

CSC13002 Nhập môn CNPM

Fall 2020

Nguyen Van Vu

Outline

- Teaching Staff
- Course Description
- Learning Objectives
- Course Requirements
- Grading
- Academic Integrity
- Class Schedule
- Introduction to SE

Teaching Staff

- Instructor
 - Nguyen V. Vu
 - FIT, HCMUS
 - Email: <u>nvu@fit.hcmus.edu.vn</u>
 - Phone: 090-817-5957
- Teaching Assistants
 - Ho Tuan Thanh (htthanh@fit.hcmus.edu.vn)
 - Pham Nguyen Son Tung (pnstung@fit.hcmus.edu.vn)

Course Description

- One of the first courses in Software Engineering
- Introduces basic concepts, principles, practices, methods, techniques, and tools in software development and maintenance
- Applies software engineering principles and practices to developing software in multi-person teams
- Prerequisites
 - Programming skills
 - Data structure

Topics

Topics covered

- Software management
- Software processes
- Software requirements engineering
- Software analysis and design
- Software testing
- User interface design
- Software reuse
- Software configuration management
- Software maintenance and evolution
- Component-based SE
- Service-oriented SE

Text books

- Required: Software Engineering, 9th Ed, Ian Sommerville, Addison-Wesley, 2010
- Optional: The Mythical Man-Month, Frederick Brooks, Jr., Addison-Wesley, 1995

Learning Objectives

- By the end of the class, students will
 - Understand basic concepts, principles, methods, and techniques in software engineering
 - Be able to apply requirements engineering concepts to define a system requirements
 - Be able to analyze and design a software system
 - Be able to design and write a test plan and test cases for a software system
 - Be able to apply software testing techniques to test a software system
 - Be able to determine a suitable process for a software project based on its characteristics
 - Apply the best practices in planning, monitoring, and controlling a software project
 - Be able to manage project risks
 - Be able to practice teamwork

Course Requirements

- Students must obtain a non-zero grade for each of the grading components, including
 - individual homework assignment (1)
 - project assignments (weekly)
 - in-class quizzes and participation (3-5)
 - final exam

Course Requirements (cont'd)

Project assignments

- Students will be assigned to 3-5 student project
- Performs all activities of the software development lifecycle to deliver software
- Deliver written and oral reports
- Oral presentation given in class at the end

In-class quiz and discussion

- Short quizzes are given randomly in class (unannounced in advance)
- Given before or after lecture
- Participation: group discussions, questions, answers

Course Requirements (cont'd)

- Moodle used for material distribution and communication
- Questions beneficial to both the questioner and others should be posted on Moodle's forum
- Students encouraged to ask questions in class, via forum, email, or in-person
- Late submission policy
 - 15% grade reduction for each day late
 - Zero grade for 4 or more days late
 - Exceptions are given for certain cases, e.g., illness

Grading

Grade Distribution

Individual homework	15%
Project assignments	40%
In-class quiz and participation	10%
Final exam	35%

- Grade in the 100th scale will be scaled into the 10th scale
- Project assignment and final exam are the required components

Academic Integrity

- Students are prohibited from copying
 - from classmates, friends even if allowed
 - from the Internet without proper citation (see next slide)
- Students are prohibited from allowing others to copy
- Other kinds of cheating and plagiarizing
- If the academic integrity violated, serious measures will be taken
 - 1st violation: zero grade for the assignment violating
 - 2nd violation and more: students will be failed the class and report to the Faculty

Academic Integrity (cont'd)

- How to cite sources properly?
 - If copying verbatim, put copied sentences/phrases in the double quotes
 - If rephrasing a source, put a reference to the source
- Copying whole phrase or sentence:

"It is a matter of some urgency that we as a research community define and agree reporting protocols and methods for comparison" [1]

Rephrasing:

Shepperd believes that the research community needs to define a reporting protocols and methods for comparison [1]

Reference:

[1] Shepperd M, "Software project economics: a roadmap", Future of Software Engineering (FOSE'07), 2007

Class Schedule

See the schedule in Syllabus for detail

Question about the class?

Software Engineering Introduction

Adapted from the Slides of Software Engineering, 8th Ed. by Ian Sommerville

Topics covered

- FAQs about software engineering
- Professional and ethical responsibility

Software engineering

- Economies of ALL developed nations are dependent on software
- More and more systems are software controlled
- Is there anything that connects to the Internet without being software?

Software costs (Boehm, '81)

Software costs (cont'd)

- Software costs often dominate computer system costs
- Costs of software on a PC are often greater than the hardware cost
- Software costs more to maintain than it does to develop
- Key objective of software engineering: costeffective software development

Software Engineering Is Not Well-Practiced Today

-Standish Group CHAOS Report 2003

Why Software Projects Fail

352 companies - 8,000 software projects. Source: The Standish Group, 1995

Discussion

- Form groups of 3-5 each to discuss
 - What is software engineering?
 - What are the objectives of software engineering?
 - What activities are needed to develop and deliver software?
 - What are the roles of software engineering?
 - What is the difference between software engineering and computer science?
- Each group will present its answers
- Each has 20 minutes to discuss and 2 minutes to present

FAQs about software engineering

- What is software?
- What is software engineering?
- What is the difference between software engineering and computer science?
- What is the difference between software engineering and system engineering?
- What is a software process?
- What is a software process model?

