Chapter 2

Physical Structure of CMOS Integrated Circuits

何宗易

Tsung-Yi Ho
tyho@cs.nthu.edu.tw
http://theta.cs.nthu.edu.tw
Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan

References

- John P. Uyemura, "Introduction to VLSI Circuits and Systems," 2002.
 - Chapter 3
- Neil H. Weste and David M. Harris, "CMOS VLSI Design: A Circuits and Systems Perspective," 2011.
 - Chapter 1

Logical vs. Physical

Logical structure

Physical structure

- Semiconductor
 - Transistors (active elements)
- Conductor
 - Metal (interconnect)
 - Wire
 - Via (Via:線跟線之間換層)
- Insulator
 - Separators

Silicon substrate, insulator, and two wires (3D view)

Side view

Top view

Embargo until 8-11-14, 9 am PDT

Interconnects

22 nm Process

80 nm minimum pitch

14 nm Process

52 nm (0.65x) minimum pitch

52 nm Interconnect Pitch Provides
Better-than-normal Interconnect Scaling

- Signal transfer speed is affected by the interconnect resistance and capacitance.
 - Resistance ↑ => Signal delay ↑
 - Capacitance ↑ => Signal delay ↑

Resistance

$$- R = \rho \frac{l}{A} = \frac{\rho}{t} \cdot \frac{l}{w} = R_s \cdot \frac{l}{w}$$

- R_s: sheet resistance (constant)
- ρ : resistivity (= $\frac{1}{\sigma}$, σ : conductivity)
 - Material property (constant)
 - Unit: $\Omega \cdot m$
- t: thickess (constant)
- w: width (variable)
- l: length (variable)

Example

 $- \rho: 17.1n\Omega \cdot m, t: 0.13\mu m, w: 65nm, l: 1000\mu m$

•
$$R = (17.1 \cdot 10^{-9} \Omega \cdot m) \cdot \frac{1000 \cdot 10^{-6} m}{(0.13 \cdot 10^{-6} m) \cdot (65 \cdot 10^{-9} m)} = 2023 \Omega$$

(Capacitance by Coupling 平行板效應)

Capacitance

$$-C = \varepsilon \frac{t \cdot l}{s}$$

- ε: permittivity
 - Material property (constant)
 - Unit: F/m
- s: distance between two conductors

Example

 $- \varepsilon: 1.8 \cdot 10^{-11} F/m, t: 0.13 \mu m, s: 65 nm, l: 1000 \mu m$

•
$$C = (1.8 \cdot 10^{-11} F/m) \cdot \frac{(0.13 \cdot 10^{-6} m) \cdot (1000 \cdot 10^{-6} m)}{65 \cdot 10^{-9} m} = 3.6 \cdot 10^{-14} F = 36 f F$$

=> Capacitance要提升,距離越近,overlapping的面積越高越好

Elmore Delay: Nonlinear Delay Model

(transistor跟wire間互相干擾產生的)

- Parasitic resistance and capacitance dominate delay in deep submicron wires.
- Resistor r_i must charge all downstream capacitors.
- Elmore delay: Delay can be approximated as sum of sections: resistance * downstream capacitance.

$$\delta = \sum_{i=1}^{n} \left(r_i \sum_{k=i}^{n} c_k \right) = \sum_{i=1}^{n} r(n-i+1)c = \frac{n(n+1)}{2}rc.$$

- Delay grows as square of wire length.
- Cannot apply to the delay with inductance consideration, which is important in high-performance design.

Wire Models

 Lumped circuit approximations for distributed RC lines: π-model (most popular), T-model, L-model.

π-model: If no capacitive loads for C and D,

Example Elmore Delay Computation

- 0.18 μm technology: unit resistance \hat{r} = 0.075 Ω / μm ; unit capacitance \hat{c} = 0.118 $fF/\mu m$.
 - Assume $C_C = 2$ fF, $C_D = 4$ fF.

$$=\delta_{BC} = r_{BC} (c_{BC}/2 + C_C) = 0.075 \times 150 (17.7/2 + 2) = 120 \text{ fs}$$

$$-\delta_{BD} = r_{BD} (c_{BD} / 2 + C_D) = 0.075 \times 200 (23.6/2 + 4) = 240 \text{ fs}$$

- $\delta_{AB} = r_{AB} (c_{AB}/2 + C_B) = 0.075 \times 100 (11.8/2 + 17.7 + 2 + 23.6 + 4) = 400 \text{ fs}$
- Critical path delay: $\delta_{AB} + \delta_{BD} = 640$ fs.

