$Solutions \; MP/MP^*$ $Calcul \; diff\'erentiel$

Solution 1. f est \mathcal{C}^{∞} sur $\mathbb{R}^3 \setminus \{(0,0,0)\}$. Pour $(x,y,z) \neq (0,0,0)$, posons

$$(x, y, z) = \|(x, y, z)\|_{2} (x', y', z'). \tag{1}$$

On a

$$f(x,y,z) = \frac{\|(x,y,z)\|_2^3 (x'^3 + y'^3 - x'y'^2 + y'z'^2 + x'y'z')}{\|(x,y,z)\|_2^2}.$$
 (2)

Comme $\|(x', y', z')\|_2 = 1 = x'^2 + y'^2 + z'^2$, on a $(x', y', z') \in [-1, 1]^3$ et

$$|f(x,y,z)| \le 5 \|(x,y,z)\|_2 \xrightarrow{\|(x,y,z)\|_2 \to 0} 0.$$
 (3)

D'où la continuité de f en (0,0,0).

On étudie les dérivées partielles en (0,0,0). On forme $x \mapsto f(x,0,0) = x$, donc $\frac{\partial f}{\partial x}(0,0,0)$ existe et vaut 1, puis $y \mapsto f(0,y,0) = y$ donc $\frac{\partial f}{\partial y}(0,0,0)$ existe et vaut 1 et enfin $z \mapsto f(0,0,z) = 0$ donc $\frac{\partial f}{\partial z}(0,0,0)$ existe et vaut 0. Donc si f est différentiable en (0,0,0), nécessairement

$$df_{(0,0,0)}: \mathbb{R}^3 \to \mathbb{R}$$

$$(h, k, l) \mapsto h + k$$

$$(4)$$

Pour $(h, k, l) \neq (0, 0, 0)$, on a

$$f(h,k,l) - f(0,0,0) - (h+k) = \frac{h^3 + k^3 - hk^2 + kl^2 + hkl - h^3 - hk^2 - hl^2 - k^3 - kh^2 - kl}{h^2 + k^2 + l^2},$$
(5)
=
$$\frac{-2hk^2 + hkl - hl^2 - kh^2}{h^2 + k^2 + l^2}.$$
 (6)

On pose $(h,k,l) = \|(h,k,l)\|_2 (h',k',l')$ avec $\|(h',k',l')\|_2 = 1$. Soit

$$\varphi(h,k,l) = \frac{f(h,k,l) - f(0,0,0) - (h+k)}{\|(h,k,l)\|_2} = -2h'k'^2 + h'k'l' - h'l'^2 - k'h'^2.$$
 (7)

Pour (h, k, l) = t(1, 1, 0), on a

$$\varphi(t,t,0) = -\frac{3}{\sqrt{32}} \xrightarrow[t \to 0]{} 0. \tag{8}$$

Donc f n'est pas différentiable en (0,0,0), et n'est donc pas \mathcal{C}^1 non plus.

Remarque 1. On peut aussi, en fixant $(h, k, l) \in \mathbb{R}^3$, on étudie

$$\psi: \mathbb{R} \to \mathbb{R}$$

$$t \mapsto f((0,0,0) + t(h,k,l)) = t \frac{h^3 + k^3 - hk^2 + kl^2 + hkl}{h^2 + k^2 + l^2}$$
(9)

 ψ est dérivable en 0, et

$$D_{(h,k,l)}f(0,0,0) = \frac{h^3 + k^3 - hk^2 + kl^2 + hkl}{h^2 + k^2 + l^2},$$
(10)

non linéaire selon (h, k, l). Donc f n'est pas différentiable en (0, 0, 0).

Solution 2.

- 1. On a pour tout $(a,b) \in \mathbb{R}^2$, on a $\min(a,b) = \frac{a+b-|a-b|}{2}$. Par récurrence, on montre que ψ est continue.
- 2. Supposons ψ différentiable en x_0 . Soit $i \in J$, on a $\psi \varphi_i \leq 0$ sur U et $(\psi \varphi_i)(x_0) = 0$, donc $\psi \varphi_i$ admet un extremum en x_0 , donc $d(\psi \varphi_i)_{x_0} = 0$ et $d\psi_{x_0} = d\varphi_{i_{x_0}}$.

