

P26 CONTINUED
(c) WRITE Expressions For Vc(a), VR2 (a) + 1c(a)
IF THE SWITCH IS MOVED TO POS3 AT 200 MS PISCHMEE STATS
$ \begin{array}{c c} Pos3 \\ \downarrow \\ \downarrow \\ 2Me \\ Re \\ \downarrow \\ Ver \\ 2ke \\ \downarrow \\ -Ver \end{array} $
JUST AFTER THE SWITCH IS MOVED TO POSZ:
Vc (200 ms) = 50V (Z-200 ms)
. No (x) = 5010 = T' = (2pf)(2kn) = 4ms
Vc(x) = 50V e (x-200ms) /4ms (4) GOOD FOR x > 200ms
Ver = -k = -5018 (5)
$ic(x) = \frac{\sqrt{k_1(x)}}{R_2} = \frac{-25mAe}{-25mAe}$ (6)
(d) Plot Vc, VR2 + ic For 0 < t < 300 ms
O → 100 ms: CHARGE, USE (1) - (3)
100MS -> 200MS! Vc = 50V, ic ~ OA CHOLONE CHARGE
200 MS -> 300MS! USE (4) - (6)

Plot = Excel OR EQUIVACENT

a. $v_C = V_f + (V_i - V_f)e^{-t/\tau}$ 29.

a.
$$\upsilon_C = v_f + (v_i - v_f)e$$

 $\tau = RC = (4.7 \text{ k}\Omega)(4.7 \text{ \mu}\text{F}) = 22.1 \text{ ms}, \ V_f = 40 \text{ V}, \ V_i = 6 \text{ V}$
 $\upsilon_C = 40 \text{ V} + (6 \text{ V} - 40 \text{ V})e^{-t/22.1 \text{ms}}$
 $\upsilon_C = 40 \text{ V} - 34 \text{ V}e^{-t/22.1 \text{ms}}$

Initially $V_R = E + v_C = 40 \text{ V} - 6 \text{ V} = 34 \text{ V}$ b. $i_C = \frac{V_R}{R} e^{-t/\tau} = \frac{34 \text{ V}}{4.7 \text{ k}\Omega} e^{-t/22.1 \text{ms}} = 7.23 \text{ mA } e^{-t/22.1 \text{ms}}$

a. $v_C = 140 \text{ mV} (1 - e^{-1 \text{ms/2 ms}}) = 140 \text{ mV} (1 - e^{-0.5}) = 140 \text{ mV} (1 - 0.6065)$ = 140 mV(0.3935) = **55.59 mV**

b.
$$v_C = 140 \text{ mV} (1 - e^{-10}) = 140 \text{ mV} (1 - 45.4 \times 10^{-6})$$

 $\approx 139.99 \text{ mV}$

c.
$$100 \text{ mV} = 140 \text{ mV} (1 - e^{-t/2 \text{ ms}})$$

 $0.714 = 1 - e^{-t/2 \text{ ms}}$
 $0.286 = e^{-t/2 \text{ ms}}$
 $\log_e 0.286 = \log_e e^{-t/2 \text{ ms}}$
 $1.252 = -t/2 \text{ ms}$
 $t = 1.252 (2 \text{ ms}) = 2.5 \text{ ms}$

d.
$$v_C = 138 \text{ mV} = 140 \text{ mV} (1 - e^{t/2 \text{ ms}})$$

 $0.986 = 1 - e^{-t/2 \text{ ms}}$
 $-14 \times 10^{-3} = -e^{-t/2 \text{ ms}}$
 $\log_e 14 \times 10^{-3} = -t/2 \text{ ms}$
 $-4.268 = -t/2 \text{ ms}$
 $t = (4.268)(2 \text{ ms}) = 8.54 \mu \text{s}$

 $v_C = 60 \text{ V}(1 - e^{-t/\tau})$ $48 \text{ V} = 60 \text{ V}(1 - e^{-t/\tau})$

$$0.8 = 1 - e^{-t/\tau}$$

$$0.2 = e^{-t/\tau}$$

$$\log_e 0.2 = \log_e e^{-t/\tau}$$

$$-1.61 = -t/\tau$$

$$t = (1.61)\tau = (1.61)(137.36 \text{ ms}) = 221.15 \text{ ms}$$
b.
$$i_C = \frac{E}{R}e^{-t/\tau} = \frac{60 \text{ V}}{20.2 \text{ k}\Omega}e^{-t/\tau}$$

a. $\tau = RC = (12 \text{ k}\Omega + 8.2 \text{ k}\Omega)(6.8 \mu\text{F}) = 137.36 \text{ ms}$

