COURSE FILE

For Operating System (ECSE204L)

Faculty Name: Dr. Shyam Singh Rajput, Dr. Suchi Kumari,

Dr. Tanveer Ahmed

Course Type: Core

Semester and Year: IV Semester and II Year

L-T-P : 3-1-2

Credits : 5

Department : Computer Science Engineering

Course Level : UG

SCHOOL OF ENGINEERING AND APPLIED SCIENCES

Department of Computer Science Engineering

Bennett University Greater Noida, Uttar Pradesh

Bennett University

Course Details:

Course Name:	Operating System	Course Code:			ECSE204L	
Departm ent:	Computer Science Engineering	Type:			Core	
L-T-P Structur	3-1-2	Credits	5	Pre- requisite:	ECSE201L	
Course Objective s	This course helps the students to understand, how the computer resources like CPU, memory, I/O devices, etc. are managed by the operating system. The learners will also become familiar with the modern concepts of distributed operating system and virtualization.					
Course Outcome	At the end of the course, the students will be able to: 1. Explain the structure and the services provided by the Operating System. 2. Identify the methods of synchronization and algorithms for scheduling processes and files. 3. Relate with the concepts of modern operating system and analyse the data centre technologies.					
Course Contents :	Topics				No. of Hours	
	Introduction Definition, Compo principles, OS Ser Monolithic OS, Moo	3				
	Processes and P Address Space, Pr Control Block, How Process Life Cycle, Vs. Thread,	3				
		nreading and Issues on multiple ad mechanics, Kernel Vs User tithreading models,			3	
	Multithreading Pa Pipeline Pattern,	Patterns: Boss/Worker Variants, Layered Pattern. Interrupts as as signal handling, Forms of			3	

	completion Scheduling, Preemptive and Non- Preemptive Scheduling, Timesharing and Time	3
	Slices.	
	CPU Bound Timeslice Length, I/O Bound Time Slice Length, Run-Queue Data structure,	2
	Scheduling with Hardware Counters, multilevel	3
	feedback queue scheduling algorithm.	
	Multiprocessor scheduling: Time sharing,	
	space sharing, gang scheduling algorithms. <i>Inter Process Communication</i> : Critical Section	3
	structure.	
	Synchronization Constructs, Spinlocks,	2
	semaphores, Reader Writer Locks, Monitors,	3
	Dining-Philosophers problem.	
	reader writer problem, producer-consumer problem, Deadlock: definition, condition,	3
	resource allocation graph.	
	Methods for handling deadlock: prevention,	2
	avoidance, deadlock detection and recovery,	3
	Memory and I/O Management: Introduction Memory Allocation Techniques: Fragmentation,	
	Segmentation. Secondary memory management:	3
	Structure and scheduling algorithm, I/O File	5
	Management.	
	Distributed Systems: Introduction: Remote	
	Services, benefits, requirements, structure of RPC, Interface Definition Language, Marshalling,	3
	Unmarshalling, Pointers in RPCs, Handling Partial	3
	Failures, SunRPC and XDR, Distributed File	
	Systems: Stateless Vs Statefull File Server,	
	File Vs. Directory Service, Replication and Partitioning, Networking File System, Sprite	
	Distributed File System, Distributed Shared	
	Memory: Sharing Granularity, DSM Design	
	Access Algorithm, DSM Design Migration Vs	3
	Replication, DSM Architecture, Indexing	
	Distributed State, Consistency Model, Strict Consistency, Sequential Consistency, Causal	
	Consistency, Weak Consistency.	
	Cloud Computing and Virtualization: Internet	
	Services Architecture, Homogeneous	
	architectures, Hetrogeneous architectures, Cloud Computing Requirements, Cloud Enabling	
	Technologies, Virtualization Models, Processor	3
	Virtualization, Para Virtualization, Memory	
	Virtualization, Device Virtualization, Hypervisor	
	Direct Model, Split Device driver model, Hardware	
Lab Work	virtualization. Students will gain practical experience with the	implementation
Lab WOIK	and use of operating system functions suc	
	management, inter-process communication	-
	synchronization, memory management and file	e systems etc.

	Moreover, students will have exposure to the tools for measuring and monitoring of operating systems related parameters and services.
Text Book:	1. Silberschatz, A., Galvin, P.B. and Gagne, G., Operating System Concepts, John Wiley
Referenc es:	 Tanenbaum, Modern Operating Systems Stallings, Willam, Operating Systems Internals and Design Principles, Prentice Hall.

Evaluation Components:

Components of Course Evaluation	Percentage
Mid Term Examination	20
End Term Examination	40
Lab Continuous Evaluation	10
End Term Lab Examination	20
Quiz-01	05
Quiz-02	05