Given a directed acyclic graph (DAG) G,

$$p(x_1, x_2, \ldots, x_n) := \prod_{i=1}^n p(x_i|x_{\pi_i}).$$

$$p(x_1,\ldots,x_6)=p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2)p(x_5|x_3)p(x_6|x_2,x_5)$$

▶ Given a directed acyclic graph (DAG) G,

Which independence assumptions are we exactly making by using a DAG model with a structure described by *G*? Important because

- we should know exactly what model assumptions we are making;
- ▶ this information will be helpful in designing inference algorithms later on.

Conditional independence

- ▶ X_1 and X_2 are conditionally independent given X_3 , written $X_1 \perp X_2 \mid X_3$, iff
 - $p(x_1, x_2|x_3) = p(x_1|x_3)p(x_2|x_3)$, or equivalently
 - $p(x_1|x_2,x_3) = p(x_1|x_3).$

for all x_3 such that $p(x_3) > 0$. Given X_3 , there is no further relationship between X_1 and X_2 .

Similarly, for sets of random variables, X_A and X_B are conditionally independent given X_C iff

$$p(x_A, x_B|x_C) = p(x_A|x_C)p(x_B|x_C)$$

or

$$p(x_A|x_B,x_C) = p(x_A|x_C)$$

for all x_C such that $p(x_C) > 0$.

DAG and conditional independence

Compare

$$p(x_1,\ldots,x_6)=p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2)p(x_5|x_3)p(x_6|x_2,x_5)$$

and

$$p(x_1,\ldots,x_6) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)p(x_4|x_3,x_2,x_1)\cdots p(x_6|x_5,\ldots,x_1)$$

DAG and conditional independence

Compare

$$p(x_1,\ldots,x_6)=p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2)p(x_5|x_3)p(x_6|x_2,x_5)$$

and

$$p(x_1,\ldots,x_6)=p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)p(x_4|x_3,x_2,x_1)\cdots p(x_6|x_5,\ldots,x_1)$$

 $X_3 \perp X_2 \mid X_1$. Exercise: verify this using definition.

DAG and conditional independence

Compare

$$p(x_1,\ldots,x_6)=p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2)p(x_5|x_3)p(x_6|x_2,x_5)$$

and

$$p(x_1,\ldots,x_6)=p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)p(x_4|x_3,x_2,x_1)\cdots p(x_6|x_5,\ldots,x_1)$$

 $X_4 \perp \{X_1, X_3\} | X_2$. Exercise: verify this using definition.

Three canonical graphs - cascade (Markov property)

$$p(x, y, z) = p(x)p(y|x)p(z|y) \Rightarrow X \perp Z|Y,$$

since

$$p(z|x,y) = \frac{p(x,y,z)}{p(x,y)} = \frac{p(x)p(y|x)p(z|y)}{p(x)p(y|x)}$$
$$= p(z|y).$$

e.g. X "past", Y "present", Z "future"

Three canonical graphs - common parent

$$p(x, y, z) = p(y)p(x|y)p(z|y) \Rightarrow X \perp Z|Y,$$

since

$$p(x,z|y) = \frac{p(y)p(x|y)p(z|y)}{p(y)} = p(x|y)p(z|y).$$

e.g. X "shoe size", Z "gray hair or not", Y "age"

Three canonical graphs - v-structure

$$p(x, y, z) = p(x)p(y|x, z)p(z) \Rightarrow X \perp Z,$$

since

$$p(x,z) = \sum_{y} p(x,y,z) = p(x)p(z)$$

Can we claim $X \perp Z \mid Y$? No. In fact observing Y can induce dependence between X and Z.

Three canonical graphs - v-structure

Alice is late for lunch with Bob.

The Bayes ball algorithm

- ▶ Decide whether a given conditional statement $X_A \perp X_B | X_C$ is true for a DAG G.
- ▶ Convert to a "reachability" algorithm: shade the nodes X_C , place a ball at each of the nodes X_A , let the ball bounce around G according to some rules. If none of the balls can reach any of the nodes in X_B , we assert $X_A \perp \!\!\! \perp X_B | X_C$.

Three canonical graphs - cascade

Three canonical graphs - common parent

Three canonical graphs - v-structure

When source and destination are the same

Example 1. Markov chain

$$X_1 \perp \!\!\! \perp X_5 | X_3, X_1 \perp \!\!\! \perp X_4 | X_3$$

Example 1. Markov chain

$$X_1 \perp \!\!\! \perp X_5 | \{X_2, X_4\}$$

Example 2.

$$X_2 \perp \!\!\! \perp X_3 | X_1$$

Example 2.

$$X_4 \perp \{X_1, X_3\} | X_2$$

Example 2.

Can we claim $X_2 \perp X_3 | \{X_1, X_6\}$?

Example 3.

alien \bot watch, but cannot assert alien \bot watch report

Two equivalent characterisations

Given a DAG G,

- ▶ Generate a family of distributions \mathcal{D}_1 as follows:
 - factorisation in terms of conditional probabilities
 - range over all possible choices of numerical values for conditional PMFs
- ▶ Generate a family of distributions \mathcal{D}_2 as follows:
 - find all conditional independences by running the Bayes ball algorithm
 - consider all possible joint distributions
 - test each against the list of conditional independences; keep the distribution if all satisfied

 \mathcal{D}_1 and \mathcal{D}_2 are the same.