MATE 6540: Tarea 2

Due on 11 de abril Prof. Iván Cardona , C41, 11 de abril

Sergio Rodríguez

Problem 0

Sean (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) espacios topológicos y sea $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ una biyección. Demuestre que las siguientes son equivalentes:

- (a) f es un homeomorfismo.
- (b) $f y f^{-1}$ son funciones abiertas.
- (c) $f y f^{-1}$ son funciones cerradas.

Demo:

$$(a \Longrightarrow b)$$

Suponga que f es un homeomorfismo, y sea $U \in \mathcal{T}_X$, como f es biyectiva y un homeomorfismo, f^{-1} es continua, entonces $\left(f^{-1}\right)^{-1}(U) = f(U) \in \mathcal{T}_Y$.

 $\therefore f$ es función abierta.

Similarmente, sea $V\in\mathcal{T}_X$, como f es homeomorfismo, f es continua, entonces $f^{-1}(V)=\left(f^{-1}\right)^{-1}(V)\in\mathcal{T}_X$.

 $\therefore f^{-1}$ es función abierta.

$$(b \Longrightarrow c)$$

Suponga que f y f^{-1} son funciones abiertas. Sea $C \subseteq X$ cerrado y note que:

$$f^{-1}(Y \smallsetminus f(C)) = f^{-1}(Y) \smallsetminus f^{-1}(f(C)) = X \smallsetminus C \in \mathcal{T}_X \text{ (porque f es inyectiva)} \tag{1}$$

Pero f es función abierta, entonces:

$$f(f^{-1}(Y \setminus f(C))) = Y \setminus f(C) \in \mathcal{T}_Y \Longrightarrow f(C) \text{ es cerrado}$$
 (2)

 $\therefore f$ es función cerrada.

Similarmente, sea $K \subseteq Y$ cerrado y note que:

$$f(X \setminus f^{-1}(K)) = (f^{-1})^{-1}(X \setminus f^{-1}(K)) = (f^{-1})^{-1}(X) \setminus (f^{-1})^{-1}(f^{-1}(K))$$

= $f(X) \setminus f(f^{-1}(K)) = Y \setminus K \in \mathcal{T}_{V}$ (3)

$$\Longrightarrow f^{-1}\big(f\big(X \smallsetminus f^{-1}(K)\big)\big) = X \smallsetminus f^{-1}(K) \in \mathcal{T}_X \Longrightarrow f^{-1}(K) \text{ es cerrado}$$

 f^{-1} es función cerrada.

$$(c \Longrightarrow a)$$

Suponga que f y f^{-1} son funciones cerradas, y sea C_Y un conjunto cerrado en (Y, \mathcal{T}_Y) , entonces $f^{-1}(C_Y)$ es cerrado en $(X, \mathcal{T}_X) \Longrightarrow f$ es continua.

Similarmente, suponga que C_X es cerrado en (X, \mathcal{T}_X) , entonces $(f^{-1})^{-1}(C_X) = f(C_X)$ es cerrado en $Y \Longrightarrow f^{-1}$ es continua.

 \therefore f es un homeomorfismo.

MEP

Problem 1

Sean (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) espacios topológicos. Una función $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ es fuertemente continua si $f(\overline{A}) \subseteq f(A)$, $\forall A \subseteq X$. Demuestre que f es fuertemente continua $\iff f^{-1}(B)$ es cerrado, $\forall B \subseteq Y$.

Demo:

 (\Longrightarrow)

Suponga que f es fuertemente continua y tome $B \subseteq Y$. Entonces:

$$B \subseteq Y \Longrightarrow f^{-1}(B) \subseteq X$$

$$\Longrightarrow f\left(\overline{f^{-1}(B)}\right) \qquad \subseteq f(f^{-1}(B)) \qquad \text{(continuidad fuerte)}$$

$$\Longrightarrow f^{-1}\left(f\left(\overline{f^{-1}(B)}\right)\right) \subseteq f^{-1}(f(f^{-1}(B))) \text{ (TMA A.4 (ii))}$$

