Homework 2

Ziming Ji

PHY 539: Introduction to String Theory

October 10, 2018

1 Problem 1

First we find the mode expansion of the space-time Lorentz generator $J^{\mu\nu}$ of a bosonic open string. By definition we have

$$J^{\mu\nu} = \int_0^{\pi} J_0^{\mu\nu} d\sigma = \frac{1}{\pi l_s^2} \int_0^{\pi} (X^{\mu} \dot{X}^{\nu} - X^{\nu} \dot{X}^{\mu}) d\sigma. \tag{1}$$

Plugging in the mode expansion of X field and its derivative:

$$X^{\mu}(\tau,\sigma) = x^{\mu} + l_s^2 p^{\mu} \tau + i l_s \sum_{m \neq 0} \frac{1}{m} \alpha_m^{\mu} e^{-im\tau} \cos(m\sigma)$$

$$\dot{X}^{\mu}(\tau,\sigma) = l_s^2 p^{\mu} + l_s \sum_{m \neq 0} \alpha_m^{\mu} e^{-im\tau} \cos(m\sigma),$$
(2)

we obtain (omitting terms that vanish after integration):

$$J^{\mu\nu} = \frac{1}{\pi l_s^2} \int_0^{\pi} d\sigma (l_s^2 x^{\mu} p^{\nu} + l_s^4 p^{\mu} p^{\nu} \tau + i l_s^2 \cos(m\sigma)^2 \sum_{m=1}^{\infty} \frac{1}{m} (\alpha_m^{\mu} \alpha_{-m}^{\nu} - \alpha_{-m}^{\mu} \alpha_m^{\nu} + \alpha_m^{\mu} \alpha_m^{\nu} e^{-2im\tau} - \alpha_{-m}^{\mu} \alpha_{-m}^{\nu} e^{2im\tau})$$

$$- l_s^2 x^{\nu} p^{\mu} - l_s^4 p^{\nu} p^{\mu} \tau - i l_s^2 \cos(m\sigma)^2 \sum_{m=1}^{\infty} \frac{1}{m} (\alpha_m^{\nu} \alpha_{-m}^{\mu} - \alpha_{-m}^{\nu} \alpha_m^{\mu} + \alpha_m^{\nu} \alpha_m^{\mu} e^{-2im\tau} - \alpha_{-m}^{\nu} \alpha_{-m}^{\mu} e^{2im\tau}))$$

$$= \frac{1}{\pi l_s^2} [\pi l_s^2 (x^{\mu} p^{\nu} - x^{\nu} p^{\mu}) + i l_s^2 \frac{\pi}{2} \sum_{m=1}^{\infty} \frac{1}{m} (2\alpha_m^{\mu} \alpha_{-m}^{\nu} - 2\alpha_m^{\nu} \alpha_{-m}^{\mu})]$$

$$= x^{\mu} p^{\nu} - x^{\nu} p^{\mu} + i \sum_{m=1}^{\infty} \frac{1}{m} (\alpha_m^{\mu} \alpha_{-m}^{\nu} - \alpha_m^{\nu} \alpha_{-m}^{\mu}).$$
(3)

Applying the canonical commutation relation:

$$[x^{\mu}, p^{\nu}] = i\eta^{\mu\nu}, \quad [x^{\mu}, x^{\nu}] = [p^{\mu}, p^{\nu}] = 0, \quad [\alpha_m^{\mu}, \alpha_n^{\nu}] = m\eta^{\mu\nu}\delta_{m+n,0},$$
 (4)

we read that $[p^{\mu}, p^{\nu}] = 0$ immediately. And it is not hard to see that

$$[p^{\mu}, J^{\nu\sigma}] = [p^{\mu}, x^{\nu}p^{\sigma} - x^{\sigma}p^{\nu}] = i\eta^{\sigma\mu}p^{\nu} - i\eta^{\nu\mu}p^{\sigma}.$$
 (5)

Lastly, $[J^{\mu\nu}, J^{\sigma\lambda}]$ can be separated into two terms:

$$[J^{\mu\nu}, J^{\sigma\lambda}] = [x^{\mu}p^{\nu} - x^{\nu}p^{\mu}, x^{\sigma}p^{\lambda} - x^{\lambda}p^{\sigma}]$$

$$- [\sum_{m=1}^{\infty} \frac{1}{m} (\alpha_{m}^{\mu}\alpha_{-m}^{\nu} - \alpha_{m}^{\nu}\alpha_{-m}^{\mu}), \sum_{m=1}^{\infty} \frac{1}{m} (\alpha_{m}^{\sigma}\alpha_{-m}^{\lambda} - \alpha_{m}^{\lambda}\alpha_{-m}^{\sigma})]$$
(6)

