EasyStrata

DESCRIPTION

This software-package provides functions to evaluate stratified GWAMA results.

Author: Thomas Winkler thomas.winkler@klinik.uni-regensburg.de

Version: 8.6 License: GPL v3

Citation: If you are using EasyStrata, please reference our website www.genepi-

regensburg.de/easystrata

Date: 2014-06-15

INSTALLATION

Please install the R-package EasyStrata using

> install.packages("/path2tarball/EasyStrata_8.6.tar.gz")

Dependencies: Graphical R-packages "Cairo" and "plotrix".

USAGE

The software can be started using the EasyStrata function from the R command-line. The Function takes the an EasyStrata config/script (ECF-file) file and performs all steps defined in the ECF-file.

Example:

> library(EasyStrata)
> EasyStrata("/path2ecffile/test.ecf")

You can also try running EasyStrata using the implemented example pipelines, by calling:

> example(EasyStrata)

The implemented example "example_pipeline.ecf" illustrates the usage of EasyStrata to test for sex difference. The results will be written to the current working directory. The contained exemplary data are a subset of randomly chosen SNPs from publicly available sex-stratified GWAMA results on Waist-Hip Ratio, provided by the GIANT consortium (Randall, et al., 2013).

General Structure of an ecf-file:

Each ecf-file takes one set of configuration parameters and one set of scripting function, i.e. START EASYSTRATA and STOP EASYSTRATA may only be used once with an ecf-file. It is not allowed to start over with a different input and pipeline after closing the evaluation with STOP EASYSTRATA.

EasyStrata Functions

DESCRIPTION	1
INSTALLATION	1
USAGE	2
1. EASYSTRATA CONFIGURATION	5
DEFINE	5
EASYIN	6
2. STRATA EVALUATION	7
CALCPDIFF	7
CALCPHET	8
JOINTTEST	9
METAANALYSIS	10
3. PLOTTING FUNCTIONS	11
MHPLOT	11
MIAMIPLOT	13
QQPLOT	15
RPLOT	17
SPLOT	18
4. MULTIPLE TESTING	20
FDR	20
BONFERRONI	21
5. INDEPENDENTIZATION	22
CLUMP	22
INDEP	24
6. GENOMIC CONTROL	26
GC	26
7. DATA EXTRACTION	27
CALCULATE	27
CRITERION	28
EVALSTAT	29
EXTRACTSNPS	30
GETNUM	31
8 DATA-HANDLING	32

	ADDCOL	32
	ADJUSTALLELES	33
	CLEAN	36
	EDITCOL	37
	FILTER	38
	GETCOLS	39
	MERGE	40
	MERGEEASYIN	42
	REMOVECOL	43
	RENAMECOL	44
	STRSPLITCOL	45
	WRITE	46
R	EFERENCES	47

1. EASYSTRATA CONFIGURATION

What files should be processed? Where to save the results?

DEFINE

Set parameters that will be valid for all input files except if they will be overwritten for any specific file in the EASYIN statement.

Input:

PARAMETER	DESCRIPTION
strMissing	Missing value character.
	Optional. Default: NA
strSeparator	Column separator.
	Optional. Default: WHITESPACE
	Please use: [WHITESPACE COMMA TAB SPACE]
acolin	Array of Input columns.
	Optional. By default all columns will be read.
	Please use: Column names separated by ';'.
	This can be used to define the input columns for fast reading, renaming and exclusion
	of columns. If set, only the columns stated will be read. All columns stated here must
	be present in the input. The function is case-sensitive.
acolInClasses	Array of Input column classes.
	Optional. By default all columns will be read using best guess classes estimated from
	the first 10 rows of the input.
	Please use: [character numeric double integer logical] separated by ';' respectively
	for columns defined atacolin.
acolNewName	Array of new input columns.
	Optional.
	Please use: New column names separated by ';' respectively for columns defined at
	acolin.
	If set, the column names stated atacolln will be renamed to the names stated here.
pathOut	Path to save all output.
	Optional. Default: Working directory (getwd()).

Example:

DEFINE --strMissing .

--strSeparator TAB

--acolin SNP;A1;A2;EAF;P;N

--acolInClasses character; character; character; numeric; numeric; integer

--acolNewName MarkerName; Allele1; Allele2; Freq; pvalue; samplesize

--pathOut /path2outputfolder/out

EASYIN

Set the input files.

Inputs:

PARAMETER	DESCRIPTION
fileIn	Path to Input file.
fileInShortName	Short name of the input file that will be used in logs/reports/plots.
	Optional. Default: The filename of the input.
fileInTag	Set a tag for the input file, e.g. MEN and WOMEN for a men- and a women-specific
	file respectively. The tag will be added to all input columns, which may be helpful if
	the input data is supposed to be merged by MERGEEASYIN.

In addition to these parameters, the DEFINE parameters --strMissing, --strSeparator, --acolln, -acolInClasses, --acolNewName can be set at EASYIN as well, which will overwrite the DEFINE statement specifically for the specified file.

Example:

--fileIn /path2input/file1.txt
--fileInShortName FILE1 EASYIN

--fileInTag MEN

2. STRATA EVALUATION

CALCPDIFF

Option 1: Calculate difference between BETAs of two input strata

$$z_{diff} = \frac{\beta_1 - \beta_2}{\sqrt{se(\beta_1)^2 + se(\beta_2)^2}} \sim N(0,1) \rightarrow p_{diff} \qquad \text{(for blnCovCorrection = 0)}$$

or

$$z_{diff} = \frac{\beta_1 - \beta_2}{\sqrt{se(\beta_1)^2 + se(\beta_2)^2 - 2 \cdot r \cdot se(\beta_1) se(\beta_2)}} \sim N(0,1) \quad \rightarrow \quad p_{diff} \quad \text{ (for blnCovCorrection = 1)}$$

with r being the Spearman rank correlation coefficient for stratum-specific betas across all SNPs (Randall, et al., 2013).

Option 2: Calculate difference between Z-Scores of two input strata by

$$z_{diff} = \frac{\frac{z_1}{\sqrt{N_1}} - \frac{z_2}{\sqrt{N_2}}}{\sqrt{\frac{1}{N_1} + \frac{1}{N_2}}} \sim N(0,1) \rightarrow p_{diff}.$$

Input:

PARAMETER	DESCRIPTION
acolBETAs	Array of the two effect-size, beta columns.
acolSEs	Array of the two standard error columns.
acolZscores	Array of the two z-score columns.
acolNs	Array of the two N, sample size columns.
blnCovCorrection	Boolean value to define whether a correction to the standard error using the
	covariance should be applied. Optional. Default: 0. Please use: [0 1].
colOutPdiff	Name of the added p-value for difference column. Optional. Default: pdiff

IMPORTANT: Either define (--acolBETAs AND --acolSEs) to test for difference between BETAs OR define (--acolZscores AND --acolNs) to test for difference between z-Scores. The program will automatically recognize the formula to be applied.

Example:

CALCPDIFF --acolBETAs beta.MEN;beta.WOMEN
--acolSEs se.MEN;se.WOMEN
--colOutPdiff psexdiff

CALCPDIFF --acolZscores z.MEN;z.WOMEN
--acolNs N.MEN;N.WOMEN
--colOutPdiff psexdiffZ

Output:

Column <colOutPdiff> will be added to the data-set. The column contains the between-strata difference P-Value. If "--blnCovCorrection 1" is defined, the correlation coefficient will be written to the REPORT.

CALCPHET

Calculate Cochrane's heterogeneity P-Value to estimate the heterogeneity between N input strata (Cochran, 1954) by

$$\sum_{i=1}^{N} [(\beta_i - \beta_{Overall})^2 w_i] \sim \chi^2(N-1) \rightarrow p_{het}$$

Input:

PARAMETER	DESCRIPTION
acolBETAs	Array of N effect-size, beta columns.
acolSEs	Array of N standard error columns.
colOutPhet	Name of the added p-value for between-strata heterogeneity column. Optional.
	Default: phet

Example:

CALCPHET --acolBETAs beta.YOUNGMEN;beta.OLDMEN;beta.YOUNGWOMEN;beta.OLDWOMEN
--acolSEs se.YOUNGMEN;se.OLDMEN;se.YOUNGWOMEN;se.OLDWOMEN
--colOutPhet phet_agesex

Output:

Column <colOutPhet> will be added to the data-set. The column contains the between-strata heterogeneity P-Value.

