br>14 85<br>15 94<br>13 92<br>14 61               | 5 92<br>8 26<br>10 55<br>15 96<br>18 83 | 14 71<br>13 89<br>7 40<br>2 52<br>0 445              |  |

(Pascal, A ch 1909, (8) 16 374)

Insol in acetone (Krug and M'Flroy, J Anal Appl Ch 6 184) Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, **20** 828)

2Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Ferroferric orthophosphate,  $3(\text{Fe}_2\text{O}_3, 2\text{P}_2\text{O}_5) + 16\text{H}_2\text{O}$ 

Ppt Sol in HCl+Aq Pmn(b(z) 4Fe  $O_{3_2}$  6FeO, 5P O  $+40H_2O$  Soi in 40 min in diammonium citrate+Aq (sp gr =109), triammonium citrate+Aq (sp gr =109) dissolves 557% of the P  $O_{\delta}$ (Frlenmeyer, B 14 1253)

Ferrous lithium phosphate, I 13PO4, Fe3(PO4)2 Min Triphylline Easily sol in acids, not wholly decomp by KOH+Aq

Iron (ferrous) manganous phosphate,  $Fe_8(PO_4)_2$ ,  $Mn_8(PO_4)_2$ 

Min Triplite Easily sol in HCl+Aq 5(Mn,Fe)O, 2P<sub>2</sub>O<sub>5</sub>+5H<sub>2</sub>O Min I Min Hureaulte Sol in acids

Ferric manganous sodium phosphate,  $FePO_4$ ,  $(Na_2,Mn)_3PO_4 + \frac{1}{2}H_2O$  $\operatorname{Min} - (?)$ 

Ferrous manganous phosphate  $3(Mn,Fe)_3(PO_4)_2$ ,  $MnCl_2$ chloride. (Deville and Caron)

Ferrous manganous phosphate fluoride, (Mn,Fe)  $(PO_4)_2$ ,  $(Mn,Fe)F_2$ 

Min Triplite, Zuielesite Sol in HCl+Aq  $3(Mn,Fe)_3(PO_4)_2$ ,  $MnF_2$ (Deville and Caron, C R 47 985)

Ferric potassium phosphate, 2Fe<sub>2</sub>O<sub>3</sub>, 3K<sub>2</sub>O<sub>4</sub> 3P₂O₅

Not attacked by boiling H<sub>2</sub>O A ch (6) 16 289

Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub> Insol in H<sub>2</sub>O, very sI attacked by acids (Ouvrard)

Ferric silver metaphosphate, 2Fe<sub>2</sub>O<sub>3</sub>, 2Ag<sub>2</sub>O<sub>3</sub>  $5P_2O_5$ 

(Hautefeuille and Margottet, C R 96 1142)

Ferric silver pyrophosphate,  $Fe_2Ag_6(P_2O_7)_3+$ 4H<sub>2</sub>O

Ppt (Pascal, C R 1908, 146 232)

Ferric sodium phosphate, 2F(2O3, 3Na<sub>2</sub>O,  $3P_2O_5$ 

Decomp by H<sub>2</sub>O (Ouvrard)

Ferrous sodium triphosphate, FeNi,P,O10+ 111/2H5O

Stable dry, sol in HNO<sub>3</sub> decomp in contact with H O (Stinge, Z inoig 1896, **12** 451)

Ferric sodium hydrogen orthophosphate,  $I((PO_4) H_2N_1 + H_2O_1)$ 

Difficultly sol in HO Slowly decomp by boiling with HO Sol in dil HO ind dil HNO<sub>3</sub> Decomp by alk dies and all die unbonates (Weinland / anoig 1913, 84 354) Fe(PO<sub>1</sub>)<sub>3</sub>H<sub>1</sub>N<sub>4</sub>+H O Difficultly sol in

HO Decomp by boiling with HO Sol in dil HCl and in dil HNO3 Decomp by alkalies and alkali curbonates (Weinland, Z. anorg 1913, **84** 358)

Ferric sodium pyrophosphate, I e4(P O<sub>7</sub>)<sub>3</sub>, 2Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+7H<sub>2</sub>O

Slowly but completely sol in H<sub>2</sub>O Pptd by alcohol (Milck, J B 1865 263)

Very sol in H<sub>2</sub>O (Fleitmann and Henneberg)

+5, and  $6\mathrm{H}_2\mathrm{O}$  Easily sol in  $\mathrm{H}_2\mathrm{O}$ , especially if warm (Pahl, J B **1873** 229) FeNaP<sub>2</sub>O<sub>7</sub> Insol in  $\mathrm{H}_2\mathrm{O}$ , dil HCl, or HNO<sub>3</sub>+Aq, sl sol in cone HCl+Aq, decomp by cone hot  $\mathrm{H}_2\mathrm{SO}_4$  without solution (Jorgensen, J pr (2) 16 342)

Insol in acetone (Naumann, B 1904, 37 4329)

 $Na_6Fe_2(P_2O_7)_8+9H_2O$  Decomp by  $H_2O$ (Rosenheim, B 1915, 48 586)

 $Fe_4(P_2O_7)_3$ ,  $5Na_4P_2O_7+7H_2O$  (Pahl, J B **1873** 229 )

Iron (ferric) phosphate sulphate, 3Fe<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>,  $2\mathrm{Fe_2(SO_4)_3}$ ,  $2\mathrm{Fe_2O_6H_6}$ Min Draochite

Lanthanum metaphosphate, La<sub>2</sub>(PO<sub>3</sub>)<sub>6</sub> Precipitate (Frenchs and Smith) La<sub>2</sub>O<sub>3</sub>, 5P<sub>2</sub>O<sub>5</sub> Insol in H<sub>2</sub>O, dil, or conc acids (Johnsson, B 22 976)

Lanthanum orthophosphate, LaPO<sub>4</sub> Precipitate (Hermann) Insol in H<sub>2</sub>O and acids (Ouvrard, C R **107** 37)

Lanthanum hydrogen phosphate,  $La_2H_3(PO_4)_3$ 

(Frerichs, B 7 799) Precipitate Existence is doubtful (Cleve, B 11 910)

Lanthanum phosphate, acid, La<sub>2</sub>O<sub>8</sub>, 2P O<sub>5</sub> Precipitate (Hermann)

Lanthanum pyrophosphate, LaHP<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O (Cleve)

 $Ia_2H_6(P_2O_7)_3$  Precipitate (Frenchs and Smith)

Does not exist (Cleve)

Lanthanum potassium orthophosphate,  $2I_{a_2}()_3$ ,  $3K_2()$ ,  $3P_3()_5 = 2I_aPO_4$ ,  $K_3PO_4$ Insol in H () (Ouvrard, C R **107** 37)

Lanthanum sodium orthophosphate, I  $a_2O_3$ , 3N 1 (), 2P<sub>2</sub>()

Insol in HO (Ouvraid)

Lanthanum sodium pyrophosphate, I 2N 1P₂()<sub>7</sub>

Insol in actic, and dil cold mineral acids Sol in warm dil reids (Wallroth)

Lead dimetaphosphate, PbP2O6

Almost insol in H<sub>2</sub>O Sol in HNO<sub>3</sub> +Aq (Fleitmann, Pogg 78 253)

Lead trimetaphosphate, Pb3(P3O9)2+3H2O Nearly insol in H<sub>2</sub>O Less sol in H<sub>2</sub>O than the corresponding Ag salt (Fleitmann

and Henneberg, A 65 304)
Most insol of the trimetaphosphates (Lindbom, Acta Lund 1873 12)

Anhydrous salt is insol in H<sub>2</sub>O, easily sol in HNO<sub>3</sub>+Aq (Lindbom)

Lead tetrametaphosphate, Pb P4O1

Insol in H<sub>2</sub>O

More easily decomp by acids than the other insol metaphosphates Easily decomp by alkalı hydrosulphides+Aq in the cold (Fleitmann, Pogg 78 353)

Lead hexametaphosphate, Pb3P6O18

Nearly insol in H2O, sol in acids (Lüdert, Z anorg 5 15)

Lead orthophosphate, basic, 4PbO, P2O5 (Gerhardt, A 72 85)

Lead orthophosphate, Pbs(PO4)2

Insol in H<sub>2</sub>O, sol in HNO<sub>3</sub>+Aq  $In HC_0H_3O_2+Aq$ 

Sl sol in  $\rm H_2O$  135 $\times$ 10<sup>-4</sup> g is contained in 1 litre of sat solution at 20° (Bottger, Z phys Ch 1903, **46** 604)

Not hydrolyzed by boiling H<sub>2</sub>O Sol in boiling KOH+Aq insol in NH<sub>4</sub>OH+Aq Insol in Pb(NO<sub>3</sub>)<sub>2</sub>+Aq (Caven, J Soc Chem Ind 1897, **16** 30)

Sol in 782 9 pts HC<sub>2</sub>H<sub>3</sub>O +Aq containing 38 94 pts pure HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Bertrand, Monit

Scient (3) 10 477)
Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate (Naumann, B 1910, **43** 314)

Lead hydrogen phosphate, PbHPO4

Insol in H<sub>2</sub>O Decomp by H SO<sub>4</sub>, or HCl +Aq Sol in HNO, or in KOH or NaOH+ Aq Insol in HC H<sub>2</sub>O +Aq Sol in cold NH<sub>4</sub>Cl+Aq (Brett) from which it can be completely precipitated by a great excess of  $NH_4OH + Aq$ 

More sol in NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq at 18 8-25°

than in pure H<sub>2</sub>O (Wappen)

Sol in sat NaCl+Aq, but less than PbSO<sub>4</sub> (Becquerel, C R **20** 1524) Insol in Pb salts+Aq

Not pptd in presence of Na citrate (Spiller)

Lead pyrophosphate, Pb<sub>2</sub>P O<sub>7</sub>+H<sub>2</sub>O

Insol in H<sub>2</sub>O Sol in HNO<sub>3</sub>, or KOH+Aq Insol in NH<sub>4</sub>OH+Aq, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, or SO + Aq (Schwarzenberg, A 65 133) Sol in  $Na_4PO_7 + Aq$  (Stromever) Insol in acetone (Naumann, B 1904, 37 4329)

Lead potassium phosphate, PbKPO<sub>4</sub>

Decomp by hot H<sub>2</sub>O (Ouvrard, C R 110 1333)

Lead sodium phosphate, PbNaPO4 Very sol in dil acids (Ouvrard, C R **110** 1333 )

10PbO, 8Na<sub>2</sub>O, 9P<sub>2</sub>O<sub>5</sub> (Ouvrard)

Lead sodium pyrophosphate, PbNa<sub>2</sub>P<sub>2</sub>O<sub>7</sub> Insol in hot H<sub>2</sub>O (Gerhardt, A ch (3) **22** 506)

Lead triphosphate sodium pyrophosphate, Pb<sub>5</sub>Na<sub>4</sub>P<sub>8</sub>O<sub>27</sub>+10H<sub>2</sub>O

Sol in HNO<sub>3</sub> after melting (Stange, Z anorg 1896, 12 459)

Lead phosphate chloride, 2PbHPO<sub>4</sub>, PbCl<sub>2</sub>

Insol in boiling H<sub>2</sub>O, sol in dil HNO<sub>3</sub>+q (Gerhardt, A ch (3) **22** 505) 2Pb<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, PbCl<sub>2</sub> Ppt (Heintz, Pogg

**73** 119 3Pb<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, PbCl Min Puromorphite

Sol in HNO<sub>3</sub>, and KOH+1q Sl sol in cold citric acid+Aq C N 37 14) (Bolton,

Insol in HO Sol in dil HNO3  $+H_2O$ +Aq (Heintz)

### Lithium metaphosphate, LiPO<sub>3</sub>

Insol in boiling H<sub>2</sub>O Scarcely sol in acetic acid Easily sol in mineral acids (Merling, Z anal 1879, 18 565)

Lithium tetrametaphosphate, Li<sub>4</sub>P<sub>4</sub>O<sub>10</sub>+  $4H_2O$ 

Very sol in H<sub>2</sub>O (Warschauer, Z anorg 1903, **36** 180)

Lithium orthophosphate, Li<sub>3</sub>PO<sub>4</sub>

Very slightly sol in H<sub>2</sub>O Sol in 2539 pts pure H<sub>2</sub>O and 3920 pts ammoniacal H<sub>2</sub>O, much more readily in H<sub>2</sub>O containing NH<sub>4</sub> salts Easily sol in HCl+ Aq or HNO<sub>3</sub>+Aq (Mayer, A **98** 193 ) Easily sol in carbonic acid water (Troost) Sol in dil acids or acetic acid (de Schulten, Bull Soc (3) 1 479)

Insol in methyl acetate (Naumann, B

1909, **42** 3790)

Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014) +1/2H2O, or HO

Lithium hydrogen phosphate, Li<sub>2</sub>HPO<sub>4</sub>

Nearly insol in H<sub>2</sub>O (Gmelin) Sol in 833 pts H<sub>2</sub>O at 12° (Rammelsberg)  $L_{15}H(PO_4)_2+HO$ Sol in 200 pts H<sub>2</sub>O (Rammelsberg)

Lithium dihydrogen phosphate, I 1H2PO4

Deliquescent, and very sol in H<sub>2</sub>O (Rammelsberg)

Heptalithium dihydrogen phosphate, L17H2(PO4)8

+1H<sub>2</sub>O, or 2H<sub>2</sub>O Sol in H<sub>2</sub>O (Rammelsberg)

Lithium pentahydrogen phosphate,  $L_1H_5(PO_4)_2+H_2O$ 

Deliquescent, and sol in H2O

L<sub>1</sub>th<sub>1</sub>um pyrophosphate,  $I_{14}P_{2}O_{7}+2H_{2}O_{7}$ (Rammelsberg, B A B 1883 21)

L<sub>13</sub>PO<sub>4</sub>, Lithium manganous phosphate,  $Mn_8(PO_4)_2$ 

Min Lithrophilite

Lithium potassium metaphosphate, Li<sub>2</sub>O,  $2K_2O_5 3P_2O_5 + 4H_2O$ 

As NH<sub>4</sub> comp (Tammann, J pr 1892, (2) 45 443)

Lithium potassium pyrophosphate, Li<sub>3</sub>KP<sub>2</sub>O<sub>7</sub> (Kraut, A 1876, 182 170)

Lithium sodium phosphate, 31 120, Na<sub>2</sub>0,  $P_2O_5$ 

Insol in H<sub>2</sub>O Sol in dil acids (Ouvrard, C R 110 1333) 2L<sub>10</sub>O, Na<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub> As above (Ouvrard)

Lithium sodium pyrophosphate, Li<sub>2</sub>O, Na<sub>2</sub>O,

 $P_2O_E$ 5I<sub>12</sub>O, Na<sub>2</sub>O, 3P<sub>2</sub>O<sub>5</sub>

4I<sub>12</sub>O, 6Na<sub>2</sub>O, 5P<sub>2</sub>O<sub>5</sub> (Kraut, A 1876, **182** 168)

Magnesium metaphosphate, Mg(PO<sub>3</sub>)<sub>2</sub>

Insol in H2O or dil acids, but sol in H2SO4 +Aq (Maddrell, A 61 62)

Not decomp by very long digestion with alkalı carbonates, or orthophosphates +Aq (Fleitmann)

Magnesium dimetaphosphate,  $Mg_1(P_2O_0)_2$ +  $9H_{2}O$ 

Insol in H<sub>2</sub>O, decomp by acids (Fleitmann, Pogg 78 259)

Magnesium trimetaphosphate, Mg3(P3O9)2

Sl sol in cold H<sub>2</sub>O, more easily in hot H O When ignited, insol in boiling HCl+Aq (Lindbom)

Cryst with 12, or 15H<sub>2</sub>O

Magnesium tetrametaphosphate, Mg P<sub>4</sub>O<sub>12</sub>

Insol in H<sub>2</sub>O, somewhat sol in IIC 1+Aq More easily sol in HNO<sub>3</sub>+Aq, especially easily sol in conc H<sub>2</sub>SO<sub>4</sub> (Glatzel, Dissert 1880)

 $+10H_2O$  Sol in 70 pts  $H_2O$  (Glitzel)

Magnesium orthophosphate, Mg<sub>3</sub>(PO<sub>4</sub>), and +5, or  $7H_2O$ 

litre H<sub>2</sub>O dissolves 0.1 g ıgnıted  $Mg_3(PO_4)_2$  in 7 days, but 0 205 g if freshly

precipitated (Volckr, J B 1862 131) 1 l H O with 2 g NaCl dissolves 75 8 mg, 1 l H<sub>2</sub>O with 3 g NaNO<sub>3</sub> dissolves 61 9 mg  $Mg_3(PO_4)_2$  (Liebig, A **106** 185)

Easily sol in acids, except in acetic acid (Schaffner, A 50 145)

Easily sol in H<sub>2</sub>O in presence of alkali salts

 $+6\frac{1}{2}H_2O$ citrate+Aq (sp gr =1 09), triammonium citrate+Aq (sp gr =1 09) dissolves 37 5% of the P2O5 (Erlenmeyer, B 14 1253)

Sol in 10 min in diammonium +20H<sub>2</sub>O citrate+Aq (sp gr = 1.09), triammonium citrate+Aq (sp gr =1 09) dissolves 23 2% of the P2O5, sol in 15 min in 1/4% citric acid (Erlenmeyer, l c)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828)

#### Magnesium hydrogen phosphate, MgHPO4+ $7H_2O$

Sol in 322 pts cold H<sub>2</sub>O in several days If heated to 40° becomes milky, and separates a precipitate out at 100° of same salt, so that solution at 100° contains only 1 pt salt in 498 pts H<sub>2</sub>O Much more sol in H<sub>2</sub>O containing traces of acids, even dil oxalic or acetic acids (Graham, Phil Mag Ann 2 20) Easily sol in H<sub>2</sub>SO<sub>3</sub>+Aq (Gerland, J pr (2) 4 127)

Sol in aqueous solution of Mg salts, but insol in Na<sub>2</sub>HPO<sub>4</sub>+Aq (Rose) Sol in sodium citrate+Aq (Spiller) When freshly precipitated it is sol in hot NH<sub>4</sub>Cl+Aq, and NH₄OH+Aq does not completely reprecipitate it, less sol in NH4NO3+Aq (Brett, Phil Mag (3) 10 96) Insol in alcohol (Berzelius)

For solubility in H<sub>2</sub>PO<sub>4</sub>, see under MgO

+½H2O +H2O (Debray)

Easily sol in dil acids (de Schulten, C R 100 263)

+3H<sub>2</sub>O Sl sol in H<sub>2</sub>O, easily in acids (Stoklasa, Z anorg 3 67)

 $+4\frac{1}{2}H_{2}O$ (Bergmann) +6H<sub>2</sub>O (Debray)

### Magnesium tetrahydrogen phosphate, $MgH_4(PO_4)_2$

Not hygroscopic Sol in 5 pts H<sub>2</sub>O with (Stoklasa, Z anorg 3 67) out decomp  $+2H_2O$ Not hygroscopic Sol in H<sub>2</sub>O without decomp (Stoklasa, Z anorg 1 307) Decomp by alcohol into MgHPO<sub>4</sub>+3H<sub>2</sub>O

# Magnesium pyrophosphate, Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub>

Nearly insol in H2O, readily sol in HCl or HNO<sub>3</sub>+Aq (Fresenius)

+3H<sub>2</sub>O Sl sol in HO, easily in HCl or HNO<sub>3</sub>+Aq, sol in H<sub>2</sub>SO<sub>3</sub>+Aq, and Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub> +Aq (Schwarzenberg) Sol in MgSO<sub>4</sub>+Aq, and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq

Magnesium tetraphosphate, Mg<sub>3</sub>P<sub>4</sub>O<sub>18</sub> Insol in H<sub>2</sub>O (Fleitmann and Henneberg, A 65 331)

# Magnesium potassium dimetaphosphate,

 $K_2Mg_2(P_2O_6)_3$ (Ouvrard, C R Very sol in dil acids 1888, 106 1729)

+4H<sub>2</sub>O Sol in 10 2 pts H<sub>2</sub>O (Glatzel)

Sol in 30 min in diammonium | Magnesium potassium orthophosphate, MgKPO<sub>4</sub>

> Sl sol in H<sub>2</sub>O Decomp by H<sub>2</sub>O Easily sol in acids  $+6H_{2}O$

> 2MgO, KO,  $3P_2O_5$  Insol in  $H_2O$ , sol in HCl+Aq (Ouvrard, C R 106 1729) dıl HCl+Aq  $Mg_2HK(PO_4)_2+15HO$  (Haushofer)

### Magnesium rubidium orthophosphate, RbMgPO₄+6H<sub>2</sub>O

Easily sol in warm dil HCl+Ao Not decomp by boiling H<sub>2</sub>O (Erdmann. A 1897, **294** 73)

# Magnesium sodium triphosphate,

 $MgNa_3P_3O_{10}+13H_2O$ 

Decomp in the air (Stange, Z anorg 1896, **12** 454)

Magnesium sodium metaphosphate, 3MgO,  $Na_{9}O, 4P_{2}O_{5}$ 

Insol in H<sub>2</sub>O or H<sub>3</sub>PO<sub>4</sub>+Aq Scarcely sol in HCl+Aq, or aqua regia Not decomp by  $(NH_4)_2CO_3+Aq$ Sol in conc H<sub>2</sub>SO<sub>4</sub> (Maddrell, A 61 53)

#### Magnesium sodium dimetaphosphate. $MgNa_2(P O_6)_9 + 4H O$

Sol in 25 pts HO (Glatzel, Dissert 1880)

#### Magnesium sodium trimetaphosphate, $MgNa_4(P_8O_9) + 5HO$

Sl sol in HO After ignition is insol in HO (Lindbom)

Magnesium sodium phosphate, 10 MgO, 8Na O, 9P<sub>2</sub>O<sub>3</sub>

Insol in H.O. easily sol in dil acids (Ouvrard, C R **106** 1729)

### Magnesium sodium orthophosphate, MgNaPO<sub>4</sub>

Insol in HO (Rose) +9HO (Schoecker and Violet, A 140

MgO, 2NaO, PO, Insol in HO (Ouvrard) 3Na O, 2P O₅ Insol in HO 3MgO, (Ouvraid)

Magnesium sodium pyrophosphate, basic (')

Precipitate, sl sol in HO Easily in HCl+ Aq, HNO<sub>3</sub>+Aq, and Na PO + Aq (Baer, Pogg 75 168) Sol in (NH<sub>4</sub>) CO<sub>3</sub>+Aq, and in MgSO<sub>4</sub>+

Insol in alcohol

Magnesium phosphate chloride, Mg3(PO4),

(Deville and Caron, A ch (3) 67 455)

Magnesium pyrophosphate nitrogen dioxide,  $Mg_2P_2O_7$ ,  $H_2O$ ,  $NO_2$ 

Scarcely sol in water (Luck, Z anal 13 255)

Magnesium phosphate fluoride, Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>,

Min Wagnerite Slowly sol in hot HNO<sub>3</sub>, and H<sub>2</sub>SO<sub>4</sub>

Magnesium phosphate calcium fluoride,  $2Mg_3(PO_4)_2$ , CaF<sub>2</sub> Min Kjerulfite

Manganous dimetaphosphate,  $Mn_2(P_2O_6)_2$ 

Insol in H2O and dil acids AnhydrousSol m conc H<sub>2</sub>SO<sub>4</sub> (Fleitmann) (Maddrell) Scarcely attacked by warm Na<sub>2</sub>S+ Aq, and not much more by (NH<sub>4</sub>)<sub>2</sub>S+Aq Decomp by Na<sub>2</sub>CO<sub>3</sub>+Aq

+8H<sub>2</sub>O Insol in H<sub>2</sub>O and dil acids

(Fleitmann, Pogg 78 257)

Manganous trimetaphosphate,  $Mn_3(P_3O_9)_2$ +

Difficultly sol in cold or warm H<sub>2</sub>O More easily sol in cold, very easily in waim HCl+ Aq When ignited, is insol in acids, even aqua regia (Lindbom)

Manganous hexametaphosphate

Sol in sodium hexametaphosphate+Aq (Rose, Pogg 76 4)

Nearly insol in H<sub>2</sub>O, easily  $Mn_3P_6O_{18}$ (Ludert, Z anorg 5 15) sol in acids

Manganic metaphosphate, Mn(PO<sub>3</sub>)<sub>3</sub>

Insol in H<sub>2</sub>O or acids, decomp by alkalies

(Schjerning, J pr (2) 45 515) Insol in H<sub>2</sub>O, sol in HCl, decomp by alkalies+Aq (Barbier, C R 1902, 135 1055)

Insol in H<sub>2</sub>O or acids, except Sl decomp by boiling with  $+\mathrm{H}_2\mathrm{O}$ HCl+Aq  $H_2SO_4$  (Hermann, Pogg 74 303)

Manganous tetrametaphosphate, Mn (PO<sub>3</sub>)<sub>4</sub> Not attacked by acids (Glatzel, Dissert **1880** )

 $+10\mathrm{H}_2\mathrm{O}$ Solonly in boiling conc H<sub>2</sub>SO<sub>4</sub> (Glatzel)

Manganous dekametaphosphate,  $5MnO, 5P_2O_5 + 12H_2O$ 

Ppt (Tammann, J pr 1892, (2) 45 450)

Manganous orthophosphate, Mn<sub>8</sub>(PO<sub>4</sub>)<sub>2</sub>

 $+H_2O$ (Debray) +3H<sub>2</sub>O

Sol in 20 min in diamonium citrate + Aq (sp gr = 109), triammonium citiate +Aq (sp gr = 109) dissolves 302% of the  $P_2O_5$  (Erlenmeyer, B 14 1253)

 $+4\frac{1}{2}-5\frac{1}{2}H_2O$ Efflorescent (Erlenmeyer and Heinrich, A 190 208) +7H<sub>2</sub>O Very sl sol in H<sub>2</sub>O (Berzelius) Fasily sol in mineral acids, sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>

Easily sol in SO<sub>2</sub>+Aq (Gerland, J pr

(2) **4** 97

Somewhat sol in boiling  $(NH_4)$   $CO_3+Aq$ , but deposited on cooling (Berzelius) Partly sol in cold NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>3</sub>+Aq

(Brett)

Sol in cold or hot solutions of ammonium sulphate or succinate (Wittstein)

Sl sol in Mn salts+Aq (Rose, Pogg 76 25)

Insol in alcohol

Sol in 10 min in diammonium citrate+Aq (sp gr = 109), triammonium citrate+Aq (sp gr = 109) dissolves 53% of the  $P_2O_5$ (Frlenmever, B 14 1253)

Manganous dihydrogen orthophosphate, MnHPO₄+3H₂O

Sl sol in H<sub>2</sub>O Solution decomp at 100° (Debray ) Slowly decomp by cold  $H_2O$  into  $\dot{\mathrm{M}}\mathrm{n}_{\mathrm{3}}(\mathrm{PO}_{4})_{2}$ (Erlenmeyer and Heinrich, A. **190** 203)

Easily sol in  $H_2SO_3+Aq$  (Gerland)

Sl sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, easily in conc mineral (Heintz) Sol in (NH<sub>4</sub>) CO<sub>3</sub>+Aq, acıds from which it is repptd on boiling Decomp by boiling  $KOH + \hat{A}q$ 

Insol in alcohol  $Mn_3(PO_4)$ ,  $2MnHPO_4+4H_2O$  (de Schul-

ten, C C 1905, I 188)

Manganous tetrahydrogen phosphate,  $MnH_4(PO_4)_2 + 2H_2O$ 

Deliquescent Fasily sol in H<sub>2</sub>O, with decomp to MnHPO4 (Erlenmeyer and Heinrich, A 190 208)

Not decomp by H<sub>2</sub>O (Otto, C C 1887

H<sub>2</sub>O decomp it into MnHPO<sub>4</sub> and H<sub>3</sub>PO<sub>4</sub> containing some dissolved salt. The less H<sub>2</sub>O used, the more MnHPO<sub>4</sub> separates. The acid filtrate separates MnHPO<sub>4</sub> on boiling At 0° the decomp increases in proportion to the amt of salt, but 1 g of the salt is unchanged in 100 g  $\rm H_2O$  With less thin 20 g of salt to 100 g  $\rm H_2O$  the decomp is inalogous to that of  $CaH_4(PO_4)_2$ , but with larger amts ss with of salt it is the opposite 1 increasing amts of the 1899, **129** 412)

Alcohol dissolves out H<sub>3</sub>PO<sub>4</sub> (Heintz)

Pentamanganous dihydrogen phosphate.  $Mn_5H_2(PO_4)_4+4HO$ 

Not decomp by boiling H<sub>2</sub>O (Frlenmeyer and Heinrich, A 190 208)

Manganic orthophosphate, basic, Mn<sub>2</sub>P<sub>3</sub>O<sub>9</sub>+  $H_{\mathcal{O}}$ 

Sl sol in H<sub>0</sub>O

Manganic orthophosphate, MnPO<sub>4</sub>+H<sub>2</sub>O
Sol in acids (Christensen, J pr (2)
28 1)

Manganous pyrophosphate,  $Mn_2P_2O_7$ 

Anhydrous (Lewis, Sill Am J (3) 14 281)

 $+\mathrm{H}_2\mathrm{O}$ 

+3H<sub>2</sub>O Insol in H<sub>2</sub>O Insol in MnSO<sub>4</sub>+ Aq, but sol in Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq (Rose)

Difficultly sol in Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq, but easily sol in K<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq (Pahl) Decomp by KOH+Aq Sol in H<sub>2</sub>SO<sub>3</sub>+Aq (Schwarzenberg)

Insol in acetone (Naumann, B 1904, 37

Manganous hydrogen pyrophosphate,  $MnH_2P_2O_7+4H_2O$ 

Sol in H2O (Pahl)

Manganic pyrophosphate, Mn<sub>4</sub>P<sub>6</sub>O<sub>21</sub>+14H<sub>2</sub>O

Sol in  $H_2SO_4$ , and  $H_3PO_4$  (Auger, C R 1901, 133 95)

MnHP<sub>0</sub>O<sub>7</sub> Insol in HO, very sl attacked by dil HCl+Aq, easily by cone Sol in cone  $H_2SO_4$  (Schjerning, J pr (2) 45 515)

Manganous potassium dimetaphosphate, K<sub>2</sub>Mn(PO<sub>3</sub>)<sub>4</sub>+6H<sub>4</sub>O

Sol in 95 pts  $H_2O$  When ignited is not attacked by acids (Glatzel, Dissert **1880**)

Manganous potassium orthophosphate, MnKPO<sub>4</sub>

Insol in  $H_2O$ , casily sol in dil acids (Ouvrard)

Manganic potassium pyrophosphate,  $MnKP_2()_7$ 

 $+5H_2O$  Sl sol in cold H O +3H O Sl sol in cold  $H_2O$  (Rosenheim B 1915, **48** 584)

Manganous potassium phosphate, MnK<sub>2</sub>P O<sub>7</sub>
Insol in H O, sol in dil 10ds (Ouvi 11d,

C R 106 1729) +8H () Sl sol in H<sub>2</sub>() (Pahl) Mn P<sub>2</sub>O<sub>7</sub>, 2K<sub>4</sub>P O<sub>7</sub>+10H<sub>2</sub>O Difficultly

Mn P<sub>2</sub>O<sub>7</sub>, 2K<sub>4</sub>P O<sub>7</sub>+10H<sub>2</sub>O Difficultly sol in H O (Pihl)

Manganic potassium pyrophosphate,  $MnKP_2O_7$ 

Insol in H<sub>2</sub>O Decomp by acids and bases (Schjerning)

Manganic silver pyrophosphate, AgMnP O<sub>7</sub>+3H<sub>2</sub>O

Almost insol in  $H_2O$  (Rosenheim, B 1915, 48 585)

Manganous sodium triphosphate, MnNa<sub>3</sub>P<sub>8</sub>O<sub>10</sub>+12H<sub>2</sub>O

Sl sol in H<sub>2</sub>O, the melt obtained by heating the salt is readily sol in H<sub>2</sub>SO<sub>4</sub> (Stange, Z anorg 1896, **12** 455)

Manganous sodium dimetaphosphate, MnNa<sub>2</sub>(PO<sub>3</sub>)<sub>4</sub>+6H<sub>2</sub>O

Easily sol in boiling H<sub>2</sub>SO<sub>4</sub>, but not attacked by acids after boiling (Glatzel, Dissert 1880)

Manganous sodium trimetaphosphate,

Sol in H<sub>2</sub>O (Fleitmann and Henneberg) MnNa(PO<sub>3</sub>)<sub>3</sub> Insol in H<sub>2</sub>O, dil acids, or alkalies (Schjerning, J pr (2) **45** 515)

Manganous sodium octometaphosphate, Mn<sub>8</sub>Na<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>

Insol in acids except conc H<sub>2</sub>SO<sub>4</sub> (Tammann, J pr 1892, (2) **45** 469)

+5H<sub>2</sub>O Almost insol in cold H O Decomp by boiling H<sub>2</sub>O with separation of Mn<sub>2</sub>O<sub>3</sub> (Rosenheim, B 1915, **48** 584)

Manganous sodium orthophosphate, MnNaPO<sub>4</sub>

Insol in H<sub>2</sub>O (Ouvrard, C R **106** 1729 MnO, 2Na<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub> As above

Manganous sodium pyrophosphate,  $MnNa_2P_2O_7$ 

Insol in  $H_2O$ , easily sol in dil acids (Wallroth)

Manganic sodium pyrophosphate, MnNaP<sub>2</sub>O<sub>7</sub> +H<sub>2</sub>O

(Christensen, J pr (2) 28 1)

Manganic dipyrophosphate ammonia, Mn<sub>2</sub>P<sub>4</sub>O<sub>14</sub>, 2NH<sub>3</sub>

Insol in H<sub>2</sub>O Decomp by HCl ind by ilkalies (Burbier, C R 1902, **135** 1109)

Manganous phosphate chloride,  $Mn_3(\mathrm{PO_4})$  ,  $MnCl_2$ 

Insol in H<sub>2</sub>O (Deville and Caron, A ch (3) 67 459

3Mn<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>, MnCl<sub>2</sub> Insol in HO (Deville and Caron)

Mercurous hexame aphosphate (?)

Ppt Sol in sodium heximctaphosphate +Aq (Rose)

 $H_{36}^2P_{6}O_{18}$  Insol in HO, very sl sol in acids (Ludert, Z anorg **5** 15)

Moderately sol in H<sub>2</sub>O when freshly pptd More sol in acids than the mercurous salt (Ludert)

Mercurous or hophosphate, (Hg<sub>3</sub>)<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub> Ppt Decomp by boiling with H2O (Gerhardt )

Sol in HNO<sub>3</sub>+Aq Sol in Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>+ Aq Insol in H<sub>3</sub>PO<sub>4</sub>+Aq

Mercuric orthophosphate, Hg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O Sl sol in hot H<sub>2</sub>O, crystal-(Haack, A 262 185 lizing out on cooling Slowly sol in cold dil, quickly in hot dil or cold conc HCl+Aq Less easily sol in cold conc HCl+Aq Less easily sol in HNO<sub>3</sub>+Aq Sol in H<sub>3</sub>PO<sub>4</sub>+Aq (Berrelius) Insol in H<sub>3</sub>PO<sub>4</sub>+Aq (Haack) Decomp by NaCl+Aq into insol HgCl<sub>2</sub>, 3HgO, but sol in NaCl+Aq, containing HNO<sub>3</sub> (Haack)

Sol in 6 pts NH<sub>4</sub>Cl in aqueous solution by heating (Trommsdorff)

Sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, (NH<sub>4</sub>) SO<sub>4</sub>, or NH<sub>4</sub>NO<sub>3</sub> +Aq (Wittstein) Insol in alcohol

Mercuromercuric orthophosphate, 7Hg<sub>2</sub>O,  $14 \text{HgO}, 2P_2O_5 + 20 \text{H}_2O$ 

(Brooks, Pogg 66 63)

Mercurous pyrophosphate, Hg<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+H<sub>2</sub>O Sol in Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq, when recently pptd Insol in Na<sub>4</sub>P<sub>1</sub>O<sub>7</sub>+Aq, when heated to 100° Sol in HNO<sub>3</sub>+Aq Decomp by HCl+Aq (Schwarzenberg, A 65 133)

Mercuric pyrophosphate, Hg<sub>2</sub>P<sub>2</sub>O<sub>7</sub>

Sol in acids, insol in Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq, after and heated to 100° Sol in NaCl+Aq, being heated to 100° quickly NaOH + Aqdecomp bу Na<sub>2</sub>HPO<sub>4</sub>+Aq Sol m 6 pts NH<sub>4</sub>Cl+Aq (Trommsdorff)

Sol in NH<sub>4</sub>NO<sub>3</sub>,(NH<sub>4</sub>)SO<sub>4</sub>, and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>

+Aq, also in KI+Aq

Mercurous silver orthophosphate, AgHg<sub>2</sub>PO<sub>4</sub> (Jacobsen, Bull Soc 1909. Sol in HNO<sub>3</sub> **(4) 5** 949)

Molybdenum phosphate,  $Mo_2(PO_4)_2$  (?) Insol in H<sub>2</sub>O Sol in MoCl +Aq

Molybdenum sodium pyrophosphate,  $N_1(MoP_2O_7) + 12H_2O$ (Rosenheim, B 1915, 48 589)

Nickel dimetaphosphate, NiP2O3

Insol in H<sub>2</sub>O or dil acids Sol in conc  $H_2SO_4$ Not decomp by boiling alkali carbonates or sulphides + Aq (Maddrell, A 61 58

+4H<sub>2</sub>O Sol in cold acids (Glatzel, Dissert 1880)

Nickel tetrametaphosphate, N12P4O12

Insol in HCl Sol in cone HNO3 and pecially sol in H.SO4 on boiling (Glatzel) sol in dil acids (Ouvrard)

Nickel tetrametaphosphate, N1<sub>2</sub>P<sub>4</sub>O<sub>12</sub>+ 12H<sub>2</sub>O

Easily sol in acids (Glatzel)

Nickel orthophosphate, Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>+7H<sub>2</sub>O Insol in H<sub>2</sub>O Sol in acids (Rammeslberg, Pogg 68 383)

Sol in Ni salts+Aq (Rose, Pogg 76 Ínsol in Na  $HPO_4 + Aq$  (Tupputi, 1811) Very sl sol in hot (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>+Aq Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethylacetate (Naumann, B 1910, **43** 314)

Nickel pyrophosphate,  $N_{12}P_{2}O_{7}+6H_{2}O$ 

Insol in H<sub>2</sub>O, sol in mineral acids, Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub> +Aq, and NH<sub>4</sub>OH+Aq Not pptd from N<sub>12</sub>P<sub>2</sub>O<sub>7</sub>+Aq by alcohol (Schwarzenberg, A 65 158)

Nickel potassium dimetaphosphate,  $N_1K_2P_4O_{12} + 6H_2O$ Sol in 130 pts  $H_2O$  (Glatzel)

Nickel potassium orthophosphate, NiKPO4 Insol in H<sub>2</sub>O, sol in dil acids (Ouvrard, R 106 1729) 3N<sub>1</sub>O, 3K<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub> As above

Nickel sodium triphosphate, Na<sub>3</sub>N<sub>1</sub>P<sub>3</sub>O<sub>19</sub>+ 12H<sub>2</sub>O

Very sol in  $H_2O$ , decomp in Aq solution (Schwarz, Z anorg 1895, 9 261)

Nickel sodium metaphosphate, 3N1(PO<sub>3</sub>)<sub>2</sub>, NaPO<sub>3</sub>

Insol in H<sub>2</sub>O and dil acids Sol in conc  $H_2SO_4$  (Maddrell, A 61 56) N<sub>1</sub>Na<sub>4</sub>(PO<sub>3</sub>)<sub>3</sub>+8H<sub>2</sub>O Easily sol in H<sub>2</sub>O

Nickel sodium dimetaphosphate, NiNa<sub>2</sub>P<sub>4</sub>O<sub>12</sub>  $+6H_2O$ 

Sl sol in H<sub>2</sub>O Moderately sol in acids (Glatzel, Dissert 1880)

Nickel sodium trimetaphosphate,  $N_{12}N_{a_2}(P_3O_9)_2 + 9H_2O$ 

(Lindbom)

1 l H<sub>2</sub>O dissolves 60 6 g at 20° mann, J pr 1892, (2) **45** 426 \ Na<sub>3</sub>N<sub>1</sub>P<sub>3</sub>O<sub>10</sub>+12H<sub>2</sub>O Insol and not decomp by HO Sol in acids (Schwarz, Z anorg 1895, 9 261)

Nickel sodium octometaphosphate,  $Na_2Nl_3(PO_3)_8$ 

(Γammann, J pr 1892, (2) **45** 469)

Nickel sodium orthophosphate, NiNaPO<sub>1</sub>+

 $\mathbf{Ppt}$ (Debray, C R **59** 40) NiO, 2Na<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub> Insol in H<sub>2</sub>O Easily

# Nickel sodium pyrophosphate, $N_{1_{10}}Na_{16}(P_2O_7)_0$

Insol in  $H_2O$  Moderately sol in acids (Wallroth)

### Osmium phosphate (?)

Sl sol in H<sub>2</sub>O, sol in HNO<sub>3</sub>+Aq (Ber zelius)

# Palladium orthophosphate (?)

Ppt

# Phosphorus phosphate, 4P4O, 3P3O5 (?)

Decomp spontaneously Sol in H<sub>2</sub>O and alcohol when fresh, insol in other (le Verrier, A 27 167, Reinitzer, B 14 1884)

### Platinum phosphate, PtP,O

Insol in  $H_2O$ , acids and alkalies Decomp by fusing with potassium carbonate (Barnett, C N 1895, 71 256)

# Potassium monometaphosphate, KPO,

Nearly insol in H<sub>2</sub>O, sol in weak acids, even in acetic acid (Maddrell, A 61 62)

Insol in H<sub>2</sub>O and weak acids (Fleitmann, Pogg **78** 250)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829)

# Potassium dimetaphosphate, K<sub>2</sub>P<sub>2</sub>O<sub>6</sub>+H<sub>2</sub>O

Sol in 1 2 pts cold  $H_2O$ , but not more in hot  $H_2O$  (Fleitmann, Pogg **78** 250)

### Potassium trimetaphosphate, K<sub>3</sub>P<sub>3</sub>O<sub>9</sub>

Very sol in cold H<sub>2</sub>O before it is fused (Lindborn, Acta I and 1873 14)

#### Potassium orthophosphate, K<sub>3</sub>PO<sub>4</sub>

Not deliquescent Very sol in H<sub>2</sub>() (Graham, Pogg **32** 47)

Very sl sol in cold, casily in hot H<sub>2</sub>() (Darracq)

#### Solubility in H<sub>3</sub>PO<sub>4</sub>+Aq at 25°

| In 1000 g of the                             | solution mols                                |
|----------------------------------------------|----------------------------------------------|
| k                                            | PO <sub>4</sub>                              |
| 9 14<br>5 84<br>8 42<br>7 52<br>6 90<br>6 85 | 3 13<br>3 22<br>3 44<br>3 78<br>4 15<br>4 12 |

(D'Ans and Schreiner, Z phys Ch 1910, 75

Insol in alcohol

### Potassium hydrogen orthophosphate, 2K<sub>2</sub>HPO<sub>4</sub>, KH<sub>2</sub>PO<sub>4</sub>+H<sub>2</sub>O

Very unstable, very sol in H<sub>2</sub>O with decomp Identical with the substance de-

scribed as dipotassium phosphate by Berzelius (Staudenmaier, Z anorg 1894, 5 389)

3K<sub>2</sub>HPO<sub>4</sub>, KH PO<sub>4</sub>+2H<sub>2</sub>O Verv unstable, very sol in H O with decomp (Staudenmaier)

### Potassium hydrogen orthophosphate, K<sub>2</sub>HPO<sub>4</sub>

Deliquescent Very sol in H O and alcohol

### Solubility in H<sub>2</sub>PO<sub>4</sub>+Aq at 25°

| In 1000 g of the solution mols                       |                                                      |  |
|------------------------------------------------------|------------------------------------------------------|--|
| K                                                    | PO <sub>4</sub>                                      |  |
| 6 80<br>6 80<br>6 76<br>6 50<br>6 16<br>5 24<br>4 42 | 4 08<br>4 05<br>3 96<br>3 81<br>3 61<br>3 25<br>2 94 |  |

(D'Ans and Schreiner, Z phys Ch 1910, 75 103)

# Potassium dihydrogen phosphate, KH2PO4

Deliquescent Easily sol in H<sub>2</sub>O (Vauquelin, A ch **74** 96)

1 l sat aq solution at 7° contains 249 9 g KH<sub>2</sub>PO<sub>4</sub> (Muthmann and Kuntze, Z Kryst Mm 1894, **23** 308)

# Solubility in H<sub>3</sub>PO<sub>4</sub>+Aq at 25°

| K    | PO <sub>4</sub> |
|------|-----------------|
|      |                 |
| 2 90 | 2 36            |
| 1 70 | 1 71            |
| 1 60 | 1 67            |
| 1 48 | 1 46            |
| 1 78 | 3 15            |
| 2 18 | 4 65            |
| 254  | 6 32            |
| 2 66 | 6 76            |
| 2 98 | 8 03            |
| 3 32 | 8 80            |

(D'Ans and Schreiner, Z phys Ch 1910, 75 103)

Sp gr of kH<sub>2</sub>PO<sub>4</sub>+Aq at 18° contuning 5 10 15° kH PO<sub>4</sub> 1 0341 1 0691 1 1092 (Kohlrausch, W Ann **1879** 1)

Sol in 20% KC H<sub>3</sub>O<sub>2</sub>+Aq (Stroniever) For solubility in H<sub>2</sub>O, see K<sub>2</sub>HPO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub> Insol in alcohol

#### Potassium orthophosphate, acid, KH<sub>2</sub>PO<sub>4</sub>, H<sub>2</sub>PO<sub>4</sub>

Solubility in H<sub>2</sub>O at t°

| t°                                                                                                              | %<br>KH₂PO₄ H₃PO₄                                                                                               | Solid phase                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 0 6<br>- 2 5<br>- 6 7<br>- 9 2<br>- 13<br>0 (?)<br>+ 10 9<br>65 2<br>78<br>87 5<br>105 5<br>120<br>135<br>139 | 3 337<br>12 13<br>29 43<br>36 98<br>44<br>45 8<br>50 3<br>68 44<br>72 43<br>77 6<br>85 9<br>92 1<br>96 1<br>100 | Ice  ""  ""  Ice+KH <sub>2</sub> PO <sub>4</sub> KH <sub>2</sub> PO <sub>4</sub> ""  "+KH <sub>2</sub> PO <sub>4</sub> , H <sub>3</sub> PO <sub>4</sub> KH <sub>2</sub> PO <sub>4</sub> , H <sub>3</sub> PO <sub>4</sub> |

(Parravano and Mieli, Gazz ch it 38 II, 536)

Solubility in anhydrous H<sub>3</sub>PO<sub>4</sub> at t°

| t°           | % KH2PO4 H3PO4                   |
|--------------|----------------------------------|
| <b>२</b> २ ५ | 18 17<br>58 42<br>77 53<br>92 26 |

(Parravano and Mieli)

Potassium pyrophosphate, K<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O

Very deliquescent, and sol in H<sub>2</sub>O Precipitated from aqueous solution by alcohol (Schwarzenberg, A **65** 136)

cohol (Schwarzenberg, A 65 136) Insol in methyl acetate (Naumann, B 1909, 42 3790)

Potassium hydrogen pyrophosphate,  $K_2H_2P_2O_7$ 

Very deliquescent, and sol in H<sub>2</sub>O Insol in alcohol (Schwarzenberg)

Potassium silver metaphosphate, K<sub>2</sub>Ag<sub>4</sub>(PO<sub>3</sub>)<sub>6</sub>+H<sub>2</sub>O

(Tunmann, J pr 1892, (2) 45 417)

Potassium sodium dimetaphosphate, KNaP O<sub>6</sub>+H<sub>2</sub>O

Sol in 24 pts HO (Fleitmann, Pogg 78 339)

Potassium sodium phosphate,  $KNaHPO_4 + 7H_2O$ 

Not efflorescent Sol in H<sub>2</sub>O

Tripotassium trisodium hexahydrogen phosphate, H<sub>6</sub>Na<sub>3</sub>K<sub>8</sub>(PO<sub>4</sub>)<sub>4</sub> +22H<sub>2</sub>O Sol in H<sub>2</sub>O (Filhol and Senderens, C R 3 388)

Potassium sodium pyrophosphate, K<sub>2</sub>Na<sub>2</sub>P<sub>2</sub>O<sub>7</sub>+12H<sub>2</sub>O Sol in H<sub>2</sub>O (Schwarzenberg, A 65 140)

Potassium strontium dimetaphosphate,  $K_9Sr(P_9O_6)_2+4H_2O$ 

As the KBa comp (Glatzel, Dissert 1880)

Potassium strontium hexametaphosphate,  $K_2Sr_2P_6O_{18}$ 

(Tammann, J pr 1892, (2) 45 435)

Potassium strontium orthophosphate, KSrPO<sub>4</sub>

Insol in  $H_2O$ , sol in dil acids (Grandeau, A ch (6) 8 193)

Potassium strontium pyrophosphate, K<sub>2</sub>SrP<sub>2</sub>O<sub>7</sub>

Insol in H<sub>2</sub>O, sol in dil acids (Ouvrard, C R **106** 1599)

Potassium thorium phosphate,  $K_2O$ ,  $4ThO_2$ ,  $3P_2O_5$ 

Insol in HCl, HNO<sub>3</sub>, or aqua regia (Troost and Ouvrard, C R 102 1422)  $K_2O$ , 1hO<sub>2</sub>,  $P_2O_5$  Insol in H<sub>2</sub>O, sol in HNO<sub>3</sub>+Aq (Troost and Ouvrard)

 $6K_2O$ ,  $3ThO_2$ ,  $4P_2O_5$  Sol in acids (Troost and Ouvrard)

Potassium tin (stannic) phosphate, K<sub>2</sub>O, 4SnO<sub>2</sub>, 3P<sub>2</sub>O<sub>5</sub>

(Ouvrard, C R 111 177) K<sub>2</sub>O, 2SnO<sub>2</sub>, P<sub>2</sub>O<sub>5</sub> (Ouvrard)

Potassium titanium phosphate,  $K_2O$ ,  $4T_1O$ ,  $3P_2O_5$ 

(Ouvrard C R 111 177 )  $\rm K_2O,\,2T_1O$  ,  $\rm P_2O_5$  (Ouvrard )

Potassium uranous phosphate,  $4\mathrm{UO}_2$ ,  $\mathrm{K}_2\mathrm{O}_5$ 

Practically insol in conc HNO<sub>3</sub> and HCl, even when the acids are boiling. Attacked by HF+HNO<sub>3</sub> (Colani, A ch. 1907, (8) 12 133)

Potassium uranous metaphosphate,  $UO_2$ ,  $I_2O_5$ 

Fasily sol in HNO<sub>3</sub> Sol in conc HCl (Colani)

Potassium uranous pyrophosphate, 3UO, 6K<sub>2</sub>O, 4P<sub>2</sub>O<sub>5</sub>
Sol in acids (Colani)

Potassium uranyl phosphate,  $K_2O$ ,  $UO_3$ ,  $P_2O_5$ 

(Ouvrard, C R 110 1333) 2K<sub>2</sub>O, UO<sub>3</sub>, P<sub>2</sub>O<sub>5</sub> (Ouvrard) K<sub>2</sub>O, 2UO<sub>3</sub>, P<sub>2</sub>O<sub>5</sub> (Ouvrard) Potassium uranyl orthophosphate,  $K(UO_2)PO_4+3H_2O$ 

As NH<sub>4</sub> comp (Lienau, Dissert 1898)

Potassium vanadium phosphate
See Phosphovanadate, potassium

Potassium yttrium phosphate,  $3K_2O$ ,  $Y_2O_3$ ,  $2P_2O_5$  $K_2O$ , Y  $O_3$ ,  $2P_2O_5$ 

 $3K_2O$ ,  $5Y_2O_3$ ,  $6P_2O_5$  (Duboin C R 107 622)

Potassium zinc tetrametaphosphate, K.Zn(PO<sub>3</sub>)<sub>4</sub>+6H<sub>2</sub>O Sol in 70 pts H O (Glatzel, Dissert 1880)

Potassium zinc phosphate,  $KZnPO_4$ Insol in  $H_2O$  Sol in dil acids (Ouvrard, C R 106 1729)  $K_2ZnP_2O_7$  As above

Potassium zirconium phosphate,  $K_2O$ ,  $4ZrO_2$ ,  $3P\ O_6$ 

Insol in acids or aqua regia (Froost and Ouvrard, C R 102 1422)

K<sub>2</sub>O, ZrO<sub>3</sub>, P<sub>2</sub>O<sub>5</sub> Insol in H<sub>4</sub>O, HNO<sub>5</sub>,
HCl, or aqua regi<sub>1</sub> Sol in hot cone H<sub>2</sub>SO<sub>4</sub>
(Troost and Ouvrard)

Potassium phosphate selenate See Selenophosphate, potassium

Potassium hydrogen phosphate sulphate, KH<sub>2</sub>PO<sub>4</sub>, KHSO<sub>4</sub>

Decomp by H() and alcohol (Jacquelain)

Rhodrum phosphate, basic, 4Rh(), 3P() + 32H()

Insol in H () or wilds (( Luis )  $Rh_2O_3$ , P () +6H () =  $RhPO_4$ +3H () Sol in  $H_2O$  (Cluis )

Rubidium metaphosphate, RbP()<sub>3</sub> Sol in II () (von Berg, B 1901 34 4183)

Rubidium orthophosphate, Rb<sub>4</sub>PO<sub>4</sub>+4ILO Hydroscopic, sol in II () pptd by ilcohol (von Berg, B 1901 **34** 4183)

Rubidium hydrogen orthophosphate, Rb<sub>2</sub>HP()<sub>1</sub>+H<sub>2</sub>()

Sol in H<sub>2</sub>O, msol in conc NH<sub>4</sub>OH+Aq, insol in alcohol (von Beig)

Rubidium dihydrogen orthophosphate, RbH PO<sub>4</sub>

Very sol in HO, pptd by alcohol (von Berg)

Rubidium pyrophosphate, Rb<sub>4</sub>P<sub>2</sub>O<sub>7</sub> Hydroscopic, sol in H<sub>2</sub>O (von Berg)

Samarum anhydrometaphosphate, Sm 5P<sub>2</sub>O<sub>5</sub>

Insol in H<sub>2</sub>O or HNO<sub>3</sub>+Aq (Cleve)

Samarium orthophosphate, SmPO4

Scarcely attacked by boiling HNO<sub>3</sub>+ (Cleve) +2H<sub>2</sub>O

Samarium pyrophosphate, SmHP<sub>2</sub>O<sub>7</sub>+ 1½H<sub>2</sub>O (Cleve)

Silicon phosphate

See Silicophosphoric acid

Silver metaphosphate, Ag<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub>+H<sub>2</sub>O (Kroll, Z anorg 1912, **76** 408)

Silver dimetaphosphate, Ag<sub>2</sub>P<sub>2</sub>O<sub>6</sub>

Very sl sol in HO (Fleitmann, Pt 78 253)

Sol in cold aniline metaphosphate+
(Nicholson)

Very sl sol in  $H_2O$  (Waischauer, I sert 1903) + $H_2O$  Verv sol in  $H_2O$  (I angheld,

 $+H_2O$  Very sol in  $H_2O$  (I angheld, 1912, **45** 3760)

Silver trimetaphosphate, Ag<sub>3</sub>P<sub>3</sub>O<sub>9</sub>

Sol in 60 pts cold H<sub>2</sub>O Can be crys lized from conc HNO<sub>3</sub>+Aq (Fleitmann Henneberg)

+H<sub>2</sub>O (Lindbom)

Silver hexametaphosphate, Ag<sub>6</sub>P<sub>6</sub>O<sub>18</sub>

Insol in  $H_2O$  Sol in  $HNO_3$  or  $NH_4OI$  Aq, and in a large excess of sodium he met iphosphate +Aq (Rose)

Fasily decomp by N 125+Aq

Decomp gradually by hot H(0) 1  $Ag_0P_4O_{13}$ 

When freshly pptd, castly sol in H Lastly sol in dil acids (Tudert, Z inc 5 15)

Silver orthophosphate, Ag<sub>3</sub>P()<sub>4</sub>

Very sl sol in  $H_2O=1$  l  $H_3O$  disso  $6.5\times10^{-3}$  g  $Ag_3PO_4$  it  $19.46^{\circ}$  (Pottger

phys Ch 1903 46 603)

Sol in H<sub>4</sub>PO<sub>4</sub>, HNO<sub>3</sub>, or HC H<sub>3</sub>O +Aq NH<sub>4</sub>OH or (NH<sub>4</sub>) CO<sub>3</sub>+Aq 1 css cashy unmonum nitrate or succentre and mepletely in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq 1 issuage Pharm (3) **16** 2SO<sub>3</sub>

Insol in Na HPO<sub>4</sub>+Aq (Stromeyer) Not pptd in presence of Na citi (Spiller)

(Spiller)

If 1 mol Ag<sub>3</sub>PO<sub>4</sub> is boiled with 1 i
Na<sub>2</sub>CO<sub>3</sub>, 44% of it is decomp (Maligut
Readily sol in soluble hyposulphites+

with decomp (Herschel)
Insol in Ag salts - Aq (Rose)

Insol in liquid NH<sub>3</sub> (Gore Am Ch. 1898, **20** 829)

Insol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4329) Insol in methyl acetate (Naumann, B 1909, **42** 3790) ethyl acetate (Naumann, B 1910, **43** 314)

Silver hydrogen orthophosphate, Ag<sub>2</sub>HPO<sub>4</sub>

Decomp by H<sub>2</sub>O or alcohol into H<sub>3</sub>PO<sub>4</sub> and Ag<sub>3</sub>PO<sub>4</sub> (Joly, C R **103** 1071)

Sol in  $H_3PO_4+\Lambda q$ , insol in ether (Schwarzenberg, A 65 162)

Silver pyrophosphate,  $Ag_4P_2O_7$ 

Sol in cold Insol in hot or cold H<sub>2</sub>O HNO<sub>8</sub>+Aq without decomp Decomp by hot HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub> into orthophosphate Decomp by HCl+Aq into AgCl and H<sub>2</sub>PO<sub>4</sub> Insol in  $HC_2H_3O_2+Aq$  Sol in  $NH_4OH+$ Aq without decomp (Stromever, Schw J **58** 126)

Insol in Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq Very sl sol in AgNO<sub>3</sub>+Aq (Schwarzenberg, A 65 161) Not completely insol in Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq (Rose)

Insol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4329)

Silver hydrogen pyrophosphate, Ag H<sub>z</sub>P<sub>2</sub>O<sub>7</sub> Decomp by H<sub>2</sub>O into Ag<sub>4</sub>P<sub>2</sub>O<sub>7</sub> (Hurtzig

and Geuther, A 111 160)

Decomp by cold HO (Cavalier, C R 1904, 139 285)

Silver hydrogen pyrophosphate metaphosphate, 2Ag<sub>2</sub>HP<sub>2</sub>O<sub>7</sub>, HPO<sub>3</sub>

Decomp by H<sub>2</sub>O Easily sol in H\O<sub>3</sub>+ Aq (H and G)

Silver tetraphosphate, 6Ag O, 4P O =

 $Ag_6P_4O_{13}$ Insol in, but gradually decomp by boiling

HO (Berzelius) Sol in large excess of the corresponding Na salt + Aq

Silver dekaphosphate, \quad \text{P}\_{10}()\_{11}

Easily sol in sodium dekaphosphate + Aq. (Fleitmann and Henneberg, A 65 330)

Silver ultraphosphate, \( \( \) \( \) \( \) (Kroll, Z. morg. 1912. 76, 107.)

Silver sodium dimetaphosphate,  $Ag \times iP(0)$ Sol in HO (Heitmann and Henneberg, Pogg 65 310)

Silver sodium pyrophosphate, (1/1) $N_{14}P() + 4H()$ 

Not completely sol in  $\sum_{i} P(i) + \sum_{j} P(i)$ Fasily sol in HNO<sub>3</sub>+Aq (Bur, Pogg 75 152)

Easily sol in HO (Stromever)  $Ag_3N_3PO_7+{}^14HO$  Ppt (Stange, Z anoig 1896, 12 460)

Silver uranyl phosphate, 2Ag(),  $6U()_3$ ,  $3P()_6$ +30H<sub>2</sub>O

(Blinkoff Dissert 1900)

Silver phosphate ammonia, Ag<sub>3</sub>PO<sub>4</sub>, 4NH<sub>3</sub> (Widmann, B 17 2284)

Sodium iriphosphate, Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>

Very sol in  $H_2O$ , decomp easily in a solution at  $100^\circ$  (Schwarz, Z anorg 189 **9** 253)

Sodium monometaphosphate, NaPO3

Insol in H<sub>2</sub>O Sol in dil and conc acid (Maddrell, A **61** 63)

Insol in acids (Graham)

Gradually decomp by alkalies

Sodium dimetaphosphate,  $Na_2P_2O_6+2H_2O$ 

Deliquescent Sol in 72 pts of cold or h 20 Verv sol in conc HCl+Aq Sol  $H_2O$ NaOH+Aq Insol in strong, very sl sol dilute alcohol (Fleitmann Pogg 78 246)

Sodium *trimeta*phosphate, Na<sub>3</sub>P<sub>3</sub>O<sub>9</sub>+6H<sub>2</sub>O

Sol in 4.5 pts cold H<sub>2</sub>O Insol in stror very sl sol in dil alcohol (Fleitmann a. 1 Henneberg, A 65 307)

Decomp by boiling H<sub>2</sub>O (Lindbom)

Sodium tetrametaphosphate, Na<sub>4</sub>P<sub>4</sub>O<sub>12</sub>

Sol in H<sub>2</sub>O, cryst with about 4H<sub>2</sub>O I is sol in alcohol than in H<sub>2</sub>O (Fleitmar Pogg 78 851)

Sodium hex imetaphosphate, Na<sub>6</sub>P<sub>6</sub>O<sub>18</sub>

Deliquescent Very sol in H<sub>2</sub>O Insol alcohol (Graham Pogg 32 56)

Sodium orthophosphate, Ni<sub>3</sub>PO<sub>4</sub>+12H<sub>2</sub>O

Not deliquescent in dry ur 100 pts. H.O. dissolve 19.6 pts. crystals at 15 ((rtham)

100 pts II O dissolve 28 3 pts N 13PO 12H () it 15° (Schiff)

Solubility in H<sub>3</sub>PO<sub>4</sub>+Aq at 25°

In 1000 g of the solution mols \n IO: 1.25 0.040 3 24 0.153 2 21 0.752 2 73 1 08

(D'Ans and Schremer, Z phys Ch 1910, ) 101)

> Sp gr of N 13PO1+Aq it 15°  $C_i = C_i N_{i,i} PO_i + 12 II O$

|                  | →b ۲⊾                                | Ì                    | 5p gr                                          | (                          | db t                                 |                  |
|------------------|--------------------------------------|----------------------|------------------------------------------------|----------------------------|--------------------------------------|------------------|
| 1 2 3 4          | 1 0043<br>1 0086<br>1 0130<br>1 0174 | 9<br>10<br>11<br>12  | 1 0399<br>1 0455<br>1 0492<br>1 0539<br>1 0586 | 17<br>18<br>19<br>20<br>21 | 1 07<br>1 08<br>1 08<br>1 00<br>1 00 | 37               |
| 5<br>6<br>7<br>8 | 1 0218<br>1 0263<br>1 0308<br>1 0353 | 13<br>14<br>15<br>16 | 1 0586<br>1 0633<br>1 0681<br>1 0729           | 22<br>23<br>24             | 1 1(<br>1 1(<br>1 1)                 | )<br>)<br>7<br>— |

(Schiff, calculated by Gerlach, Z anal 8 2 1)

Insol in CS<sub>2</sub> (Arctowski, Z anorg 1894, **6** 257)

Insol in methyl acetate (Naumann, B 1909, 42 3790)

+10H<sub>2</sub>O (Rammelsberg)

Could not be obtained (Hall, J pr 94 237)

 $+7H_2O$  (Hall)

Melts in crystal water at 76 6° (Graham)

Sol in H<sub>2</sub>O with evolution of heat

100 pts H<sub>2</sub>O dissolve at t°

| t° | Pts<br>Na <sub>2</sub> HPO <sub>4</sub> | to | Pts<br>Na <sub>2</sub> HPO <sub>4</sub> | to    | Pts<br>Na <sub>2</sub> HPO <sub>4</sub> |
|----|-----------------------------------------|----|-----------------------------------------|-------|-----------------------------------------|
| 0  | 1 55                                    | 40 | 30 88                                   | 80    | 81 29                                   |
| 10 | 4 10                                    | 50 | 43 31                                   | 90    | 95 02                                   |
| 20 | 11 08                                   | 60 | 55 29                                   | 100   | 108 20                                  |
| 30 | 19 95                                   | 70 | 68 72                                   | 106 2 | 114 43                                  |

(Poggiale J Pharm (3) 44 273)

100 pts H<sub>2</sub>O at 13° dissolve 34 pts Na<sub>2</sub>HPO<sub>2</sub> (Ferein Ph Viertelj 7 244) at 15° 5 9 pts (Neese) at 16° 6 3 pts (Mulder) at 16° 84 pts (Müller J pr 95 52) at 20° 68 pts (Neese Russ Z Pharm 1 101) at 25° 12 5 pts (bbd)

| Solubility in 100 pts H <sub>2</sub> O at t°                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                          |                                                                      |                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| t°                                                                                                                                                                                                                                                                                                     | Pts<br>Na <sub>2</sub> HPO <sub>4</sub>                                                                                                                                                                                                                                  | t°                                                                   | Pts<br>Na <sub>2</sub> HPO <sub>4</sub>                                                                                                       | t°                                                                                                                                                                   | Pts<br>Na <sub>2</sub> HPO <sub>4</sub>                                                                                              |
| 0<br>11<br>23<br>34<br>45<br>66<br>78<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>14<br>15<br>16<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>22<br>23<br>24<br>24<br>25<br>26<br>26<br>27<br>28<br>28<br>28<br>29<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | Pts<br>Na:HPO4<br>2 5<br>2 6<br>2 6<br>2 6<br>2 7<br>2 7<br>2 8<br>3 6<br>3 9<br>4 5<br>3 8<br>4 9<br>5 8<br>6 9<br>7 6 4<br>9 3<br>11 4<br>12 6<br>14 9<br>18 5<br>20 0<br>18 5<br>20 0<br>18 5<br>20 0<br>18 6<br>18 6<br>18 6<br>18 6<br>18 6<br>18 6<br>18 6<br>18 6 | 35 36 37 38 39 40 41 42 43 44 45 51 52 53 45 55 56 57 89 661 62 3 64 | Na <sub>2</sub> HPO <sub>4</sub> 39 6  43 5 5  60 63 9  66 68 68 70 9  74 5 7  78 2 7  81 2 5  78 82 7  81 85 86  88 89 90 91  92 92 91  93 5 | 69<br>70<br>71<br>72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97 | 94 8 0 95 1 95 2 4 95 6 95 96 1 96 5 96 6 8 96 96 97 1 97 2 4 5 97 7 97 8 97 98 2 98 4 5 98 7 98 7 98 7 98 7 98 98 7 98 98 7 98 98 7 |
| 29<br>30<br>31<br>32<br>33                                                                                                                                                                                                                                                                             | 24 1<br>26 4<br>29 1<br>32 1                                                                                                                                                                                                                                             | 65<br>66<br>67<br>68                                                 | 93 8<br>94 1<br>94 4<br>94 6                                                                                                                  | 99<br>105<br>105 57<br>106 4                                                                                                                                         | 98 8<br>82 5<br>80 7<br>79 2                                                                                                         |

(Mulder, Scheik Verhandel 1864 103)

35 5

| Solubility | m | $H_2O$ | at | t° |  |
|------------|---|--------|----|----|--|
|------------|---|--------|----|----|--|

| t°    | G Na2HPO4 in 100 g H2O |
|-------|------------------------|
| 10 26 | 3 55                   |
| 25 15 | 12 02                  |
| 40 29 | 54 88                  |
| 60 23 | 83 00                  |
| 99 77 | 102 15                 |

Three breaks in the curve at 36 45°, transition from dodecahydrate to heptahydrate, at 48°, transition from heptahydrate to the dihydrate, at 95 2°, transition from dihydrate to the monohydrate (Shiomi, C C 1909, II 106)

### Solubility of Na<sub>2</sub>HPO<sub>4</sub> in H<sub>2</sub>O at t°

| Solubino of Italian Of In 1120 MO |                      |                                                          |  |  |
|-----------------------------------|----------------------|----------------------------------------------------------|--|--|
| t°                                | ر د ۱                | Solid phase                                              |  |  |
| -0 43<br>-0 24<br>-0 5*           | 1 42<br>0 70         | Ice<br>"                                                 |  |  |
| $^{+0}_{20}$ 05                   | 1 67<br>7 66         | Na <sub>2</sub> HPO <sub>4</sub> +12H <sub>2</sub> O     |  |  |
| 25 0<br>32 0<br>34 0              | 12 0<br>25 7<br>33 8 | et<br>Et                                                 |  |  |
| 35 2*<br>39 2                     | 51 8                 | Na₂HPO₄+7H₂O                                             |  |  |
| 45 0<br>48 3*                     | 67 3<br>80 2         | W- IIDO LOILO                                            |  |  |
| 50 0<br>60 0<br>80 0              | 80 2<br>82 9         | Na <sub>2</sub> HPO <sub>4</sub> +2H <sub>2</sub> O<br>" |  |  |
| 90 0<br>95*                       | 92 4<br>101 0        | e:                                                       |  |  |
| 96 2<br>105 0                     | 104 6<br>102 3       | Na <sub>2</sub> HPO <sub>4</sub>                         |  |  |
| 120                               | 99 2                 | "                                                        |  |  |

(Menzies and Humphery, Int Cong App Chem 1912, 2 177)

\* Transition points

#### Solubility in HO at to

| t                               | 100 g H <sub>2</sub> O<br>dissolve g<br>Na_HPO                    | Solid phase                                                                                          |
|---------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 0° 25 35 4* 40 3 48 35* 59 7 71 | 2 51<br>12 47<br>46 11<br>54 80<br>79 00<br>91 3<br>95 1<br>98 15 | Na HPO <sub>4</sub> , 12H O<br>Na HPO <sub>4</sub> , 7H <sub>2</sub> O<br>Na HPO <sub>4</sub> , 2H O |
|                                 |                                                                   |                                                                                                      |

(D'Ans and Schreiner Z phys Ch 1911, **75** 99)

\*Transition points

The composition of the hydrates formed by this salt at different dilutions is calculated

from determinations of the lowering of the fr pt produced by the salt and of the conductivitv and sp gr of its aqueous solutions (Jones, Am Ch 1 1905, 34 318)

Na<sub>2</sub>HPO<sub>4</sub>+Aq saturated at 15° has 1 0469 sp gr (Michel and Krafft), saturated at 16°,

1 0511 (Stolba)

# Sp gr of Na<sub>2</sub>HPO<sub>4</sub>+Aq at 19°

| % Na <sub>2</sub> HPO <sub>4</sub> +12H <sub>2</sub> O | Sp gr  | % Na <sub>2</sub> HPO <sub>4</sub><br>+12H <sub>2</sub> O | Sp gr  | % Na <sub>2</sub> HPO <sub>4</sub><br>+12H <sub>2</sub> O | Sp gr  |
|--------------------------------------------------------|--------|-----------------------------------------------------------|--------|-----------------------------------------------------------|--------|
| 1                                                      | 1 0041 | 5                                                         | 1 0208 | 9                                                         | 1 0376 |
| 2                                                      | 1 0083 | 6                                                         | 1 0250 | 10                                                        | 1 0418 |
| 3                                                      | 1 0125 | 7                                                         | 1 0292 | 11                                                        | 1 0460 |
| 4                                                      | 1 0166 | 8                                                         | 1 0332 | 12                                                        | 1 0503 |

### (Schiff, A 110 70)

Saturated solution freezes at -0 45° (Rudorff, Pogg 122 337), and boils at 105° (Griffiths), 105-106 4° (Mulder), 108 5° (Legrand)

Sat Na<sub>2</sub>HPO<sub>4</sub>+Aq boils at 105 5° (Griffiths) at 106 5°, and contains 113 2 pts Na<sub>2</sub>HPO<sub>4</sub> to 100 pts H<sub>2</sub>O (Legrand), forms a crust at 1064°, and contains 1088 pts Na<sub>2</sub>HPO<sub>4</sub> to 100 pts HO highest temp observed, 106 8° (Gerlach, Z anal 26 127)

B-pt of Na<sub>2</sub>HPO<sub>4</sub>+Aq containing pts Na<sub>2</sub>HPO<sub>4</sub> to 100 pts H<sub>2</sub>O G = according to Gerlach (Z anal 26 450), L= according to Legrand (A ch (2) 59 426)

| B-pt                                                   | G                                                   | L                                                    | B pt                                              | G                                              | I                                                       |
|--------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|---------------------------------------------------|------------------------------------------------|---------------------------------------------------------|
| 100 5°<br>101<br>101 5<br>102<br>102 5<br>103<br>103 5 | 8 6<br>17 2<br>25 8<br>34 4<br>42 9<br>51 4<br>59 9 | 11 0<br>21 0<br>31 0<br>40 8<br>50 3<br>59 4<br>68 1 | 104°<br>104 5<br>105 5<br>106 5<br>106 5<br>106 6 | 68 4<br>76 9<br>85 3<br>93 7<br>102 1<br>110 5 | 76 4<br>84 2<br>91 5<br>98 4<br>105 0<br>111 4<br>112 6 |

+H<sub>2</sub>O Transition point, 95 2° (Shiomi) +2H<sub>2</sub>O Transition point, 48 35° (D'Ans (D'Ans and Schreiner), 48° (Shiomi), 48 3° (Menzies and Humphery)

+7H₄O Not efflorescent Sol in H<sub>2</sub>O with absorption of heit

Sol in 8 pts H<sub>2</sub>O at 23°

(Necse, J B **1863** 181) Transition point, 35 4° (D'Ans

and Schreiner), 36 45° (Shiomi), 35 2° (Menzies and Humphery)

| Solubility in H <sub>3</sub> PO <sub>4</sub> +Aq at 25° |               |  |
|---------------------------------------------------------|---------------|--|
| In 1000 g of the                                        | solution mols |  |
| No.                                                     | PO            |  |

| Na                   | PO4                  |  |
|----------------------|----------------------|--|
| 6 31<br>6 76<br>7 31 | 4 63<br>4 88<br>5 55 |  |

### (D'Ans and Schreiner, Z phys Ch 1910, 7 101)

See also above

+12H<sub>2</sub>O Ffflorescent Sol in H<sub>2</sub>O will absorption of heat

14 pts Na<sub>2</sub>HPO<sub>4</sub>+12H O mixed with 1 ) pts II<sub>2</sub>O at 10 8° lower the temperature 3 (Rudorff, B 2 68)

Sol in 8 48 pts  $\rm H_2O$  at 17° or 100 pts  $\rm H_2O$  dissol 11 8 pts at 17° and solution has sp gr = 1 0422 (Sch Sol in 4 pts cold and 2 pts boiling  $\rm H_2O$  (Pagel Sol in 4 pts  $\rm H_2O$  at 18 75° (Abl) 100 pts  $\rm H_2O$  dissolve 12 735 pts  $\rm Na_2HPO_4 + 12H$ 

(Michel and Krafft)

100 pts H<sub>2</sub>O dissolve 6.5 pts Na<sub>2</sub>HPO 12H O at 0°, 27.5 pts at 30° (Tilden, Che Soc **45** 409)

### Solubility in H<sub>3</sub>PO<sub>4</sub>+Aq at 25°

| In 1000 g of the                             | solution mols                                |
|----------------------------------------------|----------------------------------------------|
| Na                                           | POi                                          |
| 2 62<br>1 56<br>2 38<br>3 18<br>4 65<br>5 63 | 1 09<br>0 78<br>1 60<br>2 24<br>3 55<br>3 57 |

(D'Ans and Schreiner, Z phys Ch 1910, ) 101)

Sec also above

Melts in crystal water below 100°, castly forms supersaturated solutions (C Lussac)

Melts in crystal H2O at 34.6° (Persoz), 5° (Kopp), 40-41° (Mulder)

Melts in crystal II() at 35° (Like n. Chem Soc 45 109)

Supersaturated solutions are brought to crystallization by addition of a crysta Na<sub>2</sub>HPO<sub>4</sub>+12HO or an isomorphous stance as N i IIAs $O_4$ +12H O (1hom n, Chem Sec 35 200)

Insol in alcohol

Sodium dihydrogen phosphate, NiH2P( +

H<sub>2</sub>O Very sol in H<sub>2</sub>O Insol ın alec of (Graham)

 $+2H_2O$ Unchanged on air Very so in H<sub>2</sub>O, and solubility increases a spidly with he temperature (Jolv and Dufet, C R 1391)

100 pts  $H_2O$  dissolve 59 9 pts at 0°, 84 6 pts at 18° (Joly and Dufet)

Solubility of NaH<sub>2</sub>PO<sub>4</sub> in H<sub>2</sub>O at t° G of anydrous NaH<sub>2</sub>PO<sub>4</sub> in 100 g H<sub>2</sub>O Solid phase, NaH<sub>2</sub>PO<sub>4</sub>+2H<sub>2</sub>O

| t°                                                                       | G NaH <sub>2</sub> PO <sub>4</sub>                                                     | t°                                                                    | G NaH2PO4                                                                              |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| 0 1<br>1 0<br>3 0<br>5 0<br>10 0<br>15 0<br>20 0<br>25 0<br>26 0<br>27 0 | 57 86<br>59 08<br>61 47<br>63 82<br>69 87<br>76 72<br>85 21<br>94 63<br>96 73<br>99 20 | 28 0<br>30 0<br>31 0<br>33 0<br>34 0<br>35 0<br>37 0<br>40 2<br>40 55 | 101 71<br>106 45<br>108 93<br>114 31<br>117 14<br>120 44<br>126 76<br>138 16<br>110 83 |  |
|                                                                          |                                                                                        |                                                                       |                                                                                        |  |

40 8°, transition point

Solid phase, NaH<sub>2</sub>PO<sub>4</sub>+H<sub>2</sub>O

| 41 | 142 55 | 52 | 163 84 |  |  |
|----|--------|----|--------|--|--|
| 42 | 143 83 | 55 | 170 85 |  |  |
| 45 | 148 20 | 56 | 173 23 |  |  |
| 50 | 158 61 | 57 | 175 81 |  |  |

57 4°, transition point

### Solid phase, NaH<sub>2</sub>PO<sub>4</sub>

| 58                                      | 177 24           | 69         | 190 24                                              |
|-----------------------------------------|------------------|------------|-----------------------------------------------------|
| 60                                      | 179 33           | 80         | 207 29                                              |
| 62                                      | 181 35           | 90         | 225 31                                              |
| $\begin{array}{c} 62 \\ 65 \end{array}$ | 181 35<br>184 99 | 90<br>99 1 | $\begin{array}{c} 225 \ 31 \\ 246 \ 56 \end{array}$ |

(Imadzu, Chem Soc 1912, 33 359)

Solubility in H<sub>3</sub>PO<sub>4</sub>+Aq at 25°

In 1000 g of the solution mols

| Na   | PO <sub>4</sub> |
|------|-----------------|
| 6 19 | 4 68            |
| 6 01 | 4 67            |
| 5 12 | 4 36            |
| 4 81 | 4 22            |
| 4 36 | 4 08            |
| 4 06 | 4 03            |
| 4 19 | 4 38            |
| 4 32 | 4 96            |
| 4 65 | 5 89            |
| 4 58 | 6 40            |

(D'Ans and Schreiner, Z phys Ch 1910, 75

Trisodium trihydrogen phosphate, Na<sub>3</sub>H (PO<sub>4</sub>)<sub>2</sub>

Mot hydroscopic Sol in HO in all proportions (Joulie, C R 1902, 134 604) +1½H<sub>2</sub>O Sol in H<sub>2</sub>O (Filhol and Senderens, C R 93 388)

4 +7H O (Salzer, Arch Pharm 1894, 232
 365)
 +7½H₂O (Joulie)

Sodium orthophosphate acid, NaH<sub>2</sub>PO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub>

Hygroscopic Decomp by alcohol (Staudenmaier, Z anorg 1894, 5 395)

Solubility of NaH2PO4, H3PO4 in H2O at to

| t°                                                                 | %<br>NaH₂PO₄                                                                                                                 | Solid phase                                                                                                                                                                                      |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t°  - 5 7 - 7 9 - 11 4 - 38 - 34 + 41 51 7 79 7 85 101 7 104 5 110 | NaH2PO4<br>H3PO4<br>20 77<br>26 92<br>34 15<br>56 66<br>80 46<br>81 82<br>83 68<br>87 48<br>88 65<br>91 47<br>92 67<br>95 79 | Solid phase  Ice  ""  NaH <sub>2</sub> PO <sub>4</sub> ""  "+NaH <sub>2</sub> PO <sub>4</sub> , H <sub>3</sub> PO <sub>4</sub> NaH <sub>2</sub> PO <sub>4</sub> , H <sub>3</sub> PO <sub>4</sub> |
| 119<br>126 5                                                       | 97 99<br>100                                                                                                                 | 66                                                                                                                                                                                               |

(Parravano and Mieli, Gazz ch it 38, II 536)

# Solubility in anhydrous H<sub>3</sub>PO<sub>4</sub>

| t°                               | % NaH PO4 H3PO4                           |
|----------------------------------|-------------------------------------------|
| 98 5<br>111<br>119<br>122<br>123 | 52 72<br>69 59<br>77 55<br>81 71<br>87 20 |

(Parravano and Mieli)

+HO Very deliquescent (Salzer, Arch Pharm 1894, 232 369)

Sodium pyrophosphate, N 44P O, and +10H O

I ess sol in H O than sodium hydrogen orthophosphate (Clark Ed J Sci 7 298)

orthophosphate (Clark, Ed J Sci 7 298) 100 pts H.O dissolve (a) pts Na<sub>4</sub>P O<sub>7</sub>, (b)

pts Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+10H O at 30° 50° 40°  $0^{\circ}$ 10° 20° 1° 50 17 4) 6 23 9 95 3 95 3 16 33 25 10 92 18 11 24.976 81 b 541

60° 70° 80° 90° 100° a 21 83 25 62 30 04 35 11 40 26 b 44 07 52 11 63 40 77 47 93 11

(Poggiale)

Sol in  $H_0SO_4$  (Walden, Z anorg 1902, 29 384)

Crvstallizes unchanged from NH<sub>4</sub>Cl+Aq (Winkler), or conc NH<sub>4</sub>OH+Aq (Uelsmann) Decomp into orthophosphate by heating with H<sub>2</sub>SO<sub>4</sub>, HCl, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, or H<sub>3</sub>PO<sub>4</sub>+Aq Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829)
Insol in alcohol Insol in methyl acetate (Naumann, B 1909, **42** 3790)

Sodium hydrogen pyrophosphate, Na<sub>2</sub>H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>
Decomp by H<sub>2</sub>O Sol in H<sub>2</sub>O containing

HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> without decomp (Bayer, J pr 106 501) Sl sol m alcohol Much more sol m H<sub>2</sub>O

than  $NaH_2PO_4$ +6 $H_2O$  (Rammelsberg, B A B 1883)

21) 100 g sat solution contain 14 95 g  $Na_2H_2P_2O_7$  at 18° (Giran, A ch 1902, (7) 30 249)

NaH<sub>3</sub>P<sub>2</sub>O<sub>7</sub> Very hydroscopic (Salzer, Arch Pharm 1894, 232 369)
100 g sat solution contain 62 7 g at 18° (Giran, A ch 1902, (7) 30 249)

(Giran, A ch 1902, (7) 30 249) Na<sub>3</sub>HP<sub>2</sub>O<sub>7</sub>+H<sub>2</sub>O Sol in 3 pts H<sub>2</sub>O (Salzer, Arch Pharm 1894, 232 366)

+6H<sub>2</sub>O 100 g sat solution contain 28 17 g Na<sub>3</sub>HP<sub>2</sub>O<sub>7</sub> at 18° (Giran)

Sodium tetraphosphate, Na<sub>0</sub>F<sub>4</sub>O<sub>13</sub>
Slowly sol in 2 pts cold H O Fasily decomp
+18H<sub>2</sub>O (Uelsmann)

Sodium hydrogen telraphosphate, Na<sub>4</sub>H<sub>2</sub>P<sub>4</sub>O<sub>13</sub> Sol in H<sub>2</sub>O

Sodium dekaphosphate, Na<sub>1</sub> P<sub>10</sub>O<sub>31</sub> Sol in H<sub>2</sub>O (Fleitmann and Henneberg, A **65** 333)

Sodium strontium dimetaphosphate, Na<sub>2</sub>Sr(P<sub>2</sub>O<sub>6</sub>)<sub>2</sub>+4H O As the NaBa comp (Glatzel, Dissert 1880)

Sodium strontium trimetaphosphate, NaSrP<sub>3</sub>O<sub>9</sub>+3H<sub>2</sub>O Easily sol in H O and acids (1 leitmann, A 65 315)

Sodium strontium orthophosphate, NaSrPO<sub>4</sub> +H<sub>2</sub>O

Scarcely sol in  $H_2()$ , sol in acids  $+9H_2()$  (Joly, C R 104 905)

Sodium strontium pyrophosphate (?)
Sl sol in H<sub>2</sub>O Insol in N<sub>2</sub>4P<sub>2</sub>O<sub>7</sub>+Aq (Baei, Pogg **75** 166)
Easily sol in HCl+Aq, or HNO<sub>3</sub>+Aq
Sol in NH<sub>4</sub>OH+Aq

Sodium thallium pyrophosphate,  $Na_b[Tl(P_2O_7)_2] + 6H_2O = Na(TlP O_7),$   $Na_4P_2O_7 + 6H O$ Decomp by HO (Rosenheim, B 1915, 48 588.)

Sodium thorium orthophosphate,  $NaTh_2(PO_4)_3$ 

Insol in acids (Wallroth, Bull Soc (2) 39 316)

Sodium thorium phosphate, Na<sub>2</sub>O, 4ThO<sub>2</sub>, 3P<sub>2</sub>O<sub>5</sub>

Insol in HNO<sub>3</sub>, HCl, or aqua regia (Troost and Ouvrard, C R 105 30)

5Na<sub>2</sub>O, 2ThO<sub>2</sub>, 3P<sub>2</sub>O<sub>5</sub> Sol in HNO<sub>5</sub>+Aq (T and O)

 $Na_2O$ ,  $ThO_2$ ,  $P_2O_5$  (T and O)

Sodium thorium pyrophosphate, Na<sub>4</sub>P O<sub>7</sub>, ThP<sub>2</sub>O<sub>7</sub>+2H<sub>2</sub>O (Cleve)

Sodium tin (stannic) phosphate, NaSn<sub>2</sub>(PO<sub>4</sub>)<sub>8</sub> (Ouvrard, C R 111 177) Na<sub>2</sub>Sn(PO<sub>4</sub>)<sub>2</sub> (Wunder, J pr (2) 4 339) 6Na<sub>2</sub>O, 3SnO<sub>2</sub>, 4P<sub>2</sub>O<sub>5</sub> (Ouvrard)

Sodium titanium phosphate, NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> Insol in acids (Rose, J B **1867** 9) 6Na<sub>2</sub>O, TiO<sub>2</sub>, 4P<sub>2</sub>O<sub>5</sub> (Ouvrard, C R **111** 177)

Sodium uranium phosphate,  $UO_2$ ,  $Na_2O$ ,  $P_2O_5$ Fasily attacked by acids (Colani, A ch 1907, (8) **12** 137)

Sodium uranium metaphosphate, 4UO, Na<sub>2</sub>O, 3P<sub>2</sub>O<sub>b</sub>

Insol in boiling HNO<sub>3</sub> (Colani)

Sodium uranium pyrophosphate, 3UO, 6Na<sub>2</sub>O, 4P<sub>2</sub>O<sub>5</sub> Sol in acids (Colani)

Sodium uranyl phosphate, N<sub>12</sub>O, UO<sub>3</sub>, P O<sub>5</sub> (Ouvrard, C R 110 1333) 2N<sub>42</sub>O, UO<sub>3</sub>, P<sub>2</sub>O<sub>5</sub> (Ouvrard) Na<sub>2</sub>O, 5UO<sub>3</sub>, 2P<sub>2</sub>O<sub>5</sub>+3H<sub>2</sub>O Insol in H<sub>2</sub>O, decomp by acetic acid (Werther, A 68 312)

Sodium uranyl pyrophosphate

Very sol in  $H_2O$  (Persoz, A ch (3) 20 322)

Sodium ytterbium pyrophosphate, NaYbP<sub>2</sub>O<sub>7</sub> Easily sol in the strong acids (Wallroth)

Sodium yttrium pyrophosphate, NaYP<sub>2</sub>O<sub>7</sub>
Sol in H<sub>2</sub>O (Stromeyer)
Insol in H O Easily sol in strong acids (Wallroth)

Sodium zinc triphosphate.  $Na_2O_1 4ZnO_1 3P_2O_5 + 19H_2O_1$ 

(Schwarz, Z anorg 1895, 9 Sol in H<sub>2</sub>O 266)

Sodium zinc trimetaphosphate, Na<sub>2</sub>O, 2ZnO, 3P<sub>2</sub>O<sub>5</sub>

Ppt Sol in H<sub>2</sub>O (Fleitmann and Henneberg, A 65 304)

Sodium zinc tetrametaphosphate.  $Na_2Zn(PO_3)_4+6\bar{H}_2O$ 

As K comp (Glatzel, Dissert 1880)

Sodium zinc octometaphosphate,  $Na_2Zn_3(PO_3)_8$ 

Insol in acids Sol in conc H<sub>2</sub>SO<sub>4</sub> (Tammann, J pr 1892, (2) **45** 420)

Sodium zinc orthophosphate, NaZnPO4

Difficultly sol in H<sub>2</sub>O or acetic acid Easily sol in dil mineral acids (Scheffer, A 145 53)

2Na<sub>2</sub>O, ZnO, P<sub>2</sub>O<sub>5</sub> Insol in H<sub>2</sub>O, sol in dil acids (Ouvrard, C R 106 1796)

Sodium zinc pyrophosphate, Na<sub>2</sub>ZnP<sub>2</sub>O<sub>7</sub>

Insol in H<sub>2</sub>O, sol in dil acids roth)

 $3Na_4P_2O_7$ ,  $Zn_2P_2O_7+24H_2O$  Very efflorescent (Pahl)

 $Na_4P_2O_7$ ,  $Zn_2P_2O_7+2\frac{1}{2}$ , 3,  $3\frac{1}{2}$ , and  $8H_2O_1$ Insol in H<sub>2</sub>O, sol in Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq Sv V A F **30**, **7** 35) (Pahl,  $4Na_4P_2O_7$ ,  $5Zn_2PO_7+20H_2O$ Insol ın

H<sub>2</sub>O (Pahl) Sl sol in  $Na_4P_2O_7$ ,  $4Zn_2PO_7+12H_2O$ H<sub>2</sub>O (Pahl)

Sodium zirconium phosphate, Na<sub>2</sub>O, 4ZrO<sub>2</sub>,  $3P_2O_5 = N_3Zr (PO_4)_3$ 

Insol in acids or aqua regia (Troost and Ouvrard, C R 105 30) 6Na<sub>2</sub>O, 3ZrO, 4P<sub>2</sub>O<sub>5</sub> Sol in acids

and O) 4Na<sub>2</sub>O, ZrO<sub>2</sub>, 2P<sub>2</sub>O<sub>5</sub> Sol macids (T and

Sodium phosphate fluoride, Na<sub>3</sub>PO<sub>4</sub>, NaF+ 12H<sub>2</sub>O

100 pts H2O dissolve, at 25°, 12 pts salt and form solution of 1 0329 sp gr, at 70°, 57 5 pts salt and form solution of 1 1091 sp (Briegleb, A **97** 95)

2Na<sub>8</sub>PO<sub>4</sub>, NaF+19H<sub>2</sub>O, and 22 H<sub>2</sub>O Sol in H<sub>2</sub>O (Baumgarten, J B 1865 219)

Sodium phosphate stannate, 4Na<sub>3</sub>PO<sub>4</sub>, Na<sub>2</sub>SnO<sub>3</sub>+4SH<sub>2</sub>O (Prandtl, B 1907 40 2132)

Sodium phosphate titanate.  $Na_2O_5 + 3H_2O_5 + 3H_2O_5$ 

Hygroscopic (Mazzuchelli and Pantanelh, C C 1909, II 420)

Sodium phosphate vanadate See Phosphovanadate, sodium

Strontium monometaphosphate, Sr(PO<sub>3</sub>)<sub>2</sub> Insol in H<sub>2</sub>O and acids Not decomp by alkalı carbonates + Aq (Maddrell, A 61 61)

Strontium hexametaphosphate

Nearly insol in H<sub>2</sub>O, easily sol in acids (Ludert, Z anorg 5 15)

Strontium orthophosphate, basic, Sr(OH),  $Sr_3(PO_4)_2$ 

(Wovczynski, Z anorg 1894, 6 311)

Strontium orthophosphate, Sr<sub>3</sub>(PO<sub>4</sub>)

Insol in H<sub>2</sub>O Sol in HCl+Aq (Erlenmeyer, J B 1857 145)

Strontium hydrogen phosphate, SrHPO<sub>4</sub>

Insol in  $H_2O$ Sol in H<sub>4</sub>PO<sub>4</sub>, HCl, or HNO<sub>3</sub>+Aq (Vauquelin) Easily sol in cold ammonium nitrate, chloride, or succmate+Aq, but is partly precipitated by a little NH<sub>4</sub>OH+Aq (Brett)

Sol in boiling NH4Cl+Aq (Fuchs, 1834) Sol in Na citrate + Aq (Spiller Partly decomp by boiling Na CO<sub>3</sub>, and

Partly decomp (Dulong)

K<sub>2</sub>CO<sub>3</sub>+Aq (Dulong)

+2H O Decomp by treating (Barthe) with H<sub>2</sub>O, leaving 4 29% SrHPO<sub>4</sub> (Barthe)

Strontium phosphate, acid, HO, 2SrO,  $3P_2O_5+xHO$ 

Entirely sol in HO (Barthe C R 114 1267)

Strontium pyrophosphate, Sr  $P_2O_7+HO$ Somewhat sol in H<sub>2</sub>O Easily sol in HCl Insol in HCHO or or  $HNO_3 + Aq$ (Schwarzenberg A 65 144)  $N_{14}P_{2}O_{7}+Aq$ +2½HO (Knorre and Oppelt B 21 773)

Strontium hydrogen pyrophosphate, SrH<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, 2Sr<sub>2</sub>P<sub>2</sub>O<sub>7</sub>+6H O

Ppt (Knorre and Oppelt B 21 772)  $SrH_2PO_7$ ,  $3S_1PO_7+HO$ , and +2HO

(Knorre and Oppelt)

 $Sr_9H_2(P_2O_7)_5 + 8H_2O$ , and +12H O Ppt (Pahl, Gm - K 2, 2 172)  $S_{119}H_2(P O_7)_{10} + 5H O_7 + 19H O_7$  and

+20H OInsol in  $Sr(NO_3) + Aq$  or  $Na_4PO + Aq$ (Pahl, Gm - K 2, 2 171)

Strontium thorium phosphate, Th<sub>2</sub>O SrO, P<sub>2</sub>O (Colani, C R 1909, 149 209) Strontium uranium metaphosphate, UO, SrO, P<sub>2</sub>O<sub>5</sub> (Colani, A ch 1907, (8) **12** 141)

Strontum uranyl phosphate, SrO,  $4\text{UO}_3$ ,  $2\text{P}_2\text{O}_5+21\text{H}_2\text{O}$  (Blinkoff, Dissert 1900) 2SrO,  $5\text{UO}_3$ ,  $2\text{P}_2\text{O}_5+24\text{H}_2\text{O}$  As Ba comp (Blinkoff)

Strontum phosphate chloride,  $3Sr_3(PO_4)_2$ ,  $SrCl_2$ 

Strontrum apatrte Insol in H<sub>2</sub>O (Deville and Caron)

Tellurium phosphate (')
Insol in H<sub>2</sub>O (Berzelius)

Thallous metaphosphate, TlPO3

Two modifications a Difficultly sol in H<sub>2</sub>O

β Extremely easily sol in H<sub>2</sub>O (Lamy)

Thallous orthophosphate, Γl<sub>3</sub>PO<sub>4</sub>

1 pt is sol in 201 2 pts H<sub>2</sub>O at 15°, and 149 H<sub>2</sub>O, sol in HNO<sub>3</sub>+Aq sol in HC H<sub>3</sub>O<sub>2</sub>+Aq Very olutions of NH<sub>4</sub> solts (Car-L J in alcohol (Lamy)

Thallous hydrogen phosphate, Tl<sub>2</sub>HPO<sub>4</sub>

Anhydrous Much less sol in H<sub>2</sub>O than the hydrous salt, but easily sol in a solution of the hydrous salt (Lamy) + \(\frac{1}{2}\text{H}\_2\text{O}\) Easily sol in H<sub>2</sub>O Insol in

 $+\frac{1}{2}H_2O$  Easily sol in  $H_2O$  Insol in alcohol (Lamy)

Composition is HTl<sub>2</sub>PO<sub>4</sub>, 2H TlPO<sub>4</sub> (Rammelsberg, W Ann **16** 694)

Thallous dihydrogen phosphate, TlH<sub>2</sub>PO<sub>4</sub> Very easily sol in H<sub>2</sub>O Insol in alcohol (Rammelsberg, B **3** 278)

Trithallous irihydrogen phosphate, Tl<sub>2</sub>HPO<sub>4</sub>, 2TlH<sub>2</sub>PO<sub>4</sub>

True composition of Tl<sub>2</sub>HPO<sub>4</sub> of I amv (Rammelsberg)

Thallous pyrophosphate, Tl<sub>4</sub>P<sub>2</sub>O<sub>7</sub>

Sol in 2.5 pts H<sub>2</sub>O with slight decomposition (Lamy) +2H<sub>2</sub>O More sol in H<sub>2</sub>O than the above

 $+2H_2O$  More sol in  $H_2O$  than the above salt, with partial decomp (I amv)

Thallous hydrogen pyrophosphate, H<sub>2</sub>Tl<sub>2</sub>P<sub>2</sub>O<sub>7</sub> +H<sub>2</sub>O Very sol in H<sub>2</sub>O (Lamy)

bells pharehets have 200

Thallic phosphate, basic,  $2\text{Tl}_2\text{O}_3$ ,  $P_2\text{O}_5+5\text{H}_2\text{O}$ Insol in  $\text{H}_2\text{O}$ 

Thallic phosphate, basic,  $Tl_8P_9O_7+13H_2O$  (Rammelsberg, W Ann 16 694)  $Tl_6P_4O_{19}+12H_2O$  (R)

Thalic phosphate, TIPO<sub>2</sub>+2H<sub>2</sub>O

Completely insol in H<sub>2</sub>O Sol in conc

HNO<sub>3</sub>, and dil HCl+Aq (Willm)

Thorsum metaphosphate, Th(PO<sub>3</sub>)<sub>4</sub>
Insol in H<sub>2</sub>O (Troost, C R 101 210)

Thorium metaphosphate, ThO<sub>5</sub>, 2P<sub>2</sub>O<sub>5</sub> Insol in acids (Johnsson, B **22** 976)

Thorium orthophosphate, Th<sub>3</sub>(PO<sub>4</sub>)<sub>4</sub>+4H<sub>2</sub>O
Insol in H<sub>2</sub>O and phosphoric acid (Berzelius), also acetic acid (Cleve)
Sol in HCl, and HNO<sub>3</sub>+Aq (Cleve)

Thorium hydrogen phosphate, ThH<sub>2</sub>(PO<sub>4</sub>)<sub>0</sub>+ H<sub>2</sub>O

Precipitate

Thorium pyrophosphate, ThP<sub>2</sub>O<sub>7</sub>+2H<sub>2</sub>O
Precipitate Insol in H<sub>2</sub>O Sol in great
excess of pyrophosphoric acid or sodium pyrophosphate+Aq (Cleve)

Thorium phosphate bromide

See Bromophosphate, thorium

Thorium phosphate chlroide

See Chlorophosphate, thorium

Tin (stannous) phosphate, 5SnO,  $4P_2O_5+4HO$ 

Insol in H<sub>2</sub>O (I enssen, A 114 113) Sn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> Insol in H O Sol in mineral acids (Kuhn) Insol in NH<sub>4</sub>Cl or NH<sub>4</sub>NO<sub>3</sub>+Aq Sol in

KOH + Aq

Tin (stannic) phosphate,  $2 \text{SnO}_2$ , PiO +  $10 \text{H}_2 \text{O}$ 

Insol in  $H_2O$  or  $HNO_3 + ^Aq$  (Reynoso, J pi 54 261)

Anhydrous Insol in acids (Hautefeuille and Margottet, C R 102 1017)

Tin (stannic) phosphate, SnP2O7

Insol in acids (Hautefeuille ind Mirgottet C R 102 1017)

Tin (stannous) phosphate chloride, 3SnO, P<sub>2</sub>O<sub>5</sub>, SnCl<sub>2</sub>+H<sub>2</sub>O

Not decomp by hot  $H_2O$  (I enssen, A 114 113)

Titanium phosphate, Ti.P.O<sub>9</sub> = 2 l iO<sub>2</sub>, P<sub>2</sub>O<sub>5</sub> Insol in acids (Hautefeuille and Margottet, C R 102 1017)

(Ouvrard, C R 111 177) +3H<sub>2</sub>O Ppt Insol in HO (Merz) T<sub>1</sub>O, P<sub>2</sub>O<sub>5</sub> (Knop) (Wunder, J B **1871** 324) Is Na In (PO4)3

H<sub>3</sub>TiPO<sub>7</sub> Sol in HCl, HNO<sub>3</sub>, H<sub>3</sub>SO<sub>4</sub> Sl sol in H<sub>3</sub>PO<sub>4</sub> Sol in KOH, NH<sub>4</sub>OH, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> and

 $(NH_4)_2HPO_4 + Aq$ 

Very sl sol in acetic acid (Faber, Z anal 1907, 46 288)

Uranous metaphosphate, U(PO<sub>3</sub>)<sub>4</sub>

Insol in HNO<sub>3</sub>, HCl, or H<sub>2</sub>SO<sub>4</sub>, even when hot and conc (Colam, A ch 1907, (8) **12** 105)

Uranic metaphosphate, U<sub>2</sub>(PO<sub>3</sub>)<sub>c</sub>

Insol in H2O and acids (Hautefeuille and Margottet, C R 96 849)

Uranous orthophosphate, U<sub>3</sub>(PO<sub>4</sub>)<sub>4</sub>

More easily attacked by acids than the pyro and meta phosphates, especially by HNO (Colani, A ch. 1907, (8) 12 123)

Uranous hydrogen orthophosphate, UHPO<sub>4</sub>+ H<sub>2</sub>O

Insol in dil, sl sol in Decomp by KOH+Aq, Insol in H<sub>2</sub>O conc HCl+Aq not by NH<sub>4</sub>OH+Aq (Rammelsberg, Pogg **59** 1)

Uranous pyrophosphate, UP<sub>2</sub>O<sub>7</sub>

Insol in H<sub>2</sub>O SI sol in min wids (Colani)

Uranous phosphate, 2UO<sub>2</sub>, P<sub>2</sub>()

Lasily attacked by boiling  $HNO_3$ (Col mi)

 $UO_{2}$  $P_2O_5+5H_2O$  Insol in  $H_2SO_4$  and in HCl+Aq of medium concentration Sol in very conc HCl+Aq (Aloy, Dissert 1901)

Uranyl metaphosphate, U() (PO3)

(Runmelsberg B A B 1872 447) UO<sub>3</sub>, 2PO Insol in ucids (Johnsson, B 22 976)

Uranyl orthophosphate, U()  $IIP()_4+1\frac{1}{2}II_2()$ 

Insol in H<sub>2</sub>O + 3H( ()

+4II()

+41<sub>2</sub>H O Insol in H O Sol in 67,000 pts HC II<sub>3</sub>O +  $\Delta q$  50,000 pts NII<sub>4</sub>C H<sub>3</sub>O<sub>2</sub>+ Aq, and 300,000 pts of a mixture of the above two solutions. Sol in K<sub>2</sub>CO<sub>3</sub> or N<sub>42</sub>CO<sub>3</sub>+ Aq (Kitschin, ( N 27 199)

Uranyl dihydrogen phosphate,  $UO_2H_4(PO_4)_2+3II_2O$ 

Decomp by H<sub>2</sub>O Sol in H<sub>3</sub>PO<sub>4</sub>+Aq (Werther, J pr **43** 322)

Uranyl pyrophosphate, (UO<sub>2</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>+5H<sub>2</sub>O

Efflorescent Insol in H<sub>2</sub>O  $HNO_3+Aq$ , and  $Na_4P_2O_7+Aq$ Insol in  $\begin{array}{lll} Na_2HPO_4+Aq & Insol \ m \ alcohol \ or \ ether \\ (Grard, C R \ \textbf{34} \ 22 \ ) \\ +4H_2O & (Casteing, Bull \ Soc \ (2) \ \textbf{34} \ 20 \ ) \end{array}$ 

Uranyl tetraphosphate (?),  $UO_2P_4O_{11}$ (Johnsson, B 22 978)

Uranous orthophosphate chloride,  $U_3(PO_4)_4$ , UCl₄

Sl sol in HCl+Aq Sol in HNO<sub>3</sub> and HNO<sub>3</sub>+HCl (Colani, A ch 1907, (8) 12 127)

Uranous hydrogen orthophosphate chloride, U(HPO<sub>4</sub>)<sub>2</sub>, UCl<sub>4</sub>

Very sl sol in H<sub>2</sub>O (Aloy, Dissert 1901)

Vanadium phosphate,  $(VO_2)H_2PO_4+4\frac{1}{2}H_2O$ Sol in H<sub>2</sub>O See Phosphovanadic acid

Vanadium pyrophosphate,  $V_4(P_2()_7)_3 + 30H_2O$ 

Insol in H<sub>2</sub>O (Rosenheim, B 1915, 48 590)

Divanadyl phosphate

Very deliquescent, and sol in H<sub>2</sub>O ın alcohol (Berzelius)

Ytterbium metaphosphate,  $Yb(PO_3)_3$ 

Insol in H<sub>2</sub>O (Cleve, Z anorg 1902, 32 149)

Ytterbium orthophosphate, YbPO<sub>4</sub>+4½H<sub>2</sub>O Ppt (Cleve)

Ytterbium phosphate, Yb  $O_3$ ,  $2P_2O_5+5H_2O$ Sol in H<sub>2</sub>O (Cleve)

Yttrium metaphosphate, Y(PO<sub>3</sub>)<sub>3</sub> Insol in II O or acids (Cleve)

Yttrium orthophosphate, YPO<sub>4</sub>

Insol in H<sub>2</sub>O or acids after Anhydrous15 nition

Min Xenotime Insol in conc icids Sl sol in much conc HCl+Aq, but cisily sol therein when first heated with a little HCl+ Aq(Wuth i, \ 139 237)

Yttrium hydrogen orthophosphate, Y<sub>2</sub>(HPO<sub>4</sub>)<sub>3</sub> Decomp by boiling with H2O into insol YPO4 and sol acid salt

Yttrium pyrophosphate, YHP<sub>2</sub>O<sub>7</sub>+3½H<sub>2</sub>O

Difficultly sol in acids Decomp by ILSO4 Sol in Na4P O7+Aq (Cleve) 2Y2O3, 3P2O5 Insol in acids (Johnsson, B 22 976)

Zinc metaphosphate

Sol in H<sub>0</sub>O (Berzelius)

Zinc dimetaphosphate, ZnP2O6

Sol only in boiling H<sub>2</sub>SO<sub>4</sub> (Fleitmann,

Pogg 78 350)

Not decomp by boiling Na<sub>2</sub>S or (NH<sub>4</sub>)<sub>2</sub>S+Aq +4H<sub>2</sub>O Insol in H<sub>2</sub>O, but decomp by boiling therewith (Fleitmann, Pogg 78

Sol in 4 pts H<sub>2</sub>O Conc H SO<sub>4</sub> decomp it easily, other acids act slightly (Glatzel, Dissert **1880**)

Difficultly decomp by boiling acids

Zinc trimetaphosphate,  $Zn_3(PO_8)_6+9H_2O$ 1 l  $H_2O$  dissolves 0 l g at 20 $^{\circ}$  (7 ammann, J pr 1892, (2) 45 426)

Zinc tetrametaphosphate,  $Zn_2(PO_3)_4+10H_2O$ Sol in 55 pts  $H_2O$  Decomp by acids only on boiling (Glatzel, Dissert 1880) Somewhat sol in  $HNO_3+Aq$  Sol in boiling  $H_2SO_4$  (Glatzel)

Zinc orthophosphate,  $Z_{n_3}(PO_4)_2+4H_2O$ Insol in  $H_2O$  Easily sol in acids,  $NH_4OH$ ,  $(NH_4)_2CO_3$ ,  $(NH_4)_2SO_4$ , or  $NH_4NO_3+Aq$  (Heintz, A 143 356) Sol in  $NH_4Cl+Aq$  (Fuchs)

Easily sol in Zn salts+Aq (Rose) Insol in liquid NH<sub>s</sub> (Franklin, Am Ch J 1898, **20** 930) Min Hoperie

+6H<sub>4</sub>O (Reynoso)

Zinc hydrogen phosphate, ZnHPO<sub>4</sub>+H<sub>2</sub>O
Insol in H<sub>2</sub>O, sol in H<sub>3</sub>PO<sub>4</sub>+Aq (Graham)

Zinc tetrahydrogen phosphate,  $ZnH_4(PO_4)_2 + 2H_2O$ 

Nearly insol in H O, but decomp thereby mto  $\rm H_3PO_4$  and  $\rm 10ZnO,~4P_2O_5+10H_2O$  (Demel, B 12 1171)

Zinc phosphate, 10ZnO,  $4P_2O_5+10H_2O$ Insol in  $H_2O$  (Demel, B 12 1171)

Zinc pyrophosphate,  $Zn P O_7 + \frac{3}{2}H_2O$ 

Ppt Sol in H SO<sub>3</sub>+Aq Sol in acids, KOH+Aq, NH<sub>4</sub>OH+Aq (Schwarzenberg, A **65** 151)
Sol in Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>+Aq (Gladstone), and in ZnSO<sub>4</sub>+Aq (Rose)

Insol in acetic acid (Knorre, Z anorg

1900, 24 389)

+5H<sub>2</sub>O Insol in H<sub>2</sub>O (Pahl, J B **1873** 229)

Zinc hydrogen pyrophosphate

Sol in H<sub>2</sub>O (Pahl, Sv V A F 30, 7 45)

Zinc metaphosphate ammonia Ppt (Bette)

Zinc orthophosphate ammonia, 2ZnO, P<sub>2</sub>O<sub>5</sub>, 3NH<sub>3</sub>+8H<sub>2</sub>O (Rother, A 143 356) 6ZnO, 3P<sub>2</sub>O<sub>5</sub>, 8NH<sub>3</sub>+4H<sub>2</sub>O (Schweikert, A 145 51<sup>7</sup>)

Zinc pyrophosphate ammonia, 3Zn<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, 4NH<sub>3</sub>+9H<sub>2</sub>O Ppt Insol in H<sub>2</sub>O (Bette)

Zirconium orthophosphate,  $5ZrO_2$ ,  $4P_2O_5+8H_2O$ 

Somewhat sol in acids (Hermann, J pr 97 321)
Insol in acids (Paykull, Bull Soc (2) 20 65)

 $2ZrO_2$ ,  ${}_{\bullet}P_2O_5$  Not attacked by acids (Hautefeuille and Margottet, C R 102 1017)

Zirconium pyrophosphate, Zi (PO<sub>3</sub>)<sub>2</sub> (Knop, A 159 36)

# Phosphoricovanadicotungstic acid

Ammonium phosphoricovanadicotungstate,  $14(NH_4)_2O$ ,  $2PO_3$ ,  $7V_2O_3$ ,  $31WO_3 + 78H_2O$ 

Sol in  $\rm H_2O$  Insol in alcohol, ether,  $\rm CS_2$  and benzene (Rogers, J Am Chem Soc 1903, **25** 305)

Phosphorimidamide, PN<sub>2</sub>H<sub>3</sub> (Joannis, C R 1904, **139** 365)

Phosphorimide, P2(NH)3

Very sol in ammoniacal solution of  $\mathrm{NH_4I}$  (Hugot, C R 1905, **141** 1236)

Phosphornitryl, PON See Phosphoryl nitride

Phosphorosomolybdic acid, P<sub>2</sub>O<sub>3</sub>, 24MoO<sub>3</sub>+63H ()

(Rosenheim and Pinsker, Z anorg 1911, 70 77)

Ammonium phosphorosomolybdate,  $2(NH_4)_2O$ ,  $2H_3PO_3$ ,  $12M_0O_3 + 12^1_2H_2O$ Insol in cold, slightly sol in hot  $H_2O$ (Gibbs, Am Ch J 5 361)

# Phosphorosophosphomolybdic acid

Ammonium phosphorosophosphomolybdate,  $9(\mathrm{NH_4})_2\mathrm{O},\ 2\mathrm{H_3PO}_3,\ 3\mathrm{P_2O}_5,\ 72\mathrm{MoO_3} + 3\mathrm{9H_2O}$ 

Nearly insol in H<sub>2</sub>O (Gibbs)

# Phosphorosophosphotungstic acid

Potassium phosphorosophosphotungstate,  $5K_2O$ ,  $2H_3PO$ ,  $P_2O_5$ ,  $24WO_3+13H_2O$ Sol in much boiling  $H_2O$  (Gibbs, Am Ch J 7 313)

# Phosphorosotungstic acid

Ammonium phosphorosotungstate, 6(NH<sub>4</sub>)<sub>2</sub>O, 4H<sub>3</sub>PO<sub>8</sub>, 22WO<sub>3</sub>+25H<sub>2</sub>O

Sl sol in cold H<sub>2</sub>O

Potassium —,  $5K_2O$ ,  $16H_3PO_3$ ,  $32WO_3+46H_2O$ Sl sol in hot  $H_2O$ 

Nearly insol in cold, sl sol in hot  $\rm H_2O$  (Gibbs, Am Ch J 7 313)

# Phosphorous anhydride, P<sub>2</sub>O<sub>3</sub> See Phosphorus traoxide

# Phosphorous acid, H<sub>3</sub>PO<sub>3</sub>

Deliquescent Very sol in H<sub>2</sub>O

Phosphites

The neutral alkalı phosphites are sol in  $\rm H_2O$ , most of the others are sl sol in  $\rm H_2O$ , but sol in  $\rm H_3PO_3+Aq$  all are insol in alcohol

Aluminum phosphite, basic, Al  $(HPO_d)_3$   $Al_d(OH)_r$ 

Ppt (Grutzner, Arch Phum 1897, 235 698)

Aluminum phosphite

Procept to (Rose, Pogg 9 39) Sl sol in H O

Ammonium phosphite, (NII4) HPO3+H2O

Very deliquescent, and sol in H<sub>2</sub>O (Rose, Pogg 9 28)

Sol in 2 pts cold, and less hot II<sub>2</sub>O Insol in alcohol (Berzelius) Insol in actone (Fidmain, C.C. 1899, II 1014, Naumann, B. 1904, **37**, 4328)

Ammonium hydrogen phosphite, (NII4H)HP();

Very deliquescent, and sol in  $H_2O=1$  pt  $H_2O$  dissolves 1.71 pts salt at 0°, 1.9 pts at 14.5°, and 2.60 pts at 31° (Amat, C. R. 105.809.)

### Ammonium hydroxylamine phosphite, NH<sub>4</sub>(NH<sub>3</sub>OH)HPO<sub>3</sub>

Sol in  $H_2O$  and abs alcohol (Hofmann, Z anorg 1898, 16 466)

Ammonium magnesium phosphite, (NH<sub>4</sub>)<sub>2</sub>Mg<sub>3</sub>(PHO<sub>3</sub>)<sub>4</sub>+16H<sub>2</sub>O

Slightly sol in  $H_2O$  (Rammelsberg, Pogg 131 367)

Antimonyl phosphite, (SbO) $H_2PO_3$ 

Very sol in H<sub>2</sub>O containing HCl (Grützner, Arch Pharm 1897, **235** 694)

Barium phosphite, BaHPO<sub>3</sub>

100 pts H<sub>2</sub>O dissolve 0.25 pt (Ure) Very slightly sol in H<sub>2</sub>O, and decomp by

boiling H<sub>2</sub>O (Dulong)

Easily sol in HO containing NH<sub>4</sub>Cl
(Wackenroder, A 41 315)

Sol in H<sub>3</sub>PO<sub>3</sub>+Aq or HCl+Aq (Railton)

Barium hydrogen phosphite, Ba<sub>2</sub>H<sub>2</sub>(HPO<sub>3</sub>)<sub>3</sub>+

8H<sub>2</sub>O
Easily sol in H<sub>2</sub>O, but decomp by boiling

therewith Insol in alcohol (Rammelsberg, Pogg 132 496)

Barium dihydrogen phosphite, BaH<sub>2</sub>(HPO<sub>3</sub>)<sub>2</sub> +½H<sub>2</sub>O

Easily sol in  $H_2O$  (Rose, Pogg 9 215) + $H_2O$  Sol in  $H_2O$ , decomp by boiling  $H_2O$  into a neutral insol, and an acid sol salt (Wurtz, A 58 66)

+2H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Rammelsberg, Pogg 132 496)

Insol in alcohol (Wuitz)

Bismuth phosphite,  $2B\iota_2O_3$ ,  $3P~O_3$ 

Insol in H<sub>2</sub>O
Bl<sub>2</sub>(HPO<sub>3</sub>)<sub>3</sub>+3H<sub>2</sub>O
Ppt
(Grutzner,

Arch Pharm 1897, 235 696)

Docump by H<sub>2</sub>S Not decomp by KOH

+ Aq (Vanino, J pr 1906, (2) 74 151)

Cadmium phosphite, CdHPO<sub>3</sub>+3H<sub>2</sub>O Ppt (Rose, Pogg **9** 41)

Calcium phosphite, CaHPO<sub>3</sub>+<sup>3</sup>/<sub>2</sub>H<sub>2</sub>O

SI sol in HO, the aqueous solution is decomp by boiling +H<sub>2</sub>O Sol in NH<sub>4</sub>Cl+Aq (Wicken-

roder, A 41 315) Insol in ilcohol

Calcium hydrogen phosphite,  $C\,\iota H\,(HPO)\,\, )\,\,+\,\, H\,\, O$ 

Sol in H<sub>2</sub>O Aqueous solution is decomp by alcohol (Wurtz, A ch (3) 7 212)

Chromic phosphite

Precipitate Almost insol in HO (Rose, Pogg 9 40)

Cobaltous phosphite, CoPHO<sub>3</sub>+2H<sub>2</sub>()
Ppt Sl sol in H<sub>2</sub>O (Rose)

Cupric phosphite, CuHPO<sub>3</sub>+2H<sub>2</sub>O

Ppt Insol in H<sub>2</sub>O (Wurtz, A ch (3)

16 213)

Didymum phosphite, Di<sub>2</sub>(HPO<sub>3</sub>)<sub>3</sub>
Precipitate (Frerichs and Smith, A 191 331)

Glucinum phosphite

Precipitate Insol in  $H_2O$  (Rose, Pogg 9 39)

Iron (ferrous) phosphite, FeIIPO<sub>3</sub>+xH<sub>2</sub>O
Ppt Nearly insol in H<sub>2</sub>O (Rose, Pogg 9 35)

Iron (ferric) phosphite, basic, Fe<sub>2</sub>(HPO<sub>3</sub>)<sub>3</sub>, Fe<sub>2</sub>(OH)<sub>6</sub> (Gritizner, Arch Pharm 1897, **235** 697)

(Grützner, Arch Pharm 1897, **235** 697) Fe<sub>4</sub>(HPO<sub>3</sub>)<sub>6</sub>, Fe(OH)<sub>3</sub>+5H<sub>2</sub>O Hydroscopic (Berger, C R 1904, **138** 1500)

Iron (ferric) phosphite, Fe<sub>2</sub>(HPO<sub>3</sub>) +9H<sub>2</sub>O Ppt Sol in iron alum+Aq (Rose)

Tanthanum phosphite, La<sub>2</sub>(HPO<sub>3</sub>)<sub>3</sub>
(Smith)

hosphite, basic, 4PbO, P<sub>2</sub>O<sub>3</sub>+2H<sub>2</sub>O
(Rose, Pogg **9** 222)
), FO<sub>3</sub>+H<sub>2</sub>O Insol in H<sub>2</sub>O Sol in
dil H<sub>3</sub>PO<sub>3</sub>+Aq, from which it is
pptd by NH<sub>4</sub>OH+Aq (Wuitz, A ch (3) **16** 214)

Lead phosphite, PbHPO<sub>3</sub>,

In-ol in  $\rm H_2O$  Very sl sol in a solution of phosphorous reid, casily sol in cold HNO,  $+ \rm Aq$  (Wurtz)

Lead hydrogen phosphite,  $PhH_4(PO_3)$  . Decomp by  $H_2O$  . (Amat, C. R. 110 901)

Lead pyrophosphite, PbH<sub>2</sub>P ()
Gradually dccomp by H<sub>2</sub>O into H<sub>3</sub>PO<sub>3</sub> and PbHPO<sub>3</sub> (Am it, ( R 110 903)

Lithium hydrogen phosphite, I iII P(), Very sol in H<sub>2</sub>() (Amit A ch (b) 24 309)

Lithium pyrophosphite, I i H P<sub>2</sub>O<sub>1</sub> Very sol in H O (Am it A ch 1891, (6) 24 352)

Magnesium phosphite, MgHPO +3H,O Sl sol in HO (Rose, Pogg 9 25) Sol in 400 pts HO (Berzelius) +4H<sub>2</sub>O

Magnesium pyrophosphite, Mg(H<sub>2</sub>PO<sub>3</sub>) Very sol in H<sub>2</sub>O (Amat A ch 1891, (6) 24 313) Manganous phosphite, MnHPO<sub>3</sub>+½H<sub>2</sub>O Difficultly sol in H<sub>2</sub>O, easily in MnCl<sub>2</sub> or MnSO<sub>4</sub>+Aq (Rose, Pogg **9** 33)

Nickel phosphite, NiHPO<sub>3</sub>+3½H O Ppt Sl sol in H<sub>2</sub>O

Potassium phosphite, K<sub>2</sub>HPO<sub>3</sub>

Very deliquescent Very sol in HO Insol in alcohol (Dulong)

Potassium hydrogen phosphite, (KH)HPO<sub>3</sub>
1 pt H<sub>2</sub>O dissolves about 172 pts salt at
20° (Amat C R 106 1351)
K<sub>2</sub>HPO<sub>3</sub>, 2H<sub>3</sub>PO<sub>3</sub> Very sol in H<sub>2</sub>O
(Wurtz, A 58 63)
Sol in 3 pts cold, and in less hot H<sub>2</sub>O

(Fourcroy and Vauquelin )

Potassium pyrophosphite,  $K_2H_2P_2O_5$ Very sol in  $H_2O$  (Amat A ch (6) **24** 351)

Sodium phosphite, basic, Na<sub>2</sub>HPO<sub>3</sub>,

Not obtained in pure state (Zimmerman, B 7 290), = Na PO<sub>3</sub> (Wishcenus)

Does not exist (Amat)

Sodium phosphite, Na<sub>2</sub>HPO<sub>3</sub>+5HO
Deliquescent, and very sol in H<sub>2</sub>O Insol in alcohol
Correct formula for Na<sub>3</sub>PO<sub>4</sub> of Kosc and Dulong

Sodium hydrogen phosphite,  $(NaH)HPO_3 + 2^{1}/2HO$ 

0 56 pt salt dissolves in 1 pt II () at 0°, 0 66 pt at 10° 1 93 pts at 42° (Amat, C R 106 1351)

Na H<sub>4</sub>(HPO<sub>3</sub>)<sub>3</sub>+H<sub>2</sub>O Deliquescent in moist air Sol in 2 pts cold, and about the same amt hot H<sub>2</sub>O Sl sol in spirit (Four-eroy and Vauquelin)

Sodium pyrophosphite, N 12H2P ()5 Very sol in H2O with gradual decomposito N 12HPO3 (Amat)

Strontium phosphite, StHPO<sub>4</sub>+1<sup>1</sup><sub>2</sub>H<sub>2</sub>O
Difficultly sol in H O Aqueous solution decomp on heating into a sol and sulf and an insol base sulf

Strontium hydrogen phosphite,  $StH_4(PO_3)$ Verv Sol in  $H_2O$  (Am it, A. ch. (6) 24 312)

Thallous hydrogen phosphite, IIH P(), Very sol in H<sub>2</sub>O (\mat, A ch (6) 24 310)

Thallous pyrophosphite,  $\Gamma l_2 H P_2 O_0$ Deliquescent Verv sol in  $H_2 O$  (Amat) Tin (stannous) phosphite, SnHPO3

Ppt Sol in HCl+Aq (Rose, Pogg 9 45)

Tin (stannic) phosphite,  $2SnO_2$ ,  $P_2O_3$ Ppt (Rose, Pogg 9 47)

Titanium phosphite (?)

Precipitate (Rose, Pogg 9 47)

Uranyl phosphite, (UO)<sub>8</sub>H<sub>2</sub>(HPO<sub>3</sub>)<sub>4</sub>+12H<sub>2</sub>O Precipitate (Rammelsberg Pogg **132** 500)

Zinc phosphite, ZnHPOs

Sol in  $H_2O$  (Rammelsberg, Pogg 132 481)

+2½H<sub>2</sub>O More easily sol in cold than warm H<sub>2</sub>O (Rammelsberg)

Zinc phosphite, acid, Zn<sub>2</sub>H<sub>3</sub>P<sub>3</sub>O<sub>8</sub>

Sol m H<sub>2</sub>O

 $+2\mathrm{H}_2\mathrm{O}$  Sol in H O (Rammelsberg, Pogg 132 498)

Zn<sub>3</sub>H<sub>5</sub>P<sub>5</sub>O<sub>18</sub> Sol in H<sub>2</sub>O

 $+3H_2O$  Sol in  $H_2O$  (Rammelsberg)  $Zn_2H_9P_5O_{14}$  Sol in  $H_2O$ 

 $+H_2O$  Sol in  $H_2O$  (Rammelsberg)

Zirconium phosphite, Zr(PO<sub>3</sub>) +H<sub>2</sub>O

Ppt Neurly insol in dil mineral acids (Hauser, Z anorg 1913 84 92)

# Phosphorous anhydride, P2O3

See Phosphorus trioxide

Phosphorus, P

(a) Ordinary white phosphorus Insol in  $H_2O$ , but slowly decomp thereby (G,K),

very sl sol in ff () (Baralius and others) A pure aqueous solution containing 0.1 g P in 500 cc. II<sub>2</sub>O c in be obtained by dissolving 0.1 g P in CS<sub>2</sub> mixed with other and hot alcohol, this solution is poured into 500 cc boiling II () free from ur, and the boiling continued with sturing until the alcohol, other and CS are boiled off (Pokorny, Ch. Ztg. 1896, 20, 1022.)

100 g H O Sat with P contains 0 0003 g P (Stich, C C 1903, I 1291)

Sol with decomp in hot cone HNO<sub>3</sub>+Aq Decomp by boiling custic ilkalies+Aq Easily sol in SCl<sub>2</sub>, especially if hot (Woh-

ler)
Sol in sulphur phosphides

Largely sol in PCl<sub>3</sub> Easily sol in PCl<sub>5</sub>

J 1898, **20** 828)

Sol in PBr<sub>3</sub> Sol in PSCl<sub>3</sub>, easily on warming, separating on cooling (Serullas, A ch 1829, **42** 25)

Sol in liquid SO<sub>2</sub> (Sestini, Bull Soc 1868, (2) **10** 226) Sol in liquid NH<sub>3</sub> (Franklin, Am Ch Sol in S<sub>2</sub>Cl<sub>2</sub> without foaming (Nicolardot, C R 1908, **147** 1304)

Sol in PS<sub>4</sub>Cl<sub>5</sub> (Gladstone, A 1850, **74** 91)

Sol in 320 pts cold alcohol of 0 799 sp gr, and in 240 pts of the same when warm Pptd from alcoholic solution by  $\rm H_2O$  (Buchner)

One grain P dissolves in 1 ounce abs alcohol (Schacht)

Sol in 20 pts absolute ether at 20° and 240 pts ordinary ether at 20° (Bucholz)

Sol in 80 pts absolute ether at 15 5°, and 240 pts ordinary ether at 15 5° (Brugnatelli, A ch 24 73)

Solubility of P<sub>4</sub> in 100 g ether at t°

| t°                                                                      | G phosphorus                                                                                              | Sp gr                                    |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------|
| 0<br>5<br>8<br>10<br>15<br>18<br>20<br>23<br>25<br>28<br>30<br>33<br>35 | 0 4335<br>0 62<br>0 79<br>0 85<br>0 9<br>1 005<br>1 04<br>1 121<br>1 39<br>1 601<br>1 75<br>1 8<br>1 9984 | at 13° 0 7257<br>at 19° 0 7187<br>0 7283 |

(Christomanos, Z anorg 1905, 45 136)

Solubility of P4 in 100 g benzene at to

| Coldonia         | 01 1 4 111 100 8                                                   | ~             |
|------------------|--------------------------------------------------------------------|---------------|
| t°               | G phosphorus                                                       | Sp gr         |
| 0                | 1 513                                                              |               |
| 5                | 1 99                                                               |               |
| 5<br>8           | $2 \ 31$                                                           |               |
| 10               | $2\ 4$                                                             |               |
| 15               | 2 7                                                                | at 13° 0 8959 |
| 18               | 3 1                                                                |               |
| $\widetilde{20}$ | 3 21                                                               | at 19° 0 8912 |
| $\overline{23}$  | 3 3995                                                             | at 22° 0 8875 |
| $\tilde{25}$     | 1 99<br>2 31<br>2 4<br>2 7<br>3 1<br>3 21<br>3 3995<br>3 7<br>4 35 | 0 8861        |
| $\overline{28}$  | 4 35                                                               |               |
| 30               | 4 601                                                              |               |
| 33               | 5 0                                                                |               |
| 35               | 5 17                                                               |               |
| 40               | 5 75                                                               | 1             |
| 45               | 6 105                                                              |               |
| 50               | 6.8                                                                | l             |
| 55               | 7 315                                                              |               |
| 60               | 7 9                                                                | }             |
| 65               | 8 4                                                                | {             |
| 70               | 8 898                                                              | 1             |
| 75               | 9 4                                                                |               |
| 81               | 10 027                                                             | 1             |
| J.               | <u> </u>                                                           | !             |

(Christomanos)

Sol to about 1% in acetic acid Arch Pharm 1878, 213 38) (Vulpius,

100 g 96% acetic acid dissolve 0 105% P

(Stich, Pharm Ztg 1903, 48 343)
Sol in 005 pt CS<sub>2</sub> (Bottger), 0125 pt

(Trommsdorf)

Alcohol ppts P from CS2 solution

1 pt CS<sub>2</sub> dissolves 17-18 pts P (Vogel, J B **1868** 149)

### Solubility in CS<sub>2</sub> at t° (g per 100 g of solution)

| t°                                                                                      | G P <sub>4</sub>                          | t°                                                                    | G P₄                             |
|-----------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|----------------------------------|
| $   \begin{array}{r}     -10 \\     -75 \\     -5 \\     -35 \\     -32   \end{array} $ | 31 40<br>35 85<br>41 95<br>66 14<br>71 72 | $\begin{array}{c c} -2 & 5 \\ 0 & 0 \\ +5 & 0 \\ +10 & 0 \end{array}$ | 75 00<br>81 27<br>86 30<br>89 80 |

(Cohen and Inouye, Z phys Ch 1910, 72 418)

Very sol in methylene iodide (Retgers, Z anorg 3 343)

Strong vinegar dissolves P (Beudet) Sol in considerable amount in stearic acid

(Vulpius, Arch Pharm (3) 13 38) Sol in ethyl chloride, benzoyl chloride, stannic chloride, and in liquid cyanogen

Sl sol in ethyl nitrite, and wood-spirit Sl sol in acetone, with gradual decomposi-

Insol in nicotine, and confine

Sl sol in cold, more sol in hot benzene (Mansfield)

Sol in 14 pts hot, and less in cold petro-

leum from Amiano (Saussure) Sl sol in "liquid paraffine" (Crismer, B **17** 649)

Sl sol in warm essential oils, as oil of turpentine, and in the fatty oils

Sol in hot oil of copaiba, separating out on cooling

Sol in hot oil of caraway, and mandarin oil (Luca)

Sl sol in cold, more sol in hot caoutchin, depositing on cooling

Readily sol in warm, less in cold styrene Sol in aniline, and quinoline (Hofmann)

Sl sol in cold creosote Somewhat sol in fusel oil

Easily sol in valerianic acid, and amyl

Sol in hexyl alcohol, ethylene chloride,

allyl sulphocyanide, mercury methyl, chloroform, bromoform, warm chloral, acetic ether aldehyde, hot carodyl sulphide, and in carodyl oxide

100 g oil of almonds sat with P contain 1 25 g (Stich, C C 1903, I 1291)

100 g oleic acid sat with P contain 106 g (Stich)

100 g paraffine sat with P contain 1 g (Stich)

(b) Amorphous phosphorus Insol in Insol in NH<sub>4</sub>OH+Aq (Fluckiger) Insol in H<sub>2</sub>O

Sol in boiling KOH+Aq

The statement of Burgess and Chapman, (Chem Soc 79 1235) that red P is sol in aqueous alcoholic alkalı is incorrect ordinary crystalline and amorphous red P are insol in aqueous alcoholic alkalı (Michaelis. A 1902, **325** 367

nnsol in liquid NH₃ (Hugot, A ch. 1900 (7) 21, **31**), (Franklin, Am. Ch. J. 1898, **20** 828 )

Bright red variety is sol in liquid NH<sub>3</sub> at ord temp leaving a black residue (Stoch. Bottcher and Lenger, B 1909, 42 2854)

Amorphous Sol in S<sub>2</sub>Cl<sub>2</sub> with foaming (Nicolardot,

C R 1908, 147 1304)

Solubility of amorphous bright red P<sub>4</sub> in PBr<sub>3</sub> is diminished by long heating as follows

| •                       | 172°    | 185°  |
|-------------------------|---------|-------|
| Initial concentration   | 0 555   | 0 476 |
| Final concentration     | 0 374   | 0 397 |
| Length of expt in hours | 34      | 24    |
| 198°                    | 218°    |       |
| 0 592                   | 0 476   |       |
| 0 416                   | 0 592   |       |
| 18                      | 17      |       |
| (Buck, Disser           | t 1904) |       |

Ordinary amorphous P4 is sol in PBr3 A sample prepared by heating bright red amorphous P with 942% P dissolved by heating in PBr<sub>3</sub> as follows

% P 0 106 0 121 0.178hours 10 20 42

A finely pulverized commercial product containing 98 0% P

% P 0.92 0 116 hours 10 20

An ordinary commercial product with 98% P

% P 0 056 0 108 hours 10 (Buck)

100 g PBr<sub>3</sub> dissolve 0 2601 g bright red phosphorus at 172°, 0 3634 g at 184° (Schenk, B 1902, **35** 353)

Insol in KOH+Aq

Conc H<sub>2</sub>SO<sub>4</sub> does not act upon it in the cold, but dissolves easily when hot

Insol in dil, easily sol in conc HNO<sub>3</sub>+

Aq with decomposition

Much more sol in  $HNO_3+Aq$  than ordinary P (Personne, C R 45 115)

Insol in methylene iodide (Retgers) Appreciably sol in isobutyl alcohol (Svedberg)

Insol in CS<sub>2</sub>, alcohol, ether, naphtha, ligroine, PCl3, etc

Sl sol in boiling oil of turpentine and

other high-boiling liquids, with conversion into ordinary phosphorus

Insol in oil of turpentine even at 270°

(Colson, A ch 1908, (8) 14 554)

(c) Crystalline Insol in, and not attacked by dil HNO<sub>3</sub>+Aq Sol in CS<sub>2</sub>

### Phosphorus tribromide, PBr<sub>3</sub>

Decomposed by H<sub>2</sub>O, slowly at 8°, but very rapidly at 25° (Lowig, Pogg 14 485) Sol in liquid H<sub>2</sub>S (Antony and Magri,

Gazz ch it 1905, 35 (1) 206) Sol m AlBr<sub>3</sub> (Isbekow, Z anorg 1913,

**84** 27) Sol in ether, acetone, CHCl<sub>8</sub>, C<sub>6</sub>H<sub>6</sub> and CS<sub>2</sub> (Christomanos, Z anorg 1904, **41** 287)

### Phosphorus pentabromide, PBr<sub>5</sub>

Fumes on air, and is violently decomp by H<sub>2</sub>O

### Phosphorus tribromide ruthenium bromide, Ru<sub>2</sub>P<sub>5</sub>Br<sub>19</sub>

Decomp by boiling H<sub>2</sub>O Slowly sol in hot alcohol with decomp Insol in benzene, CCl4, ligroin and cold alcohol (Strecker, B 1909, 42 1775)

Phosphorus thiophosphoryl bromide, PBr<sub>8</sub>,  ${
m PSBr}_8$ 

Decomp by H<sub>2</sub>O into PSBr<sub>3</sub> (Michaelis)

Phosphorus tribromide ammonia, 3PBr<sub>3</sub>,  $5NH_{3}$ 

Slowly but completely sol with decomp in H<sub>2</sub>O (Storer's Dict)

Phosphorus pentabromide ammonia, PBr<sub>5</sub>, 9NH<sub>3</sub>

(Besson, C R 111 972)

Phosphorus monobromotetrachloride, PBrCl<sub>4</sub> Decomp by H<sub>2</sub>O (Prinvault, C R 74 868)

Phosphorus dibromotrichloride, PCl<sub>3</sub>Br<sub>2</sub> Very unstable (Michaelis, B 5 9)

Phosphorus tetrabromotrichloride, PCl<sub>3</sub>Br<sub>4</sub> Decomp with H<sub>2</sub>O (Geuther)

Phosphorus heptabromodichloride, PCl<sub>2</sub>Br<sub>7</sub> (Prinvault, C R 74 868) Very unstable

Phosphorus octobromotrichloride, PCl<sub>3</sub>Br<sub>8</sub> Very easily decomp (Michaelis, B 5 9)

Phosphorus bromofluoride, PF3Br2 Decomp violently with H<sub>2</sub>O (Moissan, Bull Soc (2) 43 2)

Phosphorus bromonitride See Nitrogen bromophosphide

Phosphorus dichloride, P<sub>2</sub>Cl<sub>4</sub>

Decomp by H<sub>2</sub>O (Besson, C R 1910, **150** 103 )

# Phosphorus trichloride, PCl<sub>2</sub>

Gradually decomp by H<sub>2</sub>O

0 11 g is sol in 100 ccm liquid H<sub>2</sub>S (Antony, Gazz ch it 1905, **35** (1) 206) Acted upon by liquid NH<sub>8</sub>

Am Ch J 1898, **20** 828) Miscible with CS2, C6H6, CHCl3, and  $_{
m ether}$ 

Decomp with alcohol

# Phosphorus pentachloride, PCl<sub>5</sub>

Very deliquescent, and sol in H<sub>2</sub>O with violent decomp and evolution of heat Sol Acted upon by liquid NH2 in liquid HCl Somewhat sol (Schiff, A 102 without decomp in CS2 118 (Franklin, Am Ch J 1898, 20 828)

Sol without decomp in benzoyl chloride (Gerhardt)

Sol in oil of turpentine with evolution of heat

Monophosphorus platinous chloride, PCl<sub>2</sub>,

Deliquescent Sol in H<sub>2</sub>O with formation of chloroplatinophosphoric acid Sımılarly decomp by alcohol Abundantly sol in hot benzene, toluene, chloroform, or carbon tetrachloride, and crystallizes on cooling (Schutzenberger, Bull Soc (2) 17 482)

#### Diphosphorus platinous chloride, 2PCl<sub>3</sub>, $PtCl_2$

Decomp by H<sub>2</sub>O with formation of chloroplatinodiphosphoric acid Similarly decomp Sol without decomp in PCl<sub>2</sub>, by alcohol ČCl₄, CHCl₃, C<sub>6</sub>H<sub>6</sub>, or C<sub>7</sub>H<sub>8</sub> (Schutzenberger)

Sol in propyl alcohol with formation of the propyl ether of platinochlorophosphorous acid and HCl (Pomcy, C R 104 364)

#### Phosphorus diplatinous chloride, PCl<sub>3</sub>, 2PtCl<sub>2</sub>

Sol in ilcohol, with formation of ether (PtCl<sub>2</sub>)<sub>2</sub>P(OC<sub>2</sub>H<sub>5</sub>)<sub>3</sub> (Cochin, C R 1402)

Phosphorus platinic chloride, PCl<sub>3</sub>, PtCl<sub>4</sub> (Schutzenberger)

Phosphorus pentachloride platinic chloride, PCl<sub>5</sub>, PtCl<sub>4</sub>, or (PCl<sub>4</sub>)<sub>2</sub>PtCl<sub>6</sub>

Decomp at once by H2O (Baudrimont. A ch (4) 2 47)

Phosphorus peniachloride selenium tetrachloride, 2PCl<sub>5</sub>, SeCl<sub>4</sub>

Sol in H<sub>2</sub>O with decomp (Baudrimont, A ch (4) 2 5)

Phosphorus irichloride ruthenium chloride, Ru<sub>2</sub>P<sub>5</sub>Cl<sub>19</sub>

Slowly decomp by boiling H<sub>2</sub>O

Sol in benzene and CHCl<sub>3</sub> Sl sol in CCl<sub>4</sub> Insol in ligroin (Streeker, B 1909, **42** 1774)

Phosphorus tellurium chloride,  $PCl_5$ ,  $2TeCl_4$ 

Very deliquescent Sol in  $H_2O$  (Metzner, A ch 1898, (7) 15 203)

Phosphorus pentachloride stannic chloride, PCl<sub>5</sub>, SnCl<sub>4</sub>

Very deliquescent Sol in much  $\rm H_2O$  with evolution of heat, forming SnCl<sub>4</sub>, HCl, and  $\rm H_3PO_4$ , and soon separates out stannic phosphate (Casselmann, A 83 257)

Phosphorus trichloride titanium chloride, PCl<sub>3</sub>, TiCl<sub>4</sub>

(Bertrand, Bull Soc (2) 33 565)

rus pentachloride titanium chloride, l<sub>5</sub>, TiCl<sub>4</sub>

Denquescent Decomp by H<sub>2</sub>O and alcohol Sol in ether Sl sol in PCl<sub>3</sub> (Tuttschew, A **141** 111)

Completely sol in dil acids (Weber)

Phosphorus uranium pentachloride, PCl<sub>5</sub>, UCl<sub>5</sub> Decomp with H<sub>2</sub>O

Phosphorus pentachloride zirconium chloride, PCl<sub>5</sub>, ZrCl<sub>4</sub>

Decomp by  $H_2O$  with pptn of Zr phosphate (Paykull)

Phosphorus trichloride ammonia, PCl<sub>3</sub>, 5NH<sub>3</sub>

Insol as such in  $H_2O$ , but slowly decomp by boiling  $H_2O$  More easily sol with decomp in acids Sol with decomp by boiling with KOH or NaOH+Aq (Berzelius)

Phosphorus pentachloride ammonia,  $PCl_5$ ,  $5NH_3$ 

Properties as  $PCl_3$ ,  $5NH_3$  (Berzelius)  $PCl_5$ ,  $8NH_3$  Sl decomp on air (Besson, C R 111 972)

Phosphorus pentachloride tungsten trioxide, 2PCl<sub>5</sub>, WO<sub>3</sub>(?)

(Persoz and Bloch, C R 28 389)

Phosphorus chlorobromide

See Phosphorus bromochloride

Phosphorus chlorofluoride, PCl<sub>2</sub>F<sub>3</sub>

Absorbed by  $H_2O$  with decomp Absorbed by alcohol or ether (Poulenc, A ch (6) **24** 555)

Phosphorus chloroiodide, PCl<sub>3</sub>I<sub>2</sub>

Decomp by moist air or  $H_2O$  Sol in  $CS_2$  (Most, B 13 2029)

Phosphorus chloronitride
See Nitrogen chlorophosphide

Phosphorus trifluoride, PF3

Decomp slowly by H<sub>2</sub>O (Moissan, Bull

Soc (2) **43** 2) Rapidly abso

Rapidly absorbed by KOH or NaOH+Aq, slowly by  $BaO_2H_2$ , and  $K_2CO_3+Aq$  Ab sorbed by absolute alcohol with decomp (Moissan, C R 99 655)

Phosphorus pentafluoride, PF<sub>5</sub> Fumes on air (Thorpe, A 182 20)

Phosphorus pentafluoride ammonia,  $2PF_5$ ,  $5NH_3$ 

(Moissan, C R 101 1490)

Phosphorus pentafluoride nitrogen peroxide Decomp by H<sub>2</sub>O (Tassel, C R 110 1264

Phosphorus fluobromide

See Phosphorus bromofluoride

Phosphorus fluochloride
See Phosphorus chlorofluoride

Phosphorus subiodide, P4I

Sol in dil HNO<sub>3</sub> and in alkalies+Aq (Boulouch, C R 1905, **141** 257)

Phosphorus diodide, P2I4

Decomp by  $\rm H_2O$  Sol in CS (Corenwinder, A ch (3) 30 242) 009 g is sol in 100 ccm liquid  $\rm H_2S$  (Antony, C C 1905, I 1692)

Phosphorus truodide, PI3

Very deliquescent Decomp in moist air and by  $H_2O$  (Corenwinder, A (h (3) 30 242)

Very sol in CS<sub>2</sub>

Phosphorus pentaiodide, PI<sub>5</sub> (?) (Hampton, C N **42** 180)

Phosphorus iodosulphide See Phosphorus sulphoiodide

Phosphorus nitride, P3N5

Very slightly decomp by long boiling with H<sub>2</sub>O

Completely insol in any solvent (Stock,

Completely insol in any solvent (St. B 1903, **36** 317)

### Phosphorus suboxide, P<sub>4</sub>O

Unchanged in dry, gradually oxidized in moist air Insol in H<sub>2</sub>O, alcohol, ether, and oils, not acted on by HCl+Aq, oxidized by

HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub> (Marchand, J pr 13 442) Sl sol in H<sub>2</sub>O (le Verrier, A 27 167) Forms hydrate P<sub>4</sub>O, 2H<sub>2</sub>O, which gives up

its H2O when dried Two modifications (a) decomp slowly by

 $H_2O$  or alkalies, (b) not decomp by  $H_2O$  or alkalies (Reinitzer and Goldschmidt, B 13 847)

oxyphosphuretted hydrogen  $\mathbf{Is}$ P<sub>4</sub>H(OH) (Franke, J pr (2) **35** 341)

### ---- H<sub>3</sub>P<sub>5</sub>O

Insol in all solvents Decomp by H2O Not attacked by non-oxidizing acids comp by dil alkalies (Gautier, C R 76 173)

#### —— P₄HO

Insol in nearly all substances Not attacked by dilute acids, oxidized by ordinary HNO<sub>3</sub>, and conc H<sub>2</sub>SO<sub>4</sub> at 200° Attacked by very dil alkaline solutions Perhaps identical with phosphorus suboxide P<sub>4</sub>O (Gautier, C R **76** 49)

# Phosphorus oxide, P<sub>2</sub>O

Decomp by heating with  $H_2O$  at  $100^\circ$  (Besson, C R 1897, 124 764)

# Phosphorus trioxide, $P_4O_6$ (formerly $P_2O_3$ )

Deliquescent, but very slowly dissolved by cold  $H_2O$  to form  $H_3PO_3$  Violently decomp by hot H<sub>2</sub>() or alcohol

Sol without decomp in ether, carbon disulphide, benzene, or chloroform (Thorpe and Tutton, Chem Soc 57 545)

# Phosphorus tetroxide, P<sub>2</sub>O<sub>4</sub>

Very deliquescent Sol with evolution of heat in HO (Thorpe and Fulton, Chem Soc 49 833)

### Phosphorus pentoxide, P<sub>2</sub>O<sub>5</sub>

Very deliquescent Sol in H2O with great evolution of heat, forming H<sub>3</sub>PO<sub>4</sub>

Insol in liquid NII<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828)

Insol in actions (Fidmann, C C 1899, (I 1014), (Numum, B 1904, **37** 4329)

# Phosphorus sulphur oxide, $P_2O_5$ , $3SO_3 =$ $(PO)_2(SO_4)_3(phosphoryl sulphate)$ (?)

Decomp by H<sub>2</sub>O Sol in cold, more sol in warm SO<sub>3</sub> (Weber, B 20 86)

# Phosphorus oxy-compounds

See under Phosphoryl compounds

# Phosphorus oxysulphide

See Phosphorus sulphoxide

### Phosphorus semiselenide, P<sub>4</sub>Se

Decomp with H<sub>2</sub>O Insol in cold, decomp by boiling KOH+Aq Insol in, but apparently decomp by alcohol and ether Easily sol in CS<sub>2</sub> (Hahn, J pr 93 430)

### Phosphorus monoselenide, P<sub>2</sub>Se

Stable in dry, decomp in moist air and by H<sub>2</sub>O Insol in alcohol and ether Decomp by boiling KOH+Aq CS<sub>2</sub> dissolves out P (Hahn, J pr 93 430)

Sl sol in CS<sub>2</sub> (Gore, Phil Mag (4) 30

414)

### Phosphorous sesquiselenide, P<sub>4</sub>Se<sub>3</sub>

Sol in CCl<sub>4</sub>, sl sol in CS<sub>2</sub> (Meyer, 7) anorg 1902, 30 258)

### Phosphorus triselenide, P<sub>2</sub>Se<sub>3</sub>

Decomp by boiling H<sub>2</sub>O and slowly in cost air Easily sol in cold KOH+Aq, moist air less easily in M2CO3+Aq Insol in alcohol, ether, and CS<sub>2</sub> (Hahn, J pr 93 430)

### Phosphorus pentaselenide, P<sub>2</sub>Se<sub>5</sub>

Slowly decomp in moist air or by H<sub>2</sub>O, easily by KOH+Aq or alcohol Insol in  $CS_2$  Sol in  $CCl_4$  (Hahn, J pr 93 430)

# Phosphorus selenides with M<sub>2</sub>Se

See M phosphoselenide, under M

# Phosphorus semisulphide, $P_4S(?)$

Not decomp by, and insol in 1 Liquid boiled H<sub>2</sub>O Insol in alcohol and ether Sl sol in fats and volatile oils, decomp by alkalies Dissolves P on warming, with separation on cooling Sol in CS<sub>2</sub>

2 Red modification Not attacked at first by HNO<sub>3</sub>+Aq (sp gr 122), but after a time is attacked with the greatest violence Weak acids attack only when hot lius, A 46 129)

Existence is doubtful (Schulze, B 13) 1862, Isambert, C. R. 96, 1628)

# Phosphorus monosulphide, P S(?)

1 Ordin iry Same properties is phos-

phorus semisulphide, 1

2 Red modification Unchanged by un, H<sub>2</sub>O, or alcohol Decomp by cone KOH+ Aq, not by dilute SI sol in NH4OH+Aq (Berzelius, A 46 129)

Existence is doubtful (Schulze, Isam-

bert)

Does not exist (Helff, Z phys Ch 12 206)

# Phosphorus sesquisulphide, $P_4S_3$

Not attacked by cold, slowly by hot H<sub>2</sub>O Cold KOH+Aq dissolves with decomp

Oxidized by HNO<sub>3</sub> and aqua regia Sol in Sol in CS2 alcohol and ether with decomp (100 pts CS2 dissolve 60 pts P4S3), PCl3, and PSCl<sub>3</sub>, and in K<sub>2</sub>S or Na<sub>2</sub>S+Aq Bull Soc (2) 1 407) (Lemome,

Very sol in CS<sub>2</sub> (Rebs, A **246** 367) Decomp by dil and conc KOH+Aq 1 pt  $P_4S_3$  is sol in 9 pts  $CS_2$  at  $-20^\circ$ , in 3 7 pts  $CS_2$  at 0°, in 1 pt  $CS_2$  at 17°, in 40 pts benzene at 17°, in 9 pts benzene at 80°, in 32 pts toluene at 17°, in 6 5 pts toluene at 111° (Stock, B 1910, **43** 156)

Phosphorus trisulphide, P<sub>2</sub>S<sub>3</sub>

Decomp by water (Kekulé, A 90 310) Sol in M<sub>2</sub>CO<sub>3</sub>+Aq with separation of S Easily sol in KOH, NaOH, NH<sub>4</sub>OH+Aq (Berzelius, A 46 129)

Sol m alcohol and ether (Lemoine) Correct formula is P<sub>4</sub>S<sub>6</sub> (Isambert, C R

**102** 1386)

Extremely sl sol in CS<sub>2</sub> (Rebs, A 246

Existence doubtful (Helff, Z phys Ch **12** 210)

Phosphorus sulphide, P<sub>4</sub>S<sub>7</sub>

Sl sol in CS<sub>2</sub> (Mai, A **265** 192)

Slowly decomp by cold, rapidly by hot  $H_2O$ 

Sol in cold alkalies

1 pt is sol in 3500 pts CS2 at 17°, in 20,000 pts at 0° (Stock, B 1910, 43 416)

Phosphorus disulphide, P<sub>3</sub>S<sub>6</sub> (formerly P<sub>2</sub>S<sub>4</sub>) Almost insol in CS<sub>2</sub> (Helff)

Phosphorus pentasulphide, P<sub>2</sub>S<sub>5</sub>

Very deliquescent Decomp by H<sub>2</sub>O Very sol in KOH, NaOH, NH<sub>4</sub>OH+Aq Sol in M<sub>2</sub>CO<sub>3</sub>+Aq with separation of S at low temp Decomposes alcohol, acetic acid, etc (Kekulé, A 106 331)

Sol in CS<sub>2</sub> (Isambert, C R 102 1386) Not very sol in CS<sub>2</sub> (Rebs, A 246 367) Mpt, 290°, bpt, 513-515° at 760 mm

Decomp by H<sub>2</sub>O

Easily sol in warm NaOH+Aq

1 pt is sol in 450 pts CS2 at room temp, in 550 pts at 0°, in 1200 pts at -20° (Stock, B 1910, 43 1225)

Ordinary form

Sol in 195 pts boiling CS<sub>2</sub>

New form

Sol in 32 pts CS<sub>2</sub> (Stock, B 1905, 38 2722)

Phosphorus persulphide, P<sub>2</sub>S<sub>12</sub> (?)

Decomp by H<sub>2</sub>O, alkalies, etc Consists of S, and mechanically united P (Ramme, B 12 941)

Phosphorus sulphides with M2S See M Phosphosulphide, under M Phosphorus zinc sulphide, ZnP<sub>3</sub>S<sub>2</sub>

Sol in HCl+Aq with separation of P<sub>8</sub>S (?) (Berzelius, A 46 150)

Phosphorus trisulphide ammonia, P2S3, 2NH2 Decomp by H<sub>2</sub>O (Bineau)

Phosphorus pentasulphide ammonia,

P<sub>2</sub>S<sub>5</sub>, 6NH<sub>3</sub>

Sol in liquid NH<sub>8</sub> (Stock, B 1903, 36 314)

 $P_2S_5$ ,  $7NH_8$  (Stock)

Phosphorus sulphobromide See Thiophosphoryl bromide

Phosphorus sulphochloride See Thiophosphoryl chloride

Phosphorus sulphoiodide, P<sub>2</sub>S<sub>3</sub>I

Sl attacked by cold, rapidly by hot H<sub>2</sub>O, violently decomp by fuming HNO<sub>3</sub> Easily sol in CS<sub>2</sub> Sl sol in C<sub>6</sub>H<sub>6</sub> or CHCl<sub>3</sub>, and still less in ether or absolute alcohol (Ouvrard, C R 115 1301)

Easily sol in CS<sub>2</sub>  $P_2S_2I_2$ More easily than P4S<sub>8</sub>I<sub>2</sub> and less than PI<sub>3</sub> (Ouvrard, A

ch 1894, (7) 2 224)

 $P_2SI_4$ Easily decomp (Ouvrard) P<sub>4</sub>S<sub>3</sub>I<sub>2</sub> Insol in H<sub>2</sub>O, sol in warm ether SI sol in benzene, CHCl<sub>3</sub> and glacial acetic acid, sol in toluene and xylene (Wolter, Ch Ztg 1907, **31** 640)

Easily sol in CS<sub>2</sub> Sl sol in benzene, ether, absolute alcohol and CHCl<sub>3</sub> (Ouvrard, C R

1892, **115** 1301)

Phosphorus sulphoxide, P<sub>4</sub>O<sub>6</sub>S<sub>4</sub>

Deliquescent Easily sol in H<sub>2</sub>O with de-Sol in 2 pts CS<sub>2</sub> without decomp Sol in benzene with decomp (Thorpe and Tutton, Chem Soc 59 1019)

 $P_2O_2S_3$ Slowly decomp by H<sub>2</sub>O V<sub>10</sub>lently attacked by fuming HNO<sub>3</sub> (Besson,

C R 1897, **124** 152)

 $P_4S_3O_4$ Deliquescent, sol in H<sub>2</sub>O with decomp, insol in most solvents (Stock, B 1913, 46 1382)

Phosphoryl triamide, PO(NH<sub>2</sub>)<sub>3</sub>

Insol in boiling H<sub>2</sub>O, KOH+Aq, or dil ids Decomp by long boiling with HCl or acıds  $HNO_3 + Aq$ More easily decomp with Easily sol in warm H2SO4 or aqua regia nitrosulphuric acid (Schiff, A 101 300) Does not exist (Gladstone, Mente, A **248** 238)

Phosphoryl bromide, POBr<sub>3</sub>

Not miscible with H<sub>2</sub>O, but gradually decomp in contact with it Sol in H2SO4, ether, oil of turpentine (Gladstone, Phil Mag (3) 35 345), in CHCl<sub>3</sub>, CS<sub>2</sub> (Baudrimont, Bull Soc 1861 118)

Easily sol in AsBr<sub>3</sub> (Walden, Z anorg 1902, 29 374) Sol in CCl<sub>4</sub>, and in C<sub>6</sub>H<sub>6</sub> (Oddo, Chem

Soc 1900, **78** (2) 75)

Phosphoryl bromide sulphide See Thiophosphoryl bromide

Phosphoryl bromochloride, POCl<sub>2</sub>Br Decomp by H<sub>2</sub>O (Menschutkin, A 139 343)

Phosphoryl dibromochloride, POClBr<sub>2</sub> Decomp by H<sub>2</sub>O (Geuther, Jena Zeit **10** 130)

Phosphoryl chloride, POCl

Very hygroscopic Sol in H<sub>2</sub>O with demp Insol in most solvents Sol in PCl<sub>3</sub> Sol in H<sub>2</sub>O with de-

(Besson, C R 1897, 125 772)

POCl<sub>3</sub> Decomp by H<sub>2</sub>O Not acted on by liquid CO<sub>2</sub>, P, PH<sub>3</sub>, CS<sub>2</sub>, I, Br, Cl, etc Sol in CCl<sub>4</sub>, C<sub>6</sub>H<sub>6</sub>, CS<sub>2</sub>, CHCl<sub>3</sub> and ether (Oddo, Gazz ch it 1899, 29 (2) 318, Chem Soc 1900, 78 (2) 74)

Phosphoryl boron chloride, POCl<sub>3</sub>, BCl<sub>3</sub> See Boron phosphoryl chloride

Phosphoryl stannous chloride, POCl<sub>3</sub>, SnCl<sub>2</sub> Deliquescent Decomp by H2O (Casselmann, A 91 242)

Phosphoryl stannic chloride, POCl<sub>3</sub>, SnCl<sub>4</sub> Deliquescent Decomp by H<sub>2</sub>O (Casselmann)

Phosphoryl titanium ch'oride, POCl<sub>3</sub>, 11Cl<sub>4</sub> Deliquescent, and decomp by H<sub>2</sub>O (Weber, Pogg 132 453)

Pyrophosphoryl chloride, P<sub>2</sub>O<sub>3</sub>Cl<sub>4</sub>

Decomp violently with H2O (Gouther and Michielis, B 4 766)

Very sol in H2O with decomp, very unstable (Besson, C R 1897, 124 1100)

Metaphosphoryl chloride, PO<sub>2</sub>Cl Decomp by  $H_2O$  (Gust ivson) Does not exist (Michaelis)

Phosphoryl fluoride, POlia

Absorbed and decomp at once by H2O or alcohol (Moissan, C R 102 1245)

Phosphoryl imidoamide,  $PN_2H_3O =$ PO(NH)NH<sub>2</sub>

Insol in H<sub>2</sub>O, gradually decomp by boiling with HO, more rapidly in presence of KOH Insol in boiling cone HCl+Aq Insol in cold, decomp by hot H<sub>2</sub>SO<sub>4</sub> Moderately dil H<sub>2</sub>SO<sub>4</sub>+Aq dissolves without evolution | H<sub>2</sub>O without decomp (Weinland)

Insol in boiling nitric or nitrosul-ad (Gerhardt, A ch (3) 20 255) of gas phuric acid Insol in alcohol, oil of turpentine, etc.

Phosphoryl iodide, P<sub>3</sub>I<sub>6</sub>O<sub>8</sub> (?)

Sol in H<sub>2</sub>O, alcohol, and ether (Burton. Am Ch J 3 280) PO<sub>2</sub>I<sub>2</sub> (Burton)

Phosphoryl nitride, PON

Insol in H<sub>2</sub>O, acids, or alkalies (Gladstone, Chem Soc 2 121)

Phosphoryl chlorosulphide, P2O2SCl4 Slowly decomp in contact with H<sub>2</sub>O (Besson, C R 1897, 124 153)

Phosphoryl thio-compounds See Thiophosphoryl compounds

Phosphoselenic acid See Selenophosphoric acid

Phosphoselenide, M See under M

Phosphosilicic acid See Silicophosphoric acid

Phosphosilicosovanadicotungstic acid

Ammonium phosphosilicosovanadicotungstate

Exact formula not known (E F Smith, J Am Chem Soc 1903, 25 1225)

Phosphosilicovanadic acid, 3SiO2, 2V2O5, 2P<sub>2</sub>O<sub>5</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Berzelius)

Phosphostannosovanadicotungstic acid

Ammonium phosphostannosovanadicotung-

I x ict formul i not known (E F Smith, J Am Chem Soc 1903, **25** 1226)

Phosphosulphide, M

See under M

Phosphosulphuric anhydride, P<sub>2</sub>O<sub>5</sub>, 3SO<sub>3</sub> Very easily decomp (Weber, B 19 3190)

Phosphotelluric acid

Ammonium phosphotellurate,  $2(NH_4)_2O$ ,  $P_2O_5$ ,  $TeO_3+4H_2O$ 

Easily sol in H<sub>2</sub>O (Weinland, Z anorg 1901, **28** 61) 4(NH<sub>4</sub>)<sub>2</sub>O, 3P<sub>2</sub>O<sub>5</sub>, 2TeO<sub>3</sub>+11H<sub>2</sub>O Sol in

Potassium phosphotellurate, 15K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>,  $TeO_3$ 

 $+175 H_2O$ Very sol in H<sub>2</sub>O +45 H<sub>2</sub>O Ppt (Weinland)

Rubidium phosphotellurate, 15Rb<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>,  $TeO_3+45H_2O$ 

Ppt (Weinland)

Sodium phosphotellurate, 2Na<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>,  $2\text{TeO}_3 + 9\text{H}_2\text{O}$ 

Difficultly sol in cold H<sub>2</sub>O (Weinland)

# Phosphothorosovanadicotunstic acid

#### Ammonium phosphothorosovanadicotungstate

Exact formula not known (E F Smith, J Am Chem Soc 1903, 25 1226)

# Phosphotitanosovanadicotunstic acid

### Ammonium phosphotitanosovanadicotungstate

Formula not known (E F Smith, J Am Chem Soc 1903, **25** 1226)

### Phosphotungstic acid, P<sub>2</sub>O<sub>5</sub>, 12WO<sub>8</sub>+ 42H<sub>2</sub>O

Not efflorescent Sol in  $H_2O$ , alcohol, and ether (Péchard, C R 110 754)  $P_2O_5$ ,  $16WO_3+69H_2O$  Very efflorescent Sol in  $H_2O$ , alcohol, and ether (Péchard,

C R 109 301) + $xH_2O = H_5PW_8O_{29} + xH_2O$  (\$\alpha\$-phospholuteotungstic acid) Known only in aqueous solution (Kehrmann, B 20 1808)

 $+48H_2O = H_3PW_8O_{28} + 16H_2O$  (a anhydrophospholuteotungstic acid) Sol in its crystal H<sub>2</sub>O by warmth of the hand, sol in less than

1/8 pt H<sub>2</sub>O (Kehrmann) Correct composition is represented by H<sub>3</sub>PW<sub>9</sub>O<sub>31</sub>+9H<sub>2</sub>O (Kehrmann, Z anorg 1

 $P_2O_5$ ,  $20WO_3+8H_2O$  (Gibbs, B **10** 1386) Very efflorescent

 $+19H_2O = H_{11}PW_{10}O_{38} + 8H_2O$ Sol ın (Scheibler, B 5 801)

+50, and 62H<sub>2</sub>O Very efflorescent (Péchard, C R 109 301)  $_{3\text{H}_{2}\text{O}}$ , P<sub>2</sub>O<sub>5</sub>, 21WO<sub>3</sub>+30H O Efflorescent Sol in H<sub>2</sub>O in nearly every proportion P<sub>2</sub>O<sub>5</sub>, 22WO<sub>3</sub>+28H<sub>2</sub>O = H<sub>5</sub>PW<sub>11</sub>O<sub>43</sub>+ 18H<sub>2</sub>O Efflorescent (Scheibler, B 5 801)

Composition is  $6H_2O$ ,  $22WO_3$ ,  $P_2O_5$ +  $(G_1bbs)$ 45H<sub>2</sub>O

 $H_3PO_4$ ,  $12WO_3+18H_2O$ , or  $P_2O_5$ ,  $24WO_3+2H_2O$  Sol in  $H_2O$ , alcohol and ether (Soboleff, Z anorg 1896, 12 18)

 $P_2O_5$ ,  $24WO_3+40H_2O=6H_2O$ ,  $P_2O_5$ ,  $24WO_3+34H_2O$  Very efflorescent So Sol in H<sub>2</sub>O (Gibbs )  $+45H_2O$ 

Solubility in H<sub>2</sub>O at t°

| t°                  | 100 ccm H <sub>2</sub> O dis<br>solve g of the<br>cryst acid | Sp gr of the solution                |
|---------------------|--------------------------------------------------------------|--------------------------------------|
| 0<br>22<br>43<br>92 | 16 206<br>49 718<br>53 64<br>86 75                           | 1 1890<br>1 6913<br>1 8264<br>2 5813 |

(Soboleff, Z anorg 1896, 12 31)

### Solubility in ether at to

| t°   | 100 ccm ether dissolves g of<br>the cryst acid |
|------|------------------------------------------------|
| 0    | 81 196                                         |
| 7 8  | 85 327                                         |
| 18 2 | 96 017                                         |
| 24 2 | 101 348                                        |

(Soboleff)

 $+53H_2O = 6H_2O$ ,  $P_2O_5$ ,  $24WO_3 + 47H_2O$ 

Sol in H<sub>2</sub>O (Gibbs)

Sol in ether If an equal vol of ether is placed above a layer of conc aqueous solution of acid, oily drops form between the two layers, which sink to bottom, forming a third layer. The sp. gr. of the latter is 1.525. The crystallized acid dissolved in smallest amt ether forms an oil of sp gr = 2083 Ethereal solution is miscible with alcohol, and also with a large quantity of H<sub>2</sub>O (Drechsel, B **20** 1452)

 $+61H_{2}O$ Sol in H<sub>2</sub>O (Gibbs. Proc

Am Acad 16 116)

# Aluminum ammonium phosphotungstate

Aluminicophosphotungstate, ammo-Seenıum

#### Ammonium phosphotungstate, 3(NH<sub>4</sub>)<sub>2</sub>O, $P_2O_5$ , $7WO_3+Aq$

Sl sol in cold H<sub>2</sub>O without decomp Decomp by hot H<sub>2</sub>O (Kehrmann, Z anorg 1892, 1 438)

2(NH<sub>4</sub>)<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 12WO<sub>3</sub>+5H<sub>2</sub>O Insol in cold H<sub>2</sub>O (Péchard, C R 110 754)

 $6(NH_4)_2O$ ,  $P_2O_5$ ,  $16WO_3+10H_2O$ Lasily sol in hot H<sub>2</sub>O (Pechard)

 $5(NH_4) \cdot O, P_2O_5, 16WO_3 + xH_2O =$ 

 $(NH_4)_5PW_8O_{29}+xH_2O$  (Amm)nium a phospholuteotungstate) Sl sol in H () (Kchrmann )

 $3(NH_4)_2O$ ,  $P_2O_5$ ,  $16WO_3 + 16H_2O =$ (NH<sub>4</sub>)<sub>3</sub>PW<sub>8</sub>O<sub>28</sub>+8H<sub>2</sub>O (Ammonium a anhydrophospholuteotungstate) Lasily sol in H2O (Kehrmann)

 $5(NH_4)_2O$ ,  $P_2O_5$ ,  $17WO_3+16H_2O$ Very sl sol m cold H2O (Kehrmann, Z anorg

1894, 6 387) 3(NH<sub>4</sub>)<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 18WO<sub>3</sub>+14H<sub>2</sub>O (Phospholutestungstate) (Kehrmann, Z anorg (Phos-1893, 4 140)

3(NH<sub>4</sub>)<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 21WO<sub>3</sub>+xH<sub>2</sub>O Rather sl sol m cold, easily in hot H<sub>2</sub>O and alcohol Insol m sat NH<sub>4</sub>Cl+Aq (Kehrmann and Freinkel, B 25 1972) 3(NH<sub>4</sub>)<sub>2</sub>O, 3H<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 22WO<sub>3</sub>+18H<sub>2</sub>O Sl sol in cold H<sub>2</sub>O (G<sub>1</sub>bbs) 3(NH<sub>4</sub>)<sub>2</sub>O, 3H<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 24WO<sub>3</sub>+26H<sub>2</sub>O Very sl sol even in hot H<sub>2</sub>O (Gibbs, Proc Am Acad 16 122)

Ammonium barium a anhydrophospholuteotungstate,  $NH_4BaPW_8O_{28}+xH_2O =$  $(NH_4)_2O$ , 2BaO,  $P_2O_5$ , 16WO<sub>8</sub>+ $xH_2O$ Sol in H<sub>2</sub>O (Kehrmann)

Barium phosphotungstate, 2BaO, P2O5,  $12WO_3 + 15H_2O$ 

Very efflorescent Sol in H<sub>2</sub>O, insol in cohol (Péchard, C R 110 754)  $3BaO, P_2O_5, 16WO_3 + xH_2O = Ba_3(PW_8O_{28})$  $+xH_2O$ (Barium a-anhydrophospholuteo-Not efflorescent tungstate) Quite difficultly sol in H<sub>2</sub>O (Kehrmann)

2BaO, P<sub>2</sub>O<sub>5</sub>, 16WO<sub>3</sub>+10H<sub>2</sub>O Efflorescent (Péchard, A ch (6) 22 240)

2BaO,  $6H_2O$ ,  $P_2O_5$ ,  $20WO_3 + 24H_2O$ Sol (Gibbs, B 10 1386) 6BaO, 2H<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 20WO<sub>3</sub>+46H<sub>2</sub>O Sol in H<sub>2</sub>O (Gibbs, Proc Am Acad 16 126)

7BaO, P<sub>2</sub>O<sub>5</sub>, 22WO<sub>3</sub>+59H<sub>2</sub>O Sol in H<sub>2</sub>O, (Sprenger, J pr (2) **22** 418) +53H<sub>2</sub>O (Kehrmann, B **24** 2335)

4BaO,  $2H_2O$ ,  $P_2O_5$ ,  $22WO_3+39H_2O$ in H<sub>2</sub>O without decomp (Gibbs)

BaO,  $P_2O_5$ , 24WO<sub>3</sub>+59H<sub>2</sub>O Sol in H<sub>2</sub>O (Sprenger) 2BaO, P<sub>2</sub>O<sub>5</sub>, 24WO<sub>3</sub>+59H<sub>2</sub>O Sol in H<sub>2</sub>O

3BaO,  $P_2O_1$ ,  $24WO_3+46H_2O=3BaO$ ,  $3H_2O$ ,  $P_2O_5$ , 24W()<sub>3</sub>+43H<sub>2</sub>() I sally sol in hot H<sub>2</sub>()

(Gibbs) 3B2O, PO5, 24WO3+48HO Sol in HO

(Soboleff, Z morg 1896 12 18) +58H () Sol in H<sub>2</sub>() (Sprenger) Ffflorescent SI sol in dil BaCl +Aq (Kehrmann, Z. anorg 1 423)

Barium potassium phosphotungstate, 5B i() 2K O, P<sub>2</sub>O 22WO<sub>3</sub>+48H O Sol in HO (Kehrmann and Fremkel, B **25** 1968)

Barium silver phosphotungstate, 413 i() 3 Ag<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 22WO<sub>3</sub>+34H<sub>2</sub>O

Very sl sol m H O (Kehimann and Freinkel, B 25 1966)

Barium sodium phosphotungstate, 2BaO,  $Na_2O$ ,  $P_2O_5$ ,  $24WO_3+46H_2O$ 

Sol in H<sub>2</sub>O, forming cloudy liquid, which clears up Solution in HCl is not cloudy (Brandhorst and Kraut, A 249 380)

Calcium phosphotungstate, CaO, 5H<sub>2</sub>O,  $16\text{WO}_{3}, P_{2}O_{5} + 3\text{H}_{2}O$ 

Readily sol in H<sub>2</sub>O (Gibbs, Proc Am Acad 16 130)

2CaO, P<sub>2</sub>O<sub>5</sub>,  $12WO_3 + 19H_2O$ Efflores-Insol in alcohol (Péchard, C R 110 754

 $2\acute{C}aO$ ,  $P_2O$ ,  $20WO_3 + 22H_2O$  cent (Péchard, A ch (6) **22** 233) Efflores-

Cadmium phosphotungstate, 2CdO, P<sub>2</sub>O<sub>5</sub>,  $12WO_{8} + 13H_{2}O$ 

Sl efflorescent Very sol in H<sub>2</sub>O (Péchard, C R 110 754)

Cupric phosphotungstate, 3CuO, 24WO<sub>3</sub>,  $P_2O_5 + 58H_2O$ 

Sol in  $H_2O$  (Sprenger, J pr (2) **22** 418) 2CuO,  $P_2O_5$ ,  $12WO_3+11H_2O$  Very effores-(Péchard, C R 110 754) Efflores-

2CuO,  $P_2O_5$ ,  $20WO_3+13H_2O$ cent (Péchard, A ch (6) **22** 235)

Lead phosphotungstate, 2PbO, P<sub>2</sub>O<sub>5</sub>, 12WO<sub>3</sub>  $+6H_2O$ 

Insol in cold, sol in boiling  $H_2O$  (Péchard, C R 110 754) 2PbO,  $P_2O_5$ ,  $20WO_3+6H_2O$  Sol in boiling

 $H_2O$  (Péchard, A ch (6) **22** 236)

Lithium phosphotungstate, L<sub>12</sub>O, P<sub>2</sub>O<sub>5</sub>,  $12WO_3 + 21H_2O$ Sol in H<sub>2</sub>O (Péchard, C R 110 754)

Magnesium phosphotungstate, 2MgO, P<sub>2</sub>O<sub>5</sub>, 12WO<sub>3</sub>

Sl efflorescent (Péchard, C R 110 754) 2MgO, P<sub>2</sub>O<sub>5</sub>, 20WO<sub>3</sub>+19H<sub>2</sub>O SI efflorescent (Péchard, A ch (6) 22 234)

Mercurous phosphotungstate

Insol in dil HNO<sub>3</sub>+Aq (Péchard, C R **110** 754)

Potassium phosphotungstate, KO, P<sub>2</sub>O<sub>5</sub>, 12WO<sub>3</sub>+9H<sub>2</sub>O

Insol in cold, sl sol in hot H<sub>2</sub>() (Pechard, C R 110 754)

 $5K_2O$ ,  $P_2O_5$   $16WO_3 + xHO = K_5PW_8O_2 +$ xHO (Potassium oph ) clute to the proced into HO Very sl sol in cola Sol in cold dil HNO3+Aq (Kchiminn)  $3K_2()$ ,  $PO_1$ ,  $10WO_3 + 10H_2O = K_3PW_8O_2$ (Potassium a inhydrophospho- $+8H_2O$ let ofen\_st c' I fflorescent ın H2O (Kehrmann)

5K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 17WO<sub>3</sub>+21 or 22H O Sl sol in cold H<sub>2</sub>O (Kehrmann, Z anorg

1894, 6 387) 3K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 18WO<sub>3</sub>+28H<sub>2</sub>O (Dup and Pearce, Bull Soc Min 1895, **18** 42) (Dupare  $K_2O_3$ ,  $5H_2O_3$ ,  $P_2O_5$ ,  $18WO_3+14HO$ 

sl sol in H<sub>2</sub>O (Gibbs) 6K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 18WO<sub>3</sub>+30H<sub>2</sub>O, and 23H<sub>2</sub>O The 23H<sub>2</sub>O salt is more sol in H<sub>2</sub>O than the 30H<sub>2</sub>O salt (Gibbs)  $7K_2O$ ,  $H_2O$ ,  $P_2O_5$ ,  $20WO_3+27H_2O$  Sol in

(Gibbs, B 10 1386)  $H_2O$ 

 $K_{9}O$ ,  $P_{2}O_{5}$ ,  $20WO_{3}+5H_{2}O$ Nearly insol  $m H_2O$ (Péchard, A ch (6) 22 231)

8K<sub>2</sub>O,  $P_2O_5$ ,  $20WO_3+18H_2O$ Sl sol in (Gibbs)  $H_2O$ 

3K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 21WO<sub>3</sub>+31H<sub>2</sub>O Easily sol in cold H<sub>2</sub>O or alcohol Much less sol in very dil HCl+Aq or KCl+Aq Decomp by boiling H<sub>2</sub>O (Kehrmann and Freinkel, B 25 1971)

 $2K_2O$ ,  $4H_2O$ ,  $P_2O_5$ ,  $22WO_3+2H_2O$ 

sl sol in H<sub>2</sub>O (Gibbs)

7K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 22WO<sub>3</sub>+31H<sub>2</sub>O Easily sol in cold or hot H2O Insol in alcohol (Kehrmann, B 25 1966)

 $3K_2O$ ,  $3H_2O$ ,  $P_2O_5$ ,  $24WO_3+8$ , and  $14H_2O$ Sol in a large amount of H<sub>2</sub>O with partial de-(Gibbs, Proc Am Acad 16 120)

Practically insol in H<sub>2</sub>O Easily sol in NH<sub>4</sub>OH, alkalies, or alkali carbonates+Aq (Kehrmann, B 24 2329)

6K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 24WO<sub>3</sub>+18H<sub>2</sub>O Sol in H<sub>2</sub>O (Gibbs, Proc Am Acad 15 1)

Potassium lead a-phospholuteotungstate Sl sol in H<sub>2</sub>O (Kehrmann)

Silver phosphotungstate, Ag<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 12WO<sub>3</sub> +8H<sub>2</sub>O

 $\mathbf{Ppt}$ Insol in H<sub>2</sub>O (Péchard, C R 110 754)

 $5 \text{Ag}_2\text{O}$ ,  $P_2\text{O}_5$ ,  $16 \text{WO}_3 + x \text{H}_2\text{O} = \text{Ag}_5\text{PW}_8\text{O}_{29}$ + $x \text{H}_2\text{O}$  (Silver a-phospholuteotungstate) (Kehrmann)

 $3Ag_2O$ ,  $P_2O_5$ ,  $16WO_3 + 16H_2O = Ag_3PW_8O_{28}$ (Silver a-anhydrophospholuteotungstate) Easily sol in H<sub>2</sub>O (Kehrmann)  $Ag_2O$ ,  $24WO_3$ ,  $P_2O_5+60H_2O$ Insol in  $H_2O$ 

 $3Ag_2O_1$ ,  $24WO_3$ ,  $P_2O_5 + 58H_2O_3$ Insol in  $H_2O$  (Sprenger, J pr (2) **22** 418)

Sodium phosphotungstate,  $3Na_2O$ ,  $P_2O_5$ , 7WO3+Aq

Sol in  $H_2O$  (Kehrmann, Z anorg 1 437)  $5Na_2O$ ,  $11H_2O$ ,  $2P_2O_5$ ,  $12WO_3+26H_2O =$  $Na_5H_{11}P_2W_6O_{31}+13H_2O'(?)$  (Scheibler, B) **5** 801)

 $2Na_2O$ ,  $P_2O_5$ ,  $12WO_3+18H_2O$ Sol  $H_2O$ Insol in alcohol (Péchard, C R 110 754)

5Na<sub>2</sub>O,  $14WO_3$ ,  $2P_2O_5+42H_2O$ Easily sol in H<sub>2</sub>O (Gibbs )

 $Na_2O$ ,  $P_2O_5$ ,  $20WO_3$ ,  $2H_2O + 19H_2O$  Sol in

 $H_2O$  (Gibbs, Am Ch J 1895, 17 183)  $Na_2O$ ,  $P_2O$ 6,  $20WO_3 + 23H_2O = Na_2O$ ,  $7H_2O$ ,  $P_2O_5$ ,  $20WO_3 + 16H_2O$ Easily sol in H<sub>2</sub>O (Gibbs)

 $+25H_2O$ Sl efflorescent, very sol in H<sub>2</sub>O, insol in alcohol (Péchard, A ch (6) **22** 227)

 $2Na_2O$ ,  $P_2O_5$ ,  $20WO_8+10H_2O$  Sol in  $H_2O$ , insol in alcohol (Péchard)

 $+30H_2O$  (P) 3Na<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 20WO<sub>8</sub>+32H<sub>2</sub>O (P)

2Na<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 22WO<sub>3</sub>+9H<sub>2</sub>O in H<sub>2</sub>O (Gibbs) Very sl sol

3Na<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 24WO<sub>3</sub>+22H<sub>2</sub>O Sol in H<sub>2</sub>O (Brandhorst and Kraut, A 249 379) +30H<sub>2</sub>O Sol in H<sub>2</sub>O (Soboleff, Z

anorg 1896, 12 18)

+42H<sub>2</sub>O

# Solubility in H<sub>2</sub>O at t°

| to            | 100 ccm H <sub>2</sub> O dissolve g<br>of the cryst salt |
|---------------|----------------------------------------------------------|
| 0<br>22<br>93 | 22 04<br>59 65<br>98 184                                 |
| (C 1 1 M F    | *************                                            |

(Soboleff, Z anorg 1896, **12** 31)

2Na<sub>2</sub>O, 24WO<sub>8</sub>,  $4H_2O$  $P_2O_5 + 23H_2O$ Readily sol in H2O (Gibbs, Proc Am Acad **16** 118)

Sp gr at 20° of solutions of 2Na<sub>2</sub>O, 4H<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 24WO<sub>8</sub>+23H<sub>2</sub>O containing 31 13% salt, 102220 94

1 085 1 190 1 316

42 61 52 92 64 11% salt 1 702 1 496 2 001 or, by calculation, a = sp gr if % is crystal-

lized salt, b = sp gr if % is anhydrous salt 10 15 20 25% salt, 1 040 1084 1 131 1 181 1 237 b 1044 1 092 1 262 1 143 1 199

40 50% salt, 30 35 45 1 370 a 1299 1 449 1 538 1 640 b 1333 1 507 1 414 1 613 1734

55 60 64% salt 175418841 998 b 1872

(Brandhorst and Kraut, A 249 377)

Strontium phosphotungstate, 2SrO, P<sub>2</sub>O<sub>5</sub>,  $12WO_{8} + 17H_{2}O$ 

Sol in H<sub>2</sub>O Insol in alcohol (Péchard, C R 110 754)

Thallium phosphotungstate, Tl<sub>2</sub>O,  $12WO_{3} + 4H_{2}O$ 

Ppt (Péchard, C R 110 754)

Zinc phosphotungstate, 2ZnO, P<sub>2</sub>O<sub>5</sub>, 12WO<sub>3</sub>+  $7 H_2 O$ 

Efflorescent (Péchard, C R 110 754)

# Monometaphosphotungstic acid

Ammonium monometaphosphotungstate,  $(NH_4)_2O$ ,  $2NH_4PO_3$ ,  $18WO_3+11H_2O$ Sl sol in cold H<sub>2</sub>O

Potassium monometaphosphotungstate, 3K<sub>2</sub>O, 2KPO<sub>3</sub>, 24WO<sub>3</sub>+20H<sub>2</sub>O Very sl sol in H<sub>2</sub>O (Gibbs, Am Ch J 7 319)

# Orthometaphosphotungstic acid

 $\begin{array}{cccc} \textbf{Potassium} & \textbf{sodium} & \textit{orthometa} \\ \textbf{state,} & 2K_2O, & 4Na_2O, & 6NaPO_3, & 6K_4PO_4, \\ & 22WO_3 + 42H_2O \end{array}$ 

Sl sol in H<sub>2</sub>O (Gibbs, Am Ch J 7 319)

### Pyrophosphotungstic acid

Ammonium manganous sodium pyrophosphotungstate,  $5(\mathrm{NH_4})_2\mathrm{O},~6\mathrm{MnO},~2\mathrm{Na}_2\mathrm{O},~2\mathrm{P}_2\mathrm{O}_5,~28\mathrm{WO}_3+48\mathrm{H}_2\mathrm{O}$ 

Very sol in cold and in hot  $H_2O$  (Gibbs, Am Ch J 1895, 17 90)

 $\begin{array}{ccc} \textbf{Ammonium} & \textbf{sodium} & \textit{pyrophosphotungstate,} \\ & 6(NH_4)_4P_2O_7, & 3Na_4P_2O_7, & 2(NH_4)_2O, \\ & 22WO_3+31H_2O \end{array}$ 

Nearly insol in cold  $H_2O$  or  $NH_4OH + Aq$  Sol in a large amount of hot  $H_2O$ 

Manganous sodium pyrophosphotungstate, 6Na<sub>2</sub>O, 3MnO, P<sub>2</sub>O<sub>5</sub>, 14WO<sub>3</sub>+36H<sub>2</sub>O Efflorescent in dry air Sol in H<sub>2</sub>O and can be recryst therefrom (Gibbs)

Potassium pyrophosphotungstate,  $9K_4P_2O_7$ ,  $22WO_3+49H_2O$ 

Very sl sol in cold  $H_2O$   $6K_4P_2O_7$ ,  $3H_4P_2O_7$ ,  $22WO_3$ ,  $K_2O$ ,  $H_2O+$   $42H_2O$  Sl sol in cold Sol in much boiling  $H_2O$  (Gibbs, Am Ch J 7 392)

# Phosphovanadic acid, $P_2O_5, V_2O_5, 2H_2O+9HO$

Sol in H<sub>2</sub>O

Composition is vanadium phosphate (VO<sub>2</sub>)H<sub>2</sub>PO<sub>4</sub>+4½H<sub>2</sub>O (Friedheim, B **23** 1531)

This is the only "acid" which exists (F)  $P_2O_5$ ,  $V_2O_5+14H_2O$  Sol in  $H_2O$ , can be recryst from dil  $H_4PO_4+Aq$  (Ditte, C R 102 757)

 $3P_2O_5$ ,  $2V_2O_5+9H_2O$  Sol in  $H_2O$  (Ditte)  $P_2O_5$ ,  $3V_2O_6$  (Berzelius)  $3H_2O$ ,  $7P_2O_5$ ,  $6V_2O_5+34H_2O$  Sol in  $H_2O$  Decomp by much  $H_2O$  into—

Decomp by much H<sub>2</sub>O into— 6H<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 20V<sub>2</sub>O<sub>5</sub>+53H<sub>2</sub>O Sol in H<sub>2</sub>O (Gibbs, Am Ch J 7 209)

Ammonium phosphovanadate,  $(NH_4)_2O$ ,  $P_2O_5$ ,  $V_2O_5+H_2O$ 

Sl sol in cold  $H_2O$  (Gibbs, Am Ch J 7 209)

+3H<sub>2</sub>O Composition is (VO<sub>2</sub>)(NH<sub>4</sub>)HPO<sub>4</sub>+H<sub>2</sub>O (Friedheim) (NH<sub>4</sub>)<sub>2</sub>O<sub>2</sub> P<sub>2</sub>O<sub>5</sub>, 2V<sub>2</sub>O<sub>5</sub>+7H<sub>2</sub>O Easily sol

heim ) Composition is  $(NH_4)_2O$ ,  $V \cdot O_5$ ,  $+2(VO_2)H_2PO_4+5H_2O$  (Friedheim )  $5(NH_4)_2O$ ,  $2P_2O_5$ ,  $3V_2O_5+24H_2O$  Easily sol in  $H_2O$  (Ditte, C R 102 1019 ) Could not be obtained (Friedheim)  $5(NH_4)_2O$ ,  $4P_2O_5$ ,  $2V_2O_5+24H_2O$  As above (Ditte) Could not be obtained (Friedheim)

7(NH<sub>4</sub>)<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 12V<sub>2</sub>O<sub>5</sub>+26H<sub>2</sub>O Easily sol in H<sub>2</sub>O Composition is 2(NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>+5(NH<sub>4</sub>)<sub>2</sub>O, 12V<sub>2</sub>O<sub>5</sub>+25H<sub>2</sub>O (Friedheim)

Potassium phosphovanadate,  $K_2O$ ,  $P_2O_5$ ,  $2V_2O_5 + 7H_2O$ 

Sl sol in  $H_2O$ , decomp thereby to  $7K_2O$ ,  $12V_2O_5$ ,  $P_2O_5+26H_2O$ Composition is  $K_2O$ ,  $V_2O_5+2(VO_2)H_2PO_4$ 

 $+5H_2O$  (Friedheim)  $3K_2O$ ,  $4P_2O_5$ ,  $6V_2O_5+21H_2O$  Sl sol in  $H_2O$  (Gibbs)

 $7K_2O$ ,  $P_2O_5$ ,  $12V_2O_5+26H_2O$  Easily sol in  $H_2O$  Composition is  $2K_2HPO_4+5K_2O$ ,  $12V_2O_5+25H_2O$  (Friedheim)

2V<sub>2</sub>O<sub>5</sub> +201<sub>2</sub>O<sub>5</sub> V<sub>2</sub>O<sub>5</sub> +2Hehtelm Y 2K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>5</sub> +5H<sub>2</sub>O 13K<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub>, 22V<sub>2</sub>O<sub>5</sub> +58H<sub>2</sub>O 15K<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub>, 25V<sub>2</sub>O<sub>5</sub> +76H<sub>2</sub>O (Friedheim, Z anorg 1894, **5** 446) 16K<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub>, 27V<sub>2</sub>O<sub>5</sub> +57H<sub>2</sub>O 6K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 11V<sub>2</sub>O<sub>5</sub> +33H<sub>2</sub>O 7K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 13V<sub>2</sub>O<sub>5</sub> +38H<sub>2</sub>O 4K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 3V<sub>2</sub>O<sub>5</sub> +3H<sub>2</sub>O (Friedheim, Z anorg 1894, **5** 459-465)

Silver phosphovanadate, 2Ag<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>5</sub>+ 5H<sub>2</sub>O

SI sol in cold or hot H<sub>2</sub>O (Gibbs)

# Phosphovanadicotungstic acid

Ammonium phosphovanadicotungstate, (NH<sub>4</sub>) O, P<sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>3</sub>, WO<sub>3</sub>+xH O Ppt (Smith, J Am Chem Soc 1902, **24** 

577)  $_{15(\mathrm{NH_4})}$  O,  $_{2P_2O_5}$ , 6V O<sub>3</sub>,  $_{44\mathrm{WO_4}}+$  106H O Sol in H O Insol in alcohol, ether or benzenc (Rogers, J Am Chem Soc 1903, **25** 303)

# Phosphovanadicovanadiotungstic acid

Ammonium phosphovanadicovanadictungstate,  $14(NH_4)_2O$  ,  $2P_2O_5,\ 3V_2O_3,\ 7VO$  ,  $27WO_3+66H_2O$ 

Sparingly sol in cold H<sub>2</sub>O Sol in hot H O (Rogers, J Am Chem Soc 1903, **25** 309)

# Phosphovanadicozirconosotungstic acid

Ammonium phosphovanadicozirconosotungstate

 $(NH_4)_2O$ ,  $P_2O_5$ ,  $2\dot{V}_2O_5+7H_2O$  Easily sol | Exact formula not known (E, F Smith, in  $H_2O$  (Gibbs) Sl sol in  $H_2O$  (Fried- J Am Chem Soc 1903, 25 1226)

The 23H<sub>2</sub>O salt is more sol in H<sub>2</sub>O than the 30H₂O salt

H<sub>2</sub>O salt (G1bbs) 7K<sub>2</sub>O, H<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 20WO<sub>3</sub>+27H<sub>2</sub>O Sol in

(Gibbs, B 10 1386)  $H_2O$  $K_{2}O$ ,  $P_{2}O_{5}$ ,  $20WO_{3} + 5H_{2}O$ 

Nearly insol (Péchard, A ch (6) **22** 231) P<sub>2</sub>O<sub>5</sub>, 20WO<sub>3</sub>+18H<sub>2</sub>O SI  $m H_2O$ 

8K2O, Sl sol m H₂O (Gibbs)

 $3K_2O$ ,  $P_2O_5$ ,  $21WO_3+31H_2O$ Easily sol in cold H2O or alcohol Much less sol in very dil HCl+Aq or KCl+Aq Decomp by boiling H<sub>2</sub>O (Kehrmann and Freinkel, B **25** ing H<sub>2</sub>O 1971)

 $2K_2O$ ,  $4H_2O$ ,  $P_2O_5$ ,  $22WO_3+2H_2O$ 

sl sol in H<sub>2</sub>O (Gibbs)

7K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 22WO<sub>3</sub>+31H<sub>2</sub>O Easily sol ın cold or hot H₂O Insol in alcohol (Kehrmann, B 25 1966)

 $3K_2O$ ,  $3H_2O$ ,  $P_2O_5$ ,  $24WO_3+8$ , and  $14H_2O$ Sol in a large amount of H2O with partial de-(Gibbs, Proc Am Acad 16 120)

Practically insol in H<sub>2</sub>O Easily sol in NH<sub>4</sub>OH, alkalies, or alkali carbonates+Aq (Kehimann, B **24** 2329)

6K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 24WO<sub>8</sub>+18H<sub>2</sub>O Sol in H<sub>2</sub>O (Gibbs, Proc Am Acad 15 1)

### Potassium lead a-phospholuteotungstate SI sol in H<sub>2</sub>O (Kehrmann)

r phosphotungstate, Ag<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 12WO<sub>3</sub>  $+8H_2O$ 

Ppt Insol in H<sub>2</sub>O (Péchard, C R 110 754 )

 $5Ag_2O$ ,  $P_2O_5$ ,  $16WO_3 + xH_2O = Ag_5PW_8O_{29}$  $+x\mathrm{H}_2\mathrm{O}$  (Silver a-phospholuteotungstate)

Ppt (Kehrmann)  $3Ag_2O$ ,  $P_2O_5$ ,  $16WO_3 + 16H_2O = Ag_3PW_8O_{28}$ (Silver a-anhydrophospholuteo-+8H<sub>2</sub>O tungstate) Easily sol in H<sub>2</sub>O (Kehrmann)  $Ag_2O$ ,  $24WO_3$ ,  $P_2O_5+60H_2O$ Insol in  $_{\rm H_2O}$ 

 $3Ag_2O_5 + 58H_2O_5 + 58H_2O_5$ Insol in (Sprenger, J pr (2) 22 418)

Sodium phosphotungstate, 3Na<sub>2</sub>(), P<sub>2</sub>(),  $7WO_3 + Aq$ 

Sol in H<sub>2</sub>O (Kehrmann, Z inorg 1 437)  $5\text{Na}_2\text{O}$ ,  $11\text{H}_2\text{O}$ ,  $2\text{P}_2\text{O}_5$ ,  $12\text{WO}_3 + 26\text{H}_2\text{O} =$  $Na_5H_{11}P_2W_6O_{31}+13HO$  (?) (Scheibler, B) **5** 801)

 $2Na_2O$ ,  $P_2O_5$ ,  $12WO_3+18HO$ Sol in  $H_2O$ Insol in alcohol (Péchard, C R 110 754)

 $5\text{Na}_2\text{O}$ ,  $14\text{WO}_3$ ,  $2\text{P}_2\text{O}_5 + 42\text{H}_2\text{O}$ Lasily sol in H<sub>2</sub>O (Gibbs)

Na<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 20WO<sub>3</sub>, 2H O+19H<sub>2</sub>O Sol in H<sub>2</sub>O (Gibbs, Am Ch J 1895, **17** 183)

 $Na_2O$ ,  $P_2O_5$ ,  $20WO_3 + 23H_2O = Na_2O$ ,  $7H_2O$ ,  $P_2O_5$ ,  $20WO_3+16H_2O$  Easily sol in  $H_2O$ (Gibbs)

 $+25\mathrm{H}_2\mathrm{O}$ Sl efflorescent, very sol in H<sub>2</sub>O, insol in alcohol (Pechard, A ch (6) **22** 227)

 $2Na_2O$ ,  $P_2O_5$ ,  $20WO_3+10H_2O$  Sol in  $H_2O$ ,

insol in alcohol (Péchard)

 $+30H_{\circ}O$ (P)  $3\text{Na}_2\text{O}$ ,  $P_2\text{O}_5$ ,  $20\text{WO}_3 + 32\text{H}_2\text{O}$ As above (P)  $2Na_2O$ ,  $P_2O_5$ ,  $22WO_8+9H_2O$ Very sl sol ın H<sub>2</sub>O (Gıbbs)  $3Na_2O$ ,  $P_2O_5$ ,  $24WO_3+22H_2O$ Sol in H<sub>2</sub>O (Brandhorst and Kraut, A 249 379) +30H<sub>2</sub>O Sol in H<sub>2</sub>O (Sobo (Soboleff, Z anorg 1896, 12 18)  $+42 H_{2}O$ 

### Solubility in H<sub>2</sub>O at t°

| t°            | 100 ccm H <sub>2</sub> O dissolve g<br>of the cryst salt |
|---------------|----------------------------------------------------------|
| 0<br>22<br>93 | 22 04<br>59 65<br>98 184                                 |
|               |                                                          |

(Soboleff, Z anorg 1896, 12 31)

2Na<sub>2</sub>O, 24WO<sub>3</sub>,  $P_2O_5 + 23H_2O$  $4H_{9}O$ Readily sol in H<sub>2</sub>O (Gibbs, Proc Am Acad **16** 118)

Sp gr at 20° of solutions of 2Na<sub>2</sub>O, 4H<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 24WO<sub>3</sub>+23H<sub>2</sub>O containing 31 13% salt, 10 22 20 94

1 085 1 190 1 316 42 61 529264 11% salt 1702 1 496 2 001

or, by calculation, a = sp gr if % is crystallized salt, b = sp gr if % is anhydrous salt

10 15 20 25% salt, 1 237 a 1040 1 084 1 131 1 181 b 1044 1 092 1 143 1 199 1 262

30 35 40 45 50% salt, a 1299 1 370 1 449 1 538 1 640 b 1333 1 414 1 507 1613 1734

> 64% salt 60 1 998 1 754 1 884 b 1872

(Brandhorst and Kraut, A 249 377)

Strontium phosphotungstate, 2510, P<sub>2</sub>O<sub>5</sub>, 12WO<sub>3</sub>+17H<sub>2</sub>O Sol in H<sub>2</sub>O Insol in alcohol (Péchard, C R 110 754)

Thallium phosphotungstate, Tl<sub>2</sub>(), P<sub>2</sub>O<sub>5</sub>, 12WO +4H<sub>2</sub>O

Ppt (Péchard, C R 110 754)

Zinc phosphotungstate, 2ZnO, P<sub>2</sub>O<sub>5</sub>, 12WO<sub>3</sub>+ 7H O

Efflorescent (Péchard, C R 110 754)

# Monometaphosphotungstic acid

Ammonium monometaphosphotungstate,  $(NH_4)_2O$ ,  $2NH_4PO_3$ ,  $18WO_3+11H_2O$ Sl sol in cold H<sub>2</sub>O

Sl sol in

Potassium monometaphosphotungstate,  $3K_2O$ ,  $2KPO_3$ ,  $24WO_3 + 20H_2O$ Very sl sol in  $H_2O$  (Gibbs, Am Ch J 7 319)

# Orthometaphosphotungstic acid

Potassium sodium orthometaphosphotungstate, 2K2O, 4Na2O, 6NaPO3, 6K2PO4,  $22WO_3 + 42H_2O$ Sl sol in H<sub>2</sub>O (Gibbs, Am Ch J 7 319)

### Pyrophosphotungstic acid

Ammonium manganous sodium pyrophosphotungstate, 5(NH<sub>4</sub>)<sub>2</sub>O, 6MnO, 2Na<sub>2</sub>O,  $2P_2O_5$ ,  $28WO_3+48H_2O$ 

Very sol in cold and in hot H<sub>2</sub>O (Gibbs, Am Ch J 1895, 17 90)

Ammonium sodium pyrophosphotungstate, 3Ña<sub>4</sub>P<sub>2</sub>O<sub>7</sub>,  $6(NH_4)_4P_2O_7, 22WO_3+31H_2O$  $2(NH_4)_2O$ ,

Nearly insol in cold H<sub>2</sub>O or NH<sub>4</sub>OH+Aq Sol in a large amount of hot H<sub>2</sub>O

Manganous sodium pyrophosphotungstate, 6Na<sub>2</sub>O, 3MnO, P<sub>2</sub>O<sub>5</sub>, 14WO<sub>3</sub>+36H<sub>2</sub>O

Efflorescent in dry air Sol in H<sub>2</sub>O and can be recryst therefrom (Gibbs)

Potassium pyrophosphotungstate, 9K<sub>4</sub>P<sub>2</sub>O<sub>7</sub>,  $22WO_{3} + 49H_{2}O$ 

Very sl sol m cold H<sub>2</sub>O  $6K_4P_2O_7$ ,  $3H_4P_2O_7$ ,  $22WO_3$ ,  $K_2O$ ,  $H_2O+42H_2O$  SI sol in cold Sol in much boiling H<sub>2</sub>O (Gibbs, Am Ch J 7 392)

# Phosphovanadic acid, $P_2O_5, V_2O_5, 2H_2O+$ 9H<sub>2</sub>O

Sol in H<sub>2</sub>O

Composition is vanadium phosphate  $(VO)H_2PO_4+4\frac{1}{2}H_2O$ (Friedheim, B 23 1531)

This is the only "acid" which exists (F) P<sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>5</sub>+14H<sub>2</sub>O Sol in H<sub>2</sub>O, can be recryst from dil H<sub>3</sub>PO<sub>4</sub>+Aq (Ditte, C R Sol in H<sub>2</sub>O, can be **102** 757)

 $\begin{array}{lll} 3P_2O_5, 2V_2O_5 + 9H_2O & Sol \ \text{in} \ H_2O & (Ditte \ ) \\ P_2O_5, \ 3V_2O_5 & (Berzelius \ ) \end{array}$  $3H_2O$ ,  $7P_2O_5$ ,  $6V_2O_5 + 34H_2O$ Sol in H<sub>2</sub>O Decomp by much H<sub>2</sub>O into— 6H<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 20V<sub>2</sub>O<sub>5</sub>+53H<sub>2</sub>O Sol in H<sub>2</sub>O

(Gibbs, Am Ch J 7 209)

Ammonium phosphovanadate, (NH<sub>4</sub>)<sub>2</sub>O,  $P_2O_5, V_2O_5 + H_2O$ 

Sl sol in cold H<sub>2</sub>O (Gibbs, Am Ch J 7 209)  $+3H_2O$  Composition is  $(VO_2)(NH_4)HPO_4$ 

+H<sub>2</sub>O (Friedheim)  $(NH_4)_2O$ ,  $P_2O_5$ ,  $2V_2O_5+7H_2O$  Easily sol in H<sub>2</sub>O (Gibbs) Sl sol in H<sub>2</sub>O (Fried- J Am Chem Soc 1903, 25 1226)

heim) Composition is  $(NH_4)_2O$ , +2 $(VO_2)H_2PO_4+5H_2O$  (Friedheim)  $V_2O_5$  $5(NH_4)$  °O,  $2P_2O_5$ ,  $3V_2O_5 + 24H_2O$  Easily sol in  $H_2O$  (Dutte, C R 102 1019) Could not be obtained (Friedheim) 5(NH<sub>4</sub>)<sub>2</sub>O, 4P<sub>2</sub>O<sub>5</sub>, 2V<sub>2</sub>O<sub>5</sub>+24H<sub>2</sub>O

(Ditte) Could not be obtained (Friedheim) Easily

Potassium phosphovanadate, K O,  $P_2O_5$ ,  $2V_2O_5+7H_2O$ 

Sl sol in H<sub>2</sub>O, decomp thereby to 7K<sub>2</sub>O,  $12V_2O_5$ ,  $P_2O_5 + 26H_2O$ 

Composition is K<sub>2</sub>O, V O<sub>5</sub>+2(VO)H PO<sub>4</sub>

 $+5 \text{H}_2 \text{O}$  (Friedheim) 3K<sub>5</sub>O<sub>5</sub>, 4P<sub>2</sub>O<sub>5</sub>, 6V<sub>5</sub>O<sub>5</sub>+21H O

H<sub>2</sub>O (Gibbs)  $7K_2O_5$ ,  $P_2O_5$ ,  $12V_2O_5+26HO$ Easily sol in H<sub>2</sub>O Composition is 2K<sub>2</sub>HPO<sub>4</sub>+5K<sub>2</sub>O,

12V<sub>2</sub>O<sub>5</sub>+25H O (Friedheim) 2K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>5</sub>

2K<sub>2</sub>O, F<sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>5</sub>
3K<sub>2</sub>O, 2P O<sub>5</sub>, 2V<sub>2</sub>O<sub>5</sub>+5H O
13K<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub>, 22V<sub>2</sub>O<sub>5</sub>+58H<sub>2</sub>O
15K<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub>, 25V<sub>2</sub>O<sub>5</sub>+76H O
(Friedheim, Z anorg 1894, **5** 446)
16K<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub>, 27V<sub>2</sub>O<sub>5</sub>+57H O
6K<sub>2</sub>O, P O<sub>5</sub>, 11V<sub>2</sub>O<sub>5</sub>+33H O
7K<sub>2</sub>O, P O<sub>5</sub>, 13V<sub>2</sub>O<sub>5</sub>+38H O
4K<sub>2</sub>O, PO<sub>5</sub>, 3V<sub>2</sub>O<sub>5</sub>+38H O

 $4K_2O$ ,  $P_2O_5$ ,  $3V_2O_5+3H_2O$ (Friedheim, Z anorg 1894, **5** 459–46 $\sigma$ )

Silver phosphovanadate, 2Ag<sub>2</sub>O, P<sub>5</sub>O<sub>5</sub>, V O<sub>5</sub>+ 5H O Sl sol in cold or hot H<sub>2</sub>O (Gibbs)

# Phosphovanadicotungstic acid

Soc 1903, **25** 303)

Ammonium phosphovanadicotungstate,  $(NH_4)$  O,  $P_2O_5$ ,  $V_2O_3$ ,  $WO_3+xH$  O (Smith, J Am Chem Soc 1902, 24 Ppt 577) 6V O<sub>3</sub>, 44W O<sub>3</sub>+ Insol in alcohol, 2P O<sub>5,</sub>  $15(NH_4)$  O, Sol in H O 106H O ether or benzene (Rogers, J Am Chem

# Phosphovanadicovanadiotungstic acid

Ammonium phosphovanadicovanadiotungstate,  $14(NH_4)$  O,  $2P O_5$ ,  $3V O_3$ , 7VO, 27WO<sub>3</sub>+66H O

Sparingly sol in cold H O Sol in hot H O (Rogers, J Am Chem Soc 1903, 25 309)

Phosphovanadicozirconosotungstic acid

Ammonium phosphovanadicozirconosotungstate

Exact formula not known (E, F Smith,

# Phosphovanadicovanadic acid

Ammonium phosphovanadicovanadate,  $7(NH_4)_{2}O$ ,  $2P_2O_5$ ,  $VO_2$ ,  $18V_2O_5 + 50H_2O$ 

Sol in H<sub>2</sub>O (Gibbs, Am Ch J 7 209)  $7(NH_4)_2O_5$ ,  $14P_2O_5$ ,  $16VO_2$ ,  $6V_2O_5+65H_2O_5$ Decomp by boiling with H<sub>2</sub>O into-

 $5(NH_4)_2O_5$ ,  $10P_2O_5$ ,  $11VO_2$ ,  $V_2O_5+41H_2O_5$ Sol in H<sub>2</sub>O (Gibbs)

Potassium ----, 5K2O, 12P2O5, 12VO2, 6V2O5 +40H<sub>2</sub>O

Decomp by hot  $H_2O$  into— $7K_2O$ ,  $12P_2O_5$ ,  $14VO_2$ ,  $6V_2O_5+52H_2O_5$ Sol in H<sub>2</sub>O (Gibbs)

Sodium —,  $4Na_2O_5$ ,  $5P_2O_5$ ,  $VO_2$ ,  $4V_2O_5$ +  $37H_2O$ 

Insol in H<sub>2</sub>O (Gibbs)

# Phosphovanadiomolybdic acid

Ammonium phosphovanadiomolybdate,  $7(NH_4)_2O$ ,  $2P_2O_5$ ,  $V_2O_5$ ,  $48M_0O_3+$ 30H<sub>2</sub>O

Sl sol in cold, somewhat more in hot H<sub>2</sub>O with partial decomp (Gibbs, Am Ch J 5

 $8(NH_4)_2O$ ,  $P_2O_5$ ,  $8V_2O_5$ ,  $14M_0O_8 + 50H_2O$ Easily sol in hot H<sub>2</sub>O without decomp (Gibbs)  $5(NH_4)_2O$ ,  $P_2O_5$ ,  $2\frac{1}{2}V_2O_5$ ,  $21\frac{1}{2}M_0O_8$ +

> $_{2}O, P_{2}O_{5}, 5V_{2}O_{5}, 18M_{0}O_{3}+45H_{2}O$  $(9.0)^{2}O_{5}$ ,  $(7.0)^{2}O_{5}$ ,  $(7.0)^{2}O_{5}$ ,  $(7.0)^{2}O_{5}$ ,  $(7.0)^{2}O_{5}$

 $_{-14})_2O$ ,  $P_2O_5$ ,  $7V_2O_5$ ,  $15M_0O_3 + 50H_2O_3$ All above compounds are sol in H<sub>2</sub>O (Blum, J Am Chem Soc 1908, 30 1859)  $6(NH_4)_2O$ ,  $P_2O_5$ ,  $7V_2O_5$ ,  $9M_0O_3+28H_2O$ ,

+33H O, and +37H<sub>2</sub>O Can be recryst from H<sub>2</sub>O (Hinsen, Dissert 1904)

 $4(NH_4)_2O$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $11M_0O_3 + 37H_2O$ (Jacoby, Dissert 1900) 6(NH<sub>4</sub>)<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 7V O<sub>5</sub>, 11MoO<sub>3</sub>+34H<sub>2</sub>O and +43H<sub>2</sub>O (Hinsen, Dissert 1904) 8(NH<sub>4</sub>)<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 7V<sub>2</sub>O<sub>5</sub>, 11MoO<sub>3</sub>+30H<sub>2</sub>O

(Hinsen

 $5(NH_4)_2O$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $12M_0O_3 + 39H_2O$ 1 cc of solution in H2O contains 0 2624 g of hydrous salt Sp gr of solution at 18° = 1 0932 (Lahrmann, Dissert **1904**)

 $6(NH_4)_2O$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $12M_0O_3 + 24H_2O$ Nearly insol in cold H<sub>2</sub>O (Lahrmann)

 $7(NH_4)_2O$ ,  $P_2O_5$ ,  $6V_2O_5$ ,  $12M_0O_3 + 33H_2O$ (Stamm, Dissert 1905)

6(NH<sub>4</sub>)<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 4V<sub>2</sub>O<sub>5</sub>, 13M<sub>0</sub>O<sub>3</sub>+37H<sub>2</sub>O<sub>1</sub> 1 cc of solution sat at 18° contains 0 1543 g hydrous salt and has sp gr = 10900genburg, Dissert 1902)

6(NH<sub>4</sub>)<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 5V<sub>2</sub>O<sub>5</sub>, 13M<sub>0</sub>O<sub>3</sub>+29H<sub>2</sub>O 1 cc solution sat at 18° contains 0 2533 g hydrous salt Sp gr = 10797(Stamm,

Dissert 1905)

+32H<sub>2</sub>O(Stamm) +34H<sub>2</sub>OStamm  $6(NH_4)$  O,  $P_2O_5$ ,  $4V_2O_5$ ,  $14MoO_3+28H_2O$ Easily sol in  $H_2O$  with decomp (Toggen-(Toggen-

burg, Dissert 1902)  $8(NH_4)_2O$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $14M_0O_8+24H_2O$ Decomp by cold H<sub>2</sub>O (Lahrmann, Dissert

1904)  $5(NH_4)_2O$ ,  $P_2O_5$ ,  $3V_2O_5$ ,  $5MoO_3+39H_2O$ 1 cc of solution sat at 18° contains 0 2445 g hydrous salt and has sp gr = 1 144 (Jacoby, Dissert 1900) 6(NH<sub>4</sub>)<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 3V<sub>2</sub>O<sub>5</sub>, 15 MoO<sub>3</sub>+41H<sub>2</sub>O

Extraordinarily easily sol in H<sub>2</sub>O cobv )

 $7(NH_4)_2O$ ,  $P_2O_5$ , 3  $_2O_5$ ,  $18M_0O_3 + 31H_2O$ (Schulz Dissert 1905)

 $6(NH_4)_2O$ ,  $P_2O_5$ ,  $3V_2O_5$ ,  $18M_0O_3+40H_2O$ 

 $8(NH_4)_2O$ ,  $P_2O_5$ ,  $5V_2O$ ,  $73MoO_3+26H_2O$ +33H<sub>2</sub>O (Stamm, Dissert **1905**)

Ammonium barium —,  $0.5(NH_4)_2O$ 55BaO, P<sub>2</sub>O<sub>5</sub>, 6V<sub>2</sub>O<sub>5</sub>, 8MoO<sub>3</sub>+38H<sub>2</sub>O (Hinsen, Dissert 1904)

 $2(NH_4)_2O$ , 4BaO  $P_2O_5$ ,  $7V_2O_5$ ,  $10 MoO_3+43H_2O$  Sl sol in  $H_2O$  Decomp on heating (Toggenburg, Dissert 1902)

 $(NH_4)_2O$ , 5BaO,  $P_2O_5$ ,  $6V_2O_5$ ,  $12MoO_3+49$   $H_2O$  Less sol in  $H_2O$  than  $NH_4$  comp

(Jacoby, Dissert 1900  $2(NH_4)_2O$ , 4BaO,  $P_2O_5$ ,  $4V_2O_5$ ,  $13MoO_3+V_2O_5$  Sol in much hot  $H_2O$  with decomp 37 H<sub>2</sub>O

(Toggenburg, Dissert 1902) 2(NH<sub>4</sub>)<sub>2</sub>O, 4BaO, P<sub>2</sub>O<sub>5</sub>, 5V<sub>2</sub>O<sub>5</sub>, 13MoO<sub>3</sub>+ H O (Stamm, Dissert **1905**)

3 NH<sub>4</sub>)<sub>2</sub>O, 4BaO, P<sub>2</sub>O<sub>5</sub>, 5V<sub>2</sub>O<sub>5</sub>, 13MoO<sub>3</sub>+ (Stamm)  $40H_2O$ 

 $3(NH_4)_2O_5$ ,  $3BaO_5$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $14MoO_3+$ (Stamm) 39H<sub>2</sub>O

2(NH<sub>4</sub>)<sub>2</sub>O, 4BaO, P<sub>2</sub>O<sub>5</sub>, 3V O<sub>5</sub>, 17MoO<sub>3</sub>+ H<sub>2</sub>O (Schulz, Dissert **1905**) 46H<sub>2</sub>O

Ammonium potassium —,  $(NH_4) O, 6K_2O$ ,  $P_2O_5$ ,  $6V_2O_5$ , 10  $M_0O_3 + 38H_2O_5$ (Jacoby, Dissert 1900)

 $(NH_4)_2O_5$  6K<sub>2</sub>O<sub>5</sub>  $P_2O_5$ ,  $7V_2O_5$ ,  $11M_0O_3 +$ 25H<sub>2</sub>O (Jacoby, Dissert 190°)

 $(NH_4)_2O_5 5K_2O_7 P_2O_5$ , 6V  $O_5$ , 12Mo $O_3$ + 46H<sub>2</sub>O (Jacoby)

 $(NH_4)_2O$ ,  $5K_2O$ ,  $P_2O$   $5V_2O_1$ ,  $13M_0O_3+$ +25H<sub>2</sub>O, +29H<sub>2</sub>O, +30H<sub>2</sub>O Sl sol in cold, more easily in hot H<sub>2</sub>O (Stamm, Dissert 1998) Dissert 1905)

 $5K_2O$ ,  $(NH_4)_2O$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $14M_0O_3+$ (Stamm) O

(NH<sub>4</sub>)<sub>2</sub>O, 4k O, P<sub>2</sub>O<sub>5</sub>, 3V O<sub>5</sub>

 $H_2O$  (Jacoby, Disscit 1900) (NH<sub>4</sub>)<sub>2</sub>O, 6K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 3V<sub>2</sub>O<sub>5</sub>, 18MoO<sub>3</sub>+  $H_2O$  (Schulz, Disscrt 1905)

 $5(NH)_2()$ ,  $K_2()$ ,  $P_2()_5$ ,  $2V_2()$ ,  $20M_0()_3+$  $52H_2O$ (Schulz)

Barium potassium —, 2BaO, 2K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>,  $2V_2O_5$ , 18 MoO<sub>3</sub>+47H<sub>2</sub>O (Schulz, Dissert 1905)

Potassium phosphovanadiomolybdate,  $7K_2O$ ,  $P_2O_5$ ,  $7V_2O_5$ ,  $9MoO_3+25H_2O$  (Hinsen, Dissert 1904)

 $5K_2O$ ,  $P_2O_5$ ,  $2V_2O_5$ ,  $20M_0O_3 + 53H_2O$  (Schulz, Dissert **1905**)

### Phosphovanadiotungstic acid

Ammonium phosphovanadiotungstate,  $10(NH_4)_2O$ ,  $3P_2O_5$ ,  $V_2O_5$ ,  $60WO_3+60H_2O$ 

Nearly insol in cold, sl sol in hot H<sub>2</sub>O Sol in (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>+Aq, and in NH<sub>4</sub>OH+Aq 5(NH<sub>4</sub>)<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, 3V<sub>2</sub>O<sub>5</sub>, 16WO<sub>8</sub>+37H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Gibbs, Am Ch J 5 391)

13(NH<sub>4</sub>)<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub>, 8V<sub>2</sub>O<sub>5</sub>, 34WO<sub>3</sub>+86H<sub>2</sub>O Very sol in cold and hot H<sub>2</sub>O

nsol in alcohol, ether, CS<sub>2</sub>, benzene and nitrobenzene (Rogers, J Am Chem Soc 1903, **25** 299)

Bar.um  $\frac{}{}$  18BaO, 3P<sub>2</sub>O<sub>5</sub>, 2V<sub>2</sub>O, 60WO<sub>3</sub> +144H<sub>2</sub>O

Easily sol in hot  $H_2O$  with decomp (Gibbs, Am Ch J 5 391)

Potassium —  $3K_2O$ ,  $P_2O_5$ ,  $V_2O_5$ ,  $7WO_3 + 11H_2O$ 

Sol in H O 8K O,  $3P_2O_5$ ,  $4V_2O_5$ ,  $18WO_3+23H_2O$  Sol in hot H<sub>2</sub>) with decomp into preceding salt (Gibbs, Am Ch J 5 391)

Silver  $\frac{}{}$ , 13Ag<sub>2</sub>O, 2P<sub>2</sub>O<sub>5</sub>, 8V<sub>2</sub>O<sub>5</sub>, 33WO<sub>8</sub>+ 41H<sub>2</sub>O

Somewhat sol in H2O

Completely sol in  $H_2O$  containing a few drops  $HNO_3$  (Rogers, J. Am. Chem. Soc. 1903, **25**—302.)

# Phosphovanadiovanadicotungstic acid

Barium phosphovanadiovanadicotungstate,  $18B_1O,\ 3P_2O_t\ VO_5,\ VO$  ,  $60WO_3+150H_2O$ 

SI sol in cold, cisily sol in hot  $H_2O$  (Gibbs, Am Ch. J. 5 391.)

# Phosphuretted hydrogen

See Hydrogen phosphide

#### Platibromonitrous acid

Potassium platibromonitrite, K Pt(NO<sub>2</sub>)<sub>4</sub>Bi<sub>2</sub>
Rather's sol in H<sub>2</sub>O (Blomstrind, J pr
(2) 3 214)

Sol in about 40 pts cold, and 20 pts boiling H<sub>2</sub>() Insol in alcohol Sl sol in KBr or KNO<sub>2</sub>+Aq (Vezes, A ch (6) **29** 198)
K<sub>2</sub>Pt(NO<sub>2</sub>)<sub>3</sub>Br<sub>3</sub> Sol in about 5 pts warm

H<sub>2</sub>O with decomp (Vezes)

 $K_2Pt(NO_2)_2Br_4$  Sol in less than 5 pts  $H_2O$  with decomp (Vèzes)

### Platichloronitrous acid

Potassium platichloronitrite,  $K_2Pt(NO_2)_4Cl_2$ Rather sl sol in  $H_2O$  (Blomstrand J pr (2) 3 214)

Sol m 40 pts cold, and 20 pts boiling H<sub>2</sub>O Insol m alcohol Sl sol m KCl or KNO<sub>2</sub>+ Aq (Vezes, A ch (6, 29 183) K<sub>2</sub>Pt(NO<sub>2</sub>)<sub>3</sub>Cl<sub>3</sub> Very sol m H<sub>2</sub>O (Vèzes) K<sub>2</sub>Pt(NO<sub>2</sub>)Cl<sub>5</sub>+H<sub>2</sub>O Sol m H<sub>2</sub>O with

### Platuodonitrous acid

decomp (Vèzes)

Potassium platiiodonitrite, K<sub>2</sub>Pt(NO<sub>2</sub>)<sub>2</sub>I<sub>4</sub>

Sl sol in cold, more easily in hot H<sub>2</sub>O, decomp by boiling (Vèze, A ch (6) 29 207)

 $K_2Pt(NO_2)I_5$  As above (Vèzes)

### Platin-

See also Pla mo-, plato-, p at-, and platos-

# Platindiamine compounds

See Chloro-, bromo-, hydroxylo-, 10do-, nirato-, nitrito-, sulphato-, etc, platindramine compounds

### Platintriamine carbonate,

 $Pt(NH_3)_6(CO_3)_2$ 

Ppt Sol in NaOH+Aq (Geddes, J pr (2) **26** 257)

---- chloride  $Pt(NH_3)_6Cl_4$ Sol in hot  $H_2O$  (Gerdes)

--- chloroplatmate,  $Pt(NH_3) Cl_4$ ,  $PtCl_4+2H_2O$ 

Very sl sol in H2O (Gerdes)

--- nitrate, Pt(NH<sub>3</sub>)<sub>1</sub>(NO<sub>3</sub>)<sub>4</sub>
It is ally sol in HO, sl sol in HNO<sub>3</sub>+Aq (Grides)

- sulphate, Pt(NH<sub>3</sub>)<sub>c</sub>(SO<sub>4</sub>) +H () Nearly insol in H<sub>2</sub>O (Gerdes)

Tetraplatinamine iodide, Pt<sub>4</sub>(NH<sub>3</sub>)<sub>8</sub>I<sub>10</sub> (Blomsti ind, B 16 1469)

Octoplatinamine iodide, Pt<sub>8</sub>(NII<sub>3</sub>)<sub>16</sub>I<sub>18</sub> (Blomstr ind)

#### Platinic acid

Barium platinate, basic (?), 3B iO, 2PtO Insol in HC H<sub>2</sub>O +Aq, c isily sol in HCl+Aq (Rousse iii) Barium platinate, BaPtOs

(Rousseau, C R 109 144) +H<sub>2</sub>O Insol in dil HNO<sub>3</sub>+Aq, sol in warm HCl+Aq (Topsoe, B 3 464) +4H<sub>2</sub>O Very si sol in H<sub>2</sub>O, BaO<sub>2</sub>H<sub>2</sub>, or NaOH+Aq Easily sol in dil acids, except HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, in which it is insol in the cold, but decomp on heating (Topsoe, l c) Composition is 3BaPtO<sub>3</sub>, BaCl<sub>2</sub>, PtCl<sub>2</sub>O+ 4H<sub>2</sub>O (?) (Johannsen, A 155 204)

 $\begin{array}{c} \textbf{Calcium platinate chloride (?), } \ 2Ca_2Pt_2O_5Cl_2 \\ +7H_2O \ \ (?) \end{array}$ 

"Herschel's precipitate"
Easily sol in HCl+Aq, and in HNO<sub>3</sub>+Aq,
if freshly pptd (Herschel Very sol in HNO<sub>3</sub>+Aq (Weiss and

Dobereiner, A 14 252)
Composition is CaPtO<sub>3</sub> PtCl<sub>2</sub>O, CaO+
7H<sub>2</sub>O (?) (Johannsen, A 155 204)

### Potassium platinate

Sol in H<sub>2</sub>O (Berzelius) K<sub>2</sub>O, PtO<sub>2</sub>+3H<sub>2</sub>O Very sol in H<sub>2</sub>O (Blondel, A ch 1905, (8) 6 90) K<sub>2</sub>Pt(OH)<sub>6</sub> Sol in H<sub>2</sub>O, insol in alcohol (Bellucci, Z anorg 1905, 44 173)

Sodium platinate, Na<sub>2</sub>O, 3PtO<sub>2</sub>+6H<sub>2</sub>O Dil acids dissolve out Na<sub>2</sub>O and leave PtO<sub>2</sub> Sol in HNO<sub>3</sub>+Aq (Dobereiner, Pogg **28** 180) Na<sub>2</sub>O, PtO<sub>2</sub>+3H<sub>2</sub>O Sol in H<sub>2</sub>O (Blondel)

Metaplatinic acid, 5PtO<sub>2</sub>, 5H<sub>2</sub>O Insol, in H<sub>2</sub>O (Blondel, A ch 1905, (8) 6 103)

Sodium metaplatinate, Na<sub>2</sub>O, 5PtO<sub>2</sub>+9H<sub>2</sub>O Insol in HO (Blondel)

Platinimolybdic acid, 4H<sub>2</sub>O, PtO<sub>2</sub>, 10MoO<sub>3</sub> (Gibbs )

Potassium platinimolybdate, 60MoO<sub>3</sub>, PtO<sub>2</sub>, 10K O+40H<sub>2</sub>O So in hot H<sub>2</sub>O (Gibbs)

Silver platinimolybdate

Sodium platinimolybdate, 4Na<sub>2</sub>O, PtO<sub>2</sub>, 10 MoO<sub>3</sub>+29H<sub>2</sub>O Sol in H<sub>2</sub>O (Gibbs, Sill Am J (3) 14 61)

Platinitungstic acid

Ammonium platinitungstate, 4(NH<sub>4</sub>)<sub>2</sub>O, PtO<sub>2</sub>, 10WO<sub>3</sub>+12H<sub>2</sub>O

Sol in  $H_2O$  (Gibbs, B 10 1384)

Potassium platinitungstate, 4K<sub>2</sub>O, PtO<sub>2</sub>, 10WO<sub>3</sub>+9H<sub>2</sub>O Sol in H<sub>2</sub>O (Gibbs)

Sodium platmutungstate,  $4Na_2O$ ,  $PtO_2$ ,  $10WO_3+25H_2O$ 

Sol in  $H_2O$  (Gibbs)  $5Na_2O$ ,  $7WO_3$ ,  $2PtO_2+35H_2O$  Sol in  $H_2O$  (Gibbs) Is double salt  $3Na_2O$ ,  $7WO_3+2Na_2PtO_3$ (Rosenheim, B **24** 2397)

10WO<sub>3</sub>, PtO<sub>2</sub>, 4Na<sub>2</sub>O +23H<sub>2</sub>O 10WO<sub>3</sub>, PtO<sub>2</sub>, 6Na<sub>2</sub>O +28H<sub>2</sub>O 20WO<sub>3</sub>, PtO<sub>2</sub>, 9Na<sub>2</sub>O +58H<sub>2</sub>O 30WO<sub>3</sub>, 2PtO<sub>2</sub>, 15Na<sub>2</sub>O +89H<sub>2</sub>O 30WO<sub>3</sub>, PtO<sub>2</sub>, 12Na<sub>2</sub>O +72H<sub>2</sub>O All are sol in boiling H<sub>2</sub>O (Gibbs, Am Ch J 1895, 17 74-80)

Platino-

See also Plato-

Platinochlorophosphoric acid See Chloroplatinophosphoric acid

Platinocyanhydric acid, H<sub>2</sub>Pt(CN)<sub>4</sub>
Deliquescent Very sol in H<sub>2</sub>O, alcohol, and ether

Ammonium platinocyanide, (NH<sub>4</sub>)<sub>2</sub>Pt(CN)<sub>4</sub> +3H<sub>2</sub>O<sub>3</sub>

Very sol in  $H_2O$ +2 $H_2O$  Sol in 1 pt  $H_2O$ , and still more easily in alcohol + $H_2O$ 

Ammonium hydroxylamine platinocyanide, NH<sub>4</sub>(NH<sub>4</sub>O)Pt(CN)<sub>4</sub>+3½H<sub>2</sub>O Sol in H<sub>2</sub>O (Scholz, M Ch 1 900)

Ammonium magnesium platinocyanide,  $(NH_4)_2Mg[Pt(CN)_4]_2+6H_2O$ 

Barium platinocyanide, BaPt(CN)<sub>4</sub>+4H<sub>2</sub>O Sol in 33 pts H<sub>2</sub>O at 16°, and in much less at 100° Sol in alcohol

Barium potassium platinocyanide, BaK<sub>2</sub>[Pt(CN)<sub>4</sub>]<sub>2</sub> Sol in H<sub>2</sub>O

Barium rubidium platinocyanide,  $BaRb_2[Pt(CN)_4]_2$ Sol in  $H_2O$  Cadmium platinocyanide, CdPt(CN)4 Sol in NH<sub>4</sub>OH+Aq (Martius, A **117** 376 CdPt(CN)<sub>4</sub>, 2NH<sub>3</sub>+H<sub>2</sub>O (M)

Calcium platinocyanide, CaPt(CN)<sub>4</sub>+5H<sub>2</sub>O Very sol in H<sub>2</sub>O

Calcium potassium platinocyanide. CaK<sub>2</sub>[Pt(CN)<sub>4</sub>]<sub>2</sub> Sol in H<sub>2</sub>O

Cerum platinocyanide,  $Ce_2[Pt(CN)_4]_3+$ 18H<sub>2</sub>Ō Sol in H<sub>2</sub>O

Cobaltous platinocyanide ammonia. CoPt(CN)<sub>4</sub>, 2NH<sub>3</sub> Insol in H<sub>2</sub>O, but sol in hot NH<sub>4</sub>OH+Aq

Cupric platinocyanide,  $CuPt(CN)_4+xH_2O$ Ppt

Cupric platinocyanide ammonia, CuPt(CN)4,  $2NH_3+H_2O$ CuPt(CN)<sub>4</sub>, 4NH<sub>3</sub> Sol in H<sub>2</sub>O, alcohol,

and ether

1277)

Didymium platinocyanide, Di<sub>2</sub>[Pt(CN)<sub>4</sub>]<sub>3</sub>+ 18H<sub>2</sub>O

Efflorescent in dry air Sol in H<sub>2</sub>O (Cleve)

Dysprosium platinocyanide, Dy2[Pt(CN)4]3+  $21H_2O$ Easily sol in H<sub>2</sub>O (Jantsch, B 1911, 44

Erbium platinocyanide,  $Er_2[Pt(CN_4)]_3+$ 21H₂Ô Sol in H<sub>2</sub>O (Cleve)

Gadolinium platinocyanide, 2Gd(CN)<sub>3</sub>, 3Pt(CN)<sub>2</sub>+18H<sub>2</sub>O Sol in H<sub>2</sub>O, decomp in the air (Bene-

Glucinum platinocyanide, GlPt(CN)4 (Toczynski, Dissert 1871)

dicks, Z anorg 1900, 22 405)

Hydroxylamine platinocyanide,  $(N\dot{H}_4O)_2Pt(CN)_4+2\dot{H}_2O$ Deliquescent Very sol in H<sub>2</sub>O (Scholz)

Hydroxylamine lithium platinocyanide,  $(NH_4O)L_1Pt(CN)_4+3H_4O$ Sol in H<sub>2</sub>O

Indium platinocyanide,  $In_2[Pt(CN)_4]_8+2H_2O$ Hydroscopic, sol in H<sub>2</sub>O (Renz, B 1901, **34** 2765)

Lanthanum platinocyanide, La<sub>2</sub>[Pt(CN)<sub>4</sub>]<sub>3</sub>  $+18H_{2}O$ 

Easily sol in H<sub>2</sub>O (Cleve)

Magnesium platinocyanide, MgPt(CN)<sub>4</sub>+  $2H_{2}O$ Solubility in H<sub>2</sub>O

100 g of the sat solution contain at 96 4° 100° 44 33 43 96 g MgPt(CN)<sub>4</sub>

(Buxhoevden, Z anorg 1897, 15 325)

 $+4H_2O$ Solubility in H O

100 g of the sat solution contain at 42 2° 46 3° 48 7° 55° 40 21 39 79 40 75 40 02 g MgPt(CN)4,

69° 77 8° 58 1°

44 88 45 52 g MgPt(CN)4, 42 01 43 48

> 90° 93° 45 59 45 04 g MgPt(CN)<sub>4</sub> (Buxhoevden)

 $+7H_{2}O$ Sol in 34 pts H<sub>2</sub>O at 16° Easily sol in alcohol and ether Solubility in H<sub>2</sub>O 100 g of the sat solution contain at

4 12° +0 5° 5 5° 18 0° 24 9 26 33 28 07 31 23 g MgPt(CN)<sub>4</sub>,

36 6° 45 0° 46 2° 41 32 41 96 g MgPt(CN)<sub>4</sub> 38 36 (Buxhoevden)

Magnesium potassium platinocyanide,  $MgK_{\bullet}[Pt(CN)_{\bullet}]_{2}+7HO$ Sol in H<sub>2</sub>O

Mercuric platinocyanide, HgPt(CN)<sub>4</sub> Ppt

Mercuric platinocyanide nitrate, 5HgPt(CN),  $Hg(NO_3)_2 + 10HO$ Ppt

Nickel platinocyanide ammonia, NiPt(CN)4, 2NH₃+H₂O

platinocyanide,  $K Pt(CN)_4+$ Potassium  $3H_{9}O$ 

Extremely efflorescent Sl sol in cold, easily in hot H<sub>2</sub>O (Willm, B 19 950) Sol in alcohol and ether

Potassium sodium platinocyanide, K Pt(CN)4, Na<sub>2</sub>Pt(CN)<sub>4</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Willm, B 19 950)

Praseodymium platinocyanide, 2Pr(CN)<sub>3</sub>, 3Pt(CN)<sub>2</sub> Sol in H<sub>2</sub>O (Von Scheele, Z anorg 1898, **18** 355)

Samarium platinocyanide, Sm<sub>2</sub>[Pt(CN<sub>4</sub>)]<sub>3</sub> +18H<sub>2</sub>O

Sol in H<sub>2</sub>O (Cleve)

 $\begin{array}{ll} {\rm Scandium} & {\rm platmocyanide,} & {\rm Sc_2[Pt(CN)_4]_8} \\ & + 21 H_2 O \end{array}$ 

Sol in  $\rm H_2O$  and insol in alcohol, when boiled in alcohol it is dehydrated (Crookes, Phil Trans 1910, 210 A, 368)  $+21\rm H_2O$  (Orlow, Ch Z 1912, 36 1407)

Silver platinocyanide, Ag<sub>2</sub>Pt(CN)<sub>4</sub> Insol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq

Silver platmocyanide ammonia, Ag<sub>2</sub>Pt(CN)<sub>4</sub>, 2NH<sub>3</sub> Insol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq

Silver platinocyanide bromide
See Bromoplatinocyanide, silver

Silver platinocyanide chloride See Chloroplatinocyanide, silver

Silver platinocyanide iodide See Iodplatinocyanide, silver

Sodium platinocyanide, Na<sub>2</sub>Pt(CN)<sub>4</sub>+3H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Willm, Z anorg 4 298) Sol in alcohol

Strontium platinocyanide, SrPt(CN)<sub>4</sub>+5H<sub>2</sub>O Sol in H<sub>2</sub>O

Thallous platinocyanide,  $Tl_2Pt(CN)_4$ Nearly insol in cold, sl sol in hot  $H_2O$ (Friswell, Chem Soc **24** 461)

Thallous platinocyanide carbonate, 2Tl<sub>2</sub>Pt(CN)<sub>4</sub>, Tl<sub>2</sub>CO<sub>3</sub> Nearly insol in cold H<sub>2</sub>O (F)

Thorium platinocyanide,  $Th[Pt(CN)_4]_2 + 16H_2O$ 

Somewhat difficultly sol in cold, easily in hot  $\rm H_2O$  (Cleve, Sv V A H Bih 2 No 6)

Uranyl platinocyanide, (UO<sub>2</sub>)Pt(CN)<sub>4</sub>+xH<sub>2</sub>O Sol in H<sub>2</sub>O (Levv, Chem Soc 1908, 93 1459)

Ytterbium platinocyanide,  $2Yb(CN)_3$ ,  $3Pt(CN)_2+18H_2O$ 

Easily sol in  $H_2O$  (Cleve, Z anorg 1902, 32 139)

Yttrium platinocyanide, Y<sub>2</sub>[Pt(CN)<sub>4</sub>]<sub>3</sub>+ 21H<sub>2</sub>O

Easily sol in  $\rm H_2O$  Insol in absolute alcohol (Cleve and Hoglund )

Zinc platinocyanide ammonia,  $ZnPt(CN)_4$ ,  $2NH_8+H_9O$ 

Platinonitrous acid See Platonitrous acid

Platinoplatinicyanhydric acid, HPt(CN)4

 $+xH_2O$ Sol in  $H_2O$  (Levy, Chem Soc 1912, **101** 1093)

Platinoselenocyanhydric acid

Potassium platinoselenocyanide,  $K_2Pt(SeCN)_6$ 

Sol in  $H_2O$  and alcohol (Clarke and Dudley, B 1878, 11 1325)

Platinoselenostannic acid

See under Selenostannate, platinum

Platinososulphocyanhydric acid, H<sub>2</sub>Pt(SCN)<sub>4</sub>

Known only in aqueous solution

Potassium platinososulphocyanide,  $K_2Pt(SCN)_4$ 

Permanent Sol in 25 pts H<sub>2</sub>O at 15°, and more readily at higher temp Very sol in warm alcohol

Silver —, Ag<sub>2</sub>Pt(SCN)<sub>4</sub>

Insol in  $H_2O$  Sol in KSCN+Aq, and partly sol in  $NH_4OH+Aq$ 

Platinosulphocyanhydric acid, H<sub>2</sub>Pt(SCN)<sub>6</sub>

Known only in aqueous, and alcoholic solutions

Ammonium platinosulphocyanide, (NH<sub>4</sub>)<sub>2</sub>Pt(SCN)<sub>6</sub>

Sol in H<sub>2</sub>O and alcohol

Barium —, BaPt(SCN), Sol in H<sub>2</sub>O and alcohol

Ferrous ----, FePt(SCN)6

Insol in H<sub>2</sub>O or alcohol Not attacked by dil H<sub>2</sub>SO<sub>4</sub>, HCl, or HNO<sub>3</sub>+Aq

Lead ----, PbPt(SCN)6

Sl sol in cold, decomp by hot HO Sol in alcohol

PbPt(SCN)<sub>6</sub>, PbO Insol in H () or alcohol Sol in acetic or nitric acids

Mercurous —, Hg<sub>2</sub>Pt(SCN)<sub>f</sub> Ppt Insol in H<sub>2</sub>O Potassium platinosulphocyanide, K<sub>2</sub>Pt(SCN)<sub>6</sub>

Sol in 12 pts H<sub>2</sub>O at 60° Much more easily in boiling H2O, and still more easily in hot alcohol

 $+2H_{\bullet}O$ (Miolati and Bellucci, Gazz Ch it 1900, 30, II 592)

Silver —, Ag<sub>2</sub>Pt(SCN)<sub>6</sub>

Insol in H<sub>2</sub>O or K<sub>2</sub>Pt(SCN)<sub>6</sub>+Aq in cold NH4OH+Aq and in KCNS+Aq

Sodium ----, Na Pt(SCN)6 Sol in H2O and alcohol

Platinosulphostannic acid

See under Sulphostannate, platinum

Platinosulphurous acid See Platosulphurous acid

Platinum, Pt

Not attacked by H<sub>2</sub>O, H<sub>2</sub>SO<sub>4</sub>, HCl, or HNO<sub>3</sub>+Aq Slowly sol in aqua regia, or a mixture of HBr and HNO3, but much less easily than Au

Precipitated Pt is remarkably sol in HCl+Aq in presence of air (Wilm, B 1881, **14** 636 )

Pure Pt foil is attacked by furning HCl

under influence of light, but not in the dark (Berthelot, C R 1904, 138 1297)

Dil HCl+Aq dissolves 10-15% Pt from active Pt black (Wohler, B 1903, 36 3482)

Conc HNO<sub>3</sub> oxidizes Pt black, Pt sponge, less easily, sheet Pt, slightly (Wohler, Dissert 1901)

Pt in presence of Hg is more or less sol in conc HNO<sub>3</sub> (Tarugi, Gazz ch it 1903, 33, II 171)

Pt vessels are attacked by evaporating HNO<sub>3</sub> therein (Jaunek and Meyer, Z anorg 1913, 83 71)

Sl sol in conc H2SO4 contuning small amounts of nitrogen oxides (Schana-Kestner C R 86 1082)

Pt black, pptd by formic acid, is easily sol in boiling H SO4 (Deville and Stas,

Paris, 1878)

Thin sheet Pt is attacked by boiling H<sub>2</sub>SO<sub>4</sub> containing K<sub>2</sub>SO<sub>4</sub>, 1 sq cm loses 0.01 g in 1 hour and velocity of the reaction is not accelerated by addition of HNO<sub>3</sub> Pt black is completely dissolved under the above conditions in 50 hours (Delépine, C R 1905, **141** 1013)

Further data on solubility of Pt in H<sub>2</sub>SO<sub>4</sub> are given by Delépine (Ĉ R 1906, 142

95% H<sub>2</sub>SO<sub>4</sub> dissolves 0 04 g Pt from commercial Pt at 250–260° in 28 hours (Conroy, J Soc Chem Ind 1903, 22 465) See also Quenessen (Bull Soc 1906, (3) 35 620)

0 0038 g is dissolved by 10 cc of boiling (McCoy, Eighth Inter Cong App  $H_2SO_4$ Chem 1912 2)

HCl+HNO<sub>3</sub>, so long as they are sufficiently dil or the temperature is so low that they cannot react on each other, have no action on Pt Addition of Cl does not bring about reaction, but a few drops of KNO2 or N2O3+Aq bring about an immediate reaction (Millon)

Slowly sol in HI+Aq (Deville, C R 42) 896)

Conc H<sub>3</sub>PO<sub>4</sub> attacks Pt when heated in presence of air, but not in its absence (Huttner, Z anorg 1908, 59 216)

Pt dissolves easily in most acids when they contain H<sub>2</sub>O<sub>2</sub> (Fairley, B 1875, 8 1600) Slowly sol in boiling FeCl<sub>3</sub>+Aq (Saint-Pierre, C R 54 1077)

FeCl<sub>s</sub> m acid solution is without influence on Pt (Marie, C R 1908, 146 476)
Pt is completely insol in KCN+Aq (Rossler, Z Chem 1866 175)

Pt is attacked by boiling cone KCN+Aq (Deville and Debray, C R 82 241)

Solubility of Pt in 10% KCN+Aq is very small at ord temp (14 mg in 8 days) but is considerably greater in boiling cone KCN +Aq (715 mg in 5 hours) Elektrochem 1903, 9 15) (Glaser, Z

Pt foil is dissolved in boiling KCN+Aq (0 030 g for 1 cc in 1 hour) Insol in cold KCN+Aq (Brochet and Petit, C R 1904,

C R 138 1255 Sol in RbCl<sub>4</sub>I+Aq (Erdmann, Arch Pharm 1894, **232** 30) Insol in liquid NH<sub>3</sub> (Goie, Am Ch J 1898, **20** 828)

Platinum ammonium compounds

Data published since the first edition of this work have not been included in this edition See -

Platosamine comps, Pt < NH3 R

Platosemudiamine comps, Pt<R NH, NH, R

Platomonochamine comps, 

Platodiamine comps  $Pt < {}^{\mathrm{NH_3}}_{\mathrm{NH_3}} {}^{\mathrm{NH_3}}_{\mathrm{H_3}} R$ 

Platososemamine comps ,  $\mathrm{Pt} < \mathrm{^{NH_3\,R}}$ 

 $D_{i}$ plato $d_{i}$ amine comps, Pt-NH, NH, R

Pt-NH<sub>3</sub> NH<sub>3</sub> R

Bromoplatinamine comps,

B12Pt < NH3 R NH3 R

Chloroplatinamine comps,

Cl<sub>2</sub>Pt < NH, R NH, R

Chloronitratoplatinamine comps ,  $Cl(NO_{8})Pt{<}NH_{8}\stackrel{R}{H}_{8}$  R

Iodoplatinamine comps ,  $I_2Pt < {NH_3 \atop NH_3 \atop R}$ Hydroxyloplatinamine comps ,

(OH)<sub>2</sub>Pt < NH<sub>3</sub> R NH<sub>3</sub> R

Nitratoplatinamine comps ,  $(NO_3)_2Pt < {NH_3R \atop NH_3}R$ 

Sulphatoplatinamine comps ,  $SO_4Pt < \stackrel{NH_3}{NH_3} \stackrel{R}{R}$ 

Bromoplatinsemidiamine comps, Br<sub>3</sub>PtNH<sub>3</sub> NH<sub>3</sub> R

Bromonitritoplatins emidiamine comps ,  $\rm Br_2(NO_2)PtNH_3\ NH_8\ R$ 

Chloroplatinsemidiamine comps, Cl<sub>3</sub>PtNH<sub>3</sub> NH<sub>3</sub> R

Chlorohydroxylonitritosemidramine comps ,  $Cl(OH)(NO_2)PtNH_8$   $NH_8$  R

Chloronitritoplatinsemidiamine comps,  $Cl_2(NO_2)PtNH_3 NH_3 R$ 

lodoplatinsemidiamine comps ,  $I_{\$}PtNH_{\$}\;NH_{\$}\;R$ 

Hydroxylosemidiamine comps, (OH)<sub>3</sub>PtNH<sub>3</sub> NH<sub>3</sub> R

Bromoplatin*monodia*mine comps ,  $\mathrm{Br_2Pt} < \mathrm{NH_3\ NH_3\ R}$ 

Bromohydroxyloplatinmonodiamine comps Br(OH)Pt<NH3 NH3 R

Chloroplatin\*\*monodiamine comps ,  $\rm Cl_2Pt < \stackrel{NH_3}{NH_3} \stackrel{NH_3}{R} R$ 

Iodonitratoplatinmonodiamine comps ,  $I(NO_3)Pt < \stackrel{NH_3}{NH_3} \stackrel{NH_3}{R}$ 

Hydroxyloplatinmonodramme comps ,  $(OH)_2Pt < \stackrel{NH_3}{NH_3} \stackrel{NH_3}{R}$ 

Bromoplatindiamine comps ,  ${\rm Br_2Pt} < {\rm NH_3~NH_3~R} \atop {\rm NH_3~NH_3~R}$ 

Bromocarbonatoplatindianine comps,  $C_3^{O_3} > [Pt(NH_3)R]_2$ 

Bromochloroplatindiamine comps ,  $BrClPt(NH_3)_4R_2$ 

Bromohydroxyloplatindiamine comps,  $Br(OH)Pt(NH_3)_4R_2$ 

Bromonitratoplatindiamine comps ,  $Br(NO_3)Pt(NH_3)_4R_2$ 

Bromosulphatoplatindiamine comps ,  ${\rm Br_2(SO_4)[Pt(NH_3)_4R_2]_2}$ 

 $\begin{array}{c} Carbonatochloroplatindiamine\ comps\ ,\\ (CO_3)Cl_2[Pt(NH_3)_4R_2]_2\\ Carbonatonitratoplatindiamine\ comps\ ,\\ (CO_3)(NO_3)_2[Pt(NH_3)_4R_2]_2 \end{array} ,$ 

Chloroplatindiamine comps,  $Cl_2Pt(NH_8)_4R_2$ 

Chlorohydroxyloplatindiamine comps,  $Cl(OH)(NH_3)_4R_2$ 

Chloroiodoplatindiamine comps,  $CIIPt(NH_3)_4R_2$ 

Chloronitratoplatindiamine comps,  $Cl(NO_3)Pt(NH_3)_4R_2$ 

Hydroxyloplatindiamine comps,  $(OH)_2Pt(NH_3)_4R_2$ 

Hydroxylonitratodiamine comps,  $(OH)(NO_3)Pt(NH_3)_4R_2$ 

Hydroxylosulphatodiamine comps, (OH)<sub>2</sub>SO<sub>4</sub>[Pt(NH<sub>3</sub>)<sub>4</sub>R<sub>2</sub>]<sub>2</sub>

Iodoplatindiamine comps, I<sub>2</sub>Pt(NH<sub>3</sub>)<sub>4</sub>R<sub>2</sub>

Iodonitritoplatindiamine comps,  $I(NO_2)Pt(NH_3)_4R_2$ 

Nitratoplatindiamine comps,  $(NO_8)_2Pt(NH_8)_4R_2$ 

Nitritoplatindiamine comps,  $(NO_2)_2Pt(NH_3)_4R_2$ 

Sulphatoplatindiamine comps,  $(SO_4)Pt(NH_3)_4R_2$ 

Iododiplatinamine comps,

 $-\mathrm{Pt} < \mathrm{\stackrel{NH_3}{NH_3}} \mathrm{\stackrel{R}{R}} \\ -\mathrm{Pt} < \mathrm{\stackrel{NH_3}{NH_3}} \mathrm{\stackrel{R}{R}} \\ -\mathrm{Pt} < \mathrm{\stackrel{NH_3}{NH_3}} \mathrm{\stackrel{R}{R}}$ 

Bromodiplatindiamine comps,

Br—Pt < NH3 NH3 R NH3 NH3 R Br—Pt < NH3 NH3 R

Hydroxylo $d\imath$ platin $d\imath$ amine comps,  $(OH)_2Pt_2(NH_3)_8R_4$ 

Iododiplatindiamine comps,  $I_2Pt_2(NH_3)_8R_4$ 

 $N_1$ trato $d_1$ platIn $d_1$ amIne comps,  $(NO_3)_2$ Pt $_2(NH_3)_8$ R $_4$ 

Platintriamine comps

R<sub>2</sub>Pt < NH<sub>3</sub> NH<sub>3</sub> NH<sub>3</sub> R

Tetraplatinamine comps, Pt<sub>4</sub>(NH<sub>3</sub>)<sub>8</sub>R<sub>10</sub> Octoplatinamine comps, Pt<sub>8</sub>(NH<sub>3</sub>)<sub>16</sub>R<sub>18</sub>

Platinum antimonide, PtSb<sub>2</sub> (Christofle, **1863**)

Platinum arsenide, Pt<sub>8</sub>As<sub>2</sub>

(Tivoli, Gazz ch it 14 487)
PtAs<sub>2</sub> Min Sperrylite Sl attacked by aqua regia (Wells, Sill Am J (3) 37 67)

Platinum arsenic hydroxide (?), PtAsOH

Insol in, and slowly decomp by H<sub>2</sub>O and alcohol Easily decomp by HCl+Aq, not attacked by HNO<sub>3</sub>+Aq Sol in aqua regia, not attacked by cold conc H<sub>2</sub>SO<sub>4</sub>, but decomp on heating (Tivoli, Gazz ch it 14 487)

#### Platinum potassium azoimide

Ppt Explodes violently even in aq solution (Curtius, J pr 1898, (2) 58 304)

#### Platinum boride, Pt<sub>2</sub>B<sub>2</sub>

Very slowly sol in aqua regia (Martius, A 109 79)

#### Platinous bromide, PtBr<sub>2</sub>

Insol in H<sub>2</sub>O Sol in HBr+Aq Sl sol in KBr+Aq (Topsoe, J B **1868** 274)

#### Platinic bromide, PtBr4

Not deliquescent, sol in H<sub>2</sub>O (Mever and Zublin, B 13 404)

Sl sol in H<sub>2</sub>O 100 g PtBr<sub>4</sub>+Aq sat at 20° contain 0 41 g PtBr<sub>4</sub> (Halberstadt, B

17 2962)
Easily sol in HBr+Aq, sl sol in HC<sub>2</sub>H<sub>8</sub>O<sub>2</sub>
+Aq Sol in considerable amount in K or
NH<sub>4</sub> oxalate+Aq

Very sl sol in alcohol or ether, also in glycerine (Halberstadt)

#### Platinic hydrogen bromide See Bromoplatinic acid

Platinous bromide carbonyl See Carbonyl platinous bromide

## Platinic bromide with MBr See Bromoplatinate, M

## Platinum carbide, PtC2

Hot aqua regia dissolves out nearly all the Pt (Zeise, J pr 20 209)

## Platinum carbon disulphide, PtCS<sub>2</sub> See Platinum sulphocarbide

#### Platinum monochloride, PtCl+xH<sub>2</sub>O

Easily sol in HCl, mod sol in hot dil  $H_2\mathrm{SO}_4$  without decomp (Sonstadt, Proc Chem Soc 1898, 14 179)

#### Platinous chloride, PtCl<sub>2</sub>

Insol in  $H_2O$ , cone  $H_2SO_4$ , or  $HNO_3$  Sol in hot HCl+Aq with exclusion of air (Berzelius)

Insol in alcohol or ether, sol in NH<sub>4</sub>OH+ Aq (Raewsky, A ch (3) 22 280) Sol in aqua regia with formation of PtCl<sub>4</sub>

Insol in cold cone KI+Aq, but sol when heated (Lassaigne, A ch (2) 51 117)
Sl sol in liquid NH<sub>3</sub> (Gorc, Am Ch J

1898, **20** 828) Insol in acetone (Hidmann, C C **1899**, II **1014**)

#### .

Platinum trichloride, PtCl<sub>3</sub>
Sl sol in cold, more sol in hot H<sub>2</sub>O
Partially hydrolyzed by boiling with H<sub>2</sub>O

Insol in cold cone HCl Sol in hot cone HCl with decomp Sol in KI+Aq (Wohler, B 1909, 42 3961)

#### Platinic chloride, PtCl4

Not deliquescent Very sol in H<sub>2</sub>O (Pullinger, Chem Soc **61** 420)

Sp gr of aqueous solution containing

5 10 15 20 25 % PtCl<sub>4</sub>,

1 046 1 097 1 153 1 214 1 285

30 35 40 45 50 % PtCl<sub>4</sub>

1 362 1 450 1 546 1 666 1 785

(Precht, Z anal **18** 512)

Insol in conc H<sub>2</sub>SO<sub>4</sub> (Dumas) Sl sol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 828)

Sol in alcohol and ether, sol in anhydrous acetone (Zeise, A 33 34)
Insol in ether (Willstatter, B 1903, 36 1830)

Sl sol in methyl acetate (Naumann, B 1909, 42 3790)
Sol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4328)  $+\mathrm{H}_2\mathrm{O}$  Sol in  $\mathrm{H}_2\mathrm{O}$  (Gutbier and Hein-

rich, Z anorg 1913, **81** 378) +4H<sub>2</sub>O Sol in H<sub>2</sub>O (Pigeon, C R 1891, **112** 792)

+5H<sub>2</sub>O Not deliquescent Sol in H<sub>2</sub>O or HCl+Aq Composition is probably H<sub>2</sub>PtCl<sub>4</sub>O+4H<sub>2</sub>O

(Norton, J pr 110 469) +7H<sub>2</sub>O Sol in H<sub>2</sub>O (Pigeon)

+8H<sub>2</sub>O (Blondel, A Ch 1905, (8) 6 98)

# Platinic thallium chloride, Tl<sub>3</sub>Pt<sub>2</sub>Cl<sub>8</sub>H<sub>5</sub>O<sub>4</sub> Ppt, insol in H<sub>2</sub>O (Miolati, Z anorg 1900, **22** 460)

Platinous hydrogen chloride See Chloroplatinous acid

## Platinic hydrogen chloride See Chloroplatinic acid

Platinous chloride with MCl See Chloroplatinite, M

Platinic chloride with MCI See Chloroplatinate, M

Platinous phosphorus chloride
See Phosphorus platinous chloride

Platinic phosphorus chloride
See Phosphorus platinic chloride

Platinous chloride carbonyl

See Carbonyl platinous chloride

Platinum chloride hydroxylamine, Pt(NH<sub>2</sub>OH)<sub>2</sub>Cl<sub>2</sub>

Ppt Sol in alcohol and in ether Decomp in ag solution

 $Pt(NH_2OH)_4Cl_2$  Sol in  $H_2O$  (Uhlenhuth, A 1900, **311** 124)

Platmous chloride sulphocarbamide, PtCl<sub>2</sub>, 4CS(NH<sub>2</sub>)<sub>2</sub>

SI sol in  $H_2O$ , very sol in hot  $H_2O$ , decomp sl on boiling (Kurnakow, J pr 1894, (2) 50 483)

Platinum chlorosodide, PtCl<sub>2</sub>I<sub>2</sub>

Very deliquescent (Kammerer, A 148 329)

PtClI<sub>3</sub> Insol in H<sub>2</sub>O Sl sol in alcohol Sol in KOH+Aq, from which it is pptd by H<sub>2</sub>SO<sub>4</sub> (Mather, Sill Am J **27** 257)

Platınum chloronitride, PtNCl (Alexander, C C 1887 1254)

Platinous cyanide with MCN See Platinocyanide, M

Platinous fluoride, PtF2(?)

Insol in H<sub>0</sub>O (Moissan, A ch (6), 24 287)

Platinic fluoride, PtF4

Deliquescent Sol in H<sub>2</sub>O with immediate decomp into PtO<sub>4</sub>H<sub>4</sub> and HF (Moissan, C R 109 807)

Platinous bydroxide, PtO2H2

Sol in HCl, HBr, and  $H_2SO_3+A\alpha$ , but not in other oxygen acids Decomp by boiling KOH+Aq (Thomsen, J pr (2) 16 344)

When freshly pptd, is insol in dil HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>, and in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, sol in conc HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> Very sol in H<sub>2</sub>SO<sub>2</sub> and HCl After drying, is insol in conc HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> (Wohler, Z anorg 1904, **40** 424)

Platinic hydroxide, Pt(OH)<sub>4</sub>

Easily sol in dil acids and in NaOH+Aq (Topsoe, J B 1870 386)

Nearly insol in acetic acid (Dobereiner) Insol in all acids except cone HCl and aqua regia (Wohler, Z anorg 1904, 40 438)

+H<sub>2</sub>O Ppt (Prost, Bull Soc (2) 44 256) Insol in 2N-H<sub>2</sub>SO<sub>4</sub> and dil HNO<sub>3</sub>+Aq, mod sol in conc HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, 2N-HCl and NaOH+Aq (Wohler)

+2H<sub>2</sub>O Easily sol in dil acids, even acetic acid, and in NaOH+Aq (Topsee)

Insol in acetic acid, sl sol in 2N-H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub>, easily sol in HCl, and NaOH+Aq (Wohler)

Platinoplatinic hydroxide, Pt<sub>3</sub>O<sub>4</sub>, 9H<sub>2</sub>O
Ppt (Prost, Bull Soc (2) **46** 156)
Pt<sub>5</sub>O<sub>11</sub>, 11H<sub>2</sub>O Ppt (Prost)

Platinum hydroxylamine comps

See-

Platodoxamme comps,  $Pt(NH_3O)_4R_2$ Platosoxamme comps,  $Pt(NH_3O)_2R_2$ Platosoxamme-amme comps,

 $Pt(NH_3O)_3NH_3R_2$ 

Platinous iodide, PtI2

Insol in  $H_2O$ , acids, or alcohol (Lassaigne, A ch (2) **51** 113)

Difficultly sol in Na<sub>2</sub>SO<sub>3</sub>+Aq (Topsoe) Gradually decomp by hot HI+Aq of 1 038 sp gr, also by hot KI+Aq, PtI<sub>4</sub> being dissolved out and Pt left behind Not attacked by conc H<sub>2</sub>SO<sub>4</sub>, HCl, or HNO<sub>3</sub>+Aq, but gradually decomp by KOH or NaOH+Aq (Lassaigne)

Insol in acetone (Eidmann, C C 1889,

II 1014)

Platinic iodide, PtI4

Insol in H<sub>2</sub>O Sol in NaOH or Na<sub>2</sub>CO<sub>3</sub>+Aq, H<sub>2</sub>SO<sub>3</sub>, or Na<sub>2</sub>SO<sub>3</sub>+Aq Sol in HI+Aq or alkalı iodides+Aq Sol in alcohol, with partial decomp Not attacked by acids (Lassaigne, A ch (2) **51** 122)

Very sol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 828)

Sol in alcohol (Belluci, C C 1902, I

625)

Platinic iodide with MI See Iodoplatinate, M

Platinum nitride chloride, PtNCl See Platinum chloronitride

Platinous oxide, PtO

Sol in H<sub>2</sub>SO<sub>3</sub>+Aq Insol in other acids (Döbereiner, Pogg 28 183)

Sol in conc H<sub>2</sub>SO<sub>4</sub>, easily in conc HCl+Aq (Storer's Dict)

Very sl sol in HCl+Aq Sl sol in aqua regia (Wohler, B 1903, 36 3482)

Platinic oxide, PtO2

Insol in acids, even aqua regia (Wohler, Dissert, 1901)

Platinum trioxide, PtOs

Unattacked by dil H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub> or acctic acid Sol with decomp in dil and conc HCl, conc H<sub>2</sub>SO<sub>4</sub> or conc HNO<sub>3</sub> (Wohler, B 1909, **42** 3329)

Platinum sesquioxide, Pt<sub>2</sub>O<sub>3</sub>+xH<sub>2</sub>O

Insol in dil sol in conc H<sub>2</sub>SO<sub>4</sub> Sl sol in hot dil HNO<sub>3</sub> Sol in HCl Sol in conc alkalı hydroxides+Aq (Wohler, B 1909, **42** 3964)

Insol in HNO3 and H2SO4 Insol in alkalies +Aq, also cold dil HCl+Aq Sol in aqua regia (Dudley, Am Ch J 1902, **28** 66)

 $+5H_2O$ (Delépine, Bull Soc 1910, (4) 7 103)

#### Platinoplatinic oxide, Pt<sub>3</sub>O<sub>4</sub>

Not attacked by long boiling with HCl, HNO<sub>3</sub>, or aqua regia (Jorgensen, J pr (2) **16** 344)

(Wohler, Z anorg 1904, Does not exist

**40** 450)

## Platinum oxychloride, 3PtO, PtCl<sub>2</sub> (?)

Sol in HCl, and in KOH+Aq (Kane, Phil Trans **1842** 298)

 $PtCl_2(OH)_2 = H_2PtCl_2O_2$ (Jorgensen, J

pr (2) 16 345)

5PtO<sub>2</sub>, 2HCI+9H<sub>2</sub>O Insol in cold H<sub>2</sub>O, decomp on boiling Slowly sol in HCl (Blondel, A ch, 1905, (8) 6 100)

#### Platinum oxysulphide, PtOS See Platinum sulphydroxide

Platinum phosphide, PtP<sub>2</sub>

Insol in HCl+Aq Sol in aqua regia

(Schrotter, W A B 1849 303)
PtP<sub>2</sub>H<sub>2</sub> Insol in H<sub>2</sub>O, and HCl+Aq (Cavazzi, Gazz ch it 13 324)

PtPInsol in aqua regia (Clark and

Joslin )  $Pt_2\acute{P}$ Sol in aqua regia (Clark and

Joslin ) Pt<sub>3</sub>P<sub>5</sub> Partially sol in aqua regia (Clark

and Joslin, C N 48 385)

Attacked very slowly by aqua regra Rapidly sol in molten alkalies (Granger, C N 1898, 77 229)

Completely sol in aqua regia if the action sufficiently prolonged, though with difficulty (Granger, C R 1896, 123 1285)

#### Platinum diselenide, PtSc.

As PtS<sub>2</sub> (Minozzi, Chem Soc 1909, 96 (2)899)

#### Platinum triselenide, PtSc<sub>3</sub>

SI attacked by hot conc HNO3, not attacked by cold conc HCl+Aq, slowly sol in aqua regia and Cl<sub>2</sub>+Aq, insol in CS<sub>2</sub>

#### Platinum silicide, Pt<sub>2</sub>Si

Sol in hot aqua regia (Vigouroux, C R 1896, **123** 117)

Pt<sub>8</sub>S<sub>12</sub> (Colson, C R 94 27)

Pt<sub>4</sub>Si<sub>3</sub> Slowly decomp by aqua regia (Guyard, Bull Soc (2) 25 511)

PtSi Insol in HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF, and HCl Completely sol in aqua regia (Lebeau and Novitzky, C R 1907, 145 241)

#### Platinum sulphydroxide, $PtOS + H_2O =$ $PtS(OH)_2$

Decomp easily into-

 $Pt_2S_2O_3H_2 = \frac{PtS}{PtS}O \frac{OH}{OH} = PtOS + \frac{1}{2}H_2O H_2O$ cannot be removed without decomposing the compound (v Meyer, J pr (2) 15 1)

#### Platmous sulphide, PtS

Not attacked by boiling acids, aqua regia, or KOH+Aq (Bottger, J pr 2 274) Sol in large excess of (NH<sub>4</sub>)<sub>2</sub>S+Aq

#### Platinoplatinic sulphide, Pt<sub>2</sub>S<sub>3</sub>

Not attacked by HCl or HNO3+Aq, and only slowly by aqua regia (Schneider, Pogg **138** 607)

#### Platinic sulphide, PtS<sub>2</sub>

Anhydrous Aqua regna attacks sl, other acids not at all (Davy)

Hydrated Insol in HCl+Aq, sl sol in

boiling HNO3+Aq Soln aqua regia (Fresenius) Sol in alkalı sulphides, hydrates and carbonates+Aq (Berzelius) Very sl sol in (NH<sub>4</sub>)<sub>2</sub>S+Aq (Claus)

Insol in NH4Cl, or NH4NO3+Aq

1 pt PtCl4 in 100 pts HO+25 pts HCl is

not pptd by H<sub>2</sub>S (Reinsch)

Difficultly sol in alkali sulphydroxides+ Aq, but more easily in presence of SnS, Sb<sub>2</sub>S<sub>3</sub>, As<sub>2</sub>S<sub>3</sub>, or SnS<sub>2</sub> (Ribau, C R 85 283)

#### Platinum sulphide, Pt<sub>5</sub>S<sub>6</sub>, or Tetraplatinum sulphoplatmate, 4PtS, PtS<sub>2</sub>

Decomp on moist air, but not attacked by (Schneider, J pr (2) 7 214)

## Platinum sulphides with M2S

See Sulphoplatinate, M

#### Platinum sulphocarbide, PtC<sub>2</sub>S<sub>2</sub>

Not attacked by hot HCI, HNO<sub>3</sub>+Aq, slightly by aqua regia (Schutzenberger, C R 111 391)

#### Platinum telluride, Pt le

Decomp by fused oxidizing agents, slowly sol in conc HNO3 (Roessler, Z anorg 1897 **15** 407)

#### Platinum ditelluride, Pt 1 (2)

Insol in boiling cone KOH+Aq, slowly sol in boiling cone HNO, decomp by fused oxidizing agents (Roesslei)

#### Plato-

See also Platino-

## Platoamidosulphonic acid

Potassium platoamidosulphonate, K<sub>2</sub>Pt(NH<sub>2</sub>SO<sub>3</sub>)<sub>4</sub>+2H<sub>2</sub>O

Very sl sol in cold  $\rm H_2O$ , sol in 10 pts boiling  $\rm H_2O$  (Ramberg and St Kahlenberg, B 1912, 45 1514)

Platodiamine bromide, Pt[(NH<sub>3</sub>)<sub>2</sub>Br]<sub>2</sub>+ 3H<sub>2</sub>O

Easily sol in H<sub>2</sub>O (Cleve)

carbonate, Pt(N<sub>2</sub>H<sub>6</sub>)<sub>2</sub>CO<sub>3</sub>+H<sub>2</sub>O
Sol in H<sub>2</sub>O (Peyrone, A **51** 14)
Pt(N<sub>2</sub>H<sub>6</sub>CO<sub>3</sub>H)<sub>2</sub> Sl sol in, but decomp by boiling with H<sub>2</sub>O into—

----- sesquicarbonate

More sol than preceding salt (Resset, C R 11711)

---- chloride,  $Pt[(NH_3)_2Cl]_2+H_2O$ 

"Reiset's first chloride" Sol in 4 pts H<sub>2</sub>O at 16 5°, and in less hot H<sub>2</sub>O Insol in alcohol or ether (Reiset, A ch (3) 11 419)

As sol in NH<sub>4</sub>Cl+Aq as in H<sub>2</sub>O, insol in absolute alcohol, sl sol in dil alcohol, very sol in dil HCl+Aq (Peyrone, A ch (3) 12 196)

— cuprous chloride, Pt(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>, Cu<sub>2</sub>Cl<sub>2</sub> Sol in H<sub>2</sub>O, and pptd from H<sub>2</sub>O solution by alcohol (Buckton)

cupric chloride, Pt(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>, CuCl<sub>2</sub>
Sl sol in cold, decomp by hot H<sub>2</sub>O into Pt(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>, Cu<sub>2</sub>Cl<sub>2</sub> (Buckton, Chem Soc 5 218)

Nearly insol in H<sub>2</sub>O, easily sol in warm HCl+Aq, insol in alcohol (Millon and Commaille, C R 57 822)

Millon and Commaille's salt is

Millon and Commaille's salt is Cu(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>, PtCl<sub>2</sub>, cuprammonium chloroplatinite

—— lead chloride, Pt(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>, PbCl<sub>2</sub>

Sol in hot, much less in cold H<sub>2</sub>O Insol in HCl+Aq or alcohol (Buckton, Chem Soc 5 213)

— mercuric chloride, Pt(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>, HgCl<sub>2</sub> Easily sol in hot H<sub>2</sub>O, much less in cold Insol in HCl+Aq (Buckton)

—— zinc chloride, Pt(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>, ZnCl<sub>2</sub>
Easily sol in hot H<sub>2</sub>O Insol in alcohol (Buckton)

 $\begin{array}{c} \textbf{Plato} \textit{diamine} & \textbf{chloroplatinate,} & \textbf{Pt}(\textbf{NH}_3)_4\textbf{Cl}_2, \\ \textbf{Pt}\textbf{Cl}_4 & \end{array}$ 

Ppt Insol in H<sub>2</sub>O (Cossa, Gazz ch it 17 1)

chloroplatunte, Pt(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>, PtCl<sub>2</sub>
(Magnus' green salt ) Insol in, and not decomp by H<sub>2</sub>O, HCl+Aq, or alcohol (Mag-

Slowly sol in boiling NH<sub>4</sub>OH+Aq and in conc NH<sub>4</sub> salts+Aq (Reiset, A ch (3) 11

427)

Almost as sol in  $(NH_4)_2CO_3+Aq$  as in  $NH_4OH+Aq$  Sol in hot  $PtCl_4+Aq$  (Reset.)

Not decomp by boiling KOH, dil HCl, or  $\rm H_2SO_4+Aq$ , but easily by  $\rm HNO_3+Aq$  (Gros, A 27 245)

---- chromate, Pt(NH<sub>8</sub>)<sub>4</sub>CrO<sub>4</sub> Scarcely sol in H<sub>2</sub>O (Cleve)

---- dichromate, Pt(NH<sub>3</sub>)<sub>4</sub>Cr<sub>2</sub>O<sub>7</sub>

Sl sol in H<sub>2</sub>O Insol in alcohol Sol in KOH+Aq (Buckton, Chem Soc **5** 213)

platinous cyanide,  $Pt(NH_3)_4(CN)_2$ ,  $Pt(CN)_2$ 

SI sol in cold, easily in boiling H<sub>2</sub>O, sol in KOH, HCl, and dil H<sub>2</sub>SO<sub>4</sub>+Aq without decomp, but conc H<sub>2</sub>SO<sub>4</sub> decomposes

— potassium ferrocyanide,  $Pt(NH_8)_4K_2[Fe(CN)_6]_2+3H_2O$ 

—— hydroxide, Pt[(NH<sub>3</sub>)<sub>2</sub>OH]<sub>2</sub>
"Reiset's first base" Easily sol in H<sub>2</sub>O
Sl sol in alcohol

---- 10dide,  $Pt[(NH_3)_2I_2]$ 

Sl sol in cold, more easily in hot  $H_2\mathrm{O}$ , but slowly decomp on boiling (Reiset)

---- nitrate,  $Pt[(NH_3)_2NO_3]_2$ 

Sol in about 10 pts boiling H<sub>2</sub>O Insol or but sl sol in alcohol (Peyrone, A ch (3) 12 203)

nıtrate sulphate,  $[Pt(NH_3)_4NO_3]_2SO_4$ ,  $Pt(NH_3)_4SO_4$ 

Very easily sol in  $H_2O$  (Carlgron, Sv V A F 47 310)

—— nitrite, Pt[(NH<sub>3</sub>)<sub>2</sub>NO<sub>2</sub>]<sub>2</sub>+2H<sub>3</sub>()
Efflorescent Very sol in hot or cold H<sub>2</sub>O
Insol in 90% alcohol (Lang)

platinous nitrite,  $Pt[(NH_3)_2NO_2]_2$ ,  $Pt(NO_2)_2$ 

Scarcely sol in cold, somewhat more easily in hot  $\rm H_2O$  Not attacked by cold dil acids More sol in  $\rm NH_4OH + Aq$  than in  $\rm H_2O$  (Lang)

 $\begin{array}{ll} \textbf{Plato} \textit{diamine} & \textbf{phosphate,} & Pt(N_2H_6)_2HPO_4 \\ & +H_2O \end{array}$ 

Rather difficultly sol in cold, and very easily in hot  $\mathrm{H}_2\mathrm{O}$  (Cleve )

---- ammonium phosphate,  $Pt[(N_2H_6)PO_4(NH_4)_2]$ ,  $4NH_4H_2PO_4+H_2O$ 

Very easily sol in  $H_2O$  with decomp into— $Pt(N_2H_4H_2PO_4)_2$ ,  $2NH_4H_2PO_4+9H_2O$  Much more sol in  $H_2O$  than the preceding comp (Cleve)

---- sulphate, Pt(NH<sub>3</sub>)<sub>4</sub>SO<sub>4</sub>

Sol in 32 pts H<sub>2</sub>O at 16 5°, more easily when heated (Reiset )

Sol in 50-60 pts boiling  $H_2O$ , less in cold  $H_2O$ , insol in alcohol (Cleve)

—— sulphate, acid, Pt[(NH<sub>3</sub>)<sub>2</sub>SO<sub>4</sub>H]<sub>2</sub>+H<sub>2</sub>O Decomp by H<sub>2</sub>O or alcohol into neutral salt 3Pt(NH<sub>3</sub>)<sub>4</sub>SO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>+H<sub>2</sub>O Sol in H<sub>2</sub>O

(Cleve)

--- sulphite, Pt(NH<sub>3</sub>)<sub>4</sub>SO<sub>3</sub>

Nearly insol in cold  $H_2O$  (Birnbaum, A 152 143) Pt[(NH<sub>3</sub>)<sub>2</sub>SO<sub>3</sub>H]<sub>2</sub>+2H<sub>2</sub>O Ppt Sol in HCl+Aq (Cleve)

---- platinous sulphite,  $3Pt(NH_3)_4SO_3$ ,  $PtSO_3+2H_2O$ 

Scarcely sol in cold H<sub>2</sub>O, sol in 190 pts H<sub>2</sub>O at 100° Easily sol in warm HCl+Aq with decomp (Peyrone) +4H<sub>2</sub>O (Carlgren, Sv V A F 47 308) 2Pt(NH<sub>3</sub>)<sub>4</sub>SO<sub>3</sub>, PtSO<sub>3</sub>, H<sub>2</sub>SO<sub>3</sub> Insol in cold H<sub>2</sub>O or alcohol Scarcely sol in hot H<sub>2</sub>O (Peyrone)

—— sulphocyanide, Pt(NH<sub>3</sub>)<sub>4</sub>(CNS)<sub>2</sub>+H<sub>2</sub>O Very sol in H<sub>2</sub>O Solution is decomp on boiling (Cleve, Sv V A H **10**, **9** 7)

—— platinous sulphocyanide,  $Pt(NH_3)_4(CNS)_2$ ,  $Pt(CNS)_2$ 

Insol in  $H_2O$  and alcohol, sol in dil HCl+Aq (Buckton, Chem Soc 13 122)

Platomonodramine chloride, Pt<sub>NH<sub>3</sub>Cl</sub>
Easily sol in H<sub>2</sub>O (Cleve)

Platomonodiamine chloroplatinite  $2Pt_{NH_3Cl}^{(NH_3)}$  Cl,  $PtCl_2$ 

Moderately sol in cold, but more easily in hot  $H_2O$  (Cleve)

mtrate,  $Pt_{NH_3NO_3}^{(NH_3)_2NO_3} + H_2O$ Easily sol in  $H_2O$  (Cleve) Platomonodiamine sulphate,  $\mathrm{Pt}^{(\mathrm{NH_3})_2}_{\mathrm{NH_3}}\mathrm{SO_4}$ 

Easily sol in cold, but much more in hot  $H_2O$ 

Platosemidiamine bromide,  $Pt < {
m (NH_3)_2Br \atop Br}$ 

Sol in  $H_2O$  Easily sol in  $NH_4OH + Aq$  (Cleve)

----- chloride,  $\mathrm{Pt} <_{\mathrm{Cl}}^{\mathrm{(NH_3)_2Cl}}$ 

(Peyrone's chloride) Sol in 387 pts  $\rm H_2O$  at 0°, and 26 pts at 100° (Cleve), in 33 pts at 100° (Peyrone) Sol in NH<sub>4</sub>OH+Aq, very sl sol in HCl or

Sol in NH<sub>4</sub>OH+Aq, very sl sol in HCl or H<sub>2</sub>SO<sub>4</sub>+Aq, more easily in HNO<sub>3</sub>+Aq, sol in alkali carbonates+Aq (Peyrone, A ch (3) 12 193)

Platosemidiamine chlorosulphurous acid,  ${\rm Pt}<_{\rm Cl}^{\rm (NH_3)_2SO_3H}$ 

Easily sol in H<sub>2</sub>O (Cleve)

Ammonium platosemidiamine chlorosulphite platosemidiamine sulphite,

 $Pt < {(NH_3)_2SO_3NH_4, Pt} < {(NH_3)_2SO_3NH_4 + 2H_2O}$ 

Easily sol in H<sub>2</sub>O Insol in alcohol (Cleve)

Platosemidiamine cyanide,

 $Pt(CN)(NH_3)_2CN$ Easily sol in  $H_2O$  (Cleve)

—— platmous cyanide, Pt(CN)(NH<sub>3</sub>)<sub>2</sub>CN,
Pt(CN)<sub>2</sub>(?)
Ppt

----- hydroxide,  $Pt < {}^{(NH_3)_2OH}_{OH}$ 

Not known

--- 10dide,  $Pt <_{
m I}^{
m (NH_3)_2 I}$ 

Sl sol in boiling H<sub>2</sub>O (Cleve)

--- nitrate  ${
m Pt}_{
m NO}^{({
m NH_3})_2{
m NO}_3}$ 

Moderately sol in  $H_2O$  (Cleve)

---- nitrite,  $Pt_{NO_2}^{(NH_3)_2NO_2}$ 

Very sl sol in cold, more easily in hot H<sub>2</sub>()

oxalate, Pt(NH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>

(Cleve) +2H<sub>2</sub>O (Cleve)

#### Platosemidiamine sulphocyanide, Pt(SCN)(NH<sub>3</sub>)<sub>2</sub>SCN

Easily sol in warm H<sub>2</sub>O, but solution soon decomposes

## Platosemidiamine sulphurous acid

Ammonium platosemidiamine sulphite,  $Pt < (NH_3)_2SO_3(NH_4)$ ,  $(NH_4)_2SO_3$  $Very sol in <math>H_2O$  (Cleve)

Barium —, Pt(SO<sub>3</sub>)[(NH<sub>3</sub>)<sub>2</sub>SO<sub>3</sub>]Ba, BaSO<sub>3</sub> Ppt (Cleve)

 $\begin{array}{ccc} Silver & & Pt(SO_3Ag)[(NH_3)_2SO_3Ag], \\ Ag_2SO_3 & & Ppt & (Cleve) \end{array}$ 

Diplatodiamine chloride, Pt<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub> Insol in H<sub>2</sub>O

hydroxide, Pt<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>(OH)<sub>2</sub>+H<sub>2</sub>O Insol in H<sub>2</sub>O

--- nitrate,  $Pt_2(NH_3)_4(NO_3)_2$ Insol in  $H_2O$  (Cleve)

#### Platobromonitrous acid

Potassium platobromonitrite,  $K_2Pt(NO_2)_3Br + 2H_2O$ 

Sol in about 3 pts cold, and 2 pts boiling  $H_2O$  (Vèzes, A ch (6) **29** 194)  $K_2Pt(NO_2)_2Br_2+H_2O$  Sol in 1 pt cold, and still less hot  $H_2O$  Insol in alcohol (Vèzes)

#### Platochloronitrous acid

Potassium chloronitrite, K<sub>2</sub>Pt(NO<sub>2</sub>)<sub>3</sub>Cl+ 2H<sub>2</sub>O

Sol in about 3 pts cold, and 2 pts boiling  $H_2O$  (Vèzes, A ch (6) **29** 178)  $K_2Pt(NO_2)_2Cl_2$  Sol in about 3 pts cold, and 2 pts boiling  $H_2O$  (Vèzes)

Platochlorosulphurous acid See Chloroplatosulphurous acid

Platoiodonitrous acid, H<sub>2</sub>Pt(NO<sub>2</sub>)<sub>2</sub>I<sub>2</sub>
Known only in solution (Nilson, J pr (2)
21 172)

 $\begin{array}{ll} \textbf{Aluminum} & \textbf{platoiodonitrite,} & \text{Al}_2[Pt(NO_2)_2I_2]_3 \\ & +27H_2O \\ & \text{Easily sol in } H_2O \quad (Nilson ) \end{array}$ 

Ammonium —,  $(NH_4)_2Pt(NO_2)_2I_2+2H_2O$ Sol in  $H_2O$ , decomp on heating Barium platoiodonitrite, BaPt(NO<sub>2</sub>)<sub>2</sub>I<sub>2</sub>+
4H<sub>2</sub>O

Very sol in H<sub>2</sub>O

Cadmium —,  $CdPt(NO_2)_2I_2+2H_2O$ Easily sol in  $H_2O$ 

Cæsium —,  $Cs_2Pt(NO_2)_2I_2+2H_2O$ Easily sol in  $H_2O$ 

Calcium —,  $CaPt(NO_2)_2I_2+6H_2O$ Very easily sol in  $H_2O$ 

Cerum —,  $Ce_2[Pt(NO_2)_2I_2]_3+18H_2O$ Easily sol in  $H_2O$ 

Cobalt —, CoPt(NO<sub>2</sub>)<sub>2</sub>I<sub>2</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O

Didymium —,  $D_{12}[Pt(NO_2)_2I_2]_3+24H_2O$ Sol in  $H_2O$ 

Erbium —,  $\text{Er}_2[\text{Pt}(\text{NO}_2)_2\text{I}_2]_3 + 18 \text{ H}_2\text{O}$ Sol in  $\text{H}_2\text{O}$ 

Ferrous —,  $FePt(NO_2)_2I_2+8H_2O$ Sol in  $H_2O$ 

Ferric —,  $Fe_2[Pt(NO_2)_2I_2]_3+6H_2O$ Sol in  $H_2O$ 

 $\begin{array}{ccc} \textbf{Lanthanum} & & & \\ & & ----, & La_2[Pt(NO_2)_2I_2]_3 + 24H_2O \\ & \text{Sol in } H_2O \end{array}$ 

Lead —, basic,  $PbPt(NO_2)_2I_2$ ,  $Pb(OH)_2$ Insol in  $H_2O$ 

Lithium —,  $L_{12}Pt(NO_2)_2I_2+6H_2O$ Very sol in  $H_2O$ 

Magnesium —,  $MgPt(NO_2)_2I_2+8H_2O$ Sol in  $H_2O$ 

Manganese —,  $MnPt(NO_2)_2I_2+8H_2O$ Sol in  $H_2O$ 

Mercurous —, basic,  $2Hg_2Pt(NO)_2I_2$ ,  $Hg_2O+9H_2O$ Insol in  $H_2O$ 

Nickel —,  $N_1Pt(NO_2)_2I_2+8H_2O$ Sol in  $H_2O$ 

Potassium ——, K<sub>2</sub>Pt(NO<sub>2</sub>)<sub>2</sub>I<sub>2</sub>+2H<sub>2</sub>O Sol in H<sub>2</sub>O in all proportions Very sol in alcohol

Rubidium —, Rb<sub>2</sub>Pt(NO<sub>2</sub>)<sub>2</sub>I<sub>2</sub>+2H<sub>2</sub>O Sol in H<sub>2</sub>O

- Silver platoiodonitrite, Ag<sub>2</sub>Pt(NO<sub>2</sub>)<sub>2</sub>I<sub>2</sub> Insol in H<sub>2</sub>O
- Strontuum —, SrPt(NO<sub>2</sub>)<sub>2</sub>I<sub>2</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O
- Thallium —, Tl<sub>2</sub>Pt(NO<sub>2</sub>)<sub>2</sub>I<sub>2</sub> Insol in H<sub>2</sub>O
- Yttrium —,  $Y_2[Pt(NO_2)_2I_2]_3+27H_2O$ Sol in  $H_2O$
- Zinc —,  $ZnPt(NO_2)_2I_2+8H_2O$ Sol in  $H_2O$
- Triplatooctonitrosylic acid, H<sub>4</sub>Pt<sub>3</sub>O(NO<sub>2</sub>)<sub>8</sub> (Nilson, J pr (2) 16 241)
- Potassium triplatooctonitrosylate See under Platonitrite, potassium
- Platonitrous acid,  $H_2Pt(NO_2)_4$ Sol in  $H_2O$  or alcohol (Lang J pr 83 419) Is called "Platotetranitrosylic acid' by Nilson
- Aluminum platonitrite,  $Al_2[Pt(NO_2)_4]_3+14H_2O$ Sol in  $H_2O$  $Al_2(OH)_2[Pt(NO_2)_2]_4O_2+10H_2O$  Sl sol in cold, easily in hot  $H_2O$  and alcohol (Nilson, B 9 1727)
- $\begin{array}{cccc} \textbf{Ammonium} & \textbf{platonitrite,} & (NH_4)_2Pt(NO_2)_4 + \\ & 2H_2O & \\ & Moderately \ sol \ \ in \ cold \ H_2O & (Nilson, \ B \\ \textbf{9} \ 1724 \ ) \end{array}$
- Barium platonitrite, BaPt(NO<sub>2</sub>)<sub>4</sub>+3H<sub>2</sub>O Sl sol in cold, very sol in hot H<sub>2</sub>O (Lang)
- Cadmium platonitrite, CdPt(NO<sub>2</sub>)<sub>4</sub>+3H O Easily sol in H<sub>2</sub>O (Nilson)
- Cæsium platonitrite, Cs<sub>2</sub>Pt(NO<sub>2</sub>)<sub>4</sub> Resembles K salt
- Calcium platonitrite, CaPt(NO<sub>2</sub>)<sub>4</sub>+5H O Very sol in H<sub>2</sub>O (Nilson)
- Cerium platonitrite, Ce [Pt(NO<sub>2</sub>)<sub>4</sub>]<sub>3</sub>+18H<sub>2</sub>O Sol in H<sub>2</sub>O (Nilson)
- Chromium dvplatonitrite,  $Cr_2(OH)_2[Pt(NO_2)_2]_4O_2+24H_2O$ Sol in  $H_2O$  (Nilson)

- Cobalt platonitrite, CoPt(NO<sub>2</sub>)<sub>4</sub>+8H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Nilson)
- Copper platonitrite, CuPt(NO<sub>2</sub>)<sub>4</sub>+3H<sub>2</sub>O Sol in H<sub>2</sub>O (Nilson) 3CuPt(NO<sub>2</sub>)<sub>4</sub>, CuO+18H<sub>2</sub>O Decomp by H<sub>2</sub>O (Nilson)
- Didymium platonitrite, Di<sub>2</sub>[Pt(NO<sub>2</sub>)<sub>4</sub>]<sub>3</sub>+
  18H<sub>2</sub>O

  Deliquescent solun H<sub>2</sub>O
- Deliquescent, sol in H<sub>2</sub>O
- Erbium platonitrite, Er<sub>2</sub>[Pt(NO<sub>2</sub>)<sub>4</sub>]<sub>3</sub>+9, and 21H<sub>2</sub>O
  Deliquescent, sol in H<sub>2</sub>O
- Glucinum diplatonitrite, Gl'Pt(NO<sub>2</sub>)<sub>2</sub>]<sub>2</sub>O+ 9H<sub>2</sub>O Sl sol in cold H<sub>2</sub>O
- Indium diplatonitrite, In(OH)<sub>2</sub>[Pt(NO<sub>2</sub>)<sub>2</sub>]<sub>4</sub>O<sub>2</sub> +10H<sub>2</sub>O Sl sol in H<sub>2</sub>O
- Ferric diplatonitrite, Fe<sub>2</sub>[Pt(NO<sub>2</sub>)<sub>2</sub>]<sub>5</sub>O<sub>3</sub>+ 30H<sub>2</sub>O
  Sl sol in cold, easily in hot H<sub>2</sub>O
- $\begin{array}{lll} \textbf{Lanthanum} & \textbf{platonitrite,} & La_2[Pt(NO_2)_4]_3 + \\ 18H_2O & \\ \textbf{Deliquescent, sol in HO} \end{array}$
- Lead platonitrite, PbPt(NO<sub>2</sub>)<sub>4</sub>+3H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Nilson)
- Lithium platonitrite, Li<sub>2</sub>Pt(NO<sub>2</sub>)<sub>4</sub>+3H<sub>2</sub>O Sl deliquescent, easily sol in H<sub>2</sub>O
- Magnesium platonitrite,  $MgPt(NO_2)_4+5HO$ Easily sol in  $H_2O$
- Manganese platonitrite, MnPt(NO<sub>2</sub>)<sub>4</sub>+ 8H<sub>2</sub>O Sol in H<sub>2</sub>O
- Mercurous platonitrite, Hg Pt(NO<sub>2</sub>)<sub>4</sub>, Hg O No urly insol in H<sub>2</sub>O (Lang, J pi 83 415) +H<sub>2</sub>O Noarly insol in H O (Nilson)
- Nickel platonitrite,  $N_1Pt(NO_2)_4+8HO$ Easily sol in  $H_2O$  (Nilson)
- $\begin{array}{c} \textbf{Potassium platonitrite,} \ \ K_2Pt(NO_2)_4 \\ \textbf{Sol in 27 pts} \ \ H_2O \ \text{at 15°, more easily sol} \\ \textbf{in warm } H_2O \ \ (Lang, J \ \text{pr 83 415}) \\ +2H_2O \ \ \textbf{Ffflorescent} \ \ (I \ \text{ang}) \\ K_2H_4Pt_3O(NO_2)_6+3H_2O \ \ \textbf{Very sl sol in} \\ \textbf{cold } (0.01 \ \text{mol in 1 l at 16°), but very easily} \end{array}$
- in hot  $H_2O$  (Vèzes, A ch ( $\hat{6}$ ) 29 162)  $K_4Pt_3O(NO_2)_8+2H_2O$  Sl sol in warm  $H_2O$  (Nilson)

Potassium platonitrite bromide

See Platibromonitrite and platobromonitrite, potassium

Potassium platonitrite chloride See Plati- and platochloronitrite, potassium

Potassium plat nitrite hydrogen chloride,  $K_2Pt(NO_2)_4$ , HCl

Sol in  $H_2O$  (Miolati, Att Linc Rend 1896, (5) 5, II 358)

Potassium platonitrite iodide See Plati- and platoiodomitrite, potassium

Potassium platonitrite nitrogen dioxide,  $K_2Pt(NO_2)_4$ ,  $2NO_2$ 

Violently decomp by H<sub>2</sub>O (Miolati, Atti Line Rend 1896, (5) **5**, II, 356)

Rubidium platonitrite,  $Rb_2(Pt)(NO_2)_4$ , and  $+2H_2O$ 

Very slowly sol in cold, more easily in warm  $\mathrm{H}_2\mathrm{O}$  (Nilson)

Silver platonitrite, Ag<sub>2</sub>Pt(NO<sub>2</sub>)<sub>4</sub> Very sl sol in cold, easily in hot H<sub>2</sub>O

Silver diplatomtrite, Ag<sub>2</sub>Pt<sub>2</sub>(NO<sub>2</sub>)<sub>4</sub>O Insol in H<sub>2</sub>O (Nilson)

Sodium platonitrite,  $Na_2Pt(NO_2)_4$ Easily sol in  $H_2O$ 

Strontum platonitrite,  $SrPt(NO_2)_4+3H_2O$ Somewhat sl sol in cold  $H_2O$ , but easily sol in warm  $H_2O$ 

Thallium platonitrite,  $Tl_2Pt(NO_2)_4$ Very sl sol in  $H_2O$  (Nilson)

Yttrium platonitrite, Y<sub>2</sub>[Pt(NO<sub>2</sub>)<sub>4</sub>\subseteq +9, or 21H<sub>2</sub>O Sol in H<sub>2</sub>O

Zinc platonitrite, ZnPt(NO<sub>2</sub>)<sub>4</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O

Platodioxamine chloride, Pt(NH<sub>3</sub>O NH<sub>3</sub>OCl)<sub>2</sub>

Easily sol in  $H_2O$  (Alexander, A 246 239)

Sol in warm HCl+Aq Insol in cold  $H_2O$  or alcohol, very sl sol in hot  $H_2O$  (Alexander)

—— hydroxide,  $Pt(NH_3O NH_3O)_2(OH)_2$ Insol in  $H_2O$  or alcohol Easily sol in HCl or  $HNO_3+Aq$  Difficultly sol in hot dil  $H_2SO_4+Aq$  (Alexander)

Platodroxamine oxalate, Pt(NH<sub>3</sub>O NH<sub>3</sub>O)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>

Insol in cold H<sub>2</sub>O, alcohol, or organic acids (Alexander)

---- phosphate, Pt<sub>3</sub>(NH<sub>3</sub>O NH<sub>3</sub>O)<sub>12</sub>(PO<sub>4</sub>)<sub>2</sub>+ 3H<sub>2</sub>O Ppt (Alexander)

Sl sol in H<sub>2</sub>O (Alexander,)

Platosamine bromide, Pt(NH<sub>3</sub>Br)<sub>2</sub> Sl sol even in hot H<sub>2</sub>O (Cleve)

--- chloride, Pt(NH<sub>3</sub>Cl)<sub>2</sub>

"Reiset's second chloride" Sol in 140 pts H<sub>2</sub>O at 100° (Peyrone, A **61** 180)

Sol in 130 pts  $H_2O$  at 100°, and 4472 pts at 0° (Cleve)

Easily sol in NH<sub>4</sub>OH+Aq, HNO<sub>3</sub>, or aqua regia, with decomp Sol in KCN+Aq with evolution of NH<sub>3</sub> (Cleve)

Sl sol in cold, easily in hot H<sub>2</sub>O, insol in alcohol, sol in NH<sub>4</sub>OH or (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (Grimm, A 99 75)

Platosamine chlorosulphurous acid,

 $Pt_{NH_3SO_3H}^{NH_3Cl}$ 

Easily sol in  $H_2O$  without decomp (Cleve)

Ammonium platosamine chlorosulphite, Pt(NH<sub>2</sub>Cl)NH<sub>3</sub>SO<sub>3</sub>NH<sub>4</sub>+H<sub>2</sub>O Sol in H<sub>2</sub>O (Peyrone, A **61** 180)

Platosamine cyanide, Pt(NH<sub>3</sub>CN)<sub>2</sub>

Quite easily sol in  $H_2O$  or  $NH_4OH + Aq$  (Buckton)

---- hydroxide, Pt(NH<sub>3</sub>OH)<sub>2</sub>

"Reiset's second base" Very sol in HO (Odling, B 3 685)

---- iodide, Pt(NH<sub>3</sub>I)<sub>2</sub>

Very sl sol in H<sub>2</sub>O Sol in cold NH<sub>4</sub>OH+ Aq to form platodiamine iodide (Clove)

--- nitrate, Pt(NH<sub>3</sub>NO<sub>3</sub>)<sub>2</sub>

Moderately sol in hot H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq with combination (Reiset, A ch (3) 11 26)

---- nutrite,  $Pt(NH_3NO_2)_2$ 

Very sl sol in cold, easily in hot H<sub>2</sub>O Insol in alcohol (Lang)

Platosamine platinous nitrite, Pt(NH<sub>3</sub>NO<sub>2</sub>)<sub>2</sub>, Pt(NO<sub>2</sub>)<sub>2</sub>

Slowly and sl sol in cold, more easily sol in hot  $\mathrm{H}_2\mathrm{O}$ 

Extremely sl sol even in conc acids, more sol in NH<sub>4</sub>OH+Aq than in H<sub>2</sub>O (Lang)

oxalate,  $Pt(NH_3)_2H_2(C_2O_4)_2+2H_2O$ Ppt (Cleve)

sulphate, Pt(NH<sub>3</sub>)<sub>2</sub>SO<sub>4</sub>+H<sub>2</sub>O
Sl sol in cold, more easily in hot H<sub>2</sub>O

—— sulphocyanide, Pt(NH<sub>3</sub>SCN)<sub>2</sub>
Insol in H<sub>2</sub>O, can be cryst from alcohol, not attacked by HCl or H<sub>2</sub>SO<sub>4</sub>+Aq (Buckton)

Very sol in hot H<sub>2</sub>O (Cleve)

 $\begin{array}{c} ----\text{silver sulphocyanide,} \\ \text{Pt}(\text{NH}_3)_2\text{Ag}_4(\text{SCN})_6 \\ \text{(Cleve)} \end{array}$ 

Platosamine sulphurous acid, Pt(NH<sub>3</sub>SO<sub>3</sub>H)<sub>2</sub>

Exists only in its salts See Platosamine sulphite

 $\begin{array}{c} \textbf{Ammonium platosamine sulphite,} \\ Pt(NH_3SO_3NH_4)_2 \\ Sol \ in \ H_2O \quad Insol \ in \ alcohol \end{array}$ 

Barium platosamine sulphite, Pt(NH<sub>3</sub>) (SO<sub>3</sub>)<sub>2</sub>B<sub>4</sub>+3H<sub>2</sub>O Ppt (Cleve)

Cobalt — Pt(NH<sub>d</sub>)<sub>2</sub>(SO<sub>3</sub>)<sub>2</sub>CO+
6H<sub>2</sub>O

Vory decorption H O Solem HCl+A

Very sl sol in H<sub>2</sub>() Sol in HCl+Ao

Copper ——, Pt(NH<sub>3</sub>)<sub>2</sub>(SO<sub>3</sub>)<sub>2</sub>Cu+ 5H O Very sl sol in H O, sol in HCl+Aq

Manganese —— ——,  $Pt(NH )_2(SO_3)_2Mn$ +4 $H_2O$ Ppt Sl sol in  $H_2O$ 

Nickel — ,  $Pt(NH_3)_2(SO_3)_2N_1+7H_2O$ Sl sol in  $H_2O$  Sodium platosamine sulphite, Pt(NH<sub>3</sub>SO<sub>3</sub>Na)<sub>2</sub>+5½H<sub>2</sub>O

Sol in H<sub>2</sub>O 100 ccm sat solution at 20° contains 5 52 g cryst salt (Haberland and Hanekop, A 245 235)

Silver ----,  $Pt(NH_2SO_3Ag)_2+H_2O$ Ppt

Zinc —,  $Pt(NH_3)_2(SO_3)_2Zn+6H_2O$ Ppt Very sl sol in  $H_2O$  (Cleve)

## Platososemamine potassium chloride,

Pt<sub>Cl</sub><sup>NH<sub>3</sub>Cl</sup>, KCl+H<sub>2</sub>O

Very sol in  $H_2O$ , insol in alcohol (Cossa, B 23 2507)

## Platosoxamıne chloride, $Pt_{\mathrm{NH_3OCl}}^{\mathrm{NH_3OCl}}$

Sol in H<sub>2</sub>O Much less sol in H<sub>2</sub>O than platodioxamine chloride (Alexander, A **246** 239)

Platosoxamine amine chloride,  $\mathbf{P}_{t}^{\mathrm{NH}_{3}\mathrm{O}}_{\mathrm{NH}_{3}\mathrm{OCl}}$ 

Easily sol in H<sub>2</sub>O Insol in alcohol and conc HCl+Aq (Alexander, A **246** 239)

#### Platosulphurous acid

Ammonium platosulphite,  $(NH_4)_6Pt(SO_3)_4+3H_2O$ 

Sol in  $H_2O$  (Birnbaum A **139** 170) (NH<sub>4</sub>)<sub>2</sub>Pt(SO<sub>3</sub>)<sub>2</sub>+H O Sol in  $H_2O$  (I iebig, Pogg **17** 108)

Ammonium platosulphite chloride, (NH<sub>4</sub>)<sub>2</sub>Pt(SO<sub>3</sub>)<sub>2</sub>, 2NH<sub>4</sub>Cl

Sol in H<sub>2</sub>O (Birnbaum) PtClSO<sub>3</sub>H, 2NH<sub>4</sub>Cl Deliquescent, sol in

H<sub>2</sub>O (Birnbaum, A **152** 143)
See also Chloroplatosulphite, ammonium

Potassium platosulphite,  $K_rPt(SO_3)_4+4H_2O$ 

Sl sol in cold, easily in hot H<sub>2</sub>O Much more sol than the Na salt (Birnbaum, A 139 168)

 $+3H_2O$  (I ang, J pr 83 415) 6K<sub>2</sub>O, 2PtO, 10SO<sub>2</sub> Sl sol in H<sub>2</sub>O

(Claus, J B **1847–48** 453) Does not exist (Lang)  $K_2Pt(SO_3)_2$  Sol in  $H_2O$ 

#### Silver platosulphite, Ag<sub>6</sub>Pt(SO<sub>8</sub>)<sub>4</sub>

Very sol in cold NH4OH+Aq (Lang J, pr 83 415)

#### Sodium platosulphite, Na<sub>6</sub>Pt(SO<sub>8</sub>)<sub>4</sub>

Very sl sol in cold, somewhat more easily in hot H2O Not decomp by boiling KOH or NaOH+Aq Gradually sol in (NH<sub>4</sub>)<sub>2</sub>S or K<sub>2</sub>S+Aq Insol in NaCl+Aq or alcohol (Litton and Schnedermann, A 42 316)

+1½H<sub>2</sub>O  $+7H_2O$ 

Na<sub>2</sub>Pt(SO<sub>3</sub>H)<sub>4</sub> Moderately sol in H<sub>2</sub>O (Litton and Schnedermann)

#### Platothiosulphuric acid

Sodium platothiosulphate,  $Na_6Pt(S_2O_3)_4+$ 10H<sub>2</sub>Ô

Very sol in H<sub>2</sub>O (Schottländer, A 140 200)

 $PtS_2O_3$ ,  $4Na_2S_2O_3+10H_2O_3$ PtS<sub>2</sub>O<sub>3</sub>, 6Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+19H<sub>2</sub>O

 $2Pt_2S_2O_3$ ,  $7Na_2S_2O_3+18H_2O_3$ (Jochum, C C 1885 642)

#### Plumbic acid

#### Barium plumbate, Ba<sub>2</sub>PbO<sub>4</sub>

Insol in H<sub>2</sub>O Sol in HCl+Aq with evolution of Cl Sol in acids in presence of a reducing substance (Kassner, Arch Pharm **228** 109)

#### Calcium plumbate

Insol in H<sub>2</sub>O HNO<sub>3</sub>+Aq dissolves out CaO (Crum, A **55** 218) Ca<sub>2</sub>PbO<sub>4</sub> Properties as Ba<sub>2</sub>PbO<sub>4</sub> (Kass-

ner, Arch Pharm 228 109)

 $+4H_2O$ Easily decomp by HNO<sub>3</sub> (Kassner, Arch Pharm 1894, 232 378)

## Calcium hydrogen plumbate, H CaPb<sub>2</sub>O<sub>6</sub>

Fairly stable, slowly sol in HNO3 in the cold (Kassner)

#### Calcium lead orthoplumbate, (aPbPbO4

Insol in H<sub>2</sub>O Sol in HCl HNO<sub>3</sub>, acetic and other acids cause a separation of PbO<sub>2</sub> (Kassner, Arch Pharm 1903, 241 147)

#### Copper metaplumbate, CuPbO<sub>3</sub>

Decomp by acids Insol in NH4OH+Aq Acetic acid dissolves Cu (Hoehnel, Arch Pharm 1896, 234 399)

## Lead metaplumbate, PbPbO,

Identical with lead sesquioxide (Hoehnel, Arch Pharm 1896, 234 399)

#### Manganese metaplumbate

Decomp by acids (Hoehnel, Arch Phaim 1896, **234** 399)

## Potassium plumbate, K<sub>2</sub>PbO<sub>3</sub>+3H<sub>2</sub>O

Very deliquescent Decomp by pure H<sub>2</sub>O into PbO<sub>2</sub> and KOH Sol in KOH+Aq with out decomp (Fremy, J Pharm (3) 3 32)

#### Silver metaplumbate, Ag<sub>2</sub>PbO<sub>3</sub>

(Grutzner, Arch Pharm 1895, 233 518)

#### Sodium plumbate

Sol in H<sub>2</sub>O with decomposition Sl sol in alkalies+Aq (Fremy, A ch (3) 12 490)

### Sodium metaplumbate, Na<sub>2</sub>PbO<sub>3</sub>+4H<sub>2</sub>O

Decomp by H<sub>2</sub>O, insol in alcohol (Hoehnel, Arch Pharm 1894, 232 224)

#### Strontium plumbate, Sr<sub>2</sub>PbO<sub>4</sub>

Properties as Ba<sub>2</sub>PbO<sub>4</sub> (Kassner, Arch Pharm 228 109)

#### Zinc metaplumbate, ZnPbO<sub>3</sub>+2H<sub>2</sub>O

Decomp by dil acids, insol in H<sub>2</sub>O (Hoehnel, Arch Pharm 1896, 234 398)

#### Plumbous acid

#### Calcium plumbite

Sl sol in H<sub>2</sub>O (Kursten, Scher J 5 575)

## Potassium plumbite, PbO, xK<sub>2</sub>O

Known only in solution

## S lver plumbite, Ag PbO

Insol in H<sub>2</sub>O, NH<sub>4</sub>OH+Aq and KOH+ Aq, sol in HNO3 and acetic acid, and in cone H<sub>2</sub>SO<sub>4</sub>, HI, and HI (Bullnheimer, B 1898, **31** 1288 )

+2H<sub>2</sub>O Insol in HO Decomp on air (Kratwig, B 15 264)

#### Sodium plumbite

Known only in solution

#### Potassium, K<sub>2</sub>

Violently decomposes II () or alcohol Insol in hydrocubons Sol with violent action in acids

#### Solubility in fused KOII at to

| t                        | ( | K sol in 100 g fused KOH        |
|--------------------------|---|---------------------------------|
| 480<br>600<br>650<br>700 |   | 78-89 $ 3-4 $ $ 2-27 $ $ 05-13$ |

(Hevesy, Z. Elektrochem 1909, 15 534)

Sol in liquid NH $_3$  (Scely, C N 23 169), (Franklin, Am Ch J 1898, 20 829) 1 gram atom of K dissolves in 474 mol

liquid NH<sub>3</sub> at 0°, in 479 mol at -50°, in 482 mol at -100° (Ruff, B 1906, **39** 839) Insol in liquid CO. (Buchner, Z phys

Ch 1906, **54** 674)

Slowly sol in ethylene diamine Insol in ethyl amine and in secondary and tertiary amines (Kraus, J Am Chem Soc 1907, 29 1561)

Potassium acetylide, K<sub>2</sub>C<sub>0</sub> (Moissan, C R 1898, 127 917)

Potassium acetylide acetylene,  $K_2C_2$ ,  $C_2H_2$ (Moissan, C R 1898, 127 915)

#### Potassium amalgams

Hg<sub>4</sub>K, Hg<sub>5</sub>K, Hg K, Hg<sub>10</sub>K, Hg<sub>12</sub>K and g<sub>18</sub>K (Guntz, C R 1900, **131** 183) Hg<sub>14</sub>K Stable up to 0° Can be cryst

from Hg without decomp below 0° Hg<sub>12</sub>K Stable from 0° to 71° or 73° Can

be cryst from Hg without decomp at any temp between these limits

Hg<sub>10</sub>K Stable from 71° or 73-75° be cryst from Hg without decomp at any temp between these limits (Kerp, Z anorg 1900, **25** 68)

#### Potassium amide, KH<sub>2</sub>N

Decomp by water or alcohol Insol in hydrocarbons

Potassium ammonickelate, N12N3K5, 6NH3 Decomp by H<sub>2</sub>O Sl sol in liquid NH<sub>3</sub> (Bohart, J phys Chem 1915, 19 559)

Potassium ammonoargentate, AgNHK, NH₃ or AgNH<sub>2</sub>, KNH<sub>2</sub>

Ppt, decomp in the air Decomp by H<sub>2</sub>O or by liquid NH3 solutions of acids (Franklin, J Am Chem Soc 1915, 37 855)

Potassium ammonobarate, BaNK, 2NH<sub>3</sub>

Hydrolyzed by H<sub>2</sub>O Insol in liquid NH<sub>3</sub> Decomp and dissolved in a solution of NH<sub>4</sub>NO<sub>3</sub> in liquid NH<sub>3</sub> (Franklin, J Am Chem Soc 1915, 37 2297)

Potassium ammonocadmiate, Cd(NHK)<sub>2</sub>,  $2NH_{s}$ 

Ppt (Franklin, Am Ch J 1912, 47 310) Cd(NHK)<sub>2</sub>, 2NH<sub>3</sub> Decomp by H<sub>2</sub>O Insol in liquid NH<sub>3</sub> (Bohart, J phys Chem 1915, **19** 542)

Potassium ammonocalciate, CaNK, 2NH<sub>3</sub>

Hydrolyzed by H<sub>2</sub>O Readily sol in a solution of NH<sub>4</sub>NO<sub>3</sub> in liquid NH<sub>3</sub> (Franklin, J Am Chem Soc 1915, 37 2300)

Potassium ammonocuprite, CuNK<sub>2</sub>, 3NH<sub>3</sub> Very sol in liquid NH<sub>3</sub> CuNK<sub>2</sub>, 2NH<sub>3</sub>

CuNK<sub>2</sub>, NH<sub>3</sub> (Soc 1912, **34** 1503) (Franklin, J Am Chem  $CuNK_{2}, 21/2NH_{3}$  Ppt (Franklin, Am Ch J 1912, 47 311)

Potassium ammonomagnesate, Mg(NHK)<sub>2</sub>  $2NH_3$ 

Sl sol in liquid NH<sub>3</sub> Rapidly hydrolyzed by H<sub>2</sub>O (Franklin, J Am Chem Soc 1913, **35** 1463)

Potassium ammonoplumbite, PbNK, 2½NH;

Completely hydrolyzed by action of water Violently decomp by H2O or dil vapor Sol in liquid NH<sub>3</sub> (Franklin, J acids phys Chem 1911, **15** 519)

Potassium ammonostannate, Sn(NK)<sub>2</sub>, 4NH<sub>3</sub> Decomp by H<sub>2</sub>O Readily sol in HCl+ Aq Sl sol in liquid NH<sub>3</sub> Readily sol in a solution of NH<sub>4</sub>I in liquid NH<sub>3</sub> (Fitzgerald, J Am Chem Soc 1907, 29 1696)

Potassium ammonostrontiate, SrNK, 2NH<sub>3</sub>

Hydrolyzed vigorously by H<sub>2</sub>O Sol in solutions of NH<sub>4</sub>NO<sub>3</sub> in liquid NH<sub>3</sub>. Insol in liquid NH<sub>3</sub> (Franklin, J Am Chem Soc 1915, 37 2299)

Potassium ammonothallate, TlNK2, 4NH3

Sensitive to action of air or moisture Violently decomp by H<sub>2</sub>O or dil acids Moderately sol in liquid NH<sub>3</sub> at 20°, more sol at higher temp and much less sol at lower temp Decomp by liquid NH<sub>8</sub> solutions of (Franklin, J phys Chem 1912, 16 acıds 689)

Potassium ammonotitanate, (N) TiNHK

Vigorously hydrolyzed by H<sub>2</sub>O liquid NH<sub>3</sub> solutions of either potassium amide or NH<sub>4</sub>Br (Franklin, J Am Chem Soc 1912, **34** 1500)

Potassium ammonozincate, Zn(NHk)2,  $2NH_{s}$ 

Decomp by water Sl sol in liquid NH<sub>3</sub> (Fitzgerald, I Am Chem Soc 1907, 29 663) Decomp by H<sub>2</sub>O Sol in dilute acids Sl sol in liquid NH<sub>8</sub> Sol in solutions of ammonium salts in liquid NH; (Franklin, Z anorg 1907, 55 195)

Potassium arsenide, K₃As (Hugot, C R 1899, 129 604) K<sub>2</sub>As<sub>4</sub> (Hugot)

Potassium arsenide, ammonia, AsK3, NH3 Nearly insol in liquid NH<sub>3</sub> K<sub>2</sub>As<sub>4</sub>, NH<sub>3</sub> (Hugot)

## assium azoimide, KNs

 Stable in aq solution

 16 5 pts are sol in 100 pts H<sub>2</sub>O at 10 5°

 18 9 " " " 100 " H<sub>2</sub>O " 15 5

 19 6 " " " 100 " H<sub>2</sub>O " 17

 375 " " " 100 " abs alcohol at

nsol in pure ether (Curtius, J pr 1898, 58 280)

#### tassium bromide, KBr

Solubility of KBr in 100 pts H<sub>2</sub>O at t°

| t° | Pts KBr | t°  | Pts KBr |
|----|---------|-----|---------|
| 0  | 53 48   | 60  | 85 35   |
| 20 | 64 52   | 80  | 93 46   |
| 40 | 74 63   | 100 | 102 0   |

(Kremers, Pogg 97 151)

## Solubility of KBr in 100 pts H<sub>2</sub>O at t°

| t°                                                                                        | Pts KBr                                                                                                  | t°                                                                                          | Pts KBr                                                                                        |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 13 4<br>6 2<br>0<br>-3 4<br>5 2<br>12 65<br>13 0<br>13 3<br>18 3<br>26 05<br>30 0<br>37 9 | 46 17<br>49 57<br>53 32<br>55 60<br>56 63<br>61 03<br>61 17<br>61 45<br>64 11<br>68 31<br>70 35<br>74 46 | 43 15<br>45 45<br>50 5<br>54 8<br>60 15<br>66 75<br>71 45<br>74 85<br>86 5<br>97 9<br>110 0 | 77 0<br>77 73<br>80 33<br>82 78<br>85 37<br>88 22<br>90 69<br>92 25<br>97 28<br>102 9<br>110 3 |

Solubility is represented by a straight line the formula 54 43+0 5128t (Coppet, A (5) 30 416) 100 pts KBr+Aq sat at 15-16° contain 06 pts KBr (v Hauer, J pr 98 137)

## lubility of KBr in 100 pts H<sub>2</sub>O at high temp

| t°  | Pts KBr |
|-----|---------|
| 140 | 120 9   |
| 181 | 145 6   |

ılden and Shenstone, Phil Trans 1884 23)

Sat solution boils at 112° (Kremers)

Sat KBr+Aq contains at  $12^{\circ}$   $-10^{\circ}$   $+3^{\circ}$   $32^{\circ}$ 

| 12°       | —10°                     | +3°                    | 32°  | 39°                       |
|-----------|--------------------------|------------------------|------|---------------------------|
| 10        | 31 5                     | 35 7                   | 41 6 | 47 7% KBr,                |
| 5°<br>5 5 | 77°<br>48 7<br>(Étard, A | 140°<br>54 1<br>ch 189 | 58 5 | 220°<br>61 6% KBr<br>539) |

If solubility S=pts KBr in 100 pts solubin, S=345+02420t from 0° to 40°, S=

415+01378t from 30° to 120° (Étard, C R 98 1432)

Solubility of KBr in 100 g H<sub>2</sub>O at t°

| t°                                          | G KBr                                                | t°                                           | G KBr                                        |
|---------------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| 10 5<br>10<br>3 5<br>0<br>-5<br>-8<br>-11 5 | 62 1<br>60 7<br>55 5<br>52 6<br>50 1<br>47 5<br>45 3 | -11<br>-10 5<br>-10<br>- 8 5<br>- 8<br>- 6 5 | 44 9<br>41 8<br>39 7<br>35 7<br>31 2<br>25 0 |

(Meusser, Z anorg 1905, 44 80)

68 74 g KBr are sol in 100 g  $\rm H_2O$  at  $25^\circ$  (Amadori and Pampanini, Rend Ac  $\rm Linc$  1911, V, 20 473)

Sp gr of KBr+Aq at 19°

| % KBr                     | Sp gr                                     | % KBr                | Sp gr                            |
|---------------------------|-------------------------------------------|----------------------|----------------------------------|
| 5<br>10<br>15<br>20<br>25 | 1 037<br>1 075<br>1 116<br>1 159<br>1 207 | 30<br>35<br>40<br>45 | 1 256<br>1 309<br>1 366<br>1 432 |

(Gerlach, Z anal 8 285)

Sp gr of KBr+Aq at 15° containing 5 10 20 30 36% KBr 1 0357 1 074 1 1583 1 2553 1 3198 (Kohlrausch, W Ann 1879 1)

## Sp gr of KBr+Aq at t°

|                                                  |                                      | -                            |                                      |
|--------------------------------------------------|--------------------------------------|------------------------------|--------------------------------------|
| G KBr dis<br>solved in 100 g<br>H <sub>2</sub> O | G KBr in 100<br>g of the<br>solution | t°                           | Sp gr                                |
| 4 166<br>11 111<br>25 000<br>42 867              | 4<br>10<br>20<br>30                  | 14 5<br>15 7<br>16 5<br>16 0 | 1 0291<br>1 0753<br>1 1625<br>1 2580 |

(de Lannoy, Z phys Ch 1895, 18 46O)

KBr+Aq containing 6.99%KBr has sp gr  $20^{\circ}/20^{\circ}=1.0521$  (Le Blanc and Rohland, Z phys Ch 1896, 19 278)

## Sp gr of KBr+Aq at 20 5°

| Normality of<br>KBr+Aq       | G KBr in100 g<br>of solution     | Sp gr t°/4°                          |
|------------------------------|----------------------------------|--------------------------------------|
| 4 29<br>3 01<br>2 00<br>1 00 | 37 97<br>28 83<br>20 49<br>11 03 | 1 3449<br>1 2407<br>1 1629<br>1 0815 |

on, S=345+02420t from 0° to 40°, S= (Oppenheimer, Z phys Ch 1898, 27 452)

## Solubility of KBr+NH<sub>4</sub>Br at 25°

| % KBr % NH4Br Sp                                                                                                                                                                                                                                                                                                                                                                          | gr                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 55     42     0     64     1     3'       53     65     2     46     1     3'       51     68     5     13     1     3'       44     12     15     29     1     3'       34     73     26     22     1     3'       26     23     34     76     1     3'       26     03     38     14     1     3'       23     22     41     78     1     3'       22     23     43     25     1     3' | 756<br>745<br>733<br>721<br>711<br>715<br>753<br>753<br>766<br>777<br>766 |

(Fock, Z Kryst Min 1897, 28 357)

## Solubility in KNO<sub>3</sub>+Aq

| 1 litre of the solution contains |                                  |                                                           |                                                         |
|----------------------------------|----------------------------------|-----------------------------------------------------------|---------------------------------------------------------|
| at 1                             | 4 5°                             | at 2                                                      | 5 2°                                                    |
| Mol KNO <sub>3</sub>             | Mol KBr                          | Mol KNO <sub>3</sub>                                      | Mol KBr                                                 |
| 0 0<br>0 362<br>0 706<br>1 235   | 4 332<br>4 156<br>4 093<br>3 939 | 0 0<br>0 131<br>0 527<br>0 721<br>1 090<br>1 170<br>1 504 | 4 761<br>4 72<br>4 61<br>4 54<br>4 475<br>4 44<br>4 375 |

(Touren, C R 1900, **130** 911)

See also under KNO<sub>3</sub>

100 pts  $\,\mathrm{kBr} + \mathrm{KCl} + \mathrm{Aq}$  sat at 15–16° contain 37 55 pts of the two salts, 10 0 pts  $\,\mathrm{kBr} + \mathrm{kI} + \mathrm{Aq}$  sat at 15–16° contain 57 96 pts of the two salts, 100 pts  $\,\mathrm{kBr} + \mathrm{kCl} + \mathrm{kI} + \mathrm{Aq}$  sat at 15–16° contain 57 88 pts of the thice salts (v. Hauer, J. pr. 98, 137)

## Solubility of KBr+KCl in H<sub>2</sub>O at 25°

| √ KBr | % K(1 | ∫ pgr  |
|-------|-------|--------|
| 55 81 | 0 00  | 1 3756 |
| 53 15 | 2 34  | 1 3700 |
| 50 36 | 4 66  | 1 3648 |
| 45 46 | 8 26  | 1 3544 |
| 37 96 | 13 66 | 1 3320 |
| 32 48 | 16 69 | 1 3119 |
| 21 80 | 21 39 | 1 2689 |
| 14 07 | 25 09 | 1 2455 |
| 4 75  | 29 17 | 1 1977 |
| 0 00  | 31 13 | 1 1756 |

(Fock, Z Kryst Min 1897, 28 357)

Solubility of KBr+KCl in H<sub>2</sub>O at t°

| DOIGDIA                                               | oy or indi            | 1101 112             | C 40 0               |
|-------------------------------------------------------|-----------------------|----------------------|----------------------|
| to.                                                   | Sat solution contains |                      |                      |
| τ-                                                    | % KCl                 | % KBr                | % total salt         |
| -14<br>-13 7                                          | 10 7                  | 18 8                 | 29 5<br>29 4         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 10 7                  | 19 8                 | 29 5<br>30 5<br>34 4 |
| +6<br>10                                              | 11 3<br>11 0          | 22 6<br>23 7         | 33 9<br>34 7         |
| 21<br>26<br>30                                        | 10 8<br>11 2          | 25 5                 | 35 3<br>36 7<br>39 4 |
| 32<br>39                                              | 11 9                  | 26 6                 | 38 5<br>39 8         |
| 47<br>52<br>55                                        | 11 0<br>11 0<br>11 9  | 30 8<br>31 2<br>29 9 | 41 8<br>42 2<br>41 8 |
| 71<br>73                                              | 12 0<br>11 8          | 31 7<br>32 9         | 43 7<br>44 7         |
| $102 \\ 152 \\ 160$                                   | 12 8<br>13 2<br>12 5  | 35 8<br>40 6<br>42 3 | 48 6<br>53 8<br>54 8 |
| 168<br>225                                            | 14 7                  | 45 0                 | 55 0<br>59 7         |

(Étard, A ch 1894, (7) 3 281)

#### Solubility of KBr+KCl in H<sub>2</sub>O at 25°

| G per 100 g H <sub>2</sub> O                                                |                                                                           |  |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| KBr                                                                         | kCl                                                                       |  |
| 68 47<br>62 26<br>58 50<br>52 45<br>45 42<br>38 70<br>26 62<br>12 94<br>0 0 | 0 0<br>5 43<br>8 46<br>12 48<br>17 17<br>21 23<br>25 88<br>31 02<br>36 12 |  |

(Amadori and Pampanini, Att Acc Linc 1911, 20, II 475)

#### Solubility in KCl+Aq at 25 2°

| Mol KCl | Mol KBr |
|---------|---------|
| 0 0     | 4 761   |
| 0 67    | 4 22    |
| 0 81    | 4 15    |
| 1 35    | 3 70    |
| 1 48    | 3 54    |
| 1 61    | 3 42    |
| 1 70    | 3 34    |
| 2 46    | 2 50    |
| 3 775   | 0 525   |

(Touren, C R 1900, **130** 1252)

See also under KCl

By repeatedly heating KBr+Aq sat at 15– 16° with KI and cooling to 15°, nearly all the KBr can be separated (v Hauer)

100 pts H<sub>2</sub>O sat with KBr at 16° dissolve 13 15 pts KI, but on addition of more KI KBr is pptd (van Melckebeke, C C 1872 586)

Solubility in KI+Aq at t°

| t°                                                                                                             | Sat solution contains                                                                     |                                                                                                            |                                                                                                            |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 6-                                                                                                             | % KBr                                                                                     | % KI                                                                                                       | % total salt                                                                                               |
| -22<br>-19<br>-6<br>-1 5<br>+3<br>13 6<br>25<br>44 2<br>51<br>66<br>70<br>80<br>93<br>116<br>125<br>150<br>175 | 8 3<br>9 5<br>9 3<br>10 3<br>10 1<br>10 8<br>11 1<br>12 3<br>13 0<br>13 7<br>15 1<br>16 0 | 42 6<br>42 8<br>44 7<br>45 9<br>46 2<br>48 0 1<br>50 0 1<br>51 5 5 7<br>54 8 8<br>55 5 7<br>56 5 6<br>57 0 | 50 9<br>52 3<br>54 0<br>55 3<br>56 9<br>58 61 2<br>63 5<br>64 8<br>66 7<br>68 5<br>70 2<br>73 2<br>73 74 6 |

(Étard, A ch 1894, (7) 3 279)

Solubility of KBr+KI in H<sub>2</sub>O at 25°

| G per 100 g H <sub>2</sub> O |                            |  |
|------------------------------|----------------------------|--|
| KBr KCl                      |                            |  |
|                              |                            |  |
| 53 21<br>42 32<br>34 14      | 35 92<br>66 63<br>95 36    |  |
| 30 08<br>29 62               | 119 59<br>119              |  |
| 22 15<br>21 88<br>18 54      | 127 10<br>127 31<br>130 61 |  |
| 0 0                          | 149 26                     |  |

(Amadori and Pampanini, Att Acc Line 1911, 20, II 475)

## Solubility of KBr in KOH+Aq

| G per 10                        | 00 g H <sub>2</sub> O            | G per 10                         | 00 g H <sub>2</sub> O          |
|---------------------------------|----------------------------------|----------------------------------|--------------------------------|
| кон                             | KBr                              | кон                              | KBr                            |
| 36 4<br>113 5<br>177 2<br>231 1 | 558 4<br>433 6<br>358 1<br>281 2 | 277 6<br>434 7<br>579 6<br>806 9 | 248 1<br>137 1<br>64 8<br>33 4 |

(Ditte, C R 1897, 124 30)

Sol in  $Br_2$  at 15° (Walden, Z anorg 1900, 25 220)

Moderately sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829)

Sol in liquid NH<sub>3</sub> 45 pts are sol in 100 pts liquid NH<sub>3</sub> at -50° (Joannis, C R 1905, **140** 1244)

Attacked by liquid NO<sub>2</sub> with liberation of Br<sub>2</sub> (Frankland, Chem Soc 1901, **79** 1361)

Insol in liquid CO<sub>2</sub> (Büchner, Z phys. Ch. 1906, 54, 674.)

Ch 1906, 54 674)
Sol in SO<sub>3</sub> (Walden, Z anorg 1900, 25

217)
Sol in SO<sub>2</sub>Cl(OH) (Walden, Z anorg 1902, **29** 382)

Difficultly sol in AsBr<sub>3</sub> (Walden, Z anorg 1902, 29 374)
Sol in SbCl<sub>3</sub> (Walden, Z anorg 1900, 25

220)

Sol in liquid SO<sub>2</sub> (Walden, Z anorg 1902, 30 160)

Hydrazine dissolves 56 4 pts KBr at 12 5-13° (de Bruyn, R t c 1899, 18 297) Sl sol in alcohol (Ballard)

Sol in 200 pts cold, and 16 pts boiling 80% alcohol

Sol in 180 pts 90% alcohol (Hager) Sol in 750 pts abs alcohol at 15° (Eder, Dingl 221 89)

100 pts absolute methyl alcohol dissolve 1 51 pts at 25°, 100 pts absolute ethyl alcohol dissolve 0 13 pt at 25° (de Bruyn, Z phys Ch 10 783)

Solubility of KBr in methyl alcohol+Aq at

P=% by wt of alcohol in alcohol+Aq S=Sp gr of alcohol+Aq sat with KBr L=millimols KBr in 100 ccm of the solution

| Р                                                        | S 25°/4                                                                   | L                                                  |
|----------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|
| 0<br>10 6<br>30 8<br>47 1<br>64 0<br>78 1<br>98 9<br>100 | 1 3797<br>1 300<br>1 159<br>1 058<br>0 9801<br>0 8906<br>0 8411<br>0 8047 | 471<br>389<br>252<br>162<br>87<br>44<br>23<br>14 2 |
|                                                          |                                                                           |                                                    |

(Herz and Anders, Z anorg 1907, 55 273)

100 g KBr+CH<sub>3</sub>OH contain 0 2 g KBr at the critical temp (Centnerszwer, Z phys Ch 1910, **72** 437)

|                                                        | Temp =30° Temp =40°                                                                  |                                                                                        | =40°                                                                                 |                                                                                        |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| $\mathbf{Wt}$ % alcohol                                | G KBr 1                                                                              | G KBr per 100 g                                                                        |                                                                                      | G KBr per 100 g                                                                        |  |
|                                                        | Solution                                                                             | Solvent                                                                                | Solution                                                                             | Solvent                                                                                |  |
| 0<br>5<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80 | 41 62<br>38 98<br>36 33<br>31 09<br>25 98<br>21 24<br>16 27<br>11 50<br>6 90<br>3 09 | 71 30<br>67 25<br>63 40<br>56 40<br>50 15<br>44 95<br>38 85<br>32 50<br>24 70<br>15 95 | 43 40<br>40 85<br>38 37<br>33 27<br>28 32<br>23 22<br>18 11<br>13 02<br>7 98<br>3 65 | 76 65<br>72 70<br>69 00<br>62 30<br>56 45<br>50 46<br>44 25<br>37 40<br>28 90<br>18 95 |  |
| 90                                                     | 0 87                                                                                 | 8 80                                                                                   | 1 03                                                                                 | 10 45                                                                                  |  |

(Taylor, J phys Ch 1896, 1 724)

At room temp, 1 pt KBr by weight is sol

(Rohland, Z anorg 1898, 18 325)

## Solubility of KBr in ethyl alcohol at 0°

| Conc of alcohol<br>in mol g per l<br>H <sub>2</sub> O | G KBrm<br>11 H <sub>2</sub> O                  | Mol solubility                       |
|-------------------------------------------------------|------------------------------------------------|--------------------------------------|
| 1/4<br>1/2<br>1<br>2                                  | 536 75<br>529 25<br>502 85<br>491 75<br>455 25 | 4 51<br>4 45<br>4 22<br>4 13<br>3 82 |

(Armstrong and Eyre, Proc R Soc 1910, [A] **84** 127)

100 g methyl dcohol dissolve 2 17 g KBi at 25°
100 g ethyl dcohol dissolve 0 142 g KBi

at 25°
100 g propyl alcohol dissolve 0 035 g KBr

at 25° 100 g isoamyl ilcohol dissolve 0 003 g KBr

at 25° (Turner and Bissett, Chem Soc 1913, 103

1909)

0 055 g is sol in 100 g propyl deohol (Schlamp, Z phys Ch 1894, **14** 276) Sol in 5000 pts ether (sp gr 0 729 at 15°)

(Eder, *l c*)
Sol in 1700 pts alcohol-ether (1 1) at 15°

(Eder, l c)
100 pts acetone dissolve 0 023 pt KBr at
25° (Krug and M'Elroy, J Anal Ch 6 184)

Solubility of KBr in acetone + Aq at 25°
A=cc acetone in 100 cc acetone + Aq
KBr=millimols KBr in 100 cc of the solution

| A  | KBr   | Sp gr   |
|----|-------|---------|
| 0  | 481 3 | 1 3793  |
| 20 | 366 7 | 1 2688  |
| 30 | 310 5 | 1 2118  |
| 40 | 259 0 | 1 1558  |
| 50 | 202 9 | 1 0918  |
| 60 | 144 9 | 1 0275  |
| 70 | 95 3  | 0 9591  |
| 80 | 46 5  | 0 89415 |
| 90 | 10 1  | 0 8340  |

(Herz and Knoch, Z anorg 1905, 45 262)

Solubility of KBr in glycerine+Aq at 25° G=g glycerine in 100 g glycerine+Aq

KBr=millmols KBr in 100 cc of the solu-

| G     | KBr    | Sp gr  |
|-------|--------|--------|
| 0     | 481 3  | 1 3793 |
| 13 28 | 444 3  | 1 3704 |
| 25 98 | 404 0  | 1 3655 |
| 45 36 | 340 5  | 1 3594 |
| 54 23 | 310 4  | 1 3580 |
| 83 84 | 219 25 | 1 3603 |
| 100   | 172 65 | 1 3691 |

(Herz and Knoch, Z anorg 1905, 45 267)

100 g 95% formic acid dissolve 23.2 g KBr at 18 5° (Aschan, Chem Ztg 1913, 37

1117)
Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate (Naumann, B 1904, **37** 3601)

Insol in benzonitrile (Naumann, B 1914, 47 1370)

100 ccm of a sat solution of KB1 in furfurol at 25° contain 0 139 pts by wt KBr (Wilden, Ziphys Ch 1906, 55 713)

Insol in CS (Arctowski, Z anoig 1894, 6 257)

Potassium rhodium bromide See Bromorhodite, petassium

Potassium ruthenium tribromide See Bromoruthenite, potassium

Potassium ruthenium letrabromide See Bromoruthenate, potassium

Potassium selenium bromide See Bromoselenate, potassium

## Potassium tellurium bromide See Bromotellurate, potassium

Potassium thallic bromide, KBr, TlBr<sub>8</sub>+  $2H_{\bullet}O$ 

Sol in H<sub>2</sub>O 3KBr, 2TlBr<sub>3</sub>+3H<sub>2</sub>O Sol in H<sub>2</sub>O (Rammelsberg )

#### Potassium thorium bromide Sol in H<sub>0</sub>O (Berzelius)

Potassium un (stannous) bromide, KBr,  $SnBr_2 + H_2O$ 

Sol in H<sub>2</sub>O (Benas, C C 1884 958) Can be recryst from HBr or KBr+Aq (Richardson, Am Ch J 14 95)

2KBr, SnBr<sub>2</sub>+2H<sub>2</sub>O Cannot be recryst from HBr+Aq (Richardson)

Potassium tin (stannic) bromide, 2KBr, SnBr₄

See Bromostannate, potassium

#### Potassium uranous bromide, KUBr<sub>6</sub> Very sol in H<sub>2</sub>O (Aloy, Bull Soc 1899. (3) **21** 264)

Potassium uranyl bromide, 2KBr, UO<sub>2</sub>Br<sub>2</sub>+

Very easily sol in H<sub>2</sub>O (Sendtner)

Potassium zinc bromide, KBr, ZnBr<sub>2</sub>+2H<sub>2</sub>O Not hygroscopic (Ephraim, Z anorg 1908, **59** 60) 2KBr, ZnBr<sub>2</sub>+2H<sub>2</sub>O Not hygroscopic (Ephraim)

Potassium bromide ammonia, KBr, 4NH3 (Joannis, C R 1905, 140 1244)

Potassium bromide ruthenium dihydronitrosochloride, (NO)Ru<sub>2</sub>H<sub>2</sub>Cl<sub>3</sub>, 2HCl, 3KBr Sl sol in H<sub>2</sub>O (Brizard, A ch  $\mathbf{P}\mathbf{p}\mathbf{t}$ 1900, (7) **21** 359)

## Potassium bromoiodide, KBr<sub>2</sub>I

Decomp rapidly on air (Wells and Wheeler, Sill Am J 143 475)

Potassium carbonyl, K<sub>2</sub>C<sub>2</sub>O<sub>2</sub> Decomp by H<sub>2</sub>O with explosion (Joannis. C R 116 158)

#### Potassium chloride, KCl

Sol in H<sub>2</sub>O with absorption of heat 30 pts KCl+100 pts H<sub>2</sub>O at 13 2° lower the temp 12 6° (Rudorff, B 2 68) 100 pts H<sub>2</sub>O dissolve 29 31 pts KCl at 0° (Gay-Lussac), 28 5 pts KCl at 0° (Mulder, Gerardin )

The saturated solution contains 58 5%, and boils at 107 6° (Mulder), contains 59 40%, and boils at 108 3° (Legrand), contains 59 26%, and boils at 109 6° (Gay-Lussac), boils at 110° (Kremers)

Sol in 3 016 pts  $\rm\,H_2O$  at 15° (Gerlach), in 3 03 pts at 17 5° or 100 pts  $\rm\,H_2O$  at 17 5° dissolve 33 pts KCl (Schiff)

100 pts H<sub>2</sub>O at t dissolve pts KCl

| t°         | Pts<br>KCl     | t°             | Pts<br>KCl     | t°     | Pts<br>KCl |
|------------|----------------|----------------|----------------|--------|------------|
| 0<br>19 35 | 29 21<br>34 53 | 52 39<br>79 58 | 43 59<br>50 93 | 109 60 | 59 26      |

(Gay-Lussac A ch (2) 11 308)

100 pts H<sub>2</sub>O dissolve 34 6 pts KCl at 11 8° 34 9 pts at 13 8 35 pts at 15 6° (Kopp)
100 pts H<sub>2</sub>O at 17 5° dissolve 33 24 pts KCl and sp gr of solution is 1 635 (Karsten)
100 pts H<sub>2</sub>O at 12° dissolve 32 pts and at 100° 59 4 pts (Otto Graham)
Sol in 3 pts H<sub>2</sub>O at ord temp and 3 pts boiling H<sub>2</sub>O (Bergmann) in 3 33 pts hot or cold H O (Four croy) in 3 pts at 15° and 1 68 pts at 110 (M R and P)

Sol in 3 5 pts H<sub>2</sub>O at 0° and in less than 1 pt hot H O (Schubarth) 100 pts H<sub>2</sub>O at 17 5° dissolve 30 7 33 0 pts KCl (Ure s Dict)
100 pts H<sub>2</sub>O dissolve 35 405 pts KCl at 15° and Solving has an at \$1,1809 (Muchel and Krafft A solution has sp gr =1 1809 (Michel and Krafft A ch (3) 41 478)

100 pts H<sub>2</sub>O dissolve at 18° 30° 40° 57° 33 6 37 8 40 1 450 pts KCl

100 pts H<sub>2</sub>O dissolve 33 06-32 08 pts KCl at 15 6° and sp gr of solution = 1 171 (Page and Keightley, Chem Soc (2) 10 566)

(Gerardin, A ch (4) 5 139)

#### Solubility in 100 pts H<sub>2</sub>O at t°

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Į | columnity in 200 pts 1220 de t                                                |                                                                                              |                                                                                        |                                                                                              |                                                                                  |                                                                                              |  |  |
|---------------------------------------------------------|---|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$  |   | t°                                                                            | Pts<br>KCl                                                                                   | t°                                                                                     |                                                                                              | t°                                                                               |                                                                                              |  |  |
|                                                         |   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 28 7<br>29 0<br>29 3<br>29 5<br>30 5<br>31 5<br>31 7<br>32 0<br>32 3<br>32 5<br>32 8<br>33 4 | 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32 | 34 2<br>34 4<br>34 7<br>35 0<br>35 3<br>35 5<br>36 4<br>36 6<br>36 9<br>37 2<br>37 7<br>38 0 | 35<br>36<br>37<br>38<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49 | 38 7<br>39 0<br>39 3<br>39 6<br>39 9<br>40 1<br>40 6<br>40 9<br>41 2<br>41 5<br>42 3<br>42 5 |  |  |

| Solubility | ın | 100 | pts, | etc —Continued |
|------------|----|-----|------|----------------|
|------------|----|-----|------|----------------|

| boldbillty in 100 pts, etc Continued                                                                           |                                                                                                                                |                                                                                                                      |                                                                                        |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t°                                                                                                             | Pts<br>KCl                                                                                                                     | t°                                                                                                                   | Pts<br>KCl                                                                             | t°                                                                                                                   | Pts<br>KCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>68<br>70 | 43 1<br>43 4<br>43 6<br>43 9<br>44 4<br>44 7<br>44 9<br>45 2<br>45 5<br>8 46 6<br>46 3<br>46 6<br>47 2<br>47 7<br>48 0<br>48 3 | 71<br>72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90 | 48 5<br>49 1<br>49 4<br>49 9 9<br>50 5<br>50 8<br>51 5<br>52 2<br>53 5<br>53 5<br>53 5 | 91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>107 65 | 54 1 4 6 9 2 5 5 5 5 6 6 6 9 2 4 7 0 2 5 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 5 8 5 5 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |

(Mulder, calculated from his own and other observations, Scheik Verhandel 1864 41)

#### Solubility in 100 pts H<sub>2</sub>O at t°

| t°                                   | Pts<br>KCl                                                          | t°                                                               | Pts<br>KCl                                                           | t°    | Pts<br>KCl                                         |
|--------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|-------|----------------------------------------------------|
| -11° -6 4 0 +3 9 9 4 11 4 14 95 19 0 | 24 46<br>25 78<br>27 9<br>29 37<br>30 84<br>32 19<br>32 66<br>34 32 | 25 7<br>29 25<br>38 0<br>41 45<br>46 15<br>48 8<br>55 1<br>60 55 | 36 10<br>37 31<br>39 71<br>40 67<br>42 34<br>42 86<br>44 51<br>45 90 | 71 65 | 47 17<br>48 76<br>49 27<br>51 24<br>52 53<br>53 49 |

(Coppet, A ch (5) 30 414)

Solubility is represented by a strught line, of which the formula is 2851+02837t (Coppet.)

