Roadmap to Become a Machine Learning Engineer (MLE)

- ML Systems around us
 - Practical Examples
 - Need for ML solutions
- ML Pipeline
 - Tasks and Tools involved in the pipeline
 - Roles for each task
- Skills Needed to Become an MLE
 - Tasks involved in the pipeline
 - Tasks involved in the pipeline

About me - Ajay Shenoy

B. Tech - NITK, Surathkal Ph.D - IISc, Bangalore

ML Coursework - Rigorous Math Foundations

- Probability, Linear Algebra, Optimization

Al/ML - AlphalCs, Target, Harman

Optimising Deep Learning inference chip ML algorithms in supply chain Driver monitoring system

Instructor at Scaler

Taught about 2000 students at Scaler We built structured DSML curriculum

LinkedIn https://www.linkedin.com/in/bastyajayshenoy/

ML Systems around us

ML Systems around us

What do all these ML applications have in common?

Data ... and more data Tons of data!!!

This requires scaling our solution, and automating the process

We need a solid ML Pipeline

Understanding this pipeline leads to a solid roadmap

Tasks, tools, skills

ML Pipeline

Data Ingestion

Typical Tasks:

- Collect data from various sources
- Ensure data is in a usable format
- Establish regular update

Tools: Pandas/SQL

Roles: Data Engineer

Data Validation

Typical Tasks:

- Check for missing or null values
- Identify and handle outliers
- Verify data types

Tools: Pandas/SQL

Roles: Data Engineer

Data Preprocessing

Typical Tasks:

- Handle missing data
- Normalize or standardize features
- Perform feature engineering

Tools: Pandas/Numpy/Scikit Learn

Roles: Data Scientist, Data Engineer

Model Training

Typical Tasks:

- Split data: training and validation sets
- Choose appropriate algorithms
- Set initial hyperparameters

Tools: Scikit Learn/Pytorch/Tensorflow

Roles: Data Scientist

Model Validation

Typical Tasks:

- Evaluate model performance
- Choose appropriate metrics
- Perform error analysis

Tools: Scikit Learn/SHAP/WandB

Roles: Data Scientist, ML Engineer

Model Deployment

Typical Tasks:

- Prepare model for production
- Set up API endpoints, CI/CD
- Implement logging and monitoring

Tools: Flask/Docker/Kubernetes/MLFlow

Roles: ML Engineer/DevOps Engineer

Skills Needed

Programming

SQL

Python

- Numpy, Pandas, Matplotlib
- Scikit Learn, Scipy, open cv
- PyTorch, Tensorflow/Keras, Gym
- Langchain, HuggingFace

Data Analysis

Data Cleaning

Data Preprocessing

Exploratory Data Analysis

Feature Engineering

Mathematics

Probability and Statistics

Linear Algebra

Calculus, Optimisation, Gradients

ML Algorithms

Classical ML (SKLearn)

- Linear/Logistic Regression
- Boosting (XGBoost)
- Clustering
- Dimensionality Reduction

Deep Learning (Pytorch/Keras)

Reinforcement Learning (Gym/RLib)

Software Engineering

Software design principles and patterns

Version control (Git/DVC)

API development

Containerisation (Docker)

Deployment (AWS/GCP/Azure)

Resources

Scaler Topics: www.scaler.com/topics

Hacker Rank: hackerrank.com

Corey Schafer: https://www.youtube.com/@coreyms

Jake Vanderplas: https://jakevdp.github.io/PythonDataScienceHandbook/

ThinkStats: https://greenteapress.com/wp/think-stats-2e/

Sebastian Rashcka: https://github.com/rasbt/machine-learning-book

Software Engineering for Data Scientists

- https://github.com/catherinenelson1/SEforDS