

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Beat by Beat:

Classifying Cardiac Arrhythmias with Recurrent Neural Networks
Patrick Schwab, Gaetano C. Scebba, Jia Zhang, Marco Delai and Walter Karlen

Institute for Robotics and Intelligent Systems
Department of Health Sciences and Technology

Bonus Challenge

Black Box Models

Bonus Challenge

Black Box Models

Based on what?

Pipeline

Capturing the Temporal Dimension

- Idea: Sequence learning over Heartbeats
- Utilise natural heartbeat segmentation
 - From ~9000 time steps to just ~45 time steps for each record.
 - Allows us to relate decisions to individual heartbeats.

Features

- For each heartbeat, we extract:

 - δRR with (n-1) heart beat
 - Relative Wavelet Energy (RWE) on 5 frequency bands
 - Total Wavelet Energy
 - R Amplitude
 - Q Amplitude (relative to R)
 - QRS-Duration
 - Wavelet entropy (WE)
 - Low-dimensional embedding of morphology

Level 1 Models

- We train several base models in varying configurations:
 - 1-vs-k and 1-vs-1 binary classification
 - Subsets of features
 - Different hyperparameters and model architectures
- In order to learn a diverse set of base models that complement each other

Attention over Heartbeats

$$u_t = tanh(W_{beat}h_t + b_{beat}) \tag{1}$$

$$a_t = softmax(u_t^T u_{beat}) \tag{2}$$

$$c = \sum_{t} a_t h_t \tag{3}$$

 u_t ... hidden representation of h_t

 W_{beat} , b_{beat} ... single-hidden-layer multi-layer perceptron (MLP)

 u_{beat} ... hidden representation of most informative beat

 a_t ... attention factors

c ... context vector

Attention (Sinus Rhythm)

Attention (Sinus Rhythm)

Typical pattern:

Roughly equally weighted - all beats equally informative.

Attention (Other Arrhythmia)

Attention (Other Arrhythmia)

Almost exclusive focus on irregular heartbeat.

Results

Actual Class

Confusion Matrix (Validation Set)

Predicted Class

	Normal	AF	Other	Noisy
Normal	86,53 %	0,96 %	11,53 %	0,96 %
AF	6,89 %	79,31 %	13,79 %	0,00 %
Other	18,08 %	7,44 %	73,40 %	1,00 %
Noisy	0,00 %	0,00 %	18,18 %	81,81 %

Confusion Matrix (Validation Set)

Room for improvement!

Predicted Class

Noisy Normal AF Other 11,53 % **Normal** 0,96 % 0,96 % 86,53 % 13,79 % 79,31 % 0,00 % AF 6,89 % Other 18,08 % 7,44 % 73,40 % 1,00 % **Noisy** 18,18 % 81,81 % 0,00 % 0,00 %

Actual Class

F1-Scores

Validation Set (20%)

$$F_{1,Normal} = 0.88$$

$$F_{1,AF} = 0.75$$

$$F_{1,Other} = 0.72$$

$$F_{1,Noisy} = 0.78$$

$F_{1,Total} = 0.78$

Private Test Set P2 (PhysioNet 2017)

$$F_{1,Normal} = 0.90$$

$$F_{1,AF} = 0.78$$

$$F_{1,Other} = 0.68$$

$$F_{1,Total} = 0.79$$

Conclusion

- → Decisions that are communicable increase trust in automated systems.
- → In order to create novel insights from large datasets, we need to understand what our models learn.
- → We can and should have it all: The classification performance of a deep-learning model and comprehensible decisions.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Questions?

Schwab et al. (2017). *Beat by Beat: Classifying Cardiac Arrhythmias with Recurrent Neural Networks*. Computing in Cardiology Conference (CinC 2017), Rennes, France, September 24-27, 2017

Patrick Schwab

Mobile Health Systems Lab
Institute for Robotics and Intelligent Systems
Department of Health Sciences and Technology
ETH Zurich

patrick.schwab@hest.ethz.ch

Follow me on Twitter:

@schwabpa

Appendix

Level 2 Blender

- Combine predictions from base models into final classification score
 - Increasing overall accuracy by combining multiple models' outputs
- Using a multi-layer perceptron (MLP)