100 pts H () dissolve 29 33 pts KCl at 4°, 45 5 pts at 60° (Andic u, J pi (2) **29** 456)

100 pts H<sub>2</sub>O dissolve at

0° 100° 130° 180°
29 2 56 5 66 78 pts KCl
(Tilden and Shenstone, Lond, R. Soc. Proc. 35 345)

Solubility of KCl in 100 pts H<sub>2</sub>O at high temp

| t          | Pts<br>KCl   | t          | l is<br>KCl  | t   | I t<br>KC1 |
|------------|--------------|------------|--------------|-----|------------|
| 125<br>133 | 59 6<br>69 3 | 147<br>175 | 70 8<br>75 2 | 180 | 77 5       |

(Tilden and Shenstone, Phil Trans 1884 23)

If solubility S=pts KCl in 100 pts solution, S=205+01445t from -90° to 110° (Étard, C R 98 1432)

Sat KCl+Aq contains at 142° 150° 175° 180° 38 6 38 8 41 2 41 8% KCl

190° 200° 242° 732° (mpt ) 43 2 42 9 47 6 100% KCl (Étard, A ch 1894, (7) **2** 256 )

100 g H<sub>2</sub>O dissolve 0 488 gram-equivalent KCl at 25° (van't Hoff and Meyerhoffer, Z phys Ch 1904, 49 315)

#### Solubility of KCl in H<sub>2</sub>O at t°

| G KCl per 100 G H <sub>2</sub> O                            |                                                             |                                                                    |  |  |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| t°                                                          | KCl                                                         | Sp gr                                                              |  |  |  |  |
| 0 70<br>19 55<br>32 80<br>59 85<br>74 80<br>89 45<br>108 0* | 28 29<br>34 37<br>38 32<br>45 84<br>49 58<br>53 38<br>58 11 | 1 1540<br>1 1738<br>1 1839<br>1 1980<br>1 2032<br>1 2069<br>1 2118 |  |  |  |  |

\*Bpt of sat solution (Berkeley, Phil Trans Roy Soc 1904, 203, A 189)

## Solubility of KCl in 100 g H<sub>2</sub>O at t°

| t                                            | g KCl                                                | t                                   | g KCl                                                |
|----------------------------------------------|------------------------------------------------------|-------------------------------------|------------------------------------------------------|
| +18 5<br>11 5<br>10<br>7 5<br>2 5<br>0<br>-1 | 33 3<br>31 2<br>30 8<br>29 8<br>28 4<br>27 5<br>27 2 | -4 5<br>-9 -8 5<br>-8 -7<br>-6 -5 5 | 25 9<br>23 9<br>21 5<br>20 0<br>17 5<br>15 7<br>14 3 |

(Meusser, Z anorg 1905, 44 80)

Sat KCl+Aq at 25° contains 26 46% KCl (Foote, Am Ch J 1906, **35** 238)

28 01 g KCl are continued in 100 g solution sat at 30° (de Waal, Dissert 1910)

36 12 g KCl are sol in 100 g H<sub>2</sub>O it 25° (Amadori and Pampinini, Rend Acc Line 1911, V **20** 473)

4 272 g mol are contained in 1 l solution s at at 25° (Hc1z Z anoig 1911, **73** 274) Solubility of kBr at 6°=23 06%, 28 4°=26 91% 62 6°=31 57° (Suss, Z Kiist 1912,

51 262)
Solubility at 22°=25 68% (Bronstedt, Z

phys Ch 1912, **80** 208)
100 mol H<sub>2</sub>O dissolve at

19 3° 29 7° 40 1° 54 5° 8 2 8 99 9 75 10 39 r

8 2 8 99 9 75 10 39 mol KCl (Sudhaus, Miner Jahrb Beil-Bd 1914, **37** 18) KCl+Aq sat at 16° has sp gr = 1 077 (Stolba, J pr 97 503)

Sp gr of KCl+Aq at 17 5°

| KČI                                  | Sp gr                                                                        | KČI                                         | Sp gr                                                                        | KC1                                          | Sp gr                                                                        |  |  |
|--------------------------------------|------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|--|--|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 1 0062<br>1 0125<br>1 0189<br>1 0254<br>1 0319<br>1 0385<br>1 0451<br>1 0518 | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 1 0586<br>1 0655<br>1 0725<br>1 0795<br>1 0866<br>1 0937<br>1 1008<br>1 1080 | 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 1 1152<br>1 1225<br>1 1298<br>1 1372<br>1 1446<br>1 1521<br>1 1596<br>1 1673 |  |  |

(Schiff, A 110 76)

Sp gr of KCl+Aq at 19 5°

| % KCl                  | Sp gr                      | % KCI           | Sp gr            |
|------------------------|----------------------------|-----------------|------------------|
| 5 98<br>11 27<br>16 27 | 1 0382<br>1 0733<br>1 1075 | 21 31<br>25 133 | 1 1436<br>1 1720 |

(Kremers, Pogg 95 119)

Sp gr of KCl+Aq at 15°

| $\kappa_{\rm Cl}^{\infty}$                | Sp gr                                                                                           | KČ1                                                | Sp gr                                                                                           | KC1                                       | Sp gr                                                                     |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|--|--|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1 00650<br>1 01300<br>1 01950<br>1 02600<br>1 03250<br>1 03916<br>1 04582<br>1 05248<br>1 05914 | 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 1 06580<br>1 07271<br>1 07962<br>1 08654<br>1 09345<br>1 10036<br>1 10750<br>1 11465<br>1 12179 | 19<br>20<br>21<br>22<br>23<br>24<br>24 9* | 1 12894<br>1 13608<br>1 14348<br>1 15088<br>1 15828<br>1 16568<br>1 17234 |  |  |

\* Mother liquor (Gerlach, Z anal 8 281)

Sp gr of KCl+Aq at 20°, containing mols KCl to 100 mols  $\rm\,H_2O$ 

| Mols KCl                                               | Sp gr                         | Mols KCl   | Sp gr              |
|--------------------------------------------------------|-------------------------------|------------|--------------------|
| $\begin{array}{c} 0 & 5 \\ 1 & 0 \\ 2 & 0 \end{array}$ | 1 01310<br>1 02568<br>1 04959 | 4 0<br>5 0 | 1 09415<br>1 11445 |

(Nicol, Phil Mag (5) 16 122)

### Sp gr of KCl+Aq at 18°

| KČI     | Sp gr            | %сі<br>ксі | Sp gr            | %сі | Sp gr  |
|---------|------------------|------------|------------------|-----|--------|
| 5<br>10 | 1 0308<br>1 0638 | 15<br>20   | 1 0978<br>1 1335 | 25  | 1 1408 |

(Kohlrausch, W Ann 1879 1)

Sp gr of KCl+Aq at 0° S=pts salt in 100 pts of solution, S<sub>1</sub>=mols salt in 100 mols solution

| S       | S <sub>1</sub> | Sp gr  |
|---------|----------------|--------|
| 20 7840 | 5 954          | 1 1489 |
| 17 7214 | 4 940          | 1 1258 |
| 14 4707 | 3 922          | 1 1018 |
| 11 0757 | 2 918          | 1 0769 |
| 7 5440  | 1 931          | 1 0521 |
| 4 4968  | 1 123          | 1 0308 |

(Charpy, A ch (6) 29 23)

Sp gr of KCl+Aq at 25°

| Concentration of KCl+Aq          | Sp gr                                |  |
|----------------------------------|--------------------------------------|--|
| 1-normal  1/2- "  1/4- "  1/8- " | 1 0466<br>1 0235<br>1 0117<br>1 0059 |  |

(Wagner, Z phys Ch 1890, 5 36)

KCl+Aq containing 5 05% KCl has sp. gr $20^{\circ}/20^{\circ}\!=\!1\,0327$ 

KCl+Aq containing 20 55% KCl has sp gr 20°/20°=1 1393

(Le Blanc and Rohland, Z phys Ch 1896, 19 272)

#### Sp gr of KCl+Aq

| g KCl in 1000 g<br>of solution            | Sp gr 16°/16°                                            |
|-------------------------------------------|----------------------------------------------------------|
| 0<br>0 7140<br>1 5042<br>3 0724<br>8 3165 | 1 000000<br>1 000464<br>1 000975<br>1 001991<br>1 005391 |

(Dijken, Z phys Ch 1897, 24 109)

Sp gr of KCl+Aq at 20 1°, when p=per cent strength of solution, d=observed density, and w=volume conc in g per /pd)

$$\operatorname{cc}\left(\frac{\operatorname{pd}}{100}\right) = \operatorname{w}$$

| р     | d      | w       |  |  |
|-------|--------|---------|--|--|
| 36 43 | 1 853  | 0 43171 |  |  |
| 31 12 | 1 1554 | 0 35954 |  |  |
| 24 79 | 1 1215 | 0 27887 |  |  |
| 18 06 | 1 0866 | 0 19610 |  |  |
| 13 17 | 1 0617 | 0 13980 |  |  |
| 8 412 | 1 0386 | 0 08736 |  |  |
| 6 610 | 1 0297 | 0 06806 |  |  |
| 4 419 | 1 0193 | 0 4505  |  |  |
| 3 456 | 1 0148 | 0 03507 |  |  |
| 1 197 | 1 0040 | 0 01202 |  |  |

(Barnes, J phys Ch 1898, 2 544)

| Sp gr of KCl | +Aq at | $\mathbf{t}^{\circ}$ |
|--------------|--------|----------------------|
|--------------|--------|----------------------|

| t°    | Normality of<br>KCl+Aq       | g KCl in<br>100 g of<br>solution | Sp gr t°/4°                          |  |
|-------|------------------------------|----------------------------------|--------------------------------------|--|
| 20, 5 | 3 74<br>2 65<br>1 87<br>0 93 | 23 93<br>17 66<br>12 82<br>6 64  | 1 1617<br>1 1166<br>1 0829<br>1 0424 |  |

(Oppenheimer, Z phys Ch 1898, 27 450)

Sp gr of KCl+Aq at 18°/4°

| g KCl in 100 g<br>of solution | Sp gr   |
|-------------------------------|---------|
| 0 24963                       | 1 0003  |
| 0 12459                       | 0 9995  |
| 0 08342                       | 0 99929 |
| 0 062343                      | 0 99912 |

(Jahn, Z phys Ch 1900, **33** 559)

KCl+Aq containing 1 pt KCl in 58 923 pts H<sub>2</sub>O at 17° has sp gr = 1 0096 (Hittorf,

Z phys Ch 1902, 39 628) Sp gr 20°/4° of a normal solution of KCl= (Haigh, J Am Chem Soc 1912, **34** 1151 )

Sp gr of sat KCl+Aq at to

| t°   g   KCl sol in   Sp gr    -10°   24 98   1 139   0   28 50   1 156   10   31 23   1 168   20   34 11   1 177   30   37 28   1 183   40   40 12   1 190   50   42 86   1 195   60   45 48   1 199   70   48 30   1 203 |                                       |                                                             | <u>-</u>                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                     | t°                                    |                                                             | Sp gr                                                       |
|                                                                                                                                                                                                                            | 0<br>10<br>20<br>30<br>40<br>50<br>60 | 28 50<br>31 23<br>34 11<br>37 28<br>40 12<br>42 86<br>45 48 | 1 156<br>1 168<br>1 177<br>1 183<br>1 190<br>1 195<br>1 199 |

(Tschernaj, J Russ phys Chem Soc 1912, 44 1565)

Sp gr of dil KCl+Aq at 20 004° Conc = g (quiv KCl per l at 20 004° Sp gr compared with II O at 20 004°=1

| Conc   | Ѕр gr       |
|--------|-------------|
| 0 0000 | 1 000,000,0 |
| 0 0001 | 1 000,004,8 |
| 0 0002 | 1 000,009,7 |
| 0 0005 | 1 000,024,2 |
| 0 0010 | 1 000,048,5 |
| 0 0026 | 1 000,097,1 |
| 0 0050 | 1 000,242,6 |
| 0 0100 | 1 000,483,6 |

(Lamb and Lee, J Am Chem Soc, 1913, 35 1687)

KCl+Aq containing 10% KCl boils at 101 1°, containing 20%, at 103 4° (Gerlach) Sat KCl+Aq containing 52 7 pts KCl to 100 pts H<sub>2</sub>O forms a crust at 107 7°, highest temp observed, 108 5° (Gerlach, Z anal 26 426)

B-pt of KCl+Aq containing pts KCl to 100 pts H<sub>2</sub>O G=according to Gerlach (Z anal **26** 438), L=according to Legrand (A ch (2) 59 426)

| B pt                                                            | G                                                                  | L                                                                  | B pt                                                                   | G                                                    | L                                                            |
|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| 100 5°<br>101 0<br>101 5<br>102 102 5<br>103 103 5<br>104 104 5 | 4 9<br>9 2<br>13 1<br>16 7<br>20 1<br>23 4<br>26 7<br>29 9<br>33 1 | 4 7<br>9 0<br>13 2<br>17 1<br>20 9<br>24 5<br>28 0<br>31 4<br>34 6 | 105°<br>105 5<br>106<br>106 5<br>107<br>107 5<br>108<br>108 3<br>108 5 | 36 2<br>39 3<br>42 4<br>45 5<br>48 4<br>51 5<br>54 5 | 37 8<br>41 0<br>44 2<br>47 4<br>50 5<br>53 7<br>56 9<br>59 4 |

Precipitated from aqueous solution by HCl Much less sol in very dil HCl+Aq than in H<sub>2</sub>O (Fresenius)

Nearly insol in conc HCl+Aq

100 cc sat HCl+Aq dissolve 19 g KCl at 17° (Ditte, A ch 1881, (5) 24 226)

#### Solubility of KCl in HCl+Aq at 0°

| G per 100 cc of solution                                                        |                                                                                    |  |  |  |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| HCI                                                                             | KCI                                                                                |  |  |  |
| 0 0<br>1 42<br>2 41<br>2 59<br>4 05<br>8 39<br>12 40<br>14 95<br>23 88<br>54 20 | 25 73<br>22 69<br>20 84<br>20 51<br>17 71<br>11 93<br>7 46<br>5 60<br>1 49<br>1 52 |  |  |  |

(Engel, A ch 1888, (6) 33 377)

#### Solubility of KCl in HCl+Aq

| t            | Concentra<br>tion of HCl<br>g mol per<br>1000 g H () | Wt KCl per<br>1000 g H ()            | Mol<br>solubility            |
|--------------|------------------------------------------------------|--------------------------------------|------------------------------|
| 0<br>"<br>"  | 0<br>1/4<br>1/2<br>1                                 | 283 55<br>267 25<br>250 00<br>214 25 | 3 81<br>3 59<br>3 36<br>2 88 |
| 25<br>"<br>" | 0<br>1/4<br>1/2<br>1                                 | 359 25<br>341 55<br>324 30<br>289 60 | 4 82<br>4 59<br>4 35<br>3 89 |

(Armstrong and Eyre, Proc R Soc 1910 (A)

**84** 127)

(Stoltzenberg, B 1912, 45 2248)

| Millimols HCl in 10 ccm                  | Mıllımols KCl ın 10 ccm                            |
|------------------------------------------|----------------------------------------------------|
| 5 66<br>10 20<br>15 90<br>20 94<br>32 52 | 42 72<br>37 49<br>33 79<br>28 68<br>24 74<br>17 39 |

(Herz, Z anorg 1912, 73 275)

## Solubility of KCl in HBr+Aq at 25°

| Millimols HBr in 10 ccm | Mıllımols KCl ın 10 cem |
|-------------------------|-------------------------|
| 6 61<br>34 15           | 42 72<br>37 80<br>19 57 |

(Herz, Z anorg 1912, 73 275)

Sol in sat NH<sub>4</sub>Cl+Aq with pptn of NH<sub>4</sub>Cl When action has ceased, the solution at 1875° contains 316% of the mixed salt, or 100 pts H<sub>2</sub>O dissolve 46 1 pts of the mixed salt, viz, 16 27 pts KCl and 29 83 pts NH<sub>4</sub>Cl (Karsten)

Solubility of KCl in NH<sub>4</sub>Cl+Aq at 25°

| Dissolved in 1000 mols H <sub>2</sub> O                                      |                                                                                  |  |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| Mols KCl                                                                     | Mol NH₄Cl                                                                        |  |  |
| 74 2<br>67 9<br>61 4<br>55 5<br>50 2<br>43 0<br>37 6<br>37 0<br>37 5<br>22 6 | 23 8<br>32 5<br>52 2<br>65 9<br>74 4<br>96 3<br>110 0<br>107 5<br>109 4<br>118 2 |  |  |

(Biltz, Z anorg 1911, 71 174)

See also NH4Cl

Sol in sat BaCl2+Aq with pptn of BaCl2 until a state of equilibrium is reached, when 100 pts H<sub>2</sub>O at 16 8° dissolve 45 9 pts mixed salts, viz 182 pts BaCI2 and 277 pts KCl See also BaCl<sub>2</sub>

100 g sat HCl+Aq dissolve 19 g KCl | Solubility of KCl in MgCl2+Aq of given percentage composition

| t°                                                 | 30%                                                   | 21 2%                                                                     | 15%                                               | 11%                                                                           |
|----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | 1 9%<br>2 6<br>3 4<br>4 2<br>5 0<br>5 6<br>7 3<br>8 9 | 5 3%<br>6 5<br>7 6<br>8 8<br>10 0<br>11 2<br>12 4<br>13 6<br>14 7<br>15 9 | 9 9% 11 3 12 7 14 2 15 6 17 0 18 3 19 5 20 8 22 1 | 14 3%<br>15 9<br>17 5<br>19 0<br>20 5<br>21 9<br>23 2<br>24 5<br>25 8<br>27 1 |

(Precht and Wittgen, B 14 1667)

Solubility of KCl+NaCl in 20% MgCl2+Aq

| t° | % K Cl | %<br>NaCl | t°  | % KCl | %<br>NaCl |
|----|--------|-----------|-----|-------|-----------|
| 10 | 4 2    | 5 7       | 60  | 8 9   | 6 3       |
| 20 | 5 1    | 5 8       | 70  | 9 9   | 6 4       |
| 30 | 6 0    | 5 9       | 80  | 10 9  | 6 6       |
| 40 | 6 9    | 6 0       | 90  | 11 9  | 6 7       |
| 50 | 7 9    | 6 1       | 100 | 13 0  | 6 9       |

(P and W)

Sol in sat KNO<sub>3</sub>+Aq with pptn of KNO<sub>3</sub>

|          |                                                                      | litre of the so                                                    | olution contai                                       | ns                                                        |
|----------|----------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|
| at 14 5° |                                                                      | at 25 2                                                            |                                                      |                                                           |
|          | Mol KCI                                                              | Mol KNO <sub>3</sub>                                               | Mol KCI                                              | Mol KNOs                                                  |
|          | 3 865<br>3 810<br>3 782<br>3 710<br>3 667<br>3 629<br>3 597<br>3 582 | 0 0<br>0 204<br>0 318<br>0 615<br>0 818<br>0 910<br>1 176<br>1 220 | 4 18<br>4 11<br>4 07<br>3 93<br>3 85<br>3 81<br>3 70 | 0 0<br>0 136<br>0 318<br>0 902<br>1 212<br>1 397<br>1 805 |

(Touren, C R 1900, 130 909)

Solubility of KCl in KNO<sub>3</sub>+Aq

| t°                      | Concentra<br>tion of KNO <sub>3</sub><br>in g mol<br>per 1000 g<br>H <sub>2</sub> O | Wt KCl in<br>1000 & H <sub>2</sub> O                                                   | Mol<br>solubility                                                    |
|-------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 0<br><br><br>25<br><br> | 0<br>1/4<br>1/2<br>1<br>0<br>1/4<br>1/2<br>1<br>11/2                                | 283 55<br>284 25<br>283 60<br>287 60<br>364 15<br>355 00<br>361 65<br>358 80<br>355 20 | 3 81<br>3 81<br>3 81<br>3 86<br>4 89<br>4 90<br>4 86<br>4 81<br>4 77 |

(Armstrong and Eyre, Proc R Soc 1910 [A], 84 127)

See also KNO<sub>2</sub>

Sol in sat NaNO<sub>3</sub>+Aq without causing pptn (See NaNO<sub>3</sub>)
Sol in sat Ba(NO<sub>3</sub>)<sub>2</sub>+Aq without causing

pptn

Solubility in KBr+Aq at 25 2°

| 1 litre of the solution contains                    |                                                      |  |  |
|-----------------------------------------------------|------------------------------------------------------|--|--|
| Mol KBr Mol KCl                                     |                                                      |  |  |
| 0 0<br>0 49<br>0 85<br>1 31<br>1 78<br>2 25<br>2 69 | 4 18<br>3 85<br>3 58<br>3 19<br>2 91<br>2 58<br>2 33 |  |  |

(Touren, C R 1900, **130** 1252) See also KBr

100 pts H<sub>2</sub>O dissolve 133 2 pts KI and 104 pts KCl at 215°, no matter how prepared (Rudorff, B 6 484)

100 pts KCl+Aq sat at 15-16° contain 25 26-25 37 pts KCl 100 pts KCl+Kı+Aq sat at 15-16° contain 57 80 pts of the two salts KCl is pptd by KI (v Hauer, J pr 98 137)

### Solubility in KI+Aq at t°

| .0  | Sat solution contains       |      |              |  |
|-----|-----------------------------|------|--------------|--|
| t°  | % KCl                       | % KI | % total salt |  |
| 0   | 4 8                         | 50 8 | 56 6         |  |
| 8   | 5 1                         | 51 1 | 56 2         |  |
| 18  | -                           |      | 57 9         |  |
| 30  | 4 2                         | 54 6 | 58 8         |  |
| 41  | 47                          | 55 0 | 59 7         |  |
| 49  | 4 7<br>5 7                  | 56 0 | 61 7         |  |
| 60  |                             |      | 62 5         |  |
| 75  | 4 4                         | 59 5 | 63 9         |  |
| 82  | 5 0                         | 59 6 | 64 6         |  |
| 96  |                             |      | 66 2         |  |
| 102 |                             |      | 66 8         |  |
| 140 |                             | 63 3 |              |  |
| 155 | 76                          | 64 8 | 72 4         |  |
| 182 | 8 7                         | 65 4 | 74 1         |  |
| 190 | 8 6                         | 66 0 | 74 6         |  |
| 245 | 10 0                        | 66 5 | 76 5         |  |
| /5. | /5. 1 1 1 100 1 /E) 0 001 ) |      |              |  |

(Étard, A ch 1894, (7) 3 281)

Solubility of KCl+KI in H<sub>2</sub>O at 25°

| C per 100 g H <sub>2</sub> ()                |                                                          |                                                    |                                                  |  |
|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--|
| KCI                                          | KI                                                       | k(1                                                | KI                                               |  |
| 0<br>4 06<br>7 63<br>11 36<br>11 74<br>15 10 | 149 26<br>144 03<br>137 79<br>132 60<br>133 90<br>105 91 | 19 64<br>23 75<br>29 56<br>31 38<br>33 68<br>36 12 | 68 22<br>43 89<br>23 83<br>14 83<br>7 00<br>0 00 |  |

(Amadori and Pampanini, Att Acc Line 1911, 20, II 475)

## Solubility of KCl in KOH+Aq at 0°

| G per 100 cc solution                                                      |                                                                         |  |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| KCl                                                                        | кон                                                                     |  |  |
| 26 83<br>23 44<br>21 39<br>17 39<br>13 89<br>10 91<br>8 64<br>6 78<br>4 74 | 0 0<br>1 33<br>2 64<br>5 56<br>8 46<br>11 23<br>13 83<br>16 43<br>19 72 |  |  |
|                                                                            |                                                                         |  |  |

(Engel, Bull Soc 1891, (3) 6 16)

### Solubility in KOH+Aq at 20°

Solubility in KOH+Aq at 20°—Continued

| G KOH in<br>1 litre                                                                                                                                                     | G KCl in<br>1 litre                                                                                                                                                                                                                                | Sp gr                                                                                                                                                                                                                                                                                                                                     | Degrees<br>Baumé                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 | 61<br>58<br>55<br>53<br>547<br>44<br>42<br>440<br>38<br>35<br>33<br>31<br>227<br>224<br>222<br>21<br>208<br>17<br>16<br>15<br>15<br>14<br>14<br>13<br>13<br>12<br>12<br>11<br>11<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 1 355<br>1 360<br>1 365<br>1 375<br>1 380<br>1 385<br>1 380<br>1 385<br>1 405<br>1 410<br>1 415<br>1 420<br>1 425<br>1 430<br>1 435<br>1 440<br>1 445<br>1 450<br>1 455<br>1 460<br>1 475<br>1 480<br>1 485<br>1 480<br>1 485<br>1 490<br>1 505<br>1 500<br>1 505<br>1 520<br>1 535<br>1 540<br>1 565<br>1 570<br>1 580<br>1 570<br>1 580 | 38 39 2 5 0 2 6 0 5 7 0 3 6 0 5 9 2 5 8 0 40 40 41 5 0 3 6 0 5 9 2 5 8 0 40 40 41 5 0 3 6 0 5 9 2 5 8 0 5 9 2 5 8 1 5 7 0 3 6 0 3 5 8 2 6 0 40 40 40 40 40 40 40 40 40 40 40 40 4 |

(Winteler, Z Elektrochem, 1900, 7 360)

KCl+NaCl

100 pts KCl+NaCl+Aq sat at 13-16° contain 30 18 pts of the two salts Hauer)

100 pts H<sub>2</sub>O dissolve 13 92 pts KCl and 30 65 pts NaCl at 15 6°, and solution has sp gr = 1 233 (Page and Keightley)

100 pts H<sub>2</sub>O dissolve 10 11 pts KCl, 32 15 pts NaCl, and 469 pts K2SO4, and solution has sp gr =1250(P and K)

100 pts H<sub>2</sub>O dissolve 29 9 pts NaCl and 157 pts KCl at 188° (Rudorff)

Solubility of KCl+NaCl in H<sub>2</sub>O at t° pts H<sub>2</sub>O dissolve pts KCl and pts NaCl

| t° | Pts<br>KCl | Pts<br>NaCl | t°  | Pts<br>KCl | Pts<br>NaCl |
|----|------------|-------------|-----|------------|-------------|
| 10 | 12 5       | 29 7        | 60  | 24 6       | 27 2        |
| 20 | 14 7       | 29 2        | 70  | 27 3       | 26 8        |
| 30 | 17 2       | 28 7        | 80  | 30 0       | 26 4        |
| 40 | 19 5       | 28 2        | 90  | 32 9       | 26 1        |
| 50 | 22 0       | 27 7        | 100 | 34 7       | 25 8        |

(Precht and Wittgen, B 14 1667)

100 pts H<sub>2</sub>O dissolve 13 99 pts KCl+30 54 NaCl=44 53 pts mixed salts at 20° (Nicol, Phil Mag (5) **31** 385)

Solubility of KCl in NaCl+Aq at 20°

| G per 100 g H <sub>2</sub> O |                                |  |  |
|------------------------------|--------------------------------|--|--|
| NaCl                         | KCl                            |  |  |
| 0 0<br>6 5<br>13 0<br>19 5   | 34 52<br>29 37<br>4 71<br>0 42 |  |  |

(Nicol, Phil Mag 1891, **31** 369)

Solubility of KCl+NaCl at to

| .0                 | G per 100 g H <sub>2</sub> O |                              |  |
|--------------------|------------------------------|------------------------------|--|
| t°                 | KCl                          | NaCl                         |  |
| 25<br>"<br>80<br>" | 15 8<br>29 0<br>30 0<br>26 4 | 14 5<br>31 3<br>25 2<br>34 0 |  |

(Soch, J phys Ch 1898, 2 46)

Solubility of KCl+NaCl at ?°

| G salts in 100 g H <sub>2</sub> O        |                                          |                               |  |
|------------------------------------------|------------------------------------------|-------------------------------|--|
| NaCl                                     | KCl                                      | Solid phase                   |  |
| 9 89<br>18 35<br>29 88<br>31 57<br>33 17 | 28 34<br>22 75<br>16 28<br>10 91<br>5 65 | KCl<br>"KCl+NaCl<br>NaCl<br>" |  |

(Uyeda, Mem Col Sc Kioto, 1910, 2 245)

100 g H<sub>2</sub>O sat with NaCl dissolve 0 216 gram-equivalent KCl at 25°

100 g  $\rm H_2O$  sat with  $\rm K_2SO_4$  dissolve 0 466 gram-equivalent KCl at 25° (Euler, Z

phys Ch 1904, 49 315)
Solubility in NaCl+Aq at 20°, 30°, 40° and Tables given in the original show that each salt diminishes the solubility of the (Leather, Chem Soc 1915, 108 (2) other 13)

Solubility of KCl+NaCl in HCl+Aq at 25°

| % HCl | % NaCl | % KCl |
|-------|--------|-------|
| 0     | 19 95  | 10 90 |
| 8 61  | 10 65  | 7 58  |
| 17 16 | 3 56   | 3 80  |
| 20 65 | 2 03   | 2 86  |
| 32 78 | 0 18   | 1 27  |

(Hicks, J Am Chem Soc 1915, 37 846) See also under NaCl

KCl+SrCl

100 pts H<sub>2</sub>O dissolve 11 2 pts KCl and 48 6 pts SrCl<sub>2</sub> at 14 5° (v Hauer)

If SrCl<sub>2</sub>+Aq sat at 14.5 is sat with KCl at same temp, 100 pts H<sub>2</sub>O dissolve

| KCl<br>SrCl₂ | 33 2 | 11 2<br>48 6 | 50 7 |
|--------------|------|--------------|------|
|              |      | 59 8         |      |

(Mulder, Scheik Verhandel 1864)

 $KCl+(NH_4)_2SO_4$ 

Sat solution of KCl+(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> at b-pt when cooled to 14° has different composition from sat solution of (NH<sub>4</sub>)Cl and K<sub>2</sub>SO<sub>4</sub>, and its composition is changed by warming it with either KCl or (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (Rudorff)

KCl+K<sub>2</sub>SO<sub>4</sub>

100 pts H<sub>2</sub>O contain the following amounts salt at 1875° (1) sat with KCl alone,

(2) sat first with KCl then with K2SO4, (3) sat with K<sub>2</sub>SO<sub>4</sub> and KCl together, (4) sat first with K SO<sub>4</sub> then with KCl,

(5) sat with K2SO4 alone

|                                       | 1    | 2             | 3             | 4             | 5    |
|---------------------------------------|------|---------------|---------------|---------------|------|
| KCl<br>K <sub>2</sub> SO <sub>4</sub> | 34 5 | 32 96<br>1 79 | 33 12<br>1 75 | 33 12<br>1 83 | 10 8 |

(Karsten)

100 pts H<sub>2</sub>O sat with both K<sub>2</sub>SO<sub>4</sub> and KCl contain the following amounts

|                                         |      | At 14.8     |      |  |  |
|-----------------------------------------|------|-------------|------|--|--|
| KCl<br>K <sub>2</sub> SO <sub>4</sub>   | 33 5 | 28 2<br>2 0 | 10 3 |  |  |
|                                         |      | At 158      |      |  |  |
| KCl<br>K SO <sub>4</sub>                | 33 6 | 27 9<br>2 3 | 10 4 |  |  |
|                                         |      | At 16 1     |      |  |  |
| ${ m KCl} \atop { m K_2SO_4}$           | 33 6 | 27 1<br>3 3 | 10 4 |  |  |
| *************************************** |      |             |      |  |  |

(Kopp, A 34 264)

Sat K<sub>2</sub>SO<sub>4</sub>+Aq dissolves KCl only with pptn of K<sub>2</sub>SO<sub>4</sub>, but sat KCl+Aq dissolves some K<sub>2</sub>SO<sub>4</sub> without any separation (Karsten)

Solubility of KCl+K<sub>2</sub>SO<sub>4</sub> dissolve at t° 100 pts  $H_2O$ 

| t  | Pts<br>KCl | Pts<br>K <sub>2</sub> SO <sub>4</sub> | t°  | Pts<br>KCl | Pts<br>K <sub>2</sub> SO <sub>4</sub> |
|----|------------|---------------------------------------|-----|------------|---------------------------------------|
| 10 | 30 9       | 1 32                                  | 60  | 43 8       | 1 94                                  |
| 20 | 33 4       | 1 43                                  | 70  | 46 5       | 2 06                                  |
| 30 | 36 1       | 1 57                                  | 80  | 49 2       | 2 21                                  |
| 40 | 38 7       | 1 68                                  | 90  | 52 0       | 2 38                                  |
| 50 | 41 3       | 1 82                                  | 100 | 54 5       | 2 53                                  |

(Precht and Wittgen)

100 g H<sub>2</sub>O dissolve 34 76 g KCl+2 93 g K<sub>2</sub>SO<sub>4</sub> at 25° (Van't Hoff and Meyerhoffer, Z phys Ch 1898, 27 75)

Sol in 20% KC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Stromeyer) Quickly attacked by liquid NO<sub>2</sub> in the presence of traces of moisture, with evolution of Cl<sub>2</sub> (Frankland, Chem Soc 1901, 79 1361)

Sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 829)

Easily sol in liquid HF (Franklin, Z anorg 1905, 46 2)

100 g hydrazine dissolves 8 5 pts KCl at 12 5-13° (de Bruyn, R t c 1899, 18 297) 100 g anhyd hydroxylamine dissolve 12 3 g KCl at 17-18° (de Bruyn, Z phys Ch 1892, **10** 782)

(Kirwan)

Sol in 48 pts bolung alcohol (Wenzel) Insol in absolute alcohol containing LiCl (Mits cherlich )

At 15°, 100 pts alcohol of p percentage by volume (S=sp gr) dissolve pts KCl as follows

20

10

30

40

| Š<br>KCI      | 0 984<br>19 8                                              | $0972 \\ 147$ | $0958 \\ 107$                                     | 0 940<br>7 7        |
|---------------|------------------------------------------------------------|---------------|---------------------------------------------------|---------------------|
| p<br>S<br>KCl | $\begin{smallmatrix} 50 \\ 0.918 \\ 5.0 \end{smallmatrix}$ |               | $\begin{array}{c} 60 \\ 0.896 \\ 2.8 \end{array}$ | 80<br>0 848<br>0 45 |
|               | (Sch                                                       | ıff, A 11     | 8 365)                                            |                     |

100 pts of a mixture of 40% alcohol with 60% H O dissolve 92 pts KCl at 15° (Schiff)

Insol in absolute alcohol or in 96% alcohol at 15° or below At 20°, 100 pts of the latter dissolve 0 04 pt, at 25°, 0 06 pt, at 30°, 0 20 Dilute alcohol dissolves less KCl than the contained H2O would dissolve by itself

Solubility in dil alcohol D = sp gr of alcohol, S = solubility in 100 pts alcohol at t°

|                                |                                              |                                 | 0 9848                                       | D=                  | 0 9793                       | D =                            | 0 9726                                       |
|--------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|---------------------|------------------------------|--------------------------------|----------------------------------------------|
| t°                             | s                                            | t                               | s                                            | t°                  | s                            | t°                             | s                                            |
| 0<br>4<br>22<br>25<br>34<br>52 | 23 2<br>24 8<br>29 4<br>30 2<br>32 8<br>37 5 | 4<br>20<br>27<br>30<br>37<br>60 | 20 9<br>25 5<br>26 6<br>27 5<br>29 0<br>35 2 | 4<br>21<br>28<br>43 | 16 4<br>20 3<br>22 0<br>25 6 | 3<br>5<br>16<br>20<br>25<br>34 | 12 2<br>12 7<br>15 4<br>16 1<br>17 3<br>19 0 |

| D=0 9913   D=0 9390   D=0        |                                            | 0 8907                         | D=                                      | 0 8244               |                              |                           |                                      |
|----------------------------------|--------------------------------------------|--------------------------------|-----------------------------------------|----------------------|------------------------------|---------------------------|--------------------------------------|
| t°                               | 9                                          | t°                             | s                                       | ť°                   | S                            | t°                        | s                                    |
| 10<br>11<br>17<br>30<br>40<br>60 | 9 8<br>9 0<br>10 3<br>12 5<br>13 9<br>16 7 | 2<br>7<br>16<br>30<br>38<br>57 | 4 2<br>5 1<br>6 4<br>8 5<br>9 6<br>11 3 | 12<br>31<br>47<br>65 | 2 87<br>4 35<br>4 88<br>5 65 | 4<br>15<br>20<br>25<br>32 | 0 00<br>0 00<br>0 04<br>0 06<br>0 20 |
|                                  |                                            |                                |                                         |                      |                              |                           |                                      |

(Gerardin, A ch (4) 5 140)

Solubility of KCl in dil alcohol at 14 5°

| ~                                                                                                | 100 ccm contain                                                             |                                                                                        |                                                                                     |  |  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| Sp gr                                                                                            | Alcohol                                                                     | Water                                                                                  | KCl                                                                                 |  |  |
| 1 1720<br>1 1542<br>1 1365<br>1 1075<br>1 1085<br>1 0545<br>1 0455<br>0 9695<br>0 9315<br>0 8448 | 2 79<br>4 98<br>10 56<br>15 57<br>20 66<br>24 25<br>40 42<br>48 73<br>68 63 | 88 10<br>85 78<br>84 00<br>79 63<br>75 24<br>70 52<br>67 05<br>50 18<br>40 60<br>15 55 | 29 10<br>26 85<br>24 67<br>20 56<br>17 24<br>14 27<br>13 25<br>6 35<br>3 82<br>0 30 |  |  |

(Bodlander, Z phys Ch 7 316)

Solubility of KCl in ethyl alcohol (G KCl per 100 g alcohol+Aq)

| Wt %<br>alcohol                           | at 30                                        | at 40                                        | Wt %<br>alcohol                      | at 30°                           | at 40°                           |
|-------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------|----------------------------------|
| 0<br>5 28<br>9 43<br>16 9<br>25 1<br>34 1 | 38 9<br>33 9<br>30 2<br>24 9<br>19 2<br>15 6 | 41 8<br>35 9<br>33 3<br>27 6<br>21 8<br>17 2 | 43 1<br>55 9<br>65 9<br>78 1<br>86 2 | 11 1<br>6 8<br>3 6<br>1 3<br>0 4 | 13 1<br>8 2<br>4 1<br>1 6<br>0 5 |

(Bathrick, J phys Ch 1896, 1 160)

Solubility of KCl in ethyl alcohol at 0°

| Concentration of<br>alcohol Mol g<br>alcohol per 1000<br>g H <sub>2</sub> O | Solubility in<br>1000 g H <sub>2</sub> O       | Molecular<br>solubility              |
|-----------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|
| 0 25<br>0 50<br>1 00<br>3 00                                                | 285 15<br>277 95<br>271 10<br>265 50<br>208 80 | 3 80<br>3 73<br>3 64<br>3 45<br>2 81 |

(Armstrong and Eyre, Proc Rov Soc 1910, (A) 84 127)

Solubility of KCl in ethyl alcohol +Aq at 25°

| Wt %<br>alcohol                 | G KCl per<br>900 cc<br>sat solution              | Wt % alcohol                | G KCl per<br>100 cc<br>sat solution  |
|---------------------------------|--------------------------------------------------|-----------------------------|--------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>50 | 31 18<br>23 93<br>17 89<br>13 27<br>9 40<br>6 26 | 60<br>70<br>80<br>90<br>100 | 4 18<br>2 27<br>0 93<br>0 31<br>0 08 |

(McIntosh, J phys Ch 1903, 7 350)

100 pts absolute methyl alcohol dissolve 0.5 pt at 18.5°, 100 pts absolute ethyl alcohol dissolve 0.034 pt at 18.5° (de Bruyn, Z phys Ch 10.783)

\_ 100 pts 40% wood alcohol dissolve 9? pts

KCl (Schiff)

Solubility of KCl in methyl alcohol+Aq at 25°

P=% by wt of alcohol in alcohol+Aq S=Sp gr alcohol+Aq sat with KCl L= millimols KCl in 100 ccm of the solution

| P    | S 25°/4 | 1     |
|------|---------|-------|
| 0    | 1 1782  | 417 4 |
| 10 6 | 1 125   | 329   |
| 30 8 | 1 033   | 183   |
| 47 1 | 0 9679  | 102   |
| 64 0 | 0 9064  | 46 1  |
| 78 1 | 0 8607  | 20 6  |
| 98 9 | 0 8242  | 9 9   |
| 100  | 0 7937  | 5 7   |

(Herz and Anders, Z anorg 1907, 55 273)

| Solubility | of | KCl | ın | methyl | alcohol |
|------------|----|-----|----|--------|---------|
|------------|----|-----|----|--------|---------|

| t°                | Concentration of alcohol Mol g alcohol per 1000 g H <sub>2</sub> O | Solubility<br>1 in 1000 g<br>H <sub>2</sub> O  | Molecular<br>solubility              |  |  |  |
|-------------------|--------------------------------------------------------------------|------------------------------------------------|--------------------------------------|--|--|--|
| 0<br>"<br>"<br>"  | 0 25<br>0 50<br>1 00<br>3 00                                       | 283 55<br>280 00<br>276 35<br>267 85<br>238 10 | 3 81<br>3 76<br>3 71<br>3 60<br>3 18 |  |  |  |
| 25<br>"<br>"<br>" | 0 25<br>0 50<br>1 00<br>3 00                                       | 364 15<br>361 90<br>357 10<br>348 70<br>324 15 | 4 89<br>4 86<br>4 79<br>4 67<br>4 35 |  |  |  |

(Armstrong and Eyre, Proc Roy Soc 1910 (A) 84 127)

At room temp 1 pt by weight is sol in 200 pts methyl alcohol,  $D^{15}$  0 7990 750 " ethyl "  $D^{15}$  0 8035

Insol in propyl alcohol (Rohland, Z anorg 1899, 18 325)

100 g methyl alcohol dissolve 0 53 g KCl at 25°

100 g ethyl alcohol dissolve 0 022 g KCl at 25°

100 g propvl alcohol dissolve 0 004 g KCl at 25°
100 g isoamyl alcohol dissolve 0 0008 g

KCl at 25° (Turner and Bissett, Chem. Soc. 1913, 103 1909)

Insol in propyl alcohol (Schlamp, Z phys Ch 1894, 14 276)

#### Solubility of KCl in propyl alcohol

| 0     283 55     3 81       "     0 25     274 10     3 68       "     0 50     265 45     3 56       "     1 00     248 0     3 33       25     365 10     4 90       "     0 25     355 40     4 77       "     0 50     347 70     4 67       "     1 00     331 50     4 45 | t | Concentra<br>tion of<br>alcohol<br>Mol & per<br>1000 & H <sub>2</sub> O | Solubility in<br>1000 g H O | Molecular<br>solubility |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------|-----------------------------|-------------------------|
| " 0 25 355 40 4 77<br>" 0 50 347 70 4 67                                                                                                                                                                                                                                        | " | 0 50                                                                    | 274 10<br>265 45            | 3 68<br>3 56            |
|                                                                                                                                                                                                                                                                                 | " | 0 50                                                                    | 355 40<br>347 70            | 4 77<br>4 67            |

(Armstrong and Lyre, Proc Roy Soc 1910, (A) **84** 127)

Insol in fusel-oil (Gooch, Am Ch J 9 53)

Very sl sol in mixture of equal pts ab-

solute alcohol and ether (Berzelius)

500 mg KCl treated with 10 g of above mixture yield only 03 mg to the liquid (Lawrence Smith, Am J Sci 16 56)

Insol in acetone (Krug and M'Élroy, J Anal Ch 6 184, Eidmann, C C 1899, II 1014)

Solubility of KCl in acetone+Aq at t°

| .0 | %                                                                     | 100 g of                                                                                               | the solution contain                                                                                   |                                                                                                    |  |
|----|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| t° | acetone                                                               | G H₂O                                                                                                  | G acetone                                                                                              | G KCI                                                                                              |  |
| 30 | 0<br>5<br>9 09<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100 | 72 73<br>71 15<br>69 62<br>64 88<br>59 49<br>53 17<br>45 98<br>37 97<br>29 22<br>19 82<br>9 98<br>0 00 | 0 00<br>3 74<br>6 96<br>16 22<br>25 45<br>35 52<br>45 98<br>56 91<br>68 18<br>79 43<br>89 88<br>100 00 | 27 27<br>25 11<br>23 42<br>18 90<br>15 06<br>11 31<br>8 04<br>5 12<br>2 60<br>0 76<br>0 13<br>0 00 |  |
| 40 | 0<br>5<br>9 09<br>15<br>20<br>80<br>85<br>90<br>95<br>100             | 71 31<br>69 62<br>67 88<br>65 15<br>62 97<br>19 81<br>14 94<br>10 00<br>4 97<br>0 00                   | 0 00<br>3 67<br>6 79<br>11 51<br>15 75<br>79 34<br>84 66<br>89 84<br>94 96<br>100 00                   | 28 69<br>26 72<br>25 33<br>32 34<br>21 28<br>0 58<br>0 40<br>0 16<br>0 07<br>0 00                  |  |

Since there is but one liquid phase here, these figures represent the solubility of KCl in acetone+Aq at 30° and 40°

(Snell, J phys Chem 1898, 2 484)

The addition of KCl to mixtures of acetone and H<sub>2</sub>O will cause a division into two layers. The following table gives the temp at which sat solutions of KCl in acetone+Aq of varying concentrations separate into two layers and also the compositions of the sat solutions of KCl in acetone+Aq

|                                              | Temp                                     | 100 g of solution contain                          |                                                    |                                                |
|----------------------------------------------|------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------|
| acetone                                      | division                                 | G H <sub>2</sub> O                                 | G acetone                                          | G KCl                                          |
| 26<br>30<br>40<br>50<br>60<br>70<br>75<br>80 | 46 5° 40 0 34 2 32 6 33 3 35 5 39 0 45 6 | 59 36<br>53 21<br>45 97<br>37 86<br>29 09<br>19 80 | 25 44<br>35 47<br>45 97<br>56 80<br>68 25<br>79 20 | 15 20<br>11 32<br>8 06<br>5 34<br>2 66<br>1 00 |

(Snell)

The following table gives the compositions of the solutions of KCl in acetone+Aq at the points at which the solution just divides into two layers  $Temp = 40^{\circ}$ 

| 100 g of the solution contain                                                                   |                                                                                                 |                                                                                        |  |  |  |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| G H₂O                                                                                           | G H <sub>2</sub> O G acetone G KCl                                                              |                                                                                        |  |  |  |  |
| 56 68<br>53 05<br>50 34<br>47 60<br>44 35<br>42 68<br>38 53<br>36 59<br>32 37<br>30 62<br>28 12 | 28 63<br>35 67<br>39 82<br>43 83<br>48 36<br>50 75<br>56 26<br>58 84<br>64 18<br>66 43<br>69 45 | 14 68<br>11 29<br>9 83<br>8 58<br>7 29<br>6 57<br>5 21<br>4 57<br>3 45<br>2 95<br>2 44 |  |  |  |  |

(Snell)

The addition of KCl to aqueous acetone causes the separation of the liquid into two layers. The following table gives the composition of these layers at 40°

| Upper layer contains per 100 g of solution |                                   |       |  |  |  |  |
|--------------------------------------------|-----------------------------------|-------|--|--|--|--|
| G H₂O                                      | G H <sub>2</sub> O G acetone G KC |       |  |  |  |  |
| 55 20                                      | 31 82                             | 12 99 |  |  |  |  |
| 54 27                                      | 36 69                             | 12 03 |  |  |  |  |
| 53 27                                      | 35 44                             | 11 29 |  |  |  |  |
| 51 69                                      | 37 76                             | 10 55 |  |  |  |  |
| 51 23                                      | 48 50                             | 10 27 |  |  |  |  |
| 50 34                                      | 39 88                             | 9 77  |  |  |  |  |
| 49 08                                      | 41 67                             | 9 26  |  |  |  |  |
| 48 02                                      | 43 18                             | 8 79  |  |  |  |  |
| 47 62                                      | 43 73                             | 8 64  |  |  |  |  |
| 46 49                                      | 45 34                             | 8 17  |  |  |  |  |
| 45 65                                      | 46 52                             | 7 83  |  |  |  |  |
| 45 64                                      | 46 57                             | 7 79  |  |  |  |  |
| 58 99                                      | 25 24                             | 15 77 |  |  |  |  |

Lower layer contains per 100 g of solution

| GHO   | G acetone | G KCl |
|-------|-----------|-------|
| 28 14 | 69 42     | 2 44  |
| 29 45 | 67 83     | 2 72  |
| 30 96 | 65 97     | 3 07  |
| 31 83 | 64 83     | 3 33  |
| 32 64 | 63 79     | 3 56  |
| 34 07 | 62 01     | 3 92  |
| 35 27 | 60 49     | 4 24  |
| 37 44 | 57 67     | 4 89  |
| 38 00 | 56 96     | 5 04  |
| 38 68 | 56 17     | 5 25  |
| 39 98 | 54 36     | 5 66  |
| 40 41 | 53 78     | 5 81  |
| 23 66 | 74 91     | 1 43  |

(Snell)

Solubility in acetone+Aq at 20°

A=ccm acetone in 100 ccm acetone+Aq

KCl=millimols KCl in 100 ccm of the

| OIULIOII                                                |                                                                                   |  |  |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| A                                                       | KCl                                                                               |  |  |  |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | 410 5<br>351 7<br>286 6<br>223 7<br>166 5<br>115 4<br>71 2<br>38 5<br>12 9<br>2 0 |  |  |  |

(Herz and Knoch, Z anorg 1904, 41 317)

Solubility of KCl in glycerine+Aq at 25° G=g glycerine in 100 g glycerine+Aq KCl=millimols KCl in 100 cc of the solu-

| G                                                     | KCl                                                         | Sp gr                                                              |
|-------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|
| 0<br>13 28<br>25 98<br>45 36<br>54 23<br>83 84<br>100 | 424 5<br>383 4<br>339 3<br>271 4<br>238 5<br>149 0<br>110 6 | 1 1800<br>1 1848<br>1 1935<br>1 2106<br>1 2189<br>1 2590<br>1 2860 |

(Herz and Knoch, Z anorg 1905, 45 267)

Insol in CS<sub>2</sub> (Baeyer, Arctowski, Z anorg 1894, 6 257)

Insol in benzonitrile (Naumann, B 1914, 47 1370)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethy lacetate (Naumann, B 1910, 43 314)

Solubility of KCl in organic compounds +Aq at 25°

| Compound                                                                    | G comp<br>per l H <sub>2</sub> O                             | C K(l per<br>100 g sat<br>solution                                   |
|-----------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|
| Water<br>Acetaldehyde<br>Paraldehyde<br>Glycerol<br>Glycol<br>"<br>Mannitol | 11 01<br>11 07<br>13 01<br>15 51<br>62 05<br>45 53<br>136 59 | 26 89<br>27 05<br>26 42<br>25 58<br>26 43<br>25 26<br>24 86<br>24 46 |

(Armstrong and Eyre, Proc Roy Soc 1913, A, 88 234)

| Sol                                                       | 100 g of the<br>solution contain                        |                                                                                      |  |  |
|-----------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| H <sub>2</sub> O                                          | Pyridine                                                | g KCl                                                                                |  |  |
| 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10 | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | 23 79<br>19 76<br>46 37<br>13 19<br>10 05<br>6 34<br>3 335<br>1 245<br>0 24<br>0 039 |  |  |

(Schroeder, J pr 1908, (2) 77 268)

Insol in anhydrous pyridine and in 97% pyridine+Aq

Very sl sol in 95% pyridine+Aq Sl sol in 93% pyridine+Aq (Kahlenberg, J Am Chem Soc 1908, 30 1107)

100 ccm of a sat solution of KCl in fur-

furol at 25° contain 0 085 pts by wt KCl (Walden, Z phys Ch 1906, 55 713)
100 g H<sub>2</sub>O dissolve 246 5 g sugar+44 8 g
KCl at 31 25°, 100 g sat solution contain
62 28 g sugar+11 33 g KCl (Kohler, Z
Ver Zuckerind, 1897, 47 447)

## Solubility in glucose+Ag at 25°

| Concentration of<br>glucose in 9 mol<br>per 1000 & H O | Solubility in<br>1000 g H <sub>2</sub> O       | Molecular<br>solubility              |  |  |
|--------------------------------------------------------|------------------------------------------------|--------------------------------------|--|--|
| 0 25<br>0 50<br>1 0<br>3 0                             | 362 70<br>366 10<br>369 85<br>376 25<br>402 25 | 4 86<br>4 91<br>4 96<br>5 04<br>5 39 |  |  |

(Armstrong and Eyre, Proc Roy Soc 1910, **84** 127)

Potassium manganic chloride, K<sub>2</sub>MnCl<sub>5</sub> Sol in H<sub>2</sub>O, less sol in NH<sub>4</sub>Cl+Aq, un (Neuman, M. 1894, **15** 492)

Potassium rhodium chloride See Chlororhodite, potassium

Potassium ruthenium scsquichloride See Chlororuthenite, potassium

Potassium ruthenium tetrachloride See Chlororuthenate, potassium

Potassium tellurium chloride See Chlorotellurate, potassium

Potassium thallic chloride, 3KCl, IlCl<sub>3</sub>+  $2H_{2}O$ 

Sol in H<sub>2</sub>O Not decomp by boiling H<sub>2</sub>O (Rammelsberg)

Potassium thorium chloride, KCl, 2ThCl<sub>4</sub>+ 18H<sub>2</sub>O

Deliquescent, sol in H<sub>2</sub>O and alcohol (Berzelius)

Potassium tin (stannous) chloride (Potassium chlorostannite), KCl, SnCl<sub>2</sub>+H<sub>2</sub>O

Decomp by H<sub>2</sub>O, sol in hot HCl or KCl+ Aq (Remsen and Richardson, Am Ch J 14 90 Y

2KCl, SnCl<sub>2</sub>+H<sub>2</sub>O Partially decomp by dissolving in H<sub>2</sub>O (Rammelsberg, Pogg 94 +2H<sub>2</sub>O Very sol in hot, and but slightly

m cold HCl+Aq or KCl+Aq (Remsen and Richardson )

4KCl, SnCl<sub>2</sub>+3H<sub>2</sub>O (Poggiale, C R 20 1182)

Does not exist (Remsen and Richardson)

Potassium tin (stannic) chloride, 2KCl, SnCl. See Chlorostannate, potassium

Potassium tungsten chloride, K<sub>2</sub>(OH)WCl<sub>5</sub>

Decomp by moisture Insol in organic solvents (Olsson, B 1913, 46 581)

K<sub>8</sub>W<sub>2</sub>Cl<sub>9</sub> Sol in H<sub>2</sub>O Nearly insol in most organic solvents (Olsson)

#### Potassium uranium chloride, UCl<sub>4</sub>, 2KCl

Very hydroscopic, sol in H2O with decomp, Decomp by alcohol sol in acetic acid Nearly insol in ether (Aloy, Bull Soc 1899, (3) **21** 264)

Potassium uranyl chloride, K<sub>2</sub>(UO<sub>2</sub>)Cl<sub>4</sub>

Very sol in H<sub>2</sub>O Moderately sol in dil (Aloy, Dissert 1901) alcohol Very sol in H<sub>2</sub>O and alcohol  $+2H_{2}O$ 

(Arfvedson) Sol in H2O, with decomp and separation of KCl, unless H2O is acidulated with HCl (Peligot, A ch (3) 5 37)

## Solubility in H<sub>2</sub>O at t°

| t°                   | 100 pts of the solution contain |                         |          | Solid phase                                            |  |  |
|----------------------|---------------------------------|-------------------------|----------|--------------------------------------------------------|--|--|
|                      | I ts<br>UO2                     | Pts<br>Cl               | Pts<br>K |                                                        |  |  |
| 0 8                  | 38 57                           | 13 59                   | 3 86     | UO Cl <sub>2</sub> 2KCl 2H <sub>2</sub> O<br>+KCl      |  |  |
| 14 9<br>17 5         | 33 71<br>37 36                  | 13 51<br>14 50          | 5 27     | ·                                                      |  |  |
| 25 0<br>41 5<br>50 0 | 35 01<br>35 27<br>34 18         | 15 26<br>15 92<br>16 56 | 7 39     |                                                        |  |  |
| 60 0<br>71 5         | 34 19<br>33 55                  | 17 25<br>17 44          | 9 28     | UO <sub>2</sub> Cl <sub>2</sub> 2KCl 2H <sub>2</sub> O |  |  |
| 78 5                 | 35 26                           | 18 24                   | 9 95     | <u> </u>                                               |  |  |

(Rimbach, B 1904, 37 463)

Potassium uranyl chloride is decomp by H<sub>2</sub>O at temp below 60°. Above 60°, it is sol in H<sub>2</sub>O without decomp

Potassium vanadium chloride,  $VK_2Cl_5+H_2O$ Difficultly sol in  $H_2O$  and alcohol (Stahler, B 1904, 37 4412)

#### Potassium yttrium chloride

Sol in H<sub>2</sub>O with evolution of heat

#### Potassium zinc chloride, 2KCl, ZnCl<sub>2</sub>

Very deliquescent Sol in 1 pt cold, and in all proportions of hot H<sub>2</sub>O (Pierre, A ch (3) 16 248)

+H<sub>2</sub>O Not very deliquescent Can be recryst (Ephram, Z anorg 1908, **59** 58) KCl, ZnCl<sub>2</sub>+2H<sub>2</sub>O Not deliquescent Cannot be recryst without decomp (Ephram)

#### Potassium chloroiodide, KCl2I

Very unstable (Wells and Wheeler, Sill Am J 143 475)

KCl<sub>4</sub>I Sol in H<sub>2</sub>O with decomp Ether dissolves out ICl<sub>3</sub> (Filhol, J Pharm **25** 433)

#### Potassium fluoride, KF or K<sub>2</sub>F<sub>2</sub>

Very deliquescent Very sol in H<sub>2</sub>O Sl sol in HF+Aq Easily sol in conc KC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> +Aq Insol in alcohol (Berzelius) Sol in dilute alcohol (Stromeyer, A 100 83)

Sp gr of aqueous solution of KF at 18° containing—

5 10 20 30 40% KF 1 041 1 084 1 117 1 272 1 378 (Kohlrausch, W Ann 1879 1)

Solubility in HF+Aq at 21° (G per 100 g  $H_2O$ )

| HF KF |      | HF     | KF    |
|-------|------|--------|-------|
| 0 0   | 96 3 | 13 95  | 31 4  |
| 1 21  | 72 0 | 15 98  | 33 4  |
| 1 61  | 61 0 | 17 69  | 35 6  |
| 3 73  | 40 4 | 20 68  | 38 4  |
| 4 03  | 32 5 | 28 60  | 46 9  |
| 6 05  | 30 4 | 41 98  | 61 8  |
| 9 25  | 29 9 | 53 71  | 74 8  |
| 11 36 | 29 6 | 74 20  | 105 0 |
| 12 50 | 30 5 | 119 20 | 169 5 |

(Ditte, C R 1896, 123 1282)

Easily sol in liquid HF (Franklin, Z anorg 1905, 46 2)

Very sl sol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 829)

Insol in methyl acetate (Naumann, B 1909, 42 3790)

KF will "salt out" acetone from aqueous solution. The table shows the composition of the solutions at the points at which inhomogeneous solutions of KF, acetone and H<sub>2</sub>O just become homogeneous at 20°

100 g of the solution contain

| G KF                                                                                                                                     | G H₂O | G<br>acetone                                                                                                                                                   | G KF                                                                                                                                                         | G H <sub>2</sub> O                                                                                                                                 | G<br>acetone                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 5 75<br>5 00<br>3 84<br>3 06<br>2 61<br>2 22<br>14 95<br>11 46<br>9 17<br>7 72<br>6 43<br>1 38<br>0 979<br>0 693<br>0 57<br>0 89<br>0 75 |       | 35 34<br>38 72<br>43 91<br>47 89<br>50 55<br>52 99<br>11 39<br>17 77<br>23 53<br>28 27<br>30 90<br>33 07<br>58 06<br>62 60<br>66 61<br>67 93<br>63 36<br>65 41 | 0 61<br>0 50<br>28 42<br>25 74<br>22 35<br>20 28<br>18 71<br>16 31<br>12 40<br>33 86<br>29 97<br>22 05<br>17 82<br>14 34<br>44 24<br>33 34<br>29 86<br>24 38 | 31 95<br>29 92<br>69 76<br>71 24<br>72 99<br>73 80<br>74 10<br>73 97<br>72 01<br>65 73<br>41<br>73 29<br>65 54<br>73 29<br>65 66<br>68 54<br>72 16 | 67 44<br>69 58<br>1 82<br>3 02<br>4 66<br>5 90<br>7 19<br>9 72<br>15 59<br>1 50<br>4 54<br>8 16<br>12 37<br>0 240<br>1 60<br>3 45 |
|                                                                                                                                          | .1 0  | , 1                                                                                                                                                            | ,                                                                                                                                                            |                                                                                                                                                    | 414 -                                                                                                                             |

At the first quadruple point where the hydrate, acetone, water and vapor are in equilibrium the upper layer contains 98% acetone, while the lower layer contains in 100 g, 46 3 g KF A sat solution of KF will thus dehydrate acetone to the extent of 98%

(Frankforter and Cohen, J Am Chem Soc 1914, 36 1115)

Similar data are given for KF in ethyl and propyl alcohol by Frankforter and Frary (J phys Ch 1913, 17 402)
+2H<sub>2</sub>O Very deliquescent (Guntz, A

 $+2H_2O$  Very deliquescent (Guntz, A ch (6) 3 20)

Sat aq solution at 18° contains 45 3% KF (de Forcrand, C R 1911, 152 1210)

Sp gr of solution sat at 18°=1 502, and contains 48% KF (Mylius and Funk, B 1897, **30** 1718)

 $+4H_2O$  Not deliquescent (de Forcrand, C R 1911, **152** 1075)

Sat aq solution at 18° contains 35 96% KF (de Forcrand, C R 1911, **152** 1210)

## Potassium hydrogen fluoride, KF, HF = KHF<sub>2</sub>

Easily sol in  $\rm H_2O$  Sl sol in  $\rm H_2O$  containing HF Easily sol in conc  $\rm KC_2H_3O_2+Aq$  Sol in dil alcohol, but insol in absolute alcohol

KF, 2HF Deliquescent Decomp by H<sub>2</sub>O with absorption of heat (Moissan, C R 106 547)

KF, 3HF As above (Moissan)

Potassium manganic fluoride See Fluomanganate, potassium

Potassium scandium fluoride, K<sub>3</sub>ScF<sub>6</sub>
Sol m H<sub>2</sub>O Decomp by acids (R J Meyer, Z anorg 1914, 86 275)

Potassium silicon fluoride See Fluosilicate, potassium

Potassium tantalum fluoride See Fluotantalate, potassium

Potassium tellurium fluoride, KF, TeF<sub>4</sub>
Decomp by H<sub>2</sub>O (Hogbom, Bull Soc (2) **35** 60)

Potassium thallic fluoride, 2TlF<sub>5</sub>, KF

Decomp by moisture Insol in HF

(Gewecke, A 1909, **366** 226)

Potassium thorium fluoride, 2KF, ThF<sub>4</sub>+ 4H<sub>2</sub>O Nearly insol in H<sub>2</sub>O Sol in HF+Aq KF, ThF<sub>4</sub> Precipitate (Chydenius)

Potassium tin (stannous) fluoride, 2KF, 3SnF<sub>2</sub>+H<sub>2</sub>O Sol in H<sub>2</sub>O (Wagner, B 19 896)

Potassium tin (stannic) fluoride See Fluostannate, potassium

Potassium titanium tetrafluoride See Fluotitanate, potassium

Potassium titanium sesquifluoride, 4KF, 11,F6
Precipitate Very sl sol in H2O Sol in dil acids (Piccini, C R 97 1064)
See also Fluosesquititanate, potassium

Potassium titanyl fluoride See Fluoxypertitanate, potassium

Potassium tungstyl fluoride
See Fluoxytungstate, potassium

Potassium uranium fluoride, KF, UF<sub>4</sub>
Insol in H<sub>2</sub>() and dil wids Difficultly sol in cone Hcl+Aq Sol in cone H<sub>2</sub>SO<sub>4</sub>
(Bolton, J B **1866** 212)

Potassium uranyl fluoride
See Fluoxyuranate, potassium

Potassium vanadium sesquifluoride See Fluovanadate, potassium

Potassium vanadium tetrafluoride (?)
Easily sol in H<sub>2</sub>O Insol in alcohol (Berzelius)

Potassium zinc fluoride, KF, ZnF
Sol in H<sub>2</sub>O (R Wagner)
2KF, ZnF. Sol in H<sub>2</sub>O (Berzelius)

Potassium zirconium fluoride See Fluozirconate, potassium

Potassium fluoride hydrogen peroxide, KF  $H_2O_2$ 

Not hydroscopic Very sol in  $\rm H_2O$  Is not decomp at 70° and only partially so at 110° (Tanatar, Z anorg 1901, 28 255)

Potassium fluoride vanadic acid See Fluoxyvanadate, potassium

Potassium hydride, KH

Decomp by H<sub>2</sub>O Insol in oil of turpentine, benzene, ether and CS<sub>2</sub> (Moissan, C R 1902, **134** 18)

Potassium hydrosulphide, KSH

Very deliquescent, and sol in  $H_2O$  with gradual decomp Crystallizes with  $\frac{1}{2}H_2O$  Sol in alcohol

Potassium hydroxide, KOH

Very deliquescent, and sol in  $H_2O$  with evolution of much heat 100 pts KOH, exposed over  $H_2O$  at  $16-20^\circ$  take up 460 pts  $H_2O$  in 56 days (Mulder)

1~pt KOH dissolves in 0.5 pt  $~cold~H_2O~(Lowitz)$  in 0.47 pt  $~cold~H_2O~(Bineau~C~R~41~509)$  in 1 pt  $H_2O~(\mbox{Abl}\,)$ 

Solubility of KOH in H<sub>2</sub>O at t°

| t.º                                                 | G KOH p                                                | er 100 g                                         | Solid phase                                |  |  |
|-----------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|--------------------------------------------|--|--|
|                                                     | H <sub>2</sub> O                                       | solution                                         | 55.00 p.005                                |  |  |
| -22                                                 | 3 7                                                    | 3 6                                              | Ice                                        |  |  |
| $\begin{array}{c c} -20 & 7 \\ -65 & 2 \end{array}$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 18 4<br>30 8                                     |                                            |  |  |
| -36 2<br>-32 7                                      | 36 2<br>77 94                                          | 26 6<br>43 8                                     | kOH 4H₂O                                   |  |  |
| 32                                                  | 80                                                     | 44 4                                             | KOH 4H₂O+KOH                               |  |  |
| 23 2                                                | 85                                                     | 45 9                                             | 2H <sub>2</sub> O<br>KOH 2H <sub>2</sub> O |  |  |
| 0                                                   | 97                                                     | 49 2                                             |                                            |  |  |
| 10<br>15                                            | 103                                                    | $\begin{bmatrix} 50 & 7 \\ 51 & 7 \end{bmatrix}$ |                                            |  |  |
| 20<br>30                                            | 112<br>126                                             | 52 8<br>55 76                                    |                                            |  |  |
| 32 5                                                | 135                                                    | 57 44                                            | KOH 2H O+KOH<br>H <sub>2</sub> O           |  |  |
| 50                                                  | 140                                                    | 58 33                                            | KOH H₂O                                    |  |  |
| 100<br>125                                          | 178<br>213                                             | 64 03 68 06                                      |                                            |  |  |
| 143                                                 | 311 7                                                  | 75 73                                            |                                            |  |  |
|                                                     | ~                                                      |                                                  | 1000 00 000 )                              |  |  |

(Pickering, Chem Soc 1893, **63** 908)

100 pts KOH are sol in 93 4 pts  $H_2O$  at 15° or 100 pts  $H_2O$  dissolve 107 pts KOH at 15° Sp gr = 15355 at 15°

All higher values found in solubility tables are incorrect (Ferchland, Z anorg 1902,  $\bf 30$  133)

100 g sat aq solution at 15° contain 50 48 g KOH (de Forcrand, C R 1909, 149 719)

Sat KOH+Aq boils at 157 7° (Griffiths), 340° (Gerlach)

B-pt of KOH+Aq containing pts KOH to 100 pts  $H_2O$ 

|      | 1       |      |         |
|------|---------|------|---------|
| B-pt | Pts KOH | B pt | Pts KOH |
| 105° | 20 5    | 215° | 210 5   |
| 110  | 34 5    | 220  | 219 8   |
| 115  | 46 25   | 225  | 230 0   |
| 120  | 57 5    | 230  | 240 9   |
| 125  | 67 5    | 235  | 251 9   |
| 130  | 76 8    | 240  | 263 1   |
| 135  | 85 0    | 245  | 274 4   |
| 140  | 92 5    | 250  | 285 7   |
| 145  | 99 8    | 255  | 298 5   |
| 150  | 106 5   | 260  | 312 5   |
| 155  | 114 05  | 265  | 328 0   |
| 160  | 121 7   | 270  | 343 5   |
| 165  | 129 35  | 275  | 359 0   |
| 170  | 137 0   | 280  | 375 0   |
| 175  | 144 8   | 285  | 391 0   |
| 180  | 152 6   | 290  | 408 2   |
| 185  | 160 4   | 295  | 425 5   |
| 190  | 168 2   | 300  | 444 4   |
| 195  | 176 5   | 310  | 484 0   |
| 200  | 185 0   | 320  | 526 3   |
| 205  | 193 5   | 330  | 571 5   |
| 210  | 202 0   | 340  | 623 6   |

(Gerlach, Z anal 26 464)

Sp gr and b-pt of KOH+Aq according to  $$\operatorname{Dalton}$$ 

| % K <sub>2</sub> O                                                 | Sp gr                                                                        | B pt                                                                                              | % K <sub>2</sub> O                                                          | Sp gr                                                                      | B pt                                                              |
|--------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|
| 4 7<br>9 5<br>13 0<br>16 2<br>19 5<br>23 4<br>26 3<br>29 4<br>32 4 | 1 06<br>1 11<br>1 15<br>1 19<br>1 23<br>1 28<br>1 33<br>1 36<br>1 39<br>1 42 | 100 56°<br>101 11<br>101 66<br>103 33<br>104 44<br>106 66<br>109 44<br>112 22<br>115 56<br>118 89 | 36 8<br>39 6<br>42 9<br>46 7<br>51 2<br>56 8<br>63 6<br>72 4<br>84 0<br>100 | 1 44<br>1 47<br>1 52<br>1 60<br>1 68<br>1 78<br>1 88<br>2 00<br>2 2<br>2 4 | 123 89° 129 44 135 56 143 33 160 00 188 22 215 56 315 56 red heat |
|                                                                    |                                                                              |                                                                                                   |                                                                             |                                                                            |                                                                   |

Sp gr of KOH +Aq at 15

| % K <sub>2</sub> O                                                            | Sp gr                                                                                  | % K <sub>2</sub> O                                                                     | Sp gr                                                                                  | % K <sub>2</sub> O                                                           | Sp gr                                                                        |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0 568<br>1 697<br>2 829<br>3 961<br>5 002<br>6 224<br>7 355<br>8 487<br>9 619 | 1 0050<br>1 0153<br>1 0560<br>1 0369<br>1 0478<br>1 0589<br>1 0703<br>1 0819<br>1 0938 | 10 750<br>11 882<br>13 013<br>14 145<br>15 277<br>16 408<br>17 540<br>18 671<br>19 803 | 1 1059<br>1 1182<br>1 1308<br>1 1437<br>1 1568<br>1 1702<br>1 1839<br>1 1979<br>1 2122 | 20 935<br>21 500<br>22 632<br>23 764<br>24 895<br>26 027<br>27 158<br>28 290 | 1 2268<br>1 2342<br>1 2493<br>1 2648<br>1 2805<br>1 2966<br>1 3131<br>1 3300 |

(Zimmerman N J Pharm 18 2 5

| Sp gr of KOH + Aq  |       |                    |       |                    |      |
|--------------------|-------|--------------------|-------|--------------------|------|
| % K <sub>2</sub> O | Sp gr | % K <sub>2</sub> O | Sp gr | % K <sub>2</sub> O | Sp g |
| 2 44               | 1 02  | 23 14              | 1 22  | 37 97              | 1 42 |

| 70 1120                                                                            | Sp gr                                                                        | 70 1120                                                                                | Sp gr                                                                        | 76 1120                                                                       | Sp gr                                                                |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 2 44<br>4 77<br>7 02<br>9 20<br>11 28<br>13 30<br>15 38<br>17 40<br>19 34<br>21 25 | 1 02<br>1 04<br>1 06<br>1 08<br>1 10<br>1 12<br>1 14<br>1 16<br>1 18<br>1 20 | 23 14<br>24 77<br>26 34<br>27 86<br>29 34<br>30 74<br>32 14<br>33 46<br>34 74<br>35 99 | 1 22<br>1 24<br>1 26<br>1 28<br>1 30<br>1 32<br>1 34<br>1 36<br>1 38<br>1 40 | 37 97<br>40 17<br>42 31<br>44 40<br>46 45<br>48 46<br>50 09<br>51 58<br>53 06 | 1 42<br>1 44<br>1 46<br>1 48<br>1 50<br>1 52<br>1 54<br>1 56<br>1 58 |

(Richter)

Sp gr of KOH+Aq at 15° a = sp gr if % is  $K_2O$ , b = sp gr if % is KOH

|                                                                                              | 1120, 2                                                                                                                                      | 2 P 8                                                                                                                                        | /( .                                                                                   | .5 22022                                                                                                                   |                                                                                                                                              |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| %                                                                                            | a                                                                                                                                            | b                                                                                                                                            | %                                                                                      | a                                                                                                                          | b                                                                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                      | 1 010<br>1 020<br>1 030<br>1 039<br>1 048<br>1 058<br>1 068<br>1 078<br>1 089<br>1 1121<br>1 121<br>1 132<br>1 143                           | 1 009<br>1 017<br>1 025<br>1 033<br>1 041<br>1 049<br>1 058<br>1 065<br>1 074<br>1 083<br>1 092<br>1 111<br>1 111                            | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44       | 1 370<br>1 385<br>1 403<br>1 418<br>1 431<br>1 445<br>1 460<br>1 475<br>1 490<br>1 504<br>1 522<br>1 532<br>1 564<br>1 570 | 1 300<br>1 311<br>1 324<br>1 336<br>1 349<br>1 361<br>1 374<br>1 400<br>1 411<br>1 425<br>1 438<br>1 450<br>1 462                            |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 1 154<br>1 166<br>1 178<br>1 190<br>1 202<br>1 215<br>1 230<br>1 242<br>1 256<br>1 276<br>1 285<br>1 300<br>1 312<br>1 326<br>1 340<br>1 355 | 1 128<br>1 137<br>1 146<br>1 155<br>1 166<br>1 177<br>1 188<br>1 198<br>1 209<br>1 220<br>1 230<br>1 241<br>1 252<br>1 264<br>1 278<br>1 288 | 45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>57<br>58<br>59<br>60 | 1 584<br>1 600<br>1 615<br>1 630<br>1 645<br>1 660<br>1 676<br>1 705<br>1 733<br>1 746<br>1 762<br>1 780<br>1 795<br>1 810 | 1 472<br>1 488<br>1 499<br>1 511<br>1 527<br>1 539<br>1 552<br>1 565<br>1 578<br>1 504<br>1 604<br>1 618<br>1 630<br>1 641<br>1 655<br>1 667 |

(Calculated by Gerlach, Z anal 8 279, after Zimmermann, N J Pharm 18, 2 5, and Schiff, A 107 300)

Sp gr of KOH+Aq at 15°

| % КОН                      | Sp gr                                | % кон                | Sp gr                      |
|----------------------------|--------------------------------------|----------------------|----------------------------|
| 4 2<br>8 4<br>12 6<br>16 8 | 1 0382<br>1 0776<br>1 1177<br>1 1588 | 21 0<br>25 2<br>29 4 | 1 2008<br>1 2439<br>1 2880 |

(Kohlrausch, W Ann 1879 1)

Sp gr of KOH+Ag at 15°

| % кон                | Sp gr                            | % KOH          | Sp gr                   |
|----------------------|----------------------------------|----------------|-------------------------|
| 10<br>20<br>30<br>40 | 1 077<br>1 175<br>1 288<br>1 411 | 50<br>60<br>70 | 1 539<br>1 667<br>1 790 |

(Gerlach, Z anal 27 275, calculated from Schiff, A 107 300)

Sp gr of K<sub>2</sub>O+Aq at 15°

| % K <sub>2</sub> O        | Sp gr                                     | % K <sub>2</sub> O   | Sp gr                            |
|---------------------------|-------------------------------------------|----------------------|----------------------------------|
| 5<br>10<br>15<br>20<br>25 | 1 054<br>1 111<br>1 171<br>1 231<br>1 294 | 30<br>35<br>40<br>45 | 1 358<br>1 428<br>1 500<br>1 576 |

(Hager, Adjumenta varia, Leipsic, 1876)

gr of KOH+Aq at 20° containing 2 KOH to 100 mols  $H_2O = 1 05325$ (Nicol, Phil Mag (5) 16 122)

Sn gr of KOH+Aq at 15°

| 22 8- 22 1 4 mg 12                                                                           |                                                                                                                                                        |                                                                                        |                                                                                                                                                                              |                                                                                     |                                                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| кон                                                                                          | Sp gr                                                                                                                                                  | кон                                                                                    | Sp gr                                                                                                                                                                        | ко́н                                                                                | Sp gr                                                                                                                                                                        |  |
| 52<br>51<br>50<br>49<br>48<br>47<br>46<br>45<br>44<br>43<br>42<br>41<br>40<br>39<br>38<br>37 | 1 53822<br>1 52622<br>1 51430<br>1 50245<br>1 49067<br>1 47896<br>1 46733<br>1 45577<br>1 44429<br>1 43289<br>1 42150<br>1 41025<br>1 39906<br>1 37086 | 34<br>33<br>32<br>31<br>30<br>29<br>28<br>27<br>26<br>25<br>24<br>23<br>22<br>21<br>20 | 1 33313<br>1 32236<br>1 31166<br>1 30102<br>1 29046<br>1 27997<br>1 26954<br>1 25918<br>1 24888<br>1 23866<br>1 22849<br>1 21838<br>1 20834<br>1 19837<br>1 18839<br>1 17855 | 16<br>15<br>14<br>13<br>12<br>11<br>10<br>9<br>8<br>7<br>6<br>5<br>4<br>3<br>2<br>1 | 1 14925<br>1 13955<br>1 12991<br>1 12031<br>1 11076<br>1 10127<br>1 09183<br>1 08240<br>1 07302<br>1 06371<br>1 05443<br>1 04517<br>1 03593<br>1 02671<br>1 01752<br>1 00834 |  |
| პ6<br>პ5                                                                                     | 1 35485<br>1 34396                                                                                                                                     | 18<br>17                                                                               | 1 16875<br>1 15898                                                                                                                                                           | 0                                                                                   | 0 99918                                                                                                                                                                      |  |

(Pickering, Phil Mag 1894, (5) 37 375)

Sp gr of N solution at  $18^{\circ}/4^{\circ} = 1.0481$ (Loomis, W Ann 1896, 60 55()

Sp gr of KOH+Aq % KOH 6 87 12 10 Sp gr 20°/20° 1 0601 1 1025 (Le Blanc and Rohland, Z phys Ch 1896, **19** 272 )

 ${
m KOH+Ac}$  containing equal pts of KOH and  ${
m H_2O}$  freezes at  $-54^\circ$  (Guyton-Morveau, Gm-K 2, 1 18)

KOH is completely miscible with NaOH and with RbOH in both the liquid and the solid states (Hevesy, Z phys Ch 1910, 73 667)

Insol in liquid NH<sub>8</sub> (Franklin, Am Ch J 1898, **20** 828)

Abundantly sol in strong alcohol or woodspirit

See below under  $KOH + 2H_2O$ 

Readily sol in glycerine

Sol in not less than 25 pts of ether (Boullay) Sol in much more than 25 pts of ether

her (Ćonnell) Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1904, **37** 3601)

Insol in acetone Readily sol in fusel

Insol in acetone and in methylal (Eidmann, C C 1899, II 1014)

Sol in aqueous solution of mannite (Favre, A ch (3) 11 76)

The composition of the hydrates formed by KOH at different dilutions is calculated from determinations of the lowering of the fr-pt produced by KOH and of the conductivity and sp gi of KOH+Aq (Jones, Am Ch J 1905, **34** 337) +H<sub>2</sub>O

Very deliquescent, and sol in  $+2\mathrm{H}_2\mathrm{O}$ H<sub>2</sub>O with absorption of much heat

100 g sat solution in H<sub>2</sub>O at 30° contain 55 75 g anhyd KOH (de Waal, Dissert 1910)

Solubility of KOH+2H<sub>2</sub>O in alcohol+Ag at

| % KOH                                    | % alcohol                                 | % H <sub>2</sub> O                |
|------------------------------------------|-------------------------------------------|-----------------------------------|
| 55 75<br>54 81                           | 0 0 43                                    | 44 25<br>44 76<br>*               |
| 31 0<br>25 99<br>27 67<br>27 20<br>26 25 | 57 50<br>65 07<br>69 92<br>73 01<br>81 98 | 11 50<br>5 94<br>2 41<br>negative |

\*Sep trates into two layers

(de Waal, Dissert, 1910)

 $+4H_2O$ 

#### Potassium hydrogen titanium dumide, T<sub>1</sub>(NH)NK

Decomp by H<sub>2</sub>O and alcohol Insol in all ord indifferent organic solvents B 1912, 45 1371)

## Potassium iodide, KI

Deliquescent only in very moist air sol in H2O with absorption of heat

The temp of H<sub>2</sub>O can be lowered 24° by dissolving KI (Baup)

140 pts KI dissolved in 100 pts H<sub>2</sub>O at 108° lower the temp 225° (Rudorff, Pogg **136** 276)

100 pts H<sub>2</sub>O dissolve 1266 pts KI at 0° (Kremers), 1278 pts KI at 0° (Mulder), 1279 pts KI at 0° (Gerardin)

By bolling, 100 pts H<sub>2</sub>O dissolve 221 pts KI at 120° (Baup), 222 2 pts KI at 120° (Gay-Lussac), 222 6 pts KI at 118 4° (Mulder), 223 58 pts KI at 117° (Legrand), 223 6 pts KI at 117° (Gerardin)

Between these temps the solubility in-

creases proportional to temp

Sol in 0.735 pt H<sub>2</sub>O at 12.5° in 0.709 pt H<sub>2</sub>O at 16° in 0.7 pt H<sub>2</sub>O at 18° in 0.45 pt H<sub>2</sub>O at 120° (Graham Otto)

100 pts KI+Aq sat at 15 16° contain 58 07 pts KI (v Hauer J pr 98, 137)
100 pts H<sub>2</sub>O at 12 5° dissolve 136 pts at 16° 141 pts KI (Baup)
100 pts H<sub>2</sub>O at 18° dissolve 143 pts KI at 120° 271 pts (Gay Lussac)
Sol in 0 79 pt H<sub>2</sub>O at 0° in 0 70 pt H<sub>2</sub>O at 20° in 0 63 pt H<sub>2</sub>O at 48° in 0 57 pt H<sub>2</sub>O at 60° in 0 58 pt H<sub>2</sub>O at 80° in 0 51 pt H<sub>2</sub>O at 100° (Kremers Pogg 97 15)

Sol in 071 pt H<sub>2</sub>O at 15° (Eder, Dingl **221** 89)

## Solubility of KI in 100 pts H<sub>2</sub>O at t°

Solubility of KI in 100 pts etc -Continued

| Solubility of K1 in 100 pts, etc —Continued                                                                          |                                                                                                                            |                                                                                                                            |                                                                                                                                                 |                                                                                                             |                                                                                                                              |  |  |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| t°                                                                                                                   | Pts KI                                                                                                                     | t°                                                                                                                         | Pts KI                                                                                                                                          | t°                                                                                                          | Pts KI                                                                                                                       |  |  |
| 57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>68<br>69<br>70<br>71<br>72<br>73<br>74<br>75<br>76 | 174<br>175<br>176<br>177<br>178<br>179<br>180<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>188<br>188<br>188 | 78<br>79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98 | 191<br>192<br>192<br>193<br>194<br>195<br>196<br>197<br>197<br>198<br>199<br>200<br>201<br>202<br>202<br>203<br>204<br>205<br>206<br>207<br>208 | 99<br>100<br>101<br>102<br>103<br>104<br>105<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116 | 208<br>209<br>210<br>211<br>212<br>213<br>213<br>214<br>215<br>216<br>217<br>218<br>220<br>220<br>221<br>222<br>223<br>223 6 |  |  |

(Mulder, calculated from his own and other observations, Scheik Verhandel 1864 63)

## Solubility of KI in 100 pts H<sub>2</sub>O at t°

|   | t°                                                                                                      |                    | Pts                                    | ΚI                    | t                                      |                                    | Pts        | KI                    | t   | •                                      | Pts :                                                | KI                         |
|---|---------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------|-----------------------|----------------------------------------|------------------------------------|------------|-----------------------|-----|----------------------------------------|------------------------------------------------------|----------------------------|
| - | $   \begin{array}{r}     -16 \\     -11 \\     -5 \\     0 \\     +3 \\     9 \\     12   \end{array} $ | 35<br>8<br>35<br>9 | 111<br>116<br>120<br>126<br>130<br>134 | 6<br>1<br>3<br>4<br>1 | 25<br>29<br>37<br>42<br>45<br>51<br>55 | 6<br>1<br>3<br>75<br>8<br>05<br>55 | 167<br>169 | 6<br>7<br>3<br>6<br>6 | 100 | 1<br>75<br>6<br>35<br>5<br>7<br>2<br>7 | 183<br>185<br>192<br>194<br>200<br>205<br>216<br>218 | 6<br>0<br>6<br>3<br>6<br>1 |

(Coppet, A ch (5) 30 417)

Solubility is represented by a straight line of the formula 126 23+0 8088t (Coppet)

Solubility of KI in 100 pts H<sub>2</sub>O at high temp

| t°  | Pts KI | t   | Its KI |
|-----|--------|-----|--------|
| 124 | 233 9  | 144 | 264 6  |
| 133 | 249 3  | 175 | 310 4  |

(Tilden and Shenstone, Phil Trans 1884 23)

If solubility S = pts KI in 100 pts solution, S = 55.8 + 0.122t from 0° to 165° (Étard, C R 98 1432)

| Sat | KI+Aq     | contains   | 0% | ΚŢ  | at to |  |
|-----|-----------|------------|----|-----|-------|--|
| Dai | 171 1 124 | COLLOGILLS | 70 | TZT | au    |  |

| t°                                                            | % KI                                                                         | t°                                                        | % KI                                                                 |
|---------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|
| -21<br>-21<br>-21<br>-19<br>-15<br>-9<br>0<br>+21<br>44<br>72 | 50 7<br>51 0<br>51 2<br>52 2<br>53 2<br>54 5<br>56 9<br>59 3<br>60 8<br>64 3 | 78<br>96<br>150<br>151<br>175<br>176<br>190<br>193<br>213 | 64 8<br>66 9<br>70 6<br>70 9<br>71 6<br>72 7<br>73 8<br>74 5<br>75 7 |
| 72                                                            | 04 3                                                                         |                                                           |                                                                      |

(Étard, A ch 1894, (7) 2, 542)

Solubility of KI in 100 g H<sub>2</sub>O at t°

| t°  | g KI  | t     | g KI |
|-----|-------|-------|------|
| -1  | 122 2 | -11 5 | 64 7 |
| -5  | 119 8 | -9 5  | 51 5 |
| -4  | 117 4 | -7    | 42 6 |
| -10 | 115 1 | -6    | 34 4 |
| -14 | 75 8  | -5    | 25 7 |

(Meusser, Z anorg 1905, 44 80)

102 70 pts by weight are contained in 100 cc KI+Aq sat at 25°, or 59 54 pts in 100 g of solution, sp gr = 1 7254

94 05 pts by weight are contained in 160 cc KI+Aq sat at 0°, or 56 34 pts in 100 g of solution, sp gr = 1 6699 (Walden, Z phys Ch 1906, 55 715)

## Solubility of KI in H<sub>2</sub>O at low temperatures

| t    | / <sub>e</sub> KI          | Solid phase | t | % KI                                         | Solid phase  |
|------|----------------------------|-------------|---|----------------------------------------------|--------------|
| -175 | 41 2<br>44 6<br>48<br>51 2 | (           |   | 52 1<br>52 6<br>53 5<br>54 5<br>55 4<br>56 4 | KI<br>"<br>" |

(Kremann and Kershbaum, Z anorg 1907, 56 218)

149 26 g KI dissolve in 100 g H O at 25° (Amadori and Pampanini, Rend Acc I inc 1911, V, 20 473)

60 39 g in 100 g KI+Aq sit at 25° (Paisons and Whittemore, J Am Chem Soc 1911, **33** 1934)

56 1 g in 100 g KI+Aq set at 0°, 60 35 g in 100 g KI+Aq set at 30° (Van Dam and Donk, Chem Weekbl 1911, 8 848)

| Sp | gr | of | KI- | ⊢Aa | at | 21° |
|----|----|----|-----|-----|----|-----|
|----|----|----|-----|-----|----|-----|

| %ı                                                                                                                | Sp gr                                                                                                                                                                                                | %<br>Ki                                                                                                              | Sp gr                                                                                                                                                                                                | %<br>Ki                                                                                                        | Sp gr                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | 1 0075<br>1 0151<br>1 0227<br>1 0305<br>1 0384<br>1 0464<br>1 0545<br>1 0627<br>1 0710<br>1 0793<br>1 0877<br>1 0962<br>1 1048<br>1 1136<br>1 1226<br>1 1318<br>1 1412<br>1 1508<br>1 1605<br>1 1705 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 1 1807<br>1 1911<br>1 2016<br>1 2122<br>1 2229<br>1 2336<br>1 2445<br>1 2556<br>1 2699<br>1 2784<br>1 2899<br>1 3017<br>1 3138<br>1 3262<br>1 3389<br>1 3519<br>1 3653<br>1 3791<br>1 3933<br>1 4079 | 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>60 | 1 4224<br>1 4371<br>1 4520<br>1 4671<br>1 4825<br>1 4982<br>1 5142<br>1 5305<br>1 5471<br>1 5810<br>1 5810<br>1 5984<br>1 6162<br>1 6528<br>1 6717<br>1 6911<br>1 7109<br>1 7311<br>1 7517 |

(Schiff, A 110 75)

Sp gr cf KI+Aq S=according to Schiff (A 108 340) at 21°, K=according to Kremers (Pogg 96 62), interpolated by Gerlach (Z anal 8 285)

5 10 15 20 25 30% KI, S 1038 1079 1123 1171 1 279 K 1038 1078 1120 1166 1218 1271 35 40 45 50 55 60% KI S 1483 K 1331 1396 1469 1546 1636 1734

Sp gr of KI+Aq at 18°

| %<br>Ki       | Sp gr                      | %<br>Ki        | Sp gr                    | %<br>KI | Sp gr |
|---------------|----------------------------|----------------|--------------------------|---------|-------|
| 5<br>10<br>20 | 1 0363<br>1 0762<br>1 1679 | 30<br>40<br>50 | 1 273<br>1 3966<br>1 545 | 55      | 1 630 |

(Kohlrausch, W Ann 1879 1)

Sp gr of KI+Aq at 18°

| ∘% KI              | Sp gr  |
|--------------------|--------|
| 1 0 <del>1</del> 4 | 1 0062 |
| 5 0                | 1 0363 |

(Giotrian, W. Ann. 1883, 18, 191.)

Sp gr at  $16^{\circ}/4^{\circ}$  of KI+Aq containing  $32\,4875\%$  KI= $1\,30238$  (Schonrock, Z phys Ch 1893, 11 781)

KI+Aq containing 9 35% KI has sp. gr  $20^{\circ}/20^{\circ}=1$  0726

KI+Aq containing 11 35% KI has sp gr 20°/20° = 1 0892 (Le Blanc and Rohland, Z phys Ch 1896, **19** 278)

B-pt of KI+Ag containing pts KI to 100 pts H<sub>2</sub>O

| B pt                                           | Pts KI                                   | B pt                                           | Pts KI                                          | B pt                              | Pts KI                           |
|------------------------------------------------|------------------------------------------|------------------------------------------------|-------------------------------------------------|-----------------------------------|----------------------------------|
| 101°<br>102<br>103<br>104<br>105<br>106<br>107 | 15<br>30<br>45<br>60<br>74<br>87<br>99 5 | 108°<br>109<br>110<br>111<br>112<br>113<br>114 | 111 5<br>123<br>134<br>145<br>155<br>165<br>175 | 115<br>116<br>117<br>118<br>118 5 | 185°<br>195<br>205<br>215<br>220 |

(Gerlach, Z anal 26 439)

Sat KI+Aq boils at 119° (Kremers) Sat KI+Aq forms a crust at 1175°, and contains 210 pts KI to 100 pts H2O, highest temp observed, 1185° (Gerlach, Z anal **26** 426)

# Solubility of KI in I2+Aq at 25°

| KI mol /l                                    | Ig atoms/l                                      |
|----------------------------------------------|-------------------------------------------------|
| 6 15<br>6 23<br>6 40<br>6 36<br>6 33<br>6 24 | 0 00<br>3 64<br>11 11<br>13 16<br>13 2<br>17 03 |

(Abegg, Z anorg 1906, **50** 428)

# Solubility of KI+I2 in H2O at 25°

| %<br>Ki                 | % I   | Solid<br>phase                   | %<br>KI        | % I                              | Solid<br>phase                                                    |
|-------------------------|-------|----------------------------------|----------------|----------------------------------|-------------------------------------------------------------------|
| 28 91<br>26 84<br>27 18 | 63 88 | KI <sub>8</sub> +KI <sub>7</sub> | 25 57<br>27 86 | 69 01<br>66 56<br>66 91<br>67 17 | KI <sub>7</sub> +I <sub>2</sub> KI <sub>8</sub> " KI <sub>7</sub> |

(Foote and Chalker, Am Ch J 1908, 39

See also under Iodine

KI+Aq sat at 145° containing 139 9 pts KI to 100 pts H<sub>2</sub>O dissolves 1 0 pt K<sub>2</sub>SO<sub>4</sub> with separation of 2 2 pts KI, so that solution contains 137 6 pts KI and 10 pt K<sub>2</sub>SO<sub>4</sub> to 100 pts H<sub>2</sub>O (Mulder, Rotterdam, 1864)

100 pts H<sub>2</sub>O dissolve 86 3 pts KI and 2 1 pts Na<sub>2</sub>SO<sub>4</sub> at 14 5° (Mulder, J B 1866 67)

Sol in AsCl<sub>3</sub>, SnCl<sub>4</sub> and POCl<sub>3</sub> (Walden, Z anorg 1960, 25 214)

Attacked by dry liquid NO<sub>2</sub> with liberation of I<sub>2</sub> (Frankland, Chem Soc 1901, 79 1361 (Herz and Anders, Z anorg 1907, 55 274)

Sol in liquid SO<sub>2</sub> (Walden, B 1899, 32

Solubility in SO<sub>2</sub> decreases with rise of mp (Walden, Z phys Ch 1903, **42** 456) Insol in liquid CO<sub>2</sub> (Buchner, Z phys temp Ch 1906, **54** 674)

Very easily sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 829)

Hydrazine dissolves 135 7 pts KI at 125-(de Bruyn, R t c 1899, **18** 297)

 $100~\rm pts$  alcohol of 0.85 sp gr dissolve 18 pts KI at 12.5°  $\,$  100 pts absolute alcohol dissolve 2.5 pts KI at 13.5° Much more sol in hot alcohol (Baup)

100 pts alcohol of D sp gr at 0° dissolve at 18°-

D 0 9904 0 9851 0 9726 0 9665 0 9528 769 pts KI, 130 5 119 4 100 1 89 9

D 0 9390 0 9088 0 8464 0 8322 66 4 482 11 4 62 pts KI

That is, aqueous alcohol dissolves approximately the same amount of KI that the water present in the alcohol would dissolve, and it is therefore probable that KI is insol in strictly absolute alcohol (Gerardin)

Solubility in 100 pts alcohol of 0 9496 sp gr at

13°  $25^{\circ}$ 67 4 69 2 75 1 902 pts KI 847 87 5 (Gerardin, A ch (4) 5 155)

Sol in 683 pts absolute alcohol (Eder. Dingl 221 89), in 370 pts ether (sp gr 0.729), (Eder, l.c.), in 120 pts alcohol-ether (1 1), (Eder, lc)

Sol in 10-12 pts 90% alcohol, and 40 pts absolute alcohol (Hager, Comm 1883)

100 pts absolute methyl alcohol dissolve 165 pts at 205°, 100 pts absolute ethyl alcohol dissolve 175 pts at 205° (de Bruyn, Z phys Ch **10** 783)

Solubility of KI in methyl alcohol +Aq at 25°

P = % by wt of alcohol in alcohol + Aq S = Sp gr of alcohol + Aq sat with KI L = millimols KI in 100 ccm of the solu-

| P                                                        | S 25°/4°                                                                | 1,                                                  |
|----------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|
| 0<br>10 6<br>30 8<br>47 1<br>64 0<br>78 1<br>98 9<br>100 | 1 7213<br>1 634<br>1 460<br>1 325<br>1 185<br>1 066<br>0 9700<br>0 9018 | 620<br>555<br>431<br>335<br>243<br>169<br>113<br>80 |

# Solubility of KI in CH<sub>3</sub>OH

G = g KI in 100 g of the solution  $t_1 = temp$  of complete solution

t2 = temp at which salt begins to separate out

| G                                      | t <sub>1</sub>          | t <sub>2</sub>           |
|----------------------------------------|-------------------------|--------------------------|
| 8 64<br>12 95<br>14 2<br>14 6<br>14 97 | 0°<br>20<br>25          | 266°<br>262              |
| 19 2<br>26 8<br>28 9<br>29 6<br>33 0   | 85<br>115<br>144<br>188 | 256<br>242<br>229<br>196 |

(Centnerszwer, Z phys Ch 1910, 72 432)

Solubility of KI in methyl alcohol at to

| t°  | g KI in 100<br>g alcohol | t°     | g KI m 100<br>g alcohol |
|-----|--------------------------|--------|-------------------------|
| 15  | 14 50                    | 180    | 30 7                    |
| 30  | 16 20                    | 200    | 29 1                    |
| 50  | 18 9                     | 220    | 27 5                    |
| 80  | 22 5                     | 240    | 24 8                    |
| 100 | 25 0                     | 245    | 22 6                    |
| 120 | 27 2                     | 247    | 21 0                    |
| 140 | 29 2                     | 250    | 13 8                    |
| 160 | 30 6                     | 252 5* | 7 6                     |

\*Critical temp of solution

(Tyrer, Chem Soc 1910, **97** 626)

At room temp 1 pt KI by weight is sol in 6 pts methyl alcohol D15 0 7990 16 " (thyl D15 0 8322 " 219 " propyl " D15 0 8160 (Rohland, Z. anorg. 1898, 18, 325.)

Solubility in mixtures of methyl and ethyl ilcohol at 25°

 $P = \frac{1}{6}$  methyl alcohol in the solvent G = g KI in 10 ccm of the solution S = Sp gr of the sat solution at 25

| I      | (     | 5 2 , /4 |
|--------|-------|----------|
| 0 00   | 0 155 | 0 8015   |
| 4 37   | 0 191 | 0 8041   |
| 10 40  | 0 225 | 0 8071   |
| 41 02  | 0 494 | 0 8295   |
| 80 69  | 1 013 | 0 8794   |
| 84 77  | 1 072 | 0 8795   |
| 91 25  | 1 184 | 0 8908   |
| 100 00 | 1 316 | 0 9018   |

(Herz and Kuhn, Z anorg 1908, 60 155)

Solubility in mixtures of methyl and propyl alcohol at 25°

P = % propyl alcohol in the solvent G = g KI in 10 ccm of the solution S = Sp gr of the sat solution

| P                                                  | G                                                           | S 25°/4°                                                 |
|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|
| 0<br>11 11<br>23 8<br>65 2<br>91 8<br>93 75<br>100 | 1 316<br>1 096<br>0 854<br>0 262<br>0 060<br>0 058<br>0 043 | 0 9018<br>0 8823<br>0 8629<br>0 8187<br>0 8045<br>0 8041 |
|                                                    |                                                             |                                                          |

(Herz and Kuhn)

Solubility in mixtures of propyl and ethyl alcohol at 25°

P = % propyl alcohol in the solvent G = g KI in 10 ccm of the solution S = Sp gr of the sat solution

| P                                                        | G                                                                    | S 25°/4°                                                                     |
|----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0<br>8 1<br>17 85<br>56 6<br>88 6<br>91 2<br>95 2<br>100 | 0 155<br>0 146<br>0 137<br>0 075<br>0 052<br>0 049<br>0 044<br>0 043 | 0 8015<br>0 7983<br>0 7991<br>0 7988<br>0 8022<br>0 8027<br>0 8029<br>0 8041 |

(Herz and Kuhn)

100 g methyl alcohol dissolve 18 04 g KI at 25° 100 g ethyl alcohol dissolve 2 16 g KI at

 $25^{\circ}$ 100 g propyl alcohol dissolve 043 g KI

at 25° 100 g iso imyl ilcohol dissolve 0 09 g KI

(Turner and Bissett, Chem Soc 1913, 103 1909)

ıt 25°

0 45° g 15 sol in 100 g propyl alcohol (Schlump, 7 phys Ch 1894, **14** 276) Alcoholic solution can be mixed with 1/2 vol

other without pptn

100 g 95% formic acid dissolve 382 g KI at 185° (Aschan, Chem Ztg 1913, 37 1113)

Solubility in organic solvents at to

C=pts by wt of KI in 100 ccm of the sat solution

L=no of litres which at the saturation temp hold in solution 1 mol KI

S = sp gr of the solution at t°, referred to  $H_2O$  at t°

p = pts by wt of KI in 100 g of the solution

| UIOII                          |            |          |             |           |                   | _  |              |     |                 | l |
|--------------------------------|------------|----------|-------------|-----------|-------------------|----|--------------|-----|-----------------|---|
| Solvent                        | t°         |          | С           |           | L                 |    | S            |     | р               |   |
| Water                          | 25°        | 102      | 70          | 0         | 162               | 1  | 7254         |     | 54              | l |
| Mr. thul alaahal               | 00         | 94<br>13 | 05          | 0         | $\frac{177}{231}$ | 1  | 6699         |     | $\frac{32}{97}$ | ١ |
| Methyl alcohol                 | 25°        | 14       | 26          | 1         | 231               | U  | 9003         | 14  | 91              |   |
|                                | 0°         | 11       | 61          | 1         | 430               | lŋ | <b>ROF4</b>  | 112 | Q۶              | ١ |
| Ethyl alcohol                  | 25°        | 1        | 520         | 10        | 92                | )  | -,           |     |                 | l |
| Glycol                         | 0°<br>25°  | 1<br>45  | 197<br>85   | 13        | 87<br>362 ≀       | ١  | ; `          | ,   |                 | ١ |
| Glycol                         | 25°        |          | 23          | lő        | 351               | ١  | •            | , ' |                 | ı |
|                                | 0°         | 43       | 28          | ŏ         | 383               | 1  | 3954         | 31  | 03              | ı |
| Acetonitrile                   | 25°        |          | 551         | 10        | 70                |    |              |     |                 | l |
|                                | 25<br>0°   | 1        | 590         | 10        | 44<br>00          | ŏ  | 7936         |     | 003<br>259      | ļ |
| Propionitrile                  | 25°        |          | 852<br>316  | 52        | 53 )              | 0  | 8198<br>7821 |     | 404             | ١ |
| 1 10pionium                    | 25         | 10       | 355         | 46        | 76 6 )            | ١  | 1021         | ľ   | 101             | l |
|                                | 0°         |          | 344         | 48        | 26) }             | 0  | 8005         | 0   | 429             | l |
| D1-                            | 0          | 0        | 412         | 40        | 29)               | L  |              | ٦   | 0 = 0           | l |
| Benzonitrile<br>Nitromethane   | 25°<br>25  | 0        | 051<br>349  | 325<br>47 | 5<br>56           | 1  | 0076<br>1367 |     | 050<br>307      | ١ |
| TATOTOMEONEME                  | 25°        | Ιò       | 289         | 57        | 44                | 1  | 1007         | ١   | 301             | ١ |
|                                | 00         | Ιo       | 366         | 45        | 36                | 1  | 1627         | 0   | 315             | l |
| NT 1 1                         | 00         |          | 314         | 52        | 87                |    |              |     |                 | ı |
| Nitrobenzene<br>Acetone        | 25°<br>25° |          | 0019<br>038 | 87<br>16  | 40<br>0           | b  | 7968         | 1   | 302             | l |
| Account                        | 00         | Ιi       | 732         | 19        | 58                | 16 | 8227         |     | 105             | ۱ |
| Furfurol                       | 25°        | 5        | 93          | 2         | 80                | Ĭĭ | 2014         |     | 94              | ١ |
|                                | 0°         | 15       |             | 1         | 10                | ١. |              | ١.  |                 | l |
| Benzaldehyde<br>Sahcylaldehyde | 25°        |          |             | 48<br>30  | 4                 | 1  | 0446         |     | 328             | ١ |
| Sancylaidenyde                 | 00         | 0        | 549<br>257  | 130       | $\frac{24}{21}$   | li | 1373<br>1501 |     | 483<br>093      | Ì |
| Anısaldehyde                   | 250        | Ιô       | 720         | 23        | 06                | li | 1180         |     | 644             | ı |
| =                              | 00         | ١i       | 520         | 10        | 92                | Ī  | 1223         |     | 355             | Į |
| Ethyl acetate                  | 25°        | 0        | 0013        | 12        | 80                |    |              |     |                 | ı |
| Methyl cyan<br>acetate         | 25         | 2        | 459         | 6         | 75                | lı | 1358         | 2   | 165             | ١ |
| accoace                        | 0          | 3        | 256         | 5         | 10                | li | 1521         |     | 827             | 1 |
| Ethyl cyan                     |            | "        | -           | -         |                   | ľ  |              | 1   |                 | ١ |
| acetate                        | 25°        |          |             | 18        | 7                 | 1  | 0579         |     | 839             | ۱ |
|                                | 259        | 1        | 090         | 15        | 23                | 1  | 0678         | 1   | 021             | 1 |
| /YYY 1 1                       |            |          |             |           |                   | _  |              |     | _               | 1 |

(Walden, Z phys Ch 1906, 55 715)

Insol in CS<sub>2</sub> (Arctowski, Z anorg 1894, 6 257) Sol in benzonitrile (Naumann, B 1914,

**47** 1369) Difficultly sol in methyl acetate (Nau-

mann, B 1909, 42 3789

Sol in ethyl acetate (Casaseca, C R 30

Insol in ethyl acetate (Naumann, B 1910, 43 314)

Insol in ethylamine (Shinn, J phys

Chem 1907, 11 538)

100 pts acetone dissolve 2 930 pts KI at 25° (Krug and M'Elroy, J Anal Ch 6 184) Sol in acetone, insol in methylal mann, C C 1899 II 1014)

3 08 pts sol in 100 pts acetone at  $-2.5^{\circ}$  2 38 " " " 100 " " +22° ""100 " " " 56° 1 21

""100 " pyridine 10° 0 26 " " 100 0 11 119° (Laszczynski, B 1894, **27** 2287)

Freely sol in glycerine Insol in acetic (Berthemot) acıd

Sol in 3 pts glycerine, insol in olive oil (Cap and Garot)

100 g glycerol dissolve 40 g KI at 155° (Ossendowski, Pharm J 1907, 79 575)

#### Potassium truodide, KI<sub>3</sub>

Very deliquescent, very sol in H<sub>2</sub>O and (Johnson, Chem Soc 1877, 1 alcohol 249)

Solution of I in KI contains this salt (see Decomp by heat or shaking with CS<sub>2</sub>. ether, chloroform Sol in alcohol, from which CS<sub>2</sub> does not remove I (Jorgensen, J pr (2) 2 247)

## Potassium periodide

Solubility determinations show that the compds KI<sub>3</sub> and KI<sub>7</sub> are the only periodides of potassium which form solids at 25° See under KI+I (Foote and Chalker, Am Ch J 1908, 39 566) KI<sub>7</sub> See above

#### Potassium mercuric iodide ammonia, K<sub>2</sub>HgI<sub>4</sub>, 2NH<sub>3</sub>

(Peters, Z anorg 1912, 77 188)

Potassium silver iodide, KI, AgI

Sol in KI+Aq Sol in hot alcohol (Boullay, A ch 34 377 Sol m KÍ+Aq 2KI, AgI Decomp by

H<sub>2</sub>O (Boullay) Hygroscopic (Hellwig, Z anorg 1900, 25

180` 3KI, AgI Decomp by H<sub>2</sub>O (Ditte, C R **93,** 415)

KI, 2AgI Sol in methylethylketone (Marsh, Chem Soc 1913, 103 783)

Potassium silver polyiodide, AgK<sub>3</sub>I<sub>12</sub>, 3KI+ 5H<sub>2</sub>O

Very deliquescent (Johnson, Chem Soc **33** 183)

# Potassium tellurium iodide

See Iodotellurate, potassium

Potassium thellic iodide, KI, TlI3

Decomp by H<sub>2</sub>O Can be crystallized from alcohol (Willm)

3KI,  $2TII_3 + 3H_2O$ Partially decomp by  $_{\mathrm{H_2O}}$ (Rammelsberg)

Potassium (iin) stannous) iodide, KI, SnI<sub>2</sub>+ 1½H<sub>2</sub>O

When treated with a small quantity of  $H_2O$ . KI dissolves out, but when more H<sub>2</sub>O is added, the substance is completely dissolved More sol in warm than cold alcohol (Boullay)

otassium zinc iodide, KI, ZnI2

Very deliquescent (Rammelsberg, Pogg **3** 665) Hydroscopic  $K_2ZnI_4+2H_2O$ (Fphraim,

anorg 1910, 67 382)

Potassium iodide sulphur dioxide, KI, SO2 (Péchard, C R 1900, 130 1188)

KI. 4SO<sub>2</sub> (Walden, Z phys Ch 1903, 2 439) KI, 14SO<sub>2</sub> (Walden)

otassium nitride, K<sub>2</sub>N

Decomp violently by H<sub>2</sub>O (H Davy)

otassium ruthenium dihydronitrosobromide, Ru<sub>2</sub>H<sub>2</sub> NOBr<sub>3</sub>, 2HBr, 3KBr Ppt (Brizard, A ch 1900, (7) 21 362)

otassium ruthenium nitrosochloride, Ru<sub>2</sub>H<sub>2</sub>NOCl<sub>3</sub>, 3KCl, 2HCl

Sl sol in H<sub>2</sub>O (Brizard, C R 1899, 129 16)

otassium suboxide

Decomposes H<sub>2</sub>O

Does not exist (Lupton, Chem Soc 1876, 565)

otassium oxide, K<sub>2</sub>O

Very sol in H2O with much heat See Potassium hydroxide

otassium dioxide, K<sub>2</sub>O<sub>2</sub>

Deliquescent Sol in H<sub>2</sub>O Forms compound KO<sub>2</sub>, 2H<sub>2</sub>O<sub>2</sub> (Schone, **193** 241)

otassium peroxide, K<sub>2</sub>O<sub>4</sub>

Deliquescent Very sol with decomp in

otassium silicon oxyfluoride, SiF<sub>2</sub>(OK)<sub>2</sub> and SiO(F)OK

(Schiff and Bechi, A Suppl 4 33)

otassium tantalum oxyfluoride, K<sub>4</sub>Ta<sub>4</sub>O<sub>5</sub>F<sub>14</sub> Insol in boiling water I asily sol in HF+ (Marign ic, A ch (4) 9 268)

otassium phosphide, KP<sub>8</sub>

Decomp by H<sub>2</sub>() (Joannis, C C 1894, [834)

Fasily decomp by H<sub>2</sub>O (Hugot,  $\mathrm{KP}_{\mathfrak{b}}$ ' R 1895, **121** 208)

otassium hydrogen phosphide, PH<sub>2</sub>k

Decomp by H<sub>2</sub>() (Joannis, C R 1894, **19** 558 )

otassium phosphoselenide, KSeP = K<sub>2</sub>Se,

Sol in cold H<sub>2</sub>O with rapid decomp 1 alcohol with slight decomp (Hahn, J pr **3** 430)

Potassium phosphotriselenide, 2K<sub>2</sub>Se, P<sub>2</sub>Se<sub>2</sub>

Deliquescent Decomp violently with H<sub>2</sub>O Sol in alcohol or ether, or in a mixture of the two, with slight decomp, but decomp gradually on the air (Hahn, J pr 93 430)

Potassium phosphopentaselenide,  $K_4P_2Se_7 =$ 2K<sub>2</sub>Se, P<sub>2</sub>Se<sub>5</sub>

Deliquescent, immediately decomp by H<sub>2</sub>O, alcohol, or ether (Hahn)

Potassium phosphosulphide, 4K<sub>2</sub>S<sub>2</sub>, P<sub>2</sub>S<sub>3</sub> Deliquescent Sol in H2O with decomp

Potassium selenide, K<sub>2</sub>Se

Sol in H<sub>2</sub>O with subsequent decomp on the

Insol in liquid NH3, sol in air free H2O to a colorless liquid (Hugot, C R 1899, 129 299 T

+2H₂Ó Sol in H<sub>2</sub>O with decomp (Clever, Z anorg 1895, 10 143)

+9, 14, or 19H<sub>2</sub>O (Fabre, C R 102 613)

Potassium tetraselenide, K<sub>2</sub>Se<sub>4</sub>

Easily sol in H<sub>2</sub>O Decomp on standing Sol in liquid NH<sub>8</sub> (Hugot, C R 1899. **129** 299)

Potassium monosulphide, K2S

Sol in H<sub>2</sub>O and alcohol Deliquescent H<sub>2</sub>O solution decomp on air Sol in 10 pts glycerine (Cap and Garot, J Pharm (3) 26 81)

Moderately sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829)

Insol in acetone and in methylal mann, C C 1899, II 1014)

Insol in methyl acetate (Naumann, B 1909, **42** 3790)

+5H<sub>2</sub>O (Schone, Pogg 131 380)

All potassium sulphides are sol in glycerine. insol in ether and ethyl acetate

Potassium  $d_i$  sulphide,  $K_2S_2$ 

Sol in H<sub>2</sub>O and alcohol, with gradual decomp

Potassium trisulphide, K<sub>2</sub>S<sub>3</sub>

Sol in H<sub>2</sub>O and ilcohol, with gradual decomp on the an

Potassium tetrasulphide, K<sub>2</sub>S<sub>4</sub>

Sol in H2O and alcohol

 $+2H_2O$ Sol in H<sub>2</sub>O Sl sol in alcohol +8H<sub>2</sub>OSol in H<sub>2</sub>O Alcohol takes out water (Schone)

Potassium pentasulphide, K<sub>2</sub>S<sub>5</sub> Sol in H<sub>2</sub>O and alcohol

Potassium palladium sulphide See Sulphopalladate, potassium

Potassium platinum sulphide See Sulphoplatinate, potassium

Potassium silver sulphide, 4Ag<sub>2</sub>S, K<sub>2</sub>S+2H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Ditte, C R 1895, **120** 91)

Potassium rhodium sulphide, 3K<sub>2</sub>S, Rh<sub>2</sub>S<sub>3</sub> Decomp by H<sub>2</sub>O (Leidlé)

Potassium tellurium sulphide See Sulphotellurate, potassium

Potassium thallium sulphide, K2S, Tl2S3

Not decomposed by  $\rm H_2O$ , or hot NH<sub>4</sub>OH, or KOH+Aq Decomp by HCl or moderately cone  $\rm H_2SO_4+Aq$  Hot HNO<sub>5</sub>+Aq decomp with separation of S (Schneider, J pr 110 168)

Potassium tin (stannic) sulphide See Sulphostannate, potassium

Potassium zinc sulphide, K2S, 3ZnS

Not attacked by  $H_2O$ , but easily decomp by the most dil acids (Schneider, J pr (2) 8 29)

Potassium telluride,  $K_2T\varepsilon$ 

Sol in H<sub>2</sub>O (Demarçay, Bull Soc (2) **40** 99)

Sol in H<sub>2</sub>O and liquid NH<sub>3</sub> (Hugot, C R 1899, **129** 388)

Praseocobaltic chloride,

Co(NH<sub>3</sub>)<sub>4</sub>Cl<sub>3</sub>+H<sub>2</sub>O

Easily sol in H<sub>2</sub>O
Dil HCl+Aq dissolves traces, conc HCl+
Aq dissolves more Sol in NH<sub>4</sub>OH+Aq with
decomp Sol in conc H<sub>2</sub>SO<sub>4</sub> without decomp Sl sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq (Rose)

—— mercuric chloride, Co(NH<sub>3</sub>)<sub>4</sub>Cl<sub>3</sub>, HgCl<sub>2</sub> Sl sol in cold H<sub>2</sub>O, insol in HgCl<sub>2</sub>+Aq (Vortmann, B 15 1892)

----- chloride dichromate, [CoCl<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>]<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>+H<sub>2</sub>O

Scarcely sol in cold, easily sol in warm H<sub>2</sub>O (Vortmann, B **15** 1897)

Praseocobaltic chloride nitrate, CoCl<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>NO<sub>3</sub>+H<sub>2</sub>O

Much less sol in H<sub>2</sub>O than the chloride Precipitated from aqueous solution by dil HNO<sub>3</sub>+Aq (Vortmann, B 15 1896)

Praseodymicotungstic acid

Ammonium praseodymicotungstate, 2(NH<sub>4</sub>)<sub>2</sub>O, Pr<sub>2</sub>O<sub>3</sub>, 16WO<sub>3</sub>+16H<sub>2</sub>O

Very sl sol in H<sub>2</sub>O Decomp by acids and alkalies (E F Smith, J Am Chem Soc 1904, **26** 1478)

Barium praseodymicotungstate, 4BaO, Pr<sub>2</sub>O<sub>8</sub>, 16WO<sub>8</sub>+7H<sub>2</sub>O

Ppt Insol in H<sub>2</sub>O

6 $\acute{B}$ aO,  $Pr_2O_3$ ,  $16 \acute{W}O_3 + 9H_2O$  Ppt (E F Smith)

Silver praseodymicotungstate, 4Ag<sub>2</sub>O, Pr<sub>2</sub>O<sub>3</sub>, 16WO<sub>3</sub>+8H<sub>2</sub>O

Insol in H<sub>2</sub>O (E F Smith)

Praseodymium, Pr

Praseodymium bromide, PrBr<sub>8</sub>+6H<sub>2</sub>O

Very sol in  $H_2O$ , sol in HBr (von Schule Z anorg 1898, 18 353)

Praseodymium carbide, PrC<sub>2</sub>

Decomp by H<sub>2</sub>O, msol m conc HNO<sub>3</sub> decomp by dll HNO<sub>3</sub> (Moissan, C R 1900, **131** 597)

Praseodymium chloride, PrCl<sub>3</sub>

Very sol in H<sub>2</sub>O Insol in PCl<sub>3</sub> or SnCl<sub>4</sub> Sol in alcohol Insol in ether and most or ganic solvents (Matignon, C R 1902, **134** 427)

2 14 g PrCl<sub>3</sub> dissolve in 100 g pyridine a 15° (Matignon, Int Cong App Chem 1909 2 53)

 $+H_{2}O + 3H_{2}O$ 

 $+7H_2O$  100 g  $H_2O$  dissolve 334 2 g  $PrCl_3+7H_2O$  or 103 9 g of the anhydrous salt at 13° The aqueous solution sat at 14° has a sp gr  $16^\circ/16^\circ=1687$  At 100°, the solubility in  $H_2O$  is unlimited (Matignon A ch 1906, (8) 8 388)

Sol in conc HCl (von Schule, Z anorg

1898, 18 352)

100 pts of a solution of the salt in HCl+Ac contain at 13°, 41 05 pts of anhydrous sal and 7 25 pts HCl Sp gr of this solution a 16°=1574 (Matignon, A ch 1906, (8) 8 388)

Praseodymium hydride, PrH<sub>3</sub> (?) (Muthmann, A 1904, **331** 59)

Praseodymium hydroxide

Sol in citric acid (Baskerville, J Am Chem Soc 1904, **26** 49)

Praseodymium nitride, PrN

Decomp in moist air with evolution o NH<sub>3</sub> (Muthmann, A 1904, **331** 59)

Praseodymium oxide, Pr<sub>2</sub>O<sub>3</sub>

Easily sol in H<sub>2</sub>O (v Welsbach, M 6 477)

Decomp by heating in the air (Scheele, Z anorg 1898, 17 322)

Praseodymum monoperoxide, Pr(OH)<sub>2</sub> H<sub>2</sub>O (Melikoff, Chem Soc 1902, **82** (2) 140)

Praseodymium superoxide, Pr(OH) (OOH) Ppt (Melikoff, C C 1902, I 172)

Praseodymium trisuperoxide, Pr(OOH)<sub>3</sub> Ppt (Melikoff)

Praseodymium peroxide,  $Pr_4O_7$ Sol in acids with evolution of O (Welsbach)

Praseodymium oxysulphide, Pr<sub>2</sub>SO<sub>2</sub> (Biltz, Z anorg 1911, **71** 436)

Praseodymium disulphide, PrS<sub>2</sub>
Decomp by heat (Biltz, Z anorg 1911, 71 437)

# Purpureocobaltic salts

For other purpureocobaltic salts, see— Chloropurpureocobaltic salts Bromopurpureocobaltic salts Nitratopurpureocobaltic salts Sulphatopurpureocobaltic salts

Purpureocobaltic cobalticyanide,  $Co(NH_3)_6Co(CN)_6+1\frac{1}{2}H_2O$ Insol in  $H_2O$ 

—— ferricyanide, Co(NH<sub>3</sub>)<sub>δ</sub>Fe(CN)<sub>δ</sub>

Insol in cold H<sub>2</sub>O Probably belongs to roseo series

—— mercuric hydroxychloride, CoN<sub>5</sub>H<sub>11</sub>(HgCl)<sub>4</sub>(HgOH)Cl<sub>3</sub> Ppt (Vortmann and Morgulis, B **22** 

Ppt SI sol in acids Sol in KI+Aq (Vortmann and Borsbach, B 23 2804)

--- molybdate,  $Co_2O_3(NH_3)_{10}$ ,  $7MoO_3+3H_2O$  (?)

Insol in  $H_2O$  or dil  $HC_2H_3O_2+Aq$  (Calact, C R 109 109)

---- sulphate

See Sulphatopurpureocobaltic salts

---- tungstate,  $Co(NH_3)_5O(WO_4)$ Scarcely sol in cold or hot  $H_2O$  (Gibbs)  $Co_2O_3(NH_3)_{10}$ ,  $10WO_3+9H_2O$  (?) Insol

in  $H_2O$ , or dil  $HC_2H_3O_2+Aq$ , or  $NH_4OH+Aq$  (Carnot, C R 109 147)

Purpureocobaltic vanadate,  $Co_2O_3(NH_3)_{10}$ ,  $5V_2O_5+9H_2O$  (?)

Ppt Insol in H<sub>2</sub>O (Carnot, C R 109 147)

Purpureocobaltic octamine salts

See Octamine cobaltic purpureo salts Pyrosulphuric acid, H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>

See Disulphuric acid

#### Radium, Ra

#### Radium A

More sol than Radium B and C in all solvents, sol even in organic solvents especially CS<sub>2</sub> (Ramstedt, Le Radium, 1913, **10** 159)

#### Radium B

More quickly sol than Radium C in  $\rm H_2O$  and acids, less quickly sol in alkaline solutions, very sl sol in organic solvents (Ramstedt, Le Radium, 1913, 10 159)

#### Radium C

Sol in common acids, less so in alkaline solutions and in  $\rm H_2O$ , only very sl sol in organic solvents (Ramstedt, Le Radium, 1913, 10 159, Chem Soc 1913, 104 (2) 659)

#### Radium bromide

Less sol in H<sub>2</sub>O than corresponding Ba comp (Curie, Dissert 1903)

#### Radium chloride

Less sol in  $H_2O$  than corresponding Ba comp (Curie, Dissert 1903)

#### Radium emanation

Coefficient of absorption for  $H_2O=0$  245 at 3°, 0 23 at 20°, 0 17 at 40°, 0 135 at 60°, 0 12 at 70°, 0 12 at 80° (Hofmann, Phys Zeit 1905, 6 339)

Solubility in H<sub>2</sub>O at t°

Coefficient of solubility = conc of the emanation in the liquid conc of the emanation in the gas

| t°                                                              | Coefficient of solubility                                                     |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------|
| 0<br>4 3<br>5 7<br>10 0<br>14 0<br>17 6<br>20 0<br>26 8<br>31 6 | 0 506<br>0 424<br>0 398<br>0 340<br>0 303<br>0 280<br>0 245<br>0 206<br>0 193 |
| 39 1                                                            | 0 160                                                                         |

Coefficient of solubility in sea-water of sp gr at  $14^{\circ} = 1$  022 is 0 255

(Boyle, Phil Mag 1911, (6) 22 850)

| Solub       | ılıty ın H    | [ <sub>2</sub> O |               |              |       |
|-------------|---------------|------------------|---------------|--------------|-------|
| Temp<br>Sol | 0 5°<br>0 526 | 17 5°            | 35°           | 41°          | 51°   |
| 501         | 0 020         | 0 200            | 0 100         | 0 101        | 0 100 |
| Temp<br>Sol | טט.           | 74°              | 79°           | 82°<br>0 111 | 91°   |
| Sol         | 0.127         | $0\ 112$         | $0\ 111$      | $0\ 111$     | 0 108 |
|             | (Kofler       | M 19             | 13. <b>34</b> | 389)         |       |

Coefficient of solubility of radium emanation at 14° in various solvents

Ethyl alcohol Amyl alcohol 9 31 Toluene 13 7 0 255 Sea water Mercury 0

(Boyle, Phil Mag 1911, (6) 22 851)

## Coefficient of solubility emanation of radium in various solvents at to

| Solvents      |    | t=18      | ٥     |    | t =        | 0°   | t = | 80 |
|---------------|----|-----------|-------|----|------------|------|-----|----|
| Ethyl acetate |    | 35        |       | 9  | 41         |      | 13  |    |
| Acetone       | 6  | 30        |       | 7  | 99         |      | 10  | 8  |
| Absolute      |    |           |       | _  |            |      |     |    |
| alcohol       |    | 17        |       |    | 28         |      | 11  | 4  |
| Anılıne       |    | 80        |       |    | <b>4</b> 3 |      | 1   |    |
| Benzene       | 12 | <b>82</b> |       | 16 | 54         | at 3 | 익   |    |
| Chloroform    | 15 | 08        |       | 20 | 5          |      | 28  | 5  |
| Cylclohexane  | 18 | 04 a      | t 80° |    |            |      |     |    |
| Water         | 0  | 285       |       | 0  | 52         |      | 1   |    |
| Ether         | 15 | 08        |       | 20 | 09         |      | 29  | 1  |
| Glycerine     | 0  | 21        |       | ١  |            |      |     |    |
| Hexane        | 16 | 56        |       | 23 | 4          |      | 35  | 2  |
| Paraffine oil | 9  | 2         |       | 12 | 6          |      | 1   |    |
| Carbon-       | İ  |           |       | İ  |            |      |     |    |
| bisulphide    | 23 | 14        |       | 33 | 4          |      | 50  | 3  |
| Toluene       | 13 | 24        |       | 18 | 4          |      | 27  |    |
| Xylene        | 12 | 75        |       |    | _          |      |     |    |

(Ramstedt, Le Radium, 1911, 8 255)

# Solubility in various oils, etc., at to

| Raj                          | pe oil Poppy seed oil              |                            | Oil of turpentine                   |                                                              |                                     |
|------------------------------|------------------------------------|----------------------------|-------------------------------------|--------------------------------------------------------------|-------------------------------------|
| t°                           | Solubility                         | t°                         | Solubility                          | t°                                                           | Solubility                          |
| -3<br>10<br>20<br>100<br>200 | 51 2<br>35 3<br>26 1<br>6 2<br>3 3 | -5<br>16<br>40<br>65<br>90 | 50 5<br>30 2<br>19 1<br>12 4<br>8 4 | $ \begin{array}{r} -21 \\ 0 \\ 18 \\ 50 \\ 6 5 \end{array} $ | 42 5<br>23 1<br>16 6<br>7 5<br>4 08 |

Solubility in 10% dammar resin in oil of  $turpentine = 16 7 at 18^{\circ}$ 

Solubility in 5% colophony in alcohol = 11 2 at 20°

Solubility in amyl alcohol = 10 6 at 18° Solubility in 20% colophony in amyl alcohol = 11 1 at 20°

(Curie, Thesis 1910)

Coefficient of absorption for petroleum = 22 70 at -21°

1287 at +3° 9 55 at 20°

8 13 at 40° 701 at 60°

(Hofmann, Phys Zeit 1905, 6 339)

# Rhodicvanhydric acid, H<sub>2</sub>Rh(CN)<sub>6</sub>

Not known in the free state

Potassium rhodicvanide, KaRh(CN)6

Sol in H<sub>2</sub>O Easily decomp by acids Very sol in H<sub>2</sub>O (Leidié, C R 1900, **130** 89)

## Rhodium, Rh

Insol in all acids, including aqua regia Rhodium "sponge" is sol in HNO3+Aq, and somewhat in HCl+Aq when exposed to

# Rhodium ammonia compounds

See-

Bromopurpureorhodium comps.

 $BrRh(NH_3)_5X_2$ 

Chloropurpureorhodium comps,

 $ClRh(N\bar{H}_3)_5X_2$ 

Iodopurpureorhodium comps,

 $IRh(NH_3)_5X_2$ Luteorhodium comps, Rh(NH<sub>3</sub>)<sub>6</sub>X<sub>3</sub>

Nitratopurpureorhodium comps,  $(NO_3)Rh(NH_3)_5X_2$ 

Roseothodium comps,  $Rh(NH_3)_5(OH_2)X_3$ Xanthorhodium comps  $(NO_2)Rh(NH_3)_5X_2$ 

## Rhodium tribromide, RhBr<sub>3</sub>+2H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Goloubkine, Chem Soc 1911, **100** (2) 45)

Rhodium rubidium bromide See Bromorhodite, rubidium

# Rhodium sodium bromide See Bromorhodite, sodium

### Rhodium dichloride, RhCl<sub>2</sub> (?)

Insol in H<sub>2</sub>O, HCl, or HNO<sub>3</sub>+Aq attacked by boiling KOH or K<sub>2</sub>CO<sub>3</sub>+Aq (Fellenberg)

Decomp by boiling KOH + Aq (Berzelius) Does not exist (Leidié, C R 106 1076

## Rhodium trichloride, RhCl<sub>3</sub>

Insol in acids, even aqua regia When boiled for a long time with KOH+Aq, it be-

comes sl sol in HCl+Aq Insol in H<sub>2</sub>O and acids, sol in alkalies + Aq

(Leidié, C R 1899, 129 1251) +4H<sub>2</sub>O Very sl deliquescent Easily sol in H<sub>2</sub>O, HCl+Aq, or alcohol Insol in ether Decomp by H<sub>2</sub>SO<sub>4</sub> only when boiling (Claus, J pr 80 282)

No definite amount of crystal H<sub>2</sub>O (Leidié ch (6) **17** 271)

hodium chloride with MCl See Chlororhodite, M

hodium dihydroxide, RhO<sub>2</sub>, 2H<sub>2</sub>O, or Rhodium rhodate, Rh<sub>2</sub>O<sub>2</sub>, RhO<sub>3</sub>+6H<sub>2</sub>O Sol in HCl+Aq

hodium sesquihydroxide, Rh2O6H6

Only sl sol in cone HCl+Aq (Claus) +2H<sub>2</sub>O Easily sol in HCl, H<sub>2</sub>SO<sub>4</sub>, H<sub>2</sub>SO<sub>3</sub>, INO<sub>3</sub>, or HSCN+Aq, also when moist, in IC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Sol in cone KOH+Aq, very l sol in H<sub>3</sub>BO<sub>3</sub>, H<sub>2</sub>PO<sub>4</sub>, H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>, and HCN-Aq Sol in acid alkali oxalates+Aq Leidié, C R 107 234)

thodium truodide, RhI3

Ppt (Goloubkine, Chem Soc 1911, 100 2) 45)

thodium monoxide, RhO

Not attacked by acids (Deville and Deray, A ch (3) 61 83)

hodium sesquioxide, Rh<sub>2</sub>O<sub>3</sub>

Insol in H₂O, boiling KOH+Aq, or any cid, even aqua regia (Claus)

thodium dioxide, RhO<sub>2</sub>
Insol in all acids or alkalies

thodium trioxide, RhO3

"Rhodic acid" Known only in solution of Potassium rhodate," which is very easily ecomp (Claus)

thodium oxybromide, Rh(OH)<sub>2</sub>Br+2H<sub>2</sub>O Sol in H<sub>2</sub>O (Goloubkine, Chem Soc 911, **100** (2) 45)

thodium monosulphide, RhS Insol in iqua regii

thodium sesquisulphide, Rh<sub>2</sub>S<sub>3</sub>

Sol in alkalı sulphides + Aq (Debray, C t 97 1332)

Insol in alkalı sulphides+Aq Not atacked by HNO<sub>3</sub>, aqua regia, or Br<sub>2</sub>+Aq Leidié, Bull Soc (2) 50 (664)

Chodium sodium sulphide, 3Na<sub>2</sub>S, Rh<sub>2</sub>S<sub>3</sub>
Decomp by H<sub>2</sub>() (1 addé)

thodium sesquisulphydroxide, Rh<sub>2</sub>S<sub>6</sub>H<sub>6</sub>

Fasily sol in aqua regia or Br<sub>2</sub>+Aq Insol a alkalı sulphides+Aq or acids (Leidié, 3ull Soc (2) **50** 664)

Rhodochromium bromide, HOCr<sub>2</sub>(NH<sub>3</sub>)<sub>10</sub>Br<sub>5</sub>+H<sub>2</sub>O

Rather difficultly sol in  $\rm H_2O$  Decomp by boiling or standing Sol in  $\rm NH_4OH+Aq$  or  $\rm NaOH+Aq$  Insol in dil  $\rm HBr+Aq$ ,  $\rm KBr+Aq$ , or alcohol (Jorgensen, J pr (2) 25 321)

----- bromide, basic, HOCr<sub>2</sub>(NH<sub>3</sub>)<sub>10</sub>(OH)Br<sub>4</sub> +H<sub>2</sub>O

Sl sol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH or NaOH+ Aq Insol in alcohol (Jörgensen)

---- chloraurate,  $HOCr_2(NH_3)_{10}Cl_3(AuCl_4)_2$ +2 $H_2O$ 

Difficultly sol but not insol in  $H_2O$  (Jorgensen)

---- chloride, HOCr<sub>2</sub>(NH<sub>3</sub>)<sub>10</sub>Cl<sub>5</sub>+H<sub>2</sub>O

Sol in about 40 pts of cold H<sub>2</sub>O Insol in cold dil HCl+Aq, NH<sub>4</sub>Cl+Aq, or alcohol Sol in NH<sub>4</sub>OH+Aa (Jorgensen, J pr (2) **25** 321)

---- chloroiodide, basic, HOCr<sub>2</sub>(NH<sub>3</sub>)<sub>10</sub>(OH)Cl<sub>2</sub>I<sub>2</sub>

Sl sol in cold  $H_2\mathrm{O}$ , insol in alcohol (Jorgensen)

--- dithionate, [HOCr,(NH<sub>3</sub>)<sub>10</sub>]<sub>2</sub>(S<sub>2</sub>O<sub>6</sub>)<sub>5</sub>+
2H<sub>2</sub>O

Nearly insol in H<sub>2</sub>O

— dithionate, basic,  $HOCr (NH_3)_{10}OH(S_2O_6)_2+H_2O$ 

Insol in H<sub>2</sub>O, cold NH<sub>4</sub>OH+Aq, or NaOH+Aq

--- iodide,  $HOCr_2(NH_3)_{10}I_5 + H_2O$ 

Very difficultly sol in H<sub>2</sub>O Insol in very dil HI+Aq or alcohol Sl sol in NH<sub>4</sub>OH or KOH+Aq (Jorgensen)

---- nitrate,  $HOCr_2(NH_3)_{10}(NO_3)$ 

Ruther difficultly sol in H<sub>2</sub>O, from which it is precipit ited by a few drops of HNO<sub>3</sub>+Aq Sol in hot dil NH<sub>4</sub>OH+Aq

— nitrate chloroplatinate, HOCr<sub>2</sub>(NH<sub>3</sub>)<sub>10</sub>(NO<sub>3</sub>)(PtCl<sub>6</sub>) +4H O Precipitate (Jorgensen)

Rhodochromium sulphate,

 $[HOCr_2(NH_3)_{10}]_2(SO_4)_5+2H_2O$  Very sl sol in cold  $H_2O$  Easily sol in cold dil  $H_2SO_4+Aq$ 

Almost insol in a mixture of 3 vols  $H_2O$ , 1 vol alcohol, and  $^1/_3$  vol dil  $H_2SO_4+Aq$  (Jörgensen)

#### Rhodonitrous acid

Ammonium rhodonitrite, (NH<sub>4</sub>)<sub>6</sub>Rh<sub>2</sub>(NO<sub>2</sub>)<sub>12</sub>

Nearly msol in cold, sl sol in hot H<sub>2</sub>O Insol in conc NH<sub>4</sub>Cl or NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Insol in alcohol (Leidié, C R 111 108)

## Barium rhodonitrite, Ba<sub>8</sub>Rh<sub>2</sub>(NO<sub>2</sub>)<sub>12</sub>

SI sol in cold, more easily in hot H<sub>2</sub>O (Lamy)

 $+12 H_2O$  Sol in 50 pts  $H_2O$  at 16°, and 6 5 pts at 100° (Leidié, C R **111** 108)

#### Potassium rhodonitrite, K<sub>6</sub>Rh<sub>2</sub>(NO<sub>2</sub>)<sub>12</sub>

Nearly insol in cold, very sl sol in boiling  $\rm H_2O$  Completely insol in  $\rm KNO_2+Aq$ , and in  $\rm KCl+Aq$  (30% KCl), or  $\rm KC_2H_3O_2+Aq$  (50% KC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>) Insol in alcohol (Leidié, C R 111 106)

## Sodium rhodonitrite, Na<sub>6</sub>Rh<sub>2</sub>(NO<sub>2</sub>)<sub>12</sub>

Sol in 2½ pts H<sub>2</sub>O at 17°, and 1 pt at 100° Insol in alcohol Decomp by HCl+Aq (Leidié, C R 111 107)

#### Rhodosochromium bromide

Sol in H<sub>2</sub>O, insol in dil HBr+Aq (1 1) (Jorgensen, J pr (2) 45 260)

Not insol in cold H<sub>2</sub>O (Jorgensen)

Sol m 10 6 pts H<sub>2</sub>O at 18°, decomp by boiling Pptd by ½ to 1 vol dil HCl+Aq Sol m cold dil NH<sub>4</sub>OH+Aq (Jorgensen, J pr (2) 45 260)

---- chloroplatinate, 2Cr<sub>2</sub>(NH<sub>3</sub>)<sub>6</sub>(OH)<sub>3</sub>Cl<sub>3</sub>, 3PtCl<sub>4</sub>+6H<sub>2</sub>O

Insol in H<sub>2</sub>O (Jorgensen) Cr<sub>2</sub>(NH<sub>3</sub>)<sub>6</sub>(OH)<sub>5</sub>Cl<sub>3</sub>, 2PtCl<sub>4</sub>+2H<sub>2</sub>O Insol in 95% alcohol (Jorgensen)

---- chromate,  $[Cr_2(NH_3)_6(OH)_3]_2(CrO_4)_3+7H_2O$  (Jorgensen)

Very sl sol in H<sub>2</sub>O (Jorgensen)

—— 10dide,  $Cr_2(NH_3)_6(OH)_3I_3+2H_2O$ Sol in  $H_2O$  Insol in dil HI+Aq (Jörgensen)

mitrate, Cr<sub>2</sub>(NH<sub>3</sub>)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>+H<sub>2</sub>O
Much less sol in cold H<sub>2</sub>O than the chloride
Insol in dil HNO<sub>3</sub>+Aq (Jorgensen)

---- oxalate,  $[Cr_2(NH_3)_6(OH)_3]_2(C_2O_4)(HC_2O_4)_4 + 2H_2O$ 

Sol in cold  $H_2O$ , but not very easily (Jorgensen)

Rhodosochromium sulphate,

 $\begin{array}{ll} [Cr_2(NH_3)_6(OH)_3]_2(SO_4)_3 + 5H_2O \\ Very \ sl \ sol \ in \ cold \ H_2O & Easily \ sol \ in \ dil \end{array}$ 

NH<sub>4</sub>Cl+Aq (Jorgensen) [Cr<sub>2</sub>(NH<sub>3</sub>)<sub>6</sub>(OH)<sub>8</sub>]SO<sub>4</sub>, HSO<sub>4</sub>+1½H<sub>2</sub>O Decomp by H<sub>2</sub>O into H<sub>2</sub>SO<sub>4</sub> and above compound (Jorgensen)

--- persulphide,  $[Cr_2(NH_3)_6(OH)_3]_2S_{11} + 4H_2O$ 

Ppt Insol in H<sub>2</sub>O (Jorgensen)

## Rhodosulphuric acid

Potassium rhodosulphate, K<sub>6</sub>Rh<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>

Two modifications

(a) Slowly sol in cold, easily in hot H<sub>2</sub>O

(b) Insol in H<sub>2</sub>O

Does not exist (Leidié, C R 107 234)

#### Sodium rhodosulphate

Insol in H<sub>2</sub>O, HCl, HNO<sub>3</sub>, or aqua regia (Claus)

Does not exist (Leidié)

 $Na_2Rh_2(SO_4)_4$  Insol in  $H_2O$  (Seubert and Kobbé, B 23 2560)

# Rhodosulphurous acid

Potassium rhodosulphite, K<sub>6</sub>Rh<sub>2</sub>(SO<sub>3</sub>)<sub>5</sub>+

Nearly insol in H<sub>2</sub>O Slowly sol in acids Not decomp by boiling KOH+Aq (Claus)

Sodium rhodosulphite,  $Na_6Rh_2(SO_3)_5+4\frac{1}{2}H_2O=3Na_2SO_3$ ,

 $Na_6Rn_2(SO_3)_5 + 4\frac{1}{2}n_2O = 3Na_2SO_3$  $2RhSO_3$ 

Insol in cold, very sl sol in hot  $\rm H_2O$  Easily sol in  $\rm HNO_3 + Aq$  (Seubert and Kobbé, B 23 2558)

# Roseochromium bromide,

 $Cr(NH_3)_5Br_8+H_2O$ 

Easily sol in H<sub>2</sub>O Insol in HBr+Aq (Christensen, J pr (2) **23** 26)

Somewhat sol in H<sub>2</sub>O, but decomp o

standing (Jorgensen, J pr (2) 25 398)

— bromoplatinate, Cr(NH<sub>3</sub>)<sub>5</sub>Br(PtBr<sub>6</sub>)+

 $2H_2O$ Precipitate Difficultly sol in  $H_2O$  (Christensen, l c)

---- chloride,  $Cr(NH_8)_5Cl_3+H_2O$ 

Easily sol in H<sub>2</sub>O with subsequent decomp Insol in alcohol (Christensen, J pr (2) 23 26)

Sl sol in H<sub>2</sub>O Sol in dil HCl+Aq with decomposition (Christensen, l c)

#### loseochromium dithionate, basic, $Cr(NH_3)_5(OH)_2S_2O_6+H_2O$

Easily sol in very dil HCl+Aq (Jorgenen, J pr (2) 25 308)

– 10d1de,  $Cr(NH_8)_5I_8$ 

Easily sol in H<sub>2</sub>O, decomp by boiling Christensen, l c)

--- mtrate, Cr(NH<sub>3</sub>)<sub>5</sub>(NO<sub>3</sub>)<sub>3</sub>+H<sub>2</sub>O Rather easily sol in H<sub>2</sub>O (Christensen,  $Cr(NH_3)_5(NO_3)_3(OH_2)_2$ ,  $HNO_3$  Decomp y  $H_2O$  or alcohol (Jorgensen, J pr (2) 44

--- sulphate,  $[Cr(NH_3)_5]_2(SO_4)_3 + 5H_2O$ Easily sol in H<sub>2</sub>O Precipitated by alcohol Christensen, l c)

— sulphate bromoplatinate,  $[Cr(NH_3)_5(SO_4)]_2PtBr_6$ 

Difficultly sol in  $H_2O$  (Christensen, l c)

 sulphate chloroplatinate,  $[Cr(NH_3)_5(SO_4)]_2PtCl_6$ Difficultly sol in  $H_2O$  (Christensen, l c)

#### Roseocobaltic bromide, $Co(NH_3)_5(OH_2)Br_3$

Sol in  $H_2O$ , insol in HBr+Aq en, J pr (2) 31 49)<sub>3</sub> (Jorgen-

--- bromoplatinate, Co(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)Br<sub>3</sub>, PtBr<sub>4</sub>+H<sub>2</sub>O

Somewhat sol in H<sub>2</sub>O or dil alcohol Insol n strong alcohol (Jorgensen)

 $2\text{Co(NH}_3)_5(\text{OH}_2)\text{Br}_3$ ,  $3\text{PtBr}_4+4\text{H}_2\text{O}$  Ppt Jorgensen)

bromosulphate,  $Co(NH_3)_5(OH_2)Br(SO_4)$ Sol in H<sub>2</sub>O (Krok)

 bromosulphate bromaurate, Co(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)(SO<sub>4</sub>)Br, AuBr<sub>3</sub>

— carbonate

Very sol in II O

- chloraurate, Co(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)Cl<sub>3</sub>, AuCl<sub>3</sub> Moderately sol in cold H<sub>2</sub>O

--- chloride, Co(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)Cl<sub>3</sub>

Sol in 48 pts H<sub>2</sub>O at 101°, but decomp on heating

100 pts H<sub>2</sub>O dissolve 16 12 pts at 0°, and 24 87 pts at 16 19° (Kurnakoff, J russ Soc **4** 269)

Sl sol in 1000 pts fuming HCl+Aq, more asily in 20% HCl+Aq (Rose)

Roseocobaltic mercuric chloride,  $Co(NH_3)_5(OH_2)Cl_3$ ,  $3HgCl_2+H_2O$ 

More easily sol in solvents than the anhydrous purpureo salt (Carstanjen) Co(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)Cl<sub>3</sub>, HgCl<sub>2</sub> Sol in HCl+

Ag with decomp into above salt (Jorgensen)

 chloroplatinate,  $C_0(NH_3)_5(OH_2)Cl_3$ ,  $PtCl_4+\frac{1}{2}H_2O$ Decomp by H<sub>2</sub>O (Jörgensen)

2Co(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)Cl<sub>3</sub>, PtCl<sub>4</sub>+2H<sub>2</sub>O Decomp by H<sub>2</sub>O

2Co(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)Cl<sub>3</sub>, 3PtCl<sub>4</sub>+6H<sub>2</sub>O difficultly sol in warm H<sub>2</sub>O (Gibbs) Not  $Co(NH_3)_5Cl_3$ ,  $PtCl_4+H_2O$ 

- chlorosulphate,  $Co(NH_3)_5Cl(SO_4)$ 

Easily sol in H<sub>2</sub>O

 chlorosulphate mercuric chloride,  $C_0(NH_3)_5Cl(SO_4)$ ,  $H_9Cl_2+3H_2O$ 

Sol in hot H<sub>2</sub>O, and can be recrystallized without decomp (Krok)

---dichromate,

 $[Co(NH_8)_5]_2(Cr_2O_7)_3+5H_2O$ 

Can be recrystallized out of weak acetic acıd

- cobalticyanide,  $Co(NH_3)_5(OH_2)Co(CN)_6$ Nearly absolutely insol in cold H<sub>2</sub>O (Jorgensen)

+H<sub>2</sub>O (Gibbs and Gentele)

- dithionate,  $Co(NH_8)_5(S_2O_6)(OH)$ 

Decomp by H<sub>2</sub>O (Rammelsberg, Pogg **58** 296)

 $Co(NH_3)_5(OH_2)(S_2O_6) + 2H_2O$  Ppt (Jorgensen )

- hydroxide, Co(NH )5(OH)8 Known only in aqueous solution

 mercuric hydroxychloride, CoN<sub>5</sub>H<sub>12</sub>(HgOH)<sub>3</sub>Cl<sub>3</sub>

Sol in dil acids (Vortmann and Morgulis, B 22 2646)  $CoN_5H_{12}(HgOH)_8Cl_2(OH)$ Ppt dil acids (Vortmann and Morgulis)

--- 10d1de,  $Co(NH_3)_5(OH_2)I_3$ 

Less sol in H<sub>2</sub>O than bromide Insol in HI+Aq (Jorgensen)

- 10dosulphate,  $Co(NH_3)_5(OH_2)I(SO_4)$ Fasily sol in H<sub>2</sub>O (Krok)

- mercuriodide,  $[CoN_bH_{13}]_2(HgI)_3I_6$ (Vortmann and Borsbach, B 23 Ppt  $280\bar{5}$ )

 $CoN_5H_{13}(HgI)_2I_8$ Ppt (Vortmann and Borsbach)

 $CoN_5H_{18}(HgI)_2I_2(OH)$ 

Roseocobaltic nitrate, Co(NH<sub>8</sub>)<sub>5</sub>(OH<sub>2</sub>)(NO<sub>3</sub>)<sub>8</sub>

Three modifications

α Sol in 20 pts H<sub>2</sub>O at 15° (Jorgensen)
β Known only in solution Insol in cold
HNO<sub>3</sub>+Aq (Gibbs)

 $\gamma$  Easily sol in hot  $H_2O$  (Gibbs) (Purpureo salt?)

 $Co(NH_2)_5(OH_2)(NO_3)_5$ ,  $HNO_3$  Decomp by  $H_2O$  or alcohol (Jörgensen, J pr (2) 44 63)

---- nitrate chloroplatinate, Co(NH<sub>2</sub>)<sub>5</sub>(OH<sub>2</sub>)(NO<sub>3</sub>)Cl<sub>2</sub>, PtCl<sub>4</sub>+H<sub>2</sub>O Ppt (Jorgensen)

nitratosulphate, Co(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)(NO<sub>3</sub>)(SO<sub>4</sub>) Sl sol in cold, easily in hot H<sub>2</sub>O

oxalate,  $[Co(NH_3)_5(OH_2)]_2(C_2O_4)_8 + 2H_2O$ Nearly insol in  $H_2O$  $[Co(NH_3)_5]_2(C_2O_4)_8$ ,  $4H_2C_2O_4$ 

 $\begin{array}{lll} & \longrightarrow & \text{oxalosulphate,} & [\text{Co(NH}_3)_5]_2(\text{SO}_4)_2\text{C}_2\text{O}_4, \\ & \text{H}_2\text{C}_2\text{O}_4 + 2\text{H}_2\text{O} \\ & \text{Sol in hot H}_2\text{O} \\ & [\text{Co(NH}_3)_5]_2(\text{SO}_4)_2(\text{C}_2\text{O}_4)(\text{OH})_2 + 6\text{H}_2\text{O} & \text{Sl} \\ & \text{sol in H}_2\text{O} \end{array}$ 

--- orthophosphate, Co(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)(PO<sub>4</sub>H)(OH)+xH<sub>2</sub>O Nearly insol in H<sub>2</sub>O

[Co(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)]<sub>2</sub>(PO<sub>4</sub>H)<sub>3</sub>+4H<sub>2</sub>O Very sl sol in cold H<sub>2</sub>O, easily in H<sub>2</sub>O containing HCl (Jorgensen)

---- pyrophosphate,  $[Co(NH_3)_5(OH_2)]_4(P_2O_7)_3+12H_2O$ 

Insol in  $H_2O$  (Jorgensen) Co(NH<sub>8</sub>)<sub>5</sub>(OH<sub>2</sub>)(P<sub>2</sub>O<sub>7</sub>Na)+12H<sub>2</sub>O Nearly insol in cold, easily sol in hot H<sub>2</sub>O containing NH<sub>4</sub>OH (Jorgensen, J pr (2) 23 252)

----- sulphate,  $[Co(NH_2)_5(OH_2)] \circ (SO_4)_2 + 3H_2O$ 

Three modifications a SI sol in cold  $H_2O$  Sol in 58 pts at 27° (Gibbs), 83 5 pts at 20 2°, and 94 6 pts at 17 2° (Jorgensen), more easily sol in hot  $H_2O$ , and still more easily in  $NH_4OH + Aq$   $\beta$  Sol in 1-2 pts  $H_2O$  (Gibbs)

 $\gamma$  Less sol than luteosulphate (Jorgensen) +2H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Vortmann)

Roseocobaltic sulphate, acid,
[Co(NH<sub>3</sub>)<sub>5</sub>]<sub>2</sub>(SO<sub>4</sub>), 2H<sub>2</sub>SO<sub>4</sub>+3H<sub>2</sub>O
[Frames] on 4(Co(NH<sub>3</sub>)) (SO<sub>2</sub>) OH SO<sub>2</sub>

(Fremy), or  $4[Co(NH_3)_5]_2(SO_4)_3$ ,  $9H_2SO_4$ +11H<sub>2</sub>O (Jorgensen)

More easily sol in  $H_2O$  than neutral sulphate, into which it is converted by recrystalization. Sol in about 13 pts  $H_2O$  (Jorgensen)

---- cerum sulphate,  $[\text{Co(NH}_3)_5(\text{OH}_2)]_2(\text{SO}_4)_3$ ,  $\text{Ce}_2(\text{SO}_4)_3 + 2\frac{1}{2}\text{H}_2\text{O}$ 

SI sol in cold, practically insol in boiling  $H_2O$  Sol in acids (Gibbs, Am Ch J 15 560)

 $[\text{Co(NH}_3)_5(\text{OH}_2)]_2(\text{SO}_4)_8$ ,  $\text{Ce(SO}_4)_2 + 2\frac{1}{2}\text{H}_2\text{O}$  As above (Gibbs)

---- sulphate chloraurate

Three modifications  $a \operatorname{Co}(NH_3)_5(OH_2)(SO_4)Cl$ , AuCl<sub>3</sub> Ppt

 $\begin{array}{ll} \text{(Jorgensen)} \\ \beta & \text{Co(NH}_3)_5(\text{SO}_4), \text{AuCl}_3 + 2\text{H}_2\text{O} \\ \text{In cold H}_2\text{O} & \text{(Gabbs)} \end{array}$ 

 $\gamma$  As above Can be recrystallized from hot  $H_2O$ 

Three modifications, all difficultly sol in hot or cold  ${\rm H}_2{\rm O}$  (Jörgensen )

—— sulphite,  $[Co(NH_3)_6(OH_2)]_2(SO_3)_3+H_2O$ Sl sol in cold, decomp by hot  $H_2O$ (Gibbs)

—— cobaltic sulphite,
[Co(NH<sub>3</sub>)<sub>5</sub>]<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub>, Co<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub>+9H<sub>2</sub>O
Insol in cold, decomp by hot H<sub>2</sub>O (Kunzel)

Roseocobaltic octamine compounds
See Roseotetramine cobaltic compounds

Roseoiridium compounds

See Iridoaquopentamine compounds

Roseorhodium bromide, Rh(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)Br<sub>3</sub>

Sol in cold  $H_2O$  (Jorgensen, J pr (2) 34 394)

Roseorhodium cobalticyanide, Rh(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)Co(CN)<sub>6</sub> Scarcely sol in H<sub>2</sub>O

—— iodosulphate,  $Rh(NH_3)_5(OH_2)I(SO_4)$ Very sl sol in  $H_2O$ , easily sol in  $NH_4OH+Aq$  (Jorgensen)

— nitrate, Rh(NH<sub>3</sub>)<sub>5</sub>(OH)(NO<sub>3</sub>)<sub>3</sub>

Moderately sol in cold H<sub>2</sub>O (Jorgensen)
Rh(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)(NO<sub>3</sub>)<sub>3</sub>, HNO<sub>3</sub> Decomp

by  $H_2O$  or alcohol (Jorgensen, J pr (2) 44 63)

Roseorhodium nitrate chloroplatinate, [Rh(NH<sub>3</sub>)<sub>5</sub>(OH<sub>2</sub>)(NO<sub>3</sub>)]<sub>2</sub>PtCl<sub>5</sub>+2H<sub>2</sub>O Ppt (Jorgensen)

-— orthophosphate,  $[Rh(NH_3)_5(OH_2)]_2(HPO_4)_3+4H_2O$ Very sl sol in  $H_2O$ 

—— sodium pyrophosphate,  $[Rh(NH_3)_5(OH_2)]_2NaP_2O_7+23H_2O$ Ppt Very sl sol in cold  $H_2O$  Fasily sol in very dil acids

----- sulphate,  ${}_{[Rh(NH_3)_5(OH_2)_2](SO_4)_3} + 3H_2O$  Very sl sol in cold, much more in hot  $H_2O$ 

# Roseotetramme cobaltic bromide, $Co(NH_3)_4(OH_2)_2Br_3$

Sol in H<sub>2</sub>O, insol in HBr+Aq Nearly insol in alcohol (Jorgensen, Z anorg 2 295)

— chloride,  $Co(NH_3)_4(OH_2)_2Cl_3$ Easily sol in  $H_2O$ , insol in conc HCl+Aq, sol in sit  $HgCl_2+Aq$  (Jorgensen)

 $\begin{array}{c} ---- & \text{cobalticyanide,} \\ & \text{Co(NH}_3)_4(\text{OH}_2)_2\text{Co(CN)}_6 \\ & \text{(Jorgensen )} \end{array}$ 

--- sulphate,  $[(o(NH_3)_4(OH_2)_2](SO_4)_3 + 3H_2O$ 

Sol in about 35 pts H O, and more easily by addition of dil HCl or H  $SO_4+Aq$  (Jorgensen)

Sulphate chloroplatmate,
[Co(NH<sub>3</sub>)<sub>4</sub>(OH)<sub>2</sub>]<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>PtCl<sub>6</sub>
As the bromaurate (Jorgenson)

# Rubidium, Rb2

Decomp  $H_2O$  with violence Insol in hydrocarbons Sol in liquid  $NH_3$  (Seely, C N 23 169), (Franklin, Am Ch J 1898, 20 829)

Rubidium acetylide acetylene  $\mathrm{RbC}_2$ ,  $\mathrm{C}_2\mathrm{H}_2$ 

Very hygroscopic Insol in CCl<sub>4</sub> and in ether (Moissan, C R 1903, **136** 1220)

# Rubidium amalgam, RbHg<sub>12</sub>

Stable in contact with Hg below 0° Above 0° the composition of the amalgam varies Can be cryst from Hg without decomp below 0° (Kerp, Z anorg 1900 25 68)

#### Rubidium amide, RbNH<sub>2</sub>

Very deliquescent Violently decomp by  ${\rm H}_2{\rm O}$ , less violently acted on by alcohol (Titherley, Chem Soc 1897, **71** 470)

## Rubidium ammonia, RbNH<sub>3</sub>

Decomp by  $\rm H_2O$  Very sol in liquid  $\rm NH_3$  (Moissan, C R 1903, 136 1178)

Rubidium azoimide, RbN<sub>3</sub>
Sl hydroscopic

Stable in aq solution

107 1 pts are sol in 100 pts  $H_2O$  at 16° 114 1 " " " 100 "  $H_2O$  " 17° 0 182 " " 100 " abs alcohol at 16°

Insol in pure ether (Curtius, J pr 1898, (2) 58 281)

# Rubidium bromide, RbBr

100 pts  $\rm\,H_2O$  dissolve 98 pts at 5°, 104.8 pts at 16° (Reissig, A  $\,127\,$  33 )

Solubility in H<sub>2</sub>O 100 pts of the solution contain at

0 5° 5 0° 16 0°

47 26 49 50 51 17 pts RbBr

39 7° 57 5° 113 5° 56 87 60 39 67 24 pts RbPr (Rimb v h, B 1905, **38** 1557)

# Sp gr of RbBr containing g equiv RbBr per l

| C cquiv | 6 /6    | 5p 4r   | 5p gr   |
|---------|---------|---------|---------|
| RbBr    | 5p 4r   | 18 /18  | 30/30   |
| 0 508   | 1 06448 | 1 06389 | 1 06326 |
| 1 020   | 1 12931 | 1 12799 | 1 12626 |
| 2 031   | 1 25622 | 1 25366 | 1 25187 |
| 4 072   | 1 50574 | 1 50107 | 1 49870 |

(Clausen, W Ann 1914, (4) 44 1070)

RbBr+Aq containing 6 60% RbBr has sp\_gr\_20°/20°=1 0525

RbBr+Aq containing 14 36% RbBr has gr 20°/20°=1 1226

(Le Blanc and Rohland, Z phys Ch 1896, 19<sup>279</sup>) Sol in acetone (Eidmann, C C 1899,

II 1014)

Difficultly sol in acetone B 1904, 37 4328) (Naumann.

Insol in methyl acetate (Naumann, B 1909, 42 3790)

### Rubidium tribromide, RbBr3

Very sol in H<sub>2</sub>O, decomp by alcohol dether (Wells and Wheeler, Sill Am J and ether 143 475)

# Rubidium ruthenium bromide

See Bromoruthenate and bromoruthenite, rubidium

# Rubidium selenium bromide See Bromoselenate, rubidium

# Rubidium tellurium bromide See Bromotellurate, rubidium

Rubidium thallic bromide, RbBr, TlBr<sub>3</sub>+H<sub>2</sub>O Recryst from H<sub>2</sub>O unchanged Am J Sci 1895, (3) 49 403) 3RbBr, TlBr<sub>3</sub>+H<sub>2</sub>O Very sol in H<sub>2</sub>O (Pratt)

# Rubidium stannic bromide See Bromostannate, rubidium

# Rubidium bromochloride, RbBr2Cl

Easily decomp, even by H<sub>2</sub>O (Wells and Wheeler )

RbBrĆl₂ Sol in H<sub>2</sub>O, decomp by alcohol and ether (Wells and Wheeler)

## Rubidium bromochloroiodide, RbBrCII Sol in H<sub>2</sub>O and alcohol Decomp by ether (Wells and Wheeler)

# Rubidium bromoiodide, RbBr<sub>2</sub>I

Very sol in H<sub>2</sub>O Sat solution contains about 44% RbBr<sub>2</sub>I, and sp gr = 384 (Wells and Wheeler)

# Rubidium carbide, Rb<sub>2</sub>C<sub>2</sub>

Decomp violently by H2O (Moissan, C R 1903, **136** 1221)

# Rubidium chloride, RbCl

100 pts H<sub>2</sub>O dissolve 76 38 pts at 1°, 82 89 pts at 7° (Bunsen)

Solubility in H<sub>2</sub>O at t° 100 pts of the solution contain pts RbCl

| to    | Pts RbCl |
|-------|----------|
| 0 4   | 43 61    |
| 15 5  | 46 56    |
| 57 3  | 53 71    |
| 114 9 | 59 48    |

(Rimbach, B 1902, 35 1304) Solubility of RbCl in H2O at to

|                                 | G RbCl                                         | per 100 g                                    |                                      | G RbCl per 100 g                          |                                              |
|---------------------------------|------------------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------------|
| t°                              | H <sub>2</sub> O                               | Solution                                     | t°                                   | H <sub>2</sub> O                          | Solution                                     |
| 0<br>10<br>20<br>30<br>40<br>50 | 77 0<br>84 4<br>91 1<br>97 6<br>103 5<br>109 3 | 43 5<br>45 8<br>47 7<br>49 4<br>50 9<br>52 2 | 60<br>70<br>80<br>90<br>100<br>112 9 | 115 5<br>121 4<br>127 2<br>133 1<br>138 9 | 53 6<br>54 8<br>56 0<br>57 1<br>58 9<br>59 5 |

(Berkeley, Phil Trans Roy Soc 1904, 203, A 189)

Sat RbCl+Aq at 25° contains 48 57% RbCl (Foote, Am Ch J 1906, 35 242) Sp gr of RbCl+Aq containing in 100 pts H<sub>2</sub>O

25 88 33 13 pts RbCl 13 14 1 1066 1 2156 1 2675 sp gr (Tammann, W Ann 24 1885)

A normal solution of RbCl has sp gr at  $25^{\circ} = 1\ 0610$ (Wagner, Z phys Ch 1890, 5 39)

RbCl+Aq containing 6 64% RbCl has sp gr 20°/20°=1 0502

RbCl+Aq containing 10 59% RbCl has sp gr 20°/20°=1 0815 (Le Blanc and Rohland, Z phys Ch 1896, 19 278)

Sp gr 20°/4° of a normal solution of RbCl =1.085405(Haigh, J Am Chem Soc 1912, **34** 1151)

# Sp gr of RbCl+Aq sat at t°

| t°   | Sp gr  | t°    | Sp ыг  |
|------|--------|-------|--------|
| 0 55 | 1 4409 | 60 25 | 1 5558 |
| 18 7 | 1 4865 | 75 15 | 1 5746 |
| 31 5 | 1 5118 | 89 35 | 1 5905 |
| 44 7 | 1 5348 | 114*  | 1 6148 |

\* Boiling point (Berkeley)

Sp gr of RbCl containing g equiv RbCl per l

| G equiv | Sp gr   | Sp gr   | 30 /30  |
|---------|---------|---------|---------|
| RbCl    | 6°/6°   | 18°/18° |         |
| 0 5123  | 1 06410 | 1 04538 | 1 04503 |
| 1 001   | 1 08916 | 1 08810 | 1 08749 |
| 2 073   | 1 18200 | 1 17959 | 1 17828 |
| 3 984   | 1 34334 | 1 33967 | 1 33757 |
|         |         |         |         |

(Clausen, W Ann 1914, (4) 44 1069)

Very sl sol in liquid NH<sub>3</sub> (Franklin, Am 'h J 1898, **20** 829)

Solubility in alcohols at 25°

100 g methyl alcohol dissolve 1 41 g 100 g ethyl alcohol dissolve 0 078 g 100 g propyl alcohol dissolve 0 015 g

100 g isoamyl alcohol dissolve 0 0025 g (Turner and Bissett, Chem Soc 1913, 103 909)

Insol in anhydrous pyridine and in 97% yridine+Aq Very sl sol in 95% pyridine +Aq, sl sol in 93% pyridine+Aq (Kahnberg, J Am Chem Soc 1908, 30 1107) Insol in methyl acetate (Naumann, B 909, **42** 3790), acetone, (Naumann, B 1904, **7** 4329), (Eidmann, C C **1899**, II 1014)

ubidium ruthenium trichloride See Chlororuthenite, rubidium

ubidium ruthenium tetrachloride See Chlororuthenate, rubidium

'ubidium oxyruthenium chloride, Rb<sub>0</sub>RuO<sub>0</sub>Cl<sub>4</sub>

Ppt , decomp by  $H_2O$ , sol in cold HCl Howe, J Am Chem Soc 1901, 23 779)

tubidium tellurium chloride See Chlorotellurate, rubidium

tubidium thallic chloride, 2RbCl, TlCl<sub>3</sub>+  $H_2O$ 

Can be recryst from H<sub>2</sub>O without change Pratt, Am J Sci 1895, (3) 49 399)

3RbCl, TlCl, Crystallizes from HCl solu-(Neumann, A 244 348)  $+H_{\lambda}O$ Very sol in cold H<sub>2</sub>O (Pratt. lm J\_Sci 1895, (3) **49** 398) +2H() Iffforescent in dry air Sol in 5 pts H2() it 18°, and 16 pts at 100° Godeffroy, Zeitschr d allgem osterr (pothckciv 1880 No 9)

lubidium stannic chloride Sec Chlorostannate, rubidium

Rubidium titanium chloride, 2RbCl, 11Cl3  $+H_2O$ Sol in H<sub>2</sub>() (Stabler, B 1904, 37 4408)

Rubidium tungsten chloride, Rb, W, Clo Sl sol in cold, more sol in hot H<sub>2</sub>O Sol in very dil N<sub>3</sub>OH+Aq Nearly insol in most organic solvents Olsson, B 1913, 46 574)

Rubidium uranous chloride, Rb2UCl6 As K salt (Aloy, Bull Soc 1899, (3) 21 64)

Rubidium uranyl chloride, 2RbCl, (UO2)Cl2  $+2H_2O$ 

Solubility in H<sub>2</sub>O

100 pts of the solution contain at 24 8° 80 3°

57 8 65 73 pts UO<sub>2</sub>Cl<sub>2</sub>, 2RbCl (Rimbach, B 1904, 37 467)

Rubidium vanadium chloride, Rb<sub>2</sub>VCl<sub>5</sub>  $+H_2O$ 

SI sol in H<sub>2</sub>O and alcohol

Decomp by H2O on standing so that it (Stahler, B 1904, 37 4411) dissolves

Rubidium zinc chloride, 2RbCl, ZnCl

Fasily sol in H<sub>2</sub>O and HCl+Aq (Godeffroy, B 8 9)

Rubidium chloride selenium dioxide, RbCl,  $2SeO_2+2H_2O$ 

Sol in H<sub>2</sub>O (Muthmann, B 1893, 26 1013)

Rubidium chloroiodide, RbCl<sub>2</sub>I

Properties are similar to those of RbBrClI (Wells)

RbCl₄I Sol in alcohol, not attacked by ether (Wells and Wheeler, Sill Am J 144

Sol in POCl<sub>3</sub> (Walden, Z anorge 1900, **25** 212)

Nearly insol in AsBi3 (Walden, Z anorg 1902, 29 374) Very stable, sl sol in H2O at 0°, only very

sl sol in HCl (Erdmann, Arch Pharm 1894, **232** 32) (C C **1894**, I 670)

Rubidium fluoride, RbF

(Eggeling, Z anorg Verv sol in H<sub>2</sub>O 1905, 46 174)

100 g H<sub>2</sub>O dissolve 130 6 g RbF at 18° (de Forcrand, C R 1911, **152** 1210)
Sol in dil HF (Pennington, J Am Chem

Soc 1896, 18 57)

Insol in liquid NH3 (Core, Am Ch J 1898, **20** 829)

Rubidium hydrogen fluoride, RbF, HF

Very deliquescent (Chabrié, Insol in alcohol and ether C R 1905, 140 91)
C R 1905, 140 91)
Sol in H<sub>2</sub>O (Eggeling,

Z anorg 1905, **46** 175) RbF, 2HF Very sl sol in H<sub>2</sub>O (Egge-

ling, Z anoig 1905, **46** 176)

Rubidium silicon fluoride See Fluosilicate, rubidium

Rubidium tantalum fluoride See Fluotantalate, rubidium

Rubidium uranyl fluoride, 4RbF, UO2F2+ 6H₂O

(Ditte, C R 91 115)

hot

#### Rubidium hydride, RbH

Decomp by  $H_2O$  with evolution of  $H_2$  (Moissan, C R 1903, 136 589)

## Rubidium hydroxide, RbOH

Deliquescent, and very sol in H<sub>2</sub>O Sol in alcohol (Bunsen)

Sat RbOH+Aq contains 64 17% RbOH at 15° (de Forcrand, C R 1909, 149 1344)

## Rubidium iodide, RbI

100 pts H<sub>2</sub>O dissolve 137 5 pts at 69°, 152 pts at 174° (Reissig, A 127 33)
Sat RbI+Aq at 25° contains 61 93% RbI

(Foote and Chalker, Am Ch J 1908, 39 567)

Sp gr of RbI+Ac containing 5% 10% cold

Sp gr 1 0353 1 0755 1 726 1 9629 (Erdmann, Arch Pharm 1894, **232** 25)

## Sp gr of RbI+Aq containing g equiv RbI per l,

| G equiv | Sp gr   | Sp gr   | °08∖°08 |
|---------|---------|---------|---------|
| RbI     | 6°/6°   | 18°/18° |         |
| 0 510   | 1 08347 | 1 08268 | 1 08226 |
| 1 025   | 1 16751 | 1 16569 | 1 16433 |
| 2 025   | 1 33012 | 1 32637 | 1 32531 |
| 4 015   | 1 64781 | 1 64144 | 1 63780 |

(Jausen, W Ann 1914, (4) 44 1070)

Nearly insol in AsBr<sub>3</sub> (Walden, Z anorg

1902, 29 374)
Sol in AsCl<sub>3</sub> (Walden, Z anorg 1900, 25 214), liquid SO<sub>2</sub> (Walden, Z anorg 1902, 30 161), S<sub>2</sub>Cl<sub>2</sub> (Walden, Z anorg 1900, 25 217), SO<sub>2</sub>Cl<sub>2</sub> (Walden), POCl<sub>3</sub> (Walden)

Sol in methyl acetate (Naumann, B 1909, 42 3789)

Solubility in organic solvents at  $t^{\circ}$  C = pts by wt of RbI in 100 ccm of the sat solution

L=no of litres which at the saturation temp hold in solution 1 mol RbI

| Solvent                                                  | t°                                                | С                                                                            | L                                                                          |
|----------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Furfurol Acetonitrile Propionitrile Nitromethane Acetone | 25°<br>25°<br>0°<br>25°<br>0°<br>25°<br>0°<br>25° | 4 93<br>1 350<br>1 478<br>0 305<br>0 274<br>0 518<br>0 567<br>0 674<br>0 960 | 4 31<br>15 73<br>14 36<br>69 61<br>77 48<br>41 00<br>37 44<br>31 5<br>22 1 |

(Walden, Z phys Ch 1906, 55 718)

Rubidium truodide, RbI3

Very sol in H<sub>2</sub>O Sol in about <sup>1</sup>/<sub>3</sub> pt H<sub>2</sub>O at 20°, sol in alcohol Decomp by ether (Wells and Wheller, Sill Am J 143 475)

Solubility determinations show that RbI<sub>3</sub> is the only polynoide of rubidium formed at 25° RbI<sub>7</sub> and RbI<sub>8</sub>, mentioned by Abegg and Hamburger, (Z anorg 50, 403) could not be obtained (Foote and Chalker, Am Ch J 1903, 39 567)

Rubidium silver iodide, 2RbI, AgI

Easily decomp by  $H_2O$  (Wells and Wheeler, Sill Am J 144 155)

RbI, AgI+1/2H2O (Marsh, Chem Soc 1913, 103 783)

RbI, 2AgI Not deliquescent Very sol in acetone (Marsh, Chem Soc 1913, 103 783)

Rubidium tellurium iodide See Iodotellurate, rubidium

See lodotenurate, rubidium

Rubidium thallic iodide, RbI, TII<sub>3</sub>+2H<sub>2</sub>O Decomp by H<sub>2</sub>O (Pratt, Am J Sci 1895, (3) 49 403)

Rubidium nitride,

Decomp by heat (Franz Fischer, B 1910, 43 1468)

See also Rubidium azoimide

Rubidium dioxide, RbO<sub>2</sub>

Decomp by  $H_2O$  (Erdmann, A 1897, 294 68)

Rubidium sulphide, Rb<sub>2</sub>S+4H<sub>2</sub>O

Deliquescent, very sol in H<sub>2</sub>O (Biltz, Z anorg 1906, **48** 299)

Rubidium disulphide, Rb<sub>2</sub>S<sub>2</sub>

Anhydrous Sol in H<sub>2</sub>O

Very hydroscopic (Biltz, Z anorg 1906, 50 72)

+H<sub>2</sub>O From Rb<sub>2</sub>S<sub>2</sub>+Aq Hydroscopic (Biltz)

Rubidium trisulphide, Rb<sub>2</sub>S<sub>3</sub>

Anhydrous

Sol in H<sub>2</sub>O

Hydroscopic (Biltz, Z anorg 1906, 50 75)

+H<sub>2</sub>O From Rb<sub>2</sub>S<sub>8</sub>+Aq (Bıltz)

Rubidium tetrasulphide Rb<sub>2</sub>S<sub>4</sub>+2H<sub>2</sub>O Sol in H<sub>2</sub>O (Biltz, Z anorg 1906, **48** 304)

Rubidium pentasulphide, Rb<sub>2</sub>S<sub>5</sub>
Deliquescent Decomp by H<sub>2</sub>O

Deliquescent Decomp by H<sub>2</sub>O Very easily sol in 70% alcohol

Insol in ether, ethyl sulphide or CHCl<sub>3</sub> (Biltz, B 1905, **38** 127)

tubidium hydrogen sulphide, RbHS Deliquescent, very sol in  $\rm H_2O$  (Biltz, anorg 1906, 48 300)

tubidium copper tetrasulphide, RbCuS<sub>4</sub>
Decomp very slowly in the air
Sl sol in H<sub>2</sub>O
Very slowly decomp by cold conc, more apidly by hot conc, and still more rapidly by dil HCl, H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub> Sl sol in Icohol (Biltz, B 1907, 40 978)

#### Ruthenic acid

Sarium ruthenate,  $BaRuO_4+H_2O$ Ppt (Debray and Joly, C R 106 1494)

'alcium ruthenate, CaRuO<sub>4</sub> Ppt

Wagnesium ruthenate, MgRuO<sub>4</sub>
Ppt

Potassium ruthenate, K<sub>2</sub>RuO<sub>4</sub>+H<sub>2</sub>O Very sol in H<sub>2</sub>O

#### Derruthenic acid

Potassium perruthenate, KRuO<sub>4</sub>
Sl sol in H<sub>2</sub>O (Debray and Joly, C R
106 1494)

sodium perruthenate, NaRuO<sub>4</sub>+H<sub>2</sub>O Sl sol in H<sub>2</sub>O

# luthenium, Ru

Not attacked by acids, except aqua regia, which dissolves it only very slightly (Claus, logg 65 218)

Ruthenium ammonium comps Sec Ruthenodiamine comps, etc

Rubra tribromide, Rubra

Sol in  $H_2O$  Solution decomposes slowly on standing, but a spidly on heating (Gut mer, Z among 1905, **45** 178)

Ruthenium tribromide, ammonia, 2RuBr<sub>3</sub>, 7NH<sub>3</sub>

Sol in II<sub>2</sub>O and ammonia with slight warming
Insol in alcohol (Gutbier, Z anorg

1905, **45** 182)

Ruthenium dichloride, RuCl<sub>2</sub>

Insol in acids, even in aqua regia Slattacked by acids Traces are dissolved by poiling with cone KOH+Aq

 $+xH_2O$  Known only in aqueous solution Claus, A 59 238)

Ruthenium trichloride, RuCl3

Deliquescent Sol in  $H_2O$  and alcohol, but solution is decomp by heating into  $Ru_2O_3$  and HCl (Claus)

Pure RuCl<sub>3</sub> is insol in cold H<sub>2</sub>O, mineral, or organic acids Slowly decomp by boilin H<sub>2</sub>O Insol in CCl<sub>4</sub>, CS<sub>2</sub>, CHCl<sub>3</sub>, PCl<sub>3</sub>, or ether Slowly sol in hot absolute alcohol, but decomp into Ru(OH)Cl<sub>2</sub> by 95% alcohol (Joly, C R 114 292)

Hydroscopic Sol in H<sub>2</sub>O, decomp at 50°

Sol in alcohol (Gutbier, Z anorg 1905, 45 174)

See also Ruthenium nitrosochloride

Ruthenium tetrachloride, RuCl<sub>4</sub>
Sol in H<sub>2</sub>O and alcohol (Claus)

Ruthenium trichloride with MCl See Chlororuthenite, M

Ruthenium tetrachloride with MCl See Chlororuthenate, M

Ruthenium sesquihydroxide, Ru<sub>2</sub>O<sub>6</sub>H<sub>6</sub>
Sol in acids, insol in alkalies Less sol

in NH<sub>4</sub>OH+Aq than any other oxide of the Pt metals (Claus)

Ruthemum dihydroxide, RuO<sub>4</sub>H<sub>4</sub>+3H<sub>2</sub>O
Sol in acids and alkalies (Claus, A 59
237)

Contains NO Joly, C R 107 994)

Ruthenium triodide, RuI3

Ppt (Claus) Insol in  $H_2O$ , KI+Aq, and alcohol (Gutbier, Z anorg 1905, 45 181)

Ruthenium truodide ammonia, 2RuI<sub>3</sub>, 7NH<sub>3</sub>

Sol in H<sub>2</sub>O and ammonia with slight warming

Insol in alcohol (Gutbier, Z anoig 1905, **45** 182)

Ruthenium nitrosochloride,  $RuCl_3(NO) + H_2O$ , and  $5H_2O$ 

Slowly sol in cold, easily in hot  $\rm H_2O$  (Joly, C R 108 855)

Ruthenium dihydronitrosochloride, NO Ru<sub>2</sub>H<sub>2</sub>Cl<sub>3</sub>, 2HCl

Sol in H<sub>2</sub>O (Brizard, A ch 1900, (7) **21** 353)

Ruthenium silver nitrosochloride, NO Ru<sub>2</sub>H<sub>2</sub>Cl<sub>3</sub>, 2HCl, 3AgCl

Ppt (Brizard, A ch 1900, (7) 21, 357)

Ruthenium nitrososesquioxide,  $Ru_2O_3(NO)_2 + 2H_2O$ 

Ppt (Joly, C R 108 854)

Ruthenium dihydronitrosohydroxide, NO Ru<sub>2</sub>H<sub>2</sub>(OH)<sub>3</sub>+2H<sub>2</sub>O

Sl sol in cold H<sub>2</sub>O with decomp (Brizard, A ch 1900, (7) 21 349)

Ruthenium dihydronitrosooxychloride, NO Ru<sub>2</sub>H<sub>2</sub>Cl<sub>2</sub>OH+2H<sub>2</sub>O Ppt (Brizaid, A ch 1900, (7) 21 349)

Ruthenium monoxide, RuO

Insol in acids (Claus, A 59 236)

Ruthenium sesquioxide, Ru<sub>2</sub>O<sub>3</sub>
Insol in acids Mixture of Ru and RuO<sub>2</sub>
(Debray and Joly, C R 106 1494)
See Ruthenium nitrososesquioxide

Ruthenium dioxide, RuO<sub>2</sub>
Insol in acids (Debray and Joly)

Ruthenium trioxide, RuO<sub>3</sub>
"Ruthenic acid" Known only in its salts

Ruthenium tetroxide, RuO<sub>4</sub>
Rather difficultly and slowly sol in H<sub>2</sub>O

(Claus)
Decomp in aqueous solution into Ru<sub>2</sub>O<sub>5</sub>+
2H<sub>2</sub>O (Debray and Joly)

Ruthenium pentoxide, Ru<sub>2</sub>O<sub>5</sub>
(Debray and Joly, C R **106** 1494)
+2H<sub>2</sub>O Ppt (Debray and Joly)

Ruthenium heptoxide,  $Ru_2O_7$  "Perruthenic acid" Known only in its salts

Ruthenium oxide, Ru<sub>4</sub>O<sub>0</sub> (Debray and Joly)

Ruthenium oxychloride, Ru(OH)Cl<sub>2</sub>
Very sol in H<sub>2</sub>O, but decomp by an excess (Joly, C R 114 293)

Ruthenium silicide, RuSi

Insol in boiling acids, slowly attacked by a mixture of fused KHSO<sub>4</sub> and KNO<sub>3</sub> (Moissan, C R 1903, **137** 231)

Ruthenium trisulphide, RuS<sub>3</sub>
Ppt (Antony, Gazz ch it 1900, **30** 539)

Ruthenomonamine hydroxide, Ru(OH)<sub>2</sub>(NH<sub>8</sub>)<sub>2</sub>+4H<sub>2</sub>O See Ruthenosamine hydroxide

Ruthenodiamine carbonate, Ru(N<sub>2</sub>H<sub>6</sub>)<sub>2</sub>CO<sub>3</sub>+5H<sub>2</sub>O

Easily sol in  $\rm H_2O$  Insol in alcohol (Claus)

Ruthenodramine chloride, Ru(N<sub>2</sub>H<sub>6</sub>Cl)<sub>2</sub>+3H<sub>2</sub>O

Not very sol in cold, easily sol in hot H<sub>2</sub>O Insol in alcohol See Ruthenonitrosodramine comps

—— mercuric cbloride, Ru(N<sub>2</sub>H<sub>5</sub>Cl)<sub>2</sub>, HgCl<sub>2</sub> Nearly insol in cold, sol in hot H<sub>2</sub>O (Gibbs, Sill Am J (2) **34**, 350)

—— hydroxide, Ru(N<sub>2</sub>H<sub>6</sub>OH)<sub>2</sub> Known only in aqueous solutron

—— nitrate, Ru(N<sub>2</sub>H<sub>6</sub>NO<sub>3</sub>)<sub>2</sub>+2H<sub>2</sub>O Somewhat difficultly sol in cold, easily in hot H<sub>2</sub>O Insol in alcohol

—— sulphate, Ru(N<sub>2</sub>H<sub>6</sub>)<sub>2</sub>SO<sub>4</sub>+4H<sub>2</sub>O Moderately sol in H<sub>2</sub>O Insol in alcohol (Claus)

Ruthenocyanhydric acid, H<sub>4</sub>Ru(CN)<sub>6</sub>

Easily sol in  $\rm H_2O$  and alcohol Less sol in ether (Claus, J B 1855 444)

Potassium ruthenocyanide, K<sub>4</sub>Ru(CN)<sub>6</sub>+ 3H<sub>2</sub>O Sl efflorescent Very sol in H<sub>2</sub>O, sl sol in dil alcohol (Claus)

Ruthenonitrosodiamine bromide, Ru(NO)(NH<sub>3</sub>)<sub>4</sub>Br<sub>3</sub>

SI sol in H<sub>2</sub>O (Joly, C R 111 969) Ru(NO)OH(NH<sub>3</sub>)<sub>4</sub>Br<sub>2</sub> Less sol than cor responding chloride (Joly, C R 108 300)

--- chloride, Ru(NO)(NH<sub>3</sub>)<sub>4</sub>Cl<sub>3</sub>

 $\begin{array}{l} \mathrm{Ru}(\mathrm{NO})(\mathrm{NH_3})_4\mathrm{Cl_3} + 2\mathrm{H_2O} = \\ \mathrm{Ru}(\mathrm{NO})(\mathrm{OH})(\mathrm{NH_3})_4\mathrm{Cl_2}, \quad \mathrm{HCl} + \mathrm{H_2O} \quad (?) \\ \mathrm{Very\ sol\ in\ H_2O} \quad (\mathrm{Joly}, \ \mathrm{C\ R} \quad \mathbf{111} \quad 969\ ) \end{array}$ 

Scarcely sol in boiling H<sub>2</sub>O (Jolv, C R 108 1300)

Ru(NO)(NH<sub>3</sub>)<sub>4</sub>Cl<sub>3</sub>, PtCl<sub>4</sub> Ppt (Jolv, C R **111** 969)

-- 10dide,  $Ru(NO)(NH_3)_4I_3$ 

Sl sol m  $\rm H_2O$  (Joly, C R 111 969) Ru(NO)OH(NH<sub>3</sub>)<sub>4</sub>I<sub>2</sub> Less sol than the corresponding bromide (Joly, C R 108 1300)

— nitrate, Ru(NO)(NH<sub>3</sub>)<sub>4</sub>(NO<sub>3</sub>)<sub>3</sub>

More sol in H<sub>2</sub>O than

| More sol in  $H_2O$  than  $Ru(NO)(OH)(NH_3)_4(NO_3)_2$  (Joly, C F | 111 969)

Ru(NO)OH(NH<sub>3</sub>)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub> Sl sol in cold H<sub>2</sub>O, insol in conc HNO<sub>3</sub>+Aq (Joly, C R **08** 1300)

Ruthenonitrosodiamine sulphate,  $[Ru(NO)(NH_3)_4]_2(SO_4)_3 + 10H_2O$ Sl sol m  $H_2O$  (Joly, C R 111 969) [Ru(NO)(N $H_3$ )4]4(SO4)6,  $H_2SO_4+H_2O$  Deomp by cold  $H_2O$  (Joly) Ru(NO)(OH)<sub>4</sub>(NH<sub>3</sub>)<sub>4</sub>SO<sub>4</sub>+H<sub>2</sub>O Most sol

n H<sub>2</sub>O of this class of salts (Joly, C R l**08** 1300 )

#### Ruthenonitrous acid

ruthenonitrite, **Ammonium**  $RuH_2(NO_2)_4$ 3NH<sub>4</sub>NO<sub>2</sub>+2H<sub>2</sub>O

Easily sol in H<sub>2</sub>O, practically insol in KCl+Aq (Brizard, A ch 1900, (7) 21 368)

Potassium ruthenonitrite,  $K_6Ru_2(NO_2)_{12} = 6KNO_2$ ,  $Ru_2(NO_2)_8$ Easily sol in  $H_2O$ , alcohol, or ether Gibbs, Sill Am J (2), 34 344) Sl sol in  $H_2O$  Easily sol in  $KNO_2+Aq$ Claus)  $K_4Ru_2(NO_2)_{10} = Ru_2O_2(N_2O_3)_3$ ,  $4KNO_2$ Very sol in  $H_2O$  (Joly and Vèzes, C R 109

 $K_8 Ru_2(NO_2)_{14} = Ru_2O_2(N_2O_3)_2, 8KNO_2$  SI iol in H<sub>2</sub>O Sol in cold dil acids (Joly

ind Vezes)  $Ru_2H_2(NO_2)_4$ ,  $3KNO_2+4H_2O$  Very sol n H<sub>2</sub>O Aqueous solution decomp sl on Almost insol in conc KCl+ ong boiling Aq (Brizard, C R 1899, 129 216)

oilver ruthenonitrite, NO Ru<sub>2</sub>H<sub>2</sub>(NO<sub>2</sub>)<sub>4</sub>,  $3 \text{AgNO}_2 + 2 \text{H}_2 \text{O}$ Ppt (Brizard, A ch 1900, (7) 21 368)

Sodium ruthenonitrite, Ru<sub>2</sub>(NO<sub>2</sub>)<sub>6</sub>, 4NaNO<sub>2</sub>+

Very sol in H<sub>2</sub>O without decomp (Joly, C R 1894, **118** 469)

Ruthenosamine hydroxide,  $Ru(NH_3OH)_2+4H_2O(?)$ Very deliquescent, and sol in  $H_2O$  (Claus)

Samarium, Sm

The element has not been isolated

Samarium bromide, SmBr<sub>3</sub>+6H<sub>2</sub>O Very deliquescent (Cleve)

Samarium carbide, SmC<sub>2</sub> Decomp by water and acids (Moissan, C R 1900, 131 925)

Samarium dichloride, SmCl<sub>2</sub>

Decomp by H<sub>2</sub>O with liberation of H<sub>2</sub> and formation of samarium oxide and samarium oxychloride Insol in CS2, CHCl3, benzene, abs alcohol, pyridine and toluene (Matignon, C R 1906, 142 85)

Samarium trichloride, SmCl<sub>3</sub>

The anhydrous salt is very hydroscopic and easily sol in H<sub>2</sub>O (Matignon, C R 1902, **134** 1309)

Very sol ın H<sub>2</sub>O Very sol in abs alcohol 638 g are sol in 100 grams pyridine at ord temp, insol in quinoline (Matignon, A ch 1906, (8) 8 406) +3H<sub>2</sub>O Deliquescent

Samarium chloride ammonia, SmCl<sub>3</sub>+NH<sub>3</sub>,  $+2NH_{3}$ ,  $+3NH_{3}$ ,  $+4NH_{3}$ ,  $+5NH_{3}$ ,  $+8NH_{8}$ ,  $+95NH_{3}$ ,  $+115NH_{3}$ (Matignon, C R 1905, 140 143)

Samarium fluoride, SmF<sub>3</sub>+½H<sub>2</sub>O

Precipitate Insol in H2O and dil acids, (Cleve)

Samarium iodide, SmI<sub>3</sub> (Matignon, A ch 1906, (8) 8 413)

Samarium hydroxide,  $Sm_2(OH)_6$ 

Insol in alkalies, easily sol in acids, and decomposes ammonium salts (Cleve, C N **51** 145)

Samarium oxide, Sm<sub>2</sub>O<sub>3</sub> Easily sol in acids (Cleve, C N 51 145)

Samarium peroxide, Sm<sub>4</sub>O<sub>9</sub> Precipitate (Cleve)

Samarium oxychloride, SmOCl (Matignon, A ch 1906, (8) 8 412)

Samarium sulphide, Sm<sub>2</sub>S<sub>3</sub> (Matignon, A ch 1906, (8) 8 415)

Scandium, Sc

Element has not been isolated

Scandium bromide,  $Sc_2Br_6 + 3H_2O$ , and +12H<sub>2</sub>O (Crookes, Roy Soc Proc 1908, 80 A, 518)

Scandium chloride,  $Sc_2Cl_6$ ,  $+3H_2O$ , and +12H<sub>2</sub>O (Crookes, Roy Soc Proc 1908, 80 A, 518)

Scandium hydroxide

Easily sol in conc HNO<sub>8</sub> or HCl+Aq (Crookes, Roy Soc Proc 1908, 80 A, 518)

#### Scandium oxide, Sc<sub>2</sub>O<sub>3</sub>

Easily sol by boiling with conc HNO<sub>3</sub> or HCl+Aq

## Scandium sulphide, Sc<sub>2</sub>S<sub>3</sub>

Decomp by H<sub>2</sub>O and by acids with evolution of H<sub>2</sub>S (Wirth, Z anorg 1914, 87 5)

#### Selenantimonic acid

# Sodium selenantimonate, Na<sub>8</sub>SbSe<sub>4</sub>+9H<sub>2</sub>O

Sol in 2 pts cold  $H_2O$  Insol in alcohol (Hofacker, A 107 6) Sl sol in  $H_2O$ , unstable (Pouget, A ch

### Selenantimonous ac d

1899, (7) 18 562

## Soldian amonous ac

Potassium orthoselenantimonite, K₂SbSe₃ Ppt Decomp by H₂O (Pouget, A ch 1899, (7) 18 560)

Potassium paraselenantimonite, K<sub>2</sub>Sb<sub>4</sub>Se<sub>7</sub>+ 3H<sub>2</sub>O

Sl sol in H<sub>2</sub>O, unstable (Pouget, A ch 1899, (7) **18** 560)

Sodium orthoselenantimonite, Na<sub>3</sub>SbSe<sub>3</sub>+ 9H<sub>2</sub>O

Very sol in  $\rm H_2O$  Aqueous solution on standing deposits red crystals of sodium selenantimonate,  $\rm Na_3SbSe_4+9H_2O$  (Pouget, A ch 1899, (7) 18 562)

Sodium paraselenantimonite, Na<sub>2</sub>Sb<sub>4</sub>Se<sub>7</sub> (Pouget, A ch 1899, (7) **18** 561)

# Selenic acid, H<sub>2</sub>SeO<sub>4</sub>

Very sol in H<sub>2</sub>O with evolution of heat If aqueous solution is evaporated at temp of 165°, acid has 2 524 sp gr, at temp of 267°, acid has 2 60 sp gr, at temp of 285°, acid has 2 625 sp gr Decomp to H<sub>2</sub>SeO<sub>3</sub> at higher temp (Mitscherlich, Pogg 9 623) By evaporation at 265°, acid of 2 609 sp gr containing 95% H<sub>2</sub>SeO<sub>4</sub> is obtained If brought at same temp in vacuo over H<sub>2</sub>SO<sub>4</sub>, acid of 2 627 sp gr with 97 5% H<sub>2</sub>SeO<sub>4</sub> is obtained (Fabian, A Suppl 1 243)

Sp gr of H<sub>2</sub>SeO<sub>4</sub>+Aq

| % H <sub>2</sub> SeO <sub>4</sub>                                                               | Sp gr                                                                                                                | % H <sub>2</sub> SeO <sub>4</sub>                                                            | Sp gr                                                                                                                |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 99 73<br>99 50<br>99 00<br>98 5<br>98 0<br>97 5<br>97 0<br>96 0<br>95 0<br>94 0<br>93 0<br>92 0 | 2 6083<br>2 6051<br>2 6975<br>2 5863<br>2 5767<br>2 5695<br>2 5601<br>2 5388<br>2 5163<br>2 4925<br>2 4596<br>2 4322 | 90 0<br>89 0<br>88 0<br>87 0<br>86 0<br>85 0<br>84 0<br>83 0<br>82 0<br>81 0<br>80 0<br>79 0 | 2 3848<br>2 3568<br>2 3291<br>2 3061<br>2 2795<br>2 5558<br>2 2258<br>2 1946<br>2 1757<br>2 1479<br>2 1216<br>2 0922 |
| 91 0                                                                                            | 2 4081                                                                                                               | 73 50                                                                                        | 1 9675                                                                                                               |

(Cameron and Macallan, Lond R Soc Proc 46 13) Sp gr of  $H_2SeO_4+Aq$  at 20° compared with  $H_2O$  at 4°

Wts corrected to vacuum

|   | Wts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | correct                                                                                                                                                                                                                                                                                                  | ted to va                                                                                                                                                                                                                                                               | cuum                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                              |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _ | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %<br>H <sub>2</sub> SeO <sub>4</sub>                                                                                                                                                                                                                                                                     | Sp gr                                                                                                                                                                                                                                                                   | %<br>H <sub>2</sub> SeO <sub>4</sub>                                                                            | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H2SeO4                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 1 000<br>1 005<br>1 010<br>1 015<br>1 020<br>1 035<br>1 030<br>1 035<br>1 045<br>1 050<br>1 055<br>1 060<br>1 075<br>1 080<br>1 105<br>1 100<br>1 100 | 0 9 1 56 2 12 2 92 2 4 16 4 70 5 32 8 6 6 66 6 7 34 4 7 9 2 8 5 8 6 6 66 6 7 34 11 10 20 112 88 8 114 66 117 38 114 115 20 18 18 92 11 63 20 18 18 92 11 60 22 22 6 18 18 92 11 60 22 22 6 18 21 60 22 22 6 18 21 60 22 22 6 18 21 60 22 22 6 18 21 60 22 22 6 18 21 21 21 21 21 21 21 21 21 21 21 21 21 | 1 295 1 300 1 305 1 310 1 315 1 320 1 325 1 330 1 335 1 340 1 345 1 360 1 365 1 360 1 365 1 360 1 405 1 405 1 410 1 415 1 425 1 430 1 435 1 440 1 445 1 450 1 455 1 460 1 455 1 470 1 475 1 480 1 495 1 500 1 515 1 520 1 535 1 540 1 545 1 555 1 565 1 575 1 580 1 585 | 32 08 33 50 23 34 38 26 37 34 38 26 37 38 26 38 38 39 9 50 8 8 38 39 9 50 8 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 | 1 590<br>1 605<br>1 610<br>1 605<br>1 610<br>1 615<br>1 620<br>1 625<br>1 635<br>1 640<br>1 645<br>1 655<br>1 660<br>1 665<br>1 670<br>1 705<br>1 710<br>1 705<br>1 710<br>1 725<br>1 730<br>1 735<br>1 745<br>1 750<br>1 755<br>1 765<br>1 770<br>1 775<br>1 785<br>1 880<br>1 835<br>1 840<br>1 855<br>1 840<br>1 855<br>1 850<br>1 850 | 54 92<br>55 28<br>55 62<br>55 63<br>56 60<br>56 88<br>57 70<br>58 84<br>57 70<br>58 84<br>59 24<br>59 56<br>60 36<br>60 36<br>60 36<br>61 36<br>61 36<br>61 36<br>61 36<br>61 36<br>62 24<br>63 36<br>63 36<br>64 04<br>64 42<br>64 65 28<br>65 92<br>66 66 67<br>67 72<br>68 30<br>66 68 92<br>66 66 68 92<br>67 74<br>68 87<br>68 87<br>68 87<br>68 87<br>68 87<br>69 36<br>69 36<br>69 72 |

| Sp gr of H <sub>2</sub> SeO <sub>4</sub> +Aq—Conc | chided |
|---------------------------------------------------|--------|
|---------------------------------------------------|--------|

| _                           | Sp gr 01 H <sub>2</sub> SeO <sub>4</sub> +Aq—Concluded |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                                    |                |  |
|-----------------------------|--------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------|----------------|--|
| £<br>-                      | gr                                                     | ‰<br>H₂SeO₄    | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H <sub>2</sub> SeO <sub>4</sub> | Sp gr                                              | %<br>H₂SeO₄    |  |
| 1                           | 85                                                     | 69 94          | 2 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80 25                           | 2 365                                              | 89 14          |  |
| 1                           | 90                                                     | 70 14          | 2 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80 42                           | 2 370                                              | 89 30          |  |
| 1                           | 95                                                     | 70 38          | 2 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80 68                           | 2 375                                              | 89 48          |  |
| 1                           | 100                                                    | 70 64          | 2 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80 74                           | 2 380                                              | 89 60          |  |
| 1<br>1                      | 105                                                    | 70 78          | 2 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80 96                           | 2 385                                              | 89 72          |  |
| 1                           | 10                                                     | 71 00<br>71 21 | 2 150<br>2 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81 14                           | 2 390                                              | 89 84          |  |
| ì                           | 20                                                     | 71 38          | 2 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81 36<br>81 60                  | 2 395                                              | 89 96<br>90 10 |  |
| ī                           | $\frac{25}{25}$                                        | 71 68          | 2 160<br>2 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81 80                           | 2 405                                              | 90 10<br>90 20 |  |
| ĩ                           | 30                                                     | 72 00          | 2 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82 02                           | 2 410                                              | 90 30          |  |
| 1                           | 35                                                     | 72 38<br>72 66 | 2 175<br>2 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82 02<br>82 22                  | 2 415                                              | 90 46          |  |
| 1                           | 40                                                     | 72 66          | 2 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82 44                           | 2 420                                              | 90 74          |  |
| 1                           | 45                                                     | 72 88<br>73 12 | 2 185<br>2 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82 64                           | 2 425<br>2 430                                     | 91 00          |  |
| 1                           | 50                                                     | 73 12          | 2 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82 78                           | 2 430                                              | 91 24          |  |
| 1                           | 55                                                     | 73 34          | 2 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82 96                           | 2 435                                              | 91 46          |  |
| 1<br>1                      | 60<br>65                                               | 73 54<br>73 74 | 2 200<br>2 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83 10<br>83 24                  | 2 440                                              | 91 70          |  |
| 1                           | 70                                                     | 73 98          | 2 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83 24<br>83 44                  | 2 445                                              | 92 00          |  |
| ī                           | 75                                                     | 74 22          | 2 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83 62                           | 2 450<br>2 455                                     | 92 28<br>92 56 |  |
| ī                           | 80                                                     | 74 44          | 2 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83 78                           | 2 460                                              | 92 85          |  |
| 1                           | 85                                                     | 74 66          | 2 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83 96                           | 2 465                                              | 93 02          |  |
| 1                           | 90                                                     | 74 86          | 2 225<br>2 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84 14                           | 2 470                                              | 93 20          |  |
| 1                           | 95                                                     | 75 08          | 2 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84 30                           | 2 475                                              | 93 36          |  |
| 2                           | 00                                                     | 75 28          | 2 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84 48                           | 2 480                                              | 93 68          |  |
| 2                           | 05                                                     | 75 46          | 2 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84 60                           | 2 485                                              | 94 02          |  |
| 2                           | 10                                                     | 75 66          | 2 250<br>2 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84 82<br>85 02                  | 2 400                                              | 94 32          |  |
| 2                           | $\begin{array}{c} 15 \\ 20 \end{array}$                | 75 88<br>76 06 | 2 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85 02                           | 2 495                                              | 94 48          |  |
| 2                           | 25                                                     | 76 06<br>76 14 | 2 260<br>2 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85 26<br>85 44                  | 2 500<br>2 505                                     | 94 64<br>94 80 |  |
| $\tilde{2}$                 | 30                                                     | 76 48          | $\frac{2}{2} \frac{203}{270}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85 60                           | 2 510                                              | 94 80<br>94 96 |  |
| $\tilde{2}$                 | 35                                                     | 76 68          | 2 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85 78                           | 2 515                                              | 95 32          |  |
| 2                           | 40                                                     | 76 84          | 2 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85 96                           | 2 520                                              | 95 58          |  |
| 2                           | 45                                                     | 77 08          | 2 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86 16                           | 2 525                                              | 95 86          |  |
| 2                           | 50                                                     | 77 36          | 2 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86 38                           | 2 530                                              | 96 10          |  |
| 2                           | 55                                                     | 77 50          | 2 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86 60                           | 2 535                                              | 96 41          |  |
| 2                           | 60<br>65                                               | 77 62<br>77 80 | 2 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86 82                           | 2 540                                              | 96 68<br>96 92 |  |
| 2                           | 70                                                     | 77 80          | 2 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87 04                           | 2 545                                              | 96 92          |  |
| 2                           | 75<br>75                                               | 78 06<br>78 24 | 2 310<br>2 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87 26<br>87 46                  | $\begin{vmatrix} 2 & 550 \\ 2 & 555 \end{vmatrix}$ | 97 12<br>97 30 |  |
| 2                           | 30                                                     | 78 48          | 2 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87 66                           | 2 560                                              | 97 48          |  |
| $oldsymbol{	ilde{2}}$       | 35                                                     | 78 68          | 2 325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87 84                           | 2 565                                              | 97 68          |  |
| $ar{2}$                     | 90                                                     | 78 84          | 2 325<br>2 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88 00                           | 2 570                                              | 97 94          |  |
| 2                           | 95                                                     | 79 08          | 2 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88 18                           | 2 575                                              | 98 20          |  |
| 2                           | 90                                                     | 79 28          | 2 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88 34                           | 2 580                                              | 98 46          |  |
| 2                           | )5                                                     | 79 50          | 2 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88 48                           | 2 585                                              | 98 70          |  |
| 2                           | 10                                                     | 79 68          | 2 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88 66                           |                                                    | 99 04          |  |
| 122222222222222222222222222 | 15                                                     | 79 90          | 2 125 2 130 2 135 2 140 2 145 2 150 2 150 2 165 2 165 2 170 2 175 2 185 2 190 2 195 2 200 2 215 2 220 2 230 2 235 2 240 2 245 2 250 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 255 2 260 2 260 2 265 2 275 2 280 2 265 2 275 2 285 2 295 2 300 2 305 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 2 310 | 88 82                           | 2 595                                              | 99 36          |  |
| Z                           | 20                                                     | 80 10          | 2 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88 98                           |                                                    |                |  |
|                             |                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                                    |                |  |

(L mer and Lenher J phys Chem 1909, 13 509)

ol in cone or fuming H<sub>2</sub>SO<sub>4</sub> isol in liquid NH<sub>3</sub> (Franklin, Am Ch J 898, **20** 830)

lecomp by alcohol

H<sub>2</sub>O (Cameron and Macallan, C N

232)  $2H_2O$ , and  $+6H_2O$  (?) (C and M)  $4H_2O$  (Kremann and Hofmerer, M

19 3, **29** 1117)

#### Selenates

All the neutral and acid salts of  $\rm H_2SeO_4$  are sol in  $\rm H_2O$ , except BaSeO<sub>4</sub>, SrSeO<sub>4</sub>, CaSeO<sub>4</sub>, and PbSeO<sub>4</sub>, which are nearly or quite insol in  $\rm H_2O$  or  $\rm HNO_3+Aq$ 

Aluminum selenate,  $Al_2(SeO_4)_3$ 

Resembles in every way aluminum sulphate (Berzelius)

Aluminum ammonium selenate,  $Al_2(NH_4)_2(SeO_4)_4+24H_2O$ 

More sol in H<sub>2</sub>O than the corresponding sulphate (Wohlwill, A 114 191)

Aluminum cæsium selenate,  $Al_2Cs_2(SeO_4)_4 + 24H_2O$ 

(Peterson, B 9 1563)

Much more sol in  $H_2O$  than the corresponding sulphate (Fabre, C R 105 114)

Aluminum potassium selenate,  $Al_2K_2(SeO_4)_4$ +24 $H_2O$ 

More sol in H<sub>2</sub>O than common alum (Weber, Pogg 108 615)

Aluminum rubidium selenate, Al<sub>2</sub>Rb<sub>2</sub>(SeO<sub>4</sub>)<sub>4</sub> +24H<sub>2</sub>O

(Peterson, B 9 1563)

Much more sol in  $\dot{H}_2O$  than the corresponding sulphate (Fabre, C R 105 114)

Aluminum sodium selenate, Al<sub>2</sub>Na<sub>2</sub>(SeO<sub>4</sub>)<sub>4</sub>+  $24H_2O$ 

Sl efflorescent Very sol in  $H_2O$  (Wohlwill, A 114 191)

Aluminum thallium sulphate,  $Al_2Tl_2(SeO_4)_4 + 24H_2O$ 

Sol in  $H_2O$  (Fabre, C R 105 114)

Aluminum selenate potassium sulphate, Al<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>, K<sub>2</sub>SO<sub>4</sub>+24H<sub>2</sub>O

Sol in H<sub>2</sub>O (v Gerichten, A 168 222)

| Ammonium selenate,  $(NH_4)_2SeO_4$ 

Easily sol in H<sub>2</sub>O

100 g H<sub>2</sub>O dissolve 117 g (NH<sub>4</sub>)<sub>2</sub>SeO<sub>4</sub> at 7°, 164 g at 59°, 197 g at 100° (Tutton, Proc Roy Soc 1907, 79, A 351)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 826)

Ammonium hydrogen selenate, NH<sub>4</sub>HSeO<sub>4</sub> Sol in H<sub>2</sub>O (Topsoe)

Ammonium cadmium selenate,  $(NH_4)_2SeO_4$ ,  $CdSeO_4+2H_2O$ 

Sol in  $H_2O$  (Topsoe, W A B **66, 2** 2) +6 $H_2O$  Efflorescent Very easily sol in  $H_2O$  (Topsoe) Ammonium cerous selenate,  $(NH_4)_2Ce_2(SeO_4)_4+9H_2O$ Easily sol in  $H_2O$  (John)

Ammonium chromium selenate,  $(NH_4)_2Cr_2(SeO_4)_4+24H_2O$ Sol in  $H_2O$  (Fabre, C R 105 114)

Ammonium coboltous selenate, (NH<sub>4</sub>)<sub>2</sub>SeO<sub>4</sub>, CoSeO<sub>4</sub>+6H<sub>2</sub>O

Easily sol in H<sub>2</sub>O (Topsoë)

Ammonium cupric selenate, (NH<sub>4</sub>)<sub>2</sub>SeO<sub>4</sub>, CuSeO<sub>4</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Topsoë)

Ammonium didymium selenate, (NH<sub>4</sub>)<sub>2</sub>SeO<sub>4</sub>,

 $D_{12}(SeO_4)_3+6H_2O$ Easily sol in  $H_2O$  (Cleve) +10 $H_2O$  (Cleve, Bull Soc (2) **43** 363)

Ammonium erbium selenate,  $(NH_4)_2SeO_4$ ,  $Er_2(SeO_4)_3+4H_2O$ 

Easily sol in H<sub>2</sub>O (Cleve)

Ammonium ferrous selenate,  $(NH_4)_2$ Fe $(SeO_4)_2$ +6 $H_2O$ Easily sol in  $H_2O$  (Topsoë) +2 $H_2O$ 

Ammonium lanthanum selenate, (NH<sub>4</sub>)<sub>2</sub>SeO<sub>4</sub>, La<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>+9H<sub>2</sub>O Sol in H<sub>2</sub>O (Cleve)

Ammonium magnesium selenate,  $(NH_4)_2Mg(SeO_4)_2+6H_2O$ Easily sol in  $H_2O$  (Topsoe)

Ammonium manganous selenate,  $(NH_4)_2SeO_4$ ,  $MnSeO_4+6H_2O$ Not deliquescent Easily sol in  $H_2O$ (Topsoe)

Ammonium nickel selenate,  $(NH_4)_2SeO_4$ ,  $NiSeO_4+6H_2O$ Sol in  $H_2O$  (Topsoe)

Ammonium samarium selenate, (NH<sub>4</sub>)<sub>2</sub>SeO<sub>4</sub>, Sm<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>+6H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Cleve)

Ammonium thallium selenate,  $(NH_4)_2SeO_4$ ,  $Tl_2(SeO_4)_3+8H_2O$ Sol in  $H_2O$  (Fortini, C C 1903, II 706)

Ammonium uranyl selenste,  $(NH_4)_2SeO_4$ ,  $(UO_2)SeO_4+2H_2O$ Easily sol in  $H_2O$  (Sendtner)

Ammonium yttrium selenate, (NH<sub>4</sub>)<sub>2</sub>SeO<sub>4</sub>, Y<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>+6HO Very sol in H<sub>2</sub>O (Cleve)

Ammonium zinc selenate,  $(NH_4)_2SeO_4$ ,  $ZnSeO_4+6H_2O$ Sol in  $H_2O$  (Topsoe)

Antimony selenate

Insol in H<sub>2</sub>O Not very sol in acids Sol in H<sub>2</sub>SeO<sub>4</sub> (Cameron and Macallan)

Barrum selenate, BaSeO4

Somewhat more sol in H<sub>2</sub>O and dil acids than BaSO<sub>4</sub> (Rose) 100 ccm H<sub>2</sub>O dissolve 118 mg in the cold, and 138 mg at 100° (Petersson, Z anal 12 287)

(Petersson, Z anal 12 287)
Not decomp by H<sub>2</sub>SO<sub>4</sub> Insol in HNO<sub>3</sub>+
Aq 'Berzell a' but decomp by solution of
a li ( iben') - at ordinary temp
Very slowly decomp by HCl+Aq (Rose,
Pogg 95 426)

Bismuth selenate

Insol in, and not decomp by cold or hot  $H_2O$  (Cameron and Macallan)

Cæsium selenate, Cs<sub>2</sub>SeO<sub>4</sub>

Sol in H<sub>2</sub>O (Petersson, B 9 1561)

100 g H<sub>2</sub>O at 12° dissolve 244 8 g Cs<sub>2</sub>SeO<sub>4</sub>
(Tutton, Chem Soc 1897, 71 850)

Sp gr of Cs<sub>2</sub>SeO<sub>4</sub>+Aq at 20° compared with H<sub>2</sub>O at 4°, containing

% Cs<sub>2</sub>SeO<sub>4</sub>

45 94

Sp gr 1 5841

1 7432

Sp gr 1 5841 1 7432 (Tutton) Cæsium hydrogen selenate, CsHSeO4

Ppt Very hygroscopic (Norris, Am Ch J 1901, 26 322)

Cæsium chromic selenate,  $Cs_2Cr_2(SeO_4)_4 + 24H_2O$ Sol in  $H_2O$  (Fabre, C R 105 114)

Cæsium cobaltous selenate, Cs<sub>2</sub>Co(ScO<sub>4</sub>) + 6H<sub>2</sub>O
Sol in H<sub>2</sub>O (Topsoe)

Cæsium indium selenate, CsIn(SeO<sub>4</sub>)<sub>2</sub>-1 12H<sub>2</sub>O Efflorescent, sol in H<sub>2</sub>O (Matheis, J Am Chem Soc 1908, **30** 215)

Cæsium iron (ferric) selenate, C<sub>52</sub>F e<sub>2</sub>(SeO<sub>4</sub>) +24H<sub>2</sub>O

Sl sol in H<sub>2</sub>O (Roncogliolo, Gazz cl it 1905, **35** (2) 553)

Cæsium magnesium selenate,  $C_{92}SeO$ MgSeO<sub>4</sub>+6H<sub>2</sub>O (Tutton, Chem Soc 1905, **87**, 1163)

Cæsium zinc selenate, Cs<sub>2</sub>Zn(SeO<sub>4</sub>)<sub>2</sub>+6H<sub>2</sub>C (Tutton, Zeit Kryst 1900, **33** 14)

- ( dmium selenate, CdSeO<sub>4</sub>+2H<sub>2</sub>O Very sol in H<sub>2</sub>O (v Hauer, W A B 39 2 ))
- ( dmium potassium selenate, CdSeO4, K2SO4  $+2H_2O$ Sol in H<sub>2</sub>O, can be recrystallized without

c omp (v Hauer, W A B 54 209)

- ( lcium selenate, CaSeO<sub>4</sub>+2H<sub>2</sub>O
- Less sol in hot than in cold H<sub>2</sub>O (v I uer, J pr 80 214)
  - Sat CaSeO4+Aq contains at
- $20^{\circ}$ 67°  $+5^{\circ}$ 37° 73 76 68 5 1% CaSeO4 : 4 (Étard, A ch 1894, (7) 2 551)
- C rous selenate,  $Ce_2(SO_4)_3 + 6H_2O$ ,  $9H_2O$ , or 12H<sub>2</sub>O

More sol in cold than hot H<sub>2</sub>O (Jolin )  $+4\mathrm{H}_2\mathrm{O}$ Very easily in cold, sl sol in hot (Cingolani, C C 1908, I 1606)

Stable above 100° Stable at 92-100° +5H<sub>2</sub>OStable at 80-92° +7H<sub>2</sub>O Stable at 50-78° +8H<sub>2</sub>O Stable at 34-40° +10H₂O

+11H<sub>2</sub>O Stable at 12-28° +12H<sub>2</sub>O Stable at 0-12° (Cingolani, C

A 1908 2658)

Solubility of Ce<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub> in H<sub>2</sub>O at t° salt calculated as anhydrous Ce2(SO4)8 dissolved in 100 cc H<sub>2</sub>O)

|                           | L sing<br>Ce <sub>2</sub> (SeO4) <sub>3</sub><br>+11H O | Using<br>Ce (SeO4)3<br>+4H2O   | t                                                      | Lsing<br>Ce (SeO <sub>4</sub> ):<br>+11H O | Cer(SeO <sub>4</sub> ):<br>+4H <sub>2</sub> O |
|---------------------------|---------------------------------------------------------|--------------------------------|--------------------------------------------------------|--------------------------------------------|-----------------------------------------------|
| 1 6 1 6 2 8 2 8 2 4 6 4 9 | 37<br>33 84<br>33 15<br>32 16                           | 39 55<br>36 9<br>33 2<br>31 89 | 60°<br>60 8<br>78 2<br>80 5<br>91<br>95 4<br>95<br>100 | 13 68<br>5 52<br>2 02<br>1 53              | 13 12<br>4 56<br>1 785<br>2 513               |

(Cingol ini, l c)

- C ous potassium selenate, C(2(SeO<sub>4</sub>)<sub>3</sub>, 5K ScO4 fore sol in II () than the corresponding suphate (John)
- C ous sodium selenate, Cc2(ScO4)3, N 12SeO4 +5H<sub>2</sub>O uite sol in H<sub>2</sub>O (Jolin)
- Cl omic potassium selenate, Cr K<sub>2</sub>(SeO<sub>4</sub>)<sub>4</sub>+ 24H<sub>2</sub>O esembles the sulphate in every particular | 1907, I 86)

Chromic rubidium selenate, Cr<sub>2</sub>Rb<sub>2</sub>(SeO<sub>4</sub>)<sub>4</sub>+ 24H<sub>2</sub>O Sol in H<sub>2</sub>O

Chromic sodium selenate, Cr<sub>2</sub>Na<sub>2</sub>(SeO<sub>4</sub>)<sub>4</sub>+ 24H<sub>2</sub>O

Sol in H<sub>2</sub>O (Fabre, C R 105 114)

Chromic thallous selenate, Cr<sub>2</sub>Tl<sub>2</sub>(SeO<sub>4</sub>)<sub>4</sub>+  $24H_2O$ Sol in H<sub>2</sub>O (Fabre, C R 105 114)

Chromic selenate potassium sulphate,

 $Cr_2(SeO_4)_3$ ,  $K_2SO_4 + 24H_2O$ Sol in H<sub>2</sub>O (v Gerichten)

Cobaltous selenate, basic, 4CoO, 3SeO<sub>3</sub>+ H<sub>2</sub>O Insol in H<sub>2</sub>O, sol in acids (Bogdan, Bull

Soc (3) 9 586) Insol in H<sub>2</sub>O Sol in

 $Co_3(OH)_2(SeO_4)_3$  Insol in  $H_2O$  acids (Bogdan, C C **1895** 630)

Cobaltous selenate, CoSeO<sub>4</sub>+5H<sub>2</sub>O

Easily sol in  $H_2O$  (Topsoë) Easily sol in H<sub>2</sub>O (Topsoë) +6H<sub>2</sub>OEfflorescent Extremely sol in  $+7H_2O$ (Topsoe) 8H<sub>2</sub>O Very unstable  $H_2O$ +18H<sub>2</sub>O(Copaux, A ch 1905, (8) 6 553)

Cobaltous potassium selenate, CoSeO<sub>4</sub>,  $K_2SeO_4+6H_2O$ 

More sol in H2O than corresponding sulphate (v Hauer, W A B 39 837)

Cobaltous rubidium selenate, CoRb<sub>2</sub>(SeO<sub>4</sub>)<sub>2</sub> +6H<sub>2</sub>OSol in H<sub>2</sub>O (Topsoe)

Cobaltous thallous selenate, CoTl<sub>2</sub>(SeO<sub>4</sub>)<sub>2</sub>+  $6H_{2}O$ Sol in H<sub>2</sub>O (Topsoe)

Cupric selenate, basic, 3CuO, 2SeO<sub>3</sub>+4H<sub>2</sub>O Insol in H<sub>2</sub>O, sol in acids (Bogdan, Bull Soc (3) 9 588) +5H<sub>2</sub>O Sl sol in cold H<sub>2</sub>O (Metzner,

C R 1898, 127 55)

Cupric selenate, CuSeO<sub>4</sub>+5H<sub>2</sub>O

Solubility in H<sub>2</sub>O — 257 g salt in 1 l sat solution at 15° " 35° " "11" 346 435 " " " 11 " " " 55° Aq solution decomp at 70° (Metzner, C R 1898, 127 55)

(Metzner)  $+H_2O$ , and  $+2H_2O$ 

Cupric hydrazine selenate, N2H4 H2SeO4,  $CuSeO_4 + \frac{1}{2}H_2O$ 

Decomp in aq solution (Rimini, C C

Cupric magnesium selenate,  $CuMg_3(SeO_4)_4+28H_2O$ 

Sol in H<sub>2</sub>O (Wohlwill)

Cupric mckel selenate, CuSeO<sub>4</sub>, NiSeO<sub>4</sub>+ 14H<sub>2</sub>O

Sol in H<sub>2</sub>O (Wohlwill)

Cupric potassium selenate,  $CuSeO_4$ ,  $K_2SeO_4+6H_2O$ 

Sl sol in H<sub>2</sub>O (Topsoe)

Cupric zinc selenate, CuZn<sub>3</sub>(SeO<sub>4</sub>)<sub>4</sub>+28H<sub>2</sub>O Sol in H<sub>2</sub>O (Wohlwill)

Cupric selenate ferrous sulphate, 2CuSeO<sub>4</sub>, 3FeSO<sub>4</sub>+35H<sub>2</sub>O Sol in H<sub>2</sub>O (Wohlwill)

Cupric selenate magnesium sulphate, CuSeO<sub>4</sub>, 3MgSO<sub>4</sub>+28H<sub>2</sub>O Sol in H<sub>2</sub>O (Wohlwill)

Cupric selenate zinc sulphate, CuSeO<sub>4</sub>, 3ZnSO<sub>4</sub>+28H<sub>2</sub>O
Sol in H<sub>2</sub>O (Wohlwill)

Didymium selenate, Di<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>+5H<sub>2</sub>O, and 6H<sub>2</sub>O

Sol in  $H_2O$ +8 $H_2O$  Easily sol in  $H_2O$  (Cleve) +10 $H_2O$  Sol in  $H_2O$  (Cleve)

Didymium potassium selenate,  $D_{12}(SeO_4)_8$ ,  $K_2SeO_4+9\hat{H}_2O$ Not deliquescent Easily sol in  $H_2O$ 

Didymium sodium selenate, Di<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>,
Na<sub>2</sub>SeO<sub>4</sub>+4H<sub>2</sub>O
Easily sol in H<sub>2</sub>O (Cleve)

Dysprosium selenate,  $Dy_2(SeO_4)_3+8H_2O$ Easily sol in  $H_2O$ , insol in alcohol (Jantsch, B 1911, 44 1275)

Erbium selenate,  $Er_2(SeO_4)_3+8H_2O$ , and  $9H_2O$ 

Easily sol in H<sub>2</sub>O (Topsoe)

(Cleve)

Erbium potassium selenate, Er<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>, K<sub>2</sub>SeO<sub>4</sub>+8H<sub>2</sub>O Easily sol in H O (Cleve)

Gadolinium selenate,  $Gd_2(SeO_4)_3+10H_2O$ Decomp in the air (Benedicks, Z anorg 1900, 22 410)

Gadolinium potassium selenate,  $Gd_2(SeO_4)_8$ ,  $3K_2SeO_4+4H_2O$ Sol in  $H_2O$  (Benedicks, Z anorg 1900, 22 412)

Glucinum selenate, GlSeO<sub>4</sub>+4H<sub>2</sub>O Very sol in H<sub>2</sub>O (Atterberg)

Gold (auric) selenate, Au<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>
Insol in H<sub>2</sub>O Sol in hot conc H<sub>2</sub>SeO<sub>4</sub>+
Aq Somewhat sol in H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub>+
Aq Decomp by HCl+Aq (Lenher, J Am
Chem Soc 1902, 24 355)

Indium selenate, In<sub>2</sub>(SeO<sub>4</sub>)<sub>2</sub>+10H<sub>2</sub>O Hydroscopic, easily sol in H<sub>2</sub>O (Mathers, J Am Chem Soc 1908, **30** 214)

Iron (ferrous) selenate,  $FeSeO_4+5H_2O$ Sol m  $H_2O$  (Wohlwill, A 114 169)  $+7H_2O$  Efflorescent, and sol m  $H_2O$ (Topsoë)

Iron (ferrous) potassium selenate, FeSeO<sub>4</sub>, K<sub>2</sub>SeO<sub>4</sub>+6H<sub>2</sub>O

Easily sol in  $H_2O$  Solution decomp somewhat on standing (Topsoe)

Iron (ferric) rubidium selenate, Rb<sub>2</sub>Fe<sub>2</sub>(SeO<sub>4</sub>)<sub>4</sub> +24H<sub>2</sub>O
Sl sol in H<sub>2</sub>O (Roncogliolo, Gazz ch it 1905, **35** (2) 553)

Iron (ferric) selenate potassium sulphate, Fe<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>, K<sub>2</sub>SO<sub>4</sub>+24H<sub>2</sub>O Sol in H<sub>2</sub>O (v Gerichten)

Lanthanum selenate,  $La_2(SeO_4)_3+6H_2O$ , and  $10H_2O$ Easily sol in cold  $H_2O$  (Cleve) +12 $H_2O$  (Frerichs and Smith, A 191 355)

Lanthanum potassium selenate, La<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>, K<sub>2</sub>SeO<sub>4</sub>+9H<sub>2</sub>O Quite sol in H<sub>2</sub>O (Cleve)

Lanthanum sodium selenate, La<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>, Na<sub>2</sub>SeO<sub>4</sub>+4H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Cleve)

Lead selenate, basic, 2PbO, SeO<sub>3</sub>

Decomp by acids with separation of PbSeO<sub>4</sub>

3PbO, PbSeO<sub>4</sub>+H<sub>2</sub>O Ppt (Stromholm, Z anorg 1904, 38 443)

Lead selenate, PbSeO<sub>4</sub>
Insol in H<sub>2</sub>O or HNO<sub>3</sub>+Aq (Schafarik, W A B **47** 256)
Min Kerstenite

Lithium selenate, I.i.2SeO.4+H2O

Not deliquescent Easily sol in H2O
(Topsoe)

agnesium selenate, MgSeO<sub>4</sub>+6H<sub>2</sub>O Solubility resembles closely that of MgSO<sub>4</sub> opsoe)

agnesium potassium selenate,  $MgK_2(SeO_4)_2$ 

Easily sol in H<sub>2</sub>O (Topsoe)

agnesium rubidium selenate, MgSeO4,  $Rb_2SeO_4+6H_2O$ (Tutton, Chem Soc 1905, 87 1163)

anganous selenate, MnSeO.+2H2O Easily sol in H<sub>2</sub>O (Topsoe)  $+5H_2O$ Easily sol in H<sub>2</sub>O Solution (Topsoe) comp on warming or standing

anganous potassium selenate, K<sub>2</sub>SeO<sub>4</sub>,  $\overline{\text{MnSeO}}_{4}$ 

Not deliquescent Easily sol in H<sub>2</sub>O (opsoe)

ercurous selenate, 6Hg<sub>2</sub>O, 5SeO<sub>3</sub>

Very sl sol in H<sub>2</sub>O Sl attacked by boil-1 g HNO<sub>3</sub> Insol in HCl+Aq (Kohler, pgg 89 146) Hr.SeO<sub>4</sub> Very sl sol in H<sub>2</sub>O, insol in Davy C N 44

ercuric selenate, basic, 6HgO, 2SeO<sub>3</sub>+H<sub>2</sub>O Insol in H<sub>2</sub>O, or cold HNO<sub>3</sub>+Aq Sol in t HNO<sub>3</sub> or HCl+Aq (Kohler) HgSeO<sub>4</sub>, 2HgO Sol in 10,330 pts H<sub>2</sub>O 'ameron and Davy)

ercuric selenate, HgSeO<sub>4</sub>+H<sub>2</sub>O

Decomp by H<sub>2</sub>O with formation of basic (Kohler) Sol in H<sub>2</sub>SeO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, or HCl+Aq, l it decomp by H<sub>2</sub>O to 2HgO, HgSeO<sub>4</sub> (ameron ind Davy, C N 44 63)

ckel selenate, NiSeO4+6H2O Very easily sol in HO (v Hauer, W A **39** 305)

ckel potassium selenate, NiScO<sub>4</sub>, K<sub>2</sub>SeO<sub>4</sub>+  $6H_0O$ 

Sol in  $H_2()$  (Lopsoe)

ckel thallium selenate, NiSeO<sub>4</sub>,  $\Gamma$ l<sub>2</sub>SeO<sub>4</sub>+ 6H<sub>2</sub>O

Sol in H<sub>2</sub>() (Petersson)

#### atınum selenate

Sol in boiling H<sub>2</sub>O Sol in HCl+Aq sol in alcohol (Cameron and Macallan, and R Soc Proc 46 13)

Potassium selenate, K<sub>2</sub>SeO<sub>4</sub>

Nearly equally sol in cold and hot H<sub>2</sub>O (Mitscherlich, Pogg 9 623) 100 g H<sub>2</sub>O dissolve 110 5 g K<sub>2</sub>SeO<sub>4</sub> at 0° 1128 g at 20°, 1222 g at 100° (Étard, C R 1888, 106 741)

Sat K<sub>2</sub>SeO<sub>4</sub>+Aq contains at

---5° --20° 515 517 52 0% K.SeO4,

18° 97° 52654 9% K<sub>2</sub>SeO<sub>4</sub> (Etard, A ch 1894, (7) 2 550)

100 g H<sub>2</sub>O at 12° dissolve 115 0 g K<sub>2</sub>SeO<sub>4</sub> (Tutton, Chem Soc 1897, 71 850) Sp gr of K<sub>2</sub>SeO<sub>4</sub>+Aq at 20° compared with H<sub>2</sub>O at 4°, containing % K<sub>2</sub>SeO<sub>4</sub> 35 76 41 79 50 00 Sp gr 1 3591 1 4385 1 5590 (Tutton, Chem Soc 1897, 71 851)

Potassium hydrogen selenate, KHSeO<sub>4</sub> Sol in H<sub>2</sub>O

Potassium praseodymium selenate, 3K<sub>2</sub>SeO<sub>4</sub>,  $Pr_2(SeO_4)_8+4H_2O$ Sl sol in H<sub>2</sub>O (von Scheele, Z anorg 1898, 18 361)

Potassium samarium selenate, K<sub>2</sub>SeO<sub>4</sub>,  $Sm_2(SeO_4)_3+6H_2O$ Easily sol in H<sub>2</sub>O (Cleve, Bull Soc (2) **43** 166)

Potassium sodium selenate, 3K<sub>2</sub>SeO<sub>4</sub>,  $Na_2SeO_4$ Sol in H<sub>2</sub>O (Topsoe)

Potassium thallium selenate, K<sub>2</sub>SeO<sub>4</sub>,  $Tl_2(SeO_4)_3 + 8H_2O$ Very sol in dil acids (Fortini, C C 1903, II 706)

Potassium uranyl selenate, K<sub>2</sub>SeO<sub>4</sub>,  $(UO_2)SeO_4+2H_2O$ Sl sol in cold, easily in hot H<sub>2</sub>O (Sendt-

Potassium yttrium selenate,  $K_2SeO_4$ ,  $Y_2(SeO_4)_3+6H_2O$ Very sol in H<sub>2</sub>O (Cleve)

Potassium zinc selenate, K<sub>2</sub>SeO<sub>4</sub>, ZnSeO<sub>4</sub>+  $2H_2O$ Sol in H<sub>2</sub>O (Topsoe) +6H<sub>2</sub>O Sol in H<sub>2</sub>O (Topsoe)

Potassium selenate aluminum sulphate,  $K_2SeO_4$ ,  $Al_2(SO_4)_3 + 24H_2O$ Sol in H<sub>2</sub>O (v Gerichten)

| Potassium | selenate   | chromic     | sulphate, |
|-----------|------------|-------------|-----------|
| $K_2SeO$  | 4, Cr2(SO4 | $(24H_{2})$ | )         |
| Sol in H  | 0 (v (     | derichten   | )         |

Potassium selenate ferric sulphate, K<sub>2</sub>SeO<sub>4</sub>,  $Fe_2(SO_4)_8 + 24H_2O$ 

Sol in H<sub>2</sub>O (v Gerichten)

Potassium selenate manganous sulphate,  $K_2SeO_4$ ,  $MnSO_4+6H_2O$ 

Sol in H<sub>2</sub>O (v Gerichten, A 168 225)

Potassium selenate manganic sulphate,  $K_2SeO_4$ ,  $Mn_2(SeO_4)_3 + 24H_2O$ Sol in H<sub>2</sub>O (v Gerichten)

Praseodymium selenate, Pr<sub>2</sub>(SeO<sub>4</sub>)<sub>2</sub> Sol in H<sub>2</sub>O (von Schule, Z anorg 1898, **18** 360) Sl sol in H<sub>2</sub>O, sol in H<sub>2</sub>SO<sub>4</sub>  $+8H_{\circ}O$ (von Schule)

Rubidium selenate, Rb<sub>2</sub>SeO<sub>4</sub>

Sol in H<sub>2</sub>O (Petersson) 100 g H<sub>2</sub>O at 12° dissolve 158 9 g Rb<sub>2</sub>SeO<sub>4</sub> (Tutton, Chem Soc 1897, **71** 850)

Sp gr of Rb<sub>2</sub>SeO<sub>4</sub>+Aq at 20° compared with H<sub>2</sub>O at 4°, containing 47 07 % Rb<sub>2</sub>SeO<sub>4</sub>

Śp gr 1 4688 1 5806 (Tutton)

Rubidium hydrogen selenate, RbHSeO<sub>4</sub> Sol in equal pts H2O, very hydroscopic (Norris, Am Ch J 1901, 26 321)

Rubidium zinc selenate, Rb<sub>2</sub>Zn(SeO<sub>4</sub>)<sub>2</sub>+  $6H_2O$ 

(Tutton, Zeit Kryst 1900, 33 8)

Samarium selenate, Sm<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>+8H<sub>2</sub>O More sol in  $H_2O$  than  $Sm_2(SO_4)_3$ +12H<sub>2</sub>O Efflorescent (Cleve)

Scandium selenate,  $Sc_2(SeO_4)_3+2H_2O$ , and +8H<sub>2</sub>O (Crookes, Roy Soc Proc 1908, 80, A 518)

Silver selenate, Ag<sub>2</sub>SeO<sub>4</sub>

As Ag<sub>2</sub>SO<sub>4</sub> (Mitscherlich, Pogg 12 138)

Silver selenate ammonia, Ag<sub>2</sub>SeO<sub>4</sub>, 4NH<sub>3</sub> Easily sol in H<sub>2</sub>O or NH<sub>4</sub>OH+Aq without decomp (Mitscherlich, Pogg 12 141)

#### Sodium selenate, Na<sub>2</sub>SeO<sub>4</sub>

Very sol in H<sub>2</sub>O, forming supersat solualso with 10H2O, which Cryst effloresce Maximum point of solubility is at 33° (Mitscherlich)

| <br>001404407 44 44 44 44 44 44 44 44 44 44 44 44 44 |                                                                       |                                                         |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|--|--|
| % Na <sub>2</sub> SeO <sub>4</sub>                   | Mols H <sub>2</sub> O<br>to 1 mol<br>Na <sub>2</sub> SeO <sub>4</sub> | Mols anhy<br>drous salt to<br>100 mols H <sub>2</sub> O |  |  |
| <br>4 = 4 = 4                                        | 10 50                                                                 | <b>-</b> 04                                             |  |  |

| to   | % Na <sub>2</sub> SeO <sub>4</sub> | to 1 mol<br>Na <sub>2</sub> SeO <sub>4</sub> | drous salt to<br>100 mols H <sub>2</sub> C |
|------|------------------------------------|----------------------------------------------|--------------------------------------------|
| 35 2 | 45 47                              | 1° 59                                        | 7 94                                       |
| 39 5 | 45 26                              | 12 70                                        | 7 87                                       |
| 50   | 44 49                              | 13 10                                        | 7 63                                       |
| 75   | 42 83                              | 14 00                                        | 7 14                                       |
| 00   | 42 14                              | 14 42                                        | 6 93                                       |

Solubility in H.O at to

(Funk, B 1900, 33 3697)

+10H<sub>2</sub>O Solubility in H<sub>2</sub>O at t°

| t°   | % Na <sub>2</sub> SeO <sub>4</sub> | Mols H <sub>2</sub> O<br>to 1 mol<br>Na <sub>2</sub> SeO <sub>4</sub> | Mols anhy-<br>drous salt to<br>100 mols H <sub>2</sub> O |
|------|------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|
| 0    | 11 74                              | 79 08                                                                 | 1 26                                                     |
| 15   | 25 01                              | 31 48                                                                 | 3 18                                                     |
| 25 2 | 36 91                              | 17 95                                                                 | 5 57                                                     |
| 27   | 39 18                              | 16 30                                                                 | 6 13                                                     |
| 30   | 44 05                              | 13 33                                                                 | 7 50                                                     |

(Funk)

Sp gr of sat solution at  $18^{\circ} = 1315$ (Funk)

Sodium selenate vanadate See Selenovanadate, sodium

Strontium selenate, SrSeO4

Insol in H<sub>2</sub>O or HNO<sub>3</sub>+Aq, decomp by long boiling with HCl+Aq

Tellurium selenate,  $2\text{TeO}_2$ ,  $\text{SeO}_3$ 

As sulphate (Metzner, A ch 1898, (7) **15** 203)

Thallous selenate, Tl<sub>2</sub>SeO<sub>4</sub>

Sl sol in cold, much more in hot H<sub>2</sub>O Insol in alcohol and ether (Kuhlmann)

100 g  $\rm H_2O$  dissolve 2 13 g at 93, 24 g at 12°, 10 86 g at 100° (Tutton, Proc Roy Soc 1907, 79 A, 351) 2 8 g are sol in 100 g  $\rm H_2O$  at 20°, 8 5 g at 80° (Glauser, Z anorg 1910, 66 437)

Thallous hydrogen selenate,  $HTlS_{\epsilon}O_4+$  $3H_2O$ (Oettinger)

Thallous zinc selenate,  $Tl SeO_4$ ,  $ZnSeO_4+$ 

Lasily sol in H<sub>2</sub>O, but less than the corresponding sulphate (Werther, Bull Soc **1865** 60 )

Thorum selenate,  $Th(SeO_4)_4 + 9H_2O$ 100 pts H<sub>2</sub>O dissolve 0 498 pt Th(SeO<sub>4</sub>)<sub>4</sub> at 0°, and 1 972 pts at 100° (Cleve)

Tin (stannic) selenate, basic,  $SnO(SeO_4)$ + I liquescent Sol in H<sub>2</sub>O (Ditte, C R **104** 231)

Ur: yl selenate,  $(UO_2)SeO_4$ ,  $H_2SeO_4+$ 18H<sub>2</sub>O

I ry deliquescent

 $^2$  UO<sub>2</sub>)SeO<sub>4</sub>, H<sub>2</sub>SeO<sub>4</sub>+12H<sub>2</sub>O Efflores n Sol in H<sub>2</sub>O (Sendtner, A **195** 325) Efflorescen

Ytt bium selenate, Yb<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>

∠ ihydrous  $15H_2O(?), +8H_2O$ Ppt (Cleve, Z anc g 1902, 32 145)

Ytt um selenate,  $Y_2(SeO_4)_3$ 

2 thydrous Sol in H2O with hissing and eve ition of heat (Popp)

8H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Cleve) 9H<sub>2</sub>O Efflorescent

Zir selenate,  $ZnSeO_4+5\dot{H}_2O$ 

 $\begin{array}{ccc} \xi & l & m & H_2O & (Topsoe) \\ & 6H_2O & Sol & m & H_2O \end{array}$ (Topsoe) 7H<sub>2</sub>O Sol in H<sub>2</sub>O

Se mous acid, H<sub>2</sub>SeO<sub>3</sub>

l liquescent in moist, efflorescent in dry air Very sol in cold, and in nearly every pro ortion in hot H<sub>2</sub>O Easily sol in alcohol (B<sub>1</sub> zelius)

Sp gr of H<sub>2</sub>SeO<sub>3</sub> and of H<sub>2</sub>SeO<sub>3</sub>+Aq at t° Two series of experiments

| <u>-</u>                                                                                                      |                                                      |                                                                    |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                               | t                                                    | Sp gr<br>at t°                                                     |
| O <sub>3</sub> +Aq (A) vol A+0 5 vol H <sub>2</sub> O "+1 0 " '+1 5 " '+2 0 " '+2 5 " "+3 0 '                 | 18 0<br>18 0<br>17 7<br>16 6<br>14 0<br>17 0<br>19 2 | 1 4386<br>1 3179<br>1 2337<br>1 2045<br>1 1984<br>1 1712<br>1 1600 |
| O <sub>3</sub> +Aq (B)<br>vol B+0 5 vol H <sub>2</sub> O<br>'+1 0<br>"+1 5 "<br>"+2 0 "<br>"+2 5 "<br>"+3 0 " | 15 8<br>16 5<br>13 0<br>14 2<br>17 0<br>16 5<br>14 2 | 1 4698<br>1 3191<br>1 2515<br>1 2074<br>1 1992<br>1 1793<br>1 1678 |

(de Connek, C C 1905, I 1693)

k e also Selenium droxide

l sol in liquid NH<sub>3</sub> (Gore, Am Ch J 18<sup>c</sup> , **20** 830 )

kalı selenites are sol in H<sub>2</sub>O The other net ral sclenites are insol in H<sub>2</sub>O, but sol in H1 )<sub>3</sub>+Aq, Pb, and Ag salts slowly The pratt, Chem Soc 2 65)

neutral salts are insol in HCl+Aq The acid salts of the heavy metals are sol in H<sub>2</sub>O

Aluminum selenite, basic, 4Al<sub>2</sub>O<sub>8</sub>, 9SeO<sub>2</sub>+  $36H_2O$ 

Precipitate (Nilson, Upsala 1875)

Aluminum selenite, Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>

Precipitate (Berzelius) +7H<sub>2</sub>O SI sol in H<sub>2</sub>O (Nilson) Sol

 $m H_2SeO_8 + Aq$ +3H<sub>2</sub>O Insol in H<sub>2</sub>O, sol in acids (Boutzoureano, A ch (6) 17 289)

Aluminum selenite, acid,  $Al_2O_3$ ,  $4SeO_2+$  $3H_2O$ 

(Boutzoureano)

 $2Al_2O_3$ ,  $9SeO_2+12H_2O$  Sol in  $H_2O$  (Nil-

 $Al_2O_8$ ,  $6SeO_2$  Very sol in  $H_2O$ (Berzelius )

+5H<sub>2</sub>O(Nilson) +2H<sub>2</sub>O

(Boutzoureano)

Ammonium selenite, (NH<sub>4</sub>)<sub>2</sub>SeO<sub>3</sub>

Deliquescent Very sol in H<sub>2</sub>O Precipitated from aqueous solution by al-Insol in ether cohol (Muspratt, A 70 275)

Ammonium hydrogen selenite, NH4HSeO3 Not deliquescent Sol in H<sub>2</sub>O (Berzelius)

Ammonium trihydrogen selenite,  $NH_4H_3(SeO_3)_2$ 

Deliquescent (Berzelius)

Ammonium vanadium selenite

See Vanadioselenite, ammonium

 $(UO_2)SeO_3$ Completely insol in H<sub>2</sub>O (Sendtner)

Ammonium uranyl selenite,  $(NH_4)_2SeO_3$ ,

Antimony selenite, Sb<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>, SeO<sub>2</sub> (Nilson, Bull Soc (2) 23 494)

Barium selenite, BaSeO<sub>8</sub>

Sl sol in H<sub>2</sub>O Sol in H<sub>2</sub>SeO<sub>3</sub>+Aq ın acıds (Nilson) (Nilson)  $+H_2O$ 

Barium pyroselenite, BaSe<sub>2</sub>O<sub>5</sub>

Very sl sol in cold, more in warm H<sub>2</sub>O (Berzelius)

Bismuth selenite, Bi<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>, H<sub>2</sub>SeO<sub>3</sub> (Nilson) $B_{12}(SeO_3)_3$ (Nilson)

Cadmium selenite, CdSeO<sub>3</sub>

Insol in H<sub>2</sub>O Sol in H<sub>2</sub>SeO<sub>8</sub>+Aq (Mus2CdO,  $3SeO_2+H_2O$  Insol in  $H_2O$ , sol in acids (Boutzoureano)  $+\frac{1}{2}H_2O$  Insol in  $H_2O$ , sol in dil acids

(Boutzoureano)

Cadmium selenite ammonia, CdSeO<sub>3</sub>, NH<sub>3</sub> Insol in cold or hot H<sub>2</sub>O (Boutzoureano, ch (6) 17 289)

> lente,  $CaSeO_3+^4/_3H_2O$ sol in  $H_2O$  (Berzelius) More  $O_3+Aq$  (Nilson)

nydrogen selenite, CaH<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>+

in H<sub>2</sub>O (Nilson) 11 Easily sol in H<sub>2</sub>O (Nil-

nute, basic,  $2\text{Ce}_2\text{O}_8$ ,  $5\text{SeO}_2+$  ...te (Nilson)

Insol in H<sub>2</sub>O Sol in much selenious acid John ) +12H<sub>2</sub>O (Nilson)

Cerous selenite, acid,  $Ce_2O_3$ ,  $4SeO_2+5$ , or 6  $H_2O$  | Insol in  $H_2O$ , but sol in selenious, and other acids (Jolin)  $Ce_2O_3$ ,  $6SeO_2+5H_2O$  Not decomp by  $H_2O$  (Nilson)

Ceric selenite, Ce(SeO<sub>3</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O Sl sol in conc HNO<sub>3</sub> Sol in dil acids Sol in H<sub>2</sub>O<sub>2</sub>+Aq (Barbieri, B 1910, **43** 2215)

Chromium selenite, basic,  $4\mathrm{Cr}_2\mathrm{O}_8,~9\mathrm{SeO}_2+64\mathrm{H}_2\mathrm{O}$ 

Precipitate (Nilson)

Chromic selenite, Cr<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>+3H<sub>2</sub>O

(Boutzoureano) +15H<sub>2</sub>O (Nilson)

Very sl sol or insol in  $H_2O$ , sl sol in  $H_2SeO_3+Aq$ , sol in hot conc HCl+Aq (Taquet, C R 96 107)

Chromic selenite, acid,  $Cr_2O_3$ ,  $4SeO_2+13H_2O$ Slowly sol in HCl+Aq Insol in  $H_2O$ (Nilson)  $Cr_2O_3$ ,  $5SeO_2+9H_2O$  Insol in  $H_2O$ (Nilson)

## Chromic diselenite

Insol in  $\rm H_2O$ , sol in acids (Taquet, C  $\bf R$  97 1435)

Cobaltous selenite, CoSeO<sub>8</sub>
Insol in H<sub>2</sub>O (Berzelius)
+1/<sub>3</sub>H<sub>2</sub>O Insol in H<sub>2</sub>O, sol in acids
(Boutzoureano, A ch (6) **17** 289)

Cobaltous hydrogen selenite, CoH<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>
Sol in H<sub>2</sub>O (Berzelius)
+2H<sub>2</sub>O Sol in H<sub>2</sub>O with decomp
(Boutzoureano)

Cuprous selenite

Insol in  $H_2O$  Sol in  $NH_4OH + Aq$  (Berzelius)

Cupric selenite, basic, 2CuO, SeO<sub>2</sub>
Insol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH+Aq
(Boutzoureano)
Sol in acids

Cupric selenite, CuSeO<sub>3</sub>+½H<sub>2</sub>O
Insol in H<sub>2</sub>O or H<sub>2</sub>SeO<sub>3</sub>+Aq (Berzelius)
+H<sub>2</sub>O, and 2H<sub>2</sub>O (Boutzoureano)
+2H<sub>2</sub>O Min Chalcomenite Insol in H<sub>2</sub>O
or H<sub>2</sub>SeO<sub>3</sub>+Aq (Friedel and Sarasin, Zeit
Kryst 1881, 6 300)

Cupric selenite, acid, CuO,  $2\text{SeO}_2 + \text{H}_2\text{O} = \text{CuH}_2(\text{SeO}_3)_3$ Insol in  $\text{H}_2\text{O}$  Sol in acids (Nilson)

 $+2H_2O$  As above (Boutzoureano)  $+4H_2O$  As above (B)

Cupric selenite ammonia, CuSeO<sub>3</sub>, NH<sub>3</sub>+ H<sub>2</sub>O Decomp by H<sub>2</sub>O (Boutzoureano, A ch (6) 17 289)

Didymium selenite, basic, 3D1<sub>2</sub>O<sub>3</sub>, 8SeO<sub>2</sub>+ 28H<sub>2</sub>O

Precipitate (Nilson) +21H<sub>2</sub>O Insol in H<sub>2</sub>O (Cleve, Bull Soc (2) **43** 363)

Didymium selenite,  $D_{12}(SeO_3)_3+6H_2O$ Precipitate (Smith)

Didymium selenite, acid, Di<sub>2</sub>O<sub>3</sub>, 4SeO<sub>2</sub>+ 5H<sub>2</sub>O Precipitate (Cleve)

Composition is  $Di_2(SeO_3)_3+6H_2O$  (Smith) +9 $H_2O$  (Nilson)  $2Di_2O_3$ ,  $9SeO_2+18H_2O$  (Nilson)

Erbium selenite, Er<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>+5H<sub>2</sub>O, and 9H<sub>2</sub>O
Precipitate (Nilson)

Erbium hydrogen selenite, Fr<sub>2</sub>H<sub>2</sub>(SeO<sub>3</sub>)<sub>4</sub>+ 4H<sub>2</sub>O Decomp by hot H<sub>2</sub>O

```
Gs olimium hydrogen selemite, Gd_2(SeO_3)_3,\ H_2SeO_3+6H_2O ot (Benedicks, Z anorg 1900, 22 41 )
```

GI mum selenite, basic, 5GlO, 2SeO<sub>2</sub>+ 10H<sub>2</sub>O recipitate (Nilson) According to Atterbe , is 7GlO, 3SeO<sub>2</sub>+14H<sub>2</sub>O

e , is 7GlO, 3SeO<sub>2</sub>+14H<sub>2</sub>O ; ilO, SeO<sub>2</sub>+4H<sub>2</sub>O (Atterberg, Bull Soc 2 19 497)

 $\Im$ IO, 2SeO<sub>2</sub>+6H<sub>2</sub>O Insol in H<sub>2</sub>O (A erberg)

GI cinum selenite,  $GISeO_4+2H_2O$ ol in little  $H_2O$ , decomp by excess (N son)

GI cumm selenite, acid 1) 3GlO,  $5\text{SeO}_2+3\text{H}_2\text{O}$ , (b) GlO,  $2\text{SeO}_2$  +  $1_2\text{O}$ , (c) 3GlO,  $7\text{SeO}_2+5\text{H}_2\text{O}$ , (d) GlO, 3S 02+204 All are very sl sol in cold or varm 04 06, 07, and 08 are sol in warm 09 09. The containing 09 HCl, 09 is sol only in boiling di HCl+Aq (Nilson)

In turn selenite, basic,  $In_8Se_9O_{30}+64H_2O$  Vilson )

In tum selenite, In<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub>+6H<sub>2</sub>O l sol in H<sub>2</sub>O (Nilson)

In 1 (ferrous) selenite
'pt Sol in HCl+Aq with partial separation of Se (Berzelius)

In n (ferrous) hydrogen selenite of sol in  $H_2O$  (Berzelius)

In (ferric) selemite, basic,  $2\text{Fe}_2\text{O}_3$ ,  $3\text{SeO}_2 + x\text{H}_2\text{O}$ nsol in H<sub>2</sub>O (Berzelius)  $^7\text{e}_2\text{O}_3$ ,  $2\text{SeO}_2$  Insol in H<sub>2</sub>O, easily sol in a ds (Boutzoureano, A ch (6) 17 289)  $^3\text{Fe}_2\text{O}_3$ ,  $8\text{SeO}_2 + 28\text{H}_2\text{O}$  Insol in H<sub>2</sub>O ( ilson)

I n (fernc) selente, Fe<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>+4H<sub>2</sub>O
 Insol in H<sub>2</sub>O (Muspratt, Chem Soc 2

 5 )
 +H<sub>2</sub>O Insol in H<sub>2</sub>O (Boutzoureano,

+H<sub>2</sub>O Insol in H<sub>2</sub>O (Boutzour A ch (6) 17 289) +3H<sub>2</sub>O Insol in H<sub>2</sub>O (B) +10H<sub>2</sub>O Insol in H<sub>2</sub>O (B) Iron (ferric) selenite, acid,  $Fe_2O_3$ ,  $6SeO_2+xH_2O$ Insol in  $H_2O$  Sol in HCl+Aq (Berzelius)  $+2H_2O$  (Boutzoureano, A ch (6) 17
289)  $Fe_2O_3$ ,  $4SeO_2+H_2O$  Insol in  $H_2O$ , sol in acids (Boutzoureano)

Lanthanum selenite, basic, 3La<sub>2</sub>O<sub>3</sub>, 8SeO<sub>2</sub>+ 28H<sub>2</sub>O

Precipitate (Nilson)

 $\begin{array}{cccc} \textbf{Lanthanum} & \textbf{selenite,} & La_2(SeO_3)_3 + 9H_2O, & or \\ 12H_2O & & \\ Insol & in & H_2O & & (Nilson) \end{array}$ 

Lanthanum selenite, acid,  $La_2H_4(SeO_3)_5+4H_2O$ (Nilson)  $La_2H_6(SeO_3)_5+2H_2O$  (Cleve)

Lead selemite, PbSeO3

Scarcely sol in  $H_2O$ , even when it contains  $H_2SeO_3$  Sl sol in  $HNO_3+Aq$  (Berzelius)

Lithium selenite, Li<sub>2</sub>SeO<sub>3</sub>+H<sub>2</sub>O
Difficultly sol in H<sub>2</sub>O (Nilson, Bull Soc (2) **21** 253)

Very sol in H<sub>2</sub>O (Nilson)

Lithium trihydrogen selenite, LiH<sub>3</sub>(SeO<sub>3</sub>)<sub>2</sub> Not deliquescent Sol in H<sub>2</sub>O (Nilson)

Sol in Lithium vanadium selenite

See Vanadioselenite, lithium

**13** 132)

Magnesium selenite,  $MgSeO_3+2H_2O$ Insol in  $H_2O$ , sol in dil acids, especially if warm, also in  $H_2SeO_3+Aq$  (Boutzoureano, A ch (6) 18 302)

+3H<sub>2</sub>O Very sl sol in hot H<sub>2</sub>O (Berzelius)

 $+6 \dot{H}_2 O$  As the  $2 H_2 O$  salt (Boutzour-eano)  $+7 H_2 O$  Sl sol in  $H_2 O$  Fasily sol in acetic, and mineral acids (Hilger, Z anal

Magnesium hydrogen selenite,  $MgH_2(SeO_3)_2 + 3H_2O$ 

Very deliquescent Lasily sol in H<sub>2</sub>O (Nilson)

Insol in alcohol (Muspratt) MgO, 2SeO<sub>2</sub> Insol in H<sub>2</sub>O, sol in acids (Boutzoureano)

Magnesium tetrahydrogen selenite, MgH<sub>4</sub>(SeO<sub>3</sub>)<sub>3</sub>, and +3H<sub>2</sub>O Sol in H<sub>2</sub>O (Nilson) Manganous selenite, MnSeO<sub>3</sub>+H<sub>2</sub>O

Precipitate (Nilson)

 $+2H_2O$  Insol in  $H_2O$ (Berzelius) Sol in cold HCl+Aq (Muspratt)

 $+\frac{1}{2}H_2O$  Insol in  $H_2O$ , sol in dil acids (Boutzoureano)

Manganous selenite, acid, MnSe<sub>2</sub>O<sub>5</sub>

Sol in H<sub>2</sub>O (Berzelius, Nilson) MnO,  $2\tilde{S}eO_2 + H_2O = MnH_2(SeO_3)_2$ 

(Boutzoureano, A ch (6) 17 289) +5H<sub>2</sub>O Decomp by H<sub>2</sub>O to MnSeO<sub>2</sub> (Boutzoureano)

Manganic selenite, basic, Mn<sub>2</sub>O<sub>3</sub>, 2SeO<sub>2</sub>

Insol in  $\rm H_2O$ , cold  $\rm H_2SO_4$ , or  $\rm HNO_3+Aq$ , insol in hot dil  $\rm H_2SO_4$  or  $\rm HNO_3+Aq$  (Laugner, C R 104 1508)

Sol in warm HCl+Aq with decomp

Manganic selenite, Mn<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>+5H<sub>2</sub>O (Laugier)

Manganic selenite, acid, Mn<sub>2</sub>O<sub>3</sub>, 4SeO<sub>2</sub>

Insol in H<sub>2</sub>O, cold H<sub>2</sub>SO<sub>4</sub>, and HNO<sub>8</sub>+Aq Insol in dil hot H<sub>2</sub>SO<sub>4</sub>, and HNO<sub>3</sub>+Aq Sol in cold HCl+Aq, and in H<sub>2</sub>SO<sub>3</sub>+Aq with separation of Se (Laugier, C R 104 1508)

Mercurous selenite, basic, 3Hg<sub>2</sub>O, 2SeO<sub>2</sub>+

(Boutzoureano)

Mercurous selenite, Hg<sub>2</sub>SeO<sub>3</sub>

Insol in  $H_2O$  or  $H_2SeO_3+Aq$ Sol in hot

HNO<sub>8</sub>+Aq (Kohler, Pogg 89 146) Sl sol in HCl+Aq, and KOH+Aq (Berzelius)

Mercurous selenite, acid, 3Hg<sub>2</sub>O, 4SeO<sub>2</sub>

Insol in H<sub>2</sub>O or H<sub>2</sub>SeO<sub>3</sub>+Aq Sl sol in boiling HNO<sub>8</sub>+Aq (Kohler)

Mercuric selenite, basic, 7HgO, 4SeO<sub>2</sub>

Insol in H<sub>2</sub>O Sl sol in HNO<sub>8</sub>+Aq Easily sol in HCl+Aq (Kohler, Pogg 89 146)

Mercuric selenite, HgSeO<sub>8</sub>

(Berzelius) Nearly insol Insol in H<sub>2</sub>O Sol in K<sub>2</sub>SeO<sub>8</sub>+Ao in HNO<sub>3</sub>+Aq vers, Chem Soc 48 585)

Insol in dil HNO<sub>8</sub>+Aq, sol in HCl+Aq (Rosenheim and Pritze, Z anorg 1909, 63 **278**)

Solubility in Na<sub>2</sub>SeO<sub>3</sub>+Aq at 25°

| Na <sub>2</sub> SeO <sub>3</sub> +Aq<br>Normality | % HgSeO3 |  |
|---------------------------------------------------|----------|--|
| 2 0                                               | 2 73     |  |
| 1 0                                               | 1 39     |  |
| 0 5                                               | 0 70     |  |
| 0 25                                              | 0 53     |  |
| 0 125                                             | 0 32     |  |
| 0 0625                                            | 0 18     |  |

(Rosenheim and Pritze, Z anorg 1909, 63 281)

HgSeO<sub>3</sub>, H<sub>2</sub>SeO<sub>3</sub> Fasily sol in H<sub>2</sub>O, very sl sol in alcohol (Berzelius) See also selenium dioxide

Mercuric sodium selenite, HgSeO<sub>3</sub>, Na<sub>2</sub>SeO<sub>3</sub> Decomp by H<sub>2</sub>O and alkalies with pptn of HgSeO<sub>3</sub> (Rosenheim and Pritze, Z anorg 1909, **63** 279)

Mercuric selenite sodium chloride.  $HgSeO_3$ ,  $NaCl+2H_2O$ 

Decomp by H<sub>2</sub>O (Rosenheim and Pritze. Z anorg 1909, 63 280)

Nickel selemite, NiSeO<sub>8</sub>+H<sub>2</sub>O

Insol in H<sub>2</sub>O, sol in H<sub>2</sub>SeO<sub>3</sub>+Aq (Muspratt, Chem Soc 2 52)  $+\frac{1}{2}H_2O$  Insol in  $\dot{H}_2O$  (Boutzoureano, A ch (6) 17 28)

Nickel selenite, acid

Sol in H<sub>2</sub>O (Berzelius)

Potassium selenite, K<sub>2</sub>SeO<sub>3</sub>+H<sub>2</sub>O

Very deliquescent Sol in nearly all pro-Insol in alcohol, which portions in H<sub>2</sub>O separates it as oil from aqueous solution (Muspratt, Chem Soc 2 52)

Potassium hydrogen selenite, KHSeO3

Very deliquescent Very sl sol in alcohol (Muspratt, Chem Soc 2 52)

Potassium trihydrogen selenite, KH<sub>3</sub>(SeO<sub>3</sub>)<sub>2</sub> Pptd from H<sub>2</sub>O by Very deliquescent alcohol (Muspratt)

Not deliquescent (Nilson)

Potassium hydrogen pyroselenite, KHSe<sub>2</sub>O<sub>5</sub>  $+H_2O$ 

(Muthmann, B 1893, 26 1015)

Potassium uranyl selenite, K<sub>2</sub>SeO<sub>3</sub>,  $(UO_2)SeO_3$ 

Absolutely insol in H<sub>2</sub>O (Sendtner)

Praseodymium hydrogen selenite,  $Pr_2(SeO_3)_3$ ,  $H_2SeO_3 + 3H_2O$ 

Sol in H<sub>2</sub>O (von Scheele, Z anorg 1898, 18 362)

Samarium selenite, basic,  $3Sm_2O_3$ ,  $8SeO_2 +$  $7H_2O$ 

Precipitate (Cleve)

Samarium selenite, acid, Sm<sub>2</sub>O<sub>3</sub>, 4SeO<sub>2</sub>+  $5H_2O$ Precipitate (Cleve)

Scandium selenite,  $Sc_2(SeO_3)_3 + H_2O$ Insol precipitate

Sci dium hydrogen selenite, Sc<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>, 3H<sub>2</sub>SeO<sub>3</sub>

] sol in  $H_2O$  Not attacked by cold dil aci 3, but easily if warmed

Sil r selenite, Ag<sub>2</sub>SeO<sub>3</sub>

ry sl sol in cold, somewhat more sol in hol  $H_2O$  Easily sol in hot  $HNO_3+Aq$ , fro which it is precipitated by  $H_2O$  (B zelius)

sol in  $K_2SeO_3+Aq$ , sl sol in dil  $HNO_3+Aq$  (Divers, Chem Soc **49** 585)

Sil r selenite ammonia, Ag<sub>2</sub>SeO<sub>3</sub>, NH<sub>3</sub> sol in boiling H<sub>2</sub>O (Boutzoureano, A ch (6) 17 289)

So um selenite,  $Na_2SeO_3$ ry sol in  $H_2O$  Insol in alcohol (Berzel s)  $5H_2O$ 

So um selenite, acid, NaHSeO<sub>3</sub>

rmanent Sol in H<sub>2</sub>O

a<sub>4</sub>Se<sub>3</sub>O<sub>8</sub> Sol in H<sub>2</sub>O (Sacc, A ch (3)

21 19)

 $aH_3(SeO_3)_2$  Not deliquescent Sol in  $H_2$ 

So um vanadium selenite e Vanadioselenite, sodium

St ntium selenite, SrSeO<sub>3</sub>+7H<sub>2</sub>O
ecipitate Insol in H<sub>2</sub>O Sol in HNO<sub>3</sub>
+ q (Muspratt)

St ottum hydrogen selenite,  $SrH_2(SeO_3)_2$  asily sol in hot or cold  $H_2O$  (Nilson) early insol in hot or cold  $H_2O$  (Berzel is)

Ti llous sciente, ll<sub>2</sub>ScO<sub>3</sub> asily sol in H<sub>2</sub>O. Insol in alcohol and ctl i (Kuhlmann, Bull Soc (2) 1 330)

Ti llous hydrogen selente, IlHScO<sub>8</sub>
[ore sol in H<sub>2</sub>O than the above comp
(F hlm inn)

TI llic selenite,  $11_2(\mathrm{SeO}_3)_3$  isol in  $\mathrm{H}_2\mathrm{O}$  Sol in dil HNO3 isily decomp by HCl and  $\mathrm{H}_2\mathrm{SO}_4$  (Marii , Z anorg 1909, 62 177)

Ti rum selenite,  $lh(SeO_3)_2 + H_2O$ , or  $8H_2O$  usol in  $H_2O$ , easily sol in HCl + Aq (N son)

TI rum selenite, acid,  $2\text{ThO}_2$ ,  $7\text{SeO}_2 + 16\text{H}_2\text{O}$  $\text{hO}_2$ ,  $5\text{SeO}_2 + 5\text{H}_2\text{O}$  (Nilson) Tin (stannic) selenite

Insol in H<sub>2</sub>O, sol in HCl+Aq, from which it is pptd by H<sub>2</sub>O (Berzelius)

Uranic selenite,  $U_2O_8$ ,  $SeO_2$ Insol in  $H_2O$  (Boutzoureano)  $+2H_2O$  (B)

Uranic selenite, acid, 2U<sub>2</sub>O<sub>3</sub>, 3SeO<sub>2</sub>+7H<sub>2</sub>O Insol in H<sub>2</sub>O (Boutzoureano, A ch (6) 17 289)

Uranyl selenite, (UO<sub>2</sub>)SeO<sub>3</sub>+2H<sub>2</sub>O Precipitate (Nilson)

Uranyl selenite, acid,  $3\text{UO}_3$ ,  $5\text{SeO}_2 + 7\text{H}_2\text{O}$ , or  $9\text{H}_2\text{O}$ Insol in  $\text{H}_2\text{O}$ IIO.  $2\text{SeO}_2 + \text{H}_2\text{O} = (\text{IIO}_2)\text{H}_2(\text{SeO}_2)_2$ 

UO<sub>3</sub>,  $2\text{SeO}_2 + \text{H}_2\text{O} = (\text{UO}_3)\text{H}_2(\text{SeO}_3)_2$ Absolutely insol in H<sub>2</sub>O and H<sub>2</sub>SeO<sub>3</sub>+Aq (Sendtner, A 195 325)

Vanadium selenite

See Vanadioselemous acid

Ytterbium selenite, Yb<sub>2</sub>(SeO<sub>8</sub>)<sub>8</sub> Insol precipitate

Ytterbium hydrogen selenite, Yb<sub>2</sub>H<sub>2</sub>(SeO<sub>3</sub>)<sub>4</sub> +4H<sub>2</sub>O Insol in H<sub>2</sub>O

Yttrium selenite,  $Y_2(SeO_3)_3+12H_2O$ Insol in  $H_2O$  or  $H_2SeO_3+Aq$  (Berzelius) Sol in hot  $H_2SeO_3+Aq$  (Nilson)

Yttrium hydrogen selenite, Y<sub>2</sub>H<sub>2</sub>(SeO<sub>3</sub>)<sub>4</sub>+
3H<sub>2</sub>O

Sl sol in  $H_2O$  Easily sol in HCl or  $HNO_3+Aq$  (Cleve)

Zinc selenite, ZnSeO3

Insol in  $H_2O$ , sol in acids (Boutzoureano, A ch (6) 18 289) +2 $H_2O$  Insol in  $H_2O$  Sol in  $H_2SeO_3$ , or  $HNO_3+Aq$  (Muspratt, Chem Soc 2 52)

Zmc hydrogen selente,  $ZnH_2(SeO_3)_2$ Easily sol in  $H_2O$  (Berzelius)  $+2H_2O$  Sol in cold  $H_2O$  (Boutzoureano) ZnO,  $4SeO_2+3H_2O$  Lasily sol in  $H_2O$ (Wohler, A 63 279)

Zinc selenite ammonia, ZnSeO<sub>3</sub>, NH<sub>3</sub> Insol in cold or hot H<sub>2</sub>O (Boutzoureano, A ch (6) **17** 289)

Zirconium selenite, basic, 4ZrO<sub>2</sub>, 3SeO<sub>2</sub>+ 18H<sub>2</sub>O

Precipitate Sl sol in HCl+Aq (Nilson)

Zirconium selenite, Zr(SeO<sub>3</sub>)<sub>2</sub>

Absolutely insol in H<sub>2</sub>O, difficultly sol in boiling HCl+Aq (Nilson)

+H<sub>2</sub>O (Nilson)

# Selemum, Se

Insol in  $H_2O$  Schultz (J pr (2) 32 390) has obtained a soluble colloidal modification which can be isolated by dialysis

Insol in HCl+Aq Decomp by HNO<sub>8</sub>+ Sol in fuming H2SO4 (Schultz-Sellac.

1000 pts CS2 dissolve 1 pt cryst Se at boiling-point (46 6°), and 0 16 pt at 0° (Mitscherlich, J B 1855 314) Solubility of Se in CS<sub>2</sub> is variable—1 pt Se is sol in 1376–2464–3746 pts CS<sub>2</sub> at 20° (Rammelsberg, B 7 669) Cryst Se, which is sol in CS<sub>2</sub>, becomes insol in CS2 after heating to 110°, but

after fusion is again sol (Otto)

Four modifications—(1) Amorphous red, (2) crystalline red, (3) granular gray, (4) laminated 1 and 2 are sol in CS2, 3 and 4 are insol in CS2 All forms are sol in SeCl2, from which crystallizes a black modification, insol in CS2 CCl4 with trace of CS2 dissolves red Se slightly, black Se not at all  $Se(C_2H_5)_2$  dissolves all modifications in but apparently equal quantities small(Rathke, A 152 181)

According to Saunders (J phys Chem 1900, 4 428) selenium exists in three modi-

fications

1 Liquid, including vitreous, amorphous. and colloidal selenium

a Vitreous

Sol in liquid NH<sub>8</sub> at 25° Ch J 1898, 20 820) (Franklin, Am

Insol in liquid NH<sub>3</sub> between -30° and +10° Franklin's results are due to impure selenium and not completely dry NH3 (Hugot, A Ch 1900, (7) 21 5

Almost insol in CS<sub>2</sub> (Schutzenberger

Chimie générale 1 438)

Action of light increases solubility in CS2 (Saunders, J phys Chem 1900, 4 456)

Solubility in methylene iodide at 12° is 13 pts in 100 (Retgers, Z anorg 1893, 3 343)

Sol in CSe<sub>2</sub>, ethyl selenide, and in ethyl sulphide

Very sol in  $Se_2Cl_2$  (Rathke, A 1869, 152) 181)

b Amorphous

Completely sol in CS2 at ord temp if Se has not been heated If heated or extracted with warm CS2 it becomes partly (Peterson, Z phys Chem 1891, 81 ınsol 612)

Passes into red crystalline form in solution in CS<sub>2</sub>, C<sub>6</sub>H<sub>6</sub>, isobutyric acid, acetophenone, acetone CHCl<sub>3</sub>, thiophene, toluene, benzonitrile, ethyl acetate, and alcohol (Saunders, J phys Chem 1900, 4 463)

Solution in quinoline, aniline, pyridine, Z anorg 1906, 51 236)

etc, cause conversion into gray metallic form

c Collordal

Forms colloidal solution with H<sub>2</sub>O

A colloidal solution of Se in H<sub>2</sub>O can be obtained It is not decomp by boiling, but is decomp by electrolytes with separation of red selenium (Gutbier, Z anorg 1902, 32 106)

Red crystalline

Sol in CS<sub>2</sub>

3 Gray, crystalline or metallic

Sol in selenium chloride and other solvents as vitreous Se (Rathke, A 1869, 152 181)

SI sol in CS<sub>2</sub>, toluene, nitrobenzene, quinoline, and KOH Pptd from conc KOH+Aq in long needles with mpt 219° (Coste, C R 1909, 149 674)

Sol in many organic substances at high temp as quinoline, ethyl benzoate, aniline and naphthaline (Saunders, J phys Chem 1900, **4** 469)

Completely insol in CS<sub>2</sub> (Saunders, J

phys Chem 1900, 4 474)

Solubility of the two modifications of gray crystalline Se in CS<sub>2</sub>

100 cc boiling CS<sub>2</sub> dissolve mg Se

| Mg Se                           | Mg Se                                  | Mg Se                           |
|---------------------------------|----------------------------------------|---------------------------------|
| 3 2<br>2 8<br>3 6<br>3 3<br>2 2 | 4 1<br>4 0<br>2 9<br>2 8<br>2 9<br>4 0 | 2 7<br>2 2<br>1 9<br>1 0<br>2 0 |

Modification A I Se heated 1 hr at 140°

II Modification A III Se heated 48 hrs at Modification B

(Marc, Z anorg 1907, **53** 302)

Se<sub>2</sub>Br<sub>2</sub> dissolves 22% Se (Schneider, Pogg 128 327)

Red Se is sol in (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>+Aq (Uels-

mann, A 116 122)

Sol in alkalies and Mg sulphites + Aq 365 pts  $K_2SO_3+Aq$  dissolve 102 pts Se 360 pts  $MgSO_8$ ,  $3H_2O+Aq$  dissolve 116

pts Se Insol in BaSO<sub>3</sub>+Aq (Rathke and Zschie-

sche, J pr 92 145)
Sol in KCN+Aq with formation of KSeCN (Franklin, Am Ch J 1898, 20 830)

100 pts methylene iodide dissolve 1 3 pts Se at 12° (Retgers, Z anorg 3 343)

Sol in quinoline, but reacts with the solvent with evolution of H (Beckmann and Gabel,

Se nium monobromide, Se<sub>2</sub>Br<sub>2</sub>

in H<sub>2</sub>O, but gradually decomp Decomp by absolute alcohol and be zene Sol in C<sub>2</sub>H<sub>5</sub>I, but soon decomposed scible with CS2, less sol in CHCl2 and (Schneider, Pogg 128 327)

S enium tetrabromide, SeBr4

ol in H<sub>2</sub>O with decomp Decomp by shol Sol in HCl+Aq, sl sol in CS2,  $Cl_3$ , and  $C_2H_5Br$ (Schneider, Pogg 450) Decomp by C<sub>2</sub>H<sub>5</sub>I

S enium bromotrichloride, SeCl<sub>3</sub>Br nsol in CS<sub>2</sub> (Fvans and Ramsay,

C em Soc 45 62)

S enium tetrabromide sulphur troxide, SeBr<sub>4</sub>, 2SO<sub>3</sub>

Decomp by H<sub>2</sub>O (Prandtl, Z anorg 1 )9, 62 242)

S enium tribromochloride, SeClBr<sub>3</sub> See Selenium chlorotribromide

S lenium monochloride, Se<sub>2</sub>Cl<sub>2</sub>

Gradually decomp by H<sub>2</sub>O Dissolves modifications of selenium on heating ( athke, A 152 181) Insol in conc H<sub>2</sub>SO<sub>4</sub>, ily sol in fuming H2SO4 Sol in CHCl3, ( H<sub>6</sub>, CCl<sub>4</sub> Gradually decomp by H<sub>2</sub>O ohol, and ether (Divers and Shimosé, 17 862) Sol in CS<sub>2</sub> (Evans and Rams 7, Chem Soc 45 62)

S lenium tetrachloride, SeCl<sub>4</sub>

Deliquescent on moist air Decomp with (Berzelius, A ch 9 225) Insol in Easily sol in hot POCl<sub>3</sub>, from which crystallizes on cooling (Michaelis, Zeit ( 1em (2) 6 460) Very sl sol in CS<sub>2</sub> vins ind Ramsay, Chem Soc 45 62)

- ' lenium dichlorobromide, ScCl Br<sub>2</sub> (Evans and Ramsay, Chem Soc 45 62)
- ' lenium chlorotribromide, ScCIBr<sub>3</sub> Very sl sol in (S<sub>2</sub> (F vans and Ramsay)
- ' lenium trichlorobromide, ScCl<sub>3</sub>B<sub>1</sub> See Selenium bromotrichloride
- lenium fluoride

Sol in cone HF+Aq Decomp immediely by H<sub>2</sub>O (Knox)

lenium monoiodide, Se<sub>2</sub>I<sub>2</sub>

Decomp by H<sub>2</sub>O All solvents of iodine ssolve out that element (Schneider, ogg **129** 627)

Selenium tetraiodide, SeI4

Slowly decomp by much H<sub>2</sub>O Iodine is dissolved out by all solvents of that element (Schneider, Pogg 129 627)

Selenium nitride

See Nitrogen selenide

Selenium monoxide, SeO (?)

Sl sol in H<sub>2</sub>O (Berzelius) Does not exist (Sacc)

Selenium dioxide, SeO<sub>2</sub>

escent Fasily sol in H<sub>2</sub>O and Sol in glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Hins-Deliquescent alcohol berg, A 260 40)

Solubility in H<sub>2</sub>O between —3° and +36° =45.0+0.7692t (Étard, C R 1888, 106)

 $^{1}$  pt  $^{1}$  s sol  $^{1}$  n  $^{2}$  67 pts  $^{1}$  H2O at 11 3  $^{\circ}$  1 pt  $^{\prime\prime}$   $^{\prime\prime}$   $^{\prime\prime}$  2 60  $^{\prime\prime}$   $^{\prime\prime}$  14  $^{\circ}$ """254 " " "156° (de Coninck, C R 1906, 142 571)

Sp gr of SeO<sub>2</sub>+Aq at t°

| τ°                                                           | % SeO2                          | Sp gr                                                                        |  |
|--------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|--|
| 15 1<br>15 3<br>13 0<br>13 0<br>14 5<br>14 8<br>14 1<br>15 0 | 1<br>2<br>3<br>4<br>5<br>6<br>7 | 0 9923<br>1 0068<br>1 0200<br>1 0302<br>1 0346<br>1 0402<br>1 0535<br>1 0571 |  |
| 15 6<br>15 2                                                 | 9<br>10                         | 1 0371<br>1 0719<br>1 0743                                                   |  |

(de Coninck, C R 1906, 142 571)

See also Selemous acid

1 pt SeO<sub>2</sub> is sol in 9 84 pts alcohol (93°) at 14°

1 pt SeO<sub>2</sub> is sol in 150 pts methyl alcohol at 118°

1 pt SeO<sub>2</sub> is sol in 23 0 pts acctone at

1 pt  $S_cO_2$  is sol in 90 0 pts acetic acid at 129° (dc Coninck, C R 1906, 142 572)

Traces dissolve in acetic anhydride in phenyl mcrcaptan (Hinsberg, A 1890, **260** 40)

Insol in pure C<sub>0</sub>H<sub>6</sub> (Clausnizer, A 1879, **196** 271)

See Selemous acid

### Selenium trioxide, SeO<sub>3</sub>

Not obtained in a pure state (Cameron and Macallan)

See Selenic acid

Selenium dioxide hydrobromic acid, SeO<sub>2</sub>, 4HBr

Decomp at 55° (Ditte, A ch (5) 10, 82)

SeO<sub>5</sub>, 5HBr Decomp at 65° (Ditte, A ch (5) 10 82)

Selenium droxide hydrochloric acid,  $SeO_2$ , 2HCl

Decomp at 26°

SeO<sub>2</sub>, 4HCl Decomp at 0° Sol in H<sub>2</sub>O<sub>2</sub> without evolution of gas (Ditte, A ch (5) 10 82)

Selenium dioxide sulphur trioxide, SeO<sub>2</sub>, SO<sub>3</sub>

Decomp violently by H<sub>2</sub>O (Weber, B<sub>4</sub> 19 3185) Composition may be (SeO)SO<sub>4</sub> (?)

Selenium oxy-compounds See Selenyl compounds

Selenium diphosphide, P<sub>2</sub>Se See Phosphorus monoselenide

Selenium tetraphosphide, P<sub>4</sub>Se See Phosphorus semiselenide

Selenrum monosulphide, SeS

Insol in  $H_2O$  and ether Sol in  $CS_2$  Decomp by alcohol (Ditte, C R 73 625, 660)

Other compounds of Se and S are probably mixtures of the two elements

Selenium disulphide, SeS2

Compound of this formula is a mixture of SeS and S (Ditte, C R 73 625, 660).

Selenium sulphoxide, SeSO3

Decomp by  $\rm H_2O$  Sol in furning  $\rm H_2SO_4$ , conc  $\rm H_2SO_4$  Sol in  $\rm H_2SO_4$  of 1 806 sp gr without decomp (Weber, Pogg 156 531) Decomp by  $\rm H_2O$ , sol in  $\rm H_2SO_4$  (Divers and Shimosé, B 17 858)

Seleniuretted hydrogen, H<sub>2</sub>Se See Hydrogen selenide

#### Selenoarsenic acid

Potassium selenoarsenate, KAsSe<sub>3</sub>+2H<sub>2</sub>O Only sl sol in cold H<sub>2</sub>O, sol in warm H<sub>2</sub>O with decomp, more stable in KOH+Aq (Clever, Z anorg 1895, 10 132)

Sodium selenoarsenate, Na<sub>3</sub>AsSe<sub>4</sub>+9H<sub>2</sub>O Very sol in H<sub>2</sub>O, very unstable (Szarvasy, B 1895, **28** 2658) Selenoarsemous acid

Sodium selenoarsenite, Na<sub>3</sub>AsSe<sub>3</sub>+9H<sub>2</sub>O Moderately sol in H<sub>2</sub>O (Clever and Muthmann, Z anorg 1895, **10** 139)

Selenobismuthous acid

Potassium metaselenobismuthite, B1<sub>2</sub>Se<sub>8</sub>, K<sub>2</sub>Se or KB1Se<sub>2</sub>

Insol in cold dil HCl+Aq Sol on warming, with evolution of H<sub>2</sub>Se (Hilger and van Scherpenberg, Mitt Pharm II 4)

Selenocyanhydric acid, HSeCN Known only in aqueous solution

Ammonium selenocyanide, NH<sub>4</sub>SeCN Very deliquescent, and sol in H<sub>2</sub>O

Barium —, Ba(SeSCN)<sub>2</sub> Very sol in H<sub>2</sub>O

Lead ----, Pb(SeCN)<sub>2</sub>

Sl sol in cold, sol with sl decomp in boiling  $\mathrm{H}_2\mathrm{O}$  Insol in alcohol

Mercurous —, Hg<sub>2</sub>(SeCN)<sub>2</sub> Ppt

Mercuric —, Hg(SeCN)<sub>2</sub>

Sl sol in cold H<sub>2</sub>O Easily sol in MCN, MSCN, or MSeCN+Aq, also sol in hot HgCl<sub>2</sub>+Aq (Cameron and Davy, C N 44

Decomp by hot H<sub>2</sub>O (Rosenheim, Z anorg 1909, **63** 276)

Mercuric potassium —, Hg(SeCN)2, KSeCN

Easily sol in  $H_2O$  Sl sol in cold alcohol (Cameron and Davy, C N 44 63)

Mercuric selenocyanide chloride, Hg(SeCN)<sub>2</sub>, HgCl<sub>2</sub>

Sol in boiling  $\rm H_2O$  and in abs\_alcohol\_Decomp by long boiling with  $\rm H_2O$  (Rosenheim and Pritze, Z anorg 1909, 63 276)

 $\begin{array}{ccc} \textbf{Platinum potassium} & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ \textbf{Ft}(SeCN)_{\theta} & & & \\ \end{array}$ 

Sol in H<sub>2</sub>O and alcohol (Clarke, B 11 1395)

Potassium —, KSeCN

Very deliquescent, and sol in  $\rm H_2O$  with absorption of heat. More sol in  $\rm H_2O$  than KSCN. Sol in alcohol

Potassium — mercuric bromide, KSeCN, HgBr<sub>2</sub>

Sl sol in cold, more easily in hot H<sub>2</sub>O or alcohol (Cameron and Davy, C N 44 63)

Pc issium selenocyanide mercuric chloride, Selenosamic acid, HSeO2NH2 KSeCN, HgCl<sub>2</sub> s the bromide

Pc issium — mercuric iodide, KSeCN,

l sol in cold, easily in hot H<sub>2</sub>O or alcohol (C meron and Davy)

Pc assium -- mercuric sulphocyanide. KSeCN, Hg(SCN)<sub>2</sub>

l sol in cold, much more in hot H2O or al hol Somewhat sol in ether (Cameron Davy)

S<sub>1</sub> er ——, AgSeCN

nsol in H<sub>2</sub>O Almost insol in NH<sub>4</sub>OH+ A or cold dil acids Quickly decomp by he cone acids

S hum ----, NaSeCN 'ery sol in H<sub>2</sub>O

S lenomolybdic acid

P assium selenomolybdate, 5K<sub>2</sub>O, 6SeO<sub>2</sub>, 17MoO<sub>3</sub>

Readily sol in H<sub>2</sub>O without decomp ( bbs, Am Ch J 1895, 17 177)

S lenopentathionic acid

S hum selenopentathionate, Na<sub>2</sub>S<sub>4</sub>SeO<sub>6</sub> A dil solution may be boiled for some time w hout change (Norris and Fay, Am Ch J 1900, 23 121)

E lenophosphoric acid

A imonium selenophosphate,  $2(NH_4) O, P_2O_5, 2S_2O_3 + 3H_2O$ sol in H<sub>2</sub>O with decomp (Weinland, B 1 33, 36 1402)

I tassium selenophosphate  $2K_2O$ ,  $P_2O_6$ ,  $2SeO + 3H_2O$ Sol in H<sub>2</sub>O with decomp  $3.5K_2O$ ,  $P_2O_5$ ,  $5SeO_3+5.5H_2O$ m  $H_2O$  (Weinland) Easily

I ibidium selenophosphate,  $2Rb_2O$ ,  $P_2O_6$ ,  $2SeO_3+3H_2O$ Sol in H O with decom (Weinland)

' rselenophosphorous acid

l tassium triselenophosphite,  $K_2HPSe_3+2\frac{1}{2}H_2O$ 

Decomp by moist air and dil acids, sol 1 cone KOH+Aq, sl sol in cold, easily sol hot H<sub>2</sub>O (Muthmann, Z anorg 1897, 198)

Known only in its salts

Ammonium selenosamate,  $(NH_4)SeO_2NH_2$ Deliquescent Decomp slowly by H<sub>2</sub>O into  $(NH_4)_2SeO_3$ 

1 pt is sol in 116 pts cold alcoholic ammonia at 12° More sol in hot alcoholic More sol in hot alcoholic ammonia SI attacked by cold HCl or HNO3 (Cameron and Macallan, C N 1888, 57 163)

Ammonium hydrogen selenosamate,  $NH_4H(SeO_2NH_2)_2$ 

Deliquescent Sol in 14 pts alcohol at (Cameron and Macallan, Proc Roy Soc 44 112)

Selenostannic acid

Ammonium selenostannate,  $3SnSe_2$  (NH<sub>4</sub>)<sub>2</sub>Se  $+3H_2O$ 

Sol in  $H_2O$  (Ditte, C R 95 641)

Platinum potassium ——, K<sub>2</sub>Se, 3PtSe, SnSe<sub>2</sub> Insol in hot or cold H2O, NH4OH, or KOH+Aq Not attacked by hot HCl+Aq (Schneider, J pr (2) 44 507)

Platinum sodium —, Na Se, 3PtSe, SnSe<sub>2</sub> Properties as the corresponding K salt (Schneider)

Potassium ——, K<sub>2</sub>SnSe<sub>3</sub>+3H<sub>2</sub>O Easily sol in  $H_2O$  (Ditte, C R 95 441)

Selenosulphantimonic acid

Sodium selenosulphantimonate,  $Na_3SbSeS_3 +$  $9H_2O$ 

Sol in H<sub>2</sub>O (Hofacker, A 107 6) Na<sub>3</sub>SbS<sub>1</sub> <sub>5</sub>Se<sub>2</sub> <sub>5</sub>+9H<sub>2</sub>O Somewhat sol in H<sub>2</sub>O (Pouget, A ch 1899, (7) **18** 564)

Selenosulphantimonous acid

Potassium selenosulphantimonite,  $Sb_4S_5Se_6K_{10}+4H_2O$ 

Sol in H<sub>2</sub>O (Pouget, A ch 1899, (7) **18** 563)

Sodium selenosulphantimonite, Na<sub>3</sub>SbS<sub>1</sub> <sub>5</sub>Se<sub>1.5</sub>  $+9H_{2}()$ 

Sol in  $H_2()$  (Pouget, A ch 1899, (7) 18 564)

Selenosulpharsenic acid

Potassium selenosulpharsenate, 3K<sub>2</sub>S, As<sub>2</sub>Se<sub>4</sub>  $+12H_{2}O$ 

Very unstable in the air Very sol in H<sub>2</sub>O Fairly stable in aqueous solution Decomp by acids (Clever, Z anorg 1895, 10 134)

 $\begin{array}{ll} \textbf{Sodium} & \textbf{selenosulpharsenate,} & \textbf{Na}_3\textbf{AsS}_3\textbf{Se} + \\ & \textbf{8H}_2\textbf{O} \end{array}$ 

Decomp by acids, stable in dry air (Messinger, B 1897, 30 801)  $3Na_2S$ ,  $As_2Se_5+18H_2O$  Quite sol in  $H_2O$ ,

 $3Na_2S$ ,  $As_2Se_5+18H_2O$  Quite sol in  $H_2O$ , quite stable in air (Clever, Z anorg 1895, 10 140)

 $Na_6As_9S_5Se_8+16H_2O$  SI sol in  $H_2O$ , decomp by acids (Messinger, B 1897, **30** 803)

 $Na_5As_2S_7Se+16H_2O$  Stable in dry air, easily sol in  $H_2O$ , decomp by acids (Messinger, B 1897, 30 800)  $Na_3AsS_2Se_2+9H_2O$  Decomp in aq solu-

Na<sub>3</sub>AsS<sub>2</sub>Se<sub>2</sub>+9H<sub>2</sub>O Decomp in aq solution by dil acids (Messinger, B 1897, **30** 802)

Na<sub>2</sub>AsSSe<sub>3</sub>+9H<sub>2</sub>O Sol in H<sub>2</sub>O, decomp by aq acids hydroscopic (Messinger)

# Selenosulphophosphorous acid

Potassium selenosulphophosphite,  $2K_2S$ ,  $P_2Se_3+5H_2O$ 

Sol in  $H_2O$ , decomp by acids (Muthmann, Z anorg 1897, 13 198)

# Selenosulphostannic acid

Ammonium selenosulphostannate,  $(NH_4)_2S$ ,  $3SnSe_2+3H_2O$ 

Easily decomp (Ditte, C R 1882, 95 643)

Potassium — K<sub>2</sub>SnSe<sub>2</sub>S+3H<sub>2</sub>O Verv easily sol in H<sub>2</sub>O (Ditte, C R 95 641)

Sodium —, Na<sub>2</sub>SnSe<sub>2</sub>S+3H<sub>2</sub>O Sol in H<sub>2</sub>O (Ditte, C R **95** 641)

# Selenosulphoxyarsenic acid

Sodium selenosulphoxyarsenate,  $Na_8AsO_2SSe + 10H_2O$ 

Easily sol in  $H_2O$  but solution rapidly decomp (Messinger, B 1897, 30 798) Na<sub>5</sub>As<sub>2</sub>S<sub>2</sub>SeO<sub>5</sub>+24H<sub>2</sub>O Sol in H<sub>2</sub>O

 $\begin{array}{ll} (M\, essinger\,) \\ Na_4As_2SeS_3O_4 + 20H_2O & Stable \,\, \text{in} \,\, dry \,\, \text{air} \\ SI \,\, sol \,\, m \,\, H_2O, \, decomp \,\, by \,\, dil \,\, acids \,\,\, \langle M\, essinger\, \rangle \end{array}$ 

singer) Na<sub>6</sub>As<sub>2</sub>S<sub>3</sub>Se<sub>2</sub>O<sub>3</sub>+20H<sub>2</sub>O Ppt (Messin-

 $Na_9As_3S_2Se_2O_8+36H_2O$  Decomp by aq acids, sol in  $H_2O$ , quite stable (Messinger)

Selenosulphur trioxide, SeSO<sub>3</sub> See Selenium sulphoxide

Selenosulphuric acid, H<sub>2</sub>SeSO<sub>3</sub> Known only in its salts Potassium selenosulphate,  $K_2SeSO_3+xH_2O$ Deliquescent in moist air, decomp by  $H_2O$ (Rathke, J pr 95 1)

# Selenotrithionic acid, H<sub>2</sub>S<sub>2</sub>SeO<sub>6</sub>

Known only in solution, which is stable in dark (Schulze, J pr (2) 32 390)

Barium selenotrithionate

Sol in  $H_2O$  (Rathke)

Potassium —,  $K_2SeS_2O_6$ 

Sol in  $\rm H_2O$  with gradual decomp (Rathke J pr 95 8, 97 56)

Diselenotrithionic acid, H<sub>2</sub>SSe<sub>2</sub>O<sub>6</sub> Exceedingly unstable (Schulze)

Exceedingly unstable (Schulze

#### Selenovanadıc acıd

Lithium selenovanadate,  $4L_{12}O$ ,  $6V_2O_5$ ,  $5SeO_2 + 30H_2O$ 

Very sol in  $H_2O$  (Prandtl and Lustig, Z anorg 1907, 53 401)

Potassium selenovanadate,  $2K_2O$ ,  $3V_2O_5$ ,  $12SeO_2+12H_2O$ 

(Prandtl and Lustig)

 $3K_2O$ ,  $5V_2O_5$ ,  $16SeO_2+40H_2O$  (Prandtl and Lustig)  $4K_2O$ ,  $6V_2O_5$ ,  $21SeO_2+37H_2O$  (Prandtl

and Lustig )  $5K_2O$ ,  $10V_2O_5$ ,  $26SeO_2+43H_2O$  (Prandtl and Lustig )

Sodium selenovanadate,  $4Na_2O$ ,  $6V_2O_5$ ,  $5SeO +20H_2O$ 

Very sol in  $H_2O$  Solution decomp gradually (Prandtl and Lustig)

2Na<sub>2</sub>O, 7V<sub>2</sub>O<sub>5</sub>, 10SeO<sub>2</sub>+13H<sub>2</sub>O (Prandtl and Lusting)

 $2Na_2O$ ,  $7V_2O_5$ ,  $12SeO_2+45H_2O$ , and  $+90H_2O$  (Prandtl and Lustig)

# Selenoxyarsenic acid

Ammonium selenoxyarsenate,  $2(NH_4)_2O$ ,  $2SeO_3$ ,  $As_2O_5+3H_2O$ 

Sol in  $H_2O$  with decomp (Weinland, B 1903, 36 1403)

Barium sodium selenoxyarsenate,

BaNaAsO<sub>3</sub>Se+9H<sub>2</sub>O

Ppt (Weinland, Z anorg 1897, **14** 56)

Potassium selenoxyarsenate, 2K<sub>2</sub>O, 2SeO<sub>3</sub> As<sub>2</sub>O<sub>5</sub>+3H<sub>2</sub>O

Sol in H<sub>2</sub>O with decomp (Weinland and Barttlingck, B 1903, **36** 1403)

 $7K_2O_10SeO_3,2As_2O_5+11H_2O$  Very sol in  $H_2O$  (Weinland and Barttlingck)

 $3K_2O$  (weinland and Barttinger)  $3K_2O$  As<sub>2</sub>Se<sub>5</sub>+10H<sub>2</sub>O Easily decomp by

Very sol in H<sub>0</sub>O (Clever, Z m sture ar rg 1895, 10 126)

Ri ndium selenoxyarsenate, 2Rb<sub>2</sub>O, 2SeO<sub>3</sub>,  $As_2O_5+3H_2O$ ol in H<sub>2</sub>O with decomp (Weinland and

B: ttlingck)

Sc 1um selenoxyarsenate, Na<sub>3</sub>AsSeO<sub>3</sub>

airly stable in air and in ag solution

inland, B 1896, **29** 1010) a<sub>8</sub>AsSeO<sub>8</sub>+12H<sub>2</sub>O Stab Stable in the air w n pure, sol in H<sub>2</sub>O with decomp (Weinla, Z anorg 1897, **14** 50)

 $a_3AsSeO_3+12H_2O$ Very sol in H<sub>2</sub>O ve / unstable (Szarvasy, B 1895, 28 2657) Na<sub>2</sub>O, 3Na<sub>2</sub>Se, As<sub>2</sub>O<sub>5</sub>+50H<sub>2</sub>O Easily in H<sub>2</sub>O Solution may be boiled for a time without decomp lo (Clever, Z

an rg 1895, 10 136)

Se enoxyphosphoric acid

As nonsum triselenmonoxyphosphate,  $(NH_4)_3PSe_3O+10H_2O$ (Ephram, B 1910, 43 280)

Ar nonium hydrogen triselenmonoxyphosphate,  $(NH_4)_5H(PSe_3O)_2+18H_2O$ (Ephraim)

Ba um hydrogen diselendioxyphosphate,  $BaHPSe_2O_2+14H_2O$ ecomp in moist air (Ephraim)

Pc issium selenoxyphosphate, K<sub>3</sub>PSe<sub>2</sub> <sub>5</sub>O<sub>1</sub> <sub>5</sub>  $+H_2O$ ecomp by HNO<sub>3</sub> Insol in alcohol and

etl i (Ephium)

So um monoselentrioxyphosphate,  $N_{i_3}PS(O_i+20HO)$ ccomp by HO (Fphrum)

So um hiselenmonoxyphosphate, Na<sub>3</sub>PSe<sub>4</sub>O +10H()

Decomp in ag solution La ly sol in cone NaOH+Aq (Muthme n, Z morg 1897, 13 199)

Se nyl bromide, SeOB<sub>12</sub> (?) chncider, Pogg 129 450)

Se nyl bromide sulphur /moxide, SeOBr<sub>2</sub>, S()3 'randtl, Z morg 1909, **62** 242)

Se nyl chloride, SeO<sub>2</sub>Cl<sub>2</sub> asily decomp by H<sub>2</sub>O (Weber, Pogg 11( 615)

Se nyl sulphur chloride e Sulphoselenvl chloride Selenyl stannic chloride, 2SeOCl, SnCl4

Extremely deliquescent Completely sol in H<sub>2</sub>O (Weber, B A B 1865 154)

Selenvi titanium chloride, 2SeOCl<sub>2</sub>, TiCl<sub>2</sub>

Decomp by H<sub>2</sub>O with separation of an sol residue Decomp by NH<sub>4</sub>OH+Aq msol residue Decomp by (Weber, B A B 1865 154)

Sesquiauramine

Sce Sesgurauramine

Sesquihydraurylamine, (HOAu), N, NH, See Sesquihydraurylamine

Silicic acid, SiO<sub>2</sub>, xH<sub>2</sub>O

See also Silicon dioxide

Silicic acid is sol in 1000 pts pure H<sub>0</sub>O (Kirwan)

When pptd from alkalı sılıcates+Aq by

CO<sub>2</sub>, 0 021 pt SiO<sub>2</sub> remains dissolved in 100 pts H<sub>2</sub>O (Struckmann, A 94 341)

When pptd as above, 100 pts H<sub>2</sub>O dissolve 0 09 pt SiO<sub>2</sub> in 3 days, 100 pts H<sub>2</sub>CO<sub>3</sub>+Aq dissolve 0 078 pt SiO<sub>2</sub> in 3 days But if

heated much more dissolves, the jelly itself becoming liquid, such jelly containing 2 49 pts SiO<sub>2</sub> to 100 pts H<sub>2</sub>O This solution is not pptd by considerable quantities of alcohol, but conc (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, NaCl, or CaCl<sub>2</sub>+ Aq, etc, cause gelatinization (Maschke, J pr 68 234)

Solubility in H<sub>2</sub>O depends on the amt of H<sub>2</sub>O, in presence of which the silicic acid is set free by dil acids, CO<sub>2</sub>, or alkali salts+ Aq If H<sub>2</sub>O is present in sufficient quantity to retain the silicic acid, much more will remain in solution than can be dissolved by digesting the gelatinous acid with H<sub>2</sub>O afterwards 1 pt SiO2 can thus be held in solution by 500 pts H<sub>2</sub>O Presence of NH<sub>4</sub>OH, (NH<sub>4</sub>) CO<sub>3</sub>, or NH<sub>4</sub>Cl (in solutions of which SiO<sub>2</sub> is remarkably insol) diminishes the power of H<sub>2</sub>O to retain SiO<sub>2</sub> in solution SiO<sub>2</sub> is always more sol in dil than conc NH4OH +Aq (Liebig, A **94** 373)

Silicic acid from the congulation of the colloid il form (see p 802) is sol in about 5000 pts  $H_2()$  when formed from a 1% solution, and 10,000 pts when formed from a 5% solution, but is insol after being dried (Graham,

A 121 36)

Silicic acid is more sol in dil icids than in H<sub>2</sub>O, because, when acid is added in excess to moderately dil K SiO<sub>3</sub>+Aq, the solution remains clear, but if only enough reid is added to neutralize the base present, silicic acid will gradually separate out. If acid is added to cone K2S1O3+Aq, silicic acid separates out insol in excess of acid, but if 20-30 pts  $\rm H_2O$  are present to 1 pt  $\rm K_2S_1O_3$ , and an excess of acid added at once, the silicic acid will remain in solution. This result is obtained with HCl, HNO<sub>3</sub>, HSO<sub>4</sub>,

 $HC_2H_3O_2+A\alpha$ These solutions may dissolve a neutral salt until saturated and no silicic acid will separate out Therefore it is the acid that holds the SiO2 in solution, and not the H<sub>2</sub>O (C J B Karsten, (1826) Pogg 3 353)

Even CO<sub>2</sub> has the power of holding SiO<sub>2</sub>

(Karsten, lc)n solution

Solubility in acids of silicic acid of Struckmann (see above) 100 pts dil HCl+Aq of 1 088 sp gr dissolve 0 0172 g SiO<sub>2</sub> in 11 days, 100 pts H<sub>2</sub>O sat with CO<sub>2</sub> dissolve 0 0136 g  $SiO_2$  in 7 days

Silicic acid obtained by passing SiF4 into H<sub>2</sub>O is sol while still moist in 11,000 pts cold, and 5500 pts boiling HCl+Aq of 1 115 (Fuchs, A 82 119)

Silicic acid at the moment of separation (as in dissolving cast-iron, steel, etc.) is abundantly sol in aqua regia (3 pts HCl+Aq of sp gr 113 and 1 pt HNO<sub>3</sub>+Aq of sp gr 133) (Wittstein Z and 7 400) (Wittstein, Z anal 7 433

The ag solution obtained by the hydrolysis of ethyl silicate is more stable in acids+ Aq or alkalı than ın pure H<sub>2</sub>O (Jordis, Z

anorg 1903, 35 16)

NH<sub>4</sub>OH+Aq dissolves considerable freshly precipitated silicic acid, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> only a

very little (Karsten, Pogg 6 357)
Dry or ignited SiO<sub>2</sub> is sol in NH<sub>4</sub>OH+ 100 pts NH<sub>4</sub>OH+Aq containing 10% NH<sub>3</sub> dissolve 0.714 pt SiO<sub>2</sub> from gelatinous silicic acid, 0 303 pt from artificially dried silicic acid, 0 377 pt from amorphous SiO2, 0017 pt from quartz (Pribram, Z anal 6

NH<sub>4</sub>OH+Aq dissolves 0 382 pt SiO<sub>2</sub> from dry silicic acid 0 357 pt from ignited SiO2, 0 00827 pt from quartz (Souchay, Z anal

11 182)

Silicic acid precipitated from alkali silicates +Aq with CO<sub>2</sub> is sol as follows 100 pts pure H<sub>2</sub>O dissolve 0 021 pt SiO<sub>2</sub>, 100 pts (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq containing 5% (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, 0 020 pt , 100 pts containing 1%(NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, 0062 pt, 100 pts NH<sub>4</sub>OH+Aq containing 192% NH<sub>5</sub>, 0071 pt, 100 pts containing 16%, 00986 pt (Struckmann, A 94 341

100 pts NH<sub>4</sub>OH+Aq (10% NH<sub>3</sub>) dissolve crystallised SiO<sub>2</sub>, 0 017 pt, amorphous SiO<sub>2</sub>, ignited, 0.38 pt, amorphous 3SiO<sub>2</sub>, 4H<sub>2</sub>O, 0 21 pt, amorphous silicic acid in form of jelly, 0.71 pt Upon evaporation no ppt is formed, even when 80 mols SiO2 are present to 1 mol NH<sub>3</sub> (Wittstein, J B 1866 192)

Sol in KOH or NaOH+Aq, especially if

warm (Dumas)

Sol in  $K_2S_1O_3$  or  $Na_2S_1O_3+Aq$  (Fuchs) Easily sol in boiling  $Na_2CO_3+Aq$ , separating as a jelly on cooling (Pfaff)

NH<sub>4</sub>Cl or other NH<sub>4</sub> salts ppt SiO<sub>2</sub> from solution in Na<sub>2</sub>CO<sub>3</sub>+Aq

100 pts Tl<sub>2</sub>O in H<sub>2</sub>O dissolve 4 17 pts amorphous SiO<sub>2</sub> in 24 hours' boiling (Flemming, Jena Zeit 4 36)

Sol in butyl amine (Wurtz, A ch (3) 42

Not more sol in H2O containing sugar than in pure H<sub>2</sub>O (Petzholdt, J pr 60 368)

Soluble silicic acid

Colloidal form by dialysis Solutions containing 49% SiO<sub>2</sub> may be evaporated until they contain 14% SiO<sub>2</sub> The SiO<sub>2</sub> is separated from its solution thus made in many ways-

(1) By standing This happens the more easily the more conc the solution is, and is hastened by heat A 10-12% solution gelatinizes at ordinary temp in a few hours, and immediately upon heating A 5-6% solution may be kept 5-6 days, a 2% solution, 2-3 months, and a 1% solution may be kept 2 or more years without gelatinizing

(2) When the solution is evaporated to dryness in vacuo at 15° a transparent glass is left

which is insol in H2O

(3) The coagulation of colloidal silicic acid is accelerated by powdered graphite and other indifferent bodies, and it is brought about in a few minutes by a solution of the alkali carbonates, even when only 1/10,000 pt of the carbonate is present (Graham, A 121 36)

(4) Coagulation is also brought about by passing CO<sub>2</sub> through the solution

CO2 does not cause coagulation (Maschké) Coagulation is not caused by H2SO4, HCl, HNO<sub>3</sub>, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>, or NH<sub>4</sub>OH+ Aq, or by neutral or acid salts+Aq

NaCl and Na<sub>2</sub>SO<sub>4</sub>+Aq coagulate the solu (Maschke) tion

Alcohol, sugar, glycerine, or caramel dc not coagulate

Soluble Al<sub>2</sub>O<sub>6</sub>H<sub>6</sub>, Fe<sub>2</sub>O<sub>6</sub>H<sub>6</sub>, albumen, and casein precipitate soluble SiO2 (Gr ih im, A **121** 36)

The jelly from colloidal SiO<sub>2</sub> is very sol in slightly alkaline H<sub>2</sub>O 1 pt Na()H in 10,000 pts H<sub>2</sub>O dissolves in an hour it 100° in amt of the jelly corresponding to 200 pts SiO (Graham)

Other colloidal forms

Various solutions of silicic acid may be

obtained as follows

The jelly formed when Silia is passed through H<sub>2</sub>O dissolves in a large unit of H O and SiO<sub>2</sub> separates out on cv ipor ition is still sol in H<sub>2</sub>O, but is made insol by evap oration with HCl or H2SO4 (Berzelius)

When SiF<sub>4</sub> is absorbed by crystallized H<sub>3</sub>BO<sub>3</sub>, and the HF and H<sub>3</sub>BO<sub>3</sub> removed b a large excess of NH4OH+Aq, a silicic acid i obtained which is very sol in H<sub>2</sub>O 1h solution is not decomp by boiling, but or evaporation an insol powder remains zelius, A ch 14 366)

When K<sub>2</sub>S<sub>1</sub>O<sub>3</sub>+Aq is precipitated by CuCl the precipitate washed and dissolved in HCl+ Aq, the solution treated with H2S filtered and boiled, a solution of silicic acid is obtained whic gelatinizes with KOH or NH4OH+Aq (Dov 1, A ch (3) 21 40)

n Na<sub>2</sub>S<sub>1</sub>O<sub>3</sub>+Aq containing at most 3% saturated with HCl+Aq of 110 sp  $S_{1}O_{2}$ gr, & d Na<sub>2</sub>SiO<sub>3</sub> added until the solution is opalescent and carefully warmed to sligh 30°, gelatinous mass is obtained which will e in H<sub>2</sub>O by 12-16 hours' boiling if disso before being exposed to the air n is slightly opalescent The solution solut evaporated by heat until it contains can ] In a vacuum or over H2SO4, solu-6% ₹ ontaining 10% may be obtained. The tions elect current, freezing, alcohol, or H2SO4 preci tate or coagulate the solution (Kuhn, 91) J pr

Šιξ with H2O gives off H2S, and forms a n of SiO2 which, after dilution, can be solut or months But when boiled or evapokept or when a sol silicate is added, it s gelatinous It leaves an insol  $\mathbf{rated}$ becor when evaporated to dryness (Fremy. resid

A ch (3) **38**  $31\overline{4}$  )

Vа ous forms of silicic acid have been describ as definite compounds of SiO, with g amounts of H2O, but it is doubtful if vary ie definite compounds exist, as the perof H<sub>2</sub>O varies with the moisture of the air to which it is exposed (See Ebelmen, A. ch ( 16 129, Doveri, A ch (3) 21 40, Fuch A 82 19, Merz, J pr 99 177, van Bemiclen, B 11 2232, etc)

Silica

The silicates are insol in H2O with the excepti i of the ilkali salts, and these are sol hen the ratio of the base to the acid is only abov a cert un limit

Alum num silicate, 2Al O<sub>3</sub>, Si() +10H<sub>2</sub>O

Collyrule Sol in reids, with forma- $M_{\perp}$ SiO, tHO Becomes transparent in tion  $H_2()$ ad is decomp

), 351() Min Dillnite  $4\Lambda$ 

3, SIO Αl Min Andalusite, Chiastolite, Sillirnnite Disthene or Cyanite Insol in reads

+1 7 II () Min Allophane Completely sol n dil reids, decomp by cone reids with ion of SiO xH O sep u

)3, 351()2+4H() Min Pholeri e In- $2\Lambda$ HNO:+Aq sol 1

+(  $I_{2}()$ Min Gla jera e

3, 251() +2H () AΙ Min Kaolin, Clay Insol n dil II(1 or IINO3+Aq, moderately 504+Aq when he sted to evaporation, dıl I s Al (), and some Si(), and leaves the extri the SiO2, sol in boiling Na2CO3+Aq rest ( All th Al (), is dissolved by heating with 5-6  $S()_{*}+1$  pt  $H_{2}()$  until  $H_{4}SO_{4}$  evaporates, pts I n treating with H O and t

Qu kly attacked by H2Sik+Aq

De omp by boiling KOH+Aq, with residue c SiO<sub>2</sub> (R immelsberg)

K( I+Aq extracts 1/4 of the SiO2 (Mala- | crante

guti), is converted thereby into double silicates of K and Al, which are sol in HCl+Aq (Lemberg)

Solubility in KOH and HCl increased if first heated to a low glow (Glinka, C C

**1899,** II 1063)

Collordal c'ay (Schlosing, C R 79 473) Halloysite Decomp by acids  $+4H_2O$ 4Al<sub>2</sub>O<sub>3</sub>, 9S<sub>1</sub>O<sub>2</sub>+12H<sub>2</sub>O clay from Passau Min Porcelain

 $Al_2O_3$ ,  $3S_1O_2 + 3H_2O$  $M_{in}$ Razoumoff-

Al<sub>2</sub>O<sub>3</sub>, 4S<sub>1</sub>O<sub>2</sub>+7H<sub>2</sub>O Min Montmoril-nite Not decomp by HCl+Aq, but by hot H2SO4

 $+\mathrm{H}_2\mathrm{O}$ Mm Pyrophyllite Not decomp by  $\hat{H}_{2}\tilde{S}\tilde{O}_{4}$  $+3\hat{H}_{2}\hat{O}$ 

Min Anauxite

Min Cimolite  $2Al_2O_3$ ,  $9S_1O_2+6H_2O$ 

"Aluminum silicate" is insol in acetone (Naumann, B 1904, 37 4328), ethyl acetate (Naumann, B 1910, **43** 314)

Aluminum barium silicate, Al<sub>2</sub>O<sub>3</sub>, BaO, 2S<sub>1</sub>O<sub>2</sub>  $+H_2O$  (?)

Min Edingtonite Decomp by HCl+Aq with separation of SiO2, xH2O

5Al<sub>2</sub>O<sub>3</sub>, 4BaO, 10SiO<sub>2</sub> C R **85** 1033) (Fremy and Feil.

2Al<sub>2</sub>O<sub>3</sub>, 4BaO, 7S<sub>1</sub>O<sub>2</sub> Min Barylite Very sl decomp by alkalı carbonates + Aq (Blomstrand)

Aluminum barium potassium silicate,  $Al_2O_3$ , (Ba,  $K_2O_0$ ,  $5S_1O_2 + 2H_2O_0$ 

When finely powdered, Min Harmotome difficultly decomp by HCl+Aq with separation of pulverulent SiO2, xH2O

Al<sub>2</sub>O<sub>3</sub>, (Ba, K<sub>2</sub>)O, 4SiO<sub>2</sub> Min Hagalophane

Scarcely attacked by acids

Aluminum cæsium silicate,  $H_2Cs_2Al_2Sl_5O_{15}$  (?) Min Pollucite Very sl decomp by HCl+ Aq

Aluminum calcium silicate, Al<sub>2</sub>O<sub>3</sub>, CaO, 2SiO<sub>2</sub>

Min Anorthite Completely decomp by HCl+Aq with separation of pulverulent SiO<sub>2</sub>,  $xH_2O$ 

Min Barsowite Instantaneously decomp by HCl+Aq, with separation of gelatinous  $SiO_2$ ,  $xH_2O$ 

Gelatinizes  $+4H_{2}()$ Min Gismon lite

with HCl+Aq

Al<sub>2</sub>O<sub>3</sub>, CaO, 3S<sub>1</sub>O +3H<sub>2</sub>O Min Scolezite Fasily sol in HCl+Aq, without formation of Sol in H C O<sub>4</sub>+Aq with gclatinous SiO<sub>2</sub> pptn of CaC2O4

Decomp by, and sol to a certain extent in H<sub>2</sub>CO<sub>3</sub>+Aq, and decomp also even by pure

H<sub>2</sub>O (Rogers, Am J Sci (2) 5 408)  $+5\mathrm{H}_2\mathrm{O}$  $M_{in}$  Levyn Decomp by acids

without gelatinizing  $Al_2O_3$ , CaO,  $4SiO_2+3H_2O$ Min Capor-Leonhardite Efflorescent Easily sol in acids, with pptn of gelatinous SiO<sub>2</sub>,

 $Al_2O_3$ , CaO,  $4S_1O_2+4H_2O$ Min Laumon-Easily gelatinizes with HCl or HNO<sub>8</sub>+ Aq, but is not affected by H<sub>2</sub>SO<sub>4</sub> unless hot  $Al_2O_3$ , CaO,  $6SlO_2+5H_2O$ Min Epistilbite Gelatinizes with conc HCl+Aq (Gold-

schmidt, Z anal 17 267) Scarcely decomp by boiling conc HCl+ (Jannasch and Tenne, Miner Jahrb

**1880, 1** 43) Strlbrte+6H<sub>2</sub>OHeulanditeSlowly

but completely gelatinized by HCl+Aq Al<sub>2</sub>O<sub>8</sub>, 2CaO, 3S<sub>1</sub>O<sub>2</sub>+H<sub>2</sub>O Min Prehnite Imperfectly decomp by acids before ignition,

but easily afterwards Al<sub>2</sub>O<sub>3</sub>, 3CaO, 3S<sub>1</sub>O<sub>2</sub> Inne alumina garner rossularite Partially decomp by acids Grossularite before ignition, but easily afterwards

2Al<sub>2</sub>O<sub>3</sub>, CaO, 2S<sub>1</sub>O<sub>2</sub>+H<sub>2</sub>O **Ma**rgarite Not attacked by acids

3Al<sub>2</sub>O<sub>3</sub>, 4CaO, 6S<sub>1</sub>O<sub>2</sub>+H<sub>2</sub>O Zoisite Partially decomp by HCl+Aq

4Al<sub>2</sub>O<sub>3</sub>, 6CaO, 9S<sub>1</sub>O<sub>2</sub> Min Meronite Completely sol in HCl+Aq

Aluminum calcium ferric silicate, 2Al<sub>2</sub>O<sub>3</sub>,  $4CaO, Fe_2O_3, 6S_1O_2+H_2O$ 

Min Epidote Only sl attacked by HCl+ Ag before ignition

Aluminum calcium ferric magnesium silicate,  $H_{14}(Ca, Mg)_{40}(Al_2, Fe_2)_{10}Si_{35}O_{147}$ 

Min Vesumanite Idiocrase Only partially decomp by HCl+Aq before ignition

Aluminum calcium iron, etc., silicate borate,  $H_2R_6^{11}(Al_2, B_2)_3S_{18}O_{32}$ 

Min Axinite Not attacked by HCl+Aq before ignition

Aluminum calcium magnesium silicate,  $4H_4Ca\ Mg_8Sl_6O_{24}, 5H_2CaMgAl_6O_{12} =$  $15\text{Al}_2\text{O}_3$ , 13CaO, 37MgO,  $24\text{SiO}_2$ + 13H<sub>2</sub>O

Min Clintonite Completely decomp by HCl+Aq without gelatinization

 $3H_4Ca_2Mg_8Sl_6O_{24}$ ,  $4H_2CaMgAl_6O_{12}$ Not attacked by HCl+Aq BrandisiteSlowly decomp by boiling cone H2SO4

5H<sub>4</sub>Ca<sub>2</sub>Mg<sub>8</sub>Si<sub>6</sub>O<sub>24</sub>, 8H CaMgAl<sub>6</sub>O<sub>12</sub> Min anthophyllite Very sl decomp by hot XanthophylliteHCl+Aq

 $3(Ca, Mg)O, Al_2O_3, 2S_1O_2$ Min Gehlenite Easily decomp by acids

Aluminum calcium potassium silicate,  $(H, K)_2CaAl_2Sl_5O_{15}+6H_2O$ Min Chabasite Decomp by HCl+Aq (K<sub>2</sub>, Ca)Al<sub>2</sub>S<sub>13</sub>O<sub>10</sub>+4H<sub>2</sub>O Min Zeagonite Completely sol in HCl+Aq

Aluminum calcium sodium silicate, 3Al<sub>2</sub>O<sub>3</sub>, 8CaO, Na<sub>2</sub>O, 9S<sub>1</sub>O<sub>2</sub> Min Sarcolite Decomp by acids

2Al<sub>2</sub>O<sub>3</sub>, 12(Ca,Na<sub>2</sub>)O, 9S<sub>1</sub>O<sub>2</sub> (?) Mellilite Gelatinized by acids Mm

Na<sub>2</sub>CaAl<sub>4</sub>Sl<sub>2</sub>O<sub>12</sub> (?) Min Margarite Na<sub>2</sub>CaAl<sub>4</sub>Sl<sub>10</sub>O<sub>28</sub> Min Faujasite Decomp by HCl+Aq Min Gmelinite  $(Na_2, Ca)Al_2Si_4O_{12}$ De-

comp by HCl+Aq  $(Ca, Na_2)Al_2Si_6O_{19}+6H_2O$ Min Foresite

Difficultly decomp by HCl+Aq (Ca,  $Na_2$ )Al<sub>2</sub>Sl<sub>2</sub>O<sub>8</sub>+ $2\frac{1}{2}H_2$ O Min Thomsonite Gelatinizes with HCl+Aq

 $xNa_2Al_2Sl_6O_{16}$ ,  $yCaAl_2Sl_2O_8$ Min Oligoclase, Labradorite Sl decomp by acids, more easily the larger the amt of Ca present

Aluminum calcium sodium silicate sulphate,  $2(Na_2, Ca)Al_2(S_1O_4)_2$ ,  $(Na_2, Ca)SO_4$ Min Hauyn Gelatinizes with HCl+Aq

Aluminum glucinum silicate, Al<sub>2</sub>O<sub>3</sub>, 3GlO,  $6S_1O_2$ 

Min Beryl Emerald Not decomp by acids, excepting partially by H<sub>2</sub>SO<sub>4</sub> after being ignited

 $Al_2O_3$ , 2GlO,  $2S_1O_2 + H_2O$ Min Euclase Not attacked by acids

Aluminum ferrous silicate,  $Al_2Fe(SO_4)_3$ 

Min Garnet Sl decomp by HCl+Aq H<sub>2</sub>FeAl<sub>2</sub>S<sub>1</sub>O<sub>7</sub> Min Chloritoid Not attacked by HCl+Aq Completely decomp by H<sub>2</sub>SO<sub>4</sub> Al<sub>2</sub>O<sub>3</sub>, 3FeO, 3S<sub>1</sub>O<sub>2</sub>+3H<sub>2</sub>O Min Voigitie

Aluminum iron lithium potassium silicate, K<sub>3</sub>L<sub>13</sub>Fe<sub>4</sub>Al<sub>12</sub>S<sub>120</sub>O<sub>65</sub> Min Zinnualdite SI decomp by acids

Aluminum ferrous magnesium silicate,  $6Al_2O_3$ , 3(Mg, Fe)O,  $6S_1O_2 + H_2O$ Min Staurolite Not attacked by acids

Aluminum ferric magnesium silicate,  $2(Al_2, Fe_2)O_3, 2MgO, 5SiO$ Min Cordierite SI attacked by acids +2H2O Min Fsmarkite, Chlorophyllite

Aluminum ferrous manganous silicate, Al O<sub>3</sub>, FeO, 2MnO, 3810

Min Partschinite

Aluminum ferrous sodium, etc., silicate borate,  $R_t^{I}(Al_2)(B_2)S_{I_4}O_{20} + R_s^{II}(Al_2)(B_2)S_{I_4}O_{20}$ 

Min Tourmaline Not decomp by HCl+ Aq, very sl decomp by H<sub>2</sub>SO<sub>4</sub>

Aluminum lithium silicate, Al<sub>2</sub>O<sub>3</sub>, L<sub>1</sub> O, 5S<sub>1</sub>O<sub>2</sub> Not attacked by acids (Hautefeuille, C R 90 541)

Al<sub>2</sub>O<sub>3</sub>, Ll<sub>2</sub>O, 6S<sub>1</sub>O<sub>2</sub> Al<sub>2</sub>O<sub>3</sub>, Ll<sub>2</sub>O, 4SlO<sub>2</sub> [Min Spodumene Not lattacked by acids

4Al<sub>2</sub>C 3Ll<sub>2</sub>O, 30SıO<sub>2</sub> Mın *Petalite* Not attacke by acids

Alumin n lithium potassium silicate, (Li K)<sub>1</sub>,Al<sub>10</sub>Sl<sub>16</sub>O<sub>52</sub>

Min reprdolite Sl decomp by acids

Alumin n magnesium silicate,  $5Al_2O_3$ , 4MgO,  $2S_{l-2}$ 

Min apphirine

Alumin n magnesium potassium silicate,  $x \to \frac{1}{2} A \log_{16} O_{24}$ ,  $y \to \log_{12} S \log_{16} O_{21}$ 

Min Lepidomelane Easily decomp by HCl or NO<sub>3</sub>+Aq, with residue of a skeleton of SiO<sub>2</sub>

3Al<sub>2</sub>( , 12MgO, 2K<sub>2</sub>O, 12SiO<sub>2</sub>+H<sub>2</sub>O Min Anomit

7Al<sub>2</sub>( , 35MgO, 7K<sub>2</sub>O, 36S<sub>1</sub>O<sub>2</sub> M<sub>1</sub>n *Phlogo<sub>1</sub> e* 

Alumin n manganous silicate,  $2Al_2O_3$ , 6MnO, 6S

Alumin m potassium silicate,  $Al_2O_3$ ,  $K_2O$ ,  $S_1O_3$ 

Very lowly decomp by cold  $H_2O$ , 12% is dissolve by hot  $H_2O$  Sol in alkali hydroxides+A, but insol in carbonates+Aq

K<sub>2</sub>O, \$\frac{11}{2}O\_3\$, \$2\$\text{SiO}\_2\$ Insol in cold \$\text{H}\_2\$O, but 6% di alves on boiling Sol in dil acids Insol i alkali hydroxides or carbonates +Aq (Gorge A ch (6) 10 45)

K<sub>2</sub>O, Al<sub>2</sub>O<sub>3</sub>, 3S<sub>1</sub>O<sub>2</sub>+3H<sub>2</sub>O Easily sol in HNO<sub>3</sub> Aq (Deville, A ch (3) **61** 313)

K<sub>2</sub>O, Al O<sub>3</sub>, 4S<sub>1</sub>O Min Leucile Decomp y IICl+Aq with separation of pulveruler S<sub>1</sub>O<sub>2</sub>

+4I O Ppt (Deville, C R 54 324) H<sub>4</sub>K Al<sub>1</sub>S<sub>1</sub>O<sub>4</sub> Min Muscom'e, "Mica" Not at cked by HCl or H SO<sub>4</sub>+Aq

K<sub>2</sub>Al n O<sub>17</sub>+3H<sub>2</sub>O Min Pinte Purtly decomp by HCl+Aq

 $K_2A$   $s_1(O_R)$  Min Orthoclase Feldspan Scarcel attacked by acids Slowly sol in  $H_2SO_4$  of HCl+Aq when finely powdered (Roger)

Alumir m potassium sodium silicate,  $l_2(S_1O_3)_4$ ,  $5N_4$   $Al_2(S_1O_4)_2$  (?)

Min Vepheline Decomp by HCl+Aq

Alumii m silver silicate, Al<sub>2</sub>Ag<sub>4</sub>Si<sub>2</sub>O<sub>3</sub>

Inso in NH<sub>4</sub>OH+Aq (Silba, B **14** 941) Al<sub>6</sub>A N L<sub>4</sub>Si<sub>6</sub>O<sub>4</sub> As above (Silba)

Alumir m sodium silicate, Al<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>O, SiO<sub>2</sub> Inso in cold II<sub>2</sub>O, but 38-40% dissolves in

hot H<sub>2</sub> (Gorgeu)
Al<sub>2</sub>C N<sub>1</sub>O, 2S<sub>1</sub>O<sub>2</sub> Insol in cold H<sub>2</sub>O,
boiling H<sub>2</sub>O dissolves 1-2% Sol in HCl or
HNO<sub>3</sub> iluted with 10-20 vols H<sub>2</sub>O Insol 82)

Not in alkalı hydroxides or carbonates+Aq (Gorgeu, A ch (6) 10 145)

Not attacked by H<sub>2</sub>O (Silber, B 14 941) +3H<sub>2</sub>O Easily sol in HCl+Aq (v Ammon)

Al<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>O, 3S<sub>1</sub>O<sub>2</sub>+3H<sub>2</sub>O Decomp by acids (Deville, A ch (3) **61** 326)

 $Al_2O_3$ ,  $Na_2O$ ,  $4SiO_2+3H_2O$  Easily sol in

HCl+Aq (v Ammon) 2Al<sub>2</sub>O<sub>3</sub>, 3Na<sub>2</sub>O, 3SiO<sub>2</sub> Insol in cold H<sub>2</sub>O, but 27-30% dissolves on boiling (Gorgeu)

but 27-30% dissolves on boiling (Gorgeu)

H<sub>4</sub>Na<sub>2</sub>Al<sub>6</sub>Sl<sub>6</sub>O<sub>24</sub> Min Paragonite Decomp by conc H<sub>2</sub>SO<sub>4</sub>

Na<sub>2</sub>Al<sub>2</sub>Sl<sub>4</sub>O<sub>12</sub>+2H<sub>2</sub>O Min Anachte Readily decomp by HCl+Aq

Na<sub>2</sub>Al<sub>2</sub>Sl<sub>3</sub>O<sub>10</sub>+2H<sub>2</sub>O Mm Natrolite Sol in H<sub>2</sub>O with separation of SiO<sub>2</sub> Also sol in

 $H_2C_2O_4+Aq$   $Na_2Al_2Si_5O_{16}$  Min Albite Not attacked

 $Na_2Al_2Sl_6O_{16}$  Min *Aloite* Not attacked by acids

Aluminum sodium silicate chloride, 3Na<sub>2</sub>Al<sub>2</sub>(SiO<sub>4</sub>)<sub>2</sub>, 2NaCl

Min Sodalite Easily decomp by HCl, and HNO<sub>3</sub>+Aq

Aluminum sodium silicate sulphate, 3Na<sub>2</sub>Al<sub>1</sub>(SiO<sub>4</sub>)<sub>2</sub>, Na<sub>2</sub>SO<sub>4</sub>

 $\begin{array}{ccc} \text{Min} & \textit{Nosean} & \text{Easily decomp} & \text{by HCl+} \\ \text{Aq} & & \end{array}$ 

Aluminum sodium silicate sulphide

See Ultramarine

Barium silicate, BaSiO<sub>8</sub>

Somewhat sol in boiling H<sub>2</sub>O Completely

sol in dil HCl+Aq (v Ammon)

+6H<sub>2</sub>O, or 7H O Boiling H<sub>2</sub>O decomposes, and dissolves about ½ the weight of this substance (le Chatelier, C R **92** 931) 2BaO, SiO<sub>2</sub> Decomp by H<sub>2</sub>O into BaSiO<sub>3</sub> +6H<sub>2</sub>O (I audrin)

Bismuth silicate, 2Bi<sub>2</sub>O<sub>3</sub>, 3SiO<sub>2</sub> Min Eulytite Decomp by HCl+Aq

Bismuth ferric silicate, B<sub>12</sub>Fc<sub>4</sub>S<sub>14</sub>O<sub>17</sub> M<sub>10</sub> Bismuthoferrite

Boron calcium silicate

See Borate silicate, calcium, and Silicate borate, calcium

Cadmium silicate, CdSiO<sub>3</sub>+1½H O

Sol in HCl+Aq with deposition of pulverulent SiO<sub>2</sub>, xH<sub>2</sub>O (Rousseru and Tite, C R **114** 1262)

Cæsium silicate, Cs<sub>2</sub>SiO<sub>3</sub>

(Kahlenberg, J phys Chem 1898, 2

Calcium silicate, CaSiOs

Slowly sol in H<sub>2</sub>O, sol in HCl+Aq Sol in about 100,000 pts H<sub>2</sub>O (Gorgeu,

A ch 1885, (6) 4 550)

100 cc sat aq solution of air dried calcium silicate contains 0 0046 g CaO = 0 0095 CaSiO<sub>8</sub> at 17° (Weisberg, Bull Soc

1896, (3) **15** 1097) 100 cc sat solution of air dried calcium silicate in 10% sugar solution at 17° contains  $0.0065 \text{ g CaO} = 0.0135 \text{ g CaSiO}_3$ , 20% sugar

solution, 0 0076 g CaO = 0 0175 g CaSiO<sub>3</sub>.

After boiling and filtering hot, 10% sugar solution contains 0 0094 g CaO = 0 0195 g CaSiO<sub>3</sub>, 20% sugar solution, 0 0120 g CaO = 0 0249 g CaSiO<sub>3</sub> (Weisberg)

Insol in methyl acetate (Naumann, B 1000 42 3700), othyl acetate (Naumann, B

1909, **42** 3790), ethyl acetate (Naumann, B 1910, **43** 314)

4CaO, 3SiO<sub>2</sub> (Laudrin)

When freshly pre-5CaO,  $3S_1O_2 + 5H_2O$ cipitated is somewhat sol in H<sub>2</sub>O and easily decomp by HCl+Aq (v Ammon) CaO,  $3\tilde{S}_1O_2 + 2H_2\tilde{O}$ (Hjeldt, J pr 94

129  $2\acute{C}aO$ ,  $9SiO_2 + 3H_2O$  Ppt

CaSiO<sub>3</sub> Min Wollastonite Gelatinizes with HCl+Aq

CaS<sub>12</sub>O<sub>5</sub>+2H
<sub>2</sub>O Min Okenite Easily decomp by cold HCl+Aq when powdered

Calcium glucinum silicate sodium fluoride,  $(Ca, Gl)_{15}Sl_{14}O_{48}, 6NaF$ 

Min Leucophane 7(Ca, Gl)<sub>3</sub>Sl<sub>2</sub>O<sub>7</sub>, 6NaF Min Melinophane

Calcium ferrous silicate, CaSiO<sub>8</sub>, FeSiO<sub>8</sub> Min Hedenbergite, Pyroxene Sl decomp by acids

Calcium ferric silicate, Ca<sub>3</sub>Fe<sub>2</sub>(SiO<sub>4</sub>)<sub>3</sub> Min Garnet Sl decomp by HCl+Aq 2CaSiO<sub>3</sub>, 11 Fe<sub>2</sub>(SiO<sub>3</sub>)<sub>3</sub> Min Szaborte Sl attacked by HCl+Aq, and still less by  $H_2SO_4+Aq$ 

Calcium ferroferric silicate, 2CaO, 4FeO,  $Fe_2O_3$ ,  $4S_1O_2 + H_2O = H_2Ca_2Fe_4Fe_2S_1O_18$ Min Lieurite Ilvarte Easily gelatinizes with HCl+Aq

Calcium ferrous magnesium silicate, (Ca, Fe, Mg)SiO<sub>3</sub>

Amphibole, Hornblende,  $M_{in}$ Asbestos. Actinolite, Tremolite Only sl attacked by acids

Calcium ferroferric sodium silicate, CaSiO<sub>3</sub>,  $FeSiO_8$ ,  $Fe_2(SiO_8)_8$ ,  $Na_2SiO_8$ 

Mm Aegirite

Calcium magnesium silicate, CaO, MgO,  $4S_1O_2$ 

(Mutschler, A 176 86) Ca<sub>2</sub>SiO<sub>4</sub>, Mg<sub>2</sub>SiO<sub>4</sub> I Mın Montrcellite Completely sol in dil HCl+Aq

(Ca,Mg)SiO<sub>3</sub> Min Diopside, Pyroxene Very sl attacked by acids

Calcium manganous silicate, CaSiO<sub>3</sub>, 2MnSiO<sub>8</sub> Min Bustamite

Calcium potassium silicate See under Glass

Calcium sodium silicate, (Ca, Na<sub>2</sub>, H<sub>2</sub>)SiO<sub>3</sub> Min Pectolite Decomp by HCl+Aq See under glass

Calcium sodium silicate zirconate.  $Na_4Ca(S_1,Z_r)_9O_{21}+9H_2O$ Min Wohlerite Decomp by HCl+Aq

Calcium uranyl silicate, 3CaO, 5UO<sub>3</sub>, 6SiO<sub>2</sub>+ 18H<sub>2</sub>O

Min Uranophane Gelatinizes with acids CaO, 3UO<sub>3</sub>, 3S<sub>1</sub>O<sub>2</sub>+9H<sub>2</sub>O Min Uranotile

Calcium silicate chloride, 2CaO, SiO<sub>2</sub>, CaCl<sub>2</sub> Insol in H<sub>2</sub>O or alcohol Sol in HCl+Aq (le Chatelier, C R 97 1510)

Calcium silicate fluoride, 2CaO, 3SiO<sub>2</sub>, 6CaF<sub>2</sub> (Deville, C R 52 110)

Calcium silicate potassium fluoride, 4H<sub>2</sub>CaS<sub>12</sub>O<sub>6</sub>, KF+4H<sub>2</sub>O Min Apophyllite Decomp by HCl+Aq

Calcium silicate stannate See Silicostannate, calcium

Calcium silicate titanate, CaO, SiO<sub>2</sub>, TiO<sub>2</sub> (Hautefeuille, A ch (4) 4 154) Min Trianite Incompletely decomp by HCl+Aq, wholly by H<sub>2</sub>SO<sub>4</sub>+Aq

Cerous silicate, Ce<sub>2</sub>(SiO<sub>3</sub>)<sub>3</sub>

More or less attacked by HCl, HNO<sub>3</sub>, or H<sub>2</sub>SO<sub>4</sub>+Aq, according to the concentration (Didier, C R 101 882)

Cerium didymium lanthanum silicate, 2(Ce, La, D1)<sub>2</sub>O<sub>3</sub>, 3S1O<sub>2</sub> Min Cerite Gelatinizes with HCl+Aq

Cerium glucinum yttrium silicate,  $(Y, Ce Gl)_2SiO_5$ 

Easily gelatinized by GadoliniteMın HCl+Aq

Cerous silicate chloride, 2Ce<sub>2</sub>O<sub>3</sub>, 3SiO<sub>2</sub>,  $4\text{CeCl}_8 = \text{Ce}_4(\text{SiO}_4)_3, 4\text{CeCl}_8$ Insol in H<sub>2</sub>O, but slowly decomp thereby

(Didier, C R 101 882)

Cobaltous ilicate, Co<sub>2</sub>S<sub>1</sub>O<sub>4</sub> Gelatin es with HCl+Aq (Bourgeois, C R 108 1 77)

Cupric sil ate, CuH<sub>2</sub>SiO<sub>4</sub>

Mın coptase Sol in HCl, HNO<sub>3</sub>, or Aq with separation of SiO<sub>2</sub> Not NH₄OHy KOH+Aq attacked

 $2H_2O$ CuSiO<sub>2</sub> Min ChrysocollaDe-ICl+Aq

comp by Easily de- $+3H_{2}$ MmAsperolite comp by HCl+Aq

"Cupri silicate" is insol in methyl acetate (Naumar , B 1909, 42 3790)

Cupric si cate ammonia, CuSi<sub>2</sub>O<sub>5</sub>, 2NH<sub>8</sub> Ppt chiff, A 123 38)

Glucinur silicate, Gl<sub>2</sub>SiO<sub>4</sub>

Mın *`henacıte* Not attacked by acids

Glucinur ferrous manganous silicate ferrous man anous sulphide, 3(Gl, Fe, Mn)<sub>2</sub>SiO<sub>4</sub>, (Mr Fe)S

Mın Ielvine Decomp by HCl+Aq

Iron (fer ous) silicate, Fe<sub>2</sub>SiO<sub>4</sub>

 $M_{in}$ Faualite Gelatinizes with HCl+

 $\mathbf{A}\mathbf{q}$ FeS<sub>1</sub>O Min Grunerite Chlorophite +6HMın (Zobel, Dingl 154 111) 4FeO 3iO2

Iron (fe ic) silicate, Fe<sub>2</sub>Si<sub>3</sub>O<sub>9</sub>+5H<sub>2</sub>O

Vontronite Gelatinizes with hot  $M_{in}$ acids

4Fe<sub>2</sub>C  $9S_1O_2 + 18H_2O$ Min Hisingerite 2Fe<sub>2</sub>(  $9S_1O_2 + 2H_2O$  Min Anthosiderrte

Iron (fe roferric) magnesium silicate,  $(F_1 Mg)_3Fe_2Si_2O_{10}+4H_2O$ 

 $M_{1n}$ Cronstadtrte Gelatinizes with acids

Iron (fe oferric) sodium silicate, 5Na<sub>2</sub>SiO<sub>8</sub>, 2F 51O<sub>3</sub>, 4Fe<sub>2</sub>(S1O<sub>3</sub>)<sub>8</sub>

Aknite Sl decomp by acids

Iron (f rous) magnesium silicate, Fe<sub>2</sub>SiO<sub>4</sub>, M SiO<sub>4</sub>

Min Olivene, Chrysolite, Peridote Gelatinizes th HCl or H2SO4+Aq

(Fe,  $[g)S_1O_3 + \frac{3}{2}H_2O$  Min Picrophyllite

+1/4 2O MonraditeMın (Fe, g)SiO<sub>3</sub> Min Bronzite, Hypersthene

Not at cked by acids xMg  $iO_3$ , yFeSiO<sub>3</sub> Not at icked by acids Min Anthophyllite

Iron ( rrous) manganous silicate,  $Fe_2SiO_4, \\ M \ _2SiO_4$ 

Min Knebelite Gelatinizes with HCl+ Aq

Iron (ferrous) manganous silicate chloride,  $7(\text{Fe,Mn})\text{SiO}_{8}$ ,  $(\text{Fe,Mn})\text{Cl}_2+5\text{H}_2\text{O}$ 

Pyrosmalite Completely decomp Min by cone HNO<sub>3</sub>+Aq

Iron (ferric) potassium silicate, Fe(SiO<sub>8</sub>), K<sub>2</sub>S<sub>1</sub>O<sub>2</sub>

(Hautefeulle and Perrey, C R 107 1150)

Iron (ferric) sodium silicate, Na<sub>2</sub>Fe<sub>2</sub>Si<sub>4</sub>O<sub>12</sub> MinCrokudolite Not attacked by acids

#### Lead silicate

Insol in acetone (Naumann, B 1904, 37 4329), methyl acetate (Naumann, B 1909, **42** 3790)

See under Glass

B 1909, **42** 3790)

Lithium silicate, Li2S15O11 L14S1O4

 $L_{12}S_{1}O_{3}$ More stable towards H<sub>2</sub>O than the other alkalı metasılıcates (Rieke and Endell, C C 1911, I 7)

Decomp by boiling H<sub>2</sub>O and acids (Friedel, C C 1901, II 89)

Scarcely attacked by cold H<sub>2</sub>O (Friedel. Bull Soc Min 1901, 24 141) Insol in ethyl acetate (Naumann, B 1904, 37 3601), methyl acetate (Naumann,

Magnesium silicate,  $Mg_3Si_2O_7+2H_2O$ 

Mm Serpentine Decomp by HCl+Aq, more easily by H<sub>2</sub>SO<sub>4</sub> Min Chrysotile

 $Mg_4S1_8O_{10}+6H_2O$ Min Gymnite, Soapstone Decomp by H2SO4

MgSiO<sub>8</sub> Not completely decomp bу HCl+Aq

+1/4H2O Min Aphrodite Decomp by hot acids

+1/2H2O Min Picrosmine

 $+1^{2/3}H_2O$  Sol in dil acids (v Ammon) Mın Forsterrte

3MgO, 4SiO<sub>2</sub>+H<sub>2</sub>O or 4MgO, 5SiO<sub>2</sub>+ H<sub>2</sub>O Min Talc or Steatite Not at- $\frac{3}{4}H_2O$ tacked by HCl or H<sub>2</sub>SO<sub>4</sub>+Aq

 $Mg_{5}S_{16}O_{17}+4H_{2}O$ Min Spadarte Decomp by conc HCl+Aq

Йın  $Mg_2S_{13}O_8 + 4H_2O$ Meerschaum

Decomp by HCl+Aq
"Magnesium silicate," is insol in methyl acetate (Naumann, B 1909, 42 3790)

Magnesium potassium silicate,  $MgO, K_2O, 3SiO_2$ 

Easily sol in acids with decomp (Duboin, C R 1895, **120** 681)

Magnesium silicate fluosilicate, Mg<sub>5</sub>Si<sub>2</sub>O<sub>9</sub>,  $Mg_5Sl_2F_{18}$ 

Humite, Chondrodite Gelatinizes with HCl or H<sub>2</sub>SO<sub>4</sub>+Aq

Manganous silicate, Mn<sub>2</sub>S<sub>1</sub>O<sub>4</sub>

Tephroite Decomp by HCl+Aq with formation of a stiff jelly

MnSiO<sub>2</sub> Min Rhodonite. Hermannite Not attacked by HCl+Ag

Mn4512()10+2H2() Friedelite  $M_{in}$ I asily gelatinized by HCl+Aq

Manganous silicate" is insol in ethyl (Naumann, B 1910, 43 314)

Manganous zinc silicate, (Mn,Zn)2SiO4 Min Troostite

Manganous silicate chloride, MnSiOz, MnO, MnCl.

