

#



#### NILKAMAL SCHOOL OF MATHEMATICS, APPLIED STATISTICS & ANALYTICS

#### **Group 8**









# Twitter Sentiment Analysis of Electric Vehicles

Mentored by:

Prof. Prashant Dhamale Dr. Leena Kulkarni



**Special Thanks:** 

**BLUE ENERGY MOTORS** 

Subject:

**Applied Multivariate Data Analysis & Financial Time Series Analysis** 

# **Objectives**

 The project primarily focuses on analysing tweets to cluster the public sentiment about electric cars using unsupervised machine learning techniques.

• The sentiments thus obtained are then compared with the stock prices of an electric car company, checking for any correlation or association between the two.

# Research Papers Referred

CS229 Final Project Report

#### Multiclass Classification of Tweets and Twitter Users **Based on Kindness Analysis**

Wanzi Zhou CHAOSHENG HAN XINYUAN HUANG xhuang93@stanford.edu

wanziz@stanford.edu hcs@stanford.edu

#### I. Introduction

Nowadays social networks such as Twitter and Facebook are most indispensable in people's daily lives, and thus it is important to keep the social community healthy. Establishing a kindness assessment mechanism is very helpful for maintaining a healthy environment, which could be used for applications like a rewarding system or parent control modes for children using social network.

Pak and Paroubek [4] improved this model by better cleaning the input data. Agarwal et al [5] from Columbia University further explored tweets with a 3-way classification, namely positive, negative and neutral. All the mentioned research studies are supervised learning, however, it is infeasible to label enough training data in short time. Thus, different from former work, we propose to give each tweet/Twitter user a kindness rating, leading to an unsupervised multinomial classification or regression.

#### Multiclass Classification of Tweets based on **Kindness Analysis**

Published in 2016 Authors: Wanzi Zhou Chaosheng Han Xinyuan Huang

#### Sentiment Analysis for Effective Stock Market Prediction

Shri Bharathi<sup>1</sup>\* Angelina Geetha<sup>2</sup>

<sup>1</sup>Department of Computer Science and Engineering, B.S.Abdur Rahman University, Vandalur, Chennai-600 048, Tamil Nadu, India \* Corresponding author's Email: shribharathi01@gmail.com

Abstract: The Stock market forecasters focus on developing a successful approach to predict stock prices. The vital idea to successful stock market prediction is not only achieving best results but also to minimize the inaccurate forecast of stock prices. This paper attempts to design and implement a predictive system for guiding stock market investment. The novelty of our approach is the combination of both sensex points and Really Simple Syndication (RSS) feeds for effective prediction. Our claim is that the sentiment analysis of RSS news feeds has an impact on stock market values. Hence RSS news feed data are collected along with the stock market investment data for a period of time. Using our algorithm for sentiment analysis, the correlation between the stock market values and sentiments in RSS news feeds are established. This trained model is used for prediction of stock market rates. In our experimental study the stock market prices and RSS news feeds are collected for the company ARBK from Amman Stock Exchange (ASE). Our experimental study has shown an improvement of 14.43% accuracy prediction, when compared with the standard algorithm of ID3, C4.5 and moving average stock level indicator.

Keywords: Stock market intelligence, stock data analysis, RSS Feeds, sensex points, Sentiment mining.

#### **Sentiment Analysis for Effective Stock Market Prediction**

Published in 2017 Authors: Shri Bharathi Angelina Geetha

# The Premise









### **Table Of Contents**

Data Profile and Cleaning

Collected Raw tweets using Twitter API and cleaned the tweets by using NLTK package.

Word2Vec

Used the Word2Vec algorithm on the cleaned tweets to convert tweets to vectors

K means

We run unsupervised learning algorithm using K-Means with K=3 for positive, negative and neutral.



Performed EDA on the dataset

Tesla Stock Prices and Superimposition

Collected Tesla Stock Prices for 2018-01-01 to 2020-12-31 and the correlation between stocks and the sentiments obtained using K-Means

**Moving Average and Binning Results** 

Use MA method and binning method to perform analysis of association on the sentiments with the movement of Tesla stocks

Conclusion

5

6

Concluded the project, which was backed by industry expert- Blue Energy Motors

# The Sentiments



Sentiment Analysis attempts to divide the language units into three categories:

- Positive
- Negative
- Neutral



Electric cars will change the way we move and how we make a living!



