ECOi2222 – Fundamentos de Lógica de Programação

Prof: Rafael Francisco dos Santos

E-mail: rsantos@unifei.edu.br

Ementa do curso

- Introdução a computação e conceito de algoritmo.
- Introdução à linguagem Python e ambientes de programação.
- Conceitos básicos:
 - variáveis, operadores, expressões, entrada e saída de dados, estruturas condicionais, estruturas de repetição, funções.
- Dados estruturados: listas, tuplas e dicionários.
- Manipulação de arquivos de texto.
- Bibliotecas de funções matemáticas, funções estatísticas, manipulação de matrizes e plotagem de gráficos.

Notas

Nota 1

A ser definido

Nota 2

• A ser definido

ECOi2222

Bibliografia utilizada

MENEZES, Nilo Ney Coutinho. **Introdução à programação com Python - Algoritmos e lógica de programação para iniciantes**. 3 ed. 4 reimpr. 2019. São Paulo: Novatec, 2021. 328 p. ISBN: 9788575227183, 9788575225592.

BARRY, Paul. **Use a Cabeça! Python**. Rio de Janeiro: Alta Books, 2018. 574 p. ISBN: 9788550803401.

BANIN, Sérgio Luiz. **Python 3 - Conceitos e Aplicações - Uma Abordagem Didática**. São Paulo: Érica, 2018. 264 p. ISBN: 9788536527819.

KOPEC, David. **Problemas Clássicos de Ciência da Computação com Python**. São Paulo: Novatec, 2019. 272 p. ISBN: 9788575228050, 9788575228067.

Arquitetura de von Neumann

http://pt.wikipedia.org/wiki/Computador

Entrada de Dados

- Teclado (padrão)
- Mouse
- Scanner
- outros

Memória

- Primária (RAM)
- Secundária (HD)

Saída de Dados

- Monitor (padrão)
- Impressora
- HD
- outros

Hardware

- É a parte física do computador:
 - Teclado
 - Mouse
 - Monitor
 - Placa mãe
 - outros

Software

- É a parte lógica do computador (programas)
 - Sistema Operacional
 - Softwares de escritórios
 - Jogos
 - outros

Como falar com o Computador?

Linguagem Natural (português)

Código de máquina (Binária)

Tradutor

Dificuldade

 Construir um software que traduza a Linguagem Natural em Binário.

Solução

• Utilizar uma linguagem mais simples e traduzir em código de máquina.

Tradutor

Linguagem de Programação C/C++, Python... Software Compilador Interpretador

Código de Máquina

Bit: (0 ou 1)

• É a unidade mínima de informação empregada na computação

Tabela ASCII

 A tabela ASCII (American Standard Code for Information Interchange) dá os caracteres (coluna c da tabela) associados aos números 0 a 127 (números Unicode U+0000 a U+007F).

decimal	binário	Unicode	С	decimal	binário	Unicode	С	decimal	binário	Unicode	С	decimal	binário	Unicode	C	observação
26	00011010	U+001A		54	00110110	U+0036	6	82	01010010	U+0052	R	110	01101110	U+006E	n	
27	00011011	U+001B		55	00110111	U+0037	7	83	01010011	U+0053	S	111	01101111	U+006F	0	
28	00011100	U+001C		56	00111000	U+0038	8	84	01010100	U+0054	T	112	01110000	U+0070	р	
29	00011101	U+001D		57	00111001	U+0039	9	85	01010101	U+0055	U	113	01110001	U+0071	q	
30	00011110	U+001E		58	00111010	U+003A	:	86	01010110	U+0056	V	114	01110010	U + 0072	r	
31	00011111	U+001F		59	00111011	U+003B	;	87	01010111	U+0057	W	115	01110011	U+0073	s	
32	00100000	U+0020		60	00111100	U+003C	<	88	01011000	U+0058	X	116	01110100	U+0074	t	
33	00100001	U+0021	i	61	00111101	U+003D	=	89	01011001	U+0059	Y	117	01110101	U+0075	u	
34	00100010	U+0022	- 01	62	00111110	U+003E	>	90	01011010	U+005A	Z	118	01110110	U+0076	v	
35	00100011	U+0023	#	63	00111111	U+003F	?	91	01011011	U+005B	[119	01110111	U + 0077	w	
36	00100100	U+0024	\$	64	01000000	U+0040	@	92	01011100	U+005C	1	120	01111000	U+0078	x	
37	00100101	U+0025	%	65	01000001	U+0041	A	93	01011101	U+005D]	121	01111001	U+0079	y	
38	00100110	U+0026	&	66	01000010	U + 0042	В	94	01011110	U+005E	^	122	01111010	U+007A	z	
39	00100111	U+0027	.11	67	01000011	U+0043	C	95	01011111	U+005F	<u> </u>	123	01111011	U+007B	{	
40	00101000	U+0028	(68	01000100	U+0044	D	96	01100000	U+0060	,	124	01111100	U+007C	1	
41	00101001	U+0029)	69	01000101	U+0045	E	97	01100001	U+0061	a	125	01111101	U+007D	}	
42	00101010	U+002A	*	70	01000110	U+0046	F	98	01100010	U+0062	b	126	01111110	U+007E	~	
43	00101011	U+002B	+	71	01000111	U+0047	G	99	01100011	U+0063	С	127	01111111	U+007F		delete
44	00101100	U+002C	,	72	01001000	U+0048	Н	100	01100100	U+0064	d					
45	00101101	U+002D	=	73	01001001	U+0049	I	101	01100101	U+0065	е					
46	00101110	U+002E		74	01001010	U+004A	J	102	01100110	U+0066	f					
47	00101111	U+002F	1	75	01001011	U+004B	K	103	01100111	U+0067	g					
48	00110000	U+0030	0	76	01001100	U+004C	L	104	01101000	U+0068	h					
49	00110001	U+0031	1	77	01001101	U+004D	M	105	01101001	U+0069	i					
50	00110010	U+0032	2	78	01001110	U+004E	N	106	01101010	U+006A	j					
51	00110011	U+0033	3	79	01001111	U+004F	O	107	01101011	U+006B	k					
52	00110100	U+0034	4	80	01010000	U+0050	P	108	01101100	U+006C	l					
53	00110101	U+0035	5	81	01010001	U+0051	Q	109	01101101	U+006D	m					