Decomp by H<sub>2</sub>() (Gorgeu)

Nickel sulicate, NijSi()4

basily decomp by acids (Bourgeois, C.R. 108 1077 )

Potassium silicate, K25108

Completely sol in H<sub>2</sub>O (Ordway, Sill Am J (2) 33 34)

Insol in methyl acetate (Nauminn, B 1909 42 3790 )

K2S12Ob Sol in HO Cone K S124O5+Aq contains 25% of the salt, and has sp gr 1 25 (luchs)

Hydroscopic Decomp at once by H<sub>2</sub>O (Morey, J Am Chem Soc 1914, 36 222)  $K_2Si_3O_4$  Partially sol in HO is  $K_2SiO_3$   $K_3O_4O_4O_4$  +10HO Insol in HO (Forch-

hammer)

The K-silicutes are pptd from their iqueous solution by alcohol with partial decomp, but less readily than Na silicates

More sol in HO than the corresponding Nasilta (Ordway, Sill Am J (2) 32 155) Solution can be obtained which is perfectly clear when 412SiO are present to 1kO if there are no impurities present (Ordway)

The K silicates resemble the Na silts which see for further data

Potassium hydrogen silicate, KH51()

Not readily affected by If O, even by treat ment at 100 for several hours

Decomp by heating with dil HCl (Morey, Am Chem Soc 1914, 36 222)

Potassium zinc silicate

Sol in KOH+Aq (Schindler) K<sub>2</sub>(), 6ZnO, 4SiO<sub>2</sub> Sol in HCl+Aq (Dubom ( R 1905, 141 255) 8k<sub>2</sub>O, 9ZnO, 17SiO<sub>2</sub> Sol in HCl+Aq

(Duboin)

Potassium zirconium silicate, K() Zi(), 2510

Decomp by HC1+Aq (Melliss)

Rubidium silicate, Rb 5103 (Kahlenberg, J. phys. Chem. 1898, 2 82) | solution of Na<sub>2</sub>SiO<sub>3</sub>

Silver silicate, Ag<sub>2</sub>S<sub>1</sub>O<sub>3</sub>

Decomp by all acids, sol in NH<sub>4</sub>OH+Aq (Hawkins, Sill Am J 139 311)

Sodium silicate, Na<sub>2</sub>SiO<sub>2</sub>

Rapidly decomp by H<sub>2</sub>O Am Chem Soc 1914, **36** 224) (Morey, J

Insol in methyl acetate (Naumann. B 1909, 42 3790)

+5, 6, and 8H<sub>2</sub>O Easily sol in H<sub>2</sub>O +9H₂Ó Solubility in ½-N NaOH+

100 ccm of the solution contain 25 56 g  $Na_2S_1O_3 + 9H_2O$  at 17 5 °

Sp gr of the solution = 1 129 berg, C C 1913 777) (Vester-

100 ccm of a sat solution of sodium silicate in ½-N NaCl+Aq contain 383 g Na<sub>2</sub>SiO<sub>3</sub>+9H<sub>2</sub>O at 175° Sp gr of solution =115

100 ccm of a sat solution of sodium silicate in sat NaCl+Aq contain 20 64 g Na<sub>2</sub>S<sub>1</sub>O<sub>3</sub> +9H<sub>2</sub>O at 175° (Vesterberg)

Na<sub>2</sub>Sı<sub>2</sub>O<sub>5</sub> Sol in H<sub>2</sub>O

Slowly decomp by cold H<sub>2</sub>O (Morey J Am Chem Soc 1914, 36 223)

Na<sub>4</sub>S<sub>15</sub>O<sub>12</sub> Na<sub>2</sub>S<sub>13</sub>O

Na<sub>2</sub>S<sub>14</sub>O<sub>9</sub> Slowly sol in H O +12H<sub>2</sub>O

Above compounds are all more or less indefinite Water glass  $xNa_2O$ ,  $yS_1O + zHO$  Sol

in HO, but solution is decomposed by all

weak acids, even CO2 Fused water glass is but little acted on by cold HO, but when pure, easily dissolves in II O by long boiling (O'dw y, \m J Sci (2) 32 337)

When the SiO is present in greater proportion than in Na2O, 3SiO, it is very difficult

to dissolve in H<sub>2</sub>O

Na silicate is less easily sol in H () than

the corresponding K compound

Solubility of water glass in H () is much imp and by cuthy impurities, so that traces have great effect in preventing the solubility

NII, salts decomp water glass solutions A solution cont uning 12% Na SiO<sub>3</sub> is so ucely precipitated by NH<sub>3</sub>Cl, but casily by NH<sub>4</sub>NO (Fluckinger)

Precipitated by  $NH_4OH + Aq$  is  $N_4 > 10$ ; Many sodium and potassium salts especially the chlorides and accentes, form precipitates in solutions of water glass, these precipitates are larger the more concentrated the solution is, and the greater amount of SiO2 it contains. Heating histors the precipitation by chlorides, nitrates, and sulphates, but delays that by accentes KOH+ 1q does not precipitate

Cold sat Na<sub>2</sub>SO<sub>4</sub>+Aq does not precipitate even on heating, but 1 pt anyhydrous N i SO4 dissolved in 2 pts H<sub>2</sub>() precipitates a hot

 $Na_2SiO_3$ pts  $H_2$ ( Na<sub>2</sub>S<sub>1</sub>O<sub>3</sub>, equal vo solidifies solves on +Aq ar

the preci If 1 1 added to but by 1 to 2 pts pptd, bu ating ag +Aq is and hea temp

The r separate Most of tion, bu power u especial

Brom phenole drate, c tion ppt dextrineof urea convolv dissolve (Flucku

aqueou but the tending silicate dissolve tains m

Man glass as Like al posing when 1 of the tion of

Diffe power, cularly power trates, The c efficien even a

alkalın

silicates

 $Na_2$  $Na_{2}$ O<sub>4</sub> have very little effect

NaNO dissolved in 1 pt H<sub>2</sub>O precipitate Aq of 1392 sp gr, NaNO<sub>3</sub> in 2 when mixed with a solution of s above, if the two are present in , causes no ppt in the cold, but when warmed to 54°, and redisooling rapidly, but if 2 vols NaNO<sub>3</sub> present to 1 vol Na<sub>2</sub>SiO<sub>3</sub>+Aq, tate does not disappear on cooling

NH<sub>4</sub>OH+Aq (0 921 sp gr) is 0 pts Na<sub>2</sub>SiO<sub>3</sub>+Aq, no ppt forms, creasing the amt of NH<sub>4</sub>OH+Aq the greater pt of the Na<sub>2</sub>S<sub>1</sub>O<sub>3</sub> is redissolves on heating to 90°, separn on cooling When 1 pt NH<sub>4</sub>OH added to 6-8 pts Na<sub>2</sub>S<sub>1</sub>O<sub>3</sub>+Aq d to 30°, a clear liquid is formed which se arates into two layers at ordinary

> st sol K, Na, Li, and NH<sub>4</sub> salts SiO<sub>2</sub> from conc Na<sub>2</sub>SiO<sub>2</sub>+Aq hese salts lose this power by diluthe NH4 salts and KSON keep this il the solution is very dil This is the case with NH<sub>4</sub>Cl and NH<sub>4</sub>NO<sub>3</sub> e, chlorine, propyl amine, crecsote, dissolved in glycerine, chloral hyalbumen solution, and glue solu-S1O<sub>2</sub> from Na<sub>2</sub>S1O<sub>3</sub>+Aq, but sugar,

glycerine, urea, sl alkaline solution utrate, conine, nicotine, saponine, ine, jalappine, and colophonium in KOH+Aq do not ppt SiO<sub>2</sub> er, Arch Pharm (2) **144** 97) Alcol l ppts water glass as such from its

olution, even when this is very dil is some decomposition, the alcohol o hold in solution a portion of a nore alkaline than that previously in H<sub>2</sub>O, while the ppt formed con-(S<sub>1</sub>()<sub>2</sub> than the original silicate

neutral K or Na salts ppt water ich when added to aqueous solutions shol, these solutions exert a decomction, the ppt being always more siliceou than the original silicate Na silicate vi its a larger deposit than K silicate, ilicate of one base is pptd by a salt her, both bases enter into the composition of the ppt, and the relative propori and has very nearly the same as in the ave age of the liquids mixed

nt salts have very unequal pptg ne acctates and chlorides being parti-Heat increases the pptg fficient f the chlorides, sulphates, and nind diminishes that of the acetates ili icetates are somewhat more than the chlorides, but NaC2H3O2 gives c ly a slight ppt with Na<sub>2</sub>O, 2½SiO<sub>2</sub>, r some time Nal ), has but little effect on the more

> )4 has still less power than NaNOs )3 has no pptg power, and Na3AsO4

MHSO<sub>4</sub>, MHCO<sub>2</sub>, M HPO<sub>4</sub>, M<sub>2</sub>HAs ppt S<sub>1</sub>O<sub>2</sub> NH<sub>4</sub> salts also have that effect MHCO<sub>3</sub>, M HPO<sub>4</sub>, M<sub>2</sub>H AsO<sub>4</sub> Pptd water glass, as mentioned above, is much more sol in HO than ordinary water glass, and dissolves in HO without decomp For numerous further details, see articles by Ordway in Sill Am J Sei vols 32 and 33,

also Storer's Dict Sp gr of water glass solution containing 14-15% SiO, 13-14% Na O, and 70-72% H<sub>2</sub>O is 1 30-1 35 (Hager, Comm 1883)
Sp gr of sat Na SiO<sub>2</sub>+Aq freshly pre-

pared at 18° is 1 2600, and 1 litre contains 4 5 gramme-equivalents ½Na.SiO.

Sp gr of sat solution of Na O, 3 4SiO<sub>2</sub> is 1 366, and 1 litre contains 37 gramme-equivalents ½(Na O, 3 4SiO) (Kohlrausch, Z phys Ch 12 773)

Sodium zirconium silicate, Na<sub>2</sub>O, ZrO<sub>2</sub>, SiO Decomp by hot H<sub>0</sub>O or HCl+Aq (G1bbs, Pogg 71 559) Na<sub>2</sub>O, 8ZrO<sub>2</sub>, S<sub>1</sub>O<sub>2</sub>+11H O Decomp by H<sub>2</sub>SO<sub>4</sub> (Melliss)

Strontium silicate, SrSiO<sub>3</sub>

(Stein, Z anorg 1907, 55 164) +HO Sol in HO (Jordis and Kanter, anorg 1903, 35 90)

Sr<sub>2</sub>S<sub>1</sub>O<sub>4</sub> (Stein, Z anorg 1907, 55 167) 3SrO, SiO, Sl sol in HO Sol in acids (Vauquelin)

Thallous silicate, 3Tl O, 10SiO

100 pts of a solution of Tl O dissolve 4 17 Sol in HO pts SiO2 by 24 hours' boiling (Flemming, J B 1868 251)

Thorium silicate, ThO, SiO

Attacked by KHSO<sub>4</sub> Insol in acids (Troost and Ouvrard, C R 105 255) Min Thorite Decomp by

+1½H O HCl+Aq ThO, 2S (T and O) Insol in acids or KHSO4 2S1O

Yttrium silicate, Y O₃ >10 Attacked by HCl, H\O or H\O<sub>4</sub>+Aq (Dubom, C R 107 99)

Zinc silicate, ZnSiO3

(Stein, Z anorg 1907, 55 160) Gelatinizes Min Willemite  $Zn_2SiO$ with HCl+Aq, sol in hOH+Aq

Decomp by cold sat cittle acid+Aq (Bolton C N 1881 43 34)
+HO Min Calamine Sol in HCl+Aq with separation of gelatinous SiO, xHO Sol in HC H<sub>3</sub>O + Aq, and KOH + Aq

Insol in NH<sub>4</sub>OH+(NH<sub>4</sub>) CO<sub>3</sub>+ Aq (Brandhorst, Zeit angew Ch 1904, **17** 513) ZnO, 3SiO (Borntiager, Ch Z 1893, 8

186)

## Zirconium silicate, SiO2, ZrO2

Min *7ircon* Insol in acids, except H<sub>2</sub>SO<sub>4</sub>, in which it is very slowly and sl sol 3SiO<sub>2</sub>, 2ZrO<sub>2</sub> Min Auerbachite

## "Sılıcıum oxide," SısH2O5

(Geuther, J pr 95 430) This substance is identical with silicoformic anhydride according to Otto-Graham's Handb anorgan Chem 7te Aufl 2 953

# Siliciuretted hydrogen

See Silicon hydride

## Silicobromoform, HSiBra

Fumes on air, decomp by H<sub>2</sub>O

## Silicochloroform, HS1Cl3

Decomp by H<sub>2</sub>O and alcohol Completely miscible with CS<sub>2</sub>, CCl<sub>4</sub>, CHCl<sub>5</sub>, C<sub>6</sub>H<sub>c</sub>, SiCl<sub>4</sub>, SnCl<sub>4</sub>, TiCl<sub>4</sub>, and AsCl<sub>5</sub> (Ruff, B 1905, **38** 2230)

#### Silicoethane

See Silicon hydride

# Silicofluoroform, SiHF:

Decomp by H<sub>2</sub>O Decomp by NaOH and abs alcohol with evolution of hydrogen Decomp by abs ether Sol in toluene (Ruff, B 1905, **38** 63)

# Silicoformic anhydride,

 $H_2S_{12}O_3 = (HS_1O)_2O$ 

Somewhat sol in H<sub>2</sub>O Acids, even conc HNO<sub>3</sub>+Aq, have no action, except HF, which dissolves it easily with evolution of hydrogen Solutions of alkali hydrates, ammonium hydrate, and alkali carbonates+Aq also dissolve with evolution of hydrogen (Ruff and Wohler, A 104 101)

## Silicoiodoform, HSiI3

Decomp by  $H_2O$  Sol in  $CS_2$  (Friedel, A 149 96) Miscible with  $C_0H_6$  and  $CS_2$  (Ruff, B 1908, 41 3739)

# Silicomethane, SiH4

See Silicon hydride

# Silicomethyl chloride, SiH3Cl

Decomp by  $H_2O$  and by alkalies (Besson and Fournier, C R 1909, 148 556)

# Silicomethylene chloride, SiH2Cl2

Decomp by  $H_2O$  and by alkalies (Besson and Fournier, C R 1909, 148 556)

#### Silicomolybdic acid, SiO<sub>2</sub>, 12MoO<sub>3</sub>+ 26H<sub>2</sub>O

Very easily sol in  $H_2O$  and dil acids (Parmentier, C R 94 213)

Forms a solution with a little ether, which separates into two layers by addition of H<sub>2</sub>O or more ether (Parmentier, C R 104 686) (Copaux, Bull Soc Min 1906, 29 79)

+32H<sub>2</sub>O Decomp by alkalı (Asch, Z anorg 1901, **28** 293)

+33H<sub>2</sub>O (Copaux, Bull Soc Min 1906, **29** 79)

Aluminum silicomolybdate, 2Al<sub>2</sub>O<sub>3</sub>, 3(SiO<sub>2</sub>, 12MoO<sub>3</sub>)+93H<sub>2</sub>O

(Coppus A ch 1006 (2) 7 118)

(Copaux, A ch 1906, (8) 7 118)

Aluminum sodium silicomolybdate, 4(Na<sub>2</sub>O, Al<sub>2</sub>O<sub>3</sub>, 2SiO<sub>2</sub>), Na<sub>2</sub>MoO<sub>4</sub>+7H<sub>2</sub>O Sol in HCl+Aq (Thugutt, Z anorg 1892, **2** 87)

### Ammonium silicomolybdate

Sol in H<sub>2</sub>O (Parmentier, C R 94 213)

Barium silicomolybdate, 2BaO, SiO<sub>2</sub>, 12MoO<sub>3</sub>  $+16\mathrm{H}_2\mathrm{O}$ 

(Copaux, A ch 1906, (8) 7 118) +22H<sub>2</sub>O Sol in 4 pts H<sub>2</sub>O (Copaux, Bull Soc Min 1906, **29** 80)

+24H<sub>2</sub>O Efflorescent Very sol in H<sub>2</sub>O (Asch, Z anorg 1901, 28 282) +29H<sub>2</sub>O Efflorescent (Copaux, A ch

1906, (8) 7 118)

Cadmium silicomolybdate, 2CdO,  $SiO_2$ ,  $12MoO_3+22H_2O$ 

Very unusually sol in H<sub>2</sub>O (Copaux, A ch 1906, (8) 7 140)

## Cæsium silicomolybdate

Sl sol in  $H_2O$ , insol in silicomolybdic acid+Aq

 $\begin{array}{cccc} \text{Calcium} & \text{silicomolybdate,} & 2 CaO, & SiO_2, \\ & 12 MoO_3 + 24 H_2O \end{array}$ 

 $\begin{array}{ccccc} Efflorescent & Very sol & in & H_2O & (Asch, \\ Z & anorg & 1901, 28 & 282 \ ) & \\ & +26H_2O & (Copaux, A & ch & 1906, (8) 7 & 118 \ ) \\ & +31H_2O & (Copaux \ ) & \end{array}$ 

Chromium silicomolybdate, 2Cr<sub>2</sub>O<sub>3</sub> 3(SiO<sub>2</sub>, 12MoO<sub>3</sub>)+93H<sub>2</sub>O (Copaux)

Cupric silicomolybdate, 2Cu(), Si(), 12Mo()<sub>3</sub> +31H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Copaux)

Lithium silicomolybdate, 2Li<sub>2</sub>O, Si(), 12MoO<sub>3</sub> +29H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Copaux)

Magnesium silicomolybdate, 2MgO,  $SiO_2$ ,  $12MoO_3+30H_2O$ 

(Asch, Z anorg 1901, 28 282) +31H<sub>2</sub>O Very efflorescent and sol in H<sub>2</sub>O (Copaux)

icomolybdate, 2K2O, SiO2, Potassium 12MoO +16H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Asch, Z Effloresce anorg 1901 **8** 282 1 5K<sub>2</sub>O, ₹  $O_2$ ,  $12MoO_3 + 14H_2O$  (Asch)

with decomp (Copaux) Sol in H

K<sub>2</sub>O, Potassium silver silicomolybdate,  $12 \text{M} \, \text{oO}_3) + 14 \text{H}_2 \text{O}$  $3Ag_2O$ 2(S1O<sub>2</sub>, , +30H<sub>2</sub>O +22H

) with decomp Sol unchanged Sol in H ın dil mot r liquor (Copaux, Bull Soc ) 293) Min 1907,

Rubidium c icomolybdate

Sl sol in I2O

Silver silic nolybdate, 1 5Ag<sub>2</sub>O, SiO<sub>2</sub>, 12Mo( +11H<sub>2</sub>O

Sol in cc | H<sub>2</sub>O (Asch ) 2Ag<sub>2</sub>O, § )<sub>2</sub>, 12MoO<sub>3</sub>+12H<sub>2</sub>O D by boiling ] O Sol in NH<sub>4</sub>OH+Aq Decomp  $4Ag_2O_1 = 12MoO_3 + 15H_2O_3$ (Asch)

Sodium si omolybdate, 2Na<sub>2</sub>O, SiO<sub>2</sub>,  $12M_0( +14H_2O$ 

(Copaux 2Na<sub>2</sub>O, {  $O_2$ ,  $12M_0O_3 + 21H_2O$ Very sol ın H<sub>2</sub>O F lorescent (Asch) +22H<sub>2</sub>O(Copaux) 1 5Na<sub>2</sub>O  $31O_2$ ,  $12MoO_3 + 17H_2O$ (Asch)  $S_1O_2$ ,  $12M_0O_3$ ) +  $17H_2O$  (Co- $3Na_2O$ ,

Strontium ilicomolybdate, 2SrO, SiO<sub>2</sub>,  $12\text{Mo}( +26\text{H}_2\text{O})$ (Copaux

Zinc silicoi olybdate, 2ZnO, SiO<sub>2</sub>, 12MoO<sub>3</sub>+ 31H<sub>2</sub>C

sol in H<sub>2</sub>O (Copaux) Extreme

Silicon, S

paux)

s Insol in  $H_2O$  Sol before old HF Insol in other mineral Amorph s igniting in ullegil Sol in conc KOH+Aq acids and phous Si is ignited, it becomes When am and KOH+Aq insol in H

Amorph is Si is sol in aqua regia and in of HNO3 and HF (Vigourouxa mixture R 1895, **120** 367) Moissan,

Insol 11 liquid CO2 (Buchner, Z phys Ch 1906, 1 674) (Gore, Am Ch J

Insol is liquid NH<sub>3</sub> 1898 **20** ₹ 0 )

Sol in HNO<sub>3</sub>+HF (Ber-Graphit zelius, A 1 247)

Insol in all acids, except a Crystallmixture of IF and HNO<sub>3</sub> Sol in moderately conc KO +Aq even when cold (Deville)

it has been generally understood Althoug that cryst llized Si is not attacked by HF, it is now f ind that this applies only to HF+ | vents (Blix, B 1903, 36 4218)

Aq Gaseous HF readily attacks cryst Si (Newth, C N 1896, 72 287)

Si cryst from Ag is incompletely sol in HF According to the temp to which the Ag Si mixture has been heated, the following percentages of S1 are dissolved in HF 970 58 02%, 1150°, 27 66%, 1250°, 19%, 1470°, 16% (Moissan and Siemens, C R 1904, 138 657, 1300)

Insol in liquid NH3 (Gore, Am Ch J 1898, **20** 830 )

Silicon amide, Si(NH<sub>2</sub>)<sub>4</sub>

Unstable, decomp by H<sub>2</sub>O and partially decomp by HNO<sub>3</sub>, sol in most organic solvents (Lengfeld, Am Ch J 1899, 21 531) Decomp by H<sub>2</sub>O, msol in liquid NH<sub>4</sub> (Vigouroux, C R 1903, 136 1670)

Silicon triboride, SiB.

Slowly attacked by HNO<sub>3</sub> Decomp by hot conc H2SO4 or fused KOH (Moissan, C R 1900, 131 142)

Silicon hexaboride, SiBe

Readily attacked by HNO<sub>3</sub> Slowly decomp by hot conc H<sub>2</sub>SO<sub>4</sub> Not attacked by fused KOH (Moissan, C R 1900, **131** 142)

Silicon tribromide Si<sub>2</sub>Br<sub>6</sub>

Decomp by KOH+Aq (Friedel and Ladenburg, A 203 253) HSiBr<sub>3</sub> See Silicobromoform

Silicon tetrabromide, SiBr<sub>4</sub>

Rapidly decomp by HO, decomp in several days by H<sub>2</sub>SO<sub>4</sub> (Friedel and Ladenburg, A 147 362)

Silicon bromide, Si<sub>3</sub>Br<sub>8</sub>

(Besson, C R 1910, **151** 1056)  $S_{14}Br_{10}$  (Besson)

Disilicon hydrogen pentabromide, HSi Br or S<sub>1</sub> Br<sub>5</sub> (?)

Decomp by HO (Mahn, Zeit Chem (2) **5** 279)

Silicon tetrabromide ammonia, SiBr4, 6 \ H3 Decomp by HO (Lav, Dissert 1910) S<sub>1</sub>Br<sub>4</sub>, 7NH<sub>3</sub> Decomp by HO (Besson C R 110 240)

Silicon bromoiodide, SiIBra

Decomp by HO Sol in CS (Friedel, B 2 60)

As above (F) SıBr I2 As above (F) SıBrI

Silicon bromosulphide, SiSB12

Decomp in moist air Violently decomp by H<sub>2</sub>O Sol in CS and other organic sol-

### Silicon carbide, SiC

Very stable, insol in H<sub>2</sub>SO<sub>4</sub> and HNO, sol in fused KOH at red heat (Moissan, Bull Soc 1894, (3) 11 997)

Cryst modification Insol in acids, sol in fused alkalies (Moissan, C R 1893, 117 Cryst modification 427)

Insol in all acids, sol in molten alkalies (Muhlhaeuser, Z anorg 1894, 5 116) See Silundum

## Silicon subchloride, SiCl<sub>2</sub> (?)

Decomp by H<sub>2</sub>O (Troost and Hautefeuille, A ch (5) 7 463)

## Silicon trichloride, Si<sub>2</sub>C<sub>6</sub>

Decomp by H<sub>2</sub>O and alkalies (Troost and Hautefeulle A ch (5) 7 459) SiHCl<sub>3</sub> See Silicochloroform

Silicon tetrachloride, SiCl4 Decomp by H<sub>2</sub>O and alcohol

Silicon octochloride, Si<sub>3</sub>Cl<sub>8</sub> "Perchlors:licopropane" Decomp by H2O (Gattermann, B 1894, 27 1947)

> ∕ **ડ**6 ) cobutane" Decomp air (Besson) cohexane" Decomp 1909, 148 841)

Succon trichloride ammonia, Si<sub>2</sub>Cl<sub>6</sub>, 5NH<sub>3</sub> Slowly decomp by H<sub>2</sub>O (Besson, C R **110** 516)

Silicon tetrachloride ammonia, SiCl<sub>4</sub>, 6NH<sub>3</sub> Decomp by H<sub>2</sub>O (Persoz, A ch 44 319)

Silicon tetrachloride hydrazine, SiCl<sub>4</sub>, 4N<sub>2</sub>H<sub>4</sub> Extremely hygroscopic and quickly decomp by H<sub>2</sub>O (Lay, Dissert 1910)

## Silicon chlorobromide, SiCl<sub>3</sub>Br

Chem Soc 51 590)

Decomp by H<sub>2</sub>O (Friedel and Ladenburg, A 145 187)

SiCl<sub>2</sub>Br<sub>2</sub> As above (Friedel and I adenburg) SīBr<sub>3</sub>Cl Decomp by H<sub>2</sub>O (Reynolds,

Silicon chlorobromide ammonia, 2SiCl<sub>3</sub>Br,  $11NH_3$ 

Decomp by H<sub>2</sub>O (Besson, C R 112 788)  $S_1Cl_2Br_2$ ,  $5NH_3$  As above (B) 2SiClBr<sub>3</sub>, 11NH<sub>3</sub> As above (B)

Silicon chlorohydrosulphide, SiCl<sub>3</sub>SH Decomp by H<sub>2</sub>O or alcohol (Pierre, A ch (3) **24** 286)

Silicon chloroiodide, SiCl<sub>3</sub>I

Decomp by H<sub>2</sub>O (Besson, C R 112 611)  $S_1Cl_2I_2$  As above (B)

SiClI<sub>3</sub> As above (B)

Silver chloroiodide ammonia, 2SiCl<sub>3</sub>I, 11NH<sub>3</sub> (Besson) S1Cl<sub>2</sub>I<sub>2</sub>, 5NH<sub>3</sub>

Silicon chloronitride, Si<sub>5</sub>N<sub>6</sub>Cl<sub>2</sub> (Schutzenberger, C R 92 1508)

Silicon chlorosulphide, Si<sub>2</sub>Cl<sub>2</sub>S<sub>2</sub>

Decomp violently by  $H_2O$  Sol in CCl<sub>4</sub> (Besson, C R 113 1040) SiSCl<sub>2</sub> Violently decomp by  $H_2O$ , sol in

CS<sub>2</sub> (Blix, B 1903, **36** 4223)

## Silicon diffuoride, SiF<sub>2</sub>(?)

Decomp by  $H_2O$  or  $NH_4OH + Aq$  (Troost and Hautefeulle, A ch (5) 7 464)

## Silicon tetrafluoride, SiF4

Abundantly absorbed by H<sub>2</sub>O with decomp 100 pts H<sub>2</sub>O absorb 140 6 pts S1F<sub>4</sub> in 24 hours (Berzelius), 124 1 pts SiF<sub>4</sub> in 24 hours (Davy)

Absorbed abundantly by HNO<sub>3</sub>+Aq

(Kuhlmann, A 39 319)

Absorbed abundantly by alcohol, without separation of silicic acid, if the alcohol contains less than 8% of water

Sol in conc HF+Aq Absorbed by ether Sl sol in naptha, and oil of turpentine

Silicon hydrogen fluoride, H<sub>2</sub>SiF<sub>6</sub> See Fluosilicic acid

Silicon fluoride with MF See Fluosilicate, M

Silicon fluoride ammonia, Silia, 2NH; Decomp by H<sub>2</sub>O (Davy)

Silicon hydride, SiH4

Insol in H<sub>2</sub>O Decomp by kOII+Aq Not changed by  $NH_4OH + Aq$ ,  $H_2SO_4 + Aq$ , or HCl+Aq
or HCl+Aq
"Silicoacetylcne"

Sol in 20% NaOH+Aq with evolution of H (Bradley, C N 1900, 82 149) Si<sub>2</sub>H<sub>6</sub> "Silcoethane" (Lebeau, C R

1909, **148** 44) Sl sol in H<sub>2</sub>O Best solvent is ethyl orthosilicate (Moissan, Bull Soc 1903, (2) **29** 443)

# Silicon nitrogen hydride, SiHN

Decomp by H<sub>2</sub>O and NaOH 1905, **38** 2241)

Silicon hyd xide, SiO<sub>2</sub>, xH<sub>2</sub>O See Silic acıd  $S_{12}H_2O_4$ See Silicooxalic acid  $S_{12}H_2O_3$ See Silicoformic anhydride S14H4O3 See Silicone  $\cdot (S_1(NH)_2)$ Silicon imi by H<sub>2</sub>O (Vigouroux, C R Decomp 1903, **136** o71) Silicondim e, Si(NH)<sub>2</sub> by H<sub>2</sub>O with evolution of much Decomp B 1903, **36** 4224) (Bhhydrochloride, S1(NH<sub>2</sub>)<sub>2</sub>, 2HCl Silicon imi Rather: able in air (Blix, B 1903, 36 4225) Silicon du ide, SiI<sub>2</sub> CS2, CHCl3, C6H6, and S1Cl4 Ladenburg, A 203 247) Insol u (Friedel ai Silicon tru lide, Si<sub>2</sub>I<sub>6</sub> with H<sub>2</sub>O even at 0° Decomp CS<sub>2</sub> dissolve 19 pts S<sub>12</sub>I<sub>6</sub> at 19°, 100 pts at 27° (Friedel and Ladenburg, 26 pts S12 ) **12** 92) Bull Soc  $HS_1I_3$ ee Silicoiodoform Silicon tet 10dide, SiI4 Decomp by H<sub>2</sub>O Acts on alcohol and ether 2 dissolves 2 2 pts SiI4 at 27° 1 pt ( (Friedel, I **149** 96) de, SiN Silicon ni Partiall decomp by boiling with conc  $H_2SO_4$ Not att ked by dil acids with the excep-Decomp by HI tion of H decomp by boiling with alkalies+ Partiall Aq (We s, Z anorg 1910, **65** 89)  $S_{12}N_3$ 'artially decomp by boiling with conc H25 cked by dil acids with the ex-Not at ception of IF Decomp by HF decomp by boiling with alkalies+ Partiall s, Z morg 1910, 65 89) Aq (Wc Not ittacked by H2O  $S_{13}N_4$ decomp by boiling with cone Partial  $H_2SO_4$ Not at cked by dil reids with the excep-Decomp by HI tion of H decomp by boiling with alkalies+ Putul Aq (Wc s, Z morg 1910, 65 89) imide, Si N<sub>3</sub>H Silicon n "Silic i HI, and a spidly in KOH+Ao Sol ir perg(1, C R 92 1508) (Schutzei by cold, more rapidly by hot H2O Decom more rapidly by alkalies Sol in and muc

 $I_2SO_4$  (Lay, Dissert 1910)

HF+Aq

by conc

813 Not decomposed by H<sub>2</sub>O Sol in hot alkalies + Aq with decomp (Blix, B 1903, **36** 4227) Silicon suboxide, S13O2 (Honigschmid, M 1909, 30 509) Silicon monoxide, SiO Much less easily sol in HF+Aq but more easily sol in alkalies + Aq than SiO2 (Potter, C C 1907, II 1952) Silicon dioxide, SiO2 See also Silicic acid (a) Crystalline Min Quartz, Tridymite Insol in H<sub>2</sub>O, and acids, except HF Sl sol in boiling K CO<sub>3</sub>+Aq, and KOH+ Aq, see below Insol in cold KOH+Aq, extremely slowly sol in boiling KOH+Aq (Fuchs) Sol in HF with formation of SiF, and HO Insol in sugar+Aq, contrary to assertion of Verdeil and Rissler (Petzholdt, J pr 60 368) (b) Amorphous Min Opal, etc Insol in H<sub>2</sub>O, and acids except HF 100 pts HO containing CO dissolve 0 078 pt amorphous SiO2 (Maschke), 0 0136 pt (Struckmann) 100 pts cold HCl+Aq of 1 088 sp gr dissolve 0 017 pt SiO (Struckmann) 100 pts HCl+Aq of 1 115 sp gr dissolve in the cold 0 009 pt SiO, and 0 018 pt on boiling 100 pts NH<sub>4</sub>OH + Aq (containing 10% NH<sub>3</sub>) dissolve 0 017 pt quartz and 0 38 pt ignited SiO<sub>2</sub> (Pribram, Z anal 6 119) Sol in boiling K CO3 or Na CO3+Aq, separating out on cooling as a gelatinous mass (Pfaff, Schw J 29 383) The different forms of SiO have different degrees of solubility in K<sub>2</sub>CO<sub>3</sub>+Aq Unignited amorphous SiO from SiF4 dissolves most readily, then come opal, ignited amorphous SiO, fused SiO, and tridymite, quartz powder is the most difficultly soluble (Rose) A similar behaviour is shown to I(OH + Aq)Opal is much more sol in KOH+Aq than quartz, and hyalite is the least sol of the varieties of opal (Tuchs) Opal is easily sol in KOH+Aq even itter Ignition (Schaffgotsch, Pogg 68 147)
Rammelsberg (Pogg 112 177) made the following experiments on the solubility of SiO in KOH+ \q The KOH+ \q u \cd contained 1 pt KOH to a pts HO 1 pt of the powdered mineral was boiled half an hour in a silver dish with such an amount of the KOH + Aq that 20 pts KOH were present 7.75% of milky white quartz was dissolved by repeating the above process three times 12.8–15% of gray hornstone was dissolved by twice boiling, 2.43% of moderately finely powdered agate of 2.661 sp. graw is dissolved by once boiling, 9.7% of unignited hyalite Not attacked by HNO<sub>3</sub> Decomp remained undissolved after thrice boiling,

21% of ignited hyalite remained undissolved after thrice boiling, 721% of semi-opal of 2 101 sp gr remained undissolved after thrice boiling, 185-192% of impure semiopal of 2 101 sp gr remained undissolved after thrice boiling, 79 9% of chalcedony of 2 624 sp gr remained undissolved after thrice boiling, 6 12% of chalcedony of 2 567 sp gr remained undissolved after fourth boiling, 144% chrysophrase of 2623 sp gr remained undissolved after once boiling, 49 41% of chrysophrase of 2 635 sp gr remained undissolved after thrice boiling, 6 62% of flint of 2 606 sp gr remained undissolved after twice boiling, 38 1% of fireopal of 2 625 sp gr remained undissolved after fourth boiling, 26.6% of fire-opal of 2 625 sp gr remained undissolved after fifth boiling

Insol in liquid CO2 (Buchner, Z phys

Ch 1906, **54** 674)

Insol in acetone (Naumann, B 1904,

**37** 4329)

The solubility of crystals of quartz on different faces in HF has been determined by Lebrun (Belg Acad Bull 1913, 953)

Silicon thorium oxide See Silicate, thorium

Silicon zirconium oxide See Silicate, zirconium

Silicon oxychloride, Si2OCl6

Decomp by H<sub>2</sub>O and alcohol Miscible with CS<sub>2</sub>, SiCl<sub>4</sub>, CCl<sub>4</sub>, CHCl<sub>5</sub>, or ether (Friedel and Ladenburg, A 147 355)
Sl<sub>4</sub>O<sub>3</sub>Cl<sub>10</sub>, Sl<sub>4</sub>O<sub>4</sub>Cl<sub>8</sub>, Sl<sub>5</sub>O<sub>10</sub>Cl<sub>12</sub>, (Sl<sub>2</sub>O<sub>3</sub>Cl<sub>2</sub>)n

Sol in above oxychlorides Troost and Hautefeuille, Bull Soc (2) 35 360)

Silicon oxyfluorhydrin, Si.O. 3TF

(Landolt, A Suppl 4 27)

Silicon selenide, SiSe<sub>2</sub>

Decomp by H<sub>2</sub>O or KOH+Aq (Sabatier. C R 113 132)

Silicon sulphide, SiS<sub>2</sub>

Sol in H<sub>2</sub>O with decomp Acts on alcohol or ether in the cold (Fremy, A ch (3) 38 314)

SiS Decomp by H<sub>2</sub>O, easily sol in dil alkalies (Schutzenberger, Bull Soc (2) 38

Silicon sulphodiamide, SiS(NH<sub>2</sub>)<sub>2</sub>

Slowly decomp in the air Insol in cold hquid NH<sub>3</sub> (Blix, B 1903, 36 4219)

Silicon sulphobromide See Silicon bromosulphide Silicon sulphochloride

See Silicon chlorosulphide

Silicon sulphourea, SiS(NH<sub>2</sub>)<sub>2</sub>

Slowly decomp in air Decomp by H<sub>2</sub>O

Insol in cold liquid NH<sub>3</sub> (Blix, B 1903, **36** 4219)

Silicone, Si4H4O3

Insol in H<sub>2</sub>O, but gives off hydrogen when warmed therewith Not attacked by chlorine or nitric or sulphuric acids even on heating, but is gradually sol in HF Decomp by alkalies, even by the most dil NH4OH+Aq, with greatest violence and evolution of heat

and hydrogen gas Insol in alcohol, SiCl<sub>4</sub>, PCl<sub>3</sub>, or CS<sub>2</sub> (Wohler, A 127 257)

H<sub>3</sub>Sl<sub>3</sub>O<sub>2</sub> Decomp by H<sub>2</sub>O and by dil acids Violently decomp by fuming HNO<sub>3</sub> Not attacked by conc H2SO4 Very slowly decomp by conc HCl, rapidly by alkalies+ Aq and by pyridine (Honigschmid, M 1909, 30 509)

Insol in H<sub>2</sub>O, alcohol SiCl<sub>4</sub>, PCl<sub>3</sub>, and CS<sub>2</sub> Not attacked by acids except HF (Donath and Liesner, C C 1909, II 1707)

H<sub>12</sub>Sl<sub>10</sub>O<sub>3</sub> Scarcely attacked by acids, but easily decomp by hot H<sub>2</sub>O, NaOH+Aq etc but not by NH<sub>4</sub>OH+Aq (Kolb, Z anorg 1909, 64, 353)

H<sub>2</sub>Sl<sub>10</sub>O<sub>3</sub> (Kolb)

 $H_{10}S_{110}O_8$  (Kolb)  $H_8S_{18}O_{13}$  As  $H_{12}S_{110}O_8$  (Kolb)

Silicomesoxalic acid, Si(OH)<sub>2</sub>(SiO OH)<sub>2</sub>

Insol in cold H<sub>2</sub>O, decomp by hot H<sub>2</sub>O (Gattermann, B 1899, **32** 1116)

Silicooxalic acid,  $S_{12}H_2O_4 = S_{12}O_2(OH)_2$ 

Decomp by bases with evolution of hydro-Takes up HNO<sub>3</sub> to form compound, but not HCl or H<sub>2</sub>SO<sub>4</sub> (Troost and Haute-feuille, A ch (5) 7 463)

Silicophosphoric acid, SiO<sub>2</sub>, P<sub>2</sub>O<sub>5</sub>

Slowly decomp by HO Unchanged by Exists also in two modifications alcohol which are not attacked by H<sub>2</sub>O (Haute-

SiO<sub>2</sub>, 2P O<sub>5</sub>+4H<sub>2</sub>O Decomp by moist air Sol in H<sub>2</sub>O at 0°, but decomp by warming to ordinary temp (Hautefeuille and

Margottet, C R 104 56)

Calcium silicophosphate See Phosphate silicate, calcium

Silicostannic acid

Calcium silicostannate, Ca(Si,Sn)O<sub>3</sub>

Not attacked by acids, KHSO<sub>4</sub>, or alkalies +Aq (Bourgeois, Bull Soc (2) 47 297)

```
ch (4) 3 5 )
  See also ilicoduodecitungstic acid
Ammoniur silicodecitungstate,
     (NH_4 W_{10}S_1O_{86} + 8H_2O
              opts H<sub>2</sub>O at 18° Very sol in
  Sol in
              (Marignac, A ch (4) 3 5^{\circ})
hot H<sub>2</sub>O
  (NH_4)_6 I W_{10}SiO_{36} + 9H_2O (Marignae)
Ammoniui potassium ----,
     (NH_4 K_4HS_1W_{10}O_{36}+15H_2O_{36})
   (Marigi c)
Barium - -, Ba<sub>4</sub>SiW<sub>10</sub>O<sub>36</sub>+22H<sub>2</sub>O
  Precipit te Insol in H<sub>2</sub>O (Marignac)
Potassium —, K_8S_1W_{10}O_{36}+17H_2O
   Sol in 20 (Marignac)
   K_4H_4S_1 _{10}O_{86} + 8H_2O
                                Sol
                                         ın
                                             H_{*}O
     (Mar nac)
Potassiun —— silicotungstate (?),
     K_8S_1 _{11}O_{39} + 14H_2O_{39}
   K_4H_4S_1 ^{7}_{11}O_{39}+10H_2O (Marignac)
Silver \longrightarrow , Ag_8W_{19}S_1O_{36} + 3H_2O
   Not ap reciably sol in cold H<sub>2</sub>O (Marig-
nac, A c (4) 3 65)
Silicotui stic acid or Silicoduodeci-
      tun, tic acid, H<sub>8</sub>S<sub>1</sub>W<sub>12</sub>O<sub>42</sub>
            _{0}\mathrm{O}_{40}, according to Copaux (Bull (4) \mathbf{3} 101)
   (H_4S_1V
Soc 1908
   +20H
behaves
(Marign
             , A ch (4) 3 10)
   +22H )
```

Silicodecit ngstic acid, H<sub>8</sub>W<sub>10</sub>SiO<sub>36</sub>+

arates out

 $4H_2O$ , SiO<sub>2</sub>,  $10WO_3 + 3H_2O$ 

latinous silica (Marignac.

Sol in H<sub>2</sub>O, very sol in alcohol, ith other as the acid with 22H<sub>2</sub>O Solubility as acid with 29H<sub>2</sub>O 100 pt deliquesec with 13 pts ether To this mixt re 20-25 pts of ether can be added, but a full acr quantity no longer mixes with, but float above the mixture Lthereal solution is m cible with H<sub>2</sub>O Lether is taken up by a sat ated aqueous solution with evolu tion of at, until the volume has become doubled, nore other floats on the mixture By warn ng the latter a liquid separates out which fo as a layer between the two original layers lcoholic solution of the acid mixes with an qual vol of ether, but on adding more etl ra conc othercal solution separates as a syr by layer (Marignac, A ch (4) 3 3 10) +29F O Lfflorescent Sol in H<sub>2</sub>O Saturated c ution at 18° contains 1 pt crystallized aci to 0 104 pt H<sub>2</sub>O, and has 2 843 sp

gr M<sub>1</sub> s in crystal H<sub>2</sub>O Easily sol in

absolute alcohol and anhydrous ether +xH ) (Drechsel, B 1887, **20** 1452)

```
815
                                                        Aluminum silicotungstate, Al<sub>4</sub>H<sub>12</sub>(SiW<sub>12</sub>O<sub>42</sub>)<sub>3</sub>
                                                              +75H<sub>2</sub>O
                                                           Not deliquescent, very sol
Sometim: sol in H2O, but usually sep-
                                                        (Marignac)
                                                           Al_4(S_1W_{12}O_{40})_3 + 60H_2O
                                                                                                  (Wyrouboff
                                                        Chem Soc 1897, 72, (2) 174)
                                                            +87H<sub>2</sub>O
                                                                        (Wyrouboff)
                                                           +93H<sub>2</sub>O
                                                                         Very efflorescent (Wyrouboff)
                                                        Aluminum ammonium ---
                                                              Al_4(NH_4)_{18}(S_1W_{12}O_{43})_3 + 75H_2O
                                                           Sol in H<sub>2</sub>O (Marignac)
                                                        Ammonium —, basic, (NH<sub>4</sub>)<sub>4</sub>S<sub>1</sub>W<sub>12</sub>O<sub>40</sub>
                                                              4NH<sub>4</sub>OH+14H<sub>2</sub>O
                                                            (Wyrouboff, Chem Soc 1897, 72 (2) 174)
                                                         Ammonium —, (NH_4)_8S_1W_{12}O_{42}+16H_2O
                                                            Very sol in hot H<sub>2</sub>O (Marignac, A ch
                                                         (4) 3 17)
                                                            (NH_4)_4H_4S_1W_{12}O_{42}+6H_2O
                                                                                               Less soluble in
                                                         H<sub>2</sub>O than the preceding salt
                                                                                              (Marignac)
                                                           (NH_4)_4S_1W_{12}O_{40} + 8H_2O
                                                                                                  (Wyrouboff,
                                                         Chem Soc 1897, 72 (2) 174)
                                                         Barum —, Ba_2H_4S_1W_{12}O_{2}+14H_2O
                                                           Sol in H<sub>2</sub>O
                                                            +22H<sub>2</sub>O Gradually efflorescent (Marig-
                                                         nac)
                                                           Sol in cold H<sub>2</sub>O, 1 07 pts (Copaux, Bull
                                                         Soc Min 1906, 29 80)
                                                            Sol in 4 pts cold H<sub>2</sub>O
                                                                                           (Wyrouboff, Bull
                                                         Soc Min 1896, 19 278)
Ba<sub>4</sub>SiW<sub>12</sub>O<sub>42</sub>+27H<sub>2</sub>O
                                                                                           Nearly insol in
                                                         cold, sl sol in hot H<sub>2</sub>O (Marignac)
                                                            Ba_2S_1W_{12}O_{40}+16H_2O (Wyrouboff)
                                                         Barium potassium ——, Ba<sub>2</sub>K<sub>2</sub>S<sub>1</sub>W<sub>12</sub>O<sub>40</sub>+
                                                            (Wyrouboff, Chem Soc 1897, 72 (2) 176)
                                                         Barium sodium —, Na<sub>4</sub>Ba<sub>3</sub>SiW<sub>12</sub>O<sub>2</sub>+
                                                               28H₂O
                                                            H<sub>2</sub>O gradually dissolves out sodium silico-
                                                         tungstate
                                                         Cadmium ----, Cd_2SiW_{12}O_{40}+23H_2O, and
                                                               +27H O
                                                            (Wyrouboff)
                                                            4\text{CdO}, 3(\text{SiO}_{2}, 12\text{WO}_{3}) + 4\text{H}_{2}\text{O} (Wyrou-
                                                         Cæsium —, Cs_8SiW_{12}O_{42}
                                                            100 pts H<sub>2</sub>O dissolve only 0 005 pt at 20°,
```

Cadmium hydrogen —, 2Cd<sub>2</sub>SiW<sub>12</sub>O<sub>40</sub>,  $H_4S_1W_{12}O_{40}+42H_2O$ (Wyrouboff)

Completely insol in alcohol, and HCl+Aq

Somewhat sol in dil NH4OH+Aq (Godef-

0 52 pt at 100°

froy, B 9 1363)

Calcium silicotungstate, Ca<sub>2</sub>H<sub>4</sub>SiW<sub>12</sub>O<sub>42</sub>+ 20H<sub>2</sub>O

Not deliquescent in H<sub>2</sub>O (Marignac) Extremely easily sol Ca<sub>2</sub>S<sub>1</sub>W<sub>12</sub>O<sub>40</sub>+18, 24 and 27H<sub>2</sub>O (Wyrou-

boff)

Calcium silicotungstate nitrate, Ca<sub>2</sub>S<sub>1</sub>W<sub>12</sub>O<sub>40</sub>,  $Ca(NO_3)_2 + 15H_2O$ (Wyrouboff)

Cerous ——,  $Ce_2S_1W_{12}O_{40} + 27H_2O$ (Wyrouboff)  $Ce_2S_1W_{12}O_{40}$ ,  $CeH_2S_1W_{12}O_{40} + 34H_2O$ (Wyrouboff)

Chromium ----,  $Cr_4(S_1W_{12}O_{40})_3+60$ , 87 and 93H<sub>2</sub>O (Wyrouboff)

Cupric —,  $Cu_2S_1W_{12}O_{40}+18$ , 27 and  $29H_2O$ Very efflorescent (Wyrouboff)

**D**<sub>1</sub>dym<sub>1</sub>um ----,  $D_{12}S_1W_{12}O_{40}+26$  and  $27H_2O$ (Wyrouboff)  $D_{12}S_1W_{12}O_{40}$ ,  $D_1H_2S_1W_{12}O_{40} + 34H_2O$ (Wyrouboff)

Gallium —,  $Ga_4(S_1W_{12}O_{40})_3+60$ , 87, and

,  $Gl_4(S_1W_1,O_{40})_3+45$ , 87 and

( flodporty vv /

Indium —,  $In_2O_3$ ,  $H_2O$ ,  $2(S_1O_2, 12WO_3) +$ 40H<sub>2</sub>O

(Wyrouboff)

 $2In_2O_3$ ,  $3(SiO_2$ ,  $12WO_3)+63$  and  $93H_2O$ (Wyrouboff)

Iron (ferric) ——,  $Fe_4(S_1W_{12}O_{40})_3+60$  and 93H<sub>2</sub>O (Wyrouboff)

Lanthanum —,  $La_2S_1W_{12}O_{40}+27H_2O$ Efflorescent (Wyrouboff) La<sub>2</sub>S<sub>1</sub>W<sub>12</sub>O<sub>40</sub> LaH<sub>2</sub>S<sub>1</sub>W<sub>12</sub>O<sub>40</sub>+34H<sub>2</sub>O (Wyrouboff)

Lead ----, basic, Pb<sub>2</sub>S<sub>1</sub>W<sub>12</sub>O<sub>40</sub>, 2PbO+20H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Wyrouboff)

Lead —,  $Pb_2S_1W_{12}O_{40}+21H_2O$ Sol in H<sub>2</sub>O (Wyrouboff)

-, L<sub>12</sub>O, S<sub>1</sub>O<sub>2</sub>, 12WO<sub>3</sub>+14 and Lithium ~  $24H_2O$ (Wyrouboff)

Magnesium —,  $Mg_2H_4S_1W_{12}O_{42}+16H_2O$ Stable on the air (Marignac)

Mercurous silicotungstate, basic,  $Hg_4S_1W_{12}O_{40}$ ,  $2Hg_2O + 5H_2O$ 

Insol in H<sub>2</sub>O Insol in dil HNO<sub>8</sub> Slowly sol in cone warm HNO<sub>3</sub> (Wyrouboff)

Mercurous —,  $Hg_8S_1W_{12}O_{42}$ 

Insol in H2O Scarcely sol in dil HNO3+ Aq (Marignac, A ch (4) 3 43)

Mercuric —,  $Hg_2S_1W_{12}O_{40}+15H_2O$ 

Very sol in H2O Solution decomp on boiling (Wyrouboff)

Potassium —, basic, K<sub>4</sub>SiW<sub>12</sub>O<sub>40</sub>, 4KOH+  $12H_2O$ 

1 pt is sol in 10 pts H<sub>2</sub>O at 18° (Wyrouboff)

Potassium ——,  $K_8S_1W_{12}O_{42}+14H_2O$ 

Sol in 10 pts H<sub>2</sub>O at 18°, and less than 3 pts at 100° (Marignac)

+20H<sub>2</sub>O Much less sol in cold than hot H<sub>2</sub>O Extremely sol in hot H<sub>2</sub>O More sol than above comp (Marignac)

K<sub>4</sub>H<sub>4</sub>S<sub>1</sub>W<sub>12</sub>O<sub>42</sub>+7H<sub>2</sub>O Solubility as preceding salt

 $K_4H_4S_1W_{12}O_{42}+16H_2O$  Sol in 3 pts  $H_2O$ at 20°

 $K_6H_{19}(S_1W_{12}O_{12})_2 + 25H_2O$ Decomp by dissolving in H<sub>2</sub>O (Marignac)  $K_4S_1W_{12}O_0+6$  and  $15H_2O$  (Wyrouboff)

 $K_4S_1W_{12}O_{40}$ ,  $K_2H_2S_1W_{12}O_{40}+29H$  O (Wyrouboff)

Rubidium —, Rb<sub>8</sub>SiW<sub>12</sub>O<sub>42</sub>

Sol in 145-150 pts H2O at 20° and in 19-20 pts at 100° Insol in alcohol, difficultly sol in acidified, but extremely easily in ammonia- $1 H_2O$  (Godeffroy, B 9 1363)  $Rb_2H_2S_1W_{12}O_{40} + 5H_2O$  (Wyrouboff)

 $Rb_4S_1W_{12}O_{40}$ ,  $Rb_2H_2S_1W_{10}O_{40} + 22H$  ()

(Wyrouboff)

Silver —,  $Ag_4H_4S_1W_{12}O_{42}+7H$  ()

Very sl sol in H<sub>2</sub>O, sol in dil HNO<sub>3</sub>+ Aq (Marignac)

Sl sol in H<sub>2</sub>O (Wyrouboff)

Sodium —, basic,  $N_{14}S_1W_{12}()_{40}$   $4 \times \iota()H +$  $5H_2O$ (Wyrouboff)

Sodium —,  $Na_8S_1W_1O_4 +7HO$ 

The saturated solution at 19° contains 0.21 pt H<sub>2</sub>O to 1 pt of the salt dried it 100°, and has sp gr = 3.05Marignac)

 $Na_4H_4S_1W_{12}O_{42}+11H_2O$  Stable on an  $+18H_2O$  Efflorescent (Marignac)  $Na_2H_6S_1W_{12}O_{42}+14H_2O$  Decomp by dis-

solving in H<sub>2</sub>O (Marignac)  $Na_4S_1W_{12}O_{40}+14$ , 16 and  $20H_2O$  (Wyrouboff)

Sodium sili otungstate nitrate. 3Na<sub>4</sub>E 51W<sub>12</sub>O<sub>42</sub>, 4NaNO<sub>3</sub>+39H<sub>2</sub>O Slightly liquescent (Marignac)

Strontium —,  $Sr_2S_1W_{12}O_{40}+16$ , 17, 23 and 27H<sub>2</sub>C (Wyroul ff)

Thallium - —,  $Tl_2H_2S_1W_{12}O_{40}+9H_2O$ (Wyroul ff)

Thorium - -, basic Insol in I<sub>2</sub>O (Wyrouboff)

Thorum - -,  $Th_2S_1W_{12}O_{40} + 27H_2O$ Very sol in H<sub>2</sub>O (Wyrouboff)  $O_{40}$ ,  $2H_4S_1W_{10}O_{40}+45H_2O$  $Th_2S_1W$ (Wyroubo

Uranium - -

Thirteer lalts are described by Wyrouboff

Uranyl —

Seven se s are described by Wyrouboff

Zinc —,  $n_2S_1W_{12}O_{40}+18$ , 27 and  $29H_2O$ (Wyrou off)

Silicovan liomolybdic acid

Ammoniui silicovanadiomolybdate,  $3(NH_{2}O, S_{1}O_{2}, V_{2}O_{5}, 9M_{0}O_{3}+20H_{2}O$ 

Spgrc sat solution containing 0 32016 g salt in 1 ( n at  $18^{\circ} = 121322$  (Friedheim, B 1900, 3 1624)3(NH<sub>4</sub>)  $S_1O_2$ ,  $V_2O_5$ ,  $10M_0O_3 + 21H_2O$ 

Sp gr of it solution containing 0 35026 g ccm at  $18^{\circ} = 125275$ of salt in (Friedheim)

3(NH<sub>4</sub>)  $V_2O_5$ ,  $S_1O_2$ ,  $11MoO_3+27H_2O_3$ Sp gr of it solution containing 0 38086 g salt in 1 c n at  $18^{\circ} = 129266$  (Friedheim) 3(NH<sub>4</sub>)  $V_2O_5$ ,  $S_1O_2$ ,  $15M_0O_3 + 24H_2O_3$ Sp gr of at solution containing 0 48997 g salt in 1 c n at 18°=1 43761 (Friedheim)

Ammoniu potassium —,  $(NH_4)_2O$ ,  $2K_2O$ , SiO,  $_{2}O_{5}$ ,  $9M_{0}O_{3}+20H_{2}O$ 

Sp gr sat solution containing 0 24021 salt in ccm at  $18^{\circ} = 1 \ 17031$ (Friedheim )

(NH<sub>4</sub>)<sub>2</sub>( 2K<sub>2</sub>O, S<sub>1</sub>O<sub>2</sub>, V<sub>2</sub>O<sub>5</sub>, 10M<sub>0</sub>O<sub>3</sub>+ or of sat solution contain- $21H_2O$ ing 0 2591 g salt in 1 ccm at  $18^{\circ} = 119184$ Friedheir

(NH<sub>4</sub>)2(  $2K_2O_1$ ,  $S_1O_2$ ,  $V_2O_5$ ,  $11M_0O_3+$ 12H<sub>2</sub>O o gr of sat solution containing 0 2791 g salt in 1 ccm at  $18^{\circ} = 121378$ (Friedheir

Ammoniu zinc  $\longrightarrow$ ,  $4(NH_4)_2O$ , 2ZnO,  $3V_2O_5$ ,  $18M_0O_3 + 15H_2O$  $2S_1O$ Sl sol H<sub>2</sub>O (Blum, Dissert 1904)

Silicovanadiotungstic acid

Ammonium silicovanadiotungstate,  $3(NH_4)_2O_1$  $S_1O_2$ ,  $V_2O_5$ ,  $9WO_8+24H_2O$ 

Can be cryst from H<sub>2</sub>O (Friedheim, B 1902, 35 3244)

 $(NH_4)_6S_1V_2W_{10}O_{40} + 21H_2O$ 1 cc of sat solution in H<sub>2</sub>O at 17 5° contains 0 6652 g of the hydrated salt Sp gr of this solution = 1 4505 Decomp by cone acid and alkali (Friedheim)

Ammonium barium potassium - $(NH_4)_2K_2BaS_1V_2W_{10}O_{40}+25H_2O_{40}$ 

SI sol in H<sub>2</sub>O Decomp by conc acids and alkalies (Friedheim)

Ammonium potassium –  $(NH_4)K_5S_1V_2W_{10}O_{40}+23H_2O$ 

1 ccm of sat solution at 175° contains 0 5072 g of the salt Sp gr of the solution at 20°=13462 Can be cryst from H<sub>2</sub>O Decomp by conc acids and alkalies (Friedheum )

Barium ——,  $Ba_3SiV_2W_{10}O_{40}+28H_2O$ 

1 ccm of the sat solution in H<sub>2</sub>O at 17 5° contains 0 0384 g of the salt Sp gr of the solution = 1 0307 Decomp by conc acids solution = 1 0507 Decomp by come across and alkalies (Friedheim, B 1902, 35 3245) 6BaO, 2SiO<sub>2</sub>,  $3V_2O_5$ ,  $18WO_3 + 50H_2O$  Sl sol in  $H_2O$  (Friedheim) 7BaO, 2SiO<sub>2</sub>,  $3V_2O_5$ ,  $18WO_3 + 83H_2O$  Sl sol in  $H_2O$  (Friedheim)

Potassium —,  $K_6S_1V_2W_{10}O_{40}+22H_2O$ 

Sol in H<sub>2</sub>O Can be cryst from H<sub>2</sub>O without decomp Decomp by conc acids and alkalies (Friedheim Sol

 $6K_2O$ ,  $2S_1O_2$ ,  $3V_2O_5$ ,  $18\dot{W}O_3 + 31H_2O$  in  $H_2O$  (Friedheim)  $7K_2O$ ,  $2S_1O_2$ ,  $3V_2O_5$ ,  $18WO_3+42H_2O$ Sol

in H<sub>2</sub>O (Friedheim)

Sodium —,  $Na_6S_1V_2W_{10}O_{40} + 29H_2O$ 

Very sol in H2O Decomp by cone acids and alkalies (Friedheim)

Silundum,  $S_{1x}C_y$ 

Not attacked by hot Cl or conc acids (Amberg, Z 1 lektrochem 1909, 15 725)

Silver, Ag

Not attacked by H2O Absolutely insol in (Lea, Sill Am J HCl or HC H<sub>3</sub>O<sub>2</sub>+Aq 144 444) Easily sol in HNO3+Aq on warming, if not too cone Only a minute trace is dissolved in an hour by cold dil HNO<sub>3</sub>+Aq (1 pt HNO<sub>3</sub>+Aq of sp gr 140 10 pts H<sub>2</sub>O) (Lea) Sol in hot cone H2SO4 with evolution of SO<sub>2</sub> Sl sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq (1 4), but with more dil H2SO4+Aq the different forms of Ag behave differently (Lea)

Sol in HI+Aq at ordinary temperature

Sol in KI+Aq with access of air Sol in hot KCN+Aq (Christomanos, Z anal 7 301)

Sol in chromic, iodic, chloric and bromic Dil H<sub>2</sub>SO, alone is incapable of dissolving finely divided Ag, and the seeming solvent action is due to the oxygen of the air, oxygen dissolved in the acid, or derived from some external source (Hendrixson, J Am Chem Soc 1903, 25 637)

Boiling H<sub>2</sub>SO<sub>4</sub> dissolves pure Ag only when concentration equals 60° B More dil acid dissolves only the impure metal (Pannani, Gazz ch it 1909, 39 (2) 234)

Slowly decomp into AgCl by alkali chlor-

ides+Aq, also by CuCl2, etc +Aq

Somewhat sol in NH<sub>4</sub>OH+Aq in presence of O (Lea, Sill Am J 144 444)
Sol in KMnO<sub>4</sub>+dil H<sub>2</sub>SO<sub>4</sub>+Aq (Fried-

heim, B 20 2554)

Sol in  $Fe_2(SO_4)_3+Aq$ , especially on heating, but completely insol in FeSO<sub>4</sub>+Aq (Vogel)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

**1898**, **20** 829 )

Allotropic forms—(a) Very sol in H<sub>2</sub>O Solution is pptd by saline solutions or almost any neutral substance Alkalı sulphates, nitrates, and citrates ppt it in a sol form, while MgSO<sub>4</sub>, CuSO<sub>4</sub>, FeSO<sub>4</sub>, NiSO<sub>4</sub>, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, K<sub>4</sub>Fe(CN)<sub>6</sub>, Ba(NO<sub>8</sub>)<sub>2</sub>, and even AgNO<sub>3</sub>+Aq ppt it in an insol form, which, however, may be made sol again by treatment with many substances, as  $Na_2B_4O_7$ ,  $K_2SO_4$ , or  $Na_2SO_4$ + Aq NaNO<sub>2</sub>+Aq ppts the Ag from its solution in a perfectly insol form

(β) The ppt from aqueous solution by salts is sol in NH<sub>4</sub>OH+Aq (Lea, Sill Am

J 137 476)

Many other allotropic forms exist (Lea) Pure colloidal silver is also sol in alcohol Schneider, B 25 1164)

Entirely sol in H<sub>2</sub>O, even when dry (Schneider, Z anorg 1894, 7 339)

#### Silver acetylide, Ag<sub>2</sub>C<sub>2</sub>

Sol in KCN+Aq with evolution of C2H2 Decomp by HCl+Aq (Arth, C R 1897, **124** 1535)

## Silver amide, AgNH<sub>2</sub>

Ppt, sol in ammonium salts+Aq and in excess of potassium amide Sol in liquid Insol in Ag salts+Aq (Franklin, J Am Chem Soc 1905, 27 833) Sol in excess of KNH<sub>2</sub> (F

(Franklin, Z anorg 1905, 46 16)

#### Silver antimonide, Ag<sub>2</sub>Sb or Ag<sub>4</sub>Sb

Discrasite Solın HNO<sub>3</sub>+Aq Insol in HCl+Aq, decomp by  $Ag_3Sb$ HNO<sub>3</sub>+Aq (Christofle)

#### Silver azomide, AgN<sub>3</sub>

Insol in hot or cold H<sub>2</sub>O or dil acids, sol in conc mineral acids Sol in NH4OH+Aq (Curtius, B 23 3023)

Silver bromide, AgBr

Insol in  $H_2O$ , or  $H_2O$  acidulated with  $HNO_3$ ,  $H_2SO_4$ , or  $HC_2H_3O_2$  between 0° and If flocculent or pulverulent, it is sensibly sol therein above 33°, but if granular only above 50°, and then very slightly (Stas, A ch (5) 3 289) Ag can be detected as AgBr in 10,000,006 pts H<sub>2</sub>O (Stas) Calculated from the electrical conductivity

of AgBr+Aq, AgBr is sol in 1,971,658 pts H<sub>2</sub>O at 20 2°, and 775,400 pts at 38° (Holle-

man, Z phys Ch 12 133)

By same method Kohlrausch and Rose calculate that 1 l H<sub>2</sub>O dissolves 0 4 mg AgBr (Z phys Ch 12 240)

Solubility in  $H_2O = 0$  109 mg per l (Prudhomme, J chim Phys 9 519

(Good-

Solubility in  $H_2O = 6.6 \times 10^{-7}$  at 25°

win, Z phys Ch 1894, 13 645) Solubility of AgBr in H<sub>2</sub>O at 25° equals  $8.1 \times 10^{-7}$  g mols per 1 (Thiel, Z anorg

1900 24 57)

Aq solution sat at 211° contains 057× 10-6 gr equiv per litre (Kohlrausch, C C 1901, II 1299) 11 H<sub>2</sub>O dissolves 0 000137 g AgBr at 25°

(Abegg and Cox, Z phys Ch 1903, 46 11)

084×10 4 g are dissolved per liter of sat solution at 20° (Bottger, Z phys Ch 1903, 46 603)

1 lH<sub>2</sub>O dissolves 0 107 mg AgBr at 21° (Kohlrausch, Z phys Ch 1904, 50 356) 37 mg AgBr are contained in 1 liter of sat

solution at 100° (Bottger, Z phys Ch 1906, 56 93) 1 mg in 1 l of sat solution at 21° (Kohl-

rausch, Z phys Ch 1908, 64 168) Solubility in  $H_2O=8$   $8\times10^{-7}$  g mol per litre at 25° (A E Hill, J Am Chem per litre at 25° Soc 1908, 30 74)

Boiling H<sub>2</sub>O dissolves 0 000003502 of its weight of AgBr  $HNO_8+Aq$  (1%  $HNO_3$ ) dissolves 0 00000543 of its weight of AgBr at 100° with al decomposition. The solution is pptd by AgNO<sub>3</sub>+Aq or HBr (or MBr)+ Aq, but not completely I pt of AgBr in solution requires 3 pts of Br as MBr (or HBr), or of Ag as AgNO<sub>3</sub> in order to be wholly (Stas) precipitated

Not attacked by boiling HNO<sub>3</sub>+Aq, sl sol in conc HBr or HCl+Aq (Lowig) Boiling conc H<sub>2</sub>SO<sub>4</sub> decomposes it (Balard) hardly acts on it (Dumas), dissolves a small quantity, which is repptd by H<sub>2</sub>O (Berze-

Very sl sol in dil, easily in conc NH<sub>4</sub>OH +Aq 100 pts NH<sub>4</sub>OH+Aq (0 986 sp gr) dissolve 0.51 pt AgBr (dried at 100°) at 80°, and about double that amount of freshly pptd AgBr (Pohl, W A B 41 267)

1 g freshly pptd AgBr is sol in 250 ccm 10% NH4OH+Aq, but insol in an ammonia cal solution of AgCl (Seiner, Pharm

Trans (3) 14 1)

1 g AgBr dissolves in 8779 4 g 5% NH OH +Aq (sp gr = 0 998) at 12°, and in 288 5 g

10% NH<sub>4</sub>( I+Aq (sp gr = 0 96) at 12° (Longi, Ga ch it **13** 87)

Solubility f AgBr in NH<sub>4</sub>OH+Aq at 15° G mols per l

| NH3                                       | AgBr                                           | Sp gr 155°                                     |
|-------------------------------------------|------------------------------------------------|------------------------------------------------|
| 1 085<br>2 365<br>3 410<br>4 590<br>5 725 | 0 0011<br>0 0031<br>0 0050<br>0 0074<br>0 0101 | 0 9932<br>0 9853<br>0 9793<br>0 9720<br>0 9655 |
|                                           | ~ . ~.                                         | 1000 0 0000                                    |

(Bodlan x, Z phys Ch 1892, 9 734)

Solul ity in NH<sub>4</sub>OH+Aq at 0°

10~ccm (  $\,$  the solution contain g  $\,NH_3$  and  $\,mg\,$  Ag Br

| 0 307     8 0     2 627     106 7       0 488     9 6     3 126     156 8       0 669     17 2     3 389     198 7       0 829     21 2     3 652     266 9       1 151     34 9     3 722     288 8       1 532     55 7     3 770     293 0       1 800     72 8     2 002     200 0 | g NH <sub>3</sub>                                  | Mg AgBr                                     | g NH <sub>3</sub>                                  | Mg AgBr                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 1 809 72 2   3 926   289 2<br>1 953 74 1   3 995   285 0                                                                                                                                                                                                                               | 0 488<br>0 669<br>0 829<br>1 151<br>1 532<br>1 809 | 9 6<br>17 2<br>21 2<br>34 9<br>55 7<br>72 2 | 3 126<br>3 389<br>3 652<br>3 722<br>3 770<br>3 926 | 156 8<br>198 7<br>266 9<br>288 8<br>293 0<br>289 2 |

(Jar , A ch 1899, (7) 17 364)

Solubility of AgBr in NH<sub>4</sub>OH+Aq at 25° G mols per l

| NH3    | AgBr    | NH3   | AgBr    |
|--------|---------|-------|---------|
| 0 1932 | 0 00060 | 1 965 | 0 00692 |
| 0 3849 | 0 00120 | 3 024 | 0 01163 |
| 0 7573 | 0 00223 | 5 244 | 0 02443 |

(Bodlander and Fittig, 1902, Z phys Ch 39 597)

Soluk ity in NH<sub>4</sub>OH+Aq at 25°

| g at A | per l | Mols NH, pcrl   |
|--------|-------|-----------------|
| 30 00  |       | 0 450           |
| 0 00   |       | 0 497<br>0 268  |
| 0 00   |       | 0 273<br>0 115  |
| 0 00   | 386   | 0 118<br>0 0764 |
| 0 00   |       | 0 0704          |
|        |       |                 |

(Whitney id Melcher, J Am Chem Soc 1903, 25 79)

Sol in l t NH<sub>4</sub>Cl+Aq Very sl sol in NH<sub>4</sub> carbo ate, sulphate, or succinate+Aq, and still l s in nitrate (Wittstein) Not very easily sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq when suspended in again by Br+Aq (Field, C N 3 17)
Sol in l N+Aq Sl sol in cone KCl

KBr, NaCl, NaBr, NH<sub>4</sub>Cl, or NH<sub>4</sub>Br+Aq, but insol when dilute

Traces only dissolve in alkali nitrates+Aq

(Fresenius, Quant Anal)

Abundantly sol in  $Hg(NO_3)_2+Aq$  100 ccm  $H_2O$  containing 10 ccm normal  $Hg(NO_3)_2+Aq$  dissolve 0 0383 g AgBr (Stas)

Solubility of AgBr in Hg(NO<sub>8</sub>)<sub>2</sub>+Aq at 25° G mols per l

| Hg(NO3)<br>HNO3 | AgBr    | Hg(NO <sub>8</sub> ) <sub>2</sub><br>HNO <sub>3</sub> | AgBr    |
|-----------------|---------|-------------------------------------------------------|---------|
| 1               | 0 03660 | 0 025                                                 | 0 00459 |
| 0 10            | 0 00873 | 0 0125                                                | 0 00329 |
| 0 05            | 0 00639 | 0 0100                                                | 0 00306 |

HNO<sub>3</sub> was present in all cases, and it was found that there was no difference in solubility of AgBr with concentrations between 0.1N and 2N HNO<sub>3</sub> Cryst and amorphous AgBr showed the same solubility (Morse, Z phys Ch 1902, 45 708)

Difficultly sol in hot conc AgNO<sub>3</sub>+Aq (Risse, A 111 39)

100 ccm of a 3-N solution of AgNO<sub>3</sub> dissolve 0 04 g AgBr at 25° Much less sol in AgNO<sub>3</sub>+Aq than AgI (Hellwig, Z, anorg 1900, 25 176)

Solubility in AgNO<sub>3</sub>+Aq

| Volumetric measurements                                                                |                                                                                                                 |                                                                                              |                                                                                                                                     |  |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| AgNO₃                                                                                  | N/10<br>KBr<br>ccm                                                                                              | Opal<br>escent<br>at                                                                         | G AgBr<br>retained<br>per 100 g<br>AgNOs                                                                                            |  |
| 10 g made up to 32 g per 100 g of solution  10 g made up to 70 g per 100 g of solution | 0 65<br>0 72<br>0 8<br>0 9<br>1 0<br>1 1<br>1 2<br>6 0<br>8 0<br>11 25<br>12 0<br>12 75<br>13 5<br>15 5<br>17 5 | 22°<br>35<br>44<br>62<br>67<br>77<br>79<br>37<br>53<br>67<br>72<br>74<br>79<br>82<br>85<br>5 | 0 129<br>0 144<br>0 159<br>0 178<br>0 188<br>0 207<br>0 226<br>1 13<br>1 50<br>1 88<br>2 12<br>2 26<br>2 40<br>2 54<br>2 92<br>3 29 |  |

Gravimetric measurements at 14 5

|   | G AgNO <sub>3</sub> | ccm HO | Strongth<br>of AgNO3 | G AgBrro<br>tained per<br>100 g AgNO <sub>3</sub> |
|---|---------------------|--------|----------------------|---------------------------------------------------|
| - | 7 326               | 9 32   | 44                   | 0 144                                             |
|   | 8 290               | 7 65   | 52                   | 0 185                                             |
|   | 7 255               | 4 84   | 60                   | 0 283                                             |
|   | 7 35                | 3 95   | 65                   | 0 365                                             |

Sol in I CN+Aq Sl sol in cone KCl, (Lowry, Roy Soc Proc 1914, 91 A, 65)

100 g KBr in conc KBr+Aq dissolve 3019 mg AgBr at 15°, 95 g NaCl+10 g KBr dissolve only 75 mg AgBr at 15° (Schierholz, W A B 101, 2b 4)

Solubility in KBr+Aq at 25°

| Mol KBr in 1 litre | G AgBr in 1 litre |
|--------------------|-------------------|
| 4 864              | 26 44             |
| 4 44               | 17 95             |
| 4 18               | 13 50             |
| 3 68               | 7 50              |
| 2 81               | 2 34              |
| 2 76               | 2 20              |

(Hellwig, Z anorg 1900, 25 183)

Sol in cone KBr or NaBr+Aq (Lowig), but less than AgI in KI+Aq (Field) 100 g NaCl in cone NaCl+Aq dissolve 474 mg AgBr at 15°, 100 g NaCl in 21% NaCl+Aq dissolve 188 mg AgBr at 15° (Schierholz, W A B 101, 2b 4)

Solubility of AgBr in Na<sub>2</sub>SO<sub>3</sub>+Aq at 25° G formula weights per l

| Sos   | Ag     | Sos   | Ag     |
|-------|--------|-------|--------|
| 0 232 | 0 0025 | 0 466 | 0 0053 |
| 0 406 | 0 0023 | 0 474 | 0.0055 |
| 0 448 | 0 0023 | 0 675 | 0 0084 |

(Luther and Leubner, Z anorg 1912, 74 393)

Solubility of AgBr in Na<sub>2</sub>SO<sub>3</sub> at (?)° (g salts per l of solution)

| Na <sub>2</sub> SO <sub>3</sub> | AgBr   | Na <sub>2</sub> SO <sub>3</sub> | AgBr    |
|---------------------------------|--------|---------------------------------|---------|
| 83 75                           | 0 790  | 2 08                            | 0 0159  |
| 70 75                           | 0 570  | 1 13                            | 0 0086  |
| 38 2                            | 0 265  | 0 59                            | 0 0045  |
| 17 65                           | 0 116  | 0 3                             | 0 0039  |
| 9 47                            | 0 0526 | 0 17                            | 0 0022  |
| 4 85                            | 0 0329 | 0 08                            | 0 00075 |

(Mees and Piper, Photog J 1912, **36** 234)

Solubility in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq at 35°

| g Na S <sub>2</sub> O <sub>3</sub> in 1 liter | g AgBr corresponding<br>to each g Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> |  |
|-----------------------------------------------|---------------------------------------------------------------------------------|--|
| 100                                           | 0 376                                                                           |  |
| 200                                           | 0 390                                                                           |  |
| 300                                           | 0 397                                                                           |  |
| 500                                           | 0 427                                                                           |  |

(Richards and Faber, Am Ch J 1899, 21

 $(NH_4)_2S_2O_3+Aq$  dissolves AgBr more rapidly than does  $Na_2S_2O_3+Aq$  (Lumiére and Seyewitz, C C  $\,$  1908, II  $\,$  1138 )

## Solubility in salts+Aq

| Solvent                                                                                                                                                                                  |             | %<br>Conc                                                                                                                          | Grams AgBr sol in 100 grams solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sodium thiosulphate  """"  """"  Sodium sulphite  """  Ammonium sulphite  Potassium cyanide  Ammonium sulphocyan  """  Calcium """  Barium """  Aluminum ""  Thiocarbamide  Thiosinamine | ¢<br>¢<br>¢ | 1<br>5<br>10<br>15<br>20<br>10<br>20<br>10<br>5<br>5<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 0 35   1 90   20°   1 90   20°   1 90   20°   1 90   20°   1 90°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25°   25° |
| "                                                                                                                                                                                        |             | 10                                                                                                                                 | 0 72 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

(Valenta, M 1894, 15 250)

Solubility of AgBr in salts+Aq at (?) (G AgBr sol in 1 l of 1% solution of salts

| NaSCN                           | 2 | 06  |
|---------------------------------|---|-----|
| NH <sub>4</sub> SCN             | 0 | 03  |
| $(NH_4)_2CO_3$                  | 0 | 004 |
| Na <sub>2</sub> SO <sub>4</sub> | 0 | 055 |

(Mees and Piper, Photog J, 1912, 36 234

In a solution of NaC<sub>2</sub>H<sub>4</sub>O<sub>2</sub>+Aq, containin 10 ccm of sat NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq it 15° an 20 ccm normal HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq mixed wit 970 ccm H<sub>2</sub>O, about double the init of floculent AgBr is dissolved in the cold that dissolved by boiling H<sub>2</sub>O from granular AgB This solution required 3 pts of Ag or Br t ppt the AgBr in solution. Pulverulent of granular AgBr are wholly insol in dil conce acctates+Aq. (St is)

Sol in Hg(C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>)<sub>2</sub>+Aq 100 ccm H<sub>2</sub>O containing 10% of norm Hg(C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>)<sub>2</sub>+Aq dissolves 0 0122 g AgI at 20° (Schierhole) Very sol in liquid NH<sub>4</sub> (Tranklin, An

Ch J 1898, 20 829)
Solubility in 10 cc methyl mine +Aq e

different concentrations at 11 5°

g NH<sub>2</sub>CH<sub>8</sub> 4 844 4 311 3 562 3 25 mg AgBr 289 127 73 55 g NH<sub>2</sub>CH<sub>8</sub> 1 797 1 513 1 317 1 10

(Jarry, A ch 1899, (7) 17 378)

mg AgBr

|   | Solubility        | in methylamine+Aq at 25° |                                                      |  |
|---|-------------------|--------------------------|------------------------------------------------------|--|
| _ |                   | G mol per l              |                                                      |  |
|   | CH <sub>3</sub> N |                          | AgBr                                                 |  |
| , |                   | 4<br>47<br>50            | 0 00026<br>0 00034<br>0 000395<br>0 00041<br>0 00045 |  |
| Ī | 7                 | ıth B                    | 1902 35 2416)                                        |  |

# Solubility c AgBr in methylamine + Ag at 25°

| G mol per l                     |                                                                      |                |                    |  |
|---------------------------------|----------------------------------------------------------------------|----------------|--------------------|--|
| CH <sub>3</sub> NH <sub>2</sub> | CH <sub>3</sub> NH <sub>2</sub> AgBr CH <sub>3</sub> NH <sub>2</sub> |                | AgBr               |  |
| 1 017<br>0 508<br>0 203         | ) 0025<br>) 0013<br>) 00049                                          | 0 102<br>0 051 | 0 00026<br>0 00012 |  |

(Bodlander and Eberlein, B 1903, 36 3948)

# Solubi y in ethylamine+Aq at 25°

| C <sub>2</sub> H  | JH <sub>2</sub>                 | AgBr                                                      |
|-------------------|---------------------------------|-----------------------------------------------------------|
| 0 0<br>0 0<br>0 0 | )72<br>)42<br>)12<br>)72<br>300 | 0 0000867<br>0 000137<br>0 000193<br>0 000258<br>0 000711 |

uth, B 1902, 35 2416)

At 25°, 1 l ethylamine+Aq containing 0 483 g n 1 C<sub>2</sub>H<sub>5</sub>NH<sub>2</sub> dissolves 0 00231 g mol AgBr 0 200 g mol C<sub>2</sub>H<sub>5</sub>NH<sub>2</sub>, 0 0097 g (Bodlander and Eberlein, I mol AgB 1903, **36** 

benzonitiile (Naumann, B Insol 1914, 47 70)

(N um inn, B 1904, 37 4329) Insol 11 II, 1014) ilcoholic thiourca (Reynolds, Sol in 1892, 61 251) Chem So

by 1 Dissert nothyl icetite Insol II ım ınn, B 1909, 42 5 10 ethyl **1906**), (N Limers, Dissert 1906), (Naumann acetate B 1910, 4

gBr is dissolved in 11 of 1% thio-1 49 g (Mees and Piper, Photog carbamide -Aq 239) J 1912, 3

Insol 11 warm pyridine (Werdetermined in piperidine Mol w

ner, Z ar rg 1897, **15** 16) Min F myrite, Bromite

Silver bro ude ammonia, AgBr, NH<sub>3</sub> (Joann and Crozier, C R 894, 118 1150) the AgCl remains in solution after cooling

AgBr,  $1\frac{1}{2}NH_3$  (Jarry, A ch 1899, (7) 17 356)

 $2AgBr, 3NH_3$  (Joannis and Crozier)  $AgBr, 3NH_3$  Decomp by  $H_2O$  Sl sol in liquid NH<sub>3</sub> (Jarry) AgBr, 5NH<sub>3</sub> (Jarry, C R 1898, 126

1141)

Silver carbide, Ag<sub>4</sub>C

(Gay-Lussac) Ag<sub>2</sub>C(?) Sol in HNO<sub>3</sub>+Aq with residue of C (Liebig, A 38 129) Ag<sub>2</sub>C<sub>2</sub> Sol in HNO<sub>3</sub>+Aq with residue of (Regnault, A 19 153)

#### Silver subchloride, Ag<sub>4</sub>Cl<sub>3</sub>

NH<sub>4</sub>OH+Aq dissolves the greater part, the residue (20%) being sol in HNO3+Aq KCN dissolves the greater part, H2SO4 dissolves about 2%, acetic acid and KOH are without action (Bibra, J pr 1875, (2) 12

#### Argentous chloride, Ag<sub>2</sub>Cl

Obtained in a pure state by Guntz (C R 112 861) Dil HNO<sub>8</sub>+Aq does not attack but warm conc HNO<sub>3</sub>+Aq decomp Easily sol in KCN+Aq (Guntz, C R 112 1212) The following data are for a more or less impure Ag<sub>2</sub>Cl

Boiling cone HCl+Aq NaCl+Aq or NH4OH+Aq dissolve out AgCl and leave Ag (Scheele Wetzlar Dulk Wohler)

According to Berthollet wholly sol in NH<sub>4</sub>OH+4q Sol for the most part in NH<sub>4</sub>OH+4q and the resi due is sol in HNO<sub>3</sub>+Aq (=4g+4gCl) (v Bibra B 7 741)

## Silver chloride, AgCl

Nearly insol in H<sub>2</sub>O

When AgCl is left in contact for some hours with pure H<sub>2</sub>O at 20-22°, and especially at 75° traces go into solution, more Cl is dissolved than Ag When 1 pt Ag is pptd as AgCl in presence of 1 million pts H<sub>2</sub>O a slight bluish milkiness is observed, but in order to have a distinct ppt 4 pts Ag should be present

Dil HNO<sub>3</sub>+Aq does not increase the solubility of AgCl, but AgCl is not absolutely ınsol ın stronger HNO3+Aq (Mulder)

I pt AgNO<sub>3</sub>, when mixed with HCl+Aq in presence of 120 000 (Pfaff), 240,000 (Hart ing), pts H2O, causes an opilescence

1 pt Ag gives a slight turbidity with HCl+ Aq in presence of 200 000 pts HO, a scarcely opalescent cloudiness with 400,000 pts HO, and the same after the lapse of 15 minutes in presence of 800,000 pts H<sub>2</sub>O (Lassaigne)

I pt Ag can be detected as AgCl in 1 million parts H2O at ordinary temp, but not in 2 million parts In Na NO3 + Aq containing 079 pt NaNO3 in 200,000 pts HO, 1 pt Ag can be detected as AgCl This dissolves at 75°, and is visible again on cooling

If the same liquid contains 1574 pts NaNO:

In 100 ccm H<sub>2</sub>O containing 0 787 g NaNO<sub>8</sub>, 13 drops of NaCl and silver solution, each drop of which contains 0.05 mg Ag, cause a precipitate at 5°, 20 drops at 15-17°, 60 drops at 45-55°

AgCl is somewhat less sol in HNO<sub>3</sub>+Aq than in NaNO<sub>8</sub>+Aq when the amount of  $H_2O$ remains the same

Therefore, if HCl is used instead of NaCl,

about 1/7 less AgCl remains in solution

In 100,000 pts of H<sub>2</sub>O, which contain HNO<sub>2</sub> and an amount of HCl corresponding to the amount of Ag salt, 1596 pts AgCl dissolve at 25° The solution is precipitated by either AgNO<sub>3</sub> or HCl (Mulder, Silber Probirmethode, Leipzig, 1859 62

(For further older data, see Storer's Dic-

tionary)

White flaky AgCl is appreciably sol in hot H<sub>2</sub>O, 1000 ccm boiling H<sub>2</sub>O dissolving about 2 mg AgCl Far less sol in H<sub>2</sub>O containing AgNO<sub>3</sub>, being practically insol in H<sub>2</sub>O containing 0 1 g AgNO<sub>3</sub> in a litre Solubility is also diminished one-half by addition of HCl (Cooke, Sill Am J (3) 21 220)

Solubility in H2O rapidly diminishes as the

temp falls

(Cooke, l c) Not completely insol in H<sub>2</sub>O According to Stas (C R 73 998) there are four modifica-(1) gelatinous, (2) cheesy-flocculent, (3) pulverulent, (4) granular, crystalline, or fused (4) is almost absolutely insol in H<sub>2</sub>O at the ordinary temp, but the solubility increases with the temp, and is considerable at 100°, (2), which is formed by the precipitation of a cold dilute Ag solution, has the greatest solubility in pure H2O, and it changes its solubility by standing, or if made pulverulent by shaking with H<sub>2</sub>O, (3) is also sol in H<sub>2</sub>O, the solution of (2) or (3) in pure H<sub>2</sub>O, or H<sub>2</sub>O acidified with HNO<sub>3</sub>, is precipitated by AgNO<sub>3</sub> or NaCl+Aq

In order to ppt 1 pt AgCl in above solution 3 pts of Cl as chloride or Ag as nitrate

are necessary, the pptn is then complete Solubility of granular variety in boiling H<sub>2</sub>O is proportionately large, and pptn is brought about by 3 pts Cl or Ag as above, but the pptn in this case is not complete

The salts formed simultaneously with the AgCl have no influence on the solubility of the Presence of HNO<sub>3</sub> does not increase the solubility of (2), but has that effect on (3) in proportion to the amt of HNO<sub>3</sub> pre-(Stas, C R 73 998)

Further determination by Stas are as

follows -

Between 0° and 30° granular AgCl is insol in pure H<sub>2</sub>O, or H<sub>2</sub>O acidulated with HNO<sub>3</sub> Between 0° and 30° the flocculent and pul-

verulent forms of AgCl dissolve without alteration in pure H<sub>2</sub>O, in acidulated H<sub>2</sub>O, in alkalı acetates+Aq, and in Hg(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub> +Aq containing an alkalı acetate Their degree of solubility is a function of the state of the chloride, of the temp, and of the nature | 67 108)

and quantity of the solvent within these limits of temp (0°-30°) These solvents, if they contain either Ag in the state of an Ag salt, or Cl as chloride or HCl in an amount three times that which they can dissolve as AgCl, exercise no solvent action on any of the modifications of AgCl And reciprocally sat AgCl+Aq is pptd instantly by a decinormal solution of AgNO<sub>3</sub> or MCl (or HCl) AgCl is wholly pptd when the quantity of the Ag or Cl thus added is equal to three times the quantity of the Ag or Cl dissolved as AgCl

Between 50° and 100°, however, decinormal solutions of Ag or chlorides, which cause instant ppts in solutions sat with any of the modifications of AgCl, do not eliminate all the dissolved AgCl At 100°, they only ppt 60% of the amt dissolved (Stas, A ch (5) **3** 323)

Calculated from electrical conductivity of AgCl +Aq, AgCl is sol in 715,800 pts  $\rm H_2O$  at 13 8°, and 384,100 pts at 26 5° (Holleman, Z phys Ch 12 132)

Calculated in the same way, 1 1  $H_2O$  dissolves 0.76 mg at 2°, 0.97 mg at 10°, 1.52 mg at 18°, 2 24 mg at 26°, 3 03 mg at 34° 4 05 mg at 42° (Kohlrausch and Rose, Z phys Ch 12 242)

Solubility in  $H_2O = 1.25 \times 10^{-5} \text{ mol /l at } 25^{\circ}$ 

(Goodwin, Z phys Ch 1894, 13 645)

Solubility of AgCl in  $H_2O$  at 25° is 1 41  $\times$ 10-5 (in normality) (Thiel, Z anorg 1900,

 $2.16\times10^{5}$  moles are sol in 1 liter H<sub>2</sub>O at (Noyes and Kohr, Z phys Ch 1903, **42** 341)

153×10-8 g per liter are dissolved in sat aq solution at 20° (Bottger, Z phys Ch 1903, 46 603)

1 l H<sub>2</sub>O dissolves 16 mg AgCl at 18° (Kohlrausch, Z phys Ch 1904, 50 356)

218 milligrams are dissolved in 1 liter of sat solution at 100° (Pottger, Z phys Ch 1906, **56** 93)

134 mg are contained in 1 l of sat solution at 18° (Kohlrausch, Z phys Ch 1908, **64** 168)

11 sat solution at to contains mg AgCl

| t    | mg AgCl | t     | mg AgCl |
|------|---------|-------|---------|
| 1 55 | 0 56    | 17 51 | 1 31    |
| 4 68 | 0 66    | 25 86 | 1 935   |
| 9 97 | 0 89    | 34 12 | 2 74    |

(Kohlrausch, Z phys Ch 1908 64 168)

Solubility in  $H_2O=1.6\times10^-$  g-mol per litre at 25° (A E Hill, J Am Chem Soc 1908, 30 74)

1 l H<sub>2</sub>O dissolves 0 00154 g AgCl at 21° 0 0217 g at 100° (Whitby, Z anorg 1910

Calculat i from electrical conductivity of AgCl+Aq ll H<sub>2</sub>O dissolves 0 0105 ulli-equivalents AgCl at 18° 0 0365 " 50° 0 147 " 100° (Melche J Am Chem Soc 1910, 32 55)

1 l H<sub>2</sub>( dissolves 1 02×10<sup>-5</sup> g equiv at 18°,1 429 10<sup>-5</sup> g eq C C **191**: I 1539) 10-5 g equiv at 25° (van Rossen.

The mo probable average value for solu $ilde{Cl}$  in  $H_2O$  is  $1\,ar{0}4 imes 10^{-5}$  g equiv bility of A , and  $1.43 \times 10^{-5}$  g equiv per l per lat at 25° (v n Rossen, C C 1912, II 1807)
<sup>5</sup> g AgCl are sol in 1 l H<sub>2</sub>O at

1 20×1 czynski, C A 1915, 741) (Glc

More sc

in H<sub>2</sub>O than AgSCN (Normand, 1912, **101** 1853) Chem So

nc HCl+Aq, and also when not Sol in thus the solution of 1 pt AgNO<sub>8</sub>+ very conc Aq in 15, 10 pts H<sub>2</sub>O is clouded by a little but clears up by the addition of HCl+Aq(F insch, J pr 13 133) more

1 pt Ag 'l dissolves in 200 pts conc HCl+ 600 pts HCl+Aq diluted with 2  $\mathbf{Aq}$  and  $\mathbf{n}$ pts H<sub>2</sub>O (Pierre, J Pharm (3) 12 237)

Somew it sol in hot alcohol, to which HCl has been ded, but is precipitated on cooling J pr 19 341) (Erdmanı

100 pt sat HCl+Aq (sp gr 1 165) di-0 pt AgCl, or AgCl is sol in 336 solve 0 20 Aq at ord temp, 100 pts HCl+ 1 165) at b-pt dissolve 0 56 g pts HCl Aq (sp { AgCl, or gCl is sol in 178 pts HCl+Aq

y of AgCl in dil HCl+Aq Solubil -Aq (sp gr 1 165), to which the ccm HC given am H<sub>2</sub>O has been added, dissolve g AgCl

| ecm<br>HCl | ecm<br>H O | agCl   | Pts HCl<br>which dis<br>solve 1 pt<br>AgCl |
|------------|------------|--------|--------------------------------------------|
| 100        | 10         | 0 056  | 1,785                                      |
| 100        | 20         | 0 018  | 5,555                                      |
| 100        | 30         | 0 0089 | 11,235                                     |
| 100        | 50         | 0 0035 | 18,571                                     |

(Ve cl. N Pep Pharm 23 335)

If HC is idded to a solution in which Ag is suspended, the milkiness dis-1/1 000 000 1 Solubility in HCl+Aq increases cmp, the AgCl separating out on appe irs with the Mulda ) cooling

ounts of AgCl which dissolve in The i are directly proportional to the HCl+Acacid (of fixed concentration) used volumes Am Chem Soc 1906, 28 1448) (Barlow,

Cl dissolves 0 0002 g AgCl at 21° 1% 5% Cl dissolves 0 0033 g AgCl at 21° 1 l ICI dissolves 0 0555 g AgCl at 21° 11 10% (W itby, Z anorg 1910, 67 108)

Solubility in HCI + Ag at 25°

| bolubility in fict - 4q at 25 |                       |  |
|-------------------------------|-----------------------|--|
| HCl                           | Ag × 10 <sup>-3</sup> |  |
| g equivalents per l           | g -equivalents per l  |  |
| 0 649                         | 0 032                 |  |
| 1 300                         | 0 126                 |  |
| 1 911                         | 0 266                 |  |
| 2 149                         | 0 374                 |  |
| 2 569                         | 0 610                 |  |
| 2 975                         | 0 814                 |  |
| 3 576                         | 1 358                 |  |
| 4 182                         | 2 147                 |  |
| 4 735                         | 3 168                 |  |
| 5 508                         | 4 126                 |  |

(Forbes, J Am Chem Soc 1911, 33 1941)

## Solubility in 20% HCl +Aq

| нсі                 | N/10<br>AgNO <sub>3</sub><br>ccm                         | Opalescent<br>at to                                  | G AgCl to<br>100 g anhy-<br>drous HCl                   |
|---------------------|----------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| 20 g of<br>20% acid | 1 0<br>1 1<br>2 0<br>3 0<br>3 75<br>4 25<br>4 75<br>5 80 | 0 0<br>29 5<br>51 5<br>70 0<br>82 0<br>90 0<br>107 0 | 0 39<br>0 72<br>1 076<br>1 346<br>1 525<br>1 74<br>2 08 |

(Lowry, Roy, Soc Proc 1914, 91 A 62)

Sl sol in cone HBr+Aq (Lowig)

Insol in HNO<sub>3</sub>+Aq (Wackenroder) Entirely unacted upon by HNO<sub>3</sub> of 143 gr (Wurtz, Am J Sci (2) **25** 382)

Solubility in dil HNO3+Aq is the same as solubility in H<sub>2</sub>O, i e 1/2 000 000 pt of Ag cannot be detected in H2O with or without HNO3, but 1/1 000 000 pt can be detected in both cases (Mulder)

1 pt Ag in the form of AgCl dissolves at 25° in 83,000 pts H<sub>2</sub>O containing free HNO<sub>3</sub> and 033 pt of HCl (Mulder)

100,000 pts conc HNO₃+Aq dissolve about 2 pts AgCl, and solubility is not sensibly affected by lower nitrogen oxides (Thorpe, Chem Soc (2) 10 453)

# Solubility of AgCl in HNO<sub>3</sub>+Aq at 25°

| G per liter              |                                 |              |                   |
|--------------------------|---------------------------------|--------------|-------------------|
| HNO3 AgCl HNO3 AgCl      |                                 |              |                   |
| 0 0315<br>0 063<br>0 630 | 0 001647<br>0 001705<br>0 00176 | 18 9<br>94 5 | 0 00225<br>0 0245 |

(Glowczynski, Kolloidchem Beih 1914, 6 147)

Insol in cold conc H2SO4, but on boiling is in part decomp and in part dissolved, and does not separate on cooling

AgCl is not more sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq than in dil HNO<sub>3</sub>+Aq

Unacted upon by cold H<sub>2</sub>SO<sub>3</sub>+Aq, and but (Vogel) slightly decomp on heating

Abundantly sol in H2PtCl4+Aq without (Birnbaum, Z Ch 1867 520)

Insol in cold dil caustic alkalies+Aq but decomp by hot conc solutions (Gregory)
Decomp by K<sub>2</sub>CO<sub>3</sub>+Aq

Sl sol in cold K<sub>2</sub>CO<sub>3</sub>+Aq

Easily sol even in dil NH4OH+Aq

1 pt AgCl dissolves in 1288 pts NH<sub>4</sub>OH+ Aq of 089 sp (Wallace and Lamont, Chem Gaz 1893 137)

100 pts NH4OH+Aq of 0986 sp gr dissolve at 80° 1 492 pts AgCl, dried at 100° (Pohl, W A B 41 627)

11 NH<sub>4</sub>OH+Aq of 0 949 sp gr dissolves

516 g Ag as freshly precipitated AgCl, and

47 6 g when diluted with 11 H<sub>2</sub>O 11 NH<sub>4</sub>OH+Aq of 0 924 sp gr dissolves 58 g Ag as freshly precipitated AgCl, 1 l NH<sub>0</sub>OH+Aq of 0 899 sp gr dissolves 49 6 g, 0.5.1 NH<sub>4</sub>OH+Aq (of 0.049 sp gr)+ 0.5.1 saturated NaCl+Aq dissolves 20.8 g,  $0.51 \text{ NH}_4\text{OH} + \text{Aq (of } 0.949 \text{ sp gr}) + 0.51$ saturated KCl+Aq dissolves 20 4 g, 0 5 l NH<sub>4</sub>OH+Aq (of 0 949 sp gr)+0 5 l saturated NH<sub>4</sub>Cl+Aq dissolves 22 4 g Ag as freshly pptd AgCl (Millon and Commaille, C R 56 309)

AgCl dissolves in 428 64 g NH<sub>4</sub>OH+Aq (sp gr 0 998) at 12°, 1 g AgCl dissolves in 12 76 g 10% NH4OH+ Aq(sp gr

096) at 18° (Long, Gazz ch it 13°87) 1 g freshly pptd AgCl is sol in 17 ccm 10% NH<sub>4</sub>OH+Aq Solubility is diminished Solubility is diminished by presence of AgBr (Senier, Pharm J Trans (3) 14 1)

Solubility in NH<sub>4</sub>OH+Ag at 0°

G per 100 g solution

| NH3   | AgCl | NH3   | AgCl |
|-------|------|-------|------|
| 1 45  | 0 49 | 28 16 | 5 69 |
| 1 94  | 1 36 | 29 80 | 7 09 |
| 5 60  | 3 44 | 30 19 | 7 25 |
| 6 24  | 4 00 | 32 43 | 5 87 |
| 11 77 | 4 68 | 34 56 | 4 77 |
| 16 36 | 5 18 | 37 48 | 3 90 |

(Jarry, A ch 1899, (7) 17 342)

Solubility in NH<sub>4</sub>OH+Aq increases with the temp (Jarry)

Solubility in NH<sub>4</sub>OH+Aq at 25°

| g at Ag<br>per l                                                                                                                     | Mols NH;<br>per l                                                                                                                   | g at Ag<br>per l                                                                                                                                   | Mols NH <sub>3</sub><br>per l                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 0 151<br>0 149<br>0 149<br>0 147<br>0 0616<br>0 0583<br>0 0584<br>0 0572<br>0 0569<br>0 0555<br>0 0541<br>0 0249<br>0 0235<br>0 0227 | 2 042<br>2 017<br>2 013<br>1 991<br>0 961<br>0 909<br>0 903<br>0 896<br>0 873<br>0 863<br>0 818<br>0 428<br>0 416<br>0 411<br>0 397 | 0 0140<br>0 0140<br>0 0140<br>0 0139<br>0 00621<br>0 00619<br>0 00625<br>0 00304<br>0 00297<br>0 00300<br>0 05149<br>0 00143<br>0 00142<br>0 00141 | 0 253<br>0 253<br>0 252<br>0 252<br>0 118<br>0 118<br>0 118<br>0 0590<br>0 0589<br>0 0585<br>0 0288<br>0 0287<br>0 0285<br>0 0282 |

(Whitney and Melcher, J Am Chem Soc 1903, **25** 78)

Solubility of AgCl in NH<sub>4</sub>OH+Aq at 25°

Ag = g at Ag in 1000 g  $H_2O$ N $H_3$  = g mol N $H_3$  in 1000 g  $H_2O$ Conc = Molecular concentration of free

| ı |                                                                                                                                                                                               |                                                                                                                                                                          |                                |                                            |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|
|   | Ag                                                                                                                                                                                            | NH3                                                                                                                                                                      | Conc                           | Solid phase                                |
|   | 0 023<br>0 025<br>0 1197<br>0 1308<br>0 372<br>0 378<br>0 574<br>0 609<br>0 633<br>0 745<br>0 754<br>0 760<br>0 775<br>0 848<br>0 968<br>0 968<br>0 978<br>1 03<br>1 03<br>1 1 049<br>1 1 039 | 0 437<br>0 437<br>0 1 700<br>1 688<br>3 782<br>3 945<br>5 10<br>5 545<br>6 26<br>6 27<br>6 25<br>8 28<br>11 19<br>11 72<br>8 12 26<br>12 68<br>11 2 34<br>12 34<br>14 47 | 3 038<br>3 181<br>3 95<br>4 11 | AgCl ("""""""""""""""""""""""""""""""""""" |
|   | 1                                                                                                                                                                                             | 1                                                                                                                                                                        | 1                              | 1                                          |

(Straub, Z phys Ch 1911, 77 332)

Easily (Brett), difficultly (Wittstein), so in NH4Cl+Aq, but not in other NH4 salts

| Solub                                         | ity in NH <sub>4</sub> Cl+Aq at 15°                                |                                                                           |  |
|-----------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| % N1                                          | CI                                                                 | % AgCl                                                                    |  |
| 10<br>14<br>17<br>19<br>21<br>25<br>28<br>Sat | )<br>)<br>3<br>L                                                   | 0 0050<br>0 0143<br>0 0354<br>0 0577<br>0 110<br>0 228<br>0 340*<br>0 177 |  |
|                                               | , W A B, 1890, 101 2b 8)<br>n NH <sub>4</sub> Cl+Aq (26 31%) at t° |                                                                           |  |
| t                                             |                                                                    | % AgCl                                                                    |  |
| ]<br>{<br>{<br>{<br>1                         | (0.1                                                               | 0 276<br>0 329<br>0 421<br>0 592<br>0 711<br>0 856<br>1 053               |  |

NH₄Cl, Kolloidche See also 1 1 KC J Chim F

Sl sol 1 certain oth

NaCl, k dissolve a pecially if arates out

Sol in s which are cially if (least) als Sol in (

Sol in i and Gentl

Insol 11 N<sub>1</sub>Cl<sub>2</sub>, or

(Schierholz) At 25°, 1 NH<sub>4</sub>Cl+Aq containing 0 00053 g NH<sub>4</sub>Cl c solves 0 001604 g AgCl, 0 00530 002379 g AgCl (Glowczynski, Beth 1914, 6 147) orbes, page 826

3+Aq dissolves 18 mg (Guye, ys **10** 145)

conc KCl+Aq, NaCl+Aq, and r chlorides

 $^{1}$ l, NH<sub>4</sub>Cl, CaCl<sub>2</sub>, ZnCl<sub>2</sub>+Aq, etc, preciable quantities of AgCl, esot and concentrated, but it sepor the most part on cooling

utions of all the metallic chlorides 1 in H<sub>2</sub>O, thus NaCl, KCl, CaCl<sub>2</sub>, SrCl<sub>2</sub>, and 3aCl<sub>2</sub>+Aq ill dissolve AgCl, espeot MgCl<sub>2</sub>, NH<sub>4</sub>Cl, and HgCl<sub>2</sub> dissolve AgCl (Mulder) nc CaCl<sub>2</sub>+Aq (Wetzlar) seocobaltic chloride+Aq (Gibbs

nCl<sub>4</sub>, HgCl<sub>2</sub>, CuCl<sub>2</sub>, ZnCl<sub>2</sub>, CdCl ,

oCl<sub>2</sub>+Aq (Vogel) Solubility f AgCl in sat solutions of chlorides

ordinary temperatures

| Sal                | 100 pts sat<br>solution dissolve<br>pts AgCl | Pts solution<br>required to dis<br>solve 1 pt<br>AgCl |
|--------------------|----------------------------------------------|-------------------------------------------------------|
| BaCl <sub>2</sub>  | 0 0143                                       | 6,993                                                 |
| SrCl <sub>2</sub>  | 0 0884                                       | 1,185                                                 |
| CaCl <sub>2</sub>  | 0 0930                                       | 1,075                                                 |
| NaCl               | 0 0950                                       | 1,050                                                 |
| KCl                | 0 0475                                       | 2,122                                                 |
| NH <sub>4</sub> Cl | 0 1575                                       | 634                                                   |
| MgCl <sub>2</sub>  | 0 1710                                       | 584                                                   |
| HCl                | 0 2980                                       | 336                                                   |

(Ve el, N Rep Pharm 23 335)

Experiments by Hahn give different results from those of Vogel as follows -

Solubility in various salts+Aq

| Salt                                                                                                                                                                                               | % salt                                             | Sat at to                              | % AgCl                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| KCl NaCl NH4Cl CaCl <sub>2</sub> MgCl <sub>2</sub> BaCl <sub>2</sub> FeCl <sub>2</sub> FeCl <sub>2</sub> FeCl <sub>3</sub> MnCl <sub>2</sub> ZnCl <sub>2</sub> CuCl <sub>6</sub> PbCl <sub>2</sub> | 24 95<br>25 96<br>28 45<br>41 26<br>36 35<br>27 32 | 19 6<br>24 5<br>"<br>"<br>24 5<br>24 5 | 0 0776<br>0 1053<br>0 3397<br>0 5713<br>0 5313<br>0 0570<br>0 1686<br>0 0058<br>0 1996<br>0 0134<br>0 0532<br>0 0000 |

(Hahn, Wyandotte Silver Smelting Works. 1877)

1 l 4-N KCl+Aq dissolves 0 915 g KCl at (Hellwig, Z anorg 1900, 25 166)

Solubility in KCl+Aq at t°

| t°                                                        | G equi                  | v per l                 |
|-----------------------------------------------------------|-------------------------|-------------------------|
|                                                           | Ag×10-3                 | kCl                     |
| $egin{smallmatrix} 1 & 0 \ 25 & 0 \ 35 & 0 \end{bmatrix}$ | 1 734<br>2 415<br>2 786 | 3 325<br>3 083<br>2 955 |

(Forbes, J Am Chem Soc 1911, **33** 1937)

Solubility in KCl+Aq at 25° G per liter

| KCl     | AgCl    | KCl | AgCl    |
|---------|---------|-----|---------|
| 0 00236 | 0 00184 |     | 0 00305 |
| 0 00471 | 0 00218 |     | 0 00321 |

(Glowczynski, Kolloidchem Beih 1914, 6 147)

Solubility in CaCl +Aq

|                     | G equiv per l           |                         |
|---------------------|-------------------------|-------------------------|
| t                   | Ag×10 <sup>3</sup>      | CaCl 2                  |
| 1 0<br>25 0<br>35 0 | 0 964<br>1 514<br>1 806 | 3 512<br>3 320<br>3 221 |

(Forbes, 1 c)

Sat CuCl<sub>2</sub>+Aq at 0° dissolves 2835 g AgCl per l, at 100°, 8147 g Solubility in sat MgCl<sub>2</sub>+Aq is still greater (Hahn, Eng Mm J 65 434)

More sol in  $HgCl_2+Aq$  than in  $H_2O$  (Finzi, Gazz ch it 1902, 32 (2) 324)

At 15°, 100 g NaCl in 280 ccm  $H_2O$  dissolve 485 mg AgCl, 100 g KCl in 300 ccm  $H_2O$  dissolve 334 mg, 100 g NH<sub>4</sub>Cl in 280 ccm  $H_2O$  dissolve 1051 mg

The solubility decreases with dilution rapidly at first until about an equal vol of  $H_2O$  has been added, and then much more slowly to a minimum quantity, when the dilution is 1 10 for NaCl and KCl, and 1 20 for NH<sub>4</sub>Cl

100 g NaCl in 280 ccm H<sub>2</sub>O dissolve 2170 mg AgCl at 109° 100 g NH<sub>4</sub>Cl in 280 ccm H<sub>2</sub>O dissolve 4000 mg AgCl at 110°, 100 g NaCl in 620 ccm H<sub>2</sub>O (14% solution) dissolve 15 mg AgCl at 15°, and 774 mg at 104° (Schierholz, W A B 101, 2b 4)

The solubility of AgCl in NaCl+Aq decreases with dissolve agents at 104° (Schierholz).

The solubility of AgCl in NaCl+Aq decreases with diminishing concentration of NaCl+Aq (Barlow, J Am Chem Soc

1906, 28 1448)

# Solubility in NaCl+Aq

| Gravimetric measurements 15°     |                                   |  |  |  |
|----------------------------------|-----------------------------------|--|--|--|
| Strength of salt solution        | G AgCl retained per<br>100 g NaCl |  |  |  |
| 15% NaCl<br>20% NaCl<br>28% NaCl | 0 063<br>0 134<br>0 279           |  |  |  |

| Volumetric measurements |                                  |                         |                                        |  |
|-------------------------|----------------------------------|-------------------------|----------------------------------------|--|
| NaCl                    | N/10<br>AgNO <sub>3</sub><br>ccm | Opal<br>escent<br>at to | G AgC<br>retained<br>per 100 g<br>NaCl |  |
| 20 g of 15% solution    | 0 25                             | 28                      | 0 119                                  |  |
|                         | 0 4                              | 40                      | 0 191                                  |  |
|                         | 0 7                              | 64                      | 0 335                                  |  |
|                         | 1 0                              | 78                      | 0 478                                  |  |
|                         | 1 25                             | 89                      | 0 598                                  |  |
|                         | 1 7                              | 102 5                   | 0 812                                  |  |
| 20 g of 20% solution    | 0 43                             | 17 0                    | 0 156                                  |  |
|                         | 0 65                             | 26 0                    | 0 234                                  |  |
|                         | 0 82                             | 37 0                    | 0 295                                  |  |
|                         | 1 2                              | 51 5                    | 0 430                                  |  |
|                         | 1 6                              | 67 0                    | 0 524                                  |  |
|                         | 2 12                             | 79 5                    | 0 765                                  |  |
|                         | 2 52                             | 88 5                    | 0 910                                  |  |
|                         | 3 08                             | 97 0                    | 1 10                                   |  |
|                         | 3 52                             | 105 0                   | 1 27                                   |  |
| 20 g of 28% solution    | 2 25                             | 36 5                    | 0 675                                  |  |
|                         | 2 75                             | 45 0                    | 0 704                                  |  |
|                         | 3 5                              | 56 0                    | 0 896                                  |  |
|                         | 4 5                              | 69 0                    | 1 153                                  |  |
|                         | 5 5                              | 84 0                    | 1 411                                  |  |
|                         | 6 5                              | 94 0                    | 1 664                                  |  |
|                         | 7 75                             | 107 5                   | 1 958                                  |  |

Solubility in salts+Aq at 25°

C = concentration of the salt in salt solution in g -equivalents per litre

| Salt              | C                                                                                                                                                                       | Ag×10 <sup>-3</sup><br>g -equivalents per_l                                                                                                                             |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NaCl              | 0 933<br>1 190<br>1 433<br>1 617<br>1 871<br>2 094<br>2 272<br>2 449<br>2 658<br>2 841<br>3 000<br>3 270<br>3 471<br>3 747<br>3 977<br>4 170<br>4 363<br>4 535<br>5 039 | 0 086<br>0 130<br>0 184<br>0 245<br>0 348<br>0 446<br>0 570<br>0 684<br>0 851<br>1 040<br>1 194<br>1 583<br>1 897<br>4 462<br>2 879<br>3 335<br>3 810<br>4 298<br>6 039 |
| CaCl <sub>2</sub> | 1 748<br>2 201<br>2 741<br>3 264<br>3 737<br>4 033<br>4 538<br>5 005                                                                                                    | 0 289<br>0 501<br>0 900<br>1 463<br>2 182<br>2 802<br>4 175<br>5 823                                                                                                    |
| NH4Cl             | 0 513<br>0 926<br>1 141<br>1 574<br>2 143<br>2 566<br>2 918<br>3 162<br>3 510<br>4 363<br>4 902<br>5 503<br>5 764                                                       | 0 042<br>0 113<br>0 172<br>0 365<br>0 842<br>1 425<br>2 160<br>2 795<br>4 029<br>9 353<br>14 92<br>24 04<br>30 17                                                       |
| SrCl <sub>2</sub> | 0 550<br>0 989<br>1 359<br>1 572<br>1 698<br>1 818<br>2 140<br>2 476<br>2 992<br>3 494<br>4 152<br>5 216<br>5 775                                                       | 0 033<br>0 092<br>0 173<br>0 236<br>0 284<br>0 348<br>0 510<br>0 747<br>1 252<br>2 018<br>3 594<br>8 174<br>12 04                                                       |

(Lowry, Roy, Soc Proc 1914, 91 A, 61)

| Solubility | 1 | salts+Aq | $\mathbf{a}\mathbf{t}$ | 25°—Continued |
|------------|---|----------|------------------------|---------------|
|------------|---|----------|------------------------|---------------|

|                             | ,                                                                                      |                                                                                        |
|-----------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Salt                        | С                                                                                      | Ag×10-8<br>g equivalents per l                                                         |
| KCI                         | 1 111<br>1 425<br>1 713<br>2 022<br>2 396<br>2 628<br>2 850<br>3 081<br>3 424<br>3 843 | 0 141<br>0 235<br>0 391<br>0 616<br>1 050<br>1 390<br>1 845<br>2 435<br>3 602<br>5 725 |
| $\frac{\mathrm{BaCl_2}}{2}$ | 1 248<br>1 610<br>2 676<br>3 260                                                       | 0 186<br>0 339<br>1 274<br>2 366                                                       |

(Forbes, Am Chem Soc 1911, 33, 1940)

Sol m1  $^{1}$  NO<sub>3</sub>, KNO<sub>3</sub>,Ca(NO<sub>3</sub>)<sub>2</sub>,Mg(NO<sub>3</sub>)<sub>2</sub>, and NH<sub>4</sub> O<sub>3</sub>+Aq, sl sol at ord temp, but solubility s much increased by heat

Soluk ity in NaNO3+Aq at 15-20°

| ccm H <sub>2</sub>       | g NaNOs                          | mg AgCl<br>dissolved         |
|--------------------------|----------------------------------|------------------------------|
| 100<br>200<br>300<br>100 | 0 787<br>0 787<br>2 361<br>2 787 | 1 33<br>1 93<br>3 99<br>2 53 |

# Solubil y increases with ascending temp

| Temp   | ccm H2O | g NaNO1 | mg AgCl<br>dissolved |
|--------|---------|---------|----------------------|
| 5°     | 100     | 0 787   | 0 86                 |
| 15–17° | 100     | 0 787   | 1 33                 |
| 18°    | 100     | 0 787   | 1 46                 |
| 30°    | 100     | 0 787   | 2 33                 |
| 45–55° | 100     | 0 787   | 3 99                 |

#### (Mulder)

free HN mg Ag( above so dissolved

Much

Hg(NO than in

from th

At 25° 100,000 pts H<sub>2</sub>() containing a little se HN<sub>1</sub>; and 0.787 g NaN()<sub>4</sub> dissolve 2.128 g Ag( By adding 2 g more NaN()<sub>3</sub> to

tion, 2 5269 mg (1/r more) AgCl are (Mulder)

Solubi ty in II<sub>2</sub>O is not appreciably influenced by  $^{1}/_{10}$  N to N-KNO3 or NII<sub>4</sub>NO3+Aq (v Rossen, ( C 1912, II 1807) In presence of NaNO3 and excess of HCl,

In precince of NaNOs and excess of HCl, 11 H<sub>2</sub>O hissolves 0.03 mg/AgCl (Richards and We )

Hg(N 3)2+Aq dissolves considerable quantities of gCl, but the other nitrates do not (Mulder

more sol in hot than in cold +Aq, and much more sol therein NH<sub>4</sub>NO<sub>3</sub>+Aq NaCl ppts AgCl solution, much less sol therein in

presence of NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> or NH<sub>4</sub>OH+A $\sigma$  AgCl is pptd from above solution by NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Mulder)

Sol in Hg(NO<sub>3</sub>)<sub>2</sub>+Aq (Wackenroder, A 41 317), in considerable amount (Liebig, A 81 128), and is precipitated by HCl, NH<sub>4</sub>Cl, NaCl, KC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Debray, C R 70 849), incompletely precipitated by AgNO<sub>3</sub> and not by HNO<sub>3</sub> (Wackenroder)

Solubility of AgCl in Hg(NO<sub>8</sub>)<sub>2</sub>+Aq at 25° (G mols per l)

| Hg(NO3)2<br>HNO3 | AgCl    | Hg(NO3)2<br>HNO3 | AgCl    |
|------------------|---------|------------------|---------|
| 0 0100           | 0 00432 | 0 050            | 0 00914 |
| 0 0125           | 0 00499 | 0 100            | 0 01395 |
| 0 025            | 0 00690 | 1 000            | 0 04810 |

 $HNO_3$  was present in all cases, and it was found that there was no difference in solubility of AgCl with concentrations between 0 1N and 2N  $HNO_3$  (Morse, Z phys Ch 1902, 45 708)

Not sol to appreciable extent in  $Cu(NO_3)_2$ ,  $Fe_2(NO_3)_6$ ,  $Mn(NO_3)_2$ ,  $Co(NO_3)_2$ ,  $Zn(NO_3)_2$ , or  $N1(NO_3)_2+Aq$ , insol or exceedingly sl sol in  $Pb(NO_3)_2+Aq$  (Mulder)

Imperfectly sol in AgNO<sub>3</sub>+Aq (Wacken-

roder)
Conc AgNO<sub>3</sub>+Aq dissolves AgCl perceptibly

Less sol in AgNO<sub>3</sub>+Aq than AgBr (Risse, A 111 39)

Solubility in 0 02N AgNO<sub>8</sub>+Aq=0 15 $\times$  10 <sup>7</sup> g mols per l (Bottger)

100 ccm of 3-N solution of AgNO<sub>3</sub> dissolve 0 08 g AgCl at 25° More dil solutions dissolve very slight amounts of AgCl (Hellwig, Z anorg 1900, **25** 177)

Solubility in 2-N AgNO<sub>3</sub>+Aq at ord temp = 0.03×10<sup>-3</sup> g equiv AgCl (Forbes, J Am Chem Soc 1912, **33** 1946)

# Solubility in AgNO<sub>3</sub>+Aq at t° (Det by volumetric method)

|                                         | AgNO                                      | H() = 2.1                                          |                                                                               |
|-----------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|
| ( A <sub>k</sub> NO <sub>3</sub>        | n/10 NaCl                                 | t                                                  | g Ag(1 rc<br>tained per 100<br>g AgNO3                                        |
| 6<br>7<br>8<br>9<br>11<br>7<br>10<br>10 | 2<br>2<br>2<br>2<br>2<br>1<br>1<br>4<br>5 | 57<br>45<br>40<br>35<br>30<br>26<br>22<br>65<br>86 | 0 478<br>0 410<br>0 359<br>0 319<br>0 261<br>0 205<br>0 143<br>0 572<br>0 715 |

Solubility in AgNO<sub>3</sub>+Aq at t° -- Continued

| Solubining                                | mitretion !                                     | ard an                                       | 0010000000                                                           |
|-------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|
| AgNO <sub>8</sub> H <sub>2</sub> O = 1 1  |                                                 |                                              |                                                                      |
| 5<br>6<br>7<br>8<br>9<br>5 5<br>6 5<br>12 | 1<br>1<br>1<br>1<br>1<br>0 5<br>0 5<br>0 5      | 94<br>84<br>75<br>66<br>58<br>48<br>40<br>23 | 0 286<br>0 239<br>0 205<br>0 179<br>0 159<br>0 130<br>0 110<br>0 060 |
| $AgNO_3 H_2O = 1 2$                       |                                                 |                                              |                                                                      |
| 6<br>7<br>8<br>10<br>12<br>8<br>12        | 0 5<br>0 5<br>0 5<br>0 5<br>0 5<br>0 25<br>0 25 | 104<br>92<br>85<br>73<br>61<br>45<br>28      | 0 120<br>0 103<br>0 090<br>0 072<br>0 060<br>0 045<br>0 030          |

(Lowry, Roy, Soc Proc 1914, 91 A 58)

> Solubility in AgNO<sub>8</sub>+Aq at 20° (Det by gravimetric method)

|                                        | • •                             |                                                |
|----------------------------------------|---------------------------------|------------------------------------------------|
| g AgNO <sub>3</sub>                    | g H <sub>2</sub> O              | g AgCl retained<br>per 100 g AgNO <sub>3</sub> |
| 220<br>220<br>220<br>220<br>220<br>220 | 110<br>165<br>220<br>330<br>440 | 0 1372<br>0 1009<br>0 0722<br>0 0402<br>0 0294 |

(Lowry, Roy Soc Proc 1914, 91 A, 56)

Insol in Na<sub>2</sub>SO<sub>4</sub>+Aq

Solubility of AgCl in Na<sub>2</sub>SO<sub>3</sub>+Aq at 25° G formula weights per l

| SO <sub>3</sub> | Ag      | SO <sub>3</sub>                 | Ag      |
|-----------------|---------|---------------------------------|---------|
| 0 080           | 0 011   | 0 483 * 0 470 0 652 0 890 0 937 | 0 059 * |
| 0 106           | 0 017   |                                 | 0 070   |
| 0 220           | 0 033   |                                 | 0 103   |
| 0 234           | 0 036   |                                 | 0 140   |
| 0 478 *         | 0 057 * |                                 | 0 142   |

\* In presence of 0 05 Cl (Luther and Leubner, Z anorg 1912, 74 393)

Easily sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> or KCN+Aq

When freshly pptd, very sol in solutions of soluble thiosulphates, and especially in conc  $Na_2S_2O_3+Aq$ , which dissolves AgCl almost as readily as  $H_2O$  dissolves sugar  $K_2S$   $O_3+$ Aq, even when very dil, also dissolves AgCl, also SrS<sub>2</sub>O<sub>3</sub>+Aq (Herschel, **1819**) Sol in KAsO +Aq (Reynoso)

Cold NaHSO<sub>3</sub>+Aq dissolves a considerable amount of AgCl (Rosenheim and Steinhauser, Z anorg 1900, 25 78)

heim and Steinhauser, Z anorg 1900, 25 103)

Solubility in Na thiosulphate+Aq at 16°

| g Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> 5H <sub>2</sub> O | g dissolved AgCl                             |                                              |  |
|-------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--|
| in 100 cc water                                                   | experimental                                 | calculated                                   |  |
| 2 08<br>4 16<br>6 24<br>8 35<br>16 70<br>20 83                    | 0 29<br>0 64<br>0 88<br>1 26<br>2 54<br>3 28 | 0 80<br>1 60<br>2 40<br>3 21<br>6 42<br>7 99 |  |

(Abney, Z phys Ch 1895, 18 65)

A solution of  $Na_2S_2O_3+Aq$  containing 200 g Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> per liter, dissolves 0 454 g AgCl per g of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> at 35° (Richards and Faber, Am Ch J 1899, **21** 170)

Solubility in salts+Aq

|                                         |                    | _ 1                                                                       |
|-----------------------------------------|--------------------|---------------------------------------------------------------------------|
| Solvent                                 | Conc               | Grams AgCl<br>sol in 100<br>grams solvent                                 |
| Sodium thiosulphate                     | 1<br>5<br>10       | 0 40<br>2 00<br>4 10<br>6 10 20°                                          |
| Ammonium thiosulphate                   | 20<br>1<br>5<br>10 | $ \begin{array}{c c} 6 & 10 \\ 0 & 57 \\ 1 & 32 \\ 3 & 92 \end{array} $   |
| Sodium sulphite                         | 10<br>20           | $\begin{pmatrix} 0 & 44 \\ 0 & 95 \end{pmatrix}$                          |
| Ammonium sulphite carbonate             | 10<br>10           | Trace                                                                     |
| Ammonia +Aq                             | 3<br>15            | $ \begin{array}{c c} 0 & 05 & 25^{\circ} \\ 1 & 40 & 7 & 58 \end{array} $ |
| Magnesium chloride<br>Potassium cyanide | 50<br>5            | 0 50<br>2 75                                                              |
| Ammonium sulphocyanide                  | 5<br>10            | 0 08<br>0 54 20°                                                          |
| Potassium                               | 15<br>10           | $\begin{bmatrix} 2 & 88 \\ 0 & 11 \end{bmatrix}$                          |
| Calcium<br>Barium                       | 10<br>10           | 0 15 0 20                                                                 |
| Aluminum Thiocarbamide                  | 10<br>10           | $\begin{bmatrix} 2 & 02 \\ 2 & 02 \\ 0 & 83 \end{bmatrix} 25^{\circ}$     |
| Thiosinamine                            | 1 5                | 0 40                                                                      |
|                                         | 10                 | 3 90)                                                                     |

(Valenta, M 1894, 15 250)

Solubility in salts+Aq

3171 cc of a solution of sodium thiosulphate containing 31 869 g Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> per liter (1 e 5 g of the hydrate in 100 cc of the solution) dissolve 0 6124 g AgCl

21 88 cc of a solution of ammonium thiosulphate containing 50 g  $(NH_4)_2S_2O_3$  per

liter dissolve 0 7024 g AgCl

user, Z anorg 1900, **25** 78) 27 34 cc of a solution of potassium cyanide Sol in cold sat (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Rosen-containing 49 511 g KCN per liter dissolve

3NH<sub>3</sub>,

14926 g **18** 63)

Solubili and potas ım cyanıde solutions may be dethout reference to experimental

gCl

n)

termined date (Co Sl sol 1

J 1898, **2**0 Insol in

liquid NH<sub>3</sub> (Franklin, Am Ch 829) noderately dil  $Pb(C_2H_3O_2)_2+Aq$ ormal Hg(C2H3O2)2+Aq contain-10 ccmg dissolve 0 01892 g AgCl at 15° ng01g(Stas)

(5) **3** 145)

isol in ether

acetone

ol in liquid NHs

(Cohn, Z phys Ch 1895,

of AgCl in sodium thiosulphate

of a solution of a mixture of Na

etates dissolve 0 00175 g AgCl

(Jarry, A ch 1899, 17 342)

(Mylius and Hutt-

(Wurtz, A ch

% AgCl

3 29

5 43

9 93

(Naumann, B 1904, 37

alcoholic ammonia (Bodlander,

acid, but nearly the whole is de-

% CH3NH2

13 70

curve for AgCl, AgCl,

100 ccm and Hg :

(Stas, A Only sl Solubili

AgCl, 5N Insol 1 Z phys (

ι 1892, **9** 731) Nearly ner, B 1c 1, 44 1316)

Percept ly sol on warming with solution of tartarı

posited or cooling Insol 1 4329), ins l in acetone and in methylal (Eidmani C C 1899, II 1014)

Insol 1 methyl acetate (Bezold, Dissert 1906, Na nann, B 1909, 42 3790) Insol 1 ethyl acetate (Hamers, Dissert

1906, N Sol in (3) 30 4<sup> $\sharp$ </sup>

Solubili of AgCl in methylamine at 115°

1 78

% CH3NI

4 44 0 62 18 69 5 51 0 83 36 69 7 66 1 32

% AgCl

0 16

mann, B 1910, 43 314) iethylamine+Aq

(J: ry, A ch 1899, (7) 17 342) Solubil y in methylamine+Aq at 25° G mols per l

| ( [3NH <sub>2</sub> | AgCl     |
|---------------------|----------|
| 0200                | 0 000300 |
| 0400                | 0 000370 |
| 0740                | 0 000424 |
| 0947                | 0 000447 |
| 1950                | 0 000481 |
|                     |          |

Wuth, B 1902, **35** 2416)

Solu lity in methylamine + Aq at to G mols per l

| t° | CH <sub>8</sub> NH <sub>2</sub> | Ag     |
|----|---------------------------------|--------|
| 18 | 0 93                            | 0 0315 |
| 25 | 0 93                            | 0 0338 |
| 25 | 0 93                            | 0 0335 |

Euler, B 1903, **36** 2880)

At 25°, 1 l methylamine+Aq, containing 1017 g mols CH<sub>8</sub>NH<sub>2</sub>, dissolves 00387 g mol AgCl, 0508 g mol CH<sub>8</sub>NH<sub>2</sub>, 00178 g mol AgCl (Bodlander and Eberlein, B 1903, 36 3948)

Solubility in ethyamine+Aq at 25° G mols per, l

| C <sub>2</sub> H <sub>5</sub> NH | AgCl     |
|----------------------------------|----------|
| 0 01272                          | 0 000114 |
| 0 03942                          | 0 000156 |
| 0 05512                          | 0 000235 |
| 0 06572                          | 0 000312 |
| 0 10300                          | 0 000824 |

(Wuth, B 1902, **35** 2416)

## Solubility in ethylamine+Ag at to G mols per l

| to | C <sub>2</sub> H <sub>5</sub> NH | Ag      |
|----|----------------------------------|---------|
| 18 | 0 094                            | 0 00458 |
| 25 | 0 093                            | 0 00474 |
| 25 | 0 094                            | 0 00478 |
| 18 | 0 236                            | 0 0132  |
| 25 | 0 234                            | 0 0136  |
| 18 | 0 462                            | 0 0251  |

(Euler, B 1903, **36** 2880)

At 25°, 1 l ethylamine+Aq, containing 0 483 g mol C<sub>2</sub>H<sub>5</sub>NH<sub>2</sub>, dissolves 0 0314 g mols AgCl, 0 200 g mol C2H5NH2, 0 0115 g mol AgCl, 0 100 g mol  $C_2H_5NH_2$ , 0 0062 g mol AgCl (Bodlander and Eberlein)

Sol in amylamine+Aq, but less than in

NH₄OH+Aq

Sol in caprylamine+Aq Easily sol on warming in ethylene diamine (Kurnakow, Z anorg 1898, 17 220) Easily sol in alcoholic solution of thiaceta-(Kurnakow, J pr 1895, (2) 51 251) Insol ın benzonitrile (Naumann, B 1914, 47 1370)

## Solubility in pyridine at to

| $ \begin{vmatrix} -25 \\ -22 \\ \text{tr insition point} \\ -20 \\ -18 \\ -10 \end{vmatrix} \begin{vmatrix} 1 & 80 \\ 2 & 20 \\ 2 & 75 \\ 3 & 71 \\ 3 & 85 \\ -10 \end{vmatrix} + AgCl, C_bH_bN$                                    | ı |                                              |                                                                              |                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--|
| $ \begin{vmatrix} -49 & 0 & 77 \\ -35 & 0 & 99 \\ -30 & 1 & 36 \\ -25 & 1 & 80 \\ -22 & 2 & 20 \\ \text{tr insition point} & 2 & 75 \\ -20 & 3 & 71 \\ -18 & 3 & 85 \\ -10 & 4 & 35 \end{vmatrix}                                 $ |   | t   in 100 g                                 |                                                                              | Solid phase                            |  |
| $\begin{bmatrix} -5 \\ -1 \end{bmatrix} \begin{bmatrix} 5 & 05 \\ 5 & 60 \end{bmatrix}$                                                                                                                                             |   | -49 -35 -30 -25 -22 trunsition point -20 -18 | 0 77<br>0 99<br>1 36<br>1 80<br>2 20<br>2 75<br>3 71<br>3 85<br>4 35<br>5 05 | AgCl, 2C <sub>b</sub> H <sub>b</sub> N |  |

| Solubility | ın | pyridine | at t | t° —Continued |
|------------|----|----------|------|---------------|
|------------|----|----------|------|---------------|

| t°                                                    | g AgCl sol<br>in 100 g<br>pyridine                                                            | Solid phase |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------|--|
| transition point 0 10 20 30 40 50 60 70 80 90 100 110 | 5 35<br>3 17<br>1 91<br>1 20<br>0 80<br>0 53<br>0 403<br>0 32<br>0 25<br>0 22<br>0 18<br>0 12 | AgCl        |  |

(Kahlenberg, J phys Chem 1909, **13** 423)

Easily sol in warm piperidine

C R 1892, 115 335) Mol wt determined in piperidine (Werner, Z anorg 1897, 15 16)

Quinoline dissolves traces of AgCl C R 1893, 116 60)

As sol in comme+Aq as in NH4OH+Aq (Blyth, Chem Soc 1 350)

Sol in sinamine, and thiosinamine+Aq  $M_{in}$ Cerargyrite

## Silver chloride ammonia, AgCl, 2NH,

Decomp by H<sub>2</sub>O (Terreil, A

Beibl 7 149) 2AgCl, 3NH<sub>3</sub> Decomp on air and in H<sub>2</sub>O to AgCl Sol in conc NH4OH+Aq, from which it can be crystallised (Rose)

Insol in alcohol (Bodlander, Z phys Ch

AgCl, 3NH<sub>3</sub> 2AgCl, 3NH<sub>3</sub> More easily decomp than

Sl sol in liquid NH<sub>3</sub> (Jarry, A ch 1899, AgCl, 5NH<sub>3</sub> Sl sol in liquid NH<sub>3</sub> (Jarry, A ch 1899, (7) 17 336)

# Silver chlorobromoiodides

(Rodwell, Proc Roy Soc 25 292)

# Silver subfluoride (argentous fluoride), Ag<sub>2</sub>F Decomp by H<sub>2</sub>O into Ag and AgF

(Guntz, C R 110 1337) Decomp by H<sub>2</sub>O

Insol in abs alcohol, ether, acetone and (Wohler and Rodewald, Z anorg xylene 1909, 61 63)

Decomp by H2O until the solution contains 64 5% AgF, independent of temp (Guntz, C R 1913, 157 981)

#### Silver fluoride, AgF

Extremely deliquescent (Gore)

Sol in 0.55 pt H<sub>2</sub>O at 15.5° with evolution of heat Sp gr of sat solution at  $15.5^{\circ}$ = 261 (Gore)

Solubility of AgF in H<sub>2</sub>O at t° G per 100 g H<sub>2</sub>O

| t°                                                                     | AgF                                                                   | Solid phase                                                                                                                              |
|------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| -14 2<br>+18 5<br>18 65<br>20<br>24<br>25<br>28 5<br>32<br>39 5<br>108 | 60<br>165<br>169 5<br>172<br>178<br>179 5<br>215<br>193<br>222<br>205 | Ice+AgF, 4H <sub>2</sub> O AgF, 4H <sub>2</sub> O " +AgF, 2H <sub>2</sub> O AgF, 2H <sub>2</sub> O " " " AgF, 2H <sub>2</sub> O +AgF AgF |

(Guntz, A ch 1914, (9) 2 101)

Sp gr AgF+Aq at 18°

| % AgF | Sp gr |
|-------|-------|
| 7 20  | 1 07  |
| 29 60 | 1 38  |
| 49 20 | 1 82  |
| 56 40 | 2 09  |
| 66 20 | 2 62  |

(Guntz, A ch 1914, (9) 2 104)

Data on solubility of AgF in HF+Aq are given by Guntz (l c)

Sl sol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 829

 $+H_2O$ Deliquescent Sol $H_2O$ ın (Guntz, A ch 1914, (9) 2 101) +2H<sub>2</sub>O Deliquescent So Sol  $_{\mathrm{H_2O}}$  $\mathbf{m}$ 

(Guntz)  $+4H_2O$ Sol in H<sub>2</sub>O Not deliquescent

(Guntz) +5/3 H<sub>2</sub>O Unstable in the presence of crystals of AgF+2H<sub>2</sub>O (Guntz, A ch 1914, (9) **2** 101)

# Silver hydrogen fluoride, AgF, HF

(Guntz)

Very unstable AgF, 3HF (Guntz, Bull Soc 1895, (3) Sol in HF **13** 114)

Silver stannic fluoride

See Fluostannate, silver

Silver tungstyl fluoride

See Fluoxtungstate, silver

Silver, fulminating

See Silver nitride

#### Silver hydride, AgH

Not decomp by H<sub>2</sub>O (Bartlett, Am Ch J 1896, **19** 52)

Argentous hydroxide,  $Ag_4O_2H_2$ 

Sol in  $H_2O$ Known only in solution (Weltzein, A 142 105)

#### Silver hydroxide, AgOH

Decomp into  $Ag_2O$  and  $H_2O$  above  $-40^{\circ}$ See Silver oxide

Argentous 1 lide, Ag<sub>2</sub>I (Guntz, (R 112 861)

Silver imi sulphamide,  $AgN(SO_2NH_2)_2+1\frac{1}{2}H_2$ (

Decomp lowly in the air Somewhat sol sol in boiling H2O, from which in hot, mor it cryst ur hanged on cooling In aqueous table toward alkalı Decomp solution is Difficultly sol in dry pyridine, by acids easily sol ı pyrıdıne+Aq (Hantzsch, B 1905, **38** 1 5)

 $(SO_2)_3N_1$ ,  ${}_6Ag_3+5\frac{1}{2}H_2O$  Nearly insol in hot  $H_2O$  (Ephraim and Michel, B 1909, **42** 3845)

 $(SO_2)_4N$   $_8Ag_5+4H_2O$  (Ephram and Michel)

(SO<sub>2</sub>)<sub>4</sub>N [Ag<sub>6</sub>+1½, 11, and 28 H<sub>2</sub>O Easily s in HNO<sub>8</sub> and NH<sub>4</sub>OH+Aq Sl sol in r indine Very sol in pyridine containing py dine nitrate and can be recryst therefrom (Ephraim and Michel) (SO<sub>2</sub>)<sub>4</sub>N g<sub>7</sub>+8H<sub>2</sub>O (Ephraim and

Michel)
Silver iodi , AgI

Insol in I<sub>2</sub>O
Calculat 1 from electrical conductivity of
AgI+Aq, gI is sol in 1,074,040 pts H<sub>2</sub>O
at 28 4°, at 1420, 260 pts at 40° (Holleman,
Z phys C 12 130)

1 l  $H_2$  dissolves 0 l mg AgI at 18° (Kohlraus and Rose, Z phys Ch 12 241) Solubili in  $H_2O=1\times10^{-8}N$  (Rolla)

Solubili in  $H_2O = 0.97 \times 10^{-8}$  g mols per l at 25° (G odwin, Z phys Ch 1894, 13 645) Solubili of AgI in  $H_2O$  at 25° is  $1.05 \times 10^{-8}$  (m normal y) (Thiel, Z anorg 1900, 24 57) A sat a solution at 20.8° contains 0 0020  $\times 10^{-8}$  g quiv per l (Kohlrausch, C C

A sat a solution at 20 8° contains 0 0020 ×10-6 g quiv per l (Kohlrausch, C C 1901, II | 99) 1 | H<sub>2</sub>( dissolves 0 0035 mg AgI at 21°

(Kohlraus 1 Z phys Ch 1904, **50** 356) 11 H<sub>2</sub>( dissolves 0 00253 mg AgI at 60° (Sammet, phys Ch 1905, **53** 644)

Solubili in  $H_2O=1\,\dot{2}3\times10^{-8}$  g-mol per litre  $25^\circ$  (A l. Hill, J Am Chem Soc 1908 **30** 74)

0 003 n are contained in 1 l of sat solution at 21 (Kohlrausch, Z phys Ch 1908, 64 168)

Insol i dil HNO<sub>3</sub>+Aq or H<sub>2</sub>PO<sub>4</sub>+Aq Decomp y hot cone HNO<sub>3</sub>+Aq or H<sub>2</sub>SO<sub>4</sub> Easily so in cone HI+Aq

1 pt A [ dissolves in 2510 pts NH<sub>4</sub>OH+ Aq of 0 9 sp gr (Martin, Schw J **56** 154), in 2493 p of 0 89 sp gr (Wallace and Lamont, Ch saz **1859** 137)

1 g  $^A$  I dissolves in 26,300 g 10% NH<sub>4</sub>OH- Aq (sp gr =0 96) at 12° Insol m 5% NI OH+Aq (I ongi, Gazz ch it 13

Coeffic at of solubility in NH<sub>4</sub>OH+Aq (density, 1926) is found lower than previously ob med and of the order of <sup>1</sup>/<sub>50000</sub> at 16° (B<sub>5</sub> bigny, Bull Soc 1908, (4) 3 772)

According to Field, insol in cold cone KCl or NaCl+Aq, and only in traces on boiling, and separates out on cooling

100 g NaCl m conc NaCl+Aq dissolve 0 95 mg AgI at 15°, 100 g NH<sub>4</sub>Cl in conc NH<sub>4</sub>Cl+Aq dissolve 2 9 mg AgI at 15°, 95 g NaCl+10 g KBr m conc solution dissolve 1 2 mg AgI at 15°, 100 g KBr+225 g H<sub>2</sub>O dissolve 430 mg AgI at 15°, 100 g KBr in conc KBr+Aq dissolve 525 mg AgI at 15°, 100 g KI+69 g H<sub>2</sub>O dissolve 89 8 g AgI at 15°, 100 g KI+92 g H<sub>2</sub>O dissolve 54 0 g AgI at 15°, 100 g KI+96 g H<sub>2</sub>O dissolve 54 0 g AgI at 15°, 100 g KI+366 g H<sub>2</sub>O dissolve 725 g AgI at 15° (Schierholz, W A B 101, 2b 4)

Sol in conc KI+Aq, from which it is precipitated by H<sub>2</sub>O (Field, C N 3 17) KI gives a ppt with AgNO<sub>3</sub> in presence of

KI gives a ppt with AgNO<sub>3</sub> in press 30,000 pts  $H_2O$  (Harting)

Solubility in KI+Aq at 15°

| ~ ***                          | T                           | 1 OT TET                    | 07 A mT                       |
|--------------------------------|-----------------------------|-----------------------------|-------------------------------|
| % KI                           | % AgI                       | %KI                         | % AgI                         |
| 59 16<br>57 15<br>50 0<br>40 0 | 53 13<br>40<br>25 0<br>13 0 | 33 3<br>25 0<br>21 74<br>20 | 7 33<br>2 75<br>1 576<br>0 80 |

(Schierholz, W A B 1890, 101 2b 10)

Solubility in KI+Aq at 25°

| •                                                                              |                                                      |
|--------------------------------------------------------------------------------|------------------------------------------------------|
| Mol KI per l                                                                   | g AgI per l                                          |
| 1 937<br>1 6304<br>1 482<br>1 406<br>1 018<br>1 008<br>0 734<br>0 586<br>0 335 | 46 42 24 01 15 46 12 55 3 47 3 32 1 032 0 512 0 0853 |

Hellwig, Z anorg 1900, 25 180)

#### Solubility in KI+Aq

| t = 50                                                                                              |                                                                       |                                                       |  |  |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| % AgI                                                                                               | % KI                                                                  | Solid phase                                           |  |  |  |
| 2 5<br>16 0<br>28 0<br>39 0<br>51 8<br>53 5<br>53 5<br>53 4<br>50 4<br>45 0<br>38 0<br>22 8<br>10 7 | 24 8 33 8 36 7 38 1 36 2 36 5 36 6 37 1 37 6 40 2 43 2 47 1 55 5 59 1 | AgI  " " " " AgI+AgI, KI AgI, KI KI+AgI, KI " " " " " |  |  |  |

| t=30°                                                                                                    |                                                                                                             |                                                                         |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| % AgI % KI                                                                                               |                                                                                                             | Solid phase                                                             |  |
| 0 1<br>10 0<br>29 4<br>42 8<br>49 7<br>49 6<br>47 7<br>46 3<br>44 1<br>42 8<br>35 8<br>16 0              | 10 2<br>31 4<br>37 6<br>38 8<br>38 6<br>39 5<br>40 9<br>41 4<br>43 2<br>46 9<br>55 5<br>60 35               | AgI<br>"<br>AgI + AgI, 2KI<br>AgI, 2KI<br>"<br>AgI, 2KI + KI<br>KI<br>" |  |
| ** t =0°                                                                                                 |                                                                                                             | Coled phase                                                             |  |
|                                                                                                          |                                                                                                             | Solid phase                                                             |  |
| 0 2<br>1 5<br>6 5<br>26 6<br>28 1<br>38 0<br>37 9<br>37 6<br>37 9<br>31 7<br>18 0<br>9 0<br>27 5<br>21 0 | 9 8<br>20 5<br>26 1<br>34 6<br>41 3<br>42 0<br>42 7<br>44 0<br>46 6<br>50 5<br>51 2<br>53 0<br>56 1<br>50 3 | AgI  " " " " AgI+AgI, KI AgI, KI  KI " " " " " AgI, 2KI+KI AgI, 2KI     |  |

(Van Dam and Donk, Chem Weekbl 1911, 8 848)

Very sol in KI<sub>3</sub>+Aq (Muth, Dissert **1895**) Very sol in H<sub>2</sub>O in presence of NaI (Kurnakow, Ch Z 1900, **24** 60)

Solubility in KI+Aq at 15°

| 201404103 21 122   124 40 10                                                                                                                         |                                                                                                                  |                                                                                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Composition of the sat solution in mols per 1000 mols H <sub>2</sub> O  Mols Mols Na <sub>2</sub> I <sub>2</sub> Mols Ag <sub>2</sub> I <sub>2</sub> |                                                                                                                  | Solid phase                                                                                                                          |  |
|                                                                                                                                                      |                                                                                                                  |                                                                                                                                      |  |
| 35 63<br>40 54<br>61 55<br>80 55<br>94 25<br>107 52<br>117 96<br>134 40<br>135 83<br>133 81<br>129 02<br>122 56<br>117 11<br>111 52                  | 8 14<br>10 94<br>25 15<br>38 19<br>47 79<br>57 52<br>51 70<br>46 82<br>46 36<br>43 03<br>34 85<br>22 82<br>11 93 | AgI<br>" " " " " AgI + AgI, NaI, 3½ H <sub>2</sub> O AgI, NaI, 3½ H <sub>2</sub> O AgI, NaI, 3½ H <sub>2</sub> O + NaI NaI " " " " " |  |

(Krym, J Russ Phys Chem Soc 1909, **41** 382.)

Traces are dissolved by alkali nitrates +Aq Easily sol in hot KOH+Aq, from which it is pptd by H<sub>2</sub>O or alcohol Not decomp by boiling KOH+Aq (Vogel, N Rep Pharm 20 129)

100 pts of AgNO<sub>8</sub>+Aq sat at 11° dissolve 2 3 pts AgI in the cold, and 12 3 pts on boil-

ing (Schnauss)

Solubility of AgI in AgNO<sub>3</sub>+Aq at 25°

| portromely of right in right of 1 rid at 20                                          |                                                                                                  |                                                  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| Mol AgNOs g AgI m 1 l                                                                |                                                                                                  | Solid phase                                      |  |  |
| 0 20<br>0 25<br>0 30<br>0 35<br>0 40<br>0 45<br>0 50<br>0 55<br>0 60<br>0 65<br>0 70 | 0 0680<br>0 080<br>0 090<br>0 125<br>0 167<br>0 224<br>0 299<br>0 400<br>0 528<br>0 672<br>0 850 | AgI                                              |  |  |
| 1 215<br>1 63<br>2 04                                                                | 3 08<br>6 26<br>10 90                                                                            | $\left. \left. \right\} { m Ag_2INO_3}  ight.$   |  |  |
| 2 54<br>3 115<br>3 75<br>4 055<br>4 69<br>5 90                                       | 16 1<br>22 7<br>33 2<br>40 0<br>53 2<br>85 0                                                     | Ag <sub>3</sub> I(NO <sub>3</sub> ) <sub>2</sub> |  |  |
|                                                                                      |                                                                                                  |                                                  |  |  |

(Hellwig, Z anorg 1900, 25 171)

Solubility of AgI in 25% AgNO<sub>3</sub>+Aq reaches a maximum at about 60° and at the point of maximum solubility the quantity dissolved amounts to about 5 g AgI per 100 g AgNO<sub>3</sub> (Lowry, Roy Soc Proc 1914, 91, A, 66)

Sol in hot Hg(NO<sub>2</sub>)<sub>2</sub>+Aq, from which it crystallizes on cooling

Solubility of AgI in Hg(NO<sub>3</sub>)<sub>2</sub>+Aq at 25°

| Mols<br>Hg(NO <sub>3</sub> ) <sub>2</sub><br>per l | g AgI<br>per l | Mols<br>Hg(NO <sub>3</sub> ) 2<br>per l | g AgI<br>per l |
|----------------------------------------------------|----------------|-----------------------------------------|----------------|
| 0 010                                              | 0 800          | 0 050                                   | 1 737          |
| 0 0125                                             | 0 841          | 0 100                                   | 2 730          |
| 0 025                                              | 1 118          | 1 000                                   | 25 160         |

Solubility is not affected by presence of 0 1 to 2N HNO<sub>3</sub>

(Morse, Z phys Ch 1902, 41 708)

Sol in KCN+Aq

SI sol in  $Na_2S_2O_3+Aq$  when suspended in much  $H_2O$ , but separates again on addition of KI+Aq. (Field)

KI+Aq (Field) Insol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Fogh, C I

1890, **110** 711)

| S                 | ubility in | salts+                   | -Aq                                                                 |
|-------------------|------------|--------------------------|---------------------------------------------------------------------|
| Solve             |            | Conc                     | grams AgI sol<br>in 100 grams<br>solvent                            |
| Sodium thiosul    | ate        | 1<br>5<br>10<br>15<br>20 | 0 03<br>0 15<br>0 30<br>0 40<br>0 60                                |
| Sodium sulphit    |            | 10<br>20                 | 0 01                                                                |
| Ammonium sul      | ate        | 10                       | Traces 25                                                           |
| Potassium cyar    | е          |                          | 8 23                                                                |
| Ammonium sul      | ocyanide   | 5<br>5                   | 0 021                                                               |
|                   |            | 10                       | 0 08 \ 20                                                           |
| _                 |            | 15                       | 0 13 ]                                                              |
| Potassium         |            | 10                       |                                                                     |
| Calcium<br>Barium |            | 10                       | 0 03 )                                                              |
| Aluminum          |            | 10                       | 0 02                                                                |
| Thiocarbamide     |            | 10<br>10                 | $\left[ \begin{array}{ccc} 0 & 02 \\ 0 & 79 \end{array} \right] 25$ |
| Thiosmamine       |            | 10                       | 0 008                                                               |
|                   |            | 5                        | 0 005                                                               |
|                   |            | 10                       | 0 09                                                                |
| (17.01            | +0 M 1     | 004 15                   | 250.)                                                               |

(Val ta, M 1894 15 250)

Very sol 1 Ch J 1898, liquid NH<sub>3</sub> (Franklin, Am 0 829, Jarry, A ch 1899, (7) 17 370)

Easily sol liquid NH<sub>3</sub> (Ruff and Geisel. B 1905, 38 162 )

(Eidmann, C C 1899. Insol in a tone ımann, B 1904, 37 4329) II, 1014), (N (Bezold, Dis-Insol in ethyl acetate

sert 1906), Jaumann, B 1909, 42 3790) Insol in C (Arctowski, Z anorg 1894, 6 257)

Much less I in hot alcoholic thiourea than AgCl and A Br (Reynolds, Chem Soc 1892, **61** 253

Insol in nzonitrile (Naumann, B 1914, **47** 137 Slowly sol

n piperidine at 100° (Varet, C R 1892, 1 336)

0 10 pts 1s ol in 100 pts pyridine at 10° sol in 100 pts pyridine at 121° 860 pts ar 3 1894, **27** 2288) (Laszczynski

Mol wt d crmined in piperidine (Wei ner, Z anorg 1897, **15** 16) Min Iodyr e

Silver hydrog n modide, 3AgI,  $HI + 7H_2O$ (Berthelot, 'R 91 1024)

Silver sodium lodide, 2AgI, NaI

Very sol ii acctone (Marsh, Chem Soc 1913, **103** 78

AgI, NaI  $3\frac{1}{2}H_2O$ (Krym, J Russ Phys Chem oc 1909, **41** 382) See AgI+1 I under AgI

nmonia, AgI, NH3 Silver iodide Sol in liqu i NH<sub>3</sub> (Jarry, A ch 1899, (**7**) **17** 371)

2AgI, NH<sub>3</sub> (Rammelsberg, Pogg 170) Composition is AgI, NH<sub>3</sub> (Longi, Gazz ch it 13 86 Sol in liquid NH<sub>3</sub> (Jarry, A ch 1899, (7) **17** 371) AgI, 2NH<sub>3</sub> (Terrell, C R 98 1279)

Silver nitride, Ag<sub>3</sub>N

Berthollet's "knallsılber" Very explosive Sol in KCN+Aq Slowly -Aq (Raschig, A 233 93) Insol in H<sub>2</sub>O sol m NH<sub>4</sub>OH+Aq (Angeli, Chem Soc 1894, 66 (2) 93)

Argentous oxide, Ag<sub>4</sub>O

Insol in H<sub>2</sub>O Decomp by acids into argentic oxide and silver Insol in NH4OH+ Aq or  $HC_2H_3O_2$  (v der Pfordten,  $B \not = 20$ 1458)

Contains H, and is a hydroxide Ag<sub>4</sub>,H<sub>2</sub>O (v der Pfordten, B 21 2288)

The above substance is a mixture, according to Friedheim (B 20 2557)

Silver oxide, Ag<sub>2</sub>O

Somewhat sol in H<sub>2</sub>O (Bucholz)

Sol in 3000 pts  $H_2O$  (Bineau C R 41 509) sol in 96 pts  $H_2O$  (Abl)

Sol in 15,360 pts H<sub>2</sub>O (Levi, Gazz ch it 1901, **31** (1) 1)

Solubility in  $H_2O$  at  $25^\circ = 2.16 \times 10^4$  mols (Noyes, J Am Chem AgOH per litre Soc 1902, **24** 1147)

1 liter sat aqueous solution at 1996° contains  $2.14\times10^{-2}$  g, at  $24.94^{\circ}$  contains  $2.5\times10^{-2}$  g Ag<sub>2</sub>O (Bottger, Z phys Ch 1903, **46** 603 )

11 H<sub>2</sub>O at 25° dissolves 18×10-4 gram atoms of silver Determined from its solubility in NH<sub>3</sub> (Abegg and Cox, Z phys Ch 1903, **46** 11)

1 l  $H_2$ O dissolves 0 0215 g  $Ag_2$ O at 20° (Whitby, Z anorg 1910, **67** 108)

The solubility of  $Ag_2O$  in  $H_2O$  varies with the method of preparation

Solubility of Ag<sub>2</sub>O (prepared by action of NaOH, ficially prepared by the solution of Na in  $H_2O$ , on a dil solution of  $AgNO_3$ ) = 2 16×10 4 g-mol in 1 l  $H_2O$  at 25°, 2 97× 10 4g -mol at 50°

Solubility of Ag<sub>2</sub>O (prepared by action of aqueous banum hydroxide on  $AgNO_8$ ) = 2.23×10-4 g-mol in 1 l H₂O it 25° 3 09×10-4 g-mol in 1 l H<sub>2</sub>O at 50°

Solubility of Ag<sub>2</sub>O (prepared by action of conc NaOH+Aq on most, freshly pptd AgCl) = 2 32×10 4 g -mol m 1 l H<sub>2</sub>O at

Solubility of Ag O (prepared by action of conc NaOH+Aq on moist, freshly pptd  $Ag_2CO_3$ ) = 2 95×10 4 g -mol in 1 l H<sub>2</sub>O at 389×10 4 g-mol at 50° (Rebiere, Bull Soc 1915, (4) 7 311)

Sol in acids, NH<sub>4</sub>OH, and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+ Aq Decomp by alkalı chlorides, biomides, and iodides+Ag Sol in alkali cyanides, and thiosulphates+Aq Sl sol in nitrates + Aq, insol in sulphates +Aq When freshly sol in NH<sub>4</sub>SCN+Aq pptd, sol in  $NH_4SCN+Aq$  Sl sol in  $NH_4NO_3+Aq$  Abundantly sol in  $Ba(NO_3)_2$ +Aq without pptn of BaO<sub>2</sub>H<sub>2</sub> Sol in boiling Mn(NO<sub>3</sub>)<sub>2</sub>, Ni(NO<sub>3</sub>)<sub>2</sub>, Co(NO<sub>3</sub>)<sub>2</sub>, Cu(NO<sub>8</sub>)<sub>2</sub>, and Ce<sub>2</sub>(NO<sub>8</sub>)<sub>6</sub>+Aq with pptn of oxides (Persoz)

Insol in KOH, and NaOH+Aq Sl sol  $m BaO_2H_2+Aq$  (Berzelius (?)

Solubility in NH<sub>2</sub>OH+Ag at 25°

| boldbilly in 141140 in 1 214 at 20 |               |  |  |
|------------------------------------|---------------|--|--|
| G at Ag per l                      | Mol NH3 per l |  |  |
| 0 0654                             | 0 214         |  |  |
| 0 0658                             | 0 220         |  |  |
| 0 134                              | 0 458         |  |  |
| 0 140                              | 0 469         |  |  |
| 0 205                              | 0 671         |  |  |
| 0 205                              | 0 684         |  |  |
| 0 225                              | 0 720         |  |  |
| 0 224                              | 0 733         |  |  |
| 0 251                              | 0 811         |  |  |
| 0 248                              | 0 827         |  |  |
| 0 242                              | 0 830         |  |  |
| 0 257                              | 0 876         |  |  |
| 0 278                              | 0 899         |  |  |
| 0 276                              | 0 915         |  |  |
| 0 299                              | 0 999         |  |  |
| 0 343                              | 1 147         |  |  |
| 0 454                              | 1 498         |  |  |
| 0 470                              | 1 522         |  |  |
|                                    |               |  |  |

(Whitney and Melcher, J Am Chem Soc 1903, **25** 78)

Insol in liquid NH<sub>3</sub> (Franklin, Am ch 1898, **20** 829) Insol in acetone (Eidmann, C C 1899,

II 1014), (Naumann, B 1904, 37 4329)

Insol in ethyl acetate (Hamers, Dissert 1906, Naumann, B 1910, 43 314)

sol in amylamine+Aq, easily in methylamine+Aq (Wurtz, A ch 30 453), also in ethylamine, and thiosinamine+Aq

Solubility in methylamine+Aq at 18° G mols per l

| G Mois per i                    |                          |  |  |
|---------------------------------|--------------------------|--|--|
| CH <sub>8</sub> NH <sub>2</sub> | Ag                       |  |  |
| 0 1<br>0 5<br>1 0               | 0 0221<br>0 118<br>0 228 |  |  |

(Euler, B 1903, 36 2879)

Solubility in ethylamine+Ag at 18° G mols per l

| C <sub>2</sub> H <sub>5</sub> NH <sub>2</sub> | Ag     |
|-----------------------------------------------|--------|
| 0 1                                           | 0 0322 |
| 0 5 (interpolated)                            | 0 160  |
| 1 0 "'                                        | 0 314  |
| 0 561                                         | 0 180  |
| 0 927                                         | 0 291  |

(Euler)

Silver peroxide, Ag<sub>2</sub>O<sub>2</sub>

Sol in conc H<sub>2</sub>SO<sub>4</sub> (Rose), and in pure HNO<sub>3</sub>+Aq without decomp Sol in NH<sub>4</sub>OH

+Aq (Schönbein, J pr 41 321)
Sol in HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> with decomp
(Mulder, R t c 1898, 17 151)

Insol in liquid NH3 (Gore, Am Ch J 1898, **20** 829 î

Silver oxide ammonia See Silver nitride

Silver oxybromide, Ag<sub>7</sub>OBr<sub>7</sub>

Insol in H<sub>2</sub>O Insol in HNO<sub>3</sub> hot ammonia and in NaOCl+Aq (Seyewetz C R 1912, **154** 357)

Silver oxyfluoride, AgF, AgOH

Decomp by H<sub>2</sub>O with separation of Ag<sub>2</sub>O (Pfaundler)

Silver peroxyfluoride, 2Ag<sub>3</sub>O<sub>4</sub>, AgF (Tanatar, Z anorg 1901, 28 335)

4Ag<sub>3</sub>O<sub>4</sub>, 3AgF (Tanatar, Z anorg 1901 **28** 335)

Silver oxylodide, Ag<sub>2</sub>O, Ag<sub>5</sub>I<sub>7</sub> (Sevewitz, Bull Soc 1894, (3) 11 452)

Silver phosphide, AgP<sub>2</sub>

Sol in HNO<sub>3</sub> Attacked by aqua regi

Granger, C R 1897, 124 897)

Ag<sub>4</sub>P<sub>6</sub> Insol in HCl+Aq, easily sol in HNO<sub>3</sub>+Aq (Schrotter, J B 1849 247)

Ag<sub>2</sub>P<sub>5</sub> (Hackspill, C R 1913, 157 720

Ag<sub>3</sub>P<sub>4</sub>(?) (Fresenius and Neubauer. anal 1 340)

Silver phosphoselenide, Ag<sub>2</sub>Se, P<sub>2</sub>Se

Insol in H<sub>2</sub>O or HCl+Aq Sol in HNO<sub>3</sub> Ao Insol in cold, decomp by hot alkalies (Hahn, J pr **93** 436)

 $2Ag_2Se$ ,  $P_2Se_3$  Insol in  $H_3O$ , HCl, HNO<sub>3</sub>+Aq, slowly sol in red fuming HNC (Hahn, J pr 93 440)

2Ag<sub>2</sub>Se, P<sub>2</sub>Se<sub>5</sub> Sol only in fuming HNC (Hahn)

Silver phosphosulphide, 2Ag<sub>2</sub>S, P<sub>2</sub>S

Ag<sub>2</sub>S, P<sub>2</sub>S (Berzelius, A 46 254)  $2Ag_2S$ ,  $P_2S_3$ Easily sol in HNO<sub>3</sub>+A without separation of P (Berzelius)

 $Ag_4P_2S$ (Berzelius)

Ag<sub>4</sub>PS<sub>3</sub> Easily attacked by hot con HCl Sl decomp Insol in hot HNO<sub>3</sub> D  $Ag_4PS_8$ comp by aqua regia (Ferrand, A ch 189 (7) 17 413)

Silver selenide, Ag<sub>2</sub>Se

Sol in boiling HNO<sub>3</sub>+Aq as Ag<sub>2</sub>Se( which separates out by dilution with H2 (Berzelius)

Insol in Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>+Aq (Wackenrod)

A 41 327)

Min Na nannite Insol in dil, but sol in conc H  $O_3 + Aq$ 

amide (silver thionyl amide), Silver sul  $SO_2(N$  $Ag)_2$ 

yrıdıne (Hantzch and Holl, B Insol in 1901, 34 3 6)  $-\text{H}_2O$ (Ephraim and Gurevitsch, B 1910, **43** 1

Argentous ilphide, Ag<sub>4</sub>S

in warm dil HNO3+Aq, and in Easily sc conc H<sub>2</sub>SC without separation of S Sol in +Aq (v der Pfordten, B 20 C R 112 861) conc KCl 1458, Guni

de, Ag<sub>2</sub>S Silver sulp

Less sol in H<sub>2</sub>O than AgI (Lucas, Z anorg 1904 1 l H<sub>2</sub>O 41 210) issolves about 4×10 11 g at Ag

as Ag<sub>4</sub>S at 3° (Bernfeld, Z phys Ch 1898, 25 72) 1 l H<sub>2</sub>( dissolves 0 8×10 g mols at 16-18° (I ltz, Z phys Ch 1907, **58** 291)

dissolves 0.552×10.6 g mols (Weigel, Z phys Ch 1907, 58 1 l H2  $Ag_2S$  at 18294)

Sol in ( nc HNO<sub>3</sub>+Aq with separation of S Sol a hot conc HCl+Aq Not dey uCl<sub>2</sub>+Aq, but by CuCl<sub>2</sub>+NaCl In l in NH<sub>4</sub>OH+Aq Insol in comp by +Aq $H_2SO_3+A$ or in  $Hg(NO_3)_2 + Aq$ 

2O, dil acids, alkalies, and alkali Insol in sulphides+ (Fresenius)

CN+Aq(Hahn, C C 1870 Sol in **24**0)

Pptd A: 3 is very sol in HNOs containing more than 5% HNO3 (Gruener, J Am Chem Soc 1910, 32 1032)

sl sol in AgNO<sub>3</sub>+Aq, even at Only vei 100° (Lo ty, Roy Soc Proc 1914, 91, A 70)

CN+Aq (Hahn, C C 1870 Sol in **24**0)

sol in KCN+Aq, less difficultly Difficult ptd from a very dil solution if Ag S is N present also has influence on Amt of k Ag2S dissolved in cone KCN the solubil tes out on dilution (Béchamp, +Aq sepa J pr 60 6

H<sub>4</sub>Cl or NH<sub>4</sub>NO<sub>3</sub>+Aq (Brett) Insol in ntite Acanthite Sol in conc  $\operatorname{Min} Ar$ with separation of S HNO<sub>3</sub>+Ac

Sol in tric acid+Aq with addition of

KNO<sub>3</sub> (I lton, C N **37** 48)

Silver disu hide, Ag<sub>2</sub>S<sub>2</sub>

Sol in ] O with decomp, also sol with Cl, HNO<sub>3</sub> CS<sub>2</sub> does not dissolve decomp in out S (H it/sch, Z anoig 1898, 19 105)

Silver sodi n sulphide,  $3Ag_2S$ ,  $Na_2S+2H_2O$ Sol in c ic Na<sub>2</sub>S+Aq with decomp, sol in H<sub>2</sub>O w<sub>1</sub> 1 decomp (Ditte, C R 1895, **120** 93)

Silver zinc sulphide, AgoS, 3ZnS (Schneider, J pr (2) 8 29)

Silver sulphimide (silver thionyl imide), SO<sub>2</sub>NAg

Very sl sol in cold, more sol in hot H<sub>2</sub>O Very sol in dil HNO3 (Traube, B 1892, **25** 2474)

Silver sulphophosphide See Silver phosphosulphide

Silver telluride, Ag<sub>2</sub>Te

Min Hessite Sol in warm HNO<sub>3</sub>+Aq

Sodammonium, Na<sub>2</sub>(NH<sub>8</sub>)<sub>2</sub>

100 g liq NH<sub>3</sub> dissolve 60 5 g at  $-23^{\circ}$ . 56 4 g at  $0^{\circ}$ , 56 g at  $+5^{\circ}$ , 55 g at  $9^{\circ}$  (Joannis A ch 1906, (8) 7 41)

Sodium, Na<sub>2</sub>

Violently decomposes H<sub>2</sub>O, alcohol, etc Insol in hydrocarbons Easily sol in acids with violent action

# Solubility in fused NaOH G sol in 100 g fused NaOH at temp

| t°  | G per 100 g NaOH |
|-----|------------------|
| 480 | 25 3             |
| 600 | 10 1             |
| 610 | 9 9              |
| 670 | 9 5              |
| 760 | 7 9              |
| 800 | 6 9              |

(Hevesy, Z Elektrochem 1909, 15 531)

(Buchner, Z phys Insol in liquid CO<sub>2</sub> Ch 1906, **54** 674)

Sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1895, **20** 829)

1 gram atom dissolves -

at +22° in 6 14 mol liquid NH<sub>3</sub> 0° ' 587 " "-30° " 5 52 " " "-50° " 5 39 " " "-70° 5 20 " " "-105° " 4 98

(Ruff, B 1900, **39** 839)

½ cem oldie held dissolves 0 0449 g Nh in 6 days (Gates, J phys Chem 1911, 15 143)

Insol in (thylamine and in secondary and tertiary imines (Ki ius, J Am Chem Soc 1907, **29** 1561)

Sedium acetylide acetylene, Na<sub>2</sub>C<sub>2</sub>, C<sub>2</sub>II<sub>2</sub>

Very deliquescent Decomp by H<sub>2</sub>O and by absolute alcohol Insol in ether, ligroin, etc (Moissan, C R 1898, 127 915)

#### Sodium amalgam

Stable in contact with the liquid ımalgam from 0°-40 5° Can be cryst from Ig without decomp at any temp between hese limits

NaHgs Stable in contact with the liquid malgam from 40 5°-150° Can be cryst rom Hg without decomp at any temp beween these limits (Kerp, Z anorg 1900, **5** 68 )

## sodium amide, NaNH2

Decomp by H<sub>2</sub>O and alcohol

umidochloride, Na<sub>2</sub>NH<sub>2</sub>Cl H<sub>2</sub>O with decomp (Joannis, C R

" arsenide, Na<sub>3</sub>As mp H<sub>2</sub>O (Lebeau, C R 1900, 130

Sodium arsenide ammonia, Na<sub>3</sub>As, NH<sub>3</sub>

Easily sol in liquid NH<sub>3</sub> (Lebeau, C R 1900, **130** 502)

Sl sol in liquid NH<sub>3</sub> (Hugot, C R 1898, **127** 554)

#### Sodium azoimide, NaN<sub>3</sub>

Sol in H<sub>2</sub>O Not hygroscopic Insol in alcohol and ether (Curtius, B 24 3344) 40 16 pts are sol in 100 pts  $H_2O$  at  $10^\circ$ " 100 " H<sub>2</sub>O " 15 2 407 " 100 "  $\hat{H}_{2}\hat{O}$  "  $170^{\circ}$ 11 11 11 417 0 3153 pt is sol in 100 pts abs alcohol at

Insol in pure ether (Curtius, J pr 1898, (2) 58 279

Sodium bromide, NaBr, and +2H<sub>2</sub>O

Not deliquescent Solubility in H<sub>2</sub>O differs according as NaBr or NaBr+2H2O 18 The following data for anhydrous usedNaBr were found

Pts NaBr dissolved by 100 pts H<sub>2</sub>O at t°

| t°                                   | Pts<br>NaBr                               | t°                           | Pts<br>NaBr                      | t°                              | Pts<br>NaBr                      |
|--------------------------------------|-------------------------------------------|------------------------------|----------------------------------|---------------------------------|----------------------------------|
| 44 1<br>51 5<br>55 1<br>60 3<br>64 5 | 115 6<br>116 2<br>116 8<br>117 0<br>117 3 | 74 5<br>80 5<br>86 0<br>90 5 | 118 4<br>118 6<br>118 8<br>119 7 | 97 2<br>100 3<br>110 6<br>114 3 | 119 9<br>120 6<br>122 7<br>124 0 |

Solubility is represented by a straight line of the formula S = 110.34 + 0.1075t

Below 50° the salt usually crystallizes with (Oppenheimer, Z phys Ch 1898, 27 452)

2H<sub>2</sub>O, of which the solubility in 100 pts H<sub>2</sub>O was found to be as follows

| t°                                                                     | Pts NaBr             | t°                         | Pts NaBr                             | to                         | Pts NaBr                                 |
|------------------------------------------------------------------------|----------------------|----------------------------|--------------------------------------|----------------------------|------------------------------------------|
| $ \begin{array}{c c} -21 \\ -20 \\ -15 \\ -10 \\ -5 \\ 0 \end{array} $ | 73 1<br>75 1<br>77 1 | +5<br>10<br>15<br>20<br>25 | 82 0<br>84 5<br>87 3<br>90 3<br>93 8 | 30<br>35<br>40<br>45<br>50 | 97 3<br>101 3<br>105 8<br>110 6<br>116 0 |

(Coppet, A ch (5) **30** 420)

If solubility S = pts NaBr in 100 pts solution, S=40 0+0 1746t from -20° to +40° S=52 3+0 0125t from 50° to 150° (Etard,

C R 98 1432) 100 pts H2O dissolve at 0°, 77 5 pts NaBr, at 20°, 88 4 pts, at 40°, 104 2 pts, at 60°, 111 1 pts, at 80°, 112 4 pts, at 100°, 114 9 pts (Kremers)

Sat solution boils at 121° (Kremers, Pogg 97 14)

Sat NaBr+Aq contains at

163° –22° ---10°  $+140^{\circ}$ 57 5% NaBr, 401 425 56 5

180° 212° 230° 180° 210° 62 0% NaBr 59 5 590 609 610 (Étard, A ch 1894, (7) 2 539)

100 g sat NaBr+Aq at 16 4° contain 47 g NaBr (Greenish, Pharm J 1900, 65 190) Solubility of NaBr+2H<sub>2</sub>O in H<sub>2</sub>O at  $30^{\circ}$  = 65 5% anhydrous NaBr (Cocheret, Dissert 1911)

Sp gr of NaBr+Aq at 10 5° containing 10 15 20 25 % NaBr, 1 125 1 226 1 040 1 080 1 174

30 35 40 45 50 % NaB1 1 281 1 334 1 410 14831 565 (Gerlach, Z anal 8 285)

NaBr+Aq containing 17 15% NaBr has sp gr 20°/20°=1 1473

NaBr+Aq containing 22 72% NaBi has sp gr  $20^{\circ}/20^{\circ} = 1\ 2060$ (Le Blanc and Rohland, Z phys Ch 1896, **19** 278)

Sp gr of NaBr+Ag at 20 5°

| Normality of<br>NaBr+Aq      | g NaBr in 100<br>g of solution  | Sp gr 20 5°/4°                       |
|------------------------------|---------------------------------|--------------------------------------|
| 4 33<br>3 00<br>1 99<br>0 98 | 33 57<br>25 10<br>17 77<br>9 41 | 1 3284<br>1 2284<br>1 1526<br>1 0750 |

0 75

1 05811

| Sp gr       | t 20° of NaBr+Aq containing                            |
|-------------|--------------------------------------------------------|
| M g mols    | VaBr per liter                                         |
| M (Sp gr 10 | )1 0 025 0 05 0 075<br>)732 1 002177 1 004074 1 005972 |

0.25

1 01964

0 50

1 03908

Sp gr 10 32 111963 115240

( 0

Sp gr 10 '88

tain 63 20

J pr 98

(Jones and Pearce, Am Ch J 1907, 38 728)

<sub>2</sub>SO<sub>4</sub> (Walden, Z anorg 1902, Sol in **29** 384) VaBr+Aq sat at 18-19° contain IaBr, 100 pts NaBr+NaCl+Aq 100 pts 46 05 pts 9° contain 46 59 pts of the two sat at 18 s NaBr+NaI+Aq sat at 18-19° salts, 100 contain 6 15 pts of the two salts, 100 pts II+NaI+Aq sat at 18-19° con-NaBr+N

Solubili of NaBr in NaOH+Aq at 17° (G per 100 g H<sub>2</sub>O)

ts of the three salts (v Hauer,

| NaOH  | NaBr  | NaOH  | NaBr  |
|-------|-------|-------|-------|
| 0 0   | 91 38 | 22 35 | 59 60 |
| 3 26  | 79 86 | 24 74 | 55 03 |
| 9 24  | 68 85 | 28 43 | 48 00 |
| 13 43 | 64 90 | 36 61 | 38 41 |
| 17 17 | 63 06 | 46 96 | 29 37 |
| 19 12 | 62 51 | 54 52 | 24 76 |

( ittc, C R 1897, **124** 30)

Easily ol in liquid HF (Franklin, Z anorg 19 , 46 2)

Verv sl sol in alcohol

NaBı+ H<sub>2</sub>O is sol in 110 pts H<sub>2</sub>O at 15°, in 1 ) pts absolute alcohol at 15°, in 1200 pts absolute ether at 15° (Fder, Dingl 22 89)

H<sub>2</sub>O is sol in 2 25 pts 60% alco-NaBr+ pts 90% alcohol NaBr is sol in hol, and 3 pts 60° alcohol, and 10 pts 90% alcohol

(Hager) 100 pt absolute methyl alcohol dissolve at 195° (de Bruyn, Z phys Ch 17 35 pts **10** 783)

aBi +CH3OH contain 0 9 g NaBi 100 g itical temp (Centnerszwer, Z 1910, **72** 437) phys Ch

temp, 1 pt NaBr by weight is At roo sol in

ts methyl alcohol D15 0 7990 4 6

at the

" ethvl D15 0 8100 14 0 " propyl D15 0 8160 49 7

(Rol and, Z anorg 1898, 18 325)

Solubility in ethyl alcohol at 30°

| Wt %                                                                               |                                                                                     |                                                                          |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Alcohol                                                                            | NaBr                                                                                | Solid phase                                                              |
| 0<br>11 79<br>31 78<br>43 22<br>54 59<br>65 51<br>72 36<br>76 92<br>87 35<br>97 08 | 59 4<br>42 90<br>32 12<br>26 79<br>20 83<br>16 08<br>13 41<br>12 03<br>7 44<br>3 01 | NaBr, 2H <sub>2</sub> O  " " " " " " NaBr, 2H <sub>2</sub> O+NaBr NaBr " |

(Cocheret, Dissert 1911)

Solubility in mixtures of methyl and ethyl alcohol at 25°

P = % methyl alcohol in the solvent G = g NaBr in 10 ccm of the solution S = Sp gr of the sat solution

| P      | G     | S 25°/4° |
|--------|-------|----------|
| 0 00   | 0 293 | 0 8189   |
| 4 37   | 0 365 | 0 8265   |
| 10 40  | 0 404 | 0 8273   |
| 41 02  | 0 724 | 0 8593   |
| 80 69  | 1 251 | 0 9079   |
| 84 77  | 1 286 | 0 9104   |
| 91 25  | 1 432 | 0 9235   |
| 100 00 | 1 440 | 0 9238   |

(Herz and Kuhn, Z anorg 1908, 60 155)

Solubility in mixtures of methyl and propyl alcohol at 25°

P = % propyl alcohol in the solvent G=g NaBr in 10 ccm of the solution S = Sp gr of the sat solution

| I                                           | G                                                           | S 25 /4                                                            |
|---------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|
| 0<br>11 11<br>23 8<br>65 2<br>91 8<br>93 75 | 1 440<br>1 243<br>1 053<br>0 442<br>0 147<br>0 126<br>0 074 | 0 9238<br>0 9048<br>0 8887<br>0 8390<br>0 8153<br>0 8144<br>0 8093 |

(Herz and Kuhn, Z anorg 1908, 60 156)

Solubility in mixtures of propyl and ethyl alcohol at 25°

P = % propyl alcohol in the solvent G = g NaBr in 10 ccm of the solution  $S = \bar{Sp}$  gr of the sat solution

| P     | G     | S 25°/4° |
|-------|-------|----------|
| 0     | 0 293 | 0 8189   |
| 8 1   | 0 249 | 0 8147   |
| 17 85 | 0 247 | 0 8145   |
| 56 6  | 0 190 | 0 8107   |
| 88 6  | 0 111 | 0 8116   |
| 91 2  | 0 083 | 0 8083   |
| 95 2  | 0 082 | 0 8090   |
| 100   | 0 074 | 0 8093   |

(Herz and Kuhn, Z anorg 1908, 60 159)

205 g are sol in 100 g propyl alcohol (Schlamp, Z phys Ch 1894, 14 276

Sl sol in acetone (Krug and M'Elroy, J

Anal Ch 6 184)

100 g 95% formic acid dissolve 223 g NaBr at 185° (Aschan, Ch Ztg 1913, 37 (Aschan, Ch Ztg 1913, 37 1117

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate B 1910, **43** 314), benzonitrile B 1914, **47** 1370) (Naumann, (Naumann,

The composition of the hydrates formed by NaBr at different dilutions is calculated from determinations of the lowering of the frpt produced by NaBr and of the conductivity and sp gr of NaBr+Aq (Jones, Am Ch J 1905, 34 303)

# Sodium stannic bromide See Bromostannate, sodium

# Sodium uranous bromide, Na<sub>2</sub>UBr<sub>6</sub>

As K salt (Aloy, Bull Soc 1899, (3) 21 264)

# Sodium zinc bromide, NaBr, ZnBr<sub>2</sub>+H<sub>2</sub>O

Hygroscopic (Ephraim, Z anorg 1908, **59** 63)

2NaBr,  $ZnBr_2+5H_2O$ Hygroscopic (Ephraim)

# Sodium carbide, Na<sub>2</sub>C<sub>2</sub>

Insol in all neutral solvents, decomp on heating and by H<sub>2</sub>O (Matignon, C R 1897, **125** 1034)

#### Sodium carbonyl, Na<sub>2</sub>C<sub>2</sub>O<sub>2</sub>

Decomp by H<sub>2</sub>O with explosion (Joannis, C R 116 1518)

#### Sodium subchloride, Na<sub>4</sub>Cl<sub>2</sub>

Decomp by H<sub>2</sub>O into NaCl and NaOH+ Aq (Kreutz, B 1897, 30 403)

Sodium chloride, NaCl Sol m H<sub>2</sub>O

| 100 g                                  | ots H2O at to                                              | dissolve pts NaCl                |  |  |
|----------------------------------------|------------------------------------------------------------|----------------------------------|--|--|
| t°                                     | Pts NaCl                                                   | Authority                        |  |  |
| 0<br>13 89<br>16 90<br>59 93<br>109 73 | More than<br>at 13 89°<br>35 81<br>35 88<br>37 14<br>40 38 | Gay Lussac A ch (2) 11<br>310    |  |  |
| 12<br>100                              | 35 91<br>39 92                                             | Fehling A 77 382                 |  |  |
| 18 75                                  | 37 731                                                     | Bischof                          |  |  |
| 10–15                                  | 35 42                                                      | Bergmann                         |  |  |
| 106+                                   | 42 86                                                      | Griffiths 1825                   |  |  |
| 20                                     | 35 9                                                       | Schiff A 109 326                 |  |  |
| All temps                              | 37                                                         | Fuchs and Reichenbach            |  |  |
| 25                                     | 35 7                                                       | Kopp A 34 262                    |  |  |
| 18 75                                  | 36 53                                                      | C J B Karsten 1840               |  |  |
| 1<br>18 75<br>100                      | 36 121<br>36 724<br>41 076                                 | G Karsten                        |  |  |
| 1 25<br>Boiling                        | 36 119<br>39 324                                           | Unger J pr <b>8</b> 285          |  |  |
| 18 75<br>100                           | 35 40<br>36 95                                             | Karsten (?) cited by<br>Unger lc |  |  |
| 15 56<br>100                           | 34 2-35 42<br>36 16                                        | Ure s Dict                       |  |  |
| 15                                     | 35 837                                                     | Michel and Krafft                |  |  |

1 pt NaCl is sol in 2.789 pts H<sub>2</sub>O at 15° (Gerlach) in 3 pts H<sub>2</sub>O at 18.75° (Abl) in 2.8235 pts H<sub>2</sub>O at ord temp (Bergmann) in 2.7647 pts boiling H<sub>2</sub>O (Bergmann) in 2.857 pts hot or cold H<sub>2</sub>O (Fourcroy)

Not deposited from boiling aqueous solution unless

the vessel containing it is open to the air (Unger l c)

Solubility in 100 pts H2O at to

| t°    | Pts NaCl | t°    | Pts NaCl |
|-------|----------|-------|----------|
| 1 5   | 33 6     | 70    | 38 1     |
| 13 75 | 35 8     | 108 5 | 39 4     |

(Nordenskjóld Pogg 136 315)

#### Solubility in 100 pts H2O at to

| t°    | Pts NaCl | t°     | Pts NaCl |
|-------|----------|--------|----------|
| 13 89 | 35 8     | 59 93  | 37 1     |
| 16 90 | 35 9     | 109 73 | 40 4     |

(Gay Lussac A ch 11 296)

Solubility of NaCl at various pressures The figures represent pts NaCl in 100 pts sat NaCl +Aq at t° and A pressure in atmospheres

| A  | 0°                      | 9°    | 12°   | 15°                     | 20°   | 25             | 30°            |
|----|-------------------------|-------|-------|-------------------------|-------|----------------|----------------|
| 20 | 26 25<br>26 35<br>26 44 | 26 38 | 26 35 | 26 30<br>26 39<br>26 40 | 26 37 | 26 37<br>26 47 | 26 47<br>26 53 |

(Muller Pogg 117 386)

| 10 pts H <sub>2</sub> O dissolve at t° |                                                    |                                  |                                                    |  |  |
|----------------------------------------|----------------------------------------------------|----------------------------------|----------------------------------------------------|--|--|
| t°                                     | Pts NaCl                                           | t°                               | Pts NaCl                                           |  |  |
| - 15<br>- 10<br>- 5<br>0<br>5          | 32 73<br>33 49<br>34 22<br>35 52<br>35 63<br>35 74 | 40<br>50<br>60<br>70<br>80<br>90 | 36 64<br>36 98<br>37 25<br>37 88<br>38 22<br>38 87 |  |  |
| 14<br>25                               | 35 87<br>36 13                                     | 100<br>109 7                     | 39 61<br>40 35                                     |  |  |

(P ggale, A ch (3) 8 649)

100 pts 20 dissolve at 0° 12° 15° 35 59 3' 72 35 77 35 68 pts NaCl,

20° 25° 30° 35 7 35 81 36 00 pts NaCl Iuller, Pogg 122 337)

100 pts  $H_2O$  dissolve 35.76-36.26 pts NaCl at 1' o°, and the sp gr of sat solution Page and Keightley, Chem Soc (2) 10.566 100 pts VaCl+Aq sat at 18-19° contain 26.47 pts aCl (v Hauer, J pr 98.137)

Solubilit of NaCl in 100 pts H<sub>2</sub>O at t°

| t°                                                                                                    | Pt<br>Na | t  | Pts<br>NaCl      | t°             | Pts<br>NaCl                          |
|-------------------------------------------------------------------------------------------------------|----------|----|------------------|----------------|--------------------------------------|
| 0                                                                                                     | 35       | 30 | 36 3             | 60             | 37 3                                 |
| 1                                                                                                     | 35       | 31 | 36 3             | 61             | 37 3                                 |
| 2                                                                                                     | 35       | 32 | 36 3             | 62             | 37 4                                 |
| 3                                                                                                     | 35       | 33 | 36 4             | 63             | 37 4                                 |
| 4                                                                                                     | 35       | 34 | 36 4             | 64             | 37 5                                 |
| 5                                                                                                     | 35       | 35 | 36 4             | 65             | 37 5                                 |
| 6                                                                                                     | 35       | 36 | 36 5             | 66             | 37 6                                 |
| 7                                                                                                     | 35       | 37 | 36 5             | 67             | 37 7                                 |
| 8                                                                                                     | 35       | 38 | 36 5             | 68             | 37 7                                 |
| 9                                                                                                     | 35       | 39 | 36 6             | 69             | 37 8                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 35       | 40 | 36 6             | 70             | 37 7<br>37 8<br>37 9                 |
| 11                                                                                                    | 35       | 41 | 36 6             | 71             | 37 g                                 |
| $\overline{12}$                                                                                       | 35       | 42 | 36 7             | 72<br>73       | 38 0                                 |
| 13                                                                                                    | 35       | 43 | 36 7             | 7.3            | 38 0                                 |
| 14                                                                                                    | 35 ,     | 44 | 36 8             | 74             | 38 0<br>38 1                         |
| 15                                                                                                    | 35 )     | 45 | 36 8             | 75             | 38 2                                 |
| 16                                                                                                    | 35 )     | 46 | 36 8             | 76             | 38 2                                 |
| 17                                                                                                    | 35 )     | 47 | 36 9             | 76<br>77<br>78 | 38 2<br>38 2<br>38 2<br>38 2<br>38 3 |
| 18                                                                                                    | 35 )     | 48 | 36 9             | 78             | 38 2                                 |
| $\widetilde{19}$                                                                                      | 36 )     | 49 | 36 9             | 79             | 38 3                                 |
| 20                                                                                                    | 36 )     | 50 | 37 0             | 80             | 38 4                                 |
| 21                                                                                                    | 36 )     | 51 | 37 0             | 81             | 38 4                                 |
| $\begin{array}{c} 22 \\ 23 \end{array}$                                                               | 36 )     | 52 | 37 0             | 82             | 38 5                                 |
| 23                                                                                                    | 36 L     | 53 | 37 1             | 83             | 38 6                                 |
| $2\overline{4}$                                                                                       | 36 i     | 54 | 37 1             | 84             | 38 6                                 |
| $\overline{25}$                                                                                       | 36 L     | 55 | $37\overline{1}$ | 85             | 38 7                                 |
| $\frac{1}{26}$                                                                                        | 36 L     | 56 | 37 2             | 86             | 38 7                                 |
| 27                                                                                                    | 36       | 57 | 37 2             | 86<br>87       | 38 8                                 |
| 28                                                                                                    | 36 2     | 58 | 37 2             | 88             | 38 9                                 |
| 29                                                                                                    | 3€ 2     | 59 | 37 3             | 89             | 39 0                                 |
|                                                                                                       |          | 1  |                  |                |                                      |

Solubility of NaCl in 100 pts H<sub>2</sub>O at t° — Continued

| t  | Pts<br>NaCi | +0  | Pts<br>NoCl | +0    | Pts<br>NeCl |
|----|-------------|-----|-------------|-------|-------------|
| 90 | 39 1        | 97  | 39 5        | 104   | NaCl        |
| 91 | 39 1        | 98  | 39 6        | 105   | 40 0        |
| 92 | 39 2        | 99  | 39 7        | 106   | 40 1        |
| 93 | 39 3        | 100 | 39 8        | 107   | 40 2        |
| 94 | 39 3        | 101 | 39 8        | 108   | 40 3        |
| 95 | 39 4        | 102 | 39 9        | 109   | 40 3        |
| 96 | 39 4        | 103 | 40 0        | 109 7 | 40 4        |

(Calculated by Mulder from his own and other observations, Scheik Verhandel 1864 37)

Solubility in 100 pts H<sub>2</sub>O at 0-4° 20° 40° 60° 80° 35 630 35 825 36 32 37 06 38 00 (Andreae, J pr (2) 29 456)

Solubility in 100 pts  $\rm\,H_2O$  from most careful experiments

0° 20° 60° 80° 35 571 35 853 37 091 38 046 (Raupenstrauch, M Ch 6 563)

Solubility of NaCl in 100 pts H2O at t°

| t                                                                                         | Pts NaCl                                                                                     | t°                                                                                 | Pts NaCl                                                                      |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| -14 0<br>-13 8<br>- 6 25<br>- 5 95<br>0<br>3 6<br>5 3<br>14 45<br>20 85<br>25 45<br>38 55 | 32 5<br>32 15<br>34 22<br>34 15<br>35 7<br>35 79<br>35 8<br>35 94<br>35 63<br>35 90<br>36 52 | 44 75<br>52 5<br>55 0<br>59 75<br>71 3<br>74 45<br>82 05<br>86 7<br>93 65<br>101 7 | 36 64<br>37 04<br>36 99<br>37 31<br>37 96<br>38 41<br>38 47<br>38 90<br>40 76 |

Solubility above 20° is represented by the formula S=34 359+0 0527t (Coppet, A ch (5) **30** 426)

Solubility of NaCl in 100 pts H<sub>2</sub>O at high temp

| t°  | Pts NaCl | t°  | Pts NaCl |
|-----|----------|-----|----------|
| 118 | 39 8     | 160 | 43 6     |
| 140 | 42 1     | 180 | 44 9     |

(Tilden and Shenstone, Phil Trans 1884 23)

Sat NaCl+Aq contains % NaCl at t°

| t°  | % NaCl | t°  | % NaCl |
|-----|--------|-----|--------|
| -21 | 23 7   | 77  | 28 0   |
| -21 | 23 4   | 90  | 28 2   |
| -18 | 23 5   | 115 | 29 1   |
| -17 | 23 3   | 135 | 28 9   |
| - 7 | 25 5   | 140 | 28 8   |
| 0   | 25 8   | 150 | 29 6   |
| +15 | 26 7   | 180 | 30 2   |
| 55  | 26 8   | 215 | 31 6   |

(Étard, A ch 1894, (7) 2 532)

100 g  $\rm H_2O$  dissolve 0.616 gram-equivalent NaCl at 25° (Van't Hoff and Meyerhoffer, Z phys Ch 1904, 49 315)

# Solubility of NaCl in H<sub>2</sub>O at t° Most careful experiments

| t° | g NaCl<br>per 100<br>g H O  | t     | g NaCl<br>per 100<br>g H <sub>2</sub> O | Sp gr                                |
|----|-----------------------------|-------|-----------------------------------------|--------------------------------------|
|    | '090<br>'020<br>956<br>1891 | 75 65 | 37 28<br>37 82<br>38 53<br>39 65        | 1 1823<br>1 1764<br>1 1701<br>1 1631 |

(Berkeley, Phil Trans Roy Soc 1904, 203 A 189)

Sat NaCl+Aq at 25° contains 26.5% NaCl (Foote, Am Ch J 1906, **35** 239) 100 g H<sub>2</sub>O dissolve 35.80 g NaCl at 25° (Cameron, Bell and Robinson, J phys Ch 1907, **11** 396)

100 g NaCl+Aq sat at 15° contains 26 3 g NaCl, at 30°, 26 47 g (Schreinemakers, Arch neer Sc 1910, (2) 15 81)

5 456 g mol are contained in 1 l NaCl+ Aq sat at 25° (Herz, Z anorg 1911, 73 274)

5 40 g mol are contained in 1 l NaCl+Aq sat at 30° (Masson, Chem Soc 1911, 99 1136)

26 47 g NaCl are contained in 100 g NaCl+Aq sat at 30° (Cocheret, Dissert 1911)

35 79 g NaCl are sol in 100 g  $\rm H_2O$  at room temp (Frankforter, J Am Chem Soc 1914, 36 1106)

100 mol H<sub>2</sub>O dissolve at

19 3° 29 7° 40 1° 54 5° 11 04 11 06 11 15 11 35 mol NaCl

(Sudhaus, Miner Jahrb Beil Bd 1914, **37** 

Solubility of NaCl in  $\rm H_2O$  at 24 5° at varying pressures

S=g NaCl in 100 g solvent P=pressure in atmospheres

| P    | s     | 100 g of solution contains<br>g NaCl |
|------|-------|--------------------------------------|
| 1    | 35 90 | 26 42                                |
| 250  | 36 25 | 26 61                                |
| 500  | 36 55 | 26 77                                |
| 1000 | 37 02 | 27 02                                |
| 1500 | 37 36 | 27 20                                |

(Cohen, Inouye and Euwen, Z phys Ch 1910, **75** 257)

Sp gr of NaCl+Aq containing 15% NaCl is 1 109 at 15° (Francewr) 1 116 at 15° (Souberran) 1 1107 at 15° (Couher) 1 111 at 15° (Baudin C R 68 932)
Sp gr of NaCl+Aq saturated at 15° is 1 20715 (Michel and Krafft) at 17 5° is 1 2046 (Karsten) at 8° is 1 205 (Anthon)

Sp gr of NaCl+Aq

| % NaCl | Sp gr | % NaCl | Sp gr | % NaCl | Sp gr |
|--------|-------|--------|-------|--------|-------|
| 5      | 1 037 | 15     | 1 112 | 25     | 1 192 |
| 10     | 1 074 | 20     | 1 154 | 26 43  | 1 204 |

(Dahlmann J B 7 321)

Sp gr of NaCl+Aq at 20°

| % NaCl                                                                  | Sp gr                                                                                                                                    | % NaCl                                                                     | Sp gr                                                                                                                          |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | 1 0066<br>1 0133<br>1 0201<br>1 0270<br>1 0340<br>1 0411<br>1 0483<br>1 0556<br>1 0630<br>1 0705<br>1 0781<br>1 0857<br>1 0934<br>1 1012 | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 1 1090<br>1 1168<br>1 1247<br>1 1327<br>1 1408<br>1 1490<br>1 1572<br>1 1655<br>1 1738<br>1 1822<br>1 1906<br>1 1990<br>1 2075 |

(Schiff, A 110 76)

Sp gr of NaCl+Aq at 19 5°

| % NaCl                    | Sp gr                      | % NaCl           | Sp gr            |
|---------------------------|----------------------------|------------------|------------------|
| 6 402<br>12 265<br>17 533 | 1 0460<br>1 0895<br>1 1303 | 22 631<br>26 530 | 1 1712<br>1 2036 |

(Kremers, Pogg 95 120)

| ` | ידים | ٥f | NaCl-  | L A a | at. | 150 |
|---|------|----|--------|-------|-----|-----|
| 3 | ×.   | υı | TIACT. | тли   | au  | LU  |

| % NaCl                                                            | Sp gr                                                                                                                                                  | % NaCl                                                                         | Sp gr                                                                                                                                       |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 1 00725<br>1 01450<br>1 02174<br>1 02899<br>1 03624<br>1 04366<br>1 05108<br>1 05851<br>1 06593<br>1 07335<br>1 08097<br>1 08859<br>1 09622<br>1 10384 | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>26 395 | 1 11146<br>1 11938<br>1 12730<br>1 13523<br>1 14315<br>1 15107<br>1 15931<br>1 16755<br>1 17580<br>1 18404<br>1 19228<br>1 20098<br>1 20433 |
|                                                                   |                                                                                                                                                        | <u>.                                    </u>                                   |                                                                                                                                             |

Gerlach, Z anal 8 279)

#### o gr of NaCl+Aq at 18°

| % NaC               | Sp gr                                | % NaCl           | Sp gr                      |
|---------------------|--------------------------------------|------------------|----------------------------|
| 5<br>10<br>15<br>20 | 1 0345<br>1 0707<br>1 1087<br>1 1477 | 25<br>26<br>26 4 | 1 1898<br>1 1982<br>1 2014 |

(I )hlrausch, W Ann 1879 1)

# Sp gr of NaCl+Aq at 20°, containing mols II O to 1 mol NaCl

| n                | Sp gr                         | n          | Sp gr              |
|------------------|-------------------------------|------------|--------------------|
| 12 5<br>25<br>50 | 1 15292<br>1 08207<br>1 04227 | 100<br>200 | 1 02069<br>1 00965 |

Marignac, J B 1870 110)

# 

| G NaCl | d        | da       | 1      |
|--------|----------|----------|--------|
| 0      | 1 00000  | 1 000130 | + 4°   |
| 0 5    | 1 003925 | 1 003988 | + 3    |
| 1      | 1 007634 | 1 007666 | + 1 77 |
| 2      | 1 015366 | 1 015367 | - 0 58 |
| 3      | 1 023530 | 1 023583 | - 3 24 |
| 4      | 1 030669 | 1 030890 | - 5 63 |
| 6      | 1 045975 | 1 046952 | -11 07 |

Rosetti, A ch (4) 17 382)

Sp gr of NaCl+Aq at 20° x=mols NaCl to 100 mols H<sub>2</sub>O

| x                 | Sp gr                         | æ          | Sp gr              |
|-------------------|-------------------------------|------------|--------------------|
| 0 5<br>1 0<br>2 0 | 1 01145<br>1 02255<br>1 04393 | 4 0<br>5 0 | 1 08408<br>1 10276 |

(Nicol, Phil Mag (5) 16 122)

Sp gr of NaCl+Aq at 0° S=weight of salt in 100 g of solution of the given sp gr,  $S_1=No$  mols of salt contained in 100 mols of the solution

| S       | Sı    | Sp gr  |
|---------|-------|--------|
| 23 0821 | 8 627 | 1 1821 |
| 19 1932 | 6 769 | 1 1502 |
| 14 3415 | 4 898 | 1 1111 |
| 9 4120  | 3 097 | 1 0722 |
| 5 1536  | 1 644 | 1 0394 |

(Charpy, A ch (6) 29 23)

### Sp gr of NaCl+Aq

| G equivalents<br>NaCl per liter | t°     | Sp gr t°/t° |
|---------------------------------|--------|-------------|
| 0 005028                        | 18 549 | 1 0002119   |
| 0 01005                         | 18 550 | 1 0004258   |
| 0 02005                         | 18 538 | 1 000848    |
| 0 04983                         | 18 509 | 1 002101    |
| 0 09873                         | 18 525 | 1 004143    |
| 0 19388                         | 18 542 | 1 008093    |
| 0 28999                         | 18 559 | 1 012053    |
| 0 47574                         | 18 558 | 1 019627    |
| 0 49860                         | 18 06  | 1 02054     |
| 4 9860                          | 17 85  | 1 18783     |
| 0 00259                         | 14 07  | 1 0001108   |
| 0 005178                        | 14 076 | 1 0002210   |
| 0 010318                        | 14 097 | 1 0004401   |
| 0 12580                         | 14 097 | 1 005315    |
| 0 25019                         | 14 076 | 1 010505    |

(Kohlrausch, W Ann 1894, 53 26)

#### Sp gr of NaCl+Aq at 18°/18°

| g equivalents of NaCl<br>in 1 liter of solution | >р gг     |
|-------------------------------------------------|-----------|
| 0 005                                           | 1 0002104 |
| 0 010                                           | 1 0004206 |
| 0 020                                           | 1 0008476 |
| 0 050                                           | 1 002109  |
| 0 100                                           | 1 004205  |

(Tammann, Z phys Ch 1895, 16 93)

Sp gr of NaCl+Aq sat 180°, when p=percent strength of solution, d=observed density, and w = volume conc in grams

per cc

| р     | đ      | w       |
|-------|--------|---------|
| 25 37 | 1 1928 | 0 30263 |
| 21 25 | 1 1592 | 0 24637 |
| 17 35 | 1 1277 | 0 19503 |
| 13 25 | 1 0958 | 0 14518 |
| 9 34  | 1 0665 | 0 09960 |
| 4 810 | 1 0332 | 0 04969 |
| 2 991 | 1 0202 | 0 03052 |
| 2 593 | 1 0173 | 0 2638  |
| 1 746 | 1 0111 | 0 01765 |

(Barnes J Phys Chem 1898, 2 544)

Sp gr of NaCl+Aq at 20 5°

| Normality of<br>NaCl+Aq | G NaCl in<br>100 g of<br>solution | Sp gr 205°/4° |
|-------------------------|-----------------------------------|---------------|
| 3 97                    | 20 22                             | 1 1489        |
| 2 96                    | 15 56                             | 1 1124        |
| 2 01                    | 10 90                             | 1 0775        |
| 0 97                    | 5 49                              | 1 0373        |

(Oppenheimer Z phys Ch 1898, 27 451)

Sp gr of NaCl+Ag at 15°

| Per cent NaCl                                | Sp gr                                                                     |  |
|----------------------------------------------|---------------------------------------------------------------------------|--|
| 0<br>5<br>10<br>15<br>20<br>25<br>Sat at 15° | 1 00000<br>1 03624<br>1 07335<br>1 11146<br>1 15107<br>1 19228<br>1 20433 |  |

(H C Hahn, J Am Chem Soc 1898, 20 622)

Sp gr of NaCl+Ag at 18°/4°

| g NaCl in 100 g of<br>solution | Sp gr   |
|--------------------------------|---------|
| 0 19560                        | 1 0001  |
| 0 097952                       | 0 9994  |
| 0 065410                       | 0 99918 |
| 0 048977                       | 0 99905 |

(Jahn, Z phys Ch 1900, 33 572)

Sp gr 20°/4° of a normal solution of NaCl =1 03866 (Haigh, J Am Chem 1912, **34** 1151)

| Sp gr of sat NaCl+Aq at t° |                                                                      |                                                                      |  |  |
|----------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| t°                         | g NaCl sol in<br>100 g H <sub>2</sub> O                              | Sp gr                                                                |  |  |
| 10° 0 10 20 30 40 50       | 32 90<br>35 63<br>35 69<br>35 82<br>36 03<br>36 32<br>36 67<br>37 06 | 1 200<br>1 210<br>1 205<br>1 202<br>1 198<br>1 193<br>1 189<br>1 184 |  |  |
| 70                         | 37 51                                                                | 1 178                                                                |  |  |

(Tschernaj, J Russ Phys Chem Soc 1912, **44** 1565)

Sp gr of dil NaCl+Aq at 20 004° Conc = g equiv NaCl per l at 20 004° Sp gr compared with H<sub>2</sub>O at 20 004°=1

| Conc                                                                                   | Sp gr                                                                                                                               |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 0 0000<br>0 0001<br>0 0002<br>0 0005<br>0 0010<br>0 0020<br>0 0040<br>0 0050<br>0 0100 | 1 000,000,0<br>1 000,004,2<br>1 000,008,5<br>1 000,021,3<br>1 000,042,7<br>1 000,085,1<br>1 000,169,6<br>1 000,211,7<br>1 000,423,3 |
|                                                                                        |                                                                                                                                     |

(Lamb and Lee, J Am Chem Soc 1913, 35 1686)

The saturated solution boils at 109° (Kremers)

NaCl+Aq containing 42 9 pts NaCl to 100 pts H<sub>2</sub>O boils at 106 8° (Griffiths), containing 41 2 pts NaCl to 100 pts  $\rm H_2O$  boils at 108 2° (Legrand), containing 40 38 pts NaCl to 100 pts  $\rm H_2O$  boils at 109 73° (Gay-Lussac), containing 38 7 pts NaCl to 100 pts  $\rm H_2O$  forms a crust at 108 3°, highest point observed, 108 8° (Gerlach, Z anal 26 426)

Boiling-point of NaCl+Aq

| ~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | B pt according to                                               |                                                 |  |
|-----------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|--|
| % NaCl                                  | Bischof G K                                                     |                                                 |  |
| 5<br>10<br>15<br>20<br>25<br>29 4       | 101 50°<br>103 03<br>104 63<br>106 26<br>107 93<br>107 9–108 99 | 101 10°<br>102 38<br>103 83<br>105 46<br>107 27 |  |

| % NaCl                    | B pt according to                               |                                            |  |
|---------------------------|-------------------------------------------------|--------------------------------------------|--|
| % NaCi                    | Legrand                                         | Gerlach                                    |  |
| 5<br>10<br>15<br>20<br>25 | 100 80°<br>101 75<br>103 00<br>104 60<br>106 60 | 100 9°<br>101 9<br>103 3<br>105 3<br>107 6 |  |

B-pt of N Cl+Aq containing pts NaCl to 100 pt H<sub>2</sub>O G=according to Gerlach (Z ar | 26 438, L=according to Legrand A ch (2) 59 431)

| B pt                                               |                                                               | L                                                                          | B pt                                                            | G                                                            | L                                                    |
|----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| 100 5° 101 101 5 102 102 5 103 103 5 104 104 5 105 | 4<br>6<br>6<br>1<br>1<br>1<br>2<br>1<br>2<br>2<br>5<br>5<br>5 | 4 4<br>7 7<br>10 8<br>13 4<br>15 9<br>18 3<br>20 7<br>23 1<br>25 5<br>27 7 | 105 5°<br>106 106 5<br>107 107 5<br>108 108 4<br>108 5<br>108 8 | 27 5<br>29 5<br>31 5<br>33 5<br>35 5<br>37 5<br>39 5<br>40 7 | 29 8<br>31 8<br>33 9<br>35 8<br>37 7<br>39 7<br>41 2 |

B-pt of NaCl+Aq containing g NaCl in 100 g H<sub>2</sub>C ; NaCl 14 9 16 1 B-pt 103 104 2 104 8 106 1 g NaCl B-pt 2 3 24 0 26 0 28 7 7 1 107 7 108 7 109 5 (Rich ond, Analyst, 1893, 18 142)

If NaC is dissolved in 15 pts H<sub>2</sub>O, heat is absorbe if the temp is 15°, but much less if temp i 86°, at 100° there is neither absorption i r evolution of heat (Berthelot, C R 78

36 pts 'aCl mixed with 100 pts H<sub>2</sub>O at 12 6° low the temp 2 5° (Rudorff, B 2 68)

33 pts VaCl with 100 pts snow at —1° give a ten of —21 3° (Rudorff, Pogg 122 337)

The fre ing-point of NaCl+Aq is lowered 0 60° for every gram NaCl up to 10 g When mo conc the freezing-point sinks proportional o NaCl, 2H<sub>2</sub>O, 0 342° for every gram of at salt (Rudorff, Pogg 113 163)

Insol II cone HCl+Aq

Solubility f NaCl in HCl+Aq at 0° NaCl =
mols NaCl (in milligrams) dissolved
in 10 m of liquid, HCl = mols HCl (in
milli ams) dissolved in 10 ccm of liquid

| NaCl  | HCI   | Sum of mols | Sp gr  |
|-------|-------|-------------|--------|
| 53 5  | 1     | 54 5        | 1 2045 |
| 52 2  | 1 85  | 54 05       | 1 2025 |
| 48 5  | 5 1   | 53 6        | 1 196  |
| 44 0  | 9 275 | 53 275      | 1 185  |
| 37 95 | 15 05 | 53 00       | 1 1725 |
| 23 5  | 30 75 | 54 95       | 1 141  |
| 6 1   | 56 35 | 62 45       | 1 1159 |

Solubility in HCl+Aq at 10-10 5°

| g per 100 cc                           |                                           | G per 100 cc                     |                                  |  |
|----------------------------------------|-------------------------------------------|----------------------------------|----------------------------------|--|
| HCl                                    | NaCl                                      | HCl                              | NaCl                             |  |
| 0 0<br>9 84<br>12 76<br>15 68<br>20 78 | 35 77<br>33 76<br>33 19<br>32 71<br>31 77 | 26 06<br>94 77<br>102 1<br>120 6 | 30 89<br>20 01<br>19 04<br>16 03 |  |

(Enklaar, R t c 1901, 20 183)

Solubility in HCl+Aq at 30°

Composition of the solution

| % by wt HCl                 | % by wt NaCl                   |
|-----------------------------|--------------------------------|
| 0<br>6 93<br>12 50<br>17 35 | 26 47<br>16 16<br>9 35<br>4 52 |
| 35 60                       | 0 11                           |

(Schreinemakers, Z phys Ch 1909, 68 85)

Solubility in HCl+Aq

Conc = concentration of HCl g mol per  $1,000 \text{ g H}_2\text{O}$ 

NaCl = wt NaCl dissolved in 1,000 g H<sub>2</sub>O

|    |      | -      | -                       |
|----|------|--------|-------------------------|
| t° | Conc | NaCl   | Molecular<br>solubility |
| 0  | 0    | 357 75 | 6 13                    |
|    | 0 25 | 341 70 | 5 85                    |
|    | 0 50 | 324 45 | 5 56                    |
|    | 1 C0 | 291 20 | 4 99                    |
| 25 | 0    | 360 80 | 6 18                    |
|    | 0 25 | 344 50 | 5 90                    |
|    | 0 50 | 329 05 | 5 64                    |
|    | 1 00 | 298 10 | 5 10                    |

(Armstrong and Eyre, Proc R Soc 1910, (A) **84** 127)

# Solubility in HCl+Aq at 30° G mols per l

| HCl                      | NaCl                    | 30<br>7p gr                                    | HCI                     | NaCl           | 5p gr<br>30      |
|--------------------------|-------------------------|------------------------------------------------|-------------------------|----------------|------------------|
| 0 4575<br>0 969<br>1 786 | 4 932<br>4 386<br>3 589 | 1 2018<br>1 1906<br>1 1801<br>1 1633<br>1 1512 | 4 152<br>5 950<br>7 205 | 1 628<br>0 630 | 1 1289<br>1 1188 |

(Masson, Chem Soc 1911, 99 1132)

(F gel, Bull Soc (2) 45 654)

| Millimols HCl in 10 ccm                  | Millimols NaCl in 10 ccm                           |
|------------------------------------------|----------------------------------------------------|
| 6 07<br>10 32<br>15 90<br>21 17<br>32 83 | 54 56<br>48 50<br>44 67<br>37 82<br>32 97<br>23 43 |

(Herz, Z anorg 1912, 73 274)

Moderately dil H<sub>2</sub>SO<sub>4</sub> or HNO<sub>3</sub>+Aq precipitate NaCl from NaCl+Aq (Karsten)
Sol in H<sub>2</sub>SO<sub>4</sub> (Walden, Z anorg 1902,
29 384)

Solubility of NaCl in NH<sub>4</sub>OH+Aq at  $30^{\circ}$  (G in 1 l sat solution)

| Sp gr           | NH3                              | NaCl           | Sp gr            | NH3              | NaCl                                 |
|-----------------|----------------------------------|----------------|------------------|------------------|--------------------------------------|
| 1 1656<br>1 160 | $\frac{40}{47}$ $\frac{655}{26}$ | 292 5<br>289 7 | 1 1395<br>1 1301 | 72 715<br>81 855 | 283 38<br>283 06<br>277 49<br>270 57 |

(Hempel and Tedesco, Z anorg 1911, 24 2467)

Solubility of NaCl in NH4Cl+Aq at t°

| t° | G per 100 g H <sub>2</sub> O         |                                         | Sp gr                                     |
|----|--------------------------------------|-----------------------------------------|-------------------------------------------|
|    | NH4Cl                                | NaCl                                    | DP Et                                     |
| 0  | 0<br>146 1                           | 356 3<br>286 4                          | 1 185                                     |
| 15 | 0<br>57 3<br>118 9<br>186 4<br>198 8 | 357 6<br>326 4<br>300<br>271 6<br>266 8 | 1 200<br>1 191<br>1 183<br>1 176<br>1 175 |
| 30 | 0<br>255 4                           | 360 3<br>249                            | 1 166                                     |
| 45 | 0<br>322 1                           | 365<br>233 9                            |                                           |

(Fedotieff, Z phys Ch 1904, **49** 168)

See also under NH<sub>4</sub>Cl

Solubility in NaOH+Aq at 0° NaCl=mols NaCl (in milligrams) in 10 ccm solution, Na<sub>2</sub>O=mols Na<sub>2</sub>O (in milligrams) in 10 ccm solution

| NaCl   | Na <sub>2</sub> O | Na <sub>2</sub> O +<br>NaCl | Sp gr |
|--------|-------------------|-----------------------------|-------|
| 54 7   | 0                 | 54 7                        | 1 207 |
| 49 375 | 4 8               | 54 175                      | 1 221 |
| 47 212 | 6 725             | 53 937                      | 1 225 |
| 42 375 | 10 406            | 52 781                      | 1 236 |
| 39 55  | 14 78             | 54 33                       | 1 249 |
| 24 95  | 30 5              | 55 45                       | 1 295 |
| 19 3   | 37 875            | 57 175                      | 1 314 |
| 9 408  | 53 25             | 62 66                       | 1 362 |

(Engel, C R 112 1130)

Solubility in NaOH+Aq at 20°

| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NaOH in<br>1 liter                    | G NaCl m | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | deg Baumé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10                                    | 308      | 1 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28 8<br>28 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | 181      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 32 \ 8 \\ 32 \ 8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33 3<br>33 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | 112      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | 107      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 430                                   | 48       | 1 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | 1 liter  | 1 hter         1 hter           10         308           20         308           30         306           40         302           50         297           60         286           70         277           80         269           90         261           100         253           110         244           120         236           130         229           140         221           150         213           160         205           170         197           180         181           200         173           210         165           220         159           230         152           240         146           250         139           260         134           270         129           280         124           290         118           300         112           310         107           320         101           330         96           340 | 1 hter         1 hter         Sp gr           10         308         1 200           20         308         1 210           30         306         1 215           40         302         1 225           50         297         1 230           60         286         1 235           70         277         1 240           80         269         1 245           90         261         1 250           100         253         1 250           110         244         1 252           120         236         1 252           130         229         1 265           140         221         1 265           150         213         1 270           160         205         1 275           170         197         1 275           180         189         1 280           190         181         1 285           200         173         1 290           210         165         1 295           220         159         1 295           230         152         1 300           240 |

| Solubility                                                                | a NaOH+A                                                       | 4q at 20° —                                                                                     | -Continued                                                                           |  |
|---------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| G NaOH 11<br>1 liter                                                      | G NaCl in<br>1 liter                                           | Sp gr                                                                                           | deg Baumé                                                                            |  |
| 440<br>450<br>460<br>470<br>480<br>490<br>500<br>510<br>520<br>530<br>540 | 45<br>42<br>39<br>37<br>34<br>32<br>30<br>28<br>27<br>27<br>26 | 1 395<br>1 400<br>1 405<br>1 410<br>1 415<br>1 420<br>1 425<br>1 430<br>1 435<br>1 440<br>1 445 | 41 0<br>41 5<br>41 9<br>42 0<br>42 3<br>42 6<br>43 0<br>43 5<br>43 7<br>44 0<br>44 3 |  |
| 550<br>560<br>570<br>580<br>590<br>600<br>610<br>620<br>630<br>640        | 26<br>25<br>24<br>23<br>23<br>22<br>21<br>20<br>19             | 1 450<br>1 450<br>1 455<br>1 460<br>1 465<br>1 470<br>1 475<br>1 480<br>1 485<br>1 490          | 44 6<br>44 6<br>45 5<br>45 9<br>46 5<br>46 8<br>47 5                                 |  |

r, Z Elektrochem, 1900, 7 360)

| S        | ubility in Na <sub>2</sub> O+Aq at 30° |             |
|----------|----------------------------------------|-------------|
| Composit | n of the solution                      |             |
| % by w   | % by wt                                | Solid phase |

| Composit is or the solution |                                                     |                                                              |                                                                                       |  |
|-----------------------------|-----------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
|                             | % by w<br>Na <sup>2</sup> O                         | % by wt<br>NaCl                                              | Solid phase                                                                           |  |
|                             | 0<br>4 4,<br>12 2<br>24 48<br>29 3<br>37 8,<br>41 4 | 26 47<br>21 49<br>13 62<br>4 36<br>2 40<br>1 12<br>0 97<br>0 | NaCl<br>""<br>""<br>""<br>""<br>NaCl+NaOH, H <sub>2</sub> O<br>NaOH, H <sub>2</sub> O |  |
|                             |                                                     | <u> </u>                                                     | 1                                                                                     |  |

(Schrein nakers, Z phys Ch 1909, **68** 85)

The presence of other salts increases the solubilit of N iCl in H<sub>2</sub>O Sol

NH<sub>4</sub>Cl

the solu

 $32\ 62\%$ 

48 42 p

and 22 under N

sat NH<sub>4</sub>Cl+Aq with pptn of When the reaction is complete, on his sp. gr. 1.1788, and contains uxed salts, or 100 pts. H<sub>2</sub>O dissolve mixed silts, viz, 26 36 pts NiCl pts NH4Cl (Kaisten) (See b pts NH<sub>4</sub>Cl  $I_4(1)$ 

Sit BiCl2+Aq with pptn of BiCl2 Sol 1 until a ite of equilibrium is reached, when 100 pts I () it 17° dissolve 38 6 pts of mixed thich 4.1 pts are BaCl2 (Karsten) salts, of r BiCl2) (See un

CaCl<sub>2</sub>+Aq (Vauquelin, Insol ın sat Chim 13 95

Ann de Mucl more sol in hot than in cold H<sub>2</sub>O g MgCl<sub>2</sub> or CaCl<sub>2</sub>, but NaCl is pptd contain NaCl+Aq when that solution is from s h MgCl<sub>2</sub> or CaCl<sub>2</sub>+Aq (Fuchs and | mixed v G Reic enbach, 1826) (See under MgCl<sub>2</sub>)

Less sol in conc CaCl<sub>2</sub>+Aq than in H<sub>2</sub>O (Hermann)

Solubility of NaCl+CaCl<sub>2</sub> in H<sub>2</sub>O at 25° G per 100 g H<sub>2</sub>O

| NaCl                                                                     | CaCl <sub>2</sub>                                                     | Sp gr<br>25°/25°                                                             | Solid phase                                                    |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|
| 0<br>1 846<br>1 637<br>1 799<br>7 77<br>10 70<br>18 85<br>32 48<br>35 80 | 84<br>78 49<br>58 48<br>53 47<br>36 80<br>30 08<br>19 53<br>3 92<br>0 | 1 4441<br>1 3651<br>1 3463<br>1 2831<br>1 2653<br>1 2367<br>1 2080<br>1 2030 | CaCl <sub>2</sub> , 6H <sub>2</sub> O " +NaCl NaCl " " " " " " |

(Cameron, Bell and Robinson, J phys Chem 1907, **11** 396)

Solubility of NaCl in NaHCO3 sat with CO2 at t°

| t°                              | G per 1000 g H <sub>2</sub> O                           |                                                                      |  |  |
|---------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|--|--|
|                                 | NaHCO3                                                  | NaCl                                                                 |  |  |
| 0<br><br>15<br><br>30<br><br>45 | 6 0<br>7 7<br>0 0<br>10 0<br>0 0<br>13 9<br>0 0<br>0 23 | 356 3<br>350 1<br>357 6<br>354 6<br>360 3<br>358 1<br>356 0<br>361 5 |  |  |

(Fedotieff, Z phys Ch 1904, 49 170)

Sol in sat KClO<sub>3</sub>+Aq, the solution can then dissolve more KClO<sub>3</sub> (Margueritte. C R 38 305)

In solution containing Na, K, Cl and NO<sub>3</sub> ions, the solubility-relations between the four salts NaCl, KCl, NaNO3 and KNO3 have been studied (Uyeda, Z anoig 1911, **71** 2)

Sol in sat NH<sub>4</sub>NO<sub>4</sub>+Aq, without causing pptn (Kursten)

Sol in sat NH<sub>4</sub>NO<sub>3</sub>+Aq, from which solution it is not pptd by salts which would cause its pptn in aqueous solution (Muguentte, C R 38 307)

Sol in sat Ba(NO<sub>3</sub>)<sub>2</sub>+Aq without cuising

Insol in Ca(NO<sub>3</sub>)<sub>2</sub>+Aq

Sol in  $Mg(NO_3)_2+Aq$  with pptn of small

portion of Mg(NO<sub>3</sub>)

Sol in sat KNO<sub>3</sub>+Aq, the mixed solution having the power to dissolve more  $KNO_3$ , and the solubility of the KNO3 apparently increasing in the same ratio as the amount of (Fourcroy and Vauquelin, NaCl present Ann de Chim 11 130)

Sol in sat KNO<sub>3</sub>+Aq, the solution thus

obtained at 18 13° contains 40 34% of the mixed salts, or 100 pts H<sub>2</sub>O dissolve 67 72 pts of the mixed salts, viz, 38 25 pts NaCl and 29 45 pts KNO<sub>3</sub> (Karsten)

Solubility of NaCl in KNO<sub>3</sub>+Aq at 25° KNO<sub>8</sub>=g KNO<sub>8</sub> in 100 cc of solution NaCl=g mol per l

| KNO3 | NaCl | KNO <sub>8</sub> | NaCl |
|------|------|------------------|------|
| 0    | 5 44 | 12               | 5 28 |
| 4    | 5 52 | 16               | 5 21 |
| 8    | 5 45 | 20               | 5 15 |

(Ritzel, Z Krist 1911, 49 152) (See also under KNO<sub>3</sub>)

Solubility of NaCl in NaNO<sub>3</sub>+Aq at 15 5°

| ~                                                                            | g per 100 cc sat solution                                         |                                                                        |                                                                      |  |
|------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Sp gr                                                                        | NaNO3                                                             | NaCl                                                                   | H <sub>2</sub> O                                                     |  |
| 1 2025<br>1 2305<br>1 2580<br>1 2810<br>1 3090<br>1 3345<br>1 3465<br>1 3465 | 0<br>7 53<br>13 24<br>21 58<br>28 18<br>33 80<br>37 88*<br>37 64* | 31 78<br>27 89<br>26 31<br>23 98<br>22 30<br>20 40<br>19 40*<br>19 67* | 88 47<br>87 63<br>86 25<br>82 66<br>80 42<br>79 25<br>77 37<br>77 34 |  |

\*Solutions sat with both salts (Bodlander, Z phys Ch 1891, 1 361)

Sol in sat NaNO<sub>3</sub>+Aq with pptn of NaNO<sub>8</sub>

Solubility of NaCl in NaNO<sub>3</sub>+Aq Conc = concentration of NaNO<sub>3</sub> in g mol per 1,000 g  $H_2O$ NaCl=g NaCl dissolved in 1,000 g  $H_2O$ 

| to | Conc | NaCl   | Molecular<br>solubility |
|----|------|--------|-------------------------|
| 0  | 0    | 359 65 | 6 16                    |
|    | 0 25 | 355 90 | 6 09                    |
|    | 0 50 | 351 20 | 6 02                    |
|    | 1    | 342 15 | 5 86                    |
| 25 | 0    | 362 95 | 6 20                    |
|    | 0 25 | 356 65 | 6 11                    |
|    | 0 50 | 352 30 | 6 03                    |
|    | 1    | 343 65 | 5 88                    |
|    | 2    | 325 50 | 5 58                    |

(Armstrong and Eyre, Proc R Soc 1910, A **84** 127)

(See also under NaNO<sub>3</sub>)

Sol in sat KCl+Aq with elevation of (Vauquelin ) 100 g  $\rm H_2O$  sat with KCl dissolve 0 494 gram-equivalent NaCl at 25° (Fuler, Z phys Ch 1904, 49 315)

Solubility in KCl+Aq at t°

| t°         | Sat solution                  | on contains                 |
|------------|-------------------------------|-----------------------------|
|            | % NaCl                        | % KCl                       |
| -20        | 21 3                          | 5 7                         |
| -10        | 21 3                          | 6 7                         |
| 0          | 21 3                          | 7 7                         |
| +10        | 21 3                          | 8 6                         |
| 20         | 21 3                          | 96                          |
| 30         | 21 3                          | 10 6                        |
| 40         | 21 3                          | 11 5                        |
| 50         | 21 3                          | 12 5                        |
| 60         | 21 3                          | $\frac{13}{13}\frac{5}{5}$  |
| <b>7</b> 0 | $\frac{21}{21}$ $\frac{3}{3}$ | 14 4                        |
| 80         | 20 7                          | 15 8                        |
| 90         | 19 9                          | 17 8                        |
| 100        | 18 8                          | 19 8                        |
| 110        | 17 2                          | 22 4                        |
| 120        | 16 5                          | $\frac{22}{24} \frac{4}{1}$ |
| 130        | 16 4                          | $\frac{21}{25}$ 1           |
|            |                               | 26 I                        |
| 140        | 16 4                          |                             |
| 150        | 16 4                          | 27 1                        |
| 160        | 16 4                          | 28 0                        |
| 170        | 16 4                          | 29 0                        |
| 180        | 16 4                          | 30 0                        |

(Étard A ch 1894, (7) 3 277) (See under KCl)

100 pts NaCl+NaI+Aq sat at 18-19° contain 62 33 pts of the two salts Hauer)

Sol in sat Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+Aq with no pptn (Vauquelin)

Sol in sat (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq with pptn of considerable amt of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq (Vauquelin )

Sol in sat CuSO<sub>4</sub>+Aq

100 pts H<sub>2</sub>O dissolve 36 71 pts NaCl and 7 19 pts K<sub>2</sub>SO<sub>4</sub> at 15°, and solution has sp gr 124 (Page and Keightey)

NaCl is sol in K<sub>2</sub>SO<sub>4</sub>+Aq, and vice versa,

without separation of a salt

100 pts H<sub>2</sub>O dissolve 7 03 pts K SO<sub>4</sub> and 37 60 pts NaCl, when warmed and cooled to 14° (Rudorff)

Solubility of NaCl and K2SO4 in H2() at to 100 pts H<sub>2</sub>O contain pts NaCl, K<sub>2</sub>SO<sub>4</sub>, and LCl

| t_                                                        | Pts NaCl                                                                               | Pts k <sub>2</sub> SO <sub>4</sub>                                                  | Pts KC1                                                                      |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100 | 33 43<br>34 01<br>34 56<br>35 16<br>35 77<br>36 40<br>36 64<br>36 04<br>35 86<br>35 63 | 8 10<br>8 90<br>9 56<br>10 38<br>11 07<br>11 93<br>12 82<br>12 26<br>12 42<br>12 56 | 3 18<br>3 06<br>2 95<br>2 81<br>2 84<br>2 72<br>3 20<br>5 06<br>6 98<br>8 79 |
|                                                           |                                                                                        |                                                                                     |                                                                              |

(Precht and Wittgen, B 15 1666)

Sol in pptn, a (Karsten

ld sat NaSO<sub>4</sub>+Aq at first without erwards Na<sub>2</sub>SO<sub>4</sub> separates out

Solubility in Na<sub>2</sub>SO<sub>4</sub>+Aq containing 7 45 g N<sub>1</sub> SO<sub>4</sub> in 100 g of the solution

| t°                               | g NaCl in 100 g of<br>the solution                                      |  |  |  |
|----------------------------------|-------------------------------------------------------------------------|--|--|--|
| 80<br>90<br>85<br>60<br>75<br>18 | 23 30<br>23 33<br>23 45<br>23 485<br>23 485<br>23 525<br>23 55<br>23 68 |  |  |  |
|                                  |                                                                         |  |  |  |

(Marie ad Marquis, C R 1903, 136 684) See al under Na<sub>2</sub>SO<sub>4</sub>

Sol 11 sat  $ZnSO_4+Aq$  with separation of  $Na_2SO_4$ ,  $inSO_4$  (Karsten) Insol 1 liquid  $CO_2$  (Büchner, Z phys Ch 190 54 674)

Mode tely sol in liquid NH<sub>3</sub> Am Ch J 1898, **20** 829)

Am Cn 1 1898, 20 829 1 12 2 1 NaCl are sol in 1 pt hydrazine at 12 5-13 (de Bruyn, R t c 1899, 18 297 ) 100 g iydroxylamine dissolve 14 7 g NaCl at 17 5° (de Bruyn, Z phys Ch 1892, 10

(Franklin,

782)
100 g 95% formic acid dissolve 58 g at 197° Aschan, Ch Ztg 1913, **37** 1117)
Solub tty in alcohol

100 pts | dcohol of 0 900 sp gr dissolve 5 8 pts NaCl of 0 872 : gr dissolve 3 67 pts NaCl of 0 834 sp gr dissolve ( pt NaCl (Kirwan)

100 pt alcohol containing given % by weight of ab lute alcohol dissolve pts NaCl at 25

| %                          | Pts                              | %                            | Pts                             | %                    | Pts                  |
|----------------------------|----------------------------------|------------------------------|---------------------------------|----------------------|----------------------|
| alcohol                    | NaCl                             | alcohol                      | NaCl                            | ilcohol              | NaCl                 |
| 0 0<br>8 4<br>16 7<br>25 1 | 3, 70<br>30 49<br>24 84<br>19 30 | 33 4<br>41 8<br>50 2<br>98 9 | 16 08<br>13 28<br>11 28<br>7 96 | 66 9<br>75 2<br>83 6 | 5 95<br>3 75<br>1 59 |

(Kopp A 40 206)

100 pi alcohol of 9.5 5% by weight dissolve at 15° 77 2°

0 174 0 171 pts NaCl (Wagner A 64 293)

ts alcohol containing % alcohol by weight lissolve pts NaCl at 15°, or 100 pts solutio contain % NaCl

10 20 30 40 % alcohol, 28 5. 22 55 17 51 13 25 pts NaCl, 22 2 18 4 14 9 11 7 % NaCl,

> 50 60 80 % alcohol, 9 77 5 93 1 22 pts NaCl, 8 9 5 6 1 2 % NaCl (Schiff, A 118 365)

Solubility of NaCl in alcohol increases with the temperature 100 pts (by weight) of alcohol of 0 9282

sp gr (50 5% by weight) dissolve at 4° 10° 13° 23° 32° 10 9 11 1 11 43 11 9 12 3 pts NaCl,

33° 44° 51° 60° 12 5 13 1 13 8 14 1 pts NaCl (Gerardin, A ch (4) **5** 146)

Solubility in alcohol at 13°

| 0                                                                                                          | 100 ccm contain in g                                                                        |                                                                                                 |                                                                                            |  |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| Sp gr                                                                                                      | Alcohol                                                                                     | Water                                                                                           | Salt                                                                                       |  |
| 1 2030<br>1 1348<br>1 1144<br>1 0970<br>1 0698<br>1 0295<br>0 9880<br>0 9445<br>0 9075<br>0 8700<br>0 8400 | 0<br>11 81<br>15 99<br>19 39<br>24 95<br>32 33<br>40 33<br>49 28<br>57 91<br>63 86<br>72 26 | 88 70<br>78 41<br>74 64<br>71 45<br>65 80<br>57 96<br>49 34<br>38 54<br>29 37<br>21 62<br>11 24 | 31 60<br>23 26<br>20 81<br>18 86<br>16 23<br>12 66<br>9 13<br>5 93<br>3 47<br>1 52<br>0 50 |  |

(Bodlander, Z phys Ch 7 317)

Solubility in ethyl alcohol+Aq at 30°

| wt %                           | g NaCl per 100 g                                   |                                                    | wt %                       | g NaCl per 100 g                     |                                         |  |
|--------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------|--------------------------------------|-----------------------------------------|--|
| alcohol                        | solution                                           | но                                                 | alcohol                    | solution                             | H₂O                                     |  |
| 0<br>5<br>10<br>20<br>30<br>40 | 26 50<br>24 59<br>22 56<br>19 05<br>15 67<br>12 45 | 36 05<br>34 29<br>32 57<br>29 40<br>26 53<br>23 70 | 50<br>60<br>70<br>80<br>90 | 9 34<br>6 36<br>3 36<br>1 56<br>0 43 | 20 60<br>16 96<br>12 75<br>7 95<br>4 30 |  |

(Taylor, J phys Ch 1897, 1 723)

Solubility in ethyl alcohol + Aq at 40°

| wt %                           | g NaCl per 100 g                                   |                                                    | wt %                       | £ NaCl+100 g                         |                                         |  |
|--------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------|--------------------------------------|-----------------------------------------|--|
| alcohol                        | solution                                           | H <sub>2</sub> O                                   | alcohol                    | solution                             | H2O                                     |  |
| 0<br>5<br>10<br>20<br>30<br>40 | 26 68<br>24 79<br>22 90<br>19 46<br>16 02<br>12 75 | 36 38<br>34 69<br>33 00<br>30 20<br>27 25<br>24 37 | 50<br>60<br>70<br>80<br>90 | 9 67<br>6 65<br>3 87<br>1 69<br>0 50 | 21 42<br>17 82<br>13 10<br>8 68<br>5 10 |  |

(Taylor, l c)

Solubility of NaCl in ethyl alcohol+Aq at Solubility of NaCl in propyl alcohol+Aq at 25°

| C <sub>2</sub> H <sub>5</sub> OH        | % H <sub>2</sub> O                            | %<br>NaCl                                     | С2Н6ОН                                | % H <sub>2</sub> O                  | %<br>NaCi                       |
|-----------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------|-------------------------------------|---------------------------------|
| 0<br>3 8<br>7 7<br>16 1<br>25 3<br>35 0 | 73 53<br>71 6<br>69 7<br>64 6<br>58 9<br>52 5 | 26 47<br>24 6<br>22 6<br>19 3<br>15 8<br>12 5 | 45 35<br>56 2<br>67 4<br>78 8<br>89 6 | 45 35<br>37 5<br>28 9<br>19 7<br>10 | 9 3<br>6 3<br>3 7<br>1 5<br>0 4 |

(Fontein, Z phys Ch 1904, 73 212)

Solubility of NaCl in ethyl alcohol + Aq at 25° Conc = concentration of alcohol in g mol per 1,000 g H<sub>2</sub>O

 $NaCl = \bar{g} \text{ in } 1,000 \text{ g } H_2O$ 

| Conc | NaCl   | Molecular<br>solubility |
|------|--------|-------------------------|
| 0    | 359 65 | 6 16                    |
| 0 25 | 355 15 | 6 08                    |
| 0 50 | 349 65 | 5 98                    |
| 1    | 337 80 | 5 79                    |
| 3    | 301 60 | 5 16                    |

(Armstrong and Eyre, Proc R Soc 1910, (A) 84 127)

100 pts absolute methyl alcohol dissolve 1 41 pts at 185°, 100 pts absolute ethyl alcohol dissolve 0 065 pt at 185° (de Bruyn, Z phys Ch 10 782)

100 pts wood-spirit of 40% (by weight) dissolve 13 0 pts NaCl (Schiff, A 118 365) 100 g NaCl+CH<sub>3</sub>OH contain 0 1 g NaCl

at the critical temp (Centnerszwer, Z phys Ch 1910, 72 437)

Solubility of NaCl in methyl alcohol+Aq

Conc = concentration of alcohol in g mol per 1,000 g H<sub>2</sub>O

 $NaCl = g \text{ in } 1,000 \text{ g } H_2O$ 

| t   | Conc | NaCl   | Molecular<br>solubility |
|-----|------|--------|-------------------------|
| 0°  | 0    | 357 75 | 6 13                    |
|     | 0 25 | 355 20 | 6 08                    |
|     | 0 50 | 353 10 | 6 05                    |
|     | 1    | 347 45 | 5 95                    |
| 25° | 0    | 362 95 | 6 20                    |
|     | 0 25 | 359 40 | 6 14                    |
|     | 0 50 | 357 60 | 6 11                    |
|     | 1    | 353 20 | 6 04                    |
|     | 3    | 336 25 | 5 75                    |

(Armstrong and Lyre, Proc R Soc 1910, (A) **84** 127)

liaces dissolve in propyl alcohol (Schlamp Z phys Ch 1894, 14 276)

Conc = concentration of alcohol in g mol per 1,000 g H<sub>2</sub>O NaCl=g NaCl m 1,000 g H<sub>2</sub>O

| t° | Conc | NaCl   | Molecular<br>solubility |
|----|------|--------|-------------------------|
| 0  | 0    | 357 75 | 6 13                    |
|    | 0 25 | 351 20 | 6 01                    |
|    | 0 50 | 345 55 | 5 91                    |
| 25 | 0    | 362 95 | 6 20                    |
|    | 0 25 | 355 75 | 6 10                    |
|    | 0 50 | 350 20 | 6 00                    |

(Armstrong and Eyre, Proc R Soc 1910, A **84** 127)

Solubility of NaCl in propyl alcohol+Aq at 23- 25°

| %<br>NaCl | C₃H70H | %<br>H₂O | %<br>NaCl | С₃Н7ОН | %<br>H₂O |
|-----------|--------|----------|-----------|--------|----------|
| 0 55      | 87 7   | 11 75    | 14 38     | 5 39   | 80 23    |
| 2 23      | 51 57  | 46 20    | 15 42     | 5 11   | 79 47    |
| 3 55      | 18 99  | 77 46    | 16 38     | 4 47   | 79 14    |
| 3 90      | 14 78  | 81 32    | 18 08     | 3 83   | 78 09    |
| 5 27      | 12 77  | 81 96    | 20 12     | 3 27   | 76 61    |
| 8 04      | 9 49   | 82 47    | 22 35     | 2 64   | 75 01    |
| 10 49     | 7 79   | 81 72    | 24 50     | 2 13   | 75 37    |
| 12 20     | 6 57   | 81 23    | 24 90     | 2 3    | 72 80    |

(Frankforter and Frary, J phys Ch 1913, **17** 402)

100 g sat solution of NaCl in 99 6% propy alcohol contain 0 04 g NaCl at 25° (Frankforter and Frary)

Insol in fusel oil (Gooch, Am Ch J 9 53)

Solubility of NaCl in amyl ilcohol+Aq Liquid phases conjugated it 28°

| NaCl         amyl alcohol         H <sub>2</sub> O         NaCl         mix1 alcohol         H <sub>2</sub> O           0 05         95 45         4 5         26 36         0 22         73 4           " 94 1         5 9         19         0 4 80 4         80 4           " 92 9         7 1         12 7         0 8 86 5           " 91 6         8 4         6 2         1 5         92 3           0 90 2         9 8         0         2 3         97 7 | Upper layer |                      |                   | I ower liver |     |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|-------------------|--------------|-----|------------------|
| " 94 1 5 9 19 0 4 80 4 80 4 " 92 9 7 1 12 7 0 8 86 5 " 91 6 8 4 6 2 1 5 92 3                                                                                                                                                                                                                                                                                                                                                                                      | NaCl        |                      | H <sub>2</sub> O  | Na(1         |     | H <sub>2</sub> O |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | "           | 94 1<br>92 9<br>91 6 | 5 9<br>7 1<br>8 4 | 19<br>12 7   | 0 4 | 86 5<br>92 3     |

(Fontein, Z phys Ch 1910, 73 226)

At room temp 1 pt by weight is sol in 75 pts methyl alcohol D1 0 7990 566 ~ " ethyl D1 0 \$100 3000 " D15 0 \$160 propyl (Rohland Z anorg 1898, 18 325)

100 g methyl alcohol dissolve 131 g NaCl at 25°

 $100~{\rm g}$   $\epsilon$  1yl alcohol dissolve 0 065 g NaCl at 25°  $100~{\rm g}$  p pyl alcohol dissolve 0 012 g NaCl at 25°

100 g soamyl alcohol dissolve 0 002 g NaCl at 2 '

(Turner a d Bissett, Chem Soc 1913, 103

Solubility f NaCl in ethyl+amyl alcohol at 28°

| 1    | Uppe | laye | er      | L     | ower laye | r       |
|------|------|------|---------|-------|-----------|---------|
| %    | %    | ıyl  | % ethyl | %     | of or cl  | ∼ et³∖l |
| NaCl | alc  | ol   | alcohol | NaCi  |           | Iool    |
| 0 05 | 95   | 5    | 0       | 26 35 | 0 22      | 0       |
| 0 10 | 86   |      | 9 5     | 25 30 | 0 25      | 1 9     |
| 0 25 | 75   |      | 19 1    | 24 02 | 0 3       | 9 5     |
| 0 58 | 59   |      | 30 9    | 22 64 | 0 4       | 6 9     |
| 1 23 | 47   |      | 38 7    | 21 19 | 0 5       | 10 3    |
| 2 81 | 31   |      | 44 8    | 19 26 | 1 3       | 15 2    |
| 6 56 | 17   |      | 41 5    | 15 81 | 3 69      | 22 1    |

Critical solution amyl alcohol, 10%, ethyl alco ol, 32 5%, NaCl, 11%,  $\rm H_2O,$  46 5%

(Fonte 1, Z phys Ch 1910, 73 244)

Ether pts NaCl from NaCl+Aq (Gmelin) Very sl ol in a mixture of equal pts of

Very sl ol in a mixture of equal pts of absolute a ohol and ether (Berzelius) 500 mg VaCl treated with above mixture yielded on 0 5 mg to the liquid (Lawrence

yielded on 0.5 mg to the liquid (Lawrence Smith, An J Sci (2) 16 57)
100 pts f a mixture of 1 pt 96% alcohol

100 pts of a mixture of 1 pt 96% alcohol and 1 pt 3% ether dissolve 0 11 pt NaCl (Mayer, A 98 205)
Insol 11 acetone (Krug and M'Elroy, J

Insol ir acetone (Krug and M'Elroy, J Anal Ch 184, Fidmann, C C 1899, II 1014)

Solu ility in acetone+Aq at 20°

A = ccm | cctone in 100 ccm | of the solvent | NaCl = 1 | illimols NaCl in 100 ccm | of the solution

|                                                                                                 | Na( l                                                                        |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| $ \begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 32 \\ \text{to} \\ 87 \\ 88 \\ 89 \\ 90 \end{array} $ | NaCl  537 9 464 6 394 8 330 1 lower layer 308 5  upper layer 7 7 7 3 5 6 4 3 |
| 100                                                                                             |                                                                              |

Solubility in acetone+Aq at 20°

| % NaCl                                                                                              | % H <sub>2</sub> O                                                                                     | % acetone                                                                                             |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 25 9<br>24 19<br>25 06<br>20 85<br>20 17<br>18 32<br>20 44<br>17 89<br>0 32<br>0 19<br>0 15<br>0 12 | 73 06<br>71 18<br>72 00<br>66 78<br>66 01<br>63 16<br>66 19<br>62 21<br>13 92<br>10 82<br>9 62<br>8 94 | 1 04<br>4 03<br>2 94<br>12 37<br>13 82<br>18 52<br>13 37<br>19 90<br>85 76<br>88 99<br>90 23<br>90 94 |
|                                                                                                     |                                                                                                        |                                                                                                       |

(Frankforter and Cohen, J Am Chem Soc 1914, 36 1127)

Solubility in glycol at 14 8°=31 7% (de Coninck, Belg Acad Bull 1905 275)
Sol in glycerine (Pelouze)

Solubility of NaCl in glycerine+Aq at 25° G=g glycerine in 100 g glycerine+Aq NaCl=millimols NaCl in 100 cc of the solution

| G     | NaCl  | Sp gr  |
|-------|-------|--------|
| 0     | 545 6 | 1 1960 |
| 13 28 | 501 1 | 1 2048 |
| 25 98 | 448 4 | 1 2133 |
| 45 36 | 370 2 | 1 2283 |
| 54 23 | 333 9 | 1 2381 |
| 83 84 | 220 8 | 1 2696 |
| 100   | 167 1 | 1 2964 |

(Herz and Knoch, Z anorg 1905, 45 267)

| Insol in benzonitrile (Naumann E | 1914, **47** 1370)

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate (Naumann, B 1904, **37** 3602)

Solubility of NaCl in solutions of HgCl<sub>2</sub> in ethyl acetate

| 10                                                                   | 00 mols ethyl                                                     | acetate dissol                                               | ve                                                   |
|----------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| Mols H <sub>5</sub> Cl <sub>2</sub>                                  | Mols NaCl                                                         | Mols H <sub>b</sub> Cl                                       | Mols NaCl                                            |
| 40 0<br>38 1<br>36 0<br>34 9<br>34 8<br>32 1<br>28 0<br>22 8<br>22 9 | 20 0<br>19 6<br>19 2<br>18 5<br>18 3<br>13 8<br>9 1<br>7 0<br>7 0 | 18 0<br>16 4<br>14 1<br>13 2<br>12 4<br>12 0<br>12 2<br>12 9 | 5 1<br>4 3<br>3 8<br>2 9<br>2 3<br>1 6<br>1 3<br>0 8 |

(Herz and Knoch, Z anorg 1904, 41 318) (Linebarger, Am Ch J 1894, 16 215)

Solubility of NaCl in urea + Ac at 25°

| ~014511             |                                  |                |                         |  |  |  |  |
|---------------------|----------------------------------|----------------|-------------------------|--|--|--|--|
| % urca              | "¿ NaCl                          | c urea         | % NaCl                  |  |  |  |  |
| 0<br>5<br>9 6<br>13 | 31 80<br>30 63<br>29 05<br>28 46 | 18<br>23<br>28 | 27 65<br>27 24<br>26 56 |  |  |  |  |

(Ritzel, Z Kryst Min 1911, 49 152)

Solubility of \aCl in urea + Aq at (?)° g=g urea in 100 cc of solution sol =increase of solubility of NaCl in g per 100 cc of the solution

| g  | sol   | g  | sol   |
|----|-------|----|-------|
| 5  | 0 044 | 30 | 0 709 |
| 10 | 0 124 | 35 | 0 910 |
| 15 | 0 234 | 40 | 1 134 |
| 20 | 0 372 | 45 | 1 370 |
| 25 | 0 529 | 50 | 1 602 |

(Fastert, N Jahrb Min Beil Bd 1912, 23

Solubility of NaCl in formamide + Aq at 25°

| % HCO\H2             | % NaCl                           | % HCONH          | % NaCl                  |
|----------------------|----------------------------------|------------------|-------------------------|
| 0<br>2 3<br>5 3<br>8 | 31 80<br>30 98<br>30 86<br>30 40 | 11<br>15<br>18 8 | 29 11<br>28 52<br>27 76 |

(Ritzel, Z Kryst Min 1911, 49 152)

Insol in anhydrous and in 97% pyridine Very sl sol in 95% pyridine+Ao Sl sol in 93° pyridine+Aq (Kahlenberg, J Am Chem Soc 1908, 30 1107)

Insol in oil of turpentine (T S Hunt, Am J Sci (2) 19 417)

100 g H O dissolve 236 3 g sugar+42 3 g NaCl at 31 25°, or 100 g sat aq solution contain 62 17 g sugar+11 13 g NaCl (Kohler, Z Ver Zuckeind, 1897, 47 447)

Solubility of NaCl in glucose+Aq at 25° Conc = concentration of glucose+Aq in g mol per 1,000 g H O

Sol = Solubility in 1,000 g H<sub>2</sub>O

| Conc | Sol    | Molecular<br>solubility |
|------|--------|-------------------------|
| 0    | 361 40 | 6 18                    |
| 0 25 | 364 15 | 6 22                    |
| 0 50 | 364 30 | 6 23                    |
| 1 0  | 369 90 | 6 32                    |

(Armstrong and Evre, Proc R Soc 1910. (A) 84 127)

Min Halite

Efflorescent below 0°, sl deli-+2H Oquescent at temps above 0° (Fuchs, 1826)

The solubility in HO at -12 25° corresponds to 32 9 pts of NaCl per 100 pts  $H_2O$  (Matignon, C R 1909, 148 551)

Sodium stannic chloride, 2NaCl, SnCl.  $6H_2O$ 

See Chlorostannate, sodium

Sodium thallic chloride, 3NaCl, TlCl, 12H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Pratt, Am J Sc 1895, (3) **49** 404)

Sodium uranium chloride, 2NaCl, UCl

Non volatile and not hydroscopic  $(M_{01})$ san, C R 1896, **122** 1089) Sol in H<sub>2</sub>O (Colani, A ch 1907, (8) 1

59)

Sodium uranyl chloride, Na<sub>2</sub>(UO<sub>2</sub>)Cl<sub>4</sub> As K salt (Aloy, Bull Soc 1899, (3) 2 264)

Sodium zinc chloride, 2NaCl, ZnCl2+3H ( Deliquescent Easily sol in H<sub>2</sub>O (Schin ler, Mag Pharm 36 48)

Sodium zirconium chloride, 2NaCl, ZrCl. (Paykull)

Sodium chloroiodide, NaCl<sub>4</sub>I+2H<sub>2</sub>O

Easily decomp by alcohol or ether (We and Wheeler, Sill Am J 143 42)

Sodium fluoride, NaF

Very sl sol in cold, and not more abu antly in boiling H<sub>2</sub>O (Rose) 100 pts H<sub>2</sub>O dissolve 4 78 pts at 16° (B

zelius ) 100 pts H<sub>2</sub>O dissolve 4 pts at 15° (Free

A ch (3) 47 32)

Sp gr of aqueous solutions containing 100 pts H<sub>2</sub>O

1 1081 221623 3243 pts NaF 1 0221 1 0333 1 0110

Sat solution has sp gr 1 0486 (Gerla Z anal 27 277)

Sp gr of solution sat at 18°=1 044, c taining 43% NaF (Mylius and Funk, 1897, **30** 1718)

Solubility of NaF in HF+Aq at 21°

| g per 1000 g H <sub>2</sub> O |                              | g per 100                       | 0 g H O                  |
|-------------------------------|------------------------------|---------------------------------|--------------------------|
| HF                            | NaF                          | НЬ                              | NaF                      |
| 0 0<br>10 0<br>45 8<br>56 5   | 41 7<br>41 4<br>22 5<br>22 7 | 83 8<br>129 7<br>596 4<br>777 4 | 22 (<br>23 (<br>48<br>81 |

(Ditte, C R 1896, 123 1282)

Easily sol in liquid HF (Franklin anorg 1905, 46 2)

Sl sol in conc KC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq eyer)

Almost insol in alcohol (Berzelius, P

Insol in methyl acetate (Naumann 1909, **42** 3790 }

Sodium hydrogen fluoride, NaHF2

Rather difficultly sol in cold, more easily in hot HO (Berzelius, Pogg 1 13)

Sodium tantalum fluoride See Fluotantalate, sodium

Sodium tin (stannous) fluoride, 2NaF, 3SnF<sub>2</sub> Sol in H<sub>2</sub>O (Wagner B 19 896)

Sodium tin (stannic) fluoride See Fluostannate, sodium

Sodium tantalum fluoride See Fluotantalate, sodium

Sodium tellurium fluoride, NaF, TeF<sub>4</sub> Decomp by H<sub>2</sub>O (Berzelius)

Sodium titanium fluoride See Fluotitanate, sodium

Sodium tungstyl fluoride
See Fluoxytungstate, sodium

Somewhat soluble in H<sub>2</sub>O (Bolton)

Sodium uranyl fluoride
See Fluoxyuranate, sodium

Sodium vanadium sesquifluoride See Fluovanadate, sodium

Sodium zinc fluoride, NaF, ZnF<sub>2</sub> Sol in H<sub>2</sub>O (R Wagner)

Sodium zirconium fluoride, 5NaF, 2ZrF<sub>4</sub> See Fluozirconate, sodium

Sodium fluoride vanadium pentoxide See Fluoxyvanadate, sodium

Sodium hydrazide, NH<sub>2</sub>, NHNa

Decomp by H<sub>2</sub>O with explosive violence Decomp by alcohol (Schlenk, B 1915, **48** 670)

Sodium hydride, NaH

Decomp by H O and by acids

Sol in fused Na or Na am Igam Insol in liquid NH<sub>3</sub> Insol in CS, CCl<sub>4</sub>, C<sub>6</sub>H<sub>6</sub> and terebenthene (Moissan, C R 1902, **134** 73)

Na H<sub>4</sub> Decomp violently by H<sub>2</sub>O

Sodium hydrosulphide, NaSH

Deliquescent Sol in  $H_2O$  and alcohol  $+3H_2O$  Difficultly sol in  $H_2O$  (Damoiseau, C C 1885 36)

Sodium hydroxide, NaOH

Very deliquescent 100 pts NaOH under a bell jar with  $\rm H_2O$  at 16–20° absorb 552 pts in 56 days (Mulder)

Very sol in  $H_2O$  with evolution of much heat Sol in 0 47 pt  $H_2O$  (Bineau, C R 41 509)

Solubility of NaOH in H<sub>2</sub>O

| I |                                                                     | 1001                                                         | uomiy                                                                                                                      | or NaOH in H <sub>2</sub> O                                                                                                                                                                                                                    |
|---|---------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I |                                                                     | g pe                                                         | er 100 g                                                                                                                   |                                                                                                                                                                                                                                                |
|   | t°                                                                  | Solu<br>tion                                                 | H <sub>2</sub> O                                                                                                           | Solid phase                                                                                                                                                                                                                                    |
|   | -78                                                                 |                                                              |                                                                                                                            | Ice                                                                                                                                                                                                                                            |
|   | 5<br>12<br>20<br>30<br>40<br>50<br>60<br>64<br>3<br>61<br>80<br>110 | 29 6 2 0 9 5 7 2 3 3 4 5 5 2 5 6 3 5 5 6 6 9 7 4 7 5 7 7 8 5 | 23 5<br>28 5<br>32 5<br>42 0<br>47 5<br>51 5<br>63 53<br>83 5<br>103 0<br>109<br>119<br>1145<br>174<br>222 3<br>313<br>365 | Ice + NaOH 7H O NaOH 7H <sub>2</sub> O + NaOH 5H <sub>2</sub> C NaOH 5H O + NaOH 4H C NaOH 4H <sub>2</sub> O NaOH 3½H <sub>2</sub> C NaOH 3½H <sub>2</sub> C f pt NaOH 3½H O + NaOH 2H <sub>2</sub> C NaOH 2H <sub>2</sub> O + NaOH O NaOH H O |
| ١ | 192                                                                 | 83 9                                                         | 521                                                                                                                        |                                                                                                                                                                                                                                                |

(Pickering, Chem Soc 1893, 63 890, Mylius and Funk, W A B 1900, 3 450 Calc by Seidell, Solubilities, 2d Edition, p 653)

100 g sat NaOH+Aq at 15° contain 46 36 g NaOH (de Forcrand, C R 149 1344)

Sp gr and b pt of NaOH + Aq

| %<br>Na <sub>2</sub> O | Sp gr | B pt   | Na O | Sp gr | B pt     |
|------------------------|-------|--------|------|-------|----------|
| 4 7                    | 1 06  | 100 56 | 31 0 | 1 44  | 120 00   |
| 9 0                    | 1 12  | 101 11 | 34 0 | 1 47  | 123 89   |
| 13 0                   | 1 18  | 102 78 | 36 8 | 1 50  | 129 44   |
| 16 0                   | 1 23  | 104 44 | 41 2 | 1 56  | 137 78   |
| 19 0                   | 1 29  | 106 66 | 46 6 | 1 63  | 148 89   |
| 23 0                   | 1 32  | 108 89 | 53 8 | 1 72  | 204 44   |
| 26 0                   | 1 36  | 112 78 | 63 6 | 1 85  | 31 > 56  |
| 29 0                   | 1 40  | 116 66 | 77 8 | 2 00  | red heat |

(Dalton)

Sp gr of NaOH + Ag at 15

|                                                                                                                                                           | P 81 01 11 11 12 13                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /o Na2O                                                                                                                                                   | `p բr                                                                                                                                               | % Na O                                                                                                                                                       | Sp gr                                                                                                                                                                                      | % Na O                                                                                                                                                                 | 5p ₅r                                                                                                                                                                  |
| () 302<br>() 601<br>1 209<br>1 \$13<br>2 418<br>3 022<br>3 626<br>4 231<br>4 835<br>5 440<br>6 044<br>6 648<br>7 253<br>7 857<br>8 462<br>9 660<br>10 275 | 1 0040<br>1 0081<br>1 0163<br>1 0246<br>1 0330<br>1 0414<br>1 0500<br>1 0.887<br>1 0675<br>1 0764<br>1 1042<br>1 1133<br>1 1330<br>1 1428<br>1 1528 | 10 879<br>11 484<br>12 088<br>12 692<br>13 297<br>13 901<br>14 506<br>15 714<br>16 319<br>16 923<br>17 528<br>18 132<br>18 730<br>19 341<br>19 954<br>20 550 | 1 1630<br>1 1734<br>1 1841<br>1 1941<br>1 20 %<br>1 2178<br>1 2280<br>1 2392<br>1 2453<br>1 2515<br>1 2515<br>1 2578<br>1 2612<br>1 2778<br>1 2612<br>1 2775<br>1 2843<br>1 2912<br>1 2982 | 21 154<br>21 758<br>21 894<br>22 363<br>22 967<br>23 572<br>24 176<br>24 780<br>25 385<br>25 989<br>26 594<br>27 200<br>27 802<br>28 407<br>29 011<br>29 616<br>30 220 | 1 3003<br>1 3125<br>1 3148<br>1 3198<br>1 3273<br>1 3349<br>1 3426<br>1 3608<br>1 3751<br>1 3886<br>1 3751<br>1 3886<br>1 3751<br>1 4193<br>1 4011<br>1 4193<br>1 4193 |

(Tünnerman N J Pharm 18 2)

| Sp gr of NaOH+Aq                                       |                                                      |                                                             |                                                      |                                                    |                                              |  |
|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------|--|
| % Na <sub>2</sub> O                                    | Sp gr                                                | ℃ Na2O                                                      | Sp gr                                                | % Na O                                             | Sp gr                                        |  |
| 2 07<br>4 02<br>3 89<br>7 69<br>9 43<br>11 10<br>12 81 | 1 02<br>1 04<br>1 06<br>1 08<br>1 10<br>1 12<br>1 14 | 14 73<br>16 73<br>18 71<br>20 66<br>22 58<br>24 47<br>26 33 | 1 16<br>1 18<br>1 20<br>1 22<br>1 24<br>1 26<br>1 28 | 28 16<br>29 96<br>31 67<br>32 40<br>33 08<br>34 41 | 1 30<br>1 32<br>1 34<br>1 35<br>1 36<br>1 38 |  |
|                                                        |                                                      |                                                             |                                                      |                                                    |                                              |  |

(Richter)

# Sp gr of NaOH+Aq at 15°

| C.                                                                                                                                                                                                                                                          | Sp gr<br>if % 18<br>\a O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sp gr<br>if % is<br>NaOH                                                                                                                                                                                                                                                    | %                                                                                                                                            | 5p gr<br>1f % 1s<br>Na <sub>2</sub> O                                                                                                                                                                                | Sp gr<br>if % is<br>NaOH                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>20<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31 | 1 015<br>1 020<br>1 043<br>1 058<br>1 074<br>1 1089<br>1 104<br>1 119<br>1 132<br>1 145<br>1 160<br>1 175<br>1 190<br>1 233<br>1 245<br>1 208<br>1 245<br>1 300<br>1 315<br>1 325<br>1 369<br>1 381<br>1 369<br>1 381<br>1 381 | 1 012<br>1 023<br>1 035<br>1 046<br>1 050<br>1 070<br>1 081<br>1 1092<br>1 103<br>1 115<br>1 126<br>1 137<br>1 148<br>1 150<br>1 170<br>1 181<br>1 192<br>1 203<br>1 225<br>1 236<br>1 247<br>1 259<br>1 269<br>1 279<br>1 300<br>1 310<br>1 310<br>1 321<br>1 332<br>1 343 | 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>70<br>70 | 1 450<br>1 462<br>1 475<br>1 488<br>1 500<br>1 515<br>1 530<br>1 543<br>1 558<br>1 597<br>1 610<br>1 623<br>1 637<br>1 650<br>1 663<br>1 678<br>1 690<br>1 705<br>1 745<br>1 760<br>1 785<br>1 800<br>1 815<br>1 830 | 1 351<br>1 363<br>1 374<br>1 384<br>1 405<br>1 415<br>1 426<br>1 437<br>1 447<br>1 456<br>1 468<br>1 478<br>1 508<br>1 519<br>1 529<br>1 550<br>1 560<br>1 570<br>1 580<br>1 591<br>1 601<br>1 622<br>1 633<br>1 748 |

(Gerlach, Z anal 8 279, calculated from Schiff, A 107 300)

Sp gr of NaOH+Aq at 15°

| € NaOH                                                         | Sp gr                                                                                  | % №аОН                                                              | Sp gr                                                                        |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0 61<br>0 9<br>1 0<br>1 2<br>1 6<br>2 0<br>2 36<br>2 71<br>3 0 | 1 0070<br>1 0105<br>1 0107<br>1 0141<br>1 0177<br>1 0213<br>1 0249<br>1 0286<br>1 0318 | 4 0<br>4 32<br>4 64<br>4 96<br>5 29<br>5 58<br>5 87<br>6 21<br>6 55 | 1 0435<br>1 0473<br>1 0511<br>1 0549<br>1 0588<br>1 0627<br>1 0667<br>1 0706 |
| $\begin{array}{ccc} 3 & 35 \\ 3 & 67 \end{array}$              | 1 0360<br>1 0397                                                                       | 6 76<br>7 31                                                        | 1 0787<br>1 0827                                                             |

| % NaOH                                     | Sp gr                                                    | % NaOH                                           | Sp gr                                                    |
|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|
| 7 66<br>8 0<br>8 34<br>8 68<br>9 0<br>9 42 | 1 0868<br>1 0909<br>1 0951<br>1 0992<br>1 1030<br>1 1077 | 24 81<br>25 3<br>25 8<br>26 31<br>26 83<br>27 31 | 1 2748<br>1 2800<br>1 2857<br>1 2905<br>1 2973<br>1 3032 |
| 0.74                                       | 1 1120                                                   | 1 27 8                                           | 1 3001                                                   |

Sp gr of NaOH+Aq at 15°-Continued

28 31 1 3151 1 1158 10 0 28 83 1 1195 1 2311 10 5 29 38 10 97 1250 1 3272 30 0 11 42 1 1294 1 3339 1 1339 30 57 1 3395 11 84 31 22 1383 1 3458 12 24 31 85 1423 1 3521 12 64 32 47 3585 1 1474 1 13 0 33 0 3642 1520 1 13 55 1 33 69 1566 1 3714 13 86 1 1631 34 38 1 3780 14 5 1 1662 35 0 1 3858 14 75 35 65 1697 1 3913 15 0 36 25 1 1755 1 3981 15 5 36 86 1 1803 1 4049 15 91 37 47 16 38 1 18521 4118

38 13 1 4187 16 77 1 1901 38 8 17 22 1 1950 1 4267 1 2000 39 39 1 4328 17 67 40 0 1 2050 1 4410 17 12 40 75 1 4472 1 2101 18 58 1 2148 41 41 1 4545 19 0 12 1 4619 1 2202 42 19 58 42 83 1 4694 20 0 1 2250 43 66 20 59 1 2308 1 4769 21 0 1 2361 44 38 1 4845

1 2414 2462

2576

2632

2687

1 2522

1

1

1

21 42

22 0

22 64

23 15

23 67

24 24

# Hager, Comm 1883)

45 27

46 15

46 87

47 60

48 81

49 02

1 4922

1 5000

1 5079

1 5158

1 5238

1 531

The sp gr increases or diminishes for ea degree as follows

| % NaOH | Corr    |
|--------|---------|
| 40–50  | 0 00045 |
| 30–39  | 0 0004  |
| 20–29  | 0 0003  |
| 10–19  | 0 0002  |

# Hager, Comm 1883) Sp gr of NaOH+Aq at 15°

| % NaOH               | Sp gr                                | % NaOH         | Sp gr                   |
|----------------------|--------------------------------------|----------------|-------------------------|
| 2 5<br>5<br>10<br>15 | 1 0280<br>1 0568<br>1 1131<br>1 1790 | 20<br>25<br>30 | 1 226<br>1 282<br>1 337 |

(Kohlrausch, W Ann 1879)

Sp gr of NaOH+Aq at 20° containing 2 mols NaOH to 100 mols  $H_2O=1$  04712 (Nicol, Phil Mag (5) 16 122)

Sp gr of NaOH+Aq at 15°

| % Na O              | Sp gr                            | % Na <sub>2</sub> O | Sp gr                   |
|---------------------|----------------------------------|---------------------|-------------------------|
| 5<br>10<br>15<br>20 | 1 069<br>1 139<br>1 210<br>1 281 | 25<br>30<br>35      | 1 353<br>1 426<br>1 500 |

(Hager, Adjumenta Varia, Leipsic, 1876)

Sp gr of NaOH+Aq at 15°

|      | ~P 8-    |      |          |      |          | ŀ |
|------|----------|------|----------|------|----------|---|
| NaOH | Sp gr    | NaOH | Sp gr    | NaOH | Sp gr    |   |
| 0    | 0 999180 | 17   | 1 188707 | 34   | 1 373453 |   |
| 1    | 1 010611 | 18   | 1 199783 | 35   | 1 383815 |   |
| 2    | 1 021920 | 19   | 1 210861 | 36   | 1 394092 |   |
| 3    | 1 033109 | 20   | 1 221933 | 37   | 1 404279 |   |
| 4    | 1 044317 | 21   | 1 233062 | 38   | 1 414363 |   |
| 5    | 1 055463 | 22   | 1 244119 | 39   | 1 424353 |   |
| 6    | 1 066602 | 23   | 1 255134 | 40   | 1 434299 |   |
| 7    | 1 077733 | 24   | 1 266092 | 41   | 1 444161 |   |
| 8    | 1 088856 | 25   | 1 277063 | 42   | 1 453929 |   |
| 9    | 1 099969 | 26   | 1 287990 | 43   | 1 463623 |   |
| 10   | 1 111069 | 27   | 1 298877 | 44   | 1 473249 |   |
| 11   | 1 122165 | 28   | 1 309708 | 45   | 1 482850 |   |
| 12   | 1 133250 | 29   | 1 320496 | 46   | 1 492406 |   |
| 13   | 1 144353 | 30   | 1 331213 | 47   | 1 501927 |   |
| 14   | 1 155450 | 31   | 1 341879 | 48   | 1 511412 |   |
| 15   | 1 166538 | 32   | 1 352472 | 49   | 1 520868 | , |
| 16   | 1 177619 | 33   | 1 362991 | 50   | 1 530282 |   |

(Pickering, Phil Mag 1894, (5) **37** 373)

Sp gn of a N solution of NaOH+Aq at  $18^{\circ}/18^{\circ} = 1$  0418 (I oomis, W Ann 1896, **60** 550)

Sp gr of NaOH+Aq %NaOH 873 367 382 Sp gr 20°/20° 10968 10416 10464 (Le Blanc and Rohland, Z phys Ch 1896, 19 272)

Sp gr of NaOH+Aq at t II O it  $4^{\circ}=1$ The solutions contained a small amount of Na<sub>2</sub>CO<sub>3</sub>

| t  | 40 ViOH                                   | % Na CO3                                        | Sp gr                                                |
|----|-------------------------------------------|-------------------------------------------------|------------------------------------------------------|
| 60 | 22 57<br>20 04<br>17 04<br>14 16<br>10 92 | 0 61<br>0 48<br>0 35<br>0 38<br>0 36            | 1 2312<br>1 2026<br>1 1692<br>1 1374<br>1 1020       |
| 80 | 22 81<br>14 01                            | $\begin{array}{c} 0 & 55 \\ 0 & 42 \end{array}$ | $\begin{array}{cc} 1 & 2207 \\ 1 & 1232 \end{array}$ |

Sat NaOH+Aq boils at 215 5° (Griffiths)
Sat NaOH+Aq boils at 310° (Gerlach, Z anal 26 427)

NaOH+Aq of 1 500 sp gr contains 36 8% NaOH and boils at 130°

B-pt of NaOH+Aq containing pts NaOH to 100 pts  $H_2O$ 

| B pt                                                                           | Pts NaOH                                                                                          | B pt                                                                           | Pts NaOH                                                                                                                                           |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| B pt  105° 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 | Pts NaOH  17 30 41 51 60 1 70 1 81 1 93 5 106 5 120 4 134 5 150 8 168 8 187 208 3 230 254 5 281 7 | B pt  210° 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 300 | 425 5<br>475 5<br>526 3<br>583 3<br>645 2<br>714 3<br>800<br>888 8<br>1000<br>1142 8<br>1333 3<br>1534<br>1739 1<br>2000<br>2353<br>2857<br>3571 4 |
| 195<br>200<br>205                                                              | 312 3<br>345<br>380 9                                                                             | 305<br>310<br>314                                                              | 4651 1<br>6451 6<br>10526 3<br>22222 2                                                                                                             |
|                                                                                |                                                                                                   |                                                                                |                                                                                                                                                    |

(Gerlach, Z anal 26 463)

Insol in liquid  $\rm NH_3$  (Franklin, Am Ch J 1898, 20 829 )

Sp gi of Na  $CO_3+NaOH+Aq$  at 11 5° H O at 4°=1

| % Nu COs | % NaOH | Sp gr |
|----------|--------|-------|
| 3 84)    | 14 10  | 1 196 |
| 3 171    | 13 63  | 1 182 |
| 2 204    | 12 51  | 1 164 |
| 1 642    | 10 17  | 1 136 |
| 0 2686   | 16 64  | 1 186 |

(Wegscheider and Walter, M 1905, 26 693)

 $S_1$  gr of  $N_{12}CO + N_{11}OH + Aq$  at t° H O at 4°=1

| t   | (NICOs | , NaOH | >p gr  |
|-----|--------|--------|--------|
| 60° | 15 38  | 10 65  | 1 2621 |
|     | 13 79  | 9 52   | 1 2502 |
|     | 12 10  | 8 29   | 1 1952 |
|     | 9 965  | 6 86   | 1 1594 |
|     | 9 47   | 6 70   | 1 1521 |
|     | 7 69   | 5 22   | 1 1158 |
| 80° | 15 26  | 11 14  | 1 2510 |
|     | 9 48   | 6 93   | 1 1417 |

(Wegscheider and Walter, M 1905, 26 691) | (Wegscheider and Walter, M 1905, 26 692)

| Solubility of | NaOH+Na <sub>8</sub> SbS <sub>4</sub> | at 30° |
|---------------|---------------------------------------|--------|
|---------------|---------------------------------------|--------|

| ₹ NaOH                                                   | % NasSbS4                                        | Solid phase                                                                                                                |
|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 0<br>9 9<br>24 8<br>32 9<br>42 6<br>47 2<br>49 5<br>54 3 | 27 1<br>13<br>5 9<br>10 5<br>16 4<br>17 7<br>9 1 | Na <sub>2</sub> SbS <sub>4</sub> , 9H <sub>2</sub> O<br>"<br>"<br>"<br>" +NaOH, H <sub>2</sub> O<br>NaOH, H <sub>2</sub> O |

(Donk, Chem Weekbl 1908, 5 529, 629, 767)

Easily sol in alcohol or wood spirit, sol in Sol in an aqueous solution of mannite (Favre, A ch (3) 11 76)

Easily sol in glycerine

Sol to a certain extent in ether

Insol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4329) Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1904, 37 3602), benzomtrile (Naumann, B 1914, 47 1370)

100 g solution in H<sub>2</sub>O sat at 25° contain 42 g Na<sub>2</sub>O (Schreinemakers, Arch Néer Sc 1910, (2) 15 81)

(See above) Mpt 643°

+1<sup>1</sup>/<sub>3</sub>HO (Cripps, Pharm J Trans (3) **14** 833)

+2H O See above

Sol in H2O with +31/2H2O Deliquescent Melts at 6° absorption of much heat (Hermes)

Mpt 155° (See above)

+4, 5 and 7H O (See above)

The composition of the hydrates formed by NaOH at different dilutions is calculated from determinations of the lowering of the fr-pt produced by NaOH and of the conductivity and sp gr of NaOH+Aq (Jones, Am Ch J 1905, 34 336)

### Sodium perhydroxide, NaO2H

' Natrvl hydroude

Decomp by HO Sol in cold alcoholic acetic acid (Tafel, B 1894, 27 2300)

#### Sodium iodide, NaI, and +2H<sub>2</sub>O

Solubility of NaI and of NaI+2H2O in Below 65°, NaI+2H2O usually HO dıffer separates out and above that temp NaI separates

Solubility of \aI in 100 pts H<sub>2</sub>C at t°

| t°                           | Pt<br>NaI                        | t    | Pts<br>\aI                       | t     | Pts<br>NaI |
|------------------------------|----------------------------------|------|----------------------------------|-------|------------|
| 71 3<br>74 1<br>81 6<br>86 4 | 294 4<br>295 3<br>296 8<br>298 3 | 97 1 | 300 2<br>300 3<br>302 5<br>306 2 | 132 5 | 317 3      |

of the formula  $S = 264 \ 19 + 0 \ 3978t$ 

Solubility of NaI+2HO in 100 pts at to

| t°                                  | Pts<br>NaI                                         | t°                               | Pts<br>NaI                                         | t°                         | Pts<br>NaI                                |
|-------------------------------------|----------------------------------------------------|----------------------------------|----------------------------------------------------|----------------------------|-------------------------------------------|
| - 17<br>- 15<br>- 5<br>0<br>5<br>10 | 149 4<br>150 3<br>155 4<br>158 7<br>163 6<br>168 6 | 15<br>20<br>25<br>30<br>35<br>40 | 173 7<br>178 7<br>184 2<br>190 3<br>197 0<br>205 1 | 45<br>50<br>55<br>60<br>65 | 215 6<br>227 8<br>241 2<br>256 8<br>278 4 |

(Coppet, A ch (5) 50 424)

If solubility S=pts NaI in 100 pts solution,  $S=61\ 3+0\ 1712t$  from 0° to 80°,  $S=75+0\ 0258t$  from 80° to 160° (Étard, C R **98** 1432)

 $NaI + 2H_2O$  is sol in 0.55 pt  $H_2O$  at 15°

(Eder, Dingl 221 89)

100 pts NaI+Aq at 18-19° contain 62 96 pts NaI (v Hauer, J pr 98 137)

100 pts H2O dissolve at 0° 20° 40° 60° 1587 1786 208 4 256 4 pts NaI 80° 126° 100° 140° 303 3125 32253333 pts NaI (Kremers, Pogg 97 14)

Transition pt for NaI+2H2O to NaI 1 643°, and sat solution containing 7449 NaI (Panfiloff, J Russ Phys Chem Soc 1893, 25 162)

H<sub>2</sub>O dissolve 1724 g NaI a 100 g 15°, and sp gr of sat solution = 1893, (Greenish, Pharm J 1900, 65 190)

100 g solution of NaI+2H2O sat at 30 contains 655 g anhyd NaI Dissert 1910 )

Sp gr of NaI+Aq at 195° containing 10 15 20 2530 % Na 1 040 1 082 1 128 1 179 1 234 1 294

45 50 55 60 % Na 1 360 1 432 1 510 1 60 1 70 181 (Gerlach, Z anal 8 285)

Sat solution boils at 141°

Sol in liquid SO, (Walden, B 1899, 32 2864), POCl<sub>8</sub> (Walden, Z anoig 1900, 2

Very easily sol in liquid NH<sub>3</sub> (Franklii Am Čh J 1898, 20 829)

Sol in 120 pts absolute alcohol, in 3t pts ether (Eder, Dingl 221 89)

Sol in 3 pts 90% alcohol (Hager) 100 pts absolute methyl alcohol dissolv 77 7 pts NaI at 22 5°, ethyl alcohol, 43 1 pt (de Bruyn, Z phys Ch **10** 783)

Very sol in abs methyl alcohol and is no pptd therefrom on the addition of a larg

volume of abs ether, while wet ether produc Solubility is represented by a straight line immediate separation (Loeb, J Am Cher Soc 1905, 27 1020)

Solubility of NaI in ethyl alcohol (g NaI in 100 g alcohol)

| t°  | NaI   | t      | NaI  |
|-----|-------|--------|------|
| 10  | 43 77 | 200    | 42 3 |
| 30  | 44 25 | 220    | 38 5 |
| 50  | 44 50 | 230    | 36 2 |
| 80  | 45 0  | 240    | 32 7 |
| 100 | 45 1  | 250    | 26 2 |
| 120 | 45 2  | 255    | 21 0 |
| 160 | 45 0  | 260    | 10 8 |
| 180 | 44 3  | 261 5* | 8 6  |

\*Critical temp of solution

(Tyrer, Chem Soc 1910, 97 626)

100 g sat solution of NaI in ethyl alcohol at 30° contains 309 g (Cocheret, Dissert, 1910)

Solubility in ethyl alcohol+Aq at 30°

| % NaI                                                 | % alcohol                                                 | Solid phase                             |
|-------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| 65 52<br>64<br>54 2<br>54 8<br>42 35<br>38 5<br>37 91 | 0<br>3 40<br>18 5<br>18 8<br>28 5<br>41 7<br>53 2<br>54 7 | NaI, 2H <sub>2</sub> O                  |
| 37 49<br>35 65<br>33 24<br>30 90                      | 55 37<br>59 24<br>61 78<br>68 70                          | NaI, 2H <sub>2</sub> O+NaI<br>NaI<br>'' |

(Cocheret, Dissert 1911)

At room temp 1 pt by weight is sol in

1 2 pts methyl alcohol D<sup>15</sup> 0 7990 " D15 0 8100 1 7 " cthvl " D15 0 8160 " propyl 3 8

(Rohland, Z anorg 1898, **18** 325)

100 g methyl alcohol dissolve 90 35 g NaI at 25°

 $100~\mathrm{g}$  ethyl alcohol dissolve  $46~02~\mathrm{g}$  NaI at

 $100~{\rm g}$  propyl alcohol dissolve 28 22 g NaI at 25°

100 g isoamyl alcohol dissolve 16 30 g NaI at 25°

(Turner and Bissett, Chem Soc 1913, 103 1909)

Solubility in methyl alcohol+ethyl alcohol at 25°

P = % methyl alcohol in the solvent G=g NaI in 10 ccm of the solution S=Sp gr of the sat solution at 25°

| P      | G     | S 25°/4° |
|--------|-------|----------|
| 0 00   | 3 515 | 1 0806   |
| 4 37   | 3 768 | 1 1029   |
| 10 40  | 3 971 | 1 1123   |
| 41 02  | 4 598 | 1 1742   |
| 80 69  | 5 744 | 1 2741   |
| 84 77  | 5 892 | 1 2886   |
| 91 25  | 6 110 | 1 3056   |
| 100 00 | 6 322 | 1 3250   |

(Herz and Kuhn, Z anorg 1908, 60 154)

Solubility in mixtures of methyl and propyl alcohol at 25°

P = % propyl alcohol in the solvent G = g NaI in 10 ccm of the solution S = Sp gr of the sat solution

| P                                                     | G                                                           | S 25°/4°                                                          |
|-------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|
| 0<br>11 11<br>23 8<br>65 2<br>91 8<br>93 75<br>100 00 | 6 322<br>5 845<br>5 464<br>4 071<br>2 914<br>2 649<br>2 411 | 1 3250<br>1 2853<br>1 2528<br>1 138<br>1 0420<br>1 0178<br>0 9968 |

(Herz and Kuhn, Z anorg 1908, 60 156)

Solubility in mixtures of propyl and ethy alcohol at 25°

P = % propyl alcohol in the solvent G = g NaI in 10 ccm of the solution S = Sp gr of the sat solution

| P                                                 | G                                                                    | 5 2 א נ 5                                                                    |
|---------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0<br>8 1<br>17 85<br>56 6<br>88 6<br>91 2<br>95 2 | 3 515<br>3 460<br>3 405<br>2 841<br>2 613<br>2 588<br>2 474<br>2 411 | 1 0806<br>1 0732<br>1 0720<br>1 0276<br>1 0130<br>1 0104<br>1 0020<br>0 9968 |
|                                                   |                                                                      |                                                                              |

(Herz and Kuhn, Z anorg 1908, 60 159)

Sol in normal propyl alcohol (Loeb, J Am Chem Soc 1905, 27 1020)

28 74 g are sol m 100 g propyl alcohol (Schlamp, Z phys Ch 1894, 14 276)

Sol in methyl acetate (Naumann, B 1909, 42 3789) Sol in ethyl acetate (Casaseca, C R 30

821)

Insol in ethyl acetate (Naumann, B 1910, **43** 314)

(Naumann, B Sl sol in benzonitrile 1914, 47 1369)

Solubility in organic solvents at to C=pts by wt of NaI in 100 ccm of the sat solution

L=no of liters which at the saturation temp hold in solution 1 mol NaI

| Solv ent      | t° | С     | L     |
|---------------|----|-------|-------|
| Furfurol      | 25 | 25 10 | 0 597 |
| Acetonitrile  | 25 | 18 43 | 0 813 |
|               | 0  | 22 09 | 0 679 |
| Propionitrile | 25 | 6 230 | 2 406 |
|               | 0  | 9 091 | 1 649 |
| Nitromethane  | 25 | 0 478 | 31 36 |
|               | 0  | 0 339 | 44 27 |

(Walden, Z phys Ch 1906, 55 718)

Very sol in acetone (Walden) +5H<sub>2</sub>O Transition point of NaI+5H<sub>2</sub>O to NaI+2H<sub>2</sub>O is -13 5°, and sat solution contains 60.2% NaI (Panfiloff, J Russ Phys Chem Soc 1893, 25 162)

Sodium tin (stannous) iodide, NaI, SnI<sub>2</sub> Very sol in H2O When treated with little HO, NaI is dissolved out, but a larger amt of H O dissolves it completely (Boullay, A ch (2) 34 375)

Sodium zinc iodide, 2NaI, ZnI<sub>2</sub>+3H<sub>2</sub>O Deliquescent  $NaZnI_3+2HO$ Very hydroscopic (Ephraim, Z anorg 1910, 67 383)

# Sodium nitride,

Decomp by heat (Franz Fisher, B 1910, **43** 1468)

#### Sodium suboxide, Na<sub>3</sub>O

Decomp by HO (de Forciand, C R 1898, 127 365)

#### Sodium oxide, Na<sub>2</sub>O

Very deliquescent, and sol in H2O with evolution of heat

See Sodium hydroxide

### Sodium peroxide, Na O

Deliquescent, and very sol in HO with partial decomp

Solution decomp on boiling

Cryst with 2H<sub>2</sub>O, and 8H<sub>2</sub>O Chem Soc 1877 125) (Fairley,

Forms hydrate Na<sub>2</sub>O<sub>2</sub>(OH)<sub>4</sub>+4H<sub>2</sub>O Easily sol in HO or dil acids without decomp (Schone, A 193 241)

Sodium peroxide carbonate, Na<sub>2</sub>CO<sub>4</sub> (Woffenstein, B 1908 Easily decomp 41 285)

Sodium peroxide dicarbonate, Na, C,O, Easily decomp (Woffenstein, B 1906 41 287)

#### Sodium trioxide, NaO3

Sol in H<sub>2</sub>O forming a solution of Na<sub>2</sub>O (Joannis, C R 1893, 116 1371)

Sodium trioxide carbonate, Na<sub>2</sub>CO<sub>5</sub> (Woffenstein, B 1908, 41 296)

# Sodium trioxide dicarbonate, NaHCO.

Two isomeric modifications (Woffer stem, B 1908, 41 390)

# Sodium trioxide hydrate, NaO OH

See Sodium perhydroxide Isomeric with Tafel's sodyl hydroxid Na OH (B 27, 2297) O Na OH

Insol in alcohol Very unstable (Woffenstein, B 190

Sodium phosphide, NaP5

**41** 290)

Easily decomp by H<sub>2</sub>O (Hugot, C I 1895, **121** 208)

Sodium hydrogen phosphide, NaH<sub>2</sub>P

Decomp by H<sub>2</sub>O (Joannis, C R 189 **119** 558) Decomp by acids and H2(

Na<sub>8</sub>H<sub>3</sub>P<sub>2</sub> Decomp by acro (Hugot, C R ,1898, **126** 1721)

#### Sodium selenide, Na<sub>2</sub>Se

Decomp by H ( Very deliquescent (Uelsmann, A 116 127)

Insol in liquid NH<sub>3</sub>, sol in an free H<sub>2</sub> to a colorless liquid (Hugot, C R 189 **129** 299)

Cryst with 16H<sub>2</sub>O, 9HO, and <sup>9</sup>/H<sub>2</sub>((Fabre, C R **102** 613) +10HO Very sol in HO, very unstable to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control in the air (Clever, Z anoig 1895, 10 14<sup>5</sup>

Sodium diselenide, Na Sc<sub>2</sub> (Jackson, B **7** 1277)

Sodium triselenide, Na<sub>2</sub>Sc<sub>3</sub>

Sol in H<sub>2</sub>O (Mathewson, J Am Cher Soc 1907, **29** 873)

### Sodium hexaselenide, Na<sub>2</sub>S<sub>6</sub>

Sol in H<sub>2</sub>O (Mathewson, J Am Cher Soc 1907, 29 873)

### Sodium monosulphide, Na<sub>2</sub>S

Sol in H<sub>2</sub>O Much less sol in alcohol the in H<sub>2</sub>O Insol in ether (Roussin)

| STANNI                                                                                                 | C AC         |
|--------------------------------------------------------------------------------------------------------|--------------|
| +5H <sub>2</sub> O Tr pt from Na <sub>2</sub> S+5½H <sub>2</sub> O, 94°                                | Sodi<br>Se   |
| +5½H <sub>2</sub> O  The sat solution contains —  22.48% aphydrous salt at 50°                         | Sodi         |
| 28 48% anhydrous salt at 50°<br>29 27 " " 55°<br>29 92 " " 60°                                         | Sodi         |
| 31 38 " " " 70°<br>33 95 " " " 80°                                                                     | D<br>Aq      |
| 37 20 " " 90°<br>Labile from 48 9–91 5°, stabile from 91 5–                                            | Sodi         |
| 96°<br>(Parravano and Fornami, C C 1908, I 5)                                                          | (Sch         |
| +6H <sub>2</sub> O Less efflorescent than with 9H <sub>2</sub> O Sol in H <sub>2</sub> O and alcohol   | Sod:<br>H    |
| The sat solution contains —                                                                            | sing         |
| 26 7 % anhydrous salt at 50° 28 1 " " 60° 30 22 " " "70°                                               | Sod          |
| 32 95 " " 80°<br>36 42 " " 90°                                                                         | 40 S         |
| Tr pt to Na <sub>2</sub> S+5½H <sub>2</sub> O, 91 5° (Parravano and Fornami)                           | Sodi         |
| ⊥oH₀O Efflorescent Much less sol in                                                                    | II 8         |
| alcohol than $H_2O$ When dissolved in H O, temp sinks from $+22$ to—61° (Finger, Pogg 128 635)         | Sta          |
| The sat solution contains — 9 34% anhydrous Na <sub>2</sub> S at —10°                                  | Aq,          |
| 13 36 " " +10°                                                                                         | acıd<br>dılu |
| 15 30 " " " 18°                                                                                        | HN           |
| 16 2 " " " 22"                                                                                         | ing,         |
| 17 73 " " 28°                                                                                          | rem          |
| 19 09                                                                                                  | E            |
| 20 98 " " " 37°<br>24 19 " " 45°                                                                       | trea         |
| Tr pt to Na <sub>2</sub> S+5½H <sub>2</sub> O, 48 9°                                                   | F            |
| (Parravano and Fornami)                                                                                | lang<br>Aq   |
| •                                                                                                      | E            |
| Sodium disulphide, Na S                                                                                | an<br>186    |
| Sol in H O and alcohol<br>+5H <sub>2</sub> O Not afflorescent                                          | 5            |
| Sodium trisulphide, Na S <sub>3</sub>                                                                  | Na.          |
| Sol in H O with decomp<br>Cryst with oH O from in alcoholic solu                                       | NH           |
| tion (Bottger, A 223 355)                                                                              | 1 5          |
| Sodium tetrasulphide, Na S <sub>4</sub> +6H <sub>2</sub> O                                             | dı a         |
| Very deliquescent, and sol in H <sub>2</sub> O Diffi-<br>cultly sol in absolute alcohol Insol in ether | Na<br>S      |
| (Schone)<br>+8H <sub>2</sub> O Lifflorescent (Bottger)                                                 | HC           |
| Sodium pentasulphide, Na <sub>2</sub> S <sub>5</sub> +6H <sub>2</sub> O                                | 1            |
| Sol in $H_2O$ (Schone)                                                                                 | or           |
| Sol in alcohol                                                                                         | wh           |

(Bottger)

(Jones, Chem Soc 37 461)

+8H<sub>2</sub>O

```
857
                                                      um tellurium sulphide
                                                      e Sulphotellurate, sodium
                                                      ium stannic sulphide
                                                      ee Sulphostannate, sodium
                                                      ium yttrium sulphide, Na_2S, Y_2S_3
                                                      ecomp by dil acids, even by HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+
                                                       (Duboin, C R 107 243)
                                                      ium zinc sulphide, Na<sub>2</sub>S, 3ZnS
                                                      ot so stable as the corresponding K salt
                                                      nneider, J pr (2) 8 29)
                                                      uum sulphoselenide, Na<sub>2</sub>SSe<sub>2</sub>+5H<sub>2</sub>O
                                                      lydroscopic, and decomp in the air (Mes-
                                                      er, B 1897, 30 806)
                                                      lum telluride, Na<sub>2</sub>Te
                                                      ol m H<sub>2</sub>O (Demarçay, Bull Soc (2)
                                                      99)
                                                      uum tritelluride, Na Tea
                                                      ol m H<sub>2</sub>O
                                                      ol in liquid NH<sub>3</sub> (Hugot, C C 1899,
                                                      580 )
                                                      nnıc acıd, H_2SnO_3
                                                      nsol in H_2O Sol in HCl, and H_2SO_4+, even when dil (Fremy) Easily sol in
                                                      ds, from which solution it may be pptd by
                                                      ition or boiling. While moist it is sol in
                                                      10_3 + Aq, but gradually separates on stand-
                                                      , and coagulates at once when heated to
                                                        If NH<sub>4</sub>NO<sub>3</sub> be added to the solution, it
                                                      nains clear at ord temp (Berzelius)
                                                      Easily sol in HNO_3 + Aq, when previously
                                                     ated with NH<sub>4</sub>OH+Aq (Thénaid)
Fasily sol in KOH+Aq, but addition of
                                                      ge excess ppts KSnO, insol in KOH+
                                                      Easily sol in \mathbb{N} iOH + Aq, and not pptd by
                                                      excess of that reagent (Burfoed, J B
                                                      sl sol in VH_4OH + Aq or (NH_4) CO_3 + Aq
                                                      Completely sol in K CO_3 + Aq, but not in
                                                      _{2}\mathrm{CO}_{3}+\mathrm{Aq}
                                                      Insol in ilkalı hydrogen curbonates or
                                                      H_1Cl + Aq
                                                      Sol in alkalı sulphides + Aq (Berzelius)
                                                      sol in triethyltoluenyl ammonium hy-
                                                      atc + 1q
                                                      Not pptd by NH<sub>4</sub>OH+Aq in presence of
                                                      a citiate+4q
                                                      onO<sub>2</sub> 2H O (Weber, Pogg 122 358)
"a Orthostannic acid" Easily sol
                                                      SnO<sub>2</sub> 2H O
                                                                                              sol in
                                                      Cl+Aq (Neumann, M 12 515)
                                                      H_{10}Sn_5\bar{O}_{15} (?)
                                                      Metastannıc acıd
                                                                           Insol in HO, HNO<sub>3</sub>,
                                                                        Insol in HCl+Ao, but
                                                       H_2SO_4+Aq
                                                   converted thereby into metastannic chloride,
                                                   which dissolves after excess of HCl has been
                                                  removed (Fresenius) Insol in HCl+Aq of
sp gr 11 (Barfoed) Sol in large amount
Solution is easily decomp by warming
```

of conc HCl+Aq (Allen, Chem Soc (2) 10

In contact with HCl+Aq, metastannic acid is converted into stannic acid foed )

Insol in HNO<sub>3</sub>+Ag even after treatment

with NH<sub>4</sub>OH+Aq Insol in NH<sub>4</sub>OH+Aq

Sol in KOH or NaOH+Aq with formation of metastannates, which are insol in dil NaOH+Aq, but sol in HO or KOH+Aq, therefore kOH+Aq dissolves metastannic acid, while NaOH+Aq does not, but if the clear solution in KOH+Aq is treated with a large excess of that reagent, a further pptn occurs (Barfoed, J pr 101 368)

Insol in K2CO3+Aq (Rose), alkalı car-

bonates + Aq (Fremy)

Insol in NH,Cl+Aq even after long boil-

Sol in Fe(NO<sub>3</sub>)<sub>3</sub>+Aq containing HNO<sub>3</sub> (Lepèz and Storch, W A B 98, 2b 270) Also in  $Cr(NO_3)_2$ +Aq, but not in  $Ce(NO_3)_3$ , Al(NO<sub>3</sub>)<sub>3</sub>, Co(NO<sub>3</sub>)<sub>2</sub>+Aq, etc (L and S) A colloidal metastannic acid sol in H<sub>2</sub>O can

be obtained (Lepèz and Storch)
According to Weber (Pogg 122 358),

stannic and metastannic acids are only different hydrates of same oxide, and it is not a case of allotropic modification

Colloidal H SnO<sub>3</sub> in colloidal state can be obtained in aqueous solution containing 5164 g SnO in a litre This solution is coagulated by HNO<sub>3</sub>+Aq only when in great excess, easily by dil HSO4+Aq, but not by cone HCl+Aq NH4OH+Aq in large excess causes coagulation, also NH<sub>4</sub>Cl, NaOH, NaCl, Na SO4, etc (Schneider, Z) anorg 5 83)

Parastannic acid, H Sn<sub>5</sub>O<sub>11</sub>+3H<sub>2</sub>O (Engel, C R 1897, 125 711)

### Stannates

Stannates of alkali metals are sol in H<sub>2</sub>O, others are insol All metastannates, except ing Na, A, and NH4 salts, are insol in H2O (Fremy, A ch (3) 12 474)

Ammonium stannate, (NH<sub>4</sub>)<sub>2</sub>O, 2SnO<sub>2</sub> Sol in HO Insol in dil NH4OH+Aq (Berzehus) +xH O (Moberg, 1838)

Ammonium cupric stannate,  $(NH_4)_2O_1$ CuSnO +2H O Insol in HO Sol in acids (Ditte, C R 96 701)

Barium stannate, BaSnO<sub>3</sub>+6H O acids (Ditte, C R 95 641)

Calcium stannate, CaSnO<sub>8</sub>+4H<sub>2</sub>O Ppt (Moberg) +5H<sub>2</sub>OInsol in H<sub>2</sub>O Sol in acids (Ditte, C R 96 701) (Zúlkowski, Chem Ind 2CaO.  $SnO_2$ 1901, **24** 422)

Cobaltous stannate, CoSnO<sub>3</sub>+6H<sub>2</sub>O Insol in H<sub>2</sub>O Sol in acids (Ditte)

Cupric stannate, CuSnO<sub>3</sub>+3H<sub>2</sub>O (Moberg) +4H<sub>2</sub>O Insol in H<sub>2</sub>O (Ditte)

Cuprous stannous stannate, Cu2O, 3SnO.  $SnO_2 + 5H_2O$ Slowly decomp by dil acids, and NH<sub>4</sub>OH+ Aq, completely decomp by conc acids (Lenssen, J pr 79 90)

Gold (aurous) stannate See Gold purple

Lead stannate, RbSn(OH)6 (Bellucci, Chem Soc 1905, 88 Ppt (2) 40)

Lithium stannate hexatungstate, 2L12O, SnO2,  $6WO_3 = L_{12}SnO_3, L_{12}W_6O_{19}$ Insol in H<sub>2</sub>O (Knorre, J pr (2) 27 49)

Magnesium stannate Ppt (Moberg)

Manganous stannate Ppt (Moberg)

Mercurous stannate, Hg<sub>2</sub>SnO<sub>3</sub>+5H<sub>2</sub>O Ppt

Mercuric stannate, HgSnO<sub>3</sub>+6H<sub>2</sub>O Ppt (Moberg, J pr 28 231)

Nickel stannate, NiSnO<sub>3</sub>+5H () Insol in HO Sol in acids (Ditte, C R 96 701)

Platinous sodium stannous stannate, 2PtO,  $Na_2O$ , SnO,  $SnO_2(?)$ (Schneider, Pogg 136 105)

Platinous stannous stannate, Pt(), 2Sn(),  $SnO_2$ 

Decomp by conc alkalies Pogg **136** 105)

Potassium stannate,  $k_2SnO_3+3H_2O$ 100 pts H<sub>2</sub>O dissolve 1066 pts at 10°, Ppt Sol in HCl+Aq (Moberg) solution has sp gr = 1618, 100 pts dissolve Ba  $snO_4+10H$  O Insol in  $H_2O$  Sol in 110,5 pts at 20°, solution has sp gr = 1627 (Ordway, Sill Am J (2) 40 173)

Very sl sol in conc KOH+Aq Insol in KCl+Aq (Fremy)

Insol in alcohol

Pptd from aqueous solution by the addition of any soluble salt, especially those of K, Na, and NH4 (Fremy), by NH4Cl, but not by KCl or NaCl (Ordway)

Insol in acetone (Naumann, B 1904,

**37** 329)

Potassium metastannate, K<sub>2</sub>O, 10SnO<sub>2</sub>

 $K_{2}O$ ,  $7SnO_{2}+3H_{2}O$ Sol in H<sub>2</sub>O Solution gelatinises on heating (Rose)

K<sub>2</sub>O, 6SnO<sub>2</sub>+5H<sub>2</sub>O Sol in H<sub>2</sub>O, but loses its solubility by drying (Fremy, A ch (3))**12** 475)

K<sub>2</sub>O, 5SnO<sub>2</sub>+4H<sub>2</sub>O H<sub>2</sub>O Insol in alcohol Completely sol in (Fremy, A ch (3) 23 396)

 $K_2O$ ,  $3SnO_2+3H_2O$ Deliquescent (Fremy)

Silver stannate, Ag<sub>2</sub>SnO<sub>3</sub>

Insol in H<sub>2</sub>O Unacted upon by NH<sub>4</sub>OH (Ditte) or HCl+Aq

Silver (argentous) stannous stannate (?),  $Ag_4O$ , SnO,  $3SnO_2+3H_2O$  (?)

Cold dil HNO3+Aq slowly dissolves all Ag, hot HNO3+Aq rapidly Easily sol in boiling conc H<sub>2</sub>SO<sub>4</sub> (Schulze, J B 1857 257)

Sodium stannate, Na<sub>2</sub>SnO<sub>3</sub>+3H<sub>2</sub>O

More easily sol in cold than in hot H2O (Fremy)

Sol in 2 pts H<sub>2</sub>O at 20° and 100° (Mar-

ignac) 100 pts H<sub>2</sub>O dissolve 674 pts at 0°, 613 pts at 20°, and solutions have sp gr = 1 472 and 1438 at 155° (Ordway, Sill Am J (2) **40** 173)

Pptd from Na<sub>2</sub>SnO<sub>3</sub>+Aq by salts of K, Na, and NH<sub>4</sub>

Insol in acetone (Niumann, B 1904, 37 4329)

(Prandtl, B 1907, 40 2129) +4H<sub>2</sub>O(Haeffely, J B 1857 650) (Jones, C C 1865 607) +8H<sub>2</sub>O+9H<sub>2</sub>O

Very efflorescent +10H()(Scheurer-Kestner, Bull Soc (2) 8 389)

Na O,  $9SnO_2 +$ Sodium metastannate, 8H<sub>2</sub>O

Sol in H<sub>2</sub>O Insol in NaOH+Aq or alcohol (Barfoed, J B **1867** 207)
Na<sub>2</sub>O, 5SnO<sub>2</sub> Very difficultly sol in H<sub>2</sub>O

(Fremy, A ch (3) 23 399)

Insol in KOH + Aq

+8H<sub>2</sub>O (Haeffely, Chem Gaz **1855** 59)

Sodium stannate vanadate,

 $Na_2SnO_3$ ,  $3Na_3VO_4+32H_2O$  $Na_2SnO_3$ ,  $4Na_3VO_4+48H_2O$  $Na_2SnO_3$   $5Na_3VO_4+64H_2O$  $Na_2SnO_3$ ,  $6Na_3VO_4+80H_2O$ B 1907, **40** 2128) (Prandtl.

Strontium stannate, 3SrO, 2SnO<sub>2</sub>+10H<sub>2</sub>O Ppt Insol in H<sub>2</sub>O Sol in acids (Ditte. C R 95 641)

SrSn(OH)6 (Belluci, Chem Soc 1905, 88 (2) 40)

Tin (stannous) stannate, SnO,  $6\text{SnO}_2 + 5\text{H}_2\text{O}$ Insol in H<sub>2</sub>O Decomp by HNO<sub>2</sub>+Aq into metastannic acid (Schiff, A 120 53) Sol m HCl+Aq, and m KOH+Aq

Tin (stannous) metastannate, SnO, 7SnO<sub>2</sub>  $SnO_{1} + 9H_{2}O$  Sol in KOH + Ag or in HCl+Aq (Fremy) +4H<sub>2</sub>O (Schiff)

Zinc stannate, ZnSnO<sub>3</sub>+2H<sub>2</sub>O

(Moberg, 1838) 3ZnO, 2SnO<sub>2</sub>+10H<sub>2</sub>O Insol in H<sub>2</sub>O Sol in acids (Ditte)

Perstannic acid, H<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> See Perstannic acid

Stannophosphomolybdic acid

Ammonium stannophosphomolybdate.  $3(NH_4)_2O$ ,  $4SnO_2$ ,  $3P_2O_5$ ,  $16MoO_3$ + 28H<sub>2</sub>O

Quite insol even in boiling H<sub>2</sub>O (Gibbs. Am Ch J 7 392)

Stannophosphotungstic acid

Ammonium stannophosphotungstate.  $2(NH_4)_2O$ ,  $2SnO_2$ ,  $P_2O_5$ ,  $22WO_8+15H_2O$ sol in boiling H<sub>2</sub>O SIPrecipitate

(Gibbs, Am Ch J 7 319)

Stannosulphuric acid See Sulphate, stannic

Stibine

See Hydrogen antimonide

Strontium, Sr

Decomp by H<sub>2</sub>O with violence H<sub>2</sub>SO<sub>4</sub>, and HCl+Aq decomp and dissolve, cold H<sub>2</sub>SO<sub>4</sub> attacks slowly Fuming HNO<sub>3</sub> has scarcely any action even when boiling (Franz, J pr 107 253)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

1898, **20** 829)

Sol in excess of liquid NH3 at -60° form- $\operatorname{ing} \operatorname{Sr}(\operatorname{NH}_3)_6$  (Roederer, C R 1905, 140) 1252)

Strontium amalgam, SrHg<sub>1</sub>,

Above 30° the com-Stable below 30° position of the amalgam varies cryst from Hg at any temp below 30° (Kerp, Z anorg 1900, 25 68)

Strontium amide, Sr(NH<sub>2</sub>)<sub>2</sub> (Roederer, Bull Soc 1906, (3) 35 715) Strontium arsenide, Sr<sub>2</sub>As<sub>2</sub> Decomp by H<sub>2</sub>O (Lebeau, C R 1899, **129** 47)

Strontium azoimide, SrN6

Hydroscopic

45.83 pts are sol in 100 pts  $H_2O$  at  $16^{\circ}$  0 095 " " " 100 " abs alcohol at

Insol in pure ether (Curtius, J pr 1898, (2) **58** 287)

Strontium boride, SrB6

Sol in fused oxidizing agents, not decomp by H<sub>2</sub>O, insol in aq acids, sl sol in conc H. CO, sol in dil and conc HNO: (Moissan, C R 1897, 125 633)

Strontium bromide,  $SrBr_2$ , and  $+6H_2O$ 100 pts H<sub>2</sub>O dissolve at

20° 38° 59° 83° 110° 182 250 pts SrBr<sub>2</sub> 112 133 877 99 (Kremers, Pogg 103 65)

Sat SrBr2+Aq contains at

—1° +7° ---11° 18° 43 1 46 85 48 2 51 7% SrBr<sub>2</sub>, 97°  $20^{\circ}$ 93° 107° 68 5 68 7 69 8% SrBr<sub>2</sub> 518

(Étard, A ch 1894, (7) 2 540)

Sp gr of SrBr<sub>2</sub>+19 5° containing 10 20 25 % SrBr<sub>2</sub>, 15 1 266 1 046 1 094 1 146 1 204

50 % SrBr<sub>2</sub> 45 1694 1 332 1 41 1 492 1 59 (Kremers, Pogg 99 444, calculated by Gerlach, Z anal 8 285)

Somewhat sol in absolute alcohol (Lowig) Solubility of anhydrous SrBr in alcohol is practically constant between 0° and 40°, 100 ccm of abs alcohol dissolving about 64 5 g of the anhydrous salt and forming a solution having a sp gr = 1 210 at 0° (Fonzes-Diacon, Chem Soc 1895, 68 (2) 223)

Much more sol than BaBr2 in boiling amyl alcohol

Insol in benzonitrile (Naumann, B 1914, **47** 1370)

Difficultly sol in methyl acetate (Naumann, B 1909, 42 3790)

Strontium stannic bromide

See Bromostannate, strontium

Strontium bromide ammonia, 2SrBr2, NH3 Sol in H<sub>2</sub>O (Rammelsberg, Pogg **55** 238

Strontium bromide hydrazine,  $SrBr_2$ ,  $3N_2H_4$ Very sol in HO (Franzen, Z anorg 1908, 60 290)

Strontium bromofluoride, SrF2, SrBr. Decomp by H<sub>2</sub>O (Defacqz, A ch 1904, (8) 1 356)

Strontium carbide, SrC2

Easily decomp by H<sub>2</sub>O and dil acids (Moissan, Bull Soc 1894, (3) **11** 1008)

Strontium carbonyl, Sr(CO)<sub>2</sub>

(Roederer, Bull Soc 1906, (3) 35 725)

Strontium chloride, SrCl<sub>2</sub>, and +6H<sub>0</sub>O Deliquescent in moist air

Sol in 15 pts H<sub>2</sub>O at 15° and 0 8 pt at boiling (Dumas) in 1996 pts H O at 15° (Gerlach)
1 pt anhydrous SrCl<sub>2</sub> 1s sol in 2 27 pts H<sub>2</sub>O at 0°
1 pts at 40° in 1 18 pts at 60°
pt at 100° (Kremers Pogg 103 66)

100 pts H<sub>2</sub>O dissolve 106 2 pts SrCl<sub>2</sub>+ 6H<sub>2</sub>O at 0°, and 2058 pts at 40° Chem Soc 45 409)

Solubility in 100 pts H<sub>0</sub>O at to

| Solubility in 100 pts H <sub>2</sub> O at t <sup>o</sup>                                                                                                                                                                                                                       |                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t°                                                                                                                                                                                                                                                                             | Pts<br>SrCl <sub>2</sub>                                                                                                          | t°                                                                                                                                                                                                                                     | Pts<br>SrCl <sub>2</sub>                                                                                                                                                     | t°                                                                                                                                                                                                                                                              | Pts<br>SrCl <sub>2</sub>                                                                                                                                                                                                                                                        |
| 0<br>12<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>22<br>12<br>22<br>23<br>24<br>22<br>25<br>26<br>27<br>28<br>29<br>33<br>33<br>34<br>34<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 44 5 44 5 8 4 4 5 8 4 4 5 6 0 0 5 9 4 4 4 7 8 3 8 4 4 9 9 4 4 0 5 1 1 5 1 5 1 5 2 2 7 3 3 9 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>67<br>66<br>67<br>71<br>72<br>73<br>74<br>77<br>78<br>79<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 | 67 4<br>688 9<br>70 4<br>71 2 0 8<br>69 7<br>74 4<br>75 3 1<br>77 79 9<br>78 6<br>81 3 2 2<br>77 78 6<br>84 9<br>85 85 85 85 88 9<br>90 91 2<br>91 5<br>89 90 92 4<br>Verham | 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116<br>117<br>118<br>118<br>8 | 92 7<br>93 1<br>93 4<br>93 7<br>94 1<br>94 5<br>94 9<br>95 8<br>96 2<br>97 9<br>98 2<br>98 8<br>99 4<br>100 6<br>101 3<br>101 9<br>102 6<br>103 3<br>104 0<br>104 7<br>105 4<br>106 9<br>107 6<br>108 4<br>109 9<br>110 7<br>111 4<br>112 5<br>113 8<br>114 6<br>115 5<br>116 4 |

100 pts  $\rm\,H_2O$  dissolve 52 4 pts  $\rm\,SrCl_2$  at 18° (Gerardin )

Sat SrCl + Aq contains % SrCl at t°

| ~                                          |                                                                                              |                                                                                            |                                                                                                      |
|--------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| t°                                         | % SrCl                                                                                       | t°                                                                                         | % SrCl <sub>2</sub>                                                                                  |
| -17 -11 -5 -1 +2 7 -18 21 5 -44 5 55 64 70 | 26 5<br>28 6<br>29 3<br>30 8<br>31 7<br>33 7<br>34 7<br>37 8<br>42 8<br>47 7<br>46 4<br>46 1 | 75<br>80<br>92<br>98<br>104<br>105<br>118<br>132<br>144<br>153<br>175<br>215<br>222<br>250 | 46 5<br>47 1<br>47 5<br>49 6<br>50 7<br>52 0<br>52 5<br>54 7<br>55 7<br>60 5<br>64 1<br>65 4<br>67 3 |

(Étard, A ch 1894, (7) 2 535)

 $SrCl_2+Aq$  sat at 8° has sp gr =1 379 (Anthon A 24 211)

Sp gr of SrCl2+Aq

| Pts SrCl <sub>2</sub><br>to 100 pts H <sub>2</sub> O | Sp gr                      | Pts SrCl <sub>2</sub><br>to 100 pts H O | Sp gr            |
|------------------------------------------------------|----------------------------|-----------------------------------------|------------------|
| 9 81<br>20 12<br>30 27                               | 1 0823<br>1 1632<br>1 2401 | 41 04<br>51 69                          | 1 3114<br>1 3816 |

(Kremers, Pogg 99 444)

Sp gr of SrCl<sub>2</sub>+Aq at 15°

| % SrCl2             | Sp gi                                | % SrCl         | Sp gr                      |
|---------------------|--------------------------------------|----------------|----------------------------|
| 5<br>10<br>15<br>20 | 1 0453<br>1 0929<br>1 1439<br>1 1989 | 25<br>30<br>33 | 1 2580<br>1 3220<br>1 3633 |

(Gerlach, Z anul 8 283)

Sp gr of SrCl +Aq it 24 7° a=no of  $\frac{\text{molecules}}{2}$  in grms dissolved in 1,000 g H<sub>2</sub>O, b=sp gr when a=SrCl<sub>2</sub>+6H<sub>2</sub>O,  $\frac{1}{2}$  mol SrCl<sub>2</sub>+6H<sub>2</sub>O=133 5 g, c=sp gr when a=SrCl<sub>2</sub>,  $\frac{1}{2}$  mol =79 5 g

| a,                         | b                                                  | e                                                  | а                       | b                                         | С     |
|----------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------|-------------------------------------------|-------|
| 1<br>2<br>3<br>4<br>5<br>6 | 1 063<br>1 118<br>1 166<br>1 207<br>1 243<br>1 275 | 1 067<br>1 130<br>1 190<br>1 247<br>1 301<br>1 352 | 7<br>8<br>9<br>10<br>11 | 1 304<br>1 330<br>1 354<br>1 376<br>1 396 | 1 401 |

(Favre and Valson, C R 79 968)

| Sp | gr | of | SrCl <sub>2</sub> +Aq | at | 18° |
|----|----|----|-----------------------|----|-----|
|----|----|----|-----------------------|----|-----|

| %SrCl         | Sp gr                      | % SrCl   | Sp gr            |
|---------------|----------------------------|----------|------------------|
| 5<br>10<br>15 | 1 0443<br>1 0932<br>1 1456 | 20<br>22 | 1 2023<br>1 2259 |

(Kohlrausch, W Ann 1879 1)

Sp gr of SrCl<sub>2</sub>+Aq at 0° S=pts SrCl<sub>2</sub> in 100 pts solution

| S       | Sp gr  | S       | Sp gr  |
|---------|--------|---------|--------|
| 31 8193 | 1 3609 | 18 2629 | 1 1915 |
| 27 7170 | 1 3086 | 12 9997 | 1 1284 |
| 23 2300 | 1 2515 | 6 7243  | 1 0637 |

(Charpy, A ch (6) 29 24)

Sat  $SrCl_2+Aq$  boils at 114° (Kremers), 1188° (Mulder), 11745°, and contains 1175 pts  $SrCl_2$  to 100 pts  $H_2O$  (Legrand), forms a crust at 1155°, and contains 120 7 pts  $SrCl_2$  to 100 pts  $H_2O$ , highest temp observed, 119° (Gerlach, Z anal 26 436)

B -pt of  $SrCl_2+Aq$  containing pts  $SrCl_2$  to 100 pts  $H_2O$   $\,G=according to Gerlach (Z anal <math display="inline">\,\textbf{26}\,$  442), L=according to Legrand (A ch (2)  $\textbf{59}\,$  436)

| B pt         G         I         B pt         G         L           101°         11         16 7         110°         71 4         68 9           102         20 5         25 2         111         76 5         74 1           103         28 9         32 1         112         81 6         79 6           104         36 2         37 9         113         87         85 3           105         43 2         43 4         114         93 1         91 2           106         49 6         48 8         115         99 5         97 5         97 5           107         55 4         34 0         116         100 9         104 0         104 0           108         60 8         59 0         117         112 3         110 9           109         66 2         63 9         117 5         112 3         110 9 |                                               |                                                      |                                                      |                                               |                                             |                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|---------------------------------------------|-----------------------------------------------|
| 102         20 5         25 2         111         76 5         74 1           103         28 9         52 1         112         81 6         79 6           104         36 2         37 9         113         87         85 3           105         43 2         43 4         114         93 1         91 2           106         49 6         48 8         115         99 5         97 5           107         55 4         54 0         116         105 9         104 0           108         60 8         59 0         117         112 3         110 9                                                                                                                                                                                                                                                                | B pt                                          | G                                                    | I                                                    | B pt                                          | G                                           | L                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102<br>103<br>104<br>105<br>106<br>107<br>108 | 20 5<br>28 9<br>36 2<br>43 2<br>49 6<br>55 4<br>60 8 | 25 2<br>52 1<br>37 9<br>43 4<br>48 8<br>54 0<br>59 0 | 111<br>112<br>113<br>114<br>115<br>116<br>117 | 76 5<br>81 6<br>87<br>93 1<br>99 5<br>105 9 | 74 1<br>79 6<br>85 3<br>91 2<br>97 5<br>104 0 |

Melts in its crystil H O at 112° (Tilden, Chem Soc 45 409)

Sp gr of SrCl +Aq at 25°

| Concentration of SrC1+A4         | >p &r                                |
|----------------------------------|--------------------------------------|
| 1-normal  1/2- "  1/4- "  1/8- " | 1 0676<br>1 0336<br>1 0171<br>1 0084 |

(Wagner, Z phys Ch 1890, 5 40)

SrCl<sub>2</sub>+Aq containing 3 24% SrCl<sub>2</sub> has sp gr 20°/20° = 1 0284 SrCl<sub>2</sub>+Aq containing 7 08% SrCl<sub>2</sub> has sp gr 20°/20° = 1 0638

(Le Blanc and Rohland, Z phys Ch 1896, 19 279)

| g mols \$\(^{\text{Cl}_2}\) per l Sp gr  0 01 1 0012284 0 02937 1 0038396 0 03987 1 0053832 0 05017 1 007028 0 07077 1 009560 0 10 1 013205 0 25 1 034433 0 50 1 068379 0 75 1 101760 1 00 1 135423                                                              | Dp gr 01 D1013 ( 114 at 20                                               |                                                                                                |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| 0     02937     1     0038396       0     03987     1     0053832       0     05017     1     007028       0     07077     1     009560       0     1     013205       0     25     1     034433       0     50     1     068379       0     75     1     101760 | g mols SrCl2 per l                                                       | Sp gr                                                                                          |  |  |  |
|                                                                                                                                                                                                                                                                  | 0 02937<br>0 03987<br>0 05017<br>0 07077<br>0 10<br>0 25<br>0 50<br>0 75 | 1 0038396<br>1 0053832<br>1 007028<br>1 009560<br>1 013205<br>1 034433<br>1 068379<br>1 101760 |  |  |  |

(Jones and Pearce, Am Ch J 1907, 38 697)

Conc HCl+Aq ppts part of the SrCl<sub>2</sub> from SrCl<sub>2</sub>+Aq (Hope)

Solubility of SrCl<sub>2</sub> in HCl+Aq at 0° SrCl = ½ mols SrCl<sub>2</sub> (in milligrammes) dissolved in 10 ccm of liquid, HCl=mols HCl (in milligrammes) dissolved in 10 ccm of liquid

| SrCl <sub>2</sub> | HCl                                                            | Sum of mols | Sp gr  |
|-------------------|----------------------------------------------------------------|-------------|--------|
| 55                | $\begin{array}{c} 0 \\ 6 \ 1 \\ 12 \ 75 \\ 23 \ 3 \end{array}$ | 55 0        | 1 334  |
| 48 2              |                                                                | 54 3        | 1 3045 |
| 41 25             |                                                                | 54 00       | 1 2695 |
| 30 6              |                                                                | 53 9        | 1 220  |

(Engel, Bull Soc (2) **45** 655) Solubility of SrCl in HCl+Aq at 0°

| Mg mols per 10 cc<br>solution                         |                                                      | Sp gr of                                                    | G per 100 cc<br>solution                                |                                                        |
|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|
| SrCl 2                                                | HCl                                                  | solution                                                    | SrCl <sub>2</sub>                                       | HCI                                                    |
| 51 6<br>44 8<br>37 85<br>27 2<br>22 0<br>14 0<br>4 25 | 0<br>6 1<br>12 75<br>23 3<br>28 38<br>37 25<br>52 75 | 1 334<br>1 304<br>1 269<br>1 220<br>1 201<br>1 167<br>1 133 | 40 9<br>35 5<br>30 0<br>21 56<br>17 44<br>11 09<br>3 37 | 0 0<br>2 22<br>4 65<br>8 49<br>10 35<br>13 58<br>19 23 |

(Engel A ch 1888, (6) 13 376)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829)

Sol in 6 pts alcohol of 0.835 sp gr at 1.) (Vau quelin )
Sol in 24 pt absolute skohol at 1.5 and in 18 pts a

Sol in 24 pt absolute alcohol at 15 and in 19 pts at boiling (Bucholz) Sol in 25 pts of boiling alcohol

Anhydrous SrCl is sol in 1116-1164 pts alcohol of 993% at 145°, and in 262 pts of the same alcohol at boiling (Fresenius, A 59 127)

100 pts alcohol of given sp gr at 0° dissolve pts SrCl at 18°

0 990 0 985 0 973 0 966 0 953 sp gr 49 81 47 0 39 6 35 9 30 4 pts SrCl<sub>2</sub>,

0 939 0 909 0 846 0 832 sp gr 26 8 19 2 4 9 3 2 pts SrCl. Insol in absolute alcohol (Gerardin, A ch (4) 5 156)

100 pts absolute methyl alcohol dissolve 63 3 pts SrCl<sub>2</sub>+6H<sub>2</sub>O at 6°, ethyl alcohol, 3 8 pts (de Bruyn, Z phys Ch 10 787) Sl sol in boiling amyl alcohol (Browning)

Sill Am J 144 459)

100 g 95% formic acid dissolve 23 8 g SrCl,

at room temp (Aschan, Ch Ztg 1913, 37 1117) Absolutely insol in acetic ether (Cana

Absolutely insol in acetic ether (Cann, C R 102 363)

Very al sol in acetone (Krug and

M'Elroy)
Sol in acetone (Eidmann, C C 1899, II 1014)

Insol in methyl acetate (Naumann, B 1909, 42 3790)

Insol in benzonitrile (Naumann, B 1914, 47 1370)

SI sol in anhydrous pyridine Sol in 97%, 95% and 93% pyridine+Aq (Kahlenberg, J Am Chem Soc 1908, 30 1107) +2H<sub>2</sub>O Tr pt from +6H<sub>2</sub>O is 615° (Richards and Churchill, Z phys Ch 1899, 28 313)

+6H<sub>2</sub>O See above

Strontium thallic chloride,  $SrCl_2$ ,  $2TlCl_3+6H_2O$ 

(Gewecke, A 1909, 366 223)

 $\begin{array}{cccc} Strontrum & tin & (stannous) & chloride, & SrCl_2, \\ & & SnCl_2 + 4H_2O & \end{array}$ 

Sol in H<sub>2</sub>O (Poggiale, C R 20 1183)

Strontium tin (stannic) chloride

See Chlorostannate, strontium

Strontium uranium chloride, SrCl<sub>2</sub>, UCl<sub>4</sub>
Decomp by H<sub>2</sub>O (Aloy, Bull Soc 1899, (3) **21** 265)

Strontium zinc chloride, SrZnCl<sub>4</sub>+4H<sub>2</sub>O Very sol in H<sub>2</sub>O (Ephraim, Z anoig 1910, **67** 380)

Strontium chloride ammonia,  $SrCl_2$ ,  $8NH_3$ Decomp by  $H_2O$  (Rose, Pogg 20 155)

Strontium chloride hydrazine,  $SrCl_2$ ,  $2N_2H_4 + H_2O$ 

Hydroscopic (Franzen, Z anorg 1908, 60 289)

Strontium chloride hydroxylamine, 2SrCl<sub>2</sub>, 5NH<sub>2</sub>OH+2H<sub>2</sub>O

As Ca comp (Antonow, J Russ Phys Chem Soc 1905, **37** 482)

Strontium hydrogen chloride hydroxylamine, 2SrCl<sub>2</sub>, 3HCl, 9NH<sub>2</sub>OH+H<sub>2</sub>O

(Antonow, J Russ Phys Chem Soc 1905, 37 482)

Strontium chlorofluoride, SrF2, SrCl2

Decomp by H<sub>2</sub>O, by very dil HCl, HNO<sub>3</sub> or acetic acid, by hot dil or conc H<sub>2</sub>SO<sub>4</sub>

Sol m conc HCl or HNO<sub>3</sub> Insol m, and not decomp by cold or boiling alcohol Insol in, and (Defacqz, A ch 1904, (8) 1 355)

### Strontium fluoride, SrF2

Somewhat sol in H<sub>2</sub>O (Fr Roder) 11 H<sub>2</sub>O dissolves 113 5 mg SrF<sub>2</sub> at 0 26° 1173 mg at 174°, 1193 mg at 274° (Kohlrausch, Z phys Ch 1908, 64 168)
Insol in HIF+Aq (Berzelius)

Boiling HCl+Aq dissolves, sl attacked by boiling HNO<sub>3</sub>+Aq, decomp by hot H<sub>2</sub>SO<sub>4</sub> (Poulenc, C R **116** 987)

# Strontium stannic fluoride

See Fluostannate, strontium

Strontium titanium fluoride See Fluotitanate, strontium

Strontium fluorodide, SrF, SrI2

Decomp by cold H<sub>2</sub>O, more rapidly by hot H2O Decomp by dil HCl, dil HNO2, dil H<sub>2</sub>SO<sub>4</sub> or conc H<sub>2</sub>SO<sub>4</sub>, also by alcohol and by ether, if not absolute (Defacqz, A ch 1904, (8) **1** 358)

### Strontium hydride, SrH

Decomp by H<sub>2</sub>O or HCl+Aq (Winkler, B 24 1976)

SrH<sub>2</sub> Decomp by H<sub>2</sub>O (Gautier, C R 1902, **134** 100)

# Strontium hydroselenide

Sol in H<sub>2</sub>O

Strontium hydrosulphide, SrS<sub>2</sub>H<sub>2</sub> Sol in H<sub>2</sub>O, decomp by boiling

### Strontium hydroxide, SrO<sub>2</sub>H<sub>2</sub>, and +8H<sub>2</sub>O Deliquescent

Sol in 50 pts cold and 24 pts boiling  $H_2O$  (Bu cholz) in 50 pts  $H_2O$  at 15 56 (Dalton) in 514 pts H O at 15 56 and 2 pts at 1 O , O , O , OHOat 1056 and 2 pts at 17 at 15 and 24 pts at 100 13 / pts HO at 18 70° (Abl) 100 pts H O at 20 dissolve 1 49 pts SrO (Bineau C R 41 509)

100 pts aqueous solution of \$rO<sub>2</sub>H<sub>2</sub> contain pts SrO and pts SrO<sub>2</sub>H<sub>2</sub>+8H<sub>2</sub>O at t°

| t°                                                           | Pts<br>SrO                                                                           | Pts<br>SrO H <sub>2</sub><br>+8H <sub>2</sub> O                                      | t°                                                        | I ts<br>SrO                                                                     | Pts<br>SrO <sub>2</sub> H<br>+8H <sub>2</sub> O                                     |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 0<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50 | 0 35<br>0 41<br>0 48<br>0 57<br>0 68<br>0 82<br>1 00<br>1 22<br>1 48<br>1 78<br>2 13 | 0 90<br>1 05<br>1 23<br>1 46<br>1 74<br>2 10<br>2 57<br>3 13<br>3 80<br>4 57<br>5 46 | 55<br>60<br>65<br>70<br>75<br>80<br>85<br>90<br>95<br>100 | 2 54<br>3 03<br>3 62<br>4 35<br>5 30<br>6 56<br>9 00<br>12 00<br>15 15<br>18 60 | 6 52<br>7 77<br>9 29<br>11 16<br>13 60<br>16 83<br>23 09<br>30 78<br>38 86<br>47 71 |

(Scheibler, J pharm Chim 1883, (5) 8 540) Sol in cold NH<sub>4</sub>Cl+Aq (Rose)

| Solubility in $Sr(NO_8)_2 + Aq$ at 25                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sp gr 25°/25°                                                                                                                                                                              | G SrO as<br>Sr(OH) 1n<br>100 g H <sub>2</sub> O                                                                                                             | G Sr(NO <sub>3</sub> ) <sub>2</sub> m<br>100 g H <sub>2</sub> O                                                                                                                         |  |
| 1 481<br>*1 506<br>1 490<br>1 450<br>1 419<br>1 403<br>1 381<br>1 359<br>1 327<br>1 317<br>1 291<br>1 267<br>1 239<br>1 217<br>1 206<br>1 178<br>1 148<br>1 126<br>1 108<br>1 079<br>1 059 | 0 0<br>1 76<br>1 71<br>1 55<br>1 51<br>1 47<br>1 41<br>1 34<br>1 27<br>1 20<br>1 14<br>1 11<br>1 03<br>1 01<br>0 96<br>0 95<br>0 91<br>0 87<br>0 84<br>0 79 | 79 27<br>81 06<br>74 27<br>66 88<br>63 71<br>60 37<br>56 30<br>52 90<br>46 97<br>44 03<br>40 83<br>37 81<br>32 41<br>28 80<br>26 58<br>23 83<br>17 96<br>16 21<br>12 78<br>8 96<br>6 29 |  |
| 1 033                                                                                                                                                                                      | 0 78                                                                                                                                                        | 4 45                                                                                                                                                                                    |  |

\*Solution is sat with respect to both substances

(Parsons and Perkins, J Am Chem Soc 1910, **32** 1388)

Sol in methyl alcohol At room temp 1 l contains 31 5 g SrO (Neubwald, Biochem Z 1908, 9 540) (Neuberg and Re-Insol in acetone (Lidmann, C C 1899,

II 1014) Sol in an aqueous solution of cane sugar (Hunton, Phil Mag (3) 11 156)

Solubility in H<sub>2</sub>O containing 10 g sugar at t°

| t° | g SrO H +8H O | t  | g SrO <sub>2</sub> H <sub>2</sub> +8H <sub>2</sub> O |
|----|---------------|----|------------------------------------------------------|
| 3  | 3 10          | 24 | 4 79                                                 |
| 15 | 3 79          | 40 | 9 70                                                 |

(Sidersky C C 1886 57)

+8H<sub>2</sub>O 0 0835 mol is sol in 1 l H<sub>2</sub>O at (Rothmund, Z phys Ch 1909, 69 539)

Solubility in organic compds +Aq at 25°

| Solvent                                                                                           | Mol SrO H +8H2O<br>sol in llitre                                   |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| water 0 5-N methyl alcohol " ethyl alcohol " propyl alcohol " tert amyl alcohol " acetone " ether | 0 0835<br>0 0820<br>0 0744<br>0 0708<br>0 0630<br>0 0692<br>0 0645 |

Solubility in organic compds +Aq at 25°-Continued

| Solv ent                                                                     | Mol SrO <sub>2</sub> H <sub>2</sub> +8H O<br>sol 1d 1 litre        |
|------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 0 5-N glycol  "glycerine "mannitol "urea "ammonia ", diethyl amine "pyridine | 0 0922<br>0 1094<br>0 1996<br>0 0820<br>0 0785<br>0 0586<br>0 0694 |

(Rothmund, Z phys Ch 1909, 69 539)

Insol in acetone (Naumann, B 1904, 37 4329)

See also Strontium oxide

Strontium iodide, SrI<sub>2</sub>, and +6, or 7H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve at

> 0° 20° 40° 70° 100° 164 179 196 250 370 pts SrI<sub>2</sub> (Kremers, Pogg 103 65)

Sat ag solution contains at -20° -10° -3° +7° 11° 18° 38° 60 0 60 3 62 2 63 0 63 4 63 5 64 8% SrI<sub>2</sub>,

52° 63° 77° 81° 97° 105° 120 175° 66 0 68 5 70 5 74 0 79 2 79 4 80 8 85 6% SrI<sub>2</sub> (Étard, A ch 1894, (7) 2 543)

Sp gr of SrI<sub>2</sub>+Aq at 195° containing 30 % SrI2, 5 10 20 1045 1091 1200 1330

40 50 60 65 % SrI<sub>2</sub> 1491 1695 1955 2150 (Kremers, Pogg 103 67, calculated by Gerlach, Z anal 8 285)

Sat solution in abs ethyl alcohol contains at

> -20° 39° 82° +4° 26 47% SrI, 3 1 43 (Etard, A ch 1894, (7) 2 565)

Strontium periodide, SrI<sub>3</sub>+15H O (Mosnier, A ch 1897, (7) 12 399) SrI. (Herz and Bulla, Z anorg 1911, 71 255)

Strontium stannous iodide Very sol in HO (Boullay)

Strontium zinc iodide, SrZnI<sub>4</sub>+9H<sub>2</sub>O Hydroscopic (Ephraim, Z anorg 1910, **67** 385)

Strontium nitride, Sr<sub>2</sub>N<sub>3</sub> Decomp HO violently, but not alcohol (Maquenne, A ch (6) 29 225)

Strontium oxide, SrO

Decomp by H<sub>2</sub>O to SrO<sub>2</sub>H<sub>2</sub>, which see

Sol in 160 pts H<sub>2</sub>O at 15 56° (Dalton) in 50 pts at 100° (Dalton) in 130 pts at 20 (Bineau) in 40 pts cold and 20 pts hot H<sub>2</sub>O (Dumas)

Very sl sol in alcohol Insol in ether 1 l methyl alcohol dissolves 11 2 g SrO (Neuberg and Rewald, Brochem Z 1908, 9 540)

Insol in methyl acetate (Naumann, B 1909, **42** 3790)

Insol in acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014) Sol in cane sugar + Aq

Solubility in H<sub>2</sub>O containing 10 g sugar at to

| t° | g SrO | t° | g SrO |
|----|-------|----|-------|
| 8  | 1 21  | 24 | 1 87  |
| 15 | 1 48  | 40 | 3 55  |

(Sidersky, C C 1886 57)

See also Strontium hydroxide

Strontium peroxide, SrO<sub>2</sub>

C R 1895, **120** 1339)

Sl sol in H<sub>2</sub>O Easily sol in acids and NH<sub>4</sub>Cl+Aq Insol in NH<sub>4</sub>OH+Aq (Con roy, Chem Soc (2) 11 812) Insol in acetone (Naumann, B 1904, **37** 4329, Eidmann, C C **1899**, II 1014)

Strontium oxybromide, SrBr<sub>2</sub>, SrO+9H<sub>2</sub>O Not hydroscopic, sol in H<sub>2</sub>O (Tassilly

Strontium oxychloride, SrCl, SrO+9H<sub>2</sub>O Very easily decomp by H<sub>2</sub>O and alcohol (André, A ch (6) 3 76)

Strontium oxylodide, 2SrI<sub>2</sub>, 5S<sub>1</sub>O+30H<sub>2</sub>O Not hydroscopic, sol in HO (Tassilly, C R 1895, **120** 1339)

Strontium oxysulphide, Sr<sub>2</sub>OS<sub>4</sub>+12H<sub>2</sub>O Decomp by H<sub>2</sub>O Insol in alcohol, ether, and CS<sub>2</sub> (Schone Mixture of SrS O<sub>3</sub> and SrS, (Geuther, A

Strontium phosphide, Sr<sub>3</sub>P<sub>2</sub>

**224** 178)

CrystallizedSol in dil acids, insol in cone acids, decomp by H2O Insol in or ganic solvents at ord temp (Jaboin, C R 1899, **129** 764)

Strontium selenide, SrSe Sl sol in  $H_2O$  (Fabre, C R 102 1469)

Strontium silicide, SrSi2 Decomp by H<sub>2</sub>O (Bradley, C N 1900,

82 150)

# Strontium sulphide, SrS

Sol in H<sub>2</sub>O with decomp into SrO<sub>2</sub>H<sub>2</sub> and SrS<sub>2</sub>H<sub>2</sub>

Insol in acetone (Eidmann, C C 1899, II 1014, Naumann, B 1904, 37 4329)
Insol in methyl acetate (Naumann, B 1909, 42 3790)

### Strontium tetrasulphide, SrS4

Very deliquescent, and sol in H<sub>2</sub>O and alcohol Aqueous solution decomp on air Cryst with 2, or 6H<sub>2</sub>O (Schone, Pogg 117 58)

Strontium pentasulphide, SrS<sub>5</sub> Known only in solution

Strontium stannic sulphide
See Sulphostannate, strontium

### Sulphaluminic acid

Silver sulphaluminate, 4Ag<sub>2</sub>S, 5Al<sub>2</sub>S (Cambi, Real Ac Linc 1912, (5) **21,** II 837)

Sulphamic acid, HOSO<sub>2</sub>NH<sub>2</sub> See Amidosulphonic acid

Ammonium sulphamate, 2NH3, SO3

(Woronin)

is ammonium imidosulphonate, which see (Berglund)

Ammonium sulphamate, acid, 3NH<sub>3</sub>, 2SO<sub>3</sub> (Woronin)

Is basic amm mum imidosulphonate, which see (Berglund)

Barium sulphamate, basic, 2BaO, 3SO, 2NH<sub>3</sub> Somewhat sol in H O easily in HCl+Aq

(Jacquelain, A. ch. (3) 8 304)
Bas O<sub>6</sub>(NH<sub>5</sub>)<sub>2</sub> Sl. sol. in H. () Decomp by heating with H. () (Woronin, J. B. 1860

Is barium imidosulphon ite (Berglund)

### Sulphamide, SO (NH<sub>2</sub>)<sub>2</sub>

Very sol in H<sub>2</sub>O (Regnault, A ch 69 170, Mente, A 248 267)

Insol in alcohol ether etc. (Traube B

Insol in alcohol, ether, etc (Traube, B 26 607)

Very sol in H<sub>2</sub>O

SI sol in abs alcohol

Sl sol m dry ether (Divers and Ogawa, Chem Soc 1902, 81 504)

Very sol in liquid NH<sub>3</sub> (Franklin and Stafford, Am Ch J 1902, 28 95)
Sol in alcohol, very sol in H<sub>2</sub>O (Hantzsch,

B 1901, **34** 3436)

Silver sulphamide, SO<sub>2</sub>(NHAg)<sub>2</sub>

SI sol in cold  $H_2O$  Sol in  $HNO_3$ , and  $(NH_4)_2CO_3+Aq$  (Traube, B **26** 607)  $3NH_3$ ,  $2SO_3$  (Jacquelain)

Is basic ammonium imidosulphonate, which see (Berglund)

### Sulphamidic acid

(Fremy)

See Imidosulphonic acid

### Sulphaminoplatinous acid

Ammonium tetra sulphaminoplatinite,  $[Pt(SO_8NH_2)_4](NH_4)_2+6H_2O$ 

Sl sol in cold H<sub>2</sub>O (Ramberg, B 1912, **45** 1512)

Potassium —,  $[Pt(SO_8NH_2)_4]K_2+2H_2O$ Very sl sol in cold  $H_2O$  (Ramberg)

#### Sodium ----

Easily sol in cold H<sub>2</sub>O (Ramberg)

Sulphammonic, and Metasulphammonic acids

(Fremy)
See Nitrilosulphonic acid

# Monosulphammonic acid

(Claus)

See Amidosulphonic acid

### Disulphammonic acid

(Claus)

See Imidosulphonic acid

# Trisulphammonic acid

(Claus)

See Nitrilosulphonic acid

# Tetrasulphamm onic acid

(Claus)

Does not exist See Nitrilosulphonic acid

# Sulphammonium, S(NH<sub>3</sub>)<sub>2</sub>, 2NH<sub>3</sub>

Sol in liquid NH<sub>3</sub>

Sol in abs alcohol and anhydrous ether (Moissan, C R 1901, 132 517)

# Sulphantimonic acid

### Sulphantimonates

The alkalı sulphantimonates are sol in  $\rm H_2O$ , but the solutions decomp on the air, most of the other sulphantimonates are insol in  $\rm H_2O$ , all sulphantimonates are insol in alcohol (Rammelsberg)

Ammonium sulphantimonate, (NH<sub>4</sub>)<sub>3</sub>SbS<sub>4</sub>
Sol in H<sub>2</sub>O
Sol in dil acids with decomp (Stanek,
Z anorg 1898, 17 122)
+4H<sub>2</sub>O (Stanek)

Solubility of (NH<sub>4</sub>)<sub>8</sub>SbS<sub>4</sub>+4H<sub>2</sub>O in H<sub>2</sub>O at t°

| t°                                             | (NH4)3SbS4                                          | Solid phase                                                                                                                                                   |
|------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 1 9<br>- 5<br>- 8<br>-13 5<br>0<br>+20<br>30 | 9 9<br>20 0<br>30 2<br>41 6<br>41 6<br>47 7<br>54 5 | Ice<br>""  Ice+(NH <sub>4</sub> ) <sub>3</sub> SbS <sub>4</sub> , 4H <sub>2</sub> O  (NH <sub>4</sub> ) <sub>8</sub> SbS <sub>4</sub> , 4H <sub>2</sub> O  "" |

(Donk, Chem Weekbl, 1908, 5 529)

Solubility of (NH<sub>4</sub>)<sub>3</sub>SbS<sub>4</sub> in alcohol at 10° Solid phase, (NH<sub>4</sub>)<sub>3</sub>SbS<sub>4</sub>+4H<sub>2</sub>O

| C H <sub>6</sub> OH (NH <sub>4</sub> ) <sub>8</sub> SbS <sub>4</sub> |      | %<br>C₂H₅OH | (NH <sub>4</sub> 3SbS <sub>4</sub> |  |
|----------------------------------------------------------------------|------|-------------|------------------------------------|--|
| 0                                                                    | 43 2 | 43 1        | 8 7                                |  |
| 5 1                                                                  | 35 9 | 53 1        | 4 1                                |  |
| 19 1                                                                 | 23 1 | 93 3        | 0                                  |  |

(Donk, l c)

Antimonyl sulphantimonate, (SbO)<sub>3</sub>SbS<sub>4</sub>
Sol in HCl (Rammelsberg, Pogg 1841, 52 236)

Barrum sulphantimonate,  $Ba_3(SbS_4) + 3H_2O$ Sol in  $H_2O$  Insol in alcohol

Barium potassium sulphantimonate, KBaSbS<sub>4</sub>+6H O Easily sol in H O Decomp by acids (Glatzel, Z anorg

Decomp by acids (Glatzel, Z and 1911, 72 100)

Bismuth sulphantimonate Ppt

Cadmium sulphantimonate
Ppt (Rammelsberg, Pogg 52 236)

Calcium sulphantimonate, Ca<sub>3</sub>(SbS<sub>4</sub>)<sub>2</sub>
Partially sol in H O Insol in alcohol

Cobaltous sulphantimonate, Co<sub>3</sub>(SbS<sub>4</sub>)<sub>2</sub>
Ppt Decomp by HCl+Aq (Rammelsberg, Pogg 52 236)

Cupric sulphantimonate, Cu<sub>3</sub>(SbS<sub>4</sub>)<sub>2</sub>
Ppt (Rammelsberg, Pogg **52** 226)

Iron (ferrous) sulphantimonate Ppt

Iron (ferric) sulphantimonate, Fe<sub>2</sub>(SbS<sub>4</sub>) (Rammelsberg, Pogg **52** 234)

Lead sulphantimonate, Pb<sub>3</sub>(SbS<sub>4</sub>)<sub>2</sub>
Ppt Decomp by KOH+Aq (Rammeli berg, Pogg **52** 223)

Lithium sulphantimonate, Li<sub>2</sub>SbS<sub>4</sub>+8½H<sub>2</sub>(
100 g sat solution in H<sub>2</sub>O contain 50 8;
anhyd Li<sub>2</sub>SbS<sub>4</sub>

Solubility in alcohol at 30°

| %<br>alcohol                                                       | L13SbS4                                                               | Solid phase                                                                                                                                                                          |
|--------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>13 3<br>51 9<br>54 8<br>58 4<br>58 6<br>65 26<br>74 3<br>79 5 | 50 8<br>46 3<br>30 7<br>29 9<br>30 8<br>32 3<br>29 31<br>24 1<br>20 5 | L1 <sub>3</sub> SbS <sub>4</sub> , 8½H <sub>2</sub> O  ""  L1 <sub>3</sub> SbS <sub>4</sub> , 8½H <sub>2</sub> O+L <sub>1</sub> <sub>3</sub> Sb  L1 <sub>3</sub> SbS <sub>4</sub> "" |

(Schreinemakers and Jacobs, Ch Weekl 1910, **72** 213)

 $+9H_2O$  Very sol in  $H_2O$  (Brinkman Dissert 1891)

 $+10 \mathrm{H}_2\mathrm{O}$  Solubility of  $\mathrm{Ll}_3\mathrm{SbS}_4 + 10 \mathrm{H}_2\mathrm{O}$  $\mathrm{H}_2\mathrm{O}$  at  $\mathrm{t}^\circ$ 

| t°                                                                       | %<br>L <sub>18</sub> SbS <sub>4</sub>                                               | Solid phase                                                                                                                           |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| -17<br>-32<br>-51<br>-108<br>-159<br>-262<br>-42<br>0<br>+10<br>30<br>50 | 7 1<br>12 8<br>17 5<br>23 2<br>28 5<br>35 3<br>40 4<br>45 5<br>46 9<br>50 1<br>51 3 | Ice '' '' '' '' '' Ice+L <sub>13</sub> SbS <sub>4</sub> , 10H <sub>2</sub> C L <sub>13</sub> SbS <sub>4</sub> , 10H <sub>2</sub> C '' |
|                                                                          |                                                                                     |                                                                                                                                       |

(Donk, Chem Weekbl 1908, 5 629)

At 10°, 100 g sat  $\text{Ll}_3\text{SbS}_4+10\text{H}_2\text{O}$  in 10% alcohol contain 41 8 g  $\text{Ll}_3\text{SbS}_4$ , 26 2 alcohol, 36 5 g  $\text{Ll}_3\text{SbS}_4$  (Donk, l c)

 $\begin{array}{cccc} \textbf{Magnesium sulphantimonate,} & Mg_3(SbO_4)_2 \\ & Deliquescent & Sol & in & H_2O & Decomp\\ alcohol & & & \end{array}$ 

Mercurous sulphantimonate,  $(Hg_2)_3(SbS_4)$ Ppt

Mercuric sulphantimonate, Hg<sub>3</sub>(SbS<sub>4</sub>)<sub>2</sub> Ppt (Rammelsberg, Pogg **52** 229)

### Mercuric sulphantimonate chloride, Hg<sub>3</sub>(SbS<sub>4</sub>)<sub>2</sub>, 3HgCl<sub>2</sub>, 3HgO

Insol in acids, except aqua regia (Rammelsberg)

Nickel sulphantimonate, Ni<sub>3</sub>(SbS<sub>4</sub>)<sub>2</sub> Decomp by hot HCl+Aq (Rammelsberg, Pogg 52 226)

Potassium sulphantimonate, K<sub>3</sub>SbS<sub>4</sub> Sol m H<sub>2</sub>O

Solubility of K<sub>2</sub>SbS<sub>4</sub> in H<sub>2</sub>O at t°

| t°                                                                                                                        | K <sub>3</sub> SbS <sub>4</sub>                                                                                             | Solid phase                                                                                                                                                                              |  |  |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| - 1 3<br>- 2 6<br>- 4<br>- 7 2<br>- 10 6<br>- 13 5<br>- 18 5<br>- 28 8<br>- 34<br>- 10<br>- 4 5<br>+ 10<br>30<br>50<br>80 | 9 5<br>17 1<br>24 2<br>35 4<br>42 9<br>48 8<br>52 6<br>59 6<br>62 6<br>65 5<br>69 1<br>75 4<br>76 2<br>77 1<br>77 7<br>79 2 | Ice "" "" "" "" "" "" Ice+K <sub>3</sub> SbS <sub>4</sub> , 6H <sub>2</sub> O K <sub>3</sub> SbS <sub>4</sub> , 5H <sub>2</sub> O "" K <sub>3</sub> SbS <sub>4</sub> , 3H <sub>2</sub> O |  |  |

(Donk, Chem Weekbl 1908, 5 529, 629, 767)

### Solubility of K<sub>3</sub>SbS<sub>4</sub> in KOH+Aq at 25°

| %<br>K₃SbS₄                                                       | кон                                                              | Solid phase                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 75<br>68 4<br>56 8<br>50 9<br>37 7<br>19 8<br>11 5<br>9 4<br>00 0 | 0<br>3 4<br>11 0<br>16 1<br>25 5<br>40 5<br>46 9<br>49 9<br>56 3 | K <sub>3</sub> SbS <sub>4</sub> , 5H <sub>2</sub> O<br>K <sub>3</sub> SbS <sub>4</sub> , 3H <sub>2</sub> O<br>K <sub>3</sub> SbS <sub>4</sub><br>"<br>K <sub>3</sub> SbS <sub>4</sub><br>K <sub>3</sub> SbS <sub>4</sub> +KOH, 2H O<br>KOH, 2H O |
|                                                                   |                                                                  | (7)                                                                                                                                                                                                                                              |

(Donk)

#### Solubility of K<sub>3</sub>SbS<sub>4</sub> in alcohol+Aq at 10°

| С Н <sub>5</sub> ЭН | %<br>K₃Sb5₄  | Soli I phas                                         |
|---------------------|--------------|-----------------------------------------------------|
| 94<br>90 5          | 0            | K <sub>3</sub> SbS <sub>4</sub> , 5H <sub>2</sub> O |
| 0 '8                | 69 2<br>76 1 | <i>ιι</i>                                           |

<sup>\*</sup> Two liquid layers are formed

### Composition of the liquid layers

| Alcohol layer                                                                 |                         | H <sub>2</sub> O layer    |                              |  |
|-------------------------------------------------------------------------------|-------------------------|---------------------------|------------------------------|--|
| C <sub>2</sub> H <sub>5</sub> OH <sub>2</sub> K <sub>3</sub> StS <sub>4</sub> |                         | %<br>alcohol              | %<br>K₃SbS₄                  |  |
| 85<br>54 7<br>46 9<br>16                                                      | 0<br>2 2<br>4 2<br>27 4 | 1 1<br>3 4<br>3 8<br>31 1 | 67 4<br>49 0<br>45 6<br>12 7 |  |

(Donk, l c)

 $+4^{1}/_{2}H_{2}O$ Deliquescent Sol in H<sub>2</sub>O, more sol than the Na salt +3, 5, and  $6H_2O$ See Donk above 2K<sub>2</sub>S, Sb<sub>2</sub>S<sub>3</sub> Decor (Ditte, C R **102** 168) Decomp by cold H<sub>2</sub>O  $K_2S_1$ ,  $2Sb_2S_3 + 3H_2O_1$ SIsol m H<sub>2</sub>O (Ditte) K<sub>2</sub>S, Sb<sub>2</sub>S<sub>3</sub> K<sub>2</sub>S, 2Sb<sub>2</sub>S<sub>3</sub> Decomp by H<sub>2</sub>O (Ditte)

### Silver sulphantimonate, Ag<sub>3</sub>SbS<sub>4</sub>

(Ditte)

Insol in H<sub>2</sub>O or acids Decomp by KOH (Rammelsberg, Pogg 52 218) +Aq

Sodium sulphantimonate, Na<sub>3</sub>SbS<sub>4</sub>+9H O (Sch'ippe's salt) Sol in 29 pts H<sub>2</sub>O at Aqueous solution is precipitated by alcohol (Rammelsberg)

Sol in 3 pts cold H<sub>2</sub>O (van den Corput) Sol in 4 pts cold H<sub>2</sub>O (Duflos) Sol in 1 pt boiling HO (Duflos)

# Solubility of Na<sub>3</sub>SbS<sub>4</sub>+9H<sub>2</sub>O in H<sub>2</sub>O at t°

| t                                                                                                             | %<br>NajSbSi                                                                                      | Solid phase                                |  |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| - 0 1<br>- 0 65<br>- 0 9<br>- 1 26<br>- 1 45<br>- 1 75<br>0<br>15<br>30<br>38<br>49 6<br>59 6<br>69 6<br>79 5 | 0 5<br>4<br>5 7<br>7 8<br>9 2<br>11 2<br>11 3<br>19 3<br>27 1<br>32<br>38 9<br>45<br>50 7<br>57 1 | Ice "" "" "" "" "" "" "" "" "" "" "" "" "" |  |

(Donk, Chem Weekbl 1908, 5 529, 629, 767)

# Solubility of Na<sub>3</sub>SbS<sub>4</sub>+Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> in H<sub>2</sub>O

| \asbbs4                          | %<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Solid phase                                                                                                                         |  |
|----------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
|                                  |                                                    | t° = 10°                                                                                                                            |  |
| 11 8<br>4 4<br>0 8<br>0 1<br>0 0 | 0<br>4 9<br>14 6<br>27 3<br>33 6                   | Na <sub>3</sub> SbS <sub>4</sub> , 9H <sub>2</sub> O<br>"<br>"<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , 5H <sub>2</sub> O |  |
| t° = 30°                         |                                                    |                                                                                                                                     |  |

Na<sub>3</sub>SbS<sub>4</sub>, 9H<sub>2</sub>O 77 19 9 12 5 16 4 37 7 4 2 43 8 1 47 1  $Na_{3}SbS_{4}+Na_{2}S_{2}O_{3}, 5H_{2}O$ 47 8 1  $Na_2S_2O_3$ ,  $5H_2O$ 45 8 0

(Donk, l c)

# Solubility of Na<sub>3</sub>SbS<sub>4</sub> in alcohol+Aq at t° Solid phase, Na<sub>3</sub>SbS<sub>4</sub>+9H<sub>2</sub>O

| t =                            | 0                              | t = 30°                         |                                 | t = 65                        |                                  |
|--------------------------------|--------------------------------|---------------------------------|---------------------------------|-------------------------------|----------------------------------|
| ж сан <sub>г</sub> он          | % NavSbS4                      | % С2I вОН                       | % Na35b51                       | % СұН вОН                     | % NasSbS4                        |
| 0<br>3 7<br>12 7<br>29<br>60 8 | 11 8<br>8 2<br>3 2<br>0 9<br>0 | 5<br>10 3<br>24 8<br>46<br>76 2 | 19 3<br>14 6<br>6 4<br>1 2<br>0 | 0<br>4 7<br>8<br>* 54 1<br>81 | 47 9<br>39 3<br>36 5<br>4 1<br>0 |

\* Two lavers are formed

### Composition of above layers

| Alcohol laver        |                     | H O laver                   |                              |
|----------------------|---------------------|-----------------------------|------------------------------|
| ( alcohol            | ", Nasoboi          | ( alcohol                   | Co Naisbba                   |
| 54 1<br>40 4<br>33 5 | 4 1<br>10 2<br>14 1 | 8 0<br>14 3<br>18 8<br>27 2 | 36 5<br>27 8<br>24 1<br>18 0 |

(Donk, l c)

# Solubility of Na<sub>8</sub>SbS<sub>4</sub> in methyl alcohol at to Solid phase, Na<sub>3</sub>SbS<sub>4</sub>+9H<sub>2</sub>O

| Notes Prints                                            |                                                       |                                                 |                                                 |  |
|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--|
| t = 0°                                                  |                                                       | t = 30°                                         |                                                 |  |
| СН <sup>3</sup> ОН                                      | %<br>NasSbS4                                          | СЬ₃ОН                                           | NasSbS4                                         |  |
| 3 4<br>15 5<br>23 1<br>50 3<br>57<br>81 7<br>92<br>95 9 | 8 6<br>2 8<br>2 1<br>0 3<br>0 1<br>0 05<br>0 2<br>2 0 | 0<br>18 1<br>33 1<br>65 7<br>84 2<br>91 2<br>94 | 27 1<br>12 8<br>5 8<br>0 1<br>0 1<br>1 2<br>3 9 |  |
|                                                         |                                                       |                                                 |                                                 |  |

(Donk, l c)

# Sodium sulphantimonate thiosulphate.

 $Na_3SbS_4$ ,  $2Na_2S_2O_3+20H_2O$ Efflorescent, and decomp by H<sub>2</sub>O (Un ger, Arch Pharm (2) 147 193) No double salt exists See Donk, Na<sub>3</sub>SbS +Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> under Na<sub>3</sub>SbS<sub>4</sub>

Strontium sulphantimonate Sol in H<sub>2</sub>O, pptd by alcohol

Uranium sulphantimonate Ppt

Zinc sulphantimonate, Zn<sub>3</sub>(SbS<sub>4</sub>)<sub>2</sub> Sol in hot Na<sub>8</sub>SbS<sub>4</sub>+Aq, insol i ZnSO<sub>4</sub>+Aq Partially sol in KOH+Ac sol in hot HCl+Aq (Rammelsberg, Pog **52** 233)

# Sulphantimonous acid

Ammonium metasulphantimonite, NH<sub>4</sub>SbS<sub>2</sub> Insol in  $H_2O$  (Rouget, C R 1898, 12 1145) Insol in H2O and alcohol  $+2\mathrm{H}_2\mathrm{O}$ 

Decomp in the air (Stanck, Z anor 1898, **17** 119)

#### Ammonium orthosulphantimonite, $(NH_4)_8SbS_3$

Easily decomp Stable only in presen of (NH<sub>4</sub>)<sub>2</sub>S Sol in H<sub>2</sub>O Insol in alcoho by which it is pptd from aqueous solutio (Pouget, A ch 1899, (7) 18 536)

### Ammonium parasulphantimonite, $(NH_4)_2Sb_4S_7$

Stable in the air

Insol in H<sub>2</sub>O (Stanek, Z Decomp by acids 1898, **17** 120)

Stable, cryst from hot solutions (Pour C R 1898, 126 1145)

Ammonium silver orthosulphantimonite. NH<sub>4</sub>Ag<sub>2</sub>SbS<sub>3</sub>

Decomp by H<sub>2</sub>O (Pouget, A ch 1899, (7) 18  $5\bar{5}1$ )

Barium metasulphantimonite, BaSb<sub>2</sub>S<sub>4</sub>  $+4^{1/2}H_{2}O$ 

(Pouget, A ch 1899, Insol in H<sub>2</sub>O (7) 18 541)

Barium orthosulphantimonite, BasSb2S6

Decomp in the air and by H<sub>2</sub>O Somewhat sol in BaS+Aq (Pouget, C R 1898, 126 1792)

Barium pyrosulphantimonite, Ba<sub>2</sub>Sb<sub>2</sub>S<sub>5</sub> +8H<sub>2</sub>O

Decomp by H<sub>2</sub>O Nearly insol in BaS+Aq (Rouget)

Barrum sulphantimonite, Ba<sub>3</sub>Sb<sub>4</sub>S<sub>9</sub>+10H<sub>2</sub>O Pptd from aq solution of ortho and pyrobarium salts (Pouget)  $Ba_5Sb_4S_{11}+16H_2O$  (Pouget, A ch 1899,

(7) **18** 538)

Calcium sulphantimonite basic, Ca(OH)SbS<sub>2</sub> Insol in H<sub>2</sub>O Sol in conc HCl (Pouget, A ch 1899, (7) **18** 544)

Calcium pyrosulphoantimonite, Ca<sub>2</sub>Sb<sub>2</sub>S<sub>5</sub> +15H<sub>2</sub>O

Sol in H<sub>2</sub>O without decomp (Pouget. C R 1898, 126 1793)

Cobaltous orthosulphantimonite, Co<sub>3</sub>Sb<sub>9</sub>S<sub>6</sub> (Pouget, A ch 1899, (7) 18 554)

Cuprous metasulphantimonite, CuSbS<sub>2</sub>

Sol in mixture of HNO3 and tartaric acid with separation of S Insol in NH<sub>4</sub>OH+Aq Decomp by hot KOH and alkalı sulphides + Aq (Sommer-

lad, Z anorg 1898, 18 430) Min Wolfsber ite Sol in HNO3+Aq with separation of S and Sb O3

Cuprous orthosulphantimonite, Cu<sub>3</sub>SbS<sub>3</sub> (Sommerlad, Z anorg 1898, 18 432) Ppt Insol in H<sub>2</sub>O Decomp by H<sub>2</sub>O (Pouget, A ch 1899, (7) **18** 556)

Cuprous sulphantimonite, Cu<sub>2</sub>Sb<sub>4</sub>S<sub>7</sub> Min Guejarite

Cupric orthosulphantimonite, Cu<sub>3</sub>Sb<sub>2</sub>S<sub>6</sub> Ppt (Pouget, A ch 1899, (7) 18 557)

Cuprous lead sulphantimonite, Cu<sub>3</sub>SbS<sub>3</sub>, 2Pb<sub>3</sub>SbS<sub>3</sub>

Min Bo irnonite Decomp by HNO<sub>8</sub>+ Aq, and aqua regia

Cuprous potassium orthosulphantimonite, Cu<sub>2</sub>KSbS<sub>3</sub>

Ppt, easily decomp by H<sub>2</sub>O C R 1899, **129** 104) +3H<sub>2</sub>O Ppt decomp by H<sub>2</sub>O (Pouget.

