WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burean

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 95/06449 A1 A61F 13/00 (43) International Publication Date: 9 March 1995 (09.03.95)

US

(21) International Application Number:

PCT/US94/09883

(22) International Filing Date:

31 August 1994 (31.08.94)

(30) Priority Data:

4

08/114.912 08/259,613 31 August 1993 (31.08.93)

14 June 1994 (14.06.94)

US

(71) Applicant: MINNESOTA MINING AND MANUFACTUR-ING COMPANY [US/US]; 3M Center, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(72) Inventors: AUGST, George, W.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). LIBERDA, Margo, A.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). RIEDEL, John, E.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(74) Agents: HOFFMAN, Amy, J. et al.; Office of Intellectual Property Counsel, Minnesota Mining and Manufacturing Company, P.O. Box 33427, Saint Paul, MN 55133-3427

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, MIL, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PERFORATED ROLL OF ELASTIC WRAP

(57) Abstract

A roll of perforated, elastic wrap including a plurality of longitudinally spaced, laterally extending, perforated separation lines defined by a series of about 0.2 to 5 mm perforations separated by about 0.1 to 1 mm connecting segments of dressing where the ratio of perforation length to connecting segment length in each separation line is about 1:1 to 10:1 wherein the wrap can be longitudinally elongated between about 7 to 280 percent

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	. GB	United Kingdom	MR	Manritania
ΑŪ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	п	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belatus	KE	Кепуа	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Słovenia
a	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Scoegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoulovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	77	Trinidad and Tobago
DK	Deumark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Pintand	ML	Mali	UZ	Uzbekistan
FR	Prance	MN	Mongolia	VN	Viet Nam
GA	Gebos		- -		-

WO 95/06449 FC110324/02

PERFORATED ROLL OF ELASTIC WRAP

Background

Elastic wraps are primarily used to wrap

5 injuries. When correctly placed, elastic wraps impart
support to strained tendons ligaments or muscles and/or
apply continuous pressure to lacerations to reduce
bleeding. Some of the most effective wraps exhibit
both stretch and elasticity. Stretch is important to

10 ensure that movement of a wrapped limb or joint is not
unduly restricted by a wrap and also to ensure that
blood flow to the affected area is not restricted.
Elasticity ensures that the wraps return to their
initial shape after being stretched by the patient in

15 order to provide continuing support to the wrapped
injury.

Elastic wraps are increasingly used in industries where injuries are quite prevalent.

Examples of such industries include the meat packing industry and professional athletics. The private sector also uses elastic wraps for injuries incurred during recreational activities. When the wraps are used in the private sector or in industry, the injured individual commonly will apply the wrap to the injury without assistance from another person. Ideally, dispensing elastic wraps would not require assistance from another person.

Elastic wraps are commonly sold in strips in roll form. Rolling condenses the strips and also eases dispensing of the wrap without risk of tangling the wrap. In order to dispense elastic wrap, the desired length of elastic wrap is unrolled by unwinding the desired length. The wrap is then cut with a pair of scissors or similar cutting instrument. This method of dispensing is quite cumbersome and very difficult if an injured person must dress her own injury. Ideally, a

WO 95/06449 PC 1/USY4/UV860

cutting instrument would not be required to sever the wraps at the appropriate length. However, due to the construction of elastic wraps, a cutting instrument such as a scissors is usually required to cut the wrap.

Elastomeric wraps are known in the art and are described in U.S. Patent Numbers 5,230,701, 3,575,782, 4,366,814, and 4,984,584. The wraps are formed of varied materials including but not limited to nonwoven fabrics, films and foams.

Many wraps are comprised of unoriented 10 nonwoven fabrics. The random orientation of fibers of these fabrics provides useful properties and characteristics. One of these characteristics is the ability of such fabrics to resist continued linear 15 tearing in the cross direction after introduction of an initial tear in the fabric. While this resistance-to-split characteristic of nonwoven fabrics is a beneficial attribute for various applications, it presents certain difficulties when nonwoven fabrics are 20 used for wraps dispensed from a roll because a cutting instrument such as a scissors is necessary to dispense the fabric. Beyond the properties of the fabrics used to manufacture wraps, the fact that the wraps are elastic make the wraps exceedingly difficult to tear. 25 When one attempts to tear an elastic wrap, the elastic wrap is stretched rather than torn due to the resiliency of the wrap. If one does succeed in tearing an elastic wrap, the resulting tear is usually uneven. Due to the difficulty in tearing elastic wraps and the 30 resulting nonlinear tears if the wrap is torn, a

One approach to providing a tearable nonwoven web is disclosed in Greenway, United States Patent 4,772,499. Greenway suggests applying binder to the nonwoven web in spaced linear bands so that the web can be torn in a linear fashion along the binder-free bands

tearable elastic wrap is needed.

of web. Unfortunately, the cost of producing such a banded nonwoven web is prohibitive for many purposes and differences in the surface characteristics of the web as between the binder-free and binder-containing bands would significantly complicate manufacture of the web. It is also perceived that such bands would detract from the performance of the tape.

Patent Cooperation Treaty Publication
WO 93/15245 filed by the Minnesota Mining and
10 Manufacturing Company of St. Paul, Minnesota discloses
an embossed nonwoven tape including both staple and
binder fibers. The specific composition of the tape in
combination with the embossed pattern on the tape
renders the tape tearable in the cross-machine
15 direction along an embossed pattern in the tape. The
tearable tapes disclosed by this publication are
limited to those which include a significant proportion
of melt-activated binder fibers.

A need exists for elastic wraps in roll
20 form which can be dispensed without the need for
scissors or other cutting tools and which tear cleanly
and evenly.

Summary of the Invention

25 According to the present invention, elastic wraps are provided which are capable of being dispensed without the need for cutting tools. The roll of elastic wrap includes a plurality of longitudinally spaced, laterally extending, perforated separation
30 lines defined by a series of about 0.2 to 5 mm perforations separated by about 0.1 to 1 mm connecting segments of wrap where the ratio of perforation length to connecting segment length in each separation line is about 1:1 to 10:1. The perforations allow the wrap to 35 be torn along the perforation line. However, the perforations do not unduly weaken the stretch and/or

the elasticity of the wrap. The invention therefore provides an elastic wrap which is tearable yet functional enough to provide support to injuries.

