Corrigé du TD 3 Suites numériques 2023/2024

Exercice1.

I. Calcule de limites.

1. Calculate the limites:
1.
$$\lim_{n \to +\infty} \sqrt{n^2 + n + 1} - \sqrt{n} = \lim_{n \to +\infty} n \left(\sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} - \frac{\sqrt{n}}{n} \right) = +\infty.$$
2.
$$\lim_{n \to +\infty} \frac{n \sin n}{n^2 + 1} = \lim_{n \to +\infty} \frac{n}{n^2 + 1} \underbrace{\sin n}_{born\acute{e}e} = 0.$$

2.
$$\lim_{n \to +\infty} \frac{n \sin n}{n^2 + 1} = \lim_{n \to +\infty} \frac{n}{n^2 + 1} \underbrace{\sin n}_{bornée} = 0$$

3.
$$\lim_{n \to +\infty} \frac{n + (-1)^n}{n - (-1)^n} = \lim_{n \to +\infty} \frac{\frac{-0}{n \left(1 + \frac{(-1)^n}{n}\right)}}{n \left(1 - \frac{(-1)^n}{n}\right)} = 1 \operatorname{car} \lim_{n \to +\infty} \frac{(-1)^n}{n} = \lim_{n \to +\infty} \frac{1}{n} \underbrace{\left(-1\right)^n}_{born\acute{e}e} = \lim_{n \to$$

4.
$$\lim_{n \to +\infty} n^2 a^{-\sqrt{n}}, a > 0.$$

Pour
$$a = 1$$
, $\lim_{n \to +\infty} n^2 a^{-\sqrt{n}} = \lim_{n \to +\infty} n^2 = +\infty$.
Pour $a \neq 1$.

On calcule d'abord
$$\lim_{n \to +\infty} \ln \left(n^2 a^{-\sqrt{n}} \right) = \lim_{n \to +\infty} 2 \ln n + -\sqrt{n} \ln a = \lim_{n \to +\infty} \sqrt{n} \left(2 \frac{\ln n}{\sqrt{n}} + \ln a \right) = \lim_{n \to +\infty} 2 \ln n + \frac{1}{2} \ln n + \frac{1}{$$

$$\begin{cases} +\infty, & \text{si } 0 < a < 1 \\ -\infty, & \text{si } a > 1 \end{cases}$$

D'où
$$\lim_{n \to +\infty} n^2 a^{-\sqrt{n}} = \begin{cases} +\infty, & \text{si } 0 < a \le 1 \\ 0, & \text{si } a > 1 \end{cases}$$

$$\begin{cases}
-\infty, & \text{si } a > 1 \\
\text{D'où } \lim_{n \to +\infty} n^2 a^{-\sqrt{n}} = \begin{cases}
+\infty, & \text{si } 0 < a \le 1 \\
0, & \text{si } a > 1
\end{cases} \\
5. & \lim_{n \to +\infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} = \lim_{n \to +\infty} \frac{3^{n+1} \left(\left(\frac{2}{3}\right)^{n+1} + 1\right)}{3^n \left(\left(\frac{2}{3}\right)^n + 1\right)} = \lim_{n \to +\infty} 3 \frac{\left(\frac{2}{3}\right)^{n+1} + 1}{\left(\frac{2}{3}\right)^n + 1} = 3, \text{ car } \lim_{n \to +\infty} \left(\frac{2}{3}\right)^{n+1} = 0, \left(0 < \frac{2}{3} < 1\right).$$

$$\lim_{n \to +\infty} \left(\frac{2}{3}\right)^{n+1} = 0, \left(0 < \frac{2}{3} < 1\right).$$

