

GCSE MATHEMATICS

AQA | Edexcel | OCR | WJEC

(Level 6-8)

Proofs (Higher)

Please write clearly in block capitals

Forename:	
Surname:	

Materials

For this paper you must have:

· mathematical instruments

You must not use a calculator.

Instructions

- · Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- You may ask for graph paper, tracing paper and more answer paper.
 These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

1	Show that the following statements are true:	(Level 6)
1(a)	$4(2x - 3) - 2(2x + 9) \equiv 4x - 30$	(2000/0)
.(4)		[2 marks]
	Answer	
1(b)	$(n-1)^2 - (n-2)^2 \equiv 2n - 3$	[2 marks]
	Answer	
1(c)	$(n+2)^2 - 3(n+4) \equiv (n+4)(n-3) + 4$	[2 marks]
	Answer	
1(d)	$3(n+3)(n-1) - 3(1-n) \equiv (3n-3)(n+4)$	[2 marks]
	Answer	
	Turn over for next question	

2	Chave that the following statements are true
2	Show that the following statements are true,

(Level 6)

$$(3n + 1)(n + 3) - n(3n + 7) \equiv 3(n + 1)$$

[2 marks]

Answer

$$(n + 3)^2 - (3n + 4) \equiv (n + 1)(n + 2) + 3$$

[2 marks]

Answer

$$(n-3)^2 - (2n+1) \equiv (n-4)^2 - 8$$

[2 marks]

Answer

MathsMadeEasy Revision App

- ✓ Video revision for every GCSE Maths topic
- Online Mock Exams with video solutions

Try it now at mme.la/app or scan the barcode

3(a)	Prove the product of two even numbers is always even.	(Level 6) [2 marks]
.	Answer	
3(b)	Prove that the product of two odd numbers is always odd.	[2 marks]
	Answer	
3(c)	Prove the product of three consecutive odd numbers is odd.	[3 marks]
	Answer	
	GCSE Maths Revision Cards	
	Get them at mme.la/cards or scan the barcode	S

4(a)	Prove algebraically that the sum of any three odd numbers is odd.	(Level 6)
` ,		[2 marks]
	Answer	
4(b)	Prove algebraically that the sum of the squares of two odd integers is always even.	
		[2 marks]
	Answer	
4(c)	Prove that when two consecutive integers are squared, that the difference is equal to the sum of the two consecutive integers.	
		[2 marks]
	Answer	
	Turn over for next question	

5(a)	Prove that,	(Level 6)
	$(n+3)^2 + n(3-n) - 3(n+4)$	
	is a multiple of 3 for all integer values of n.	
		[2 marks]
		[2 marke]
		_
		_
	Answer	
	Allswei	
5(b)	Prove algebraically that the sum of two consecutive numbers is odd.	
C (<i>D</i>)	Trove algorization, that the call of the concessance hambers to cau.	[2 marks]
		[2 Illai KS]
	A	
	Answer	
5(c)	Prove algebraically that the sum of the squares of two consecutive multiples of 5 is	
3(0)	not a multiple of 10.	
		[2 marks]
		[=
		_
		_
		_
	Answer	
	Allowei	
	Turn over for next question	

6(a)	Show algebraically that the sum of any 3 consecutive even numbers is always a divisible by 6.	(Level 7)
		[2 marks]
		_
	Answer	
6(b)	Prove algebraically that $(4n + 2)^2 - (2n + 2)^2$ is a multiple of 4 for all positive integers.	
		[2 marks]
	Answer	
(c)	Prove algebraically that $(2n + 3)^2 - (2n - 3)^2$ is a multiple of 8 for all positive integers of n .	
		[2 marks]
	Answer	
	Turn over for next question	

7(a)	If 2n is always even for all positive integer values of n, prove algebraically that the sum of the squares of any two consecutive even numbers is always a multiple of 4.	(Level 7)
		[3 marks]
		_
	Answer	_
7(b)	Prove algebraically that the difference between the squares of any two consecutive numbers is always an odd number.	
		[2 marks]
		_
	Answer	
	Turn over for next question	

	9	
8(a)	Tom says that $7x - (2x + 3)(x + 2)$ is always negative.	(Level 7)
	Is he correct? Explain your answer.	
		[3 marks]
	Answer	
8(b)	Change a single number in Tom's statement that would lead to a change in your conclusion.	
	Why is this the case?	
		[1 mark]
	Answer	

GCSE Maths Practice Exam Papers

- Paper 1, 2, 3 and mark scheme in every set
- All exam boards AQA, OCR, Edexcel, WJEC

Get them at mme.la/papers or scan the barcode

9(a)	Show that the difference between 14^{20} and 21^2 is a multiple of 7.	(Level 8)
- (-)		[3 marks]
	Answer	
		_
9(b)	Show that $3^{60} - 25$ is not a prime number.	
		[2 marks]
	Answer	_
	Turn over for next question	
	ram ever for floor question	

10	Part of a 10x10 1-1	100 number grid is	pictured below
----	---------------------	--------------------	----------------

(Level 8)

1	2	3	4	5
11	12	13	14	15
21	22	23	24	25
31	32	33	34	35
41	42	43	44	45

A 2x2 square of numbers is selected.

The following operation is performed:

Difference of the leading diagonal × Difference of the other diagonal

$$(23-12) \times (22-13) = 11 \times 9 = 99$$

10(a)	Verify that this is also	the case for a different	2x2 square of numbers	on the grid.
-------	--------------------------	--------------------------	-----------------------	--------------

Α	ns	w	er
$\overline{}$	I IO	·vv	CI.

10(b) Prove this result for all possible 2x2 squares on the grid.

[3	marks]
----	--------

Answer

End of Questions

4