BAS 27

Roll No.			
	 the second secon		

B. Tech Year 2nd Semester: III Major Examination-2016-2017

		Subject Name: Discrete Mathematics		
Time	: 3 hrs.		ax. Marks: 40	
Note: Attempt	all questions	Each question carries equal marks.		
Q. 1. Attempt any	three of the folio	owing questions. Q.1 (a) is compulsory.		
	a)	Show that $A \cap (A' \cup B) = A - (A - B) = A \cap B$.	4	
	b)	In a survey of 600 students in a school. 150 students were found to be taking tea		
		and 225 taking coffee. 100 were taking both coffee and tea. Find the number of		
		those students who take neither coffee nor tea.	3	
	c)	Define equivalence classes. Show that two equivalence classes are either equal or		
d)		disjoint. Consider the function $f: R \to R$ given by $f(x) = 4x + 3$. Show that f is invertible	3	
	and find the inverse of f.		3	
Q. 2. Attempt any	three of the follo	wing questions. Q.2 (a) is compulsory.		
	a)	What do you understand by Subgroup of a group? Show that intersection of two		
	sub groups is again a subgroup. Give an example to prove that union of			
4		subgroup is not a subgroup.	4	
	b)	Define permutation and find the inverse of the		
		permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 4 & 1 & 3 \end{pmatrix}$. Check whether the permutation is even or		
		odd.	3	
	c)	Define cyclic group and field with examples. Prove that a finite integral domain is a field	2	
	d)	is a field. Define order of group. If order of a group G is 16 then find the number of generators of G	3	
Q. 3. Attempt any	three of the follo	owing questions. Q.3 (a) is compulsory.		
a) Explain cyclic, bipartite, Hamiltoninan graph. Give examples of each of the above				
	υ,	graph.	4	
WE was	b)	What is the largest number of vertices in a graph with 35 edges-if all vertices are of degree at least three? .	3	
	c)	What is coloring of a graph? Determine the chromatic number of the graph C_6 .		
	d)	State the Kruskal's algorithm to minimize the total cost of a communication	3	
	****	network	3	
O. 4. Attempt anv	three of the follo	owing questions. Q.4 (a) is compulsory.		
. ,	a)	Use generating functions to find the recurrence relation of $a_n = a_{n-1} + a_{n-2}$ $a_0 = 0, a_1 = 1$. 4	
î		Find the number of arrangements of the letters in the word ALGEBRA and show that if seven colors are used to paint 50 cars, at least 8 cars will have the same color.		
	c)	Determine the recurrence relation given that $a_{n+2} - 5 a_{n+1} + 3 a_n = 0$ with	h 3	
	d)	initial condition $a_0 = 2$ and $a_1 = 4$ Find the generating function of	3	
	•	i) 0,1,-2,4,-8,		
		$a_r = 2r + 3, r = 0,1,2,3$		

(a). Determine the reactions at A and B for the steel bar and loading shown in Figure 4, assuming a close fit at both supports before the loads are applied.

Figure-4

3

3

- (b). Define the following terms: i) Normal stress ii) Shear stress iii) Poisson's ratio
- (c). Draw and level the stress -strain diagram for ductile and brittle materials.
- (d). What are the assumptions of Simple bending theory? Derive the formula of bending stress in a beam.