6.
$$\lim_{n \to +\infty} (n+1)^{\frac{1}{\ln n}} = \lim_{n \to +\infty} e^{\ln\left((n+1)^{\frac{1}{\ln n}}\right)} = \lim_{n \to +\infty} e^{\frac{1}{\ln n} \ln(n+1)} = \lim_{n \to +\infty} e^{\frac{1}{\ln n} \ln\left(n\left(1 + \frac{1}{n}\right)\right)} = \lim_{n \to +\infty} e^{\frac{1}{\ln n} \ln\left(n\left(1 + \frac{1}{n}\right)\right)}$$

$$1 + \frac{\ln\left(1 + \frac{1}{n}\right)}{\ln n}$$

$$\lim_{n \to +\infty} e^{\frac{1}{\ln n} \left(\ln n + \ln\left(1 + \frac{1}{n}\right)\right)} = \lim_{n \to +\infty} e^{1 + \frac{\ln\left(1 + \frac{1}{n}\right)}{\ln n}} = e.$$

7.
$$\lim_{n\to+\infty} \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}}$$
. On utilise le théorème des trois suites.

On a
$$n^2 \le k \le (n+1)^2 \Rightarrow n \le \sqrt{k} \le n+1 \Rightarrow \frac{1}{n+1} \le \frac{1}{\sqrt{k}} \le \frac{1}{n}, \forall k, n^2 \le k \le (n+1)^2$$

D'où
$$\sum_{k=n^2}^{(n+1)^2} \frac{1}{n+1} \le \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}} \le \sum_{k=n^2}^{(n+1)^2} \frac{1}{n} \Leftrightarrow \underbrace{\left((n+1)^2 - n^2 + 1\right)}_{nombre de \ termes} \frac{1}{n+1} \le \underbrace{\left((n+1)^2 - n^2 + 1\right)}_{nombre de \ termes}$$

$$\sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}} \le \left(\underbrace{(n+1)^2 - n^2 + 1}_{n \text{ surposs do terms of }} \right) \frac{1}{n}$$

$$\Leftrightarrow \underbrace{\frac{2n+2}{n+1}}_{\to 2} \le \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}} \le \underbrace{\frac{2n+2}{n}}_{2}$$
$$\Leftrightarrow \lim_{n \to +\infty} \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}} = 2.$$

II. Montrons que

$$\lim_{n \to +\infty} \frac{2n+1}{3n-1} = \frac{2}{3}$$

$$\lim_{n \to +\infty} \frac{2n+1}{3n-1} = \frac{2}{3} \Leftrightarrow \forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N} \ (n > N_{\varepsilon} \Rightarrow \left| \frac{2n+1}{3n-1} - \frac{2}{3} \right| < \varepsilon).$$

Soit
$$\varepsilon > 0$$
,
$$\left| \frac{2n+1}{3n-1} - \frac{2}{3} \right| = \left| \frac{6n+3-(6n-2)}{3(3n-1)} \right| = \left| \frac{5}{3(3n-1)} \right| = \frac{5}{3(3n-1)} < \varepsilon \Leftrightarrow n > \frac{1}{3} \left(\frac{5}{3\varepsilon} + 1 \right).$$
 Il suffit de prendre $N_{\varepsilon} = \left[\frac{1}{3} \left(\frac{5}{3\varepsilon} + 1 \right) \right] + 1$.

Montrons que

$$\lim_{n \to +\infty} e^n = +\infty$$

$$\lim_{n \to +\infty} e^n = +\infty \Leftrightarrow \forall A > 0, \exists N_A \in \mathbb{N}, \forall n \in \mathbb{N} \ (n > N_A \Rightarrow e^n > A$$

Soit $A > 0, e^n > A \Leftrightarrow n > \ln A$.

Il suffit de prendre $N_A = [|\ln A|] + 1$.

Exercice 2.

$$\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \frac{3U_n}{1+2U_n}, n \in \mathbb{N}. \end{cases}$$

1. $\forall n \in \mathbb{N}, 0 < U_n < 1$. Montrons par recurrence.

Pour $n = 0, U_0 = \frac{1}{2}$ et $0 < U_0 < 1$.

Supposons que $0 < U_n < 1$ et montrons que $0 < U_{n+1} < 1$.

