Quantum Computing

Lecture $|10\rangle$:

The Quantum Fourier Transform and Phase Estimation - Shor's Algorithm (I)

Paolo Zuliani

Dipartimento di Informatica

Università di Roma "La Sapienza", Rome, Italy

Agenda

- Multiplying two Polynomials
- Discrete Fourier Transform
- Quantum Fourier Transform
- Quantum Algorithm for Phase Estimation

Multiplying Two Polynomials

Given two (n-1)-degree polynomials $p(x) = \sum_{i=0}^{n-1} a_i x^i$ and $q(x) = \sum_{j=0}^{n-1} b_j x^j$, we want to compute their product:

$$p(x)q(x) = \left(\sum_{i=0}^{n-1} a_i x^i\right) \left(\sum_{j=0}^{n-1} b_j x^j\right) = \sum_{i,j=0}^{n-1} a_i x^{i+j} b_j.$$

We can sum the monomials of the same degree, so:

$$p(x)q(x) = \sum_{k=0}^{2n-2} x^k \left(\sum_{j=0}^k a_j b_{k-j} \right)$$
 $(a_j = b_j = 0 \text{ if } j < 0 \text{ or } j \geqslant n)$

Multiplying Two Polynomials

By adding an extra 0 term to the sum, we can write:

$$p(x)q(x) = \sum_{k=0}^{2n-1} x^k \left(\sum_{j=0}^{k-1} a_j b_{k-j} \right) = \sum_{k=0}^{2n-1} x^k c_k$$

Definition

The **convolution** $c = a \circledast b$ of vectors (a_0, \ldots, a_{n-1}) and (b_0, \ldots, b_{n-1}) is the

2*n*-element vector defined by:

$$c_k = \sum_{j=0}^{k-1} a_j b_{k-j}$$

for k = 0, ..., 2n - 1 and $a_i = b_i = 0$ if i < 0 or $i \ge n$.

The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is defined in general over an arbitrary commutative ring $(R, \cdot, +, 0, 1)$.

Definition

A $w \in R$ is a principal *n*-th root of unity if:

- $\mathbf{0} \quad w \neq 1$
- $w^n = 1$

The powers w^0, w^1, \dots, w^{n-1} are the *n*-th roots of unity.

Usually, we take $w = e^{\frac{2\pi i}{n}}$ for $n \in \mathbb{N}$.

The Discrete Fourier Transform

Let R be a commutative ring and $w \in R$ a principal n-th root of unity.

Define the $n \times n$ matrix A:

$$A_{ij} = w^{i \cdot j}$$
 for $i, j = 0, \dots, n-1$.

Definition

Let $a \in \mathbb{R}^n$ be a vector in a commutative ring \mathbb{R} .

The vector $F(a) = A \cdot a$ is the **Discrete Fourier Transform** (DFT) of a.

Proposition

The inverse DFT is the matrix A^{-1} given by $A_{ii}^{-1} = \frac{1}{n} w^{-i \cdot j}$, for $i, j = 0, \dots, n-1$.

Back to Polynomial Multiplication

The *i*-th element of F(a) is

$$\sum_{k=0}^{n-1} a_k w^{i \cdot k}$$

the DFT of vector a thus converts a polynomial from its coefficient representation to its value representation at the points w^0, w^1, \dots, w^{n-1} .

The inverse DFT just does the opposite!

Theorem (Convolution Theorem)

Let $a = (a_0, \dots, a_{n-1}, 0, \dots, 0) \in R^{2n}$, $b = (b_0, \dots, b_{n-1}, 0, \dots, 0) \in R^{2n}$ two 2n vectors in R, and let F(a), F(b) be their DFT. We have that:

$$a \circledast b = F^{-1}(F(a) \cdot F(b)).$$

The Discrete Fourier Transform

- The DFT is used for integer multiplication, signal processing (*e.g.*, speech recognition, audio compression), etc. It is sometimes easier to study a signal in a different domain (*e.g.*, frequency instead of time).
- When n is a power of 2, the **Fast Fourier Transform** algorithm computes the DFT in $O(n \log n)$ operations instead of the "naive" $O(n^2)$.
- For a deeper and clear treatment of the DFT see Chapter 7 of "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, and Ullman.

The Quantum Fourier Transform

Definition

The QFT maps each basis state $|0\rangle, |1\rangle, \dots, |N-1\rangle$ as follows

$$|j\rangle \xrightarrow{QFT} rac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \mathrm{e}^{2\pi i j k/N} \, |k
angle \qquad ext{(note } i=\sqrt{-1})$$

Equivalently, for a generic vector:

$$\sum_{j=0}^{N-1} x_j \ket{j} \to \sum_{k=0}^{N-1} y_k \ket{k}$$

where
$$y_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{2\pi i j k/N}$$
.

