粒子滤波部分主要参考材料

Optimal State Estimation	15
Optimal Estimation of Dynamic Systems	4.10
Theory and Implementation of Particle Filters	
University of Ottawa	
非线性滤波理论与目标跟踪应用	7.1~7.4
占荣辉、张军等 国防工业出版社	
A Tutorial on Particle Filters for Online Nonlinear	/Non-Gaussiar
Bayesian Tracking, IEEE TRANSACTIONS ON SIGNAT	L PROCESSING

ル京航空航人大学 1. 贝叶斯估计 BEIHANG UNIVERSITY

1) 贝叶斯定理及其应用

$$p(A | B) = \frac{p(B | A) p(A)}{p(B)}$$

贝叶斯定理阐述了条件概率密度的计算思想,而条件概率密度是我们依据 给定信息进行推理、判断、估计的重要的方法。贝叶斯定理应用非常广泛,例 如贝叶斯估计、贝叶斯学习、贝叶斯网络、贝叶斯分类、贝叶斯推断等。

2) 贝叶斯定理与估计相关的应用

状态估计问题是利用观测Z及噪声W、V的统计特性,在状态方程的基础 上对状态X估计,实质上也是一种条件概率密度的应用问题。

极大似然、极大验后(最大后验)估计就是建立在条件概率基础上的估计 准则,如果条件概率密度的计算使用贝叶斯公式,就可称之为贝叶斯估计。通 常情况下贝叶斯估计是针对验后而言的。

北京航空航送大学 1. 贝叶斯估计 BEIHANG UNIVERSITY

3) 贝叶斯估计 Bayesian Estimation

贝叶斯估计有不同的形式, Optimal Estimation of Dynamic Systems 给出了贝 叶斯状态估计、最小风险估计两种应用。

① 贝叶斯状态估计(贝叶斯滤波)

$$X_{k+1} = f(X_k, \mathbf{U}_k, \mathbf{W}_k)$$
$$Z_k = h(X_k) + V_k$$

贝叶斯状态估计的目的是实现对系统状态的准确估计,其最典型的应用就是 极大验后(后验)估计的贝叶斯计算实现。

贝叶斯状态估计能有效对待噪声的作用吗?

包含有系统噪声W的作用

$$p(X | Z) = \frac{p(Z | X) p(X)}{p(Z)}$$

包含有观测噪声V的作用

此京航空航人太學 1. 贝叶斯估计 BEIHANG UNIVERSITY

 $p(z_i, x_i \mid x_{i-1})$

$$p(z_k | x_k, x_{k-1}, \dots x_0) = p(z_k | x_k)$$

$$p(x_k \mid x_{k-1}, \dots x_0) = p(x_k \mid x_{k-1})$$

$$p(x_0, \dots, x_k, z_0, \dots, z_k) = p(x_0) \prod_{i=1}^k p(z_i \mid x_i) p(x_i \mid x_{i-1})$$

$$p(x_k \mid z_{1:k-1}) = \int p(x_k \mid x_{k-1}) p(x_{k-1} \mid z_{1:k-1}) dx_{k-1}$$

Chapman-Kolmogorov equation

利用贝叶斯公式可以得到相同的结果

Zk未知下预测PDF

$$p[x(k)|z_{1:k}] = \frac{p(z_k|x_k)p(x_k|z_{1:k-1})}{p(z_k|z_{1:k-1})} = \alpha p(z_k|x_k)p(x_k|z_{1:k-1})$$

Ze已知修正

$$p(z_k | z_{k-1}) = \int p(z_k | x_k) p(x_k | z_{k-1}) dx_k$$

与x_k取值无关

北京航空航送大学 1. 贝叶斯估计 BEIHANG UNIVERSITY

3) 贝叶斯估计 Bayesian Estimation

② 最小风险估计

目标是评价代价函数 $c(X^*/X)$,即估计值为 X^* ,而真实值为X的代价,由于 X未知,确切的代价函数无法评估,通常假设X服从某验后概率的分布,其目 标函数为

$$J_{MR}(X^*) = \int_{-\infty}^{+\infty} c(X^* \mid X) p(X \mid Z) dX$$

利用贝叶斯公式, 风险函数可以写为

$$J_{MR}\left(X^{*}\right) = \int_{-\infty}^{+\infty} c\left(X^{*} \mid X\right) p\left(X \mid Z\right) dX = \int_{-\infty}^{+\infty} c\left(X^{*} \mid X\right) \frac{p\left(Z \mid X\right) p\left(X\right)}{p\left(Z\right)} dX$$

