() Preliminary Specification

(V) Final Specification

Module	19" SXGA TFT-LCD Module
Model Name	G190ETN01.1

Customer	Date	Checked & Approved by	Date
			05/02/2014
Approved by		Prepared by	Date
			05/02/2014
Note: This Specification is subject to o	change without	Audio-Video Displ AU Optronic	ay Business Unit / s corporation

For ACMEPOINT Internal Use Only - Provided By kevinkcchang On 2014/05/19

document version 1.0 1/26

Contents

1. Handling Precautions	4
2. General Description	
2.1 Display Characteristics	5
2.2 Optical Characteristics	6
3. Functional Block Diagram	9
4. Absolute Maximum Ratings	10
4.1 TFT LCD Module	
4.2 Absolute Ratings of Environment	10
5. Electrical characteristics	11
5.1 TFT LCD Module	11
6. Signal Characteristic	14
6.1 Pixel Format Image	14
6.2 The Input Data Format	14
6.3 Signal Description	15
6.4 Interface Timing	17
6.5 Power ON/OFF Sequence	18
7. Connector & Pin Assignment	19
7.1 TFT LCD Module	19
7.2 Backlight Unit	20
8. Reliability Test	21
9. Label Format	22
9.1 Shipping Label	22
9.2 Backlight Label	22
10. Packing Form	23
10.1 Packaging material	23
10.2 Packing instruction	23
10.3 Palletizing	24
11 Outline Drawing	25

AU OPTRONICS CORPORATION

Record of Revision

Ve	rsion & Date	Page	Old Description	New Description
0.0	2012/11/2	All	Frist Preliminary Spec	
0.1	2013/11/18	5	White Luminance [cd/m²]:350 (center,Typ) @60.0mA	White Luminance [cd/m ²]:380 (center,Typ) @60.0mA
		6	White Luminance [cd/m²]: Min. 280, Typ. 350	White Luminance [cd/m ²]: Min. 304, Typ. 380
		10		Update 4.2 Absolute Ratings of Environment
		11	VDDrp: 100 [mV] p-p	VDDrp: 200 [mV] p-p
		14		Update 6.2 The Input Data Format
		17		Update 6.4.2 Timing Diagram
		23	,	Update 9. Shipping Label
		24		Update 10. Packing Form
		26		Update 11. Oultine Drawing
1.0	2014/05/02	5		Update 2.1 Display Characteristics
		6		Update 2.2 Optical Characteristics
		10		Updtae 4.1 TFT LCD Module
		13		Update 5.1.3 Backlight unit
		20		Updtae 7.2.1 Connector
		22		Update 9. Label Format
		25		Update 11. Oultine Drawing

document version 1.0 3/26

1. Handling Precautions

- 1) Since front polarizer is easily damaged, please be cautious and not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) To avoid ESD (Electro Static Discharde) damage, be sure to ground yourself before handling TFT-LCD Module.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED light bar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) TFT-LCD Module is not allowed to be twisted & bent even force is added on module in a very short time. Please design your display product well to avoid external force applying to module by end-user directly.
- 12) Small amount of materials without flammability grade are used in the TFT-LCD module. The TFT-LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time and lamp ignition voltage.
- 14) Continuous operating TFT-LCD display under low temperature environment may accelerate lamp exhaustion and reduce luminance dramatically.
- 15) The data on this specification sheet is applicable when LCD module is placed in landscape position.
- 16) Continuous displaying fixed pattern may induce image sticking. It's recommended to use screen saver or shuffle content periodically if fixed pattern is displayed on the screen.

document version 1.0 4/26

2. General Description

G190ETN01.1 is a Color Active Matrix Liquid Crystal Display composed of a TFT-LCD panel, a driver circuit, and a backlight system. The screen format is intended to support the SXGA (1280(H) x 1024(V)) screen and 16.7M colors (RGB 6-bits + HiFRC data). All input signals are 2-channel LVDS interface.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 $^{\circ}\mathrm{C}$ condition:

Items	Unit	Specifications
Screen Diagonal	[mm]	482.6 (19.0")
Active Area	[mm]	376.32 (H) x 301.06 (V)
Pixels H x V		1280(x3) x 1024
Pixel Pitch	[mm]	0.294 (per one triad) x 0.294
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		Normally White
White Luminance	[cd/m]	380 (center, Typ) @60.0mA
Contrast Ratio		1000 : 1 (Typ)
Optical ResponseTime	[msec]	10 ms(Typ, ON/OFF)
Nominal Input Voltage VDD	[Volt]	+5.0 V
Power Consumption	[Watt]	15.2 W (Typ)
Weight	[Grams]	1800 (Typ)
Physical Size (H x V x D)	[mm]	396 (H) x 324 (V) x 11.2(D) (Typ)
Electrical Interface		Dual channel LVDS
Surface Treatment		Anti-glare, Hardness 3H
Support Color		16.7M colors (RGB 6-bit + Hi_FRC)
Temperature Range Operating Storage (Non-Operating)	[°C]	-30 to +85 -30 to +85
RoHS Compliance		RoHS Compliance

document version 1.0 5/26

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25℃ (Room Temperature).