5 Brief Description f the Drawings

Figure 1 is a perspective view of one embodiment of a roll of elastic wrap manufactured in accordance with the present invention.

Figure 2 is a top view of the elastic wrap 10 of Figure 1.

Figure 3 is a top view of a first alternative embodiment for the separation line in the elastic wrap of the present invention.

Figure 4 is a top view of a second

15 alternative embodiment for the separation line in the wrap of the present invention.

Detailed Description of the Invention

The elastic wrap 10 of the present invention 20 is comprised of a nonwoven web, a film, a foam or a woven fabric which exhibits stretch and recovery in one or more directions.

For the purposes of this disclosure the term elastic is defined as having the property of generally returning to an original size or shape after stretching. One skilled in the art will recognize that the property of elasticity is a continuum. Some surgical tapes are mostly nonelastic while other tapes and wraps may exhibit a large degree of elasticity.

30 The elastic property as characterized by the materials of the invention is defined as having a recovery, after stretching, wherein the material returns to at least 90% of its original shape within a two minute time period with a recovery force of at least 50% of the 35 force required to stretch the material.

As stated above, elastic nonwoven fabrics are among the materials suitable for constructing the wraps of the invention. Elastic nonwoven fabrics are best known as constructed of 1) a composite of an elastic web and a nonwoven fabric, 2) a resin bonded to a web of elastic nonwoven fabric, or 3) stretchable nonwoven fabric bonded by an elastomer. The present invention anticipates that other constructions of elastic materials comprised of nonwoven webs will also be suitable for practicing the present invention. U.S. Patent Numbers 5,230,701, 4,984,584, 4,366,814 and 3,575,782 all disclose elastic materials comprised of nonwoven webs.

Other fabrics, films and foams are also

15 suitable for constructing the wraps of the invention.

For example, elastic films such as polyurethene films are readily available and are suitable for the invention. Likewise, elastic foams such as polyvinylchloride, polyethylene and polyurethane foams

20 are also suited for the invention.

The invention is described both by its appearance and also by its composition. To describe the appearance of the wrap of the invention, we turn to Figures 1 through 4.

In a preferred embodiment, the elastic wrap
10 is rolled onto core 100 (Figure 1). Elastic wrap 10
has a longitudinal direction 11 or machine direction
and a lateral direction 12 or cross machine direction.
To facilitate dispensing individual sheets of elastic
30 wrap 80 from the roll, perforated separation lines 50
extending laterally across the elastic wrap are
uniformly spaced longitudinally along the length of the
roll. As seen in Figures 2 and 3, each separation line
50 is defined by a series of perforations 60, each of
35 which has a perforation length 60D between about 0.2
and 5 mm. The connecting segments 70 between the

perforations 60 are between about 0.1 and 1 mm in length (70D). The ratio of the perforation length 60D to the connecting segment length 70D is about 1:1 to 10:1. For the purposes of this disclosure a "roll" is defined as wraps wound on a core, wound about itself without a core, or loosely folded.

perforation length 60D is measured as the distance between the longitudinal lines passing through the lateral extremities of the two connecting segments bonding the perforation 60. Connecting segment length 70D is the shortest distance between adjacent perforations 60.

Elastic wraps benefit by incorporating the separation lines 50 described herein. One would expect elastic wraps incorporating the separation lines of the invention to fail, either by prematurely tearing during dispensing or during application or by limiting the elasticity of the wrap. However, when prepared according to the present invention, the perforated elastic wraps do not fail but instead remain elastic and stretchable. The perforations also allow the user to tear the wrap in a linear fashion.

Composition

25 Nonwoven Webs

Where the wrap of the present invention consists of a nonwoven web, the web may be manufactured by any of the well known methods for manufacturing nonwovens including but not limited to melt-blowing, 30 chemically-blowing, spin-bonding, carding, and hydrodynamic entanglement. A particularly preferred method for making a nonwoven web useful in the practice of this invention is by a technique known as hydroentangling. This process is described in United 35 States Patent Nos. 3,485,706, 3,486,168, 3,493,462, 3,494,821 and 3,508,308. Briefly, fibers are supported

WO 95/06449 PCT/US94/09883

on a perforated plate or similar support screen and traversed with high energy liquid streams so as to consolidat the material in a repeating pattern of entangled fiber regions and interconnecting fibers. An alternate method of forming a nonwoven web is needletacking as described in United States Patent No. 5,016,331.

In order to make nonwoven webs elastic, elastic filaments must be bound to the web. This process is more fully described below. Other methods of elasticizing which are commonly known in the art may alternatively be used to make the web elastic.

When manufacturing elastic wraps of nonwoven webs, the thickness of the nonwoven web is about 0.1 to about 0.4 mm. The weight of the nonwoven web is preferably about 10 g/m² to about 120 g/m². The fabric composition and weight selection of the nonwoven web is determined by the product construction and the desired properties of the finished product. Webs used in laminated fabrics bonded together with elastomers or thermally bonded to stretched elastomeric filaments or other webs are usually light weight, about 10-25 g/m². Single layer fabrics bonded with elastomeric binders or elastomeric fiber fabrics are typically medium weight fabrics in the range of about 30-90 g/m² basis weight.

Preferred nonwoven webs include a family of high-strength nonwoven fabrics available from E.I.

Dupont de Nemuours & Company of Wilmington, Delaware under the trademark SONTARATM including SONTARATM 8010,

30 a hydroentangled polyester fabric. Other suitable nonwoven webs include a hydroentangled polyester fabric available from Veratec, a division of International Paper of Walpole, Massachusetts. This fabric is preferably bonded with HYSTRETCHTM V-43 binder, an elastomeric terpolymer available from the BF Goodrich

WO 95/06449 PC1/U594/U9883

Company. Another suitable nonwoven web is the nonwoven elastomeric web described in U.S. Patent No. 5,230,701.