(Pouget, A ch 1899, (7) 18 556)

Iron (ferrous) orthosulphantimonite, Fe<sub>3</sub>(Sb<sub>3</sub>S)<sub>2</sub>

Pot (Pouget, A ch 1899, (7) 18 554) Mın Berthierite Sl sol in HCl+Aq, easily sol in aqua regia

Lead orthosulphantimonite, Pb<sub>3</sub>(SbS<sub>3</sub>)<sub>2</sub>

Very sl sol in H<sub>2</sub>O Decomp by H<sub>2</sub>O (Pouget, A ch 1899, (7) 18 553) Mın Boulangerite Completely sol ın hot HCl+Aq, decomp by HNO<sub>3</sub>+Aq

Lead sulphantimonite

Sol in boiling conc HNO<sub>3</sub>+Aq (Fournet)  $Pb(SbS_2)_2$ Min Zinckenite Decomp

by hot HCl+Aq 4PbS, Sb<sub>2</sub>S<sub>3</sub> 2PbS, Sb<sub>2</sub>S<sub>3</sub> by hot HCl+Aq Min Plagionite Min Jamesonite

Decomp Min Meneghinite

4PbS, Sb<sub>2</sub>S<sub>3</sub> 5PbS, Sb<sub>2</sub>S<sub>3</sub> Min Geokronite 6PbS, Sb<sub>2</sub>S<sub>3</sub> Min Kibri I enite (?)

Lead potassium orthosulphantimonite, PbKSbS<sub>2</sub>

Very sl sol in H<sub>2</sub>O Decomp by H<sub>2</sub>O (Pouget, A ch 1899, (7) **18** 554)

Lead silver sulphantimonite, (Ag<sub>2</sub>, Pb)<sub>5</sub>Sb<sub>4</sub>S<sub>11</sub> Min Freieslebenite

Lithium orthosulphantimonite, Li<sub>3</sub>SbS<sub>3</sub> +3H<sub>2</sub>O

Very deliquescent Very sol in HO (Pouget, A ch 1899, (7) 18 530)

Lithium parasulphantimonite,  $L_1 Sb_4S_7 + 3H_2O$ 

Ppt (Pouget, A ch 1899, (7) 18 531)

Lithium silver orthosulphantimonite, I 1Ag<sub>2</sub>SbS<sub>3</sub>

Decomp by H<sub>2</sub>O (Pouget, A ch 1899, (7) **18**  $5\overline{5}1$ 

Manganous orthosulphantimonite, Mn<sub>3</sub>Sb<sub>2</sub>S<sub>6</sub> Ppt Sl sol in H<sub>0</sub>O (Pouget, A ch

1899, (7) 18 553) Manganous potassium orthosulphantimonite,

MnKSbS<sub>3</sub> Sl sol in H<sub>2</sub>O Decomp by H<sub>2</sub>O (Pouget, A ch 1899, (7) 18 553)

Nickel orthosulphantimonite, N13Cb2S6 (Pouget, A ch 1899, (7) 18 554)

Potassium metasulphantimonite, KSbS2 Insol in cold H<sub>2</sub>O Decomp by hot H<sub>2</sub>O (Pouget A ch 1899, (7) 18 513) Sol in H<sub>2</sub>O, but decomp +1½H2O auickly Sol in H<sub>2</sub>O (Stanek, Z anorg 1898, 17 119)

Potassium orthosulphantimonite, K<sub>2</sub>SbS<sub>3</sub> Very deliquescent Very sol in H<sub>2</sub>O Decomp by acids (Pouget, A ch 1899, (7) **18** 518)

Potassium sulphantimonite, K<sub>2</sub>Sb<sub>4</sub>S<sub>7</sub>+3H<sub>2</sub>O SI sol in H<sub>2</sub>O and not decomp thereby (Pouget, A ch 1899, (7) 18 522)

Decomp in the air Sol in K-S+Aq (Stanek, Z anorg 1898,

**17** 120) 2K<sub>2</sub>S, Sb<sub>2</sub>S<sub>3</sub> Sol in H<sub>2</sub>O (Ditte, C R 102 68)

xK<sub>2</sub>S, ySb<sub>2</sub>S<sub>3</sub> Deliquescent When K<sub>2</sub>S is in excess, sol in H2O, when Sb2S3 is in excess, partially sol Aqueous solution is decomp by all acids, even CO<sub>2</sub>, and by K<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, NaHCO<sub>3</sub>, KHCO<sub>3</sub>, NH<sub>4</sub>HCO<sub>3</sub>+Aq Insol in absolute alcohol (Kohl)

Potassium hydrogen sulphantimonite, KHSb<sub>4</sub>S<sub>7</sub>

(Pouget, A ch 1899, (7) 18 522)

Potassium silver orthosulphantimonite,  $Ag KSbS_3$ 

Decomp by boiling H<sub>2</sub>O (Pouget, C R 1897, 124 1519)

Potassium zinc orthosulphantimonite, KZnSbS<sub>3</sub>

Decomp by  $H_2O$  (Pouget, A ch 1899, (7) **18** 552)

Silver orthosulphantimonite, Ag<sub>3</sub>SbS<sub>3</sub> Ppt Sl sol in H<sub>2</sub>O (Pouget, A ch 1899 (7) 18 547)

Min Pyrargyrite Sol in HNO<sub>3</sub>+Aq with residue of S and Sb<sub>2</sub>O<sub>3</sub> KOH+Aq dissolves out Sb S<sub>3</sub>

### Silver sulphantimonite

AgSbS Min Miargyrite 5Ag S, Sb S<sub>3</sub> Min Stepha decomp by warm HNO<sub>3</sub>+Aq Min Stephanite Easily 12 Ag S, Sb S<sub>3</sub> Min Polyargyrite

Silver sodium orthosulphantimonite, Ag NaSbS<sub>3</sub>

Decomp by HO Pouget, A ch 1899, (7) **18** 551)

Sodium metasulphantimonite, NaSbS,

by hot H<sub>2</sub>O Deliquescent Decomp When Na<sub>2</sub>S is in excess, sol in H<sub>2</sub>O, bu partially sol if Sb<sub>2</sub>S<sub>3</sub> is in excess Arch Pharm (2) 148 1)
Ppt Insol in H<sub>2</sub>O (Pouget, C R 1898

**126** 1145)

Sodium orthosulphantimonite, Na<sub>8</sub>SbS<sub>8</sub> +9H<sub>2</sub>O

Decomp in solution in H<sub>2</sub>O (Pouget C R 1898, **126** 1144)

Sodium sulphantimonite, Na<sub>2</sub>Sb<sub>4</sub>S<sub>7</sub>+2H<sub>6</sub>C Sol in H<sub>2</sub>O (Pouget, C R 1898, 126 1145)  $Na_sSb_4S_9$  (Pouget, C R 1898, 126 1144  $4Na_2S$ ,  $3Sb_2S_3+3H_2O$  Permanent, so in  $H_2O$  Insol in alcohol and ether (Kohl

Strontium orthosulphantimonite, Sr<sub>3</sub>Sb<sub>2</sub>S<sub>6</sub> +10H<sub>2</sub>O

Sol in H<sub>2</sub>O (Pouget, C R 1898, 126 1793)

Strontium pyrosulphantimonite, Sr<sub>2</sub>Sb<sub>2</sub>S<sub>5</sub>  $+15H_2O$ 

Sol in H<sub>2</sub>O without essential decome (Pouget, C R 1898, 126 1793)

Zinc orthosulphantimonite, Zn<sub>3</sub>Sb<sub>2</sub>S<sub>6</sub> Ppt (Pouget, A ch 1899, (7) 18 552

Orthosulpharsenic acid, H<sub>3</sub>AsS<sub>4</sub>

Ppt Loses  $H_2S$  by prolonged boiling wit  $H_2O$  (Nilson, J pr (2) 14 145) See also Sulphoxyarsenic acid

Ammonium sulpharsenate,  $(NH_4)_4As_2S_7$ 

Known only in solution in H<sub>2</sub>O Decomi on boiling into-

NH<sub>4</sub>AsS<sub>8</sub> Sol in alcohol  $(NH_4)_3AsS_4$ Sol in  $H_2O$ Precipitate by alcohol

 $(NH_4)_2S$ ,  $12As_2S_5$  Ppt Insol in  $H_2O$ 

Ammonium magnesium sulpharsenate,  $(NH_4)_2S$ , MgS,  $As_2S_5$ 

Ammonium sodium sulpharsenate, (NH<sub>4</sub>)<sub>3</sub>AsS<sub>4</sub>, Na<sub>3</sub>AsS<sub>4</sub>

Much more sol in H<sub>2</sub>O than Na<sub>3</sub>AsS<sub>4</sub>, c sol in cold, more sol in hot alcohol (Be zelius )

Barium sulpharsenate, Ba(AsS<sub>3</sub>)<sub>2</sub>

Sol in H<sub>2</sub>O and alcohol Decomp b evaporation

 $Ba_2As_2S_7$ Sol in H<sub>2</sub>O in all proportion with decomp Decomp by alcohol  $Ba_3(AsS_4)_2$  Sol in  $H_2O$  Insol in alco hol

BaS, 3As<sub>2</sub>S<sub>5</sub> Ppt Insol in H<sub>2</sub>O

(Nilson)

Barium potassium sulpharsenate, KBaAsS<sub>4</sub>+6H<sub>2</sub>O

Easily sol in  $H_2O$ Decomp by acids with separation of  $As_2S_6$ (Glatzel, Z anorg 1911, **71** 209)

Barium sulpharsenate sulpharsenite,  $Ba_3(AsS_4)_2$ ,  $Ba_2As_2S_5+4H_2O$ 

Sl sol in cold, more easily in hot  $H_2O$  (Nilson)

Bismuth sulpharsenate, 2Bi<sub>2</sub>S<sub>3</sub>, 3As<sub>2</sub>S<sub>5</sub> Sol in Na<sub>3</sub>AsS<sub>4</sub>+Aq

 $B_{12}S_3$ ,  $3A_{s_2}S_6$  As above (Berzelius)

Cadmium sulpharsenate

Ppt (Berzelius, Pogg 7 88)

Calcium sulpharsenate, Ca<sub>2</sub>As<sub>2</sub>S<sub>7</sub>

Sol in H<sub>2</sub>O and alcohol Ca<sub>8</sub>(AsS<sub>4</sub>)<sub>2</sub> Easily sol in H<sub>2</sub>O Insol in alcohol

 $+10 \rm{H}_2 \rm{O}$  Easily sol in  $\rm{H}_2 \rm{O}$  (Nilson, J pr (2) 14 169)  $+ \rm{SCaS}$ ,  $2 \rm{AsS}_2 \rm{S}_5 + 6 \rm{H}_2 \rm{O}$  Easily sol in  $\rm{H}_2 \rm{O}$ 

 $^{-}$  5CaS, 2AsS<sub>2</sub>S<sub>5</sub>+6H<sub>2</sub>O Easily sol in H<sub>2</sub>(Nilson,, J pr (2) **14** 163)

Cerous sulpharsenate, Ce<sub>2</sub>As<sub>2</sub>S<sub>7</sub>

 $\begin{array}{ccc}
\operatorname{Ppt} \\
\operatorname{Ce}_3(\operatorname{AsS}_4)_2 & \operatorname{Ppt} \\
\operatorname{Ce}_4(\operatorname{As}_2\operatorname{S}_7)_3 & \operatorname{Ppt}
\end{array}$ 

Cobaltous sulpharsenate, Co<sub>2</sub>As<sub>2</sub>S<sub>7</sub>

Ppt Sol in excess of sodium sulpharsenate + Aq

Cuprous sulpharsenate, Cu<sub>3</sub>AsS<sub>4</sub>

Ppt (Preis, A **257** 201)

Min Enarque Clarite Not wholly decomp by HCl+Aq Sol in HCl+Aq with residue of As<sub>2</sub>O<sub>3</sub>. Not attacked by KOH+Aq

Cupric sulpharsenate, Cu<sub>2</sub>As<sub>2</sub>S<sub>7</sub>

Ppt Sol in  $(NH_4)_2S+Aq$  Decomp by  $NH_4OH+Aq$  (Berzelius)  $Cu_3(AsS_4)$  Ppt (Preis, A **257** 201)

Glucinum sulpharsenate

Sl sol in  $\rm H_2O$ 

Gold sulpharsenate,  $AuAsS_4$ 

Sol in pure  $H_2O$  Insol in  $Na_3AsS_4+Aq$   $2Au_2S_3$ ,  $3As_2S_5$  Sol in  $H_2O$  (Berzelius)

Iron (ferrous) sulpharsenate, Fe<sub>2</sub>As<sub>2</sub>S<sub>7</sub>

Ppt Sol in Na<sub>3</sub>AsS<sub>4</sub>+Aq (Berzelius)

Iron (ferric) sulpharsenate, Fe<sub>4</sub>(As<sub>2</sub>S<sub>7</sub>)<sub>3</sub> Ppt Sol in Na<sub>3</sub>AsS<sub>4</sub>+Aq (Berzelius)

Lead sulpharsenate, Pb<sub>2</sub>As<sub>2</sub>S<sub>7</sub>

Ppt (Berzelius)  $Pb_3(AsS_4)_2$  Ppt Lithium sulpharsenate, LasAsS4

Easily sol in hot, less sol in cold H<sub>2</sub>O Insol in alcohol

L<sub>14</sub>As<sub>2</sub>S<sub>7</sub> Completely sol in H<sub>2</sub>O De-

comp by alcohol
LiAsS<sub>3</sub> Known only in acid solution

Magnesium sulpharsenate, Mg2As2S7

Sol in all proportions of H<sub>2</sub>O, and in alcohol

 $Mg_3(A_8S_4)_2$  Sol in  $H_2O$  Decompalcohol

3MgS,  $As_2S_5$  Nearly insol in  $H_2O$ 5MgS,  $2As_2S_5+15H_2O$  Very sol in  $H_2O$ 

Manganous sulpharsenate, Mn<sub>2</sub>As<sub>2</sub>S<sub>7</sub>

Sl sol in  $H_2O$   $Mn_3(AsS_4)_2$  Permanent Sl sol in  $H_2O$ 6MnS,  $As_2S_5$  Sl sol in  $H_2O$ 

 $\begin{array}{c} \textbf{Mercurous sulpharsenate, } (Hg_2)_2As_2S_7 \\ Ppt \end{array}$ 

Mercuric sulpharsenate, Hg<sub>2</sub>As<sub>2</sub>S<sub>7</sub>

Ppt (Berzelius, Pogg **7** 29) Hg<sub>3</sub>(AsS<sub>4</sub>)<sub>2</sub> Ppt (Preis, A **257** 200)

Nickel sulpharsenate, Ni<sub>3</sub>(AsS<sub>4</sub>)<sub>2</sub>

Ppt Not decomp by HCl+Aq Sol in Na<sub>5</sub>AsS<sub>4</sub>+Aq (Berzelius) 2NiS, As S<sub>5</sub> As above

Potassium sulpharsenate, KAsS<sub>3</sub>

Known only in alcoholic solution

 $K_4As_2S_7$  Deliquescent Sol in  $H_2O$ , from which alcohol ppts  $K_3AsS_4$ 

K<sub>3</sub>AsS<sub>4</sub> Deliquescent Very sol in H<sub>2</sub>O, from which it is precipitated by alcohol

 $+\mathrm{H}_2\mathrm{O}$  Very deliquescent (Nilson, J pr (2) 14 159)

Potassium sodium sulpharsenate Sol in H<sub>2</sub>O

Silver sulpharsenate, Ag<sub>3</sub>AsS<sub>4</sub>

Ppt (Berzelius, Pogg 7 29) Ag<sub>2</sub>As<sub>2</sub>S<sub>7</sub> Ppt

Sodium sulpharsenate, NaAsS<sub>3</sub>

Known only in alcoholic solution

Na<sub>4</sub>As S<sub>7</sub> Sol in H<sub>2</sub>O Alcohol ppts Na<sub>3</sub>AsS<sub>4</sub> from H<sub>2</sub>O solution

 $Na_3AsS_4+7 \frac{1}{2}H_2O$  Easily sol in  $H_2O$ , from which it is precipitated by alcohol  $+8H_2O$  Insol in alcohol, very sol in

H<sub>2</sub>O (McCay, Z anal 1895, **34** 726) +9H<sub>2</sub>O (Nilson, J pr (2) **14** 160) Na<sub>2</sub>S, 12As<sub>2</sub>S<sub>5</sub> (?) Insol in H<sub>2</sub>O

Sodium zinc sulpharsenate,  $NaZnAsS_4 + 4H_2O$ 

Sol in hot H<sub>2</sub>O with decomp (Preis, A **257** 202)

Strontium sulpharsenate,  $Sr_3(AsS_4)_2$ Easily sol in  $H_2O$ , insol in alcohol  $Sr_2As_2S_7$  Easily sol in  $H_2O$ , from which alcohol ppts  $Sr_3(AsS_4)_2$ 

Strontium sulpharsenate sulpharsenite, Sr<sub>2</sub>(AsS<sub>4</sub>)<sub>2</sub>, Sr<sub>2</sub>As<sub>2</sub>S<sub>5</sub>+4H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Nilson, J pr (2) 14 162)

Thallous sulpharsenate, Tl3AsS4

Not decomp by H<sub>2</sub>O Decomp by dil acids Insol in dil alkali sulphides Partially decomp by boiling with a conc solution of sodium sulphide (Hawley, J Am Chem Soc 1907, 29 1013)

Tin (stannous) sulpharsenate Ppt

Tin (stannic) sulpharsenate Ppt

Uranic sulpharsenate, 2U<sub>2</sub>S<sub>3</sub>, As<sub>2</sub>S<sub>5</sub> Ppt Sol in Na<sub>3</sub>AsS<sub>4</sub>+Aq

Zinc sulpharsenate, Zn<sub>3</sub>(AsS<sub>4</sub>)<sub>2</sub>
Ppt (Berzelius)
2ZnS, As S<sub>5</sub> Ppt (Berzelius)
ZnS, As S<sub>5</sub> (Wohler)

Disulpharsenic acid
See Disulphoxyarsenic acid

Sulpharseniosulphomolybdic acid

Ammonium sulpharseniosulphomolybdate, (NH<sub>4</sub>)<sub>4</sub>As S<sub>7</sub>(MoS<sub>3</sub>)<sub>2</sub>+5H<sub>2</sub>O Very unstable Sol in H O with decomp (Weinland, Z anorg 1897, 15 49)

Barium —, Ba As<sub>2</sub>S<sub>7</sub>(MoS<sub>3</sub>)<sub>2</sub>+14H<sub>2</sub>O Sol in H<sub>2</sub>O with decomp (Weinland)

Potassium —,  $K AsS_3(MoS_3) + 4H_2O$ (Weinland)

K<sub>4</sub>As S (MoS<sub>3</sub>) +8H<sub>2</sub>O Sol in H<sub>2</sub>O Decomp by mineral acids Insol in alcohol (Weinland)

Sulpharseniosulphoxymolybdic acid

Barium sulpharseniosulphoxymolybdate, Ba<sub>2</sub>As S<sub>7</sub>(Mo S<sub>3</sub>O<sub>3</sub>)+12H<sub>2</sub>O Sol in H<sub>2</sub>O (Weinland, Z anorg 1897, 15 60)  $\begin{array}{c} \textbf{Magnesium sulpharseniosulphoxymolybda'}, \\ \textbf{Mg}_2\textbf{As}_2\textbf{S}_7(\textbf{Mo}_2\textbf{S}_3\textbf{O}_3) + 16\textbf{H}_2\textbf{O} \\ \textbf{Very sol in H}_2\textbf{O} \quad (\textbf{Weinland}) \end{array}$ 

 $\begin{array}{lll} \textbf{Potassium} & \longleftarrow, KAsS_3(MoSO_2) + 2\frac{1}{2}H_2O \\ & Sol \ \ \text{in} \ H_2O \ \ \text{with decomp} \quad (Weinland ) \\ & K_4As_2S_7(Mo_2S_3O_3) + 6H_2O \quad \text{Very sol} \quad 1 \\ & H_2O \quad Weinland ) \\ & + 10H_2O \quad (Weinland ) \end{array}$ 

Sodium ——, NaAsS<sub>8</sub>(MoSO<sub>2</sub>) +5H<sub>2</sub>O Sl sol in cold, very sol in hot H<sub>2</sub>O (Weil land) Na<sub>4</sub>As<sub>2</sub>S<sub>7</sub>(Mo<sub>2</sub>S<sub>3</sub>O<sub>5</sub>) +15H<sub>2</sub>O Very so in H<sub>2</sub>O (Weinland)

### Sulpharsenious acid

Ammonium sulpharsenite, NH<sub>4</sub>As<sub>3</sub>S<sub>5</sub>+2H<sub>2</sub>(
Insol in H<sub>2</sub>O Ppt Sol in KOH (
NH<sub>4</sub>OH+Aq Sl attacked by boiling HCl
Aq (Nilson, J pr (2) **14** 42)
(NH<sub>4</sub>)<sub>4</sub>As<sub>2</sub>S<sub>5</sub>=2(NH<sub>4</sub>)<sub>2</sub>S, As<sub>2</sub>S<sub>3</sub> Sol i
H<sub>2</sub>O, from which alcohol ppts (NH<sub>4</sub>)<sub>3</sub>As<sub>5</sub>S<sub>3</sub>
(NH<sub>4</sub>)<sub>3</sub>AsS<sub>3</sub>=3(NH<sub>4</sub>)<sub>2</sub>S, As<sub>2</sub>S<sub>3</sub> Decomon air, sol in H<sub>2</sub>O Insol in alcohol (NH<sub>4</sub>)<sub>5</sub>As<sub>5</sub>S<sub>10</sub> Sol in H<sub>2</sub>O (Nilson, pr (2) **14** 160)

Barium sulpharsenite, Ba<sub>2</sub>As<sub>2</sub>S<sub>5</sub>

Sl sol in  $H_2O$  Decomp by alcohol  $+5H_2O$  Sl sol in  $H_2O$  (Nilson, J p (2) 14 46)  $+15H_2O$  Sl sol in cold  $H_2O$  (Nilson Ba<sub>3</sub>(AsS<sub>3</sub>)<sub>2</sub> Sl sol in  $H_2O$  Precipitate by alcohol  $+14H_2O$  Sl sol in cold, easily in here  $H_2O$  (Nilson) Ba(AsS<sub>2</sub>)<sub>2</sub>+2H<sub>2</sub>O Insol in  $H_2O$  (Nilson, J pr (2) 14 44) BaAs<sub>12</sub>S<sub>19</sub> Insol in HCl+Aq (Nilson)

Bismuth sulpharsenite,  $2B_{12}S_3$ ,  $As_2S_3$ Ppt

Cadmium sulpharsenite

Ppt (Berzelius, Pogg 7 146)

Calcium sulpharsenite, Ca<sub>2</sub>As<sub>2</sub>S<sub>5</sub>

Sol in  $H_2O$ , from which alcohol ppt  $Ca_3(AsS_3)_2$   $Ca_3(AsS_3)_2$  Sol in  $H_2O$   $+15H_2O$  Precipitated by alcohol  $Ca(AsS_2)_2+10H_2O$  Sol in  $H_2O$  (Nilso J pr (2) 14 54)  $CaAs_8S_{13}+10H_2O$  (?) Insol in cold  $H_2O$  Decomp by hot  $H_2O$  (Nilson)  $CaAs_{18}S_{28}+10H_2O$  (?) Sl sol in hot  $H_2O$  (Nilson)  $Ca_7As_2S_{10}+25H_2O$  Sl sol in cold or he  $H_2O$  (Nilson)

Cerous sulpharsenite, Ce<sub>2</sub>As<sub>2</sub>S<sub>5</sub> Ppt Chromic sulpharsenite, 2Cr<sub>2</sub>S<sub>3</sub>, 3As<sub>2</sub>S<sub>3</sub> Ppt Insol in Na<sub>2</sub>S+Aq

Cobaltous sulpharsenite, 2CoS, As<sub>2</sub>S<sub>3</sub>

Ppt Sol in excess of sodium sulpharsenite+Aq

Cuprous sulpharsenite,

 $3Cu_2S$ ,  $2As_2S_3 = Cu As_4S_9$ 

Min Binnite Decomp by hot acids and KOH+Aq

 $As_2S_3 = Cu_4As_2S_5$ Decomp by 2Cu<sub>2</sub>S, acids, KOH and K2S+Aq (Sommerlad, Z anorg 1898, 18 434)

Cupric sulpharsenite, Cu:AsS:

Insol in H<sub>2</sub>O or HCl+Aq Sol in Na<sub>3</sub>AsS<sub>3</sub>

Cu<sub>2</sub>As<sub>2</sub>S<sub>5</sub> Ppt (Berzelius)

Glucinum sulpharsenite, 2GlS, As<sub>2</sub>S<sub>3</sub> Ppt Sol in acids, partly sol in NH4OH +Aq

Gold sulpharsenite, 2Au<sub>2</sub>S<sub>3</sub>, 3As<sub>2</sub>S<sub>3</sub> Ppt (Berzelius)

Iron (ferrous) sulpharsenite Ppt Sol in Na<sub>3</sub>AsS<sub>3</sub>+Aq (Berzelius)

Iron (ferric) sulpharsenite

Ppt Sol in excess of a ferric salt, or Na<sub>3</sub>AsS<sub>3</sub>+Aq (Berzelius)

Lead sulpharsenite, Pb<sub>2</sub>As<sub>2</sub>S<sub>5</sub>

Ppt Min Dufreynosite  $Pb(AsS_2)_2 = PbS$ ,  $As S_3$  N  $Pb_4As_2S_7$  Min Jordanite  $M_{in}$ Sartorite

Lithium sulpharsenites

Resemble K salts

Magnesium sulpharsenite, Mg<sub>2</sub>As<sub>2</sub>S<sub>5</sub>

Almost completely sol in H<sub>2</sub>O Lasily sol ın alcohol (Berzelius)

+8HO Sl sol in HO (Nilson)  $Mg(AsS_2)_{\circ} + 5H_2O$ Slowly sol in both cold and hot H<sub>2</sub>O (Nilson, J pr (2) 14

 $Mg_3(AsS_3)_2 + 9HO$ (Nilson)

Manganous sulpharsenite, Mn<sub>2</sub>As<sub>2</sub>S<sub>5</sub> Ppt Decomp by HCl+Aq

Mercurous sulpharsenite, (Hg<sub>2</sub>)<sub>2</sub>As<sub>2</sub>S<sub>5</sub> Ppt (Berzelius)

Mercuric sulpharsenite, Hg<sub>2</sub>As<sub>2</sub>S<sub>5</sub>

Ppt Hg(AsS<sub>2</sub>)<sub>2</sub> Ppt (Berzelius, Pogg 7 149)

Nickel sulpharsenite, Ni<sub>3</sub>(AsS<sub>3</sub>)<sub>2</sub>

Ppt (Berzelius)

Platinum sulpharsenite, Pt<sub>2</sub>As<sub>2</sub>S<sub>5</sub>

Potassium sulpharsenite, K<sub>4</sub>As<sub>2</sub>S<sub>5</sub>

Decomp by H<sub>2</sub>O or alcohol (Berzelius) Sol in HO Insol in alcohol  $K_3AsS_3$ (Berzehus)

(Ber- $K_2As_4S_7$ Sol in H<sub>2</sub>O and alcohol zelius )

 $K_2AsS_2$ Decomp by H<sub>2</sub>O (Berzelius)  $A_2ASS_2$  Decomp by  $A_2O$  (Nel-son, J pr (2) 14 30)  $A_2S_3+8H_2O$  (Nilson)  $A_3S_5+H_2O$  Insol in  $H_2O$  Slowly at-

tacked by hot HCl+Aq Sol in KOH+Aq(Nilson)

Silver sulpharsenite, 12Ag<sub>2</sub>S, As<sub>2</sub>S<sub>3</sub>

Ppt (Sommerlad, Z anorg 1898, 18 428 ̈)

 $5Ag_2S$ ,  $As_2S_3 = Ag_5AsS_4$  (Sommerlad)  $Ag_3AsS_3$  Min *Provstite* Sol in HNO Sol in HNO<sub>3</sub>+ Aq KOH+Aq dissolves out Sb<sub>2</sub>S<sub>3</sub> (Senarmont, A ch (3) 32 129, Wohler, A 27 159) 2Ag<sub>2</sub>S, As<sub>2</sub>S<sub>3</sub> Partially sol in HNO<sub>3</sub>+ Aq (Berzelius)

AgAsS<sub>2</sub> (Berzelius, Pogg 7 150)

Sodium sulpharsenite,  $NaAsS_2 + \frac{1}{2}H_2O$ 

Attacked by HCl+Aq with difficulty (Nilson, J pr (2) 14 37) +1½H<sub>2</sub>O Forms coagulum with cold, sol

in hot HO (Nilson)

 $Na_2As_4S + 6H_2O$  Sol in much  $H_2O$ , not easily decomp by HCl+Aq (Nilson)  $NaAs_3S_5 + 4H_9O$  Ppt (Nilson, J pr (2)

Strontium sulpharsenite, 3SrS, As<sub>2</sub>S<sub>3</sub>+ 15H<sub>2</sub>O

Sol in  $H_2O + Aq$  insol in alcohol (Voigt and Gottling) 2SiS, As S<sub>3</sub> Sol in HO, decomp by

alcohol +15H<sub>2</sub>O (Nilson, J pr (2) **14** 53) Sr(A<sub>2</sub>S) +2½H O Sl sol in H O

(Nilson)

Thallous sulpharsenite, 114sS<sub>2</sub>

Decomp by KOH+Aq (Gunning, J B **1868** 247)

Above compound is a mixture of As<sub>2</sub>S<sub>3</sub> and  $Tl_{0}S$ (Hawley, J Am Chem Soc 1907, **29** 1012)

Min Lorandite (Kuenner and Loezka, C C 1904, II 844)

Tin (stannous) sulpharsenite, Sn. As S  $_{
m Ppt}$ 

Tin (stannic) sulpharsenite SnAs S<sub>5</sub> Ppt (Berzelius, Pogg 7 147)

Uranic sulpharsenite, 2U<sub>2</sub>S<sub>3</sub>, As<sub>2</sub>S<sub>3</sub>

Zinc sulpharsenite Ppt (Berzelius, Pogg 7 145)

Zirconium sulpharsenite, 2Zr<sub>2</sub>S<sub>3</sub>, As<sub>2</sub>S<sub>3</sub>

Ppt Insol in solutions of alkali sulpharsenites Sl sol in Na<sub>2</sub>S Aq Not decomp by acids (Berzelius)

"Sulphatammon," 2NH3, SO3
(Rose)
Is ammonium imidosulphonate, which see
(Berglund)

"Parasulphatammon," 3NH<sub>3</sub>, 2SO<sub>3</sub>
(Rose)

Is basic ammonium imidosulphonate, which see (Berglund)

### Sulphatoiodic acid

Potassium sulphatoiodate, K<sub>2</sub>HO<sub>3</sub>SIO<sub>4</sub> or KIO<sub>3</sub>, KHSO<sub>4</sub>

Decomp by HO (Blomstrand, J pr (2) 40 317)

See Iodate sulphate, potassium

Sulphatooctamine cobaltic carbonate (SO<sub>4</sub>)<sub>2</sub>Co<sub>2</sub>(NH<sub>3</sub>)<sub>8</sub>CO<sub>3</sub>+4H<sub>2</sub>O

Sol in H<sub>2</sub>O (Vortmann and Blasberg, B 22 2650)

 $(SO_4)Co (NH_3)_8(CO_3)_2+3H_2O$  Sol in H O (V and B)

See Carbonatotetramine cobaltic sulphate (Jorgensen)

Sulphatoplatinamine sulphate, SO<sub>4</sub>Pt(NH<sub>3</sub>) SO<sub>4</sub>+3H<sub>2</sub>O Easily sol in H O Sol in H<sub>2</sub>SO<sub>4</sub>+Aq

Sulphatoplatind:amine sulphate, SO<sub>4</sub>Pt(N H<sub>6</sub>)<sub>2</sub>SO<sub>4</sub>+H<sub>2</sub>O Insol in H O

Sulphatopurpureocobaltic bromide,  $Co(SO_4)(NH_3)_5Br$ 

Sol in HO, from which it is precipitated by cone HBr+Aq (Jorgensen, J pr (2) **25** 94)

carbonate, [(SO<sub>4</sub>)Co(NH<sub>3</sub>)<sub>5</sub>]<sub>2</sub>CO<sub>3</sub>+
4H O

Sol in HO (Vortmann and Blasberg, B 22 2648)

---- chloroplatinate, 2Co(SO<sub>4</sub>)(NH<sub>8</sub>)<sub>5</sub>Cl, PtCl<sub>4</sub>+2H O

Sl sol in cold H<sub>2</sub>O (Jorgensen)

nitrate,  $Co(SO_4)(NH_3)_5(NO_3)$  Quite e Somewhat sl sol in cold  $H_2O$  (Jorgensen) 241 161)

Sulphatopurpureocobaltic sulphate, [Co(SO<sub>4</sub>)(NH<sub>3</sub>)<sub>5</sub>]<sub>2</sub>SO<sub>4</sub>+H<sub>2</sub>O

Very easily sol in H<sub>2</sub>O (Jorgensen, J pi (2) **25** 94)

Co(SO<sub>4</sub>)NH<sub>3</sub>)<sub>5</sub>(HSO<sub>4</sub>) +2H<sub>2</sub>O Sol 1 about 25 pts of cold H<sub>2</sub>O Sol in dil, inso in conc NH<sub>4</sub>OH+Aq (Jorgensen)

Sulphazic acid,  $H_4S_2N_2O_9 = SO_3H-N(OH)-O-N-(OH)SO_3H$ Known only in its salts (Raschig, A 241 161)

Potassium sulphazate,  $K_2HS_2N_2O_9 = (SO_3K)(OK)N-O-N(OH)-(SO_2K)$ Sol in  $H_2O$ , but decomp on standing (Raschig, A **241** 161)

Sulphazidic acid

(Fremy)
See Hydroxylamine monosulphonic acid.

Sulphazılınıc acıd See Oxysulphazotic acıd

Metasulphazılınıc acıd See Trısulphoxyazotıc acıd

Sulphazmous acid

(Fremy)
See Dihydroxylamine sulphonic acid

Sulphazotic acid,  $H_6N_2S_4O_{14} = (SO_3H)_8 \equiv NH -NO = OH(SO_3H)$ 

Known only in its salts (Claus, A 158 52 and 194) Has the formula

 $(SO_3H)_2NH<_O^O>NH(SO_3H)_2$ 

(Raschig, A 241 161)

Lead potassium sulphazotate

Insol in cold, decomp by hot  $H_2O$  Insol in alcohol and ether (Fremy, A ch (3) 15 439)

Potassium sulphazotate,  $K_0HN_2S_4O_{14}+H_2C$ =  $(SO_3K)_2NK < {0 \atop O} > NH(SO_3K)_2$ 

Very sol in hot, less in cold H<sub>2</sub>O (Ras chig, A **241** 161) Decomp gradually by boiling (Claus) Insol in alcohol or ether (Fremy, A ch (3) **15** 428)

True composition is  $HON(SO_3K)_2$   $KON(SO_3K)_2+H_2O$  Potassium hydroxyl amine disulphonate (Divers and Haga Chem Soc 1900, 77 432)

Forms basic salt

 $(SO_3K)_2NK<_O^{()}>NK(SO_3K)_2$ , which is easily sol and decomp by  $H_2O$  (Raschig)

Potassium sodium sulphazotate, K<sub>4</sub>NaHN<sub>2</sub>S<sub>4</sub>O<sub>14</sub>+2H<sub>2</sub>O

Quite easily sol in  $H_2O$  (Raschig, A 241 161)

Disulphhydroxyazotic acid, ONH(SO<sub>2</sub>H)<sub>3</sub>

Known only in its salts (Claus, A 158

Known only in its salts (Claus, A 158 52 and 194) Correct composition is hydroxylamine sulphonic acid HON(SO<sub>3</sub>H)<sub>2</sub>, which see (Raschig, A 241 161)

Sulphhydroxylamic acid

(Claus)
See Hydroxylamine monosulphonic acid

Disulphhydroxyazotic acid

(Claus)
See Hydroxylamine disulphonic acid

Sulphides

The sulphides of the alkali metals are sol in H<sub>2</sub>O, those of the alkali-earth metals are much less sol, and are decomp upon solution mto hydrosulphide and hydroxide

The other sulphides are insol in  $H_2O$ For each sulphide, see under the respective

element

Sulphimide, SO<sub>2</sub>NH See Imidosulphamide

Trisulphimide, OHSO NSO OH N (SO<sub>2</sub>NH)<sub>3</sub>

Sol in methyl alcohol, sl sol in ether, insol in chloroform and benzene (Hantzsch B 1901, **34** 3440)

Ammonium sulphimide,  $SO_2N(NH_4)$ Sol in  $H_2O$ , insol in alcohol (Traube)

Barium —,  $(SO_2N)_2Ba+2H_2O$ Sol in  $H_2O$  (Traube)

Potassium ——, SO<sub>2</sub>NK Not very sol in H<sub>2</sub>O

Silver —, SO,NAg

Sol in 500-600 pts cold, more easily in hot H<sub>2</sub>O Sol in acids

Sodium —, SO<sub>2</sub>NNa Very sol in H<sub>2</sub>O

"Sulphitammon," NH<sub>3</sub>, SO<sub>2</sub>
See Thionamic acid

Sulphobismuthous acid

Cuprous sulphobismuthite, AuBiS<sub>2</sub>

Min Emplectite Sol in HNO<sub>3</sub>+Aq

Cu<sub>3</sub>Bi<sub>4</sub>S<sub>3</sub> Min Klaprothite Completely
sol in HCl+Aq

Cu<sub>3</sub>B<sub>1</sub>S<sub>3</sub> Min Wittichenite Sol in HCl

+Aq and in HNO<sub>3</sub>+Aq

Cuprous lead sulphobismuthite, Cu<sub>2</sub>S, 2PbS,  $\mathrm{Bl}_2\mathrm{S}_3$ 

Min Patrinite
Sol in HNO<sub>3</sub>+Aq with residue of S and
PbSO<sub>4</sub>

Lead —, 2PbS, B<sub>12</sub>S<sub>3</sub> Min Cosalite 2PbS, 3B<sub>12</sub>S<sub>3</sub> Min Chinatrite

Potassium ----, KBiS

Decomp by H<sub>2</sub>O Sol in HCl+Aq (Schneider, Pogg 1869, 136 464)

Metasulphoboric acid, B2S3H25

Decomp by H<sub>2</sub>O and alcohol 1 pt is sol in 5 pts benzene 1 pt is " " 5 " CS<sub>2</sub> Very sl sol in CS<sub>2</sub> at-20° 1901, **34** 401)

Sulphocarbonic acid

Ammonium cuprous sulphocarbonate,  $CS_3CuNH_4$ 

This salt was formerly described as cupric sulphocarbonate ammonia, CS<sub>3</sub>Cu, NH<sub>3</sub> (Hofmann, B 1903, **36** 1146)

Cuprous potassium sulphocarbonate, CS<sub>\*</sub>CuK

Nearly insol in cold H O
Somewhat sol in hot H O, NaOH and
NH<sub>4</sub>OH+Aq (Hofmann)

Cupric sulphocarbonate ammonia, CS<sub>8</sub>Cu, NH<sub>8</sub>

Very sl sol in strong NH<sub>4</sub>OH+Aq, insol in cold H<sub>2</sub>O, sl sol in hot H O (Hofmann, Z anoig 1897, 14 295)

Is ammonium cuprous sulphocarbonate (Hofmann, B 1903, **36** 1146)

Cuprous sulphocarbonate potassium cyanide,  $\mathrm{CS}_3\mathrm{Cu}$  ,  $2\mathrm{KCN}\!+\!2\mathrm{H}$  O

Sol in H O and dil alkalies on warming (Hotmann, B 1903, 36 1148)

Zinc sulphocarbonate ammonia, CS<sub>3</sub>Zn, 2NH<sub>3</sub>

Ppt (Hofmann, Z anorg 1897, 14 277)

Sulphochromic acid, H, CrO4, SO3 (?)

Sol in  $\rm H_2O$  (Bolley, A **56** 113) (SO<sub>3</sub>)<sub>4</sub>Cr<sub>2</sub>O<sub>2</sub>(OH)<sub>2</sub> Sol in H O All salts even alkali salts are insol in  $\rm H_2O$  (Recoura, Bull Soc 1896, (3) **15** 315)

Chromium sulphochromate, Cr<sub>2</sub>O<sub>2</sub>(OH)<sub>4</sub>(SO<sub>2</sub>)<sub>4</sub>O<sub>2</sub>(OH)<sub>2</sub>Cr<sub>2</sub>(OH)<sub>6</sub>

Ppt , decomp by boiling  $\rm H_2O$  (Wyrouboff, Bull Soc 1902, (3)  $27\,$  720 )

### Sulphochromous acid

Ferrous sulphochromite, FeCr S4

Insol in  $H_2O$ , and nearly so in HCl+Aq (Groger, W A B 81, 2 531)

Manganous ——,  $MnCr_2S_4$ 

Insol in H<sub>2</sub>O and HCl+Aq (Groger)

Potassium ----, K2Cr2S4

Insol in H O and in hot HCl+Aq

Easily sol in aqua regia Slowly sol in cold, rapidly sol in hot dil HNO<sub>3</sub>+Aq (Milbauer, Z anorg 1904, **42** 443)

K<sub>2</sub>Cr<sub>4</sub>S<sub>7</sub> Stable in the air, sol in HNO<sub>3</sub> and aqua regia with decomp (Schneider, J pr 1897, (3) 56 407)

Silver —, Ag<sub>2</sub>Cr<sub>2</sub>S<sub>4</sub>

Not attacked by HCl+Aq even on heating Decomp by conc HNO<sub>3</sub> (Schneider, J pr 1897, (2) 56 401)

Sodium ---, Na Cr<sub>2</sub>S<sub>4</sub>

Insol in HO Sl attacked by dil HCl or HSO<sub>4</sub>+Aq Sol in cold conc HNO<sub>3</sub> or aqua regia Sol in hot dil HNO<sub>3</sub>+Aq (Groger)

Sol m acids with decomp (Schneider, J pr 1897, (3) 56 415)

Zinc ---, ZnCr<sub>2</sub>S<sub>4</sub>

Insol in H O, sol in traces in boiling conc HCl or dil  $H_2SO_4+Aq$ , sol in  $HNO_3+Aq$  (Groger, W A B 81, 2 531)

### Sulphocyanhydric acid, HSCN

Sol in HO

Sat HSCN+Aq has sp gr = 1 022 (Por rett, 1814) HSCN+Aq containing 12 7% HSCN has sp gr 1 040 at 12 7° (Hermes, Z Ch 1866 417)

### Sulphocyanides

Most sulphocyanides are sol in H O, but Cu, Pb, Hg, and Ag sulphocyanides are insol

### Aluminum sulphocyanide, Al(SCN)3

Known only in solution Al(SCN) (OH)<sub>4</sub> Known only in solution (Suida)

#### Aluminum potassium sulphocyanide, $K_3$ Al(SCN)<sub>6</sub>+4H O

Very hydroscopic

Sol in HO and alcohol (Rosenheim, Z anorg 1901, 27 302)

Ammonium sulphocyanide, NH<sub>4</sub>SCN

Deliquescent, and very sol in  $H_2O$  100 pts  $H_2O$  dissolve 128 1 pts at 0° and

162 2 pts at 20°
NH<sub>\*</sub>SCN+Aq sat at ord temp has

density of 1 138 and 100 cc contains 69 16 g NH<sub>4</sub>SCN (Klason, J pr 1887, (2) 36 67) By dissolving 90 g NH<sub>4</sub>SCN in 90 g H<sub>2</sub>O at 17° the temp falls to —12° (Clowes, Z

at 17°, the temp falls to -12° (Clowes, Z Ch 1866 190) 133 pts NH<sub>4</sub>SCN+100 pts H<sub>2</sub>O at 13.9°

133 pts NH<sub>4</sub>SCN+100 pts H<sub>2</sub>O at 13 2° lower the temp 31 2° (Rudorff, B 2 68) Sol in liquid SO<sub>2</sub> (Walden, B 1899, 32

Difficultly sol in AsBr<sub>3</sub> (Walden, Z anorg 1902, **29** 374)

Very easily sol in liquid NH<sub>8</sub> (Franklin,

Am Ch J 1898, 20 826) Easily sol in alcohol

Easily sol in acetone (Krug and M'Eiroy Sl sol in benzonitrile (Naumann, B 1914, 47 1369)

Sol in methyl acetate (Naumann, B 1909, 42 3789)

Difficultly sol in ethyl acetate (Nau mann, B 1910, 43 314)

Ammonium bismuth sulphocyanide, (NH<sub>4</sub>)<sub>3</sub>B<sub>1</sub>(SCN)<sub>3</sub>

As K salt (Rosenheim and Vogelgesang Z anorg 1906, 48 215)

Ammonium cadmium sulphocyanide,  $(NH_4)_2Cd(SCN)_4+2H_2O$ 

Somewhat deliquescent
Melts in crystal H<sub>2</sub>O at 25°
Insol in elcohol (Grossmann

Insol in alcohol (Grossmann, B 1902 **35** 2667)

 $\begin{array}{cccc} \textbf{Ammonium} & \textbf{cadmium} & \textbf{molybdenyl} & \textbf{sulpho} \\ \textbf{cyanide,} & NH_4SCN, & Cd(SCN)_{2_1} \\ Mo(OH)(SCN)_3 + 3H_2O & \end{array}$ 

(Maas and Sand, B 1908, 41 1513)

# Ammonium cobaltous sulphocyanide, $(NH_4)_2Co(SCN)_4$

Decomp in moist air Cannot be recryst from H<sub>2</sub>O (Treadwell

Z anorg 1901, 26 109) +4H<sub>2</sub>O Sol in H<sub>2</sub>O

Sol in methyl, ethyl and amyl alcohol in acetone and in ether + Aq

Can be recryst from H<sub>2</sub>O or alcohol with out decomp (Rosenheim and Cohn, Z anorg 1901, 27 289)

#### Ammonium iron (ferric) sulphocyanide, 9NH<sub>4</sub>SCN, Fe(SCN)<sub>8</sub>+4H<sub>2</sub>O

Deliquescent, and sol in H<sub>2</sub>O (Kruss and Moraht, A **260** 207)
3NH<sub>4</sub>SCN, Fe(SCN)<sub>3</sub> Extremely deli

quescent

### Ammonium mercuric sulphocyanide, 2NH<sub>4</sub>SCN, Hg(SCN)<sub>2</sub>

Easily sol in  $\mathrm{H}_2\mathrm{O}$  (Fleischer, A 179 228)

NH4Hg(SCN)3 Insol in cold, sol in hot H<sub>2</sub>O (Rosenheim, Z anorg 1901, 27 284)

Ammonium molybdenyl sulphocyanide, 3NH<sub>4</sub>SCN, Mo(OH)(SCN)<sub>3</sub>+3H<sub>2</sub>O (Sand and Maas, B 1907, 40 4507)

Ammonium nickel sulphocyanide.  $(NH_4)_4N_1(SCN)_6+4H_2O$ 

Sol in H<sub>2</sub>O with decomp Sl sol m cold, easily sol in hot alcohol (Rosenheim, Z anorg 1901, **27** 292)

Ammonium silver sulphocyanide, NH4SCN, AgSCN

Decomp by H<sub>2</sub>O

Ammonium vanadium sulphocyanide, V(SCN)<sub>3</sub>, 3NH<sub>4</sub>SCN+4H<sub>2</sub>O

Sol in H<sub>2</sub>O, sol in alcohol, sl sol in ether (Clocci, Z anorg 1898, 19 311)

Ammonium vanadyl sulphocyanide,  $(NH_4)_2VO(SCN)_4 + 5H_2O$ 

Sol in  $H_2O$ , alcohol, ether, acetone, amyl alcohol and ethyl acetate (Koppel, Z anorg 1903, **36** 290)

Ammonium zinc sulphocyanide,  $(NH_4)_2Zn(SCN)_4+3H_2O$ 

Easily sol in H<sub>2</sub>O and in alcohol (Walden,

Z anorg 1900, 23 374) +4H<sub>2</sub>O Easily sol in cold H<sub>2</sub>O, acetone, alcohols and ether (Rosenheim and Huldschinsky, B 1901, 34 3913)

Ammonium sulphocyanide mercuric bromide, NH<sub>4</sub>SCN, HgBr<sub>2</sub>

Very sol ın H₂O

Sol in alcohol (Grossmann, B 1902, 35

2NH<sub>4</sub>SCN, HgBr<sub>2</sub>+H<sub>2</sub>O Somewhat deliquescent Very sol in H<sub>2</sub>O

Sol in alcohol (Grossmann)

Arsenic sulphocyanide, As(SCN)<sub>3</sub>

Decomp by HO Insol in all ordinary solvents (Miguel A ch (5) 11 341)

Barium sulphocyanide, Ba(SCN)<sub>2</sub>+2H<sub>2</sub>O

Deliquescent Easily sol in H<sub>2</sub>O and Boiling solution in alcohol contains 32.8% anhydrous salt Solution sat at 20° contains 30% (Tscherniak, B 16 349) Cryst with 3H<sub>2</sub>O (Tscherniak, B 25 2627)

Barium cadmium sulphocyanide,  $4Ba(SCN)_2$ ,  $Cd(SCN)_2+10H_2O$ 

Deliquescent (Grossmann, B 1902, 36 2669)

Barium cæsium cuprous sulphocyanide, Ba(SCN)<sub>2</sub>, 3CsSCN, 2CuSCN

Rapidly decomp by H<sub>2</sub>O (Wells, Am Ch J 1902, **28** 273)

Barium cæsium silver sulphocyanide, Ba(SCN)<sub>2</sub>, 3CsSCN, 2AgSCN 100 pts H<sub>2</sub>O dissolve 92 pts at 19° Decomp by much H<sub>2</sub>O (Wells, Am Ch J 1902, **28** 272)

Barium cobaltous sulphocyanide, BaCo(SCN)<sub>4</sub>+8H<sub>2</sub>O

 $\mathbf{Ppt}$ (Rosenheim, Z anorg 1901, 27 290 )

Barium mercuric sulphocyanide, BaHg(SCN)<sub>4</sub>

Very sol in H<sub>2</sub>O and in alcohol (Rosenheim, Z anorg 1901, **27** 286) Ba Hg(SCN)<sub>3</sub>]<sub>2</sub>+2H<sub>2</sub>O Ppt

Nearly insol in cold, easily sol in hot H<sub>2</sub>O (Rosenheim )

Barium potassium silver sulphocyanide, Ba(SCN)<sub>2</sub>, 4KSCN, 2AgSCN+H<sub>2</sub>O

Very sol in a little H<sub>2</sub>O Decomp by much  $H_2O$  (Wells, Am Ch J 1902, 28) 283)

Barium rubidium silver sulphocyanide,  $BaRb_2Ag_2(SCN)_6 + 2H_2O$ 

Very sol in H<sub>2</sub>O (Wells, Am Ch J 1903, **30** 186)

BaRb<sub>4</sub>Ag<sub>2</sub>(SCN)<sub>8</sub>+H O Sol in  $H_2O$ (Wells)

Barium silver sulphocyanide, Ba(SCN)<sub>2</sub>,  $2AgSC + 2H_2O$ 

Stable in the air (Wells, Am Ch J 1902, **28** 269)

Barium zinc sulphocyanide, BaZn(SCN)4 +3H<sub>2</sub>O

Easily sol in alcohol (Walden, Z anorg 1900, **23** 374)

Barium sulphocyanide mercuric bromide, Ba(SCN),  $2HgBr_2+5H_2O$ 

Very sol in HO (Giossmann, Z anorg 1903, **37** 420)

Bismuth sulphocyanide, basic,  $B_1(OH)(SCN) + 5HO$ 

(Rosenheim and Vogelgesang, Z anorg

1906, **48** 214) B1(SCN)<sub>3</sub>, 2B<sub>1</sub>,O<sub>3</sub> Insol in H<sub>2</sub>O, but when recently pptd decomp by boiling therewith Insol in HSCN + Ag (Meitzendorf)

Bismuth sulphocyanide, Bi(SCN)<sub>3</sub>

Sol in HNO<sub>3</sub>, Insol or sl sol in H<sub>2</sub>O HCl, and HSCN+Aq (Meitzendorf, Pogg **56** 83)

Decomp by cold H<sub>2</sub>O (Bender, B 20 723) +14H<sub>2</sub>O Extremely deliquescent Decomp by H<sub>2</sub>O (Rosenheim and Vogelgesang, Z anorg 1906, 48 214)

### Bismuth potassium sulphocyanide, KaBi(SCN)6

Decomp by H<sub>2</sub>O (Rosenheim and Vogelgesang, Z anorg 1906, 48 215)

Not hydroscopic Decomp by H<sub>2</sub>O Easily sol in alcohol (Vanino, Z anorg 1901, 28 220) B<sub>1</sub>(SCN)<sub>3</sub>, 9KSCN Decomp by H<sub>2</sub>O Very hydroscopic Sol malcohol (Vanino, Z anorg 1901, **28** 221)

### Bismuth sodium sulphocyanide, Na<sub>3</sub>B<sub>1</sub>(SCN)<sub>6</sub>

As K salt (Rosenheim and Vogelgesang, Z anorg 1906, 48 215)

Boron sulphocyanide, B(SCN)<sub>3</sub> Sol in benzene and ether (Cocksedge, Chem Soc 1908, (2) 93 217)

Cadmium sulphocyanide, Cd(SCN)<sub>2</sub> Sl sol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq with combination

### Cadmium cæsium sulphocyanide, CsCd(SCN)<sub>3</sub>

Recryst from H<sub>2</sub>O (Wells, Am Ch J 1903, **30** 148) Cs<sub>4</sub>Cd(SCN)<sub>6</sub>+2H<sub>2</sub>O Very sol in H<sub>2</sub>O Can be recryst from conc solution but decomp on dilution to CsCd(SCN)<sub>3</sub> (Wells)

Cadmium cæsium silver sulphocyanide, Cs CdAg (SCN)<sub>6</sub>

(Wells) +2HO (Wells) (s  $CdAg_4(SCN)_8+2H_2O$  (Wells)  $Cs_4Cd_3Ag_{10}(SCN)_3+6H_2O$  (Wells)

Cadmium mercuric sulphocyanide, Cd(SCN)2, Hg(SCN)

Very sol in hot H<sub>2</sub>O (Grossmann, Z anorg 1903, 37 414)

Cadmium molybdenum sulphocyanide, Cd(SCN)<sub>2</sub>, Mo(SCN)<sub>4</sub>+2H O (Maas and Sand, B 1908, 41 1513) +3HO (Maas and Sand)

cyanide, KSCN, 4Cd(SCN)2. 3Mo(OH)(SCN)<sub>3</sub>+18H<sub>2</sub>O (Mass and Sand, B 1908, 41 1513) Cadmium molybdenyl sulphocyanide am monia, 3Cd(SCN)2, 2Mo(OH)(SCN) 13NH<sub>3</sub>

(Mass and Sand, B 1908, 41 1512) +2H<sub>2</sub>O (Maas and Sand)

Cadmium potassium sulphocyanide. K<sub>2</sub>Cd(SCN)<sub>4</sub>+2H<sub>2</sub>Ō

Very sol in H<sub>2</sub>O (Grossmann, B 190) **35** 2668)

Cadmium rubidium sulphocyanide. Rb<sub>2</sub>Cd(SCN)<sub>4</sub>+2H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Grossmann, B 190) **35** 2668)

Cadmium sodium sulphocyanide, NaCd(SCN)<sub>3</sub>+3H<sub>2</sub>O (Grossmann, B 1902, **35** 2668)

Cadmium sulphocyanide ammonia, Cd(SCN)  $NH_{s}$ 

(Grossmann, B 1902 Decomp by H<sub>2</sub>O **35** 2666 Cd(SCN)2, 2NH3 Decomp by pure H2C (Grossmann)

Cadmium sulphocyanide ammonium bromide  $Cd(SCN)_2$ ,  $NH_4Br+H_2O$ 

Can be recryst from H<sub>2</sub>O Decomp 1 dil solution (Grossmann, Z anorg 190 **37** 425) Cd(SCN)2, 2NH4Br Easily splits o

NH₄Br (Grossmann)

Cadmium sulphocyanide ammonium chloride Cd(SCN)<sub>2</sub>, 2NH<sub>4</sub>Cl

Can be recryst from H<sub>2</sub>O Decomp in di solution (Grossmann, Z anorg 1903, 3, 423)

Cadmium sulphocyanide potassium bromide Cd(SCN)<sub>2</sub>, KBr+H<sub>2</sub>O

Recryst from H<sub>2</sub>O (Grossmann, Z anorg 1903, **37** 425) Cd(SCN)<sub>2</sub>, 2KBr Recryst from H<sub>2</sub>C (Grossmann)

Cadmium sulphocyanide potassium chloride Cd(SCN)<sub>2</sub>, 2KCl

Recryst from H<sub>2</sub>O Decomp in dil solu tion (Grossmann, Z anorg 1903, **37** 423)

Cadmium sulphocyanide potassium iodide Cd(SCN)<sub>2</sub>, 2KI Recryst from H<sub>2</sub>O (Grossmann)

Cadmium molybdenyl potassium sulpho- Cæsium calcium silver sulphocyanide, 2CsSCN, Ca(SCN)<sub>2</sub>, 2AgSCN+2H<sub>2</sub>O Recryst from H<sub>2</sub>O (Wells, Am Ch 1902, 28 275)

Cæsium chromium sulphocyanide
See Chromisulphocyanide, cæsium

Cæsium cobaltous sulphocyanide,  $C_{\rm S_2C_0(SCN)_4} + 2H_2O$ 

Stable in the air (Shinn and Wells, Am Ch J 1903, 29 476)

Cæsium cobaltous silver sulphocyanide, Cs<sub>2</sub>CoAg<sub>2</sub>(SCN)<sub>6</sub>+2H<sub>2</sub>O

Slowly attacked by  $\rm H_2O$ , decomp by boiling  $\rm H_2O$  Very sl sol in CsSCN or  $\rm Co(SCN)_2$  +Aq (Shinn and Wells, Am Ch J 1903, 29 478)

Cæsium cuprous sulphocyanide, CsSCN, CuSCN

 $\rm H_2O$  separates CuSCN (Roberts, Am Ch J 1902, **28** 262)

Cæsium cuprous nickel sulphocyanide, 2CsSCN, Ni(SCN)<sub>2</sub>, 2CuSCN+2H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Roberts and Wells, Am Ch J 1902, **28** 277)

Cæsium cuprous strontium sulphocyanide,  $3C_8SCN,\,2CuSCN,\,Sr(SCN)_2$ 

As Ba salt (Wells, Am Ch J 1902, 28 275)

Cæsium magnesium silver sulphocyanide, 2CsSCN, Mg(SCN)<sub>2</sub>, 2AgSCN+2H<sub>2</sub>O As Ca comp (Wells, Am Ch J 1902, **28** 275)

Cæsium manganous silver sulphocyanide,  ${\rm Cs_2MnAg_2(SCN)_6+2H_2O}$ 

Rather sl sol in H<sub>2</sub>O (Wells)

Cæsium mercuric sulphocyanide, CsSCN,  $Hg(SCN)_2$ 

Sl sol in hot HO (Bristol and Wells, Am Ch J 1902, 28 260)

Cæsium mercuric sulphocyanide, 2CsSCN,  $Hg(SCN) \circ +H_2O$ 

Moderately sol in  $H_2O$ , especially when warm Recryst without decomp (Bristol and Wells, Am Ch J 1902, **28** 260)

Cæsium nickel silver sulphocyanide,  $Cs_2N_1Ag_2(SCN)_6+2H_2O$ 

Slowly decomp by hot  $H_2O$  (Wells, Am Ch J 1902, 28 277)

Cæsium silver sulphocyanide, CsSCN,  $_{\mbox{\scriptsize AgSCN}}$ 

Easily forms supersat solution (Wells, Am Ch J 1902, 28 264)

2CsSCN, AgSCN Stable in the air (Wells)

3CsSCN, AgSCN Stable in the air (Wells)

Cæsium silver strontium sulphocyanide, 3CsSCN, 2AgSCN, Sr(SCN)<sub>2</sub> As Ba comp (Wells)

Cæsium silver zinc sulphocyanide, CsZnAg(SCN)<sub>4</sub>+H<sub>2</sub>O

(Wells)

Cs<sub>2</sub>ZnAg(SCN)<sub>5</sub> Ppt Stable in the air (Wells)

CsZn<sub>2</sub>Ag<sub>3</sub>(SCN)<sub>8</sub> Decomp by cold, more rapidly by hot H<sub>2</sub>O (Wells)

 $CsZn_2Ag_4(SCN)_9$  Slowly decomp by  $H_2O$  (Wells)

Cæsium zinc sulphocyanide,  $Cs_2Zn(SCN)_4+2H_2O$ 

Moderately sol in  $\rm H_2O$  and can be recryst therefrom  $\rm \ (Wells\ )$ 

Calcium sulphocyanide, Ca(SCN)<sub>2</sub>+3H<sub>2</sub>O
Deliquescent Very sol in H<sub>2</sub>O and alcohol

Calcium silver sulphocyanide, Ca(SCN)<sub>2</sub>, 2AgSCN+2H<sub>2</sub>O (Wells)

Calcium stannic sulphocyanide,  $CaSn(SCN)_{\delta}$ +7 $H_2O$ 

Very sol in H<sub>2</sub>O Can be recryst therefrom Sol in alcohol and acetone (Weinland and Bames, Z anorg 1909, **62** 258)

Cerous sulphocyanide, Ce(SCN)<sub>3</sub>+7H<sub>2</sub>O
Deliquescent Sol in H O and alcohol
(Jolin, Bull Soc (2) **21** 534)

Chromous sulphocyanide with MSCN See Chromosulphocyanide, M

Chromic sulphocyanide, Cr(SCN)3

Deliquescent, and sol in H O Somewhat sol in organic solvents (Speransky, C C **1897**, I 141

See also Chromisulphocyanhydric acid

Chromic sulphocyanide uith MSCN See Chromisulphocyanide, M

Cobaltous sulphocyanide,  $Co(SCN) + \frac{1}{2}H$  O Sol in H<sub>2</sub>O and alcohol, also in ether Sol in liquid SO<sub>2</sub> (Walden, B 1899, **32** 2864)

Sol in acetone (Krug and M'Elroy) Sol in methyl acetate (Naumann, B 1909, **42** 3790)

+3H<sub>2</sub>O Sol in H<sub>2</sub>O and in alcohol (Rosenheim and Cohn, Z anorg 1901, 27 288)

Cobaltous mercuric sulphocyanide, Co(SCN)<sub>2</sub>, Hg(SCN)<sub>2</sub>

Very sl sol in H<sub>2</sub>O and dil HCl+Aq Easily sol in HNO<sub>3</sub>+Aq (Cleve, J pr 91 227) Cobaltous potassium sulphocyanide, Cok<sub>2</sub>(SCN)<sub>4</sub>

Decomp by H<sub>2</sub>O (Treadwell, Z anorg

1901, 26 109 Sol in H<sub>2</sub>O Sol in methyl,  $+4H_2O$ ethyl and amyl alcohol, in acetone and in Can be recryst\_ from H2O or ether+Aq (Rosenheim and alcohol without decomp Cohn, Z anorg 1901, 27 289)

Cobaltous silver sulphocyanide, CoAg(SCN)<sub>3</sub> +2H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Shinn and Wells, Am

Ch J 1903, 29 476) Ag<sub>2</sub>Co(SCN)<sub>4</sub> Almost insol in H<sub>2</sub>O and ın alcohol (Rosenheim, Z anorg 1901, 27 291)

Cobaltous sodium sulphocyanide,  $Na_{2}C_{0}(SCN)_{4}+8H_{2}O$ 

Sol in H<sub>2</sub>O and in alcohol (Rosenheim)

Cobaltous sulphocyanide ammonia, Co(SCN)<sub>2</sub> 2NH<sub>3</sub> and Co(SCN)<sub>2</sub>, 6NH<sub>3</sub>

(Peters, B 1908, **41** 3178)

Co(SCN)2, 4NH3 Sol in H2O and alcohol (Sand, B 1903, 36 1439)

Cobaltous sulphocyanide mercuric chloride 2Co(SCN)<sub>2</sub>, 2HgCl<sub>2</sub>

(Hantzsch and Shibata, Z anorg 1912, 7 320

2Co(SCN)<sub>2</sub>, 3HgCl<sub>2</sub> Easily decomi (Hantsch and Shibata)

Cuprous sulphocyanide, CuSCN

1 l H<sub>2</sub>O at 18° dissolves 0 004 mg mol or 05 mg CuSCN (Kohlrausch and Rose Z phys Ch 1893, 12 241)

Insol in dil accome in warm cone HCl+Aq Decomp by con H<sub>2</sub>SO<sub>4</sub> or HNO<sub>3</sub>+Aq Sol with combination in KSCN+Aq Insol in KSCN+Aq than 1 Less sol in H<sub>2</sub>SO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>+Aq than 1 HNO<sub>2</sub> (Kuhn, Ch Z 1908, **32** 1056) Sol in Fe<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+Aq (Johnson, J Sol

Sol m Fe<sub>2</sub>(SO<sub>4/3</sub> Chem Ind 1889, 8 603)

KSCN+Aq (85-90 g in 50 g H<sub>2</sub>O) du

CuSCN (Thurnauer, B 189)

Sol in ether (Skey, C N 1867, 16 201 Cupric sulphocyanide, Cu(SCN)<sub>2</sub>

Decomp by H<sub>2</sub>O to cuprous salt Sol 1 warm HCl, H2SO4, or HNO3+Aq Sol 1 MSCN+Aq, but solutions decomp by dilt tion Sol in NH<sub>4</sub>OH+Aq

### Solubility in NH<sub>4</sub>OH+Aq at 25° and at 40° At 25°

|                                                                                                 | One gr                                                                                 | One gram of solution contains                                                          |                                                                                        |                                                                                  | I_O dissolve                                                           | Composition of solid                                                                                               |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Sp gr 25°/25                                                                                    | g NH3                                                                                  | g Cu(SCN)                                                                              | g HO                                                                                   | Mols NH3                                                                         | Mols<br>Cu(SCN) <sub>2</sub>                                           | salt in contact with<br>solution                                                                                   |
| 0 99853<br>0 99871<br>1 00703<br>1 01336<br>1 01506<br>1 01705<br>1 02132<br>1 01661<br>1 00816 | 0 2147<br>0 1655<br>0 0993<br>0 0639<br>0 0535<br>0 0426<br>0 0250<br>0 0198<br>0 0079 | 0 1522<br>0 1124<br>0 0798<br>0 0659<br>0 0622<br>0 0596<br>0 0511<br>0 0408<br>0 0245 | 0 6331<br>0 7221<br>0 8209<br>0 8702<br>0 8843<br>0 8978<br>0 9239<br>0 9394<br>0 9676 | 358 04<br>242 02<br>127 76<br>77 51<br>64 05<br>50 21<br>28 55<br>22 27<br>18 61 | 24 09<br>15 60<br>9 74<br>7 59<br>7 04<br>6 65<br>5 55<br>4 35<br>2 54 | $\left.\begin{array}{c} \text{Cu(SCN)}_{2,}^{r}4\text{NH} \\ \\ \text{Cu(SCN)}_{2}, 2\text{NH} \end{array}\right.$ |

At 40°

#### 0 1802 0 1976 0 6222 306 28 31 83 0 1398 0 1658 0 6944 213 10 23 93 0 0758 0 1299 0 7943 101 00 16 38 Cu(SCN), 4NH 70 59 0 0aa0 0 1207 0 8243 14 67 0 0435 0 1178 0 8388 54 82 14 07 0.03520 0876 0 8772 42 5310 00 0 0257 0 0655 0 9088 30 00 7 22 0 0418 0 0177 0 9405 19 86 4 46 Cu(SCN)2, 2NH

10 31

(Horn, Am Ch J 1907, 37 471)

0 9625

Insol in methyl acetate 1909, 42 3790)

0 0094

0 0281

(Naumann, B | Cuprocupric sulphocyanide, Cu(SCN)<sub>2</sub>,  $Cu_2(SCN)_2$ 

2 93

Not attacked by hot HCl+Aq Insol 11 KSCN+Aq

Cupric mercuric sulphocyanide, CuHg(SCN)<sub>4</sub>
Almost insol in cold H<sub>2</sub>O and in alcohol,
sl sol in boiling H<sub>2</sub>O (Rosenheim, Z anorg
1901, 27 286)

Cuprous potassium sulphocyanide, CuSCN, 6KSCN

Deliquescent Decomp by  $H_2O$  (Thurnauer, B 1890, 23 770)

Cuprous sulphocyanide ammonia,  $Cu_2(SCN)_2$ ,  $2NH_2$ 

Decomp in the air (Richards, Z anorg 1898, 17 247)

Cu<sub>2</sub>(SCN)<sub>2</sub>, 5NH<sub>3</sub> Very unstable in the air (Richards)

Cupric sulphocyanide ammonia, Cu(SCN)<sub>2</sub>, 2NH<sub>2</sub>

Sol in little H<sub>2</sub>O, but decomp by dilution with ppth of basic salt Sol in NH<sub>4</sub>OH+Aq By long standing a small amount dissolves in H<sub>2</sub>O with separation of CuSCN (Litterscheid, Arch Pharm 1901, 239 337)

Insol in H<sub>2</sub>O Sol in H<sub>2</sub>O containing a small amount of ammonia (Horn, Am Ch J 1907, **37** 477)

Cu(SCN)<sub>2</sub>, 4NH<sub>3</sub> Very unstable in the

Sol in H<sub>2</sub>O, but decomp by much H<sub>2</sub>O with pptn of a basic salt (Horn)

100 pts N/10 NH<sub>4</sub>OH+Aq dissolve 104 pts anhydrous salt at 25° (Pudschies, Dissert)

Loses NH<sub>3</sub> in the air Sol in H<sub>2</sub>O (Kohlschutter, B 1904, **37** 

1156)
Decomp in the air and by H<sub>2</sub>O and dil and cone acids, sol in cold cone HNO<sub>3</sub> and NH<sub>4</sub>OH+Aq Sol in boiling cone HCl (Richards, Z anorg 1898, **17** 250)

Didymium sulphocyanide,  $D_1(SCN)_3+6H_2O$ Deliquescent, and sol in  $H_2O$ 

Erbium sulphocyanide, Er(SCN)<sub>3</sub>+6H<sub>2</sub>O Deliquescent Sol in H<sub>2</sub>O (Hoglund)

Glucinum sulphocyanide, Gl(SCN)<sub>2</sub> (?) Sol in H<sub>2</sub>O (Hermes, J pr **97** 465)

Gold (aurous) potassium sulphocyanide, AuSCN, KSCN

Easily sol in H<sub>2</sub>O, less in absolute alcohol (Cleve, J pr 94 16)

Gold (aurous) potassium sulphocyanide ammonia, KAu(SCN)<sub>2</sub>, 5NH<sub>3</sub> (Peters, B 1908, 41 3178)

Gold (auric) potassium sulphocyanide ammonia, KAu(SCN)<sub>4</sub>, 4NH<sub>3</sub> (Peters)

Gold (aurous) silver sulphocyanide, AuSCN, AgSCN

Insol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq

Gold (auric) potassium sulphocyanide Sol in H<sub>2</sub>O, alcohol, and ether (Cleve)

Gold (aurous) sulphocyanide ammonia, AuSCN, NH<sub>3</sub>

Very sl sol in cold, decomp by hot H<sub>2</sub>O

Iron (ferrous) sulphocyanide,  $Fe(SCN)_2 + 3H_2O$ 

Very sol in H<sub>2</sub>O, alcohol, or ether Sol in acetone (Krug and M'Elroy)

Iron (ferric) sulphocyanide, Fe(SCN)<sub>3</sub>+3H<sub>2</sub>O

Deliquescent Very sol in H<sub>2</sub>O, alcohol, or ether Ether extracts the salt from Fe(SCN)<sub>3</sub>+Aq Decomp by much H<sub>2</sub>O if pure Not decomp by monobasic acids, but cone H<sub>2</sub>SO<sub>4</sub>, and H<sub>3</sub>PO<sub>4</sub>, also oxalic, tartaric, malic, etc, acids destroy the colour

Iron (ferric)lithium sulphocyanide, Fe(SCN) ,  $9L_1SCN + 4H_2O$ 

More deliquescent than the other ferric sulphocyanides (Kruss and Moraht)

Iron (ferrous) mercuric sulphocyanide, Fe(SCN), Hg(SCN)<sub>2</sub>+2H<sub>2</sub>O

 $igg|_{ ext{pr}}$  Moderately sol in hot  $ext{H}_2 ext{O}$  (Cleve,  $extbf{J}$  pr 91 227)

Iron (ferric) potassium sulphocyanide, Fe(SCN)<sub>3</sub>, 3KSCN+xH<sub>2</sub>O

Extremely deliquescent, and sol in H<sub>2</sub>O (Kruss and Moraht)

Fe(SCN)<sub>8</sub>, 9KSCN+4H<sub>2</sub>O Hygroscopic Sol in H<sub>2</sub>O without decomp anhydrous ether, but decomp by ether containing traces of H<sub>2</sub>O into Fe(SCN)<sub>8</sub> and KSCN (Kruss and Moraht, A **260** 204)

Iron (ferrous) sodium sulphocyanide,  $Na_4Fe(SCN)_6+12H_2O$ 

Sol in  $H_2O$  and alcohol (Rosenheim, Z anorg 1901, 27 299)

Iron (ferric) sodium sulphocyanide, Fe(SCN)<sub>3</sub>, 9NaSCN+4H<sub>2</sub>O

Less deliquescent than the corresponding NH<sub>4</sub> or K salt (Kruss and Moraht)

 $Na_{2}Fe(SCN)_{6}+12H_{2}O$  (Rosenheim, Z anorg 1901, 27 297)

Lanthanum sulphocyanide, La(SCN)<sub>3</sub>+7H<sub>2</sub>O

Deliquescent, sol in H<sub>0</sub>O (Cleve)

Lead sulphocyanide, basic, 6PbO, Pb(SCN)<sub>2</sub>+2H<sub>2</sub>O Ppt Pb(SCN)<sub>2</sub>, PbO+H<sub>2</sub>O Insol in H<sub>2</sub>O (Stromholm, Z anorg 1904, 38 440) Lead sulphocyanide, Pb(SCN)2

Nearly insol in cold, decomp by boiling  $H_2O$  (Liebig)

Sl sol in H<sub>2</sub>O 45×10 <sup>1</sup> g are dissolved in 1 liter of sat solution at 20° (Bottger, Z phys Ch 1903, 46 603)

 $\begin{array}{ccc} \textbf{Lead} & \textbf{sulphocyanide} & \textbf{bromide,} & \textbf{Pb}(SCN)_2, \\ & & 8\textbf{PbBr}_2 \\ \end{array}$ 

(Grissom and Thorp, Am Ch J 10 219)

Lead sulphocyanide chloride, PbSCNCl

Sl sol in cold, easily sol in hot  $\rm H_2O$  (Murtry, Chem Soc 55 50) Sol in  $\rm H_2O$  (Grissom and Thorp, Am Ch J 10 229)

Lead sulphocyanide iodide, 3Pb(SCN)<sub>2</sub>, PbI<sub>2</sub>
Sol in H<sub>2</sub>O (Grissom and Thorp, Am
Ch J 10 229)

Lithium sulphocyanide, LiSCN

Very deliquescent Sol in H<sub>2</sub>O and alcohol (Hermes, Z Ch 1866 417) Sol in methyl acetate (Naumann, B

1909, 42 3789)

 $\begin{array}{ll} \textbf{Magnesium} & \textbf{sulphocyanide,} & \textbf{Mg}(SCN)_2 + \\ & 4H_2O \end{array}$ 

Deliquescent Easily sol in  $H_2O$  and alcohol

Magnesium stannic sulphocyanide, MgSn(SCN)<sub>6</sub>+6H<sub>2</sub>O

Hygroscopic Sol in H<sub>2</sub>O, alcohol and acetone (Weinland and Bames, Z anorg 1909, **62** 258)

 $\begin{array}{ll} \mbox{Manganous} & \mbox{sulphocyanide,} & \mbox{Mn(SCN)}_2 + \\ 3 \mbox{H}_2 \mbox{O} & \end{array}$ 

Deliquescent Easily sol in  $H_2O$  and alcohol

Mercurous sulphocyanide, Hg<sub>0</sub>(SCN)<sub>2</sub>

Insol in H<sub>2</sub>O Sol in hot HCl+Aq
Slowly decomp by hot acus rooms. Sol in

Slowly decomp by hot aqua regia Sol m hot KSCN+Aq

Mercuric sulphocyanide, basic,  $Hg(SCN)_2$ , 3HgO

Insol in H<sub>2</sub>O Easily sol in HCl+Aq Insol in H SO<sub>4</sub> or HNO<sub>3</sub>+Aq (Fleischer) Hg(SCN)<sub>2</sub>, 2HgO Insol in H<sub>2</sub>O Sl attacked by acids (Claus, J pr **15** 401)

Mercuric sulphocyanide,  ${\rm Hg(SCN)_2}$ 

Very sl sol in cold, much more easily in hot HO Easily sol in dil HCl+Aq (Crookes, Chem Soc 4 18)
Solubility in H<sub>2</sub>O=0 00218 mol in 1 1

(Grossmann, Z anorg 1904, 43 358)

More sol in H<sub>2</sub>O than in alcohol (Peters, B 1908, 41 3180)

Very sl sol in H<sub>2</sub>O at 25° Apprecial sol only in boiling H<sub>2</sub>O (Jander, Disse 1902)

Sol m Hg(NO<sub>3</sub>)<sub>2</sub> or KSCN+Aq, also NH<sub>4</sub>Cl+Aq Sol m many sulphocyanu +Aq

Easily sol in cold HCl, NH<sub>4</sub>Cl, KCl BaCl<sub>2</sub>+Aq (Hermes, J pr 1866, (1)

Very sol in liquid NH<sub>3</sub> (Franklin, A Ch J 1898, **20** 829)

Sl sol in benzomtrile (Naumann, 1914, 47 1369)

Mercuric hydrogen sulphocyanide, Hg(SCN)<sub>2</sub>, 2HSCN

Easily decomp (Hermes, Dissert 186 Mercuric nickel sulphocyanide, Hg(SCN

N<sub>1</sub>(SCN)<sub>2</sub>+2H<sub>2</sub>O

Moderately sol in hot H<sub>2</sub>O (Cleve, pr 91 227)

Very sol in MSCN+Aq (Orloff, C 1906, I 1411)

Mercuric potassium sulphocyanide,  $\mathrm{Hg}(\mathrm{SCN})_2$ ,  $\mathrm{KSCN}$ 

Sol in cold, more easily in hot H<sub>2</sub>O § in alcohol and ether Very sol in NH<sub>4</sub>Cl KCl+Aq (Claus)

K<sub>2</sub>Hg(SCN)<sub>4</sub> Very sol in H<sub>2</sub>O, sol alcohol

Insol in anhydrous ether (Rosenhe Z anorg 1901, 27 285)

Meicuric rubidium sulphocyanide, Hg(SCN)<sub>2</sub>, RbSCN

Sol in alcohol without decomp Decon by H<sub>2</sub>O

Hg(SCN)<sub>2</sub>, 2RbSCN+½H<sub>2</sub>O Easily in H<sub>2</sub>O without decomp (Grossmann, 1904, **37** 1259)

Mercuric sodium sulphocyanide,  $Na_2Hg(SCN)_3$ 

Very hydroscopic (Rosenheim, Z and 1901, 27 286)

 $\begin{array}{ccc} \text{Mercuric} & \text{zinc} & \text{sulphocyanide,} & \text{Hg}(SCN) \\ & & Zn(SCN)_2 \end{array}$ 

Scarcely sol in cold  $H_2O$  Easily sol HCl+Aq (Cleve)

Mercuric sulphocyanide ammonia,  $2H_g(SCN)_2$ ,  $3NH_3 + \frac{1}{2}H_2O$ 

Decomp by  $H_2O$  and alcohol  $Hg(SCN)_2$ ,  $4NH_3$  (Peters, B 1908, 3178)

Mercuric sulphocyanide ammonium bromic Hg(SCN)<sub>2</sub>, NH<sub>4</sub>Br Decomp by H<sub>2</sub>O Sol in alcohol (Gro

mann, Z anorg 1903, 37 418)

Mercuric sulphocyanide ammonium chloride,  $\mathrm{Hg}(\mathrm{SCN})_2$ ,  $\mathrm{NH_4Cl}$ 

Decomp by  $H_2O$  Sol in warm alcohol from which it can be cryst (Grossmann)

Mercuric sulphocyanide bromide, HgSCNBr Insol in cold H<sub>2</sub>O, sol in hot H<sub>2</sub>O and in alcohol (Rosenheim, Z anorg 1901, **27** 282)

Mercuric sulphocyanide chloride, HgSCNCl Insol in cold H<sub>2</sub>O

Sol in hot H<sub>2</sub>O and alcohol (Rosenheim)

Mercuric sulphocyanide potassium bromide, Hg(SCN)<sub>2</sub>, 2KBr

Very sol in  $\rm H_2O$  (Grossmann, Z anorg 1903, 37 418)

Mercuric sulphocyanide potassium chloride, Hg(SCN)<sub>2</sub>, KCl

Decomp by H<sub>2</sub>O

Not decomp by recryst from warm alcohol (Grossmann)

Molybdenum sulphocyanide,  $Mo(SCN)_3(?)$ Sol in  $H_2O$  and ether (Braun, Z anal 6 36)

Molybdenum potassium sulphocyanide,  ${\rm K_8Mo(SCN)_6}{\rm +4H_2O}$ 

Cryst from boiling H<sub>2</sub>O and alcohol Chilesotti, Gazz ch it 1904, **34** (2) 493)

Molybdenum sodium sulphocyanide, Na<sub>3</sub>Mo(SCN)<sub>6</sub>+12H<sub>2</sub>O (Rosenheim, B 1909, **42** 154)

Molybdenum thallous sulphocyanide, MoTls(SCN)6

(Rosenheim and Garfunkel, B 1908, 41 '388)

Molybdenum sulphocyanide zinc amine,  $2\text{Mo}(SCN)_6$ ,  $3\text{Zn}(NH_3)_4$ 

(Rosenheim and Garfunkel, B 1908, 41 390)

 $2Mo(SCN)_6(OH),\ Zn_3(NH_3)_{11}$  Can be ryst from boiling  $NH_4OH+Aq$  Air-dried alt probably has the composition  $Mo(SCN)_6\,(OH),\,3Zn(NH_3)_4+2H_2O$  (Maas and Sand, B 1908, 41 1510)

 $2Mo(SCN)_6(OH)$ ,  $Zn_3(NH_3)_{13}$  (Maas and Sand)

Vickel sulphocyanide, Ni(SCN)

Sol in H<sub>2</sub>O (Grossmann, B 1904, **37** 65)

+½H<sub>2</sub>O Sol in H<sub>2</sub>O and alcohol Insol a acetone (Krug and M'Elroy)

 $+1\frac{1}{2}H_2O$  Sol in  $H_2O$  (Rosenheim and Cohn, Z anorg 1901, **27** 292)

Nickel potassium sulphocyanide, K<sub>4</sub>Ni(SCN)<sub>6</sub>+4H<sub>2</sub>O

Sol in H<sub>2</sub>O with decomp

Sl sol in cold, easily sol in hot alcohol (Rosenheim, Z anorg 1901, 27 292)

Nickel sodium sulphocyanide, NiNa<sub>2</sub>(SCN)<sub>4</sub>+8H<sub>2</sub>O

Sol in H<sub>2</sub>O with decomp Sl sol cold, readily sol hot alcohol (Rosenheim, Z anorg 1901, **27** 292)

Nickel sulphocyanide ammonia,  $N_1(SCN)_2$ ,  $3NH_3$ 

(Peters, B 1908, 41 3178) N1(SCN)<sub>2</sub>, 4NH<sub>3</sub> Decomp by H<sub>2</sub>O

Platinous sulphocyanide, Pt(SCN),(?)

Insol in H<sub>2</sub>O

See Platinosulphocyanides, and Platinososulphocyanides

Potassium sulphocyanide, KSCN

Deliquescent Very sol in  $H_2O$  100 pts  $H_2O$  dissolve 177 2 pts at 0°, and 217 0 pts at 20°

100 g sat, KSCN+Aq contain 70 5 g KSCN at 25° (Foote, Z phys Ch 1903, 46 81)

150 pts KSCN+100 pts  $\rm H_2O$  at 108° lower the temp 345° (Rudorff, B 2 68)

Solubility of KSCN +AgSCN at 25°

| KSCN                                                        | AgSCN                                                     | Solid phase                                                                  |
|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|
| 70 53<br>66 55<br>64 47<br>61 25<br>58 34<br>53 21<br>50 68 | 0 00<br>9 32<br>10 62<br>11 76<br>13 55<br>17 53<br>20 43 | KSCN<br>KSCN+2KSCN, AgSCN<br>2KSCN, AgSCN<br>""  2KSCN, AgSCN+KSCN,<br>AgSCN |
| 49 43<br>32 51<br>24 68<br>23 86                            | 20 32<br>18 34<br>16 41<br>16 07                          | KSCN, AgSCN  " KSCN, AgSC\+AgSCN                                             |

(Foote, Z phys Ch 1903, **46** 81) See also AgSCN

Sol in alcohol, especially easily if boiling Sol in acetone (Krug and M'Elroy) Sol in liquid SO<sub>2</sub> (Walden, Z anorg 1902, **30** 160)

100 g acetone dissolve 20 75 g KSCN at

22°, and 20 40 g at 58°

100 g amyl alcohol dissolve 0 18 g KSCN at 13°, 1 34 g at 65°, 2 14 g at 100°, 3 15 g at 133 5°

100 g ethyl acetoate dissolve 0 44 g KSCN at 0°, 0 40 g at 14°, 0 20 g at 79°

100 g pyridine dissolve 6 75 g KSCN at 0°, 6 15 g at 20°, 4 97 g at 58°, 3 88 g at

97°, 3 21 g at 115° 27 2285) (Laszcynski, B 1894,

100 g acetonitrile dissolve 11 31 g KSCN at 18° (Naumann and School 2) 249

SI sol in benzonitrile (Naumann, B 1914, 47 1369)

Sol in methyl acetate (Naumann, B 1909**, 42** 3789)

molybdenyl sulphocyanide, Potassium 3KSCN, Mo(OH)(SCN)<sub>3</sub>+4H<sub>2</sub>O

Sol in H<sub>2</sub>O (Sand and Maas, B 1908, **41** 1506)

Potassium silver sulphocyanide, KSCN, AgSCN

Decomp by H<sub>2</sub>O

See Donk under KSCN

2KSCN, AgSCN Stable in (Wells, Am Ch J 1902, 28 265) See Donk under KSCN Stable in the air

3KSCN, AgSCN (Wells)

Potassium stannic sulphocyanide,  $K_2Sn(SCN)_6+4H_2O$ 

Verv sol m H O

Sol in alcohol and acetone (Weinland and Bames, Z anorg 1909, 62 258)

Potassium titanyl sulphocyanide, 2KSCN, TiO(SCN)2+H2O

Sol in cold HO without immediate decomp but slowly decomp (Rosenheim and Cohn, Z anorg 1901, 28 169)

Potassium vanadium sulphocyanide, 3KSCN, V(SCN)<sub>3</sub>+4H<sub>2</sub>O

Sol m H O Sol in alcohol with a green color Sl sol in ether (Clocci, Z anorg 1898, 19 309)

Sol in HO with decomp, stable in aq solution in the presence of an excess of KSCN sol m alcohol (Locke, Am Ch J 1898, 20 604)

Potassium vanadyl sulphocyanide, k VO(SCN)<sub>4</sub>+5H O

Sol in HO, alcohol, ether, amyl alcohol and ethyl acetate (Koppel, Z anorg 1903, **36** 292)

Potassium zinc sulphocyanide, 2KSCN,  $Zn(SCN) + 3H_{2}O$ 

Easily sol in alcohol (Walden, Z anorg 1900, 23 374)

Potassium sulphocyanide mercuric bromide, KSCN, HgBr

Very sol in HO

Sol in alcohol (Grossmann, B 1902, **35** 2945)

2KSCN, HgBr Ver m alcohol (Grossman) Very sol in H<sub>2</sub>O Sol Potassium sulphocyanide mercuric iodide 2KSCN, HgI2

Undecomp by solution in conc alcoho or in KSCN+Aq (Grossmann, Z anor 1903, **37** 421) +2H<sub>2</sub>ODecomp by H<sub>2</sub>O (Philip Pogg, 1867, **131** 94)

Silicon sulphocyanide, Si(SCN)4

Decomp by H<sub>2</sub>O and alcohol Sol in CS<sub>2</sub>, CHCl<sub>3</sub> and ligroin, (Reynold Proc Chem Soc 1906, **22** 17)

Silver sulphocyanide, AgSCN

 $1~l~H_2O~dissolves~1~08 imes 10^6~g~m_0$  gSCN at 25° (Kuster and Thiel, Z~anorAgSCN at 25° 1902, 33 139)

1 I H<sub>2</sub>O dissolves 1 25×10 gram-aton of silver at 25° (Abegg and Cox, Z phy Ch 1903, 46 11)

Sl sol in H<sub>2</sub>O 1 liter of sat solution 1996° contains 137×10 4 g (Bottge Z phys Ch 1903, 46 603)

64 milligrams are dissolved in 1 liter sat solution at 100° (Bottger, Z phys C 1906, **56** 93)

Solubility product of AgSCN is 049 at 1 16×10 12 mols per l at 18° and 25° 1 (Kirschner, Z phys Ch 191 spectively **79** 245)

Solubility in  $H_2O = 1.2 \times 10^6$  g mol p liter at 25° (A E Hill, J Am Chem Sc 1908, 30 74)

1 l H<sub>2</sub>O dissolves 0 00025 g AgSCN .° (Whitby, Z anorg 1910, 67 108) Insol in acids, excepting conc H<sub>2</sub>SO<sub>4</sub> HNO<sub>3</sub> Insol in dil, sol in conc NH<sub>3</sub>OH Aq Sol in KSCN+Aq Insol in AgN or NH<sub>4</sub>SCN+Aq Sol in  $Hg_2(NO_3)_2$  $\mathbf{A}\mathbf{q}$ 

Solubility in KSCN at 25°

| Mol KSCN in 1 litre | g AgSCN in 1 litre |
|---------------------|--------------------|
| 1 25                | 22 34              |
| 1 20                | 19 93              |
| 1 12                | 16 18              |
| 1 066               | 14 10              |
| 0 626               | 2 80               |
| 0 573               | 2 06               |

(Hellwig, Z anorg 1900, **25** 184)

Solubility in N/10 KSCN+Aq at  $18^{\circ} = 2$ ×10 4 (Kirschner, Z phys Ch 1912, 247)

See also KSCN

1 l of a 3-N solution of AgNO<sub>3</sub> dissolv 0 432 g AgSCN at 25° Nearly insol in le dil solution (Hellwig, Z anorg 1900, 2 179)

Insol in methyl acetate (Naumann, 1909, 42 3790)

Insol in ethyl acetate (Hamers, Disse 1906, Naumann, B 1910, 43 314)

Silver strontium sulphocyanide, 2AgSCN.  $Sr(SCN)_2 + 2H_2O$ 

Stable in the air (Wells, Am Ch J 1902, **28** 270)

2AgSCN, sulphocyanide, Z111C Silver Zn(SCN)2

Decomp by hot H2O (Wells)

AgSCN, Silver sulphocyanide ammonia. 2NHs Decomp by H<sub>2</sub>O

Samarium sulphocyanide, Sm(SCN)<sub>3</sub>+6H<sub>2</sub>O Very deliquescent (Cleve)

Sodium sulphocyanide, NaSCN

Very deliquescent Very sol in H2O and alcohol

(Naumann, B 1914. Sol in benzonitrile 47 1369)

Sol in methyl acetate (Naumann, B 1909, **42** 3789)

Sodium stannic sulphocyanide, Na<sub>2</sub>Sn(SCN)<sub>6</sub> +6H<sub>2</sub>O

Very sol in H<sub>2</sub>O Sol in alcohol and acetone (Weinland and Bames, Z anorg 1909, **62** 257)

Sodium vanadium sulphocyanide, 3NaSCN,  $V(SCN)_3 + 12H_2O$ 

Very hygroscopic Sol in H<sub>2</sub>O and alcohol (Clocci, Z anorg 1898, 19 313)

Strontium sulphocyanide, Sr(SCN)<sub>2</sub>+3H<sub>2</sub>O Very deliquescent, and sol in H2O and alcohol

Strontium stannic sulphocyanide,  $SrSn(SCN)_6$ +12H<sub>2</sub>O

Sol in H<sub>2</sub>O, alcohol and acetone (Weinland and Bumes, Z mong 1909, 62 259)

Thallium sulphocyanide, IISCN

Sl sol in H () 315 g are contuned in 1 liter of sat solution at 20°, 3 905 g at 25°, 7269 g at 3975° Insol in alcohol (Bottger, Z phys Ch 1903, **46** 603)

Titanyl sulphocyanide,  $I_1O(SCN)_2 + 2H_2O$ Sol in cold H<sub>2</sub>O

Tin (stannous) sulphocyanide, Sn(SCN)<sub>2</sub> Sol in H<sub>2</sub>O and alcohol (Classen, J pr 96) 349)

Sol in cold H<sub>2</sub>O (Rosenheim, Z anorg 1901, 28 168)

Yttrium sulphocyanide, Y(SCN)<sub>3</sub>+6H<sub>2</sub>O Not deliquescent Very sol in H<sub>2</sub>O, alcohol, or ether

Zinc sulphocyanide, Zn(SCN)<sub>2</sub>

Less sol in H2O and alcohol than most other cvanides

Zinc sulphocyanide ammonia, Zn(SCN)<sub>2</sub>, 12NH<sub>2</sub>

Decomp by HO Sol in NH4OH+Aq

Sulphocvanoplatinic acid See Platinosulphocyanhydric acid

Sulphocyanoplatinous acid See Platinososulphocyanhydric acid

Sulphohypophosphoric acid

Aluminum sulphohypophosphate, Al<sub>2</sub>(PS<sub>3</sub>)<sub>3</sub> Unstable in the air Sol in H2O with de-(Friedel, C R 1894, 119 262) comp

Cadmium —, Cd<sub>2</sub>P<sub>2</sub>S<sub>6</sub>

Partially decomp in moist air Decomp by H<sub>2</sub>O, cold HNO<sub>3</sub> or alkalis+Aq (Ferrand, A ch 1899, (7) 17 423, Bull Soc 1895, (3) **13** 116)

Chromium ----, Cr<sub>2</sub>P<sub>2</sub>S<sub>6</sub>

Insol in HNO<sub>3</sub> Very sl attacked by aqua regia (Feriand)

Cupric ----, Cu P S<sub>6</sub> Ppt (Friedel, C R 1894, 119 262)

Iron (ferrous) —, Fe P 5

Sol in HNO3 and in a mixture of HNO3 with KClO<sub>3</sub> (Filedel)

Lead ----, Pb P S

Not decomp by boiling HO (I nedel)

Mercuric —, Hg P S.

Slowly decomp by boiling HO, more rapidly by KOH+Aq (Friedel)

Nickel —, Ni P  $S_6$ 

Not attacked by boiling H O or hot or cold acids SI attacked by aqua regia (Ferrand, A ch 1899, (7) **17** 416)

Silver ——,  $Ag_4P_5S_6$ 

Ppt (Friedel, C R 1894, **119** 263)

Tin (stannous) hypophosphate —, SnPS<sub>3</sub> Decomp by boiling H<sub>2</sub>O Sol in dil KOH +Aq (Friedel, C R 1894, 119 264)

Tin (stannic) —, SnP<sub>2</sub>S<sub>6</sub>

Easily decomp by boiling H<sub>2</sub>O Sol in dil KOH+Aq (Friedel)

Zinc sulphohypophosphate,  $Zn_2P_2S_6$ 

Decomp in moist air Insol in H2O Partially decomp by boiling H<sub>2</sub>O Violently attacked by HNO: Sol in aqua regia Not attacked by HCl (Ferrand, A ch 1899, (7) **17** 421 )

Zinc —, Zn<sub>2</sub>P<sub>2</sub>S<sub>6</sub>

Insol in H<sub>2</sub>O Partly decomp by boiling H<sub>2</sub>O Not decomp by HCl or HNO<sub>3</sub> but by aqua regia (Ferrand, Bull Soc 1895, (3) 13 115)

### Sulphomolybdic acid

Ammonium sulphomolybdate, (NH<sub>4</sub>)<sub>2</sub>MoS<sub>4</sub> Easily sol in H<sub>2</sub>O, very sl sol in alcohol (Berzelius, Pogg 83 261)

Ammonium cupric sulphomolybdate Sl sol m H<sub>2</sub>O (Debray, C R 96 1616)

Barium sulphomolybdate, BaMoS4

More sol in HO than BaMo<sub>2</sub>S<sub>10</sub> Known only in solution (Berzelius) BaS,  $3\text{MoS}_3 = \text{BaMo}_3\text{S}_{10}$  Sl sol in cold, easily sol in hot  $\text{H}_2\text{O}$  Not decomp by conc

cold HNO3+Aq, but more easily by dil HNO<sub>2</sub>+Aq (Berzelius)

Cadmium sulphomolybdate Insol in HO (Berzelius)

Cæsium sulphomolybdate, Cs<sub>2</sub>S, 3MoS<sub>4</sub>+ 7H<sub>2</sub>O As Rb comp (Herschfinkel, Dissert 1907) 3Cs<sub>2</sub>S, 5MoS<sub>4</sub> (Herschfinkel)

Calcium sulphomolybdate, CaS, 3MoS<sub>3</sub> Sol in HO (Berzelius) CaMoS<sub>4</sub> More sol in H<sub>2</sub>O than CaS,  $3 ext{MoS}_8$  known only in solution (Berzelius)

Cerium sulphomolybdate Precipitate (Berzelius)

Cobalt sulphomolybdate, CoMoS<sub>4</sub> Sol in K MoS<sub>4</sub>+Aq (Berzelius)

Cupric sulphomolybdate (Debray, C R 96 1616)

Ferrous sulphomolybdate, FeMoS4 Sol in HO (Berzelius)

Ferric sulphomolybdate, Fe (MoS<sub>4</sub>)<sub>3</sub> Sol in K MoS4+Aq

Lead sulphomolybdate Ppt (Berzelius)

Lithium sulphomolybdate

Not deliquescent, but very easily sol, H<sub>2</sub>O (Berzelius)

Magnesium sulphomolybdate, MgMoS. Sol in K<sub>2</sub>MoS<sub>4</sub>+Aq (Berzelius)

Manganous sulphomolybdate, MnMoS. Sol in H<sub>2</sub>O (Berzelius)

Mercurous sulphomolybdate, Hg<sub>2</sub>MoS<sub>4</sub> (?

Mercuric sulphomolybdate, HgMoS. Insol in K<sub>2</sub>MoS<sub>4</sub>+Aq

Nickel sulphomolybdate, NiMoS4 Sol in K<sub>2</sub>MoO<sub>4</sub>+Aq (Berzelius)

Potassium sulphomolybdate, basic, K<sub>8</sub>M<sub>0</sub> Easily sol in H<sub>2</sub>O Insol in alcohol ether (Kruss, B 16 2050)

Potassium sulphomolybdate, K2MoS4 Sol in H<sub>2</sub>O, from which it is precipita by alcohol (Berzelius)

Rubidium sulphomolybdate, 3Rb<sub>2</sub>S, 8M<sub>0</sub>S | 30H<sub>2</sub>O Very sl sol in H<sub>2</sub>O Sol by addition NH<sub>3</sub> (Herschfinkel, Dissert 1907)

Silver sulphomolybdate, Ag<sub>2</sub>MoS<sub>4</sub> Ppt

5Rb<sub>2</sub>S, 6MoS<sub>2</sub> (Herschfinkel)

Sodium sulphomolybdate, Na<sub>2</sub>MoS<sub>4</sub> Sol in H<sub>2</sub>O, and not precipitated by cohol from aqueous solution (Berzelius)

Strontium sulphomolybdates

Exactly analogous to the Ba salts, wh see (Berzelius)

Zinc sulphomolybdate Ppt Insol in H<sub>2</sub>O (Berzelius)

Monosulphomolybdic acid,

Sodium monosulphomolybdate, Na<sub>2</sub>MoO<sub>3</sub>S Rather hygroscopic Sol in H<sub>2</sub>O, for sep blue solution with H<sub>2</sub>SO<sub>4</sub> Sol deep blue solution with H2SO4  $HC_2H_3O_2+Aq$  (Kruss, A 225 1)

Disulphomolybdic acid

Ammonium disulphomolybdate,  $(NH_4)_2M_0O_2S_2$ 

Sl sol in cold, easily in hot H<sub>2</sub>O ın sat NH₄Cl+Aq and absolute alcohol Aqueous solution is decomp by boili (Bodenstab, J pr **78** 186)

Potassium disulphomolybdate, K<sub>2</sub>MoO<sub>2</sub>S<sub>2</sub> Very sol in H<sub>2</sub>O and alcohol Sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Kruss, B **16** 2046)

### Trisulphomolybdic acid

Ammonium hydrogen trisulphopyromolybdate, NH<sub>4</sub>HMo<sub>2</sub>O<sub>4</sub>S<sub>8</sub>

Precipitate Insol in alcohol or  $CS_2$  (Kruss, B 16 2047)

Potassium hydrogen trisulphopyromolybdate, KHMo<sub>2</sub>O<sub>4</sub>S<sub>3</sub>

Very easily sol in  $\rm H_2O$  (Krüss, B 16 2048)

Sodium hydrogen trsulphopyromolybdate, NaHMo<sub>2</sub>O<sub>4</sub>S<sub>3</sub>

Precipitate Much more sol in  $H_2O$  than the  $NH_4$  compound (Kruss, B 16 2047)

Potassium sulphomolybdate,  $K_8Mo_4S_9O_7$ Sol in  $H_2O$ ,  $HC_2H_3O_2$ , and  $H_2SO_4$  (Kruss, B 17 1771)

## Pentasulphomolybdic acid

Potassium pentasulphomolybdate, KMoS<sub>5</sub> Sol in warm H<sub>2</sub>O (Hofmann, Z anorg 1896, **12** 62)

Persulphomolybdic acid, H<sub>2</sub>MoS<sub>5</sub>

Precipitate Insol in H<sub>2</sub>O, alcohol, ether, CS<sub>2</sub>, and acetic acid

Decomp slowly by hot H<sub>2</sub>SO<sub>4</sub> Sol in warm KOH+Aq, and cold K<sub>2</sub>S+Aq Not attacked by cold KSH+Aq, but dissolves on warming (Kruss, B 17 1773)

Ammonium persulphomolybdate,  $(NH_4)_2MoS_5$ 

Very sl sol in cold, more easily in hot  $H_2O$  Insol in  $NH_4OH+Aq$  (Berzelius)

Barium ----, BaMoS<sub>5</sub>

Insol in boiling H<sub>2</sub>O or dil HCl+Aq (Berzel us)

Calcium ----

Difficultly sol in H<sub>2</sub>O (Berzelius)

Cerium ----

Precipitate (Berzelius)

Ferrous -

Insol in Fe salts+Aq, but sol in  $K_2MoS_5$ +Aq (Berzelius)

Ferric —— Ppt Lithium persulphomolybdate

Sl sol in cold, easily sol in hot H<sub>2</sub>O (Berzelius)

Magnesium ----

Insol precipitate (Berzelius)

Nickel ---

Ppt Sol in  $K_2MoS_5+Aq$ , from which it separates in 24 hours (Berzelius)

Potassium ----, K<sub>2</sub>MoS<sub>5</sub>

Almost msol m cold, more sol m hot H<sub>2</sub>O Insol m cold KOH+Aq (Berzelius)

Potassium hydrogen ——, KHMoS<sub>5</sub> Sol in H<sub>2</sub>O (Kruss)

Sodium —, Na<sub>2</sub>MoS<sub>5</sub>

Sl sol in cold, easily in hot  $H_2O$  (Berzelius)

Sodium hydrogen ——, NaHMoS<sub>5</sub> (Kruss)

Persulphomolybdic acid, HMoS<sub>6</sub>
Sol in H<sub>2</sub>O (Hofmann, Z anorg 1896, 12 59)

Ammonium ——,  $NH_4MoS_6+H_2O$ Sl sol in  $H_2O$  and in alcohol with decomp (Hofmann)

Cæsium ——, CsMoS<sub>6</sub> Almost insol in H<sub>0</sub>O (Hofmann)

Potassium —, KMoS<sub>6</sub> Sol in H<sub>2</sub>O (Hofmann.)

Thallium —, TlMoS<sub>6</sub>
Insol in H<sub>2</sub>O (Hofmann)

Sulphonosmic acid

Potassium sulphonosmate, 7K<sub>2</sub>O, 4OsO<sub>3</sub>, 10 SO<sub>2</sub>

Sol in  $H_2O$  (Rosenheim, Z anorg 1899, 21 127)

 $+3H_2O$  Sol in  $H_2O$  (Rosenheim)  $+7H_2O$  Easily sol in  $H_2O$ , decomp in aq solution at  $70^\circ$  (Rosenheim)  $11K_2O$ ,  $4OsO_3$ ,  $14SO_2+7H_2O$  Sol in  $H_2O$ 

(Rosenheim)

Sodium sulphonosmate, 3Na<sub>2</sub>O, OsO<sub>2</sub>, 4SO<sub>2</sub>+5H<sub>2</sub>O

Easily sol in  $H_2O$ , decomp in aq solution (Rosenheim)

### Sulphopalladic acid

Potassium palladious sulphopalladate,  $K_2S_1$  $Pd_2S$ ,  $PdS_2 = K_2Pd_3S_4$ 

Insol in H<sub>2</sub>O Moderately conc HCl+Aq dissolves out K without evolution of H<sub>2</sub>S (Schneider, Pogg 141 526)

Silver sulphopalladate, Ag<sub>2</sub>PdS<sub>3</sub> (Schneider)

Silver pailadious sulphopalladate, Ag<sub>2</sub>S, Pd<sub>2</sub>S, PdS<sub>2</sub>=Ag<sub>2</sub>Pd<sub>3</sub>S<sub>4</sub> Extraordinarily stable (Schneider)

Sodium sulphopalladate, Na<sub>2</sub>PdS<sub>3</sub> Slowly sol in H<sub>2</sub>O Insol in alcohol (Schneider, Pogg **141** 520)

Sulphophosphide of M See M phosphosulphide

Sulphophosphamic acid,  $PS_{NH_2}^{(OH)_2}(?)$ See Thiophosphamic acid

Sulphophosphodiamic acid,  $PS_{(NH_2)_2}^{OH}$  (?) See Thiophosphodiamic acid

Sulphophosphotriamide, PS(NH<sub>2</sub>)<sub>3</sub> See Thiophosphoryl triamide

Sulphophosphoric acid, H<sub>3</sub>PSO<sub>3</sub> See Thiophosphoric acid H<sub>3</sub>PS<sub>4</sub> Known only in its salts

Ammonium sulphophosphate, (NH<sub>4</sub>)<sub>3</sub>PS<sub>4</sub>
Stable in the air (Ephraim, B 1911,
44 3408)

Antimony sulphophosphate, SbPS<sub>4</sub>
Insol in HO, alcohol, ether, CS<sub>2</sub>, HCl+Aq, dil HSO<sub>4</sub>+4q, C<sub>6</sub>H<sub>6</sub>, or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>
Decomp by boiling with cone HNO<sub>3</sub>+Aq, HSO<sub>4</sub>, aqua regia, KOH, NaOH or NH<sub>4</sub>OH + 4q (Glatzel, B 24 3886)

Arsenic sulphophosphate, AsPS<sub>4</sub>
Insol in H O, alcohol, HCl+Aq, etc Decomp by warm HNO<sub>3</sub>, aqua regia, dll H SO<sub>4</sub> also sol in KOH or NH<sub>4</sub>OH+Aq (Glatzel, Z anoig 4 186)

Barium sulphophosphate,  $Ba_3(PS_4)_2+xH_2O$ (Ephraim, B 1911, 44 3409)

Bismuth sulphophosphate, BiPS<sub>4</sub>
Insol in H O, alcohol, ether, CS<sub>2</sub>, benzene, HC H<sub>3</sub>O, or dil H<sub>2</sub>SO<sub>4</sub>+Aq Decomp by boiling HCl+Aq, conc H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, or aqua regia, also by NaOH, KOH, or NH<sub>4</sub>OH + Aq (Glatzel, Z anorg 4 186)

Cadmium sulphophosphate, Cd<sub>3</sub>(PS<sub>4</sub>)<sub>2</sub>
Insol in H<sub>2</sub>O, alcohol, ether, benze, CS<sub>2</sub>, and HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> Decomp by hot HC

Aq Very sl attacked by dll H<sub>2</sub>SO<sub>4</sub>+ Slowly sol in hot HNO<sub>3</sub>, rapidly in aqua r<sub>1</sub> or hot conc H<sub>2</sub>SO<sub>4</sub> (Glatzel, Z anorg 186)

Cuprous sulphophosphate, Cu<sub>3</sub>PS<sub>4</sub>

Insol m H<sub>2</sub>O, alcohol, etc., also m HC dil H<sub>2</sub>SO<sub>4</sub>+Aq Decomp by HNO<sub>3</sub>, a regra, etc., not by KOH or NaOH+ (Glatzel.)

Ferrous sulphophosphate, Fe<sub>3</sub>(PS<sub>4</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O, alcohol, ether, etc, insol HCl or hot dil H<sub>2</sub>SO<sub>4</sub>+Aq Decomp HNO<sub>3</sub>, aqua regia, or conc H<sub>2</sub>SO<sub>4</sub> ] attacked by KOH or NH<sub>4</sub>OH+Aq (G zel)

Lead sulphophosphate, Pb<sub>8</sub>(PS<sub>4</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O, alcohol, etc Decomp warm HCl+Aq, conc HNO<sub>3</sub>+Aq, not tacked by NH<sub>4</sub>OH+Aq, sl decomp by Ko +Aq (Glatzel)

Manganous sulphophosphate, Mn<sub>3</sub>(PS<sub>4</sub>)<sub>2</sub>
Insol in H<sub>2</sub>O, alcohol, ether, benzene, C or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> Not attacked by HCl+Sol in HNO<sub>3</sub> or aqua regia, with separat of S Not attacked by dil H<sub>2</sub>SO<sub>4</sub>+. (Glatzel, Z anorg 4 186)

Mercuric sulphophosphate,  $\mathrm{Hg_{3}(PS_{4})_{2}}$ 

Insol in  $H_2O$ , alcohol, etc., also in H dil  $HNO_3$ , or  $H_2SO_4+Aq$  Not attacked conc.  $HNO_3$  or aqua regia, easily sol.  $HNO_3+Br_2+Aq$  (Glatzel)

Nickel sulphophosphate, Ni<sub>3</sub>(PS<sub>4</sub>), As the ferrous salt (Glatzel)

Potassium sulphophosphate,  $K_3PS_4+H_2O$ Easily sol in  $H_2O$  (Ephraim, B 1911, 3407)

Silver sulphophosphate, Ag<sub>3</sub>PS<sub>4</sub>

Insol in H<sub>2</sub>O, alcohol, etc., also in H<sub>1</sub>HNO<sub>3</sub>, or dil H<sub>2</sub>SO<sub>4</sub>+Aq Decomp conc H<sub>2</sub>SO<sub>4</sub>, and aqua regia (Glatzel)

Sodium sulphophosphate, Na<sub>3</sub>PS<sub>4</sub>+8H O

Decomp by  $H_2O$ Sol in Na<sub>2</sub>S+Aq (Glatzel, Z ano 1905, **44** 65)

Thallous sulphophosphate, Tl<sub>3</sub>PS<sub>4</sub>

Insol in H<sub>2</sub>O, alcohol, etc. Sol in H(dil H<sub>2</sub>SO<sub>4</sub>+Aq, etc. Not attacked NH<sub>4</sub>OH+Aq, sl decomp by conc KOH Aq (Glatzel)

Tin (stannous) sulphophosphate, Sn<sub>3</sub>(PS<sub>4</sub>)<sub>2</sub> Insol in H<sub>2</sub>O, alcohol, etc Insol in dil H<sub>2</sub>SO<sub>4</sub> or HCl+Aq Decomp by HNO<sub>3</sub>+Aq, aqua regia, NH<sub>4</sub>OH, or KOH+Aq (Glatzel)

Zinc sulphophosphate, Zn<sub>3</sub>(PS<sub>4</sub>)<sub>2</sub>

Insol in H2O, alcohol, ether, etc Sol in HCl+Aq or dil H<sub>2</sub>SO<sub>4</sub>+Aq Easily attacked by KOH+Aq, si decomp by NH<sub>4</sub>OH +Aq (Glatzel)

### Sulphopyrophosphoric acid

Aluminum sulphopyrophosphate, Al<sub>2</sub>P<sub>2</sub>S<sub>7</sub>

Decomp in moist air Violently decomp by H2O or acids (Ferrand, A ch 1899, (7) 429)

Cadmium ----, Cd<sub>2</sub>P<sub>2</sub>S<sub>7</sub>

Decomp in moist air Not attacked by cold acids (Ferrand)

Chromium —, Cr<sub>2</sub>P<sub>2</sub>S<sub>7</sub>

Decomp in moist air Not readily attacked by acids (Ferrand)

Cuprous —, Cu<sub>4</sub>P<sub>2</sub>S<sub>7</sub>

Not attacked by cold H<sub>2</sub>SO<sub>4</sub> or boiling HCl (Ferrand)

Sol in hot conc HNO<sub>3</sub> (Ferrand) Sol in alkalies, and in all acids except HCl (Ferrand, C R 1896, **122** 886)

Ferrous —, Fe<sub>2</sub>P<sub>2</sub>S<sub>7</sub>

Insol in cold acids

Sl attacked by boiling HCl or hot KOH+

Decomp by fused KOH (Ferrand, A ch 1899, (7) 17 410)

Lead ----, Pb.P<sub>2</sub>S<sub>7</sub>

Not attacked by cold HNO<sub>3</sub> (Ferrand.)

Mercurous —, Hg<sub>4</sub>P<sub>2</sub>S<sub>7</sub>

Decomp by moist an or hot HNO<sub>3</sub> (Ferrand)

Almost insol in acids, decomp by H<sub>2</sub>O and moist an (Ferrand, C R 1896, 122 888)

Nickel —,  $N_{1_2}P_2S_7$ 

Decomp by H<sub>2</sub>O and by conc HNO<sub>3</sub> at 150° in a sealed tube (Ferrand, A ch 1899, (7) 17 418)

Silver —,  $Ag_4P_2S_7$ 

Not decomp by H<sub>2</sub>O Decomp by aqua regia Not attacked by HNO<sub>8</sub> (Ferrand)

Zinc —,  $Zn_2P_2S_7$ 

Decomp in moist air Decomp by H<sub>2</sub>O

Violently attacked by cold HNO<sub>3</sub> (Ferrand)

Sulphophosphorous acid,

 $H_3PSO_2 = SPOH(?)$  $^{
m OH}$ 

See Thiophosphorous acid

H<sub>3</sub>PS<sub>3</sub> Known only in its salts

Aluminum sulphophosphite, Al<sub>3</sub>(PS<sub>3</sub>)<sub>2</sub>

Verv unstable Decomp in the air (Ferrand, C R 1896, **122** 622 )

Barium sulphophosphite,  $Ba_3(PS_3)_2 + xH_2O$ Sol in dil acids

Insol in alcohol (Ephram, B 1911, 44 3412)

Chromous sulphophosphite, Cr<sub>3</sub>(PS<sub>3</sub>)<sub>2</sub>

Easily attacked by hot conc HNO<sub>3</sub> or aqua regia

Decomp by boiling NaOH+Aq rand, A ch 1899, (7) 17 419)

Quite stable in moist air, very slowly attacked by acids (Ferrand, C R 1896, 122 622)

Cuprous sulphophosphite, Cu<sub>3</sub>PS<sub>3</sub>

Not attacked by H<sub>2</sub>O or hot conc HCl Sl attacked by cold fuming HNO<sub>3</sub>

Violently attacked by HNO3, aqua regia

and boiling conc H SO<sub>4</sub>

Not attacked by boiling NaOH+Aq

(Ferrand, A ch 1899, (7) 17 398)

Fauly stable decomp by damp air (Ferrand, C R 1896, 122 621)

Iron (ferrous) sulphophosphite, Fe<sub>3</sub>(PS<sub>3</sub>)<sub>2</sub>

Very stable and resists the action of alkalies and acids (Ferrand, C R 1896, 122 622)

Insol in cold acids or hot NCl Sol in hot fuming HNO<sub>3</sub>

Insol in hot  $40^{6}$   $\epsilon$  KOH+ 4q (Ferrand, A ch 1899, (7) 17 412)

Mercuric sulphophosphite, Hg<sub>3</sub>(PS<sub>3</sub>)

Decomp in moist an

Not attacked by cold HNO<sub>3</sub> Decomp by hot HNO<sub>3</sub> (Ferrand)

Unstable in the in Very slowly attacked by acids (Ferrand, C R 1896, **122** 622)

Nickel sulphophosphite, Ni<sub>3</sub>(PS<sub>3</sub>)<sub>2</sub>

Unstable in the air Attacked slowly by HNO<sub>3</sub> (Ferrand)

Silver sulphophosphite, Ag<sub>3</sub>PS<sub>3</sub>

Insol in most reagents (Ferrand C R 1896, **122** 622)

Not decomp by H<sub>2</sub>O

Not easily attacked by acids (Ferrand. A ch 1899, (7) 17 414)

Sodium sulphophosphite, Na<sub>3</sub>PS<sub>3</sub>+xH<sub>2</sub>O Very sol in H2O, probably with decomp (Ephram, B 1911, 44 3410)

Zinc sulphophosphite, Zn<sub>3</sub>(PS<sub>3</sub>)<sub>2</sub>

Decomp in moist air

Sl attacked by H<sub>2</sub>O Decomp by HNO<sub>3</sub> 1899, (7) **17** 422) (Ferrand, A ch

Very unstable in the air, and attacked violently by acids (Ferrand, C R 1896, **122** 622)

Sulphoplatinic acid, H<sub>2</sub>Pt<sub>4</sub>S<sub>6</sub>

Insol in H2O, but decomp on air (Schneider, Pogg 138 604)

H.Pt.S. Insol in H2O, but decomp very rapidly on air (Schneider)

Copper sulphoplatinate, 2CuS, 2PtS, PtS<sub>2</sub>

Insol in H<sub>2</sub>O HCl, HNO<sub>8</sub>, or aqua regia dissolve out part of the Cu (Schneider, Pogg 139 661)

Lead sulphoplatmate, 2PbS, 2PtS, PtS<sub>2</sub>

Insol in hot or cold H<sub>2</sub>O or HCl+Aq HNO<sub>3</sub>+Aq dissolves out Pb partly, aqua regia dissolves completely with difficulty (Schneider, Pogg 139 662)

Mercuric sulphoplatinate chloride, 2HgS, 2PtS, PtS<sub>2</sub>, 2HgCl<sub>2</sub>

Insol in H<sub>2</sub>O, not attacked by HCl+Aq, and only partially sol in boiling aqua regia (Schneider)

Potassium sulphoplatinate, K Pt<sub>4</sub>S<sub>6</sub>

Insol in HO HCl+Aq dissolves out K without evolution of H S

Composition its potassium platinous sulphoplatinate, KS, 3PtS, PtS<sub>2</sub> (Schneider, Pogg **138** 604) K PtS

Silver sulphoplatmate, 2Ag<sub>2</sub>S, 2PtS, PtS<sub>2</sub> Insol in H<sub>2</sub>O or HCl+Aq HNO<sub>3</sub>+Aq dissolves out Ag on warming Aqua regia decomp with formation of AgCl (Schneider, Pogg 138 664)

Sodium sulphoplatinate, Na<sub>4</sub>Pt<sub>3</sub>S<sub>6</sub> = 2Na<sub>2</sub>S<sub>5</sub> 2PtS, PtS

Decomp by hot H<sub>2</sub>O, with residue of PtS (Schneider)

 $Na_2Pt_3S_6 = Na S$ , PtS,  $2PtS_2$  In  $H_2O$  (Schneider, J pr (2) **48** 418) Insol in

Thallium sulphoplatinate, 2Tl<sub>2</sub>S, 2PtS, PtS<sub>2</sub> Insol in cold HO Dil acids dissolve out all the thallium (Schneider, Pogg 138 626)

Sulphoplatinous acid, H<sub>2</sub>PtS<sub>2</sub>

Known only in solution in H2O, which (Schneider, J pr ( soon decomposes **48** 424)

Sodium sulphoplatinite, Na<sub>2</sub>PtS<sub>2</sub>

Sol in H<sub>2</sub>O with decomp (Schneider, pr (2) 48 420)

 $H_4Na_2(PtS_2)_3$ Sol in H<sub>2</sub>O, from which is pptd by alcohol (Schneider)

Sulphoselenantimonous acid See Selenosulphantimonous acid

Sulphoselenarsenic acid See Selenosulpharsenic acid

Sulphoselenostannic acid See Selenosulphostannic acid

Sulphoselenoxyarsenic acid See Selenosulphoxyarsenic acid

Sulphoselenyl chloride, SSeO<sub>3</sub>Cl<sub>4</sub> Deliquescent, decomposed by H.O (Clau nitzer, B 11 2007)

Metasulphosilicic acid

Sodium metasulphosilicate, Na<sub>2</sub>S<sub>1</sub>S<sub>3</sub> Decomp by H<sub>2</sub>O (Hempel, Z anor;

1900, **23** 41)

Sulphostannıc acıd, H<sub>2</sub>SnS<sub>3</sub>

Ppt (Kuhn, A 84 110) Does not exist (Storch, W A B 98 **2b** 236)

Ammonium sulphostannate, (NH<sub>4</sub>)<sub>2</sub>S.  $3\operatorname{SnS}_2 + 6\operatorname{H}_2\mathrm{O}$ 

Easily sol in H2O, and easily decomi (Ditte, C R 95 641)  $(NH_4)_2SnS_3 + 3H_2O$ , and  $+7H_2O$ 

comp by acid (Stanek, Z anorg 1898, 1

Barium sulphostannate, BaSnS<sub>3</sub>+8H<sub>2</sub>O Sol in cold H<sub>2</sub>O (Ditte, C R 95 641)

Calcium sulphostannate, 2CaS,  $SnS_2 + 14H_2C$ Sol in H<sub>2</sub>O (Ditte, C R 95 641)

Tetraplatinous sulphostannate, 4PtS, SnS<sub>2</sub> Not decomp by acids (Schneider, J p (2) 7 214)

Platinum potassium sulphostannate, 3PtS  $K_2S$ ,  $SnS_2$ 

Insol in cold H<sub>2</sub>O Dil HCl or HC<sub>2</sub>H<sub>3</sub>C +Aq dissolves out all the potassium (Sch neider, Pogg 136 109)

```
sodium
                          sulphostannate,
                                                 3PtS.
Platinum
                                                          Cobalt sulphotellurite, Co<sub>3</sub>TeS<sub>5</sub>
    Na<sub>2</sub>S, SnS<sub>2</sub>
                                                            Ppt
  Insol in cold H<sub>2</sub>O (Schneider, Pogg 136
109)
                                                          Copper ——, Cu<sub>3</sub>TeS<sub>5</sub>
                                                             Ppt
Potassium sulphostannate, K2SnS2
  Sol in H<sub>2</sub>O (Kuhn, A 84 110)
+3H<sub>2</sub>O (Ditte, C R 95 641)
K<sub>4</sub>SnS<sub>4</sub>+4H<sub>2</sub>O Sol in H<sub>2</sub>O pptd by
                                                          Ferrous ---
                                                             Ppt
alcohol (Weinland, Z anorg 1898, 17 419)
                                                          Ferric ——
Sodium sulphostannate, Na<sub>2</sub>SnS<sub>3</sub>+2H<sub>2</sub>O
                                                             Ppt
  Sl sol in H<sub>2</sub>O (Kuhn, A 84 110)
   +3H<sub>2</sub>O (Ditte, C R 95 641)
                                                          Lead --
               Sol in H<sub>2</sub>O (Horing, Zeitsch
                                                             Ppt
Pharm 1851 120)
  Na_4SnS_4+12H_2O Melts in crystal H_2O on
                                                          Lithium ----
heating Very sol in H2O (Kuhn)
                                                             Sol in H<sub>2</sub>O
Strontium sulphostannate, SrSnS<sub>3</sub>+12H<sub>2</sub>O
                                                          Magnesium ----
  Sol in H<sub>2</sub>O (Ditte, C R 95 641)
                                                             Sol in H<sub>2</sub>O and alcohol
Thallium sulphostannate, Tl4SnS4
                                                          Manganous ---
  Ppt Practically insol in H<sub>2</sub>O (Hawley,
J Am Chem Soc 1907, 29 1011)
                                                             Ppt
                                                          Potassium —, 3K S, TeS<sub>2</sub>
Disulphopersulphuric acid
                                                             Sol in H<sub>2</sub>O
Sodium disulphopersulphate, Na<sub>2</sub>S<sub>4</sub>O<sub>8</sub>
                                                          Silver —, 3Ag S, TeS<sub>2</sub>
   Sol in H<sub>2</sub>O Cryst in cold with 2H<sub>2</sub>O
(Villiers, C R 106 851, 1354)
                                                             (Berzelius)
   Contains 4H more and is sodium tetra-
thionate, NaS<sub>4</sub>O<sub>6</sub>, 2H<sub>2</sub>O (Villiers, C R
                                                          Sodium ----
108 402)
                                                             Sol in H<sub>2</sub>O
Sulphotelluric acid
                                                           Strontium ----
                                                             Sol in H<sub>2</sub>O
Mercurous sulphotellurate, 3Hg<sub>2</sub>S, TeS<sub>2</sub>
                                                           Zinc —, 3ZnS, TeS
                                                             Ppt (Berzelius)
Mercuric —, 3HgS, TeS<sub>2</sub>
          (Berzelius)
   Ppt
                                                           Sulphotungstic acid
Potassium ----, K<sub>2</sub>TeS<sub>4</sub>
                                                           Ammonium sulphotungstate, (NH_4)_2WS_4
   Sol in H<sub>2</sub>O (Oppenheim, J pr 71 279)
                                                           Very deliquescent Easily sol in H<sub>2</sub>O, and still more easily in NH<sub>4</sub>OH+Aq (Corleis,
Sodium ---
                                                           A 232 244)
                     (Oppenheim)
   Sol in H<sub>2</sub>O
                                                             More sol in pure H<sub>2</sub>O than in H<sub>2</sub>O acidified
                                                           with HCl Decomp slowly on air (Ber-
Sulphotellurous acid
                                                           zelius)
Ammonium sulphotellurite, 3(NH<sub>4</sub>)<sub>2</sub>S, TeS<sub>2</sub>
                                                           Barium ---
   Decomp on air Sol in H<sub>2</sub>O
                                                             Sol in BaS+Aq
Barium ----
                                                           Cadmium —, CdWS<sub>4</sub>
   Very slowly sol in H<sub>2</sub>O
                                                             Ppt (Berzelius)
                                                           Calcium -
Calcium -
   Somewhat sol in H<sub>2</sub>O
                                                              Sol in H<sub>2</sub>O and alcohol (Berzelius)
                                                           Cobalt —, CoWS4
Cerium -
                                                              Sl sol m H<sub>2</sub>O
   Insol ppt
```

892 Copper sulphotungstate, CuWS<sub>4</sub> Ppt Glucinum ----, GlWS<sub>4</sub> Sol in H<sub>2</sub>O(?) Ferrous ----, FeWS4 Sol in H<sub>2</sub>O Ferric -Ppt Lead ----, PbWS4 Ppt (Berzehus) Magnesium ----, MgWS4 Easily sol in H<sub>2</sub>O or alcohol Manganous ----, MnWS4 Sol in H<sub>2</sub>O (Berzelius) Mercurous -Ppt (Berzelius) Mercuric —, HgWS4 Ppt (Berzelius) Nickel —, NiWS4 Ppt (Berzelius) Potassium —, K<sub>2</sub>WS<sub>4</sub> Sol in HO Alcohol precipitates from aqueous solutions, but is not entirely insol in alcohol (Berzelius) Very sol in HO (Corleis, A 232 264) Potassium — nitrate, K<sub>2</sub>WS<sub>4</sub>, KNO<sub>3</sub> Very sol in cold or hot HO, from which it is precipitated by alcohol (Berzelius) Potassium — tungstate,  $K_2WO_2S_2 =$ K WS4, K WO4 Lasily sol in HO Not precipitated by alcohol (Berzehus) Is potassium trisulphotungstate,  $K_2WOS_3$ , which see (Corleis, A 232 244) Silver ----, Ag W S<sub>4</sub> Ppt (Berzelius) Sodium ---, Na, WS, Very sol in HO, less sol in alcohol (Ber-Very deliquescent (Corleis, A 232 264) Strontium -

Sol in HO, and in SrS+Aq

Stannous —, SnW 54

Stannic ---, SnWS

(Berzelius)

(Berzelius)

Ppt

Ppt

Zinc sulphotungstate, ZnWS4 Sol in H<sub>2</sub>O with subsequent pptn () r<sub>-</sub> zehus) Monosulphotungstic acid Potassium monosulphotungstate.  $K_2WOS + H_2O$ Deliquescent in moist air Very sol n H<sub>2</sub>O (Corless, A 232 244) Disulphotungstic acid Ammonium  $d_i$  sulphotung state,  $(NH_4)_2WO_3$ Sol in H<sub>2</sub>O and alcohol (Berzelius) Decomp easily when moist (Corleis 1 **232** 264) Trisulphotungstic acid Potassium  $trisulphotungstate, K_2WOS +$  $H_2O$ Hygroscopic Effloresces on dry air easily decomposed Easily sol in H<sub>2</sub>O (( r leis, A 232 244) Sulphovanadic acid,  $V_2O_5$ ,  $3SO_3+3H_2C$ See Vanadiosulphuric acid, and Sulph vanadium Sulphovanadates Alkalı sulphovanadates are sol in H ) Ca, Sr, and Ba sulphovanadates are sl sol n H<sub>2</sub>O, and all other sulphovanadates are in 1 in H<sub>2</sub>O (Berzelius) Ammonium sulphovanadate, (NH<sub>4</sub>)<sub>3</sub>VS<sub>4</sub> Easily sol in H<sub>2</sub>O Very sl sol in cc NH<sub>4</sub>SH+Aq Insol in ether, CS<sub>2</sub>, or CH<sub>3</sub> (Kruss and Ohnmais, A **263** 46) See also Sulphoxyvanadic acid Sodium pentasulphopy, ovanadate, Na<sub>4</sub>V<sub>2</sub>O 5 Hydroscopic, sol in HO with rapid comp (Locke, Am Ch J 1898, 20 375 Sulphoxyantimonic acid Potassium sulphoxyantimonate, K<sub>2</sub>HSbC  $+2H_{9}O$ Sol in hot, less sol in cold H<sub>2</sub>O Decor ) by cold  $H_2O$  (Weinland and Gutmann, anorg 1898, 17 414) Sulphoxyarsenic acid, H<sub>3</sub>A<sub>8</sub>O<sub>3</sub>S Known only in aqueous solution (McC, Am Ch J 10 459) Ammonium monosulphoxyarsenate,  $(NH_4)_8AsSO_8+3H_2O$ Decomp in the air, sol in H<sub>2</sub>O, decomp a

boiling (Weinland, B 1896, 29 1009)

1897, 14 49)

Very sol in H<sub>2</sub>O, insol in alcohol, decomp maq solution and also in the air (Weinland, Z anorg 1897, 14 53)

Decomp in the air (McLauchlan, B 1901, 34 2166)

Ammonium hydrogen monosulphoxyarsenate,  $(NH_4)_2HAsSO_3$ 

Ppt (McLauchlan, B 1901, 34 2168)

Barrum monosulphoxyarsenate, BaHAsO<sub>3</sub>+  $10H_2O$ 

(Preis, A 257 184)

 $\tilde{B}a_3(\tilde{A}sSO_3)_2+6H_2O$  Ppt (Weinland, Z anorg 1897, 14 54)

Barrum  $d\iota$ sulphoxyarsenate, Ba<sub>3</sub>(AsS<sub>2</sub>O<sub>2</sub>)<sub>2</sub>+4H<sub>2</sub>O

Ppt (Preis, A 257 185)  $+6H_2O$  (Weinland and Rumpf, Z anorg 1897, 14 64)

Barium potassium trisulphoxyarsenate,  $KBaAsS_3O+7H_2O$ 

Ppt (McCay, Z anorg 1904, 41 469)

Barium sodium monosulphoxyarsenate, BaNaAsSO<sub>8</sub>+9 $H_2$ O

Ppt (Weinland, Z anorg 1897, 14 55)

Barium sodium sulphoxyarsenate, Ba<sub>7</sub>Na<sub>2</sub>As<sub>5</sub>O<sub>7</sub>S<sub>14</sub>+12H<sub>2</sub>O

(McCayand Foster, Z anorg 1904, 41 467)

Calcium trisulphoxyarsenate,  $Ca_3(AsS_3O)_2 + 20H_2O$ 

Ppt (McCay and Foster, Z anorg 1904, 41 463)

Potassium monosulphoxyarsenate, K<sub>3</sub>AsSO<sub>3</sub> Hydroscopic (Weinland, B 1896, **29** 109)

Sol in conc KOH+Aq, free from carbonate, very hydroscopic (Weinland, Z anorg 1897, 14 51)

Potassium hydrogen monosulphoxyarsenate,  $K_2HAsSO_3+2\frac{1}{2}H\cdot O$ 

Very hygroscopic (Weinland and Rumpf, Z anorg 1897, 14 59)

KH<sub>2</sub>AsSO<sub>3</sub> Sol in H<sub>2</sub>O, solution slowly decomp on standing (McCay, Am Ch J 10 459)

Formula given by Bouquet and Cloez (A ch (3) 13 44) is  $K_2H_4As_2S_3O_5$ 

Potassium disulphoxyarsenate,  $K_8AsS_2O_2 + 10H_2O$ 

Very hydroscopic, decomp by  $H_2O$  (Weinland, Z anorg 1897, 14 63)

Potassium trisulphoxyarsenate,  $K_8AsS_8O+7H_2O$ 

Yellow oil which cryst at -20° (McCay and Foster, Z anorg 1904, 41 468)

Sodium monosulphoxyarsenate, Na<sub>3</sub>AsSO<sub>3</sub>+  $12H_2O$ 

Easily sol in H<sub>2</sub>O (Preis, A **257** 180) (McLaughlan, B 1901, **34** 2170)

Sol in H<sub>2</sub>O (Weinland, B 1896, 29 1009) Sl efflorescent Insol in alcohol (McCay, Z anorg 1902, 29 42)

Z anorg 1902, 29 42)
Sol in NaOH+Aq, decomp by boiling with conc NaOH (Weinland, Z anorg

Sodium hydrogen monosulphoxyarsenate, NaH<sub>2</sub>AsSO<sub>3</sub>

Decomp by H<sub>2</sub>O, insol in alcohol (Weinland, Z anorg 1897, 14 58)

 $N\acute{a}_2HAsSO_3+8H\acute{o}O$  Easily sol in  $H_2O$  (Preis)

Sodium disulphoxyarsenate, Na<sub>3</sub>AsS<sub>2</sub>O<sub>2</sub>+  $10H_2O$ 

Easily sol in H<sub>2</sub>O (Preis)

Sol in  $H_2O$ , pptd by alcohol (McCay, B 1899, **32** 2472)

Not decomp by boiling NaOH+Aq (Weinland, Z anorg 1897, 14 62) Insol in alcohol (McCay, Z anorg 1900,

25 461)

+11H<sub>2</sub>O (McLaughlan, B 1901, **34** 2170)

Insol in alcohol (McCay, Z anorg 1902, 29 46)

Sodium trisulphoxyarsenate, Na<sub>3</sub>AsS<sub>3</sub>O+
11H<sub>2</sub>O

Decomp by HO (McCay and Foster, Z anorg 1904, 41 454)

Sodium  $tr_i$ sulphoxy $d_i$ arsenate,  $As_2O_2S_3$ ,  $3Na\ O+24H_2O$ 

Easily sol in H O (Geuther, A **240** 208) 2As<sub>2</sub>O<sub>2</sub>S<sub>3</sub>, Na O+7H<sub>2</sub>O Sol in H<sub>2</sub>O (Nilson, J pi (2) **14** 14) Correct composition is Na<sub>5</sub>As<sub>15</sub>S <sub>4</sub>O<sub>7</sub>+

30H<sub>2</sub>O (Preis)

Sodium sulphoxyarsenate,  $Na_8As_{18}S_4O_7 + 30H_2O = 4Na\ O, \qquad 6As\ S, \qquad 3As\ S_4O + 30H\ O$ 

Decomp by H O Sol in NH<sub>4</sub>OH or KOH +Aq (Preis, A 257 187) =Sodium oxy trisulpharsenate of Nilson

Sodium pentasulphoxytetrarsenate, Na<sub>12</sub>As<sub>4</sub>S<sub>5</sub>O<sub>11</sub>+48H<sub>2</sub>O

Less sol in HO than other sulphoxyarsenates (Preis)

Sodium strontium tr1sulphoxyarsenate, NaSrAsS $_3$ O+10H $_2$ O

Unstable (McCay and Foster, Z anorg 1904, 41 462)

Trisulphoxyazotic acid, ON(SO<sub>3</sub>H)<sub>3</sub>

Known only in its salts (Claus, A, 158 52 and 194)

Has the formula  $(SO_3H)_3N < {\stackrel{O}{O}} > \backslash (SO_3H)_3$ 

(Raschig, A 241 161)

Potassium trisulphoxyazotate,  $ON(SO_3K)_3+$ 

$$H_2O = (SO_3K)_3N < {O \atop O} > N(SO_3K)_3$$

Easily sol in  $\rm H_2O$  without decomp, even on boiling (Claus, A 157 210)

Sulphoxyphosphorous acid,

 $H_{2}PS_{2}O = OPSH_{2}(?)$ 

See Thiophosphorous acid

Sulphoxyvanadic acid

Ammonium pyrohexa sulphoxyvanadate,  $(NH_4)_4V_2S_6O$ 

Sol in  $H_2O$  (Kruss and Ohnmais, A 263 53)

Potassium pyrohexasulphoxyvanadate, K<sub>4</sub>V<sub>2</sub>S<sub>5</sub>O+3H<sub>2</sub>O

Melts in crystal HO (Kruss and Ohnmais)

 $K_8V_4S_1 O_2 + 3H_2O$  More sol in  $H_2O$  than preceding comp (K and O)

Sodium orthotrisulphoxyvanadate, Na<sub>3</sub>VS<sub>3</sub>O +5H<sub>2</sub>O

Very deliquescent, and easily sol in H<sub>2</sub>O Somewhat sol in alcohol (Kruss and Ohnmais)

Sodium orthomonosulphoxyvanadate, Na<sub>3</sub>VSO<sub>3</sub>+10H<sub>2</sub>O

Less sol in H O than other sulphoxyvanadates (A and O)

Sulphur, S

The various modifications of sulphur have been classified in many different ways, and there is a difference of opinion as to whether certain forms are true allotropic modifications or not

The data, as far as concerns the solubility,

may be arranged as follows -

A Sol in CS 1 Rhombic, octahedral, or alpha sulphur, ordinary sulphur Easily sol in CS, etc See below for solubility in various solvents

2 Prismatic, monoclinic, or beta sulphur Sol in CS, but is converted into A, 1 Prismatic sulphur obtained by melting brimstone is not wholly sol in CS on account of admixture of gamma sulphur

Monoclinic modification is more sol than rhombic in CHCl<sub>3</sub>, ether and benzene (Meyer

C C 1903, II 481)

3 Soft sulphur, milk of sulphur 4 Amorphous sol sulphur is also a

rate modification, according to Berth B Soft sulphur, obtained by strong and quickly cooling, is sol in but becomes insol therein by repeatedly solving and evaporating More easily

in CS<sub>2</sub> than A, 1 C Insol in CS<sub>2</sub> 1 By action of st n

light on S in CS<sub>2</sub>

2 By heating to b-pt, cooling suddle and allowing to stand until hard. Has called gamma sulphur, but is a mixtur <sup>2</sup>/<sub>3</sub> A, 4 and <sup>1</sup>/<sub>3</sub> insol S

3 Insol S in flowers of sulphur (verted into A 1 by standing 3 days

alcohol

According to Berthelot (A ch (3) 49 there are only two varieties of S I "C hedral," II "Amorphous"

I Octahedral Sol in CS<sub>2</sub> Scarcely a x upon by KHSO<sub>3</sub>+Aq Converted by ox s

ing agents into II
II Amorphous Insol in neutral solve

viz H<sub>2</sub>O, alcohol, ether, CS<sub>2</sub>, etc

Sol with tolerable rapidity in KHSO<sub>3</sub>+ q
By long action of Na<sub>2</sub>S+Aq, a portio
dissolved, and the remainder converted in
Less easily oxidised by HNO<sub>3</sub>+Aq t
I Some varieties of this modification
sol to a certain extent in alcohol and et
and by boiling the rest of the sulphur is a
verted into I, also by long-continued a
tact with cold alcohol Berthelot holds t
the modification is changed before dissolv
Solutions of the alkalies, alkali salts,
alkali sulphides change insol into sol sulph
(Berthelot)

Elastic sulphur obtained by pouring r ten sulphur at a temp of over 260° into I contains 35% or more of a modification of which is insol in CS<sub>2</sub>, hot or cold, but in absolute alcohol, this modification be converted back into ord sulphur by he ing to 100° (Pelouze and Fremy) (C 2)

This modification can be obtained a oby action of HCl on thiosulphates (For is

and Gélis )

The soft pasty sulphur obtained by decc position of H2S by SO2 forms an alm clear emulsion (pesudo solution) with H from which it is pptd by various salts . substances which have no chemical affin for it 23 pts S combine in this way w 100 pts H<sub>2</sub>O When pptd by saline sc tions, some of the S remains in soluti When solution is exposed to the light, gradually separates out, also on boiling same takes place The above pseudo-so tion is pptd by mineral acids, and the pp S may still be dissolved in fresh water, if i left in contact for some time with the ac Also pptd by K salts, with loss of pov of forming pseudo-solutions Pptd by N and Na salts without losing that pow

Alkalı hydrates, carbonates, or sulphides

convert it into insol S

The solution may be mixed with alcohol Decomp by long shaking without change with napthha or oil of turpentine pseudo-solution combines with CS2, forming an emulsion which subsequently decomposes The S itself is only partially sol in CS<sub>2</sub> (Selmi, J pr 57 49)

By treatment of amorphous "insoluble" S with CS<sub>2</sub> or CCl<sub>4</sub>, a small part goes into solution, the amount being dependent on the time of contact with the temp, and nature of the solvent, but independent of the amount of It is assumed that this is due the solvent to a partial change of the "insoluble" into soluble S (Wigand, Z phys Ch 1910, 75

"Delta' sulphur Partly sol in H<sub>2</sub>O

(Debus, Chem Soc 53 18)

A colloidal form wholly sol in H2O exists. which, however, decomposes very easily (Engel, C R 112 866)

Black sulphur Insol in alcohol, ether, CS2, fatty oils even at 200°, cold alkali hydroxides +Aq,  $H_2SO_4$ ,  $HNO_3$ , or aqua regia (Knapp, J pr (2) 43 305)

Green modification Five times more sol than ordinary sublimed sulphur in a mixture of salicylaldehyde and benzene (Orloff, C.C.

1902, I 1264)

The following data relate to octahedral or

ordinary sulphur (A 1)

Sol in warm liquid H<sub>2</sub>S (Niemann), warm P<sub>2</sub>S<sub>3</sub>, SBr<sub>2</sub>, SCI, Br, NCI<sub>3</sub>, BaS+Aq (Dumas), in alcoholic solution of K<sub>2</sub>S<sub>5</sub>, but is repptd by addition of H<sub>2</sub>O to sat solu-

Sol in liquid SO<sub>2</sub>

Sol in aqueous solution of alkali sulphates, especially when hot SI sol in boiling conc HSCN+Aq, from which it mostly separates on cooling

Na<sub>2</sub>CO<sub>3</sub>+Aq (56% Na CO<sub>3</sub>) dissolves no S at 20° 0.06775% at 100° (Pohl, Dingl

**197** 508)

The solubility of S in Na<sub>2</sub>S+Aq between 0° and 50° diminishes slightly with increase in temp, but increases with dilution of the solution, having its largest value in a N/16 solution of NaS+Aq when the relation of Na<sub>2</sub>S to dissolved S equals about 1 4 (Kuster, Z anorg 1905, 43 56)

Sol in AlBr<sub>3</sub> (Isbekow, Z anorg 1913,

84 27)

Insol in liquid CO<sub>2</sub> (Buchner, Z phys Ch 1906, **54** 674)

Sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 822)

Sol in liquid NH<sub>3</sub> 1 gr S is sol in 3-4 ccm liquid NH<sub>3</sub> (Hugot, A ch 1900, (7) 21

The solubility of S in liquid NH<sub>3</sub> is constant from  $-23^{\circ}$  to  $-84^{\circ}$  and equals 39% (Ruff, Z angew Ch 1910, 23 1830)

### Solubility in liquid NH<sub>3</sub> (g S in 100 g solution)

| t°                | S1    | t°   | S     |
|-------------------|-------|------|-------|
| $-78 \\ -20 \\ 0$ | 38 6  | 16 4 | 25 65 |
|                   | 38 1  | 30   | 21 0  |
|                   | 32 34 | 40   | 18 5  |

(Ruff and Hecht, Z anorg 1911, 70 62)

SI sol in liquid NO. (Frankland, Chem Soc 1901, **79** 1361)

S<sub>2</sub>Cl<sub>2</sub> dissolves 66 74% S at ord temp to

form a liquid of 17 sp gr (Rose)

Solubility of S in S2Cl2 varies according to the variety of sulphur used Aten has published an extended investigation on the subject, which see for details (Z phys Ch 1905-14, 54 86, 124, 81 268, 83 443, 86 1, 88 321)

Solubility in SnCL

100 g SnCl4 dissolve at

99° 101° 110° 58 62 87 9 1 pts solid S,

112° 112° 121° 94 99 170 pts liquid S (Gerardin)

Sol in alkalies+Aq with decomp Sol in 1926 7 pts absolute alcohol at 15° (Pohl, W A B 6 600)

Sol in 20 pts hot nearly absolute alcohol less sol in weaker alcohol (Laurogars)
Sol in 600 pts boiling alcohol of 40° B (Chevallier
J ch med 2 o87) in o00 pts alcohol (Meissner) 200
pts alcohol (Pelouze and Fremy)

100 pts absolute alcohol dissolve 0 42 pt at b-pt, and 0 12 pt S at 16°, 100 pts ether dissolve 054 pt at b-pt, and 019 pt S at 16°, 100 pts benzene dissolve 17 04 pts at b-pt, and 179 pts S at 16°, 100 pts oil of turpentine dissolve 16 16 pts at b-pt, and 1 35 pts  $\,^\circ$  at 16°, 100 pts  $\,^\circ$ CS<sub>2</sub> dissolve 73 46 pts at b -pt, and 38 70 pts  $\,^\circ$ S at 16°, 100 pts naphtha dissolve 10 56 pts at b-pt, and 277 pts S at 16°, 100 pts tar-oil dissolve 26 98 pts at b-pt, and 1 51 pts S at 16° (Payen, C R 34 456)

100 pts absolute methyl alcohol dissolve 0 028 pt at 185°, 100 pts absolute ethyl alcohol dissolve 0 053 pt at 185°

Bruyn, Z phys Ch 10 781) Solubility in amyl alcohol

> 95° 110° 110° 15 212 2 pts solid S,

 $112^{\circ}$ 131° 112° 120° 26 30 5 3 pts liquid S (Gerardin, A ch (4) 5 134)

Quickly sol in 125 pts ether (Favre) 100 pts benzene dissolve 0 965 pt S at 26° 100 pts benzene dissolve 4 377 pts S at 71°. 100 pts toluene dissolve 1 479 pts S at 23°. 100 pts ethyl ether dissolve 0 972 pt S at  $23\ 5^\circ,\ 100$  pts chloroform dissolve 1 205 pts S at 22°, 100 pts phenol dissolve 16 35 pts S at 174°, 100 pts aniline dissolve 85 27 pts S at 130° (Cossa, B 1 139)

### Solubility in benzene at to

| t°    | g S in 10 g of solution |
|-------|-------------------------|
| 15 17 | 0 1480                  |
| 19 29 | 0 1692                  |

(Bronsted, Z phys Ch 1906, 55 377)

A mixture of S and toluene separates into two layers, containing 33 and 925% S respectively (Haywood, J phys Ch 1897, 1 232)

CS<sub>2</sub> dissolves 0 35 pt ordinary sulphur, some varieties of S, however, are not entirely sol in CS, thus—

| Variety of Sulphur                                                                                                                                                                                                                                                                                   | Pts sol in<br>1 pt CS2                            | Fraction of<br>original wt<br>insol in CS                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Octahedral, from Sicily                                                                                                                                                                                                                                                                              | 0 335                                             | 0 000                                                                                           |
| Crystallised in dry way, recently prepared Do, prepared 8 years Do, prepared 9 years Do, prepared 15 years Red needles, recently prepared Soft yellow, Do, prepared 2 years Soft red, recently prepared Do, prepared 5 years Flowers of sulphur Do, another sample Roll brimstone, outside Do inside | 0 415<br>0 33<br>0 382<br>0 316<br>0 374<br>0 351 | 0 029<br>0 004<br>0 020<br>0 051<br>0 023<br>0 353<br>0 157<br>0 181<br>0 113<br>0 234<br>0 073 |

(Deville, A ch (3) 47 99)

The pt insol in C5 is sol in hot absolute alcohol crystallising on cooling, less sol in chloroform or ether (Deville)

100 pts pure C5 dissolve pts S at to

| t                             | I ts S                                    | t°                     | Pts S                              |
|-------------------------------|-------------------------------------------|------------------------|------------------------------------|
| -11<br>-6<br>0<br>+15<br>18 o | 16 54<br>15 75<br>23 99<br>37 15<br>41 65 | 22<br>38<br>48 5<br>55 | 46 05<br>94 57<br>146 21<br>181 34 |

(Cossa, B 1 138)

Neither ordinary stick S nor flowers of S is completely sol in CS<sub>2</sub> Pptd S is completely sol in 5 pts CS<sub>2</sub> (Tittenger, C C 1894, II 267)

2 99 g S are sol in 100 grams CS<sub>2</sub> at — (Arctowski, C R 1895, **121** 124) Solubility in CS<sub>2</sub> 100 g of the sat solution contain at

-77° -845° -89° -116° 484 446 429 299g S

(Arctowski, Z anorg 1896, 11 274)

When 20 pts S dissolve in 50 pts Ck at 22° the temp is lowered 5° (Cossa) Sat solution of S in CS<sub>2</sub> boils at  $5^{\circ}$  (Cossa)

Sp gr of S dissolved in  $CS_2$  at 15° (Pts S per 100 pts  $CS_2$ )

| (1 to 5 per 100 per 052)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                         |                                         |                                                                              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------|--|--|
| Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pts S                                                                            | Sp gr                                                                                                                                                                                                                                                                                                                                              | Pts S                                                                                                                                                      | Sp gr                                                                                                                                                                                                                                                                                                                   | P                                       | s                                                                            |  |  |
| 1 271<br>1 272<br>1 273<br>1 274<br>1 275<br>1 276<br>1 276<br>1 277<br>1 278<br>1 279<br>1 280<br>1 281<br>1 283<br>1 284<br>1 285<br>1 286<br>1 287<br>1 288<br>1 290<br>1 291<br>1 292<br>1 293<br>1 294<br>1 295<br>1 296<br>1 297<br>1 298<br>1 296<br>1 297<br>1 298<br>1 290<br>1 301<br>1 302<br>1 303<br>1 305<br>1 306<br>1 307<br>1 308<br>1 309<br>1 309<br>1 301<br>1 306<br>1 307<br>1 308<br>1 309<br>1 309<br>1 301<br>1 306<br>1 307<br>1 308<br>1 309<br>1 301<br>1 306<br>1 307<br>1 308<br>1 309<br>1 301<br>1 306<br>1 307<br>1 308<br>1 309<br>1 301<br>1 301 | 0024691469146813680357025802579247<br>000001111222233334444555566667777888888999 | 1 312<br>1 313<br>1 314<br>1 315<br>1 316<br>1 317<br>1 318<br>1 319<br>1 320<br>1 321<br>1 322<br>1 323<br>1 324<br>1 325<br>1 326<br>1 327<br>1 328<br>1 329<br>1 330<br>1 331<br>1 333<br>1 334<br>1 335<br>1 334<br>1 335<br>1 336<br>1 337<br>1 340<br>1 341<br>1 342<br>1 343<br>1 344<br>1 345<br>1 346<br>1 347<br>1 348<br>1 349<br>1 351 | 9 9 10 2 10 4 6 10 9 11 1 1 1 3 6 11 8 12 1 12 3 6 13 1 3 13 3 5 14 0 14 2 14 5 1 15 6 1 15 6 1 16 4 16 6 6 16 9 17 1 17 4 17 6 17 9 1 18 4 18 6 18 9 19 3 | 1 352<br>1 353<br>1 354<br>1 355<br>1 356<br>1 357<br>1 358<br>1 359<br>1 360<br>1 361<br>1 362<br>1 363<br>1 364<br>1 365<br>1 366<br>1 367<br>1 369<br>1 370<br>1 371<br>1 373<br>1 374<br>1 375<br>1 377<br>1 378<br>1 379<br>1 380<br>1 381<br>1 382<br>1 383<br>1 384<br>1 385<br>1 388<br>1 389<br>1 390<br>1 391 | 112222222222222222222222222222222222222 | $\begin{array}{c} 6911460025813770260381605941507254962352172 \end{array} -$ |  |  |

(Mascagno, C N 43 192)

| p gr of S dissolved in CS <sub>2</sub> at 15° Water at                                                                                                                                                                                           |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solubility i                                                                                                                                                                                                                                                                                                                                                                            | n organic solv                                                                                                          | ents                                                                                                                                     |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                  | ., .                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                                       | Solvent                                                                                                                                  | t°                                                                                                                                                                                                                             | Sat solution contains %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2708   0 0 0                                                                                                                                                                                                                                     | 1 3297<br>1 3307<br>1 3317<br>1 3328<br>1 3338<br>1 3348<br>1 3358<br>1 3368<br>1 3379<br>1 3389 | 8       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td>Sp gr<br/>1 2764<br/>1 2774<br/>1 2783<br/>1 3409<br/>1 3419<br/>1 3430<br/>1 3440<br/>1 3450<br/>1 3460<br/>1 3471<br/>1 3481<br/>1 3502<br/>1 3512<br/>1 3532<br/>1 3553<br/>1 3563<br/>1 3563<br/>1 3563<br/>1 3563<br/>1 3694<br/>1 3695<br/>1 3635<br/>1 3636<br/>1 3677<br/>1 3688<br/>1 3709</td><td>% S<br/>1 2 4 6 14 2 14 4 6 14 8 15 2 4 15 6 8 16 6 8 17 17 6 8 18 8 8 19 19 4 6 19 19 19 19 19 19 19 19 19 19 19 19 19</td><td></td><td>-61<br/>-55<br/>-19<br/>-18<br/>-17<br/>-13<br/>-11<br/>-11<br/>-11<br/>-2<br/>+3<br/>9<br/>11<br/>14<br/>17<br/>19<br/>20<br/>21<br/>26<br/>27<br/>29<br/>30<br/>5<br/>33<br/>40<br/>44<br/>46<br/>48<br/>53<br/>54<br/>65<br/>77<br/>5<br/>81<br/>0<br/>98<br/>0</td><td>3 6<br/>4 4<br/>10 6<br/>10 8<br/>11 5<br/>12 4<br/>13 3<br/>13 5<br/>17 2<br/>19 5<br/>23 7<br/>22 9<br/>27 22 8<br/>28 5<br/>29 7<br/>42 2 7<br/>28 2 7<br/>28 5<br/>56 2 5<br/>57 60 66 7<br/>76 4<br/>4 8<br/>79 4<br/>87 8<br/>87 8<br/>89 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 8<br/>80 80 80 80 80 80 80 80 80 80 80 80 80 8</td></t<> | Sp gr<br>1 2764<br>1 2774<br>1 2783<br>1 3409<br>1 3419<br>1 3430<br>1 3440<br>1 3450<br>1 3460<br>1 3471<br>1 3481<br>1 3502<br>1 3512<br>1 3532<br>1 3553<br>1 3563<br>1 3563<br>1 3563<br>1 3563<br>1 3694<br>1 3695<br>1 3635<br>1 3636<br>1 3677<br>1 3688<br>1 3709 | % S<br>1 2 4 6 14 2 14 4 6 14 8 15 2 4 15 6 8 16 6 8 17 17 6 8 18 8 8 19 19 4 6 19 19 19 19 19 19 19 19 19 19 19 19 19  |                                                                                                                                          | -61<br>-55<br>-19<br>-18<br>-17<br>-13<br>-11<br>-11<br>-11<br>-2<br>+3<br>9<br>11<br>14<br>17<br>19<br>20<br>21<br>26<br>27<br>29<br>30<br>5<br>33<br>40<br>44<br>46<br>48<br>53<br>54<br>65<br>77<br>5<br>81<br>0<br>98<br>0 | 3 6<br>4 4<br>10 6<br>10 8<br>11 5<br>12 4<br>13 3<br>13 5<br>17 2<br>19 5<br>23 7<br>22 9<br>27 22 8<br>28 5<br>29 7<br>42 2 7<br>28 2 7<br>28 5<br>56 2 5<br>57 60 66 7<br>76 4<br>4 8<br>79 4<br>87 8<br>87 8<br>89 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 80 80 80 80 80 80 80 80 80 80 80 80 8 |
| (Pfeiffer,                                                                                                                                                                                                                                       | _                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>15</b> 200)                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |                                                                                                                                          | 50<br>72<br>95                                                                                                                                                                                                                 | $\begin{array}{c} 6 & 4 \\ 12 & 4 \\ 30 & 2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sol in aceto<br>14)                                                                                                                                                                                                                              | ne (Eıdm                                                                                         | nann, (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C C 1899                                                                                                                                                                                                                                                                                                                                                                                | 9, II                                                                                                                   | Benzene                                                                                                                                  | 108                                                                                                                                                                                                                            | 60 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Solubility of S in acctone + Aq at 25°  S=millimols g S in 100 cc of the solution A=g acetone in 100 g acetone + Aq  A S Sp gr  100 65 0 0 78540 95 36 45 0 0 79114 90 62 33 0 0 81654 80 38 25 3 0 82958  Herz and Knoch, Z anorg 1905, 45 263) |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexane                                                                                                                                                                                                                                                                                                                                                                                  | 8<br>10<br>21<br>30<br>39<br>47<br>24<br>65<br>72<br>100<br>123<br>127<br>150<br>-20<br>0<br>+26<br>+68<br>+130<br>+142 | 1 2<br>1 3<br>1 8<br>2 6<br>3 3<br>4 0<br>4 9<br>6 8<br>8 6<br>17 5<br>31 9<br>34 0<br>36 8<br>0 07<br>0 16<br>0 41<br>1 2<br>5 2<br>6 2 |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                  |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         | (Étard, A ch                                                                                                                             | +184                                                                                                                                                                                                                           | 8 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                  |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         | ı                                                                                                                       | (Euaru, A Ch                                                                                                                             | 1004, (1) 4 6                                                                                                                                                                                                                  | ,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

(Bronsted, Z phys Ch 1906, 55 377)

Solubility of octahedral and prismatic S in organic solvents at to

| Solvent       | t°   | %<br>prismatic S | %<br>octahedral S |
|---------------|------|------------------|-------------------|
| Benzene       | 18 6 | 2 004            | 1 512             |
|               | 25 3 | 2 335            | 1 835             |
| Chloroform    | 0    | 1 101            | 0 788             |
|               | 15 5 | 1 658            | 1 253             |
|               | 40   | 2 9              | 2 4               |
| Ethyl ether   | 0    | 0 113            | 0 080             |
|               | 25 3 | 0 253            | 0 200             |
| Ethyl bromide | 0    | 0 852            | 0 611             |
|               | 25 3 | 1 676            | 1 307             |
| Ethyl formate | 0    | 0 028            | 0 019             |
| Ethyl alcohol | 25 3 | 0 066            | ▲0 052            |

(Bronsted, Z phys Ch 1906, 55 377)

Solubility in organic solvents at 25° (G S dissolved in 1 g mol of solvent)

| Solvent                                                                                                                    | g S                                                        |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Ethylene chloride Tetrachlorethane Dichlorethylene Pentachlorethane Trichlorethylene Perchlorethylene Carbon tetrachloride | 0 831<br>2 063<br>1 237<br>2 421<br>2 43<br>2 537<br>1 354 |

(Hoffmann et al 1910, B 43 188)

100 g trichlorethylene dissolve 1 19 g S at 15° (Wester and Bruins, Pharm Weekbl 1914, 51 1443)

Solubility in benzvl chloride at to

| t°                                                              | g 5 per 100 g of solution                             |                         |  |  |  |
|-----------------------------------------------------------------|-------------------------------------------------------|-------------------------|--|--|--|
| •                                                               | ın upper laver                                        | ın lower layer          |  |  |  |
| 0<br>17<br>35<br>46 1<br>63 3<br>78 0<br>99 1<br>109 6<br>114 6 | 0 99<br>1 78<br>2 57<br>3 64<br>6 15<br>9 88<br>19 89 | 90 62<br>87 99          |  |  |  |
| 118 8<br>121 4<br>130 0<br>134 2                                | 37 29<br>40 04<br>49 71<br>56 20                      | 85 02<br>80 07<br>72 23 |  |  |  |

Above 134 2° sulphur is miscible with | 1872 434)

benzyl chloride in all proportions, belo temp two layers are formed (Bogusky, J Russ Phys Chem Soc 37 92-99, C C 1905, I 1207)

Easily sol in boiling acetic anhy no

(Rosenfeld, B 13 1475) Sol in considerable amount in warm HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq, but very sl sol if dil

bermann, B 10 866 Sol in stearic acid +Aq (Vulpius,

Pharm (3) 13 38) Acetic ether dissolves 6% S (Favr Difficultly sol in methyl acetate

mann, B 1909, **42** 3790) Sol in ethyl acetate (Naumann, B **37** 3601)

Sl sol in benzonitrile at ord temp more sol at higher temp

1914, 47 1369)
Sol in 12 pts hot petroleum from A but nearly insol in cold (de Saussure 100 pts nicotine at 100° dissolve 10 S, but this separates out as the solution (Klever, C C 1872 434)

Sol in warm aniline (Barral, A **20** 352)

Easily sol in hot, less sol in cold (Fritzsche)

Very sol in aniline and quinoline, est when warm (Hofmann)

Sol in quinoline but reacts with the with evolution of H (Beckmann and Z anorg 1906, 51 236)

½ ccm oleic acid dissolves 0 0335 6 days (Gates, J phys Chem 19 143)

Sol in 26 pts of boiling, sl sol creosote

Sol by digestion in 2 pts oil of turp it Sol in hot oil of copaiba, crystalli cooling

Sol in hot oil of mandarin, cryst li on cooling

Sol in hot oil of caraway, crystalli is cooling

Somewhat sol in hot, less in cold vi spirit

Sl sol in lignone, bromoform, col zene, but easily in hot benzene Chem Soc 1 262) (Ma

Sol in ethyl sulphide, and carbo c

ride (Rathke, A 152 187) Sol in mercuric methyl

Sol in 20 pts ethyl nitrate, from v is not pptd by H<sub>2</sub>O

Sol in naphtha, aldehyde, iodal, l chloroform, warm chloral, sinkalir

ethyl chloride, warm benzovl chloride 100 pts methylene rodide dissolve S at 10° Melted sulphur is miscib hot methylene rodide (Retgers, Z **3** 343)

S dissolves in 2000 pts glycerine and Garot, J Pharm (3) 26 81) Glycerine dissolves 0 10%S (Kleve C

100 g glycerine dissolve 0 14 g at 15 5° (Ossendowski, Pharm J 1907, **79** 575)

Sol in butyl sulphydrate, and warm retin-

Sol in ethyl sulphydrate

Very sol in comine, hexyl alcohol, warm allyl sulphocyanide, cacodyl oxide what sol in hot styrene, separating out on cooling

Readily sol in warm, less readily in cold

toluene or resin-oil

Sol in olive oil at 115°, from which it

mostly separates on cooling

Sol in hot oil of amber, crystallising upon cooling Sol in 2 pts hot, sl sol in cold caoutchin

Insol in valerianic acid, amyl valerate,

valeryl hydride

Linseed oil dissolves % S at t°

| 21110000 |                |           |                |     |       |  |  |
|----------|----------------|-----------|----------------|-----|-------|--|--|
| t°       | % S            | t         | % S            | t°  | % S   |  |  |
| 25<br>60 | 0 630<br>1 852 | 95<br>130 | 2 587<br>4 935 | 160 | 9 129 |  |  |
|          |                |           |                |     |       |  |  |

(Pohl)

Solubility in olive oil (sp. gr = 0.885) 100 pts dissolve pts S at to

| t  | Pts S | t   | Pts S | t   | Pts S |
|----|-------|-----|-------|-----|-------|
| 15 | 2 3   | 65  | 20 6  | 110 | 30 3  |
| 40 | 5 6   | 100 | 25 0  | 130 | 43 2  |

(Pelouze C R 68 1179)

Solubility in 100 pts coal-tar oil at to

|                                    | Pts S in                             |                                           |                                           |  |  |  |
|------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|--|--|--|
| t                                  | Oil of 0 870<br>sp gr<br>B pt 80 100 | Oil of 0 880<br>sp gr<br>B pt 85 120      | Oil of 0 852<br>B pt 120 200              |  |  |  |
| 15<br>30<br>50<br>80<br>100<br>110 | 2 1<br>3 0<br>5 2<br>11 8<br>15 2    | 2 3<br>4 0<br>6 1<br>13 7<br>18 7<br>23 0 | 2 5<br>5 3<br>8 3<br>15 2<br>23 0<br>26 2 |  |  |  |
| 120<br>130                         |                                      | 27 ()                                     | 32 0<br>38 7                              |  |  |  |

|                                                  | I ts S in                                                 |                                             |                                                         |  |  |
|--------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|--|--|
|                                                  | Oil of 0.88 )<br>sp gr B pt<br>1 i0 200                   | Oil of 1 010<br>sp gr B pt<br>210 3 10      | Oil of 1 020<br>sp gr B pt<br>220 300                   |  |  |
| 15<br>30<br>50<br>80<br>100<br>110<br>120<br>130 | 2 6<br>5 8<br>8 7<br>21 0<br>26 4<br>31 0<br>38 0<br>43 8 | 6 0<br>8 5<br>10 0<br>37 0<br>52 5<br>105 0 | 7 0<br>8 5<br>12 0<br>41 0<br>54 0<br>115 0<br>$\infty$ |  |  |
|                                                  | (D. I.                                                    | C T) 00 F                                   | <del>' \                                   </del>       |  |  |

(Pelouze, C R **69** 56)

Sulphur bromide, S<sub>2</sub>Br<sub>2</sub>

Decomp gradually with H<sub>2</sub>O Dissolves S on warming, which crystallises out on cooling Sol m CS<sub>2</sub>

Decomp by current of dry air into S and Br (Hannay, Chem Soc 35 16)

Decomp slowly by cold H2O, rapidly by hot H<sub>2</sub>O Decomp by dil KOH+Aq or NaHCO<sub>3</sub>+Aq 1904, **242** 156) (Korndorfer, Arch Pharm

A study of the mpt curve of a series of mixtures of sulphur and bromine gave no evidence for the existence of the compounds  $SBr_2$  and  $SBr_4$  (Ruff, B 1903, **36** 2446)

Sulphur monochloride, S<sub>2</sub>Cl<sub>2</sub>

Slowly decomp by H<sub>2</sub>O Miscible with CS2 and C6H6 Sol in alcohol and ether with subsequent decomposition Sol in oil of turpentine

Moderately sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, 20 830)

Sol in CCl<sub>4</sub>, and C<sub>6</sub>H<sub>6</sub> it 1899, **29** (2) 318) (Oddo, Gazz ch

Sulphur dichloride, SCl<sub>2</sub>

Decomp slowly with H<sub>2</sub>O, immediately by alcohol or ether

Sulphur tetrachloride, SCl4

Violently decomp by H<sub>2</sub>O Decomp at temperatures above -22° (Michaelis, A **170** 1)

Sulphur stannic chloride, 2SCl<sub>4</sub>, SnCl<sub>4</sub>

Decomp by H O Sol in dil HNO $_3$ +Aq Forms a mass with fuming HNO $_3$  which is sol in HNO<sub>3</sub>+Aq Sol in POCl<sub>3</sub> (Casselmann)

Very hydroscopic Fumes in moist air Very easily sol in dry abs ether and in benzene Sol in CHCl<sub>3</sub>, SO Cl<sub>2</sub>, CS<sub>2</sub>, POCl<sub>3</sub> ligroin and petroleum ether (Ruff, B 1904, **37** 4517)

Sulphur titanium chloride, SCl<sub>4</sub>, 2T<sub>1</sub>Cl<sub>4</sub>

Very deliquescent Fasily sol in dil HNO<sub>3</sub>+Aq (Weber, Pogg 132 454) SCl<sub>4</sub>, TrCl<sub>4</sub> Sol in SO Cl<sub>7</sub>, CHCl<sub>3</sub>, CS<sub>2</sub>

and petroleum ether (Ruff, B 1904, 37 4516)

Sulphur chloride ammonia, S Cl., 4NH<sub>3</sub>

Insol in H2O, but gradually decomp thereby, sol without decomp in absolute alcohol, from which it is pptd by H<sub>2</sub>O (Mertens)

Does not exist (Fordos and Gelis, C R **31** 702)

SCl<sub>2</sub>, 2NH<sub>3</sub> Decomp by H<sub>2</sub>O Sol in alcohol or ether (Souberran, A ch 67 71) Not a true chemical compound, but a mixture (Fordos and Gélis, C R 31 702)

SCl<sub>2</sub>, 4NH<sub>3</sub> Decomp by H<sub>2</sub>O Sl sol in absolute alcohol and ether (Souberran, A ch 67 71), mixture (Fordos and Gélis)

### Sulphur chloride nitrogen sulphide See Nitrogen sulphochloride

Sulphur perfluoride, SF6

Very sl sol in H<sub>2</sub>O, sl sol in alcohol (Moissan, C R 1900, **130** 868)

Sulphur monoiodide, S2I2

Insol m H<sub>2</sub>O Decomp by alcohol, which dissolves out I<sub>2</sub> Sl sol in cold caoutchin, the solution decomposing when boiled Freely sol in glycerine Sol in 60 pts glycerine, and 82 pts olive oil (Cap and Garot, J Pharm (3) 26 81)

Very sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 830)

Sol in CS<sub>2</sub> (Linebarger, Am Ch J 1895, 17 58)

#### Sulphur hexiodide, SI6

Decomp on air Alcohol or alkahes dissolve out iodine (vom Rath, Pogg 110 116) Does not exist (M'Leod, Rep Brit Assn Advn Sci 1892 690)

### Sulphur stannic iodide See Tin sulphur iodide

Sulphur sesquioxide, S2O3

Deliquescent Violently decomp by H<sub>2</sub>O at ordinary temp Sol in fuming H<sub>2</sub>SO<sub>4</sub> Insol in SO<sub>3</sub> Decomp by alcohol or other (Weber, Pogg 156 531)

### Sulphur dioxide, SO<sub>2</sub>

Liquid Insol in H<sub>2</sub>O if brought in contact therewith below the b-pt of SO<sub>2</sub>

Sol in 3 vols CS<sub>2</sub> on warming, separating out on cooling Dissolves some P, little S, and no sulphuric or phosphoric acids

Dissolves ether, chloroform, P, Br, S, I, CS, colophonium, and other gums, also benzene when warmed (Sestini, Bull Soc (2) 10 226)

(2) 10 226)

Miscible with liquid SO<sub>3</sub>, but not with H SO<sub>4</sub>

Gas

1 vol h O di soros 50 vols 80 µa at 18 (Davy) 20 vols at ord temp (Dalton) 43 % vols at ord temp (de saussuru) 50 vols at 22 and 760 mm (Pelouze and Fremy 33 vol at ord temp (Thomson)

1 pt SO (by wet bit is sol in 0.1429 pt H O at 5 and the Justice has 1.020 mm.

and the olution has 1 020 sp gr 1 pt SO is ol in 0 0400 pt H O at ord temp (Prie tlev) in 0 0960 pt H O at 16 and sp gr of the solution = 1 0013 (Thom on)

Sol in 2 pts H O at 10 (Pierre A ch (3) 23 421)
100 vol H O at 15 and 700 mm absorb 4378 vols
SO gas 100 vols alcohol of 0 84 sp gr at 760 mm
ab orb 11 7 vols (de Saussure 1814)

Solubility of SO<sub>2</sub> gas in  $H_2O$  t° = temp vols SO<sub>2</sub> reduced to 0° and 760 mm tained in 1 vol sat SO<sub>2</sub>+Aq,  $V_1$ = SO<sub>2</sub> gas reduced to 0° and 760 mm solved by 1 vol  $H_2O$  under 760 mm

วท

əlc

Ыs

| I                                                                 |                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                |                                                                                                                                                                                  |                                                                                                          |                                                                                                          |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| t°                                                                | v                                                                                                                                                                                                              | V <sub>1</sub>                                                                                                                                                                                       | t°                                                                                                             | v                                                                                                                                                                                |                                                                                                          | _                                                                                                        |  |
| 0 1 1 2 3 3 4 4 5 5 6 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 | 68 861<br>67 003<br>65 169<br>63 360<br>61 576<br>59 816<br>58 080<br>56 369<br>54 683<br>53 021<br>51 383<br>49 770<br>48 182<br>46 618<br>45 079<br>43 564<br>42 073<br>40 608<br>39 165<br>37 749<br>36 206 | 79 789<br>77 210<br>74 691<br>72 230<br>69 828<br>67 485<br>65 200<br>62 973<br>60 805<br>58 697<br>56 647<br>54 655<br>52 723<br>50 849<br>49 033<br>47 276<br>43 939<br>42 360<br>40 838<br>39 374 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>40 | 34 986<br>33 910<br>32 847<br>31 800<br>30 766<br>29 748<br>28 744<br>26 788<br>25 819<br>24 873<br>23 942<br>23 025<br>22 122<br>21 234<br>19 502<br>18 658<br>17 827<br>17 013 | 37<br>36<br>35<br>34<br>32<br>31<br>30<br>29<br>28<br>27<br>26<br>25<br>24<br>22<br>21<br>20<br>20<br>19 | 70<br>17<br>02<br>26<br>86<br>84<br>22<br>14<br>10<br>51<br>78<br>44<br>47<br>80<br>68<br>41<br>3°<br>66 |  |
|                                                                   |                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                |                                                                                                                                                                                  |                                                                                                          |                                                                                                          |  |

(Schonfeld, A 95 5)

This table may be formulated as follo  $_3$  1 vol  $_4$  20 absorbs  $_79789-260$  t  $_6029349t^2$  vols  $_802$  at temp between 0 an  $_8020$ , or 1 vol sat solution contains  $_8020$  1.  $_8020$  1.  $_8020$  2. Coefficit to absorption between  $_8020$  2.  $_8020$  1.  $_8020$  2.  $_8020$  2.  $_8020$  2.  $_8020$  2.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  3.  $_8020$  4.  $_8020$  3.  $_8020$  4.  $_8020$  4.  $_8020$  5.  $_8020$  4.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5.  $_8020$  5

Solubility of  $SO_2$  in  $H_2O$  at various temp an 760 mm t°=temp, G = grunne SO dissolved in 1 g  $H_2O$ , V = vols SO dissolved in 1 g  $H_2O$ 

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                               |                                                                      |                                                    |                                                                               |                     | _                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|---------------------|-------------------------------------------|
| 10     0     154     53     9     32     0     073     2     7       12     0     142     49     6     34     0     069     2     3       14     0     130     45     6     36     0     065     2     8       16     0     121     42     2     38     0     062     2     6       18     0     112     39     3     40     0     058     2     4       20     0     104     36     4     42     0     055     1     3       22     0     098     34     2     44     0     053     1     4       24     0     092     32     3     46     0     050     1     4       26     0     087     30     5     48     0     047     1     4 | t                                                  | G                                                                             | V                                                                    | l t                                                | G                                                                             |                     |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>26 | 0 154<br>0 142<br>0 130<br>0 121<br>0 112<br>0 104<br>0 098<br>0 092<br>0 087 | 53 9<br>49 6<br>45 6<br>42 2<br>39 3<br>36 4<br>34 2<br>32 3<br>30 5 | 32<br>34<br>36<br>38<br>40<br>42<br>44<br>46<br>48 | 0 073<br>0 069<br>0 065<br>0 062<br>0 058<br>0 055<br>0 053<br>0 050<br>0 047 | 2 2 2 2 1 1 1 1 1 1 | 7<br>3<br>8<br>6<br>4<br>3<br>4<br>4<br>4 |

(Sims, A 118 340)

Solubility of SO<sub>2</sub> in H<sub>2</sub>O at various pressures P="partial pressure," i e the total pressure minus the tension of aqueous vapour at given temp, G at P=weight SO<sub>2</sub> in grammes, which is dissolved in 1 g H<sub>2</sub>O at pressure P, G at 760=calculated weight SO<sub>2</sub> that would be contained in 1 g H<sub>2</sub>O at 760 mm if the absorption were proportional to the pressure, V=the volume of G grammes of SO<sub>2</sub> at 0° and 760 mm

|                   |                                                     | 79                                                  |                                                       |                |  |  |  |
|-------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|----------------|--|--|--|
| P                 | G at P                                              | G at 760                                            | V at P                                                | V at 760       |  |  |  |
| 30                | 0 010                                               | 0 263                                               | 3 634                                                 | 92 06          |  |  |  |
| 40<br>50          | 0 013                                               | $\begin{array}{c c} 0 & 242 \\ 0 & 223 \end{array}$ | 4 451<br>5 129                                        | 84 55<br>77 95 |  |  |  |
| 60                | 0 017                                               | 0 818                                               | 6 024                                                 | 76 28          |  |  |  |
| 70                | 0 020                                               | 0 213                                               | 6 868                                                 | 74 55          |  |  |  |
| 80                | 0 022                                               | 0 210                                               | 7 743                                                 | 73 55          |  |  |  |
| 90<br>100         | $\begin{array}{ccc} 0 & 025 \\ 0 & 027 \end{array}$ | 0 208<br>0 205                                      | 8 598<br>9 421                                        | 72 62<br>71 60 |  |  |  |
| 120               | 0 027                                               | 0 203                                               | 11 09                                                 | 70 20          |  |  |  |
| 140               | 0 036                                               | 0 197                                               | 12 71                                                 | 69 00          |  |  |  |
| 160               | 0 041                                               | 0 195                                               | 14 34                                                 | 68 15          |  |  |  |
| 180               | 0 046                                               | 0 193                                               | 15 97                                                 | 67 40          |  |  |  |
| 200               | 0 050<br>0 055                                      | 0 191<br>0 190                                      | 17 59<br>19 19                                        | 66 83<br>66 30 |  |  |  |
| $\frac{220}{240}$ | 0 059                                               | 0 190                                               | 20 79                                                 | 65 84          |  |  |  |
| 260               | 0 064                                               | 0 187                                               | 22 40                                                 | 65 44          |  |  |  |
| 280               | 0 069                                               | 0 186                                               | 23 99                                                 | 65 10          |  |  |  |
| 300               | 0 073                                               | 0 185                                               | 25 59                                                 | 64 81          |  |  |  |
| 350               | 0 085<br>0 096                                      | $\begin{array}{ccc} 0 & 184 \\ 0 & 182 \end{array}$ | 29 55<br>33 51                                        | 64 16 63 65    |  |  |  |
| 400<br>450        | 0 096<br>0 107                                      | 0 182                                               | 37 44                                                 | 63 25          |  |  |  |
| 500               | 0 118                                               | 0 180                                               | 41 42                                                 | 62 94          |  |  |  |
| 550               | 0 130                                               | 0 179                                               | 45 31                                                 | 62 60          |  |  |  |
| 600               | 0 141                                               | 0 178                                               | 49 20                                                 | 62 32          |  |  |  |
| 650               | 0 152                                               | 0 178                                               | 53 10                                                 | 62 09          |  |  |  |
| 700<br>750        | 0 163<br>0 174                                      | $\begin{array}{ccc} 0 & 177 \\ 0 & 176 \end{array}$ | 56 98<br>60 88                                        | 61 86<br>61 69 |  |  |  |
| 760               | 0 174                                               | 0 176                                               | 61 65                                                 | 61 65          |  |  |  |
| 800               | 0 185                                               | 0 176                                               | 64 74                                                 | 61 50          |  |  |  |
| 850               | 0 196                                               | 0 175                                               | 68 57                                                 | 61 30          |  |  |  |
| 900               | 0 207                                               | 0 175                                               | 72 41                                                 | 61 15          |  |  |  |
| 950<br>1000       | $\begin{array}{c} 0 \ 218 \\ 0 \ 229 \end{array}$   | 0 175                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 61 00<br>60 88 |  |  |  |
| 1050              | $0.229 \\ 0.240$                                    | 0 174                                               | 83 97                                                 | 60 77          |  |  |  |
| 1100              | 0 251                                               | 0 174                                               | 87 80                                                 | 60 65          |  |  |  |
| 1200              | 0 273                                               | 0 173                                               | 95 45                                                 | 60 45          |  |  |  |
| 1300              | 0 295                                               | 0 172                                               | 103 00                                                | 60 25          |  |  |  |
|                   | ·                                                   | <u> </u>                                            | <del></del>                                           |                |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20°                                                                                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G at P                                                                                 | G at 760                                                                                                                                                                                                                                        | V at P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V at 760                                                                                                                                                                                                                      |  |  |
| 40         0 007           50         0 009           60         0 011           70         0 012           80         0 013           90         0 015           100         0 016           120         0 019           140         0 022           180         0 028           200         0 030           220         0 033           240         0 036           260         0 038           280         0 041           300         0 044           350         0 059           450         0 064           500         0 071           550         0 077           600         0 083           650         0 090           700         0 096           750         0 103           760         0 104           800         0 110           1000         0 137           1300         0 178           1600         0 218           1900         0 259 |                                                                                        | 0 143<br>0 138<br>0 135<br>0 131<br>0 127<br>0 125<br>0 124<br>0 121<br>0 119<br>0 118<br>0 117<br>0 116<br>0 115<br>0 114<br>0 112<br>0 111<br>0 109<br>0 108<br>0 107<br>0 106<br>0 105<br>0 105<br>0 104<br>0 104<br>0 104<br>0 104<br>0 104 | 2 637<br>3 1718<br>4 205<br>4 663<br>5 169<br>5 6 683<br>7 669<br>6 652<br>10 62<br>11 59<br>12 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 54<br>11 | 50 09<br>48 20<br>47 10<br>45 64<br>44 30<br>43 65<br>42 33<br>41 75<br>40 35<br>40 03<br>39 70<br>39 30<br>38 87<br>38 35<br>38 35<br>37 77<br>37 50<br>36 43<br>36 43<br>36 43<br>36 36<br>36 37<br>36 37<br>36 27<br>36 21 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39.8                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |  |  |
| P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G at P                                                                                 | G at 760                                                                                                                                                                                                                                        | V at P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 at 760                                                                                                                                                                                                                      |  |  |
| 200<br>300<br>400<br>500<br>600<br>760<br>800<br>1000<br>1500<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 016<br>0 024<br>0 031<br>0 039<br>0 047<br>0 059<br>0 062<br>0 077<br>0 113<br>0 149 | 0 062<br>0 061<br>0 060<br>0 059<br>0 059<br>0 059<br>0 059<br>0 055<br>0 057                                                                                                                                                                   | 5 675<br>8 368<br>11 03<br>13 67<br>16 29<br>20 50<br>21 58<br>26 84<br>39 65<br>52 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 57<br>21 20<br>20 95<br>20 77<br>20 64<br>20 50<br>20 50<br>20 40<br>20 09<br>19 80                                                                                                                                        |  |  |
| P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | 50                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |  |  |
| 200<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 012<br>0 024                                                                         | G at 760<br>0 045<br>0 045                                                                                                                                                                                                                      | V at P<br>4 156<br>8 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 97<br>15 72                                                                                                                                                                                                                |  |  |
| 600<br>760<br>800<br>1000<br>1500<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 035<br>0 045<br>0 047<br>0 059<br>0 088<br>0 012                                     | 0 045<br>0 045<br>0 045<br>0 045<br>0 044<br>0 044                                                                                                                                                                                              | 12 36<br>15 62<br>16 43<br>20 51<br>30 73<br>39 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 65<br>15 62<br>15 60<br>15 59<br>15 57<br>15 55                                                                                                                                                                            |  |  |
| (Sims A 118 340)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |  |  |

(Sims, A 118 340)

1 g  $\rm H_2O$  dissolves 0 0909 g  $\rm SO_2=34\,73$  cc (at 25°) at 25° and 748 mm pressure (Walden and Centnerszwer, Z phys Ch 1901, 42 462)

Solubility of SO<sub>2</sub> in H<sub>0</sub>O at t° and 760 mm pressure

| t°               | G SO per<br>1 g H <sub>2</sub> O | t°                 | G SO <sub>2</sub> per<br>1 g H <sub>2</sub> O |  |  |  |  |
|------------------|----------------------------------|--------------------|-----------------------------------------------|--|--|--|--|
| 0<br>2<br>4<br>6 | 0 236<br>0 218<br>0 201<br>0 184 | 7<br>8<br>10<br>12 | 0 176<br>0 168<br>0 154<br>0 142              |  |  |  |  |

(Roozeboom, R t c 1884, 3 29)

From a gas containing 10% by vol of SO<sub>2</sub> at  $10^\circ$ , 163% by wt is dissolved by 1 litre of H<sub>2</sub>O, if the pressure is increased to 5 atmospheres, 8 14% by wt is dissolved (Harpf, Chem Zeitschr, 1905, 4 136)

Solubility of SO<sub>2</sub> in H<sub>2</sub>O at t° C=g SO<sub>2</sub> in 1 cc of the solution P=Pressure in mm of Hg

| 1 -11essure tu mmi of 11g |                                            |                               |                                 |  |  |  |
|---------------------------|--------------------------------------------|-------------------------------|---------------------------------|--|--|--|
| t°                        | С                                          | P                             | $\frac{C}{P} \times 10^4$       |  |  |  |
| ,<br>,<br>,,              | 0 000537<br>0 00237<br>0 01227<br>0 03894  | 0 4<br>3 5<br>29 4<br>109 4   | 13 4<br>6 78<br>4 17<br>3 48    |  |  |  |
| 25                        | 0 000534<br>0 00234<br>0 01212<br>0 03750  | 1 4<br>11 75<br>87 9<br>313 0 | 3 81<br>2 00<br>1 379<br>1 198  |  |  |  |
| 50                        | 0 000525<br>0 002276<br>0 01181<br>0 03628 | 4 9<br>30 5<br>204 5<br>696 0 | 1 07<br>0 746<br>0 577<br>0 521 |  |  |  |

(Lindner, M 1912, 33 645)

Sp gr of sat solution at— 0° 10° 20° 40° 1 06091 1 05472 1 02386 0 95548 (Bunsen and Schonfeld A 95 2)

Sat  $SO_2+Aq$  has sp gr = 1 0040 (Berthollet)

Sr gr of sat 'O2+Aq at to

| t°                                        | Sp gr                                                                                  | t                                           | Sp gr                                                                        | t                                            | Sp gr                                                                        |
|-------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 1 0609<br>1 0596<br>1 0585<br>1 0576<br>1 0569<br>1 0562<br>1 0557<br>1 0552<br>1 0549 | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 1 0548<br>1 0547<br>1 0528<br>1 0505<br>1 0481<br>1 0454<br>1 0424<br>1 0392 | 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 1 0358<br>1 0321<br>1 0281<br>1 0239<br>1 0195<br>1 0147<br>1 0099<br>0 9991 |

(Schiff, A 107 312)

Sp gr of SO<sub>2</sub>+Aq at 4°

| %<br>sO₂ | Sp gr  | %<br>SO <sub>2</sub> | Sp gr  | so <sub>2</sub> | Sp  |
|----------|--------|----------------------|--------|-----------------|-----|
| 1        | 1 0024 | 8                    | 1 0217 | 15              | 1 0 |
| 2        | 1 0049 | 9                    | 1 0247 | 16              | 1 0 |
| 3        | 1 0075 | 10                   | 1 0278 | 17              | 1 0 |
| 4        | 1 0102 | 11                   | 1 0311 | 18              | 1 0 |
| 5        | 1 0130 | 12                   | 1 0343 | 19              | 1 0 |
| 6        | 1 0158 | 13                   | 1 0376 | 20              | 1 0 |
| 7        | 1 0187 | 14                   | 1 0410 | 21              | 1 0 |

(Schiff, calculated by Gerlach, Z anal 8

Sp gr of SO<sub>2</sub>+Aq

| % SO <sub>2</sub>                                                                                       | Temp                                   | Sp gr                                                                                                                          |
|---------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 0 99<br>2 05<br>2 87<br>4 04<br>4 99<br>5 89<br>7 01<br>8 08<br>8 68<br>9 80<br>10 75<br>11 65<br>13 09 | 15 5°  " " " " " " " " " " 12 5° 11 0° | 1 0051<br>1 0102<br>1 0148<br>1 0204<br>1 0252<br>1 0297<br>1 0353<br>1 0399<br>1 0438<br>1 0492<br>1 0541<br>1 0597<br>1 0668 |
|                                                                                                         |                                        |                                                                                                                                |

(Giles and Schearer, Jour Soc Ch Inc 4

Sp gr of SO<sub>2</sub>+Aq

| %<br>so       | Sp gr  | % so 2 | Sp gr  | %<br>so <sub>2</sub> | Sp  |
|---------------|--------|--------|--------|----------------------|-----|
| $\frac{1}{2}$ | 1 0052 | 4      | 1 0167 | 7                    | 1 0 |
|               | 1 0094 | 5      | 1 0208 | 8                    | 1 0 |
|               | 1 0134 | 6      | 1 0242 | 9                    | 1 0 |

(Anthon)

Sp gr of SO<sub>2</sub>+Aq

| ső               | Sp gr                                | %<br>SO₂    | Sp gr                      | ső2          | Sp                             |   |
|------------------|--------------------------------------|-------------|----------------------------|--------------|--------------------------------|---|
| 1<br>2<br>3<br>4 | 1 0042<br>1 0083<br>1 0125<br>1 0167 | 5<br>6<br>7 | 1 0210<br>1 0252<br>1 0295 | 8<br>9<br>10 | 1 0<br>1 0<br>1 0 <sup>2</sup> | 3 |
|                  |                                      |             |                            |              |                                |   |

(Hager, Adjumenta varia, Leipzig, 1 6

| Sp | gr of | $SO_2 + Aq$ | at | 15° |
|----|-------|-------------|----|-----|
|----|-------|-------------|----|-----|

| 57<br>SO                                      | Sp gr                                                              | ső                                            | Sp gr                                                              | %<br>80 <sub>2</sub>                    | Sp gr                                                    |
|-----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|
| 0 5<br>1 0<br>1 5<br>2 0<br>2 5<br>3 0<br>3 5 | 1 0028<br>1 0056<br>1 0085<br>1 0113<br>1 0141<br>1 0168<br>1 0194 | 4 0<br>4 5<br>5 0<br>5 5<br>6 0<br>6 5<br>7 0 | 1 0221<br>1 0248<br>1 0275<br>1 0302<br>1 0328<br>1 0353<br>1 0377 | 7 5<br>8 0<br>8 5<br>9 0<br>9 5<br>10 0 | 1 0401<br>1 0426<br>1 0450<br>1 0474<br>1 0497<br>1 0520 |

(Scott, Polyt Centralbl 1873 826)

Conc H2SO4 absorbs 0 009 pt by weight (58 vols), and SO<sub>2</sub> is more soluble in dilute H<sub>2</sub>SO<sub>4</sub>+Aq, the more H<sub>2</sub>O there is present (Kolb, Dingl **209** 270)

#### Solubility in H<sub>2</sub>SO<sub>4</sub>

| • |          |            |                         |  |  |  |  |  |  |  |
|---|----------|------------|-------------------------|--|--|--|--|--|--|--|
|   | Sp gr of | Absorbs SO | Absorbs SO <sub>2</sub> |  |  |  |  |  |  |  |
|   | H_SO4    | per kg     | per litre               |  |  |  |  |  |  |  |
|   | 1 841    | 0 009      | 5 8                     |  |  |  |  |  |  |  |
|   | 1 839    | 0 014      | 8 9                     |  |  |  |  |  |  |  |
|   | 1 540    | 0 021      | 11 2                    |  |  |  |  |  |  |  |
|   | 1 407    | 0 032      | 15 9                    |  |  |  |  |  |  |  |
|   | 1 227    | 0 068      | 29 7                    |  |  |  |  |  |  |  |
|   | 1 020    | 0 135      | 49 0                    |  |  |  |  |  |  |  |
|   |          |            |                         |  |  |  |  |  |  |  |

(Kolb, Bull Soc Ind Mullhouse, 1872 224)

Coefficient of absorption for H<sub>2</sub>SO<sub>4</sub> (1 841 sp gr at 15° and 760 mm) is 28 14 at 17°, and 28 86 at 16° (Dunn, C N 43 121)

Coefficient of absorption in H<sub>2</sub>SO<sub>4</sub> (sp gr and 28 86 at 16° (Dunn, C N 43 121)

Solubility of SO, in H.SO, of 1 94 cm

| botur                           | mily of g                                      | $O_2 \text{ in } 1$                        | 12004                      | 01 1 94                                        | sh gr                              |
|---------------------------------|------------------------------------------------|--------------------------------------------|----------------------------|------------------------------------------------|------------------------------------|
| t                               | Sp gr<br>of sat<br>solution                    | Coeff of absorption (760 mm)               | t°                         | Sp gr<br>of sat<br>solution                    | Coeff of<br>absorption<br>(760 mm) |
| 0<br>10<br>20<br>25<br>30<br>40 | 1 8232<br>1 8225<br>1 8221<br>1 8216<br>1 8205 | 53<br>35 0<br>25 0<br>21 0<br>18 0<br>13 0 | 50<br>60<br>70<br>80<br>90 | 1 8186<br>1 8165<br>1 8140<br>1 8112<br>1 8080 | 9 5<br>7 0<br>5 5<br>4 5<br>4 0    |

(Dunn, C N 1882, 45 272 Calc by Seidell, Solubilities, 1st Ed)

### Solubility of SO<sub>2</sub> in H<sub>2</sub>SO<sub>4</sub>+Aq

| t                          | ٥.                         | 5                | of HrSO4<br>solution                   | Approx<br>% H <sub>2</sub> SO <sub>4</sub> | Coeff of                         | absorption                       | ť                          | )                          | S. C.                 | % H.SO4<br>solution                    | Approx<br>% H <sub>2</sub> SO <sub>4</sub> | Coeff of                   | 45                               |
|----------------------------|----------------------------|------------------|----------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------|-----------------------|----------------------------------------|--------------------------------------------|----------------------------|----------------------------------|
| 6<br>6<br>8<br>9<br>5<br>6 | 9<br>9<br>6<br>8<br>5<br>6 | 1<br>1<br>1<br>1 | 139<br>300<br>482<br>703<br>067<br>102 | 20<br>40<br>58<br>78<br>10<br>15           | 48<br>45<br>39<br>29<br>36<br>34 | 67<br>38<br>91<br>03<br>78<br>08 | 15<br>16<br>14<br>15<br>15 | 2<br>8<br>8<br>1<br>6<br>0 | 1<br>1<br>1<br>1<br>1 | 173<br>151<br>277<br>458<br>609<br>739 | 25<br>21<br>36<br>56<br>70<br>81           | 31<br>30<br>29<br>25<br>20 | 82<br>56<br>41<br>87<br>17<br>83 |

(Dunn, C N 1882, **45** 272, Seidell, Solubilities, 1st Ed )

### Solubility in salts+Aq at 35°

l=coefficient of absorption of SO<sub>2</sub> in the given salt solution at 35° lo = coefficient of absorption of  $SO_2$  in water at  $35^\circ = 2243$ 

| 10 000                          |      |          |            |          |            |          |            |
|---------------------------------|------|----------|------------|----------|------------|----------|------------|
| Salt                            |      | 3 normal | 2 o normal | 2 normal | l o normal | 1 normal | 0 o normal |
| KI                              | 1    | 45 43    | 41 87      | 38 04    | 34 64      | 30 25    | 26 30      |
|                                 | l-lo | 23 00    | 19 44      | 15 61    | 12 21      | 7 82     | 3 87       |
| KBr                             | 1    | 36 14    | 34 12      | 31 93    | 29 64      | 27 49    | 24 83      |
|                                 | l-lo | 13 71    | 11 69      | 9 50     | 7 21       | 5 01     | 2 40       |
| KCl                             | l    | 30 02    | 28 93      | 27 94    | 26 54      | 25 15    | 23 74      |
|                                 | l-lo | 7 59     | 6 50       | 5 31     | 4 11       | 2 72     | 1 31       |
| KCNS                            | l    | 42 94    | 38 13      | 35 05    | 32 03      | 28 79    | 25 63      |
|                                 | l-lo | 18 51    | 15 70      | 12 62    | 9 60       | 6 36     | 3 20       |
| NH <sub>4</sub> NO <sub>8</sub> | 1    | 27 43    | 26 66      | 25 57    | 24 78      | 24 23    | 23 35      |
|                                 | l-lo | 5 00     | 4 23       | 3 14     | 2 35       | 1 80     | 0 92       |
| KNO <sub>3</sub>                | 1    | 27 33    | 26 54      | 25 72    | 24 79      | 24 03    | 23 27      |
|                                 | l-lo | 4 90     | 4 11       | 3 29     | 2 36       | 1 60     | 0 84       |

Solubility in salts+Aq at 35° —Continued

l=coefficient of absorption of SO<sub>2</sub> in the given salt solution at 35° lo=coefficient of absorption of SO<sub>2</sub> in water at 35°=22 43

| 10— cocmorcia o                         | . 00000170 | IOH OI SOZ |            |          |                  |              |       |
|-----------------------------------------|------------|------------|------------|----------|------------------|--------------|-------|
| Salt                                    |            | 3 normal   | 2 5 normal | 2 normal | 15 normal        | 1 normal     | 0 nor |
| ½(NH4)2SO4                              | 1          | 24 60      | 24 23      | 23 93    | 23 49            | 23 14        | 2 9   |
|                                         | l-lo       | 2 17       | 1 80       | 1 50     | 1 06             | 0 71         | 0 4   |
| ½CdI <sub>2</sub>                       | 1          | 24 30      | 23 99      | 23 71    | 23 38            | <b>23</b> 06 | 2 7   |
|                                         | l-lo       | 1 87       | 1 56       | 1 28     | 0 95             | 0 63         | 0 3   |
| ½Na <sub>2</sub> SO <sub>4</sub>        | 1          | 19 27      | 19 79      | 20 20    | 20 81            | 21 35        | 1 8   |
| , 2=                                    | l-lo       | -3 16      | -2 64      | -2 23    | <del>-1</del> 62 | -1 08        | 0 5   |
| ½CdBr2                                  | 1          | 19 17      | 19 70      | 20 60    | 20 81            | 21 46        | 1 8   |
|                                         | l-lo       | -3 26      | -2 73      | -1 83    | -1 62            | -0 97        | 0 5   |
| ½CdCl2                                  | 1          | 18 68      | 19 23      | 20 02    | 20 55            | 21 23        | 1 7   |
|                                         | I-lo       | -3 75      | -3 20      | -2 41    | 1 88             | -1 20        | 0 7   |
| ½CdSO.                                  | 1          | 16 25      | 17 41      | 18 31    | 19 42            | 20 43        | 1 4   |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | l-lo       | -6 81      | -5 02      | -4 12    | <del>-3</del> 01 | -2 00        | - 0 9 |

Solubility in salts+Aq at 25°

l=coefficient of absorption of  $SO_2$  in the given solution at 25° lo=coefficient of absorption of  $SO_2$  in water at 25°=32 76

| Salt               |      | 3 normal      | 25 normal | 2 normal | 15 normal | 1 normal | 0 | norm |
|--------------------|------|---------------|-----------|----------|-----------|----------|---|------|
| KI                 | 1    | 68 36         | 62 63     | 56 75    | 50 58     | 44 76    |   | 3 66 |
|                    | l-lo | 35 60         | 29 87     | 23 99    | 17 82     | 12 00    |   | 5 90 |
| ½CdI2              | 1    | 35 77         | 34 98     | 34 74    | 34 16     | 33 76    |   | 3 27 |
|                    | l–lo | 3 01          | 2 22      | 1 98     | 1 40      | 1 00     |   | 0 51 |
| NH₄Br              | 1    | 52 25         | 49 17     | 46 06    | 42 78     | 39 46    |   | o 28 |
|                    | l-lo | 19 49         | 16 41     | 13 30    | 10 02     | 6 70     |   | 3 52 |
| KBr                | 1    | 52 26         | 48 87     | 44 96    | 42 41     | 39 11    |   | o 94 |
|                    | l-lo | 19 00         | 15 71     | 12 70    | 9 15      | 6 35     | _ | 3 18 |
| NaBr               | 1    | 37 74         | 36 84     | 36 26    | 35 27     | 34 54    |   | 3 76 |
|                    | l–lo | 4 98          | 4 08      | 3 50     | 2 51      | 1 78     |   | 1 00 |
| ½CdBr2             | 1    | 27 46         | 28 15     | 29 27    | 30 17     | 31 01    | _ | 1 91 |
|                    | l-lo | <b>—</b> 5 30 | -4 61     | -3 49    | -2 59     | —1 75    |   | 0 85 |
| NH <sub>4</sub> Cl | 1    | 42 78         | 41 37     | 39 76    | 38 06     | 36 37    | _ | 4 58 |
|                    | l–lo | 10 02         | 8 61      | 7 00     | 5 30      | 3 61     | - | 1 80 |
| KCl                | 1    | 42 27         | 40 96     | 39 32    | 37 76     | 36 05    | - | 4 42 |
|                    | l-lo | 9 51          | 8 20      | 6 56     | 5 00      | 3 29     |   | 1 66 |

Solubility in salts+Aq at 25°—Continued l= coefficient of absorption of  $SO_2$  in the given solution at 25° lo= coefficient of absorption of  $SO_2$  in water at 25°= 32 76

| 10— COEMICIENT OF ABSOLPTION OF SO2 IN WASEL AS 25 — 52 10 |             |          |              |                  |            |          |           |  |  |  |
|------------------------------------------------------------|-------------|----------|--------------|------------------|------------|----------|-----------|--|--|--|
| Salt                                                       |             | 3 normal | 2 5-normal   | 2 normal         | 1 5-normal | 1 normal | 05 normal |  |  |  |
| NaCl                                                       | 1           | 31 36    | 31 51        | 31 76            | 31 96      | 32 25    | 32 46     |  |  |  |
|                                                            | l–lo        | -1 40    | -1 25        | —1 00            | -0 80      | 0 51     | 0 30      |  |  |  |
| ½CdCl <sub>2</sub>                                         | 1           | 26 06    | 27 09        | 28 16            | 29 46      | 30 55    | 31 66     |  |  |  |
|                                                            | l-lo        | 6 70     | <b>—5</b> 67 | <del>-4</del> 60 | 3 30       | -2 21    | -1 10     |  |  |  |
| NH4CNS                                                     | 1           | 61 46    | 57 01        | 52 26            | 47 26      | 42 74    | 37 78     |  |  |  |
|                                                            | l–lo        | 28 70    | 24 25        | 19 50            | 14 50      | 9 98     | 5 02      |  |  |  |
| KCNS                                                       | 1           | 61 26    | 55 87        | 51 86            | 47 02      | 42 38    | 37 57     |  |  |  |
|                                                            | l-lo        | 28 50    | 23 11        | 19 10            | 14 26      | 9 62     | 4 81      |  |  |  |
| NaCNS                                                      | 1           | 48 34    | 45 86        | 43 37            | 40 78      | 38 24    | 35 44     |  |  |  |
|                                                            | l-lo        | 15 58    | 13 10        | 10 61            | 8 02       | 5 48     | 2 68      |  |  |  |
| NH4NO3                                                     | 1           | 39 14    | 38 01        | 37 27            | 36 28      | 35 07    | 33 96     |  |  |  |
|                                                            | l-lo        | 6 38     | 5 25         | 4 51             | 3 52       | 2 31     | 1 20      |  |  |  |
| KNO <sub>3</sub>                                           | l           | 38 52    | 37 57        | 36 66            | 35 77      | 34 79    | 33 80     |  |  |  |
|                                                            | l-lo        | 5 76     | 4 81         | 3 90             | 3 01       | 2 03     | 1 04      |  |  |  |
| ½(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>           | 1           | 35 96    | 35 47        | 34 95            | 34 34      | 33 82    | 33 35     |  |  |  |
|                                                            | l-lo        | 3 20     | 2 71         | 2 19             | 1 58       | 1 06     | 0 59      |  |  |  |
| ½K₂SO₄                                                     | 1           |          |              |                  |            | 33 61    | 33 20     |  |  |  |
|                                                            | l-lo        |          |              |                  |            | 0 85     | 0 48      |  |  |  |
| ½Na SO <sub>4</sub>                                        | 1           | 28 44    | 28 66        | 29 51            | 30 45      | 31 14    | 31 96     |  |  |  |
|                                                            | l-lo        | -4 32    | -4 10        | -3 25            | -2 31      | -1 62    | -0 80     |  |  |  |
| ½CdSO4                                                     | 1           | 23 76    | 25 14        | 26 58            | 28 24      | 29 71    | 31 11     |  |  |  |
|                                                            | l-lo        | -9 00    | <b>—7</b> 62 | <b>—</b> 6 18    | -4 52      | -3 05    | -1 85     |  |  |  |
|                                                            | <del></del> | (Tion 7  | phys. Ch     | 1000 41 4        | 60 \       |          |           |  |  |  |

(Fox, Z phys Ch 1902, 41 462)

Sol in  $Cl_2+Aq$  Sol in Br Solidification curves determined (Van der Goot, Z phys Ch 1913, 84 419)

Solubility of SO in alcohol I vol alcohol at t° and 760 mm dissolves V vols SO2 gas at 0° and 760 mm

| t°                                        | 1                                                                                      | t°                                          | ī                                                                            | t°                                           | v                                                                            |
|-------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 328 62<br>311 98<br>295 97<br>280 58<br>265 81<br>251 67<br>238 16<br>225 26<br>212 98 | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 201 33<br>190 31<br>179 91<br>170 13<br>160 98<br>152 45<br>144 55<br>137 27 | 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 130 61<br>124 58<br>119 17<br>114 48<br>110 22<br>106 68<br>103 77<br>101 47 |

(Bunsen's Gasometry)

100 pts absolute methyl alcohol dissolve 247 pts SO<sub>2</sub> at 0° and 760 mm, 47 pts at 26° and 760 mm, 100 pts absolute ethyl alcohol dissolve 115 pts SO2 at 0° and 760 mm, 32 3 pts at 26° and 760 mm (de Bruyn, Z phys Ch 10 783)

Sol in ether

Absorbed by oil of turpentine

Rapidly absorbed by anhydrous aldehyde in the cold, 11 pts aldehyde absorbing 19 pts

Absorption coefficient of aldehyde for SO<sub>2</sub> is 14 times greater than that of alcohol, and 7 times greater than that of H<sub>2</sub>O (Geuther and Cartmell, Proc Roy Soc 10 111)

1 pt camphor dissolves 0 880 pt by weight  $(=308 \text{ vols}) \text{ SO}_2 \text{ at } 0^{\circ} \text{ and } 725 \text{ mm}, 1 \text{ pt}$ glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> dissolves 0 961 pt by weight (=318 vols) SO at 0° and 725 mm, 1 pt formic acid dissolves 0.821 pt by weight (=351 vols) SO<sub>2</sub> at 0° and 725 mm, 1 pt acetone dissolves 2 07 pts by weight (=589 vols) SO at 0° and 725 mm, 1 pt sulphuryl chloride dissolves 0 323 pt by weight (=187 vols) SO<sub>2</sub> at 0° and 725 mm (Schulze, J pr (2) 24 168)

Solubility of SO<sub>2</sub> in CHCl<sub>3</sub> C=g SO in 1 cc of the solution P=Pressure in mm Hg

| t  | С        | Р     | $\frac{\text{C}}{\text{P}} \times 10^4$ |
|----|----------|-------|-----------------------------------------|
| 0  | 0 000701 | 2 7   | 2 6                                     |
|    | 0 001790 | 5 6   | 3 14                                    |
|    | 0 006982 | 22 0  | 3 17                                    |
|    | 0 03097  | 90 2  | 3 43                                    |
|    | 0 08217  | 219 6 | 3 74                                    |
| 22 | 0 000669 | 5 7   | 1 17                                    |
|    | 0 001712 | 12 9  | 1 37                                    |
|    | 0 006723 | 48 0  | 1 40                                    |
|    | 0 02954  | 206 2 | 1 47                                    |
|    | 0 07839  | 488 8 | 1 60                                    |

(Lindner, M 1912, 33 645)

Distribution of SO<sub>2</sub> between H<sub>2</sub>O and C

 $c_1 = g SO_2 per l of H_2O solution$ c<sub>2</sub>=g SO<sub>2</sub> per l of CHCl<sub>3</sub> solution

| C <sub>1</sub>                                                                                                                      | C <sub>2</sub>                                                                                                                      | C <sub>1</sub> /C <sub>2</sub>                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1 738<br>1 753<br>2 326<br>2 346<br>2 628<br>3 039<br>3 058<br>3 686<br>3 735<br>4 226<br>5 269<br>5 372<br>6 588<br>31 92<br>33 26 | 1 123<br>1 122<br>1 704<br>1 703<br>1 897<br>2 395<br>2 385<br>3 063<br>3 062<br>3 626<br>4 798<br>4 813<br>6 183<br>33 84<br>37 25 | 1 55<br>1 56<br>1 37<br>1 38<br>1 38<br>1 27<br>1 28<br>1 20<br>1 22<br>1 17<br>1 10<br>1 12<br>1 07<br>0 94<br>0 89 |
|                                                                                                                                     | ~                                                                                                                                   |                                                                                                                      |

(McCrae, Z anorg 1903, **35** 12)

Distribution of SO<sub>2</sub> between HCl+Ac ind CHCl<sub>3</sub> at 20°

 $c_1 = g SO_2$  per l of HCl + Aq solution c2=g SO2 per l of CHCl3 solution HCl=normality of HCl+Aq used

| HCl          | Ci                                     | С                                      | C <sub>1</sub> 2                                         |
|--------------|----------------------------------------|----------------------------------------|----------------------------------------------------------|
| 0 05-N       | 1 86<br>3 076<br>4 277<br>5 340        | 1 46<br>2 830<br>4 07<br>5 42          | 1 8<br>1 8<br>1 4<br>0 6                                 |
| 0 1 -N       | 1 25<br>1 324<br>2 78<br>3 86<br>5 161 | 1 41<br>1 416<br>3 08<br>4 08<br>5 715 | 0 8<br>0 3<br>0 0<br>0 4<br>0 0                          |
| $0 \ 2 \ -N$ | 1 268<br>1 914<br>2 464                | 1 509<br>2 274<br>3 040                | $\begin{array}{ccc}0&4\\0&4\\0&1\end{array}$             |
| 0 4 -N {     | 3 967<br>1 202<br>1 894                | 4 898<br>1 614<br>2 263                | $\begin{array}{ccc} 0 & 1 \\ 0 & 9 \\ 0 & 3 \end{array}$ |

(McCrae, Z anorg 1903, **35** 14)

Sulphur dioxide ammonia,  $SO_2$ ,  $NH_8$ Very hydroscopic Easily sol in H<sub>2</sub>C with

decomp (Schumann, Z anorg 1900

SO<sub>2</sub>, 2NH<sub>8</sub> Somewhat hydroscopic Sol in H<sub>2</sub>O with evolution of NH<sub>3</sub>

mann, Z anorg 1900, 23 50) 5SO<sub>2</sub>, 4NH<sub>3</sub> Very deliquescent

5SO<sub>2</sub>, 4NH<sub>3</sub> Very delique Very sol in H<sub>2</sub>O (Div. Chem Soc 1901, **79** 1103) (Divers and O wa,

Sulphur trioxide, SO:

Fumes on air Miscible with H<sub>2</sub>O, with evolution of much heat Sol in H<sub>2</sub>SO<sub>4</sub> Decomp by alcohol and ether

Exists in two modifications, one of which is liquid and miscible with  $H_2SO_4$ , while the

solid form is only slowly sol therein
Miscible with CS<sub>2</sub> at 30°, but at 15° CS<sub>2</sub>
dissolves only <sup>1</sup>/<sub>8</sub> pt SO<sub>3</sub>, and SO<sub>3</sub>, <sup>1</sup>/<sub>8</sub> pt
CS<sub>2</sub> (Schultz-Sellack, Pogg 139 480)
There is only one modification, the liquid,

which absorbs H<sub>2</sub>O and becomes solid (Rebs, A **246** 356) Miscible with liquid SO<sub>2</sub> (Schultz-

Sellack ) See also Sulphuric acid

Sulphur heptoxide, S2O7

Fumes on air Slowly decomp at 0°, instantaneously on warming Sol in conc H<sub>2</sub>SO<sub>4</sub> (Berthelot, J pr (2) 17 48)
Forms compound S<sub>2</sub>O<sub>7</sub>, 2H<sub>2</sub>O<sub>2</sub>

Formula is SO<sub>4</sub>, according to Traube (B 24. 1764), and S<sub>2</sub>O<sub>7</sub> is SO<sub>3</sub>+SO<sub>4</sub>
See also Marshall (Chem Soc 59 771)
Traube (B 26 148) denies the existence of SO<sub>4</sub>

Sulphur oxybromide, SOBr<sub>2</sub>
See Thionyl bromide

Sulphur oxychloride, SOCl<sub>2</sub>

See Thionyl chloride
SO Cl<sub>2</sub>
See Sulphuryl chloride
S<sub>2</sub>O<sub>8</sub>Cl<sub>2</sub>
See PyroSulphuryl chloride
HSO<sub>3</sub>Cl See Sulphuryl hydroxyl chloride
S<sub>2</sub>OCl<sub>4</sub>
Decomp by H<sub>2</sub>O and alcohol
(Ogier, C R 94 446)
Mixture of about 17SCl<sub>2</sub>+2SOCl and
5SO<sub>2</sub>Cl<sub>2</sub>
(Knoll, B 1898, 31 2183)

Sulphur oxytetrachloride, S<sub>2</sub>O<sub>8</sub>Cl<sub>4</sub>
Violently decomp by H<sub>2</sub>O, dil acids, or alcohol (Millon, A ch (3) 29 327)
Sol in warm S<sub>2</sub>Cl<sub>2</sub> (Carius, A 106 295)
Decomp violently with CS<sub>2</sub>

Sulphur oxyfluoride, SO<sub>2</sub>F<sub>2</sub>

See Sulphuryl fluoride
SOF<sub>2</sub>
See Thionyl fluoride

Sulphur diphosphide, P<sub>2</sub>S See Phosphorus monosulphide

Sulphur tetraphosphide, P<sub>4</sub>S See Phosphorus semisulphide

Sulphuretted hydrogen, H<sub>2</sub>S See Hydrogen sulphide

Sulphuric acid, H<sub>2</sub>SO<sub>4</sub> Miscible with H<sub>2</sub>O in all proportions Sp gr of H<sub>2</sub>SO+Aq

| op gr or it? to 1-riq                                          |                                                                                                                   |                                                                                                                |                                                                            |                                                                                                                   |                                                                                                                 |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Baume<br>degrees                                               | Sp gr                                                                                                             | н so4                                                                                                          | Baume<br>degrees                                                           | Sp gr                                                                                                             | %<br>H <sub>2</sub> SO <sub>4</sub>                                                                             |
| 66<br>60<br>55<br>50<br>45<br>40<br>35<br>30<br>25<br>20<br>15 | 1 842<br>1 725<br>1 618<br>1 524<br>1 466<br>1 375<br>1 315<br>1 260<br>1 210<br>1 162<br>1 114<br>1 076<br>1 023 | 100<br>84 22<br>74 32<br>66 45<br>58 02<br>50 41<br>43 21<br>36 52<br>30 12<br>24 01<br>17 39<br>11 73<br>6 60 | 66<br>60<br>55<br>54<br>53<br>52<br>51<br>50<br>49<br>48<br>47<br>46<br>45 | 1 844<br>1 717<br>1 618<br>1 603<br>1 586<br>1 566<br>1 500<br>1 532<br>1 515<br>1 500<br>1 482<br>1 466<br>1 454 | 100<br>82 34<br>74 32<br>72 70<br>71 17<br>69 30<br>68 03<br>66 45<br>64 37<br>62 80<br>61 32<br>59 85<br>58 02 |
| (Vau                                                           | 1qı elin<br>76 260                                                                                                | A ch                                                                                                           |                                                                            | arcet A<br>2) 1 198                                                                                               |                                                                                                                 |

| 7%                                                            | Sp gr                                                                                            | Sp gr                                                              | H 804                                                    | Sp gr                                                                                                      | Sp gr                                                    |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| H•SO₄                                                         | at 15°                                                                                           | at 25°                                                             |                                                          | at lo                                                                                                      | at 25°                                                   |
| 0<br>2 5<br>5<br>10<br>15<br>20<br>25<br>30<br>30<br>40<br>45 | 0 9986<br>1 0284<br>1 0659<br>1 0998<br>1 1378<br>1 1767<br>1 2154<br>1 2562<br>1 2976<br>1 3409 | 0 9955<br>1 0115<br>1 0272<br>1 0604<br>1 3311<br>1 2078<br>1 2858 | 50<br>50<br>60<br>60<br>70<br>75<br>80<br>80<br>90<br>95 | 1 3806<br>1 4347<br>1 4860<br>1 5402<br>1 5946<br>1 6334<br>1 7092<br>1 7602<br>1 8050<br>1 8318<br>1 8406 | 1 3780<br>1 4767<br>1 5863<br>1 6996<br>1 7940<br>1 8286 |

Sp gr of H SO4+Aq

(Dele enne 1823)

Sp gr at 10 of and b pt of H.SO4+Aq

| Sp gr                                                                                           | % SO3                                                    | B pt                                                                             | Sp gr                                                                                           | % SO3                                                          | B pt                                         |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|
| 1 850<br>1 849<br>1 848<br>1 847<br>1 845<br>1 842<br>1 838<br>1 833<br>1 827<br>1 819<br>1 801 | 81<br>80<br>79<br>78<br>77<br>76<br>76<br>73<br>72<br>71 | 326<br>318<br>310<br>301<br>293<br>285<br>277<br>268<br>260<br>273<br>245<br>238 | 1 769<br>1 757<br>1 744<br>1 730<br>1 715<br>1 699<br>1 684<br>1 670<br>1 520<br>1 408<br>1 300 | 67<br>66<br>62<br>64<br>63<br>62<br>61<br>60<br>58<br>50<br>40 | 217° 210 205 200 195 190 186 182 177 143 127 |
| 1 791<br>1 780                                                                                  | 69<br>68                                                 | 230<br>224                                                                       | 1 200<br>1 100                                                                                  | 20<br>10                                                       | 107<br>103                                   |

(Dalt in \ St st 2 210)

p gr of H > )4+Aq at lo

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | p gr of it > 24 + 1d at 12                                                                                                     |                                                                                                                   |                                                                |                                                                                                                     |                                                                                                                   |                                                                            |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Sp gr                                                                                                                          | 5()₃                                                                                                              | н бо₄                                                          | >p gr                                                                                                               | ℃<br>503                                                                                                          | %<br>H₂SO₄                                                                 |  |
|                                                        | 1 8460<br>1 8410<br>1 8336<br>1 8233<br>1 8115<br>1 7962<br>1 7774<br>1 7570<br>1 7360<br>1 7120<br>1 6870<br>1 6630<br>1 6415 | 79 90<br>78 28<br>76 65<br>75 02<br>73 39<br>71 75<br>70 12<br>68 49<br>66 86<br>65 23<br>63 60<br>61 97<br>60 34 | 98<br>96<br>94<br>92<br>98<br>86<br>84<br>82<br>80<br>76<br>74 | 1 5760<br>1 503<br>1 5280<br>1 5066<br>1 4860<br>1 4660<br>1 4265<br>1 4073<br>1 3884<br>1 3697<br>1 3530<br>1 3345 | 55 45<br>53 82<br>52 18<br>50 55<br>48 92<br>47 29<br>45 66<br>44 03<br>42 40<br>40 77<br>39 14<br>37 51<br>35 88 | 68<br>66<br>64<br>62<br>50<br>58<br>56<br>54<br>52<br>50<br>48<br>46<br>44 |  |

| Sp | gr | of | H2SO4- | -Aq | at | 15° | -Continued |
|----|----|----|--------|-----|----|-----|------------|
|----|----|----|--------|-----|----|-----|------------|

| Sp gr                                                                                            | કરી.                                                                                   | %<br>H₂SO₄                                               | op gr                                                                                            | 803                                                                              | %<br>H <sub>2</sub> SO₄                         |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|
| 1 2999<br>1 2825<br>1 2554<br>1 2497<br>1 2334<br>1 2184<br>1 2032<br>1 1876<br>1 1706<br>1 1549 | 32 61<br>30 98<br>29 35<br>27 72<br>25 09<br>24 46<br>22 83<br>21 20<br>19 57<br>17 94 | 40<br>38<br>30<br>34<br>32<br>30<br>28<br>26<br>24<br>22 | 1 1410<br>1 1246<br>1 1090<br>1 0953<br>1 0859<br>1 0582<br>1 0544<br>1 0405<br>1 0258<br>1 0140 | 16 31<br>14 68<br>13 05<br>11 41<br>9 78<br>8 15<br>6 52<br>4 89<br>3 25<br>1 63 | 20<br>18<br>16<br>14<br>12<br>10<br>8<br>6<br>4 |

(Lre Schw J 35 444)

Sp gr of H2SO4+Aq

| Sp g. 0. 1120 ( 1111                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                                             |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | At 0°                                             |                                                                                                                                                                                                                      | At                                                                                                                                                        | 15°                                                                                                                         |  |  |
| Degrees<br>Baume                                                                                                                                                                                                           | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %<br>SU:                                          | %<br>H₂SO₄                                                                                                                                                                                                           | %<br>SO:                                                                                                                                                  | н %о.                                                                                                                       |  |  |
| 10<br>10<br>10<br>20<br>30<br>30<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>34<br>41<br>42<br>43<br>44<br>44<br>45<br>47<br>49<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 1 036<br>1 075<br>1 116<br>1 161<br>1 209<br>1 202<br>1 320<br>1 320<br>1 330<br>1 340<br>1 340<br>1 340<br>1 401<br>1 428<br>1 438<br>1 438<br>1 438<br>1 458<br>1 101<br>1 249<br>1 101<br>1 101 | 0 1 10 0 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | 4 2 4 12 7 2 1 4 7 0 1 2 2 2 7 4 7 0 1 3 2 8 3 3 3 3 3 3 8 6 7 8 9 1 3 3 6 8 7 8 9 1 3 3 6 8 7 8 9 1 3 3 6 8 7 8 9 1 3 3 6 8 7 8 9 1 3 3 6 8 7 8 9 1 3 3 6 8 7 8 9 1 3 3 6 8 7 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 5 4 9 3 4 3 8 9 6 0 0 3 4 4 3 8 9 6 0 0 2 8 3 4 4 3 5 9 4 4 9 2 2 0 0 4 4 9 2 6 1 5 5 8 4 4 4 4 4 5 5 6 4 4 4 4 4 5 5 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 5 9 13 3 1 18 3 1 23 1 4 8 1 3 1 18 3 1 2 3 1 8 3 1 18 3 1 2 3 1 8 3 1 18 3 1 1 2 3 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |  |

(Bin au A ch (3) 26 121)

The sp gr found at t can be reduced to sp gr a 0 by multiplying by  $\frac{14438}{14438}$  or by using the follow ing table (Bineau)

|     | Correction of sp gr for temperature to be adde<br>lowering of the temp of 10 or subtracted<br>corresponding increase |
|-----|----------------------------------------------------------------------------------------------------------------------|
| - 1 |                                                                                                                      |

| COLL                     | COLOG TECHNO            |                           |                         |                          |     |                 |
|--------------------------|-------------------------|---------------------------|-------------------------|--------------------------|-----|-----------------|
| Sp gr<br>of acid<br>at o | Corr                    | Sp gr<br>of acid<br>at 0° | Corr                    | Sp gr<br>of acid<br>at 0 | (   | nr              |
| 1 04<br>1 07<br>1 10     | 0 002<br>0 003<br>0 004 | 1 15<br>1 20<br>1 30      | 0 00a<br>0 006<br>0 007 | 1 45<br>1 70<br>1 85     | 000 | 08<br>09<br>096 |
|                          |                         | /Din                      | 0011                    |                          |     |                 |

or a or a

(Bineau)

| Sp | gr<br>gr | of<br>1f | H <sub>2</sub> 5<br>% 1 | $SO_4+A$ $SO_3$ | c=:  | $\frac{t}{sp}$ | 5°<br>gr | a=<br>ıf % | %, t | sp<br>3O4 |
|----|----------|----------|-------------------------|-----------------|------|----------------|----------|------------|------|-----------|
|    | 7        | _        | 1                       |                 | - 11 |                | 1        | h          |      | _         |

| -       | a.                                                                                                                                          | b                                                                                                                                                                                                                                                                       | С                                                                                                                                                                                                                                                                                                               | a                                                                                                                                                         | b                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| at www. | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 22 23 24 25 26 27 28 9 30 31 2 23 33 4 35 36 37 38 39 40 14 24 34 44 45 64 47 48 49 50 | 1 009 1 017 1 025 1 034 1 041 1 049 1 058 1 067 1 076 1 085 1 104 1 114 1 123 1 133 1 132 1 150 1 160 1 170 1 190 1 220 1 239 1 249 1 249 1 258 1 268 1 278 1 288 1 300 1 310 1 320 1 332 1 341 1 354 1 357 1 378 1 390 1 415 1 427 1 440 1 451 1 445 1 478 1 490 1 517 | 1 0064 1 013 1 019 1 0256 1 032 1 039 1 0464 1 0536 1 061 1 068 1 0756 1 083 1 091 1 109 1 1136 1 121 1 129 1 136 1 144 1 1516 1 159 1 167 1 174 1 182 1 190 1 198 1 2066 1 215 1 223 1 231 1 231 1 239 1 2476 1 264 1 272 1 281 1 281 1 281 1 287 1 306 1 315 1 324 1 333 1 342 1 351 1 370 1 379 1 3886 1 398 | 51<br>52<br>53<br>54<br>556<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>66<br>66<br>67<br>67<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77 | 1 530<br>1 545<br>1 573<br>1 585<br>1 600<br>1 615<br>1 627<br>1 642<br>1 656<br>1 675<br>1 701<br>1 716<br>1 730<br>1 742<br>1 755<br>1 770<br>1 781<br>1 802<br>1 810<br>1 834<br>1 837<br>1 834<br>1 837<br>1 842 | 1 08<br>1 18<br>1 28<br>1 38<br>1 48<br>1 586<br>1 80<br>1 90<br>1 10<br>1 12<br>1 34<br>1 34<br>1 34<br>1 34<br>1 34<br>1 34<br>1 32<br>1 34<br>1 32<br>1 34<br>1 32<br>1 32 |

(Bineau, calculated by Gerlach, Z anal 292)

| Sp gr                                   | of H <sub>2</sub> S( | O₄+Aq             | at 15°,  | H <sub>2</sub> O at | $0^{\circ}=1$ |      |
|-----------------------------------------|----------------------|-------------------|----------|---------------------|---------------|------|
| %<br>H <sub>2</sub> SO₄                 | Sp gr                | н <sup>%</sup> 0₄ | Sp gr    | H <sub>2</sub> SO₄  | Sp gr         | Sp g |
| 1                                       | 1 006                | 35                | 1 264    | 68                  | 1 592         | 1 15 |
| 9                                       | 1 012                | 36                | 1 272    | 69                  | 1 604         | 1 15 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8         | 1 018                | 37                | 1 281    | 70                  | 1 615         | 1 16 |
| 1                                       | 1 025                | 38                | 1 290    | 71                  | 1 626         | 1 16 |
| 5                                       | 1 032                | 39                | 1 298    | 72                  | 1 638         | 1 17 |
| 6                                       | 1 039                | 40                | 1 307    | 73                  | 1 650         | 1 17 |
| 7                                       | 1 046                | 41                | 1 316    | 74                  | 1 662         | 1 18 |
| ė                                       | 1 053                | 42                | 1 324    | 75                  | 1 674         | 1 18 |
| 9                                       | 1 061                | 43                | 1 333    | 76                  | 1 684         | 1 19 |
| 10                                      | 1 069                | 44                | 1 342    | 77                  | 1 697         | 1 19 |
| 11                                      | 1 076                | 45                | 1 352    | 78                  | 1 710         | 1 20 |
| $\begin{array}{c} 11 \\ 12 \end{array}$ | 1 084                | 46                | 1 361    | 79                  | 1 721         | 1 20 |
| $\overline{13}$                         | 1 091                | 47                | 1 370    | 80                  | 1 732         | 1 21 |
| 14                                      | 1 099                | 48                | 1 379    | 81                  | 1 743         | 1 21 |
| 15                                      | 1 106                | 49                | 1 389    | 82                  | 1 753         | 1 22 |
| 16                                      | 1 114                | 50                | 1 399    | 83                  | 1 763         | 1 22 |
| 16<br>17<br>18<br>19                    | 1 122                | 51                | 1 409    | 84                  | 1 773         | 1 23 |
| 18                                      | 1 129                | 52                | 1 418    | 85                  | 1 783         | 1 23 |
| 19                                      | 1 137                | 53                | 1 428    | 86                  | 1 792         | 1 24 |
| 20                                      | 1 145                | 54                | 1 438    | 87                  | 1 800         | 1 24 |
| 21                                      | 1 153                | 55                | 1 448    | 88                  | 1 807         | 1 25 |
| 22                                      | 1 161                | 56                | 1 459    | 89                  | 1 814         | 1 25 |
| 23                                      | 1 168                | 57                | 1 469    | 90                  | 1 820         | 1 26 |
| 24                                      | 1 176                | 58                | 1 480    | 91                  | 1 825         | 1 26 |
| 25                                      | 1 184                | 59                | 1 491    | 92                  | 1 8294        | 1 27 |
| 26                                      | 1 191                | 60                | 1 501    | 93                  | 1 8339        | 1 27 |
| 27                                      | 1 199                | 61                | 1 512    | 94                  | 1 8372        | 1 28 |
| 28                                      | 1 207                | 62                | 1 523    | 95                  | 1 8390        | 1 28 |
| 29                                      | 1 215                | 63                | 1 535    | 96                  | 1 8406        | 1 29 |
| 30                                      | 1 223                | 64                | 1 546    | 97                  | 1 8410        | 1 29 |
| 31                                      | 1 231                | 65                | 1 558    | 98                  | 1 8412        | 1 30 |
| 32                                      | 1 239                | 66                | 1 569    | 99                  | 1 8403        | 1 30 |
| 33                                      | 1 247                | 67                | 1 580    | 100                 | 1 8384        | 1 31 |
| 34                                      | 1 256                |                   |          |                     |               | 1 31 |
|                                         |                      | <u> </u>          | <u>'</u> | <u> </u>            | 1             | 1 32 |

|       |      |       |       |       |       | 1 300 | 01 +1 | יסנדן  | 1 000 | 00 40 | 14 01 |
|-------|------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|
|       | 1/2  | 1 ,   | 1     | 1 ,   | 1     | 1 365 | 37 89 | 45 41  | 1 670 | 60 82 | 74 51 |
| 5p gr | s0', | H SO  | Տր £r | só,   | H 50, | 1 370 | 38 52 | 46 94  | 1 675 | 61 20 | 71 97 |
|       |      |       |       |       |       | 1 375 | 35 7) | 47 47  | 1 650 | 61 57 | 75 42 |
| 1 000 | 0 07 | 0 09  | 1 075 | 8 90  | 10 90 | 1 550 | 39 15 | 45 00  | 1 655 | 61 93 | 75 86 |
| 1 005 | 0.68 | 0 8ა  | 1 080 | 9 47  | 11 60 | 1 355 | 39 62 | 48 55  | 1 690 | 62 29 | 76 30 |
| 1 010 | 1 28 | 1 57  | 1 085 | 10 04 | 12 30 | 1 390 | 40 05 | 49 06  | 1 695 | 62 64 | 76 73 |
| 1 015 | 1 88 | 2 30  | 1 090 | 10 60 | 12 99 | 1 395 | 40 48 | 49 59  | 1 700 | 63 00 | 77 17 |
| 1 020 | 247  | 3 03  | 1 095 | 11 16 | 13 67 | 1 400 | 40 91 | o() 11 | 1 705 | 63 35 | 77 60 |
| 1 025 | 3 07 | 3 76  | 1 100 | 11 71 | 14 35 | 1 405 | 41 33 | o() 63 | 1 710 | 63 70 | 78 04 |
| 1 030 | 3 67 | 4 49  | 1 105 | 12 27 | 15 07 | 1 410 | 41 76 | ol 15  | 1 715 | 64 07 | 78 48 |
| 1 035 | 4 27 | 5 23  | 1 110 | 12 82 | 15 71 | 1 415 | 42 17 | 51 66  | 1 720 | 64 43 | 78 92 |
| 1 040 | 4 87 | 5 96  | 1 115 | 13 36 | 16 36 | 1 420 | 42 o7 | 52 15  | 1 725 | 64 78 | 79 36 |
| 1 045 | 5 45 | 6 67  | 1 120 | 13 89 | 17 01 | 1 425 | 42 96 | 52 63  | 170   | 65 14 | 79 80 |
| 1 050 | 6 02 | 7 37  | 1 125 | 14 42 | 17 66 | 1 430 | 43 36 | 53 11  | 1 735 | 65 50 | 80 24 |
| 1 055 | 6 59 | 8 07  | 1 130 | 14 95 | 18 31 | 1 435 | 43 75 | 53 59  | 1 740 | 65 86 | 80 68 |
| 1 060 | 7 16 | 8 77  | 1 135 | 15 48 | 18 96 | 1 440 | 44 14 | 54 07  | 1 745 | 66 22 | 81 12 |
| 1 065 | 7 73 | 9 47  | 1 140 | 16 01 | 19 61 | 1 445 | 44 53 | 54 55  | 1 750 | 66 58 | 81 56 |
| 1 070 | 8 32 | 10 19 | 1 145 | 16 54 | 20 26 | 1 450 | 44 92 | 55 03  | 1 755 | 66 94 | 82 00 |
|       |      |       |       |       |       |       |       |        |       |       | •     |

| Sp gr                                     | of H <sub>2</sub> S                                | O₄+Aq                                | at 15°,                                                                                                                                                                                                                                                                         | H <sub>2</sub> O at                     | $0^{\circ} = 1$                           | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sp gr o                                                                                                                                                                                                               | f H <sub>°</sub> SO₄                                                                                                                                                                                                                                          | etc —C                                                                                                                                                                                                                                                                                                                                             | Continue                                                                                                                                                                                                                               | d                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------|----------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Sp gr                                              | н <sup>%</sup> 04                    | Sp gr                                                                                                                                                                                                                                                                           | %<br>H₂SO₄                              | Sp gr                                     | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ső:                                                                                                                                                                                                                   | H.SO4                                                                                                                                                                                                                                                         | Sp gr                                                                                                                                                                                                                                                                                                                                              | %<br>s∪₃                                                                                                                                                                                                                               | H.SO4                                                                                                                                                                                                                                                                                                              |
| lated b<br>Lunge<br>anal <b>2</b>         | y Gerla<br>and Na<br>7 316)<br>of H <sub>2</sub> S | ch, from<br>net, calc                | 1 264<br>1 272<br>1 281<br>1 290<br>1 298<br>1 307<br>1 316<br>1 324<br>1 332<br>1 342<br>1 352<br>1 361<br>1 370<br>1 389<br>1 409<br>1 418<br>1 428<br>1 428<br>1 429<br>1 480<br>1 491<br>1 501<br>1 512<br>1 523<br>1 546<br>1 558<br>1 569<br>1 580<br>1 92—100<br>culated | % accor<br>by Gerl<br>₁red wi           | ding to<br>ach, Z                         | 1 150<br>1 155<br>1 160<br>1 165<br>1 175<br>1 180<br>1 185<br>1 190<br>1 205<br>1 200<br>1 205<br>1 200<br>1 225<br>1 230<br>1 240<br>1 245<br>1 250<br>1 255<br>1 265<br>1 265<br>1 270<br>1 275<br>1 285<br>1 290<br>1 295<br>1 300<br>1 300<br>1 315<br>1 320<br>1 330<br>1 340<br>1 340 | 17 759 18 11 18 64 19 06 19 20 21 20 73 21 26 21 78 22 30 22 82 23 33 23 84 24 38 25 39 27 76 28 22 29 62 29 15 29 62 30 10 31 52 29 62 30 10 31 52 31 99 32 46 33 41 33 88 34 35 34 35 35 71 36 14 36 58 37 02 37 4) | 20 91<br>21 55<br>22 19<br>22 83<br>23 47 6<br>26 64<br>26 64<br>26 63<br>27 95<br>28 58<br>29 84<br>30 48<br>31 11<br>28 36 49<br>32 86<br>33 40<br>34 57<br>35 71<br>40 93<br>36 87<br>41 50<br>42 66<br>43 74<br>44 62<br>43 74<br>44 62<br>45 83<br>45 85 | 1 455<br>1 460<br>1 465<br>1 470<br>1 475<br>1 480<br>1 485<br>1 490<br>1 505<br>1 500<br>1 515<br>1 525<br>1 530<br>1 535<br>1 540<br>1 555<br>1 550<br>1 555<br>1 550<br>1 555<br>1 560<br>1 575<br>1 570<br>1 575<br>1 580<br>1 595<br>1 600<br>1 605<br>1 615<br>1 620<br>1 625<br>1 630<br>1 640<br>1 645<br>1 650<br>1 665<br>1 660<br>1 665 | 45 31<br>46 69<br>46 07<br>46 45<br>46 82<br>47 57<br>47 95<br>48 34<br>49 50<br>60 60<br>50 60<br>51 43<br>51 78<br>52 24<br>52 79<br>53 12<br>53 80<br>55 55<br>56 30<br>55 55<br>56 30<br>57 75<br>59 75<br>59 75<br>60 40<br>60 40 | 55 50<br>55 97<br>56 43<br>56 90<br>57 37<br>58 28<br>58 74<br>59 22<br>59 718<br>60 65 61<br>61 12<br>61 59<br>62 53<br>63 43<br>63 43<br>63 43<br>64 67<br>65 49<br>66 65 49<br>66 65 49<br>67 13<br>67 59<br>68 51<br>67 70<br>68 51<br>67 71 16<br>67 70<br>71 16<br>71 57<br>72 40<br>72 88<br>73 23<br>74 07 |
| 5p gr                                     | s0,                                                | H SO <sub>1</sub>                    | Sp gr                                                                                                                                                                                                                                                                           | só,                                     | н 504                                     | 1 365<br>1 370<br>1 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37 89<br>38 52<br>35 75                                                                                                                                                                                               | 45 41<br>46 94<br>47 47                                                                                                                                                                                                                                       | 1 670<br>1 675<br>1 680                                                                                                                                                                                                                                                                                                                            | 60 82<br>61 20<br>61 57                                                                                                                                                                                                                | 74 51<br>74 97<br>75 42                                                                                                                                                                                                                                                                                            |
| 1 000<br>1 005<br>1 010<br>1 015<br>1 020 | 0 07<br>0 68<br>1 28<br>1 88<br>2 47               | 0 09<br>0 85<br>1 57<br>2 30<br>3 03 | 1 075<br>1 080<br>1 085<br>1 090<br>1 095                                                                                                                                                                                                                                       | 8 90<br>9 47<br>10 04<br>10 60<br>11 16 | 10 90<br>11 60<br>12 30<br>12 99<br>13 67 | 1 375<br>1 380<br>1 395<br>1 395<br>1 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39 15<br>39 62<br>40 05<br>40 48<br>40 91<br>41 33                                                                                                                                                                    | 45 00<br>48 55<br>49 06<br>49 59<br>50 11<br>50 63                                                                                                                                                                                                            | 1 650<br>1 690<br>1 690<br>1 700<br>1 705                                                                                                                                                                                                                                                                                                          | 61 93<br>62 29<br>62 64<br>63 00<br>63 35                                                                                                                                                                                              | 75 42<br>75 86<br>76 30<br>76 73<br>77 17<br>77 60                                                                                                                                                                                                                                                                 |

H SO.

55 97

56 43

% 803

45 31

45 69 46 07

46 45

46 83

47 21

60 11 73 64 60 46 74 07

### Sp gr of H2SO4+Aq at 15° -Continued

| Sp gr                                                                                            | 5°S₄                                                                                    | %<br>H₂SO₄                                               | Sp gr                                                                                  | တို့<br>နှပ်န                                                                    | %<br>H <sub>2</sub> \$0₄                             |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|
| 1 2999<br>1 2525<br>1 2554<br>1 2495<br>1 2334<br>1 2184<br>1 2032<br>1 1876<br>1 1706<br>1 1549 | 32 61<br>30 98<br>29 35<br>27 72<br>23 09<br>24 46<br>22 \$3<br>21 20<br>19 57<br>17 94 | 40<br>38<br>30<br>34<br>32<br>30<br>28<br>26<br>24<br>22 | 1 1410<br>1 1246<br>1 1090<br>1 0953<br>1 0859<br>1 0544<br>1 0405<br>1 0258<br>1 0140 | 16 31<br>14 68<br>13 05<br>11 41<br>9 78<br>8 15<br>6 52<br>4 89<br>3 23<br>1 63 | 20<br>18<br>16<br>14<br>12<br>10<br>8<br>6<br>4<br>2 |

(Lre Schw J 35 444)

#### Sp gr of H2SO4+Aa

|                                                                                                                    | Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gr of H                                                                                                                                                                       | .2SU4+A0                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                |                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | At                                                                                                                                                                            | 0°                                                                                                                                                                                                                                                                                                                                                                                    | At                                                                                                               | 15°                                                                                                                                                      |
| Degrees<br>Bauma                                                                                                   | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %<br>503                                                                                                                                                                      | н <sup>%</sup> 04                                                                                                                                                                                                                                                                                                                                                                     | %<br>SO:                                                                                                         | н so.                                                                                                                                                    |
| 5 10 15 22 2 30 3 35 33 35 33 35 33 35 35 37 35 9 40 41 42 3 44 40 447 449 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 | 1 036 1 076 1 106 1 101 1 120 1 220 1 230 1 320 1 330 1 341 1 357 1 345 1 345 1 357 1 368 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 1 458 | 5 1 3 3 2 2 5 6 6 4 7 1 2 9 3 1 0 2 1 5 2 7 2 3 3 3 7 1 2 9 3 3 3 7 1 2 1 5 2 3 3 3 7 1 2 2 5 3 3 3 7 1 2 2 5 3 3 3 7 1 2 2 5 3 3 3 7 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 4 4 7 3 2 4 4 7 0 1 2 3 5 6 6 7 8 9 1 3 3 5 6 8 3 3 3 3 3 3 3 3 5 6 3 8 4 1 3 5 6 8 0 1 3 6 5 0 2 5 7 7 1 4 5 2 7 2 0 3 2 5 7 7 5 6 6 6 7 7 2 2 6 6 7 7 2 6 6 6 7 7 2 6 6 6 7 7 2 6 6 6 7 7 2 7 5 6 6 6 7 7 2 7 5 6 6 6 7 7 2 7 5 6 6 6 7 7 2 7 5 6 6 6 7 7 2 7 5 6 6 6 7 7 2 7 5 6 6 6 7 7 2 7 5 6 6 6 7 7 2 7 5 6 6 6 7 7 2 7 5 6 6 6 7 7 2 7 5 6 6 6 7 7 7 5 6 6 6 7 7 7 7 7 7 7 7 | 5 4 9 3 4 3 6 0 9 3 4 9 2 10 16 3 3 4 3 8 9 6 10 16 3 3 4 4 4 4 5 3 4 4 5 10 10 10 10 10 10 10 10 10 10 10 10 10 | 4 5 9 13 3 3 18 3 1 28 4 8 31 18 3 23 14 8 31 28 4 8 34 0 1 28 34 40 7 8 9 40 7 8 9 40 7 8 9 40 51 1 2 4 6 4 7 7 7 6 6 8 7 7 3 4 9 7 7 7 4 9 7 7 7 8 1 6 |

(Bin au A ch (3) 26 121)

The p gr found at to can be reduced to sp gr at 0 by multiplying by  $\frac{14438}{14438 t}$ or by using the follow ing table (Bineau)

| Correction of sp gr f | or temperature to be added |
|-----------------------|----------------------------|
| lowering of the t     | semp of 10° or subtracted  |
| corresponding inc     | crease                     |
|                       |                            |

| Sp gr<br>of acid<br>at o° | Corr                    | Sp gr<br>of acid<br>at 0° | Corr                    | Sp gr<br>of acid<br>at 0 | Cc         |   |
|---------------------------|-------------------------|---------------------------|-------------------------|--------------------------|------------|---|
| 1 04<br>1 07<br>1 10      | 0 002<br>0 003<br>0 004 | 1 15<br>1 20<br>1 30      | 0 005<br>0 006<br>0 007 | 1 45<br>1 70<br>1 85     | 0 C<br>0 C | 6 |

(Bineau)

| Sp | gr<br>gr | of<br>1f | H: | sc | $SO_3$ , | c = sp | .5°<br>gr | a<br>1f | $=\%$ , b $\%$ is $H_2$ | p<br>)4 |
|----|----------|----------|----|----|----------|--------|-----------|---------|-------------------------|---------|
|    |          |          |    |    |          |        |           |         |                         |         |

|                                                                                                                              | gr 11 /0                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                           | , ,                                                                                                                                                                                                         | <br>74                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| a                                                                                                                            | b                                                                                                                                                                                                                                                                                                                                                                                                        | С                                                                                                                                                                                                                                                                                                                                                                                                                                       | a.                                                                                                                                                                                                                          | b                                                                                                                                                                                                           | <br>                                                                                     |
| 12<br>3 4 5 6 7 8 9 10<br>11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 41 42 43 44 45 64 47 48 49 50 | 1 009<br>1 017<br>1 025<br>1 034<br>1 049<br>1 058<br>1 067<br>1 085<br>1 095<br>1 104<br>1 113<br>1 133<br>1 142<br>1 150<br>1 160<br>1 170<br>1 180<br>1 190<br>1 220<br>1 229<br>1 239<br>1 248<br>1 258<br>1 268<br>1 278<br>1 300<br>1 310<br>1 320<br>1 332<br>1 341<br>1 354<br>1 367<br>1 378<br>1 378<br>1 378<br>1 378<br>1 378<br>1 401<br>1 415<br>1 465<br>1 465<br>1 479<br>1 501<br>1 517 | 1 0064<br>1 013<br>1 019<br>1 0256<br>1 032<br>1 039<br>1 0464<br>1 0536<br>1 061<br>1 068<br>1 0756<br>1 091<br>1 109<br>1 1136<br>1 1136<br>1 121<br>1 136<br>1 1516<br>1 1516<br>1 1516<br>1 159<br>1 167<br>1 174<br>1 182<br>1 198<br>1 2066<br>1 215<br>1 223<br>1 231<br>1 239<br>1 2476<br>1 256<br>1 256<br>1 258<br>1 258<br>1 289<br>1 306<br>1 315<br>1 324<br>1 333<br>1 342<br>1 351<br>1 361<br>1 370<br>1 3886<br>1 398 | 51<br>52<br>53<br>54<br>55<br>57<br>58<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>77<br>77<br>77<br>77<br>77<br>88<br>18<br>88<br>88<br>88<br>99<br>99<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1 | 1 530<br>1 545<br>1 545<br>1 573<br>1 585<br>1 600<br>1 615<br>1 627<br>1 642<br>1 770<br>1 742<br>1 730<br>1 742<br>1 755<br>1 781<br>1 792<br>1 802<br>1 819<br>1 819<br>1 834<br>1 834<br>1 834<br>1 842 | 3333388900002345780245791356802456776429627114578064266646666646666666666666666666666666 |

(Bineau, calculated by Gerlach, Z anal 8 32)

| Sp gr                      | Sp gr of $H_2SO_4+Aq$ at 15°, $H_2O$ at $0°=1$ |       |       |            |        |       |  |
|----------------------------|------------------------------------------------|-------|-------|------------|--------|-------|--|
| H2SO4                      | Sp gr                                          | H SO₄ | Sp gr | %<br>H2SO₄ | Sp gr  | Sp gr |  |
| 1                          | 1 006                                          | 35    | 1 264 | 68         | 1 592  | 1 150 |  |
| $\bar{2}$                  | 1 012                                          | 36    | 1 272 | 69         | 1 604  | 1 155 |  |
| $\bar{3}$                  | 1 018                                          | 37    | 1 281 | 70         | 1 615  | 1 160 |  |
| 4                          | 1 025                                          | 38    | 1 290 | 71         | 1 626  | 1 165 |  |
| 2<br>3<br>4<br>5<br>6<br>7 | 1 032                                          | 39    | 1 298 | 72         | 1 638  | 1 170 |  |
| 6                          | 1 039                                          | 40    | 1 307 | 73         | 1 650  | 1 175 |  |
| 7                          | 1 046                                          | 41    | 1 316 | 74         | 1 662  | 1 180 |  |
| 8                          | 1 053                                          | 42    | 1 324 | 75         | 1 674  | 1 185 |  |
| 8<br>9                     | 1 061                                          | 43    | 1 333 | 76         | 1 684  | 1 190 |  |
| 10                         | 1 069                                          | 44    | 1 342 | 77         | 1 697  | 1 195 |  |
| 11                         | 1 076                                          | 45    | 1 352 | 78         | 1 710  | 1 200 |  |
| 12                         | 1 084                                          | 46    | 1 361 | 79         | 1 721  | 1 205 |  |
| 13                         | 1 091                                          | 47    | 1 370 | 80         | 1 732  | 1 210 |  |
| 14                         | 1 099                                          | 48    | 1 379 | 81         | 1 743  | 1 215 |  |
| 15                         | 1 106                                          | 49    | 1 389 | 82         | 1 753  | 1 220 |  |
| 16                         | 1 114                                          | 50    | 1 399 | 83         | 1 763  | 1 225 |  |
| 17                         | 1 122                                          | 51    | 1 409 | 84         | 1 773  | 1 230 |  |
| 18                         | 1 129                                          | 52    | 1 418 | 85         | 1 783  | 1 235 |  |
| 19                         | 1 137                                          | 53    | 1 428 | 86         | 1 792  | 1 240 |  |
| 20                         | 1 145                                          | 54    | 1 438 | 87         | 1 800  | 1 245 |  |
| 21                         | 1 153                                          | 55    | 1 448 | 88         | 1 807  | 1 250 |  |
| 22                         | 1 161                                          | 56    | 1 459 | 89         | 1 814  | 1 255 |  |
| 23                         | 1 168                                          | 57    | 1 469 | 90         | 1 820  | 1 260 |  |
| 24                         | 1 176                                          | 58    | 1 480 | 91         | 1 825  | 1 265 |  |
| 25                         | 1 184                                          | 59    | 1 491 | 92         | 1 8294 | 1 270 |  |
| 26                         | 1 191                                          | 60    | 1 501 | 93         | 1 8339 | 1 275 |  |
| 27                         | 1 199                                          | 61    | 1 512 | 94         | 1 8372 | 1 280 |  |
| 28                         | 1 207                                          | 62    | 1 523 | 95         | 1 8390 | 1 285 |  |
| 29                         | 1 215                                          | 63    | 1 535 | 96         | 1 8406 | 1 290 |  |
| 30                         | 1 223                                          | 64    | 1 546 | 97         | 1 8410 | 1 295 |  |
| 31                         | 1 231                                          | 65    | 1 558 | 98         | 1 8412 | 1 300 |  |
| 32                         | 1 239                                          | 66    | 1 569 | 99         | 1 8403 | 1 305 |  |
| 33                         | 1 247                                          | 67    | 1 580 | 100        | 1 8384 | 1 310 |  |
| 34                         | 1 256                                          |       |       |            | j      | 1 315 |  |

(From 1-91 % according to Kolb, calculated by Gerlach, from 92–100% according to 1 330 34 80 42 66 Lunge and Naet, calculated by Gerlach, Z 1 330 30 27 43 20 anal **27** 316)

Sp gr of H<sub>2</sub>SO<sub>4</sub> at 15° compared with H<sub>3</sub>()

| at 4° and 0 min pressure                                                                        |                                                                                      |                                                                                      |                                                                                        |                                                                                               | 1 360                                                                                           | 37 4)                                                                                           | 45 85                                                                                                               | 1 665                                                                                                    | 60 46                                                                                           | 74 07                                                                                                    |                                                                                                          |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Sp gr                                                                                           | s03                                                                                  | н'\$о₄                                                                               | Sp gr                                                                                  | ső.                                                                                           | н so4                                                                                           | 1 365                                                                                           | 37 89<br>35 32                                                                                                      | 45 41<br>46 94<br>47 17                                                                                  | 1 670<br>1 675                                                                                  | 60 82<br>61 20                                                                                           | 74 51<br>74 97                                                                                           |
| 1 000<br>1 005<br>1 010<br>1 015<br>1 020<br>1 025<br>1 030<br>1 035<br>1 040<br>1 045<br>1 050 | 0 07<br>0 68<br>1 28<br>1 88<br>2 47<br>3 07<br>3 67<br>4 27<br>4 87<br>5 45<br>6 02 | 0 09<br>0 83<br>1 57<br>2 30<br>3 03<br>3 76<br>4 49<br>5 23<br>5 96<br>6 67<br>7 37 | 1 075<br>1 080<br>1 085<br>1 090<br>1 095<br>1 100<br>1 105<br>1 110<br>1 115<br>1 120 | 8 90<br>9 47<br>10 04<br>10 60<br>11 16<br>11 71<br>12 27<br>12 82<br>13 36<br>13 89<br>14 42 | 10 90<br>11 60<br>12 30<br>12 99<br>13 67<br>14 35<br>15 07<br>15 71<br>16 36<br>17 01<br>17 66 | 1 375<br>1 380<br>1 385<br>1 590<br>1 395<br>1 400<br>1 405<br>1 410<br>1 420<br>1 425<br>1 430 | 38, 75<br>9, 18<br>39, 62<br>40, 05<br>49, 48<br>40, 91<br>41, 33<br>41, 76<br>42, 17<br>42, 57<br>42, 96<br>43, 36 | 47 47<br>45 00<br>48 55<br>49 06<br>49 59<br>50 11<br>50 63<br>51 15<br>51 66<br>52 15<br>52 63<br>53 11 | 1 680<br>1 685<br>1 695<br>1 700<br>1 705<br>1 710<br>1 715<br>1 720<br>1 725<br>1 7.0<br>1 735 | 61 57<br>61 93<br>62 29<br>62 64<br>63 00<br>63 35<br>63 70<br>64 07<br>64 43<br>64 78<br>65 14<br>65 50 | 75 42<br>75 86<br>76 30<br>76 73<br>77 17<br>77 60<br>78 04<br>78 48<br>78 92<br>79 36<br>79 80<br>80 24 |
| 1 055<br>1 060<br>1 065<br>1 070                                                                | 6 59<br>7 16<br>7 73<br>8 32                                                         | 8 07<br>8 77<br>9 47<br>10 19                                                        | 1 130<br>1 135<br>1 140<br>1 145                                                       | 14 95<br>15 48<br>16 01<br>16 54                                                              | 18 31<br>18 96<br>19 61<br>20 26                                                                | 1 435<br>1 440<br>1 445<br>1 450                                                                | 43 75<br>44 14<br>44 53<br>44 92                                                                                    | 53 59<br>54 07<br>54 55<br>55 03                                                                         | 1 740<br>1 745<br>1 750<br>1 755                                                                | 65 86<br>66 22<br>66 58<br>66 94                                                                         | 80 68<br>81 12<br>81 56<br>82 00                                                                         |

1 355 37 02 45 35 1 660

Sp gr of H<sub>2</sub>SO<sub>4</sub>, etc —Continued

Sp gr

1 455

1 460

1 465

1 470

1 475

1 480

н so₄

20 91

17 07

17 59

18 11

18 64

19 06

19 69

| 910                                                                                                                                                            |                                                                                                                                                                         |                                                                                                                                                                |                                                                                                                                                                                            | SUI                                                                                                                                                                     | PHUF                                                                                                                                          | RIC A                | CID                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                       |                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                                                | p gr o                                                                                                                                                                  | f H <sub>2</sub> SO <sub>4</sub> ,                                                                                                                             | etc —Con                                                                                                                                                                                   | itinued                                                                                                                                                                 |                                                                                                                                               | Sp                   | gr c                                                                                                           | of conc                                                                                                                                                                          | H <sub>2</sub> SO <sub>4</sub> , etc                                                                                                                  | -Contra                                                      |
| 5p gr                                                                                                                                                          | င်ပုံး<br>နှင့်ပုံး                                                                                                                                                     | H 501                                                                                                                                                          | Sp gr                                                                                                                                                                                      | so:                                                                                                                                                                     | н <sup>%</sup> о.                                                                                                                             | % I                  | 1.SO4                                                                                                          | Sp gr                                                                                                                                                                            | % H.SO4                                                                                                                                               | Sp g                                                         |
| 1 760<br>1 765<br>1 775<br>1 775<br>1 780<br>1 785<br>1 795<br>1 800<br>1 805<br>1 815<br>1 820<br>1 821<br>1 822<br>1 824<br>1 825<br>1 826<br>1 826<br>1 827 | 67 30<br>67 65<br>68 02<br>68 98<br>68 98<br>69 74<br>69 96<br>70 45<br>70 94<br>71 50<br>72 08<br>73 51<br>73 63<br>73 80<br>73 96<br>74 12<br>74 29<br>74 49<br>74 86 | 82 44<br>82 88<br>83 32<br>83 90<br>84 50<br>85 10<br>85 70<br>86 30<br>86 30<br>87 60<br>88 30<br>89 05<br>90 20<br>90 40<br>90 80<br>91 00<br>91 25<br>91 50 | 1 830<br>1 831<br>1 832<br>1 833<br>1 834<br>1 835<br>1 836<br>1 837<br>1 839<br>1 840<br>1 8405<br>1 8415<br>1 8400<br>1 8400<br>1 8400<br>1 8400<br>1 8400<br>1 8395<br>1 8395<br>1 8390 | 75 03<br>75 19<br>75 35<br>75 53<br>75 72<br>75 96<br>76 27<br>76 57<br>76 27<br>77 23<br>77 55<br>78 04<br>78 04<br>79 19<br>79 76<br>80 16<br>80 57<br>80 18<br>81 39 | 91 90<br>92 10<br>92 252<br>92 75<br>93 05<br>93 43<br>93 80<br>94 20<br>95 00<br>95 95<br>97 70<br>98 70<br>99 20<br>99 45<br>99 95<br>99 95 |                      | 55<br>50<br>45<br>40<br>35<br>30<br>25<br>21<br>16<br>12<br>08<br>04<br>00<br>96<br>92<br>88<br>84<br>77<br>73 | 1 8414<br>1 8413<br>1 8412<br>1 8411<br>1 8409<br>1 8408<br>1 8407<br>1 8406<br>1 8404<br>1 8403<br>1 8401<br>1 8400<br>1 8399<br>1 8398<br>1 8397<br>1 8396<br>1 8394<br>1 8394 | 93 29<br>93 26<br>93 26<br>93 20<br>93 17<br>93 14<br>93 12<br>93 09<br>93 00<br>92 98<br>92 95<br>92 93<br>92 87<br>92 82<br>92 77<br>92 77<br>92 73 | 1 83<br>1 83<br>1 83<br>1 83<br>1 83<br>1 83<br>1 83<br>1 83 |
|                                                                                                                                                                |                                                                                                                                                                         | sler, Zeit                                                                                                                                                     | !1                                                                                                                                                                                         | Ch 9                                                                                                                                                                    | 129)                                                                                                                                          | 94<br>94<br>94<br>94 | 65                                                                                                             | 1 8392<br>1 8391<br>1 8390                                                                                                                                                       | 92 71<br>92 69<br>92 66<br>92 63                                                                                                                      | 1 83<br>1 83<br>1 83                                         |
| s                                                                                                                                                              | p gr of                                                                                                                                                                 | cone H                                                                                                                                                         | SO₄+1q                                                                                                                                                                                     | at 15°                                                                                                                                                                  |                                                                                                                                               | 94<br>94<br>94       |                                                                                                                | 1 8389<br>1 8388                                                                                                                                                                 | 92 61<br>92 59                                                                                                                                        | 1 83<br>1 83<br>1 83                                         |
| ¢ H S                                                                                                                                                          | 504 S                                                                                                                                                                   | p gr                                                                                                                                                           | °o H SO₄                                                                                                                                                                                   | Sp                                                                                                                                                                      | gr                                                                                                                                            |                      | 46<br>42                                                                                                       | 1 8387<br>1 8386                                                                                                                                                                 | 92 56                                                                                                                                                 | 1 83                                                         |
|                                                                                                                                                                | 5 71                                                                                                                                                                    | 8384<br>8385<br>8386<br>8387                                                                                                                                   | 99 02<br>98 98<br>98 94<br>98 84                                                                                                                                                           | 1 8 1 8                                                                                                                                                                 | 417<br>418<br>419<br>420                                                                                                                      | 94<br>94<br>94       | 38<br>34<br>31<br>27                                                                                           | 1 8385<br>1 8384<br>1 8383<br>1 8382                                                                                                                                             | 92 54<br>92 52<br>92 49<br>92 46<br>92 44                                                                                                             | 1 83<br>1 83<br>1 83<br>1 83                                 |

| Sp gr                      | <b>ာပ်</b> န               | н ५о₁             | Sp gr                      | SÖ3      | H SO              |                     |                  |                |                                                   |
|----------------------------|----------------------------|-------------------|----------------------------|----------|-------------------|---------------------|------------------|----------------|---------------------------------------------------|
| 1 760                      | 67 20                      | 02 41             | 1 829                      | 75 03    | 91 90             | 95 61<br>95 55      | 1 8414<br>1 8413 | 93 32<br>93 29 | 1 83                                              |
|                            | 67 30<br>67 65             | 82 44<br>82 88    | 1 830                      | 75 19    | 92 10             | 95 50<br>95 50      | 1 8412           | 93 26          | 1 83<br>1 83                                      |
|                            | 68 02                      | 83 32             | 1 831                      |          | 92 30             | 95 45               | 1 8411           | 93 23          | 1 83                                              |
|                            | 68 49                      | 83 90             | 1 832                      | 75 53    | 92 52             | 95 40               | 1 8410           | 93 20          | 1 83                                              |
|                            | 68 98                      | 84 50             | 1 833                      | 75 72    | 92 75             | 95 35               | 1 8409           | 93 17          | 1 83                                              |
|                            | 69 74                      | 85 10             | 1 834                      |          | 93 05             | 95 30               | 1 8408           | 93 14          | 1 83                                              |
|                            | 69 96                      | 85 70             | 1 835                      |          | 93 43             | 95 25               | 1 8407           | 93 12          | 1 83                                              |
|                            | 70 45                      | 86 30             | 1 836                      |          | 93 80<br>94 20    | 95 21               | 1 8406           | 93 09          | 1 83                                              |
|                            | 70 9 <del>1</del><br>71 50 | 86 90<br>87 60    | 1 837<br>1 838             |          | 94 60             | 95 16<br>95 12      | 1 8405<br>1 8404 | 93 06<br>93 00 | 1 83<br>1 83                                      |
|                            | 72 08                      | 88 30             | 1 839                      |          | 95 00             | 95 08               | 1 8403           | 92 98          | 1 83<br>1 83                                      |
|                            | 72 69                      | 89 05             | 1 840                      |          | 95 60             | 95 04               | 1 8402           | 92 95          | 1 83                                              |
|                            | 73 51                      | 90 05             | 1 8405                     |          | 95 95             | 95 00               | 1 8401           | 92 93          | 1 83                                              |
|                            | 73 63                      | 90 20             | 1 8415                     |          | 97 00             | 94 96               | 1 8400           | 92 90          | 1 83                                              |
|                            | 73 80                      | 90 40             | 1 8410                     |          | 97 70             | 94 92               | 1 8399           | 92 87          | 1 83                                              |
|                            | 73 96<br>74 12             | 90 60<br>90 80    | 1 8415<br>1 8400           |          | 98 20<br>98 70    | 94 88               | 1 8398<br>1 8397 | 92 84<br>92 82 | 1 83                                              |
|                            | 74 12                      | 91 00             | 1 8400                     |          | 99 20             | 94 84<br>94 81      | 1 8396           | 92 79          | 1 83<br>1 83                                      |
|                            | 74 49                      | 91 25             | 1 8395                     |          | 99 45             | 94 77               | 1 8395           | 92 77          | $\begin{array}{c} 1 & 83 \\ 1 & 83 \end{array}$   |
|                            | 74 69                      | 91 50             | 1 8390                     |          | 99 70             | 94 73               | 1 8394           | 92 73          | 1 83                                              |
| 1 828                      | 74 86                      | 91 70             | 1 8385                     | 81 59    | 99 95             | 94 69               | 1 8393           | 92 71          | 1 83                                              |
| /T                         | 1 T.                       | 1 . 7             |                            | Ch 0     | 129)              | 94 65               | 1 8392           | 92 69          | 1 83                                              |
| (Lunge                     | and is                     | sler, Zeit        | angew                      | Ch 9     | 129)              | 94 61               | 1 8391           | 92 66          | 1 83                                              |
|                            |                            |                   |                            |          |                   | 94 57 $94 53$       | 1 8390<br>1 8389 | 92 63<br>92 61 | 1 83                                              |
| $\operatorname{Sp}$        | gr of                      | conc H            | $SO_4+\lambda c$           | q at 15° |                   | 94 49               | 1 8388           | 92 59          | $\begin{array}{ccc} 1 & 83 \\ 1 & 83 \end{array}$ |
| c, H SC                    | ),   S                     | p gr              | c₀ H SO₄                   | Sp       | gr                | 94 46               | 1 8387           | 92 56          | 1 83                                              |
|                            |                            | 7 5.              |                            | -        |                   | $94 \ 42$           | 1 8386           | 92 54          | 1 83                                              |
| 100                        | <b>2</b> 1                 | 8384              | 99 02                      |          | 417               | 94 38               | 1 8385           | 92 52          | 1 83                                              |
| 99 98                      |                            |                   | 98 98                      |          | 418               | 94 34               | 1 8384           | 92 49          | 1 83                                              |
| 99 96<br>99 94             |                            | 8386              | 98 94<br>98 84             |          | $\frac{419}{420}$ | 94 31<br>94 27      | 1 8383<br>1 8382 | 92 46          | 1 83                                              |
| 99 92                      |                            | 8387<br>8388      | 98 84                      |          | 421               | $94\ 24$            | 1 8381           | 92 44<br>92 41 | 1 83<br>1 83                                      |
| 99 90                      |                            | 8389              | 98 78                      |          | 122               | $94 \ 20$           | 1 8380           | 92 39          | 1 83                                              |
| 99 88                      |                            | 8390              | 95 71                      |          | 423               | 94 17               | 1 8379           | 92 57          | 1 83                                              |
| 99 86                      |                            | 8391              | 98 63                      |          | 424               | 94 13               | 1 8378           | 92 34          | 1 83                                              |
| 99 5 <del>1</del><br>99 51 |                            | 8392              | 98 56<br>98 <del>4</del> 8 | 1        | 425               | 94 10               | 1 8377           | 92 32          | 1 83                                              |
| 99 75                      |                            | 8393<br>8394      | 98 40                      | 1 8      | 427               | $94 \ 07 \ 94 \ 03$ | 1 8376<br>1 5375 | 92 29<br>92 27 | 1 83<br>1 83                                      |
| 99 76                      |                            |                   | 98 32                      |          | 428               | 94 00               | 1 8374           | 92 24          | 1 83<br>1 83                                      |
| 99 73                      | 1                          | 5396              | 95 22                      |          | 429               | 93 97               | 1 8375           | 92 22          | 185                                               |
| 99.70                      |                            | 5397              | 98 08                      |          | 430               | 93 93               | 1 8372           | 92 19          | 1 530                                             |
| 99-67<br>99-64             |                            | 5598              | 97 85                      |          | 431               | 93 90               | 1 8371           | 92 17          | 1 831                                             |
| 99 6 <del>1</del><br>99 61 |                            | 5599<br>5400      | 97 o0<br>97 10             |          | $\frac{432}{431}$ | 93 87<br>93 83      | 1 8370<br>1 8369 | 92 15          | 1 83(                                             |
| 9, 5                       |                            | 5401              | 96 93                      |          | 430               | 93 80               | 1 8369<br>1 8368 | 92 12 92 10    | 1 830<br>1 830                                    |
| 99 ))                      |                            | 8402              | 96 76                      |          | 429               | 93 77               | 1 8367           | 92 07          | 1 830                                             |
| 99-52                      | _                          | \40a              | 9 ) 6 )                    | 1 8      | 428               | 93 74               | 1 8366           | 92 05          | i 83i                                             |
| 99 49                      |                            | 5404              | 96 55                      |          | 427               | 93 71               | 1 8365           | 92 02          | 1 830                                             |
| 99 46<br>99 43             |                            | \$\frac{405}{100} | 95 46                      |          | $\frac{426}{100}$ | 93 68               | 1 8364           | 92 00          | 1 830                                             |
| 99 40                      |                            | \$406<br>\$407    | 96 39<br>96 31             |          | $\frac{425}{424}$ | 93 65               | 1 8363           | 91 98          | 1 830                                             |
| 99 37                      | _                          | 5405              | 96 24                      | - 0      | 423               | 93 62<br>93 59      | 1 8362<br>1 8361 | 91 95   91 93  | 1 82 <sup>1</sup><br>1 82 <sup>1</sup>            |
| 99 53                      | 1                          | 5409              | 96 16                      |          | 422               | 93 56               | 1 8360           | 91 93          | 1 82°<br>1 82°                                    |
| 99-29                      | 1                          | \$410             | 96 09                      | 1        | 421               | 93 53               | 1 8359           | 91 88          | 1 82                                              |
| 99 25                      |                            | 8411              | 95 02                      |          | 420               | 93 <b>5</b> 0       | 1 8358           | 91 86          | 1 82                                              |
| 99 22<br>99 19             | 1 -                        | 8412              | 95 95                      |          | 419               | 93 47               | 1 8357           | 91 84          | 1 82                                              |
| 99 19                      |                            | 8413<br>8414      | 95 88<br>95 81             |          | 418               | 93 44               | 1 8356           | 91 81          | 1 82                                              |
| 99 11                      | 1                          | 8415              | 95 74                      | 1 8      | 417<br>416        | 93 41               | 1 8355           | 91 78          | 1 82                                              |
| 99 06                      |                            | 8416              | 95 67                      | 1 8      |                   | 93 38<br>93 35      | 1 8354<br>1 8353 | 91 76          | 1 82 <sup>4</sup><br>1 82 <sup>4</sup>            |
| -                          |                            | - 1               |                            | 1 - 0    |                   | 00 00               | 1 0000           | 91 74          | 1 82'                                             |

| Sp gr o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f conc H <sub>2</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                           | O <sub>4</sub> , etc — <i>C</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| % H SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                             | % H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 91 72<br>91 70<br>91 68<br>91 65<br>91 65<br>91 65<br>91 65<br>91 59<br>91 56<br>91 54<br>91 50<br>91 47<br>91 43<br>91 37<br>91 37<br>91 38<br>91 26<br>91 22<br>91 20<br>91 18<br>91 12<br>91 10<br>91 08<br>91 04<br>91 02<br>91 00<br>90 98<br>90 90<br>90 88<br>90 80<br>90 80 | 1 8298 1 8288 1 8287 1 8286 1 8285 1 8284 1 8283 1 8282 1 8281 1 8282 1 8281 1 8282 1 8277 1 8278 1 8277 1 8276 1 8275 1 8274 1 8273 1 8272 1 8271 1 8270 1 8269 1 8268 1 8267 1 8266 1 8265 1 8266 1 8265 1 8266 1 8265 1 8266 1 8265 1 8266 1 8265 1 8266 1 8265 1 8266 1 8265 1 8266 1 8265 1 8266 1 8265 1 8261 1 8260 1 8259 1 8255 1 8251 1 8250 1 8251 1 8250 1 8251 1 8250 1 8251 1 8253 1 8252 1 8251 1 8253 1 8252 1 8253 1 8254 1 8253 | 90 78<br>90 76<br>90 76<br>90 76<br>90 76<br>90 76<br>90 76<br>90 68<br>90 66<br>90 64<br>90 62<br>90 55<br>90 55<br>90 55<br>90 55<br>90 47<br>90 48<br>90 42<br>90 40<br>90 38<br>90 37<br>90 28<br>90 20<br>90 24<br>90 23<br>90 20<br>90 15<br>90 15<br>90 29<br>90 20<br>90 17<br>90 15<br>90 18<br>90 06<br>90 59<br>90 37<br>90 38<br>90 37<br>90 28<br>90 20<br>90 18<br>90 17<br>90 18<br>90 06<br>90 06<br>90 59<br>90 29<br>90 20<br>90 18<br>90 17<br>90 18<br>90 06<br>90 06<br>90 06<br>90 70<br>90 18<br>90 06<br>90 06<br>90 17<br>90 18<br>90 06<br>90 06<br>90 06<br>90 18<br>90 17 | 1 8244 1 8243 1 8242 1 8241 1 8240 1 8239 1 8238 1 8237 1 8236 1 8235 1 8234 1 8233 1 8232 1 8231 1 8230 1 8229 1 8228 1 8227 1 8226 1 8225 1 8224 1 8223 1 8221 1 8220 1 8219 1 8218 1 8217 1 8216 1 8215 1 8214 1 8213 1 8212 1 8211 1 8210 1 8219 1 8218 1 8217 1 8216 1 8215 1 8214 1 8217 1 8216 1 8215 1 8211 1 8210 1 8206 1 8207 1 8206 1 8207 1 8206 1 8207 1 8206 1 8207 1 8206 1 8207 1 8206 1 8207 1 8206 1 8207 1 8206 1 8207 1 8206 1 8207 |
| Soc. 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64l Jour                                                                                                                                                                                                                                                                                                                                                                                                                                          | Soc Ch In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d <b>9</b> 479)                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Soc 57 (4] Jour Soc Ch Ind 9 479)

| Sp g                                                                               | r of conc E                                                                                                | $I_2SO_4+Aq$                                                                   | at 15°                                                                                           |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| % H SO <sub>4</sub>                                                                | Sp gr                                                                                                      | % H SO <sub>4</sub>                                                            | Sp gr                                                                                            |
| 90<br>*90 20<br>91<br>*91 48<br>92<br>*92 83<br>93<br>94<br>*94 84<br>95<br>*95 97 | 1 8185<br>1 8195<br>1 8241<br>1 8271<br>1 8294<br>1 8334<br>1 8339<br>1 8372<br>1 8387<br>1 8390<br>1 8406 | 96<br>97<br>*97 70<br>98<br>*98 39<br>*98 66<br>99<br>*99 47<br>100<br>*100 35 | 1 8406<br>1 8410<br>1 8413<br>1 8412<br>1 8406<br>1 8409<br>1 8403<br>1 8395<br>1 8384<br>1 8411 |
| ale o                                                                              |                                                                                                            |                                                                                |                                                                                                  |

\*Determined by experiment (Lunge and Naef, Dingl 248 91) Sp gr of H<sub>2</sub>SO<sub>4</sub>+Aq at room temp containing 7 875 15 503 23 429% H<sub>2</sub>SO<sub>4</sub> 1 0651 1 1305 1 2003 (Wagner, W Ann 1883, 18 265)

Sp gr of H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| Concentration of H SO <sub>4</sub> +Aq | Sp gr                                |
|----------------------------------------|--------------------------------------|
| 1—normal  1/2— "  /4— "  1/8— "        | 1 0303<br>1 0154<br>1 0074<br>1 0035 |

(Wagner, Z phys Ch 1890, 5 40)

Sp gr of dil H<sub>2</sub>SO<sub>4</sub>+Aq equivalents t٥ Sp gr t/t° H SO4 per liter 17 345 1 0002082 0 005049 0 01009 17 360 1 0004020 0 01512 17 - 3821.00058790 02014 17 398 1 000769 0 03014 17 419 1 001125 15 039 1 000106ა 0 002526 15 040 0.0050500002084

1 0004009 18 040 0 01006 1 0007668 0 02005 15 040 18 039 1 0011208 0 03001 0 04950 18 040 1 0018096 0 09864 18 045 1 003460 18 070 0.1465601 005045 18 0.0 1 000550 0.1935418 Oo2 009686 0.28942 1 0 47466 18 055 1 015616 0 4980 17 73 1 01634 17 95 1 15234 4 980 12 997 1 0002106 0 005176 13 020 1 000411 0 01035 13 005 1 000603 0 01551 0 12648 13 031 1 004439

12 998 (Kohlrausch, W Ann 1894, 53 28)

13 011

13 007

1 008565

1 012639

1 016758

0 25151

0 37672

0 50503

| 912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                            | _                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Sp gr of H <sub>2</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SO <sub>4</sub> +Aq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sp gr                                                                                                                                                | of fumin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g H <sub>2</sub> SO                                                                                                                                                                         | 4 at 35                                                                                                                                                | •                                                                                                                                                          |                      |
| % H <sub>2</sub> SO <sub>4</sub><br>Sp gr 20°/20°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 98 35 77<br>5181 1 2719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total<br>SO <sub>3</sub> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Free<br>SO <sub>3</sub> %                                                                                                                            | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total<br>SO <sub>3</sub> %                                                                                                                                                                  | Free<br>SO <sub>3</sub> %                                                                                                                              | Sp                                                                                                                                                         | r                    |
| % H <sub>2</sub> SO <sub>4</sub><br>Sp. er. 20°/20°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rohland, Z p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 478<br>0317<br>hys Ch 1896,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81 63<br>81 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>2<br>4                                                                                                                                          | 1 8186<br>1 8270<br>1 8360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91 18<br>91 55<br>91 91                                                                                                                                                                     | 52<br>54<br>56                                                                                                                                         | 1 1                                                                                                                                                        | 49<br>60             |
| Sp gr of N-H<br>(Loomis, W Ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 268)<br>I <sub>2</sub> SO <sub>4</sub> +Aq at 1<br>nn 1896, <b>60</b> 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8°/4°=1 0306<br>0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82 36<br>82 73<br>83 09<br>83 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6<br>8<br>10                                                                                                                                         | 1 8425<br>1 8498<br>1 8565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92 28<br>92 65<br>93 02                                                                                                                                                                     | 58<br>60<br>62                                                                                                                                         | 1 1 1 1                                                                                                                                                    | 72<br>54<br>38       |
| percent str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SO <sub>4</sub> +Aq at 19<br>ength of solution<br>=volume cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4°, when p = n, d = observed; in grams per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83 82<br>84 20<br>84 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12<br>14<br>16                                                                                                                                       | 1 8627<br>1 8692<br>1 8756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93 38<br>93 75<br>94 11                                                                                                                                                                     | 64<br>66<br>68                                                                                                                                         | 1 1                                                                                                                                                        | 09<br>72<br>36<br>00 |
| ha\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84 92<br>85 30<br>85 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18<br>20<br>22                                                                                                                                       | 1 8830<br>1 8919<br>1 9020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94 48<br>94 85<br>95 21                                                                                                                                                                     | 70<br>72<br>74                                                                                                                                         | 1 1                                                                                                                                                        | 64<br>02             |
| р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24                                                                                                                                                   | 1 9092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95 58                                                                                                                                                                                       | 76                                                                                                                                                     | 1 (                                                                                                                                                        | 42<br>79             |
| 94 10<br>84 59<br>73 08<br>61 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 8380<br>1 7998<br>1 6743<br>1 5341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 7295<br>1 5223<br>1 2235<br>0 9412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86 40<br>86 76<br>87 14<br>87 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26<br>28<br>30<br>32<br>34                                                                                                                           | 1 9158<br>1 9220<br>1 9280<br>1 9338<br>1 9405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95 95<br>96 32<br>96 69<br>97 05<br>97 42                                                                                                                                                   | 78<br>80<br>82<br>84<br>86                                                                                                                             | 1 1 1 1 1 1 1 1                                                                                                                                            | 15<br>51<br>83<br>15 |
| 40 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 3220<br>1 2430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 5383<br>0 3970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87 87<br>88 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36                                                                                                                                                   | 1 9474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97 78                                                                                                                                                                                       | 88                                                                                                                                                     | 1 {                                                                                                                                                        | 46<br>30             |
| $\begin{array}{c} 31 & 94 \\ 23 & 77 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 2792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88 60<br>88 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38<br>40                                                                                                                                             | 1 9534<br>1 9584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98 16  <br>98 53                                                                                                                                                                            | 90<br>92                                                                                                                                               | 1 { 1 {                                                                                                                                                    | 38<br>30             |
| $\begin{array}{c} 14 & 72 \\ 9 & 802 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1023<br>1 0670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1623<br>0 1046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42                                                                                                                                                   | 1 9612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98 90                                                                                                                                                                                       | 94                                                                                                                                                     | 1 {                                                                                                                                                        | 12                   |
| 4 826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 0320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89 70<br>90 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44<br>46                                                                                                                                             | 1 9643<br>1 9672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99 26  <br>99 63                                                                                                                                                                            | 96<br>98                                                                                                                                               | 1 8                                                                                                                                                        | )5<br>38             |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phys Chem 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90 44<br>90 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48<br>50                                                                                                                                             | 1 9702  <br>1 9733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 00                                                                                                                                                                                      | 100                                                                                                                                                    | 1 8                                                                                                                                                        | 70                   |
| Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of H <sub>2</sub> SO <sub>4</sub> +Aq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at 20°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                      | tsch, B 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 001 34                                                                                                                                                                                      | 4101 )                                                                                                                                                 |                                                                                                                                                            | -                    |
| Normality of H SO <sub>4</sub> +Aq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ℃ H SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (IZIIIe)                                                                                                                                             | usun, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 501, <b>5</b>                                                                                                                                                                               | 4101 )                                                                                                                                                 |                                                                                                                                                            |                      |
| 11 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 6129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sp s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gr of I                                                                                                                                              | H <sub>2</sub> SO <sub>4</sub> +A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | q at 15°                                                                                                                                                                                    | /15° in                                                                                                                                                | air                                                                                                                                                        | _                    |
| 9 01<br>6 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59 26<br>49 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $egin{array}{ccc} 1 & 4901 \\ 1 & 3872 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sp gr 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | % H2SO4                                                                                                                                              | Sp gr %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H SO₄ S                                                                                                                                                                                     | Sp gr                                                                                                                                                  | % Н                                                                                                                                                        | 04                   |
| 4 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 2756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 00                                                                                                                                                 | 1 028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 12   1                                                                                                                                                                                    | 056                                                                                                                                                    | 8                                                                                                                                                          | )                    |
| 3 008<br>1 002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                            | 3                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 0612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 15                                                                                                                                                 | 1 029 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>4 2</b> 6   1                                                                                                                                                                            | 057                                                                                                                                                    | 8<br>8                                                                                                                                                     | 7                    |
| (Forchheime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 002<br>1 003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0 & 15 \\ 0 & 31 \\ 0 & 46 \end{array}$                                                                                            | 1 029 4<br>1 030 4<br>1 031 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 26   1<br>1 41   1<br>1 56   1                                                                                                                                                            | 057<br>055<br>059                                                                                                                                      | 8                                                                                                                                                          | ,                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z phys Ch 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .900, <b>34</b> 27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0 & 15 \\ 0 & 31 \end{array}$                                                                                                      | 1 029 4<br>1 030 4<br>1 031 4<br>1 032 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 26   1<br>1 41   1<br>1 56   1<br>1 70   1                                                                                                                                                | 057<br>055                                                                                                                                             | 8                                                                                                                                                          | 7                    |
| Sp gr of conc a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Z phys Ch 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900, <b>34</b> 27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 002<br>1 003<br>1 004<br>1 005<br>1 006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 15<br>0 31<br>0 46<br>0 60<br>0 73<br>0 87                                                                                                         | 1 029 4<br>1 030 4<br>1 031 4<br>1 032 4<br>1 033 4<br>1 034 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 26   1<br>4 41   1<br>4 56   1<br>4 70   1<br>4 85   1<br>5 00   1                                                                                                                        | 057<br>058<br>059<br>060<br>051<br>052                                                                                                                 | 8<br>8<br>8<br>8<br>9                                                                                                                                      | ,<br>,               |
| Sp gr of cone a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z phys Ch 1 nd fumin; H SC Free SOs (, Sp gr ut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900, <b>34</b> 27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 15<br>0 31<br>0 46<br>0 60<br>0 73<br>0 87<br>1 01<br>1 15                                                                                         | 1 029 4<br>1 030 4<br>1 031 4<br>1 032 4<br>1 033 4<br>1 034 5<br>1 035 7<br>1 036 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 26   1<br>4 41   1<br>4 56   1<br>4 70   1<br>4 85   1<br>5 00   1<br>5 14   1<br>5 29   1                                                                                                | 057<br>058<br>059<br>060<br>051<br>052<br>063<br>064                                                                                                   | 8<br>8<br>8<br>9<br>9                                                                                                                                      | ,<br>,               |
| Sp gr of cone a    C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A Z phys Ch I and fuming H SC Free SO <sub>3</sub> t <sub>c</sub> Sp gr at 1 8418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 900, <b>34</b> 27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 15<br>0 31<br>0 46<br>0 60<br>0 73<br>0 87<br>1 01<br>1 15<br>1 30                                                                                 | 1 029 4<br>1 030 4<br>1 031 4<br>1 032 4<br>1 033 4<br>1 034 5<br>1 036 5<br>1 037 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 26   1<br>4 41   1<br>4 56   1<br>4 70   1<br>4 85   1<br>5 00   1<br>5 14   1<br>6 29   1<br>5 44   1                                                                                    | 057<br>058<br>059<br>060<br>051<br>052<br>063<br>064                                                                                                   | 8<br>8<br>8<br>9<br>9<br>9                                                                                                                                 | ,<br>,               |
| Sp gr of conc a    C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L phys Ch 1 nd fumin; H SC Free SO, 1, Sp gr it 1 8418 1 8429 1 8431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 900, <b>34</b> 27)<br>94 at 15° and 45°<br>10 Sp gr at 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 009<br>1 010<br>1 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 15<br>0 31<br>0 46<br>0 60<br>0 73<br>0 87<br>1 01<br>1 15<br>1 30<br>1 45<br>1 60                                                                 | 1 029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 26   1<br>4 41   1<br>4 56   1<br>4 70   1<br>4 85   1<br>5 00   1<br>5 14   1<br>5 29   1<br>5 44   1<br>5 58   1<br>1 73   1                                                            | 057<br>055<br>059<br>060<br>051<br>052<br>063<br>064<br>065<br>066<br>057                                                                              | 8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                             | 7<br>)<br>)<br>!     |
| Sp gr of cone a<br>  H SO <sub>4</sub>   SO c  <br>  95 98 78 90<br>  90 99 78 18<br>  97 06 79 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I Z phys Ch 1 Ind fuming H SC  Free SO, 1, Sp gr it  1 8418 1 8429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 900, <b>34</b> 27)<br>94 at 15° and 45°<br>10 Sp gr at 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 009<br>1 010<br>1 011<br>1 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 15<br>0 31<br>0 46<br>0 60<br>0 73<br>0 87<br>1 01<br>1 15<br>1 30<br>1 45<br>1 60<br>1 75                                                         | 1 029   4   1 030   4   1 031   4   1 033   4   1 035   5   1 036   5   1 037   5   1 039   5   1 039   5   1 040   5   1 040   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 26   1<br>4 41   1<br>4 56   1<br>4 70   1<br>4 85   1<br>5 00   1<br>5 29   1<br>5 58   1<br>6 73   1<br>6 85   1                                                                        | 057<br>059<br>060<br>051<br>052<br>063<br>064<br>065<br>066<br>057                                                                                     | 88889999999                                                                                                                                                | )                    |
| Sp gr of cone a    C   1 otal   H \$04   50   c     95 9\ 7\ 00   90 08 7\ 90 92   90 99 79 18   97 06 79 72   9\ 00 80 53   99 40 81 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z phys Ch   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900, <b>34</b> 27)  4 at 15° and 45°  10 Sp gr at 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 009<br>1 010<br>1 011<br>1 012<br>1 013<br>1 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 15<br>0 31<br>0 46<br>0 60<br>0 73<br>0 87<br>1 01<br>1 15<br>1 30<br>1 45<br>1 75<br>1 89<br>2 04                                                 | 1 029   4   1 030   4   1 031   4   1 032   4   1 034   5   1 036   5   1 037   5   1 038   5   1 040   1 042   6   1 042   6   1 042   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 26   1   1   1   1   1   1   1   1   1                                                                                                                                                    | 057<br>059<br>060<br>051<br>052<br>063<br>064<br>065<br>066<br>057<br>068<br>069<br>070                                                                | 8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>10<br>10                                                                                                      | 7<br>)<br>)<br>!     |
| Sp gr of cone a<br>  H \$O <sub>4</sub>   SO   c  <br>  95 98   78 90 90 99 79 18<br>  97 06 79 72 98 00 80 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z phys Ch   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900, <b>34</b> 27)  4 at 15° and 45°  10 Sp gr at 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 009<br>1 010<br>1 011<br>1 012<br>1 013<br>1 014<br>1 015<br>1 016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 15<br>0 31<br>0 46<br>0 60<br>0 73<br>0 87<br>1 15<br>1 30<br>1 45<br>1 60<br>1 75<br>1 89<br>2 2 34                                               | 1 029   4   1 030   4   1 031   4   1 033   4   1 035   5   1 036   5   1 037   5   1 040   5   1 040   5   1 041   6   1 042   6   1 043   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   6   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044   1 044    | 4 26                                                                                                                                                                                        | 057<br>059<br>060<br>051<br>052<br>063<br>064<br>065<br>066<br>057<br>068<br>069<br>070                                                                | 8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                  | 7<br>)<br>)<br>!     |
| Sp gr of cone a   H \$O <sub>4</sub>   SO   c         95 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z phys Ch   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900, <b>34</b> 27) 0 <sub>4</sub> at 15° and 45° 1 <sub>5</sub> Sp gr at 42  ax in 1 822 1 \$58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 009<br>1 011<br>1 012<br>1 013<br>1 014<br>1 015<br>1 016<br>1 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 15<br>0 31<br>0 46<br>0 60<br>0 73<br>0 87<br>1 15<br>1 30<br>1 45<br>1 60<br>1 75<br>1 89<br>2 04<br>2 19<br>2 34<br>2 49                         | 1 029   4   1 030   4   1 031   4   1 033   4   1 035   5   1 036   5   1 037   5   1 036   5   1 040   5   1 041   6   1 042   6   1 043   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   6   1 045   1 045   6   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 045   1 04 | 4 26   1<br>4 41   1<br>4 56   1<br>4 70   1<br>4 85   1<br>5 00   1<br>5 14   1<br>5 29   1<br>5 5 44   1<br>5 5 58   1<br>5 73   1<br>5 6 73   1<br>5 3 32   1<br>5 3 46   1<br>5 6 6   1 | 057<br>058<br>059<br>060<br>051<br>063<br>064<br>065<br>066<br>057<br>068<br>070<br>071<br>072                                                         | 8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>10<br>10<br>10<br>10                                                                                          | 7<br>)<br>)<br>!     |
| Sp gr of cone a   H \$O <sub>4</sub>   SO   c       95 98   78 90     96 88   78 92     96 99   79 18     97 06   79 72     98 10 80 53     99 40 81 14     99 76 81 44     100 00 81 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z phys Ch   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900, <b>34</b> 27)  0 <sub>4</sub> at 15° and 45°  1 <sub>5</sub> Sp gr at 42  at 111  1 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 009<br>1 010<br>1 011<br>1 012<br>1 013<br>1 014<br>1 015<br>1 016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 15<br>0 31<br>0 46<br>0 0 73<br>0 87<br>1 01<br>1 15<br>1 45<br>1 60<br>1 75<br>1 89<br>2 34<br>2 49<br>2 49<br>2 79                               | 1 029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 26                                                                                                                                                                                        | 057<br>058<br>059<br>060<br>051<br>063<br>064<br>065<br>066<br>057<br>068<br>070<br>071                                                                | 8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>10<br>10<br>10                                                                                           | 7<br>)<br>)<br>!     |
| Sp gr of cone a    C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z phys Ch   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900, <b>34</b> 27)  0 <sub>4</sub> at <b>15°</b> and <b>45°</b> 1 <sub>5</sub> Sp gr at 42  1n  1 \$22 1 \$58 1 \$87 1 920 1 945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 009<br>1 010<br>1 011<br>1 012<br>1 013<br>1 014<br>1 015<br>1 016<br>1 017<br>1 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 15<br>0 31<br>0 46<br>0 0 73<br>0 87<br>1 01<br>1 15<br>1 45<br>1 60<br>1 75<br>1 89<br>2 34<br>2 49<br>2 49<br>2 79                               | 1 029   4   1 030   4   1 031   4   1 032   4   1 033   4   1 035   1 036   1 037   1 038   5   1 040   5   1 041   6   1 044   6   1 044   6   1 045   1 046   1 047   6   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   7   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048   1 048    | 4 26                                                                                                                                                                                        | 057<br>058<br>059<br>060<br>051<br>052<br>063<br>064<br>057<br>068<br>069<br>070<br>071<br>072<br>073<br>074<br>075                                    | 8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>10<br>10<br>10<br>10<br>10<br>11                                                                              | 7<br>)<br>)<br>!     |
| Sp gr of cone a    C_{\ell}   1 \text{otal}   1 \text{otal}     H \ \text{SO}_{\ell}   50 \ c     95 9\times 78 92 \\   90 99 79 18 \\   97 60 80 53 \\   94 40 81 14 \\   94 76   1 63 \\   > 30 \\   > 7 14 \\   > 97 \\   90 81 \\   92 65 \\   92 65 \\   93 \\   94 60 80 53 \\   95 9\times 78 92 \\   95 9\times 78 92 \\   90 81 \\   92 65 \\   95 9\times 78 92 \\   90 81 \\   92 65 \\   100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z phys Ch   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900, <b>34</b> 27)  0 <sub>4</sub> at 15° and 45°  1 <sub>5</sub> Sp gr at 42  1 <sub>7</sub> Sp gr at 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 009<br>1 011<br>1 012<br>1 013<br>1 014<br>1 015<br>1 016<br>1 017<br>1 018<br>1 019<br>1 020<br>1 021<br>1 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 15<br>0 31<br>0 46<br>0 60<br>0 73<br>0 87<br>1 11<br>1 15<br>1 45<br>1 60<br>1 78<br>2 04<br>2 34<br>2 2 49<br>2 2 49<br>2 2 33<br>3 3 23         | 1 029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 26                                                                                                                                                                                        | 057<br>058<br>059<br>060<br>051<br>062<br>063<br>064<br>065<br>069<br>070<br>071<br>072<br>073<br>074<br>075<br>077<br>078                             | 8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>10<br>10<br>10<br>10<br>11<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11                | 7 ) )                |
| Sp gr of cone a    C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z phys Ch 1   Ind fumin, H SC   Free   Sp gr it   1 8418   1 8429   1 8431   1 8434 m   1 8403   1 8438 m   1 8403   1 8438 m   1 8418   1 8400   1 8500   10 01 \$580   10 01 \$580   10 01 \$57   40 01 979   10 00 2 009   60 002 009   60 002 009   60 002 018   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 8500   1 85 | 900, <b>34</b> 27)  94 at 15° and 45°  15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 002<br>1 003<br>1 004<br>1 005<br>1 007<br>1 009<br>1 010<br>1 011<br>1 012<br>1 013<br>1 014<br>1 015<br>1 016<br>1 017<br>1 018<br>1 019<br>1 020<br>1 022<br>1 022<br>1 023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 15<br>0 31<br>0 46<br>0 0 73<br>0 87<br>1 01<br>1 15<br>1 45<br>1 60<br>1 75<br>1 2 04<br>2 2 49<br>2 2 49<br>2 2 93<br>3 08<br>3 3 38             | 1 029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 26                                                                                                                                                                                        | 057<br>058<br>059<br>060<br>051<br>062<br>063<br>064<br>065<br>065<br>069<br>070<br>071<br>072<br>073<br>074<br>075<br>076<br>077                      | 8<br>8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>10<br>10<br>10<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11      | 7 ) )                |
| Sp gr of cone a    H \$04   S0   C     95 98   78 92     96 99   79 18     97 66   79 72     98 68   53     94 40   81 14     96 76   81 54     80 76   81 63     94 40   81 64     95 97   90 81     92 65     94 48     96 32     98 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z phys Ch   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900, <b>34</b> 27)  0 <sub>4</sub> at <b>15°</b> and <b>45°</b> 1 <sub>5</sub> Sp gr at 42  1 <sub>7</sub> 1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42                                                                                                                                                                                                                                                             | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 009<br>1 010<br>1 011<br>1 012<br>1 013<br>1 014<br>1 015<br>1 016<br>1 017<br>1 019<br>1 020<br>1 021<br>1 022<br>1 022 | 0 15<br>0 31<br>0 46<br>0 0 73<br>0 87<br>1 01<br>1 15<br>1 45<br>1 60<br>1 75<br>1 89<br>2 34<br>2 49<br>2 2 49<br>2 2 33<br>3 3 3<br>3 3 3<br>3 67 | 1 029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 26                                                                                                                                                                                        | 057<br>058<br>059<br>060<br>051<br>052<br>063<br>064<br>057<br>068<br>069<br>070<br>071<br>072<br>073<br>074<br>075<br>077<br>078<br>079<br>080<br>081 | 8<br>8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>10<br>10<br>10<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 7 ) )                |
| Sp gr of cone a    H \$04   SO   C     95 9N   78 92     96 99   79 18     97 66   80 53     94 40   \$1 14     96 76   \$1 44     100 00   \$1 63     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46     \$5 46 | Z phys Ch   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900, <b>34</b> 27)  0 <sub>4</sub> at 15° and 45°  1 <sub>5</sub> Sp gr at 42  1 <sub>7</sub> Sp gr at 42  1 <sub>8</sub> Sp gr at 42 | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 010<br>1 011<br>1 012<br>1 013<br>1 014<br>1 015<br>1 016<br>1 017<br>1 018<br>1 019<br>1 020<br>1 021<br>1 022<br>1 023<br>1 024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 15<br>0 31<br>0 46<br>0 0 73<br>0 87<br>1 115<br>1 30<br>1 45<br>1 65<br>1 89<br>2 34<br>2 34<br>2 79<br>2 33<br>3 38<br>3 53<br>3 53<br>3 82      | 1 029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 26                                                                                                                                                                                        | 057<br>058<br>059<br>060<br>060<br>051<br>063<br>064<br>065<br>069<br>069<br>070<br>071<br>072<br>074<br>075<br>076<br>079<br>080                      | 8<br>8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>10<br>10<br>10<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 7 ) )                |

| Sp gr of H <sub>2</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aır—                                   | Sp gr of H <sub>2</sub> SO <sub>4</sub> +Aq at 15°/15° m air —<br>Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sp gr   % H_SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sp gr % H <sub>2</sub> SO <sub>4</sub> | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | % H SO4                                                                                                                                                                                                                                                                          | SO <sub>4</sub> Sp gr   % H <sub>2</sub> SO <sub>4</sub>   Sp gr   % H <sub>2</sub> SO <sub>4</sub>   Sp gr   %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | % H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 084 12 11<br>1 085 12 24<br>1 086 12 38<br>1 087 12 52<br>1 088 12 66<br>1 089 12 79<br>1 090 12 93<br>1 091 13 07<br>1 092 13 20<br>1 093 13 34<br>1 094 13 48<br>1 095 13 61<br>1 096 13 75<br>1 097 13 89<br>1 099 14 16<br>1 100 14 29<br>1 101 14 43<br>1 102 14 56<br>1 103 14 70<br>1 104 14 83<br>1 105 14 97<br>1 106 15 10<br>1 107 15 24<br>1 108 15 37<br>1 109 15 51<br>1 110 15 64<br>1 111 15 78<br>1 112 15 91<br>1 113 16 05<br>1 114 16 18<br>1 115 16 31<br>1 116 16 45<br>1 117 16 58<br>1 118 16 71<br>1 119 16 84<br>1 111 15 64<br>1 111 15 78<br>1 112 17 17 11<br>1 122 17 24<br>1 123 17 37<br>1 124 17 37<br>1 124 17 37<br>1 125 17 64<br>1 120 17 77<br>1 127 17 90<br>1 128 18 03<br>1 131 18 43<br>1 132 18 56<br>1 133 18 69<br>1 134 18 82<br>1 135 18 95<br>1 136 19 08<br>1 137 19 24<br>1 139 19 47<br>1 140 19 60<br>1 141 19 73<br>1 141 19 99 | 1 145                                  | 1 206<br>1 207<br>1 208<br>1 209<br>1 210<br>1 211<br>1 212<br>1 213<br>1 214<br>1 215<br>1 216<br>1 217<br>1 218<br>1 219<br>1 220<br>1 223<br>1 224<br>1 225<br>1 226<br>1 227<br>1 228<br>1 229<br>1 230<br>1 231<br>1 232<br>1 233<br>1 244<br>1 235<br>1 240<br>1 241<br>1 253<br>1 244<br>1 245<br>1 253<br>1 253<br>1 253<br>1 244<br>1 253<br>1 253<br>1 244<br>1 253<br>1 255<br>1 256<br>1 257<br>1 258<br>1 258<br>1 258<br>1 258<br>1 258<br>1 258<br>1 268<br>1 268 | 27 95 28 08 28 22 28 32 28 45 28 82 28 84 29 96 28 82 29 18 29 18 29 29 29 30 04 30 17 30 29 30 41 30 53 30 65 30 90 31 12 31 38 31 50 31 62 31 38 31 50 31 62 31 75 31 87 31 99 32 47 32 59 33 07 33 19 33 31 34 25 35 35 36 79 33 31 34 26 34 74 34 26 34 74 34 86 34 98 35 99 | 1 267<br>1 268<br>1 269<br>1 270<br>1 271<br>1 272<br>1 273<br>1 275<br>1 276<br>1 277<br>1 278<br>1 279<br>1 280<br>1 281<br>1 284<br>1 285<br>1 286<br>1 287<br>1 288<br>1 289<br>1 290<br>1 291<br>1 292<br>1 293<br>1 291<br>1 300<br>1 301<br>1 302<br>1 303<br>1 304<br>1 305<br>1 306<br>1 307<br>1 318<br>1 318<br>1 319<br>1 319 | 35 35 56 80 93 15 35 56 80 99 11 22 33 45 66 79 13 38 38 38 38 38 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39 | 1 328<br>1 329<br>1 330<br>1 331<br>1 332<br>1 333<br>1 335<br>1 335<br>1 335<br>1 335<br>1 335<br>1 340<br>1 341<br>1 343<br>1 345<br>1 350<br>1 351<br>1 353<br>1 354<br>1 353<br>1 354<br>1 355<br>1 355<br>1 356<br>1 357<br>1 358<br>1 360<br>1 367<br>1 367<br>1 375<br>1 375<br>1 376<br>1 377<br>1 378<br>1 379<br>1 388<br>1 388<br>1 388<br>1 388<br>1 388<br>1 388<br>1 388<br>1 388 | 42 45 68 79 01 12 3 46 67 78 99 10 12 32 43 43 43 43 43 43 43 44 44 44 44 44 44 | 1 389<br>1 390<br>1 392<br>1 393<br>1 394<br>1 395<br>1 395<br>1 397<br>1 398<br>1 396<br>1 397<br>1 398<br>1 400<br>1 401<br>1 403<br>1 405<br>1 406<br>1 407<br>1 406<br>1 407<br>1 412<br>1 414<br>1 415<br>1 416<br>1 420<br>1 421<br>1 423<br>1 424<br>1 425<br>1 426<br>1 427<br>1 428<br>1 437<br>1 436<br>1 437<br>1 438<br>1 437<br>1 438<br>1 437<br>1 438<br>1 448<br>1 448 | 48 92<br>49 13<br>49 23<br>49 24<br>49 25<br>49 26<br>50 16<br>60 75<br>50 50 50<br>50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50 50 50<br>50 50 50 50<br>50 50 50 50<br>50 50 50 50<br>50 50 50 50<br>50 50 50 50<br>50 50 50<br>50 50 50<br>50 50 50 50<br>50 50 50 50<br>50 50 50 50<br>50 50 |

| 912                                                                                    |                                                                                                  | SULPHU                                                                                                                                                                               | RIC AC                                                                                                                                                                                                      | ID                                                                                                                                              |                                                                                                            |                                                                                                                                                                                           |                                                                                                                                   |                                                              |                                                                      |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|
| —<br>Sp gr of H₂i                                                                      | SO₄+Aq                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                             | Sp gr                                                                                                                                           | of fumir                                                                                                   | ng H <sub>2</sub> SO                                                                                                                                                                      | 4 at 35                                                                                                                           | •                                                            | _                                                                    |
| % H <sub>2</sub> SO <sub>4</sub><br>Sp gr 20°/20°                                      | 79 68 0<br>1 7383 1                                                                              | 30 98 35 77<br>5181 1 2719                                                                                                                                                           | Total<br>SO <sub>3</sub> %                                                                                                                                                                                  | Free<br>SO <sub>3</sub> %                                                                                                                       | Sp gr                                                                                                      | Total<br>SO <sub>3</sub> %                                                                                                                                                                | Free<br>SO <sub>3</sub> %                                                                                                         | Sp                                                           | r                                                                    |
| Sp gr of N-I                                                                           | 1 0685 1<br>l Rohland, Z p<br>19 268)<br>L <sub>2</sub> SO <sub>4</sub> +Aq at l                 | 18°/4°=1 0306                                                                                                                                                                        | 81 63<br>81 99<br>82 36<br>82 73<br>83 09                                                                                                                                                                   | 0<br>2<br>4<br>6<br>8                                                                                                                           | 1 8186<br>1 8270<br>1 8360<br>1 8425<br>1 8498                                                             | 91 18<br>91 55<br>91 91<br>92 28<br>92 65                                                                                                                                                 | 52<br>54<br>56<br>58<br>60                                                                                                        | 1<br>1<br>1<br>1                                             | 49<br>60<br>72<br>54                                                 |
| (Loomis, W A  Sp gr of H <sub>2</sub> percent st  density, v                           | nn 1896, 60 55<br>SO <sub>4</sub> +Aq at 19<br>rength of solution<br>v=volume conders            | $4^{\circ}$ , when $p = 0$ on $d = 0$ observed                                                                                                                                       | 83 46<br>83 82<br>84 20<br>84 56<br>84 92<br>85 30                                                                                                                                                          | 10<br>12<br>14<br>16<br>18<br>20                                                                                                                | 1 8565<br>1 8627<br>1 8692<br>1 8756<br>1 8830<br>1 8919                                                   | 93 02<br>93 38<br>93 75<br>94 11<br>94 48<br>94 85                                                                                                                                        | 62<br>64<br>66<br>68<br>70<br>72                                                                                                  | 1 1 1 1 1 1 1 1 1                                            | 38<br>09<br>72<br>36<br>00<br>64<br>02                               |
| р                                                                                      | d                                                                                                | w                                                                                                                                                                                    | 85 66<br>86 03                                                                                                                                                                                              | $\begin{array}{c c} 22 \\ 24 \end{array}$                                                                                                       | 1 9020<br>1 9092                                                                                           | 95 21<br>95 58                                                                                                                                                                            | 74<br>76                                                                                                                          | 1 (                                                          | 42<br>79                                                             |
| 94 10<br>84 59<br>73 08<br>61 35<br>40 72<br>31 94<br>23 77<br>14 72<br>9 802<br>4 826 | 1 8380<br>1 7998<br>1 6743<br>1 5341<br>1 3220<br>1 2430<br>1 1747<br>1 1023<br>1 0670<br>1 0320 | 1 7295<br>1 5223<br>1 2235<br>0 9412<br>0 5383<br>0 3970<br>0 2792<br>0 1623<br>0 1046<br>0 0498                                                                                     | 86 40<br>86 76<br>87 14<br>87 50<br>87 87<br>88 24<br>88 60<br>88 97<br>89 33<br>89 70<br>90 07<br>90 44                                                                                                    | 26<br>28<br>30<br>32<br>34<br>36<br>38<br>40<br>42<br>44<br>46<br>48                                                                            | 1 9158<br>1 9220<br>1 9280<br>1 9338<br>1 9405<br>1 9474<br>1 9534<br>1 9612<br>1 9643<br>1 9672<br>1 9702 | 95 95<br>96 32<br>96 69<br>97 05<br>97 42<br>97 78<br>98 16<br>98 53<br>98 90<br>99 26<br>99 63<br>100 00                                                                                 | 78<br>80<br>82<br>84<br>86<br>88<br>90<br>92<br>94<br>96<br>98                                                                    | 1111111111111111                                             | 15<br>51<br>83<br>15<br>46<br>80<br>88<br>90<br>12<br>95<br>38<br>70 |
|                                                                                        | Phys Chem 1s<br>of H <sub>2</sub> SO <sub>4</sub> +Aq                                            |                                                                                                                                                                                      | 90 81                                                                                                                                                                                                       | 50                                                                                                                                              | 1 9733                                                                                                     | 100 00                                                                                                                                                                                    | 100                                                                                                                               |                                                              | 10                                                                   |
| Normality of<br>H SO <sub>4</sub> +Aq                                                  | % H SO4                                                                                          | Sp gr                                                                                                                                                                                |                                                                                                                                                                                                             | (Knie                                                                                                                                           | tsch, B 1                                                                                                  | .901, <b>34</b>                                                                                                                                                                           | 4101)                                                                                                                             |                                                              | _                                                                    |
| 11 53<br>9 01<br>6 95<br>4 77<br>3 008<br>1 002                                        | 70 07<br>59 26<br>49 10<br>36 68<br>25 00<br>9 25                                                | 1 6129<br>1 4901<br>1 3872<br>1 2756<br>1 1791<br>1 0612                                                                                                                             |                                                                                                                                                                                                             | gr of I<br>76 H SO <sub>4</sub><br>0 00<br>0 15<br>0 31                                                                                         | 1 028<br>1 029                                                                                             | 11                                                                                                                                                                                        | Sp gr   056   057                                                                                                                 | 8<br>8<br>8                                                  | O <sub>4</sub>                                                       |
| Forchheime<br>  Sp gr of cone   Total   SO                                             | 9 25                                                                                             | 1900, <b>34</b> 27 )  1900, <b>34</b> 27 )  10   Sp gr at 42    10   Sp gr at 42    11   S55   11   S57   11   920   11   945   11   942   11   890   11   864   11   814   11   814 | 1 002<br>1 003<br>1 004<br>1 005<br>1 006<br>1 007<br>1 008<br>1 009<br>1 010<br>1 011<br>1 013<br>1 014<br>1 015<br>1 017<br>1 017<br>1 019<br>1 020<br>1 022<br>1 023<br>1 024<br>1 025<br>1 026<br>1 027 | 0 46<br>0 60<br>0 73<br>0 101<br>1 15<br>1 130<br>1 145<br>1 1 75<br>1 1 89<br>2 2 19<br>2 2 49<br>2 2 34<br>2 2 33<br>3 3 53<br>3 3 53<br>3 82 | 1 031                                                                                                      | 4 56   1<br>4 70   1<br>1 4 85   1<br>5 14   1<br>5 5 14   1<br>1 5 5 44   1<br>1 5 5 73   1<br>1 6 6 40   1<br>1 6 6 40   1<br>1 7 7 7 18   1<br>1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 059<br>060<br>051<br>052<br>063<br>064<br>055<br>066<br>057<br>070<br>071<br>072<br>073<br>074<br>075<br>076<br>077<br>078<br>079 | 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 11 11 | )                                                                    |

| Sp gr of H <sub>2</sub> SO <sub>4</sub> +Aq at 15°/15° m arr—<br>Continued                                       | Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sp gr of H <sub>2</sub> SO <sub>4</sub> +Aq at 15°/15° m air—<br>Continued                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Sp gr   % H <sub>2</sub> SO <sub>4</sub>   Sp gr   % H <sub>2</sub> SO <sub>4</sub>   Sp gr   % H <sub>2</sub> S | O <sub>4</sub> Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | % H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                               | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | % H <sub>2</sub> SO <sub>4</sub>                               | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | % H <sub>2</sub> SO <sub>4</sub>                                                     |
| 1 084   12 11                                                                                                    | 1 267<br>1 268<br>1 269<br>1 270<br>1 271<br>1 272<br>1 273<br>1 274<br>1 275<br>1 276<br>1 276<br>1 277<br>1 278<br>1 281<br>1 282<br>1 283<br>1 284<br>1 288<br>1 288<br>1 288<br>1 288<br>1 288<br>1 288<br>1 288<br>1 288<br>1 288<br>1 290<br>1 291<br>1 292<br>1 293<br>1 303<br>1 304<br>1 305<br>1 306<br>1 307<br>1 308<br>1 308<br>1 308<br>1 308<br>1 308<br>1 308<br>1 308<br>1 308<br>1 308<br>1 318<br>1 328<br>1 328<br>1 328<br>1 328<br>1 328<br>1 308<br>1 318<br>1 328<br>1 | 35 33<br>35 45 57<br>35 68<br>35 57<br>36 80<br>35 92<br>36 37 36 32<br>36 62<br>36 70<br>36 36 37<br>37 32<br>37 32<br>37 44<br>37 56<br>37 68<br>37 79<br>37 37 32<br>37 38 49<br>38 49<br>38 83<br>38 83<br>38 83<br>38 95<br>39 98<br>40 20<br>40 32<br>40 54<br>40 66<br>41 77<br>41 90<br>42 01<br>42 12 | 1 328<br>1 339<br>1 330<br>1 331<br>1 332<br>1 334<br>1 335<br>1 334<br>1 334<br>1 334<br>1 334<br>1 334<br>1 334<br>1 335<br>1 337<br>1 338<br>1 338 | 42 35 46 47 78 99 11 23 44 44 44 44 44 44 44 44 44 44 44 44 44 | 1 389<br>1 390<br>1 391<br>1 393<br>1 394<br>1 396<br>1 397<br>1 398<br>1 396<br>1 401<br>1 402<br>1 403<br>1 405<br>1 406<br>1 407<br>1 408<br>1 408<br>1 410<br>1 411<br>1 412<br>1 413<br>1 414<br>1 415<br>1 420<br>1 421<br>1 423<br>1 424<br>1 425<br>1 428<br>1 429<br>1 428<br>1 429<br>1 430<br>1 431<br>1 430<br>1 431<br>1 436<br>1 437<br>1 438<br>1 436<br>1 437<br>1 438<br>1 436<br>1 437<br>1 438<br>1 439<br>1 430<br>1 431<br>1 431<br>1 431<br>1 431<br>1 431<br>1 431<br>1 431<br>1 436<br>1 437<br>1 438<br>1 439<br>1 440<br>1 441<br>1 442<br>1 431<br>1 443<br>1 444<br>1 445<br>1 446<br>1 447<br>1 448<br>1 448 | 48 49 013 34 44 45 55 56 66 66 67 55 50 50 67 78 88 88 88 88 88 88 88 88 88 88 88 88 |

| Sp gr o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | air —                                                                                          | Sp                                                                                                                                                                                                                                                                                                                                                                        | gr of H                                                                                                                                                                                                                                                                                                                                                                                                                    | $SO_4 + A$ $Con$                                         | Aq at 15°<br>trnued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ?/15° m                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aır                                                                                                                                                                                                                                                                                                               | -                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sp gr   % H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SO. Sp gr                                                                                      | ntrnued<br>  % H <sub>2</sub> SO                                                                                                                                                                                                                                                                                                                                          | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                      | % H SO4                                                  | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | % H <sub>2</sub> SO                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sp gr                                                                                                                                                                                                                                                                                                             | % H <sub>2</sub> SO <sub>4</sub>                                     | Sp gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                         | 80                                                                                                                                                                                                   |
| 1 451 55<br>1 452 55<br>1 454 55<br>1 454 55<br>1 456 55<br>1 457 55<br>1 458 55<br>1 458 55<br>1 460 56<br>1 461 56<br>1 462 56<br>1 462 56<br>1 463 56<br>1 467 56<br>1 468 56<br>1 467 56<br>1 467 57<br>1 478 57<br>1 478 57<br>1 478 57<br>1 478 57<br>1 478 57<br>1 478 58<br>1 480 58<br>1 481 58<br>1 482 58<br>1 481 58<br>1 482 58<br>1 483 58<br>1 485 58<br>1 485 58<br>1 486 58<br>1 486 58<br>1 481 58<br>1 482 58<br>1 483 58<br>1 485 58<br>1 485 58<br>1 486 58<br>1 487 58<br>1 489 58<br>1 490 58<br>1 491 59<br>1 491 59<br>1 495 59<br>1 495 59<br>1 495 59<br>1 495 59<br>1 495 59<br>1 495 59<br>1 495 59<br>1 495 59<br>1 495 59<br>1 495 59<br>1 495 59<br>1 495 59<br>1 496 59<br>1 496 59<br>1 497 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59<br>1 498 59 | 96   1 563<br>05   1 564<br>14   1 565<br>23   1 566<br>33   1 567<br>42   1 569<br>51   1 570 | 60 78<br>60 96<br>61 05<br>61 14<br>61 33<br>61 42<br>61 51<br>61 61 56<br>61 78<br>61 61 78<br>61 61 78<br>61 61 78<br>61 61 78<br>61 61 78<br>61 61 78<br>61 62 23<br>62 32 41<br>62 62 32 41<br>62 62 32 41<br>63 63 49<br>63 63 49<br>63 63 63 49<br>64 64 55<br>65 65 70<br>65 65 65<br>65 65 65<br>66 65 65<br>66 65 65<br>66 65 66 66 66 66 66 66 66 66 66 66 66 6 | 1 572<br>1 573<br>1 574<br>1 575<br>1 575<br>1 575<br>1 577<br>1 578<br>1 579<br>1 580<br>1 581<br>1 583<br>1 584<br>1 588<br>1 588<br>1 589<br>1 590<br>1 591<br>1 591<br>1 595<br>1 596<br>1 597<br>1 596<br>1 600<br>1 601<br>1 603<br>1 604<br>1 605<br>1 608<br>1 609<br>1 610<br>1 611<br>1 612<br>1 623<br>1 624<br>1 625<br>1 626<br>1 627<br>1 628<br>1 629<br>1 631<br>1 628<br>1 631<br>1 632<br>1 631<br>1 632 | 66 40<br>66 40<br>66 66 66 66 66 66 66 66 66 66 66 66 66 | 1 633<br>1 634<br>1 635<br>1 636<br>1 637<br>1 638<br>1 640<br>1 641<br>1 643<br>1 644<br>1 645<br>1 648<br>1 653<br>1 654<br>1 655<br>1 656<br>1 657<br>1 658<br>1 656<br>1 667<br>1 668<br>1 660<br>1 661<br>1 662<br>1 663<br>1 663<br>1 670<br>1 671<br>1 672<br>1 673<br>1 674<br>1 675<br>1 678<br>1 679<br>1 679<br>1 688<br>1 689<br>1 689 | 71 48<br>71 57<br>71 65<br>71 74<br>71 71 89<br>71 72 07<br>72 25<br>72 31 25<br>73 32 32<br>73 35<br>73 35<br>73 35<br>73 36<br>74 42<br>74 43<br>74 44<br>74 69<br>75 75 75 75<br>75 75 75<br>76 22<br>77 76 25<br>77 76 25<br>77 77 77 77 77 77 77 77 77 77 77 77 77 | 1 694 1 695 1 696 1 697 1 698 1 699 1 700 1 701 1 702 1 708 1 708 1 709 1 710 1 712 1 713 1 714 1 715 1 717 1 718 1 719 1 720 1 721 1 722 1 723 1 724 1 725 1 736 1 737 1 738 1 730 1 731 1 735 1 736 1 737 1 738 1 737 1 738 1 739 1 740 1 741 1 745 1 746 1 747 1 748 1 749 1 750 1 750 1 751 1 752 1 753 1 754 | 81 19<br>81 28<br>81 37<br>81 46<br>81 55<br>81 64<br>81 73<br>81 82 | 1 755<br>1 756<br>1 757<br>1 758<br>1 758<br>1 758<br>1 760<br>1 761<br>1 762<br>1 763<br>1 766<br>1 767<br>1 766<br>1 767<br>1 773<br>1 774<br>1 775<br>1 776<br>1 777<br>1 778<br>1 779<br>1 780<br>1 781<br>1 782<br>1 783<br>1 784<br>1 785<br>1 788<br>1 789<br>1 789<br>1 780<br>1 781<br>1 785<br>1 786<br>1 787<br>1 788<br>1 789<br>1 791<br>1 793<br>1 791<br>1 795<br>1 796<br>1 797<br>1 798<br>1 797<br>1 798<br>1 796<br>1 800<br>1 801<br>1 801<br>1 805<br>1 806<br>1 807<br>1 809<br>1 801<br>1 801 | ullet സംസംസന്ധന്ന വരു വരു വരു വരു വരു വരു വരു വരു വരു വരു | $\begin{array}{c} -11113141_{2}11713090010029349596988888888888888888889335067181225676724468971023650447829669888888888888888888889933458878489791023650447829669888888888888888888888888888888888$ |

SULPHURIC ACID

Sp gr of H<sub>2</sub>SO<sub>4</sub>+Aq at t° Sp gr of H<sub>2</sub>O at 15°=1

|            |                    | ī                                                               | <del></del>                   | 1                  | 1                     | <del></del>                                             | 1                     | <del>1</del>                                           | 1                      |
|------------|--------------------|-----------------------------------------------------------------|-------------------------------|--------------------|-----------------------|---------------------------------------------------------|-----------------------|--------------------------------------------------------|------------------------|
| %<br>SO.   | 0°                 | 10°                                                             | 15°                           | 20°                | 25°                   | 30°                                                     | 40°                   | 50°                                                    | 60°                    |
| Œ          |                    |                                                                 |                               |                    |                       |                                                         |                       |                                                        |                        |
| 0          | 1 00074            | 1 00060                                                         | 1 00000                       | 0 99910            | 0 99794               | 0 99654                                                 | 0 99311               | 0 98895                                                | 0 98418                |
| ĭ          | 1 00833            | 1 00773                                                         | 1 00698                       | 1 00594            | 1 00465               | 1 00312                                                 | 0 99950               | 0 99522                                                | 0 99034                |
| 2          | 1 01563            | 1 01466                                                         | 1 01381                       | 1 01266            | 1 01126               | 1 00963                                                 | 1 00585               | 1 00143                                                | 0 99644                |
| 3          | 1 02281            | 1 02153                                                         | 1 02055                       | 1 01928            | 1 01777               | 1 01607                                                 | 1 01216               | 1 00761                                                | 1 00252                |
| 4          | 1 03001            | 1 02841                                                         | 1 02728                       | 1 02590            | 1 02428               | 1 02251                                                 | 1 01848               | 1 01383                                                | 1 00865                |
| 5          | 1 03728            | 1 03533                                                         | 1 03406                       | 1 03258            | 1 03086               | 1 02902                                                 | 1 02487               | 1 02013                                                | 1 01484                |
| 6          | 1 04461            | 1 04232                                                         | 1 04092                       | 1 03934            | 1 03756               | 1 03565                                                 | 1 03138               | 1 02653                                                | 1 02114                |
| 7          | 1 05199            | 1 04939                                                         | 1 04786<br>1 05486            | 1 04618            | 1 04434               | 1 04235                                                 | 1 03796               | 1 03302                                                | 1 02752                |
| 8          | 1 05942            | 1 06370                                                         | 1 05486                       | 1 05308<br>1 06002 | 1 05116               | 1 04910                                                 | 1 04458               | 1 03952                                                | 1 03393                |
| 9<br>10    | 1 06689<br>1 07439 | 1 07093                                                         | 1 06903                       | 1 06702            | 1 05799<br>1 06490    | 1 05585                                                 | 1 05119<br>1 05787    | 1 04605<br>1 05264                                     | 1 04041<br>1 04696     |
| 11         | 1 07439            | 1 07821                                                         | 1 07619                       | 1 07408            | 1 00490               | 1 06955                                                 | 1 06462               | 1 05204                                                | 1 04090                |
| 12         | 1 08154            | 1 08555                                                         | 1 08342                       | 1 08120            | 1 07890               | 1 07650                                                 | 1 07145               | 1 06604                                                | 1 06027                |
| 13         | 1 09718            | 1 09294                                                         | 1 09071                       | 1 08839            | 1 08600               | 1 08352                                                 | 1 07834               | 1 07284                                                | 1 06703                |
| 14         | 1 10488            | 1 10040                                                         | 1 09805                       | 1 09564            | 1 09316               | 1 09061                                                 | 1 08530               | 1 07971                                                | 1 07385                |
| 15         | 1 11261            | 1 10790                                                         | 1 10546                       | 1 10295            | 1 10039               | 1 09776                                                 | 1 09233               | 1 08666                                                | 1 08075                |
| 16         | 1 12040            | 1 11547                                                         | 1 11292                       | 1 11033            | 1 10768               | 1 10498                                                 | 1 09944               | 1 09368                                                | 1 08772                |
| 17         | 1 12823            | 1 12309                                                         | 1 12045                       | 1 11777            | 1 11505               | 1 11228                                                 | 1 10661               | 1 10077                                                | 1 09476                |
| 18         | 1 13610            | 1 13076                                                         | 1 12803                       | 1 12526            | 1 12246               | 1 11963                                                 | 1 11385               | 1 10792                                                | 1 10186                |
| 19         | 1 14402            | 1 13848                                                         | 1 13566                       | 1 13282            | 1 12995               | 1 12704                                                 | 1 12115               | 1 11514                                                | 1 10902                |
| 20         | 1 15199            | 1 14625                                                         | 1 14335                       | 1 14043            | 1 13748               | 1 13451                                                 | 1 12851               | 1 12242                                                | 1 11625                |
| 21         | 1 15998            | 1 15407                                                         | 1 15109                       | 1 14809            | 1 14508               | 1 14205                                                 | 1 13594               | 1 12977                                                | 1 12353                |
| 22         | 1 16803            | 1 16194                                                         | 1 15888                       | 1 15581            | 1 15273               | 1 14964                                                 | 1 14343               | 1 13718                                                | 1 13089                |
| 23         | 1 17611            | 1 16986<br>1 17784                                              | 1 16673                       | 1 16359            | 1 16045               | 1 15731                                                 | 1 15100               | 1 14467                                                | 1 13832                |
| 24<br>25   | 1 18424<br>1 19240 | 1 18586                                                         | 1 17464<br>1 18260            | 1 17143<br>1 17933 | $1\ 16823$ $1\ 17607$ | $egin{array}{ccc} 1 & 16503 \ 1 & 17282 \end{array}$    | 1 15862<br>1 16631    | 1 15221<br>1 15982                                     | 1 14579<br>1 15335     |
| 26         | 1 20061            | 1 19393                                                         | 1 19060                       | 1 18728            | 1 18396               | 1 18066                                                 | 1 17406               | 1 16749                                                | 1 16096                |
| 27         | 1 20885            | 1 20204                                                         | 1 19865                       | 1 19527            | 1 19190               | 1 18854                                                 | 1 18186               | 1 17522                                                | 1 16862                |
| 28         | 1 21710            | 1 21019                                                         | 1 20675                       | 1 20332            | 1 19990               | 1 19650                                                 | 1 18973               | 1 18302                                                | 1 17635                |
| 29         | 1 22539            | 1 21838                                                         | 1 21489                       | 1 21142            | 1 20796               | 1 20452                                                 | 1 19767               | 1 19087                                                | 1 18414                |
| 30         | 1 23370            | 1 22661                                                         | 1 22308                       | 1 21957            | 1 21607               | 1 21259                                                 | 1 20566               | 1 19879                                                | 1 19198                |
| 31         | 1 24204            | 1 23487                                                         | 1 23131                       | 1 22776            | 1 22423               | 1 22071                                                 | 1 21371               | 1 20677                                                | 1 19989                |
| 32         | 125038             | 1 24316                                                         | 1 23957                       | 1 23600            | 1 23244               | 1 22887                                                 | 1 22179               | 1 21476                                                | $1\ 20779$             |
| 33         | 1 25878            | 1 25151                                                         | 1 24789                       | 1 24429            | 1 24069               | 1 23712                                                 | $1\ 22999$            | 1 22292                                                | $1\ 21589$             |
| 34         | 126723             | 1 25990                                                         | 1 25626                       | 1 25263            | 1 24901               | 1 24540                                                 | 1 23822               | 1 23109                                                | 1 22400                |
| 35         | 1 27571            | 1 26834                                                         | 1 26468                       | 1 26102            | 1 25738               | 1 25375                                                 | 1 24652               | 1 23933                                                | 1 23219                |
| 36         | 1 28424            | 1 27683                                                         | 1 27314                       | 1 26947            | 1 26580               | 1 26214                                                 | 1 25487               | 1 24763                                                | 1 24045                |
| 37<br>38   | 1.29283<br>1 30149 | $egin{array}{c c} 1 & 28538 \\ 1 & 29400 \\ \hline \end{array}$ | $1\ 28167 \mid 1\ 29027 \mid$ | $127797 \\ 128655$ | $127429 \ 128284$     | $\begin{array}{c c} 1 & 27061 \\ 1 & 27915 \end{array}$ | $1\ 26329 \ 1\ 27179$ | $egin{array}{c c} 1 & 25 & 01 \ 1 & 26448 \end{array}$ | 1 24878<br>1 25721     |
| 39         | 1 31022            | 1 30268                                                         | 1 29894                       | 1 28055            | 1 28284               | 1 28776                                                 | 1 28038               | 1.27304                                                | 1 26575                |
| 40         | 1 31901            | 1 31144                                                         | 1 30767                       | 1 30392            | 1 30018               | 1 29646                                                 | 1 28905               | 1 28169                                                | 1 27440                |
| 41         | 1 32788            | 1 32027                                                         | 1 31648                       | 1 31271            | 1 30896               | 1 30522                                                 | 1 29779               | 1 29042                                                | 1 28311                |
| 42         | 1 33683            | 1 32917                                                         | 1 32537                       | 1 32158            | 1 31782               | 1 31407                                                 | 1 30662               | 1 29924                                                | 1 29193                |
| 43         | 1 34587            | 1 33817                                                         | 1 33435                       | 1 33054            | 1 32676               | 1 32300                                                 | 1 31553               | 1 30813                                                | 1 30081                |
| 44         | 1 35501            | 1 34727                                                         | 1 34342                       | 1 33960            | 1 33580               | 1 33202                                                 | 1 32452               | 1 31710                                                | 1 30976                |
| 45         | 1 36425            | 1 35647                                                         | 1 35261                       | 1 34877            | 1 34496               | 1 34116                                                 | 1 33363               | 1 32618                                                | 1 31881                |
| <b>4</b> 6 | 1 37361            | 1 36579                                                         | 1 36191                       | 1 35805            | 1 35422               | 1 35040                                                 | 1 34284               | 1 33365                                                | $1\ 32797$             |
| 47         | 1 38308            | 1 37522                                                         | 1 37132                       | 1 36744            | 1 36359               | 1 35975                                                 | 1 35215               | 1 34464                                                | 1 33721                |
| 48         | 1 39267            | 1 38476                                                         | 1 38084                       | 1 37694            | 1 37306               | 1 36921                                                 | 1 36157               | 1 35401                                                | 1 34655                |
| 49         | 1 40238            | 1 39441                                                         | 1 39047                       | 1 38654            | 1 38264               | 1 37877                                                 | 1 37108               | 1 36349                                                | 1 35600                |
|            | 1 41219            | 1 40418                                                         | 1 40021                       | 1 39627            | 1 39235               | 1 38845                                                 | 1 38073               | 1 37310                                                | 1 36556                |
|            | 1 42214            | 1 41407                                                         | 1 41007                       | 1 40610            | 1 40215               | 1 39823                                                 | 1 39047               | 1 38280                                                | $1\ 37524 \\ 1\ 38502$ |
| 52         | 1 43220            | 1 42408                                                         | 1 42005                       | 1 41605            | 1 41208               | 1 40814                                                 | 1 40033               | 1 39262                                                | 1 38302                |
|            |                    | <del></del>                                                     | ·                             | <del>`</del>       |                       |                                                         |                       |                                                        |                        |

Continued on page 917

914

| Sp gr of H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SO <sub>4</sub> +Aq at 15°<br>Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | °/15° in air —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sp gr of H                  | SO <sub>4</sub> +Aq at 15<br>Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | °/15° m au –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5p gr   % H <sub>2</sub> SO <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sp gr   % H <sub>2</sub> SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sp gr   % H SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sp gr   % H <sub>2</sub> SO | Sp gr % H <sub>2</sub> SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sp gr % 804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 450 55 04<br>1 451 55 14<br>1 452 55 24<br>1 453 55 33<br>1 454 55 55 62<br>1 457 55 62<br>1 458 55 82<br>1 458 56 80<br>1 461 56 11<br>1 462 56 20<br>1 463 56 39<br>1 464 56 39<br>1 465 56 68<br>1 466 56 59<br>1 467 56 68<br>1 468 56 77<br>1 471 57 63<br>1 472 57 63<br>1 473 57 25<br>1 474 57 35<br>1 474 57 63<br>1 475 57 44<br>1 470 57 63<br>1 471 57 63<br>1 473 57 25<br>1 474 57 35<br>1 474 57 63<br>1 475 57 63<br>1 478 57 73<br>1 479 57 82<br>1 480 58 90<br>1 481 58 20<br>1 482 58 10<br>1 483 58 20<br>1 483 58 20<br>1 483 58 20<br>1 484 58 29<br>1 485 58 88<br>1 487 57 82<br>1 488 58 77<br>1 489 58 78<br>1 489 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 480 59 99<br>1 490 58 88<br>1 500 99 68<br>1 500 60 33<br>1 500 60 60<br>1 503 60 60<br>1 503 60 60<br>1 503 60 60<br>1 503 60 60<br>1 509 60 60<br>1 509 60 60 | 1 511 60 78 1 513 60 96 1 514 61 05 1 515 61 14 1 516 61 33 1 518 61 42 1 517 61 33 1 518 61 42 1 517 61 51 1 520 61 60 1 522 61 78 1 523 61 87 1 524 61 96 1 525 62 05 1 526 62 14 1 527 62 23 1 528 62 32 1 529 62 14 1 530 62 50 1 531 62 59 1 532 62 68 1 533 62 50 1 531 62 59 1 532 62 68 1 533 62 50 1 531 62 59 1 532 62 68 1 533 62 50 1 531 62 59 1 532 62 68 1 533 63 04 1 537 63 13 1 538 63 22 1 539 63 31 1 540 63 40 1 541 63 48 1 542 63 63 67 1 544 63 76 1 545 63 85 1 546 64 03 1 550 64 20 1 550 64 20 1 550 64 20 1 550 64 20 1 550 64 20 1 550 65 07 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 70 1 560 65 96 1 570 65 05 | Sp gr   % H SO <sub>4</sub>     1 572   66 23     1 573   66 31     1 575   66 40     1 575   66 57     1 579   66 66     1 578   66 75     1 579   66 89     1 581   67 01     1 582   67 10     1 583   67 36     1 584   67 27     1 585   67 36     1 589   67 70     1 590   67 79     1 591   67 88     1 592   68 05     1 593   68 05     1 594   68 14     1 595   68 23     1 596   68 49     1 597   68 40     1 598   68 49     1 599   68 57     1 600   68 64     1 601   68 74     1 602   68 83     1 603   68 92     1 604   69 09     1 605   69 09     1 606   69 17     1 607   69 26     1 608   69 35     1 609   69 43     1 610   69 52     1 611   69 60     1 612   69 69     1 613   69 70     1 614   69 86     1 615   69 95     1 616   70 03     1 617   70 12     1 618   70 29     1 620   70 38     1 621   70 46     1 612   70 36     1 623   70 55     1 624   70 72     1 625   70 80     1 627   70 97     1 628   71 06     1 629   71 14     1 630   71 23     1 631   71 31     1 632   71 40 | 1 633                       | 1 694 76 65 1 695 76 74 1 696 76 82 1 697 76 91 1 698 76 99 1 699 77 08 1 700 77 17 1 701 77 25 1 702 77 34 1 703 77 42 1 704 77 51 1 705 77 60 1 706 77 68 1 707 77 77 1 708 77 85 1 709 77 94 1 710 78 03 1 711 78 11 1 712 78 20 1 713 78 28 1 714 78 37 1 715 78 46 1 716 78 54 1 717 78 63 1 717 78 63 1 711 78 11 1 712 78 20 1 713 78 89 1 711 78 97 1 720 78 89 1 721 78 89 1 721 78 89 1 721 78 97 1 725 79 32 1 726 79 41 1 727 79 49 1 728 79 58 1 729 79 67 1 730 79 75 1 731 78 80 32 1 734 80 11 1 735 80 20 1 736 80 29 1 737 80 38 1 738 80 47 1 739 80 56 1 741 80 74 1 742 80 84 1 743 80 92 1 737 80 38 1 738 80 47 1 739 80 56 1 741 80 74 1 742 80 84 1 743 80 92 1 737 81 28 1 744 81 19 1 747 81 28 1 748 81 19 1 747 81 28 1 748 81 46 1 750 81 55 1 751 81 64 1 750 81 55 1 751 81 64 1 750 81 55 1 751 81 64 1 750 81 55 1 751 81 64 1 750 81 55 1 751 81 64 1 750 81 55 1 751 81 64 | Sp gr   % SO <sub>4</sub>   1 755   8 8 11   1 756   8 8 11   1 757   8 21   1 758   8 34   1 758   8 8 41   1 760   8 8 50   1 761   8 8 8 90   1 768   8 8 90   1 768   8 8 29   1 768   8 8 89   1 770   8 8 49   1 771   8 8 69   1 773   8 8 88   1 774   8 8 88   1 776   8 8 89   1 777   8 8 69   1 777   8 8 69   1 777   8 8 88   1 776   8 8 90   1 777   8 8 18   1 778   8 8 90   1 778   8 8 8   1 778   8 8 90   1 778   8 8 90   1 778   8 8 90   1 780   8 8 14   1 783   8 8 90   1 780   8 8 14   1 785   8 8 14   1 786   8 8 14   1 787   8 8 25   1 788   8 8 14   1 787   8 8 25   1 788   8 8 47   1 790   8 8 60   1 791   8 72   1 792   8 8 96   1 794   8 8 89   1 795   8 8 96   1 794   8 8 89   1 795   8 8 96   1 796   8 8 20   1 797   8 8 58   1 799   8 71   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 8 47   1 800   8 |

Sp gr of H<sub>2</sub>SO<sub>4</sub>+Aq at t° Sp gr of H<sub>2</sub>O at 15°=1

|                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| н 80,                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10°                                                                                                                                                                                                                                                                                                                                                            | 15°                                                                                                                                                                                                                                                                                                                                          | 20°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25°                                                                                                                                                                                                                                                                                                                                                        | 30°                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ə0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 08. H       0 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 24 25 22 27 28 29 30 31 32 33 34 41 42 3 44 44 14 15 16 17 18 19 20 12 22 24 25 25 27 28 29 30 31 32 33 34 41 42 3 44 14 15 16 17 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18 | 1 00074<br>1 00833<br>1 01563<br>1 02281<br>1 03001<br>1 03728<br>1 04461<br>1 05199<br>1 05942<br>1 06689<br>1 07439<br>1 08954<br>1 10488<br>1 11261<br>1 12040<br>1 12823<br>1 13610<br>1 14402<br>1 15199<br>1 15199<br>1 15998<br>1 16803<br>1 17611<br>1 19240<br>1 20061<br>1 20885<br>1 21710<br>1 20885<br>1 21710<br>1 22539<br>1 23370<br>1 24204<br>1 25038<br>1 25781<br>1 28424<br>1 29283<br>1 30149<br>1 31022<br>1 31901<br>1 32788<br>1 33683<br>1 34587<br>1 35501 | 10°060 1 00773 1 01466 1 02153 1 02841 1 03533 1 04232 1 04939 1 05652 1 06370 1 07093 1 07821 1 08555 1 09294 1 10040 1 11547 1 12309 1 13076 1 13848 1 14625 1 15407 1 16194 1 16986 1 17784 1 18586 1 19393 1 20204 1 21019 1 21838 1 22661 1 23487 1 24316 1 25151 1 25990 1 26834 1 27683 1 28538 1 29400 1 30268 1 31144 1 32027 1 33817 1 33817 1 34727 | 15°  1 00000 1 00698 1 01381 1 02055 1 02728 1 03406 1 04092 1 04786 1 05486 1 05486 1 05486 1 05486 1 105466 1 11292 1 1292 1 12045 1 12803 1 13566 1 14335 1 15109 1 15888 1 16673 1 17464 1 18260 1 19865 1 20675 1 21489 1 23308 1 23131 1 23957 1 24789 1 25626 1 26468 1 27314 1 28167 1 29894 1 30767 1 31648 1 32537 1 31448 1 32537 | 0 99910<br>1 00594<br>1 01266<br>1 01928<br>1 02590<br>1 03258<br>1 03934<br>1 046002<br>1 06702<br>1 06702<br>1 07408<br>1 08120<br>1 09564<br>1 10295<br>1 11033<br>1 11777<br>1 12526<br>1 13282<br>1 14043<br>1 14589<br>1 17143<br>1 17933<br>1 179527<br>1 20332<br>1 21142<br>1 21957<br>1 22776<br>1 23600<br>1 24429<br>1 25665<br>1 26947<br>1 27797<br>1 28655<br>1 139520<br>1 30392<br>1 31271<br>1 32158<br>1 33054<br>1 33960 | 25°  0 99794 1 00465 1 01126 1 01777 1 02428 1 03086 1 03756 1 04434 1 05116 1 05799 1 06490 1 07186 1 1786 1 1786 1 11505 1 12246 1 12995 1 13748 1 14508 1 15273 1 16045 1 16823 1 17607 1 18396 1 19190 1 20796 1 21607 1 22423 1 23244 1 24069 1 24069 1 24738 1 25738 1 26580 1 27429 1 28284 1 30018 1 30896 1 31782 1 30896 1 31782 1 32676 1 33580 | 0 99654<br>1 00312<br>1 00963<br>1 01607<br>1 02251<br>1 02902<br>1 03565<br>1 04235<br>1 04910<br>1 05585<br>1 07650<br>1 09776<br>1 10498<br>1 11228<br>1 11963<br>1 12704<br>1 13451<br>1 14205<br>1 14964<br>1 15731<br>1 16503<br>1 17282<br>1 18066<br>1 18854<br>1 19650<br>1 20452<br>1 21259<br>1 22071<br>1 22887<br>1 23712<br>1 24540<br>1 25375<br>1 26214<br>1 27915<br>1 28776<br>1 29646<br>1 30522<br>1 31407<br>1 32300<br>1 33202 | 0 99311<br>0 99950<br>1 00585<br>1 01216<br>1 01848<br>1 02487<br>1 03138<br>1 03796<br>1 04458<br>1 05119<br>1 05787<br>1 06462<br>1 07145<br>1 107834<br>1 108530<br>1 09233<br>1 09944<br>1 10661<br>1 11385<br>1 12115<br>1 12851<br>1 13594<br>1 14343<br>1 15100<br>1 15862<br>1 16631<br>1 17406<br>1 18186<br>1 18973<br>1 19767<br>1 20566<br>1 21371<br>1 22179<br>1 22999<br>1 23822<br>2 1 25487<br>1 26329<br>1 27179<br>1 28038<br>1 280038<br>1 28905<br>1 29779<br>1 30662<br>1 31553<br>1 31553<br>1 31553 | 0 98895<br>0 99522<br>1 00143<br>1 00761<br>1 01383<br>1 02013<br>1 02653<br>1 03302<br>1 03952<br>1 04605<br>1 05264<br>1 07971<br>1 08666<br>1 09368<br>1 10077<br>1 10792<br>1 11514<br>1 12242<br>1 12977<br>1 13718<br>1 14467<br>1 15221<br>1 15982<br>1 16749<br>1 17522<br>1 18302<br>1 19087<br>1 1987<br>1 1987<br>1 1987<br>1 20677<br>1 21476<br>1 22922<br>1 23109<br>1 23109<br>1 23109<br>1 24648<br>1 27304<br>1 28169<br>1 29042<br>1 29924<br>1 130813<br>1 31710 | 0 98418<br>0 99034<br>1 0 99644<br>1 00252<br>1 10865<br>1 01484<br>1 02114<br>1 02752<br>1 03393<br>1 04041<br>1 04696<br>1 05357<br>1 06027<br>1 06703<br>1 07385<br>1 08075<br>1 10875<br>1 10875<br>1 1082<br>1 11625<br>1 12353<br>1 13089<br>1 13832<br>1 14579<br>1 15335<br>1 18662<br>1 17635<br>1 18682<br>1 17635<br>1 18682<br>1 17635<br>1 18682<br>1 17635<br>1 18682<br>1 19989<br>1 19989<br>1 22400<br>1 23219<br>1 24045<br>1 24878<br>1 24878<br>1 25721<br>1 26875<br>1 27440<br>1 28311<br>1 29193<br>1 30081<br>1 30076 |
| 45<br>46<br>47<br>48<br>49<br>50<br>51                                                                                                                                                                                                                  | 1 36425<br>1 37361<br>1 38308<br>1 39267<br>1 40238<br>1 41219<br>1 42214                                                                                                                                                                                                                                                                                                                                                                                                             | 1 35647<br>1 36579<br>1 37522<br>1 38476<br>1 39441<br>1 40418<br>1 41407                                                                                                                                                                                                                                                                                      | 1 35261<br>1 36191<br>1 37132<br>1 38084<br>1 39047<br>1 40021<br>1 41007                                                                                                                                                                                                                                                                    | 1 34877<br>1 35805<br>1 36744<br>1 37694<br>1 38654<br>1 39627<br>1 40610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 34496<br>1 35422<br>1 36359<br>1 37306<br>1 38264<br>1 39235<br>1 40215                                                                                                                                                                                                                                                                                  | 1 34116<br>1 35040<br>1 35975<br>1 36921<br>1 37877<br>1 38845                                                                                                                                                                                                                                                                                                                                                                                       | 1 33363<br>1 34284<br>1 35215<br>1 36157<br>1 37108<br>1 38073<br>1 39047                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 32618<br>1 33365<br>1 34464<br>1 35401<br>1 36349<br>1 37310<br>1 38280                                                                                                                                                                                                                                                                                                                                                                                                           | 1 31881<br>1 32797<br>1 33721<br>1 34655<br>1 35600<br>1 36556<br>1 37524                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            | 1 38845<br>1 39823<br>1 40814                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Sp gr of H<sub>2</sub>SO<sub>4</sub>+Aq at t° Sp gr of H<sub>2</sub>O at 15°=1 Continued

|          |                    |                    |                    |                      |           |                    | ,               |                    |              |
|----------|--------------------|--------------------|--------------------|----------------------|-----------|--------------------|-----------------|--------------------|--------------|
| H.SO.    | 0°                 | 10°                | 15°                | 20°                  | 25°       | 30°                | 40              | 50°                | ,            |
| 53       | 1 44239            | 1 43420            | 1 43014            | 1 42611              | 1 42211   | 1 41814            | 1 41028         | 1 40254            | 1, 49        |
| 54       | 1 45269            | 1 44443            | 1 44034            | 1 43628              | 1 43225   | 1 42825            | 1 42034         | 1 41255            | 1 48         |
| 55       | 1 46311            | 1 45477            | 1 45065            | 1 44656              | 1 44250   | 1 43847            | 1 43051         | 1 42268            | 1 49         |
| 56       | 1 47364            | 1 46523            | 1 46107            | 1 45695              | 1 45285   | 1 44880            | 1 44078         | 1 43290            | 1 · 51       |
| 57       | 1 48427            | 1 47578            | 1 47159            | 1 46743              | 1 46331   | 1 45922            | 1 45115         | 1 44322            | 1 64         |
| 58       | 1 49499            | 1 48643            | 1 48221            | 1 47802              | 1 47387   | 1 46975            | 1 46162         | 1 45364            | 1 57         |
|          | 1 50583            | 1 49719            | 1 49292            | 1 48870              | 1 48452   | 1 48037            | 1 47218         | 1 46415            | 1 62         |
| 59<br>60 | 1 51676            | 1 50804            | 1 50374            | 1 49949              | 1 49527   | 1 49109            | 1 48285         | 1 47476            | 1 68         |
|          | 1 52778            | 1 51899            | 1 51465            | 1 51036              | 1 50611   | 1 50190            | 1 49360         | 1 48546            | 1 74         |
| 61<br>62 | 1 53889            | 1 53002            | 1 52564            | 1 52132              | 1 51703   | 1 51278            | 1 50442         | 1 49622            | 1 81         |
|          | 1 55008            | 1 54113            | 1 53672            | 1 53236              | 1 52804   | 1 52376            | 1 51533         | 1 50708            | 1 90         |
| 63       | 1 56135            | 1 55233            | 1 54788            | 1 54348              | 1 53913   | 1 53481            | 1 52632         | 1 51801            | 1 98         |
| 64       | 1 57270            | 1 56360            | 1 55912            | 1 55469              | 1 55030   | 1 54595            | 1 53740         | 1 52903            | 1 08         |
| 65       | 1 58414            | 1 57496            | 1 57044            | 1 56597              | 1 56154   | 1 55716            | 1 54854         | 1 54011            | 1 18         |
| 66       | 1 59565            | 1 58640            | 1 58184            | 1 57733              | 1 57287   | 1 56846            | 1 55978         | 1 55128            | 1 29         |
| 67<br>68 | 1 60724            | 1 59792            | 1 59332            | 1 58878              | 1 58427   | 1 57981            | 1 57104         | 1 56246            | 1 40         |
|          | 1 61892            | 1 60951            | 1 60488            | 1 60030              | 1 59577   | 1 59129            | 1 58247         | 1 57384            | 1 54         |
| 69<br>70 | 1 63068            | 1 62118            | 1 61651            | 1 61189              | 1 60732   | 1 60280            | 1 59391         | 1 58521            | 1 67         |
|          | 1 64251            | 1 63293            | 1 62821            | 1 62355              | 1 61894   | 1 61437            | 1 60540         | 1 59663            |              |
| 71       | 1 65439            | 1 64473            | 1 63997            | 1 63527              | 1 63062   | 1 62601            | 1 61696         | 1 60811            | - 00         |
| 72       | 1 66633            | 1 65658            | 1 65178            | 1 64704              | 1 64234   | 1 63769            | 1 62855         | 1 61961            |              |
| 73       |                    | 1 66847            | 1 66362            | 1 65883              | 1 65408   | 1 64939            | 1 64015         | 1 63111            | 1 08<br>1 22 |
| 74       | 1 67831            |                    | 1 67547            | 1 67063              | 1 66584   | 1 66109            | 1 65175         | 1 64260            |              |
| 75       | 1 69030<br>1 70228 | 1 68037<br>1 69225 | 1 68731            | 1 68242              | 1 67757   | 1 67278            | 1 66332         | 1 65405            |              |
| 76<br>77 | 1 71424            | 1 70411            | 1 69911            | 1 69416              | 1 68926   | 1 68439            | 1 67481         | 1 66540            |              |
| 70       | 1 72615            | 1 71589            | 1 71083            | 1 70582              | 1 70085   | 1 69591            | 1 68616         | 1 67658            |              |
| 78<br>79 | 1 73798            | 1 72758            | 1 72243            | 1 71735              | 1 71231   | 1 70731            | 1 69741         | 1 68767            |              |
|          |                    |                    |                    | 1 72868              | 1 72356   | 1 71847            | 1 70842         | 1 69854            |              |
| 80       | 1 74970            | 1 73909            | 1 73386<br>1 74504 | 1 73979              | 1 73458   | 1 72942            | 1 71921         |                    | 1 88         |
| 81       | 1 76120<br>1 77244 | 1 75038            |                    | 1 75057              | 1 74524   | 1 73998            | 1 72962         | 1 70916<br>1 71945 | 1 193        |
| 82       |                    | 1 76140            |                    |                      | 1 75557   |                    | 1 73972         |                    | 1 195        |
| 83       | 1 78312            | 1 77193            | 1 76642<br>1 77636 | 1 76097<br>1 77087   | 1 76543   | $175022 \\ 176006$ | 1 74943         | $172943 \\ 173902$ | 1 93         |
| 84       | 1 79316            |                    |                    |                      | 1 77470   | 1 76929            |                 |                    | 1 '88        |
| 85       | 1 80250<br>1 81108 | 1 79123<br>1 79982 |                    | 1 78016<br>1 78878   | 1 78331   | 1 77789            |                 | 1 74816            | 1 78         |
| 86<br>87 |                    | 1 80767            | 1 79428<br>1 80214 |                      | 1 79123   |                    | 1 76721         | 1 75674            | 1 64         |
| 88       | 1 81887            | 1 81476            |                    | 1 79666<br>  1 80381 | 1 79839   | 1 78584            | 177519   178242 | 1 76473            | 1 44         |
|          | 1 83216            |                    | 1 80926<br>1 81564 |                      |           | 1 79302            |                 | 1 77199            | 1 17         |
| 89<br>90 | 1 83771            | 1 82111<br>1 82677 | 1 82135            | 1 81022              | 1 80484   | 1 79950            | 1 78895         | 1 77856            | 1 83         |
|          |                    |                    |                    | 1 81597              | 1 81063   | 1 80532            | 1 79483         | 1 78448            | 1 42         |
| 91<br>92 | 1 84263            | 1 83179            | 1 82642            | 1 82109              | 1 81580   | 1 81054            | 1 80013         | 1 78985            | 1 97         |
| 93       | 1 84691            | 1 83619            | 1 83088            | 1 82561              | 1 82037   | 1 81516            | 1 80487         | 1 79471            | 1 ,47        |
|          | 1 85059            | 1 83997            | 1 83471            | 1 82950              | 1 82432   | 1 81918            | 1 80902         | 1 79900            | 1 391        |
| 94       | 1 85363            | 1 84311            | 1 83790            | 1 83275              | 1 82763   | 1 82255            | 1 81253         | 1 80266            | 1 )29        |
| 95       | 1 85598            | 1 84555            | 1 84040            | 1 83526              | 1 83022   | 1 82520            | 1 81528         | 1 80553            | 1 )59        |
| 96       | 1 85765            | 1 84729            | 1 84217            | 1 83709              | 1 83207   | 1 82708            | 1 81724         | 1 80758            | 1 )80        |
| 97       | 1 85854            | 1 84816            | 1 84305            | 1 83798              | 1 83297   | 1 82800            | 1 81822         | 1 80863            | 1 )92        |
| 98<br>99 | 1 85836            | 1 84789            | 1 84275            | 1 83766              | 1 83264   | 1 82767            | 1 81792         | 1 80840            | 1 )91        |
|          | 1 85671            | 1 84612            | 1 84093            | 1 83581              | 1 83076   | 1 82578            | 1 81604         | 1 80658            | 1 374        |
| 100      | 1 00000)           | (1 04200)          | (1 83729)          | 1 00210)             | (1 02/00) | (1 82200)          | (181231)        | (1 90288)          | (1 )38       |
| _        |                    |                    |                    |                      |           |                    |                 |                    |              |

Auszug aus Band 5 der wissenschaftlichen Abhandlungen der Normaleichungskomt s<br/>sic Berlin 1904, P $\,257\,$ Springer's publication

Sp gr of H<sub>2</sub>SO<sub>4</sub>+Aq at 15°/15° in air — Continued from page 915

Lunge, calculated by Marshall, J Soc Chem Ind 1902, **21** 1509

Sp gr at 20° of H2SO4+Aq containing Mg mols H<sub>2</sub>SO<sub>4</sub> per liter

| M          | 0 01     | $0\ 025$ | 0 05     |
|------------|----------|----------|----------|
|            | 1 000719 | 1 001907 | 1 003551 |
| Spgr<br>VI | 0 075    | 0 10     | 0 25     |
|            | 1 005152 | 1 00677  | 1 01618  |
| Spgr<br>M  | 0 50     | 0 75     | 10       |
|            | 1 03218  | 1 04760  | 1 06307  |
| Spgr<br>M  | 15       | 20       |          |
| Spgr       | 1 09345  | 1 12316  |          |

(Jones and Pearce, Am Ch J 1907, 38 733)

# Boiling-point of H<sub>2</sub>SO<sub>4</sub>+Aq

| % H 504                            | B pt                                                                           | /₀ H 5O₄                                                       | B pt                                                                                                              |
|------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 5 10 15 20 25 30 35 40 45 50 53 56 | B pt  101 0° 102 0 105 5 105 0 106 5 108 0 110 0 114 0 118 5 124 0 125 5 133 0 | 70<br>72<br>74<br>76<br>78<br>80<br>82<br>84<br>86<br>88<br>90 | B pt<br>170 0°<br>174 5<br>180 5<br>189 0<br>199 0<br>207 0<br>218 5<br>227 0<br>238 5<br>251 5<br>262 5<br>268 0 |
| 60<br>62 5<br>65<br>67 5           | 141 5<br>147 0<br>153 5<br>161 0                                               | 92<br>93<br>94<br>95                                           | 274 5<br>2×1 5<br>288 5<br>295 0                                                                                  |

(Lunge, B 11 370)

Freezing- and melting-points of H2SO4+Aq

|                                                                                                 | - 01                                                    |                                                                                              |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Sp gr at lo°                                                                                    | F pt                                                    | M pt                                                                                         |
| 1 671<br>1 691<br>1 712<br>1 727<br>1 732<br>1 749<br>1 767<br>1 790<br>1 807<br>1 822<br>1 842 | hq at -20°  "  -7 5 -8 5 -0 2 +1 6 +4 5 -9 0 hq at -20° | $ \begin{array}{rrrr} -7 & 5 \\ -8 & 5 \\ +4 & 5 \\ +6 & 5 \\ +8 & 0 \\ -6 & 0 \end{array} $ |
|                                                                                                 |                                                         |                                                                                              |

(Lunge, B 15 2644)

Effect of impurities on sp gr of H<sub>2</sub>SO<sub>4</sub>+Aq The figures show the increase in sp gr of H SO4+ Aq caused by adding 01% of an impurity to acid of different strengths

| Salt 10                                                                                                                                                                   | 00 % 9                                     | 8% 8 | 94 %                                   | 80 %  | 7                      | 0 %                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|----------------------------------------|-------|------------------------|----------------------------------------------|
| CaSO <sub>4</sub><br>Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub><br>Fe (SO <sub>4</sub> ) <sub>3</sub><br>PbSO <sub>4</sub><br>MgSO <sub>4</sub><br>As O <sub>3</sub> | 0012 0<br>nsol 11<br>0017 0<br>0011 0<br>0 |      | 0009<br>insol<br>0006°<br>0015<br>0012 | ınsol | 0<br>0<br>0<br>11<br>0 | 0007<br>0006<br>0011<br>0007<br>asol<br>0009 |

(Marshall, J Soc Chem Ind 1902, 21 1508)

Sp gr of mixtures of H SO<sub>4</sub> (96 5%) and HNO. (94%) at 18°/18° in air

| 111(O3 (54/C) at 10/10 in an                                                            |                                                                                                                 |                                                                                                  |                                                                                                            |  |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| % HNO3 in<br>mixture                                                                    | Sp gr                                                                                                           | 7 HNO₃in<br>mixture                                                                              | Sp gr                                                                                                      |  |
| 0 00<br>0 57<br>1 05<br>4 67<br>7 17<br>7 37<br>7 75<br>9 10<br>11 33<br>12 71<br>16 52 | 1 8437<br>1 \$456<br>1 8476<br>1 8580<br>1 8618<br>1 8620<br>1 8619<br>1 \$600<br>1 \$557<br>1 \$520<br>1 \$414 | 22 51<br>25 56<br>27 29<br>32 53<br>37 03<br>59 49<br>57 75<br>72 59<br>90 76<br>98 19<br>100 00 | 1 8215<br>1 8112<br>1 8053<br>1 7863<br>1 7700<br>1 7601<br>1 6579<br>1 6227<br>1 5408<br>1 5000<br>1 5009 |  |
|                                                                                         |                                                                                                                 | 1                                                                                                |                                                                                                            |  |

(Mushall, J Soc Chem Ind 1902, 21 1508)

Miscible with alcohol, with evolution of heat and formation of ethylsulphuric acid +H<sub>2</sub>O=H<sub>4</sub>SO<sub>5</sub>, also called tetrahydrovyl sulphuric acid (Marignac, A ch (3) 39 184)

Mpt 835° (Pickering)

+2H<sub>2</sub>O=H<sub>6</sub>SO<sub>6</sub>, also called perhydroxyl sulphuric acid

-38 9° (Biron, J Russ Phys Mpt Chem Soc 1899, 31 517) (Pickering, Chem Soc 1890, +3H<sub>2</sub>O

**57** 331)

+4H<sub>2</sub>O Mpt -75° (Pickering, Chem Soc 1890, **57** 331)

Sp gr and fr pt of hydrates of H2SO4

| H <sub>2</sub> SO <sub>4</sub> (pure) 100 1 842 +10 5<br>H <sub>2</sub> SO <sub>4</sub> +H <sub>2</sub> O 84 48 1 777 +3 5<br>H <sub>2</sub> SO <sub>4</sub> +2H <sub>2</sub> O 73 08 1 650 -70 0<br>H <sub>2</sub> SO <sub>4</sub> +4H <sub>2</sub> O 57 65 1 476 -40 0<br>H <sub>2</sub> SO <sub>4</sub> +6H <sub>2</sub> O 47 57 1 376 -50 0<br>H <sub>2</sub> SO <sub>4</sub> +8H <sub>2</sub> O 40 50 1 311 -65 0<br>H <sub>2</sub> SO <sub>4</sub> +10H <sub>2</sub> O 33 25 1 268 -88 0<br>H <sub>2</sub> SO <sub>4</sub> +11H <sub>2</sub> O 33 11 1 249 -75 0<br>H <sub>2</sub> SO <sub>4</sub> +12H <sub>2</sub> O 31 21 1 233 -55 0<br>H <sub>2</sub> SO <sub>4</sub> +13H <sub>2</sub> O 29 52 1 219 -45 0<br>H <sub>2</sub> SO <sub>4</sub> +14H <sub>2</sub> O 29 52 1 219 -45 0<br>H <sub>2</sub> SO <sub>4</sub> +16H <sub>2</sub> O 26 63 1 196 -34 0<br>H <sub>2</sub> SO <sub>4</sub> +16H <sub>2</sub> O 25 39 1 187 -25 6<br>H <sub>2</sub> SO <sub>4</sub> +16H <sub>2</sub> O 23 22 1 170 -19 0<br>H <sub>2</sub> SO <sub>4</sub> +25H O 17 88 1 129 -8 5<br>H <sub>2</sub> SO <sub>4</sub> +75H <sub>2</sub> O 9 82 1 067 -3 5<br>H <sub>2</sub> SO <sub>4</sub> +75H <sub>2</sub> O 9 82 1 067 -3 5<br>H <sub>2</sub> SO <sub>4</sub> +75H <sub>2</sub> O 6 77 1 045 0 0 | Hydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | и so⁴                                                                                                                                                                 | Sp gr of<br>the liquid                                                                                                                                                  | Fr pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H <sub>2</sub> SO <sub>4</sub> +H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +2H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +4H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +8H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +10H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +11H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +13H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +15H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +15H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +16H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +20H O<br>H <sub>2</sub> SO <sub>4</sub> +20H O<br>H <sub>2</sub> SO <sub>4</sub> +50H O<br>H <sub>2</sub> SO <sub>4</sub> +50H O<br>H <sub>2</sub> SO <sub>4</sub> +10H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +100H <sub>2</sub> O<br>H <sub>2</sub> SO <sub>4</sub> +100H <sub>2</sub> O | 84 48<br>73 08<br>57 65<br>47 57<br>40 50<br>35 25<br>33 11<br>31 21<br>22 8 00<br>26 63<br>25 39<br>23 22<br>23 22<br>24 00<br>17 88<br>9 82<br>6 77<br>5 16<br>1 78 | 1 777<br>1 650<br>1 476<br>1 376<br>1 311<br>1 268<br>1 249<br>1 233<br>1 219<br>1 207<br>1 196<br>1 187<br>1 170<br>1 157<br>1 129<br>1 067<br>1 045<br>1 045<br>1 007 | $\begin{array}{c} +35\\ -700\\ -400\\ -500\\ -880\\ -750\\ -450\\ -450\\ -450\\ -255\\ -400\\ -256\\ -190\\ -185\\ -190\\ -185\\ -190\\ -185\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ -190\\ $ |

(Pictet, C R 1894, 119 645)

# Sulphuric acid, anhydrous, SO<sub>3</sub>

Disulphuric (Pyrosulphuric) acid, H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>
Very deliquescent Miscible with H<sub>2</sub>O
Sol in fuming H SO<sub>4</sub> Miscible in liquid
SO (Schultz-Sellack)

HSO, 2HSO<sub>4</sub> Fumes on air (Jacquelain, A ch (3) **30** 343)

### Tetrasulphuric acid, H<sub>2</sub>S<sub>4</sub>O<sub>13</sub>

Fumes on air (Weber, Pogg 159 313)

### Sulphates

Most sulphates are easily sol in  $\rm H_2O$ , but  $\rm Ag~SO_4$ ,  $\rm Hg~SO_4$ , and  $\rm CaSO_4$  are only sl sol, while  $\rm BaSO_4$ ,  $\rm SrSO_4$ , and  $\rm PbSO_4$  are nearly insol therein. All sulphates are sol in conc. H  $\rm SO_4$  Basic sulphates are insol in H O. Most sulphates are insol in alcohol. Insol in liquid  $\rm NH_3$  (Franklin, Am Ch J 1898, **20** 823)

Aluminum sulphate, basic, 2Al<sub>2</sub>O<sub>3</sub>,SO<sub>3</sub>+5H O

Slowly sol in 10 moly  $\mathrm{HC_2H_3O_2}$  (Schlumberger, Bull Soc 1895, (3) 13 41)  $+7\mathrm{H\ O}$  Easily sol in 8 mols dil  $\mathrm{HCl}+4\mathrm{q\ or\ in\ 10\ mols\ 10\%}$  acetic acid in 24 hours (Schlumberger)

+10H O Insol in H<sub>2</sub>O, easily sol in cold dil mineral acids, and HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Crum, A 89 174)

Min Felsobanyite +15H<sub>2</sub>O Min Paraluminite 8Al<sub>2</sub>O<sub>3</sub>, 5SO<sub>3</sub>+25H<sub>2</sub>O Insol in H<sub>2</sub>C in dil acids (Lowe, J pr **79** 428)

 $5Al_2O_3$ ,  $3SO_3+20\dot{H}_2O$  Easily sol in (Debray, Bull Soc (2) 7 9)  $3Al_2O_3$ ,  $2SO_3+9H_2O$  Nearly inso

3Al<sub>2</sub>O<sub>3</sub>, 2SO<sub>3</sub>+9H<sub>2</sub>O Nearly ms<sub>0</sub> conc H<sub>2</sub>SO<sub>4</sub> (Bayer, Dingl **263** 211) +20H<sub>2</sub>O Ppt

4Ål<sub>2</sub>O<sub>3</sub>, 3SO<sub>3</sub>+36H<sub>2</sub>O Insol in [, Easily sol in dil mineral acids, and HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Debray, Bull Soc (2) Al<sub>2</sub>O<sub>3</sub>, SO<sub>3</sub> + 6H<sub>2</sub>O = (AlO)<sub>2</sub>SO<sub>4</sub> + [, Insol in H<sub>2</sub>O or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Sl c hot HCl, easily sol in warm KOH

(Bottinger, A 244 225) +9H<sub>2</sub>O (Athanasesco, C R 103

Min Aluminite  $[Al_2(OH)_5]SO_4+2H_2O$ 

Sol in HCl+Aq in the cold with de n Very unstable (Schlumberger, Bull 8 1895, (3) 13 60)

 $3\text{Al}_2\text{O}_3$ ,  $4\text{SO}_3 + 9\text{H}_2\text{O}$  (Athanasesco, 103 271)

 $+30H_2O$  Sol in 144 pts cold, an pts boiling  $H_2O$  Easily sol in HC HNO<sub>3</sub>+Aq (Rammelsberg, Pogg 43 (2Al<sub>2</sub>O<sub>2</sub>, 3SO<sub>3</sub> Decomp by  $H_2C$  (3Al<sub>2</sub>O<sub>3</sub>, SO<sub>3</sub> and Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> (Maus) Al<sub>2</sub>O<sub>3</sub>, 2SO<sub>3</sub>=Al<sub>2</sub>O(SO<sub>4</sub>)<sub>2</sub>

Min Alumaine

+H<sub>2</sub>O Sol in small quantity of H<sub>2</sub> decomp by a large quantity into (Alcand Al. (SO.). (Mays Porg. 11, 80.)

and Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> (Maus, Pogg 11 80) +12H<sub>2</sub>O Easily sol in hot or cold Sat solution contains 45% salt at 15°, crystallises unchanged on evaporating guerite, C R 90 354)

Above basic compounds are mi ur (Pickering, C N 45 121, 133, 146)

## Aluminum sulphate, Al2(SO4)8

100 pts  $H_2O$  dissolve (a) pts  $Al_2$  and (b) pts  $Al_2(SO_4)_3+18H_2O$  at

0° 10° 20° 30° 40° 8
a 31 3 33 5 36 15 40 36 45 73 8
b 86 85 95 8 107 35 127 6 167 6

60° 70° 80° 90° 0 a 59 09 66 23 73 14 80 83 9 1 b 262 6 348 2 467 3 678 8 1 2 (Poggrale, A ch (3) 8 467)

See also +18H O

## Sp gr of Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+Aq

|                                    | ~P F1                                          | 31 1212(13 6)                                  | 4/8 1 = - 4                                |                        |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------|------------------------|
| 07                                 | Sp gr                                          |                                                | gr at                                      |                        |
| Al (SO <sub>4</sub> ) <sub>3</sub> | 15                                             | 25°                                            | 35                                         | 18                     |
| 5<br>10<br>15<br>20<br>25          | 1 0569<br>1 1071<br>1 1574<br>1 2074<br>1 2572 | 1 0503<br>1 1022<br>1 1522<br>1 2004<br>1 2487 | 1 045<br>1 096<br>1 146<br>1 192<br>1 2407 | 0<br>0<br>1<br>1<br>2: |

(Reuss, B 17 2888)

Sp gr of Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+Aq at 15° containing 30%Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+18H<sub>2</sub>O, 20 1 1710 1 1105 1 0535

50% Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+18H<sub>2</sub>O 40 1 2355 1 3050

Sp gr of sat solution = 1 34 (Gerlach, Z anal 28 493)

Sp gr of Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+Aq at 25°

| Strength of Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> +Aq | Sp gr                                |
|-----------------------------------------------------------------|--------------------------------------|
| 1 normal 1/2 " 1/4 " 1/8 "                                      | 1 0550<br>1 0278<br>1 0138<br>1 0068 |
|                                                                 |                                      |

(Wagner, Z phys Ch 1890, 5 35)

100 pts of a mixture of 1 vol H<sub>2</sub>SO<sub>4</sub>+2 only 645 $H_2O$ dissolve pts vols (Baud, C R 1903, 137 494)  $Al_2(SO_4)_8$  $Al_2(SO_4)_3$  is completely pptd from  $Al_2(SO_4)_3$ +Aq by an excess of glacial  $HC_2H_3O_2$  (Persoz, A ch (2) 63 444) Solubility of  $Al_2(SO_4)_3$ + $(NH_4)_2Al_2(SO_4)_4$ 

See under (NH<sub>4</sub>)<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>

Solubility of Al<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>+K<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub> See under K<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>

Solubility in Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+Aq at 25°

| 100 g of the solution contain                                    |                                                         |  |
|------------------------------------------------------------------|---------------------------------------------------------|--|
| g Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                | g Fe (SO <sub>4</sub> ) <sub>3</sub>                    |  |
| 27 82<br>26 01<br>24 21<br>21 64<br>15 22<br>*10 70 \<br>10 23 \ | 0<br>6 064<br>9 819<br>13 02<br>23 28<br>31 91<br>31 90 |  |

\*Solution sat with respect to both salts (Wirth and Bakke, Z anorg 1914, 87 48) See also under Fe<sub>2</sub>(5()<sub>4</sub>);

Solubility of Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+Li<sub>2</sub>SO<sub>4</sub> at 30°

| 20            |                  |                       |             |       |          |           |                                                                                                                                           |
|---------------|------------------|-----------------------|-------------|-------|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|
|               | Con              | pos                   | itioi       | n of  |          |           |                                                                                                                                           |
| Solu          | Solution Resiluc |                       |             |       |          |           |                                                                                                                                           |
| L12SO4        | %                | Al (SO <sub>4)3</sub> | 2           | Li SO | 2        | Al (504)3 | Solid phase                                                                                                                               |
| 25 1<br>21 93 |                  |                       | -           |       |          |           | L <sub>12</sub> SO <sub>4</sub> , H <sub>2</sub> O                                                                                        |
| 16 10         |                  |                       |             |       |          |           |                                                                                                                                           |
| 13 63         | 20               | 76                    | 14          | 72    | 31       | 17        | $\begin{array}{c c} \text{L}_{12}\text{SO}_4, \ \text{H}_2\text{O} + \\ & \text{Al}_2(\text{SO}_4)_3, \ 18\text{H}_2\text{O} \end{array}$ |
| 13 24         |                  |                       |             |       |          | 22        | L <sub>12</sub> SO <sub>4</sub> , 4H <sub>2</sub> O                                                                                       |
| 11 73         |                  |                       |             | 92    | 33       | 54        | $Al_2(SO_4)_3$ , $18H_2O$                                                                                                                 |
| 6 75          |                  |                       |             | 77    | 37       | 06        |                                                                                                                                           |
| 3 44          |                  |                       |             |       | ŀ        |           | "                                                                                                                                         |
| 0 00          | 28               | 0                     |             |       |          |           | "                                                                                                                                         |
| 70.           | _                |                       | <del></del> |       | <u> </u> | •         | *** 1 01 117 111                                                                                                                          |

(Schreinemakers and de Waal, Ch Weekbl 1906, **3** 539)

100 g of sat solution of Al (SO<sub>4</sub>)<sub>8</sub> in glycol contain 14 4 g Al<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> (de Coninck, Bull Ac Roy Belg 1905 359)

Insol in ethyl acetate (Naumann, B 1910, 43 314)

Insol in acetone (Naumann, B 1904, **37** 4328)

 $+6H_{\circ}O$ Very slowly sol in cold, completely sol in hot H<sub>2</sub>O (Margueritte-Delarcharbonny,  $+8H_2O$ 

C R 112 229 -10H<sub>2</sub>O Deliquescent (v Hauer, W

A B 13 449) +16H₂Ō Sol in conc H<sub>2</sub>SO<sub>4</sub> (Baud, C

R 1903, 137 494) +17H<sub>2</sub>O(Gawalowski, C 1885 721)

+18H<sub>2</sub>OPermanent (Berzelius) 100 g of the aqueous solution contain 27 82 g Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> at 25° (Wirth, Z anorg 1913, 79 361)

Solubility of Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+18H<sub>2</sub>O in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| H <sub>2</sub> SO <sub>4</sub> +Aq<br>% H SO <sub>4</sub>               | 100 g of the solution contain g Al (SO <sub>4</sub> ) <sub>3</sub>           |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0<br>5 23<br>9 90<br>18 70<br>25 50<br>40 70<br>52 25<br>63 70<br>73 64 | 27 82<br>29 21<br>26 21<br>20 44<br>15 40<br>5 07<br>1 216<br>1 243<br>2 915 |

(Wirth, Z anorg 1913, 79 361)

Hydrous salt is scarcely sol in alcohol (Berzelius)

Min Alunogen Efflorescent  $+27\mathrm{H}_2\mathrm{O}$ (Margueritte-Delarcharbonny, C R 99 800)

Aluminum sulphate, acid, Al<sub>2</sub>O<sub>8</sub>, 4SO<sub>8</sub>+  $4H_2O$ 

Extremely slowly sol in cold, more rapidly ın hot H<sub>2</sub>O (Baud, C R 1903, 137 493) Al<sub>2</sub>O<sub>3</sub>, 6SO<sub>3</sub>+10H<sub>2</sub>O Sol in H<sub>2</sub>O, solution soon decomp into Al<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>+H<sub>2</sub>SO<sub>4</sub> (Silberberger, M 1904, **25** 221)

Aluminum ammonium sulphate (Ammonia alum),  $(NH_4)_2Al_2(SO_4)_4+24H_2O$ 

100 pts H<sub>2</sub>O dissolve 29 pts anhydrous salt at 0°, 2077 pts anhydrous salt at 1106° (Mulder)

100 pts H<sub>2</sub>O dissolve 8 74 pts anhydrous salt at 175° (Pohl, W A B 6 597)

# 100 pts H<sub>2</sub>O at t° dissolve pts (NH<sub>4</sub>)<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>

| 0 2 10 3 90                                                                                                                                                       |                                                    | (14 114) 3V13(PO4                                                                      | /4                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 0 1 2 20                                                                                                                                                          | t°                                                 | Pts<br>(NH <sub>4</sub> ) <sub>2</sub> Al <sub>2</sub> (SO <sub>4</sub> ) <sub>4</sub> | (NH4) Al2(SO4)4+                                                               |
| 20 7 74 15 13<br>30 10 94 22 01<br>40 14 88 30 92<br>50 20 09 44 11<br>60 26 70 66 65<br>70 35 11 90 67<br>80 45 66 134 47<br>90 58 68 209 31<br>100 74 53 357 48 | 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | 4 99<br>7 74<br>10 94<br>14 88<br>20 09<br>26 70<br>35 11<br>45 66<br>58 68            | 9 52<br>15 13<br>22 01<br>30 92<br>44 11<br>66 65<br>90 67<br>134 47<br>209 31 |

(Poggiale, A ch (3) 8 467)

According to Locke (Am Ch J 1901, 26 174), Poggrale's tables for NH, and K alums are evidently transposed, and the above data are applied by Poggrale to K alum

are applied by Poggiale to K alum 1 1 H<sub>2</sub>O dissolves 919 g anhydrous, or 1919 g hydrated salt, or 0387 mols anhydrous salt at 25° (Locke, Am Ch J 1901, 26 175)

## Solubility in H O at to

| t  | G (NH <sub>4</sub> )<br>Al (SO <sub>4</sub> ) <sub>4</sub><br>per 100 g H O | G (NH <sub>4</sub> )<br>Al (SO <sub>4</sub> ) <sub>4</sub><br>+24H O<br>per 100<br>g H O | G mol<br>(NH <sub>4</sub> )<br>Al (SO <sub>4</sub> ) <sub>4</sub><br>per 100<br>g H <sub>2</sub> O |
|----|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 0  | 2 10                                                                        | 3 90                                                                                     | 0 0044                                                                                             |
| 5  | 3 50                                                                        | 6 91                                                                                     | 0 0074                                                                                             |
| 10 | 4 99                                                                        | 9 52                                                                                     | 0 0105                                                                                             |
| 15 | 6 25                                                                        | 12 66                                                                                    | 0 0132                                                                                             |
| 20 | 7 74                                                                        | 15 13                                                                                    | 0 0163                                                                                             |
| 25 | 9 19                                                                        | 19 19                                                                                    | 0 0194                                                                                             |
| 30 | 10 94                                                                       | 22 01                                                                                    | 0 0231                                                                                             |
| 40 | 14 88                                                                       | 30 92                                                                                    | 0 0314                                                                                             |
| 50 | 20 10                                                                       | 44 10                                                                                    | 0 0424                                                                                             |
| 60 | 26 70                                                                       | 66 65                                                                                    | 0 0569                                                                                             |
| 95 | 109 7                                                                       | 00                                                                                       | 0 2312                                                                                             |

(Mulder, Poggale Locke, Marino, Gazz ch it 1905, **35** II, 351, Berkeley, Trans Rov Soc 1904, **203** A, 214 calc by Seidell Solubilities)

B-pt of sat solution is  $110.6^{\circ}$  M-pt of  $(NH_4)_2Al_2(SO_4)_4+24H_2O=92^{\circ}$  (Tilden, Chem Soc 45 409),=95° (Locke, l.c.)

