Homework 6

Requirements:

- 1. Digital format (can be typeset or photos, ought to write clearly if written by hand), upload to https://course.pku.edu.cn/.
- 2. Submit by next class
- 3. A problem is not counted if nobody can work it out
- 4. Each homework 10 points; 1 point deducted for each week's delay

Problems:

1. Show that the following functions are convex.

(a)
$$f(\mathbf{x}) = -\log\left(-\log\left(\sum_{i=1}^{m}\exp\left(\mathbf{a}_{i}^{T}\mathbf{x} + b_{i}\right)\right)\right)$$
 on
$$\operatorname{dom} f = \left\{\mathbf{x} \left| \sum_{i=1}^{m}\exp\left(\mathbf{a}_{i}^{T}\mathbf{x} + b_{i}\right) < 1\right.\right\}.$$

You can use the fact that $\log \left(\sum_{i=1}^n e^{y_i}\right)$ is convex.

- (b) $f(\mathbf{x}, u, v) = -\sqrt{uv \mathbf{x}^T \mathbf{x}}$ on dom $f = \{(\mathbf{x}, u, v) | uv > \mathbf{x}^T \mathbf{x}, u, v > 0\}$. Use the fact that $\mathbf{x}^T \mathbf{x}/u$ is convex in (\mathbf{x}, u) for u > 0, and that $-\sqrt{x_1 x_2}$ is convex on \mathbb{R}^2_{++} .
- (c) $f(\mathbf{x}, u, v) = -\log(uv \mathbf{x}^T \mathbf{x})$ on dom $f = \{(\mathbf{x}, u, v) | uv > \mathbf{x}^T \mathbf{x}, u, v > 0\}.$
- (d) $f(\mathbf{x},t) = -(t^p \|\mathbf{x}\|_p^p)^{1/p}$ where p > 1 and dom $f = \{(\mathbf{x},t)|t \geq \|\mathbf{x}\|_p\}$. You can use the fact that $\|\mathbf{x}\|_p^p/u^{p-1}$ is convex in (\mathbf{x},u) for u > 0, and that $-x^{1/p}y^{1-1/p}$ is convex on \mathbb{R}^2_+ .
- (e) $f(\mathbf{x},t) = -\log(t^p \|\mathbf{x}\|_p^p)$ where p > 1 and dom $f = \{(\mathbf{x},t)|t > \|\mathbf{x}\|_p\}$. You can use the fact that $\|\mathbf{x}\|_p^p/u^{p-1}$ is convex in (\mathbf{x},u) for u > 0.
- 2. Show that the cross entropy $H(\mathbf{w}) = -\sum_{i=1}^{N} [y_i \ln h(\mathbf{x}_i) + (1-y_i) \ln(1-h(\mathbf{x}_i))]$ is a convex function on \mathbb{R}^n , where $h(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$, $y_i \in \{0,1\}$, and $\sigma(x) = 1/(1+e^{-x})$ is the logistic (also called sigmoid) function.
- 3. Derive the conjugates of the following functions.
 - (a) Sum of largest elements. $f(\mathbf{x}) = \sum_{i=1}^{r} x_{[i]}$ on \mathbb{R}^n .
 - (b) Piecewise-linear function on \mathbb{R} . $f(x) = \max_{i=1,...,n} (a_i x + b_i)$ on \mathbb{R} . You can assume that the a_i are sorted in increasing order, i.e., $a_1 \leq ... \leq a_m$, and that none of the functions $a_i x + b_i$ is redundant, i.e., for each k there is at least one x with $f(x) = a_k x + b_k$.

- (c) Power function. $f(x) = x^p$ on \mathbb{R}_{++} , where p > 1. Repeat for p < 0.
- (d) Geometric mean. $f(\mathbf{x}) = -(\prod x_i)^{1/n}$ on \mathbb{R}^n_{++} .
- (e) Negative generalized logarithm for second-order cone. $f(\mathbf{x},t) = -\log(t^2 \mathbf{x}^T \mathbf{x})$ on $\{(\mathbf{x},t) \in \mathbb{R}^n \times \mathbb{R} \mid ||\mathbf{x}||_2 < t\}$.

Note: Computing a conjugate function needs to specify its domain as well.

- 4. Properties of conjugate functions.
 - (a) Conjugate of convex plus affine function. Define $g(\mathbf{x}) = f(\mathbf{x}) + \mathbf{c}^T \mathbf{x} + d$, where f is convex. Express g^* in terms of f^* (and \mathbf{c} , d).
 - (b) Conjugate of perspective. Express the conjugate of the perspective of a convex function f in terms of f^* .
 - (c) Conjugate and minimization. Let $f(\mathbf{x}, \mathbf{z})$ be convex in (\mathbf{x}, \mathbf{z}) and define $g(\mathbf{x}) = \inf_z f(\mathbf{x}, \mathbf{z})$. Express the conjugate g^* in terms of f^* . As an application, express the conjugate of $g(\mathbf{x}) = \inf\{h(\mathbf{z}) \mid \mathbf{A}\mathbf{z} + \mathbf{b} = \mathbf{x}\}$, where h is convex, in terms of h^* , \mathbf{A} , and \mathbf{b} .