UE Einführung in Numerical Computing Übungsblatt 2

Rechenbeispiele

11. Gegeben sind

$$A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & -1 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 4 & 4 & 0 \\ 3 & 4 & 6 \\ 0 & -2 & 4 \end{pmatrix}$$

- (a) Bestimme das charakteristische Polynom
- (b) Bestimme die Eigenwerte
- (c) Bestimme die algebraischen und geometrischen Vielfachheiten der Eigenwerte
- (d) Bestimme die Eigenvektoren zu allen Eigenwerten
- 12. Gegeben sei die Matrix

$$A = \left(\begin{array}{ccc} 2 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 4 \end{array}\right)$$

- (a) Bestimme das charakteristische Polynom
- (b) Bestimme die Eigenwerte von A und die Matrix D mit den Eigenwerten in der Hauptdiagonale.
- (c) Überprüfe, dass

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} -1 + \sqrt{2} \\ 0 \\ 1 \end{pmatrix} \quad v_3 = \begin{pmatrix} -1 - \sqrt{2} \\ 0 \\ 1 \end{pmatrix}$$

Eigenvektoren von A sind. Zu welchen Eigenwerten?

13. Gegeben sei die Matrix

$$A = \left(\begin{array}{ccc} 2 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 4 \end{array}\right)$$

- (a) Wie wird die Matrix A mit Hilfe der Eigenvektoren in die dazu ähnliche Diagonalmatrix D transformiert?
- (b) Bestimme die Determinante von A.

14. Gegeben sind

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 3 & -1 & 4 \end{pmatrix} \quad \vec{x} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Bestimme folgende Ausdrücke

- (a) $||A||_1$, $||A||_{\infty}$
- (b) $||A^{-1}||_1$, $||A^{-1}||_{\infty}$
- (c) $||A||_1 ||A^{-1}||_1$, $||A||_{\infty} ||A^{-1}||_{\infty}$
- (d) $||\vec{x}||_1$, $||\vec{x}||_{\infty}$
- (e) $||A\vec{x}||_1$, $||A\vec{x}||_{\infty}$
- (f) $||A||_1||\vec{x}||_1$, $||A||_{\infty}||\vec{x}||_{\infty}$

15. Seien a, b, c in Gleitkommadarstellung mit 8 Stellen gegeben:

$$a = 0,23371258.10^{-4}$$
 $b = 0,33678429.10^2$ $c = -0,33677811.10^2$

- (a) Zeige, dass (a + b) + c und a + (b + c) nicht gleich sind.
- (b) Welches der beiden Ergebnisse ist genauer?

Achtung: im Lauf der Rechnungen kann es dazu kommen, dass Sie keine reguläre Maschinenzahl erhalten: Dem muss durch Rundung Rechnung getragen werden. Die Operation + muss also eigentlich durch eine geeignete Gleitpunktoperation ersetzt werden (Pseudoarithmetik).

16. Seien a, b, c gegeben:

$$a = 0,0345$$
 $b = 29$ $c = 2$

- (a) Bringe a, b und c in Gleitkommadarstellung mit Mantissenlänge 4.
- (b) Zeige, dass $(a \cdot b) \cdot c$ nicht gleich $a \cdot (b \cdot c)$ ist.
- (c) Welches der beiden Ergebnisse ist genauer?

Achtung: Im Lauf der Rechnungen kann es dazu kommen, dass Sie keine reguläre Maschinenzahl erhalten, dem muss durch Rundung Rechnung getragen werden. Die Operation \cdot muss also eigentlich durch eine geeignete Gleitpunktoperation ersetzt werden (Pseudoarithmetik).

17. Gegeben sei die Matrix

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{array}\right)$$

- (a) Bestimme für die Matrix A die bei der Gauß-Elimination auftretenden Elementarmatrizen M_1 und M_2 .
- (b) Bestimme mit diesen dann die entsprechende LU-Zerlegung.
- (c) Überprüffe für k = 1 und j = 2 folgende Eigenschaften

$$M_k^{-1} = I + v_k e_k^T$$

$$M_k^{-1} M_j^{-1} = I + v_k e_k^T + v_j e_j^T$$

 M_k und v_k werden wie in der Vorlesung definiert.

18. Gegeben sei folgende Matrix

$$A = \left(\begin{array}{rrr} 1 & 3 & 4 \\ 1 & 0 & -2 \\ -2 & 4 & 6 \end{array}\right)$$

- (a) Bestimme die LU-Zerlegung (untere und obere Dreiecksmatrix).
- (b) Verwende die LU-Faktorisierung zur Berechnung der Determinante von A.
- (c) Löse das lineare Gleichungssystem Ax = b mit $b = (1, 0, 5)^T$.

Programmierbeispiele

19. Mittelwert \bar{x} und Varianz s^2 eines Datensatzes x_1, \ldots, x_n sind definiert durch

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$ (1)

Eine alternative Formel zur Berechnung der Varianz ist

$$s^{2} = \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}\right) - \bar{x}^{2} = \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}\right) - \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{2}$$
(2)

Diese hat den Vorteil, dass nur einmal über die x_i zu iterieren ist - wenn zum Beispiel nicht der ganze Datensatz in den Speicher passt, ist dies eine gute Eigenschaft.

- (a) Welche der beiden Berechnungsarten ist genauer? Vergleichen Sie die beiden Formeln empirisch, indem Sie mit Octave Datensätze verschiedener Größen n mit bekannter Varianz und bekanntem Mittelwert generieren, und die Varianz dann nach (1) und (2) berechnen. Nützlich ist hier etwa die Octave-Funktion normrnd.
- (b) Plotten Sie die Abweichungen der berechneten Varianzwerte von den bekannten (richtigen) Werten und vergleichen Sie diese.
- (c) Finden Sie eine Erklärung für das Phänomen?
- 20. Schreiben Sie eine Funktion, die eine obere Dreiecksmatrix U und einen Vektor b als Argumente erhält und das Gleichungssystem Ux = b mittels Rückwärtssubstitution löst. Überprüfen Sie ihre Ergebnisse mit Octave. Sie dürfen von korrekt dimensionierten Eingabedaten ausgehen, sollten aber signalisieren, falls sich das Gleichungssystem als nicht eindeutig lösbar erweist.