1° teste de Física Computacional (MEFT/IST)

 1° semestre 2020-21

Fernando Barão, Jorge Vieira, Miguel Orcinha

Teste

- 1. Duração do teste: 3H00 Será feita uma única cópia da estrutura de pastas às 12H30 e será isso que é objecto de avaliação.
- 2. Entrega do teste através do svn.

Não se esqueçam de fazer commit de todos ficheiros com excepção dos ficheiros *.o e *.exe Nota: A operação svn status permite identificar os ficheiro ainda não commited ou ainda não sob controlo de svn.

Após terem suubmetido o vosso teste verifiquem que este se encontra bem submetido. Ficheiros não submetidos não poderão ser avaliados.

Correcção do teste

Cada aluno deve verificar que possui no seu directório pessoal (identificado pelo seu número mecanográfico) a estrutura de pastas que se segue:

Quotação

problemas	quotação	observações
1	15	
1.a)	5	
1.b)	10	
2	5	

- No caso dos programas não serem compiláveis e as regras definidas do Makefile não existam ou não funcionem, a avaliação do vosso exercício será muito mais difícil.
 Por isso prefiram entregar sempre algo funcional a mais completo mas sem funcionar.
- Na avaliação dos problemas ter-se-ão em conta os resultados obtidos e a qualidade da implementação (comentários ao código e metodologia).

Enunciado do 1º teste

Problema 1 (pêndulo gravítico)

O pêndulo gravítico composto por uma massa esférica m de raio R suportada por um fio inextensível de comprimento ℓ possui a seguinte equação do movimento,

$$\frac{d^2\theta}{dt^2} + \frac{g}{\ell}\sin\theta = 0$$

onde θ é o ângulo que o pêndulo faz com a vertical, $\ell=5\,m$ e $g=9.8\,m/s^2$.

a. O período do pêndulo pode ser derivado usando a equação anterior, como sendo

$$T=4\sqrt{\frac{\ell}{g}}\,\int_0^{\frac{\pi}{2}}\frac{d\alpha}{\sqrt{1-\sin^2\left(\frac{\theta_0}{2}\right)\,\sin^2\alpha}}$$

onde θ_0 é o ângulo inicial do pêndulo.

Usando a integração numérica (qualquer método) realize um programa em C++ na pasta main/cujo nome seja probla.C, que realize as seguintes operações:

- Salvar num ficheiro probla_periodo.pdf o plot do período do pêndulo em segundos (com uma precisão relativa de 10^{-3}), em função do ângulo inicial θ_0 , para $\theta_0 \in [1^\circ, 90^\circ]$
- · Imprima no ecran do computador
 - => a identificação do método utilizado na integração
 - => o valor do período T para os ângulos iniciais (em graus), $\theta_0=1+4^\circ n \quad (n=0,1,2,\cdots,22)$

Avaliação da alínea:

- regra make probla deve produzir o executável probla.exe na pasta bin/
- b. Resolva a equação diferencial acima utilizando o método de Runge-Kutta 4a ordem, num programa C++ na pasta main/ e cujo nome seja problb.C. Assuma como condições iniciais: $\theta(0)=65^\circ$ e velocidade nula, v(0)=0.

O programa deve obter o movimento do pêndulo durante pelo menos 10 períodos e realizar as seguintes operações:

- Salvar num ficheiro prob1b_diagramafase.pdf o plot do ângulo θ em função da velocidade angular $\dot{\theta}$.
- Salvar num ficheiro problb_energia.pdf o plot da energia total do pêndulo em função do tempo.
- Salvar num ficheiro prob $1b_{theta.pdf}$ o plot do ângulo heta do pêndulo em função do tempo.

Avaliação da alínea:

- regra make prob1b deve produzir o executável prob1b.exe na pasta bin/
- Nota: No caso de não conseguir implementar o método de Runge-Kutta de 4a ordem, poderá (havendo desconto) substituir por outro método que considere apropriado.

Problema 2 (pêndulo gravítico com atrito)

Em termos realistas o pêndulo experimenta uma força adicional, para além da força gravítica, que é a força de atrito. Esta é dada pela expressão,

$$\vec{F}_a = -c\vec{v}$$

onde c é o coeficiente de atrito que depende da rugosidade da superfície, da forma do corpo oscilante e da densidade do meio fluido. Para pequenas velocidades a força é directamente proporcional à velocidade do corpo.

A tabela que se segue apresenta o coeficiente de atrito medido para esferas relativamente lisas e com diferentes raios.

coef de atrito ($c\left[Kg/s\right]$)	
1.210^{-3}	
1.810^{-3}	
2.610^{-3}	
$4.0 \ 10^{-3}$	

Consideremos o caso de um corpo esférico de raio $R=15\,cm$ e massa $m=500\,qr$.

Resolva a nova equação do movimento, que deve incluir a força gravítica e a força de atrito, considerando as condições iniciais anteriormente definidas e ainda utilizando o método de Runge-Kutta 4a ordem.

O cálculo do coeficiente de atrito deve ser feito usando um interpolador.

Deve elaborar um programa C++ na pasta main/ cujo nome seja prob2.C.

O programa deve obter o movimento do pêndulo durante pelo menos 10 períodos e realizar as seguintes operações:

- Salvar num ficheiro prob2_diagramafase.pdf o plot do ângulo θ em função da velocidade angular $\dot{\theta}$.
- Salvar num ficheiro prob2 velocidade.pdf o plot da velocidade linear v em função do tempo.
- A evolução no tempo do ângulo máximo (ou velocidade máxima) é modulada por uma lei exponencial $e^{-\gamma t}$, onde γ é o coeficiente de amortecimento.
 - Obter o coeficiente γ e fazer o plot do ângulo θ em função em função do tempo, sobrepondo no mesmo plot a função exponencial. Salve o plot no ficheiro prob2_theta.pdf.
- Determine a energia perdida pelo sistema no intervalo de tempo $t=[5.5,7.2]\,s$, utilizando a força de atrito.

Avaliação da alínea:

- regra make prob2 deve produzir o executável prob2.exe na pasta bin/
- Explicações adicionais que julguem necessárias, devem ser integradas no ficheiro teste01.txt

Fim do enunciado do teste de Física Computacional