CSE3021: Real Time Systems

Programme: B.Tech CSE, ECE, CCE Year: IV Semester: VII Course: Program Elective Credits: 3 Hours: 40

Course Context and Overview:

A real-time system is a system in which the correctness of the system depends on the time when results are generated. Real-time systems interact with a more or less time-critical environment. Examples of real-time systems are control systems for cars, aircraft and space vehicles, manufacturing system, financial transaction systems, computer games and multimedia applications. This course is intended to give basic knowledge about methods for the design and analysis of real-time systems.

Prerequisites Courses: CSE-215: Data Structures

Course outcomes(COs):

On completion of this course, the students will have the ability to:		
CO1:	learn Real-Time systems concepts and terminology	
CO2:	learn the design/performance issues in Real-Time Systems	
CO3:	examine and verify algorithms used to design Real-Time Systems	
CO4:	learn and apply resources reservation algorithm in operating systems	

Course Topics:

Contents	Lecture Hours	
UNIT 1Introduction		
Application domains. Typical system requirements. Limits of traditional	5	
approaches. Task models. Typical timing constraints. Task Scheduling. Metrics		
for performance evaluation.		
UNIT 2 Real-Time Scheduling Algorithms		
Algorithm taxonomy. Scheduling with precedence constraints. Scheduling	7	
periodic tasks. Utilization-based analysis. Response-time analysis.		
UNIT 3Protocols for Accessing Shared Resources		
The priority inversion phenomenon. Non-preemptive protocol, Highest Locker		
Priority, Priority Inheritance and Priority Ceiling Protocol. Stack Resource	8	
Policy. Estimating blocking times. Schedulability analysis under blocking times.		
UNIT 4 Aperiodic Task Handling		
Fixed-priority servers (Polling, Deferrable and Sporadic Server). Dynamic		
priority servers (Total and Constant Bandwidth Server). Resource reservation for	8	
temporal isolation among multiple applications.		

UNIT 5 Overload management	
Definition of computational load. Methods for overload handling. Admission	
Control. Robust Scheduling. Imprecise Computation. JobSkipping. Elastic	
scheduling. Handling overruns. Resource reservation mechanisms.	
UNIT 6 Real-Time Communications	
UNIT 0 Real-Time Communications	
Real-time flow control. Scheduling schemes for packet switched networks.	
Medium access protocols for broadcast networks. Resource reservation.	

Textbook References:

- 1. Jane W. S. Liu, "Real-Time Systems", Prentice-Hall, Inc. 2000
- 2. G.C. Buttazo, "Hard Real-time Computing Systems: Predictable scheduling algorithms and applications", Second edition, Springer, 1997.

Evaluation Methods:

Item	Weightage
Quiz/Assignment/Project/Attendance	30
Midterm	25
Final Examination	45

Prepared By:

Last Update: June 24, 2016