

AP2502

General Description

The AP2502 is a 4-channel independent linear current sink with low dropout voltage and perfect match between each channel. Each channel can provide 20mA continuous constant current.

In application, there is only one $0.1\mu F$ ceramic capacitor required, and there is no any EMI and switching noise issue. It is perfect choice for hand-hold portable system especially based on Li-ion/Polymer battery powered display module.

The brightness can be controlled and/or adjustable via simple PWM signal applied to EN pin.

The AP2502 is available with SOT-23-6 and TSOT-23-6 packages.

Features

- Current Matching Between Each Channel: ±1%
- Low Dropout Voltage: 65mV (Typ.) @ I_{LED}= 20mA
- Maximum Output Current on Each Channel: 20mA
- Ultra-low Quiescent Current: 125µA (Typ.)
- Ultra-low Shutdown Current: 1µA (Max.)
- None EMI and Switching Noise Issue
- Permitted PWM Dimming Frequency up to 150kHz
- OTSD Protection

Applications

- Mobile Phone, Smart Phone, PDA
- MP3, MP4, PMP
- Small Size Backlight Module

Figure 1. Package Types of AP2502

AP2502

Pin Configuration

K/KT Package (SOT-23-6/TSOT-23-6)

Figure 2. Pin Configuration of AP2502 (Top View)

Pin Descriptions

P in Number	Pin Name	Description		
1	EN	Chip enable pin, active high to permit PWM signal input for brightness control by changing duty cycle		
2	GND	GND		
3, 4, 5, 6	LED4 to LED1	LED cathode terminal for channel number		

AP2502

Functional Block Diagram

Figure 3. Functional Block Diagram of AP2502

AP2502

Ordering Information

Temperature Packing Package Part Number Marking ID Range **Type** SOT-23-6 -40 to 85°C Tape & Reel AP2502KTR-G1 **GEE** TSOT-23-6 -40 to 85°C AP2502KTTR-G1 L7E Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit	
Enable Input Voltage	V_{EN}	-0.3 to 6.5	V	
Thermal Resistance (Junction to Ambient)	θ_{JA}	250	°C/W	
Operating Junction Temperature Range	$T_{ m J}$	150	$^{\circ}\mathrm{C}$	
Storage Temperature Range	T_{STG}	-65 to 150	°C	
Lead Temperature (Soldering,10 seconds)	T_{LEAD}	260	°C	
ESD (Machine Model)		600	V	
ESD (Human Body Model)		6000	V	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

AP2502

Recommended Operating Conditions

Parameter	Symbol	Va	Unit		
rarameter	Symbol	Min	Max	Unit	
Enable Input Voltage	$V_{\rm EN}$	2.0	6.0	V	
Operating Temperature Range	T_{A}	-40	85	°C	
Sink Current	I_{LED}		20	mA	

Electrical Characteristics

 V_{IN} =3.6V, V_{F_LED} =3.2V, T_A = 25°C, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
LED Dropout Voltage	$V_{DROPOUT}$	I _{SINK} =20mA		65	120	mV
Enable PIN High Voltage	V_{IH}		2		6	V
Enable PIN Low Voltage	$V_{\rm IL}$		0		0.5	V
LED Maximum Sink Current	I _{LED(MAX)}	V _{CC} =3.3 to 6.0V, Enable=V _{CC}	18	20	22	mA
Sink Current Matching Between each Channel	I _{LED-MATCH}	V _{LED} =0.4V		0.5	1	%
Quiescent Current	I_Q	$I_{LED1}=I_{LED2}=I_{LED3}=I_{LED4}=20\text{mA}$		125	180	μΑ
Shutdown Current	I _{SHUTDOWN}	Set EN Pin Low		0.1	1	μА
Thermal Resistance (Junction to Case)	$\theta_{ m JC}$			80		°C/W
PWM Frequency to Adjust Brightness	f_{PWM}				150	kHz
EN Pin Pulse High Time	T_{HIGH}		1			μs
EN Pin Pulse Low Time	T_{LOW}		100			ns
Thermal Shutdown Temperature	T_{OTSD}			150		°C
Thermal Shutdown Hysteresis	T_{HYOTSD}			25		C

AP2502

Typical Performance Characteristics

Figure 4. Quiescent Current vs. Case Temperature

Figure 5. Quiescent Current vs. Enable Voltage

Figure 6. LED Current vs. Case Temperature

Figure 7. LED Current vs. Output Voltage

AP2502

Typical Performance Characteristics (Continued)

Figure 8. Dropout Voltage vs. Case Temperature

Figure 9. Current Matching vs. Case Temperature

Figure 10. LED Current vs. Enable Voltage

Figure 11. LED Current Efficiency vs. Duty Cycle

AP2502

Typical Performance Characteristics (Continued)

Figure 12. LED Current (Note 2)

(V_{IN} =4V, V_{EN} =0 to 3.6V, Duty cycle=50%, f_{PWM} =1kHz)

Figure 13. Internal Oscillator Working at Low Frequency (V_{IN}=4V, V_{EN}=0 to 3.6V, Duty cycle=50%, f_{PWM}=0.1kHz)

Note 2: Chopper offset-canceling technology is adopted to get good current matching, $I_{LED} = [(I_1 + I_2)/2]*duty$.

AP2502

Typical Application

Figure 14. AP2502 Typical Application

AP2502

Mechanical Dimensions

SOT-23-6 Unit: mm(inch)

AP2502

Mechanical Dimensions (Continued)

TSOT-23-6

Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788