### **Greek characters**

| Name    | Symbol                      | Typical use(s)    |
|---------|-----------------------------|-------------------|
| alpha   | $\alpha$                    | angle, constant   |
| beta    | β                           | angle, constant   |
| gamma   | $\gamma$                    | angle, constant   |
| delta   | $\delta$                    | limit definition  |
| epsilon | $\epsilon$ or $\varepsilon$ | limit definition  |
| theta   | $\theta$ or $\vartheta$     | angle             |
| pi      | $\pi$ or $\pi$              | circular constant |
| phi     | $\phi$ or $\varphi$         | angle, constant   |

### Named sets

| empty set     | Ø            |
|---------------|--------------|
| real numbers  | $\mathbf{R}$ |
| ordered pairs | ${f R}^2$    |

| integers          | $\mathbf{Z}$      |
|-------------------|-------------------|
| positive integers | $\mathbf{Z}_{>0}$ |
| positive reals    | $\mathbf{R}_{>0}$ |

# Set symbols

| Meaning      | Symbol |
|--------------|--------|
| is a member  | €      |
| subset       | C      |
| intersection | $\cap$ |

| Meaning    | Symbol            |
|------------|-------------------|
| union      | U                 |
| complement | $superscript^{C}$ |
| set minus  | \                 |

# Logic symbols

| Meaning  | Symbol     |
|----------|------------|
| negation | Г          |
| and      | $\wedge$   |
| or       | V          |
| implies  | $\implies$ |

| Meaning      | Symbol    |
|--------------|-----------|
| equivalent   | =         |
| iff          | $\iff$    |
| for all      | $\forall$ |
| there exists | ∃         |

# Arithmetic properties

$$\begin{array}{ll} (\forall a,b \in \mathbf{R})(a+b=b+a) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a+(b+c)=(a+b)+c) \text{commutivity} \\ (\forall a,b \in \mathbf{R})(ab=ba) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(bc)=(ab)c) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(b+c)=ab+ac) & \text{distrutity} \end{array}$$

### Exponents m,n real:

$$a^{0} = 1,$$
  $0^{a} = 0$   
 $1^{a} = 1,$   $a^{n}a^{m} = a^{n+m}$   
 $a^{n}/a^{m} = a^{n-m},$   $(a^{n})^{m} = a^{n \cdot m}$   
 $a^{-m} = 1/a^{m},$   $(a/b)^{m} = a^{m}/b^{m}$ 

### Solution of Equations

#### Algebraic

$$\begin{aligned} [ab = 0] &\equiv [a = 0 \text{ or } b = 0] \\ [a^2 = b^2] &\equiv [a = b \text{ or } a = -b] \\ \left[\frac{a}{b} = 0\right] &\equiv [a = 0 \text{ and } b \neq 0] \\ \left[\frac{a}{b} = \frac{c}{d}\right] &\equiv [ad = bc \text{ and } b \neq 0 \text{ and } d \neq 0] \\ [|a| = |b|] &\equiv [a = b \text{ or } a = -b] \\ \left[\sqrt{a} = b\right] &\equiv [a = b^2 \text{ and } b \geq 0] \end{aligned}$$

For  $a \neq 0$ ,

$$\left[ax^{2} + bx + c = 0\right] \equiv \left[x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\right]$$

## **Function notation**

| dom(F)   | domain of function $F$ |
|----------|------------------------|
| range(F) | range of function $F$  |