Supplementary materials for "A novel CFA+EFA model to detect aberrant respondents"

Niccolò Cao¹, Livio Finos², Luigi Lombardi³, Antonio Calcagnì²

¹University of Bologna, ²University of Padova, ³University of Trento

Integration to Simulation study 1

As interestingly suggested by an anonymous reviewer, we investigated how much the magnitude of the inter-item correlations affects the classification performances of the CFA+EFA model.

$Theoretical\ considerations$

Theoretically, the strength of the overall inter-item correlations depends mainly on the size of the CFA and EFA errors (respectively, $\operatorname{diag}(\Theta_{\delta})$ and $\operatorname{diag}(\Psi_{\epsilon})$). If the errors of the two FA components are small, the CFA/EFA submodels generally present stronger inter-item correlations, while large errors imply lower correlations. However, from a generative viewpoint, the CFA/EFA models produce different patterns of inter-item correlations. Specifically, the CFA submodel generates stronger correlations among items loading on the same latent variable and weaker correlations among items loading on different latent variables. In contrast, the EFA submodel does not restrict the magnitude of the inter-item correlations. This dissimilarity between CFA and EFA is the keystone of the CFA+EFA model as a classification method (for more details, see Introduction). In this context, varying the overall strength of correlations (i.e., the CFA and EFA errors) should not alter the CFA and EFA patterns of intercorrelations underlying the observed correlation matrix. Therefore, we hypothesized that the magnitude of the overall inter-item correlations may have no impact on the CFA+EFA model's performances.

Data analysis and discussion

To study the relationship between the performances of the CFA+EFA model and the magnitude of inter-item correlations, we employed the data and the results obtained in Simulation study 1. For the sake of simplicity, we considered the conditions with one covariate (i.e., C=1). Then, the design of the study was reduced to 12 conditions by varying only: $\pi=\{0.05,0.60,0.90\}$, $q=\{1,3\}$, and $K=\{2,4\}$. For each condition, we reconstructed the simulated magnitudes of correlations $r=\{\text{stronger},\text{weaker}\}$. By comparing the mean of the observed inter-item correlations for each generated dataset with the mean of the correlations over all the replications, the replications with average correlations under the overall mean were assigned to the weaker condition and vice versa for the stronger condition. By doing so, the final design of the study comprised 24 conditions.

Figure 1 reports the boxplots of the classification results for each condition of the design, where red boxplots corresponds to the weaker condition and the green ones to the stronger

Beta regression model	$\hat{m{ heta}}(m{\sigma}_{\hat{m{ heta}}})$	$(1 - \alpha\%)$ CI	
Residual quantiles: Q1:-0.707, Med:0.045, Q3:0.577	· ·		
Location coefficients (logit link):			
β_0 (Intercept)	1.408 (0.008)	[1.393; 1.423]	
β_1 : π (0.05 vs. 0.60)	1.300 (0.009)	[1.282; 1.318]	
β_2 : π (0.05 vs. 0.90)	0.876(0.008)	[0.861; 0.892]	
β_3 : K (2 vs. 4)	-0.011(0.010)	[-0.030; 0.008]	
β_4 : q (1 vs. 3)	0.132(0.010)	[0.113; 0.151]	
β_5 : K (2 vs. 4) : q (1 vs. 3)	-0.217 (0.014)	[-0.244; -0.191]	
Precision coefficients (log link):			
$\gamma_0 \; ({ m Intercept})$	4.222(0.018)	[4.186; 4.258]	
γ_1 : r (stronger $vs.$ weaker)	-0.005(0.025)	[-0.055; 0.044]	
$pseudo-R^2 = 0.651$			
$\ell(\boldsymbol{\beta}, \boldsymbol{\gamma}) = 22990.312$			
AIC = -45964.62			

Table 1: Integration to Simulation study 1: Estimates, standard errors, and CIs of the Beta regression model predicting the values of BACC index by the selected factors of the Simulation study 1.

condition. Overall, the magnitude of the inter-item correlations seem to produce a minimal impact on the classification performances.

To quantitatively assess which factors actually affect the classification results, we predicted the BACC values, which is a comprehensive measure, by the design factors through a Beta regression model, using the R package betareg (Cribari-Neto & Zeileis, 2010). The Beta model was selected according to a backward stepwise procedure based on the AIC index (Garofalo, 2022), starting from the full model which consists of $\{r, \pi, K, q\}$ as location predictors and r as precision predictor. Table 1 shows the selected Beta regression model, which does not include r as a location predictor but only as a precision predictor with a non-significant coefficient. In conclusion, the magnitude of the inter-item correlations seems to have minimal impact on the classification performances of the CFA+EFA model.

Figure 1: Integration to Simulation study 1: Boxplots of the classification results for the selected conditions of the design. Red boxplots corresponds to the weaker condition and the green ones to the stronger condition. On the x-axis the classifications indices are reported: specificity (SP), sensitivity (SE), Matthews Correlation Coefficient (MCC), and balanced classification accuracy (BACC).

Simulation study 3

Considering a general aberrant response style, the aim of this simulation study was twofold. First, we evaluated the accuracy of a set of model selection indices for correctly identifying the true model. To achieve this, we estimated both a correctly specified and a misspecified

CFA+EFA model, where the misspecification was realized by estimating an incorrect number of factors within the EFA component. The whole simulation procedure has been performed on a (remote) HPC machine and the analyses have been completed by using Julia software (Bezanson et al., 2017).

Design The design of the simulation study involved 3 factors: (i) $\pi \in \{0.40, 0.60, 0.80, 0.90\}$, (ii) $q \in \{1,3\}$, (iii) $K = \{2,4\}$. In this study, the true number of EFA latent factors denoted by K^* was set to 4, whereas K represents the number of EFA factors estimated in the CFA+EFA model. The factors were systematically varied in the complete factorial design with a total of $5 \times 2 \times 2 = 20$ scenarios. The invariant inputs for the model were the sample size fixed at 1000 and the number of observed variables p = 30. For each combination, B = 1000 samples were generated which correspond to $1000 \times 20 = 20000$ new data and the corresponding number of parameters.

