内容集锦: 讨论班、课程讲义

张浩

中国科学院大学

目录

1	Not	tes on NK_0 and NK_1 of the groups C_4 and D_4	3
	1.1	Outline	3
	1.2	Preliminaries	3
	1.3	W(R)-module structure	4

Chapter 1

Notes on NK_0 and NK_1 of the groups C_4 and D_4

1.1 Outline

Definition 1.1 (Bass Nil-groups). $NK_n(\mathbb{Z}G) = \ker(K_n(\mathbb{Z}G[x]) \xrightarrow{x \mapsto 0} K_n(\mathbb{Z}G))$

G	$NK_0(\mathbb{Z}G)$	$NK_1(\mathbb{Z}G)$	$NK_2(\mathbb{Z}G)$
C_2	0	0	V
$D_2 = C_2 \times C_2$	V	$\Omega_{\mathbb{F}_2[x]}$	
C_4	V	$\Omega_{\mathbb{F}_2[x]}$	
$D_4 = C_4 \rtimes C_2$			

Note that $D_4 = \langle \sigma, \tau | \sigma^4 = 1, \tau^2 = 1, \tau \sigma \tau = \sigma^{-1} \rangle$.

 $V=x\mathbb{F}_2[x]=\oplus_{i=1}^\infty\mathbb{F}_2x^i=\oplus_{i=1}^\infty\mathbb{Z}/2x^i$: continuous $W(\mathbb{F}_2)$ -module. As an abelian group, it is countable direct sum of copies of $\mathbb{F}_2=\mathbb{Z}/2$ on generators $x^i,i>0$.

 $\Omega_{\mathbb{F}_2[x]} = \mathbb{F}_2[x] dx = \bigoplus_{i=1}^{\infty} \mathbb{F}_2 e^i$, often write e^i stands for $x^{i-1} dx$. As an abelian group, $\Omega_{\mathbb{F}_2[x]} \cong V$. But it has different $W(\mathbb{F}_2)$ -module structure.

1.2 Preliminaries

As additive group $W(\mathbb{Z}) = (1 + x\mathbb{Z}[[x]])^{\times}$, it is a module over the Cartier algebra consisting of row-and-column finite sums $\sum V_m[a_{mn}]F_n$, where [a] are homothety operators for $a \in \mathbb{Z}$.

additional structure Verschiebung operators V_m , Frobenius operators F_m (ring endomorphism), homothety operators [a].

$$[a]: \alpha(x) \mapsto \alpha(ax)$$

$$V_m: \alpha(x) \mapsto \alpha(x^m)$$

$$F_m: \alpha(x) \mapsto \sum_{\zeta^m = 1} \alpha(\zeta x^{\frac{1}{m}})$$

$$F_m: 1 - rx \mapsto 1 - r^m x$$

Remark 1.2. $W(R) \subset Cart(R), \prod_{m=1}^{\infty} (1 - r_m x^m) = \sum_{m=1}^{\infty} V_m[a_m] F_m$. See Dayton& Weibel.

Proposition 1.3. $[1] = V_1 = F_1$: multiplicative identity. There are some identities:

$$V_m V_n = V_{mn}$$

$$F_m F_n = F_{mn}$$

$$F_m V_n = m$$

$$[a] V_m = V_m [a^m]$$

$$F_m [a] = [a^m] F_m$$

$$[a] [b] = [ab]$$

$$if (k, m) = 1, V_m F_k = F_k V_m$$

We call a W(R)-module M continuous if $\forall v \in M$, $\operatorname{ann}_{W(R)}(v)$ is an open ideal in W(R), that is $\exists k$ s.t. $(1-rx)^m * v = 0$ for all $r \in R$ and $m \geqslant k$. Note that if A is an R-module, xA[x] is a continuous W(R)-module but that xA[[x]] is not.

1.3 W(R)-module structure

 $W(\mathbb{F}_2)$ -module structure on $V = x\mathbb{F}_2[x]$ See Dayton& Weibel example 2.6, 2.9.

$$V_m(x^n) = x^{mn}$$

$$F_d(x^n) = \begin{cases} dx^{n/d}, & \text{if } d|n\\ 0, & \text{otherwise} \end{cases}$$

$$[a]x^n = a^n x^n$$

5

 $W(\mathbb{F}_2)$ -module structure on $\Omega_{\mathbb{F}_2[x]} = \mathbb{F}_2[x] dx = \bigoplus_{i=1}^{\infty} \mathbb{F}_2 e^i$ Dayton& Weibel example 2.10

$$V_m(x^{n-1} dx) = mx^{mn-1} dx$$

$$F_d(x^{n-1} dx) = \begin{cases} x^{n/d-1} dx, & \text{if } d | n \\ 0, & \text{otherwise} \end{cases}$$

$$[a]x^{n-1} dx = a^n x^{n-1} dx$$

Remark 1.4. $\Omega_{\mathbb{F}_2[x]}$ is **not** finitely generated as a module over the \mathbb{F}_2 -Cartier algebra or over the subalgebra $W(\mathbb{F}_2)$.