Binders

In one embodiment of the invention, the nonwoven web may include one of the well known binders for enhancing bonding of the individual fibers within the web. Selection of a suitable binder (i.e., one which has a suitable affinity for the fibers of the nonwoven web) is well within the judgment of one skilled in the art. Briefly, binders for nonwoven fabrics are typically selected from such materials as homopolymer and copolymer latexes of acrylics, butadienes, styrene/butadiene rubber copolymers, urethanes, vinyl acetates, vinyl acetate/acrylate copolymers, vinyl acetate/ ethylene copolymers, polyvinyl alcohols, polyvinyl chlorides, vinyl esters, vinyl ethers, etc.

Specific examples of latex binding agents

20 include, RHOPLEXTM E-2559 (an approximately 45% solids
acrylic latex binder) available from the Rohm & Haas
Co. of Philadelphia, Pennsylvania; UNICALTM 76-4402 (an
approximately 50% solids styrene/butadiene rubber
latex) available from the UNICAL Corp. of Charlotte,

25 North Carolina; NATIONAL STARCHTM No. 78-6283 (an
approximately 45% solids acrylic/vinyl acetate
copolymer latex) available from the National Starch
Corp. of Bridgewater, New Jersey; and the KRATONTM
family of thermoplastic rubbers available from the

30 Shell Oil Company of Oak Brook, Illinois.

Additional binders include the various thermoplastic fibers which may be incorporated directly in the nonwoven web. The nonwoven web is bonded by simply incorporating about 5 to about 10 wt% of a compatible thermoplastic fiber into the nonwoven web and heating the web above the softening temperature of

the thermoplastic fibers so as to bond the thermoplastic fibers to the staple fibers in the web. A compatible thermoplastic fiber is a fiber capable of melt-bonding to the other fibers in the web without substantially weakening the web.

Binder fibers are available in a wide variety of configurations including totally meltable binder fibers, side-by-side binder fibers, bicomponent binder fibers, elliptical core-sheath binder fibers, and combinations thereof.

Examples of suitable binder fibers include, binder fibers of polyester, polyethylene, polypropylene, polybutylene, polyamide and combinations thereof. The binder fibers are preferably from about 1 cm to about 20 cm in length and display a fineness of from about 0.1 denier to about 20 denier.

Specific examples of suitable core-sheath binder fibers for use in the nonwoven web include,

20 DIAWATM binder fibers (1½ denier by 38 mm crystalline polypropylene core with meltable polyethylene sheath) and MELTYTM binder fibers (2 denier by 38 mm oriented polyester core with meltable polyester sheath) available from Chori America, Inc. of Los Angeles,

25 California; and K-52TM binder fibers (2 denier by 38 mm oriented polyester core with meltable polyester sheath) and K-54TM binder fibers (2 denier by 38 mm oriented polyester core with meltable polyester sheath) available from Hoechst Celanese Corp. of Charlotte,

30 North Carolina.

The enhanced fiber bonding achieved with binders tends to stiffen the web and thereby facilitate tearing of the web, improve handleability of the wrap 10 during application, and control fraying of the 35 fibers along the tear line. However, as understood by those skilled in the art, when intended for use as

elastic wrap 10, the amount of binder employed must be controlled so as to provide the wrap 10 with a softness and conformability acceptable to both health care professionals and patients. The surgical wrap 10 should possess sufficient stiffness to facilitate application of the wrap 10 while retaining sufficient conformability to be comfortable to the patient and maintain contact with the skin over prolonged periods of use.

10

Elastic Filaments

Elastic filaments are bound to the nonwoven web with an elastomeric binder such as concentrated natural rubber latex to obtain a highly elastic wrap.

15 A wrap which is bonded with concentrated natural rubber coherently bonds to itself. Alternatively, wraps may be bound with polymers such as styrenebutadiene copolymers, such wraps do not coherently bond to

20

Films and Foams

themselves.

A description of elastic films suitable for use with the present invention can be found in U.S. Patent Nos. 5,088,483 and 5,160,315. Particularly preferred films are elastomeric polyurethane, polyester, or polyether block amide films.

Foams such as polyvinylchloride, polyethylene and polyurethane foams are suitable foams for use with the present invention.

30

<u>Adhesive</u>

If an adhesive is employed, the adhesive is a pressure sensitive adhesive which, in the case of elastic wraps, is physically and biologically compatible with human skin. A wide variety of suitable, skin-compatible, pressure sensitive adhesives

are known to those skilled in the art and include specifically, but not exclusively, acrylic-based adhesives, polyolefin adhesives, rubber-based adhesives, tackified styrene block copolymer adhesives, and the like.

A preferred pressure sensitive adhesive is any of the acrylate copolymers such as copolymers of isooctyl acrylate and acrylic acid or acrylamide described in United States Patent No. Re. 24,906 issued to Ulrich. Such adhesives are preferred for use on elastic wraps since they are relatively nonirritating to the skin.

The adhesive is optionally coated on a major surface of the elastic wrap. The wrap shown in Figure 15 1 includes a top surface 32 and an opposing bottom surface 42. The adhesive may be coated on the top surface 32, the bottom surface 42, or on both surfaces.

Low Adhesion Backsize

If an adhesive is employed, a layer of low adhesion backsize is preferably applied to the opposite side of the substrate. For example, if adhesive is coated on surface 42, shown in Figure 1, the low adhesion backsize would preferably be applied to opposing surface 32 of the elastic wrap. Application of low adhesion backsize to the elastic wrap provides a surface with a reduced adhesive affinity for the pressure sensitive adhesive. Such reduced adhesion facilitates the unwinding of wrap from a linerless roll of the wrap.

Materials suitable for use as a low adhesion backsize in this invention, include acrylates, fluorochemicals, polyethylenes, silicones, vinyl copolymers and combinations of these compounds.