Delay Calculation for a Clock Tree

- Let T be an RC tree with points $P = \{p_1, p_2, ..., p_n\}$, c_i the capacitance of p_i , r_i the resistance of the edge between p_i and its immediate predecessor.
- The subtree capacitance at node i is given as $C_i = c_i + \sum_{j \in S_i} C_j$, where S_i is the set of all the successors of p_i .
- Let $\delta(i, j)$ be the path between p_i and p_j , excluding p_i and including p_j .
- The delay between two nodes i and j is $t_{ij} = \sum_{j \in \delta(i, j)} r_j C_j$,

• $t_{03} = r_0 (c_1 + c_2 + c_3 + c_4 + c_1^s + c_2^s + c_3^s) + r_2(c_2/2 + c_3 + c_4 + c_2^s + c_3^s) + r_4(c_4/2 + c_3^s).$

=>建一個tree, bottom up不斷從兩個leaf node找到一個tapping point往上長(每個分支都要找到

Exact Zero Skew Algorithm (1/2)

tapping point)

到兩個C1, C2的時間要

一樣. 所以要確保從哪個

D-flip flops的時間要一樣)

點進來到的時間會一樣

- Tsay, "Exact zero skew algorithm," ICCAD-91.
- To ensure the delay from the tapping point to leaf nodes of subtrees T_1 and T_2 being equal, it requires that => clock從某個點進來後

$$r_1 (c_1/2 + C_1) + t_1 = r_2 (c_2/2 + C_2) + t_2.$$

Solving the above equation, we have

$$x = rac{(t_2-t_1)+lpha l\left(C_2+rac{eta l}{2}
ight)}{lpha l(eta l+C_1+C_2)}, ext{ (ex. clock進來到兩個D-flip flops的時間要一$$

where α and β are the per unit values of resistance and capacitance, I the length of the interconnecting wire, $r_1 = \alpha x I$, $c_1 = \beta x I$, $r_2 = \alpha (1 - x) I$, $c_2 = \beta (1 - x) I$

Zero-Skew Computation (2/2)

- Balance delays: $r_1(c_1/2 + C_1) + t_1 = r_2(c_2/2 + C_2) + t_2$.
- Compute tapping points: $x = \frac{(t_2 t_1) + \alpha l \left(C_2 + \frac{\beta l}{2}\right)}{\alpha l (\beta l + C_1 + C_2)}$, α (β): per unit values of resistance (capacitance); l: length of the wire; $r_1 = \alpha x l$, $c_1 = \beta x l$; $r_2 = \alpha (1 x) l$, $c_2 = \beta (1 x) l$.
- If $x \notin [0, 1]$, we need **snaking** to find the tapping point.
- Exp: $\alpha = 0.1 \Omega$ /unit, $\beta = 0.2 F/unit$ (tapping points: E, F, G)

Buffer Insertion Problem

(加速用途, or 減速)

- Why Buffer Insertion?
 - Main Purpose: For Reducing Clock Phase Delay and Slew Rate

Delay Computation for Buffered Wires

• Wire: α = 0.068 Ω / μ m, β = 0.118 fF/ μ m²; buffer: α ' = 180 Ω / unit size, β = 23.4 fF/unit size; driver resistance R_d = 180 Ω ; unit-sized wire, buffer.

Routing of Clock and Power Nets

- Different from other signal nets, clock and power are special routing problems
 - For clock nets, need to consider clock skew as well as delay
 - For power nets, need to consider current density (IR drop)
- => specialized routers for these nets (IR drop=>壓降)
- Automatic tools for ASICs
- Often manually routed and optimized for microprocessors, with help from automatic tools

```
clock skew: clk源到每個端點的時間希望是一樣的如果一樣, skew = 0
如果不一樣, skew = 最大delay - 最小delay
```

Clock Introduction

- For synchronized designs, data transfer between functional elements are synchronized by clock signals
- Clock signal are generated externally (ex: by PLL)
- Clock period equation

$$clock\ period \ge t_d + t_{skew} + t_{su} + t_{ds}$$

t_d: Longest path through combinational logic

t_{skew}: Clock skew

t_{su}: Setup time of the synchronizing elements

t_{ds}: Propagation delay within the synchronizing element

Clock Skew

- Clock skew is the maximum difference in the arrival time of a clock signal at two different components
- Clock skew forces designers to use a large time period between clock pulses
 - This makes the system slower
- Hence, in addition to other objectives, clock skew should be minimized during clock routing

