AMATH 567: Applied Complex Variables. Autumn 2022 Homework Assignment 1

Wietse Vaes

- 1. Express each of the following in polar exponential form:
 - (a) -i
 - (b) 1+i
 - (c) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$

Solution:

The polar exponential form of z=a+bi is $z=re^{\theta i}=r(\cos(\theta)+i\sin(\theta))$, with $r=\sqrt{a^2+b^2}$ the magnitude of z and $\theta=\tan^{-1}(\frac{b}{x})$ the angle between the positive x-axis and the line from 0 to z. Here θ can be $\tilde{\theta}=\theta+2\pi$ as well, however, We will only be calculating the θ in $[-\pi,\pi]$. Thus,

(a) If z = -i, then $r = \sqrt{(-1)^2} = 1$ and, using the fact that θ is the angle between the positive x-axis and the line from 0 to $z, \theta = -\frac{\pi}{2}$. Thus,

$$z = e^{-\frac{\pi}{2}i}$$

(b) If z = 1 + i, then $r = \sqrt{1^2 + 1^2} = \sqrt{2}$ and $\theta = \tan^{-1}(1) = \frac{\pi}{4}$. Thus,

$$z = \sqrt{2}e^{\frac{\pi}{4}i}$$

(c) If $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$, then $r = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$ and $\theta = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$. Thus,

$$z = e^{\frac{\pi}{3}i}$$

2. Express each of the following in the form of a + bi, where a and b are real.

- (a) $e^{2+i\pi/2}$
- (b) $\frac{1}{1+i}$
- (c) $(1+i)^3$
- (d) |3+4i|
- (e) $\cos(i\pi/4 + c)$, with $c \in \mathbb{R}$

Solution:

(a)
$$e^{2+i\pi/2} = e^2(\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2})) = e^2i$$

(b)
$$\frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1}{2} - \frac{1}{2}i$$

(c)
$$(1+i)^3 = 1^3 + 3 * 1^2 i + 3 * 1 i^2 + i^3 = -2 + 2i$$

(d)
$$|3+4i| = \sqrt{3^2+4^2} = 5$$

(e)
$$\cos(i\pi/4+c)$$
, with $c \in \mathbb{R}$. We know that $\cos(x) = \frac{e^{ix}+e^{-ix}}{2}$, then

$$\cos(i\pi/4 + c) = \frac{e^{-\pi/4 + ci} + e^{\pi/4 - ci}}{2} = \frac{e^{-\pi/4}(\cos(c) + i\sin(c)) + e^{\pi/4}(\cos(c) - i\sin(c))}{2}$$
$$= \frac{e^{-\pi/4} + e^{\pi/4}}{2}\cos(c) + \frac{e^{-\pi/4} - e^{\pi/4}}{2}\sin(c)i$$
$$= \cosh(\pi/4)\cos(c) - \sinh(\pi/4)\sin(c)i$$

- 3. Solve for the roots of the following equation:
 - (a) $z^3 = 4$
 - (b) $z^4 = -1$

Solution:

(a) This problem comes down to $z^3-4=0$. Since $z=\sqrt[3]{4}$ is clearly is root, we get (using Horner): $z^3-4=(z-\sqrt[3]{4})(x^2+\sqrt[3]{4}x+2\sqrt[3]{2})=0$. Finding roots of the second part is easy: $D=-6\sqrt[3]{2} \Rightarrow z=\frac{-\sqrt[3]{4}\pm\sqrt{6}\sqrt[6]{2}i}{2}=\frac{-\sqrt[3]{4}\pm\sqrt[6]{2}\sqrt{4}3^3}{2}i=-\frac{\sqrt[3]{4}}{2}\pm\frac{\sqrt[3]{4}\sqrt{3}}{2}i$. The roots are thus,

$$z = \sqrt[3]{4}$$
, $-\frac{\sqrt[3]{4}}{2} + \frac{\sqrt[3]{4}\sqrt{3}}{2}i$ and $-\frac{\sqrt[3]{4}}{2} - \frac{\sqrt[3]{4}\sqrt{3}}{2}i$

(b) This problem comes down to $z^4 + 1 = 0$, but $z^4 + 1 = (z^2)^2 - i^2 = (z^2 - i)(z^2 + i)$. We thus want to solve $z^2 = -i$ and $z^2 = i$. In order to find the square root of i and -i, we convert them to their polar form:

$$i = \cos(\frac{\pi}{2}) + \sin(\frac{\pi}{2})i$$
 and $-i = \cos(-\frac{\pi}{2}) + \sin(-\frac{\pi}{2})i$

We know that if $z = r(\cos(\theta) + i\sin(\theta))$, that $z^p = r^p(\cos(p(\theta + 2k\pi))) + i\sin(p(\theta + 2k\pi))$ with $p \in \mathbb{R}$ and $k \in \mathbb{N}$. Thus,

$$\sqrt{i} = \cos(\frac{\pi}{4} + k\pi) + \sin(\frac{\pi}{4} + k\pi)i \qquad \text{and} \qquad \sqrt{-i} = \cos(-\frac{\pi}{4} + k\pi) + \sin(-\frac{\pi}{4} + k\pi)i, k \in \mathbb{N}$$

The roots are thus

$$z = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i, -(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i), \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \text{ and } -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$

- 4. Establish the following result:
 - (a) $(z+w)^* = z^* + w^*$
 - (b) $\operatorname{Re}(z) \leq |z|$
 - (c) $|wz^* + w^*z| < 2|wz|$
 - (d) $|z_1 z_2| = |z_1||z_2|$

Solution:

(a) Suppose that z = a + bi and w = c + di. We then have,

$$(z+w)^* = (a+c+(b+d)i)^* = a+c-(b+d)i = a-bi+c-di = z^* + w^*$$

(b) Suppose that z = a + bi, then Re(z) = a and $|z| = \sqrt{a^2 + b^2}$. We now have,

$$|z| = \sqrt{a^2 + b^2} \ge \sqrt{a^2} = |a| \ge a = \text{Re}(z)$$

(c) Suppose that z = a + bi and w = c + di. Then,

$$|wz^* + w^*z| = |(c+di)(a-bi) + (c-di)(a+bi)| = |2ac+2db| = 2|ac+db|$$

On the other hand we have

$$2|wz| = 2|ac + db + (ad - bc)i| = 2\sqrt{(ac + db)^2 + ((ad - bc))^2}$$
$$\geq 2\sqrt{(ac + db)^2} = 2|ac + db| = |wz^* + w^*z|$$

(d) Suppose that $z_1 = a_1 + b_1 i$ and $z_2 = a_2 + b_2 i$. We then have,

$$|z_1 z_2| = |(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i| = \sqrt{(a_1 a_2 - b_1 b_2)^2 + (a_1 b_2 + a_2 b_1)^2}$$

$$= \sqrt{(a_1 a_2)^2 + (b_1 b_2)^2 + (a_1 b_2)^2 + (a_2 b_1)^2} = \sqrt{(a_1^2 + b_1^2)(a_2^2 + b_2^2)}$$

$$= \sqrt{a_1^2 + b_1^2} \sqrt{a_2^2 + b_2^2} = |z_1||z_2|$$