35 Compounds suitable as a low adhesion backsize are disclosed in United States Patent No. 4,728,571 issued

WO 95/06449 PC1/US94/U9883

to Clemens et al. A specific example of a suitable low adhesion backsize is SYL-OFFTM, a silicone compound available from Dow Corning Corp. Preferred low adhesion backsize are the siloxane and acrylate based compounds disclosed in United States Patent No. 4,973,513 issued to Riedel and the water-insoluble hydrophobic urethane (carbamate) copolymer of polyvinyl alcohol and octadecyl isocyanate disclosed in United States Patent No. 2,532,011 issued to Dahlquist et al.

10

Separation Lines

The relative lengths 60d and 70d of perforations 60 and connecting segments 70 control several fundamental properties of wrap 10 related to dispensibility and performance. For example, length 70d of the connecting segments 70 is one factor controlling the tensile strength between individual sheets 80 of wrap 10. Separation of sheets 80 becomes difficult when the connecting segments 70 are too long while accidental and unintended separation is more likely when the connecting segments 70 are too short.

The physical dimensions of the perforations
60 and connecting segments 70 defining the separation
lines 50 are important aspects of the invention. An
25 acceptable balance must be achieved between the
competing interests of adequate tensile strength to
prevent premature separation and sufficient reduction
in tensile strength to ensure easy and consistent
separation of sheets 80 along a single separation line
30 50.

The parameters of separation lines 50 necessary to define performance are perforation length 60d, connecting segment length 70d and the ratio of perforation length 60d to connecting segment length 35 70d. Acceptable values for achieving proper performance of the perforated wrap 10 of this invention

are set forth b low in Table One. The interdependence of these variables and the cooperational manner in which they effect and influence performance of the wrap 10 requires that they be considered together.

5 The tensile strength of the perforated section of wrap 10 in the longitudinal direction 11 (Figure 2) measured in accordance with the protocol set forth herein, is desirably from about 400 to about 3000 grams/cm width, preferably from about 600 to about 2000 10 grams/cm width, and most preferably from about 800 to about 1700 grams/cm width. A longitudinal tensile of less than about 400 grams/cm width tends to result in premature separation of the sheets 80 while a longitudinal tensile of greater than about 3000 15 grams/cm width tends to require excessive force and thereby hinder separation of the sheets 80.

Table One

	Variabl	Acc ptabl	Preferred	High st Performance
5	Perforation Length (mm)	0.2 - 5.0	0.5 - 3.0	1.0 - 2.0
	Connecting Segment Length (mm)	0.1 - 1.0	0.2 - 0.8	0.3 - 0.6
10	Ratio Perforation Length -to- Connecting Segment Length	1:1 to 10:1	1:1 to 6:1	1:1 to 3:1

15

A secondary consideration is the shape of the perforations 60 and connecting segments 70. Shape is designated as a secondary consideration because, while relevant to dispensibility and performance of the wrap 20 10, its impact is not as critical as the primary considerations of perforation length 60d, connecting segment length 70d and ratio of perforation length 60d to connecting segment length 70d. The perforations 60 may be shaped in accordance with any of the accepted 25 perforation patterns including linear, angled, Y-shaped, V-shaped, dual-angled offset, sinusoidal, When angled, the perforations 60 are preferably angled about 30 to 60° from the lateral axis 12 of the wrap 10. The preferred shape, based upon ease of 30 manufacture and minimization of fraying along the torn edge, is a simple linear pattern extending laterally across the wrap 10 as shown in Figure 2.

WO 95/06449

Similarly, the longitudinal distance 70d
between the separation lines 50 must be selected so as
to balance the competing interests of permitting
substantially any length of wrap 10 to be created (more
5 separation lines 50) and limiting the accidental and
unintended separation of the wrap 10 along a separation
line 50 during dispensing, application or use (fewer
separation lines 50). Generally, a longitudinal
spacing of about 1 to about 20 cm, preferably about 2
10 to about 10 cm provides an acceptable balance between
these competing interests.

Method of Manufacture

Nonwoven Web Construction

15 Application of Binder

A binder may optionally be applied after formation of a nonwoven web by any of the conventional water or solvent-based coating techniques including air knife, trailing blade, direct and offset gravure, Meyer 20 bar, wire-wound rod, reverse roll, roll coating, print bond and spray coating. Where the binder is a thermoplastic fiber, the fiber is simply dispersed into the fiber matrix prior to formation of the web and then melted.

25

Application of Elastic Filaments

For wraps having a high degree of elasticity, elastic yarns or filaments such as LycraTM Spandex or linear polyurethane monofilament are bound to the nonwoven web with a fluid binder. A suitable binder is natural rubber latex at 60% concentration as disclosed in U.S. Patent Number 3,575,782. The elastic filaments are stretched before and during binding and drying. Relaxing the bound elastic filament/rubber/nonwoven web composite causes shirring of the nonwoven web and results in an elastic wrap.

WO 95/06449

Application of Low Adhesion Backsize

Similarly, the low adhesion backsize may be applied by any of the conventional coating techniques discussed in connection with the application of a 5 binder.

A dried coating weight of about 0.1 to about 0.4 mg/cm² is preferred for the low adhesion backsize and about 0.2 to 0.8 mg/cm² for the binder.

The binder and the low adhesion backsize may optionally be mixed together and simultaneously coated onto the nonwoven web in accordance with the procedure outlined in the Examples section of this disclosure and disclosed in United States Patent No. 4,967,740 issued to Riedel and assigned to Minnesota Mining & Manufacturing Company of St. Paul, Minnesota.

Application of Adhesive

30

The pressure sensitive adhesive may be applied to the substrate by any of the well known techniques for coating pressure sensitive adhesives such as dispersion coating, solution coating and hot melt application. A convenient method of coating the substrate with the pressure sensitive adhesive is disclosed in United States Patent No. 3,121,021 issued to Copeland. Briefly, a pressure sensitive adhesive is coated on a smooth release liner. The release liner carrying the adhesive film is then laminated to the substrate, the release liner peeled away, and the linerless wrap 10 wound into a "jumbo" roll.

Alternatively, the adhesive may be applied by such conventional coating techniques as air knife, trailing blade, direct and offset gravure, wire-wound rod, reverse roll, print bond, spray coating, etc.

