ADVANCED CALCULUS 1 ASSIGNMENT # 3: 2019 SPRING

§4.1. # 1.

- (a) Let $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$. Prove that f is continuous.
- (b) Let $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x$. Prove that f is continuous.
- §4.5. # 3. Let $f:[0,1] \to [0,1]$ be continuous. Prove that f has a fixed point.
- §4.6. # 3. Must a bounded continuous function on \mathbb{R} be uniformly continuous?

§4.6. # 6.

- (a) Show that $f: \mathbb{R} \to \mathbb{R}$ is not uniformly continuous iff there exist an $\varepsilon > 0$ and sequences x_n and y_n such that $|x_n - y_n| < \frac{1}{n}$ and $|f(x_n) - f(y_n)| \ge \varepsilon$. Generalize this statement to metric spaces. (b) Use (a) on \mathbb{R} to prove that $f(x) = x^2$ is not uniformly continuous.
- §4.7. # 5. Let f be continuous on [3, 5] and differentiable on (3, 5), and suppose that f(3) = 6 and f(5) = 10. Prove that, for some point x_0 in the open interval (3,5), the tangent line to the graph of f at x_0 passes through the origin. Illustrate your result with a sketch.
- §4.8. # 7. Let $f:[0,1]\to\mathbb{R},\ f(x)=1$ if $x=\frac{1}{n},\ n$ an integer, and f(x)=0 otherwise.
- (a) Prove that f is integrable. (b) Show that $\int_0^1 f(x) dx = 0$.

(Exercises for Chapter 4)

12.

- (a) A map $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ is called Lipschitz on A if there is a constant $L\geq 0$ such that $||f(x)-f(y)|| \le L||x-y||$, for all $x,y \in A$. Show that a Lipschitz map is uniformly continuous.
- (b) Find a bounded continuous function $f: \mathbb{R} \to \mathbb{R}$ that is not uniformly continuous and hence is not Lipschitz.
- (c) Is the sum (product) of two Lipschitz functions again a Lipschitz function?
- (d) Is the sum (product) of two uniformly continuous functions again uniformly continuous?
- (e) Let f be defined and have a continuous derivative on $(a-\varepsilon,b+\varepsilon)$ for some $\varepsilon>0$. Show that f is a Lipschitz function [a, b].