JOINTTEST

Calculate the joint (main+interaction) effect P-Value from N stratified analyses according to

$$\sum_{i=1}^{N} (\beta_i^2 w_i) \sim \chi^2(N) \rightarrow p_{joint}$$

This method is described in work by Aschard (Aschard, et al., 2010).

PARAMETER	DESCRIPTION
acolBETAs	Array of N effect-size, beta columns.
acolSEs	Array of N standard error columns.
colOutPjoint	Name of the added joint-test p-value. Optional. Default: pjoint

Example:

JOINTTEST --acolBETAs beta.YOUNGMEN;beta.OLDMEN;beta.YOUNGWOMEN;beta.OLDWOMEN
--acolSEs se.YOUNGMEN;se.OLDMEN;se.YOUNGWOMEN;se.OLDWOMEN
--colOutPjoint pjoint_agesex

Output:

Column <colOutPjoint> will be added to the data-set. The column contains the N-df joint test P-Value.

METAANALYSIS

Option 1: Conduct a fixed-effect inverse-variance weighted meta-analysis of N input strata using

$$\beta_{Overall} = \frac{\sum_{i=1}^{N} \beta_i w_i}{\sum_{i=1}^{N} w_i}, \quad SE_{Overall} = \sqrt{\frac{1}{\sum_{i=1}^{N} w_i}} \quad \rightarrow \frac{\beta_{Overall}}{SE_{Overall}} \sim N(0,1) \rightarrow \quad p_{Overall} \quad \text{with } w_i = 1/se_i^2$$

(Cox and Hinkley, 1979).

Option 2: Conduct a z-score based sample size weighted meta-analysis of M input strata using

$$z_{Overall} = \frac{\sum_{i=1}^{M} z_i \sqrt{N_i}}{\sqrt{\sum_{i=1}^{M} N_i}} \sim N(0,1) \rightarrow \ p_{Overall}$$

(Willer, et al., 2010).

Input:

F	
PARAMETER	DESCRIPTION
acolBETAs	Array of m effect-size, beta columns.
acolSEs	Array of m standard error columns.
acolZscores	Array of the z-score columns.
acolNs	Array of the N, sample size columns.
acolA1s	Array of m Allele 1 columns (Effect alleles).
acolA2s	Array of m Allele 2 columns (Other alleles).
colOutBeta	Name of the added pooled Beta column. Optional. Default: bmeta
colOutSe	Name of the added pooled Standard Error column. Optional. Default: semeta
colOutZscore	Name of the added pooled Z-score column. Optional. Default: zmeta
colOutN	Name of the added total sample size column. Optional. Default: nmeta
colOutP	Name of the added pooled P-Value column. Optional. Default: pmeta

IMPORTANT: Either define (--acolBETAs AND --acolSEs) to for Option 1

OR define (--acolZscores AND --acolNs) for Option 2.

The program will automatically recognize the formula to be applied.

Example:

METAANALYSIS --acolBETAs beta.YOUNGMEN; beta.OLDMEN; beta.YOUNGWOMEN; beta.OLDWOMEN --acolSEs se.YOUNGMEN; se.OLDMEN; se.YOUNGWOMEN; se.OLDWOMEN --acolals A1.YOUNGMEN; A1.OLDMEN; A1.YOUNGWOMEN; A1.OLDWOMEN --acolA2s A2.YOUNGMEN; A2.OLDMEN; A2.YOUNGWOMEN; A2.OLDWOMEN --colOutBeta betaOverall --colOutSe seOverall --colOutP pOverall METAANALYSIS --acolZscores z.YOUNGMEN; z.OLDMEN; z.YOUNGWOMEN; z.OLDWOMEN --acolns N. YOUNGMEN; N. OLDMEN; N. YOUNGWOMEN; N. OLDWOMEN --acolals A1.YOUNGMEN; A1.OLDMEN; A1.YOUNGWOMEN; A1.OLDWOMEN --acola2s A2.YOUNGMEN; A2.OLDMEN; A2.YOUNGWOMEN; A2.OLDWOMEN --colOutZscore zOverall --colOutN nOverall --colOutP pOverall

Output:

Columns <colOutBeta>,<colOutSe> (or <colOutZscore>, <colOutN>) and <colOutP> will be added to the data-set. These columns contain the pooled (strata-combined) overall effect, standard error and P-Value respectively.

3. PLOTTING FUNCTIONS

MHPLOT

Create a Manhattan plot.

Input:	
<u>PARAMETER</u>	<u>DESCRIPTION</u>
collnChr	Chromosome column that will be used to generate the x-axis. Required.
collnPos	Base position column that will be used to generate the x-axis. Required.
colMHPlot	P-Value column that will be plotted on the y-Axis. Required.
astrDefaultColourChr	Array of length two. Defines the changing chromosome colours.
	Optional. Default: gray51;gray66
blnLogPval	Boolean value to define whether plotted data is (-log)-transformed.
	Optional. Default: 0 (not log-transformed; expects values in [0,1]).
numPvalOffset	Numeric value. To increase the plotting speed, all SNPs with P-Values >
	numPvalOffset will be omitted from the plot. Optional.
blnYAxisBreak	Boolean value to define whether the y-Axis should be rescaled at the
	thresholdnumYAxisBreak. If set, all plot values > numYAxisBreak will be
	linearly fitted into the upper 20% of the graphing area and all other values <
	numYAxisBreak will be linearly fitted into the lower 80% of the graphing area.
	Optional. Default: 0.
numYAxisBreak	Numeric value at which the y-axis will be rescaled (if blnYAxisBreak=1).
	Optional. Default: 22
Locus highlighting:	
fileAnnot	If set, the loci defined by the SNPs included in fileAnnot will be highlighted
	using the colour stated in fileAnnot. The fileAnnot must contain columns 'Chr',
	'Pos' and 'Colour' and contain the (centered) Top SNPs of the regions in rows.
	A locus is defined as +/- numAnnotPosLim.
numAnnotPosLim	The position threshold to define a locus around the SNPs stated in fileAnnot in
	bp. Optional. Default: 500000
numAnnotPvalLim	The P-Value threshold for highlighting loci defined by fileAnnot. If set, only loci
	that contain at least one SNP with P-Value < numAnnotPvalLim will be
	highlighted. Optional. Default: 1
Horizontal Lines:	
anumAddPvalLine	Array of P-Values, for which a horizontal line will be drawn. Optional. Default:
	5e-8
astrAddPvalLineCol	Array of colours that will be used for the lines defined in anumAddPvalLine
and the Andrews Andrews Andrews	respectively. Optional. Default: red
anumAddPvalLineLty	Array of integer line types (refers to R-plot parameter lty) that will be used for
Other graphic parameters.	the lines defined in anumAddPvalLine respectively. Optional. Default: 6
Other graphic parameters:	Inharitad CDLOT narameters. Can be used to influence graphical
strPlotName mh	Inherited SPLOT parameters. Can be used to influence graphical
numWidth 1600	presentation. See SPLOT for a more detailed description.
numHeight 600	Parameter values given are amended default values.
anumParMar 7;6;4;10	

--arcdCexCrit, --anumCex --anumParMgp, --strParBty

--arcdColourCrit,--astrColour, $\hbox{\it --} arcd Symbol Crit, \hbox{\it --} anum Symbol}$

--strFormat

--numCexAxis 1.5 --numCexLab 2

--numDefaultSymbol 19 --numDefaultCex 0.4

Example:

```
MHPLOT --colMHPlot Pvalue
--colInChr CHR
--colInPos POS
--numPvalOffset 0.05
--blnYAxisBreak 1
--numYAxisBreak 22
--fileAnnot /path2annotfile/Loci2Annot.txt
--numAnnotPosLim 500000
--numAnnotPvalLim 5e-8
--anumAddPvalLine 1e-5;5e-8
--astrAddPvalLineCol orange;red
--anumAddPvalLineLty 6;6
```

Output:

FILE OUTPUTS	DESCRIPTION
*.mh.[png pdf]	Manhattan plot.

