Kernel Density Estimation (KDE)

Study of the optimal bandwidth

Frank Bautista

September 30, 2020

Universidad Nacional de Colombia

Table of contents

- 1. Introduction
- 2. Kernel density estimator
- 3. KDE and bw selection in Python
- 4. Conclusion

Introduction

What is KDE?

Kernel density estimation - KDE

In statistics, the univariate kernel density estimation (KDE) is a non-parametric way to estimate the probability density function f(x) of a random variable X

It is a fundamental data smoothing problem where inferences about the population are made, based on a finite data sample.

What is a kernel?

Kernel

In non-parametric statistics, a kernel is a weighting function used in non-parametric estimation techniques. Kernels are used in kernel density estimation to estimate random variables density functions f(x).

In general any functions having the following assumptions can be used as a kernel:

- 1. $K(x) \ge 0$ and $\int_{\mathbb{R}} K(x) dx = 1$
- 2. Symmetric about the origin, $\int_{\mathbb{R}}xK(x)dx=0$
- 3. Finite second moment $\mu_2(K) = \int_{\mathbb{R}} x^2 K(x) dx < \infty$

3

What is a kernel?

Kernel	K(x;r)	R(K)	$\mu_2(K)$
Gaussian	$K(x; \infty) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \mathbb{1}_{]-\infty, +\infty[}$	$1/\left(2\sqrt{\pi}\right)$	1
Epanechnikov	$K(x;2) = \frac{3}{4} (1 - x^2) 1_{(x \le 1)}$	3/5	1/5
Uniform	$K(x;0) = \frac{1}{2} 1_{(x \le 1)}$	1/2	1/3
Triangular	$K(x;1) = (1- x)1_{(x \le 1)}$	2/3	1/6
Triweight	$K(x;6) = \frac{35}{32} (1 - x^2)^3 1_{(x \le 1)}$	350/429	1/9
Tricube	$K(x;9) = \frac{70}{81} \left(1 - x ^3 \right)^3 1_{(x \le 1)}$	175/247	35/243
Biweight	$K(x;4) = \frac{15}{16} (1 - x^2)^2 1_{(x \le 1)}$	5/7	1/7
Cosine	$K(x; \infty) = \frac{\pi}{4} \cos\left(\frac{\pi}{2}x\right) 1_{(x \le 1)}$	$\pi^2/16$	$\frac{\left(-8+\pi^2\right)/\pi^2}{}$

Figure 1: some important kernels [?]

Kernel density estimator

Kernel density estimator

Let $(X_1,X_2,...,X_n)$ be a data sample, independent and identically distributed of a continuous random variable X, with density function f(x).

$$\widehat{f}_h(x) = \frac{1}{n} \sum_{i=1}^n K_h(x - x_i) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right).$$
 (1)

Here, K is the kernel, n is the number of data and h is a smother is a smoothing constant, also it is call **bandwidth**.

Bandwidth selection

Bandwidth

The bandwidth of the kernel is a free parameter which exhibits a strong influence on the resulting estimate. This parameter is very important that controls the degree of smoothing applied to the data.

Some considrations in the values of h:

- If $h \to 0$ then we will have over-fitting.
- If $h \to \infty$, we will have a density function completely smoothed.

Figure 2: Different bandwidths for KDE (From: wikipedia.org/wiki/Kernel_density_estimation)

Bandwidth selection

The most common optimality criterion used to select this parameter is the expected risk function employing cross validation:

$$MISE(h) = E \left[\int \left(\hat{f}_h(x) - f(x) \right)^2 dx \right].$$

or the Asymptotic Mean Integrated Squared Error's Reduction Techniques:

AMISE
$$(h, r) = \frac{R(K^{(r)})}{nh^{2r+1}} + \frac{1}{4}h^4\mu_2^2(K)R(f^{(r+2)})$$

with optimal h as:

$$h^* = \left[\frac{(2r+1)R(K^{(r)})}{\mu_2^2(K)R(f^{(r+2)})} \right]^{1/(2r+5)} n^{-1/(2r+5)}$$

Bandwidth selection

Also is used the rule-of-thumb bandwidth estimator:

$$h = \left(\frac{4\hat{\sigma}^5}{3n}\right)^{\frac{1}{5}} \approx 1.06\hat{\sigma}n^{-1/5}.$$

Or Silverman's (1986) rule of thumb:

$$h = 0.9 \min\left(\hat{\sigma}, \frac{IQR}{1.34}\right) n^{-\frac{1}{5}}.$$

KDE and bw selection in Python

Kernel estimators in Python

There are several options available for computing kernel density estimates in Python. The selection of a estimator depends a lot on what the particular goals are. There are KDE implementations through SciPy Scikits stack:

- 1. SciPy: library gaussian_kde.
- 2. statsmodels: libraries KDEUnivariate, KDEMultivariate.
- 3. Scikit-learn: library KernelDensity

Each has advantages and disadvantages.

Kernel estimators in Python

	Bandwidth Selection	Available Kernels	Multi- dimension	Heterogeneous data		Tree-based computation
Scipy	Scott & Silverman	One (Gauss)	Yes	No	No	No
Statsmodels KDEUnivariate	Scott & Silverman	Seven	1D only	No	Yes	No
Statsmodels KDEMultivariate	normal reference	Seven	Yes	Yes	No	No
Scikit-Learn	None built-in; Cross val. available	6 kernels x 12 metrics	Yes	No	No	Ball Tree or KD Tree

Figure 3: Comparison of KDE methods

(From https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/)

Conclusion

References i