Hæsti sameiginlegi forfaðir

Bergur Snorrason

4. apríl 2022

- Gerum ráð fyrir að við séum með tré.
- Látum einn hnút tákna rót trésins.
- Við getum þá talað um hæð hnúts í trénu.
- Hæð hnútsins er þá fjarlægðin frá hnútnum í rótina.
- Þar sem við erum í tréi er aðeins einn einfaldur vegur í rótina.
- Ein leið til að finna hæð allra hnúta er með einni dýptarleit.
- Látum hæð hnútsins u vera h(u). ▶ Við segjum líka að hæð trés sé H ef hnúturinn með hæstu hæð er H.

- Við köllum þann nágranna hnúts sem hefur einum lægri hæð foreldri hnútsins
- Við getum þá fundið veginn að rótinni með því að ferðast eftir foreldrum.
- Þeir hnútar sem eru á veginum niður að rótinni kallast forfeður hnúts.
- Það er kannski skrýtið, en allir hnútar er forfeður sínir.

Oft nýtist okkur að vita hvaða sameiginlegi forfaðir tveggja

hnúta er hæstur í trénu.

- Hvernig finnum þennan forföður?
- Látum u og v tákna hnútana og x hæsta sameiginlega forföður þeirra.
 - Við getum gert ráð fyrir að u sé ofar í trénu, það er að segja $h(u) \ge h(v)$.
- Við vitum að allir forfeður u sem hafa hæð stærri en h(v) eru ekki x.
- Svo við getum ferðast niður tréð frá *u* þar til við erum komin í sömu hæð og *v*.
- ▶ Við getum svo ferðast eftir foreldrum beggja á sama tíma þangað til við lendum í sama hnútnum.
- Sá hnútur er x.
 Sjáum hvernig þessi aðferð leysir sýnidæmin sem við sáum áðan.


```
7 int p[MAXN], d[MAXN];
8 void lca dfs(vvi&g, int x, int q, int w)
  { // Hjálparfall.
       int i:
       d[x] = w, p[x] = q;
      for (i = 0; i < g[x]. size(); i++)
            if (g[x][i] != q) lca dfs(g, g[x][i], x, w + 1);
14 }
16 void lca init(vvi&g, int x)
17 { // Upphafstillir fyrir netið g með rót x.
       lca dfs(g, 0, \times, \times);
19 }
```

{ // Skilar hæsta sameiginlega forfaðir u og v.

while (u!=v) u=p[u], v=p[v];

if (d[u] < d[v]) swap(u, v); while (d[u] != d[v]) u = p[u];

10

11 12

13

15

18

20

22

23

24

25 26

27 }

21 int lca(int u, int v)

return u;

- Gerum ráð fyrir að hæð trésins sé H.
- \triangleright Þá er tímaflækjan á þessari aðferð $\mathcal{O}(H)$.
- ▶ Í versta falli er hæð trés með n hnúta n-1.
- ▶ Svo tímaflækjan er í versta falli $\mathcal{O}(n)$.

Við getum þó bætt þetta með því að taka stærri stökk.

- Aðferðin skiptist í tvö skref:
 - Jöfnum hæðina á hnútunum.
 - Löbbum saman niður þangað til við finnum svarið.
- ► Fyrra skrefinu má lýsa nánar.
 ► Látum hnútana okkar vera u og v, þannig að h(u) ≥ h(v).
- Við viljum því ferðast niður nákvæmlega h(v) h(u) sinnum.
- Ein leið til að gera þetta hratt er að geyma ekki bara foreldri hvers hnúts, heldur alla hnúta sem eru 2^k fyrir neðan hnútinn í trénu.
- ▶ Við þurfum því að geyma $\mathcal{O}(\log n)$ stökk fyrir hvern hnút.
- Táknum með p(u, k) þann hnút sem þú endar í ef þú ferðast 2^k sinnum niður tréð frá u gegnum foreldrin.
- Til dæmis er p(u,0) foreldri u.
- ► Til þæginda segjum við að foreldri rótarinnar sé rótin sjálf.
- Við finnum þessi gildi með rakningunni p(u, i) = p(p(u, i 1), i 1).

- Við tökum því eins löng stökk og við getum án þess að
 - h(u) < h(v) þangað til h(u) = h(v).
- Við getum því núna gert ráð fyrir að h(u) = h(v).

Að því loknu munu u og v hafa sama foreldri.

 $u \neq v$.

Þá viljum við taka eins löng stökk og við getum þannig að

```
9 int p[MAXN][MAXK], d[MAXN];
10 void lca dfs(vvi&g, int x, int q, int w)
  { // HjáTparfall.
       int i:
12
13
       d[x] = w:
14
       for (i = 0; i < MAXK; i++) p[x][i] = i == 0 ? q : p[p[x][i-1]][i-1];
15
       for (i = 0; i < g[x]. size(); i++) if (g[x][i] != q)
16
           Ica dfs(g, g[x][i], x, w + 1);
17 }
18
19 void lca init(vvi& g, int x)
  { // Upphafstillir fyrir netið g með rót x.
21
       int i:
22
       for (i = 0; i < MAXK; i++) p[x][i] = x;
23
       Ica dfs(g, 0, x, x);
24 }
25
  int lca(int u, int v)
  { // Skilar hæsta sameiginlega forfaðir u og v.
27
28
       int i:
29
       if (d[u] < d[v]) swap(u, v);
30
       for (i = MAXK - 1; i \ge 0; i--) if (d[p[u][i]] \ge d[v]) u = p[u][i];
31
       for (i = MAXK - 1; i >= 0; i--) if (p[u][i] != p[v][i])
32
           u = p[u][i], v = p[v][i];
33
       return u == v ? u : p[u][0];
34 }
```

•	Í hverju skrefi þurfum við bara að taka $\mathcal{O}(\log n)$.
•	Svo tímaflækjan er $\mathcal{O}(\log n)$ fyrir hverja fyrirspurn.