4) 其他相关概念

贝叶斯推断 Bayesian Inference, 重点在于获得验后概率密度, 而不是对 状态值的估计。

BEIHANG UNIVERSITY 2. 粒子滤波的问题的提出

1) 粒子滤波的思想

The particle filter is a statistical, **bruteforce** approach to estimation that often works well for problems that are difficult for the conventional Kalman filter (i.e., systems that are highly nonlinear).

粒子滤波的其他名称

sequential importance sampling bootstrap filtering the condensation algorithm interacting particle approximations Monte Carlo filtering sequential Monte Carlo (SMC) filtering

> 注意粒子滤波与UKF 中采样的区别

BEIHANG UNIVERSITY 2. 粒子滤波问题的引出

2) 粒子滤波的数学描述

以离散非线性系统为例

$$X_{k+1} = f(X_k, \mathbf{U}_k, \mathbf{W}_k)$$
$$Z_k = h(X_k) + V_k$$

极大验后估计是将概率密度最大情况下对应的状态作为最优估计解,如果 有足够的样本, 可以通过模拟数学期望的方式获得状态最优估计。

假设在k时刻有N个状态样本,则可以对k+1时刻状态进行一步预测

$$\hat{X}_{k+1|k}^{(i)} = f(X_k^{(i)}, U_k, W_k)$$

k+1时刻状态最优估计解的数学期望为

$$E\left[X_{k+1|k+1} \mid Z_{1:k+1}\right] = \int_{-\infty}^{+\infty} X_{k+1|k} p(X_{k+1} \mid Z_{1:k+1}) dX_{k+1} \approx \frac{1}{N} \sum_{i=1}^{N} \hat{X}_{k+1|k}^{(i)}$$

如果积分公式可以准确地利用离散样本计算,则可以实现粒子滤波,其实现的 方法是蒙特卡洛法。

1)蒙特卡洛法解决的典型问题

自变量 x_1, x_2, \dots, x_n 的分布特性已知,求y的分布特性。 $\mathbf{y} = f(x_1, x_2, \cdots x_n)$

Monte Carlo methods有多种形式,但关键实现方式如下:

- ●确定输入的可能值域范围
- ●在输入变量值域范围内按照其概率密度进行随机抽样
- ●按照给定的函数进行输出计算
- ●对输出结果进行统计

1) 蒙特卡洛法解决的典型问题

2) 蒙特卡洛法解决的基本原理

$$\mathbf{y}_k = g(x_k) + V_k$$

$$E[g(x_k)] = \int g(x_k) p(x_k) dx_k$$

完备采样

如果使用 $N \land x$ 的样本,是否能够获得 $g(x_k)$ 的近似数学期望?

$$E[g(x_k)] \approx \overline{y}_k = \frac{1}{N} \sum_{i=1}^N g(x_k^{(i)})$$
 什么情况下会合理?

如果按照 $p(x_k)$ 对 $x^{(i)}$,进行采样,那么 $g(x^{(i)})$ 的出现已经包含了 $x^{(i)}$ 的 $p(x_k)$ 的概率信息,因此无需再对 $g(x^{(i)}_k)$ 进行概率加权。

$$Var(y_k) \approx \frac{\sum_{i=1}^{N} \left[g(x_k^{(i)}) - \overline{y}_k \right] \left[g(x_k^{(i)}) - \overline{y}_k \right]^T}{N}$$

2) 蒙特卡洛法解决的基本原理

$$\mathbf{y} = f(x_1, x_2, \cdots x_n)$$

已知各自变量的分布信息为

$$x_1 - - - p_1$$

$$x_2 - - - p_2$$

$$\vdots$$

$$x_n - - - p_n$$

按照各分量分布随机产生样本

$$\begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \\ \vdots \\ x_n^{(1)} \end{bmatrix}, \dots \begin{bmatrix} x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \dots \begin{bmatrix} x_1^{(m)} \\ x_2^{(m)} \\ \vdots \\ x_n^{(m)} \end{bmatrix}$$

$$E[y] \approx \overline{y} = \frac{\sum_{i=1}^{m} f(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)})}{m}$$

$$Var(y) \approx \frac{\sum_{i=1}^{m} \left[f(x_1^{(i)}, \dots, x_n^{(i)}) - \overline{y} \right] \left[f(x_1^{(i)}, \dots, x_n^{(i)}) - \overline{y} \right]^T}{Var(y)}$$

