ISTA 116: Statistical Foundations for the Information Age

Grouped Numeric Data

21 and 26 September 2011

ISTA 116: Statistical Foundations for the Information Age

Reminders/Announcements

- Web Quiz 3 due Friday.
- Web Quiz 4 (up soon) due next Wednesday
- Lab 3 (up soon) due a week from Friday

ISTA 116: Statistical Foundations for the Information Age

Outline

1 Comparing Numeric Data Across Groups

- Back-to-Back Stem-and-Leaf Plots
- Side-by-Side Boxplots
- Overlaid Density Curves
- Quantile-Quantile (QQ) Plots

ISTA 116: Statistical Foundations for the Information Age
Outline

Multivariate Data: Three Cases

- The kinds of relationships we can identify depend on the types of variables we have
- Three Cases:
 - All categorical variables ✓
 - A mix of categorical and numeric
 - All numeric

One (Binary) Categorical, One Numeric Variable

■ What can we do with data like this?

Sex	Height (in.)
М	74
F	64
F	61
M	68
F	70
F	69
M	72
М	68

■ As with categorical data, we can *condition* on one variable (here, the categorical one)

ISTA 116: Statistical Foundations for the Information Age

Comparing Numeric Data Across Groups

Back-to-Back Stem-and-Leaf Plots

Weight Loss in Ephedra Trial

Number of pounds lost during a clinical trial for placebo and ephedra diet pill users

Placebo	Stem	Ephedra
4 2 0 0 0	0	0
5	0	6 7 9
4 4 4 3	1	1 3
775	1	66678
	2	0 1

ISTA 116: Statistical Foundations for the Information Age

Comparing Numeric Data Across Groups
Back-to-Back Stem-and-Leaf Plots

Back-to-Back Stem Plots

- One way of displaying the conditional distributions is via back-to-back stem-and-leaf plots
- Note: the smaller "leaf" values always go closest to the stem

Males	Stem	Females	
	6	1 4	
8 8	6	9	
4 2	7	0	

ISTA 116: Statistical Foundations for the Information Age

Comparing Numeric Data Across Groups
Side-by-Side Boxplots

Weight Loss in Ephedra Trial

- Since we're measuring the same numeric variable for both groups, we can plot multiple boxplots on the same scale
- Easy to compare quartiles/hinges

E' W''LL LU CELL BLI

ISTA 116: Statistical Foundations for the Information Age
Comparing Numeric Data Across Groups
Side-by-Side Boxolots

Time to Taxi for Flights out of EWR

■ This extends easily to more than two groups

Figure: Minutes to Taxi for Flights from Newark Airport for Various Carriers

ISTA 116: Statistical Foundations for the Information Age

Comparing Numeric Data Across Groups
Quantile-Quantile (QQ) Plots

Review: Quantiles

- With side-by-side box plots, we could visually compare the quartiles (well, hinges) for two numeric distributions
- We can extend this to comparing arbitrary quantiles
- Recall: the p^{th} quantile is the same as the $100p^{\text{th}}$ percentile.
 - The 50th percentile is the 0.5 quantile
 - The 33rd percentile is the 0.33 quantile
 - etc.

ISTA 116: Statistical Foundations for the Information Age

—Comparing Numeric Data Across Groups

└─Overlaid Density Curves

Overlaid Density Curves

■ With two groups, we can see even more detail by overlaying two density curves:

ISTA 116: Statistical Foundations for the Information Age

Comparing Numeric Data Across Groups
Quantile-Quantile (QQ) Plots

Quantile Pairs

If we select a set of quantiles (e.g., $\{0.0, 0.1, 0.2, 0.3, ..., 1.0\}$), then for each quantile, we have a value for *each* distribution.

Quantile	Placebo	Ephedra
0.0	0.0	0.0
0.1	0.0	6.2
0.2	0.8	7.8
0.9	16.6	19.6
1.0	17.0	21.0

Since we have two distributions, we can treat each quantile as a coordinate in 2D, and plot it. This is called a Quantile-Quantile Plot (or QQ Plot). ISTA 116: Statistical Foundations for the Information Age

Comparing Numeric Data Across Groups
Quantile-Quantile (QQ) Plots

QQ Plot of Ephedra Data

- Notice that the *x* and *y* ranges are the same.
- What can we tell from this graph?
- Where would the points be if the two distributions were the same?
- What if one were just shifted up or down?
- What if one had greater variability?

ISTA 116: Statistical Foundations for the Information Age

Comparing Numeric Data Across Groups
Quantile-Quantile (QQ) Plots

QQ Plot of Ephedra Data

- It's useful to plot a reference line based on identical distributions.
- Now we can see that people at each quantile besides the 0.0 quantile lost more weight with the drug than with the placebo.