Examen partiel

Enseignant : Paul Fortier Durée : 1 heure 50 minutes

Remarques importantes : Examen à livre fermé. Vous avez droit à une feuille de formules recto verso, format lettre. Seules les calculatrices approuvées par la Faculté des sciences et de génie sont permises. Donnez tous les détails de vos calculs.

Question 1 (15 points)

La puissance d'un signal modulé en DSB-SC, $s_{DSB-SC}(t)$, mesurée aux bornes d'une antenne ayant une impédance de 75 Ω est de -90 dBm. La fréquence de la porteuse est $f_c = 10$ MHz et le message est donné par $m(t) = \cos(2\pi f_m t)$, avec $f_m = 10$ kHz.

- a) Donnez cette puissance en watts.
- b) Quelle est la tension RMS de ce signal, $V_{\rm rms}$, aux bornes de l'antenne?
- c) Donnez l'expression du signal modulé reçu aux bornes de l'antenne, $s_{DSB-SC}(t)$, en indiquant les valeurs numériques.

Question 2 (35 points)

On désire développer un récepteur superhétérodyne pour un système de communications FM. Le système est constitué de canaux contiguës, numérotés de 1 à N. Chaque canal occupe une largeur de bande de 200 kHz et est centré autour de sa porteuse, f_{c_n} , où $n=1,\ldots,N$ est le numéro du canal. $f_{c_1}=200$ MHz et $f_{c_N}=210$ MHz. La fréquence intermédiaire est $f_{IF}=20$ MHz.

- a) Calculez N.
- b) Quelle est la bande de fréquence totale occupée par ce système? Donnez la largeur de bande de même que les fréquences minimale et maximale.
- c) Donnez une expression mathématique pour la fréquence de la porteuse du n-ième canal.
- d) Calculez la fréquence de l'oscillateur local pour la réception du canal 27.
- e) Y-a-t-il un problème de fréquences images avec ce système. Expliquez.
- f) Tracez le schéma-bloc de ce récepteur, en indiquant bien tous les signaux.

Question 3 (30 points)

Un message $m(t) = A_m \cos(2\pi f_m t)$ module en FM une porteuse. La figure 1 illustre le spectre d'amplitude mesuré, $S_{FM}(f)$ (fréquences positives seulement).

FIGURE 1 – Spectre du signal FM.

- a) Quelle est la fréquence de la porteuse f_c ?
- b) Quelle est la fréquence du message f_m ?
- c) Quel est l'indice de modulation β_f ? S'agit-il d'un signal à bande étroite ou à large bande?
- d) En utilisant la formule de Carson, estimez la largeur de bande de transmission, B_T , du signal FM (donnez les détails de vos calculs).
- e) Donnez l'expression du signal modulé, $s_{FM}(t)$, en indiquant les valeurs numériques.
- f) Quelle est la puissance, P_{FM} , de ce signal FM?

Question 4 (20 points)

Un signal AM, $s_{AM}(t)$, est illustré à la figure 2. La ligne pointillée indique l'enveloppe de $s_{AM}(t)$. La fréquence de la porteuse est de 1 kHz. Le message, m(t), est un signal sinusoïdal.

 $Figure\ 2-Signal\ AM.$

- a) Quelle est l'indice de modulation?
- b) Donnez l'expression du signal modulé, $s_{AM}(t)$, en indiquant les valeurs numériques.
- c) Donnez l'expression du spectre d'amplitude du signal modulé, $S_{AM}(f)$.
- d) Tracez le spectre de puissance du signal modulé, $P_{AM}(f)$.

Formulaire pour l'examen partiel

Fonctions de Bessel (pour $0 \le n \le 10$)

n	$J_n(0)$	$J_n(1)$	$J_n(2)$	$J_n(3)$	$J_n(4)$	$J_n(5)$	J_{n} (6)	$J_n(7)$	J_{n} (8)	$J_{n}(9)$	$J_n (10)$
0	1	0.7652	0.2239	-0.2601	-0.3971	-0.1776	0.1506	0.3001	0.1717	-0.0903	-0.2459
1		0.4401	0.5767	0.3391	-0.0660	-0.3276	-0.2767	-0.0047	0.2346	0.2453	0.0435
2		0.1149	0.3528	0.4861	0.3641	0.0466	-0.2429	-0.3014	-0.1130	0.1448	0.2546
3		0.0195	0.1289	0.3091	0.4302	0.3648	0.1148	-0.1676	-0.2911	-0.1809	0.0584
4	7,	0.0025	0.0340	0.1320	0.2811	0.3912	0.3516	0.1578	-0.1054	-0.2655	-0.2196
5			0.0070	0.0430	0.1321	0.2611	0.3621	0.3479	0.1858	-0.0550	-0.2341
6			0.0012	0.0114	0.0490	0.1310	0.2458	0.3392	0.3376	0.2043	-0.0145
7				0.0025	0.0152	0.0534	0.1296	0.2336	0.3206	0.3275	0.2167
8		,		1,1-0,1-0	0.0040	0.0184	0.0565	0.1280	0.2235	0.3051	0.3179
9					1 - 1/6	0.0055	0.0212	0.0589	0.1263	0.2149	0.2919
10						0.0015	0.0069	0.0235	0.0608	0.1247	0.2075
11							0.0020	0.0083	0.0256	0.0622	0.1231
12			-					0.0027	0.0096	0.0274	0.0634
13	,								0.0033	0.0108	0.0290
14									0.0010	0.0039	0.0120
15										0.0013	0.0045
16											0.0016

