

# PID auto-tuning UNICOS

MOC3O02, Feedback systems & Tuning

**Enrique Blanco** (CERN, EN/ICE) on behalf of the UNICOS team











### **Outline**

- 1. Introduction
- 2. CERN installations (UNICOS)
- 3. PID auto-tuning: Solution and methods
- 4. Experimental results
- 5. Conclusions



### Introduction

- The PID feedback control algorithm dates back to early nineteens'
- The right tuning of those controllers is essential to increase plant availability and maximize profits in many processes
- Operators and control engineers spend a considerable time in tuning those controllers
- GOAL: (1) Provide automatic methods to tune the PID controllers and (2) make them usable by plant operators



### PID control basics



Parameters: K<sub>c</sub>, T<sub>i</sub>, T<sub>d</sub>

- PID are usually tuned by operators (or control engineers).
- The majority of the controllers in industry are PIs



### **CERN** installations



- Industrial facilities for the accelerator complex and the associated experiments
- Continuous process control: temperature, pressure, levels...
- Large and/or complex dynamics







TPC gas system



LHC cooling towers



CO2 Cooling (MARCO)



### **CERN** installations



Enormous number of PID based controllers: > 8000

- LHC cryogenic control system: ~ 5000 PID controllers
- Cooling and Ventilation: ~ 870 PID controllers

PIDs tuned extremely conservative or initial parameters untouched

Fine tuning systematically avoided

#### Implementation:

- PLCs (Programmable Logic Controller): > 400
- UNICOS (Unified Industrial Control System) framework.





# PID auto-tuning

Create a tool to automatically find the PID parameters and tune the control loops always initiated deliberately by operators and/or control engineers.

Classification (one) on how the data is extracted from the plant

- Open loop: e.g. turn off PID and excite the process by changing the MV
- Close loop: e.g. tune online while the PID is working (SP is changed)



# PID auto-tuning

#### **Tuning methods**

- **Trial & Error**
- **Experimental based**
- Model based analytical
- Automatic tuning: Auto-tuning methods
  - Relay Method
  - SIMC (Skogestad Internal Model Control)
  - IFC (Iterative Feedback Tuning)

The choice is not straight forward and depends mostly on the process knowledge



# PID auto-tuning: [1] Relay

Astrom and Hagglund (1995)

The process is brought to oscillation by replacing the PID controller with a relay function. The ultimate Gain (K<sub>cu</sub>) and the ultimate period (T<sub>u</sub>) are determined

#### **User parameters**

- Maximal deviation of the control effort: MV
- Number of cycles to detect the ultimate condition

#### **Advantages**

Single action (vs. trial and error) Little a priori knowledge of the process

#### **Disadvantages**

Preferably to execute it under stable conditions Process must be controllable with a P-controller.



|     | Kc     | Ti     | Td       |
|-----|--------|--------|----------|
| Р   | 0.5 Ku |        |          |
| PI  | 0.4 Ku | 0.8 Tu |          |
| PID | 0.6 Ku | 0.5 Tu | 0.125 Tu |



# PID auto-tuning:[2] SIMC

Method based on an internal model (Skogestad IMC)

- Two phases: Process identification (first or second order) and application of tuning rules



- Desired performance: Tight vs. smooth control



- Simplicity of parameterization

#### **Disadvantages**

- Applicable to processes without complex dynamics
- Stable processes: open loop test



$$K_c = \frac{1}{k'} \cdot \frac{1}{(\theta + \tau_c)}$$
  
$$\tau_I = \min(\tau_1, 4(\tau_c + \theta))$$

 $k' = k/T_1 = initial slope step response$ 

 $\tau_c \ge 0$ : desired closed-loop response time (tuning parameter)

For robustness select:  $\tau_c$  ,  $\theta$ (gives  $K_c \le K_{c,max}$ ) For disturbance rejection select : K<sub>c</sub> ≥ K<sub>c.min</sub> = u<sub>d0</sub>/y<sub>max</sub>



# PID auto-tuning: [3] IFT

*Iterative Feedback Tuning* (IFT): inspired in the iterative parametric optimization approach. Makes random perturbations on the SP. Minimize the current value of the measured value and a desired first order response.

