CLAIMS

I claim:

4

1.	1. A light-emitting diode chip having an epitaxial semiconductor layer
2	sequence with an active zone that emits electromagnetic radiation and an electrical
3	contact structure comprising a radiation-transmissive electrical current expansion layer,
4	which contains ZnO, and an electrical connection layer,
5	wherein
6	the current expansion layer comprises a window, in which the connection layer is
7	applied on a cladding layer of the semiconductor layer sequence;
8	the connection layer is electrically conductively connected to the current
9	expansion layer; and
10	the junction between the connection layer and the cladding layer, during the
11	operation of the light-emitting diode chip, is not electrically conductive or is only so
12	poorly electrically conductive that the entire, or virtually the entire, current flows via the
13	current expansion layer into the semiconductor layer sequence.
1	2. The light-emitting diode chip according to claim 1,
2	wherein
3	the connection layer comprises a metal and the junction between the connection

layer and the cladding layer comprises an electrical potential barrier.

1	3. The light-emitting diode chip according to claim 1,
2	wherein
3	the sheet resistance of intermediate layers of the semiconductor layer sequence
4	between the active zone and the electrical contact structure is in each case greater than
5	or equal to 200 Ω /sq.
1	4. The light-emitting diode chip according to claim 1,
2	wherein
3	the current expansion layer comprises a sheet resistance of less than or equal to
4	190 Ω /sq, preferably of less than or equal to 30 Ω /sq.
1	5. The light-emitting diode chip according to claim 1,
2	wherein
3	the connection layer extends beyond the window on that side of the current
4	expansion layer which is remote from the semiconductor layer sequence and is applied
5	to the front-side surface of the current expansion layer in such a way that it partly covers
6	the latter and that the junction between the connection layer and the current expansion
7	layer is electrically conductive in this region.

- 1 6. The light-emitting diode chip according to claim 1,2 wherein
- the semiconductor layer sequence is based on In_xGa_yAl_{1-x-y}P, In_xGa_yAl_{1-x-y}As,
- 4 $ln_xGa_yAl_{1-x-y}N$ or $ln_xGa_yAs_{1-x-y}P$, where $0 \le x \le 1$, $0 \le y \le 1$ and $x + y \le 1$.
- 7. The light-emitting diode chip according to claim 1,
- 2 wherein
- 3 the cladding layer comprises $AI_xGa_{1-x}As_yP_{1-y}$, where $0 \le x \le 1$, and $0 \le y \le 1$,
- 4 preferably where $0.1 \le x \le 0.5$ and y = 1 or where x = 0 and y = 0.
- 1 8. The light-emitting diode chip according to claim 7,
- 2 wherein
- the cladding layer is p-doped, with the dopant Zn and/or C.
- 1 9. The light-emitting diode chip according to claim 1,
- 2 wherein
- the cladding layer is doped with a dopant concentration of between about 5.10¹⁷
- 4 and about 5.10¹⁹, in particular between about 1.10¹⁸ and about 1.10¹⁹, the limits being
- 5 included in each case.

1	The light-emitting diode chip according to claim 1,
2	wherein
3	the current expansion layer comprises Al.
1	11. The light-emitting diode chip according to claim 10,
2	wherein
3	the proportion of AI in the current expansion layer lies between 0% and 10%
4	inclusive, preferably between 1% inclusive and 3% inclusive.
1	12. The light-emitting diode chip according to claim 1,
2	wherein
3	the current expansion layer has a thickness of between 100 and 600 nm, in
4	particular between 450 and 550 nm, the limits being included in each case.
1	13. The light-emitting diode chip according to claim 1,
2	wherein
3	the current expansion layer has a thickness corresponding to about a quarter of
4	the wavelength of a radiation emitted by the light-emitting diode chip.

1	14. The light-emitting diode chip according to claim 1,
2	wherein
3	the current expansion layer is provided with watertight material in such a way that
4	it is adequately protected against moisture.
1	15. The optoelectronic component according to claim 14,
2	wherein
3	watertight material is applied to free areas of the contact layer.
1	16. The optoelectronic component according to claim 15,
2	wherein
3	watertight material is applied to all the free areas of the contact layer.
1	17. The light-emitting diode chip according to claim 14,
2	wherein
3	the watertight material is a dielectric that is transparent to an electromagnetic
4	radiation emitted by the light-emitting diode chip.
1	18. The light-emitting diode chip according to claim 17,
2	wherein
3	the dielectric comprises one or more of the substances Si _x N _y , SiO, SiO ₂ , Al ₂ O ₃
4	and SiO _x N _y .

1	19. The light-emitting diode chip according to claim 14,
2	wherein
3	the refractive index of the watertight material is less than the refractive index of
4	the current expansion layer and is adapted to the greatest possible extent in particular
5	for a minimization of reflections of the radiation emitted by the light-emitting diode chip
6	at interfaces with respect to the watertight material.
1	20. The light-emitting diode chip according to claim 14,
2	wherein
3	the current expansion layer has a thickness corresponding to about an integer
4	multiple of half the wavelength of a radiation emitted by the light-emitting diode chip,
5	and the watertight material has a thickness corresponding to about a quarter of said
6	wavelength.
1	21. The light-emitting diode chip according to claim 14,
2	wherein
3	the thickness of the watertight material lies between 50 inclusive and
4	200 nm inclusive.
5	