

Elmore Family School of Electrical and Computer Engineering

Generalization Bounds for SparseRandom Feature Expansions

Abolfazl Hashemi

SIAM MDS Conference Sept 30th, 2022

Function Approximation

Learn an unknown relation from data

Access to a lot of data (e.g., neural networks)

PDEs $i\hbarrac{\partial}{\partial t}|\Psi(t)
angle=\hat{H}|\Psi(t)
angle$

Targeted to specific function classes (e.g., polynomials)

Function Approximation Under Data-Scarcity

Limited energy budget

Costly observation gathering

Safety-critical operation

How can we design data-efficient algorithms with generalization guarantees in data-scarce settings?

Function Approximation with Latent, Parsimonious Structures

How can we leverage low-order structures for improved data-efficiency in data-scarce settings?

Sparse Random Feature Expansions

Contributions:

• Leveraging sparsity and low-order structures for improved data-efficiency

Limited data

• Constructive accuracy guarantees and generalization bounds

Function Approximation: Basis Representation View

Learn the unknown function

$$f: \mathbb{R}^d \to \mathbb{C}$$

From the dataset

$$\{(y_1,\mathbf{x}_1),\ldots,(y_m,\mathbf{x}_m)\}$$

Find **c** such that: $y_i \approx \langle \mathbf{a}(\mathbf{x}_i, \boldsymbol{\omega}), \mathbf{c} \rangle, i = 1, \dots, m$

Compressed sensing:

- Convex formulation
- Fixed and deterministic bases, e.g., orthonormal polynomials
- function need to be well-represented by polynomials

Neural networks:

- Nonlinear data-dependent basis functions
- Non-convex formulation
- Scarcity of theoretical guarantees
- Data intensive

Bridging the Gap: Random Feature for Compressive Sensing

Option for basis function

Random Fourier features: $\phi(\mathbf{x}; \boldsymbol{\omega}) = \exp(i\langle \mathbf{x}, \boldsymbol{\omega} \rangle)$

Random trigonometric features: $\phi(\mathbf{x}; \boldsymbol{\omega}) = \cos(\langle \mathbf{x}, \boldsymbol{\omega} \rangle)$

Random ReLU features: $\phi(\mathbf{x}; \boldsymbol{\omega}) = \max(\langle \mathbf{x}, \boldsymbol{\omega} \rangle, 0)$

Sparse Random Feature Expansions

Draw m data points $\mathbf{x}_k \sim \mathcal{D}_x$ and observe noisy measurements $y_k = f(\mathbf{x}_k) + e_k$ $|e_k| \leq E$

Draw a complete set of N q-sparse feature weights $m{\omega}_j \in \mathbb{R}^d$ sampled from density $\zeta: \mathbb{R}^q o \mathbb{R}$ with variance σ^2

$$\mathbf{c}^{\sharp} = \arg\min_{\mathbf{c}} \|\mathbf{c}\|_{1} \quad \text{s.t.} \quad \|\mathbf{A}\mathbf{c} - \mathbf{y}\| \leq \eta \sqrt{m}$$
$$f^{\sharp}(\mathbf{x}) = \sum_{j=1}^{N} c_{j}^{\sharp} \phi(\mathbf{x}; \boldsymbol{\omega}_{j})$$

Function Space

Bounded *ρ*-norm functions [Rahimi, Recht '08]

$$\mathcal{F}(\phi, \rho) := \left\{ g(\mathbf{x}) = \int_{\boldsymbol{\omega} \in \mathbb{R}^d} \alpha(\boldsymbol{\omega}) \phi(\mathbf{x}; \boldsymbol{\omega}) \ d\boldsymbol{\omega} : \|g\|_{\rho} := \sup_{\boldsymbol{\omega}} \left| \frac{\alpha(\boldsymbol{\omega})}{\rho(\boldsymbol{\omega})} \right| < \infty \right\}$$

1

Related to Barron function class in NN

[Barron '92]

$$||f||_B = \int |\boldsymbol{\omega}||\hat{f}(\boldsymbol{\omega})| d\boldsymbol{\omega}$$

$$||f - f^*||_{L_2} \le \frac{C||f||_B}{\sqrt{N}}$$

Strong dependence on dimension d

Order-q function

$$f(x_1, \dots, x_d) = \frac{1}{K} \sum_{j=1}^K g_j(x_{j_1}, \dots, x_{j_q})$$

$$|||f||| := {d \choose q}^{\frac{1}{2}} \left(\frac{1}{K} \sum_{j=1}^{K} ||g_j||_{\rho} \right)$$

Smaller than

$$||f||_{\rho}$$

Generalization Bounds

Theorem: (Generalization bound for low-order functions)