#### **Parameterization**

- Just safeguards (thresholds)
- Desired 1st order response shape

#### **Advantages**

- close loop method with minimal disturbances
- model free

#### **Disadvantages**

- A local minima could be found

$$J(\rho) = \frac{1}{2N} \left[ a \sum_{t=1}^{N} (L_y \cdot \tilde{y}_t(\rho))^2 + l \sum_{t=1}^{N} (L_u \cdot u_t(\rho))^2 \right]$$

$$\rho^* = \underset{\rho}{\operatorname{argmin}} J(\rho)$$

$$\tilde{y}_t = y_t - y_d$$



### **UNICOS** Implementation

- Algorithms in the WinCC OA SCADA: Scripting language
- The PLC maintains the PID algorithm untouched
- HMI inside the PID controller faceplate









OOO Conclusions

# Experimental results (Ghe Flow control)

Use case: Cryogenics flow control: PI control [Simulation]

Gas helium circulating to maintain the thermal shielding of the LHC superconducting magnets at 80 K.





CERN Installations PID Auto-tuning

ICALEPCS'15 - Oct/15

E. Blanco - UNICOS Team (CERN)

● ● ● ● Experimental results

### **GHe Flow control**

- Found too sluggish with oscillations and overshoots when disturb by pressure changes

- Three auto-tuning methods tested: Relay, SIMC, IFT

| Tuning   | Kc  | $T_i$ | Overshoot | Oscillation |
|----------|-----|-------|-----------|-------------|
| Original | 1   | 200   | 22 %      | 6 %         |
| Relay    | 9   | 12    | 0.5 %     | 1 %         |
| SIMC     | 4.5 | 7     | 1 %       | 1.3 %       |
| IFT      | 13  | 11    | 0.5 %     | 0.5 %       |







CERN Installations PID Auto-tuning

# Experimental results (HVAC process)

- Use case: chilled water production unit providing water at 5°C for LHC
- Maintain at 25° C the condenser output temperature of a chiller
- PI controller: desired temperature deviation within 1° C





CERN Installations PID Auto-tuning

■ ● ● ● ■ Experimental results

### **HVAC** control

Operation team reported instabilities on a regulation loop action on a control valve

Results: Relay vs. IFT

| Tuning   | Kc   | $T_i$ | $ \Delta y $ | $ \Delta u $ |
|----------|------|-------|--------------|--------------|
| Original | 8    | 0.5   | 2 °C         | 100 %        |
| Relay    | 8.3  | 311   | 1.3 °C       | 10 %         |
| IFT      | 50.9 | 5666  | 0.5 °C       | 20 %         |











### Conclusions

- PID auto-tuning is not a dream. Feasible to implement
- Fully-integrated implementation: UNICOS
- Flexible solution: Open to new methods
- Improvement of plant availability and engineering time
- Operator acceptance



# Acknowledgements

Collaboration agreement: CERN – UVA



Industrial Controls group Engineering Department CERN, Geneva (Switzerland)



Automatic control and systems engineering University of Valladolid.
UVA, Valladolid (Spain)



ICALEPCS'15 - Oct/15





**UNICOS** (**UN**ified Industrial Control System) is a CERN-made framework to develop industrial control applications http://www.cern.ch/unicos



Enrique Blanco: automation engineer, PhD in systems and process engineering. Head of the process control section (industrial controls group) in the engineering dpt. at CERN

## Native integration advantages

#### **Easy integration**

- Avoid data extraction & third party tools (off line analysis)
- External connections
- Customized to our environment (event driven data, Customized scaling)

#### **Ease operation**

- Same philosophy & look and feel
- Ease parameterization
- Fully control and safe operation (boundaries)

#### Flexible and evolutive

Easy integration of new algorithms