ltem	Unit	Conditions	Min.	Тур.	Max.	Note	
Viouing Anglo	[dograe]	Horizontal (Right) CR = 10 (Left)	75 75	85 85	ı	1	
Viewing Angle	[degree]	Vertical (Up) CR = 10 (Down)	70 70	80 80	-	ı	
Contrast Ratio		Normal Direction	600	1000	-		
		Raising Time (TrR)	-	7	12		
Optical Response Time	[msec]	Falling Time (TrF)	-	3	8	2	
		Rising + Falling	-	- 10 20			
		Red x	0.590	0.640	0.690		
		Red y	0.294	0.344	0.394		
		Green x	0.277	0.327	0.377		
Color / Chromaticity Coordinates		Green y	0.574	0.624	0.674		
(CIE)		Blue x	0.105	0.155	0.205		
		Blue y	0.004	0.054	0.104		
		White x	0.263	0.313	0.363		
		White y	0.279	0.329	0.379		
Central Luminance	[cd/m ²]		304	380	-	3	
Luminance Uniformity	[%]	9 Points	75	80	ı	4,5	
NTSC	[%]			72			

Optical Equipment: BM-5A, BM-7, PR880, or equivalent

document version 1.0 6/26

AU OPTRONICS CORPORATION

Note 1: Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, or \geq 5, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

Note 2: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time), and from "Full White" to "Full Black" (falling time), respectively. The response time is interval between the 10% and 90% of amplitudes. Please refer to the figure as below.

document version 1.0 7/26

Note 3: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Note 4: 9 points position

Note 5: Uniformity = $\frac{\text{Minimum Luminance in 9 points (1-9)}}{\text{Maximum Luminance in 9 Points (1-9)}}$

document version 1.0 8/26

3. Functional Block Diagram

The following diagram shows the functional block of the 19.0 inches wide Color TFT-LCD Module:

document version 1.0 9/26

4. Absolute Maximum Ratings

Absolute maximum ratings of the module are as following:

4.1 TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	VDD	-0.3	+6.0	[Volt]	Note 1,2
Signal Voltage	RxOINi-/+, RxEINi-/+	-0.3	+4.0	[Volt]	Note 1,2, i=0,1,2,3
Signal Voltage	RxOCLKIN-/+ RxECLKIN-/+	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

Item	Symbol	Min.	Max.	Unit	Conditions
Operating Temperature (Tgs)	TOP	-30	+85	[°C]	Note 3
Operation Humidity	HOP	5	95	[%RH]	Note 3
Storage Temperature (Ta)	TST	-30	+85	[°C]	
Storage Humidity	HST	5	95	[%RH]	

Note 1: With in Ta (25°C)

Note 2: Permanent damage to the device may occur if exceeding maximum values

Note 3: Temperature and relative humidity range are shown as the below figure.

- 1. 95% RH Max (Ta $\leq 39^{\circ}$ C)
- 2. Max wet-bulb temperature at 39°C or less. ($Ta \le 39$ °C)
- 3. No condensation

Note 4: Function Judged only

document version 1.0 10/26

AU OPTRONICS CORPORATION

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows:

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
VDD	Logic/LCD Drive Voltage	4.5	5.0	5.5	[Volt]	+/-10%
IDD	Input Current	-	1	1.2	[A]	VDD= 5.0V, All Black Pattern At 75Hz
PDD	VDD Power	-	5	6	[Watt]	VDD= 5.0V, All Black Pattern At 75Hz
IRush	Inrush Current	-	-	3.0	[A]	Note 1
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	200	[mV] p-p	VDD= 5.0V, All Black Pattern At 75Hz

Note 1: Measurement conditions:

The duration of rising time of power input is 470us.

document version 1.0 11/26

5.1.2 Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when VDD is off. Please refer to specifications of SN75LVDS82DGG (Texas Instruments) in detail.

