Embedded systems Exercise session 5 Scheduling problems

Problem 1

Two periodic tasks τ_1 , τ_2 are characterized by their respective periods $T_1=1$ ms and $T_2=3.5$ ms. The execution time C_1 of τ_1 is equal to 0.6 ms.

For which value(s) of C_2 does this pair of tasks fully use the processor? (Justify all steps of your reasoning.)

 $T_1: 1 \text{ ms} \qquad C_1: 0.6 \text{ ms} \\ T_2: 3.5 \text{ ms} \qquad C_2: ?$

$$T_1$$
: 1 ms C_1 : 0.6 ms T_2 : 3.5 ms C_2 : ?

 $P_1 > P_2$

$$T_1$$
: 1 ms C_1 : 0.6 ms T_2 : 3.5 ms C_2 : ?

$$P_1 > P_2$$

$$T_1$$
: 1 ms C_1 : 0.6 ms T_2 : 3.5 ms C_2 : ?

$$P_1 > P_2$$

$$T_1$$
: 1 ms C_1 : 0.6 ms T_2 : 3.5 ms C_2 : ?

$$P_1 > P_2$$

$$T_1$$
: 1 ms C_1 : 0.6 ms T_2 : 3.5 ms C_2 : ?

$$P_1 > P_2$$

$$C_2 = 3 \times 0.4 \text{ ms} = 1.2 \text{ ms}$$

Problem 2

Let τ_1 and τ_2 be periodic tasks with the respective periods T_1 , T_2 and execution times C_1 , C_2 , such that $T_1 = 10~\mu s$, $T_2 = 25~\mu s$, and $C_1 < 5~\mu s$. The priority of τ_1 is higher than the one of τ_2 . This pair of tasks fully uses the processor.

- Represent this problem graphically.
- 2 Compute the value of C_2 as a function of C_1 .

$$T_1: 10 \ \mu s$$
 $C_1: < 5 \ \mu s$ $T_2: 25 \ \mu s$ $C_2: ?$

 $P_1 > P_2$

$$T_1: 10 \ \mu s$$
 $C_1: < 5 \ \mu s$ $T_2: 25 \ \mu s$ $C_2: ?$

$$P_1 > P_2$$

$$T_1$$
: 10 μ s C_1 : < 5 μ s T_2 : 25 μ s C_2 : ?

0

 $P_1 > P_2$

$$T_1: 10 \ \mu s$$
 $C_1: < 5 \ \mu s$ $T_2: 25 \ \mu s$ $C_2: ?$

 $P_1 > P_2$

$$T_1: 10 \ \mu s$$
 $C_1: < 5 \ \mu s$ $T_2: 25 \ \mu s$ $C_2: ?$

$$P_1 > P_2$$

$$T_1$$
 T_2 T_1 T_2 T_1 T_2

0 10 20 25

$$C_2 = 25 \ \mu \text{s} - 3C_1$$

Problem 3

Consider the following set of periodic tasks $\tau_i = (C_i, T_i)$:

$$\{\tau_1 = (3,13), \, \tau_2 = (1,3), \, \tau_3 = (\alpha,5)\},\$$

where α is a parameter.

- Compute the maximum value of α for this set of tasks to be schedulable.
- Verify your answer with a graphical simulation.

$$T_1: 13$$
 $C_1: 3$ $T_2: 3$ $C_2: 1$ $T_3: 5$ $C_3: \alpha$

$$T_1: 13$$
 $C_1: 3$
 $T_2: 3$ $C_2: 1$
 $T_3: 5$ $C_3: \alpha$
 $P_2 > P_3 > P_1$

$$T_1: 13 \quad C_1: 3$$
 $T_2: 3 \quad C_2: 1$
 $T_3: 5 \quad C_3: \alpha$
 $P_2 > P_3 > P_1$

$$T_1: 13 \quad C_1: 3$$
 $T_2: 3 \quad C_2: 1$
 $T_3: 5 \quad C_3: \alpha$
 $P_2 > P_3 > P_1$