Supposons qu'il existe $l \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$ tel que $d\varphi_{i_{x_0}} = l$ pour tout $i \in J$. D'abord, on a pour tout $j \notin J$, $\varphi_j(x_0) > \psi(x_0)$, donc par continuité de $\varphi_j - \psi$ il existe $\eta_j > 0$ tel que

$$\forall x \in B(x_0, \eta_i), \quad (\varphi_i - \psi)(x) > 0. \tag{11}$$

On pose alors $\eta = \min_{j \notin J} (\eta_j)$. Alors pour tout $x \in B(x_0, \eta)$, il existe $i \in J$, $\psi(x) = \varphi_i(x)$. Soit $\varepsilon > 0$, pour tout $i \in J$, il existe $\delta_i > 0$ tel que si $||h|| < \delta_i$,

$$|\varphi_i(x_0 + h) - \varphi_i(x_0) - l(h)| \leqslant \varepsilon ||h||. \tag{12}$$

On pose $\delta = \min_{i \in H} (\delta_i)$. Donc si $||h|| \leq \min(\delta, \eta)$, on a

$$|\psi(x_0+h) - \psi(x_0) - l(h)| \leqslant \varepsilon \|h\|, \qquad (13)$$

car $\psi(x_0 + h)$ est un des $\varphi_i(x_0 + h)$. Donc ψ est bien différentiable en x_0 , et pour tout $i \in J$, $d\psi_{x_0} = l = d\varphi_{i_{x_0}}$.

3. Fixons $x_0 \in U, h \in \mathbb{R}^n$. Pour le même η que précédemment, on a pour tout $x \in B(x_0, \eta)$, il existe $i \in J$ tel que $d\psi_x = d\varphi_{i_x}$. Alors

$$|d\psi_x(h) - d\psi_{x_0}(h)| \leqslant \max_{i \in J} |d\varphi_{i_x}(h) - d\varphi_{i_{x_0}}| \xrightarrow[x \to x_0]{} 0.$$
 (14)

Remarque 2. C'est faux pour un nombre infini de fonctions, par exemple la fonction nulle partout sauf sur $\left[0, \frac{2}{n}\right]$ où elle est affine par morceaux et vaut -1 en $\frac{1}{n}$.

Solution 3. f est \mathcal{C}^{∞} sur \mathbb{R}^n . Soit $A = \left(\frac{1}{i+j+1}\right)_{1 \leq i,j \leq n} \in S_n(\mathbb{R})$. On a alors $f(X) = X^{\mathsf{T}}AX$. Si $X \neq 0$, on a

$$f(X) = \sum_{(i,j) \in [1,n]^2} x_i x_j \int_0^1 t^{i+j} dt,$$
 (15)

$$= \int_0^1 \sum_{(i,j)\in \llbracket 1,n\rrbracket^2} x_i x_j t^i t^j dt, \tag{16}$$

$$= \int_0^1 \left(\sum_{i=1}^n x_i t^i\right)^2 \mathrm{d}t \geqslant 0. \tag{17}$$

Or $(\sum_{i=1}^n x_i t^i)^2$ est continue positive, donc f(X) = 0 si et seulement si $(\sum_{i=1}^n x_i t^i)^2 = 0$, pour tout $t \in [0, 1]$, donc $x_i = 0$ pour tout $i \in [1, n]$. Ainsi, A est définie positive.

Soient $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ les valeurs propres de A. On a pour tout $X \in \mathbb{R}^n$, $\lambda_1 ||X||^2 \leqslant f(X)$, donc $\lim_{\|X\| \to +\infty} f(X) = +\infty$. Donc f n'admet pas de maximum global sur H_0 , mais un minimum global.

Si f présente un extremum en $X_0 \in H_0$, soit alors $H = (h_1, \ldots, h_n) \in H_0$. Soit

$$\varphi: \mathbb{R} \to \mathbb{R}$$

$$t \mapsto f(X_0 + tH)$$
(18)

 φ présente un extremum en t=0, donc $\varphi'(0)=0$ et $(\nabla f(X_0)|H)=0$.

