

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/42
Paper 4 Mechanics	1 (M1)		February/March 2018
			1 hour 15 minutes
Candidates answer of	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value for the acceleration due to gravity is needed, use 10 m s⁻².

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

from rest	at passes ove t. Show that	er a fixed si the accelera	nooth pull ation of A	ey. The p has magni	articles ha tude 6 m s ⁻	ng vertical -2 and find	ly. The sy the tension	stem is rele in the strin
			•••••		•••••		•••••	
					•••••			
					•••••			
					••••			

The three coplanar forces shown in the diagram are in equilibrium.	Find the values of θ and P . [4]

A girl, of mass $40 \,\mathrm{kg}$, slides down a slide in a water park. The girl starts at the point A and slides to the point B which is 7.2 metres vertically below the level of A, as shown in the diagram.

(i)	Given that the slide is smooth and that the girl starts from rest at A , find the speed of the girl at B . [2]
(ii)	It is given instead that the slide is rough. On one occasion the girl starts from rest at A and reaches B with a speed of $10 \mathrm{ms^{-1}}$. On another occasion the girl is pushed from A with an initial speed $V \mathrm{ms^{-1}}$ and reaches B with speed $11 \mathrm{ms^{-1}}$. Given that the work done against friction is the same on both occasions, find V .

	greatest slope the value of <i>P</i>		. The coe	fficient of	friction be	tween the	particle an	d the plan
•••••				•••••	•••••	•••••	•••••	•••••
						•••••		
						•••••		
•••••				•••••	•••••	•••••	•••••	•••••
•••••						•		
	••••••							
•••••	••••••	••••••	•••••	••••••	•••••	••••••	••••••	•••••
	••••••	••••••	•••••				••••••	•••••
		••••••	••••••	••••••		••••••	••••••	••••••
		•••••					••••••	
•••••		••••••		••••••		••••••	••••••	•••••

	mall rocket is fired vertically upwards, starting from rest at ground level, and moves with constant eleration. The rocket reaches a height of $200\mathrm{m}$ after $10\mathrm{s}$.
(i)	Show that the speed of the rocket after $10 \mathrm{s}$ is $40 \mathrm{m}\mathrm{s}^{-1}$ and find the acceleration of the rocket during the first $10 \mathrm{s}$.
(ii)	After 10 s, the rocket's fuel stops burning and there is no upward force acting on the rocket. Find the maximum height above ground level reached by the rocket. [2]

•••	•••••
•••	•••••
•••	•••••
• • •	•••••
•••	•••••
	 •••••
•••	•••••
	 •••••
•••	•••••
•••	 •••••
•••	•••••
•••	 •••••
•••	•••••
• • •	•••••
•••	•••••
•••	•••••
•••	•••••
. • •	
•••	•••••

Vhe	ar of mass $1200 \mathrm{kg}$ has a greatest possible constant speed of $60 \mathrm{ms^{-1}}$ along a straight level roam the car is travelling at a speed of $v \mathrm{ms^{-1}}$ there is a resistive force of magnitude $35v \mathrm{N}$.
(i)	Find the greatest possible power of the car.
(ii)	The car travels along a straight level road. Show that, at an instant when its speed is $30 \mathrm{ms}^{-1}$ the greatest possible acceleration of the car is $2.625 \mathrm{ms}^{-2}$.

	Find the greatest possible speed of the car.	
•		•
•		•
•		•
•		•
•		•
•		•
•		•
		•
		•
•		•
•		• •
•		•
•		

7	A particle	P moves	in a straight line	. The velocity v	$y \mathrm{m}\mathrm{s}^{-1}$ at time	ts is given by
----------	------------	---------	--------------------	------------------	---------------------------------------	----------------

$$v = 4 + 0.2t$$
 for $0 \le t \le 10$,
 $v = -2 + \frac{800}{t^2}$ for $10 \le t \le 20$.

(i)	Find the acceleration of P during the first $10 \mathrm{s}$.	[1]
		•••••
		•••••
(ii)	Find the acceleration of P when $t = 20$.	[2]

(iii) Sketch the velocity-time graph for $0 \le t \le 20$. [3]

••••••
 •••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.