確率・統計 後期 第4回

点推定

稲積 泰宏(いなづみ やすひろ)

今日の内容

- 統計的推測とは
- 点推定
- 推定量の評価基準

統計的推測とは

目的

母集団の特性(母数)を標本データから推測する

2つのアプローチ

1. 点推定: 母数を1つの値で推定

2. 区間推定: 母数が含まれる範囲を推定

例

母平均 μ を推定したい

点推定: $\mu=50$ と推定

区間推定: μ は 48~52 の範囲にあると推定

点推定の基本

母数と統計量

- **母数 (パラメータ)**: 母集団の特性値
 - \circ 母平均 μ 、母分散 σ^2 など
 - 通常は未知
- 統計量:標本から計算される値
 - \circ 標本平均 \overline{X} 、不偏分散 U^2 など
 - 母数の推定に使う

推定量と推定値

推定量

母数を推定するための統計量 確率変数である

例:
$$\overline{X} = rac{1}{n} \sum_{i=1}^n X_i$$

推定値

実際の標本データから計算した具体的な値 推定量の実現値

例: $\overline{x} = 50.3$

問1)

推定量の評価基準

良い推定量の条件

- 1. 不偏性 (Unbiasedness)
- 2. 一致性 (Consistency)
- 3. **有効性(Efficiency)**

これらの基準で推定量の良さを評価する

不偏性

定義

推定量 $\hat{ heta}$ が母数 heta の不偏推定量である $\Leftrightarrow E[\hat{ heta}] = heta$

意味

何度も標本を取って推定を繰り返すと、平均的には真の値になる

例

- $E[\overline{X}] = \mu$ $ightarrow \overline{X}$ は μ の不偏推定量
- ullet $E[U^2]=\sigma^2 o U^2$ は σ^2 の不偏推定量

なぜ標本分散ではなく不偏分散を使うのか

標本分散

$$S^2=rac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2 \ E[S^2]=rac{n-1}{n}\sigma^2
eq\sigma^2 \ (バイアスがある)$$

不偏分散

$$U^2=rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2 \ E[U^2]=\sigma^2$$
(不偏推定量)

一致性

定義

標本サイズ $n \to \infty$ のとき 推定量 $\hat{\theta}_n$ が母数 θ に確率収束する

$$\hat{\theta}_n \stackrel{P}{\longrightarrow} \theta$$

意味

標本サイズを大きくすれば、推定値が真の値に近づく

「確率収束」とは?

記号

$$\hat{\theta}_n \stackrel{P}{\longrightarrow} \theta$$

(確率収束:Convergence in Probability)

意味

標本サイズ n を大きくすると、 推定値 $\hat{\theta}_n$ が「高い確率で」真の値 θ に近づく。

イメージ

多くの標本を取るほど、ほとんどの推定結果が真の値のまわりに集中する。

例大数の法則より標本平均は母平均に確率収束する。

一致性の例

標本平均

大数の法則により

$$\overline{X}_n \stackrel{P}{\longrightarrow} \mu$$

 \overline{X} は μ の一致推定量

不偏分散

同様に

$$U_n^2 \stackrel{P}{\longrightarrow} \sigma^2$$

 U^2 は σ^2 の一致推定量

有効性

定義

2つの不偏推定量のうち、分散が小さい方が有効

比較

 $\hat{ heta}_1,\hat{ heta}_2$ が heta の不偏推定量で

$$V[\hat{ heta}_1] < V[\hat{ heta}_2]$$

ならば $\hat{ heta}_1$ の方が有効

意味

ばらつきが小さい推定量の方が信頼できる

有効性の具体例

標本平均の分散

$$V[\overline{X}] = rac{\sigma^2}{n}$$

標本サイズ n が大きいほど分散が小さくなる

より多くのデータを使う

→より正確な推定ができる

問2)

主な母数とその推定量

母数	記号	推定量	性質
母平均	μ	\overline{X}	不偏・一致
母分散	σ^2	U^2	不偏・一致

問題集185)

問題集186)

まとめ

点推定

• 母数を1つの値で推定する方法

推定量の評価基準

• **不偏性**:平均的に真の値になる

• 一致性:標本サイズを大きくすると真の値に近づく

• 有効性:分散が小さい方が良い

実用上の推定量

- 母平均 μ \rightarrow 標本平均 \overline{X}
- 母分散 $\sigma^2 \to$ 不偏分散 U^2

感想を会議のチャット欄へ