Hypothesis Testing Practicals

10/2/2022

Spring 2022

DV: Anxiety level

IV: Exercise

Do people who exercise have lower levels of anxiety?

Does exercise lower anxiety?

Within group/Repeated measures (crossover design)

- Participant fatigue
- Longer experimental duration
- Carry over effects

Mixed design
Between groups & Within groups

DV: Anxiety level

IV: Exercise

People who exercise have lower levels of anxiety

- Exercise lowers anxiety
- People who exercise have lower levels of anxiety
- A class teacher observes and records the behaviour of her students when they exercise and when they don't exercise

FAKE

Anxiety levels

	Exercise	No -Exerci
	20	24
	23	35
	25	41
	30	21
	35	38
	29	23
	37	37
	24	44
	29	32
	31	33
	26	34
	28	42
Mean	28.08333	33.66667
SD	4.680782	7.261007

Normality?

Kolmogorov–Smirnov test (n>=50)

OR

Shapiro–Wilk test (n<50)

The null hypothesis for normality \rightarrow data is normally distributed

Parametric vs non-parametric

T-Test Example

People who exercise have lower levels of anxiety

Anxiety levels

	Exercise	No -Exerci
	20	24
	23	35
	25	41
	30	21
	35	38
	29	23
	37	37
	24	44
	29	32
	31	33
	26	34
	28	42
Mean	28.08333	33.66667
SD	4.680782	7.261007

	Exercise	No -Exercise
Mean	28.08333333	33.66666667
Variance	23.90151515	57.51515152
Observations	12	12
Pooled Variance	40.70833333	
Hypothesized Mean Diff	0	
df	22	
t Stat	-2.143519905	
P(T<=t) one-tail	0.021690748	
t Critical one-tail	1.717144374	
P(T<=t) two-tail	0.043381495	
t Critical two-tail	2.073873068	

$$t=rac{ar{x}_1 - ar{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

 $ar{x}_1$: Mean value of the first group

 $ar{x}_2$: Mean value of the second group

 $n_1:$ Size of the first group

 n_2 : Size of the second group

 $oldsymbol{s_1}$: Standard deviation of the first group $oldsymbol{s_2}$: Standard deviation of the second group

Cohen's Effect size = (Meantreatment - Meancontrol) Standard deviation pooled

Cohen's d = (33.66 - 28.083) / 6.107782 =**0.913097**

Cohen's d effect size interpretation

< 0.1 = trivial effect

0.1 - 0.3 = small effect

0.3 - 0.5 = moderate effect

> 0.5 = large difference effect

t(df=22) = -2.14, p=0.04, d = 0.9

Critical value $\alpha = 0.05$

df= 22

Statistic	df	Explanation	
ANOVA: Mean Sum of Squares Within (MSW)	N - k	N: total # of all data	
ANOVA: Mean Sum of Squares Between (MSB)	k - 1	points k: # of groups	
χ^2	n - 1	n: Sample Size	
χ^2 test for Goodness of Fit	n - 1	k: # of categories	
χ^2 test for Independence	(r-1)(c-1)	r: # of rows, c: #columns	
χ² test for Variance	n - 1	n: Sample Size	
F	n ₁ - 1 and n ₂ - 1	n ₁ and n ₂ : Sizes of the 2 Samples	
t	n - 1	n: Sample Size	
1-Sample t-test, and Paired t-test	n - 1		
2 (Independent)-Sample t-test	n ₁ + n ₂ - 2	n ₁ and n ₂ : Sizes of the 2 Samples	

Table T Critical Values of the	t Distribution	
--------------------------------	----------------	--

df	One-Tail = .4 Two-Tail = .8	.25 .5	.1 .2	.05 .1	.025 .05	.01 .02	.005 .01	.0025 .005	.001 .002	.0005 .001
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	14.089	22.327	31.598
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.214	12.92
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.61
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.86
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.95
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.40
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.04
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.78
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.58
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.43
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.31
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.22
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.14
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.07
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.01
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.96
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.92
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.88
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.85
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.81
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.79
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.76
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.74
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.72
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.70
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.69
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.67
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.65
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.64
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.55
60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.46
20	0.254	0.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.37
∞	0.253	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.29

Source: From Biometrika Tables for Statisticians, Vol. 1, Third Edition, edited by E. S. Pearson and H. O. Hartley, 1966, p. 146. Reprinted by permission of the Biometrika Trustees.

Independent Samples T-Test

t-value

$$t = rac{ar{x}_1 - ar{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

 $ar{x}_1$: Mean value of the first group

 $ar{x}_2$: Mean value of the second group

 n_1 : Size of the first group

 n_2 : Size of the second group

s₁: Standard deviation of the first group

 $oldsymbol{s_2}$: Standard deviation of the second group

For equal sample size

$$df = (n1 + n2 - 2)$$

For unequal sample size

degrees of freedom, df =
$$\frac{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1} - 1} \left(\frac{s_{1}^{2}}{n_{1}}\right)^{2} + \frac{1}{n_{2} - 1} \left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}$$

Cohen's Effect size = (Meantreatment – Meancontrol)

Standard deviation pooled

Paired Samples T-Test

$t = \frac{\sum (X_{\text{pre}} - X_{\text{post}})}{SE_{\text{diff}}}$

$$t = \frac{\overline{d}}{\sqrt{s^2/n}}$$

Independent Samples T-Test

t-value

$$t = rac{ar{x}_1 - ar{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

 $ar{x}_1:$ Mean value of the first group

 $ar{x}_2$: Mean value of the second group

 $n_1:$ Size of the first group

 n_2 : Size of the second group

 $oldsymbol{s_1}$: Standard deviation of the first group $oldsymbol{s_2}$: Standard deviation of the second group

	Variable 1	Variable 2	
Mean	28.0833333	33.6666667	
Variance	23.9015152	57.5151515	
Observations	12	12	
Pearson Corr	0.06701871		
Hypothesized	0		
df	11		
t Stat	-2.2120964		
P(T<=t) one-1	0.02451926		
t Critical one	1.79588482		
P(T<=t) two-1	0.04903853		
t Critical two	2.20098516		

t-Test: Paired Two Sample for Means

DV: Anxiety level

IV: Exercise

2 Independent Variables - 2 levels each

Exercise – exercise vs control

Time of Day – morning vs evening

Two factorial design

Exercise-morning	Control-morning
Exercise-evening	Control-evening

2x2 factorial design

2 Independent Variables – different levels

Exercise – 30mins, 1 hour, 2 hours

Time of Day – morning vs evening

Two factorial design

30 mins-morning	1 hr-morning	2 hrs - morning
30 mins-evening	1 hr-evening	2 hrs - evening

3x2 factorial design

