Model 1: ODEs comprising the mechanistic model of the circadian negative feedback loop from Hirota *et al.*, 2012. Lower case letters (p: *Per*, c1: *Cry1*, c2: *Cry2*) are mRNA state variables. Uppercase letters (P: PER, C1: CRY1, C2: CRY2) are the cytosolic proteins. C1N: PER-CRY1 and C2N: PER-CRY2 are the nuclear transcription factors.

$$\frac{d\mathbf{p}}{dt} = \frac{v_{\text{txn},\mathbf{p}}}{k_{\text{txn},\mathbf{p}} + (\mathbf{C1N} + \mathbf{C2N})^3} - \frac{v_{\text{deg},\mathbf{p}} \mathbf{p}}{k_{\text{deg},\mathbf{p}} + \mathbf{p}}$$
(1)

$$\frac{d\mathbf{c1}}{dt} = \frac{v_{\text{txn,c1}}}{k_{\text{txn,c}} + (\mathbf{C1N} + \mathbf{C2N})^3} - \frac{v_{\text{deg,c1}} \, \mathbf{c1}}{k_{\text{deg,c}} + \mathbf{c1}}$$
(2)

$$\frac{d\mathbf{c2}}{dt} = \frac{v_{\text{txn,c2}}}{k_{\text{txn,c}} + (\mathbf{C1N} + \mathbf{C2N})^3} - \frac{v_{\text{deg,c2}} \ \mathbf{c2}}{k_{\text{deg,c}} + \mathbf{c2}}$$
(3)

$$\frac{d\mathbf{P}}{dt} = k_{\text{tln,p}} \mathbf{p} - \frac{v_{\text{deg,P}} \mathbf{P}}{k_{\text{deg,P}} + \mathbf{P}} - v_{\text{a,CP}} \mathbf{P} \mathbf{C1} + v_{\text{d,CP}} \mathbf{C1N}$$
(4)

$$-v_{a,CP}$$
 P C2 $+v_{d,CP}$ C2N

$$\frac{d\mathbf{C1}}{dt} = \mathbf{c1} - \frac{v_{\text{deg,C1}} \ \mathbf{C1}}{k_{\text{deg,C}} + \mathbf{C1}} - v_{\text{a,CP}} \ \mathbf{P} \ \mathbf{C1} + v_{\text{d,CP}} \ \mathbf{C1N}$$
 (5)

$$\frac{d\mathbf{C2}}{dt} = \mathbf{c2} - \frac{v_{\text{deg,C2}} \mathbf{C2}}{k_{\text{deg,C}} + \mathbf{C2}} - v_{\text{a,CP}} \mathbf{P} \mathbf{C2} + v_{\text{d,CP}} \mathbf{C2N}$$
(6)

$$\frac{d\mathbf{C1N}}{dt} = v_{\text{a,CP}} \mathbf{PC1} - v_{\text{d,CP}} \mathbf{C1N} - \frac{(vd\mathbf{C}n - u(t)) \mathbf{C1N}}{k_{\text{deg,Cn}} + \mathbf{C1N} + \mathbf{C2N}}$$
(7)

$$\frac{d\mathbf{C2N}}{dt} = v_{a,CP} \, \mathbf{P} \, \mathbf{C2} - v_{d,CP} \, \mathbf{C2N} - \frac{\left(\left(vdCn - u(t) \right) \, m_{C2N} \right) \, \mathbf{C2N}}{k_{\text{deg,Cn}} + \mathbf{C2N} + \mathbf{C1N}}$$
(8)

Table 1: Parameter values for Model 1 from Hirota *et al.* **2012..** Parameter 16, *vdCn*, is modulated by KL001, and therefore is the control target.

	Parameter	Description	Value
1	$v_{\mathrm{txn},\mathbf{p}}$	Per Transcription rate	0.195
2	$v_{\rm txn,c1}$	Cry1 Transcription rate	0.131
3	$v_{\mathrm{txn,c2}}$	Cry1 Transcription rate	0.114
4	$k_{txn,\mathbf{p}}$	Per Repression constant	0.425
5	$k_{\rm txn,c}$	Cry1/2 Repression constant	0.259
6	$v_{ m deg,p}$	Per Max degradation rate	0.326
7	$v_{ m deg,c1}$	Cry1 Max degradation rate	0.676
8	$v_{ m deg,c2}$	Cry2 Max degradation rate	0.608
9	$k_{\mathrm{deg},\mathbf{p}}$	Per Degradation constant	0.011
10	$k_{\mathrm{deg,c}}$	Cry1/2 Degradation constant	1.149
11	$v_{ m deg,P}$	Max PERc degradation rate	2.970
12	$k_{\mathrm{deg},\mathbf{P}}$	PERc degradation constant	0.034
13	$v_{ m deg,C1}$	Max CRY1c degradation rate	1.523
14	$v_{ m deg,C2}$	Max CRY2c degradation rate	1.686
15	$k_{\mathrm{deg,C}}$	CRYc degradation constant	2.017
16	vdČn	CRYn degradation rate	0.101
17	m_{C2N}	CRY2n degradation multiplier	3.318
18	$k_{ m deg,CP}$	CRYn degradation constant	0.053
19	$v_{a,\mathbf{CP}}$	CRYn association rate	0.041
20	$v_{ m d,CP}$	CRYn dissociation rate	0.002
21	$k_{\mathrm{tln},\mathbf{p}}$	PER translation rate	3.000