MIAMIPLOT

Create a Miami plot.

Input:

PARAMETERDESCRIPTION-- collnChrChromosome column that will be used to generate the x-axis. Required.-- collnPosBase position column that will be used to generate the x-axis. Required.-- colMIAMIPlotUpColumn that will be plotted on the upper side of the y-Axis. Required.

-- colMIAMIPlotDown Column that will be plotted on the lower side of the y-Axis. Required.

--astrDefaultColourChrUp Array of length two. Defines the changing chromosome colours on the upper side.

Optional. Default: gray51;gray66

--astrDefaultColourChrDown Array of length two. Defines the changing chromosome colours on the lower side.

Optional. Default: gray51;gray66

--blnLogPval Boolean value to define whether plotted data is log-transformed.

Optional. Default: 0 (not log transformed).

--numPvalOffset Numeric value. To increase the plotting speed, all SNPs with P-Values > numPvalOffset

will be omitted from the plot.

Optional. Default=1.

--blnYAxisBreak Boolean value to define whether the y-Axis should be rescaled at a certain threshold.

Optional. Default: 0.

--numYAxisBreak Numeric value at which the y-axis will be rescaled (if blnYAxisBreak=1).

Optional. Default: 22

Locus highlighting:

--fileAnnot If set, the loci defined by the SNPs included in fileAnnot will be highlighted using the

colour stated in fileAnnot. The fileAnnot must contain columns 'Chr', 'Pos' and 'Colour' and contain the (centered) Top SNPs of the regions in rows. A locus is defined as +/-

num Annot Pos Lim.

--numAnnotPosLim The position threshold to define a locus around the SNPs stated in fileAnnot in bp.

Optional. Default: 500000

--numAnnotPvalLim The P-Value threshold for highlighting loci defined by fileAnnot. If set, only loci that

contain at least one SNP with P-Value < numAnnotPvalLim will be highlighted. Optional.

Default: 1

Horizontal Lines:

--anumAddPvalLine Array of P-Values, for which a horizontal line will be drawn. Optional.

--astrAddPvalLineCol Array of colours that will be used for the lines defined in anumAddPvalLine respectively.

Optional.

--anumAddPvalLineLty Array of integer line types (refers to R-plot parameter lty) that will be used for the lines

defined in anumAddPvalLine respectively. Optional.

Other graphic parameters:

--strPlotName miami Inherited SPLOT parameters. Can be used to influence graphical presentation.

--strFormat png See SPLOT for a more detailed description.

--numWidth 1600 Parameter values given are amended default values.
--numHeight 800 Parameters '*CritUp' refer to the upper half of the plot.
--anumParMar 7;6;4;10 Parameters '*CritDown' refer to the upper half of the plot.

--numCexAxis 1.5 Please see the '*Crit' parameters of SPLOT for a more detailed description.

--numCexLab 2

--numDefaultSymbol 19

--numDefaultCex 0.4

--arcdColourCritUp, --astrColourUp,

--arcdSymbolCritUp,--anumSymbolUp

--arcdCexCritUp, --anumCexUp

--arcdColourCritDown,

--astrColourDown,

--arcdSymbolCritDown,

--anumSymbolDown

--arcdCexCritDown, --anumCexDown

--anumParMgp, --strParBty

Example:

MIAMIPLOT --colMIAMIPlotUp pWomen

--colMIAMIPlotDown pMen

--colInChr CHR
--colInPos POS

--astrDefaultColourChrUp gray;red --astrDefaultColourChrDown gray;blue

--numPvalOffset 0.05 --blnYAxisBreak 1 --numYAxisBreak 22

--fileAnnot /path2annotfile/Loci2Annot.txt

--numAnnotPosLim 500000 --numAnnotPvalLim 5e-8 --anumAddPvalLine 1e-5;5e-8 --astrAddPvalLineCol orange;red --anumAddPvalLineLty 6;6

Output:

FILE OUTPUTS	DESCRIPTION
*.miami.[png pdf]	Miami plot.

._____

QQPLOT

Create QQ plot.

Input:

iliput.	
<u>PARAMETER</u>	<u>DESCRIPTION</u>
acolQQPlot	Array of P-Value columns that will be plotted into one graph. Please use: P-Value column
	names separated by ';'.
astrColour	Array of colours, used respectively foracolQQPlot. Optional. Default: black. Please use:
45th 5 6154h	Any R-colour names or hexadecimal nomenclature (e.g. #FF0000 for red), separated by ';'
numPvalOffset	Numeric value. To increase the plotting speed, all SNPs with P-Values > numPvalOffset
Haim valoniset	will be omitted from the plot. Optional. Default=1.
blnYAxisBreak	Boolean value to define whether the y-Axis should be rescaled at the threshold
Siiii / Misbi Cuk	numYAxisBreak. If set, all plot values > numYAxisBreak will be linearly fitted into the
	upper 20% of the graphing area and all other values < numYAxisBreak will be linearly
	fitted into the lower 80% of the graphing area. Optional. Default: 0.
numYAxisBreak	Numeric value at which the y-axis will be rescaled (if blnYAxisBreak=1). Optional. Default:
IIuIII Axisbreak	22
blnLogPval	Boolean value to define whether the defined P-Value columns have already been (-log)-
biiiLogr vai	transformed. Optional. Default: 0 (expects P-Values in [0,1])
blnPlotCl	Boolean value to define whether confidence bounds should be added to the plot. Please
biliPlotCi	note that confidence bounds will be calculated for the first stated P-Value in acolQQPLot.
	Optional. Default: 0
anumSymbol	Array of symbol integers, used respectively foracolQQPlot. Optional. Default: 20.
andmsymbol	Please use: Any R-symbol integer (refers to the R plot parameter pch), separated by ';'
anumCex	Array of symbol size magnification, used respectively foracolQQPlot. Optional.
andincex	Default: 1
	Please use: Any R-symbol magnification (refers to the R plot parameter cex), separated
	by ';'
hlnCombined	
blnCombined	Boolean value to define whether a combined line (QQPLOT of all acolQQPlot variables combined) should be added to the graph. Optional. Default: 0. Please use: [0 1].
arcdExclude	Array of logical R-code criterions (separated by ;), used to remove SNPs from the
arcuexciude	
arcdAdd2Plot	plotting. Optional. Array (separated by ';') of R - plotting functions (e.g. abline), that will be evaluated after
arcuAduZPIOt	the plot command. This can be used to add user-defined lines, points or text to the
fileRemove	figure. Optional. If defined, an additional QQ-curve will be plotted only showing SNPs that lie
Illekelilove	>numRemovePosLim apart (in bp) from any region as defined in fileRemove. The
	fileRemove must contain columns 'Chr' and 'Pos' and the centered SNPs of the regions.
num Domouo Dool im	
numRemovePosLim strRemovedColour	The position threshold in bp. Optional. Default: 500000 Colour of the additional curve that excluded the loci defined in fileRemove. Optional.
sti kemovedcolodi	Default: green
numBomovodSymbol	
numRemovedSymbol	Symbol of the additional curve that excluded the loci defined in fileRemove. Optional. Default: 20
numRemovedCex	Symbol size of the additional curve that excluded the loci defined in fileRemove.
numkemovedcex	
collnChr	Optional. Default: 1
connen	Column of the input that contains information about chromosome. If fileRemove is
collaDoc	defined, this column is requested.
collnPos	Column of the input that contains information about position. If fileRemove is defined,
Other graphic parameters:	this column is requested.
Other graphic parameters:	Inharited SDLOT parameters. Can be used to influence graphical procentation. See SDLOT
strMode,strFormat,	Inherited SPLOT parameters. Can be used to influence graphical presentation. See SPLOT for a more detailed description.
strAxes,strXlab,strYlab,	ioi a more detailed description.
strTitle,arcdAdd2Plot,strPlotName,numCexAxis	
·	
numCexLab,numWidth,	
numHeight,anumParMar,	
anumParMgp,strParBty,	
numParLas	

Example:

```
QQPLOT --acolQQPlot Pmen;Pwomen
--astrColour blue;red
--anumSymbol 0;1
--numPvalOffset 0.05
```

Output:

FILE OUTPUTS	DESCRIPTION
*.qq.[png pdf]	QQ plot.

