내이버 쇼핑 상품 이미지 유사도 추출 과제

작성자: 이성철

소속팀 / 상위부서 : 쇼핑데이터개발/ Forest CIC, 비즈OCR / Glace CIC

대외비

목차

- 1. 데이터셋
- 2. 베이스라인 코드
- 3. 시각화
- 4. 힌트

참조

과제명: 이미지 유사도 측정하기

데이터셑: 쇼핑 이미지 제공(1만장 가량 제공예정)

평가: 쇼핑데이터 플랫폼에서 정답셑 제공. 정답과의 오차율이 적을 수록 우수

과제 진행

이미지가 가진 고유한 특징점들을 Al/ImageProcessing등을 활용하여 추출

몽고DB/메모리/기타/DB/text file등을 활용해서 유사도 ThresHold 95%이상 유사한 이미지들을 group화하여 제출(clustering)

	Training		Test (미제공)	
카테고리	모델수	상품수	모델수	상품수
가방	79	5320	18	1270
여성구두	62	5202	16	1417
총	141	10522	32	2687

6306511292_159 62251970_0.jpg

6306511292_162 35190978_0.jpg

6306511292_162 35203105_0.jpg

6306511292_162 35204251_0.jpg

6306511292_162 35207696_0.jpg

6713673380_743 2313883_0.jpg

6713673380_782 3925351_0.jpg

6713673380_816 0192830_0.jpg

6713673380_816 2180742_0.jpg

6713673380_927 8902147_0.jpg

6713673380_928 8157469_0.jpg

6713673380_928 8195472_0.jpg

6713673380_930 3317502_0.jpg

6713673380_931 7181980_0.jpg

- make_labels_true.py
 - 클러스터링을 평가하기 위해 파일명-> 클러스터 라벨 변환
 - labels_true.npy 에 저장
- extract_features.py
 - MobileNet V2를 사용하여 특징 추출 (pre-trained model from TensorFlow Hub)
 - 추출된 특징을 features.npy 에 저장
- 3. make_labels_pred.py
 - 특징을 로딩하고 클러스터 개수를 예측 함
 - K-means 알고리즘으로 클로스터링 함 결과 -> labels_pred.npy
 - labels_true 와 labels_pred 를 비교하여 클러스터링 점수 (Adjusted Rand index) 계산

```
Estimated num_clusters: 35 0.758350016511794
```

- 4. visualization.py
 - T-SNE로 클러스터링 결과를 시각화 할 수 있음
 - .tsv 파일을 http://projector.tensorflow.org/ 에 업로드하면 인터랙티브한 시각화가 가능

3. 시각화

Feature extraction, distance metric, clustering 등 다양한 면에서 개선 할 수 있을 것임

- 1. Feature extraction
 - Training set으로 pre-train 모델을 fine-tuning 함
- 2. Distance metric learning
 - http://sanghyukchun.github.io/37/
- 3. Clustering
 - 키타 클러스터링 알고리즘을 조사하고 적용함

https://github.com/EdjoLabs/image-match

https://www.tensorflow.org/hub/

http://projector.tensorflow.org/

https://scikit-learn.org/stable/modules/clustering.html

https://towardsdatascience.com/unsupervised-learning-with-python-173c51dc7f03

End of Document

Thank You.