Perforating

The separation lines 50 are conveniently created with a rotary die having a serrated perforator blade(s) positioned along the periphery of the die so as to perforate the wrap 10 at the desired intervals. Other perforation methods known in the art, e.g., laser perforation, may also be used.

Converting

10 The "jumbo" rolls of wrap 10 are converted into multiple rolls of commercially sized wrap 10 by conventional converting techniques including unwinding, longitudinal slitting, rewinding, and lateral cutting.

15 Method of Use

The wrap 10 is dispensed by simply gripping the free end of the wrap, unrolling the desired length, and then tearing the wrap along a separation line 50. When separating the desired length of wrap from the 20 roll, it is generally desired to grip the sheet 80 of wrap 10 closest to the roll to prevent other separation lines 50 from tearing.

Utility of the wrap disclosed and claimed herein is not limited to uses involving contact with 25 human skin.

EXPERIMENTAL

Protocols

Tensile Strength,

30 <u>% Elongation</u>

Thwing-Albert

Tensile strength determines the maximum tension that a given sample can withstand without 35 tearing (samples are described below in Examples 1-5). The tensile strength measurements allow comparison of

the different perforati n/ separation lengths and their relative strength when stretched. Testing is conducted upon a THWING-ALBERT INTELECTTM II (Model No. 1450-42-C) constant rate of extension tensile tester equipped with clamp-type jaws manufactured by the Thwing-Albert Instrument Company of Philadelphia, Pennsylvania.

Rectangular test samples of 2.54 cm x 22.86 cm (1" x 9") are cut from a roll of the wrap to be tested. The long dimension is cut in the direction 10 (machine or cross-machine) to be tested. The ends of the test samples are folded adhesive-to- adhesive to form a two inch nonadhesive tab at each end. nonadhesive tabs prevent the sample from being pulled out of the jaws, reducing premature jaw breaks and 15 preventing the sample from leaving an adhesive residue on the jaws. The samples are positioned within the jaws of the Thwing-Albert tester and the tester set at a crosshead speed of 5 inches per minute, a chart speed of 10 inches per minute and a gauge length of 5 inches. 20 The chart recorder is set at 0.1 inch per chart division in the cross direction and 0.2 inch per chart division in the machine direction. The machine is activated and the sample pulled apart until the force

Tensile strength is calculated in accordance with the equation set forth below where "Pen Height_{max}" is the number of small divisions in the cross direction reached by the pen in its maximum travel across the chart.

required to pull the sample decreases.

30

Tensile Strength = (Load Range) (Pen Height_{max})/(100)

Samples having high tensile strengths are
desirable since high tensile strength indicates that
the sample can withstand a large tension without
35 breaking.

WO 95/06449 PCT/US94/09883

Elongation is calculated in accordance with the equation set forth below where "Pen Distance_{max}" is the number of small divisions reached by the pen in the machine direction from initiation of pen deflection to sample break.

(20) (Pen Distance (Crosshead Speed)

% Elongation = ------

(Gauge Length) (Chart Speed)

The higher the percent elongation for a given sample, the further the sample can be stretched without breaking. It is desirable that elastic wraps are stretchy, therefore, a high percent elongation is desirable.

15

Hand Tear Test

Opposite ends of the samples for Examples 1-5 were grasped between the thumb and forefinger of each hand and then rapidly pulled in a pull apart motion 20 with one hand pulling toward the body and one hand pulling away from the body.

The resulting tear for each sample was evaluated according to the following scale:

- 0 no tear
- 25 1 poor
 - 2 fair
 - 3 acceptable
 - 4 good
 - 5 excellent

The higher the result on the hand tear test, the more desirable the sample or the easier the sample is to tear. Results from the Hand Tear Test are set forth in Tables 2 through 6 below.

%Machine Direction Tensile Strength of Perforated vs.

35 Nonperforated Samples

E For each of the samples of Examples 1-5
below, the machine direction tensile str ngth was
t sted for a nonperforated sample as w ll as for a
perforated sample. The tensile strength of the
perforated samples as compared to the nonperforated
sample is shown as a percentage in the last column of
Tables 2-6 below. A perforated sample having 100% of
the tensile strength of its nonperforated counterpart
is ideal.

10

Test Samples

Perforating

Samples for Examples 1-5 were perforated as follows. Samples were made in increments of about 15 15 cm wide by about 10 m long. The wraps were then laterally perforated with a rotary die to form separation lines with linear perforations. perforation lines were about 5.08 cm (2 inches) apart. The perforations had perforation lengths, connecting 20 segment lengths and a ratio of perforation to connecting segment lengths as specified in Tables 2-6. Test samples were prepared using a 2.54 cm by 10 cm rule die oriented lengthwise along the machine direction of the wrap. Three samples were taken across 25 the width of the wrap by placing the die on the wrap and striking it sharply to cut each test sample for evaluation. The perforated wraps were then tested for Tearability (Hand Tear Test) Average Machine Direction Tensile Strength (T_{MD}) and Average Machine Direction 30 Elongation (E_{MD}) . The nonperforated counterpart of each sample was also tested for Average Machine Direction Elongation to allow the comparison for Percent Machine Direction Tensile for Perforated vs. Nonperforated Sample. The results for each test are set forth in 35 Tables 2 through 6 below.

Example 1

A 10m long and 150 mm wide piece of CobanTM
1584 self-adherent wrap (available from Minnesota
Mining and Manufacturing Company, St. Paul, MN) was
5 perforated as described above. The wrap consisted of
two layers of nonwoven web with one layer of spandex
filaments bonded between the layers using a natural
rubber latex binder as described in U.S. Patent Nos.
3,575,782 and 4,984,584.

Evaluations of these perforated samples are set forth in Table 2. Sample numbers 7, 8, 9 and 10 were acceptable and sample number 11 was preferred.

Example 2

A 10 m length of 150 mm wide nonwoven meltblown polyurethane web coated with an acrylate adhesive was dispensed on a release liner and was perforated as described above.