Procedure Let q_h , π_w , and k_o be different levels of factors q, π , and K. Then, the data matrices were generated by:

(a) For i = 1, ..., n, j = 1, ..., p, and $q = 1, ..., q_l$ the true parameters of the CFA model (Bollen, 1989) were obtained by:

$$\lambda_{1j\times q_l} \sim \text{U}(0.05, 0.99), \quad \boldsymbol{\Phi}_{q_l\times q_l} \sim \text{LKJ}(1, q_l), \quad \boldsymbol{\Lambda}_{1p\times q_l} = \boldsymbol{\Lambda}_{1p\times q_l} \cdot \boldsymbol{\Lambda}_{p\times q_l}^{\text{str}}, \quad \boldsymbol{\mu} = \boldsymbol{0}_{q_l},$$

$$\boldsymbol{\Theta}_{\boldsymbol{\delta}p\times p} = \boldsymbol{1}_{p\times 1} - \text{diag}(\boldsymbol{\Lambda}_{p\times q_l} \boldsymbol{\Phi}_{q_l\times q_l} \boldsymbol{\Lambda}_{p\times q_l}^T), \quad \boldsymbol{\nu}_{K^*\times 1} = \text{U}(0.5, 5), \quad \lambda_{2j\times K^*} \sim \text{U}(0.05, 0.99),$$

$$\boldsymbol{\Psi}_{\boldsymbol{\epsilon}p\times p} = 0.85 \cdot \boldsymbol{I}_{p\times p}, \quad \beta_1 = \log\left(\frac{\pi_w}{(1-\pi_w)}\right), \quad \boldsymbol{\beta}_2 \sim \text{U}(-1.5, 1.5), \quad x_{i,2} \sim \boldsymbol{\mathcal{B}}ern(0.5)$$

where U(0.05, 0.99) represents the uniform distribution, LKJ(1, q) indicates the Lewandowski-Kurowicka-Joe distribution with shape parameter equals to 1 and dimension of the extracted factor correlation matrix of $q_l \times q_l$, $\mathbf{\Lambda}_{p \times q_l}^{\text{str}}$ is a matrix of zeros and ones which determines the constrained structure of the $\mathbf{\Lambda}_{1p \times q_l}$ matrix by linking not overlapping vectors of indicators to distinct latent factors, and the intercept of the logistic regression is represented by $x_{i,1} = 1$.

- (b) For m = 1, ..., M with M = 50000, the CFA respondents' latent traits, measurement errors, and continuous vectors of responses were computed as $\boldsymbol{\eta}_{q_l \times m} \sim \mathcal{N}_{q_l}(\mathbf{0}_q, \boldsymbol{\Phi}_{q_l \times q_l})$, $\boldsymbol{\delta}_{p \times m} \sim \mathcal{N}_p(\mathbf{0}_p, \boldsymbol{\Theta}_{\boldsymbol{\delta}p \times p})$, and $\boldsymbol{y}_{p \times m} = \boldsymbol{\Lambda}_{1p \times q_l} \boldsymbol{\eta}_{q_l \times m} + \boldsymbol{\delta}_{p \times m}$.
- (c) For r = 1, ..., R with R = 50000, the EFA respondents' latent traits, measurement errors, and continuous vectors of responses were computed as $\boldsymbol{\xi}_{K^* \times r} \sim \mathcal{N}_{K^*}(\boldsymbol{0}_{K^*}, \boldsymbol{I}_{K^* \times K^*})$, $\boldsymbol{\epsilon}_{p \times r} \sim \mathcal{N}_{j}(\boldsymbol{0}_{p}, \boldsymbol{\Psi}_{\boldsymbol{\epsilon}p \times p})$, and $\boldsymbol{y}_{p \times r} = \boldsymbol{\Lambda}_{2p \times K^*} \boldsymbol{\xi}_{K^* \times r} + \boldsymbol{\epsilon}_{p \times r}$.
- (d) For i = 1, ..., n and d = 2, the latent indicator variable of the mixture was sampled by: $\pi_{n \times 1} = \frac{\exp(\mathbf{X}_{n \times d} \boldsymbol{\beta}_{d \times 1})}{(\exp(\mathbf{X}_{n \times d} \boldsymbol{\beta}_{d \times 1}) + \mathbf{1}_{n \times 1})}$ and $\mathbf{z}_{n \times 1} \sim \mathcal{B}ern(\pi_{n \times 1})$
- (e) The data matrix is obtained by $\mathbf{Y}_{p\times n} = [\{\mathbf{y}_{p\times m} \mid \mathbf{z}_{i\times 1} = \mathbf{1}_{i\times 1}\}, \{\mathbf{y}_{p\times r} \mid \mathbf{z}_{i\times 1} = \mathbf{0}_{i\times 1}\}]^T$.
- (f) The generated data matrix of $Y_{p\times n}$ was analysed using the CFA+EFA model using k_o as the number of EFA factors.

