요인분석

&

상관분석

요인분석

- 1) 요인분석 개요
- 2) 공통요인으로 변수 정제
- 3) 잘못 분류된 요인 제거로 변수 정제
- 4) 요인분석 결과 제시

요인분석(Factor Analysis)

- 다수의 변수들을 대상으로 변수들 간의 관계 분석(타당성 분석)
- 공통 차원으로 축약하는 통계기법(변수 축소)
- 탐색적 요인분석: 요인분석을 할 때 사전에 어떤 변수들끼리 묶어야 한다는 전제를 두지 않고 분석하는 방법
- 확인적 요인분석 : 요인분석을 할 때 사전에 묶여질 것으로 기대되는 항목끼리 묶여지는지를 분석하는 방법

■ 요인과 변수 관계

요인 구분	변수명(Name)	변수설명(하위 요인)	
제품 친밀도	q1	브랜드	
	q2	친근감	
	q3	익숙함	
	q4	편안함	
제품 적절성	q5	가격의 적절성	
	q6	당도의 적절성	
	q7	성분의 적절성	
제품 만족도	q8	음료의 목 넘김	
	q9	음료의 맛	
	q10	음료의 향	
	q11	음료의 가격	

【요인분석의 전제조건】

- 하위요인으로 구성되는 데이터 셋이 준비되어 있어야 한다.
- 분석에 사용되는 변수는 등간척도나 비율척도이여야 하며, 표본
 의 크기는 최소 50개 이상이 바람직하다.【중심극한정리】
- 요인분석은 상관관계가 높은 변수들끼리 그룹화하는 것이므로 변수들 간의 상관관계가 매우 낮다면(보통 ±3 이하) 그 자료는 요인 분석에 적합하지 않다.

【요인분석의 목적】

- 자료 요약 : 변인을 몇 개의 공통된 변인으로 묶음
- 변인 구조 파악 : 변인들의 상호관계 파악(독립성 등)
- 불필요한 변인 제거 : 중요도가 떨어진 변수 제거
- 측정도구 타당성 검증 : 변인들이 동일한 요인으로 묶이는지여부를 확인

【데이터 셋 준비】

$$s3 < -c(2, 3, 2, 3, 2, 3, 5, 3, 4, 2)$$

$$s4 < -c(2, 4, 2, 3, 2, 3, 5, 3, 4, 1)$$

$$s5 < -c(4, 5, 4, 5, 2, 1, 5, 2, 4, 3)$$

name <-1:10

s1 : 자연과학, s2 : 물리화학

s3 : 인문사회, s4 : 신문방송

s5 : 응용수학, s6 : 추론통계

name : 각 과목 문항 이름

【주성분 분석】

- 변동량(분산)에 영향을 주는 주요 성분을 분석하는 방법.
- 요인 분석에서 사용될 요인의 개수를 결정하는데 주로 이용.

【주성분분석 요인 수 분석】

- 요인분석에서 공통 요인으로 묶일 요인 수를 알아본다.

pc <- prcomp(subject) # 주성분분석 수행 함수 summary(pc) # 요약통계량 plot(pc)

【주성분분석 요인 수 분석】

초기 고유값 계산 en <- eigen(cor(subject))

#\$values : 고유값 보기

en\$values

\$vectors : 고유벡터 보기

en\$vectors

고유값을 이용한 시각화 plot(ev\$values, type="o")

【요인분석 : 베리멕스 직각회전법 적용】

result <- factanal(subject, factors = 3, # 요인 개수 지정
rotation = "varimax", # 회전방법 지정("varimax", "promax", "none")
scores="regression") # 요인점수 계산 방법

[베리멕스 직각회전법 예]

【요인점수】

- 각 관측치(표준화된 값)와 요인 간의 관계를 통해서 구해진 점수

subject

요인적재량

Loadings: Factor1 Factor2 Factor3 0.923 S1 -0.379 -0.005 s2 -0.710 0.140 0.649 s3 0.236 0.931 0.166 s4 0.120 0.983 -0.118 0.297 -0.278 s5 0.771 s6 0.900 0.301 -0.307

요인점수

Factor1	Factor2	Factor3
[1,] 0.7357870	-0.98034177	-1.07981805
[2,] -0.6640013	0.87937769	-0.83543481
[3,] 0.7357870	-0.98034177	-1.07981805
[4,] 0.6917075	-0.02812698	-0.27885523
[5,] -0.7387206	-0.69135360	-0.07138837
[6,] -1.7858690	0.33608991	0.30957945
[7,] 1.0449596	1.66369477	-0.11745856
[8,] -1.0999660	0.22263533	-0.17382007
[9,] 0.9197524	0.96404108	1.40734566
[10,] 0.1605633	-1.38567464	1.91966803