On a
$$U_{n+1} = \frac{3U_n}{1+2U_n} = \frac{3}{2} + \frac{-\frac{3}{2}}{1+2U_n}$$
.

On a
$$U_{n+1} = \frac{3U_n}{1+2U_n} = \frac{3}{2} + \frac{-\frac{3}{2}}{1+2U_n}$$
.
 $0 < U_n < 1 \Leftrightarrow 0 < 2U_n < 2 \Leftrightarrow 1 < 1 + 2U_n < 3 \Leftrightarrow \frac{1}{3} < \frac{1}{1+2U_n} < 1 \Leftrightarrow -\frac{3}{2} < \frac{3}{1+2U_n}$

$$\begin{array}{l} \frac{-\frac{3}{2}}{1+2U_n} < -\frac{1}{2} \Leftrightarrow 0 < \frac{3}{2} + \frac{-\frac{3}{2}}{1+2U_n} < 1. \\ \text{d'où } \forall n \in \mathbb{N}, 0 < U_n < 1. \end{array}$$

2. La monotonie de (U_n) .

1ère méthode:
$$U_{n+1} - U_n = \frac{3U_n}{1+2U_n} - U_n = \frac{3U_n - U_n - 2U_n^2}{1+2U_n} = \frac{2U_n(1-U_n)}{1+2U_n} > 0 \text{ car } 0 < U_n < 1,$$
 ce qui donne (U_n) est croissante.

 $2^{\grave{e}me}$ méthode:

Posons
$$f(x) = \frac{3x}{1+2x} = \frac{3}{2} + \frac{-\frac{3}{2}}{1+2x}, 0 < x < 1.$$

 $f'(x) = \frac{3}{(1+2x)^2} > 0 \Rightarrow (U_n)$ monotone.

$$f'(x) = \frac{3}{(1+2x)^2} > 0 \Rightarrow (U_n)$$
 monotone.

$$U_1 - U_0 = \frac{3(\frac{1}{2})}{1+2(\frac{1}{2})} - \frac{1}{2} = \frac{3}{4} - \frac{1}{2} = \frac{1}{4} > 0 \Leftrightarrow (U_n) \text{ croissante.}$$

3. Déduire que (U_n) est convergente.

Puisque (U_n) est croissante et majorée alors elle est convergente vers la borne supérieure.

Calculons la limite: (U_n) est convergente vers l, alors

$$\lim_{n \to +\infty} U_n = l \Rightarrow \lim_{n \to +\infty} U_{n+1} = l \Leftrightarrow l = \frac{3l}{1+2l} \Leftrightarrow l+2l^2 = 3l \Leftrightarrow 2l^2 - 2l = 0 \Leftrightarrow l = \frac{3l}{1+2l} \Leftrightarrow l = \frac{$$

Calculous la limite.
$$(U_n)$$
 est convergente vers l , alors
$$\lim_{n \to +\infty} U_n = l \Rightarrow \lim_{n \to +\infty} U_{n+1} = l \Leftrightarrow l = \frac{3l}{1+2l} \Leftrightarrow l+2l^2 = 3l \Leftrightarrow 2l^2-2l = 0 \Leftrightarrow$$

$$2l(l-1) = 0 \Rightarrow \begin{cases} l = 0 \text{ refusée car } (U_n) \text{ est croissante(converge vers la borne supérieure).} \\ \text{ou} \\ l = 1 \end{cases}$$

Donc

$$\lim_{n \to +\infty} U_n = 1.$$

4.
$$E = \{U_n, n \in \mathbb{N}\}$$
.

Puisque (U_n) est convergente et croissante alors

$$\sup E = \lim_{n \to +\infty} U_n = 1.$$

$$\inf E = U_0 = \frac{1}{2}.$$

Remarque 1 est un minorant pour E mais $\frac{1}{2}$ est le plus gand des minorants $\mathrm{de}\;E.$

II.

$$\left\{ \begin{array}{c} 0 < U_1 < \frac{1}{\sqrt{2}} \\ U_{n+1} = U_n - 2U_n^3, n \in \mathbb{N}^*. \end{array} \right.$$

1. $\forall n \in \mathbb{N}^*, 0 < U_n < \frac{1}{\sqrt{2}}$, montrons par recurrence.