Clock skew = 20 - 9 = 11 units

 $Clock\ skew = 0$

Clock Design Problem

- What are the main concerns for clock design?
- Skew
 - No. 1 concern for clock networks
 - For increased clock frequency, skew may contribute over 10% of the system cycle time
- Power
 - Very important, as clock is a major power consumer!
 - It switches at every clock cycle!
- Noise
 - Clock is often a very strong aggressor (一直switch所以很容易干擾或受干擾)
 - May need shielding
- Delay
 - Not really important
 - But slew rate is important (sharp transition)

The Clock Routing Problem

- Given a source and n sinks
- Connect all sinks to the source by an interconnect network (tree or non-tree) so as to minimize:
 - Clock Skew = $\max_{i,j} |t_i t_j|$
 - Delay = max_i t_i
 - Total wirelength
 - Noise and coupling effect

Clock Design Considerations

- Clock signal is global in nature, clock nets are usually very big
 - Significant interconnect capacitance and resistance
- So what are the techniques?
 - Routing
 - Clock tree versus clock mesh (non-tree or grid)
 - Balance skew and total wire length
 - Buffer insertion
 - Clock buffers to reduce clock skew, delay, and distortion in waveform
 - Wire sizing
 - To further tune the clock tree/mesh

Clock Trees

A path from the clock source to clock sinks

Clock Trees

A path from the clock source to clock sinks

H-Tree Clock Routing

H-tree Algorithm

- Minimize skew by making interconnections to subunits equal in length
 - Regular pattern (只能用在規則情形)
 - The skew is 0 assuming delay is directly proportional to wirelength
 - Is this always the case???
- Can be used when terminals are evenly distributed
 - However, this is never the case in practice (due to blockage, and so on)
 - So strict (pure) H-trees are rarely used
 - However, still popular for top-level clock network design
 - Cons: too costly to be used everywhere

Can you think of another shape if non-rectilinear wires are allowed?

Method of Means and Medians (MMM)

- Applicable when the clock terminals are arbitrarily arranged
- Follows a strategy very similar to H-Tree
 - Recursively partition the terminals into two sets of equal size (median)
 - Then, connect the <u>center of mass</u> of the whole circuit to the centers of mass of the two sub-circuits (mean)
- Clock skew is only minimized heuristically
 - The resulting tree may not have zero-skew

An Example of MMM

=>recursive去partition, 每次切都算質心

centers of mass

=>一開始第一切影響很大

同區兩個點連起來 再跟其他區連

Geometric Matching Algorithm (GMA)

- MMM is a top-down algorithm, but GMA is a bottom-up algorithm
- Geometric matching of *n* endpoints:
 - Construct a set of n/2 line segments connecting n endpoints pairwise
 - No two line segments share an endpoint
 - The cost is the sum of the edge lengths
- The basic idea is to find a minimum cost geometric matching recursively

An Example of GMA

Apply geometric matching recursively

對每個點找最近且沒被 連起來的

Post-processing

Can give zero skew clock tree

An Exact Zero Skew Algorithm

- ICCAD 1991 and TCAD 1993, Ren-Song Tsay
- A classic paper to manage clock skew
- Use Elmore delay model to compute delay
- Guarantee zero skew
 - Can easily to extended for zero skew or bounded skew
 - Can you think of a method to do it?
- Try to minimize wire length, but not done very well
 - Lots of follow up works to minimize total wire length while maintaining zero skew
 - DME and its extensions

Deferred Merge Embedding

- As its name implies, DME defers the merging as late as possible, to make sure minimal wire length cost for merging
- Independently proposed by several groups
 - Edahiro, NEC Res Dev, 1991
 - Chao et al, DAC'92
 - Boese and Kahng, ASIC'92
- DME needs an abstract routing topology as the input
- It has a bottom-up phase followed by a top-down process

DME Zero-Skew Algorithm (1/2)

- Use Deferred-Merge Embedding (DME) algorithm
- Given a set of clock pins and an abstract topology G
 - Bottom-up: Get the possible locations of internal nodes. (building merging segments)
 - 2. Top-down: Determine the location points of internal nodes.

