—,

如图所示,一个均匀的带电量为Q(Q>0)的细线弯成半径为R的半圆环,圆心处放置一电荷量为 $q_0(q_0<0)$ 的点电荷,试求:

- (1) 圆心处点电荷所受的电场力的大小与方向;
- (2) Q与 q_0 之间的相互作用势能,设无穷远点为零势能参考点。

_,

- 一半径为R的带电球体,其电荷体密度为 $\rho = \rho_0(1-\frac{r}{R})$, ρ_0 为一常量,r为球内空间某点到球心的距离。求:
 - (1) 空间各点电场强度的分布;
 - (2) 电场强度在何处最大,最大值为多少?

三、

半径分别为 R_1 与 R_2 (R_1 < R_2)的两导体球面同心地套在一起,两球面之间充满介电常数为 ε_r 的均匀电介质构成一个球形电容器,

- (1) 求该电容器的电容;
- (2) 将电容器充电,使内外球面分别带上电荷 +Q与 -Q,求介质球壳内外表面的极化电荷面密度:
- (3) 求充电后介质内电场的能量密度,及电容器储存的电场能量。

四、

从经典观点来看,氢原子可看作是一个电子绕核作高速旋转的体系。已知电子和质子的电量分别为-e和+e,电子质量为 m_e ,氢原子电子的平面圆形轨道半径为 r_0 ,试求:

- (1) 电子轨道运动的磁矩 p_m 的大小;
- (2) p_m 在轨道圆心处所产生的磁感应强度 B 的大小;
- (3) 设原子核质子的自旋产生的磁场磁感应强度为,且在原子内可视为均匀磁场。当 $^{1}_{B_{0}}$ 与 $^{1}_{p_{m}}$ 之间的夹角 0 θ = 45 0 时,求 $^{1}_{p_{m}}$ 受到原子核磁场 $^{1}_{B_{0}}$ 的磁力矩的大小。

$$(\Leftrightarrow k = \frac{1}{4\pi\varepsilon_0})$$

五、

半径为R的圆形线圈通有电流 I_2 ,置于电流为 I_1 的无限长直载流导线的磁场中,直导线经过圆形线圈的直径,且与圆形线圈相互绝缘,如图所示。求圆线圈受到长直线电流 I_1 的磁力的大小和方向。

六、

如图所示,两根无限长直导线相距为 d,载有大小相等方向相反的电流 I, I 以恒定的变化率 $\frac{dI}{dt}$ 增长。一个边长为 d 的正方形导线线圈位于导线平面内,与一根导线相距 d。试求:

- (1) 线圈中的感生电动势的大小与方向;
- (2) 线圈与两直导线之间的互感系数M:
- (3) 若线圈的电阻为R,且计时开始时长直导线内的电流为 I_0 ,求t时刻后正方形线圈导线 截面内通过的感应电量 q_i 。

七、

一对平行的金属导轨上放置一质量为m的金属杆AB,导轨间距为L。平行导轨一端用电阻R相连接。一均匀磁场B垂直于两导轨所在平面(如图所示)。若杆以初速度 v_0 向右滑动,假定导轨是光滑的,且忽略导轨的电阻,求:

- (1) 当杆 AB 的速率为 ν 时, AB 上动生电动势 ξ , 、及通过金属杆 AB 内感应电流 I, 的大小;
- (2) 当杆 AB 的速率为v时, AB 受到磁场 B 的安培力的大小与方向;
- (3) AB 能移动的最大距离 s 。

八、在半径为R的导体球壳薄壁附近与球心相距为d(d>R)的P点处,放一点电荷q,求:

- (1) 球壳表面感应电荷在球心 O 处产生的电势和场强
- (2) 空腔内任一点的电势和场强
- (3) 若将球壳接地, 计算球壳表面感应电荷的总电量

九、一带电球体,半径为 R ,电荷体密度与球半径成反比,即 $\rho=K/r$ 。 K 为比例常数,求空间的电场和电势的分布。

十、一均匀带电线由一半圆和两段直线组成,各尺寸如图所示。设带电直线单位长度所带的电量为 λ ,求圆心 O 点的电场强度和电势。

十一、如图长直载流导线 I_1 的右侧,与其共面放置另一导线,导线形状为一以 x 轴为对称轴的抛物线,其顶点坐标为 c(1,0),端点坐标 a(2,1),b(2,-1),通以电流 I_1 ,试求导线 I_1 所受的安培力.

如图所示,电量 q(q>0) 均匀分布在长为l 的细杆上,求在杆外延长线上与杆一端距离为d 的P 点处:

 $P \qquad A \qquad I$ $l \longrightarrow d \longrightarrow l \longrightarrow l$

(1) 电场强度 \vec{E}_p ;

(2) 电势 V_n (设无穷远处为电势零点)。

十三、

如图所示,半径为 R_1 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为 R_2 和 R_3 ,

当内球带电荷Q时,试求:

- (1) 空间的电场分布;
- (2) 计算储存的能量;
- (3) 球和球壳之间的电容值。

十四、

在距一个通电电流为 I 的无限长直导线 d 处共面放置一通有稳恒电流 I 的方形线圈(边长为 l),且 CD 、 EF 都与 AB 平行, B I

- (a) 求方形线圈中心的磁感应强度 \overline{B} ; (提示:有限长载流 直导线 I 在与导线垂直距离为 a 的一点处的磁感应强度 大小的公式: $B = \frac{\mu_0 I}{4\pi a} (\sin \beta_2 - \sin \beta_1)$)
- (b) 求直导线的磁场对方形线圈每边所作用的安培力 \bar{F} ;
- (c) 求直导线和方形线框的互感系数M。

十五、

如图一带电球面,电荷面密度分布为 $\sigma=\sigma_0\cos\theta$,式中 σ_0 为常数, θ 为任一半径与z轴的夹角,求球心O的电场强度和电势。

十六、半径为 R 的球面均匀带有面密度为 σ 的电荷,该球面绕其直径以角速度 ω 匀速转动,求球心 O 的磁感应强度。