= 2.97 mA
$$e^{-t/137.36 \text{ ms}}$$

 $i_C(221.15 \text{ ms}) = 2.97 \text{ mA}e^{-221.15 \text{ ms}/137.36 \text{ ms}}$
= 2.97 mA $e^{-1.61}$
= 2.97 mA (199.89 × 10⁻³)
= **0.594 mA**

c.
$$t = 2\tau$$

 $i_C = 2.97 \text{ mA} e^{-2\tau/\tau} = 2.97 \text{ mA} e^{-2}$
 $= 0.4 \text{ mA}$ 0.1

$$P = EI = (60 \text{ V})(0.4 \text{ mA}) = 24 \text{ mW}$$

P 52

Find the total capacitance C_T for the network in Fig. 10.120.

Step 1: Series combination of the $6\,\mu\text{F}$ and $12\,\mu\text{F}$ capacitors

$$C_{EQ_1} = \frac{1}{\frac{1}{6\,\mu\text{F}} + \frac{1}{12\,\mu\text{F}}} = 4\,\mu\text{F}$$

Step 2: Parallel combination of C_{EQ_1} and $12\,\mu\mathrm{F}$

$$C_{EQ_2} = C_{EQ_1} + 12 \,\mu\text{F}$$

$$C_{EQ_2} = 4 \,\mu\text{F} + 12 \,\mu\text{F} = 16 \,\mu\text{F}$$

Step 3: Parallel combination of $6\,\mu\mathrm{F},\,C_{EQ_2}$ and $6\,\mu\mathrm{F}$

$$C_T = \frac{1}{\frac{1}{6\,\mu\text{F}} + \frac{1}{16\,\mu\text{F}} + \frac{1}{6\,\mu\text{F}}} = 2.53\,\mu\text{F}$$

P 53

Find the steady-state voltage across and the charge on each capacitor for the circuit in Fig. 10.121.

The total capacitance of the circuit is:

Step 1: Series combination of the 10 μF and 100 μF

$$C_{EQ_1} = \frac{1}{\frac{1}{100 \, \text{nF}} + \frac{1}{100 \, \text{nF}}} = 9.09 \, \mu \text{F}$$

Step 2: Parallel combination of C_{EQ_1} and $20 \,\mu\text{F}$ capacitor

$$C_T = C_{EQ_1} + 20 \,\mu\text{F} = 9.09 \,\mu\text{F} + 20 \,\mu\text{F}$$

 $C_T = 29.09 \,\mu\text{F}$

Given the 20 V drop across the total capacitance, the total charge across the total capacitor is:

$$Q_T = C_T \cdot V = 29.09 \,\mu\text{F} \cdot 20 = 581.82 \,\mu\text{C}$$

The charge across the 20 µF capacitor is:

$$Q_{20\,\mu\text{F}} = 20\,\mu\text{F} \cdot 20 = 400\,\mu\text{C}$$

The charge across the C_{EQ_1} is:

$$Q_{EQ_1} = C_{EQ_1} \cdot V = 9.09 \, \mu\text{F} \cdot 20 = 181.82 \, \mu\text{C}$$

The voltage across the C_{EQ_1} is:

$$Q_{EO_1} = C_{EO_1} \cdot V = 9.09 \,\mu\text{F} \cdot 20 = 181.82 \,\mu\text{C}$$

Given that there is equal amount of charge on the $10\,\mu F$ and $100\,\mu F$, the voltage across the capacitors are:

$$\begin{split} V_{10\,\mu\mathrm{F}} &= \frac{C_{EQ_1}}{10\,\mu\mathrm{F}} = \frac{181.82\,\mu\mathrm{C}}{10\,\mu\mathrm{F}} = 18.82\,\mathrm{V} \\ V_{100\,\mu\mathrm{F}} &= \frac{C_{EQ_1}}{100\,\mu\mathrm{F}} = \frac{181.82\,\mu\mathrm{C}}{10\,\mu\mathrm{F}} = 1.82\,\mathrm{V} \end{split}$$

steady – state – ignore 10 kΩ resistor 330 μF + 120 μF = 450 μF

See the next
$$Q_T = 220$$
 μF || 450 μF = 147.76 μF

page for my $V_1 = \frac{Q_1}{C_1} = \frac{2.96 \text{ mC}}{220 \text{ μF}} = 13.45 \text{ V}$

solution to this $Q_2 = C_2V_2 = (330 \text{ μF})(6.55 \text{ V}) = 2.16 \text{ mC}$

problem $Q_3 = C_3V_3 = (120 \text{ μF})(6.55 \text{ V}) = 0.786 \text{ mC}$

