

# AmM-EXP2-1415-Segundo examen par...



**Wiskas** 



Ampliación de Matemáticas



3º Grado en Ingeniería Aeroespacial



Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio
Universidad Politécnica de Madrid



# Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.







3 🗀

4 🗀 5 🗀

6 🗀 7 🗀

8 🗀

9 🗀

10 🗀

11 🗀

12 ==

13 🗀

14 🗀

15 🗀

16 🗀

17 🗀 18 === 19 🗀

20 🗀 21 🗀 22 🗀 23 🗀 24 🗀

25 === 26 💳 27 = 28 🗀

29 === 30 🗀

31 🗀 32

33 🗀 34 🗀 35 🗀

36 ==

37 === 38 💳

39 == 40 📟 41 🗀 42 🗀 43 ==

44 🗀

45 💳

46 == 47 💳 48 🗀 49 🗀

50 ==

51 💳 52 🗀

53 ==

54 ==

55 ===

56 === 57 -

58 🗀 59 =

60 ==

61 ==

62 ==

63 === 64 ==

# Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.







18[

## Ver mis op

### Continúa de

| ٠ | Tribute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Arts Exchanges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | And development in the period of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Selection of the part of the part of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | THE RESIDENCE OF THE PARTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | Company of the Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | \$100 m to the second of the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | the second second set from the first of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Anti-participant control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | No. of the last last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | Section 2 courses in the Paper of the Confession |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

405416 arts esce ues2016juny.pdf

## Top de tu gi





Rocio



pony



Asignatura: Curso:

## Ampliación de Matemáticas (Versión 1),

(19-12-2014)

C. Considérese el problema de Cauchy definido por

$$\frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial x^3} = 0 \quad \text{para } (x, t) \in \mathbb{R} \times ]0, +\infty[$$

 $u(x,0) = \exp(-x^2)$   $x \in \mathbb{R}$ , u(x,t) acotada en  $\mathbb{R}$  para cada  $t \in ]0. + \infty[$ .

Sea  $\hat{u}:\mathbb{R}\times ]0,+\infty[\to\mathbb{C}$  la transformada de Fourier de la función u, es decir  $\hat{u}(\omega,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-i\omega x) dx$ . Sobre la función  $\hat{u}$  se puede afirmar que:

(1) 
$$\hat{u}(\omega, t) = \sqrt{\pi} \exp(-i\omega^3 t - \frac{\omega^2}{4}).$$

(1) 
$$\hat{u}(\omega,t) = \sqrt{\pi} \exp(-i\omega^3 t - \frac{\omega^2}{4}).$$
  
(2)  $\hat{u}(\omega,t) = \sqrt{\pi} \exp(i\omega^3 t - \frac{\omega^2}{4}).$   
(3)  $\hat{u}(\omega,t) = \sqrt{\pi} \exp(-\omega^3 t - \frac{\omega^2}{4}).$   
(4) No es cierta ninguna de las otras tres respuestas.

(3) 
$$\hat{u}(\omega, t) = \sqrt{\pi} \exp(-\omega^3 t - \frac{\omega^2}{4}).$$

Nota. 
$$\mathcal{F}(\exp(-x^2)) = \sqrt{\pi} \exp(-\frac{\omega^2}{4}).$$

D. Considérese el problema de Cauchy definido por

$$\frac{d^2w}{dz^2} - (1+z^2)w = 0 \text{ en } \mathbb{C},$$

$$w(0) = 1, \ \frac{dw}{dz}(0) = 1.$$

La solución del problema anterior es una función entera, cuyo desarrollo en serie de Taylor es  $w(z) = \sum_{k=0}^{+\infty} c_k z^k$ . Sobre la función w y los coeficientes  $c_k$  de su desarrollo se puede afirmar que:

(5) 
$$c_0 = 1, c_1 = 1, \text{ y } c_{j+2} = \frac{c_j - c_{j-2}}{(j+2)(j+1)}$$
 para todo  $j \ge 2$ .

(6) 
$$c_0 = 1, c_1 = 1, y c_{j+2} = \frac{c_j - c_{j-2}}{(j+1)j}$$
 para todo  $j \ge 2$ .

(5) 
$$c_0 = 1, c_1 = 1, \text{ y } c_{j+2} = \frac{c_j - c_{j-2}}{(j+2)(j+1)} \text{ para todo } j \ge 2.$$
  
(6)  $c_0 = 1, c_1 = 1, \text{ y } c_{j+2} = \frac{c_j - c_{j-2}}{(j+1)j} \text{ para todo } j \ge 2.$   
(7)  $c_2 = \frac{1}{2}, c_3 = \frac{1}{6}, \text{ y } c_{j+2} = \frac{c_j + c_{j-2}}{(j+2)(j+1)} \text{ para todo } j \ge 2.$ 

(8) No es cierta ninguna de las otras tres respuestas.