Por otro lado:

$$\begin{split} f(f^{-1}(B)) &\subseteq B \qquad \text{(TMA A.4 (vii))} \\ \Longrightarrow f^{-1}(f(f^{-1}(B))) &\subseteq f^{-1}(B) \text{ (TMA A.4 (ii))} \end{split} \tag{5}$$

Adicionalmente:

$$\overline{f^{-1}(B)} \subseteq f^{-1}\left(f\left(\overline{f^{-1}(B)}\right)\right) \text{ (TMA A.4 (viii))}$$
(6)

Entonces, por la transitividad de las inclusiones $(6) \subseteq (4) \subseteq (5)$, tenemos que $\overline{f^{-1}(B)} \subseteq f^{-1}(B)$. $\therefore f^{-1}(B)$ es cerrado.

 (\Longleftrightarrow)

Suponga que $f^{-1}(B)$ es cerrado $\forall B\subseteq Y$, y tome $A\subseteq X$. Entonces $f(A)\subseteq Y\Longrightarrow f^{-1}(f(A))$ es cerrado por hipótesis. Además, $A\subseteq f^{-1}(f(A))$ por el TMA A.4 (viii). Pero \overline{A} es el conjunto cerrado más pequeño que contiene a A, por lo tanto $\overline{A}\subseteq f^{-1}(f(A))$. Entonces:

$$\overline{A} \subseteq f^{-1}(f(A))$$

$$\Longrightarrow f(\overline{A}) \subseteq f(f^{-1}(f(A))) \text{ (TMA A.4 (i))}$$

$$\subseteq f(A) \text{ (TMA A.4 (vii))}$$
(7)

 $\therefore f$ es fuertemente continua.

MEP

Problem 2

Sea (X, \mathcal{T}_X) un espacio topológico y \mathcal{U} la topología producto sobre $X \times X$. Demuestre que (X, \mathcal{T}_X) es Hausdorff \iff la diagonal $\Delta = \{(x, y) \in X \times X \mid x = y\}$ es un subconjunto cerrado de $(X \times X, \mathcal{U})$.

Demo:

Dado $z \in X$, denotaremos como U_z a una vecindad de z.

 (\Longrightarrow)

 $\begin{array}{l} \text{Dados } x,y \in X \text{ con } x \neq y \text{, defina } H_{x,y} \coloneqq \left\{ U_x \times U_y \mid U_x \cap U_y = \emptyset \right\} \text{. Note que } (X,\mathcal{T}_X) \text{ Hausdorff} \\ \Longrightarrow H_{x,y} \neq \emptyset, \quad \forall x,y \in X \text{ con } x \neq y \text{. Considere la familia } \left\{ H_{x,y} \right\}_{(x,y) \in \Lambda} \text{donde} \end{array}$

 $\Lambda := X \times X \setminus \Delta$. Por el axioma del escogido, existe una función de selección:

$$c: \left\{ H_{x,y} \right\}_{(x,y)\in\Lambda} \to \bigcup_{(x,y)\in\Lambda} H_{x,y}$$

$$c(A) \in A, \quad \forall A \in \left\{ H_{x,y} \right\}_{(x,y)\in\Lambda}$$

$$(8)$$

Ahora, sea

$$B := \bigcup_{(x,y)\in\Lambda} c(H_{x,y}) \tag{9}$$

Note que $c(H_{x,y}) \in H_{x,y} \Longrightarrow \exists x', y' \in X$ tal que $c(H_{x,y}) = U_{x'} \times U_{y'}$. Entonces B es unión arbitraria de elementos básicos de $\mathcal{U} \Longrightarrow B \in \mathcal{U}$.

Afirmamos que $B = X \times X \setminus \Delta$:

Tome $(a,b) \in B$. Entonces $\exists (a',b') \in \Lambda$ tal que $(a,b) \in U_{a'} \times U_{b'}$, pero $(a',b') \in \Lambda$ $\Longrightarrow U_{a'} \cap U_{b'} = \emptyset \Longrightarrow a \neq b \Longrightarrow (a,b) \in X \times X \setminus \Delta \Longrightarrow B \subseteq X \times X \setminus \Delta$.