【요인점수를 이용한 요인적재량 시각화】

```
단계 1 : Factor1과 Factor2 요인적재량 시각화
plot(result$scores[, c(1:2)],
      main="Factor1과 Factor2 요인점수 행렬")
# 산점도에 레이블 표시(문항 이름 : name)
text(result$scores[,1], result$scores[,2],
labels = name, cex = 0.7, pos = 3, col = "blue")
# 요인적재량 추가
points(result$loadings[,c(1:2)], pch=19, col = "red")
# 요인적재량의 레이블 표시
text(result$loadings[,1], result$loadings[,2],
```

labels = rownames(result\$loadings),

cex = 0.8, pos = 3, col = "red")

【요인점수를 이용한 요인적재량 시각화】

단계 2 : Factor1과 Factor3 요인적재량 시각화

plot(result\$scores[,c(1,3)], main="Factor1과 Factor3 요인점수 행렬")

산점도에 레이블 표시(문항 이름 : name)

text(result\$scores[,1], result\$scores[,3],

labels = name, cex = 0.7, pos = 3, col = "blue")

요인적재량 추가

points(result\$loadings[,c(1,3)], pch=19, col = "red")

요인적재량의 레이블 표시

text(result\$loadings[,1], result\$loadings[,3],

labels = rownames(result\$loadings),

cex = 0.8, pos = 3, col = "red")

【요인점수를 이용한 요인적재량 3차원 시각화】

잘못된 요인 정제

【 3개 요인으로 구성된 파일정보(drinking_water.sav)】

요인 구분	변수명(Name)	변수설명(하위 요인)	변수값(Values)	
제품 친밀도	q1	브랜드		
	q2	친근감		
	q3	익숙함	5점 척도	
	q4	편안함	 ① 매우불만	
제품 적절성	q5	가격의 적절성	② 불만	
	q6	당도의 적절성	③ 보통	
	q7	성분의 적절성	④ 만족	
제품 만족도	q8	음료의 목 넘김	⑤ 매우만족	
	q9	음료의 맛	(무응답 없음)	
	q10	음료의 향		
	q11	음료의 가격		

요인분석 결과 제시 방법

【논문/보고서 작성방법】

요인 (Factor)	변수명 (Variable Name)	요인 적재량 (Factor loading)	고유값 (Eigenvalue)	분산 설명력 (Variance Explained)
제품 친밀도	q1	.762		19.4%
	q2	.813	2.133	
	q3	.762		
제품 적절성	q5	.557		21.8%
	q6	.693	2.394	
	q7	.703		
제품 만족도	q8	.695		25.2%
	q9	.873	0.770	
	q10	.852	2.772	
	q11	.719		

상관분석

- 1) 상관분석 개요
- 2) 피어슨 상관계수
- 3) 상관분석 실습
- 4) 상관분석 결과 제시

상관분석 개요

상관관계 분석(Correlation Analysis)

- 변수 간 관련성 분석 방법
- 하나의 변수가 다른 변수와 관련성 분석
- 예) 광고비와 매출액 사이의 관련성, 광고량과 브랜드 인지도 등 분석

【상관관계분석 중요사항】

- 회귀분석 전 변수 간 관련성 분석(가설 검정 전 수행)
- 상관계수 → 피어슨(Pearson) R계수 이용 관련성 유무
 - ✔ 상관관계분석 척도:
 - ✓ <u>피어슨 상관계수(Pearson correlation coefficient : r)</u>

피어슨 상관계수 R

【피어슨 상관계수 R】

피어슨 상관계수 R	상관관계 정도
±0.9이상	매우 높은 상관관계
±0.9 ~ ±0.7	높은 상관관계
±0.7 ~ ±0.4	다소 높은 상관관계
±0.4 ~ ±0.2	낮은 상관관계
±0.2 미만	상관관계 없음

※ 상관계수 r은 -1에서 +1까지의 값을 가진다. 또한 가장 높은 완전 상관관계의 상관계수는 1이고, 두 변수간에 전혀 상관관계가 없으면 상관계수는 0이다.

피어슨 상관계수 R

• 상관계수 r과 상관관계 정도

상관분석 실습

```
# 데이터셋 가져오기
result <- read.csv("C:/Rwork/data/drinking_water.csv", header=T)
head(result)
# 상관계수 보기
cor(result$친밀도, result$적절성)
cor(result$친밀도, result$만족도)
# 전체 변수 간 상관계수 보기
cor(result, method="pearson") # 피어슨 상관계수 - default
```

cor(result, method="spearman") # spearman 상관계수(서열척도)

상관분석 결과 제시

【논문에서 상관관계 분석 결과 제시 방법】

일반적으로 상관관계 분석 결과를 논문에서 제시할 경우 해당 기술통계량(평균과 표준편차)과 피어슨 상관계수 함께 제시

분석 단위	평균 (Mean)	표준편차 (Std. Deviation)	분석 단위 간 상관관계		
			(Inter-Analysis Correlations)		
			1	2	3
1. 친밀도	2.928	0.9703446	1		
2. 적절성	3.133	0.8596574	.499	1	
3. 만족도	3.095	0.8287436	.467	.767	1