The web is commercially available in a

20 converted (cut and shaped) form as SteriStripsTM brand
wound closure strips (3M Co., St. Paul, MN). The melt
blown web basis weight was 85-90 g/m² and the web was
about 0.30-0.33 mm thick. The web and processes for
its preparation are described in U.S. Patent Number

25 5,230,701.

Evaluations of these perforated webs are set forth below in Table 3. Samples 9 and 10 were acceptable whereas sample Number 7 was preferred.

30 Example 3

A 10 m length of 150 mm wide chemically blown polyvinylchloride foam having a thickness of 0.889mm and coated with an acrylic pressure sensitive adhesive was tested. The foam tape is available as MicrofoamTM
35 Surgical Tape (3M Company, St. Paul, MN).

The foam was perforated as described above. Table Four sets forth the results of evaluating the perforated samples. Sample numbers 7 and 11 were acceptable and sample number 13 was preferred.

5

Example 4

WO 95/06449

A 10m length of 150 mm wide hydroentangled polyester nonwoven fabric (HEF 140-084 available from Veratec, Inc., Walpole, MA) which had been creped on a 10 Micrex® machine (available from Bird Machine Co., Walpole, MA) was impregnated with about 16% by weight of elastomeric binder (Hystretch V-43 available from B. F. Goodrich Co., Akron, OH) and then coated with an acrylate pressure sensitive adhesive (97:3 isooctyl acrylate:acrylamide). The process of manufacture used is described in U.S. Patent Number 4,366,814.

The samples were perforated and evaluated as described above. Evaluation results are set forth in Table 7. Sample 7 was acceptable and Sample 9 was 20 preferred.

Example 5

A 10m length of 150 mm wide hydroentangled polyester nonwoven fabric having a thickness of about .55-.58 mm which was chemically bonded with an elastomeric binder (SF 9309.1 available from Veratec, Inc. Walpole, MA) and coated on one side with the acrylic pressure sensitive adhesive used on the samples in Example D was perforated as described above. The manufacturing process used is described in U.S. Patent Number 4,366,814.

The samples were perforated and evaluated as described above and results are set forth in Table 6. Sample 10 was acceptable and Sample 5 was preferred.

35

•	Example A	-	Separa	Separation cines		בפוסומופת	renorated Tape Test nesuits	
Ŋ	Sample #	Perforation Length in mm	Connecting Segment Length in mm	Cut to Uncut Ratio	Hand Tear Test	Tensile; T _{wb} (in g/cm)	%Elongation; E _{MO}	% _{re} Tensile; Perforated vs. Non-perforated
	-	3.18	0.41	7.75:1	5	548	150	26.0
	2	3.18	0.51	6.24:1	9	572	150	27.1
	က	1.98	0.41	4.83:1	5	720.	150	34.1
	4	1.98	0.51	3.88:1	4	978	190	46.4
10	2	1.56	0.25	6.24:1	2	169	150	33.0
	9	1.56	0.41	3.80:1	4	972	185	46.0
	7	1.56	0.51	3.06:1	4	1112	190	52.7
	80	1.19	0.25	4.76:1	5	1029	195	48.8
	6	1.19	0.41	2.90:1	4	1117	200	52.9
	10	1.05	0.25	4.20:1	4	1199	205	56.8
	-	1.19	0.51	2.33:1	4	1323	220	62.7
	12	0.79	0.25	3.16:1	3	1310	200	62.1
	13	0.79	0.41	1.93:1	1	1940*	225	91.9
	Control		•		1	2110	230	

2 3 SUBSTITUTE SHEET (RULE 26)

TABLE THREE

വ

Perforated Tape Test Results	%Elongation E _{MD} % _{MD} Tensile; Perforated vs.	33	46 26.5	67 29.8	99 35.4	51 26.5	97 35.4	180 47.0	107 36.2	190 52.9	131 40.5	223 62.3	186 52.9	276 76.5	
Perforat	Tensile; T _{MD}	268	332	372	443	331	443	588	452	661	506	779	661	946	
	Hand Tear Test	2	5	വ	വ	2	വ	വ	ည	4	4	4	8	2	•
Separation Lines	Cut to Uncut Ratio	7.75:1	6.24:1	4.83:1	3.88:1	6.24:1	3.80:1	3.06:1	4.76:1	2.90:1	4.20:1	2.33:1	3.16:1	1.93:1	•
Separa	Connecting Segment Length	0.41	0.51	0.41	0.51	0.25	0.41	0.51	0.25	0.41	0.25	0.51	0.25	0.41	•
	Perforation Length	3.18	3.18	1.98	1.98	1.56	1.56	1.56	1.19	1.19	1.05	1.19	0.79	0.79	•
Example B	Sample #	-	2	8	4	2	9	7	80	6	10	11	12	13	

2 4 SUBSTITUTE SHEET (RULE 26)

TABLE FOUR

	,	T	1	Τ-	-	т	T -	T -	T	T	T	T	T	<u> </u>	T
S	% _{No} Tensile; Perforated vs. Non-perforated	24	56	39	53	37	43	54	40	70	51	54	50	62	•
Perforated Tape Test Results	%Elongation E _{MD}	32	76	49	79	48	58	81	47	105	67.0	68.0	0.09	87.5	200.0
Perforate	Tensile; T _m (in g/cm)	268	620	427	590	414	479	599	438	779	568	009	554	989	1106
	Hand Tear Test	ß	က	4	S	ဧ	2	ည	മ	က	5	2	4	2	2
Separation Lines	Cut to Uncut Ratio	7.75:1	6.24:1	4.83:1	3.88:1	6.24:1	3.80:1	3.06:1	4.76:1	2.90:1	4.20:1	2.33:1	3.16:1	1.93:1	•
Separa	Connecting Segment Length in mm	0.41	0.51	0.41	0.51	0.25	0.41	0.51	0.25	0.41	0.25	0.51	0.25	0.41	•
	Perforation Length in mm	3.18	3.18	1.98	1.98	1.56	1.56	1.56	1.19	1.19	1.05	1.19	0.79	0.79	
Example C	Sample #	-	2	က	4	rs.	9	7	æ	6	10	11	12	13	Control

