Corrigé de l'examen Architecture des Ordinateurs Session Rathapage,

Exercice 1

Exercice 2

Dean	Code de Gray				Rode Aiken			ì		
	Non	pon	dér	e ()		2	14	19	1	1
0	0	0	10	0		D	0	0	0	1
1	0	0	0	1		0	0	0	1	Ť
2		0	1	1		0	0	1	0	I
3_	O	0	1	0		0	0	1	1	1
4	0	11	1	0		0	1	()	0	1
5	0	1	1	1		0	1	0	1	t
6	0	1	0	1	T	1	1	0	0	l
7	O	1	0	0	1	1	1	D	1	l
8	1	1	6	0	1	1	1	1	0	
9	1	1.	0	1	1	1	1	j	1	L
	Ez	E	E	Fol	S	2	Sal	SI	So	-

Equations brokennes des sorties

So = $\xi_1 \xi_2 \xi_1 \xi_3 + \xi_3 \xi_2 \xi_4 \xi_5 + \xi_3 \xi_2 \xi_4 \xi_5$ So = $\xi_3 \xi_2 (\xi_1 \xi_3 + \xi_3 \xi_4 \xi_5) + \xi_3 \xi_4 \xi_4 \xi_5$ So = $\xi_3 \xi_3 (\xi_4 \xi_5) + \xi_3 \xi_4 \xi_5$ So = $\xi_3 \xi_4 (\xi_3 \xi_5) + \xi_3 \xi_4 \xi_5$ So = $\xi_3 \xi_4 (\xi_3 \xi_5) + \xi_3 \xi_4 \xi_5$ So = $\xi_3 \xi_4 (\xi_5) + \xi_3 \xi_5 + \xi_5$ So = $\xi_3 \xi_4 (\xi_5) + \xi_5 \xi_5 + \xi_5$ So = $\xi_3 \xi_4 (\xi_5) + \xi_5 \xi_5 + \xi_5 \xi_5$ So = $\xi_3 \xi_4 (\xi_5) + \xi_5 \xi_5 + \xi_5 \xi_5$ So = $\xi_3 \xi_4 (\xi_5) + \xi_5 \xi_5 + \xi_5 \xi_5$ So = $\xi_3 \xi_4 (\xi_5) + \xi_5 \xi_5 + \xi_5 \xi_5$ So = $\xi_3 \xi_4 (\xi_5) + \xi_5 \xi_5 + \xi_5 \xi_5$

Entrées du trouscodeur: Code de Correy S2 = E2

Solies du trouscodeur: Code Aiken = E3E2E1+E3E2E1 = F1E2

F1 D D S0

S3 = E1E2

S3 = E1E2

S3 = E1E2

S3 = E1E2

Exercice 3:

Question de cours (10points)

1. Etablir la table de vérité et le(s) équation(s) booléenne(s) de sortie(s) d'un multiplexeur à 2 entrées d'adresses (A0, A1). (2points)

Table de vérité

Aı	A ₀	S	
0	0	E ₀	
0	I	Εı	
I	0	E ₂	
I	I	E ₃	

Equations booléennes

$$S = \overline{A}_1.\overline{A}_0.E_0 + \overline{A}_1.A_0.E_1 + A_1.\overline{A}_0.E_2 + A_1.A_0.E_3$$

2. Etablir la table de vérité et le(s) équation(s) booléenne(s) de sortie(s) d'un démultiplexeur à 2 entrées d'adresses (A₀, A₁). (2points)

Αı	A ₀	So	Sı	S ₂	S ₃
0	0	Е	0	0	0
0	ı	0	Е	0	0
I	0	0	0	Е	0
I	I	0	0	0	Е

Equations booléennes

3. Etablir la table de vérité et le(s) équation(s) booléenne(s) de sortie(s) d'un comparateur d'inégalité de 2 bits. (2points)

Table de vérité

В	Α	S ₀ :A <b< th=""><th>S_I:A=B</th><th colspan="2">S₂:A>B</th></b<>	S _I :A=B	S ₂ :A>B	
0	0	0	I	0	
0	I	0	0	I	
I	0	I	0	0	
I	I	0	I	0	

Equations booléennes

$$S_0 = \overline{A}.B$$
, $S_1 = \overline{A}.\overline{B} + A.B = (\overline{A \oplus B})$, $S_2 = A.\overline{B}$

4. Etablir la table de vérité et les équations booléennes de sorties (S₀, S₁, S₂, S₃) d'un décodeur à 4 sorties et n entrées (Eo,En). (2points)

Table de vérité

Εı	E ₀	So	Sı	S ₂	S₃
0	0	_	0	0	0
0	-	0	_	0	0
ı	0	0	0	-	0
I	I	0	0	0	I

Equations booléennes des sorties $S_0 = \overline{E_0} \overline{E_1}$ $S_1 = \overline{E_0} \overline{E_1}$ $S_2 = \overline{E_0} E_1$

$$S_0=E_0E$$

$$S_1 = E_0 \overline{E}$$

$$S_2 = \overline{E}_0 E$$

$$S_3=E_0E_1$$

5. Etablir la table de vérité et les équations booléennes des n sorties (S₀,....S_n) d'un codeurà 4 entrées (E0, E1, E2, E3). (2points)

Table de vérité

Eo	Εı	E ₂	E ₃	Sı	S ₀
ı	0	0	0	0	0
0	I	0	0	0	I
0	0	I	0	I	0
0	0	0	I	I	I

Equations Booléennes des sorties: $S_0 = \bar{E}_0 E_1 \bar{E}_2 \bar{E}_3 + \bar{E}_0 \bar{E}_1 \bar{E}_2 E_3$ $S_1 = \bar{E}_0 \bar{E}_1 E_2 \bar{E}_3 + \bar{E}_0 \bar{E}_1 \bar{E}_2 E_3$

$$S_0 = \bar{E}_0 E_1 \bar{E}_2 \bar{E}_3 + \bar{E}_0 \bar{E}_1 \bar{E}_2 E_3$$

$$S_1 = \bar{E}_0\bar{E}_1E_2\bar{E}_3 + \bar{E}_0\bar{E}_1\bar{E}_2E_3$$