First we have $[x^{\mu}p^{\nu}, x^{\sigma}p^{\lambda}] = i\eta^{\mu\lambda}x^{\sigma}p^{\nu} - i\eta^{\sigma\nu}x^{\mu}p^{\lambda}$. Applying this we get:

$$[x^{\mu}p^{\nu} - x^{\nu}p^{\mu}, x^{\sigma}p^{\lambda} - x^{\sigma}p^{\lambda}] = i\eta^{\mu\lambda}x^{\sigma}p^{\nu} - i\eta^{\sigma\nu}x^{\mu}p^{\lambda} - i\eta^{\mu\sigma}x^{\lambda}p^{\nu} + i\eta^{\lambda\nu}x^{\mu}p^{\sigma}$$

$$- i\eta^{\nu\lambda}x^{\sigma}p^{\mu} + i\eta^{\sigma\mu}x^{\nu}p^{\lambda} + i\eta^{\nu\sigma}x^{\lambda}p^{\mu} - i\eta^{\lambda\mu}x^{\nu}p^{\sigma}.$$

$$(7)$$

Second, after applying $\left[\alpha_m^{\mu}\alpha_{-m}^{\nu},\alpha_m^{\sigma}\alpha_{-m}^{\lambda}\right]=m\eta^{\mu\lambda}a_m^{\sigma}a_{-m}^{\nu}-m\eta^{\nu\sigma}a_m^{\mu}a_{-m}^{\lambda}$, we have

$$\begin{split} & [\sum_{m=1}^{\infty} \frac{1}{m} (\alpha_{m}^{\mu} \alpha_{-m}^{\nu} - \alpha_{m}^{\nu} \alpha_{-m}^{\mu}), \sum_{m=1}^{\infty} \frac{1}{m} (\alpha_{m}^{\sigma} \alpha_{-m}^{\lambda} - \alpha_{m}^{\lambda} \alpha_{-m}^{\sigma})] = \sum_{m=1}^{\infty} \frac{1}{m} (\eta^{\mu \lambda} a_{m}^{\sigma} a_{-m}^{\nu} - \eta^{\nu \sigma} a_{m}^{\mu} a_{-m}^{\lambda} - \eta^{\nu \sigma} a_{m}^{\mu} a_{-m}^{\lambda} + \eta^{\nu \sigma} a_{m}^{\lambda} a_{-m}^{\nu} + \eta^{\nu \sigma} a_{m}^{\lambda} a_{-m}^{\nu} - \eta^{\mu \lambda} a_{m}^{\nu} a_{-m}^{\sigma}). \end{split}$$

$$(8)$$

It is not hard to see from now that matching equation 7 and 8, one can obtain the desired commutation relation for Lorentz generators:

$$[J^{\mu\nu}, J^{\sigma\lambda}] = -i\eta^{\nu\sigma}J^{\mu\lambda} + i\eta^{\mu\sigma}J^{\nu\lambda} + i\eta^{\nu\lambda}J^{\mu\sigma} - i\eta^{\mu\lambda}J^{\nu\sigma}. \tag{9}$$

2 Problem 2

a) First massive level of D=26 open string is the combination of two kinds of excitations: $\alpha_{-1}^{\mu}\alpha_{-1}^{\nu}|0;k\rangle$ and $\alpha_{-2}|0;k\rangle$. A general state is $(s_{\mu\nu}\alpha_{-1}^{\mu}\alpha_{-1}^{\nu}+v_{\mu}\alpha_{-2}^{\mu})|0;k\rangle$. Physical state conditions are the constraints that $L_m|\phi\rangle=0$ for m>0 and $(L_0-1)|\phi\rangle=0$. The second one, also called mass shell condition, gives $\alpha'M^2=1$ or $-\alpha'k^{\mu}k_{\mu}=1$. The first one need to be examined more carefully. See what we have in hand:

$$L_{m}\alpha_{-2}^{\mu}|0;k\rangle = \frac{1}{2}\sum_{n=-\infty}^{\infty}\alpha_{m-n}^{\lambda}\alpha_{n}^{\sigma}\eta_{\lambda\sigma}\alpha_{-2}^{\mu}|0;k\rangle = \frac{1}{2}\alpha_{m-2}^{\lambda}\alpha_{2}^{\sigma}\eta_{\lambda\sigma}\alpha_{-2}^{\mu}|0;k\rangle = \alpha_{m-2}^{\mu}|0;k\rangle$$
(10)

$$L_{m}\alpha_{-1}^{\mu}\alpha_{-1}^{\nu}|0;k\rangle = \frac{1}{2}\sum_{n=-\infty}^{\infty}\alpha_{m-n}^{\lambda}\alpha_{n}^{\sigma}\eta_{\lambda\sigma}\alpha_{-1}^{\mu}\alpha_{-1}^{\nu}|0;k\rangle = (\frac{1}{2}\alpha_{m-1}^{\mu}\alpha_{-1}^{\nu} + \frac{1}{2}\alpha_{m-1}^{\nu}\alpha_{-1}^{\mu})|0;k\rangle$$

where we define sign^{μ} to be a vector (-1, 1, 1, ..., 1). It is not hard to see that when m > 2, all these terms are manifestly zero. When m = 1, $L_1 |0; k\rangle = 0$ gives:

$$[s_{\mu\nu}(\frac{1}{2}\alpha_0^{\mu}\alpha_{-1}^{\nu} + \frac{1}{2}\alpha_0^{\nu}\alpha_{-1}^{\mu}) + v_{\sigma}\alpha_{-1}^{\sigma})]|0;k\rangle = 0$$

$$[s_{\mu\nu}(\frac{1}{4}l_sk^{\mu}\alpha_{-1}^{\nu} + \frac{1}{4}l_sk^{\nu}\alpha_{-1}^{\mu}) + v_{\sigma}\alpha_{-1}^{\sigma})]|0;k\rangle = 0$$
(11)