Pressure

Pressure tells us whether a force is focused or spread out over an area.

When you push a **drawing pin** into a wall with your thumb, the small area of the point has a very high pressure. The point goes into the wall. The flat bit you push has a larger area. The force is more spread out. There is less pressure which is why it doesn't go into your thumb.

- 1 Do these situations need high or low pressure? How did you
 - (a) Cat's claws when it climbs a tree
 - (b) Standing on soft snow when you don't want to sink in
 - (c) A tractor's wheels in a muddy field
 - (d) Scissor blades cutting paper

- 2 Fill in the gaps to complete the explanation:
 - A bar of chocolate has six chunks joined with thinner pieces of chocolate. When you try to bend the bar, the ______ is greatest where the bar is ______. This helps you break off one chunk of chocolate at a time.
- A chef is chopping carrots with a sharp knife. Complete the table to compare the force, pressure and area of the knife handle with its blade. Choose from the words larger, smaller and equal.

	On handle compared to blade edge,
Area	area is
Pressure	pressure is
Force	force is

A pressure of 30 N/cm² means that there is a force of 30 N on each square centimetre.

- 4 A chair leg puts a pressure of 10 N/cm^2 on the floor.
 - (a) Complete the sentence: The force on $1~{\rm cm}^2$ of the floor is newtons.
 - (b) Work out the force on 6 cm^2 of floor using an equation.

	(c) Work out the force on the floor due to one $16\mathrm{cm}^2$ chair leg using an equation.
	force (N) = pressure $(N/cm^2) \times area(cm^2)$
	= 10 × 16
	(d) Work out the force for the total $64~\rm cm^2$ area of the chair legs.
5	Calculate the force on these areas if the pressure is 20 N/cm^2 . (c) 30 cm^2
	(b) 4 cm^2 (d) 0.04 cm^2
6	A $200~\mathrm{N}$ force is spread over a $40~\mathrm{cm}^2$ area.
	(a) Force on $1 \text{ cm}^2 = \boxed{} \div \boxed{} = \boxed{} \text{newtons}$
	(b) Complete the sentence: The pressure (in N/cm ²) is
	(c) A 100 N force is applied over 25 cm^2 . Work out the pressure using an equation. force (N) = pressure (N/cm ²) × area (cm ²) $100 = \times 25$ (d) Work out the pressure if 80 N is applied over an area of 20 cm^2 .
	(e) Work out the pressure when a $30\mathrm{N}\mathrm{TV}$ sits on a base with an area of $600\mathrm{cm}^2$.
7	Calculate the pressure for these forces and areas. (a) 60 N over 3 cm ² , (b) 20 N over 0.2 cm ² ,
8	A pump compresses air in a football to a pressure of $10 \rm N/cm^2$. (a) What is the force on $1 \rm cm^2$?
	(b) The outwards force on the whole football is 15000 N. How many 10 N forces is this?
	(c) What is the area of the football? (Each $10~\mathrm{N}$ force acts on $1~\mathrm{cm}^2$.)

(d) Work out the area for a 90 N total force using an equation.

(e) Work out the area for a force of 600 N.

9 A force is 300 N. Calculate the area to make these pressures.

(a) 150 N/cm^2

(c) 15 N/cm^2

(b) 30 N/cm^2

(d) 600 N/cm^2

10 Complete the word equations using **force**, **pressure** and **area**.

(a) force =

- (b) pressure =
- (c) area =

11 Rewrite your word equations using symbols. F is the force, P is the pressure and A is the area.

(a) F =

(b) P =

(c) A =

12 Use your understanding of pressure, or the equations, to calculate

- (a) the pressure when a $48~\mathrm{N}$ force squeezes a $1.2~\mathrm{cm}^2$ stamp,
- (b) the force when a 20 N/cm² pressure fluid pushes a 5 cm² piston,

(c) the area if a 900 N force makes a 90 N/cm² pressure.

Areas can also be measured in square metres. $1 \text{ m}^2 = 100 \text{ cm} \times 100 \text{ cm} = 10\,000 \text{ cm}^2$. A pressure of $50\,000 \text{ N/m}^2$ can also be written as $50\,000 \text{ Pa}$ (pascals) or $50\,\text{kPa}$ (kilopascals).

13 A van with weight $25\,000\,\text{N}$ is supported by tyres with total area $0.25\,\text{m}^2$. Calculate the (a) pressure in kPa, (b) area in cm², (c) pressure in N/cm².