On a $\nabla f(X_0) = 2AX_0$ (terme en t du polynôme $f(X_0 + tH)$) et $(2AX_0|H) = 0$ pour tout $H \in H_0$, donc $AX_0 \in H_0^{\perp} = \text{Vect}((1, ..., 1))$ et il existe $\lambda \in \mathbb{R}$ tel que $AX_0 = \lambda \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$. Comme

 $A \in GL_n(\mathbb{R})$ car $A \in S_n^{++}(\mathbb{R})$, on a

$$X_0 = \lambda A^{-1} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}, \tag{19}$$

et $X_0 \in H_0$ donc $\left(X_0 \middle| \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}\right) = 1$, donc il y a un unique extremum sur H_0 , qui est un minimum

absolu:

$$X_{0} = \frac{A^{-1} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}}{\begin{pmatrix} A^{-1} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \middle| \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \middle|}.$$

$$(20)$$

Solution 4. Soit $\Delta = \{(x,y) \in \mathbb{R}^2 | x \neq 0 \}$ ouvert. $f \operatorname{est} \mathcal{C}^{\infty} \operatorname{sur} \Delta$.

Soit $y_0 \in \mathbb{R}$, pour $r \geqslant 0$ et $\theta \in \mathbb{R}$, on a

$$f(r\cos(\theta), y_0 + t\sin(\theta)) = \begin{cases} 0 & \text{si } r = 0 \text{ ou } \theta \equiv \frac{\pi}{2}[\pi], \\ r^2 \cos^2(\theta) \sin\left(\frac{y_0 + r\sin(\theta)}{r\cos(\theta)}\right) & \text{sinon.} \end{cases}$$
(21)

Dans tous les cas, $|f(r\cos(\theta), y_0 + r\sin(\theta))| \leq r^2 \xrightarrow[r \to 0]{} 0$. Donc f est continue en $(0, y_0)$.

Pour l'existence des dérivées partielles en $(0, y_0)$: on forme $x \mapsto f(x, y_0)$ et on se demande si elle est dérivable en 0. Pour $x \neq 0$, on a

$$\frac{f(x,y_0) - f(0,y_0)}{x} = x \sin\left(\frac{y_0}{x}\right),\tag{22}$$

donc

$$\left| \frac{f(x, y_0) - f(0, y_0)}{x} \right| \leqslant |x| \xrightarrow[x \to 0]{} 0. \tag{23}$$

Donc $\frac{\partial f}{\partial x}(0, y_0)$ existe et vaut 0.

Soit $y \mapsto f(0,y) = 0$, donc $\frac{\partial f}{\partial y}(0,y)$ existe et vaut 0.

Si f est différentiable en $(0, y_0)$, nécessairement on a

$$df_{(0,y_0)}: \mathbb{R}^2 \to \mathbb{R}$$

$$(h,k) \mapsto h\frac{\partial f}{\partial x}(0,y_0) + k\frac{\partial f}{\partial y}(0,y_0) = 0$$
(24)

Étudions donc

$$f(h, y_0 + k) - f(0, y_0) = \varphi(h, k) = \begin{cases} h^2 \sin\left(\frac{y_0 + k}{h}\right), & \text{si } h \neq 0, \\ 0, & \text{si } h = 0. \end{cases}$$
 (25)

Alors $|\varphi(h,k)| \leq \|(h,k)\|_2^2$, donc $\varphi(h,k) = \underset{(h,k)\to(0,0)}{o}((h,k))$ donc f est différentiable en (0,0).