3) $p(x_k|y_{1:k})$ 未知情况下的实现方法(重要性采样原理)

$$E[g(\mathbf{x}_k)] = \int g(\mathbf{x}_k) \frac{p(\mathbf{x}_k \mid \mathbf{y}_{1:k})}{d\mathbf{x}_k}$$

 $p(\mathbf{x}_{k} | \mathbf{y}_{1:k})$ 未知无法采样

$$E[g(\mathbf{x}_k)] = \int g(\mathbf{x}_k) \frac{p(\mathbf{x}_k | \mathbf{y}_{1:k})}{q(\mathbf{x}_k | \mathbf{y}_{1:k})} q(\mathbf{x}_k | \mathbf{y}_{1:k}) d\mathbf{x}_k$$

$$= \int g(\mathbf{x}_k) \frac{w_k}{w_k} q(\mathbf{x}_k | \mathbf{y}_{1:k}) d\mathbf{x}_k$$
按照 $q(\mathbf{x}_k | \mathbf{y}_{1:k})$ 进行采样

$$\approx \frac{1}{N} \sum_{i=1}^{N} g(\mathbf{x}_{k}^{(i)}) w_{k}^{(i)}$$

定义

 $\mathbf{y}_{1:k}$ 一测量序列 $\mathbf{y}_1 \sim \mathbf{y}_k$

Importance Sampling, IS

$$q(\mathbf{x}_k \mid \mathbf{y}_{1:k})$$

Importance density function, **IDF**

3) $p(x_k|y_{1:k})$ 未知情况下的实现方法(重要性采样原理)

$$E[g(x_k)] \approx \frac{1}{N} \sum_{i=1}^{N} g(x_k^{(i)})$$

依照 $p(x_k|y_k)$ 对 $x^{(i)}$,进行采样,真实的分布特性。

完备采样

$$E[g(x_k)] \approx \frac{1}{N} \sum_{i=1}^{N} g(x_k^{(i)}) w_k^{(i)}$$

 $E[g(x_k)] \approx \frac{1}{N} \sum_{i=1}^{N} g(x_k^{(i)}) w_k^{(i)}$ 依照 $q(x_k | y_k)$ 对 $x^{(i)}$,进行采样,非真实分布特性。

重要性采样

不同E的理解

$$\mathbf{y}_{k} = g(\mathbf{x}_{k}, \mathbf{v}_{k})$$

$$E[g(x_{k})] = \int g(x_{k}) p(x_{k}) dx_{k}$$

$$x_k \rightarrow y_k$$

$$\mathbf{x}_{k+1} = f(\mathbf{x}_{k}, \mathbf{u}_{k}, \mathbf{w}_{k})$$

$$\mathbf{y}_{k} = g(\mathbf{x}_{k}, \mathbf{v}_{k})$$

$$E[g(\mathbf{x}_{k})] = \int g(\mathbf{x}_{k}) p(\mathbf{x}_{k} | \mathbf{y}_{1:k}) d\mathbf{x}_{k}$$

$$\mathbf{x}_{k-n} \longrightarrow \mathbf{x}_{k-1} \longrightarrow \mathbf{x}_{k}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{x}_{k-1}, \dots, \mathbf{x}_0, \mathbf{u}_k, \mathbf{w}_k)$$

$$\mathbf{y}_k = g(\mathbf{x}_k, \mathbf{v}_k)$$

$$E[g(\mathbf{x}_{0:k})] = \int g(\mathbf{x}_{0:k}) p(\mathbf{x}_{0:k} | \mathbf{y}_{1:k}) d\mathbf{x}_{0:k}$$