RPLOT

Create a scatterplot of columns in the REPORT file.

Input:

PARAMETER	DESCRIPTION
rcdRPlotX	R-Code expression to define the x-values.
rcdRPlotY	R-Code expression to define the y-values.
Other graphic parameters:	
strDefaultColour,arcdColourCrit,astrColour	Inherited SPLOT parameters. Can be used to
numDefaultSymbol,arcdSymbolCrit,anumSymbol	influence graphical presentation. See SPLOT for a
numDefaultCex,arcdCexCrit,anumCex	more detailed description.
strAxes,strXlab,strYlab,strTitle,arcdAdd2Plot	
blnGrid,strMode,strPlotName,strFormat	
numCexAxis,numCexLab,numWidth,numHeight	
anumParMar,anumParMgp,strParBty	

Example:

```
RPLOT --rcdRPlotX maxSampleSize
    --rcdRPlotY GClambda
    --strAxes zeroequal
    --arcdAdd2Plot abline(h=1,col='red')
```

Output:

FILE OUTPUTS	DESCRIPTION
*.rplot.[png pdf]	Report plot.

SPLOT

Create a scatterplot of columns in the GWA data-set.

Input:

<u>PARAMETE</u>R **DESCRIPTION** --rcdSPlotX R-Code expression to define the x-values. --rcdSPlotY R-Code expression to define the y-values. Colouring parameters: --strDefaultColour Default colour for the SNPs plotted. Any R-Colours are available. Also the hexadecimal nomenclature can be used: (e.g. #FF0000 for red). Optional. Default: black --arcdColourCrit Array of logical R-code criterions (separated by ;), used to distinguish colouring of the SNPs drawn. This overwrites the default colour for the SNPs that match the criterion. Optional. Array of colours (separated by ;) to be used for arcdSPlotColourCrit respectively. Optional. --astrColour Symbol parameters: --numDefaultSymbol Default R-Symbol for the SNPs plotted. Any R-Symbol integers are available (refers to the R plot parameter pch). Optional. Default: 20 --arcdSymbolCrit Array of logical R-code criterions (separated by ;), used to distinguish symbols of the SNPs drawn. This overwrites the default symbol for the SNPs that match the criterion. Optional. --anumSymbol Array of symbols (separated by ;) to be used for arcdSPlotSymbolCrit respectively. Optional. Symbolsize parameters: --numDefaultCex Default Symbol size for the SNPs plotted. Any R Symbol size is available (refers to the R plot parameter cex). Optional. Default: 1 --arcdCexCrit Array of logical R-code criterions (separated by ;), used to distinguish symbol sizes of the SNPs drawn. This overwrites the default symbol size for the SNPs that match the criterion. Optional. --anumCex Array of symbol sizes (separated by ;) to be used for arcdSPlotCexCrit respectively.Optional. Confidence intervals: --blnPlotCI Boolean value to define whether confidence bounds should be drawn to the points depicted. Default: 0 --rcdCllengthX R-Code expression to define the length of confidence interval (to either side) into x-direction. For example this could be set to 1.96*SE with SE being the standard error of a plotted BETA value on the x-axis. --rcdCllengthY R-Code expression to define the length of confidence interval (to either side) into y-direction. For example this could be set to 1.96*SE with SE being the standard error of a plotted BETA value on the y-axis. --strCIColour Sting to indicate colour of the drawn confidence arrows. Default: 'grey' General plotting parameters: X-/Y-axes alignment. Define plotting thresholds for x-axis [x0,x1] and y-axis [y0,y1]. --strAxes Optional. Default: lim(NULL,NULL,NULL,NULL) Please use: [equal|4quad|4quadequal|zeroequal|lim(x0,x1,y0,y1)] (i) equal: Same x- and y-axis limits: x0=y0 and x1=y1 (ii) 4quad: All 4 quadrants will be drawn: x0=-x1 and y0=-y1 4quadequal: All 4 quadrants will be drawn with the same x- and y-axis limits: x-axes limits == y-(iii) axes limits with lim=max(abs(x),abs(y)) (iv) zeroequal: x0=y0=0 and x1=y1=max(x,y)lim(x0,x1,y0,y1): Define x- and y-axes limits (use NULL for default value) (v) --strXlab X-axis label. Optional. Default: <rcdSPlotX> --strYlab Y-axis label. Optional. Default: <rcdSPlotY> --strTitle Plot title. Optional. Default: " --arcdAdd2Plot Array (separated by ';') of R - plotting functions that will be evaluated after the plot command. This can be used to add user-defined lines, points or text to the figure. --blnGrid Boolean value to define whether grid lines should be drawn on the plot. Optional. Default: 1 --strMode Set the plotting mode. A singleplot means that one image file will be created for each input. A subplot means that all graphs will be combined to a single png file (arranging the single graphs in rows/columns). Optional. Default: singleplot. Please use: [singleplot|subplot] --strPlotName String to define a name for the plot. This will be added to the output file name thus can be used to distinguish images in the output folder. Optional. Default: sp --strFormat Set the image file format, pdf or png. Optional. Default: png; Please use: [png|pdf] Size of the axis, refers to R plot parameter cex.axis. Optional. Default: 1 --numCexAxis --numCexLab Size of the axis labels, refers to R plot parameter cex.lab. Optional. Default: 1 --numWidth Width of the plot in pixel. Optional. Default: 640 (6 for pdf) --numHeight Height of the plot in pixel. Optional. Default: 640 (6 for pdf) --anumParMar Numerical vector of the form 'c(bottom, left, top, right)' which gives the number of lines of margin to be specified on the four sides of the plot. This refers to the R plot parameter 'mar'. Optional. Default: 'c(5, 4, 4, 2) +0.1' The margin line (in 'mex' units) for the axis title, axis labels and axis line. Note that 'mgp[1]' affects 'title' --anumParMgp whereas 'mgp[2:3]' affect 'axis'. This refers to the R plot parameter 'mgp'.

Optional. Default: 'c(3, 1, 0) '

strParBty	A character string which determined the type of 'box' which is drawn about plots. If 'bty' is one of '"o"' (the
	default), "" "', ""7"', "'c"', "'u"', or ""]"' the resulting box resembles the corresponding upper case letter. A
	value of ""n"' suppresses the box. This refers to the R plot parameter 'bty'.
	Optional. Default: 'o'
numParLas	Numerical value indicating the alignment of axis labels. This refers to the R plot parameter 'las'.
	Optional. Default: 0 (always parallel to the axis)

Example:

```
SPLOT --rcdSPlotX Freq
--rcdSPlotY -log10(Pvalue)
--strDefaultColour black
--numDefaultSymbol 20
--arcdColourCrit N<110000;N<80000
--astrColour purple;red
--arcdSymbolCrit (Freq<=0.05|Freq>=0.95);(Freq<=0.01|Freq>=0.99)
--anumSymbol 0;1
--strAxes lim(0,NULL,0,NULL)
--strTitle PoverFreq
--arcdAdd2Plot abline(v=0.05);abline(v=0.95);abline(h=-log10(5e-8))
```

Output:

FILE OUTPUTS	DESCRIPTION
*.sp.[png pdf]	Report plot.

4. MULTIPLE TESTING

FDR

Calculates the Benjamini-Hochberg or the Benjamin-Yekutieli false discovery rate.

Input:

PARAMETER	DESCRIPTION
colPval	P-Value column of the input data set that will be used for the correction.
	Required
strFdrMethod	This defines the method that is used to control the False-Discovery-Rate and can either be set to 'BH' (Benjamini-Hochberg) or 'BY' (Benjamin-Yekutieli). This refers to the 'method' parameter of the R-function p.adjust().
	Optional. Default: BH
colOut	Name of the added column that contains the respective FDR values. Optional. Default: <colpval>.< strFdrMethod></colpval>

Example:

FDR --colPval P
--strFdrMethod BH

Output:

Column called <colPval>.<strFdrMethod>, e.g. 'P.BH', will be added to the data-set. This column contains the FDR corrected P-Values.