Pour tout $(x_0, y_0) \in \Delta$, on a

$$\frac{\partial f}{\partial x}(x_0, y_0) = 2x_0 \sin\left(\frac{y_0}{x_0}\right) - y_0 \cos\left(\frac{y_0}{x_0}\right),$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = x_0 \cos\left(\frac{y_0}{x_0}\right).$$
(26)

Pour $r \geqslant 0$ et $\theta \in \mathbb{R}$, on a

$$\frac{\partial f}{\partial x}(r\cos(\theta), r\sin(\theta)) = \begin{cases} 0, & \text{si } r\cos(\theta) = 0, \\ 2r\cos(\theta)\sin\left(\frac{y_0 + r\sin(\theta)}{r\cos(\theta)}\right), & \text{sinon.} \end{cases}$$
(27)

Si $y_0 \neq 0$, pour $\theta = 0$, on a $\frac{\partial f}{\partial x}(r, y_0) = -y_0 \cos\left(\frac{y_0}{x}\right)$, qui n'a pas de limite en $r \to 0$. Si $y_0 = 0$, on a $\left|\frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta)\right| \leqslant 3r \xrightarrow[r\to 0]{} 0$. Donc f n'est pas de classe \mathcal{C}^1 et on a toujours $\frac{\partial f}{\partial y}(x_0, y_0) = 0$.

Solution 5. Soit $X_0 = (x_1^0, \dots, x_n^0) \in \mathbb{R}^n$. Si $\|\cdot\|_1$ est différentiable en X_0 , alors pour tout $i \in \{1, \dots, n\}$,

$$x_i \mapsto \|(x_1^0, \dots, x_i, \dots, x_n^0)\| = |x_i| + \sum_{i \neq i_0} |x_j^0|,$$
 (28)

est dérivable en x_i^0 . Nécessairement, $x_i^0 \neq 0$ pour tout $i \in \{1, ..., n\}$. Réciproquement, si pour tout $i \in \{1, ..., n\}$, $x_i^0 \neq 0$, notons $\varepsilon_i = 1$ si $x_i^0 > 0$ et $\varepsilon_i = -1$ sinon. Pour X suffisamment proche de X_0 , pour tout $i \in \{1, ..., n\}$, x_i est du signe $\operatorname{des} x_i^0$ et $\|X\|_1 = \sum_{i=1}^n \varepsilon_i x_i$, localement linéaire donc différentiable et

$$d \|\cdot\|_1 (X_0) \colon h = (h_1, \dots, h_n) \mapsto \sum_{i=1}^n \varepsilon_i h_i.$$
 (29)

S'il existe un unique indice $i_0 \in \{1, \ldots, n\}$ tel que $\left|x_{i_0}^0\right|$) $\|X_0\|_{\infty}$, pour tout $k \in \{1, \ldots, n\} \setminus \{i_0\}$, on a $\left|x_j^0\right| < \left|x_{i_0}^0\right|$ ($\neq 0$ car sinon $x_1^0 = \cdots = x_n^0 = 0$ mais $n \geq 2$). Pour $X = (x_1, \ldots, x_n)$ suffisamment proche de X_0 , comme $x_j \mapsto |x_j| - |x_{i_0}|$ est continue et strictement négative en x_0 , pour tout $j \in \{1, \ldots, n\} \setminus \{i_0\}$, $|x_j| < |x_{i_0}|$. Donc $\|X\|_{\infty} = |x_{i_0}| = \varepsilon_{i_0} x_{i_0}$, linéaire donc $\|\cdot\|_{\infty}$ est différentiable en X_0 .

S'il existe $i_1 \neq i_2 \in \{1, \dots, n\}^2$ tel que $\left|x_{i_1}^0\right| = \left|x_{i_2}^0\right| = \|X_0\|_{\infty}$, quitte à remplacer âr $-X_0$ on suppose $x_{i_1}^0 > 0$. Soit

$$\varphi: \mathbb{R} \to \mathbb{R}$$

$$t \mapsto \|X_0 + (0, \dots, 0, t, 0, \dots, 0)\| = \begin{cases} t + x_{i_1}, & \text{si } t > 0, \\ |x_{i_2}| = x_{i_1}, & \text{si } t < 0. \end{cases}$$
(30)

 φ n'est pas dérivable en 0, donc $\|\cdot\|_{\infty}$ est non différentiable en X^0 .

