

Dhanyamraju Harsh Rao

Malavade Sanskar Deepak
Parashar Kshitij
Chen Kian Leong
Mitra Ren Sachithananthan

Table of contents

01

Competition

A brief description of the Kaggle competition

04

Pipeline

Detailed description of Experimental Procedure

02

Datasets

The stats of the given datasets

05

Results

Final Results & Best Model

03

Challenges

The main pain points we faced

06

Conclusion

Our learnings

Kaggle Competition

- Purpose: Predict the Health Outcome of a Horse from data about its health
- Tabular Data
- Three Class Classification Task
- Outcome can be lived, died, or euthanized
- Test Metric: Micro Averaged F1 Score
- Competition Link: https://www.kaggle.com/competitions/playground-series-s3e22/

Dataset

Training Set

Rows: 1235 Columns: 27 + target

Numerical Columns: 12 Categorical Columns: 15

Test Set

Rows: 824 Columns: 27

External Data

Data used to create the synthetic data for the competition

Rows: 299 Columns: 26 + target

Challenges Faced

Small Training Set

Less Data to train
 Overfitting
 Less Data for
 Validation

Large number of NaN values

1. Remove all NaN => 771 rows (**-38 %**) 2. Spread across both train and test

Small Test Set

 Public Test Set is
 % of test data (i.e, 164 rows)
 Narrow Margins for Test Fl

Drop Columns

1) Hospital Number 2) Id 3) Lesion 3

NaN Values

1)Replace with mode if categorical 2) Replace with median if numerical*

Pipeline - Data Splitting

Pipeline - Encoding & Scaling

Pipeline - Encoding & Scaling

Standard Scalar

$$\frac{x_i - \mu}{x_i}$$

Ordinal Encoding

1) For categories with order

2) Normal

Value = 0

Example:

Temp of Extremities

Cold: -2 Cool: -1

Normal: 0

Warm: 1

Pipeline - Models Used

- 1) Optuna
- **2)** Maximize Foldwise Averaged Valid F1
- **3)** Random Seed included*

Score

Bernoulli Naïve Bayes

- **1)** Assumes all features are binary
- 2) Works well with large number of columns
- **3)** Valid F1 ≈ 0.67

Nearest Centroid

- 1) Finds the centroid for each target
- **2)** Returns the closest centroid for inference
- **3)** Different Distance Metrics
- **4)** Valid F1 ≈ 0.63

Random Forest

- 1) Voting of multiple decision trees
- 2) Can handle complex patterns & high dimensionality
- **3)** Max Depth ≤ 3
- **4)** Valid F1 ≈ 0.72

- 1) Capture Complex Patterns
 - **2)** Non-Linearity with Sigmoid Function
 - **3**) Dropouts to improve generalization
- 4) Less rows in data
 - **5)** Valid F1 ≈ 0.64

Autoencoder Neural Network

- 1) Dimensionality Reduction of input data
- **2)** Trained using reconstruction error
- **3)** Trained on both train and test data (No labels needed)
- **4)** Valid F1 ≈ 0.65

Self Attention Neural Network

- 1) Interactions between features
- 2) No Positional
- Embeddings used

 3) Not Nearly
 - enough data!
- **4)** Valid F1 ≈ 0.55

XGBoost

- 1) Extreme Gradient Boosting
 - **2)** Inbuilt L1 & L2 Regularization
 - **3**) Tree Pruning
- **4)** Handle missing values
- **5)** Ignores useless columns
- **6)** Valid F1 ≈ 0.73

Hist GB

- 1) Histogram Gradient Boosting
- 2) Uses a histogram to bin continuous data into discrete values
 - **3)** Inbuilt L1 & L2 Regularization
 - **4)** Max Depth ≤ 3
 - **5)** Valid F1 ≈ 0.74

Light GBM

- 1) Advanced Hist GB
 - **2)** Leafwise Tree Growth not depth wise
 - **3)** Bundles Categorical Features into groups
 - **4)** Valid F1 ≈ 0.75

Voting

1) Weighted Voting of all classifiers
2) Weights optimized using Optuna*
3) Hard Voting (Nearest Centroid doesn't give probability)

Stacking

- 1) Decision Tree used for good explainability
 - **2)** Depth ≤ 4
- **3)** No context on which model to choose and when

Stacking & Supplementary Data

- 1) Added Few
 Columns from
 original data to give
 model some
 context
- 2) Columns selected using SHAP values from previous models

Results

Best Model

- 1) Hist Gradient Boosting
- 2) No Ensemble
- Model 3) Max Depth = 3
- 4) Max Iteration = 99
- 5) Min samples per leaf = 5
- 6) L2 Reg = 4.2×10^{-6}
- 7) Learning Rate = 0.1

F1 Scores

- 1) Train F1 = 0.87
- 2) Valid F1 = 0.71
- 3) Public Test F1 = **0.84756**
 - 4) Rank = 101
 - 5) Total = 1535
 - 6) **Top 6.7** %

Results

F1 Scores

- 1) Train F1 = 0.87
- 2) Valid F1 = 0.71
- 3) Public Test F1 = **0.84756**
 - 4) Rank = 101
 - 5) Total = 1543
 - 6) **Top 6.7** %

Results

F1 Scores

- 1) Train F1 = 0.87
- 2) Valid F1 = 0.71
- 3) Public Test F1 = **0.84756**
 - 4) Rank = 101
 - 5) Total = 1543
 - 6) **Top 6.7** %

Conclusion: Challenges Faced

Small Training Set

- Less Data to train
 Overfitting
 - 3. Less Data for Validation

1) K-Fold Cross
Validation
2) External Dataset
3) Ordinal
Encoding

Large number of NaN values

- 1. Remove all NaN => 771 rows (-38 %)
- 2. Spread across both train and test
- Replacement with mode for categorical
 Replacement with median for numerical

Small Test Set

- 1. Public Test Set is 20 % of test data (i.e, 164 rows)
- 2. Narrow Margins for Test F1

 Large number of Experiments
 L2
 Regularization
 Max Depth ≤ 3 .

Thanks!

Group 12

Dhanyamraju Harsh Rao Malavade Sanskar Deepak Parashar Kshitij Chen Kian Leong Mitra Ren Sachithananthan

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