FAQs about software engineering

- What are the costs of software engineering?
- What are software engineering methods?
- What is CASE (Computer-Aided Software Engineering)
- What are the attributes of good software?
- What are the key challenges facing software engineering?

What is software?

- Computer programs and associated documentation such as requirements, design models and user manuals.
- Software products may be
 - Generic developed to be sold to a range of different customers e.g. PC software such as Excel or Word.
 - Custom (bespoke) developed for a single customer according to their specification.
- Software can be created by
 - by developing new programs
 - configuring generic software systems
 - reusing existing software.

What is software engineering?

 Software engineering is an engineering discipline that is concerned with theories, methods, tools for professional software development

Goals

- Cost effective (within budget)
- On time
- High quality
- Satisfying customer's needs

Software engineering vs. Computer science?

- Computer science
 - concerned with theory and fundamentals
- Software engineering
 - concerned with the practicalities of developing and delivering useful software
- Computer science theories are still insufficient to produce successful software

Software engineering vs. System engineering?

- System engineering
 - concerned with all aspects of computer-based systems development including hardware, software and process engineering
- Software engineering is part of this process concerned with developing software

What is a software process?

- A set of activities whose goal is the development or evolution of software
- Generic activities in software processes
 - Specification what the system should do and its development constraints
 - Development production of the software system
 - Validation checking that the software is what the customer wants
 - Evolution changing the software in response to changing demands.

What is a software process model?

- A simplified representation of a software process, presented from a specific perspective
- Examples of process perspectives are
 - Workflow perspective sequence of activities
 - Data-flow perspective information flow
 - Role/action perspective who does what
- Generic process models
 - Waterfall
 - Iterative development
 - Component-based software engineering

What are the costs of software engineering?

- Roughly 60% of costs are development costs, 40% are testing costs
- For custom software, evolution costs often exceed development costs
- Costs vary depending on many factors
 - Requirements, complexity, personnel, etc.

What are software engineering methods?

- Structured approaches to software development, including
 - system models, notations, rules, design advice and process guidance.
- Model descriptions
 - Descriptions of graphical models which should be produced;
- Rules
 - Constraints applied to system models;
- Recommendations
 - Advice on good design practice;
- Process guidance
 - What activities to follow.

What is CASE?

- CASE = Computer-Aided Software Engineering
 - Software systems that are intended to provide automated support for software process activities.
- CASE systems are often used for method support.
- Upper-CASE
 - Tools to support the early process activities of requirements and design;
- Lower-CASE
 - Tools to support later activities such as programming, debugging and testing.

What are the attributes of good software?

- Software should deliver the required functionality to the user
- It should be maintainable, dependable and acceptable
- Maintainability
 - Software must evolve to meet changing needs;
- Dependability
 - Software must be trustworthy;
- Efficiency
 - Software should not make wasteful use of system resources;
- Acceptability
 - Software must accepted by the users for which it was designed.
 - It must be understandable, usable and compatible with other systems.

What are the key challenges facing software engineering?

- Many, here are some:
 - Heterogeneity, delivery and trust.
 - Heterogeneity
 - Developing techniques for building software that can cope with heterogeneous platforms and execution environments;
 - Delivery
 - Developing techniques that lead to faster delivery of software;
 - Trust
 - Developing techniques that demonstrate that software can be trusted by its users.

Professional and ethical responsibility

- Software engineering involves wider responsibilities than simply the application of technical skills
- Software engineers must behave in an honest and ethically responsible way
- Ethical behavior is more than simply upholding the law

Issues of professional responsibility

Confidentiality

 Engineers should normally respect the confidentiality of their employers or clients

Competence

- Engineers should not misrepresent their level of competence
- They should not knowingly accept work which is beyond their competence

Issues of professional responsibility

Intellectual property rights

- Engineers should be aware of local laws governing the use of intellectual property such as patents, copyright, etc.
- They should be careful to ensure that the intellectual property of employers and clients is protected

Computer misuse

 Software engineers should not use their technical skills to misuse other people's computers.

ACM/IEEE Code of Ethics

- ACM/IEEE provides Code of Ethics for software engineering processional
- Code of Ethics is used as a guidelines for SE professionals when making their decisions related to their actions

Code of ethics - principles

PUBLIC

Software engineers shall act consistently with the public interest

CLIENT AND EMPLOYER

 Software engineers shall act in a manner that is in the best interests of their client and employer consistent with the public interest

PRODUCT

 Software engineers shall ensure that their products and related modifications meet the highest professional standards possible

Code of ethics - principles

JUDGMENT

 Software engineers shall maintain integrity and independence in their professional judgment

MANAGEMENT

 Software engineering managers and leaders shall subscribe to and promote an ethical approach to the management of software development and maintenance

PROFESSION

 Software engineers shall advance the integrity and reputation of the profession consistent with the public interest

Code of ethics - principles

COLLEAGUES

 Software engineers shall be fair to and supportive of their colleagues

SELF

 Software engineers shall participate in lifelong learning regarding the practice of their profession and shall promote an ethical approach to the practice of the profession

Ethical dilemmas

- Disagreement in principle with the policies of senior management
- Your employer asks you to release a safety-critical system without thorough testing of the system

Key points

- Software engineering is an engineering discipline that is concerned with all aspects of software production
- Software products consist of developed programs and associated documentation
- Software process consists of activities that are involved in developing software products
- Software engineers have responsibilities to the engineering profession and society
 - They should not simply be concerned with technical issues