

Je suis capable de :	Je m'évalue
Décrire la continuité entre l'infiniment petit et l'infiniment grand et de montrer que	
l'échelle humaine se situe entre ces deux extrêmes.	
Aborder les différentes unités de distances et savoir les convertir : du km à l'année-	
lumière. déterminer un ordre de grandeur. Utilisation des puissances de 10.	
Décrire la structure de l'univers et du système solaire	
Mesurer, calculer et convertir les unités des grandeurs liées à la matière.	
Définir un son, ses caractéristiques et propriétés.	
Définir la lumière, ses caractéristiques et propriétés.	
Savoir se repérer sur l'échelle des temps géologiques et utiliser les puissances de 10.	
Comprendre que l'utilisation du son et de la lumière permet d'émettre, de transporter	
un signal donc une information.	
Relier la distance parcourue par un son à la durée de propagation.	

Evaluation formative

Utiliser les puissances de 10 Ordres de grandeurs

Les puissances de 10 permettent de simplifier l'écriture des grands et des petits nombres.

Exemples:

 $10 \times 10 \times 10 = 1000$ devient 103 et se lit « dix puissance 3 » $0,00002 = 2 \times 10^{-5}$ et se lit « 2 fois dix puissance - 5 » $200\ 00 = 2\ x10x10x10x10 = 2x10^4$ se lit « 2 fois dix puissance 4 »

La notation scientifique : pour présenter un calcul, on exprime le résultat en notation scientifique. C'est-à-dire un chiffre compris entre 1 et 10 multiplié par une puissance de 10.

Exemples: $218\ 000 = 2.18 \times 10^5$ $0.045 = 4.5 \times 10^{-2}$

 $231654979 = 2.31 \times 10^{8}$ (on arrondit)

$$10^{a+b} = 10^a \times 10^b$$

Règles de calculs puissances de 10 (revoir
$$\frac{10^a}{10^b}$$
 $\frac{10^{a+b}}{10^b} = 10^a \times 10^b$ $10^0 = 1$ $10^{a-b} = \frac{10^a}{10^b}$ $10^{-1} = \frac{1}{10}$

<u>C</u>alculer avec les puissances de 10 et mettre en notation scientifique

$$\frac{1.5 \times 10^{12}}{3.7 \times 10^7} = \frac{1.5}{3.7} \times 10^{12-7} = 0.4 \times 10^5 = 4 \times 10^4$$

$$34.9 \times 10^{-6} \times 12.56 \times 10^{-4} = 34.9 \times 12.56 \times 10^{-6} \times 10^{-4} = 438.3 \times 10^{-10} = 4.38 \times 10^{-8}$$

$$\frac{3,56 \times 10^{-6} \times 1,5 \times 10^{-2}}{3,75 \times 10^{7}} = \frac{3,56 \times 1,5}{3,75} \times 10^{-6-2-7} = 1,424 \times 10^{-15}$$

$$0.9 \times 10^{6} \times 2.86 \times 10^{-4} = 0.9 \times 2.86 \times 10^{6-4} = 2.574 \times 10^{2}$$