E. Sea  $w:\mathbb{C} \to \mathbb{C}$  la solución del problema de Cauchy definido en el ejercicio D. Sobre la función w puede afirmarse que:

- (9) Para todo  $x \in \mathbb{R}$  con x > 0 se verifica que  $\exp(x) \le w(x)$ .
- (10) Para todo  $x \in \mathbb{R}$  con x > 0 se verifica que  $w(x) \le \exp(x) + x$ .
- (11) Para todo  $x \in \mathbb{R}$  con x > 0 se verifica que  $x \le w(x) \le 2 + x^2$ .
- (12) No es cierta ninguna de las otras tres respuestas.

Nombre:

Fecha:

Firma:

Asi no marque × 

Marque asi

|   |   |   |   |   | - |   |   |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|   |   |   |   |   |   |   |   |
|   |   |   |   | 2 |   |   |   |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
|   |   |   |   | 5 |   |   |   |
| 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
|   |   |   |   | 7 |   |   |   |
|   |   |   |   | 8 |   |   |   |
|   |   |   |   | 9 |   |   |   |
| _ |   | _ |   |   | _ |   | _ |

|   | - 1 |  |  |
|---|-----|--|--|
| 0 |     |  |  |
| 1 |     |  |  |
| 2 |     |  |  |
| 3 |     |  |  |
| 4 |     |  |  |
| 5 |     |  |  |
| 6 |     |  |  |
| 7 |     |  |  |
| 8 |     |  |  |
| 9 |     |  |  |

23 24 25

26 27

28

29

30 31

2 3 4 5

| _1 | 2 | 3 | 4 | 5  |
|----|---|---|---|----|
| 6  | 7 | 8 | 9 | 10 |
| A  | В | C | D | E  |
| E  | G | H | I | J  |

## 1 a b c d e 3 a b c d e 5 a b c d e 6 a b c d e 7 a b c d e 8 a b c d

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad

## Ampliación de Matemáticas (Versión 1)

F. Considérese la ecuación diferencial

$$z(2+z)\frac{d^2w}{dz^2} + 2(1+z)\frac{dw}{dz} + \sqrt{2}w = 0.$$

Sobre las soluciones de la ecuación anterior, en  $D\subset \mathbb{C}$ , puede afirmarse

- (13) Existe una solución de la ecuación del enuncialdo,  $w_1(z)$ , distinta de la función nula, analítica en B((0+i0), 2) y tal que  $\lim_{z\to 0} \frac{w_1(z)}{z} =$
- Existe una solución de la ecuación del enuncialdo,  $w_2(z)$ , tal que (14) $\lim_{z \to 0} \frac{w_2(z)}{\ln(z)} = 1.$
- (15) Existe una solución de la ecuación del enuncialdo,  $w_1(z)$ , tal que  $\lim_{z\to 0}\frac{w_1(z)-z}{z}=0.$  (16) No es cierta ninguna de las otras tres respuestas.

G. Considérese el problema de Cauchy definido por

$$\begin{split} \frac{\partial^2 u}{\partial t^2} &= \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \quad \text{para } (r,\theta,t) \in [0,1[\times[-\pi,\pi[\times]0,+\infty[,\\ & u(1,\theta,t) = 0 \quad (\theta,t) \in [-\pi,\pi[\times]0,+\infty[,\\ & u(r,\theta,0) = J_1(\alpha r) \sin(\theta), \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,\\ & \frac{\partial u}{\partial t}(r,\theta,0) = 0, \quad (r,\theta) \in [0,1[\times[-\pi,\pi[,]] \in [0,1] \in [0$$

donde  $\alpha$  es un número real mayor que cero tal que  $J_1(\alpha) = 0$ . La solución del problema anterior se puede expresar de la forma  $u(r, \theta, t) =$  $\sin(\theta) \sum_{k=1}^{+\infty} w_{k1}(t) J_1(\lambda_{k1} r)$  donde  $(\lambda_{m1})$  es la sucesión monótona creciente formada por todos los ceros reales positivos de  $J_1(z)$ . Sobre la función u se puede afirmar que:

- (17) El desarrollo de la función u definido en el enunciado tiene infinitos términos no nulos.
- (18)  $u(r, \theta, t) = \cos(\alpha^2 t) J_1(\alpha r) \sin(\theta)$ .
- ((19))  $u(r, \theta, t) = \cos(\alpha t) J_1(\alpha r) \sin(\theta)$ .
- (20) No es cierta ninguna de las otras tres respuestas.



