Лекція №2

Динаміка матеріальної точки

Викл Коваль В.В.

ФОК

2021p.

Питання

Перший закон Ньютона. Інерціальні системи відліку. Інертність. Маса. Сила. Другий закон Ньютона. Третій закон Ньютона. Приклади, що ілюструють третій закон Ньютона. Одиниці вимірювань фізичних величин. Основні й похідні одиниці вимірювань. Закон всесвітнього тяжіння. Сила тяжіння і вага тіла. Вага тіла, що рухається з прискоренням. Сила тертя спокою, коефіцієнт тертя спокою. Сила тертя ковзання, коефіцієнт тертя ковзання. Сила пружності. Закон Гука. Розтягання і стискання стержнів, модуль Юнга.

ДИНАМІКА ПОСТУПАЛЬНОГО РУХУ

$$[m] = 1 \ K\Gamma$$

$$ec{F}$$

$$\left[\vec{F}\right] = \kappa \varepsilon \cdot \frac{M}{c^2} = 1H$$

ПЕРШИЙ ЗАКОН НЬЮТОНА

$$\vec{F} = 0 \Rightarrow \vec{\upsilon} = const$$

ДРУГИЙ ЗАКОН НЬЮТОНА

$$\vec{a} = \frac{\vec{F}}{m}$$

$$\vec{F} = \sum_{i=1}^{N} \vec{F}_{i}$$

$$\vec{p} = m\vec{\upsilon}$$

$$\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} = \frac{d(m\vec{v})}{dt} = \frac{d\vec{p}}{dt}$$

ТРЕТІЙ ЗАКОН НЬЮТОНА

$$\vec{F}_{1,2} = -\vec{F}_{2,1}$$

СИЛИ В МЕХАНІЦІ ЗАКОН ВСЕСВІТНЬОГО ТЯЖІННЯ

$$F = G \frac{m_1 m_2}{r^2}$$

$$G = 6,67 \cdot 10^{-11} \ H \cdot m^2 / \kappa e^2$$

Сила тяжіння

$$F_T = G \frac{Mm}{R^2} = mg$$

$$g=9.8 \text{ M/c}^2$$

Вага тіла

$$\vec{P} = m \, \vec{g}$$

$$\upsilon = const$$
, $a = 0$

У випадку руху тіла з прискоренням **вага тіла** визначається співвідношенням $P = m(g \pm a)$

Якщо P>mg - це перевантаження, якщо P=0 невагомість

ПРУЖНІ СИЛИ

Деформація

Закон Гука для пружини

$$F_{\pi P} = -kx$$

ЗАКОН ГУКА ДЛЯ СТЕРЖНІВ

Закон Гука для стержнів $\sigma = E \mathcal{E}$

Напруга
$$\sigma = \frac{F_{\Pi P}}{S}$$

Відносне подовження
$$\varepsilon = \frac{\Delta l}{l}$$

Діаграма напруга – видовження.

$$\sigma = 0.002E$$

СИЛИ ТЕРТЯ

(внутрішнє та зовнішнє тертя)

$$F_{mp} = \mu N$$

$$F_{\kappa o \nu} = \mu_{\kappa o \nu} \frac{N}{r}$$