北京航空航人大學 4. 重要性采样

1) 重要性采样的方式

按概率密度 $p(\mathbf{x}_{\iota} | \mathbf{y}_{\iota\iota})$ 采样是特殊的蒙特卡洛采样方式 更一般的形式是从完整的 $p(\mathbf{x}_{0:k} | \mathbf{y}_{1:k})$ 中进行采样。

$$E[g(\mathbf{x}_{0:k})] = \int g(\mathbf{x}_{0:k}) p(\mathbf{x}_{0:k} | \mathbf{y}_{1:k}) d\mathbf{x}_{0:k}$$

$$E[g(\mathbf{x}_{0:k})] = \int g(\mathbf{x}_{0:k}) \frac{p(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k})}{q(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k})} q(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k}) d\mathbf{x}_{0:k}$$

 $q(\mathbf{x}_{0k}|\mathbf{y}_{1k})$ 容易获得

重要性概率密度函数

$$= \int g(\mathbf{x}_{0:k}) \frac{p(\mathbf{y}_{1:k} | \mathbf{x}_{0:k}) p(\mathbf{x}_{0:k})}{p(\mathbf{y}_{1:k}) q(\mathbf{x}_{0:k} | \mathbf{y}_{1:k})} q(\mathbf{x}_{0:k} | \mathbf{y}_{1:k}) d\mathbf{x}_{0:k}$$

$$= \int g(\mathbf{x}_{0:k}) \frac{w_k}{p(\mathbf{y}_{1:k})} q(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k}) d\mathbf{x}_{0:k} = \frac{\int g(\mathbf{x}_{0:k}) w_k q(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k}) d\mathbf{x}_{0:k}}{p(\mathbf{y}_{1:k})}$$

 $w_k = \frac{p(\mathbf{y}_{1:k} \mid \mathbf{x}_{0:k}) p(\mathbf{x}_{0:k})}{q(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k})} = \frac{p(\mathbf{x}_{0:k}, \mathbf{y}_{1:k})}{q(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k})}$

北京航空航人大學 4. 重要性采样

重要性权重的归一化

$$E[g(\mathbf{x}_{0:k})] = \frac{\int g(\mathbf{x}_{0:k}) w_k q(\mathbf{x}_{0:k} | \mathbf{y}_{1:k}) d\mathbf{x}_{0:k}}{p(\mathbf{y}_{1:k})}$$

$$w_k = \frac{p(\mathbf{y}_{1:k} \mid \mathbf{x}_{0:k}) p(\mathbf{x}_{0:k})}{q(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k})}$$

$$p(\mathbf{y}_{1:k}) = \int p(\mathbf{y}_{1:k}, \mathbf{x}_{0:k}) d\mathbf{x}_{0:k}$$

$$= \int \frac{p(\mathbf{y}_{1:k} \mid \mathbf{x}_{0:k}) p(\mathbf{x}_{0:k})}{q(\mathbf{y}_{1:k} \mid \mathbf{x}_{0:k})} q(\mathbf{y}_{1:k} \mid \mathbf{x}_{0:k}) d\mathbf{x}_{0:k}$$

$$= \int w_k q(\mathbf{y}_{1:k} \mid \mathbf{x}_{0:k}) d\mathbf{x}_{0:k}$$

$$= \int w_k q(\mathbf{y}_{1:k} \mid \mathbf{x}_{0:k}) d\mathbf{x}_{0:k}$$

$$\overline{w}_k^{(i)} = w_k^{(i)}$$

$$E[g(\mathbf{x}_{0:k})] = \frac{\int g(\mathbf{x}_{0:k}) w_k q(\mathbf{x}_{0:k} | \mathbf{y}_{1:k}) d\mathbf{x}_{0:k}}{\int w_k q(\mathbf{x}_{0:k} | \mathbf{y}_{1:k}) d\mathbf{x}_{0:k}}$$
按照 $q(\mathbf{x}_{0:k} | \mathbf{y}_{1:k})$ 选择 x_k 的样本

$$\overline{w}_{k}^{(i)} = \frac{w_{k}^{(i)}}{\sum_{i=1}^{N} w_{k}^{(i)}}$$

$$w_{k}^{(i)} = \frac{p(\mathbf{x}_{0:k}^{(i)}, \mathbf{y}_{1:k})}{q(\mathbf{x}_{0:k}^{(i)} | \mathbf{y}_{1:k})}$$