$$P_2 > P_3 > P_1$$

$$T_1: 13$$
 $C_1: 3$
 $T_2: 3$ $C_2: 1$
 $T_3: 5$ $C_3: \alpha$
 $P_2 > P_3 > P_1$

$$T_1: 13$$
 $C_1: 3$ $T_2: 3$ $C_2: 1$ $T_3: 5$ $C_3: \alpha$

$$P_2 > P_3 > P_1$$

$$T_1: 13$$
 $C_1: 3$ $T_2: 3$ $C_2: 1$ $T_3: 5$ $C_3: \alpha$

$$P_2 > P_3 > P_1$$

$$P_2 > P_3 > P_1$$

$$C_1 = 3 = 13 - 5 \times 1 - 3 \times \alpha$$

$$P_2 > P_3 > P_1$$

$$C_1 = 3 = 13 - 5 \times 1 - 3 \times \alpha$$

$$\Rightarrow \alpha = \frac{5}{3}$$

$$C_1 = 3 = 10 - 4 \times 1 - 2 \times \alpha$$

$$C_1 = 3 = 10 - 4 \times 1 - 2 \times \alpha$$

$$\Rightarrow \alpha = \frac{3}{2}$$

$$C_1 = 3 = 10 - 4 \times 1 - 2 \times \alpha$$

$$\Rightarrow \alpha = \frac{3}{2}$$

(Contradiction! α should be greater than $\frac{5}{3}$)

$$C_1 = \frac{1}{3} + 1 + \frac{4}{3} + \frac{1}{3}$$

= 3 (OK!)

Problem 4

Consider the following set of periodic tasks $\tau_i = (C_i, T_i)$:

$$\{\tau_1=(1,4),\,\tau_2=(3,13),\,\tau_3=(1,10),\tau_4=(\alpha,7)\},$$

where α is a parameter.

Compute the largest value of α that makes this set of tasks schedulable.

$$T_1: 4$$
 $C_1: 1$
 $T_2: 13$ $C_2: 3$
 $T_3: 10$ $C_3: 1$
 $T_4: 7$ $C_4: \alpha$

$$T_1: 4$$
 $C_1: 1$
 $T_2: 13$ $C_2: 3$
 $T_3: 10$ $C_3: 1$
 $T_4: 7$ $C_4: \alpha$

 $P_1 > P_4 > P_3 > P_2$

$$P_1 > P_4 > P_3 > P_2$$

10

 $T_1: 4$ $C_1: 1$ $T_2: 13$ $C_2: 3$ $T_3: 10$ $C_3: 1$ $T_4: 7$ $C_4: \alpha$

$$T_2$$
: 13 C_2 : 3
 T_3 : 10 C_3 : 1
 T_4 : 7 C_4 : α
 $P_1 > P_4 > P_3 > P_2$

 $T_1: 4 C_1: 1$

$$T_1: 4$$
 $C_1: 1$
 $T_2: 13$ $C_2: 3$
 $T_3: 10$ $C_3: 1$
 $T_4: 7$ $C_4: \alpha$
 $P_1 > P_4 > P_3 > P_2$

$$T_1: 4$$
 $C_1: 1$
 $T_2: 13$ $C_2: 3$
 $T_3: 10$ $C_3: 1$
 $T_4: 7$ $C_4: \alpha$
 $P_1 > P_4 > P_3 > P_2$

$$P_1 > P_4 > P_3 > P_4$$

$$T_1: 4$$
 $C_1: 1$
 $T_2: 13$ $C_2: 3$
 $T_3: 10$ $C_3: 1$
 $T_4: 7$ $C_4: \alpha$
 $P_1 > P_4 > P_3 > P_2$

$$P_1 > P_4 > P_3 > P_2$$

$$T_1: 4$$
 $C_1: 1$
 $T_2: 13$ $C_2: 3$
 $T_3: 10$ $C_3: 1$
 $T_4: 7$ $C_4: \alpha$