Pour $n = 1, 0 < U_1 < \frac{1}{\sqrt{2}}$ vraie.

Supposons que $0 < U_n < \frac{1}{\sqrt{2}}$ et montrons que $0 < U_{n+1} < \frac{1}{\sqrt{2}}$. On a $U_{n+1} = U_n - 2U_n^3 = U_n \left(1 - 2U_n^2\right)$ et

$$0 < U_n < \frac{1}{\sqrt{2}} \Rightarrow 0 < U_n^2 < \frac{1}{2} \Rightarrow -1 < -2U_n^2 < 0 \Rightarrow \begin{cases} 0 < 1 - 2U_n^2 < 1 \\ \text{et} \\ 0 < U_n < \frac{1}{\sqrt{2}} \end{cases} \Rightarrow$$

$$0 < U_n \left(1 - 2U_n^2 \right) < \frac{1}{\sqrt{2}} \cdot 1 \Rightarrow 0 < U_{n+1} < \frac{1}{\sqrt{2}} \cdot$$

D'où $\forall n \in \mathbb{N}^*, 0 < U_n < \frac{1}{\sqrt{2}}$

2. La monotonie de (U_n) .

 $1^{\grave{e}re}$ méthode:

 $U_{n+1} - U_n = U_n - 2U_n^3 - U_n = -2U_n^3 < 0 \text{ (car } U_n > 0) \Rightarrow (U_n) \text{ est}$ décroissante.

3. Déduire que (U_n) est convergente.

Puisque (U_n) est décroissante et minorée alors elle est convergente vers la borne inférieure.

Calculons la limite: (U_n) est convergente vers l, alors

$$\lim_{n \to +\infty} U_n = l \Rightarrow \lim_{n \to +\infty} U_{n+1} = l \Leftrightarrow l = l - 2l^3 \Rightarrow l = 0.$$

$$\lim_{n \to +\infty} U_n = 0.$$

4.
$$E = \{U_n, n \in \mathbb{N}\}$$
.

Puisque (U_n) est convergente et décroissante alors

$$\inf E = \lim_{n \to +\infty} U_n = 0.$$

$$\sup E = U_1/0 < U_1 < \frac{1}{\sqrt{2}}.0$$

Exercise 3. a, b > 0.

On veut démontrer que $\sqrt{ab} \le \frac{a+b}{2} \Leftrightarrow ab \le \left(\frac{a+b}{2}\right)^2$. On a $(a-b)^2 \ge 0 \Leftrightarrow a^2+b^2-2ab \ge 0 \Leftrightarrow a^2+b^2-2ab+4ab \ge 4ab \Leftrightarrow a^2+b^2+2ab \ge 4ab \Leftrightarrow (a+b)^2 \ge 4ab \Leftrightarrow \frac{(a+b)^2}{4} \ge ab \Leftrightarrow \left(\frac{a+b}{2}\right)^2 \ge ab$.

2.
$$a \leq \frac{a+b}{2} \leq b, a \leq \sqrt{ab} \leq b$$
?

 $a, b \in \mathbb{R}, \mathbb{R}$ est totalement ordonné alors soit $a \leq b$ ou $a \geq b$.

Supposons que $a \leq b$.

On a
$$\frac{a}{2} \le \frac{a}{2} \le \frac{b}{2}$$
 $\Rightarrow a \le \frac{a+b}{2} \le b$.
De même $0 < \sqrt{a} \le \sqrt{a} \le \sqrt{b}$ $\Rightarrow a \le \sqrt{ab} \le b$.

