Sottoanelli

Def. Sia R un anello. Un soltoinsieme S e' un suo sottoanello se è un anello con le operationi ereditate da R.

es.
$$K[x,y] \ge K[x]$$

Anelli quoziente su K[x]

Def. Sia $f(x) \in K[x]$, $K \in K$ e' una radice di f(x) se $f(\pi) = 0$ (i.e. $a_n r^n + \dots + a_0 = 0$.

Def. Dato $b \in \mathbb{K}$, $Y_b : \mathbb{K}[x] \to \mathbb{K}$, $p \mapsto p(b)$. Esso e' un omomorfismo ω : Im $Y_b = \mathbb{K}$.

Oss. p(b) = 0 (-> p(x) = (x - b) q(x), $q(x) \in K[x]$, instrumental deg q(x) = deg p(x) - 1.

P(X) = (x-b)q(x) + h(x), deg h(x) < deg(x-b) = 1 $P(b) = (b-b)q(x) + h(x) \Rightarrow h(x) = 0.$

Teorema fondamentale dell'algebra

Ogn: polinomio $f(x) \in \mathbb{C}[x]$ di grado positivo ha una radice $\pi \in \mathbb{C}$, e ne ha esattamente deg f(x) (contate con la giustà molteplicità).

OSS
$$f(z) = 0 \iff f(\overline{z}) = 0$$
, quindi ogni polinomio in $C[x]$ si sumpone come $g(x)(x-\overline{z}) = g(x)(x^2 - (2+\overline{z})x + 2\overline{z})$.

 $2 \operatorname{Re}[z] \in \mathbb{R}$

Qu'indi ogni: polinomio f(x) in f(x) si scrive come prodotto di polinomi di secondo grado per alcuni di primo grado in modo che la somma dei gradi sia deg f(x).

OSS. Ogn: polimmio $f(x) \in \mathbb{R}[x]$ deg f(x) = 1 (2) ammette sempre almeno una soluzione reale.

$$\frac{055}{\cdot \mathbb{K}[x]/(0)} \cong \mathbb{K}[x]$$

$$\cdot \mathbb{K}[x]/(a) \cong \{0\}$$

es. Sis $f(x) \in \mathbb{R}[x]$, $f(x) = x^2 + 1$.

$$\mathbb{R}[\chi]/(\chi^2+1) \ni 3\chi^4 - 5\chi^3 + \chi - \sqrt{3} + (\chi^2+1) \Longrightarrow$$

$$\Rightarrow 3(x^4-1)+(x^1+1) = 3(x^1+1)(x^2-1)+(x^1+1) = (x^2+1)$$

es. Sia K un campo, Ranello, R=1K sottoanello. Allora Re' una spazio vettoriale su IK. Una sua base è (x° +(f(x)), x^{1} + (f(x)), ..., x^{h-1} + (f(x)) con n= deg f(x).

<u>bef.</u> Sia $g(x) \in K[x]$, si definisce $\overline{g(x)} := g(x) + (f(x))$

OSS.
$$\int_{\alpha} (\overline{\chi}) = 0$$
. $\alpha_n \overline{\chi}^n + \dots + \alpha_n = \overline{\alpha_n \chi^n + \dots + \alpha_n} = \overline{\lambda_n \chi^n + \dots + \alpha_$

OSS. $R[\chi]/(\chi^2+1)$ contiene $R \in \overline{\chi}^2+1=0 \Rightarrow R[\chi]/(\chi^2+1) \cong \mathbb{C}$

Prop. $\mathbb{R}[\chi]/(\chi^2+1) \cong \mathbb{C}$

Definis ω $f: \mathbb{R}[x] \to \mathbb{C}, f(x) \mapsto f(i).$

Ker Pi = (x2+1). Quind: R[x]/(x2+1) = C (perché Im fi=C). 0