$$E[g(\mathbf{x}_{0:k})] = \sum_{i=1}^{N} g(\mathbf{x}_{k}^{(i)}) \frac{w_{k}^{(i)}}{\sum_{i=1}^{N} w_{k}^{(i)}} = \sum_{i=1}^{N} g(\mathbf{x}_{k}^{(i)}) \overline{w}_{k}^{(i)}$$

$$E[g(\mathbf{x}_{0:k})] \approx \frac{\frac{1}{N} \sum_{i=1}^{N} g(\mathbf{x}_{0:k}^{(i)}) w_{k}^{(i)}}{\frac{1}{N} \sum_{i=1}^{N} w_{k}^{(i)}}$$

$$\frac{1}{N} \sum_{i=1}^{N} w_{k}^{(i)}$$

$$E[g(\mathbf{x}_{0:k})] \approx \frac{\frac{1}{N} \sum_{i=1}^{N} g(\mathbf{x}_{0:k}^{(i)}) w_k^{(i)}}{\frac{1}{N} \sum_{i=1}^{N} w_k^{(i)}}$$

此京航空航人大學 5。序贯重要性采样(SIS)

1) 序贯重要性采样的处理思想

$$E\left[g(\mathbf{x}_{0:k})\right] = \sum_{i=1}^{N} g(\mathbf{x}_{0:k}^{(i)}) \overline{w}_{k}^{(i)}$$

$$\overline{w}_{k}^{(i)} = \frac{w_{k}^{(i)}}{\sum_{i=1}^{N} w_{k}^{(i)}} \qquad w_{k}^{(i)} = \frac{p\left(\mathbf{y}_{1:k} \mid \mathbf{x}_{0:k}^{(i)}\right) p\left(\mathbf{x}_{0:k}^{(i)}\right) p\left(\mathbf{x}_{0:k}^{(i)}\right)}{q(\mathbf{x}_{0:k}^{(i)} \mid \mathbf{y}_{1:k})} = \frac{p\left(\mathbf{x}_{0:k}^{(i)}, \mathbf{y}_{1:k}\right)}{q(\mathbf{x}_{0:k}^{(i)} \mid \mathbf{y}_{1:k})}$$

如果W, 能够实现递推计算, 可有效简化处理过程。

当重要性概率密度函数具有递推关系时

Sequential Importance Sampling SIS

$$q(\mathbf{x}_{0:k} | \mathbf{y}_{1:k}) = q(\mathbf{x}_{k} | \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k}) q(\mathbf{x}_{0:k-1} | \mathbf{y}_{1:k-1})$$

 $\mathbf{w}_{\iota}^{(i)}$ 可以获得递推解算形式,因此称为**序贯重要性采样**。

ル京航空航人大学 5. 序贯重要性采样(SIS)

2) 重要性权重的计算方法

$$p(\mathbf{x}_{0:k}, \mathbf{y}_{1:k}) = p(\mathbf{x}_k, \mathbf{x}_{0:k-1}, \mathbf{y}_k, \mathbf{y}_{1:k-1})$$

$$w_k = \frac{p(\mathbf{y}_{1:k} \mid \mathbf{x}_{0:k}) p(\mathbf{x}_{0:k})}{q(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k})} = \frac{p(\mathbf{x}_{0:k}, \mathbf{y}_{1:k})}{q(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k})}$$

$$= p\left(\mathbf{x}_{k}, \mathbf{y}_{k}/\mathbf{x}_{0:k-1}, \mathbf{y}_{1:k-1}\right) p\left(\mathbf{x}_{0:k-1}, \mathbf{y}_{1:k-1}\right)$$

$$= p\left(\mathbf{y}_{k}/\mathbf{x}_{k}, \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k-1}\right) p\left(\mathbf{x}_{k} | \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k-1}\right) p\left(\mathbf{x}_{0:k-1}, \mathbf{y}_{1:k-1}\right)$$

$$= p(\mathbf{y}_{k}/\mathbf{x}_{k}) p(\mathbf{x}_{k}|\mathbf{x}_{k-1}) p(\mathbf{x}_{0:k-1},\mathbf{y}_{1:k-1})$$