Identités trigonométriques

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\cos^2 \theta = \frac{1}{2} [1 + \cos(2\theta)]$$

$$\sin^2 \theta = \frac{1}{2} [1 - \cos(2\theta)]$$

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha - \beta) + \sin(\alpha + \beta)]$$

Transformées de Hilbert

$$x(t) = \mathcal{H}^{-1}[x_h(t)] \quad \Leftrightarrow \quad x_h(t) = \mathcal{H}[x(t)]$$

$$m(t)\cos(2\pi f_c t) \quad \Leftrightarrow \quad m(t)\sin(2\pi f_c t)$$

$$m(t)\sin(2\pi f_c t) \quad \Leftrightarrow \quad -m(t)\cos(2\pi f_c t)$$

$$\cos(2\pi f_c t) \quad \Leftrightarrow \quad \sin(2\pi f_c t)$$

$$\sin(2\pi f_c t) \quad \Leftrightarrow \quad -\cos(2\pi f_c t)$$

$$\delta(t) \quad \Leftrightarrow \quad \frac{1}{\pi t}$$

$$\frac{1}{t} \quad \Leftrightarrow \quad -\pi \delta(t)$$

Transformées de Fourier

$$x(t) = \mathcal{F}^{-1}[X(f)] \quad \Leftrightarrow \quad X(f) = \mathcal{F}[x(t)]$$

$$\prod \left(\frac{t}{T}\right) \quad \Leftrightarrow \quad T \operatorname{sinc}(fT)$$

$$\operatorname{sinc}(2Wt) \quad \Leftrightarrow \quad \frac{1}{2W} \prod \left(\frac{f}{2W}\right)$$

$$e^{-at}u(t), \quad \operatorname{pour} a > 0 \quad \Leftrightarrow \quad \frac{1}{a+j2\pi f}$$

$$e^{-a|t|}, \quad \operatorname{pour} a > 0 \quad \Leftrightarrow \quad \frac{2a}{a^2+(2\pi f)^2}$$

$$\Lambda(t) \quad \Leftrightarrow \operatorname{sinc}^2(f)$$

$$\delta(t) \quad \Leftrightarrow \quad 1$$

$$1 \quad \Leftrightarrow \quad \delta(f)$$

$$\delta(t-t_0) \quad \Leftrightarrow \quad e^{-j2\pi f t_0}$$

$$e^{j2\pi f c t} \quad \Leftrightarrow \quad \delta(f-f_c)$$

$$\operatorname{cos}(2\pi f_c t) \quad \Leftrightarrow \quad \frac{1}{2}[\delta(f-f_c)+\delta(f+f_c)]$$

$$\operatorname{sin}(2\pi f_c t) \quad \Leftrightarrow \quad \frac{1}{2j}[\delta(f-f_c)-\delta(f+f_c)]$$

$$\operatorname{sgn}(t) \quad \Leftrightarrow \quad \frac{1}{j\pi f}$$

$$\frac{1}{\pi t} \quad \Leftrightarrow \quad -j \operatorname{sgn}(f)$$

$$u(t) \quad \Leftrightarrow \quad \frac{1}{2}\delta(f)+\frac{1}{j2\pi f}$$

$$\sum_{i=-\infty}^{\infty} \delta(t-iT_0) \quad \Leftrightarrow \quad \frac{1}{T_0}\sum_{n=-\infty}^{\infty} \delta(f-\frac{n}{T_0})$$

Dérivées

$$\frac{d}{dx}x^n = nx^{n-1}$$

$$\frac{d}{dx}\exp(ax) = a\exp(ax)$$

$$\frac{d}{dx}\cos(ax) = -a\sin(ax)$$

$$\frac{d}{dx}\sin(ax) = a\cos(ax)$$

Intégrales

$$\int x^n dx = \frac{x^{n+1}}{n+1} \quad (n \neq -1)$$

$$\int \exp(ax) dx = \frac{1}{a} \exp(ax)$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax)$$

$$\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$$