BONFERRONI

Calculates the Bonferroni-corrected P-Values (Johnson, et al., 2010).

Input:

PARAMETER	DESCRIPTION
colPval	P-Value column of the input data set that will be used for the correction.
	Required
numIndepTest	Number of independent test that will be used for the correction. Optional.
	Default: 1000000 (commonly-used genome-wide significance level).
blnUseLengthPval	Boolean value to define whether the number of SNPs in the input should be
	used for the correction instead ofnumnIndepTest. Optional. Default: 0.
colOut	Name of the added column that contains the respective FDR values.
	Optional. Default: <colpval>.bonf</colpval>

Example:

BONFERRONI --colPval P

--numIndepTest 5000 --blnUseLengthPval 0

Output:

Column called <colPval>.bonf, e.g. 'P.bonf', will be added to the data-set. This column contains the Bonferroni-corrected P-Values.

5. INDEPENDENTIZATION

CLUMP

Extracts clumped (independentized) list of SNPs according to a criterion on physical distance, LD or a combination of both. The EasyStrata CLUMP function is a wrapper for PLINK's clumping functionality (Purcell, et al., 2007).

Input:

•	
PARAMETER	DESCRIPTION
rcdCriterion	Criterion that pre-defines SNPs to be passed to PLINK for clumping.
	Optional. Default: All SNPs will be used. Please note that numPvalLim also
	defines a P-Value threshold for the clumping. UsingrcdCriterion P<5e-8
	withnumPvalLim 5e-8 is obsolete.
collnMarker	SNP column name of the input. Will be used for merging. Required.
colClump	Column that will be used for clumping. This will be used for the PLINK
	parameter 'clump-field'. Required.
numPvalLim	P-Value threshold for the clumping. This will be used for both PLINK
	parameters 'clump-p1' and 'clump-p2'. Optional. Default: 5e-8
numPosLim	Physical position threshold for the clumping in bp. This will be converted to
	kb (numPosLim/1000) and used for the PLINK parameter 'clump-kb'.
	Optional. Default: 500000
numR2Lim	LD threshold for the clumping. This will be used for the PLINK parameter '
	clump-r2'. Optional. Default: 0.2
filePLINK	Path to the PLINK software executable. Required
fileBfile	Path to the reference file that defines physical positions and is used for the
	calculation of r2. This will be used for the PLINK parameter 'bfile'.
	Required.
blnAddClumpInfo	Boolean value. If set to 1 (TRUE), compiled columns 'aLociTag' and 'aTopHit'
	will be added to the larger input data set. All SNPs outlying the clumped
	regions will carry NAs. Optional. Default: 0; Please use: [0 1]
strTag	Optional. Tag for the function step that will be added to related variables in
	the REPORT and to names of related files in the output.

Example:

```
CLUMP --rcdCriterion Pval<5e-8
--colInMarker SNP
--colClump Pval
--numPvalLim 5e-8
--numPosLim 500000
--numR2Lim 0.2
--filePLINK /path2plink/plink
--fileBfile /path2bfile/1000G_hg18_2009
--strTag d500kb_r202
```

Output:

If --blnAddClumpInfo 1, the output data set will carry additional columns *aLociTag* and *aTopHit* that carry information about the independentized loci. All SNPs that neither meet the clumping criterion nor belong to any defined independent clumped locus, carry NA.

REPORT VARIABLES	DESCRIPTIPON
numClumpCrit	Number of SNPs that meet the criterion rcdCriterion, i.e. are used for the
	clumping.
numClumpNA	Number of SNPs that have missing colClump.
numClumpLoci	Number of independent 'clumped' loci.
FILE OUTPUTS	DESCRIPTION
*.clump.txt	This file is a subset of the gwadata and contains all SNPs that passed the clumping criterion. Additionally it contains column 'aLociTag' that can be used to distinguish between independent clumped loci (each number represents an independent locus); and column 'aTopHit' that can be used to identify the top hit (most significant SNP) of the respective locus (all other SNPs are set to NA).
*.clumpX.txt	This file is a subset of *.clump.txt and only contains the independent top hits (most significant SNPs per locus).
*.clump_nomatch.txt	This file contains SNPs from the input that cannot be matched tofileBfile, i.e. are not present infileBfile and this are not used for the clumping. The file is only written if mismatches exist.

If --strTag is defined, the strTag string value will be pasted to the report variable names and to the output filenames.

INDEP

Extracts independentized SNPs according to a physical distance criterion.

Inputs:

PARAMETER	DESCRIPTION
rcdCriterion	Criterion that defines SNPs to be used for independentisation. Required
colindep	Column that will be used for independentisation. Required
blnIndepMin	Direction for independentisation. If TRUE, minimum of collndep per locus will
	become the Top SNP. Optional. Default: 1. Use: [0 1]
collnChr	Chromosome column. Required
colinPos	Position column. Required
numPosLim	Position limit to define locus. Locus = +/- numPosLim. Optional. Default: 500000
blnAddIndepInfo	Boolean value. If set to 1 (TRUE), compiled columns 'aLociTag' and 'aTopHit' will be added to the larger input data set. All SNPs outlying the clumped regions will carry NAs. Optional. Default: 0; Please use: [0 1]
blnStepDown	Boolean value. If set to 1 (TRUE), a step-down procedure will be used to define loci. In this case, overlapping loci are combined into a single 'wider' (> 2*numPosLim bp) locus that uses (i) as Top SNP the SNP with the lowest P across the overlapping loci; and (ii) as Locus Number the number of the new Top SNP. If set to 0 (FALSE), all defined loci will at maximum be 2* numPosLim bp wide (TopSNP +/- numPosLim). Optional. Default: 0; Please use: [0 1]
strTag	Optional. Tag for the function step that will be added to related variables in the REPORT and to names of related files in the output.

Example:

```
INDEP --rcdCriterion P<1e-5
--colIndep P
--blnIndepMin 1
--colInChr Chromosome
--colInPos Position
--numPosLim 500000
--blnAddIndepInfo 0
--blnStepDown 0
```

Output:

If --blnAddIndepInfo 1, the output data set will carry additional columns *aLociTag* and *aTopHit* that carry information about the independentized loci. All SNPs that neither meet the independentization criterion nor belong to any defined independent locus, carry NA.

REPORT VARIABLES	DESCRIPTIPON
numIndepCrit	Number of SNPs that meet the criterion rcdCriterion, i.e. are used for the
	independentization.
numIndepNA	Number of SNPs that have missing collndep.
numIndepLoci	Number of independent loci.
FILE OUTPUTS	DESCRIPTION
*.indep.txt	This file is a subset of the gwadata and contains all SNPs that passed the

	independentization criterion.
	The INDEP output contains column
	 'aLociTag' that can be used to distinguish between independent loci
	(each number represents an independent locus);
	- 'aTopHit' that can be used to identify the top hit (most significant SNP)
	of the respective locus (all other SNPs are set to NA)
	 'aNumLocusSNPs' that contains the number of SNPs (meeting
	rcdCriterion) pertaining to the respective locus
*.indepX.txt	This file is a subset of *.indep.txt and only contains the independent top
	hits (most significant SNPs per locus).

If --strTag is defined, the strTag string value will be pasted to the report variable names and to the output filenames.

6. GENOMIC CONTROL

GC

Genomic control correction. The GC Lambda can be calculated from all SNPs or from a subset of SNPs (see –fileGcSnps); will be written to the report; and can optionally be applied to the data set (see --blnSuppressCorrection).

Input:

PARAMETER	DESCRIPTION
colPval	Define P-Value column that will be used for calculating the GC lambda and for the correction.
colSE	If defined, this Standard error column will be corrected as well.
numLambda	If defined, this lambda will be used for performing the correction. Optional. Default: NA (causes EasyStrata to calculate the lambda from the specified colPval)
fileGcSnps	If defined, only SNPs from this file will be used for calculating the lambda. Optional. Default: NA (causes EasyStrata to calculate the lambda from the full list of input SNPs)
colGcSnpsMarker	If fileGcSnps is defined, please define here the Marker column name of the file. Optional. Default: NA (only required if fileGcSnps is specified)
blnSuppressCorrection	Boolean value. If set to 1 (TRUE), the GC lambda will be calculated, but the actual correction will not be performed.
	If set to 0 (FALSE), the GC lambda will be calculated and the colPval and colSE (if specified) will be corrected. New columns with the suffix ".GC" will be added to the GWA data set. Optional. Default: 0; Please use: [0 1]
collnMarker	If fileGcSnps is defined, please define here the Marker column name of the input. Required (if fileGcSnps is set).
strTag	Optional. Tag for the function step that will be added to related variables in the REPORT.