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k)$$

$$\mathbf{y}_{k} = h(\mathbf{x}_{k}) + \mathbf{v}_{k}$$

$$q(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k}) = q(\mathbf{x}_k \mid \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k}) q(\mathbf{x}_{0:k-1} \mid \mathbf{y}_{1:k})$$
$$= q(\mathbf{x}_k \mid \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k}) q(\mathbf{x}_{0:k-1} \mid \mathbf{y}_{1:k-1})$$

$$w_{k} = \frac{p(\mathbf{x}_{0:k}, \mathbf{y}_{1:k})}{q(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k})} = \frac{p(\mathbf{y}_{k}/\mathbf{x}_{k}) p(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}) p(\mathbf{x}_{0:k-1}, \mathbf{y}_{1:k-1})}{q(\mathbf{x}_{k} \mid \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k}) q(\mathbf{x}_{0:k-1} \mid \mathbf{y}_{1:k-1})} = \frac{p(\mathbf{y}_{k}/\mathbf{x}_{k}) p(\mathbf{x}_{k} \mid \mathbf{x}_{k-1})}{q(\mathbf{x}_{k} \mid \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k}) q(\mathbf{x}_{0:k-1} \mid \mathbf{y}_{1:k-1})} = \frac{p(\mathbf{y}_{k}/\mathbf{x}_{k}) p(\mathbf{x}_{k} \mid \mathbf{x}_{k-1})}{q(\mathbf{x}_{k} \mid \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k})} w_{k-1}$$

ル京航空航人大学 5. 序贯重要性采样(SIS)

3) 重要性密度函数的分析

$$w_k = \frac{p(\mathbf{y}_k/\mathbf{x}_k) p(\mathbf{x}_k | \mathbf{x}_{k-1})}{q(\mathbf{x}_k | \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k})} w_{k-1}$$

马尔科夫过程 无后效性或无记忆性

A discrete-time Markov chain is a sequence of <u>random variables</u> X_1, X_2, X_3, \dots with the <u>Markov property</u>, namely that the probability of moving to the next state depends only on the present state and not on the previous states

$$\Pr(X_k = x \mid X_{k-1} = X_{k-1}, X_{k-2} = X_{k-2}, \dots, X_0 = X_0) = \Pr(X_k = X \mid X_{k-1} = X_{k-1})$$

如果 $q(\mathbf{x}_k | \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k}) = q(\mathbf{x}_k | \mathbf{x}_{k-1}, \mathbf{y}_k)$, 可以简化计算, 通常粒子滤波都做此假设。

$$w_{k} = \frac{p\left(\mathbf{y}_{k}/\mathbf{x}_{k}\right)p\left(\mathbf{x}_{k}\mid\mathbf{x}_{k-1}\right)}{q\left(\mathbf{x}_{k}\mid\mathbf{x}_{k-1},\mathbf{y}_{k}\right)}w_{k-1} \qquad \qquad w_{k}^{(i)} = \frac{p\left(\mathbf{y}_{k}/\mathbf{x}_{k}^{(i)}\right)p\left(\mathbf{x}_{k}^{(i)}\mid\mathbf{x}_{k-1}^{(i)}\right)}{q\left(\mathbf{x}_{k}^{(i)}\mid\mathbf{x}_{k-1}^{(i)},\mathbf{y}_{k}\right)}w_{k-1}^{(i)}$$

ル京航空航人大学 5. 序贯重要性采样(SIS)

最优重要性密度函数的选择

$$w_k^{(i)} = \frac{p\left(\mathbf{y}_k/\mathbf{x}_k^{(i)}\right)p\left(\mathbf{x}_k^{(i)} \mid \mathbf{x}_{k-1}^{(i)}\right)}{q(\mathbf{x}_k^{(i)} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{y}_k)} w_{k-1}^{(i)}$$

重要性密度函数选择依据

重要性密度函数最优值选择的依据是能够最小化重要性权值方差,抑 制估计结果过早收敛到非最优解上。

$$q(\mathbf{x}_k \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{y}_k) = p(\mathbf{x}_k \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{y}_k)$$

