In [1]:

```
#importing the required packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
import seaborn as sns
```

Task# 1

In [2]:

```
# loading the file
df=pd.read_csv("311_Service_Requests_from_2010_to_Present.csv")
df
c:\users\703196200\appdata\local\programs\python\python38-32\lib\site-packages\IPython\co
```

c:\users\703196200\appdata\local\programs\python\python38-32\lib\site-packages\IPython\co re\interactiveshell.py:3169: DtypeWarning: Columns (48,49) have mixed types.Specify dtype option on import or set low_memory=False.

has_raised = await self.run_ast_nodes(code_ast.body, cell_name,

Out[2]:

Incident Zip	Location Type	Descriptor	Complaint Type	Agency Name	Agency	Closed Date	Created Date	Unique Key	
10034.0	Street/Sidewalk	Loud Music/Party	Noise - Street/Sidewalk	New York City Police Department	NYPD	01-01-16 0:55	12/31/2015 11:59:45 PM	32310363	0
11105.0	Street/Sidewalk	No Access	Blocked Driveway	New York City Police Department	NYPD	01-01-16 1:26	12/31/2015 11:59:44 PM	32309934	1
10458.0	Street/Sidewalk	No Access	Blocked Driveway	New York City Police Department	NYPD	01-01-16 4:51	12/31/2015 11:59:29 PM	32309159	2
10461.0	Street/Sidewalk	Commercial Overnight Parking	Illegal Parking	New York City Police Department	NYPD	01-01-16 7:43	12/31/2015 11:57:46 PM	32305098	3
11373.0	Street/Sidewalk	Blocked Sidewalk	Illegal Parking	New York City Police Department	NYPD	01-01-16 3:24	12/31/2015 11:56:58 PM	32306529	4
				•••					
NaN	Club/Bar/Restaurant	Loud Music/Party	Noise - Commercial	New York City Police Department	NYPD	NaN	03/29/2015 12:33:41 AM	30281872	300693
11418.0	Street/Sidewalk	Partial Access	Blocked Driveway	New York City Police Department	NYPD	03/29/2015 02:33:59 AM	03/29/2015 12:33:28 AM	30281230	300694
11206.0	Club/Bar/Restaurant	Loud Music/Party	Noise - Commercial	New York City Police Department	NYPD	03/29/2015 03:40:20 AM	03/29/2015 12:33:03 AM	30283424	300695
10461.0	Club/Bar/Restaurant	Loud Music/Party	Noise - Commercial	New York City Police Department	NYPD	03/29/2015 04:38:35 AM	03/29/2015 12:33:02 AM	30280004	300696
10036.0	Store/Commercial	Loud Music/Party	Noise - Commercial	New York City Police Department	NYPD	03/29/2015 04:41:50 AM	03/29/2015 12:33:01 AM	30281825	300697

```
In [3]:
df.shape
Out[3]:
(300698, 53)
In [4]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 300698 entries, 0 to 300697
Data columns (total 53 columns):
# Column
                                   Non-Null Count Dtype
                                   -----
0 Unique Key
                                   300698 non-null int64
                                   300698 non-null object
1 Created Date
                                   298534 non-null object
2 Closed Date
3 Agency
                                   300698 non-null object
 4 Agency Name
                                  300698 non-null object
5 Complaint Type
                                   300698 non-null object
6 Descriptor
                                  294784 non-null object
7 Location Type
                                   300567 non-null object
                                  298083 non-null float64
8 Incident Zip
   Incident Address
                                  256288 non-null object
10 Street Name
                                  256288 non-null object
                                   251419 non-null object
11 Cross Street 1
                                   250919 non-null object
    Cross Street 2
13 Intersection Street 1
                                   43858 non-null object
14 Intersection Street 2
                                   43362 non-null object
15 Address Type
                                   297883 non-null object
16 City
                                   298084 non-null object
17 Landmark
                                   349 non-null object
18 Facility Type
                                   298527 non-null object
                                   300698 non-null object
19 Status
20 Due Date
                                   300695 non-null object
21 Resolution Description 300698 non-null object
22 Resolution Action Updated Date 298511 non-null object
23 Community Board
                                  300698 non-null object
                                  300698 non-null object
24 Borough
25 X Coordinate (State Plane) 297158 non-null float64
26 Y Coordinate (State Plane) 297158 non-null float64
27 Park Facility Name
                                  300698 non-null object
                                  300698 non-null object
28 Park Borough
                                   300698 non-null object
29 School Name
                                   300698 non-null object
30 School Number
                                   300697 non-null object
300697 non-null object
31 School Region
32 School Code
                                   300698 non-null object
33 School Phone Number
                                   300698 non-null object
34 School Address
```