Let $\phi(\mathbf{x}; \boldsymbol{\omega}) = \phi(\langle \mathbf{x}, \boldsymbol{\omega} \rangle) = \exp(i\langle \mathbf{x}, \boldsymbol{\omega} \rangle)$. For each subset $\mathcal{S} \subset [d]$ with $|\mathcal{S}| = q$, draw i.i.d. $\omega_1, \ldots, \omega_n \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_q)$. Let $\mathbf{x}_1, \ldots, \mathbf{x}_m \sim \mathcal{N}(\mathbf{0}, \gamma^2 \mathbf{I}_d)$, $\eta = \sqrt{2(\epsilon^2 |||f|||^2 + E^2)}$ and fix, s, δ , and ϵ

• γ - σ uncertainty principle

$$\gamma^2 \sigma^2 \ge \frac{1}{2} \left(\left(\frac{\sqrt{41}(2s-1)}{2} \right)^{\frac{2}{q}} - 1 \right)$$

Number of features

$$n \ge \frac{4}{\epsilon^2} \left(1 + 4\gamma \sigma d + \sqrt{\frac{q}{2} \log\left(\frac{d}{\delta}\right)} \right)^2$$

Number of measurement

$$m \ge 4(2\gamma^2\sigma^2 + 1)^{2q} \log \frac{N^2}{\delta}$$

With probability

$$1-\delta$$

$$\sqrt{\int_{\mathbb{R}^d} |f(\mathbf{x}) - f^*(\mathbf{x})|^2 d\mu} \le \epsilon |||f||| + C'|||f||| + C\eta \sqrt{s}$$

10

Improved Bound for Bandlimited Functions

$$\sqrt{\int_{\mathbb{R}^d} |f(\mathbf{x}) - f^*(\mathbf{x})|^2 d\mu} \le \epsilon |||f||| + C'|||f||| + C\eta \sqrt{s}$$

Can be improved for bandlimited functions

Theorem: (low-order and bandlimited functions)

Setting $s = \tilde{\mathcal{O}}(\sqrt{n})$, if there is no noise

$$\sqrt{\int_{\mathbb{R}^d} |f(\mathbf{x}) - f^*(\mathbf{x})|^2 d\mu} \le \epsilon |||f||| + C|||f|||\sqrt{\epsilon}$$

Effectiveness on Low-order Function Approximation

Order of interactions: q = 2

$$f(x_1, \dots, x_{10}) = \frac{1}{10} \sum_{\ell=1}^{9} \frac{\exp(-x_{\ell}^2)}{1 + x_{\ell+1}^2}$$

N = 5000 features

Varying size of the training dataset

Comparison with shallow NN

Measuring relative test error

Impact of the Order of the Function

	$f(\mathbf{x})$	σ	d	q=1	q=2	q = 3	q=5	
F	$\left(\sum_{i=1}^{d} x_i\right)^2$	0.1	1	0.82	5.71×10^{-6}	6.92×10^{-5}	8.3×10^{-4}	
	$(1 + \ \mathbf{x}\ _2^2)^{-1/2}$	1	5	3.27	1.60	1.95	1.72	_
	$\sqrt{1+\ \mathbf{x}\ _2^2}$	1	5	1.02	0.73	0.80	1.10] _
	$\operatorname{sinc}(x_1)\operatorname{sinc}(x_3)^3 + \operatorname{sinc}(x_2)$	π	$\ddot{0}$	12.90	1.19	1.13	3.51	
	$\frac{x_1x_2}{1+x_3^6}$	1	5	100.30	21.53	4.95	5.06	
	$\sum_{i=1}^{d} \exp(- x_i)$	1	100	0.91	1.43	1.57	1.96]
	Ap							

Robustness Against Overfitting and Noise

Data-Scarcity and Generalization Error

HyShot 30 data

M= 26 data points

Full order: d = q = 7

NACA sound data

M= *1202* data points

Full order: d = q = 5

HyShot 30	N = 100	N = 200	N = 400	N = 800
SRFE with Sine	6.95	6.23	5.76	5.64
SRFE with ReLU	1.40	1.45	1.51	1.59
Random Fourier Features	84.23	89.99	95.17	97.84
Two-layer ReLU Network	7.29	11.50	11.19	11.33
NACA Sound	N = 250	N = 1500	N = 5000	N = 10000
SRFE (Train)	3.22	2.30	2.30	2.31
SRFE (Test)	3.22	3.04	2.77	2.78
SRFE (Average Sparsity)	250	364.4	185.7	185.7
Random Fourier Features (Train)	3.22	0.25	0.20	0.19
Random Fourier Features (Test)	7.45	2.13×10^8	1.69×10^{8}	1.48×10^{8}

Low generalization error due to coefficient sparsity

Conclusion and Future Work

- Sparse random feature expansions
- Leveraging coefficient sparsity in data-scarce setting
- Leveraging feature sparsity for exploiting low-order structures
- Constructive generalization bounds for function approximation

Future Directions

- Approximately low-order structure
- Tuning the feature weights
- Incorporate additional functional structures such as Lipschitzness

Generalization Bounds for Sparse Random Feature Expansions

<u>Abolfazl Hashemi</u>, Hayden Schaeffer, Robert Shi, Giang Tran, Rachel Ward, Ufuk Topcu.

Appeared at "Applied and Computational Harmonic Analysis," 2022.