we have

$$\vec{F} = \int \left[-\nabla (\vec{n} \cdot \vec{B}) + (\vec{n} \cdot \nabla) \vec{B} + (\vec{B} \cdot \nabla) \vec{M} + \vec{M} \times (\nabla \times \vec{B}) \right] d^{2}n$$

$$+ \oint \left[\vec{n} (\vec{M} \cdot \vec{B}) - \vec{M} (\vec{n} \cdot \vec{B}) \right] da$$

Using the result that

The result shows
$$\int \nabla (\vec{m} \cdot \vec{R}) d\vec{n} = \oint \vec{n} (\vec{m} \cdot \vec{R}) d\vec{n}$$
, $\nabla (\vec{m} \cdot \vec{R}) d\vec{n} = \oint (\vec{m} \cdot \vec{n}) \vec{R} d\vec{n} - \int (\nabla \cdot \vec{m}) \vec{R} d\vec{n}$, $\nabla (\vec{R} \cdot \nabla) \vec{n} d\vec{n} = \oint (\vec{R} \cdot \vec{n}) \vec{M} d\vec{n} - \int (\nabla \cdot \vec{R}) \vec{M} d\vec{n}$, $\int (\vec{R} \cdot \nabla) \vec{M} d\vec{n} = \oint (\vec{R} \cdot \vec{n}) \vec{M} d\vec{n} - \int (\nabla \cdot \vec{R}) \vec{M} d\vec{n}$,

We have = - | (V.M) \(\vec{B} d^3 n + \vartheta (\vec{m} \cdot \vec{n}) \vec{B} da

(b) The volume integral term is zero, since
$$\nabla \tilde{M} = 0$$
. For the swiface integral $\tilde{\Xi} = M \left(\frac{1}{2} \times 0.0000 + 0.0000 \right) \left(\frac{1}{2} \times 0.0000 \right) \left(\frac{1}{2} \times$

= MBo
$$\int (\omega_3 \circ \omega_3 \circ \circ + \sin \circ \sin \circ \omega_3 (\phi - \phi_3)) \left(1 + \beta R \sin \circ \cos \phi \right) d(\omega_3 \circ) d\phi$$

= MBo · BR.
$$\left(\frac{4}{3}\pi \text{ Sin Bo Sin Bo}\right) = \frac{4}{3}\pi\beta \text{ BoMR}\left(\text{Sin Bo Sin Bo}, \text{ sm Bo}\right)$$