300698 non-null object 35 School City 300698 non-null object 36 School State 30069/ non-null object
38 School Not Found 300698 non-null object
39 School or Citywide Complaint 0 non-null float64
40 Vehicle Type 0 non-null float64
41 Taxi Company Borough 0 non-null float64
42 Taxi Pick Up Location 0 non-null float64
43 Bridge Highway Name 243 non-null object
44 Bridge Highway Direction 243 non-null object
45 Road Ramp 213 non-null object
46 Bridge Highway Segment 213 non-null object
47 Garage Lot Name 0 non-null float64
48 Ferry Direction 37 School Zip 300697 non-null object 38 School Not Found iloat6 object 48 Ferry Direction 1 non-null 49 Ferry Terminal Name 2 non-null 297158 non-null float64 297158 non-null float64 50 Latitude Longitude 52 Location 297158 non-null object dtypes: float64(10), int64(1), object(42) memory usage: 73.4+ MB

```
In [5]:
```

```
#Check for duplicates and NA values
dup=df.duplicated().sum()
nulval=df.isna().sum()
```

In [6]:

dup

Out[6]:

0

In [7]:

nulval

Out[7]:

Unique Key	0
Created Date	0
Closed Date	2164
Agency	0
Agency Name	0
Complaint Type	0
Descriptor	5914
Location Type	131
Incident Zip	2615
Incident Address	44410
Street Name	44410
Cross Street 1	49279
Cross Street 2	49779
Intersection Street 1	256840
Intersection Street 2	257336
Address Type	2815
City	2614
Landmark	300349
Facility Type	2171
Status	0
Due Date	3
Resolution Description	0
Resolution Action Updated Date	2187
Community Board	0
Borough	0
X Coordinate (State Plane)	3540
Y Coordinate (State Plane)	3540
Park Facility Name	0
Park Borough	0
School Name	0
School Number	0
School Region	1
School Code	1
School Phone Number	0
School Address	0
School City	0
School State	0
School Zip	1
School Not Found	0
School or Citywide Complaint	300698
Vehicle Type	300698
Taxi Company Borough	300698
Taxi Pick Up Location	300698
Bridge Highway Name	300455
Bridge Highway Direction	300455
Road Ramp	300485
Bridge Highway Segment	300485
Garage Lot Name	300698
Ferry Direction	300697
Ferry Terminal Name	300696
Latitude	3540
: :	

Longitude 3540
Location 3540
dtype: int64

Task# 2

```
In [8]:
```

```
#Converting "Created Date" and "Closing Date" in Datetime datatype
df['Created Date'] = pd.to_datetime(df['Created Date'])
df['Closed Date'] = pd.to_datetime(df['Closed Date'])
```

In [9]:

```
#Creating new column "Request_Closing_Time" as difference of "Created Date" and "Closing
Date"
Request_Closing_Time=df['Closed Date']-df['Created Date']
```

In [10]:

```
#Adding "Request_Closing_Time" in dataframe
df["Request_Closing_Time"] = Request_Closing_Time
```

Task#3

In [11]:

```
# Number of Compiant Type based on the Requets/Complaint

plt.figure(figsize=(12,7))
sns.countplot(x='Complaint Type',data=df,order=df['Complaint Type'].value_counts().index
)
plt.xticks(rotation=90)
plt.title("Complaint Types and No. of requests per complaint_type")
plt.xlabel('Complaint Type')
plt.ylabel('Requests')
plt.show()
```


Observation 1 :: Top 5 Complaint Type are :

- 1. Blocked Driveway
- 2. Illegal Parking
- 3. Noise Street/Sidewalk

Š

- 4. Noise Commercial
- 5. Dereleict Vehicle

In [12]:

```
# Number of Complaint Request based on the City

plt.figure(figsize=(15,7))
sns.countplot(x='City',data=df,order=df['City'].value_counts().index)
plt.xticks(rotation=90)
plt.title("City and No. of requests per City")
plt.xlabel('City')
plt.ylabel('Requests')
plt.show()
```


