Module 2 - Lesson 2

Course 1 - Introduction to Self-Driving Cars

Module 2

Self-Driving Hardware and Software Architectures

Lesson 2

Hardware Configuration Design

The stereo camera for depth information, LIDAR for all whether 3D input, RADAR for object detection, ultrasonic for short-range 3D input and GNSS/IMU data and wheel odometry for ego state estimation.

Assumptions:

- 1. Aggressive deceleration = 5 m/s^2
- 2. Comfortable deceleration = 2 m/s^2
- 3. Stopping Distance $d = (v^2) / 2a$, Here V is velocity of the car and A deceleration.

Where to place sensors?

- Need sensors to support maneuvers within our ODD.
- Broadly, we have two driving environments,

	Highway	Urban / Residential
Traffic Speed	High	Low - Medium
Traffic Volume	High	Medium - High
No of lanes	Моге	2-4 typically
Other Features	Fewer, gradual curves; merges	Many turns and intersections

Highway Analysis:

Broadly, 3 kinds of maneuvers:

- 1. Emergency Stop
- 2. Maintain Speed
- 3. Lane Change

Highway Analysis:

Scenario 1 - Emergency Stop:

If there is a blockage ahead, we want to stop in time.

Longitudinal Coverage - Assume we are speeding at 120 kmph. Stopping distance could be ~110 metres, Aggressive deceleration.

To avoid collision, either we stop or change lanes.

Lateral Coverage - At least adjacent lanes, since we may change lanes to avoid a hard stop.

Scenario 2 - Maintain Speed:

Relative speeds are typically less than 30 kmph.

Longitudinal coverage - At least ~100 metres in front. Both vehicles are moving, so don't need to look as far as emergency-stop case.

Scenario 3 - Maintain speed with Merge:

Lateral Coverage - Usually current lane and Adjacent lanes would be preferred for merging vehicle detection.

Scenario 4 - Lane Change:

Consider this possible lane change scenario.

Intended lane change.

Longitudinal coverage - Need to look forward to maintain a safe distance.

Need to look behind to see what rear vehicles are doing. Laterally, we need to look not just in the adjacent lanes, but probably further.

Lateral coverage - Need wider sensing.

Highway Analysis: Overall Coverage:

Lane Change

Lane Change

Urban Analysis:

Broadly, 6 kinds of maneuvers,

- 1. Emergency Stop
- 2. Maintain Speed
- 3. Lane Change
- 4. Overtaking
- 5. Turning, crossing at intersections
- 6. Passing roundabouts

Urban Analysis:

Scenario 1 - Overtaking:

Longitudinal coverage - If overtaking a parked or moving vehicle, need to detect oncoming traffic beyond point of return to own lane.

Always need to **observe adjacent lanes.** Need to observe additional lanes if other vehicles can move into adjacent lanes.

Scenario 2 - Intersections:

Observe beyond intersection for approaching vehicles, pedestrian crossings, clear exit lanes. Requires near omnidirectional sensing for arbitrary intersection angles.

Scenario 2 - Roundabouts:

Lateral coverage - Vehicles are slower than usual, limited range requirement.

Longitudinal coverage - Due to the shape of the roundabout, need a wider field of view.

Urban Analysis - Overall Coverage:

Overall Coverage & Sensors Analysis:

