Problem E Taxi Fare

Input file: testdata.in Time limit: 1 second

Problem Description

We have a city network in which each road is a one-way and there is no loop in the network. Each road has a positive integer length. Now we want to take a taxi to go from a city to another destination city. However, the taxi computes its fare according to a very strange rule, e.g. it will collect L mod k fare if the total traveling distance is L, and k is a positive integer constant. Now please compute a route that will incur the cheapest fare.

Technical Specification

- 1. For any given two cities, there is at most one one-way.
- 2. The number of cities, $N, 1 \le N \le 300$.
- 3. The number of roads, $M, 0 \le M \le \frac{N(N-1)}{2}$.
- 4. $1 \le \text{length of a road} \le 1000$
- 5. $1 \le k \le 1000$.

Input Format

There are at most 10 test cases in the input file. Each of the test cases begins with three integers, N, M, and k. There are M lines in the following. In each of the M lines there are three integers i, j, and w, denoting that there is a directed road of length w beginning from the ith city and ending at the jth city.

Output Format

For each test case, output the minimum taxi fare from the $1^{\rm st}$ city to the $N^{\rm th}$ city in one line. If there is no route from the $1^{\rm st}$ city to the $N^{\rm th}$, output 'NO_WAY!' for that case.

Sample Input

1 0 19

5 5 30

1 2 4

2 4 2

2 3 8

3 5 7

4 5 9

11 6 674

2 1 194

9 4 157

10 8 315

7 10 146

7 11 64

2 11 478

Sample Output

0

15

NO_WAY!