| E.T.S.I. Aeronáuticos<br>Matemática Aplicada | D.N.I. :                               | Curso 14/15<br>(19.12.14)     |
|----------------------------------------------|----------------------------------------|-------------------------------|
| y Estadística                                | 1 <sup>er</sup> Apellido :             | Tiempo 30 m<br>Valor 6 puntos |
| AMP. DE MATEMÁTICAS<br>(3° DE GRADO)         | 2 <sup>do</sup> Apellido :<br>Nombre : | P-1                           |
| (5 DE GRADO)                                 | Nombre                                 | 1 1                           |

No se pueden utilizar ni libros ni apuntes

A. (3 puntos) Anotar en el siguiente recuadro la transformada inversa de Laplace de la función

$$F(s) = \frac{1}{1+s^3}.$$

$$f(t) = \frac{1}{3} \left[ e^{-t} - e^{t/2} \cos(\frac{3}{2}t) + 13 e^{t/2} \sin(\frac{3}{2}t) \right]$$

B. (3 puntos) En lo que queda de página esquematizar los pasos dados para llegar al resultado anterior:

$$f(t) = \int_{-1}^{1} \left(\frac{1}{1+s^{3}}\right)(t) = Res\left(\frac{e^{st}}{1+s^{3}}, -1\right) + Res\left(\frac{e^{st}}{1+s^{3}}, \Lambda_{73}\right) + Res\left(\frac{e^{st}}{1+s^{3}}, \Lambda_$$





# Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.









405416\_arts\_esce









Tomando la transformada do Fourier en la ecuación de obtiene  $\frac{3\hat{u}}{\partial t} + (i\omega)^3 \hat{u} = 0$ , donde û(wit) es la transformade de Fourier

de uccit). Integrando la ocuación du = c w di se obtiena û = C e detena se obtiene û = C e c w3 t

Tenendo en cuenta la condición inicial de la ecuación diferencial y la nota del enunciado (= f(oxp(-2)) = 15T exp(-w2).

Portanto, û (w,t) = \( \overline{\pi} \) emp(i\overline{\pi} \).

Pregunta D La sevación del anunciado esta escrita en forma canónica. Puesto que los coeficientes de la seración son enteros la solución del problema de Couchy dado un el enunciado es entera. Por tanto, W(2) = 1+2+ \(\int Ck2\) la ecuación proporciona el valor de cz = 1. sustitugendo el desarrollo anterior que C3 = { y que para } 2 2 [ k (k-1) Cx 2 = 42+ [ Ge2k + Igualando los conficientes en 2º Cytz = Gj+Cj-2

Pregunte E

En virtud de la neueronancia obsternida en la pragunta D Ck>0 para todo k≥0.

Adamás, Ck+2> Ck

(2+2) (3+1) , por consiguente.

1+2+2²+2³+2³+2'+12²+2 = exp(2)+2' (W(2))

para todo 2∈ R corc 2>0. En consecuencia,

la respuesta 9 es uente y la 10 g la 11

son falsos para 2>0 suficientemente grande.

Progunta F La revoieion diferencial del emunciado puede escribinse como.

$$\frac{d^2w}{dz^2} = -\frac{1}{2} \frac{2(1+2)}{(2+2)} - \frac{1}{2} \frac{\sqrt{2}}{2+2}.$$

El punto 2=0 es singular regular para la ecuación anterior. El comportamiento de los solutiones en un entorno de 200 está dado por los autovalores de (0° 0), es decir, 1=0 dobble. En virtuel del terrame de escistancia de solución para este tipo de soluciones la solución general de la acuación es de la forma w(2)=C, P, (2)+ (2 (py(2) ln 2+pz(2)), donde Pry Pr son dos funciones analíticas en DDB(0110,2) (on P2(0)=1 y P2(0)=0. Por tento,

2 W(Z) = C2, l WE) = l G + G2 luz = 200 2 + G2 luz =

Jo ni q=Cr=0, y portante, wær es nula.

Los en coro contrario

y  $\frac{1}{2}$   $\frac{1}{2}$ 

, Placendo Cz =1 je obliene existe vira tolución tal que <u>li with</u> = 1.



# Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.









Top de tu gi







Progunta G Justituyendo la frención urv. 0, t) = cont Jar) seno en la suación diferencial y multiplicando por rela ecuación que se obtiene se lloga, a (2) (4) sou(6) (15 fz g(on) +1 of g(on) + (x213-1)] (core)) =0. La cerración anterior se verifica pera todo (not) & [0,1[x]-17,17]x], 0+00[, puesto que L'ar) es solución de la ecuación diferencial. La función es et 7 (ar) seno verfica los condiciones oniciales y de contorno, en vortud le la unitidad

le solución del problema de Cauchy su solución

u(r,out) = coat 2 (ar) seno.