DME Zero-Skew Algorithm(2/2)

- Merging segment:
 - Merging segment of v, denoted as ms_v
 - With slope +1 or -1. Since the Manhattan circle is a square rotated 45°

Example:

A merging segment which is the intersection of two Manhattan circles, both of radius $d(l_{si},l_{si})/2$, that are centered at l_{si} and l_{si} .

Some Thoughts/Trend

- Clock skew scheduling together with clock tree synthesis
 - Schedule the timing slack of a circuit to the individual registers for optimal performance and as a second criteria to increase the robustness of the implementation w.r.t. process variation
- Variability is a major nanometer concern
- Non-tree clock networks for variation-tolerance
 - How to analyze it?
 - The task is to investigate a combined optimization such that clock skew variability is reduced with minimum wirelength penalty

Non-tree: Spine & Mesh

Applied in *Pentium* processor [Kurd et. al. JSSC'01]

Applied in IBM microprocessor

Very effective, huge wire

Non-tree: Link Perspective

- Non-tree = tree + links
- How to select link pairs is the key problem
- Link = link_capacitors + link_resistor
- Key issue: find the best links that can help the skew variation reduction the most!

MOSFETs – Physical Shape

What a MOSFET looks like at the physical level

- Atomic density of a silicon crystal
 - $-N_{Si}\approx 5\times 10^{22}$
- Intrinsic carrier density
 - # free electrons (due to thermal excitations)
 - $n_i \approx 1.45 \times 10^{10}/cm^3$ (at room temperature)
- Mass action law when no current flows in pure silicon
 - $-n=p=n_i$
 - $-np=n_i^2$
 - n: # free electrons
 - p: # free holes

Introduction of Integrated Circuit Design (Fall 2021)

Doping

- Add impurity atoms (dopants) to enhance # electrons or # holes.
- n-type material: if more electrons are added (donors).
 - N_d : # donors $(10^{16} \sim 10^{19}/cm^3)$
 - # free electrons (majority carriers): $n_n \approx N_d/cm^3$
 - # holes (minority carriers): $p_n \approx \frac{n_i^2}{N_d}/cm^3$
 - $n_n \gg p_n$
- p-type material: if more holes are added (acceptors).
 - N_a : # acceptors $(10^{14} \sim 10^{19}/cm^3)$
 - # holes (majority carriers): $p_p \approx N_a/cm^3$
 - # free electrons (minority carriers): $n_p \approx \frac{n_i^2}{N_a}/cm^3$
 - $p_p \gg n_p$

- Conductivity
 - $\sigma = q(\mu_n \cdot n + \mu_p \cdot p)$
 - q: The charge of an electron $(-1.602 \cdot 10^{-19})$
 - μ_n : Electron mobility $(1360cm^2/V \cdot s)$
 - μ_p : Hole mobility $(480cm^2/V \cdot s)$
- Intrinsic silicon
 - $\sigma \approx 4.27 \cdot 10^{-6}$
 - $-\rho \approx 2.34 \cdot 10^5$
- Quartz glass (insulator)
 - $-\rho \approx 10^{12}$
- Mobility
 - $-\mu_n > \mu_p$
- Impurity scattering
 - Adding a large number of impurity atoms reduces the mobility.

Zero Bias

PN Junction

MOSFETs

p+: heavily doped with acceptors

^{*} Contacts are used to connect source/drain/gate to metal 1.

- t_{ox}: oxide thickness
 - Typically a few nm
- Gate material
 - Polysilicon (called poly)
 - Metal
- Oxide capacitance (Gate(M) Insulator(O) Semiconductor(S))

$$- C_G = c_{ox} \cdot A_G$$

•
$$c_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$
: unit gate capacitance
- $\varepsilon_{ox} \approx 3.9\varepsilon_0 = 3.9 \cdot 8.854 \cdot 10^{-12} F/m$

- A_G : gate area (= $L \cdot W$)
- Example

•
$$t_{ox} = 8nm, L = 45nm, W = 70nm$$

- $C_G \approx 0.013fF$

MOSFETs – Device Physics (nFET)

- Current
 - Channel charge: $Q_c = -C_G(V_G V_{Tn})$
 - No charge forms until V_G reaches V_{Tn}.
 - Current flowing the channel: $I = \frac{|Q_c|}{\tau_t}$
 - $\tau_t = \frac{L}{v}$: channel transit time (the average time needed for an electron to move from S to D).