常规密度函数选择(Bootstrap Filter,BF)

$$w_{k}^{(i)} = \frac{p(\mathbf{y}_{k}/\mathbf{x}_{k}^{(i)})p(\mathbf{x}_{k}^{(i)}|\mathbf{x}_{k-1}^{(i)})}{q(\mathbf{x}_{k}^{(i)}|\mathbf{x}_{k-1}^{(i)},\mathbf{y}_{k})}w_{k-1}^{(i)}$$

$$w_k^{(i)} \propto p\left(\mathbf{y}_k/\mathbf{x}_k^{(i)}\right) w_{k-1}^{(i)}$$

此京航空航人大學 5。序贯重要性采样(SIS)

归一化处理权重

$$\overline{w}_{k}^{(i)} = \frac{w_{k}^{(i)}}{\sum_{i=1}^{N} w_{k}^{(i)}}$$

依据蒙特卡洛法思想,得到滤波解

$$\hat{\mathbf{x}}_{k|k} = E(\mathbf{x}_k \mid \mathbf{y}_k) \approx \sum_{i=1}^{N} \overline{w}_k^{(i)} \mathbf{x}_{k|k-1}^{(i)}$$

$$P_{k|k} \approx \frac{1}{N} \sum_{i=1}^{N} \overline{w}_{k}^{(i)} (\mathbf{x}_{k|k-1}^{(i)} - \hat{\mathbf{x}}_{k|k}) (\mathbf{x}_{k|k-1}^{(i)} - \hat{\mathbf{x}}_{k|k})^{T}$$

此京航空航人大學 6. 重采样及粗糙化

1) 重采样的思想 Resampling

序贯重要采样不能避免粒子退化(Degeneracy)问题,经若干次递推后, 除少数粒子外, 大部分粒子权重小到可以忽略。

重采样的思想:消除权值较小的粒子,对权值较大的粒子进行多份复制。

重采样后每个粒子的权重相等。

$$\hat{N}_{eff} = \frac{1}{\sum\limits_{k=1}^{N} \left(\overline{w}_{k}^{(i)}\right)^{2}}$$
 \hat{N}_{eff}
 $\begin{cases} \approx 1 \quad \text{严重退化} \\ \approx N \quad \text{权重相同} \end{cases}$

$$\hat{N}_{eff} \leq N_{threshold}$$

进行重采样 阈值可取为2N/3

6. 重采样及粗糙化

2) 重采样的实现

```
C_1 = 0
For i=2:N
    C_i = C_{i-1} + w_k^{(i)}
End For
Start at the bottom of the CDF: i=1
Draw a starting point: u_1 \sim [0, 1/N]
For j=1:N
    u_j = u_1 + (j-1)/N
    While u_i > C_i
         i=i+1
    End While
   X_k^{(j*)} = X_k^{(i)}
   w_k^{(j)} = 1/N
End For
```


北京航空航人大学 6. 重采样及粗糙化 BEIHANG UNIVERSITY

粗糙化 (Roughening)

为避免粒子退化, 重采样后对每一个粒子增加随机噪声。

$$\mathbf{x}_{k}^{(i)} = \mathbf{x}_{k}^{(i)} + \Delta \mathbf{x}_{k}^{(i)}$$

$$\Delta \mathbf{x}_{k}^{(i)} = \begin{bmatrix} \Delta \mathbf{x}_{k}^{(i)}(1) \\ \vdots \\ \Delta \mathbf{x}_{k}^{(i)}(m) \\ \vdots \\ \Delta \mathbf{x}_{k}^{(i)}(n) \end{bmatrix}$$

总维数
$$\Delta \mathbf{x}_{k}^{(i)}(\mathbf{m}) \sim \left(0, KM(\mathbf{m}) \mathbf{N}^{-1/n}\right)$$
 调节 样本数常数 e.g. 0.2

$$M(m) = \max \left| \mathbf{x}_{k}^{(i)}(m) - \mathbf{x}_{k}^{(j)}(m) \right| \quad (m = 1, \dots, n)$$