Example:

```
GC --colPval P
--colSE SE
--fileGcSnps /home/gcfile.txt
--colGcSnpsMarker MarkerNameOfFileGcSnps
--blnSuppressCorrection 0
--colInMarker MarkerName
--strTag preQC
```

In this example the lambda will be calculated on column P for all SNPs specified in fileGcSnps. Afterwards column P and SE will be GC-corrected using the estimated lambda and 2 new columns P.GC and SE.GC will be added to the input data set.

Output:

If --blnSuppressCorrection 0, the output data set will carry additional columns <colPval>.GC and (if --colSE defined) <colSE>.GC.

REPORT VARIABLES	DESCRIPTIPON
Lambda. <colpval>.GC</colpval>	GC lambda.

7. DATA EXTRACTION

CALCULATE

Calculate values from input. Result will be written to the REPORT variable defined in --strCalcName and can be used by RPLOT subsequently.

Input:

PARAMETER	DESCRIPTION
rcdCalc	R-Code expression to calculate the value.
	Needs to return a single value.
strCalcName	Name of the REPORT variable to save the calculated value.

Example:

CALCULATE --rcdCalc 2/median(SE,na.rm=T)
--strCalcName num2overMedianSE

Output:

REPORT VARIABLES	DESCRIPTIPON
<strcalcname></strcalcname>	The calculated value.

CRITERION

Apply criterion to gwadata. SNPs that match the criterion will be written in a unique file in the output folder. The GWA data set remains unchanged. This is only to extract SNPs that match a specific criterion.

In addition the number of matches will be written into the report.

Input:

PARAMETER	DESCRIPTION
rcdCrit	R-Code expression to define the criterion SNPs.
	Needs to return an array of Boolean values. TRUE value rows will be written to
	separate file in pathOut and number of matches will be written to the report.
strCritName	Name of the REPORT variable to save the number of SNPs that fulfill the criterion.

Example:

CRITERION --rcdCrit P<=5e-8
--strCritName numSNP_gws

Output:

REPORT VARIABLES	DESCRIPTIPON
<strcritname></strcritname>	Number of SNPs that match the criterion.
FILE OUTPUTS	DESCRIPTION
*. <strcritname>.txt</strcritname>	This file is a subset of the gwadata and contains all SNPs that match the defined
	criterion.

EVALSTAT

Calculate descriptive statistics. Number of values, number of missing values, minimum, maximum, median, 25th percentile, 75 percentile, mean and standard deviation will be written to the REPORT.

Input:

PARAMETER	DESCRIPTION
colStat	Evaluated column. Requested.
strTag	Optional. Tag for the function step that will be added to related variables in the REPORT. Default: "

Example:

EVALSTAT --colStat P
--strTag preQC

Output:

REPORT VARIABLES	DESCRIPTIPON
<strtag>.<colstat>_num</colstat></strtag>	Number of SNPs tested.
<strtag>.<colstat>_NA</colstat></strtag>	Number of SNPs with missing values.
<strtag>.<colstat>_min</colstat></strtag>	Minimum value.
<strtag>.<colstat>_max</colstat></strtag>	Maximum value.
<strtag>.<colstat>_median</colstat></strtag>	Median.
<strtag>.<colstat>_p25</colstat></strtag>	25 th percentile.
<strtag>.<colstat>_p75</colstat></strtag>	75 th percntile.
<strtag>.<colstat>_mean</colstat></strtag>	Mean value.
<strtag>.<colstat>_sd</colstat></strtag>	Standard devialtion.

EXTRACTSNPS

Extract set of SNPs from the input data-set.

Input:

PARAMETER	DESCRIPTION
collnMarker	SNP column name of the input. Will be used for extraction.
fileRef	Path to the reference data including SNPs that will be extracted.
colRefMarker	SNP column name of the reference. Will be used for extaction.
strTag	Tag for the function step that will be added to related variables in the REPORT (e.g.
	number of SNPs Not in Ref) and to related output (e.g. files written by
	blnWriteNotInRef 1) to ensure unique and easily recognizable file names and REPORT
	variable names.

Example:

EXTRACTSNPS --colInMarker MarkerName --fileRef /test/snps2extract.txt

--colRefMarker rsID --strTag KnownSnps

Output:

REPORT VARIABLES	DESCRIPTIPON
<strtag>.numExtractMissi</strtag>	ng Number SNP from the reference that are not present in the input.
FILE OUTPUTS	DESCRIPTION
*. <strtag>.extracted.txt</strtag>	File containing the cut-out SNPs.

GETNUM

Get number of SNPs that match a certain criterion. Number of matches will be written to the REPORT variable defined in --strGetNumName.

Please note that the data set itself remains unchanged. This is only to get the number of matches and to write them into the report.

Inputs:

PARAMETER	DESCRIPTION
rcdGetNum	R-Code expression to derive the number of SNPs.
	Needs to return an array of Boolean values. All TRUE values will be counted.
strGetNumName	Name of the REPORT variable to save the number of matches.

Example:

```
GETNUM --rcdGetNum abs(BETA)>5
--strGetNumName numSNP_BETAgt5
```

Output:

REPORT VARIABLES	DESCRIPTIPON
<strgetnumname></strgetnumname>	The number of SNPs that meet the defined criterion rcdGetNum.

8. DATA-HANDLING

ADDCOL

Add columns to input.

Input:

PARAMETER	DESCRIPTION
rcdAddCol	R-Code expression to calculate the added column. Result will be added by cbind() to the
	input.
colOut	Name of the added column.
blnOverwrite	Boolean value to specify whether existing column should be overwritten.
	Optional. Default: 1 (Existing column will be overwritten)
	Please use: [0 1].

Example:

ADDCOL --rcdAddCol pmin(EAF*N,(1-EAF)*N,na.rm=TRUE) --colOut MAC

Output:

Column <colOut>, (e.g. 'MAC' in the example) will be added to the data-set.

ADJUSTALLELES

Adjust allele directions according to reference allele directions.

Input:

input:	
PARAMETER	DESCRIPTION
colRefStrand	Column name of the reference strand.
	Optional. If this is not defined, all reference strand will be set to "+".
colRefA1	Column name of the reference Allele1.
colRefA2	Column name of the reference Allele2.
colinStrand	Column name of the input strand. Optional. If this is not defined, all input strand will
	be set to "+".
collnA1	Column name of the input Allele1.
colInA2	Column name of the input Allele2.
collnFreq	Column name of the input allele-frequency. In case the allele direction will be switched in order to match the reference alleles, this column will be adjusted for the respective SNPs: FreqAdjusted=1-Freq.
collnBeta	Column name of the input effect estimate. In case the allele direction will be switched in order to match the reference alleles, this column will be adjusted for the respective
	SNPs by changing the effect direction: BetaAdjusted= - collnBeta.
blnMetalUseStrand	Boolean value. If set to 1 (TRUE), the alleles will be switched according to metal's option "USESTRAND ON" (Willer, et al., 2010). Optional. Default: 0. Please use: [0 1] Please note that blnMetalUseStrand=0 is not fully identical with the metal option USESTRAND OFF. Please see below a detailed description / comparison of metal's USESTRAND and EasyStrata's blnMetalUseStrand option.
blnWriteMismatch	Boolean value to define whether allele mismatches between the input and reference will be written to a separate file in the output path. Mis-match definition: SNPs that carry valid alleles (defined as 'A','C,'G','T','I','D') but cannot be matched between input and reference: For example if a SNP is coded A/T in the input, and A/G in the reference file. Optional. Default: 1 Please use: [0 1].
blnRemoveMismatch	Boolean value to define whether allele mismatches between the input and reference will be removed from the input. Optional. Default: 0. Please use: $[0 1]$.
blnWriteInvalid	Boolean value to define whether SNPs with invalid input allele codes (other 'A','C,'G','T','I','D') should be written to a separate file in the output path. Optional. Default: 1. Please use: $[0 1]$.
blnRemoveInvalid	Boolean value to define whether SNPs with invalid input allele codes will be removed from the input. Optional. Default: 0. Please use: [0 1].
blnWriteRefInvalid	Boolean value to define whether SNPs with invalid reference allele codes (other 'A','C,'G','T','I','D') should be written to a separate file in the output path. Optional. Default: 0. Please use: [0 1].
blnRemoveRefInvalid	Boolean value to define whether SNPs with invalid reference allele codes will be removed from the input. Optional. Default: 0. Please use: [0 1].
strTag	Tag for the function step that will be added to related variables in the REPORT (e.g. number of mismatching SNPs) and to related output (e.g. files written by blnWriteInvalid 1) to ensure unique and easily recognizable file names and REPORT variable names. Requested.
fileRef, strRefSuffix .ref,strInSuffix, colInMarker,colRefMarker, bInInAll,bInRefAll, bInWriteNotInRef, bInWriteNotInIn	Inherited MERGE parameters. See MERGE for a more detailed description. Parameter values are given if they differ from the default MERGE values.
strMissing ,strSeparator, acolln,acollnClasses, acolNewName	Inherited DEFINE parameters. Can be used forfileRef. See DEFINE for a more detailed description.

