Submission Form

Fill up the following slots with appropriate content. You must submit the content of this document from this page only.

1. Your Name: Mohammad Shafkat Hasan

Your ID: 19101077
 Your Section: 04
 Experiment No: 3

5. Experiment Title: To verify the value of vacuum permittivity by a parallel plate capacitor.

6. You must write your ID in each of the graphs you insert here.

7. Data Table 1:

$A = 140 \, mm^2$

Sl:	Separation between plates, d (mm)	Capacitance, C (pF)
1.	2	0.62
2.	3	0.41
3.	4	0.31
4	5	0.25
5	6	0.21
6.	7	0.18
7.	8	0.15
8.	9	0.14
9.	10	0.12

8. Data Table 2:

d = 7 mm

Sl:	Area, A (mm ²)	Capacitance, C (pF)
1.	100	0.13
2.	150	0.19
3.	200	0.25
4	250	0.32
5	300	0.38
6.	350	0.44
7.	400	0.51

9. Draw C vs 1/d graph for Data Table 1 and, that is, you plot 1/d along the x-axis and C along the y-axis. You will get a straight line. Find the slope of the line. Insert graph-1 (for A) as image here:

10. Draw C vs A graph for Data Table 2 and, that is you plot A along the x-axis and C along the y-axis. You will get a straight line. Find the slope of the line. Insert **graph-2** (for d) as image here:

[Use the formula for capacitance of a parallel plate capacitor to compute vacuum permittivity from slope.]

11. For Data Table 1, Slope = 1.23917
$$\frac{pF}{mm^{-1}}$$
 Calculated value of vacuum permittivity, = $(\frac{Slope}{Area} \times 10^{-9})$ = 8.851214286 × 10⁻¹² $C^2N^{-1}m^{-2}$

12. For Data Table 2,
$$Slope = 0.00126429 \frac{pF}{mm^2}$$
 Calculated value of vacuum permittivity, = $(Slope \times Distance \times 10^{-9})$ = $8.85003 \times 10^{-12} C^2 N^{-1} m^{-2}$

13. From the calculated value of vacuum permittivity from 11 & 12, we calculate the mean.

Mean vacuum permittivity = $8.850622143 \times 10^{-12} C^2 N^{-1} m^{-2}$.

Comparing the calculated mean vacuum permittivity with the with the standard value of vacuum permittivity ($\epsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$), we calculate the percentage of error.

Percentage of error = [| Calculated mean vacuum permittivity - Standard vacuum permittivity| /Standard vacuum permittivity] * 100 = 0.0382 %

You are *strongly* encouraged to use your **own words** to describe your thoughts for the following part. However, any kind of plagiarism (such as copying and pasting from other students' lab-reports) will not be tolerated and will be subject to disciplinary action according to BracU policy.

Please briefly answer the following question(s):

13. If we place a dielectric material of dielectric constant, $\kappa>1$ in place of air in between the plates of a parallel plate capacitor then what should be the change in graph-1 (C vs 1/d graph for Data Table 1)? Explain.

hint: You may sketch a diagram in your answer to help you compare both the cases.

If we place a dielectric material like Teflon (κ =2.1) which dielectric constant, κ >1 in place of air with κ = 1, the values of capacitance increase. For each value of '1/d' value of C increase by C = κ * C. If we use Teflon which value of κ =2.1, the value of C will be C = 2.1 * C. After placing new C in graph the of new graph become 2.60225 where Table-01 slope is 1.23917.