Tabela ASCII

 A tabela ASCII (American Standard Code for Information Interchange) dá os caracteres (coluna c da tabela) associados aos números 0 a 127 (números Unicode U+0000 a U+007F).

Código UTF-8

- O alfabeto Unicode tem mais de 1 milhão caracteres. (3 bytes).
- Utiliza um código multibyte, que emprega um número variável de bytes por caractere: alguns caracteres usam 1 byte, outros usam 2 bytes,
- O UTF-8 é código multibyte mais usado.
- Ele associa uma sequência de 1 a 4 bytes (8 a 32 bits) com cada caractere Unicode.
- Os primeiros 128 caracteres usam o velho e bom código ASCII de 1 byte por caractere.

número			
Unicode	caractere	código UTF-8	hexadecimal
U+0021	!	00100001	0x21
U+0022	н	00100010	0x22
U+002D	-	00101101	0x2D
U+0039	9	00100111	0x39
U+0041	A	01000001	0x41
U+0042	В	01000010	0x42
U+0061	a	01100001	0x61
U+0062	b	01100010	0x62
U+007E	170	01111110	0x7E
U+00C0	À	11000011 01000000	0xC380
U+00E3	ã	11000011 10100011	0xC3A3
U+00E7	Ç	11000011 10100111	0xC3A7
U+00E9	é	11000011 10101001	0xC3A9
U+00FF	$\ddot{\mathbf{y}}$	11000011 10111111	0xC3BF
U+03A3	Σ	11001110 10100011	0xCEA3
U+03B1	α	11001110 10110001	0xCEB1
U+2014	_	11100010 10000000 10010100	0xE28094
U+201C	"	11100010 10000000 10011100	0xE2809C

 Os demais caracteres têm um código mais complexo.
UNIFEI - Aulas de ECOi2222 - Rafael Santos

Linguagem de Programação

Definição de Linguagem de Programação

- É um método padronizado para comunicar instruções para um computador
- É um conjunto de regras sintáticas e semânticas usadas para definir um programa de computador.

Linguagens de programação podem ser usadas para expressar algoritmos com precisão.

Definição de Algoritmos

- É uma sequência de passos que visa atingir um objetivo bem definido.
- É a descrição de uma sequência de passos que deve ser seguida para a realização de uma tarefa.
- É uma sequência finita de instruções ou operações cuja execução, em tempo finito, resolve um problema computacional, qualquer que seja a sua instância.

Linguagem de Programação

Exemplos de Algoritmos no nosso dia-dia

- Receita de bolo
- Manual de configuração de algum equipamento
- Manual de montagem de algum móvel

Exemplos de Algoritmos

1. Somar dois números

Passo 1 – Receber os dois números

Passo 2 – Somar os dois números

Passo 3 – Mostra o resultado obtido

2. Verificar se um alunos passou de ano com 4 notas e média superior a 6

Passo 1 – Receber as 4 notas

Passo 2 – Calcular a média das 4 notas

Passo3 – Se a média for maior ou igual a 6, mostrar a média e informar que o aluno passou; caso contrário, mostrar a média e informar que o aluno foi reprovado.

Linguagem de Programação

Métodos para a construção de algoritmos

- Compreender o problema a ser resolvido;
- 2. Definir os dados de entrada;
- Definir o processamento (quais cálculos, quais a restrições);
- 4. Definir os dados de saída;
- 5. Construir o algoritmo;
- 6. Traduzir o algoritmo em uma linguagem de programação;

Exercício

Para cada exercício abaixo defina:

- A entrada de dados;
- O processamento necessário (use fórmulas);
- A saída de dados.
- 1) Cálculo da área de um quadrado;
- 2) Cálculo da área de um retângulo;
- 3) Cálculo da área de um triângulo;
- 4) Cálculo da média aritmética entre 3 notas;
- 5) Cálculo do desconto de 10% de uma compra em uma loja;