Model selection indices. The information criteria (IC) and classification criteria (CC) are popular methods for model selection in the framework of FMMs (Cintron et al., 2023; Henson et al., 2007; Jedidi et al., 1997; McLachlan & Peel, 2000). We tested the accuracy of the following statistics (Henson et al., 2007; McLachlan & Peel, 2000): Akaike Information Criterion (AIC), consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), sample-adjusted BIC (ssBIC), Classification Likelihood Information Criterion (CLC), Integrated Classification Likelihood-BIC (ICL-BIC), and entropy (H). The formulae used:

AIC =
$$2d - 2\ell(\mathbf{\Omega})$$
, CAIC = $d(\log(n) + 1) - 2\ell(\mathbf{\Omega})$, BIC = $d\log(n) - 2\ell(\mathbf{\Omega})$,
ssBIC = $\log\left(\frac{n+2}{24}\right)d - 2\ell(\mathbf{\Omega})$, CLC = $2E - 2\ell(\mathbf{\Omega})$,
ICL-BIC = $2E + \log(n)d - 2\ell(\mathbf{\Omega})$, H = $1 - \frac{E}{n\log(G)}$

where, $\ell(\Omega)$ is the log-likelihood function of the CFA+EFA model parameters Ω , d is the number of estimated parameter for the model, n is the sample size, G is the number of components (i.e., G = 2 in our case), and the statistic E is computed as:

$$E = -\sum_{g=1}^{G} \sum_{i=1}^{n} f(z_{ig} = 1 \mid \boldsymbol{y}_{i}; \boldsymbol{\Omega}) \log (f(z_{ig} = 1 \mid \boldsymbol{y}_{i}; \boldsymbol{\Omega}))$$

where, $z_{ig} \in \{0, 1\}$ indicates the classification variable for the observation i to the component g, \mathbf{y}_i is the observed vector of the manifest variables, $f(z_i = g \mid \mathbf{y}_i; \mathbf{\Omega})$ represents the posterior probability of the observation's i membership to the component g.

Table 2: Monte Carlo study: percentages of the correct model selection procedure based on Akaike Information Criterion (AIC), consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), sample-adjusted BIC (ssBIC), Classification Likelihood Information Criterion (CLC), Integrated Classification Likelihood-BIC (ICL-BIC), and entropy (H).

π	q	AIC	CAIC	BIC	ssBIC	CLC	ICL-BIC	Н
0.40	1 3	$100.0 \\ 6.9$	$100.0 \\ 6.3$	$100.0 \\ 6.3$	100.0 6.8	100.0 7.0	$100.0 \\ 6.4$	99.6 18.7
0.60	1 3	100.0 82.7	$100.0 \\ 61.4$	$100.0 \\ 65.8$	$100.0 \\ 76.5$	100.0 87.4	$100.0 \\ 65.8$	$100.0 \\ 58.5$
0.80	1 3	99.4 64.9	94.2 64.9	$95.6 \\ 64.9$	$98.5 \\ 64.9$	$99.9 \\ 65.0$	$96.7 \\ 64.9$	99.9 100.0
0.90	1 3	$0.0 \\ 91.8$	0.0 89.6	$0.0 \\ 90.3$	$0.0 \\ 91.4$	$0.0 \\ 92.3$	$0.0 \\ 90.7$	93.7 99.8

Results and discussion Table 2 shows the percentages of Monte Carlo replications for which the indices correctly selected the true model over the misspecified one. In particular, the percentages of correct selection of the model with K=4 against the misspecified one with K=2 are reported. For π , higher accuracy is observed for proportions such as $\{0.60, 0.80, 0.90\}$. This corroborates the use of these indices for model selection in the applied contexts for which

the model is intended for. Considering q, the percentages are generally higher under conditions with q=1. However, it interesting to note that all the indices completely failed to recover the true model in the case of $\pi=0.90$ and q=1 but entropy, which reported a satisfying performance. Overall, the indices demonstrated similar performances except for the entropy index, which consistently exhibited the best recovery rates.

Table S1

Model	ℓ	AIC	CAIC	BIC	ssBIC	CLC	ICL-BIC	Н
K = 1	-28877.941	58053.881	58882.685	58733.685	58260.575	57916.328	58894.132	0.837
K = 2	-30519.953	61411.906	62446.52	62260.52	61669.927	61226.147	62446.761	0.81
K = 3	-30505.757	61457.514	62697.939	62474.939	61766.862	61216.547	62679.972	0.791
K = 4 K = 5	-30238.754 -31107.771	60997.508 62809.541	62443.743 64461.587	62183.743 64164.587	61358.183 63221.543	60546.167 62235.4	62252.403 64184.446	0.93 0.98
K = 5 K = 6	-31107.771 -30056.708	60781.416	62639.272	62305.272	61244.744	60170.618	62362.474	0.98
K = 0 K = 7	-28562.659	57867.318	59930.985	59559.985	58381.973	57234.696	59669.362	0.889
K = 8	-30553.681	61923.363	64192.84	63784.84	62489.345	61208.602	63886.08	0.897
K = 9	-30605.38	62100.761	64576.048	64131.048	62718.07	61303.344	64223.632	0.906
K = 10	-31489.177	63942.355	66623.453	66141.453	64610.99	62979.413	66142.511	0.999
K = 11	-30651.245	62340.491	65227.399	64708.399	63060.453	61302.529	64708.437	1.0
K = 12	-28787.229	58686.458	61779.177	61223.177	59457.747	57709.905	61358.624	0.862
K = 13	-30312.022	61810.044	65108.573	64515.573	62632.66	60638.511	64530.041	0.985
K = 14	-30172.996	61605.993	65110.332	64480.332	62479.936	60345.995	64480.335	1.0
K = 15	-30216.694	61767.388	65477.538	64810.538	62692.658	60463.08	64840.23	0.97
K = 16	-29781.424	60970.848	64886.808	64182.808	61947.444	59564.187	64184.148	0.999
K = 17	-30098.029	61678.057	65799.828	65058.828	62705.981	60199.602	65062.373	0.996
K = 18	-30344.454	62244.908	66572.489	65794.489	63324.158	60688.918	65794.499	1.0
K = 19	-29375.975	60381.95	64915.342	64100.342	61512.527	58752.05	64100.442	1.0
K = 20	-30180.78	62065.56	66804.762	65952.762	63247.464	60378.902	65970.105	0.982
$K=1 \land \mathtt{gender}$	-30149.642	60601.283	61441.212	61290.212	60810.752	60454.703	61445.632	0.842
$K=2 \land \mathtt{gender}$	-30098.992	60573.983	61619.723	61431.723	60834.779	60341.78	61575.519	0.853
$K = 3 \land \mathtt{gender}$	-29849.102	60148.205	61399.755	61174.755	60460.327	59783.436	61259.986	0.913
$K = 4 \land \text{gender}$	-30694.156	61912.312	63369.672	63107.672	62275.761	61489.84	63209.2	0.897
$K = 5 \land \text{gender}$	-28580.055	57758.11	59421.28	59122.28	58172.886	57285.685	59247.855	0.872
$K = 6 \land \text{gender}$	-29793.736	60259.472	62128.453	61792.453	60725.575	59677.081	61882.062	0.909
$K = 7 \land \text{gender}$	-31434.23	63614.461	65689.252	65316.252	64131.891	62868.47	65316.261	1.0
$K = 8 \land \text{gender}$	-30394.258	61608.516	63889.118	63479.118	62177.272	60856.094	63546.696	0.931
$K = 9 \land \text{gender}$	-30638.963	62171.927	64658.339	64211.339	62792.01	61370.535	64303.948	0.906
$K = 10 \land \text{gender}$ $K = 11 \land \text{gender}$	-30869.652 -30559.644	62707.305 62161.287	65399.528 65059.321	64915.528 64538.321	63378.715 62884.024	61815.534 61120.426	64991.757 64539.459	0.922 0.999
$K = 11 \land \text{gender}$ $K = 12 \land \text{gender}$	-30939.044 -30946.484	63008.969	66112.813	65554.813	63783.033	61896.925	65558.769	0.996
$K = 12 \land \text{gender}$ $K = 13 \land \text{gender}$	-31973.121	65136.242	68445.896	67850.896	65961.632	64010.968	67915.622	0.934
$K = 14 \land \text{gender}$ $K = 14 \land \text{gender}$	-30390.099	62044.198	65559.663	64927.663	62920.916	60800.606	64948.07	0.979
$K = 15 \land \text{gender}$	-30171.913	61681.826	65403.102	64734.102	62609.871	60353.928	64744.203	0.99
$K = 16 \land \mathtt{gender}$	-30109.511	61631.022	65558.108	64852.108	62610.394	60219.419	64852.505	1.0
$K = 17 \land \text{gender}$	-29623.409	60732.819	64865.715	64122.715	61763.517	59246.819	64122.715	1.0
$K = 18 \land \text{gender}$	-29937.38	61434.76	65773.466	64993.466	62516.785	59877.497	64996.204	0.997
$K = 19 \land \text{gender}$	-29966.526	61567.053	66111.569	65294.569	62700.404	59934.107	65295.624	0.999
$K=20 \land \mathtt{gender}$	-29977.138	61662.276	66412.603	65558.603	62846.954	59974.439	65578.767	0.979
$K=1 \wedge \mathrm{age}$	-29696.995	59693.991	60528.357	60378.357	59902.072	59549.561	60533.928	0.841
$K = 2 \land \text{age}$	-30519.388	61412.777	62452.954	62265.954	61672.185	61223.372	62450.549	0.812
$K = 3 \land \text{age}$	-30503.498	61454.996	62700.984	62476.984	61765.731	61211.213	62681.2	0.792
$K = 4 \land age$	-29599.435	59720.87	61172.667	60911.667	60082.932	59350.692	61063.49	0.845
$K = 5 \land \text{age}$	-30240.527	61077.054	62734.662	62436.662	61490.443	60544.01	62499.619	0.936
$K=6 \wedge \mathrm{age}$	-31669.093	64008.186	65871.604	65536.604	64472.901	63338.532	65536.951	1.0
$K=7 \wedge \texttt{age}$	-30901.899	62547.798	64617.028	64245.028	63063.841	61803.8	64245.029	1.0
$K=8 \wedge age$	-29771.022	60360.045	62635.084	62226.084	60927.414	59543.47	62227.509	0.999
$K=9 \wedge \text{age}$	-30488.513	61869.027	64349.877	63903.877	62487.723	60983.119	63909.969	0.994
$K=10 \land age$	-30588.455	62142.91	64829.57	64346.57	62812.933	61176.91	64346.57	1.0
$K = 11 \land \text{age}$	-30475.449	61990.898	64883.369	64363.369	62712.248	60951.192	64363.663	1.0
$K = 12 \land \text{age}$	-30186.005	61486.01	64584.292	64027.292	62258.687	60372.01	64027.292	1.0
$K = 13 \land \text{age}$	-31174.332	63536.664	66840.756	66246.756	64360.668	62396.513	66294.604	0.951
$K = 14 \land \text{age}$	-30286.381	61834.762	65344.664	64713.664	62710.092	60575.365	64716.268	0.997
$K = 15 \land \text{age}$ $K = 16 \land \text{age}$	-30189.018 -29899.651	61714.037 61209.302	65429.749 65130.826	64761.749 64425.826	62640.694 62187.286	60382.483 59806.17	64766.196 64432.693	0.995 0.993
$K = 10 \land \text{age}$ $K = 17 \land \text{age}$	-30129.788	61743.575	65870.909	65128.909	62772.886	60271.182	65140.516	0.988
$K = 18 \land \text{age}$	-29579.083	60716.166	65049.31	64270.31	61796.803	59158.166	64270.31	1.0
$K = 19 \land \text{age}$	-30271.118	62174.235	66713.19	65897.19	63306.2	60577.048	65932.003	0.965
$K = 20 \land \text{age}$	-29512.164	60730.328	65475.093	64622.093	61913.619	59025.395	64623.16	0.999
$K=1 \land \mathtt{gender} \land \mathtt{age}$	-30149.642	60601.283	61441.212	61290.212	60810.752	60454.703	61445.632	0.842
$K = 1 \land \text{gender} \land \text{age}$ $K = 2 \land \text{gender} \land \text{age}$	-30098.992	60573.983	61619.723	61431.723	60834.779	60341.78	61575.519	0.853
$K = 3 \land \text{gender} \land \text{age}$	-29849.102	60148.205	61399.755	61174.755	60460.327	59783.436	61259.986	0.913
$K = 4 \land \text{gender} \land \text{age}$	-30694.156	61912.312	63369.672	63107.672	62275.761	61489.84	63209.2	0.897
$K = 5 \land \text{gender} \land \text{age}$	-28580.055	57758.11	59421.28	59122.28	58172.886	57285.685	59247.855	0.872
$K = 6 \land \text{gender} \land \text{age}$	-29793.736	60259.472	62128.453	61792.453	60725.575	59677.081	61882.062	0.909
$K = 7 \land \text{gender} \land \text{age}$	-31434.23	63614.461	65689.252	65316.252	64131.891	62868.47	65316.261	1.0
$K = 8 \land \text{gender} \land \text{age}$	-30394.258	61608.516	63889.118	63479.118	62177.272	60856.094	63546.696	0.931
$K=9 \land \mathtt{gender} \land \mathtt{age}$	-30638.963	62171.927	64658.339	64211.339	62792.01	61370.535	64303.948	0.906
$K=10 \land \mathtt{gender} \land \mathtt{age}$	-30869.652	62707.305	65399.528	64915.528	63378.715	61815.534	64991.757	0.922
$K=11 \land \mathtt{gender} \land \mathtt{age}$	-30559.644	62161.287	65059.321	64538.321	62884.024	61120.426	64539.459	0.999
$K=12 \land \mathtt{gender} \land \mathtt{age}$	-30946.484	63008.969	66112.813	65554.813	63783.033	61896.925	65558.769	0.996
$K=13 \land \mathtt{gender} \land \mathtt{age}$	-31973.121	65136.242	68445.896	67850.896	65961.632	64010.968	67915.622	0.934
$K=14 \land \mathtt{gender} \land \mathtt{age}$	-30390.099	62044.198	65559.663	64927.663	62920.916	60800.606	64948.07	0.979
$K=15 \land \mathtt{gender} \land \mathtt{age}$	-30171.913	61681.826	65403.102	64734.102	62609.871	60353.928	64744.203	0.99
$K=16 \land \mathtt{gender} \land \mathtt{age}$	-30109.511	61631.022	65558.108	64852.108	62610.394	60219.419	64852.505	1.0
$K=17 \land \mathtt{gender} \land \mathtt{age}$	-29623.409	60732.819	64865.715	64122.715	61763.517	59246.819	64122.715	1.0
$K=18 \land \mathtt{gender} \land \mathtt{age}$	-29937.38	61434.76	65773.466	64993.466	62516.785	59877.497	64996.204	0.997
$K=19 \land \mathtt{gender} \land \mathtt{age}$	-29966.526	61567.053	66111.569	65294.569	62700.404	59934.107	65295.624	0.999
$K=20 \land \mathtt{gender} \land \mathtt{age}$	-29977.138	61662.276	66412.603	65558.603	62846.954	59974.439	65578.767	0.979

A Appendix: EM algorithm

In a mixture modelling context, the direct maximization of the observed data log-likelihood $\ell(\Omega; y)$ is complicated (see for instance Bishop and Nasrabadi, 2006). However, we can maximize the complete-data log-likelihood $\ell(\Omega; y, u)$ by using the EM algorithm to obtain Maximum Likelihood (ML) estimation.

Our EM algorithm requires to be initialized by plugging-in a set of random starting values for the parameters Ω^0 . Let $\Omega' = \Omega^{(t-1)}$ be the (t-1)-th estimates of Ω , the EM procedure performs the following first two steps for each iteration t:

- 1. **E-step**: compute $\mathbb{E}_{\Omega'}\left[\ell\left(\Omega; \boldsymbol{y}; \boldsymbol{u}\right) \mid \boldsymbol{y}_i, \hat{\Omega}'\right]$
- 2. M-step: solve $\hat{\mathbf{\Omega}}^t = \arg \max_{\mathbf{\Omega}} \mathbb{E}_{\mathbf{\Omega}'} \left[\ell(\mathbf{\Omega}; \mathbf{y}; \mathbf{u}) \mid \mathbf{y}_i, \hat{\mathbf{\Omega}}' \right]$
- 3. Convergence if $\epsilon' > \left| \mathbb{E}_{\Omega'} \left[\ell(\Omega; \boldsymbol{y}; \boldsymbol{u}) \mid \boldsymbol{y}_i, \hat{\Omega}' \right] \mathbb{E}_{\Omega'} \left[\ell(\Omega; \boldsymbol{y}; \boldsymbol{u}) \mid \boldsymbol{y}_i, \hat{\Omega}' \right] \right|$

A.1 E-step

In the E-step, we need to compute the expected value of the joint log-likelihood of the observed and latent data given the observed data, which corresponds to:

$$\mathbb{Q}\left(\mathbf{\Omega}\mid\hat{\mathbf{\Omega}}'\right) = \mathbb{E}_{\mathbf{\Omega}'}\left[\ell\left(\mathbf{\Omega};\boldsymbol{y};\boldsymbol{x}\right)\mid\boldsymbol{y}_{i},\hat{\mathbf{\Omega}}'\right] \\
= \sum_{i=1}^{n} \mathbb{E}_{\mathbf{\Omega}'}\left[z_{i} = 1\mid\boldsymbol{y}_{i}\right] \left\{\log(\hat{\pi}'_{i}) - \frac{(p+q)}{2}\log(2\pi) - \frac{1}{2}\log\left(\mid\hat{\mathbf{\Theta}}'_{\delta}\mid\right) - \frac{1}{2}\log\left(\mid\hat{\mathbf{\Phi}}'\right)\right\} \\
- \frac{1}{2}\log\left(\mid\hat{\mathbf{\Phi}}'\mid\right) - \frac{n}{2}trace\left[\hat{\mathbf{\Theta}}'_{\delta}^{-1}\left(\frac{1}{n}\boldsymbol{y}_{i}\boldsymbol{y}_{i}^{T} - 2\frac{1}{n}\boldsymbol{y}_{i}\hat{\boldsymbol{\Lambda}}_{1}'^{T}\mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\eta}_{i}\mid\boldsymbol{y}_{i}]^{T} + \frac{1}{n}\hat{\boldsymbol{\Lambda}}_{1}'\mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\eta}_{i}\boldsymbol{\eta}_{i}^{T}\mid\boldsymbol{y}_{i}]\boldsymbol{\Lambda}_{1}'^{T}\right)\right] - \frac{n}{2}trace\left[\hat{\mathbf{\Phi}}'^{-1}\left(\frac{1}{n}\mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\eta}_{i}\boldsymbol{\eta}_{i}^{T}\mid\boldsymbol{y}_{i}] - \frac{1}{n}\mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\eta}_{i}\mid\boldsymbol{y}_{i}]^{T}\right)\right] + \sum_{i=1}^{n} \mathbb{E}_{\mathbf{\Omega}'}[z_{i} = 0\mid\boldsymbol{y}_{i}]\left\{\log(1-\hat{\pi}'_{i}) - \frac{(p+K)}{2}\log(2\pi) - \frac{1}{2}\log\left(\mid\hat{\mathbf{\Psi}}'_{\epsilon}\mid\right) - \frac{n}{2}trace\left[\hat{\mathbf{\Psi}}'_{\epsilon^{-1}}\left(\frac{1}{n}\boldsymbol{y}_{i}\boldsymbol{y}_{i}^{T} - -2\hat{\boldsymbol{\Lambda}}_{2}'\mathbb{E}_{\mathbf{\Omega}'}\left[\boldsymbol{\xi}_{i}\mid\boldsymbol{y}_{i}\right]\frac{1}{n}\boldsymbol{y}_{i}^{T} + \frac{1}{n}\boldsymbol{\Lambda}_{2}'\mathbb{E}_{\mathbf{\Omega}'}\left[\boldsymbol{\xi}_{i}\boldsymbol{\xi}_{i}^{T}\mid\boldsymbol{y}_{i}\right]\hat{\boldsymbol{\Lambda}}_{2}'^{T}\right)\right] - \frac{n}{2}trace\left(\frac{1}{n}\mathbb{E}_{\mathbf{\Omega}'}\left[\boldsymbol{\xi}_{i}\boldsymbol{\xi}_{i}^{T}\mid\boldsymbol{y}_{i}\right] - \frac{2}{n}\mathbb{E}_{\mathbf{\Omega}'}\left[\boldsymbol{\xi}_{i}\mid\boldsymbol{y}_{i}\right]\hat{\boldsymbol{\nu}}'^{T} + \frac{1}{n}\hat{\boldsymbol{\nu}}'\hat{\boldsymbol{\nu}}'^{T}\right)\right\}$$

The conditional expected values of the sufficient statistics for the array of parameters Ω given the data and the current parameter values are computed as follows:

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{z=1} \mid \mathbf{y}] = \sum_{i=1}^{n} \mathbb{E}_{\mathbf{\Omega}'}[z_i = 1 \mid \mathbf{y}_i]$$
(2)

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{z=0} \mid \mathbf{y}] = \sum_{i=1}^{n} \mathbb{E}_{\mathbf{\Omega}'}[z_i = 0 \mid \mathbf{y}_i]$$
(3)

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{\mathbf{y}}^{(\mathbf{z}=1)} \mid \mathbf{y}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{\Omega}'}[z_i = 1 \mid \mathbf{y}_i] \mathbf{y}_i$$
(4)

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{\mathbf{y}}^{(\mathbf{z}=0)} \mid \mathbf{y}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{\Omega}'}[z_i = 0 \mid \mathbf{y}_i] \mathbf{y}_i$$
 (5)

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{\mathbf{y}\mathbf{y}^T}^{(\mathbf{z}=1)} \mid \mathbf{y}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{\Omega}'}[z_i = 1 \mid \mathbf{y}_i] \mathbf{y}_i \mathbf{y}_i^T$$
(6)

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{\mathbf{y}\mathbf{y}^T}^{(z=0)} \mid \mathbf{y}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{\Omega}'}[z_i = 0 \mid \mathbf{y}_i] \mathbf{y}_i \mathbf{y}_i^T$$
(7)

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{\boldsymbol{\eta}} \mid \boldsymbol{y}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{\Omega}'}[z_i = 1 \mid \boldsymbol{y}_i] \mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\eta}_i \mid \boldsymbol{y}_i]$$
(8)

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{\boldsymbol{\xi}} \mid \boldsymbol{y}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{\Omega}'}[z_i = 0 \mid \boldsymbol{y}_i] \mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\xi}_i \mid \boldsymbol{y}_i]$$
(9)

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{\mathbf{y}\boldsymbol{\eta}^T} \mid \mathbf{y}] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\mathbf{\Omega}'}[z_i = 1 \mid \mathbf{y}_i] \mathbf{y}_i \mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\eta}_i^T \mid \mathbf{y}_i]$$
(10)

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{\mathbf{y}\boldsymbol{\xi}^T} \mid \mathbf{y}] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\mathbf{\Omega}'}[z_i = 0 \mid \mathbf{y}_i] \mathbf{y}_i \mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\xi}_i^T \mid \mathbf{y}_i]$$
(11)

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{\eta\eta^T} \mid \mathbf{y}] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\mathbf{\Omega}'}[z_i = 1 \mid \mathbf{y}_i] \mathbb{E}_{\mathbf{\Omega}'}[\eta_i \eta_i^T \mid \mathbf{y}_i]$$
(12)

$$\mathbb{E}_{\mathbf{\Omega}'}[S_{\boldsymbol{\xi}\boldsymbol{\xi}^T} \mid \boldsymbol{y}] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\mathbf{\Omega}'}[z_i = 0 \mid \boldsymbol{y}_i] \mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\xi}_i \boldsymbol{\xi}_i^T \mid \boldsymbol{y}_i]$$
(13)

where, the conditional expected values of the CFA and EFA components given the data are derived by applying the properties of the conditional multivariate Normal distribution (Azzalini, 1996):

$$\mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\eta}_i \mid \boldsymbol{y}_i] = \hat{\boldsymbol{\mu}}' + \hat{\boldsymbol{\Phi}}' \hat{\boldsymbol{\Lambda}}_1'^T \left(\hat{\boldsymbol{\Lambda}}_1' \hat{\boldsymbol{\Phi}}' \hat{\boldsymbol{\Lambda}}_1'^T + \hat{\boldsymbol{\Theta}}_{\boldsymbol{\delta}}' \right)^{-1} \left(\boldsymbol{y}_i - \hat{\boldsymbol{\Lambda}}_1' \hat{\boldsymbol{\mu}}' \right)$$
(14)

$$\mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\eta}_{i}\boldsymbol{\eta}_{i}^{T}\mid\boldsymbol{y}_{i}] = \hat{\boldsymbol{\Phi}}' - \hat{\boldsymbol{\Phi}}'\hat{\boldsymbol{\Lambda}}_{1}'^{T}\left(\hat{\boldsymbol{\Lambda}}_{1}'\hat{\boldsymbol{\Phi}}'\hat{\boldsymbol{\Lambda}}_{1}'^{T} + \hat{\boldsymbol{\Theta}}_{\delta}'\right)^{-1}\hat{\boldsymbol{\Lambda}}_{1}'\hat{\boldsymbol{\Phi}}' + \mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\eta}_{i}\mid\boldsymbol{y}_{i}]\mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\eta}_{i}\mid\boldsymbol{y}_{i}]^{T}$$
(15)

$$\mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\xi}_i \mid \boldsymbol{y}_i] = \hat{\boldsymbol{\nu}}' + \hat{\boldsymbol{\Lambda}}_2'^T \left(\hat{\boldsymbol{\Lambda}}_2' \hat{\boldsymbol{\Lambda}}_2'^T + \hat{\boldsymbol{\Psi}}_{\boldsymbol{\delta}}' \right)^{-1} \left(\boldsymbol{y}_i - \hat{\boldsymbol{\Lambda}}_2' \hat{\boldsymbol{\nu}}' \right)$$
(16)

$$\mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\xi}_{i}\boldsymbol{\xi}_{i}^{T} \mid \boldsymbol{y}_{i}] = \boldsymbol{I}_{K} - \hat{\boldsymbol{\Lambda}}_{2}'^{T} \left(\hat{\boldsymbol{\Lambda}}_{2}'\hat{\boldsymbol{\Lambda}}_{2}'^{T} + \hat{\boldsymbol{\Psi}}_{\delta}' \right)^{-1} \hat{\boldsymbol{\Lambda}}_{2}' + \mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\xi}_{i} \mid \boldsymbol{y}_{i}] \mathbb{E}_{\mathbf{\Omega}'}[\boldsymbol{\xi}_{i} \mid \boldsymbol{y}_{i}]^{T}$$

$$(17)$$

and the conditional expected values of the classification latent variable given the observed data

are computed as:

$$\mathbb{E}_{\mathbf{\Omega}'}[z_i = 1 \mid \mathbf{y}_i] = \frac{\hat{\pi}_i' \mathcal{N}_p(\mathbf{y}_i; \hat{\mathbf{\Lambda}}_1' \hat{\mathbf{\mu}}', \hat{\mathbf{\Lambda}}_1' \hat{\mathbf{\Phi}}' \hat{\mathbf{\Lambda}}_1'^T + \hat{\mathbf{\Theta}}_{\delta}')}{\hat{\pi}_i' \mathcal{N}_p(\mathbf{y}_i; \hat{\mathbf{\Lambda}}_1' \hat{\mathbf{\mu}}', \hat{\mathbf{\Lambda}}_1' \hat{\mathbf{\Phi}}' \hat{\mathbf{\Lambda}}_1'^T + \hat{\mathbf{\Theta}}_{\delta}') + (1 - \hat{\pi}_i') \mathcal{N}_p(\mathbf{y}_i; \hat{\mathbf{\Lambda}}_2' \hat{\mathbf{\Lambda}}_2' \hat{\mathbf{\Lambda}}_2'^T + \hat{\mathbf{\Psi}}_{\delta})}$$
(18)

$$\mathbb{E}_{\mathbf{\Omega}'}[z_i = 0 \mid \mathbf{y}_i] = 1 - \mathbb{E}_{\mathbf{\Omega}'}[z_i = 1 \mid \mathbf{y}_i]$$
(19)

A.2 M-step

Once computed the sufficient statistics in the E-step, the M-step consists in maximizing $\mathbb{Q}(\hat{\Omega} \mid \hat{\Omega}')$ with respect to the elements of Ω and it can be completed by plugging-in Equations (2)-(13) into the complete log-likelihood Equation (1). In the M-step, by setting the score functions equal to zero, we obtain the maximum likelihood estimates for the t-th iteration of the EM:

$$\hat{\mathbf{\Lambda}}_{1}' = \frac{\mathbb{E}_{\mathbf{\Omega}'}[S_{\boldsymbol{y}\boldsymbol{\eta}^{T}} \mid \boldsymbol{y}]}{\mathbb{E}_{\mathbf{\Omega}'}[S_{\boldsymbol{\eta}\boldsymbol{\eta}^{T}} \mid \boldsymbol{y}]}$$
(20)

$$\hat{\Theta}_{\delta}' = \frac{\mathbb{E}_{\Omega'}[S_{yy^T}^{(z=1)} \mid y] - \hat{\Lambda}_1' \mathbb{E}_{\Omega'}[S_{y\eta^T} \mid y]}{\mathbb{E}_{\Omega'}[S_{z=1} \mid y]/n}$$
(21)

$$\hat{\boldsymbol{\mu}}' = \frac{\mathbb{E}_{\boldsymbol{\Omega}'}[S_{\boldsymbol{\eta}} \mid \boldsymbol{y}]}{\mathbb{E}_{\boldsymbol{\Omega}'}[S_{\boldsymbol{z}=1} \mid \boldsymbol{y}]}$$
(22)

$$\hat{\mathbf{\Phi}}' = \frac{\mathbb{E}_{\mathbf{\Omega}'}[S_{\eta\eta^T} \mid \mathbf{y}] - \hat{\boldsymbol{\mu}}'^T \mathbb{E}_{\mathbf{\Omega}'}[S_{\eta} \mid \mathbf{y}]}{\mathbb{E}_{\mathbf{\Omega}'}[S_{z=1} \mid \mathbf{y}]/n}$$
(23)

$$\hat{\mathbf{\Lambda}}_{2}' = \frac{\mathbb{E}_{\mathbf{\Omega}'}[S_{\mathbf{y}\xi^{T}} \mid \mathbf{y}]}{\mathbb{E}_{\mathbf{\Omega}'}[S_{\xi\xi^{T}} \mid \mathbf{y}]}$$
(24)

$$\hat{\boldsymbol{\Psi}}_{\epsilon}' = \frac{\mathbb{E}_{\boldsymbol{\Omega}'}[S_{\boldsymbol{y}\boldsymbol{y}^T}^{(\boldsymbol{z}=0)} \mid \boldsymbol{y}] - \hat{\boldsymbol{\Lambda}}_{2}'\mathbb{E}_{\boldsymbol{\Omega}'}[S_{\boldsymbol{y}\boldsymbol{\xi}^T} \mid \boldsymbol{y}]}{\mathbb{E}_{\boldsymbol{\Omega}'}[S_{\boldsymbol{z}=0} \mid \boldsymbol{y}]/n}$$
(25)

$$\hat{\boldsymbol{\nu}}' = \frac{\mathbb{E}_{\Omega'}[S_{\boldsymbol{\xi}} \mid \boldsymbol{y}]}{\mathbb{E}_{\Omega'}[S_{\boldsymbol{z}=0} \mid \boldsymbol{y}]}$$
(26)

$$\hat{\pi}' = \frac{\mathbb{E}_{\Omega'}[S_{z=1} \mid \boldsymbol{y}]}{n} \tag{27}$$

However, if covariates X (matrix $n \times C + 1$) are included in the mixture parameter π through the logit link, the ML estimates can not be derived through a closed-form expression for the covariate parameters β , as the score function of β , $\mathbf{g}(\hat{\beta})$, is a nonlinear function:

$$\frac{\partial \mathbb{Q}(\mathbf{\Omega} \mid \mathbf{\Omega}')}{\partial \boldsymbol{\beta}} = -\mathbf{X}^T \left\{ \left[\mathbb{E}_{\mathbf{\Omega}'}[\mathbf{z} = 1 \mid \mathbf{y}_i] - \mathbb{E}_{\mathbf{\Omega}'}[\mathbf{z} = 0 \mid \mathbf{y}_i] \exp(\mathbf{X}\hat{\boldsymbol{\beta}}) \right] \left[\mathbf{1} + \exp(\mathbf{X}\hat{\boldsymbol{\beta}}) \right]^{-1} \right\}$$
(28)

Therefore, a Newton-Raphson method has been applied by employing the Hessian matrix:

$$\mathbf{H}(\hat{\boldsymbol{\beta}}) = -\mathbf{X}^T \left\{ \exp(\mathbf{X}\hat{\boldsymbol{\beta}}) \left[\mathbf{1} + \exp(\mathbf{X}\hat{\boldsymbol{\beta}}) \right]^{-2} \right\} \mathbf{X}$$
 (29)

In particular, an iteration v of this method is given by:

$$\hat{\boldsymbol{\beta}}^{(v,t)} = \hat{\boldsymbol{\beta}}^{(v,t)} - \mathbf{H}^{-1} \left(\hat{\boldsymbol{\beta}}^{(v-1,t)} \right) \mathbf{g} \left(\hat{\boldsymbol{\beta}}^{(v-1,t)} \right)$$
(30)

References

- Azzalini, A. (1996). Statistical inference based on the likelihood (Vol. 68). CRC Press.
- Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65–98.
- Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer.
- Bollen, K. A. (1989). Structural equations with latent variables. John Wiley & Sons.
- Cintron, D. W., Loken, E., & McCoach, D. B. (2023). A cautionary note about having the right mixture model but classifying the wrong people. *Multivariate Behavioral Research*, 58(4), 675–686.
- Cribari-Neto, F., & Zeileis, A. (2010). Beta regression in r. *Journal of Statistical Software*, 34(2), 1–24. https://doi.org/10.18637/jss.v034.i02
- Garofalo, S. (2022). Stepbeta: Stepwise procedure for beta, beta-binomial and negative binomial regression models [R package version 2.1.0]. https://CRAN.R-project.org/package=StepBeta
- Henson, J. M., Reise, S. P., & Kim, K. H. (2007). Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics. *Structural Equation Modeling: A Multidisciplinary Journal*, 14(2), 202–226.
- Jedidi, K., Jagpal, H. S., & DeSarbo, W. S. (1997). Stemm: A general finite mixture structural equation model. *Journal of Classification*, 14(1), 23–50.
- McLachlan, G. J., & Peel, D. (2000). Finite mxiture models. John Wiley & Sons.