The Quantum Fourier Transform

The QFT maps each basis state $|0\rangle, |1\rangle, \dots, |N-1\rangle$ as follows

$$|j\rangle \xrightarrow{QFT} \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i j k/N} |k\rangle$$

so it can be written as

$$QFT = \sum_{j=0}^{N-1} \left(rac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i j k/N} \ket{k}
ight) ra{j}$$

Proposition

The QFT is a unitary operator, i.e., QFT QFT $^{\dagger} = QFT^{\dagger} QFT = I$. Note that

$$QFT^{\dagger} = \sum_{j=0}^{N-1} \ket{j} \left(rac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \mathrm{e}^{-2\pi i j k/N} ra{k}
ight)$$

The Quantum Fourier Transform: Unitarity

Let us show that the QFT is unitary:

$$QFT^{\dagger} \ QFT = \sum_{j=0}^{N-1} |j\rangle \left(\frac{1}{\sqrt{N}} \sum_{r=0}^{N-1} e^{-2\pi i j r/N} \langle r| \right) \sum_{k=0}^{N-1} \left(\frac{1}{\sqrt{N}} \sum_{s=0}^{N-1} e^{2\pi i s k/N} |s\rangle \right) \langle k|$$

$$= \frac{1}{N} \sum_{j,k=0}^{N-1} |j\rangle \left(\sum_{r=0}^{N-1} e^{-2\pi i j r/N} \langle r| \right) \left(\sum_{s=0}^{N-1} e^{2\pi i s k/N} |s\rangle \right) \langle k|$$

$$= \frac{1}{N} \sum_{j,k=0}^{N-1} |j\rangle \left(\sum_{r,s=0}^{N-1} e^{2\pi i (-j r + k s)/N} \langle r|s\rangle \right) \langle k|$$

$$= \frac{1}{N} \sum_{j,k=0}^{N-1} |j\rangle \left(\sum_{r=0}^{N-1} e^{2\pi i r (k - j)/N} \right) \langle k| \qquad [\text{recall } \langle r|s\rangle = \delta_{rs}]$$

The Quantum Fourier Transform: Unitarity

$$\begin{split} &= \frac{1}{N} \sum_{j,k=0}^{N-1} |j\rangle \left(\sum_{r=0}^{N-1} e^{2\pi i r(k-j)/N} \right) \langle k| \\ &= \frac{1}{N} \sum_{j=k:j=0}^{N-1} |j\rangle \left(\sum_{r=0}^{N-1} 1 \right) \langle k| + \frac{1}{N} \sum_{j,k=0:j\neq k}^{N-1} |j\rangle \left(\sum_{r=0}^{N-1} e^{2\pi i r(k-j)/N} \right) \langle k| \\ &= \sum_{j=0}^{N-1} |j\rangle \langle j| + \frac{1}{N} \sum_{j,k=0:j\neq k}^{N-1} |j\rangle \left(\sum_{r=0}^{N-1} (e^{2\pi i (k-j)/N})^r \right) \langle k| \\ &= I + \frac{1}{N} \sum_{j,k=0:j\neq k}^{N-1} |j\rangle \left(\sum_{r=0}^{N-1} (e^{2\pi i (k-j)/N})^r \right) \langle k| \end{split}$$

The Quantum Fourier Transform: Unitarity

$$= I + \frac{1}{N} \sum_{j,k=0; j \neq k}^{N-1} |j\rangle \left(\sum_{r=0}^{N-1} (e^{2\pi i(k-j)/N})^r \right) \langle k|$$

$$= I + \frac{1}{N} \sum_{j,k=0; j \neq k}^{N-1} |j\rangle \left(\frac{1 - (e^{2\pi i(k-j)/N})^N}{1 - e^{2\pi i(k-j)/N}} \right) \langle k| \qquad [recall \sum_{i=0}^{N-1} \rho^i = \frac{1 - \rho^N}{1 - \rho} \text{ for } \rho \neq 1]$$

$$= I + \frac{1}{N} \sum_{j,k=0; j \neq k}^{N-1} |j\rangle \frac{1 - e^{2\pi i(k-j)}}{1 - e^{2\pi i(k-j)/N}} \langle k| \qquad [\forall j \neq k \in \{0, \dots, N-1\}, e^{2\pi i(k-j)} = 1]$$

$$= I$$

Exercise: prove $QFT \ QFT^{\dagger} = I$.