Inherited parameters can be used with ADJUSTALLELES directly.

In particular, setting --fileRef at ADJUSTALLELES can be helpful if the input does not (yet) contain reference alleles and if reference data needs to be merged from external data (this may replace an extra MERGE step in the ecf-file).

If the input already contains reference alleles, there is no need to use --fileRef or any other inherited parameters.

Example:

```
ADJUSTALLELES --colRefStrand Strand.ref
              --colRefAl Al.ref
              --colRefA2 A2.ref
              --colInStrand Strand
              --colInA1 EffectAllele
              --colInA2 OtherAllele
              --colInFreq EAF.in
              --colInBeta BETA.in
              --blnMetalUseStrand 0
              --blnWriteMismatch 0
              --blnRemoveMismatch 0
              --blnWriteInvalid 0
              --blnRemoveInvalid 0
              --fileRef /path2ref/allelefreqreference.txt
                 --acolin SNP;Strand;A1;A2;Freq1
                 --acolInClasses character; character; character; character; numeric
              --colRefMarker SNP
              --colInMarker MarkerName
```

Output:

The defined input alleles, frequency and betas will be aligned to the defined reference alleles.

DEDORT MARIARIES	DECCRIPTION
REPORT VARIABLES	DESCRIPTIPON
Checked	Number of SNPs that carry valid and non-missing input and reference allele or
	strand information and thus are being considered for adjustment.
StrandChange	Number of SNPs with opposite strand (e.g. + in input and - in reference).
AlleleMatch	Number of SNPs with matching alleles, same direction and same strand (e.g. +AC in input and +AC in reference).
AlleleChange	Number of SNPs with matching alleles, switched direction and same strand (e.g. +AC in input and +CA in reference).
n4AlleleMatch	Number of non-palindromic SNPs with matching alleles, same direction and
	switched strand (e.g. +AC in input and +TG in reference).
n4AlleleChange	Number of non-palindromic SNPs with matching alleles, switched direction and
	switched strand (e.g. +AC in input and +GT in reference).
AlleleMismatch	Number of SNPs with allele missmatch (e.g. +AG in input and +AC in reference).
AlleleInMissing	Number of SNPs with missing input allele.
AlleleInInvalid	Number of SNPs with invalid input allele (other than A,C,G,T,I,D).
StrandInInvalid	Number of SNPs with invalid input strand (other than +,-).
AlleleRefMissing	Number of SNPs with missing reference allele.
AlleleRefInvalid	Number of SNPs with invalid reference allele (other than A,C,G,T,I,D).
StrandRefInvalid	Number of SNPs with invalid reference strand (other than +,-).
NotinRef, Notinin	Inherited MERGE variables. Only present iffileRef is used. Please see MERGE for a more detailed description.

FILE OUTPUTS	DESCRIPTION
*.mismatch.txt	IfblnWriteMisMatch 1, a separate file will be written to pathOut that contains all
	mismatching SNPs.

*. invalid.txt	IfblnWriteInvalid 1, a separate file will be written to pathOut that contains all SNPs with invalid input or reference alleles or strand.
*.notinref.txt, *.notinin.txt	Inherited MERGE output. Only present iffileRef is used. Please see MERGE for a more detailed description.

If --strTag is defined, the <strTag> string value will be pasted to the report variable names and to the output filenames.

Details of allele adjustment – Metal vs EasyStrata:

Meta-analysis software metal, option USESTRAND (Willer, et al., 2010):

USESTRAND OFF Disregards strand column.

Study1=AC, Study2=TG: maps A-T

Study1=AT, Study2=AT: maps A, disregards strand (if given)

USESTRAND ON Uses strand column for palindromic SNPs.

Study1=AC, Study2=TG: maps A-T (same as before)

Study1=+AT, Study2=-AT: changes strand of Study2 to +TA -> maps A-A

EasyStrata option blnMetalUseStrand:

For both options (0/1), the EasyStrata algorithm first sets missing or non-defined Strand to + and changes all '-' strand to '+' by switching alleles accordingly (A->T; T->A; C->G; G->C).

--bInMetalUseStrand 0 Does NOT match non-palindromic SNPs on wrong strand (+AC vs +TG will

become mismatch)

Study1=+AC, Study2=+TG: mis-match Study1=+AT, Study2=+TA: maps A

Study1=+AT, Study2=-TA: Changes strand of Study2 to +AT-> maps

A-A

--bInMetalUseStrand 1 Matches non-palindromic SNPs on wrong strand (+AC and +TG; maps A-T)

Study1=+AC, Study2=+TG: maps A-T

Study1=+AT, Study2=-AT: Changes strand of study 2 to +TA -> maps

A-A

Summary:

EasyStrata's '--blnMetalUseStrand 1' and metal's 'USESTRAND ON' will produce identical results. EasyStrata's '--blnMetalUseStrand 0' and metal's 'USESTRAND OFF' differ

- for non-palindromic SNPs with non-matching Strand: Study1=+AC, Study2=+TG:
 EasyStrata: labels SNP as mismatch (if blnMetalUseStrand 0; matched otherwise)
 metal: matches A-T
- for palindromic SNPs with non-matching Strand: Study1=+AT, Study2=-TA:
 EasyStrata: Recodes strand of Study2 to +AT and matches A-A
 metal: matches A-A while disregarding Strand (which would be wrong if the strand coding is valid)

CLEAN

Exclude SNPs from input. Number of exclusion will be written to the REPORT variable defined in -- strCleanName.

Input:

PARAMETER	DESCRIPTION
rcdClean	R-Code expression to exclude SNPs.
	Needs to return a Boolean array. TRUE values will be removed from the input.
strCleanName	Name of the REPORT variable to save the number of exclusions.
blnWriteCleaned	Boolean value to define whether SNPs that are removed from the input should be
	written to a separate file in the output folder.
	Optional. Default: 0
	Please use: [0 1].

Example:

```
CLEAN --rcdClean (P<0 | P>1)
--strCleanName numDropSNP_invalid_P
--blnWriteCleaned 0
```

Output:

All SNPs that meet the defined cleaning criterion will be removed from the input and no more be present in the output data set.

REPORT VARIABLES	DESCRIPTIPON
<strcleanname></strcleanname>	Number of removed SNPs.
FILE OUTPUTS	DESCRIPTION
*. <strcleanname>.txt</strcleanname>	IfblnWriteCleaned 1, a separate file that contains all removed SNPs.

EDITCOL

Edit columns of the input.

Input:

PARAMETER	DESCRIPTION
rcdEditCol	R-Code expression to calculate the new values. Result will be written to column
	colEdit. It might be useful to use the ifelse statement.
colEdit	Name of the edited column.

Example:

EDITCOL --rcdEditCol ifelse(BETA==-9,NA,BETA)
--colEdit BETA

In the example, all -9 values in column BETA will be replaced with NA.