Sp gr of aqueous solution at 15° containing

Solubility of NH<sub>4</sub> alum in presence  $(NH_4)_2SO_4$  and  $Al_2(SO_4)_3$ 

|                                                                                         | 100 g °at so                                      | lution cori |   |
|-----------------------------------------------------------------------------------------|---------------------------------------------------|-------------|---|
| Mixture used                                                                            | g (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | g Al (St    |   |
| Sat NH <sub>4</sub> alum<br>at 18 5°<br>20 cc above sol-                                | 1 42                                              | 3           | - |
| ution +6 g<br>cryst Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub><br>20 cc above sol- | 0 45                                              | 16          | } |
| ution+4g<br>(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                             | 20 81                                             | 0           | 3 |

(Rudorff, 1885, B 18 1160)

Insol m alcohol (Mulder)
Solubility of Al(NH<sub>4</sub>)(SO<sub>4</sub>)<sub>2</sub>+12H<sub>2</sub>O n is mixture of 93 3 g H<sub>2</sub>O and 23 33 g glyi m = 6 15 g (Dunlop, Pharm J 1910, 81 6 Solubility in 93 3 g H<sub>2</sub>O+23 3 g glyi m + 3 9 g phenol=5 59 g Al(NH<sub>4</sub>)()<sub>4</sub>) + 12H<sub>2</sub>O (Dunlop)
Mm Tschermagte

Aluminum ammonium chromium sul<sub>1</sub> ate
Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, Cr<sub>2</sub>(SC<sub>3</sub>)<sub>3</sub>+
48H<sub>2</sub>O
Sol in H<sub>2</sub>O, decomp by boiling (obl

Sol m  $H_2O$ , decomp by boiling ( oh) A 94 71)

Aluminum cæsium sulphate, Al<sub>2</sub>Cs<sub>2</sub>(St)<sub>4</sub>+ 24H<sub>2</sub>O at 17° dissolve 0 61 pt cæsium alum (Redtenbacher, J <sub>1</sub> 94 442)

Solubility in 100 pts H<sub>2</sub>O at t° (calculate 1 for salt dried at 130°)

| t             | Pts<br>alum          | t              | Pts<br>ilum           | t        | ts<br>um |
|---------------|----------------------|----------------|-----------------------|----------|----------|
| 0<br>10<br>17 | 0 19<br>0 29<br>0 38 | 25<br>35<br>50 | 0 49<br>0 69<br>1 235 | 65<br>80 | 38<br>29 |

(Setterberg, A **211** 104)

### Solubility in H<sub>2</sub>O

| t  | Pts<br>anhydrous salt<br>per litre | G me<br>anhydrot<br>per li | salt |
|----|------------------------------------|----------------------------|------|
| 25 | 4 7                                | 0 01                       |      |
| 30 | 5 89                               | 0 01                       |      |
| 35 | 7 29                               | 0 02                       |      |
| 40 | 9 00                               | 0 02                       |      |

(Locke, Am Ch J 1901, **26** 180

| Solubility of Al <sub>2</sub> Cs <sub>2</sub> (SO <sub>4</sub> ) <sub>4</sub> in H <sub>2</sub> | ∩ at t°   |
|-------------------------------------------------------------------------------------------------|-----------|
|                                                                                                 |           |
| G Al <sub>2</sub> CS <sub>2</sub> (SO <sub>4</sub> ) <sub>4</sub> +24H <sub>2</sub> O in 100 g  | golistion |
| 13 A 16 (189 (1804) 4 T 2 T 112 C III 100 B                                                     | POTUTOTI  |

| t°                        | % salt                               | t°                      | % salt                        |
|---------------------------|--------------------------------------|-------------------------|-------------------------------|
| 0<br>15<br>30<br>45<br>60 | 0 21<br>0 35<br>0 60<br>1 04<br>1 96 | 75<br>80<br>90<br>100 4 | 4 12<br>5 21<br>9 50<br>18 60 |

Berkeley, Trans Roy Soc 1904, 203 A, 214)

Solubility in 100 g H<sub>2</sub>O at t°

|                                                                     | 501                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                              | 6                                                                                                                                |                                                                                                                                                                           |                                                                                                                                         |                                                                                                                                                        |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| ť°                                                                  | G<br>AlCs(SO4)2                                                                                                                                                                      | t°                                                                                                                                                       | G<br>AICs(SO <sub>4</sub> ) <sub>2</sub>                                                                                                                     | t°                                                                                                                               | G<br>AICs(SO <sub>4</sub> ) <sub>2</sub>                                                                                                                                  | t°                                                                                                                                      | G<br>AlCs(SO4)2                                                                                                                                        |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 0 19<br>0 20<br>0 21<br>0 22<br>0 23<br>0 24<br>0 25<br>0 26<br>0 27<br>0 28<br>0 30<br>0 31<br>0 32<br>0 34<br>0 35<br>0 36<br>0 39<br>0 41<br>0 42<br>0 43<br>0 44<br>0 47<br>0 49 | 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51 | 0 50<br>0 51<br>0 52<br>0 55<br>0 57<br>0 59<br>0 60<br>0 62<br>0 65<br>0 72<br>0 75<br>0 77<br>0 80<br>0 85<br>1 00<br>1 10<br>1 17<br>1 27<br>1 30<br>1 39 | 52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>70<br>71<br>72<br>73<br>77<br>77 | 1 45<br>1 51<br>1 58<br>1 65<br>1 71<br>1 77<br>1 86<br>1 92<br>2 25<br>2 37<br>2 25<br>2 25<br>2 37<br>2 2 56<br>3 3 3<br>3 3 50<br>3 67<br>3 85<br>4 30<br>4 72<br>4 95 | 78<br>79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100 | 5 15<br>5 40<br>5 78<br>6 05<br>6 4<br>7 7 0<br>7 4<br>7 7 7<br>8 8 3<br>8 6<br>8 8 9<br>9 9 2<br>9 5<br>9 9 1<br>10 1<br>10 8<br>11 1<br>11 5<br>12 0 |

Values from 0-7° obtained by interpolation using Setterberg's values for 0°(A 1882, 211 100)

From 80-100° they were calculated by extrapolation

(Hart and Huselton, J Am Chem Soc 1914, 36 2084)

Melts in crystal H<sub>2</sub>O at 106° (Tilden, Chem Soc 45 409), at 120 5° (Erdmann), at 122° (Locke)

Aluminum calcium sulphate, basic, Al<sub>2</sub>O<sub>3</sub>, 6CaO, 3SO<sub>3</sub>+32H<sub>2</sub>O

Min Ettringite Mostly sol in H<sub>2</sub>O, sol in HCl+Aq

Aluminum chromium sulphate, Al<sub>2</sub>Cr<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub> Insol in H<sub>2</sub>O Al<sub>2</sub>Cr<sub>2</sub>(SO<sub>4</sub>)<sub>5</sub>,H<sub>2</sub>SO<sub>4</sub> Insol in H<sub>2</sub>O (Étard C R 86 1400)

Aluminum chromium potassium sulphate,  $Al_2(SO_4)_3$ ,  $Cr_2(SO_4)_3$ ,  $2K_2SO_4+48H_2O$ Sol in  $H_2O$ , but decomp on boiling (Vohl)

Aluminum copper sulphate, 2Al<sub>2</sub>O<sub>3</sub>, 9CuO, 3SO<sub>3</sub>+21H<sub>2</sub>O
Min Cyanotrichite (Percy. Phil Mag (3)

Min Cyanotrichite (Percy, Phil Mag (3) 36 103)

Aluminum hydroxylamine sulphate, Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, (NH<sub>2</sub>OH)<sub>2</sub>SO<sub>4</sub>+24H<sub>2</sub>O Sol in H<sub>2</sub>O (Meyeringh, B 10 1946)

Aluminum iron (ferrous) sulphate, Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, FeSO<sub>4</sub>+24H<sub>2</sub>O

Sol in H<sub>2</sub>O (Klauer, A **14** 261)

Min Halotrichite Al<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>, 2FeSO<sub>4</sub>+27H<sub>2</sub>O Sol in H<sub>2</sub>O

(Berthier)
Al<sub>2</sub>O<sub>3</sub>, 2SO<sub>3</sub>, 6FeSO<sub>4</sub> Easily sol in H<sub>2</sub>O
(Phillips)
Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> 2FeSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> Insol in H O
(Étard, C R 87 602)

Aluminum iron (ferric) sulphate, Al (SO<sub>4</sub>)<sub>3</sub>, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

Insol in  $H_2O$  (Étard, C R 86 1399)  $Al_2(SO_4)_3$ ,  $Fe_7(SO_4)_3$ ,  $H_2SO_4$  As above (Étard) See  $Al_2(SO_4)_3$ +Fe (SO<sub>4</sub>)<sub>3</sub>, under  $Al_2(SO_4)_3$  and  $Fe_2(SO_4)_3$ 

 $\begin{array}{cccc} Alumınum & ferrous & potassıum & sulphate, \\ & Al_2(SO_4)_8, & 12FeSO_4, & 2K_2SO_4 + 24H_2O \\ & Permanent & Sl & sol & in & H & O & (Dufrenoy) \end{array}$ 

Aluminum lead sulphate, Al Pb<sub>2</sub>(SO<sub>4</sub>)<sub>5</sub>+ 20H O

Permanent, insol in H O (G H Bailey J Chem Soc Ind 6 415)

Aluminum lithium sulphate, Li  ${\rm Al_2(SO_4)_4} + 24 {\rm H_2O}$ 

Sol in 24 pts cold, and 0 87 pt hot H<sub>2</sub>O (Kralovansky, Schw J 54 349)

Does not exist (Rammelsberg, J B 1847-48 394, Arfvedson, Gmelin)

Aluminum lithium potassium sulphate (?) Sol in  $H_2O$ , from which it crystallises on cooling (Joss, J pr 1 142)

Aluminum magnesium sulphate, MgSO<sub>4</sub>,  $Al_2(SO_4)_3+22H_2O$ 

Min Pickeringite  $2MgSO_4$ ,  $Al_2(SO_4)_3+22H_2O$  Min Picraluminite  $3MgSO_4$ ,  $Al_2(SO_4)_3+36H_2O$  Very sol in

H<sub>2</sub>O (Klauer, A 14 264)

Aluminum magnesium manganous sulphate,  $Al_2(SO_4)_3$ ,  $MgSO_4$ ,  $MnSO_4+25H_2O$ 

(Kane) Very As sol in H<sub>2</sub>O as K alum sol in H<sub>2</sub>O (Smith, Sill Am J (2) 18 379) Min Bosjemanite

Aluminum manganous sulphate, Al2(SO4)8, MnSO₄+25H₂O

Sol in H<sub>2</sub>O (Berzelius) Min Apjohnite +24H<sub>2</sub>O

Aluminum manganic sulphate, 2Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>,  $Mn_2(SO_4)_3$ 

(Étard, C R 86 1399) Insol in H<sub>2</sub>O

Aluminum nickel sulphate, Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 2NiSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>

Insol in H<sub>2</sub>O, but gradually decomp thereby (Étard, C R 87 602)

Aluminum potassium sulphate, basic,  $3(Al_2O_3, SO_3), K_2SO_4+6H_2O=K_2SO_4, 3Al_2(SO_4,)(OH)_4$ 

Insol in H<sub>2</sub>O Insol in Min Alunite

cone HCl+Aq

Sol in boiling H<sub>2</sub>SO<sub>4</sub> of 1845 sp gr, but more easily in a mixture of 12 g H<sub>2</sub>SO<sub>4</sub> and 15 g H<sub>2</sub>O, and also in weaker acids, if heated to 210° (Mitscherlich, J pr 81 108) Min Louigite Sl sol in boil-

+9H<sub>2</sub>O ing HCl+Aq (Mitscherlich, J pr 83 455) Nearly insol in HCl or conc HNO<sub>3</sub>+Aq, but sol in a mixture of 1 pt H2SO4 and 1 pt

H<sub>2</sub>O (Debray, Bull Soc (2) 7\_9)  $Al_2O(SO_4)_2$ ,  $K_2SO_4$  Sol in  $H_2O$ , but de-

comp by heating

With varying composition Precipitates Insol in HO Very sl sol in cold, gradually in hot acids (Bley, J pr 39 17) Very in hot acids difficultly sol in warm cone HCl+Aq, but easily sol in KOH+Aq (Naumann, B 8 1630)

Aluminum potassium sulphate (Potash alum),  $KAl(SO_4)_2 + 12H_2O$  or  $K_2Al_2(SO_4)_4 =$ K SO<sub>4</sub>, Al (SO<sub>4</sub>)<sub>8</sub>+24H O

Sol in HO with absorption of heat

When 100 pts HO at 108° are mixed with 14 pts alum, the temp is lowered 14 (Rudorff, B 2 68)

Burnt alum is very slowly sol in H<sub>2</sub>O

100 pt HO at to dissolve P pts K Al2(SO4)4+24HO

| 12 0 7 0 0 0 46 7                                                                  | t    | P            | t            | P              |
|------------------------------------------------------------------------------------|------|--------------|--------------|----------------|
| 21 25   10 4   62 5   230 0<br>22 0   75 0   920 0<br>3 5 0   44 1   87 5   1566 6 | 25 0 | 10 4<br>22 0 | 62 o<br>7a 0 | 230 0<br>920 0 |

#### (Brind s 1822)

Sol in 18 pt cold and 16 pts boiling HO (Four cros) in 14 12 pts cold and 0.75 pt boiling H<sub>2</sub>O (Bergin ann) in 15 pts cold and 0.75 pt boiling H<sub>2</sub>O (Duma) in 11 7 pts HO at 18 75° (Abl) 100 pt HO dissolve 14 79 pts alum at 10 56° and 13333 pts at 100 (Ures Dict)

h Al (SO<sub>4</sub>)<sub>4</sub>+Aq sat at loc (m n 10 95<sup>q</sup> pts alum in every 100 pts HO (Michel and Krif K Al (SO<sub>4</sub>)<sub>4</sub>+Aq sat in cold contains 52% alum (Fourcrot) 6.7% (Boerhave)

100 pts H<sub>2</sub>O dissolve (a) pts anhy alum, and (b) pts crystallised at to 10° 20° 30° 40 °0k 4 50 6 57 9 05 12 35 a 2 62 , 9 13 66 19 29 27 3 b 5 22 9 16 80° 90° 70° 60° 10 35 2 50 3 70 a 21 1 26 95 187 8 103 1 421 b 51 3 71 97 (Poggiale, A ch (3) 8 467)

According to Locke (Am Ch J 190 174), Poggiale's tables for NH4 and K : ms are evidently transposed, and the sove date are applied by Poggiale to NH, alt i

100 pts H<sub>2</sub>O dissolve K<sub>2</sub>Al<sub>2</sub>'SO<sub>4</sub>)<sub>4</sub>+2 I<sub>2</sub>O corresponding to pts anhy  $K_2Al_2(SO_4)_4$ 

| Temp | Pts<br>K_Al <sub>2</sub> (SO <sub>4</sub> ) <sub>4</sub> | Temp  | Pts<br>K Al <sub>2</sub> (S |
|------|----------------------------------------------------------|-------|-----------------------------|
| 0    | 3 0                                                      | 60    | 25                          |
| 5    | 3 5                                                      | 70    | 40                          |
| 10   | 4 0                                                      | 80    | 71                          |
| 15   | 5 0                                                      | 90    | 109                         |
| 20   | 5 9                                                      | 92 5  | 119                         |
| 30   | 7 9                                                      | 100   | 154                         |
| 40   | 11 7                                                     | 110   | 200                         |
| 50   | 17 0                                                     | 111 9 | 210                         |

(Mulder, Scheik Verhandel 1864 9

100 pts H<sub>2</sub>O at 17° dissolve 13 <sup>‡</sup> pts K<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+24H<sub>2</sub>O, or 7 36 pts K<sub>2</sub>Al<sub>2</sub>( (Redtenbacher, J pr 94 442)

яlу

188

ror

9.V6

99

٥

ar

Forms supersaturated solutions very  $\epsilon$ Supersat solutions are brought to cryst tion by addition of a crystal of alum isomorphous substance, as chrome or Other substances as NaCl, etc alum

no action (Thomson, Chem Soc 35 1 1 H<sub>2</sub>O dissolves 72 3 g anhydro 138 4 g hydrated salt, or 0 28 g m anhydrous salt at 25° (Locke, Am , 01 Сh J 1901, **26** 175)

> Solubility in H2() it to (g alum in 1000 g Ha() )

| $(g \text{ alum in } 1000 \text{ g } \text{ H}_2(f))$                                |                                                                                                                         |                                                                                                       |                                                                                                                      |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| t°                                                                                   | g alum                                                                                                                  | t                                                                                                     | g alu                                                                                                                |  |
| 0<br>5<br>10<br>15<br>20<br>25<br>30<br>36<br>40<br>45<br>50<br>55<br>60<br>65<br>70 | 57 0<br>76 3<br>84 9<br>103 6<br>120 3<br>131 3<br>184 9<br>204 3<br>250 0<br>290 2<br>367 8<br>457 7<br>585 4<br>708 4 | 75<br>76<br>77<br>78<br>79<br>80<br>82<br>84<br>84<br>85<br>1<br>85<br>3<br>85<br>6<br>86<br>87<br>88 | 1280<br>1412<br>1517<br>1680<br>1775<br>1950<br>2273<br>2661<br>2816<br>3166<br>3337<br>3372<br>3997<br>4825<br>6639 |  |
| /M==                                                                                 |                                                                                                                         |                                                                                                       | 35 (2)                                                                                                               |  |

(Marino, Gazz ch it 1905, 35 (2)

| Solubility | ın | $H_2O$ | at | ť° |
|------------|----|--------|----|----|
|------------|----|--------|----|----|

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |                                                                                      |                                                                                              |                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 5         3 5         6 62         0 0038           10         4 0         7 60         0 0077           15         5 0         9 59         0 0097           20         5 9         11 40         0 0114           25         7 23         14 14         0 0140           30         8 39         16 58         0 0162           40         11 70         23 83         0 0227           50         17 00         36 40         0 0329           60         24 75         57 35         0 0479           70         40 00         110 5         0 0774           80         71 0         321 3         0 01374           90         109 0         2,275 0         0 2110 | t°                                                            | (SO <sub>4</sub> ) <sub>4</sub> per                                                  | $(SO_4)_4 + 24H_2O$                                                                          | K2Al2(SO4)4                                                                                       |
| 92 5 119 0 0 0 2318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>10<br>15<br>20<br>25<br>30<br>40<br>50<br>60<br>70<br>80 | 3 5<br>4 0<br>5 0<br>5 9<br>7 23<br>8 39<br>11 70<br>17 00<br>24 75<br>40 00<br>71 0 | 6 62<br>7 60<br>9 59<br>11 40<br>14 14<br>16 58<br>23 83<br>36 40<br>57 35<br>110 5<br>321 3 | 0 0038<br>0 0077<br>0 0097<br>0 0114<br>0 0162<br>0 0227<br>0 0329<br>0 0479<br>0 0774<br>0 01374 |

(Mulder, Poggiale, Locke, Marino, Gazz ch it 1905, **35** (2) 351, and Berkeley, Proc Roy Soc 1904, **203** A, 214, calc by Seidell, Solubilities, 1st Ed)

M-pt of  $K_2Al_2(SO_4)_4+24H_2O=84.5^{\circ}$  (Tilden, Chem Soc 45 409), =92.5° (Erdmann), =91°(Locke)

Sp gr of sat K<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+Aq at 8°= 1 045 (Anthon), at 15°=1 0488 (Michel and Krafft), at 15°=1 0456 (Stolba)

Sp gr of  $K_2Al_2(SO_4)_4+Aq$  at 15° containing 5%  $K_2Al_2(SO_4)_4=1$  0477 (Kohlrausch, W Ann 1879 1)

Sp gr of  $K_2Al_2 SO_4)_4 + Aq$  at 15° a=pts  $K_2Al_2 SO_4)_4 + 24H_2O$  in 100 pts solution, b=pts  $K_2Al_2 SO_4)_4$  in 100 pts solution, c=pts  $K_2Al_2 SO_4)_4$  for 100 pts  $H_2O$ 

| а  | ь      | C      | Sp gr  |
|----|--------|--------|--------|
| 4  | 2 1792 | 2 2277 | 1 0210 |
| 8  | 4 3584 | 4 5570 | 1 0420 |
| 12 | 6 5376 | 6 9950 | 1 0641 |
| 13 | 7 083  | 7 622  | 1 0690 |

(Gerlich, Z anal 27 280)

Saturated solution boils at  $1119^{\circ}$ , and contains 2106 pts  $K_2Al_2(SO_4)_4+24H_2O$  to 100 pts  $H_2O$  (Mulder)

100 pts H<sub>2</sub>O contain 52 pts K<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>, and boils at 104 5° (Griffiths) Crust forms at 106 3°, when the solution contains 114 2 pts K<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub> to 100 pts H<sub>2</sub>O (Gerlach, Z anal **26** 426)

B-pt of  $K_2Al_2(SO_4)_4+Aq$  containing pts  $K_2Al_2'SO_4)_4$  to 100 pts  $H_2O$ 

| B pt   | Pts<br>K_Al (SO <sub>4</sub> ) <sub>4</sub> | B pt   | Pts<br>k_Al (SO <sub>4</sub> ) <sub>4</sub> |
|--------|---------------------------------------------|--------|---------------------------------------------|
| 100 5° | 17 0                                        | 104 0° | 83 9                                        |
| 101 0  | 30 2                                        | 104 5  | 90 7                                        |
| 101 5  | 41 8                                        | 105 0  | 97 6                                        |
| 102 0  | 51 6                                        | 105 5  | 103 9                                       |
| 102 5  | 60 4                                        | 106 0  | 110 5                                       |
| 103 0  | 68 7                                        | 106 5  | 116 9                                       |
| 103 5  | 76 7                                        | 106 7  | 120 55                                      |

(Gerlach, Z anal 26 435)

 $K_{\circ}Al_{\circ}(SO_{4})_{4}+Al_{2}(SO_{4})_{3}$   $K_{2}Al_{2}(SO_{4})_{4}$  is nearly insol in sat  $Al_{2}(SO_{4})_{3}$ +Aq (Crum, A 89 156)

Solubility in  $Al_2'SO_4)_3+Aq$  Solid Phase =  $K \text{ alum} + Al_2'SO_4)_3$ 

| t° | g Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> +18H <sub>2</sub> O<br>in 1000 g H O | g K SO <sub>4</sub> in<br>1000 g H <sub>2</sub> O |
|----|----------------------------------------------------------------------------------------|---------------------------------------------------|
| 0  | 234 73                                                                                 | 23 45                                             |
| 20 | 824 25                                                                                 | 30 85                                             |
| 35 | 911 02                                                                                 | 35 29                                             |
| 50 | 1,243 21                                                                               | 59 55                                             |
| 65 | 1,598 00                                                                               | 119 43                                            |
| 77 | 1,872 11                                                                               | 183 80                                            |

(Marino, Gazz ch it 1905, 35 (2) 351)

Solubility is decreased by presence of Na alum (Venable, C N 1879, 40 198)

Nearly completed pptd from sat aq

Nearly completed pptd from sat aq solution by addition or Fc or Cr alum (v Hauer, J B 1866 59)

 $K_2Al_2(SO_4)_4+MgSO_4$ 

 $\rm K_2Al_2'SO_4)_4 + Aq$  sat at 10° and then sat with MgSO<sub>4</sub> at 9°, contains for 100 pts  $\rm H_2O-$ 

|                                        | At 10 |                     | At 9 |
|----------------------------------------|-------|---------------------|------|
| Alum ( inhydrous)<br>MgSO <sub>4</sub> | 4 0   | 2 7<br>31 2<br>33 9 | 31 1 |
|                                        | ·     |                     |      |

(Mulder)

 $K_2Al_2(SO_4)_4+K_2SO_4$ 

 $K_2Al_2(SO_4)_4+Aq$  at 10°, and then sat with  $K_2SO_4$  at same temp, contains for 100 pts H O—

|                                                    | At 10 |                                                                       | At 9° |
|----------------------------------------------------|-------|-----------------------------------------------------------------------|-------|
| Alum (anhydrous)<br>K <sub>2</sub> SO <sub>4</sub> | 4 0   | $ \begin{array}{c c} 0 & 86 \\ 9 & 16 \\ \hline 10 & 20 \end{array} $ | 9 7   |

(Mulder)

Solubility in K2SO4+Aq Solid phase = K alum+K2SO4

| ť°                              | g<br>Al (5U4)2<br>+18H2U<br>m 1000 g<br>H2O       | g K.SO <sub>4</sub><br>in 1000<br>g H <sub>2</sub> O | t°                         | g<br>Al (504)3<br>+18H O<br>in 1000<br>g H <sub>2</sub> O | g K <sub>2</sub> SO <sub>4</sub><br>in 1000<br>g H <sub>2</sub> O |
|---------------------------------|---------------------------------------------------|------------------------------------------------------|----------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|
| 0<br>0 5<br>5<br>10<br>15<br>30 | 5 06<br>8 658<br>16 07<br>18 52<br>20 56<br>39 60 | 75 83<br>75 18<br>85 78<br>96 50<br>109 30<br>147 80 | 40<br>50<br>60<br>70<br>80 | 73 88<br>126 00<br>249 70<br>529 01<br>1,044 04           | 163 10<br>195 40<br>238 80<br>323 74<br>517 27                    |

(Marino, l c)

 $K_2Al_2(SO_4)_4+Na_2SO_4$ 

 $K_2Al_2(SO_4)_4 + Aq$  sat at 10°, and then sat with Na2SO at 9°, contains for 100 pts H<sub>2</sub>O--

|                                                     | At 10 |                    | At 9 |
|-----------------------------------------------------|-------|--------------------|------|
| Alum (anhydrous)<br>Na <sub>2</sub> SO <sub>4</sub> | 4 0   | 4 1<br>8 8<br>12 9 | 8 4  |

(Mulder)

Solubility of  $K_2Al(SO_4)_4+Tl_2Al_2(SO_4)_4$  in H O at 25°

| GG                                      | 1011-1                                                                                              |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------|
| G G G TLA' (8 per                       | O <sub>4</sub> ) <sub>4</sub> Solid phase Mol % Sp gr<br>K_Al (SO <sub>4</sub> ) <sub>4</sub> Sp gr |
| 69 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 99 61                                                                                               |

(Foch Z Kryst Min 1897, 28 397)

Insol in alcohol of 0 905 sp gr or less (Anthon, J pr 14 125) Insol in acetone (Naumann, B 1904,

**37** 4528) Insol in methyl acetate (Naumann, B

1909, **42** 3790) Solubility in H<sub>2</sub>O is increased by glycerine (Dunlop, Pharm J, 1910, 31 6)

Min Kalınıte +8H<sub>2</sub>O Stable in dry air (Marino, l c)  $+14H_{2}O$ Converted into ord alum in air (Marino)

Aluminum rubidium sulphate, Al<sub>2</sub>Rb<sub>2</sub>(§ ,) +24H<sub>2</sub>O

100 pts H<sub>2</sub>O dissolve 2 27 pts at very sol in hot H2O (Redtenbache pr 94 442)

Solubility in 100 pts H<sub>2</sub>O at t° (calcu for salt dried at 130°)

| t°            | Pts<br>alum          | t°             | Pts<br>alum          | t°       | I a     | <u> </u> |
|---------------|----------------------|----------------|----------------------|----------|---------|----------|
| 0<br>10<br>17 | 0 71<br>1 09<br>1 42 | 25<br>35<br>50 | 1 85<br>2 67<br>4 98 | 65<br>80 | ç<br>21 | )3<br>)0 |

(Setterberg, A 211 104)

### Solubility in H<sub>2</sub>O

| t  | Pts per litre | G mols<br>anhydrous<br>per litre | lt |
|----|---------------|----------------------------------|----|
| 25 | 18 1          | 0 059                            |    |
| 30 | 21 9          | 0 072                            |    |
| 35 | 26 6          | 0 087                            |    |
| 40 | 32 2          | 0 106                            |    |

(Locke, Am Ch J 1901, 26 180

Melts in crystal H2O at 99° (Ti en. Chem Soc 45 409), at 105° (Erdm n), at 109° (Locke)

Aluminum silver sulphate, Al<sub>2</sub>Ag<sub>2</sub>(SC <sub>4</sub>+ 24H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Church and N th cote, C N 9 155)

Aluminum sodium sulphate, Al<sub>2</sub>Na<sub>2</sub>(SC <sub>4</sub>+ 24H<sub>2</sub>O

Very sl efflorescent

Sol in 2 14 pts II O at 13 or 100 pts H O d 46 7 pts solvalum Sol in 1 pt bolin, II O (7 Schw J 36 183)
100 pts H<sub>2</sub>() dissolve 110 pts at 1 > and f m 4 haud of 1 296 sp gr (Ur)

 $100~pts~H_2O~dissolve~51~pts~soda~ali~~1 at <math display="inline">16^\circ$  (Augé, C R 110~1139)  $100~pts~H_2O~dissolve~110~pts~soda~um$ at 0° (Tilden, Chem Soc 45 409)

100 g H<sub>2</sub>O dissolve at 10° 15° 20° 25° 30°

36 7 38 7 40 9 43 145 8 g anhydrous alt (Smith, J Am Chem Soc 1909, 31 47) M-pt of  $Na_2Al_2(SO_4)_4+24H_2O=0$ 

(Tilden, Chem Soc 45 409), =63° (I Am Ch J 1901, 26 183 Insol in absolute alcohol (Zellner

Min Mendozite

# Aluminum thallous sulphate, TlAl(SO<sub>4</sub>)<sub>2</sub>

0 177 g mols of anyhydrous salt are sol m 1 l  $\rm H_2O$  at 25°, or 1 l  $\rm H_2O$  dissolves 75 g of the anhydrous, or 117 8 g of the hydrated salt at 25° (Locke, Am Ch J 1901, 26 175)

### Solubility in H<sub>2</sub>O at t°

| t  | G Al <sub>2</sub> Tl <sub>2</sub> (SO <sub>4</sub> ) <sub>4</sub><br>in 100 g H <sub>2</sub> O | G Al <sub>2</sub> Tl (SO <sub>4</sub> ) <sub>4</sub><br>+24H O<br>in 100 g H <sub>2</sub> O |
|----|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 0  | 3 15                                                                                           | 4 84                                                                                        |
| 5  | 3 80                                                                                           | 5 86                                                                                        |
| 10 | 4 60                                                                                           | 7 12                                                                                        |
| 20 | 6 40                                                                                           | 10 00                                                                                       |
| 25 | 7 60                                                                                           | 11 95                                                                                       |
| 30 | 9 38                                                                                           | 14 89                                                                                       |
| 40 | 14 40                                                                                          | 23 57                                                                                       |
| 50 | 22 50                                                                                          | 38 41                                                                                       |
| 60 | 35 36                                                                                          | 65 19                                                                                       |

(Seidell, Solubilities, 1st Ed, p 15)

 $3Al_2(SO_4)_3$ ,  $Tl_2SO_4+96H_2O$  Sol in  $H_2O$  (Lamy)

Aluminum zinc sulphate, Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, ZnSO<sub>4</sub>+ 24H<sub>2</sub>O Sol in H<sub>2</sub>O (Kane)

Aluminum sulphate chromium chloride, Al(OH<sub>2</sub>)<sub>6</sub>(SO<sub>4</sub>)<sub>2</sub>CrCl<sub>2</sub>(OH<sub>2</sub>)<sub>4</sub>+2H<sub>2</sub>O (Werner, B 1906, **39** 337)

Aluminum sulphate sodium fluoride

Decomp by H<sub>2</sub>O (Weber, Dingl 263
112)

## Ammonium sulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>

(Michel and Krafft)

Sol in H<sub>2</sub>O with absorption of heat 75 pts (NH<sub>4</sub>) SO<sub>4</sub> mixed with 100 pts H<sub>2</sub>O lower the temperature from 13 2° to 68°, that is, 64° (Rudorff, B 2 68)

Sol in 1 31 pts  $H_1O$  at 19 (Schiff A 109 326) Sol in 2 pts  $H_1O$  at 18 7. (Abl.) Sol in 2 pts  $H_2O$  at 18 7. (Abl.) (Abl.) (Foureroy) 100 pts H O at 62 6 dissolve 78 pts  $(NH_1)_2SO_4$  (Wenzel) 100 pts  $H_2O$  at 15° dissolve 66 739 pts  $(NH_1)_2SO_4$ 

Sol in 13 pts cold H<sub>2</sub>O (Vogel, N Rep Pharm 10 9)

Sol in 1 37 pts cold H<sub>2</sub>O at 10° (Mulder, J B **1866** 67)
Sol in 1 34 pts H<sub>2</sub>O at 16-17° (v Hauer, W A B **53**, **2** 221)

100 pts H<sub>2</sub>O dissolve at

٥٥ 10° 20°  $30^{\circ}$ 71 00 73 65 76 30 78 95 pts (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 40° 50° 60° 70° 81 60 84 25 86 90 89 55 pts (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 80° 90° 100° 92 20 94 85 97 50 pts (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>

(Alluard, C R 59 500)

Solubility in 100 pts H<sub>2</sub>O at t°

| t°                                                                                                                                                                                                                                                               | Pts<br>(NH4)2SO4                                                                                                    | t°                                                                                                                                                 | Pts<br>(NH4)2SO4                                                                                                                                              | t°                                                                                                                                                                                                                     | Pts<br>(NH1) <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>14<br>15<br>16<br>17<br>18<br>18<br>20<br>21<br>22<br>22<br>24<br>25<br>26<br>26<br>27<br>28<br>29<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | 70 6<br>70 9<br>71 1 6<br>71 71 8<br>71 72 3 5<br>72 72 8<br>73 73 73 74 4 2 74 74 74 74 74 74 74 74 74 74 74 74 74 | 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>51<br>55<br>55<br>55<br>66<br>67<br>68<br>69<br>70<br>77<br>72<br>73 | 80 1<br>80 4<br>80 7 0<br>81 3<br>81 7 0<br>82 3 7 0<br>82 3 7 0<br>83 3 3 7 0<br>84 4 7 1 5<br>85 86 6 9 3<br>87 7 7 0 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 74<br>75<br>76<br>77<br>78<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>9 | 93 1<br>93 4<br>93 8<br>94 2<br>94 9<br>95 3<br>96 6<br>96 8<br>97 2<br>97 6<br>98 8<br>99 2<br>97 6<br>98 8<br>99 2<br>100 0<br>100 4<br>100 8<br>101 6<br>102 1<br>102 5<br>102 9<br>103 3<br>103 8<br>104 2<br>105 1<br>106 5<br>107 5 |  |

(Mulder, calculated from his own and other observations, Scheik Verhandel 1864 60)

100 g (NH<sub>4</sub>)  ${}_{9}\text{SO}_{4}$  +Aq contain 41 4 g (NH<sub>4</sub>)  ${}_{2}\text{SO}_{4}$  at 0° (de Waal, Dissert 1910), 44 27 g at 30° (Schreinemakers, Z phys Ch 71 110), 47 81 g at 70° (de Waal) (NH<sub>4</sub>)  ${}_{2}\text{SO}_{4}$  +Aq sat at 15° has sp gr 1 248 (Michel and Krafft, A ch (3) 41 471)

|                                                                                           | Sp gr of (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> +Aq at 15°                                                                                                    |                                                                                                    |                                                                                                                                                                                  |                                                                                              |                                                                                                                                                              |  |  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| % (NH4) \$804                                                                             | Sp gr                                                                                                                                                                  | % (NH1) %                                                                                          | Sp gr                                                                                                                                                                            | % (NH4)2SO4                                                                                  | Sp gr                                                                                                                                                        |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 1 0057<br>1 0115<br>1 0172<br>1 0230<br>1 0287<br>1 0345<br>1 0403<br>1 0460<br>1 0518<br>1 0575<br>1 0632<br>1 0690<br>1 0747<br>1 0805<br>1 0862<br>1 0920<br>1 0977 | 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34 | 1 1035<br>1 1092<br>1 1149<br>1 1207<br>1 1265<br>1 1323<br>1 1381<br>1 1439<br>1 1496<br>1 1554<br>1 1612<br>1 1670<br>1 1724<br>1 1724<br>1 1780<br>1 1836<br>1 1892<br>1 1948 | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50 | 1 2004<br>1 2060<br>1 2116<br>1 2172<br>1 2228<br>1 2284<br>1 2343<br>1 2402<br>1 2462<br>1 2522<br>1 2583<br>1 2644<br>1 2705<br>1 2706<br>1 2828<br>1 2828 |  |  |

(Schiff, calculated by Gerlach, Z anal 8 280)

| -Sp | gr | 01 (1 | N 1114) 2 | 504 T A | rd ar      | 19 |
|-----|----|-------|-----------|---------|------------|----|
|     |    |       | 5         |         | <b>7</b> 0 |    |

of (NTET ) CO | A -- -4 150

| % (NII4)25O4 | Sp gr            | % (NH4)25O4 | Sp gr            | % (NH4) <sub>2</sub> SO <sub>4</sub> | Sp gr  |
|--------------|------------------|-------------|------------------|--------------------------------------|--------|
| 5<br>10      | 1 0292<br>1 0581 | 20<br>30    | 1 1160<br>1 1730 | 31                                   | 1 1787 |

(Kohlrausch, W Ann 1879 1)

Sp gr of  $(NH_4)_2SO_4 + Aq$  at 15°

| , (NII4)25O4 | ∖p gr  | % (NH4)2SO4 | Sp gr  | % (NH4)25O4 | Sp gr  |
|--------------|--------|-------------|--------|-------------|--------|
| 3            | 1 0181 | 10          | 1 0600 | 30          | 1 1773 |
| 6            | 1 0359 | 20          | 1 1190 | 40          | 1 2352 |

(Gerlach, Z anal 28 493)

Sp gr of sat solution = 1 248 (Ger lach)

| Sp | gr | of | $(NH_4)_2SO_4+Aq$ |
|----|----|----|-------------------|
|----|----|----|-------------------|

| (-··                                                                                  |                                                                                                          |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ½(NH4)2SO4 g mol<br>in 1000 g of solution                                             | Sp gr 16°/16°                                                                                            |
| 0<br>0 5514<br>1 1251<br>2 3114<br>4 5840<br>10 0893<br>20 0138<br>40 5236<br>56 8536 | 1 000000<br>1 000347<br>1 000704<br>1 001436<br>1 002823<br>1 006093<br>1 012023<br>1 024117<br>1 033690 |

(Dijken, Z phys Ch 1897, 24 107

Sp gr of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq at 20°

| - Y - G -                                                        |                                           |                                        |
|------------------------------------------------------------------|-------------------------------------------|----------------------------------------|
| Normality of (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> +Aq | % (NH4)2SO4                               | Sp gı                                  |
| 3 75<br>2 964<br>1 978<br>0 876<br>0 492                         | 40 28<br>32 99<br>23 01<br>10 88<br>6 275 | 1 228<br>1 184<br>1 13<br>1 06<br>1 03 |

(Forchheimer, Z phys Ch 1900, 34

Sp gr of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq at 20°

| Solution | Sp gr                                     | weight of 10 ccm<br>of the solution              | (NI                | 2SO4                   |
|----------|-------------------------------------------|--------------------------------------------------|--------------------|------------------------|
| sat 3/4  | 1 248<br>1 196<br>1 139<br>1 077<br>1 039 | 12 5062 g<br>11 9034 "<br>11 3377 "<br>10 7232 " | 5<br>30<br>20<br>1 | 2<br>9<br>6<br>3<br>65 |
| /777     | 77 1                                      | O1 1011 F                                        |                    |                        |

(Wiener, Z phys Chem 1911, 71 1

B-pt of sat solution crust form 1 at  $106~2^{\circ}$  solution containing 88 2 pts  $(NH_4)_2SO_4$  to 100 pts  $H\cdot O$  , highest mp observed, 108 2° (Gerlach, Z anal 26 [26)

B-pt of  $(NH_4)_2SO_4+Aq$  containing p  $(NH_4)_2SO_4$  to 100 pts  $H_2O$ 

| (2122/2004 to 100 btb 2220 |                                                                                |                                                                     |                                                                       |                                                 |    |
|----------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|----|
|                            | B pt                                                                           | Pts<br>(NH <sub>4</sub> ) <sub>2</sub> S() <sub>4</sub>             | B pt                                                                  | Pt<br>(NH4)                                     | 0, |
|                            | 100 5°<br>101 0<br>101 5<br>102 0<br>102 5<br>103 0<br>103 5<br>104 0<br>104 5 | 7 8<br>15 4<br>22 8<br>30 1<br>37 2<br>44 2<br>51 1<br>58 0<br>64 9 | 105 0°<br>105 5<br>106 0<br>106 5<br>107 0<br>107 5<br>108 0<br>108 2 | 71<br>78<br>85<br>92<br>99<br>105<br>112<br>115 | }  |
| - 1                        |                                                                                |                                                                     |                                                                       |                                                 |    |

(Gerlach, Z anal 26 431)

Sol with decomp in HCl+Aq

| Solubility in H <sub>2</sub> SO <sub>4</sub> +Aq at 25°              |                                                                      |                                                                  |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|--|
| 100 g of t                                                           | he solution<br>tain                                                  | Solid phase                                                      |  |
| Mol<br>H <sub>2</sub> SO <sub>4</sub>                                | Mol<br>(NH4)2SO4                                                     | Sould phase                                                      |  |
| 0 00<br>0 24<br>0 47<br>0 97<br>1 19                                 | 2 28<br>3 25<br>3 19<br>3 15<br>3 15                                 | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                  |  |
| 1 43<br>1 72<br>2 20<br>2 60<br>2 71<br>2 82<br>2 96<br>3 20<br>3 32 | 3 22<br>3 18<br>3 02<br>2 97<br>3 00<br>3 03<br>3 10<br>3 19<br>3 25 | (NH <sub>4</sub> ) <sub>8</sub> H(SO <sub>4</sub> ) <sub>2</sub> |  |
| 3 47<br>3 54<br>3 76<br>4 22<br>5 09                                 | 3 32<br>3 20<br>2 84<br>2 26<br>1 44                                 | (NH <sub>4</sub> )HSO <sub>4</sub>                               |  |

(D'Ans, Z anorg 1909, 65 229)

## Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 30°

|                                              | ition of the       |                                                           |                                                                    |
|----------------------------------------------|--------------------|-----------------------------------------------------------|--------------------------------------------------------------------|
| %<br>by wt<br>H <sub>2</sub> SO <sub>4</sub> | by wt<br>(NH4) SO4 | by wt<br>H <sub>2</sub> O                                 | Solid phase                                                        |
| 10 63                                        | 43 59              | 45 79                                                     | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                    |
| 10 70                                        | 43 25              | 46 05                                                     | (NH <sub>4</sub> ) SO <sub>4</sub> +                               |
| 13 18                                        | 44 10              | 42 72                                                     | 3(NH <sub>4</sub> ) SO <sub>4</sub> H S ).                         |
| 16 67                                        | 42 06              | 41 27                                                     | 3(NH <sub>4</sub> ) SO <sub>4</sub> H <sub>2</sub> SO <sub>4</sub> |
| 25 82                                        | 41 15              | 33 03                                                     |                                                                    |
| 27 33                                        | 41 16              | 31 51                                                     |                                                                    |
| 32 32                                        | 44 63              | 22 26                                                     |                                                                    |
| 33 12                                        | 45 50              | 21 83                                                     |                                                                    |
| 33 84                                        | 45 52              | 20 64                                                     | (NH4)HS()4                                                         |
| 33 96                                        | 45 31              | 20 73                                                     |                                                                    |
| 38 51                                        | 35 37              | 26 12                                                     |                                                                    |
| 42 12                                        | 30 10              | 27 78                                                     |                                                                    |
| 45 80                                        | 24 88              | 29 32                                                     |                                                                    |
| 45 77                                        | 24 30              | 29 93                                                     |                                                                    |
| 56 55                                        | 16 98              | 26 37                                                     |                                                                    |
| 62 43                                        | 20 41              | 17 16                                                     |                                                                    |
| 62 46                                        | 24 40              | 13 14                                                     |                                                                    |
| 63 12                                        | 24 20              | 12 68                                                     |                                                                    |
| 62 57                                        | 27 67              | 9 76                                                      |                                                                    |
| 62 83                                        | 29 75              | 8 42                                                      |                                                                    |
| 62 56                                        | 30 26              | 7 28                                                      |                                                                    |
| 62 67                                        | 31 86              | 5 47                                                      |                                                                    |
| 62 59                                        | 33 70              | 3 71                                                      |                                                                    |
| 61 63                                        | 36 75              | 1 72                                                      |                                                                    |
| 02 23                                        | 36 95              | $egin{array}{c c} 1 & 72 \\ 0 & 82 \\ \hline \end{array}$ |                                                                    |

(Van Dorp, Z phys Ch 1910, 73 285)

| Solubility | of | $(NH_4)_2SO_4$ in $H_2SO_4+Aq$ at 25° |
|------------|----|---------------------------------------|
|            |    |                                       |

|   | Solubit                              | 103 OT (14T                          | 14/25U4 III II 25U4 + AQ at 25                      |  |
|---|--------------------------------------|--------------------------------------|-----------------------------------------------------|--|
| • |                                      | 0 g of the<br>lution                 | 2111                                                |  |
|   | Mol<br>SO <sub>3</sub>               | Mol<br>(NH4)2SO4                     | Solid phase                                         |  |
| - | 4 29<br>4 57<br>4 85<br>5 25<br>5 66 | 2 17<br>1 83<br>1 60<br>1 36<br>1 22 | (NH4)HSO4                                           |  |
| - | 6 16<br>6 47<br>6 51<br>6 50         | 1 26<br>1 55<br>1 95<br>2 37         | (NH₄)HSO₄                                           |  |
|   | 6 43<br>7 28                         | 2 50<br>1 64                         | $(NH_4)HSO_4+(NH_4)H_8(SO_4)$                       |  |
|   | 7 99<br>(7 60)<br>(8 00)             | 1 38<br>(1 74)<br>(1 42)             | $(\mathrm{NH_4})\mathrm{H_8}(\mathrm{SO_4})_2$      |  |
| - | 9 02<br>9 21<br>9 60<br>9 68         | 0 96<br>0 832<br>0 977               | $(\mathrm{NH_4})\mathrm{HS_2O_7}$                   |  |
|   | 9 67<br>10 43                        | 1 00<br>1 26<br>0 894                | (NH <sub>4</sub> )HS <sub>2</sub> O <sub>7</sub> +? |  |

(D'Ans, Z anorg 1913, 80 241)

Very easily sol, even in conc NH4OH+ Aq (Girard, Bull Soc (2)  ${\bf 43}$  522)

## Solubility of (NH4) SO4 in NH4OH+Aq at 25°

| In 1000 g of the solution                    |                                                   |  |  |  |
|----------------------------------------------|---------------------------------------------------|--|--|--|
| Mol (NH4) 8O4                                | Mol (NH <sub>3</sub> )                            |  |  |  |
| 3 28<br>2 60<br>2 13<br>1 59<br>1 16<br>0 78 | 0<br>1 02<br>1 95<br>3 44<br>5 35<br>7 13<br>9 47 |  |  |  |
|                                              | 2020 05 133                                       |  |  |  |

(D'Ans and Schreiner Z anoig 1910, 67 438)

100 pts H O dissolve 46.5 pts (NH4) SO4 and 26.8 pts NH4Cl at 21.5°

Solubility of (NH<sub>4</sub>) SO<sub>4</sub> in NH<sub>4</sub>Cl+Aq at 30°

| NH₄Cl                                             | (\H <sub>4</sub> ) 804                                | Solid phase                                            |  |  |
|---------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--|--|
| 0                                                 | 44<br>36 15                                           | (NH <sub>4</sub> ) S() <sub>4</sub>                    |  |  |
| 6 86<br>14 62                                     | 28 6                                                  | (NII) (O INII O                                        |  |  |
| 17 60<br>17 93                                    | 25 69<br>25 81                                        | (NH <sub>4</sub> ) SO <sub>4</sub> +NH <sub>4</sub> Cl |  |  |
| 19 07<br>19 97                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | NH₄Cl                                                  |  |  |
| $\begin{array}{cc} 22 & 3 \\ 24 & 06 \end{array}$ | 16 33<br>12 72                                        | "                                                      |  |  |
| 29 5                                              | 0                                                     |                                                        |  |  |
| (Schreiner                                        | nakers Arc                                            | h Néer Sc 1910. (2) <b>15</b>                          |  |  |

(Schreinemakers, Arch Néer Sc 1910, (2) 1

tr Či

See also under NH<sub>4</sub>Cl

| 928                                                                                                                                                                  |                                  | 201                                                                                                                                                                                | PHAIR,                               | AMMON                              | TOM                                             |                                                                                                                                                               |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| (NH <sub>4</sub> ) SO <sub>4</sub> +CuSO <sub>4</sub><br>Solubility of (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> +CuSO <sub>4</sub> in H <sub>2</sub> O at 16° |                                  | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> +L <sub>12</sub> SO <sub>4</sub><br>Solubility of (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> +L <sub>12</sub> SO <sub>4</sub> |                                      |                                    | _                                               |                                                                                                                                                               |                  |
|                                                                                                                                                                      |                                  |                                                                                                                                                                                    | r                                    | Temp =30°                          | _                                               |                                                                                                                                                               |                  |
|                                                                                                                                                                      | Solu                             | tion                                                                                                                                                                               | CuSO,<br>(NH4):SO,                   | (NH <sub>4</sub> ) <sub>2</sub> SO | 1 L <sub>12</sub> SO <sub>4</sub>               | Solid phase                                                                                                                                                   | _                |
|                                                                                                                                                                      |                                  |                                                                                                                                                                                    |                                      | 44 1<br>40 8                       | 0 3                                             | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                                                                                                               | _                |
| Both sal<br>15 cc sa<br>15 cc sa                                                                                                                                     | t sol +                          |                                                                                                                                                                                    | 8 55 7 12<br>1 77 18 16<br>5 85 5 65 | 39 5<br>30<br>21 6                 | 6 6<br>10<br>15                                 | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> +NH <sub>4</sub> L <sub>1</sub><br>NH <sub>4</sub> L <sub>1</sub> SO <sub>4</sub> ""                          | O <sub>4</sub>   |
|                                                                                                                                                                      | (Ru                              | dorff, B <b>6</b> 482)                                                                                                                                                             |                                      | 15<br>12 5<br>8 9<br>0             | 20<br>21 9<br>23<br>25 1                        | NH <sub>4</sub> L <sub>1</sub> SO <sub>4</sub> +L <sub>1</sub> <sub>2</sub> SO <sub>4</sub><br>L <sub>1</sub> <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O | I <sub>2</sub> ( |
| <del></del> -                                                                                                                                                        |                                  | 30°                                                                                                                                                                                |                                      |                                    | 2                                               | Temp = 50                                                                                                                                                     | _                |
| (NH4)2504                                                                                                                                                            | cuso.                            | Solid phase                                                                                                                                                                        | e                                    | 45 7<br>43 05<br>19 65<br>13 90    | 1<br>5 86<br>16 35<br>21 20                     | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub><br>(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> +NH <sub>4</sub> L<br>NH <sub>4</sub> LiSO <sub>4</sub>    | 0,               |
| $\begin{array}{c} 0 \\ 2 \ 45 \\ 5 \ 79 \end{array}$                                                                                                                 | 20 32<br>20 19<br>20 53          | CuSO <sub>4</sub> 5H O +CuSO <sub>4</sub>                                                                                                                                          |                                      | 13 97<br>11 45<br>9 63             | 21 23<br>21 75<br>22 79<br>23 09                | NH <sub>4</sub> L <sub>1</sub> SO <sub>4</sub> +L <sub>1</sub> <sub>2</sub> SO <sub>4</sub><br>L <sub>1</sub> <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O | H <sub>2</sub> ( |
| 6 98                                                                                                                                                                 | 16 77                            | 6H O<br>CuSO4 (NH4) S                                                                                                                                                              | O46H O                               | 8 58<br>7 56                       | 23 86                                           | "                                                                                                                                                             |                  |
| 8 19<br>9 33<br>17 53<br>29 27                                                                                                                                       | 13 65<br>11 03<br>4 05<br>1 57   |                                                                                                                                                                                    |                                      | - (Schr                            |                                                 | rs and Cocheret, Che 1905, <b>2</b> 771)                                                                                                                      |                  |
| 38 52<br>43 29                                                                                                                                                       | 0 77<br>0 49                     | CuSO <sub>4</sub> (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> 6H<br>(NH <sub>4</sub> ) SO <sub>4</sub>                                                                         |                                      |                                    |                                                 | nSO <sub>4</sub><br>H <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> +MnSO <sub>4</sub> in ]<br>00 g sat solution                                                | 0                |
| 44 0 (NH <sub>4</sub> ) SO <sub>4</sub>                                                                                                                              |                                  |                                                                                                                                                                                    | 7                                    | Γemp =30°                          | _                                               |                                                                                                                                                               |                  |
| (Schrein                                                                                                                                                             | emakers                          | s, Arch Néer Sc<br>12)                                                                                                                                                             | 1910, <b>15</b>                      | MnSO <sub>4</sub>                  | (NH <sub>4</sub> ) <sub>2</sub> 5O <sub>4</sub> | Solid phase                                                                                                                                                   | _                |
| See al                                                                                                                                                               | so under                         | CuSO <sub>4</sub>                                                                                                                                                                  |                                      | 39 3                               | 0                                               | MnSO <sub>4</sub> , 5H <sub>2</sub> O                                                                                                                         |                  |
|                                                                                                                                                                      | )•SO <sub>4</sub> +1<br>ty of (1 | NH <sub>4</sub> ) SO <sub>4</sub> +FeSO <sub>4</sub>                                                                                                                               | ın H <sub>2</sub> O+                 | 38 49                              | 3 64<br>4 91                                    | MnSO <sub>4</sub> , 5H <sub>2</sub> O+MnS<br>(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , 6H <sub>2</sub> O                                              | 4,               |
| Compo                                                                                                                                                                | aton of th                       | Aq at 30°                                                                                                                                                                          |                                      | 22 06<br>9 02                      | 9 65<br>20 36                                   | "                                                                                                                                                             |                  |
|                                                                                                                                                                      | ution by w                       | Solid pha                                                                                                                                                                          | use                                  | 2 91<br>1 75                       | 37 42                                           | MnSO <sub>4</sub> , (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> ,                                                                                         | I <sub>2</sub> O |
| FeSO <sub>4</sub> 24 90                                                                                                                                              | (NH <sub>4</sub> ) So            |                                                                                                                                                                                    | 7H O                                 | 1 77<br>0                          | 43 24<br>43 4                                   | $+({ m NH_4})_2{ m SO_4} \ ({ m NH_4})_2{ m SO_4}$                                                                                                            |                  |
| 25 24<br>25 22                                                                                                                                                       | > 24                             |                                                                                                                                                                                    |                                      |                                    | <u> </u>                                        | Γ(mp =50°                                                                                                                                                     |                  |
| 25 26<br>25 26<br>23 59                                                                                                                                              | 7 90<br>7 89<br>6 44             | ΓεδΟ <sub>4</sub> (NH <sub>4</sub> ) St                                                                                                                                            |                                      | 36 26<br>35 35                     | 0<br>2 95                                       | MnSO <sub>4</sub> , H <sub>2</sub> O<br>MnSO <sub>4</sub> , H <sub>2</sub> O +2MnS                                                                            | )4,              |
| 17 64<br>lo lo                                                                                                                                                       | 8 90<br>11 45                    | (1(224)                                                                                                                                                                            | SO <sub>4</sub> bH O                 | 30 57<br>16 86                     | 5 14<br>17 62                                   | $(NH_4)_2SO_4$<br>$2MnSO_4$ , $(NH_4)$                                                                                                                        | 04               |
| 7 95<br>5 70                                                                                                                                                         | 16 29<br>19 64                   |                                                                                                                                                                                    |                                      | 6 92<br>6 29                       | 35 98<br>39 71                                  | 66<br>66                                                                                                                                                      |                  |
| $\begin{array}{c} 1 & 72 \\ 0 & 79 \end{array}$                                                                                                                      | 34 24<br>43 86                   | FeSO <sub>4</sub> (NH <sub>4</sub> ) <sub>2</sub> SJ <sub>4</sub>                                                                                                                  | 6H <sub>2</sub> O+                   | 5 70                               | 43 24                                           | $2 MnSO_4$ , $(NH_4)_2 S$<br>$(NH_4)_2 SO_4$                                                                                                                  | <u>+</u>         |
| $\begin{smallmatrix}0&79\\0&\end{smallmatrix}$                                                                                                                       | 43 90<br>44 27                   |                                                                                                                                                                                    | •SO₄                                 | 3 49<br>0                          | 44 02 45 7                                      | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                                                                                                               |                  |
| (Schrein                                                                                                                                                             | emaker                           | o, Z phys Ch 1910                                                                                                                                                                  | 0, 71 111)                           | (Senrein                           | emakers,                                        | Chem Weekbl 10                                                                                                                                                | 9, €             |

(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+K<sub>2</sub>SO<sub>4</sub> 100 pts (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+K<sub>2</sub>SO<sub>4</sub>+Aq sat at ,17° contain 38 41 pts of the two salts, which 5 45 pts are K<sub>2</sub>SO<sub>4</sub>, and 32 96 pts VH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (v Hauer, J pr 28 137) 100 pts H<sub>2</sub>O dissolve 50 6 pts (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> of 7 2 pts K<sub>2</sub>SO<sub>4</sub> at 11° (Mulder, J B 166 67) (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> and K<sub>2</sub>SO<sub>4</sub> replace each other in lution, so that by adding one of these lts to a seemingly saturated solution of the her, it is dissolved with pptn of the other lt (Rudorff, B 6 485)

### Solubility of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+K<sub>2</sub>SO<sub>4</sub> at 19 1°

| Solution                                                                                | %<br>K <sub>2</sub> SO <sub>4</sub> |    | (NH4)2SO4 |    |
|-----------------------------------------------------------------------------------------|-------------------------------------|----|-----------|----|
| th salts in excess cc sat sol $+4$ g $\rm K_2SO_4$ cc sat sol $+4$ g $\rm (NH_4)_2SO_4$ | 39                                  | 3  | 37        | 97 |
|                                                                                         | 4                                   | 94 | 33        | 26 |
|                                                                                         | 2                                   | 05 | 40        | 80 |

(Rudorff, B 6 482)

ubility of  $(NH_4)_2SO_4 + K_2SO_4$  in  $H_2O$  at  $25^{\circ}$ 

| K-SO <sub>4</sub> | g (NH <sub>4</sub> 1 <sub>2</sub> SO <sub>1</sub> | g K <sub>2</sub> SO <sub>4</sub> | g (NH <sub>4</sub> ) SO <sub>4</sub> |
|-------------------|---------------------------------------------------|----------------------------------|--------------------------------------|
| per l             | prl                                               | prl                              | per l                                |
| 127 9             | 0 0                                               | 59 28                            | 355 0                                |
| 135 7             | 115 7                                             | 40 27                            | 482 7                                |
| 84 2              | 281 1                                             | 0 0                              | 542 3                                |

lesults are also given for 14°, 15°, 16°, 30°, and 47° (Fock, Z. Kryst. Min. 1897, 28, 365.)

VH<sub>4</sub>)·SO<sub>4</sub>+1h( $^{\circ}$ O<sub>4</sub>)<sub>2</sub> olubility of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+1h(SO<sub>4</sub>)<sub>2</sub> at 16° Pts per 100 pts H O

| )                                |  |  |  |  |
|----------------------------------|--|--|--|--|
|                                  |  |  |  |  |
|                                  |  |  |  |  |
| SO <sub>4</sub> ) <sub>2</sub> , |  |  |  |  |
| -, -,                            |  |  |  |  |
| 4H <sub>2</sub> O                |  |  |  |  |
| $)_2SO_4$                        |  |  |  |  |
| ,2.00                            |  |  |  |  |
| ₄ 2H <sub>2</sub> O              |  |  |  |  |
| 4 21120                          |  |  |  |  |
| ₄ 3H <sub>2</sub> O              |  |  |  |  |
|                                  |  |  |  |  |

(Barre, A ch 1911, (8) **24** 239)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch 1898, 20 826)

Insol in absolute alcohol Sol in 500 pts alcohol of 0 872 sp gr, and in 62 5 pts of 0 905 sp gr (Anthon, J pr 14 125)

Sol in 2174 pts of 66 8% alcohol (sp gr = 0 88) at 24 3° (Pohl, J pr 56 219)

Tolerably sol in alcohol, the sp gr of which is greater than 0 860 Insol in alcohol of sp gr less than 0 850

# Solubility in dil alcohol

When (NH<sub>4</sub>) SO<sub>4</sub> is dissolved in dil alcohol, two layers are formed, the compositions of which are as follows

| ~                                              | 100 0                           | Lower layer                               | 1 g                                       |
|------------------------------------------------|---------------------------------|-------------------------------------------|-------------------------------------------|
| Sp gr                                          | alcohol                         | water                                     | salt                                      |
| 1 2240<br>1 1775<br>1 1661<br>1 1655<br>1 1735 | 8 85<br>10 62<br>11 29<br>11 42 | 71 43<br>68 26<br>67 70<br>67 34<br>66 54 | 74 16<br>59 54<br>56 56<br>56 30<br>59 20 |

| Sp gr                                                              | 10                                                          | Upper layer<br>0 ccm contain                               | ing                                                  |
|--------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|
|                                                                    | alcohol                                                     | water                                                      | salt                                                 |
| 0 9530<br>0 9512<br>0 9440<br>0 9098<br>0 8750<br>0 8549<br>0 8308 | 41 37<br>44 20<br>44 27<br>52 64<br>62 61<br>67 04<br>77 55 | 48 47<br>45 95<br>45 61<br>36 78<br>24 60<br>18 36<br>5 53 | 5 45<br>4 97<br>4 51<br>1 56<br>0 30<br>0 09<br>0 00 |

(Bodlander Z phys Ch 7 3 8)

# Solubility in ethyl alcohol + Aq

| l emp | F H O | g alcohol | g salt |
|-------|-------|-----------|--------|
| 16 6° | 52 80 | 40 21     | 6 99   |
| 33 0° | 47 99 | 46 75     | 5 26   |
| 41 8° | 47 34 | 47 67     | 4 99   |
| 55 7° | 45 90 | 49 47     | 4 63   |

| 33 0°     61 02     9 80     29 18       41 8°     61 16     9 74     29 10       55 7°     61 59     9 46     28 95 |  | 61 16 | 9 74 | 29 10 |
|----------------------------------------------------------------------------------------------------------------------|--|-------|------|-------|
|----------------------------------------------------------------------------------------------------------------------|--|-------|------|-------|

(Traube, Z phys Ch 1887, 1 509)

6 257)

Solubility of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> in alcohol at 30° Two liquid layers are formed between alcohol concentrations of 5 8 and 62°

# Composition of layers

| Combograron at 1-2              |                                    |                                  |                                    |                                 |                                  |
|---------------------------------|------------------------------------|----------------------------------|------------------------------------|---------------------------------|----------------------------------|
| Upper layer                     |                                    |                                  | Lo                                 | wer lave                        | r                                |
| (NH4)                           | grohol                             | OzH                              | (NH4)2504                          | 2/6 alt ohol                    | %<br>H <sub>2</sub> O            |
| 2 2<br>2 6<br>3 4<br>13 2<br>17 | 56 6<br>54 5<br>52 3<br>31 8<br>25 | 41 2<br>42 9<br>44 3<br>55<br>58 | 37 1<br>35 7<br>33 8<br>21 7<br>17 | 5 8<br>6 3<br>7 4<br>18 4<br>25 | 57 1<br>58<br>58 8<br>59 9<br>58 |
|                                 |                                    |                                  | 2 2007                             | alaah                           | al the                           |

At concentration of 62% alcohol, the liquid is homogeneous and contains 13% (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>

(Wibaut, Chem Weekbl 1909, 6 401)

# Solubility of (NH<sub>4</sub>) SO<sub>4</sub> in alcohol at 60°

| % (NH4) SO4                                    | c alcohol    | ℃ H O         |
|------------------------------------------------|--------------|---------------|
| 43 02<br>41 1                                  | 2 32<br>4 1  | 54 66<br>54 8 |
| $\begin{smallmatrix}1&2\\0&2\end{smallmatrix}$ | 64 5<br>75 5 | 34 3<br>24 3  |

Between 41° and 645°, two liquid layers are formed

# Composition of layers

| O                              |                                |                                      |                                      |                           |                                      |
|--------------------------------|--------------------------------|--------------------------------------|--------------------------------------|---------------------------|--------------------------------------|
| Upper laver                    |                                |                                      | I                                    | ower lave                 | r                                    |
| (NH o SO                       | ւ 1 ′′ ես                      | 0711                                 | , (NH4) SO                           | 2, set obe 1              | о'н                                  |
| 1 2<br>1 6<br>3 8<br>7 4<br>10 | 64 5<br>60<br>50<br>40<br>34 4 | 34 3<br>38 4<br>46 2<br>52 6<br>55 6 | 41 1<br>36 8<br>30 8<br>26 6<br>23 6 | 4 1<br>6<br>9<br>12<br>15 | 54 8<br>57 2<br>60 2<br>61 4<br>61 4 |

(Schreinemakers, Z phys Ch 1907, 59 641)

# Solubility in alcohol + Aq at 0°

| Co (NH4) 504 | % akohol  | 97 H O        |
|--------------|-----------|---------------|
| 41 4<br>50 0 | 0<br>9 41 | 58 6<br>60 59 |
| 0 14         | 73 03     | 26 83         |
|              |           |               |

Two layers are formed between alcohol concentrations of 9 41 and 73 03% (de Waal, Dissert 1910)

| Solubility in propyl alcohol + Aq at 2 |                                        |  |
|----------------------------------------|----------------------------------------|--|
| % propyl alcohol                       | % (NH <sub>4</sub> ) SO <sub>4</sub>   |  |
| 20<br>30<br>40<br>50<br>60<br>70       | 6 7<br>4 8<br>3 2<br>2 0<br>1 0<br>0 4 |  |

(Linebarger, Am Ch J 1892, 14 38)

| 100 g 95% formic acid dissolve 2 (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> at 16 5° (Aschan, Ch Ztg )]
37 1117 )
 Insol in acetone (Eidmann, C C 36 II 1014, Naumann, B 1904, 37 26 Insol in methyl acetate (Naumar 1909, 42 3790), ethyl acetate (Naumar B 1910, 43 314)
 Insol in CS<sub>2</sub> (Arctowski, Z anorg 86 1910, 1910, 1910, 1910)

Ammonium hydrogen sulphate, NH<sub>4</sub> 30 SI deliquescent Sol in 1 pt cold I (Link)

Very sl sol in alcohol (Gerhardt,
(3) 20 255)

Insol in acetone (Naumann, B 9

Insol m acetone (Naumann, B 9 37 4329, Eldmann, C C 1899, II, 101 ) (NH<sub>4</sub>)<sub>3</sub>H(SO<sub>4</sub>)<sub>2</sub> Not deliquescent in H<sub>2</sub>O (Mitscherlich, Pogg 39 196 (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 3H<sub>2</sub>SO<sub>4</sub>) D'Ans and Sch 11 Z anorg 1913, 80 241)

Ammonum pyrosulphate, (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>C Decomp by H<sub>2</sub>O (Schulze) NH<sub>4</sub>HS<sub>2</sub>O (D'Ans and Schreir anorg 1913, **80** 241)

Ammonium octosulphate, (NH<sub>4</sub>). S<sub>8</sub>O Decomp by HO (Weber, B 17

# Ammonium antimony sulphate, (NH<sub>4</sub>),SO<sub>4</sub>, Sb<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

Behaves toward H<sub>2</sub>O and abs alc a mixture of the components (M zl anorg 105, 48 152)

Decomp very slowly by H<sub>2</sub>O (mann, Arch Pharm 1898, 236 479

Ammonium bismuth sulphate, NH<sub>4</sub>I § +4H O

Easily sol in HCl, and HNO<sub>3</sub>+ 1, sol in cone H SO<sub>4</sub>, and hot dil acids sl decomp by cold HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, and dil l SAq (Luddecke, A 140 277)

# Ammonium cadmium sulphate, (N )

Can be recrystallised from a litt (v Hauer)

1 l H<sub>2</sub>O dissolves 723 g anhydi at 25° (Locke, Am Ch J 1902, 27  $3(NH_4)_2SO_4$ ,  $CdSO_4+10H_2O$  (André, C 104 987)

nmonium calcium sulphate,  $(NH_4)_2Ca(SO_4)_2+H_2O$ 

Decomp by H<sub>2</sub>O (Fassbender, B 11 68) Sol in  $(NH_4)_2SO_4+Aa$ (Rose, Pogg 0 292) This double salt is stable between 0° and 0° in solutions containing an excess of [H<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> It is not formed if the solution ntains less than 35% (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> R 1909, **148** 1605) (Barre,

)'Ans, B 1907, 40 192) This double salt is formed in the presence an excess of CaSO4 and at temp above 80° arre, C R 1909, 148 1605)  $C_{8.5}(NH_4)_2(SO_4)_6 + H_2O$  Decomp by  $H_2O$ 

Decomp

by

 $H_2O$ 

'Ans, B 1907, **40** 192)

 $(SO_4)_3Ca_2(NH_4)_2$ 

amonium calcium cupric sulphate, Ca  $Cu(NH_4)_2(SO_4)_4 + 2H_2O$ Very stable (D'Ans, B 1908, 41 1778)

amonium calcium potassium sulphate,  $NH_4CaK(SO_4)_2+H_2O$ 

Decomp by cold H<sub>2</sub>O (Fassbender, B 1968)

nmonium cerous sulphate,  $(NH_4)_2Ce_2(SO_4)_4$ +8H<sub>2</sub>O

More sol in cold than in hot H<sub>2</sub>O (Czudwicz)

100 g H<sub>2</sub>O dissolve at

3° 22 35° 35 1° 45 2°

331 5 328 5 184 4 993 g anhydrous salt,

55 3° 2 994 2 2402 187 g anhydrous salt

75 4° 85 2° 1 482 1 184 g anhydrous salt (Wolff, Z anorg 1905, **45** 102)

 $5(NH_4) SO_4$ ,  $Cc_2(SO_4)_3$ (Baire, C 10, **151** 873)

amonium ceric sulphate, 3(NH<sub>4</sub>) SO<sub>4</sub>,  $Ce(SO_4) + 4HO$ 

Slightly effloreseent Fisily sol in H<sub>2</sub>O [endelejeff, A 168 50)  $3(NH_4)_2SO_4$ ,  $2Ce(SO_4)_2 + 3H_2O$ Sl sol

H<sub>2</sub>O (Mendelejeff)

amonium chromous sulphate,  $NH_4Cr(SO_4)_2$ 0407 g mol anhydrous salt is sol in 1 l O at 25° (Locke, Am Ch J 1901, 26 5) +6H<sub>2</sub>O 100 ccm of sat aqueous solution ntain 55 g of the salt at 20° Insol in

ohol (Laurent, C R 1911, 131 112)

Ammonium chromic sulphate, (NH<sub>4</sub>) SO<sub>4</sub>,  $Cr_2(SO_4)_3$ 

Not attacked by boiling H<sub>2</sub>O or conc HCl Very slowly attacked by boiling KOH +Aq (sp gr =13) Insol in CrCl +Aq or SnCl<sub>2</sub>+Aq (Klobb, Bull Soc (3) 9 664)

 $+5\dot{H}_{2}O^{2}$ Is ammonium chromosulphate, which see

 $+24H_{2}O$ Chrome Alum

Violet modification Efflorescent Sol in cold H<sub>2</sub>O, but solution is decomp on heating with formation of green modification dil solution of green modification is gradually converted into violet modification by Alcohol ppts it from aqueous (Schrotter, Pogg 53 526) standing solution

100 cc H<sub>2</sub>O dissolve 10 78 g anhydrous, or 21 21 g hydrated salt at 25° Melts in crystal H<sub>2</sub>O at 45° (Locke Am Ch J **1901 26** 174)

Solubility in H<sub>2</sub>O

Saturation is very slowly reached owing to transition between violet and green modifi-If time of saturation is taken at  $2\frac{1}{2}$  hours, 100 g of the solution contain at

O٥ 30° 40° 3 77 106  $15.5 \text{ g} (NH_4)_2 Cr_2(SO_4)_4$ 

This is assumed to be the solubility of the violet modification

In 300 hours, 15 96 g salt are dissolved at 30°, and 24 64 g in 250 hours at 40° (Koppel, B 1906, **39** 3741)

Calc from electrical conductivity measurements, a solution containing 38 g of the sulphate in 100 g contains 48% of the green compound at 40° and 61% at 55° With solutions of 6-7 times the above concentration equilibrium is reached at 40° with 30-40% green alum (Koppel)

Sp gr of aqueous solution of violet modi-

fication at 15°, containing
4 8 12% (NH<sub>4</sub>) C<sub>1</sub> (SO<sub>4</sub>)<sub>4</sub>+24H O 1 020 1 0405 1 0610

Sat solution at  $15^{\circ}$  has sp gr = 1.070(Gerlach)

Green modefi ation Sol in HO and alcohol When in aqueous solution, it gradually changes to violet modification

Sp gr of aqueous solution of green modi-

(3) 9 663)

fication at 15°, containing
10 20 30% (NH<sub>4</sub>) C<sub>1</sub> (SO<sub>4</sub>)<sub>4</sub>+24H O,
1 044 1 091 1 142

50  $60\% \text{ (NH<sub>4</sub>) C1<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+24H<sub>2</sub>O,$ 1 197 1 255 1 317

70 80  $90\% (NH_4),C_1,(SO_4)_4+24H,O$ 1 384 1 456 1 532

(Gerlach, Z anal 28 498)

Insol in acetone (Naumann, B 1904, 37 4329) 3(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> Only sl attacked by boiling H<sub>2</sub>O Not attacked by boiling conc (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq (Klobb, Bull Soc

Ammonium cobaltous sulphate,  $(NH_4)_2Co(SO_4)_2+6H_2O$ 100 pts  $H_2O$  dissolve at 0° 10° 18° 23° 35° 8 9 11 6 15 2 17 1 19 6 pts anhydrous salt,

40° 45° 50° 60° 75° 22 3 25 28 7 34 5 43 3 pts anhydrous salt (Tobler, A 95 193)

100 pts saturated solution contain at 20° 40° 60° 80° 14 9 20 8 25 6 33 pts anhydrous salt (v Hauer, J pr 74 433)

1 l H<sub>2</sub>O dissolves 147 2 g anhydrous salt at 25° Tobler's results are inaccurate (Locke, Am Ch J 1902, **27** 459) Pptd from aqueous solution by alcohol

Ammonium cobaltic sulphate, (\M<sub>4</sub>)<sub>2</sub>Co<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+24H O Sol in H O with decomp (Marshall, Chem Soc 29 760)

Ammonium cobaltous cupric sulphate, 2(NH<sub>4</sub>) SO<sub>4</sub>, CoSO<sub>4</sub>, CuSO<sub>4</sub>+12H<sub>2</sub>O Quite easily sol in hot H O, but on long boiling a basic salt is pptd (Vohl, A 94 58)

Ammonium cobaltous ferrous sulphate, 2(NH<sub>4</sub>) SO<sub>4</sub>, CoSO<sub>4</sub>, FeSO<sub>4</sub>+12H<sub>2</sub>O Sol in H O (Vohl, A **94** 57)

Ammonium cobaltous magnesium sulphate,  $2(NH_4)SO_4$ ,  $CoSO_4$   $M_9SO_4+12H_2O$  oldown in HO (Vohl, A 94 57)

Ammonium cobaltous manganous sulphate,  $2(NH_4)SO_4$  CoSO<sub>4</sub>,  $MnSO_4+12H$  O Sol in H O (Vohl, A **94** 57)

Ammonium cobaltous nickel sulphate, 2(NH<sub>4</sub>)SO<sub>4</sub>, CoSO<sub>4</sub>, NiSO<sub>4</sub>+12H O Sol in H O (Vohl, A 94 57)

Ammonium cobaltous zinc sulphate, 2(NH<sub>4</sub>) SO<sub>4</sub>, CoSO<sub>4</sub> ZnSO<sub>4</sub>+12H<sub>2</sub>O Sol in H O (Vohl, A **94** 57)

Ammonium cupric sulphate,  $(NH_4)$  SC<sub>4</sub>,  $(uS()_4+6H()$ 

Efflorescent in warm an

willy on colory (Vogel J pr 2 194 - I m I so pts H () at 18 o (Abl.)

100 pts H O at 19° dissolve 26 6 pts, and sat solution has sp  $\mu$ r = 1 1337 (Schiff, A 109 426

100 g sat solution at 30° contain 30 36 g anhydrous salt (Schreinemakers, Arch Néer Sci 1910, (2) 15 92) Solubility of (NH<sub>4</sub>)<sub>2</sub>Cu(SO<sub>4</sub>)<sub>2</sub>, 6H<sub>2</sub>(NH<sub>4</sub>)<sub>2</sub>Ni(SO<sub>4</sub>)<sub>2</sub>, 6H<sub>2</sub>O in H<sub>2</sub>O at 13-14

Mols per 100 mols H<sub>2</sub>O

| Cu salt                                             | Nı salt                                           | % Cu salt solid pha                          |
|-----------------------------------------------------|---------------------------------------------------|----------------------------------------------|
| 0<br>0 1476<br>0 2664<br>0 4165<br>0 4785<br>1 0350 | 0 521<br>0 295<br>0 2089<br>0 1449<br>0 1202<br>0 | 0<br>10 29<br>30 59<br>52 23<br>78 80<br>100 |

(Fock, Z Kryst Min 1897, 28 365)

Solubility of (NH<sub>4</sub>)<sub>2</sub>Cu(SO<sub>4</sub>)<sub>2</sub>, 6H K<sub>2</sub>Cu(SO<sub>4</sub>)<sub>2</sub>, 6H<sub>2</sub>O in H<sub>2</sub>O at 13–14° Mols per 100 mols H<sub>2</sub>O

| K salt                                                            | NH4 alt                                                           | % K salt solid pha                                         |
|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|
| 0 897<br>0 2269<br>0 2570<br>0 2946<br>0 3339<br>0 4560<br>0 4374 | 1 035<br>0 8618<br>0 6490<br>0 5887<br>0 5096<br>0 3319<br>0 1961 | 0<br>5 00<br>16 70<br>30 44<br>36 6<br>50 1<br>69 9<br>100 |

(Fock)

Solubility of  $(NH_4)_2Cu(SO_4)_2$ , 6H )  $(NH_4)_2Zn(SO_4)$ , 6H<sub>2</sub>O in H<sub>2</sub>O at 13-1 Mols per 100 mols H<sub>2</sub>O

| Cu salt                                                 | Zn salt                                             | % Cu sal n                               |
|---------------------------------------------------------|-----------------------------------------------------|------------------------------------------|
| 0 0422<br>0 0666<br>0 1218<br>0 2130<br>0 3216<br>1 035 | 0 8069<br>0 5638<br>0 5115<br>0 4924<br>0 4022<br>0 | 2 3<br>4 5<br>9 0<br>14 6<br>22 6<br>100 |
|                                                         | /                                                   |                                          |

(Fock)

 $(NH_4) \cdot SO_4$ ,  $2CuSO_4$  Very sol in f (Klobb, C R 115 2 0)

Ammonium cupric ferrous sulphate

Sol in H O without decomposition

A 94 61)

Ammonium cupric magnesium sulphate  $2(NH_4)_2SO_4$ ,  $CuSO_4$ ,  $MgSO_4+12H$ ) Sol in  $H_2O$  (Vohl, A 94 57)

Ammonium cupric magnesium potassiu s phate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, CuSO<sub>4</sub>, MgSO<sub>4</sub>, <sub>2</sub>S +12H<sub>2</sub>O

 $ig| Sol in H_2O \quad (Schiff) \ 2(NH_4)_2SO_4, \quad CuSO_4, \quad 2MgSO_4, \quad K \ ) \ 18H_2O \quad Sol in H_2O \quad (Schiff)$ 

nmontum cupric manganous sulphate,  $2(NH_4)_2SO_4$ ,  $CuSO_4$ ,  $MnSO_4+12$   $H_2O_{SO_4}$  in  $H_2O_{SO_4}$  (Vohl, A 94 57)

nmonium cupric nickel sulphate, 2(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, CuSO<sub>4</sub>, NiSO<sub>4</sub>+12H<sub>2</sub>O Sol in H<sub>2</sub>O (Vohl)

 $\begin{array}{c} \text{nmonium cupric potassium sulphate,} \\ \text{NH}_4\text{KSO}_4, \text{CuSO}_4 + 6\text{H}_2\text{O} \\ \text{Sol in H}_2\text{O} \quad \text{(Schiff )} \end{array}$ 

nmonium cupric zinc sulphate, 2(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, CuSO<sub>4</sub>, ZnSO<sub>4</sub>+12H<sub>2</sub>O Sol in H<sub>2</sub>O (Vohl)

### nmonium cupric sulphate ammonia, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, CuO, 2NH<sub>3</sub>

Sol in 15 pts cold  $H_2O$ , but decomp on posure to air or dilution Insol in alcohol uhn)

nmonum didymium sulphate,  $(NH_4)_2SO_4$ ,  $D_{12}(SO_4)_3+8H_2O$ 

Sol in 18 pts  $H_2O$ , and less easily in  $(H_4)_2SO_4+Aq$  (Marignac) Moderately sol in  $H_2O$  (Cleve, Bull Soc) 43 362)

nmonium erbium sulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, Er<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Cleve)

nmonium gallium sulphate, (NH<sub>4</sub>)<sub>2</sub>Ga<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+24H<sub>2</sub>O

Sol in cold water and dilute alcohol Concution clouds up on boiling, but clears on oling Dil solution separates out a basic t, insol in hot or cold  $H_2O$  (Boisbaudran)

nmonium glucinum sulphate,  $(NH_4)_2SO_4$ ,  $GlSO_4+2H_2O$ 

Sol in H<sub>2</sub>O (Atterberg )

nmonium indium sulphate, (NH<sub>4</sub>)<sub>2</sub>In<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+24H<sub>2</sub>O

100 pts  $\rm H_2O$  dissolve 200 pts salt at 16°, d 400 pts at 30° Insol in alcohol

Melts in crystal  $H_2()$  at 36° (Rossler, J (2) 7 14) +8 $H_2O$  (Rossler)

nmonium iridium sulphate,  $(NH_4)_2SO_4$ ,  $Ir_2(SO_4)_3+24H_2O$ 

Easily sol in  $H_2O$  (Marino, Z anorg 04, 42 221)

amonum iron (ferrous) sulphate, (NH<sub>4</sub>)<sub>2</sub>Fe(SO<sub>4</sub>)<sub>2</sub>+6H<sub>2</sub>O Much less sol in H<sub>2</sub>O than FeSO<sub>4</sub>+7H<sub>2</sub>O ogel, J pr **2** 192) 100 pts H<sub>2</sub>O dissolve at
0° 12° 20° 30° 36°
12 2 17 5 21 6 28 1 31 8 pts anhydrous salt,
45° 55° 60° 65° 75°
36 2 40 3 44 6 49 8 56 7 pts anhydrous salt
(Tobler, A **95** 193)

100 pts  $H_2O$  at 16.5° dissolve 35.9 pts hydrous salt

1 l H<sub>2</sub>O dissolves 351 pts or 1 044 g mol anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Sol in H<sub>2</sub>O without decomp Aq solution at 30° contains 13 13% FeSO<sub>4</sub> and 11 45% (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (Schreinemakers, C C 1910, I 801)

Sp gr of  $(NH_4)_2FeSO_4 + Aq$  at 19° % =  $\%(NH_4)_2FeSO_4 + 6H_2O$ 

| %                                         | Sp gr                                                                                  | %                                                        | Sp gr                                                                                  | %                                                        | Sp gr                                                                                  |
|-------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1 006<br>1 013<br>1 018<br>1 024<br>1 030<br>1 036<br>1 042<br>1 047<br>1 054<br>1 060 | 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | 1 066<br>1 073<br>1 080<br>1 085<br>1 092<br>1 097<br>1 104<br>1 110<br>1 116<br>1 124 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 1 130<br>1 136<br>1 143<br>1 150<br>1 156<br>1 164<br>1 171<br>1 179<br>1 185<br>1 193 |

(Schiff calculated by Gerlach, Z anal 8 280)

Insol in acetone

Ammonium ferric sulphate, basic

Extremely difficultly sol in HCl+Aq Not decomp by KOH+Aq (Berzelius)  $5(NH_4)_2O$ ,  $3Fe_2O_3$ ,  $12SO_3+18H_2O$  or  $2(NH_4)_2O$ ,  $Fe_2O_3$ ,  $4SO_3+4H_2O$  Sol in 24 pts cold  $H_2O$  (Maus, Pogg 11 79)

Ammonium iron (ferric) sulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

Attacked slowly by cold H O (Lachaud and Lepierre)

Nearly insol in H<sub>2</sub>O (Weinland, Z anorg 1913, **84** 363)

+24H<sub>2</sub>O *Iron alum* Sol in 3 pts H<sub>2</sub>O at 15° (Forchhammer, Ann Phil 5 406)

100 cc H O dissolve 44 15 g anhydrous, or 124 40 g hydrated salt at 25°, or 1 659 g mols anhydrous salt are sol in 1 l H O at 25° (Locke, Am Ch J 1901, 26 174)

Sp gr of aqueous solution at 15° containing

5 10 15% (NH<sub>4</sub>)<sub>2</sub>Fe<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+24H<sub>2</sub>O, 1 023 1 047 1 071

20 25 30% (NH<sub>4</sub>)<sub>2</sub>Fe<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+24H<sub>2</sub>O, 1 096 1 122 1 148

35 40% (NH<sub>4</sub>)<sub>2</sub>Fe<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+24H<sub>2</sub>O 1 175 1 203

40% solution is sat at 15° (Gerlach, Z anal 28 496)

Melts in crystal H<sub>2</sub>O at 40° (Locke)  $3(NH_4)_2SO_4$ ,  $Fe_2(SO_4)_3$ Insol in cold (Lachaud and Lepierre)

Ammonium iron (ferroferric) sulphate, 4(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, FeSO<sub>4</sub>, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+3H<sub>2</sub>O

Sl sol in cold H<sub>2</sub>O, decomp into basic salt by hot H<sub>2</sub>O, insol in alcohol (Lachaud and Lepierre, C R 114 916)

Ammonium ferrous magnesium sulphate,  $4(NH_4)_2SO_4$ ,  $3FeSO_4$ ,  $MgSO_4+24H_2O$ Sol in H<sub>2</sub>O (Schiff, A 107 64) 2(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, FeSO<sub>4</sub>, MgSO<sub>4</sub>+12H<sub>2</sub>O Sol in H<sub>2</sub>O (Vohl, A 94 57)

Ammonium ferrous manganous sulphate,  $2(NH_4)_2SO_4$ , FeSO<sub>4</sub>, MnSO<sub>4</sub>+ $12H_2O$ Sol in  $\mathbf{H}_2\mathbf{O}$  (Vohl, A 94 57)

Ammonium ferrous nickel sulphate,  $2(NH_4)_2SO_4$ , FeSO<sub>4</sub>, N<sub>1</sub>SO<sub>4</sub>+12H<sub>2</sub>O Sol in  $\mathbf{H}_2\mathbf{O}$  (Vohl, A 94 57)

Ammonium ferrous zinc sulphate,  $2(NH_4)_2SO_4$ , FeSO<sub>4</sub>, ZnSO<sub>4</sub>+12H<sub>2</sub>O Sol in H<sub>2</sub>O (Bette, A 14 286)

Ammonium lanthanum sulphate,  $(NH_4)_2SO_4$ ,  $La_2(SO_4)_3 + 8H_2O$ 

Sl sol in  $H_2O$ (Marignac) Quite sol in H<sub>2</sub>O (Cleve) (Barre, C R 1910, 151 872) +2H<sub>2</sub>O 5(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 2La<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> SI ın  $(NH_4)_2SO_4 + Aq$  of concentrations above 60%(Barre, A ch 1911, (8) 24 246)  $5(NH_4)_2SO_4$ ,  $La_2(SO_4)_3$  (Barre)

Ammonium lead sulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, PbSO<sub>4</sub> Decomp by H<sub>2</sub>O into its constituents (Wohler and Litton, A 43 126)
Decomp by H<sub>2</sub>O Only stable in contact

with solutions containing

13 86 pts  $(NH_4)_2SO_4$  per 100 pts  $H_2O$  at  $20^{\circ}$ 19 25 pts  $(NH_4)_2SO_4$  per 100 pts  $H_2O$  at 50° 24.31 pts  $(NH_4)_2SO_4$  per 100 pts  $H_2O$  at

29 42 pts  $(NH_4)_2SO_4$  per 100 pts  $H_2O$  at 100°

(Barre, C R 1909, 149 294)

Ammonium lithium sulphate, NH<sub>4</sub>LiSO<sub>4</sub> Solubility in  $H_2O = 35.25\%$  at -10,° and 36 18% at 70° (Schreinemakers, C C 1906, I 217)

This is the only double salt which (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> forms with Li<sub>2</sub>SO<sub>4</sub> below 100° (Spielrein, C R 1913, 157 48)

Ammonium magnesium sulphate,  $(NH_4)_2Mg(SO_4)_2+6H_2O$ 

100 pts H<sub>2</sub>O dissolve 15 9 pts anhydrous double salt at 13° (Mulder)

100 pts H<sub>2</sub>O dissolve at

0° 10° 15° 20° 30° 90 142 157 179 191 pts anhydrous salt,

45° 50° 55° 60° 75° 25 6 30 0 31 9 36 1 45 3 pts anhydrous salt (Tobler, A 96 193)

More sol in H<sub>2</sub>O than (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> or MgSO<sub>4</sub>

(Graham) 1 l H<sub>2</sub>O dissolves 199 pts anhydrous salt at 25° Tobler's results are inaccurate (Locke, Am Ch J 1902, 27 459) 100 g H2O dissolve at

41° F 34°

 $20.72 \text{ g} (NH_4)_2SO_4, MgSO_4, 6H_2O$ 18 2250°

2248 $24.08 \text{ g} \text{ (NH}_4)_2\text{SO}_4, \text{MgSO}_4, 6\text{H}_2\text{O},$ 70° F 60°

 $28\ 26\ g\ (NH_4)_2SO_4$ ,  $MgSO_4$ ,  $6H_2O_7$ 24.81

81° F 33 33 g (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, MgSO<sub>4</sub>, 6H<sub>2</sub>O (Lothian, Pharm J 1910, (4) 30 546)

Lothian's results for solubility in H<sub>2</sub>O probably incorrect because of inaccuracy of experimental method (Seidell, Pharm J 1911, (4) **33** 846)

Solubility of  $(NH_4)_2Mg(SO_4)_2$  in  $H_2O$  at t°

| t                                                 | g anhydrous salt p r 10) g                                                    |                                                                               |  |
|---------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| ů                                                 | solution                                                                      | но                                                                            |  |
| 0<br>10<br>20<br>25<br>30<br>40<br>50<br>60<br>80 | 10 58<br>12 75<br>15 23<br>16 45<br>17 84<br>20 51<br>23 18<br>26 02<br>32 58 | 11 83<br>14 61<br>17 96<br>19 69<br>21 71<br>25 56<br>30 17<br>35 17<br>48 32 |  |
| 100                                               | 39 66                                                                         | 65 72                                                                         |  |

(Porlezza, Att Acc I inc 1914 (5) 23 II. 509)

Min Cerbolite

Ammonium magnesium nickel sulphate.  $2(NH_4) SO_4$ ,  $MgSO_4$ ,  $NiSO_4+12HO$ Sol in H<sub>2</sub>O (Vohl, A **94** 57)

Ammonium magnesium potassium zinc sulphate,  $2(NH_4)_2SO_4$ ,  $3MgSO_4$ ,  $3K_2SO_4$ ,

 $2ZnSO_4+30H_2O$ Sol in  $H_2O$  (Schiff, A 107 64) (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 2MgSO<sub>4</sub>, 2K<sub>2</sub>SO<sub>4</sub>, ZnSO<sub>4</sub>+ 18H<sub>2</sub>O Sol in H<sub>2</sub>O (Schiff)

 $(NH_4)_2SO_4$ ,  $MgSO_4$ ,  $K_2SO_4$ ,  $ZnSO_4 + 12H_2O_4$ Sol in H<sub>2</sub>O (Schiff)

Ammonium magnesium zinc sulphate.  $2(NH_4)_2SO_4$ ,  $MgSO_4$ ,  $ZnSO_4 + 12H_2O_4$ Sol in  $H_2O$  (Vohl. A 94 57)

Ammonium manganous sulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>,  $MnSO_4 + 6H_2O$ 

Deliquescent Easily sol in H<sub>2</sub>O (Jahn) 1 1 H<sub>2</sub>O dissolves 372 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459) (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 2MnSO<sub>4</sub> Readily decomp by H<sub>2</sub>O (Lepierre, C R 1895, 120 924)

Ammonium manganic sulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>,  $Mn_2(SO_4)_8$ 

Decomp by H2O Insol in ether, C6H6, and conc H<sub>2</sub>SO<sub>4</sub> Sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq pierre, Bull Soc 1895, (3) 13 596) +24H<sub>2</sub>O Decomp by H<sub>2</sub>O (Mitscherlich)

Ammonium manganous nickel sulphate,  $2(NH_4)_2SO_4$ , MnSO<sub>4</sub>, N1SO<sub>4</sub>+12H<sub>2</sub>O Sol in H<sub>2</sub>O (Vohl. A 94 57)

Ammonium manganous zinc sulphate,  $2(NH_4)_2SO_4$ ,  $MnSO_4$ ,  $ZnSO_4+12H_2O$ Sol in H<sub>2</sub>O (Vohl)

Ammonium mercuric sulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>,  $3HgSO_4+2H_2O$ 

(Hırzel, J B 1850 333)  $NH_4)_2SO_4$ ,  $HgSO_4$ Difficultly sol in H<sub>2</sub>O Easily sol in NH<sub>4</sub>OH+Aq

Ammonium mercurous sulphate ammonia,  $3Hg_2O$ ,  $2(NH_4)HgSO_4$ ,  $2NH_3$ 

Insol in hot or cold, dil or conc H2SO4 and HNO<sub>3</sub> Sol in HCl (Tarugi, Gazz ch it 1903, 33 (1) 131)

Ammonium nickel sulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, N<sub>1</sub>SO<sub>4</sub>+6H<sub>2</sub>O

Sol in 4 pts cold H () (Link 1796)

100 pts H<sub>2</sub>O dissolve at

10° 16°  $20^{\circ}$ 3 5° 30° 18 32 59 83 pts anhydrous salt,

40° 50° 59° 68° 85°

11 5 14 4 16 7 15 5 28 6 pts anhydrous salt (Tobler, A 95 193)

100 pts sat solution contain at 20°, 94, at 40°, 132, at 60°, 186, at 80°, 231 pts anhydrous sult (v. Huur, J. pr. 74, 433) 1 l II<sub>2</sub>O dissolves 75 7 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Nearly insol in a weak acid solution of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (1hompson, C C 1863 957)

Ammonium nickel zinc sulphate,  $2(NH_4)_2SO_4$ ,  $N_1SO_4$ ,  $ZnSO_4+12H_2O$ Sol in H<sub>2</sub>O (Vohl, A 94 57)

Ammonium nickel sulphate ammonia,  $(NH_4)_2SO_4$ ,  $N_1SO_4$ ,  $6NH_3+3H_2O_4$ (André, C R 106 936)

Ammonium platinic sulphate, 2(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>,  $Pt_3(SO_4)_3 + 25H_2O$ 

Sol  $m H_2O$  (Prost, Bull Soc (2) 46 156)

Ammonium potassium sulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>,  $K_2SO_4+4H_2O$ 

Soluble in HO 100 pts H<sub>2</sub>O at 16° dissolve 13 68 pts salt (Thomson, 1831) Mm Taylorite

Ammonium praseodymium sulphate.  $(NH_4)_2SO_4$ ,  $Pr_2(SO_4)_3 + 8\tilde{H}_2O$ 

Sl sol in H<sub>2</sub>O (von Scheele, Z anorg 1898, **18** 359)

Ammonium rhodium sulphate,  $(NH_4)_2SO_4$ ,  $Rh_2(SO_4)_3 + 24H_2O$ 

Very sol H<sub>2</sub>O, melts in crystal H<sub>2</sub>O at 102-103° (Piccini, Z anorg 1901, 27 67)

Ammonium samarium sulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>,  $Sm_2(SO_4)_3 + 8H_2O$ 

Sl sol in H<sub>2</sub>O (Cleve, Bull Soc (2) 43 166)

Ammonium scandium sulphate,  $(NH_4)_2SO_4$ ,  $Sc_2(SO_4)_8$ 

Sol in  $H_2O$  (Cleve) Sol in  $H_2O$  and in dil  $(NH_4)_2SO_4+Aq$ (R J Meyer, Z anorg 1914, 86 279)

Ammonium sodium sulphate, NH<sub>4</sub>NaSO<sub>4</sub>+  $2H_2O$ 

100 pts H<sub>2</sub>O dissolve 46 6 pts of cryst salt at 15°, and the solution has a sp gr of 1 1749 Sp gr of aqueous solution containing

24 44 15 9% NH<sub>4</sub>NaSO<sub>4</sub>+2H<sub>2</sub>O, 1 1749 1 1380 1 0849

12 72 6 36 % NH<sub>4</sub>NaSO<sub>4</sub>+2H<sub>2</sub>O 1 0679 1 0337

(Schiff, A 114 68)

Ammonium strontium sulphate

Insol in excess of  $(NH_4)_2SO_4+Aq$  (Rose,

Pogg 110 296

(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, SrSO<sub>4</sub> Thus double salt is only stable in contact with nearly sat solutions of  $(NH_4)_2SO_4$  (Barre, C R 1909, 149) 293)

Ammonium tellurium sulphate,

(NH<sub>4</sub>)HSO<sub>4</sub>, 2TeO<sub>2</sub>, SO<sub>3</sub>+2H<sub>2</sub>O(Metzner, A ch 1898, (7) As K salt **15** 203)

Ammonium thallic sulphate,  $NH_4Tl(SO_4)_2$ 

(Marshall, C C 1902, II 1089) Decomp by H<sub>2</sub>O Easily sol  $+4H_2O$ in dil acids (Fortini, Gazz ch it 1905, 35 (2) 450)

Ammonium thorium sulphate, 2(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>,  $Th(SO_4)_2$ 

Easily sol in H<sub>2</sub>O and sat (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+ Aq (Cleve)

+2H<sub>2</sub>O (Barre) (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, Th(SO<sub>4</sub>)<sub>2</sub>+4H<sub>2</sub>O ch 1911, (8) **24** 240) (Barre, A

 $3(NH_4)_2SO_4$ ,  $Th(SO_4)_2+3H_2O$ (B)

Ammonium titanium sulphate,  $(NH_4)_2SO_4$ ,  $T_1O$ ,  $SO_4 + H_2O$ 

Very sol in H<sub>2</sub>O with decomp

Insol in conc H<sub>2</sub>SO<sub>4</sub> (Rosenheim, Z

anorg 1901, 26 252) (NH<sub>4</sub>)<sub>2</sub>O, 2TrO<sub>2</sub>, 2SO<sub>3</sub>+3H<sub>2</sub>O Slowly decomp by H<sub>2</sub>O (Blondel, Bull Soc 1899, (3) **21** 262)

Ammonium titanium sesquisulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 3Ti<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>+18H<sub>2</sub>O

Insol in H<sub>2</sub>O, sol in HCl Insol in H2SO4 Decomp by boiling with conc H<sub>2</sub>SO<sub>4</sub> (Stahler, B 1905, 38 2623)

Ammonium uranous sulphate, 2(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>,  $U(SO_4)_2$ 

Easily sol in H<sub>2</sub>O (Rammelsberg) Sol in H<sub>2</sub>O but solution rapidly decomp (Kohlschutter, B 1901, 34 3630)

Ammonium uranyl sulphate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>,  $(UO_2)SO_4+2H_2O$ 

Quite difficultly sol in H<sub>2</sub>O (Arfvedson)

Ammonium vanadous sulphate,  $(NH_4)_2SO_4$ ,  $VSO_4+6H_2O$ 

Decomp in the air

Sol in H<sub>2</sub>O (Piccini, Z anorg 1899, 19

Less sol in  $H_2O$  than  $VSO_4+7H_2O$ cini and Marino, Z anorg 1902, 32 60)

Ammonium vanadic sulphate,  $(NH_4)_2SO_4$ ,  $V_2(SO_4)_3+12H_2O$ 

Insol in H<sub>2</sub>O

Insol in H<sub>2</sub>SO<sub>4</sub> Decomp by boiling with

conc H<sub>2</sub>SO<sub>4</sub>

Sol in HCl (Stahler, B 1905, 38 3980) +24H<sub>2</sub>O Very sol in H<sub>2</sub>O, decomp in the air (Piccini, Z anorg 1896, 11 108) 100 pts H<sub>2</sub>O dissolve 39 76 pts salt at 10°

Sp gr of sat solution at  $4^{\circ}/20^{\circ}=1687$  (Piccini, Z anorg 1897, 13 446)

1 l H<sub>2</sub>O dissolves 3169 g anhydrous or 78 51 g hydrated salt at 25°, or 1 210 g mols anhydrous salt are sol in 1 l H<sub>2</sub>O at 25° Mpt of crystals=45° (Locke, Am Ch J 1901, 26 175)

Ammonium vanadyl sulphate,  $(NH_4)_2SO_4$ ,  $VOSO_4 + 3\frac{1}{2}H_2O$ 

Easily sol in H2O and in a mixture of al cohol and conc H<sub>2</sub>SO<sub>4</sub>, but cannot be recryst therefrom (Koppel and Behrendt, Z anorg **1903, 35** 176)

(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 2VOSO<sub>4</sub>+H<sub>2</sub>O Deliquescent Slowly but abundantly sol in H<sub>2</sub>O, but cannot be recryst from it except by addition of H<sub>2</sub>SO<sub>4</sub> (Koppel and Behrendt, Z anorg 1903, 35 172)

Ammonium yttrium sulphate, 2(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>,  $Y_2(SO_4)_3 + 9H_2O$ Sol in H<sub>2</sub>O (Cleve)

Ammonium zinc sulphate, (NH4)2SO4, ZnSO4  $+6H_2O$ 

 $(NH_4)_2SO_4$ 100 pts H<sub>2</sub>O dissolve pts ZnSO4 at

20° U° 10° 13° 15° 73 12 5 12 6 pts salt, 8 8 10 0 45° 75° 85°  $30^{\circ}$ 60° 46 2 pts salt 16 5 21 7 29 7 37 8

(Tobler, A 95 193)

1 l H<sub>2</sub>O dissolves 140 8 g anhydrous lt at 25° (Locke, Am Ch J 1902, 27 anhydrous salt at 25° 459)

+7H<sub>2</sub>O (André, C R 104 987)

Ammonium zirconium sulphate

(Ber-Sol in cold or hot H<sub>2</sub>O or in acids zelius)

Ammonium sulphate antimony fluoride,  $(NH_4)_2SO_4$ ,  $2SbF_3$ 

Very sol in H<sub>2</sub>O (Mayer, B 1894, 27 R 922)

Ammonium sulphate chromic chloride,  $2(NH_4)_2SO_4$ ,  $CrCl_3+6H_2O$ Sol in  $H_2O$  (Weinland, B 1907, **40** 3768)

Ammonium sulphate hydrogen peroxide,  $(NH_4)_2SO_4$ ,  $H_2O_2$ 

Efflorescent in air

Easily sol in H<sub>2</sub>O (Willstatter, B 1903, **36** 1829)

Antimony sulphate basic,  $7Sb_2O_3$ ,  $2SO_3$ +  $3H_2O$ 

Insol in, and not decomp by hot or cold

H<sub>2</sub>O (Adie, Chem Soc **57** 540) 5Sb<sub>2</sub>O<sub>3</sub>, 2SO<sub>3</sub>+7H<sub>2</sub>O Insol (Hensgen, R t c **4** 401) HOm

 $2Sb_2O_3$ ,  $SO_3 + rH_2O$ ld  $H_2O$  (Adre) Not decomp cold H<sub>2</sub>O

 $Sb_2O_3$ ,  $SO_3 = (SbO)_2SO_4$ Decomp by hot H<sub>2</sub>O (Peligot, J B **1847** 426)

+H<sub>2</sub>O As above (Adie)  $Sb_2O_3$ ,  $2SO_3$ , and  $+H_2O$ , and  $+2H_2O$ Scarcely decomp by cold, slowly by boiling H<sub>2</sub>O Slowly sol in dil HCl+Aq (Adie)

Antimony sulphate, Sb<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

Very deliquescent Combines with H2O to a hard mass with evolution of heat, with more H<sub>2</sub>O it becomes liquid, and by repeated treatment with much boiling H2O it is wholly decomp into H<sub>2</sub>SO<sub>4</sub> and Sb<sub>2</sub>O<sub>3</sub> (Hensgen, R t c 4 401)

Antimony sulphate, acid, Sb<sub>2</sub>O<sub>3</sub>, 4SO<sub>3</sub>, Decomp by H<sub>0</sub>O (Adie)  $Sb_2O_3+8$ , or  $9SO_3$ Decomp by H<sub>2</sub>O (Adie)

Antimony barium sulphate.  $Sb_2(SO_4)_3$ ,  $BaSO_4 + 6H_2O$ As Ca comp (Kuhl, Z anorg 1907, 54 257)

Antimony cæsium sulphate, SbCs(SO<sub>4</sub>)<sub>2</sub> Slowly decomp by cold H<sub>2</sub>O (Gutman, Arch Pharm 1908, 246 188)

Antimony calcium sulphate.  $Sb_2(SO_4)_3$ ,  $CaSO_4 + 6H_2O$ Decomp by H<sub>2</sub>O (Kuhl, Z anorg 1907, **54** 257)

Antimony lithium sulphate, SbL1(SO<sub>4</sub>)<sub>2</sub> Decomp by H<sub>2</sub>O (Gutman, Arch Pharm 1908, 246 187)

Antimony potassium sulphate, KSb(SO<sub>4</sub>)<sub>2</sub> Decomp by H<sub>2</sub>O (Gutmann, Arch Pharm 1598, 236 478)

Antimony rubidium sulphate, SbRb(SO<sub>4</sub>)<sub>2</sub> Slowly decomp by cold HO (Gutman)

Antimony silver sulphate, SbAg(SO<sub>4</sub>) Slowly decomp by HO (Kuhl, Z anorg 1907, 54 255) Slowly decomp by cold H O (Gutman

Arch Phum 1908 246 189)

Antimony sodium sulphate, N ish(5()) by HO Lealy decomp (Gutmann, Aich Pharm 1898 236 478)

Antimony strontium sulphate,  $5h(50_4)_3$ , 5150 FOILO

As Creomp (Kuhl Zranorg 1907, 54 257)

Antimony thallium sulphate, 5011(50)

Slowly decomp by cold H O Decomp by cone II SO: (Gutmin Arch Phirm 1905, 246 159)

Arsenic sulphate See Arsenic sulphur trioxide

Barium sulphate, BiSO4

5 Lin 4 000 j ( H O (Kitwan) in 200 000 pts II O (Markmentt C l. 38 (15) 100 jts HO diss by 0.002 pt BaSO4 (Urcs

BaCl<sub>2</sub>+Aq containing 1 pt BaO to 71 000 pts H<sub>2</sub>O when treated with H<sub>2</sub>SO<sub>4</sub> becomes turbid in ½ hour (Harting J pr 22 52)
Ba(NO<sub>3</sub>)<sub>2</sub>+Aq containing 1 pt BaO to 25 000 pts H<sub>2</sub>O gives a distinct cloud with H<sub>2</sub>SO<sub>4</sub> or Na<sub>2</sub>SO<sub>4</sub>+Aq with 50 000-100 000 pts H<sub>2</sub>O a slight turbidity is produced with 200 000-400 000 pts H<sub>2</sub>O the mixture becomes turbid in a few mustes while gath 800 000 becomes turbid in a few minutes while with 800 000 pts H2O no action is visible (Lassaigne J Chim Méd

Sol in 800,000 pts H<sub>2</sub>O (Calvert), in 400,000 pts cold or hot H<sub>2</sub>O (Fresenius)

Calculated from the electrical conductivity of the solution, BaSO<sub>4</sub> is sol in 429,700 pts  $\rm H_2O$  at 184°, and 320,000 pts at 377° (Holleman, Z phys Ch 12 131)

1 l H<sub>2</sub>O dissolves 1 72 mg at 2°, 1 97 mg at 10°, 2 29 mg at 19 0°, 2 60 mg at 26°, 2 91 mg at 34° (Kohlrausch and Rose, Z

phys Ch 12 241)

Calculated from the electrical conductivity of the solution, BaSO<sub>4</sub> is sol in 425,000 pts H<sub>2</sub>O at 183° Results of Fresenius and Hintz (Z anal 1896, 35 170) are incorrect (Kuster, Z anorg 1896, 12 267)

Sat ag solution contains 2 29 mg BaSO<sub>4</sub> per liter at 25° when particles of salt are not

less than  $18\mu$  in diameter

Sat ag solution contains 4 15 mg BaSO<sub>4</sub> per liter at 25° when particles of salt are 0 1 $\mu$  m diameter ( $\mu$ =0 0001 cm) (Hulett, Z phys Ch 1901, 37 398-9)

In general the influence of the size of the grain on the solubility of the substance is negligible when the solubility exceeds 2% The increase of normal solubility by using finely divided solids, amounts to 80% in the case of BaSO<sub>4</sub> (Hulett, Z phys Ch 1904,

1 l H<sub>2</sub>O dissolves 2.3 mg B<sub>1</sub>SO<sub>4</sub> at 18° (Kohlrausch, Z phys Ch 1904, 50 356) Calculated from electrical conductivity of B1SO4+Aq

0 0190 milli-equivalents are sol in 1 liter H<sub>2</sub>O at 15°, 0.0212 at 25°, 0.0288 at 50°, 0 0334 at 100°

(Mcleher, J Am Chem Soc 1910, 32 55) Not attacked by cold IICl or IINO<sub>3</sub>+Aq after several hours, and only in traces after On boiling, traces of BaSO<sub>4</sub> several days dissolve, and the liquid after cooling can be precipitated by BiCl2 or II SO4+Aq, but not by II2O clone (Rose, Pogg 95 105)

By wishing BisO II at 1 II with HO to HClor HVO II HO (Siegle), can be precipitated by II SO<sub>4</sub> or BıCl

Cl (Pirit, J B 1856 334) 1000 pts 3% HCl+Aq dissolve 0.06 pt BiSO4 in the cold, and still more on boiling

230 ccm 1ICl+Aq of 1 02 sp gr dissolve 0.048 g BaSO<sub>4</sub> from 0.679 g BuSO<sub>4</sub> when boiled 1/4 hour

168 ccm HCl+Aq of 103 sp gr dissolve 0 0075 g BaSO4 from 0 577 g BaSO4 when boiled 5 minutes (Siegle, J. pr. 69, 142)

Solubility of BaSO<sub>4</sub> in HCl+Aq

| No cc<br>HCl+Aq<br>containing | Mg BaSO4<br>per 1 mg<br>equiv of | g per 100                     | cc solution                          |
|-------------------------------|----------------------------------|-------------------------------|--------------------------------------|
| 1 mg<br>equiv HCl             | HCl                              | HCI                           | BaSO <sub>4</sub>                    |
| 2 0<br>1 0<br>0 5<br>0 2      | 0 133<br>0 089<br>0 056<br>0 017 | 1 82<br>3 65<br>7 29<br>18 23 | 0 0067<br>0 0089<br>0 0101<br>0 0086 |

(Banthisch, J pr 1884, 29 54)

100,000 pts H<sub>2</sub>O dissolve 0 124 pt BaSO<sub>4</sub>, 1000 pts ĤNO<sub>3</sub>+Aq of 1 167 sp gr dissolve 2 pts BaSO<sub>4</sub>, 1000 pts HNO<sub>3</sub>+Aq of 1 032 sp gr dissolve 0 062 pt BaSO<sub>4</sub> (Calvert, Chem Gaz 1856 55)

When 04 g BaSO<sub>4</sub> is heated ½ hour with 150 ccm HNO<sub>3</sub>+Aq of 102 sp gr, 0165 g is dissolved (Siegle, J pr 69 142)

Solubility of BaSO<sub>4</sub> in HNO<sub>3</sub>+Aq

|                                                |                                              |                  | <del>_</del>      |
|------------------------------------------------|----------------------------------------------|------------------|-------------------|
| No cc<br>HNOs+Aq<br>containing                 | Mg BaSO <sub>4</sub><br>per 1 mg<br>equiv of | G per 100        | ec solution       |
| 1 mg equiv<br>HNOs                             | BaSO₄                                        | HNO <sub>3</sub> | BaSO <sub>4</sub> |
| 2 0                                            | 0 140                                        | 3 15             | 0 0070            |
| $\begin{smallmatrix}1&0\\0&5\end{smallmatrix}$ | 0 107<br>0 085                               | 6 31<br>12 61    | 0 0107<br>0 0170  |
| 0 2                                            | 0 048                                        | 31 52            | 0 0241            |

1884, 29 54)

ac acid has less solvent power than sp gr boiled with 0 4 g BaSO<sub>4</sub> H<sub>4</sub> hour dissolve 0 002 g (Siegle, J pr 69 142)
Sol m boiling conc H<sub>2</sub>SO<sub>4</sub> (See

 $BaH_2(SO_4)_2)$ 

Sol in fuming  $H_2SO_4$  (See  $BaS_2O_7$ ) Sol in 2500 pts boiling 40% HBr+Aq, in 6000 pts boiling 40% HI+Aq C N 53 87)

Sol in considerable amount in metaphosphoric acid+Aq (Scheerer and Drechsel.

pr (2) 7 68)

Not attacked by boiling conc KOH+Aq if CO<sub>2</sub> is not present (Rose, Pogg 95 104)

Very sl decomp by standing a long time

with cold cone alkali carbonates+Aq
Decomp by boiling Na<sub>2</sub>CO<sub>3</sub> or K<sub>2</sub>CO<sub>3</sub>+
Aq, not by (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (See Storer's Dict for analytical data

Very sl sol in NH<sub>4</sub>Cl+Aq, 1 pt dissolving in 230,000 pts sat NH<sub>4</sub>Cl+Aq

500 ccm sat NH4NO<sub>8</sub>+Aq with 50 ccm sat NH<sub>4</sub>Cl+Aq dissolve 2 g BaSO<sub>4</sub> ccm sat NH4NO3+Aq with 100 ccm sat NH<sub>4</sub>Cl+Aq dissolve only 008 g BaSO<sub>4</sub>, therefore above solubility is due to free chlorine (Mittentzwey, J pr 75 214)

BaSO<sub>4</sub> cannot be precipitated from solutions containing free Cl<sub>2</sub> (Erdmann, J pr

**75** 215)

Pptn is retarded sl by tartaric and racemic acids (Spiller)

Na metaphosphate prevents pptn of BaSO. but not ortho- or pyrophosphate (Scheerer.

J pr 75 114) Not precipitated in presence of alkali ci-

trates (Spiller)

Much less sol in NH4Cl+Aq than in  $NH_4NO_3+Aq$  Insol in warm conc  $Na_2S_2O_3+Aq$  (Diehl, J pr 79 431)

Not appreciably sol in H2O containing ammonium or sodium chloride (Brett, Wittstein, Wackenroder)

Not appreciably sol in H<sub>2</sub>O at 250°, or in

H<sub>2</sub>O containing Na<sub>2</sub>S (Senarmont)

Solubility is increased by alkali nitrates, but not appreciably by NaCl, KClO<sub>3</sub>, or Ba(NO<sub>3</sub>)<sub>2</sub> (Fresenius, Z anal 9 52) Scarcely sol in boiling conc (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq (Fresenius)

Solubility in H<sub>2</sub>O increased by presence of MgCl<sub>2</sub> (Fresenius), cerium salts (Marignac) Sol in Fe<sub>2</sub>Cl<sub>6</sub>+Aq (Lunge, Z anal 19

141)

Solubility in various salts+Aq at 20-25°

| g salt<br>per l                        | Mg BaSO4 dissolved per l in                 |                                           |                                  |
|----------------------------------------|---------------------------------------------|-------------------------------------------|----------------------------------|
|                                        | FcCl <sub>3</sub>                           | AlCl <sub>3</sub>                         | MgCl <sub>2</sub>                |
| 1<br>2 5<br>5<br>10<br>25<br>50<br>100 | 58<br>72<br>115<br>123<br>150<br>160<br>170 | 33<br>43<br>60<br>04<br>116<br>170<br>175 | 30<br>30<br>33<br>33<br>50<br>50 |

(Fraps, Am. Ch. J. 1902 27 290)

Solubility in sat solution of vulous salts+

| 1                         |                                     |  |
|---------------------------|-------------------------------------|--|
| Salt                      | C BiSO; sol in 11<br>of the solvent |  |
| N 1N();<br>N 1Cl<br>NH4Cl | 0 2940<br>0 00753<br>0 00827        |  |

(Ehlert, Z. I lektrochem 1912 18 725)

Cone CrCl<sub>3</sub>+Aq dissolves 40-120 times as much BaSO, as HO, when boiled there with for 5 days, cone CiCl+ \quad \text{identified} with HCl 450 times as much in 10 days (Kuster, Z anorg 1905, 43 345)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, **20** 827)

Sol in  $H_2O_2+Aq$ (Grwalowski, C C

**1906**, II 7) 100 cc 95% formic read dissolve 0.01 g BaSO<sub>4</sub> at 18.5° (Aschur Ch. Ztg. 1913. **37** 

1117) Insol in methyl acetate (Naumann, B 1909, 42 3790), in ethyl acctate (Naumann, B 1904, **37** 3601)

Min Barite

Barium hydrogen sulphate, BaH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>

100 pts H<sub>2</sub>SO<sub>4</sub> dissolve 2 22 pts BaSO<sub>4</sub> (Lies-Bodart and Jacquemin, C R 46 1206),

5 69 pts BaSO<sub>4</sub> (Struve, Z anal 9 31)

Boiling H<sub>2</sub>SO<sub>4</sub> dissolves 10-12% freshly precipitated BaSO<sub>4</sub> without separating crystals on cooling H<sub>2</sub>SO<sub>4</sub> at 100° dissolves more than boiling H<sub>2</sub>SO<sub>4</sub>, and becomes cloudy if heated to boiling (Schultz, Pogg 133 **146**)

1 g BaSO<sub>4</sub> pptd from BaCl<sub>2</sub> is sol in 3153 g 91% H<sub>2</sub>SO<sub>4</sub>, from Ba(NO<sub>3</sub>)<sub>2</sub> is sol in 1519 91% H<sub>2</sub>SO<sub>4</sub> (Varenne and Pauleau, C R **93** 1016)

100 pts hot conc H2SO4 dissolve approx 6 pts BaSO<sub>4</sub> (Rohland, Z anorg 1910, 66 **20**6 )

10 ccm of sat BaSO<sub>4</sub>+absolute H<sub>2</sub>SO<sub>4</sub> contain approx 2851 g BaSO4 (Bergius, **Z** phys Ch 1910, **72** 355)

Equilibrium in the system BaSO<sub>4</sub>+H<sub>2</sub>SO<sub>4</sub>+ H<sub>2</sub>O at 25°

| Composition of the solution                                 |                                                               |                                                                                                                                               |
|-------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| '6 H <sub>2</sub> 50 <sub>4</sub>                           | BaSO4                                                         | Solid phase                                                                                                                                   |
| 73 83<br>78 04<br>80 54<br>83 10<br>85 78<br>86 08<br>93 17 | 0 030<br>0 135<br>0 285<br>0 800<br>3 215<br>12 200<br>49 665 | BaSO <sub>4</sub> " " BaSO <sub>4</sub> , 2H <sub>2</sub> SO <sub>4</sub> H <sub>2</sub> O BaSO <sub>4</sub> , H <sub>2</sub> SO <sub>4</sub> |

Volkhonski, C C 1910, I 1954, C A 1911 617)

Decomp by H (), alcohol, or ether +2HO (Schultz)  $BaSO_4$ , 2II  $SO_4+II$  () (Volkhonski)

**Barium** pyrosulphate, BaS<sub>2</sub>O<sub>7</sub>

100 pts furning H SO<sub>4</sub> dissolve 15 S9 pts 3aSO<sub>4</sub> (Struve, / in il 9 34)

Very deliquescent

Decomp with H O with hissing (Schultzic II u k , B 4 111 )

**Sarium** calcium sulphate, 3B iS()4, ('iS()4 Min Dreelite

### tarium platinic sulphate (?)

Ins I in II O a beiling HCler HNO(4A) Sol in ten HSO raquargii (I Davy)

tarium tin (stannic) sulphate, BiS()4,  $Sn(SO_4) + 3H(0)$ 

Decomp by H O Insol in HCl (Weinand and Kuhl, / anorg 1907, 54 249)

arium titanium sulphate,  $2BaSO_4$ ,  $37_1(SO_4)_2$ Ppt Decomp by H<sub>2</sub>O, giving titanic rold Weinland, Z anorg 1907, 54 255)

Barium sulphate potassium chloride, 3BaSO<sub>4</sub>,

Ppt (Silberberger, M 1904, **25** 233)

Bismuth sulphate, basic, (BiO)<sub>2</sub>SO<sub>4</sub>

Insol in  $H_2O$  Sol in  $HNO_3$  or  $H_2SO_4$ +

+2H₂O (Heintz, Pogg 63 55)

 $4B_{12}O_3$ ,  $3SO_3 + 15H_2O$ Insol in H<sub>2</sub>O (Leist)

(BiO)HSO<sub>4</sub>+H<sub>2</sub>O Insol in H<sub>2</sub>O Sol in dıl H2SO4+Aq

 $+2H_2O$  Decomp by  $H_2O$  with separation of  $(B_1O)_2SO_4 + 2H_2O$  (Heintz)

Insol in H<sub>2</sub>O

 $3B_{12}O_3$ ,  $2SO_3+2H_2O$  In (Athanasesco, C R 103 271) 5B<sub>12</sub>O<sub>8</sub>, 11SO<sub>3</sub>+17H<sub>2</sub>O This sulphate crystallizes out from sulphuric acid of any strength between H<sub>2</sub>SO<sub>4</sub>, 6H<sub>2</sub>O and H<sub>2</sub>SO<sub>4</sub>, 12H<sub>2</sub>O (Adie, Proc Chem Soc 1899, 15

226)  $Bi_2O_3$ ,  $2SO_3$ ,  $2\frac{1}{2}H_2O$  is in equilibrium at 50° with 54-51 4%  $H_2SO_4+Aq$ 

B<sub>12</sub>O<sub>3</sub>, SO<sub>3</sub> is in equilibrium at 50° with

acid solutions weaker than 5 4% H<sub>2</sub>SO<sub>4</sub> (Allan, Am Ch J 1902, 27 287)

### Bismuth sulphate, Bi<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

Very hygroscopic Takes up H<sub>2</sub>O with strong evolution of heat to form 2B<sub>12</sub>(SO<sub>4</sub>)<sub>3</sub>+ 7H O, which becomes  $B_{12}(SO_4)_3+3H_2O$  at 100° Decomp by boiling  $H_2O$  into  $B_{12}O_3$ ,  $SO_3 + H_2O$  (Hensgen, J B 1885 552)

Insol in methyl icetate (Naumann, B

1909, **42** 3790)

### Bismuth sulphate, acid, Bi<sub>2</sub>O<sub>3</sub>, 4SO<sub>3</sub>

B<sub>12</sub>O<sub>3</sub>, 4SO<sub>3</sub> is in equilibrium at 50° with 51 4-90% II SO<sub>4</sub>+Aq (Allan, Am Ch J 1902, 27 287) +1140 Crystallizes out from sulphure

Crystallizes out from sulphuric reid at temp above 170° (Adie, Proc Chem

Soc 1599, **15** 226)

+3II () Crystallizes from sulphuric acid of any strength between H2SO4, HO and 11 SO<sub>4</sub>, 2H<sub>2</sub>O (Adic.)

+7, or 9H () = B<sub>1</sub>H(S()<sub>4</sub>)<sub>2</sub>+3H () Insol m II O Fisily sol in reids, especially HCl, and  $HNO_3 + Aq$  (Leist A 160 29)

+71120 Crystallizes out from sulphuric acid of any strength between II SO<sub>4</sub> 3II O und H SO<sub>4</sub> 5H O

+10H<sub>2</sub>O Crystallizes out from sulphune acid it temp below 170° (Adic)

Bismuth potassium sulphate,  $B_1(S()_4)_3$ , 3K2S()4 (?)

Decomp by  $H_2O$ , insol in sit K  $SO_4+Aq$ (Hantz)

B<sub>12</sub>(SO<sub>4</sub>)<sub>3</sub>, 2K SO<sub>4</sub>

 $B_1K(SO_4)_2 = B_{12}(SO_4)_3$ ,  $K_3SO_4$ cold  $H_2O_2$ , decomp by boiling Am Ch J **14** 170) Insol in (Brigh un, Bismuth sodium sulphate, Bi<sub>4</sub>Na<sub>6</sub>(SO<sub>4</sub>)<sub>9</sub> (Ludecke, A 140 277)

# Boron sulphate

See Borosulphuric acid

### Bromomolybdenum sulphate

See under Bromomolybdenum compounds

Cadmium sulphate, basic, 2CdO, SO<sub>8</sub>, and  $+H_{s}O$ 

Difficultly sol in H<sub>2</sub>O (Stromeyer) Sl sol in hot H<sub>2</sub>O (Habermann, M 5 432) 4CdO, SO<sub>3</sub> (Pickering, Chem Soc 1907, **91** 1987)

### Cadmium sulphate, CdSO<sub>4</sub>

Sat CdSO4+Aq contains at 24° O° 10°  $30^{\circ}$ 65°

359 49 7% CdSO4, 37 5 415 420

86° 94° 130° 165° 188° 200° 23% CdSO4 916 277 147 71

CdSO<sub>4</sub> easily forms supersat solutions (Etard, A ch 1894, (7) 2 552)

### Solubility in H<sub>2</sub>O

| bolubility in 1120                                                                                            |                                                                                                                                                |                                                                                                  |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| t°                                                                                                            | Per cent Cd3O4<br>in sat solution                                                                                                              | Solid phase                                                                                      |
| -18<br>-10<br>0<br>+10<br>15<br>20<br>30<br>40<br>60<br>62<br>72<br>73<br>5<br>74<br>5<br>75<br>77<br>78<br>5 | 43 35<br>43 27<br>43 01<br>43 18<br>43 20<br>43 37<br>43 75<br>43 99<br>44 99<br>45 06<br>46 2<br>46 6<br>46 7<br>46 5<br>42 2<br>41 5<br>39 6 | Ice " CdSO <sub>4</sub> , */ <sub>3</sub> H <sub>2</sub> O " " " " " " " " " " " " " " " " " " " |
| 90                                                                                                            | 38 7                                                                                                                                           | "                                                                                                |
| 95<br>100                                                                                                     | 38 1<br>37 8                                                                                                                                   | "                                                                                                |

(Mylius and Funk, B 1897, 30 825) See also under  $CdSO_4 + 2^2/_3H_2O$ , and  $7H_2O$ 

Sp gr at 0°/4° of CdSO<sub>4</sub>+Aq containing 14 0 g CdSO<sub>4</sub> in 1000 g  $H_2O \approx 1$  0122 Sp gr at 12°/4° of CdSO<sub>4</sub>+Aq containing

14 0 g CdSO<sub>4</sub> in 100 g H<sub>2</sub>O = 1 0121 Sp gr at 12°/4° of CdSO4+Aq containing

57 2 g CdSO<sub>4</sub> m 1000 g H<sub>2</sub>O = 1 0514 Sp gr at 0°/4° of CdSO<sub>4</sub>+Aq containing 183 1 g CdSO<sub>4</sub> m 1000 g H<sub>2</sub>O = 1 1552 Sp gr at 13°/4° of CdSO<sub>4</sub> +Aq containing

183 1 g CdSO<sub>4</sub> in 1000 g  $H_2O = 1$  1529

(Fouqué, Ann Observ 1868, 9 172)

Sp gr of CdSO<sub>4</sub>+Aq at 18°

% CdSO<sub>4</sub> 1 0486 1 1026 1 0084 1 1607 Sp gr

20 25 35 % CdSO₄ 12951 3725 1 2245 1 4575 Sp gr

% CdSO4 36 Śp gr 1 4743

(Grotrian, W Ann 1883, 18 193)

Sp gr of CdSO<sub>4</sub>+Aq at room temp containing

22 011% CdSO4 7 14 14 66 1 2681 1 1591 1 0681

(Wagner, W Ann 1883, 18 268)

## Sp gr of CdSO<sub>4</sub>+Aq at 25°

| Concentration of CdSO:<br>+Aq | Sp gr                                |
|-------------------------------|--------------------------------------|
| 1-normal 1/2- " 1/4- " 1/8- " | 1 0973<br>1 0487<br>1 0244<br>1 0120 |

(Wagner, Z phys Ch 1890, 5 36)

## Sp gr of CdSO<sub>4</sub>+Aq

| % CdSO <sub>4</sub>                | t°                               | Sp gr at to        | Sp gr at 18                            |
|------------------------------------|----------------------------------|--------------------|----------------------------------------|
| 0 0289                             | 17 29<br>23 65                   | 0 99905<br>0 99776 | 0 99893                                |
| 0 0498<br>0 0999<br>0 495<br>0 981 | 18 00<br>18 00<br>18 00<br>18 00 |                    | 0 99915<br>0 99961<br>1 0034<br>1 0054 |

(Wershofen, Z phys Ch 191) 1590, **5** 

Sp gr at 16°/4° of CdSO<sub>4</sub>+Aq contuning 29 4654% CdSO<sub>4</sub>=1 36289, cont uning 21 3671% CdSO<sub>4</sub>=1 24211 (Schonrock, Z phys Ch 1893, 11 781)

Sp gr of CdSO<sub>4</sub>+Aq ut 18°/4° cont uning

 $\% \text{ CdSO}_{4}$ 25 121 15 172 Sp gr 12971 200

% CdSO<sub>4</sub> 9 952 5 639 Śp gr 1 101 1 055

(de Muynck, W Ann 1894, **53** 561)

 $CdSO_4 + Aq$  containing 13 40%  $CdSO_4$  has sp gr 20°/20° = 1 1429

CdSO<sub>4</sub>+Aq containg 16 79% CdSO<sub>4</sub> has sp gr 20°/20° = 1 1847

(Le Blanc and Rohland, Z phys Ch 1896, **19** 282)

Sp gr of CdSO<sub>4</sub> at 18 2°, when p = per centstrength of solution, d=observed denw=volume conc in grams per

0 0033 (Barnes, J phys Ch 1898, 2 543)

0 0046

0 464

Sp gr of CdSO<sub>4</sub>+Aq sat at 25° and 1 atm = 1617(Sinnige, Z phys Ch 1909, 67 518)

See also under  $CdSO_4 + 2^2/_3H_2O$ , and +4H₂O Insol in liquid NH<sub>3</sub> (Franklin, Am Ch **1**898, **20** 827)

Insol in acctone (Naumann, B 1904, 37 329), methyl acetate (Naumann, B 1909, 3790), ethyl acetate (Naumann, B 910, 43 314)

0<sub>1</sub>11+ See Mylius and Funk, under  $^{1}dSO_{4}$ 

+11/3 H O (Worobicff, Bull Soc 1896, 3) 16 1754)

+2/HO 1 pt II<sub>2</sub>() dissolves 0.59 pt nhydrous salt at 23°, and not much more on exting 5 it solution boils it 102° ipitated by ilcohol (v. Hiller)

100 g H O dissolve g (d5O<sub>4</sub> it t

| t   | ( (480) |
|-----|---------|
|     |         |
| ()  | 75 52   |
| )   | 75 65   |
| 7   | 65.73   |
| Ġ   | 7,5,    |
| 11  | 75.91   |
| 12  | 76 04   |
| is  | 76 11   |
| 16  | 76 16   |
| 17  | 70 15   |
| 15  | 76 11   |
| • • | 1       |
| 19  | 76 18   |
| 2)  | 76-79   |

Cohnstamm and Cohen, W. Ann. 1898. 65 352)

100 pts H2O dissolves at

13 7° 14 98° 15 0° 16 0° 76 06 76 09 76 14 76 18 pts anhydrous salt,

16 96° 18 0° 19 0° 25 0° 76 26 76 32 76 39 76 81 pts anhydrous salt (Steinwehr, W Ann 1902, (4) 9 1050)

100 g H<sub>2</sub>O dissolve 76 02 g CdSO<sub>4</sub> at 25° (Stortenbecker, Z phys Ch 1900, 34 109)

Solubility of CdSO<sub>4</sub>+2<sup>2</sup>/<sub>8</sub>H<sub>2</sub>O at 25° and varying pressures

| Pressure in atmospheres | G CdSO4 in 100 g H <sub>2</sub> O |
|-------------------------|-----------------------------------|
| 1                       | 76 80                             |
| 500                     | 77 85                             |
| 500                     | 78 08                             |
| 1000                    | 78 77                             |
| 1000                    | 78 68                             |

Det by another method

| Pressure in atmospheres | G CdSO4 m100 g H2O |
|-------------------------|--------------------|
| 250                     | 77 53              |
| 500                     | 78 02              |
| 750                     | 78 60              |
| 1000                    | 78 96              |

(Cohen and Sinnige Trans Farad Soc 1910, **5** 269)

Sp gr at 216°/0° of CdSO<sub>4</sub>+Aq containing 11 47%  $CdSO_4 + \frac{8}{3}H_2O = 10944$  nonnikoff, J pr 1885, (2) **31** 346)

100 g H<sub>2</sub>O dissolve 57 61 g CdSO<sub>4</sub>+10 63 g FcSO<sub>4</sub> at 25° (Stortenbecker, Z phys Ch 1900, **34** 109)

+4H<sub>2</sub>O (Lescoeur, A ch 1895, (7) 4 222)

Sp gr it 15° of CdSO<sub>4</sub>+Aq contuning 10 g CdSO<sub>4</sub>+4H O in 100 cc of solution = 1.0790, containing 20 g  $CdSO_4+4H_2O$  in 100 cc of solution = 1.1522 (li tube, J pr 1885, (2) **31** 207)

Could not be obtained (Mylius and Funk)

+7110

#### Solubility in H O

| withinity in 11 () |       |  |
|--------------------|-------|--|
| 1                  | (450) |  |
|                    | -     |  |
| 17                 | 11 15 |  |
| 16                 | 11.5  |  |
| 1.2                | 15 3  |  |
| 10                 | 16 1  |  |
| 7                  | 17 5  |  |
| 5                  | 15 5  |  |
| 1.5                | 15-7  |  |
| •                  |       |  |

(Myhus and Lunk B 1897 30 828)

Cadmium cæsium sulphate, ('dSO<sub>4</sub>, ('s<sub>2</sub>SO<sub>4</sub>+ 6HLO

Sol in H<sub>2</sub>O (1 utton, Chem Soc 63 337) 1 l HO dissolves 1399 g inhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

% CdSO<sub>4</sub>

Bismuth sodium sulphate, Bi<sub>4</sub>Na<sub>6</sub>(SO<sub>4</sub>)<sub>9</sub> (Ludecke, A 140 277)

Boron sulphate See Borosulphuric acid

Bromomolybdenum sulphate See under Bromomolybdenum compounds

Cadmium sulphate, basic, 2CdO, SO<sub>3</sub>, and  $+H_2O$ 

Difficultly sol in H<sub>2</sub>O (Stromeyer) Sl sol in hot  $H_2O$ (Habermann, M 5 432) 4CdO, SO<sub>3</sub> (Pickering, Chem Soc 1907, **91** 1987)

Cadmium sulphate, CdSO<sub>4</sub>

Sat CdSO<sub>4</sub>+Aq contains at ٥٥  $24^{\circ}$ 

10° 30° 65° **35** 9 37 5 415 42049 7% CdSO4.

86° 94° 165° 188° 130° 200° 916 277 147 71 2 3% CdSO<sub>4</sub>

CdSO<sub>4</sub> easily forms supersat solutions (Etard, A ch 1894, (7) 2 552)

### Solubility in H<sub>0</sub>O

| t°   Per cent Cd3O4   Solid phase    -18 | Solubility in 1120                                                                                                                                |                                                                                                                                      |                                                                                          |  |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| -10                                      | t°                                                                                                                                                |                                                                                                                                      | Solid phase                                                                              |  |  |
|                                          | $\begin{array}{c} -10 \\ 0 \\ +10 \\ 15 \\ 20 \\ 30 \\ 40 \\ 60 \\ 62 \\ 72 \\ 73 \\ 5 \\ 74 \\ 5 \\ 77 \\ 78 \\ 5 \\ 85 \\ 90 \\ 95 \end{array}$ | 43 27<br>43 01<br>43 18<br>43 20<br>43 37<br>43 75<br>43 99<br>45 06<br>46 2<br>46 6<br>46 5<br>42 2<br>41 5<br>39 6<br>38 7<br>38 1 | CdSO <sub>4,</sub> 8/ <sub>3</sub> H <sub>2</sub> O  " " " " " " " " " " " " " " " " " " |  |  |

(Mylius and Funk, B 1897, 30 825) See also under  $CdSO_4 + 2/_3H_2O$ , and  $7H_2O$ 

Sp gr at 0°/4° of CdSO<sub>4</sub>+Aq containing 14 0 g CdSO<sub>4</sub> in 1000 g  $H_2O = 10122$ Sp gr at 12°/4° of CdSO<sub>4</sub>+Aq containing 14 0 g CdSO<sub>4</sub> in 100 g H<sub>2</sub>O =1 0121 Sp gr at 12°/4° of CdSO<sub>4</sub>+Aq containing

57 2 g CdSO<sub>4</sub> in 1000 g H<sub>2</sub>O = 1 0514 Sp gr at 0°/4° of CdSO<sub>4</sub>+Aq containing 183 1 g CdSO<sub>4</sub> in 1000 g H<sub>2</sub>O = 1 1552 Sp gr at 13°/4° of CdSO<sub>4</sub>+Aq containing 183 1 g CdSO<sub>4</sub> in 1000 g  $H_2O = 1$  1529 (Fouqué, Ann Observ 1868, 9 172)

Sp gr of CdSO<sub>4</sub>+Aq at 18° % CdSO<sub>4</sub> 15 1 0084 1 0486  $1\ 1026$ Sp gr 1 1607

1 2245 1 295 13725Sp gr 1 4575 36

% CdSO₄ Sp gr 1 4743 (Grotrian, W Ann 1883, 18 193)

Sp gr of CdSO<sub>4</sub>+Aq at room temp containing

22 011% CdSO4 7 14 14 66 1 0681 1 1591 1 2681

(Wagner, W Ann 1883, 18 268)

# Sp gr of CdSO<sub>4</sub>+Aq at 25°

| Concentration of CdSO: +Aq       | Sp gr                                |
|----------------------------------|--------------------------------------|
| 1-normal  1/2- "  1/4- "  1/8- " | 1 0973<br>1 0487<br>1 0244<br>1 0120 |

(Wagner, Z phys Ch 1890, 5 36)

## Sp gr of CdSO₄+Aq

| % CdSO4                            | t°                               | Sp gr at to        | Sp gr at 18°                           |
|------------------------------------|----------------------------------|--------------------|----------------------------------------|
| 0 0289                             | 17 29<br>23 65                   | 0 99908<br>0 99776 | 0 99893                                |
| 0 0498<br>0 0999<br>0 495<br>0 981 | 18 00<br>18 00<br>18 00<br>18 00 |                    | 0 99915<br>0 99961<br>1 0034<br>1 0084 |

(Wershofen, Z phys Ch 1890, 5 494)

Sp gr at 16°/4° of CdSO<sub>4</sub>+Aq containing 29 4654% CdSO<sub>4</sub>=1 36289, containing 21 3671% CdSO<sub>4</sub>=1 24211 (Schonrock, Z phys Ch 1893, **11** 781) containing

Sp gr of CdSO<sub>4</sub>+Aq it 15°/4° % CdSO<sub>4</sub> 25 121 15 172

12971 200 Sp gr

% CdSO<sub>4</sub> Sp gr 9 952 5 639 1 101 1 055

(de Muynck, W Ann 1894, **53** 561)

 $CdSO_4+Aq$  containing 1340%  $CdSO_4$  has sp gr 20°/20°=11429  $CdSO_4+Aq$  containg 16.79%  $CdSO_4$  has gr  $20^\circ/20^\circ=1.1847$ 

(Le Blanc and Rohland, Z phys Ch 1896,

**19** 282)

Sp gr of CdSO<sub>4</sub> at 18 2°, when p=per cent strength of solution, d=observed density, w=volume conc in grams per  $cc\left(\frac{pd}{100} = w\right)$ 

| р                                                                                  | d                                                                                                | w                                                                                                |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 39 86<br>31 53<br>26 85<br>24 17<br>18 35<br>13 27<br>9 97<br>7 46<br>6 12<br>2 52 | 1 5639<br>1 4080<br>1 3310<br>1 2901<br>1 2084<br>1 1437<br>1 1045<br>1 0764<br>0 0619<br>0 0242 | 0 6231<br>0 4439<br>0 3574<br>0 3118<br>0 2217<br>0 1518<br>0 1102<br>0 0803<br>0 0650<br>0 0259 |
| $\begin{array}{cc} 1 & 45 \\ 0 & 464 \end{array}$                                  | 0 0132<br>0 0033                                                                                 | 0 0147<br>0 0046                                                                                 |

(Barnes, J phys Ch 1898, 2 543)

i pr of CdSO<sub>4</sub>+Aq sat at 25° and 1 atm
 317 (Smnige, Z phys Ch 1909, 67
 518)

t e also under CdSO<sub>4</sub>+2<sup>2</sup>/<sub>3</sub>H<sub>2</sub>O, and + <sup>1</sup>/<sub>2</sub>O and the leaved NH. (Franklin Ar. Ch.

l sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 98, 20 827)

l sol in acetone (Naumann, B 1904, 37 432), methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B

**19**1 **, 43** 314 )

 $H_2O$  See Mylius and Funk, under Cd  $O_4$ 

1<sup>1</sup>/<sub>3</sub> H<sub>2</sub>O (Worobieff, Bull Soc 1896,

**(3) 6** 1754 )

2<sup>2</sup>/<sub>3</sub>H<sub>2</sub>O 1 pt H<sub>2</sub>O dissolves 0.59 pt and drous salt at 23°, and not much more on her ing Sat solution boils at 102° Precip ated by alcohol (v Hauer)

100 g H<sub>2</sub>O dissolve g CdSO<sub>4</sub> at t°

| t°       | ( (dSO <sub>1</sub> |
|----------|---------------------|
| 0        | 75 52               |
| 5        | 75 65               |
| 7        | 65 73               |
| 9        | 75 85               |
| 11 5     | 75 94               |
| 13       | 76 04               |
| 15       | 76 11               |
| 16       | 76 16               |
| 17       | 76 13               |
| 18       | 76 14<br>76 18      |
| 19<br>25 | 76 18<br>76 79      |
| △')      | 70.79               |

(Kaunstamm and Cohen, W. Ann. 1898, 65, 352)

100 pts H<sub>2</sub>O dissolves at

13 7° 14 98° 15 0° 16 0° 76 06 76 09 76 14 76 18 pts anhydrous salt,

16 96° 18 0° 19 0° 25 0°

76 26 76 32 76 39 76 81 pts anhydrous salt (Steinwehr, W Ann 1902, (4) 9 1050)

 $100~\rm g~H_2O$  dissolve 76 02 g CdSO<sub>4</sub> at 25° (Stortenbecker,  $Z^*$  phys Ch 1900, 34 109 )

Solubility of  $CdSO_4+2^2/_3H_2O$  at 25° and varying pressures

| Pressure in atmospheres | G CdSO <sub>4</sub> in 100 g H <sub>2</sub> O |
|-------------------------|-----------------------------------------------|
| 1                       | 76 80                                         |
| 500                     | 77 85                                         |
| 500                     | 78 08                                         |
| 1000                    | 78 77                                         |
| 1000                    | 78 68                                         |

Det by another method

| Pressure in atmospheres | G CdSO4 m100 g H2O |
|-------------------------|--------------------|
| 250                     | 77 53              |
| 500                     | 78 02              |
| 750                     | 78 60              |
| 1000                    | 78 96              |

(Cohen and Sinnige Trans Farad Soc 1910, 5 269)

Sp gr at 21 6°/0° of CdSO<sub>4</sub>+Aq containing 11 47% CdSO<sub>4</sub>+8/<sub>3</sub>H<sub>2</sub>O=1 0944 (Kanonnkoff, J pr 1885, (2) 31 346)

100 g  $\rm H_2O$  dissolve 57 61 g  $\rm CdSO_4 + 10\,63$  g  $\rm FeSO_4$  at 25° (Stortenbecker, Z phvs Ch 1900, **34** 109)

(Lescoeur, A ch 1895, (7) 4

 $+4\mathrm{H}_2\mathrm{O}$ 

222)
Sp gr at 15° of CdSO<sub>4</sub>+Aq containing 10 g CdSO<sub>4</sub>+4H<sub>2</sub>O in 100 c c of solution = 10790, containing 20 g CdSO<sub>4</sub>+4H<sub>2</sub>O in 100 cc of solution = 11522 (Traube, J pr 1885. (2) 31 207)

Could not be obtained (Mylius and

Funk ) +7H₂O

### Solubility in H<sub>2</sub>O

| t°               | % Cd5O4       |
|------------------|---------------|
| -17              | 44 15         |
| -16              | 44 5          |
| - 12             | 45 3          |
| -10              | 16 1          |
| - 7              | 17 5          |
| _ 5              | 48 5          |
| -45              | 48 7          |
| (Madaga and Lumb | D 1607 90 (2) |

(Mylius and Funk, B 1897, **30** 828)

Cadmium cæsium sulphate,  $CdSO_4$ ,  $Cs_2SO_4 + 6H_2O$ 

Sol in  $H_2O$  (Tutton, Chem Soc 63 337) 1 l  $H_2O$  dissolves 1399 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459) Cadmium calcium potassium sulphate,  $Ca_2CdK_2(SO_4)_4+2H_2O$ (D'Ans. B 1908, 41 1778)

Cadmium cerium sulphate, CdSO<sub>4</sub>, Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> +6H<sub>2</sub>O

Sol in H<sub>2</sub>O (Wyrouboff)

Cadmium hydrazine sulphate,  $CdH_2(SO_4)_2$ ,  $2N_2H_4$ 

1 pt is sol in 202 5 pts H<sub>2</sub>O at 12° Not attacked by dil acids Easily sol in NH<sub>4</sub>OH+Aq (Curtius, J pr 1894, (2) 50 331)

Cadmium magnesium sulphate, CdSO4,  $MgSO_4+14H_2O$ 

Very efflorescent Sol in H<sub>2</sub>O (Schiff, A **104** 325)

Cadmium potassium sulphate, K<sub>2</sub>SO<sub>4</sub>, CdSO<sub>4</sub> +1½H₂O

(v Hauer, Pogg 133 176) Sol in H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve 42 50 pts anhydrous salt at 26°

100 pts H<sub>2</sub>O dissolves 42 80 pts anhydrous salt at 31°

100 pts H<sub>2</sub>O dissolve 43 45 pts anyhydrous salt at 40°

100 pts H<sub>2</sub>O dissolve 44 90 pts anyhydrous (Wyrouboff, Bull Soc Min

00 pts H<sub>2</sub>O dissolve 42 89 pts ous salt at 16°, 46 82 pts at 31°, 47 40 pts at 40° (Wyrouboff)  $+4H_2O$ Efflorescent (Wyrouboff, Bull

Soc Min 1891, 14 235) Very efflorescent, and easily +6H<sub>2</sub>Odecomp (Schiff)

Does not exist (Wyrouboff)

Cadmium rubidium sulphate, CdSO<sub>4</sub>,  $Rb_2SO_4+6H_2O$ 

Efflorescent Sol in H<sub>2</sub>O (Tutton) 1 l H<sub>2</sub>O dissolves 767 g anhydrous salt (Locke, Am Ch J 1902, 27 459)

Cadmium sodium sulphate, CdSO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>+  $2H_2O$ 

Sol in H<sub>2</sub>O (v Hauer)

Solubility of CdNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+2H O in 100 g H<sub>2</sub>O at t°

| t  | Grams CdSO <sub>4</sub> | Grams Na <sub>2</sub> SO <sub>4</sub> |
|----|-------------------------|---------------------------------------|
| 24 | 35 49                   | 24 04                                 |
| 25 | 35 88                   | 24 46                                 |
| 30 | 36 28                   | 24 605                                |
| 35 | 36 69                   | 24 99                                 |
| 40 | 37 24                   | 25 455                                |

(Koppel, Z phys Ch 1905, **52** 413) Decomp by H<sub>2</sub>O below 20 5°

Solubility of CdNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>, 2H<sub>2</sub>O+CdSO<sub>4</sub>, 8/3 H<sub>2</sub>O in 100 g H<sub>2</sub>O at t°

| t°           | Gram.<br>CdSO.          | Crams<br>Na <sub>2</sub> SO <sub>4</sub> | t°             | Grams<br>CdSO4         | Na2SO4<br>Grams        | t°       | Crams<br>CdSO4 | Grams<br>Na SO4 |
|--------------|-------------------------|------------------------------------------|----------------|------------------------|------------------------|----------|----------------|-----------------|
| 0<br>5<br>10 | 73 54<br>73 38<br>72 76 | ዓ 85<br>8 67<br>ጋ 55                     | 15<br>20<br>25 | 73 76<br>3 81<br>13 71 | 9 4°5<br>9 45<br>10 48 | 30<br>40 | 75 385         | 13 75           |

(Koppel)

Solubility of CdNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>, 2H<sub>2</sub>O+Na<sub>2</sub>SO<sub>4</sub>, 10H<sub>2</sub>O in 100 g H<sub>2</sub>O at to

| t°                                  | Grams CdSO <sub>4</sub>                                                                           | Grams Na <sub>2</sub> SO <sub>4</sub>                                                             |
|-------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| -14 8 0 5 10 12 15 19 8 20 24 25 30 | 72 68<br>66 325<br>61 78<br>55 34<br>51 615<br>46 60<br>36 13<br>36 25<br>27 82<br>25 59<br>14 62 | 8 32<br>11 625<br>12 97<br>14 785<br>15 95<br>17 99<br>22 16<br>23 52<br>29 17<br>31 06<br>44 145 |

(Koppel)

Solubility of CdNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>, 2H<sub>2</sub>O+Na<sub>2</sub>SO<sub>4</sub> (anhydrous) in 100 g H<sub>2</sub>O at t°

| t° | Grams CdSO <sub>4</sub> | Grams Na <sub>2</sub> 5O <sub>4</sub> |
|----|-------------------------|---------------------------------------|
| 35 | 13 26                   | 47 06                                 |
| 40 | 16 25                   | 46 27                                 |

(Koppel)

Cadmium sulphate ammonia, CdSO<sub>4</sub>, 6NH<sub>3</sub> Sol in H<sub>2</sub>O with separation of CdO (Rose, Pogg **20** 152)

CdSO<sub>4</sub>, 4NH<sub>3</sub>+4H<sub>2</sub>O Decomp by H<sub>2</sub>O (Malaguti and Sarzeau, A. ch. (3) 9 431) +2H<sub>2</sub>O Ppt (Andre, C R **104** 987) +21/2H<sub>2</sub>O Sol in H<sub>2</sub>O with separation of basic sulphate (Muller, A 149 70)

CdSO<sub>4</sub>, 3NH<sub>3</sub> (Isambert, C R 1870, **70** 457)

Cadmium sulphate cupric oxide, CdS()<sub>1</sub>,  $3\text{CuO} + x\text{H}_2\text{O}$ 

(Recoura, C R 1901, 132 1415)  $2CdSO_4$ , 3CuO+8HO (Mulha, A ch 1902, (7) 27 383)

+12H<sub>2</sub>O (Mailhe)

6CdSO<sub>4</sub>, 20CuO+xII<sub>2</sub>O (Recoura, C R 1901, **132** 1415)

Cadmium sulphate hydrazine, CdSO<sub>4</sub>,  $2N_2H_4$ 

Easily sol in NH4OH+Aq but cannot be cryst therefrom (Franzen, Z anorg 1908, **60** 282)

### Cadmium sulphate hydrogen chloride, 3CdSO<sub>4</sub>, 4HCl+4H<sub>2</sub>O

Very deliquescent (Baskerville and Harris, J Am Chem Soc 1901, 23 896) 3CdSO<sub>4</sub>, 8HCl Very deliquescent (Bas-

kerville and Harris)

### Cæsium sulphate, Cs<sub>2</sub>SO<sub>4</sub>

Not deliquescent 100 pts H<sub>2</sub>O dissolve 158 7 pts Cs<sub>2</sub>SO<sub>4</sub> at

100 cc H<sub>2</sub>O at 17-18° dissolve 163 5 g Cs<sub>2</sub>SO<sub>4</sub> (Tutton, Chem Soc 1894, 65

### Solubility in H<sub>0</sub>O

| t°                              | G Cs SO <sub>4</sub><br>per 100 g |                       |                                        |                  | 304                                                |                                  | to                                 |   |                                  |        | 82SO4<br>100 g                         |        | 304<br>304                                         |                                  |
|---------------------------------|-----------------------------------|-----------------------|----------------------------------------|------------------|----------------------------------------------------|----------------------------------|------------------------------------|---|----------------------------------|--------|----------------------------------------|--------|----------------------------------------------------|----------------------------------|
|                                 | Solu<br>tion                      |                       | H₂O                                    |                  | G mols<br>Cs <sub>2</sub> SO <sub>4</sub><br>per l |                                  |                                    |   | Solu<br>tion                     |        | H₂O                                    |        | G mols<br>Cs <sub>2</sub> SO <sub>4</sub><br>per l |                                  |
| 0<br>10<br>20<br>30<br>40<br>50 | 62<br>63<br>64<br>64<br>65<br>66  | 6<br>4<br>1<br>8<br>5 | 167<br>173<br>178<br>184<br>189<br>194 | 1<br>7<br>1<br>9 | 333333                                             | 42<br>49<br>56<br>62<br>68<br>73 | 60<br>70<br>80<br>90<br>100<br>108 | 6 | 66<br>67<br>67<br>68<br>68<br>69 | 728382 | 199<br>205<br>210<br>214<br>220<br>224 | 903935 |                                                    | 78<br>83<br>88<br>92<br>97<br>00 |

(Berkeley, Trans Roy Soc 1904, 203 A 210)

Solubility in Na<sub>2</sub>SO<sub>4</sub>+Aq Sat solution contains 547% Cs2SO4+ 11 45% Na<sub>2</sub>SO<sub>4</sub> at 25° (Foote, J Am Chem Soc 1911, **33** 467)

Insol in alcohol (Bunsen)

Insol in methyl acetate (Naumann, B 1909, 42 3790)

Insol in acctone (Naumann, B 1904, 37 4329), (Eidmann, C C 1899, II 1014)
Solubility in glycol at ord temp = 3 0-32%(de Coninck, Belg Acad **1905** 359)

Cæsium hydrogen sulphate, CsHSO<sub>4</sub> Sol in H<sub>2</sub>O

Cæsium purosulphate, Cs<sub>2</sub>S<sub>2</sub>O<sub>7</sub> Decomp by H<sub>2</sub>O

Cæsium o tosulphate, Cs<sub>2</sub>S<sub>8</sub>O<sub>25</sub> Decomp by H<sub>2</sub>O (Weber, B 17 2497)

Cæsium calcium sulphate, Ca<sub>2</sub>Cs<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> Very stable, (D'Ans, B 1908, 41 1776)

Cæsium chromium sulphate, Cs<sub>2</sub>Cr<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub> +24H<sub>2</sub>OMelts in crystal H<sub>2</sub>O at 116° (Locke)

Solubility in H<sub>2</sub>O

| Temp                     | G per litre                 | G mols<br>anhydrous<br>salt per l |  |  |  |  |  |  |  |
|--------------------------|-----------------------------|-----------------------------------|--|--|--|--|--|--|--|
| 25°<br>30°<br>35°<br>40° | 5 7<br>9 6<br>12 06<br>15 3 | 0 015<br>0 025<br>0 032<br>0 0405 |  |  |  |  |  |  |  |

(Locke, Am Ch J 1901, 26 180)

Cæsium cobaltous sulphate, Cs<sub>2</sub>SO<sub>4</sub>, CoSO<sub>4</sub>+  $6H_2O$ 

Sol in H<sub>2</sub>O (Tutton, Chem Soc 63 337)

1 l H<sub>2</sub>O dissolves 4188 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Cæsium cobaltic sulphate,  $Cs_2Co_2(SO_4)_4$ + 24H<sub>2</sub>O

Melts in crystal H<sub>2</sub>O at 116° (Locke. Am Ch J 1901, 26 183)

Cæsium copper sulphate, Cs<sub>2</sub>SO<sub>4</sub>, CuSO<sub>4</sub>+  $6H_2O$ Sol in H<sub>2</sub>O (Tutton)

1 l  $\rm H_2O$  dissolves 460 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Cæsium gallium sulphate, Cs<sub>2</sub>Ga<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+ 24H<sub>2</sub>Ō (Soret, Arch sc phys nat 1888, (3) 20

Cæsium indium sulphate, Cs<sub>2</sub>In<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+ 24H<sub>2</sub>O

75 7 g anhydrous (117 39 hydrated) salt or 0 172 g mols of anhydrous salt are sol in 1 l  $\rm H_2O$  at 25° (Locke, Am Ch J 1901, **26** 175)

100 pts H<sub>2</sub>O dissolve 3 04 pts at 16 5° (Chabrie and Rengade, C R 1900, **131** 1301)

Cæsium iridium sulphate, Cs<sub>2</sub>SO<sub>4</sub>,  $Ir_2(SO_4)_3 + 24HO$ 

Mpt 109-110°

531)

Very sl sol in cold More easily sol in hot H<sub>2</sub>O (Marino, Z anorg 1904, **42** 218)

Cæsium iron (ferrous) sulphate, Cs<sub>2</sub>SO<sub>4</sub>, FeSO<sub>4</sub>+6H<sub>2</sub>O

Sol in H<sub>2</sub>O (Tutton)

1 l H<sub>2</sub>O dissolves 1011 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Cæsium iron (ferric) sulphate, Cs<sub>2</sub>Fe<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub> +24H<sub>2</sub>OMelts in crystal H<sub>2</sub>O at 71° (Locke)

| S                    | Solubility in H <sub>2</sub> O |                                      |  |  |
|----------------------|--------------------------------|--------------------------------------|--|--|
| t°                   | G per litre                    | G mols<br>anhydrous salt<br>per htre |  |  |
| 25<br>30<br>35<br>40 | 17 1<br>25 2<br>37 5<br>60 4   | 0 045<br>0 066<br>0 099<br>0 156     |  |  |

(Locke, Am Ch J 1901, 26 180)

Cæsium lanthanum sulphate, Cs<sub>2</sub>SO<sub>4</sub>,  $La_2(SO_4)_3+2H_2O$ 

(Baskerville, J Am Chem Soc 1904, 26 67) 2Cs<sub>2</sub>SO<sub>4</sub>, 3La<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> (Baskerville)

Cæsium magnesium sulphate, Cs<sub>2</sub>SO<sub>4</sub>,  $MgSO_4 + 6H_2O$ 

Sol m HO (Tutton)

1 l  $H_2O$  dissolves 533 g anhydrous salt at 25° (Locke, Am Ch J 1902, **27** 459)

Cs<sub>2</sub>SO<sub>4</sub>, sulphate. Cæsium manganous  $MnSO_4 + 8H_2O$ 

Sol in H<sub>2</sub>O (Tutton)

Sol in H2O and acids with decomp

cini, Z anorg 1899, 20 14)

1 1 H<sub>2</sub>O dissolves 804 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 45

Cæsium manganic sulphate, Cs<sub>2</sub>SO<sub>4</sub>,  $Mn_2(SO_4)_3 + 24H_2O$ 

Decomp by H2O and dil acids with separation of MnO<sub>2</sub> Sol in 1 3 H<sub>2</sub>SO<sub>4</sub>+Aq and m conc HNO<sub>3</sub> Insol in acetic acid in oxalic acid+Aq (Christensen, Z anorg 1901, **27** 332)

sulphate, Cs<sub>2</sub>SO<sub>4</sub>, Cæsium neodymium  $Nd_2(SO_4)_3 + 3H_2O$ 

(Baskerville, J Am Chem Soc 1904, 26

Cæsium nickel sulphate, Cs<sub>2</sub>SO<sub>4</sub>, NiSO<sub>4</sub>+  $6H_2O$ 

Sol in H<sub>2</sub>O (Tutton) 1 l H<sub>2</sub>O dissolves 2558 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Cæsium praseodymium sulphate, Cs<sub>2</sub>SO<sub>4</sub>,  $Pr_2(SO_4)_3 + 2H_2O$ 

(Baskerville, J Am Chem Soc 1904, 26 73 +4H<sub>2</sub>O (Baskerville)

Cæsium rhodium sulphate, Cs<sub>2</sub>SO<sub>4</sub>,Rh<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>  $+24H_{2}O$ 

Sl sol in cold, sol in warm H<sub>2</sub>O, mpt 110-111° (Piccini, Z anorg 1901, 27 64) be tabulated as follows

 $CsTl(SO_4)_4+$ Cæsium thallic sulphate, 11/4H<sub>2</sub>O

(Locke, Am Ch J 1909, Hygroscopic Very sl sol in cold, easily sol ⊢3H<sub>2</sub>O in hot H<sub>2</sub>O Can be recryst from H<sub>2</sub>SO<sub>4</sub>+ Aq The recryst salt is at once decomp by H<sub>2</sub>O or 95% alcohol (Locke)

Cæsium thorium sulphate,  $Cs_2SO_4$ ,  $Th(SO_4)_2$ +  $2H_{2}O$ 

(Manuelli, Gazz ch it Sl sol in H<sub>2</sub>O 1903. **32** (2) 523)

Cæsium titanium sulphate, Cs<sub>2</sub>SO<sub>4</sub>,T<sub>12</sub>(SO<sub>4</sub>)<sub>8</sub> +24H<sub>2</sub>O

Deliquesces in the air and is decomp Sl sol in cold H<sub>2</sub>O, decomp by hot H<sub>2</sub>O (Piccini, Gazz ch it 1895, 25 542) SI sol in cold H<sub>2</sub>O, more sol in hot H<sub>2</sub>O

acidified with H2SO4 Decomp in neutral ag solution (Piccini, Z anorg 1898, 17 356)

Cæsium uranyl sulphate,  $Cs_2(UO_2)(SO_4)_2$ +  $2H_2O$ 

(de Coninck, C C 1905, As Na salt I 1306)

Cæsium vanadium sulphate,  $Cs_2V_2(SO_4)_4+$  $24H_2O$ 

771 g anhydrous (131 g hydrated) salt, or 0 0204 gr mols of the anhydrous salt are sol in 1 l H<sub>2</sub>O at 25° (Locke, Am Ch J 1901, **26** 175)

Sl sol in cold, easily sol in hot H<sub>2</sub>O (Piccini, Z anorg 1896, 11 114)

100 pts H<sub>2</sub>O dissolve 0 464 pts of the salt at 10° and sp gr of the solution at 4°/20° = 2033 More sol in hot H2O than in cold (Piccini, Z anorg 1897, 13 446)

Cæsium zinc sulphate, Cs<sub>2</sub>SO<sub>4</sub>, ZnSO<sub>4</sub>+  $6H_2O$ 

Sol in H<sub>2</sub>O (Bunsen and Kopp, Pogg **113** 337)

1 l  $\dot{H}_2O$  dissolves 3863 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 **459**)

Cæsium zirconium sulphate, Zr O<sub>3</sub>,(C<sub>3</sub>SO<sub>4</sub>)<sub>2</sub> +11H<sub>2</sub>O

Ppt (Rosenheim, B 1905, 38 515)

Calcium sulphate,  $CaSO_4$ , and  $+2H_2()$ 

The older determinations of the solubility of CaSO4 in H2O have little, but historical, value, as the solutions were usually cather non-saturated or supersaturated I hey may

A=pts H<sub>2</sub>O required for dissolving 1 pt CaSO<sub>4</sub>, and B for 1 pt CaSO<sub>4</sub>+2H<sub>2</sub>O at t°

| t°                                                                          | A                                                                               | В                                 | Authority                                                           |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------|
| Hot or cold Cold Boiling All temp (?) (?) Hot or cold Cold Hot 15-20° 12 5° | 500<br>500<br>450<br>322<br>438<br>250–300<br>578 5<br>480<br>491<br>492<br>503 | 461 5<br>380<br>388<br>388<br>397 | Fourcroy Bergmann  Lassaigne Anthon Dumas Bucholz Giese  Tipp Lecoq |

# 100 pts H<sub>2</sub>O at t° dissolve pts CaSO<sub>4</sub>

| t°                                                         | Pts<br>CaSO <sub>4</sub>                  | t°                   | Pts<br>CaSO <sub>4</sub>         | t°                    | Pts<br>CaSO <sub>4</sub>         |
|------------------------------------------------------------|-------------------------------------------|----------------------|----------------------------------|-----------------------|----------------------------------|
| $\begin{array}{c} 0 \\ 5 \\ 12 \\ 20 \\ 30 \\ \end{array}$ | 0 205<br>0 219<br>0 233<br>0 241<br>0 249 | 35<br>40<br>50<br>60 | 0 254<br>0 252<br>0 251<br>0 248 | 70<br>80<br>90<br>100 | 0 244<br>0 239<br>0 231<br>0 217 |

(Poggiale, A ch (3) 8 469)

Poggiale worked with supersat solutions (Droeze, B 10 330)

H O dissolves CaSO<sub>4</sub> most abundantly at 35° (Poggiale), at 32-41° (Marignac)

| 1 pt   | CaSO₄-   | $+2H_2O$    | dissolve | es at   |                   |
|--------|----------|-------------|----------|---------|-------------------|
| 0°     | 18°      | 24°         | 32°      | 38°     |                   |
| ın 415 | 386      | <b>3</b> 78 | 371      | 368 pts | H <sub>2</sub> O, |
| 41°    | 53°      | 72°         | 86°      | 99°     |                   |
| ın 370 | 375      | 391         | 417      | 451 pts | H <sub>2</sub> O, |
| or thy | calculat | tion) 1     | m4 am    | h (     | 7-80              |

or (by calculation) 1 pt anhydrous CaSO<sub>4</sub> dissolves it

The above nons at solutions are obtained by using a large excess of CaSO<sub>4</sub>+2H<sub>2</sub>O undissolved part retains its water of crystal-('150)4, dehydrated at 130-140°, lisition forms a supersaturated solution with HO in 10 minutes, containing 1 pt CaSO<sub>4</sub> to 110 pts II (), which soon deposits crystals dissolved part takes up its water of crystal-Ignited CuSO<sub>4</sub> dissolves very slowly in II<sub>2</sub>O, so that in 24 hours the solution cont uns 1/13 to 1/18 inhydrous CaSO4 By longer contact solution continues with formation of supersuturated solutions, which contain after 10 30 days 1/37 to 1/3 3 CaSO4, but these become normal as the unhy takes up its water of crystallisation mineral anhydrite behaves similarly water taking up 1/582 CaSO4 in 1 day, 1/861 in 40 days,

Supersaturated solutions are also obtained

and 1/457 in 8 months

by evaporation of a saturated solution By evaporation with heat, solutions are obtained containing <sup>1</sup>/<sub>308</sub> CaSO<sub>4</sub>, and in the cold with <sup>1</sup>/<sub>112</sub> CaSO<sub>4</sub>, in the solution over the separated CaSO<sub>4</sub>+2H<sub>2</sub>O Neutralising dil H<sub>2</sub>SO<sub>4</sub>+Aq with CaCO<sub>3</sub> gives a solution containing <sup>1</sup>/<sub>114</sub> CaSO<sub>4</sub>, which crystallises out partly in 24 hours, leaving <sup>1</sup>/<sub>513</sub> CaSO<sub>4</sub> dissolved

Supersaturated solutions containing <sup>1</sup>/<sub>110</sub> to <sup>1</sup>/<sub>150</sub> CaSO<sub>4</sub> deposit crystals rapidly, those under <sup>1</sup>/<sub>850</sub> do not crystallise spontaneously A solution containing <sup>1</sup>/<sub>283</sub> shows crystals in 14 days, and contains <sup>1</sup>/<sub>812</sub> in 1 month, <sup>1</sup>/<sub>446</sub> in 3 months, in spite of repeated shaking

Boiling diminishes the supersaturation without however removing it entirely (Marignac, A ch (5) 1 274)

1 pt  $CaSO_4+2H_2O$  is sol in 443 pts  $H_2O$  at 13 7°, in 447 pts  $H_2O$  at 14 2°, in 421 pts  $H_2O$  at 20 2°, in 419 pts  $H_2O$  at 21 2°, ind in 445 pts  $H_2O_3+Aq$  sat at 18 7° (Church, J B 1867 192)

Church's solutions were not sat (Droeze, B 10 330)

1000 pts  $H_2O$  dissolve 2 19 pts  $CaSO_4+2H_2O$  at 16 5°, 2 352 pts  $CaSO_4+2H_2O$  at 22° (Cossa, Gazz ch it **1873** 135)

Cossa's solutions were not saturated (Droeze)

CaSO<sub>4</sub>+2 H<sub>2</sub>O is sol in 415 pts H<sub>2</sub>O at 0°, in 412 pts H<sub>2</sub>O at 5°, in 407 pts H<sub>2</sub>O at 10°, in 398 pts H<sub>2</sub>O at 15°, in 371 pts H<sub>2</sub>O at 20°, in 365 pts H<sub>2</sub>O at 25°, in 361 pts H<sub>2</sub>O at 30°, in 359 pts H<sub>2</sub>O at 35° (Droeze, B **10** 330) Sol in 500 pts H<sub>2</sub>O at 12 5° (From Marro-

Sol in 500 pts H<sub>2</sub>O at 12 5° (From Marignac's and his own results, de Boisbaudran, A ch (5) 3 477)

CaSO<sub>4</sub> is sol in 564 5 pts  $H_2O$  at 0.8°, 506 27 pts at 14°, 472–3 pts at 32 5–38 8°, 498 73 pts at 64°, 533 92 pts at 79 6° (Raupenstrauch, M **6** 563)

According to Goldammer (C C 1888 708) H<sub>2</sub>O is fully saturated with CaSO<sub>4</sub> by shaking the finely-powdered substance 5 minutes

therewith

The following results were obtained Figures denote pts H<sub>2</sub>O in which I pt CaSO<sub>4</sub> was dissolved at t° (a) from pptd CaSO<sub>4</sub> "ipse fact," (b) from pptd CaSO<sub>4</sub> ("gehe," (c) from "glacies mariae pulv," (d) from "glacies Mariae pulv," containing less than 2H<sub>2</sub>O

| t          | a            | b              | c                                          | t   | d     |
|------------|--------------|----------------|--------------------------------------------|-----|-------|
| 0          | 561 5        | 558            | 557 5                                      | 0   | 476 5 |
| 7 5<br>15  | 526<br>497 5 | 526<br>497 5   | $\begin{vmatrix} 520 \\ 493 \end{vmatrix}$ | 20  | 436   |
| $22 \ 5$   | 481          | 481 5          | 479                                        |     |       |
| 30<br>37 5 | 475<br>463   | 475  469       | 470<br>465 5                               | 40  | 450   |
| 45         | 473 5<br>484 | 474 5<br>486 5 | 470 5<br>482                               | 60  | 476   |
| 60<br>75   | 507 5        | 508            | 503                                        | 80  | 502 5 |
| 90<br>100  | 533 5        | 530<br>557     | 534<br>534 5                               | 100 | 547   |
| 100        | 1 000        | 1001           | 004 0                                      | 100 | 011   |

Burnt gypsum easily forms supersat solutions containing nearly 1% CaSO It forms supersat solutions more readily at 0°, and that tendency decreases with increase of temp, hence figures in (d) which contained (Goldammer, C C 1888 burnt gypsum **70**8)

Calculated from electrical conductivity of CaSO<sub>4</sub>+Aq, 1 l H<sub>2</sub>O dissolves 2 07 g CaSO<sub>4</sub> at 18° (Kohlrausch and Rose, Z phys Ch

**12** 241)

The anhydrous salt varies in solubility Solubility depends (1) upon temp and time of drying, (2) upon the relative amount of salt, (3) upon time of shaking Possibly a and  $\beta$  modifications (Potilizin, C C 1894, II 515)

2 04 gr are dissolved in 1 liter of sat solution at 20° (Bottger, Z phys Ch 1903,

46 603)

At 15° and after 5 minutes shaking, the highest degree of supersaturation which can be obtained with pure sol calcium sulphate = 947 g of the anhydrous salt or  $1\overline{1}$  976 g  $CaSO_4+2H_2O$  in 1 l of  $H_2O$  (Cavazzi, (Cavazzı, C C 1905, I 1694)

Solubility of CaSO<sub>4</sub> in 100 pts H<sub>2</sub>O at high temp

| to Pt | t°                       | Pts<br>CaSO <sub>4</sub> | t°  | Pts<br>CaSO <sub>4</sub> |
|-------|--------------------------|--------------------------|-----|--------------------------|
| 0 0   | 78   175–185<br>56   240 | 0 027<br>0 018           | 250 | 0 016                    |

...den and Shenstone, Phil Trans 1884 31)

Pptn of CaSO<sub>4</sub> which has been started by heating solution to 140-150° continues even after solution has cooled (Storer)

CaSO<sub>4</sub> is completely insol in sea water or pure H<sub>2</sub>O at temperatures between 140° and

150° (Cousté)

Solubility of CaSO<sub>4</sub> in sea water at temperatures over 100° t° = temp , P = pressure in atmospheres, % = per cent CaSO<sub>4</sub> in sat solution

| t°                                                       | P                                           | %                                                           | t                                                | P                                   | %                                                  |
|----------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-------------------------------------|----------------------------------------------------|
| 103<br>103 8<br>105 15<br>108 6<br>111<br>113 2<br>115 8 | 1<br>1<br>1<br>1 25<br>1 25<br>1 25<br>1 50 | 0 500<br>0 477<br>0 432<br>0 395<br>0 355<br>0 310<br>0 267 | 118 5<br>121 2<br>124<br>127 9<br>130 °<br>133 3 | 1 50<br>1 5<br>2<br>2<br>2 5<br>2 5 | 0 226<br>0 183<br>0 140<br>0 097<br>0 060<br>0 023 |

(Cousté, Ann Min (5) 5 80)

Solubility of CaSO<sub>4</sub> in H<sub>2</sub>O at various pressures

100 g sat CaSO<sub>4</sub>+Aq at 1 atmos pressure and 15° contain 0 206 g CaSO<sub>4</sub>, at 20 atmos pressure and 15° contain 0 227 g CaSO4, at 1 atmos pressure and 162° contain 0213 g CaSO<sub>4</sub> (Moller, Pogg 117 386)

Soluble anhudrite

1 l H<sub>2</sub>O dissolves 22 8 milliequivalents at 100°

 $^{1}$  l  $\,\rm{H_{2}O}$  cussolves  $\,6\,4\,$  milliequivalents at  $156\,^{\circ}$ 

Anhydrite

1 l H<sub>2</sub>O dissolves 9 2 milliequivalents at 100°

1 l H<sub>2</sub>O dissolves 27 milliequivalents at 156° 1 l H<sub>2</sub>O dissolves 07 milliequivalents at

218° (Melcher, J Am Chem Soc 1910, 32 63)

See also under gypsum, p 953 Maximum solubility is at 37 5° (Cameron, J phys Chem 1901, 5 572) Sp gr of sat CaSO<sub>4</sub>+Aq at 15°=1 0022

(Stolba, J pr 97 503)

Sp gr of sat  $CaSO_4+Aq$  at  $31^\circ=10031$ 1 pt CaSO<sub>4</sub> is sol in 218 pts H<sub>2</sub>O containing CO<sub>2</sub> (Beyer, Arch Pharm (2) 150 193) Sl sol in cold HCl+Aq, completely sol in

boiling dil HCl or HNO, +Aq (Rose, Pogg **95** 108)

Solubility of CaSO4 in HCl+Aa

| t°                         | % HCl                        | 100 ccm<br>dissolve g<br>of CaSO <sub>4</sub> | t°                      | % нсі                        | 100 ccm<br>dissolve g<br>of CaSO <sub>4</sub> |
|----------------------------|------------------------------|-----------------------------------------------|-------------------------|------------------------------|-----------------------------------------------|
| 25<br>25<br>25<br>25<br>25 | 0 77<br>1 56<br>3 06<br>4 70 | 0 6405<br>0 8821<br>1 2639<br>1 5342          | 25<br>101<br>102<br>103 | 6 12<br>0 77<br>3 06<br>6 12 | 1 6539<br>1 1209<br>3 1780<br>4 6902          |

(Lunge, J Soc Chem Ind 4 31)

Solubility in HNO<sub>3</sub>+Aq at 25°

| g HNO <sub>3</sub>    | g CaSO4 per                           | g HNO <sub>3</sub> | g CaSO <sub>4</sub> per      |
|-----------------------|---------------------------------------|--------------------|------------------------------|
| pr100 cc              | 100 cc solution                       | per 100 cc         | 100 cc solutio               |
| 0<br>1<br>2<br>3<br>4 | 0 208<br>0 56<br>0 82<br>1 02<br>1 20 | 6<br>8<br>10<br>12 | 1 48<br>1 70<br>1 84<br>1 98 |

(Banthisch, J pr 1884, 29 52) For solubility in H<sub>2</sub>SO<sub>4</sub> see CaH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> Solubility in H<sub>3</sub>PO<sub>4</sub>+Aq at 25°

G CaSO<sub>4</sub> per l G P2Os per l ر 2/°د2 Sp gr 2 2 126 0 0 5 0 3 138 1 002 10 5 3 734 1 007 21 4 4 456 1 016 5 760 1 035 46 3 105 3 7 318 1 075 145 1 7 920 1 106 204 9 8 383 1 145 312 0 7 965 1 221 1 230 6 848 395 7

5 573 (Taber, J phys Chem 1906, 10 628)

1 344

Solubility in formic acid at 25°

494 6

100 cc of solution of acid containing 4%

dissolve 024 g CaSO<sub>4</sub> (Banthisch, J pr 1884, **29** 52)

Solubility of CaSO4 in chloracetic acid at 25° 100 cc of solution of acid containing

4% dissolve 0 22 g CaSO<sub>4</sub>, 10%, 0 25 g (Banthisch, J pr 1884, 29 52)
Solubility in H<sub>2</sub>O is increased by presence of NH<sub>4</sub>Cl (Vogel, J pr 1 196), ammonium succinate (Wittstein, Repert 57 18), (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>B<sub>4</sub>O<sub>7</sub> (Popp, A Suppl 8 11), also KNO<sub>3</sub> (Vogel, Jun), Na<sub>2</sub>SO<sub>4</sub> (Henry, J Pharm 12 31), NaCl (Trommsdorf, N J Pharm 18, 1 234)

Decomp by alkali carbonates +Aq

Storer's Dict )

1 g CaSO<sub>4</sub> is sol in 162 ccm sat KCl+Aq at 8°, in 147 ccm sat NaCl+Aq at 8 5°, in 93 ccm sat NH<sub>4</sub>Cl+Aq at 12 5°, in 94 ccm sat KNO<sub>8</sub>+Aq, in 92 ccm sat NaNO<sub>8</sub>+Aq, m 320 ccm sat NH<sub>4</sub>NO<sub>3</sub>+Aq, m 54 ccm 2/9 sat NH4NO8+Aq, in about 2000 ccm sat K<sub>2</sub>SO<sub>4</sub>+Aq (Droeze) More sol in Fe<sub>2</sub>Cl<sub>6</sub>, Cr<sub>2</sub>Cl<sub>6</sub>, CuCl<sub>2</sub>, ZnCl<sub>2</sub>+

Aq than in H<sub>2</sub>O, but not more sol in CaCl<sub>2</sub>+

Aq (Gladstone) NH₄Cl+Aq

1 g CaSO<sub>4</sub> is sol in 92 ccm sat NH<sub>4</sub>Cl+ Aq at 13 5°, in 94 ccm  $^{1}/_{2}$  sat NH<sub>4</sub>Cl+Aq at 13 5-15 5°, in 200 ccm  $^{1}/_{5}$  sat NH<sub>4</sub>Cl+Aq at 13 5°, in 183 ccm  $^{1}/_{5}$  sat NH<sub>4</sub>Cl+Aq at 100° (Fassbender, B 9 1360)

Solubility of CaSO<sub>4</sub> in 25% NH<sub>4</sub>Cl+Aq

| t°                 | % CaSO <sub>4</sub>              | t°              | % CaSO <sub>4</sub>     |
|--------------------|----------------------------------|-----------------|-------------------------|
| 8<br>9<br>25<br>39 | 1 030<br>1 023<br>1 096<br>1 126 | 60<br>80<br>120 | 1 333<br>1 026<br>1 000 |

(Tilden and Shenstone, Roy boc **38** 335)

Solubility in NH<sub>4</sub>Cl+Aq increases with percentage of NH<sub>4</sub>Cl, but if solution contains more than 60 g NH<sub>4</sub>Cl per l more CaO dissolves than SO<sub>3</sub> With 333 g NH<sub>4</sub>Cl per l, the solution contains 49 g SO<sub>3</sub> and 44 g CaO, while the SO<sub>3</sub> content requires only 34 g CaO (Ditte, C R 1898, 126 694)

Solubility of CaSO<sub>4</sub> in NH<sub>4</sub>Cl+Aq at 25°

| DOTAINITE OF CHANAI                | 1 11114O1   11q at 20             |
|------------------------------------|-----------------------------------|
| Crams NH <sub>4</sub> Cl per liter | Grams CaSO <sub>4</sub> per liter |
| 10 8                               | 3 90                              |
| 24 4                               | 5 38                              |
| 46 7                               | 7 07                              |
| 94 5                               | 8 80                              |
| 149 7                              | 10 30                             |
| 198 6                              | 10 85                             |
| 210 0                              | 10 88                             |
| 275 0                              | 10 60                             |
| 325 0                              | 9 40                              |
| 375 3 (saturated)                  | 7 38                              |

(Cameron and Brown, J phys Chem 1905, 9 211)

## CaCl<sub>2</sub>+Aq

Solubility of CaSO<sub>4</sub> in CaCl<sub>2</sub>+Aq at t°

| t° | %<br>CaCl2 | 100 ccm<br>dissolve<br>g of<br>CaSO <sub>4</sub> | t°    | %<br>CaCl2 | 100 ccm.<br>dissolve<br>g of<br>CaSO4 |
|----|------------|--------------------------------------------------|-------|------------|---------------------------------------|
| 23 | 3 54       | 0 1225                                           | 25    | 16 91      | 0 0702                                |
| 24 | 6 94       | 0 0963                                           | 101 0 | 3 54       | 0 1370                                |
| 25 | 10 36      | 0 0886                                           | 102 5 | 10 36      | 0 1426                                |
| 25 | 15 90      | 0 0734                                           | 103 5 | 16 91      | 0 1301                                |

(Lunge, l c)

Solubility of CaSO<sub>4</sub> in H<sub>2</sub>O containing various amts of CaCl<sub>2</sub> at 20° 100 pts H<sub>2</sub>O containing pts CaCl<sub>2</sub> dissolve pts CaSO<sub>4</sub>

| Pts CaCl <sub>2</sub> | Pts CaSO <sub>4</sub> | Pts CaCl <sub>2</sub> | Pts CaSO4 |
|-----------------------|-----------------------|-----------------------|-----------|
| 0 00                  | 0 225                 | 19 80                 | 0 041     |
| 11 50                 | 0 078                 | 51 00                 | 0 000     |
| 14 39                 | 0 063                 | 67 05                 | 0 000     |

(Tilden and Shenstone)

Solubility of CaSO<sub>4</sub> in CaCl<sub>2</sub>+Aq at t°

| - | t                    | CaCl <sub>2</sub>                | CaSO <sub>4</sub>                | t                       | %<br>CaCl₂ | %<br>CaSO4                       |
|---|----------------------|----------------------------------|----------------------------------|-------------------------|------------|----------------------------------|
|   | 15<br>21<br>39<br>72 | 15 00<br>14 70<br>15 00<br>14 90 | 0 063<br>0 068<br>0 091<br>0 100 | 94<br>138<br>170<br>195 | 14 70      | 0 110<br>0 071<br>0 031<br>0 022 |

(Tilden and Shenstone, l c)

# Solubility in CaCl<sub>2</sub>+Aq at 25°

| g per l of solution                     |                                      | g per l of solution                          |                                      |  |
|-----------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--|
| CaCl                                    | CaSO <sub>4</sub>                    | CaCl <sub>2</sub>                            | CaSO <sub>4</sub>                    |  |
| 0 00<br>7 49<br>11 96<br>25 77<br>32 05 | 2 06<br>1 24<br>1 18<br>1 10<br>1 08 | 51 53<br>97 02<br>192 71<br>280 30<br>367 85 | 1 02<br>0 84<br>0 47<br>0 20<br>0 03 |  |

(Cimeron and Seidell, J. phys. Ch. 1901, 5 643)

dissolve 211)

| G CaSO <sub>4</sub><br>per l                                                                           | G CaO<br>per l                                                                                         | Solid phase                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 0<br>0 391<br>0 666<br>0 955<br>1 214<br>1 588<br>1 634<br>1 722<br>1 853<br>1 918<br>2 030<br>2 126 | 1 166<br>1 141<br>1 150<br>1 215<br>1 242<br>1 222<br>0 939<br>0 611<br>0 349<br>0 176<br>0 062<br>0 0 | Ca(OH) <sub>2</sub> ""  ""  Ca(OH) <sub>2</sub> and CaSO <sub>4</sub> , 2H <sub>2</sub> O  CaSO <sub>4</sub> , 2H <sub>2</sub> O  ""  ""  ""  "" |

(Cameron and Bell, J Am Chem Soc 1906, **28** 1221 )

MgCl<sub>2</sub>+Aq Sol in 324 pts MgCl<sub>2</sub>+Aq (34 1% MgCl<sub>2</sub>) (Karsten)

1 g CaSO<sub>4</sub> is sol in 146 ccm <sup>1</sup>/<sub>9</sub> sat MgCl<sub>2</sub>

+Aq at 13 5° (Fassbender) 1 l  $^{1}$ /<sub>9</sub> sat MgCl<sub>2</sub>+Aq dissolves 6 83 g CaSO<sub>4</sub>+2H<sub>2</sub>O at 13 5° (Droeze)

Solubility of CaSO<sub>4</sub> in MgCl<sub>2</sub>+Aq

| t  | % MgCl <sub>2</sub> | % CaSO4 |
|----|---------------------|---------|
| 9  | 19 7                | 0 765   |
| 39 | 11 1                | 2 744   |
| 80 | 9 99                | 1 038   |

(Tilden and Shenstone, l c)

Solubility in MgCl<sub>2</sub>+Aq at 26°

| g per l of solution           |                              |                  | g per                              | l of sol                     | ution                            |
|-------------------------------|------------------------------|------------------|------------------------------------|------------------------------|----------------------------------|
| MgCla                         | CaSO <sub>4</sub>            | H <sub>2</sub> O | MgCl2                              | CaSO <sub>4</sub>            | H <sub>2</sub> O                 |
| 0 0<br>8 50<br>19 18<br>46 64 | 2 08<br>4 26<br>5 69<br>7 59 | 994 5            | 121 38<br>206 98<br>337 0<br>441 0 | 8 62<br>6 57<br>2 77<br>1 39 | 972 2<br>949 9<br>908 7<br>878 6 |

(Cameron and Seidell, J phys Ch 1901, **5** 645)

1 l sat MgCl $_2$ +Aq at 25° containing 476 5 g MgCl $_2$  dissolves 1 09 g CaSO $_4$  (Cameron and Brown, J phys Ch 1905, 9 214)  $NH_4NO_3+Aq$ 

1~g CaSO  $_4$  is sol in 320 ccm sat NH  $_4{\rm NO}_3$  +Aq at 8–9°, in 54 ccm  $^2/_9$  sat NH  $_4{\rm NO}_3$  + Aq at 13 5°, in 103 ccm 2/27 sat NH4NO3+Aq at 13 5° (Fassbender)

 $\begin{array}{ccc} \text{CaSO}_4 & \text{in} & \text{NH}_4 \text{NO}_8 + \text{Aq} \\ 25^{\circ} & \end{array}$ Solubility of

| G NH₄NO₃ per l                                                                                       | G CaSO4 per l                                                                                                       |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 10<br>25<br>55<br>100<br>150<br>200<br>300<br>400<br>550<br>750<br>1000<br>1200<br>1400<br>saturated | 3 18<br>3 93<br>5 80<br>7 65<br>8 88<br>9 85<br>10 80<br>11 40<br>12 02<br>12 20<br>11 81<br>11 10<br>10 02<br>7 55 |
|                                                                                                      | , 55                                                                                                                |

(Cameron and Brown, J phys Chem 1905, 9 213)

 $Ca(NO_3)_2 + Aq$ Solubility of CaSO<sub>4</sub> in Ca(NO<sub>3</sub>)<sub>2</sub>+Aq at

| Weight of 1000 cc | G                                       | G                       |
|-------------------|-----------------------------------------|-------------------------|
| of solution       | Ca(NO <sub>3</sub> ) <sub>2</sub> per l | CaSO <sub>4</sub> per l |
| 998 1             | 0                                       | 2 084                   |
| 1013 8            | 25                                      | 1 238                   |
| 1031 7            | 50                                      | 1 196                   |
| 1067 3            | 100                                     | 1 134                   |
| 1136 9            | 200                                     | 0 929                   |
| 1203 5            | 300                                     | 0 759                   |
| 1265 6            | 400                                     | 0 569                   |
| 1328 1            | 500                                     | 0 403                   |
| 1352 0            | 544                                     | 0 346                   |

(Seidell and Smith, J phys Chem 1904, 8 498)

 $Mg(NO_3)_2+Aq$ Solubility of CaSO<sub>4</sub> in Mg(NO<sub>3</sub>)<sub>2</sub>+Aq it

| Weight of 1000 cc | G Mg(NO <sub>3</sub> ) <sub>2</sub> | G Cas(); |
|-------------------|-------------------------------------|----------|
| of solution grams | per l                               | per l    |
| 998 1             | 0                                   | 2 054    |
| 1020 5            | 25                                  | 5 772    |
| 1039 8            | 50                                  | 7 884    |
| 1078 6            | 100                                 | 9 920    |
| 1149 8            | 200                                 | 15 340   |
| 1219 0            | 300                                 | 14 000   |
| 1282 1            | 400                                 | 14 683   |
| 1355 3            | 514                                 | 15 ()4() |
|                   |                                     |          |

(Seidell and Smith, J. phys. Chem. 1904. 8 497)

1 l sat Mg(NO<sub>3</sub>)<sub>2</sub>+Aq at 25° containing 615 l g Mg(NO<sub>3</sub>)<sub>2</sub> dissolves 15 26 g CaSO<sub>4</sub> (Cameron and Brown, J phys Ch 1905, 9 214)

KNO<sub>3</sub>+Aq

1 g CaSO<sub>4</sub> is sol in 94 ccm sat KNO<sub>2</sub>+Aq at 13 5°, in 82 ccm sat KNO<sub>2</sub>+Aq at 15 5°, in 68 ccm nearly sat KNO<sub>2</sub>+Aq at 20° (Fassbender)

Solubility in KNO<sub>3</sub>+Aq at 25°

| Wt of 1000 ccm<br>of solution grams                                         | G KNOs<br>per l                                                 | G CaSO4<br>per l                                                               |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|
| 998 1<br>1008 1<br>1015 4<br>1032 1<br>1062 5<br>1092 4<br>1122 4<br>1153 9 | 0 0<br>12 5<br>25 0<br>50 0<br>100 0<br>150 0<br>200 0<br>260 0 | 2 084<br>3 284<br>4 080<br>5 255<br>6 855<br>7 907<br>8 688<br>6 278<br>12 112 |

 $^a$  Probably due to formation of double salt of calcium and potassium sulphates,  $CaK_{\circ}(SO_4)_2 + H_2O$ 

(Seidell and Smith, J phys Chem 1908 8 496)

NaNO<sub>3</sub>+Aq

1 g CaSO<sub>4</sub> is sol in 92 ccm sat NaNO<sub>5</sub>+Aq at 85°, in 318 ccm ½ sat NaNO<sub>5</sub>+Aq at 135° (Fassbender)

100 ccm sat NaNO<sub>3</sub>+Aq dissolve 1 086 g CaSO<sub>4</sub>+2H<sub>2</sub>O, 100 ccm  $^{1}$ /<sub>8</sub> sat NaNO<sub>3</sub>+Aq dissolve 0 314 g CaSO<sub>4</sub>+2H<sub>2</sub>O (Droeze, B 10 338)

Solubility in NaNO<sub>3</sub>+Aq at 25°

| Wt of 1000 ccm         G NaNO <sub>3</sub> per l         G CasO per l           998 1         0         2 084                                           |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 000 1 0 2 004                                                                                                                                           | 4 |
| 998 1 0 2 064<br>1016 3 25 4 255<br>1034 0 50 5 500<br>1058 4 100 7 100<br>1133 6 200 8 790<br>1191 6 300 9 282<br>1363 9 600 7 886<br>1390 4 655 7 238 |   |

(Seidell and Smith, J phys Chem 1904, 8 495)

1 l sat NaNO<sub>3</sub>+Aq at 25°, containing 668 4 g NaNO<sub>3</sub>, dissolves 5 52 g CaSO<sub>4</sub> (Cameron and Brown, J phys Ch 1905, **9** 214)

Solubility in KBr+Aq at 21°

| G KBi                           | ( (150)                                 | G KBr                           | G CasOrperl                             |
|---------------------------------|-----------------------------------------|---------------------------------|-----------------------------------------|
| per l                           | per l                                   | per l                           |                                         |
| 0<br>10<br>20<br>40<br>60<br>80 | 2 05<br>3 1<br>3 6<br>4 5<br>5 2<br>5 9 | 100<br>125<br>150<br>200<br>250 | 6 3<br>6 7<br>7 0<br>7 3<br>Double salt |

(Ditte, A ch 1898, (7) 14 294)

KCl+Aq 1 g CaSO<sub>4</sub> is sol in 162 ccm sat KCl+Aq at 8°, in 295 ccm  $^{1}/_{5}$  sat KCl+Aq at 9°

Solubility in KCl+Aq at 21°

| gr                  | er l                      |                        | g per l                          |
|---------------------|---------------------------|------------------------|----------------------------------|
| KCl                 | CaSO <sub>4</sub>         | KCl                    | CaSO <sub>4</sub>                |
| 0<br>10<br>20<br>40 | 2 05<br>3 6<br>4 5<br>5 8 | 60<br>80<br>100<br>125 | 6 6<br>7 2<br>7 5<br>Double Salt |

(Ditte, A ch 1898, (7) 14 294

#### Solubility in KI+Aq at 21°

| G KI<br>per l | G CaSO <sub>4</sub> | G KI<br>per l | G CaSO <sub>4</sub> per l |
|---------------|---------------------|---------------|---------------------------|
| 0             | 2 05                | 100           | 5 1                       |
| 10            | 2 8                 | 125           | 5 45                      |
| 20            | 3 2                 | 150           | 5 8                       |
| 40            | 3 9                 | 200           | 5 95                      |
| 60            | 4 5                 | 250           | 6 00                      |
| 80            | 4 85                | 300           | Double salt               |

(Ditte, l c)

NaCl+Aq

Sol in 122 pts sat NaCl+Aq (Anthon)
Insol in sat NaCl+Aq, but more sol in
dil NaCl+Aq than in H<sub>2</sub>O Maximum
solubility in NaCl+Aq is when the sp gr is
1 033

1 g CaSO<sub>4</sub> is sol in 147 ccm of sat NaCl+Aq at 8 5°, in 150 ccm of sat NaCl+Aq at 13 5° in 149 ccm of  $^{1}/_{3}$  sat NaCl+Aq at 13 5° in 244 ccm of  $^{1}/_{5}$  sat NaCl+Aq at 13 5° (Fassbender)

100 ccm sat NaCl+Aq dissolve 0 6785 g CiSO<sub>4</sub>+2H<sub>2</sub>O it 8 5°, 0 6065 g CaSO<sub>4</sub>+2H O at 13 5° 100 ccm <sup>1</sup>/<sub>3</sub> sit NiCl+Aq dissolve 0 671 g CiSO<sub>4</sub>+2H O it 13 5°, <sup>1</sup>/<sub>5</sub> sit NiCl+Aq dissolve 0 4085 g CiSO<sub>4</sub>+2H O at 13 5° (Droελ)

# Solubility of CaSO<sub>4</sub> in N<sub>1</sub>Cl+Aq it t°

| t                           | NaCl           | C\$04                                         | t                               | Na(1                                      | (a504                   |
|-----------------------------|----------------|-----------------------------------------------|---------------------------------|-------------------------------------------|-------------------------|
| 20<br>44<br>67<br>85<br>101 | 19 95<br>19 90 | 0 \$25<br>0 \$50<br>0 \$32<br>0 \$25<br>0 682 | 130<br>165<br>169<br>179<br>225 | 19 92<br>20 04<br>20 05<br>20 10<br>21 00 | 0 250<br>0 244<br>0 229 |
| 75.11                       |                | O1 .                                          |                                 |                                           |                         |

(Tilden and Shenstone, Roy Soc Proc 38 331) 18

17 46 0 6299

| Solubility of CaSO <sub>4</sub> in NaCl+Aq at t |           |                                                  |       |               |                                                  |  |
|-------------------------------------------------|-----------|--------------------------------------------------|-------|---------------|--------------------------------------------------|--|
| t°                                              | %<br>NaCi | 100 ccm<br>dissolve<br>g of<br>CaSO <sub>4</sub> | t°    | %<br>NaCl     | 100 ccm<br>dissolve<br>g of<br>CaSO <sub>4</sub> |  |
| 21 5<br>19 5<br>21                              |           | 0 5115<br>0 6429<br>0 7215                       | 101 0 | 17 46<br>3 53 | 0 7369<br>0 4891                                 |  |

(Lunge, J Soc Chem Ind 4 31)

14 18 |0 7340|| 103

100 pts H<sub>2</sub>O containing pts NaCl dissolve pts CaSO<sub>4</sub> at 20°

| Pts  | Pts               | Pts   | Pts               | Pts                     | Pts               |
|------|-------------------|-------|-------------------|-------------------------|-------------------|
| NaCl | CaSO <sub>4</sub> | NaCl  | CaSO <sub>4</sub> | NaCl                    | CaSO <sub>4</sub> |
| 0 52 | 0 441             | 10 00 | 7 38              | 24 40<br>35 10<br>35 86 | 0 734             |

(Tilden and Shenstone)

Solubility in NaCl+Aq at 26°

| g per l |                              | wt of 1 cc                          | g pe                                 | wt of                        |                                      |
|---------|------------------------------|-------------------------------------|--------------------------------------|------------------------------|--------------------------------------|
| NaCl    | CaSO <sub>4</sub>            | solution                            | NaCl                                 | CaSO <sub>4</sub>            | solution                             |
|         | 2 12<br>6 66<br>7 18<br>7 16 | 0 9998<br>1 0644<br>1 0981<br>1 012 | 176 50<br>228 76<br>264 17<br>320 49 | 7 12<br>6 79<br>6 50<br>5 72 | 1 1196<br>1 1488<br>1 1707<br>1 2034 |

(Cameron, J phys Ch 1901, 5 556)

Solubility in NaCl+Aq at 15°

| G CaSO <sub>4</sub> per l | G NaCl per l |
|---------------------------|--------------|
| 2 3                       | 0 6          |
| 2 5                       | 1 1          |
| 3 1                       | 5 1          |
| 3 7                       | 10 6         |
| 4 8                       | 31 1         |
| 5 6                       | 51 4         |
| 7 4                       | 139 9        |

(Cameron, J phys Ch 1901, 5 559)

Solubility in NaCl+Aq at 26°

| NaCl in 100 g H <sub>2</sub> O | CaSO <sub>4</sub> in 100 g H <sub>2</sub> O |
|--------------------------------|---------------------------------------------|
| 0 0000                         | 0 2126                                      |
| 9 4307                         | 0 6886                                      |
| 15 2056                        | 0 7581                                      |
| 15 6859                        | 0 7575                                      |
| 18 8570                        | 0 7605                                      |
| 25 0478                        | 0 7439                                      |
| 29 3509                        | 0 7219                                      |
| 36 5343                        | 0 6515                                      |

(Cameron, J phys Ch 1901, 5 564)

Solubility in NaCl+Aq

| 30                                                    | ) <b>°</b>                                    | 52                                                                  | So.                                                         | 70                                            | )°                                     | 82                           | jo                                                                   |
|-------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------|----------------------------------------------------------------------|
| G NaCl<br>per l                                       | G CaSO <sub>4</sub>                           | G NaCl<br>per l                                                     | G CaSO <sub>4</sub><br>per l                                | G NaCl<br>per l                               | G CaSO <sub>4</sub><br>per l           | G NaCl<br>per l              | G CaSO <sub>4</sub><br>per l                                         |
| 0 5<br>10 3<br>30 3<br>47 3<br>73 4<br>126 9<br>192 4 | 2 5<br>3 6<br>5 0<br>6 1<br>6 9<br>7 3<br>7 7 | 0 5<br>1 1<br>5 0<br>10 1<br>29 6<br>48 3<br>75 7<br>131 6<br>195 9 | 2 3<br>2 4<br>2 9<br>3 5<br>5 0<br>5 8<br>6 6<br>7 1<br>7 4 | 0 5<br>10 0<br>29 6<br>48 8<br>132 7<br>195 0 | 2 2<br>3 4<br>4 9<br>5 8<br>7 4<br>7 6 | 10 1<br>29 5<br>48 8<br>74 9 | 2 07<br>2 18<br>2 65<br>3 30<br>4 68<br>5 54<br>6 23<br>7 00<br>7 15 |
| (Compros I share Ch 1001 5 569)                       |                                               |                                                                     |                                                             |                                               |                                        |                              |                                                                      |

(Cameron, J phys Ch 1901, 5 562)

1 l sat NaCl+Aq at 25° containing 318 3 g NaCl dissolves 5.52 g CaSO<sub>4</sub> (Cameron and Brown, J phys Ch 1905, 9 214)

Solubility in NaCl+Aq

| at 14°     at 20       0 0     1 70     2 10       2 925     2 32     2 70       5 850     2 79     3 10       11 70     3 41     3 75       14 62     3 68     4 00                                                                                                                                                                                                                                                                                                                                                                                       | G anhydrous CaSO4 dissolved<br>per litre |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|
| 2 925   2 32   2 70<br>5 850   2 79   3 19<br>11 70   3 41   3 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ٥٥                                       |  |  |  |
| 29     25     4     40     4     77       58     50     5     72     6     00       87     75     6     58     6     85       102     3     6     90     7     15       117     0     7     10     7     30       131     6     7     20     7     30       146     2     7     10     7     13       160     8     7     00     7     05       175     6     6     80     0     50       204     7     6     30     6     30       234     0     5     90     5     90       263     2     5     50     5     5       292     6     5     30     5     30 | 555))))                                  |  |  |  |

(d'Anselme, Bull Soc 1903, (3) 29 373)

Solubility in NiCl+Aq

|                                                                     | - 11 JOI   Mq                                                             |
|---------------------------------------------------------------------|---------------------------------------------------------------------------|
| G NaCl in<br>100 cc solution                                        | ( CaS()1+211 ()                                                           |
| 0 00<br>2 44 g<br>4 77 g<br>9 50 g<br>14 22 g<br>23 15 g<br>31 30 g | 0 200 g<br>0 635 g<br>0 636 g<br>1 056 g<br>1 193 g<br>1 275 g<br>1 583 g |

(Cloez, Bull Soc 1903, (3) 29 167)

### Solubility in NaCl+Aq at t°

When a sat solution of NaCl is shaken with a mixture of solid NaCl and CaSO4+ 2H<sub>2</sub>O, the calcium sulphate dissolved, calculated from the amount of CaO in solution, is always greater than that calculated from the sulphuric acid in solution Similar results are obtained when solid calcium sulphate alone is shaken with a sat solution of NaCl

|                                                                          | In 100 g of the solution                                                                                             |                                                                                                            |                                                                                                                      |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| t°                                                                       | Cl                                                                                                                   | CaSO <sub>4</sub> calc<br>from CaO                                                                         | CaSO4 calc<br>from SO2                                                                                               |  |
| 0<br>10<br>25<br>40<br>50<br>60<br>62<br>5<br>65<br>71<br>75<br>85<br>99 | 15 253<br>15 920<br>15 967<br>16 123<br>16 270<br>16 324<br>16 361<br>16 459<br>16 486<br>16 524<br>16 670<br>17 128 | 0 4464<br>0 4477<br>0 4609<br>0 4938<br>0 5093<br>0 5305<br>0 5435<br>0 5578<br>0 5603<br>0 5399<br>0 4066 | 0 4334<br>0 4426<br>0 4542<br>0 4730<br>0 4832<br>0 5047<br>0 5091<br>0 3749<br>0 3631<br>0 3587<br>0 3519<br>0 3414 |  |

(Arth, Bull Soc 1906, (3) 35 780)

Within a temp range from 25°-80° CaSO<sub>4</sub> CaSO<sub>4</sub> forms no double salt in solutions of NaCl At any concentration with respect to the latter maximum solubility occurs with 155 g NaCl per l and amounts to 73 g CaSO4 at 80° (Cameron, J phys Chem 1907, 11 496)

See also under Gypsum, p 653

Solubility of CaSO<sub>4</sub> in NaCl+Aq in contact with solid Ca(HCO<sub>3</sub>)<sub>2</sub>

| ( CaSO <sub>4</sub> per l | ( (a(HCO <sub>3</sub> ) <sub>2</sub> per l | G NaCl<br>per l    |
|---------------------------|--------------------------------------------|--------------------|
| 1 9298                    | 0.0603                                     | 0 000              |
| 2 7200<br>3 4460          | 0 0724                                     | る 628<br>11 490    |
| 5 1560                    | 0 1006                                     | 39 620             |
| 6 1240<br>5 2720          | 0 0603                                     | 79 520<br>121 900  |
| 4 7560<br>4 4620          | 0 0482 0 0402                              | 193 800<br>267 600 |

(Cimeron and Scidell J phys Chem 1901, **5** (53)

(NII<sub>1</sub>) SO<sub>4</sub>+ \q

Sol in 287 pts  $(NH_4)_2SO_4+Aq$  (1.4) (Ire emus, Z in il 30 593)

1 5 ('15O4 15 501 in 327 ccm (NH4)25O4 + \q \tau t 9° \text{ in 369 (cm \frac{1}{7} \sit (NH<sub>4</sub>)2SO<sub>4</sub>+ \q \tau t 13 5° (l' \text{ ussbender})

Solubility in sat  $(NH_4)_2SO_4$ , or  $Na_2SO_4$  is the same as in  $H_2O$  (Droeze, B 10 330)

Solubility in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| g per l                                           | solution                | 1                                                   | g pe                                              | er l                             | 1                                                        |
|---------------------------------------------------|-------------------------|-----------------------------------------------------|---------------------------------------------------|----------------------------------|----------------------------------------------------------|
| (NH4)2SO4                                         | CaSO4                   | wt of<br>100 cc<br>solution                         | (NH4) SO4                                         | Ca.SO.                           | wt of<br>100 cc<br>solution                              |
| 0 00<br>0 129<br>0 258<br>0 821<br>1 643<br>3 287 | 0 199<br>0 181<br>0 166 | 99 91<br>99 91<br>99 92<br>99 95<br>99 99<br>100 10 | 6 575<br>13 15<br>26 30<br>84 9<br>169 8<br>339 6 | 0 146<br>0 162<br>0 233<br>0 333 | 100 36<br>100 82<br>101 76<br>105 34<br>110 32<br>119 15 |

(Sullivan, J Am Chem Soc 1905, 27 529)

Solubility in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq at 50°

| Sp gr                                                                                                                          | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub><br>per l                                                                                         | CaSO <sub>4</sub><br>per l                                                                                              | Solid phase                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 0026<br>1 0113<br>1 0440<br>1 0819<br>1 1108<br>1 1653<br>1 1972<br>1 1964<br>1 2043<br>1 2187<br>1 2480<br>1 2508<br>1 2508 | 0<br>15 65<br>30 67<br>91 6<br>160 4<br>221 6<br>280 6<br>340 6<br>415 6<br>416 5<br>428 4<br>479 4<br>530 8<br>558 0<br>564 7<br>566 0<br>566 7 | 2 168<br>1 609<br>1 750<br>2 542<br>3 402<br>4 068<br>4 690<br>5 084<br>5 336<br>4 632<br>2 152<br>1 986<br>1 98<br>0 0 | CaSO <sub>4</sub> +2H <sub>2</sub> O  CaSO <sub>4</sub> (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> + 2H <sub>2</sub> O  (NH <sub>4</sub> ) SO <sub>4</sub> |

(Bell and Taber, J phys Chem 1906, 10

Solubility of CaSO<sub>4</sub> in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq at t°

| Excess of (NH <sub>1</sub> ) 5() <sub>4</sub> |                                                | Excess of CaSO <sub>4</sub>               |                                        |                                                                    |                                                             |
|-----------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|
| t°                                            | CaSO,                                          | (NH4) SO1                                 | t                                      | CaSO4                                                              | (\\H_4)2SO4                                                 |
| 6<br>40 5<br>58<br>78<br>100                  | 0 1529<br>0 1569<br>0 1662<br>0 1968<br>0 2546 | 41 82<br>44 55<br>46 07<br>47 51<br>49 45 | 3<br>31<br>60<br>75<br>80<br>84<br>100 | 0 3782<br>0 4070<br>0 5083<br>0 5898<br>0 6108<br>0 5725<br>0 4895 | 36 62<br>35 50<br>34 97<br>34 86<br>34 88<br>32 40<br>25 97 |

(Barre, C R 1909, 148 1605)

The solubility of CaSO<sub>4</sub> in H<sub>2</sub>O is considerably increased by the presence of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> but decreased by the presence of  $K_2SO_4$  (Barre, C R 1909, 148 1606)

CuSO<sub>4</sub>+Aq Solubility in CuSO<sub>4</sub>+Aq at 25°

| Sp gr of the solution 25°/25 | g CuSO4<br>per l | g CaSO4<br>per l |
|------------------------------|------------------|------------------|
| 1 002                        | 1 144            | 2 068            |
| 1 005                        | 3 564            | 1 986            |
| 1 007                        | 6 048            | 1 944            |
| 1 009                        | 7 279            | 1 858            |
| 1 016                        | 14 814           | 1 760            |
| 1 021                        | 19 729           | 1 736            |
| 1 030                        | 29 543           | 1 688            |
| 1 041                        | 39 407           | 1 718            |
| 1 051                        | 49 382           | 1 744            |
| 1 061                        | 58 880           | 1 782            |
| 1 098                        | 97 950           | 1 931            |
| 1 146                        | 146 725          | 2 048            |
| 1 192                        | 196 021          | 2 076            |
| 1 218                        | 224 916          | 2 088            |

(Bell and Taber, J phys Ch 1907, 11 637)

 $MgSO_4+Aq$ 

Insol in sat MgSO<sub>4</sub>+Aq

1 g CaSO<sub>4</sub> is sol in  $1\overline{162}$  ccm  $^{1}/_{10}$  sat MgSO<sub>4</sub>+Aq at 135° (Fassbender, B **9** 1360)

► Sol in 635 pts sat MgSO<sub>4</sub>+Aq at 19° (Karsten)

Absolutely insol in sat MgSO<sub>4</sub>+Aq, and pptd from aqueous solution by the addition of MgSO<sub>4</sub> (Droeze, B 10 340)

1 l <sup>1</sup>/<sub>10</sub> sat MgSO<sub>4</sub>+Aq dissolves 0 86 g

CaSO<sub>4</sub>+2H<sub>2</sub>O (Droeze)

# Solubility in MgSO<sub>4</sub>+Aq at 25°

| g per l Sp gr                                                                               |                                                                                                                 | g pe                                                                           | Sp gr                                                                         |                                                                                        |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| MgSO4   CaSO                                                                                |                                                                                                                 | 25°/25° MgSO <sub>4</sub>                                                      |                                                                               | 25 /25°                                                                                |
| 3 20 1 62<br>6 39 1 50<br>10 64 1 47<br>21 36 1 47<br>42 68 1 55<br>64 14 1 60<br>85 67 1 6 | 46 1 0032<br>20 1 0055<br>71 0090<br>71 1 0118<br>78 1 0226<br>58 1 0419<br>08 1 0626<br>17 1 0833<br>27 1 1190 | 149 67<br>165 7<br>171 2<br>198 8<br>232 1<br>265 6<br>298 0<br>330 6<br>355 0 | 1 597<br>1 549<br>1 474<br>1 422<br>1 254<br>1 070<br>1 860<br>0 647<br>0 501 | 1 1377<br>1 1479<br>1 1537<br>1 1813<br>1 2095<br>1 2382<br>1 2624<br>1 2877<br>1 3023 |

(Cameron and Bell, J phys Ch 1906, 10 210)

 $K_2SO_4+Aq$ 1 g CaSO<sub>4</sub> is sol in 2325 ccm sat  $K_2SO_4+$ Aq at 13 5°, in 664 ccm  $^{1}/_{5}$  sat  $K_2SO_4+$ Aq
at 13 5°

| gı                                                               | g per l                                                      |                                                                   |  |
|------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|--|
| K <sub>2</sub> SO <sub>4</sub>                                   | CaSO <sub>4</sub>                                            | wt of 1 ec of solution                                            |  |
| 0 0<br>4 88<br>5 09<br>9 85<br>19 57<br>28 35<br>30 66<br>32 47* | 2 08<br>1 60<br>1 56<br>1 45<br>1 49<br>1 55<br>1 57<br>1 58 | 0 9981<br>1 0036<br>1 0038<br>1 0075<br>0 151<br>1 0229<br>1 0236 |  |

\*Solid phase syngenite (Cameron and Breazeale, J phys Ch 1904, 8

Solubility in K<sub>2</sub>SO<sub>4</sub>+Aq at 25° In 1000 g of the solution

mole  $K_2SO_4$  mole  $CaSO_4$ 3 223 0 223 (D'Ans, Z anorg 1909, **62** 151)

335

Solubility of CaSO<sub>4</sub> in K<sub>2</sub>SO<sub>4</sub>+Aq at t°

| Excess of K <sub>2</sub> SO |                                                |                                      | Excess of                                      | CaSO <sub>4</sub>                       |
|-----------------------------|------------------------------------------------|--------------------------------------|------------------------------------------------|-----------------------------------------|
| t°                          | %<br>CaSO4                                     | K.SO4                                | %<br>Ca£04                                     | %<br>K2SO4                              |
| 0<br>18<br>51<br>80<br>99   | 0 1296<br>0 1531<br>0 1754<br>0 1922<br>0 1980 | 2 00<br>2 79<br>4 21<br>5 00<br>5 39 | 0 0229<br>0 0271<br>0 0300<br>0 0349<br>0 0371 | 6 99<br>9 81<br>14 18<br>17 55<br>19 70 |

(Barre, C R 1909, 148 1606)

 $Ag_2SO_4+Aq$ 

11 of the solution contains 2 31 g CaSO<sub>4</sub> +7 23 g Ag<sub>2</sub>SO<sub>4</sub>=9 54 g mixed salts at 17° Sp gr = 1 0083

11 of the solution contains 2 61 g CaSO<sub>4</sub>+8 11 g Ag<sub>3</sub>SO<sub>4</sub>=10 72 g mixed salts at 25° Sp gr = 1 010 (Euler, Z phys Ch 1904, 49 313)

Na<sub>2</sub>SÓ<sub>4</sub>+Aq

1 g CaSO<sub>4</sub> is sol in 398 ccm sat N i SO<sub>4</sub>+Aq at 10 5°

Solubility of CaSO<sub>4</sub> in N 12SO<sub>4</sub>+Aq it 22°

| G CaSO4 per l | ( Na 504 per l |
|---------------|----------------|
| 2 084         | 0 000          |
| 1 583         | 2 771          |
| 1 433         | 13 \$20        |
| 1 408         | 16 360         |
| 1 569         | 39 10          |
| 1 841         | 77 220         |
| 2 185         | 133 00         |
| 2 414         | 193 800        |
| *2 578        | *222 580       |

\*Both CasO<sub>4</sub> and Na<sub>2</sub>SO<sub>4</sub> as solid phases in contact with the solution (Cameron and Seidell, J phys Chem 1901, 5

650)

| Solubility | ın | Na <sub>2</sub> SO <sub>4</sub> +Aq | at | 25° |
|------------|----|-------------------------------------|----|-----|
|------------|----|-------------------------------------|----|-----|

| 20145H40 H1 2142004   114 W0 20                                                                                       |                                                                                                              |                                                                                                 |  |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| wt of 1000 ccm<br>of solution grams                                                                                   | g Na <sub>2</sub> SO <sub>4</sub> per l                                                                      | g CaSO4 per l                                                                                   |  |
| 1001 26<br>1007 59<br>1011 45<br>1020 46<br>1031 48<br>1039 12<br>1079 47<br>1096 47<br>1142 66<br>1176 47<br>1212 00 | 2 390<br>9 535<br>14 132<br>24 369<br>36 979<br>46 150<br>94 220<br>115 084<br>146 612<br>205 105<br>257 100 | 1 650<br>1 457<br>1 388<br>1 471<br>1 563<br>1 650<br>1 980<br>2 096<br>2 234<br>2 503<br>2 650 |  |

(Cameron and Breazeale, J phys Chem 1904, 8 340)

1 l sat Na<sub>2</sub>SO<sub>4</sub>+Aq at 25° containing 254 09, Na<sub>2</sub>SO<sub>4</sub> dissolves 258 g CaSO<sub>4</sub> (Cameron and Brown, J phys Ch 1905, 9 214)

Hydration is retarded by dil solutions and accelerated by cone solution of sodium, potassium, ammonium and magnesium sulphates (Rohland, Z Elektrochem 1908, 14 422)

More than 10 times as much CaSO<sub>4</sub> dissolves in sat Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq as in H<sub>2</sub>O (Diehl Insol in alcohol of 0 905 sp gr or less

(Anthon, J pr 14 125) Solubility in 10% alcohol=0 0970 g CaSO<sub>4</sub> per 100 g solution (Magnanin, Gazz Ch it 1901, 31 (2) 544)

Sol in dil alcoholic solutions of NH<sub>4</sub>NO<sub>3</sub>, KNO<sub>3</sub>, NaNO<sub>3</sub>, NH<sub>4</sub>Cl, KCl, and NaCl (Margueritte, C R 38 308)

Sol to considerable extent in NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub> + Aq, especially if freshly pptd More sol in NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq than in NH<sub>4</sub>Cl+Aq (Weppen, J pr 11 182)

More sol in  $NH_4C_2H_3O_2+Aq$  than in other  $NH_4$  salts (Cohn, J pr (2) 35 43)

More sol in NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq or KCl+Aq than in H<sub>2</sub>O (Mulder)

Solubility in N/200 potassium hydrogen tartrate+Aq=0 2323 g CaSO<sub>4</sub> per 100 g solution (Magnanini, Gazz ch it 1901, **31** 

(2) 544)
72 61 millimols per l of CaSO<sub>4</sub>+2H<sub>2</sub>O are sol at 25° in ammonium citrate+Aq (concentration=0 5 millimols per l)

36 39 millimols per l of CaSO<sub>4</sub>+2H<sub>2</sub>O are sol at 25° in sodium citrate+Aq (Concentration=0.25 millimols per l (Rindell, Z phys Ch 1910, 70 452)

100 pts glycerine dissolve 0 957 pt CaSO<sub>4</sub> +2H<sub>2</sub>O<sub>2</sub>, and solubility increases with the

temp (Asselin, C R 76 884)

100 g glyceine (sp gr 1256) dissolve 5 17 g CuSO<sub>4</sub> at 15-16° (Ossendowski, Phym J 1907, **79** 575)

Solubility in 10% alcoholic N/200 KHC<sub>2</sub>H<sub>4</sub>O<sub>6</sub>+Aq=0 0866 g CaSO<sub>4</sub> per 100 g solution

Solubility in N/200 KHC<sub>2</sub>H<sub>4</sub>O<sub>6</sub>+Aq+5% tartaric acid = 0 2556 g CaSO<sub>4</sub> per 100 g solution Solubility in 10% alcoholic N/400 KHC<sub>2</sub>H<sub>4</sub>O<sub>6</sub>+5% tartaric acid = 0 1086 g CaSO<sub>4</sub> in 100 g solution (Magnanini) Insol in methyl acetate (Naumann, B 1909, 42 3790), ethylacetate (Naumann, B

#### Solubility in sugar+Aq at t°

| %                                           |                       | G CaSO <sub>4</sub> dissolved in 1 l sugar solutions |   |                                               |             |                                                      |             |                                                      |             |                                                      |             |                                               |
|---------------------------------------------|-----------------------|------------------------------------------------------|---|-----------------------------------------------|-------------|------------------------------------------------------|-------------|------------------------------------------------------|-------------|------------------------------------------------------|-------------|-----------------------------------------------|
| sugar                                       | - 3                   | 30°                                                  | 4 | ±0°                                           |             | 50°                                                  | - (         | 30°                                                  | 7           | .00                                                  | 8           | 30°                                           |
| 0<br>10<br>20<br>27<br>35<br>42<br>49<br>55 | 2<br>1<br>1<br>1<br>1 | 041<br>808<br>550<br>263<br>030                      | 1 | 157<br>730<br>652<br>438<br>050<br>564<br>486 | 1<br>1<br>0 | 730<br>730<br>419<br>361<br>088<br>777<br>739<br>505 | 1<br>0<br>0 | 730<br>574<br>380<br>283<br>108<br>816<br>564<br>486 | 0<br>0<br>0 | 652<br>574<br>419<br>283<br>914<br>855<br>603<br>369 | 1<br>0<br>0 | 710<br>613<br>263<br>972<br>729<br>486<br>330 |

(Stolle, Z Ver Zuckerind, 1900, 50 331)

Min Anhydrite

1910, **43** 314)

+2H<sub>2</sub>O Min Gypsum

Gypsum A sat aq solution of gypsum of particles not less than  $2\mu$  contains 2 085 g CaSO<sub>4</sub> per litre at 25°

A sat aq solution of gypsum of particles not smaller than 0  $3\mu$  contains 2 476 g CaSO<sub>4</sub> per liter at 25° ( $\mu$ =0 0001 cm) (Hulett and Allen, Z phys Ch 1901, 37 391 and 393)

Solubility in H<sub>2</sub>O at t°

| t°.                                | g CaSO <sub>4</sub> in 100<br>cem of the<br>solution                      | Density of the solution at t                                                     |
|------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 0<br>10<br>18<br>25                | 0 17590<br>0 19255<br>0 20160<br>0 20805                                  | 1 001970<br>1 001727<br>1 000590<br>0 999109                                     |
| 30<br>35<br>40<br>45<br>55<br>65 3 | 0 20905<br>0 20960<br>0 20970<br>0 20835<br>0 20005<br>0 19320<br>0 18475 | 0 997891<br>0 996122<br>0 994390<br>0 992370<br>0 987960<br>0 982560<br>0 977724 |
| 100                                | 0 16195                                                                   |                                                                                  |

(Hulett and Allen, J  $\stackrel{\mbox{\sc Am}}{\mbox{\sc Chem}}$  Soc 1902, 24  $\stackrel{\mbox{\sc 674}}{\mbox{\sc }}$  )

1 l H O dissolves 2 13 g CaSO<sub>4</sub>+2 $\rm H_2O$  at 25° (Fuler, Z phys Ch 1904, **49** \*314)

2023 mg are dissolved in 1 l of sat solution at 18° (Kohli ausch, Z phys Ch 1908, 64

 $^{168}$  )  $^{1}$  H  $_{2}O$  dissolves 2 267 g CaSO  $_{4}+2\rm{H}_{2}O$  at 0°, 2 684 g at 35°, 2 662 g at 50°, and 2 155 g at 100° (Cavazzı, C C 1905, I 1693)

1 1 H<sub>2</sub>O dissolves 29 5 milliequivalents at 18°, 30 at 50°, 23 3 at 100° Am Chem Soc 1910, **32** 63) (Melcher, J

See also under CaSO4

Solubility of pulverized gypsum in NaCl+Aq at 23°

| Grams gypsum | G NaCl per l | G CaSO <sub>4</sub> per l |
|--------------|--------------|---------------------------|
| 2 99         | 0 99         | 2 37                      |
| 3 82         | 4 95         | 3 02                      |
| 4 48         | 10 40        | 3 54                      |
| 6 31         | 30 19        | 4 97                      |
| 7 51         | 49 17        | 5 94                      |
| 8 53         | 75 58        | 6 74                      |
| 9 42         | 129 50       | 7 50                      |
| 9 17         | 197 20       | 7 25                      |
| 8 88         | 229 70       | 7 03                      |
| 7 19         | 306 40       | 5 68                      |
| 6 79         | 315 55       | 5 37                      |

(Cameron, J phys Chem 1901, 5 559) See also under CaSO<sub>4</sub>

+ 1/2H<sub>2</sub>O Plaster of Paris contains 1/2H<sub>2</sub>O according to Chatelier (C C 1889, **1** 203)

#### Calcium hydrogen sulphate, CaH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>

100 pts H<sub>2</sub>SO<sub>4</sub> of 1 82 sp gr dissolve about 2 pts CaSO<sub>4</sub>, 100 pts fuming H<sub>2</sub>SO<sub>4</sub> dissolve 10 17 pts CaSO<sub>4</sub> (Struve, Z anal 9 34), 100 pts H<sub>2</sub>SO<sub>4</sub> dissolve 2.5 pts CaSO<sub>4</sub> (Lies-Bodart and Jacquemin, C. R. **46** 1206), CaSO<sub>4</sub> is precipitated by H<sub>2</sub>O from H<sub>2</sub>SO<sub>4</sub> solution

100 pts boiling H<sub>2</sub>SO<sub>4</sub> dissolve 10 pts CaSO<sub>4</sub> (Schultz, Pogg **133** 137)

#### Solubility of CaSO<sub>4</sub> in H<sub>2</sub>SO<sub>4</sub>+Aq

| wt of 1000<br>ccm of                                                                                     | g H <sub>2</sub> SO <sub>4</sub>                                                     | g CaSO4 per l at                                                                       |                                           |                                                                               |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|
| solution at                                                                                              | per l                                                                                | 25°                                                                                    | 35°                                       | 43                                                                            |
| 999 1067<br>1002 493<br>1002 553<br>1005 091<br>1009 787<br>1030 151<br>1043 470<br>1075 613<br>1113 392 | 0 00<br>0 48<br>4 87<br>8 11<br>16 22<br>48 67<br>75 00<br>97 35<br>146 01<br>194 70 | 2 126<br>2 128<br>2 144<br>2 203<br>2 382<br>2 727<br>2 841<br>2 779<br>2 571<br>2 313 | 2 209<br>2 451<br>3 397<br>3 606<br>3 150 | 2 145<br>2 236<br>2 456<br>2 760<br>3 116<br>3 843<br>4 146<br>4 139<br>3 551 |
| 1141 755  <br>1168 143                                                                                   | 243 35<br>292 02                                                                     | 1 901<br>1 541                                                                         |                                           | $\begin{array}{ccc} 2 & 959 \\ 2 & 481 \end{array}$                           |

(Cameron and Breazeale, J phys Chem 1903, **7** 574)

100 pts hot conc H<sub>2</sub>SO<sub>4</sub> dissolve approx 10 pts CaSO. (Rohland, Z anorg 1910, 66 206)

Decomp by H<sub>2</sub>O

Calcium hexahydrogen sulphate, CaH6(SO4)4 Decomp by H<sub>2</sub>O (Schultz, Pogg 133 137)

Calcium cupric potassium sulphate, Ca<sub>2</sub>K<sub>2</sub>Cu(SO<sub>4</sub>)<sub>4</sub>+2H<sub>2</sub>O (D'Ans, B 1908, 41 1778)

Calcium magnesium potassium sulphate, 2CaSO<sub>4</sub>, MgSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub>+2H<sub>2</sub>O

Min Polyhalite Sol in H<sub>2</sub>O with residue of CaSO<sub>4</sub>

4CaSO4  $MgSO_4$ ,  $K_2SO_4+2H_2O$ Mın Krugite Decomp by H<sub>2</sub>O

Calcium potassium sulphate,  $CaK_2(SO_4)_2$ +  $H_2O$ 

Min Syngente Sol in the K2SO4 (Zepharovitch) Decomp by heating with separation of CaSO. Decomp by H<sub>2</sub>O until 25 g K<sub>2</sub>SO<sub>4</sub> are dissolved in a litre, after which there is no de-composition (Ditte, C R 84 86)

Easily sol in dil acids (Phillips)

Solubility of syngenite, CaK<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+H<sub>2</sub>O in  $K_2SO_4 + A\alpha$  at 25°

| Wt of 1000 ccm<br>of solution grams | g K <sub>2</sub> SO <sub>4</sub> per l | g CaSO <sub>4</sub> per l |
|-------------------------------------|----------------------------------------|---------------------------|
| 1013 08                             | 16 31                                  | *1 495                    |
| 1015 78                             | 19 87                                  | 1 529                     |
| 1020 01                             | 25 01                                  | 1 537                     |
| 1024 54                             | 30 83                                  | 1 565                     |
| 1036 82                             | 46 99                                  | 0 810                     |
| 1058 10                             | 75 45                                  | 0 451                     |
| 1085 91                             | 112 87                                 | 0 330                     |

\*In first four determinations syngenite completely decomposed (Cameron and Breazeale, J. phys Chem 1904, **8** 339)

This double salt is stable between U and 99° in the presence of an excess of either CasO<sub>4</sub> or K<sub>2</sub>sO<sub>4</sub>. In this temp interval the double sulphate, 2CasO<sub>4</sub>, K<sub>2</sub>sO<sub>4</sub>, 3H<sub>2</sub>O described by Ditte (C R 84 867) does not exist (Barre, C R 1909, 148 1607) Ca<sub>2</sub>K<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+3H<sub>2</sub>O Decomp by cold H<sub>2</sub>O (Ditte, C R 84 867)

5CasO<sub>4</sub>, K<sub>2</sub>sO<sub>4</sub>+H<sub>2</sub>O Slowly decomp by H<sub>2</sub>O (van't Hoff and Geiger, B A B 1904 935) This double salt is stable between 0° and

**1904** 935)

Calcium potassium zinc sulphate,  $Ca_2K_2Zn(SO_4)_4+2H_2O$ (D'Ans, B 1908, 41 1778)

Calcium rubidium sulphate, Ca<sub>2</sub>Rb<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> (D'Ans, B 1907, 40 4913)

+3H<sub>2</sub>O Decomp by H<sub>2</sub>O (Ditte, C R **84** 86)

 $CaRb_2(SO_4)_2 + H_2O$  (D'Ans)

Calcium sodium sulphate, CaNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>

Mm Glauberite Gradually sol in H<sub>2</sub>O, but crystals of CaSO<sub>4</sub>+2H<sub>2</sub>O soon separate out (Fritzsche)

Insol in alcohol, and cone NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+ Aq, decomp by H<sub>2</sub>O (Folkhard, C N 43

 $CaNa_4(SO_4)_3+2H_2O$ Decomp by H<sub>2</sub>O (Fritzsche)

Calcium titanium sulphate, CaSO<sub>4</sub>, Ti(SO<sub>4</sub>)<sub>2</sub>

Ppt, decomp by H<sub>2</sub>O giving titanic acid (Weinland, Z anorg 1907, 54 254)

#### Calcium uranium sulphate

Min Uranochalcite

Min Medjidite Easily sol in dil HCl+ Αq

## Cerous sulphate, Ce<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>

Anhydrous cerous sulphate is much more

sol in H<sub>2</sub>O than the hydrated salt

Easily sol in cold H<sub>2</sub>O if added thereto in small amounts If large amount of Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> is treated with a little H<sub>2</sub>O it hardens with evolution of heat, and becomes very difficultly soluble 100 pts H<sub>2</sub>O dissolve 161 pts Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> at 0° and 17 86 pts at 19°

 $Ce_2(SO_4)_3 + Aq$  sat in cold deposits Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> at 75°, and only 2 25 pts remain in solution at 100° (Jolin, Bull Soc (2) 21

100 pts  $H_2O$  dissolve 8 31 pts  $Ce_2(SO_4)_3$  at 20°, 8 08 pts at 45°, 4 95 pts at 60°, 0 504 pt at 100° (Buhrig, J pr (2) 12 240)

60 pts anhydrous salt dissolve quickly at

0-3° in 100 pts H<sub>2</sub>O

At 15° the solution solidifies, and the mother liquor contains only 27 88% Ce2(SO4)8 15° the maximum attainable strength is 31 62% Ce2(SO4)3 (Brauner, Chem Soc 53 357)

100 pts  $H_2O$  dissolve 10 747 pts  $Ce_2(SO_4)_3$ at 16°, 9 648 pts at 19°, 6 949 pts at 33°

The solubility of Ce<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub> in H<sub>2</sub>O is diminished by the addition of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub> or Na<sub>2</sub>SO<sub>4</sub> (Barre, C R 1910, **151** 872)

Sp gr of  $Cc_2(SO_4)_3$ +Aq was found to be constant whether Ce2(SO4)3 or Ce2(SO4)3+ The following results 8H<sub>2</sub>() was used were obtained at 15°

| Pts<br>Ce <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> to<br>100 pts H <sub>2</sub> () | Sp gr                                                          | Pt4<br>Ce2(SO4) a to<br>100 pt5 II ()     | Sp gr                                               |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 3 17<br>6 11<br>8 35<br>9 61<br>10 55<br>11 66                                         | 1 03005<br>1 05812<br>1 07910<br>1 09085<br>1 09939<br>1 10987 | 12 66<br>14 56<br>15 64<br>21 19<br>31 62 | 1 11917<br>1 13665<br>1 14623<br>1 19640<br>1 28778 |

(Brauner, Chem Soc 53 357)

45 pts Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> dissolve in 100 pts H<sub>2</sub>SO<sub>4</sub> (Wyrouboff, Bull, Soc (3) 2 745)

## Solubility in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq at 16°

| Per 100 pts H <sub>2</sub> O                                                       |                                                                                |  |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| (NH4)2SO4                                                                          | Ce2(SO4)3                                                                      |  |  |
| 0 00<br>3 464<br>9 323<br>19 240<br>29 552<br>45 616<br>55 083<br>63 920<br>72 838 | 10 747<br>1 026<br>0 782<br>0 748<br>0 701<br>0 497<br>0 194<br>0 090<br>0 035 |  |  |

(Barre, A ch 1911, (8) 24 252)

#### Solubility in Na<sub>2</sub>SO<sub>4</sub>+Aq at 19°-20°

| Per 100 pts H <sub>2</sub> O                                                          |                                                                                            |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Na <sub>2</sub> SO <sub>4</sub>                                                       | Ce2(SO4)3                                                                                  |  |  |
| 0 00<br>0 328<br>0 684<br>1 091<br>1 392<br>1 699<br>2 640<br>3 589<br>5 660<br>7 710 | 9 64<br>0 637<br>0 259<br>0 0937<br>0 057<br>0 0303<br>0 012<br>0 0065<br>0 0046<br>0 0037 |  |  |

(Barre, A ch 1911, (8) 24 251)

#### Solubility in K<sub>2</sub>SO<sub>4</sub>+Aq at 16°

| Per 100 pts H <sub>2</sub> O             |                                             |  |  |
|------------------------------------------|---------------------------------------------|--|--|
| K 504                                    | Ce (5() <sub>4</sub> ) <sub>3</sub>         |  |  |
| 0 00<br>0 178<br>0 510<br>0 726<br>1 290 | 10 747<br>0 956<br>0 432<br>0 250<br>0 0419 |  |  |

(Barre, A ch 1911, (8) 24 248)

 $+4H_2O$ 100 g H<sub>2</sub>O dissolve at 35° 40° 50° 57° 6043432 34 g Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

70° 82° 100 5° bpt of sat solution 1883 138 101 043 g Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

(Koppel, Z anorg 1904, 41 399)

+5H<sub>2</sub>O100 pts H<sub>2</sub>O dissolve pts Ce<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> at t<sup>o</sup>

| 200 pts 2220 arosor.        | 2 12 10 002 (12 0 4) 8 110 1          |
|-----------------------------|---------------------------------------|
| t°                          | Pts Ce2(SO4)3                         |
| 100<br>80<br>60<br>50<br>40 | 0 775<br>1 70<br>3 45<br>5 56<br>8 20 |

(Muthmann and Rolig, Z anorg 1898, 16 **456**)

100 g H<sub>2</sub>O dissolve at 45° 60° 70° 8 833 32471 929 g Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

80° 90° 100 5° bpt of sat solution 1 207 0 8355  $0.469 \text{ g Ce}_2(SO_4)_8$ 

Muthmann and Rolig's determinations are ınaccurate

(Koppel)  $+8H_2O$  100 pts  $H_2O$  dissolve 14 92 pts  $Ce_2(SO_4)_3$  at 20° from  $Ce_2(SO_4)_3+8H_2O_3$ (Jolin)

100 pts H<sub>2</sub>O dissolve pts Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> at t°

| t° | Pts<br>Ce <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> | t° | Pts<br>Ce <sub>2</sub> (SO <sub>4</sub> ) 3 |
|----|--------------------------------------------------------|----|---------------------------------------------|
| 0  | 19 10                                                  | 50 | 12 48                                       |
| 18 | 17 32                                                  | 60 | 9 40                                        |
| 30 | 16 13                                                  | 70 | 4 24                                        |

(Muthmann and Rolig)

100 g H<sub>2</sub>O dissolve at 0° 20 4° 15° 10 09 11 06 9 525 g Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 40° 50°  $30^{\circ}$ 60° 4 785 7 388 5 947 4 064 g Ce<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub> Previous determinations are inaccurate (Koppel, Z anorg 1904, 41 395)

100 g sat solution at 25° contain 7 60 g anhydrous salt (Wirth, Z anorg 76 174)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25° Solid phase  $Ce_2(SO_4)_3 + 8HO$ 

| Normality                                                 | In $100 g$ of the liquid are dissolved                           |                                                                    |  |
|-----------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--|
| H <sub>2</sub> SO <sub>4</sub>                            | g Ce O₃                                                          | g Ce (SO <sub>4</sub> ) <sub>3</sub>                               |  |
| 0<br>0 1<br>1 1<br>2 16<br>4 32<br>6 685<br>9 68<br>15 15 | 4 604<br>4 615<br>3 64<br>3 04<br>2 0<br>9115<br>0 4339<br>0 145 | 7 60<br>7 618<br>6 00<br>5 018<br>3 301<br>1 505<br>0 733<br>0 239 |  |

(Wirth, Z anorg 1912, **76** 191)

100 pts H<sub>2</sub>O dissolve 17 52 pts  $Ce_{\circ}(SO_4)_3$  from  $Ce_2(SO_4)_3 + 9H_2O$  (Brauner

100 g H<sub>2</sub>O dissolve at 15° 21° 30° o° 31 2° 20 98 11 87 9 725 7 353 7 185 g Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 50° 31 6° 45° 60° 65° 7 164 5 13 4 673 3 88 3 595 g Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> (Koppel)

 $+12H_{2}O$ 

100 pts H<sub>2</sub>O dissolve pts Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> at t°

| t° | Pts Ce2(SO <sub>4</sub> ) <sub>3</sub> |
|----|----------------------------------------|
| 0  | 21 40                                  |
| 18 | 18 44                                  |
| 25 | 16 22                                  |

(Muthmann and Rolig, Z anorg 1898, 16 457)

100 g H<sub>2</sub>O dissolve at

0° 18 8° 19 2° 165617 52 17 70 g Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

Previous determinations are inaccurate (Koppel)

Ceroceric sulphate,  $Ce_2(SO_4)_3$ ,  $2Ce(SO_4)_2$ +  $24H_2O$ 

Decomp by H<sub>2</sub>O Sol in HCl+Aq with decomp (Mendelejeff, A 168 45)  $Ce_2(SO_4)_3$ ,  $3Ce(SO_4)_2 + 31H_2O$  (Jolin)

Ceric sulphate, basic,  $CeO_2$ ,  $SO_3+2H_2O$ 

Very sl sol in H<sub>2</sub>O

Sol in 2500 pts  $H_2O$  (Mosander) Boiling H<sub>2</sub>O gradually dissolves out H<sub>2</sub>SO<sub>4</sub>

(Erk) Sol in acids

 $8CeO_2$ ,  $7SO_3+12H_2O$ ,  $8CeO_2$ ,  $7SO_3+$ 15H<sub>2</sub>O, 6CeO<sub>2</sub>, 5SO<sub>3</sub>+5H<sub>2</sub>O, 4CeO<sub>2</sub>, 3SO<sub>3</sub>+  $7H_2O$ , and  $3Ce(SO_4)_2$ ,  $5Ce(OH)_4$  All are insol ppts

Ceric sulphate,  $Ce(SO_4)_2$ 

Very slowly sol in cold, more Anhydrousrapidly in hot H<sub>2</sub>O When solution has once begun, almost unlimited quantities may be dissolved Insol in conc  $H_2SO_4$  B 1904, 37 144)

 $+4H_2O$ Sol in HO with immediate de-(Rammelsberg)

Decomp by H<sub>2</sub>O (Muthmann, B 1900, **33** 1764)

Cerous hydrogen sulphate,  $Ce_2(SO_4)_3$ ,  $3H_2SO_4$ Decomp by H<sub>2</sub>O (Wyrouboff, Bull Soc (3) 2 745, Brauner, Z anorg 1904, 38 329)

Ceroceric hydrogen sulphate,  $Ce_2H(SO_4)_4$ +  $13H_{2}O$ 

Sol in H<sub>2</sub>O Forms very supersat solu-

Solubility in H<sub>2</sub>SO<sub>4</sub> decreases with increase in concentration of the acid (Meyer, B 1904, **37** 146)

Cerous potassium sulphate, Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, K<sub>2</sub>SO<sub>4</sub>  $+2H_2O$ 

Sl sol in  $H_2O$ , insol in sat  $K_2SO_4+Aq$ 

(Czudnowicz, J pr 80 26)

2Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 3K<sub>2</sub>SO<sub>4</sub> As above (Hermann, J pr 30 188)
+8H<sub>2</sub>O (Barre, A ch 1911, (8) 24 249)
Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 2K<sub>2</sub>SO<sub>4</sub>+3H<sub>2</sub>O As above (John )

Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 3K<sub>2</sub>SO<sub>4</sub> Sol in about 56 pts H<sub>2</sub>O at 9-20° Easily sol in acidified H<sub>2</sub>O Nearly msol in sat K<sub>2</sub>SO<sub>4</sub>+Aq (John)

 $Ce_2(SO_4)_8$ ,  $5K_2SO_4$  Insol in  $K_2SO_4+Aq$ (Barre, lc)

Ceric potassium sulphate, Ce(SO<sub>4</sub>)<sub>2</sub>, 2K<sub>2</sub>SO<sub>4</sub>

SI sol in  $H_2O$  with decomp Insol in sat  $K_2SO_4+Aq$ 

Ceric silver sulphate,  $10Ce(SO_4)_2$ ,  $6Ag_2SO_4$ 

Only sl sol in cold H2O, decomp by hot  $H_2O$  in which it is readily sol (Pozzi-Escot, C R 1913, 156 1074)

Cerous sodium sulphate, Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, Na<sub>2</sub>SO<sub>4</sub>+  $2H_2O$ 

Very sl sol in  $\rm H_2O$ , and still less in  $\rm Na_2SO_4$  +Aq 100 ccm sat  $\rm Na_2SO_4$ +Aq dissolve an amount corresponding to 62 mg Ce<sub>2</sub>O<sub>3</sub> (Jolin )

Sl sol in HCl+Aq (Czudnowicz)

Cerous thallous sulphate, Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 3Tl<sub>2</sub>SO<sub>4</sub>

 $\mathbf{Ppt}$ 

Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, Tl<sub>2</sub>SO<sub>4</sub>+2H<sub>2</sub>O Sol in H<sub>2</sub>O (Zschiesche, J pr 107 98)  $+4H_2O$  Very sl sol in cold, somewhat more in warm H<sub>2</sub>O (Wyrouboff, Bull Soc Min 14 83)

Cerous tin (stannic) hydrogen sulphate, CeHSn(SO<sub>4</sub>)<sub>4</sub>

Decomp by H<sub>2</sub>O Sol in very dil HCl (Weinland, Z anorg 1907, 54 251)

Chromous sulphate, CrSO<sub>4</sub>+7H<sub>2</sub>O

100 pts H<sub>2</sub>O dissolve 12 35 pts CrSO<sub>4</sub>+  $7H_2O$ Aqueous solution can be boiled without decomp SI sol in alcohol +H<sub>2</sub>O (Moissan, Bull Soc **37** 296)

Chromic sulphate, basic, 3Cr<sub>2</sub>O<sub>3</sub>, 2SO<sub>3</sub>+  $12H_2O = 2Cr_2(SO_4)(OH)_4$ ,  $Cr_2(OH)_6 +$ 

 $5H_2O$ Insol in H<sub>2</sub>O Sol in acids Slowly decomp by KOH+Aq or K<sub>2</sub>CO<sub>3</sub>+Aq

5Cr<sub>2</sub>O<sub>3</sub>, 3SO<sub>3</sub> Sol in H<sub>2</sub>O (Recoura, C R **112** 1439)

 $Cr_2O_3$ ,  $SO_3 = Cr_2O_2(SO_4)$  Ppt (Schiff, A **124** 167)

 $+10 H_2 O$  or  $[Cr(OH)_2(OH_2)_4]_2 SO_4$  Nearly insol in  $H_2 O$  (Werner, B 1908, **41** 3451)

 $5Cr_2O_3$ ,  $8SO_3$  (?) (Siewert, A 126 97) b Green Obtr $_2O_3$ ,  $2SO_3=Cr_2O(SO_4)_2$  Easily sol in a tuon on heating little H<sub>2</sub>O, but a precipitate is thrown down | Z anorg 1906, 49 157)

by further addition of H<sub>2</sub>O, which redissolves on evaporation

 $5Cr_2O_3$ ,  $12SO_3$  (?) (Siewert)

2Cr<sub>2</sub>O<sub>3</sub> 5SO<sub>3</sub>+15H<sub>2</sub>O Sol in H<sub>2</sub>O insol in alcohol and acetone by which it is ppt from aqueous solution (Nicolardot, C R 1907, **145** 1338)

Chromic sulphate, Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

Insol in H<sub>2</sub>O, HNO<sub>3</sub>, HCl, AnhydrousH<sub>2</sub>SO<sub>4</sub>, agua regia, and NH<sub>4</sub>OH+Aq Decomp by boiling caustic alkalies, and slowly by alkali carbonates+Aq (Schrotter) According to Traube (A 71 92) and Siewert (A 126 94), Schrotter's salt is an acid sulphate.  $Cr_4(SO_4)_5(OSO_2OH)_2 = 2Cr_2(SO_4)_3$  $H_2SO_4$ According to Etard (Bull Soc (2) 31 200) both salts exist, and formula of above salt is  $Cr_2(SO_4)_6Cr_2$  Formula is  $2[(Cr_2O_3)_2, (SO_3)_6]$ ,  $17H_2SO_4$  (?) (Cross and Higgins, Chem  $17H_2SO_4$  (?) Soc 41 113)

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate (Naumann, B 1910, **43** 314) +6H<sub>2</sub>O (?) Green modification Readily

sol in H<sub>2</sub>O or alcohol Sol in conc H<sub>2</sub>SO<sub>4</sub> H<sub>2</sub>O solution is converted into the violet modification by standing 3-4 weeks (Schrotter)

+11H<sub>2</sub>O (?) Extremely deliquescent, be-Not comes liquid in moist air in 2 minutes pptd by BaCl<sub>2</sub>+Aq (Recoura, C R 113 857)

+18H<sub>2</sub>O Vrolet modification Sol in 0 833 pt H<sub>2</sub>O at 20° When the H<sub>2</sub>O solution is heated to 65–70° it begins to be converted into the green modification. This conversion is also brought about by cold HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, PCl<sub>3</sub> (Etard, C R **84** 1090)

Sp gr of aqueous solution of violet modi-

fication of Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> containing

 $20\% \text{ Cr}_2(SO_4)_3 + 18H_2O_7$ 1 0275 1 0560 1 1150

40  $50\% \text{ Cr}_2(\text{SO}_4)_3 + 18\text{H}_2\text{O}$ 1 1785 1 2480 1 3250

Sp gr of aqueous solution of green modification of Cr2(SO4)3 containing

10 20  $30\% \text{ Cr}_2(SO_4)_3 + 18H_2O$ , 1 0510 1 1070 1 1680

40 50  $60\% \text{ Cr } (SO_4)_3 + 18H_2O_7$ 123401 3055 1 3825

> 80% Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+18HO 70 1 4650 1 5535

(Gerlach, Z anal 28 494)

See also Chromosulphuric acid

Chromic hydrogen sulphate,  $Cr_2(SO_4)_3$ , H  $SO_4$ +16H<sub>2</sub>O

Tuo modifications

a Violet Decomp by H<sub>2</sub>O

Obtained from violet modifica-Sol in H<sub>2</sub>O (Weinland,

Decomp by alcohol, giving the normal sulphate (Weinland) Hygroscopic

Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 2H<sub>2</sub>SO<sub>4</sub>+18H<sub>2</sub>O Decomp by H<sub>2</sub>O (Weinland)

 $2Cr_2(SO_4)_3$ ,  $H_2SO_4 = Cr_4 \stackrel{(OSO_2OH)_2}{\sim}$ 

Correct composition of Cr<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub> (Traube), which see

See also Chromosulphuric acid

Chromic cupric sulphate, Cr<sub>0</sub>(SO<sub>4</sub>)<sub>2</sub>, 2CuSO<sub>4</sub>,  $H_2SO_4$ 

Insol in H<sub>2</sub>O, but gradually decomp thereby (Etard, C R 87 602)

Cr<sub>2</sub>O<sub>8</sub>, CuO, 4SO<sub>3</sub>

Insol in H<sub>2</sub>O (Recoura, C R 1893, 117

Chromous hydrazine sulphate, CrSO<sub>4</sub>, 2N<sub>2</sub>H<sub>4</sub>,  $H_2SO_4$ 

Only sl sol in H<sub>2</sub>O Sol in acids (Traube B 1913, 46 1507)

Chromic hydroxylamine sulphate, Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>,  $(NH_2OH)_2SO_4 + 24H_2O$ Sol in H<sub>2</sub>O (Meveringh)

Chromic iron (ferrous) sulphate,  $Cr_2(SO_4)_3$ ,  $2\text{FeSO}_4$ ,  $H_2\text{SO}_4 + 2H_2\text{O}$ As above (Étard, lc)

Chromic iron (ferric) sulphate,  $Cr_2(SO_4)_3$ ,  $Fe_2(SO_4)_3$ 

Insol in H<sub>2</sub>O (Étard, C R **86** 1399)  $\operatorname{Cr}_2(\operatorname{SO}_4)_3$ ,  $\operatorname{Fe}_2(\operatorname{SO}_4)_3$ ,  $\operatorname{H}_2\operatorname{SO}_4$ Insol in H2O (Étard)

Chromic lithium sulphate, Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 3L<sub>12</sub>SO<sub>4</sub> Resembles the corresponding K salt (Wernicke)

Chromic manganous sulphate,  $Cr_2(SO_4)_3$ , 3MnSO<sub>4</sub>

(Étard, C R 86 1402)

Chromic manganic sulphate,  $Cr_2(SO_4)_3$ ,  $Mn_2(SO_4)_3$ 

(Étard, C R 86 1399) Insol in H<sub>2</sub>O  $Cr_2(SO_4)_3$ ,  $Mn_2(SO_4)_3$ ,  $2H_2SO_4$ Sl deliquescent Sol in H<sub>2</sub>O with decomp (Etard)

Chromic nickel sulphate, Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, N<sub>1</sub>SO<sub>4</sub>,  $2H_{2}SO_{4} + 3H_{2}O$ 

Insol in H<sub>2</sub>O, but gradually decomp thereby (Etard, C R 87 602)

Chromous potassium sulphate, C1SO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub> +6H<sub>2</sub>O

Sol in H<sub>2</sub>O, less sol in alcohol (Peligot, A ch (3) 12 546)

Chromic potassium sulphate, K<sub>2</sub>Cr<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub> Anhudrous a Sol in H<sub>2</sub>O when not heated over 350°

β Insol in cold H<sub>2</sub>O and cold acids When ignited is insol in hot H<sub>2</sub>O and acids, except slightly in boiling cone H<sub>2</sub>SO<sub>4</sub> (Fischer)

+2H<sub>2</sub>O (?) Insol in cold H<sub>2</sub>O or dil acids Sol by long boiling with H<sub>2</sub>O, and more (Hertwig) quickly when HCl is added

Is potassium chromosulphate. +4H<sub>2</sub>O which see

+24H<sub>2</sub>OChrome-a<sup>1</sup>um Violet modifica-Sol in 6-7 pts Efflorescent at 29° cold H<sub>2</sub>O When the H<sub>2</sub>O solution is heated to 60-70° it is partially decomp into a green modification, which is more sol in H2O green modification on standing in H2O solution is very slowly converted back into violet The green modification may modification also be formed by heating dry salt to 100° at which temp it melts in its crystal H2O When all crystal H<sub>2</sub>O has been expelled at 300-350°, it still dissolves in hot H<sub>2</sub>O, but when heated above 350° it becomes insol in H<sub>2</sub>O (Lowel, A ch (3) 44 313)

1251 g anhydrous, or 2439 g hydrated salt, or 0 441 g mols anhydrous salt are sol in 1 l  $\rm H_2O$  at 25° (Locke, Am Ch J 1901, **26** 175)

Melts in crystal H<sub>2</sub>O at 89° Chem Soc 45 409)

Sp gr of aqueous solution of violet modification at 15° containing

 $15\% \text{ K}_2\text{Cr}_2(\text{SO}_4)_4 + 24\text{H}_2\text{O}$ 10 1 02725 1 05500 1 08350

Sp gr of sat solution at  $15^{\circ} = 10985$ 

Sp gr of aqueous solution of green modification at 15° containing

20  $30\% \text{ K}_2\text{Cr}_2(\text{SO}_4)_4 + 24\text{H}_2\text{O}_7$ 10 1 103 1 050 1 161

 $60\% \text{ K}_2\text{Cr}_2(\text{SO}_4)_4 + 24\text{H}_2\text{O},$ 40 50 1 225 1 295 1 371

80  $90\% \text{ K}_2\text{Cr}_2(\text{SO}_4)_4 + 24\text{H}_2\text{O}$ 70 16351 453 1 541

(Gerlach, Z anal 28 497)

Sp gr of chrome-alum solutions at 15° containing

% salt, 1 0174 1 0342 1 0524 1 0746 1 1004

40 45 50 % salt, 1 1274 1 1572 1 1896 1 2352 1 2894

70 % salt 1 3704 1 4566 1 5462 1 6362 (Franz, J pr (2) 5 298)

Insol in alcohol  $3K_2SO_4$ ,  $Cr_2(SO_4)_3$  Insol in  $H_2O$ , acids, or

dil alkalies Decomp by boiling with conc (Wernicke, Pogg 159 576) KOH + Aq

Chromic rubidium sulphate, Rb<sub>2</sub>Cr<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+ 24H₂O

Sol in H<sub>2</sub>O (Petersson)

Solubility in H<sub>2</sub>O

| Temp | G anhydrous<br>salt per l | G mols of anhy<br>drous salt per l |
|------|---------------------------|------------------------------------|
| 25°  | 25 7                      | 0 079                              |
| 30°  | 31 7                      | 0 096                              |
| 35°  | 41 1                      | 0 128                              |
| 40°  | 59 7                      | 0 181                              |

Melts in crystal H<sub>2</sub>O at 107°

(Locke, Am Ch J 1901, 26 180)

# Chromic sodium sulphate, $Na_2Cr_2(SO_4)_4 + 10H_2O$

Is sodium chromosulphate, which see

+24H<sub>2</sub>O More efflorescent than K or NH<sub>4</sub> salt Sol in H<sub>2</sub>O, and properties resemble the corresponding K salt

Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 3Na<sub>2</sub>SO<sub>4</sub> Resembles the corresponding K salt

- -

#### Chromic thallous sulphate, Tl<sub>2</sub>Cr<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+ 24H<sub>2</sub>O

0 212 mols of anhydrous salt are sol in 1 l  $\rm H_2O$  at 25° 1 l  $\rm H_2O$  dissolves 104 8 g of anhydrous or 163 8 g hydrated salt at 25° Melts in crystal  $\rm H_2O$  at 92° (Locke, Am Ch J 1901, 26 175)

#### Chromic sulphate chloride, Cr<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>Cl<sub>2</sub>+ 2H<sub>2</sub>O

Slightly hydroscopic Sol in H<sub>2</sub>O (Schiff, A 124 176)

[CrSO<sub>4</sub>, 5H<sub>2</sub>O<sub>1</sub>Cl Sol in H<sub>2</sub>O (Weinland, Z anorg 1908, **58** 176)

# Chromyl sulphate, (CrO<sub>2</sub>)SO<sub>4</sub>

Decomp by  $H_2O$  (Pictet and Karl, Bull Soc 1908, (4) 3 1114)

## Cobaltous sulphate, basic

Ppt Insol in H<sub>2</sub>O (Berzelius) 6CoO, SO<sub>3</sub>+10H<sub>2</sub>O (Athanasesco, C R 103 271)

5CoO, SO; +4H O Ppt Very sl sol in H<sub>2</sub>O (Habermann, M Ch 5 432)

# Cobaltous sulphate, CoSO<sub>4</sub>

100 pts H<sub>2</sub>O dissolve at 3° 10° 20° 24° 29°

26 2 30 5 36 4 38 9 40 pts anhydrous salt,

35° 44° 50° 60° 70° 46 3 50 4 55 2 60 4 65 7 pts anhydrous salt

TT 0 4 11 140 1 -1. 00 00

(Tobler, A 95 193)

100 pts H<sub>2</sub>O at 11-14° dissolve 23 88 pts anhydrous salt (v Hauer, J pr 103 114)

Solubility in 100 pts H<sub>2</sub>O at t°, using CoSO<sub>4</sub>+7H<sub>2</sub>O

| t <sub>o</sub>                                                                                                                                                                                                                                                               | Pts<br>CoSO <sub>4</sub>                                                                                                                                                            | t°                                                                                                                                                       | Pts<br>CoSO4                                                                                                                                                                                                                                                                                                                               | t°                                                                                                                                                                                               | Pts<br>CoSO <sub>4</sub>                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>22<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>31<br>32<br>33<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34 | 24 6<br>25 5 0<br>26 0 0<br>27 5 0 5<br>28 0 0 5<br>29 0 5 0 5<br>29 30 0 5<br>31 0 5<br>32 0 5<br>33 34 0 5<br>36 8 4 0 3<br>38 0 5<br>38 39 6<br>40 2 7<br>41 3 8<br>42 4<br>42 9 | 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>65<br>66<br>67<br>68<br>69<br>70<br>71 | 43       5         44       45         28       40         62       28         46       62         47       47         48       49         50       50         51       52         52       53         54       40         62       28         40       62         81       40         62       28         63       64         63       64 | 72<br>73<br>74<br>75<br>76<br>77<br>78<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>106<br>4 | 65 66 66 66 66 66 66 66 66 66 66 66 66 6 |

(Mulder, calculated from his own and Tobler's determinations, Scheik Verhandel 1864 68)

100 g H<sub>2</sub>O dissolve 37 8 g CoSO, at 25° (Wagner, Z phys Ch 1910, **71** 430)

See also +7H<sub>2</sub>O

Sp gr of CoSO<sub>4</sub>+Aq at t° S=pts CoSO<sub>4</sub> in 100 pts solution, S<sub>1</sub>=mols CoSO<sub>4</sub> in 100 mols of solution

| S      | Sı.   | Sp gr  |
|--------|-------|--------|
| 6 8910 | 0 852 | 1 0765 |
| 5 8140 | 0 711 | 1 0641 |
| 4 7095 | 0 570 | 1 0517 |
| 3 5792 | 0 429 | 1 0392 |
| 2 4273 | 0 288 | 1 0263 |
| 1 2099 | 0 141 | 1 0131 |

(Charpy, A ch (6) 29 26)

Sp gr of CoSO<sub>4</sub>+Aq at room temp containing

> 7 239 14 156 21 167% CoSO<sub>4</sub> 1 0860 1 1591 1 2398

(Wagner, W Ann 1883, 18 269)

Sp gr of CoSO<sub>4</sub>+Aq at 25°

| Concentration of CoSO <sub>4</sub> +Aq | Sp gr                                |
|----------------------------------------|--------------------------------------|
| 1-normal  1/2- "  1/4- "  1/8- "       | 1 0750<br>1 0383<br>1 0193<br>1 0110 |

(Wagner, Z phys Ch 1890, 5 37)

100 pts sat solution of CoSO<sub>4</sub> and CuSO<sub>4</sub> contain 22 70 pts of the two salts

Solubility of CoSO<sub>4</sub>, 7H<sub>2</sub>O+Na<sub>2</sub>SO<sub>4</sub>, 10H<sub>2</sub>O in H<sub>2</sub>O at t° 100 g H<sub>2</sub>O dissolve grams CoSO<sub>4</sub> and grams Na<sub>2</sub>SO<sub>4</sub>

| t° | grams CoSO4 | grams Na <sub>2</sub> SO <sub>4</sub> |
|----|-------------|---------------------------------------|
| 0  | 21 855      | 10 07                                 |
| 5  | 23 94       | 13 155                                |
| 10 | 25 41       | 16 665                                |

(Koppel, Z phys Ch 1905, **52** 396) See also under CoNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+4H<sub>2</sub>O

Insol in liquid NH  $_3$  (Franklin, Am Ch 1898, 20 827)

HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> ppts 1t completely from CoSO<sub>4</sub>+

Aq (Persoz) 100 pts absolute methyl alcohol dissolve 104 pts CoSO<sub>4</sub> at 18° (de Bruyn, Z phys

Ch 10 784)

100 pts absolute methyl alcohol dissolve 54 5 pts CoSO<sub>4</sub>+7H<sub>2</sub>O at 18°, 100 pts absolute methyl alcohol dissolve 42 8 pts CoSO<sub>4</sub> +7H<sub>2</sub>O at 3°, 100 pts 93 5% methyl alcohol dissolve 13 3 pts CoSO<sub>4</sub>+7H<sub>2</sub>O at 3°,100 pts 50% methyl alcohol dissolve 18 pts CoSO<sub>4</sub>+7H<sub>2</sub>O at 3°

100 pts absolute ethyl alcohol dissolve 25 pts CoSO<sub>4</sub>+7H<sub>2</sub>O at 3° (de Bruyn, Z phys

Ch 10 786)

100 g solution in glycol contain 25 g CoSO<sub>4</sub> (de Coninck, Bull Ac Belg **1905** 

Insol in benzonitrile (Naumann, B 1914, 47 1370)

Insol in ethyl acetate 1904, 37 3602) (Naumann, B

 $+H_2O$ SI sol in cold, and only very slowly sol in hot H<sub>2</sub>O (Vortmann, B 15 1888)

+4H<sub>2</sub>O(Frohde, Arch Pharm (2) 127 92) +6H<sub>2</sub>O(Marignac)

Sol in 24 pts cold H<sub>2</sub>O Insol  $+7H_2O$ in alcohol (Persoz)

Solubility of CoSO4+7H2O in H2O at to 100 g H<sub>2</sub>O dissolve grams CoSO<sub>4</sub>

| t°           | g CoSO <sub>4</sub>     | t°             | g CoSO4                  | t°             | g CoSO4                 |
|--------------|-------------------------|----------------|--------------------------|----------------|-------------------------|
| 0<br>5<br>10 | 25 53<br>28 05<br>30 55 | 15<br>20<br>25 | 33 045<br>36 21<br>39 35 | 30<br>35<br>40 | 42 26<br>45 80<br>48 85 |

(Koppel, Z phys Ch 1905, 52 395)

M -pt of  $CoSO_4 + 7H_2O = 96 - 98^\circ$ (Tilden, Chem Soc 45 409)

Cobaltocobaltic sulphate, Co<sub>2</sub>O<sub>3</sub>, 6CoO, SO<sub>3</sub>+ 15H<sub>2</sub>O

Precipitate Insol in boiling CoSO4+Aq or NH<sub>4</sub>OH+Aq (Gentele, J pr 69 130)

Cobaltic sulphate, Co<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+18H<sub>2</sub>O

Sol in H<sub>2</sub>O with immediate decomp and liberation of O Sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq without immediate decomp Sol in conc HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Marshall, Chem Soc 59 760)

Cobaltous cupric sulphate, 2CoSO<sub>4</sub>, CuSO<sub>4</sub>+ 21H<sub>2</sub>O

Easily sol in H<sub>2</sub>O (v Hauer, Pogg 125 637)

-36H₂O (Liebig) 2CoSO<sub>4</sub>, 2CuSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> (Ltard)

Cobaltous cupric magnesium potassium zinc sulphate, CoSO<sub>4</sub>, CuSO<sub>4</sub>, 4K<sub>2</sub>SO<sub>4</sub>, ZnSO<sub>4</sub>+24H<sub>2</sub>O (?) Sol in  $H_9O$  (Vohl)

Cobaltous cupric potassium sulphate, CoSO<sub>4</sub>, CuSO<sub>4</sub>,  $2K_2SO_4 + 12H_2O(?)$ 

Sol in H<sub>2</sub>O (Vohl)

Does not exist (Aston and Pickering, Chem Soc 49 123)

Cobaltous hydrazine sulphate, CoII (SO<sub>4</sub>)<sub>2</sub>,  $2N_{2}H_{4}$ 

1 pt is sol in 305 16 pts H<sub>2</sub>O at 12° Sol in HNO<sub>3</sub> with decomp Insol in HCl (Curtius, J pr 1894, (2) 50 331)

Cobaltous iron (ferrous) potassium sulphate, CoSO<sub>4</sub>, Fe<sub>2</sub>SO<sub>4</sub>, 2k<sub>2</sub>SO<sub>4</sub>+12H O Sol in H<sub>2</sub>O (Vohl, A 94 57) 2CoSO<sub>4</sub>, 2FeSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> (Ltard)

Cobaltous magnesium sulphate, 3CoSO<sub>4</sub>,  $MgSO_4+28H_2O$ Easily sol in H<sub>2</sub>O (Winkelblech)

Cobaltous magnesium potassium sulphate,  $CoSO_4$ ,  $MgSO_4$ ,  $K_2SO_4+12H_2O$ Sol m H<sub>2</sub>O (Vohl, A 94 57)

Does not exist (Aston and Pickering, Chem Soc 49 123)

Cobaltous manganous potassium sulphate, CoSO<sub>4</sub>, MnSO<sub>4</sub>, 2K<sub>2</sub>SO<sub>4</sub>+12H<sub>2</sub>O Sol in H<sub>2</sub>O (Vohl, A 94 57)

Cobaltous nickel potassium sulphate, CoSO4, N<sub>1</sub>SO<sub>4</sub>, 2K<sub>2</sub>SO<sub>4</sub>+12H<sub>2</sub>O

Sol in  $H_2O$  (Vohl, A 94 57) Does not exist (Thomson, Rep Brit Assn Adv Sci 1877 209)

Cobaltous potassium sulphate, CoSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub>  $+6H_2O$ 

Less sol in H<sub>2</sub>O than CoSO<sub>4</sub> 100 pts H<sub>2</sub>O dissolve at

0° 12° 15° 20° 25°

19 1 30 32 5 39 4 45 3 pts anhydrous salt,

30°  $35^{\circ}$ 40° 519 55464 6 81 3 pts anhydrous salt (Tobler, A 96 126)

100 pts saturated solution contain at 60° 40°  $20^{\circ}$ 80° 318 pts anhydrous salt 14 195 244(v Hauer, J pr 74 433)

1 l H<sub>2</sub>O dissolves 1288 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Cobaltic potassium sulphate, K<sub>2</sub>Co<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+ 24H<sub>2</sub>O

Sol in H<sub>2</sub>O with decomp (Marshall, Chem Soc 59 760)

Cobaltous potassium zinc sulphate, CoSO4, 2K<sub>2</sub>SO<sub>4</sub>, ZnSO<sub>4</sub>+12H<sub>2</sub>O Sol in  $H_2O$  (Vohl, A 94 57)

Cobaltous rubidium sulphate, CoSO<sub>4</sub>, Rb<sub>2</sub>SO<sub>4</sub> +6H<sub>2</sub>O

Sol in II<sub>2</sub>O (lutton)

1 1 H O dissolves 92 8 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Cobaltic rubidium sulphate, Rb<sub>2</sub>Co<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+ 24II<sub>2</sub>O

Decomp by H2O Sol in dil HCl and H<sub>2</sub>SO<sub>4</sub> Decomp by conc HCl or H<sub>2</sub>SO<sub>4</sub> (Howe and O'Neal, J Am Chem Soc 1898, **20** 762)

Melts in crystal H<sub>2</sub>O at 47° (Locke, Am Ch J 1901, 26 183)

Cobaltous sodium sulphate, CoNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+  $4H_2O$ 

Solubility of  $CoNa_{\circ}(SO_{4})_{2}$ ,  $4H_{2}O$  in  $H_{2}O$  at  $t^{\circ}$ 100 g H<sub>2</sub>O dissolve grams CoSO<sub>4</sub> and grams Na<sub>2</sub>SO<sub>4</sub>

| t°                         | g CoSO₄                                     | g Na SO4                                    |
|----------------------------|---------------------------------------------|---------------------------------------------|
| 20<br>25<br>30<br>35<br>40 | 26 65<br>25 365<br>23 13<br>22 55<br>20 975 | 24 91<br>23 325<br>21 61<br>20 85<br>20 055 |

(Koppel, Z phys Ch 1905, 52 397)

Solubility of CoNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>, 4H O+CoSO<sub>4</sub>, 7H<sub>2</sub>O in H<sub>2</sub>O at t° 100 g H<sub>2</sub>O dissolve grams CoSO4 and grams Na2SO4

| t° | CoSO4 | Na <sub>2</sub> SO <sub>4</sub> | t° | CoSO4                     | Na SO |
|----|-------|---------------------------------|----|---------------------------|-------|
| 20 |       | 23 82<br>23 015<br>20 575       |    | 32 695<br>34 065<br>35 01 | 15 61 |

(Koppel, Z phys Ch 1905, 52 397)

Solubility of CoNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>, 4H<sub>2</sub>O+NaSO<sub>4</sub>, 10H<sub>2</sub>O in H<sub>2</sub>O at t° 100 g H<sub>2</sub>O dissolve grams CoSO<sub>4</sub> and grams Na<sub>2</sub>SO<sub>4</sub>

| t°   | g CoSO4 | g Na <sub>2</sub> SO <sub>4</sub> |
|------|---------|-----------------------------------|
| 18 5 | 25 50   | 25 65                             |
| 20   | 23 18   | 27 26                             |
| 25   | 16 07   | 35 18                             |
| 30   | 9 20    | 43 74                             |

(Koppel)

Solubility of CoNa<sub>2</sub>(SO<sub>4</sub>), 4H<sub>2</sub>O+Na<sub>2</sub>SO<sub>4</sub> (anhydrous) in H<sub>2</sub>O at t° 100 g H<sub>2</sub>O dissolve grams CoSO4 and grams Na2SO4

| t° | g CoQO4 | g Na SO4 |
|----|---------|----------|
| 35 | 7 204   | 50 79    |
| 40 | 7 456   | 50 095   |

(Koppel)

See also CoSO4+Na2SO4 under CoSO4

Cobaltous zinc sulphate

(Link, Efflorescent Decomp on air Crell Ann 1790, 1 32)

Cobaltous sulphate ammonia, CoSO4, 6NH3 Sol in H<sub>2</sub>Q with separation of ppt (Rose,

Pogg 20 152) Very easily sol in NH4OH+ Aq (Fremy)

Decomp by alcohol

Cobaltous sulphate hydrazme, CoSO4, 3N2H4 Insol in H2O Decomp by boiling with H<sub>2</sub>O Very sol in dil acids and NH<sub>4</sub>+Aq (Franzen, Z anorg 1908, 60 272)

Cobaltous sulphate hydroxylamine, CoSO<sub>4</sub>,  $NH_2OH + 2H_2O$ 

Insol in cold, sol in hot H<sub>2</sub>O with decomp (Feldt, B 1894, 27 403)

## Columbium sulphate

Sol in H<sub>2</sub>O (Blomstrand)

Cuprous sulphate, Cu<sub>2</sub>SO<sub>4</sub>

Decomp by H<sub>2</sub>O Sol in conc HCl, in ammonia and sl sol in glacial acetic acid (Recoura, C R 1909, 148 1107)

Cupric sulphate, basic, 10CuO, SO<sub>3</sub>

(Pickering, Chem Soc 1907, 91 1984) 8CuO, SO<sub>3</sub>+12H<sub>2</sub>O Ppt (Kane, A ch **72** 269)

5CuO,  $SO_3+6H_2O$ Ppt (Smith, Phil

Mag J 23 196)

4CuO, SO₃+3H<sub>2</sub>O Insol in H<sub>2</sub>O (Roucher, J Pharm (3) 37 50) BrochantiteSol acids and  $M_{in}$  $\mathbf{m}$ 

NH<sub>4</sub>OH+Aq

 $H_1OH + Aq + 31/H_2O$  Insol in  $H_2O$  Easily sol in dil acids, even  $HC_2H_3O_2 + Aq$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl sol in  $H_2O$  Sl

(Proust) Sol ad more easily in NH<sub>4</sub>Cl, (Lea)

\_₂∪ cussolves 0 017 g (Pickering, C N 1883, 47 182)

+5H<sub>2</sub>O Mm Langute +16H<sub>2</sub>O (Andre, C R 100 1138) 7CuO, 2SO<sub>3</sub>+5H<sub>2</sub>O (Reindel, J pr 100

 $+6H_2O$  Wholly insol in cold or hot  $H_2O$ 

(Habermann, M Ch 5 432)

+7H<sub>2</sub>O Insol in H<sub>2</sub>O, easily sol in acids Insol in boiling  $CuSO_4+Aq$  (Reindel)  $3CuO, SO_2+1\frac{1}{2}H_2O$  Insol in  $H_2O$ , easily

sol in acids (Steinmann, B 15 1412)

+2H<sub>2</sub>O Insol in H<sub>2</sub>O, sol in dil H<sub>2</sub>SO<sub>4</sub>+ Aq (Shenstone, Chem Soc 47 375)

 $+2\frac{1}{2}H_2O$  (Reindel, J pr 102 204)  $+4H_2O$  Insol in  $H_2O$  (Grimbert (Grimbert and Barré, J Pharm (5) 21 414)

5CuO,  $2SO_3 + 3H_2O$ (Wibel, Dissert

1864 (Clowes, C N

11ĆuO, 4SO<sub>3</sub>+8H<sub>2</sub>O 1898, **78** 155) (Marchlewski and

8CuO, 3SO<sub>3</sub>+10H<sub>2</sub>O (Ma Sachs, Z anorg 1892, 1 405) 7CuO, 3SO<sub>3</sub>+12H<sub>2</sub>O

(Étard, C R 1887, **104** 1615)

5CuO, 2SO<sub>8</sub>+5H<sub>2</sub>O (Sabatier, Gm K **5** 1, 839)

 $6H_2O$ Min Arnimite (Weisbach, J B 1886 2253)

2CuO, SO<sub>3</sub> Decomp by cold H<sub>2</sub>O into CuSO4 and 4CuO, SO3 (Roucher)

Insol in H<sub>2</sub>O Decomp by hot H<sub>2</sub>O Sol in dil acids (Pozzi-Escot, Bull Soc 1913 (4) 13 816)

According to Pickering (C N 47 181) only 0°

3CuO,  $SO_3+2\frac{1}{2}H_2O$  and 4CuO,  $SO_3+4H_2O$ are true chemical compounds

There is at 25° no definite basic sulphate of copper, all the basic sulphates being solid solutions The solutions in contact with these basic sulphates contain SO<sub>3</sub> and CuO in equivalent quantities and are all sl acid in reaction (Bell, J phys Chem 1908, 12 179)

Cupric sulphate, CuSO<sub>4</sub>

Absorbs H<sub>2</sub>O from the air AnhydrousCombines with, and dissolves in H<sub>2</sub>O with great evolution of heat

+H<sub>2</sub>O Permanent Sol in H<sub>2</sub>O (Étard, C R 87 602)

 $+2H_2O$  (?)

(Storer's Dict) (Étard, C R 104 1614)  $+3H_2O$ Does not exist (Cross, C N 49 220)

See Foote, p 965

Superficially efflorescent in dry  $+5H_{2}O$ 

Sol m 2 34 pts  $\rm H_2O$  at 18° and sat solution has sp gr 1 2147 (Schiff A 109 326) 100 pts  $\rm CuSO_4+Aq$  sat at b pt 102 2 contain 45 pts of the dry salt or 100 pts  $\rm H_2O$  at 102 2° dissolve 81 82 pts  $\rm CuSO_4$  (Griffiths Q J Sci 18 90) Sol in less than 4 pts  $\rm H_2O$  at ord temp and much more sol in boiling  $\rm H_2O$  (Bergmann) Sol in 4 pts cold and 2 pts hot  $\rm H_2O$  (Schubarth) 100 pts  $\rm H_2O$  dissolve 33 103 pts  $\rm CuSO_4+5H_2O$  at 15° and solution has sp gr =1 1850 (Michel and Krafft A ch (3) 41 478)  $\rm CuSO_4+Aq$  sat at 8° has 1 17 sp  $\rm gr$  (Anthon A 24 210)

24 210)

1 pt CuSO<sub>4</sub>+5H<sub>2</sub>O dissolves at

37 5° 19 31° ın 3 32 17 271 184 1 14 pts H O

62.50 87 5° 106° 101° 75 1 07 ın 127 0 7ა 05, 047 pts H () (Brandes and Cruner 1826)

Sol at 175 in 2412 pts H() (Kurt II)

100 pts H<sub>2</sub>O dissolve at Q٥ 10°  $20^{\circ}$  $30^{\circ}$ 

31 61 36 95 42 31 48 81 pts  $CuSO_4 + 5H_2O_7$ 

50°  $60^{\circ}$ 70° 56 90 65 83 77 39 94 60 pts CuSO<sub>4</sub>+5H<sub>2</sub>O<sub>7</sub>

80° 90° 100° 11803203 32 pts CuSO<sub>4</sub>+5H<sub>2</sub>O 156 44

(Poggiale, A ch (3) 8 463) 100 pts H<sub>2</sub>O dissolve at

O٥ 20° 35° 54° 17 24 3 28 6 36 1 pts anhydrous CuSO<sub>4</sub> (Tobler, A 95 193)

100 pts CuSO<sub>4</sub>+Aq sat at 11-14° contain 16 23 pts anhydrous CuSO<sub>4</sub> (v Hauer, J pr 103 114)

100 pts H<sub>2</sub>O dissolve 15 107 pts CuSO<sub>4</sub> at

(Pfaff, A 99 224)

| 100 pts H <sub>2</sub> O dissol | ve pts CuSO4 at t°      |
|---------------------------------|-------------------------|
| t°                              | Pts CuSO <sub>4</sub>   |
| 0<br>17 9<br>24 1               | 14 99<br>20 16<br>22 37 |

(Diacon, J B 1866 61)

100 pts H<sub>2</sub>O dissolve pts CuSO<sub>4</sub> at t°

| t°                  | Pts<br>CuSO <sub>4</sub>         | t                    | Pts<br>CuSO <sub>4</sub>         | t°              | Pts<br>CuSO <sub>4</sub> |
|---------------------|----------------------------------|----------------------|----------------------------------|-----------------|--------------------------|
| 0<br>10<br>20<br>30 | 14 15<br>17 50<br>20 53<br>24 34 | 40<br>50<br>60<br>70 | 28 50<br>33 31<br>39 01<br>45 74 | 80<br>90<br>100 | 54 53<br>64 35<br>75 22  |

(Patrick and Aubert, Transactions of Kansas Acad of Sci 1874 19)

Solubility in 100 pts H<sub>2</sub>O at t°

| Solubility in 100 pts H <sub>2</sub> O at t                                    |                                                                                                                                                |                                                                                                                                                          |                                                                                                                                           |                                                                                                                                                          |                                                                                                                         |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| t°                                                                             | Pts<br>CuSO <sub>4</sub>                                                                                                                       | t°                                                                                                                                                       | Pts<br>CuSO <sub>4</sub>                                                                                                                  | t°                                                                                                                                                       | Pts<br>CuSO <sub>4</sub>                                                                                                |
| t° 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26 27 28 | CusO <sub>4</sub> 15 5 16 3 16 6 16 9 17 2 17 5 17 8 18 1 18 4 18 7 19 1 19 3 19 6 19 9 20 2 20 5 20 8 21 1 21 7 22 0 22 3 22 3 23 7 24 0 24 4 | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63 | Cuso <sub>4</sub> 27 5 27 9 28 3 28 7 29 1 29 5 30 3 30 7 31 1 31 5 31 9 32 3 33 6 34 1 34 5 35 0 36 6 37 2 37 8 38 4 39 0 99 6 10 2 40 9 | 70<br>71<br>72<br>73<br>74<br>75<br>76<br>77<br>78<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>97<br>98 | Cuso <sub>4</sub> 45 4 46 4 47 9 48 7 5 50 3 51 1 51 9 7 53 55 54 3 55 9 7 60 7 62 7 60 7 62 7 60 8 68 9 68 9 69 1 70 2 |
| 29<br>30<br>31<br>32                                                           | 25 1<br>25 5<br>25 9<br>26 3                                                                                                                   | 64<br>65<br>66<br>67                                                                                                                                     | 41 5<br>42 2<br>42 9<br>43 6                                                                                                              | 99<br>100<br>101<br>102                                                                                                                                  | 72 4<br>73 5<br>74 6<br>75 7                                                                                            |
| 33<br>34                                                                       | 26 7<br>27 1                                                                                                                                   | 68<br>69                                                                                                                                                 | $\left \begin{array}{cc}44&3\\45&0\end{array}\right $                                                                                     | 103<br>104                                                                                                                                               | 76 8<br>77 95                                                                                                           |

(Mulder, Scheik Verhandel 1864 79)

If solubility S=pts anhydrous  $CuSO_4$  in 100 pts solution,  $S=11\ 6+0\ 2614t$  from  $-2^\circ$  to  $55^\circ$ ,  $S=26\ 5+0\ 3700t$  from  $55^\circ$  to  $105^\circ$ ,  $S=45\ 0-0\ 0293t$  from  $105^\circ$  to  $190^\circ$  (Étard, C R 104 1614)

Solubility decreases above 120°, owing to formation of basic salt (Tilden and Shenstone, Phil Trans 1884 23)

100 ccm H<sub>2</sub>O dissolve 14 92 g CuSO<sub>4</sub> at 0° (Engel, C R **102** 113)

100 ccm H<sub>2</sub>O dissolve 22 28-22 30 g CuSO<sub>4</sub> at 20° (Trevor, Z phys Ch **7** 468)

Sat CuSO<sub>4</sub>+Aq contains % CuSO<sub>4</sub> at t°

| t°                                                                                                           | % CuSO <sub>4</sub>                                                                                                                                  | t°                                                                                                                    | % CuSO <sub>4</sub>                                                                          |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| -1<br>+7<br>9<br>18<br>20<br>20<br>35<br>39<br>45<br>54<br>61<br>63<br>65<br>70<br>71<br>7<br>68<br>80<br>86 | 12 1<br>14 1<br>14 5<br>16 9<br>17 2<br>17 4<br>21 3<br>21 8<br>23 9<br>26 9<br>26 8<br>28 8<br>29 1<br>30 0<br>31 6<br>32 6<br>34 5<br>36 6<br>37 8 | 88<br>89<br>94<br>96<br>97<br>100<br>108<br>110<br>116<br>116<br>120<br>132<br>133<br>143<br>160<br>165<br>179<br>189 | 38 8<br>38 9<br>41 9<br>42 0<br>43 8<br>43 4<br>43 8<br>44 8<br>44 7<br>45 0<br>41 5<br>42 2 |
|                                                                                                              |                                                                                                                                                      |                                                                                                                       |                                                                                              |

(Étard, A ch 1894, (7) 2 551)

# Solubility in H<sub>2</sub>O at t°

| t  | g (uSO <sub>1</sub> per 10) g H O |
|----|-----------------------------------|
| 0  | 14 15                             |
| 10 | 17 68                             |
| 15 | 19 25                             |
| 20 | 20 78                             |
| 25 | 22 29 (by interpolition)          |

(Cohen, Z phys Ch 1907, 60 71)

1 399 mol are sol in 1 l H<sub>2</sub>O at 25° (Herz, Z anorg 1910, 67 366)

100 g CuSO<sub>4</sub> + Aq sat at 30° contain 20 32 anhyd CuSO<sub>4</sub> (Schreinemakers, Z phys Ch 1910, 71 110)

+7H<sub>2</sub>O (Boisbaudran, C R **65** 1249) +6H<sub>2</sub>O (Boisbaudran, C R **66** 487)

| Sp gr of $CuSO_4+Aq$ at $18^\circ$ %=% $CuSO_4+5H_2O$ |                                                                                                  |                                                          |                                                                                                  |                                                          |                                                                                                  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| %                                                     | Sp gr                                                                                            | %                                                        | Sp gr                                                                                            | %                                                        | Sp gr                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9             | 1 0063<br>1 0126<br>1 0190<br>1 0254<br>1 0319<br>1 0384<br>1 0450<br>1 0516<br>1 0582<br>1 0649 | 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | 1 0716<br>1 0785<br>1 0854<br>1 0923<br>1 0993<br>1 1063<br>1 1135<br>1 1208<br>1 1281<br>1 1354 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 1 1427<br>1 1501<br>1 1585<br>1 1659<br>1 1738<br>1 1817<br>1 1898<br>1 1980<br>1 2063<br>1 2146 |

(Schiff, calculated by Gerlach, Z anal 8 288)

Sp gr of CuSO<sub>4</sub>+Aq at 23 9° a=no of  $\frac{1}{2}$ mols in grms dissolved in 1000 grms H<sub>2</sub>O, b=sp gr if a is CuSO<sub>4</sub>=5H<sub>2</sub>O ( $\frac{1}{2}$ mol wt =125), c=sp gr if a is CuSO<sub>4</sub> ( $\frac{1}{2}$  mol wt =80)

| а. | b     | c     |
|----|-------|-------|
| 1  | 1 076 | 1 080 |
| 2  | 1 142 | 1 154 |
| 3  | 1 200 | 1 225 |

(Favre and Valson, C R 79 968)

Sp gi of  $CuSO_4+Aq$  at 15°  $\% = \% CuSO_4+5H_2O$ 

| - %           | Sp gr                      | %                            | Sp gr                     |
|---------------|----------------------------|------------------------------|---------------------------|
| 5<br>10<br>15 | 1 0335<br>1 0688<br>1 1060 | 20<br>25<br>mother<br>liquor | 1 1443<br>1 1848<br>1 185 |

(Gerlach, Dingl 181 131)

Sp gr of CuSO<sub>4</sub>+Aq at 18°

| % CuSO4 | Sp gr  | % CuSO <sub>4</sub> | Sp gr  |
|---------|--------|---------------------|--------|
| 5       | 1 0513 | 15                  | 1 1675 |
| 10      | 1 1073 | 17 5                | 1 2003 |

(Kohlrausch, W Ann 1879 1)

Sp gr of  $CuSO_4+Aq$  at 0° S=pts  $CuSO_4$ in 100 pts solution

| s                           | Sp gr                      | s                | Sp gr            |
|-----------------------------|----------------------------|------------------|------------------|
| 11 9315<br>9 8159<br>7 5474 | 1 1371<br>1 1108<br>1 0833 | 5 2181<br>2 6460 | 1 0578<br>1 0290 |

(Charpy, A ch (6) 29 26)

Sp gr of CuSO<sub>4</sub>+Aq at room temp

| % Cu8O4 | Sp gr  |
|---------|--------|
| 6 79    | 1 055  |
| 12 57   | 1 1151 |
| 17 49   | 1 1635 |

(Wagner, W Ann 1883, 18 265)

Sp gr of CuSO<sub>4</sub>+Aq at 25°

| oncentration of CuSO <sub>4</sub><br>+Aq         | Sp gr                                          |
|--------------------------------------------------|------------------------------------------------|
| 1-normal  1/g- "  1/g- "  1/g- "  1/s- "  1/s- " | 1 0790<br>1 0402<br>1 0205<br>1 0103<br>1 0050 |

(Wagner, Z phys Ch 1890, 5 38)

B-pt CuSO<sub>4</sub>+Aq containing pts CuSO<sub>4</sub> to 100 pts H<sub>2</sub>O

| B pt                                       | Pts CuSO <sub>4</sub>                | B pt                              | Pts CuSO                     |
|--------------------------------------------|--------------------------------------|-----------------------------------|------------------------------|
| 100 5°<br>101 0<br>101 5<br>102 0<br>102 5 | 21 3<br>36 9<br>48 0<br>56 2<br>63 0 | 103 0°<br>103 5<br>104 0<br>104 2 | 69 0<br>74 9<br>80 1<br>82 2 |

(Gerlach, Z anal 26 434)

Sat CuSO<sub>4</sub>+Aq boils at 102 2°, and contains 81 8 pts CuSO<sub>4</sub> to 100 pts H<sub>2</sub>O (Griffiths)

Crust forms at 102 3°, and solution contains 60 3 pts CuSO<sub>4</sub> to 100 pts H<sub>2</sub>O, highest temp observed, 104 8° (Gerlach, Z, anal **26** 426)

Sol in HCl+Aq, causing a reduction of temperature of about 17°

Very sl sol in conc H<sub>2</sub>SO<sub>4</sub> (Schulz)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq it 0°

| G per 10                                                |                                                         |                                                             |
|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|
| H <sub>2</sub> SO <sub>4</sub>                          | CuS() <sub>4</sub>                                      | ∠b ₹1.                                                      |
| 0 00<br>2 03<br>7 16<br>15 20<br>26 57<br>27 57<br>35 2 | 14 85<br>14 29<br>15 65<br>9 90<br>6 43<br>6 19<br>3 99 | 1 144<br>1 143<br>1 158<br>1 170<br>1 195<br>1 211<br>1 224 |

(Engel, C R 1887, 104 507)

| Solubility in H <sub>2</sub> SO <sub>4</sub> +Aq at 2 |
|-------------------------------------------------------|
|-------------------------------------------------------|

| Solution                                                                                                                                           |                                                                                         |                                                                                                                           | C-1-1 -1                                                                                                                                                                                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sp gr                                                                                                                                              | % CuO                                                                                   | % SO <sub>3</sub>                                                                                                         | Solid phase                                                                                                                                                                                    |  |  |
| 1 2142<br>1 2248<br>1 2593<br>1 2934<br>1 4061<br>1 4256<br>1 4249<br>1 4516<br>1 4915<br>1 5124<br>1 5408<br>1 5643<br>1 6824<br>1 7752<br>1 8118 | 9 17<br>5 91<br>3 39<br>1 82<br>1 32<br>1 38<br>1 02<br>0 38<br>0 368<br>0 109<br>0 105 | 9 26<br>15 90<br>23 09<br>28 75<br>39 74<br>41 29<br>41 04<br>43 63<br>47 82<br>51 46<br>53 51<br>62 14<br>68 34<br>72 41 | CuSO <sub>4</sub> +5H <sub>2</sub> O  CuSO <sub>4</sub> +5H <sub>2</sub> O and CuSO <sub>4</sub> +3H <sub>2</sub> O  CuSO <sub>4</sub> +3H <sub>2</sub> O  CuSO <sub>4</sub> +H <sub>2</sub> O |  |  |
| 1 8266                                                                                                                                             | 0 07                                                                                    | 74 26                                                                                                                     | CuSO <sub>4</sub>                                                                                                                                                                              |  |  |

These results show that the hydrates of CuSO<sub>4</sub> which are stable at 25° are CuSO<sub>4</sub>+ $5\rm{H}_2\rm{O}$ ,  $+3\rm{H}_2\rm{O}$  and  $+\rm{H}_2\rm{O}$ 

(Bell and Taber, J phys Chem 1908, 12

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| Solution contains                                                                                |                                                                                                                        | Solid phase                                                                                                                                                                                                                                    |  |  |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| % CuSO                                                                                           | % H <sub>2</sub> SO <sub>4</sub>                                                                                       | Solid phase                                                                                                                                                                                                                                    |  |  |  |
| 18 47 12 62 5 92 3 25 2 63 2 59 2 83 2 84 2 70 2 19 2 11 2 15 0 95 0 17 0 15 0 19 0 44 0 42 0 40 | none 11 14 25 53 36 77 42 15 47 66 49 00 49 20 49 29 50 23 54 78 55 84 55 60 61 79 77 93 83 29 85 46 85 72 85 81 86 04 | CuSO <sub>4</sub> +5H <sub>2</sub> O and CuSO <sub>4</sub> +3H <sub>2</sub> O and CuSO <sub>4</sub> +3H <sub>2</sub> O and CuSO <sub>4</sub> +H <sub>2</sub> O and CuSO <sub>4</sub> +H <sub>2</sub> O and CuSO <sub>4</sub> +H <sub>2</sub> O |  |  |  |
| 0 19                                                                                             | 92 70                                                                                                                  | CuSO <sub>4</sub>                                                                                                                                                                                                                              |  |  |  |

These results show that the hydrates of CuSO<sub>4</sub> which are stable at 25° are CuSO<sub>4</sub>+  $5\mathrm{H}_2\mathrm{O}$ ,  $+3\mathrm{H}_2\mathrm{O}$  and  $+\mathrm{H}_2\mathrm{O}$  (Foote, J Am Chem Soc 1915, **37** 290)

Sl sol in sat NH<sub>4</sub>Cl+Aq, with separation of a double sulphate

Solubility of CuSO<sub>4</sub> in CuCl<sub>2</sub>+Aq at 30°

| 0 20 32 CuSO <sub>4</sub> , 5H <sub>2</sub> O | % CuCl <sub>2</sub>                       | % CuSO₄                               | Solid phase |
|-----------------------------------------------|-------------------------------------------|---------------------------------------|-------------|
| 25 67   4 77   "<br>39 48   3 21   "          | 15 68<br>25 67<br>39 48<br>42 47<br>43 25 | 13 62<br>8 93<br>4 77<br>3 21<br>2 90 | t<br>c      |

(Schreinemakers, Arch Néer Sci 1910, (2) **15** 117)

Solubility of CuSO<sub>4</sub> in LiCl+Aq at 25° Solid phase, CuSO<sub>4</sub>, 5H<sub>2</sub>O (G mols per l of solution)

| LiCl | CuSO₄ |
|------|-------|
| 0    | 1 399 |
| 0 73 | 1 257 |
| 1 40 | 1 176 |
| 2 83 | 1 067 |

(Herz, Z anorg 1910, 67 366)

Solubility of CuSO<sub>4</sub> in KCl+Aq at 25° Solid phase, CuSO<sub>4</sub>+5H<sub>2</sub>O (G mols per l of solution)

| KCl                                                   | CuSO <sub>4</sub>       |
|-------------------------------------------------------|-------------------------|
| RCI                                                   | Cusor                   |
| $egin{array}{c} 0 & 56 \ 1 & 17 \ 2 & 34 \end{array}$ | 1 496<br>1 561<br>1 819 |

(Herz)

Solubility of CuSO<sub>4</sub> in NaCl+Aq at 25° Solid phase, CuSO<sub>4</sub>+5H<sub>2</sub>O (G mols per l of solution)

| •                         |                                  |
|---------------------------|----------------------------------|
| NaCl                      | Cu <sup>c</sup> O <sub>i</sub>   |
| 0<br>0 36<br>1 32<br>2 53 | 1 399<br>1 404<br>1 426<br>1 507 |
|                           | (amm )                           |

(Herz)

Solubility of CuSO<sub>4</sub> in RbCl+Aq at 25°, containing 1 094 g mols per l = 1 568 g mols (Herz)

Slowly sol in sat KNO<sub>3</sub>+Aq, with separation of a double sulphate

Very slowly sol in sat NaNO<sub>3</sub>+Aq, with separation of a double sulphate (Karsten, Berl Abhandl **1840** 10)

Solubility of CuSO<sub>4</sub> in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq at 0°

| g per 100 cc<br>solution  |                                |                                  | g p r<br>solu                  |                              |                                  |
|---------------------------|--------------------------------|----------------------------------|--------------------------------|------------------------------|----------------------------------|
| (NH4)2SO4                 | CuSO,                          | Sp gr                            | (NH4) SO4                      | CuSO.                        | Sp gr                            |
| 0<br>3 61<br>4 63<br>4 90 | 14 79<br>16 09<br>8 38<br>7 26 | 1 144<br>1 190<br>1 108<br>1 099 | 5 59<br>7 51<br>12 31<br>20 65 | 5 13<br>2 95<br>0 94<br>0 80 | 1 081<br>1 071<br>1 082<br>1 116 |

(Engel, C R 1886, **102** 114)

See also under (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>

Solubility of CuSO<sub>4</sub> in Li<sub>2</sub>SO<sub>4</sub>+Aq at 30°

| Composition of the solution                                                                        |                                                                                                    | Out I also                                                                                                                                                                       |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| % by wt CuSO <sub>4</sub> % by wt Li <sub>2</sub> SO <sub>4</sub>                                  |                                                                                                    | Solid phase                                                                                                                                                                      |  |
| 20 32<br>17 50<br>16 10<br>13 55<br>12 14<br>11 04<br>10 05<br>10 08<br>10 07<br>6 41<br>3 39<br>0 | 0<br>3 54<br>6 08<br>11 94<br>15 72<br>17 92<br>20 55<br>20 51<br>20 49<br>22 23<br>23 59<br>25 24 | CuSO <sub>4</sub> , 5H <sub>2</sub> O  " " " " " CuSO <sub>4</sub> , 5H <sub>2</sub> O + L <sub>12</sub> SO <sub>4</sub> , H <sub>2</sub> O  " " " " " " " " " " " " " " " " " " |  |

(Schreinemakers, Z phys Ch 1909, 66 692)

Sol in CuCl<sub>2</sub>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, NH<sub>4</sub>Cl+Aq at 30° (Schreinemakers, Z phys Ch 1909, **69** 565)

Sol in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, Li<sub>2</sub>SO<sub>4</sub>+Aq at 30° (Schreinemakers, Z phys Ch 1909, 66 694) 100 pts sat solution of CuSO<sub>4</sub> and FeSO<sub>4</sub> contain 17 43 pts of the salts at 11-14°

(v Hauer, J pr 103 114) 100 pts H<sub>2</sub>O dissolve 10.85 pts CuSO<sub>4</sub>, 17 47 pts MgSO<sub>4</sub>, and 5.78 pts Na<sub>2</sub>SO<sub>4</sub> at 0° (Diacon)

100 pts H<sub>2</sub>O dissolve 7 169 pts CuSO<sub>4</sub>, 21 319 pts MgSO<sub>4</sub>, and 6.830 pts Na<sub>2</sub>SO<sub>4</sub> at 0° (Plaff)

Slowly and sl sol in sat MgSO<sub>4</sub>+Aq (Karsten)

Solubility of CuSO<sub>4</sub> in H<sub>2</sub>O in presence of MgSO<sub>4</sub> 100 pts H<sub>2</sub>O dissolve—

| No                                      | CuSO <sub>4</sub>         | MgSO <sub>4</sub>                | No          | CuSO <sub>4</sub>       | MgSO <sub>4</sub>  |
|-----------------------------------------|---------------------------|----------------------------------|-------------|-------------------------|--------------------|
| $\begin{array}{c}1\\2\\3\\4\end{array}$ | 0<br>2 64<br>4 75<br>9 01 | 26 37<br>25 91<br>25 30<br>23 54 | 5<br>6<br>7 | 12 03<br>13 61<br>14 99 | 15 67<br>8 64<br>0 |

In 1, 2, and 3, MgSO<sub>4</sub> was in excess and given amt CuSO<sub>4</sub> added, in 4, both CuSO<sub>4</sub> and would be required

 $MgSO_4$  were in excess, in 5, 6, and 7,  $CuSO_4$  was in excess (Diacon, l c)

100 pts sat solution of CuSO<sub>4</sub> and MgSO<sub>4</sub> contain 28 58 pts of the salts at 11-14° (v Hauer, J pr 103 114)

100 pts sat solution of CuSO<sub>4</sub> and MnSO<sub>4</sub> contain 37 90 pts of the salts at 11-14 ° (v Hauer)

Solubility of CuSO<sub>4</sub>+MnSO<sub>4</sub> in H<sub>2</sub>O at 25°

| G per 100 g H <sub>2</sub> O    |                             | G per 10                    | 00 g H <sub>2</sub> O            |
|---------------------------------|-----------------------------|-----------------------------|----------------------------------|
| Cu£O <sub>4</sub>               | MnSO <sub>4</sub>           | CuSO4                       | MnSO4                            |
| 20 2<br>19 76<br>13 65<br>11 61 | 0<br>3 69<br>31 52<br>39 41 | 9 39<br>6 47<br>3 01<br>0 0 | 46 77<br>53 39<br>58 93<br>61 83 |

(Stortenbecker Z phys Ch 1900, 34 112)

100 pts sat solution of CuSO<sub>4</sub> and NiSO<sub>4</sub> contain 31 03 pts of the salts at 11-14 ° (v Hauer)

Solubility of CuSO<sub>4</sub>+NiSO<sub>4</sub> in H<sub>2</sub>O

|    | g per 100 g H <sub>2</sub> O                       |                                                    | Mol %                                           | CuSO <sub>4</sub>                                                                                                                     |
|----|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| t° | CuSO <sub>4</sub>                                  | N1904                                              | Solution                                        | Solid<br>phase                                                                                                                        |
| 35 | 9 62<br>41 66<br>75 39<br>106 40<br>172 0<br>186 9 | 583 9<br>484 4<br>553 5<br>506 5<br>483 8<br>468 8 | 1 57<br>7 69<br>11 66<br>16 92<br>25 6<br>27 90 | $\begin{array}{c} 0 \ 35 \\ 2 \ 12 \\ 4 \ 77 \\ 6 \ 52 \\ 13 \ 88 \\ \left\{ \begin{array}{c} 18 \ 77 \\ 94 \ 91 \end{array} \right.$ |
| 67 | 20 04<br>66 01<br>88 08<br>147 94<br>249 9         | 729 3<br>706 2<br>501 6<br>675 0<br>747 8          | 2 65<br>8 31<br>13 55<br>16 39<br>24 46         | 0 93<br>2 86<br>3 92<br>6 66<br>23 32                                                                                                 |

(Fock, Z Kryst Min 1897, 28 387)

More easily sol in sat K<sub>2</sub>SO<sub>4</sub>+Aq than in Na<sub>2</sub>SO<sub>4</sub> or MgSO<sub>4</sub>+Aq, forming a double sulphate, which separates out (Karsten)

K<sub>2</sub>SO<sub>4</sub> and CuSO<sub>4</sub> mutually displace each other in saturated solutions (Rudorff, Pogg 148 555)

When K<sub>2</sub>SO<sub>4</sub> and CuSO<sub>4</sub>, both in excess, are dissolved in H<sub>2</sub>O, a maximum of solubility of 15 61 pts of the two salts in 100 pts H<sub>2</sub>O at 25° is reached in 30 minutes, after which the solubility decreases. This result is obtained either by treating excess of the two salts with H<sub>2</sub>O at 25°, or cooling solutions of the two salts sat at higher temp to 25°. The salts are in the proportion of 5 2 pts K<sub>2</sub>SO<sub>4</sub> to 10 4 pts CuSO<sub>4</sub>. If present in the same proportion as in their saturated solutions, 5 41 pts K<sub>2</sub>SO<sub>4</sub> to 10 13 pts CuSO<sub>4</sub>.