An **equivalent** QFT definition (assuming $N = 2^n$, hence n qubits):

$$|j_1 \dots j_n\rangle \xrightarrow{QFT} \frac{\left(|0\rangle + e^{2\pi i 0.j_n} |1\rangle\right) \otimes \left(|0\rangle + e^{2\pi i 0.j_{n-1}j_n} |1\rangle\right) \otimes \dots \otimes \left(|0\rangle + e^{2\pi i 0.j_1 \dots j_n} |1\rangle\right)}{2^{n/2}}$$

where j_1, \ldots, j_n are bits, and the **binary fraction**

$$0.j_{l}j_{l+1}j_{m} = \frac{j_{l}}{2} + \frac{j_{l+1}}{4} + \dots + \frac{j_{m}}{2^{m-l+1}}$$

Example:

$$0.1101 = \frac{1}{2} + \frac{1}{4} + \frac{1}{2^4}$$

where H is the usual Hadamard and the controlled- R_k gates are defined on

$$R_k = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{pmatrix}$$

State at depth 1: $\frac{1}{2^{1/2}}(|0\rangle + e^{2\pi i 0.j_1 \cdots j_n}|1\rangle)|j_2 \dots j_n\rangle$

State at depth 2: $\frac{1}{2^{2/2}}(|0\rangle+e^{2\pi i 0.j_1\cdots j_n}|1\rangle)\otimes (|0\rangle+e^{2\pi i 0.j_2\cdots j_n}|1\rangle)|j_3\dots j_n\rangle$

The state at depth n has the correct terms, but in the wrong order! (Remember the tensor product is NOT commutative.)

We need to swap the gubits, which can be done unitarily, of course.

The Quantum Fourier Transform: Complexity

- Quantum circuit has $O(n^2)$ gates. Best classical circuit needs $O(n2^n)$ gates.
- Looks great! Is it?

$$\sum_{i=0}^{N-1} x_j |j\rangle \xrightarrow{QFT} \sum_{k=0}^{N-1} y_k |k\rangle \qquad \text{(where } y_k = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} x_j e^{2\pi i j k/N}\text{)}$$

• We want the DFT coefficients y_k 's, but they are encoded in the amplitudes!

Quantum Computing: Lecture |10>

Phase Estimation

Let's see an application of the QFT.

A previous exercise: the eigenvalues of a unitary operator are complex numbers of **modulus 1**.

This means that any eigenvalue of a unitary operator can be written as $e^{2\pi i \varphi}$ for some real $\varphi \in [0,1]$.

Definition (Phase Estimation Problem)

Let $\lambda = e^{2\pi i \varphi}$ be an eigenvalue of a unitary operator U. Find φ .

This problem can be solved quite easily with the QFT.

Let u be an eigenvector associated to the unknown eigenvalue $e^{2\pi i \varphi}$ of a unitary operator U, i.e., $U|u\rangle = e^{2\pi i \varphi}|u\rangle$. Consider the circuit below for some natural t>0:

A control- U^{2^k} gate conditionally applies $U^{2^k} = \underbrace{U \cdots U}$ to the second qubit register.

zuliani@di.uniroma1.it

The state of the *t* qubits at the end of the QPE circuit is:

$$\frac{1}{2^{t/2}}(\ket{0} + e^{2\pi i 2^{t-1}\varphi}\ket{1}) \otimes (\ket{0} + e^{2\pi i 2^{t-2}\varphi}\ket{1}) \otimes \cdots \otimes (\ket{0} + e^{2\pi i 2^{0}\varphi}\ket{1})) = \frac{1}{2^{t/2}}\sum_{k=0}^{2^{t-1}} e^{2\pi i k\varphi}\ket{k}$$

Quantum Computing: Lecture |10>

Suppose now that φ can be written **exactly** with t bits:

$$\varphi = 0.\varphi_1 \dots \varphi_t$$

Then, the state at the end of the QPE circuit is:

$$rac{1}{2^{t/2}}(\ket{0}+e^{2\pi i 0.arphi_t}\ket{1})\otimes(\ket{0}+e^{2\pi i 0.arphi_{t-1}arphi_t}\ket{1})\otimes\cdots\otimes(\ket{0}+e^{2\pi i 0.arphi_1arphi_2...arphi_t}\ket{1})$$

which is **precisely** the final state of the QFT circuit (after the swap)!

Therefore, we apply the **inverse** QFT circuit at the end of the QPE circuit and then measure to obtain the sought phase $|\varphi_1 \dots \varphi_t\rangle$ with probability 1!

The final quantum circuit for solving phase estimation is thus:

What if φ is not expressible in exactly t bits?

Proposition

To estimate φ with n bits of precision and success probability at least $1 - \epsilon$, it is sufficient to use the QPE circuit with $r = n + \lceil \log(2 + \frac{1}{2\epsilon}) \rceil$ qubits.