Each signal characteristics are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition
V_{TH}	Differential Input High	- +100 [mV] V		V _{CM} = 1.2V		
V TH	Threshold		_	1 100	[IIIV]	Note 1
\/	Differential Input Low	100			[ma\/]	V _{CM} = 1.2V
V_{TL}	Threshold	-100	-	-	[mV]	Note 1
V _{ID}	Input Differential Voltage	100	400	600	[mV]	Note 1
\/	Differential Input Common	14.0	.4.0	.4.5	[\ /alt]	$V_{TH} = 200 \text{mV (max)}$
V_{CM}	Mode Voltage	+1.0	+1.2	+1.5	[Volt]	Note 1

Note1: LVDS Signal Waveform

document version 1.0 12/26

G190ETN01.1

AU OPTRONICS CORPORATION

5.1.3 Backlight Unit

Parameter guideline for LED driving is under stable conditions at 25℃ (Room Temperature):

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
IR _{LED}	LED Operation Current	-	60	-	[mA] Note 1	
V _{LB}	Light Bar Operation Voltage (for reference)	-	42.3	43.2	[Volt] Note 2	Operating with fixed
P _{BLU}	BLU Power consumption (for reference)	-	10.2	-	[Watt]	driving current
LT _{LED}	LED life Time (Typical)	25,000	30,000	-	[Hour] Note 3	

Note 1: The specified current is input LED chip 100% duty current.

Note 2: The value showed in the table is one light bar's operation voltage.

Note 3 : Definition of life time : brightness becomes 50% of its original value. The minimum life time of LED unit is on the condition of IR_{LED} = 60mA and 25±2 $^{\circ}$ C (Room temperature).

Note 4: Each LED light bar consists of 48 pcs LED package (4 strings x 12 pcs / string).

document version 1.0 13/26

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

		1			2			1	27	9	12	280	C
1st Line	R	G	В	R	G	В		R	G	В	R	G	В
							:						
		•			•							•	
					•		:						
					,				•				
		'			,				•			'	
1024th Line	R	G	В	R	G	В		R	G	В	R	G	В

6.2 The Input Data Format

Note1: Please follow PSWG.

Note2: 8-bit in

Note3: DE: Data Enable, VS: Vsync, HS: Hsync, NA: No use

document version 1.0 14/26

6.3 Signal Description

The module using one LVDS receiver SN75LVDS82(Texas Instruments). LVDS is a differential signal technology for LCD interface and high speed data transfer device. LVDS transmitters shall be SN75LVDS83(negative edge sampling). The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

CN1		
PIN#	SIGNAL NAME	DESCRIPTION
1	RxOIN0-	Negative LVDS differential data input (Odd data)
2	RxOIN0+	Positive LVDS differential data input (Odd data)
3	RxOIN1-	Negative LVDS differential data input (Odd data)
4	RxOIN1+	Positive LVDS differential data input (Odd data)
5	RxOIN2-	Negative LVDS differential data input (Odd data, DSPTMG)
6	RxOIN2+	Positive LVDS differential data input (Odd data, DSPTMG)
7	GND	Power Ground
8	RxOCLKIN-	Negative LVDS differential clock input (Odd clock)
9	RxOCLKIN+	Positive LVDS differential clock input (Odd clock)
10	RxOIN3-	Negative LVDS differential data input (Odd data)
11	RxOIN3+	Positive LVDS differential data input (Odd data)
12	RxEIN0-	Negative LVDS differential data input (Even data)
13	RxEIN0+	Positive LVDS differential data input (Even data)
14	GND	Power Ground
15	RxEIN1-	Positive LVDS differential data input (Even data)
16	RxEIN1+	Negative LVDS differential data input (Even data)
17	GND	Power Ground
18	RxEIN2-	Negative LVDS differential data input (Even data)
19	RxEIN2+	Positive LVDS differential data input (Even data)
20	RxECLKIN-	Negative LVDS differential clock input (Even clock)
21	RxECLKIN+	Positive LVDS differential clock input (Even clock)
22	RxEIN3-	Negative LVDS differential data input (Even data)
23	RxEIN3+	Positive LVDS differential data input (Even data)
24	GND	Power Ground
25	GND	Power Ground
26	GND	Power Ground
27	GND	Power Ground
28	VDD	Power +5V
29	VDD	Power +5V
30	VDD	Power +5V

Note: "Power Ground" stands for 0V.

document version 1.0 15/26

CN2		
PIN#	SIGNAL NAME	DESCRIPTION
1	VLED-	LED Cathode (Negative)
2	VLED-	LED Cathode (Negative)
3	VLED+	LED Anode (Positive)
4	VLED+	LED Anode (Positive)
5	VLED-	LED Cathode (Negative)
6	VLED-	LED Cathode (Negative)

Note1: Start from left side

Note2: Input signals of odd and even clock shall be the same timing.

document version 1.0

AU OPTRONICS CORPORATION

6.4 Interface Timing

6.4.1 Timing Characteristics

Signal	Item	Symbol	Min	Тур	Max	Unit
	Period	Tv	1032	1066	1150	Th
Vertical	Active	Tdisp(v)	1024	1024	1024	Th
Section	Blanking	Tbp(v)+Tfp(v)+PWvs	8	42	126	Th
	Period	Th	780	844	2047	Tclk
Horizontal	Active	Tdisp(h)	640	640	640	Tclk
Section	Blanking	Tbp(h)+Tfp(h)+PWhs	140	204	-	Tclk
	Period	Tclk	22.2	18.52	14.81	ns
Clock	Frequency	Freq.	44	54	67.5	MHz
Frame Rate	Frequency	1/Tv	49	60	75	Hz