0

12

C

Ц	J
2	•
u	-
1	1
-	•
9	2
۹	ζ

	% _{vo} Tensile; Perforated vs. Non-perforated	20.7	27.0	30.7	36.4	25.1	38.6	48.3	27.8	51.4	37.0	58.6	58.0	64.6	
Perforated Tape Test Results	%Elongation E _{vo}	35	40	42	42	35	45	53	40	53	45	57	57	65	92
Perforated 7	Tensile; T _{MD} (in g/cm)	1180	1537	1752	2073	1430	2200	2753	1698	2931	2110	3242	3307	3682	5700
	Hand Tear Test	4	က	3	3	4	3	3	4	8	3	3	2	2	0
Separation Lines	Cut to Uncut Ratio	7.75:1	6.21:1	4.83:1	3.88:1	6.24:1	3.80:1	3.06:1	4.76:1	2.90:1	4.20:1	2.33:1	3.16:1	1.93:1	•
Separa	Connecting Segment Length in mm	0.41	0.51	0.41	0.51	0.25	0.41	0.51	0.25	0.41	0.25	0.51	0.25	0.41	•
	Perforation Length in mm	3.18	3.18	1.98	1.98	1.56	1.56	1.56	1.19	1.19	1.05	1.19	0.79	0.79	•
Example D	Sample #	-	2	8	4	2	9	7	8	6	10	11	12	13	Control

Ŋ

0

15

0

26

SUBSTITUTE SHEET (RULE 26)

20

TABLE SIX

ß

Example E		Separa	Separation Lines		Perforated	Perforated Tape Test Results	
Sample #	Perforation Length in mm	Connecting Segment Length in mm	Cut to Uncut Ratio	Hand Tear Test	Tensile; T _{MD}	%Elongation E _{MD} (in g/cm)	% _{wo} Tensile; Perforated vs. Non-perforated
-	3.18	0.41	7.75:1	വ	661	7	21.8
2	3.18	0.51	6.21:1	သ	930	o	30.6
3	1.98	0.41	4.83:1	သ	1037	10	34.1
4	1.98	0.51	3.88:1	သ	1233	12	40.6
2	1.56	0.25	6.24:1	ഗ	1430	35	47.0
9	1.56	0.41	3.80:1	ഹ	1162	10	38.2
7	1.56	0.51	3.06:1	4	1358	13	44.7
80	1.19	0.25	4.76:1	သ	1020	6	33.5
6	1.19	0.41	2.90:1	4	1809	15	59.5
10	1.05	0.25	4.20:1	4	2377	24	78.2
11	1.19	0.51	2.33:1	e	2020	19	66.4
12	0.79	0.25	3.16:1	2	2735	25	89.9
13	0.79	0.41	1.93:1	2	2002	18	62.9
Control			,	0	3040	37	•

2 7 Substitute sheet (rule 26)

WO 95/06449 PCT/US94/09883

The Examples and the data in the corresponding Tables 2-6 illustrate that the present invention is both hand tearable and functional as an elastic wrap. That is, the invention wraps display the 5 necessary tensile strength while still allowing hand tearing of the wraps. The most preferred wraps demonstrate easy hand tearing (a large number resulting from the Hand Tear Test) and a high tensile strength (large numbers resulting from the Machine Direction 10 Tensile Strength and Elongation).

We claim:

- which can be longitudinally elongated between about 7 to 280 percent, the substrate having a longitudinal axis and a lateral axis having a plurality of longitudinally spaced, laterally extending, perforated separation lines defined by a series of about 0.2 to 5 mm perforations separated by about 0.1 to 1 mm 10 connecting segments of wrap and a ratio of perforation length to connecting segment length of about 1:1 to 10:1.
 - 2. The wrap of claim 1 wherein the elastic substrate comprises a nonwoven web.

15

- 3. The wrap of claim 2 wherein the nonwoven web is coated on a major surface with a pressure sensitive adhesive.
- 4. The wrap of claim 3 further comprising a low adhesion backsize coated on a major surface of the elastic substrate.
- 5. The wrap of claim 2 wherein the nonwoven web 25 further comprises elastic filaments bound to the nonwoven web with an elastomeric binder.
- The wrap of claim 2 wherein the nonwoven web is hydroentangled and is impregnated with an
 elastomeric binder.
 - 7. The wrap of claim 2 wherein the nonwoven web is comprised of polyester fibers.
- 35 8. The wrap of claim 1 wherein the elastic substrate comprises a film.

- 9. The wrap of claim 8 wherein the film is comprised of polyurethene.
- 10. Th wrap of claim 1 wherein the elastic 5 substrate comprises a foam.
 - 11. The wrap of claim 10 wherein the foam comprises polyvinylchloride foam.
- 10 12. The wrap of claim 1 wherein the perforated separation lines are uniformly longitudinally spaced about 1 to 20 cm apart to define individually separable sheets of wrap having identical longitudinal lengths.
- 15 13. The wrap of claim 1 wherein the perforated separation lines are uniformly longitudinally spaced about 2 to 10 cm apart to define individually separable sheets of wrap having identical longitudinal lengths.
- 20 14. The wrap of claim 1 wherein the perforated separation lines are defined by perforations which are about 0.5 to 3 mm long, connecting segments which are about 0.2 to 0.8 mm long, and a ratio of perforation length to connecting segment length of about 1:1 to 25 6:1.
- 15. The wrap of claim 1 wherein the perforated separation lines are defined by perforations which are about 1 to 2 mm long, connecting segments which are 30 about 0.2 to 0.6 mm long, and a ratio of perforation length to connecting segment length of about 1:1 to 3:1.
- 16. The wrap of claim 1 wherein the perforations 35 are linear perforations which extend laterally across the wrap.

WO 95/06449 PCT/US94/09883

17. The wrap of claim 1 wh rein the perforations are linear perforations which extend at an angle of about 30° to 60° from the lateral axis of the wrap.

- 5 18. The wrap of claim 1 wherein the perforations are nonlinear perforations.
 - 19. The wrap of claim 1 wherein the perforations in each separation line have a uniform length.