Output:

Column <colEdit> will be updated with edited values.

FILTER

Filter SNPs from input. Number of inclusion will be written to the REPORT variable defined in -- strFilterName.

Input:

PARAMETER	DESCRIPTION
rcdFilter	R-Code expression to include SNPs.
	Needs to return an array of Boolean values. TRUE value rows will be included (pass
	the filter).
strFilterName	Name of the REPORT variable to save the number of inclusions.

Example:

Output:

The output data set will only contain SNPs that pass the defined filter criterion.

REPORT VARIABLES	DESCRIPTIPON
<strfiltername></strfiltername>	Number of SNPs that pass the filter.

GETCOLS

Extract columns. This removes all columns from the input that are not stated at --acolOut.

Input:

PARAMETER	DESCRIPTION
acolOut	Array of extracted columns. The data set will be reduced to the here stated columns.
	Please use: Column names separated by ';'.

Example:

GETCOLS --acolOut MarkerName;P

Output:

The output data set will only contain columns defined at <acolOut>. All other columns will be removed.

MERGE

Merge reference data (e.g. annotation data like chromosome and position) to each of the input data-sets.

Input:

	DECEMBRION
PARAMETER	DESCRIPTION
collnMarker	SNP column name of the input. Will be used for merging.
fileRef	Path to the reference data set that will be added.
colRefMarker	SNP column name of the reference. Will be used for merging.
strInSuffix	Suffix that will be added to all input columns except to collnMarker.
	Optional. By default '.x' will be used for overlapping columns.
strRefSuffix	Suffix that will be added to all reference columns except to
	colRefMarker.
	Optional. By default '.y' will be used for overlapping columns.
blnInAll	Boolean value to define left inner/outer join. If set to 1 (TRUE), all SNPs
	from the input will be present in the merged data-set. If set to 0 (FALSE),
	only SNPs from the input will be present in the merged data-set that are
	also present in the reference. Optional. Default: 1. Please use: $[0 1]$.
blnRefAll	Boolean value to define right inner/outer join. If set to 1 (TRUE), all SNPs
	from the reference will be present in the merged data-set. If set to 0
	(FALSE), only SNPs from the reference will be present in the merged
	data-set that are also present in the input.Optional. Default: 0. Please
	use: [0 1].
strTag	Tag for the function step that will be added to related variables in the
	REPORT (e.g. number of SNPs Not in Ref) and to related output (e.g. files
	written byblnWriteNotInRef 1) to ensure unique and easily
	recognizable file names and REPORT variable names.
blnWriteNotInRef	Boolean value to define whether SNPs from the input that are missed in
	the reference will be written to a separate file in the output path.
	Optional. Default: 0. Please use: [0 1].
blnWriteNotInIn	Boolean value to define whether SNPs from the reference that are
	missed in the input will be written to a separate file in the output path.
	Optional. Default: 0. Please use: [0 1].
strMissing ,strSeparator,	Inherited DEFINE parameters. Can be used forfileRef. See DEFINE for a
acolin,acolinClasses,	more detailed description.
acolNewName	

Example:

```
MERGE --colInMarker MarkerName
--fileRef /test/referencefile.txt
--strMissing NA --strSep SPACE
--colRefMarker rsID
--strInSuffix .in
--strRefSuffix .ref
--blnInAll 1
--blnRefAll 0
--blnWriteNotInRef 0
--blnWriteNotInIn 0
--strTag REF
```

Output:

The merged data set.

REPORT VARIABLES	DESCRIPTIPON	
NotInRef	Number SNP from the input that are not available in fileRef.	
NotInIn	Number SNP from fileRef that are not available in fileIn.	
FILE OUTPUTS	DESCRIPTION	
*.notinref.txt	IfblnWriteNotInRef 1, a separate file with SNPs from the input that are not available in fileRef.	
*.notinin.txt	IfblnWriteNotInIn 1, a separate file with SNPs from fileRef that are not available in input.	

MERGEEASYIN

Merges all defined input files. The defined <fileInTag> (see EASYIN command) will be added to the column names.

Input:

PARAMETER	DESCRIPTION	
collnMarker	SNP column name of the input. Will be used for merging.	
blnMergeAll	Boolean value to define inner/outer join. If set to 1 (TRUE), all SNPs from all input files	
	will be present in the merged data-set. If set to 0 (FALSE), only intersecting SNPs from	
	the input files will be present in the merged data-set.	
	Optional. Default: 1	
	Please use: [0 1].	
Evamenta.		

Example:

MERGEEASYIN --colInMarker MarkerName --blnMergeAll 0

Output:

The merged data set.

REMOVECOL

Remove column.

Input:

PARAMETER	DESCRIPTION
colRemove	Column that is supposed to be removed from the data set.

Example:

REMOVECOL --colRemove P

Output:

The output data set will no more contain <colRemove>.

RENAMECOL

Rename column.

Input:

PARAMETER	DESCRIPTION
collnRename	Old column name. If the specified collnRename is not available in the input, no
	action.
colOutRename	New column name. If the specified colOutRename already exists in the data set, the
	suffix ".old" will be added to the existing column.

Example:

RENAMECOL --colInRename Marker --colOutRename SNP

Output:

Column <collnRename> will be labelled <colOutRename> in the output data set.

STRSPLITCOL

Splits each column entry according to a defined character string and creates a new column containing only the i th result of the string spit.

Input:

PARAMETER	DESCRIPTION	
colSplit	Column for which the string splitting will be performed.	
strSplit	Character string according to which, each entry of colSplit will be splited (compare R-	
	function strsplit).	
numSplitIdx	Integer value to specify which part of each output should be taken forward to the new	
	array.	
colOut	Name of the new output column.	

Say column colSplit equals array c("chr1_111", "chr2_222"):

- With "--strSplit _" and "--numSplitIdx 1", the new column c("chr1","chr2") will be created
- With "--strSplit _" and "--numSplitIdx 2", the new column c("111","222") will be created

Example:

```
STRSPLITCOL --colSplit ChrPosId
--strSplit _
--numSplitIdx 1
--colOut Chromosome
```

Output:

The output data set will contain a new column <colOut> that carries the extracted information.

WRITE

Write data set. Output will be named /pathOut/[strWritePrefix]fileInShortName[strWriteSuffix].[txt|gz]

Input:

PARAMETER	DESCRIPTION	
strMode	Mode to write the current data set. Either as plain text- or as compressed gzipped-file.	
	Optional. Default: txt	
	Please use: [txt gz]	
strPrefix	Set file prefix.	
	Optional. Default: "	
strSuffix	Set file suffix.	
	Optional. Default: "	
strSep	Set file separator.	
	Optional. Default: TAB	
	Please use: [TAB,SPACE,COMMA]	
strMissing	Set missing character. Default: NA.	
	Optional. Default: NA	

Example:

```
WRITE --strMode txt
--strPrefix CLEANED.
--strSuffix .TW
--strSep TAB
--strMissing .
```

Output:

REPORT VARIABLES	DESCRIPTIPON
numSNPsOut	Number of SNPs in the last written file.
FILE OUTPUTS	DESCRIPTION
strPrefix.* <filein>*.strSuffix.[gz txt]</filein>	Output file.

REFERENCES

Aschard, H., et al. (2010) Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects, Human heredity, 70, 292-300.

Cochran, W.G. (1954) The Combination of Estimates from Different Experiments, Biometrics, ${\bf 10}$, 101-129.

 ${\tt Cox,\ D.R.}$ and ${\tt Hinkley,\ D.V.}$ (1979) Theoretical statistics. Chapman and ${\tt Hall}$;

distributed in U.S. by Halsted Press, London New York.

Johnson, R.C., et al. (2010) Accounting for multiple comparisons in a genome-wide association study (GWAS), BMC genomics, 11, 724.

Purcell, S., et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses, American journal of human genetics, 81, 559-575.

Randall, J.C., et al. (2013) Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits, $PLoS\ genetics$, **9**, e1003500.

Willer, C.J., Li, Y. and Abecasis, G.R. (2010) METAL: fast and efficient meta-analysis of genomewide association scans, *Bioinformatics*, **26**, 2190-2191.