If sat solution of one salt is added to sat solution of the other,  $K_2Cu(SO_4)_2+6H_2O$  separates, as it is less sol than either simple salt, until a state of equilibrium is reached, after which there is no separation, contrary to Rudorff (see above) (Trevor, Z physical Ch 7 486)

#### CuSO<sub>4</sub>+Na<sub>2</sub>SO<sub>4</sub>

Solubility of CuSO<sub>4</sub> in presence of Na<sub>2</sub>SO<sub>4</sub> 100 pts H<sub>2</sub>O dissolve—

| No               | CuSO <sub>4</sub>          | Na <sub>2</sub> SO <sub>4</sub> | No          | CuSO <sub>4</sub>       | Na <sub>2</sub> SO <sub>4</sub> |
|------------------|----------------------------|---------------------------------|-------------|-------------------------|---------------------------------|
| 1<br>2<br>3<br>4 | 0<br>6 01<br>9 81<br>16 67 | 4 53<br>5 34<br>5 73<br>6 48    | 5<br>6<br>7 | 15 84<br>15 33<br>14 99 | 3 55<br>1 98<br>0               |

In 1, 2, and 3, Na<sub>2</sub>SO<sub>4</sub> was in excess and given amt CuSO<sub>4</sub> added, in 4, both CuSO<sub>4</sub> and Na<sub>2</sub>SO<sub>4</sub> were in excess, in 5, 6, and 7, CuSO<sub>4</sub> was in excess and Na<sub>2</sub>SO<sub>4</sub> added (Diacon, J B 1866 61)

100 pts H<sub>2</sub>O dissolve 8 038 pts CuSO<sub>4</sub> and 631 pts Na<sub>2</sub>SO<sub>4</sub> at 0° (Pfaff, A 99 224) 100 pts H<sub>2</sub>O dissolve 20 7 pts CuSO<sub>4</sub> and 15 9 pts Na<sub>2</sub>SO<sub>4</sub> at 15° (Rudorff, B 6 484)

### Solubility of CuSO<sub>4</sub>+Na<sub>2</sub>SO<sub>4</sub>

1 Solid phase, 3 mol  $CuSO_4+1$  mol Na<sub>2</sub>SO<sub>4</sub>

2 Solid phase, 1 mol  $CuSO_4+1$  mol

3 Solid phase, 1 mol CuSO<sub>4</sub>+3 mol Na<sub>2</sub>SO<sub>4</sub>

#### $(G \text{ in } 100 \text{ g H}_2O)$

| t        |                | 1                                |               | 2              |                   | 3              |
|----------|----------------|----------------------------------|---------------|----------------|-------------------|----------------|
|          | CuSO;          | Na 504                           | CuSOi         | Na 804         | CuSO <sub>4</sub> | Na 801         |
| 15<br>30 | $2069 \\ 2203$ | 12 49<br>15 88<br>16 36<br>11 75 | 20.75 $21.00$ | 15 90<br>20 14 | 20 70<br>15 28    | $1592 \\ 2270$ |

(Massol and Maldes, C R 1901, 133 287)

Solubility of CuSO<sub>4</sub>, 5H<sub>2</sub>O+Na<sub>2</sub>SO<sub>4</sub>, 10H<sub>2</sub>O

| t°            | % CuSO4                 | % N 12904    |
|---------------|-------------------------|--------------|
| 0<br>12<br>15 | 13 40<br>14 83<br>15 00 | 6 23<br>9 82 |

(Koppel, Z phys Ch 1903, **42** 8) See also under  $CuNa_2(SO_4)_2 + 6H_2O$ 

 $CuSO_4 + ZnSO_4$ 

Very slowly sol in sat ZnSO<sub>4</sub>+Aq, forming a double salt which separates (Karsten) 100 pts sat solution of CuSO<sub>4</sub> and ZnSO<sub>4</sub>

contain 32 70 pts of the salts at 11-14° (v Hauer)

Solubility of CuSO<sub>4</sub>+ZnSO<sub>4</sub> in H<sub>2</sub>O at 25°

| Mols per 100<br>mols H <sub>2</sub> O                |                                                   | Mols mols                                                     | per 100<br>s H <sub>2</sub> O                                |
|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|
| Cu                                                   | Zn                                                | Cu                                                            | Zn                                                           |
| 2 28<br>1 83<br>1 41<br>1 19<br>1 86<br>1 22<br>1 01 | 0<br>2 08<br>3 60<br>5 01<br>3 36<br>4 45<br>4 72 | 0 82<br>0 51<br>0 30<br>0 00<br>1 19<br>0 51<br>0 267<br>0 00 | 5 03<br>5 59<br>5 56<br>6 42<br>5 01<br>5 59<br>5 77<br>5 94 |

(Stortenbecker, Z phys Ch 1897, 22 62)

Insol in liquid NH<sub>3</sub> (Franklın, Am Ch J 1898, **20** 827)

Insol in liquid CO<sub>2</sub> (Buchner, Z phys Ch 1906, **54** 674)

100 pts of a sat solution in 40% alcohol contains 0 25 pt CuSO<sub>4</sub>+5H<sub>2</sub>O, 20% alcohol, 31 pts., 10% alcohol, 133 pts (Šchiff, A **118** <sup>\*</sup>362 )

Anhydrous CuSO<sub>4</sub> is sol in absolute methyl alcohol, but insol in absolute ethyl  $CuSO_4+xH_2O$  is insol in methyl or ethyl alcohol (Klepl, J pr (2) 25 526)

100 pts absolute methyl alcohol dissolve

105 pts anhydrous CuSO<sub>4</sub> at 18°

100 pts absolute methyl alcohol dissolve 15 6 pts  $CuSO_4+5H_2O$  at 18°, 100 pts 93 5% methyl alcohol dissolve 0 93 pt  $CuSO_4+5H_2O$  at 18°, 100 pts 50% methyl alcohol dissolve 04 pt  $CuSO_4+5H_2O$  at 18°, 100 pts absolute methyl alcohol dissolve 13 4 pts CuSO<sub>4</sub>+5H<sub>2</sub>O at 3°

100 pts absolute ethyl alcohol dissolve 1 1 pts  $CuSO_4+5H_2O$  at 3° phys Ch 10 786) (de Bruyn, Z

Methyl alcohol dissolves 115% CuSO<sub>4</sub>+ (Auger, C R 1906, 142 1272)

Glacial acetic acid precipitates CuSO<sub>4</sub> completely from CuSO<sub>4</sub>+Aq

100 g 95% formic acid dissolve 0 05 g CuSO<sub>4</sub>+5H<sub>2</sub>O at 18 5° (Aschan, Ch Ztg 1913, 37 1117)

Sol in glycerine (Pelouze), picoline (Univer-

dorben)

100 g glycerine dissolve 36 3 g CuSO<sub>4</sub>+ 5H<sub>2</sub>O at 15-16° (Ossendowski, Pharm J 1907, 79 575)

100 g glycerine dissolve 30 0 g CuSO<sub>4</sub> at

100 g solution of CuSO<sub>4</sub> in glycol contain 7 6 g at 14 6° (de Coninck, Bull Ac Belg 1905 257)

Anhydrous CuSO4 is insol in acetone

Krug and M'Elroy, J Anal Ch 6 184)
Insol in acetone (Eldmann, C C 1899,
II 1014), methyl acetate (Naumann, B
1909, 42 3790), ethyl acetate (Naumann,
B 1910, 43 314), benzonitrile (Naumann,
B 1014 47 1270) 1914, **47** 1370)

Min Chalcanthite

Cupric glucinum sulphate, CuSO<sub>4</sub>, 4GlSO<sub>4</sub>+ 20H<sub>2</sub>O

Sol in H<sub>2</sub>O (Klatzo, J B 1868 205) Does not exist (Marignac, A ch (4) 30

9CuSO<sub>4</sub>, GISO<sub>4</sub>+50H<sub>2</sub>O As above Does not exist (Marignac, l c)

Cupric hydrazine sulphate,  $CuH_2(SO_4)_2$ , 2N2H4

1 pt 18 sol in 1148 pts  $H_2O$  at  $10^\circ$ Decomp by acids Sol in NH<sub>4</sub>OH+Aq with decomp (Curtius, J pr 1894, (2) 50 331)

Cupric iron (ferrous) sulphate, CuSO<sub>4</sub>, FeSO<sub>4</sub> Insol in  $H_2O$  (Étard, C R 87 602)  $+2\mathrm{H}_2\mathrm{O}$  (Étard)

 $CuSO_4$ ,  $2FeSO_4 + 21H_2O$  Sol in  $H_2O$ 

 $CuSO_4$ ,  $3FeSO_4 + 28H_2O$  100 pts  $H_2O$  dissolve 75 pts salt at 7° (Lefort)
4CuSO<sub>4</sub>, FeSO<sub>4</sub>+34H<sub>2</sub>O 100 pts H<sub>2</sub>O at

15 5° dissolve 75 91 pts (Thomson)

Cupric iron (ferric) sulphate, CuSO<sub>4</sub>, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>  $+24H_{2}O$ Sol in H<sub>2</sub>O (Bastick)

Cupric iron (ferrous) potassium sulphate,  ${\rm CuSO_4~FeSO_4,~2K_2SO_4}{+12{\rm H_2O}}$ Sol in H<sub>2</sub>O (Vohl)

Cupric lead sulphate, CuO, PbO, SO<sub>2</sub>+H<sub>2</sub>O Min Linarite

3CuO, 7PbO, 5SO<sub>3</sub>+5H<sub>2</sub>O Min Caledon-te Sol in HNO<sub>3</sub>+Aq

Cupric magnesium sulphate, CuSO<sub>4</sub>, MgSO<sub>4</sub> +14H<sub>2</sub>O

Efflorescent Sol in H<sub>2</sub>O (Vohl, A 94 +2H<sub>2</sub>O (Arrot, 1834)

CuSO<sub>4</sub>, 2MgSO<sub>4</sub>+21H<sub>2</sub>O Sol in H<sub>2</sub>O Hauer, Pogg 125 638) CuSO<sub>4</sub>, 7MgSO<sub>4</sub>+56H<sub>2</sub>O (Schiff, A 107 64) Sol in H<sub>2</sub>O

Cupric magnesium manganous potassium sulphate, CuSO<sub>4</sub>, MgSO<sub>4</sub>,  $MnSO_4$  $3K_2SO_4 + 18H_2O$ Sol in H<sub>2</sub>O (Vohl)

Cupric magnesium potassium sulphate, CuSO<sub>4</sub>, MgSO<sub>4</sub>, 2K<sub>2</sub>SO<sub>4</sub>+6H<sub>2</sub>O Sol in  $H_2O$  (Vohl, A 94 57) Does not exist (Aston and Pickering, Chem Soc 49 123)

Cupric magnesium potassium zinc sulphate,  $CuSO_4$ ,  $MgO_4$ ,  $3K_2SO_4$ ,  $ZnSO_4+18H_2O_1$ Sol in H<sub>2</sub>O (Vohl)

Cupric manganous sulphate, 5CuSO<sub>4</sub>,  $2MnSO_4 + 35H_2O$ 

Sol in H<sub>2</sub>O (Schauffele, J B **1852** 340) 2CuSO<sub>4</sub>, 3MnSO<sub>4</sub>+25H<sub>2</sub>O As above (S) CuSO<sub>4</sub>, MnSO<sub>4</sub>+H<sub>2</sub>O (Étard, C R 87

Cupric manganous potassium sulphate,  $CuSO_4$ ,  $MnSO_4$ ,  $2K_2SO_4+12H_2O$ Sol in H<sub>2</sub>O (Vohl)

Cupric nickel sulphate, CuSO<sub>4</sub>, NiSO<sub>4</sub>+3H<sub>2</sub>O (Etard, C R **87** 602) CuSO<sub>4</sub>, 2N<sub>1</sub>SO<sub>4</sub>+21H<sub>2</sub>O (v Hauer) Sol in  $H_2O$ +18**H**<sub>2</sub>O Sol in H<sub>2</sub>O (Boisbaudran, C

R 66 497) 2CuSO<sub>4</sub>, 2N<sub>1</sub>SO<sub>4</sub>, 3H<sub>2</sub>SO<sub>4</sub> (Etard)

Cupric nickel potassium sulphate, CuSO<sub>4</sub>,  $N_1SO_4$ ,  $2K_2SO_4 + 12H_2O_3$ 

Sol in  $H_2O$  (Vohl)

Sol in 4 pts H<sub>2</sub>O, insol in alcohol (Bette)  $4\text{CuSO}_4$ ,  $\text{K}_2\text{SO}_4 + 4\text{H}_2\text{O}$ Very sl sol m  $H_2O$ 

 $K_2O$ , 4CuO,  $4SO_3+4H_2O$  Insol in  $H_2O$ , but decomp by boiling H<sub>2</sub>O into 3CuO, SO<sub>3</sub>

Cupric potassium sulphate,  $K_2Cu(SO_4)_2$ +  $6H_2O$ 

100 pts H<sub>2</sub>O dissolve 66 666 pts at 102 8° fiths) Much more sol in hot than cold H<sub>2</sub>O (Pierre)
Easily sol in H<sub>2</sub>O by boiling de comp into basic salt
(Persoz A ch (3) **25** 272)

100 pts  $\rm H_2O$  dissolve 11 14 pts anhydrous salt at 25° (Trevor, Z phys Ch 7 470) 1 1  $\rm H_2O$  dissolves 116 9 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

See also CuSO<sub>4</sub>+K<sub>2</sub>SO<sub>4</sub> Mm Cyanochronte

Cupric potassium zinc sulphate, CuSO<sub>4</sub>,  $2K_2SO_4$ ,  $ZnSO_4+12H_2O$ Sol m H<sub>2</sub>O (Vohl)

Cupric rubidium sulphate, CuSO<sub>4</sub>, Rb<sub>2</sub>SO<sub>4</sub>+  $6H_2O$ 

Sol in  $H_2O$ (Tutton)

1 l H<sub>2</sub>O dissolves 1028 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Cupric sodium sulphate, basic, Na<sub>2</sub>SO<sub>4</sub>,  $Cu(OH)_2$ ,  $3CuSO_4+2H_2O$ 

Mm Natrochalcite Sl sol in H<sub>2</sub>O, easily sol in acids (Palache and Warren, Am J Sci 1908, (4) 26 **346**)

Cupric sodium sulphate, CuSO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>+  $2H_{\circ}O$ 

Solubility of the pure double salt CuSO4, Na SO4+2HO

| t°                                | 100 grams solution contain                |                                           |  |
|-----------------------------------|-------------------------------------------|-------------------------------------------|--|
|                                   | CuSO <sub>4</sub> grams                   | Na <sub>2</sub> SO <sub>4</sub> grams     |  |
| 17 7<br>19 5<br>23<br>30<br>40 15 | 14 34<br>14 54<br>14 36<br>14 07<br>13 73 | 13 34<br>12 90<br>12 76<br>12 37<br>12 26 |  |

(Koppel, Z phys Ch 1903, 42 8)

Solubility of the mixture of CuSO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>+ H<sub>2</sub>O and CuSO<sub>4</sub>

| t°                                | 100 g solu                                | ition contain                            |  |
|-----------------------------------|-------------------------------------------|------------------------------------------|--|
|                                   | CuSO <sub>4</sub> grams                   | Na <sub>2</sub> SO <sub>4</sub> grams    |  |
| 17 7<br>19 5<br>23<br>30<br>40 15 | 14 99<br>15 62<br>16 41<br>17 97<br>20 56 | 13 48°<br>12 06<br>11 35<br>9 95<br>8 00 |  |

(Koppel)

Solubility of the mixture of CuSO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>+ 2H<sub>2</sub>O and Na<sub>2</sub>SO<sub>4</sub>

| t°                                                                     | 100 g solution contain                                                                            |                                                                                       |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
|                                                                        | CuSO <sub>4</sub> grams                                                                           | Na <sub>2</sub> SO <sub>4</sub> grams                                                 |  |
| 18<br>19 5<br>20<br>23<br>25<br>26<br>28<br>28 3<br>30<br>30 2<br>32 2 | 13 53<br>11 847<br>11 339<br>8 185<br>6 284<br>5 507<br>3 746<br>3 661<br>2 607<br>2 422<br>1 465 | 13 844<br>15 116<br>15 697<br>18 723<br>21 198<br>22 44<br>24 963<br>28 383<br>32 442 |  |
| 33 9<br>35 3<br>37 2                                                   | 1 475<br>1 471<br>1 494                                                                           | 32 299<br>32 072<br>31 96                                                             |  |

(Koppel)

Solubility of CuSO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>+2H<sub>2</sub>O presence of varying amounts of Na<sub>2</sub>SO<sub>4</sub>

| 10                                          | 100 g solution contain               |                                           |  |
|---------------------------------------------|--------------------------------------|-------------------------------------------|--|
| ,                                           | CuSO <sub>1</sub> grams              | Na <sub>2</sub> SO <sub>4</sub> grams     |  |
| 30<br>30<br>30<br>30<br>1<br>40<br>15<br>30 | 5 38<br>5 41<br>3 69<br>3 97<br>1 57 | 22 17<br>21 92<br>25 37<br>23 90<br>32 09 |  |

(Koppel)

Copper sulphate and sodium sulphate unite to form a double salt, CuSO4, Na2SO4+ 2H<sub>2</sub>O, which is stable in the presence of the solution above 167° In the presence of copper sulphate the solubility of Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O is greater than that of the pure salt (Koppel)

Cupric thallous sulphate, CuSO<sub>4</sub>, Tl<sub>2</sub>SO<sub>4</sub>+  $6H_{\bullet}O$ Decomp by recrystallising from H<sub>2</sub>O

Willin, A ch (4) 5 55)

1 1 H<sub>2</sub>O dissolves 81 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Cupric zinc sulphate, CuSO<sub>4</sub>, 3ZnSO<sub>4</sub>+28H<sub>2</sub>O Efflorescent 100 pts H2O dissolve 80 pts salt at 8° Sol in all proportions in boiling

 $H_2O$ (Lefort) ČuSO,  $2ZnSO_4+21H_2O$ (v Hauer, Pogg 125 637) CuSO<sub>4</sub>, ZnSO<sub>4</sub>+12H<sub>2</sub>O

(Boisbaudran) 2CuSO<sub>4</sub>, 2ZnSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> (Étard)

Cuprous sulphate ammonia, Cu<sub>2</sub>SO<sub>4</sub> 4NH<sub>3</sub> Sol in NH<sub>4</sub>OH+Aq, decomp by pure H<sub>2</sub>O (Péchard, C R 1903, 136 504) +H<sub>2</sub>O Decomp by H<sub>2</sub>O

(Foerster and Blankenburg, B 1906, 39 4434)

Cupric sulphate ammonia, basic, CuSO<sub>4</sub>, 3CuO, 2NH<sub>3</sub>+5H<sub>2</sub>O

Decomp by hot H<sub>2</sub>O (Pickering, Chem Soc 43 336)

Cupric sulphate ammonia (Cuprammonium sulphate), CuSO<sub>4</sub>, NH<sub>3</sub>

Decomp by  $H_2O$  (Kane) Decomp by  $H_2O$  giving a basic sulphate (Bouzat, C R 1902, 135 535)

CuSO<sub>4</sub>, 2NH<sub>3</sub> [CuSO<sub>4</sub>, 2NH<sub>3</sub>+3H<sub>2</sub>O (Mendelejeff, B 3 422 )] Decomp by excess of H<sub>2</sub>O into-

CuSO<sub>4</sub>, 4NH<sub>2</sub>+H<sub>2</sub>O Sol in 15 pts H<sub>2</sub>O, but decomp by much H<sub>2</sub>O Insol in alcohol Insol in conc NH4OH+Aq (André, C R 100 1138)

Sol in small quantity of H<sub>2</sub>O, decomp in dil solution (Bouzat)

100 g H<sub>2</sub>O dissolve 44 56 g anhydrous comp at 25° (Pudschies, Dissert)

100 g H<sub>2</sub>O dissolve 18 05 g at 21-22° (Horn and Taylor, Am Ch J 1904, **32** 268)

CuSO<sub>4</sub>, 5NH<sub>3</sub> Completely sol in H<sub>2</sub>O (Rose, Pogg 20 150)

Sol in small amt of HO, decomp in dil lution Insol in liquid NH<sub>3</sub> (Bouzat, solution C R 1902, 135 535)

Cuprous sulphate carbon monoxide, Cu<sub>2</sub>SO<sub>4</sub>, 2C0+H<sub>2</sub>O

Very unstable (Joannis, C R 1903, **136** 615)

Cupric sulphate zmc oxide, CuSO<sub>4</sub>, 2ZnO+ 21H<sub>2</sub>O

(Larsen, Ch Z Repert 1896, 20 317)  $2CuSO_4$ ,  $3ZnO+12H_2O$  (Mailhe, A ch 1902, (7) 27 169)

Didymium sulphate, basic,  $D_{12}O_3$ ,  $SO_3 = (D_1O)_2SO_4$ 

Insol in cold or boiling  $H_2O$  (Marignac) Slowly sol in hot dil HCl+Aq Easily sol in conc acids

 $+8\mathrm{H}_2\mathrm{O}$  Precipitate (Hermann) Composition is  $2\mathrm{Di}_2\mathrm{O}_3$ ,  $3\mathrm{SO}_3+3\mathrm{H}_2\mathrm{O}$  or  $\mathrm{Di}_2(\mathrm{SO}_4)_3+\mathrm{Di}_2\mathrm{O}_6\mathrm{H}_5$  (Frerichs and Smith) Composition is  $5\mathrm{Di}_2\mathrm{O}_3$ ,  $3\mathrm{SO}_3+x\mathrm{H}_2\mathrm{O}$  (Cleve, B 11 910)

## Didymium sulphate, Di2(SO4)8

Anhydrous By saturating cold H<sub>2</sub>O and warming the solution, the following results were obtained—100 pts H<sub>2</sub>O dissolve at 12° 18° 25° 38° 50°

43 1 25 8 20 6 13 0 11 0 pts  $D_{12}(SO_4)_3$  +6H.O H<sub>2</sub>O dissolves this salt very slowly, 100 pts H<sub>2</sub>O dissolve 13 pts  $D_{12}(SO_4)_3$  m 24 hours, and 16 4 pts m 2 days If solution is evap in vacuo until  $D_{12}(SO_4)_3$  +8H<sub>2</sub>O separates out, 34 pts  $D_{12}(SO_4)_3$ 

remain dissolved in 100 pts  $H_2O$ +5 $H_2O$  (Cleve)

+8H<sub>2</sub>O Solutions of this salt contain at 19° 40° 50° 100°

11 7 8 8 6 5 1 6 pts D<sub>12</sub>(SO<sub>4</sub>)<sub>8</sub>
(Marignac, A ch (3) 38 170)

+9H<sub>2</sub>O (Zsch esche, J P<sub>1</sub> 107 75)

Didymium potassium sulphate,  $K_2SO_4$ ,  $D_{12}(SO_4)_3+2H_2O$ 

Sol in 63 pts H<sub>2</sub>O Insol in sat K<sub>2</sub>SO<sub>4</sub>+

Aq (Marignac)

 $3K_2SO_4$ ,  $D_{12}(SO_4)_3$  Sol in 83 pts  $H_2O$  at 18° Insol in cold, sl sol in boiling sat  $K_2SO_4+Aq$ , 100 ccm of which retain 55 mg  $D_{12}O_3$  in solution (Cleve)

 $\begin{array}{ll} {}^{12}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{}^{13}{$ 

Didymium sodium sulphate, D<sub>12</sub>(SO<sub>4</sub>)<sub>8</sub>, Na<sub>2</sub>SO<sub>4</sub>, and +2H<sub>2</sub>O

Sol in 200 pts  $\rm H_2O$  (Marignac), and still less in sat  $\rm Na_2SO_4+Aq$ , 100 ccm of which dissolve only 70 mg  $\rm Dl_2O_3$  at ord temp (Cleve )

Didymium thallous sulphate, (Di<sub>2</sub>SO<sub>4</sub>)<sub>3</sub>, 3Tl<sub>2</sub>SO<sub>4</sub>

 $D_{12}(SO_4)_3$ ,  $Tl_2SO_4+2H_2O$  Sol in  $H_2O$  (Zschiesche, J pr 107 98)

Erbium sulphate,  $Er_2(SO_4)_8$ 

Anhydrous Easily and rapidly sol in  $H_2O$  100 pts  $H_2O$  dissolve 43 pts anhydrous salt at  $0^\circ$ 

+8H<sub>2</sub>O Less sol in H<sub>2</sub>O than anhydrous salt 100 pts H<sub>2</sub>O dissolve 30 pts  $Er_2(SO)_4)_3$  +8H<sub>2</sub>O (=23 pts  $Er_2(SO_4)_3$ ) at about 20°, at 100°, 100 pts  $Er_2(SO_4)_3+8H_2$ O remain dissolved Sat solution deposits crystals when heated to 55° (Hoglund) 100 g of sat solution of  $Er_2(SO_4)_3+8H_2$ O at 25° in H<sub>2</sub>O contains 11 94 g anhyd  $Er_2(SO_4)_3$  (Wirth, Z anorg 1912, 76 174)

Solubility of  $\rm Er_2(SO_4)_3 + 8H_2O$  in  $\rm H_2SO_4$  at  $25^{\circ}$ 

 $N = \text{equiv g } H_2SO \text{ in 1 l of solvent}$  C = g oxide in 100 g of solution $C^1 = g \text{ anhyd salt in 100 g of solution}$ 

| N   | С    | C1            | N     | С                | C1    |
|-----|------|---------------|-------|------------------|-------|
| 1 1 | 3 64 | 7 618<br>6 00 | 6 685 | 0 9115<br>0 4439 | 0 733 |

(Wirth, Z anorg 1912, 76 174)

Insol in methyl acetate (Naumann, B 1909, 42 3790)

Erbium potassium sulphate,  $\mathrm{Er}_2(\mathrm{SO}_4)_s$ ,  $\mathrm{3K}_2\mathrm{SO}_4$  Slowly sol in  $\mathrm{H}_2\mathrm{O}$  (Hoglund)

Erbium sodium sulphate, Er<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 5Na<sub>2</sub>SO<sub>4</sub> +7H<sub>2</sub>O Sol in H<sub>2</sub>O (Cleve)

Europium sulphate, Eu<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+8H<sub>2</sub>O Stable in the air (Urbain and Lacombe, C R 1904, **138** 628)

Gadolinium sulphate,  $Gd_2(SO_4)_8+8H_2O$ 

## Solubility in H<sub>2</sub>O

| Temp      | Pts of (d (5() <sub>4</sub> ) <sub>3</sub> m<br>100 pts H <sub>2</sub> () |
|-----------|---------------------------------------------------------------------------|
| 0°        | 3 98                                                                      |
| 9 3–10 6° | 3 33                                                                      |
| 14 0°     | 2 80                                                                      |
| 25 0°     | 2 40                                                                      |
| 34 4°     | 2 26                                                                      |

(Benedicks, Z anorg 1899, 22 409-410)

100 g sat solution of  $Gd(SO_4)_3+8H_2O$  at 25° in  $H_2O$  contain 2 981 g anhyd  $Gd_2(SO_4)_3$  (Wirth, Z anorg 1912, 76 174)

N=equiv g H<sub>2</sub>SO<sub>4</sub> in 1 l of solvent C=g oxide in 100 g of solution

C<sub>1</sub>=g anhyd Gd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> in 100 g of solu-

| 0     1     793     2     981     2     16     1     789     2     974       0     1     1     98     3     291     6     175     0     528     0     8777       0     505     2     365     3     931     12     6     0     0521     0     0867       1     1     2     29     3     807     0     0     0     0     0     0     0 | N | С                                                | Cı             | N     | С     | C1     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------|----------------|-------|-------|--------|
|                                                                                                                                                                                                                                                                                                                                      |   | $\begin{array}{c} 1 & 98 \\ 2 & 365 \end{array}$ | 3 291<br>3 931 | 6 175 | 0 528 | 0 8777 |

(Wirth)

Sol in sat K<sub>2</sub>SO<sub>4</sub>+Aq

Gadolinium potassium sulphate, Gd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>,  $K_2SO_4+2H_2O$ 

100 grams sat solution in K<sub>2</sub>SO<sub>4</sub>+Aq contains 087-077 grams Gd<sub>2</sub>O<sub>3</sub> (Benedicks, Z anorg 1900, 22 410)

Gallium sulphate, Ga<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

Not deliquescent, but very sol in H<sub>2</sub>O Sol in 60% alcohol, insol in ether baudran)

Aqueous solution decomp into basic salt by boiling, which redissolves, however, on cooling

Gallium potassium sulphate, Ga<sub>2</sub>K<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+

(Soret, Arch sc phys nat 1885, 14 96)

Gallium rubidium sulphate, Rb<sub>2</sub>Ga<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub> +24H<sub>2</sub>O

(Soret, Arch sc phys nat 1885, 14 96)

Glucinum sulphate, basic, 3GlO, SO<sub>3</sub>+4H<sub>2</sub>O Sol in H<sub>2</sub>O, but decomp by heating or

dilution (Berzelius) 2GlO, SO<sub>8</sub>+3H<sub>2</sub>O Sol in H<sub>2</sub>O

9GlO, SO<sub>3</sub>+14H<sub>2</sub>O (?) Precipitate Insol in H<sub>2</sub>O (Berzelius)

According to Debray, this salt when carefully washed is GlO<sub>2</sub>H<sub>2</sub>

#### Glucinum sulphate, GISO4

Anhudrous

Nearly msol in H<sub>2</sub>O, but slowly attacked by cold, rapidly by hot  $H_2O$ , and is converted into  $GISO_4+4H_2O$  before dissolving (Parsons, Z anorg 1904, 42 253)

Sp gr of GISO<sub>4</sub>+Aq at 25°

| Concentration of GlSO <sub>4</sub> +Aq | Sp gr                                |
|----------------------------------------|--------------------------------------|
| 1—normal  1/2— "  1/4— "  1/16— "      | 1 0451<br>1 0229<br>1 0114<br>1 0027 |

(Wagner, Z phys Ch 1890, 5 35)

Solubility in H<sub>2</sub>SO<sub>4</sub> Solid phase, Gd<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+ | Solubility of GISO<sub>4</sub> in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| H <sub>2</sub> SO <sub>4</sub> +Aq<br>% H <sub>2</sub> SO <sub>4</sub>                        | 100 g of the<br>solution con<br>tain g GISO <sub>4</sub>                                                 | Solid phase                                              |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 5 23<br>9 61<br>18 70<br>34 00<br>40 35<br>45 51<br>50 63<br>56 59<br>63 24<br>65 24<br>73 64 | 8 212<br>8 429<br>7 944<br>6 603<br>5 631<br>5 773<br>6 628<br>5 438<br>3 640<br>2 244<br>2 128<br>2 185 | $\begin{cases} GlSO_4+6H_2O \\ GlSO_4+4H_2O \end{cases}$ |

(Wirth, Z anorg 1913, 79 359) See also under +2, 4, and 6H<sub>2</sub>O

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J. 1898, 20 828 (Levi-Malvano, Z anorg 1906,  $+H_2O$ 48 447)

 $+2H_{2}O$ Solubility in H<sub>2</sub>O at t°

| t°                       | G GISO <sub>4</sub> per 100 g    |                                  |  |
|--------------------------|----------------------------------|----------------------------------|--|
| L-                       | H <sub>2</sub> O                 | Solution                         |  |
| 80<br>91 4<br>105<br>119 | 84 76<br>97 77<br>118 4<br>149 3 | 45 87<br>49 42<br>54 21<br>59 88 |  |

(Levi-Malvano)

+4H<sub>2</sub>O Very sol in H<sub>2</sub>O Sol in its own weight of H2O at 14°, and in every proportion of boiling H<sub>2</sub>O Less sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq than in water A ch (3) 44 25) (Debray,

Solubility in H<sub>2</sub>O at t°

| t                    | g C!SO <sub>4</sub> per<br>100 g        |                                  | t°                   | £ (15)                  | (); per                 |
|----------------------|-----------------------------------------|----------------------------------|----------------------|-------------------------|-------------------------|
| 30<br>40<br>68<br>85 | H 0<br>43 78<br>46 74<br>61 95<br>76 30 | 30 45<br>31 85<br>38 27<br>43 28 | 95 4<br>107 2<br>111 | 90 63<br>115 3<br>128 3 | 47 55<br>53 58<br>56 19 |

(I evi-Malv ino )

SI sol in dilute, insol in absolute alcohol Can be completely pptd from GISO4+Aq (Persoz) by HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> Insol in acetone (Naumann, B 1904,

**37** 4329)

+6H<sub>2</sub>OSolubility in H<sub>2</sub>O at t°

| to                       | g GlSO <sub>4</sub> per 100 g    |                                  |  |  |
|--------------------------|----------------------------------|----------------------------------|--|--|
| •                        | H₂O                              | solution                         |  |  |
| 31<br>50<br>72 2<br>77 4 | 52 23<br>60 67<br>74 94<br>81 87 | 34 32<br>37 77<br>42 85<br>45 01 |  |  |

(Levi-Malvano)

100 g of the aqueous solution contain at 25°, 8 212 g GISO<sub>4</sub> (Wirth, Z anorg 1913, **79** 358)

Glucinum iron (ferrous) sulphate, GlSO4, FeSO<sub>4</sub>+17½H<sub>2</sub>O Sol in H<sub>2</sub>O (Klatzo, J B 1868 204) 3GISO<sub>4</sub>, FeSO<sub>4</sub>+28H<sub>2</sub>O Sol in H<sub>2</sub>O (Klatzo) Do not exist (Marignac, A ch (4) 30

Glucinum nickel sulphate, (Gl,N1)SO<sub>4</sub>+ 4H<sub>2</sub>O, or 7H<sub>2</sub>O (Klatzo, J B 1868 205) Does not exist (Atterberg, Sv V A F **1873, 4** 81)

 $+2H_2O$ 

Sl sol in cold, slowly but more sol in hot H<sub>2</sub>O (Debray) +3H<sub>2</sub>O (Klatzo)

Glucinum potassium hydrogen sulphate.  $GlH_2(SO_4)_2$ ,  $2K_2SO_4+4H_2O$ Easily sol in H2O Partly decomp by recrystallisation (Atterberg)

Glucinum sodium sulphate, 2GlSO<sub>4</sub>, 3Na<sub>2</sub>SO<sub>4</sub> +18H<sub>2</sub>O Sol in H<sub>2</sub>O (Atterberg)

Glucinum zinc sulphate, 2GlSO<sub>4</sub>, 3ZnSO<sub>4</sub>+ 35H<sub>2</sub>O

(Klatzo, J B 1868 205) Sol in H<sub>2</sub>O Does not exist (Atterberg)

Gold (auroauric) sulphate, Au<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> Decomp by moist air, H<sub>2</sub>O, glacial acetic acid, or HNO<sub>3</sub>+Aq (142 sp gr) Insol in conc H<sub>2</sub>SO<sub>4</sub> (Schottlander, A 217 375)

Gold (auric) sulphate, Au<sub>2</sub>O<sub>3</sub>, 2SO<sub>3</sub>+H<sub>2</sub>O, or Auryl hydrogen sulphate, (AuO)HSO<sub>4</sub> Deliquescent Decomp by H<sub>2</sub>O Sol in HCl+Aq, not attacked by conc HNO<sub>8</sub>+ Aq Sol in 6 pts conc H<sub>2</sub>SO<sub>4</sub> (Schottlander)

Gold (auric) potassium sulphate, Au<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>,  $K_2SO_4$ Not decomp immediately by cold H<sub>2</sub>O (Schottlander)

Hydrazine mercuric sulphate hydrazine,  $(N_2H_5)_2SO_4$ ,  $3HgSO_4$ ,  $2N_2H_4$ 

Insol in H<sub>2</sub>O Sol in H<sub>2</sub>O containing (Ferratini, Gazz ch it 1912, 42 HCl (1) 142)

Hydroxylamine uranyl sulphate,  $(NH_2OH)_2$ ,  $H_2SO_4$ ,  $2(UO_2)SO_4 + 5H_2O$ Extremely sol in H<sub>2</sub>O from which it can be cryst (Rimbach, Dissert 1904)

Indium sulphate, In<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> Easily sol in H<sub>2</sub>O +9H<sub>2</sub>O Easily sol in H<sub>2</sub>O

Indium hydrogen sulphate,  $InH(SO_4)_2$ + **4HO** Very deliquescent (Meyer)

Glucinum potassium sulphate, GlSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub> | Indium potassium sulphate, InK(SO<sub>4</sub>)<sub>2</sub>+  $4H_{9}O$ Sol in  $H_2O$ , but decomp by boiling (Rossler, J pr (2) 7 14) \_(InO)<sub>2</sub>K(SO<sub>4</sub>)<sub>2</sub>+3H<sub>2</sub>O Insol in  $H_2O$ 

(Rossler)

Indium rubidium sulphate  $In_2(SO_4)_3$ ,  $Rb_2SO_4 + 24H_2O$ 

44 28 pts are sol in 100 pts H<sub>2</sub>O at 15° (Chabrie, C R 1901, 132 473)

Melts in crystal H<sub>2</sub>O at 42° (Locke, (Locke, Am Ch J 1901, 26 183)

Indium sodium sulphate,  $InNa(SO_4)_2 + 4H_2O$ Sol in H<sub>2</sub>O (Rossler, J pr (2) 7 14)

Indine sulphate,  $I_2(SO_4)_3$ Decomp by H<sub>2</sub>O (Fighter, Z

anorg 1915, 91 140)

Iodyl sulphate, (IO)<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub> Possible composition of Weber's (B 20 86) I<sub>2</sub>O<sub>5</sub>, 3SO<sub>3</sub>

#### Iridium sulphate

Sol in  $H_2O$  or alcohol (Berzelius) Ir(SO<sub>4</sub>)<sub>2</sub> Sol in  $H_2O$  (Rimbach, Z anorg 1907, 52 409)

# Indium potassium sulphate, $Ir_2(SO_4)_3$ , $K_2SO_4+24H_2O$

Mpt 102-103° Easily sol in H<sub>2</sub>O (Marino, Z anorg 1904, **42** 220)

 $Ir_2(SO_4)_8$ ,  $3K_2SO_4$  Sol in  $H_2O$  or dil  $H_2SO_4+Aq$ , nearly insol in sat  $K_2SO_4+Aq$  (Boisbaudran, C R 96 1406)

# Iridium rubidium sulphate, Ir<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>Rb<sub>2</sub>

Sol m cold, very sol m hot H<sub>2</sub>O (Marino, Gazz ch it 1903, **32**, (2) 511)

Mpt 108-109° (Marino, Z anorg 1904, **42** 219)

Indium thallium sulphate, Ir<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, Tl<sub>2</sub>SO<sub>4</sub>+ 24H<sub>2</sub>O

Very sol in  $H_2O$  (Marino, Z anorg 1904, 42 222)

#### Iron (ferrous) sulphate, FeSO4

 $+H_2O$   $+2H_2O$  Not more sol in  $H_2O$  than gypsum (Mitscherlich)

 $+3H_2O$  Sol in  $H_2O$  (Kane)  $+4H_2O$  Separates from conc FeSO<sub>4</sub>+Aq

at 80° +7H<sub>2</sub>O Efflorescent at 33°

1 pt  $FeSO_4+7H_2O$  dissolves in 1.6 pts cold and 0.3 pt boiling  $H_2O$ 

1 pt FcSO<sub>1</sub>+7H () dissolves at 10° 15° 25 33 46 60° 81

10° 15° 25 33 46 60° 81 90° 100 in 1 64 1 43 0 87 0 66 0 41 0 38 0 37 0 27 0 3 pts H<sub>2</sub>O (Brandes and I irnhaber Br Arch **7** 83)

When boiled with insufficient H<sub>2</sub>O for solution a white hydrate is formed which separates out Solubility increases up to 87, and then diminisises owing to the above spartition (Brandes Pogg 20 381)

sol in 2 pts cold and 1 pt boling H O (Fourcroy) sol in 2 pt scold H O at 18.75 (Abl) sol in 6 pts H O at moderate he it and 0.7, pt at 100 (Bergmann) 100 pts H O at 1), dissolve 45-50 pts (Ure s Diet)

100 p s H2O dissolve pts 1 c5O4 at t

| t°                  | I ts<br>I (50)               | t              | Pts<br>LCSO4         | t              | Pts<br>FcSO4         |
|---------------------|------------------------------|----------------|----------------------|----------------|----------------------|
| 0<br>10<br>12<br>20 | 15 8<br>19 9<br>21 3<br>2> 0 | 21<br>30<br>37 | 27 4<br>32 6<br>36 3 | 45<br>55<br>70 | 42 9<br>47 0<br>56 , |

(Lobler A 95 198)

 $100~\rm pts~FeSO_4 + Aq~sat~at~11-14^\circ$  contain  $17~02\%~FeSO_4~$  (v. Hauer, J. pr. 103~114)  $100~\rm pts~FeSO_4 + Aq~sat~at~15^\circ$  contain  $37~2\%~FeSO_4 + 7H_2O,~\rm solution~has~sp~gr~1~2232~$  (Schiff, A. 118~362)

Solubility in 100 pts H<sub>2</sub>O at t°

| 0         7 9         34         37 1         67         65 1           1         8 7         35         38 0         68         65 0           2         9 5         36         38 9         69         64 9           3         10 4         37         39 8         70         64 8           4         11 2         38 40 7         71         64 7           5         12 0         39 41 7         72 64 5         64 4           6         12 9 40         42 6         73 64 4         74 64 2           7         13 7 41 43 5         74 64 2         77 63 4         76 63 7           9 15 3 43 45 3 76 63 7         76 63 7         76 63 7         76 63 7           10 16 2 44 46 2 77 63 4         77 63 4         77 63 4           11 17 0 45 47 1 78 63 1         78 63 1         79 62 7           13 18 7 47 49 0 80 62 3         80 62 7           13 18 7 47 49 0 80 62 7         80 62 9           14 19 5 48 50 0 81 61 9         81 61 9           15 20 4 49 51 0 82 61 5         61 5           16 21 2 50 51 9 83 61 0         82 61 5           17 22 1 51 52 9 84 60 4           18 23 0 52 53 8 85 59 8           19 23 8 53 54 8 8 | t°                               | Pts<br>FeSO <sub>4</sub>                                                                                                                                                           | t°                                                                                                                                                                                                                                           | Pts<br>FeSO <sub>4</sub>                                                                                                                                                                                      | t°                                                                                                                                                                         | Pts<br>FeSO <sub>4</sub>                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 33   36 2     66   65 2   100   42 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25<br>26<br>27<br>28<br>29<br>30 | 10 4<br>11 2 0<br>12 12 0<br>13 7<br>14 5 3<br>16 2 0<br>17 9<br>18 7<br>19 5<br>19 20<br>21 21 1<br>22 21 1<br>23 23 8<br>24 6<br>27 3<br>28 1<br>29 9<br>30 8<br>31 6<br>33 34 4 | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>66<br>67<br>67<br>68<br>67<br>68<br>67<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68 | 37 1 0 38 9 8 7 7 6 5 1 2 9 8 8 8 7 7 7 7 7 7 8 4 4 4 5 5 1 2 9 8 8 8 7 7 7 7 7 7 7 8 6 6 5 5 5 5 6 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 6 5 6 6 6 5 6 6 6 6 5 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 68<br>69<br>70<br>71<br>72<br>73<br>74<br>75<br>76<br>77<br>78<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>89<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99 | 0988754207417395048257023332060356464420741739504825702333320603555433206035554494644 |

(Mulder, Scheik Verhandel 1864 141)

If solubility S=pts anhydrous  $\Gamma eSO_4$  in 100 pts solution, S=13 5+0 3788t from -2° to +65°, S=37 5 constant from 65° to 98°, S=37 5-0 6685t from 98° to 156° Practically insol at 156° (Étard, C R 106 740)

Sat FeSO<sub>4</sub>+Aq contains at

 $24^{\circ}$ 52° –1°  $+5^{\circ}$ 34° 32 5% FeSO<sub>4</sub>, 13 0 15 1 22 7 26 3 77° 86° 94° 60° 67° 37 7 37 8 37 8 36 7% FeSO4, 36 4 112° 152° 102° 130° 34 7 28 0 17 3 2 5% FeSO.

(Étard, A ch 1894, (7) 2 553)

100 g H<sub>2</sub>O dissolve 26 69 g FeSO<sub>4</sub> at 25° (Stortenbecker, Z phys Ch 1900, **34** 109)

Solubility of FeSO<sub>4</sub> in H<sub>2</sub>O at t° 100 g H<sub>2</sub>O dissolve g FeSO<sub>4</sub>

|                                                                                       |                                                                                        | -                                                                                      |                                                                                        |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| t°                                                                                    | G FeSO <sub>4</sub>                                                                    | t°                                                                                     | G FeSO <sub>4</sub>                                                                    |
| 0 00<br>10 00<br>15 25<br>20 13<br>25 02<br>30 03<br>35 07<br>40 05<br>45 18<br>50 21 | 15 65<br>20 51<br>23 86<br>26 56<br>29 60<br>32 93<br>36 87<br>40 20<br>44 32<br>48 60 | 52 00<br>54 03<br>60 01<br>65 00<br>68 02<br>70 04<br>77 00<br>80 41<br>85 02<br>90 13 | 50 20<br>52 07<br>54 95<br>55 59<br>52 31<br>56 08<br>45 90<br>43 58<br>40 46<br>37 27 |
|                                                                                       | <u> </u>                                                                               | ·                                                                                      |                                                                                        |

 $FeSO_4+7H_2O$  is stable from -1 82° to +56 6°,  $FeSO_4+4H_2O$  from 56 6° to 64 4°,  $FeSO_4+H_2O$  above this point

(Fraenckel, Z anorg 1907, 55 228)

 $FeSO_4+Aq$  sat at 30° contains 24 9 g  $FeSO_4$  in 100 g of solution (Schreinemakers, Z phys Ch 1912, 71 110)

Sp gr of  $FeSO_4+Aq$  at 15° %=%  $FeSO_4+7H_2O$ 

| %                                                                       | Sp gr                                                                                                                      | %                                                                          | Sp gr                                                                                                             | %                                                                          | Sp gr                                                                                                             |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | 1 005<br>1 011<br>1 016<br>1 021<br>1 027<br>1 032<br>1 037<br>1 043<br>1 048<br>1 054<br>1 059<br>1 065<br>1 071<br>1 077 | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 1 082<br>1 088<br>1 094<br>1 100<br>1 106<br>1 112<br>1 118<br>1 125<br>1 131<br>1 137<br>1 143<br>1 149<br>1 155 | 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 1 161<br>1 168<br>1 174<br>1 180<br>1 187<br>1 193<br>1 200<br>1 206<br>1 213<br>1 219<br>1 226<br>1 232<br>1 239 |

(Gerlach, Z anal 8 287)

Sp gr 16 6° of sat solution=1219 (Greenish and Smith, Pharm J 1903, 71 881) Sat FeSO<sub>4</sub>+Aq boils at 102 2° (Griffiths), and solution contains 64% FeSO<sub>4</sub> Crust forms at 102 3°, highest temp observed, 104 8° (Gerlach, Z anal 26 426)

B-pt of FeSO<sub>4</sub>+Aq containing pts FeSO<sub>4</sub> to 100 pts  $\rm H_2O$ 

| B pt            | Pts FeSO4    | B pt            | Pts TeSO <sub>4</sub> |
|-----------------|--------------|-----------------|-----------------------|
| 100 5°<br>101 0 | 17 7<br>34 4 | 101 5°<br>101 6 | 50 4<br>53 2          |

(Gerlach, Z anal 26 433)

100~g of the sat solution contain 22 84 g FeSO  $_4$  at 25° (Wirth, Z anorg 1913, 79 364)

Sol in hot HCl+Aq (Kane) Somewhat sol in conc H<sub>2</sub>SO<sub>4</sub> (Bussy and Lecann)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| H <sub>2</sub> SO <sub>4</sub> +Aq<br>Normality                       | 100 g of the<br>solution<br>contain<br>g FeSO <sub>4</sub> | Solid phase                                                                            |
|-----------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------|
| $egin{smallmatrix} 0 \\ 2 & 25 \\ 6 & 685 \\ 10 & 2 \\ \end{bmatrix}$ | 22 84<br>19 03<br>13 40<br>10 30                           |                                                                                        |
| 12 46<br>15 15<br>19 84                                               | 7 26<br>4 015<br>0 1522                                    | $ \left. \begin{array}{c} \\ \end{array} \right. \text{FeSO}_4 + \text{H}_2 \text{O} $ |

(Wirth, Z anorg 1913, 79 364)

More sol in water containing NO than in pure H<sub>2</sub>O (Gay, Bull Soc (2) 44 175)

Completely pptd from FeSO<sub>4</sub>+Aq by glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Persoz)

Solubility in  $(NH_4)_2SO_4+Aq$  See under  $(NH_4)_2SO_4$ 

Solubility in Li<sub>2</sub>SO<sub>4</sub>+Aq at 30°

| Composition of the solution                                                                        |                                                                                                   |                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| %<br>by wt<br>FeSO <sub>4</sub>                                                                    | %<br>by wt<br>L <sub>12</sub> SO <sub>4</sub>                                                     | Solid phase                                                                                                                                                                             |
| 24 87<br>22 45<br>21 15<br>18 79<br>16 51<br>16 18<br>16 04<br>15 39<br>12 68<br>5 32<br>3 74<br>0 | 0<br>4 00<br>5 58<br>11 16<br>15 81<br>16 52<br>16 49<br>16 80<br>18 31<br>22 15<br>23 15<br>25 1 | FeSO <sub>4</sub> , 7H <sub>2</sub> C  "" "" "" FeSO <sub>4</sub> , 7H <sub>2</sub> O <sub>+</sub> I 1 <sub>2</sub> 5O <sub>4</sub> , H O  I 1 <sub>2</sub> SO <sub>4</sub> , H O "" "" |

(Schreinemakers, Z phys Ch 1910, 71 110)

Solubility of I'eSO<sub>4</sub>, H<sub>2</sub>O+Na SO<sub>4</sub> 10H O<sub>4</sub>, in 100 g H O it t°

| t    | Grams LeSO4 | Crams N 12501 |
|------|-------------|---------------|
| 0    | 18 06       | 6 13          |
| 15 5 | 25 05       | 15 97         |

(Koppel, Z phys Ch 1905, **52** 405)
See also under FeNa<sub>2</sub>(5O<sub>4</sub>)<sub>2</sub>

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828) Insol in liquid CO<sub>2</sub> (Buchner, Z phys

100 pts sat solution of FeSO<sub>4</sub> in 40% alcohol contains 03% FeSO<sub>4</sub> (Schiff)

Ch 1906, **54** 674)

Insol in alcohol of 0 905 sp gr or less (Anthon, J pr 14 125) Alcohol and H<sub>2</sub>SO<sub>4</sub> precipitate FeSO<sub>4</sub> from

FeSO<sub>4</sub>+Aq, also glacial acetic acid Anhydrous FeSO<sub>4</sub> is insol in acetone (Krug and M'Elroy, 1893)

Insol in acetone (Fidmann, C C 1899, II 1014)

100 g sat solution in gycol contain 60 g FeSO<sub>4</sub> at ord temp (de Connck)

Insol in methyl acetate (Naumann, B 1909. 42 3790), ethyl acetate (Naumann, B 1904, 37 3601)

Iron (ferrous) sulphate, acid, 2FeO, 3SO<sub>3</sub>.  $2H_2O$ 

This salt exists in contact with solutions containing SO<sub>3</sub>+1 637 H<sub>2</sub>O to about SO<sub>3</sub>+ 2 186 H<sub>2</sub>O (Kenrick, J phys Chem 1908, **12** 704)

FeO, 2SO<sub>3</sub>+H<sub>2</sub>O This compd exists with solutions containing SO<sub>3</sub>+1342 H<sub>2</sub>O to

(about) SO<sub>3</sub>+1 595 H<sub>2</sub>O (Kenrick) FeO, 4SO<sub>3</sub>+3H<sub>2</sub>O This compd is stable with solutions containing from SO<sub>3</sub>+1 122 H<sub>2</sub>O to (about) SO<sub>2</sub>+1 342 H<sub>2</sub>O Rapidly sol in H<sub>2</sub>O with ppt of FeSO<sub>4</sub>+H<sub>2</sub>O (Kenrick)

Min Melanterite

Iron (ferric) sulphate, basic,  $10\text{Fe}_2\text{O}_3$ ,  $80_3$ +

(Athanasesco, C R 103 27)

6Fe<sub>2</sub>O<sub>3</sub>, SO<sub>3</sub>+10H<sub>2</sub>O Insol in H<sub>2</sub>O sol in warm HCl+Aq (Scheerer, Pogg 45 188)

 $4\text{Fe}_2\text{O}_3$ ,  $\text{SO}_3 + 11\text{H}_2\text{O}$ (Anthon, Repert

81 237) 3Fe<sub>2</sub>O<sub>3</sub>,  $SO_3+4H_2O$ Insol ın H<sub>2</sub>O Rather easily sol, in acids (Scheerer, Pogg

44 453, Meister, B 8 771)

 $2\text{Fe}_2\text{O}_3$ ,  $O_3+6\text{H}_2\text{O}_3$ When pptd from cold solutions, is sol in Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+Aq, but insol therein when pptd from hot solutions (Maus)

Only basic sulphate which is a true chemical compound (Pickering, Chem Soc 37 807)

Min Glockerite conc H<sub>2</sub>SO<sub>4</sub> Insol in H<sub>2</sub>O Sol in

 $+7H_2O$ (Meister)

(Muhlhauser) +8H<sub>2</sub>O

Min Pissophanite  $+15\mathrm{H}_2\mathrm{O}$ 

 $Fe_2O_3$ ,  $SO_3 = (FeO)_2SO_4 + 3H_2O$ (Souberran, A ch 44 329)

 $3\text{Fe}_2\text{O}_3$ ,  $4\text{SO}_3 + 9\text{H}_2\text{O}$  (Athanasesco)  $2\text{Fe}_2\text{O}_3$ ,  $3\text{SO}_3+8\text{H}_2\text{O}$ ın H<sub>2</sub>O Insol

(Wittstein) Min Fibroserrite Sl sol in  $+18H_{2}O$ 

cold, more easily in hot H<sub>2</sub>O

 $Fe_2O_3$ ,  $2SO_3+10H_2O$ Min Stypticite +15H<sub>2</sub>O Sol in H<sub>2</sub>O, decomp by heat or evaporation (Muck, J pr 99 103) 2Fe<sub>2</sub>O<sub>3</sub>, 5SO<sub>3</sub>+13H<sub>2</sub>O Min Comapite

 $Fe_4S_5O_2+18H_2O=2Fe_2O_3$ ,  $5SO_3-18H_2O$ a-Coprapit This salt is in equilibrium at 25° [1898, 20 828]

with solutions in which the molecular ratio Fe<sub>2</sub>O<sub>3</sub> SO<sub>3</sub> lies between 1 2 889 and 1 2 614 (Wirth, Z anorg 1914, 87 37) (OH)Fe<sub>8</sub>(SO<sub>4</sub>)<sub>4</sub>+13H<sub>2</sub>O β-Copiant This

salt is in equilibrium at 25° with solutions in which the molecular ratio Fe<sub>2</sub>O<sub>3</sub> SO<sub>3</sub> lies between 1 3 472 and 1 2 889 anorg 1914, 87 37)

According to Pickering (Chem Soc 37 807), all basic ferric sulphates are mixtures

excepting 2Fe<sub>2</sub>O<sub>3</sub>, SO<sub>3</sub>

Iron (ferric) sulphate, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

Slowly deliquescent Anhydrous | insol in H<sub>2</sub>O, and HCl+Aq Insol in conc H<sub>2</sub>SO<sub>4</sub> Very rapidly sol in FeSO<sub>4</sub>+Aq, even when very dil (Barreswil, C R 20 1366)

Sp gr of  $Fe_2(SO_4)_s+Aq$  According to F=Franz at 175° (J pr (2) 5 280), G=Gerlach at 15° (Z anal 28 494), H=Hager at

18° (Z anal 27 280)

20 % Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 15 1 0426 1 0854 1 1324 1 1826 1 096 1 205

G H 1046 1 097 1 208 1 151 25 30

40 % Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 1 2426 1 3090 1 3782 1 4506 G 1 331 1478

H 1 271 1 337 1 411 1 490

60 % Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> 1 5298 1 6148 1 7050 1 8006 G 1 650

#### Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| H <sub>2</sub> SO <sub>4</sub> +Aq<br>Normality | 100 g of the solution contain g Fe (SO <sub>4</sub> ) <sub>3</sub> |
|-------------------------------------------------|--------------------------------------------------------------------|
| 2 25                                            | 25 02                                                              |
| 6 685                                           | 14 58                                                              |
| 19 84                                           | 0 05                                                               |

(Wirth, Z anorg 1913, **79** 364)

#### Solubility in Al (SO<sub>4</sub>)<sub>3</sub>+Aq it 25°

# 100 g of the solution contain G Al2(SO4) 8 ( FU(SO4)3

| 44 97<br>42 44<br>35 53<br>35 82<br>34 02<br>32 42<br>31 90} |
|--------------------------------------------------------------|
|                                                              |
|                                                              |

\*Solution sat with respect to both salts (Wirth and Bakke, Z anorg 1914, 87 48) See also under  $Al_2(SO_4)_3$ 

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

HC2H3O2 Sol to large extent in alcohol

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1910, 43 314)

Insol in acetone

+xH<sub>2</sub>O Very deliquescent, and sol in H<sub>2</sub>O Conc Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+Aq may be boiled without decomp, but dil solutions are decomp on heating A solution containing 1 oth heating A solution containing 1 pt salt to 100 pts H<sub>2</sub>O becomes turbed at 76°, 1 pt to 200 pts, at 56°, 1 pt to 400 pts, at 47°, 1 pt to 800 pts, at 40°, 1 pt to 1000 pts, at 38°, 1 pt to 10,000 pts, at 14° (Scheerer)

+9H₂O Min Coquimbite

 $81\,43$  pts are sol in  $18\,57$  pts  $\rm H_2O$  (Wirth, Z anorg 1914,  $87\,23$ )

This salt is stable at 25° only in contact with solutions in which the molecular ratio Fe<sub>2</sub>O<sub>3</sub> SO<sub>3</sub> hes between 1 3 472 and 1 6 699 (Wirth, Z anorg 1914, 87 35) +10H<sub>2</sub>O Slowly sol in H<sub>2</sub>O (Oudemans, R t c 3 331)

Iron (ferroferric) sulphate, 6FeSO<sub>4</sub>,

 $Fe_2(SO_4)_3 + 60H_2O$ 

Sol in all proportions in H<sub>2</sub>O (Poumarède, C R 18 854)

3FeSO<sub>4</sub>, 2Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+12H<sub>2</sub>O Decomp by H<sub>2</sub>O Easily sol in dil HCl+Aq Insol in alcohol (Abich, 1842)

FeSO<sub>4</sub>, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+12H<sub>2</sub>O Min Voltarte
Difficultly sol in H<sub>2</sub>O

FeO,  $Fe_2O_3$ ,  $6SO_3+15H_2O$ Deliquescent (Lefort, J Pharm (4) 10 87)

Iron (ferrous) pyrosulphate, FeS<sub>2</sub>O<sub>7</sub>

Deliquescent Decomp by H<sub>2</sub>O (Bolas. Chem Soc (2) 12 212)

Iron (ferric) hydrogen sulphate, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>,  $H_2SO_4 + 8H_2O$ 

This salt is in equilibrium at 25° only with solutions where the molecular ratio Fe<sub>2</sub>O<sub>3</sub>

SO<sub>3</sub> is more acid than 1 6 609 (Wirth and Bakke, Z anorg 1914, 87 34)
Sat solution of Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>+8H<sub>2</sub>O
in abs alcohol at 25° contains 8 g Fe<sub>2</sub>O<sub>3</sub>+ 17 18 g SO<sub>3</sub> per 100 g sat solution (Wirth

and Bakke)

Decomp by H<sub>2</sub>O (Recoura, C R 1903,

**137** 118)

In contact with solutions containing 25% to 28%SO<sub>3</sub> at 25°, the stable solid is Fe<sub>2</sub>O<sub>3</sub>, 3SO<sub>3</sub>+10H<sub>2</sub>O In contact with solutions contanning more than 28%, the stable solid is  $Fe_2O_3$ ,  $4SO_3+10H_2O$  (Cameron and Robin son, J phys Chem 1907, **11** 650)

Iron (ferroferric) hydrogen sulphate,  $Fe_2(SO_4)_3$ ,  $FeSO_4$ ,  $2H_2SO_4$ 

Insol in H<sub>2</sub>O, but slowly decomp thereby Sol in H<sub>2</sub>SO<sub>4</sub> (Etard, C R 87 602)

Completely pptd from Fe2(SO4)2+Aq by Iron (ferrous) hydrazine sulphate, FeH2(SO4)2, 2N<sub>2</sub>H<sub>4</sub>

> 1 pt is sol in 325 pts H2O at 12° (Curtius, J pr 1894, (2) **50** 331)

> Iron (ferrous) magnesium sulphate, FeSO<sub>4</sub>, MgSO₄+4H<sub>2</sub>O Sol in H<sub>2</sub>O (Schiff)

Iron (ferric) magnesium sulphate, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>,  $MgSO_4+24H_2O$ (Bastick)

Iron (ferrous) magnesium potassium sulphate, 2K<sub>2</sub>SO<sub>4</sub>, FeSO<sub>4</sub>, MgSO<sub>4</sub>+12H<sub>2</sub>O Sol m, H<sub>2</sub>O (Vohl, A 94 57)

Iron (ferric) manganous hydrogen sulphate, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>, 2MnSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> Insol in cold H<sub>2</sub>O (Étard)  $Fe_2(SO_4)_3$ ,  $2MnSO_4$ ,  $3H_2SO_4$ Sol in H<sub>2</sub>O

Iron (ferric) manganic sulphate,  $Fe_2(SO_4)_3$ ,  $Mn_2(SO_4)_3$ 

(Étard, C R 86 1399)

Insol in cold H<sub>2</sub>O, decomp by hot H<sub>2</sub>O and HCl +Aq (Étard)

Iron (ferrous) manganous potassium sulphate,  $FeSO_4$ ,  $MnSO_4$ ,  $2K_2SO_4+12H_2O$ Sol'm H<sub>2</sub>O (Vohl, A 94 57)

Iron (ferrous) nickel sulphate, 2FeSO<sub>4</sub>, 2N1SO4, H2SO4 (Etard, C R 87 602)

Iron (ferric) nickel sulphate, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, NiSO<sub>4</sub>, 2H<sub>2</sub>SO<sub>4</sub>

Insol in  $H_2O$ , but gradually decomp thereby (Étard, C R 87 602)

Iron (ferrous) nickel potassium sulphate, FeSO<sub>4</sub>, NiSO<sub>4</sub>,  $2K_2SO_4+12H_2O$ Sol in H<sub>2</sub>O (Vohl, A 94 57)

Iron (ferrous) potassium sulphate, FeSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub> +2H<sub>2</sub>O (Marignac, Ann Min (5) 9 19)

Solubility in H<sub>2</sub>O at t°

| t                         | % FeK <sub>2</sub> (SO <sub>4</sub> ) | t              | % 1 eK <sub>2</sub> (5() <sub>4</sub> ) |
|---------------------------|---------------------------------------|----------------|-----------------------------------------|
| 0 5<br>17 2<br>40 1<br>60 | 22 79<br>31 98<br>40 86<br>42 63      | 80<br>90<br>95 | 42 34<br>42 73<br>41 01                 |

(Kuster and Thiel, Z anorg 1899, 21 116)

#### +4H<sub>2</sub>O

Solubility in H<sub>2</sub>O at t°

| t°                        | % FeK <sub>2</sub> (SO <sub>4</sub> ) <sub>2</sub> | t°             | % FeK <sub>2</sub> (SO <sub>4</sub> ) |
|---------------------------|----------------------------------------------------|----------------|---------------------------------------|
| 0 5<br>17 2<br>40 1<br>60 | 22 94<br>26 79<br>32 41<br>35 68                   | 80<br>90<br>95 | 40 46<br>43 82<br>44 11               |

(Kuster and Thiel)

+6H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve at t° 0° 10° 14 5° 16° 25° 19 6 24 5 29 1 30 9 36 5 pts anhydrous salt,

35° 40° 55° 65° 70° 41 45 56 59 3 64 2 pts anhydrous salt (Tobler, A **95** 193)

## Solubility in H<sub>2</sub>O at t°

| t°                  | t°  % FeK2(SO4)2        |          | % FeK2(SO4)    |
|---------------------|-------------------------|----------|----------------|
| 0 5<br>17 2<br>40 1 | 18 36<br>25 16<br>36 72 | 60<br>80 | 42 93<br>45 29 |

(Kuster and Thiel)

 $\begin{array}{cccc} \textbf{Iron} & (\textbf{ferric}) & \textbf{potassium} & \textbf{sulphate,} & \textbf{basic,} \\ & 4Fe_2O_3, & K_2O, & 7SO_3 + 9H_2O = 4(Fe_2O_3,\\ & 2H_2O, & SO_3), & K_2SO_4 + 7H_2O \end{array}$ 

Insol in boiling H<sub>2</sub>O Sl sol in HCl+Aq, more readily in aqua regia (Rammelsberg) 3Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, 4SO<sub>3</sub>+6H<sub>2</sub>O=K(FeO)<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub>+3H<sub>2</sub>O Min Jarosite
Fe<sub>2</sub>O<sub>3</sub>, H<sub>2</sub>O, 2SO<sub>3</sub>, 2K<sub>2</sub>SO<sub>4</sub>+5H<sub>2</sub>O Sol in

 $F_{e_2}O_s$ ,  $H_2O$ ,  $2SO_s$ ,  $2K_2SO_4+5H_2O$  Sol in 6 pts cold  $H_2O$  Solution soon decomposes (Maus, Pogg 11 78)

Sol in 125 pts H<sub>2</sub>O at 10° (Anthon, Re-

pert **76** 361)

Formula is given as 3Fe<sub>2</sub>O<sub>3</sub>, 5K<sub>2</sub>O, 12SO<sub>3</sub>+18H<sub>2</sub>O by Marignac

18H<sub>2</sub>O by Miarignac 3Fe<sub>2</sub>O<sub>3</sub>, 6SO<sub>3</sub>,  $2K_2SO_4+22H_2O$  Sol when moist in H<sub>2</sub>O Solution soon decomposes Insol in alcohol (Soubeiran, A ch 44 329) 3Fe<sub>2</sub>O<sub>3</sub>, 7SO<sub>3</sub>,  $5K_2SO_4+12H_2O$ , and  $+17H_2O$  (Scheerer, Pogg 87 81)  $2Fe_2O_3$ ,  $5SO_3$ ,  $3K_2SO_4+9H_2O$  (S)  $3Fe_2O_3$ ,  $8SO_3$ ,  $4K_2SO_4+20H_2O$  and  $24H_2O$  (S)

Iron (ferric) potassium sulphate,  $K_2SO_4$ ,  $2Fe_2(SO_4)_3$ 

Insol in  $H_2O$ , but is gradually decomp thereby (Grimm and Ramdohr, A 98 127)  $+2H_2O$  Nearly insol in  $H_2O$  (Weinland, Z anorg 1913, 84 364)

K<sub>2</sub>Fe<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+24H<sub>2</sub>O Iron alum

Sol in 5 pts H<sub>2</sub>O at 12 5° (Anthon) Aqueous solution is decomp by heating Insol in alcohol

Sp gr of aqueous solution According to

G=Gerlach, at 15° (Z anal 28 496), F= Franz, at 17 5° (J pr (2) 5 288), containing 5 10 15%  $K_2Fe_2(SO_4)_4+24H_2O$ , F 1 0268 1 0466 1 0672 G 1 025 1 0507 1 0773

 $35~\%~\mathrm{K_2Fe_2(SO_4)_4}{+24\mathrm{H_2O}}$  G 1 1967

Melts in crystal H<sub>2</sub>O at 28° (Locke, Am Ch J 1901, **26** 183)

 $Fe_2(SO_4)_3$ ,  $3K_2SO_4$  Insol in H<sub>2</sub>O, but slowly decomp thereby (Etard, C R 84 1089)

Iron (ferric) potassium sulphate sulphite See Sulphite sulphate, ferric potassium

Iron (ferrous) potassium zinc sulphate, FeSO<sub>4</sub>, 2K<sub>2</sub>SO<sub>4</sub>, ZnSO<sub>4</sub>+12H<sub>2</sub>O Sol in H<sub>2</sub>O

Iron (ferrous) rubidium sulphate, FeSO<sub>4</sub>,  ${
m Rb_2SO_4}{+6{
m H_2O}}$ 

Sol in H<sub>2</sub>O (Tutton, Chem Soc **63** 337) 1 l H<sub>2</sub>O dissolves 242 g anhydrous salt at 25° (Locke, Am Ch J 1902, **27** 459)

Iron (ferric) rubidium sulphate, Rb<sub>2</sub>Fe<sub>2</sub> (SO<sub>4</sub>)<sub>2</sub>+24H<sub>2</sub>O

## Solubility in H<sub>2</sub>O

| Temp           | G per litre                        | Gram mols<br>of anhydrous<br>salt per litre |  |
|----------------|------------------------------------|---------------------------------------------|--|
| 25<br>30<br>35 | 97 4<br>202 4<br>Basic salt formed | 0 294<br>0 617                              |  |

(Locke, Am Ch J 1901, 26 180)

Iron (ferrous) sodium sulphate, FeSO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>+4H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac, Ann Min (5) 9 25)

Solubility of FeNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+4H<sub>2</sub>O in 100 g H<sub>2</sub>O at t°

| t     | Grams FeSO <sub>4</sub> | Grams Na <sub>2</sub> SO <sub>4</sub> |
|-------|-------------------------|---------------------------------------|
| 21 8  | 24 34                   | 22 51                                 |
| 24 92 | 23 62                   | 22 04                                 |
| 34 95 | 23 91                   | 21 83                                 |
| 40    | 24 01                   | 22 62                                 |

(Koppel, Z phys Ch 1905, 52 406)

| ~ 1 1 1 .  | •      | OD. ST. O. ST. O. O. O. ST. ET. |
|------------|--------|---------------------------------|
| Solubility | Ot     | $FeNa_2(SO_4)_2 4H_2O + FeSO_4$ |
|            |        | 202144/004/2                    |
| 7          | H。() 1 | n 100 g H <sub>2</sub> O at t°  |
|            | 1120 1 | 11 100 g 1120 000               |

| t°               | grams<br>FeSO <sub>4</sub> | grams<br>Na <sub>2</sub> SO <sub>4</sub> | t°                | grams<br>reSO4          | g rams<br>Na <sub>2</sub> SO <sub>4</sub> |
|------------------|----------------------------|------------------------------------------|-------------------|-------------------------|-------------------------------------------|
| 18 8<br>23<br>27 | 26 63<br>28 82<br>30 95    | 20 28<br>18 40<br>16 68                  | 31°<br>35°<br>40° | 33 99<br>35 66<br>39 98 | 14 41<br>13 85<br>11 92                   |

(Koppel)

 $y ext{ of } ext{ FeNa}_2(SO_4)_2 ext{ 4H}_2O + Na}_2SO_4 \\ 10H_2O ext{ in } 100 ext{ g} ext{ H}_2O ext{ at } ext{ t}^{\circ}$ Solubility of

| t°   | grams<br>FeSO <sub>4</sub> | grams<br>Na <sub>2</sub> SO <sub>4</sub> | t°  | grams<br>FeSO <sub>4</sub> | grams<br>Na <sub>2</sub> SO <sub>4</sub> |
|------|----------------------------|------------------------------------------|-----|----------------------------|------------------------------------------|
| 18 8 | 27 23                      |                                          | 28° | 11 28                      | 35 94                                    |
| 23   | 20 31                      |                                          | 31° | 6 95                       | 44 75                                    |

(Koppel)

 $FeNa_2(SO_4)_2 4H_2O + Na_2SO_4$ Solubility of (anhydrous) in 100 g H<sub>2</sub>O at t°

| t° | grams FeSO <sub>4</sub> | grams Na <sub>2</sub> SO <sub>4</sub> |
|----|-------------------------|---------------------------------------|
| 35 | 6 16                    | 46 58                                 |
| 40 | 6 27                    | 46 99                                 |

(Koppel)

See also under FeSO<sub>4</sub>

Iron (ferric) sodium sulphate, basic, 2Na<sub>2</sub>O,  $Fe_2O_3$ ,  $4SO_3+7H_2O$ 

Only sl sol in H<sub>2</sub>O with decomp (Skrabal, Z anorg 1904, 38 319) Min Urusite +8H₂O Insol in H<sub>2</sub>O,

easily sol in HCl+Aq Sol in H<sub>2</sub>O

with decomp (Skrabal)  $4\text{Fe}_2\text{O}_3$ ,  $8\text{So}_3+6\text{H}_2\text{O}$  Sol in  $\text{H}_2\text{O}$  with decomp (Skrabal)  $4\text{Fe}_2\text{O}_3$ ,  $8\text{N}_2\text{O}$ ,  $8\text{So}_3+9\text{H}_2\text{O}$ Insol in  $\text{H}_2\text{O}$ , difficultly sol in HCl+Aq (Scheerer, Pogg 45 190)

Iron (ferric) sodium sulphate, [Fe(SO<sub>4</sub>)<sub>3</sub>]Na<sub>3</sub>

+3H<sub>2</sub>O Ppt Nearly insol in H<sub>2</sub>O (Weinland, Z anorg 1913, 84 365)

(ferrous) thallium sulphate, FeSO4,  $Tl_2SO_4+6H_2O$ 

Easily decomp by solution in H<sub>2</sub>O (Willm, A ch (4) 5 56)

Iron (ferric) thailium sulphate, Tl<sub>2</sub>Fe<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub> +24H<sub>2</sub>O

Not efflorescent Very easily sol in H<sub>2</sub>O 361.5 g anhydrous, or 646 g hydrated salt are sol in 1.1 H<sub>2</sub>O at  $25^{\circ}$  or 0.799 mol of the anhydrous salt is sol in 1 l H<sub>2</sub>O at 25° Melts in crystal H<sub>2</sub>O at 37° (Locke, Am Ch J 1901, 26 175)

Iron (ferrous) zinc sulphate, FeSO<sub>4</sub>, ZnSO<sub>3</sub>+  $14H_2O$ 

2FeSO<sub>4</sub>, 2ZnSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> (Etard, C R 87

Iron (ferric) zinc sulphate, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, ZnSO<sub>4</sub> **∔24H₂**O (Bastick)

Iron (ferrous) sulphate nitric oxide, FeSO4.

The solubility of NO in FeSO<sub>4</sub>+Aq is diminished by the presence of H<sub>2</sub>SO<sub>4</sub>, HCl, phosphoric acid and by the presence of cerin salts (Manchot, A 1910, **372** 157) Fe(NO)SO<sub>4</sub> FeSO<sub>4</sub>+13H<sub>2</sub>O Decomp in taın salts

the air Sol in water (Manchot)

Lanthanum sulphate, basic, 2La<sub>2</sub>O<sub>3</sub>, 3SO<sub>2</sub>+ 3H₂O

(Frenchs and Smith) Precipitate Formula is  $3La_2O_3$ ,  $SO_3+xH_2O$ B 11 910)

Lanthanum sulphate, La<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>

Anhydrous Much less sol in warm than in cold H<sub>2</sub>O 1 pt is sol in less than 6 pts H<sub>2</sub>O, if added in small portions thereto at 2-3°, and the temperature not allowed to rise to 13°, but if heated to 30°, La<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+9H<sub>2</sub>O separates out until the solution is solid (Mosander)

100 pts H<sub>2</sub>O dissolve 2 208 pts La<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub> at 165°, 2130 pts at 18°, 1641 pts at 34°

See also under +9H2O The solubility of La<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> in H<sub>2</sub>O is diminished by the presence of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub> or Na<sub>2</sub>SO<sub>4</sub> (Barre, C R 1910, **151** 871)

Solubility in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq at 18°

| Pts per<br>H                                                                                 | 100 pts<br>20                                                |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (NH4) SO4                                                                                    | La <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>              | Solid phase                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 00<br>4 011<br>8 727<br>18 241<br>27 887<br>36 112<br>47 486<br>53 823<br>65 286<br>73 782 | 0 279<br>0 253<br>0 476<br>0 277<br>0 137<br>0 067<br>0 0117 | La <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> +9H <sub>2</sub> O<br>La <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> , (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> +2H <sub>2</sub> O<br>"<br>"<br>2La <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> , 5(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub><br>La <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> , 5(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> |

(Barre)

Solubility in KiSO4+Ag at 16.5°

| נטכו                                              | (III)IIII I                                        | 1 132K/4 TAQ 1( 10 )                                                 |
|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|
| Pts per 100 pts<br>H <sub>2</sub> ()              |                                                    | Solid phase                                                          |
| K2SO4                                             | La2(501) s                                         |                                                                      |
| 0 00<br>0 247<br>0 496<br>0 846<br>1 029<br>1 516 | 2 198<br>0 727<br>0 269<br>0 185<br>0 054<br>0 022 | $L_{42}(SO_4)_3 + 9H_2O$<br>$L_{42}(SO_4)_3$ , $K_2SO_4 + 2H_2O$<br> |
| (Barre )                                          |                                                    |                                                                      |

| Sol                                                                 | ubility i                                                            | n Na <sub>2</sub> SO <sub>4</sub> +Aq at 18°                                                                                                            |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pts per 100 pts<br>H <sub>2</sub> O                                 |                                                                      | Solid phase                                                                                                                                             |  |
| Na <sub>2</sub> SO <sub>4</sub>                                     | La <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                      |                                                                                                                                                         |  |
| 0 00<br>0 395<br>0 689<br>0 774<br>1 136<br>2 480<br>3 802<br>5 548 | 2 130<br>0 997<br>0 353<br>0 299<br>0 129<br>0 044<br>0 019<br>0 016 | La <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> +9H <sub>2</sub> O<br>La <sub>2</sub> (SO <sub>4</sub> ) <sub>5</sub> , Na <sub>2</sub> SO <sub>4</sub> |  |
| (5)                                                                 |                                                                      |                                                                                                                                                         |  |

(Barre)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 830)

Insol in acetone (Naumann, B 1904, 37 4329)

 $+9H_2\dot{O}$  Sol in 42.5 pts  $H_2O$ , calculated as anhydrous salt, at 23°, and 115 pts  $H_2O$  at 100° (Mosander)

Solubility in H<sub>2</sub>O

| 100 pts H <sub>2</sub> O dissolve | pts La <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> at t° |
|-----------------------------------|-----------------------------------------------------------|
| t°                                | Pts La2(SO4)3                                             |
| 0<br>14<br>30<br>50<br>75<br>100  | 3 02<br>2 60<br>1 90<br>1 49<br>0 94<br>0 68              |

(Muthmann and Rolig, B 1898, 31 1723)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| Normality<br>H <sub>2</sub> SO <sub>4</sub>                               | In 100 g of the liquid are dissolved                                                  |                                                                                            | Solid phase                                                        |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                           | g oxide                                                                               | g sulphate                                                                                 | 1                                                                  |
| 0 505<br>1 10<br>2 16<br>3 39<br>4 321<br>6 685<br>9 68<br>12 60<br>15 15 | 1 43<br>1 69<br>1 796<br>1 818<br>1 42<br>1 11<br>0 5309<br>0 2659<br>0 2136<br>0 177 | 2 483<br>2 934<br>3 118<br>3 156<br>2 465<br>1 927<br>0 9217<br>0 4617<br>0 3709<br>0 3073 | La <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> +9H <sub>2</sub> O |

(Wirth, Z anorg 1912, **76** 189)

Lanthanum hydrogen sulphate, La(SO<sub>4</sub>H)<sub>3</sub> (Brauner, Z anorg 1904, 38 330)

Lanthanum potassium sulphate,  $La_2(SO_4)_3$ ,  $K_2SO_4+2H_2O$  $La_2(SO_4)_3$ ,  $5K_2SO_4$  (Barre, C R 1910,

151 872) La<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>, 3K<sub>2</sub>SO<sub>4</sub> Sl sol in H<sub>2</sub>O Insol in sat K<sub>2</sub>SO<sub>4</sub>+Aq (Cleve) Lanthanum rubidium sulphate, La<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, Rb<sub>2</sub>SO<sub>4</sub>

(Baskerville, J Am Chem Soc 1904, 26

 $+2H_2O$  (Baskerville) 3La<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 2Rb<sub>2</sub>SO<sub>4</sub> (Baskerville)

Lanthanum sodum sulphate,  $La_2(SO_4)s$ ,  $Na_2SO_4+2H_2O$ 

Sl sol in  $H_2O$  (Cleve) (Barre, C R 1910, 151 872)

Lead sulphate, basic, 2PbO, SO<sub>3</sub>

Not completely insol in H<sub>2</sub>O Decomp by acids, even dil HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq, with formation of PbSO<sub>4</sub> (Barfoed, **1869**)
0 050 millimole calc as Pb is sol in 1 1

0 050 millimole calc as Pb is sol in 1 1  $\rm H_2O$  at 18° (Pleissner, C C 1907, II 1056)

5PbO, 3SO<sub>3</sub> (Frankland, Proc Roy Soc 46 364)

Pb<sub>3</sub>O<sub>4</sub>, 2SO<sub>3</sub> (Frankland) 3PbO, PbSO<sub>4</sub>+H<sub>2</sub>O Ppt (Stromholm, **Z** anorg 1904, 38, 442)

Pb<sub>4</sub>(SO<sub>4</sub>)(OH)<sub>2</sub> 0 106 millimole calc as Pb is sol in 1 liter H<sub>2</sub>O at 18° (Pleissner, C C 1907 II, 1056)

Lead sulphate, PbSO4

Sol in 22,816 pts  $H_2O$  at 11° (Fresenius, A **59** 125)

Sol in 31,569 pts H<sub>2</sub>O at 15° (Rodwell, C N **11** 50)

Sol in 13,000 pts H<sub>2</sub>O (Kremers, Pogg **85** 247)

Calculated from electrical conductivity of PbSO<sub>4</sub>+Ag, 11 H<sub>2</sub>O dissolves 46 mg PbSO<sub>4</sub> at 18° (Kohlrausch and Rose, Z phys Ch

 $4\ 23\times10^{2}$  gr are dissolved in 1 liter of sat solution at  $20^{\circ}$ ,  $4\ 41\times10^{2}$  at  $25^{\circ}$  (Bottger, Z phys Ch 1903, **46** 604)

I I  $H_2O$  dissolves 41 mg PbSO<sub>4</sub> at 18° (Kohlrausch, Z phys Ch 1904, **50** 356)

0 126 millimole Pb is sol in 1 liter  $H_2O$  at 18° (Pleissner C C 1907, II 1056)

40 mg are dissolved in 1 l of sat solution at 18° (Kohlrausch, Z phys Ch 1908, **64** 168)

0 0824 g PbSO<sub>4</sub> is sol in 1000 cc H<sub>2</sub>O at 18° and also at 100° The fact that PbSO<sub>4</sub> dissolves in H<sub>2</sub>O is ascribed to hydrolvsis, and in support of this it is shown that the solubility of hydrated oxide of lead, PbO, H<sub>2</sub>O, in dil H<sub>2</sub>SO<sub>4</sub> is the same as the solubility of PbSO<sub>4</sub> in H<sub>2</sub>O (Sehnal, C R 1909, **148** 1395)

1 1 H<sub>2</sub>O dissolves 26 mg at 18°, 30 mg at 25°, 38 mg at 37° (Beck and Stegmuller, Arb K Gesund Amt 1910, **34** 447)

5 43

4 06

#### Solubility in H<sub>2</sub>O at t° (Millimols per 1)

|                | <u> </u>                |
|----------------|-------------------------|
| t°             | PbSO <sub>4</sub>       |
| 18<br>25<br>37 | 0 126<br>0 144<br>0 183 |

K Gesund (Beck and Stegmuller, Arb Amt 1910, 34 446)

Sol in hot cone HCl+Aq (Fresenius) Solubility of PbSO<sub>4</sub> in HCl+Aq

| Sp gr of | % HCl in | Pts HCl+Aq                 |
|----------|----------|----------------------------|
| HCl+Aq   | HCl+Aq   | for 1 pt PbSO <sub>4</sub> |
| 1 0519   | 10 602   | 681 89                     |
| 1 0800   | 16 310   | 281 73                     |
| 1 1070   | 22 010   | 105 65                     |
| 1 1359   | 27 525   | 47 30                      |
| 1 1570   | 31 602   | 35 03                      |

(Rodwell, Chem Soc 15 59) Solubility of PbSO<sub>4</sub> in HCl+Aq at t°

(Millimols per l) t٥ 0 4N 0 1N 0 2N 0 3N 0 126 2 67 3 63 18 72 25 3 14 29 0 144 07 4

2 63 (Beck and Stegmuller, Arb K Gesund Amt 1910, **34** 446)

Above measurements in HCl+Aq show solubility directly proportional to the hydrogen ions (Beck and Stegmuller)

Sol in HNO<sub>3</sub>+Aq, and more sol in hot or

cone than in cold or dil HNO3+Aq Sol in 172 pts HNO<sub>3</sub>+Aq of 1 144 sp gr

at 12 5° (Bischof)

0 183

37

Pptd from HNO<sub>3</sub> solution by dil H<sub>2</sub>SO<sub>4</sub>+ Ag and not by H<sub>2</sub>O (Bischof, 1827)

Solubility of PbSO<sub>4</sub> in HNO<sub>3</sub>+Aq

| Sp gr of             | % HNOs in | Pts HNO <sub>3</sub> +Aq   |
|----------------------|-----------|----------------------------|
| HNO <sub>8</sub> +Aq | HNOs+Aq   | for 1 pt PbSO <sub>4</sub> |
| 1 079                | 11 55     | 303 10                     |
| 1 123                | 17 50     | 173 75                     |
| 1 250                | 34 00     | 127 48                     |
| 1 420                | 60 00     | 10282 78                   |

(Rodwell, Chem Soc 15 59)

Solubility in HNO<sub>3</sub> at 18° (Millimols per l)

| HNO₃ | PbSO <sub>4</sub> |
|------|-------------------|
| 0 1N | 0 506             |
| 0 2N | 0 844             |
| 0 3N | 1 13              |
| 0 4N | 1 44              |

(Beck and Stegmuller)

Sol in 36,504 pts dil  $H_2SO_4+Aq$ senius) See also under solubility in alcohol Sl sol in conc H<sub>2</sub>SO<sub>4</sub>, from which it is

partially pptd by H2O or completely by alcohol

cohol (Fresenius)
100 pts conc H<sub>2</sub>SO<sub>4</sub> dissolve 6 pts PbSO<sub>4</sub>

(Schultz, Pogg 133 137) Conc H<sub>2</sub>SO<sub>4</sub> dissolves 0 005 pt PbSO<sub>4</sub> (Ure

100 pts H<sub>2</sub>SO<sub>4</sub> dissolve 0 13 pt PbSO<sub>4</sub>, and 100 pts fuming  $H_2SO_4$  dissolve 419 pts (Struve, Z anal 931)

More sol in commercial H<sub>2</sub>SO<sub>4</sub> than in the

more conc acid (Hayes)

100 pts H<sub>2</sub>SO<sub>4</sub>+Aq of 1841 sp gr dissolve 0 039 pts PbSO<sub>4</sub>, of 1793 sp gr dissolve 0 011 pt PbSO<sub>4</sub>, of 1540 sp gr dissolve 0 003 pt PbSO4

Presence of SO<sub>2</sub> does not increase the solubility, HNO<sub>3</sub> increases the solubility somewhat, i e, 100 pts  $H_2SO_4+Aq$  of 1 841 sp gr with 5 pts HNO<sub>3</sub> of 1 352 sp gr dissolve 0 044 pt PbSO<sub>4</sub>, 100 pts H<sub>2</sub>SO<sub>4</sub> of 1 749 sp gr with 5 pts  $\dot{H}NO_3$  of 1 352 sp gr dissolve 0 014 pt  $\dot{P}bSO_4$ , 100 pts  $\dot{H}_2SO_4$  of 1 512 sp gr with 5 pts HNO3 of 1352 sp gr dissolve only a trace

Nitrous oxides do not increase the action

(Kolb, Dingl 209 268)

Solubility in dil H<sub>2</sub>SO<sub>4</sub>+Aq at 18° (G per 1)

| H <sub>2</sub> SO <sub>4</sub> | PbSO <sub>4</sub> | H <sub>2</sub> SO <sub>4</sub> | PbSO <sub>4</sub> |
|--------------------------------|-------------------|--------------------------------|-------------------|
| 0                              | 0 0382            | 0 0245                         | 0 0194            |
| 0 0049                         | 0 0333            | 0 0490                         | 0 0130            |
| 0 0098                         | 0 0306            | 0 4904                         | 0 0052            |

(Pleissner, Arb K Gesund Amt 1907, 26 384)

A trace of H<sub>2</sub>SO<sub>4</sub> has a considerable effect in reducing the solubility of PbSO<sub>4</sub> in H<sub>2</sub>O (Sehnal, C R 1909, 148 1395)

Solubility in dil H<sub>2</sub>SO<sub>4</sub>+Aq at 20° (G per 1)

| H <sub>2</sub> SO <sub>4</sub> | PbSO <sub>4</sub>       | H <sub>2</sub> SO <sub>4</sub> | PbSO <sub>4</sub>   |
|--------------------------------|-------------------------|--------------------------------|---------------------|
| 0<br>0 0098<br>0 0196          | 0 082<br>0 051<br>0 025 | 0 0980<br>0 4900<br>0 9800     | 0 013<br>0 006<br>0 |

(Sehnal)

Pptd from solution in H<sub>2</sub>SO<sub>4</sub> by HCl (Bolley, A 91 113)

Not more insol in dil HC2H3O2+Aq than

 $_{1}$ n  $_{2}$ O (Bischof)

Solubility in other acids is prevented by great excess of H<sub>2</sub>SO<sub>4</sub> (Wackenroder)

Sol in warm NH<sub>4</sub>OH+Aq, separating on Completely sol in warm KOH or cooling NaOH+Aq

Decomp by boiling with K<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq

Sol in NH<sub>4</sub> salts +Aq, but repptd by  $H_2SO_4+$ Aq (Fresemus, A **59** 125)

The best solvents of the NH<sub>4</sub> salts are the nitrate, citrate, and tartrate, the two latter should be strongly alkaline with NH<sub>4</sub>OH+Aq (Wackenroder)

Sol in NH4Cl+Aq at 12 5-25°

Sl decomp by NaCl+Aq (Bley)

11 sat NaCl+Aq dissolves 0 66 g PbSO<sub>4</sub> (Becquerel)

Sol in 100 pts cold conc NaCl+Aq, and PbCl<sub>2</sub> is deposited after a few hours (Field)

Solubility of PbSO<sub>4</sub> in NaCl+Aq at 18° (Millimols per l)

| (withing per i )             |                                |  |
|------------------------------|--------------------------------|--|
| NaCl PbSO <sub>4</sub>       |                                |  |
| 0 1N<br>0 2N<br>0 3N<br>0 4N | 0 546<br>0 904<br>1 28<br>1 68 |  |

(Beck and Stegmuller Arb K Gesund Amt 1910, **34** 446)

Sol in Fe<sub>2</sub>Cl<sub>6</sub>+Aq (Fresenius, Z anal **19** 419)

Sol in  $Na_2S_2O_3+Aq$  (Lowe) Sol in  $(NH_4)_2SO_4+Aq$  (Rose)

Solubility of PbSO<sub>4</sub>+PbSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub> in H<sub>2</sub>O

|         | K <sub>2</sub> SO <sub>4</sub> |                                 |                                                          |  |
|---------|--------------------------------|---------------------------------|----------------------------------------------------------|--|
| t°      | oc of solution                 | Mol in<br>100 cc of<br>solution | Solid phase                                              |  |
| 0<br>22 | 0 195<br>0 396                 | 0 0112<br>0 0227                | K <sub>2</sub> SO <sub>4</sub> , PbSO <sub>4</sub> +PbSO |  |

(Bronsted, Z. phys. Ch. 1911, 77, 316)

Sol in 47 pts NH<sub>4</sub>C H<sub>3</sub>O +Aq) 1 036 sp gr), and 969 pts NH<sub>4</sub>NO<sub>3</sub>+Aq (1 269 sp gr), from the solution in NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub> it is pptd by H<sub>2</sub>SO<sub>4</sub> or  $K_2$ SO<sub>4</sub>, from solution in NH<sub>4</sub>NO<sub>3</sub> by  $K_2$ SO<sub>4</sub> but not by H SO<sub>4</sub> (Bischof)

Sol in actites of NII4, Na, K, Ca, Al, and Mg (Mercer)

MIG (FICIAL)

Solubility in NII<sub>4</sub>C II<sub>4</sub>O<sub>2</sub>+Aq Fxcess of PbSO<sub>4</sub> was boiled with solution of NII<sub>4</sub>C II<sub>4</sub>O + Aq of vaying conc

| <u> </u>                               | g TbSO <sub>1</sub> cont uncd in a ce solution              |                         |                                  |
|----------------------------------------|-------------------------------------------------------------|-------------------------|----------------------------------|
| NH4 C II4()<br>m 100 ((                | Hot                                                         | Cooled                  | Cooled 24 hrs                    |
| 28<br>30<br>32<br>35<br>37<br>40<br>45 | 0 356<br>0 418<br>0 494<br>0 513<br>0 529<br>0 539<br>0 555 | 0 451<br>0 452<br>0 488 | 0 224<br>0 242<br>0 238<br>0 263 |

(Dunnington and Long, Am Ch J 1899, 22 218)

Solubility in ammonium acetate+Aq at  $25^{\circ}$ 

| NH <sub>4</sub> C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> | Solubility of PbSO <sub>4</sub> |                                |  |
|--------------------------------------------------------------|---------------------------------|--------------------------------|--|
| Millimol per l                                               | Millimols per l                 | g per l                        |  |
| 0 0<br>103 5<br>207 1<br>414 1                               | 0 134<br>2 10<br>4 55<br>10 10  | 0 041<br>0 636<br>1 38<br>3 06 |  |

(Noyes and Whitcomb, J Am Chem Soc 1905, 27 756)

Solubility in  $KC_2H_3O_2+Aq$  at 25° Solid phase,  $PbSO_4+PbK_2(SO_4)_2$ 

| Composition of the solutions                                                                                                                                                       |                              |                         |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|------------------------|
| KC <sub>2</sub> H <sub>3</sub> O <sub>2</sub> Pb(C <sub>2</sub> H <sub>3</sub> O <sub>2)<sub>2</sub> KC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> Pb(C<sub>2</sub>H<sub>3</sub>O</sub> |                              |                         |                        |
| 4 33<br>9 03<br>17 81<br>22 07                                                                                                                                                     | 2 54<br>3 55<br>5 43<br>5 95 | 26 58<br>28 82<br>28 93 | 9 83<br>11 40<br>19 41 |

(Fox, Chem Soc 1909, 95 887)

100 pts  $\rm H_2O$  containing a drop of  $\rm HC_2H_3O_2$  and 2 05 pts  $\rm NaC_2H_3O_2$  dissolve 0 054 pt PbSO<sub>4</sub>, containing 8 2 pts  $\rm NaC_2H_3O_2$  dissolve 0 900 pt PbSO<sub>4</sub>, containing 41 0 pts  $\rm NaC_2H_3O_2$  dissolve 11 200 pts PbSO<sub>4</sub> (Dibbits, Z anal 1874, **13** 139 )

Solubility in NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq at 25°

| Composition of the solutions                     |                                               |                                              |                                                    |
|--------------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------------|
| % Na acetate                                     | % Pb acctate                                  | % Na 801                                     | % H O                                              |
| 6 69<br>11 76<br>16 90<br>19 92<br>21 51<br>6 95 | 0 78<br>2 73<br>5 70<br>8 24<br>10 75<br>0 81 | 0 34<br>1 26<br>2 49<br>3 60<br>4 68<br>0 35 | 92 19<br>84 25<br>74 91<br>65 24<br>63 10<br>91 90 |

The proportion of sulphate in solution in e u h (as corresponded with the amount of Pb present, but was calculated to sodium sulphate, since Na  $SO_4+10H$  O cryst from the solutions on cooling. The solid phase in these solutions was PbSO<sub>4</sub>

(Irox, Chem. Soc. 1909, 95, 887.)

Solubility in KC H<sub>3</sub>O +Aq is not less than that in N<sub>3</sub>C H<sub>3</sub>O +Aq (Dibbits, Z anal 13 137)

Insol in  $Pb(C_2H_3O)_2+Aq$  (Smith) Sol in busic lead a cetite +Aq, but not in neutral  $Pb(C_2H_3O_2)_2+Aq$  (Stammer, Z

anal 23 67) 12 2 pts  $Ca(C_2H_3O_2)_2$  in very dil solution dissolve 1 pt PbSO<sub>4</sub> (Stadel, Z. unal 2 180) Sol in  $Al(C_2H_3O_2)_3 + Aq$  (Lennsen)

Very easily and abundantly sol in NH<sub>4</sub> tartrate +Aq (Wohler, A 34 235)

Even when native, easily sol in NH, citrate

(Smith)

Insol in alcohol (18%) and H<sub>2</sub>SO<sub>4</sub> when NH4 acetate, K tartrate, or NH4 succinate are present Insol in alcohol (18%) and H2SO4 or  $(NH_4)_2SO_4$  when Na acetate, Na or  $NH_4$  oxalate are present Sol in  $NH_4$  dicitrate and K tricitrate in presence of  $H_2SO_4$ , in  $NH_4$  succinate and  $NH_4$  acetate in presence of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, and in NH<sub>4</sub> citrate in presence of H<sub>2</sub>SO<sub>4</sub> or (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (Storer, C N **21** 17)

Alcohol (59%) alone, or with ethylsulphuric acid or sugar, does not dissolve Pb by 3 months action (Storer)

Insol in acetone (Naumann, B 1904, acetate (Naumann, 37 4329), methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, 1910, **43** 314)

Min Anglesite Sol in cold citric acid +Aq

(Bolton, C N 37 14)

Lead hydrogen sulphate, PbSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>+H<sub>2</sub>O Decomp by H<sub>2</sub>O

Lead pyrosulphate, Pb S<sub>2</sub>O<sub>7</sub> Decomp by H<sub>2</sub>O (Schultz)

### Lead potassium sulphate, PbSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub>

When PbSO<sub>4</sub> is added to potassium acetate  $+\mathrm{Aq}$  at 25° a double salt,  $\mathrm{PbK}_2(\mathrm{SO}_4)_2$  is formed. This salt is insol in the solution which contains only potassium acetate and lead acetate (Fox, Chem Soc 1909, 95 882)

Decomp by H<sub>2</sub>O Stable only in solutions of K<sub>2</sub>SO<sub>4</sub>, containing at least 0 56% K<sub>2</sub>SO<sub>4</sub> at 7°, 0 62% at 17°, 109% at 50°, 1 37% at 75°, 1 69% at 100° (Barre, C R 1909, **149**) 294)

Lead sulphate chloride, PbSO<sub>4</sub>, 2PbCl<sub>2</sub>+  $H_2O$ 

Insol in H<sub>2</sub>O or NaCl+Aq (Becquerel, C R 20 1523)

## Lead sulphate fluoride, PbSO<sub>4</sub>, 2PbF<sub>2</sub>

Not decomp by H<sub>2</sub>SO<sub>4</sub> (Lonyet, C R 24 434)

### Lithium sulphate, Li<sub>2</sub>SO<sub>4</sub>

More sol in cold than in hot H<sub>2</sub>O

100 pts H<sub>2</sub>O dissolve 34 6 pts L<sub>12</sub>SO<sub>4</sub> at 18° (Witt stein )

100 pts H<sub>2</sub>O dissolve pts L<sub>12</sub>SO<sub>4</sub> at t°

| t°   | Pts<br>L12SO4  | t°       | Pts<br>L <sub>12</sub> SO <sub>4</sub> | t°  | Pts<br>L <sub>12</sub> SO <sub>4</sub> |
|------|----------------|----------|----------------------------------------|-----|----------------------------------------|
| 0 20 | 35 34<br>34 36 | 45<br>65 | 32 38<br>30 3                          | 100 | 29 24                                  |

(Kremers, Pogg 95 468)

Sat L<sub>12</sub>SO<sub>4</sub>+Aq contains at ---16° —15° −20° --12° 18 4 22 5 22 6 24 4 % L<sub>12</sub>SO<sub>4</sub>

--4°  $+15^{\circ}$ +90° 25 3 23 9 % L12SO4 25 7 (Etard, A ch 1894, (7) 2 547)

Sat solution boils at 105° (Kremers) Sp gr of Li<sub>2</sub>SO<sub>4</sub>+Aq at 19 5° containing 7 4 12 5 15 3% L<sub>12</sub>SO<sub>4</sub>, 1 06 1 098 1 118 1 05

29 4 % Ll<sub>2</sub>SO<sub>4</sub> 24 4 2261 167 1 208 1 178 (Kremers, Pogg 114 47)

Sp gr of L<sub>12</sub>SO<sub>4</sub>+Aq at 15° containing 5% L<sub>12</sub>SO<sub>4</sub>=1 0430, 10% L<sub>12</sub>SO<sub>4</sub>=1 0877 (Kohlrausch, W Ann **1879** 1)

Sp gr of Li<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| Concentration of I 12SO <sub>4</sub><br>+Aq | Sp gr                                |
|---------------------------------------------|--------------------------------------|
| 1normal  1/2 "  1/4 "  1/8 "                | 1 0453<br>1 0234<br>1 0115<br>1 0057 |

(Wagner, Z phys Ch 1890, 5 38)

Sp gr of L<sub>12</sub>SO<sub>4</sub>+Aq

| ½L12SO4 g in 1000 g<br>of solution | Sp gr 16 /16°                    |
|------------------------------------|----------------------------------|
| 0<br>2 9198<br>16 0461             | 1 000000<br>1 002589<br>1 014093 |

(Dijken, Z phys Ch 1897, 24 109)

Sp gr of L<sub>12</sub>SO<sub>4</sub>+Aq at 20°

| Normality of<br>L <sub>12</sub> SO <sub>4</sub> +Aq | % L12SO4 | Sp gr  |
|-----------------------------------------------------|----------|--------|
| 2 60                                                | 23 48    | 1 2330 |
| 1 96                                                | 18 53    | 1 1650 |
| 1 708                                               | 16 41    | 1 1449 |
| 1 320                                               | 13 01    | 1 1133 |
| 0 747                                               | 7 71     | 1 0678 |

(Forchheimer, Z phys Ch 1900, **34** 24)

Insol in SO<sub>3</sub> (Weber, B 17 2497) 10 ccm of sat L<sub>12</sub>SO<sub>4</sub> in absolute H<sub>2</sub>SO<sub>4</sub> contain approx 2719 g L<sub>12</sub>SO<sub>4</sub> (Bergius, Z phys Ch 1910, **72** 355)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 30°

| Composition                                                                                                                                                            | of the solution                                                                                                                                                         |                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| % by wt<br>H <sub>2</sub> SO <sub>4</sub>                                                                                                                              | % by wt<br>L12SO4                                                                                                                                                       | Solid phase                                        |
| 5 05<br>12 23<br>15 37<br>16 60<br>32 70<br>36 90<br>42 98<br>48 00<br>52 72<br>54 54<br>55 08<br>56 30<br>61 46<br>61 82<br>62 14<br>62 49<br>65 70<br>69 40<br>77 30 | 22 74<br>20 45<br>19 11<br>19 10<br>13 37<br>11 90<br>10 57<br>10 20<br>11 44<br>12 92<br>13 69<br>13 87<br>17 10<br>17 00<br>17 97<br>18 89<br>16 55<br>13 75<br>11 31 | L <sub>12</sub> SO <sub>4</sub> , H <sub>2</sub> O |
| 78 23<br>81 20<br>81 70                                                                                                                                                | 11 64<br>13 28<br>13 85                                                                                                                                                 | et<br>et                                           |
| 82 30<br>83 43                                                                                                                                                         | 15 50<br>15 65                                                                                                                                                          | "                                                  |

(Van Dorp, Z phys Ch 1910, **73** 289)

Solution in  $\rm H_2SO_4$  contains 17.2%  $\rm I_{12}SO_4$  at 30° (Van Dorp, Z phys Ch 1913, 86 112)

Solubility of  $\text{Li}_2\text{SO}_4 + \text{Th}(\text{SO}_4)_2$  in  $\text{H}_2\text{O}$  at  $25^\circ$ 

Solid phase, Th(SO<sub>4</sub>)<sub>2</sub> G in 100 g H<sub>2</sub>O

| I 12SO4 | Th(5O4)2 | L12SO4 | I h(SO <sub>4</sub> ) |
|---------|----------|--------|-----------------------|
| 0 0     | 1 722    | 11 13  | 11 05                 |
| 2 57    | 4 13     | 13 18  | 12 54                 |
| 4 93    | 6 20     | 16 12  | 14 52                 |
| 6 98    | 7 95     | 20 49  | 16 92                 |
| 9 23    | 9 68     | 16 92  | 18 87                 |

(Barre, Bull Soc 1912, (4) 11 647)

Easily sol (Kastner), sl sol (Berzelius) in alcohol

Solubility of Li<sub>2</sub>SO<sub>4</sub> in alcohol+Aq at 30° Solid phase Li<sub>2</sub>SO<sub>4</sub>, H<sub>2</sub>O

| G per 100 g sat solution              |                                        |                                           |                          |
|---------------------------------------|----------------------------------------|-------------------------------------------|--------------------------|
| C <sub>2</sub> H <sub>5</sub> OH      | L12SO4                                 | C <sub>2</sub> H <sub>5</sub> OH          | L12SO4                   |
| 0<br>11 75<br>21 19<br>29 40<br>33 31 | 25 1<br>16 16<br>11 52<br>8 17<br>6 66 | 47 28<br>58 59<br>69 39<br>80 74<br>94 11 | 3 04<br>1 22<br>0 4<br>0 |

(Schreinemakers and van Dorp, Chem Weekbl 1906, **3** 557)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann B 1904, 37 3601), acetone (Eidmann, C C, 1899, II 1014, Naumann, B 1904, 37 4329) + H<sub>2</sub>O Very sl efflorescent (Rammels-

berg)
Aq solution contains 25 1% Li<sub>2</sub>SO<sub>4</sub> at 30° (Schreinemakers, C C 1910, I 1801), 24 3 g at 50° (Schreinemakers and Cocheret, Chem Weekbl 1905, 2 771)

### Lithium hydrogen sulphate, LiHSO4

Decomp by  $H_2O$ Cryst from  $H_2SO_4$  (Gmelin)  $L_1H_3(SO_4)_2$  Cryst from  $H_2SO_4$  (Schultz, logg 133 137)

Pogg 133 137)
L<sub>2</sub>SO<sub>4</sub>, 7H<sub>2</sub>SO<sub>4</sub> (Bergius, Z phys Ch 1910, **72** 355)

# Lithium potassium sulphate, $L_{12}SO_4, K_2SO_4$

This is the only compd of Li<sub>2</sub>SO<sub>4</sub> and K<sub>2</sub>SO<sub>4</sub> which exists below 100° (Spielrein, C R 1913, **157** 48)

 $K_4L_{12}(SO_4)_3$  (Knobloch) Has the formula  $K_2L_{18}(SO_4)_5+8H_2O$ , according to Rammelsberg

# | Lithium sodium sulphate, Na<sub>3</sub>Li(SO<sub>4</sub>)<sub>2</sub>+

 $Na_4Ll_2(SO_4)_3+9H_2O$ 

Na  $L_{18}(SO_4)_5 + 5H_2O$  (Rammelsberg ) Do not exist (Troost )

L<sub>12</sub>SO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>+5 5H<sub>2</sub>O Exists from 0°-16°

+3H<sub>2</sub>O Exists from 32°-100° Li<sub>2</sub>SO<sub>4</sub>, 3Na<sub>2</sub>SO<sub>4</sub>+12H<sub>2</sub>O Exists from 16°-24°

4Ll<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>+5H<sub>2</sub>O Exists from 24°-32°

(Spielrein, C R 1913, 157 47)

Lithium thallic sulphate, LiTl(SO<sub>4</sub>)<sub>2</sub>+3H<sub>2</sub>O (Meyer and Goldschmidt, C C 1903, I 495)

# L<sub>1</sub>thium titanium sulphate, $L_{12}T_1O_2(SO_4)_2+7H_2O$

Less hygroscopic than K compound (Mazzuchelli and Pontanelli, C C 1909, II 420

Lithium uranyl sulphate, Li<sub>2</sub>SO<sub>4</sub>, UO<sub>2</sub>SO<sub>4</sub>+ 4H<sub>2</sub>O (de Coninck, Chem Soc 1905, **88** (2) 530

Magnesium sulphate basic, 6Mg(OH)<sub>2</sub>, MgSO<sub>4</sub>+3H<sub>2</sub>O Sl sol in cold or hot H<sub>2</sub>O Sol in HCl+Aq (Thugutt, Z anorg 1892, **2** 150)

### Magnesium sulphate, MgSO4

Anhydrous Very slowly sol in  $H_2O$ , sol in hot conc  $H_2SO_4$ , less in HCl, and  $HNO_3+$ 

+H<sub>2</sub>O Min Kieserite Easily sol in warm, but slowly dissolved by cold H<sub>2</sub>O 100 g sat solution at 83° contain 40 2 g

MgSO<sub>4</sub> (Geiger, Dissert 1904) +6H<sub>2</sub>O, and +7H<sub>2</sub>O The latter exists in two modifications, (a) hexagonal, and (b) the ordinary or rhombic salt

 $MgS\ddot{O}_4+Aq$ , which on cooling or keeping in closed vessels has deposited  $MgSO_4+6\dot{H}_2O$ , always contains for 100 pts  $H_2O$  at

0° 10° 20° 40 75 42 23 43 87 pts MgSO<sub>4</sub>

If only hexagonal MgSO $_4$ +7H $_2$ O has been deposited, then the mother liquor contains for 100 pts H $_2$ O at

Solutions prepared from rhombic  $MgSO_4+7H_2O$  contain for 100 pts  $H_2O$  at

0° 10° 20° 26 0 30 9 35 6 pts MgSO<sub>4</sub> (Lowel)

These results may be given in tabular form as follows

| Temp | A sat aqueous solution of $MgSO_4+7H_2O$ (b) contains for 100 pts $H_2()$ |                               |  |
|------|---------------------------------------------------------------------------|-------------------------------|--|
|      | Anhydrous<br>MgSO <sub>4</sub>                                            | 7H <sub>2</sub> O (b)<br>salt |  |
| 0°   | 26 0                                                                      | 73 31                         |  |
| 10°  | 30 9                                                                      | 93 75                         |  |
| 20°  | 35 6                                                                      | 116 54                        |  |

| Temp | A sat aqueous solution of $MgSO_4+7H_2O$ (a) contains for 100 pts $H_2O$ |                                  |  |
|------|--------------------------------------------------------------------------|----------------------------------|--|
|      | Anhydrous<br>MgSO <sub>4</sub>                                           | 7H <sub>2</sub> O <sub>(a)</sub> |  |
| 0°   | 34 67                                                                    | 111 74                           |  |
| 10°  | 38 71                                                                    | 133 67                           |  |
| 20°  | 42 84                                                                    | 159 61                           |  |

| Temp | A sat aqueous solution of MgSO <sub>4</sub> +6H <sub>2</sub> O contains for 100 pts H <sub>2</sub> O |        |                           |  |
|------|------------------------------------------------------------------------------------------------------|--------|---------------------------|--|
| remp | Anhydrous 6H <sub>2</sub> O MgSO <sub>4</sub> salt                                                   |        | 7H <sub>2</sub> O<br>salt |  |
|      | 40 75                                                                                                | 122 22 | 146 02                    |  |
| 10°  | 42 32                                                                                                | 129 44 | 155 53                    |  |
| 20°  | 43 87                                                                                                | 137 72 | 167 97                    |  |

It is seen from table that at the same temp the  $6\rm{H}_2\rm{O}$  salt is more sol than the  $7\rm{H}_2\rm{O}$  (b) salt, and the latter is more sol than  $7\rm{H}_2\rm{O}$  (a) salt, that the solubility of the  $7\rm{H}_2\rm{O}$  (b) salt increases rapidly from 0° to 20°, that the  $6\rm{H}_2\rm{O}$  salt is not much more sol at 20° than at  $6\rm{H}_2\rm{O}$  salt is nearly as sol as the  $6\rm{H}_2\rm{O}$  salt (Lowel, A ch (3) 43 405)

100 pts  $H_2O$  at t° dissolve pts  $MgSO_4$  G L =according to Gay Lussac (A ch (2) 11 311) T =according to Tobler (A 95 198)

| 8                               | g to Tobici (11 50 100)              |              |                                  |                                     |      |
|---------------------------------|--------------------------------------|--------------|----------------------------------|-------------------------------------|------|
| t°                              | GL                                   | ı            | t°                               | G I                                 | 1    |
| 0<br>10<br>20<br>25<br>30<br>40 | 25 8<br>30 5<br>30 0<br>39 8<br>45 2 | 24 7<br>37 1 | 50<br>55<br>60<br>70<br>80<br>90 | 49 7<br>5 9<br>60 4<br>65 1<br>70 3 | 52 8 |

100 pts  $H_2O$  at 105.5 dissolve 130.2 pts  $M_4S()_1$  (Griffiths)

MgSO<sub>4</sub>+Aq sat at 17 5 his sp gr = 1 2032 and contains 55 57 % MgSO<sub>4</sub>+7H () or 100 pts H () dissolve 12) 00 pts M<sub>6</sub>SO<sub>4</sub>+7H () or 60 pts M<sub>6</sub>SO<sub>4</sub> at 17 5° (Karsten)

100 pts H<sub>2</sub>O at 0 dissolve 538 pts and 12, pts at ord temp (Otto Graham) Sol in 2 pts cold and 0.5 pt boiling H<sub>2</sub>O (Lour

croy)
The aqueous solution contains for 100 pts H<sub>2</sub>()
92 217 pts M<sub>5</sub>SO<sub>4</sub>+7H O at 1) (Michel and Krufft)
I pt M<sub>5</sub>SO<sub>1</sub>+7H<sub>2</sub>O is sol in 0.933 pt H O at 1,
(Cerlach) in 0.92 pt H O at 23 (Schiff)
100 pts H<sub>2</sub>O dissolve 28 067 pts M<sub>5</sub>SO<sub>1</sub> at 0
(Pfaff A 99 224)

100 pts H<sub>2</sub>O dissolve pts MgSO<sub>4</sub> it t°

| t                 | I to MES()4             |
|-------------------|-------------------------|
| 0<br>17 9<br>24 1 | 26 57<br>33 28<br>35 98 |
| /55               | V                       |

(Diacon, J B 1886 62)

100 pts  $MgSO_4+Aq$  sat at  $18-20^\circ$  contain 25 67-26 38 pts  $MgSO_4$  (v Hauer, J pr 98 137)

Solubility in 100 pts  $H_2O$  at t°, using  $MgSO_4 + 7H_2O$ 

| t°                                                                                                                                                                                                                                                                                       | Pts<br>MgSO <sub>4</sub>                                                                                                                                                                                                       | t°                                                                                                                                                             | Pts<br>MgSO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t°                                                                                                                  | Pts<br>MgSO <sub>4</sub>                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>31<br>33<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 26 9<br>27 4<br>27 9<br>28 8<br>29 3<br>20 7<br>30 6<br>31 1<br>31 5 0<br>32 4<br>32 9<br>33 4<br>32 9<br>33 4<br>34 7<br>35 2<br>36 7<br>37 1<br>38 5<br>39 0<br>39 5<br>39 9<br>40 9<br>41 4<br>41 2<br>42 8<br>43 3<br>43 7 | 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>66<br>67<br>68<br>69<br>70<br>71<br>72<br>73 | 44 7 2 6 4 45 0 5 0 4 48 8 9 3 8 3 7 2 7 2 7 2 6 1 5 0 5 5 5 5 5 6 6 7 5 7 5 7 5 8 8 6 1 6 0 6 0 6 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 1 0 6 | 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 4 | 61 4 9 3 66 66 66 66 66 66 66 66 66 66 66 66 6 |

(Mulder, calculated from his own and other observations, School Verhandel 1864 52)

100 pts II<sub>4</sub>O dissolve 72.4 pts MgSO<sub>4</sub>+  $7H_2O$  it 0°, 178 pts it 40°, and 212.6 pts at 49° (1 dden, Chem Soc **45** 409)

Supers it MgSO<sub>4</sub>+Aq is brought to crystallisation by addition of crystal of MgSO<sub>4</sub>+7H<sub>2</sub>O, or in isomorphous substance as ZnSO<sub>4</sub>+7H<sub>2</sub>O, NiSO<sub>4</sub>+7H<sub>2</sub>O, FeSO<sub>4</sub>+7H<sub>2</sub>O, or CoSO<sub>4</sub>+7H<sub>2</sub>O (1homson, Chem Soc **35** 199)

Sat MgSO<sub>4</sub>+Aq contrans at 2° 7° 23° 67° 81° 20 9 22 5 26 0 35 6 38 6% MgSO<sub>4</sub>,

94° 130° 145° 164° 188° 41 5 45 3 38 0 29 3 20 4% MgSO<sub>4</sub> Readily forms supersat solutions (Étard, A ch 1894, (7) **2** 551)

M -pt of  $MgSO_4+7H_2O$  is 70° (Tilden, Chem Soc 45 409)

 $MgSO_4+Aq$  with sp gr  $1\,50$  contains  $44\,4\,\%$   $M_2SO_4$  sp gr  $1\,42\,$  39% sp gr  $1\,30\,$  30%  $MgSO_4$  (Dalton )

Sp gr of MgSO<sub>4</sub>+Aq sat at  $15^{\circ}=1275$  (Michel and Krafft), at  $8^{\circ}=1267$  (Anthon), at  $1875^{\circ}=1293$  (Karsten)

Sp gr of MgSO<sub>4</sub>+Aq at 15°

| % MgSO4 | Sp gr | % Mg8O4 | Sp gr |
|---------|-------|---------|-------|
| 5       | 1 054 | 30      | 1 326 |
| 10      | 1 108 | 35      | 1 384 |
| 15      | 1 161 | 40      | 1 446 |
| 20      | 1 215 | 45      | 1 511 |
| 25      | 1 269 | 50      | 1 580 |

(Calculated from Anthon by Schiff, A 107 303)

Sp gr of MgSO<sub>4</sub>+Aq at 23°

| % MgSO <sub>4</sub><br>+7H <sub>2</sub> O                                                         | Sp gr                                                                                                                          | % MgSO <sub>4</sub><br>+7H <sub>2</sub> O                                          | Sp gr                                                                                                                |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| % Mg804<br>+7H20<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | Sp gr  1 0048 1 0096 1 0144 1 0193 1 0242 1 0290 1 0339 1 0387 1 0437 1 0487 1 0537 1 0637 1 0638 1 07 9                       | MgSO <sub>4</sub> +7H <sub>2</sub> O  28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | Sp gr  1 1426 1 1481 1 1536 1 1592 1 1648 1 1704 1 1760 1 1817 1 1875 1 1933 1 1991 1 2049 1 2108 1 2168 1 2128      |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27                              | 1 0739<br>1 0790<br>1 0842<br>1 0894<br>1 0945<br>1 0997<br>1 1050<br>1 1103<br>1 1156<br>1 2109<br>1 1261<br>1 1316<br>1 1371 | 42<br>43<br>44<br>45<br>40<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54         | 1 2288<br>1 2349<br>1 2410<br>1 2472<br>1 2534<br>1 2596<br>1 2659<br>1 2722<br>1 2786<br>1 2850<br>1 2915<br>1 2980 |

(Schiff, A 113 185)

Sp gr of MgSO<sub>4</sub>+Aq at 12°

| % MgSO <sub>4</sub><br>+7H <sub>2</sub> O                                                             | Sp gr                                                                                                                                                                                      | % MgSO <sub>4</sub><br>+7H <sub>2</sub> O                                                                            | Sp gr                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>20 | 1 0046<br>1 0096<br>1 0146<br>1 0196<br>1 0246<br>1 0296<br>1 0346<br>1 0396<br>1 0446<br>1 0497<br>1 0548<br>1 0599<br>1 0650<br>1 0702<br>1 0754<br>1 0807<br>1 0859<br>1 0964<br>1 1018 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>24<br>35<br>36<br>37<br>38<br>39<br>40 | 1 1071<br>1 1125<br>1 1179<br>1 1234<br>1 1289<br>1 1344<br>1 1399<br>1 1454<br>1 1510<br>1 1566<br>1 1622<br>1 1679<br>1 1736<br>1 1793<br>1 1850<br>1 1908<br>1 1908<br>1 1908<br>1 1908<br>1 2023<br>1 2082<br>1 2140 |
|                                                                                                       |                                                                                                                                                                                            | <del> </del>                                                                                                         |                                                                                                                                                                                                                          |

(Oudemans, Z anal 7 419)

Sp gr of MgSO<sub>4</sub>+Aq at 15°

| % MgSO <sub>4</sub> | Sp gr   | % MgSO4 | Sp gr   |
|---------------------|---------|---------|---------|
| 1                   | 1 01031 | 14      | 1 15083 |
| 2                   | 1 02062 | 15      | 1 16222 |
| 3                   | 1 03092 | 16      | 1 17420 |
| 4                   | 1 04123 | 17      | 1 18618 |
| 5                   | 1 05154 | 18      | 1 19816 |
| 6                   | 1 06229 | 19      | 1 21014 |
| 7                   | 1 07304 | 20      | 1 22212 |
| 8                   | 1 08379 | 21      | 1 23465 |
| 9                   | 1 09454 | 22      | 1 24718 |
| 10                  | 1 10529 | 23      | 1 25972 |
| 11                  | 1 11668 | 24      | 1 27225 |
| 12                  | 1 12806 | 25      | 1 28478 |
| 13                  | 1 13945 | 25 248  | 1 28802 |

(Gerlach, Z anal 8 287)

Sp gr of MgSO<sub>4</sub>+Aq at 23 5° a=no of  $\frac{1}{2}$  mols in grms dissolved in 1000 g H<sub>2</sub>O, b=sp gr if a is MgSO<sub>4</sub>+7H<sub>2</sub>O,  $\frac{1}{2}$  mol wt =123, c=sp gr if a is MgSO<sub>4</sub>,  $\frac{1}{2}$  mol wt =60

| a                | b                                | С     | a                | b                                | c     |
|------------------|----------------------------------|-------|------------------|----------------------------------|-------|
| 1<br>2<br>3<br>4 | 1 056<br>1 103<br>1 141<br>1 174 | 1 166 | 5<br>6<br>7<br>8 | 1 203<br>1 229<br>1 252<br>1 273 | 1 260 |

(Favre and Valson, C R 79 968)

| Sp | gr | of | MgSO <sub>4</sub> | +Aq | at | 15° |
|----|----|----|-------------------|-----|----|-----|
|----|----|----|-------------------|-----|----|-----|

| % MgSO4       | Sp gr                      | % MgSO4  | Sp gr            |
|---------------|----------------------------|----------|------------------|
| 5<br>10<br>15 | 1 0510<br>1 1052<br>1 1602 | 20<br>25 | 1 2200<br>1 2861 |

(Kohlrausch, W Ann 1879 1)

Sp gr of MgSO<sub>4</sub>+Aq at 0° S=pts MgSO<sub>4</sub> in 100 pts solution

| S       | Sp gr  | s      | Sp gr  |
|---------|--------|--------|--------|
| 13 800  | 1 1586 | 7 4046 | 1 0826 |
| 11 7458 | 1 1329 | 5 0447 | 1 0557 |
| 9 6218  | 1 1072 | 2 5907 | 1 0284 |

(Charpy, A ch (6) 29 26)

Sat MgSO<sub>4</sub>+Aq boıls at 105° (Grıffiths), 108 4° (Mulder)

Crust forms at 103 5° (solution containing 48 4 pts MgSO<sub>4</sub> to 100 pts H<sub>2</sub>O), highest temp observed, 105° (Gerlach, Z anal **26** 426)

B-pt of  $MgSO_4+Aq$  containing pts  $MgSO_4$  to 100 pts  $H_2O$ 

| B pt                              | Pts<br>MgSO <sub>4</sub>    | B pt                              | Pts<br>MgSO <sub>4</sub>     | B pt                 | Pts<br>MgSO <sub>4</sub> |
|-----------------------------------|-----------------------------|-----------------------------------|------------------------------|----------------------|--------------------------|
| 100 5°<br>101 0<br>101 5<br>102 0 | 8 8<br>16 7<br>23 5<br>29 5 | 102 5°<br>103 0<br>103 5<br>104 0 | 34 7<br>39 5<br>43 8<br>47 7 | 104 5°<br>105<br>108 | 51 3<br>54 6<br>75(?)    |

(Gerlach, Z anal 26 432)

Sp gr of MgSO<sub>4</sub>+Aq at 9 5°

|                       | · · · · · · · · · · · · · · · · · · · |
|-----------------------|---------------------------------------|
| Mass of salt per unit | Density of solution                   |
| mass of solution      | (g per co)                            |
| 0 00191               | 1 00170                               |
| 0 00380               | 1 00346                               |
| 0 00569               | 1 00526                               |
| 0 00758               | 1 00705                               |
| 0 01132               | 1 01060                               |

(McGregor, C N 1887, 55 6)

Sp gr of MgSO<sub>4</sub>+Aq at 25°

| Concentration of MgSO <sub>4</sub><br>+Aq | 5p gr                                |
|-------------------------------------------|--------------------------------------|
| 1—normal  1/2— "  1/5— "  1/8— "          | 1 0584<br>1 0297<br>1 0152<br>1 0076 |

(Wagner, Z phys Ch 1890, 5 38)

Sp gr at 16°/4° of MgSO<sub>4</sub>+Aq containing 11 0222% MgSO<sub>4</sub>=1 11471, containing 8 343% MgSO<sub>4</sub>=1 08558 (Schonrock, Z phys Ch 1893, **11** 782)

| Sp gr of MgSO <sub>4</sub> +Aq    |        |             |  |  |
|-----------------------------------|--------|-------------|--|--|
| G -equivalents<br>MgSO4 per liter | t°     | Sp gr t°/t° |  |  |
| 0 002548                          | 17 989 | 1 0001625   |  |  |
| 0 005093                          | 18 020 | 1 000324    |  |  |
| 0 01015                           | 17 995 | 1 000639    |  |  |
| 0 02023                           | 17 980 | 1 001274    |  |  |
| 0 05023                           | 18 047 | 1 003117    |  |  |
| 0 09950                           | 18 033 | 1 006122    |  |  |
| 0 19773                           | 18 014 | 1 012035    |  |  |
| 0 29459                           | 17 997 | 1 017806    |  |  |
| 0 48671                           | 17 994 | 1 029101    |  |  |
| 0 5022                            | 17 90  | 1 03000     |  |  |
| 5 0220                            | 17 95  | 1 26970     |  |  |
| 0 002616                          | 14 096 | 1 0001672   |  |  |
| 0 005230                          | 14 109 | 1 0003311   |  |  |
| 0 01042                           | 14 098 | 1 000659    |  |  |
| 0 02077                           | 14 092 | 1 001306    |  |  |
| 0 12462                           | 14 199 | 1 007682    |  |  |
| 0 24567                           | 14 092 | 1 014980    |  |  |

(Kohlrausch, W Ann 1894, 53 27)

Sp gr of MgSO4+Aq

| ⅓ MgSO4 g in 1000 g<br>of solution                                                        | Sp gr 16°/16°                                                                                                        |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 0<br>0 5368<br>1 0917<br>"<br>2 1076<br>4 1367<br>9 0608<br>18 0846<br>37 1342<br>52 1362 | 1 000000<br>1 000570<br>1 001157<br>1 001141<br>1 002234<br>1 004372<br>1 009523<br>1 018954<br>1 038983<br>1 054867 |

(Dijken, Z phys Ch 1897, 24 108)

Sp gr of MgSO<sub>4</sub>+Aq at 18 2°, when p = per cent strength of the solution, d = obscrvcd density, and w = volume conc / pd

in grams per cc  $\left(\frac{\text{pd}}{100} = \text{w}\right)$ 

| р                                                                                    | d                                                                                                | w                                                                                                |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 26 25<br>25 91<br>24 53<br>21 60<br>18 41<br>13 79<br>12 63<br>11 29<br>8 08<br>2 01 | 1 2903<br>1 2860<br>1 2693<br>1 2330<br>1 1950<br>1 1423<br>1 1291<br>1 1147<br>1 0803<br>1 0204 | 1 3374<br>1 3319<br>1 3101<br>1 2650<br>1 2187<br>1 1562<br>1 1413<br>1 1246<br>1 0859<br>1 0191 |
|                                                                                      |                                                                                                  |                                                                                                  |

(Barnes, J phys Chem 1898, 2 542)

Sp gr of MgSO<sub>4</sub>+Aq at 20°

|                                       |                         | <u> </u>                   |
|---------------------------------------|-------------------------|----------------------------|
| Normality of<br>MgSO <sub>4</sub> +Aq | % MgSO4                 | Sp gr                      |
| 2 73<br>1 86<br>0 934                 | 25 46<br>18 61<br>10 14 | 1 2879<br>1 2019<br>1 1049 |

(Forchheimer, Z phys Ch 1900, 34 24)

Sp gr of dil MgSO<sub>4</sub>+Aq at 20 004° Conc = g equiv per l at 20 004° Sp gr compared with  $\rm H_2O$  at 20 004°=1

| Conc                                                                                             | Sp gr                                                                                                                                              |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 0000<br>0 0001<br>0 0002<br>0 0003<br>0 0004<br>0 0005<br>0 0010<br>0 0020<br>0 0050<br>0 0100 | 1 000,000,0<br>1 000,006,4<br>1 000,012,9<br>1 000,019,4<br>1 000,025,9<br>1 000,032,4<br>1 000,064,8<br>1 000,129,4<br>1 000,322,4<br>1 000,642,1 |
|                                                                                                  |                                                                                                                                                    |

(Lamb and Lee, J Am Chem Soc 1913, 35 1684)

More sol in HCl+Aq than in  $H_2O$  (Richter)

In sat HCl+Aq, anhydrous MgSO<sub>4</sub> is scarcely sol, MgSO<sub>4</sub>+7H<sub>2</sub>O dissolves, but is precipitated by a current of HCl gas (Hensgen, B 10 259)

Margueritte (C R 43 50) denies the precipitation

For solubility in H<sub>2</sub>SO<sub>4</sub>, see MgH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> Completely pptd from MgSO<sub>4</sub>+Aq by cone HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Persoz)

Somewhat sol in sat NH<sub>4</sub>Cl+Aq with separation of a double sulphate

Rapidly sol in KCl+Aq with separation of K<sub>2</sub>SO<sub>4</sub>
Sol in sat NaCl+Aq without pptn of the

latter Easily sol in sat KNO<sub>3</sub>+Aq without caus-

ing any pptn Sol in sat NaNO₃+Aq (Narsten)

Rapidly sol in sat CuSO<sub>4</sub>+Aq, when saturation is reached, a double salt separates out (Karsten)

100 pts sat  $MgSO_4+NiSO_4+Aq$  at  $18-20^\circ$  contain 30 93 pts of the two salts, 100 pts sat  $MgSO_4+ZnSO_4+Aq$  at  $18-20^\circ$  contain 35 45 pts, 100 pts sat  $MgSO_4+NiSO_4+ZnSO_4+Aq$  at  $18-20^\circ$  contain 35 62 pts (v

Hauer, J pr 98 137) 100 pts  $H_2O$  dissolve 14 1 pts  $MgSO_4$  and 9 8 pts  $K_2SO_4$ , if sat  $MgSO_4+Aq$  is sat with  $K_2SO_4$ , 32 4 pts  $MgSO_4$  and 8 2 pts  $K_2SO_4$ , if sat  $K_2SO_4+Aq$  is sat with  $MgSO_4$ , all at 15° (Mulder, J B 1866)

100 pts H<sub>2</sub>O dissolve 25 95 pts MgSO<sub>4</sub> and 5 21 pts Na<sub>2</sub>SO<sub>4</sub> at 0° (Diacon, J B **1866** 62)

100 pts H<sub>2</sub>O dissolve 15 306 pts MgSO<sub>4</sub> and 13 086 pts Na<sub>2</sub>SO<sub>4</sub> at 0° (Pfaff, A 99 224)

See also under MgNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+4H<sub>2</sub>O

Solubility of mixtures of MgSO4 and MgNa<sub>2</sub>(SO<sub>4</sub>),+4H<sub>2</sub>O at t°

| +0                     | g per 10                        | 0 g H <sub>2</sub> O          |
|------------------------|---------------------------------|-------------------------------|
|                        | Na <sub>2</sub> SO <sub>4</sub> | MgSO <sub>4</sub>             |
| 22<br>24 5<br>30<br>35 | 23 3<br>27 2<br>36 1<br>33 9    | 31 4<br>24 2<br>19 1<br>18 44 |

(Roozeboom, 1888, Z phys Ch 2 518) See also under MgNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+4H<sub>2</sub>O

Slowly sol in sat ZnSO<sub>4</sub>+Aq without pptn until saturation, when a double salt separates Out

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, **20** 828)

100 pts dil alcohol containing at 15° 20 40 % alcohol contain 39 3 21 3 1 62% MgSO<sub>4</sub>+7H<sub>2</sub>O (Schiff, A 118 365)

At higher temp the solubility increases proportional to the temp (Gerardin, A ch **(4) 5** 145)

100 pts absolute methyl alcohol dissolve 1 18 pts MgSO<sub>4</sub> at 18° (de Bruyn, Z phys Ch **10** 783)

100 pts absolute methyl alcohol dissolve 41 pts MgSO<sub>4</sub>+7H<sub>2</sub>O at 17°, 100 pts absolute methyl alcohol dissolve 29 pts MgSO4+ 7H<sub>2</sub>O at 3-4°, 100 pts 93% methyl alcohol dissolve 9 7 pts MgSO+7H<sub>2</sub>O at 17°, 100 pts 50% methyl alcohol dissolve 4 1 pts MgSO<sub>4</sub>+7H<sub>2</sub>O at 3-4° (de Bruyn, R t c **11** 112 )

100 pts absolute ethyl alcohol dissolve 13 pts MgSO<sub>4</sub>+7H<sub>2</sub>O at 3° (de Bruyn)

Insol in CS<sub>2</sub> (Arctowski, Z anorg 1894, **6** 257)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1910, **43** 314), acetone (Naumann, B 1904, **37** 4329)

 $100~{
m g}$  95% formic acid dissolve 0 34 g MgSO<sub>4</sub> at 19° (Aschan, Ch. Ztg. 1913. 37

 $11\bar{1}7$ )

100 g sat solution of MgSO<sub>4</sub> and sugar in  $H_2O$  contains 46 52, g sugar +14 0 g MgSO<sub>4</sub>, or 100 g H<sub>2</sub>O dissolve 119 6 g sugar +36 0 g MgSO<sub>4</sub> (Kohler, Z Ver Zucker-ind, 1897, **47** 447)

Magnesium hydrogen sulphate, MgH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> Decomp by H<sub>2</sub>O Sol in H<sub>2</sub>SO<sub>4</sub> in methyl acetate (Naumann, B 1909, 42 3790)

Boiling H<sub>2</sub>SO<sub>4</sub>  $MgH_6(SO_4)_4$ about 2% MgSO4, from which this compound crystallises (Schultz, Pogg 133 137)

Magnesium pyrosulphate, MgS<sub>2</sub>O<sub>7</sub> Decomp by H<sub>2</sub>O

MgSO<sub>4</sub>. Magnesium manganous sulphate,  $2MnSO_4 + 15H_2O$ Min Fauserite

Magnesium manganous zinc sulphate, MgSO4, MnSO<sub>4</sub>, ZnSO<sub>4</sub>+21H<sub>2</sub>O Sol in H<sub>2</sub>O (Vohl, A 99 124)

Magnesium nickel sulphate, MgSO<sub>4</sub>, 3NiSO<sub>4</sub> +28H<sub>2</sub>O

Sol in H<sub>2</sub>O (Schiff)

Magnesium nickel potassium sulphate,  $MgSO_4$ ,  $N_1SO_4$ ,  $2K_2SO_4 + 12\bar{H}_2O$ Sol in H<sub>2</sub>O (Vohl, A 94 57)

Magnesium potassium sulphate,  $MgK_2(SO_4)_2 + 6H_2O$ 

100 pts H<sub>2</sub>O dissolve 22 7 pts anhydrous salt at 16 5° (Mulder)

100 pts H<sub>2</sub>O dissolve at 35° 10° 20°

30° 14 1 19 6  $25\ 0$ 30 4 33 3 pts unhydrous sult. 75° 55° 60°  $65^{\circ}$ 

40 5 47 0  $50 \ 2$ 53 0 59 8 pts unhydrous sult

(Tobler, A 95 193)

 $100 \text{ g H}_2\text{O dissolve } 30.52 \text{ g MgK} (50)_1) +$ 6H<sub>2</sub>O at 15° (Lothian, Phaim J 1909, 82 292)

## Solubility in H () it to

| t                                                        | Sat solution<br>contuns                                                     |                                                                             | Mols<br>K SO <sub>1</sub><br>mols                                                                | 100 pt - 11 O<br>di ly                                                                    |                                                                                        |
|----------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| •                                                        | 1,504                                                                       | %<br>Mg501                                                                  | M <sub>E</sub> SO <sub>1</sub> in<br>the solu-<br>tion                                           | K 501                                                                                     | MESOI                                                                                  |
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>80<br>90 | 9 4<br>10 9<br>12 4<br>13 8<br>14 7<br>15 2<br>15 6<br>16 0<br>16 6<br>17 2 | 9 8<br>10 8<br>11 8<br>13 1<br>14 8<br>16 3<br>16 8<br>17 1<br>18 1<br>18 2 | 1 1 52<br>1 1 43<br>1 1 38<br>1 1 37<br>1 1 46<br>1 1 55<br>1 1 52<br>1 1 56<br>1 1 58<br>1 1 54 | 11 63<br>13 92<br>16 36<br>18 \$\$<br>20 \$5<br>22 19<br>23 07<br>23 91<br>25 42<br>26 62 | 12 15<br>15 79<br>15 56<br>17 92<br>20 99<br>23 79<br>21 55<br>25 56<br>27 72<br>28 17 |

(Precht, B 1882 15 1668)

ing

8% hydrous salt, 1 0129 1 0261 1 0394 1 053

16% hydrous salt, 12 14 1 0668 1 0808 1 095 1 1094

18 22% hydrous salt 1 1388 1 124 1 1539 (Schiff, A 113 183, calculated by Gerlach, Z anal 8 287)

Sp gr of  $MgK_2(SO_4)_2 + Aq$  at 18°

| 1 0633<br>1 0531<br>1 0427<br>1 0243<br>1 0040<br>1 0015<br>1 0004 |
|--------------------------------------------------------------------|
|                                                                    |

These results lead the author to conclude that in dil solutions the double salt is decomp into its constituents (McKay, Elektrochem Zeit 1899, 6 115)

Min Picromerite (van der Heide, B 26 414)  $+4H_2O$ 

2MgSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub> Min Langbeinite Deliquescent Absorbs 56 26% H<sub>2</sub>O from air to form K<sub>2</sub>SO<sub>4</sub>, MgSO<sub>4</sub>+6H<sub>2</sub>O (Mallet, Chem Soc 1900, **77** 220)

4MgSO<sub>4</sub>,  $K_2SO_4+5H_2O$  (van't Hoff and Kassatkin, B A B **1889** 951)

Magnesium potassium zinc sulphate, MgSO4, 2K2SO4, ZnSO4+12H2O Sol in H<sub>2</sub>O (Vohl, A 94 57)

Magnesium potassium sulphate chloride,  $MgS()_4$ ,  $K_2S()_4$ ,  $MgCl_2+6H_2O$ Min Kainile

MgSO<sub>4</sub>, Magnesium rubidium sulphate,  $Rh_2SO_4+6H_2O$ 

Sol in H<sub>2</sub>O (1 utton, Chem Soc 63 337) 1 | II2() dissolves 202 g anhydrous salt 1t 25° (I ockc, Am Ch J 1902, **27** 459) 2MgSO<sub>4</sub>, Rb SO<sub>4</sub> Deliquescent (Mallet, Chem Soc 1900, 77 223)

Magnesium sodium sulphate, MgSO4, Na<sub>2</sub>SO<sub>4</sub> +4H<sub>2</sub>O

Min Blolite, Simonyite Blodite is efflorescent, Simonyite, deli quescent

Min I owite +5H<sub>2</sub>() Sol in 3 pts Decomp on air +6H<sub>2</sub>Ocold H<sub>2</sub>O (van't Vanthoffite Mın

 $Na_6Mg(SO_4)_4$ Hoff, B A B 1902 414) MgNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+4H<sub>2</sub>O Mm Astrakanıte

Sp gr of aqueous solution at 15° contain- 100 mols H<sub>2</sub>O hold mols salt in solution at t°

| t°   | MgSO <sub>4</sub> | Na <sub>2</sub> SO <sub>4</sub> |
|------|-------------------|---------------------------------|
| 22   | 4 70              | 2 95                            |
| 24 5 | 3 68              | 3 45                            |
| 30   | 3 60              | 3 60                            |
| 35   | 3 69              | 3 69                            |
| 47   | 3 60              | 3 60                            |

(Roozeboom, R t c 1887, 6 333)

Solubility of mixtures of MgNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+ 4H<sub>2</sub>O and Na<sub>2</sub>SO<sub>4</sub> at t°

|                                | g per 100 g H O                      |                                      |  |
|--------------------------------|--------------------------------------|--------------------------------------|--|
| t                              | Na_SO <sub>4</sub>                   | MgSO <sub>4</sub>                    |  |
| 18 5<br>22<br>24 5<br>30<br>35 | 43 0<br>35 2<br>32 5<br>25 9<br>23 5 | 45 5<br>48 9<br>50 3<br>55 0<br>59 4 |  |

(Roozeboom, Z phys Ch 1888, 2 518) See also under MgSO<sub>4</sub>

Magnesium thallous sulphate, MgSO4, Tl2SO4  $+6H_2O$ 

Sol in H2O, but decomp by repeated recrystallisations (Werther)

Magnesium uranyl sulphate,  $MgSO_4$ ,  $(UO_2)SO_4+5HO_2$ 

(de Coninck, Chem Soc 1905, 88 (2) 530)

Magnesium zinc sulphate, MgSO<sub>4</sub>, ZnSO<sub>4</sub>+ 14H<sub>2</sub>O

(Pierre, A ch (3) 16 244) Sol in HO (Pierre)  $+10\mathrm{H}_2\mathrm{O}$ 

 $3ZnSO_4$ ,  $5MgSO_4 + 56H_2O$  (Schiff) There are only two compounds, 2(MgSO<sub>4</sub>, 7H<sub>2</sub>O), ZnSO<sub>4</sub>, 7H<sub>2</sub>O and MgSO<sub>4</sub>, 7H O, ZnSO<sub>4</sub> 7H<sub>2</sub>O (Hollmann, Z phys Ch 1901, **37** 212, and 1902, **40** 577

Magnesium sulphate potassium chloride, MgSO<sub>4</sub>, KCl+3H<sub>2</sub>O or MgSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub>,  $MgCl_2+6H_2O$ 

Min Kainite

100 pts H<sub>2</sub>O dissolve 79 56 pts at 18° (Krause, Arch Pharm (3) 6 326)

Not sol in a mixture of abs alcohol and

ether, which dissolves out MgCl<sub>2</sub> (Lehmann, J B 1867 416) Alcohol dissolves out MgCl2, also little Much H<sub>2</sub>O dissolves completely  $H_{\bullet}O$ (Zincken, Miner Jahrb 1865 310)

Magnesium sulphate potassium chromate,  $2MgSO_4$ ,  $K_2CrO_4+9H_2O$ 

Sol in H<sub>2</sub>O (Étard, C R 85 443)

Manganous sulphate, basic, 3MnO, 2SO<sub>3</sub>+  $3H_{2}O$ 

Insol in H2O, but slowly decomp thereby (Gorgeu, C R 94 1425)

## Manganous sulphate, MnSO<sub>4</sub>

**Anhydrous** 

Absorbs H O from the air to form MnSO4+4H2O 1 pt MnSO4 is sol in pts H2O at to

| t°   | Pts<br>H O | t°    | Pts<br>H <sub>2</sub> O | t°     | Pts<br>H <sub>2</sub> O |
|------|------------|-------|-------------------------|--------|-------------------------|
| 6 25 | 1 77       | 18 75 | 1 667                   | 75     | 1 494                   |
| 10   | 1 631      | 37 5  | 1 457                   | 101 25 | 2 031                   |

Or

100 pts H2O dissolve pts MnSO4 at t

| t°   | Pts<br>MnSO <sub>4</sub> | t°    | Pts<br>MnSO <sub>4</sub> | to     | Pts<br>MnSO <sub>4</sub> |
|------|--------------------------|-------|--------------------------|--------|--------------------------|
| 6 25 | 56 49                    | 18 75 | 60 00                    | 75     | 66 95                    |
| 10   | 61 29                    | 37 5  | 68 63                    | 101 25 | 49 33                    |

(Brandes Pogg 20 575)

Sol in 2.5 pts  $\rm H_2O$  at 18.75° at 62.5° it is difficult to dissolve 1 pt  $\rm MnSO_4$  in 3 pts  $\rm H_2O$  but the sat solution at 62.5° does not become cloudy on heating to  $100^\circ$  (Jahn)

100 pts MnSO<sub>4</sub>+Aq sat at 11-14° contain 37 5 pts MnSO<sub>4</sub> (v Hauer, J pr **103** 114) Sat MnSO<sub>4</sub>+Aq contains at

-8° —5° +5° 18° 22° 30 0 31 0 34 1 38 3 38 2% MnSO<sub>4</sub>,

32° 45° 52°

39 1 41 7 44 2 36 4 41 1% MnSO<sub>4</sub>, 115° 123° 130° 140°

36 3 18 4 21 5 16 7 13 6 9 4% MnSO<sub>4</sub> (Étard, A ch 1894, (7) 2 553)

Solubility in H<sub>2</sub>O increases from 0-55°, and decreases from 55-145° The increasing solubility is that of MnSO<sub>4</sub>+5H<sub>2</sub>O, and MnSO<sub>4</sub>+ 2H<sub>2</sub>O separates out at 35°, and is completely ınsol at 145° (Étard)

If solubility S = pts anhydrous  $MnSO_4$  in 100 pts solution, S=30 0+0 2828t from -8° to  $57^{\circ}$ , S = 480 - 0.4585t from  $57^{\circ}$  to  $150^{\circ}$ 

Practically insol in H2O at 180° (Étard,

C R 106 208)

Solubility varies according to the hydrate used Above results of Etard show the solubility of MnSO<sub>4</sub>+7H<sub>2</sub>O at 0°, and MnSO<sub>4</sub>+3H<sub>2</sub>O at 57° Anhydrous MnSO<sub>4</sub> is stable only above 117° (Linebarger)

100 pts H<sub>2</sub>O dissolve pts anhydrous MnSO<sub>4</sub> at to

| t°  | Pts<br>MnSO <sub>4</sub> | t°  | Pts<br>MnSO <sub>4</sub> | t°  | Pts<br>MnSO <sub>4</sub> |
|-----|--------------------------|-----|--------------------------|-----|--------------------------|
| 120 | 67 18                    | 141 | 41 18                    | 155 | 26 49                    |
| 132 | 63 16                    | 146 | 38 83                    | 170 | 16 15                    |

(Linebarger, Am Ch J 15 225) +H<sub>2</sub>O Stable only between 57° and 117° | +4H<sub>2</sub>O (Jahn)

100 pts H<sub>2</sub>O dissolve pts MnSO<sub>4</sub> from MnSO<sub>4</sub>+H<sub>2</sub>O at t°

| t°                   | Pts<br>MnSO <sub>4</sub>         | t°                     | Pts<br>MnSO <sub>4</sub>         | to         | Pts<br>MnSO <sub>4</sub> |
|----------------------|----------------------------------|------------------------|----------------------------------|------------|--------------------------|
| 48<br>53<br>65<br>72 | 87 98<br>86 10<br>84 33<br>82 73 | 78<br>90<br>100<br>106 | 79 13<br>75 63<br>71 27<br>70 14 | 115<br>117 | 69 78<br>68 81           |

(Linebarger)

Min Szmikite

Solubility of MnSO4+H2O in H2O at to

| t                    | Pts MnSO <sub>4</sub><br>per 100 pts<br>H <sub>2</sub> O | t°                       | Pts MnSO <sub>4</sub><br>per 100 pts<br>H <sub>2</sub> O |
|----------------------|----------------------------------------------------------|--------------------------|----------------------------------------------------------|
| 41 5<br>50 1<br>67 1 | 61 06<br>58 01<br>51 37                                  | 75<br>84 8<br>95<br>99 6 | 49 45<br>44 87<br>38 71<br>34 27                         |

Av of varying results (Cottrell, J phys Ch 1900, 4 652)

Linebarger's determinations are inaccurate (Cottrell)

+2H<sub>2</sub>O Stable between 40° and 57°

100 pts H<sub>2</sub>O dissolve pts MnSO<sub>4</sub> from MnSO<sub>4</sub>+2H O at t°

| t° | Pts<br>MnSO <sub>4</sub> | t° | Pts<br>MnSO <sub>4</sub> | t° | Pts<br>MnSO <sub>4</sub> |
|----|--------------------------|----|--------------------------|----|--------------------------|
| 35 | 68 88                    | 42 | 77 63                    | 50 | 83 16                    |
| 40 | 75 31                    | 45 | 80 07                    | 55 | 86 27                    |

(Linebarger)

+3H<sub>2</sub>O Stable between 30° and 40°

100 pts H<sub>2</sub>O dissolve pts MnSO<sub>4</sub> from MnSO<sub>4</sub>+3H<sub>2</sub>O at t°

| t  | , | Pts<br>MnSO <sub>4</sub>         | t°                   | Pts<br>MnSO <sub>4</sub>         | t°             | Pts<br>MnSO <sub>4</sub> |
|----|---|----------------------------------|----------------------|----------------------------------|----------------|--------------------------|
| 1: | 6 | 54 68<br>60 56<br>63 41<br>65 12 | 25<br>30<br>35<br>40 | 66 85<br>67 38<br>68 31<br>70 63 | 68<br>53<br>57 | 71 89<br>72 81<br>73 17  |

(Linebarger)

+4H<sub>2</sub>O Sl efflorescent Less sol in boiling than in cold H<sub>2</sub>O 100 pts H<sub>2</sub>O at 4 4° dissolve 31 pts MnSO<sub>4</sub>

100 pts H<sub>2</sub>O at to dissolve pts MnSO<sub>4</sub>+4H<sub>2</sub>O

| t°    | Pts<br>MnSO <sub>4</sub> +<br>4H <sub>2</sub> O | t°     | Pts<br>MnSO <sub>4</sub> +<br>4H O |
|-------|-------------------------------------------------|--------|------------------------------------|
| 6 25  | 113 22                                          | 37 5   | 149                                |
| 10    | 123                                             | 75     | 144                                |
| 18 75 | 122                                             | 101 25 | 93                                 |

(Brandes Pogg 20 575)

Solubility of MnSO<sub>4</sub> in 100 pts H<sub>2</sub>O at t° using MnSO<sub>4</sub>+4H<sub>2</sub>O

| t°                                                                                                                                                                                                                                                         | Pts<br>MnSO <sub>4</sub>                                                                                                                                                                          | t°                                                                                                                                                                               | Pts<br>MnSO <sub>4</sub>                                                                                                            | t°                                                                                                   | Pts<br>MnSO <sub>4</sub>                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31 | 55 4<br>55 9<br>56 5<br>57 1<br>57 2<br>58 8<br>59 4<br>60 0 5<br>61 1<br>61 7<br>62 2<br>63 8<br>64 8<br>65 8<br>66 3<br>66 7<br>67 6<br>68 1<br>68 5<br>69 7<br>70 0<br>70 70 7<br>71 3<br>71 6 | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>60<br>67<br>68<br>69 | 71 9 72 2 72 4 72 7 72 9 73 1 73 3 73 5 73 7 74 0 74 2 74 4 6 74 7 74 8 74 9 75 1 75 3 74 7 75 3 74 7 76 9 65 9 61 5 61 5 61 5 61 5 | 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 5 | 61 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |

(Mulder, Scheik Verhandel **1864** 137 100 pts H<sub>2</sub>O dissolve pts MnSO<sub>4</sub> from MnSO<sub>4</sub>+4H<sub>2</sub>O at t°

| t                            | Pts<br>MnSO <sub>4</sub>                  | t                               | Pts<br>MnSO <sub>4</sub>                  | t°             | Pts<br>MnSO <sub>4</sub> |
|------------------------------|-------------------------------------------|---------------------------------|-------------------------------------------|----------------|--------------------------|
| 2 2<br>7 3<br>11<br>15<br>20 | 57 88<br>61 78<br>64 01<br>67 12<br>69 93 | 25<br>30<br>35<br>5<br>40<br>45 | 72 23<br>74 67<br>78 81<br>79 63<br>83 06 | 48<br>52<br>56 | 84 33<br>86 16<br>88 19  |

(Linebarger)

Stable in aqueous solution between 25° and 31° (Schieber, M 1898, 19 281)

Solubility of MnSO<sub>4</sub>+4H<sub>2</sub>O in H<sub>2</sub>O at t°

| to                                           | Pts MnSO <sub>4</sub><br>per 100 pts<br>H <sub>2</sub> O | t°                                   | Pts MnSO <sub>4</sub><br>per 100 pts<br>H <sub>2</sub> O |
|----------------------------------------------|----------------------------------------------------------|--------------------------------------|----------------------------------------------------------|
| 16 0<br>17 7<br>18 5<br>25 0<br>30 0<br>32 2 | 63 97<br>64 16<br>64 19<br>65 32<br>66 43<br>66 83       | 35 0<br>35 5<br>39 9<br>49 9<br>50 0 | 67 87<br>68 09<br>68 81<br>72 48<br>72 62                |

(Cottrell, J phys Ch 1900, 4 651)

Linebarger's determinations are inaccurate (Cottrell)

## Solubility in H<sub>2</sub>O at t°

| t°    | g MnSO4 for 100 g H2O |
|-------|-----------------------|
| 30 15 | 66 38                 |
| 35    | 68 22                 |

(Richards and Fraprie, Am Ch J 1901, 26

 $+5H_2O$  Sol in 1 pt  $H_2O$  at  $1875^{\circ}$  (Jahn, A **28** 110 ) Stable from 8° to 18°

100 pts  $H_2O$  dissolve pts  $MnSO_4$  from  $MnSO_4+5H_2O$  at  $t^\circ$ 

| t°                             | Pts<br>MnSO <sub>4</sub>                           | t°                               | Pts<br>MnSO <sub>4</sub>                           | t°                                    | t°<br>MnSO4                                        |
|--------------------------------|----------------------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------------------------|
| 0<br>2 5<br>4<br>7<br>10<br>15 | 58 05<br>62 41<br>64 22<br>66 83<br>68 05<br>72 33 | 20<br>25<br>30<br>32<br>34<br>37 | 75 16<br>78 63<br>79 16<br>80 38<br>82 04<br>83 91 | 40<br>42<br>45<br>47<br>7<br>53<br>54 | 84 63<br>85 27<br>86 16<br>86 95<br>88 89<br>99 08 |

(Linebarger)

Stable in ageous solution between  $15^{\circ}$  and  $20^{\circ}$  (Schieber, M 1898, **19** 281)

Solubility of MnSO<sub>4</sub>+5H<sub>2</sub>O at t°

| t°                         | Pts MnSO <sub>4</sub><br>per 100 pts<br>H <sub>2</sub> O | t                               | Pts MnS() <sub>4</sub><br>per 100 pts<br>H <sub>2</sub> () |
|----------------------------|----------------------------------------------------------|---------------------------------|------------------------------------------------------------|
| 5<br>9<br>12<br>12 3<br>15 | 58 06<br>59 23<br>60 19<br>60 16<br>61 08                | 16<br>25<br>30<br>31<br>35<br>5 | 61 59<br>64 78<br>67 76<br>67 92<br>71 61                  |

(Cottrell, J phys Ch 1900, 4 651)

Linebarger's determinations are inaccurate (Cottrell )  $\,$ 

Solubility in  $\rm H_2O$  at  $25^{\circ}=65.09$  g MnSO<sub>4</sub> for 100 g  $\rm H_2O$  (Richards and Fraprie, Am Ch J 1901, **26** 77)

+6H<sub>2</sub>O Stable from -5° to +8° 100 pts H<sub>2</sub>O dissolve pts MnSO<sub>4</sub> from MnSO<sub>4</sub>+6H<sub>2</sub>O at t°

| tô | Pts<br>MnSO <sub>4</sub> | t° | Pts<br>MnSO <sub>4</sub> | t° | Pts<br>MnSO <sub>4</sub> |
|----|--------------------------|----|--------------------------|----|--------------------------|
| -4 | 55 87                    | 9  | 70 88                    | 30 | 76 24                    |
| 0  | 64 21                    | 15 | 72 45                    | 34 | 77 02                    |
| 3  | 66 87                    | 20 | 74 35                    | 35 | 77 23                    |
| 5  | 67 49                    | 25 | 75 38                    | 38 | 7 481                    |

(Linebarger)

 $+7H_2O$  Efflorescent Sol in less than 0.5 pt  $H_2O$  at 18.75° (Jahn) Stable between  $-10^{\circ}$  and  $-5^{\circ}$ 

100 pts H<sub>2</sub>O dissolve pts MnSO<sub>4</sub> from MnSO<sub>4</sub>+7H<sub>2</sub>O at t°

| t°            | Pts<br>MnSO <sub>4</sub> | t°          | Pts<br>MnSO <sub>4</sub> | t°       | Pts<br>MnSO <sub>4</sub> |
|---------------|--------------------------|-------------|--------------------------|----------|--------------------------|
| 10<br>8<br>-5 | 50 11<br>50 93<br>51 53  | 0<br>5<br>7 | 53 61<br>54 83<br>56 62  | 10<br>15 | 59 91<br>64 34           |

(Linebarger)

Stable in aqueous solution below  $0^{\circ}$  (Schieber, M 1898, 19 281)

Solubility of MnSO<sub>4</sub>+7H<sub>2</sub>O in H<sub>2</sub>O at t°

| t°  | Pts MnSO <sub>4</sub><br>per 100 pts<br>H <sub>2</sub> O | t°   | Pts MnSO <sub>4</sub><br>per 100 pts<br>H <sub>2</sub> O |
|-----|----------------------------------------------------------|------|----------------------------------------------------------|
| -10 | 47 96                                                    | 9    | 59 33                                                    |
| 0   | 56 23                                                    | 12   | 61 78                                                    |
| 5   | 56 38                                                    | 14 3 | 63 93                                                    |

(Cottrell, l c)

M -pt of MnSO  $_4+7H_2\mathrm{O}$  is 54° (Tilden, Chem Soc 45~409 )

Sp gr of MnSO<sub>4</sub>+Aq at 15°

| % MnSO <sub>4</sub><br>+4H <sub>2</sub> O                                                                                                             | Sp gr                                                                                                                                                                                                                                       | % MnSO <sub>4</sub><br>+4H <sub>2</sub> O                                                                                                                      | Sp gr                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 1 006<br>1 013<br>1 020<br>1 025<br>1 0320<br>1 038<br>1 044<br>1 050<br>1 056<br>1 0650<br>1 072<br>1 079<br>1 085<br>1 1001<br>1 106<br>1 114<br>1 121<br>1 129<br>1 1363<br>1 144<br>1 150<br>1 160<br>1 166<br>1 1751<br>1 183<br>1 190 | 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55 | 1 208<br>1 2150<br>1 224<br>1 231<br>1 244<br>1 250<br>1 2579<br>1 268<br>1 276<br>1 285<br>1 295<br>1 3038<br>1 313<br>1 322<br>1 331<br>1 340<br>1 3495<br>1 360<br>1 370<br>1 389<br>1 3986<br>1 410<br>1 420<br>1 430<br>1 440<br>1 4514 |
| 28                                                                                                                                                    | 1 200                                                                                                                                                                                                                                       |                                                                                                                                                                |                                                                                                                                                                                                                                              |

(Gerlach, Z anal 8 288)

Sp gr of MnSO<sub>4</sub>+Aq at 23° a=no of  $\frac{1}{2}$ 0 mols in grms dissolved in 1000 g H<sub>2</sub>O, b=sp gr if a is MnSO<sub>4</sub>+5H<sub>2</sub>O,  $\frac{1}{2}$ 2 mol wt =1205, c=sp gr if a is MnSO<sub>4</sub>,  $\frac{1}{2}$ 4 mol wt =755

| а                     | b                                         | е                                         | а                      | b                                         | С              |
|-----------------------|-------------------------------------------|-------------------------------------------|------------------------|-------------------------------------------|----------------|
| 1<br>2<br>3<br>4<br>5 | 1 068<br>1 128<br>1 181<br>1 227<br>1 269 | 1 071<br>1 139<br>1 202<br>1 262<br>1 320 | 6<br>7<br>8<br>9<br>10 | 1 306<br>1 341<br>1 371<br>1 399<br>1 426 | 3 576<br>1 429 |

(Favre and Valson, C R 79 968)

Above table recalculated by Gerlich (Z anal 28 475)

| % MnSO <sub>4</sub><br>+5H <sub>2</sub> O | Sp gr                      | % Mn5()4<br>+ h4() | Sp 4r            |
|-------------------------------------------|----------------------------|--------------------|------------------|
| 10<br>20<br>30                            | 1 0630<br>1 1325<br>1 2070 | 40<br>50           | 1 2900<br>1 3800 |

Sp gr of  $MnSO_4+Aq$  at 15° a=%, b=sp gr if a is MnSO4, c=sp gr if a is  $MnSO_4+4H_2O$ , d=sp gr if a is  $MnSO_4$  $+5H_2O$ , e=sp gr if a is MnSO<sub>4</sub>+  $7H_2O$ 

| a                                                       | b                                                        | С                                                                                      | d                                                                                                | e                                                                                                          |
|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50 | 1 0500<br>1 1035<br>1 1605<br>1 2215<br>1 2870<br>1 3575 | 1 0340<br>1 0690<br>1 1055<br>1 1435<br>1 1835<br>1 2255<br>1 2695<br>1 3155<br>1 3640 | 1 0310<br>1 0630<br>1 0965<br>1 1315<br>1 1685<br>1 2070<br>1 2470<br>1 2885<br>1 3315<br>1 3760 | 1 0270<br>1 0545<br>1 0830<br>1 1130<br>1 1440<br>1 1765<br>1 2105<br>1 2455<br>1 2815<br>1 3185<br>1 3565 |

(Gerlach, Z anal 28 475)

Sp gr of MnSO<sub>4</sub>+Aq at 0° S=pts MnSO<sub>4</sub> in 100 pts solution

| s       | Sp gr  | s      | Sp gr  |
|---------|--------|--------|--------|
| 16 7450 | 1 1834 | 8 8295 | 1 0928 |
| 14 0462 | 1 1519 | 6 0172 | 1 0622 |
| 11 5804 | 1 1239 | 3 0865 | 1 0315 |

(Charpy, A ch (6) 29 26)

Sp gr of MnSO<sub>4</sub>+Aq at room temp containing

11 45 18 8 22 08 % MnSO<sub>4</sub> 1 1469 1 2513 1 3082 (Wagner, W Ann 1883, 18 271)

Sp gr of MnSO<sub>4</sub>+Aq at 25°

| Concentration of WnSO <sub>1</sub><br>+ Aq | Sp gr                                          |
|--------------------------------------------|------------------------------------------------|
| 1—normal  1/2— "  1/4— "  1/8— "  1/16— "  | 1 0728<br>1 0365<br>1 0179<br>1 0087<br>1 0041 |

(Wagner, Z phys Ch 1890, 5 39)

Sp gr it 16/4° of MnSO<sub>4</sub>+Aq contunmg 30.819% MnSO<sub>4</sub>=1.36267 (Schonrock, Z phys. Ch. 1893, **11**, 781.)

Sat MnSO4+Aq boils at 1024°, crust forms at 1016, and solution contains 487 pts MnSO<sub>4</sub> to 100 pts H O

B-pt of MnSO<sub>4</sub>+Aq contuming pts MnSO<sub>4</sub> to 100 pts H<sub>2</sub>O

| 100 5°<br>101 0<br>101 5 | 17 1<br>32 1<br>46 2 | 102 0°<br>102 4 | 58 9<br>68 4 |
|--------------------------|----------------------|-----------------|--------------|

(Gerlach, Z anal **26** 434)

Sol in about 20 pts boiling H<sub>2</sub>SO<sub>4</sub>, and more sol in boiling H2SO4+Aq of 16 sp gr (Schultz, Pogg 133 137)

Completely pptd from solution by HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>

For solubility in  $(NH_4)_2SO_4$ , see under  $(NH_4)_2SO_4$ 

MnSO<sub>4</sub>+Aq sat at 10°, then sat with K<sub>2</sub>SO<sub>4</sub> at same temp contains for 100 pts  $H_2O$  16 7 pts MnSO<sub>4</sub> and 44 3 pts  $K_2SO_4$ (Mulder)

Solubility of MnSO<sub>4</sub>+Na<sub>2</sub>SO<sub>4</sub> in H<sub>2</sub>O at 35°

| g per 100 g sat solution                                      |  |  |  |
|---------------------------------------------------------------|--|--|--|
| MnSO <sub>4</sub> Na <sub>2</sub> SO <sub>4</sub> Solid phase |  |  |  |
| 39 45 0                                                       |  |  |  |

(Schreinemakers and Provije, Proc Ak Wet Amsterdam, 1913, 15 326)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828)

Anhydrous MnSO<sub>4</sub> in insol in absolute

1000 pts alcohol of 0.872 sp. gr. dissolve 6 3 pts MnSO<sub>4</sub>

Sol in 50 pts of 50% alcohol Insol in absolute alcohol (Brandes, Pogg 20 556)

100 pts solution siturited it 15° in dil alcohol contuning

60 % alcohol, contain 50 56 25 51 4 2 0 0 66 pts MnSO<sub>4</sub>+5H<sub>2</sub>O

(Schiff, A 118 365)

When MnSO<sub>4</sub>+7II () is boiled with ibsolute alcohol none is dissolved but MnSO<sub>4</sub> +3H2O is formed

When  $MnSO_4+7H_2O$  is dissolved in 15–50% alcohol, the liquid separates into two layers, the lower containing less (12-14%) alcohol and more (47-49%) salt, the upper containing more (50-55%) alcohol and less (13-22%) salt If the alcohol has the above strength (15-50%) the separation takes place at ordinary temp, but with 13-14% or 60% or more alcohol, warming is necessary to effect the separation (Schiff, A 118 363)

Solubility of  $MnSO_4+H_2O$  in alcohol+Aq at t°

Composition of two layers sat with the solid salt at  $t^{\circ}$ 

| t°                                     | Alcohol layer                                               |                                                      | Water layer                                              |                                                             |
|----------------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|
| ·                                      | % alcohol                                                   | % MnSO                                               | % alcohol                                                | % MnSO4                                                     |
| 30<br>31<br>35<br>37<br>41<br>42<br>43 | 45 20<br>43 90<br>41 71<br>38 26<br>34 01<br>32 37<br>31 42 | 2 49<br>2 74<br>3 44<br>4 84<br>5 86<br>6 89<br>8 51 | 8 69<br>8 47<br>9 24<br>11 03<br>11 93<br>13 57<br>14 33 | 30 15<br>30 10<br>28 61<br>26 47<br>24 97<br>23 09<br>22 01 |

(Schreinemakers and Deuss, Z phys Ch 1912, 79 559)

# Composition of alcohol solutions sat with $MnSO_4+H_2O$ at t°

| t  | % H <sub>2</sub> O | % alcohol | % MnSO4 |
|----|--------------------|-----------|---------|
| 50 | 63 74              | 0         | 36 26   |
|    | 65 21              | 6 67      | 28 12   |
|    | 65 23              | 16 02     | 18 75   |
|    | 64 83              | 22 63     | 12 54   |
|    | 59 41              | 36 47     | 4 12    |
| 35 | 61 4               | 0         | 38 6    |
|    | 62 13              | 5 50      | 32 37   |
|    | 62 06              | 6 46      | 31 48   |
|    | 62 01              | 7 48      | 30 51   |
|    | *62 15             | 9 24      | 28 61   |
|    | *54 85             | 41 71     | 3 44    |
|    | 50 69              | 47 73     | 1 58    |
|    | 50 16              | 48 27     | 1 57    |
| 30 | 61 4               | 0         | 38 6    |
|    | 61 43              | 2 26      | 36 31   |
|    | 61 25              | 5 09      | 33 66   |
|    | 60 78              | 5 96      | *33 26  |
|    | *61 16             | 8 69      | 30 15   |
|    | *52 31             | 45 20     | 2 49    |
|    | 44 83              | 54 19     | 0 98    |
|    | 30 95              | 68 97     | 0 08    |
|    | 9 19               | 90 80     | 0 01    |

\*The solutions also sat with respect to one another

(Schreinemakers and Deuss)

Composition of the solutions sat with respect to one another

| respect to one another |           |         |               |         |
|------------------------|-----------|---------|---------------|---------|
| to                     | water     | layer   | alcohol layer |         |
| U                      | % alcohol | % MnSO4 | % alcohol     | % MnSO4 |
| 50                     | †5 68     | 34 95   | †53 64        | 0 97    |
|                        | †7 69     | 30 99   | †45 83        | 2 19    |
|                        | †8 70     | 29 20   | †41 93        | 3 11    |
|                        | †11 85    | 24 84   | †35 15        | 5 95    |
| 35                     | †8 38     | 29 52   | †42 38        | 3 07    |
|                        | *9 24     | 28 61   | *41 71        | 3 44    |
|                        | 10 75     | 26 33   | 36 89         | 5 19    |
|                        | 15 09     | 21 85   | 30 06         | 9 03    |
| 30                     | †7 60     | 32 40   | †50 97        | 1 74    |
|                        | *8 69     | 30 15   | *45 20        | 2 49    |
|                        | 10 46     | 27 58   | 40 71         | 3 93    |
|                        | 11 86     | 25 75   | 37 54         | 5 20    |
|                        | 16 18     | 20 86   | 29 89         | 9 64    |

(Schreinemakers and Deuss)

†Metastable solutions

\*Solutions also sat with respect to MnSO<sub>4</sub>, H<sub>2</sub>O

Solubility of  $MnSO_4+4H_2O$  in alcohol+Aq

| g H <sub>2</sub> O | g alcohol | MnSO <sub>4</sub> 4H <sub>2</sub> O |
|--------------------|-----------|-------------------------------------|
| 55 86              | 30 03     | 14 11                               |
| 52 25              | 43 59     | 4 16                                |
| 49 41              | 47 66     | 2 94                                |
| 45 34              | 53 00     | 1 66                                |
| 42 56              | 56 24     | 1 20                                |

(Linebarger, Am Ch J 1892, 14 380)

Solubility of MnSO<sub>4</sub>+5H<sub>2</sub>O in alcohol+Aq Composition of the solution sat with MnSO<sub>4</sub>+5H<sub>2</sub>O

|                              | alcohol layer                             |                                      | water                                 | layer                                     |
|------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------------|
| t°                           | %<br>alcohol                              | MnSO4                                | %<br>alcohol                          | %<br>MnSO₄                                |
| 10<br>15<br>17 6<br>21<br>25 | 37 06<br>44 56<br>47 11<br>53 55<br>53 09 | 5 44<br>2 79<br>2 22<br>1 10<br>1 23 | 13 78<br>9 25<br>8 53<br>6 10<br>6 81 | 25 25<br>29 79<br>30 88<br>35 05<br>33 72 |

Composition of solution sat with solid substance at 25°

| % H <sub>2</sub> O                         | % alcohol                            | % MnSO4                              | Solid phase                                                                           |
|--------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|
| 60 7<br>*59 47<br>*45 68<br>42 05<br>23 30 | 0<br>6 81<br>53 09<br>57 39<br>76 70 | 39 3<br>33 72<br>1 23<br>0 56<br>0 0 | MnSO <sub>4</sub> +5H <sub>2</sub> O<br>"<br>"<br>MnSO <sub>4</sub> +H <sub>2</sub> O |

\*The two liquids are sat with respect to one another

respect to one another at 25°

| Water layer            |                          | Alcohol layer            |                      |
|------------------------|--------------------------|--------------------------|----------------------|
| % alcohol              | % MnSO4                  | % alcohol                | % MnSO4              |
| *6 81<br>8 48<br>15 02 | *33 72<br>31 51<br>22 61 | *53 09<br>49 76<br>32 75 | 1 23<br>1 83<br>8 01 |

\*Also sat with MnSO<sub>4</sub>, 5H<sub>2</sub>O (Schreinemakers and Deuss)

Insol in absolute ether between 5° and 7° and no crystal H2O is removed thereby Insol in boiling oil of turpentine, but 1 mol crystal H<sub>2</sub>O is removed from MnSO<sub>4</sub>+4H<sub>2</sub>O (Brandes, Pogg 20 568)

Insol in benzonitrile (Naumann, B 1914, 1370), ethyl acetate Naumann, B 1910, 43 314), acetone (Naumann, B 1904, 37 4329, Eldmann, CC 1899, II 1014)

100 g sat solution in glycol contain 05 g MnŠO4 (de Coninck, Bull Ac roy Belg **1905** 359)

 $MnSO_4+7H_2O$  occurs as the min Mallardute

Manganomanganic sulphate, MnO, MnO<sub>2</sub>,  $4SO_3 + 9H_2O$ 

Decomp by H<sub>2</sub>O Deliquescent Sol in little dil H<sub>2</sub>SO<sub>4</sub>+Aq (Fremy, C R 82 **4**75)

### Manganic sulphate, $Mn_2(SO_4)_3$

Extremely deliquescent Sol in H2O with evolution of heat, and decomposition into a Behaves similarly with basic sulphate dilute acids Sol in traces in cold conc H<sub>2</sub>SO<sub>4</sub> Insol in cold cone HNO<sub>3</sub>+Aq Sol in cone HCl+Aq Decomp by absolute alcohol (Carius, A 98 53)

## Manganyl sulphate, MnO<sub>2</sub>, SO<sub>3</sub>

Sol in H<sub>2</sub>SO<sub>4</sub> but solution decomp if below 40-60° Baume Solubility in 40° Baumé acid = 15% 55°, 4-5% Solution can be heated to 60-90° without decomp (Bad Anılın u Sodafabrık, C C 1905, II 1398)

#### Manganous hydrogen sulphate

MnSO<sub>4</sub> is sol in 20 pts boiling conc H<sub>2</sub>SO<sub>4</sub>, more sol in boiling H<sub>2</sub>SO<sub>4</sub>+Aq of 16 sp gr (Schultz)

MnH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>, and +H<sub>2</sub>O Sol in H<sub>2</sub>O with

de\_omp (Schultz)

MnH<sub>6</sub>(SO<sub>4</sub>)<sub>4</sub> Sol in H<sub>2</sub>O with decomp (Schultz)

## Manganic hydrogen sulphate, $Mn_2H_2(SO_4)_4$ + 8H<sub>2</sub>O

Decomp by  $H_2O$  Sol in 1901, 132 1415) Deliquescent dil  $H_2SO_4+Aq$  (Francke, J pr (2) 36 251) | MnSO<sub>4</sub>, 24CuO+ $xH_2O$ 

Composition of the two solutions sat with Manganous hydrazine sulphate, MnH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>,  $2N_2H_4$ 

> 1 pt is sol in 60 pts H<sub>2</sub>O at 18° Stable in the air at 100° (Curtius, J pr 1894, (2) **50** 331)

Manganous nickel potassium sulphate,

 $\frac{\text{MnSO}_4, \text{ NiSO}_4, 2\text{K}_2\text{SO}_4 + 12\text{H}_2\text{O}}{\text{In H}_2\text{O}}$  (Vohl, A **94** 57) Sol

Manganous potassium sulphate, K<sub>2</sub>SO<sub>4</sub>,  $MnSO_4+2H_2O$ 

+4H<sub>2</sub>O Efflorescent (Pierre, A ch (3) **16** 239)

2MnSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub> (Mallet, C N 1899, **80** 301)

Manganic potassium sulphate,  $K_2Mn_2(SO_4)_4$ +24H<sub>2</sub>O

Decomp by dissolving in H<sub>2</sub>O (Mitscherlich)

Manganomanganic potassium sulphate,  $M_{n_5}(SO_4)_3$ ,  $5K_2SO_4 = 3Mn(SO_4)_2$ , 2MnSO<sub>4</sub>, 5K<sub>2</sub>SO<sub>4</sub>

Decomp by much H<sub>2</sub>O Sol in dil or conc H<sub>2</sub>SO<sub>4</sub> Insol in alcohol or ether (Francke, J pr (2) **36** 166)

Manganous potassium zinc sulphate, MnSO4,  $2K_2SO_4$ ,  $ZnSO_4+12H_2O$ Sol in H<sub>2</sub>O (Vohl)

Manganous rubidium sulphate, MnSO<sub>4</sub>,  $Rb_2SO_4+6H_2O$ 

Sol in H<sub>2</sub>O (Tutton, Chem Soc **63** 337) 1 l  $H_2O$  dissolves 357 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27, 459) +2H<sub>2</sub>O (Wyrouboff, Bull Soc Min 1891, 14 242)

2MnSO<sub>4</sub>, Rb<sub>2</sub>SO<sub>4</sub> (Wyrouboff)

Manganic rubidium sulphate, Mn<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>,  $Rb_2SO_4 + 24H_2O$ 

 $\mathbf{z}$ Deliquescent (Christensen, anorg 1901, **27** 333)

Manganous sodium sulphate, MnSO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>  $+2H_2O$ Deliquescent in moist air (Geiger)  $+4H_2O$ Sol in 12 pts boiling H<sub>2</sub>O

(Geiger) Manganous sulphate ammonia, MnSO<sub>4</sub>, 4NH<sub>3</sub> Decomp by H<sub>2</sub>O (Rose Pogg **20** 148)

Manganous sulphate cupric oxide, MnSO<sub>4</sub>,  $2CuO + 3H_2O$ 

(Mailhe, A ch 1902, (7) **27** 392 ) MnSO<sub>4</sub> 3CuO+xH<sub>2</sub>O (Recoura (Recoura, C R (Recoura)

MnSO<sub>4</sub>, Manganous sulphate hydrazine,  $2N_2H_4$ 

Very unstable

Somewhat sol in NH<sub>4</sub>OH+Aq (Franzen, Z anorg 1908, **60** 285)

Manganous sulphate hydroxylamine, MnSO<sub>4</sub>,  $NH_2OH + 2H_2O$ 

Insol in H<sub>2</sub>O (Feldt, B 1894, **27** 405)

Mercurous sulphate, basic, 2Hg<sub>2</sub>O, SO<sub>3</sub>+  $H_2O$ Sol in 25,000 pts H<sub>2</sub>O at 20° (Gouy, C

Mercurous sulphate, Hg<sub>2</sub>SO<sub>4</sub>

R 1900, **130** 1401)

Sol in 500 pts cold, and 300 pts hot H<sub>2</sub>O (Wackenroder, A 41 319)

Solubility in H<sub>2</sub>O at 18°=78×10 4 g mol per liter (Wilsmore, Z phys Ch 1900, 35 305)

H<sub>2</sub>O dissolves 11 71×10 4 g -mol Hg.SO<sub>4</sub> at 25° (Drucker, Z anorg 1901, 28

Solubility in H<sub>2</sub>O at t°

| ţ0                                  | In 100 pts of the solution                         |                                                    |  |
|-------------------------------------|----------------------------------------------------|----------------------------------------------------|--|
| ·                                   | Hg <sub>2</sub> SO <sub>4</sub>                    | H <sub>2</sub> SO <sub>4</sub>                     |  |
| 16 5<br>33<br>50<br>75<br>91<br>100 | 0 055<br>0 060<br>0 065<br>0 074<br>0 084<br>0 092 | 0 008<br>0 018<br>0 037<br>0 063<br>0 071<br>0 071 |  |
|                                     |                                                    |                                                    |  |

(Barre, A ch 1911, (8) 24 203)

Solubility in  $\rm H_2O$  at 25° is 20% greater than at 18° and =11.71  $\times$  10-4 g mol per l By addition of increasing amts of H<sub>2</sub>SO<sub>4</sub> the solubility is somewhat, but not regularly, decreased, K2SO4 lowers solubility less than

H<sub>2</sub>SO<sub>4</sub> (Drucker, Z anorg 1901, **28** 362) Easily sol in dil HNO<sub>3</sub>+Aq, from which solution it is separated by dil H<sub>2</sub>SO<sub>4</sub>+Aq

(Wackenroder, A 41 319)

Abundantly sol in hot, less sol in cold dil  $H_2SO_4 + Aq$  (Berzelius)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| H SO4 normality | g mol H <sub>62</sub> SO <sub>4</sub> per litre |
|-----------------|-------------------------------------------------|
| 0 0400          | 8 31 × 10 <sup>4</sup>                          |
| 0 1000          | 8 78 × 10 <sup>4</sup>                          |
| 0 2000          | 8 04 × 10 <sup>4</sup>                          |

(Drucker, Z anorg 1901, 28 362)

Partially decomp by hot NH<sub>4</sub> salts+Aq (Miahle, A ch (3) 5 179)

5 times more sol in sat CdSO<sub>4</sub>+Aq than m H<sub>2</sub>O (Hulett, Phys Rev 1907, 25. 16) Sat ZnSO<sub>4</sub> or CdSO<sub>4</sub>+Aq attack much less | comp by all acids (Berzelius)

than pure H<sub>2</sub>O, yet the solubility of Hg<sub>2</sub>SO<sub>4</sub> in these solutions is greater,  $i \in 0.08$  g in 1 l ZnSO<sub>4</sub>+Aq and 1 l g in 1 l CdSO<sub>4</sub>+Aq at 20° (Gouy, C R 1900, **130** 1402) Solubility in 0.2N K<sub>2</sub>SO<sub>4</sub>+Aq =  $9.05 \times 10^{-4}$ g mol per l at 25° (Drucker, Z anorg 1901, **28** 362)

Solubility of  $Hg_2SO_4$  in  $K_2SO_4 + Aq$ 

| t° | gp                                     | er 100 g sat so                                | lution                                         |
|----|----------------------------------------|------------------------------------------------|------------------------------------------------|
| •  | K <sub>2</sub> SO <sub>4</sub>         | Hg <sub>2</sub> SO <sub>4</sub>                | free H <sub>2</sub> SO <sub>4</sub>            |
| 15 | 2 90<br>5 70<br>8 22<br>8 77<br>9 44   | 0 0475<br>0 0703<br>0 0912<br>0 0994<br>0 1080 | 0 0080<br>0 0093<br>0 0098<br>0 0110           |
| 33 | 2 94<br>5 68<br>8 30<br>10 70<br>11 90 | 0 0677<br>0 1015<br>0 1364<br>0 1724<br>0 1902 | 0 0250<br>0 0350<br>0 0441<br>0 0438<br>0 0420 |
| 75 | 3 10<br>5 75<br>8 50<br>13 20<br>17 30 | 0 1344<br>0 2120<br>0 2951<br>0 4610<br>0 6440 | 0 1681<br>0 2135<br>0 2514<br>0 2503<br>0 2225 |

(Barre, A ch 1911, (8) **24** 202)

About 3 times as sol in sat  $ZnSO_4+Aq$  as in distilled HO (Wright, Phil Mag (5) 1885, **19** 29)

Mercuric sulphate, basic, 2HgO, SO₃

(Mailhe, A ch 1902, (7) **27** 394) 3HgO, SO<sub>3</sub> (Mineral turpeth)

Sol in 2000 pts coll and 6 M pts ledling H O (Fourcroy A ch  $10\ 307$ )

Sol in 43,478 pts H<sub>2</sub>O at 16° when pptd cold, and in 32,258 pts at 16° when potd at 100° (Cameron, Z and 19 144)

SI sol in warm dil  $H_2SO_4+Aq$  (Rosc) Solubility in H<sub>2</sub>O is increased by addition of H<sub>2</sub>SO<sub>4</sub> up to an 101d content of 4 3 mol SO<sub>3</sub> to 937 mols HO (Hottsem 1, Z phys Ch 1895, 17 665)

Sol in warm conc HCl or HBi +Aq (Ditte)

Sol in alkalı chlorides+Aq (Mrahle)

Sol in dil HNO<sub>3</sub> or in HCl+Aq More easily sol in the warm ands (Ray, Chem Soc 1897, **71** 1099)

3HgO, 2SO<sub>3</sub>+9H<sub>2</sub>O (Hottsem 1, Z phys Ch 1895, **17** 659)

4HgO, 3SO<sub>3</sub> (Hopkins Sill Am J 18 364)

### Mercuric sulphate, HgSO<sub>4</sub>

Decomp by H<sub>2</sub>O into 3HgO, SO<sub>3</sub>, and a sol acid salt Sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq

Sol in warm cone HCl or HBr+Aq, very sl sol in boiling conc HI+Aq (Ditte, A ch (5) 17 124)

Very sl sol in hot conc HF (Ditte, A ch

1879, (5) **17** 125) Sol in HCN+Aq (Mohr)

Sol with decomp in NaCl+Aq (Miahle) Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829

Insol in cone alcohol

Insol in acetone (Naumann, B 1904, 37 4329), methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, 1910, 43 314

Insol in benzonitrile (Naumann, B 1914, **47** 1370) Insol in pyridine (Schroeder, Dissert

1901)

 $+H_2O$ Decomp by H<sub>2</sub>O (Eisfeldt, Pharm Centr 1853 812)

Mercuromercuric sulphate, Hg<sub>2</sub>O, 2HgO, SO<sub>3</sub> Insol in cold H<sub>2</sub>O, not decomp by boiling Decomp by HCl+Aq (Brooke, Pogg **66** 63)

Hg<sub>2</sub>SO<sub>4</sub>, HgSO<sub>4</sub> (Baskerville, J Am

Chem Soc 1897, 19 875)

Mercuric hydrogen sulphate, HgH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> (Braham, C N 42 163)

Mercuric potassium sulphate, 3HgSO4,  $K_2SO_4+2H_2O$ 

Sol in  $H_2O$  (Hirzel, J B **1850** 332)

Mercuric sulphate chloride ammonium chloride, 2HgSO<sub>4</sub>, HgCl<sub>2</sub>, 2NH<sub>4</sub>Cl

Decomp with H<sub>2</sub>O Ether dissolves out HgCl<sub>2</sub> (Kosmann, A ch (3) **27** 238)

Mercuric sulphate cyanide, HgSO<sub>4</sub>, Hg(CN)<sub>2</sub> +5H<sub>2</sub>O

Decomp by cone or warm acids (Rupp, Arch Pharm 1912, **250** 280)

Mercuric sulphate hydrazine, HgSO<sub>4</sub>, N<sub>2</sub>H<sub>4</sub>  $\mathbf{Ppt}$ (Hofmann and Marburg, A 1899, **305** 216)

Mercuric sulphate hydrobromide, HgSO<sub>4</sub>, 2HBr

Sol in H<sub>2</sub>O without separation of basic sulphate (Ditte, A ch (5) **17** 122) 3HgO, SO<sub>3</sub>, 6HBr Sol in H<sub>2</sub>O (Ditte)

Mercuric sulphate hydrochloride, HgSO4,

Not attacked by HCl Sl sol in HNO<sub>3</sub> (Baskerville, J Am Chem Soc 1901, 23 895)

HgSO<sub>4</sub>, 2HCl Sol in H<sub>2</sub>O without separation of a basic salt Very sol in warm H<sub>2</sub>SO<sub>4</sub>, solidifying on cooling if very conc, or crystallising if dil (Ditte)

Very deliquescent Very sol in H<sub>2</sub>O (Baskerville, J Am Chem Soc 1901, 23 895) (Baskerville, J Am Chem Soc  $+\mathrm{H}_2\mathrm{O}$ 

1901, **23** 895)

3HgO, SO<sub>3</sub>, 6HCl Sol in H<sub>2</sub>O

Mercuric sulphate hydroxylamine, HgSO4. 2NH<sub>2</sub>OH+H<sub>2</sub>O

Decomp by cold H<sub>2</sub>O (Adams, Am Ch J 1902, **28** 209)

Mercuric sulphate iodate iodide, 6(3HgO,  $2SO_3$ ),  $6HgI_2$ ,  $Hg(IO_3)_2$ 

Decomp by H<sub>2</sub>O and acids (Bruckner. M 1907, 28 961)

Mercuric sulphate iodide, basic, 3HgO, 2SO<sub>3</sub>, HgI<sub>2</sub>

3(3HgO, 2SO<sub>3</sub>), 2HgI<sub>2</sub>+10H<sub>2</sub>O 2(3HgO, 2SO<sub>3</sub>), HgI<sub>2</sub>+10H<sub>2</sub>O Very sol

in hot conc HNO<sub>3</sub> 3HgO, 2SO<sub>3</sub>, HgSO4,  $HgI_2+10H_2O$ (Ditte, C R 1905, 140 1167)

Mercuric sulphate iodide,  $HgSO_4$ ,  $HgI_2$ 

Decomp by H<sub>2</sub>O, not by alcohol or ether (Riegel, J B pr Pharm 11 396)

3HgSO<sub>4</sub>, HgI<sub>2</sub> Decomp by cold or hot 2O Sol in H<sub>2</sub>SO<sub>4</sub>+Aq (Ditte, C R  $H_2O$ 1905, **140** 1165)  $4HgSO_4$ ,  $HgI_2+15H_2O$ , and  $+18H_2O$ De-

comp by cold or hot H<sub>2</sub>O Sol in H<sub>2</sub>SO<sub>4</sub> (Ditte)

Mercuric sulphate phosphide See Dimercuriphosphonium mercuric sulphate

Mercuric sulphate sulphide, basic, 2HgO, SO<sub>3</sub>, HgS

Somewhat sol in HCl, H2SO4 and HNO3 (Jacobson, Pogg 1846, **68** 412 4HgO, 3SO<sub>3</sub>, 2HgS+4H<sub>2</sub>O

Sl sol in (Estrup, Z anorg 1909, 62 169)  $H_2SO_4$ 

Mercuric sulphate sulphide, 2HgSO<sub>4</sub>, HgS

Sl sol in hot HCl, H<sub>2</sub>SO<sub>4</sub>, or HNO<sub>3</sub>+Aq Easily sol in hot aqua regin (Jacobson, Pogg 68 410)

2HgSO<sub>4</sub>, HgS (Palm, C C **1863** 122) HgSO<sub>4</sub>, 2HgS (Barfoed, J B **1864** 282) Sol in aqua regia (Deniges, Bull Soc

1915, (4) 17 355) HgSO<sub>4</sub>, 3HgS Insol in H<sub>2</sub>O Lasily sol

in aqua regia, decomp by HNO<sub>3</sub> into— 3HgSO<sub>4</sub>, HgS Insol in all acids except aqua regia (Spring, A 199 116)

# Molybdenum sesquisulphate (?)

Acid Sol in H<sub>2</sub>O (Berzelius)

BasicInsol in H<sub>2</sub>O NeutralDecomp by H<sub>2</sub>O into acid and basic salts

# Molvbdenum disulphate (?)

Sol in H<sub>2</sub>O

### Molybdenum sulphate, Mo<sub>2</sub>O<sub>5</sub>, 2SO<sub>8</sub>

Very slowly sol in cold, more quickly sol in hot H<sub>2</sub>O (Bailhache, C R 1901, **132** 476) 7MoO<sub>3</sub>, 2MoO<sub>2</sub>, 7SO<sub>3</sub>+Aq (Péchard, C R 1901, **132** 630

### Molybdic sulphate, MoO<sub>3</sub>, SO<sub>3</sub>

Deliquescent Sol ın H<sub>2</sub>O (Schultz-Sellack, B 4 14)

MoO<sub>3</sub>, 3SO<sub>3</sub>+2H<sub>2</sub>O Deliquescent Partially sol in H<sub>2</sub>O (Anderson, Berz J B **22** Par-161

Does not exist (Schultz-Sellack)

### Molybdenum sulphate ammonia.

 $5NH_3$ ,  $MoO_2SO_3$ ,  $7MoO_3+8H_2O$  $3NH_3$ ,  $MoO_2SO_3$ ,  $7MoO_3+10H_2O$ 

Both very sol in water but less sol in H<sub>2</sub>O containing ammonium salts (Péchard, C R 1901, **132** 630)

## Neodymium sulphate, basic, Nd<sub>2</sub>O<sub>3</sub>, SO<sub>3</sub>

Insol in H<sub>2</sub>O

Nearly insol in dil acids (Wohler, B 1913, **46** 1730)

Insol in H<sub>2</sub>O (Matignon, C R 1902, **134** 658)

## Neodymum sulphate, Nd<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>+8H<sub>2</sub>O Solubility in 100 pts H<sub>2</sub>O at t°

| t°  | pts Nd2(SO4)3 |
|-----|---------------|
| 0   | 9 50          |
| 16  | 7 05          |
| 30  | 5 04          |
| 50  | 3 72          |
| 80  | 2 70          |
| 100 | 2 21          |

(Muthmann and Rolig, B 1898, 31 1728)

## Neodymium hydrogen sulphate, Nd(SO<sub>4</sub>H)<sub>3</sub> (Brauner, Z anorg 1904, 38 331)

### Neodymium potassium sulphate

Cryst modification more sol in cold than ın hot H<sub>2</sub>O (Boudouard, C R 1898, 126 901)

#### Nickel sulphate, basic

 $Very sl sol in H_2O$ (Berzelius)  $6N_1O$ ,  $5SO_3+4H_2O$ (Athanasesco, C R **103** 271)

7N<sub>1</sub>O, 7H<sub>2</sub>O, SO<sub>3</sub>+3H<sub>2</sub>O Nearly insol H<sub>2</sub>O (Habermann, M **5** 432) 5NiO, SO<sub>3</sub>, 5NiO, 2SO<sub>3</sub>, and 5NiO,  $m H_2O$  $3SO_3$ (Pickering, Chem Soc 1907, 91 1985)

6NiO SO<sub>3</sub> (Stromholm C'C 1906, 1 1222)

Nickel sulphate, NiSO4

100 pts H2O dissolve pts N1SO4 at to 160 20°

30 4 39 7 41 45 3 pts N1SO4 37 4

410 53° 60° 700 50° 61 9 pts N1SO4 49 1 52 54 4 57 2 (Tobler A 95 193)

100 pts of sat solution contain at 11 14° 28 84 at 18 20° 30 77 pts anhydrous salt (v Hauer W A B 53 2 221) 100 pts H<sub>2</sub>O at 112 5° dissolve 185 71 pts NiSO<sub>4</sub> (Griffiths)

NiSO4+7H2O is sol in 3 pts H2O at 12 5°

100 pts H<sub>2</sub>O at 155° dissolve 756 pts NiSO<sub>4</sub>+ 7H20

Sat NiSO4+Aq contains at 11° 17° +2° 23 1 25 2 26 6 33 6% N<sub>1</sub>SO<sub>4</sub> 217 227

68° 74° 92° 97° 110° 117° 119° 38 2 38 7 42 4 44 2 46 5 48 8 49 4% NiSO4

(Étard, A ch 1894, (7) 2 552)

See also below under hydrated salts Sp gr of  $N_1SO_4+Aq$  containing g  $N_1SO_4+$ 7H<sub>2</sub>O in 1000 g H<sub>2</sub>O at 23 5°

 $1405 g (= \frac{1}{2} mol) 281$ 421 5 1 073 1 136 1 190 1 238

983 5 1124 6025843 1 280 1 317 1 349 1378

Containing NiSO<sub>4</sub> (anhydrous) 77 5 g (= $\frac{1}{2}$ mol) 155 232 5 310 387 5 465 1 153 1 224 1 292 1 358 1 421 1 079 (Gerlach, Z anal 28 468)

Sp gr of NiSO4+Aq at 0° S=pts NiSO4 in 100 pts solution, S1=mols NiSO4 in 100 mols solution

| S         S1         Sp gr           4 2930         0 581         1 0522           3 9591         0 476         1 0431           3 2845         0 392         1 0357           2 5043         0 297         1 0271           1 6131         0 189         1 0173           0 8327         0 097         1 0069 |                            |                                                              |                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------|--------------------------------------|
| 3 9591 0 476 1 0431<br>3 2845 0 392 1 0357<br>2 5043 0 297 1 0271<br>1 6131 0 189 1 0173                                                                                                                                                                                                                       | s                          | $S_1$                                                        | Sp gr                                |
| 0 0021                                                                                                                                                                                                                                                                                                         | 3 9591<br>3 2845<br>2 5043 | $egin{array}{ccc} 0 & 476 \\ 0 & 392 \\ 0 & 297 \end{array}$ | 1 0431<br>1 0357<br>1 0271<br>1 0173 |

(Charpy, A ch (6) 29 26)

Sp gr of NiSO<sub>4</sub>+Aq at room temp containing

25 35% NiSO4 10 62 18 19 1 0925 1 1977 1 3137 (Wagner, W Ann 1883, 18 272)

Sp gr of NiSO<sub>4</sub>+Aq at 25°

| Concentration of NiSO <sub>4</sub> +Aq | Sp gr                                |
|----------------------------------------|--------------------------------------|
| 1-normal  1/2- "  1/4- "  1/8- "       | 1 0773<br>1 0391<br>1 0198<br>1 0017 |
|                                        | l                                    |

(Wagner, Z phys Ch 1890, 5 39)

For solubility of  $NiSO_4+Na_2SO_4$  in  $H_2O$ , see under  $NiSO_4+7H_2O$  and  $NiNa_2(SO_4)_2$ 

100 pts sat NiSO<sub>4</sub>+ZnSO<sub>4</sub>+Aq at 18-20° contain 35 45 pts of the two salts (v Hauer)
Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, **20** 828)

HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> precipitates it completely from aqueous solution (Persoz)

100 pts absolute methyl alcohol dissolve 0.5 pt NiSO<sub>4</sub> at 18° (de Bruyn, Z phys Ch 10 783)

Solubility of NiSO<sub>4</sub>,  $3CH_4O+3H_2O$  in methyl alcohol at  $14^{\circ}$ 

P = % anhydrous N<sub>1</sub>SO<sub>4</sub> in the sat solutions

| Alcohol                                                 |                                                                               | In 1000                                                               | mol of the                                                  | solution                                                            |
|---------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|
| %<br>by wt                                              | P                                                                             | Mol<br>NiSO4                                                          | Mol<br>CH4O                                                 | Mol<br>H <sub>2</sub> O                                             |
| 100<br>97 5<br>95 92 5<br>90 89<br>88<br>87<br>86<br>85 | 3 72<br>0 77<br>0 455<br>0 50<br>0 70<br>1 01<br>1 25<br>1 48<br>1 73<br>1 93 | 7 75<br>1 65<br>0 96<br>1 0<br>1 6<br>2 0<br>2 4<br>2 9<br>3 2<br>3 6 | 969<br>950<br>908<br>871<br>830<br>814<br>800<br>781<br>767 | 23 2<br>48 5<br>91<br>128<br>168<br>184<br>198<br>216<br>230<br>241 |

(de Bruyn, R t c 1903, 22 418)

This salt is more sol in ethyl alcohol than in methyl alcohol

See also under hydrated salts

For solubility of NiSO<sub>4</sub> in ethyl alcohol,

see under hydrated salts

100 g sat solution in glycol contain 9 7 g NiSO<sub>4</sub> at ord temp (de Coninck, Bull Ac Roy Belg **1905** 359)

Insol in methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate, (Naumann, B 1904, 37, 3602)

Very sl sol in acetone (Krug and M'Elroy)

Insol in acetone (Naumann, B 1904, **37** 4329, Eidmann, C C **1899**, II 1014)

+H<sub>2</sub>O Very sl sol m abs methyl alcohol After standing in contact with it for 8-9 months, the solution contains 1 34% NiSO<sub>4</sub> (de Bruyn R t c 1903, 22 414)

+2H<sub>2</sub>O Cryst from sat NiSO<sub>4</sub>+Aq at 131° (Steele and Johnson) +4H<sub>2</sub>O Solubility in methyl alcohol+

Aq at  $10^{\circ}$  Time=24 hrs P=% anhydrous salt in the sat solutions Alcohol of 100% 80% 50% 20% water

7 38 0 66 1 43 14 8 25 1 (de Bruyn, R t c 1903, 22 414)

 $+6H_2O$  Two modifications  $\alpha$ -blue, tetragonal,  $\beta$ -green, monoclinic

Solubility of a- NiSO4, 6H2O in H2O at to

| Salt used                                                                                                                                                                                                               | t°                                                                   | g NiSO <sub>4</sub><br>in 100<br>g H <sub>2</sub> O                           | Salt remaining                                               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|
| N <sub>1</sub> SO <sub>4</sub> +6H <sub>2</sub> O (blue)                                                                                                                                                                | 32 3                                                                 | 43 57                                                                         | N <sub>1</sub> SO <sub>4</sub> + 6H <sub>2</sub> O<br>(blue) |  |  |
| N <sub>1</sub> SO <sub>4</sub> +7H <sub>2</sub> O<br>N <sub>1</sub> SO <sub>4</sub> +6H <sub>2</sub> O<br>N <sub>1</sub> SO <sub>4</sub> +7H <sub>2</sub> O<br>N <sub>1</sub> SO <sub>4</sub> +6H <sub>2</sub> O (blue) | 33 0<br>34 0<br>35 6<br>44 7<br>44 7<br>50 0<br>51 0<br>52 0<br>53 0 | 43 35<br>43 84<br>43 79<br>48 05<br>47 97<br>50 15<br>50 66<br>52 34<br>52 34 | (orde)                                                       |  |  |

(Steele and Johnson)

Solubility of β- NiSO<sub>4</sub>, 6H<sub>2</sub>O in H<sub>2</sub>O at t°

| Salt used                                                                                                    | t°           | g N1SO <sub>4</sub><br>per 100<br>g H <sub>2</sub> O | Salt remaining                                               |
|--------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------|--------------------------------------------------------------|
| N <sub>1</sub> SO <sub>4</sub> +6H <sub>2</sub> O (blue)                                                     | 54 5         | 52 50                                                | N <sub>1</sub> SO <sub>4</sub> +6H <sub>2</sub> O<br>(green) |
| $N_1SO_4+6H_2O(blue)$<br>$N_1SO_4+7H_2O$                                                                     | 3010         | 53 40                                                |                                                              |
| N <sub>1</sub> SO <sub>4</sub> +6H <sub>2</sub> O(blue)<br>N <sub>1</sub> SO <sub>4</sub> +7H <sub>2</sub> O | }60 o        | 54 84                                                |                                                              |
| N <sub>1</sub> SO <sub>4</sub> +7H <sub>2</sub> O                                                            | 69 0         | 58 38                                                |                                                              |
| N1SO4+6H2O(blue)                                                                                             | 70 0<br>73 0 | 59 44<br>60 72                                       |                                                              |
| N <sub>1</sub> SO <sub>4</sub> +6H <sub>2</sub> O(blue)<br>N <sub>1</sub> SO <sub>4</sub> +7H <sub>2</sub> O | }80 0        | 63 17                                                |                                                              |
| N <sub>1</sub> SO <sub>4</sub> +7H <sub>2</sub> O                                                            | 89 0<br>99 0 | 67 90<br>76 71                                       |                                                              |

(Steele and Johnson, Chem Soc 1904, 85

Tr point from  $\alpha$ - to  $\beta$ - salt = 53 3° (Steele and Johnson)

100 pts absolute methyl alcohol dissolve 31 6 pts NiSO<sub>4</sub>+6H<sub>2</sub>O at 17°, 100 pts 93 5% methyl alcohol dissolve 78 pts NiSO<sub>4</sub>+6H<sub>2</sub>O at 18°, 100 pts 50% methyl alcohol dissolve 19 pts NiSO<sub>4</sub>+6H<sub>2</sub>O at 18° (de Bruyn, Z phys Ch **10** 786)

a-Salt Solubility in methyl alcohol+Aq at 14° Time=5 to 6 hrs

|                                                           |                                                                                      | In 1000 r                                                               | nol of the                                                         | solution                                                                  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|
| Alcohol<br>% by wt                                        | N1SO4                                                                                | Mol<br>NiSO4                                                            | Mol<br>CH <sub>4</sub> O                                           | Mol<br>H <sub>2</sub> O                                                   |
| 100<br>97 5<br>95 92 5<br>90 85<br>80 60<br>40 20 (water) | 12 4<br>10 6<br>6 5<br>3 06<br>1 18<br>0 315<br>0 25<br>0 46<br>2 43<br>14 7<br>26 0 | 26<br>22 3<br>14<br>5 9<br>2 3<br>0 57<br>0 4<br>0 8<br>3 5<br>21<br>39 | 794<br>808<br>817<br>838<br>821<br>757<br>688<br>453<br>265<br>105 | 180<br>170<br>169<br>156<br>177<br>242<br>312<br>546<br>732<br>874<br>961 |

(de Bruyn, R t c 1903, 22 412)

B salt Time = 24 hrs

| Alcohol                                                                 | ~                                                                                                             | TD 1000 I                         | nol of the                                                              | solution                                                                  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|
| % by wt                                                                 | %<br>N1SO4                                                                                                    | Mol<br>N1SO4                      | Mol<br>CH₄O                                                             | Mol<br>H <sub>2</sub> O                                                   |
| 97 5<br>95 92 5<br>90 88<br>87 86<br>85 85<br>80 60<br>40<br>20 (water) | 15 7<br>12 4<br>10 0<br>5 61<br>2 35<br>1 79<br>0 97<br>0 97<br>0 61<br>0 415<br>0 75<br>3 11<br>14 1<br>27 2 | 33 8<br>26<br>20 3<br>11 1<br>4 5 | 763<br>781<br>784<br>800<br>810<br>755<br>682<br>453<br>264<br>105<br>0 | 203<br>193<br>196<br>189<br>185<br>244<br>317<br>546<br>732<br>874<br>960 |

(de Bruyn)

 $+7H_2O$ Solubility in 100 pts  $H_2O$  at t°, using  $N_1SO_4+7H_2O$ 

| 0         29 3         33         45 5         66           1         29 7         34         46 0         67           2         30 1         35         46 5         68           3         30 5         36         47 0         69           4         31 0         37 47 5         70         5           5         31 5         38 48 0         71         6           6         32 0         39 48 5         73         7           7         32 5         40 49 0         72         8           8         33 0         41 49 6         74         9           9         33 5         42 50 1         75         70           10         34 0         43 50 6         76         76           11         34 5         44 51 2         77           12         35 0         45 51 7         78           13         35 5 46 52 3         79           14         36 0 47 52 8         80           15         36 5 48 53 4 81         81           16         37 0 49 53 9 82           17         37 5 50 54 5 58         83           18 <t< td=""><td>63 6<br/>64 1<br/>64 7<br/>65 3<br/>66 5 5<br/>66 67 6<br/>68 2<br/>68 8<br/>69 9<br/>70 5<br/>71 7<br/>72 3<br/>72 9<br/>73 5<br/>74 6<br/>77 6<br/>77 6<br/>78 2<br/>78 8<br/>79 8<br/>79 8<br/>70 7<br/>71 7<br/>72 8<br/>73 7<br/>74 8<br/>75 8<br/>76 8<br/>77 8<br/>78 8<br/>78 8<br/>78 8<br/>78 8<br/>78 8<br/>78</td></t<> | 63 6<br>64 1<br>64 7<br>65 3<br>66 5 5<br>66 67 6<br>68 2<br>68 8<br>69 9<br>70 5<br>71 7<br>72 3<br>72 9<br>73 5<br>74 6<br>77 6<br>77 6<br>78 2<br>78 8<br>79 8<br>79 8<br>70 7<br>71 7<br>72 8<br>73 7<br>74 8<br>75 8<br>76 8<br>77 8<br>78 8<br>78 8<br>78 8<br>78 8<br>78 8<br>78 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Solubility in methyl alcohol+Aq at | Solubility in 100 pts H<sub>2</sub>O at t° — Continued

| t°                      | Pts<br>N <sub>1</sub> SO <sub>4</sub> | t°                       | Pts<br>NiSO4                 | t°                  | Pts<br>NiSO <sub>4</sub> |
|-------------------------|---------------------------------------|--------------------------|------------------------------|---------------------|--------------------------|
| 99<br>100<br>101<br>102 | 83 1<br>83 7<br>84 3<br>84 9          | 103<br>104<br>105<br>106 | 85 6<br>86 2<br>86 8<br>87 5 | 107<br>108<br>108 4 | 88 1<br>88 7<br>88 7     |

(Mulder, calculated from his own and Tobler's determinations, Scheik Verhandel 1864 70)

Solubility in H<sub>2</sub>O at t°

| Salt used                                                                                                                                                            | t°                                                                         | g N <sub>1</sub> SO <sub>4</sub><br>in 100<br>g H <sub>2</sub> O                               | Salt remaining                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| N <sub>1</sub> SO <sub>4</sub> +7H <sub>2</sub> O  " " " " " " N <sub>1</sub> SO <sub>4</sub> +6H <sub>2</sub> O N <sub>1</sub> SO <sub>4</sub> +7H <sub>2</sub> O " | -5<br>0<br>9<br>15<br>22 6<br>22 8<br>30 0<br>30 0<br>32 3<br>33 0<br>34 0 | 25 74<br>27 22<br>31 55<br>34 19<br>37 90<br>38 88<br>42 46<br>42 47<br>44 02<br>45 74<br>45 5 | N1SO <sub>4</sub> +7H <sub>2</sub> O " " " " " " " " " " " " " |

(Steele and Johnson, Chem Soc 1904, 85 116)

M -pt of  $N_1SO_4 + 7H_2O = 98-100^{\circ}$  den, Chem Soc **45** 409) (Tıl-

Tr point from a-6H<sub>2</sub>O salt to 7H<sub>2</sub>O salt = 31.5° (Steele and Johnson)

Exists also in an unstable, more soluble (Fedorow, C C 1903, II modification 95)

Solubility of NiSO<sub>4</sub> 7H<sub>2</sub>O+Na<sub>2</sub>SO<sub>4</sub> 10H<sub>2</sub>O in 100 g H<sub>2</sub>O at t°

| t  | grams N1SO4 | grams Na SO <sub>4</sub> |
|----|-------------|--------------------------|
| 0  | 22 46       | 10 09                    |
| 5  | 25 28       | 15 245                   |
| 10 | 28 26       | 20 64                    |

(Koppel, Z phys Ch 1905, 52 401) See also under N1Na2(SO4)4

100 pts absolute methyl alcohol dissolve 46 pts NiSO<sub>4</sub>+7H<sub>2</sub>O at 17°, 100 pts absolute methyl alcohol dissolve 24 7 pts NiSO<sub>4</sub>+7H<sub>2</sub>O at 4°, 100 pts 93 5% methyl alcohol dissolve 10 1 pts NiSO<sub>4</sub>+7H<sub>2</sub>O at 4°, 100 pts 50% methyl alcohol dissolve 2 pts NiSO<sub>4</sub>+ 7H<sub>2</sub>O at 4° (de Bruyn, Z phys Ch 10 786)

Solubility in methyl alcohol+Aq at 14° Time, 5 to 6 hrs

| Thue, o to o mrs                                                          |                                                                                                          |                                         |                                                      |                                                                  |  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|------------------------------------------------------------------|--|
| 41b-1                                                                     | ~                                                                                                        | In 1000                                 | mol of                                               | solution                                                         |  |
| Alcohol<br>% by wt                                                        | %<br>NiSO₄                                                                                               | Mol<br>Ni8O4                            | Mol<br>CH₄O                                          | Mol<br>H <sub>2</sub> O                                          |  |
| 100<br>97 5<br>95 92 5<br>90 85<br>84 83<br>82 81<br>80 60<br>45 40<br>35 | 16 8<br>13 9<br>11 6<br>8 12<br>5 78<br>1 52<br>1 06<br>0 985<br>0 665<br>0 653<br>0 805<br>1 73<br>2 78 | 35 7<br>29<br>23 6<br>16 2<br>11 2<br>3 | 714<br>734<br>742<br>760<br>758<br>744<br>687<br>453 | 250<br>237<br>234<br>5<br>224<br>231<br>253<br>312<br>546<br>732 |  |
| 30<br>20<br>0 (water)                                                     | 6 33<br>13 7<br>26 4                                                                                     | 20<br>39 5                              | 105<br>0                                             | 875<br>960 5                                                     |  |

(de Bruyn, R t c 1903, **22** 411)

100~g absolute ethyl alcohol dissolve 1 3 g NiSO\_4+7H\_2O at 4°, and ° 2 g at 17° (de Bruyn, Z phys Ch 10 786) Min Morenosite

# Nickel hydrazine sulphate, $N_1H_2(SO_4)_2$ , $2N_2H_4$

1 pt is sol in 275 5 pts  $\rm H_2O$  at 18° Sl sol in hot  $\rm H_2O$  Sol in HNO<sub>3</sub> with decomp , insol in HCl Sol in NH<sub>4</sub>OH+Aq (Curtius, J pr 1894, (2) **50** 331)

# Nickel potassium sulphate, NiSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub>+6H<sub>2</sub>O

Sol in 89 pts H2O (Tupputi)

100 pts H<sub>2</sub>O dissolve at

0° 10° 14° 20° 30° 53 89 105 138 186 pts anhydrous salt,

36° 49° 55° 60° 75° 20 4 27 7 32 4 35 4 45 6 pts anhydrous salt (Tobler, A **95** 193)

Saturated solution contains at 20° 40° 60° 80° 80° 8 7 12 3 17 6 22 0% anhydrous salt (v Hauer, J pr 74 433)

1 l H<sub>2</sub>O dissolves 68 8 g anhydrous salt at 25° (Locke, Am Ch J 1902, **?7** 459)

Nickel potassium zinc sulphate, NiSO<sub>4</sub>, 2K<sub>2</sub>SO<sub>4</sub>, ZnSO<sub>4</sub>+12H<sub>2</sub>O Sol in H<sub>2</sub>O (Vohl, A **94** 51) Nickel rubidium sulphate,  $NiSO_4$ ,  $Rb_2SO_4 + 6H_2O$ 

Sol in  $\rm H_2O$  (Tutton, Chem Soc 63 337) 1 l  $\rm H_2O$  dissolves 59 8 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Nickel sodium sulphate,  $N_1Na_2(SO_4)_2+4H_2O$ 

Solubility of NiNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> 4H<sub>2</sub>O in 100 g H<sub>2</sub>O at t°

| t° | grams NiSO4 | grams Na <sub>2</sub> SO <sub>4</sub> |
|----|-------------|---------------------------------------|
| 20 | 29 31       | 26 87                                 |
| 25 | 27 33       | 25 33                                 |
| 30 | 24 64       | 22 58                                 |
| 35 | 23 66       | 21 67                                 |
| 40 | 21 88       | 20 65                                 |

(Koppel, Z phys Ch 1905, 52 401)

Solubility of N1Na<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> 4H<sub>2</sub>O + N1SO<sub>4</sub> 7H<sub>2</sub>O in 100 g H<sub>2</sub>O at t°

| t°   | grams<br>NiSO <sub>4</sub> | grams<br>NaSO4 | to | grams<br>NiSO <sub>4</sub> | grams<br>Na <sub>2</sub> SO <sub>4</sub> |
|------|----------------------------|----------------|----|----------------------------|------------------------------------------|
| 18 5 | 30 70                      | 25 805         | 30 | 34 98                      | 19 825                                   |
| 20   | 31 59                      | 25 355         | 35 | 36 01                      | 16 435                                   |
| 25   | 33 11                      | 23 07          | 40 | 37 935                     | 14 295                                   |

### (Koppel)

Solubility of N<sub>1</sub>Na<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>  $4H_2O + Na_2SO_4$  $10H_2O$  in 100 g  $H_2O$  at  $t^\circ$ 

| 10112                  | 7 In 100 g 1120                 | 200                                |
|------------------------|---------------------------------|------------------------------------|
| t°                     | grams NiSO4                     | grams NaSO4                        |
| 18 5<br>20<br>25<br>30 | 26 14<br>24 07<br>18 81<br>9 87 | 29 455<br>31 365<br>37 13<br>44 25 |

#### (Koppel)

Solubility of NiNa<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> 4H<sub>2</sub>O+Na<sub>2</sub>SO<sub>4</sub> (anhydrous) in 100 g H<sub>2</sub>O at t°

| t° | t° grams N1SO4 |        |
|----|----------------|--------|
| 35 | 7 13           | 49 595 |
| 40 | 7 245          | 49 03  |

#### (Koppel)

Nickel thallium sulphate, NiSO<sub>4</sub>, Tl<sub>2</sub>SO<sub>4</sub>+6H<sub>2</sub>O

Easily sol in  $H_2O$  Can be recryst from little  $H_2O$  without decomp (Werther, J pr 92 132)

1 l  $\text{H}_2\text{O}$  dissolves 46 l g anhydrous salt at 25° (Locke, Am Ch J 1902, **27**, 459)

Nickel zinc sulphate,  $NiSO_4$ ,  $ZnSO_4+13H_2O$ Sol in 3-4 pts cold  $H_2O$  Insol in alcohol (Tupputi, 1811)

| Completely sol in NH<sub>4</sub>OH+Aq | 2N<sub>1</sub>SO<sub>4</sub>, 2ZnSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> (Étard, C R | **87** 602) Nickel sulphate ammonia, NiSO4, 6NH2

Sol in H<sub>2</sub>O with separation of hydroxide (Rose, Pogg 20 151)

NiSO<sub>4</sub>, 5NH<sub>3</sub>+3½H<sub>2</sub>O (André, C R **106** 936) Deliquescent

N<sub>1</sub>SO<sub>4</sub>, 4NH<sub>3</sub>+2H<sub>2</sub>O Easily sol in H<sub>2</sub>O Can be recrystallized out of little H<sub>2</sub>O Insol even in dil alcohol (Erdmann)

Nickel sulphate cupric oxide, NiSO4, 2CuO+  $6H_2O$ 

(Mailhe, Bull Soc 1902, (3) 27 172)  $2N_1SO_4$ ,  $3C_4O_{+10H_2O}$ , and  $+12H_2O_{-10}$ (Mailhe)

5N<sub>1</sub>SO<sub>4</sub>, 16C<sub>u</sub>O+xH<sub>2</sub>O 1901, **132** 1415) (Recoura, C R

 $N_1SO_4$ ,  $20CuO + xH_2O$ (Recoura)

Nickel sulphate, hydrazine, NiSO4, 3N2H4 Ppt (Curtius, J pr 1894, (2) 50 343)

NiSO4. Nickel sulphate hydroxylamine, 6NH<sub>2</sub>OH

Decomp by H<sub>2</sub>O (Uhlenhut, A 1899, 307 334)

Nitrosyl sulphate, H(NO)SO4 See Nitrosulphonic acid

Osmious sulphate

Easily sol in H<sub>2</sub>O and alcohol

Osmic sulphate

Sol in H<sub>2</sub>O (Berzelius)

Palladous sulphate, basic, PdSO<sub>4</sub>, 7PdO+  $6H_2O$ , and  $10H_2O$ 

Insol in H<sub>2</sub>O Easily sol in HCl+Aq (Kane)

Palladous sulphate, PdSO<sub>4</sub>+2H<sub>2</sub>O

Deliquescent in moist air, very sol in H2O, but decomp by much H2O, with separation of a basic salt (Kane)

Phosphoryl sulphate, (PO)<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub> (?)

Possible composition of Weber's (B 20 86) P<sub>2</sub>O<sub>5</sub>, 3SO<sub>3</sub> (?) 3P<sub>2</sub>O<sub>4</sub>, 2SO<sub>3</sub> In

Immediately decomp by (Adie, C N 1891, **63** 102)  $H^{3}O$ 

Platinic sulphate, Pt(SO<sub>4</sub>)<sub>2</sub>

Deliquescent Sol in H<sub>2</sub>O, alcohol, or ether, also in H<sub>3</sub>PO<sub>4</sub>, HCl, and HNO<sub>3</sub>+Aq (Berzelius)

H<sub>2</sub>PtO<sub>2</sub>SO<sub>4</sub> Sol in H<sub>2</sub>O (Blondel, A ch

1905, (8) 6 109)

 $PtO_2$ ,  $SO_3+4H_2O$  Ppt Decomp by  $H_2O$  Sol m  $H_2SO_4$ 

 $PtSO_4(OH)_2$ ,  $4Pt(OH)_4+3H_2O$ Ppt (Prost, Bull Soc (2) 46 156)

 $Pt_8SO_4O_{18}+16H_2O$  As above (Prost) Platinum hydroxylamine sulphate.  $Pt(NH_2OH)_4SO_4$ 

Only sl sol in  $H_2O$ , sol in dil  $H_2SO_4+Aq$ (Uhlenhut, A 1900, 311 123)

Platinic potassium sulphate, basic

Insol in boiling H<sub>2</sub>O, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub>, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, or NH<sub>4</sub>OH+Aq East sol in boiling HCl+Aq Sl decomp aqua regia (E Davy)

Pt<sub>10</sub>(SO<sub>4</sub>)<sub>2</sub>O<sub>10</sub>, 3K<sub>2</sub>SO<sub>4</sub>+34H<sub>2</sub>O Insol H<sub>2</sub>O (Prost, Bull Soc (2) 46 156)

Insol in

 $Pt_{18}(SO_4)O_{22}$ ,  $5K_2SO_4+34H_2O$  As above (Prost)

Platinum rubidium sulphate, Pt<sub>6</sub>Rb<sub>6</sub>(SO<sub>4</sub>)<sub>4</sub>+ 17H<sub>2</sub>O

Sol in H<sub>2</sub>O (Prost, Bull Soc (2) **46** 156)

Platinum sulphate sulphocarbamide, PtSO4.  $4CS(NH_2)_2$ 

Insol in H<sub>2</sub>O Sol in conc H<sub>2</sub>SO<sub>4</sub> without (Kurnakow J pr 1894, (2) 50, 489)

Potassium sulphate, K2SO4

Not hygroscopic in the ordinary sense of the 100 pts K<sub>2</sub>SO<sub>4</sub> over H<sub>2</sub>O at 14-20° absorb 58 pts H<sub>2</sub>O in 22 days, and finally deliquesce completely (Mulder)

12 pts K<sub>2</sub>SO<sub>4</sub> mixed with 100 pts H<sub>2</sub>O lower the temp 3 3° (Rudorff, B 2 68) 100 pts H<sub>2</sub>O dissolve with absorption of

heat at 0°

836 pts K<sub>2</sub>SO<sub>4</sub> (Gay-Lussac) 8 46 (Mulder) " 85 (Gerardın ) (Moller, Pogg 117 386) 7 31

73-79 (Nordenskiold, Pogg **136** 314)

 $100~pts~H_2O~at~0^{\circ}~dissolve~8~36~pts~K_2SO_4~at~12~72^{\circ}~10~57~pts~at~49~08^{\circ}~16~91~pts~at~63~90^{\circ}~19~29~pts~at~101~50^{\circ}~26~33~pts~(Gay~Lussac~A~ch~(2)~11~311~)$ 

Solubility in 100 pts H2O at to

| ſ,    | Pts<br>K <sub>2</sub> SO <sub>4</sub> | t°   | Pts<br>K2SO4 |
|-------|---------------------------------------|------|--------------|
| 0     | 7 8                                   | 47 0 | 16 0         |
| 15 65 | 10 3                                  | 70 2 | 20 3         |
| 28 1  | 12 8                                  | 98 0 | 23 9         |

(Nordenskiold Pogg 136 341)

100 pts sat K<sub>2</sub>SO<sub>4</sub> at 101 7° contain 17 5 pts K<sub>2</sub>SO<sub>4</sub> or 100 pts H<sub>2</sub>O at 101 25 dissolve 21 212 pts K<sub>2</sub>SO<sub>4</sub> (Griffiths)

(Grimths)
100 pts H<sub>2</sub>O at 102 8° dissolve 29 pts K<sub>2</sub>SO<sub>4</sub> (Penny)
at 15° 7 3 6 25 pts (Ure s Dict) at 100° 20 pts
(Ure s Dict) at 100° 24 2 pts (Wenzel)
Sol in 9 081 pts H<sub>2</sub>O at 15 (Gerlach) in 16 pts at
15° and 5 pts at 100 (Baram pp) in 18 pts cold and 5 pts

boiling H<sub>2</sub>O (M R and P) in 12 pts H<sub>2</sub>O at 18 75°

 $K_8SO_4$  sat at 15° has sp gr = 10774 and contains 10055 pts  $K_2SO_4$  ip 100 pts  $H_2O$  (Michel and Krafft A ch (3) **41** 478)

100 pts H<sub>2</sub>O dissolve 9 26 pts K<sub>2</sub>SO<sub>4</sub> at 156°, and sat solution has sp gr = 1177(Page and Keightley, Chem Soc (2) 10 566)

213

228

24 6% K2SO4

|                                                                                                            | Solubility in 100 pts H <sub>2</sub> O at t°                                                               |                                                                                                                |                                                                          |                                                                                                                      |                                                                                                                                              |  |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| t°                                                                                                         | Pts<br>K <sub>2</sub> SO <sub>4</sub>                                                                      | t°                                                                                                             | Pts<br>K <sub>2</sub> SO <sub>4</sub>                                    | t°                                                                                                                   | Pts<br>K <sub>2</sub> SO <sub>4</sub>                                                                                                        |  |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 8 5<br>8 6<br>8 7<br>8 8<br>9 0<br>9 1<br>9 2<br>9 3<br>9 4<br>9 9<br>10 2<br>10 3<br>10 4<br>10 5<br>10 8 | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53 | 13 3 4 13 6 13 8 0 14 4 2 14 3 14 5 7 14 5 15 5 6 15 6 0 2 16 6 6 16 6 6 | 70<br>71<br>72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89 | 19 8<br>20 0<br>20 2<br>20 4<br>20 6<br>20 8<br>21 0<br>21 2<br>21 4<br>21 8<br>22 0<br>22 2<br>22 4<br>22 8<br>23 0<br>23 2<br>23 4<br>23 6 |  |
| 20                                                                                                         | 10 9                                                                                                       | 55                                                                                                             | 16 8                                                                     | 90                                                                                                                   | 23 9                                                                                                                                         |  |
| 21<br>22<br>23                                                                                             | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                         | 56<br>57<br>58                                                                                                 | 17 0<br>17 2<br>17 4                                                     | 91<br>92<br>93                                                                                                       | $24 \ 1$ $24 \ 3$ $24 \ 5$                                                                                                                   |  |
| 24                                                                                                         | 11 5                                                                                                       | 59                                                                                                             | 17 6                                                                     | 94                                                                                                                   | 24 7                                                                                                                                         |  |

95

96

97

98

99

100

101

102

102 25

25 0

25 2

25 5

25

25

26 2

26 4

26 6

26 75

7

9

(Mulder, calculated from his own and other experiments, Scheik Verhandel 1864 50)

29 30

31

32

33

34

11 6

11 7

11 9

12 0

12 2

12 3

12 5

12 6

12 8

13 0

60

61

62

63

64

65

66

67

68

69

17 8

18

18

18 8

19 0

19 2

19 4

19 6

18 4

18 6

0

2

If solubility S = pts anhydrous salt in 100 pts of solution, S = 7.5 + 0.1070t from 0° to Solubility from 163° to 220° is constant (Etard, C R 106 208)

Solubility of k<sub>2</sub>SO<sub>4</sub> in 100 pts H<sub>2</sub>O at t°

| t°                   | Pts<br>K <sub>2</sub> SO <sub>4</sub> | t              | Pts<br>K2SO4            | t°                | Pts<br>K <sub>2</sub> SO <sub>4</sub> |
|----------------------|---------------------------------------|----------------|-------------------------|-------------------|---------------------------------------|
| 16<br>20<br>28<br>36 | 9 76<br>10 30<br>12 59<br>13 28       | 39<br>54<br>98 | 14 21<br>17 39<br>23 91 | 120<br>143<br>170 | 26 5<br>28 8<br>32 9                  |

(Tilden and Shenstone, Phil Trans 1884 23)

100 pts  $H_2O$ Solubility of K<sub>2</sub>SO<sub>4</sub> in H<sub>2</sub>O dissolve at

4 3° 18 4° 69 9° 108 19 7 pts K<sub>2</sub>SO<sub>4</sub> 8 16 (Andreae, J pr (2) 29 456)

100 ccm H<sub>2</sub>O dissolve 12 04 g K<sub>2</sub>SO<sub>4</sub> at (Trevor, Z phys Ch 7 468) Sat K2SO4+Aq contains at 21° 23° 60° 99° 130° 10 1 103 14 5 191 21 1% K<sub>2</sub>SO<sub>4</sub>, 195° 220° 130° 152° 175°

> Solubility of K<sub>2</sub>SO<sub>4</sub> in H<sub>2</sub>O at t° G K<sub>2</sub>SO<sub>4</sub> per 100 g H<sub>2</sub>O

(Étard, A ch 1894, (7) 2 549)

24 5

238

| t°    | K <sub>2</sub> SO <sub>4</sub> | Sp gr  | t°     | K2SO4 | Sp gr  |
|-------|--------------------------------|--------|--------|-------|--------|
| 0 40  | 7 47                           | 1 0589 | 58 95  | 18 01 | 1 1089 |
| 15 70 | 10 37                          | 1 0770 | 74 85  | 20 64 | 1 1157 |
| 31 45 | 13 34                          | 1 0921 | 89 70  | 22 80 | 1 1194 |
| 42 75 | 15 51                          | 1 1010 | 101 1* | 24 21 | 1 1207 |

\*=b-pt(Berkeley, Phil Trans Roy Soc 1904, 203 A, 189)

100 g H<sub>2</sub>O dissolve 0 133 gram-equivalent K<sub>2</sub>SO<sub>4</sub> at 25° (Van't Hoff and Meyerhoffer, Z phys Ch 1904, 49 315) 1 1 sat K<sub>2</sub>SO<sub>4</sub>+Aq at 25° contains 0 617 mols K<sub>2</sub>SO<sub>4</sub> (Herz Z anorg 1911, **73** 274)

### Solubility of K<sub>2</sub>SO<sub>4</sub> in H<sub>2</sub>O at t°

| t°                              | % K <sub>2</sub> SO <sub>4</sub> |  |  |
|---------------------------------|----------------------------------|--|--|
| 4 78<br>30 05<br>54 20<br>68 90 | 7 82<br>11 43<br>14 77<br>16 40  |  |  |
|                                 | 1. 7. 1. 01. 1011                |  |  |

(Le Blanc and Schmandt, Z phys Ch 1911, 77 614)

100 g H<sub>2</sub>O dissolve 12 10 g K<sub>2</sub>SO<sub>4</sub> at 25° (Amadori, Rend Acc Linc 1912, (5) **21** II 667)

Solubility of K2SO4 in H2O at various pres-Figures denote pts K2SO4 contained in 100 pts sat k SO4+Aq at to and A pressure in atmospheres

| A                    | 0°                   | 15°  | 15 5°        | 16 2°        |  |
|----------------------|----------------------|------|--------------|--------------|--|
| 1<br>20<br>30        | 6 81<br>7 14<br>7 14 | 9 14 | 9 24<br>9 44 | 9 35<br>9 54 |  |
| 13.5 11 70 447 206 \ |                      |      |              |              |  |

(Moller, Pogg 117 386)

Sat K<sub>2</sub>SO<sub>4</sub>+Aq boils at 101 5°, and contains 26 33 pts  $K_2SO_4$  to 100 pts  $H_2O$  (Gay-Lussac), at 101 7°, and contains 21 2 pts  $K_2SO_4$  to 100 pts  $H_2O$  (Griffiths), at 102 25°, and contains 26 75 pts K<sub>2</sub>SO<sub>4</sub> to 100 pts H<sub>2</sub>O (Mulder), boils at 103° (Kremers)

Crust forms at 101 7°, and solution con-I tains 25 3 pts K<sub>2</sub>SO<sub>4</sub> to 100 pts H<sub>2</sub>O, highest temp observed, 102 1° (Gerlach, Z anal 26 426)

B-pt of K<sub>2</sub>SO<sub>4</sub>+Aq containing pts K<sub>2</sub>SO<sub>4</sub> to 100 pts H<sub>2</sub>O

| B pt                     | Pts K <sub>2</sub> SO <sub>4</sub> | B pt          | Pts k <sub>2</sub> SO <sub>4</sub> |
|--------------------------|------------------------------------|---------------|------------------------------------|
| 100 5°<br>101 0<br>101 5 | 7<br>14 5<br>22 1                  | 102°<br>102 1 | 30 0<br>31 6                       |

(Gerlach, Z anal 26 430)

Sp gr of K2SO4 at 195°

| % K2SO4                 | Sp gr                      | % K <sub>2</sub> SO <sub>4</sub> | Sp gr            |
|-------------------------|----------------------------|----------------------------------|------------------|
| 2 401<br>4 744<br>6 968 | 1 0193<br>1 0385<br>1 0568 | 9 264<br>10 945                  | 1 0763<br>1 0909 |

(Kremers Pogg 95 120)

Sp gr and B pt of K2SO4+Aq at 12 5°

| Pts K <sub>2</sub> SO to<br>100 pts H <sub>2</sub> O | Sp gr  | B pt    | Pts K <sub>2</sub> SO to<br>100 pts H <sub>2</sub> O | Sp gr  | B pt    |
|------------------------------------------------------|--------|---------|------------------------------------------------------|--------|---------|
| 1                                                    | 1 0079 | 100 38° | 6                                                    | 1 0456 | 101 12  |
| 2                                                    | 1 0151 | 100 63° | 7                                                    | 1 0524 | 101 25° |
| 3                                                    | 1 0231 | 100 75° | 8                                                    | 1 0599 | 101 25° |
| 4                                                    | 1 0305 | 100 88° | 9                                                    | 1 0676 | 101 38° |
| 5                                                    | 1 0391 | 101°    | 10                                                   | 1 0735 | 101 5°  |

(Brandes and Gruner 1827)

 $K_2SO_4+Aq$  sat at 8° has 1072 sp gr (Anthon, A 24.211)

 $K_2SO_4+Aq$  saturated at 12° contains 10 38%  $K_2SO_4$  and has sp gr 1 0716 (Struve, Zeit Ch (2) 5 323), saturated at 15° contains 11 01%  $K_2SO_4$  and has sp gr 1 0831 (Gerlach), saturated at 18 75° contains 10 74%  $K_2SO_4$  and has sp gr 1 0798 (Karsten)

Sp gr of K<sub>2</sub>SO<sub>4</sub>+Aq at 15°

|                  |                                      |             |                            | •              |                            |
|------------------|--------------------------------------|-------------|----------------------------|----------------|----------------------------|
| K.SO.            | Sp gr                                | K2SO4       | Sp gr                      | K2SO4          | Sp gr                      |
| 1<br>2<br>3<br>4 | 1 0082<br>1 0163<br>1 0245<br>1 0328 | 5<br>6<br>7 | 1 0410<br>1 0495<br>1 0579 | 8<br>9<br>9 92 | 1 0664<br>1 0750<br>1 0830 |

(Gerlach, Z anal 8 287)

Sp gr of K<sub>2</sub>SO<sub>4</sub>+Aq at 18°

| %K <sub>2</sub> SO <sub>4</sub> | Sp gr  |
|---------------------------------|--------|
| 5                               | 1 0395 |
| 10                              | 1 0815 |

(Kohlrausch, W Ann 1879 1)

Sp gr of  $K_2SO_4+Aq$  at  $15^\circ/15^\circ$  a=pts  $K_2SO_4$  in 100 pts of the solution, b=pts  $K_2SO_4$  in 100 pts  $H_2O$ 

| а    | b      | Sp gr   |
|------|--------|---------|
| 1    | 1 010  | 1 00808 |
| 3    | 3 093  | 1 02447 |
| 5    | 5 263  | 1 04091 |
| 7    | 7 527  | 1 05776 |
| 9    | 9 890  | 1 07499 |
| 9 92 | 11 013 | 1 08305 |

(Gerlach, Z anal 28 493)

Sp gr of  $K_2SO_4+Aq$  at 20° containing 0.5 mol  $K_2SO_4$  to 100 mols  $H_2O=1$  03758, containing 1 mol  $K_2SO_4$  to 100 mols  $H_2O=1$  06744 (Nicol, Phil Mag (5) **16** 122)

Sp gr of K<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| Concentration of K <sub>2</sub> SO <sub>4</sub><br>+Aq | Sp gr                                |
|--------------------------------------------------------|--------------------------------------|
| 1-normal  1/2- "  1/4- "  1/8- "                       | 1 0664<br>1 0338<br>1 0170<br>1 0084 |

(Wagner, Z phys Ch 1890, 5 37)

 $K_2SO_4+Aq$  containing 6.7%  $K_2SO_4$  has sp gr  $20^\circ/20^\circ=1.0549$  (Le Blanc and Rohland, Z phys Ch 1896, 19 278)

Sp gr of  $K_2SO_4+Aq$  at 201°, when p= per cent strength of solution, d=observed density, w=volume conc in gr per cc  $\left(\frac{pd}{100}=w\right)$ 

|                                                                                       | ·                                                                                                |                                                                                                            |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| р                                                                                     | d                                                                                                | w                                                                                                          |
| 9 83<br>8 172<br>6 779<br>5 021<br>3 127<br>2 508<br>1 448<br>1 079<br>1 047<br>0 455 | 1 0800<br>1 0657<br>1 0539<br>1 0394<br>1 0238<br>1 0186<br>1 0100<br>1 0070<br>1 0066<br>1 0018 | 0 10615<br>0 08708<br>0 07144<br>0 05218<br>0 03202<br>0 02554<br>0 01463<br>0 01087<br>0 01053<br>0 00456 |
| (Rarnag I                                                                             | nhye Chem                                                                                        | 1808 2 543 )                                                                                               |

(Barnes, J phys Chem 1898, **2** 543) Sp gr of K<sub>2</sub>SO<sub>4</sub>+Aq at 18°

| 1/2 K2SO4 g equiv per l | Sp gr at 18 |
|-------------------------|-------------|
| 0 8327                  | 1 0567      |
| 0 7975                  | 1 0539      |
| 0 6688                  | 1 0456      |
| 0 5029                  | 1 0344      |
| 0 5016                  | 1 0340      |
| 0 2508                  | 1 0173      |
| 0 01001                 | 1 0006      |

(McKay, Elektrochem Zeit 1899, 6 115)

| Sp gr of sat K <sub>2</sub> SO <sub>4</sub> +Aq at t°                                                                                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| t°   g K <sub>2</sub> SO <sub>4</sub> sol m   Sp gr                                                                                       |  |  |  |
| 0 7 35 1 058<br>10 9 22 1 069<br>20 11 11 1 081<br>30 12 97 1 089<br>40 14 76 1 097<br>50 16 50 1 106<br>60 18 17 1 114<br>70 19 75 1 121 |  |  |  |

(Tschernaj, J Russ phys Chem Soc 1912, 44 1565)

Sol in conc acids, not pptd by glacial  $HC_2H_3O_2$  Insol in KOH+Aq of 1 35 sp gr (Liebig, A 11 262)

Solubility of K<sub>2</sub>SO<sub>4</sub> in H<sub>2</sub>SO<sub>4</sub>+Aq at 18°.

| Mols per 100 mols<br>solution                                                                |                                                                                     | Solid phase                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K SO4                                                                                        | H <sub>2</sub> SO <sub>4</sub>                                                      |                                                                                                                                                                                                                          |
| 1 10<br>1 59<br>2 49<br>2 75<br>2 75<br>2 83<br>2 80<br>2 61<br>2 25<br>1 08<br>0 77<br>0 44 | 0 95<br>2 70<br>3 17<br>3 74<br>5 08<br>5 79<br>5 61<br>6 19<br>7 94<br>9 2<br>22 7 | K <sub>2</sub> SO <sub>4</sub> ""  K <sub>2</sub> SO <sub>4</sub> , KHSO <sub>4</sub> ""  K <sub>2</sub> SO <sub>4</sub> , 3KHSO <sub>4</sub> K <sub>2</sub> SO <sub>4</sub> , 6KHSO <sub>4</sub> "+KHSO <sub>4</sub> "" |

(Stortenbecker, R t c 1902, **21** 407) Solubility in H<sub>2</sub>S()<sub>4</sub>+Aq at 0°

| Mols H SO <sub>4</sub> Mols K SO <sub>4</sub> 0 37 0 53 0 75 0 64 1 08 0 74 K SO <sub>4</sub> +K H(SO <sub>4</sub> ) <sub>2</sub> 1 13 0 73 K <sub>3</sub> H(SO <sub>4</sub> ) 1 44 0 71 1 66 0 69 1 89 0 66 K <sub>3</sub> H(SO <sub>4</sub> ) + K 1 1 88 0 69 2 15 0 59 Ka+Kb 2 12 0 61 2 29 0 54 Kb 2 30 0 53 Kb+KHSO <sub>4</sub> 3 08 0 28 " 4 45 0 12 "  K SO <sub>4</sub> K SO <sub>4</sub> K H(SO <sub>4</sub> ) K H(SO <sub>4</sub> ) K Kb K Kb K Kb K KB K KB K KB K KB K KB | 1000 g of t                                                                                                  | he solution<br>tain                                                                          | Solid ph isc                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                              |                                                                                              | one pri se                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 75<br>1 08<br>1 13<br>1 44<br>1 66<br>1 89<br>1 88<br>2 15<br>2 12<br>2 29<br>2 30<br>2 33<br>2 48<br>3 08 | 0 55<br>0 64<br>0 74<br>0 73<br>0 71<br>0 69<br>0 66<br>0 69<br>0 59<br>0 61<br>0 54<br>0 53 | K SO <sub>4</sub> +K H(SO <sub>4</sub> ) <sub>2</sub> K <sub>3</sub> H(SO <sub>4</sub> )  "  K <sub>4</sub> H(SO <sub>4</sub> ) +K <sub>1</sub> K <sub>4</sub> +Kb  Kb+KHSO <sub>4</sub> "  KHSO <sub>4</sub> " |

These results show that at 0° there exist | (Sullivan)

between K<sub>2</sub>H(SO<sub>4</sub>)<sub>2</sub> and KHSO<sub>4</sub>, two acid sulphates, Ka and Kb Ka is probably K<sub>2</sub>SO<sub>4</sub>, 3KHSO<sub>4</sub> and Kb is probably K<sub>2</sub>SO<sub>4</sub>, 6KHSO<sub>4</sub>

(D'Ans, Z anorg 1909, 63 228)

 $3.1~\rm{mols}~K_2SO_4$  are sol in absolute  $\rm{H}_2SO_4$  at 25° (Bergius, Z phys Ch 1910, 73 353)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| Mıllımols H <sub>2</sub> SO <sub>4</sub><br>ın 10 ccm | Millimols K <sub>2</sub> SO <sub>4</sub><br>in 10 ccm |
|-------------------------------------------------------|-------------------------------------------------------|
| 3 97<br>7 57<br>14 35                                 | 6 17<br>8 92<br>10 82<br>14 86                        |

(Herz, Z anorg 1912, 73 276)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| In 10<br>the s                                             | 00 g of<br>olution        | Solid phase                                                                                            |
|------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------|
| Mols<br>SO <sub>3</sub>                                    | Mols<br>K SO <sub>4</sub> | Sona paulo                                                                                             |
| 6 42<br>6 60                                               | 0 171<br>0 190            | KHSO,                                                                                                  |
| $\begin{bmatrix} 6 & 91 \\ 7 & 26 \\ 7 & 62 \end{bmatrix}$ | 0 266<br>0 182<br>0 157   | KHSO <sub>4</sub> +KH <sub>3</sub> (SO <sub>4</sub> ) <sub>2</sub> , H <sub>2</sub> O "                |
| 7 88                                                       | 0 167<br>0 201            | "                                                                                                      |
| 8 00<br>8 10<br>8 15<br>8 16<br>8 29                       | 0 250<br>0 352<br>0 364   | $KH_3(SO_4)_2, H_2O$<br>$KH_3(SO_4)_2, H_2O + KH_3(SO_4)_2$                                            |
| 8 29<br>8 33<br>8 45                                       | 0 341<br>0 322<br>0 325   | "<br>"                                                                                                 |
| 8 62<br>8 57<br>8 71                                       | 0 54<br>0 584<br>0 412    | , γ, γ, γ, γ, γ, γ, γ, γ, γ, γ, γ, γ, γ,                                                               |
| 8 82<br>8 65                                               | 0 553<br>0 580            | $\begin{array}{c} \text{IvH}_3(\text{SO}_4) \\ \text{IvH}_3(\text{SO}_4) + \text{IvHsO}_7 \end{array}$ |
| 8 63<br>8 70<br>8 96                                       | 0 899<br>0 882<br>0 561   | KHS O <sub>7</sub> (met ist ible solution)                                                             |
| 9 80<br>9 78<br>9 80                                       | 0 365<br>0 430<br>0 665   | "<br>"<br>KHS O <sub>7</sub>                                                                           |
| 9 66<br>9 66                                               | 0 904<br>0 937            | u u                                                                                                    |
|                                                            |                           |                                                                                                        |

(D'Ans, Z anorg 1913, 80 239)

Pptd from K<sub>2</sub>SO<sub>4</sub>+Aq by NH<sub>4</sub>OH+Aq Sullivan) Solubility of K<sub>2</sub>SO<sub>4</sub> in NH<sub>4</sub>OH+Aq at 20°

| G NH <sub>3</sub> in     | G K <sub>2</sub> SO <sub>4</sub> in |
|--------------------------|-------------------------------------|
| 100 ccm H <sub>2</sub> O | 100 ccm H <sub>2</sub> O            |
| 0                        | 10 804                              |
| 6 08                     | 4 100                               |
| 15 37                    | 0 828                               |
| 24 69                    | 0 140                               |
| 31 02                    | 0 042                               |

(Girard, Bull Soc (2) 43 522)

1 l sat solution in H<sub>2</sub>O contains 105 7 K<sub>2</sub>SO<sub>4</sub> at 20°, in NH<sub>4</sub>OH+Aq (52% NH<sub>3</sub>), 452 g (Konowalow, J Russ Phys Chem Soc 1894, 31 985)

Solubility of K<sub>2</sub>SO<sub>4</sub> in KOH+Aq at 25°

| In 1000 g of the solution                          |                                                        |  |
|----------------------------------------------------|--------------------------------------------------------|--|
| Mols K <sub>2</sub> SO <sub>4</sub>                | Mols (KOH) <sub>2</sub>                                |  |
| 0 617<br>0 433<br>0 280<br>0 137<br>0 035<br>0 009 | 0 0<br>0 258<br>0 433<br>1 13<br>2 86<br>3 42<br>4 809 |  |

einer, Z anorg 1910, 67 **438**)

Sol in sat NH<sub>4</sub>Cl+Aq without pptn NH<sub>4</sub>Cl)

Sl sol in sat KCl+Aq without pptn 100 g sat KCl+Aq at 25° dissolve 0 0167 equiv K<sub>2</sub>SO<sub>4</sub> at 25° (Van't Hoff and Meyerhoffer Z phys Ch 1904 49 315)

Sl sol in sat KNO3+Aq without causing

11 of the solution contains 50 7 g K<sub>2</sub>SO<sub>4</sub>+ 216 5 g KNO<sub>8</sub>=267 2 g mixed salts at 15°

Sp gr  $K_2SO_4+KNO_8+Aq=1$  165 1 I of the solution contains 47 66 g K<sub>2</sub>SO<sub>4</sub> +308 5 g KNO<sub>3</sub>=356 2 g mixed salts at 25° Sp gr of K<sub>2</sub>SO<sub>4</sub>+KNO<sub>3</sub>+Aq=1 210 (Euler, Z phys Ch 1904, **49** 313)

See also under KNO<sub>8</sub>

Sol in sat NaNO<sub>3</sub>+Aq without causing pptn at first, but soon KNO<sub>3</sub> is pptd sten) (See NaNO3)

in (NH<sub>4</sub>) SO<sub>4</sub>+Aq with pptn of Sol (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (Rudorff, B 6 485)

 $(NH_4)_2SO_4$ )

More sol in aqueous solutions of other salts. as Na<sub>2</sub>SO<sub>4</sub>, MgSO<sub>4</sub>, CuSO<sub>4</sub>, etc, than in pure  $H_2O$  (Pfaff, A 99 227)

Sol in sat Na<sub>2</sub>SO<sub>4</sub>+Aq, MgSO<sub>4</sub>+Aq, NaCl+Aq (See MgSO<sub>4</sub> and NaCl)

Solubility of K<sub>2</sub>SO<sub>4</sub> in Na<sub>2</sub>SO<sub>4</sub>+Aq

| Temp                              | =34°                     | Temp                              | =60°                             |
|-----------------------------------|--------------------------|-----------------------------------|----------------------------------|
| % Na <sub>2</sub> SO <sub>4</sub> | % K.SO4                  | % Na <sub>2</sub> SO <sub>4</sub> | % K <sub>2</sub> SO <sub>4</sub> |
| 0<br>7 1<br>31 4<br>33 1          | 11 9<br>10 7<br>4 3<br>0 | 0<br>6 6<br>27 1<br>31 3          | 15 3<br>13 9<br>8 2<br>0         |

(Nacken, B A B 1910 1016)

100 g H<sub>2</sub>O sat with both K<sub>2</sub>SO<sub>4</sub> and Tl<sub>2</sub>SO<sub>4</sub> dissolve

474 g Tl<sub>2</sub>SO<sub>4</sub>+103 g K<sub>2</sub>SO<sub>4</sub> at 15° 62° 11 5 g +164g" 100° +26.2 g18 52 g (Rabe, Z anorg 1902, 31 156)

SI sol in sat ZnSO4 or CuSO4+Aq with separation of double salt 100 pts H<sub>2</sub>O dissolve 85+012t pts K<sub>2</sub>SO<sub>4</sub> On addition of a K salt, K<sub>2</sub>SO<sub>4</sub> is pptd The amount of K<sub>2</sub>SO<sub>4</sub> remaining in On addition of a K salt, K<sub>2</sub>SO<sub>4</sub> is solution plus the amt of K in the salt added is a constant (Blarez, C R 112 939)

## Solubility of $K_2SO_4+Th(SO_4)_2$ at 16° Solid phase, Th(SO<sub>4</sub>)<sub>2</sub>

| Pts per 100 pts H <sub>2</sub> O                                     |                                                                      | Pts per 10                                                  | 00 pts H <sub>2</sub> O                                     |
|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| K <sub>2</sub> SO <sub>4</sub>                                       | Th(SO <sub>4</sub> ) <sub>2</sub>                                    | K <sub>2</sub> SO <sub>4</sub>                              | Ih(SO4)2                                                    |
| 0 000<br>0 424<br>1 004<br>1 152<br>1 224<br>1 283<br>1 348<br>1 378 | 1 390<br>1 667<br>2 193<br>3 191<br>2 514<br>2 222<br>1 706<br>1 637 | 1 487<br>1 633<br>1 844<br>2 512<br>3 092<br>4 050<br>4 825 | 0 870<br>0 635<br>0 370<br>0 128<br>0 070<br>0 027<br>0 003 |

(Barre, C R 1911, 150 1555)

Difficultly sol in 20% K( $_2$ H<sub>3</sub>() + Aq (Stromeyer)

Solubility in K acetate + \q at 25°

| % Kacctate | % K 504 | H ()  |
|------------|---------|-------|
| 6 11       | 6 65    | 57 24 |
| 8 68       | 5 09    | 56 23 |
| 11 29      | 3 99    | 54 72 |
| 15 59      | 2 35    | 52 66 |
| 20 12      | 1 23    | 75 65 |
| 29 95      | 0 39    | 69 66 |

The solid phase in these solutions is K SO<sub>4</sub> (Fox, Chem Soc 1909, 95 55)

100 g hydroxylamine dissolve K<sub>2</sub>SO<sub>4</sub> at 17-18° (de Bruyn, Z phys Ch 1892, **10** 782)

| Easily sol in liquid anorg 1905 <b>46</b> 2)                                                                      | HF (Franklin, Z                                                                                                                | Solubility in orga | nic substa                                                                                              | ances+Aq                                                                                      | at 25°                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Insol in liquid NH<br>Ch J 1898, <b>20</b> 829)                                                                   | (                                                                                                                              | _                  | Composit                                                                                                | on of the so                                                                                  | olutions                                                                                                 |
| Neither dissolved no<br>NO <sub>2</sub> (Frankland, C.                                                            | r attacked by liquid<br>hem Soc 1901, <b>79</b>                                                                                | Organic substance  | % organic<br>substance                                                                                  | % K2SO4                                                                                       | % H•O                                                                                                    |
|                                                                                                                   | sp gr of which is nol increases with the 939 sp gr (53% by issolve at 60° 0 92 pts K <sub>2</sub> SO <sub>4</sub> h (4) 5 147) | Alcohol            | 1 35<br>4 80<br>7 80<br>9 70<br>12 34<br>14 51<br>15 26<br>20 50<br>26 91<br>35 97<br>43 90<br>69 26    | 9 17<br>6 90<br>4 96<br>4 32<br>3 57<br>2 71<br>2 66<br>1 83<br>0 97<br>0 41<br>0 22<br>0 016 | 89 48<br>88 30<br>87 24<br>85 98<br>84 09<br>82 78<br>82 08<br>77 67<br>72 12<br>63 62<br>55 88<br>30 72 |
| 10 20 3                                                                                                           | 56 0 21 pts K <sub>2</sub> SO <sub>4</sub> 118 362) acid+Aq at 25°                                                             | Pyridine           | 4 23<br>13 90<br>24 51<br>34 19<br>46 29<br>55 93                                                       | 7 95<br>4 77<br>2 75<br>1 47<br>0 45<br>0 12                                                  | 87 82<br>81 33<br>72 74<br>64 34<br>53 26<br>43 95                                                       |
| acetic acid Mol /Liter                                                                                            | Solubility of K <sub>2</sub> SO <sub>4</sub> Mol /Liter                                                                        |                    | 75 90                                                                                                   | 0 006                                                                                         | 24 09                                                                                                    |
| 0 000<br>0 070<br>0 137<br>0 328<br>0 578                                                                         | 0 6714<br>0 6619<br>0 6559<br>0 6350<br>0 6097                                                                                 | Ethylene glycol    | 3 16<br>9 89<br>18 47<br>32 11<br>49 03                                                                 | 9 67<br>7 69<br>5 74<br>3 57<br>1 83                                                          | 87 17<br>82 53<br>75 79<br>64 32<br>49 14                                                                |
| 1 151<br>2 183<br>(Rothmund and Wilsm                                                                             | 0 5556<br>0 4743<br>ore, Z phys Ch 1902,                                                                                       | Chloral hydrate    | 6 44<br>9 09<br>12 38                                                                                   | 9 13<br>8 41<br>7 79                                                                          | 84 43<br>82 50<br>79 83                                                                                  |
| 40 620) Solubility in phenol+Aq at 25°                                                                            |                                                                                                                                |                    | 13 20<br>22 07                                                                                          | 7 31<br>5 88                                                                                  | 79 49<br>72 05                                                                                           |
| Concentration of the phenol Mol/Liter                                                                             | Solubility of K <sub>2</sub> SO <sub>4</sub> Mol/Liter                                                                         |                    | 33 15<br>44 40<br>47 30                                                                                 | 4 54<br>3 36<br>2 92                                                                          | 62 31<br>52 24<br>49 78                                                                                  |
| 0 000<br>0 016<br>0 021<br>0 032                                                                                  | 0 6714<br>0 6650<br>0 6614<br>0 6598                                                                                           |                    | 62 82<br>70 28<br>80 36<br>85 26                                                                        | 2 00<br>1 75<br>1 40<br>1 08                                                                  | 35 18<br>27 97<br>18 24<br>13 66                                                                         |
| 0 040<br>0 047<br>0 064<br>0 076<br>0 127<br>0 152<br>0 236<br>0 252<br>0 308<br>0 409<br>0 464<br>0 486<br>0 495 | 0 6555<br>0 6522<br>0 6502<br>0 6494<br>0 6310<br>0 6251<br>0 6042<br>0 5956<br>0 5834<br>0 5572<br>0 5480<br>0 5425<br>0 5389 | Glycerol           | 8 96<br>13 36<br>20 34<br>24 15<br>33 73<br>40 40<br>43 52<br>50 18<br>57 22<br>67 94<br>78 18<br>98 28 | 7 69<br>6 47<br>5 83<br>4 44<br>3 65<br>3 38<br>2 69<br>2 07<br>1 53<br>0 98                  | 82 17<br>78 95<br>73 19<br>70 02<br>61 83<br>55 95<br>53 10<br>47 13<br>40 71<br>30 53<br>20 84<br>0 99  |
| 0 498 (saturated)  (Rothmund and Wilsn 40  100 g 95% formula  K <sub>2</sub> SO <sub>4</sub> at 21° (Asch         |                                                                                                                                |                    | 3 20<br>5 82<br>8 35<br>11 26<br>14 30<br>17 22                                                         | 2   10 07<br>6   9 61<br>6   9 19<br>0   8 66                                                 | 86 48<br>84 11<br>82 04<br>79 55<br>77 04<br>74 43                                                       |
| 1117)                                                                                                             |                                                                                                                                | l                  |                                                                                                         |                                                                                               |                                                                                                          |

#### Solubility in organic substances + Aq at 25° -Continued

|                   | Composi                                                    | tion of the s                                        | olutions                                                    |
|-------------------|------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|
| Organic substance | % organic<br>substance                                     | % K2SO4                                              | % H <sub>2</sub> O                                          |
| Sucrose           | 9 56<br>18 55<br>28 16<br>37 24<br>47 55<br>57 00          | 9 65<br>8 65<br>7 42<br>6 35<br>5 21<br>4 24         | 80 79<br>72 80<br>64 42<br>56 41<br>47 24<br>38 76          |
| Acetone           | 4 92<br>10 06<br>16 23<br>24 31<br>37 19<br>46 29<br>62 40 | 7 20<br>5 02<br>2 96<br>1 50<br>0 47<br>0 20<br>0 03 | 87 88<br>84 92<br>80 81<br>74 19<br>62 34<br>53 51<br>37 57 |

(Fox and Gage, Chem Soc 1910, 97 381)

Sol in 76 pts glycerine of 1 225 sp gr at dinary temp (Vogel, N Repert 16 557) ordinary temp (Krug and M'Elroy, Insol in acetone Eidman, C C 1899, II 1014)

Insol in CS<sub>2</sub> (Arctowski, Z anorg 1894, 6 257), benzonitrile (Naumann, B 1914, 47 1370), methyl acetate (Naumann, B 1909 42 3790) ethyl acetate (Naumann

> 5°, or 100 g sat solution con- $O_4+6674$  g sugar (Kohler, August and 1897, 47 447)

 $oldsymbol{\omega}$  G'aserrte  $+\frac{1}{2}H_2O$  100 pts  $H_2O$  dissolve 9 82 pts (Ogiei, C R **82** 1055)

Tripotassium hydrogen sulphate,  $K_3H(SO_4)_2$ Sol in H<sub>2</sub>O

Potassium hydrogen sulphate, KHSO<sub>4</sub> 107 pts KHSO<sub>4</sub> (=1 pt  $K_2S_2O_7$ ) dissolve

> $0^{\circ}$  in 2 95 pts  $H_2O$ 20° "2 08 " 40° "159 " " 100° " 0 88

(Kremers, Pogg 92 497)

Sp gr of KHSO<sub>4</sub>+Aq at 15° contuning 15 % KHSO4, 5 10 1 0726 1 0354 1 1116 25 27% KHSO<sub>4</sub>

1 1516 1 1920 1 2110

(Kohlrausch, W Ann 1879 1)

Sat solution boils at 1055° (Griffiths), 108° (Kremers)

Alcohol dissolves out H SO<sub>4</sub> K<sub>2</sub>SO<sub>4</sub> crystallises from dilute solutions 100 g 95% formic acid dissolve 146 g KHSO4 at 193° (Aschan, Ch Ztg 1913, 37 1117)

Insol in methyl acetate (Naumann B 1909, **42,** 3790) Mm *Misinite* 

 $+5\frac{1}{2}H_{2}O$ Deliquescent (Senderens. Bull Soc (3) 2 278)

Potassium dihydrogen sulphate, K<sub>4</sub>H<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub> Sol in H<sub>2</sub>O (Phillips, Phil Mag 1 429) Composition is  $4K_2O$ ,  $78O_3 + 3H_2O$ , according to Berthelot (A ch (4) 30 442)

Potassium trihydrogen sulphate, KH<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub> Sol in H<sub>2</sub>O with rise of temperature (Schultz, Pogg 133 137) +1½H<sub>2</sub>O (Lescœur, C R 78 1044)

Potassium disulphate (pyrosulphate),  $K_2S_2O_7$ When dissolved in exactly the necessary amount of hot H2O for solution, it crystallises on cooling without decomp Decomp by (Jacquelain, A ch 70 311) excess of H<sub>2</sub>O Insol in methyl acetate (Naumann, B 1909 **42** 3790)

### Potassium hydrogen disulphate, KHS<sub>2</sub>O<sub>7</sub>

Sol in fuming H<sub>2</sub>SO<sub>4</sub> without decomposi-

Potassium octosulphate, K<sub>2</sub>S<sub>8</sub>O<sub>25</sub> Decomp by H<sub>2</sub>O (Weber)

Potassium praseodymium sulphate, 3K<sub>2</sub>SO<sub>4</sub>,  $Pr_2(SO_4)_3 + H_2O$ Sl sol in H<sub>2</sub>O

Sol in conc HCl and HNO<sub>3</sub> (Von Scheele Z anorg 1898, 18 358)

Potassium rhodium sulphate, 3K<sub>2</sub>SO<sub>4</sub>.  $Rh_2(SO_4)_3$ 

Does not exist (I eidit, C R 107 234 )  $\rm K_2SO_4,\ Rh_2(SO_4)_3+24H_2O$  . Very sol in  $H_2O$  (Piccini, Z anorg 1901, **27** 66)

Potassium samarium sulphate, 9K SO<sub>4</sub>,  $2Sm_2(SO_4)_3 + 3H_2O$ 

Sl sol in H<sub>2</sub>O SI sol in sat K<sub>2</sub>SO<sub>4</sub>+Aq

11 sat K<sub>2</sub>SO<sub>4</sub>+Aq dissolves 0.5 g Sm<sub>2</sub>O<sub>3</sub> (Cleve, Bull Soc (2) 43 166)

Potassium scandium sulphate, 3k SO<sub>4</sub>,  $Sc_2(SO_4)_3$ 

Very slowly sol in cold, more easily sol m warm HoO Insol in sit K SO4+ Aq Sol in H<sub>2</sub>O and in dil K SO<sub>4</sub> + Aq (Meyer,

Z anorg 1914, 86 279) 2K<sub>2</sub>SO<sub>4</sub>, Sc<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> Sol in  $K SO_4 + Aq$ (Cleve)

Does not exist (Nilson)

Potassium sodium sulphate, 3K<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub> 100 pts H<sub>2</sub>O dissolve 40.8 pts at 103.5° (Penny, Phil Mag (4) 10 401)

5K<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub> 100 pts H O at 100° dissolve 25 pts , at 12 7°, 10 1 pts , at 4 4°, 92 pts (Gladstone, Chem Soc 6 111)

otassium strontium sulphate, K<sub>2</sub>Sr<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> (Rose Decomp bv  $(NH_4)_2CO_3+Aq$ 'ogg 93 604)

K<sub>2</sub>SO<sub>4</sub>, SrSO<sub>4</sub> This is the only double salt formed from these two components etween 0° and 100°

100 pts of the sat solution in equilibrium vith SrSO4 and the double salt contain at 17 5° 50° 75° 100°

1.27 188 271 39 pts K<sub>2</sub>SO<sub>4</sub> (Barre, C R 1909, 149 292)

Potassium tellurium sulphate, KHSO<sub>4</sub>, 2TeO<sub>2</sub>,  $SO_s + 2H_sO$ (Metzner, A ch 1898, (7) 15 203)

## Potassium terbium sulphate

Easily sol in H<sub>2</sub>O Sl sol in K<sub>2</sub>SO<sub>4</sub>+Aq Delafontaine, Zeit Chem (2) 2 230)

Potassium thallic sulphate, KTl(SO<sub>4</sub>)<sub>2</sub>+  $4H_{2}O$ 

Decomp by H<sub>2</sub>O Gazz ch (Fortini. t 1905, **35** (2) 453) 2K<sub>2</sub>O, Tl<sub>2</sub>O<sub>8</sub>, 4SO<sub>8</sub> Insol in H<sub>2</sub>O Verv lifficultly sol in warm dil H<sub>2</sub>SO<sub>4</sub>+Aq Strecker, A **135** 207)

Potassium thorium sulphate, K<sub>2</sub>SO<sub>4</sub>, Th(SO<sub>4</sub>)<sub>2</sub> +4H<sub>2</sub>O

Sol in hot H<sub>2</sub>O containing a few drops HCl (Barre, A ch 1911, (8) **24** 227) 2K<sub>2</sub>SO<sub>4</sub>, Th(SO<sub>4</sub>)<sub>2</sub>+2H<sub>2</sub>O Slowly sol in

Slowly sol in old, easily and abundantly in hot H2O, and is gradually decomp by boiling sol in acids Insol in alcohol (Berzelius)  $3.5K_2SO_4$ , Th(SO<sub>4</sub>)<sub>2</sub> Insol in  $K_2SO_4+Aq$ 

of con entrations above 45% (Barre)  $4K_2SO_4$ ,  $Th(SO_4)_2 + 2H_2O$ (Chydenius)

Potassium tin (stannous) sulphate, K<sub>2</sub>SO<sub>4</sub>,  $SnSO_4$ 

(Marignac)

Potassium tin (stannic) sulphate, K<sub>2</sub>Sn(SO<sub>4</sub>)<sub>3</sub>

Easily sol in H<sub>2</sub>O with decomp

Sol in HCl (Weinland, Z anorg 1907, **54** 250)

Potassium tin (stannous) sulphate chloride, 4K<sub>2</sub>SO<sub>4</sub>, 4SnSO<sub>4</sub>, SnCl<sub>2</sub>

Can be recrystallised from H<sub>2</sub>O (Marignæc, Ann Min (5) 12 62)

Potassium titanium sulphate, K<sub>2</sub>SO<sub>4</sub>, T<sub>1</sub>(SO<sub>4</sub>)<sub>2</sub> +3H<sub>2</sub>O

Difficultly sol in H<sub>2</sub>O or HCl+Aq Decomp by much H<sub>2</sub>O (Wallace, Pogg 102

Potassium titanyl sulphate, 2K<sub>2</sub>SO<sub>4</sub>, 3T<sub>1</sub>O, SO<sub>4</sub>+10H<sub>2</sub>O

Very sol in H2O with decomp Insol in conc H<sub>2</sub>SO<sub>4</sub> (Rosenheim, Z anorg 1901, **26** 251

hygro-K<sub>2</sub>SO<sub>4</sub>, TiO<sub>2</sub>SO<sub>4</sub>+7H<sub>2</sub>O Scopic and sol in H<sub>2</sub>O (Mas Pontanelli, C C 1909, II 420) Verv (Mazzuchelli and K<sub>2</sub>SO<sub>4</sub>,(TiO)SO<sub>4</sub> (Spence, C C 1901, II

Potassium uranous sulphate, K2SO4, U(SO4)2  $+H_{*}O$ 

Very sl sol in  $H_2O$  (Rammelsberg)

Potassium uranyl sulphate, K2SO4, (UO2)SO4 +2H<sub>2</sub>O

Sol in 9 pts H<sub>2</sub>O at 22° and in O 51 pt at 100° Insol m alcohol (Ebelmen, A ch (3) 5 211)

100 pts of aqueous solution sat at 25° contain 10 5 pts salt, at 70 5° contain 23 93 pts salt (Rimbach, B 1904, **37.** 478) +3H<sub>2</sub>O (de Coninck, Chem Soc 1905,

88 (2) 394

 $2K_2SO_4$ ,  $(UO_2)SO_4 + 2H_2O$ Decomp H<sub>2</sub>O

Cannot be cryst from rather conc H2SO4, (Rumbach, as it is completely decomp by it

B 1905, **38** 1572)

K<sub>2</sub>O, 2UO<sub>2</sub>, 3SO<sub>3</sub> Ppt Identical with UO<sub>2</sub>, OK, SO<sub>3</sub>H of Scheller, (A 1867, **144** 238) (Kohlschutter, A, 1900, **311**, 11)

H<sub>2</sub>O Identical with

Sol in H<sub>2</sub>O  $2K_2SO_4$ ,  $3(UO_2)SO_4 + H_2O$ Insol in alcohol (Berzehus)

Does not exist (Ebelmen)

Potassium vanadium sulphate,  $K_2O$ ,  $2SO_3+6H_2O=K(VO_2)SO_4+3H_2O$ 

(Friedheim, B 24 1183) =KVO<sub>3</sub>, K<sub>2</sub>SO<sub>4</sub>, V<sub>2</sub>O<sub>5</sub>, 2SO<sub>3</sub>+9I Munzing (Berlin, Dissert **1889**). K<sub>2</sub>SO<sub>4</sub>, VSO<sub>4</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O  $2SO_3 + 9H_2O$  of

(Pic-

cını, Z anorg 1902, **32** 61) K<sub>2</sub>V<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+24H<sub>2</sub>O 10 100 pts H<sub>2</sub>O dis-Sp gr of sat solve 1984 pts salt at 10° solution at 4°/20°=1782 (Piccini, Z anorg 1897, **13** 446)

# Potassium vanadyl sulphate,

 $K_2SO_4$ ,  $(VO)_2(SO_4)_8$ 

1903, 35 174)

Very slowly sol in H<sub>2</sub>O, still less sol in dil alcohol (Gerland)

 $K_2SO_4$ ,  $VOSO_4 + 3H_2O$ Easily sol in H<sub>2</sub>O  $H_2SO_4$ (Koppel, Sol in alcohol+conc

Z anorg 1903, **35**, 178) K<sub>2</sub>SO<sub>4</sub>, 2VOSO<sub>4</sub> Very hygroscopic Very sol in  $H_2O$  but goes into solution slowly (Koppel and Behrendt, B 1901, 34 3935) Easily sol in H<sub>2</sub>O (Koppel, Z anorg

Potassium yttrium sulphate, 4K2SO4,

 $\mathbf{Y}_2(\mathrm{SO}_4)_8$ Sol in 16 pts cold H<sub>2</sub>O, and in 10 pts sat K<sub>2</sub>SO<sub>4</sub>+Aq, and more abundantly if the latter solution contains ammonium salts or free (Berlin) acıd

 $3K_2SO_4$ ,  $2Y_2(SO_4)_8$ 100 ccm cold sat K<sub>2</sub>SO<sub>4</sub>+Aq dissolve an amount of this salt corresponding to 4 685 g Y<sub>2</sub>O<sub>3</sub> (Cleve)

## Potassium zinc sulphate, K<sub>2</sub>SO<sub>4</sub>, ZnSO<sub>4</sub>+ $6H_{2}O$

Sol in 5 pts cold H2O (Bucholz N J Pharm 9 2 26)

100 pts H<sub>2</sub>O dissolve at 10° 15° 25° 36°

126 187 225 288 399 pts hydrous salt,

58° 65° 70° 45° 50° 51 2 54 0 67 6 81 3 87 9 pts hydrous salt (Tobler, A 95 193)

100 pts H<sub>2</sub>O at 15° dissolve 148 pts K<sub>2</sub>SO<sub>4</sub>, ZnSO<sub>4</sub>+6H<sub>2</sub>O, sp gr of sat H<sub>2</sub>O solution at (Schiff, A 109 326)  $15^{\circ} = 10939$ dissolves 1319 g anhydrous (Locke, Am Ch J 1902, 27 1 1 H<sub>2</sub>O**459**)

Potassium zirconium sulphate, 2K<sub>2</sub>O, 6ZrO<sub>2</sub>,  $7SO_3+9H_2O$ 

Decomp by H<sub>2</sub>O

3K<sub>2</sub>O, 3ZrO<sub>2</sub>, 7SO<sub>3</sub>+9H<sub>2</sub>O Insol in H<sub>2</sub>O Zr<sub>2</sub>O<sub>3</sub>(KSO<sub>4</sub>)<sub>2</sub>+8H<sub>2</sub>O Ppt (Rosenheim, B 1905, 38 815)

## Potassium sulphate vanadate

Very difficultly sol in H<sub>2</sub>O Insol in alcohol (Berzelius)

Potassium sulphate antimony trifluoride See Antimony trifluoride potassium sulphate

Praseodymium sulphate, basic, (PrO)<sub>2</sub>SO<sub>4</sub> Insol in H<sub>2</sub>O (Matignon, C R 1902, **134** 660)

Insol in H<sub>2</sub>O Nearly insol in dil acids (Wohler, B 1913, 46 1730)

## Praseodymium sulphate, Pr<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>

Sol in H<sub>2</sub>O, very hydroscopic 23 64 pts are sol in 100 pts H2O at 0° and 177 pts at 20° ° (von Scheele, Z anorg 1898, 18 357-358)

+5H<sub>2</sub>OSol in H<sub>2</sub>O (von Scheele, Z

anorg 1898, 18 357)

Difficultly sol in H<sub>2</sub>O (Kraus, Zeit

Kryst 1901, 34 400)

150 pts Pr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> are sol in 100 pts H<sub>2</sub>O , 1 45 pts at 90°, and 1 02 pts at 95° (Muthmann and Rolig, B 1898, **31** 1729) +8H<sub>2</sub>O (Kraus, Zeit Kryst 1901, **34** 406)

Sol in H<sub>2</sub>O (von Scheele, Z anorg 1898,

**18** 357)

| Solubility in H <sub>2</sub> O at t |                                                     |  |
|-------------------------------------|-----------------------------------------------------|--|
| , t                                 | Pts Pr <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> |  |
| 0<br>18<br>35<br>55<br>75           | 19 79<br>14 10<br>10 31<br>7 09<br>4 13             |  |

Calubulator on III () at to

(Muthmann and Rolig, B 1898, 31 1727)

 $+15\frac{1}{2}H_2O$  Sol in  $H_2O$ (von Scheele Z anorg 1898, 18 357)

## Praseodymum hydrogen sulphate, Pr(SO<sub>4</sub>H)

(Brauner, Z anorg 1904, 38 330) Solubility in boiling conc H<sub>2</sub>SO<sub>4</sub> 100 g of the solution contain 102 g of the aci sulphate (Matignon, C R 1902, 134 659

### Radium sulphate

Less sol in H<sub>2</sub>O than corresponding B comp (Curie, Dissert 1903)

## Rhodium sulphate, $Rh_2(SO_4)_3+12H_2O_1$

Easily sol in H<sub>2</sub>O (Berzelius) Sl sol in, but not decomp by H2O whe not more than 16 pts H<sub>2</sub>O are present to pt salt Decomp by hot H2O to-

Rh<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, Rh<sub>2</sub>O<sub>3</sub> Insol in H<sub>2</sub>O (Leidić C R 107 234)

Rhodium rubidium sulphate,  $Rh_2(SO_4)$  $Rb_2SO_4 + 24H_2O$ 

Sol in H<sub>2</sub>O, m-pt, 108-109° (Piccin Z anorg 1901, 37 65)

Rhodium thallium sulphate, Rh<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, Tl<sub>2</sub>SO +24H<sub>2</sub>O Very sol  $H_2O$  (Piccini, Z anorg 1901 37 69)

# Rhodium sodium sulphate, Rh2Na2(SO4)4

Insol in H<sub>2</sub>SO<sub>4</sub> or aqua regia (Seuber and Kobbe, B 23 2560)

### Rubidium sulphate, Rb<sub>2</sub>SO<sub>4</sub>

100 pts H<sub>2</sub>O dissolve 42 4 pts at 10 (Bunsen)

100 cc H<sub>2</sub>O at 17-18° dissolve 447 g Rb<sub>2</sub>SO<sub>4</sub> (Tutton, Chem Soc 1894, 65 632 Sat Rb<sub>2</sub>SO<sub>4</sub>+Aq contains at

> $3^{\circ}$ 20° 32 5% Rb<sub>2</sub>SO<sub>4</sub>,

37° [97° 170° 37 3 43 9 49 2% Rb<sub>2</sub>SO<sub>4</sub> (Étard, A ch 1894, (7) 2 550)

| Solubility of Rb <sub>2</sub> SO <sub>4</sub> in H <sub>2</sub> O at t° |                                              |                                              |                                       |                                              |                                              |
|-------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------------|
| t°                                                                      | g Rb <sub>2</sub> SO <sub>4</sub> per 100 g  |                                              | to                                    | g Rb <sub>2</sub> SO                         | per 100 g                                    |
|                                                                         | H₂O                                          | solution                                     |                                       | H₂O                                          | solution                                     |
| 0<br>10<br>20<br>30<br>40<br>50                                         | 36 4<br>42 6<br>48 2<br>53 5<br>58 5<br>63 1 | 27 3<br>29 9<br>32 5<br>34 9<br>36 9<br>38 7 | 60<br>70<br>80<br>90<br>100<br>102 4* | 67 4<br>71 4<br>75 0<br>78 7<br>81 8<br>82 6 | 40 3<br>41 7<br>42 9<br>44 0<br>45 0<br>45 2 |

\*B-pt at 7424 mm

(Berkeley, calc by Seidell, Solubilities, 2nd Ed, p 587)

Sp gr of Rb<sub>2</sub>SO<sub>4</sub>+Aq sat at 10°=1 2978 (Erdmann, Arch Pharm 1894, **232** 16) G-equiv salt per l. at 18°= 0 501 101 Sp gr 6°/6° 105587 1 11047 "18°/18° 105496 1 10896 "30°/30° 1 05433 1 10810

G -equiv salt per l at 18° = 2 043 3 168 Sp gr 6°/6° 1 21888 1 33276 " 18°/18° 1 21613 1 32912 " 30°/30° 1 21443 1 32750 (Clausen, W Ann 1914, (4) 44 1071)

10 ccm of sat Rb<sub>2</sub>SO<sub>4</sub>+absolute H<sub>2</sub>SO<sub>4</sub> contain approx 5 881 g Rb<sub>2</sub>SO<sub>4</sub> (Bergius, Z phys Ch 1910, 72 355)

Insol in methyl acetate (Naumann, B 1909, **42** 3790), acetone (Naumann, B 1904, **37** 4329, Eidmann, C C **1899**, II 1014)

Rubidium pyrosulphate, Rb<sub>2</sub>S<sub>2</sub>O<sub>7</sub> Decomp by H<sub>2</sub>O

Rubidium octosulphate, Rb<sub>2</sub>S<sub>8</sub>O<sub>25</sub> Decomp by H<sub>2</sub>O (Weber, B **17** 2497)

Rubidium hydrogen sulphate, RbHSO<sub>4</sub> Sol in H<sub>2</sub>O

Rubidium tin (stannic) sulphate,  $Rb_2Sn(SO_4)_8$ Decomp by  $H_2O$  Sol in HCl (Weinland, Z anorg 1907, **54** 250)

Rubidium thallic sulphate, RbTI(SO<sub>4</sub>)<sub>2</sub> (Marshall, C C 1902, II 1089) +4H<sub>2</sub>O (Fortini, Gazz ch it 1905, 35 (2) 455)

Rubidium thorium sulphate,  $Rb_2SO_4$ ,  $Th(S_4O)_2 + 2H_2O$ 

Sl sol in  $H_2O$  (Manuelli, Gazz ch it 1903, 32 (2) 523)

Rubidium titanium sulphate,  $Rb_2SO_4$ ,  $Tl_2(SO_4)_3+24H_2O$ 

Sol in  $\rm H_2O$  acidified with  $\rm H_2SO_4$  Decomp in neutral aq solution (Piccini, Z anorg 1898, 17 359)

Insol in  $H_2O$  Sol in HCl Insol in  $H_2SO_4$  Decomp by boiling with cone  $H_2SO_4$  (Stahler, B 1905, **38** 2623)

Rubidium uranyl sulphate,  $\mathrm{Rb_2(UO_2)(SO_4)_2} + 2\mathrm{H_2O}$ 

Somewhat less sol in  $H_2O$  than K salt (Rimbach, B 1904, **37** 479)

Rubidium vanadium sulphate,  $Rb_2V_2(SO_4)_4+24H_2O$ 

0 177 gram mols of anhydrous salt are sol in 1 l  $\rm H_2O$  (Locke, Am Ch J 1901, 26 175)

Insol in H<sub>2</sub>O

Insol in H<sub>2</sub>SO<sub>4</sub> Decomp by boiling with conc H<sub>2</sub>SO<sub>4</sub>

Sol in HCl (Stahler, B 1905, **38** 3980) 100 pts H<sub>2</sub>O dissolve 2 56 pts salt at 10° Sp gr of solution at 4°/20°=1 915 (Piccini, Z anorg 1897, **13** 446)

Rubidium zinc sulphate, Rb<sub>2</sub>SO<sub>4</sub>, ZnSO<sub>4</sub>+ 6H<sub>2</sub>O

Sol in  $H_2O$  (Bunsen and Kopp, Pogg 113 337) 1 1  $H_2O$  dissolves 101 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Rubidium zirconium sulphate, Zr<sub>2</sub>O<sub>3</sub>, (RbSO<sub>4</sub>)<sub>2</sub>+15H<sub>2</sub>O

Ppt (Rosenheim, B 1905, **38** 815)

Ruthenic sulphate, Ru(SO<sub>4</sub>)<sub>2</sub>

Deliquescent, and easily sol in  $\rm H_2O$  (Claus, A 59 246 )

Samarium sulphate, basic, (SmO)<sub>2</sub>SO<sub>4</sub>

Insol in H<sub>2</sub>O and in cold dil H<sub>2</sub>SO<sub>4</sub> (Matignon, C R 1905, **141** 1231)

Samarium sulphate, Sm<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+8H<sub>2</sub>O

Difficultly sol in  $H_2O$ Much less sol than  $D_{12}(SO_4)_3+8H_2O$ (Cleve)

205 pts anhydrous salt are sol in 100 pts H<sub>2</sub>O at 25° (Keyes and James, J Am Chem Soc 1914, 36 635)

100 g  $Sm_2(SO_4)_3+Aq$  sat at 25° contain 3 426 g anhvd  $Sm_2(SO_4)_3$  (Wirth, Z anorg 1912, **76** 174)

Solubility in  $H_2SO_4+Aq$  at 25°  $n = \text{equiv g of } H_2SO_4$  in 1 l of solvent  $c = g \text{ Sm}_2O_3$  in 100 g of solution  $c_1 = g \text{ Sm}_2(SO_4)_3$  in 100 g of solution

| n                        | С              | C1                               | n                                                      | е                       | C1                        |
|--------------------------|----------------|----------------------------------|--------------------------------------------------------|-------------------------|---------------------------|
| 0<br>0 1<br>0 505<br>1 1 | 2 038<br>1 985 | 3 426<br>3 441<br>3 352<br>3 075 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 1 43<br>0 416<br>0 0656 | 2 416<br>0 7025<br>0 1107 |

(Wirth, Z anorg 1912, 76 174)



and James, J Am Chem Soc 1914, 36 637)

Solubility in Na<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| Pts Na <sub>2</sub> SO <sub>4</sub><br>per 100 pts<br>H <sub>2</sub> O | Pts Sm2(SO4)8<br>per 100 pts<br>H2O | Solid phase                                                                                            |
|------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------|
| $\begin{smallmatrix}0&1\\0&5\end{smallmatrix}$                         | 2 0<br>0 11                         | $\mathrm{Sm}_2(\mathrm{SO}_4)_8$                                                                       |
| 19                                                                     | 0 03                                | 2Sm <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> , 3Na <sub>2</sub> SO <sub>4</sub> +6H <sub>2</sub> O |
| 6 44<br>7 00                                                           | 0 016                               | 66                                                                                                     |
| 9 02                                                                   | 0 016                               | c e                                                                                                    |
| 10 51                                                                  | 0 012                               | et.                                                                                                    |
| 11 48<br>13 58                                                         | 0 012                               | "                                                                                                      |
| 14 71                                                                  | 0 010<br>0 010                      | ""                                                                                                     |
| 14 47                                                                  | 0 009                               | **                                                                                                     |
| 20 02                                                                  | 0 012                               | "                                                                                                      |
| 23 42                                                                  | 0 012                               | "                                                                                                      |
| 23 68<br>25 93                                                         | 0 018<br>0 015                      | "                                                                                                      |
| 27 40                                                                  | 0 011                               | и                                                                                                      |

These results seem to indicate that there is only one double salt formed by the union of  $Sm_2(SO_4)_3$  with  $Na_2SO_4$  Formula of this salt is  $2Sm_2(SO_4)_3$ ,  $3Na_2SO_4$ ,  $6H_2O$ 

(Keyes and James, J Am Chem Soc 1914, 36 635)

Samarium hydrogen sulphate, Sm(HSO<sub>4</sub>)<sub>8</sub>
Sl sol in H<sub>2</sub>O (Matignon, C R 1905,

141 1230)
Ppt (Brauner, Z anorg 1904, 38 331)

Samarium sodium sulphate,  $Sm_2(SO_4)_3$ ,  $Na_2SO_4+2H_2O$ 

Sl sol in sat  $Na_2SO_4+Aq$  (Cleve, Bull Soc (2) 43 166)

2Sm<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 3Na<sub>2</sub>SO<sub>4</sub>+6H<sub>2</sub>O Only double salt formed at 25° (Keyes and James, J Am Chem Soc 1914, **36** 365)

Scandium sulphate, basic, Sc<sub>2</sub>O(SO<sub>4</sub>)<sub>2</sub>

(Crookes, Roy Soc Proc 1908, 80 A, 518)

Scandium sulphate, Sc<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>

Anhydrous Easily sol in H<sub>2</sub>O +2H<sub>2</sub>O

 $+5\overline{H}_2^{\circ}$ O, 54 61 g of pentahydrate are sol in 100 cc  $H_2$ O at 25° (Wirth, Z anorg 1914, 87 10)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| H <sub>2</sub> SO <sub>4</sub> +Aq | g Sc <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> in<br>100 g of the solution |
|------------------------------------|-------------------------------------------------------------------------------|
| 0 00                               | 28 52                                                                         |
| 0 5-n                              | 29 29                                                                         |
| 1 0-n                              | 19 87                                                                         |
| 4 86-n                             | 8 363                                                                         |
| 9 73-n                             | 1 315                                                                         |

In 22 35-n  $H_2SO_4$  the solid phase is  $Sc_2(SO_4)_3$ ,  $3H_2SO_4$  and 100 g sat solution contain 0 484 g  $Sc_2(SO_4)_3$ 

(Wirth, Z anorg 1914, 87 10)

 $+6\mathrm{H}_2\mathrm{O}$  Extremely sol in  $\mathrm{H}_2\mathrm{O}$ , but not deliquescent

Scandrum hydrogen sulphate, Sc<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+3H<sub>2</sub>O (Wirth)

Scandium sodium sulphate,  $Sc_2(SO_4)_3$ ,  $3Na_2SO_4+12H_2O$ 

Sol in H<sub>2</sub>O (Cleve)

 $+10\mathrm{H}_2\mathrm{O}$  Sol in  $\mathrm{H}_2\mathrm{O}$  and in excess of Na<sub>2</sub>SO<sub>4</sub>+Aq (Meyers, Z anorg 1914, **86** 279)

Silver (argentoargentic) sulphate, Ag<sub>4</sub>SO<sub>4</sub>, Ag<sub>2</sub>SO<sub>4</sub>+H<sub>2</sub>O

Gradually sol in conc, but not attacked by dil, HNO<sub>3</sub>+Aq Not attacked by hot conc H<sub>2</sub>SO<sub>4</sub> (Lea, Sill Am J **144** 322)

Silver sulphate, Ag<sub>2</sub>SO<sub>4</sub>

Sol in 200 pts cold and less than 100 pts boiling H<sub>2</sub>O (Wittstein)

Sol in 88 pts boiling H<sub>2</sub>O \(\text{in 87 25}\)
pts boiling H<sub>2</sub>O (Wenzel) in \(\text{II}\) at 100° (Kremers)

100 pts H<sub>2</sub>O at 15.5° dissolve 1.15 pts A<sub>L</sub> SO<sub>4</sub> (Ures D<sub>1</sub> ct)
Sol in 160 pts H<sub>2</sub>O at 18.75° (Abl.)

11 H<sub>2</sub>O dissolves 2 57×10 <sup>2</sup>g -mol Ag<sub>2</sub>SO<sub>4</sub> at 25° (Drucker, Z anorg 1901, **28** 362)
11 H<sub>2</sub>O dissolves 7 707 g Ag<sub>2</sub>SO<sub>2</sub> at 17°

1 1 H<sub>2</sub>O dissolves 7 707 g Ag<sub>2</sub>SO<sub>4</sub> at 17° (Euler, Z phys Ch 1904, **49** 314)

1 l H<sub>2</sub>O dissolves 0 0267 mol Ag<sub>2</sub>SO<sub>4</sub> at 25° (Rothmund, Z phys Ch 1909, **69** 539) 1 l H<sub>2</sub>O dissolves 8 35 g Ag<sub>2</sub>SO<sub>4</sub> at 25°

(Hill and Simmons, Z phys Ch 1909, 67 603)

1 1 H<sub>2</sub>O dissolves 8 344 g Ag<sub>2</sub>SO<sub>4</sub> at 25° Sp gr of solution=1 0052 (Harkins, J Am Chem Soc 1911, **33** 1812)

Solubility in H<sub>2</sub>O at t°

| Solubility                      | y in H <sub>2</sub> O at t                                        |
|---------------------------------|-------------------------------------------------------------------|
| t°                              | Pts Ag <sub>2</sub> SO <sub>4</sub> in 100 pts of<br>the solution |
| 14 5<br>33<br>51 5<br>75<br>100 | 0 730<br>0 909<br>1 062<br>1 237<br>1 393                         |

### (Barre, A ch 1911, (8) 24 211)

More sol in  $\rm H_2SO_4+Aq$  than in pure  $\rm H_2O$  Still more sol in  $\rm HNO_3+Aq$  and still more in conc  $\rm H_2SO_4$ , from which it is pptd by  $\rm H_2O$  (Schnaubart)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| ½H₂SO₄+Aq                    | Solubility of Ag <sub>2</sub> SO <sub>4</sub>                                                                               |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Normality                    | g mol per litre                                                                                                             |
| 0 02<br>0 04<br>0 10<br>0 20 | $\begin{array}{c} 2\ 60\times 10^{\ 2} \\ 2\ 64\times 10^{\ 2} \\ 2\ 71\times 10^{\ 2} \\ 2\ 75\times 10^{\ 2} \end{array}$ |

(Drucker, Z anorg 1901, 28 362)

Solubility of Ag<sub>3</sub>SO<sub>4</sub> in acids+Aq at 25° C=concentration of acid in acid+Aq in milliequivalents per l

S = Solubility of  $Ag_2SO_4$  in acid+Aq in

milliequivalents per l

| Acid                            | С                               | s                                |
|---------------------------------|---------------------------------|----------------------------------|
| HNO₃                            | 0 0<br>15 89<br>31 78<br>63 57  | 53 98<br>59 86<br>65 32<br>75 90 |
| H <sub>2</sub> S() <sub>4</sub> | 0 0<br>29 02<br>58 02<br>105 26 | 53 98<br>54 88<br>55 64<br>56 82 |
| // I A                          | Cham Sag                        | 1011 33 1814)                    |

(Swan, J Am Chem Soc 1911, 33 1814

| Solubility in 111103 Trd at 20                                          |                                                                             |                                                                             |  |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Normality HNO3                                                          | Sp gr of the solution                                                       | g Ag2SO4<br>dissolved per l                                                 |  |  |
| 0 000<br>1 0046<br>2 0452<br>4 017<br>4 209<br>5 564<br>8 487<br>10 034 | 1 0054<br>1 061<br>1 1069<br>1 1871<br>1 1956<br>1 2456<br>1 3326<br>1 3676 | 8 350<br>34 086<br>49 010<br>71 166<br>73 212<br>84 609<br>94 671<br>90 806 |  |  |

(Hill and Simmons, Z phys Ch 1909, 67

Sol in NH4OH, and (NH4)2CO3+Aq

100 pts  $H_2O$  dissolve 0.58 pt at 18° 100 pts  $(NH_4)_2SO_4+Aq$  (15%) dissolve 0.85 pt  $Ag_2SO_4$  at 18° Other sulphates have little effect. (Edgr. I. pr. (2) 17.44)

Determinations of the solubility of Ag<sub>2</sub>SO<sub>4</sub> in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> at temp between 16 5° and 100° show that no double salt is formed by these two sulphates (Étard, A ch 1911, (8) 24. 221)

# Solubility of Ag<sub>2</sub>SO<sub>4</sub> in $(NH_4)_2SO_4+Aq$ G per 100 g $H_2O$

| ı                                                                   | G per 10                                                             | og H₂O                                                              |                                                                      |
|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                     | Ag.SO4                                                               | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                     | Ag SO4                                                               |
| Temp =33°                                                           |                                                                      | Temp                                                                | =51°                                                                 |
| 8 85<br>15 90<br>22 22<br>27 25<br>30 80<br>35 88<br>39 46<br>43 22 | 1 101<br>1 331<br>1 500<br>1 585<br>1 619<br>1 627<br>1 600<br>1 557 | 8 90<br>16 27<br>22 43<br>32 10<br>35 38<br>39 03<br>42 37<br>45 05 | 1 362<br>1 680<br>1 887<br>2 061<br>2 095<br>2 082<br>2 055<br>2 026 |
| Temp =75°                                                           |                                                                      | Temp                                                                | =100°                                                                |
| 8 80<br>15 23<br>22 30<br>28 25<br>32 00<br>35 82<br>41 16<br>46 46 | 1 758<br>2 155<br>2 490<br>2 734<br>2 823<br>2 889<br>2 929<br>2 902 | 9 23<br>15 00<br>22 01<br>27 00<br>34 90<br>38 70<br>44 15<br>47 63 | 2 221<br>2 626<br>3 075<br>3 325<br>3 663<br>3 772<br>3 854<br>3 867 |
| 1                                                                   |                                                                      |                                                                     |                                                                      |

(Barre, A ch 1911, (8) 24 149, 202, 210)

# Solubility of Ag<sub>2</sub>SO<sub>4</sub> in K<sub>2</sub>SO<sub>4</sub>+Aq G per 100 g H<sub>2</sub>O

| K SO <sub>4</sub>                               | Ag SO4                                             | K2SO4                                           | Ag <sub>2</sub> SO <sub>4</sub>                    |
|-------------------------------------------------|----------------------------------------------------|-------------------------------------------------|----------------------------------------------------|
| Temp =33°                                       |                                                    | Temp                                            | =51°                                               |
| 3 22<br>5 62<br>8 37<br>10 41<br>11 80          | 0 863<br>0 940<br>1 046<br>1 117<br>1 177          | 3 20<br>5 61<br>8 40<br>10 55<br>13 16<br>14 37 | 1 023<br>1 127<br>1 247<br>1 340<br>1 450<br>1 524 |
| Temp =75°                                       |                                                    | Temp                                            | =100                                               |
| 3 12<br>5 73<br>8 43<br>10 55<br>13 17<br>17 06 | 1 273<br>1 406<br>1 554<br>1 665<br>1 806<br>2 021 | 3 23<br>5 60<br>8 45<br>11 30<br>15 07<br>18 58 | 1 488<br>1 675<br>1 890<br>2 115<br>2 410<br>2 677 |
|                                                 |                                                    | (0) 04 140                                      | 000 010 1                                          |

(Barre, A ch 1911, (8) 24 149, 202, 210)

| Solubility in K <sub>2</sub> SO <sub>4</sub> +Aq at 25° |                                               |  |
|---------------------------------------------------------|-----------------------------------------------|--|
| 1/2K2SO4+Aq                                             | Solubility of Ag <sub>2</sub> SO <sub>4</sub> |  |
| Normality                                               | g mol per litre                               |  |
| 0 02                                                    | 2 46×10 <sup>-2</sup>                         |  |
| 0 04                                                    | 2 36×10 <sup>-2</sup>                         |  |
| 0 10                                                    | 2 31×10 <sup>-2</sup>                         |  |
| 0 20                                                    | 2 32×10 <sup>-2</sup>                         |  |

(Drucker, Z anorg 1901, 28 362)

Solubility in Na<sub>2</sub>SO<sub>4</sub>+Aq at t°

| Solubility in Na <sub>2</sub> SO <sub>4</sub> +Aq at t° |                                                                                        |                                                                                                 |  |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| t° -                                                    | Ag <sub>2</sub> SO <sub>4</sub> in<br>100 pts H <sub>2</sub> O                         | Na <sub>2</sub> SO <sub>4</sub> in<br>100 pts H <sub>2</sub> O                                  |  |  |
| 14 5                                                    | 0 741<br>0 904<br>1 003                                                                | 5 278<br>10 103<br>13 045                                                                       |  |  |
| 33                                                      | 0 972<br>1 150<br>1 320<br>1 448<br>1 548<br>1 570<br>1 549<br>1 462<br>1 199<br>0 932 | 5 345<br>10 056<br>15 185<br>20 093<br>25 412<br>29 556<br>34 732<br>39 447<br>44 693<br>46 976 |  |  |
| 51                                                      | 1 173<br>1 377<br>1 572<br>1 705<br>1 787<br>1 802<br>1 727<br>1 540<br>1 188<br>0 882 | 5 407<br>10,116<br>15 146<br>20 247<br>25 196<br>29 230<br>34 625<br>39 302<br>42 914<br>44 464 |  |  |
| 75                                                      | 1 458<br>1 697<br>1 934<br>2 075<br>2 161<br>2 138<br>1 910<br>1 603<br>1 156          | 5 368<br>9 813<br>15 260<br>19 978<br>25 556<br>29 662<br>35 278<br>38 944<br>41 365            |  |  |
| 100 Up to 33°,                                          | 1 651<br>2 012<br>2 312<br>2 351<br>2 260<br>2 012<br>1 687<br>1 158                   | 5 336<br>10 153<br>15 532<br>25 451<br>29 714<br>34 718<br>38 635<br>40 160                     |  |  |
| $\mathbb{L}^{D}$ to 33°,                                | the solubility                                                                         | of Ag <sub>2</sub> SO <sub>4</sub> in                                                           |  |  |

Up to 33°, the solubility of Ag<sub>2</sub>SO<sub>4</sub> m N<sub>82</sub>SO<sub>4</sub>+Aq increases with the concentration of Na<sub>2</sub>SO<sub>4</sub>, above 33° the solubility of Ag<sub>2</sub>SO<sub>4</sub> rises to a maximum at a certain concentration of NaSO<sub>4</sub> dependent on the temp The

solubility curves for various temp all end at a concentration of 40% Na<sub>2</sub>SO<sub>4</sub>, that is, the mixed crystals formed at this concentration are equally sol at all temp

(Barre, C R 1910, 150 1323)

Solubility in Na<sub>2</sub>SO<sub>4</sub>+Aq at t°

| t°                                                                                                                                                                                                                 | Solubility in Na <sub>2</sub> SO <sub>4</sub> +Aq at t° |                                                                                       |                                                                                                 |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| Na <sub>2</sub> SO <sub>4</sub> Ag <sub>2</sub> SO <sub>4</sub> 18 0 0 0 766 0 25 0 712 0 51 0 682 0 74 0 675 1 00 0 665 1 48 0 670 2 01 0 673 2 50 0 689 3 04 0 703 4 00 0 736 4 99 0 768 10 10 0 932 13 04 1 028 |                                                         | 100 pts H <sub>2</sub> O dissolve                                                     |                                                                                                 |  |  |  |
| 0 25 0 712<br>0 51 0 682<br>0 74 0 675<br>1 00 0 665<br>1 48 0 670<br>2 01 0 673<br>2 50 0 689<br>3 04 0 703<br>4 00 0 736<br>4 99 0 768<br>10 10 0 932<br>13 04 1 028                                             |                                                         | Na <sub>2</sub> SO <sub>4</sub>                                                       | Ag <sub>2</sub> SO <sub>4</sub>                                                                 |  |  |  |
| 00   00                                                                                                                                                                                                            | 8                                                       | 0 25<br>0 51<br>0 74<br>1 00<br>1 48<br>2 01<br>2 50<br>3 04<br>4 00<br>4 99<br>10 10 | 0 712<br>0 682<br>0 675<br>0 665<br>0 670<br>0 673<br>0 689<br>0 703<br>0 736<br>0 768<br>0 932 |  |  |  |
| 33 0 0 0 917<br>0 25 0 861<br>0 51 0 835<br>0 75 0 825<br>0 98 0 816<br>1 50 0 820<br>2 01 0 832<br>2 48 0 849<br>3 00 0 867                                                                                       | 3                                                       | 0 51<br>0 75<br>0 98<br>1 50<br>2 01<br>2 48                                          | 0 835<br>0 825<br>0 816<br>0 820<br>0 832<br>0 849                                              |  |  |  |
| 51 0 00 1 081<br>0 25 1 032<br>0 49 1 010<br>0 68 0 000<br>1 02 0 995<br>1 51 1 002<br>1 90 1 017<br>2 46 1 034<br>2 92 1 053<br>3 95 1 103                                                                        | 1                                                       | 0 25<br>0 49<br>0 68<br>1 02<br>1 51<br>1 90<br>2 46<br>2 92                          | 1 032<br>1 010<br>0 000<br>0 995<br>1 002<br>1 017<br>1 034<br>1 053                            |  |  |  |
| 75 0 00 1 267<br>0 20 1 215<br>0 47 1 208<br>0 80 1 206<br>0 98 1 210<br>1 52 1 222<br>1 96 1 238<br>2 50 1 269<br>2 98 1 296<br>4 08 1 366                                                                        | 5                                                       | 0 20<br>0 47<br>0 80<br>0 98<br>1 52<br>1 96<br>2 50<br>2 98                          | 1 215<br>1 208<br>1 206<br>1 210<br>1 222<br>1 238<br>1 269<br>1 296                            |  |  |  |
| 100 0 00 1 404 0 50 1 341 1 01 1 363 1 44 1 382 1 94 1 418 3 02 1 494 (Barre, A ch 1911 (8) 24 215)                                                                                                                |                                                         | 0 50<br>1 01<br>1 44<br>1 94<br>3 02                                                  | 1 341<br>1 363<br>1 382<br>1 418<br>1 494                                                       |  |  |  |

(Barre, A ch 1911, (8) 24 215)

### Solubility in salts+Aq at 25°

C=concentration of salt in salt+Aq in milliequivalents per l

threquivalents per 1  $d_1$ =sp gr 25°/4° of salt+Aq S=solubility of Ag<sub>2</sub>SO<sub>4</sub> in salt+Aq expressed in milliequivalents per l d<sub>3</sub>=sp gr 25°/4° of Ag<sub>2</sub>SO<sub>4</sub>+salt+Aq

|                                   |        |        |       | [              |
|-----------------------------------|--------|--------|-------|----------------|
| Salt                              | С      | dı     | s     | d <sub>2</sub> |
| none                              |        |        | 53 52 |                |
| KNO <sub>3</sub>                  | 24 914 | 0 9986 | 57 70 | 1 0072         |
|                                   | 49 774 | 1 0002 | 61 13 | 1 0092         |
|                                   | 99 870 | 1 0034 | 67 93 | 1 <b>Q</b> 034 |
| Mg(NO <sub>8</sub> ) <sub>2</sub> | 24 764 | 0 9985 | 59 44 | 1 0073         |
|                                   | 49 595 | 0 9999 | 64 32 | 1 0094         |
|                                   | 99 460 | 1 0026 | 72 70 | 1 0133         |
| AgNO <sub>3</sub>                 | 24 961 | 1 0007 | 39 09 | 1 0065         |
|                                   | 49 86  | 1 0044 | 28 45 | 1 0084         |
|                                   | 99 61  | 1 0112 | 16 96 | 1 0137         |
| K <sub>2</sub> SO <sub>4</sub>    | 25 024 | 0 9989 | 50 66 | 1 0064         |
|                                   | 50 044 | 1 0006 | 49 35 | 1 0079         |
|                                   | 100 0  | 1 0041 | 48 04 | 1 0112         |
|                                   | 200 03 | 1 0110 | 48 30 | 1 0180         |
| MgSO <sub>4</sub>                 | 20 22  | 0 9984 | 52 21 | 1 0061         |

(Harkins, J Am Chem Soc 1911, 33 1813)

1 0002

1 0032

1 0092

50 93

49 95

49 60

1 0079

1 0105

1 0164

50 069

100 04

200 05

Solubility of Ag<sub>2</sub>SO<sub>4</sub> in salts+Aq at 25°

C=concentration of salt in salt+Aq in millieguivalents per l

S=solubility of Ag<sub>2</sub>SO<sub>4</sub> in salt+Aq in milliequivalents per l

| Salt                           | C                      | s                       |
|--------------------------------|------------------------|-------------------------|
| KHSO <sub>4</sub>              | 0 0<br>52 64<br>105 26 | 53 98<br>52 18<br>51 76 |
| K <sub>2</sub> SO <sub>4</sub> | 0 0<br>27 18<br>54 34  | 53 98<br>50 90<br>49 30 |

(Swan, J Am Chem Soc 1911, 33 1814)

by alkalı thiosulphates + Aq Decomp

(Herschell) 100 ccm Ag<sub>2</sub>SO<sub>4</sub>+AgC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq sat at 17° contain 3 95 g Ag<sub>2</sub>SO<sub>4</sub> and 8 30 g  $AgC_2H_3O_2$  and solution has sp gr = 1 0094

(Euler, C C 1904, I 1316) Insol in liquid NH<sub>3</sub> (Franklin, Am. Ch J 1898 20 829)

Solubility in organic compds +Aq at 25°

|   | Solvent                                   | Mol Ag <sub>2</sub> SO <sub>4</sub> sol in<br>1 litre |
|---|-------------------------------------------|-------------------------------------------------------|
|   | Water 0 5-N Methyl alcohol "Ethyl alcohol | 0 0267<br>0 0249<br>0 0228                            |
|   | " Propyl alcohol                          | 0 0218                                                |
|   | " Tert amyl alcohol                       | 0 0218                                                |
|   | " Acetone                                 | 0 0204                                                |
| - | " Ether                                   | 0 0206                                                |
|   | " Formaldehyde                            | 0 0227                                                |
| • | " Glycol                                  | 0 0259                                                |
| ; | " Glycerine                               | 0 0263                                                |
| , | " Mannitol                                | 0 0203                                                |
| : | " Glucose                                 | 0 0283                                                |
| - | " Sucrose                                 | 0 0270                                                |
| • | " Urea                                    | 0 0303                                                |
|   | " Dimethylpyrone                          | 0 0216                                                |
| , | " Urethane                                | 0 0227                                                |
| - | ' Formamide                               | 0 0270                                                |
| • | " Acetamide                               | 0 0253                                                |
| Ŀ | " Acetonitrile                            | 0 0525                                                |
|   | Glycocoll                                 | 0 0433                                                |
| - | " Acetic acid                             | 0 0252                                                |
| : | " Phenol                                  | 0 0379                                                |
| • | " Chloral                                 | 0 0233                                                |
| • | " Methylal                                | 0 0205                                                |
| - | " Methyl acetate                          | 0 0212                                                |
| _ | (Rothmund, Z phys C                       | th 1909, <b>69</b> 539)                               |

(Rothmund, Z. phys. Ch. 1909, **69** 539)

Insol in methyl acetate (Bezold, Dissert Naumann, B 1909, **42** 3790), ethyl acetate (Naumann, B 1904, 37 3601), liquid methylamine (Franklin, J Am Chem Soc 1906, 28 1420), acetone (Naumann, B 1904, 37 4329, Eidmann, C C 1899, II 1014)

Very sol in a hot mixture of H<sub>2</sub>SO<sub>4</sub> and monobrombenzene, less sol in cold (Couper, A ch (3) **52** 311)

### Silver hydrogen sulphate, AgHSO4

Decomp by H<sub>2</sub>O, sol in H<sub>2</sub>SO<sub>4</sub>  $Ag_2O$ ,  $3H_2O$ ,  $4SO_3 + 2H_2O = AgH_3(SO_4)_2 +$ H<sub>2</sub>O As above (Schultz, Pogg 133 137)  $2Ag_2O$ ,  $3H_2O$ ,  $5SO_3+2H_2O=Ag_4H_6(SO_4)_5$ +2 $H_2O$  As above (Schultz)

Silver purosulphate, Ag<sub>2</sub>S<sub>2</sub>O<sub>7</sub>

Decomp by H<sub>2</sub>O (Weber, B 17 2497)

Silver thallic sulphate, AgTI(SO<sub>4</sub>)<sub>2</sub>

(Lepsius, Chem Ztg 1890 1327)

Silver tin (stannic) sulphate, Ag<sub>2</sub>Sn(SO<sub>4</sub>)<sub>3</sub>+ 3H₂O

Decomp by H<sub>2</sub>O Sol in HCl (Weinland, Z anorg 1907, 54 250)

Silver sulphate acetylide, Ag<sub>2</sub>SO<sub>4</sub>, 2Ag<sub>2</sub>C<sub>2</sub> (Plimpton, Proc Chem Soc 1892, 8 109)

## Silver sulphate ammonia, Ag<sub>2</sub>SO<sub>4</sub>, 2NH<sub>2</sub>

Completely sol in H<sub>2</sub>O (Rose, Pogg 20 153) Easily sol in H<sub>2</sub>O or  $Ag_2SO_4$ ,  $4NH_3$ 

NH<sub>4</sub>OH+Aq without decomp (Mitscherlich)

## Silver sulphate mercuric oxide, Ag<sub>2</sub>SO<sub>4</sub>, HgO

Insol in  $H_2O$ , but decomp even in the cold Sol in HNO<sub>8</sub> and H<sub>2</sub>SO<sub>4</sub> (Finci, Gazz ch it 1911, **41** (2) 548)

## Silver sulphate sulphide, Ag<sub>2</sub>SO<sub>4</sub>, Ag<sub>2</sub>S

Decomp by hot H<sub>2</sub>O or cold HCl+Aq Sol in boiling HNO<sub>8</sub>+Aq Thümmel, B **16** 2435) (Poleck and

# Sodium sulphate, Na<sub>2</sub>SO<sub>4</sub>

#### Anhydrous

1 pt Na<sub>2</sub>SO<sub>4</sub> is sol in 7 367 pts  $\rm H_{2}O$  at 15° (Gerlach) in 8 52 pts  $\rm H_{2}O$  at 13 3° (Poggendorf) in 10 pts  $\rm H_{2}O$  at 13° and in 3 3 pts  $\rm H_{2}O$  at 62 2° (Wenzel) 100 pts  $\rm H_{2}O$  at 0° dissolve 5 155 pts Na<sub>2</sub>SO<sub>4</sub>(Pfaff A 99 226) at 100 6° dissolve 45 985 pts Na<sub>2</sub>SO<sub>4</sub>

(Griffiths)

See below for further data

+7H<sub>2</sub>O Efflorescent Insol in alcohol See below for further data

+10H<sub>2</sub>O

 $Na_2SO_4+10H_2O$  is sol in  $H_2O$  with absorption of heat, 20 pts  $Na_2SO_4+10H_2O$  mixed with 100 pts  $H_2O$  at 12 5° lower the temperature 6 8° (Rüdorff, B **2** 68)

Sol in 2 33 pts H<sub>2</sub>O at 19° or 100 pts H<sub>2</sub>O at 19° dissolve 42 8 pts Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O (Schiff A 109

100 pts H<sub>2</sub>O dissolve a pts Na<sub>2</sub>SO<sub>4</sub> and b pts Na<sub>2</sub>SO<sub>4</sub> +10H<sub>2</sub>O at t°

| to                                                                        | 8.                                                                           | b                                                                                 | t°                                                                    | 8.                                                                   | b                                    |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|
| 0<br>11 67<br>13 30<br>17 91<br>25 05<br>28 76<br>30 75<br>31 84<br>32 73 | 5 02<br>10 12<br>11 74<br>16 73<br>28 11<br>37 35<br>43 05<br>47 37<br>50 65 | 12 17<br>26 38<br>31 33<br>48 28<br>99 48<br>161 53<br>215 77<br>270 22<br>322 12 | 33 88<br>40 15<br>45 04<br>50 40<br>59 79<br>70 61<br>84 42<br>103 17 | 50 04<br>48 78<br>47 81<br>46 82<br>45 42<br>44 35<br>42 96<br>42 65 | 312 11<br>291 44<br>276 91<br>262 35 |

(Gay Lussac A ch (2) 11 312)

Maximum solubility is at 33° from experiment and theoretical considerations At this temp Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O is converted into Na<sub>2</sub>SO<sub>4</sub> (Kopp A **34** 271)

100 pts H2O at to dissolve pts Na2SO4+10H2O

| t°                                         | Pts<br>Na <sub>2</sub> SO <sub>4</sub><br>+10H <sub>2</sub> O | t°                                             | Pts<br>Na <sub>2</sub> SO <sub>4</sub><br>+10H <sub>2</sub> O | t°                                   | Pts<br>Na <sub>2</sub> SO <sub>4</sub><br>+10H <sub>2</sub> O |
|--------------------------------------------|---------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------|
| 2 5<br>7 5<br>12 5<br>18 75<br>25<br>31 25 | 11 39<br>16 38<br>29 03<br>70 78<br>143 38<br>479 97          | 37 50<br>43 75<br>50<br>56 25<br>62 5<br>68 75 | 294 04<br>261 04<br>285 06<br>248 11<br>222 22<br>242 88      | 75<br>81 25<br>87 50<br>93 75<br>100 | 241 68<br>217 20<br>220 65<br>225 46<br>241 69                |

(Brandes and Firnhaber 1824)

1 pt N<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O is sol in 6 1 pts H<sub>2</sub>O at 7 5° 3 44 pts at 12 5° 2 41 pts at 18 75° and 1 724 pts at 20° (Karsten)

at 20° (Karsten.)

1 pt Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O is sol in 2 86 pts cold and 0 8 pt boiling H<sub>2</sub>O (Bergmann) in 3 pts cold and 0 5 pt boiling H<sub>2</sub>O (Wittstein) in 4 pts cold and 1 pt boiling H<sub>2</sub>O (Fourcroy) in 3 pts H<sub>2</sub>O at 18 75° (Abl) 100 pts H<sub>2</sub>O dissolve 12 494 pts Na<sub>2</sub>SO<sub>4</sub> or 35 492 pts Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O at 15° and sp gr of solution = 1 10847 (Michel and Krafft A ch (3) 41 478) 100 pts H<sub>2</sub>O dissolve 39 4 pts cryst salt at 15 5° 80 pts cryst salt at 100° (Ure s Dict)

100 pts H<sub>2</sub>O dissolve pts Na<sub>2</sub>SO<sub>4</sub> at t°

| t°    | Pts<br>Na <sub>2</sub> SO <sub>4</sub> | t°   | Pts<br>Na <sub>2</sub> SO <sub>4</sub> |
|-------|----------------------------------------|------|----------------------------------------|
| 0     | 4 53                                   | 24 1 | 25 92                                  |
| *17 9 | 16 28                                  | 33   | 50 81                                  |

(Diacon, J B 1866 61)

Solubility of Na<sub>2</sub>SO<sub>4</sub> in H<sub>2</sub>O at various pressures and temp Pts Na<sub>2</sub>SO<sub>4</sub> contained in 100 pts sat Na<sub>2</sub>SO<sub>4</sub>+Aq at A pressure in atmos and to are given

| A  | 0°   | 15°   | 15 4° | A  | 15°   |
|----|------|-------|-------|----|-------|
| 1  | 4 40 | 11 32 | 11 4  | 30 | 10 05 |
| 20 | 4 53 | 10 78 | 10 74 | 40 | 10 33 |

(Möller, Pogg 117 386)

The solubility of Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O increases with the temperature from 0 to 34° At 34° and above, it is converted into the anhydrous salt, the solubility of which is least at 103 17° which is the boiling point of the saturated solution, and increases by cooling from that temp down to 18-17° Below the latter temperature the anhydrous salt cannot exist in the presence of H<sub>2</sub>O, but is converted into  $Na_2SO_4+7H_2O$ , or  $Na_2SO_4+10H_2O$  The solubility of  $Na_2SO_4+7H_2O$  increases with the temperature from 0-26°, and at 27° it is converted into the anhydrous salt

Thus there are two different rates of solubility for Na<sub>2</sub>SO<sub>4</sub> for temperatures from 0-18°, three different rates from 18-26°, two from 26-34°, and only one above 34°

1 By heating Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O to fusion and raising the heat until the liquid boils, placing in a closed vessel and cooling, the greater part of the anhydrous salt, which separates out on heating, redissolves on cooling, and the amount increases as the temp falls until 18° is reached Below 18° Na<sub>2</sub>SÔ<sub>4</sub> +7H<sub>2</sub>O is formed Saturated Na<sub>2</sub>SO<sub>4</sub>+Aq thus obtained contains for 100 pts HO at

18°  $20^{\circ}$ 25° 26° 53 25 527651 53 51 31 pts Na<sub>2</sub>SO<sub>4</sub>, 30° 33° 34° 36° 50 37 49 71 49 53 49 27 pts Na<sub>2</sub>SO<sub>4</sub>

2 By allowing the boiling saturated solution free from undissolved salt to cool to 0° with exclusion of air until crystals of Na<sub>2</sub>SO<sub>4</sub> +7H<sub>2</sub>O are formed, then removing the greater part of the mother liquor with a warm pipette, and warming the rest of the mother liquor with the excess of crystals, the crystals dissolve in increasing quantity between 0° and 26–27°, so that at 27° the solution contains 56 pts Na<sub>2</sub>SO<sub>4</sub> to 100 pts H<sub>2</sub>O The remaining undissolved crystals of Na<sub>2</sub>SO<sub>4</sub>+7H<sub>2</sub>O begin to melt very slowly at 27°, more quickly at higher temperatures, and cause the separation of anhydrous crusts, and thus the strength of the solution is gradually lowered to the normal Saturated solutions prepared in this way contain for 100 pts H<sub>2</sub>O at

120

٥o

100

| ,      | •     | 10                    | 10                                |                         |
|--------|-------|-----------------------|-----------------------------------|-------------------------|
| 19     | 62    | 30 49                 | 34 27 pts Na <sub>2</sub> 8       | SO <sub>4</sub> ,       |
| or 44  | ł 89  | 78 <del>9</del>       | 92 9 pts Na <sub>2</sub> S        | $O_4+7H_2O$             |
| 1      | L5°   | 16°                   | 17°                               |                         |
| -      | 7 43  | 38 73                 | 39 99 pts Na <sub>2</sub>         | SO <sub>4</sub> ,       |
| or 10  | 058   | 117 4                 | 111 0 pts Na <sub>2</sub> S       | $O_4+7H_2O_7$           |
| 7      | 18°   | 19°                   | 20°                               | •                       |
|        | 1 63  | 43 35                 | 44 73 pts Na <sub>2</sub>         | SO4.                    |
| or 1   |       | 133 0                 | 140 0 pts Na <sub>2</sub> S       | $504 + 7H_2O_1$         |
|        | 25°   | 26°                   | -                                 | • • • •                 |
|        | 2 94  |                       | s Na <sub>2</sub> SO <sub>4</sub> |                         |
| or 18  |       | 202 6 pt              | s Na2SO4+7H                       | ·0                      |
| 01 1   | 000   | _0_ 0 p.              | 5 1102004 1 122                   | .20                     |
| 3      | Solut | ions obta             | uned by shakin                    | g H <sub>2</sub> O with |
| $Na_2$ | 504+1 | .0H <sub>2</sub> O co | ntain for 100 p                   | ts H <sub>2</sub> O at  |
|        |       |                       |                                   |                         |
| _      | 0°    | 10°                   | 15°                               | _                       |

5 02 9 00 13 20 pts Na<sub>2</sub>SO<sub>4</sub>, 35 96 pts Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O, or 12 16 23 04 18° 20°  $25^{\circ}$ 19 40 28 00 pts Na<sub>2</sub>SO<sub>4</sub>, 16 80 98 48 pts Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O, or 48 41 58 85 26°  $30^{\circ}$ 30 00 40 00 pts Na<sub>2</sub>SO<sub>4</sub>, 184 1 pts Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O, or 109 81  $33^{\circ}$ 34° 50 76 550 pts Na<sub>2</sub>SO<sub>4</sub> or 323 1 412 2 pts Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O

At 34°, Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O begins to melt in its crystal H<sub>2</sub>O As long as there is a considerable quantity of unchanged crystals present, the solution contains 55 pts Na<sub>2</sub>SO<sub>4</sub> for 100 pts H<sub>2</sub>O, but as the hydrous salt decreases in amount and becomes converted into the anhydrous salt, the solution becomes weaker and contains only 49 53 pts Na<sub>2</sub>SO<sub>4</sub> for 100 pts H<sub>2</sub>O after warming for 6 or 8 hours at 34° In the same way temporary solutions can be obtained at 36-40° with 55-56 pts Na<sub>2</sub>SO<sub>4</sub> to 100 pts H<sub>2</sub>O, but this amount sinks to the normal even more quickly than at 34°

 $Na_2SO_4$  dehydrated at  $100-150^\circ$ , after the addition of  $1^2/s-1\frac{1}{2}$  pts  $H_2O$ , gives a solution between  $0^\circ$  and  $32^\circ$  of the same strength as  $Na_2SO_4+10H_2O$ , but at  $34^\circ$  a solution with

55 pts  $Na_2SO_4$  to 100 pts  $H_2O$  cannot be obtained, but one with 49 53 pts is formed (Lowel, A ch (3) 49 32)

4 Solubility of anhydrous salt Above 34°,

100 pts  $H_2O$  dissolve at 35° 40° 45° 50° 5

50 2 48 8 47 7 46 7 45 9 pts Na<sub>2</sub>SO<sub>4</sub>,

60° 65° 70° 75° 80° 45 3 44 8 44 4 44 0 43 7 pts Na<sub>2</sub>SO<sub>4</sub>,

85° 90° 95° 100° 103 5° 43 3 43 1 42 8 42 5 42 2 pts. Na<sub>2</sub>SO<sub>4</sub>

(Mulder)

Solubility in 100 pts H<sub>2</sub>O at t°

| Soldonioj in 100 pts 2220 de t                                                                    |                                                                                                                                |                                                                                                                                                                                        |                                                                                             |                                                                                                               |                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| t°                                                                                                | Pts<br>Na <sub>2</sub> SO <sub>4</sub>                                                                                         | t°                                                                                                                                                                                     | Pts<br>Na <sub>2</sub> SO <sub>4</sub>                                                      | t°                                                                                                            | Pts<br>Na <sub>2</sub> SO <sub>4</sub>                                                                                                              |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 75 33 34 | 4 8 5 1 4 5 5 7 0 6 6 4 8 3 7 8 8 4 9 9 7 5 111 2 4 4 112 20 9 111 24 25 9 9 22 25 1 9 9 22 25 9 30 24 4 2 8 6 5 5 0 6 6 5 0 4 | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>55<br>56<br>60<br>61<br>62<br>63<br>64<br>66<br>66<br>67<br>68<br>69 | 50 49 63 1 85 3 1 9 7 5 3 1 9 7 6 4 2 1 9 8 7 6 4 3 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 103 | 44 43 2 44 44 1 0 0 9 8 43 7 7 6 5 5 5 4 4 3 3 3 2 2 1 1 1 0 0 9 9 42 8 7 6 6 5 5 4 2 4 2 4 2 2 2 4 2 2 2 4 2 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |

(Mulder, Scheik Verhandel 1864. 123)

100 pts dissolve at

0° 34° 100° 120° 5 78 8(?) 42 7 41 95 pts Na<sub>2</sub>SO<sub>4</sub>,

140° 160° 180° 230° 42 0 42 9 44 25 46 4 pts Na<sub>2</sub>SO<sub>4</sub> (Tilden and Shenstone, Lond R Soc Proc

**35** 345

Solubility decreases above 230° (Étard, C R 113 854)

Sat Na<sub>2</sub>SO<sub>4</sub>+Aq contains at O° 7° 13°  $24^{\circ}$ 28° 30° 41 62 99 193 25 2 29 5% Na<sub>2</sub>SO<sub>4</sub>, 49° 62° 83° 99° 134° 150° 29 7 29 4 29 8% Na<sub>2</sub>SO<sub>4</sub>, 328 313 **30 0** 190° 240° 279° 320° 29 9 30 0 24 5 17 8% Na<sub>2</sub>SO<sub>4</sub>

# Solubility of Na<sub>2</sub>SO<sub>4</sub> in $H_2O$ at t° \_ G per 100 g $H_2O$

(Étard, A ch 1894, (7) 2 548)

| t°                                                         | Na <sub>2</sub> SO <sub>4</sub>          | Sp gr                                                              | t°                               | Na <sub>2</sub> SO <sub>4</sub>           | Sp gr                                                              |
|------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|----------------------------------|-------------------------------------------|--------------------------------------------------------------------|
| 0 70<br>10 25<br>15 65<br>24 90<br>27 65<br>30 20<br>31 95 | 9 21<br>14 07<br>27 67<br>34 05<br>41 78 | 1 0432<br>1 0802<br>1 1150<br>1 2067<br>1 2459<br>1 2894<br>1 3230 | 38 15<br>44 85<br>60 10<br>75 05 | 48 47<br>47 49<br>45 22<br>43 59<br>42 67 | 1 3307<br>1 3229<br>1 3136<br>1 2918<br>1 2728<br>1 2571<br>1 2450 |

\*B-pt (Berkeley, Phil Trans Roy Soc 1904, 203 A, 189)

Transition point from  $Na_2SO_4+10H_2O$  to  $Na_2SO_4=32.5^{\circ}$  (Berkeley), 32.383° (Richards and Churchill, Z phys Ch. 1899, 28, 314.)