Solution 6. Soit $i_0 \in \{1, \ldots, n\}$. On prend $(\varepsilon_1, \ldots, \varepsilon_{n-1}) \in [0, 1]^{n-1} \setminus \{(0, \ldots, 0)\}$. On veut prolonger par continuité en $(0, \ldots, 0, 1, 0, \ldots, 0)$ où le 1 est en i_0 -ième position. On a

$$\frac{\prod_{i=1}^{n-1} \varepsilon_i \times (1 - (\varepsilon_1 + \dots + \varepsilon_{n-1}))}{\prod_{\substack{i=1 \ i \neq i_0}}^n (1 - \varepsilon_i) \times (\varepsilon_1 + \dots + \varepsilon_n)} \underset{(\varepsilon_1, \dots, \varepsilon_n) \to (0, \dots, 0)}{\sim} \frac{\prod_{i=1}^{n-1} \varepsilon_i}{\varepsilon_1 + \dots + \varepsilon_{n-1}},$$
(31)

$$\leq \|(\varepsilon_1, \dots, \varepsilon_{n-1})\|_1^{n-2} \xrightarrow[(\varepsilon_1, \dots, \varepsilon_n) \to 0]{} 0,$$
 (32)

 $car n \geqslant 3.$

On note Σ_n le simplexe. On peut définir

$$f: \quad \Sigma_n \quad \to \quad \mathbb{R}$$

$$(x_1, \dots, x_n) \quad \mapsto \quad \begin{cases} \frac{\prod_{i=1}^n x_i}{\prod_{i=1}^n (1-x_i)} & \text{si } \forall i \in \{1, \dots, n\}, x_i \neq 1, \\ 0 & \text{sinon.} \end{cases}$$

$$(33)$$

f est continue sur le compact Σ_n donc atteint son maximum sur Σ_n .

On a $f\left(\frac{1}{n},\ldots,\frac{1}{n}\right)>0$ donc le maximum est strictement positif et est atteint en

$$X_0 = (x_1^0, \dots, x_n^0) \in]0, 1[^n.$$
(34)

Soit $h = (h_1, \ldots, h_n)$ tel que $\sum_{i=1}^n h_i = 0$. Pour |t| suffisamment petit, on a $X_0 + th \in \Sigma_n$ et $\varphi \colon t \mapsto f(X_0 + th)$ admet un extremum en 0. On a $\varphi'(0) = 0 = (\nabla f(X_0)|h)$, vrai pour tout h tel que $\sum_{i=1}^n h_i = 0$, donc pour tout $h \in \{(1, \ldots, 1)\}^{\perp}$. Donc $\nabla f(X_0) \in \text{Vect}(1, \ldots, 1)$. Par symétrie, on a $\frac{\partial f}{\partial x_1}(X_0) = \cdots = \frac{\partial f}{\partial x_n}(X_0)$. Soit $i \in \{1, \ldots, n\}$, on a

$$f(x_1, \dots, x_n) = \left(-1 + \frac{1}{1 - x_i}\right) \prod_{\substack{j=1\\j \neq i}}^n \frac{x_j}{1 - x_j}.$$
 (35)

On a donc

$$\frac{\partial f}{\partial x_i}(X_0) = \frac{1}{(1 - x_i^0)^2} \prod_{\substack{j=1\\j \neq i}}^n \frac{x_j^0}{1 - x_j^0} = \frac{1}{x_{i_0(1 - x_i^0)}} \times \prod_{j=1}^n \frac{x_j^0}{1 - x_j^0}.$$
 (36)

Ainsi, pour $i_1 \neq i_2$,

$$\frac{1}{x_{i_1}(1-x_{i_1})} = \frac{1}{x_{i_2}(1-x_{i_2})}. (37)$$

Soit

$$\psi: \]0,1[\ \rightarrow \ \mathbb{R}$$

$$t \ \mapsto \ t(1-t)$$

$$(38)$$

. Alors $x_{i_2}^0 = x_{i_1}^0$ ou $1 - x_{i_1}$. Dans le deuxième cas, on a $x_{i_1}^0 + x_{i_2}^0 = 1$ et pour tout $i \notin \{i_1, i_2\}$, $x_i = 0$, ce qui n'est pas car le maximum est strictement positif.