Note: DE mode only

6.4.2 Timing Diagram

document version 1.0 17/26

AU OPTRONICS CORPORATION

6.5 Power ON/OFF Sequence

VDD power and backlight ON/OFF sequence are as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Note1: insert a white pattern 360ms

Note2: insert a black pattern

Note3: insert a white pattern after valid data and last until VDD falls to 10%.

Note4: when AC ON/OFF, timing rule of logo power ON/OFF is the same as above.

	Power Sequence Timing				
D	Value				
Parameter	Min.	Тур.	Max.	Units	
T1	0.5	-	10		
T2	0	40	50		
Т3	500	-	-		
Т4	300	-	-	ms	
Т5	40	1500	-		
Т6	-	-	-		
Т7	1000	-	-		

document version 1.0 18/26

7. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

7.1.1 Connector (CN1)

Connector Name / Designation	Interface Connector / Interface card
Manufacturer	HRS
Type Part Number	DF14H-30P-1.25H (56)
Mating Housing Part Number	DF14-30S-1.25C

7.1.2 Pin Assignment

Pin#	Signal Name	Pin#	Signal Name
1	RxOIN0-	2	RxOIN0+
3	RxOIN1-	4	RxOIN1+
5	RxOIN2-	6	RxOIN2+
7	GND	8	RxOCLKIN-
9	RxOCLKIN+	10	RxOIN3-
11	RxOIN3+	12	RxEIN0-
13	RxEIN0+	14	GND
15	RxEIN1-	16	RxEIN1+
17	GND	18	RxEIN2-
19	RxEIN2+	20	RxECLKIN-
21	RxECLKIN+	22	RxEIN3-
23	RxEIN3+	24	GND
25	GND	26	GND
27	GND	28	VDD
29	VDD	30	VDD

document version 1.0 19/26

G190ETN01.1

AU OPTRONICS CORPORATION

7.2 Backlight Unit

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.2.1 Connector (CN2)

rizir comicator (citz)	
Connector Name / Designation	Light Bar Connector
Manufacturer	Molex
Type Part Number	Molex 501568-0607
Mating Housing Part Number	Molex 501330-0600

7.2.2 Pin Assignment

Pin no.	Signal name
1	VLED-
2	VLED-
3	VLED+
4	VLED+
5	VLED-
6	VLED-

document version 1.0 20/26

G190ETN01.1

AU OPTRONICS CORPORATION

8. Reliability Test

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 85°C, 240hours	
Low Temperature Operation (LTO)	Ta= -30°ℂ , 240hours	
High Temperature Storage (HTS)	Ta= 85°C, 240hours	
Low Temperature Storage (LTS)	Ta= -30°C, 240hours	
Vibration Test (Non-operation)	Acceleration: 1.5 G Wave: Random Frequency: 10 - 200 - 10 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis) Axis)	
Drop Test	Height: 60 cm, package test	
Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 50 cycles	
ESD (Floatro Statio Discharge)	Contact Discharge: \pm 8KV, 150pF(330 Ω) 1sec, 9 points, 25 times/ point.	1
ESD (Electro-Static Discharge)	Air Discharge: ± 15KV, 150pF(330Ω) 1sec, 9 points, 25 times/ point.	ı

Note1: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost Self-recoverable. No hardware failures.

Note2:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- The reliability test is performed only to examine the TFT-LCD module capability.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at
- No function failure occurs.

document version 1.0 21/26

9. Label Format

9.1 Shipping Label

Unit: mm

9.2 Backlight Label

Unit: mm

document version 1.0 22/26

G190ETN01.1

AU OPTRONICS CORPORATION

10. Packing Form

10.1 Packaging Material

FILM PROTECT
I ILIMI I ROTEOT
BAG ANTI-STATIC
TAPE
TAPE CREPED PAPER
PACKING CARTON
LABEL SPEC
LABEL CARTON.
CUSHION PACKING

10.2 Packing Instruction

Max capacity: 10 TFT-LCD module per carton

Max weight: 20.8 kg per carton

Outside dimension of carton: 489mm(L)*293mm(W)*420mm (H)

Pallet size 1180 mm * 980 mm * 138mm

Box stacked

document version 1.0 23/26

10.3 Palletizing

document version 1.0 24/26

Product Specification AU OPTRONICS CORPORATION

G190ETN01.1

document version 1.0

Product Specification AU OPTRONICS CORPORATION

26/26

document version 1.0