100 g Na<sub>2</sub>SO<sub>4</sub>+Aq sat at 15° contain 11 5 g; anhydrous Na<sub>2</sub>SO<sub>4</sub>, 21 9 g at 25° (Schreinemakers, Arch Néer Sc 1910, (2) **15** 81)

11 Na<sub>2</sub>SO<sub>4</sub>+Aq sat at 25° contains 1 881 mols Na<sub>2</sub>SO<sub>4</sub> (Herz, Z anorg 1911, **70** 127)

#### Solubility in H<sub>2</sub>O at t°

| , t° | Mol % Na <sub>2</sub> SO <sub>4</sub> |
|------|---------------------------------------|
| 62   | 5 39                                  |
| 70   | 5 27                                  |
| 72   | 5 25                                  |
| 80   | 5 18                                  |
| 120  | 5 04                                  |
| 190  | 5 25                                  |
| 192  | 5 27                                  |
| 208  | 5 39                                  |
| 241  | 5 39                                  |
| 250  | 5 39                                  |
| 279  | 4 12                                  |
| 319  | 2 56                                  |
| 252  | 4 9                                   |
| 310  | 3 2                                   |
| 340  | 1 8                                   |
| 365  | 0 0                                   |

(Wuite, Z phys Ch 1913, 86 364)

Supersaturated solutions of NaSO<sub>4</sub> are easily formed, when Na<sub>2</sub>SO<sub>4</sub>+Aq sat at its b-pt is hermetically sealed, no crystals are deposited on cooling (Lowel) Supersat Na<sub>2</sub>SO<sub>4</sub>+Aq may also be obtained by cooling hot sat Na<sub>2</sub>SO<sub>4</sub>+Aq in flasks loosely stoppered with cotton wool (Schroeder, A 109 45), or by covering the containing vessel with a glass plate, watch-glass, card, etc, or by covering the liquid itself with a layer of oil, and then allowing to cool

Hot Na<sub>2</sub>SO<sub>4</sub>+Aq containing 1 pt H<sub>2</sub>O to 1 pt Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O does not crystallise on slowly cooling or on being quickly cooled by immersion in cold water, if it is contained in a barometer tube freed from air by boiling, or in an exhausted well-closed vessel, or in an open vessel with a layer of oil of turpentine on it (Gay-Lussac), or in a vessel containing air, either well stoppered or furnished with a loose cover (Schweigger), or in an open vessel under a bell jar full of air and closed at the bottom with a water joint, or in open bottles placed in a quiet situation, or in an open glass enclosed in a stoppered vessel, containing air and some KOH for drying, in this case Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O effloresces from the solution, and when washed down again does not cause instant crystallisation, but redissolves

The crystallisation of a solution cooled in this way may often be brought about instantaneously, or often again after a short time, (1) by agitation, when the solution has been cooled in an open vessel, (2) by access of air caused by opening the vessel, the crystallisation taking place the more rapidly the larger the opening In this case the crystallisation begins at the top, where the solution, the vessel, and the air come in contact, when a particle of dust falls in the liquid the crystallisation begins a little under the surface When the solution has been cooled in vacuo, a bubble of air, hydrogen, carbonic acid, or nitrous oxide is sufficient to set up the crystallisation, (3) by contact with a solid body The latter do not cause crystallisation when cooled in contact with the liquid, nor (excepting a crystal of Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O) when they are moistened or warmed before contact with the solution

Supersat Na<sub>2</sub>SO<sub>4</sub>+Aq is brought to crystallisation by addition of a crystal of Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O, or an isomorphous substance as Na<sub>2</sub>SeO<sub>4</sub>+10H<sub>2</sub>O, or Na<sub>2</sub>CrO<sub>4</sub>+10H<sub>2</sub>O Other crystals, as MgSO<sub>4</sub>+7H<sub>2</sub>O, etc., have no action (Thomson, Chem Soc **35** 199)

See also Hartley, Jones and Hutchinson, Chem Soc 1908, 93 825, on "Spontaneous crystallisation of sodium sulphate solutions," and de Coppet (A ch 1907, (8) 10 457) on same subject

A more extended discussion of the phenomena and causes of supersaturation is not considered to the within the scope of this work

Na<sub>2</sub>SO<sub>4</sub>+Aq sat at 15° has sp gr 1 10847 (Michel and Krafft) at 15° has sp gr 1 119 (Stolba) at 16°

has sp gr 1 1162 (Stolba) at  $10^{\circ}$  contains 29 pts Na<sub>2</sub>SO<sub>4</sub> to 100 pts H<sub>2</sub>O (supersaturated?) and has sp gr 1 1259 (Karsten)

Sp gr of Na<sub>2</sub>SO<sub>4</sub>+Aq at 19 5°

| %<br>Na <sub>2</sub> SO <sub>4</sub> | Sp gr                      | %<br>Na <sub>2</sub> SO <sub>4</sub> | Sp gr            |
|--------------------------------------|----------------------------|--------------------------------------|------------------|
| 2 894<br>5 589<br>7 995              | 1 0262<br>1 0509<br>1 0733 | 10 538<br>12 473                     | 1 0977<br>1 1162 |

(Kremers Pogg 95 120)

Sp gr of Na<sub>2</sub>SO<sub>4</sub>+Aq

| %<br>Na <sub>2</sub> 5O <sub>4</sub><br>+10H <sub>2</sub> O | Sp gr | %<br>Na <sub>2</sub> SO <sub>4</sub><br>+10H <sub>2</sub> O | Sp gr |
|-------------------------------------------------------------|-------|-------------------------------------------------------------|-------|
| 1 262                                                       | 1 005 | 13 744                                                      | 1 055 |
| 2 522                                                       | 1 010 | 14 975                                                      | 1 060 |
| 3 780                                                       | 1 015 | 16 203                                                      | 1 065 |
| 5 035                                                       | 1 020 | 17 426                                                      | 1 070 |
| 6 288                                                       | 1 025 | 18 645                                                      | 1 075 |
| 7 538                                                       | 1 030 | 19 860                                                      | 1 080 |
| 8 786                                                       | 1 035 | 21 071                                                      | 1 085 |
| 10 030                                                      | 1 040 | 22 277                                                      | 1 090 |
| 11 272                                                      | 1 045 | 23 478                                                      | 1 095 |
| 12 510                                                      | 1 050 | 24 674                                                      | 1 100 |

(Schmidt Pogg 132 132)

Sp gr of Na<sub>2</sub>SO<sub>4</sub>+Aq at 19°

| % Na <sub>2</sub> SQ <sub>4</sub><br>+10H <sub>2</sub> O                      | Sp gr                                                                                                                           | % Na <sub>2</sub> SO <sub>4</sub><br>+10H <sub>2</sub> O                               | Sp gr                                                                                                                                    |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 1 0040<br>1 0079<br>1 0118<br>1 0158<br>1 0198<br>1 0232<br>1 0278<br>1 0318<br>1 0358<br>1 0439<br>1 0479<br>1 05520<br>1 0560 | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 1 0642<br>1 0683<br>1 0725<br>1 0766<br>1 0807<br>1 0849<br>1 0890<br>1 0973<br>1 1015<br>1 1057<br>1 1100<br>1 1142<br>1 1184<br>1 1226 |
|                                                                               | 1                                                                                                                               | 1                                                                                      | ı                                                                                                                                        |

(Schiff, A 110 70)

Sp gr of Na<sub>2</sub>SO<sub>4</sub>+Aq at 15°

| %                                         | Sp gr<br>1f<br>Na <sub>2</sub> SO <sub>4</sub>                                                   | Sp gr<br>1f<br>Na <sub>2</sub> SO <sub>4</sub><br>+10H <sub>2</sub> O                  | %                                                        | Sp gr<br>1f<br>Na <sub>2</sub> SO <sub>4</sub><br>+10H <sub>2</sub> O                  | %                                                        | Sp gr<br>1f<br>Na <sub>2</sub> SO <sub>4</sub><br>+10H <sub>2</sub> O                  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1 0091<br>1 0182<br>1 0274<br>1 0365<br>1 0457<br>1 0550<br>1 0644<br>1 0737<br>1 0832<br>1 0927 | 1 004<br>1 008<br>1 013<br>1 016<br>1 020<br>1 024<br>1 028<br>1 032<br>1 036<br>1 040 | 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | 1 044<br>1 047<br>1 052<br>1 056<br>1 060<br>1 064<br>1 069<br>1 073<br>1 077<br>1 082 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 1 086<br>1 090<br>1 094<br>1 098<br>1 103<br>1 107<br>1 111<br>1 116<br>1 120<br>1 125 |

(Gerlach, Z anal 8 287)

Sp gr of Na<sub>2</sub>SO+Aq at 24.8° a=no of g, equivalent to  $\frac{1}{2}$  mol wt, dissolved in 1000 g H<sub>2</sub>O, b=sp gr if a is Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O,  $\frac{1}{2}$  mol wt =161, c=sp gr if a is Na<sub>2</sub>SO<sub>4</sub>,  $\frac{1}{2}$  mol wt =71

| a           | b                       | С                       | 8.          | b                       | С     |
|-------------|-------------------------|-------------------------|-------------|-------------------------|-------|
| 1<br>2<br>3 | 1 054<br>1 098<br>1 134 | 1 059<br>1 114<br>1 165 | 4<br>5<br>6 | 1 163<br>1 188<br>1 209 | 1 213 |

(Favre and Valson, C R 79 968)

Sp gr of Na<sub>2</sub>SO<sub>4</sub>+Ag at 18°

| % Na <sub>2</sub> SO <sub>4</sub> | Sp gr            | % Na <sub>2</sub> SO <sub>4</sub> | Sp gr  |
|-----------------------------------|------------------|-----------------------------------|--------|
| 5<br>10                           | 1 0450<br>1 0915 | 15                                | 1 1426 |

(Kohlrausch, W Ann 1879 1)

Sp gr of  $Na_2SO_4+Aq$  at 20° containing 0.5 mol  $Na_2SO_4$  to 100 mols  $H_2O=1$  03466, 1.0 mol  $Na_2SO_4$  to 100 mols  $H_2O=1$  06744 (Nicol, Phil Mag (5) **16** 122)

Sp gr of Na<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| Concentration of Na.SO <sub>4</sub><br>+Aq | Sp gr                                |
|--------------------------------------------|--------------------------------------|
| 1-normal 1/2- " 1/4- " 1/8 "               | 1 0606<br>1 0309<br>1 0156<br>1 0079 |

(Wagner, Z phys Ch 1890, 5 39)

Sp gr at  $16^{\circ}/4^{\circ}$  of Na<sub>2</sub>SO<sub>4</sub>+Aq containing 9 4043% Na<sub>2</sub>SO<sub>4</sub>=1 08655 (Schonrock, Z phys Ch 1893, **11** 781)

Na<sub>2</sub>SO<sub>4</sub>+Aq containing 25 51% Na<sub>2</sub>SO<sub>4</sub> has sp gr 20°/20° = 1 2527 Na<sub>2</sub>SO<sub>4</sub>+Aq containing 10 14% Na<sub>2</sub>SO<sub>4</sub> has sp gr 20°/20° = 1 0938 (Le Blanc and Rohland, Z phys Ch 1896, **19** 278)

Sp gr of Na<sub>2</sub>SO<sub>4</sub>+Aq at 175°, when p= per cent strength of solution, d=observed density, and w=volume cone in

grs per cc  $\left(\frac{pd}{100} = w\right)$ 

|                                                                       | \                                                                            |                                                                                      |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| р                                                                     | d                                                                            | w                                                                                    |
| 13 06<br>11 75'<br>10 68<br>8 544<br>6 762<br>4 015<br>2 599<br>2 375 | 1 1226<br>1 1094<br>1 0990<br>1 0784<br>1 0615<br>1 0358<br>1 0225<br>1 0204 | 0 14662<br>0 13043<br>0 11737<br>0 09214<br>0 07178<br>0 04159<br>0 02658<br>0 02423 |
| 1 818<br>1 349<br>0 5204<br>0 2921                                    | 1 0154<br>1 0109<br>1 0037<br>1 0014                                         | 0 01846<br>0 01364<br>0 00522<br>0 00293                                             |
|                                                                       |                                                                              | <u> </u>                                                                             |

(Barnes, J phys Chem 1898, 2 543)

Sp gr of Na<sub>2</sub>SO<sub>4</sub>+Aq at 20°

| Normality of<br>Na <sub>2</sub> SO <sub>4</sub> +Aq | % Na <sub>2</sub> SO <sub>4</sub> | Sp gr  |
|-----------------------------------------------------|-----------------------------------|--------|
| 0 97                                                | 12 36                             | 1 1138 |
| 0 48                                                | 6 41                              | 1 0570 |

(Forchheimer, Z phys Ch 1900, 34 23)

Sp gr of sat Na<sub>2</sub>SO<sub>4</sub>, 10H<sub>2</sub>O+Aq at t°

| t°                                                           | wt of 1 cem of<br>the solution                                                                  | 100 g H <sub>2</sub> O<br>dissolve g<br>Na <sub>2</sub> SO <sub>4</sub> +10H <sub>2</sub> O |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 0<br>5<br>10<br>15<br>18<br>20<br>25<br>26<br>30<br>33<br>34 | 1 040<br>1 058<br>1 078<br>1 109<br>1 137<br>1 156<br>1 209<br>1 222<br>1 287<br>1 312<br>1 317 | 12 16 21 04 35 96 48 41 58 35 98 48 109 81 184 1 323 1 413 2                                |
| 35                                                           | 1 317                                                                                           |                                                                                             |

(Tschernaj, J Russ Phys Chem Soc 1914, 46 8)

Sp gr and b pt of  $Na_2SO_4+Aq$   $Na_2SO_4+Aq$  containing P pts  $Na_2SO_4+10H_2O$  for every 100 pts  $H_2O$  has given sp gr and b pt

| P                                                                             | Sp gr                                                                                                                               | Bpt                                                                        | P                                                                                      | Sp gr                                                                                                                               | B pt                                                                                                                     |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 1 005<br>1 008<br>1 014<br>1 020<br>1 021<br>1 028<br>1 030<br>1 032<br>1 036<br>1 040<br>1 043<br>1 050<br>1 055<br>1 060<br>1 062 | 100 5° 100 62 100 62 100 75 100 87 101 0 101 0 101 12 101 25 101 25 101 25 | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 1 064<br>1 067<br>1 070<br>1 072<br>1 074<br>1 076<br>1 078<br>1 080<br>1 082<br>1 084<br>1 090<br>1 092<br>1 095<br>1 098<br>1 100 | 101 25°<br>101 25 101 37<br>101 37<br>101 37<br>101 37<br>101 5<br>101 5<br>101 5<br>101 5<br>101 63<br>101 63<br>101 63 |

(Brandes and Gruner 1827)

Saturated solution boils at 103 17° (Lowel), 103 5° (Mulder), 105° (Kremers), 100 5° (Griffiths), 100 8° (Gerlach)

Crust forms at 102 9°, highest temp, 103 2°, and solution contains 43 9 pts Na<sub>2</sub>SO<sub>4</sub> to 100 pts H<sub>2</sub>O (Gerlach, Z anal **26** 426)

B-pt of Na<sub>2</sub>SO<sub>4</sub>+Aq containing pts Na<sub>2</sub>SO<sub>4</sub> to 100 pts H<sub>2</sub>O

| B pt                              | Pts Na <sub>2</sub> SO <sub>4</sub> | B pt                     | Pts Na <sub>2</sub> SO <sub>4</sub> |
|-----------------------------------|-------------------------------------|--------------------------|-------------------------------------|
| 100 5°<br>101 0<br>101 5<br>102 0 | 9 5<br>18 0<br>26 0<br>33 0         | 102 5°<br>103 0<br>103 2 | 39 0<br>44 5<br>46 7                |

(Gerlach, Z anal 26 430)

M-pt of  $Na_2SO_4+10H_2O=34^{\circ}$  (Tilden, Chem Soc 45 409) Sol with decomp in HCl+Aq

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| 1000 g of the<br>solution contain         |                                         | Q.L.l.uk.                                                                                                                                                                             |
|-------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mols<br>H <sub>2</sub> SO <sub>4</sub>    | Mols<br>Na <sub>2</sub> SO <sub>4</sub> | Sold phase                                                                                                                                                                            |
| 0 286<br>0 338<br>0 884<br>1 576<br>1 666 | 2 256<br>2 363<br>2 437                 | ",<br>Na <sub>2</sub> SO <sub>4</sub> , 10H <sub>2</sub> O+Na <sub>2</sub> SO <sub>4</sub><br>Na <sub>2</sub> SO <sub>4</sub> +",<br>Na <sub>2</sub> H(SO <sub>4</sub> ) <sub>2</sub> |
| 2 611                                     | 2 091                                   | $ N_{8} \cdot H(SO_4) \cdot + N_{8} \cdot H(SO_4) \cdot H_{9}O_{1}$                                                                                                                   |

(D'Ans, Z anorg 1906, 49 356)

Solubility of Na<sub>2</sub>SO<sub>4</sub> in  $\rm H_2SO_4 + Aq$  at 25 °

| 1000 g of the solution<br>contain                                             |                                                                                | Solid phase                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mol Na <sub>2</sub> SO <sub>4</sub>                                           | Mol H <sub>2</sub> SO <sub>4</sub>                                             |                                                                                                                                                                                                                        |
| 1 55<br>1 59<br>1 85<br>2 00<br>0 77<br>0 47<br>0 32<br>0 305<br>0 07<br>0 79 | 0 08<br>0 147<br>0 60<br>0 763<br>4 23<br>4 96<br>6 61<br>6 87<br>7 18<br>8 78 | Na <sub>2</sub> SO <sub>4</sub><br>Na <sub>2</sub> SO <sub>4</sub> , 10H <sub>2</sub> O<br>NaHSO <sub>4</sub> H <sub>2</sub> O<br>Na <sub>2</sub> HSO <sub>4</sub><br>Na <sub>3</sub> H(SO <sub>4</sub> ) <sub>2</sub> |

(D'Ans, Z anorg 1909, 61. 92)

10~ccm of sat Na<sub>2</sub>SO<sub>4</sub>+absolute H<sub>2</sub>SO<sub>4</sub> contain approx 2 999 g Na<sub>2</sub>SO<sub>4</sub> (Bergius, Z phys Ch 1910, 72 355)

| Solubility in | $\rm H_2SO_4 + Aq$ at 25° |
|---------------|---------------------------|
| Solid Phage   | Ne-SO. +10H-O             |

| Millimols H <sub>2</sub> SO <sub>4</sub> | Millimols Na <sub>2</sub> SO <sub>4</sub> |
|------------------------------------------|-------------------------------------------|
| in 10 ccm                                | in 10 ccm                                 |
| 5 10<br>7 79                             | 18 81<br>22 38<br>24 65                   |

(Herz, Z anorg 1912, 73 276)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

|                                                                             | of the                                                                        | Solid phase                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mols<br>SOs                                                                 | Mols<br>Na <sub>2</sub> SO <sub>4</sub>                                       |                                                                                                                                                                                                                                          |
| 5 91<br>6 30<br>6 64<br>6 90<br>7 36<br>7 74<br>7 82<br>8 12                | 0 409<br>0 332<br>0 297<br>0 173<br>0 071<br>0 047<br>0 044<br>0 037          | NaHSO4<br>NaHSO4+NaHs(SO4)2 H2O<br>NaHs(SO4)2 H2O                                                                                                                                                                                        |
| 6 90<br>7 782<br>8 29<br>8 8 70<br>8 8 93<br>8 8 70<br>8 62<br>8 86<br>8 87 | 0 042<br>0 046<br>0 076<br>0 156<br>0 259<br>0 269<br>0 273<br>0 527<br>0 681 | }                                                                                                                                                                                                                                        |
| 8 70<br>8 62<br>8 62<br>8 61<br>8 87                                        | 0 808<br>0 834<br>0 844<br>0 899<br>0 445                                     | NaH <sub>2</sub> (SO <sub>4</sub> ) H <sub>2</sub> O metastable solutions NaH <sub>3</sub> (SO <sub>4</sub> ) <sub>2</sub> H <sub>2</sub> O +Na <sub>2</sub> SO <sub>4</sub>                                                             |
| 0 01                                                                        | 0 440                                                                         | 4 5H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                        |
| 8 93<br>9 08<br>9 36<br>9 18<br>9 42<br>9 48<br>9 55                        | 0 437<br>0 394<br>0 425<br>0 567<br>0 728<br>0 760<br>0 775                   | Na <sub>2</sub> SO <sub>4</sub> 4 5H <sub>2</sub> SO <sub>4</sub><br>Na <sub>2</sub> SO <sub>4</sub> 4 5H <sub>2</sub> SO <sub>4</sub> +Na <sub>2</sub> HS <sub>2</sub> O <sub>7</sub><br>Na <sub>2</sub> HS <sub>2</sub> O <sub>7</sub> |
| 9 48                                                                        | 0 953                                                                         | NaHS2O7+?                                                                                                                                                                                                                                |
| 9 85<br>9 98                                                                | 0 787<br>0 908                                                                | ?<br>?                                                                                                                                                                                                                                   |
| (9 77)                                                                      | $(1 \ 03)$                                                                    | Metastable                                                                                                                                                                                                                               |
| 10 16<br>10 78                                                              | 0 797<br>0 302                                                                | ?                                                                                                                                                                                                                                        |

(D'Ans, Z anorg 1913, 80 236)

Sl sol in conc HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Ure's Dict) Not pptd by addition of glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> to  $Na_2SO_4 + Aq$  (Persoz)

| S                                                             | Solubility in NaOH+Aq at 25°                                   |                                                                                                                                                                                                                               |  |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1000 g of the<br>solution contain                             |                                                                | Solid phase                                                                                                                                                                                                                   |  |  |  |
| Mols Mols (NaOH)2 Na2SO4                                      |                                                                | Solid phase                                                                                                                                                                                                                   |  |  |  |
| 0 074<br>0 70<br>1 47<br>2 02<br>2 82<br>3 52<br>5 83<br>6 62 | 1 54<br>1 41<br>1 08<br>0 90<br>0 59<br>0 24<br>0 126<br>0 013 | Na <sub>2</sub> SO <sub>4</sub> , 10H <sub>2</sub> O<br>''<br>Na <sub>2</sub> SO <sub>4</sub> , 10H <sub>2</sub> O + Na <sub>2</sub> SO <sub>4</sub><br>Na <sub>2</sub> SO <sub>4</sub><br>''<br>''<br>NaOH, H <sub>2</sub> O |  |  |  |

(D'Ans and Schreiner, Z anorg 1910, 67 437)

Sol in sat NH<sub>4</sub>Cl+Aq

Rapidly and abundantly sol in sat KCl+ Aq with pptn of K<sub>2</sub>SO<sub>4</sub>

Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O is sol in sat NaCl+Aq without pptn If effloresced Na<sub>2</sub>SO<sub>4</sub> is used, a ppt of NaCl is caused at first, and subse-

quently of Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O (Karsten)
Sol in boiling sat NaCl+Aq with pptn of
NaCl, but from cold solutions the Na<sub>2</sub>SO<sub>4</sub>

separates out first (Vauquelin) Less sol in NaCl+Aq than in H<sub>2</sub>O (Hunt, Am J Sci (2) 25 368)

| Solubility in NaCl+Aq at t° |                                                                                                                 |                                                                                                               |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| t°                          | g NaCl per<br>100 g H <sub>2</sub> O,                                                                           | g Na <sub>2</sub> SO <sub>4</sub> per<br>100 g H <sub>2</sub> O                                               |  |  |
| 10                          | 0 00<br>4 28<br>9 60<br>15 65<br>21 82<br>28 13<br>30 11<br>32 27<br>33 76                                      | 9 14<br>6 42<br>4 76<br>3 99<br>3 97<br>4 15<br>4 34<br>4 59<br>4 75                                          |  |  |
| 21 5                        | 0 00<br>9 05<br>17 48<br>20 41<br>26 01<br>26 53<br>27 74<br>31 25<br>31 80<br>32 10<br>33 69<br>34 08<br>35 46 | 21 33<br>15 48<br>13 73<br>13 62<br>15 05<br>14 44<br>13 39<br>10 64<br>10 28<br>8 43<br>4 73<br>2 77<br>0 00 |  |  |
| 25                          | 0 00<br>2 74<br>8 15<br>19 86<br>24 58<br>31 21                                                                 | 28 74<br>26 57<br>23 15<br>20 52<br>14 86<br>9 95                                                             |  |  |

32 02

9 61

#### Solubility in NaCl+Aq at to-Continued

| t° | g NaCl per<br>100 g H <sub>2</sub> O                                               | g Na <sub>2</sub> SO <sub>4</sub> per<br>100 g H <sub>2</sub> O                       |
|----|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 27 | 0 00<br>2 66<br>5 29<br>7 90<br>16 13<br>18 91<br>19 64<br>20 77<br>32 33          | 31 10<br>28 73<br>27 17<br>26 02<br>24 83<br>21 39<br>20 11<br>19 29<br>9 53          |
| 30 | 0 00<br>2 45<br>5 61<br>7 91<br>10 61<br>12 36<br>15 65<br>18 44<br>20 66<br>32 43 | 39 70<br>38 25<br>36 50<br>35 96<br>31 64<br>29 87<br>25 02<br>21 30<br>19 06<br>9 06 |
| 33 | 0 00<br>1 22<br>1 99<br>2 64<br>3 47<br>12 14<br>21 87<br>32 84<br>33 99<br>34 77  | 48 48<br>46 49<br>45 16<br>44 09<br>42 61<br>29 32<br>16 83<br>8 76<br>4 63<br>2 75   |
| 35 | 0 00<br>2 14<br>13 57<br>18 78<br>31 91<br>35 63                                   | 47 94<br>43 75<br>26 26<br>19 74<br>8 28<br>0 00                                      |

At 33° and above the values represent the solubility of Na<sub>2</sub>SO<sub>4</sub> in NaCl+Aq At 10° the solid phase in contact with the solution is probably Na<sub>2</sub>SO<sub>4</sub>, 7H<sub>2</sub>O Between 17° and 33° the solid phase is either Na<sub>2</sub>SO<sub>4</sub>, 10H<sub>2</sub>O or Na<sub>2</sub>SO<sub>4</sub> An inversion of Na<sub>2</sub>SO<sub>4</sub>, 10H<sub>2</sub>O to Na<sub>2</sub>SO<sub>4</sub> takes place at various temp below 33° depending on the amount of NaCl contained in the solution in contact with the solid sodium sulphate

(Seidell, Am Ch J 1902, **27** 55)

#### Solubility in NaCl+Aq at 15°

| Composit                                                  | ion of the                                                     | G L L P                                                                                                                                       |
|-----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| % by wt<br>Na <sub>2</sub> SO <sub>4</sub>                | % by wt<br>NaCl                                                | Solid Phase                                                                                                                                   |
| 11 5<br>7 86<br>5 87<br>5 23<br>5 26<br>5 64<br>2 26<br>0 | 0<br>5 42<br>11 51<br>15 97<br>21 03<br>23 39<br>25 21<br>26 3 | Na <sub>2</sub> SO <sub>4</sub> +10H <sub>2</sub> O  " " " " " Na <sub>2</sub> SO <sub>4</sub> , 10H <sub>2</sub> O+NaCl Na <sub>2</sub> Cl " |

(Schreinemakers and de Baat, Z phys Ch 1909, 67 554)

Sol in sat NH<sub>4</sub>NO<sub>3</sub>+Aq (Margueritte, C R 38 307)

Sol in sat KNOs+Aq with pptn after

several hours (Karsten)

 $Na_2SO_4+10H_2O$  is sol in sat  $NaNO_3+Aq$  without pptn, but if effloresced  $Na_2SO_4$  is used,  $NaNO_3$  is pptd at first, and subsequently  $Na_2SO_4+7H_2O$ 

The presence of CaSO<sub>4</sub> does not affect the solubility of Na<sub>2</sub>SO<sub>4</sub> in H<sub>2</sub>O to any great extent (Barre, A ch 1911, (8) **24** 160)

More sol in  $K_2SO_4$ ,  $CuSO_4$ ,  $MgSO_4+Aq$  than in  $H_2O$  (Pfaff, A 99 226)

100 pts H<sub>2</sub>O dissolve 20 7 pts CuSO<sub>4</sub> and

15 9 pts Na<sub>2</sub>SO<sub>4</sub> (Rudorff, B **6** 484) Sol in sat MgSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub>, CuSO<sub>4</sub>+Aq, but if more Na<sub>2</sub>SO<sub>4</sub> than can be dissolved is added to the CuSO<sub>4</sub>+Aq, a large quantity of a double sulphate separates out (Karsten)

The solubility of Na<sub>2</sub>SO<sub>4</sub> in K<sub>2</sub>SO<sub>4</sub>+Aq has been determined at 15°, 25°, 40°, 50°, 60°, 70° and 80° From the results the conclusion is drawn that sodium and potassium sulphates form a double salt of the formula k<sub>3</sub>Na<sub>5</sub>(SO<sub>4</sub>)<sub>2</sub> (Okada, Chem Soc 1915, **108** (2) 344)

See also under CuSO<sub>4</sub>, MgSO<sub>4</sub>, and K<sub>2</sub>SO<sub>4</sub> Slowly but abundantly sol in sat ZnSO<sub>4</sub>+ Aq, with separation of a double salt after a

few days

Solubility of  $ZnSO_4$   $7H_2O + Na_2SO_4$   $10H_2O$  in 100 g  $H_2O$  at t°

| t | grams ZnSO4 | grams Na <sub>2</sub> SO <sub>4</sub> |
|---|-------------|---------------------------------------|
| 0 | 40 305      | 7 905                                 |
| 5 | 42 285      | 9 515                                 |

(Koppel, Z phys Ch 1905, 52 409)

See also under Na<sub>2</sub>Zn(SO<sub>4</sub>)<sub>4</sub>+4H<sub>2</sub>O

Solubility of Na<sub>2</sub>SO<sub>4</sub>+Th(SO<sub>4</sub>)<sub>2</sub> at  $16^{\circ}$ Solid phase Th(SO<sub>4</sub>)<sub>2</sub>

| Pts per 10                                                        | 00 pts H <sub>2</sub> O                   | Pts per 10                      | 00 pts H <sub>2</sub> O          |
|-------------------------------------------------------------------|-------------------------------------------|---------------------------------|----------------------------------|
| Na <sub>2</sub> SO <sub>4</sub> Th(SO <sub>4</sub> ) <sub>2</sub> |                                           | Na <sub>2</sub> SO <sub>4</sub> | Th(SO4)2                         |
| 1 094<br>1 960<br>2 84<br>2 98<br>4 11                            | 1 743<br>2 387<br>3 800<br>3 962<br>3 375 | 5 79<br>9 35<br>12 24<br>15 36  | 2 136<br>1 379<br>1 169<br>1 048 |

(Barre, C R 1911, 150 155)

Solubility in Na acetate+Aq at 25° Solid phase, Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O

| Composition of the solutions                 |                                                  |                                                    |  |  |  |
|----------------------------------------------|--------------------------------------------------|----------------------------------------------------|--|--|--|
| % Na acetate                                 | % Na <sub>2</sub> SO <sub>4</sub>                | % H <sub>2</sub> O⊑4                               |  |  |  |
| 0<br>4 10<br>7 71<br>12 58<br>16 26<br>20 63 | 21 9<br>17 72<br>16 48<br>13 50<br>11 50<br>8 10 | 78 10<br>78 18<br>75 81<br>73 92<br>72 24<br>71 27 |  |  |  |

(Fox, Chem Soc 1909, 95 888)

# Insol in liquid $NH_3$ (Franklin, Am Ch J 1898, 20 829)

Alcohol precipitates Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O from the cold saturated aqueous solution (Brandes and Firnhaber)
Insol in alcohol of from 0 817 to 0 90 sp gr (Kir wan)

1000 pts alcohol of 0.872 sp gr dissolve 0.7 pt Na<sub>2</sub>SO<sub>4</sub> at 12.5 15° of 0.905 sp gr dissolve 3.8 pts Na<sub>2</sub>SO<sub>4</sub> at 12.5 1.0° pts Na<sub>2</sub>SO<sub>4</sub> at 12.5 1.0° (Anthon)

From supersaturated solution in alcohol, crystals with  $7H_2O$  are formed (Schiff, A 106 11)

100 pts 10% alcohol at 15° contain 14 35 pts Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O, 20% alcohol at 15° contain 5 6 pts Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O, 40% alcohol at 15° contain 1 3% Na<sub>2</sub>SO<sub>4</sub>+10H<sub>2</sub>O (Schiff, A 118 365)

Verv sl sol in abs alcohol at ord temp, somewhat more, though still exceedingly sparingly, sol in abs alcohol acidulated with  $\rm H_2SO_4$  (Fresenius)

Alcohol does not affect crystal H<sub>2</sub>O of Na<sub>2</sub>SO<sub>4</sub>+10H O

Solubility of Na<sub>2</sub>SO<sub>4</sub> in alcohol+Aq at t°

| 1 |    |                                                                           |                                                                              |                                                                          |                                                                       |                                                                                                                       |
|---|----|---------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| - | to | .%                                                                        |                                                                              | 100 g s                                                                  | olution                                                               | solid phase                                                                                                           |
|   |    | alcohol                                                                   | H <sub>2</sub> O                                                             | alcohol                                                                  | Na <sub>2</sub> SO <sub>4</sub>                                       | sond phase                                                                                                            |
|   | 15 | 0 7<br>9 2<br>19 4<br>39 7<br>58 9<br>72 0<br>0 0<br>11 2<br>20 6<br>30 2 | 88 7<br>85 1<br>78 6<br>60 0<br>41 1<br>28 0<br>72 8<br>76 5<br>74 3<br>68 4 | 0 0<br>8 6<br>18 9<br>39 5<br>58 8<br>72 0<br>0 0<br>9 5<br>19 2<br>29 6 | 11 3<br>6 3<br>2 9<br>0 5<br>0 1<br>0 0<br>27 2<br>14 0<br>6 5<br>2 0 | Na <sub>2</sub> SO <sub>4</sub> +10H <sub>2</sub> O  " " " " " " Na <sub>2</sub> SO <sub>4</sub> +7H <sub>2</sub> O " |
|   |    | 0 0<br>10 6<br>24 0<br>54 0                                               | 78 1<br>78 5<br>72 8<br>45 6                                                 | 0 0<br>9 3<br>22 9<br>54 0                                               | 21 9<br>12 2<br>4 3<br>0 4                                            | Na <sub>2</sub> SO <sub>4</sub> +10H <sub>2</sub> O                                                                   |
|   | 36 | 0 0<br>8 8<br>12 8<br>17 9<br>18 1<br>28 9<br>48 7                        | 67 0<br>70 0<br>71 2<br>71 1<br>71 0<br>66 5<br>50 9                         | 0 0<br>6 8<br>10 5<br>15 5<br>15 7<br>28 4<br>48 3                       | 33 0<br>22 6<br>18 3<br>13 4<br>13 3<br>5 1<br>0 8                    | Na <sub>2</sub> SO <sub>4</sub>                                                                                       |
|   | 45 | 0 0<br>9 €0<br>14 5<br>20 €<br>31 €                                       | 67 6                                                                         | 0 0                                                                      | 32 4<br>21 6                                                          | ic<br>cc                                                                                                              |

Between certain concentrations of alcohol, the liquid separates into two layers at 25°, 36° and 45°, of the following composition

|    | Upper L              |                      | yer Lo                          |                       | ower Layer        |                                 |
|----|----------------------|----------------------|---------------------------------|-----------------------|-------------------|---------------------------------|
| t° | H <sub>2</sub> O     | g<br>alcohol         | Na <sub>2</sub> SO <sub>4</sub> | g<br>H <sub>2</sub> O | g<br>acohol       | Na <sub>2</sub> SO <sub>4</sub> |
| 25 | 66 5<br>68 1<br>68 3 | 27 3<br>23 9<br>23 1 | 6 2<br>8 0<br>8 6               | 67 4<br>68 5<br>68 3  | 5 1<br>6 0<br>6 7 | 27 5<br>25 5<br>25 0            |
| 36 | 57 7<br>65 0<br>68 1 | 38 4<br>28 3<br>21 2 | 3 9<br>6 7<br>10 7              | 66 6<br>68 8<br>68 9  | 4 1<br>5 9<br>9 4 | 29 3<br>25 3<br>21 7            |
| 45 | 61 8<br>65 8<br>66 0 | 32 9<br>25 3<br>24 0 | 5 3<br>8 9<br>10 0              | 68 4<br>68 6          | 8 8<br>10 1       | 22 8<br>21 3                    |

(de Bruyn, Z phys Ch 1900, 32 101)

| Composition of the sat solution |         |                                               |                                                                                                                                                                                 |
|---------------------------------|---------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| % by<br>wt<br>H <sub>2</sub> O  | % by wt | % by<br>wt<br>Va <sub>2</sub> SO <sub>4</sub> | Solid phase                                                                                                                                                                     |
| 63 41<br>49 0<br>46 6<br>34 9   | 50 5    | 1 75<br>0 5<br>0 4<br>0 15                    | Na <sub>2</sub> SO <sub>4</sub> , 10H <sub>2</sub> O<br>Na <sub>2</sub> SO <sub>4</sub> , 10H <sub>2</sub> O+Na <sub>2</sub> SO <sub>4</sub><br>Na <sub>2</sub> SO <sub>4</sub> |

Schreinemakers, Z phys Ch 1909, 67 552)

Solubility data for solution of NaCl in ethyl lcohol+Aq at 15°, 25°, and 30° are given by chreinemakers (Z phys Ch 1909, 67 556)

### Solubility in propyl alcohol + Aq at 20°

| , propyl<br>ilcohol | g Na <sub>2</sub> SO <sub>4</sub><br>per 100<br>g solution | % propyl<br>alcohol | g Na <sub>2</sub> SO <sub>4</sub><br>per 100<br>g solution |
|---------------------|------------------------------------------------------------|---------------------|------------------------------------------------------------|
| 12 20               | 1 99                                                       | 56 57               | 0 55                                                       |
| 19 77               | 1 15                                                       | 60 64               | 0 44                                                       |
| 55 65               | 0 72                                                       | 62 81               | 0 38                                                       |

Linebarger, Am Ch J 1892, 14 380)

Sol in glycerine

Insol in acetone (Naumann, B 1904 37 4329, Eidmann, C C 1899 II, 1014) benzonitrile (Naumann, B 1914, 47 1370) methyl acetate (Naumann, B 1909, 42 7790), ethyl acetate (Naumann, B 1910, 43 314)

100 g H<sub>2</sub>O dissolve 183 7 g sugar+30 5 g Na<sub>2</sub>SO<sub>4</sub> at 31 25°, or 100 g sat solution contain 52 2 g sugar + 96 g Na<sub>2</sub>SO<sub>4</sub> (Kohler, Z Ver Zuckerind, 1897, **47** 447

Min Anhydrous, Thenardite  $+10H_{2}O$ ,

Mrabilite

#### Sodium hydrogen sulphate, NaHSO4

Not deliquescent Very sol in H<sub>2</sub>O with

decomposition

Sol in 2 pts H<sub>2</sub>O at 0° (Link), 1 pt H<sub>2</sub>O at 100° (Schubarth) 100 pts H<sub>2</sub>O at 15 5° dissolve 92 72 pts Sol in 2 pts H<sub>2</sub>O at 18 75° (Abl), decomp by alcohol

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, **20** 829)

 $+H_2O$  Deliquescent, and decomp by the H<sub>2</sub>O which it takes up

NaH<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub> Decomp by H<sub>2</sub>O (Schultz)

# Trisodium hydrogen sulphate, $Na_3H(SO_4)_2$

Sol in H<sub>2</sub>O with decomp  $+H_2O$  (Rose)

#### Sodium pyrosulphate, Na<sub>2</sub>S<sub>2</sub>O<sub>7</sub>

Sol in fuming H<sub>2</sub>SO<sub>4</sub> without decomp

Sodium thallic sulphate, Na<sub>2</sub>SO<sub>4</sub>, Tl<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub> Sol in  $H_2O$  (Strecker, A 135 207)

Sodium thorium sulphate, Na<sub>2</sub>SO<sub>4</sub>, Th(SO<sub>4</sub>)<sub>2</sub> +6H<sub>2</sub>O

Sol in H<sub>2</sub>O 100 pts cold sat Na<sub>2</sub>SO<sub>4</sub>+Aq dissolve 4 pts of this salt (Cleve) See also under Na<sub>2</sub>SO<sub>4</sub>+ThSO<sub>4</sub>

Sodium titanium sesquisulphate, Na<sub>2</sub>Ti<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub> +5H<sub>2</sub>O

(Spence, Chem Soc 1904, Sol in H<sub>0</sub>O **86** (2) 412 )

1903, 36 Insol in alcohol (Knecht, B 169)

Sodium titanyl sulphate, Na<sub>2</sub>T<sub>1</sub>O<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>+ 10H<sub>2</sub>O

Hygroscopic (Mazzuchelli and Pantanelli, C C 1909, II 420)

Sodium uranyl sulphate, Na<sub>2</sub>(UO<sub>2</sub>)(SO<sub>4</sub>)<sub>2</sub>+  $3H_{2}O$ 

(de Coninck, C C 1905, I 919)

Sodium vanadium sulphate, Na<sub>2</sub>V<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+ 24H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Piccini, Z anorg 1897, **13** 444)

Sodium vanadyl sulphate, Na<sub>2</sub>SO<sub>4</sub>, VOSO<sub>4</sub>+

Easily sol in H<sub>2</sub>O and alcohol + conc <sub>2</sub>SO<sub>4</sub> (Koppel, Z anorg 1903, **35** 177)  $H_2SO_4$  (Koppel, Z anorg  $Na_2SO_4$ ,  $2VOSO_4 + 2\frac{1}{2}H_2O$ Slowly sol an H<sub>2</sub>O

Can be cryst from H<sub>2</sub>SO<sub>4</sub> at 100° (Koppel)

Sodium yttrium sulphate, Na<sub>2</sub>SO<sub>4</sub>, Y<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>+  $2H_{9}O$ 

Quite sol in H<sub>2</sub>O (Cleve)

The only double salt capable of existing at 25° (James and Holden, J Am Chem Soc 1913, **35** 562)

Sodium zinc sulphate, Na<sub>2</sub>SO<sub>4</sub>,  $4H_2O$ 

Deliquescent in moist air

Decomp into constituents on dissolving in H<sub>2</sub>O (Graham, Phil Mag **18** 417)

Solubility of  $Na_2Zn(SO_4)_2 + 4H_2O$  in 100 g  $H_2O$  at t°

| t° | grams ZnSO4 | grams Na <sub>2</sub> SO <sub>4</sub> |
|----|-------------|---------------------------------------|
| 25 | 26 32       | 23 40                                 |
| 30 | 26 475      | 23 445                                |
| 35 | 26 365      | 23 525                                |
| 40 | 26 68       | 23 63                                 |

(Koppel, Z phys Ch 1905, **52** 409)

Solubility of  $Na_2Zn(SO_4)_2 4H_2O + ZnSO_4$  $7H_2O$  in 100 g  $H_2O$  at t°

| t° | grams<br>ZnSO <sub>4</sub> | grams<br>Na <sub>2</sub> SO <sub>4</sub> | t° | grams<br>ZnSO <sub>4</sub> | grams<br>Na <sub>2</sub> SO <sub>4</sub> |
|----|----------------------------|------------------------------------------|----|----------------------------|------------------------------------------|
| 10 | 45 79                      | 11 24                                    | 25 | 56 155                     | 7 215                                    |
| 15 | 48 81                      | 10 175                                   | 30 | 60 55                      | 6 34                                     |
| 20 | 52 34                      | 8 625                                    | 35 | 65 25                      | 5 64                                     |

(Koppel)

Solubility of  $Na_2Zn(SO_4)_2 4H_2O + ZnSO_4$  $6H_2O$  in 100 g  $H_2O$  at t°

| t° | grams ZnSO4 | grams Na <sub>2</sub> SO <sub>4</sub> |
|----|-------------|---------------------------------------|
| 38 | 66 64       | 4 98                                  |
| 40 | 64 89       | 4 71                                  |

(Koppel)

Solubility of  $Na_2Zn(SO_4)_2 4H_2O + Na_2SO_4$  $10H_2O$  in 100 g  $H_2O$  at t°

| t° | grams ZnSO <sub>4</sub> | grams Na <sub>2</sub> SO <sub>4</sub> |
|----|-------------------------|---------------------------------------|
| 10 | 43 495                  | 12 35                                 |
| 15 | 36 925                  | 16 71                                 |
| 20 | 28 77                   | 21 98                                 |
| 25 | 19 935                  | 29 875                                |
| 30 | 10 67                   | 42 515                                |

(Koppel)

Solubility of  $N_{d_2}Zn(SO_4)_2 4H_2O + N_{d_2}SO_4$ (anhydrous) in 100 g  $H_2O$  at t°

| 35 | 8 725 | 46 61  |
|----|-------|--------|
| 40 | 9 16  | 43 835 |

(Koppel)

Sodium sulphate fluoride, Na<sub>2</sub>SO<sub>4</sub>, NaF

Cryst from H<sub>2</sub>O without decomp (Marign 10, Ann Min (5) 15 236)

Sodium sulphate antimony trifluoride See Antimony trifluoride sodium sulphate

Strontum sulphate, SrSO4

Very sl sol in cold, and still less in boiling H<sub>2</sub>()

1 1 H () at 11-15° dissolves 0 066 g SrSO<sub>4</sub> (Br indes and Silber), 0 145 g SrSO<sub>4</sub> (Fresenius), 0 154-0 167 g SrSO<sub>4</sub> (Marignae), 0 187 g SrSO<sub>4</sub> (Kremers), 0 278 g SrSO<sub>4</sub> (Andrews)

1 l boiling H<sub>2</sub>O dissolves 0 104 g SrSO<sub>4</sub> (Fresenius), 0 282 g SrSO<sub>4</sub> (Brandes and

Silber)
When a Sr salt is precipitated by H<sub>2</sub>SO<sub>4</sub>, 1
pt SrSO<sub>4</sub> remains dissolved in 700 pts H<sub>2</sub>O
(Marignac)

Sol in about 8000 pts  $H_2O$  (Schweitzer, J B 1877 1054)

Calculated from electrical conductivity of the solution,  $SrSO_4$  is sol in 10,070 pts  $H_2O$  at 161° and 10,090 pts at 201° (Holleman, Z phys Ch 12 131)

11 H<sub>2</sub>O dissolves 107 mg SrSO<sub>4</sub> at 18° and not much more at higher temp (Kohlrausch and Rose, Z phys Ch **12** 241)

100 g H₂O dissolve

at t° 0°-5° 10°-12° 20° 30° g SrSO<sub>4</sub> 0 0983 0 0994 0 1479 1 0600

at t° 50° 80° 90° 95–98° g SrSO<sub>4</sub> 0 1629 0 1688 0 1727 0 1789 (Wolfmann, C C **1897**, I 632)

1 l H<sub>2</sub>O dissolves 114 mg SrSO<sub>4</sub> at 18° (Kohlrausch, Z phys Ch 1904, **50** 356), 114 3 mg at 18° (Kohlrausch, Z phys Ch 1908, **64** 168)

Sol in 6895 pts cold, and 9638 pts boiling H<sub>2</sub>O, in 11,000-12,000 pts H<sub>2</sub>O containing H<sub>3</sub>SO<sub>4</sub>, in 474 HCl+Aq containing 8 5% HCl, in 432 pts HNO<sub>3</sub>+Aq containing 4 8% N<sub>2</sub>O<sub>5</sub>, in 7843 pts HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq containing 15 6% HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Fresenius)
Or, 11 cold HCl+Aq of 8 5% dissolves 2 11

Or, 11 cold HCl+Aq of 8 5% dissolves 2 11 g SrSO<sub>4</sub>, 11 cold HNO<sub>3</sub>+Aq of 48% N<sub>2</sub>O<sub>5</sub> dissolves 2 31 g SrSO<sub>4</sub>, 11 cold HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq of 15 6% HC<sub>3</sub>H<sub>3</sub>O<sub>2</sub> dissolves 0 1275 g

SrŠO<sub>4</sub> (Fresenius)

Solubility of SrSO<sub>4</sub> in HCl+Aq

| No cc HCl+                       | g per 100                             | cc solution                               |
|----------------------------------|---------------------------------------|-------------------------------------------|
| 1 mg equiv HCl                   | HCl                                   | SrSO <sub>4</sub>                         |
| 0 2<br>0 5<br>1 0<br>2 0<br>10 0 | 18 23<br>7 29<br>3 65<br>1 82<br>0 36 | 0 161<br>0 207<br>0 188<br>0 126<br>0 048 |

(Banthisch, J pr 1884, (2) 29 54)

Solubility of SrSO<sub>4</sub> in HNO<sub>3</sub>+Aq

| No cc HNO3+<br>Aq containing     | g per 100 ce solution                  |                                           |  |
|----------------------------------|----------------------------------------|-------------------------------------------|--|
| 1 mg equiv<br>HNOs               | HNO <sub>8</sub>                       | SrSO <sub>4</sub>                         |  |
| 0 2<br>0 5<br>1 0<br>2 0<br>10 0 | 31 52<br>12 61<br>6 30<br>3 15<br>0 63 | 0 381<br>0 307<br>0 217<br>0 138<br>0 049 |  |

(Banthisch, J pr 1884, (2) 29 54)

Sol in conc H<sub>2</sub>SO<sub>4</sub> See under SrH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> Insol in NH<sub>4</sub>Cl+Aq or conc (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+ Aq (Rose)

Slowly but-completely sol in NaCl+Aq-(Wackenroder)

H<sub>2</sub>O containing Na<sub>2</sub>SO<sub>4</sub> dissolves less SrSO<sub>4</sub>

than pure H<sub>2</sub>O, H<sub>2</sub>O containing H<sub>2</sub>SO<sub>4</sub> still (Andrews, Phil Mag Ann 7 406)

Insol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq Insol in boiling cone (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq (Rose, Pogg 110 292)

Sol in 16 949 pts (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq (1 4) (Fresenius, Z anal **32** 195)

Pptn is hindered by alkali metaphosphates and citrates, but not by citric acid

Decomp at ord temp, and more rapidly on boiling by alkali carbonates+Aq

Sol in MgCl2 or KCl+Aq, solubility increasing with strength of solution, sol in NaCl or CaCl2+Aq, maximum solubility occurring when the solutions are of a medium concentration The numerical results are as follows

100 pts of the salt solutions containing given pts salt dissolve pts SrSO<sub>4</sub>

| T                 |                        |                            |
|-------------------|------------------------|----------------------------|
| Salt              | Pts salt               | Pts SrSO4                  |
| NaCl              | 22 17<br>15 54<br>8 44 | 0 1811<br>0 2186<br>0 1653 |
| KCl               | 18 08<br>12 54<br>8 22 | 0 2513<br>0 1933<br>0 1925 |
| MgCl <sub>2</sub> | 13 63<br>4 03<br>1 59  | 0 2419<br>0 2057<br>0 1986 |
| CaCl              | 33 70<br>16 51<br>8 67 | 0 1706<br>0 1853<br>0 1756 |

(Virck, C C 1862 402)

Solubility in H<sub>2</sub>O, and in solutions of the sulphates chlorides and nitrates of the alkalies and alkaline earths and in solutions of salts of the alkalies with strong organic acids has been determined No data in abstract (Wolfmann, Chem Soc 1898, (2) 74 220)

Solubility in H<sub>2</sub>O is considerably decreased by the presence of K<sub>2</sub>SO<sub>4</sub> (Barre, A ch **1911**, (8) **24** 175)

Solubility of SrSO<sub>4</sub> in Ca(NO<sub>8</sub>)<sub>2</sub>+Aq at ord temp

G per 100 cc sat solution

| Ca(NO <sub>8</sub> ) <sub>2</sub> | SrSO <sub>4</sub>                    | Ca(NO <sub>3</sub> ) <sub>2</sub> | SrSO <sub>4</sub>          |
|-----------------------------------|--------------------------------------|-----------------------------------|----------------------------|
| 0 5<br>1<br>2<br>3                | 0 0483<br>0 0619<br>0 1081<br>0 1275 | 4<br>5<br>6                       | 0 1489<br>0 1689<br>0 1955 |

(Raffo and Rossi, Gazz ch it 1915, 45 45)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 829)

100 g 95% formic acid dissolve 0 02 g SrSO<sub>4</sub> at 18 5° (Aschan, Chem Ztg 1913. (Aschan, Chem Ztg 1913. **37** 1117)

Insol in absolute alcohol, scarcely sol in dıl alcohol

Insol in methyl acetate (Naumann, B 1909, **42** 3790), acetone (Naumann, 1904, **37** 4329, Eidmann, C C **1899**, II 1014)

Min Celestite

### Strontium hydrogen sulphate, SrH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>

100 pts H<sub>2</sub>SO<sub>4</sub> dissolve 2 2 pts SrSO<sub>4</sub> (Lies-Bodart and Jacquemin), 100 pts H<sub>2</sub>SO<sub>4</sub> dissolve 5 68 pts (Struve, Z anal 9 34), 100 pts fuming H<sub>2</sub>SO<sub>4</sub> dissolve 9 77 pts (Struve)

1 g SrSO<sub>4</sub> dissolves in 1256 g 91% H<sub>2</sub>SO<sub>4</sub>+Aq (Varenne and Pauleau, C R **93** 1016), boiling H<sub>2</sub>SO<sub>4</sub> dissolves about 15% SrSO<sub>4</sub>, and

boling H<sub>2</sub>SO<sub>2</sub> dissolves about 15% S1SO<sub>4</sub>, and still more at 100° (Schultz, Pogg 133 147)
Sol in 1519 pts 91% H<sub>2</sub>SO<sub>4</sub> (Varenne and Pauleau, C R 93 1016)

100 pts H<sub>2</sub>SO<sub>4</sub> (sp gr 1843) dissolve 14 pts SrSO<sub>4</sub> at 70° (Garside, C N 31 245) Decomp by H<sub>2</sub>O

100 pts hot conc H<sub>2</sub>SO<sub>4</sub> dissolve about 9 0 pts SrSO<sub>4</sub> 66 206) (Rohland, Z anorg 1910,

10 ccm of sat SrSO<sub>4</sub>+absolute H<sub>2</sub>SO<sub>4</sub> contain approx 2 17 g SrSO<sub>4</sub> phys Ch 1910, **72** 355) (Bergius, Z +H<sub>2</sub>O Decomp by H<sub>2</sub>O

Strontium tin (stannic) sulphate, SrSO4,  $Sn(SO_4)_2 + 3H_2O$ 

Decomp by H<sub>2</sub>O Sol in HCl (Weinland and Kuhl, Z anorg 1907, 54 249)

# Strontium titanium sulphate, SrSO<sub>4</sub>, T<sub>1</sub>(SO<sub>4</sub>)<sub>2</sub>

Ppt, decomp by H<sub>2</sub>O giving titanic acid (Weinland and Kuhl, Z anorg 1907, 54 254)

Tantalum sulphate,  $3\text{Ta}_2\text{O}_5$ ,  $8\text{O}_3 + 9\text{H}_2\text{O}_5$ (Hermann, J pr **70** 201)

# Tellurium sulphate, basic, TeO<sub>2</sub>, SO<sub>3</sub>

Decomp by hot Sol in cold dil H<sub>2</sub>SO<sub>4</sub> H<sub>2</sub>O (Klein, C R **99** 326)

## Terbium sulphate, Tr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+8H<sub>2</sub>O

Sol in H<sub>2</sub>O

Sol in H<sub>2</sub>O, pptd by alcohol (Urbuin, C R 1908, **146** 127)

## Thallous sulphate, Tl<sub>2</sub>SO<sub>4</sub>

1 pt dissolves at to in pts H2O, according to C = Crookes, L = Lamy

15° 18° 62° 101 2° 100° 21 1 208 87 54 5 22 pts H<sub>2</sub>O  $\mathbf{C}$ L L

| Solubility of Tl <sub>2</sub> SO <sub>4</sub> in H <sub>2</sub> O |                                              |                               |                                          |
|-------------------------------------------------------------------|----------------------------------------------|-------------------------------|------------------------------------------|
| t°                                                                | % Tl SO4                                     | t°                            | % Tl <sub>2</sub> SO <sub>4</sub>        |
| 0<br>10<br>20<br>30<br>40<br>50                                   | 2 63<br>3 57<br>4 64<br>5 80<br>7 06<br>8 44 | 60<br>70<br>80<br>90<br>99 7* | 9 85<br>11 31<br>12 75<br>14 19<br>15 57 |

B-pt at 748 mm (Berkeley, Phil Trans Roy Soc 1904, 203 A, 189, calc by Landolt-Bornstein)

100 g H<sub>2</sub>O dissolve 3 36 g Tl<sub>2</sub>SO<sub>4</sub> at 6 5°, 4 3 g at 12°, 19 14 g at 100° (Tutton, Proc Roy Soc 1907, 79 A, 351)

1 1 H<sub>2</sub>O dissolves 0 1928 equivalents Tl<sub>2</sub>SO<sub>4</sub> at 20°, or 48 59 g in 1 l of solution (Noyes, J Am Chem Soc 1911, 33 1657)

1 1 H<sub>2</sub>O dissolves 0 1033 g equiv Tl<sub>2</sub>SO<sub>4</sub>

at 25°, or 27 28 g in 11 of solution (Noyes)

| Solubility in H <sub>2</sub> SO <sub>4</sub> +Aq at 25°           |                  |  |
|-------------------------------------------------------------------|------------------|--|
| Strength of H SO <sub>4</sub> +Aq g mols Tl SO <sub>4</sub> per l |                  |  |
| 0 0494<br>0 0987                                                  | 0 1172<br>0 1249 |  |

(Noyes, J Am Chem Soc 1911, 33 1662)

1 l TlClO<sub>3</sub>+Aq containing 0 1058 equivalents TlClO<sub>3</sub>, dissolves 0 1366 equivalents Tl<sub>2</sub>SO<sub>4</sub> at 20° (Noyes) See also TICIO.

# Solubility in salts+Ag at 25°

| Soldonio, in bu                                                                                                                           |                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| g mols per l                                                                                                                              | 'g mols per l Tl SO <sub>4</sub><br>dissolved |
| 0 0996 TINO <sub>3</sub><br>0 0497 Na <sub>2</sub> SO <sub>4</sub><br>0 1988 Na <sub>2</sub> SO <sub>4</sub><br>0 1010 NaHSO <sub>4</sub> | 0 08365<br>0 1080<br>0 1173<br>0 1161         |

(Noyes)

Thallous hydrogen sulphate, TlHSO4 SI hydroscopic Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

#### 1000 g of the solution contain

| Mols H <sub>2</sub> SO <sub>4</sub> | Mols Tl <sub>2</sub> SO <sub>1</sub> |
|-------------------------------------|--------------------------------------|
| 4 55                                | 0 56                                 |
| 4 79                                | 0 55                                 |
| 4 89                                | 0 59                                 |
| 4 92                                | 0 66                                 |
| 4 78                                | 0 75                                 |
| 4 26                                | 1 01                                 |
| 4 03                                | 1 08                                 |

(D'Ans, Z anorg 1910, 65 232)

Tl<sub>2</sub>SO<sub>4</sub>, TlHSO<sub>4</sub> Sol in H<sub>2</sub>O becker, R t c 1902, **21** 90) (Storten-

Thallous pyrosulphate, Tl<sub>2</sub>S<sub>2</sub>O<sub>7</sub>

Decomp by H<sub>2</sub>O (Weber, B 17 2502)

Thallous ortosulphate, Tl<sub>2</sub>S<sub>8</sub>O<sub>25</sub>

(Weber, B 17 2502) Decomp by H<sub>2</sub>O

Thallic sulphate, basic,  $Tl_2O_3$ ,  $2SO_3+3H_2O_3$ Sol in H<sub>2</sub>O  $+5H_2O$  As above (Willm, A ch (4) 5

Thallic sulphate,  $Tl_2(SO_4)_3 + 7H_2O$ 

Decomp by cold H<sub>2</sub>O with separation of TlO(OH) (Črookes)

Thallothallic sulphate,  $2\text{Tl}_2\text{O}$ ,  $3\text{Tl}_2\text{O}_3$ ,  $12\text{SO}_3$ +  $25H_2O$ 

Gradually efflorescent (Willm) (Lepsius, Chem Ztg 1890  $Tl_2(SO_4)_2$ 1327)TlH(SO<sub>4</sub>)<sub>2</sub> (Lepsius)

Thallous uranyl sulphate,  $Tl_2(UO_2)(SO_4)_2$ + 3H<sub>2</sub>O

Sl sol in cold H<sub>2</sub>O Easily forms supersat solutions (Kohn, Z anorg 1908, 59 112)

Thallium vanadium sulphate,  $Tl_2V_2(SO_4)_4$ + 24H<sub>2</sub>O

100 pts H<sub>2</sub>O dissolve 11 06 pts salt at 10° Sp gr of solution at  $4^{\circ}/20^{\circ} = 2342$ Very sol in hot H2O (Piccini, Z anorg 1897, **13** 446)

256 g anhydrous, or 433 g hydrated salt, or 0 573 g mols of anhydrous salt are sol in 1 l H<sub>2</sub>O at 25°

Melts in crystal H<sub>2</sub>O at 48° (Locke, Am Ch J 1901, 26 175)

Thallous zinc sulphate, Tl<sub>2</sub>Zn(SO<sub>4</sub>)<sub>2</sub>+6H<sub>2</sub>O 1 l H<sub>2</sub>O dissolves 86 g anhydrous salt at 25° (Locke, Am Ch J 1902, 27 459)

Thallothallic sulphate bromide, Tl<sub>2</sub>Br<sub>2</sub>SO<sub>4</sub>

Very sol in cold H2O Decomp by much H<sub>2</sub>O (Meyer and Goldschmidt, B 1903, 36 242)

Thorum sulphate, basic,  $3[Th(SO_4)_2+2H_2O]$ ,  $Th(SO_4)O + 2H_2O$ 

Insol in H2O, very slowly attacked by dil acids (Demarcay)

 $1 \text{hO}(\text{SO}_4) + 2 \text{H}_2\text{O}$ Stable in ag solution at 100° (Hauser, B 1910, **43** 2776) +5H<sub>2</sub>O Somewhat sol in hot conc

MgSO<sub>4</sub>+Aq (Halla, Z anorg 1912, **79** 260)

Thorium sulphate,  $Th(SO_4)_2$ 

Anhydrous Easily sol if brought into a large amount of H2O, but very slowly sol if only a little H<sub>2</sub>O is added to the salt

100 pts H<sub>2</sub>O dissolve about 486 pts  $Th(SO_4)_2$  at  $0^\circ$ (Cleve)

When heated, a hydrous salt separates out, which redissolves on cooling (Cleve)

Solubility of anhydrous salt cannot be determined, as it begins to separate out Th(SO<sub>4</sub>)<sub>2</sub>+9H<sub>2</sub>O before a saturated solution is reached At 0°, 100 pts H<sub>2</sub>O dissolved 22 97 pts Th(SO<sub>4</sub>)<sub>2</sub> in 15 minutes, at 25°, 27 00 pts Th(SO<sub>2</sub>)<sub>2</sub> were dissolved in 5 minutes (Roozeboom, Z phys Ch 5 198) +2H<sub>2</sub>O Shows same behaviour as anhy-

100 pts H<sub>2</sub>O dissolved 35 50 pts drous salt Th(SO<sub>4</sub>)<sub>2</sub> from this salt at 1°, but this is not the maximum solubility (Roozeboom)

Pptd by alcohol from hot aque-+4H<sub>2</sub>O ous solution, also formed by heating  $Th(SO_4)_2$ +9H<sub>2</sub>O in aqueous solution above 60°

100 pts  $\rm H_2O$  dissolve pts  $\rm Th(SO_4)_2+4H_2O$ , calculated as  $\rm Th(SO_4)_2$ , at t°  $\rm D=ac$ cording to Demarcay (C R **96** 1860), R = according to Roozeboom (Z phys Ch 5 202)

| t° | Pts<br>Th(SO <sub>4</sub> ) <sub>2</sub> | to | Pts<br>Th(SO <sub>4</sub> ) <sub>2</sub> | t° | Pts<br>Th(SO <sub>4</sub> ) |
|----|------------------------------------------|----|------------------------------------------|----|-----------------------------|
| 17 | 9 41 D                                   | 50 | 2 54 R                                   | 70 | 1 09 R                      |
| 35 | 4 50 D                                   | 55 | 1 94 D                                   | 75 | 1 32 D                      |
| 40 | 4 04 R                                   | 60 | 1 634 R                                  | 95 | 0 71 D                      |

 $+6H_2O$ Behaves as the anhydrous salt, but action is much slower

100 pts  $H_2O$  dissolve pts  $Th(SO_4)_2+6H_2O$ , calculated as Th(SO<sub>4</sub>)<sub>2</sub>, at to

| t°            | Pts<br>Th(SO <sub>4</sub> ) <sub>2</sub> | t°       | Pts<br>Th(SO <sub>4</sub> ) <sub>2</sub> |
|---------------|------------------------------------------|----------|------------------------------------------|
| 0<br>15<br>30 | 1 50<br>1 63<br>2 45                     | 45<br>60 | 3 85<br>6 64                             |

(Roozeboom)

This determination gives too low figures, especially at the higher temperatures (Roozeboom )

 $+8\dot{H}_2O$ 

+9H<sub>2</sub>O

100 pts  $H_2O$  dissolve pts  $Th(SO_4)_2 + 8H_2O$ , calculated as Th(SO<sub>4</sub>)<sub>2</sub>, at t°

| t  | Pts<br>Th(SO <sub>4</sub> ) <sub>2</sub> | t° | Pts<br>Th(SO <sub>4</sub> ) <sub>2</sub> |
|----|------------------------------------------|----|------------------------------------------|
| 0  | 1 00                                     | 25 | 1 85                                     |
| 15 | 1 38                                     | 44 | 3 71                                     |

(Roozeboom)

100 g Th(SO<sub>4</sub>)<sub>2</sub>+Aq sat with Th(SO<sub>4</sub>)<sub>2</sub>+ 8H<sub>2</sub>O at 30° contain 2 152 g anhydrous Th(SO<sub>4</sub>)<sub>2</sub> (Koppel and Holzkampf, Z anorg 1910, **67** 274)

100 g H<sub>2</sub>O dissolve 1 722 g at 25° Bull Soc 1912, (4) 11)

Pptd by alcohol from cold

aqueous solution Sol in about 88 pts H<sub>2</sub>( at 0° (Cleve) Extremely slowly sol in H<sub>2</sub>C

100 pts H<sub>2</sub>O dissolve pts Th(SO<sub>4</sub>)<sub>2</sub>+9H<sub>2</sub>C calculated as  $Th(SO_4)_2$ , at t

| t°            | Pts<br>Th(SO <sub>4</sub> ) <sub>2</sub> | t°       | Pts<br>Th(SO <sub>4</sub> ) <sub>2</sub> | t°       | Pts<br>Th(SO <sub>4</sub> ) |
|---------------|------------------------------------------|----------|------------------------------------------|----------|-----------------------------|
| 0<br>10<br>20 | 0 88<br>1 02<br>1 25                     | 30<br>40 | 1 85<br>2 83                             | 50<br>55 | 4 86<br>6 5±                |

Above 55°, Th(SO<sub>4</sub>)<sub>2</sub>+4H<sub>2</sub>O separates ou (Demarcay C R 96 1860, calculated by Roozeboom

100 pts  $H_2O$  dissolve pts  $Th(SO_4)_2 + 9H_2C$ calculated as Th(SO<sub>4</sub>)<sub>2</sub>, at t

| t°            | Pts<br>Th(SO <sub>4</sub> ) <sub>2</sub> | t°       | Pts<br>Th(SO <sub>4</sub> ) <sub>2</sub> | t°       | Pts<br>Th(SO4) |
|---------------|------------------------------------------|----------|------------------------------------------|----------|----------------|
| 0<br>10<br>20 | 0 74<br>0 98<br>1 38                     | 30<br>40 | 1 995<br>2 998                           | 51<br>55 | 5 22<br>6 76   |

Above 60°, Th(5O<sub>4</sub>)<sub>2</sub>+4H<sub>2</sub>O separates ou (Roozeboom, Z phys Ch 5 201)

For further data, see Roozeboom (Z phy Ch 5 198), where there is a full discussion of the subject

199 g sat solution of  $Th(SO_4)_2+9H_2O_1$  $H_2O$  at 25° contain 1593 g anhyd sal (Wirth, Z anorg 1912, **76** 174)

Solubility of  $Th(SO_4)_2$  in  $H_2SO_4+Aq$  at t

|                 |                                                                                                                                                 | , -                                                                                                                                                        |                                                                                                                           |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| t               | % H <sub>2</sub> SO <sub>4</sub>                                                                                                                | % ThSO4                                                                                                                                                    | Solid phase                                                                                                               |
| 30              | 0 000<br>0 466<br>0 72<br>1 468<br>2 983<br>4 38<br>4 97<br>9 95<br>15 03<br>18 95<br>23 64<br>32 68<br>37 80<br>43 28<br>45 69<br>74 0<br>80 5 | 2 152<br>2 055<br>2 085<br>2 267<br>2 311<br>2 367<br>2 323<br>1 961<br>1 484<br>1 078<br>0 7196<br>0 3364<br>0 077<br>0 0213<br>0 0047<br>0 1208<br>0 000 | Th(SO <sub>4</sub> ) <sub>2</sub> +8H <sub>2</sub> C  "" "" "" "" "" Th(SO <sub>4</sub> ) <sub>2</sub> +4H <sub>2</sub> C |
| 20              | 5<br>15<br>25<br>40                                                                                                                             | 1 722<br>0 9752<br>0 3838<br>0 0103                                                                                                                        | Th(SO <sub>4</sub> ) <sub>2</sub> +8H <sub>2</sub> ( " Th(SO <sub>4</sub> ) <sub>2</sub> +4H <sub>2</sub> (               |
| Boiling<br>temp | 5<br>10<br>15                                                                                                                                   | 0 7407<br>0 4808<br>0 3882                                                                                                                                 | tt<br>tt                                                                                                                  |
| (Koppe          | and Ho                                                                                                                                          | lzkamnf.                                                                                                                                                   | Z anorg 1910 6                                                                                                            |

anorg 1910, 6

274)

| Solubility in H <sub>2</sub> SO <sub>4</sub> +Aq at 25°              |                                                                       |  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Per 100 g                                                            | of solution                                                           |  |
| g Th(SO <sub>4</sub> ) <sub>2</sub>                                  | g H <sub>2</sub> SO <sub>4</sub>                                      |  |
| 1 722<br>1 919<br>2 017<br>2 060<br>2 061<br>2 035<br>1 863<br>1 702 | 0 000<br>1 072<br>1 941<br>2 821<br>3 843<br>5 212<br>8 055<br>10 105 |  |

(Barre, Bull Soc 1912, (4) 11 647)

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| nality                                | In 100 g<br>hquid are                                                    | of the<br>dissolved                                                       |                                                                                                                                                                      |
|---------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SO <sub>4</sub>                       | g oxide                                                                  | g<br>anhydrous<br>sulphate                                                | Solid phase                                                                                                                                                          |
| 1<br>16<br>32<br>68<br>68<br>89<br>15 | 1 015<br>1 14<br>0 9265<br>0 545<br>0 2685<br>0 0651<br>0 0396<br>0 0192 | 1 593<br>1 831<br>1 488<br>0 8751<br>0 4312<br>0 1045<br>0 0636<br>0 0308 | Th(SO <sub>4</sub> ) <sub>2</sub> +9H <sub>2</sub> O  ""  Th(SO <sub>4</sub> ) <sub>2</sub> +8H <sub>2</sub> O  Th(SO <sub>4</sub> ) <sub>2</sub> +4H <sub>2</sub> O |

(Wirth, Z anorg 1912, 76 186)

olubility of Th(SO<sub>4</sub>)<sub>2</sub> in HCl+Aq at 30°

| 76 HCl $76$ Th(SO <sub>4</sub> ) <sub>2</sub> Solid phase       0 0     2 15     Th(SO <sub>4</sub> ) <sub>2</sub> +8H <sub>2</sub> O       4 55     3 541     "       6 95     3 431 ±     "       12 14     2 811     "       15 71     2 360     "       18 33     2 199     "       20     2 13     Th(SO <sub>4</sub> ) <sub>2</sub> +4H <sub>2</sub> O       23 9     1 277     Th(SO <sub>4</sub> ) <sub>2</sub> +4H <sub>2</sub> O | -                                       |                                              |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                     | % HCl                                   | % Th(SO4)2                                   | Solid phase      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 55<br>6 95<br>12 14<br>15 71<br>18 33 | $3541$ $3431 \pm$ $2811$ $2360$ $2199$ $213$ | u<br>u<br>u<br>u |

oppel and Holzkampf, Z anorg 1910, 67

lubility of Th(SO<sub>4</sub>)<sub>2</sub> in HNO<sub>3</sub>+Aq at 30°

| 6 HNO <sub>3</sub>                                                         | % Th(SO4)2                                                           | Solid phase                                                                                                            |
|----------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 0 0<br>5 17<br>10 04<br>16 68<br>21 99<br>28 33<br>28 51<br>33 17<br>38 82 | 2 15<br>3 68<br>4 20<br>4 84<br>4 47<br>3 96<br>3 88<br>3 34<br>2 51 | Th(SO <sub>4</sub> ) <sub>2</sub> +8H <sub>2</sub> O  ""  ""  ""  Th(SO <sub>4</sub> ) <sub>2</sub> +4H <sub>2</sub> O |
|                                                                            |                                                                      | <u> </u>                                                                                                               |

oppel and Holzkampf, Z anorg 1910, 67

The presence of phosphoric acid increases the solubility of thorium sulphate in HCl and HNO<sub>3</sub> (Koppel and Holzkampf, Z anorg 1910, 67 280)

For solubility of Th(SO<sub>4</sub>)<sub>2</sub> in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, Li<sub>2</sub>SO<sub>4</sub>, and K<sub>2</sub>SO<sub>4</sub>, see respective sulphates Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 830)

Thorum hydrogen sulphate, ThH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>

Hydroscopic Sol in excess of hot H<sub>2</sub>SO<sub>4</sub>, insol in cold H<sub>2</sub>SO<sub>4</sub> (Brauner, Z anorg 1904, **38** 333)

Thulium sulphate,  $Tm_2(SO_4)_8 + 8H_2O$ 

Insol m alcohol (James, J Am Chem Soc 1911, 33 1343)

Tm (stannic) sulphate, basic, (SnO)SO<sub>4</sub>+ H<sub>2</sub>O

Easily sol in cold H<sub>2</sub>O, but quickly decomp with separation of stannic hydroxide (Ditte, C R 104 178)

3SnO, SO<sub>3</sub> Easily sol in dil acids (Ditte, A ch 1882, (5) **27** 159) +1½H<sub>2</sub>O Not decomp by cold H<sub>2</sub>O (Ditte)

Tin (stannous) sulphate, SnSO4

Sol in 5 3 pts H<sub>2</sub>O at 19°, and 5 5 pts at 100° (Marignac) Solution soon decomposes with separation of a basic salt Sol in H<sub>2</sub>SO<sub>4</sub>+Aq (Bouquet)

Insol in acetone (Naumann, B 1904, 37 4329)

Tin (stannic) sulphate,  $Sn(SO_4)_2 + 2H_2O$ 

Deliquescent Easily sol in H<sub>2</sub>O, decomp by much H<sub>2</sub>O Sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq Slowly sol in HCl+Aq Decomp by absolute alcohol (Ditte, C R **104** 178)

Titanium sulphate, Ti(SO<sub>4</sub>)<sub>2</sub>+3H<sub>2</sub>O

Deliquescent, and sol in H<sub>2</sub>O The aqueous solution is decomp on boiling (Glatzel, B 9 1833)

Titanium sesquisulphate, Ti2(SO4)3

Very deliquescent, and easily sol in H<sub>2</sub>O Aqueous solution is decomp by boiling

(Ebelmen)
Insol in H<sub>2</sub>O, alcohol, ether and conc H<sub>2</sub>SO<sub>4</sub> Slowly sol in dil H<sub>2</sub>SO<sub>4</sub> and HCl (Stahler, B 1905, **38** 2624)

(Stahler, B 1905, 36 2024)
Not sol in alcohol (Knecht, B 1903, 36 169)

+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Glatzel, B **9** 1833)

Titanium hydrogen sesquisulphate,  $3T_{12}(SO_4)_s$ ,  $H_2SO_4+25H_2O$ 

Gradually sol in H<sub>2</sub>O Insol in 60% H<sub>2</sub>SO<sub>4</sub>, alcohol, ether and glacial acetic acid (Stahler, B 1905, **38** 2621)

## Titanyl sulphate, (TiO)SO4

Decomp by H<sub>2</sub>O Slowly sol in cold, rapidly in warm HCl+Aq (Mer₄, J pr 99 157)

 $\begin{array}{c} +2 H_2 O \quad \text{Sol} \quad \text{in} \quad H_2 O \\ \text{Soc} \quad 1899, \ (3) \ \ \textbf{21} \quad 262 \ ) \end{array}$ (Blondel, Bull  $2\text{T}_1\text{O}_2$ ,  $3\text{SO}_3 + 3\text{H}_2\text{O}$ Sol in H<sub>2</sub>O acidified with HCl (Blondel, Bull Soc 1899, (3) 21

262  $5\text{T}_{1}\text{O}_{2}$ ,  $\text{SO}_{3} + 5\text{H}_{2}\text{O}$ (Blondel)  $7\text{T}_1\text{O}_2$ ,  $2\text{SC}_3 + x\text{H}_2\text{O}$ (Blondel)  $2\text{T}_1\text{O}_2$ ,  $\text{SO}_3 + x\text{H}_2\text{O}$ (Blondel)

Uranous sulphate, basic, U(OH)<sub>2</sub>SO<sub>4</sub>+H<sub>2</sub>O Insol in H<sub>2</sub>O H<sub>2</sub>O dissolves out H<sub>2</sub>SO<sub>4</sub> (Ebelmen, A ch (3) 5 217)

+5H<sub>2</sub>O Sol in alcohol Pptd by ether (Rosenheim, Z anorg 1901, **26** 251

## Uranous sulphate, $U(SO_4)_2+4H_2O$

Sol in  $H_2O$  with immediate decomp Easily sol in dil  $H_2SO_4+Aq$  (Kohlschütter, B 1901, **34** 3629)

Decomp by H<sub>2</sub>O into insol basic, and sol acid salt Sol in dil H<sub>2</sub>SO<sub>4</sub> or HCl+Aq Difficultly sol in conc acids (Ebelmen, A ch (3) 5 215)

Solubility of U(SO<sub>4</sub>)<sub>2</sub>+4H<sub>2</sub>O in H<sub>2</sub>O at t°

| t°       | % U(SO4)2  | t°         | % U(SO <sub>4</sub> ) 2 |
|----------|------------|------------|-------------------------|
| 29<br>37 | 9 8<br>8 3 | 48 2<br>63 | 8 1<br>7 3              |
| 70 7     | 1 7        |            |                         |

(Giolitti and Bucci, Gazz ch it 1905, 35 (2) 162)

1 pt is sol in 4 23 pts H<sub>2</sub>O at 13°, 4 3 pts at 11 3°, 44 pts at 91° (de Connck, A ch 1903, (7) **28** 12) +8H<sub>2</sub>O

Solubility of U(SO<sub>4</sub>)<sub>2</sub>+8H<sub>2</sub>O in H<sub>2</sub>O at t°

| t°   | t° % U(SO <sub>4</sub> ) <sub>2</sub> |      | % U(SO4) |  |
|------|---------------------------------------|------|----------|--|
| 18   | 10 17                                 | 48 2 | 28 72    |  |
| 25 6 | 13 32                                 | 62   | 36 8     |  |
| 37   | 19 98                                 | 93   | 63 2     |  |

(Giolitti and Bucci, Gazz ch it 1905, 35  $(2)\ 162)$ 

Sp gr of U(SO<sub>4</sub>)<sub>2</sub>+Aq at t°

| t                                                                | % salt                                    | Sp gr                                                                                  |
|------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|
| 16<br>16 8<br>16 17 8<br>17 2<br>18 18 3<br>17 4<br>15 2<br>15 6 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1 0058<br>1 0107<br>1 0165<br>1 0218<br>1 0272<br>1 0320<br>1 0379<br>1 0429<br>1 0485 |
|                                                                  | 10                                        | 1 0539                                                                                 |

(de Connck, A ch 1903, (7) 28 11)

Solubility in acids +Aq 1 pt U(SO<sub>4</sub>) is sol in pts acid at to

| 1 pt 0 (504) is sor in pts acid at t |                                 |                           |                                        |  |
|--------------------------------------|---------------------------------|---------------------------|----------------------------------------|--|
| t°                                   | Acıd                            | Concentra<br>tion of acid | Pts<br>acid                            |  |
| 9 7<br>9 2                           | HCl<br>"                        | 1,4                       | 5 74<br>5 8                            |  |
| 11 2<br>10 3                         | HNO3                            | 1,4                       | 5 4<br>5 53                            |  |
| 11 4                                 | H <sub>2</sub> SeO <sub>4</sub> | 1 4                       | 4 57                                   |  |
| 10 7                                 | (sp gr 14)                      | "                         | 4 66                                   |  |
| 15<br>14_2                           | HBr<br>"                        | 1,4                       | $\begin{array}{c} 4\\4\\23\end{array}$ |  |
| 15 5<br>14 4                         | $\mathrm{HC_2H_3O_2}$           | 145                       | 4 1<br>4 3                             |  |
| 16 5<br>15 9                         | <b>,</b>                        | 1,2                       | 3 72<br>3 85                           |  |
| 11 7<br>10 9<br>10 1<br>9            | H <sub>2</sub> SO <sub>4</sub>  | 14                        | 6 36<br>6 42<br>6 45<br>6 5            |  |

(de Coninck, Chem Soc 1902, 82 (2) 45°

Sp gr of  $U(SO_4)_2+HCl(d=1 046)$  at t° d₁=Sp gr referred to H₂O d<sub>2</sub>=Sp gr referred to HCl

| t                              | % salt                | dı                                             | d <sub>2</sub>                                 |
|--------------------------------|-----------------------|------------------------------------------------|------------------------------------------------|
| 16<br>17<br>18<br>18 4<br>17 6 | 1<br>2<br>3<br>4<br>5 | 1 0525<br>1 0572<br>1 0619<br>1 0667<br>1 0714 | 1 0063<br>1 0109<br>1 0154<br>1 0199<br>1 0243 |

(de Coninck, A ch 1903, (7) 28 11)

Sp gr of  $U(SO_4)_2 + H_2SO_4(d=1 14)$  at t°  $d_1 = Sp$  gr referred to  $H_2O$ d<sub>2</sub>=Sp gr referred to H<sub>2</sub>SO<sub>4</sub>

| t                                    | % salt                | d <sub>1</sub>                                 | d2                                             |
|--------------------------------------|-----------------------|------------------------------------------------|------------------------------------------------|
| 18 7<br>18 3<br>17 4<br>17 6<br>18 1 | 1<br>2<br>3<br>4<br>5 | 1 1442<br>1 1494<br>1 1539<br>1 1583<br>1 1626 | 1 0038<br>1 0083<br>1 0123<br>1 0162<br>1 0204 |
| (de Cor                              | unck A cl             | 1903 (7)                                       | 28 11 )                                        |

1 pt is sol in 8 pts alcohol (94°)+A (14) at 104° (de Coninck) Solubility in glycol at 14 8° = 3 15% Coninck, C C 1905, II 883)

Min Johannite Sl sol in H2C.

Uranous hydrogen sulphate, U(SO<sub>4</sub>)<sub>2</sub>, H<sub>2</sub>SC +10H<sub>2</sub>O

(Giolitti, C C 1905, II 1226)

Uranyl sulphate, basic, 3UO<sub>3</sub>, SO<sub>3</sub>+2H<sub>2</sub>O

(Athanasesco)

 $+14H_{2}O$ Sol in H<sub>2</sub>O (Ordway, Sill

Am J (2) 26 208) 4UO<sub>3</sub>, SO<sub>3</sub>+7H<sub>2</sub>O (Athanasesco, C R **103** 271)

UO<sub>2</sub>, 4UOSO<sub>4</sub>+8H<sub>2</sub>O Less sol in min acids, especially dil H2SO4+Aq, than UOSO4 +2H<sub>2</sub>O (de Coninck, C C 1901, II 1038)

## Uranyl sulphate, (UO<sub>2</sub>)SO<sub>4</sub>

 $+H_2O$ (de Coninck)

+3H<sub>2</sub>OEfflorescent Very sol in H<sub>2</sub>O and alcohol

1 pt is sol in 0.6 pt cold  $H_2O$ , in 0.45 pt boiling  $H_2O$ , in 25 pts cold absolute alcohol, in 20 pts boiling absolute alcohol (Bucholz)

Sol in 047 pt H<sub>2</sub>O at 21°, and 028 pt

boiling H<sub>2</sub>O (Ebelmen)

100 pts H<sub>2</sub>O at 15 5° dissolve 160 pts, and at 100°, 220 pts (Ure's Dict)

1 pt is sol in 53 pts H<sub>2</sub>O at 132°, 516 pts at 141°, 496 pts at 151°, 488 pts at 155° (de Connck, A ch 1903, (7) 28 8)

Sp gr of (UO<sub>2</sub>)SO<sub>4</sub>+Aq at t°

| t°                                                                                   | % (UO)2SO4                                            | Sp gr                                                                                                                |
|--------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 14<br>15 5<br>11 3<br>10 2<br>10 2<br>10<br>14<br>15 6<br>11<br>10 3<br>11 4<br>11 6 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 1 0062<br>1 0113<br>1 0172<br>1 0229<br>1 0280<br>1 0338<br>1 0389<br>1 0442<br>1 0503<br>1 0557<br>1 0612<br>1 0669 |
|                                                                                      |                                                       |                                                                                                                      |

(de Coninck, A ch 1903, (7) 28 7)

Solubility in acids +Aq

1 pt (UO<sub>2</sub>)SO<sub>4</sub> is sol in

3 4 pts cone HCl at 12 8° 3 25 " " " 13 6° 3 25 "

59 "  $HBr(d=1 \ 21)$  " 12 9° 61 " "

11 2° 108 " " 12 3° conc HNO<sub>8</sub>

11 2 " " " " 10 8°

43"

 $H_2SO_4(d=1.38)$ " 12.7° " 14.0° 41 "

56 "aqua regia (equal vol HCl+ HNOs) at 15 4°

547 pts aqua regia (equal vol HCl+

HNO<sub>8</sub>) at 16 4 37 pts selenic acid (d=14) at 153°

(de Coninck, A ch 1903, (7) 28 8)

Sp gr of  $(UO_2)SO_4+H_2SO_4(d=1 168)$  at t°  $d_1 = Sp$  gr referred to  $H_2O$  $d_2 = Sp$  gr referred to  $H_2SO_4$ 

| t°                                   | % salt                | dı                                             | $\mathbf{d_2}$                                 |
|--------------------------------------|-----------------------|------------------------------------------------|------------------------------------------------|
| 20 6<br>22 2<br>21 1<br>22 7<br>22 3 | 1<br>2<br>3<br>4<br>5 | 1 1738<br>1 1775<br>1 1880<br>1 1872<br>1 1918 | 1 0050<br>1 0082<br>1 0129<br>1 0165<br>1 0204 |

(de Coninck, A ch 1903, (7) 28 7)

1 pt is sol in 37 9 pts alcohol (85°) at 16 7°, 38 6 pts at 15 8° (de Coninck, A ch 1903, (7) **28** 8)

Very sl sol in formic and glacial acetic acids (de Coninck, A ch 1903, (7) 28 9

Completely pptd from (UO2)SO4+Aq by  $HC_2H_3O_2$  (Persoz)

Uranyl hydrogen sulphate,  $(UO_2)SO_4$ ,  $H_2SO_4$ 

Very deliquescent (Schultz-Sellack) 2(UO<sub>2</sub>)SO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>+5H<sub>2</sub>O Very deliquescent (Wyrouboff, Bull Soc Min 1909, 32 351)

## Uranyl pyrosulphate, (UO2)S2O7

Very deliquescent Hisses with H<sub>2</sub>O (Schultz-Sellack)

Uranouranyl sulphate, USO4, (UO2)SO4

Sol in H<sub>2</sub>O (Ebelmen) Decomp by boiling (Berzelius) Min Voglianite

Uranyl sulphate ammonia, (UO2)SO4, 2NH2 (v Unruh, Dissert 1909)

(UO<sub>2</sub>)SO<sub>4</sub>, 3NH<sub>3</sub> (UO<sub>2</sub>)SO<sub>4</sub>, 4NH<sub>3</sub> (v Unruh) (v Unruh)

Vanadous sulphate, V<sub>2</sub>O<sub>3</sub>, 4SO<sub>3</sub>+9H<sub>2</sub>O Sol in H<sub>2</sub>O (Brierley, Chem Soc 49) 882)

Vanadium sulphate,  $V_2O_5$ ,  $2SO_3 = (VO_2)_2S_2O_7$ 

Deliquescent Easily sol in H<sub>2</sub>O

 $V_2O_5$ ,  $3SO_3$ Deliquescent Sol in H<sub>2</sub>O and alcohol

+3H<sub>2</sub>O Deliquescent Very sol in H<sub>2</sub>O, but decomp by boiling Sol in alcohol

(Ditte, C R 102 757)
VSO<sub>4</sub>+7H<sub>2</sub>O Decomp by air, very unstable, sol in H2O (Piccini, Z anorg 1899, **19** 204)

Vanadium sesquisulphate,  $V_2(SO_4)_8$ 

AnhydrousInsol in H<sub>2</sub>O

Insol in cone H2SO4, but slowly sol in boiling dil H<sub>2</sub>SO<sub>4</sub> Sol in HCl

Insol in alcohol and ether (Stahler, B [ 1905, **38** 3979 )

## Vanadium hydrogen sulphate, $V_2(SO_4)_3$ , $H_2SO_4+12H_2O_4$

Sol in H<sub>2</sub>O

Sol m HCl Insol in 60% H<sub>2</sub>SO<sub>4</sub>+Aq, alcohol, ether and acetic acid (Stahler, B **1905, 38** 3978)

#### Divanadyl sulphate, $V_2O_2(SO_4)_2$

Insol in H<sub>2</sub>O, HCl, or H<sub>2</sub>SO<sub>4</sub>+Aq, but on heating to 400° becomes sol in H<sub>2</sub>O if heated to 130° therewith (Gerland)

Very slowly sol in H<sub>2</sub>O at 10°  $+4H_2O$ quickly at 60°, and still more rapidly at 100° Deliquesces in warm moist air more quickly than it dissolves in H<sub>2</sub>O at 10° Insol in absolute alcohol Very sol in alcohol of 0 833 sp gr (Berzelius)

+5H<sub>2</sub>O (Koppel and Behrendt, anorg 1903, **35** 168)

+7H<sub>2</sub>O, and 10H<sub>2</sub>O

 $+13H_2O$ (Gerland) Efflorescent

2V<sub>2</sub>O<sub>4</sub>, 5SO<sub>3</sub>+18H<sub>2</sub>O (Gain, C Ř 1906, **143** 1154)

 $V_2O_4$ ,  $3SO_3+10H_2O$  (G)  $2V_2O_4$ ,  $7SO_3+20H_2O$  (G)  $2V_2O_4$ ,  $9SO_3+22H_2O$  (G)  $V_2O_4$  5SO<sub>3</sub>+12H<sub>2</sub>O (G)

Divanadyl hydrogen sulphate,  $(V_2O_2)H_2(SO_4)_8 = V_2O_4$ ,  $3SO_8 + H_2O_4$ 

 $+2H_2O$  $+3H_2O$ Deliquescent Very slowly sol in cold H<sub>2</sub>O or alcohol Easily sol in hot H<sub>2</sub>O

(Gerland) +5H<sub>2</sub>O Deliquescent Insol in ether Scarcely sol in alcohol Slowly sol in cold, easily in hot  $H_2O$ , (Crow)

+14H<sub>2</sub>OEasily sol in cold H<sub>2</sub>O or dil

(Gerland) alcohol

2VO<sub>2</sub>, 3SO<sub>3</sub> SI sol m H<sub>2</sub>O (Ko and Behrendt, Z anorg 1903, **35** 163) (Koppell

2VOSO4, H2SO4+H2O Very slowly sol (Koppel and Behrendt, Z anorg  $m H_2O$ 1903, **35** 163)
2VOSO<sub>4</sub>, 3H<sub>2</sub>SO<sub>4</sub>+15H<sub>2</sub>O ((1906, **143** 1156)
2VOSO<sub>4</sub>, 4H<sub>2</sub>SO<sub>4</sub>+16H<sub>2</sub>O (G) (Gain, C R

2VOSO<sub>4</sub>, 5H<sub>2</sub>SO<sub>4</sub>+15H<sub>2</sub>O (G)

 $2VOSO_4$ ,  $7H_2SO_4 + 15H_2Q$ 

 $2VOSO_4$ ,  $8H_2SO_4+16H_2O$  (G)

## Ytterbium sulphate, Yb<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>+8H<sub>2</sub>O

Quite slowly sol in H<sub>2</sub>O even at 100° Anhydrous salt is easily sol in much  $H_2O$ , but if little H<sub>2</sub>O is used the hydrous salt is formed, which only slowly dissolves ın K<sub>2</sub>SO<sub>4</sub>+Aq

100 pts H<sub>2</sub>O dissolve at

55° 15 5° 35° 60° 44 2 34 6 19 1 11 5 10 4 pts Yb<sub>2</sub>(SO<sub>4</sub>)<sub>8</sub>, 70° 80° 90° 100° 80°

7 22 6 93 5 83 4 67 pts Yb<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

(Cleve, Z anorg 1902, 32 143)

Yttrium sulphate, basic,  $Y_2O_3$ ,  $SO_3 =$  $(YO)_2SO_4$ 

Insol in H<sub>2</sub>O (Berzelius)  $2Y_2O_3$ ,  $SO_3+10H_2O$  (Cleve)

#### Yttrium sulphate, $Y_2(SO_4)_3$

More sol in H<sub>2</sub>O than the Anhydrous hydrous salt, and more sol in cold than hot  $H_2O$  Solution sat at 0° separates  $Y_2(SO_4)_3$ +  $8H_2O$  at  $50^\circ$  100 pts  $H_2O$  dissolve 15 2 pts anhydrous salt at ord temp

5 38 pts are sol in 100 pts  $H_2O$  at 25° (James and Holden, J Am Chem Soc 1913, **35** 561)

Easily sol in large amount of sat  $K_2SO_4+$ Aq, from which 3K<sub>2</sub>SO<sub>4</sub>, 2Y(SO<sub>4</sub>)<sub>3</sub> is pptd on warming (Cleve and Hoglund, Sv V A H Bih 1 No 8)

Solubility of Y<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> in Na<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| 5 61 1 29 6 38 8 53 7 40 6 21 8 43 8 53 5 86 7 7 72 3 42 10 14 2 36 11 36 2 02 13 42 1 90 14 89 1 79 16 51 1 86 18 44 2 99 19 96 3 04 21 05 2 27 27 14 1 52 28 22 | Pts<br>Y <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub><br>per 100<br>pts H <sub>2</sub> O     | Pts<br>Na <sub>2</sub> SO <sub>4</sub><br>per 100<br>pts H <sub>2</sub> O                               | Solid phase   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------|
| 4 75                                                                                                                                                              | 6 38<br>7 40<br>8 43                                                                         | 3 85<br>6 21<br>8 53                                                                                    | $Y_2(SO_4)_3$ |
| 1 61   28 13                                                                                                                                                      | 4 75<br>3 42<br>2 36<br>2 02<br>1 90<br>1 79<br>1 86<br>2 99<br>3 04<br>2 27<br>1 52<br>1 61 | 7 72<br>10 14<br>11 36<br>13 42<br>14 89<br>16 51<br>18 44<br>19 96<br>21 05<br>27 14<br>28 22<br>28 13 |               |

(James and Holden, J Am Chem Soc 1913, **35** 560)

+8H<sub>2</sub>O100 pts H<sub>2</sub>O dissolve 9 3 pts of cryst salt at ord temp, and 48 pts at 100° (Cleve, Bull Soc (2) 21 344)

Less sol in H<sub>2</sub>O containing H<sub>2</sub>SO<sub>4</sub> than in pure H<sub>2</sub>O (Berzelius)

Completely pptd by  $HC_2H_3O_2+Aq$ sol in alcohol

Yttrium hydrogen sulphate,  $Y_2(SO_4H)_3$ (Brauner, Z anorg 1904, 38 332)

Zinc sulphate, basic, 8ZnO, SO<sub>3</sub>+2H<sub>2</sub>O Insol in H<sub>2</sub>O (Schindler, Mag Pharm **31** 181)

 $6ZnO, SO_3+10H_2O$ Insol in H<sub>2</sub>O (Kane. A ch 72 310)

4ZnO, SO<sub>3</sub>+2H<sub>2</sub>O Scarcely sol in hot or cold H<sub>2</sub>O Sol in ZnSO<sub>4</sub>+Aq Schw J 60 337)

|                            | (Werner, B 1907, 4 |                |
|----------------------------|--------------------|----------------|
| $+5\mathrm{H}_2\mathrm{O}$ | Nearly insol in I  | $I_2O$ (Haber- |
| mann, M 5                  | 432)               | •              |
|                            | (Krout 7 anorg     | 1907 19 51     |

(Athanasesco, C R 103 271)  $+7H_2O$ +8**H**₂O Extremely slowly decomp by

 $H_2O$ (Reindel, J pr 1869, (1) 106 373) +10H<sub>2</sub>O(Schindler) 3ZnO, SO<sub>3</sub> Insol in cold, sl sol in hot

 $\mathbf{H}_{2}\mathbf{O}_{1}$ (Vogel) 2ZnO, SO<sub>3</sub> (Athanasesco)

5ZnO, SO₃ (Pickering, Chem Soc 1907, 1986)

+4H<sub>2</sub>Ó (Moody, Am J Sci 1906, [4] 184) 9ZnO, 2SO<sub>3</sub>+12H<sub>2</sub>O (Reindel, J pr 1869, (1) **106** 374)

#### Zinc sulphate, ZnSO<sub>4</sub>

Sol in H<sub>2</sub>O with evolution of heat Sol m HCl+Aq

 $+H_2O$ (Etard)

 $+2H_2O$ Insol in alcohol (Kuhn)

 $+3\frac{1}{2}H_2O$ (Anthon)

 $+5H_2O$ Insol in boiling alcohol of 0.86 (Kuhn)

 $+6H_2O$ (Marignac)

+7H<sub>2</sub>O Slowly efflorescent

(Tilden, M-pt of  $ZnSO_4+7H_2O=50^\circ$ Chem Soc 45 409)

For solubility data on hydrated salts, see

Sol in 2+ pts H2O at ord temp and in less at 100° (Bergmann 100 pts H<sub>2</sub>O at 104 4° dissolve 81 81 pts ZnSO<sub>4</sub> (Griffiths)
100 pts H<sub>2</sub>O at ord temp dissolve 140 pts ZnSO<sub>4</sub>+

7H<sub>2</sub>O (Dumas)

Sol in 2 29 pts H<sub>2</sub>O at 18 75° (Abl) 100 pts H<sub>2</sub>O at 15 56° dissolve 140 pts ZnSO<sub>4</sub> +7H<sub>2</sub>O

Ures Diot)
100 pts H<sub>2</sub>O at 15° dissolve 140 53 pts ZnSO<sub>4</sub>+
7H<sub>2</sub>O and has sp gr =1 4442 (Michel and Krafft)

1 pt of the crystals dissolves in 0 923 pt H<sub>2</sub>O at 17 5°, and forms a solution of 1 4353 sp gr (Karsten)

100 pts ZnSO<sub>4</sub>+Aq sat at 18 20° contain 35 36 pts ZnSO<sub>4</sub> (v Hauer, J B **1866** 59)

100 pts H2O dissolve at 20° 50°

41 3 66 9  $53 \ 0$ 80 4 pts ZnSO<sub>4</sub> (Tobler, J B 1855 309)

100 pts H<sub>2</sub>O at 20 5° dissolve 163 2 pts  $ZnSO_4+7H_2O$  (Schiff, A **109** 336)

100 pts H<sub>2</sub>O at t° dissolve pts anhydrous ZnSO<sub>4</sub> and pts ZnSO<sub>4</sub>+7H<sub>2</sub>O

| t°                              | Pts<br>ZnSO <sub>4</sub>                           | ${{\operatorname{ZnSO_4}}\atop{\operatorname{ZnSO_4}}}+$ | t                           | Pts<br>ZnSO4                              | Pts<br>ZnSO <sub>4</sub> +<br>7H <sub>2</sub> O |
|---------------------------------|----------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|-------------------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>50 | 43 02<br>48 36<br>53 13<br>58 40<br>63 52<br>68 75 | 115 22<br>138 21<br>161 49<br>190 90<br>224 05<br>263 84 | 60<br>70<br>80<br>90<br>100 | 74 20<br>79 25<br>84 60<br>89 78<br>95 03 | 313 48<br>369 36<br>442 62<br>533 02<br>653 59  |

(Poggiale, A ch (3) 8 467)

Solubility of ZnSO<sub>4</sub> in 100 pts H<sub>2</sub>O at t°

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |                                                                              |                                                                |                                                |                                                                |                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1     44 6     15     53 5     28     62 8       2     45 2     16     54 2     29     63 6       3     45 8     17     54 9     30     64 3       4     46 4     18     55 6     31     65 1       5     47 0     19     56 3     32     65 8       6     47 6     20     57 0     33     66 6       7     48 3     21     57 7     34     67 3       8     48 9     22     58 4     35     68 1       9     49 5     23     59 2     36     78 8       10     50 2     24     59 9     37     69 3       11     50 8     25     60 7     38     70 4       12     51 5     26     61 4     39     71 2 | t°                                                          | Pts<br>ZnSO4                                                                 | t°                                                             |                                                | t°                                                             |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 44 6<br>45 2<br>45 8<br>46 4<br>47 0<br>48 3<br>48 9<br>49 5<br>50 8<br>51 5 | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25 | 53 5<br>54 9<br>55 6 3<br>57 7 58 59 9<br>59 7 | 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 | 62 8<br>63 6<br>64 3<br>65 1<br>65 8<br>66 6<br>67 3<br>68 1<br>78 8<br>69 3<br>70 4 |

Decomp into basic salt above 40°

(Mulder, Scheik Verhandel 1864 74)

If solubility S represents number of pts anhydrous salt in 100 pts of solution, S= 27 6+0 2604t from -5° to +81°, S=50 0-0 2244t from 81° to 175° (Etard, C R 106 207)

Sat ZnSO<sub>4</sub>+Aq contains at

20° 49° 13° 41° 29 1 32 6 34 8 40 2 40 9% ZnSO<sub>4</sub>,

62° 70° 77° 43 4 45 0 47 0 46 5 44 7% ZnSO<sub>4</sub>

111° 12° 137° 144° 169° 171° 43 0 40 7 38 0 37 4 30 0 29 0% ZnSO<sub>4</sub>

(Étard, A ch 1894, (7) 2 551)

Transition point from  $+6H_2O$  to  $+1H_2O$ is 70° (Etard)

Solubility of ZnSO<sub>4</sub>+6H<sub>2</sub>O in H<sub>2</sub>O at t°

| t°   | g ZnSO4 in 100 g H <sub>2</sub> O |
|------|-----------------------------------|
| -5 0 | 47 08                             |
| +0 1 | 49 48                             |
| 9 1  | 54 20                             |
| 15 0 | 57 15                             |
| 25 0 | 63 74                             |
| 30 0 | 65 82                             |
| 35 0 | 67 99                             |
| 39 0 | 70 08                             |

(Cohen Z phys Ch 1900, **34** 182)

Solubility of the hepta-and hexa-hydrates of ZnSO<sub>4</sub> at t°

p=wt of salt expressed in percent of solution

| 0 2                                                                                                                                   | <u> </u> |
|---------------------------------------------------------------------------------------------------------------------------------------|----------|
| 0 2                                                                                                                                   | p        |
| 0 2<br>0 0 2<br>15 00 3<br>15 88 3<br>30 70 3<br>39 92 4<br>39 95 4<br>40 73 4<br>41 49 4<br>46 40 4<br>49 97 4<br>49 99 4<br>50 00 4 |          |

Transition point from +7H<sub>2</sub>O to +6H<sub>2</sub>O is 39°

The formula representing the change of solubility between 0° and 39° is

 $p=295+0270t+000068t^2$  while the expression for the hexahydrate above  $40^{\circ}$  is

 $p = 41 35 + 0 210t + 0 00070t^2$ (Barnes, J phys Chem 1900, 4 19)

Solubility of ZnSO<sub>4</sub>+7H<sub>2</sub>O in H<sub>2</sub>O at t°

| t°   | g ZnSO <sub>4</sub> in 100 g H <sub>2</sub> O |
|------|-----------------------------------------------|
| -5   | 39 30                                         |
| +0 1 | 41 93                                         |
| 9 1  | 47 09                                         |
| 15 0 | 50 88                                         |
| 25 0 | 57 90                                         |
| 35 0 | 66 61                                         |
| 39 0 | 70 05                                         |

(Cohen, Z phys Ch 1900, **34** 182)

# Solubility in H<sub>2</sub>O at high pressures

| Pressure | t°   | g ZnSO <sub>4</sub> in | Solubility |
|----------|------|------------------------|------------|
| in atm   |      | 100 g H <sub>2</sub> O | at 25      |
| 1        | 26   | 57 95                  | 57 95      |
| 500      | 26   | 58 43                  | 57 92      |
| 500      | 25 8 | 58 32                  | 57 91      |
| 1000     | 25 8 | 57 95                  | 57 55      |
| 1000     | 25 8 | 57 95                  | 57 55      |

(Cohen and Sinnige, Z phys Ch 1909, 67

Liable to form supersaturated solutions

Sat  $ZnSO_4+Aq$  at 8° has sp gr =1 421 (Anthon)

Sp gr of  $ZnSO_4+7H_2O$  at 20 5°  $\% = \% ZnSO_4+7H_2O$ 

|                 |          | 7               |          |             |         |
|-----------------|----------|-----------------|----------|-------------|---------|
| %               | Sp gr    | %               | Sp gr    | %           | Sp gr   |
| 1               | 1 0057   | 21              | 1 1288   | 41          | 1 2754  |
| 2               | 1 0115   | 22              | 1 1355   | 42          | 1 2834  |
| $\frac{2}{3}$   | 1 0173   | 23              | 1 1423   | 43          | 1 2917  |
| ă               | 1 0231   | 24              | 1 1491   | 44          | 1 3000  |
| 4<br>5          | 1 0289   | $\overline{25}$ | 1 1560   | 45          | 1 3083  |
| 6               | 1 0348   | 26              | 1 1629   | 46          | 1 3167  |
| ō               |          |                 |          |             |         |
| 7               | 1 0407   | 27              | 1 1699   | 47          | 1 3252  |
| 8               | 1 0467   | 28              | 1 1770   | 48          | 1 3338  |
| 9               | 1 0527   | 29              | 1 1842   | 49          | 1 3424  |
| 10              | 1 0588   | 30              | 1 1914   | 50          | 1 3511  |
| 11              | 1 0649   | 31              | 1 1987   | 51          | 1 3599  |
| 12              | 1 0710   | 32              | 1 2060   | 52          | 1 3688  |
| $\overline{13}$ | 1 0772   | 33              | 1 2134   | 53          | 1 3779  |
| 14              | 1 0835   | 34              | 1 2209   | 54          | 1 3871  |
|                 |          | 35              |          | 55          | 1 3964  |
| 15              | 1 0899   |                 |          |             |         |
| 16              | 1 0962   | 36              | 1 2362   | 56          | 1 4057  |
| 17              | 1 1026   | 37              | 1 2439   | 57          | 1 4151  |
| 18              | 1 1091   | 38              | 1 2517   | 58          | 1 4246  |
| 19              | 1 1156   | 39              | 1 2595   | 59          | 1 4342  |
| 20              | 1 1222   | 40              | 1 2674   | 60          | 1 4439  |
|                 | <u>'</u> | <del></del>     | <u>'</u> | <del></del> | <u></u> |

(Schiff, A 110 72)

Sp gr of  $ZnSO_4+Aq$  at 15° %=%  $ZnSO_4+7H_2O$ 

| ŀ | ,0 ,0 =================================                                                               |                                                                                                                                                                   |                                                                                                          |                                                                                                                                                                           |                                                                                                    |                                                                                                                                                                   |
|---|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | %                                                                                                     | Sp gr                                                                                                                                                             | %                                                                                                        | Sp gr                                                                                                                                                                     | %                                                                                                  | Sp gr                                                                                                                                                             |
|   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 1 006<br>1 013<br>1 019<br>1 024<br>1 0288<br>1 035<br>1 041<br>1 047<br>1 053<br>1 0593<br>1 066<br>1 073<br>1 079<br>1 085<br>1 0905<br>1 097<br>1 103<br>1 110 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 | 1 130<br>1 137<br>1 143<br>1 150<br>1 1574<br>1 164<br>1 171<br>1 179<br>1 185<br>1 1933<br>1 200<br>1 209<br>1 216<br>1 224<br>1 231<br>1 240<br>1 246<br>1 255<br>1 263 | 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>57<br>58 | 1 280<br>1 288<br>1 295<br>1 304<br>1 3100<br>1 320<br>1 330<br>1 337<br>1 346<br>1 3532<br>1 362<br>1 380<br>1 370<br>1 3986<br>1 408<br>1 416<br>1 425<br>1 435 |
| ] | 20<br>19                                                                                              |                                                                                                                                                                   | 39<br>40                                                                                                 |                                                                                                                                                                           |                                                                                                    | 1 435<br>1 4451                                                                                                                                                   |

(Gerlach, Z anal 8 288)

Sp gr of ZnSO<sub>4</sub>+Aq at 23 5° a=no of g, equivalent to ½ mol wt, dissolved in 1000 g H<sub>2</sub>O, b=sp gr if a is ZnSO<sub>4</sub>+ 7H<sub>2</sub>O, ½ mol wt =143 5, c=sp gr if a is ZnSO<sub>4</sub>, ½ mol wt =80 5

| a                          | b                                                  | С                                                  | а                       | ъ                                         |
|----------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6 | 1 077<br>1 143<br>1 199<br>1 249<br>1 294<br>1 333 | 1 084<br>1 162<br>1 236<br>1 307<br>1 376<br>1 443 | 7<br>8<br>9<br>10<br>11 | 1 368<br>1 400<br>1 428<br>1 453<br>1 476 |

(Favre and Valson, C R 79 968)

Sp gr of ZnSO<sub>4</sub>+Aq at 18°

| % ZnSO4 | Sp gr  | % ZnSO4 | Sp gr  | % ZnSO4 | Sp gr  |
|---------|--------|---------|--------|---------|--------|
| 5       | 1 0509 | 15      | 1 1675 | 32      | 1 3045 |
| 10      | 1 1369 | 20      | 1 2313 | 50      | 1 3788 |

(Kohlrausch, W Ann 1879 1)

Sp gr of ZnSO<sub>4</sub>+Aq at room temp containing
7 12 16 64 23 09% ZnSO<sub>4</sub>
1 1064 1 1953 1 2814
(Wagner, W Ann 1883, 18 271)

Sp gr of ZnSO<sub>4</sub>+Aq at 19 5°

| Mass of salt per unit | Density of solution |
|-----------------------|---------------------|
| mass of solution      | (g per cc)          |
| 0 00186               | 1 00179             |
| 0 00371               | 1 00356             |
| 0 00556               | 1 00530             |
| 0 00740               | 1 00711             |
| 0 01106               | 1 01065             |
| 0 01469               | 1 01410             |
| 0 01829               | 1 01753             |
| 0 02187               | 1 02112             |
| 0 02542               | 1 02446             |
| 0 02895               | 1 02798             |

(McGregor, C N 1887, 55 4)

Sp gr of  $ZnSO_4+Aq$  at  $25^{\circ}$ 

| Concentration of ZnSO <sub>4</sub> +Aq    | Sp <b>g</b> г                                  |
|-------------------------------------------|------------------------------------------------|
| 1—normal  1/2— "  1/4— "  1/8— "  1/16— " | 1 0792<br>1 0402<br>1 0198<br>1 0094<br>1 0047 |
| <del></del>                               |                                                |

(Wagner, Z phys Ch 1890, 5 40)

| $\mathbf{Sp}$ | gr | of | $ZnSO_4+Aq$ |
|---------------|----|----|-------------|
|---------------|----|----|-------------|

| 1 8                                                          |                                                          |
|--------------------------------------------------------------|----------------------------------------------------------|
| g salt in 100 g solution                                     | Sp gr                                                    |
| 24 7170<br>21 4444<br>17 7573<br>14 0307<br>9 7426<br>5 1110 | 1 3152<br>1 2665<br>1 2145<br>1 1645<br>1 1106<br>1 0565 |

(Charpy, A ch 1893, (6) 29 27)

Sp gr of ZnSO<sub>4</sub>+Aq

| g equivalents<br>ZnSO4 per liter                                                     | to                                                                        | Sp gr t°/t°                                                                                     |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 0 001309<br>0 002616<br>0 005212<br>0 01039<br>0 09818<br>0 18842<br>0 1890<br>2 493 | 13 59<br>13 575<br>13 573<br>13 585<br>13 621<br>13 642<br>16 11<br>15 88 | 1 0001126<br>1 0002258<br>1 0004451<br>1 000886<br>1 008189<br>1 015587<br>1 01550<br>1 19385 . |

(Kohlrausch and Hallwachs, W Ann 1894, 53 27)

Sp gr of ZnSO<sub>4</sub>+Aq at 18 5°, when p = percent strength of solution, d=observed density, and w=volume conc in grams per cc  $\left(\frac{pd}{100} = w\right)$ 

| р                                                                                          | d                                                                                                          | w                                                                                                                     |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 29 22<br>25 14<br>21 28<br>17 08<br>11 20<br>8 44<br>6 65<br>3 82<br>3 18<br>1 46<br>0 577 | 1 3718<br>1 3091<br>1 2528<br>1 1957<br>1 1220<br>1 0894<br>1 0696<br>1 0387<br>1 0318<br>1 0138<br>1 0045 | 0 40057<br>0 32910<br>0 26659<br>0 20422<br>0 12567<br>0 09195<br>0 07112<br>0 03968<br>0 03281<br>0 01480<br>0 00580 |
|                                                                                            | 7 1 01 1                                                                                                   | 000 0 540 )                                                                                                           |

(Barnes, J phys Chem 1898, 2 542)

Sp gr of dil ZnSO<sub>4</sub>+Aq at 20 004° Conc =g equiv per l at 20 004° Sp gr compared with H<sub>2</sub>O at 20 004°=1•

| Conc                                                                                   | Sp gr                                                                                                                               |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 0 0000<br>0 0001<br>0 0002<br>0 0005<br>0 0010<br>0 0020<br>0 0050<br>0 0060<br>1 0100 | 1 000,000,0<br>1 000,008,6<br>1 000,017,2<br>1 000,043,2<br>1 000,086,3<br>1 000,172,3<br>1 000,429,1<br>1 000,514,3<br>1 000,853,9 |
| Tamband Lee I Am                                                                       | Chem Soc 1913. 35                                                                                                                   |

(Lamb and Lee, J Am Chem Soc 1913, 36 1690)

Sat ZnSO<sub>4</sub>+Aq boils at 1044°, and solution contains 45 pts ZnSO<sub>4</sub> to 100 pts H<sub>2</sub>O

(Griffiths)

Crust forms at 103 5°, the solution containing 68 pts ZnSO<sub>4</sub> to 100 pts H<sub>2</sub>O Highest temp observed, 105° (Gerlach, Z anal 26 426)

B-pt of ZnSO<sub>4</sub>+Aq containing pts ZnSO<sub>4</sub> to 100 pts H<sub>2</sub>O

| B pt   | Pts ZnSO4 | B pt   | Pts ZnSO4 |
|--------|-----------|--------|-----------|
| 100 5° | - 13 1    | 103 0° | 61 0      |
| 101 0  | 25 0      | 103 5  | 68 0      |
| 101 5  | 37 7      | 104 0  | 74 9      |
| 102 0  | 45 4      | 104 5  | 80 7      |
| 102 5  | 53 9      | 105 0  | 85 7      |

(Gerlach, Z anal **26** 432)

B-pt of ZnSO<sub>4</sub>+Aq

| g ZnSO <sub>4</sub> in<br>100 g H <sub>2</sub> O                     | Rise of the<br>b-pt                                                                                                        | Barometric<br>pressure mm |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 2 886<br>6 647<br>10 139<br>13 389<br>17 713<br>22 202<br>25 199<br> | 0 080<br>0 169<br>0 266<br>0 372<br>0 461<br>0 591<br>0 690<br>0 811<br>0 899<br>0 995<br>1 122<br>1 240<br>1 381<br>1 459 | 743 0                     |
| 44 56                                                                | 1 671                                                                                                                      | **                        |

(Kahlenberg, J phys Chem 1901, 5 370)

1 l absolute H<sub>2</sub>SO<sub>4</sub> dissolves 0 0021 mols ZnSO<sub>4</sub> at 25° (Bergius, Z phys Ch 1912, **72** 353)

Completely pptd from ZnSO<sub>4</sub>+Aq by  $HC_2H_3O_2$ (Persoz)

Solubility of ZnSO<sub>4</sub> in KOH+Aq

| -Mols KOH to 1 mol ZnSO4                                              | per cent ZnO in ppt                                                           |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 0 25<br>0 50<br>1 00<br>1 62<br>2 00<br>3 00<br>5 00<br>7 00<br>13 20 | 17 11<br>35 10<br>68 08<br>100 00<br>98 49<br>96 79<br>89 76<br>68 87<br>0 00 |

(Linebarger, J Am Chem Soc 1895, **17 360**)

Difficultly and slowly sol in sat NH<sub>4</sub>Cl+ Aq, with separation of a double sulphate

Sol in considerable quantity in sat NaCl +Aq, without pptn at first, but finally Na<sub>2</sub>SO<sub>4</sub> separates out See under NaCl

Sol in sat NaNO<sub>3</sub>+Aq as in NaCl+Aq

See under NaNO3 Sol in sat KNO<sub>3</sub>+Aq with immediate pptn of double sulphate (Karsten) See under KNO<sub>3</sub>

Very rapidly sol in sat K<sub>2</sub>SO<sub>4</sub>+Aq, with separation of a double salt (Karsten) See under K<sub>2</sub>SO<sub>4</sub>

Abundantly in sat CuSO<sub>4</sub>+Aq

Slowly sol in sat MgSO<sub>4</sub>+Aq Very rapidly and abundantly sol in sat

NaSO<sub>4</sub>+Aq For solubility of ZnSO<sub>4</sub>+Na<sub>2</sub>SO<sub>4</sub> see under  $Na_2SO_4$  and  $Na_2Zn(SO_4)_2+4H_2O$ 

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 830)

Insol in alcohol of 0.88 sp gr , 1000 pts alcohol of 0 905 sp gr dissolve 2 pts (Anthon)

100 pts of a saturated solution in 40% alcohol contain 3 48 pts ZnSO<sub>4</sub>+7H<sub>2</sub>O, 20%, (Schiff, J B 1861) 39 pts, 10%, 51 1 pts

100 pts absolute methyl alcohol dissolve 065 pt ZnSO4 at 18° (de Bruyn, Z phys Ch 10 783)

100 pts absolute methyl alcohol dissolve

59 pts ZnSO<sub>4</sub>+7H<sub>2</sub>O at 17°
100 pts 50% methyl alcohol dissolve 15 7
pts ZnSO<sub>4</sub>+7H<sub>2</sub>O at 17° (de Bruyn)

Insol in acetone (Eidmann, Č Ć 1899, II 1014, Naumann, B 1904, 37 4329)

100 pts glycerine dissolve 35 pts ZnSO<sub>4</sub> at ord temp (Klever, Bull Soc 1872, (2) **18** 372)

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate (Naumann, B 1904, **37** 3601) Min Gosslarite

Zinc hydrogen sulphate,  $ZnH_2(SO_4)_2 + 8H_2O$ 

Somewhat difficultly sol in cold, easily in hot H<sub>2</sub>O (v Kobell, J pr 28 492)

Zinc sulphate ammonia, basic, 4NH<sub>3</sub>, 4ZnO,  $SO_3+4H_2O$ 

(Schindler)

Zinc sulphate ammonia, ZnSO<sub>4</sub>, 2NH<sub>3</sub>

 $+H_2O$ Decomp by H<sub>2</sub>O into basic zinc sulphate

ZnSO<sub>4</sub>, 4NH<sub>3</sub>+4H<sub>2</sub>O Sol in H<sub>2</sub>O (Kane, A ch 72 304)

(André, C R 100 241)  $+3H_2O$ 

ZnSO<sub>4</sub>, 5NH<sub>3</sub> Sol in H<sub>2</sub>O with partial (Rose, Pogg 20 149) decomp

Zinc sulphate cupric oxide, ZnSO<sub>4</sub>, 2CuO+ 5H<sub>2</sub>O

(Mailhe, A ch 1902, (7) 27 169)  $Z_{B}SO_{4}$ ,  $3CuO + xH_{2}O$ (Recoura, C R 1901, **132** 1415)

Zinc sulphate hydrazine, ZnSO4, 2N2H4

Sol in  $NH_4OH+Aq$  (Franzen, Z anorg 1908, **60** 278)

Sol in NH<sub>2</sub>OH+Aq without decomp

(Curtius, J pr 1894, (2) 50 345)

ZnH<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>, N<sub>2</sub>H<sub>4</sub> 1 pt is sol in 185 pts

H<sub>2</sub>O at 12° Sl sol in dil acids Decomp

by cone HNO<sub>3</sub> and by hot cone H<sub>2</sub>SO<sub>4</sub>

Very sol in NH<sub>4</sub>OH+Aq (Curtius, J

pr 1894, (2) 50 331)

Zirconium sulphate, basic, 3ZrO2, 2SO3

Insol in H<sub>2</sub>O Sol in HCl+Aq (Pay-kull, B **12** 1719)

4ZrO<sub>2</sub>, 3SO<sub>3</sub>+14H<sub>2</sub>O Ppt Difficulty sol in H<sub>2</sub>O (Hauser, B 1904, 37 2024) 3ZrO<sub>2</sub>, SO<sub>3</sub> Insol in boiling H<sub>2</sub>O (Franz,

B 3 58)
7ZrO<sub>2</sub>, 6SO<sub>3</sub> Insol in H<sub>2</sub>O (Endemann,
J pr (2) 11 219)

ZrO<sub>2</sub>, SO<sub>3</sub> Sol in very little H<sub>2</sub>O More H<sub>2</sub>O decomp into 3ZrO<sub>2</sub>, 2SO<sub>3</sub> and Zr(SO<sub>4</sub>)<sub>2</sub> (Berzelius)

3ZrO<sub>2</sub>, 4SO<sub>3</sub>+15H<sub>2</sub>O Sol in H<sub>2</sub>O (Paykull)

 $6Z_{\rm rO_2}$ ,  $7SO_3+19H_2O$  Sol in  $H_2O$  (Paykull)

#### Zirconium sulphate, Zr(SO<sub>4</sub>)<sub>2</sub>

Anhydrous Slowly but completely sol

in cold, quickly in hot H2O

Sol in warm H<sub>2</sub>SO<sub>4</sub>, but separates on cooling Precipitated from aqueous solution by alcohol

+4H<sub>2</sub>O leasily sol in H<sub>2</sub>O

100 pts of the solution contain 593 pts of the hydrated salt at 395° (Hauser, B 1904, 37 2025

Solubility of  $Zr(SO_4)_2+4H_2O$  in  $H_2SO_4+Aq$  it t°

100 g of the solution contain

| t    | F \101                                                                                                      | ₽ PO3                                                                                                           |
|------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 39 5 | 19 5<br>19 3<br>19 6<br>19 3<br>18 8<br>18 15<br>17 3<br>16 2<br>9 6<br>5 3<br>3 51<br>1 03<br>0 46<br>0 31 | 25 46<br>25 6<br>25 99<br>26 5<br>27 0<br>27 6<br>25 3<br>29 1<br>32 3<br>34 7<br>36 01<br>38 2<br>39 8<br>42 0 |

Solubility of Zr(SO<sub>4</sub>)<sub>2</sub>+4H<sub>2</sub>O in H<sub>2</sub>SO<sub>4</sub>+ Ag at t°—Continued

| t° | g ZrO2                                                                               | g SOs                                                                                |  |
|----|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
|    | 0 33<br>0 14<br>0 13<br>0 15<br>0 20<br>0 27<br>0 50<br>0 60<br>2 00<br>3 25<br>4 40 | 42 1<br>46 8<br>47 1<br>56 7<br>56 8<br>57 1<br>57 5<br>57 8<br>59 5<br>60 4<br>61 4 |  |
| 22 | 0 10<br>0 13<br>0 21                                                                 | 56 1<br>46 5<br>57 2                                                                 |  |

(Hauser, Z anorg 1907, 54 197)

Zirconium hydrogen sulphate, Zr(SO<sub>4</sub>)<sub>2</sub>, H<sub>2</sub>SO<sub>4</sub>+H<sub>2</sub>O

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at 39 5° 100 g of the solution contain

0 11 0 10 0 10 g ZrO<sub>2</sub> 81 4 81 6 81 5 g SO<sub>3</sub> (Hauser, Z anorg 1907, **54** 200)

+3H<sub>2</sub>O

Solubility in H<sub>2</sub>SO<sub>4</sub>+Aq at t° 100 g of the solution contain

| t°   | g 7rO                                                                | g SO <sub>3</sub>                                                    |
|------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| 39 5 | 4 55<br>3 25<br>3 33<br>3 35<br>1 80<br>1 60<br>1 55<br>1 12<br>0 96 | 61 5<br>62 5<br>63 8<br>63 8<br>64 2<br>64 6<br>65 0<br>66 8<br>68 4 |
| 22   | 0 80<br>0 65<br>0 60                                                 | 66 4<br>67 5<br>68 1                                                 |

(Hauser, Z anorg 1907, 54 200)

Persulphuric acid, HSO<sub>4</sub>
See Persulphuric acid

Pyrosulphuric acid and pyrosulphates
See under Sulphuric acid and sulphates

Sulphuric boric acid

See Borosulphuric acid

Sulphuric vanadic acid, V<sub>2</sub>O<sub>5</sub>, 3SO<sub>8</sub>+3HO<sub>2</sub> See Sulphate, vanadium

## Sulphurous acid, anhydrous, SO<sub>2</sub> See Sulphur dioxide

### Sulphurous acid, H<sub>2</sub>SO<sub>3</sub>

Known only in aqueous solution, from which SO<sub>2</sub> is given off upon heating Crystallizes in cold, with various amounts of water, forming compounds which approximate H<sub>2</sub>SO<sub>3</sub>+8H<sub>2</sub>O (Pierre, A **68** 228), H<sub>2</sub>SO<sub>3</sub>+10H<sub>2</sub>O (Dopping, Bull Ac St Pétersb **7** 100), H<sub>2</sub>SO<sub>3</sub>+14H<sub>2</sub>O (Schonfeld, A **95** 22), H<sub>2</sub>SO<sub>3</sub>+6H<sub>4</sub>O (Roozeboom, R t c **3** 29, 59, 75, 84, Geuther, A **224** 218) Crystals are sol in 2 pts H<sub>2</sub>O at 10° (Pierre)

For sp gr of solutions, etc, see sulphur

dioxide

#### Sulphites

Normal Only the alkalı sulphites are sol in  $H_2O$ , and they are insol or only sl sol in alcohol

Insol in liquid NH<sub>3</sub> (Franklin, Am ch J 1898, 20 824)

Accd All the acid sulphites are sol in  $H_2O$  In general it is rarely possible to determine whether the compd described is a pure chemical compound or not. It is probable that many substances described by Svenssen and others are isomorphic mixtures whose composition depends upon the temp and conc. of the solution in which it was pptd (Rosenheim, Z. anorg. 1900, 25. 72.)

m sulphite, basic, Al<sub>2</sub>O<sub>3</sub>, SO<sub>2</sub>+4H<sub>2</sub>O in H<sub>2</sub>O, sol in H<sub>2</sub>SO<sub>5</sub>+Aq (Fourd Vauquelin)

 $6Al(OH)_3$ ,  $Al_2(SO_3)_3 + 9H_2O$  Ppt (Seubert,

Z anorg 1893, 4 66)

Ammonium sulphite, basic,  $(NH_4)_2SO_3$ ,  $NH_3 + ^3/_2H_2O$ 

Sol in H<sub>2</sub>O Pptd from aqueous solution by alcohol (Muspratt)

Does not exist (Marignac)

## Ammonium sulphite, (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>

Verv hydroscopic (Divers, Chem Soc 1900, 77 336)

Insol in acetone (Eidmann, CC 1899, II 1014)

 $+H_2O$  Slowly sol in  $H_2O$  (Muspratt, A **50** 268)

Sol in 1 pt H2O at 12° (Fourcroy and

Vauquelin, Crell Ann **1800 2** 415)

More sol in hot H<sub>2</sub>O with evolution of NH<sub>3</sub> Sl sol in absolute alcohol (Muspratt)

Much more sol in alcohol than K<sub>2</sub>SO<sub>3</sub>

(Pierre)

Loses NH<sub>3</sub> in the air

Sol in H<sub>2</sub>O Cone solution charged with NH<sub>3</sub> will deposit salt on evaporation over KOH Dil solution decomp on evaporation (Divers, Chem Soc 1900, 77 335)

Insol in acetone (Naumann, B 1904, 37 4329)

Ammonium hydrogen sulphite, NH<sub>4</sub>HSO<sub>3</sub> Insol in acetone (Eidmann, C C **1899**, II 1014, Naumann, B 1904, **37** 4329)

## Ammonium pyrosulphite, (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>5</sub>

Deliquescent Very sol in H<sub>2</sub>O and alcohol Insol in ether (Fock and Klüss, B 23 3149)

Very sol in H<sub>2</sub>O, very hydroscopic Aq solution is sl decomp on evaporation (Divers, Chem Soc 1900, **77** 336)

Ammonium cadmium sulphite,  $(NH_4)_2SO_3$ ,  $CdSO_3$ 

Nearly insol in  $H_2C$  Partly sol in excess of  $H_2SO_2+Aq$ , but separates out on boiling (Schuler, A 87 34)

Ammonium cobaltous sulphite, (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, CoSO<sub>3</sub>+xH<sub>2</sub>O

Decomp on air (Berglund, B 7 469)

# Ammonium cobaltocobaltic sulphite See Cobaltisulphite, ammonium cobalt

Ammonium cuprous sulphite, (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, 2Cu<sub>2</sub>SO<sub>3</sub>+2H<sub>2</sub>O

(Bottinger, A **51** 411)

 $(NH_4)_2SO_3$ ,  $Cu_2SO_3$  Insol in cold, decomp by boiling  $H_2O$  (Rogojski, J B **1851** 366)

Decomp by warming with H<sub>2</sub>O, in which it is insol. Sol in acids with evolution of SO<sub>2</sub> (Rosenheim and Steinhauser, Z anorg 1900, **25** 99)

+2H<sub>2</sub>O (Commaille, J B **1867** 300) 2(NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, Cu<sub>2</sub>SO<sub>3</sub>+3H<sub>2</sub>O Very sol in H<sub>2</sub>O Solution decomp on standing Decomp by acids (Rosenheim and Steinhauser)

comp (Rosenheim and Steinhauser)
7(NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, Cu<sub>2</sub>SO<sub>3</sub>+4H<sub>2</sub>O Very sol in
H<sub>2</sub>O Solution soon decomp (Rosenheim

and Steinhauser)
+10H<sub>2</sub>O Decomp on air Sl sol in
warm, less sol in cold H<sub>2</sub>O (de Saint-Cill(5))

warm, less sol in cold H<sub>2</sub>O (de Saint-Cilles) +14H<sub>2</sub>O Decomp on air Sol in H<sub>2</sub>O, but solution decomp

Very easily sol in mother liquor (Svenson, Acta Lund 1899 13)

# Ammonium cuprocupric sulphite, (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, 2Cu SO<sub>3</sub>, CuSC<sub>3</sub>+5H<sub>2</sub>O

Insol in H<sub>2</sub>O and weak acids Sol in NH<sub>4</sub>OH+Aq (de Saint-Gilles, A ch (3) **42** 31)

 $+6\frac{1}{2}$ H<sub>2</sub>O Ppt (Rosenheim and Steinhauser, Z anorg 1900, **25** 98)

## Ammonium glucinum sulphite. $(NH_4)_2O_1$ , 2GlO, $3SO_2 + 4H_2O_2$

Very unstable in the air Ppt (Rosenheim, Z anorg 1897, 15 310)

## Ammonium gold (aurous) sulphite, 3(NH<sub>4</sub>)<sub>2</sub>SO<sub>8</sub>,Au<sub>2</sub>SO<sub>8</sub>

Very easily sol in H<sub>2</sub>O Insol in alcohol (Haase, Z Ch 1869 535)

#### Ammonium gold (aurous) sulphite ammonia, $(NH_4)_2SO_3$ , $3Au_2SO_3$ , $6NH_3+H_2O$

Decomp by H<sub>2</sub>O Sol in warm NH<sub>4</sub>OH+ Aq, but decomp by boiling

(NH<sub>4</sub>)Au<sub>3</sub>(SO<sub>3</sub>)<sub>2</sub>, 3NH<sub>3</sub>+4H<sub>2</sub>O Decompby H<sub>2</sub>O (Rosenheim, Z anorg 1908, 59 201)

## Ammonium iridium sulphite See Iridosulphite, ammonium

Ammonium iron (ferrous) sulphite,  $(NH_4)_2SO_3$ ,  $FeSO_3+xH_2O$ (Berglund)

### Ammonium iron (ferric) sulphite sulphate, $FeSO_3SO_4NH_4+H_2O$

SI sol in cold H<sub>2</sub>O Decomp by cold (Hofmann, Z anorg 1897, 14 dil HCI 287)

# Ammonium magnesium sulphite,

 $(NH_4)_2Mg_3(SO_3)_4 + 18H_2O$ 

Very sl sol in H<sub>2</sub>O (Fourcroy and Vauquelin )

Sol in H<sub>2</sub>SO<sub>3</sub>+Aq

+5H<sub>2</sub>O Much more sol in H<sub>2</sub>O than MgSO<sub>3</sub> (Rammelsberg)

#### Ammonium manganous sulphite, (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, $MnSO_8$

Relatively easily decomp by H<sub>2</sub>O (Berg lund, Bull Soc (2) 21 213)

Not easily decomp (Gorgeu, C R 96 376)

#### Ammonium mercuric sulphite, (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, HgSO<sub>3</sub>

Very easily sol in H<sub>2</sub>O, but H<sub>2</sub>O solution gradually decomp, even in the cold

#### Ammonium nickel sulphite, (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, $3N_1SO_3 + 18H_2O$

Sol in H<sub>2</sub>() (Beiglund, B 7 469)

### Ammonium platinous sulphite See Platosulphite, ammonium

### Ammonium potassium sulphite, 10(NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, $K_2SO_3+11H_2O$

Decomp by H<sub>2</sub>O, etc (Hartog, C **109** 221 )

### Ammonium scandium sulphate. $(NH_4)_2SO_3$ , $Sc_2(SO_3)_3 + 7H_2O$

Insol in H<sub>2</sub>O Difficulty sol in H<sub>2</sub>SO<sub>3</sub>+ Aq (Meyer, Z anorg 1914, 86 281)

#### Ammonium silver sulphite, $(NH_4)_2SO_3$ Ag<sub>2</sub>SO<sub>3</sub>

Insol in H<sub>2</sub>O, but gradually decomp thereby (Svensson, B 4 714)

 $6(NH_4)_2SO_3$ ,  $Ag_2SO_3 + 19H_2O$ Sol in H<sub>2</sub>O without decomp (Svensson)

3(NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, 4NH<sub>4</sub>HSO<sub>3</sub>, Ag<sub>2</sub>SO<sub>3</sub>+18H<sub>2</sub>O Easily sol in H<sub>2</sub>O, but decomp by warming

#### Ammonium sodium hydrogen sulphite, $NH_4Na_2H(SO_3)_2+4H_2O$

Not deliquescent (Marignac, Ann Min (5) **12** 29)

100 pts H<sub>2</sub>O dissolve 42 3 pts salt at 12 4°, and 48 5 pts at 15° (Schwicker, B 22 1732)  $+5H_2\ddot{O} = 2Na_2SO_3$  $(NH_4)_2S_2O_5+H_2O$ (Tauber, Techn J B 1888 444)

## Ammonium tellurium sulphite, (NH<sub>4</sub>)<sub>2</sub>SO<sub>8</sub>, $TeSO_3+xH_2O$

Sol in  $H_2O$  (Berglund, B 7 469)

#### Ammonium uranyl sulphite, $NH_4(UO_2)(OH)SO_3$

Insol in pure H<sub>2</sub>O More sol in H<sub>2</sub>SO<sub>3</sub>+ Aq than the K salt, and less than the Na

(Scheller, A 144 240)  $(NH_4)_2O$ ,  $2UO_3$ ,  $3SO_2$ (NH<sub>4</sub>)<sub>2</sub>O, 4UO<sub>3</sub>, 5SO<sub>2</sub>

(NH<sub>4</sub>)<sub>2</sub>O, 3UO<sub>3</sub>, 2SO<sub>2</sub> (NH<sub>4</sub>)<sub>2</sub>O, UO<sub>3</sub>, 2SO<sub>2</sub> 1900, **311** 10) (Kohlschutter, A

#### Ammonium vanadium sulphite See Vanadiosulphite, ammonium

# Ammonium vanadyl sulphite,

 $(NH_4)_2SO_3$ ,  $VOSO_3+2H_2O$ 

Sol in H<sub>2</sub>O with decomp (Koppel, Z anorg 1903, **35** 184) \_\_(NH<sub>4</sub>)<sub>2</sub>O, 3VO<sub>2</sub>, 2SO<sub>2</sub>+H<sub>2</sub>O

Sol in cold

H<sub>2</sub>() without decomp

Easily sol in mineral acids and alkalies SI sol in alcohol and ether Z anorg 1903, **35** 182)

## Ammonium zinc sulphite, (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, ZnSO<sub>3</sub> Sol in $H_2()$ (Berglund, B 7 469)

## Ammonium sulphite mercuric chloride, 2(NH<sub>4</sub>)<sub>2</sub>SO, HgCl<sub>2</sub>

SI sol in cold, decomp by boiling H<sub>2</sub>O (de St-Calles, A. ch. (3) **36** 95)

## Antimony sulphite, Sb<sub>2</sub>O<sub>3</sub>, 3SO<sub>2</sub>(?)

(Berzelius) Insol in H<sub>2</sub>O Could not be obtained (Rohrig, J pr (2) **37** 241)

#### Barium sulphite, BaSO<sub>8</sub>

Very sl sol in  $H_2O$  (Fourcroy and Vauquelin, A ch 24 301)

Sol in about 46,000 pts H<sub>2</sub>O at 16° (Autenrieth, Z anal 1898, **37** 294)

Sol in H<sub>2</sub>SO<sub>3</sub>+Aq Insol in acetone (Naumann B 1904, **37** 4329), methyl acetate (Naumann, B 1909, **42** 3790)

#### Solubility in sugar+Aq at to

| Solvent |                                                                      | t                 | 100 ccm of<br>solution con<br>tain g BaSOs |                                                                           |
|---------|----------------------------------------------------------------------|-------------------|--------------------------------------------|---------------------------------------------------------------------------|
|         | vater<br>+Aq 10° I<br>'' 20°<br>'' 30°<br>'' 40°<br>'' 50°<br>'' 60° | Brix<br>" " " " " | 20                                         | 0 01974<br>0 01040<br>0 00968<br>0 00782<br>0 00484<br>0 00298<br>0 00223 |
|         | water<br>+Aq 10° E<br>'' 20°<br>'' 30°<br>'' 40°<br>'' 50°<br>'' 60° | Brix<br>" " " "   | 80                                         | 0 00177<br>0 00335<br>0 00289<br>0 00223<br>0 00158<br>0 00149<br>0 00112 |
|         |                                                                      |                   |                                            |                                                                           |

(Rogowicz, C C 1905, II 1223)

# Barium cobaltic sulphite See Cobaltisulphate, barium

Barrum gold (aurous) sulphite,  $3BaSO_3$ ,  $Au_2SO_3 + xH_2O$ Ppt (Haase)

Barium mercuric sulphite, BaSO<sub>2</sub>, HgSO<sub>3</sub>+ H<sub>2</sub>O

Ppt (Barth, Z phys Ch 9 196)

Barium mercuric sulphite chloride, BaSO<sub>3</sub>, BaCl<sub>2</sub>, 2HgSO<sub>3</sub>+3½H<sub>2</sub>O (Barth, Z phys Ch 1892, **9** 208)

Bismuth sulphite, basic,  $B_{12}O_3$ ,  $3SO_2+5H_2O$ Insol in  $H_2O$ , alcohol, or ether Sl sol in  $H_2SO_3+Aq$  (Rohrig, J pr (2) 37 241) (BiO)<sub>2</sub>SO<sub>3</sub>,  $3(B_1OH)SO_3+H_2O$  (Seubert and Elten, Z anorg 1893, 4 72-5)  $2(B_1O)_2SO_3$ ,  $3(B_1OH)SO_3+2H_2O$  (S and E)  $3(B_1O)_2SO_3$ ,  $7(B_1OH)SO_3+10H_2O$  (S and

 $3(B_1O)_2SO_3$ ,  $7(B_1OH)SO_3+10H_2O$  (S and E)

 $4(B_1O)_2SO_3$ ,  $(B_1OH)SO_3+5H_2O$  (S and E)  $9(B_1O)_2SO_3$ ,  $(B_1OH)SO_3+2H_2O$  (S and E)

Bismuth cobaltic sulphite

See Cobaltisulphite, bismuth

Cadmium sulphite, CdSO,

Difficultly sol in H<sub>2</sub>O Easily sol in d acids (Rammelsberg, Pogg 67 256) +2H<sub>2</sub>O Difficultly sol in H<sub>2</sub>O Sol H<sub>2</sub>SO<sub>3</sub>+Aq Sol in NH<sub>4</sub>OH+Aq Insol alcohol (Muspratt, Phi Mag (3) 30 414 Insol in acetone (Naumann, B 1904, 3 4329) Contains 2½H<sub>2</sub>O (Deniges, Bull Soc (7 569)

Cadmium sodium sulphite, 3CdSO<sub>2</sub>, Na<sub>2</sub>SO Sol in H<sub>2</sub>O (Berglund, B 7 469)

Cadmium sulphite, ammonia, CdSO<sub>3</sub>, NH
Decomp by H<sub>2</sub>O Col without decomp 1
hot NH<sub>4</sub>OH+Aq (Rammelsberg, Pogg 6'
256)

Cæsium sulphite, Cs<sub>2</sub>SO<sub>3</sub>

Easily sol in H<sub>2</sub>O Sl sol in alcoho (Chabrié, C R 1901, **133** 297)

Cæsium hydrogen sulphite, CsHSO3

Easily sol in H<sub>2</sub>O Sl sol in alcoho (Chabrié, C R 1901, **133** 297)

Calcium sulphite, basic,  $Ca_6S_5O_{16} = 6CaO$   $5SO_2$ (Schott, Dingl 202 52)

Calcium sulphite, CaSO<sub>3</sub>+2H<sub>2</sub>O

Slowly effloresces Sol in 800 pts cold H<sub>2</sub>O (Berzelius)

Insol in H<sub>2</sub>O (Rohrig, J pr (2) **37** 230 0 043 g is sol in 1 1 H<sub>2</sub>O at 18° (Weisberg, Bull Soc 1896, (3) **15** 1249)

CaSO<sub>3</sub> equiv to 78 mg CaO is sol in 1 l H<sub>2</sub>O at 100° (Robart, C A 1913 2500) Very sol in H<sub>2</sub>SO<sub>3</sub>+Aq See CaH<sub>2</sub>(SO<sub>3</sub>) Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J

1898, 20 827)
CaSO<sub>3</sub> equiv to 37 mg CaO is sol in 1 l
2% cane sugar+Aq at 100° (Robart, ( A
1913 2500)

0 0825 g is sol in 1 l 10% sug ir +Aq a 18°,0 0800 g is sol in 1 l 200% +Aq a 18° ( Weisberg, Bull Soc 15 1.219

Insol in acetone (Krug and M'Elroy, Insol in methyl acetate (Naumann, B 1909, **42** 3790, ethyl acetate (Naumann B 1904, **37** 3601)

 $+\frac{1}{2}H_2O$  (Rammelsberg)

# Calcium hydrogen sulphite, CaH<sub>2</sub>(SO<sub>3</sub>)<sub>2</sub>

Know only in solution 100 ccm  $\rm H_2O$  containing 9 g  $\rm SO_2$  dissolve 0 553 g  $\rm CaSO_3$  to form a solution of 1 06 sp gr (Gerland, J pr (2) 4 119)

Calcium cobaltic sulphite

See Cobaltisulphite, calcium

erous sulphite,  $Ce_2(SO_8)_3+3H_2O$ More sol in cold than hot H2O Solution gradually decomposes (Berthier, ch (3) 7 77)

hromous sulphite, CrSO, Precipitate Insol in H<sub>2</sub>O (Moberg)

hromium sulphite, basic, Cr<sub>2</sub>O<sub>3</sub>, SO<sub>2</sub> Colloidal modification Sol in H2O 2Cr<sub>2</sub>O<sub>3</sub>, SO<sub>2</sub> Ppt (Recoura, Bull Soc 398, (3) **19** 169)

#### hromic sulphite

Known only in aqueous solution, which prepitates a basic salt on boiling 2Cr<sub>2</sub>O<sub>3</sub>, 3SO<sub>2</sub>+16H<sub>2</sub>O Precipitate (Danon, Chem Soc 2 205)

hromic potassium sulphite, K2O, Cr2O3,  $2SO_2+xH_2O$ Precipitate (Berglund, B 7 470)

### 'obaltous sulphite, basic

Decomp by (Berthier)  $H_2O$ Co(OH)2,  $5\text{CoSO}_3 + 10\text{H}_2\text{O}$ Ppt (Seuert and Elten, Z anorg 1893, 4 89) Co(OH)<sub>2</sub>, 10CoSO<sub>3</sub>+15H<sub>2</sub>O (Seubert and liten)

'obaltous sulphite, CoSO<sub>3</sub>

+3H<sub>2</sub>ONearly insol in H<sub>2</sub>O Sol m  $I_2SO_3+Aq$  (Rammelsberg) Partly sol in NH OH + Aq +5H<sub>2</sub>O Insol in H<sub>2</sub>O Sol in H<sub>2</sub>SO<sub>3</sub>+ (Muspratt, A 30 282)

Cobaltocobaltic sulphite See Cobaltisulphite, cobaltous

Cobaltic sulphite with 3M2SO2 Sce Cobaltisulphite, M

Cobaltous potassium sulphite, CoSO<sub>8</sub>, K<sub>2</sub>SO<sub>8</sub>  $+xH_2O$ 

Insol in H<sub>2</sub>O, easily sol in HCl+Aq Schultze, J B 1864 270)

Cobaltic potassium sulphite, Co<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub>,  $K_2SO_3$ 

SI sol in H<sub>2</sub>O, easily sol in H<sub>2</sub>SO<sub>3</sub>+Aq or ICl+Aq (Schultze)

Cobaltous sodium sulphite, 3CoO, Na<sub>2</sub>O, 3SO<sub>2</sub>

Easily sol in HCl+Aq Insol in H<sub>2</sub>O Schultze)

Cobaltic sodium sulphite, Co2O3, Na2O, 3SO<sub>2</sub>

(Schultze) Sl sol in H<sub>2</sub>O

Cuprous sulphite, Cu<sub>2</sub>SO<sub>3</sub>+H<sub>2</sub>O

(a) Red Sl sol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH or HCl+Aq (Rogojska, J B 1851 366)
Could not be obtained by St Gilles or Svensson (B 4 713)

Insol in H<sub>2</sub>O, alcohol, or ether (Etard, C

R 95 38) Composition is (Cu<sub>2</sub>)<sub>8</sub>H<sub>16</sub>(SO<sub>4</sub>)<sub>8</sub>, "Cuprous

180sulphite," according to Etard +1/2H2O Etard's formula, C Étard's formula, Cu<sub>2</sub>SO<sub>3</sub>+H<sub>2</sub>O 18 incorrect

The salt is almost colorless (Ramberg Z phys Ch 1909, 69 512) (β) White Normal salt Insol in H<sub>2</sub>O, alcohol, or ether (Etard)

Cupric sulphite, basic, 4CuO, SO<sub>2</sub>+7H<sub>2</sub>O

Insol in H<sub>2</sub>O, and decomp by washing therewith (Millon and Commaille) 7CuO, 4SO<sub>2</sub>+8H<sub>2</sub>O Sol in dil H<sub>2</sub>SO<sub>4</sub>

(Seubert and Elten, Z anorg 1893, 4 48) 3CuO, 2SO<sub>2</sub>+1½H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Newbury, Am Ch J 14 232)
7CuO, 4SO<sub>2</sub>+8H<sub>2</sub>O, or 4CuSO<sub>3</sub>, 3Cu(OH)<sub>2</sub>+5H<sub>2</sub>O Sol in dil H<sub>2</sub>SO<sub>4</sub>+Aq (Seubert and Elten, Z anorg 1893, 4 50)

Cuprocupric sulphite, CuSO<sub>3</sub>, Cu<sub>2</sub>SO<sub>3</sub>+2H<sub>2</sub>O Nearly insol in cold H<sub>2</sub>O Decomp by

boiling Sol in H<sub>2</sub>SO<sub>3</sub>+Aq, HCl, or NH<sub>4</sub>OH+Aq (Berthier)

Sol in very dil HNO<sub>3</sub>+Aq J B **1851** 365) (Dopping,

Insol in H<sub>2</sub>SO<sub>3</sub>, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, or Cu salts+Aq (de St Gilles)

+5H<sub>2</sub>O Insol in H<sub>2</sub>O Easily sol in H<sub>2</sub>SO<sub>3</sub>+Aq, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq, in cupric salts +Aq, NH<sub>4</sub>OH+Aq, or HCl+Aq (de St Gilles, A ch (3) 42 34)

Composition is (Cui) CuiH10(SO4)8+21H2O, "acid cuprosocupric octosulphite" (Etard, C R 96 1475)

Cuprous ferroferric sodium sulphite, Cu<sub>2</sub>O, 2FeO,  $\text{Fe}_2\text{O}_3$ ,  $\text{Na}_2\text{O}$ ,  $6\text{SO}_2+16\text{H}_2\text{O}$ 

Sol in about 1000 pts H2O

Sol in cold dil H<sub>2</sub>SO<sub>4</sub>+Aq, sol in cold dil HCl+Aq with a residue of Cu<sub>2</sub>Cl<sub>2</sub> (Stromeyer, A 109 237)

Cuprous lithium sulphite, Cu<sub>2</sub>SO<sub>3</sub>, Li<sub>2</sub>SO<sub>3</sub>+  $2H_2O$ 

Insol in H<sub>2</sub>O, but gradually decomp thereby (Étard, C R 95 138)

Cupric mercuric sulphite, CuSO<sub>2</sub>, HgSO<sub>3</sub> Sol in H<sub>2</sub>O in all proportions, but decomp on boiling

Cuprous potassium sulphite, Cu<sub>2</sub>SO<sub>3</sub>,  $K_2SO_3$  (?)

(Vohl, J pr 95 219) Sol in H<sub>2</sub>O with decomp  $+2H_2O$ 

(Rosenheim and Steinhauser, Z anorg 1890.

Cu<sub>2</sub>SO<sub>3</sub>, 2K<sub>2</sub>SO<sub>3</sub> (Chevreul, Graham.

etc)

Does not exist (Svensson)

Cu<sub>2</sub>O, 3K<sub>2</sub>O, 6SO K<sub>2</sub>SO<sub>3</sub>, Cu<sub>2</sub>SO<sub>3</sub>+5H<sub>2</sub>O  $6SO_2 + 7H_2O = 4KHSO_3$ Decomp by H<sub>2</sub>O 713 ) (Svensson, B 4

Could not be obtained (Rosenheim and

Steinhauser)  $Cu_2O$ ,  $4K_2O$ ,  $8SO_2+3H_2O=6KHSO_3$ ,  $K_2SO_3$ ,  $Cu_2SO_3$  Decomp by  $H_2O$  (Svens-

Could not be obtained (Rosenheim and

Steinhauser) Cu<sub>2</sub>SO<sub>3</sub>, 8K<sub>2</sub>SO<sub>3</sub>+16H<sub>2</sub>O Sol in H<sub>2</sub>O with decomp (Rammelsberg, Pogg 57 391) Does not exist, according to Svensson

Cuprocupric potassium sulphite, 3Cu<sub>2</sub>SO<sub>8</sub>, 3CuSO<sub>3</sub>, K<sub>2</sub>SO<sub>3</sub>

Properties as cuprous potassium sulphite (Rogojski, J B 1851 367)  $2Cu_2SO_3$ ,  $CuSO_3$ ,  $K_2SO_3+5H_2O$  Insol

in H<sub>2</sub>O and weak acids (de St-Gilles)

 $Cu_2SO_3$ ,  $4CuSO_3$ ,  $K_2SO_3+16H_2O_3$ Decomp by H<sub>2</sub>O (Rosenheim and Steinhauser

Cuprous sodium sulphite, Cu<sub>2</sub>SO<sub>3</sub>, Na<sub>2</sub>SO<sub>3</sub> +2H<sub>2</sub>O Decomp by H<sub>2</sub>O (Svensson, 1870)

 $+11H_{2}O$ Insol in cold H<sub>2</sub>O, but decomp by excess (Étard, C R 95 138) 2Cu<sub>2</sub>SO<sub>3</sub>, 3Na<sub>2</sub>SO<sub>3</sub>+29H<sub>2</sub>O Insol in H<sub>2</sub>O (Rosenheim and Steinhauser, Z anorg 1900,

**25** 94)  $Cu_2SO_3$ ,  $5Na_2SO_3+38H_2O$ Decomp by

H<sub>2</sub>O (Svensson)

 $Cu_2SO_3$ ,  $7Na_2SO_3+19H_2O$ Completely sol in H<sub>2</sub>O, but solutions decomp on stand-(Svensson)

''Cuprous sodium octosulphite,''

 $\begin{array}{c} (Cu_2)_3 \hat{H}_{10} Na_{16} S_8 O_{32} + 43 H_2 O \quad (Et ard \ ) \\ 5 Cu_2 SO_{3}, \ 2 Na_2 SO_3 + 30 H_2 O \quad Easily \quad de- \end{array}$ (Rosenheim and Steinhauser, anorg 1900, 25 94)

Cuprocupric sodium sulphite, Cu<sub>2</sub>SO<sub>3</sub>, 2CuSO<sub>3</sub>, 2Na<sub>2</sub>SO<sub>3</sub>+6H<sub>2</sub>O

Nearly insol in cold, decomp by hot  $H_2O$ (Rosenheim and Steinhauser, Z anorg 1900, **25** 95 )

 $+8H_2O$ Decomp by H<sub>2</sub>O (Rosenheim and Steinhauser)

Cuprocupric sodium hydrogen sulphite,  $Na_8Cu_{10}^{II}(Cu_2^I)H_2(SO_4)_{8,6}H_4(SO_4) + 5H_2O_1$ 

Insol in H<sub>2</sub>O (Étard, C R **94** 1422)  $(Cu_2^I)Cu_2^{II}Na_8H_{18}(SO_4)_8$  (Étard)

## Copper sodium sulphites

Doubtless many of the compds described in this class are in reality isomorphic mixtures whose composition depends upon the temp and conc of the solution in which pptd lanorg 1908, 59 199)

(Rosenheim and Steinhauser, Z anorg 1900. **25** 92-95)

Didymium sulphite, Di<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub>+3H<sub>2</sub>O<sub>1</sub> or  $6H_2O$ 

Precipitate Insol in H<sub>2</sub>O Sol in H<sub>2</sub>SO, +Aq, from which it is reprecipitated by heating, redissolving on cooling (Marignac. A ch (3) 38 167)

Erbium sulphite, Er<sub>2</sub>(SO<sub>2</sub>)<sub>3</sub>+3H<sub>2</sub>O

Precipitate

Glucinum sulphite, basic, 2GlSO<sub>3</sub>, 9Gl(OH), +6HO

Ppt (Seubert, Z anorg 1893, 4 52) GlSO<sub>3</sub>, GlO Decomp by H<sub>2</sub>O or alcohol (K and M) 3GISO<sub>3</sub>, GIC Sol in alcohol (K and M)

Glucinum sulphite, GlSO<sub>3</sub>

Decomp by H<sub>2</sub>O or alcohol (Kruss and Moraht, B 23 734)

Glucinum potassium sulphite.  $2GISO_3$ ,  $K_2SO_3+9H_2O$ 

Unstable in the air (Rosenheim, Z anorg 1897, **15** 310)

Gold (aurous) potassium sulphite, Au<sub>2</sub>SO<sub>3</sub>,  $3K_2SO_8$ 

Very sol in H<sub>2</sub>O, insol in alcohol (Haase)

Gold (auric) potassium sulphite, Au<sub>2</sub>O<sub>3</sub>,  $5K_2O$ ,  $8SO_2 + 5H_2O = 5K_2SO_3$ ,  $Au_2(SO_3)_3$  $+5H_2O$ 

Sol in H<sub>2</sub>O with decomp

Decomp by acids, insol in alkalies (Fremy, A 79 46)

Gold (auric) potassium sulphite,  $Au_2(SO_3)_3$ ,  $5K_2SO_3+10H_2O$ 

(Rosenheim and Hertzmann, Z anorg 1908, **59** 199 )

Gold (auric) potassium sulphite ammonia.  $Au_2(SO_3)_3$ ,  $3K_2SO_3$ ,  $4NH_3+4H$  O

As the corresponding NH<sub>4</sub> salt (Rosenheim and Hertzmann, Z anorg 1908, 59 202)

Gold (aurous) sodium sulphite, Au<sub>2</sub>SO<sub>3</sub>,  $3Na_{2}SO_{3}+3H_{2}O$ 

Sol in less than 1 pt H<sub>2</sub>O Insol in alcohol (Hasse) +5H<sub>2</sub>O(Himly)

Gold (auric) sodium sulphite,  $Au_2(SO_3)_3$ ,  $5Na_2SO_3+28H_2O$ 

(Rosenheim and Hertzmann. As K salt

Fold (aurous) sulphite ammonia, 3Au<sub>2</sub>O, 4SO<sub>2</sub>, 8NH<sub>3</sub>+4H<sub>2</sub>O

S1 sol in H<sub>2</sub>O with decomp Decomp by cids

Sl sol in cold, more easily in hot NH<sub>4</sub>OH+ Q Decomp by boiling (Hasse, Zeit Ch 869 535)

Fold (auric) sulphite ammonia, Au<sub>3</sub>(SO<sub>3</sub>)<sub>2</sub>, 4NH<sub>3</sub>+4H<sub>2</sub>O

Ppt Decomp in moist air and in neutral olution (Herzmann, Z anorg 1908, 59 98)

ndium sulphite,  $2In_2O_3$ ,  $3SO_2+8H_2O$ Insol in  $H_2O$  (Bayer, A 158 372)

ridium sulphite,  $Ir_2(SO_8)_3+6H_2O$ 

Scarcely sol in H<sub>2</sub>O, easily sol HCl+Aq Birnbaum, A **136** 179)

ridyl sulphite, (IrO)SO<sub>8</sub>+4H<sub>2</sub>O

Insol in  $H_2O$  Sol in HCl or  $H_2SO_4+Aq$  Birnbaum)

ridous potassium sulphite, IrO,  $3K_2O$ ,  $5SO_2(\mathcal{J})$ 

SI sol in  $H_2O$ , more sol in KOH+Aq Casily sol in HCl+Aq (Claus, J pr 42 59)

ridous sulphite potassium chloride See Iridosulphite, potassium

ridium sulphite with M<sub>2</sub>SO<sub>3</sub> See Iridosulphite, M

ron (ferrous) sulphite, FeSO<sub>3</sub>+2½H<sub>2</sub>O

Very sl sol in  $H_2O$  Easily sol in  $H_2SO_4+$   $\downarrow q$  Insol in alcohol, but sol therein in resence of  $SO_2$  (Muspratt)

ron (ferric) sulphite, Fe<sub>2</sub>O<sub>3</sub>, SO<sub>2</sub>+6H<sub>2</sub>O

Very sl sol in  $\text{H}_2\text{O}$  Sol in acads (Koene)  $2\text{Fe}_2\text{O}_3$ ,  $3\text{SO}_2$  Deliquescent, decomp by  $\mathbb{I}_2\text{O}$  into  $\text{SO}_2$  and above comp  $3\text{Fe}_2\text{O}_3$ ,  $\text{SO}_2+7\text{H}_2\text{O}$  Ppt

ron (ferroferric) potassium sulphite, FeSO<sub>3</sub>,  $(1^{i}_{C}(\cdot))_{2}S(\cdot)_{3}$ ,  $21C_{2}S(\cdot)_{4}$ 

Ppt (Berglund)

ron (ferric) potassium sulphite, K<sub>2</sub>O, Fe<sub>2</sub>O<sub>8</sub>, 3SO<sub>3</sub>+2H<sub>2</sub>O

Sol in H<sub>2</sub>SO<sub>3</sub>+Aq (Koene, Pogg **63** 53) Fe<sub>2</sub>O<sub>3</sub>, 2K<sub>2</sub>O<sub>5</sub>, 3SO<sub>2</sub>+5H<sub>2</sub>O Ppt (Musratt, Phil Mag (3) **30** 414)

 $\begin{array}{c} \textbf{ron} \quad \text{(ferric) potassium sulphite sulphate,} \\ FeSO_3SO_4K \end{array}$ 

Sl sol in cold H<sub>2</sub>O Sol in 20% HCl docume on boiling Hofmann, Z anorg , 14 'Su  $Fe(SO_3)_2SO_4K_3$  Almost insol in cold  $H_2O$  Decomp by boiling with dil acids (Hofmann)

 $Fe_2(SO_3)_4SO_4K_4+5H_2O$  Insol in cold  $H_2O$ , sol in cold 20% HCl+Aq, decomp on boiling with  $H_2O$  (Hofmann)

Iron (ferric) sodium sulphite sulphate, Fe(SO<sub>3</sub>)<sub>2</sub>SO<sub>4</sub>Na<sub>3</sub>+6H<sub>2</sub>O

Almost insol in H<sub>2</sub>O

Decomp by boiling with dil acids (Hofmann, Z anorg 1897, 14 289)

Iron (ferric) sodium hydrogen sulphite sulphate, FeSO<sub>4</sub>(SO<sub>3</sub>)<sub>4</sub>H<sub>2</sub>Na<sub>2</sub>+2H<sub>2</sub>O
Only very sl sol in H<sub>2</sub>O (Hofmann)

Lanthanum sulphite, La<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub>+4H<sub>2</sub>O Precipitate (Cleve)

Lead sulphite, PbSO<sub>3</sub>

Insol in H<sub>2</sub>O Decomp by acids Sl sol in H<sub>2</sub>SO<sub>3</sub>+Aq (Rohrig, J pr (2) **37** 233)

Lithium sulphite,  $L_{12}SO_3+6H_2O$ 

Sol in H<sub>2</sub>O, precipitated from aqueous solution by abs alcohol (Danson, Chem Soc 2 205) Sol in H<sub>2</sub>SO<sub>3</sub>+Aq

+H<sub>2</sub>O Sl sol in alcohol, and still less sol in ether (Rohrig, J pr (2) **37** 225)

+2H<sub>2</sub>O (Rohrig)

Lithium potassium sulphite, LiKSO<sub>2</sub>+½H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Rohrig, J pr (2) **37** 251)

Lithium sodium sulphite, 6Li<sub>2</sub>SO<sub>5</sub>, Na<sub>2</sub>SO<sub>5</sub>+ 8H<sub>2</sub>O

Sol in H<sub>2</sub>O (Rohrig)

Magnesium sulphite, MgSO<sub>3</sub>+6H<sub>2</sub>O

Sol in 20 pts cold and in less hot  $\rm H_2O$  (Foureroy and Vauquelin)

Sol in 80 pts cold, and in 120 pts boiling  $H_2O$  (Hager, C C 1875 135)

More easily sol in H<sub>2</sub>SO<sub>3</sub>+Aq

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 828)

Precipitated from aqueous solution by alcohol

+3H<sub>2</sub>O (Rohrig, J pr (2) **37** 234)

Manganous sulphite, MnSO<sub>8</sub>+2H<sub>2</sub>O

Insol in H<sub>2</sub>O, alcohol, or ether Easily sol in acids, also in H<sub>2</sub>SO<sub>3</sub>+Aq

[Navigation of Navigation | Research | Navigation | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Research | Res

Insol in acetone (Naumann, B 1904, **37** 4329)

 $+2\frac{1}{2}H_2O$  (Rammelsberg)

 $+3H_2O$  Sol in 10,000 pts cold, and 5000 pts hot  $H_2O$ , more sol in conc Mn salts +Aq, sol in 1000 pts  $H_2CO_3+Aq$  100 pts  $H_2SO_3$  +Aq dissolve 15–17 pts (Gorgeu, C R 96 341)

Salt with 2½H<sub>2</sub>O is the only one which exists (Rohrig, J pr (2) 37 2)

Manganous potassium sulphite, 2MnSO<sub>3</sub>,  $K_2SO_3$ 

Insol in H<sub>2</sub>O, even when boiling (Gorgeu, C R 96 376)

MnSO<sub>3</sub>, K<sub>2</sub>SO<sub>3</sub> Sol in H<sub>2</sub>O (Gorgeu)

Manganous sodium sulphite, MnSO<sub>3</sub>, Na<sub>2</sub>SO<sub>3</sub>  $+H_2O$ 

Insol in hot  $H_2O$ , but decomp by cold  $H_2O$ (Gorgeu) 4MnSO<sub>3</sub>, Na<sub>2</sub>SO<sub>3</sub> Insol in H<sub>2</sub>O (Gorgeu)

Mercuric sulphite, 2HgO, SO<sub>2</sub>

Insol in  $H_2O$ Sol in HCl, alkalı sulphites with subsequent decomp, and in KCN +Aq (de St-Gilles, A ch (3) 36 80)

HgSO<sub>3</sub> Decomp by cold H<sub>2</sub>O (de St-Gilles )

(Divers and Shimidzu. Does not exist Chem Soc 49 553)

HgO,  $2SO_2+H_2O$ Sol in H<sub>2</sub>O, but decomp by boiling (de St-Gilles ) Exists only in aqueous solution (Divers and Shimidzu)

Mercuromercuric sulphite, Hg<sub>3</sub>(SO<sub>2</sub>)<sub>2</sub>+  $2H_2O = Hg_2SO_3$ ,  $HgSO_8$ 

Very efflorescent Insol in H<sub>2</sub>O Decomp by hot H<sub>2</sub>O Insol in dil HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub>+ Αq

+4H<sub>2</sub>O Very efflorescent

Hypomercurosic sulphite, Hg<sub>4</sub>(SO<sub>3</sub>)<sub>2</sub>+H<sub>2</sub>O Insol in H<sub>2</sub>O, but easily decomp on stand ing therewith Almost absolutely insol in dil HNO3 or H2SO4+Aq (Divers and Shimidzu )

Mercuric oxysulphite, Hg(SO<sub>2</sub>OHgO)<sub>2</sub>Hg+

Insol in H<sub>2</sub>O Decomp by hot H<sub>2</sub>O Insol in dil HNO3 or H2SO4+Aq Sol in  $H_2SO_3+Aq$  (Divers and Shimidzu)

Mercuric potassium sulphite, basic, K<sub>2</sub>O, 2HgO, 2SO<sub>2</sub>

(Barth, Z phys Ch 1892,  $\mathbf{9}$  210) K<sub>2</sub>O, 3HgO, 3SO<sub>2</sub> Insol in H<sub>2</sub>O Partly sol in KOH+Aq (Barth)

Mercuric potassium sulphite, HgSO<sub>3</sub>, K<sub>2</sub>SO<sub>3</sub>  $+H_2O$ 

Sl sol in cold H<sub>2</sub>O Decomp on boiling (de St-Gilles, A ch (3) **36** 90)

Mercuric potassium sulphite mercuric chloride, K<sub>2</sub>Hg(SO<sub>3</sub>)<sub>2</sub>, HgCl<sub>2</sub>

Decomp by H<sub>2</sub>O (Barth, Z phys Ch 1892, **9** 206)

Mercuric silver sulphite, HgSO<sub>3</sub>, Ag<sub>2</sub>SO<sub>3</sub>+

Decomp rapidly, insol in H<sub>2</sub>O (Barth. Z phys Ch 9 195)

Mercuric sodium sulphite, HgSO<sub>8</sub>, Na<sub>2</sub>SO<sub>2</sub>+  $H_2O$ 

Sol in H<sub>2</sub>O (de St-Gilles)

Sol in 25 pts cold H2O, and decomp on heating (Divers and Shimidzu) + $2H_2O = Na_2(SO_3)_2Hg + 2H_2O$ 

Z phys Ch 9 193)

2HgSO<sub>3</sub>, Na<sub>2</sub>SO<sub>3</sub>+H<sub>2</sub>O Much more sol in H<sub>2</sub>O than the above comp especially on heating (de St-Gilles)

Does not exist (Divers and Shimidzu)

Mercuric strontium sulphite, HgSO<sub>3</sub>, SrSO<sub>2</sub>+ 2H<sub>2</sub>O

Ppt (Barth)

Mercuric sulphite ammonium bromide, HgSO<sub>3</sub>, NH<sub>4</sub>Br

As NH<sub>4</sub>Cl comp (Barth, Z phys Ch 1892, **9** 215)

Mercuric sulphite ammonium chloride, HgSO<sub>3</sub>, NH<sub>4</sub>Cl As K salt (Barth)

Mercuric sulphite potassium chloride, HgSO<sub>3</sub>, KCl Sol in H<sub>2</sub>O (Barth)

Mercuric sulphite sodium chloride, HgSO2. NaCl+H<sub>2</sub>O

Sol in H<sub>2</sub>O (Barth)

Nickel sulphite, basic, 2NiSO<sub>8</sub>, Ni(OH)<sub>2</sub>+ 6H, 0 Ppt (Seubert and Elten, Z anorg 1893, **4** 91)

Nickel sulphite, NiSO<sub>3</sub>+4H<sub>2</sub>O

Sol in HCl+Aq with Insol in H<sub>2</sub>O evolution of SO<sub>2</sub> (Muspratt, A 50 259) +6H<sub>2</sub>O Insol in H<sub>2</sub>O Sol in H<sub>2</sub>SO<sub>3</sub>+ Aq (Rammelsberg, Pogg 67 391)

Nickel sulphite ammonia, NiSO<sub>3</sub>, 3NH<sub>3</sub>+  $3H_2O$ 

Sol in little H<sub>2</sub>O Decomp by much H<sub>2</sub>O or heat (Rammelsberg, Pogg 67 245)

Osmious sulphite, OsSO<sub>3</sub>

Insol in H<sub>2</sub>O Easily sol in HCl+Aq without evolution of SO<sub>2</sub> Very slowly decomp by KOH + Aq (Claus)

Osmious potassium sulphite, OsSO<sub>3</sub>, 2K<sub>2</sub>SO<sub>3</sub>, 2KHSO<sub>3</sub>+4H<sub>2</sub>O Nearly insol in H<sub>2</sub>O

)smious potassium sulphite chloride, OsO, 2SO<sub>2</sub>, 6KCl

Easily sol in H<sub>2</sub>O

Palladous sodium sulphite,  $PdSO_3$ ,  $3Na_2SO_3 + 2H_2O = Na_6Pd(SO_3)_4 + 2H_2O$ 

Sol in hot H<sub>2</sub>O Sol in NaOH+Aq or I<sub>2</sub>SO<sub>3</sub>+Aq (Wohler and Frerichs, A 174 99)

Platinous sulphite, PtO2, 2SO2

Easily sol in H<sub>2</sub>O or alcohol (Doberemer, pr **15** 315) Formula is PtSO<sub>3</sub> (Gmelin)

PtSO<sub>3</sub>, H<sub>2</sub>SO<sub>3</sub> (Birnbaum, A 139 172)

Matinic potassium sulphite, PtO<sub>2</sub>, SO<sub>2</sub>, K<sub>2</sub>SO<sub>3</sub>+H<sub>2</sub>O Sol in KOH+Aq (Birnbaum, A 139

Platinic sodium sulphite, PtO<sub>2</sub>, SO<sub>2</sub>, 2Na<sub>2</sub>SO<sub>3</sub> +2H<sub>2</sub>O

Sol in H<sub>2</sub>O (Birnbaum)

73)

Platinous sulphite with M<sub>2</sub>SO<sub>3</sub> See Platosulphite, M

Platinum sulphite ammonium chloride See Chloroplatosulphite, ammonium

Potassium sulphite, K2SO3+2H2O

Somewhat deliquescent Sol in 1 pt cold, nd still less hot H<sub>2</sub>O (Fourcroy and Vauluelin, A ch **24** 254)
Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

1898, **20** 829) Very slightly soluble in alcohol Insol in thyl acetate (Casaseca, C R **30** 821)

Potassium hydrogen sulphite, KHSO<sub>2</sub>
Sol in H<sub>2</sub>O Insol in absolute alcohol

Potassium pyrosulphite, K<sub>2</sub>S<sub>2</sub>O<sub>5</sub>

Slowly sol in  $H_2O$  Very sl sol in alcohol, nsol in ether (Muspratt, A **50** 259)

Potassium rhodium sulphite, 3K<sub>2</sub>SO<sub>3</sub>, Rh<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub>+6H<sub>2</sub>O

See Rhodosulphite, potassium

Potassium ruthenium sulphite,  $O[Ru(SO_3)_4K_6]_2+2H_2O$ Ppt (Miolati, C C 1901, I 501)

Potassium sodium sulphite, KNaSO<sub>8</sub>

Sol in H<sub>2</sub>O (Spring, B **7** 1161) +1, and 2H<sub>2</sub>O (Schwicker, B **22** 1731) Isomeric salts, KSO<sub>3</sub>Na and NaSO<sub>3</sub>K Barth, Z phys Ch **9** 176)

Potassium sodium hydrogen sulphite, KNa<sub>2</sub>H(SO<sub>3</sub>)<sub>2</sub>+4H<sub>2</sub>O

Easily sol in  $H_2O$ , 100 pts  $H_2O$  dissolve 69 pts salt at 15° (Schwicker, B 22 1731)  $K_2NaH(SO_3)_2+3H_2O$  (Schwicker)

Potassium uranyl sulphite, K(UO<sub>2</sub>)(OH)SO<sub>3</sub> Insol in H<sub>2</sub>O, but sol in H<sub>2</sub>SO<sub>3</sub>+Aq

(Scheller) K<sub>2</sub>O, 2UO<sub>3</sub>, 3SO<sub>2</sub> (Kohlschutter, A 1900,

311 10 et seq ) K<sub>2</sub>O, 4UO<sub>3</sub>, 5SO<sub>2</sub> (K) K<sub>2</sub>O, 3UO<sub>3</sub>, 2SO<sub>2</sub> (K) K<sub>2</sub>O, UO<sub>3</sub>, 2SO<sub>2</sub> (K)

Potassium vanadium sulphite
See Vanadiosulphite, potassium

Potassium vanadyl sulphite, K<sub>2</sub>SO<sub>3</sub>, VOSO<sub>3</sub>+5½H<sub>2</sub>O

Sol in  $H_2O$  without decomp and can be recryst therefrom (Koppel and Behrendt, B 1901, **34** 3932)

K<sub>2</sub>O, 3VO<sub>2</sub>, 2SO<sub>2</sub> Sol without decomp in cold and hot H<sub>2</sub>O

Insol in alcohol and ether (Koppel, Z anorg 1903, 35 182)

Potassium zinc sulphite,  $K_2SO_3$ ,  $3ZnSO_3 + 7\frac{1}{2}H_2O$ 

Sol in H<sub>2</sub>O with decomp (Berglund, Acta Lund 1872)

 $\begin{array}{c} \textbf{Rhodium sulphite,} \ Rh_2(SO_3)_3 + 6H_2O \\ Sol \ in \ H_2O \quad Insol \ in \ alcohol \quad (Claus \ ) \end{array}$ 

Rhodium sodium sulphite See Rhodosulphite, sodium

Ruthenium sulphite, Ru<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub>

Colloidal substance, sol in a large quantity of H<sub>2</sub>O (Lucchesi, Gazz ch it 1900, **30** (2) 71)

Ruthenium sodium sulphite,  $Na_7Ru(SO_3)_5 + 2H_2O$ 

Ppt (Miolati, C C 1901, I 501

Samarium sulphite, Sm<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub> Amorphous precipitate (Cleve)

Scandium sulphite, Sc2(SO3)3

Insol in cold H<sub>2</sub>O Sl sol in hot H<sub>2</sub>O Sol in excess of sodium sulphite when heated (Crookes, Phil Trans 1910, **210** A 363)

+6H<sub>2</sub>O Very sl sol in H<sub>2</sub>O Decomp by boiling with H<sub>2</sub>O with separation of H<sub>2</sub>SO<sub>3</sub> (R J Meyer, Z anorg 1914, 86 281)

Selenium sulphite, SeSO:

Correct composition for "selenium sulphoxide" (Divers, Chem. Soc 49 583)

Silver sulphite, Ag<sub>2</sub>SO<sub>3</sub>

Very sl sol in cold H<sub>2</sub>O Decomp on heating

Solubility in  $H_2O$  is <120,000(Bau-

bigny, C R 1909, 149 858)
Easily sol in NH<sub>4</sub>OH+Ag, and alkali sulphites+Aq Insol in H<sub>2</sub>SO<sub>3</sub>+Aq Decomp by strong acids, but not by acetic acid (Berthier, A ch (3) 7 82)

Easily sol in alkali thiosulphates+Aq

(Herschel)

Cold NaHSO<sub>3</sub>+Aq dissolves a considerable amount of Ag<sub>2</sub>SO<sub>3</sub> (Rosenheim and Steinhauser, Z anorg 1900, 25 78)

Practically insol in HNO<sub>8</sub>+Aq or dil AgNO<sub>3</sub>+Aq, also in H<sub>2</sub>SO<sub>3</sub>+Aq (Divers,

Chem Soc 49 579)

Silver sodium sulphite, Ag<sub>2</sub>SO<sub>3</sub>, Na<sub>2</sub>SO<sub>3</sub>+  $H_{2}O$ 

Decomp by H<sub>2</sub>O (Svensson, B 4 714)

#### Sodium sulphite, Na<sub>2</sub>SO<sub>3</sub>

100~pts dissolve at 0°, 14 1 pts , at 20°, 25 8 pts , at 40°, 49 5° pts  $Na_2SO_3$  (Kremers Pogg  $99\ 50$ ) Maximum solubility is at 33° (Mitscherlich)

Solubility in 100 pts H<sub>2</sub>O at t°

| t    | Pts Na <sub>2</sub> SO <sub>3</sub> |
|------|-------------------------------------|
| 60 4 | 28 29                               |
| 59 8 | 28 29                               |
| 59 8 | 28 65                               |
| 59 8 | 28 75                               |
| 37 0 | 28 01                               |
| 37 0 | 28 07                               |
| 47 0 | 28 19                               |
| 47 0 | 28 07                               |
| 55 6 | 28 21                               |
| 84 0 | 28 26                               |

The temp at which Na<sub>2</sub>SO<sub>3</sub>+7H<sub>2</sub>O changes into Na<sub>2</sub>SO<sub>3</sub> is about 21 6°

(Hartley and Barrett, Chem Soc 1909, 95 1183)

See also +7H<sub>2</sub>O

Sp gr of sat solution at  $15^{\circ} = 121$ (Greenish and Smith, Pharm J 1901, 66 774)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch

J 1898, **20** 829) Insol in alcohol

Insol in ethyl acetate 30 821), methyl acetate 1909, 42 3790) (Casaseca, C R (Naumann, B

Insol in benzonitrile (Naumann, B 1914, 47 1370)

+7H<sub>2</sub>O Decomp slowly on air. Sol in 4 pts H<sub>2</sub>O at 15° with absorption

of heat (Dumas), and in 1 pt boiling H2O (Fourcroy)

Solubility in 100 pts H<sub>2</sub>O at t°

| t°                                                                 | Pts Na <sub>2</sub> SO <sub>3</sub>                                           |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 37 2<br>33 5<br>29 0<br>23 5<br>18 2<br>10 6<br>5 9<br>2 0<br>—1 9 | 44 08<br>39 64<br>34 99<br>29 92<br>25 31<br>20 01<br>17 61<br>14 82<br>13 09 |
|                                                                    |                                                                               |

Supersolubility curves have also been plotted for ice and Na<sub>2</sub>SO<sub>3</sub>+7H<sub>2</sub>O (Hartley and Barrett, Chem Soc 1909, 95 1181)

+10H<sub>2</sub>O Efflorescent Somewhat less sol than above salt (Muspratt)

#### Sodium hydrogen sulphite, NaHSO<sub>8</sub>

More difficulty sol in H<sub>2</sub>O than NaHCO<sub>3</sub>. and is precipitated by alcohol from aqueous solution (Muspratt)

Insol m acetone. (Eldmann, C C 1899, II 1014, Naumann, B 1904, 37 4329) methyl acetate (Naumann, B 1909, 42 3790)

+4H<sub>2</sub>O (Clark)

# Sodium pyrosulphite, Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub>

Decomp gradually on the air

# Sodium uranyl sulphite, Na(UO<sub>2</sub>)(OH)SO<sub>3</sub>

Sl sol in H<sub>2</sub>O More sol in H<sub>2</sub>SO<sub>3</sub>+Aq than the K salt (Scheller)

Na<sub>2</sub>O, 2UO<sub>3</sub>, 3SO<sub>2</sub> Na<sub>2</sub>O, 3UO<sub>3</sub>, 2SO<sub>2</sub> 1900, **311** 10 et seq) (Kohlschutter

#### Sodium vanadyl sulphite, $N_{12}()$ , $2S()_2$ , $VO_2 + 5H_2O$

Sol in H<sub>2</sub>O with decomp

 $Na_2O$ ,  $2SO_2$ ,  $3VO_2+4\hat{H}_2O$ Sol in cold H<sub>2</sub>O, decomp on heating (Koppel, B 1901, **34** 3933)

#### Sodium zinc sulphite, 'Na<sub>2</sub>SO<sub>3</sub>, 3ZnSO<sub>3</sub>+ 7⅓H₂O

Sol in H<sub>2</sub>O with decomp (Berglund, Acta Lund, 1872)

#### Sodium sulphite silver chloride, 3Na<sub>2</sub>SO<sub>2</sub>, $AgCl+21H_2O$

Sol in H<sub>2</sub>O (Svensson)

### Strontium sulphite, SrSO<sub>8</sub>

Precipitate Almost insol in H2O Sol in  $H_2SO_3+Aq$  (Muspratt) Sol in about 30,000 pts H<sub>2</sub>O at 16-18°

Autenrieth, Z anal 1898, 37 293)

Abundantly sol in H<sub>2</sub>SO<sub>3</sub>+Aq (Rohrig)

#### **Fellurium** sulphite, TeSO<sub>3</sub>

Correct composition of "tellurium sulphoxide" (Divers, Chem Soc 49 583)

#### Challous sulphite, Tl<sub>2</sub>SO<sub>3</sub>

Sl sol in cold, easily in hot  $H_2SO_8+Aq$  Röhrig, J pr (2) 37 229) 100 pts H<sub>2</sub>O dissolve 334 pts at 155° Easily sol in hot H<sub>2</sub>O, insol in alcohol Seubert and Elten, Z anorg 2 434)

## Thallous vanadyl sulphite, 2Tl<sub>2</sub>SO<sub>3</sub>, $V_2O_8SO_8+4H_2O$

(Gain, A ch 1908, (8) 14 278)  $Tl_2SO_3$ ,  $3V_2O_3SO_3 + 8H_2O$  (Gain)

**Thorium** sulphite,  $Th(SO_3)_2 + H_2O$ Precipitate (Cleve)

**Fin** (stannous) sulphite, 5SnO,  $2\text{SO}_2 + x\text{H}_2\text{O}$ Ppt Partly sol in H<sub>2</sub>SO<sub>3</sub>+Aq (Röhrig,

J pr (2) 37 249 ) +20H O (Rohrig) 8SnO, 2SO<sub>2</sub>+20H<sub>2</sub>O

 $11\text{SnO}, 2\text{SO}_2 + 20\text{H}_2\text{O}$  (Rohrig)

Uranous sulphite, basic, U(OH)<sub>2</sub>SO<sub>3</sub>+H<sub>2</sub>O Insol in H<sub>2</sub>O Easily sol in acids in H<sub>2</sub>SO<sub>3</sub>+Aq, but is soon decomp (Rammelsberg)

#### Uranyl sulphite, basic, 3UO<sub>2</sub>(OH)<sub>2</sub>, $5(UO_2)SO_3 + 10H_2O$

(Seubert and Elten, Z anorg 1893, 4 80)

# Uranyl sulphite, (UO<sub>2</sub>)SO<sub>3</sub>+4H<sub>2</sub>O

Insol in H2() Sol in H2SO3+Aq or alconolic solution of SO<sub>2</sub> (Rohrig, J pr (2) 37 240)

# Vanadyl sulphite, 3VO<sub>2</sub>, 2SO<sub>2</sub>+4½H<sub>2</sub>O

Decomp slowly on stinding

Sol in II2O without apparent decomp

(Koppel, Z morg 1903, **35** 186) 2V<sub>2</sub>O<sub>4</sub>, 3SO<sub>2</sub>+10H<sub>2</sub>O Sol in H<sub>2</sub>O, aq sol decomp on boiling giving off SO<sub>2</sub> and orming  $V_2()_4$ ,  $2H_2()$  (Ginn, C R 1906, 143 324)

## Vanadyl zinc sulphite, ZnO, 3VO<sub>2</sub>, 2SO<sub>2</sub>

Decomp slowly in the air

Sol in H<sub>2</sub>() without decomp (Koppel, Z anorg 1903, **35** 183)

# Ytterbium sulphite, Yb<sub>2</sub>(SO<sub>3</sub>)<sub>8</sub>+9H<sub>2</sub>O

Insol in H<sub>2</sub>O (Cleve, Z anorg 1902, 32 **14**3)

Yttrium sulphite,  $Y_2(SO_8)_8+3H_2O$ Sl sol in H<sub>2</sub>O (Cleve)

## Zinc sulphite, basic, 2ZnSO<sub>3</sub>, 3Zn(OH)<sub>2</sub>

(Seubert, Arch Pharm 229 321)  $ZnSO_3$ ,  $Zn(OH)_2+H_2O$ (Seubert)

# Zinc sulphite, $ZnSO_8+2$ , and $2^1/_2H_2O$

Very sl sol in H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve 0 16 pt ZnSO<sub>3</sub>+2H<sub>2</sub>O (Henston and Tichborne, Brit Med J 1890 1063)

Easily sol in H<sub>2</sub>SO<sub>3</sub>+Aq (Koene)

Sol in NH<sub>4</sub>OH+Aq Insol in alcohol

Decomp into basic salt by boiling H<sub>2</sub>O (Seubert, Arch Pharm 229 1)

## Zinc sulphite ammonia, ZnSO<sub>3</sub>, NH<sub>3</sub>

Decomp by H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq (Rammelsberg, Pogg 67 255)

#### Zırconıum sulphite

Insol in H<sub>2</sub>O Somewhat sol in H<sub>2</sub>SO<sub>3</sub>+ Aq, from which it is repptd on boiling Sol in (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>+Aq, from which Zr hydroxide 1s pptd on boiling (Berzelius)
Zr(SO<sub>3</sub>)<sub>2</sub>+7H<sub>2</sub>O Ppt (Venable, J Am

Chem Soc 1895, 17 449)

## Sulphuryl bromide, SO<sub>2</sub>Br<sub>2</sub>

(Odling, Chem Soc 7 2) Does not exist (Sestim, Bull Soc 10 226, Melsens, C R 76 92, Michaelis)

#### Sulphuryl chloride, SO<sub>2</sub>Cl<sub>2</sub>

Decomp by H<sub>2</sub>O and alcohol

Decomp by moist air, water, or abs alcohol, more rapidly by alkalies, HCl, SO<sub>2</sub>, etc. (Schiff, A 102 111)

 $+\mathrm{H}_2\mathrm{O}$  Only sl sol in  $\mathrm{H}_2\mathrm{O}$  at 0° with slow decomp (Baeyer, B 1901, **34** 737)  $+15\mathrm{H}_2\mathrm{O}$  Sl sol in  $\mathrm{H}_2\mathrm{O}$  at 0° and stable

therein for several hours (Baeyer)

#### Disulphuryl chloride (Pyrosulphuryl chloride), $S_2O_5Cl_2$

Decomp slowly with H<sub>2</sub>O (Rose, Pogg **44** 291)

Sol in CCl<sub>4</sub> and CHCl<sub>3</sub>, miscible with liquid SO<sub>3</sub>

# Sulphuryl hydroxyl chloride,

 $SO_3HCl = \frac{HO}{Cl}SO_2$ 

Decomp on most air, and violently with H<sub>2</sub>O Not miscible with CS<sub>2</sub> Decomp with alcohol

#### Sulphuryl titanium chloride, SO<sub>8</sub>, TiCl<sub>4</sub>= TıCl<sub>3</sub>OSO<sub>2</sub>Cl

Slowly deliquescent (Clausnitzer, B 11 2011)

# D<sub>2</sub>sulphuryl chloride stannic oxychloride, $5S_2O_5Cl_2$ , $4SnOCl_2$

Sol in a little  $H_2O$ , but decomp by more  $H_2O$  (Rose, Pogg 44 320)

#### Sulphuryl fluoride, SO<sub>2</sub>F<sub>2</sub>

1 pt is sol in 10 pts  $H_2O$  at 9° 3 vol are sol in 1 vol alcohol at 9°, insol in conc  $H_2SO_4$  at 66°, sol in aq solution of KOH,  $Ca(OH)_2$ ,  $Ba(OH)_2$  and in alcoholic solution of alkalies (Moissan, C R 1901, 132 377)

## Sulphuryl hydroxyl fluoride, HSO<sub>2</sub>F

Violently decomp by H<sub>2</sub>O (Thorpe and Kirwan, Z anorg 3 63)

Sulphuryl peroxide, SO<sub>4</sub> See Sulphur heptoxide

Sulphydric acid See Hydrogen Sulphide

## Sulphydroxyl See Sulphhydroxyl

## Tantalic acid, H<sub>4</sub>Ta<sub>2</sub>O<sub>7</sub> (?)

Sol in HF (Rose), and KH<sub>3</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>+Aq (Gahn, Schw J 16 437) At the instant of precipitation is sol in various acids (Rose)

#### Aluminum tantalate

Insol in H<sub>2</sub>O (Berzelius)

#### Ammonium hexatantalate, $(NH_4)_2H_7Ta_7O_{19}$ + $H_9O$

Somewhat sol in  $H_2O$  (Rose, Pogg 102 57)

# Barrum hexatantalate, Ba<sub>4</sub>Ta<sub>6</sub>O<sub>19</sub>+6H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Rose)

# Cæsium tantalate, $4Cs_2O$ , $3Ta_2O_5+14H_2O$

Completely sol in a small amount of hot H<sub>2</sub>O (E F Smith, J Am Chem Soc 1908, **30** 1666)

7Cs<sub>2</sub>O, 6Ta<sub>2</sub>O<sub>5</sub>+38H<sub>2</sub>O Pptd from its aqueous solution by alcohol (Smith)

# Ferrous tantalate, Fe(TaOs);

Min Tantalite 5FeO, 4Ta<sub>2</sub>O<sub>5</sub> Min Tapiolite

# Magnesium hexatantalate, Mg<sub>4</sub>Ta<sub>6</sub>O<sub>19</sub>+9H<sub>2</sub>O

Ppt (Rose, Pogg **102** 61) 4MgO, Ta<sub>2</sub>O<sub>5</sub> Insol in H<sub>2</sub>O (Joly, C R **81** 266)

# Mercurous tantalate, 5Hg<sub>2</sub>O, 4Ta<sub>2</sub>O<sub>5</sub>+5H<sub>2</sub>O

Decomp by warm  $HNO_3+Aq$  (1 21 sp gr ) with separation of  $Ta_2O_5$  (Rose, Pogg 102 64)

### Potassium tantalate, KTaO.

Insol in H<sub>2</sub>O Sol in KOH+Aq (Marignac, A ch (4) 9 249)

## Potassium hexatantalate, K<sub>8</sub>Ta<sub>6</sub>O<sub>19</sub>+16H<sub>2</sub>O

Sol without decomp in moderately warm  $H_2O$  Decomp by boiling (Marignac, A ch (4) 9 259)

Rubidium tantalate, 4Rb<sub>2</sub>O, 3Ta<sub>2</sub>O<sub>5</sub>+14H<sub>2</sub>O Sol in H<sub>2</sub>O (E F Smith, J Am Chem Soc 1908, **30** 1666)

#### Silver tantalate, 4Ag<sub>2</sub>O, 3Ta<sub>2</sub>O<sub>5</sub>

Completely sol in  $NH_4OH+Aq$   $HNO_3+$  Aq dissolves  $Ag_2O$ , and  $Ta_2O_5$  separates out (Rose, Pogg 102 64)

# Sodium tantalate, NaTaO<sub>8</sub>

Insol in H<sub>2</sub>O (Rose)

#### Sodium hexatantalate, Na<sub>8</sub>Ta<sub>6</sub>O<sub>19</sub>+25H<sub>2</sub>O

1 pt salt dissolves in 493 pts  $\rm H_2O$  at 13 5°, and in 162 pts at 100° Very slightly sol in alcohol Insol in alkaline solutions (Rose)

# Pertantalic acid

See Pertantalic acid

#### Tantalum, Ta

Not attacked by HCl, HNO<sub>3</sub>, aqua regia, or hot conc H<sub>2</sub>SO<sub>4</sub> Easily sol in a mixture of HNO<sub>3</sub> and HF (Berzelius, Pogg 4 6, Rose) Also sol in HF alone (Berzelius)

Not attacked by alkalı hydrates+Aq Insol in single acids and in aqua regia Oxidized by a mixture of HF and aqua regia (Moissan, C R 1902, **134** 211)

Pure Ta is insol in boiling H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, HCl, aqua regia or mixtures of these acids, slowly sol in HF+Aq (v Bolton, Zeit Elektrochem 1905, **11** 45)

# Tantalum bromide, TaBr<sub>5</sub>

Decomp by H<sub>2</sub>O (Rose)

## Tantalum dichloride, TaCl2+2H2O

Sol in  $H_2O$  when freshly prepared (Chabrié, C R 1907, 144 805)

#### Tantalum pentachloride, TaCl<sub>5</sub>

Takes up  $\rm H_2O$  from the air without deliquescing Decomp by  $\rm H_2O$  Sol in  $\rm H_2SO_4$  Sol in cold HCl+Aq to a cloudy liquid, which gelatinises after a time. Not completely sol in boiling HCl+Aq, and the solution does not gelatinise by the subsequent addition of water, but all goes into solution Partly sol in KOH +Aq. Insol in  $\rm K_2SO_3+Aq$ . Sol in absolute alcohol

## Tantalum pentafluoride, TaFs

Very hydroscopic, sol in  $H_2O$  (Ruff, B 1909, 42 494)

### Tantalum fluoride with MF See Fluotantalate, M

## Tantalum hydroxide, Ta<sub>2</sub>O<sub>5</sub>, xH<sub>2</sub>O See Tantalic acid

# Tantalum nitride, TaN

Not sol in any acids, except a mixture of HF and HNO<sub>3</sub> (Rose, Pogg 100 146) Ta<sub>3</sub>N<sub>5</sub> (Joly, Bull Soc (2) 25 506)

#### Tantalum dioxide, Ta<sub>2</sub>O<sub>2</sub>(?)

Sol in HF with evolution of hydrogen (Hermann, J pr (2) 5 69)

#### Tantalum tetroxide, Ta2O4

Not attacked by any acid, not even a mixture of HNO<sub>3</sub> and HF (Berzehus, Pogg 4 20)

Decomp by HCl (Smith, Z anorg 1894, 7 98)

#### Tantalum pentoxide, Ta2O5

Insol in any acid, even boiling H<sub>2</sub>SO<sub>4</sub> or in HF (Berzelius)

Sol in fused KHSO<sub>4</sub>, 10 pts being necessary to dissolve 1 pt Ta<sub>2</sub>O<sub>5</sub>

#### Tantalum silicide, TaSi2

Insol in most inorganic acids Sol in HF and in HF+HNO<sub>3</sub>

Decomp by fused alkali hydroxides (Hongschmid, M 1907, 28 1027)

#### Tantalum sulphide, Ta2S4

Not attacked by HCl+Aq Oxidised by boiling with HNO<sub>3</sub>+Aq, more rapidly with aqua regia Attacked by H<sub>2</sub>SO<sub>4</sub> on heating Not completely sol in HF or a mixture of HF and HNO<sub>3</sub>

## Telluretted hydrogen, TeH<sub>2</sub> See Hydrogen telluride

#### Telluric acid, H<sub>2</sub>TeO<sub>4</sub>

Insol in H<sub>2</sub>O, cold cone HCl, hot HNO<sub>5</sub>, or boiling KOH+Aq, but when heated with H<sub>2</sub>O is gradually converted into H<sub>2</sub>TeO<sub>4</sub>+2H<sub>2</sub>O and dissolved

+2H<sub>2</sub>O Very slowly sol in cold H<sub>2</sub>O, but sol in hot H<sub>2</sub>O in every proportion Insol in absolute alcohol, sol in dil alcohol according to the amount of H<sub>2</sub>O present Sol in acids and alkalies Insol in alcohol or ether

Insol in alcohol, sol in NaOH+Aq (Mylius, B 1901, **34** 2216)

Stable in the air

Sol in H<sub>2</sub>O, pptd by HNO<sub>3</sub> (Staudenmaier, Z anorg 1895, 10 191)

| Solubility | ın | $H_2O$ |
|------------|----|--------|
|------------|----|--------|

| Solid phase                                                                                                               | Temp | H2TeO4 | Mols<br>H <sub>2</sub> O to<br>1 mol<br>H <sub>2</sub> TeO <sub>4</sub> | Mols<br>H <sub>2</sub> TeO <sub>4</sub><br>to 100<br>mols<br>H <sub>2</sub> O |
|---------------------------------------------------------------------------------------------------------------------------|------|--------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| H <sub>2</sub> TeO <sub>4</sub> +6H <sub>2</sub> O  "  H <sub>2</sub> TeO <sub>4</sub> 2H <sub>2</sub> O  "  "  "  "  " " | 0°   | 13 92  | 66 2                                                                    | 1 51                                                                          |
|                                                                                                                           | 5°   | 17 84  | 49 2                                                                    | 2 03                                                                          |
|                                                                                                                           | 10°  | 26 21  | 30 2                                                                    | 3 31                                                                          |
|                                                                                                                           | 15°  | 32 79  | 21 9                                                                    | 4 55                                                                          |
|                                                                                                                           | 10°  | 25 29  | 31 7                                                                    | 3 15                                                                          |
|                                                                                                                           | 18°  | 28 90  | 26 2                                                                    | 3 82                                                                          |
|                                                                                                                           | 30°  | 33 36  | 21 4                                                                    | 4 67                                                                          |
|                                                                                                                           | 40°  | 36 38  | 18 8                                                                    | 5 33                                                                          |
|                                                                                                                           | 60°  | 43 67  | 14 2                                                                    | 7 04                                                                          |
|                                                                                                                           | 80°  | 51 55  | 10 07                                                                   | 9 93                                                                          |
|                                                                                                                           | 100° | 60 84  | 6 89                                                                    | 14 52                                                                         |

(Mylus, B 1901, 34 2211)

 $+6H_2O$  Obtained from solutions at 0° (Staudenmaier, Z anorg 1895, 10 191)

### Allotelluric acid, H<sub>2</sub>TeO<sub>4</sub>

Miscible with H<sub>2</sub>O

Sol in alcohol, pptd by NaOH+Aq but sol in excess (Mylius, B 1901, **34** 2216)

#### **Tellurates**

Neutral alkalı salts are sol ın H<sub>2</sub>O, the acıd salts are only sl sol therein, but dissolve ın HCl+Aq

#### Aluminum tellurate

Ppt Sol in excess of aluminum salts+Aq (Berzelius )

#### Ammonium tellurate, (NH<sub>4</sub>)<sub>2</sub>TeO<sub>4</sub>

Slowly but completely sol in  $H_2O$  Sl sol in  $NH_4OH+Aq$  or  $NH_4Cl+Aq$  Sl sol in alcohol (Berzelius)

(NH<sub>4</sub>)<sub>2</sub>O, 2TeO<sub>3</sub> Sl sol in H<sub>2</sub>O, but more

sol than the corresponding K salt

 $(NH_4)_2O$ ,  $41eO_3$  Very sl sol in  $H_2O$  Insol in alcohol (Berzelius)

#### Barium tellurate, BaTeO<sub>4</sub>+3H<sub>2</sub>O

Sl sol in cold, more in boiling H<sub>2</sub>O Easily sol in HNO<sub>3</sub>+Aq (Berzelius)

 $BaH_2(TeO_4)_2+2H_2O$  More sol in  $H_2O$  than  $BaTeO_4$  Decomp by  $H_2O$  (Berzelius)

BaO, 41eO<sub>3</sub> More sol in H<sub>2</sub>O than either BaTeO<sub>4</sub> or BaH<sub>2</sub>(TeO<sub>4</sub>)<sub>2</sub> (Berzelius)

#### Bismuth tellurate, Bi<sub>2</sub>TeO<sub>6</sub>+2H<sub>2</sub>O

 $\begin{array}{cccc} \mathbf{Min} & \textit{Montanite} & \mathbf{Sol} & \mathbf{in} & \mathbf{HCl} + \mathbf{Aq} & \mathbf{with} \\ \mathbf{evolution} & \mathbf{of} & \mathbf{Cl} \end{array}$ 

#### Cadmium tellurate, CdTeO.

Ppt Sol in HCl+Aq (Oppenheim)

# Cæsium hydrogen tellurate, CsHTeO<sub>4</sub>+ ½H<sub>2</sub>O

1 pt is sol in 30 pts  $H_2O$  (Norris, Am Ch J 1901, **26** 321)

## Calcium tellurate, CaTeO4

Ppt Sol in hot H<sub>2</sub>O (Berzelius)

## Chromic tellurate, Cr<sub>2</sub>(TeO<sub>4</sub>)<sub>3</sub>

Sol in excess of Cr salts+Aq

#### Cobaltous tellurate

Ppt (Berzehus)

#### Cupric tellurate, CuTeO4

Ppt (Berzelius) CuO, 2TeO<sub>3</sub> Ppt

Cu<sub>3</sub>TeO<sub>5</sub> Insol in H<sub>2</sub>O
Sol in HCl, HNO<sub>5</sub> NH<sub>2</sub>OH, KCN and
acetic scid (Hutchins, J Am Chem Soc 1905, **27** 1181)

# Glucinum tellurate, GlTeO4

Insol in H<sub>2</sub>O

## Iron (ferrous) tellurate, FeTeO4 Ppt Mm Ferrotellurate

Iron (ferric) tellurate, Fe<sub>2</sub>(TeO<sub>4</sub>)<sub>3</sub> Ppt Sol in ferric salts+Aq (Berzelius)

#### Lead tellurate, basic

Not completely insol in H<sub>2</sub>O

## Lead tellurate, PbTeO<sub>4</sub>

Somewhat sol in H<sub>2</sub>O PbO, 2TeO<sub>3</sub> More sol than PbTeO<sub>4</sub> PbO, 4TeO<sub>3</sub> Sl sol in H<sub>2</sub>O Sol in  $HNO_3+Aq$ , less sol in  $HC_2H_3O_2+Aq$  (Berzelius)

## Lithium tellurate, $L_{14}$ TeO<sub>5</sub> + $xH_{2}$ O

Sl sol in H<sub>2</sub>O with decomp (Mylius, B 1901, **34** 2209)

# Magnesium tellurate, MgTeO4

Ppt More sol in H<sub>2</sub>O than the Ba, Sr or

# MgTe<sub>2</sub>O<sub>7</sub> More sol in H<sub>2</sub>O than MgTeO<sub>4</sub>

# Manganous tellurate

Ppt

Mercurous tellurate, basic, 3Hg<sub>2</sub>O, 2TeO<sub>3</sub> (Hutchins, J Am Chem Soc 1905,  $\mathbf{Ppt}$ **27** 1178)

# Mercurous tellurate, Hg<sub>2</sub>TeO<sub>4</sub>

Ppt Min Magnolite

### Mercuric tellurate, HgTeO4

(Hut-Rapidly decomp by boiling H<sub>2</sub>O (Hut-

Hg<sub>3</sub>TeO<sub>6</sub> Insol in H<sub>2</sub>O Unchanged by boiling with H<sub>2</sub>O

Sol in HNO<sub>3</sub>, but more readily sol in HCl (Hutchins)

#### Mercuric tellurate

Ppt (Berzehus)

#### Mercurous hydrogen tellurate, HgHTeO<sub>4</sub> $+3H_2O$

Stable in the air if protected from the light Insol in H<sub>2</sub>O Decomp by boiling H<sub>2</sub>O or by an excess of cold cone HgNO<sub>3</sub>+Aq
Sol in dil HNO<sub>3</sub> or dil acetic acid (Hutchins, J Am Chem Soc 1905, **27** 1177)

#### Nickel tellurate

Ppt

 $H_2O$ 

#### Potassium tellurate, K<sub>2</sub>TeO<sub>4</sub>+5H<sub>2</sub>O

Sol in H<sub>2</sub>O Very sl sol Deliquesces in H<sub>2</sub>O containing KOH

100 g H<sub>2</sub>O dissolve at

0° 20° 27 53 8 82 50 42 g K<sub>2</sub>TeO<sub>4</sub>

(Rosenheim and Weinheber, Z anorg 1911, 69 264)

Insol in alcohol (Berzelius)

K<sub>2</sub>O, 2TeO<sub>3</sub> Insol in H<sub>2</sub>O, acids, or alkalies (B)

KHTeO4+1/2H2O Sl sol in cold, more

sol in hot H<sub>2</sub>O (Berzelius)  $K_2O$ ,  $3TeO_3 + 5H_2O$ Much more sol in

(Hutchins, J Am hot than in cold H<sub>2</sub>O Chem Soc 1905, 27 1174)  $K_2O$ ,  $4\text{TeO}_3$  Insol in  $H_2O$ , HCl, or  $HNO_3$ +Aq Sol by long heating with conc HNO<sub>3</sub>

+Aa $KHTeO_4$ ,  $H_2TeO_4 + \frac{1}{2}H_2O$ Sl sol in

# Rubidium tellurate, Rb<sub>2</sub>TeO<sub>4</sub>+3H<sub>2</sub>O

Sol in about 10 pts H<sub>2</sub>O (Norris, Am Ch J 1901, **26** 322)

#### Rubidium hydrogen tellurate, RbHTe()4 $+\frac{1}{2}H_{2}O$

Sol in about 20 pts cold H<sub>2</sub>O Sl more sol in hot H<sub>2</sub>O (Norris, Am Ch J 1901, **26** 320)

## Silver tellurate, 3Ag<sub>2</sub>O, TeO<sub>3</sub>

Sol in NH<sub>4</sub>OH+Aq

 $3Ag_2O$ ,  $21eO_3$  Insol in boiling  $II_2O$ +3H<sub>2</sub>O Ppt Unchanged by cold H<sub>2</sub>O

Gradually decomp by boiling H<sub>2</sub>O (Hutchins, J Am Chem Soc 1905, **27** 1169)

Ag<sub>2</sub>TeO<sub>4</sub> Decomp by H<sub>2</sub>O into 3Ag<sub>2</sub>O,
TeO<sub>3</sub> Sol in NH<sub>4</sub>OH+Aq

+2H<sub>2</sub>O Insol in hot and cold H<sub>2</sub>O Sol in NH<sub>4</sub>OH, KCN, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> and HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq Decomp by conc HNO<sub>3</sub> H<sub>2</sub>SO<sub>4</sub> or acetic acid (Hutchins, J Am

Chem Soc 1905, 27 1165)

Ag<sub>2</sub>TeO<sub>7</sub> Ppt

Ag<sub>2</sub>O, 4TeO<sub>3</sub> Ppt Could not be obtained (Hutchins, J Am Chem Soc 1905, **27** 1168)

#### Sodium tellurate, Na<sub>2</sub>TeO<sub>4</sub>+2H<sub>2</sub>O

Very sl sol in hot or cold H<sub>2</sub>O When heated to drive off 2H<sub>2</sub>O becomes insol in H<sub>2</sub>O, but sol in dil HNO<sub>3</sub>+Aq (Berzelius) 1 pt is sol in about 130 pts H<sub>2</sub>O at 18°, 50 pts H<sub>2</sub>O at 100°

+4H<sub>2</sub>O 1 pt is sol in about 70 pts H<sub>2</sub>O at 18°, 40 pts H<sub>2</sub>O at 50° (Mylius, B 1901, **34** 2209)

 $Na_2Te_2O_7+4H_2O=NaHTeO_4+1\frac{1}{2}H_2O$ Slowly but completely sol in  $H_2O$  Sl sol in  $NaC_2H_3O_2+Aq$  Insol in alcohol (Berzelius)

 $Na_2O$ ,  $4TeO_3$  Insol in  $H_2O$ , acids, or alkalies, except by long boiling with  $HNO_3+Aq$   $+xH_2O$  (a) Slowly sol in  $H_2O$  ( $\beta$ )

Insol even in boiling H<sub>2</sub>O Na<sub>4</sub>TeO<sub>5</sub>+8H<sub>2</sub>O Very sol in H<sub>2</sub>O but with decomp (Mylius)

#### Strontium tellurates

Resemble Ca salts

#### Thällous tellurate, Tl<sub>2</sub>TeO<sub>4</sub>

'Sl sol in H<sub>2</sub>O (Dennis, J Am Chem Soc 1898, **18** 975)

#### Thorium tellurate

Ppt Insol in excess of thorium salts +Aq

#### Uranium tellurate, $U_2(Te_4Q)_3(?)$

Ppt Insol in H<sub>2</sub>O or UO<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>+Aq

#### Yttrum tellurate

Ppt Insol in II<sub>2</sub>O or Yt salts+Aq

#### Zinc tellurate, Zn<sub>3</sub>TeO<sub>6</sub>

Insol in H<sub>2</sub>()

Sol in HNO, HCl, H<sub>2</sub>SO<sub>4</sub> and acetic scid (Hutchins, J Am Chem Soc 1905, **27** 1181)

#### Zirconium tellurate

Ppt (Berzelius)

#### **Tellurium**, Γα

Insol in II<sub>4</sub>O or IICl+Aq Sl sol in hot conc II<sub>2</sub>SO<sub>4</sub>, but separates out on cooling Sol in boiling conc II<sub>2</sub>SO<sub>4</sub>. Fasily oxidised by HNO<sub>3</sub> or iqua regia. Sol in boiling very conc KOH+Aq, separating out again on cooling

Not atticked by boiling cone HNO<sub>3</sub>+Aq, according to Hartung-Schwartzkoff (Ann

 $M_{1n}$  (4) **19** 345)

Sol in warm cone KCN+Aq Insol in liquid NH<sub>3</sub> (Franklin, Am. Ch J 1898, **20** 830) 100 pts methylene iodide dissolve 0 1 pt Te at 12° (Retgers, Z anorg 3 343)

½ ccm oleic acid dissolves 0 0014 g Te m 6 days (Gates, J phys Ch 1911, 15 143)

A colloidal solution of Te in H<sub>2</sub>O can be obtained It exists in two modifications, a brown and a blue-gray Both can be diluted with H<sub>2</sub>O or concentrated by boiling without decomp They are, however, decomp by electrolytes, especially NH<sub>4</sub>Cl (Gutbier, Z anorg 1902, 32 53)

#### Tellurium dtbromide, TeBr<sub>2</sub>

Decomp on air or by H<sub>2</sub>O (Rose, Pogg **21** 443)

Conc tartaric acid dissolves partly without decomp (Brauner, M 1891, 12 34)

#### Tellurium terrabromide, TeBra

Sol in a little, but decomp by much H<sub>2</sub>O Completely sol in tartaric acid +Aq (1 1) (Brauner, M 1891, 12 34)

# Tellurium hydrogen bromide, TeBr<sub>4</sub>, HBr+

Fumes in the air Deliquescent Stable in an atmos of HBr (Metzner, C R 1897, 124 1951)

#### Tellurium dichloride, TeCla

Decomp on air, or by H<sub>2</sub>O or HCl+Aq (Rose, Pogg **21** 443)

#### Tellurium tetrachloride, TeCl4

Extremely deliquescent Decomp by cold H<sub>2</sub>O, with separation of oxychloride and tellurous acid Sol in hot H<sub>2</sub>O with decomp Sol in dil HCl+Aq without decomp (Rose, Pogg **21** 443)

Insol in sulphur chloride and in CS<sub>2</sub> (Lenher, J Am Chem Soc 1902, **24** 188)

# Tellurium hydrogen chloride, TeCl<sub>4</sub>, HCl+5H<sub>2</sub>O

leasily decomp (Metzner, C R 1897, 125 24)

#### Tellurium chloride with MCl See Chlorotellurate, M

# Tellurium tetrachloride ammonia,

1eCl₄, 3NII₃

Decomp by  $H_2()$  (Mctzner, C R 1897, **124** 33)

TeCl<sub>4</sub>, 4NH<sub>3</sub> Not deliquescent Decomp by H<sub>2</sub>() (Espenschied, J pr **80** 480)

#### Tellurium tetrachloride sulphur trioxide, TeCl<sub>4</sub>, SO<sub>3</sub>

Ppt ((Prandtl, Z anorg 1909, **62** 247) TeCl<sub>4</sub>,2SO<sub>3</sub> Decomp by moisture On heating at 120°, it gives TcCl<sub>4</sub>,SO<sub>3</sub> (Prandtl)

# Tellurium tetrafluoride, TeF4

(Metzner, C R 1897, 125 25) +H<sub>2</sub>O (Hogbom, Bull Soc (2) 35 60)

#### Tellurium hexafluoride. TeF.

Decomp by H<sub>2</sub>O slowly but completely (Prideaux, Chem Soc 1906, 39 322)

# Tellurium zirconium fluoride, See Fluozirconate, tellurium

# Tellurium diodide, Tell.

Insol in H<sub>2</sub>O (Rose, Pogg 21 443)

## Tellurium tetraiodide, Tella

Insol in cold, decomp by hot  $H_2O$  or alcohol Sol in HI, but only sol in MI + Aq (Berzelius)

Data on solubility of TeI, in HI+I+Aq are given by Menke (Z anorg 1912, 77 283)

## Tellurium hydrogen 10dide, TeI4, HI+ $8H_2O$ , and $+9H_2O$

Deliquescent (Metzner, A ch 1898, (7) **15** 203)

## Tellurium nitride,

Two forms

ble at ord temp stable at ord temp LE Fischer, B 1910, 43 1472) Not attacked by H2O or dil acetic

Insol in liquid NH<sub>3</sub> Decomp by KOH+ Aq (Metzner, A ch 1898, (7) 15 203)

#### Tellurium monoxide, TeO

Sl sol in cold dil HCl or H2SO4+Aq Easily oxidised by HNO<sub>3</sub>+Aq or aqua regia Decomp immediately by boiling conc HCl+ Aq Slowly decomp by KOH+Aq (Divers and Shimosé, Chem Soc 35 563)

#### Tellurium dioxide, TeO<sub>2</sub>

Very sl sol in H<sub>2</sub>O Sl attacked by acids Sl sol in NH4OH or alkalı carbonates +Aq Easily sol in NaOH or KOH+Aq Not sol in less than 150,000 pts H<sub>2</sub>O Easily sol in warm dil HNO3+Aq Sol in warm H<sub>2</sub>SO<sub>4</sub>+Aq (Klein and Morel, Bull Soc

(2) 43 203)
20% H<sub>2</sub>SO<sub>4</sub>+Aq dissolves on warming about 0 7%, 30% H<sub>2</sub>SO<sub>4</sub>+Aq, about 0 85%,

50% H<sub>2</sub>SO<sub>4</sub>+Aq, about 44%

These solutions are supersat and TeO2 separates from the more dil acids on standing (Brauner, M 1891, 12 34)

Min Tellurite

#### Tellurium dioxide hydrobromic acid, TeO2, 3HBr

(Ditte, C R 83 336)

#### Tellurium dioxide hydrochloric acid, TeO2. 2HCl

(Ditte, C R **83** 336) TeO<sub>2</sub>, 3HCl (Ditte)

## Tellurium trioxide, TeO:

Insol in cold or hot H2O, cold HCl+Aq, or cold or hot HNO<sub>3</sub>+Aq Insol in moderately conc KOH+Aq, but, when the KOH+Aq is very conc, is sol if boiling

# Tellurium oxide, 2TeO<sub>2</sub>, TeO<sub>3</sub>

"Tellurium tellurate" (Metzner, A ch 1898, (7) 15 203)

#### Tellurium oxybromide

Insol in  $H_2O$  (Ditte, A ch (5) 10 82)

## Tellurium oxybromide sulphur trioxide, TeOBr<sub>2</sub>, 2SO<sub>3</sub>

Deliquescent (Prandtl, Z anorg 1909, **62** 247)

# Tellurium oxychloride, TeOCl2

Insol in  $H_2O$ (Ditte)

## Tellurium oxyfluoride, TeF<sub>4</sub>, TeO<sub>2</sub>+2H<sub>2</sub>O

Sol in H<sub>2</sub>O containing HNO<sub>3</sub> by H₂O

2TeF<sub>4</sub>, 3TeO<sub>2</sub>+6H<sub>2</sub>O Decomp by H<sub>2</sub>O (Metzner, C R 1897, 125 25)

#### Tellurium sulphide, TeS

Insol in CS<sub>2</sub>, very unstable (Snelling, J Am Chem Soc 1912, 34 802)

#### Tellurium disulphide, Te $\mathrm{S}_2$

Insol in H<sub>2</sub>O or dil acids Sol in alkalı hydrates or sulphides+Aq

CS<sub>2</sub> dissolves out S, so that the substance is probably a mixture (Becker, A 180 257)

#### Tellurium trisulphide, TeS3

Insol in H<sub>2</sub>O Sol in K<sub>2</sub>S+Aq

#### Tellurium sulphoxide, TeSO<sub>3</sub>

Decomp by H<sub>2</sub>O Sol in H<sub>2</sub>SO<sub>4</sub> (Weber, J pr (2) **25** 218)

Is tellurium sulphite (Divers, Chem Soc 49 583)

## Tellurous acıd, H<sub>2</sub>TeO<sub>3</sub>

Appreciably sol in H<sub>2</sub>O and acids Sol in alkali hydrates or carbonates + Aq

#### Tellurites

The neutral and acid tellurities of the alkali metals are sol in H<sub>2</sub>O Ba, Sr Ca, and Mg tellurites are sl sol, and the other salts  $100 \text{ in } H_2O$ Most tellurites are sol in HCl+Aq

#### Aluminum tellurite

Ppt Insol in Al salts+Aq (Berzelius)

## Ammonium tellurite, (NH4)HTeO3, H2TeO3+ $3^{1}/_{2}H_{2}O$

Sol in H<sub>2</sub>O, from which it is precipitated by NH<sub>4</sub>Cl+Aq or alcohol (Berzelius)

## Barium tellurite, BaTeOs

SI sol in H<sub>2</sub>O when prepared in the moist wav (Berzelius) BaO, 4TeO₂

#### Cadmium tellurite

Ppt Sol in HNO3, and HCl+Aq (Oppenheim)

# Calcium tellurite, CaTeOs

Sl sol in cold, more sol in hot H<sub>2</sub>O (Berzehus) CaO,  $4\text{TeO}_2$ 

#### Chromium tellurite

Ppt Sol in excess of chromic salts +Aq

# Cobaltous tellurite

Ppt

# Cupric tellurite

Insol in H<sub>2</sub>O (Berzelius)

#### Glucinum tellurite

Insol in H<sub>2</sub>O

# Indium tellurite, In<sub>2</sub>(TeO<sub>3</sub>, 2In(OH)<sub>3</sub>

Ppt (Renz, Dissert 1902)

#### Ferrous tellurite

Ppt

#### Ferric tellurite

Ppt

#### Lead tellurite, PbTeOs

Ppt Easily sol in acids (Berzelius)

#### Lithium tellurite, Li<sub>2</sub>TeO<sub>3</sub>

Sol in H<sub>2</sub>O (Berzelius) L<sub>12</sub>O, 2TeO<sub>2</sub> Decomp by cold H<sub>2</sub>O into L<sub>12</sub>TeO<sub>3</sub> and L<sub>12</sub>O, 4TeO<sub>2</sub> (B) L<sub>12</sub>O, 4TeO<sub>2</sub> Sol in hot, much less in

cold H<sub>2</sub>O (B)

#### Magnesium tellurite, MgTeOs

Precipitate Much more sol in H<sub>2</sub>O than the Ba, Sr, or Ca salt (Berzelius)

#### Manganous tellurite

Ppt

#### Mercurous tellurite

Ppt

#### Mercuric tellurite

Ppt

### Nickel tellurite

Ppt

#### Potassium tellurite, K<sub>2</sub>TeO<sub>3</sub>

Slowly sol in cold, Not deliquescent more quickly in boiling H<sub>2</sub>O (Berzelius) K<sub>2</sub>O, 2TeO<sub>2</sub> Completely sol in boiling H<sub>2</sub>O, from which K<sub>2</sub>O, 4TeO<sub>2</sub> crystallises (B)  $K_2O$ ,  $4TeO_2+4H_2O$  Decomp by cold  $H_2O$ into K<sub>2</sub>O, TeO<sub>2</sub>, and K<sub>2</sub>O, 2TeO<sub>2</sub>, which dissolve, and H<sub>2</sub>TeO<sub>3</sub>, which is insol (B)

# Potassium hexatellurite, K<sub>2</sub>O, 6TeO<sub>2</sub>+2H<sub>2</sub>O

Not decomp by, but sl sol in H<sub>2</sub>O (Klein and Morel, C R 100 1140)

#### Silver tellurite, Ag<sub>2</sub>TeO<sub>8</sub>

Sol in NH<sub>4</sub>OH+Aq (Berzelius) The freshly potd salt is insol in H<sub>2</sub>O, sol in H<sub>2</sub>O<sub>3</sub>, acetic and tartaric acid, decomp by HCl (Lenher, J Am Chem Soc 1913, **35** 727)

AgHTeO<sub>3</sub> Insol in H<sub>2</sub>O Sol in H<sub>2</sub>O<sub>3</sub>

+Aq (Rose, Pogg 18 60)

## Sodium tellurite, Na<sub>2</sub>TeO<sub>3</sub>

Slowly sol in cold, more quickly in hot Precipitated from aqueous solution by alcohol (Berzelius) Na<sub>2</sub>O, 2TeO<sub>2</sub> Decomp by H<sub>2</sub>O as K salt

 $Na_2O$ ,  $4TeO_2+5H_2O$  As above (B)

#### Strontium tellurite, SrTeO<sub>2</sub>

Resembles Ba salt

Very sl sol in H<sub>2</sub>O, more  $SrH_2Te_4O_{10}$ easily in HNO3+Aq

#### Thorium tellurite

Precipitate Insol in H<sub>2</sub>O or Th salts+Aq

#### Stannous tellurite

in presence of 60,000 pts Pptd  $H_2O$ (Fischer)

#### Uranium tellurite, U<sub>2</sub>(TeO<sub>3</sub>)<sub>3</sub>

Insol in U salts+Aq

#### Yttrium tellurite

Precipitate

Zinc tellurite, ZnTeO3

 $\mathbf{Ppt}$ 

#### Zirconium tellurite

Ppt

#### Terbium, Tb

Metal has not been isolated Has been decomp into two or more elements by Kruss (Z anorg 4 27)

### Terbium chloride, TbCl<sub>3</sub>+6H<sub>2</sub>O

Sol in H<sub>2</sub>O, very hydroscopic, sol in alcohol (Urbain, C R 1908, **146** 128)

# Terbium hydroxide

Sol in dilute acids Decomposes  $NH_4$  salts +Aq

## Terbium oxide, T2O3

Sel in dil acids, even after ignition

## Terbium peroxide, Tb<sub>4</sub>O<sub>7</sub>

Sol in HNO<sub>3</sub> and in hot HCl (Urbain, C R 1907, **146** 127)

# Tetramine chromium compounds

See-

Bromotetramine chromium compounds Chlorotetramine chromium compounds Iodotetramine chromium compounds

# Tetramine cobaltic compounds, $Co(NH_8)_4X_8$

See-

Bromotetramine cobaltic compounds
Carbonatotetramine cobaltic compounds
Chlorotetramine cobaltic compounds
Croceocobaltic compounds
Fuscocobaltic compounds
Flavocobaltic compounds
Iodotetramine cobaltic compounds
Nitratotetramine cobaltic compounds
Praseocobaltic compounds
Roseotetramine cobaltic compounds
Sulphatotetramine cobaltic compounds
Sulphatotetramine cobaltic compounds

See also under octamine cobaltic salts for many tetramine salts as yet unclassified

#### Tetramine cobaltic nitrite with MNO<sub>2</sub>, Co<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>(NO<sub>2</sub>)<sub>6</sub>, 2MNO<sub>2</sub> See Diamine cobaltic nitrite

# Tetrathionic acid, H<sub>2</sub>S<sub>4</sub>O<sub>6</sub>

Known only in aqueous solution
Dil solution can be boiled without decomp
Cone solution decomp by boiling

Addition of H<sub>2</sub>SO<sub>4</sub> or HCl makes solution more stable (Fordos and Gélis, C R 15 920)

#### Tetrathionates

Tetrathionates are all easily sol in H<sub>2</sub>O, but insol in alcohol

#### Barium tetrathionate, BaS<sub>4</sub>O<sub>6</sub>+2H<sub>2</sub>O

Very sol in H<sub>2</sub>O, but precipitated by addition of alcohol

#### Cadmium tetrathionate

Deliquescent Solution in  $H_2O$  gradually decomposes (Kessler, Pogg **74** 249)

## Cæsium tetrathionate, Cs2S4O6

(J Meyer, B 1907, **40** 1361)

## Cuprous tetrathionate, Cu<sub>2</sub>S<sub>4</sub>O<sub>6</sub>

Decomp by H<sub>2</sub>O (Chancel and Diacon, C R 1863, 56 711)

#### Cupric tetrathionate, CuS<sub>4</sub>O<sub>6</sub>

Sol in H<sub>2</sub>O

Decomp by long boiling (Curtius and Henkel, J pr 1888, (2) 37 148)

# Lead tetrathionate, PbS<sub>4</sub>O<sub>6</sub>+2H<sub>2</sub>O

Sol in H<sub>2</sub>O

#### Manganous hydrogen tetrathionate, MnH<sub>2</sub>(S<sub>4</sub>O<sub>6</sub>)<sub>2</sub>

Deliquescent Very sol in H<sub>2</sub>O and alcohol (Curtius and Henkel, J pr (2) 37 148)

# Nickel tetrathionate ammonia, NiS<sub>4</sub>O<sub>6</sub>, 6NH<sub>3</sub>

Ppt Decomp by  $H_2O$  Insol in alcohol (Ephraim, B 1913, 46 3109)

#### Potassium tetrathionate, K<sub>2</sub>S<sub>4</sub>O<sub>6</sub>

Soluble in H<sub>2</sub>O Insol in alcohol Difficultly sol in H<sub>2</sub>O (Kessler, Pogg 1847, **74** 254)

## Rubidium tetrathionate, Rb<sub>2</sub>S<sub>4</sub>O<sub>6</sub>

Not hydroscopic (J Meyer, B 1907, **40** 1356)

# Sodium tetrathionate, Na<sub>2</sub>S<sub>4</sub>O<sub>6</sub>

Sol in  $\rm H_2O$  Precipitated therefrom by a great excess of alcohol (Kessler, J pr 95 13)

 $+2H_2O$  (Berthelot, A ch (6) 17 450)

#### Strontium tetrathionate, $SrS_4O_6+6H_2O$

Sol in H<sub>2</sub>O (Kessler, Pogg **74** 255) More sol in H<sub>2</sub>O than Ba salt

#### Zinc tetrathionate

Sol in H<sub>2</sub>O (Fordos and Gélis)

#### Zinc hydrogen tetrathionate, ZnH<sub>2</sub>(S<sub>4</sub>O<sub>6</sub>)<sub>2</sub>

Extremely sol in H<sub>2</sub>O and alcohol (Curtius and Henkel, J pr (2) 37 147)

#### Zinc tetrathionate ammonia, ZnS<sub>4</sub>()<sub>c</sub>, 3NH<sub>3</sub> Ppt (Ephraim, B 1915, **48** 641)

#### Thallic acid

#### Potassium thallate

Known only in aqueous solution (Carstanjen, J pr 101 55)

Does not exist (I epsius, Chem Ztg 1890, 1327)

#### Thallium, Tl

Not attacked by pure  $H_2O$  Easily sol in dil  $H_2SO_4$  or  $HNO_3+Aq$  Difficultly sol  $\mathbf{m}$  HCl+Aq Absolute alcohol dissolves considerable quantity in a short time, also methyl alcohol, and acetic ether (Bottger) (Kuhl-

Not easily attacked by HF+Aq mann)

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch 1898, **20** 830)

1/2 ccm oleic acid dissolves 0 0424 g Tl in 6 days (Gates, J phys Chem 1911, 15 143)

#### Thallium arsenide, TlAs

Decomp by H<sub>2</sub>SO<sub>4</sub> (Carstanjen)

#### Thallous azoimide, TlN<sub>3</sub>

Sl, sol in H<sub>2</sub>O

O 1712 pt is sol in 100 pts H<sub>2</sub>O at 0° 0 1965 pt is sol in 100 pts H<sub>2</sub>O at 5°, O3 pt is sol in 100 pts H<sub>2</sub>O at 16° Insol in abs alcohol and ether (Curtius, J pr 1898, (2) 58 284)

## Thallothallic azomide, TIN<sub>3</sub>, TIN<sub>3</sub>

Explosive Decomp by hot H<sub>2</sub>O and by acids (Dennis, J Am Chem Soc 1896, 18 973)

#### Thallous bromide, TlBr

Nearly insol in cold, sl sol in boiling H<sub>2</sub>O (Willim, Bull Soc (2) 2 89)

11 H<sub>2</sub>O dissolves 0 00869 g mol TlBr at 68 5° (Noyes, Z phys Ch 6 248)
Sl sol in H<sub>2</sub>O 0 48×10<sup>-2</sup> g is dissolved in a liter of sat solution at 20° (Bottger, Z phys Ch 1903, **46** 603) 1 1 H<sub>2</sub>O dissolves 420 mg TlBr at 18°

(Kohlrausch, Z phys Ch 1904, **50** 356)
238 mg TlBr are contained in 1 l sat
solution at 0 13°, 289 mg at 9 37°, 423 mg
at 18°, 579 mg at 25 68° (Kohlrausch, Z
phys Ch 1908, **64** 168)

Solubility of IlBr in Il(NO<sub>3</sub>)+Aq at 68 5°

| g mols per l                    |                                          | g mols per l                  |                                  |
|---------------------------------|------------------------------------------|-------------------------------|----------------------------------|
| TINO                            | TlBr                                     | ΓINO₃                         | TlBr                             |
| O<br>O 0163<br>O 0294<br>O 0955 | 0 00869<br>0 00410<br>0 00289<br>0 00148 | 0<br>4 336<br>7 820<br>25 400 | 2 469<br>1 164<br>0 821<br>0 420 |

(Noyes, Z phys Ch 1890, 6 248)

Insol in acetone (Naumann, B 1904, 37 4329), pyridine (Naumann, B 1904, 37 4610), acetone (Eidmann, C C 1899, II 1014)

#### Thallic bromide, TlBr<sub>3</sub>

Deliquescent Easily sol in H<sub>2</sub>O and alcohol (Wıllm)

Insol in methyl acetate (Naumann, B **1909**, **42** 3790)

 $+\mathrm{H}_2\mathrm{O}$ Sol in H<sub>2</sub>O, Very unstable

alcohol and ether (Meyer, Z anorg 1900, **24** 353)

-4H<sub>2</sub>O Very sol in H<sub>2</sub>O (Thomas, C R 1902, **134** 546)

## Thallothallic bromide, TlBr, TlBr:

Decomp by H<sub>2</sub>O (Meyer, Z anorg 1900, **24** 354)

Decomp by H<sub>2</sub>O into TlBr 3TlBr, TlBr<sub>3</sub> and TlBr<sub>3</sub>

# Thallic hydrogen bromide, TlBr<sub>3</sub>, HBr

Very sol in H<sub>2</sub>O (Thomas, C R 1902, **134** 546)

## Thallic bromide ammonia, TlBr<sub>2</sub>, 3NH<sub>2</sub> Decomp by H<sub>2</sub>O

#### Thallium bromochloride, TlClBr

Decomp by H<sub>2</sub>O (Thomas, C R 1901,

**132** 1489)  $TlClBr_2+4H_2O$ Ppt

TlCl<sub>2</sub>Br+4H<sub>2</sub>O Ppt Deco (Thomas, C R 1902, **134** 546) Decomp by H<sub>2</sub>O

Br<sub>4</sub> Decomp by H<sub>2</sub>O, H<sub>2</sub>SO<sub>4</sub> or (Thomas, C R 1900, **131** 894,  $Tl_3Cl_2Br_4$  $\mathrm{HNO}_{3}$ 

C R 1901**, 132** 1489) Tl<sub>4</sub>Cl<sub>3</sub>Br<sub>3</sub> Sol in H<sub>2</sub>O (Thomas, C R 1901, **132** 82)

TICIBr<sub>2</sub>, 3TICI Cryst from H<sub>2</sub>O containing HNO<sub>3</sub> (Cushmann, Am Ch

1900, **24** 222) TlCl3, 3TlBr Sol in H2O without decomp

(Cushmann

TlBr<sub>3</sub>, 3TlCl Decomp by H<sub>2</sub>O (Cushmann)

TlBr<sub>3</sub>, TlCl Sol in H<sub>2</sub>O with decomp (Cushmann)

TICl<sub>3</sub>, 2TIBr, TICl Sol in H<sub>2</sub>O Z anorg 1900, **24** 355–360) (Mever. TlBr3, 2TlCl, TlBr Ppt Decomp by

H<sub>2</sub>O (Meyer)

(TlCl<sub>3</sub>, TlCl), 2(TlBr<sub>3</sub>, TlBr)  $_{
m Ppt}$ (Meyer)

Ppt 2(TlCl<sub>3</sub>, TlCl), (TlBr<sub>3</sub>, TlBr) Decomp by hot  $H_2O$  (Meyer)

# Thallium bromofluoride, TlFBr2

Decomp in moist air Sol in abs alcohol (Gewecke, A 1909, **366** 233 )

#### Thallium bromofluoride ammonia, TIFBr<sub>2</sub>, 4NH<sub>3</sub>

Decomp by moisture Difficultly sol in abs alcohol (Gewecke, A 1909, **366** 234)

# Thallous chloride, TlCl

L

Solubility in pts H2O at to, according to H = Hebberling, C = Crookes, L = Lamy16° U° 15° 16 5°

283 4 377 359 pts  $H_2O$ , 504  $\mathbf{H}$  $\mathbf{H}$  $\mathbf{C}$ н 100° 100° 100° 63 pts H₂O 52 5 C about 50  $\mathbf{H}$ 

1 l H<sub>2</sub>O dissolves 0 0161 g mol TlCl at 25° (Noyes, Z phys Ch 6 249)

3 26×10 2 grams are dissolved in 1 liter of sat solution at 20° (Bottger, Z phys Ch 1903, 46 603)

1 l H<sub>2</sub>O at 25° dissolves 0 01606 g mol TlCl (Geffcken, Z phys Ch 1904, 49 296)

Solubility in H<sub>2</sub>O at t° 100 cc sat solution contain at 40° O٥ 10° 20° 30° 50° g TlCl 0 17 0 24 0 34 0 46 0 60 0 80 60° 80° 90° 99 3° 70 g TlCl 1 02 1 29 1 60 1 97 2 41 (Berkeley, Trans Roy Soc 1904, 203, A, 208)

1 l H<sub>2</sub>O dissolves 3 040 TlCl at 18° (Kohlrausch, Z phys Ch 1904, 50 356) 2 27 g are dissolved in 11 of sat solution at 9 54°, 3 05 g at 17 7°, 3 97 g at 25 76° (Kohlrausch, Z phys Ch 1908, 64 168)
0 01629 mol is sol in 1 1 H<sub>2</sub>O at 25°

(Hill, J Am Chem Soc 1910, 32 1385)

0 01607 g equiv is sol in 1 l H<sub>2</sub>O at 25° (Bray and Winninghoff, J Am Chem Soc 1911, **33** 1665)

Much less sol in H<sub>2</sub>O containing HCl or HNO.

Solubility in HCl+Ag at 25° 1 l dissolves g mol TICI

| g HCl<br>added | TICI                          | g HCl<br>added  | TICI               |
|----------------|-------------------------------|-----------------|--------------------|
| 1283<br>1560   | 0 01610<br>0 00836<br>0 00565 | 0 1468<br>1 000 | 0 00316<br>0 00200 |

(Noyes, Z phys Ch 6 249)

Solubility in HCl+Ag at 25°

| Concentration of HCl  | Solubility of TICl    |
|-----------------------|-----------------------|
| equivalents per liter | equivalents per liter |
| 0                     | 0 01612               |
| 0 025                 | 0 00869               |
| 0 05                  | 0 00585               |
| 0 10                  | 0 00384               |
| 0 20                  | 0 00254               |

(Noyes, Z phys Ch 1892, 9 614)

Solubility in HNO<sub>3</sub>+Aq at 25°

| Normality<br>HNO <sub>8</sub> | Sp gr of the solution | g TlCl dis<br>solved per l |
|-------------------------------|-----------------------|----------------------------|
| 0 000                         | 0 996                 | 3 952                      |
| 0 4977                        | 1 0184                | 5 937                      |
| 1 0046                        | 1 0359                | 6 883                      |
| 2 0452                        | 1 0705                | 8 143                      |
| 4 017                         | 1 1362                | 9 926                      |

(Hill and Simmons, Z phys Ch 1909, 67 ั605 วั

Nearly insol in NH4OH+Aq More sol in K<sub>2</sub>CO<sub>3</sub>+Aq than in H<sub>2</sub>O 3 86 g TlCl are sol in 11 H<sub>2</sub>O at 25° 21 84 g TICI are sol in 1 1 5N-K2CO3+Aq at 25 (Spencer and Le Pla, C C 1908, II 198)

#### Solubility in KNO<sub>3</sub>+Aq at 25°

| Concentration of KNOs milliequivalents per l | Solubility of TlCl<br>milliequivalents per l |
|----------------------------------------------|----------------------------------------------|
| 10                                           | 16 07                                        |
| 20                                           | 17 16                                        |
| 50                                           | 18 26                                        |
| 100                                          | 19 61                                        |
| 300                                          | 23 13                                        |
| 1000                                         | 30 72                                        |

(Bray and Winninghoff, J Am Chem Soc 1911, 33 1670)

# Solubility in K<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| Concentration of K <sub>2</sub> SO <sub>4</sub> milhequivalents per l | Solubility of TlCl<br>milliequivalents per l |
|-----------------------------------------------------------------------|----------------------------------------------|
| 10                                                                    | 16 07                                        |
| 20                                                                    | 17 79                                        |
| 50                                                                    | 19 42                                        |
| 100                                                                   | 21 37                                        |
| 300                                                                   | 26 00                                        |
| 1000                                                                  | 34 16                                        |

(Bray and Winninghoff, J Am Chem Soc 1911, **33** 1670)

#### Solubility in Tl<sub>2</sub>SO<sub>4</sub>+Aq at 25°

| Concentration of Tl <sub>2</sub> SO <sub>4</sub> | Solubility of TlCl     |
|--------------------------------------------------|------------------------|
| milliequivalents per l                           | milliequivalents per l |
| 10                                               | 16 07                  |
| 20                                               | 10 34                  |
| 50                                               | 6 77                   |
| 100                                              | 4 68                   |

(Bray and Winninghoff, J Am Chem Soc 1911, **33** 1670)

# Solubility of TlCl in salts+Ag at 25°

| polability of the parts ( and at a ) |                                     |                                          |  |  |
|--------------------------------------|-------------------------------------|------------------------------------------|--|--|
| Salt                                 | Concentration of salt g equiv per l | rici dissolved<br>g equiv per l          |  |  |
| NH <sub>4</sub> Cl                   | 0 025<br>0 05<br>0 2                | 0 00872<br>0 00593<br>0 00271            |  |  |
| CaCl <sub>2</sub>                    | 0 025<br>0 05<br>0 10<br>0 20       | 0 00899<br>0 00624<br>0 00417<br>0 00284 |  |  |

Solubility of TlCl in salts+Aq at 25°— Continued

| Continuada         |                                     |                                          |  |
|--------------------|-------------------------------------|------------------------------------------|--|
| Salt               | Concentration of salt g equiv per l | TlCl dissolved<br>g equiv per l          |  |
| CdCl <sub>2</sub>  | 0 025<br>0 05<br>0 10<br>0 20       | 0 01040<br>0 0078<br>0 00578<br>0 00425  |  |
| $\mathrm{CuCl}_2$  | 0 025<br>0 05<br>0 10<br>0 20       | 0 00905<br>0 00614<br>0 00422<br>0 00291 |  |
| $ m MgCl_2$        | 0 025<br>0 05<br>0 10<br>0 20       | 0 00904<br>0 00618<br>0 00413<br>0 00275 |  |
| $\mathbf{MnCl_2}$  | 0 025<br>0 05<br>0 10<br>0 20       | 0 00898<br>0 00617<br>0 00412<br>0 00286 |  |
| KCl                | 0 025<br>0 05<br>0 1<br>0 2         | 0 00872<br>0 00593<br>0 00399<br>0 00265 |  |
| NaCl               | 0 025<br>0 05<br>0 10<br>0 20       | 0 00869<br>0 00592<br>0 00395<br>0 00271 |  |
| $\mathbf{ZnCl_2}$  | 0 025<br>0 05<br>0 10<br>0 20       | 0 00899<br>0 00627<br>0 00412<br>0 00281 |  |
| TlClO <sub>3</sub> | 0 025                               | 0 00897                                  |  |
| $	ext{TlNO}_3$     | 0 025<br>0 05<br>0 10               | 0 00883<br>0 00626<br>0 00423            |  |

(Noyes, Z phys Ch 1892, 9 609)

# Solubility of IlCl in salts+Aq at 25°

| ~ 1.                                              | Mols HCl sol in 1 liter of               |         |                               |                 |                 |
|---------------------------------------------------|------------------------------------------|---------|-------------------------------|-----------------|-----------------|
| Salt                                              | O 5-N<br>solution                        |         | 2-N<br>solution               | 3-N<br>solution | 4-N<br>solution |
| IH4NOs<br>ENOs<br>IaNOs<br>1NOs<br>ClOs<br>IaClOs | 0 02566<br>0 02564<br>0 02542<br>0 02370 | 0 03035 | 0 03904<br>0 03851<br>0 03785 | 0 04544         |                 |

(Geffcken, Z phys Ch 1904, 49 295)

ın hot alcohol Easily sol Insol [gCl<sub>2</sub>+Aq (Carstanjen)

Solubility of TICl in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq at 25° (g equiv per l)

| Acid                                                                           | TICI                                                                                      |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| 0 000<br>0 5134<br>1 013<br>2 016<br>4 180<br>8 130<br>11 49<br>14 31<br>16 01 | 0 01629<br>0 01580<br>0 01495<br>0 0132<br>0 0099<br>0 0054<br>0 0026<br>0 0012<br>0 0005 |  |  |
|                                                                                |                                                                                           |  |  |

(Hill, J Am Chem Soc 1910, 32 1189)

Insol in pyridine (Naumann, B 1904, 37 4610), acetone (Naumann, B 1904, 37 4329)

#### Thallic chloride, TlCl<sub>3</sub>

AnhydrousEasily sol in H<sub>2</sub>O and in most ord sol-

In contact with moist air, it rapidly becomes hydrated (Thomas, C R 1902, 135 1053)

Difficultly sol in methyl acetate (Naumann, B 1909, 42 3790)

Very sol in acetone (Renz, B 1902, 35 1110)

Difficultly sol in acetone (Naumann, B 1904, **37** 4328)

Deliquescent, and very easily sol  $+H_2O$ 

m H<sub>2</sub>O (Werther) Deliquescent, and very easily sol in H<sub>2</sub>O

(Werther) +4H<sub>2</sub>O 86 2 pts are sol in 100 pts H<sub>2</sub>O at 17° Sp gr of sat aq solution at 17°= 185 (Thomas, C R 1902, **135** 1052)

Very hydroscopic (Meyer, Z anorg 1900, **24** 336)

Very sol in alcohol and ether (Meyer, Z anorg 1900, 24 338)  $+7\frac{1}{2}H_2O$  Deliquescent (Werther)

#### Thallothallic chloride, 3TlCl, TlCl<sub>3</sub>

1 pt dissolves in pts H2O at to, according to C = Crookes, H = Hebberling, L = Lamy

15° 17° 100° 100° 380 1 346 52 9 20-25 pts H<sub>2</sub>O  $\mathbf{C}$  $\mathbf{H}$ 

SI decomp by dissolving (Lamy)

#### Thallic hydrogen chloride, TlCl<sub>2</sub>, HCl+ $3H_2O$

Very hygroscopic Decomp by H<sub>2</sub>O (Meyer, Z anorg 1900, **24** 337)

# Thallium tungsten chloride, Tl<sub>3</sub>W<sub>2</sub>Cl<sub>9</sub>

Nearly insol in H<sub>2</sub>O

Sol in a hot mixture of equal pts H<sub>2</sub>O and conc HCl

SI sol in cone HCl Nearly insol in most organic solvents (Olsson, B 1913, **46** 575)

Thallic zinc chloride, 2TlCl<sub>3</sub>, ZnCl<sub>2</sub>+6H<sub>2</sub>O Can be cryst from H<sub>2</sub>O (Gewecke, A 1909, **366** 224)

Thallic chloride ammonia, TlCl<sub>2</sub>, 3NH<sub>3</sub> Decomp by H<sub>2</sub>O Sol in HCl+Aq (Willm)

# Thallium chlorofluoride, TIFCl2

Very hydroscopic

Decomp by moist air

Easily sol in abs alcohol (Gewecke, A 1909, **366** 230)

 $+3H_2O$ Not hydroscopic

Decomp by H<sub>2</sub>O, alcohol and ether (Gewecke)

#### Thallium chlorofluoride ammonia, TIFCl<sub>2</sub>, 4NH<sub>8</sub>

Decomp by H<sub>2</sub>O Difficultly sol in abs alcohol and in ether

\_oride.

231)

ie, TIF

ot  $\hat{H}_2\hat{O}$  pts  $H_2O$  at 15°, and in much mer, W A B 52 2 644) ½H₂O Deliquescent (Willm)

# Thallic fluoride, TIF,

Insol in H<sub>2</sub>O and cold HCl+Aq (Willm) Cannot be obtained in pure state wecke, A 1909, 366 218)

Thallous hydrogen fluoride, TIF, HF Sol in 1 pt H<sub>2</sub>O (Buchner)

Thallous tungstyl fluoride, See Fluoxytungstate, thallous

Thallous vanadium fluoride See Fluovanadate, thallous

Thallous vanadyl fluoride See Fluoxyvanadate, thallous

Thallous hydroxide, TlOH Sol in H<sub>2</sub>O and alcohol

|                                                                  | ·                                                                                      |                                                                      |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| t°                                                               | g equiv<br>110H per l                                                                  | Sp gr 15°/4°                                                         |
| 0<br>18 5<br>19 5<br>29 23 1<br>33 1<br>36<br>40<br>44 5<br>54 1 | 1 151<br>1 554<br>1 582<br>1 803<br>1 861<br>1 967<br>2 075<br>2 240<br>2 442<br>2 940 | 1 231<br>1 317<br>1 322<br>1 342<br>1 377<br>1 400<br>1 417<br>1 446 |

Solubility of TIOH in H2O at to

6 708 (Bahr, Z anorg 1911, 71 87)

3 281

3 601

4 673

5 705

The solubility of Tl<sub>2</sub>O in H<sub>2</sub>O at these temperatures is the same as that of TIOH  $+\mathbf{H}_2O$  (Willm, Bull Soc (2) 5 354)

# Thallic hydroxide, $Tl_2O_3$ , $H_2O = TlO(OH)$

Insol in H<sub>2</sub>O Sol in dil acids and ammonium salts+Aq Insol in caustic alkali solutions

Tl(OH)<sub>3</sub> Easily sol in dil HCl or H<sub>2</sub>SO<sub>4</sub> +Aq (Carnegie, C N 60 113)

#### Thallous iodide, TII

54 1

59 4

64 6

78 5

90 0

99 2

Very sl sol in H<sub>2</sub>O

1 pt TII is sol in pts H<sub>2</sub>O at t° C=according to Crookes, H = according to Hebberling, L=according to Lamy, W=according to Werther 15° 35° 16° 16-17° 19 4°

20,000 4450 16,000 11,676 14,654 pts H<sub>2</sub>O,

 $20^{\circ}$ 23 4° 45° 100° 100° 10.482 5407 842 11.954 804 pts H<sub>2</sub>O  $\mathbf{C}$  $\mathbf{H}$ 

Sol in 17,000 pts H<sub>2</sub>O at 20° anal **30** 342)

Sat solution at 20 15° conturns 636 mg or 192×10 4 g mol III per l (Bottger, Z phys Ch 1903, **46** 603)

1 l H<sub>2</sub>O dissolves 56 mg III at 18° (Kohlrausch, Z phys Ch 1904, 50 356)

36 2 mg are dissolved in 11 of sat solution at 9 90°, 56 mg at 18 1°, 84 7 mg at 26°

(Kohlrausch, Z phys Ch 1908, 64 168) Solubility in H<sub>2</sub>O at 25°=176×10<sup>4</sup> mol per litre (Spencer, Z phys Ch 1912, 80 708)

Not decomp by dil H<sub>2</sub>SO<sub>4</sub>, HCl, or alkalies +Aq Decomp by hot dil HNO3+Aq, and cold conc HNO<sub>3</sub> Sol in aqua regia

Also less sol in acetic acid than in H2O

(Carstanien)

Insol in NH<sub>4</sub>OH+Aq (Werther) Not holly insol in NH<sub>4</sub>OH+Aq, and solubility increased by presence of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> or H<sub>4</sub>Cl (Baubigny, C R 113 544)
Sol in 13,000 pts NH<sub>4</sub>OH+Aq (6½ or ½% NH<sub>3</sub>) Sol in 17,000 pts NH<sub>4</sub>OH+Aq

½% NH<sub>3</sub>) (Long) Insol in dil KI+Ag (1% KI) gny)

Much more insol in KI+Aq than in H<sub>2</sub>O, pt dissolves in 75,000 pts dil KI+Aq amy `

Nearly insol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq, and absotely insol therein in presence of Pb salts Werner C N 53 51) Sol in 56,336 pts 85% alcohol at 13° Werther) Sol in 18,934 pts 98% alcohol

(Hebberling)

When TII is shaken with alcohol of 78°B vol H<sub>2</sub>O+3 vols 98% alcohol) at 22°, and t stand with TII for 24 hours, and then raporated to 1/5 vol, there is shown no ppt NH4SH+Aq (Baubigny)
Sol in 260,000 pts 90%
7,000 pts 50% alcohol at 20°
Insol in methylene iodide alcohol, and (Long)

(Retgers, Z norg 3 343)

Insol in acetone (Naumann, B 1904, 37 329, Eidmann, C C, 1899, II 1014) Insol in pyridine (Naumann, B 1904, 7 4601)

hallic iodide, TlI<sub>3</sub>

Sol in alcohol

Decomp slowly in the air (Wells, Z norg 1894, 6 313) Sol in ether

hallothallic iodide, Tl<sub>3</sub>I<sub>4</sub>=5TlI, TlI<sub>3</sub> Sol in H<sub>2</sub>O (Jorgensen, J pr (2) 6 82)

#### hallium nitride

Very unstable (Franz Fischer, B 1901, **3 14**70)

hallous oxide, Tl<sub>2</sub>O

Deliquescent Sol in H<sub>2</sub>O See Thallous hydroxide

hallic oxide, Tl<sub>2</sub>O<sub>3</sub>

Insol in H<sub>2</sub>O Not attacked by cold I<sub>2</sub>SO<sub>4</sub> Sol in hot H<sub>2</sub>SO<sub>4</sub> Sol in cold HCl ⊢Aq

Insol in alkalies+Aq (Werther, J pr **1** 385)

?lack modification

Less sol in dil acids than the brown **20d**ification Solution is accompanied by slight reduction to thallous salt

More sol in 10% HCl than in 10% H<sub>2</sub>SO<sub>4</sub> r HNO<sub>3</sub>

More sol in conc than in dil acids (Rabe,

anorg 1906, 48 431)

Brown modification

Easily sol in dil mineral acids on warming, with slight reduction to thallous salt More sol in conc acid (Rabe)

Thallium dioxide, TlO<sub>2</sub>

Insol in H<sub>2</sub>O (Piccini, Gazz ch it 17

Thallic oxide ammonia, Tl<sub>2</sub>O<sub>3</sub>, 6NH<sub>3</sub>

Decomp by much H<sub>2</sub>O Insol in alcohol (Carstanjen )

Thallic oxyfluoride, TIOF

Insol in H<sub>2</sub>O Slowly decomp by boiling with H<sub>2</sub>O

Sol in mineral acids Almost insol in HF (Gewecke, A 1909, **366** 226)

Thallium phosphide (?)

Ppt (Crookes)

Thallous selenide, Tl<sub>2</sub>Se

Insol in H<sub>2</sub>O Scarcely attacked by cold dil H<sub>2</sub>SO<sub>4</sub>+Aq, but dissolves when heated (Carstanjen)

Thallothallic selenide

Not attacked by cold cone or boiling dil H<sub>2</sub>SO<sub>4</sub>+Aq Conc H<sub>2</sub>SO<sub>4</sub> decomposes (Carstanjen )

Thallous sulphide, Tl<sub>2</sub>S

Insol in  $H_2O$ ,  $(NH_4)_2S+Aq$ ,  $NH_4OH+Aq$ . KCN+Aq, and in alkali carbonates, and hydrates +Aq Difficultly sol in a solution of oxalic acid or acetic acid (Crookes) Easily sol in HNO<sub>3</sub>, and H<sub>2</sub>SO<sub>4</sub>+Aq Difficultly sol in HCl+Aq (Willm)

Sl sol in H<sub>2</sub>O

021×10 4 g is dissolved in 1 l sat solution at 20° (Bottger, Z phys Ch 1903, 46 603)

Insol in acetone (Naumann, B 1904, 37 4329)

Thallic sulphide, Tl<sub>2</sub>S<sub>3</sub>

Insol in H<sub>2</sub>O Insol in cold, sol in warm dil H<sub>2</sub>SO<sub>4</sub>+Aq without separation of S Sol in other dilute acids with separation of S (Carstanjen)

Thallium pentasulphide, Tl<sub>2</sub>S<sub>5</sub>

(Hofmann, B 1903, **36** 3092)

Thallothallic sulphide,  $5\text{Tl}_2\text{S}$ ,  $3\text{Tl}_2\text{S}_3$ 

Very slowly decomp by cold dil H<sub>2</sub>SO<sub>4</sub>+

Aq Tl<sub>2</sub>S, Tl<sub>2</sub>S<sub>3</sub> ?Tl<sub>2</sub>S (Carstanjen)

 $Tl_2S$ ,  $2Tl_2S_3$ Decomp by dil acids (Schneider, J pr (2) 10 55)

Thallium telluride, Tl<sub>2</sub>Te

(Fabre, C R 105 673)

#### Thio-

For compounds with prefix thio-, see also under sulpho-

Thioantimonic acid
See Sulphantimonic acid

Thioarsenic acid See Sulpharsenic acid

Thiomolybdic acid See Sulphomolybdic acid.

Thionamic acid, NH<sub>3</sub>SO<sub>2</sub>=NH<sub>3</sub>SO(OH)

Very deliquescent, and sol in H<sub>2</sub>O

H<sub>2</sub>O solution decomp gradually (Rose,
Pogg 33 275, 42 425)

Ammonium thionamate, NH<sub>2</sub>SO(ONH<sub>4</sub>)

Deliquescent Sol in H<sub>2</sub>O, easily decomp when in solution (Rose)

Very sol in alcohol with decomp Sl sol in dry ether (Divers and Ogawa, C C 1900, I 1259)

Dithionic acid

See Dithionic acid

Trothionic acid

nd.

#### acid

See Pentathionic acid

Thionyl bromide, SOBr<sub>2</sub>

Unstable Decomp by H<sub>2</sub>O (Besson, C R 1896, 122 322)

Thionyl bromochloride, SOCIBr

Decomp slowly in the cold, rapidly at 115° Decomp by H<sub>2</sub>O (Besson C R 1896, 122 321)

Thionyl chloride, SOCl<sub>2</sub>
Sol in CHCl<sub>8</sub>, and C<sub>6</sub>H<sub>6</sub> (Oddo, Gazz ch it 1899, **29** (2) 318)

Thionyl fluoride, SOF2

Decomp by H<sub>2</sub>O Sol in AsCl<sub>3</sub>, C<sub>5</sub>H<sub>6</sub>, ether and oil of turpentine (Moissan, C R 1900, **130** 1439)

Thiophosphamic acid, H<sub>2</sub>PNH<sub>2</sub>O<sub>2</sub>S (?) Known only in its salts (Gladstone and Holmes, Chem Soc (2) 3 1) Cadmium thiophosphamate, CdPNH<sub>2</sub>O<sub>2</sub> Sol in dil acids, and NH<sub>4</sub>OH+Aq and H)

Lead ——, PbPNH<sub>2</sub>O<sub>2</sub>S
Ppt Sol in dil HNO<sub>3</sub>+Aq (Gladst and Holmes, Chem Soc (2) 3 1)

Thiophosphodiamic acid, H<sub>2</sub>PN<sub>2</sub>H<sub>4</sub>OS Known only in solution, which soon composes (G and H)

Cadmium thiophosphodiamate,  $Cd(PN_2H_4OS)_2$ 

Insol in  $H_2O$ , sol in dil acids, and  $NH_4$  +Aq (G and H)

Cupric ——, Cu(PN<sub>2</sub>H<sub>4</sub>OS)<sub>2</sub>
Insol in H<sub>2</sub>O, dil HCl, or NH<sub>4</sub>OH+4
Sol in KCN+Aq (Gladstone and Holm
Chem Soc (2) 3 1)

Lead —, Pb(PN<sub>2</sub>H<sub>4</sub>OS)<sub>2</sub> Insol in H<sub>2</sub>O Sol in dil HNO<sub>3</sub>+Aq

Nickel —, Ni(PN<sub>2</sub>H<sub>4</sub>OS)<sub>2</sub>
Sol in dil acids, and NH<sub>4</sub>OH+Aq (Glastone and Holmes, Chem Soc (2) 3 1)

Zinc ——, Zn(PN<sub>2</sub>H<sub>4</sub>OS)<sub>2</sub>
Ppt Sol in dil acids, and NH<sub>4</sub>OH+Ac (Gladstone and Holmes)

Thiophosphonitrile, PSN

Not decomp by cold H<sub>2</sub>O Slowly decomp by boiling H<sub>2</sub>O Easily decomp by boiling dil HCl (Stock, B 1906, **39** 1974)

Thiophosphoric acid, H<sub>3</sub>PSO<sub>3</sub>=PS(OH)<sub>3</sub> Known only in its salts

Ammonium magnesium thiophosphate, NH<sub>4</sub>MgPSO<sub>3</sub>+9H<sub>2</sub>O

Sl sol in cold  $H_2O$  (Nubnerschky, J pr (2) 31 100)

Barium —,  $Ba_3(PSO_3)_2$ Insol in  $H_2O$  (Wurtz, A ch (3) 20 473)

Cobalt ---

Insol in H<sub>2</sub>O, but partially decomp when boiled therewith (Wurtz)

Cupric ----

Insol in H<sub>2</sub>O, very easily decomp (Wurtz)

Ferric —

Insol in H<sub>2</sub>O (Wurtz)

Magnessum —,  $Mg_3(PSO_3)_2+20H_2O$ SI sol in cold  $H_2O$  (Kubierschky, J pr (2) 31 99) Nickel thiophosphate

Insol in H<sub>2</sub>O, but decomp when boiled therewith (Wurtz)

Potassium - KaPSO:

Very sol in  $\dot{H}_2O$  Known only in aqueous solution (Wurtz)

Sodium ---, Na<sub>3</sub>PSO<sub>3</sub>+12H<sub>2</sub>O

Easily sol in boiling H<sub>2</sub>O Cryst out on cooling (Wurtz, A ch (3) **20** 472) Insol in alcohol

Strontium ---

Insol in H<sub>2</sub>O (Wurtz)

Dithiometaphosphoric acid

Ammonium dithiometaphosphate, NH<sub>4</sub>PS<sub>2</sub>O

Decomp by H<sub>2</sub>O (Stock, B 1906, 39 1990)

Monothioorthophosphoric acid

Monoammonium monothioorthophosphate, O P(SNH<sub>4</sub>)(OH)<sub>2</sub>

Sol in H<sub>2</sub>O

Insol in alcohol (Stock, B 1906, **39** 1990

Trammonium monothioorthophosphate, SNH<sub>4</sub> PO (ONH<sub>4</sub>)<sub>2</sub> (Stock )

Dithioorthophosphoric acid

Ammonium dithiophosphate,  $(NH_4)_3PS_2O_2 + 2H_2O$ 

Sl efflorescent Sol in H<sub>2</sub>O (Kubierschky, J pr (2) 31 93)

Ammonium magnesium —, NH<sub>4</sub>MgPS<sub>2</sub>O<sub>2</sub> +6H<sub>2</sub>O

Sl sol in cold, H<sub>2</sub>O (Kubierschky)

Barium —,  $Ba_3(PS_2O_2)_2 + 8H_2O$ 

Precipitate (Kubierschky, J pr (2) 31 103)

+18H<sub>2</sub>O As the trithic compound Ephraim, B 1910, 43 287)

Calcium ---

Very easily decomposed (Kubierschky)

sodium ---, Na<sub>3</sub>PS<sub>2</sub>()<sub>2</sub>+11H<sub>2</sub>()

Very sol in  $H_2O$  (Kubierschky, J pr 2) 31 93)

Trithioorthophosphoric acid

Ammonium trithioorthophosphate, (NH<sub>4</sub>)<sub>3</sub>PS<sub>3</sub>O+H<sub>2</sub>O (Stock, B 1906, **39** 1985) Barum trathioorthophosphate,  $Ba_3(PS_3O)_2+20H_2O$ 

Decomp by H<sub>2</sub>O and dil acids Sol in conc HNO<sub>3</sub> with oxidation of the sulphur to H<sub>2</sub>SO<sub>4</sub> (Ephraim, B 1910, 43 286)

Magnesium —,  $Mg_3(PS_3O)_2+20H_2O$ Decomp by  $H_2O$  and dil acids (Ephraim

Thiophosphorous acid

Ammonium thiophosphite (?),  $(NH_4)_4P_2S_2O_3$ +3H<sub>2</sub>O

Sol in  $H_2O$  (Lemoine, C R 98 45)  $+6H_2O$ 

Sodium thiophosphite (?),  $Na_4P_2S_2O_3+5H_2O$ = $P_2O_3$ ,  $2Na_2S+5H_2O$ 

Sol in H<sub>2</sub>O (Lemoine, C R 98 45) Na<sub>0</sub>P<sub>2</sub>S<sub>2</sub>O<sub>4</sub>+4H<sub>2</sub>O=P<sub>2</sub>O<sub>3</sub>, 3Na<sub>2</sub>O, 2H<sub>2</sub>S+ 2H<sub>2</sub>O Sol in H<sub>2</sub>O (Lemoine, *l c*)

Thiophosphoryl triamide, PS(NH2);

Rapidly decomp by  $H_2O$  Scarcely sol in alcohol, ether, or  $CS_2$  (Chevrier, C R 66 748)

Metathiophosphoryl bromide, PS2Br

Decomp by H<sub>2</sub>O Insol in ether (Michaelis, A 164 9)

Or'hothiophosphoryl bromide, PSBr<sub>2</sub>

Slowly decomp by cold, rapidly by hot H<sub>2</sub>O but volatile with only partial decomp with steam Easily sol in ether, CS<sub>2</sub>, PCl<sub>3</sub>, PBr<sub>4</sub> Decomp by cold alcohol Forms hydrate PSBr<sub>3</sub>+H<sub>2</sub>O (Michaelis, A **164** 9)

Pyrothiophosphoryl bromide, P2S2Br4

Decomp by  $H_2O$  and alcohol Sol in  $CS_2$  and ether (Michaelis)

Thiophosphoryl phosphorus bromide, PSBr<sub>3</sub>, PBr<sub>3</sub>

Decomp by H<sub>2</sub>O into PSBr<sub>3</sub> (Michaelis)

Thiophosphoryl dibromochloride, PSClBr<sub>2</sub>

Decomp by H<sub>2</sub>O and alkalies Fumes in the air (Besson, C R 1896, 122 1059)

Thiophosphoryl bromodichloride, PSCl<sub>2</sub>Br

Decomp by H<sub>2</sub>O and alkalies Reacts violently with HNO<sub>3</sub> (Besson, C R 1896, 120 1058)

Thiophosphoryl chloride, PSCl<sub>3</sub>

Very slowly decomp by  $\rm H_2O$ , and may be distilled with steam without much decomp Decomp by alcohol Miscible with CS<sub>2</sub> (Baudrimont, J pr 87 301)

Sol in CCl4 and C6H6 (Oddo, Gazz ch

lit 1899, **29** (2) 318)

Thiophosphoryl pentachloride, PS<sub>2</sub>Cl<sub>5</sub> (?) Decomp by H<sub>2</sub>O residue of S Attack Sol in alkalies with Attacked violently by HNO<sub>3</sub>,

alcohol, ether, oil of turpentine Miscible with CS<sub>2</sub> (Gladstone, Chem Soc 3 5)

#### Thiophosphoryl fluoride, PSF<sub>3</sub>

Slowly sol in H<sub>2</sub>O with decomp Sl sol in ether

Insol in H<sub>2</sub>SO<sub>4</sub>, CS<sub>2</sub>, or benzene (Thorpe and Rodger, Chem Soc 55 306)

More sol in KOH or NaOH+Aq than in  $H_2O$ 

### Thiophosphoryl iodide, P<sub>2</sub>SI<sub>2</sub>

Very sol in CS<sub>2</sub> Unstable when heated Fumes in the air (Besson, C R 1896, 122 1201)

# Thiosulphuric (formerly Hyposulphurous) acid, H<sub>2</sub>S<sub>3</sub>O<sub>3</sub>

Known only in aqueous solution, which is extremely unstable, and decomposes very quickly after its formation. The time before decomposition is exactly proportional to the ratio of the weight of H<sub>2</sub>O to the weight of  $\rm H_2S_2O_3$  present, i e, if one solution contains twice as much  $\rm H_2O$  for a given amt of  $\rm H_2S_2O_3$ as a second solution, the first solution will decompose in twice the length of time length of time is about 20 secs at 10°, and 2 secs at 50° for conc solutions, to 120 secs at 10° and 12 secs at 50° for very dilute solu-(See Landolt (B 16 2958) for further figures, also Winkelmann (B 18 406)

#### Thiosulphates

The thiosulphates of the alkalies and of Ca and Sr are easily sol in H<sub>2</sub>O, Ba and Sr salts are sl sol and the other salts insol The salts of the metals dissolve in alkali thiosulphates + Aq All are insol in alcohol

Double Salts of Thiosulphuric acid impossible to determine whether substances of this class are true chem individuals. Many described by Svensson and others are doubt less isomorphic mixtures, whose comp depends on the temp and conc of the solution in which pptd (Rosenheim, Z anorg 1900 **25** 72)

# Ammonium thiosulphate, (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>3</sub>

Very deliquescent Very sol in H<sub>2</sub>O Not deliquescent (Fock and Kluss, B 1889, **22** 3099)

Crystallises with 1/3H<sub>2</sub>O (Rammelsberg, Pogg 56 298) Anhydrous (Arppe, A 96

Insol in alcohol (Arppe)

Sol in acetone (Eidmann, C C 1899, II 1014)

Difficultly sol in acetone (Naumann, B 1904, **37** 4328)

# Ammonium cadmium thiosulphate,

 $3(NH_4)_2S_2O_3$ ,  $CdS_2O_3+3H_2O$ 

Can be recryst from warm H<sub>2</sub>O (Fock and Kluss, B **23** 1758)

(F and K) $+\mathrm{H}_2\mathrm{O}$  $(NH_4)_2S_2O_3$ ,  $CdS_2O_3$  (F and K)

#### Ammonium cuprous thiosulphate, $(NH_4)_2S_2O_3$ , $Cu_2S_2O_3+2H_2O_3$

Less sol in H<sub>2</sub>O than 2(NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>3</sub>,  $Cu_2S_2O_3+1\frac{1}{2}H_2O$ (Rosenheim and Steinhauser Z anorg 1900, 25 91)

 $2(NH_4)_2S_2O_3$ ,  $Cu_2S_2O_3+1\frac{1}{2}H_2O$  Very sol in  $H_2O$  Insol in alcohol (Rosenheim and Steinhauser)

Ammonium cuprous thiosulphate cuprous iodide, 7(NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, Cu<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 8CuI+ 4H<sub>2</sub>O

Insol in H<sub>2</sub>O (Brun, C R 1892, **114** 668) Could not be obtained (Rosenheim and Steinhauser, Z anorg 1900, 25 107)

# $\begin{array}{cccc} Ammonium & cuprous & sodium & thiosulphate \\ & ammonia, & 3Cu_2S_2O_3, & 4Na_2S_2O_3, \end{array}$ $(NH_4)_2S_2O_3$ , $6NH_3$

When dry is fairly stable in the air Partially decomp by H<sub>2</sub>O Sol in dil H<sub>2</sub>SO<sub>4</sub> or acetic acid (Shinn, J Am Chem Soc 1904, 26 948)

### Ammonium lead thiosulphate, $2(NH_4)_2S_2O_3$ , $PbS_2O_3+3H_2O$

Easily and completely sol in cold H<sub>2</sub>O, but deposits PbS<sub>2</sub>O<sub>3</sub> by standing or wirming (Rammelsberg, Pogg 56 312)

#### Ammonium magnesium thiosulphate. $(NH_4)_2Mg(S_2O_3)_2 + 6H_2O$

Very deliquescent, and sol in II<sub>2</sub>() (Kessler, Pogg 74 283)

Not deliquescent (Fock and Kluss B **23** 540)

#### Ammonium mercuric thiosulphate, $4(NH_4)_2S_2O_3$ , $HgS_2O_3+2II_2O_3$

Sol in H2O, from which it is precipitated by alcohol Extremely casily decomp (Run melsberg, Pogg 56 318)

# Ammonium potassium thiosulphate.

NH<sub>4</sub>KS<sub>2</sub>O<sub>3</sub>

Sol in ILO (Fock and Kluss, B 23 536)

#### Ammonium silver thiosulphate, $2(NH_4)_2S_2O_3$ , $Ag_2S_2O_3+xH_2O$

Fasily sol in H<sub>2</sub>O Somewhat sol in alco-(Herschel, Edinb Phil J 1 398)  $(NH_4)_2S_2O_3$ ,  $Ag_2S_2O_3+xH_2O$ Nearly insol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH+Aq, from which it is repptd by an acid (Herschel) Ammonium zinc thiosulphate,  $(NH_4)_2S_2O_3$ ,  $ZnS_2O_3 + H_2O_3$ 

Very sol in H<sub>2</sub>O (Rosenheim and Davidsohn, Z anorg 1904, 41 238)

Ammonium thiosulphate ammonium cuprous bromide, CuBr, NH<sub>4</sub>Br, 4(NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>3</sub>

Sol in H<sub>2</sub>O (Rosenheim, Z anorg 1900, **25** 107)

The double salts of ammonium thiosulphate with silver and copper haloids are true chemical compounds and may be recryst from H<sub>2</sub>O without decomp (Rosenheim, Z anorg 1900, 25 100)

Ammonium thiosulphate ammonium silver bromide, AgBr, NH<sub>4</sub>Br, 4(NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Sol in H<sub>2</sub>O (Rosenheim)

Ammonium thiosulphate ammonium cuprous chloride, CuCl, NH<sub>4</sub>Cl, 4(NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Sol in H<sub>2</sub>O and in NH<sub>4</sub>OH+Aq (Rosenheim)

Ammonium thiosulphate ammonium silver chloride, AgCl, NH<sub>4</sub>Cl, 4(NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Sol in cold H<sub>2</sub>O and NH<sub>4</sub>OH+Aq Decomp by boiling with H<sub>2</sub>O and by dil acids (Rosenheim)

Ammonium thiosulphate ammonium cuprous cvanide

Composition not constant (Rosenheim)

Ammonium thiosulphate ammonium silver cyanide

Composition not constant (Rosenheim)

Ammonium thiosulphate ammonium cuprous iodide, CuI, NH<sub>4</sub>I,  $4(NH_4)_2S_2O_3$ Sol in H<sub>2</sub>() (Rosenheim)

Ammonium thiosulphate ammonium cuprous 10d1de, 4(NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, NH<sub>4</sub>I, CuI

Very sol in H<sub>2</sub>O Decomp by boiling (Brun, C R 1892, **114** 668)

Ammonium thiosulphate ammonium silver iodide, AgI, N $\hat{H}_4$ I,  $4(NH_4)_2S_2O_3$ Scl in H<sub>2</sub>O (Rosenheim)

Ammonium thiosulphate ammonium cuprous sulphocyanide, CuSCN, NH4SCN,  $4(NH_4)_2S_2O_3$ 

Sol in H<sub>2</sub>O (Rosenheim)

Ammonium thiosulphate ammonium silver sulphocyanide, AgSCN, NH<sub>4</sub>SCN,  $4(NH_4)_2S_2O_8$ 

Sol in H<sub>2</sub>O (Rosenheim)

Ammonium thiosulphate cuprous iodide,  $(NH_4)_2S_2O_3$ ,  $2CuI + H_2O$ 

(Brun, C R 1892, 114 Insol in H<sub>2</sub>O 668)

Could not be obtained (Rosenheim and Steinhäuser)

Barium thiosulphate, BaS<sub>2</sub>O<sub>8</sub>+H<sub>2</sub>O

SI sol in H<sub>2</sub>O (Rose, Pogg 21 437)

Insol in alcohol 1 pt cannot be dissolved in 2000 pts H<sub>2</sub>O Sol in dil HCl+Aq without decomposition (Herschel, 1819) Pptd from BaS<sub>2</sub>O<sub>3</sub>+Aq by dil alcohol

(Sobrero and Selmi, A ch (3) 28 211) Insol in acetone (Naumann, B 1904, 37 4329)

Barrum bismuth thiosulphate, Ba<sub>3</sub>[B<sub>1</sub>(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub>]<sub>2</sub> Sol in H<sub>2</sub>O with decomp (Hauser, Z anorg 1903, **35** 9)

Barium cadmium thiosulphate, 2BaS<sub>2</sub>O<sub>2</sub>,  $CdS_2O_3 + 8H_2O$ 

Sl sol in H<sub>2</sub>O (Fock and Klüss, B 23 1761)  $3BaS_2O_3$ ,  $CdS_2O_3+8H_2O$  Sl sol in  $H_2O$ 

Barium cuprous thiosulphate

Easily sol in hot, difficultly sol in cold H<sub>2</sub>O (Cohen, Chem Soc **51** 38) 2BaS<sub>2</sub>O<sub>8</sub>, Cu<sub>2</sub>S<sub>2</sub>O<sub>8</sub>+7H<sub>2</sub>O Nearly insol in H<sub>2</sub>O (Vortmann, M 9 165)

Barium gold thiosulphate

Sl sol in H<sub>2</sub>O Insol in alcohol (Fordos and Gélis )

Barium lead thiosulphate

Difficultly sol in H<sub>2</sub>O (Rammelsberg, Pogg **56** 313)

Barium thiosulphate chloride, BaS<sub>2</sub>O<sub>2</sub>,  $BaCl_2+2H_2O$ 

Sol in H<sub>2</sub>O (Fock and Kluss, B 23 3001)

Bismuth cæsium thiosulphate, Cs<sub>3</sub>B<sub>1</sub>(S<sub>2</sub>O<sub>3</sub>)<sub>3</sub>

Sol in H<sub>2</sub>O Insol in alcohol (Hauser, Z anorg 1903, **35** 8)

Bismuth potassium thiosulphate, K<sub>8</sub>B<sub>1</sub>(S<sub>2</sub>O<sub>3</sub>)<sub>8</sub>  $+\frac{1}{2}H_2O$ 

Solubility in H<sub>2</sub>O

(Carnot, C R 83 390)

100 cc of the sat solution contain 35 g at 2°, 70 g at 18° At 18° the solution decomposes

More sol in Na<sub>2</sub>S<sub>2</sub>C<sub>3</sub>+Aq than in pure  $H_2O$ 

Insol in alcohol (Hauser, Z anorg 1903, **35** 5) Insol in alcohol  $+\mathrm{H}_2\mathrm{O}$ Sol in H<sub>2</sub>O

# Bismuth rubidium thiosulphate, $Rb_3B_1(S_2O_3)_3 + \frac{1}{2}H_2O$

Sol m H<sub>2</sub>O

Insol in acid alcohol (Hauser, Z anorg 1903, 35 7)
+H<sub>2</sub>O Sol in H<sub>2</sub>O (Hauser, Z anorg

 $+{\rm H}_2{\rm O}$  Sol in  ${\rm H}_2{\rm O}$  (Hauser, Z at 1903, **35** 8)

# Bismuth sodium thiosulphate,

Very sol in H<sub>2</sub>O, and also in alcohol (Carnot, C R **83** 338) Na<sub>3</sub>Bi(S<sub>2</sub>O<sub>3</sub>)<sub>3</sub> Decomp by H<sub>2</sub>O Easily sol in 50% alcohol (Hauser, Z anorg 1903,

# Cadmium thiosulphate, CdS<sub>2</sub>O<sub>3</sub>+2H<sub>2</sub>O

Sol in H<sub>2</sub>O Insol in alcohol (Vortmann and Padberg, B **22** 2638)

# Cadmium potassium thiosulphate, $3CdS_2O_8$ , $5K_2S_2O_8$

Cannot be recryst without decomp \* (Fock and Klüss, B 23 1753)

CdS<sub>2</sub>O<sub>3</sub>, 3K<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+2H<sub>2</sub>O Can be crystallised from H<sub>2</sub>O without decomp (F and K)

# Cadmium sodium thiosulphate, $CdS_2O_3$ , $3Na_2S_2O_3+16H_2O$

Not deliquescent Sol in H<sub>2</sub>O (Jochum, C C 1885, 642)

+9H<sub>2</sub>O (Vortmann and Padberg, B 22

2639) +3H<sub>2</sub>O Deliquescent (Fock and Kluss, B 23 1157)

2CdS<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+7H<sub>2</sub>O (V and P) 3CdS<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+9H<sub>2</sub>O (V and P)

# Cadmium strontium thiosulphate, $CdS_2O_3$ , $3SrS_2O_3+10H_2O$

(Fock and Kluss, B 23 1763)

Cæsium thiosulphate, Cs<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Easily sol in H<sub>2</sub>O (Chabrié, C R 1901, **133** 297)

+2H<sub>2</sub>O Very hydroscopic (J Meyer, B 1907, **40** 1360)

# Cæsium cuprous thiosulphate, $Cs_2S_2O_3$ , $Cu_2S_2O_3+2H_2O$

Easily sol in  $H_2O$  with decomp (J Meyer, B 1907, **40** 1361)

#### Cæsium lead thiosulphate, $Cs_2S_2O_3$ , $PbS_2O_3$ +2 $H_2O$

Not hydroscopic 2Cs<sub>2</sub>S<sub>2</sub>O<sub>2</sub>, PbS<sub>2</sub>O<sub>3</sub>+3H<sub>2</sub>O Hydroscopic (J Meyer)

# Cæsium magnesium thiosulphate, $Cs_2S_2O_3$ , $MgS_2O_3+6H_2O$

Easily sol in H<sub>2</sub>O (Meyer)

Cæsium silver thiosulphate, 2Cs<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+3H<sub>2</sub>O

Not hydroscopic

Decomp by hot H<sub>2</sub>O (J Meyer)

#### Calcium thiosulphate, CaS<sub>2</sub>O<sub>8</sub>+6H<sub>2</sub>O

Sol in 1 pt H<sub>2</sub>O at 3°

Aqueous solution saturated at 10° has sp gr 1 300 Solution with sp gr 1 11437 at 15 5° contains 0 2081 of its weight in CaSeO.

15 5° contains 0 2081 of its weight in CaS<sub>2</sub>O<sub>3</sub> Decomp on heating Insol in alcohol (sp gr 0 8234) (Herschel, A ch 14 355) 100 g sat solution contains 29 4 g CaS<sub>2</sub>O<sub>3</sub> at 9°, and 34 7 g CaS<sub>2</sub>O<sub>3</sub> at 25° (Kremann and Rodemund, M 1914, 35 1065)

#### Solubility of CaS<sub>2</sub>O<sub>3</sub>+Na<sub>2</sub>SO<sub>3</sub> in H<sub>2</sub>O

| t° | %<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub>              | CaS2O3                                                              | Solid phase                                                                                                                                                                                      |
|----|-----------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | 0<br>11 04<br>25 21<br>31 01                                    | 29 4<br>22 64<br>15 84<br>7 70                                      | CaS <sub>2</sub> O <sub>3</sub> , 6H <sub>2</sub> O<br>" +Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , 5H <sub>2</sub> O<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , 5H <sub>2</sub> O |
| 25 | 0<br>9 24<br>15 67<br>18 34<br>28 24<br>30 19<br>31 24<br>35 04 | 34 7<br>29 69<br>21 41<br>25 18<br>21 14<br>20 33<br>18 43<br>11 61 | CaS <sub>2</sub> O <sub>3</sub> , 6H <sub>2</sub> O  " " " +Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , 5H <sub>2</sub> O Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , 5H <sub>2</sub> O  |

(Kremann and Rodemund, M 1914, 35 1065)

#### Calcium lead thiosulphate, 2CaS<sub>2</sub>O<sub>3</sub>, PbS<sub>2</sub>O<sub>3</sub> +4H<sub>2</sub>O

Decomp by H<sub>2</sub>O (Rammelsberg)

# Calcium potassium thiosulphate, $CaS_2O_3$ , $3K_2S_2O_3+5H_2O$

Sol in H<sub>2</sub>O (Fock and Kluss, B 24 3016)

## Calcium silver thiosulphate, $2\text{CaS}_2\text{O}_3$ , $\text{Ag}_2\text{S}_2\text{O}_3$ + $x\text{H}_2\text{O}$

Easily sol in  $H_2O$ , less sol in alcohol  $CaS_2O_3$ ,  $\sim S$   $\sim 1H_2O$  Sl sol in  $H_2O$ , abundantly in  $N_1H_4OH + Aq$  (Herschel, **1819**)

#### Calcium sodium thiosulphate nitrate, CaNa<sub>3</sub>(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub>NO<sub>3</sub>+11H<sub>2</sub>O

(Kremann and Rothemund, M 1914, 35 1065)

# Cobaltous thiosulphate, CoS<sub>2</sub>O<sub>3</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O (Rammclsberg)

# Cobaltous sodium thiosulphate, $2CoS_2O_3$ , $5Na_2S_2O_3+25H_2O$

Efflorescent Sol in H<sub>2</sub>O (Jochum) Could not be obtained by Vortmann and Padberg CoS<sub>2</sub>O<sub>3</sub>, 3Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+15H<sub>2</sub>O Sol in H<sub>2</sub>O (Vortmann and Padberg, B **22** 2641)

Cuprous thiosulphate,  $Cu_2O$ ,  $3S_2O_2+2H_2O = Cu_2H_4(S_2O_3)_2$ 

SI sol in  $H_2O$  Abundantly sol in  $Na_2S_2O_3+Aq$ ,  $NH_4Cl+Aq$ ,  $NH_4OH+Aq$ , or  $(NH_4)_2CO_3+Aq$  Sol in HCl or  $HNO_3+Aq$  (v Hauer, W A B 13 443)

Cuprous hydrazme thiosulphate,  $Cu_2S_2O_3$ ,  $(N_2H_4)_2H_2S_2O_3+\frac{1}{2}H_2O$ 

Insol in H<sub>2</sub>O, sol in NH<sub>4</sub>OH+Aq and in dil acids (Ferratini, C C 1912, I 1281)

Cupric lead thiosulphate, Pb(CuS<sub>2</sub>O<sub>3</sub>)<sub>2</sub> +3H<sub>2</sub>O (?)

Very sol in  $H_2O$  and quickly decomp (Girard, C C 1904, I 253)

Cuprous mercurous thiosulphate,  $5Cu_2S_2O_8$ ,  $3Hg_2S_2O_8$ 

Insol or sl sol in cold, decomp by boiling H<sub>2</sub>O HNO<sub>3</sub>+Aq dissolves out Cu (Rammelsberg, Pogg **56** 319)

Cuprous potassium thiosulphate, Cu<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, K<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+2H<sub>2</sub>O

SI sol in  $H_2O$ , decomp on heating with optn of CuS Easily sol in  $K_2S_2O_3+Aq$  (Rammelsberg, Pogg 56 321)

Cu<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 2K<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Very sol in cold H<sub>2</sub>O, nsol in K<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Cohen, Chem Soc

+3H<sub>2</sub>O Scarcely sol in cold, sol with sl lecomp in hot H<sub>2</sub>O Sol in HCl+Aq with volution of SO<sub>2</sub>

Cu<sub>2</sub>S<sub>2</sub>O<sub>3</sub>,  $3K_2S_2O_3+3H_4O$  More sol in P<sub>2</sub>O than Cu<sub>2</sub>S<sub>2</sub>O<sub>3</sub>,  $K_2S_2O_3+2H_2O$  Solution s not decomp by boiling Sol in excess of  $\mathbf{VH_4OH}+\mathbf{Aq}$  (Rammelsberg)

Cuprous rubidium thiosulphate,  $Rb_2S_2O_3$ ,  $Cu_2S_2O_3+2H_2O$ 

Cuprous silver sodium thiosulphate ammonia, Cu<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 2Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 5Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 6NH<sub>3</sub>

Ppt Becomes dark when exposed to light Decomp by H() Sol in NH<sub>4</sub>OH+Aq Shinn, J Am Chem Soc 1904, **26** 949)

Cuprous sodium thiosulphate,  $2Cu_2S_2O_3$ ,  $7Na_2S_2O_3+2H_2O$ 

Ppt from aqueous solution by alcohol Jochum, C C 1885 642)
+12H<sub>2</sub>O Sol in very dil HCl+Aq Jochum)

 $Cu_2S_2O_3,\ 3Na_2S_2O_3+2H_2O$  Sol in  $H_2O$  , insol in alcohol (Rammelsberg )  $+6H_2O$  (Jochum )

 $3Cu_2S_2O_3$ ,  $2Na_2S_2O_3+8H_2O$  Decomp by  $H_2C$  (Vortmann)

+5H<sub>2</sub>O (Lenz, A **40** 99) Formula according to Jochum is—

5Cu<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 4Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+8H<sub>2</sub>O Insol in H<sub>2</sub>O or alcohol Sol in HCl+Aq without evolution of SO<sub>2</sub>, also in dil H<sub>2</sub>SO<sub>4</sub> or HNO<sub>3</sub>+Aq Sol in NH<sub>4</sub>OH+Aq (Jochum)

 $+6\mathrm{H}_2\mathrm{O}$  As above (Jochum)  $\mathrm{Cu}_2\mathrm{S}_2\mathrm{O}_3$ ,  $\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3+\mathrm{H}_2\mathrm{O}$  Insol in  $\mathrm{H}_2\mathrm{O}$ , sol in  $\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3+\mathrm{Aq}$  (Russell, Ch Ztg **9** 

+2H<sub>2</sub>O Insol in H<sub>2</sub>O and alcohol

Decomp by dil acids (Rosenheim and Steinhauser, Z anorg 1900, **25** 84)

\_+2½H<sub>2</sub>O Sol in H<sub>2</sub>O Pptd by alcohol

 $+2\frac{1}{2}H_2O$  Sol in  $H_2O$  Potd by alcohol (Bhaduri, Z anorg 1898, 17 1)  $+3H_2O$  Decomp by  $H_2O$  (Vortmann,

M 1888, 9 168)  $3Cu_2S_2O_3$ ,  $2Na_2S_2O_3$  (Gerard, C C 1904,

I 253)  $+5H_2O$  Sol in 352 pts  $H_2O$  (Russell, Ch Z 1885, 9 223) 100 cc 5%  $Na_2S_2O_3+Aq$  dissolve 12 28 g "" 7 5% " " 17 46 g ""10% " 22 54 g (Russell, Ch Z 1885, 9 223)

 $4\mathrm{Cu}_2\mathrm{S}_2\mathrm{O}_3,\,3\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3+6\mathrm{H}_2\mathrm{O}$  . Insol in  $\mathrm{H}_2\mathrm{O}$  and alcohol

Decomp by dil acids (Rosenheim and Steinhauser, 7 anorg 1900, 25 84)

 $+9H_2O$  Sol in  $H_2O$  Pptd by alcohol (Bhaduri, Z anorg 1898, **17** 1)

7Cu<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 5Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+16H<sub>2</sub>O Decomp by H<sub>2</sub>O and by alcohol (Bhuduri, Z anorg 1898, **17** 1)

It is impossible to determine whether any of these compds are complex or double salts As a class they are not easily sol and decomp in solution. They may therefore be mixtures whose comp depended upon the temp and conc of the solution in which they were pptd (Rosenheim, Z anorg 1900, 25 81)

Cuprocupric sodium thiosulphate ammonia, Cu<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, CuS<sub>2</sub>O<sub>3</sub>, 2Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 4NH<sub>3</sub>

Insol in, but decomp by hot  $H_2O$  Sol in  $HC_2H_3O_2+Aq$  Sol in  $NH_4OH+Aq$  or  $Na_2S_2O_3+Aq$  (Schutte, C ? 42 1267)

Cuprous sodium thiosulphate cuprous chlorade, Cu<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 2Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 2CuCl

(Rosenheim and Steinhauser, Z anorg 1900, 25 86)

Cupric sodium thiosulphate cupric sulphide, Cu<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, CuS+4H<sub>2</sub>O

Sl sol in H<sub>2</sub>O, easily sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq, and NH<sub>4</sub>OH+Aq, insol in alcohol (Lenz, A **40** 99)

 $Cu_2S_2O_3$ ,  $Na_2S_2O_3$ , 2CuS Sol in H<sub>2</sub>O or dil HCl+Aq (Kessel, B **11** 1585)

Cuprous sodium thiosulphate sodium chloride,  $3Cu_2S_2O_3$ ,  $2Na_2S_2O_3$ ,  $4NaCl+8H_2O$ Sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Siewert, Zeit ges Naturwiss 26 486 Ppt (Bhaduri, Z anorg 1898, 17 3)

Cupric thiosulphate ammonia, CuS<sub>2</sub>O<sub>8</sub>,  $4NH_3$ 

100 pts H<sub>2</sub>O dissolve 21 79 pts at 25° (Pudschies, Dissert)

Cuprocupric thiosulphate ammonium chloride,  $Cu_2O$ , CuO,  $3S_2O_2$ ,  $2NH_4Cl$ 

Sol in  $HNO_8+Aq$  with separation of S (v Hauer, W A B 13 447)

Glucinum thiosulphate, GlS<sub>2</sub>O<sub>3</sub>+11H<sub>2</sub>O (Faktor, C C 1901, II 878)

Gold (aurous) hydrogen thiosulphate, Au<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 3H<sub>2</sub>S<sub>2</sub>O<sub>3</sub>

Known only in solution (Fordos and Gélis. A ch (3) 13 394)

Gold (aurous) sodium thiosulphate, Au<sub>2</sub>S<sub>2</sub>O<sub>8</sub>,  $3Na_2S_2O_3+4H_2O$ 

Sol in H<sub>2</sub>O, solution decomp on heating Insol in absolute, sl sol in dil alcohol (Fordos and Gélis) Au<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 6Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+10H<sub>2</sub>O by boiling Very sol

> sulphate,  $FeS_2O_3 + 5H_2O$ Very sol in H<sub>2</sub>O or alcohol , Pogg **63** 241)

(Jochum, C

uou (ferrous) sodium thiosulphate, FeS2O3,  $3Na_2S_2O_3 + 8H_2O$ 

Very sol in  $H_2O$ , and easily decomp (Vortmann and Padberg, B 22 2641)

Lead thiosulphate, PbS<sub>2</sub>O<sub>8</sub>

Sol in 3266 pts H<sub>2</sub>O Sol in alkali thiosulphates +Aq (Rammelsberg, Pogg 56 308)

Lead lithium thiosulphate, PbS<sub>2</sub>O<sub>3</sub>, Ll<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Very hydroscopic

Decomp by H<sub>2</sub>O with separation of PbS (J Meyer, B 1907, **40** 1355)

Lead potassium thiosulphate, PbS<sub>2</sub>O<sub>3</sub>,  $3K_2S_2O_3 + 2H_2O$ 

Sol in H<sub>2</sub>O with partial separation of  $PbS_2O_3$  Sol in  $K_2S_2O_3+Aq$  (Rammelsberg, Pogg 56 310)

Lead rubidium thiosulphate, 2Rb<sub>2</sub>S<sub>2</sub>O<sub>3</sub>,  $PbS_2O_8 + 2H_2O$ 

Difficultly sol in cold H<sub>2</sub>O Decomp by H<sub>2</sub>O (J Meyer, B 1907, **40** 1358 )

Lead sodium thiosulphate, PbS<sub>2</sub>O<sub>3</sub>, 2Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Sl sol in H<sub>2</sub>O Very easily sol in NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>

and  $Na_2S_2O_3+Aq$  (Lenz, A 40 98) Insol in alcohol

2PbS<sub>2</sub>O<sub>3</sub>, 5Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+60H<sub>2</sub>O Easily decomp (Jochum, C C **1885** 642)
PbS<sub>2</sub>O<sub>3</sub>, 3Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+12H<sub>2</sub>O Decomp in boiling aqueous solution (Vortmann and Padberg, B 22 2637)

Lead strontium thiosulphate

Sol in H<sub>2</sub>O Precipitated as a syrup by alcohol (Rammelsberg)

Lithium thiosulphate, Li<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+3H<sub>2</sub>O

Very deliquescent, and sol in H<sub>2</sub>O and absolute alcohol (Fock and Kluss, B 22 3099)

Lithium silver thiosulphate, Li<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub> +H<sub>2</sub>O

Hygroscopic

Decomp by boiling H2O and by acids (Meyer and Eggeling, B 1907, **40** 1355)

Magnesium thiosulphate, MgS<sub>2</sub>O<sub>8</sub>+6H<sub>2</sub>O

Very easily sol in H2O Precipitated from conc solution by alcohol (Rammelsberg. Pogg **56** 303)

Magnesium potassium thiosulphate,  $MgK_2(S_2O_3)_2 + 6H_2O$ 

Deliquescent, and sol in H<sub>2</sub>O Less sol than K<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (Rammelsberg, Pogg **56** 304) Not deliquescent (Fock and Kluss, B **23** 539)

Magnesium rubidium thiosulphate, MgS<sub>2</sub>O<sub>3</sub>,  $Rb_2S_2O_3+6H_2O$ 

Easily sol in H<sub>2</sub>O (Meyer B 1907, 40 1358)

Manganous thiosulphate, MnS<sub>2</sub>O<sub>3</sub>

Sol in H2O, from which it is pptd by alcohol (Rammelsberg, Pogg 56 305) +5H<sub>2</sub>O Decomp very easily (Vort mann and Padberg, B **322** 2641)

Manganous sodium thiosulphate, MnS<sub>2</sub>O<sub>3</sub>, 2Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+16H<sub>2</sub>O

Sol in H<sub>2</sub>O Insol or but sl sol in alcohol (Jochum, C C 1885 642)

Mercuric potassium thiosulphate, 3HgS<sub>2</sub>O<sub>3</sub>. 5K<sub>2</sub>S<sub>2</sub>O<sub>3</sub>

Sol in 10 pts H<sub>2</sub>O at 15°, and ½ pt at 100° Aqueous solution decomp on stand ing or heating

Insol in alcohlol (Kirchhoff, Scher J 2 30)

 ${\rm HgS_2O_3} {\rm 3K_2S_2O_3 + 3H_2O} \ {\rm Kluss, \ B} \ {\bf 24} \ 1353 \ )$ (Fock and

 $HgS_{2O_3}$ ,  $5K_2S_2O_3 + H_2O$  (F and K)

Nickel thiosulphate, NiS<sub>2</sub>O<sub>3</sub>+6H<sub>2</sub>O
Permanent Sol in H<sub>2</sub>O (Rammelsberg, Pogg 56 306)

 $\begin{array}{ccc} \textbf{Nickel} & \textbf{sodium} & \textbf{thiosulphate,} & 2NiS_2O_3, \\ & 5Na_2S_2O_8 + 25H_2O \end{array}$ 

Efflorescent Sol in H<sub>2</sub>O (Jochum)

Nickel thiosulphate ammonia, NiS<sub>2</sub>O<sub>3</sub>, 4NH<sub>3</sub> +6H<sub>2</sub>O

Decomp on air Sol in NH<sub>4</sub>OH+Aq (Rammelsberg, Pogg **56** 306)

NiS<sub>2</sub>O<sub>3</sub>, 5NH<sub>8</sub>+H<sub>2</sub>O (Ephram, B 1913, **46** 3108)

 $N_1S_2O_3, 6NH_3 + 3H_2O$  (Vortmann and Padberg, B  $\mbox{\bf 22}$  2641 )

# Platinous sodium thiosulphate See Platothiosulphate, sodium

Potassium thiosulphate,  $K_2S_2O_3+1/_3$ , 1  $1^2/_3H_2O$ , and  $2H_2O$ 

Very deliquescent Very sol in  $\rm H_2O$  with absorption of heat Solution is stable on the air Insol in alcohol

100 pts H<sub>2</sub>O dissolve pts K<sub>2</sub>S<sub>2</sub>O<sub>3</sub> at t°

|                                                                                                         | ¥                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t°                                                                                                      | $	ext{Pts} \ 	ext{K}_2	ext{S}_2	ext{O}_3$                                                                                                                     | Solid phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0<br>17<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>56<br>60<br>56<br>70<br>75<br>78<br>80<br>85<br>90 | 96 1<br>150 5<br>155 4<br>165 0<br>175 7<br>202 4<br>204 7<br>208 7<br>215 2<br>227 7<br>238 3<br>234 5<br>245 8<br>255 2<br>268 0<br>292 0<br>293 1<br>298 5 | K <sub>2</sub> S <sub>2</sub> O <sub>3</sub> 2H <sub>2</sub> O<br>3K <sub>2</sub> S <sub>2</sub> O <sub>3</sub> 5H <sub>2</sub> O<br>"<br>"<br>3K <sub>2</sub> S <sub>2</sub> O <sub>3</sub> 5H <sub>2</sub> O + K <sub>2</sub> S <sub>2</sub> O <sub>3</sub> H <sub>2</sub> O<br>K <sub>2</sub> S <sub>2</sub> O <sub>3</sub> H <sub>2</sub> O<br>"<br>"<br>"<br>"<br>K <sub>2</sub> S <sub>2</sub> O <sub>3</sub> H <sub>2</sub> O + 3K <sub>2</sub> S <sub>2</sub> O <sub>3</sub> H <sub>2</sub> O<br>3K <sub>2</sub> S <sub>2</sub> O <sub>3</sub> H <sub>2</sub> O<br>"<br>"<br>"<br>3K <sub>2</sub> S <sub>2</sub> O <sub>3</sub> H <sub>2</sub> O + K <sub>2</sub> S <sub>2</sub> O <sub>3</sub> H <sub>2</sub> O<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>" |
| 85                                                                                                      | 298 5                                                                                                                                                         | · G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

(Inohiko Io, Mcm (oll Sc Kioto, 1911, **3** 

Sol in dil HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq without decomp (Mathieu-Plessy, C R 101 59) Insol in cthyl act ite (Cisiseci C R

30 821)

Potassium silver thiosulphate, 2K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, Ag<sub>2</sub>S<sub>2</sub>O<sub>8</sub>

Sol in H<sub>2</sub>O (Cohen )

 $K_2S_2O_3$ ,  $Ag_2S_2O_3$  Sl sol in  $H_2O$  (Herschel)

 $3K_2S_2O_3$ ,  $Ag_2S_2O_3+2H_2O$  Rather sl sol in  $H_2O$  (Rosenheim and Steinhauser, Z anorg 1900, **25** 76)

Sl sol in H<sub>2</sub>O (Rosenheim)

Potassium silver thiosulphate ammonia, KAgS<sub>2</sub>O<sub>3</sub>, 2NH<sub>3</sub>

Very sl sol in H<sub>2</sub>O Easily sol in hot NH<sub>4</sub>OH+Aq (Schwicker, B **22** 1735) 5K<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 3Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, NH<sub>3</sub> Difficultly sol in H<sub>2</sub>O with decomp

Sol in hot NH<sub>4</sub>OH+Aq with partial decomp (J Meyer, B 1907, 40 1359)

#### Potassium sodium thiosulphate

(a) KNaS<sub>2</sub>O<sub>3</sub>+2H<sub>2</sub>O Very sol in H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve 213 7 pts salt at 15° (Schwicker, B 22 1733)

(b)  $NaKS_2O_3+2H_2O$  100 pts  $H_2O$  dissolve 205 3 pts salt at 15° (Schwicker)

Potassium strontium thiosulphate, K<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, SrS<sub>2</sub>O<sub>3</sub>+5H<sub>2</sub>O

Sol in H<sub>2</sub>O (Fock and Kluss, B 24 3017)

# Potassium zinc thiosulphate, $K_2S_2O_3$ , $ZnS_2O_3+H_2O$

Very sol in  $H_2O$  (Rosenheim and Davidsohn, Z anorg 1904, **41** 238)

# Potassium thiosulphate sodium chloride, $K_2S_2O_8$ , NaCl

Sol in H<sub>2</sub>O (Pape, Pogg 139 238)

# Rubidium thiosulphate, Rb2S2O3+2H2O

Very hydroscopic, easily sol in  $H_2O$  (J Meyer, B 1907, **40** 1356)

# Rubidium silver thiosulphate, $2Rb_2S_2O_3$ , $Ag_2S_2O_3+2H_2O$

Ppt Not hydroscopic Difficultly sol in cold  $H_2O$  Decomp by warm  $H_2O$  (J Mever)

#### Rubidium silver thiosulphate ammonia, Rb<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, NH<sub>3</sub>

 $\begin{array}{llll} & \mathrm{Ppt} & (\mathrm{J\ Meyer\ }) \\ & 3\mathrm{Rb}_2\mathrm{S}_2\mathrm{O}_3,\, 4\mathrm{Ag}_2\mathrm{S}_2\mathrm{O}_3,\, \mathrm{NH}_3 & \mathrm{Ppt} & \mathrm{Decomp} \end{array}$ 

 $3Rb_2S_2O_3$ ,  $4Ag_2S_2O_3$ ,  $NH_3$  Ppt Decomposition the air (J. Meyer)

# Samarium thiosulphate

(Cleve)

Scandium thiosulphate, basic, Sc(OH)S<sub>2</sub>O<sub>3</sub> Ppt (R J Meyer, Z anorg 1914, 86 282)

#### Silver thiosulphate, $Ag_2S_2O_3$

Sl sol in H<sub>2</sub>() Sol in NH<sub>4</sub>OH or alkali thiosulphates+Aq (Herschel, Fdinb Phil J 1 26)

#### Silver sodium thiosulphate, Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+H<sub>2</sub>O

Sl sol in H<sub>2</sub>O Easily sol in NH<sub>4</sub>OH+ Aq, also in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq to form— Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 2Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+2H<sub>2</sub>O It is sol in H<sub>2</sub>O or NH<sub>4</sub>OH+Aq, somwehat sol in alcohol, especially if warm or dilute (Lenz, A 40 94)

 $Ag_2S_2O_3$ ,  $6Na_2S_2O_3+21H_2O$  Sol in  $H_2O$  (Jochum, C C **1885** 642)

Silver sodium thiosulphate acetylde acetylene, 2Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 7Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 18Ag<sub>2</sub>C<sub>2</sub>, 32C<sub>2</sub>H<sub>2</sub>

Decomp by H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq Insol in alkalies (Bhaduri, Z anorg 1913, 79 356) 7Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 5Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 86Ag<sub>2</sub>C<sub>2</sub>, 13C<sub>2</sub>H<sub>2</sub> (Bhaduri)

Silver sodium thiosulphate ammonia, NaAgS<sub>2</sub>O<sub>3</sub>, NH<sub>3</sub>

Very unstable (Schwicker, B 22 1736)

Silver strontium thiosulphate,  $Ag_2S_2O_3$ ,  $SrS_2O_3$ 

Nearly insol in  $H_2O$  Very sl sol in  $SrS_2O_3+Aq$ , easily sol in  $NH_4OH+Aq$  (Herschel)

Sodium thiosulphate, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and +1, 2 and 5H<sub>2</sub>O

100 pts H<sub>2</sub>O dissolve At 16°, 65 pts 65 pts Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> "20° 69 " 25°. " 75 " ฐับ°, " " " " " " u " 114 (Mulder)

100 pts  $\rm H_2O$  dissolve at 0°, 476 pts  $\rm Na_2S_2O_3$ , at 20°, 695 pts , at 40°, 104 pts , at 60°, 1923 pts (Kremers, Pogg 99 50) 100 pts  $\rm H_2O$  dissolve 171 pts cryst (=1089 pts anhydrous )salt at 195° to form a solution of 13875 sp gr (Schiff, A 113 350)

By supersaturation 100 pts  $\rm H_2O$  may dissolve 2174 pts  $\rm Na_2S_2O_3$  at 0° (Kremers)

# Solubility in H<sub>2</sub>O

| t°                                                                       | % Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub>                                                          | Solid phase                                                                                                                                       |  |  |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0<br>10<br>20<br>30<br>40<br>45<br>50<br>60<br>72<br>80 5<br>90 5<br>100 | 34 43<br>37 89<br>41 17<br>45 86<br>50 65<br>54 49<br>62 92<br>67 39<br>70 39<br>71 33<br>71 76<br>72 68 | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> +5H <sub>2</sub> O  " " " " " " " " Na S <sub>2</sub> O <sub>3</sub> +2H <sub>2</sub> O " " " " " " |  |  |  |
| (Taylor, Proc Edinburgh Soc 1898, 22 49)                                 |                                                                                                          |                                                                                                                                                   |  |  |  |

Solubility of anhydrous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> in H<sub>2</sub>O at t°

| t°                                                 | g Na S <sub>2</sub> O <sub>3</sub> per 100 g                                  |                                                                                        |  |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| υ                                                  | Solution                                                                      | HO                                                                                     |  |  |  |  |
| 40<br>45<br>50<br>55<br>60<br>65<br>70<br>75<br>80 | 67 40<br>67 60<br>67 76<br>68 15<br>68 48<br>68 80<br>69 05<br>69 35<br>69 80 | 206 70<br>208 60<br>210 20<br>214 00<br>217 30<br>220 50<br>223 10<br>226 30<br>231 80 |  |  |  |  |

(Young and Burke, J Am Chem Soc 1906, 28 327)

The solubility of the hydrates of Na<sub>2</sub>S<sub>2</sub>O<sub>2</sub> are exceedingly complicated. There are five groups of hydrates, (I) primary, (II) secondary, (III) tertiary, (IV) quaternary, and (V), quintary, and transitions occur between members of the same and different groups Na<sub>2</sub>S<sub>2</sub>O<sub>2</sub>+5H<sub>2</sub>O(I) is the commercial thiosulphate. The relations and solubility of the various hydrates is shown in the following table.

# Solubility of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> in H<sub>2</sub>O at t°

# I Primary hydrates

|   | t°       |    | g Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> per<br>100 g |          |          |          | Solid phase              |
|---|----------|----|--------------------------------------------------------------|----------|----------|----------|--------------------------|
|   |          |    | Solı                                                         | ıtıon    | H₄O      |          |                          |
|   | 0        |    | 33                                                           | 40       | 50       | 15       | $Na_2S_2O_{3,1}5H_2O(I)$ |
|   | 5        |    | 35                                                           | 33       | 54       | 64       | "                        |
| 1 | 10       |    | 37                                                           | 37       | 59       | 69       | "                        |
|   | 15       |    | 39                                                           | 11       | 64<br>70 | 22<br>07 | "                        |
|   | 20       |    | 41                                                           | 20<br>15 | 75       | 90       | "                        |
|   | 25       |    | 43<br>45                                                     | 19       | 82       | 45       | "                        |
|   | 30<br>35 |    | 47                                                           | 71       | 91       | 24       | **                       |
|   | 40       |    |                                                              | 83       | 105      |          | **                       |
|   | 45       |    |                                                              | 33       | 123      |          | "                        |
|   | 48       | 17 |                                                              | 00       | 120      | 0,       | " +Na S O3, 2H O(I)      |
|   | 70       |    | 1                                                            |          | <u> </u> |          | 11(4), 01, 211 (7(2)     |
|   | 0        |    | 52                                                           | 73       | 111      | 60       | $Na_2S_2O_3, 2H_2O(1)$   |
|   | 5        |    | 53                                                           | 45       | 114      | 90       |                          |
|   | 10       |    | 53                                                           | 94       | 117      | 10       | "                        |
|   | 20       |    | 55                                                           | 15       | 122      | 68       | "                        |
|   | 25       |    | 56                                                           | 03       | 127      | 43       | "                        |
|   | 30       |    | 57                                                           | 13       | 133      | 27       | "                        |
|   | 40       |    | 59                                                           | 38       | 146      |          |                          |
|   | 45       |    | 60                                                           | 73       | 154      |          |                          |
|   | 50       |    | 62                                                           | 28       | 165      | 11       | "                        |
|   | 55       |    | 63                                                           | 85       | 176      | 60       | · ·                      |
|   | 60       |    | 65                                                           | 68       | 191      | 30       |                          |
| _ | 65       | _  | 68                                                           | 04       | 212      | 90       |                          |
| ) | 66       | 5  |                                                              |          | 1        |          | " $+Na_2S_2O_3$          |

|                                                          |                                                                             |                                              |                                              |                                                                    |                                         |                                         |                                                                                                                                                                | -1, 0                                                                                                |                                        | 101                                    |                                                      |                                        |                                                                                                                                 |
|----------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| \$                                                       | Sol                                                                         | ubı                                          | lity                                         | v of                                                               |                                         |                                         | S <sub>2</sub> O <sub>3</sub> in H <sub>2</sub> O at t° —                                                                                                      | Solubility of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> in H <sub>2</sub> O at t° —<br>Continued |                                        |                                        |                                                      |                                        |                                                                                                                                 |
| II Secondary hydrates                                    |                                                                             |                                              |                                              |                                                                    | IV Quaternary hydrate                   |                                         |                                                                                                                                                                |                                                                                                      |                                        |                                        |                                                      |                                        |                                                                                                                                 |
| t°                                                       | -                                                                           | Sol                                          | 100<br>u                                     | 2O3 ]<br>) g                                                       | _                                       |                                         | Solid phase                                                                                                                                                    | t°                                                                                                   | Solu H <sub>2</sub> O                  |                                        | -                                                    | Solid phase                            |                                                                                                                                 |
| 0<br>5<br>10<br>15<br>20<br>25<br>30<br>30 2             | 4                                                                           | 43<br>45<br>47<br>49<br>52                   | 96<br>56<br>25<br>27<br>38<br>15<br>57       | 72<br>77<br>82<br>89<br>97<br>108<br>130                           | 30<br>50<br>90                          | 7 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , 5H <sub>2</sub> O(II)  " " " " " " " " " Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , 4H <sub>2</sub> O(II) | 0<br>5<br>10<br>15<br>20<br>25<br>30<br>35                                                           | 58<br>59<br>59<br>50<br>61<br>61       | 08<br>49<br>00<br>57<br>35<br>03<br>94 | 147<br>152<br>156<br>162                             | 60<br>90<br>90<br>30<br>30<br>60<br>80 | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , <sup>4</sup> / <sub>8</sub> H <sub>2</sub> O(IV)  "" "" "" "" "" "" "" "" "" "" |
| 33 5<br>36 2<br>38 6<br>40 6                             | 3                                                                           | 60                                           | 51                                           | 141<br>153<br>168                                                  | 2                                       | 3                                       | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , 4H <sub>2</sub> O(II) " " +Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , H <sub>2</sub> O(II)                | 40<br>45<br>50<br>55<br>58                                                                           | 64<br>65                               | $\frac{22}{45}$                        |                                                      |                                        | "<br>"<br>" +Na <sub>2</sub> S <sub>2</sub> O <sub>8</sub>                                                                      |
| 0<br>5                                                   |                                                                             |                                              |                                              | 153<br>154                                                         |                                         |                                         | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , H <sub>2</sub> O(II)                                                                                           | *                                                                                                    | <u> </u>                               | 7                                      | / Q1                                                 | unt                                    | ary hydrates                                                                                                                    |
| 10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55 |                                                                             | 61<br>62<br>62<br>63<br>64<br>65<br>66<br>66 | 57<br>11<br>73<br>56<br>32<br>22<br>02<br>82 | 156<br>160<br>163<br>168<br>174<br>180<br>187<br>194<br>201<br>211 | 29<br>34<br>20<br>34<br>34<br>34<br>34  | 000000000000000000000000000000000000000 | и<br>и<br>и<br>и<br>и<br>и                                                                                                                                     | 0<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>27                                                     | 58<br>59<br>60<br>61<br>62<br>63<br>65 | 23<br>05<br>02<br>02<br>30<br>56       | 136<br>139<br>144<br>150<br>156<br>165<br>174<br>188 | 40<br>20<br>10<br>50<br>30<br>40       | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , 2H <sub>2</sub> O(V)  " " " " " " " " " " " " " " " " " "                       |
| 56                                                       | 56 5 " +Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> III Tertiary hydrates |                                              | 30<br>35                                     | 64                                                                 | 07                                      |                                         | 40                                                                                                                                                             | $Na_2S_2O_3$ , $H_2O(V)$                                                                             |                                        |                                        |                                                      |                                        |                                                                                                                                 |
| 0<br>5<br>10                                             |                                                                             | 48<br>51                                     | 14<br>44<br>66                               | 93<br>106                                                          | 3 9                                     | 37<br>35<br>30                          | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , 6H <sub>2</sub> O (III and IV) "                                                                               | 40<br>45<br>50<br>55<br>43                                                                           | 65<br>66                               | 58<br>58                               | 183<br>190<br>199<br>208                             | 50<br>20                               | "+Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , ¹/ <sub>2</sub> H <sub>2</sub> O(V)                                           |
| 13<br>14<br>14                                           |                                                                             | 54                                           | 96                                           | 122                                                                | 2 (<br>                                 | 00                                      | $^{"+Na_{2}S_{2}O_{3},\ ^{4}/_{3}H_{2}O(IV)}_{"+Na_{2}S_{2}O_{3},\ ^{3}/_{2}H_{2}O(III)}$                                                                      | 25<br>35<br>40                                                                                       | 64                                     | 60                                     | 179<br>182<br>185                                    | 50                                     | $Na_2S_2O_3, \frac{1}{2}H_2O(V)$                                                                                                |
| 0<br>5<br>10<br>15<br>20<br>25<br>30                     |                                                                             | 57<br>58<br>58<br>59<br>60<br>60             | 84<br>28<br>80<br>28<br>18<br>78             | 2 134<br>133<br>139<br>144<br>3 14<br>3 15<br>3 15                 | 7 5 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 | 20<br>70<br>70<br>60<br>10              | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , <sup>3</sup> / <sub>2</sub> H <sub>2</sub> O(III)  " " " " " " " "                                             | 45<br>50<br>55<br>60<br>65<br>70<br>70                                                               | 68<br>66<br>67<br>68                   | 5 6:<br>6 0:<br>6 5:<br>7 40           | 1 190<br>2 194<br>7 199<br>0 206<br>4 214            | 82<br>30<br>10<br>70                   | "<br>"<br>"<br>"<br>"<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub>                                                          |
| 35<br>40<br>45<br>47<br>48                               |                                                                             | 63                                           | 60                                           | 7 16<br>7 16<br>7 17<br>8 18                                       | 7                                       | 40<br>50                                | "                                                                                                                                                              | He                                                                                                   | eat<br>O 7                             | 18<br>ots                              | abso<br>Na                                           | rbe<br>S.S.                            | J Am Chem Soc 1906<br>8 321)<br>d by dissolving in $H_2C$<br>$0_3+5H_2O+100$ pts $H_2$                                          |
| 47<br>50<br>52<br>55<br>60<br>61                         |                                                                             | 65<br>65<br>66                               | 5 8<br>5 8<br>5 4                            | 8 18<br>0 18<br>9 19<br>5 19<br>7 21                               | 8<br>3<br>8                             | $\frac{20}{20}$                         | "<br>"                                                                                                                                                         | lowe 2 68 + Cher + +                                                                                 | r t€<br>})<br>⅓E                       | emp<br>H₂O<br>Soc<br>O<br>H₂C          | 190                                                  | m You<br>6, 2                          | 10 7° to 8° (Rudorff, E<br>ing and Burke, J Am<br>8 321)<br>ng and Burke)<br>ng and Burke)                                      |

# Thorum hydroxide, Th(OH)4

Insol in H<sub>2</sub>O

Sol in acids, except oxalic, molybdic, and

hydrofluoric acids

Insol in alkali hydroxides, but easily sol in alkalı carbonates+Aq More sol NH<sub>4</sub>OH+(NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq thanın (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (Berzelius) Not pptd in +Aq alone presence of tartaric and citric acids (Chydenius, Pogg 119 43)

4ThO<sub>2</sub> H<sub>2</sub>O Insol in water and acids at

boiling temp

#### Thorium hydroxybromide, Th(OH)<sub>2</sub>Br<sub>2</sub>+ 11H<sub>0</sub>O

Sol in alcohol (Rosenheim, B 1900, 33 979)

#### Thorum hydroxychloride, (OH)ThCl<sub>3</sub>+ 11H<sub>2</sub>O

(Rosenheim, B 1900, 33 Sol in alcohol 978)

Th(OH)<sub>2</sub>Cl<sub>2</sub>+5H<sub>2</sub>O Slowly takes up H<sub>2</sub>O

from the air

Sol in H<sub>2</sub>O without decomp

Pptd from solution in Sol in alcohol (Rosenheim, Z anorg alcohol by ether 1903, **35** 425 )

 $+8H_2O$ Hydroscopic, sol in alcohol

(Rosenheim, B 1900, 33 978)

Thorum hydroxyiodide, Th(OH)I<sub>3</sub>+10H<sub>2</sub>O Evolves iodine in the light (Rosenheim, Z anorg 1903, 35 430)

## Thorium iodide

Sol in H<sub>2</sub>O

# Thorium nitride, ThaN4

Decomp by H<sub>2</sub>O (Matignon, C R 1901, **132** 37)

# Thorium oxide, ThO<sub>2</sub>

When ignited is insol in HCl, and HNO<sub>3</sub>+ Aq Sol in H2SO4 by heating to boiling and subsequent addition of H<sub>2</sub>O Insol in alkali hydrates or carbonates+Aq

# Thorum metoxide, Th<sub>3</sub>O<sub>5</sub>+H<sub>2</sub>O

Sl sol in HCl (Locke, Z anorg 1894, 7 348)

+2H<sub>2</sub>O Loses 1 H<sub>2</sub>O at 100° Sol in  $H_2O$ , insol in  $NH_4OH + Aq$  (Locke)

#### Metathorium oxide

Sol in H<sub>2</sub>O after having been treated with conc HNO<sub>3</sub> or HCl+Aq, even if previously

 $ThO_2$ ,  $xTh(OH)_4$  Compare  $Th_3O_5$  (Locke)

(Stevens, Z anorg 1901, 27 42)

## Thorium peroxide, Th<sub>2</sub>O<sub>7</sub>

Precipitate (Cleve, C R 100 605)

#### Thorium oxychloride

Decomp by H2O into ThCl4 and ThO3 ThOCl2 Sol in H<sub>2</sub>O

Insol in abs alcohol (Matignon, A ch 1907, (8) **10** 133) +3H<sub>2</sub>O

+5H<sub>2</sub>O(Matignon, A ch 1907, (8) 10 135)

# Metathorium oxychloride, ThO2, xThCl4

Hydroscopic, sol in H<sub>2</sub>O, insol in absochol (Stevens, Z anorg 1901, **27** 47) alcohol

#### Thorium oxyfluoride, ThOF<sub>2</sub>

Insol in H<sub>2</sub>O

Sol in H2SO4 with decomp (Chauvenet, C R 1908, 146 974)

# Thorium oxysulphide, ThS<sub>2</sub>, 2ThO<sub>2</sub>

(Chydenius)

# Thorium phosphide

Insol in H<sub>2</sub>O (Berzelius)

## Thorium silicide, ThSi2

Sol in ag min acids, insol in ag alkalies Decomp by fusion with NaOH or KOH (Honigschmid, C R 1906, 142 158)

# Thorium sulphide, ThS2

Insol in warm H2SO4 Very slightly attacked by HNO3 or HCl+Aq Sol in hot aqua regia (Berzelius)

# Thoromolybdic acid

# Ammonium thoromolybdate,

 $(NH_4)_8Th(Mo_2O_7)_6+8H_2O_7$ 

Insol in H<sub>2</sub>O, sol in dil acids (Barbieri, C A 1913 3724)

 $(NH_4)_6H_2Th(Mo_2O_7)_6+11H_2O$ Insol in H<sub>2</sub>O, sol in dil acids (Barbieri)

# Silver thoromolybdate, Ag<sub>8</sub>Th(Mo<sub>2</sub>O<sub>7</sub>)<sub>6</sub>

Insol in H2O, sl sol in HNO3+Aq, but nearly insol in presence of AgNO<sub>3</sub> (Bar-

#### Sodium thoromolybdate, $Na_8Th(Mo_2O_7)_6+$ 15H<sub>2</sub>O

Insol in H<sub>2</sub>O, sol in dil acids (Barbieri) Na<sub>6</sub>H<sub>2</sub>Th(Mo<sub>2</sub>O<sub>7</sub>)<sub>6</sub>+17H<sub>2</sub>O Insol in H<sub>2</sub>O, sol in dil acids (Barbieri)

#### Thulium, Tm

# Thulium chloride, Tm<sub>2</sub>Cl<sub>6</sub>+14H<sub>2</sub>O

Very sol in H2O and in alcohol (James. J Am Chem Soc 1911, 33 1342)

#### Thulium hydroxide

Easily sol in dil acids (James, J Am Chem Soc 1911, **33** 1342)

Thulium oxide, Tm<sub>2</sub>O<sub>3</sub>

Slowly sol in hot cone acids (James, Am Chem Soc 1911, **33** 1342)

fin, Sn

Insol in H<sub>2</sub>O Tin is not atacked by disilled H<sub>2</sub>O when air is passed through it for a

Slowly sol in dil cold HCl+Aq, but apidly sol if hot and conc Slowly sol in 10t dil H<sub>2</sub>SO<sub>4</sub>+Aq, but decomp by hot

one H<sub>2</sub>SO<sub>4</sub>

Readily sol in cold aqua regia Attacked riolently by conc HNO<sub>3</sub>+Aq with pptn of SnO<sub>2</sub> Completely sol in dil cold HNO<sub>3</sub>+  $\mathbf{Aq}$  (1 pt  $\mathbf{HNO_3}$  1 pt  $\mathbf{H_2O}$ ) at 22° (Hay,  $\mathbf{N}$  22 298) Not attacked by pure conc INO<sub>8</sub>+Aq of 1512-1419 sp gr, but vioently attacked by less conc acid Also atacked by most conc acid if it contains NO<sub>2</sub> Millon, A ch (3) 6 95

If Sn is placed in dil HNO<sub>3</sub>+Aq of 1 15 sp it is sl dissolved, but soon pptd again as SnO<sub>2</sub> If a small amt of NH<sub>4</sub>Cl is added, the 3n remains permanently in solution, HCl+ Aq has a similar action (Ordway, Am J Sci (2) 23 220) Easily sol in the cold in nuxture of 1 vol  $H_2SO_4$ , 2 vols  $HNO_5$ , and 3 rols  $H_2O$  (Basset, C N 53 172)

HNO<sub>3</sub>+Aq containing less than 12% HNO<sub>3</sub> ttacks Sn and forms a stannous salt, which lecomposes, giving a turbid solution HNO<sub>3</sub> +Aq (12-45% HNO<sub>3</sub>) completely dissolves 3n, but solution becomes turbed on standing ±NO<sub>3</sub>+Aq containing more than 45% HNO<sub>3</sub> loes not dissolve Sn, but forms a white subtance, which is sol in H<sub>2</sub>O if over 70% acid s used, this solution soon becomes turbid Montemartini, Gazz ch it 22 384)

Sn dissolves in HNO<sub>3</sub>+Aq at low temps 0-21°) When very dil HNO<sub>3</sub>+Aq (14%) ±NO<sub>3</sub>) is used, the amount of stannous salt ormed decreases only slightly with increase of temp while with 30-40% acid it falls to ero at 21° (Walker, J Soc Chem Ind L893 845)

In presence of Fe, Cr or Al, HNO<sub>3</sub>+Aq cts on Sn to form soluble products, from which conc HNO<sub>3</sub> ppts all Sn as metastannic acid (van I eent, C C 1899 I 101)

Much more sol in acids when small quantiies of metallic salts have been added s most noticeable when PtCl<sub>4</sub> or tartar emetic s added to HCl+Aq HCl+Aq with tartar emetic exerts 11 times, and with PtCl, 13 mes the action exhibited by pure acid Millon, C R 21 47)
Sol in 2N HClO<sub>3</sub>+Aq (Hendrixson, J
Am Chem Soc 1904, 26 755)

Pyrosulphuric acid dissolves Sn on warm-(Divers, Chem Soc 1885, 47 639)

Hot telluric acid attacks Sn (Hutchins, Am Chem Soc 1905, 27 1183)

Sn is attacked by 17% HN<sub>3</sub>+Aq ((trus and Rissom, J pr 1898, (2) 58 299) (Cur-

(Kraus, J Am Chem Soc 1907, 29 1562) Insol in liquid NH<sub>8</sub> (Gore, Am Ch J 1898, **20** 830)

Sol in boiling alum +Aq (1 pt alum to 4

pts H<sub>2</sub>O) Sol in KHSO<sub>8</sub>, NH<sub>4</sub>Cl (1.4), and K<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub> Sl sol in KC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq, but not attacked by MgSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub>, KNO<sub>3</sub>, or Na<sub>2</sub>SO<sub>4</sub> +Aq (Cludius, J pr 9 161)

Sol in alkalies+Aq

Attacked easily by conc NaCl, KCl, or NH<sub>4</sub>NO<sub>8</sub>+Aq, not attacked by NH<sub>4</sub>Cl+Aq (Hallock, Am Ch J 6 52)

Sol in Fe(NO<sub>3</sub>)<sub>3</sub>+Aq in presence of HNO<sub>3</sub> +Aq in proportion of 1 atom Sn to 1 atom Fe (Lepèz and Storch, W A B 98, 2b 268)

Solubility in dil saline solutions

100 ccm H<sub>2</sub>O containing 0.5 g NaCl or KCl dissolve 6 mg Sn from 118 sq cm in one week when air without CO2 is passed through the solution, but none at all when the air contains CO<sub>2</sub>

100 ccm H<sub>2</sub>O containing 1 g NH<sub>4</sub>Cl dissolve 5 mg Sn under above conditions without CO<sub>2</sub>, and none with CO<sub>2</sub>

With 1 g MgCl<sub>2</sub>, 1 mg Sn was dissolved without CO2, and none with CO2

With 1 g K<sub>2</sub>SO<sub>4</sub>, 2 mg Sn were dissolved without CO<sub>2</sub>, and none with CO<sub>2</sub>

With 1 g KNO<sub>3</sub>, 3 mg Sn were dissolved

without CO<sub>2</sub>, and 1 mg with CO<sub>2</sub> With 1 g Na<sub>2</sub>CO<sub>3</sub>, 7 mg Sn were dissolved

without CO2 With 1 g NaOH, 220 mg Sn were dis-

solved without CO<sub>2</sub> CaO<sub>2</sub>H<sub>2</sub>+Aq did not dissolve

Dingl **221** 260)

Not attacked by sugar+Aq (Klein, C R **102** 1170)

½ ccm oleic acid dissolves 0 0134 g Sn in 6 days (Gates, J phys Chem 1911, 15 143)

Tin antimonide, SnSb

(Stead, J Soc Chem Ind 1897, 16 205)

Tin arsenide, Sn<sub>3</sub>As<sub>2</sub>

(Stead, J Soc Chem Ind 1897, **16** 206)

Tm (stannous) bromide, SnBr<sub>2</sub>

Sol in H<sub>2</sub>O

Sol in pyridine (Naumann, B 1904, 37 **4**609 )

Mol weight determined in pyridine and ethyl sulphide (Werner, Z anorg 1897, 15

Tin (stannic) bromide, basic, SrBr<sub>3</sub>OH+ 3H<sub>2</sub>O

Sol in H<sub>2</sub>O Decomp in aq solution when warmed

Sol in ether, methyl alcohol ethyl alcohol, acetone, acetic acid and esters of organic Nearly insol in benzene, ligroin and acids Sol in a solution of Na in liquid NH<sub>3</sub> | CHCl<sub>3</sub> (Pfeiffer, Z anorg 1914, 87 242)

Tin (stannic) bromide, SnBr4

Sol in H<sub>2</sub>O without evolu-Deliquescent (Balard) tion of heat

Decomp by  $H_2O$  much more quickly than  $nCl_4$  (Lorenz, Z anorg 1895, 9 378) Easily sol in AsBr<sub>2</sub> (Walden, Z anorg

1902, 29 374), PCl<sub>3</sub>, PBr<sub>3</sub> and S<sub>2</sub>Cl<sub>2</sub> (Walden, Z anorg 1900, 25 217) Sol in acetone (Naumann, B 1904, 37

+4H<sub>2</sub>O (Preis and Raymann, C C 1882)

773)

Stannic hydrogen bromide, SnBr4, 2HBr See Bromostannic acid.

Stannic bromide with MBr See Bromostannate, M

## Tin (stannic) bromochloride, SnClBr<sub>3</sub>

Fumes in moist air, decomp by H<sub>2</sub>O (Besson, C R 1897, 124 685)

SnCl<sub>2</sub>Br<sub>2</sub> Fumes in moist air Decomp by  $H_2O$ (Besson)

SnCl<sub>3</sub>Br Fumes in moist air Decomp by  $H_2O$  (Besson)

> loiodide, SnBr.I2 Decomp in aq solution

(Lenormand, C C 1899, II 521, 1899, **10** 114)

(stannous) chloride, SnCl<sub>2</sub>, and +2H<sub>2</sub>O Not deliquescent 100 pts H<sub>2</sub>O dissolve 83 9 pts SnCl<sub>2</sub> at 0° (Engel, A ch (6) 17 347) 100 pts H<sub>2</sub>O dissolve 269 8 pts SnCl<sub>2</sub> at 15°, and sat solution has sp gr 1 827 (Michel and Krafft, A ch (3) 41 478) Sol in a certain amount of H<sub>2</sub>O without decomp, but more H<sub>2</sub>O causes pptn of SnO, SnCl<sub>2</sub>

SnCl<sub>2</sub>+Aq absorbs O from air Melts in crystal H<sub>2</sub>O at 46° (Ordway) Sat solution boils at 121 7°

Sp gr of SnCl<sub>2</sub>+Aq at 15° containing 15

10 20 % SnCl<sub>2</sub>+2H<sub>2</sub>O, 1 0331 1 0684 1 1050 1 1442

40 %  $SnCl_2+2H_2O$ , 1 1855 1 2300 1 2779 1 3298

60 % SnCl<sub>2</sub>+2H<sub>2</sub>O, 1 3850 1 4451 1 5106 1 5823

75 % SnCl<sub>2</sub>+2H<sub>2</sub>O 1 6598 1 7452 1 8399 (Gerlach, Dingl 186 131)

Solubility of SnCl<sub>2</sub> in HCl+Aq

½ molecules SnCl<sub>2</sub> in milligrammes ir 10 ccm solution, HCl=molecules HCl ir milligrammes in ditto,  $H_2O = amt$   $H_2C$ present in grammes

 $SnCl_2$ 

| SnCl <sub>2</sub>                                                      | HCl                                                                 | Sum of<br>equiv                                                                 | Sp gr<br>of solu-<br>tion                                                              | H <sub>2</sub> O                                                                     |
|------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 74<br>66 7<br>63 75<br>68 4<br>81 2<br>94 2<br>117 6<br>147 6<br>156 4 | 0<br>6 6<br>13 54<br>24 8<br>34 9<br>40 0<br>44<br>49 4<br>66<br>78 | 74<br>73 3<br>77 29<br>93 2<br>116 1<br>134 2<br>161 6<br>197 0<br>222 4<br>235 | 1 532<br>1 489<br>1 472<br>1 524<br>1 625<br>1 724<br>1 883<br>2 114<br>2 190<br>2 199 | 8 33<br>8 35<br>8 198<br>7 869<br>7 305<br>6 880<br>6 108<br>5 387<br>4 715<br>4 309 |

(Engel, A ch (6) 17 347)

Solubility is thus diminished by HCl+Aq while there are less than 8-10 mols HCl for 1 mol SnCl<sub>2</sub> When that limit is passed the solubility rapidly increases (Engel)

Sol in very dil HCl or tartaric acid +Aq Sol in KOH+Aq Sol in conc SnOCl<sub>2</sub>+Aq (Gerlach) Sol in NH<sub>4</sub>Cl+Aq

Anhydrous SnCl2 is partially sol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 830) Sol in absolute alcohol Insol in oil of turpentine

11 41 pts SnCl<sub>2</sub> are sol in 100 pts ether at

11 38 pts SnCl<sub>2</sub> are sol in 100 pts ether

11 38 pts SnCl<sub>2</sub> are sol in 100 pts ether at 35 5° (Laszczynski, B 1894, **27** 2286)

Anhydrous SnCl<sub>2</sub> is sol in ether Jong, Z anal 1902, 41 596) 1 g anhydrous SnCl<sub>2</sub> is sol in 18 g acetone at 18° Sp gr of sat solution 18°/4° = 1 6

Sp gr of sat solution  $18^{\circ}/4^{\circ} = 16$ (Naumann, B 1904, 37 4336)

Sol in acetone and in methylal (Eid mann, C C 1899, II 1014)
Anhydrous SnCl<sub>2</sub> is sol in methyl acetate

to the extent of 157% (Schroder and Steiner, J pr 1909, (2) 79 63)

31 20 pts SnCl<sub>2</sub>+2H<sub>2</sub>O are sol in 100 pts ethyl acetate at—2°

35 53 pts SnCl<sub>2</sub>+2H<sub>2</sub>O are sol in 100 pts ethyl acetate at +22°

73 44 pts SnCl<sub>2</sub>+2H<sub>2</sub>O are sol in 100 pts ethyl acetate at 82° (Laszczynski, B 1894, **27** 2286)

1 pt anhydrous SnCl<sub>2</sub> is sol in 22 40 pts ethyl acetate at  $18^{\circ}$  D18°/4°=0 9215 (Naumann, B 1910, 43 319)

Insol in ethyl amine (Shinn, J phys 1907 **11** 538), pyridine (Naumann, B 1904, 37 4609), benzonitrile (Naumann, B 1914, **47** 1369)

Insol in CS<sub>2</sub> (Arctowski, Z anorg 1894, 6 257)

Sol in urethane (Castoro, Z anorg 1899,

**20** 61) Mol weight determined in pyridine and (Werner, Z anorg 1897, ethyl sulphide **15** 22)

Tin (stannic) chloride, basic, SnCl<sub>3</sub>OH+3H<sub>2</sub>O

Hydroscopic Sol in H<sub>2</sub>O

Sol in ether, alcohol, acetone, acetic acid Nearly insol in ligroin and benzene (Pfeiffer **Z** anorg, 1914, **87** 241)

#### Tin (stannic) chloride, SnCl4

(a) Ordinary modification—Deliquescent of in H<sub>2</sub>O On diluting SnCl<sub>4</sub>+Aq and Sol in H<sub>2</sub>O boiling, SnO<sub>2</sub> separates out SnCl<sub>4</sub>+Aq is not pptd by HNO<sub>3</sub>, HCl, or H<sub>2</sub>SO<sub>4</sub>+Aq,  $H_3PO_4+Aq$  ppts in a few days, and  $H_8AsO_4+$ Aq ın a short time No ppt is formed by IK<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>, KCl, NaCl, NH<sub>4</sub>Cl, KNO<sub>8</sub>, etc + Aq

Sp gr of SnCl<sub>4</sub>+Ag at 15°

| %<br>SnCl <sub>4</sub><br>+5H <sub>2</sub> O                                             | Sp gr                                                                                                                      | %<br>SnCl <sub>4</sub><br>+5H <sub>2</sub> O                                           | Sp gr                                                                                                                               | %<br>SnCl <sub>4</sub><br>+5H <sub>2</sub> O                                           | Sp gr                                                                                                                      |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 2<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>30<br>32 | 1 012<br>1 024<br>1 036<br>1 048<br>1 059<br>1 079<br>1 107<br>1 110<br>1 124<br>1 137<br>1 151<br>1 165<br>1 195<br>1 210 | 34<br>36<br>38<br>40<br>42<br>44<br>46<br>48<br>50<br>52<br>54<br>56<br>60<br>62<br>64 | 1 226<br>1 242<br>1 259<br>1 276<br>1 293<br>1 310<br>1 329<br>1 347<br>1 366<br>1 386<br>1 406<br>1 426<br>1 448<br>1 491<br>1 514 | 66<br>68<br>70<br>72<br>74<br>76<br>80<br>82<br>84<br>86<br>88<br>90<br>92<br>94<br>95 | 1 538<br>1 563<br>1 587<br>1 614<br>1 641<br>1 669<br>1 669<br>1 727<br>1 759<br>1 824<br>1 859<br>1 894<br>1 936<br>1 988 |
|                                                                                          |                                                                                                                            |                                                                                        |                                                                                                                                     |                                                                                        |                                                                                                                            |

(Gerlich Dingl 178 49)

Sp gr of SnCl<sub>4</sub>+Aq

| 65 7         29 45         55         24 47         34         14 90           65 29 12         54         24 02         33         14 45           64 28 64         53         23 56         32         14 00           63 28 17         52         23 11         31         13 56           62 27 70         51         22 65         30         13 11           61 27 24         50         22 20         29         12 67           60 26 77         49         21 74         28         12 23           59         26 30         48         21 29         27         11 79           58         25 84         47         20 83         26         11 35           57         25 38         46         20 38         25         10 91 | Deg<br>Baumé                                 | % Sn                                                                          | Deg<br>Baum(                                 | √ Sn                                                                 | Deg<br>Baum€                                 | / 5n                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65<br>64<br>63<br>62<br>61<br>60<br>59<br>58 | 29 12<br>28 64<br>28 17<br>27 70<br>27 24<br>26 77<br>26 30<br>25 84<br>25 38 | 54<br>53<br>52<br>51<br>50<br>49<br>48<br>47 | 24 02<br>23 56<br>23 11<br>22 65<br>22 20<br>21 74<br>21 29<br>20 83 | 33<br>32<br>31<br>30<br>29<br>28<br>27<br>26 | 14 45<br>14 00<br>13 56<br>13 11<br>12 67<br>12 23<br>11 79<br>11 35 |

(Heermann, Ch Z 1907, 31 680)

Sol in S<sub>2</sub>Cl<sub>2</sub> (Walden, Z anorg 1900, 25 217)

Easily sol in PCl<sub>3</sub> and PBr<sub>3</sub> (Walden, Z anorg 1900, 25 211 Very sol in liquid NH<sub>3</sub> (Gore, Am Ch

J 1899, **20** 830 Very sol in absolute alcohol, from which it is pptd by H<sub>2</sub>O Easily sol in ether, decomp by oil of turpentine Miscible with CS<sub>2</sub> and Br<sub>2</sub>

Sol in acetone (Naumann, B 1904, 37 4328

Sol in acetone and in methylal mann, C C 1899, II 1014) (Eid-

Sol in ethyl acetone (Naumann, B 1904, **37** 3601)

Distribution of SnCl<sub>4</sub> between H<sub>2</sub>O and xylene

n=pts by wt of Cl in 100 pts of H<sub>2</sub>O laver

m = pts by wt of Cl in 100 pts of xylene layer

k = partition coefficient

50 cc xylene+60 g SnCl<sub>4</sub> 5H<sub>2</sub>O

| t°    | n     | m     | k     |
|-------|-------|-------|-------|
| 66°   | 40 35 | 0 08  | 504 4 |
| 80°   | 39 95 | 0 175 | 228 5 |
| 97 5° | 40 24 | 0 33  | 122 1 |
| 111°  | 40 27 | 0 68  | 59 3  |

(Smirnoff, Z phys Ch 1907, **58** 377)

50 cc xylene +60 g SnCl<sub>4</sub> 4H<sub>2</sub>O<sub>5</sub>

| t°   | n      | m     | k    |
|------|--------|-------|------|
| 66°  | 41 905 | 0 925 | 45 3 |
| 80°  | 41 915 | 1 555 | 27 0 |
| 100° | 41 845 | 2 515 | 16 7 |
| 111° | 41 68  | 3 235 | 12 9 |

(Smirnoff)

50 cc xylene +60 g SnCl<sub>4</sub> 3H<sub>2</sub>O

| t    | n      | m     | k   |
|------|--------|-------|-----|
| 80°  | 43 205 | 9 95  | 4 4 |
| 94°  | 42 545 | 9 325 | 4 6 |
| 100° | 42 645 | 10 56 | 5 1 |
| 111° | 42 31  | 10 03 | 4 2 |

(Smirnoff)

 $+2\mathrm{H}_2\mathrm{O}$ Sol in H<sub>2</sub>O

+3H<sub>2</sub>O Tr pt 83° Soc 1891 (3) **6**, 85 ) +4H<sub>2</sub>O Tr pt 63° (Meyerhoffer, Bull

(Meyerhoffer)

Very deliquescent, and sol in  $+5\mathrm{H}_2\mathrm{O}$ H<sub>2</sub>() Decomp by alcohol Sol in HCl+Aq Tr pt 56° (Meyerhoffer)

More deliquescent than the 5H<sub>2</sub>O +8H<sub>2</sub>O Tr pt 19° (Meyerhoffer)

(Nollner, Z Ch 1865 45)  $+9H_{2}O$ 

(b) Metastannıc chloride —Sol in cold H<sub>2</sub>O, solution coagulates on boiling Conc HCl+Aq ppts from SnCl<sub>4</sub>+Aq When solution does not contain HCl, the addition of HCl+Aq causes a ppt, which dissolves in H<sub>2</sub>O HNO<sub>3</sub>, and H<sub>2</sub>SO<sub>4</sub>+Aq also ppt K<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>, and NaCl+Aq produce ppts insol in H<sub>2</sub>O, but sol in HCl+Aq NH<sub>4</sub>Cl or KCl+Aq do not ppt KNO<sub>3</sub>+Aq ppts slowly (Rose)

Tin (stannous) hydrogen chloride, SnCl<sub>2</sub>, HCl+3H<sub>2</sub>O

Decomp by  $H_2O$ Melts at -25° (Engel, C R 106 1398)

Tin (stannic) hydrogen chloride See Chlorostannic acid

Tim (stannous) hydrazine chloride,  $\mathrm{SnCl_2}$ ,  $\mathrm{2N_2H_4}$ ,  $\mathrm{HCl}$ 

Very hydroscopic Sol in H<sub>2</sub>O and abs alcohol (Curtius J pr 1894, (2) **50** 341)

Tin (stannic) chloride with MCl See Chlorostannate, M

Tin (stannous) chloride ammonia,  $SnCl_2$ ,  $NH_3$ 

(Berzelius) SnCl<sub>2</sub>, 4NH<sub>3</sub> Ppt (Naumann B 1904, **37** 4336)

Tin (stannic) chloride ammonia,  $SnCl_4$ ,  $2NH_3$ 

Sol in cold H<sub>2</sub>O without decomp, but decomposes by heating

Tin (stannous) chloride arsenate See Arsenate chloride, stannous

Tin (stannic) chloride cyanhydric acid,  $SnCl_4$ , 2HCN

Decomp on moist air or with  $H_2O$  (Klein, A 74 85)

Tin (stannous) chloride hydrazine,  ${\rm SnCl_2}, \ 2N_2H_4$ 

Decomp by H<sub>2</sub>O Insol in NH<sub>4</sub>OH+Aq (Franzen, Z anorg 1908, **60** 286)

Tin (stannic) chloride nitrogen sulphide, SnCl<sub>4</sub>, 2N<sub>4</sub>S<sub>4</sub>

Insol in most solvents
Decomp by warm NH<sub>4</sub>OH+Aq

Decomposes in the air (Wolbling, Z anorg 1908, 57 284)

Decomp by H<sub>2</sub>O (Davis, Chem Soc, 1906, 89 1576)

Tin (stannic) chloride phosphine, 3SnCl<sub>4</sub>, 2PH<sub>2</sub>

Decomp by H<sub>2</sub>O (Rose, Pogg 24 159)

Tin (stannous) chloride potassium stannous sulphate

See Sulphate, potassium stannous stannous chloride

Tin (stannic) chloride sulphur tetrachloride, SnCl<sub>4</sub>, 2SCl<sub>4</sub>

Very hygroscopic Sol in CHCls, ligroin, petroleum ether, CS<sub>2</sub>, POCl<sub>3</sub>, very sol in completely dry absolute ether, in benzene, acetacetic ester and in SCl<sub>2</sub> (Ruff, B 1904, **37** 4517)

Tin (stannic) chloride sulphide, 2SnCl<sub>4</sub>, SnS<sub>2</sub> See Stannic sulphochloride

Tm (stannic) chlorobromide, SnClBr<sub>3</sub>

Decomp by H<sub>2</sub>O (Ladenburg, A suppl 8 60)

SnCl<sub>2</sub>Br<sub>2</sub> Decomp by H<sub>2</sub>O (Ladenburg)

Tm (stannous) chloroiodide, SnClI

Decomp immediately by H<sub>2</sub>O (Henry,
Phil Trans 1845 363)

Tin (stannic) chloroiodide, SrCl<sub>2</sub>I<sub>2</sub>

Fumes in the air Decomp by H<sub>2</sub>O (Lenormand, J Pharm 1898 8)

SnClI<sub>3</sub> (Lenormand, J Pharm 1899, 10 114)

Tin (stannous) fluoride, SnF<sub>2</sub>
Easily sol in H<sub>2</sub>O (Berzelius, Pogg 1 34)

Tin (stannic) fluoride, SnF4

Very hydroscopic

Sol in H<sub>2</sub>O Slowly decomp in aq solution with separation of SnO<sub>2</sub> (Ruff, B 1904, **37** 681)

Tin (stannic) fluoride with MF See Fluostannate, M

Tin (stannous) hydroxide, 2SnO, H<sub>2</sub>O

Decomp to SnO when boiled with H<sub>2</sub>() More easily sol in acids than Sn or Sn() Sol in NaOH, and KOH+Aq, even when dil Insol or very sl sol in NH<sub>4</sub>OH, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, and K<sub>2</sub>CO<sub>3</sub>+Aq, sol in cold CaO<sub>2</sub>H<sub>2</sub>, and BaO<sub>2</sub>H<sub>2</sub> with decomposition on boiling (Fremy, A ch (3) 12 460) Only sl sol in NH<sub>4</sub>Cl+Aq hot or cold (Brett) Sl sol in NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Mercer)

| Solubility in NaOH+Aq                                    |                                                          |  |  |
|----------------------------------------------------------|----------------------------------------------------------|--|--|
| G Na 1n 20 ccm                                           | G Sn in 20 ccm                                           |  |  |
| 0 2480<br>0 3680<br>0 6394<br>0 8326<br>0 9661<br>2 1234 | 0 1904<br>0 2614<br>0 4304<br>0 5560<br>0 7849<br>1 8934 |  |  |

(Rubenbauer, Z anorg 1902, 30 335)

Not pptd in presence of Na citrate Spiller )

Sol in water-glass +Aq (Ordway) SnO<sub>2</sub>H<sub>2</sub> Solubility in 1 l H<sub>2</sub>O = O000135 g mol at 25° (Goldschm (Goldschmidt, Z hys Ch 1906, 56 389)

'un hydroxide,  $SnO_1 + 5H_2O$ -1-9H<sub>2</sub>O (Schiff, A 120 153

in sesquihydroxide, Sn<sub>2</sub>O<sub>3</sub>, xH<sub>2</sub>O

Sol in NH4OH+Aa Insol in H<sub>2</sub>O Fuchs, J pr 5 318)

# ın (stannıc) hydroxide

"a" modification

Obtained by pptn by alkalı in stannıc hloride solution

Freshly pptd substance when air dried ontains 73 5% H<sub>2</sub>O, when dried over H<sub>2</sub>SO<sub>4</sub> in a vaccum for 1 month 126% H<sub>2</sub>O Leated to glowing loses all H<sub>2</sub>O and passes ato the anhydride The "a" form is capable f existing in all degrees of hydration (Lorenz, anorg 1895, **9** 372-375)

"a" stannic hydrate is a white amorhous substance which is very sol in HNO3 then moist, sol in H2S()4 even dil, sol in ICl and not pptd by an excess and is not pptd by an  $N_{a}OH + Aq$ 

xcess

A solution of a stannic acid in HCl is idenical with a solution of freshly propired iqueus stannic chloride and gives no ppt with dil ICl, H2SO4, HNO3 or arsenic acid even on ong standing

β" modification

Obtained by oxiding and dissolving Sn in INO3, and from solution of sodium stannate Freshly pptd from HNO3 when air ried (ontains 21 3% H<sub>2</sub>O, and when dried ver H25()4 or in a vacuum 11 3%, -corre ponding to Sn(OH)4 and SnO(OH)2 respec-

Freshly pptd from sodium stannate soluion and air dried contains 22 5% H<sub>2</sub>O and then dried over H2SO4 or in a vacuum conains 12 1%,—corresponding to Sn(OH)<sub>4</sub> and nO(OH)<sub>2</sub> Passes into the anhydride when

eated to glowing

The " $\beta$ " form is capable of existing in all egrees of hydration It is a white amorhous substance which is insol in HNO:, in- (Young, J Am Chem Soc \$1897, 19 851)

sol in H<sub>2</sub>SO<sub>4</sub> even when conc , insol in HCl but changed by contact with the acid in that when the acid has been removed the ppt is readily sol in  $H_2O$ , though pptd again from solution by addition of HCl When freshly prepared the " $\beta$ " form is sol in NaOH+Aq but is pptd by an excess of NaOH

A solution of "\$" stannic acid in HCl behaves quite differently from an aq solution of stannic chloride in that it ppts metastannic sulphate when treated with H<sub>2</sub>SO<sub>4</sub>

This ppt dissolves when heated with dilute HNO<sub>8</sub> or HCl, but the solution on standing spontaneously forms another ppt A solution of "β' stannic acid in HCl gives a ppt when treated with arsenic acid (Lorenz, **Z** anorg 1895, **9** 372) See also Stannic acid

Tin hydroxyl chloride, SnO(OH)Cl See Chlorostannic acid

Tin (stannous) iodide,  $SnI_2$ , and  $+2H_2O$ Sl sol in cold, more abundantly in hot H<sub>2</sub>O, without decomp

#### Solubility in H<sub>2</sub>O

| t°                                                           | Pts SnI <sub>2</sub> in<br>100 pts<br>solution               | t°                                                                   | Pts SnI <sub>2</sub> in<br>100 pts<br>solution                       |
|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| 98 5<br>84 9<br>73 9<br>60 1<br>51 5<br>41 0<br>30 5<br>20 8 | 3 43<br>3 05<br>2 56<br>2 09<br>1 79<br>1 50<br>1 21<br>1 03 | 97 3<br>87 4<br>77 6<br>67 5<br>59 7<br>49 5<br>39 4<br>29 6<br>19 8 | 3 70<br>3 24<br>2 75<br>2 34<br>2 03<br>1 72<br>1 38<br>1 11<br>0 96 |

(Young, J Am Chem Soc 1897, 19 846)

# Solubility of SnI2 in HI +Aq at to Pts SnI<sub>2</sub> per 100 pts solvent

| t°                                           | 5 83%<br>HI                                                          | % 09 6                                               | $\left  \begin{array}{c} 1520\% \\ \mathrm{HI} \end{array} \right $ | 20 44%<br>HI                                         | 24 80 %<br>HI                                | 30 40°°                                            | 36 82%<br>HI                                       |
|----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | 0 98<br>1 16<br>1 40<br>1 69<br>2 07<br>2 48<br>2 95<br>3 46<br>4 03 | 0 23<br>0 33<br>0 46<br>0 66<br>0 91<br>1 23<br>1 65 | 0 64<br>0 71<br>0 82<br>1 11<br>1 37<br>1 83<br>2 40                | 1 81<br>1 90<br>2 12<br>2 51<br>2 92<br>3 70<br>4 58 | 4 06<br>4 12<br>4 34<br>4 78<br>5 43<br>6 38 | 10 06<br>10 35<br>11 03<br>11 97<br>13 30<br>15 52 | 23 46<br>23 15<br>23 76<br>24 64<br>25 72<br>27 23 |
|                                              | <del></del>                                                          | <del></del>                                          | <u>.                                    </u>                        |                                                      |                                              | ~= 10                                              | 051 \                                              |

(b) Metastannıc chloride —Sol in cold  $\rm H_2O$ , solution coagulates on boiling Conc  $\rm HCl+Aq$  ppts from  $\rm SnCl_4+Aq$  When solution does not contain  $\rm HCl$ , the addition of  $\rm HCl+Aq$  causes a ppt, which dissolves in  $\rm H_2O$   $\rm HNO_3$ , and  $\rm H_2SO_4+Aq$  also ppt  $\rm K_2SO_4$ ,  $\rm Na_2SO_4$ , and  $\rm NaCl+Aq$  produce ppts, insolution  $\rm H_2O$ , but sol in  $\rm H_2O$   $\rm NH_4Cl$  or  $\rm KCl+Aq$  do not ppt  $\rm KNO_3+Aq$  ppts slowly (Rose)

Tin (stannous) hydrogen chloride, SnCl<sub>2</sub>, HCl+3H<sub>2</sub>O

Decomp by  $H_2O$  Melts at  $-25^{\circ}$  (Engel, C R 106 1398)

Tin (stannic) hydrogen chloride See Chlorostannic acid

Tin (stannous) hydrazine chloride,  $SnCl_2$ ,  $2N_2H_4$ , HCl

Very hydroscopic Sol in H<sub>2</sub>O and abs alcohol (Curtius J pr 1894, (2) **50** 341)

Tin (stannic) chloride with MCl See Chlorostannate, M

Tin (stannous) chloride ammonia,  $SnCl_2$ ,  $NH_3$ 

(Berzelius)

ŠnCl<sub>2</sub>, 4NH<sub>3</sub> Ppt (Naumann B 1904, **37** 4336)

Tin (stannic) chloride ammonia,  ${\rm SnCl}_{2},$   ${\rm 2NH}_{3}$ 

Sol in cold  $\mathrm{H}_2\mathrm{O}$  without decomp , but decomposes by heating

Tin (stannous) chloride arsenate See Arsenate chloride, stannous

Tm (stannic) chloride cyanhydric acid, SnCl<sub>4</sub>, 2HCN

Decomp on moist air or with  $H_2O$  (Klein, A 74 85)

 $\begin{array}{c} \text{Tin (stannous) chloride hydrazine, } SnCl_2, \\ 2N_2H_4 \end{array}$ 

Decomp by H<sub>2</sub>O Insol in NH<sub>4</sub>OH+Aq (Franzen, 2 anorg 1908, **60** 286)

Tin (stannic) chloride nitrogen sulphide, SnCl<sub>4</sub>, 2N<sub>4</sub>S<sub>4</sub>

Insol in most solvents

Decomp by warm NH<sub>4</sub>OH+Aq
Decomposes in the air (Wolbling, Z
anorg 1908, **57** 284)

Decomp by  $H_2O$  (Davis, Chem Soc, 1906, 89 1576)

Tin (stannic) chloride phosphine, 3SnCl<sub>4</sub>, 2PH<sub>3</sub>

Decomp by H<sub>2</sub>O (Rose, Pogg 24 159)

Tm (stannous) chloride potassium stannous sulphate

See Sulphate, potassium stannous stannous chloride

Tm (stannic) chloride sulphur tetrachloride, SnCl<sub>4</sub>, 2SCl<sub>4</sub>

Very hygroscopic

Sol in CHCl<sub>3</sub>, ligroin, petroleum ether, CS<sub>2</sub>, POCl<sub>3</sub>, very sol in completely dry absolute ether, in benzene, acetacetic ester and in SCl<sub>2</sub> (Ruff, B 1904, **37** 4517)

Tin (stannic) chloride sulphide, 2SnCl<sub>4</sub>, SnS<sub>2</sub> See Stannic sulphochloride

Tin (stannic) chlorobromide, SnClBr<sub>3</sub>

Decomp by H<sub>2</sub>O (Ladenburg, A suppl 8 60) SnCl<sub>2</sub>Br<sub>2</sub> Decomp by H<sub>2</sub>O (Ladenburg)

Tm (stannous) chlorosodide, SnClI
Decomp immediately by H<sub>2</sub>O (Henry,
Phil Trans **1845** 363)

Tin (stannic) chloroiodide, SrCl<sub>2</sub>I<sub>2</sub>

Fumes in the air

Decomp by H<sub>2</sub>O (Lenormand, J Pharm 1898 8)

SnCII<sub>3</sub> (Lenormand, J Pharm 1899, 10 114)

Tm (stannous) fluoride, SnF<sub>2</sub>
Easily sol in H<sub>2</sub>O (Berzelius, Pogg 1 34)

Tin (stannic) fluoride, SnF4

Very hydroscopic Sol in H<sub>2</sub>O Slowly decomp in aq solution with separation of SnO<sub>2</sub> (Ruff, B 1904, **37** 681)

Tin (stannic) fluoride with MF See Fluostannate, M

Tin (stannous) hydroxide, 2SnO, H<sub>2</sub>O

Decomp to SnO when boiled with H<sub>2</sub>O More easily sol in acids than Sn or SnO Sol in NaOH, and KOH+Aq, even when dil Insol or very sl sol in NH<sub>4</sub>OH, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, and K<sub>2</sub>CO<sub>3</sub>+Aq, sol in cold CaO<sub>2</sub>H<sub>2</sub>, and BaO<sub>2</sub>H<sub>2</sub> with decomposition on boiling (Fremy, A ch (3) 12 460) Only sl sol in NH<sub>4</sub>Cl+Aq hot or cold (Brett) Sl sol in NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Mercer)

| G Na m 20 ccm                                            | G Sn in 20 ccm.                                          |
|----------------------------------------------------------|----------------------------------------------------------|
| 0 2480<br>0 3680<br>0 6394<br>0 8326<br>0 9661<br>2 1234 | 0 1904<br>0 2614<br>0 4304<br>0 5560<br>0 7849<br>1 8934 |
|                                                          |                                                          |

(Rubenbauer, Z anorg 1902, 30 335)

Not pptd in presence of Na citrate pıller ) Sol in water-glass +Aq (Ordway) Solubility in 1 l H<sub>2</sub>O =  $SnO_2H_2$ 0000135 g mol at 25° (Goldschmidt, Z ys Ch 1906, **56** 389)

n hydroxide, SnO,  $6\text{SnO}_2 + 5\text{H}_2\text{O}$ (Schiff, A 120 153  $+9H_{2}O$ 

n sesquihydroxide, Sn<sub>2</sub>O<sub>3</sub>, xH<sub>2</sub>O Insol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq 'uchs, J pr 5 318)

# n (stannic) hydroxide

"a" modification

Obtained by pptn by alkali in stannic loride solution Freshly pptd substance when air dried ntains  $73\overline{5}\%$  H<sub>2</sub>O, when dried over H<sub>2</sub>SO<sub>4</sub> in a vaccum for 1 month 126% H<sub>2</sub>O eated to glowing loses all  $H_2O$  and passes to the anhydride The " $\alpha$ " form is capable existing in all degrees of hydration (Lorenz, anorg 1895, 9 372-375)
"a" stannic hydrate is a white amor-

ious substance which is very sol in HNO<sub>3</sub> nen moist, sol in H2SO4 even dil, sol in Cl and not pptd by an excess Very sol

NaOH+Aq and is not pptd by an cess

A solution of a stannic acid in HCl is idenal with a solution of freshly prepared aqueis stannic chloride and gives no ppt with dil Cl, H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub> or arsenic acid even on ng standing

B" modification Obtained by oxiding and dissolving Sn in NO<sub>3</sub>, and from solution of sodium stannate pptn Freshly pptd from HNO3 when air ied contains 21 3% H<sub>2</sub>O, and when dried ver H<sub>2</sub>SO<sub>4</sub> or in a vacuum 11 3%,—corre onding to Sn(OH)4 and SnO(OH)2 respec-

Freshly pptd from sodium stannate soluon and air dried contains 22 5% H<sub>2</sub>O and hen dried over H2SO4 or in a vacuum conins 12 1%,—corresponding to Sn(OH)<sub>4</sub> and 1O(OH)<sub>2</sub> Passes into the anhydride when

ated to glowing The " $\beta$ " form is capable of existing in all grees of hydration It is a white amor-10us substance which is insol in HNO3, in- (Young, J Am Chem Soc 1897, 19 851)

sol in  $\rm H_2SO_4$  even when conc , insol in HCl but changed by contact with the acid in that when the acid has been removed the ppt is readily sol in H<sub>2</sub>O, though pptd again from solution by addition of HCl When freshly prepared the " $\beta$ " form is sol in NaOH+Aq but is pptd by an excess of

A solution of " $\beta$ " stannic acid in HCl behaves quite differently from an aq solution of stannic chloride in that it ppts metastannic sulphate when treated with H<sub>2</sub>SO<sub>4</sub>

This ppt dissolves when heated with dilute HNO<sub>8</sub> or HCl, but the solution on standing spontaneously forms another ppt A solution of "β' stannic acid in HCl gives a ppt when treated with arsenic acid (Lorenz. Z anorg 1895, 9 372)

See also Stannic acid

Tin hydroxyl chloride, SnO(OH)Cl See Chlorostannic acid

Tin (stannous) iodide,  $SnI_2$ , and  $+2H_2O$ Sl sol in cold, more abundantly in hot H<sub>2</sub>O, without decomp

## Solubility in H<sub>2</sub>O

| t°                                                           | Pts SnI <sub>2</sub> in<br>100 pts<br>solution               | t°                                                                   | Pts SnI <sub>2</sub> in<br>100 pts<br>solution                       |
|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| 98 5<br>84 9<br>73 9<br>60 1<br>51 5<br>41 0<br>30 5<br>20 8 | 3 43<br>3 05<br>2 56<br>2 09<br>1 79<br>1 50<br>1 21<br>1 03 | 97 3<br>87 4<br>77 6<br>67 5<br>59 7<br>49 5<br>39 4<br>29 6<br>19 8 | 3 70<br>3 24<br>2 75<br>2 34<br>2 03<br>1 72<br>1 38<br>1 11<br>0 96 |

(Young, J Am Chem Soc 1897, 19 846)

# Solubility of SnI<sub>2</sub> in HI+Aq at t° Pts SnI<sub>2</sub> per 100 pts solvent

| i_                                                           | %88.<br>HI                       | 6         | Ħ,                                                 | 15.2                  | H                                                  | 20 44   | "ĤĪ"                                         | 24 80   | H              | 3040%                                  | H        | 36 82%                           | H                                                  |
|--------------------------------------------------------------|----------------------------------|-----------|----------------------------------------------------|-----------------------|----------------------------------------------------|---------|----------------------------------------------|---------|----------------|----------------------------------------|----------|----------------------------------|----------------------------------------------------|
| 20 0<br>30 1<br>40 1<br>50 1<br>60 2<br>70 2<br>80 2<br>90 3 | 16<br>40<br>69<br>07<br>48<br>95 | 000000112 | 20<br>23<br>33<br>46<br>66<br>91<br>23<br>65<br>23 | 0<br>1<br>1<br>1<br>2 | 60<br>64<br>71<br>82<br>11<br>37<br>83<br>40<br>63 | 1122234 | 81<br>90<br>12<br>51<br>92<br>70<br>58<br>82 | 4444567 | 78<br>43<br>38 | 10<br>10<br>10<br>11<br>11<br>13<br>15 | 03<br>97 | 23<br>23<br>23<br>24<br>25<br>27 | 31<br>46<br>15<br>76<br>64<br>72<br>23<br>84<br>05 |

Solubility of SnI<sub>2</sub> at low temp in 29 95% HI+Aa

| Temp                                                              | Pts in 100 pts<br>solution                                                | Pts in 100 pts<br>solvent                                                   |
|-------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 1 5<br>1 5<br>6 0<br>10 5<br>15 2<br>24 8<br>30 7<br>34 8<br>40 3 | 12 96<br>13 15<br>12 35<br>11 01<br>10 48<br>9 36<br>8 78<br>8 70<br>9 51 | 14 89<br>15 14<br>14 09<br>12 36<br>11 70<br>10 33<br>9 62<br>9 50<br>10 50 |

(Young, J Am Chem Soc 1897, 19 854)

# Solubility of SnI<sub>2</sub> at low temp in 396% HI+Aq

| m                                     | Pts in 100 pt                             | Pts in 100 pts                            |                                           |
|---------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Temp                                  | I                                         | II                                        | of solvent                                |
| 0°<br>5 7°<br>10 5°<br>15 7°<br>20 3° | 13 52<br>16 44<br>19 47<br>23 56<br>25 50 | 13 56<br>16 37<br>19 60<br>23 68<br>25 60 | 15 66<br>19 71<br>24 27<br>30 92<br>34 30 |

(Young, J Am Chem Soc 1897, 19 852-853)

Sol in SnCl2+Aq Sol in warm alkalı chlorides or iodides + Aq, also in dil + Aq Very sl sol in CHCl<sub>3</sub>, CS<sub>2</sub>, or C<sub>6</sub>H<sub>6</sub> (Personne, C P **54** 216)

Sol in KOH+Aq (Rose)

(Naumann, B 1904, 37 Sol in acetone 4328)

# Tin (stannic) iodide, SnI4

Decomp by H<sub>2</sub>O into SnO<sub>2</sub> and HI Very sol in PCl<sub>3</sub> (Beckmann, Z anorg

1906, **51** 110) Sol in POCl<sub>3</sub> (Walden, Z anorg 1900,

**25** 212)

Easily sol in PCl<sub>4</sub> and PBr<sub>3</sub> (Walden, Z anorg 1900, 25 211)

Sol in liquid AsBr<sub>3</sub> forming a solution with sp gr = 3.731 at 15° (Retgers, Z phys Ch 1893, 11 342)

Sol in SOCl<sub>2</sub>, S<sub>2</sub>Cl<sub>2</sub> and SO<sub>2</sub>Cl<sub>2</sub> (Walden,

Z anorg 1900, **25** 215) Sol in SnCl<sub>4</sub> (Walden)

Sol in anhydrous alcohol, ether, and benzene 1 pt CS<sub>2</sub> dissolves 1 45 pts SnI<sub>4</sub> at ordinary temp (Schneider, Pogg 127

100 pts methylene iodide, CH<sub>2</sub>I<sub>2</sub>, dissolve 22 9 pts SnI<sub>4</sub> at 10° Sp gr of solution = 3 481 (Retgers, Z anorg 3 343)

# Solubility in organic solvents at to

| Solvent                       | t°   | G SnI4 in 100<br>g of the sat<br>solution | Sp gr of the |
|-------------------------------|------|-------------------------------------------|--------------|
| CCl <sub>4</sub>              | 22 4 | 5 25                                      | 1 59         |
| CCl <sub>4</sub>              | 50 0 | 12 50                                     | 1 63         |
| CHCl <sub>8</sub>             | 28 0 | 8 21                                      | 1 50         |
| C <sub>6</sub> H <sub>6</sub> | 20 2 | 12 65                                     | 0 95         |

(McDermott, J Am Chem Soc 1911, 33 1964)

Sol in methyl acetate (Naumann, B 1909, **42** 3790)

Sol in acetone (Eidman, C C 1899, II 1014)

Solubility in CS<sub>2</sub>

100 g of the sat solution contain at -58° -84° -89° -04° 16 27 10 22 9 68 10 65 9 41 g SnI4 (Arctowski, Z anorg 1896, 11 274)

Sol in allyl mustard oil (Mathews, J. phys Ch 1905, **9** 647)

#### Tin (stannous) hydrogen iodide, SnI<sub>2</sub>, HI Not obtained in pure state (Young, J

Am Chem Soc 1897, 19 856)

## Tin (stannous) iodide ammonia, SnI2, 2NH2 (Ephram and Schmidt, B 1909, 42 3857) SnI<sub>4</sub>, 8NH<sub>3</sub> (Ephram and Schmidt)

# Tin (stannic) iodide ammonia, SnI4, 3NH3

(Personne, C R 54 218) SnI<sub>4</sub>, 4NH<sub>3</sub> (Personne)

SnI<sub>4</sub>, SNH<sub>3</sub> (Rammelsberg, Pogg 48 169)

# Tin iodosulphide, See Tin sulphoidide

# Tin monoxide (Stannous oxide), SnO

Insol in H<sub>2</sub>O Sol in acids Very sl sol m boiling NH<sub>4</sub>Cl+Aq NaOH or k(/H+Aq (Rose) Insol in

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898, **20** 830 )

Insol in acetone (Naumann, B 1904, 37 4329)

#### Tin dioxide (Stannic oxide), SnO<sub>2</sub>

Insol in H<sub>2</sub>O or cone acids except cone H<sub>2</sub>SO<sub>4</sub> Insol in conc alkalies or NH<sub>4</sub>OH+

Aq Not absolutely insol m dil HNO<sub>3</sub>+Aq (Mulder)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898. **20** 830 )

Min Cassiterite (Tin stone) Not attacked by acids

Fin sesquioxide, Sn<sub>2</sub>O<sub>3</sub>

While moist, easily sol in  $NH_4OH+Aq$  31 sol in dil, more easily in conc HCl+Aq Berzelius)

Fin (stannic) oxybromide,  $Sn_3Br_6O + 12H_2O$ Decomp by  $H_2O$  into  $SnBr_2$  and  $H_2SnO_3$  $Sn_3Br_6O_2$  As above (Preis and Ravnann, C C 1882 773)

Cin (stannic) oxybromide nitrogen penioxide, SnO<sub>2</sub>, 3Br<sub>2</sub>, N<sub>2</sub>O<sub>5</sub>

Decomp by  $H_2O$  (Thomas, C R 1896, 22 33)

.