20. The wrap of claim 15 wherein the perforations in each separation line have a uniform shape.

- 21. The wrap of claim 1 wherein the wrap can be 15 longitudinally elongated between about 150 to 230 percent.
 - 22. A roll of elastic wrap comprising:
 - a. a core, and

10

25

30

- 20 b. a length of elastic wrap wound around the core;
 - c. wherein the wrap comprises at least (i) an elastomeric binder-containing nonwoven fabric, and (ii) a plurality of longitudinally spaced, laterally extending, perforated separation lines defined by a

separated by about 0.1 to 1 mm connecting segments of tape and a ratio of perforation length to connecting segment length of about

plurality of about 0.2 to 5 mm perforations

- 1:1 to 10:1.
- 23. A method of dispensing elastic wrap comprising the steps of:
- 35 a. unwinding a length of wrap from a roll of the wrap wherein the wrap comprises a

5

binder-containing nonwoven web which includes a plurality of longitudinally spaced, laterally extending, perforated separation lines defined by a plurality of about 0.2 to 5 mm perforations separated by about 0.1 to 1 mm connecting segments of wrap and a ratio of perforation length to connecting segment length of about 1:1 to 10:1, and

10 b. laterally tearing the wrap along a separation line to detach a length of wrap from the tape remaining on the core.

24. A roll of elastic wrap comprising an

15 elastomeric binder-containing nonwoven web having a
longitudinal axis and a lateral axis which is coated on
a major surface with a cohesive material; the
cohesively-coated web having a plurality of
longitudinally spaced, laterally extending, perforated
20 separation lines defined by a series of about 0.2 to 5
mm perforations separated by about 0.1 to 1 mm
connecting segments of dressing and a ratio of
perforation length to connecting segment length of
about 1:1 to 10:1.

25

WO 95/06449 PCT/US94/09883

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC \ 6 \ A61F$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electrome data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US,A,3 085 024 (B.B.BLACKFORD) 9 April 1963	1,8,12, 14,18, 19,21
Y	see column 1, line 1 - line 4	2-4,10, 11, 15-17,20
	see column 1, line 44 - line 49	15-17,20
	see column 2, line 44 - line 58	
	see column 3, line 1 - line 6	
	see column 3, line 23 - line 36	
	see column 3, line 46 - line 50	
	see figures 1,3-4	
		ı
X	US,A,4 294 240 (G.A.THILL) 13 October 1981	1,10
	see abstract; figure 1	·
	-/	

'Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
14 December 1994	1 6. 01. 95
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer
NI 2280 HV Ripwijk Td. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Nice, P

· 1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

J.B.ODEGAARD) 31 August 1982 see column 2, line 48 - line 59 see column 4, line 10 - line 14 see column 6, line 30 - line 32 see figures 1-2 Y US,A,4 581 087 (D.A.JOHNSON) 8 April 1986 see column 3, line 56 - column 4, line 6 see column 4, line 36 - line 38 see figures 3A-3C A US,A,3 575 782 (P.E.HANSEN) 20 April 1971 cited in the application see column 1, line 13 - line 17 see column 2, line 34 - line 38 see column 3, line 34 - line 35 see column 3, line 50 - line 58 see column 4, line 28 - line 30	<u> </u>
Y US,A,4 346 700 (W.K.DUNSHEE AND J.B.ODEGAARD) 31 August 1982 see column 2, line 48 - line 59 see column 4, line 10 - line 14 see column 6, line 30 - line 32 see figures 1-2 Y US,A,4 581 087 (D.A.JOHNSON) 8 April 1986 see column 3, line 56 - column 4, line 6 see column 4, line 36 - line 38 see figures 3A-3C A US,A,3 575 782 (P.E.HANSEN) 20 April 1971 cited in the application see column 1, line 13 - line 17 see column 2, line 34 - line 38 see column 3, line 34 - line 38 see column 3, line 34 - line 35 see column 3, line 50 - line 58 see column 4, line 28 - line 30 US,A,5 213 565 (E.J.ROLLBAND) 25 May 1993	-1-i N-
J.B.ODEGAARD) 31 August 1982 see column 2, line 48 - line 59 see column 4, line 10 - line 14 see column 6, line 30 - line 32 see figures 1-2 Y US,A,4 581 087 (D.A.JOHNSON) 8 April 1986 see column 3, line 56 - column 4, line 6 see column 4, line 36 - line 38 see figures 3A-3C A US,A,3 575 782 (P.E.HANSEN) 20 April 1971 cited in the application see column 1, line 13 - line 17 see column 2, line 34 - line 38 see column 3, line 34 - line 38 see column 3, line 34 - line 35 see column 4, line 28 - line 30 US,A,5 213 565 (E.J.ROLLBAND) 25 May 1993	Gaim No.
see column 3, line 56 - column 4, line 6 see column 4, line 36 - line 38 see figures 3A-3C US,A,3 575 782 (P.E.HANSEN) 20 April 1971 cited in the application see column 1, line 13 - line 17 see column 2, line 34 - line 38 see column 3, line 34 - line 35 see column 3, line 50 - line 58 see column 4, line 28 - line 30 US,A,5 213 565 (E.J.ROLLBAND) 25 May 1993	4,10,
cited in the application see column 1, line 13 - line 17 see column 2, line 34 - line 38 see column 3, line 34 - line 35 see column 3, line 50 - line 58 see column 4, line 28 - line 30 US,A,5 213 565 (E.J.ROLLBAND) 25 May 1993	-17,20
US,A,5 213 565 (E.J.ROLLBAND) 25 May 1993 see column 3, line 20 - line 27; figure 5	5, -24

1

			PCT/US	94/09883
Patent document cited in search report	Publication date	Patent f membe		Publication date
US-A-3085024		NONE		
US-A-4294240	13-10-81	NONE		
US-A-4346700	31-08-82	NONE		
US-A-4581087	08-04-86	NONE		n
US-A-3575782	20-04-71	DE-A,B FR-A- GB-A-	1760436 1563498 1209693	09-12-71 11-04-69 21-10-70
US-A-5213565	25-05-93	US-A-	5310402	10-05-94