Ahora tome $(c,d) \in X \times X \setminus \Delta$, entonces $c \neq d \Longrightarrow U_c, U_d \text{ con } U_c \cap U_d = \emptyset$, pero $(c,d) \in U_c \times U_d \subseteq B \Longrightarrow (c,d) \in B \Longrightarrow X \times X \setminus \Delta \subseteq B$.

$$\therefore B = X \times X \setminus \Delta$$

Entonces, $X \times X \setminus \Delta = B \in \mathcal{U} \Longrightarrow \Delta$ es cerrado en \mathcal{U} .

 (\Longleftrightarrow)

Suponga que Δ es cerrado, entonces $X \times X \setminus \Delta \in \mathcal{U}$. Tome $(x,y) \in X \times X \setminus \Delta$. Como $X \times X \setminus \Delta$ es abierto, existe un elemento básico $U \times V$ tal que $(x,y) \in U \times V \subseteq X \times X \setminus \Delta \Longrightarrow U \cap V = \emptyset$. Entonces encontramos abiertos disjuntos que contienen a dos puntos arbitrarios distintos.

 $\therefore X$ es Hausdorff.

MEP

Problem 3

Sean (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) espacios topológicos. Demuestre que si $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ es sobreyectiva, continua, y abierta, entonces $\mathcal{T}_Y = \mathcal{T}_{\text{FIN}}$, donde \mathcal{T}_{FIN} es la topología final inducida por f.

Demo:

Por definición, T_{FIN} es la topología más grande que hace que f sea continua. Pero: $f:(X,\mathcal{T}_X) \to (Y,\mathcal{T}_Y)$ es continua por hipótesis.

$$:: \mathcal{T}_Y \subseteq \mathcal{T}_{FIN}$$

Tome $V \in \mathcal{T}_{\mathrm{FIN}}$. Como f es continua, $f^{-1}(V) \in \mathcal{T}_X$. Pero $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ también es abierta, lo que implica que $f(f^{-1}(V)) \in \mathcal{T}_Y$. Finalmente, f sobreyectiva $\Longrightarrow f(f^{-1}(V)) = V$. Entonces $V \in \mathcal{T}_Y$.

$$\therefore \mathcal{T}_{\mathrm{FIN}} \subseteq \mathcal{T}_{Y}$$

$$\therefore \mathcal{T}_{Y} = \mathcal{T}_{\text{FIN}}$$

MEP

Problem 4

Sea $p:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ una función continua. Demuestre que si existe una función continua $f:(Y,\mathcal{T}_Y)\to (X,\mathcal{T}_X)$ tal que $p\circ f$ es la identidad en Y, entonces p es una aplicación cociente.

Demo:

Para demostrar que p es una aplicación cociente, debemos demostrar que p es sobreyectiva, y que $\mathcal{T}_Y = \mathcal{T}' \coloneqq \{V \subseteq Y \mid p^{-1}(V) \in \mathcal{T}_X\}.$

Tome $y \in Y$ y note que $y = \operatorname{id}_Y(y) = (p \circ f)(y) = p(f(y))$. Entonces, dado un elemento arbitrario $y \in Y$, encontramos un elemento $x \in X$ tal que y = p(x).

 \therefore p es sobreyectiva.

Tome $U \in \mathcal{T}_Y$, como p es continua, $p^{-1}(U) \in \mathcal{T}_X \Longrightarrow \mathcal{T}_Y \subseteq \mathcal{T}'$.

Ahora, tome $V\in\mathcal{T}'$, entonces $p^{-1}(V)\in\mathcal{T}_X$ por definición. Entonces, $f^{-1}\big(p^{-1}(V)\big)\in\mathcal{T}_Y$ por la continuidad de f. Pero $f^{-1}\big(p^{-1}(V)\big)=\big(f^{-1}\circ p^{-1}\big)(V)=(p\circ f)^{-1}(V)=\operatorname{id}_Y(V)=V$, lo que implica que $V\in\mathcal{T}_Y$.

- $\therefore \mathcal{T}_{\!Y} = \mathcal{T}'.$
- \div p es una aplicación cociente.

MEP