$$P_1 > P_4 > P_3 > P_2$$

$$T_1: 4$$
 $C_1: 1$
 $T_2: 13$ $C_2: 3$
 $T_3: 10$ $C_3: 1$
 $T_4: 7$ $C_4: \alpha$

$$P_1 > P_4 > P_3 > P_2$$

$$C_2 = 3 = 13 - 4 \times 1 - 2 \times \alpha - 2 \times 1$$

$$P_1 > P_4 > P_3 > P_2$$

$$C_2 = 3 = 13 - 4 \times 1 - 2 \times \alpha - 2 \times 1$$

 $\Rightarrow \alpha = 2$

$$C_2 = 3 = 13 - 4 \times 1 - 2 \times \alpha - 2 \times 1$$

$$C_2 = 3 = 13 - 4 \times 1 - 2 \times \alpha - 2 \times 1$$

 $\Rightarrow \alpha = 2$

Case 4: τ_4 still active at t = 12:

 \Rightarrow Impossible (does not leave any room for τ_2)!

Problem 5

Let τ_1 and τ_2 be two periodic tasks with respective periods and execution times T_1 , T_2 and C_1 , C_2 . We assume that these tasks satisfy $T_1 < T_2$, that they both initially start at t=0, that they fully use the processor, that they are scheduled under the RMS policy, and that τ_1 is not idle (i.e., it is running) at $t=T_2$.

Under those hypotheses, express the processor load factor in terms of C_1 , T_1 and T_2 , carefully justifying your developments. Show graphically how this load factor varies with C_1 , when T_1 and T_2 are assumed to be constant.

(Slides 141-142 of the course)

The following condition is satisfied:

$$C_1 > T_2 - T_1 \left| \frac{T_2}{T_1} \right|.$$

For a given value of C_1 , the largest possible value of C_2 is given by

$$C_2=(T_1-C_1)\left|\frac{T_2}{T_1}\right|.$$

For given values of T_1 and T_2 , this expression increases with C_1 , since

$$\frac{1}{T_1}-\frac{1}{T_2}\left|\frac{T_2}{T_1}\right|\geq 0.$$

Problem 6

Prove that every schedulable set of exactly three periodic tasks remains schedulable with a rate-monotonic assignement of priorities.

1. If two tasks τ_i and τ_j have priorities P_i and P_j that are adjacent and such that $P_i > P_j$, and periods T_1 and T_2 such that $T_1 > T_2$, then swapping their priorities preserves schedulability.

- 2. This is equivalent to saying that if two tasks τ_i and τ_j have priorities P_i and P_j that are adjacent and such that $P_i > P_j$, and periods T_1 and T_2 such that $T_1 > T_2$, then swapping their periods preserves schedulability.
- 3. Let us assume without loss of generality $P_1 < P_2 < P_3$.

If $T_1 < T_2$, we swap T_1 and T_2 . Then, if $T_2 < T_3$, we swap T_2 and T_3 . Afterwards, T_3 becomes equal to the smallest period.

If $T_1 < T_2$, we swap T_1 and T_2 . One then has $T_1 > T_2 > T_3$, which corresponds to the RMS policy.

Every permutation operation in this procedure preserves schedulability.

Problem 7

If a set $\{\tau_1, \tau_2, \tau_3\}$ of three periodic tasks τ_1 , τ_2 and τ_3 is schedulable, is the set $\{\tau_1, \tau_2\}$ always schedulable as well? (Justify your answer.)

1. Since $\{\tau_1, \tau_2, \tau_3\}$ is schedulable, if we simulate them in the critical zone of the task with the longest period, starting each task at t = 0, then τ_1 finishes at or before $t = T_1$, and τ_2 finishes at or before $t = T_2$.

2. Removing τ_3 can only advance τ_1 and τ_2 , or leave them unchanged. The real-time constraints on τ_1 and τ_2 will thus remain satisfied,

therefore $\{\tau_1, \tau_2\}$ is schedulable.