3. U_0, V_0 avec $U_0 < V_0, U_{n+1} = \sqrt{U_n V_n}, V_{n+1} = \frac{U_n + V_n}{2}$

a) $\forall n \in \mathbb{N}, U_n \leq V_n$. Montrons par recurrence.

Pour $n = 0, U_0 < V_0$ vraie.

On remarque que $U_n > 0$ et $V_n > 0$. (on peut la démontrer par recurrence). Supposons que $U_n \leq V_n$ et montrons que $U_{n+1} \leq V_{n+1}$.

$$U_{n+1} = \underbrace{\sqrt{U_n V_n}}_{D'apr\acute{e}s\ 1.} \underbrace{\frac{U_n + V_n}{2}}_{=V_{n+1}} = V_{n+1},$$

d'où $\forall n \in \mathbb{N}, U_n \leq V_n$.

b) Monotonie

 $U_{n+1} - U_n = \sqrt{U_n V_n} - U_n \ge 0$ d'aprés 2. $a = U_n, b = V_n \left(U_n \le \sqrt{U_n V_n} \le V_n \right)$.

Ce qui donne que (U_n) est croissante. $V_{n+1}-V_n=\frac{U_n+V_n}{2}-V_n\leq 0$ d'aprés 2. $a=U_n,b=V_n\left(U_n\leq \frac{U_n+V_n}{2}\leq V_n\right)$. Ce qui donne que (\bar{V}_n) est décroissante.

c) (U_n) est croissante et (V_n) est décroissante alors

$$U_0 \le U_1 \le ... \le U_{n-1} \le U_n \le V_n \le V_{n-1} \le ... \le V_1 \le V_0$$

On a (U_n) est croissante et majorée \Rightarrow convergente vers l.

 (V_n) est décroissante et minorée \Rightarrow convergente vers l'.

$$\operatorname{et} \left\{ \begin{array}{l} U_{n+1} = \sqrt{U_n V_n} \Rightarrow l = \sqrt{l l'} \\ V_{n+1} = \frac{U_n + V_n}{2} \Rightarrow l' = \frac{l + l'}{2} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} l^2 = l l' \\ 2l' = l + l' \end{array} \right. \Rightarrow l = l'.$$

Exercice 4

1. $(k^n)_{n \in \mathbb{N}}$, 0 < k < 1 est une suite de Cauchy $\Leftrightarrow \forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall p, q \in \mathbb{N}$ \mathbb{N} ; $(p > q \ge N_{\varepsilon}) \Rightarrow |U_p - U_q| < \varepsilon$).

Soit $\varepsilon > 0$,

$$|U_p - U_q| = |k^p - k^q| = |k^q (k^{p-q} - 1)| < k^q |k^{p-q} - 1|$$

On a 0 < k < 1, $p-q > 0 \Rightarrow$ 0 < $k^{p-q} <$ 1 \Rightarrow - - 1 < k^{p-q} - 1 < 0 \Rightarrow $|k^{p-q} - 1| < 1,$

donc

$$|U_p - U_q| = \left| k^q \left(k^{p-q} - 1 \right) \right| < k^q < \varepsilon \Rightarrow q \underbrace{\ln k}_{<0} < \ln \varepsilon \Rightarrow q > \frac{\ln \varepsilon}{\ln k}.$$

Il suffit de prendre $N_{\varepsilon} = \left[\left|\frac{\ln \varepsilon}{\ln k}\right|\right] + 1$. 2. $(\ln n)_{n \in \mathbb{N}^*}$, n'est pas une suite de Cauchy $\Leftrightarrow \exists \varepsilon > 0, \forall N \in \mathbb{N}, \exists p,q \in \mathbb{N}; (p > q \ge N \text{ et } |U_p - U_q| \ge \varepsilon)$.

Posons p = 2N, q = N.

$$|U_{2N} - U_N| = |\ln 2N - \ln N| = |\ln 2 + \ln N - \ln N| = |\ln 2| = \ln 2 = \varepsilon$$

Il suffit de prendre $\varepsilon = \ln 2$.