Donc $x_1^0 = \cdots = x_n^0 = \frac{1}{n}$ et donc

$$\sup \left\{ \frac{\prod_{i=1}^{n} x_i}{\prod_{i=1}^{n} (1 - x_i)} \middle| (x_1, \dots, x_n) \in (\mathbb{R}_+)^n, \sum_{i=1}^{n} x_i = 1 \right\} = \left(\frac{1}{n-1}\right)^n.$$
 (39)

Remarque 3. En notant $\alpha_n = \left(\frac{1}{n-1}\right)^n$, on a

$$\alpha_n = e^{-n\ln(n-1)} = e^{-n\left(\ln(n) + \ln\left(1 - \frac{1}{n}\right)\right)} \underset{n \to +\infty}{\sim} \frac{e}{n^n}.$$
 (40)

Solution 7. On pose

$$f^*: \mathbb{R}^2 \to \mathbb{R}$$

$$(r,\theta) \mapsto f(r\cos\theta, r\sin\theta)$$
(41)

 f^{\star} est de classe \mathcal{C}^1 par composition. On a

$$\frac{\partial f^*}{\partial r} = \frac{\partial f}{\partial x}\cos(\theta) + \frac{\partial f}{\partial y}\sin(\theta),
\frac{\partial f^*}{\partial \theta} = \frac{\partial f}{\partial x}(-r\sin\theta) + \frac{\partial f}{\partial y}r\cos\theta.$$
(42)

Ainsi, $r\frac{\partial f^{\star}}{\partial r}=r\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}.$ En reportant, on a donc

$$r\frac{\partial f^*}{\partial r} + r^2 = 0. (43)$$

Pour r>0, on a $\frac{\partial f^{\star}}{\partial r}=-r$, encore vrai pour $r\geqslant 0$ par continuité de $\frac{\partial f^{\star}}{\partial r}$. Ainsi,

$$f^{\star}(r,\theta) = -\frac{r^2}{2} + g(\theta), \tag{44}$$

avec g de classe \mathcal{C}^1 .

Solution 8.

1. Pour tout $k \in \mathbb{N}$, $\text{Tr}(M^k)$ est un polynomiale en coefficients de M. Soit $(M, H) \in \mathcal{M}_n(\mathbb{R})^2$, formons

$$\varphi: \mathbb{R} \to \mathbb{R}^n$$

$$t \mapsto f(M+tH)$$

$$(45)$$

Soit $k \in \mathbb{N}$, $\text{Tr}((M+tH)^k)$ est un polynôme, et la dérivée en 0 est le terme en t. Ce coefficient vaut

$$\sum_{i=1}^{k} \text{Tr}(M^{i-1}HM^{k-i}) = k \, \text{Tr}(M^{k-1}H). \tag{46}$$

Donc $df_M(H) = \varphi'(0) = (\operatorname{Tr}(H), \dots, n \operatorname{Tr}(M^{n-1}H)).$

2. On a $df_M \in \mathcal{L}(M_n(\mathbb{R}), \mathbb{R}^n)$. D'après le théorème du rang, on a $\operatorname{rg}(df_M) = n^2 - \dim(\ker(df_M))$. Or

$$\ker(df_M) = \left\{ H \in \mathcal{M}_n(\mathbb{R}) \middle| \operatorname{Tr}(H) = \operatorname{Tr}(MH) = \cdots = \operatorname{Tr}(M^{n-1}H) = 0 \right\}, \tag{47}$$

$$= \{ H \in \mathcal{M}_n(\mathbb{R}) | \forall P \in \mathbb{R}_{n-1}[X], \operatorname{Tr}(P(M)H) = 0 \}.$$
(48)

D'après le théorème de Cayley-Hamilton, pour tout $A \in \mathbb{R}[X]$, il existe $P \in \mathbb{R}_{n-1}[X]$ tel que A(M) = P(M) où P est le reste de la division euclidienne de A par χ_M . Ainsi,

$$\ker(df_M) = \{ H \in \mathcal{M}_n(\mathbb{R}) | \forall P \in \mathbb{R}[X], \operatorname{Tr}(P(M)H) = 0 \}.$$
(49)

Or $(A,B) \mapsto \operatorname{Tr}(A^\mathsf{T} B)$ est un produit scalaire, donc

$$\ker(df_M) = \left\{ H \in \mathcal{M}_n(\mathbb{R}) \middle| \forall P \in \mathbb{R}[X], (\underbrace{P(M)^\mathsf{T}}_{P(M^\mathsf{T})} | H) = 0 \right\} = \mathbb{R}[M^\mathsf{T}]^\perp. \tag{50}$$

Comme dim($\mathbb{R}[M^{\mathsf{T}}]$) = deg $\Pi_{M^{\mathsf{T}}}$ =. Ainsi, $\operatorname{rg}(df_M)$ = deg Π_M .