此京航空航人大學 6. 重采样及粗糙化

4) 重采样实现的过程

$$w_k^{(i)} = p\left(\mathbf{y}_k \mid \mathbf{x}_k^{(i)}\right) w_{k-1}^{(i)}$$

BEIHANG UNIVERSITY 7。粒子滤波的基本过程

非重采样方式

重采样方式 BF

预测

$$x_{k|k-1}^{(i)} = f(x_{k-1}^{(i)})$$
$$y_{k|k-1}^{(i)} = g(x_{k|k-1}^{(i)})$$

似然PDF

$$p(y_k \mid x_{k|k-1}^{(i)}), [y_{k|k-1}^{(i)} - y_k] \sim N(0, R)$$

权重计算

$$w_k^{(i)} = p(y_k \mid x_k^{(i)}) w_{k-1}^{(i)}$$

权重归一

$$\overline{w}_{k}^{(i)} = \frac{w_{k}^{(i)}}{\sum_{i=1}^{N} w_{k}^{(i)}}$$

滤波输出

$$\hat{x}_{k|k} = E(x_k \mid y_k) \approx \sum_{i=1}^{N} \overline{w}_k^{(i)} x_{k|k-1}^{(i)}$$

$$P_{k|k} \approx \frac{1}{N} \sum_{i=1}^{N} \overline{w}_k^{(i)} (x_{k|k-1}^{(i)} - \hat{x}_{k|k}) (x_{k|k-1}^{(i)} - \hat{x}_{k|k})^T$$

粒子更新

$$x_{k|k-1}^{(i)} = f(x_{k-1}^{(i)})$$

$$y_{k|k-1}^{(i)} = g(x_{k|k-1}^{(i)})$$

$$p(y_k \mid x_{k|k-1}^{(i)}), [y_{k|k-1}^{(i)} - y_k] \sim N(0, R)$$

$$w_k^{(i)} = p(y_k \mid x_k^{(i)}) w_{k-1}^{(i)}$$

$$\overline{w}_{k}^{(i)} = \frac{w_{k}^{(i)}}{\sum_{i=1}^{N} w_{k}^{(i)}}$$

$$\hat{x}_{k|k} = E(x_k \mid y_k) \approx \sum_{i=1}^{N} w_k^{(i)} x_{k|k-1}^{(i)}$$

$$P_{k|k} \approx \frac{1}{N} \sum_{i=1}^{N} w_k^{(i)} (x_{k|k-1}^{(i)} - \hat{x}_{k|k}) (x_{k|k-1}^{(i)} - \hat{x}_{k|k})^T$$

 $x_{\nu}^{(i)}$ 重采样,粗糙化, $w_{\nu}^{(i)} = 1/N$

ル京航空航人大学 7. 粒子滤波的基本过程 BEIHANG UNIVERSITY

MODEL

States:

$$\mathbf{x}_{k} = [x_{k}, V_{xk}, y_{k}, V_{yk}]^{T}$$

- Observations: z_b
- Noise

$$\mathbf{u}_k \sim N(0, \sigma_u^2), v_k \sim N(0, \sigma_v^2)$$

State equation:

$$\mathbf{x}_{k} = \mathbf{F} \mathbf{x}_{k-1} + \mathbf{G} \mathbf{u}_{k}$$

Observation equation:

$$z_k = atan(y_k/x_k) + v_k$$

ALGORITHM

- **Particle generation**
 - Generate M random numbers $\mathbf{u}_{\nu}^{(m)} \sim \mathcal{N}(0, \sigma_{\nu}^2)$
 - Particle computation

$$\hat{\mathbf{x}}_{k}^{(m)} = F\hat{\mathbf{x}}_{k-1}^{(m)} + G\mathbf{u}_{k}^{(m)}$$

Weight computation

$$w_k^{*(m)} = N(z_k - \operatorname{atan} \frac{y_k^{(m)}}{x_k^{(m)}}, \sigma_v^2)$$

- **Weight normalization**
- **Computation of the estimates**

• Resampling &
$$\left\{ \hat{\mathbf{x}}_{k}^{(m)}, \frac{1}{M} \right\}_{m=1}^{M} \sim \left\{ \mathbf{x}_{k}^{(m)}, w_{k}^{(m)} \right\}_{m=1}^{M}$$
 Roughening

ル京航空航人大学 7. 粒子滤波的基本过程 BEIHANG UNIVERSITY

$$x_{k} = \frac{1}{2}x_{k-1} + \frac{25x_{k-1}}{1 + x_{k-1}^{2}} + 8\cos[1.2(k-1)] + w_{k}$$

$$y_{k} = \frac{1}{20}x_{k-1}^{2} + v_{k}$$