Cin (stannous) oxychloride, SnO, SnCl<sub>2</sub>+3H<sub>2</sub>O
Tinsol in H<sub>2</sub>O Sol in HCl, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>, and ill HNC<sub>3</sub>, or H<sub>2</sub>SO<sub>4</sub>+Aq (J Davy, Schw 10 325)
Sn<sub>8</sub>Cl<sub>14</sub>O<sub>8</sub>+10H<sub>2</sub>O Easily sol in H<sub>2</sub>O or deploy

Can be recrystallized from alcohol but not from  $H_2O$  (Tschermak, W A B 44 ! 736)

3SnO<sub>2</sub>, 2SnCl<sub>2</sub>+6H<sub>2</sub>O Very sl sol in H<sub>2</sub>O Sol in dil acids (Ditte, A ch 1882, 5) 27 146)

 $4SnO, SnCl_2+6H_2O$  (Ditte)

Fin (stannic) oxychloride, SnO<sub>2</sub>, SnCl<sub>4</sub>
Sol in H<sub>2</sub>O (Scheurer-Kestner, A ch
3) 47 6)

Fin (melastannic) oxychloride, 3SnO<sub>2</sub>, SnCl<sub>4</sub> +3H<sub>2</sub>O

Sol in little, decomp by much  $H_2O$  Weber, Pogg 122 368) 4SnO,  $SnCl_4+7IIO$  (Weber)

"Metastannyl chlorde β," Sn<sub>5</sub>O<sub>9</sub>Cl<sub>2</sub> Deiquescent Sol without decomp in a small amount of H<sub>2</sub>O or in a large amount of H<sub>2</sub>O ontaining a few drops HCl

Sol in the dechol (Engel, C R 1897,

.24 767) +4H<sub>2</sub>O and +9H O Sol in H O redified with one drop of HCl Pptd by excess HCl Engel, ( R 1897, 124 768)

"Parastannyl chlorade," Sn<sub>5</sub>O<sub>9</sub>Cl<sub>2</sub>+2H<sub>2</sub>O

Decomp by excess H<sub>2</sub>O

Sol in H<sub>2</sub>O, pptd by HCl (Fingel, C R 1897, **125** 465)

Γin (stannic) oxychloride nitrogen pentoxide, SnOCl<sub>2</sub>, 3SnCl<sub>4</sub>, N<sub>2</sub>O<sub>5</sub>

Hydroscopic, sol in  $H_2O$ Decomp by heat (1 homas, C R 1896, 122 32)

Fin (stannous) oxylodide, SnO, 3SnI<sub>2</sub>, 2SnO, 3SnI<sub>2</sub>, SnO, SnI<sub>2</sub>, and 2SnO, SnI<sub>2</sub> Decomp by much H<sub>2</sub>O (Personne, C R 14 216)

Tm oxysulphide, Sn<sub>2</sub>S<sub>3</sub>O+11H<sub>2</sub>O

Very sol in  $(NH_4)_2CO_3+Aq$ , slowly sol in  $H_2O$  (Schmidt, B 1894, 27 2739)

Tin phosphide, Sn<sub>2</sub>P

(Ragg, C C 1898, II 170)

SnP Sol m HCl+Aq Insol m HNO:

SnP<sub>2</sub> Not attacked by HCl Easily attacked by aqua regia (Emmerling, B 1879, 12 155)

SnP<sub>3</sub> Insol in HCl Slowly attacked by dil HNO<sub>3</sub> at 50° Oxidized by fuming HNO<sub>3</sub> with ignition (Jolibois, C R 1909, **148** 638)

Sn<sub>3</sub>P<sub>2</sub> Insol in mercury

Decomp by HCl (Stead, J Soc Chem Ind 1897, 16 206)

Sn<sub>4</sub>P<sub>3</sub> Attacked by HCl, HNO<sub>3</sub> and alkalies (Jobilois, C R 1909, **148** 637)

The only true compounds are Sn<sub>4</sub>P<sub>3</sub> and SnP<sub>3</sub> (Johbois, C R 1909, **148** 637)

Tin phosphochloride, Sn<sub>3</sub>P<sub>2</sub>Cl<sub>6</sub> (Mahn, Jena Zeit 5 1660)

Tın (stannous) selenide, SnSe

Decomp by boiling HCl+Aq Slowly oxidised by boiling HNO<sub>3</sub>+Aq, and easily dissolved in aqua regia (Schneider, Pogg 127 624) Easily sol in alkalies+Aq (Uelsmann, A 116 122), or scarcely even on boiling (Schneider), according to method of preparation Sol in alkali sulphides or selenides +Aq

Tin (stannic) selenide, SnSe<sub>2</sub>

Not attacked by H<sub>2</sub>O or dil acids, scarcely attacked by boiling conc HCl+Aq, gradually decomp by hot HNO<sub>3</sub>+Aq, easily dissolved by warm aqua regia, and hot conc H<sub>2</sub>SO<sub>4</sub>

Sol in cold, more easily in warm KOH, N<sub>4</sub>OH, or NH<sub>4</sub>OH+Aq (Uelsmann, A 116 122)

Tin (stannous) sulphide, SnS

1 l  $\rm H_2O$  dissolves 0 14 $\times$ 10 ° mols SnS at 18° (Weigel, Z phys Ch 1907, **58** 294) Insol in dil, sol in conc  $\rm HCl+Aq$  Sl sol in hot conc  $\rm HNO_3+Aq$  Insol in KOH

+H<sub>2</sub>O Insol in H<sub>2</sub>O, H<sub>2</sub>S+Aq, or dil acids, sol with decomp in conc acids, easily sol in hot conc HCl+Aq Insol in H<sub>2</sub>SO<sub>3</sub>+Aq Insol in NH<sub>4</sub>OH+Aq Insol in NH<sub>4</sub>Cl, or NH<sub>4</sub>NO<sub>3</sub>+Aq Scarcely sol in (NH<sub>4</sub>)<sub>2</sub>S+Aq, but easily sol in the same on addition of S (Rose)

10% NaOH+Aq dissolves SnS by violent boiling

Insol in cold, sl sol in hot Na<sub>2</sub>SO<sub>3</sub>+Aq (Materne, C C 1906, II 557)

Sol in alkali polysulphides + Aq Insol in acetone (Eidmann, C C 1899, II 1014), (Naumann, B 1904, 37 4329), ethyl acetate (Naumann, B 1910, 43 314)

Tin (stannic) sulphide, SnS<sub>2</sub>

Anhydrous (Mosarc gold) Insol in HCl or HNO<sub>3</sub>+Aq, but decomp by aqua regia Sol in hot KOH+Aq or K<sub>2</sub>CO<sub>3</sub>+Aq, also in hot K<sub>2</sub>S, Na<sub>2</sub>S+Aq, and (NH<sub>4</sub>)<sub>2</sub>S+Aq 1 l H<sub>2</sub>O dissolves 113×10-6 mols SnS<sub>2</sub> at 18° (Weigel, Z phys Ch 1997, 58 294)

at 18° (Weigel, Z phys Ch 1907, 58 294)
+xH<sub>2</sub>O Sl sol in NH<sub>4</sub>OH+Aq, but
readily in KOH, K<sub>2</sub>S, or Na<sub>2</sub>S+Aq, also in
hot cone HCl+Aq Decomp by hot HNO<sub>3</sub>
+Aq Insol in KHSO<sub>3</sub>+Aq Sol in K<sub>2</sub>CO<sub>3</sub> Insol in NH<sub>4</sub>Cl, and NH<sub>4</sub>NO<sub>8</sub>+Aq +Aq(Brett)

Pptd SnS<sub>2</sub> is insol in cold, sol in hot Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> +Aq Sol m Na<sub>2</sub>CO<sub>5</sub>+Aq Very sol m NaOH+Aq (Materne, C C 1906, II 557)

Sol in boiling cone H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq (Clarke, C N 21 124)

Insol in methyl acetate (Naumann, B 1909, **42** 3790), ethyl acetate (Naumann, B 1910, **43** 314), acetone (Naumann, B 1904, **37** 4329, Eidmann, C C **1899**, II 1014)

## Tin sesquisulphide, Sn<sub>2</sub>S<sub>3</sub>

Sol in moderately conc HCl (Antony and Niccoli, Gazz ch it 1892, 22 (2) 408)

## Iphochloride, SnS<sub>2</sub>, 2SnCl<sub>4</sub>

J dissolves out SnCl<sub>4</sub> (Dumas, Schw **409**)

mS<sub>2</sub>Cl<sub>12</sub>=SnCl<sub>4</sub>, 2SCl<sub>4</sub> Sol in H<sub>2</sub>O with separation of S

Gradually sol in dil HNO3+Aq Sol in POCl<sub>3</sub> (Casselmann, A 83 267)

# Tin sulphoiodide, SnS<sub>2</sub>I<sub>4</sub>

Decomp by H<sub>2</sub>O into SnO<sub>2</sub>, S, and HI, by cold cone HCl+Aq with separation of S, also by aqua regia, and HNO<sub>3</sub>+Aq

Cold KOH+Aq separates S and SnO<sub>2</sub> Completely sol in hot KOH+Aq

Sol in cold, more easily in hot CS2 or CHCl<sub>3</sub>

Decomp by alcohol (Schneider, Pogg **111** 249)

# Tin sulphophosphide, Sn<sub>2</sub>P<sub>2</sub>S

Insol in HCl, HNO<sub>3</sub> and aqua regia Sol in aq alkalı hydroxides, containing Cl<sub>2</sub> or Br<sub>2</sub> in solution (Granger, C R 1896, **122** 322)

## Tin (stannous) telluride, SnTe

Not attacked by conc HCl+Aq (Ditte, C R 97 42)

# Titanic acid, TiO2, xH2O

a-Titanic acid —Insol in H<sub>2</sub>O or alcohol When dried in the cold, is completely sol in 578)

acids, especially HCl, or dil H<sub>2</sub>SO<sub>4</sub>+Aq, but when the solution in acids is boiled, it is converted into  $\beta$ -titanic acid Very sl sol even when moist in  $H_2SO_3+Aq$  (Berthier) Sl sol in alkalı carbonates +Aq A complete solution in an alkalı carbonate +Aq can only be obtained by adding a Ti salt drop by drop to the alkaline solution, and allowing the ppt to dissolve entirely before adding more Ti salt On boiling the solution in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> +Aq (or in K<sub>2</sub>CO<sub>3</sub> or Na<sub>2</sub>CO<sub>2</sub>+Aq with NH4Cl) the titanic acid is pptd

Relatively easily sol in mineral acids, decreasing in the following order HCl, HNO<sub>3</sub>,

 $m H_2SO_4$  Insol in perchloric acid decker, Z anorg 1909, **64** 67) Sol in dil  $m H_2SO_4$  40 g  $m H_2O$  $40 \text{ g H}_2\text{O} + 70 \text{ g}$ H<sub>2</sub>SO<sub>4</sub> (sp gr 1 145) dissolves 0 33 g T<sub>1</sub>O<sub>2</sub> (Hall and Smith, Proc Am ın 15 mın Phil Soc 1905, 44 193)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J 1898**, 20** 830 )

β-Trtanic acid, Metatrtanic acid —Insol in H<sub>2</sub>O, acids except HF, or alkali hydrates or carbonates +Aq When digested with conc H<sub>2</sub>SO<sub>4</sub> until acid is evaporated, the residue is sol in H<sub>2</sub>O (Berzelius)

γ-Titanic acid -Sol in pure H<sub>2</sub>O, but  $\beta$ -acid is pptd by boiling (Knop, A 123 351)

Colloidal TiO<sub>2</sub> xH<sub>2</sub>O+Aq has been prepared by Graham (Chem Soc 17 325)

Barium titanate, 2BaO, 3TiO2 (Bourgeois, C R 103 141)

# Barium pertitanate peroxide See Pertitanate, barium peroxide

#### Calcium titanate, CaTiO<sub>3</sub>

(Ebelmen, C R **32** 711) Scarcely attacked by Min Perofskite HCl +Aq or other acids, except hot H SO<sub>4</sub>. which decomposes it

CaO, 2T<sub>1</sub>O<sub>2</sub> M<sub>1</sub>n Titanomorphite tially decomp by HCl+Aq, completely by

 $H_2SO_4$ 

# Cobaltous titanate, CoTiOs (Bourgeois, C C 1893, I 226)

Ferrous orthotitanate, Fe<sub>2</sub>T<sub>1</sub>O<sub>4</sub> (Hautefeuille, C R 59 733)

# Ferroferric titanate, $FeTiO_3$ , $xFe_2O_3$

Min Menaccanite Very sl sol in HCl or aqua regia with separation of TiO2

#### Ferric titanate

Not attacked by boiling H<sub>2</sub>SO<sub>4</sub> or conc HCl+Aq(Wohler and Liebig, Pogg 21 Magnesium titanate, MgTiO<sub>3</sub>

Insol in H<sub>2</sub>O and acids (Hautefeuille, A h (4) 4 169)

Min Gerkrehte

When finely powdered, is easily sol in hot HCl, or in cold HF in a few hours (Dick, Mmer, Mag 1894, **10** 146)

 $Mg_2T_1O_4$ Slowly decomp by boiling with HNO<sub>3</sub>+Aq (Hautefeuille, A ch (4) **169**)

#### Potassium titanate, K<sub>2</sub>T<sub>1</sub>O<sub>2</sub>

AnhydrousDecomp with H<sub>2</sub>O

 $+4H_2O$ Deliquescent Very sol in H<sub>2</sub>O Precipitated from aqueous solution by alcohol Demoly, Compt chim 1849 325)

# Potassium titanate, acid, $K_2O$ , $3T_1O_2 + 2H_2O$

Insol in  $H_2O$ (Demoly)

 $\overline{\text{K}_2\text{O}}$ ,  $6\text{TiO}_2 + 2\text{H}_2\text{O}$  (Demoly)  $\overline{\text{K}_2\text{O}}$ ,  $3\text{TiO}_2 + 3\text{H}_2\text{O}$  Insol in  $\overline{\text{H}_2\text{O}}$  Comoletely sol in HCl+Aq if only cold H<sub>2</sub>O is used for washing When heated to 100°, no onger completely sol in HCl+Aq (Rose, Pogg 74 563)

(Rose, Gilb Ann 73 78) K<sub>2</sub>O, 12T<sub>1</sub>O<sub>2</sub>

#### Sodium titanate, Na<sub>2</sub>TiO<sub>8</sub>

Decomp by H<sub>2</sub>O into NaOH, Anhydrous

and an acid titanate, insol in H2O +4H<sub>2</sub>O Deliquescent Very sol in H<sub>2</sub>O

Precipitated from aqueous solution by alcohol Demoly)

# Sodium titanate, acid, $2Na_2O$ , $9TiO_2+5H_2O$

If not heated to 100°, is sol in cold HCl+ Aq (Rose, Gilb Ann 73 78)

2Na<sub>2</sub>O, 3T<sub>1</sub>O<sub>2</sub> Insol in H<sub>2</sub>O, slowly sol n cold, easily in hot HCl+Aq (Cormimocuf, C R 115 823)

 $Na_2O$ ,  $2T_1O_2$  As above (C)

Insol in H<sub>2</sub>O, and nearly Na<sub>2</sub>O, 31<sub>1</sub>O<sub>2</sub> so in boiling HCl+Aq (C)

# Strontium titanate, 2SrO, 3TiO<sub>2</sub>

(Bourgeois, C R 103 141)

# **Zinc** titanate, ZnO, $TiO_2(?)$

(Lévy, A ch (6) 24 456)

2ZnO, 11O<sub>2</sub>(?) (I évy) 3ZnO, 2T1O<sub>2</sub> Slowly attacked by warm H<sub>2</sub>SO<sub>4</sub> or HNO<sub>4</sub>+Aq, and by H<sub>2</sub>SO<sub>4</sub>+HF Wholly sol in cold HCl+Aq (Lévy)

4ZnO, 511O<sub>2</sub> Not attacked by cold conc acids, but sol by boiling except in HCl+Aq

(Lévy)

ZnO, 3T<sub>1</sub>O<sub>2</sub> Insol in H<sub>2</sub>O, alcohol, or sther Dil HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, or HCl+Aq do not attack even on boiling, boiling H<sub>2</sub>SO<sub>4</sub> dis-Insol in H<sub>2</sub>O, alcohol, or solves with difficulty, not attacked by conc boiling alkalies+Aq (Lévy A ch (6) 25 **17**1 )

# Pertitanic acid

See Pertitanic acid

# Titanium, Ti

Decomp H<sub>2</sub>O even under 100° (Wöhler). not attacked by H2O under 500° (Kern. C N **33** 57)

Does not decomp  $H_2O$ 100° at

(Schneider, Z anorg 1894, 8 85)
Sol in HCl+Aq if warmed Rapidly sol in HF+Aq Sol in cold dil H<sub>2</sub>SO<sub>4</sub>+Aq, HNO<sub>4</sub>+Aq, or HC<sub>2</sub>H<sub>2</sub>O<sub>2</sub>+Aq Dissolves almost instantaneously in HF+Aq (Merz)
Sol in molten lead and iron, sol in HCl, HNO<sub>3</sub> and aqua regia (Moissan, C R 1895, **120** 293

*Amorphous* Loses its spontaneous inflammability when left for a time in contact with H<sub>2</sub>O (Schneider, Z anorg 1895, 8 85)

#### Titanium amide, $Ti(NH_2)_4$

Violently attacked by H<sub>2</sub>O (Stähler, B 1905, **38** 2629)

## Titanium tribromide, TiBr<sub>3</sub>+6H<sub>2</sub>O

Very hydroscopic (Stahler, B 1904, 37 4409)

#### Titanium tetrabromide, TiBr4

Deliquescent Decomp by H<sub>2</sub>O (Duppa, R 42 352)

Sol in absolute alcohol and in dry ether (Rosenheim and Schutte, Z anorg 1900, **24** 238)

#### Titanium bromonitride, TiNBr

Decomp by a small amount of H<sub>2</sub>O On addition of more  $H_2O$ , a part dissolves forming a solution which decomp on warming with separation of titanic acid It behaves similarly toward dil HNO2, dil HCl and dil H<sub>2</sub>SO<sub>4</sub> Completely sol in warm dil H<sub>2</sub>SO<sub>4</sub> (Ruff, B 1908, 41 2262)

#### Titanium carbide, TiC

Sol in HNO<sub>3</sub>+Aq (Shimer, C N 55 71) Insol in HCl Slowly sol in aqua regia (Moissan, C R 1895, **120** 295)

# Titanium carbide nitride, $T_{110}C_2N_8 = T_1(CN)_2$ ,

Insol in, and not attacked by boiling HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub> (Wollaston), but sol in HNO<sub>3</sub>+HF (Berzelius)

#### Titanium dichloride, TiCl<sub>2</sub>

Very deliquescent Decomposes H<sub>2</sub>O with violence Insol in ether, CS<sub>2</sub>, or CHCl<sub>3</sub> Decomp by 99 5% alcohol

#### Titanium trichloride, TiCls

Deliquescent Sol in H<sub>2</sub>O with evolution of heat

(Glatzel, B 9 1829) Verv sol in H<sub>2</sub>O (  $+4H_2O$ (Polidori, Z +6H<sub>2</sub>Oanorg 1898, **19** 307)

## Titanium tetrachloride, TiCl4

AnhydrousSol in H<sub>2</sub>O with evolution of much heat

+5H<sub>2</sub>O Deliquescent

## Titanium sulphuryl chloride, TiCl4SO8= T1Cl3OSO2Cl

Deliquesces gradually in moist air (Clausnitzer, B 11 2011)

# Titanium chloride ammonia, TiCl4, 4NH3

Solution in H<sub>2</sub>O is not Deliquescent (Rose) quite clear

According to Persoz (A ch 46 315), is TiCl<sub>4</sub>, 6NH<sub>3</sub> TiCl<sub>4</sub>, 6NH<sub>3</sub> and TiCl<sub>4</sub>, 4NH<sub>3</sub>

Both compds are unstable in moist air, insol in ether (Rosenheim, Z anorg 1901, 26 245)

TiCl<sub>4</sub>, 8NH<sub>8</sub> Violently decomp by H<sub>2</sub>O (Stahler, B 1905, 38 2627)

### Titanium tetrachloride cyanobromide, TiCls, NCClBr

(Schneider, Z anorg 1894, 8 92)

#### Titanium chloride cyanhydric acid, TiCl4, 2HCN

Deliquescent Sol in  $\rm H_2O$  with evolution of heat (Wohler, A  $\, 73 \,$  226 )

## Titanium trichloride nitrogen sulphide, $2T_1Cl_3$ , $N_4S_4$

Decomp rapidly in air (Davis, Chem Soc 1906, **89** (2) 1576)

#### Titanium tetrachloride nitrogen sulphide, $T_1Cl_4$ , $N_4S_4$

Hydroscopic

Decomp by H<sub>2</sub>O, HNO<sub>3</sub>, HCl, KOH and alcohol (Wolbling, Z anorg 1908, 57 282)

# Titanium chloride phosphine

Decomp by H<sub>2</sub>O, HCl+Aq, KOH+Aq,  $K_2CO_3+Aq$ , or  $(NH_4)_2CO_3+Aq$  (Rose)

#### Titanium tetrachloride phosphoryl chloride. T<sub>1</sub>Cl<sub>4</sub>, 2POCl<sub>3</sub>

(Ruff, B 1903, **36** 1783)

## Titanium chloronitride, TiNCl

Decomp by small amount cold H<sub>2</sub>O the addition of more H<sub>2</sub>O it is only partially decomp For complete solution, the addition of dil HCl or a mixture of warm dil H2SO4 and HF is necessary Easily sol in conc HNO<sub>3</sub> and in conc H<sub>2</sub>SO<sub>4</sub> (Ruff, B 1908, **41** 2259)

#### Titanium diffuoride

(Hautefeuille, C R 57 151) Probably sesquifluoride

#### Titanium sesquifluoride, Ti<sub>2</sub>F<sub>6</sub>

Appears to be two modifications, one sol in H<sub>2</sub>O, and the other insol in H<sub>2</sub>O (Hautefeuille, C R 59 189)

Insol in  $H_2O$  (Weber, Pogg 120 292)

#### Titanium tetrafluoride, TiF4

Decomp by H<sub>2</sub>O (Unverdorben) Sol in H<sub>2</sub>O, but solution decomp upon evaporation (Marignac, Ann Min (5) **15** 258)

Sol in H<sub>2</sub>O (Emich, M 1904, 25 910)

Very hydroscopic Sol in H<sub>2</sub>O Sl

Sl sol in conc HF+Aq Sol in cold POCl3 without decomp Decomp in warm POCl3

Sol in alcohol and dry pyridine
Insol in ether, CS<sub>2</sub>, CCl<sub>4</sub>, SiCl<sub>4</sub>, SiBr<sub>4</sub>,
SO<sub>2</sub>Cl<sub>2</sub>, SOCl<sub>2</sub>, SCl<sub>2</sub>, AsCl<sub>3</sub>, SO<sub>3</sub>, CrO<sub>3</sub>, PCl<sub>3</sub>
(Ruff, B 1903, **36** 1780) +2H<sub>2</sub>O Sol in H<sub>2</sub>O (Ruff, B 1903, 36

1780)

#### Titanium hydrogen fluoride, 2HF, $T_1F_4 =$ $H_2T_1F_6$

Sol in H<sub>0</sub>O with decomposition and separation of a basic salt Corresponds to fluosilicic acid, and may be considered as fluotitanic acid H<sub>2</sub>T<sub>1</sub>F<sub>6</sub>

#### Titanium fluoride with MF See Fluotitanate, M

Titanium tetrafluoride ammonia, TiF4, 2NH3 Sol in H<sub>2</sub>O, decomp in aq solution on boiling (Ruff, B 1903, 36 1781)

#### Titanium monohydroxide, TiO2H2

Ppt (Wohler, A 73 49)

 $T_{18}O_4H$ Not attacked by cold conc acids, sl attacked on warming Insol in cold or hot KOH+Aq (Winkler, B 1890, 23 2659)

# Titanium sequihydroxide, $T_{12}O_{8}$ , $xH_{2}O$

Decomposes very quickly with H<sub>2</sub>O, forming titanium dihydroxide

TiO<sub>3</sub>H<sub>8</sub> (Polidori, Z anorg 1899, **19** 306)

# Titanium dihydroxide

See Titanic acid

# Titanium hydroxychloride, TiCl<sub>8</sub>(OH)

Deliquescent Easily sol in H<sub>2</sub>O and ilcohol Sol in ether

T<sub>1</sub>Cl<sub>2</sub>(OH)<sub>2</sub>+1½H<sub>2</sub>O Deliquescent Sol in H<sub>2</sub>O, alcohol, and ether Aqueous solution

decomp by boiling  $I_1Cl(OH)_3+H_2O$ Nearly insol in H<sub>2</sub>O Insol in alcohol and ether (Konig and v der Pfordten, B 21 1708)

See also Titanium oxychloride

#### Titanium dnodide, TiI<sub>2</sub>

Very hydroscopic, insol in organic solvents, sol in conc HF and boiling HCl, decomp by  $\rm H_2O$ , alkalies,  $\rm H_2SO_4$  and  $\rm HNO_3$   $\rm C$  R 1908, **147** 66) (Defacqz,

# Titanium truodide, TiI<sub>3</sub>+6H<sub>2</sub>O

(Stabler, B 1904, 37 Very hydroscopic **14**10 )

## Titanium tetraiodide, TiI4

Fumes on air, and dissolves rapidly in H<sub>2</sub>O with evolution of heat Solution decomposes (Weber) on standing

## Titanium nitride, Ti<sub>8</sub>N<sub>4</sub>

Difficultly sol in warm HNO<sub>8</sub>+Aq More

easily sol in aqua regia (Rose)

Decomp by hot conc Insol in dil acids H<sub>2</sub>SO<sub>4</sub> and by conc HNO<sub>3</sub>, especially when HI is added, and by boiling KOH+Aq (Ruff and Eisner, B 1908, 41 2252)

Decomp by H<sub>2</sub>O and dil acids

Insol in all ordinary indifferent organic solvents (Ruff, B 1912, 45 1369)

Insol in H<sub>2</sub>O (Wohler)  $T_1N_2$ 

Is TiN, according to Guerin (C R 82 972)

# Titanium monoxide, TiO

(Moissan, C R 1895, 120 290)

## Titanium sesquioxide, Ti<sub>2</sub>O<sub>3</sub>

Insol in HCl or HNO<sub>3</sub>+Aq Difficultly sol in H<sub>2</sub>SO<sub>4</sub> (Ebelmen, A ch (3) **20** 392) When moist, insol in H<sub>2</sub>O or NH<sub>4</sub>OH+Aq, but quickly decomp to TiO2 Sol in oxygen acids, but quickly decomp (Berzelius)

## Titanium dioxide, TiO2

Insol in H<sub>2</sub>O, HCl, or dil Amorphous | H<sub>2</sub>SO<sub>4</sub>+Aq, even when heated for a long  $_{
m time}$ 

Sol in conc H<sub>2</sub>SO<sub>4</sub> by long digestion

T<sub>1</sub>O<sub>2</sub>, strongly ignited at 1000, is practically insol in conc H<sub>2</sub>SO<sub>4</sub> and HF

When less strongly ignited (by heating ortho or metatitanic acid to 700°) it is easily sol therein (Bornemann and Schirrmeister, C C 1910, II 1870)

Ignited Ti()2 is very difficultly sol in HI (Pennington, J Am Chem Soc 1896, 18 **5**6)

The solubility of ignited 11()2 in H2SO4 1s helped by  $H_2O_2$  (Weiss and Landecker, Z among 1909, 64 71)

The solubility in H2SO4 is increased by addition of  $H_2O_2$   $H_2O_2$  brings  $I_1O_2$  quickly and completely into solution in the presence of NH4OH, NH4Cl, NaOH, Na2CO3 and Na<sub>2</sub>HPO<sub>4</sub> ( 1909, **64** 71) (Weiss and Landecker, Z anorg

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

**1898, 20** 830)

Min Rutile, Brookite, and Crystalline Anatase Solubility as above

See also Titanic acid

Titanium oxide, Ti<sub>8</sub>O<sub>5</sub>

(Deville, C R 53 163)

True formula is Ti<sub>7</sub>O<sub>12</sub> (v der Pfordten, A **237** 201)

Titanium peroxide, TiO<sub>3</sub>

Solution in H<sub>2</sub>SO<sub>4</sub> is very Sol in acids stable, but the HCl solution decomposes very easily (Weber, B **15** 2599, Piccini, B **15** 2221, Classen, B **21** 370)

Titanium oxychloride, TiO2, TiOCl2+8H2O Sol in much H<sub>2</sub>O (Merz, Bull Soc 1867

401)

T<sub>12</sub>O<sub>2</sub>Cl<sub>2</sub> Insol in H<sub>2</sub>O Sol in NH<sub>4</sub>OH+ Aq with separation of TiO<sub>2</sub> See also Titanium hydroxychloride

## Titanium oxyfluoride

Insol in  $H_2O$ (Berzehus)

## Titanium oxyfluoride with MF See Fluoxypertitanate, M

## Titanium phosphide, TiP

Sl sol in boiling aqua regia Insol in dil or conc acids and alkalies Sl attacked by fuming HNO<sub>3</sub> in sealed tube at 250°-300° (Gewecke, A 1908, **361** 

# Titanium phosphochloride

See Phosphorus titanium chloride

# Titanium silicide, TiSi2

Sol in HF, insol in other min acids Slowly sol in 10% KOH+Aq (Honigschmid, C R 1906, 143 226)

# Titanium monosulphide, TiS

Insol in alkalies Difficultly sol in nitric acid and aqua regia

Insol in HF (v der Pfoidten, A 234

# Titanium disulphide, TiS<sub>2</sub>

Decomp slowly on moist air Insol in HCl or dil H SO<sub>4</sub>+Aq (Ebelmen)

Sol in aqua regia or HNO3+Aq Decomp by KOH+Aq or NaOH+Aq KSH+Aq (Rose)

Sol in HF at 100° (v der Pfordten, A **234** 257)

# Titanium sesquisulphide, Ti<sub>2</sub>S<sub>3</sub>

Insol in caustic alkalies+Aq Sol in HF at a high temp Insol in aqua regia (v der Pfordten, A 234 257)

# Titanomolybdic acid, TiO2, 12MoO3+22H2O

Very sol in H<sub>2</sub>O

Sol in ether (Pèchard, C R 1893, 117 790)

Ammonium titanomolybdate.

 $2(NH_4)_2O$ ,  $T_1O_2$ ,  $12M_0O_3+10H_2O$ 

Sol in H<sub>2</sub>O and acids, completely insol in solutions of ammonium salts (Pèchard)

Potassium titanomolybdate,  $2K_2O$ ,  $T_1O_2$ ,  $12M_0O_3 + 16H_2O$ Efflorescent

(Pèchard) Titanodecitungstic acid, H<sub>8</sub>TiW<sub>10</sub>O<sub>86</sub>+  $xH_2O$ 

(Lecarme, Bull Soc (2) 36 17)

Titanotungstic acid or Titanoduodecitungstic acid,  $H_8T_1W_{12}O_{42}+xH_2O$ (Lecarme, Bull Soc (2) 36 17)

#### Titanous acid

Sol in H<sub>2</sub>O

Sodium titanite,  $Na_3T_1O_3 = 3Na_2O$ ,  $T_{12}O_3$ Sol in dil acids (Koenig and v der Pfordten, B 22 2075)

Titanyl compounds See Titanium oxy-compounds

# Triamine cobaltic compounds See Dichrocobaltic compounds

# Trithionic acid, H<sub>2</sub>S<sub>3</sub>O<sub>6</sub>

Known only in aqueous solution Solution in H<sub>2</sub>O gradually decomposes in the cold, rapidly at 80° Not decomp if very dilute or in presence of acids, except HNO<sub>3</sub>, HClO<sub>3</sub>, and HIO<sub>3</sub> (Fordos and Gélis, A ch (3) **28** 451)

#### Trithionates

The trithionates are all sol in H<sub>2</sub>O, and very easily decomposed

# Ammonium trithionate, $(NH_4)_2S_8O_6$

Very deliquescent and unstable Very sol in H<sub>2</sub>O

Insol in abs alcohol (Divers and Ogawa, Chem Soc 1900, 77 337)

## Barium trithionate, $BaS_3O_6+2H_2O$

Very sol in H<sub>2</sub>O Precipitated from aqueous solution by large excess of alcohol Aqueous solution is very unstable (Kessler, Pogg 74 250)

# Lead trithionate, PbS<sub>3</sub>O<sub>6</sub>

Very sl sol in H<sub>2</sub>O Sol in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+Aq (Fogh, C R 110 524)

# Potassium trithionate, K2S8O6

Sol in H<sub>2</sub>O Insol in alcohol (Kessler. Pogg 74 270)

Sol in H<sub>2</sub>O with decomp Insol in alcohol (Langlois, A 1841, 40 102)

# Sodium trithionate, Na<sub>2</sub>S<sub>3</sub>O<sub>6</sub>

Very sol in H<sub>2</sub>O  $+3H_2O$  (Villiers, C R **106** 1356)

Thallous trithionate, Tl<sub>2</sub>S<sub>8</sub>O<sub>6</sub>

Sol in H<sub>2</sub>O (Bevan, C N 38 294)

#### Zinc trithionate

Sol in H<sub>2</sub>O, but decomposes upon warming the solution (Fordos and Gélis, C R 16 1070)

## Tungsten, W

M etallıc Not attacked by heating with fuming HNO<sub>3</sub>, aqua regia, or other acids, or by boiling KOH+Aq Sol in KOH+Aq and NaClO+Aq (v Uslar, A 94 255)

Not easily acted upon by moist air, if no CO<sub>2</sub> present Sol in a mixture of HF and HNO<sub>3</sub> Very slowly sol in H<sub>2</sub>SO<sub>4</sub>, HCl and

HF (Moissan, C R 1896, 123 15)

Very slowly attacked by HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>,

HCl and even CrO<sub>3</sub> A mixture of CrO<sub>3</sub> and

H<sub>2</sub>SO<sub>4</sub> dissolved 1 67 g in 16 hrs from a fine

wire and 1 36 g in 14 hours (Fink, Met Chem Eng 1910, 8 341)

Compact tungsten is not attacked by dil. and only sl dissolved by conc H<sub>2</sub>SO<sub>4</sub> Not attacked by dil or conc HCl HNO3 and HNO<sub>3</sub>+HČl attack slowly by long heating, forming thin layer of WO<sub>3</sub> Slowly ol in HNO<sub>3</sub>+HF (Weiss Z anorg 1910, **65** 339)

Aluminothermic tungsten is insol in acids and in aqua regia Sol in fused KOH (Stavenhagen, B 1899, **32** 1515)

Insol in HCl of any concentration at room temp and only very sl sol at 110° After being in contact with hot cone HCl (sp gr 1 15) for 175 hrs the metal lost 0 5% of its weight Sl sol in dil HCl at 110°

Insol in conc H<sub>2</sub>SO<sub>4</sub> at room temp and in dil H<sub>2</sub>SO<sub>4</sub> at 110° Somewhat sol in conc H<sub>2</sub>SO<sub>4</sub> at high temp

Insol in conc HNO3, and hot or cold HF Sl sol in aqua regia

Very sol in HF+HNO<sub>3</sub> (Ruder, J Am Chem Soc 1912, 34 387)

Insol in aqua regia and acids sol in fused KOH(Stavenhagen, B 1899, **32** 1514)

Insol in KOH+Aq Sol in fused KOH

Slowly sol in fused Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub> or mixture of the two

Somewhat sol in NaOCl+Aq (Ruder, J Am Chem Soc 1912, 34 388)

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

1898, 20 830)
Crystalline Insol in H<sub>2</sub>O, HCl, or H<sub>2</sub>SO<sub>4</sub> Oxidised by HNO<sub>3</sub> or aqua regia (D'Elhujar)

Sol in boiling KOH+Aq (Riche, A ch (3) **50** 5

Amorphous Easily oxidised by HNO3+ Aq (Zettnow)

# Tungsten amide

See Tungsten nitride

## ungsten arsenide, WAs2

Insol in  $\rm H_2O$  and other solvents Not ttacked by boiling HF or HNO<sub>3</sub> Sol in old HF+HNO<sub>3</sub> and in hot aqua regia. Not ttacked by hot KOH+Aq or NaOH+Aq Decomp by fused KOH or NaOH (Deacqz, C R 1901, 132 139)

## l'ungsten boride, WB2

Slowly attacked by conc acids, vigorously ttacked by aqua regia (Tucker and Moody, Chem Soc 1902, 81 16)

# l'ungsten dibromide, WBr2

Partly sol in H<sub>2</sub>O, the rest decomposing to WO<sub>2</sub> and HBr

#### Tungsten pentabromide, WBr<sub>5</sub>

Decomp by moist air or H<sub>2</sub>O Sol in austic alkalies+Aq

Very hydroscopic Fumes in the air

Decomp by H<sub>2</sub>O

Sol in HF, or cone HCl Sl sol in fuming HBr Decomp by dil HCl, cone HNO<sub>3</sub> or lil H<sub>2</sub>SO<sub>4</sub> Readily attacked by fused likalies or alkalies +Aq Sol in CCl<sub>4</sub>, CHCl<sub>5</sub>, CHBr<sub>3</sub>, abs alcohol, ether, essence of teresenthine and benzene (Defacqz, C R 899, 128 1232)

#### Cungsten hexabromide, WBr<sub>6</sub>

Decomp by H<sub>2</sub>O and in the air

Sol in NH<sub>4</sub>OH+Aq (Smith, J Am Chem Soc 1897, **18** 1100)

#### "ungsten bromochloride, WCl<sub>6</sub>, WBr<sub>6</sub>

Decomp by H<sub>2</sub>O Sol in HF Decomp y HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub> Violently attacked by used alkali or ilk ili+Aq Sol in most rgance solvents

WCl<sub>8</sub>, 3WBr. Properties like those of VCl<sub>8</sub>, WBr<sub>6</sub> (Defacqz, C R 1899, **129** 516) Decomp by H<sub>2</sub>() Sol in 40% HF+Aq 2° B HCl +Aq gives a sl ppt of WO<sub>8</sub> Decomp by HNO; and by H<sub>2</sub>SO<sub>4</sub> Sol in bs alcohol, cther, CS, C<sub>7</sub>H<sub>6</sub> and glycerine sol in CCl<sub>4</sub> only on warming Nearly insol n oil of turpentime (Defacqz)

#### `ungsten bronze

See-

Tungstate tungsten oxide, barium

Tungstate tungsten oxide, barium potas-

Tungstate tungsten oxide, barium sodium Tungstate tungsten oxide, calcium potasium

Tungstate tungsten oxide, calcium sodium

Tungstate tungsten oxide, lithium Tungstate tungsten oxide, lithium potas-

Tungstate tungsten oxide, potassium

Tungstate tungsten oxide, potassium solium Tungstate tungsten oxide, potassium stron-

Tungstate tungsten oxide, sodium

Tungstate tungsten oxide, sodium stron-tium.

# Tungşten carbide, W2C

Sol in boiling HNO<sub>8</sub>, very slowly acted upon by other acids (Moissan, C R 1896, **123** 16)

WC Insol in dil acids, only sl sol in  $\rm H_2SO_4$  and conc  $\rm HNO_3$ , sol in fused KClO<sub>3</sub> and KNO<sub>3</sub> (Williams, C R 198, 126 1724)

#### Tungsten dichloride, WCl2

Decomp on the air or with H<sub>2</sub>O (Roscoe)

#### Tungsten tetrachloride, WCl4

Deliquescent Partly sol in  $H_2O$ , with subsequent decomposition (Roscoe)

#### Tungsten pentachloride, WCl5

Very deliquescent Decomp with  $H_2O$  with hissing and evolution of heat and separation of  $W_2O_5$ 

Very sl sol in CS<sub>2</sub> (Roscoe)

#### Tungsten hexachloride, WCls

Not decomp by moist air or  $H_2O$  Decomp by alcohol Very sol in  $CS_2$  (Roscoe)

Easily sol in PCCl<sub>3</sub> (Teclu, A 187 255)

# Tungsten chloride nitrogen sulphide, WCl<sub>4</sub>, N<sub>4</sub>S<sub>4</sub>

(Davis, Chem Soc 1906, **89** (2) 1575)

#### Tungsten chloroarsenide, W2AsCl9

Hydroscopic, decomp by  $\rm H_2O$  and acids, sol in aq solution of alkalies, insol in anhydrous organic solvents (Defacqz, C R 1901, 132 139)

#### Tungsten chlorosulphide, W<sub>2</sub>S<sub>7</sub>Cl<sub>8</sub>

Decomp by H<sub>2</sub>O

Sol in S<sub>2</sub>Cl<sub>2</sub> (Smith and Oberholtzer, Z

anorg 1894 **5** 68)

 $\text{WCl}_{\epsilon}$ ,  $3\text{WS}_{\delta}$  Decomp by  $\text{H}_{2}\text{O}$  Insol in  $\text{CS}_{2}$  alcohol and  $\text{C}_{\delta}\text{H}_{\delta}$  (Defacqz, A ch 1901, (7) 22 266)

## Tungsten hexafluoride, WF6

Fumes in the air

Decomp by  $H_2O$  Easily sol in aq alkalies (Ruff, B 1905, **38** 747)

#### Tungsten diodide, WI2

Not decomp by  $H_2O$  (Roscoe, A 162 366)

Insol in H<sub>2</sub>O, CS<sub>2</sub> and alcohol Decomp by boiling H<sub>2</sub>O, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> and aqua regia, sol in fused KOH, and alkali carbonates (Defacqz, C R 1898, **126** 936)

#### Tungsten tetraiodide, WI4

Insol in H<sub>2</sub>O, ether, chloroform and turpentine, sol in abs alcohol, decomp when boiled with H2O, sol with decomp in dil HCl and H2SO4, in HNO3 and aqua regia, and in alkali hydroxides and carbonates fused or in aq solution (Defacqz, C R 1898, 127 511)

# Tritungsten nitride, W8N2

(Uhrlaub)

 $W_2N_3$ Insol in HNO<sub>3</sub>, dil H<sub>2</sub>SO<sub>4</sub> and NaOH+Aq (Rideal, Chem Soc 1889, 55 44)

## Tungsten nitride amide, W<sub>8</sub>N<sub>6</sub>H<sub>4</sub>=2WN<sub>2</sub>, $W(NH_2)_2$

Not attacked by acids or caustic alkalies+ Aq (Wohler, A 73 191)

# Tungsten nitride amide oxide, $W_7N_8H_4O_4 =$ $3WN_2$ , $W_2(NH_2)_2$ , $2WO_8$

Not attacked by acids or alkalies (Wohler)

#### Tungsten monoxide, WO

Insol in H<sub>2</sub>O Not attacked by HCl, HF, H<sub>2</sub>SO<sub>4</sub>, or KOH+Aq HNO<sub>3</sub>+Aq or aqua regia convert it into WO<sub>3</sub> (Headden, Sill Am J **145** 280)

> u in the dry way, is ata regia, which oxidises to

hen moist, is sol in HCl or H<sub>2</sub>SO<sub>4</sub>+ o in KOH+Aq Insol in NH4OH+ Riche, A ch (3) 50 5)

Insol in HCl, H2SO4 and cone aq sol in HNO<sub>3</sub> (Hallopeau, C R **27** 135)

#### Tungsten oxide, blue

 $W_2O_5$  (Riche, A ch (3) 50 33),  $W_3O_8$  (v Uslar),  $W_4O_{11}$  (Gmelin)

All are probably the same substance Not attacked by boiling HNO<sub>3</sub> or aqua regia Slowly sol in boiling KOH+Aq

# Tungsten trioxide, WO3

Insol in H<sub>2</sub>O or acids Sl sol in dil KOH +Aq, NaOH+Aq, Na<sub>2</sub>CO<sub>3</sub>+Aq, or H<sub>2</sub>CO<sub>3</sub>+ Aq, but easily sol in conc boiling solutions of same NH<sub>4</sub>OH+Aq when boiling has a solvent action

Insol in conc and dil H2SO4 (Desi. J

Am Chem Soc 1897, 19 214)

Min Tungstite Insol in acids Sol in NH<sub>4</sub>OH+Aq

# Tungsten oxide, W2O8

Sol in alkalies (Desi, J Am Chem Soc 1897, **19** 214)

Insol in acids and alkalies (Desi.

J Am Chem Soc 1897, 19 228)

+H<sub>2</sub>O Like W<sub>0</sub>O<sub>14</sub>+H<sub>2</sub>O (Allen and Gottschalk, Am Ch J 1902, 27 336)

W<sub>4</sub>O<sub>3</sub> (Desi, J Am Chem Soc 1897, 19 (Allen and

219)

Ŵ<sub>5</sub>O<sub>9</sub> (Desi)

 $W_5O_{14} + H_2O$ httle HCl Insol in H<sub>2</sub>O containing a

Slowly attacked by cold, conc MOH+Aq Allen and Gottschalk, Am Ch J 1902, 27 333)

## Tungsten trioxide ammonia, WO<sub>3</sub>, 3NH<sub>3</sub>

(Rosenheim and Jacobsohn, Z anorg 1906, **50** 306)

# Tungsten oxybromide, etc

See Tungstyl bromide, etc

# Tungsten monophosphide, WP

Not attacked by HF or HCl

Sol in warm HNO<sub>3</sub>+HF Slowly attached by hot HNO<sub>3</sub>

Not attacked by KOH + Ag or NaOH + Ag(Defacez, C R 1901, **132** 34)

#### Tungsten diphosphide, WP<sub>2</sub>

Insol in H<sub>2</sub>O and in most organic solvents, insol in HCl and HF, sol in a mixture of HF and HNO, in the cold, and in aqua regia on warming (Defacqz, C R 1900, 130 916)

# Tungsten phosphide, W<sub>4</sub>P<sub>2</sub>

Not attacked by any acid, not even by aqua regia (Wohler and Wright, A 79 244) W<sub>3</sub>P<sub>4</sub> (Wohler and Wright)

# Tungsten diselemide, WSe<sub>2</sub>

(Uelsmann)

## Tungsten triselenide, WSes

Easily sol in alkali sulphides or selenides (Uelsmann, Jahrb f Ch 1860 92) +Aq

#### Tungsten sılıcıde

Sol in HF

Only very sl sol in other acids (Warren, N 1898, **78** 319)

WS<sub>12</sub> Not attacked by ordinary acids and scarcely by warm aqua regia, but violently attacked by HNO<sub>4</sub>+HI Sl attacked by 10% alkalies+Aq (Honigschmid, M 1907, 28 1017)

Not attacked by dil or conc HCl, HI, HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub>, nor by not aqua regia

Attacked by HNO<sub>3</sub>+HF or by fused kalles (Defacqz, C R 1907, 144 850) alkalıes

Violently attacked by HNO<sub>3</sub>+HF  $WS_{1s}$ Not attacked by HNO<sub>8</sub>, H<sub>2</sub>SO<sub>4</sub>, HCl or HF (Frilley, Rev Mét 1911, **8** 509)

W<sub>2</sub>S<sub>18</sub> Insol in acids including HF, sol

in a mixture of HF and HNO<sub>8</sub>, sol in fused alkalı hydroxides and carbonates (Vigouroux, C R 1898, 127 394)

## Tungsten disulphide, WS<sub>2</sub>

Oxidised by HNO<sub>3</sub>+Aq (Berzelius) Insol in min acids

Sol in a mixture of HF and HNO<sub>8</sub> and in used alkalies and alkali carbonates acqz, C R 1899, 128 611)

#### **Fungsten** trasulphide, WS<sub>3</sub>

Somewhat sol in cold, abundantly in hot H<sub>2</sub>O, but separated out by the addition of salts, especially NH<sub>4</sub>Cl, or acids ilkalı sulphides, and hydrosulphides+Aq Sol in caustic alkalies, and alkali carbonates Slowly sol in NH<sub>4</sub>OH+Aq in the юld

## Fungstic acid, H<sub>2</sub>WO<sub>4</sub>

Insol in H<sub>2</sub>O Sol in HF Insol in tungstates + Aq

44 7% H<sub>2</sub>WO<sub>4</sub> is sol in 50% HF+Aq at

553% H<sub>2</sub>WO<sub>4</sub> is sol in 50% HF +Aq at 50°

100 g sat  $H_2WO_4+HCl+Aq$  contain ) 68 g  $H_2WO_4$  at 80°

98% H<sub>2</sub>WO<sub>4</sub> is sol in sat alcoholic HCl

Insol in alcoholic solutions of HBr and HI Rosenheim, Chem Soc 1911 100 (2) 402) Freshly pptd tungstic acid dissolves in 2O<sub>2</sub> (Kellner, Dissert 1909)
Insol in liquid NH<sub>3</sub> (Gore, Am Ch J

L**898, 20** 830)

 $\mathbf{H}_{4}\mathrm{WO}_{5}$ Precipitate Sl sol in H<sub>2</sub>O and equeous solutions of the tungstates Sol in >50-300 pts H<sub>2</sub>O When freshly pptd, sol n alkalı hydrites or carbonates + Aq (Anhon, J pr 9 6)

#### Metatungstic acid, H<sub>2</sub>W<sub>4</sub>O<sub>13</sub>+9H<sub>2</sub>O

Sol in H<sub>2</sub>() Solution may be boiled and vaporated to a syrupy consistency, when it uddenly gelitinises and ordinary tungstic ced is prompitated

Sol in H<sub>2</sub>O When heated to 50°, it beomes insol in H<sub>2</sub>O (Soboleff, Z anorg

**896, 12** 28)

## Solubility in H<sub>2</sub>O at t°

| t°   | 100 ccm II O dis<br>solve g of the cryst<br>und | Sp gr of the<br>solution |
|------|-------------------------------------------------|--------------------------|
| 0    | 41 46                                           | 1 6025                   |
| 22   | 88 57                                           | 2 5239                   |
| 43 5 | 111 87                                          | 3 6503                   |

(Soboleff)

Sp gr of solution of metatungstic acid at 7 5° containing

2 79 12 68 27 61 43 75% WO<sub>3</sub> 1 3274 1 6343 1 0257 1 1275 (Scheibler, J pr 83 273)

Sp gr of aqueous solution calculated by M = Mendelejeff, and G = (Gerlach (Z anal))**27** 300), containing

25% WOs, 20 10 15 1 285 M 1047 1 153 1 214 1 098 G 10469 10980 11544 12172 12873

35 40 45 50% WO. M 1366 1458 1 555 1 581 (?) G 13660 14540 15527 16630 17860

#### Solubility in ether at to

| t°   | 100 ccm ether dissolve<br>g of the cryst acid |
|------|-----------------------------------------------|
| 0    | 83 456                                        |
| 7 8  | 88 389                                        |
| 18 2 | 99 66                                         |
| 24 3 | 110 76                                        |

(Soboleff, Z anorg 1896, 12 32)

CollordalSol in  $H_2O$ Not precipitated by acids or alcohol Can be evaporated to dryness and heated to 200°, and still remains sol in  $H_2O$  Sol in  $\frac{1}{4}$ pt of  $H_2O$ 

Sp gr of aqueous solution containing 79 8% WO; 20 50 66 5 1 0475 1 2168 1 8001 2 596 3 243 (Graham, Chem Soc 17 318)

Perhaps paratungstic acid, H<sub>10</sub>W<sub>12</sub>O<sub>41</sub> (Klein, Bull Soc (2) **36** 547)

#### Tungstates

Few normal tungstates are sol in H<sub>2</sub>O, even some of the K and NH4 salts are very Most of the metatungstates however, are easily sol in H<sub>2</sub>O

Tungstates insol in H2O are usually insol in dil acids

Aluminum tungstate, Al<sub>2</sub>(WO<sub>4</sub>)<sub>8</sub>+8H<sub>2</sub>O Precipitate Insol in H<sub>2</sub>O and Na<sub>2</sub>WO<sub>4</sub>+

Aq Sol in (NH<sub>4</sub>)<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>+Aq, NaOH+ Aq, NH4OH+Aq Lasily sol in H<sub>3</sub>PO<sub>4</sub>,  $H_2C_2O_4$ , and

H<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>+Aq (Lotz, A 83 65) Sol in 1500 pts H2O at 15° (Lefort, C R

87 748)

Al<sub>2</sub>O<sub>3</sub>, 4WO<sub>3</sub>+9H<sub>2</sub>O Sol in 400 pts H<sub>2</sub>O at 15° (Lefort, C R **87** 748)

Al<sub>2</sub>O<sub>3</sub>, 5WO<sub>3</sub>+6H<sub>2</sub>O Sol in H<sub>2</sub>O, from which it is pptd by alcohol (Lefort)

Formula according to Lefort is Al<sub>2</sub>O<sub>3</sub>, 3WO<sub>3</sub> +3H<sub>2</sub>O, 2WO<sub>3</sub>

See also Aluminicotungstic acid

Aluminum paratungstate, 5Al<sub>2</sub>O<sub>3</sub>, 36WO<sub>3</sub>+  $46H_2O = Al_2O_3$ ,  $7WO_3 + 9H_2O'(?)$ 

Easily sol in an alum solution (Lotz, A **83** 65)

Aluminum ammonium tungstate, 3(NH<sub>4</sub>)<sub>2</sub>O,  $Al_2O_8$ ,  $9WO_8+4H_2O$ 

Sol in conc HNO3 and in conc HCl (Balke and Smith, J Am Chem Soc 1903, **25** 1230 )

Aluminum ammonium antimony tungstate See Aluminicoantimoniotungstate, ammonıum

Aluminum antimony tungstate See Aluminicoantimoniotungstic acid

Aluminum zinc tungstate, Al<sub>2</sub>O<sub>8</sub>, ZnO, 9WO<sub>8</sub>  $+20H_2O$ 

Very sol in H<sub>2</sub>O (Daniels, J Am Chem

Soc 1908, **30** 1850) 2Al<sub>2</sub>O<sub>8</sub>, 3ZnO, 18WO<sub>8</sub>+16H<sub>2</sub>O Sol in much H<sub>2</sub>O

Sol in very dil mineral acids or in acetic acıd (Daniels)

### Ammonium tungstate, (NH<sub>4</sub>)<sub>2</sub>WO<sub>4</sub>

Known only in solution  $(NH_4)_4W_3\mathring{O}_{11}+3H_2O=2(NH_4)_2O, 3WO_3+I_2O$  Sol in  $H_2O$  with decomp Decomp Sol in H<sub>2</sub>O with decomp on air with evolution of NH<sub>3</sub>, and formation of paratungstate Sol in NH<sub>4</sub>OH+Aq of paratungstate

Marignac, A ch (3) 69 23)
(NH<sub>4</sub>)<sub>4</sub>W<sub>5</sub>O<sub>17</sub>+5H<sub>2</sub>O = 2(NH<sub>4</sub>)<sub>2</sub>O, 5WO<sub>3</sub>+
5H<sub>2</sub>O Sol at ordinary temp in 26-29 pts H<sub>2</sub>O with partial decomposition (Marignac)

 $+2\frac{1}{2}H_{2}O$ ,  $+3H_{2}O$ ,  $+4H_{2}O$ ,  $+4\frac{1}{2}O$ d  $+5H_{2}O$  (Pinagel, Dissert, **1904**) +4½H<sub>2</sub>O, and  $+5H_2O$ 

 $(NH_4)_6W_8O_{27} + 8H_2O = 3(NH_4)_2O, 8WO_8 + 8H_2O$  Sol in  $H_2O$  (Marignac)

Collordal (NH<sub>4</sub>)<sub>2</sub>O, 6WO<sub>3</sub>+4 or 6H<sub>2</sub>O Miscible with water in nearly all propor-(Taylor, J Am Chem Soc 1902, 24 632)

## Ammonium metatungstate, $(NH_4)_2W_4O_{13}$

 $\begin{array}{ccccc} +6H_2O & (Marignac, A & ch & (4) & 3 & 74 \\ +8H_2O & Efflorescent & Very sol & in & H_2O \\ 1 & pt & dissolves at 15 ° in 0 & 84 & pt & H_2O & (Lotz) \end{array}$ 1 pt dissolves at ordinary temp in 035 pt H<sub>2</sub>O (Riche)

Solubility increases rapidly with the tem-

perature

Saturated solution at 40° is solid on cooling Sl sol in ordinary, insol in absolute alcol (Lotz) Insol in ether (Riche)  $[(NH_4)_2W_3O_{10}+5H_2O$  of Tirgueritte

 $(NH_4)_6W_{10}O_{51} + 17H_2O = 3(NH_4)_2()$ ,  $10WO_3$ +17H<sub>2</sub>O Very efflorescent Decomp by dissolving in pure H<sub>2</sub>O (Marignac, A ch (4) **3** 75)

#### Ammonium paratungstate, $(NH_4)_{10}W_{12}O_{41} =$ 5(NH<sub>4</sub>)<sub>2</sub>O, 12WO<sub>3</sub>

(Marignac, A ch (3) 69 25)

According to Lotz (A 91 49) and Scheibler (J pr 80 208), formula is  $(NH_4)_6W_7O_{24} \approx$ 3(NH<sub>4</sub>)<sub>2</sub>O, 7WO<sub>3</sub>

 $+5H_2O$ (Scheibler J pr **48** 232) Sol in 25-28 pts cold H<sub>2</sub>O +11H<sub>2</sub>O(Anthon)

Sol in 26 1 pts H<sub>2</sub>O at 107°, and 58 pts at 100° (Lotz)

Sol in 333 pts cold H<sub>2</sub>O, and 96 pts at 100° (Riche)

Sol in 22-38 pts H<sub>2</sub>O at 15-18° solution gradually decomposes, with the formation of a more soluble salt (Marignac) Not much more sol in NH4OH+Aq than (Anthon) in H<sub>2</sub>O Insol in alcohol (Kellner Dissert, 1909) Sol in H<sub>2</sub>O<sub>2</sub>

#### Ammonium bismuth tungstate See Bismuthicotungstate, ammonium

Ammonium cadmium paratungstate,  $3(NH_4)_2O$ , 12CdO,  $35WO_8 + 35H_2O$ Sol in H<sub>2</sub>O acidulated with HNO<sub>3</sub> Ppt (Lotz, A 91 49)

Ammonium cerium tungstate See Cericotungstate, ammonium

Ammonium cobaltous tungstate, 8(NH<sub>4</sub>)<sub>2</sub>O, 2CoO, 15WO₃+3H<sub>2</sub>O (Carnot, C R 109 147)

Ammonium hydroxylamine tungstate, NH4OWO4NH4

Sol in H<sub>2</sub>O (Hofmann, Z anorg 1898, **16** 465)

Ammonium iron (ferric) tungstate,  $5(NH_4)_2O$ ,  $Fe_2O_3$ ,  $5WO_3+5H_2O$ Sol in H<sub>2</sub>O (Borck)

Ammonium lanthanum tungstate See Lanthanicotungstate, ammonium

Ammonium magnesium paratungstate, 2(NH<sub>4</sub>)<sub>2</sub>O, 3MgO, 12WO<sub>8</sub>+24H<sub>2</sub>O

Very slightly sol in H<sub>2</sub>O (Marignac, A ch (3) **69** 58)

 $(NH_4)_2O$ , 2MgO,  $7WO_8+10H_2O$ sl sol in H2O, sol in H2O acidulated with HNO<sub>3</sub> (Lotz)

Ammonium mercuric tungstate,  $(NH_4)_2WO_4$ ,  $HgWO_4+H_2O$ 

Insol in H<sub>2</sub>O Decomp by acids or al-(Anthon) kalies

Ammonium neodymium tungstate See Neodymicotungstate, ammonium

Ammonium nickel tungstate See Nickelicotungstate, ammonium

Ammonium potassium paratungstate,  $5K(NH_4)O$ ,  $12WO_3+11H_2O$ 

Sol in boiling H<sub>2</sub>O, sl sol in cold H<sub>2</sub>O (Hallopeau, C R 1896, **123** 180)

Ammonium potassium sodium paratungstate,  $5(K, Na, NH_4)_2O, 12WO_3+13H_2O,$  where K Na  $NH_4=3$  3 4

 $10(K, Na, NH_4)_2O, 24WO_3+26H_2O,$  where  $K Na NH_4=3 3 14 (Laurent)$ 

Ammonium sodium par atungstate, 4(NH<sub>4</sub>)<sub>2</sub>O,  $Na_2O$ ,  $12WO_3 + 5H_2O$ 

Can be crystallised from H<sub>2</sub>O without

decomp (Lotz, A 91 57) +14H<sub>2</sub>O Sol m warm H<sub>2</sub>O (Hallopeau, C R 1896, 123 181)

 $(NH_4)_2O$ ,  $4Na_2O$ ,  $12WO_8+25H_2O$  Sl sol in H<sub>2</sub>O (Hallopeau, C R 1895, **120** 1344) 5Na<sub>2</sub>O, 15(NH<sub>4</sub>)<sub>2</sub>O, 48WO<sub>3</sub>+48H<sub>2</sub>O

(Marignac, A ch (3) 69 53) 2Na<sub>2</sub>O, 12WO<sub>3</sub>+15H<sub>2</sub>O

 $3(NH_4)_2O$ , (Marignac)

3(NH<sub>4</sub>)<sub>2</sub>O, 2Na<sub>2</sub>O, 12WO<sub>3</sub>+15H<sub>2</sub>O 3(NH<sub>4</sub>)<sub>2</sub>O, 3Na<sub>2</sub>O, 16WO<sub>3</sub>+22H<sub>2</sub>O 1n H<sub>2</sub>O without decomp (Hallopeau, C R 1896, 123 181)  $16WO_8 + 18H_2O$ 

3Na<sub>2</sub>O, 4(NH<sub>4</sub>)<sub>2</sub>O, (G<sub>1</sub>bbs, Am Ch J **7** 236)

Is 2Na<sub>2</sub>O, 3(NH<sub>4</sub>)<sub>2</sub>O, 12WO<sub>3</sub>+13H<sub>2</sub>O, according to Knorre (B 19 823)

Very sol in hot  $H_2O$  (Knorre, B 1886, **19** 823)

(NH<sub>4</sub>)<sub>2</sub>O, 3Na<sub>2</sub>O, 16WO<sub>3</sub>+38H<sub>2</sub>O (Wyrouboff, Bull Soc Min 1892, **15** 85)

 $6(NH_4)_2O$ ,  $2Na_2O$ ,  $20WO_3+24H_2O$ be cryst from boiling H<sub>2</sub>O (Baragiola, Dissert, 1902)

 $4Na_2O$ ,  $16(NH_4)_2O$ ,  $50WO_3+50H_2O$ scl in cold H<sub>2</sub>O (Gibbs, Proc Am Acad **15** 12)

Ammonium zinc paratungstate,  $(NH_4)_2O$ , 2ZnO,  $7WO_8+13H_2O$ 

Sl sol in boiling  $H_2O$ , but more easily on addition of ovalic tartaric, phosphoric, or dil nitric acids, or of ammonium tungstate (Lotz, A 91 49)

Ammonium zirconium tungstate See Zirconotungstate, ammonium

Ammonium metatungstate nitrate See Nitrate metatungstate, ammonium

Ammonium tungstate vanadate See Vanadiotungstate, ammonium

Antimony tungstate, Sb<sub>2</sub>O<sub>3</sub>, 5WO<sub>3</sub>+4H<sub>2</sub>O Sol in H2O without decomp (Lefort)  $Sb_2O_3$ ,  $6WO_3 + 8HO$ See also Antimoniotungstic acid

Barium tungstate, BaWO<sub>4</sub>

Insol in H<sub>2</sub>O Decomp by **Anhydrous** boiling HNO<sub>3</sub>+Aq (Geuther and Forsberg, **A 120** 270)

 $+\frac{1}{2}H_{2}O$ Insol in H<sub>2</sub>O or boiling H<sub>3</sub>PO<sub>4</sub>+ Aq Sol in boiling, less sol in cold  $H_2C_2O_4+$ (Anthon)

 $+2\frac{1}{2}H_{2}O$ Insol precipitate (Scheibler) Pptd BaWO4 is attacked by dil acids More sol in NH<sub>4</sub>NO<sub>3</sub>+Aq than in H<sub>2</sub>O (Smith and Bradbury, B 24 2930)

Barum ditungstate, BaW<sub>2</sub>O<sub>7</sub>+H<sub>2</sub>O (?)

Nearly insol in H2O 100 ccm H2O dissolve about 0 05 g at 15° (Lefort, A ch (5) **15** 325)

Barium tritungstate,  $BaW_3O_{10}+4H_2O$  (?)

Sol in about 300 pts H<sub>2</sub>O at 15° Decomp by boiling H<sub>2</sub>O into an insol salt C R **88** 798) +6H<sub>2</sub>O (Scheibler)

Barrum metatungstate,  $BaW_4O_{13}+9H_2O$ 

Efflorescent Quite sol in hot H<sub>2</sub>O Partly decomp by cold H<sub>2</sub>O into BaW<sub>8</sub>O<sub>10</sub> and WO<sub>3</sub>, which recombine on heating (Scherbler, J pr **80** 204)

Barium tungstate, BaW8O25+8H2O

Insol in H<sub>2</sub>O or HCl+Aq (Zettnow) BaW5O15 Barum bronze (Hallopeau, A ch 1900, (7) 19 121)

Barium paratungstate, Ba<sub>5</sub>W<sub>12</sub>O<sub>41</sub>+14H<sub>2</sub>O, or Ba<sub>3</sub>W<sub>7</sub>O<sub>24</sub>+8H<sub>2</sub>O

Insol in cold H<sub>2</sub>O, when freshly pptd is sl sol in HNO<sub>3</sub>+Aq (Lotz, A **91** 60) Sol in NH<sub>4</sub>Cl+Aq (Wackenroder)  $+27H_2O = Ba_3W_7O_{24} + 16H_2O$ Insol in cold, sl sol in hot H2O (Knorre, B 18 327)

Barium potassium tungstate tungsten oxide,  $BaW_4O_{12}$ ,  $5K_2W_4O_{12}$ 

(Engels, Z anorg 1903, **37** 136)

Barium silver metatungstate (Scheibler)

Barium sodium paratungstate, 2BaO, 3Na<sub>2</sub>O, 12 WO<sub>8</sub>+24H<sub>2</sub>O (Marignac), or BaO,  $2Na_2O$ ,  $7WO_8+14H_2O$  (Scheibler)

Insol in H<sub>2</sub>O

Barium sodium tungstate tungsten oxide, 2BaW<sub>4</sub>O<sub>12</sub>, 3Na<sub>2</sub>W̄<sub>5</sub>O<sub>15</sub>

BaW<sub>4</sub>O<sub>12</sub>, 5Na<sub>2</sub>W<sub>3</sub>O<sub>9</sub> (Engels, Z anorg 1903 **37** 131 )

Bismuth tungstate, Bi<sub>2</sub>O<sub>8</sub>, 6WO<sub>8</sub>+8H<sub>2</sub>O

Very sol in H<sub>2</sub>O with decomp Pptd by alcohol from aqueous solution (Lefort, C R **87** 748)

Cadmium tungstate, CdWO4

Anhydrous $+\mathrm{H}_2\mathrm{O}$ Sol in about 2000 pts H<sub>2</sub>O

(Lefort) Insol in H<sub>2</sub>O Sol in hot phos- $+2\mathrm{H}_2\mathrm{O}$ 

phoric or oxalic acids, or in NH<sub>4</sub>OH+Aq (Anthon, <u>J</u> pr 9 341) Sol in KCN+Aq (Smith and Bradbury,

B **24** 2390)

Lead tungstate, PbWO4

Insol in H<sub>2</sub>O or cold HNO<sub>3</sub>+Aq Sol in KOH+Aq Decomp by hot HNO3+Aq (Anthon, J pr 9 342)

Sol in about 4000 pts H<sub>2</sub>O (Lefort) Min Scheelenste, Stolzite Sol in KOH+ Aq, decomp by HNO<sub>3</sub>
Absolutely insol in NH<sub>4</sub>NO<sub>3</sub>+Aq (Smith

and Bradbury, B 24 2930)

Lead ditungstate,  $PbW_2O_7+2H_2O$  (?) Sol in about 80 pts H<sub>2</sub>O at 15° (Lefort)

Lead tritungstate, PbW<sub>8</sub>O<sub>10</sub>+2H<sub>2</sub>O (?) Ppt (Lefort)

Lead metatungstate, PbW<sub>4</sub>O<sub>13</sub>+5H<sub>2</sub>O Sl sol in cold, more in hot H<sub>2</sub>O Sol in hot HNO<sub>3</sub>+Aq (Scheibler, J pr 83 318)

Lead paratungstate, Pb<sub>3</sub>W<sub>7</sub>O<sub>24</sub> Insol in H<sub>2</sub>O, dil HNO<sub>8</sub>+Aq, (NH<sub>4</sub>)<sub>2</sub>WO<sub>4</sub> +Aq, or Pb(NO<sub>3</sub>)<sub>2</sub>+Aq Sol in NaOH+ Aq or boiling H<sub>3</sub>PO<sub>4</sub>+Aq (Lotz, A **91** 49)

Lead sodium paratungstate, PbO, 4Na<sub>2</sub>O, 12WO<sub>8</sub>+28H<sub>2</sub>O (Gonzalez)

Lithium tungstate, Li<sub>2</sub>WO<sub>4</sub> Rather easily sol in H<sub>2</sub>O (Gmelin)

Lithium metatungstate, Li<sub>2</sub>W<sub>4</sub>O<sub>13</sub> Insol in H<sub>2</sub>O (Knorre, J pr (2) 27 94) +xH<sub>2</sub>O Syrup (Scheibler)

Lithium paratungstate, Li<sub>10</sub>W<sub>12</sub>O<sub>41</sub>+33H<sub>2</sub>O  $(\text{or Li}_6W_7O_{24}+19H_2O)$ 

According to Scheibler, more sol than the paratungstates of the other alkalı metals

Lithium tungstate tungsten oxide, Li<sub>2</sub>W<sub>5</sub>O<sub>15</sub> Lithium bronze Insol in H<sub>2</sub>O

Lithium potassium tungstate tungsten oxide,  $L_{12}\bar{W}_{5}O_{15}$ ,  $3K_{2}W_{4}O_{12}$ 

Lithium potassium bronze Insol in H<sub>2</sub>O (Feit, B 21 135)

Lithium sodium tungstate, Li<sub>2</sub>WO<sub>4</sub>+3H<sub>2</sub>O<sub>4</sub>  $3(Na_2WO_4+3H_2O)$ 

(Traube, N Jahrb Miner, 1894, I 190)

Magnesium tungstate, MgWO4

Anhydrous Insol in H<sub>2</sub>O Gradually decomp by boiling conc HNO3+Aq (Geuther

and Forsberg, A 120 272) +3H<sub>2</sub>O Very sol in H<sub>2</sub>O, nearly insol

in alcohol (Lefort, A ch (5) **15** 329) +7H<sub>2</sub>O Slowly sol in cold, very easily in hot H<sub>2</sub>O (Ullik, W A B **56 2** 152)

Magnesium ditungstate,  $MgW_2O_7 + 8H_2O$  (?) Sol in about 100 pts H<sub>2</sub>O (Lefort)

Magnesium tritungstate,  $MgW_3O_{10}+4H_2O(?)$ Easily sol in H<sub>2</sub>O with gradual decomp (Lefort)

Magnesium me atungstate, MgW<sub>4</sub>O<sub>13</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Scheibler)

Magnesium paratungstate, Mg<sub>3</sub>W<sub>7</sub>O<sub>24</sub>+  $24H_2O$ 

Very difficultly sol in cold, somewhat sol in hot H<sub>2</sub>O (Knorre, B 19 825)

Magnesium potassium tungstate, MgWO4, K<sub>2</sub>WO<sub>4</sub> Very sl sol in H<sub>2</sub>O (Ullik)  $+2\mathrm{H}_2\mathrm{O}$ 

 $+6H_2O$ Precipitate

Magnesium potassium paratungstate,  $5(^{2}/_{3}\text{K}_{2}\text{O}, ^{1}/_{3}\text{MgO}), 12\text{WO}_{3}+24\text{H}_{2}\text{O}$ Insol in cold, sol in hot H<sub>2</sub>O peau, C R 1898, **127** 621)

Magnesium sodium paratungstate, 3MgO,  $3Na_2O$ ,  $14WO_8+33H_2O$ Nearly insol in H<sub>2</sub>O (Knorre, B 19

Manganous tungstate, MnWO4

825)

Min Hubnerite Partially sol in HCl+ Αq  $+2H_2O$ Insol in H<sub>2</sub>O, sol in warm H<sub>3</sub>PO<sub>4</sub> and H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq, sl sol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> +Aq Insol in cold HCl+Aq (Anthon) +H<sub>2</sub>O Sol in about 2500 pts H<sub>2</sub>O it 15° (Lefort)

Manganous ditungstate,  $MnW_2O_7 + 3H_2O$  (?) Sol in about 450 pts H<sub>2</sub>O at 15° (Lefort, A ch (5) 15 333)

Manganous tritung state,  $MnW_3O_{10} + 5H_2O(?)$ Decomp by H<sub>2</sub>O into MnW<sub>2</sub>O<sub>7</sub> and  $MnW_4O_{13}$  (Lefort, A ch (5) 17 480)

Manganous metatungstate, MnW<sub>4</sub>O<sub>13</sub>+  $10H_2O$ 

Very sol in H<sub>2</sub>O (Wyrouboff, Bull Soc Min 1892, **15** 82)

Manganous paratungstate, 5MnO, 12WO<sub>8</sub>+

(Gonzalez, J pr (2) 36 44) Mn<sub>3</sub>W<sub>7</sub>O<sub>24</sub>+11H<sub>2</sub>O When recently pptd, sol in a small amt of H2O acidulited with HNO<sub>3</sub> (Lotz)

Manganous potassium tungstate, 2MnO, 3K<sub>2</sub>O, 12WO<sub>3</sub>+16H<sub>2</sub>O

Completely insol in H<sub>2</sub>O (Hallopeau Bull Soc 1898, (3) 19 955)

Manganous sodium paratungstate, 3Na<sub>2</sub>O, 3MnO,  $14WO_8 + 36H_2O$ 

Sol in H<sub>2</sub>O (Knorre, B 19 826)

Manganic sodium tungstate See Permanganotungstate, sodium

Mercurous tungstate, Hg<sub>2</sub>WO<sub>4</sub>

Insol in  $H_2O$  (Anthon)

Impossible to obtain pure, as it is decomp

2Hg<sub>2</sub>O, 3WO<sub>3</sub>+8H<sub>2</sub>O H<sub>2</sub>O at 15° (Lefort) Sol in 100 pts

Mercurous metatungstate, Hg<sub>2</sub>W<sub>4</sub>O<sub>18</sub>+  $25H_2O$ 

Ppt (Scheibler, J pr 83 319)

Mercuric tungstate, HgWO4

Sl sol in H2O and very unstable (Lefort, A ch (5) 15 356)

3HgO, 2WO<sub>3</sub> Insol in H<sub>2</sub>O (Anthon) 2HgO, 3WO<sub>3</sub> Insol 3HgO, 5WO<sub>3</sub>+5H<sub>2</sub>O Insol in H<sub>2</sub>O (Anthon Sol in about 250 pts H<sub>2</sub>O at 15° (Lefort)

2HoO. 5WO<sub>2</sub>+7H<sub>2</sub>O Decomp by hot or

2HgO, 5WO<sub>3</sub>+7H<sub>2</sub>O Decomp cold H<sub>2</sub>O (Lefort, C R **88** 798)

Mercuric tritungstate, HgW<sub>3</sub>O<sub>10</sub>+7H<sub>2</sub>O (?) Sol in about 120 pts H<sub>2</sub>O at 15° (Lefort, A ch (5) 15 360)

## Molybdenum tungstate

Easily sol in H<sub>2</sub>O Insol in NH<sub>4</sub>Cl+Aq or in alcohol of 0.87 sp. gr (Berzelius)

#### Neodymium tungstate, Nd<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>

Very sl sol in H<sub>2</sub>O 1 pt is sol in 52630 pts H<sub>2</sub>O at 22°, 59580 pts at 65°, 66040 pts at 98° (Hitchcock, J Am Chem Soc 1895, **17** 532)

Nickel tungstate, NiWO4

+3H O Sol in about 1000 pts H<sub>2</sub>O at 15° (Lefort)

Insol in H<sub>2</sub>O or H<sub>2</sub>C<sub>2</sub>O<sub>1</sub>+Aq +6H<sub>2</sub>() Sol in boiling  $H_1PO_4+Aq$ ,  $HC_2H_3O_2+Aq$ , or in warm NII4()II+Aq (Anthon)

Nickel ditungstate,  $N_1W_2O_7 + 5H_2O$  (?) Sol in about 250 pts H<sub>2</sub>O (I cfort)

Nickel tritungstate,  $N_1W_3O_{10}+4H_2O$  (?)

Sol in ILO Pptd by ilcohol Decomp by cold or warm II O after above pptn fort)

Nickel metatungstate, NiW<sub>4</sub>O<sub>13</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Scheibler, J pr 83 273)

Nickel paratungstate, N<sub>13</sub>W<sub>7</sub>O<sub>24</sub>+14H<sub>2</sub>O

Sl sol in  $H_2C_2O_4+Aq$ Insol in H<sub>2</sub>() Completely sol in warm H<sub>3</sub>PO<sub>4</sub> or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+ Aq (Anthon)

Potassium tungstate, K<sub>2</sub>WO<sub>4</sub>

AnhydrousRather deliquescent Easily sol in H<sub>2</sub>O

 $+H_2O$ Easily sol in H<sub>2</sub>O Insol in alcohol

 $+2\mathrm{H}_2\mathrm{O}$ Very sol in H<sub>2</sub>O with absorption of heat

1 pt dissolves in 194 pts cold, and 066 pt boiling H<sub>2</sub>O Alcohol does not mix with conc aq solution, but slowly separates out the salt from it Acids, even H<sub>2</sub>SO<sub>3</sub>, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> or H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, separate out WO<sub>3</sub> from solution (Riche, A ch (3) 50 45)

#### Potassium $d_1$ tungstate, $K_2W_2O_7+2H_2O$

Sol in about 8 pts  $H_2O$  at 15°, but on heating is converted into-

100 pts H<sub>2</sub>O dissolve only 2-3 +3H<sub>2</sub>Opts at 15° (Lefort, A ch (5) 9 102)

Potassium tritungstate, K<sub>2</sub>W<sub>8</sub>O<sub>10</sub>+2H<sub>2</sub>O

Sol in 5-6 pts H<sub>2</sub>O at 15° Can be recryst from hot H<sub>2</sub>O (Lefort, A ch (5) 9 105)

Potassium melatungstate,  $K_2W_4O_{13}+5H_2O$ 

Not efflorescent Easily sol in H<sub>2</sub>O (Marignac)

 $(K_4W_5O_{17}+8H_2O \text{ of Margueritte})$  $+8H_2O$  Extremely efflorescent (Scheib-

Potassium octotungstate, K<sub>2</sub>W<sub>8</sub>O<sub>25</sub>

Insol in  $H_2O$  (Knorre, J pr (2) 27 49)

Potassium tungstate,  $K_8W_{10}O_{34} + 9H_2O =$  $4K_2O$ ,  $10WO_8 + 9H_2O$ 

Properties resemble the paratungstate (Gibbs, Proc Am Acad 15 11)

 $+8H_2O = K_4W_5O_{17} + 4H_2O$  Sol in 15 pts H<sub>2</sub>O at 15°, but decomposed by heating into  $K_2W_2O_7$  and  $K_2W_3O_{10}$  (Lefort, A ch (5) 9 104)

K<sub>10</sub>W<sub>14</sub>O<sub>47</sub> Very difficulty sol in cold, appreciably sol in hot H<sub>2</sub>O, probably with decomposition (Knorre)

Potassium paratungstate,  $K_{10}W_{12}O_{41}+11H_2O$ (or K<sub>6</sub>W<sub>7</sub>()<sub>24</sub>+6H<sub>6</sub>O, according to Lotz and Scheibler)

Much more sol in hot than cold  $H_2O$  (Anthon) Sol in 100 pts  $H_2O$  at 16° in 85 pts at 100° (An Sol in 46 5 pts cold and 15 15 pts boiling H2O (Riche)

By shaking the crystals several days at 20°, 1 pt dissolves in 71 pts H<sub>2</sub>O If the salt is treated with boiling water, more goes into solution the longer it is boiled, until after several days' boiling 1 pt of the salt dissolved in 5 52 pts H<sub>2</sub>O at 18° Kept in a closed flask, this solution contained after 26 days 1 pt of salt to 11 9 pts H<sub>2</sub>O, after 153 days, 1 pt of salt to 156 pts H₂O, after 334 days, 1 pt of salt to 156 pts H<sub>2</sub>O Insol in alcohol (Marignac)

+8H<sub>2</sub>O

Potassium sodium tungstate, K<sub>2</sub>WO<sub>4</sub>. 2Na<sub>2</sub>WO<sub>4</sub>+14H<sub>2</sub>O

Easily sol in hot and cold H<sub>2</sub>O (Ullık. W A B 56 2 150)

Deliquescent Sol in 1 pt cold, and ½ pt hot H<sub>2</sub>O (Anthon)

Potassium sodium paratungstate, Na<sub>2</sub>O, 4K<sub>2</sub>O, 12WO<sub>3</sub>+15H<sub>2</sub>O

Sol in H<sub>2</sub>O (Marignac)

 $\frac{8}{11}$ Na<sub>2</sub>O,  $\frac{3}{11}$ K<sub>2</sub>O,  $\frac{12}{12}$ WO<sub>8</sub>+25H<sub>2</sub>O Sol in H<sub>2</sub>O (Marignac)

Potassium strontium tungstate tungsten oxide, 5K2W4O12, SrW4O12 (Engels, Z anorg 1903, 37 143)

Potassium uranous tungstate See Uranosotungstate, potassium

Potassium zirconium tungstate See Zirconotungstate, potassium

Potassium tungstate tungsten oxide, K2WO4,  $W_2O_5$ 

(Scheibler, J Potassium tungsten bronze nr 83 321)

> Not attacked by I by alkalies (Knorre,

4WO<sub>2</sub> Not attacked by acids, , or by alkalies+Aq l (Zettnow, Pogg, **130** 262) Insol in s not exist (Knorre)

Potassium sodium tungstate tungsten oxide, 5K<sub>2</sub>W<sub>4</sub>O<sub>12</sub>+2Na<sub>4</sub>W<sub>5</sub>O<sub>15</sub>

Potassium sodium tungsten bronze Properties as potassium bronze

3K<sub>2</sub>W<sub>4</sub>O<sub>12</sub>, 2Na<sub>2</sub>W<sub>3</sub>O<sub>3</sub> As above (Knorre, J pr (2) 27 49)

Praseodymium tungstate, Pr<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>

Very sl sol in H<sub>2</sub>O

Insol in H2O at 20°, at 75°, 1 pt is sol in 23,300 pts H<sub>2</sub>O (Hitchcock, J Am Chem Soc 1895, 17 529)

Rubidium metatungstate, Rb<sub>2</sub>O, 4WO<sub>3</sub>+  $8H_{2}O$ 

Sol in about 10 pts cold H<sub>2</sub>O Moderately sol in warm H<sub>2</sub>O (Wyrouboff, Bull Soc Min 1892, 15 69)

Rubidium pentatungstate, Rb<sub>2</sub>W<sub>5</sub>O<sub>16</sub>

Almost insol in hot H<sub>2</sub>O When finely powdered, it is sol in alkali carbonates + Aq (Schaeffer, Z anorg 1904, 38 163)

Rubidium octotungstate, Rb<sub>2</sub>W<sub>8</sub>O<sub>25</sub> (Schaef-Insol in H<sub>2</sub>O, acids, and alkalies fer, Z anorg 1904, 38 103)

Rubidium paratungstate, 5Rb<sub>2</sub>O, 12WO<sub>2</sub>+ 18H<sub>2</sub>O

Very sl sol in H2O (Schaeffer, Z anorg 1904, 38 173)

Samarium metatungstate, Sm2O3, 12WO3+  $35H_{2}O$ 

Easily sol in H<sub>2</sub>O (Cleve)

Samarium sodium tungstate, Na<sub>5</sub>Sm<sub>4</sub>(WO<sub>4</sub>)<sub>9</sub>

Insol in H2O Slowly sol in dil acids. easily in conc HCl+Aq (Hogborn, Bull Soc (2) **42** 2)

Silver (argentous) tungstate, Ag<sub>4</sub>O, 2WO,

HNO<sub>3</sub>+Aq separates WO<sub>3</sub> KO dissolves out WO<sub>3</sub> and separates KOH+Aq (Wohler and Rautenberg, A 114 120)

Does not exist (Muthmann, B 20 983)

Silver tungstate, Ag2WO4

Sol in about 2000 pts H<sub>2</sub>O at 15° Easily decomp by NaCl+Aq or BNO<sub>3</sub>+Aq (Lefort)

Ag<sub>2</sub>W<sub>2</sub>O<sub>7</sub> Insol in H<sub>2</sub>O Nearly insol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> or H<sub>3</sub>PO<sub>4</sub>+A<sub>0</sub> More sol in KOH, NH<sub>4</sub>OH+Aq, or H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq (Anthon, J pr 9 347) +H<sub>2</sub>O Sol in about 5000 pts H<sub>2</sub>O at

(Lefort)

Silver metatungstate, Ag<sub>2</sub>W<sub>4</sub>O<sub>18</sub>+3H<sub>2</sub>O

Sl sol in H<sub>2</sub>O (Scheibler, J pr 83 318) Nearly insol in H<sub>2</sub>O (Rosenheim, Z anorg 1911, 69 250)

Silver paratungstate, Ag<sub>10</sub>W<sub>12</sub>O<sub>41</sub>+8H<sub>2</sub>O (Gonzalez, J pr (2) 36 44)

Silver tungstate ammonia, Ag2WO4, 4NH3

Sol in H<sub>2</sub>O with rapid decomp (Widmann, Bull Soc (2) 20 64)

Sodium tungstate, Na<sub>2</sub>WO<sub>4</sub>+2H<sub>2</sub>O

Sol in 4 pts cold, and 2 pts boiling H2O (Vauguelin and Hecht)

Sol in 1 1 pts cold, and 0 5 pt boiling H<sub>2</sub>O

Sol in 244 pts H<sub>2</sub>O at 0°, 181 pts at 15°, 081 pt at 100° (Riche)

### Solubility in H<sub>2</sub>O at t°

| t°                                            | % Na <sub>2</sub> WO <sub>4</sub>                  | Mols H <sub>2</sub> O<br>to 1 mol<br>Na <sub>2</sub> WO <sub>4</sub> | Mols of<br>anhydrous<br>salt to<br>100 mols<br>H <sub>2</sub> O |
|-----------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|
| -3 5<br>+0 5<br>21 0<br>43 5<br>80 5<br>100 0 | 41 67<br>41 73<br>42 27<br>43 98<br>47 65<br>49 31 | 22 87<br>22 80<br>22 30<br>20 80<br>17 95<br>16 79                   | 4 37<br>4 39<br>4 48<br>4 81<br>5 57<br>5 95                    |

(Funk, B 1900, 33 3701)

See also +10H<sub>2</sub>O

| Sp gr      | of Na <sub>2</sub> WO <sub>4</sub> +Aq at 24 5° containing              |
|------------|-------------------------------------------------------------------------|
| 5          | 10 15 % Na <sub>2</sub> WO <sub>4</sub> +2H <sub>2</sub> O <sub>4</sub> |
| 036        | 1 0/5 1 119                                                             |
| <b>2</b> 0 | 25 30 % Na <sub>2</sub> WO <sub>4</sub> +2H <sub>2</sub> O,             |
| 166        | 1 215 1 274                                                             |
| 35         | 40 44 % Na <sub>2</sub> WO <sub>4</sub> +2H <sub>2</sub> O              |
| 349        | 1 430 1 492                                                             |
|            | (Franz, J pr (2) 4. 238)                                                |

Sp gr of Na<sub>2</sub>WO<sub>4</sub>+Aq at 25°

| Sp gr at 20°                                                                                                                                                                                                                                                         | Per cent Na <sub>2</sub> WO <sub>4</sub>                                                                                                                                                              | Per cent<br>Na <sub>2</sub> WO <sub>4</sub> 2H <sub>2</sub> O                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 02016<br>1 03945<br>1 04292<br>1 05831<br>1 07449<br>1 08209<br>1 09687<br>1 12114<br>1 13036<br>1 14392<br>1 16896<br>1 19154<br>1 19938<br>1 20787<br>1 21720<br>1 25041<br>1 25041<br>1 25083<br>1 26234<br>1 28143<br>1 33993<br>1 38826<br>1 41072<br>1 47193 | 2 21<br>4 26<br>4 59<br>6 25<br>7 83<br>8 61<br>10 08<br>12 30<br>13 16<br>14 44<br>16 56<br>18 52<br>19 10<br>19 74<br>20 59<br>23 16<br>23 30<br>24 05<br>25 46<br>29 50<br>32 68<br>33 91<br>37 30 | 2 48<br>4 78<br>5 15<br>7 01<br>8 79<br>9 66<br>11 31<br>13 81<br>14 77<br>16 21<br>18 62<br>20 79<br>21 44<br>22 16<br>23 11<br>25 99<br>26 15<br>27 00<br>28 58<br>33 11<br>36 68<br>38 06<br>41 87 |
| 1 48481<br>1 48595                                                                                                                                                                                                                                                   | 38 20<br>38 43                                                                                                                                                                                        | 42 87<br>43 14                                                                                                                                                                                        |

(Pawlewski, B 1900, **33** 1224)

 $Na_2WO_4+Aq$  is pptd by HCl HNO or  $H_2SO_4+Aq$ , but not by HSO3 HI, HCN oxalic, or tartaric acids + Aq but pptn by the former acids is not prevented by presence of the latter, but when heated with HC  $H_8O$  + Aq, or in presence of H<sub>3</sub>PO<sub>4</sub>+Aq, mineral acids cause no ppt (Zettnow, Pogg, 130 16)

Much more sol in HO2 than in HO

(Kellner, Dissert, 1909)

Sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch 1898, **20** 829) (Riche, A ch (3) 50 Insol in alcohol

Insol in methyl acetate (Naumann, B 1909, 42 3790)

+10H<sub>2</sub>O

| Solubility | ın | H,O | at | t° |  |
|------------|----|-----|----|----|--|
|------------|----|-----|----|----|--|

| to   | \22\d (); | Mois Het<br>to I me i<br>NarW Ce | Mole<br>irons<br>icum |
|------|-----------|----------------------------------|-----------------------|
| -5   | 30 60     | 37 04                            | 22333334              |
| -4 0 | 31 87     | 34 92                            |                       |
| -3 5 | 32 98     | 33 19                            |                       |
| -2 0 | 34 52     | 30 90                            |                       |
| 0 0  | 36 54     | 28 37                            |                       |
| +3 0 | 39 20     | 25 33                            |                       |
| +5 0 | 41 02     | 23 48                            |                       |

(Funk, B 1900, 33 3701)

Sodium ditungstate, Na<sub>2</sub>W<sub>2</sub>O<sub>7</sub>

Sol in H<sub>2</sub>O by heating several h 130-150° (Knorre, J pr (2: 27 80) Sol in 13 pts H.O at 15  $+6H_{2}O$ fort, C R 88 798)

Sodium tritungstate, Na<sub>2</sub>W<sub>2</sub>O<sub>12</sub>+4H,

Sol in 1 pt H<sub>2</sub>O Decomp on s into sol tetratungstate and insol state (Lefort, C R 88 795)

Neither this nor the other intungs Lefort exist, according to Knorre J **27** 49)

Sodium netatungstate, Na<sub>2</sub>W<sub>4</sub>O<sub>13</sub> Anhydrous Insol in HO

+10H<sub>2</sub>O Sol at 13° in 0 935 pt form a solution of 3 02 sp gr Schen Sol at 19° in 0 195 pt H<sub>2</sub>O F Precipitated by alcohol

Sodium pentatungstate, Na2WiO: Sl sol in HO by heating a hour-(Knorre J pr 2 27 49

Sodium octotungstate, \a WiO

Insol in HO Very direct? by acids and alkalies Arorre +12HO Easily sol in cole H () be recryst without decomp **56**, 2 157 :

3\a<sub>2</sub>O, 8WO<sub>3</sub>±17H () Verve# Very sol in hot HO We ⋅ Chem Soc 1907 29 112

Sodium tungstate, NacW O +10H()(' - Marign ac

a1 ) +21H O (\*) Much more more rapidly than the p rata =

rign ic

Na<sub>4</sub>W<sub>3</sub>O<sub>11</sub>+7H O ') Mixture and Na WO<sub>4</sub> (Knorre, J or 2 : Na4W 5O1 +11H () Firoresce HO (Marign ac

100 pts HO dissolve to pts of fort, A ch to 9 97

Formula 1s 4\a () 10W() +2 cording to Gibbs (Proc Am Ac: Sodium paratungstate, Na<sub>10</sub>W<sub>12</sub>O<sub>41</sub>+21H<sub>2</sub>O

 $+25\text{H}_{\circ}\text{O}$  $+28\text{H}_{2}\text{O} = 3\text{Na}_{\circ}\text{W}_{7}\text{O}_{24} + 16\text{H}_{2}\text{O}$ , according to Lotz and Scheibler

Sol in 8 pts cold  $\rm H_2O$  (Anthon) in 12 6 pts at 22° (Forcher)

Sol in about 12 pts H<sub>2</sub>O (Marignac) The aqueous solution saturated at 35-40° contained to 1 pt of the salt, after

1 12 77 227 410 days, at 18° 18° 18° 16° 20° 9 25 11 26 10 92 11 90 11 74 pts H<sub>2</sub>O

The solution saturated by very long boiling, after a part of the salt had crystallised out, contained, after

1 2 12 days, 0 68 0 91 2 59 pts H<sub>2</sub>O to 1 pt salt, 72 222 405 days, 6 88 9 75 8 80 pts H<sub>2</sub>O to 1 pt salt (Marignac)

Decomp by boiling with  $H_2O$  (Knorre, B 18 2362)

Sodium strontium paratungstate, Na<sub>2</sub>O, 4SrO, 12WO<sub>3</sub>+29H<sub>2</sub>O (Gonzalez, J pr (2) **36** 44)

Sodium strontium tungstate tungsten oxide,  $5NaW_5O_{15}$ ,  $SrW_4O_{12}$ 

 $12Na_2W_3O_9$ ,  $SrW_4O_{12}$  (Engels, Z anorg 1903, **37** 138)

Sodium thorium tungstate, Na<sub>4</sub>Th(WO<sub>4</sub>)<sub>4</sub>
Insol in H<sub>2</sub>O. Slowly sol in dil acids

Insol in H<sub>2</sub>O Slowly sol in dil acids, easily in conc HCl+Aq (Hogbom, Bull Soc (2) **42** 2)

Sodium ytterbium tungstate, Yb<sub>2</sub>O<sub>3</sub>, 9Na<sub>2</sub>O, 12WO<sub>3</sub>

Insol in H<sub>2</sub>O (Cleve, Z anorg 1902, **32** 154) 2Yb<sub>2</sub>O<sub>5</sub>, 4Na<sub>2</sub>O, 7WO<sub>3</sub> Ppt (Cleve)

Sodium yttrium tungstate, Na<sub>8</sub>Y<sub>2</sub>(WO<sub>4</sub>)<sub>7</sub>

Insol in  $H_2O$ , and very slowly attacked by dil acids (Hogbom, Bull Soc (2) **42** 2)

Sodium zinc paratungstate, Na<sub>2</sub>O, 2ZnO, 7WO<sub>3</sub>+15H<sub>2</sub>O

Difficultly sol in cold, more sol in hot H<sub>2</sub>O (Knorre, B **19** 823) +21H<sub>2</sub>O (Knorre)

Sodium tungstate tungsten oxide,  $Na_2WO_4$  $W_2O_5$ 

Yellow tungsten bronze Gradually deliquesces on air Not decomp by any acid, even aqua regia, except HF, or by alkalies (Wohler, Pogg 2 350)

Correct formula is Na<sub>5</sub>W<sub>6</sub>O<sub>18</sub>, according

to Phillip (B **15** 499)

Sol in ammoniacal silver solution with separation of Ag Easily sol in boiling alkaline potassium ferricyanide+Aq (Phillip, B 12 2234)

Na<sub>2</sub>WO<sub>4</sub>, 2W<sub>2</sub>O<sub>5</sub> Blue tungsten bronze
Not attacked by acids or alkalies (Scheibler)
Correct formula is Na<sub>2</sub>W<sub>5</sub>O<sub>15</sub>, according
to Phillip (B **15** 506)

Sol in ammoniacal silver solution with separation of Ag

Na<sub>4</sub>W<sub>5</sub>O<sub>15</sub> Properties as above (Phillip, B **15** 499) Na<sub>2</sub>W<sub>3</sub>O<sub>9</sub> Properties as above (Phillip)

Strontium tungstate, SrWO4

Precipitate (Schultze) Sol in about 700 pts H<sub>2</sub>O (Lefort)

Strontium ditungstate,  $SrW_2O_7+3H_2O$  (?) 100 ccm  $H_2O$  dissolve 0 35 g at 15° (Lefort, A ch (5) **15** 326)

Strontrum tratungstate,  $SrW_3O_{10}+5H_2O$  (?) Sol in  $H_2O$  with decomp into  $SrW_2O_7$  and  $SrW_4O_{13}$  (Lefort, A ch (5) 17 477)

Strontium metatungstate, SrW<sub>4</sub>O<sub>13</sub>+8H<sub>2</sub>O
Solubility as calcium metatungstate

(Scheibler)

Extraordinarily sol in H<sub>2</sub>O (Wyrouboff, Bull Soc Min 1892, **15** 63)

Strontium paratungstate,  $Sr_8W_7O_{24}+16H_2O$ , or  $Sr_5W_{12}O_{41}+27H_2O$ 

Insol in cold, sl sol in hot H<sub>2</sub>O (Knorre, B **18** 327)

Thallous tungstate, Tl<sub>2</sub>WO<sub>4</sub>

Very sl sol in  $H_2O$  Sol in hot  $Na_2CO_3+Aq$  (Flemming, J B **1868** 250)

Thallous metatungstate, Tl<sub>2</sub>W<sub>4</sub>O<sub>13</sub>+3H<sub>2</sub>O

Nearly insol in  $H_2O$  (Rosenheim, Z anorg 1911, **69** 251)

Thallous paratungstate, 5Tl<sub>2</sub>O, 12WO<sub>3</sub>

Insol in H<sub>2</sub>O Sol in Na<sub>2</sub>CO<sub>3</sub>+Aq and hOH+Aq decomposed by mineral acids (Schaeffer, Z anorg 1904, **38** 171)

Thallous hydrogen tungstate, TlHWO4

Insol in  $H_2O$  Difficultly sol in  $NH_4OH+Aq$  Easily sol in boiling alkali carbonates or hydrates +Aq (Oettinger, J B **1864** 254)

Thorium tungstate

Precipitate (Berzelius) Insol in H<sub>2</sub>O

Tin (stannous) tungstate, SnWO<sub>4</sub>+6H<sub>2</sub>O

Insol in  $H_2O$  Sol in oxalic acid and in KOH+Aq Slowly sol in hot  $H_3PO_4+Aq$  (Anthon, J pr  $\bf 9$  341)

Tin (stannic) tungstate, 9SnO<sub>2</sub>, 13WO<sub>3</sub>
Insol in ammonium tungstate+Aq Sol
in tin salts+Aq, also in phosphoric, oxalic,
Or tartaric acids+Aq (Lotz, A 91 49)

Tungsten tungstate,  $WO_2$ ,  $WO_3 = W_2O_5$ See Tungsten oxide,  $W_2O_5$ 

Uranous tungstate, UO<sub>2</sub>, 3WO<sub>3</sub>+6H<sub>2</sub>O
Decomp by NaOH+Aq or HNO<sub>3</sub>+Aq

Sol in HCl+Aq, but not in H<sub>2</sub>SO<sub>4</sub> (Rammelsberg)

Uranyl tungstate, UO<sub>3</sub>, WO<sub>3</sub>+2H<sub>2</sub>O
Sol in about 100 pts H<sub>2</sub>O (Lefort, C R
87 748)
UO<sub>3</sub>, 3WO<sub>3</sub>+5H<sub>2</sub>O (?) Sol in about 200

pts H<sub>2</sub>O (Lefort )

Vanadium tungstate
Sl sol in H<sub>2</sub>O

Ytterbium tungstate basic, (YbO)<sub>2</sub>WO<sub>4</sub> Ppt (Cleve, Z anorg 1902, **32** 153)

Ytterbum metatungstate, Yb<sub>2</sub>O<sub>3</sub>, 12WO<sub>3</sub>+ 35H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Cleve)

Yttrium tungstate, Y<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>+6H<sub>2</sub>O

Very sl sol in H<sub>2</sub>O, but more sol in Na<sub>2</sub>WO<sub>4</sub>+Aq (Berlin)

Zinc tungstate, ZnWO<sub>4</sub>
Insol in H O (Geuther and Forsberg, A
120 270)
+H<sub>2</sub>O Sol in 500 pts H<sub>2</sub>O

Zinc ditungstate, ZnW<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O (?) Sol in 10 pts H<sub>2</sub>O at 15°, but solution soon decomposes (Lefort)

Znc trztungstate,  $ZnW_3O_{10}+5H_2O$ Insol in boiling  $H_2O$  Sol in  $ZnSO_4+Aq$ , or  $Na_4W_5O_{17}+Aq$  (Gibbs)

Zinc metatungstate, ZnW<sub>4</sub>O<sub>13</sub>+10H<sub>2</sub>O

Easily sol in H<sub>2</sub>O Loses crystal H O by ignition, and becomes insol in H O (Scheibler, J pr 83 273)

 $+8H_2\mathrm{O}$  More sol in H2O than mag nesium comp (Wyrouboff, Bull Soc Min 1892, 15 72 )

Zinc tungstate,  $Zn_4W_{10}O_{34}+18HO=4ZnO$ ,  $10WO_3+18H_2O$ 

Insol in H<sub>2</sub>O Sol in excess of zinc sulphate or of sodium tungstate + Aq (G1bbs, Proc Am Acad 15 14) +29H<sub>2</sub>O (G1bbs)

Zinc paratungstate, 5ZnO, 12WO<sub>3</sub>+37H<sub>2</sub>O (Gonzalez, J pr (2) **36** 44) Zinc tungstate, Zn<sub>2</sub>W<sub>22</sub>O<sub>14</sub>+66H<sub>2</sub>O=9ZnO, 22WO<sub>1</sub>+66H<sub>2</sub>O Insol in H<sub>2</sub>O (Gabbs)

Zinc tungstate ammonia, ZnWO4, 4NH3+3H2O

Decomp in the air (Briggs Clem \cdot\)cc 1904, 85 677)

Pertungstic acid See Pertungstic acid.

Tungstoarsenic acid

See Arseniotungstic acid.

Tungstoboric acid.

See Borotungstic acid.

Tungstocyanhydric acid, H<sub>4</sub>W (CN)<sub>8</sub>+ 6H<sub>2</sub>O

Hydroscopic

Sol in H<sub>2</sub>O and abs alcohol Insol in ether, benzene etc. | Olsson Z anorg 1914, 88 71)

Ammonium tungstocyanide, (NH<sub>4</sub>)<sub>4</sub>W(CN)<sub>8</sub>.

Easily sol in H<sub>2</sub>O Aqueous solution decomp slowly

Insol in organic solverts Olsor, Z anorg 1914, 88 62:

Cadmium tungstocyamde, Cd<sub>2</sub>W CN)<sub>5</sub>+

Nearly insol in H<sub>2</sub>O Sl sol in dil HCl Sol in cone NH<sub>4</sub>OH+Aq Insol in organic solvents (Olsson, Z anorg 1914, 88 6N

Cæsium tungstocyanide, Cs<sub>4</sub>W C\ :

Easily sol in H O forming stable solutions.

Insol in alcohol and other organic solvents (Olsson

Calcium tungstocyanide, Ca W C \ 5-SH2O

Easily sol in HO Aqueous is r decomp slowly

Insol in organic selver is the selection.

Lead tungstocyanide, Pb W CN -4H O
Sol in H O Solut or decor + ... - ...

Insol in organic solvents Olas 7

Magnesium tungstocyanide, Vig W C > -

Easily sol in H() Aque decomp on heating

Insol in organic -olver - "

Manganous tungstocyanide, Vin W C \ 5-8H O

Insol in HO and in acid-Insol in organic solvents (1) ser Potassium tungstocyanide,  $K_4W(CN)_8+$   $2H_2O$ 

Easily sol in  $H_2\mathrm{O}$  from which it can be cryst 10 ccm  $H_2\mathrm{O}$  dissolve 13-14 g salt at 18°

Insol m alcohol, ether and other organic solvents (Olsson)

Rubidium  $3H_2O$  tungstocyanide,  $Rb_4W(CN)_8+$ 

Easily sol in  $H_2O$  Can be cryst from  $H_2O$  Insol in alcohol and other organic solvents (Olsson)

Silver tungstocyanide, Ag<sub>4</sub>W(CN)<sub>8</sub>

Insol in  $H_2O$ Insol in acids Decomp by dil HCl Sol in hot cone  $NH_4OH+Aq$ Insol in organic solvents (Olsson)

Sodium tungstocyanide,  $Na_4W(CN)_8+2\frac{1}{2}H_2O$ 

Hydroscopic Easily sol in  $H_2O$ Insol in organic solvents (Olsson)

Strontium tungstocyanide,  $Sr_2W(CN)_8+8H_2O$ ,  $+9H_2O$ 

Easily sol in H<sub>2</sub>O Aqueous solution decomp on standing Insol in organic solvents (Olsson)

Thallium tungstocyanide, Tl<sub>4</sub>W(CN)<sub>8</sub>

Difficultly sol in cold  $H_2O$ , more sol in hot  $H_2O$ 

Insol in organic solvents (Olsson)

Zinc tungstocyanide, Zn<sub>2</sub>W(CN)<sub>8</sub>+4H<sub>2</sub>O Insol in H<sub>2</sub>O, and acids Sol in conc NH<sub>4</sub>OH+Aq (Olsson)

Metatungstoiodic acid

Ammonium metatungstoiodate,  $2(NH_4)_2O$ ,  $2I_2O_5$ ,  $4WO_3+12H_2O$ Very sl sol in  $H_2O$  (Chrétien, A ch 1898, (7) **15** 431)

Potassium tungstoiodate, K<sub>2</sub>H<sub>3</sub>WIO<sub>8</sub> (Blomstrand, J pr (2) **40** 327 ) 2I<sub>2</sub>O<sub>3</sub>, 2I<sub>2</sub>O<sub>5</sub>, 4WO +8H<sub>2</sub>()

5 13 g are sol in 1 l H<sub>2</sub>O at 15°, 8 25 g at 100° (Chr´etien, A ch 1898, (7) **15** 431)

Tungstoperiodic acid

Ammonium sodium tungstoperiodate, 2(NH<sub>4</sub>)<sub>2</sub>O, Na<sub>2</sub>O, I<sub>2</sub>O<sub>7</sub>, 2WO<sub>3</sub>+16H<sub>2</sub>O Ppt (Rosenheim, A 1899, **308** 64)

Barrum tungstoperiodate, 5BaO, I<sub>2</sub>O<sub>7</sub>, 12WO<sub>3</sub>+12H<sub>2</sub>O Ppt (Rosenheim) Potassium tungstoperiodate, 5K<sub>2</sub>O, I<sub>2</sub>O<sub>7</sub>, I2WO<sub>3</sub>+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Rosenheim)

Sodium tungstoperiodate,  $3Na_2O$ ,  $I_2O_7$ ,  $2WO_8+4H_2O$ 

5Na<sub>2</sub>O, I<sub>2</sub>O<sub>7</sub>, 12WO<sub>3</sub>+16H<sub>2</sub>O Sol in H<sub>2</sub>O (Rosenheim)

Strontum tungstoperiodate, 5SrO, I<sub>2</sub>O<sub>7</sub>, 12WO<sub>2</sub>+28H<sub>2</sub>O Sol in H<sub>2</sub>O (Rosenheim)

Tungstophosphoric acid, See Phosphotungstic acid

Tungstosilicic acid, See Silicotungstic acid

Tungstotungstic acid

Lithium tungstotungstate,  $L_{12}O$ ,  $WO_3+WO_2$ ,  $3WO_3$ 

Insol in boiling  $\rm H_2O$  and conc HCl (Hallopeau, C R 1898, 127 514)

Potassium tungstotungstate, K<sub>2</sub>O, WO<sub>3</sub>+ WO<sub>2</sub>, 3WO<sub>3</sub>

Insol in hot  $H_2O$ , and cone HCl (Hallo peau, Bull Soc 1899, (3) 21 267)

Tungstous acid

Sodium tungstite, Na<sub>2</sub>W<sub>2</sub>O<sub>5</sub> See Tungstate tungsten oxide, sodium

Tungstovanadic acid

See Vanadiotungstic acid

Tungstyl dibromide, WO<sub>2</sub>Br<sub>2</sub>
Not decomp by cold H<sub>2</sub>O (Roscoe)

Tungstyl tetrabromide, WOBr4

Extremely deliquescent Decomposes it once in moist air or with  $H_2O$ 

Tungstyl dichloride, WO<sub>2</sub>Cl<sub>2</sub>

Not decomp by cold, and but slowly by boiling H<sub>2</sub>() Sol in alkalies and ammonia

Tungstyl tetrachloride, WOCl4

Lasily decomp by  $\rm H_2O$  or moist air Very sol in  $\rm CS_2$  and  $\rm S_2Cl_2$  Sl sol in benzenc (Smith, J Am Chem Soc 1899, **21** 1008)

Tungstyl tetrafluoride, WOF4

Sol in H<sub>2</sub>O with decomp Very hydrocopic

Insol in carbon tetrachloride

SI sol in carbon bisulphide, dry benzene Bismuth uranate, Bi-O., UO.+H.O and ether

Easily sol in chloroform and absolute alcohol (Ruff, Z anorg 1907, 52 265)

Tungstyl teirafluoride ammonia, 2WOF4  $NH_{8}$ 

Sol in H<sub>2</sub>O with decomp Insol in liquid NH<sub>3</sub> (Ruff, Z anorg **19**07, **52** 266)

Ultramarine blue, 2Na<sub>2</sub>Al<sub>2</sub>Sl<sub>2</sub>O<sub>8</sub>, Na<sub>2</sub>S<sub>2</sub> (?) Not attacked by solutions of alkalies or HOH+Aq Decomp by acids or acid NHOH+Aq salts +Aq Decomp by alum +Aq

Ultramarine green, Na<sub>2</sub>Al<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>, Na<sub>2</sub>S (?) Decomp by mineral acids Not attacked by alkalies Decomp by alum +Aq

Ultramarine white, 2Na<sub>2</sub>Al<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>, Na<sub>2</sub>S (?)

Uranic acid, H2UO4

Insol in H<sub>2</sub>O Sol in acids Very sol in Cold dil HNO<sub>3</sub>+Aq Sl sol in boiling NH<sub>4</sub>Cl+Aq Insol in KOH, NaOH, or NH<sub>4</sub>OH+Aq Easily sol in (NH<sub>4</sub>) CO<sub>3</sub>, KHCO<sub>3</sub>, and NaHCO<sub>3</sub>+Aq, less in K CO<sub>3</sub>+ (Ebelmen)

Easily sol in malic and tartaric acids to form complex compds (Itzig, B 1901, 34

H,ÚO5 Insol in H<sub>2</sub>O, sol in acids (Ebelmen)

#### **Uranates**

Insol in H<sub>2</sub>O, sol in acids

#### Ammonium uranate

Sl sol in pure H2O, insol in HO contain ing NH4Cl or NH4OH (Peligot, A ch

Sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq (3) **5** 11)

(Grubler, Dis  $(NH_4)_2O$ ,  $4UO_3+7H_2O$ sert, 1908)

(NH<sub>4</sub>)<sub>2</sub>O, 6UO<sub>3</sub>+10H<sub>2</sub>O Insol in cold and hot H2O and alkalies+Aq Verv sol in H<sub>2</sub>SO<sub>4</sub>, HCl and acetic acid +Âq (Zehenter, M 1900, 21 235)

## Barium uranate, BaUO4

Insol in H2O Sol in dil acids BaU<sub>2</sub>O<sub>7</sub> As above (Ditte, C R 95 988) Nearly insol in HO. BaU<sub>3</sub>O<sub>10</sub>+4½H<sub>2</sub>O

KOH+Aq and alcohol Easily sol in cold dil HCl or HNO3 and in hot acetic acid (Zehenter, M 1904, 25 200) Ba<sub>2</sub>U<sub>5</sub>O<sub>17</sub>+8H<sub>2</sub>O Nearly insol in hot

or cold H<sub>2</sub>O, KOH+Aq and alcohol Easily sol in cold dil HCl or HNO<sub>3</sub> and in hot acetic acid (Zehenter)

Same properties as Ba<sub>2</sub>U<sub>7</sub>O<sub>23</sub>+11H<sub>2</sub>O

BaU<sub>3</sub>O<sub>10</sub> (Zehenter)

Min Uranosphaerite

Calcium uranate, CaUO.

Insol in H.O. sol in dil acids (Ditte. C R 95 988) CaUzO7 Insol in H2O, sol in dil acida (Ditte)

#### Cobalt uranate

Insol in  $H_2O$ , sol in  $Po(C_2H_2O_2)_2+Aq$  (Persoz, J pr 3 216) Sol in HNO<sub>2</sub>+Aq, insol in KNO<sub>2</sub>+Aq

(Ebelmen, A ch (3) 5 222)

Cupric uranate, CuU2O7 Insol in H<sub>2</sub>O (Debray, A ch (3) 61.451)

#### Lead uranate, PbUO.

If ignited, very difficultly sol in HC2H4O2+

Aq (Wertheim, J pr 39 228)
Insol in Pb(C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>)<sub>2</sub>+Aq (Persoz)
3PbO, 2UO<sub>2</sub> Sol in dil H\O<sub>2</sub>+Aq (Ditte, A ch (6) 1 338)

PbU O<sub>10</sub> Insol in H<sub>2</sub>O Sol in H<sub>2</sub>O, Insol in KOH+1q, NH<sub>2</sub>OH and cold acetic acid Sol in hot acetic acid (Zehenter, M 1994, 25 21a)

Pb4U O19+4H2O Insol in hot or cold H<sub>2</sub>O Sol in HNO. Insol in AOH+Aq, NH<sub>2</sub>OH, alcohol and ether Sl sol in cold, more easily sol in hot acetic acid Zehenter )

Lithium uranate, Li LO4

Insol in HO, but decomp thereby ın dıl acıds

## Magnesium uranate, Mgl O.

Insol in HO \early insol in cold HC1-Aq on warn if E and more rapidly by addit on of a little HXO +Aq Ditte berzel u-

Vigt 0 Ppt

Neodymium uranate, Nd LiO -1NH O Ppt (Orloff Ch Z 1907 31 11 9

Potassium uranate, k l O.

Insol in H () sol in d ! acces to Ditte as Na U KIO-6HO In ~ HO dil acids even acetic ic B 14 440

Insol in KCO - Aq b ex alkalı hydrogen carbon ite + Ar HCl+4q (Ebelmen 4 () KO, 410-0HO Zee

21 235 :11:

KO, 6LO +6HO In )
(Drenckmann Zeit ges \at 17 ll)
+10HO \text{ \text{Vearly in-ol in col 1 a c}} HO Easily sol in hot acetic aced un H sol, HCl and HNO Insol in KOH - Ac, it o-hol and ether (Zehenter VI 1990 21 25)

#### Potassium hydroxylamine uranate, $UO_4(NH_4O)(NH_8OK) + H_2O$

Sl sol in H2O, insol in alcohol (Hofmann, A 1899, 307 318)

## Rubidium uranate, RbUO4

Insol in H<sub>2</sub>O (Ditte, A ch (6) 1 338)

## Silver uranate, Ag<sub>2</sub>U<sub>2</sub>O<sub>7</sub>

Insol in H<sub>2</sub>O Easily sol in acids (Alıbegoff, A 233 117)

## Sodium uranate, Na<sub>2</sub>UO<sub>4</sub> (?)

Insol in H2O, sol in dil acids Sol in alkalı carbonates+Aq (Dıtte) Na<sub>2</sub>U<sub>2</sub>O<sub>7</sub>+6H<sub>2</sub>O Insol in H<sub>2</sub>O Sol in

dil acids (Stolba, Z anal 3 74) Na<sub>2</sub>O, 3UO<sub>3</sub> Insol in H<sub>2</sub>O Easily sol in

very dil acids (Drenckmann) Na<sub>2</sub>O, 5UO<sub>3</sub>+5H<sub>2</sub>O Insol in H<sub>2</sub>O, alcohol, NH4OH KOH+Aq Sol in HCl, HNOs, H<sub>2</sub>SO<sub>4</sub> Sl sol even on boiling in conc acetic acid (Zehenter, M 1900, **21** 235)

#### Sodium hydroxylamine uranate, $UO_4(NH_4O)(NH_3ONa) + H_2O$

Sol in H<sub>2</sub>O (Hofmann, A 1899, **307** 319) UO<sub>4</sub>(NH<sub>3</sub>ONa)<sub>2</sub>+6H<sub>2</sub>O Very sol in H<sub>2</sub>O (Hofmann)

#### Strontium uranate, SrUO<sub>4</sub>

Insol in H2O Sol in dil acids SrU<sub>2</sub>O<sub>7</sub> As above (Ditte, C R **95** 988) Very sl sol in H<sub>2</sub>O Sol in all acids

especially oxalic  $+H_2O$  Very sl sol in  $H_2O$  Sol in all acids especially oxalic (J, C C 1896, II 512)

#### Thallous uranate

Ppt (Bolton, Am Chemist, 1872, 2 456 )

#### Zinc uranate

Insol in  $H_2O$ , sol in  $Pb(C_2H_3O_2)_2+Aq$  (Persoz, J pr 3 216) Sol in  $HNO_3+Aq$ , insol in  $KNO_3$ , and  $NH_4NO_3+Aq$  (Ebellian) men A ch (3) 5 221)

#### Peruranic acid

See Peruranic acid

#### Uranium, U

Not attacked by H2O Slowly decomp by cold dil H2SO4+Aq, rapidly on warming Easily sol in dil or conc HCl+Aq I used U is slightly attacked by conc or fuming HNO<sub>3</sub>, or conc H<sub>2</sub>SO<sub>4</sub> Amorphous U, how ever, is easily attacked thereby. Not at tacked by acetic acid, KOH, NaOH, or NH<sub>4</sub>OH+Aq (Zimmermann, B 15 849)

When finely divided, it is decomp by H<sub>2</sub>O slowly at ordinary temps and rapidly at 100° (Moissan, C R 1896, 122 1091)

#### Uranium antimonide, U.Sb.

Violently attacked by conc HNO<sub>3</sub> (Colani, C R 1903, **137** 383)

#### Uranium arsenide, UaAs2

Violently attacked by conc HNO. (Coani, C R 1903 137 383)

### Uranium boride, UB<sub>2</sub>

Sol in HNO3 and HF Decomp by fused alkalies (Wedekind, B 1913, 46 1204)

#### Uranium tribromide, UBr<sub>3</sub>

Very hygroscopic Sol in H<sub>2</sub>O with his. ing (Alibegoff, A 233 117)

#### Uranium tetrabromide, UBr.

 $\begin{array}{ccc} Anhydrous & \text{Very delique-scent} & \text{Sol in} \\ \text{H}_2\text{O with hissing} & (\text{Hermann}) \\ \text{Insol in alcohol} & (\text{v Unruh, Dissert, 1909}) \end{array}$ 

Sol in acetone (Eidmann, C C 1899, II 1014), methyl acetate (Naumann, B 1909, 42 3790), ethyl acetate (Naumann, B 1904, 37 3601)

+8H<sub>2</sub>O Very deliquescent, and sol in ΗÒ (Rammelsberg)

#### Uranium carbide, UC2

(Ruff and Heinzelmann, Z anorg 1911, **71** 72)

Attacked slowly by H<sub>2</sub>O Slowly attacked by cold dil HCl, H<sub>2</sub>SO<sub>4</sub> or HNO<sub>3</sub>+Aq Conc acids, except HNO<sub>3</sub>, react sl in the cold, violently on heating (Moissan, Bull Soc 1897, (3) 17 12) Sol in fused KNO<sub>3</sub> and KClO<sub>3</sub>, sol in dil

acids in the cold and in conc acids on heating, decomp by H<sub>2</sub>O (Moissan, C R 1896,

**122** 276)

#### Uranıum trıchloride, UCl $_3$

Very sol in  $H_2O$  (Peligot)

Very unstable (Zimmermann)

Very hygroscopic Sol in H<sub>2</sub>O with de-Sol in conc HCl and solution is much more stable than aqueous one (Rosenheim and Loebel, Z anorg 1908, 57 234)

#### Uranium tetrachloride, UCl4

Anhudrous Extremely deliquescent Sol in H<sub>2</sub>O with evolution of heat comp on boiling Sol in NH4Cl+Aq without decomp

HCl increases its solubility in H<sub>2</sub>O (Aloy,

Dissert 1901)

Sol in alcohol, acetone, acetic ether, ben-Insol in ether, CHCl and zoic ether (Loebel)  $C_6H_6$ 

Sol in ethyl acetate (Naumann, B 1904, **37** 3601)

## Uranium pentachloride, UCl<sub>5</sub>

Deliquescent Sol in H<sub>2</sub>O with evolution of heat and decomposition (Roscoe, B 7

Sol in acetic acid, acetic ether, benzalderyde, glycerine, benzyl alcohol (trace), nitrobenzene (trace), xylidine and p-toluidine (on warming)

Insol in aniline, ligroin, pyridine, quinoline, throethyl ether, throamyr ether and CS2

(Pimmer, Dissert 1904)

Sol in abs alcohol Insol in ether, C6H6, nitrobenzene, ethylene bromide Sl gol in CCl4 and CHCl8 Sol in benzoic ethor, acetone and trichloracetic acid Best solvents are ethyl acetate and benzonitrile Sol in many organic compounds containing oxygen (Loebel, Dissert 1907)

### Uramum difluoride, UF2+2H2O

(Giolitti and Agamennone, C C 1905, I 1130)

### Uranium tetrafluoride, UF.

Insol in H<sub>2</sub>O Very sl sol in dil acids Sol in hot conc H<sub>2</sub>SO<sub>4</sub>, and slowly in warm conc HNO<sub>8</sub>+Aq (Bolton, J B 1866 209)

## Uranium hexafluoride, UF6

Very sol in H<sub>2</sub>O (Ditte, A ch (6) 1 **3**39)

Fumes in the air

Very hydros opic, sol in H<sub>2</sub>O (Ruff, B

1909, 42 495)

Very hygroscopic Sol in H<sub>2</sub>O Nearly ınsol ın CS2 Insol ın paraffine oil Sol ın symmetrical tetrachlorethane (best solvent), ČHCl<sub>3</sub>, CCl<sub>4</sub> and nitrobenzene (v Unruh, D<sub>1SSert</sub> 1909)

Decomp by H2O, alcohol and ether

Nearly insol in CS2

Sol in CHCl<sub>3</sub>, CCl<sub>4</sub>, nit obenzene and  $\mathbf{C_2H_2Cl_4}$  (Ruff, Z anorg 1911, **72** 81)

## Uranium hydrogen fluoride, UF6, 8HF (?)

(Ditte) Sol in H<sub>2</sub>O Is UO<sub>2</sub>F<sub>2</sub>, HF+H<sub>2</sub>O (Smithells)

## Uranous hydroxide, UO2, xH2O

Easily sol in dil acids

Insol in alkali hydrates and carbonates +Aq (Berzehus)

Sol in alkali carbonates+Aq (Rammels-

Sol in dil acids (Aloy, Bull Ŭ(ÓH)4 Soc 1899, (3) 21 613)

# Uranouranic hydroxide, U<sub>3</sub>O<sub>8</sub>, 6H<sub>2</sub>O (?)

Easily sol in acids

Decomp by (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq, which dissolves out UO<sub>3</sub> (Berzelius)

## Uranic hydroxide

See Uranıc acıd

#### Uranium tetraiodide, UI4

Sol in H<sub>2</sub>O (Guichard, C R 1907, **145** 921)

#### Uranium iodide

Sol in ethyl acetate (Naumann, B 1904 **37** 3601)

#### Uranium nitride, U2N2

(Colani, C R 1903 137 383)

#### Uranium suboxide, UO (?)

(Guyard, Bull Soc (2) 1 89

Does not exist (Zimmermann, A 213 301)

 $U_2O_3(^{\circ})$  Ppt Decomp by  $H_2O$  and in (Peligot) the air

#### Uranium dioxide (Uranous oxide), UO<sub>2</sub>

Insol in dil HCl or H SO4+Aq

Sol in conc H SO<sub>4</sub>, and easily in HNO<sub>4</sub>+ Aq (Peligot)

Insol in NH<sub>4</sub>Cl+Aq (Rose) Only sl sol in H<sub>2</sub>SO<sub>4</sub>, but a considerable amount is converted into the sulphate which is nearly insol in H<sub>2</sub>SO<sub>4</sub>

Slowly sol in HCl, the amount dissolved in a given time varying widely with the method of preparation of the oxide (Colani,

C R 1912, **155** 1251) Sl more sol in HNO3 than in aqua regia.

(Raynaud, Bull Soc 1912, (4) 11 802) Very sol in conc HNO<sub>3</sub>, less sol in dil. HNO<sub>3</sub> 1 gram is sol in 3100 grams HCl (1 17) at 17°, 4650 grams HBr(1 52) at 17°, 2200 grams H<sub>2</sub>SO<sub>4</sub>(1 79) at 17°, 12,000 grams acetic acid at 19° (Ravnaud, C R 1911, **153** 1481)

Sl attacked by liquid NH3 (Gore, Am Ch J 1898, **20** 830)

Mın UranınıteEasily sol in warm HNO<sub>3</sub>+Aq Not attacked by HCl-Aq

## Uranium trioxide (Uranic oxide), UO:

Sol in HNO3+Aq (Peligot ) Insol in boiling K tartrate - Aq

F ah lenberg and Hillyer, Am Ch J 1894, 16 102 Sol in oleic acid (Gibbons, Arch Pharm 1883, 221 621)

See Uranic acid

#### Uranium te roxide, UO4

Decomp by HCl+Aq (Fairley Chem Soc 31 133)

Zımmer Very hygroscopic +2HOmann )

+3HO

Uranium pentoxide, U O5

Sol in acids (Peligot) Mixture of UOs and UOs Rammels

berg, Pogg **59** 5) Mixture of UO and U<sub>3</sub>O<sub>8</sub> (Zimm**ermanr** A 232 273)

## Uranouranic oxide, U<sub>3</sub>O<sub>8</sub>

Very slowly an Green uranıum oxide slightly sol in dil HCl or H SO4+Aq, mor easily when conc Completely sol in bor ling H2SO4 Easily sol in HNO3+Aq

| Solubility in salts+Aq at t°               |                            |                                                     |  |  |
|--------------------------------------------|----------------------------|-----------------------------------------------------|--|--|
| Salt solution                              | t°                         | Solubility<br>mol per litre                         |  |  |
| 0 05-N NH <sub>4</sub> Cl+Aq               | 18<br>25<br>35<br>45<br>55 | 0 01419<br>0 02246<br>0 04445<br>0 07575<br>0 09544 |  |  |
| 0 1-N NH <sub>4</sub> Cl+Aq                | 18<br>25<br>35<br>45<br>55 | 0 00356<br>0 00995<br>0 02347<br>0 04507<br>0 06314 |  |  |
| 0 05-N NH <sub>4</sub> NO <sub>3</sub> +Aq | 18<br>25                   | 0 01433<br>0 02364                                  |  |  |
| 0 1-N NH <sub>4</sub> NO <sub>8</sub> +Aq  | 18<br>25                   | 0 00497<br>0 01050                                  |  |  |

(Meyer, Z Elektrochem, 1909, 15 267)

Insol in alcohol (v Hauer)
(b) Sol in cold H<sub>2</sub>O, from which it is pptd
by alcohol (Berzelius)

Ammonium divanadate, (NH<sub>4</sub>)<sub>2</sub>V<sub>4</sub>O<sub>11</sub>+4H<sub>2</sub>O
Sol in H<sub>2</sub>O, from which it is precipitated
by sat NH<sub>4</sub>Cl+Aq or alcohol (v Hauer,
W A B **21** 337)

Correct formula is (NH<sub>4</sub>)<sub>3</sub>V<sub>7</sub>O<sub>10</sub>+2H<sub>2</sub>O<sub>2</sub> according to Rammelsberg (B A B **1883** 3) +3H<sub>2</sub>O Very sol in H<sub>2</sub>O (Ditte, C R **102** 918)

#### Ammonium trivanadate, (NH<sub>4</sub>)<sub>2</sub>V<sub>6</sub>O<sub>16</sub>

Anhydrous Nearly insol in hot or cold  $H_2O$  (Norblad, B 8 126)

15 g dissolve in 1 litre of boiling H<sub>2</sub>O (Ditte, C R 102 918)
+5H O Very sl sol in H<sub>2</sub>O (Ditte)

+5H O Very sl sol in  $\text{H}_2\text{O}$  (Ditte)  $+6\text{H}_2\text{O}$  (?) Very sol in  $\text{H}_2\text{O}$  (v Hauer, W A B **39** 455)

Could not be obtained (Norblad, also Rammelsberg, B A B 1883 3)

## Ammonium vanadate, (NH<sub>4</sub>)<sub>3</sub>V<sub>7</sub>O<sub>10</sub>+2H<sub>2</sub>O

Correct formula of v Hauer's divandate, according to Rammelsberg (B A B 1883 3) Sl sol in H<sub>2</sub>O

Ammonium serquivanadate, (NH<sub>4</sub>)<sub>4</sub>V<sub>6</sub>O<sub>17</sub>+
4 or 6H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Ditte, C R 102 918)

Ammonium pentavanadate,  $(NH_4)_4V_{10}O_{27} + 10H_2O$ 

Sol in H () (Rimmelsberg, B A B 1883 3)

# Ammonium hydroxylamine vanadate, $VO_6N_8H_{10}$

Rapidly decomp by HO (Hofmann and Kohlschütter, Z anorg 1898, 16 472)

 $HVO_3,\ 3NH_3O,\ 2NH_3=VO_6N_6H_{16}$  Rapidly decomp by  $H_2O$  (Hofmann an Kohlschutter )

Ammonium potassium vanadate, K<sub>2</sub>V<sub>4</sub>O<sub>1</sub>
(NH<sub>4</sub>)<sub>4</sub>V<sub>6</sub>O<sub>17</sub>+9H<sub>2</sub>O

Sol in H<sub>2</sub>O (Ditte, C R **104** 1844)

Ammonium sodium vanadate, Na<sub>2</sub>V<sub>4</sub>O<sub>1</sub> (NH<sub>4</sub>)<sub>4</sub>V<sub>6</sub>O<sub>17</sub>+15H<sub>2</sub>O Sol in H<sub>2</sub>O (Ditte, C R **104** 1841)

Ammonium uranyl vanadate,  $(NH_4)_2O$ , 2UO  $V_2O_5+H_2O$ 

Insol in  $H_2O$ ,  $NH_4OH+Aq$ , or di  $HC_2H_3O_2+Aq$  (Carnot, C R **104** 1850)

Barium metavanadate, Ba(VO<sub>3</sub>)<sub>2</sub>+H<sub>2</sub>O
Somewhat sol in H<sub>2</sub>O before ignitio
Sol in conc H<sub>2</sub>SO<sub>4</sub> (Berzelius)

Barium pyrovanadate, Ba<sub>2</sub>V<sub>2</sub>O<sub>7</sub>

Somewhat sol in H<sub>2</sub>O (Roscoe)

Barium vanadate,  $Ba_2V_6O_{17}+14H_2O$ 

(Ditte, C R 104 1705)  $Ba_8V_{10}O_{28}+19H_2O$  1 pt is sol in 520 pts  $H_2O$  at 20-25° Much more sol in he but decomp by boiling  $H_2O$  (v Hauer, V

A B 21 344)
Sol in about 5000 pts H<sub>2</sub>O (Manasse, C 1886 773)

 $Ba_4V_{10}O_{29}+2H_2O$  (Norblad)

#### Bismuth vanadate, Bl2(VO4)2

Min Pucherite Sol in HCl+Aq wi evolution of Cl

Cadmium vanadate, Cd(VO<sub>3</sub>)<sub>2</sub>

(Ditte, C R **102** 918) CdV<sub>6</sub>O<sub>16</sub>+24H<sub>2</sub>O Sl sol in H<sub>2</sub>O (Dit C R **104** 1705)

Cadmium potassium vanadate,  $CdK_2V_6O_{17} + 9H_2O$ 

(Rudau, A **251** 148) Cd<sub>3</sub>V<sub>10</sub>O<sub>28</sub>, K<sub>t</sub>V<sub>10</sub>O<sub>28</sub>+27H<sub>2</sub>O 1000 p H<sub>2</sub>O dissolve 54 pts at 18° (Radau)

Cadmium vanadate bromide, 3Cd<sub>8</sub>(VO<sub>4</sub> CdBr<sub>2</sub>

Very sol in dil acids (de Schulten, Bi Soc 1900, (3) 23 160)

Cadmium vanadate chloride, 3Cd<sub>3</sub>(VO CdCl<sub>2</sub>

Very sol in dil acids (de Schulten, Bi Soc 1900, (3) **23** 159)

Cæsium metavanadate, CsVO<sub>3</sub>

(Chabrié, A ch 1902, (7) 26 228)

alcium metavanadate, Ca(VO<sub>3</sub>)<sub>2</sub>+4H<sub>2</sub>O Much more sol than Sr(VO<sub>8</sub>)<sub>2</sub>, and soluon is not precipitated by alcohol ellius)

+3H<sub>2</sub>O Sol in H<sub>2</sub>O<sub>2</sub>, insol in alcohol Scheuer, Z anorg 1898, **16** 304)

alcium pyrovanadate, Ca<sub>2</sub>V<sub>2</sub>O<sub>7</sub>+5H<sub>2</sub>O

Precipitate ±2H₂0 Very sol in dil acids (Ditte LR 104 1705) +2½H<sub>2</sub>O (Roscoe)

Calcium divanadate, CaV4O11+9H2O Easily sol in H<sub>2</sub>O (v Hauer) When fused is nearly insol in H2O (v

Hauer.) +6H<sub>2</sub>O (Manasse, A **240** 23)

Calcium trivanadate, CaV6O17+12H2O Very sol in H2O (Ditte, C R 104 1705)

Calcium vanadate, Ca<sub>3</sub>V<sub>8</sub>O<sub>23</sub>+15H<sub>2</sub>O Sol in H<sub>2</sub>O (Manasse, A **204** 23) Ca.V.<sub>1</sub>O<sub>38</sub>+7H<sub>2</sub>O (?) Sl sol in H<sub>2</sub>O

(Manasse, A 240 23) Probably a mixture Ca<sub>3</sub>V<sub>16</sub>O<sub>43</sub>+26H<sub>2</sub>O Sol in H<sub>2</sub>O (Manasse, A 240 23)

Calcium copper vanadate, (Ca, Cu)<sub>4</sub>V<sub>2</sub>O<sub>9</sub>+  $\mathbf{H}_{2}0$ Min Volborthite Sol in HNO3+Aq

Calcium potassium vanadate, CaK<sub>8</sub>V<sub>20</sub>O<sub>55</sub>+ 22H,0

Sol in H<sub>2</sub>O (Manasse, A 240 23)

Calcium vanadate chloride, Ca<sub>3</sub>(VO<sub>4</sub>)<sub>2</sub>, CaCl<sub>2</sub> (Hautefeuille, C R 77 896)

Chromium vanadate, CrVO4

H<sub>2</sub>O containing Absolutely insol in NH<sub>4</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub> and HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Carnot, C R **104** 1850)

Cobaltous metavanadate, Co(VO<sub>3</sub>)<sub>2</sub>+3H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Ditte, C R 104 1705)

Cobaltous potassium vanadate, CoKV5O14+ +8H<sub>2</sub>Ò

1000 pts H<sub>2</sub>O dissolve 4 8 pts of this salt (Radau, A 251 140)  $Co_3K_2V_{14}O_{39} + 21H_2O$  (Radau)

Cupric metavanadate Sol in H<sub>2</sub>O (Berzelius)

Cupric pyrovanadate, Cu<sub>2</sub>V<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O Sol in hot H<sub>2</sub>O (Ditte, C R 104 1705) Could not be obtained (Radau, A 251 150)

Cupric lead vanadate, 5(Cu, Pb)O, V2Os+  $2H_{2}O$ 

Min Mottramite

3CuO, V<sub>2</sub>O<sub>5</sub>, 3(3PbO, V<sub>2</sub>O<sub>5</sub>), 6CuO<sub>2</sub>H<sub>2</sub>+ 12H<sub>2</sub>O Mm Psittacinnite

Cupric potassium vanadate, CuKV<sub>2</sub>O<sub>24</sub>+ 17H<sub>2</sub>O

Moderately sol in warm H<sub>2</sub>O 100 pts H<sub>2</sub>O dissolve 11 1 pts at 18° (Padau, A **251** 151 )

Didymium vanadate, Di2(VO4)2

 $\begin{array}{c} {\rm Precipitate} & ({\rm Cleve}\ ) \\ {\rm Di}_2{\rm V}_{10}{\rm O}_{30} + 28{\rm H}_2{\rm O} \\ {\rm Bull}\ {\rm Soc}\ (2)\ {\bf 43}\ {\bf 365}\ ) \end{array}$ Precipitate (Cleve,

Glucinum metavanadate (?)

Difficultly sol in H<sub>2</sub>O (Berzelius)

Glucinum divanadate (?) Difficultly sol in H<sub>2</sub>O (Berzelius)

Indium metavanadate, In(VO<sub>2</sub>)<sub>2</sub>+2H<sub>2</sub>O Ppt (Renz, Dissert 1902)

Iron (ferrous) metavanadate Ppt Sol in HCl+Aq (Berzelius)

Iron (ferric) metavanadate Somewhat sol in H<sub>2</sub>O (Berzelius)

Lead metavanadate, Pb(VO<sub>3</sub>)<sub>2</sub>

Sl sol in HO Easily sol in warm dil HNO3+Aq Not completely decomp by H<sub>2</sub>SO<sub>4</sub> or by boiling with K CO<sub>3</sub>+Aq (Ber-

Min Dechenite Easily sol in dil HNO3+

Aq, and decomp by HCl+Aq

Lead pyrovanadate, basic, 2Pb<sub>2</sub>V O<sub>7</sub>, PbO

Insol in boiling HO or HC H<sub>3</sub>O comp by HNO3+Aq with separation of V O5. which dissolves on warming (Roscoe)

Lead pyrovanadate, Pb<sub>2</sub>V<sub>2</sub>O<sub>7</sub>

Sol in warm dil HNO3+Aq (Ditte, C R **104** 1705 )

Min Desclorate Sol in cold dil HNO3+ Αq

Lead divanadate, PbV<sub>4</sub>O<sub>11</sub> (Ditte, C R 104 1705)

Lead orthovanadate, Pb<sub>3</sub>(VO<sub>4</sub>)<sub>2</sub>

Insol in H<sub>2</sub>O (Roscoe, A suppl 8 109)

Lead zinc orthovanadate, 4Pb3(VO4),  $3Zn_3(VO_4)_2$ 

Min Eusynchite Easily sol in HNO3+  $\mathbf{A}\mathbf{q}$ 

Lead zinc vanadate, (Pb, Zn)<sub>4</sub>V<sub>2</sub>O<sub>5</sub>+H<sub>2</sub>O Min Desclorate Sol in excess of HNO<sub>5</sub>+ Aq

Lead vanadate chloride, 3Pb<sub>3</sub>(VO<sub>4</sub>)<sub>2</sub>, PbCl<sub>2</sub>
Min Vanadinite Easily sol in HNO<sub>3</sub>+
Aq

Lithium vanadate, basic,  $\text{Li}_6\text{V}_2\text{O}_8+6\text{H}_2\text{O}$ Sol in  $\text{H}_2\text{O}$  (Ditte, C R 104 1168)  $\text{Li}_8\text{V}_2\text{O}_9+\text{H}_2\text{O}$ , and  $14\text{H}_2\text{O}$  Sol in  $\text{H}_2\text{O}$ (Ditte)

Lithium metavanadate, LiVO<sub>3</sub>
Easily sol in H<sub>2</sub>O (Berzelius)
+2H<sub>2</sub>O Quite easily sol in H<sub>2</sub>O (Rammelsberg, B A B **1883** 3)

Lithium divanadate,  $L_{12}V_4O_{11}+9H_2O$ Very sol in  $H_2O$  (Norblad) Correct formula is  $L_{18}V_5O_{14}+12H_2O$ (Rammelsberg) +8, or  $12H_2O$  (Datte, C R 104 1168)

Lithium orthovanadate, Li<sub>2</sub>VO<sub>4</sub>
Insol in H<sub>2</sub>O (Rammelsberg, B A B
1883 3)

Lithium pyrovanadate, Li<sub>4</sub>V<sub>2</sub>O<sub>7</sub>+4H<sub>2</sub>O

Very sol in H<sub>2</sub>O (Rammelsberg, B 16
1676)

+3H<sub>2</sub>O (Ditte, C R 104 1168)

L<sub>1</sub>th<sub>1</sub>um vanadate,  $L_{12}V_5O_{14}+7H_2O$ 

Difficultly sol in H<sub>2</sub>O (Rammelsberg) +12H<sub>2</sub>O Very efflorescent Correct formula for v Hauer's divanadate (Rammels-

Derg )  $L_{14}V_{6}O_{17}+16H_{2}O$  Sol in  $H_{2}O$  (Ditte, C R 104 1168)  $+15H_{2}O$  (Rammelsberg)

+13H<sub>2</sub>O (Rammelsberg +11H<sub>2</sub>O (R)

+3H<sub>2</sub>O (R)

 $\begin{array}{c} L_{l_5}V_4\bar{O}_{13}+15\dot{H}_2O & \text{Not very easily sol in} \\ H_2O & (Rammelsberg ) \\ L_{l_5}V_8O_{23}+12H_2O & \text{Moderately sol in } H_2O \end{array}$ 

 $\begin{array}{c} (Rammelsberg\ ) \\ L_{10}V_{12}O_{36} + 30H_2O \quad Efflorescent \quad \ Very \\ sol \ in \ H_2O \quad (Rammelsberg\ ) \end{array}$ 

Magnesium metavanadate, Mg(VO<sub>3</sub>)<sub>2</sub>

Verv easily sol in H<sub>2</sub>O (Berzelius) +6H<sub>2</sub>O Very sol in H<sub>2</sub>O (Ditte, C R **104** 1705)

Magnesium divanadate, MgV<sub>4</sub>O<sub>11</sub>+8H<sub>2</sub>O

Difficultly sol in H<sub>2</sub>O, but much more sol than barium divanadate (v. Hauer) +9H<sub>2</sub>O (Ditte, C. R. **104** 1705)

Magnesium  $tr_{4}$ vanadate,  $Mg_{2}V_{6}O_{17}+4\frac{1}{2}H_{2}O$ Very sl sol in  $H_{2}O$  (Manasse, A **240** 23) Magnesium vanadate, Mg<sub>3</sub>V<sub>10</sub>O<sub>28</sub>+28H<sub>2</sub>O Sol in H<sub>2</sub>O (Suguira and Baker, Chem Soc **35** 715)

Manganous metavanadate,  $Mn(VO_3)_2+4H_2O$ 

Very sl sol in cold, somewhat more sol in hot H<sub>2</sub>O Easily sol in dil acids (Radau, A **251**, 125)

Sl sol in  $H_2O_2$ , insol in alcohol (Scheuer, Z anorg 1898, **16** 304)

Manganous pyrovanadate, Mn<sub>2</sub>V<sub>2</sub>O<sub>7</sub>

Sl sol in hot dil HNO<sub>3</sub>+Aq (Ditte, C R **96** 1048)

Manganous potassium vanadate, MnKV<sub>5</sub>O<sub>14</sub> +8H<sub>2</sub>O

Mercuric vanadate Sl sol in H<sub>2</sub>O

Nickel vanadate, Ni(VO<sub>3</sub>)<sub>2</sub> Sol in H<sub>2</sub>O (Ditte, C R 104 1705)

Nickel orthovanadate, Ni<sub>3</sub>(VO<sub>4</sub>)<sub>2</sub> Insol in H<sub>2</sub>O, sol in HNO<sub>3</sub>+Aq (Ditte, C R **96** 1049)

Nickel divanadate, NiV<sub>4</sub>O<sub>11</sub>+3H<sub>2</sub>O Sol in H<sub>2</sub>O (Ditte, C R **104** 1705)

Nickel potassium vanadate, 5Ni(VO<sub>3</sub>)<sub>2</sub>, 2KVO<sub>3</sub>+25H<sub>2</sub>O

 $N_{13}K_2V_{10}O_{23}+17H_2O$  Very sl sol in hot  $H_2O$ 

N<sub>1</sub>KV<sub>8</sub>O<sub>4</sub>+8H<sub>2</sub>O 2N<sub>14</sub>V<sub>14</sub>O<sub>39</sub>, h<sub>8</sub>V<sub>14</sub>O<sub>39</sub>+69H<sub>2</sub>O 1000 pts H<sub>2</sub>O dissolve 1 7 pts of salt at 17 5° (Radau, A **251** 137)

Potassium vanadate, basic,  $K_8V_2O_9+20H_2O$ Sol in  $H_2O$  (Ditte, C R 104 902)

Potassium metavanadate, KVO<sub>3</sub>

Anhydrous Slowly sol in cold, more easily in hot H<sub>2</sub>O Insol in alcohol (Ber zelius)

Completely sol in a little cold H<sub>2</sub>O (Nor blad )

 $+\text{H}_2\text{O}$  Sol in  $\text{H}_2\text{O}$  (Rammelsberg) +1 $\frac{1}{2}$ H $_2\text{O}$  (Ditte) +1 $\frac{1}{2}$ H $_2\text{O}$  (Ditte)

 $+2H_2O$  (Ditte) +3H<sub>2</sub>O (Ditte, C R **104** 902)

+7H<sub>2</sub>O (Rammelsberg)

Potassium divanadate, K<sub>2</sub>V<sub>4</sub>O<sub>11</sub>+4H<sub>2</sub>O Sol in cold or lukewarm H2O Decomp by (Rammelsberg)  $hot H_2O$ 

(Berzelius) +3H<sub>2</sub>O $+3\frac{1}{2}H_2O$ Sol in warm H2O (Norblad)

+8 or 10H<sub>2</sub>O (Litte, C R 104 902) +6H<sub>2</sub>O (Ephram, Z anorg 1903, 35 76)

#### Potassium trivanadate, K<sub>2</sub>V<sub>6</sub>O<sub>16</sub>

 $\boldsymbol{A}$ nhydrous Nearly insol in H<sub>2</sub>O (Norblad) +6H<sub>2</sub>O Insol in cold or hot H<sub>2</sub>O (Norblad)

+1, and 5H<sub>2</sub>O (Ditte, C R 104 902)

Potassium orthovanadate, K<sub>2</sub>VO<sub>4</sub>+4½ or  $6H_{2}O$ 

Deliquescent Sol in H<sub>2</sub>O (Ditte, C R **104** 902)

Decomp by H<sub>2</sub>O into K<sub>4</sub>V<sub>2</sub>O<sub>7</sub> and KOH (Rammelsberg, B A B 1883 3)

Potassium pyrovanadate, K<sub>4</sub>V<sub>2</sub>O<sub>7</sub>+3H<sub>2</sub>O

Deliquescent Easily sol in H<sub>2</sub>O Insol (Norblad) ın alcohol +4H<sub>2</sub>O(Ditte, C R 104 902)

Potassium vanadate, K<sub>3</sub>V<sub>5</sub>O<sub>14</sub>+5H<sub>2</sub>O

100 pts H<sub>2</sub>O dissolve 19 2 pts at 17 5° (Radau, A **251** 120) + 45 H<sub>2</sub>O (Radau)

 $K_4V_6O_{17}+2H_2O$ Slowly sol in H<sub>2</sub>O

(Rammelsberg) (Ditte C R 104 902)  $+6H_{2}O$ +7H<sub>2</sub>O (Friedheim B **23** 1526)

Very sol in H\_O  $K_4V_{10}O_{27} + 12HO$ (Manasse, A 240 42)  $K_{10}V_8O_{25}^{\prime}+7H_2O$  Sol in HO (Rammels-

berg)  $K_2V_8O_{21}+1\frac{1}{2}H_2O$  Very sl sol in  $H_2O$ (Ephraim, Z anorg 1903, **35** 75) (Ephraim, Z anorg 1903, **37** 75) (Ephraim, Z anorg 1903,  $K_4V_{18}O_{47}$ 

35 78)

Potassium sodium vanadate, 2(2K<sub>2</sub>O,3V O<sub>5</sub>),  $3(2Na_2O, 3V_2O_5) + 30HO$ 

(Friedheim, Z anorg 1894, 5 442)  $2K_2O$ ,  $3V_2O_5$ ,  $4(2Na_2O$ ,  $3V_2O_5) + 3aH_2O$ florescent (Friedheim, Z anorg 1894, Efflorescent **5** 441)

Potassium strontium vanadate, K Sr<sub>3</sub>V<sub>14</sub>O<sub>39</sub>+ 20H<sub>2</sub>O

Sol in H<sub>2</sub>O (Manasse, A 240 23)  $K_2Sr_3V_{14}O_{89}+30HO$  As above (Man-

asse  $K_4Sr_5V_{14}O_{39}+18H_2O$  As above (Manasse)

Potassium zinc vanadate, KZnV<sub>5</sub>O<sub>14</sub>+8H<sub>2</sub>O 1000 pts  $H_2O$  dissolve 4.1 pts of the salt (Radau, A 251 145)  $2K_8V_{14}O_{39}$ ,  $3Z_{n_4}V_{14}O_{39} + 90H_2O$ 

Potassium vanadate cyanide, K<sub>4</sub>V<sub>2</sub>O<sub>7</sub>, 4KCN +14H,O

Easily decomp Insol in alcohol Petersen Z anorg 1904, 38 343

Samarium vanadate, Sm<sub>2</sub>O<sub>1</sub>, 5\<sub>1</sub>O<sub>1</sub>+28H<sub>2</sub>O (Cleve) +24H<sub>2</sub>O (Cleve)

Samarium orthovanadate Precipitate

Silver metavanadate, AgVO<sub>2</sub>

Sol in HNO, or dil \H4OH+4q (Berzelius)

Insol in liquid \H; (Gore, Am Ch J 1898, **20** 829)

Silver orthovanadate, Ag. VO4

Pot Easily sol in HNO, or \HOH+Aq (Roscoe, Proc Roy Soc 18 316)

Silver pyrovanadate, Ag<sub>4</sub>V<sub>2</sub>O<sub>7</sub>

Ppt (Roscoe ! Sol in VHOH+1q (Ditte C R 104. 1705)

Silver vanadate, Ags \ 4O13

Sol in 21 414 pts H<sub>2</sub>O at 14 and 13 017 pts at 100° (Carnellev A 166 155

Silver vanadate ammonia, 6 AgVO3, 4NH3+ 8H<sub>2</sub>O

(Ditte, C R 104 1705

Sodium vanadate, basic, \as\ O2+26 or 30H O

Very sol in HO Ditte

Sodium metavanadate, \a\O:

Anhydrous Slowly sol reclusions en in in hot HO Norblad

100 g H O dissolve at

60° 40° 70 35 53 g \al U; 32 9726 23

21 10 (McAdam and Pierle J Am Chen. Soc 1912, **34** 606) +2H O Easily sol ii H ()

100 g H O dissolve at 25° 40°

60

65 30 g \a\U 29.9315 23

At 75° a value was obtained which at west that the solid phase had changed in a the McAdam an Pinle less sol modification

J Am Chem Soc 1912 **34** 007 +1<sub>2</sub>H O (Ditte C P **104** 1061 +3, 4 and 5H O Ditte

Sodium divanadate, Na V.O.11 Sl sol even in warm H() Anhydrous(Radau ) but easily sol on addition of acid+9H<sub>2</sub>O Easily sol in cold H<sub>2</sub>O Insol in alcohol (Norblad) +5H<sub>2</sub>O (Ditte, C R 104 1061) Not obtained by Rammelsberg (B A B 1883 3)

Sodium trivanadate,  $Na_2V_6O_{16}+9H_2O$ Insol in cold or hot  $H_2O$  (Norblad) "omposition is  $Na_6V_{16}O_{48}+24H_2O$  (Ramsberg)

<sup>2</sup>H<sub>2</sub>O (Ditte, C R **104** 1061)

anadate,  $Na_3VO_4+16H_2O$ in  $H_2O$ , but decomp into KOH Precipitated by an ex-(Roscoe, A suppl 8 102)  $H_2O$  Less sol in dil NaOH  $H_2O$  (Baker, A 229 286)

anadate,  $Na_4V_2O_7+18H_2O$ in  $H_2O$  Insol in alcohol

hol (Ditte, C R **104** 1061) Ditte)

#### ssquivanadate, Na<sub>4</sub>V<sub>6</sub>O<sub>17</sub>

Rammelsberg ) Insol in H<sub>2</sub>O or NH<sub>4</sub>OH+Aq

+10H<sub>2</sub>O (Norblad)

+16H<sub>2</sub>O Efflorescent (Rammelsberg) +18H<sub>2</sub>O (Ditte)

Sodium pentavanadate, Na<sub>4</sub>V<sub>10</sub>O<sub>27</sub>+3<sup>1</sup>/<sub>2</sub>H<sub>2</sub>O Scarcely sol in H<sub>2</sub>O (Rammelsberg)

## Sodium vanadate, Na<sub>6</sub>V<sub>4</sub>O<sub>13</sub>+6H<sub>2</sub>O

Difficultly sol in cold H<sub>2</sub>O (Carnelley, A **166** 155)

+2H<sub>2</sub>O (Carnelley)

Na<sub>6</sub>V<sub>16</sub>O<sub>43</sub>+24H<sub>2</sub>O Correct formula for Norblad trivanadate (Rammelsberg)

Na<sub>2</sub>O, 4V<sub>2</sub>O<sub>5</sub>+7½H<sub>2</sub>O (Baragiola, Dissert 1902)

+8½H<sub>2</sub>O Br goln

3Na O, 5V<sub>2</sub>O<sub>5</sub>+22H<sub>2</sub>O (Prandtl and Lustig, Z anorg 1907, **53** 405)
4Na<sub>2</sub>O, 7V<sub>2</sub>O<sub>5</sub>+33H<sub>2</sub>O (Friedheim, Z anorg 1894, **5** 443)

5Na<sub>2</sub>O, 8V<sub>2</sub>O<sub>5</sub>+39H<sub>2</sub>O Sol in H<sub>2</sub>O (Friedheim, Z anorg 1894, 5 441)

Sodrum vanadate fluoride, 2Na<sub>3</sub>VO<sub>4</sub>, NaF+ 19H<sub>2</sub>O

Sol in  $H_2()$  (Rummelsberg, W Ann 20 928)

Stontium metavanadate,  $Sr(VO_3)_2 + 4H_2O$ Difficultly sol in cold  $H_2O$  (Norblad)

Strontium divanadate, SrV<sub>4</sub>O<sub>11</sub>+9H<sub>2</sub>O
Sl sol in H<sub>2</sub>O, but much more sol than barium divanadate (v Hauer)

Sol in  $H_2O_2+Aq$  free from  $H_2SC$  Insol in alcohol (Scheuer, Z anorg 189 **16** 303)

Strontium trivanadate, SrV<sub>6</sub>O<sub>16</sub>+14H<sub>2</sub>O

Sol in  $H_2O$ , but decomposes slowly coordinate Easily sol in hot H O acidification with  $HC_2H_3O_2$ , and crystallizes therefrow thout decomp (v Hauer, J pr 76 156

Strontium tetravanadate,  $SrV_8O_{21}+11H_2O$ Sol in hot  $H_2O$  with partial decompositio (Manasse, A **240** 34)

Strontum vanadate, Sr<sub>3</sub>V<sub>8</sub>O<sub>23</sub>+14H<sub>2</sub>O

Sol in  $\rm H_2O$  (Manasse, A **240** 23)  $\rm Sr_4V_{14}O_{39} + 30H_2O$  Sol in  $\rm H_2O$  (Noblad)

Thallous metavanadate, TlVO<sub>3</sub>

Sol in 11,534 pts  $\rm\,H_2O$  at 11°, and 47 pts at 100° (Carnellev)

Thallous orthovanadate, Tl<sub>3</sub>VO<sub>4</sub>

Sl sol in  $H_2O$  Sol in 999 pts  $H_2O$  at 1' and 574 ps at 100° (Carnellev, Chesoc (2) 11 323)

Thallous pyrovanadate, Tl<sub>4</sub>V<sub>2</sub>O<sub>7</sub>

Sol in 4996 pts  $H_2O$  at 14°, and 3840 p  $H_2O$  at 100° (Carnelley )

Thallous vanadate, Tl<sub>12</sub>V<sub>8</sub>O<sub>26</sub>

Sol in 3406 pts  $H_2O$  at 14°, and 533 p at 100° (Carnelley)  $Tl_{12}V_{10}O_{31}$  Sol in 9372 pts  $H_2O$  at 1 and 3366 pts at 100° (Carnelley)  $Tl_{12}V_{14}O_{41}$  Ppt (Carnellev)

Thorum vanadate,  $Th_{8}O_{12}(VO)_{4},\ 16V_{2}O_{5}$   $24H_{2}O$  (?)

Sol in  $H_2O$  (Cleve) ThO<sub>2</sub>,  $V_2O_5+6H_2O$  Sol in acids (Volc Z anorg 1894 **6** 167

Uranyl vanadate,  $2\mathrm{UO}_3$ ,  $\mathrm{V}_2\mathrm{O}_5$ ,  $(\mathrm{UO}_2)_2\mathrm{V}_2\mathrm{O}_5$ Insol in  $\mathrm{H}_2\mathrm{O}$  (Carnot, C R **104** 185

Vanadium vanadate,  $2VO_2$ ,  $V_2O_5 = V_4O_9$ 

Insol in H<sub>2</sub>O Sol in dil H<sub>2</sub>SO<sub>4</sub> or HN
+A | R n | c | l er\_ |
Slowh | N | c | HNO<sub>3</sub>+Aq Slow
sol in NH<sub>4</sub>OH+Aq Reasily sol in HCl+
(Ditte, C R 101 1487)

 $+2^{2}/_{3}H_{2}O$  (Brierley) 2VO<sub>2</sub>, 2V<sub>2</sub>O<sub>5</sub>+8H<sub>2</sub>O Insol (Brierley, Chem. Soc. **49** 31)

H

Ytterbium vanadate, 3Yb<sub>2</sub>O<sub>3</sub>, 5V<sub>2</sub>O<sub>5</sub>+3H<sub>2</sub>O<sub>5</sub> Yb<sub>2</sub>O<sub>3</sub>, 15V O<sub>5</sub> Ppt (Cleve, Z ano

## Yttrium vanadate

1902, **32** 150)

Precipitate (Berzelius)

```
inc vanadate, Zn(VO<sub>8</sub>)<sub>2</sub>+2H<sub>2</sub>O
  Sol m H<sub>2</sub>O (Ditte, C R 104 1705)
```

Sinc pyrovanadate, Zn<sub>2</sub>V<sub>2</sub>O<sub>7</sub> Appreciably sol in H<sub>2</sub>O (Ditte, C R **6.** 1048)

Pervanadic acid See Pervanadic acid

## Vanadicotungstic acid

Ammonium vanadicotungstate.  $3(NH_4)_2O$ ,  $V_2O_3$ ,  $8WO_3+10H_2O$  $\mathbf{Very}$  sol in  $\mathbf{H}_2\mathrm{O}$ 

Insol in organic solvents (E F Smith, Am Chem Soc 1903, 25 1227)

#### Vanadicovanadic acid

Ammonium vanadicovanadate, (NH<sub>4</sub>)<sub>2</sub>O.  $2VO_2$ ,  $4V_2O_5 + 8H_2O$ 

Sl sol in cold and warm H<sub>2</sub>O Am Ch J 7 209) (Gibbs, | (NH<sub>4</sub>)<sub>2</sub>O, 2V<sub>2</sub>O<sub>4</sub>, 2V<sub>2</sub>O<sub>5</sub>+14H<sub>2</sub>O H<sub>2</sub>O (Brierley, Chem Soc **49** 30) 3(NH<sub>4</sub>)<sub>2</sub>O, 2V<sub>2</sub>O<sub>4</sub>, 4V<sub>2</sub>O<sub>5</sub>+6H<sub>2</sub>O Sol m Insol n **H**<sub>2</sub>O (Brierley)

**Potassium** —,  $2K_2O$ ,  $2V_2O_4$ ,  $V_2O_5+6H_2O$ Sol in hot H<sub>3</sub>O (Brierley, Chem Soc 30  $5K_2O_1 2V_2O_4$ ,  $4V_2O_5 + H_2O$  Insol in  $H_2O$ 

Brierley  $\mathbf{K}_2\mathbf{O}$ ,  $\mathbf{V}_2\mathbf{O}_4$ ,  $8\mathbf{V}_2\mathbf{O}_5$  Insol in  $\mathbf{H}_2\mathbf{O}$ Sol in conc H<sub>2</sub>SO<sub>4</sub> (Prandtl, B 1905,

**Sodium** —,  $2Na_2O$ ,  $2V_2O_4$ ,  $V_2O_5+13H_2O$ Easily sol in H<sub>2</sub>O Insol in conc soluions of salts, especially acetate (Brierley, Them Soc 49 3())

2Na<sub>2</sub>O, V<sub>2</sub>O<sub>4</sub>, 5V<sub>2</sub>O<sub>5</sub> Insol in H<sub>2</sub>O Sol n conc H<sub>2</sub>SO<sub>4</sub> Not attacked by boiling with conc HNO<sub>3</sub> Slowly attacked by hot II NH<sub>4</sub>OH+Aq (Prandtl, B 1905, 38 359)

Vanadioarsenic acid See Arseniovanadic acid

Vanadioiodic acid See Iodovanadic acid.

Vanadiomolybdic acid, 8MoO<sub>3</sub>, V<sub>2</sub>O<sub>5</sub>+

Very sl sol, in H<sub>2</sub>O, and sl sol in boiling HNO<sub>3</sub>+Aq (Ditte, C R 102 757) Could not be obtained (Friedheim, B

**24** 1173)

Ammonium vanadiomolybdate,  $(NH_4)_2O$ ,  $V_2O_5$ ,  $2M_0O_3+4H_2O$ (Friedheim and in H<sub>2</sub>O Nearly insol in H<sub>2</sub>O Dastendyck, B 1900, **33** 1615)

 $\begin{array}{cccc} ({\rm NH_4})_2{\rm O}, \ 2{\rm V_2O_5}, \ 2{\rm MoO_3} + 8{\rm H_2O} & {\rm Nearly} \\ {\rm msol} \ \ {\rm m} \ {\rm H_2O} & ({\rm Friedhem} \ {\rm and} \ {\rm Castendyck}) \\ {\rm _2({\rm NH_4})_2{\rm O}}, \ {\rm V_2O_5}, \ 3{\rm MoO_3} + 6{\rm H_2O} & ({\rm Euler-Vector}) \end{array}$ Chelpin, Dissert, 1895)  $(NH_4)_2O$ ,  $V_2O_5$ ,  $3M_0O_3+17H_2O_3$ (Euler-

Chelpin )  $2(NH_4)_2O$ ,  $V_2O_5$ ,  $4MoO_3+7H_2O$  and + 8H<sub>2</sub>O (Euler-Chelpin,)

3(NH<sub>4</sub>)<sub>2</sub>O, 2V<sub>2</sub>O<sub>5</sub>, 4MoO<sub>3</sub>+7H<sub>2</sub>O Dissert Berlin, **1887**) (Milch,

+9H<sub>2</sub>O Sol in H<sub>2</sub>O (Ditte, C R 102 1019)

+11H<sub>2</sub>O Easily sol in H<sub>2</sub>O Correct composition of above compounds is = (NH<sub>4</sub>)<sub>2</sub>O, 2V<sub>2</sub>O<sub>5</sub>+2[NH<sub>4</sub>)<sub>2</sub>O, 2MoO<sub>3</sub>]+11H<sub>2</sub>O (Friedheim, B **24** 1173)

Moderately sol in H<sub>2</sub>O and can be re-

cryst therefrom (Euler-Chelpin, Dissert, 1895)

 $2(NH_4)_2O$ ,  $3V_2O_5$   $4M_0O_3+11H_2O$  Nearly insol in  $H_2O$  (Friedheim and Casten-

dyck, B 1900, **33** 1615) 2(NH<sub>4</sub>)<sub>2</sub>O, 2V<sub>2</sub>O<sub>5</sub>, 5MoO<sub>3</sub> Nearly insol in cold H<sub>2</sub>O (Euler-Chelpin, Dissert **1895**)

10 cold H<sub>2</sub>O (Euler-Cheipin, Dissert 100 f. H<sub>2</sub>O (Fried-heim and Castendyck, B 1900, 33 1615) 3(NH<sub>4</sub>)<sub>2</sub>O, 2V<sub>2</sub>O<sub>5</sub>, 5MoO<sub>3</sub>+8½H<sub>2</sub>O Very easily sol in H<sub>2</sub>O (Liebert, Dissert 1891) 4(NH<sub>4</sub>)<sub>2</sub>O, 12V<sub>2</sub>O<sub>5</sub>, 5MoO<sub>3</sub>+24H<sub>2</sub>O Practically used in H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f. H<sub>2</sub>O (Friedheim and Castendral Processing 100 f tically insol in H<sub>2</sub>O (Friedheim and Casten-

dyck, B 1900, 33 1615)  $2(NH_4)_2O$ ,  $V_2O_5$ ,  $6M_0O_3+5H_2O$ in a large amount of H<sub>2</sub>O (Gibbs, Am Ch J 5 361)

 $+6H_2O$  Rather sl sol in  $H_2O$ Easily sol in acids (Liebert, Dissert,

Composition is double the above formula,

4(NH<sub>4</sub>)<sub>2</sub>O,  $2V_2O_5$  $12\text{MoO}_3 + 12\text{H O}$ Rather difficultly sol in H<sub>2</sub>O Composition  $(NH_4)_2O$ ,  $2V_2O_5+3[NH_4)_2O$ ,  $4M_0O_3$ (Friedheim)

 $3(NH_4)_2O$ ,  $V_2O_5$ ,  $6M_0O_3 + 7H_2O$ (Isen-

burg, Dissert, 1901) 5(NH<sub>4</sub>)<sub>2</sub>O, 4V<sub>2</sub>O<sub>5</sub>,  $6\text{MoO}_3 + 12\text{H}_2\text{O}$  and (Euler-Chelpin, Dissert, 1895) +14H<sub>2</sub>O $5(NH_4)_2O$ ,  $3V_2O_5$ ,  $7MoO_3+13H_2O$  and  $+16H_2O$  Sol in  $H_2O$  and can be recryst (Toggenburg, Dissert, 1902) therefrom  $5(NH_4)_2O$ ,  $3V_2O_5$ ,  $8M_0O_3 + 14H_2O$ 

O(NIA)<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub>, ONIOO<sub>3</sub>+1911<sub>2</sub>O (Stamm, Dissert, **1905**) 5(NH<sub>4</sub>)<sub>2</sub>O, 2V<sub>2</sub>O<sub>5</sub>, 12MoO<sub>3</sub>+10H<sub>2</sub>O Quite easily sol in H<sub>2</sub>O Composition is (NH<sub>4</sub>)<sub>2</sub>O, 2V<sub>2</sub>O<sub>5</sub>+4((NH<sub>4</sub>)<sub>2</sub>O, 3MoO<sub>3</sub>)+10H<sub>2</sub>O

 $6(NH_4)_2O$ ,  $3V_2O_5$ ,  $12M_0O_3+21H_2O$ Composition is (NH<sub>4</sub>)<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub>+ ın H<sub>2</sub>O

 $5(NH_4)_2O$ ,  $12MoO_3$  (F) 8(NH<sub>4</sub>)<sub>2</sub>O, 4V<sub>2</sub>O<sub>5</sub>, 13MoO<sub>3</sub>+21H<sub>2</sub>O in H<sub>2</sub>O (Isenburg, Dissert, **1901**) Sol

 $8(NH_4)_2O$ ,  $V_2O_5$ ,  $18M_0O_5+15H_2O$ Decomp by hot H<sub>2</sub>O (Gibbs) Could not be obtained (Friedheim) 10(NH<sub>4</sub>)<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub>, 24MoO<sub>3</sub>+10H<sub>2</sub>O Sol H<sub>2</sub>O (Milch) Could not be obtained

(Friedheim)

```
1110
Ammonium barium vanadiomolybdate,
       5(NH<sub>4</sub>)<sub>2</sub>O, 15BaO, 6V<sub>2</sub>O<sub>5</sub>, 36MoO<sub>3</sub>
    (Mılch)
(NH<sub>4</sub>)<sub>2</sub>O, BaO, V<sub>2</sub>O<sub>5</sub>, MoO<sub>3</sub>+6H<sub>2</sub>O
(Euler-Chelpin, Dissert, 1895)
3(NH<sub>4</sub>)<sub>2</sub>O, BaO, 3V<sub>2</sub>O<sub>5</sub>, 5MoO<sub>3</sub>+9H<sub>2</sub>O
Sl sol in cold and hot H<sub>2</sub>O (Euler-Chelpin )
Ammonium potassium —, (NH<sub>4</sub>)<sub>2</sub>O, 3K<sub>2</sub>O, 2V_2O_5, 4M_0O_3+5H_2O
    Decomp by H<sub>2</sub>O (Euler-Chelpin,)
    (NH_4)_2O, 3K_2O, 3V_2O_5, 5M_0O_3+9H_2O
(Euler-Chelpin )
     1/2(NH<sub>4</sub>)<sub>2</sub>O, 31/2K<sub>2</sub>O,
H<sub>2</sub>O Sol in H<sub>2</sub>O
                                           3V_2O_5, 5M_0O_3+
16H<sub>2</sub>O
                                         (Jacoby, Dissert
1900)
Ammonium sodium —, (NH_4)_2O, Na_2O, 2V_2O_5, 6M_0O_3+12H_2O
     (Euler-Chelpin, Dissert, 1895)
Barrum —, BaO, V_2O_5, MoO<sub>3</sub>+7H<sub>2</sub>O
     (Euler-Chelpin )
Barium ----, 3BaO, 2V<sub>2</sub>O<sub>5</sub>, 6MoO<sub>3</sub>
    (Milch)
     +8H<sub>2</sub>O
                     (Euler-Chelpin)
    5BaO, 4V<sub>2</sub>O<sub>5</sub>, 6MoO<sub>3</sub>+28H<sub>2</sub>O ot H<sub>2</sub>O (Euler-Chelpin)
                                                            Sol in
hot H<sub>2</sub>O
3BaO, V<sub>2</sub>O<sub>5</sub>, 8MoO<sub>3</sub>+2BaO, H<sub>2</sub>O, V<sub>2</sub>O<sub>5</sub>, 8MoO<sub>3</sub>+28H<sub>2</sub>O Sol in hot H<sub>2</sub>O (Gibbs,
Am Ch J 5 361)
7BaO, 3V<sub>2</sub>O<sub>5</sub>, 18MoO<sub>3</sub>+16H<sub>2</sub>O
3V<sub>2</sub>O<sub>5</sub>+6(BaO, 3MoO<sub>3</sub>)+16H<sub>2</sub>O
                                18\text{MoO}_3 + 16\text{H}_2\text{O} = \text{BaO},
in H<sub>2</sub>O
    +36H<sub>2</sub>O and +48H<sub>2</sub>O (Liebert, Dis-
sert 1891)
Potassium —, K_2O, V_2O_5, 3MoO_8+15H_2O
     Nearly insol in cold H<sub>2</sub>O (Euler-Chelpin,
 Dissert, 1895)
     3K_2O, 2V_2O_1 4M_0O_3 + 8H_2O = K_2O, 2V_2O_6
 +2(K_2O, 2M_0O_1)+8H_2O
     Very sol in H<sub>2</sub>O (Friedheim)
     +7H<sub>2</sub>O Easily sol in cold H O
                                                             (Fuler-
 Chelpin )
     +9H2O
                    Easily sol in cold H O
                                                             (Eulcr-
 Chelpin )
     2K_2O, 2V_2O_5, 5M_0O_3 + 10H_2O
                                                             Ne arly
 insol in cold, very sl sol in hot H<sub>2</sub>O
                                                             (Fuler
 Chelpin )
     3KOVO_{1} (MoO<sub>3</sub>+5HO) (Fuler Chel
     2\dot{N}_2() V_2O_1, 6M_0O_3+6H_2O Very sl sol
 in cold easily sol in hot HO (Liebert)
                    2V_2(t)_1 = 12M_0(t)_1 + 12H_1(t) = K_2(t)
 2V_2O_5 + 3(KO, 4MoO_3) + 12H_2O
                (Friedheim)
 in H ()
```

5K O

 $2V O_t$ 

sol in H<sub>2</sub>O (Friedheim)

(Lighert, Dissert 1891.)

Potassium sodium vanadiomolybdate, K2O. 4Na<sub>2</sub>O, 2V<sub>2</sub>O<sub>5</sub>, 12MoO<sub>8</sub>+18H<sub>2</sub>O (Euler-Chelpin Dissert 1895) Sodium \_\_\_\_, 2Na<sub>2</sub>O, V<sub>2</sub>O<sub>5</sub>, 6MoO<sub>3</sub>+16H<sub>2</sub>O (Euler-Chelpin, Dissert, 1895) Vanadiophosphoric acid See Phosphovanadic acid Vanadioselenious acid, 3V<sub>2</sub>O<sub>5</sub>, 4SeO<sub>2</sub>+  $4H_2O$ +6H<sub>2</sub>ODifficultly sol in H<sub>2</sub>O Can be cryst from H<sub>2</sub>O +10H<sub>2</sub>O Difficultly sol in H<sub>2</sub>O Can be cryst from H<sub>2</sub>O (Prandtl, B 1905, 38 1307) Ammonium vanadioselenite,  $4(NH_4)_2O$ ,  $6V_2O_5$ ,  $5SeO_2+13H_2O$ Sl sol in H<sub>2</sub>O Decomp by boiling H<sub>2</sub>O 3(NH<sub>4</sub>)<sub>2</sub>O 3V<sub>2</sub>O<sub>5</sub> 6SeO<sub>2</sub>+2H<sub>2</sub>O (Prandtl, B 1905, 38 1309)  $(NH_4)_1HV_6O_{17}$ ,  $12SeO_2+2H_2O$ Ppt +4H<sub>2</sub>O Ppt (Prandtl, Z anorg 1911. 73 231) Ammonium silver—,  $2^{2}/_{3}(NH_{4})_{2}O$ ,  $1^{1}/_{3}Ag_{2}O$ .  $6V_2O_5$ ,  $5SeO_2 + 12H_2O_7 + 16H_2O_7$ +22H<sub>2</sub>O (Plandtl, Z anorg 1907, 53 402) Lithium —,  $4L_{12}O$ ,  $6V_2O_5$ ,  $5SeO_2+30H_2O$ Very sol in H2O (Prandtl) Potassium —,  $4K_2O$ ,  $6V_2O_5$ ,  $5SdO_2+$ 13H<sub>2</sub>O 3K<sub>2</sub>O, 3V<sub>2</sub>O<sub>t</sub>, 6SeO (Prindtl, B, 1905) **38** 1309) Sodium —,  $4Na_2O$ ,  $6V_2O_6$ ,  $5S_2O_2+20H_2O$ Very sol in H () (Prindtl Z morg 1907, 53 403) Vanadiosulphuric acid, V O<sub>1</sub>, 3SO<sub>3</sub>+3H<sub>2</sub>O Deliquescent Sol in HO but is decomp by boiling (Ditte C P 102 757) See Sulphate, vanadium Vanadiosulpurous acid Ammonium vanadiosulphite, 3(V O<sub>4</sub>,SO ), (NH<sub>4</sub>)<sub>2</sub>O, SO +4H O (Gain, C. R. 1907, 144, 1158) Cæsium —,  $(V O_4,SO_2)$ ,  $3(C_{82}O_1SO_2)$ +  $8H_{2}O$  $12\text{MoO}_3 + 12\text{H}_2\text{O} = \text{K}_2\text{O}$  $2V_2O + 4(I_{12}O, 3MoO_3) + 12H_2O$  Rather sl (Gun) Sl sol in cold easily sol in hot H () Lithium —, (V2O4,SO2), 5(L12O,SO2)+ 8H<sub>2</sub>O 3h<sub>2</sub>O, V<sub>2</sub>O<sub>5</sub>, 12MoO<sub>3</sub>+15H<sub>2</sub>O (Jaebert)) (Gain)

Potassium  $3SO_{2},(V_{2}O_{4}),$ Vanadiosulphite,  $SO_2, (K_2O) + 5H_2O$ (Gain)

**Rubidium** —,  $(V_2O_4,SO_2)$ ,  $2(Rb_2O_1SO_2)$  + 2H<sub>2</sub>O (Gain)

Sodium -,  $5(V_2O_4,SO_2)$ ,  $(Na_2O,SO_2)$  +  $2H_2O$ (Gain)

**Thallium** —,  $3(V_2O_4,SO_2)$ ,  $(Tl_2O,SO_2)$  + 8H₂O (Gain)

Vanadiotungstic acid, 6H<sub>2</sub>O, V<sub>2</sub>O<sub>5</sub>, 10WO<sub>8</sub> +16H<sub>2</sub>O

Very sl sol in cold, more easily in hot H<sub>2</sub>O (Gibbs, Am. Ch. J. 5 361)  $6H_2O$   $V_2O_5$ ,  $16WO_3+30H_2O$  sol in  $H_2O$  (Gibbs) Readily 17H<sub>2</sub>O 4V<sub>2</sub>O<sub>5</sub>, 16WO<sub>3</sub>+24H<sub>2</sub>O Sl sol 1n cold, easily in hot H<sub>2</sub>O (Rosenheim, A **251** 228)

Aluminum sodium vanadiotungstate, 7Al<sub>2</sub>O<sub>3</sub>,  $27\text{Na}_2\text{O}$ ,  $36\text{V}_2\text{O}_6$ ,  $144\text{WO}_3 + 504\text{H}_2\text{O} = 3(\text{Al}_2\text{O}_3, 9\text{Na}_2\text{O}, 48\text{WO}_3)$ ,  $4(\text{Al}_2\text{O}_3, 9\text{V}_2\text{O}_6)$ +504H<sub>2</sub>O(Rothenbach, B 23 3055) Sol in H<sub>2</sub>O

Ammonium  $\longrightarrow$ ,  $(NH_4)_2O$ ,  $3V_2O_5$ ,  $WO_8+$ 6H<sub>2</sub>O

Sol in H<sub>2</sub>O (Rammelsberg, B 1 158)  $2(NH_4)_2()$   $V_2()_1$ ,  $5W()_3+10H_2()$  Sol in  $H_2()$  (Ditte, C R **102** 1019)  $60WO_3 + 58H_2O =$  $31(NH_4)$  (),  $14V_2O_5$  $7(NH_4)_2()$ , 4VO,  $14W()_3+16H_2()$ in H () (Rosenheim A 251 197) S(NH<sub>4</sub>) (), 4V<sub>2</sub>()<sub>1</sub>, 16WO<sub>3</sub>, 9H ()+4H<sub>2</sub>O Efflorescent Very sol in H<sub>2</sub>() (Rosenheim, A 251 216)

19BaO, 10V<sub>2</sub>O<sub>5</sub>, 36WO<sub>8</sub>+  $94H_2O = 3(5BaO,$ 12WO<sub>3</sub>), 2(2BaO,  $5V_2O_5) + 94H_2O$ 

Sl sol in II () (Rothenbach, B 23 3052) SB<sub>4</sub>(), 4V ()<sub>5</sub>,  $16W()_3$ ,  $9H_2()+44H_2O$ Efflorescent Not very sol in  $H_2()$  (Rosenhc ~ \ 251 219 \  $BaO_{5}$ ,  $12WO_{3}$ ,  $3V_{2}O_{5}$ + 1 1 30[17] Jυ

sol in  $H_2O$ , (Friedheim and Lowy, Z)anorg 1894, **6** 18) 4BaO, 4V<sub>2</sub>O<sub>5</sub>, 12WO<sub>8</sub>+41H<sub>2</sub>O Less sol.

than preceding salt Decomp by boiling or by mineral acids (Rosenheim) Composition is 4BaO, 12WO<sub>3</sub>, 3V<sub>2</sub>O<sub>5</sub>+ 30H<sub>2</sub>O (Friedheim)

Calcium vanadiotungstate, 2CaO,

2WO<sub>2</sub>+12H<sub>2</sub>O (Friedheim and Löwy, Z anorg 1894, 6 20 Ì

Magnesium sodium -, MgO,  $3V_2O_5$ ,  $12WO_8+42H_2O=5Na_2O$ MgO, 6Na<sub>2</sub>O,  $12WO_3+MgO, Na_2O, 3V_2O_5+42H_2O$ Sol in H<sub>2</sub>O (Rothenbach, B 23 3054

Potassium —, 4K20, 3V2O5, 12WO3+ 30H<sub>2</sub>O

Sol in H<sub>2</sub>O Composition is potassium metatungstate vanadate, 3(K<sub>2</sub>O, 4WO<sub>3</sub>)+K<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub>+30H<sub>2</sub>O (Friedheim, B **23** 1515)

 $8K_2O, 4V_2O_5, 16WO_8, 9H_2O + 24H_2O$  Very efflorescent Easily sol in H<sub>2</sub>O, (Rosenheim, A **251** 214)

Formula 1s 6K<sub>2</sub>Ó, 12WO<sub>3</sub>, 3V<sub>2</sub>O<sub>5</sub>+24H<sub>2</sub>O, which is a double salt,  $5K_2O$ ,  $12WO_3+K_2O$ ,  $3V_2O_5$  (Friedheim, B 23 1505)

Potassium sodium \_\_\_\_, (5Na<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub>, 6WO<sub>3</sub> +22H<sub>2</sub>O), 4(5K<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub>, 6WO<sub>3</sub> +22H<sub>2</sub>O) or Na<sub>2</sub>O, 4K<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub>, 6WO<sub>3</sub>  $+22H_{2}O$ 

(Friedheim and Lowy, Z anorg 1894, 6

 $4(5\text{Na}_2\text{O}, 3\text{V}_2\text{O}_5, 6\text{WO}_3 + 24\text{H}_2\text{O}), 3(5\text{K}_2\text{O}_5)$  $3V_2O_5$ ,  $6WO_3+24H_2O$ ) (Friedheim and Lowy )  $5(5\dot{N}a_2O, 3V_2O_5, 6WO_3+24H_2O), 5K_2O, 3V_2O_5, 6WO_3+24H_2O$  (Friedheim and

Silver —,  $8Ag_2O$ ,  $4V_2O_5$ ,  $16WO_8$ ,  $9H_2O$ Somewhat sol in cold H<sub>2</sub>O, more easily upon addition of little HNO<sub>3</sub>. Decomp by warm H<sub>2</sub>O (Rosenheim, A **251** 224) 3Ag<sub>2</sub>O, 2V<sub>2</sub>O<sub>5</sub>, 6WO<sub>3</sub>+3H<sub>2</sub>O Nearly insol in cold H<sub>2</sub>O Decomp by addition of

Sodium —,  $5Na_2O$ ,  $3V_2O_5$ ,  $6WO_3+36H_2O$ Sol in H<sub>2</sub>O

HNO<sub>3</sub> or upon warming (Rosenheim)

Composition is 3(Na<sub>2</sub>O, 2WO<sub>3</sub>)+2(Na<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub>)+36H<sub>2</sub>O (Friedheim, B 23 1527) +38H<sub>2</sub>O Sol in 1 25 pts H<sub>2</sub>O at 13 8° (Friedheim and Lowy)

2Na<sub>2</sub>O, 2V<sub>2</sub>O<sub>5</sub>, 3WO<sub>3</sub>+20H<sub>2</sub>O Very sol

Composition is Na<sub>2</sub>O<sub>3</sub> 3WO<sub>3</sub>+Na<sub>2</sub>O<sub>5</sub> 2V<sub>2</sub>O<sub>5</sub> +20H2O, double salt of sodium tritungstate ANA<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub>, 12WO<sub>3</sub>+38H<sub>2</sub>O =3(Na<sub>2</sub>O, 4WO<sub>3</sub>)+Na<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub>+38H<sub>2</sub>Q Sel in H<sub>2</sub>Q (Rothenhach B 23 3050)<sub>Drit</sub> (Na<sub>2</sub>O, 4WO<sub>3</sub>)+Na<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub>+38H<sub>2</sub>Q Sel in H<sub>2</sub>Q (Rothenhach B 23 3050)<sub>Drit</sub> (Na<sub>2</sub>O, 4V), 16W,O<sub>3</sub>, 9H<sub>2</sub>O+48H<sub>2</sub>O Efflorescent Easily sol in H<sub>2</sub>O (Rosenheim, A **251** 210)

Formula is 6Na<sub>2</sub>O, 12WO<sub>3</sub>, 3V<sub>2</sub>O<sub>5</sub>+42H<sub>2</sub>O, and is a double salt of sodium paratungstate, 5Na<sub>2</sub>O, 12WO<sub>3</sub>, and sodium trivanadate, Na<sub>2</sub>O, 3V<sub>2</sub>O<sub>5</sub> (Friedheim, B **23** 1505) 7Na<sub>2</sub>O, V<sub>2</sub>O<sub>5</sub>, 12WO<sub>3</sub>+29H<sub>2</sub>O Easily

 $7Na_2O$ ,  $V_2O_5$ ,  $12WO_3+29H_2O$  Easily sol in  $H_2O$  (Friedheim and Lowy, Z anorg 1894, **6** 15)

 $8Na_2O$ ,  $V_2O_5$ ,  $14WO_3+60H_2O$  and  $+66H_2O$  (Friedheim and Lowy)

Strontium vanadiotungstate, 19SrO, 36WO<sub>5</sub>,  $10V_2O_5+122H_2O=3(5SrO, 12WO_3)$ ,  $2(2SrO, 5V_2O_5)+122H_2O$ Sol in H<sub>2</sub>O (Rothenbach, B **23** 3053)

Vanadious acid
See Hypovanadic acid

### Vanadiovanadicomolybdic acid

Ammonium vanadiovanadicomolybdate,  $11(\mathrm{NH_4})_2\mathrm{O},~4\mathrm{V_2O_5},~\mathrm{VO_2},~28\mathrm{MoO_3} + 48\mathrm{H_2O}$ 

Sl sol in cold, sol in hot H<sub>2</sub>O without decomp (Gibbs, Am Ch J 5 391)

Barum —, 14BaO,  $2V_2O_5$ ,  $3VO_2$ ,  $30MoO_3$  +48 $H_2O$ 

ite Very sl sol in cold, decomp (Gibbs)

## Vanadiovanadicotungstic acid

Ammonium vanadiovanadicotungstate, 6(NH<sub>4</sub>)<sub>2</sub>O, 2V<sub>2</sub>O<sub>5</sub>, 3VO<sub>2</sub>, 12WO<sub>3</sub>+ 12H<sub>2</sub>O Sol in H<sub>2</sub>O (Gibbs, Am Ch J 5 391)

Silver -,  $6Ag_2O$ ,  $2V_2O_5$ ,  $3VO_2$ ,  $12WO_3+$ 

Precipitate Very sl sol in cold, sol in much warm H<sub>2</sub>O (Gibbs )

Sodium —, 6Na<sub>2</sub>O, 2V<sub>2</sub>O<sub>5</sub>, 3VO<sub>2</sub>, 12WO<sub>3</sub> Very sol in H<sub>2</sub>O (Gibbs)

#### Vanadium, V

Insol in H<sub>2</sub>O, HCl, dil H<sub>2</sub>SO<sub>4</sub>+Aq, and cold conc H<sub>2</sub>SO<sub>4</sub> Sol in hot conc H<sub>2</sub>SO<sub>4</sub> Slowly sol in HF+Aq Easily sol in dil or conc HNO<sub>3</sub>+Aq Not attacked by hot or cold NaOH or KOH+Aq (Roscoe, A suppl 7 85)

Does not alter in the air, not acted upon by HCl and very slowly by H<sub>2</sub>SO<sub>4</sub> (Moissan, C R 1896, **122** 1299)

# Vanadium boride, VB

Sol in HF and HNO: Decomp by fused alkalies (Wedekind, B 1913, 46 1203)

## Vanadium tribromide, VBr.

Very deliquescent, quickly decomposes (Roscoe, A suppl 8 99)

+6H<sub>2</sub>O Sol in H<sub>2</sub>O with decomp (Locke and Edwards, Am Ch J 1898, **20** 600)
Sol in H<sub>2</sub>O, alcohol and ether Insol in HBr (Piccini Z anorg 1899, **19** 398)

#### Vanadium carbide, VC

Insol in HCl and H<sub>2</sub>SO<sub>4</sub> Sol in HNO<sub>3</sub> in the cold, and in fused KNO<sub>5</sub> and KClO<sub>3</sub> (Moissan, C R 1896, 122 1300)

## Vanadium dichloride, VCl2

Very deliquescent Sol in  $H_2O$ , alcohol, and ether (Roscoe, A suppl 7 79)

## Vanadium trichloride, VCla

Deliquescent Sol in H<sub>2</sub>O, absolute alcohol, and ether

+6H<sub>2</sub>O Sol in H<sub>2</sub>O, sl sol in conc HCl+Aq

Sol in alcohol and ether (Piccini, Z anorg 1899, 19 395)

## Vanadium tetrachloride, VCl4

Sol with decomp in H<sub>2</sub>O, alcohol, and ether (Roscoe)

Sol in H<sub>2</sub>O with decomp

Sol in fuming HCl with decomp

Sol in anhydrous CHCl<sub>3</sub> or glacial acetic acid apparently without chemical change (Koppel, Z anorg 1905, **45** 346)

## Vanadium diffuoride, VF2

Sol in HF with evolution of  $H_2$  and formation of  $VF_3$  (Manchot, A 1907, **357** 135)

## Vanadium trifluoride, VF3

Nearly insol in  $H_2O$  and organic solvents (Ruff, B 1911, **44** 2544)

+3H<sub>2</sub>O Efforescent Easily sol in cold, extremely sol in hot H<sub>2</sub>O with decomp Can be recryst from HF+Aq Insol in strong alcohol (Petersen, J pr (2) 40 48)

#### Vanadium tetrafluoride, VF4

Very hydroscopic Lasily sol in H<sub>2</sub>() Difficultly sol in SO<sub>2</sub>Cl<sub>2</sub> and SiCl<sub>4</sub> Sol in POCl<sub>3</sub> with evolution of gas Sol in acetone and acetic acid Difficultly sol in alcohol and CHCl<sub>3</sub> (Ruff, B 1911, **44** 2545)

## Vanadium pentafluoride, VF

Easily sol in H<sub>2</sub>O

Easily sol in alcohol, CHCl<sub>3</sub>, acetone, and ligroin Insol in CS<sub>2</sub> Decomp toluene and ether (Ruff, B 1911, **44** 2549)

#### Vanadium trifluoride with MF See Fluovanadate, M

#### Vanadium hydride,

Stable Does not react with boiling H<sub>2</sub>O Not attacked by boiling HCl, but oxidized by hot H<sub>2</sub>SO<sub>4</sub>

Sol in boiling HNO<sub>3</sub> (Muthmann, A

1907, 355 86)

## **Vanadium** dihydroxide, VO, xH<sub>2</sub>O

Insol in KOH or NaOH+Aq V(OH)<sub>2</sub> Sol in HCl (Locke and Edwards, Am Ch J 1898, 20 598)

Vanadium trihydroxide, V2O3, xH2O

Easily sol in all acids (Petersen, J pr **(2) 40** 49)

Vanadium tetrahydroxide (Hypovanadic hydroxide),  $V_2O_2(OH)_4+5H_2O$ 

Easily sol in acids or alkalies (Crow, Chem Soc 30 453)

## Vanadium triodide, VI<sub>8</sub>+6H<sub>2</sub>O

Very hydroscopic, sol in H<sub>2</sub>O Only sl sol in cold conc HI+Aq Sol in alcohol (Piccini, Z anorg 1899,

**19** 399)

## Vanadium nitride, V2N

Insol in H<sub>2</sub>O, HCl, and KOH+Aq Sol In HNO3+H2SO4

Decomp by fusing with KOH mann, A 1907, 355 93) (Muth-

Insol in liquid NH<sub>3</sub> (Gore, Am Ch J **1898, 20** 830 )

(Roscoe, A suppl 6 114) VŃ VN2 Not attacked by cold HNO3+Aq

(Uhrlaub, Pogg 103 134)

# Vanadium dioxide, VO

Insol in H2O, easily sol in dil acids (Roscoe, A suppl 6 95)

# Vanadium trioxide, V<sub>2</sub>O<sub>3</sub>

Oxidized in H<sub>2</sub>O in contact with air and then dissolves Insol in acids, except HNO3, and in alkilies+Aq (Roscoe, A suppl 6

Easily sol in HI (Petersen, J pr (2) 40 **48**)

## Vanadium tetroxide, VO2

Sol in acids and alkalies+Aq

# Vanadium pentoxide, V<sub>2</sub>O<sub>5</sub>

Sol in about 1000 pts  $H_2O$  (Berzelius) Sol in acids, alkali hydrates, and carbon-Insol in absolute, very sl sol ates +Aq ın dıl alcohol

Insol in glacial HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> Sol in conc KF+Aq (Ditte, C R 105 1067

Sol in H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>+Aq and alkalı oxalates+ Aq (Halberstadt, Z anal 22 1) Three modifications—(a) Forms hydrates 1905, 45 357)

with 2, and 5H<sub>2</sub>O Sol in H<sub>2</sub>O 11 of sat

solution contains 8 g V<sub>2</sub>O<sub>5</sub> (β) V<sub>2</sub>O<sub>5</sub>, 2H<sub>2</sub>O Very sl sol in H<sub>2</sub>O 11

of sat solution contains 0.5 g V O<sub>5</sub> (γ) V<sub>2</sub>O<sub>5</sub>, 5H<sub>2</sub>O Less sol in H<sub>2</sub>O than

 $(\gamma)~V_2O_5,~5H_2O~$  Less sol in H<sub>2</sub>O than  $\beta$  1 l H<sub>2</sub>O contains 0.05 g V<sub>2</sub>O<sub>5</sub> when saturated (Ditte, C R 101 698) See Vanadıc acıd.

Vanadium oxide,  $V_4O_9 = 2VO_2$ ,  $V_2O_5$ 

See Vanadate, vanadium  $V_2O_4$ ,  $V_2O_5 + 8/_3H_2O$ Soc **49** 30) (Brierley, Chem

See also Vanadiovanadic acid  $V_2O_4$   $2V_2O_5+8H_2O_5$ See Vanadate, vanadium

Vanadium pentoxide with MF See Fluoxyvanadate, M

Vanadium oxy compounds See Vanadyl compounds

# Vanadium silicide, V<sub>2</sub>S<sub>1</sub>

Insol in H<sub>2</sub>O Not attacked by HCl, HNO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub>

Readily attacked by HF Not attacked by KOH+Aq, NaOH+Aq or NHOH Decomp by fused KOH

Insol in alcohol, ether and benzene (Moissan, C R 1902 135 496) VS12 Sol in HF, insol in acids and al-

kalies

Decomp by fused KOH (Moissan, C R 1902, 135 78)

# Vanadium disulphide, $V_2S_2$

Insol in boiling dil or conc HCl, dil H<sub>2</sub>SO<sub>4</sub>+Aq, or cold conc H<sub>2</sub>SO<sub>4</sub> Easily sol in hot dil or conc HNO<sub>3</sub>+Aq, or in boiling conc H<sub>2</sub>SO<sub>4</sub> Insol in alkalies+Aq Sl sol in KSH+Aq, sol in NH4SH+Aq (Kay, Chem Soc 37 728)

# Vanadium trisulphide, V2S3

Insol in cold HCl or dil H<sub>2</sub>SO<sub>4</sub>+Aq Verv sl sol in hot HCl or dil H<sub>2</sub>SO<sub>4</sub>+Aq More sol in HNO<sub>3</sub>+Aq or cone H SO<sub>4</sub> Sl sol sol in HNO3+Aq or conc H SO4 in NaOH or NH4OH+Aq Easily sol in (NH<sub>4</sub>)<sub>2</sub>S or NH<sub>4</sub>SH+Aq, also in K S+Aq (Kay, Chem Soc 37 728)

# Vanadium pentasulphide, $m V_2S_5$

Sl attacked by hot conc HCl or hot dil H<sub>2</sub>SO<sub>4</sub>+Aq, sol in hot cone H<sub>2</sub>SO<sub>4</sub> Sol in hot dil HNO<sub>3</sub>+Aq Sl sol in NH<sub>4</sub>OH+Aq, but easily dissolved by NaOH+Aq Sl sol in Na<sub>2</sub>S+Aq Sol in NH<sub>4</sub>SH+Aq (hay)

Vanadium sulphochloride sulphur chloride, 4VSCl<sub>3</sub>, S<sub>2</sub>Cl<sub>2</sub>

(Koppel, Z anorg Decomp in the air

#### Vanadous acid

# Ammonium vanadite, basic, 2(NH<sub>4</sub>)<sub>2</sub>O,

Sl sol in cold, easily in hot H<sub>2</sub>O (Ditte, C R 102 1310

## Ammonium vanadite, $(NH_4)_2V_4O_9+3H_2O$

Sol in H<sub>2</sub>O (Crow, Chem Soc 30 460)  $+xH_2O$  Sol in  $H_2O$ 

Insol in alcohol, ether and ammonia (Koppel, Z anorg 1903, 36 297)

+3H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Mawrow, Z anorg 1907, 55 150)

## Barium vanadite, BaV4O9+4H2O

(Koppell, Z anorg 1903, 36 300) +5H<sub>2</sub>O Precipitate Easily sol in HNO<sub>3</sub>, or HCl+Aq (Crow, Chem Soc 30 460)

#### Lead vanadite, PbV<sub>4</sub>O<sub>9</sub>

Ppt (Crow)

#### Potassium vanadite, K<sub>2</sub>V<sub>4</sub>O<sub>9</sub>+4H<sub>2</sub>O

Sol in H<sub>2</sub>O

Insol in alcohol, ether and ammonia (Koppel, Z anorg 1903, **36** 300) +7H<sub>2</sub>O Easily sol in H<sub>2</sub>O Insol in

cold, sol in hot KOH+Aq Insol in alcohol (Crow)

IPU (UU

## Sodium vanadite, Na<sub>2</sub>V<sub>4</sub>O<sub>9</sub>+4H<sub>2</sub>O

Sol in H<sub>2</sub>O

Insol in alcohol, ether and ammonia (Koppel, Z anorg 1903, 36 299)

+7H<sub>2</sub>O Easily sol in H<sub>2</sub>O (Crow, Chem Soc **30** 459)

## Vanadosotungstic acid

#### Ammonium vanadosotungstate, $5(NH_4)_2O_1 2V_2O_4$ , $14WO_3+13H_2O_3$

Very sol in H<sub>2</sub>O (E F Smith, J Am Chem Soc 1903, 25 1228)

## Vanadous acid

See Hypovanadic acid

## Vanadovanadic acid

See Vanadicovanadic acid

## Vanadyl bromide, VOBr

Very sl sol in H<sub>2</sub>O, acetic anhydride, ethyl acetate, and acetone

Insol in alcohol ether, acetic acid, CHCl<sub>3</sub>, toluene and CCl<sub>4</sub> (Ruff, B 1911, 44 2537)

## Vanadyl dibromide, VOBr<sub>3</sub>

Very deliquescent, and sol in H<sub>2</sub>O (Roscoe)

#### Vanadyl tribromide, VOBr<sub>8</sub>

Very deliquescent, and quickly decomposes in moist air Sol in H<sub>2</sub>O (Roscoe)

Vanadyl bromide, V<sub>2</sub>O<sub>8</sub>Br<sub>2</sub>, 2HBr+7H<sub>2</sub>O Very deliquescent (Ditte, C R 102 1310)

#### Vanadyl semichloride, V<sub>2</sub>O<sub>2</sub>Cl

Insol in H<sub>2</sub>O Easily sol in HNO3+Aq (Roscoe, A suppl 6 114)

#### Vanadyl monochloride, VOCl

Insol in H<sub>2</sub>O Easily sol in HNO<sub>3</sub>+Aq (Roscoe)

#### Vanadyl dichloride, VOCl<sub>2</sub>

Deliquescent Slowly decomp by H<sub>2</sub>O Easily sol in HNO<sub>3</sub>+Aq (Roscoe)

#### Vanadyl trichloride, VOCla

Deliquescent Sol in H<sub>2</sub>O and alcohol with decomp (Bedson, A 180 235) Sol in ether with combination

## Divanadyl chloride, $V_2O_4Cl_2+5H_2O$

Deliquescent, and sol in H<sub>2</sub>O, fuming HCl, or alcohol (Crow, Chem Soc **30** 457)

#### Vanadyl chloride, V<sub>2</sub>O<sub>8</sub>Cl<sub>2</sub>+4H<sub>2</sub>O

Very deliquescent (Ditte, C R 102 1310)

# Vanadyl platinum chloride

See Chloroplatinate, vanadyl

#### Vanadyl trichloride ammonia, VOCl<sub>3</sub>, xNH<sub>3</sub> Decomp by H<sub>2</sub>O (Roscoe)

#### Vanadyl diffuoride, VOF<sub>2</sub>

Insol in H<sub>2</sub>O Insol in alcohol, ether, CHCl<sub>3</sub> Sl sol in acetone (Ruff, B 1911, **44** 2546)

#### Vanadyl trifluoride, VOF3

Very hydroscopic Fasily sol in H<sub>2</sub>O Sol in POCl<sub>3</sub> with evolution of gas Difficultly sol in PCl<sub>3</sub> and AsCl<sub>3</sub> Sol in hot CHCl<sub>3</sub> and acetic anhydride (Ruff, B 1911, **44** 2547)

#### Vanadyl fluoride wih MF

See Fluoxyvanadate, and Fluoxhypovanadate, M

#### Vanadyl 10d1de, $V_2O_3I_2$ , $3HI+10H_2O$

Very deliquescent and sol in H<sub>2</sub>() C R 102 1310)

 $V_2O_3I_2$ ,  $2HI+8H_2O$ As above

## Vanadyl sulphide, VOS (?)

(a) Insol in H<sub>2</sub>O, ilkalics, fikali sulphides Sol in acids, except netric acid and +Aq aqua regia (Berzelius)

(b) Sol in alkalies, alkali carbonates, and sulphides+Aq Insol in acids (Berzelius)

#### Water, H<sub>2</sub>O

Water is the most universal solvent. It absorbs all gases, usually with an increase of volume, seldom, as in the case of NH<sub>3</sub>, with a diminution of volume. It dissolves almost all solids in greater or less quantity, and mixes with or dissolves considerable amounts of many liquids.

Miscible with alcohol Sol in 36 pts ether Sol in 30-33 vols ethyl acetate (Becker) Sol in 5 vols iodhydrin

Sl sol in most of the fatty oils

Solubility in organic solvents at to

| Dolability in organic servents at t              |                                                                       |                                                                                                           |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| Solvent                                          | t°                                                                    | G H <sub>2</sub> O in<br>100 g of the<br>solution                                                         |  |  |
| Benzene                                          | +3 23 40 55 66 77                                                     | 0 030<br>0 060<br>0 114<br>0 184<br>0 255<br>0 337                                                        |  |  |
| Petroleum<br>bpt 190-250°<br>at atmos pressure   | -2<br>+18<br>23<br>30<br>36<br>53<br>59<br>61<br>66<br>79<br>85<br>94 | 0 0012<br>0 005<br>0 007<br>0 008<br>0 012<br>0 026<br>0 031<br>0 035<br>0 043<br>0 063<br>0 075<br>0 097 |  |  |
| Paraffin oil<br>bpt 200-300°<br>at 10 mm pressur | +16<br>50<br>65<br>73<br>77<br>94                                     | 0 003<br>0 013<br>0 022<br>0 030<br>0 035<br>0 055                                                        |  |  |

(Groschuff, Z Elcktrochem, 1911, 17 350)

# White precipitate, fusible See Mercuridiammonium chloride

White precipitate, infusible See Mercuric chloramide

## Xanthochromium bromide, Cr(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>Br<sub>2</sub>

Sol in H<sub>2</sub>O Resembles the chloride (Christensen, J pr (2) **24** 74) top

Easily sol in H<sub>2</sub>O (Christensen)

#### Xanthochromium chloride, Cr(NO<sub>2</sub>)(NH<sub>2</sub>)<sub>5</sub>Cl<sub>2</sub>

More sol in  $H_2O$  than the roseo, but less than the purpureo salt

Solution decomp by light or boiling Decomp by dil acids Sol in NaOH+Aq and in NH<sub>4</sub>OH+Aq (sp gr 091) Insol in alcohol (Christensen, J pr (2) **24** 74)

#### ---- chloroplatinate, Cr(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>PtCl<sub>6</sub>

Insol in pure  $H_2O$ , but sol when warmed with  $H_2O$  containing HCl, with formation of a new double salt (Christensen)

#### — mercuric chloride, Cr(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>, 2HgCl<sub>2</sub>

Precipitate Decomp by long contact with  $H_2O$  (Christensen)

— dichromate, Cr(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>Cr<sub>2</sub>O<sub>7</sub>
Difficultly sol in H<sub>2</sub>O (Christensen)

— dithionate, Cr(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>S<sub>2</sub>O<sub>5</sub> Insol in cold H<sub>2</sub>O (Christensen)

—— iodide,  $Cr(NO_2)(NH_3)_5I_2$ Quite difficultly sol in  $H_2O$  (Christensen)

Sol in H<sub>2</sub>O and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>+Aq (Christensen)

#### Xanthocobaltic bromide, Co(NH<sub>3</sub>)<sub>5</sub>(NO<sub>2</sub>)Br<sub>2</sub>

Easily sol in cold H<sub>2</sub>O (Werner and Miolati, Gazz ch it **23, 2** 140)

—— bromonitrate, Co(NO<sub>2</sub>)(NH<sub>2</sub>)<sub>5</sub>(NO<sub>3</sub>)Br Sl sol in cold, more easily in hot H O (Gibbs)

## ---- chloride, Co(NO2)(NH3)5Cl2

Sl sol in cold  $H_2O$ , and decomp by boiling therewith Insol in HCl+Aq and alkalichlorides +Aq Easily decomp by boiling with acids, even dilute (Gibbs and Genth) Sol in 50 pts cold  $H_2O$  (Jorgensen Z anorg  $\bf 5$  172)

—— mercuric chloride, Co(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>, 2HgCl<sub>2</sub>+H<sub>2</sub>O

Insol in cold, sl sol in hot  $H_2O$  without decomp More sol in acidified  $H_2O$  (Gibbs and Genth)

Xanthocobaltic chloraurate, Co(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub>, AuCl<sub>3</sub>+H<sub>2</sub>O

Can be easily crystallised out of hot H2O (Gibbs and Genth, Sill Am J (2) 24 90)

- chloronitrate, Co(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>(NO<sub>3</sub>)Cl Sl sol in cold, more easily in hot H2O
- chloromitrate gold chloride, Co(NO<sub>2</sub>)(NH<sub>8</sub>)<sub>5</sub>(NO<sub>8</sub>)Cl, AuCl<sub>8</sub>
- chloronitrate platinic chloride, 2Co(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>(NO<sub>3</sub>)Cl, PtCl<sub>4</sub>
- chloroplatinate,  $C_0(NO_2)(NH_3)_5Cl_2$ , PtCL+H<sub>2</sub>O

Scarcely sol in hot or cold H2O Can be recryst from dil HNO<sub>3</sub>+Aq Sol in hot dil HCl+Aq (Gibbs and Genth, Sill Am J (2) 24 91)

- chromate,  $C_0(NO_2)(NH_3)_5CrO_4+H_2O$ Very sl sol in cold, and but slightly sol in hot H<sub>2</sub>O (G1bbs)
- --dichromate, Co(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>Cr<sub>2</sub>O<sub>7</sub>Easily sol in hot H2O
- ferrocyanide,  $[Co(NO_2)(NH_3)_5]_2Fe(CN)_6$ --7H.Ò insol in cold, decomp by warm

+6H<sub>2</sub>O (Braun, A 132 47)

- 10d1de,  $Co(NO_2)(NH_3)_5I_2$ Sol in H<sub>2</sub>O (Gibbs)

- iodosulphate,  $[Co(NO_2)(NH_3)_5]_2(SO_4)I_2$ Sol in H<sub>2</sub>O
- periodosulphate,  $[Co(NO_2)(NH_3)_5]_2(SO_4)I_4$ Easily decomp by hot H<sub>2</sub>O
- nutrate,  $C_0(NO_2)(NH_3)_5(NO_3)_2$ SI sol in cold, moderately sol in hot H<sub>2</sub>O Decomp by boiling Much less sol than NH4Cl or (NH4)2SO4 in cold H2O Insol in HNO<sub>3</sub> (Gibbs and Genth)
- --- nutrate,  $Co(NO_2)(NH_3)_5(NO_2)_2+2H_2O$ Sol in H<sub>2</sub>O (Gibbs)
- cobaltic nitrite, Co(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>(NO<sub>2</sub>)<sub>2</sub> +2H<sub>2</sub>O

Sl sol in H<sub>2</sub>O (Gibbs, Proc Am Acad 11 8) Is nitratopurpureocobaltic cobaltic nitrite, lized from dil H2SO4+Aq

 $[(NO_3)Co(NH_3)_{5|3}[Co(NO_2)_6]_2+2H_2O$ (Jorgensen, Z anorg  $\mathbf{5}$  175) [Co(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>]<sub>8</sub>[Co(NO<sub>2</sub>)<sub>6</sub>]<sub>2</sub>

Not difficultly sol as the luteo salt (Jorgensen)

Xanthocobaltic tetramine cobaltic nitrite.  $Co_2(NO_2)_2(NH_3)_{10}[Co_2(NH_3)_4(NO_2)_8]_2$ 

Can be recryst from hot H<sub>2</sub>O Proc Am Acad 11 8)

= $(NO_2)Co(NH_3)_5[(NO_2)_2(NH_3)_2Co(NO_2)_2]_2$ Xanthocobaltic dramine cobaltic nitrite Very sl sol in cold H<sub>2</sub>O (Jorgensen, Z anorg 5 180)

 $\longrightarrow$  oxalate,  $C_0(NO_2)(NH_3)_5C_2O_4$ Nearly insol in cold, sl sol in hot H<sub>2</sub>O

- sulphate,  $Co(NO_2)(NH_3)_5SO_4$ 

Moderately sol in hot, much less in cold H<sub>2</sub>O Sol without decomp in H<sub>2</sub>SO<sub>4</sub>+Aq (Gibbs and Genth)
Sol in 25 pts hot H<sub>2</sub>O acidified with

HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (Jorgensen, Z anorg 5 172) 4Co(NO<sub>2</sub>)(NH<sub>3</sub>)<sub>5</sub>SO<sub>4</sub>, 3H<sub>2</sub>SO<sub>4</sub> Deco by H<sub>2</sub>O, not by absolute alcohol (Jorgensen)

Xanthorhodium bromide.  $(NO_2)Rh(NH_3)_5Br_2$ 

Moderately sol in H<sub>2</sub>O (Jorgensen, J pr (2) 34 394)

- --- chloride, (NO<sub>2</sub>)Rh(NH<sub>3</sub>)<sub>5</sub>Cl<sub>2</sub> Much more sol in H<sub>2</sub>O than the nitrate
- chloroplatinate, (NO<sub>2</sub>)Rh(NH<sub>3</sub>)<sub>5</sub>PtCl<sub>5</sub> Ppt Extremely sl sol in cold H<sub>2</sub>O
- dithionate,  $(NO_2)Rh(NH_3)_5S_2O_6+H_2O_1$ Nearly insol in H<sub>2</sub>O
- -fluosilicate,  $(NO_2)Rh(NH_3)_5S_1F_6$ Ppt
- —hydroxide,  $(NO_2)Rh(NH_3)_5(OH)_2$
- nitrate,  $(NO_2)Rh(NH_3)_5(NO_3)_2$

Moderately sol in cold, easily in hot H2O Insol in alcohol Less sol in conc NH<sub>4</sub>OH+ Aq than in H<sub>2</sub>O

Insol in dil HNO3+Aq, sol in HNO3+Aq of 14 sp gr

- oxalate,  $(NO_2)Rh(NH_3)_5C_2O_4$ 

Nearly insol in cold H<sub>2</sub>O Very sl sol in warm H<sub>2</sub>O Easily sol in dil HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq

- sulphate, (NO<sub>2</sub>)Rh(NH<sub>3</sub>)<sub>5</sub>SO<sub>4</sub>

Slowly sol in cold, quite easily in hot H<sub>2</sub>O 4(NO<sub>2</sub>)Rh(NH<sub>3</sub>)<sub>5</sub>SO<sub>4</sub>, 3H<sub>2</sub>SO<sub>4</sub> Sl sol in cold, easily in hot H<sub>2</sub>O Can be recrystal-

## **Xenon,** Xe Absorption by H2O at to

| t° | Absorption coefficient |
|----|------------------------|
| 0  | 0 2189                 |
| 10 | 0 1500                 |
| 20 | 0 1109                 |
| 30 | 0 0900                 |
| 40 | 0 0812                 |
| 50 | 0 0878                 |

(Antropoff, Roy Soc Proc 1910, 83 A, 480)

#### Ytterbium, Yb

#### Ytterbium bromide, YbBr<sub>3</sub>+8H<sub>2</sub>O

Very sol in H<sub>2</sub>O Hydroscopic (Cleve, Z anorg 1902, **32** 135)

#### Ytterbium chloride, YbCl<sub>3</sub>+6H<sub>2</sub>O

Very sol in  $H_2O$ (Cleve, Z anorg 1902, **32** 134)

Mpt 150-155° Anhydrous salt is sol in H<sub>2</sub>O and in alcohol (Matignon, A ch 1906, (8) 8 442)

#### Ytterbium oxide, Yb<sub>2</sub>O<sub>3</sub>

Slowly attacked by cold or warm acids, but easily sol at 100°

#### Ytterbium oxychloride, YbOCl

(Cleve, Z anorg 1902, **32** 135)

#### Yttrium, Y

Decomposes H<sub>2</sub>O (Cleve, Bull Soc (2) 21 344) Decomp H<sub>2</sub>O slightly at ord temp, more rapidly by boiling Lasily sol in dil more rapidly by boiling Lasily sol in dil acids, even acetic acid Slightly acted upon by cone H<sub>2</sub>SO<sub>4</sub> Decomposes hot KOH+Aq and cold NH<sub>4</sub>Cl+Aq Not attacked by NH<sub>4</sub>OH+Aq (Popp, A 131 179)

Popp's yttrium contained erbium

#### Yttrium bromide, YBr<sub>3</sub>

Sol in H2O with evolution of heat boin, C R 107 243)

 $+9\mathrm{H}_2\mathrm{O}$ Deliquescent Lasily sol in H<sub>2</sub>O and alcohol Insol in ether (Cleve)

#### Yttrium carbide, YC<sub>2</sub>

Decomp by H<sub>2</sub>O and by dil acids, very slowly attacked by conc ands (Moissan, C R 1896, **122** 575)

Decomp by H2O and dil acids (Pettersson, B 1895, 28 2421)

#### Yttrium chloride, YCl3

AnhydrousSol in H<sub>2</sub>O with evolution of heat (Cleve)

+6H<sub>2</sub>O Deliquescent Very sol in H<sub>2</sub>O Sl sol in alcohol Insol in ether (Cleve) Mpt 156-160°, sol in alcohol

60 1 grams anhydrous salt are sol in 100 grams of abs alcohol at 15°

65 grams are sol in 100 grams pyridine (Matignon, A ch 1906, (8) 8 437)

#### Yttrium fluoride, YF<sub>3</sub>+½H<sub>2</sub>O

Nearly insol in dil acids (Cleve)

Yttrum hydroxide, Y<sub>2</sub>O<sub>3</sub>, 6H<sub>2</sub>O or Y<sub>2</sub>O<sub>6</sub>H<sub>6</sub>+  $3H_2O$ 

Insol in H<sub>2</sub>O Insol in KOH or NaOH+Aq Easily sol in acids Sol in alkali carbonates + Aq When freshly pptd, easily sol in  $NH_4Cl+$ 

#### Yttrium iodide, YIs

Very deliquescent Easily sol in H<sub>2</sub>O and alcohol

Sl sol in ether (Cleve)

#### Yttrium oxide, Y<sub>2</sub>O<sub>3</sub>

Insol in H<sub>2</sub>O Sl sol in cold HCl, HNO<sub>3</sub>, or dil H<sub>2</sub>SO<sub>4</sub>+Aq, but gradually completely sol on warming Insol in NH4OH and sl sol in KOH+Aq Sol in  $HC_2H_3O_2+Aq$  Somewhat sol in  $K_2CO_3+Aq$ 

#### Yttrium peroxide, Y<sub>4</sub>O<sub>9</sub>

(Cleve, Bull Soc (2) 43 53)

# Yttrium oxychloride, Y<sub>2</sub>O<sub>2</sub>Cl<sub>2</sub>

Insol in H<sub>2</sub>O (Popp)

#### Yttrium sulphide, Y<sub>2</sub>S<sub>3</sub>

Not prepared in pure state Impure is insol in H<sub>2</sub>O, and partially decomp thereby Easily sol in acids with decomp (Popp)

#### Zinc, Zn

Not attacked by pure cold H<sub>2</sub>O oxidised by boiling H<sub>2</sub>O Pure H<sub>2</sub>O free from () dissolved nothing from 2500 sq mm Zn Presence of air containing CO2 caused a solution of 35 mg Zn, which maximum was reached in 2 days Air without CO2 also caused a slight action (Snyders, B 11 936)

100 ccm distilled H2O dissolved 14 mg Zn from 118 sq cm in one week, during which air free from CO2 was passed through the liquid and 19 mg when air containing CO2 was used (Wagner, Dingl 221 260)

Filtered rain water was found to contain 20 mg Zn per l (Burg, Isis, 1873 119)

Very pure H<sub>2</sub>O, when conducted through a great length of galvanized iron pipe, contained 17 pts Zn to 100,000 pts  $H_2O$  (Davies, J Soc Chem Ind 1899, **18** 102)

Action of H<sub>2</sub>O on Zn in galvanized pipes is caused by electrolysis (Smetham, C N 1879, **39** 236)

All kinds of H<sub>2</sub>O attack Zn, rain water the least

In distilled H<sub>2</sub>O exposed to air Zn is abun-

dantly coated with ZnCO<sub>3</sub>, 2ZnO+3H<sub>2</sub>O allowing 32 g Zn to stand in 270 cc distilled H<sub>2</sub>O in a flask loosely stoppered with filter paper, 12 pts Zn to 100,000 pts H<sub>2</sub>O was found in solution in 1-2 days (Smith, J Soc

Chem Ind 1904, 23 475)
Sol in all acids Very slowly sol in dil HCl or H<sub>2</sub>SO<sub>4</sub>+Aq in glass vessels if Zn is According to Jacquelain, 24 hours were necessary to dissolve 6 g pure zinc fused at the lowest possible temperature, it is much more slowly sol than when heated to a In both cases it is much more rapidly dissolved if cooled quickly (Bolley, A 95 294, Rammelsberg)

Dil H<sub>2</sub>SO<sub>4</sub>+Aq dissolves given % zinc in the same length of time (B=according to Bolley, R = according to Rammelsberg)

|                                                      | Slowly cooled |        |              | Rapidly cooled |        |            |
|------------------------------------------------------|---------------|--------|--------------|----------------|--------|------------|
|                                                      | В             |        | R            | В              |        | R          |
| Cast at the melt-<br>ing point<br>Cast at a red heat | 42            | 5<br>0 | 74 1<br>69 4 | 13<br>85       | 0<br>5 | 0 9<br>9 5 |

50 ccm H<sub>2</sub>SO<sub>4</sub>+Aq dissolved in 2 hours the following amts from 1 sq cm Zn at to

|                                                                                                       | <b>.</b>                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| t°                                                                                                    | Strength of acid                                                                                                                                                                                                                                                                                                                                     | Grms dissolved                                                                                                                                       |
| 20<br>130<br>150<br>20<br>130<br>150<br>20<br>130<br>150<br>20<br>130<br>20<br>130<br>20<br>130<br>20 | H <sub>2</sub> SO <sub>4</sub> " H <sub>2</sub> SO <sub>4</sub> +H <sub>2</sub> O  " H <sub>2</sub> SO <sub>4</sub> +2H <sub>2</sub> O  " H <sub>2</sub> SO <sub>4</sub> +3H <sub>2</sub> O  H <sub>2</sub> SO <sub>4</sub> +4H <sub>2</sub> O  H <sub>2</sub> SO <sub>4</sub> +5H <sub>2</sub> O  H <sub>2</sub> SO <sub>4</sub> +6H <sub>2</sub> O | 0 000<br>0 075<br>0 232<br>0 002<br>0 142<br>0 345<br>0 002<br>4 916<br>5 450<br>0 005<br>3 080<br>0 049<br>0 456<br>0 027<br>0 337<br>0 018<br>3 16 |
| , .,                                                                                                  | İ                                                                                                                                                                                                                                                                                                                                                    | 1 5 10                                                                                                                                               |

(Calvert and Johnson, Chem Foc 19 437)

C P zinc is more quickly sol in dil acids in vacuo than under normal pressure, the ratio being about 1 65 The rate of solubility increases slowly with rise of temp from 0° to 98°, when it amounts to about 4 times that at 0°, but from 98°-100° the increase is Thus, as an average of 6 exthirteenfold periments, dil H<sub>2</sub>SO<sub>4</sub>+Aq (1 20) dissolves in 30 minutes 21 mg Zn at 0°, 49 mg at 20°, 74 mg at 60°, 93 mg at 9°°, but 1221 mg at 100° If, however, the acid was prevented If, however, the acid was prevented from boiling by increasing the pressure, the sudden increase between 98° and 100° does not take place

The rate of solubility in dil H<sub>2</sub>SO<sub>4</sub>+Aq (1 20) is also increased 175 times by the addition of CrO3 and 306 times by the addition of  $H_2O_2$ The above phenomena are explained by assuming the formation of a condensed hydrogen atmosphere around the metal, which prevents the further action of the acid (Weeren, B 24 1785)

Not attacked by HNO<sub>3</sub>+Aq of 1512 to 1419 sp gr at a temp of -18° or less, but violently attacked if temp is raised  $HNO_3+$ Aq of 1419-1401 sp gr does not attack Zn at temp of a freezing mixture, but violently at 0° More dil HNO3+Aq attacks Zn even at -20° (Millon, A ch (3) 6 99)

Sol in H<sub>2</sub>CO<sub>3</sub>+Aq (Berzelius) Solubility of Zn in acids is very much affected by the presence of small quantities of various metallic salts Small amts of PtCl<sub>4</sub>+Aq accelerated the action of H<sub>2</sub>SO<sub>4</sub>+ Aq 149 times, and As<sub>2</sub>O<sub>3</sub> 123 times has a strong retarding action owing to pptn of Hg on the Zn

The rate of solution of Zn in acids and the effect of changes in concentration and temperature and of the presence of inorganic salts and organic substances on this rate has been studied 26 Tables are given (Ericson-

Aurén, Z anorg 1901, 27 209-253)
Speed of solution in H<sub>2</sub>SO<sub>4</sub> and in HCl

(Centnerszwer, Z phys Ch 1914, 87 692) Various saline solutions have a strong solvent power in presence of PtCl4, ie KCl, NaCl, Na<sub>2</sub>SO<sub>4</sub>, k<sub>2</sub>SO<sub>4</sub>, MgSO<sub>4</sub>+Aq PtCl<sub>4</sub> also causes Zn to decompose distilled H<sub>2</sub>O CuSO<sub>4</sub> has a similar but less energetic effect

In all the above cases the disengagement of hydrogen is slower in the dark than in the

tht (Millon, C R 21 37) According to Barreswill (C R 21 292) the above reactions are all caused by galvanic action due to pptd metal, and a piece of Pt in contact with the Zn causes the same action as the PtCl4 in solution

Fasily sol in alkilies+Aq, even NII4OII+ Aq, especially when the Zn is in contact with le Sol in NaCl+Aq with pptn of Zn() (Sicrsch, J B 1867 257)

Sol in sat alkili and alkali-curth chlorides + 1a(Post, **1872**)

Sol in NH<sub>4</sub> silts+Aq (I orin, J B 1865

Sol in sit N 12804, K2804, Mg804, N 1NO;

Ba(NO3), CıCl2, MLCI  $KNO_{+}$ NH<sub>4</sub>NO<sub>1</sub>+ Aq Chlorides and sulphates (especially Na<sub>2</sub>SO<sub>4</sub> and MgCl) have strongest action, MgSO<sub>4</sub> and nitrates the least 1 he action was greatly increased by heat ders, B 11 936)

Sol in boiling NH<sub>4</sub>Cl+Aq Sol in neutral FcCl<sub>2</sub>+Aq with pptn of Fe, especially cusily it 100° (Capitaine, C R 9 737)

Sol in NiSO<sub>4</sub>+Aq with pptn (Iupputi)

Sol in conc hot ZnCl<sub>2</sub>+Aq, but Zn oxy-

chloride is pptd on diluting (Ordway, Am J Sci (2) 23 222)
Sol in GISO<sub>4</sub>+Aq (Debray)

Solubility of Zn in dilute solutions of salts 100 ccm of solutions of the given salts were allowed to act one week on 11 8 sq cm Zn while a current of air with or without CO<sub>2</sub> was passed through the solution

| Salt                                                                                                                                                                                | G salt                                                  | Mg Zn                                     | Mg Zn                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|----------------------------|
|                                                                                                                                                                                     | in 100 ccm                                              | dissolved                                 | dissolved                  |
|                                                                                                                                                                                     | solution                                                | without CO2                               | with CO <sub>2</sub>       |
| NaCl<br>or<br>KCl<br>NH4Cl<br>MgCl <sub>2</sub><br>K <sub>2</sub> SO <sub>4</sub><br>KNO <sub>8</sub><br>Na <sub>2</sub> CO <sub>8</sub><br>NaOH<br>CaO <sub>2</sub> H <sub>2</sub> | 0 5<br>1 0<br>0 83<br>1 0<br>1 0<br>1 0<br>0 923<br>Sat | 7<br>51<br>18<br>30<br>9<br>13<br>60<br>3 | 38<br>36<br>54<br>53<br>37 |

(Wagner, Dingl 221 260)

Action of dil salt solutions (1%) on Zn The following amts of Zn in mg were dissolved from 2500 sq mm Zn in 14 days by 400 ccm 1% solution of the given salts

| Salt                                                                                                                                                  | Mg Zn                                                      | Salt   | Mg                                 | Zn |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------|------------------------------------|----|
| NaCl<br>KCl<br>CaCl <sub>2</sub><br>MgCl <sub>2</sub><br>BaCl <sub>2</sub><br>K <sub>2</sub> SO <sub>4</sub><br>MgSO <sub>4</sub><br>KNO <sub>3</sub> | 11 2<br>14 8<br>15 2<br>17 2<br>13 2<br>12 0<br>8 8<br>6 8 | NaHCO, | 6<br>8<br>24<br>31<br>26<br>0<br>0 | 6  |

Sl attacked by H<sub>2</sub>O at 80°, by hot cone NH<sub>4</sub>OH, tttacked by H<sub>2</sub>PO<sub>4</sub> or NaCl+Aq, very sl attacked by N<sub>1</sub>NO<sub>1</sub>+Aq or KNO<sub>3</sub>+Aq at 100° (Smith J Soc Chem Ind 1904, **23** 476)

1/2 ccm olen and dissolves 0 0240 g Zn in 6 days (Crites, J phys Chem 1911, 15 143)

Attacked by canc sugur+Aq at 115° (Klein and Berg, C. R. 102, 1170)

#### Zinc amide, Zn(NH<sub>2</sub>)<sub>2</sub>

Decomp by II<sub>2</sub>() and alcohol Insol in ether (Frankland, Phil Mag (4) **15** 149)

#### Zinc antimonide, ZnSb

Does not decomp boiling H<sub>2</sub>O except slightly Not attacked by dil mineral acids, but decomp by conc HCl or HNO<sub>2</sub>+Aq (Cooke, Proc Am Acad 5 348)

Zn<sub>3</sub>Sb<sub>2</sub> Decomp H<sub>2</sub>O rapidly at 100° | 1909, **42** 3790)

Violently decomp by dil HCl or  $\rm H_2SO_4+Aq$ , also by  $\rm HNO_3+Aq$  Completely sol in HCl +Aq mixed with a little  $\rm HNO_3$  (Cooke)

## Zinc azoimide, basic, Zn(OH)N<sub>3</sub>

Very sl sol in H<sub>2</sub>O Decomp by hot H<sub>2</sub>O (Curtius, J pr 1898, (2) **58** 293)

#### Zinc azoimide ammonia, ZnNs, 2NHs

Insol in  $H_2O$ , but gradually decomp thereby (Dennis, J Am Chem Soc 1907 **29** 20)

#### Zinc bromide, ZnBr2

Very deliquescent, and sol in H<sub>2</sub>O Sat ZnBr<sub>2</sub>+Aq contains at

-20° +4° 22° 97° 66 3 68 8 77 5 83 6% ZnBr<sub>2</sub>,

107° 170° 210° 375° (mpt ) 83 8 85 0 89 3 100% ZnBr<sub>2</sub> (Étard, A ch 1894, (7) **2** 541 )

## Solubility in H<sub>2</sub>O

100 g of the sat solution contain at 35° 40° 60° 80° 100° 85 45 85 53 86 08 86 57 87 05 g ZnBr<sub>2</sub> (Dietz, Z anorg 1899, **20** 250)

See also below under hydrated salts

Sp gr of ZnBr<sub>2</sub>+Aq at 19 5° containing 18 3 31 7 43 2 % ZnBr<sub>2</sub>, 1 1849 1 3519 1 5276

52 6 59 1 68 % ZnBr<sub>2</sub> 1 7082 1 8525 2 1027 (Kremers, Pogg **108** 117)

Sp gr of ZnBr<sub>2</sub>+Aq at 19 5°

| ZnBr2 | Sp gr | ZnBr2 | Sp gr | ZnBr2 | Sp gr |
|-------|-------|-------|-------|-------|-------|
| 5     | 1 045 | 25    | 1 265 | 45    | 1 560 |
| 10    | 1 093 | 30    | 1 330 | 50    | 1 650 |
| 15    | 1 196 | 35    | 1 400 | 55    | 1 755 |
| 20    | 1 204 | 40    | 1 475 | 60    | 1 875 |

(Kremers, calculated by Gerlach, Z anal 8 285)

Sol in conc HCl or HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq, also in NH<sub>4</sub>OH+Aq

Sol in AlBr<sub>3</sub> (Isbekow, Z anorg 1913) **84** 27)

Very sl sol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 830)

Sol in alcohol and ether (Berthemot, J Pharm 14 610)

Sol in methyl acetate (Naumann, B

Insol in ethyl acetate (Naumann, B **1910, 43** 314)

More sol in anhydrous ether than in abs alcohol Insol in CS<sub>2</sub> (Hampe, Ch Z 1887, 11 846)

Sol in quinoline (Beckmann and Gabel Z anorg 1906, **51** 236) determined in pyridine weight (Werner, Z anorg 1897, 15 22) (Lescoeur, A ch 1894, (7) 2 78) Very hygroscopic  $+H_2O$ 

+2H<sub>2</sub>O

Solubility in H<sub>2</sub>O 100 g of the sat solution contain at 13° -8° O°  $25^{\circ}$  $30^{\circ}$ 37° (mpt ) 79 06 79 55 80 76 82 46 84 08 86 20 g ZnBr<sub>2</sub> (Dietz, Z anorg 1899, 20 250)

+3H<sub>2</sub>O Solubility in H<sub>2</sub>O 100 g of the sat solution contain at —15° ---10° --5° (mpt) 77 13 78 45 80 64 g ZnBr<sub>2</sub> (Dietz, Z anorg 1899, 20 250)

## Zinc bromide ammonia, ZnBr2, 2NH2

Decomp by H<sub>2</sub>O Sl sol in cold, more easily in warm NH4OH+Aq (Rammelsberg, Pogg 55 240)

+1/3H2O Decomp by H2O with separa-(André C R 96 703) tion of ZnO Above salt of Rammelsberg's  $+H_2()$ 

has this composition (André) 3ZnBr<sub>2</sub>, 8NH<sub>8</sub>+2H<sub>2</sub>O Decomp by H<sub>2</sub>O

(André ) Decomp by H<sub>2</sub>O  $3ZnBr_2$ ,  $10NH_3+H_2O$ (Andić)

2ZnBr<sub>2</sub>, 10NH<sub>3</sub> Efflorescent Decomp by H<sub>2</sub>() (André)

Zinc bromide cupric oxide, ZnBr2, 3CuO+  $2H_2O$ +4H<sub>2</sub>() (Mailhe, C R 1901, **133** 227)

Zinc bromide hydrazine, ZnBr2, 2N2H4

Decomp by H<sub>2</sub>O Sol in NH4OH+Aq (Franzen, Z anorg 1905, **60** 277)

## Zinc chloride, ZnCl2

Very deliquescent, and sol in H ()

ol m 0 333 pt H O at 1875 ZnCl + Aq sat at  $1 \pm 5$  (ontains 75) (Hassenfratz A ch 28 291) ZnC1

Solubility in H<sub>2</sub>O 100 g of the sat solution contain it 41°  $60^{\circ}$ 15° 100° 20° 79 12 81 19 82 21 83 51 86 01 g ZnCl (Dietz, Z anorg 1899, 20 245)

ZnCl<sub>2</sub>+Aq contuning 1 pt ZnCl in 1 S20 > pts  $H_2O$  at  $18^\circ$  has sp gr = 1 3666 (Hit torf, Z phys Ch 1902, 39 628)

Solubility in H<sub>2</sub>O at t° 100 g H<sub>2</sub>O dissolve g ZnCl<sub>2</sub>

| '                                                                             |                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                                                                |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t°                                                                            | Solid phase                                                                                                                                                                                                                    | g<br>ZnCl₂                                                                                                                             |                                                                                                                                                                |
| t° -5 -10 -40 -30 -30 -10 -5 5 0 6 5 10 12 5 11 5 -6 +10 20 28 31 20 28 31 25 | Solid phase  1ce  1ce 4aq  ZnCl2+4H20  4aq 3aq  ZnCl2+21/4H20  21/2aq 3aq  ZnCl2+21/4H20  21/2aq 3aq  ZnCl2+21/4H20  21/2aq 1aq  ZnCl2+21/4H20  21/2aq 1aq  ZnCl2+1/2H20  11/2aq ZnCl2  7nCl2+H20  1aq 7nCl2  7nCl2+H20  InCl2 | ZnCl <sub>2</sub> 14  25  83  104  113  127  160  189  208  230  252  282  309  252  272  235  2433  3433  3423  4433  4436  4474  432 | cryohydrate point  transition point  mpt eutectic point transition point  mpt eutectic point eutectic point transition point transition point transition point |
| 40<br>60<br>80<br>100<br>262                                                  | <i>D</i> IIO12                                                                                                                                                                                                                 | 452<br>488<br>543<br>615                                                                                                               | mpt                                                                                                                                                            |

(Mylius and Dietz, Z anorg 1905, 44 217) See also below under hydrated salts

Sp gr of ZnCl + Aq at 19 5°

| % InCl | Sp gr  | ', /nCl | Sp gr  |
|--------|--------|---------|--------|
| 13 S   | 1 1275 | 37 5    | 1 3859 |
| 25 S   | 1 2466 | 19 2    | 1 5551 |

(Kiemers Pogg 105 360)

Sp gr of  $Z_n(1 + \sqrt{q}) + 19 \rightarrow$ 

| 1<br>5<br>10 | 1 010<br>1 015<br>1 091 | 2)<br>30<br>3) | 1 235<br>1 291<br>1 352 | 7nC1<br>4 )<br>50<br>5 ) | 1 155<br>1 506<br>1 650 |
|--------------|-------------------------|----------------|-------------------------|--------------------------|-------------------------|
| 1 )<br>20    | 1 137<br>1 186          | 1()            | 1 120                   | 60                       | 1 710                   |

(Garlich, Z. and 8 25' calculated from Kremers)

Sp gr of ZnCl + \q it t° t٥ 15° 1 )° 1 )° 15° 2.5 1 59 10 0 20 0 ', ZnCl 1 190 Sp gr 1 024 1 046 1 091 15° 15° 15 29 56 54 45 ', ZnCl 40 0 1 297 1 725 Sp gr 1 423

(Long, W Ann 1880, 11 35)

```
p gr of ZnCl2+Aq at room temp con-
ming
15 334
1 1459
                        33 752% ZnCl<sub>2</sub>
              23 487
              1 2288
                        1 3431
  (Wagner, W Ann 1883, 18 267)
        Sp gr of ZnCl<sub>2</sub>+Aq at 25°
```

| Concentration of ZnCl<br>+Aq     | Sp gr                                |
|----------------------------------|--------------------------------------|
| 1—normal  1/2— "  1/4— "  1/8— " | 1 0590<br>1 0302<br>1 0152<br>1 0077 |

(Wagner, Z phys Ch 1890, 5 40)

Sp gr of ZnCl<sub>2</sub>+Aq

| ZnCl <sub>2</sub> g in 1000 g<br>of solution | Sp gr 16°/16 |
|----------------------------------------------|--------------|
| 0                                            | 1 000000     |
| 0 5994                                       | 1 000560     |
| 2 3163                                       | 1 002163     |
| 5 0406                                       | 1 004708     |
| 9 8988                                       | 1 009243     |
| 19 4914                                      | 1 018228     |

(Dijken, Z phys Ch 1897, 24 108)

Insol in SbCl<sub>3</sub> (Klemensiewicz, C C **308, II** 1850) Insol in liquid NH<sub>3</sub> (Franklin, Am Ch **1898, 20** 830) Easily sol in hot ibsolute alcohol, and Sol in 1 pt strong ilcohol at 125° Wenzel)

Sol in 0 35 pt absolute alcohol (Graham) Sol in butyl (Wurtz), and hexyl (Bours) cohol at ord temp, but decomp on heating Very sol in actic other with evolution of (Cann, C R 102 363)

Easily sol in acctone (Krug and M'Ll-

y, J Anul Ch 6 151) 1 g ZnCl2 is sol in 23 g acctone at 18° p gr of sit solution 18 /1°=1 14 (Nau-iann, B 1901, **37** 1338) Sol in acetone and in methylal (Fidmann,

C 1899, II 1011)

Sol in methyl actite (Naumann, B **909, 42** 3790) Sol in hot benzomtrik also in other aro-

iatic nitrile

Sol in methyl sulphide and in ethyl sul-

hide Very sol in piperidine (Werner, Z norg 1897, 15 7)
Sol in benzyl deohol, furfurol, methylropylketone, actophenone, ethyl monohloracetate, ethyl cynnacctite, cthyl acetocetate, ethyl benzonte, ethyl oxalite, amyl itrite, r iperidine, and quinoline ıldehyde, ethyl nitrate, Insol nd nitrobenzene (Lincoln, J phys Chem **899, 3** 460)

Sol in quinoline (Beckmann and Gabel,

anorg 1906, **51** 236)

Sol in 2 pts glycerine at ord temp (Clever, Bull Soc 1872, (2) 18 372) 100 g glycerol dissolve 50 g ZnCl<sub>2</sub> at (Ossendowski, Pharm J 1907, 79 575) Insol in CS2 (Arctowski, Z anorg 1894, 6 257) Sol in urethane (Castoro, Z anorg 1899, 20 61) Mol weight determined in piperidine, pyridine and methyl sulphide (Werner, Z anorg 1897, **15** 18)  $H_2O$  Very deliquescent Contains  $1\frac{1}{2}$  (Engel, C R 102 1111)  $H_2O$ Solubility in H<sub>2</sub>O 100 g of the sat solution contain at 0° 11° 27° (mpt)  $74 \ 33$ **78 25** 84 61 g ZnCl<sub>2</sub> (Dietz, Z anorg 1899, 20 245)

+1⅓H₂O Solubility in H<sub>2</sub>O 100 g of the sat solution contain at 10° 20° 26° (mpt) 67 45 73 65 80 08 83 43 g ZnCl<sub>2</sub> (Dietz, Z anorg 1899, 20 245)

 $+2\mathrm{H}_2\mathrm{O}$ Sat aq solution contains at ·20° ---14° ---10° -4° —1° 54 7 55 4 56 5 **57 4** 57 9% salt. 9° 15°  $+5^{\circ}$ 33° 42° 59 **1** 60 2 62 0 66 0 (Etard, A ch 15

Solubility in H<sub>2</sub>O 100 g of the sat solution contain at 10° 19° (mpt) 67 56 73 70 79 07 g ZnCl<sub>2</sub> (Dietz, Z anorg 1899, 20 245)

+2½H<sub>2</sub>O Solubility in H<sub>2</sub>O 100 g of the sat solution contain at 0° 8° 13° (mpt) 75 14 g ZnCl<sub>2</sub>  $67\ 42$ 71 96 (Dietz, Z anorg 1899, 20 245)

Sol in 125 pts H<sub>2</sub>O at 0° +3H<sub>2</sub>O (Engel) Solubility in H<sub>2</sub>O 100 g of the sat solution contain at —5° O° +7° (mpt) 64 5 67 58 71 57 g ZnCl<sub>2</sub> (Dietz, Z anorg 1899, 20 245)

Zinc hydrogen chloride, 2ZnCl<sub>2</sub>, HCl+2H<sub>2</sub>O Deliquescent (Engel, C R 102 1068)  $ZnCl_2$ ,  $HCl+2H_2O$  (Engel)

Zinc hydrazine chloride, ZnCl<sub>2</sub>, N<sub>2</sub>H<sub>4</sub>, HCl Very hydroscopic Sol in H<sub>2</sub>O (Curtius, J pr 1894, (2) **50** 338)

ZnCl<sub>2,2</sub> 2(N<sub>2</sub>H<sub>4</sub>, HCl) Hydroscopic, very Zinc zirconium fluoride sol in H2O

Sol in hot alcohol and NH4OH+Aq (Curtius, J pr 1894, (2) 50 338)

Zinc chloride ammonia, ZnCl2, 5NH2+H2O Easily sol in little but decomp by much H<sub>2</sub>O Still more sol in ZnCl<sub>2</sub>+ 1q with decomp (Divers, C N 18 13)

ZnCl<sub>2</sub>, 4NH<sub>3</sub>+H<sub>2</sub>O (Kane) ZnCl<sub>2</sub>, 2NH<sub>3</sub> Not completely sol in H<sub>2</sub>O, can be recryst from hot NH CI+Aq (Ritthausen, J pr 60 473)

Insol in H2O Sol in VH4Cl or VH4OH+ (Thomas, B 20 743)

Aq (1114 +1/4H2O  $+^{2}/_{5}H_{2}O$ Decomp by H<sub>2</sub>O  $+1/_2H_2O$ +H<sub>2</sub>O (André, C R 1882, 94 964)

ZnCl2, NH3 Decomp by H2() (Kant, A ch 72 290)

Zinc chloride cupric oxide, ZnCl2, 3Cu()+ (Mailhe, C R 1901 134 226)

Zna chloride hydrazine, ZnCl2, 2N2H4 I ranzen, Z anorg 1908 60 275 12, 2N H4 Insol in H40 aly sol in NILOH+Aq Curtius, I 594, (2) 50 315)

Zinc chloride hydroxylamine, Zn( l4, 2\112011

SI sol in cold sit v it more in with H<sub>2</sub>O Very sol ii NH o a Aq Very 41 sol in alcohol and other organic solvents Solubility of ZnO H in XH4OH and am-(Crismer, Bull Soc (a) 3 116

1 pt is dissolved in 100 pts aq olution sat it 20° (Antonoff ( 1905, II SIO )

#### Zinc fluoride, Znk

SI sol in cold more casily in hot H () Insol in 95% dechol Sol in boding HNO HCl, or H SO<sub>4</sub> (Poulenc C R 116 81 Contrary to older statements Inl a quite sol in HO (Kohli uisch, Z phys Ch. Par., 44 213)

Insol in liquid NH : Core Am Ch. I

1595, 20 550 Name on 1 Insol in methyl actite

1909, 42 3790) +4HO Difficultly sol in HO some what more sol in ILO continuing HI HC1 Tisily sol in NH<sub>4</sub>OH Aq or HNO; (Berzelius, Pogs 1 26) 1/10 / 1 I II O dissolves 16 g at 18

## Zinc hydrogen fluoride

Known only in solution

See Fluozirconate, zinc

## Zinc hydrophosphide, Zn<sub>2</sub>H<sub>2</sub>P<sub>2</sub>

Decomp by cold H2O and by dil HCl+Aq (Drechsel and I inkelstein, B 1871, 4 353)

## Zinc hydroxide, ZnO<sub>2</sub>H<sub>2</sub>

Insol in H<sub>2</sub>O Sol in acids Sol in KOH, \a()H, \H<sub>4</sub>()H, or (\NII<sub>4</sub>)<sub>2</sub>CO<sub>4</sub>+Aq 1 1 H<sub>2</sub>O dissolve 0.01 g ZnO<sub>2</sub>H<sub>2</sub> at 25°

(Bodlander, Z phys Ch 1898, 27 66)

Solubility in H<sub>2</sub>O is calculated to be 26× 10-bg mols per l (Herz, Z anorg 1900, 23 227)

1 I H<sub>2</sub>O dissolves 0 0042 g ZnO<sub>2</sub>H<sub>2</sub> at 18° (Dupre and Bialas, Z angew Ch 1903, 16 55)

See also Zinc oxide

## Solubility in NH4OH+Aq at 25°

| Znthillz used                      | \H; norm                                           | G ZnO per l                                    |
|------------------------------------|----------------------------------------------------|------------------------------------------------|
| prepared from<br>ZnSO <sub>4</sub> | 1 287<br>0 825<br>0 311                            | 7 28<br>3 84<br>0 85                           |
| prepared from $Zn(NO_3)_2$         | 0 321<br>0 613<br>1 215<br>1 925<br>2 570<br>5 215 | 0 34<br>0 845<br>2 70<br>5 07<br>7 01<br>10 16 |

Bonsdorff / morg 1904, 41 189)

monum bases | Aq at 17 -19°

C Ino in a 0 c ci the

| 1 4] 4 } 1  | • | luti n  |
|-------------|---|---------|
| 0-0942 NH   |   | 0.00155 |
| 0.26 NH     | 1 | 0 01795 |
| 6 767 NH    | , | 0.0959  |
| O OMANH CH  |   | 0.0005  |
| 6 L2 NHCH   |   | 0.01,25 |
| WALL SHIELD |   | 0.0151  |
| 0 008 NH CH |   | 0.0005  |
| 0 1 NH C H  |   | 0.0074  |
|             |   | 0 01605 |
| 0.68 NH C H |   | insol   |
| NHCH        |   | 1113071 |
| NHCH        |   |         |
|             |   |         |

Herz Z more 1902 30 280)

Schibility in NHOH + Aq increases with mere a ma e mentration of NH4OH (Luker, P 190 36 101

2 pts /nt) H dis olve in 5 pts KOH+Aq sp gr 1 // Bonnet)

| Solubility of ZnO <sub>2</sub> H <sub>2</sub> in NaOH+Aq           |                                                                    |  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| G Nam 20 ccm                                                       | G Zn in 20 ccm                                                     |  |  |
| 0 1012<br>0 1978<br>0 4278<br>0 6670<br>0 9660<br>1 4951<br>2 9901 | 0 0040<br>0 0150<br>0 0442<br>0 1771<br>0 9630<br>0 2481<br>0 3700 |  |  |

When zinc hydroxide is treated with alkali, more dissolves at first than corresponds with the true equilibrium under the prevailing conditions, for such solutions spontaneously deposit more or less zinc hydroxide according to the concentration (Rubenbauer, Z anorg 1902, 30 333)

Solubility of ZnO<sub>2</sub>H<sub>2</sub> in NaOH+Aq at 25°

| G mol per l                          |                                       |  |
|--------------------------------------|---------------------------------------|--|
| Na                                   | Zn                                    |  |
| 0 2636<br>0 3871<br>0 5414<br>0 9280 | 0 00311<br>0 0057<br>0 0129<br>0 0425 |  |
|                                      |                                       |  |

(Wood, Chem Soc 1910, 97 884)

Freshly pptd  $ZnO_2H_2$  is easily sol in KOH+Aq, but it gradually goes over into a stable form which is difficultly sol in KOH+Aq (Herz, Z anorg 1901, 28 474)

Freshly pptd  $ZnO_2H_2$  is sol in dil salt solutions (1 %) as follows. The given amts in mg (calculated as Zn) were disolved per l at t°

| Salt                                                                                            | Mg Zn                          | t                          |
|-------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|
| NaCl<br>kCl<br>CaCl,<br>MgCl                                                                    | 51<br>43<br>57 5<br>65         | 18<br>20<br>16<br>16       |
| BaCl <sub>2</sub><br>K <sub>2</sub> S() <sub>4</sub><br>MgS() <sub>4</sub><br>KN() <sub>3</sub> | 38<br>37 5<br>27<br>17 5<br>22 | 18<br>20<br>21<br>15<br>15 |
| NaNO;<br>B \(NO;)<br>K CO;<br>NII4( I<br>NH4NO;<br>(NII4) SO4                                   | 25<br>0<br>95<br>77<br>88      | 21<br>15<br>20<br>20<br>20 |

(Snyders, B 11 936)

+II ()
See also Zinc oxide

Zinc hydrosulphide, Zn(SH)2

Very unstable Decomp by H<sub>2</sub>O (Zotta, M 10 807)

Sol in NaSH+Aq (Thomsen, B 11 2044) Zn<sub>3</sub>H<sub>2</sub>S<sub>4</sub> (Zotta)

Zinc iodide, ZnI2

Deliquescent Easily sol in H<sub>2</sub>O Sat ZnI<sub>2</sub>+Aq contains at —18° —5° +17° 47° 62° 73° 70 9 74 0 80 4 80 3 81 3 81 2% ZnI<sub>2</sub>, 97° 100° 107° 138° 140° 82 1 83 0 82 6 83 8% ZnI<sub>2</sub> (Étard, A ch 1894, (7) 2 544)

Solubility in H<sub>2</sub>O

100 g of the sat solution contain at 0° 18° 40° 60° 80° 100° 81 11 81 20 81 66 82 37 83 05 83 62 g ZnI<sub>2</sub> (Dietz, Z anorg 1899, **20** 251) See also under +2H<sub>2</sub>O

Sp gr of ZnI<sub>2</sub>+Aq at 19 5° containing 23 1 42 6 56 3 63 5 76 0% ZnI<sub>2</sub> 1 2340 1 5121 1 7871 1 9746 2 3976 (Kremers, Pogg **111** 61)

Sp gr of ZnI<sub>2</sub>+Aq at 19 5° containing 5 10 15 20 25 % ZnI<sub>2</sub>, 1 045 1 091 1 140 1 196 1 255 30 35 40 45 50 % ZnI<sub>2</sub>,

1 368 1 390 1 420 1 560 1 650 55 60 65 70 75 % ZnI 1 754 1 875 2 020 2 180 2 360 (Kremers, calculated by Gerlach, Z anal 8 285)

Sol in (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq Moderately sol in liquid NH. Am Ch J 1§98, **20** 830) Sol in alcohol

100 pts glycerine disolve 40 pts at ord temp (Klever, Bull Soc 1872, (2) 18 372) 100 g glycerol dissolve 40 g ZnI<sub>2</sub> at 15 5° (Ossendowski, Pharm J 1907, **79** 575)

More sol in anhydrous ether than in abs alcohol Insol in CS<sub>2</sub> (Hampe, Ch Z 1887, 11 846)

1887, 11 GRO /
Sol in methyl acetate (Naumann, B
1909, 42 3790), acetone (Eidmann, C C
1899, II 1014, Naumann, B 1904, 37
4328)
Sol in quinoline (Beckmann and Gabel,

Z anorg 1906, **51** 236)

Mol weight determined in methyl sulphate (Worner, Z anorg 1897, **15** 25)

+2H<sub>2</sub>O Solubility in H<sub>2</sub>O 100 g of the sat solution contain at -10° -5° 0° +10° 22° 27°(mpt) 80 50 80 77 81 16 82 06 83 12 89 52 g ZnI (Dietz, Z anorg 1899, **20** 251)

+4H O (Lubarski, Z anoig 1898, **18** 387)

Zinc tetraiodide, ZnI4

Known only in aqueous solution (Baup, Repert 14 412)
Sol in fenchone (Rimini and Olivari, C C 1907, II 241)

## Zinc iodide ammonia, ZnI2, 4NH3

Decomp by cold H<sub>2</sub>O Easily sol in acids and NH<sub>4</sub>OH+Aq (Rammelsberg, Pogg **48** 152)

ZnI<sub>2</sub>, 5NH<sub>3</sub> Decomp by cold H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq (Rammelsberg)

3ZnI<sub>2</sub> 5NH<sub>3</sub>+3H<sub>2</sub>O (Tassily, C R 1896, **122** 324)

Zinc iodide hydrazine, ZnI<sub>2</sub>, 2N<sub>2</sub>H<sub>4</sub>

Decomp by H<sub>2</sub>O

Sol in NH4OH+Aq (Franzen, Z anorg 1908, **60** 277)

#### Zinc nitride, Zn<sub>3</sub>N<sub>2</sub>

Decomp by H<sub>2</sub>O with the greatest violence

(Frankland, Phil Mag (4) **15** 149)

Easily decomp by H<sub>2</sub>O when finely powdered (Rossel, C R 1895, **121** 942) Sol in HCl (Fischer, B 1910, 43 1468)

#### Zinc oxide, ZnO

Insol in H<sub>2</sub>O Some preparations of ZnO are sl sol in H<sub>2</sub>O, never, however, in less than 1 million pts H<sub>2</sub>O (Bineau, C R 41

Calculated from electrical conductivity of ZnO+Aq 1 pt ZnO is sol in 236,000 pts  $\rm H_2O$  at 18° (Dupre and Bialas, Zeit angew Ch 1903, 16 55)

sol in acids, even after ignition in acids, even  $H_2SO_3$ , or  $H_2CO_3+$ 

Solubility of ZnO in CrO<sub>3</sub>+Aq at 25° 11 of the solution contains

| G CrOs                        | G ZnO        | G CrOs     | G ZnO        |
|-------------------------------|--------------|------------|--------------|
| G C103                        | <u> </u>     | - G 0103   | - G 2110     |
| 0 010                         | 0 013        | 101        | 44 9         |
| 0 010                         | 0 013        | 151        | 66 1         |
| 0 010                         | 0 013        | 192        | 83 8         |
| 0 604                         | 0 409        | 192        | 83 6         |
| 2 14                          | 1 16         | 285        | 123          |
| 4 19                          | 2 24         | 392        | 168          |
| 11 4                          | 5 84         | 450        | 193          |
| 11 5                          | 5 89         | 461        | 196          |
| 22 2                          | 10 7         | 463        | 197          |
| 31 4                          | 14 9         | 475        | 202          |
| $\frac{43}{57}$ $\frac{1}{5}$ | 20 1         | 574<br>660 | $240 \\ 274$ |
| 57 5<br>66 5                  | 26 7<br>30 3 | 769        | 318          |
| 66 5<br>66 7                  | 30 3<br>30 4 | 879        | 354          |
| 70 6                          | 32 2         | 970        | 389          |
| 93 3                          | 41 5         | 310        | 000          |
| 00 U                          | 1 31 0       |            | <u> </u>     |

(Groger Z anorg 1911, 70 136)

When moist is easily sol in KOH, NaOH, and NH4OH+Aq, but only sl sol therein Partially repptd from soluafter ignition tion in NH4OH+Aq by dilution with H2O

Anhydrous ZnO is insol in dil, but sol in conc alkali hydrates+Aq, but the hydroxide is easily sol even in dil alkalies + Aq (Fremy, A ch (3) 23 390)

Very sl sol in NH<sub>4</sub>OH+Aq After igni-

tion its solubility is greatly increased by traces of K and NH4 salts Phosphates have the strongest action, then, in the following arsenates, chlorides, sulphites, nitrates, acetates, carbonates, tartrates, citrates, and sulphates Succinates and benzoates increase the solubility in NH4OH+ Aq, only when it is very dil, borates, iodides, chlorates, arsenites, gallates, and oxalates do not increase the solubility (Schindler) ZnO is sol in NH4OH+Aq only in pres-

(Brandhorst, Zeit anence of NH<sub>4</sub> salts gew Ch 1904, 17 513)

Solubility in KOH, NaOH, and NH4OH+

Αq An excess over 4 mols KOH to 1 mol ZnO is necessary for solution, but that excess may be neutralised after solution, until only 4 mols are left, without pptn of ZnO Solution is pptd by addition of 12 vols H<sub>2</sub>O KOH+Aq containing 165 g KOH to a litre H<sub>2</sub>O is the weakest solution which will dissolve ZnO Three times as much alkalı are necessary for solution at 50° as at 16-17° Less excess of NaOH than of KOH is neces-3 mols NH4OH will dissolve 1 mol ZnO, and the temp and dilution are in this case of little influence (Prescott)

100 cc of 20% NaOH+Aq dissolve in many hours at most 297 g ignited ZnO Pptd ZnO is more quickly dissolved but the action becomes very slow after 100 cc of the solution contain 3 87 g of Zn (Forster and Gunther, Z Elektrochem 1900, 6 301)

Solubility of ignited ZnO in NaOH+Aq gradually decreases (Kunschert, Z anorg 1904, **41** 343)

Sol in hot NH<sub>4</sub>Cl+Aq, either when moist

Somewhat less sol in NH<sub>4</sub>NO<sub>3</sub>+Aq

Somewhat sol in water glass+Aq way)

Slowly sol in cold, easily in hot NaCl+Aq (Siersch, J B **1867** 255)

Solubility of ZnO in ZnCl<sub>2</sub>+Aq at room temp

| G ZnCl <sub>2</sub> per 100 g H <sub>2</sub> O                                 | G 7nO per 100 g 11 <sub>2</sub> O                                              |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 8 22<br>23 24<br>45 95<br>51 50<br>56 90<br>62 85<br>96 00<br>124 70<br>144 80 | 0 0137<br>0 138<br>0 497<br>0 604<br>0 723<br>0 884<br>1 792<br>3 213<br>2 640 |
| 203 00                                                                         | 1 590                                                                          |

The solubility curve has a maximum at a point corresponding to about 125 g ZnCl<sub>2</sub> per 100 g H<sub>2</sub>O On the first branch of the curve the solid phase in equilibrium with the solution is ZnCl<sub>2</sub>, 4ZnO, 6H<sub>2</sub>O, on the second branch it is ZnCl<sub>2</sub>, ZnO, 15H<sub>2</sub>O

(Driot, C R 1910, **150** 1427)

Sol in boiling Fe(NO<sub>3</sub>)<sub>3</sub>, and Pb(NO<sub>3</sub>)<sub>2</sub>+ Aq with pptn of oxides Not attacked by  $Co(NO_3)_2$ ,  $N_1(NO_3)_2$ , and  $Ce(NO_3)_3 + Aq$ (Persoz)

Sol in boiling KCN+Aq

Insol in boiling K tartrate +Aq (Kahlenberg and Hillyer, Am Ch J 1894, 16 101) Insol in liquid NH3 (Franklin, Am Ch J 1898, **20** 830)

Tartaric acid somewhat hinders the pptn of ZnO<sub>2</sub>H<sub>2</sub>

Insol in methyl acetate (Naumann, B 1909, 42 3790)

Insol in acetone (Naumann, B 1904, **37** 4329, Eidmann, C C **1899**, II 1014)

Sol in methyl amine, but insol in amyl amine+Aq (Wurtz)

1 l solution containing 1744 g sugar and 141 g CaO dissoolves 024 g ZnO (Bodenbender, J B 1865, 600) Min Zincite Sol in acids

#### Zinc veroxide

1 pt sol in 45,000 pts  $H_2O$ 

Very sol in acids (Foregger and Philipp, J Soc Chem Ind 1906, 25 300)

Ppt  $ZnO_2$  (?) Decomp by acids with evolution of H2O2 (Haass, B 17 2249) 2 (de Forcrand, A ch

ZnO, H<sub>2</sub>O, H<sub>2</sub>O<sub>2</sub> 1902, (7) **27** 58)

 $3ZnO, 2H_2O_2$  (de Forcrand)  $3ZnO, H_2O, 2H_2O_2$  (de Forcrand)  $4ZnO, H_2O, 3H_2O_2$  (de Forcrand)  $ZnO_2, ZnO_2H_2$  Insol m NH<sub>4</sub>OH Insol in NH<sub>4</sub>OH+Aq

(Kourloff, A ch (6) 23 431)
3ZnO<sub>2</sub>, Zn(OH)<sub>2</sub> Sol in NaOH+Aq with evolution of O (Eijkman, C C 1905, I

 $Zn_4O_7$ ,  $3ZnO+4H_2O$ Completely sol in dil  $H_2SO_4$  (de Forcrand)  $10ZnO_2$ ,  $4ZnO+5H_2O$ 

Ppt (Teletow, C C 1911, I 1799)

Zinc oxybromide, ZnBr<sub>2</sub>, ZnO+13H<sub>2</sub>O

ZnBr2, 4ZnO+10, 13, and 19H O Decomp by H2O into-(André)

ZnBr<sub>2</sub>, 6ZnO+35H<sub>2</sub>O  $ZnBr_2$ ,  $5ZnO + 6H_2O$  (André)

All oxybromides are sol in KOH and NH<sub>4</sub>OH+Aq (André, C R 96 703)

Zinc oxybromide ammonia, ZnBr, 3ZnO,  $2NH_8+5H_2O$ 

Decomp by H<sub>2</sub>O (André, C R 96 703)

Zinc oxychloride, ZnO, 3ZnCl<sub>2</sub>+H<sub>2</sub>O

Decomp by H<sub>2</sub>O

Very sol in dil acids (Ephraim, Z anorg

1908, **59** 67) +4H<sub>2</sub>O Sl sol in H<sub>2</sub>O, more sol in ZnCl<sub>2</sub>+Aq

Easily sol in acids, or NH4OH, or KOH+ Aq (Schindler, Mag Pharm 36 45)

 $+5\mathrm{H}_2\mathrm{O}$  and  $8\mathrm{H}_2\mathrm{O}$  (André, A ch (6) 3

94)

ZnO, ZnCl2+11/2H2O (Driot, C R 1910.

150 1427) 3ZnO, ZnCl<sub>2</sub>+2H<sub>2</sub>O SI sol in H<sub>2</sub>O, more easily sol in ZnCl<sub>2</sub>+Aq Easily sol in acids and in \H<sub>2</sub>OH or KOH+Aq (Schindler, Mag Pharm 36 45)

+3H<sub>2</sub>O (Werner, B 1907, 40 4443) +5H<sub>2</sub>O (Mailhe, A ch 1902, (7) 27 367) +3H<sub>2</sub>O3ZnO, 2ZnCl<sub>2</sub>+11H<sub>2</sub>O (André, C R

1888, 106 854

4ZnO, ZnCl<sub>2</sub>+6H<sub>2</sub>O (André, C R 1888, 106 854)

+11H<sub>2</sub>O (André, A ch (6) **3** 94) 5ZnO, ZnCl<sub>2</sub>+6H<sub>2</sub>O (Perrot Bull Soc 1895, (3) 13 976)

+8H<sub>2</sub>O (André, C R 1882 94, 1524) 5ZnO, 2ZnCl<sub>2</sub>+26H<sub>2</sub>O Sol in kOH or NHOH+Aq Decomp by HO into-

5ZnO, ZnCl<sub>2</sub>+26H<sub>2</sub>O Sol in kOH or NH,OH+Aq Decomp by H,O into-

6ZnO, ZnCl<sub>2</sub>+6H<sub>2</sub>O (Kane, A ch 72 296) 8ZnO, ZnCl<sub>2</sub>+10H<sub>2</sub>O Insol in H<sub>2</sub>O

(Mailhe, A ch 1902, (7) **27** 367) 9ZnO, ZnCl<sub>2</sub>+3H-O

Insol in H<sub>2</sub>O Less sol in NH<sub>4</sub>OH+ Aq than ZnCl<sub>2</sub>, 3ZnO+ 2H<sub>2</sub>O, but easily sol in +14H<sub>2</sub>O

9ZnO, 2ZnCl +12H•O Insol in hot or cold H<sub>2</sub>O (Habermann, M 5 432)

Zinc oxychloride ammonia, 6ZnCl, ZnO,  $12NH_3+4HO$ 

Decomp by HO and boiling alcohol (André, A ch (6) 3 90

ZnCl, 3ZnO. 2NH +5H 0 Decomp by H<sub>0</sub>O (André) André

ZnCl, 2ZnO, 2NH<sub>3</sub>-3H O 6ZnCl, 3ZnO, 10NH -15H O Andre 4ZnCl, ZnO, 8NH - 2HOAndre

Zinc oxyiodide, ZnI, 3ZnO+2HO

Insol in cold al sol in boling H O (Muller, J pr 26 441

ZnI, 9ZnO+24HO Insol in cora HO ZnI, 5ZnO+11HO Decomp to HO (Tassilly, C R 1896 122 524

Zinc oxyphosphide, ZnP O

(Renault, A ch 4, 9 162

Probably is a mixture of zinc > - + a e and phosphorus (Vigier Bull - 1861 5)

Zinc oxysulphide, ZnO, ZnS

Sol in HCl+Aq Artivedson Pogz 1 59 4Zn5, ZnO ot decomp to 1 HC2H3O +Aq (Kersten whw J 57 1%) Sol in HCl-Aq Min Vol-ite

Zinc phosphide, ZnP

Less easily attacked by HCl-Aq tran Zn₃P

Not attacked by hot HCl+Aq ŽnP (Hvoslef, A 100 99) ZnP4 Insol in dil HCl-Aq Renault ,

 $Zn_3P_2$ Insol in H<sub>2</sub>O Sol in dil HCl, H<sub>2</sub>SO<sub>4</sub>, or HNO<sub>3</sub>+Aq, with evolution of PH<sub>3</sub> (Renault, A ch (4) 9 162) Insol in HCl+Aq  $Zn_3P_4$ (Renault)

Zinc selenide, ZnSe

Cold dil HNO<sub>3</sub>+Aq dissolves out Zn, and Se separates out, which dissolves on warming as H<sub>2</sub>SeO<sub>3</sub> (Berzehus)

 $+xH_2O$ Insol in H<sub>2</sub>O (Berzelius)

Zinc sulphide, ZnS

AnhydrousInsol in  $H_2O$ Sol in HCl+ Aq, insol in HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>+Aq (Ebelmen, A ch (3) **25** 97)

Sol in H<sub>2</sub>S+Aq under pressure in a sealed tube (Senarmont, A ch (3) 32 168)

Min Blende, Sphalerite SI attacked by acids, expecting aqua regia

1 l  $H_2O$  dissolves  $6.65 \times 10^{-6}$  mols zinc

blende at 18°

1 l H<sub>2</sub>O dissolves 6 63×10-4 mols artificial cryst ZnS at 18° (Wiegel, Z phys Ch 1907, **58** 294)

Sol in an alkaline solution of NaClO (Sadtler, Trans Am 1902, **1** 142) Electrochem

Insol in liquid NH<sub>3</sub> (Franklin, Am Ch J 1898, **20** 830)

 $^{+1/2}_{Pptd}$ ,  $^{2}_{ZnS}$ , or  $^{1}_{H_2O}$ 

1 l  $\rm H_2O$  dissolves 70 60 $\times$ 10-6 mols pptd ZnS at 18° (Wiegel, Z phys Ch 1907, 58

Insol in alkali hydrates, carbonates, and alphides+Aq Insol in NH<sub>2</sub>OH, HCl, or sulphides+Aq (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>+Aq Easily sol in very dil HCl and HNO<sub>3</sub>+Aq, but H<sub>2</sub>S ppts ZnS in pres-ence of very dil HCl+Aq, or H<sub>2</sub>SO<sub>4</sub>+Aq (Eliot and Storer)

More easily sol in HNO<sub>3</sub>+Aq than in

HCl+Aq (Fresenius)

Only sl sol in acetic reid (Wackenroder) When still moist is sol in H<sub>2</sub>SO<sub>3</sub>+Aq Insol in NH<sub>4</sub>Cl or NH<sub>4</sub>NO<sub>3</sub>+Aq

K<sub>2</sub>S+Aq when added to ZnSO<sub>4</sub>+Aq produces a ppt in presence of 10,000 pts H.O., and a slight opalescence with 20,000 pts (Lassaigne)

Slowly sol in conc KCN+Aq (Halm,

J B **1870** 1008)

Sl sol in N 125+Aq, sol in NaSH+Aq (Becker, Sill Am J (3) **33** 199)

Zinc peniasulphide, ZnS<sub>5</sub>

Sol in acids, with separation of S (Schiff, A 115 74)

Zinc sulphosilicide, ZnSiS

Decomp by unds and by alkalies (Fraenkel, Metall, 1909, 6 683)

Zinc telluride, ZnTe

Decomp by acids Sol in Br<sub>2</sub>+Aq (Fabre C R 105 277)

Zincic acid

Zinc hydroxide shows weak acid properties, and forms the following salts

Ammonium zincate, 3ZnO,  $4NH_3+12H_2O=$ 3ZnO,  $2(NH_4)_2O + 10H_2O$ 

Decomp by much H<sub>2</sub>O

Barium zincate, BaH<sub>2</sub>Zn<sub>2</sub>O<sub>4</sub>+7H<sub>2</sub>O Decomp by H<sub>2</sub>O (Bertrand, C R 115 939)

Calcium zincate, CaH<sub>2</sub>Zn<sub>2</sub>O<sub>4</sub>+4H<sub>2</sub>O

Decomp by H<sub>2</sub>O Sol in NH<sub>4</sub>OH+Aq (Bertrand, C R 115 939)

Cobaltous zincate, xCoO, yZnO

Rinman's green Sol in acids H<sub>2</sub>CO<sub>3</sub>+Aq dissolves out ZnO (Comey)

Potassium zincate, ZnO, K<sub>2</sub>O

Easily sol in H<sub>2</sub>O, but decomp by boiling (Laux, A 9 183) 2ZnO, K<sub>2</sub>O Decomp immediately by

cold H<sub>2</sub>O (Fremy, C R **15** 1106)

Sodic zincate, Na<sub>2</sub>O, 2ZnO+8H<sub>2</sub>O, or  $2NaHZnO_2+7H_2O$ 

Decomp by H<sub>2</sub>O or alcohol (Comey and Jackson, Am Ch J 11 145)

(Forster and Gunther, Z Elektrochem, 1899, 6 301)

 $2Na_2O$ ,  $3ZnO+18H_2O$  or  $Zn_3O_6Na_4H_2+17H_2O$  Decomp by  $H_2O$  or alcohol Insol in ether (Comey and Jackson)

Strontium zincate,  $SrH_2Zn_2O_4+7H_2O_1$ Decomp by H<sub>2</sub>O (Bertrand)

Zirconic acid

See Zirconium hydroxide

Barium zirconate, BaZrO3

Insol in acids (Ouvrard, C R 113 80)

Calcium zirconate, CaZrO<sub>3</sub>

Insol in acids (Ouvrard, C R 113 80)

Calcium zirconate, acid

Insol in H<sub>2</sub>O or HCl+Aq (Hiordthal, A **137** 237)

Calcium potassium zirconate, (Ca, k) LaO<sub>3</sub> (small quantity of CaO substituted by  $K_2O$ 

Sol in HCl (Venable, J Am Chem Soc 1896, **18** 444)

Cupric zirconate

(Berthier, A ch 59 195)

#### Lithium zirconate, Li<sub>2</sub>ZrO<sub>3</sub>

Easily attacked by acids (Ouvrard, C R **112** 1444)

#### Magnesium zirconate

Insol in H2O or HCl+Aq (H1ordthal, C R 61 215)

#### Potassium zirconate

Decomp by HCl+Aq (Knop, A 159 44)

#### Sodium zirconate, Na<sub>2</sub>ZrO<sub>3</sub>

Decomp by H<sub>2</sub>O

Na<sub>4</sub>ZrO<sub>4</sub> Decomp by HCl+Aq, and is dissolved by subsequent addition of H<sub>2</sub>O Na<sub>2</sub>O, 8ZrO<sub>2</sub>+12H<sub>2</sub>O (Hiordthal)

## Strontium zirconate, SrZrO:

As CaZrO<sub>3</sub> (Ouvrard)

#### Zirconium, Zr

Crustallized Attacked by conc HCl+Aq above 50°, but very slowly even at 100°, rapidly by hot aqua regia Sol in cold conc HF+Aq (Troost, C R 61 109)

Very violently attacked by a mixture of HNO<sub>3</sub> and HF (Berzelius, Pogg 4 117)

Amorphous Slowly attacked by boiling

aqua regia, H<sub>2</sub>SO<sub>4</sub>, or conc HCl+Aq (Berzelius) Easily sol in HF or HNO<sub>3</sub>+HF

#### Zirconium bromide, ZrBr4

Violently decomp by Very hygroscopic H<sub>2</sub>O to form oxybromide (Melliss, Zeit Ch (2) 6 296)

Sl sol in organic solvents (Matthews, J Am Chem Soc 1898, 20 840)

# Zirconium bromide ammonia, ZrBr4, 4NH3

Ppt Insol in organic solvents thews, J Am Chem Soc 1898, 20 840) ZrBr<sub>4</sub>, 10NH<sub>3</sub> Very hydroscopic

Decomp by H<sub>2</sub>O (Stahler, B 1905, 38 2612)

#### Zirconium carbide, ZrC

Insol in H<sub>2</sub>O and NH<sub>4</sub>OH+Aq and HCl Ag even when heated Sol in HNO3, H SO4 and fused alkalı mitrates, chlorates, or hydroxides (Moissan, C R 1896, 122 653)

#### Zirconium chloride, ZrCl4

Sol in H<sub>2</sub>O with evolution of much heat to form ZrOCl<sub>2</sub> Sol in alcohol (Hinsberg, A 239 253)

Very unstable

Probably substances so described in the literature by Nylander and others were oxychlorides (Venable, J Am Chem Soc 1894, **16** 471)

(Matthews, J Am Chem Sol in ether Soc 1898, 20 821)

# Zirconium chloride ammonia, ZrCl., 2NH3-

Fumes in the air Decomp by H.O (Matthews, J Am Chem Soc 1898, **20**, 821) ZrCl<sub>4</sub>, 3NH<sub>3</sub> (Stähler, B 1905, **38**, 2611)

ZrCl4, 4NH, Decomp by H4O kull)

Unstable Decomp by HrO (Matthews, J Am Chem Soc 1898, 20 821)

ZrCl., 8NH, Stable in the air Decomp by H<sub>2</sub>O Insol in ether (Matthews, J Am Chem Soc 1898, 20 821) Very hydroscopic Decomp by H<sub>2</sub>O.

(Stahler, B 1905, 38 2611)

#### Zirconium fluoride, ZrF4

Anhydrous Insol in H<sub>2</sub>O and acids (Deville, A ch (3) 49 84)

Only sl sol in H2O

1 388 g dissolve in 100 cc H<sub>2</sub>O without hydrolysis On warming the solution, sirconsum hydrate begins to ppt out at about 50° (Wolter, Ch Z 1908, 32 606) +3HO Sol in H<sub>2</sub>O, but solution decom-

poses on diluting, with pptn of an insol basic salt Sol in dil HF+Aq (Berzelius )

#### Zirconium fluoride ammonia, 5ZrF4, 2NH2 (Wolter, Ch Z 1908, 32 607)

#### Zirconium hydride, ZrH<sub>2</sub>

Not attacked by acids (Winkler B 24. 873)

## Zirconium hydroxide, Zr(OH),

Insol in HO or alcohol Sol in 5000) pts HO (Melliss)

Sol in acids, even ovalic or tartaric acid, when precipitated cold If precipitated hot it is slowly dissolved upon heating with conc

Sol in dil or conc min acids except HI Readily sol in ovalic only al sol in acetic

Much less sol when pptd from Lo solution than when pptd from cold solution (Venable, J Am Chem Soc 1848 20 274 Sl sol m  $(\H_4: CO + Aq \ In ol$ Insol " NOH,

K CO<sub>3</sub> and Na CO - Aq KOH, and NH<sub>4</sub>OH - Aq Sol' in (\H4) C4H O6-\H OH-Ac sol in \H₄ salts+Aq

# Zirconium iodide, ZrI4

Fumes in the air

sol in HO and icids with voice action

Decomp by alcohol sol in € 3er ->a er B

Sl sol in benzene and C> 1904, **37** 1157) Insol in HO HNO HCl aqua regra,

and C52 Sol in H 504 with decomp unchanged by boiling HO Dennis J An Chem

Soc 1896, 18 678)

Zirconium iodide ammonia, ZrI4, 6NH3, ZrI4, 7NH3, ZrI4, 8NH3, ZrI4, 10NH3 All above comps are hydroscopic and lose NH<sub>3</sub> in the air (Stahler, B 1905, **38** 2615)

#### Zirconium nitride

Scarcely attacked by acids, aqua regia, and caustic alkalies Slowly decomp by long contact with H2O (Mallet, Sill Am J (2) **28** 346)

Zr<sub>2</sub>N<sub>3</sub> Decomp when heated in the air, sol in HF, insol in other min acids (Matthews, J Am Chem Soc 1898, 20 844)

Zr<sub>3</sub>N<sub>8</sub> Decomp when heated in the air Sol in HF, insol in other min acids (Matthews, J Am Chem Soc 1898, 20 844)

#### Zirconium oxide, ZrO<sub>2</sub>

When ignited, is insol in all acids except HF and H<sub>2</sub>SO<sub>4</sub> Sl sol in HF, sol in H<sub>2</sub>SO<sub>4</sub> only when very finely powdered and heated with a mixture of 2 pts H<sub>2</sub>SO<sub>4</sub> and 1 pt H<sub>2</sub>O until the H<sub>2</sub>SO<sub>4</sub> volatilises (Berzelius)

#### Zirconium peroxide, ZrO<sub>8</sub>

(Cleve, Bull Soc (2) 43 53), or Zr<sub>2</sub>O<sub>5</sub> according to Bailey (Chem Soc 49 150)

Not attacked by cold dil H<sub>2</sub>SO<sub>4</sub>+Aq

#### n silicon oxide

\_\_\_\_ Zircon See Silicate, zirconium

### Zirconium oxy-compounds See Zirconyl compounds

### Zirconium phosphide, ZrP<sub>2</sub>

Insol in dil or conc acids and alkalies Sl sol in aqua regia (Gewecke, A 1908, **361** 85)

#### Zirconium silicide, ZrSi2

Sol in HF, insol in other min acids Not acted upon by 10% KOH+Aq or

NaOH+Aq Decomp by fusion with KOH (Honigs-chmid, C R 1906, **143** 225)

#### Zirconium sulphide

Insol in H<sub>2</sub>O Sol in HF, slowly sol in aqua regia Insol in HNO3, HCl, H SO4, or KOH+Aq (Berzelius) Insol in dil acids Sol in conc HN()3+

Aq (perhaps an oxysulphide) (Fremy)

### Zirconomolybdic acid

Ammonium zirconomolybdate,  $2(NH_4)_2O$ ,  $ZrO_2$ ,  $12MoO_3+10H_2O$ Sol in H<sub>2</sub>O (Pechard, C R 1893, **117** 790)

Potassium zirconomolybdate. 2K<sub>2</sub>O, ZrO<sub>2</sub>, 12MoO<sub>3</sub>+18H<sub>2</sub>O Sol in H<sub>2</sub>O (Pechard)

### Zirconotungstic acid

Ammonium zirconodecatungstate,  $3(NH_4)_2O$ ,  $ZrO_2$ ,  $10WO_3+13H_2O$ 

Verv sol in H<sub>2</sub>O

Efflorescent (Hallopeau, Bull Soc 1896, (3) **15** 921)  $3(NH_4)_2O$ ,  $H_2O$ ,  $ZrO_2$ ,  $10WO_3 + 13H_2O$ Sol in H<sub>2</sub>C, unstable, effloresces in the air (Hallopeau)

Potassium zirconotungstate, 4K<sub>2</sub>O, ZrO<sub>2</sub>,  $WO_3 + 20H_2O$ 

Sol in hot H<sub>2</sub>O (Hallopeau) 4K<sub>2</sub>O, ZrO<sub>2</sub>, 10WO<sub>3</sub>+15H<sub>2</sub>O

More sol in hot than in cold H<sub>2</sub>O

Sol in fused alkali carbonates (Hallopeau)

Potassium dizirconodecatungstate  $4K_2O$ ,  $2ZrO_2$ ,  $10WO_3+20H_2O$ 

More sol in hot than in cold H<sub>2</sub>O Sol in fused alkali carbonates (Hillopeau)

Very sol in H<sub>2</sub>O (Ven ible, J Am Chem Soc 1898, **20** 324)

Sol in H<sub>2</sub>O +7H₂O (Melliss)

+8H<sub>2</sub>O Deliquescent Decomp in moist Very sol in H<sub>2</sub>O (Venable, J Am Chem Soc 1898, 20 324)

+13H<sub>2</sub>ODeliquescent Decomp

moist air Very sol in HO (Venable)

+14II<sub>2</sub>O Deliquescent Decomp 111 moist air (Venable) Very sol in H<sub>2</sub>() (

(Venable)

ZrBr(OII)3+H2O, and +2IIO Deliquescent, and decomp in moist ur (Venible)

#### Zirconyl chloride, ZiOCl<sub>2</sub>

Sol in H2O, insol in HCl (Venible, J Am Chem Soc 1894, 16 47) +2HO (Chauvenet, C R 1912 154

822)  $+3H_2O$  Sol in H() (Verible)

+35HO (Chauvenet C R 1912, 154 522)

+6H2O (Ch uvenet) Sol in HO

Insol in HCl (Venible) +412H (), 612H (), and SH ()

Efflorescent Lasily sol in H() and alcohol Very sl sol in conc HCl+Aq (Bcrzelius)

+8H<sub>2</sub>O Sol in H<sub>2</sub>O (Venible, J Am Chem Soc 1898, 20 321)

Effloresces in the air

Sol in H<sub>2</sub>O Less sol in HCl+Aq and nearly insol in conc HCl (Chauvenet, (Hermann) C R 1912, 154. 822) Zr<sub>2</sub>OCl<sub>2</sub> Sol in H<sub>2</sub>O and alcohol (Ende-Zirconyl iodide, ZrOI<sub>2</sub>+8H<sub>2</sub>O mann, J pr (2) 11 219) Not decomp by H<sub>2</sub>O Sol in dil HCI (Chauvenet, C R 1912, **154** 1236)  $+H_2O$ (Chauvenet, C R 1912, 154 | **1236**) +3H<sub>2</sub>O Decomp by H<sub>2</sub>O (Chauvenet) 8ZrO<sub>2</sub>, 7HCl Sol in H<sub>2</sub>O (E)  $Zr_2OCl_6$ (Troost and Hautefeuille, C **73** 563)

 $Zr_3OCl_4 = ZrCl_4$ ,  $2ZrO_2$  Insol in  $H_2O$ Very sol in H2O and alcohol Very hydroscopic ((Stahler, B 1904. **37** 1138) Easily sol in H<sub>2</sub>O  $ZrI(OH)_3+3H_2O$ (Hinsberg, A 239 253) Ppt Sl sol in HI+Aq (Venable, J Sol in dil Am Chem Soc 1898, 20 328)

Zirconyl sulphide (?)

Decomp by HNO<sub>3</sub> with separation of S (Fremv. A ch (3) 38 326)



### APPENDIX

# FORMULÆ FOR CONVERTING AREOMETER DEGREES INTO SPECIFIC GRAVITY

n=no of degrees on the areometer scale, sp gr = specific gravity

| Areometer                                                                                                                                                                                                                                                                                                                                                                                                             | Temp                            | Liquids heavier than H <sub>2</sub> O | Liquids lighter than H <sub>1</sub> O               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|-----------------------------------------------------|
| 1 Baumé (a) According to Baumé's original directions For liquids heavier than $H_2O$ Sp gr of a solution of 15 pts NaCl dissolved in 85 pts $H_2O$ at $12  5^{\circ} \left(\frac{12  5^{\circ}}{12  5^{\circ}} = 1  1118988\right)$ =15°, $H_2O = 0^{\circ}$ For liquids lighter than $H_2O$ Sp gr of $10\%$ NaCl+Aq • at $12  5^{\circ} \left(\frac{12  5^{\circ}}{12  5^{\circ}} = 1  0737665\right) = 0^{\circ}$ , | 15°                             | $Sp gr = \frac{149 05}{149 05 - n}$   | Sp gr = $\frac{145}{135} \frac{56}{56 + n}$         |
| $H_2O = 10^{\circ}$<br>(b) Old Form Liquids<br>heavier than $H_2O$ , 10% NaCl                                                                                                                                                                                                                                                                                                                                         | 12 5°                           | $Sp gr = \frac{145 88}{145 88 - n}$   | Sp gr = $\frac{145 \text{ Ss}}{155 \text{ SS} - 1}$ |
| +Aq at $15^{\circ} \left( d \frac{15^{\circ}}{15^{\circ}} = 1 \ 073350 \right)$                                                                                                                                                                                                                                                                                                                                       | 15°                             | Sp gr = $\frac{146 \ 3}{146 \ 5-n}$   | Sp gr = $\frac{146 \ 3}{130 \ 0^{-1}}$              |
| $=10^{\circ}$ , $H_2\grave{O}=0^{\circ}$ Liquids<br>lighter than $H_2O$ , $10\%$ NaCl<br>$+\mathrm{Aq}=0^{\circ}$ , $H_2O=10^{\circ}$<br>(c) Vew Form So-called<br>"Rational Scale" Liquids                                                                                                                                                                                                                           | 17 5°                           | $Sp gr = \frac{14678}{14678 - n}$     | $Sp gr = \frac{140.75}{150.75 - \pi}$               |
| "Rational Scale" Liquids heavier than $H_2O$ , $H_2SO_4+$ $Aq\frac{15^\circ}{15^\circ}=1842=66^\circ$ , $H_2O=0^\circ$                                                                                                                                                                                                                                                                                                | 15°                             | Sp gr = $\frac{144 \ 3}{144 \ 3-n}$   |                                                     |
| 2 Beck<br>$H_2O = 0^\circ$ , liquid of 0.850<br>sp gr $\left(\frac{12}{12} \frac{5^\circ}{5^\circ}\right) = 30^\circ$ Scale<br>continued above and below                                                                                                                                                                                                                                                              | 12 5°                           | Sp gr = $\frac{170}{170-n}$           | Sp gr = $\frac{170}{170-}$                          |
| 3 Twaddle $H_2O=0^{\circ}$ Each degree corresponds to an increase of 0 005 in the sp gr                                                                                                                                                                                                                                                                                                                               | Given on<br>the instru-<br>ment | Sp gr = 1000 + 0005n                  |                                                     |

# TABLES FOR THE CONVERSION OF BAUMÉ DEGREES INTO SP GR

Since the original directions of Baumé there have been many slight modifications suggested, so that there are several varieties of Baumé hydrometers with somewhat varying readings, tables for the two principal ones of which are heregiven

### 1 According to Baumé's original directions

For liquids heavier than 
$$H_2O$$
 Sp gr of 15 % NaCl+  
Aq  $\left(\frac{12.5^{\circ}}{12.5^{\circ}}\right) = 1.1118988 = 15^{\circ}$ ,  $H_2O = 0^{\circ}$ 

Calculated according to the formula, sp gr = 
$$\frac{149\ 05}{149\ 05-n}$$

| Deg<br>Baumé                                                                                               | Sp gr                                                                                                                                                                                                                    | Deg<br>Baumé                                                                                             | Sp gr                                                                                                                                                                                                         | Deg<br>Baumé                                                                                             | Sp gr                                                                                                                                                                                                                    | Deg<br>Baumé                                                                           | Sp gr                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 1 00000<br>1 00675<br>1 01360<br>1 02054<br>1 02757<br>1 03471<br>1 04194<br>1 04927<br>1 05671<br>1 06426<br>1 07191<br>1 07968<br>1 08755<br>1 09555<br>1 40366<br>1 11189<br>1 12025<br>1 12873<br>1 13735<br>1 14609 | 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37 | 1 15497<br>1 16399<br>1 17316<br>1 18246<br>1 19192<br>1 20153<br>1 21129<br>1 22122<br>1 23131<br>1 24156<br>1 25199<br>1 26260<br>1 27338<br>1 28436<br>1 29522<br>1 30688<br>1 31844<br>1 33621<br>1 34218 | 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56 | 1 35438<br>1 36680<br>1 37945<br>1 39234<br>1 40547<br>1 41885<br>1 43248<br>1 44638<br>1 46056<br>1 47501<br>1 58971<br>1 50479<br>1 52014<br>1 53580<br>1 55179<br>1 56812<br>1 56812<br>1 56182<br>1 60182<br>1 61923 | 58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>71<br>72<br>73<br>74<br>75 | 1 63701<br>1 65519<br>1 67378<br>1 69279<br>1 71223<br>1 73213<br>1 75250<br>1 77335<br>1 79470<br>1 81657<br>1 83899<br>1 86196<br>1 88551<br>1 90967<br>1 93446<br>1 95989<br>1 95001<br>2 01283<br>2 04038 |

For liquids lighter than H<sub>2</sub>O Sp gr of 10 % NaCl

Aq 
$$\left(\frac{12.5^{\circ}}{12.5^{\circ}}\right) = 1.0737665 = 0^{\circ}$$
, H<sub>2</sub>O = 10°

Calculated according to the formula, sp gr =  $\frac{14556}{13556+n}$ 

| Deg<br>Baumé         | Sp gr                                    | Deg<br>Baumé         | Sp gr                                    | Deg<br>Baumé   | Sp gr                         | Deg<br>Baumé   | Sp gr                         |
|----------------------|------------------------------------------|----------------------|------------------------------------------|----------------|-------------------------------|----------------|-------------------------------|
| 10<br>15<br>20<br>25 | 1 00000<br>0 96679<br>0 93571<br>0 90657 | 30<br>35<br>40<br>45 | 0 87919<br>0 85342<br>0 82912<br>0 80616 | 50<br>55<br>60 | 0 78443<br>0 76385<br>0 74432 | 65<br>70<br>75 | 0 72577<br>0 70811<br>0 69130 |

### 2 According to the so-called Rational Scale

Sp gr of 
$$H_2SO_4 + Aq(\frac{15^\circ}{15^\circ}) = 1.842 = 66^\circ$$
,  $H_2O = 0^\circ$ 

Calculated according to the formula, sp gr =  $\frac{1443}{1443-n}$ 

| Deg<br>Baumé                                                                              | Sp gr                                                                                                                                        | Deg<br>Baumé                                                                                       | Sp gr                                                                                                                                                 | Deg<br>Baumé                                                                                 | Sp gr                                                                                                                                        | Deg<br>Baumé                                                                           | Sp gr                                                                                                                                                 |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 1 007<br>1 014<br>1 021<br>1 029<br>1 036<br>1 043<br>1 051<br>1 059<br>1 066<br>1 074<br>1 082<br>1 091<br>1 107<br>1 116<br>1 125<br>1 133 | 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34 | 1 142<br>1 152<br>1 161<br>1 170<br>1 180<br>1 190<br>1 200<br>1 210<br>1 220<br>1 230<br>1 241<br>1 251<br>1 262<br>1 274<br>1 285<br>1 296<br>1 308 | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50 | 1 320<br>1 332<br>1 345<br>1 357<br>1 370<br>1 384<br>1 397<br>1 411<br>1 424<br>1 439<br>1 453<br>1 468<br>1 483<br>1 498<br>1 514<br>1 530 | 51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>60<br>61<br>62<br>63<br>64<br>65<br>66 | 1 547<br>1 563<br>1 580<br>1 598<br>1 616<br>1 634<br>1 653<br>1 672<br>1 692<br>1 712<br>1 732<br>1 732<br>1 753<br>1 775<br>1 797<br>1 820<br>1 842 |

| Year                                                                                                                                                 | A                                                                                                                      | A ch                                                                                                                                                                                                                                              | Am J Sei                                                                                                                                                                                                 | Ann Min                                                                                                                                                                       | Ann Phil                                                                                                                       | Arch<br>Pharm                                                                                                                                                                            | Ch<br>Gaz        | C R                                                                                                               | Dingl                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1800<br>1801<br>1802<br>1803<br>1804<br>1805<br>1806<br>1807<br>1810<br>1811<br>1812<br>1813<br>1814<br>1815<br>1816<br>1817<br>1818<br>1819<br>1820 |                                                                                                                        | (1) 32-34<br>35-39<br>40-43<br>44-47<br>48-51<br>52-55<br>56-60<br>61-64<br>65-68<br>69-72<br>73-76<br>77-80<br>81-84<br>85-88<br>89-92<br>93-96<br>(2) 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>31-33 | (1) 1<br>2<br>3<br>4, 5<br>6<br>7, 8<br>10, 11                                                                                                                                                           | 1, 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10, 11<br>12, 13                                                                                                                   | (1) 1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>(2) 1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12 | 1, 2<br>3-6<br>7-10<br>11-14<br>16-19                                                                                                                                                    |                  |                                                                                                                   | 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-22                                                                                                                                        |
| 1831<br>1832<br>1833<br>1834<br>1835<br>1836<br>1837<br>1839<br>1840<br>1841<br>1842<br>1843<br>1844<br>1845<br>1846                                 | 1-4<br>5-8<br>9-12<br>113-16<br>17-20<br>21-24<br>25-28<br>33-36<br>37-40<br>41-44<br>49-52<br>53-56<br>57-60<br>61-64 | 34-36<br>37-39<br>40-42<br>43-45<br>46-48<br>49-51<br>52-55<br>56-57<br>58-60<br>61-63<br>64-66<br>67-69<br>70-72<br>73-75<br>(3) 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21                                                           | 12<br>13, 14<br>15, 16<br>17, 18<br>19, 20<br>21, 22<br>23, 24<br>25–27<br>28, 29<br>30, 31<br>32, 33<br>35, 35<br>36, 37<br>38, 39<br>40, 41<br>42, 43<br>44, 45<br>46, 47<br>48–50<br>(2) 1, 2<br>3, 4 | 12, 13<br>(2) 1, 2<br>3, 4<br>5, 6<br>7, 8<br>(3) 1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>17, 18<br>19, 20<br>(4) 1, 2<br>3, 4<br>5, 6<br>7, 8 | 11, 12                                                                                                                         | 20-23<br>24-26<br>27-30<br>31-34<br>35-39<br>40-43<br>44-47<br>48-50<br>(2) 1-4<br>5-8<br>9-12<br>13-16<br>17-20<br>21-24<br>25-28<br>29-32<br>33-36<br>37-40<br>41-44<br>45-48<br>49-52 | 1<br>2<br>3<br>4 | 1<br>2, 3<br>4, 5<br>6, 7<br>8, 9<br>10, 11<br>12, 13<br>14, 15<br>16, 17<br>18, 19<br>20, 21<br>22, 23<br>24, 25 | 23-26<br>27-30<br>31-34<br>35-38<br>39-42<br>43-47<br>48-50<br>51-54<br>55-58<br>59-62<br>63-66<br>67-70<br>71-74<br>75-78<br>79-82<br>83-86<br>87-90<br>91-94<br>95-98<br>99-102<br>103-106 |

# AND OTHER SCIENTIFIC PERIODICALS—Part I

| Gilb Ann                                                                                                                                              | J Chim<br>med                                               | J Pharm                                                                                                   | J pr                                                                                                                 | Phil Mag                                                                                                                                                                                                                                                                                                                                                                      | Pogg                                                                                                                                                                                                           | Proc<br>Am<br>Acad | Proc<br>Roy<br>Soc | Q J Scı                                                                                       | Scher J                                                                                                       | Schw J                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-6 7-9 10-12 13-15 16-18 19-21 22-24 25-27 28-30 31-33 34-36 37-39 40-42 43-45 46-48 49-51 55-57 58-60 61-63 64-66 67-69 70-72 73-75 76 Cont as Pogg | (1) 1 2 3 4 5 6 7 8 9 10 (2) 1 2 3 4 5 6 7 8 9 10 (3) 1 2 3 | (1) 1<br>2 3 4 5 6 (2) 1 2 3 4 5 6 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22 23 24 25 26 7, 8 9, 10 11, 12 | 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>31-33<br>34-36<br>37-39<br>40-42 | 6-8<br>9-11<br>12-14<br>15-17<br>18-20<br>21-23<br>24-26<br>27-29<br>30-32<br>33, 34<br>35, 36<br>37, 38<br>39, 40<br>41, 42<br>43, 44<br>45, 46<br>47, 48<br>49, 50<br>51, 52<br>53, 54<br>67, 68<br>(2) 1, 2<br>3, 4<br>55, 66<br>67, 68<br>(2) 1, 2<br>3, 4<br>57, 8<br>9, 10<br>11, (3) 1<br>20, 21<br>12, 13<br>14, 15<br>16, 17<br>18, 19<br>20, 21<br>22, 23<br>30, 31 | 1, 2<br>3-5<br>6-8<br>9-11<br>12-14<br>15-17<br>18-20<br>21-23<br>24-26<br>27-30<br>31-33<br>34-36<br>37-39<br>40-42<br>43-45<br>46-48<br>49-51<br>52-54<br>55-57<br>58-60<br>61-63<br>64-66<br>67-69<br>70-72 | 2                  | 1 2 3              | 1<br>2, 3<br>4, 5<br>6, 7<br>8, 9<br>10, 11<br>12, 13<br>14, 15<br>16, 17<br>18, 19<br>20, 21 | 3,4<br>5,6<br>7,8<br>9,10<br>12,12<br>13,14<br>15,16<br>17,18<br>19,20<br>21,22<br>23,24<br>Cont as<br>Schw J | (1) 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>(2) 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>(3) 1-3<br>4-6<br>7-9<br>Cont as |

1134

# SYNCHRONISTIC TABLE OF CHEMICAL

| Year                                                                                                                                                                                                                                                                                                                                                                 | ٨   | A ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Am J Sei                                                                                                                                                                                                   | Ann Min                                                                                                                              | Ann Phil                                                                                                                       | Arch<br>Pharm                                                                                                                                                                                                                     | Ch<br>Gaz        | C R                                                                                                       | Dingl                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1800<br>1801<br>1802<br>1803<br>1804<br>1805<br>1806<br>1807<br>1816<br>1810<br>1811<br>1812<br>1813<br>1814<br>1815<br>1818<br>1819<br>1820<br>1821<br>1822<br>1823<br>1832<br>1832<br>1832<br>1835<br>1836<br>1836<br>1837<br>1836<br>1837<br>1836<br>1837<br>1836<br>1837<br>1836<br>1837<br>1836<br>1837<br>1837<br>1838<br>1838<br>1838<br>1838<br>1838<br>1838 | ə-S | (1) 32-34<br>35-39<br>40-43<br>44-47<br>48-51<br>52-55<br>56-60<br>61-64<br>65-68<br>69-72<br>73-76<br>77-80<br>81-84<br>85-88<br>89-92<br>93-96<br>(2) 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>31-33<br>34-36<br>37-39<br>40-42<br>43-45<br>46-48<br>49-91<br>52-55<br>50-60<br>61-65<br>64-60<br>67-69<br>70-72<br>73-75<br>70-72<br>73-75<br>70-72<br>73-75<br>70-72<br>73-75<br>70-72<br>73-75<br>70-72<br>73-75<br>70-72<br>73-75<br>70-72<br>73-75<br>70-72<br>73-75<br>70-72<br>73-75<br>70-72<br>73-75<br>70-72<br>73-75<br>70-72<br>73-75<br>10-12<br>10-12<br>10-12<br>10-12 | (1) 1<br>2<br>3<br>4, 5<br>6<br>7, 8<br>10, 11<br>12<br>13, 14<br>15, 18<br>19, 20<br>21, 22<br>20, 24<br>20, 27<br>28, 29<br>30, 51<br>32, 50<br>30, 57<br>88, 39<br>40, 41<br>45, 70<br>(2) 1, 2<br>5, 4 | 1, 2<br>4 5 6 7 8 9 10, 11 12, 13 4 5, 8 8 9, 10 11, 12 13, 16 17, 10 17, 10 17, 10 17, 10 17, 10 11, 12 10, 14 10, 16 17, 10 11, 12 | (1) 1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>(2) 1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12 | 1, 2<br>3-6<br>7-10<br>11-14<br>16-19<br>20-23<br>24-26<br>27-30<br>31-34<br>35-39<br>40-43<br>41-47<br>48-50<br>(2) 1-4<br>5-8<br>9-12<br>13-16<br>17-20<br>21-24<br>25-28<br>29-32<br>33-36<br>37-40<br>41-44<br>45-48<br>49-52 | 1<br>2<br>3<br>4 | 1<br>2, 3<br>4, 5<br>6, 9<br>10, 11<br>12, 13<br>14, 15<br>16, 17<br>18, 19<br>20, 21<br>22, 23<br>24, 25 | 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-22<br>23-26<br>27-30<br>31-34<br>35-38<br>39-42<br>43-47<br>48-50<br>51-54<br>55-58<br>59-62<br>63-66<br>67-70<br>71-74<br>75-78<br>79-82<br>83-86<br>87-90<br>91-94<br>95-98<br>99-102<br>103-106 |

## AND OTHER SCIENTIFIC PERIODICALS—Part I

|                                                                                                                                                                                                                            | <del></del>                                                     |                                                                                                                                 |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                    |                    |                                                                                               |                                                                                                               |                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gilb Ann                                                                                                                                                                                                                   | J Chim<br>med                                                   | J Pharm                                                                                                                         | J pr                                                                                               | Phil Mag                                                                                                                                                                                                                                                                                                                                                  | Pogg                                                                                                                                                                                         | Proc<br>Am<br>Acad | Proc<br>Roy<br>Soc | Q J Scı                                                                                       | Scher J                                                                                                       | Schw J                                                                                                                                                                                                                   |
| 4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>31-33<br>34-36<br>37-39<br>40-42<br>43-45<br>46-48<br>49-51<br>55-57<br>58-60<br>61-63<br>64-66<br>67-69<br>70-72<br>73-75<br>Cont as<br>Pogg | (1) 1 2 3 4 5 6 7 8 9 10 (2) 1 2 3 4 4 5 6 7 8 9 10 (3) 1 2 3 3 | (1) 1 2 3 4 5 6 (2) 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 (3) 1, 2 3, 4 6 7, 8 9, 10 11, 12 | 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>28-30<br>31-33<br>34-36<br>40-42 | 6-8<br>9-11<br>12-14<br>15-17<br>18-20<br>21-23<br>24-26<br>27-29<br>33, 34<br>35, 36<br>37, 38<br>39, 40<br>41, 42<br>43, 44<br>46, 46<br>55, 56<br>57, 58<br>57, 60<br>61, 62<br>63, 66<br>65, 66<br>67, 68<br>(2) 1, 2<br>3, 4<br>5, 7<br>8, 9<br>10, 11<br>12, 13<br>14, 15<br>16, 17<br>18, 19<br>20, 21<br>22, 23<br>24, 25<br>26, 27<br>28, 39, 31 | 1, 2<br>3-5<br>6-8<br>9-11<br>12-14<br>18-20<br>21-23<br>24-26<br>27-30<br>31-33<br>34-36<br>37-39<br>40-42<br>46-48<br>49-51<br>52-54<br>55-57<br>58-60<br>61-63<br>64-66<br>67-69<br>70-72 | 1                  | 1<br>2<br>3        | 1<br>2, 3<br>4, 5<br>6, 7<br>8, 9<br>10, 11<br>12, 13<br>14, 15<br>16, 17<br>18, 19<br>20, 21 | 3,4<br>5,6<br>7,8<br>9,10<br>12,12<br>13,14<br>15,16<br>17,18<br>19,20<br>21,22<br>23,24<br>Cont as<br>Schw J | (1) 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>(2) 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>(3) 1-3<br>4-6<br>7-9<br>Cont as<br>J pr |

| - Year                                                                                                                      | A                                                                                                                                                                                                                                           | A ch                                                                                                                                                                                                    | Åm<br>Ch J                                                                                | Am J<br>Sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyst                                                                                                                                      | Ann Min                                                                                                                                                                                                                           | Arch<br>Pharm                                                                                                                                                                                                                                                    | A<br>suppl      | В                                                                                                                             | Bull Soc                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1858<br>1859<br>1860<br>1861<br>1862<br>1863<br>1864<br>1865<br>1866<br>1867<br>1868<br>1869<br>1870                        | 69-72<br>73-76<br>77-80<br>81-84<br>85-88<br>89-92<br>93-96<br>97-100<br>101-104<br>105-108<br>109-112<br>113-116<br>117-120<br>121-124<br>125-128<br>133-136<br>137-140<br>141-144<br>145-148<br>149-152<br>153-156<br>157-160             | 22-24<br>25-27<br>28-30<br>31-33<br>34-36<br>37-39<br>40-42<br>43-45<br>49-51<br>52-54<br>55-57<br>58-60<br>67-69<br>(4) 1-3<br>4-6<br>7-9<br>10-12<br>13-16<br>16-18<br>19-21<br>25-27                 |                                                                                           | 5, 6<br>7, 10<br>11, 12<br>13, 16<br>17, 20<br>21, 22<br>23, 26<br>27, 30<br>21, 32<br>25, 28<br>29, 30<br>31, 34<br>45, 36<br>47, 40<br>49, 12*<br>49, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12*<br>40, 12* |                                                                                                                                              | 13, 14<br>15, 16<br>17, 18<br>19, 20<br>(5) 1, 2<br>3, 4<br>5, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 18<br>19, 20<br>(6) 1, 2<br>3, 4<br>5, 8<br>9, 10<br>11, 12<br>13, 14<br>17, 18<br>19, 20<br>(7) 1, 18<br>19, 20<br>(7) 1, 2 | 53-56<br>57-60<br>61-64<br>65-68<br>69-72<br>73-76<br>77-80<br>81-84<br>85-88<br>89-92<br>93-96<br>97-100<br>101-104<br>105-108<br>109-112<br>113-116<br>121-124<br>125-128<br>129-132<br>133-136<br>137-140<br>141-144<br>145-148<br>149, 150<br>(3) 1†<br>2, 3 | 1 2 3 4 5 6 7 8 | 12345                                                                                                                         | 1<br>2<br>3<br>4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>17, 18                                                                                                                         |
| 875<br>1876<br>1877<br>1878<br>1880<br>1881<br>1882<br>1883<br>1884<br>1885<br>1886<br>1889<br>1890<br>1891<br>1892<br>1893 | -170<br>171-174<br>175-179<br>180-183<br>184-189<br>190-194<br>195-199<br>200-205<br>206-210<br>211-215<br>222-226<br>227-231<br>232-236<br>237-242<br>243-249<br>250-255<br>256-260<br>261-266<br>267-271<br>272-277<br>278-283<br>284-289 | 28-30<br>(5) 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>(6) 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>(7) 1-3<br>4-6 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 5, 6<br>7, 8 0<br>9, 12<br>13, 14<br>15, 16<br>17, 18<br>22, 24<br>25, 28<br>27, 32<br>25, 28<br>31, 34<br>35, 36<br>37, 38<br>39, 42<br>43, 44<br>45, 48<br>47, 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>-11<br>12<br>13, 14<br>15, 16<br>17, 18<br>19, 20<br>21, 22<br>23, 24<br>25, 26<br>27, 28 | 3, 4<br>5, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 18<br>19, 20<br>(8) 1, 2<br>3, 4<br>5, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 18<br>19, 20<br>(9) 1, 2<br>3, 6<br>7, 8                                                            | 2, 5<br>6, 7<br>8, 9<br>10, 11<br>12, 13<br>14, 15<br>16, 17<br>18, 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>228<br>229<br>230<br>231<br>232<br>233                                                                                                 |                 | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 21, 22<br>23, 24<br>25, 26<br>27, 28<br>29, 30<br>31, 32<br>33, 34<br>35, 36<br>37, 38<br>39, 40<br>41, 42<br>43, 46<br>47, 48<br>49, 50<br>(3) 1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14 |

<sup>\*</sup> Also cited as whole series, 101, 102, 103, etc

### OTHER SCIENTIFIC PERIODICALS—Part II

| о c                                                                                                                                    | Chem<br>Ind                                                                                     | Chem<br>Soc                                                                                                                                                                                        | Ch<br>Gaz                                     | Ch<br>Ztg                                       | Cim                                         | CN                                                                                                                   | C R                                                                                                                                                                                                            | Dingl                                                                                                                                                                                                                                                                           | Gazz<br>ch it                                                  | J Am<br>Chem<br>Soc                                                                       | J<br>Anal<br>Ch                 |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                              |                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14, 15<br>16*<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25                                                           | 5 6 7 8 9 10 11 12 13 14 15 16 17 Cont as C N |                                                 | 1, 2<br>3, 4<br>5, 6<br>Cont<br>as N<br>Cim | 1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>17, 18<br>9, 20<br>21, 22<br>23, 24<br>25, 26 | 26, 27<br>28, 29<br>30, 31<br>32, 33<br>34, 35<br>36, 37<br>38, 39<br>40, 41<br>42, 43<br>46, 47<br>48, 49<br>50, 51<br>52, 53<br>54, 65<br>60, 61<br>62, 63<br>64, 65<br>66, 67<br>70, 71<br>72, 73<br>74, 75 | 107-110<br>111-114<br>115-118<br>119-122<br>123-126<br>127-130<br>131-134<br>135-138<br>139-142<br>143-146<br>147-150<br>151-154<br>155-158<br>159-162<br>163-166<br>167-170<br>171-174<br>175-178<br>179-182<br>183-186<br>187-190<br>191-194<br>195-198<br>199-202<br>203-206 | 1 2                                                            |                                                                                           |                                 |
| 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 26<br>27<br>28<br>29, 30<br>31, 32<br>33, 34<br>35, 36<br>37, 38<br>39, 40<br>41, 42<br>43, 44<br>45, 46<br>47, 48<br>49, 50<br>51, 52<br>53, 54<br>55, 56<br>61, 62<br>63, 64<br>65, 66<br>67, 68 |                                               | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | cited as                                    | 55, 56<br>57, 58<br>59, 60<br>61, 62<br>63, 64<br>65, 66<br>67, 68<br>69, 70<br>71, 72                               | 102, 103<br>104, 105<br>106, 107<br>108, 109<br>110, 111<br>112, 113<br>114, 115<br>116, 117<br>118, 119                                                                                                       | 207-210<br>211-214<br>215-218<br>219-222<br>223-226<br>227-230<br>231-234<br>235-238<br>239-242<br>243-246<br>247-250<br>251-254<br>255-258<br>259-262<br>263-266<br>267-270<br>271-274<br>275-278<br>279-282<br>283-286<br>287-290<br>291-294<br>295-298                       | 3 44 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 1<br>2<br>3<br>4<br>5<br>6<br>7 |

<sup>\*</sup> Also cited as (2) 1, 2, 3, etc

<sup>†</sup> Also cited as 201, 202, etc

| _ Year                                                                                                                                                                                                                       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A ch                                                                                                                                                              | Am<br>Ch J                                                                                | Am J<br>Sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyst                                                                                                                            | Ann Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arch<br>Pharm                                                                                                                                                                                                                                                                                                                                                                                                             | A                        | В                                                                            | Bull Soc                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1858<br>1859<br>1860<br>1861<br>1862<br>1863<br>1864<br>1867<br>1871<br>1872<br>1873<br>1874<br>1875<br>1876<br>1877<br>1878<br>1879<br>1880<br>1881<br>1882<br>1883<br>1894<br>1895<br>1890<br>1891<br>1892<br>1893<br>1894 | 69-72<br>73-76<br>77-80<br>81-84<br>85-88<br>89-92<br>93-96<br>97-100<br>101-104<br>105-108<br>119-112<br>113-116<br>117-120<br>121-124<br>125-128<br>133-136<br>137-140<br>141-144<br>145-148<br>149-152<br>153-156<br>157-160<br>161-164<br>165-170<br>171-174<br>175-179<br>180-183<br>184-189<br>190-194<br>1195-199<br>200-205<br>206-210<br>211-215<br>226-231<br>232-236<br>237-242<br>243-249<br>250-255<br>2661-266<br>261-266<br>261-267<br>277-277 | 4-6<br>7-9<br>10-12<br>13-16<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>(5) 1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 5, 6<br>7, 8 10<br>11, 12<br>13, 14<br>15, 18<br>19, 22<br>23, 24<br>25, 28<br>29, 30<br>31, 32<br>27, 38<br>35, 36<br>37, 38<br>41, 44<br>45, 56<br>47, 48<br>47, 48<br>11, 12<br>11, 14<br>15, 16<br>17, 18<br>19, 20<br>21, 22<br>23, 34<br>25, 28<br>27, 38<br>31, 32<br>43, 44<br>45, 56<br>47, 48<br>11, 12<br>11, 14<br>15, 16<br>17, 18<br>19, 20<br>21, 22<br>23, 34<br>43, 34<br>44, 44<br>45, 56<br>47, 48<br>31, 32<br>43, 34<br>44, 44<br>45, 56<br>47, 48<br>47, 48<br>47, 48<br>48, 56<br>48, 56<br>49, 50<br>41, 42<br>41, 44<br>43, 44<br>44, 45, 46<br>47, 48<br>47, 48<br>48, 48<br>48, 48<br>49, 50<br>41, 42<br>41, 44<br>42, 56<br>48, 36<br>48, 48<br>48, | 0<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>-11<br>12<br>13, 14<br>15, 16<br>17, 20<br>21, 22<br>23, 24<br>25, 26<br>27, 28 | 13, 14<br>15, 16<br>17, 18<br>19, 20<br>(5) 1, 2<br>3, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 18<br>19, 20<br>(6) 1, 24<br>5, 8<br>9, 11<br>13, 14<br>15, 18<br>19, 20<br>(7) 3, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 18<br>19, 20<br>(7) 3, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 18<br>19, 20<br>(8) 1, 12<br>13, 14<br>15, 18<br>19, 20<br>(8) 1, 12<br>13, 14<br>15, 18<br>19, 20<br>(8) 1, 12<br>13, 14<br>15, 18<br>19, 20<br>(8) 1, 12<br>13, 14<br>15, 18<br>19, 20<br>(9) 1, 12<br>13, 14<br>15, 16<br>17, 18<br>19, 20<br>(9) 1, 12<br>13, 14<br>15, 16<br>17, 18<br>19, 20<br>(9) 1, 12<br>13, 14<br>15, 16<br>17, 18<br>19, 20<br>(9) 1, 12<br>13, 14<br>15, 16<br>17, 18<br>19, 20<br>(9) 3, 4<br>6 8 | 53-56<br>57-60<br>61-64<br>65-68<br>69-72<br>73-76<br>77-80<br>81-84<br>85-88<br>89-92<br>93-96<br>97-100<br>101-104<br>105-108<br>109-112<br>113-116<br>117-120<br>121-124<br>125-128<br>137-140<br>141-144<br>145-148<br>149, 150<br>(3) 1†<br>2, 3<br>4, 5<br>6, 7<br>8, 9<br>10, 11<br>12, 13<br>14, 15<br>16, 17<br>18, 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>228<br>229<br>230<br>231<br>232<br>233 | 12<br>34<br>56<br>7<br>8 | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 42 25 26 27 28 | 1 2 3 4 4 5 1, 14 15, 16 17, 18 19, 22 223, 24 25, 26 27, 280 31, 32 24 25, 26 27, 280 31, 32 443, 44 45, 48 49, 50 (3) 1, 4 2 43, 44 5, 48 49, 50 (3) 1, 11, 12 13, 14 |

<sup>\*</sup> Also cited as whole series, 101, 102, 103, etc

# OTHER SCIENTIFIC PERIODICALS—Part II

|                                                                                                                                        | Chem                                                                                            | Chem                                                                                                                                                                                                                   | Ch                                            | Ch                                                                                                    | 1                                           | 1                                                                                                            | 1                                                                                                                                                                                                          | l 1                                                                                                                                                                                                                                                                  |                                                                                                                                 |                                                                                           | <del></del>     |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------|
| сс<br>——                                                                                                                               | Ind                                                                                             | Soc                                                                                                                                                                                                                    | Gaz                                           | Ztg                                                                                                   | Cım                                         | CN                                                                                                           | CR                                                                                                                                                                                                         | Dıngl                                                                                                                                                                                                                                                                | Gazz<br>ch it                                                                                                                   | J Am<br>Chem<br>Soc                                                                       | J<br>Anal<br>Ch |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                              |                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14, 15<br>16*<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25                                                                               | 5 6 7 8 9 10 11 12 13 14 15 16 17 Cont as C N |                                                                                                       | 1, 2<br>3, 4<br>5, 6<br>Cont<br>as N<br>Cim | 1, 2<br>3, 4<br>5, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>17, 18<br>9, 20<br>21, 22<br>23, 24<br>25, 26 | 64, 65<br>66, 67<br>68, 69<br>70, 71<br>72, 73<br>74, 75                                                                                                                                                   | 107-110<br>111-114<br>115-118<br>119-122<br>123-126<br>127-130<br>131-134<br>135-138<br>139-142<br>143-146<br>147-150<br>155-158<br>159-162<br>163-166<br>167-170<br>171-174<br>175-178<br>179-182<br>183-186<br>187-190<br>191-194<br>195-198<br>199-202<br>203-206 | 1 2                                                                                                                             |                                                                                           |                 |
| 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 26<br>27<br>28<br>29, 30<br>31, 32<br>33, 34<br>35, 36<br>37, 38<br>39, 40<br>41, 42<br>43, 44<br>45, 46<br>47, 48<br>49, 50<br>51, 52<br>53, 54<br>55, 56<br>57, 58<br>59, 60<br>61, 62<br>63, 64<br>65, 66<br>67, 68 |                                               | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 |                                             | 53, 54 1<br>55, 56 1<br>57, 58 1<br>59, 60 1<br>61, 62 1<br>63, 64 1<br>65, 66 1<br>67, 68 1<br>69, 70 1     | 78, 79<br>80, 81<br>82, 83<br>84, 85<br>86, 87<br>88, 89<br>90, 91<br>92, 93<br>94, 95<br>96, 97<br>98, 99<br>100, 101<br>102, 103<br>104, 105<br>106, 107<br>108, 109<br>111, 113<br>112, 113<br>114, 115 | 259-262<br>263-266<br>267-270<br>271-274<br>275-278<br>279-282<br>283-286<br>287-290<br>291-294                                                                                                                                                                      | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 1234567         |

<sup>\*</sup> Also cited as (2) 1, 2, 3, etc

<sup>†</sup> Also cited as 201, 202, etc

| Y ear                                                                                                                | J<br>Chim<br>méd                     | Jena<br>Zeit                                             | J<br>Pharm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J pr                                                                                                                                                                                     | J Russ<br>Soc                                                       | J Soc<br>Chem<br>Ind                                                                                                       | M Ch | Monit<br>Scient                                                                                    | N<br>Cım                                                  | N Rep<br>Pharm                                      | Pharm<br>J<br>Trans | Phil<br>Mag                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1848<br>1849<br>1850<br>1851<br>1852<br>1853<br>1854<br>1855<br>1856<br>1857<br>1863<br>1864<br>1865<br>1867<br>1868 | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1<br>2<br>3<br>4                                         | 7, \<br>9, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46-48                                                                                                                                                                                    | 1 2 3 4                                                             |                                                                                                                            |      | (1) 1<br>2<br>3<br>4<br>(2) 6<br>7<br>8<br>9<br>10<br>11<br>12<br>(a) 13<br>14                     | 1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 5 16 17 19 20 21 | 1 2                 | 32, 33<br>34, 35<br>36, 37<br>(4)1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>17, 18<br>19, 20<br>21, 22<br>23, 24<br>25, 26<br>27, 28<br>29, 30<br>31, 32<br>33, 34<br>4<br>35, 6<br>9, 10<br>11, 12<br>11, 12<br>11, 12<br>11, 12<br>11, 12<br>11, 12 |
| 1875<br>1874<br>1875<br>1876<br>1876<br>1877<br>1880<br>1882<br>1882<br>1882<br>1882<br>1882<br>1882<br>1882         | 9<br>10<br>11<br>12                  | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>21<br>20<br>27 | 17, 18<br>19, 20<br>21, 22<br>25, 24<br>22, 28<br>29, 50<br>31, 2<br>4, 5, 6<br>7, 6, 7<br>11, 12<br>11, 15, 18<br>19, 20<br>21, 24<br>22, 26<br>21, 27, 26<br>21, 27, 26<br>21, 27, 26<br>21, 27, 26<br>21, 27, 26<br>21, 27, 26<br>21, 27, 26<br>21, 27, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, 28<br>21, | 9, 10<br>11, 12<br>15, 14<br>17, 18<br>17, 18<br>19, 20<br>21, 22<br>22, 24<br>27, 20<br>31 2<br>22, 28<br>29, 50<br>31 2<br>32, 8<br>30 10<br>41 45<br>45 46<br>47 48<br>49 46<br>51 52 | 6 6 7 8 9 10 11 12 15 16 17 1 19 20 21 22 22 22 22 22 27 22 26 27 1 | 1   2   2   3   4   5   7   7   8   9   10   11   12   13   14   14   14   14   14   15   15   16   16   16   16   16   16 | 1    | 1)<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>22<br>24<br>22<br>25<br>26<br>27<br>27<br>27<br>46 |                                                           | 22 25 24                                            | 1                   | 15 46 8 0 2 1 6 8 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                         |

# OTHER SCIENTIFIC PERIODICALS—Part II—Continued

| Pogg                                                                                                                                                                                                                                            | Proc<br>Am<br>Acad | Proc<br>Roy<br>Soc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rep<br>Anal<br>Ch | Rtc                                         | Techn<br>J B                                        | W A B                                                                                                                                                                                                                    | W<br>Ann                                                                                                                               | Z anal                   | Z           | z      | Zeit                                                                 | Z          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|--------|----------------------------------------------------------------------|------------|
| 73-75<br>76-78<br>79-81<br>82-84<br>85-87<br>88-90<br>91-93<br>94-96<br>97-99<br>100-102<br>103-105<br>106-108<br>109-111<br>112-114<br>115-117<br>118-120<br>121-123<br>124-126<br>127-129<br>130-132<br>133-135<br>136-15<br>136-15<br>136-15 | 5<br>6<br>7<br>8   | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>15<br>19<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                             | 2                                                   | 1<br>2, 3<br>4, 5<br>6, 7<br>8, 9<br>10, 11<br>12–14<br>15–18<br>19–21<br>22–27<br>28–33<br>34–38<br>39–42<br>43<br>44, 45<br>46–48<br>49<br>50–52<br>53, 54<br>55, 56<br>57, 58<br>59, 60<br>61, 62<br>63, 64<br>65, 66 |                                                                                                                                        | 1 2 3 4 5 6 7 5 9 10 11  | angew<br>Ch |        | (1) 1<br>2<br>3<br>4<br>5<br>6<br>1<br>2) 2<br>3<br>4<br>5<br>6<br>7 | phys<br>Ch |
|                                                                                                                                                                                                                                                 | 7                  | 1, 55<br>1, 57<br>1, 7<br>1, 7 | h                 | S 9 1 10 1 11 11 11 11 11 11 11 11 11 11 11 | 7 6 7 8 9 10 11 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 78                                                                                                                                                                                                                       | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 2\<br>2\<br>1\<br>2\<br> | - ·         | 2 1 10 | 11 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2                               | 15 12 1+   |

| Year Chim                                                                                                                                                                          | Jena<br>Zeit                                                | J<br>Pharm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J pr                                                                                                                                                                                                                                                                                                                                | J Russ<br>Soc                                                                                                         | J Soc<br>Chem<br>Ind | M Ch                                                                     | Monit<br>Scient              | N<br>Cım | N Rep<br>Pharm | Pharm<br>J<br>Trans                                 | Phil<br>Mag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------|------------------------------|----------|----------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1848 4 1849 5 1850 6 1851 7 1852 8 1853 9 1854 10 1855 (4) 1 1856 6 1857 3 1858 4 1859 5 1860 6 1861 7 1862 8 1863 9 1864 10 1867 1868 1 1868 1 1868 1 1867 1 1870 1 1871 1 1872 1 | 1 2 3 4 5 5 7 8 9 9 0 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 13, 14<br>15, 16<br>17, 18<br>19, 20<br>21, 22<br>23, 24<br>25, 26<br>27, 28<br>29, 36<br>31, 32<br>33, 33<br>35, 33<br>35, 33<br>35, 33<br>37, 34<br>41, 44<br>43, 4<br>45, 4<br>41, 13, 14<br>11, 11<br>11, r>11, 11<br>11, r>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 58-60<br>61-63<br>64-66<br>67-69<br>70-72<br>173-75<br>76-78<br>3 79-81<br>0 82-84<br>2 88-90<br>0 100-10<br>0 2 2 11,<br>24 15,<br>25 15,<br>26 10<br>27 27 27 27 27 27 27 27 27 27 27 27 27 2 | 2 98 2 2 34 2 6 7 3 0 10 12 14 14 16 11 15 10 12 12 14 14 16 11 15 12 12 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16 |                      | 77   10   11   12   12   13   13   14   15   15   15   15   15   15   15 | 0   3<br>1   2   3<br> 3   3 | 3        | $2 \mid 9$     | 7 9 10 11 15 17 17 17 17 17 17 17 17 17 17 17 17 17 | 47 48<br>19 50<br>(5)1 2<br>7 10<br>11 12<br>15 16<br>7 10<br>11 12<br>15 16<br>17 18<br>19, 20<br>21 22<br>22 25<br>27 20<br>20 2 2<br>20 2 2<br>21 3 56<br>21 3 56<br>21 22<br>22 25<br>23 25<br>24 3 56<br>25 25<br>26 25<br>27 26<br>27 27 28<br>28 27 28<br>29 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 28<br>20 |

## OTHER SCIENTIFIC PERIODICALS—Part II —Continued

| Pogg                                                                                                                                                                                                               | Proc<br>Am<br>Acad | Proc<br>Roy<br>Soc                                                          | Rep<br>Anal<br>Ch                         | Rte                                     | Techn<br>J B                                                                  | WAB                                                                                                                                                                                                     | N<br>Ann                                | Z anal                                             | Z<br>angew<br>Ch | Z<br>anorg                            | Zeit<br>Ch                          | Z<br>phys<br>Ch |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|------------------|---------------------------------------|-------------------------------------|-----------------|
| 73-75<br>76-78<br>79-81<br>82-84<br>85-87<br>91-93<br>94-96<br>97-99<br>100-102<br>103-105<br>106-108<br>109-11<br>112-114<br>115-117<br>118-120<br>121-123<br>124-126<br>127-129<br>130-132<br>133-135<br>136-134 | 9 10               | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 |                                           |                                         | (1) 1<br>2 3 4<br>5 6 6<br>7 8<br>9 10<br>11<br>12<br>13<br>14<br>15<br>(2) 1 | 1<br>2, 3<br>4, 5<br>6, 7<br>8, 9<br>10, 11<br>12-14<br>15-18<br>19-21<br>22-27<br>28-33<br>34-38<br>39-42<br>43<br>44, 45<br>46-48<br>49<br>50-55, 56<br>57, 58<br>59, 60<br>61, 62<br>63, 64<br>65 66 |                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>9<br>10<br>11   |                  |                                       | (1) 1 2 3 4 5 6 7 (2) 1 2 3 4 5 6 7 |                 |
| 115 150<br>151 15<br>151 15<br>157 15<br>160<br>Com<br>W Ann                                                                                                                                                       | )  <br>            | 1                                                                           | 9 - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 1 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 4 6 6 7 7 8 9 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                         | 75 74 76 77 77 77 77 77 77 77 77 77 77 77 77                                                                                                                                                            | 1 2 5 5 5 6 12 1 12 1 12 1 12 1 12 1 12 | 17 18 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 | >                | · · · · · · · · · · · · · · · · · · · | 21                                  |                 |

| Year                                                                                                                                                 | A                                                                                                                                                                                       | A ch                                                                                                                                               | Am<br>Ch J                                                                                                                     | Am J<br>Sci                                                                                                                                                                                    | Arch<br>Pharm                                                                                                                     | В                                                                                                                    | Bull Soc                                                                                                                                                                                           | C A                                  | Chem<br>Soc                                                                                                                                                                                       | Chem<br>Weekbi                                  | CR                                                                                                                                                                                                                               | Gazz<br>ch it              | Chem Soc                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1897<br>1898<br>1899<br>1900<br>1901<br>1902<br>1903<br>1904<br>1905<br>1905<br>1907<br>1908<br>1910<br>1911<br>1911<br>1911<br>1912<br>1913<br>1914 | 289-293<br>294-298<br>299-303<br>304-309<br>310-314<br>314-319<br>320-326<br>326-330<br>338-343<br>344-351<br>351-358<br>364-371<br>371-378<br>378-386<br>386-394<br>395-402<br>407-410 | 10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>(8)1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>13-15<br>19-21<br>22-24<br>25-27<br>27-30 | 23, 24<br>25, 26<br>27, 28<br>29, 30<br>31, 32<br>33, 34<br>35, 36<br>37, 38<br>39, 40<br>41, 42<br>43, 44<br>45, 46<br>47, 48 | (4)1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>17, 18<br>19, 20<br>21, 22<br>23, 24<br>22, 26<br>27, 28<br>29, 30<br>31, 32<br>33, 34<br>35, 36<br>37, 38<br>39, 40 | 234<br>235<br>236<br>237<br>238<br>239<br>240<br>241<br>242<br>243<br>244<br>245<br>246<br>247<br>248<br>249<br>250<br>251<br>253 | 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>44<br>45<br>46<br>47 | (2)15, 16<br>17, 18<br>19, 20<br>21, 22<br>23, 24<br>25, 26<br>27, 28<br>29, 30<br>31, 32<br>33, 34<br>35, 36<br>(4) 1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>17, 18 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 69, 70<br>71, 72<br>73, 74<br>75, 76<br>77, 78<br>79, 80<br>81, 82<br>83, 84<br>85, 86<br>87, 88<br>89, 90<br>91, 92<br>93, 94<br>95, 96<br>97, 98<br>99, 100<br>101, 102<br>103, 105<br>105, 106 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 122, 123<br>124, 125<br>126, 127<br>128, 129<br>130, 131<br>132, 133<br>134, 135<br>136, 137<br>140, 141<br>142, 143<br>144, 145<br>146, 147<br>148, 149<br>150, 151<br>152, 153<br>154, 155<br>156, 157<br>158, 159<br>160, 161 | 27<br>28<br>29<br>30<br>31 | 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37 |

# OTHER SCIENTIFIC PERIODICALS—Part III

|                                                                                                                                                                        | ı                                                                                                | j                                                                                                                                                            | 1                                                                                                              | 1                                                                                                              |                                                                                                                                                                             | ,                                                                                                              |                                                                                                                                                             | _                                                                                                              |                                                                                                          |                                                                                                                                                        |                                                |                                                                                                                                     |                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| J<br>Pharm                                                                                                                                                             | J<br>phys<br>Ch                                                                                  | J pr                                                                                                                                                         | J Soc<br>Chem Ind                                                                                              | М                                                                                                              | Proc<br>Roy<br>Soc                                                                                                                                                          | R                                                                                                              | W<br>Ann                                                                                                                                                    | Z<br>anal                                                                                                      | Z angew                                                                                                  | Z<br>anorg                                                                                                                                             | Z Elek<br>trochem                              | Z<br>Krvst<br>Mın                                                                                                                   | Z<br>phys<br>Ch                                                                                                                            |
| (6)3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>17, 18<br>21, 22<br>23, 24<br>25, 26<br>27, 28<br>29, 30<br>(7)1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 53, 54<br>55, 56<br>57, 58<br>59, 60<br>61, 62<br>63, 64<br>65, 66<br>67, 68<br>71, 72<br>75, 76<br>77, 78<br>79, 80<br>81, 84<br>85, 86<br>87, 88<br>91, 92 | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34 | 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36 | 59, 60<br>60, 61<br>62, 63<br>64, 65<br>66, 67<br>68, 69<br>70, 71<br>71, 72<br>76A<br>77, 78A<br>80, 81A<br>82, 83A<br>83, 84A<br>86, 87A<br>88, 89A<br>89, 91A<br>91, 92A | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34 | 57-59<br>60-62<br>63-65<br>66-68<br>(4)1-3<br>4-6<br>7-9<br>10-12<br>16-18<br>09-21<br>22-24<br>25-27<br>28-30<br>33-31<br>34-36<br>40-42<br>43-45<br>46-48 | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54 | 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 11, 12<br>13-15<br>16-18<br>19-21<br>22-25<br>26-29<br>29-33<br>33-37<br>43-44<br>48-51<br>52-56<br>65-69<br>69-73<br>73-79<br>79-84<br>84-89<br>90-93 | 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 | 25, 26<br>27, 28<br>30, 31<br>32, 33<br>34<br>35, 36<br>41, 42<br>42–44<br>44, 45<br>46<br>47<br>48, 49<br>50<br>51, 52<br>53<br>54 | 19-21<br>22-24<br>25-27<br>28-31<br>32-35<br>36-39<br>39-42-46<br>50-54<br>54-57<br>57-61<br>61-65-68<br>68-75<br>78-81<br>86-89<br>89, 90 |

| Year                                                                                                                         | A                                                                                                                                                                                                             | A ch                                                                                                                                                         | Am<br>Ch J | Am J<br>Sei                                                                                                                   | Arch<br>Pharm                                                                    | В                                                                                                              | Bull Soc                                                                                                                                                                                 | CA       | Chem<br>Soc                                                                                                                                                                                       | Chem<br>Weekbl                                              | CR                                                                                                                                                                                                                   | Gazz<br>ch it                                                                          | Chem Soc                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1897<br>1898<br>1899<br>1900<br>1901<br>1903<br>1904<br>1905<br>1906<br>1907<br>1908<br>1910<br>1911<br>1912<br>1913<br>1914 | 289-293<br>294-298<br>299-303<br>304-309<br>310-314<br>314-319<br>320-326<br>326-330<br>330-338<br>338-343<br>344-351<br>351-358<br>364-371<br>371-378<br>371-378<br>378-386<br>386-394<br>395-402<br>407-410 | 10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>28-30<br>(8)1-3<br>4-6<br>7-9<br>10-12<br>13-15<br>16-18<br>19-21<br>22-24<br>25-27<br>27-30<br>(9)1-2 |            | 9, 10<br>11, 12<br>13, 14<br>15, 16<br>17, 18<br>19, 20<br>21, 22<br>23, 24<br>25, 26<br>27, 28<br>29, 30<br>31, 32<br>33, 34 | 239<br>240<br>241<br>242<br>243<br>244<br>245<br>246<br>247<br>248<br>249<br>250 | 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48 | (2)15, 16<br>17, 18<br>19, 20<br>21, 22<br>23, 24<br>25, 26<br>27, 28<br>29, 30<br>31, 32<br>35, 36<br>(4) 1, 2<br>3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>17, 18 | 12345678 | 69, 70<br>71, 72<br>73, 74<br>75, 76<br>77, 78<br>79, 80<br>81, 82<br>83, 84<br>85, 86<br>87, 88<br>89, 90<br>91, 92<br>93, 94<br>95, 96<br>97, 98<br>99, 100<br>101, 102<br>103, 105<br>105, 106 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 122, 123<br>124, 125<br>126, 127<br>128, 129<br>130, 131<br>132, 133<br>134, 135<br>136, 137<br>140, 141<br>142, 143<br>144, 145<br>146, 147<br>150, 151<br>152, 153<br>154, 155<br>156, 157<br>158, 159<br>160, 161 | 27<br>28<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>40<br>41<br>42<br>43 | 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37 |

### OTHER SCIENTIFIC PERIODICALS—Part III

| J<br>Pharm                                                                                                                                                     | J<br>phys<br>Ch                                                             | J pr                                                                                                                                                                                       | J Soc<br>Chem Ind                                                                                              | М                                                                                                              | Proc<br>Roy<br>Soc                                                                                                                                                          | R<br>t c                                                                                                       | W<br>Ann                                                                                                                                                             | Z<br>anal                                                                        | Z angew<br>Ch                                                                                      | Z<br>anorg                                                                                                                                             | Z Elek<br>trochem                                                                                 | Z<br>Krvst<br>Min                                                                                                                                     | Z<br>phys<br>Ch                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| (6)3, 4<br>5, 6<br>7, 8<br>9, 10<br>11, 12<br>13, 14<br>15, 16<br>17, 18<br>21, 24<br>25, 26<br>27, 28<br>29, 30<br>(7)1, 2<br>3, 6<br>7, 8<br>9, 10<br>11, 12 | 4<br>5<br>6<br>7<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 53, 54<br>55, 56<br>57, 58<br>59, 60<br>61, 62<br>63, 64<br>65, 66<br>67, 68<br>71, 72<br>73, 74<br>75, 76<br>77, 78<br>79, 80<br>81, 82<br>83, 84<br>85, 86<br>87, 88<br>89, 90<br>91, 92 | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34 | 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36 | 59, 60<br>60, 61<br>62, 63<br>64, 65<br>66, 67<br>68, 69<br>70, 71<br>71, 72<br>76A<br>77, 78A<br>80, 81A<br>82, 83A<br>83, 84A<br>86, 87A<br>88, 89A<br>89, 91A<br>91, 92A | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34 | 57-59<br>60-62<br>63-65<br>66-68<br>(4)1-3<br>4-6<br>7-9<br>10-12<br>16-18<br>09-21<br>22-24<br>25-27<br>28-30<br>33-31<br>34-36<br>37-39<br>40-42<br>43-45<br>46-48 | 39<br>40<br>41<br>42<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53 | 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>29 | 11, 12<br>13–15<br>16–18<br>19–21<br>22–29<br>29–33<br>33–37<br>43–44<br>48–51<br>52–56<br>65–60<br>61–65<br>65–69<br>73–79<br>70–84<br>84–89<br>90–93 | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21 | 25, 26<br>27, 28<br>29<br>30, 31<br>32, 33<br>34<br>35, 36<br>37<br>40<br>41, 42<br>42-44<br>44, 45<br>46<br>47<br>48, 49<br>50<br>51, 52<br>53<br>54 | 19-21<br>22-24<br>25-27<br>28-31<br>32-35<br>36-39<br>39-42<br>42-46<br>50-54-57<br>57-61<br>61-65<br>68-78<br>78-81<br>81-86<br>86-89<br>89, 90 |