3. A priori, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $\Pi_M \mid \chi_M$ et

$$C = \{ M \in \mathcal{M}_n(\mathbb{R}) | \deg \Pi_M = n \} = \{ M \in \mathcal{M}_n(\mathbb{R}) | \operatorname{rg}(df_M) = n \}.$$
 (51)

Lemme 1. Si rg(A) = p, il existe $\alpha > 0$ tel que pour tout $M \in B(A, \alpha)$, $rg(M) \ge p$.

Preuve du lemme 1. Il existe une sous-matrice carrée de taille p inversible extraite de A.

Soit $M_0 \in C$, $\operatorname{rg}(df_{M_0}) = n$, on applique le lemme à $\operatorname{mat}(df_{M_0}, B, B')$ où B est la base de $\mathcal{M}_n(\mathbb{R})$ et B' est la base de \mathbb{R}^n . f étant C^1 , $M \mapsto df_M$ est continue et il existe α tel que si $\|M - M_0\| \leq \alpha$, alors $\operatorname{rg}(df_M) \geq n$. Or $df_M \colon \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}^n$, donc $\operatorname{rg}(df_M) \leq n$ et $B(M_0, \alpha) \subset C$. Donc C est ouvert.

Solution 9. On forme

$$f^*: \mathbb{R}^* \times [-\pi, \pi] \left\{ -\frac{\pi}{2}, \frac{\pi}{2} \right\} \to \mathbb{R}$$

$$(r, \theta) \mapsto f(r \cos \theta, r \sin \theta)$$
(52)

On a

$$\frac{\partial f^{\star}}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta,
\frac{\partial f^{\star}}{\partial \theta} = \frac{\partial f}{\partial x} (-r \sin \theta) + \frac{\partial f}{\partial y} r \cos \theta.$$
(53)

Donc $r\frac{\partial f^*}{\partial r} = x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$. En reportant, on a

$$r\frac{\partial f^{\star}}{\partial r} = \frac{1}{\cos^2 \theta r^2},\tag{54}$$

donc $\frac{\partial f^*}{\partial r} = \frac{1}{r^3 \cos^2 \theta}$ en intégrant par rapport à r (θ constant). Ainsi,

$$f^{\star}(r,\theta) = -\frac{1}{2r^2 \cos^2 \theta} + g(\theta), \tag{55}$$

avec g de classe \mathcal{C}^1 . Pour $(x,y) \in \mathbb{R}^* \times \mathbb{R} \setminus \{(x,0) | x \leq 0\}$, on a

$$\theta = 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right). \tag{56}$$

Donc

$$f(x,y) = -\frac{1}{2x^2} + h\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right),\tag{57}$$

avec h de classe \mathcal{C}^1 .

Solution 10.

1. Par convexité de f, pour tout $t \in [0, 1]$,

$$f(ty + (1 - t)x) \leq tf(y) + (1 - t)f(x),$$

$$f(x + (t(y - x))) \leq f(x) + t(f(y) - f(x)).$$
(58)

On a $df_x(y-x) = \lim_{t\to 0} \frac{f(x+t(y-x))-f(x)}{t}$, or pout tout $t\in]0,1]$, on a

$$\frac{f(x+t(y-x))-f(x)}{t} \leqslant f(y)-f(x). \tag{59}$$

Donc $df_x(y-x) \leq f(y) - f(x)$.

- 2. Si x est point critique de f, on a $df_x = 0$. Donc pour tout $y \in U$, $f(y) \ge f(x)$ donc f présente un minimum absolu. La réciproque est vraie car U est ouvert.
- 3. soit $(x,y) \in E^2$, soit $t \in [0,1]$. On a $f(x) = f(y) = \min_{U} f$. Par convexité de f, on a

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) = f(y), \tag{60}$$

donc $f(tx + (1-t)y) = f(y) = \min_{U} f$.