Observation 2:: Top 5 City where requests are lodged at highest:

- 1. Brooklyn
- 2. Ney York
- 3. Bronx
- 4. Staten Island
- 5. Jamaica

```
In [13]:
#Converting the Request Closing Time in hours and minutes

df['Request_Closing_Time_H']= df['Closed Date'].values- df['Created Date'].values
df['Request Closing_Time_M']= df['Request Closing_Time_H']/np.timedelta64(1,'m')
```

In [14]:

```
# Average Closing time of request w.r.t. Borough's

plt.figure(figsize=(10,5))
sns.barplot(x='Borough',y='Request_Closing_Time_M',data=df,order=['BRONX','QUEENS','BROOKLYN','STATEN ISLAND','MANHATTAN','Unspecified'])
plt.title("Boroughs with average complaint resolved time")
plt.xlabel("Borough")
plt.ylabel("Average complaints resolved time(mins)")
plt.show()
```


Observation 3:: Average Complaint resolved in Boroughs:

"Manhattan" Borough has the minimum average complaint response time and "Bronx" Borough has the maximum average complaint response time

```
In [15]:
```

```
# Average Closing time of request w.r.t. City

df1= df[['City', 'Request_Closing_Time_M']]
c1= df1.groupby('City')['Request_Closing_Time_M'].mean().to_frame()
c1= c1.sort_values('Request_Closing_Time_M')
c1['City']= c1.index
plt.figure(figsize=(10,20))
sns.barplot(y='City',x='Request_Closing_Time_M',data=c1)
plt.title("Cities with average request resolved time (mins)")
plt.ylabel("City")
plt.xlabel("Average request resolved time (mins)")
plt.show()
```


Observation 4:: Visualizing Cities with average response time:

"Arverne" has the minimum complaint request respond time and "Queens" has the maximum complaint request respond time

```
In [16]:
```

```
# Average Closing time of request w.r.t. Location

df2= df[['Location Type','Request_Closing_Time_M']]
```

```
c2= df2.groupby(['Location Type'])['Request_Closing_Time_M'].mean().to_frame()
c2= c2.sort_values(['Location Type', 'Request_Closing_Time_M'])
c2['Location Type'] = c2.index
plt.figure(figsize=(20,10))
sns.barplot(x='Location Type', y='Request_Closing_Time_M', data=c2)
plt.xticks(rotation=45)
plt.title("Location types with average request resolved time (mins)")
plt.xlabel("Location Type")
plt.ylabel("Average request resolved time (mins)")
plt.show()
```


Observation 5 :: Visualizing Location Type with average response time

Complaints at "Subway Station" has the least respond time and Complaints at "Park" has the maximum respond time

```
In [17]:
```

```
# Total number of request lodged w.r.t. City

city_complaint_types= pd.crosstab(index=df['City'],columns=df['Complaint Type'])
plt.figure(figsize=(20,10))
city_complaint_types.plot(kind='barh',figsize=(15,25),stacked=True)
plt.title("City total complaint request counts with complaint types")
plt.xlabel("Total no. of complaint request ")
plt.ylabel("City")
plt.show()
```

<Figure size 1440x720 with 0 Axes>

Observation 6 :: Visualizing Complaint Request against each City :

Brooklyn has the maximum complaint types received and it has the maximum number of complaints requested as well than any other city.

Task# 4 - Order the complaint types based on the average 'Request_Closing_Time', grouping them for different locations.

In [18]:

```
df_avg_res_time_city = df.groupby(['Location Type','Complaint Type']).Request_Closing_Ti
```

```
me_M.mean()
#df_avg_res_time_city = df.groupby(['City', 'Complaint Type']).Request_Closing_Time_M.mean
()
df_avg_res_time_city.head(50)
```

Out[18]:

Location Type	Complaint Type					
Bridge	Homeless Encampment	229.158333				
Club/Bar/Restaurant	Drinking	272.748721				
· ·	Noise - Commercial	183.835283				
	Urinating in Public	475.200000				
Commercial	Animal Abuse	320.566129				
Ferry	Ferry Complaint	NaN				
Highway	Derelict Vehicle	491.742308				
3 1	Homeless Encampment	196.270000				
	Traffic	206.860663				
House and Store	Animal Abuse	300.795699				
House of Worship	Noise - House of Worship	191.833279				
Park	Animal in a Park	20210.083333				
Park/Playground	Animal Abuse	222.149590				
13	Drinking	206.479762				
	Homeless Encampment	235.429792				
	Illegal Fireworks	300.183333				
	Noise - Park	204.539907				
	Panhandling	73.119444				
	Urinating in Public	171.749561				
	Vending	208.027460				
Parking Lot	Animal Abuse	332.423939				
-	Posting Advertisement	126.945238				
Residential Building	Animal Abuse	289.089941				
Residential Building/House	Animal Abuse	323.971065				
	Bike/Roller/Skate Chronic	216.678000				
	Disorderly Youth	231.268615				
	Drinking	220.696886				
	Graffiti	352.727976				
	Homeless Encampment	295.446270				
	Illegal Fireworks	185.982828				
	Panhandling	309.933333				
	Posting Advertisement	216.030556				
	Urinating in Public	256.048309				
	Vending	251.825041				
Roadway Tunnel	Derelict Vehicle	1077.850000				
	Homeless Encampment	151.083333				
	Traffic	130.622989				
Store/Commercial	Animal Abuse	256.368490				
	Bike/Roller/Skate Chronic	230.400000				
	Disorderly Youth	170.368750				
	Drinking	195.155741				
	Graffiti	333.638542				
	Homeless Encampment	254.241276				
	Illegal Fireworks	115.450000				
	Noise - Commercial	193.420127				
	Panhandling	260.780556				
	Posting Advertisement	142.150000				
	Urinating in Public	206.384596				
	Vending	238.430285				
Street/Sidewalk	Animal Abuse	306.649629				
Name: Request_Closing_Time_M, dtype: float64						

In [19]:

```
df_avg_res_time_city.plot(kind='bar',figsize=(20,25),stacked=True)
plt.title("Complaint at different location with their average closing time")
plt.xlabel("Location with Complaint Type")
plt.ylabel("Average Request Closing Time")
plt.show()
```


Task # 5:

F-Test

Testing at Confidence level(95%) => alpha value = 0.05

• Null Hypothesis: H0: There is no significant difference in average response time across different complaint

tynes

 Alternate Hypothesis: H1: There is a significant difference in average response time across different complaint types

```
In [20]:
```

```
# Dropping NA values for statistical testing
df.dropna(subset=['Request_Closing_Time_H', 'Request_Closing_Time_M'], inplace=True)
```

In [21]:

```
# Storing mean response time for various complaint types
complaints = df['Complaint Type'].value_counts().index
for i in range(len(complaints)):
  exec("sample{} = df.loc[(df['Complaint Type'] == '{}') , 'Request_Closing_Time_M']".for
mat(i+1,complaints[i]))
```

In [22]:

```
# Performing F-statics
fscore, pvalue = stats.f_oneway(sample1, sample2, sample3, sample4, sample5, sample6, sample7, s
ample8, sample9,
sample10, sample11, sample12, sample13, sample14, sample15, sample16, sample17, sample18, sample19
, sample20, sample21)
print("score : {:.2f} , pvalue : {:.2f}".format(fscore, pvalue))
score : 410.86 , pvalue : 0.00
```

```
Here, pvalue (0.00) < alpha value(0.05), hence, We reject our Null Hypothesis
```

Observation: There is a significant difference in average response time across different complaint types, the average response time across different complaint types is not similar (overall)

Chi-Square Test of Independence

Testing at Confidence level(95%) => alpha value = 0.05

- Null Hypothesis: H0: There is no significant relation between type of complaint and location
- Alternate Hypothesis: H1: There is some significant relation between type of complaint and location

```
In [23]:
```

```
# Performing Chi-square test of independence
location_complaint_type = pd.crosstab(df['Complaint Type'],df['Location'])
```

```
In [24]:
```

```
cscore,pval,df,et = stats.chi2_contingency(location_complaint_type)
print("score : {:.2f} , pvalue : {:.2f}".format(cscore,pval))
```

```
score : 4160841.63 , pvalue : 0.00
```

Here, pvalue (0.00) < alpha value (0.05)

Observation: We reject our Null Hypothesis as there is some significant relation between type of complaint and location which means that the type of complaint or service requested and the location are related

```
In [ ]:
```