•
$$v = \mu_n \cdot E = \mu_n \cdot \frac{v_{DS}}{L}$$

$$- \boxed{I \approx \mu_n \cdot c_{ox} \cdot \left(\frac{W}{L}\right) \cdot (V_G - V_{Tn}) \cdot V_{DS}}$$

MOSFETs – Device Physics (nFET)

Current through the channel

$$- I \approx \mu_n \cdot c_{ox} \cdot \left(\frac{W}{L}\right) \cdot (V_G - V_{Tn}) \cdot V_{DS} = \beta_n \cdot (V_G - V_{Tn}) \cdot V_{DS}$$

- $\beta_n = \mu_n \cdot c_{ox} \cdot \left(\frac{W}{L}\right)$: device transconductance
- μ_n , c_{ox} , V_{Tn} : constants
- L, W: variables (designers can decide)
- V_G, V_{DS} : variables (but either 0 or V_{DD})

Channel resistance

$$- R_n = \frac{V_{DS}}{I} = \frac{1}{\beta_n \cdot (V_G - V_{Tn})}$$

MOSFETs – Device Physics (pFET)

- Current
 - Channel charge: $Q_c = C_G(V_G |V_{Tp}|)$
 - No charge forms until V_G reaches $V_{DD} |V_{Tp}|$.
 - Current flowing the channel: $I = \frac{|Q_c|}{\tau_t}$
 - $\tau_t = \frac{L}{v}$: channel transit time (the average time needed for an electron to move from D to S).

•
$$v = \mu_p \cdot E = \mu_p \cdot \frac{V_{SD}}{L}$$

$$- \left| I \approx \mu_p \cdot c_{ox} \cdot \left(\frac{w}{L} \right) \cdot \left(V_G - \left| V_{Tp} \right| \right) \cdot V_{SD} \right|$$

Current through the channel

$$- I \approx \mu_p \cdot c_{ox} \cdot \left(\frac{W}{L}\right) \cdot \left(V_G - |V_{Tp}|\right) \cdot V_{SD} = \beta_p \cdot \left(V_G - |V_{Tp}|\right) \cdot V_{SD}$$

- $\beta_p = \mu_p \cdot c_{ox} \cdot \left(\frac{W}{L}\right)$: device transconductance
- μ_p , c_{ox} , V_{Tp} : constants
- L, W: variables (designers can decide)
- V_G , V_{SD} : variables (but either 0 or V_{DD})
- Channel resistance

$$- R_p = \frac{V_{SD}}{I} = \frac{1}{\beta_p \cdot (V_G - |V_{Tp}|)}$$

- Charging the gate requires current flows.
 - $i = C_G \frac{dV_G}{dt}$
 - The transistor itself has a signal delay.
 - If C_G is large, the delay goes up.
- Energy

$$- E = \int P dt = \int (V \cdot I) dt = \int \left(V \cdot C \frac{dV}{dt} \right) dt = \frac{1}{2} CV^2$$

$$-E = \frac{1}{2} C_G V_{DD}^2$$

Driving a transistor consumes energy (power dissipation).

Driving the Gate Capacitance

- The value of the capacitance C_G (Q=C_GV_G) determine the amount of charge necessary to charge the voltage, so a large capacitance implies a long delay.
- Both the energy stored in a capacitor and the power dissipated is E_e = 1/2C_GVdd²
- Resistors dissipates power by changing it into heat.
- Charge and discharge will be 2*E_e=C_GVdd²

Driving the Gate Capacitance

- Computation causes switching
- Switching delay are due to the physical characteristics of the devices and interconnect.
 - Understand the nature of switching for fast circuit

 Every switching event requires energy transfer in the circuit. This implies that power dissipation.

Metal interconnect layer

- Modern process allow five or more metal interconnect layers to ease the problem of massive wiring in complex circuits
 - Metal layers are electrically <u>isolated</u> from each other.
 - A hole called contact cut is etched in the oxide.
 - Electrical contact requires <u>contact</u> cuts and <u>vias</u>

Figure 3.25 Metal interconnect layers

Metal interconnect layers

- Metal to metal: via
- Metal to the gate: gate contact
- Metal to drain/source: active contact

Electromigration

Figure 4.4 Visualization of electromigration effects in aluminum⁽¹⁾

Electromigration

- High current flow densities tend to literally move atoms from one end and creates pits called voids
- J= I/A where A is the cross-sectional area.
 Electromigration is controlled by specifying the minimum line width w needed to keep J below a maximum value <u>J</u>_{max}
- Copper has been introduced as a replacement to aluminum. Resistivity is one-half the value of Al.

Questions?