4. On a $E = \{x \in \mathbb{R}^n | df_x = 0\} = df^{-1}(\{0\})$. E est fermé car df est continue (application linéaire en dimension finie).

Solution 11. Si f est α -homogène, soit $g(t) = f(tx) = t^{\alpha} f(x)$. On a

$$f'(t) = \alpha t^{\alpha - 1} f(x) = df_{tx}(x) = \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}(tx_1, \dots, tx_n).$$
 (61)

Pour t = 1, on a le résultat.

Réciproquement, soient $g_1(t) = f(tx)$ et $g_2(t) = t^{\alpha} f(x)$. On a

$$g'_{1}(t) = \sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}(tx),$$

$$g'_{2}(t) = \alpha t^{\alpha-1} f(x).$$
(62)

Donc $tg_2'(t) = \alpha g_2(t)$ et $tg_1'(t) = \sum_{i=1}^n tx_i \frac{\partial f}{\partial x}(tx) = \alpha f(tx) = \alpha g_1(t)$.

 g_1 et g_2 sont solutions d'une même équation différentiable et $g_1(1) = g_2(1)$ donc $g_1 = g_2$.

Remarque 4.

- Une application linéaire est 1-homogène.
- Un produit scalaire est 2-homogène.
- $-(x,y,z) \rightarrow xy^2 4x^3 + xyz$ est 3-homogène.

Solution 12. f est C^1 sur \mathbb{R}^3 . On a $f(x,x,x) = 3x^2 - x^3 \xrightarrow[x \pm \infty]{} \pm \infty$. X = (x,y,z) est un point critique si et seulement si

$$\frac{\partial f}{\partial x} = 0,
\frac{\partial f}{\partial y} = 0,
\frac{\partial f}{\partial z} = 0,$$
(63)

si et seulement si

$$2x = yz,$$

$$2y = xz,$$

$$2z = xy,$$

$$(64)$$

si et seulement si

$$z = \frac{x^2 z}{4},$$

$$x = \frac{xz^2}{4},$$

$$y = \frac{xz}{2},$$
(65)

si et seulement si z=x=y0 ou $(x,y,z)\in\{(\pm 2,\pm 2,\pm 2)\}$ et $y=\frac{xz}{2}$.

- En (0,0,0), soit X = (x,y,z), soit $X' = \frac{X}{\|X\|_2}$. On a $f(X) = \|X\|_2^2 \|X\|_2^3 x'y'z'$. Or $|x'y'z'| \le 1$ car $\|X'\|_2 = 1$. Donc $f(X) = \|X\|_2^2 + o_{X\to 0} (\|X\|_2^2) \sim \|X\|_2^2$. Donc $f(X) \ge 0 = f(0)$ au voisinage de 0. On a donc un minimum local en 0.
- En (2,2,2), on a

$$f(2+h, 2+k, 2+l) - f(2, 2, 2) = (2+h)^2 + (2+k)^2 + (2+l)^2 - (2+h)(2+k)(2+l) - 4$$

$$=\underbrace{h^{2} + k^{2} + l^{2} - 2hk - 2kl - 2hl}_{q(h,k,l)} - \underbrace{hkl}_{=_{(h,k,l) \to (0,0,0)}} (\|(h,k,l)\|_{2}^{2}).$$
(67)

On a

$$q(h,k,l) = (h,k,l) \underbrace{\begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}}_{A} \begin{pmatrix} h \\ k \\ l \end{pmatrix}.$$
(68)

On a $A=2I_3-\begin{pmatrix}1&1&1\\1&1&1\\1&1&1\end{pmatrix}$ semblable à diag(2,2,-1). Les valeurs propres de A sont de

signes opposés donc q(h,k,l) change de signe donc f admet un point col en (2,2,2): pas d'extremum. Par exemple, $q(h,0,0)=h^2>0$ et $q(h,h,h)=-3h^2<0$ pour $h\neq 0$.