1 О вычислении функции

Пусть f - вычисляемая функция, \tilde{f} - ее приближение. Определим следующие функии:

$$\epsilon(x) = \left| f(x) - \tilde{f}(x) \right|$$
 – ошибка приближения $\delta_f(x_1,x_2) = f(x_1) - f(x_2)$

Для GSS, дихотомии и им подобных методов одномерной оптимизации интересен знак δ_f . Поэтому когда мы используем ее приближение, нам достаточно:

$$sign \left(\delta_f(x_1, x_2)\right) = sign \left(\delta_{\tilde{f}}(x_1, x_2)\right)$$

Более сильное условие:

$$\left|\delta_f(x_1, x_2) - \delta_{\tilde{f}}(x_1, x_2)\right| \le \left|\delta_f(x_1, x_2)\right|$$

Но как его достичь?

$$\left|\delta_f(x_1, x_2) - \delta_{\tilde{f}}(x_1, x_2)\right| \le \tag{1}$$

$$\epsilon(x_1) + \epsilon(x_2) \tag{2}$$

Таким образом получаем следующее условие на точность вычисления функции:

$$\epsilon(x_1) + \epsilon(x_2) \le \left| \delta_f(x_1, x_2) \right|$$

Если f – L-липшецева функция, то получаем удобное неравенство:

$$\left| \epsilon(x_1) + \epsilon(x_2) \le L \left| x_1 - x_2 \right| \right|$$

2 О вычислении производных

2.1 В решении на отрезке

Лагранжиан прямой задачи:

$$\Phi(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda_1 g_1(\mathbf{x}) + \lambda_2 g_2(\mathbf{x})$$

Пусть нас интересует производная по λ_2 в точке λ функции $\phi(\lambda) = \min \Phi(\mathbf{x}, \lambda)$ (для упрощения записи ϕ'). Мы хотим вычислить её приближение $\tilde{\phi}'$ так, чтобы знак совпадал. Для этого достаточно:

$$|\phi' - \tilde{\phi}'| \le |\tilde{\phi}'|$$

$$|g_2(\mathbf{x}^*) - g_2(\mathbf{x})| \le |\tilde{\phi}'|$$

Пользуясь липшецевостью g_2 получаем достаточное условие:

$$L_{g_k} \|\mathbf{x}^* - \mathbf{x}\| \le |g_k(\mathbf{x})|$$

Аналогично для производной по λ_1 .

2.2 B current point on segment

У нас есть условие на точность решения на отрезке:

$$\|\lambda_1 - \lambda_2\| = \delta = \leq \frac{\phi'(\lambda_{cur})}{L} = \epsilon,$$

где $\lambda_c ur \in [\lambda_1, \lambda_2]$ -текущее приближение решения, производная берется по соответствующей координате в зависимости от отрезка. Пока что выбирается как центр отрезка.

По другому это условие выглядит так:

$$\delta - \epsilon < 0$$

Мы можем вычислить ϵ приблизительно и получить $\tilde{\epsilon}$. По этому приближению мы должны проверить выше написанное условие, т.е. знаки выражений $\delta - \epsilon$ и $\delta - \tilde{\epsilon}$ должны совпадать. Для этого достаточно:

$$\left| (\delta - \epsilon) - (\delta - \tilde{\epsilon}) \right| \le |\delta - \tilde{\epsilon}|$$

$$|\epsilon - \tilde{\epsilon}| \le |\delta - \tilde{\epsilon}|$$

С учетом того, что для двойственных задач $\phi'_{\lambda_k}(\lambda) = g_k\left(\mathbf{x}(\lambda)\right)$ и если g_k L_{g_k} -липшецева получаем следующее достаточное условие:

$$\left[L_{g_k} \| \mathbf{x}^* - \mathbf{x} \| \right] \le \left| |\lambda_1 - \lambda_2| - \frac{g_k(\mathbf{x})}{L} \right|$$