As if building electric cars and shooting rockets to Mars weren't enough work, Elon Musk has a new project !!! 🖋 🌑 Check out this link: https://t.co/sIBtpTU2S6





As we change our batteries for a new way of driving, here are the questions we should be asking https://t.co/rC7



Electric cars are coming. It is a question of time, not if. As a global electric utility, we aim to get infrastructure ready to accelerate the #MobilityRevolution



Tesla crashes into fire truck while reportedly on autopilot https://t.co/Mf1kzQoqch

# Data Profile and Description

| Date             | 1-1-2018 to 31-12-2020 |  |  |
|------------------|------------------------|--|--|
| Number of Tweets | 903962                 |  |  |
| Likes > 10       | 43983                  |  |  |

Collected tweets with 'electric cars' keyword

#### **Select 3 columns**

| Unnamed: 0.1 Ur | Mar                             | tweets_description or_location    | tout crosted                     | at raturanta            | ranlias          | likes | quote_count |
|-----------------|---------------------------------|-----------------------------------|----------------------------------|-------------------------|------------------|-------|-------------|
| 16              | N CX MY JIM                     | 51581 Creator of Adelaide         | Remove                           | d 193 du                | nlicate          | 2     | 1           |
| 55              |                                 | 10683 Professor a UNSW Sy         |                                  |                         | piicate          | 1     | .5 0        |
| 61              | S M                             | 18758 Author (Th San Diego        |                                  | tweets                  |                  | 2     | 4 1         |
| 77              | M ST                            | .38497 Original ne NYC - Bost Str | raight o <mark> 2018-01</mark> - | 31 9                    | 3                | 1     | .2 2        |
| 99              | a Planta                        | 5292 PlugShare El Segund          | -                                |                         |                  | 1     | .3 1        |
| 109             | Ch Chillian C                   | 51581 Creator of Adelaide         | Dat                              | a <mark>Cleani</mark> i | ng               | 1     | .2 0        |
| 212             |                                 | 47679 CEO & Pres Mainly Lir.      | 243                              |                         | ··· <del>o</del> | 1     | .4 0        |
| 214             | 5 11 3                          | 7554 Global ind Worldwid Ste      | EACH INIC TOTO-OT-               | 31 4                    | ·                | 1     | .8 2        |
| 218             |                                 | .13143 Karma's ja Austin TX F     |                                  |                         |                  | 22    | .7 3        |
| 219             | 5 1 13 13                       | 107066 Tech for th Portland,      | Used Go                          | en <mark>sim P</mark> ł | rases            | 1     | .6 0        |
| 242             |                                 | 25701 WA based Perth, We          | n                                | ackage                  |                  | 1     | .2 0        |
| 274             | £ )                             | 14920 By EV drivers, for EV . o.  |                                  |                         |                  | 1     | .2 0        |
| 278             | 2/0 17/00/07 DIBITALLIC 10000/  | 207066 Tech for th Portland, .@   | 9BMW' 2018-01-                   | 31 9                    | 0                | 1     | .4 0        |
| 303             | 303 14763734 DigitalTre 1966867 | 207066 Tech for th Portland, In   | as little 2018-01-               | 31 11                   | . 0              | 2     | 6 2         |



#### **Raw Tweet**

I wrote for @Ricohet about how our tax dollars subsidizing electronic cars is also subsidizing child labour in mines in Africa: <a href="https://t.co/12XHRuhlfO">https://t.co/12XHRuhlfO</a>



### Word2Vec

# **Bag of Words**

Word Numbers

Example: 1. I love cars 2. I love Tesla

|    |   | love | cars | Tesla |
|----|---|------|------|-------|
| D1 | 1 | 1    | 1    | 0     |
| D2 | 1 | 1    | 0    | 1     |

One Hot Encoding Method

Drawback: 1. Sparse Matrix

2. Similarity between words (cars and Tesla) is not captured

# TF / IDF Feature

#### Text vectorizer that transforms the text into a usable vector.

- **Term Frequency (TF):** The number of occurrences of a specific term.
- $TF_{ij}$ : No of repeated words in a sentence / No of words in a sentence.
- Inverse Document Frequency (IDF): To reduce the weight of a term if the term's occurrences are scattered throughout all the sentences.
- $IDF_i$ : log(No of sentences/No of sentences containing the word)

$$idf_i = \log\left(\frac{n}{df_i}\right)$$

- **idf**<sub>i</sub>: IDF score for term *i*
- $\mathbf{df_i}$ : Number of sentences containing term i
- **n**: Total number of sentences.

$$w_{i,j} = tf_{i,j} \times idf_i$$

- $\mathbf{W_{ij}}$ : TF-IDF score for term i in sentence j
- $\mathbf{tf_{ij}}$ : Term Frequency for term i in sentence j
- **idf**<sub>i</sub>: IDF score for term *i*

| Tweets |                                              |  |  |  |  |
|--------|----------------------------------------------|--|--|--|--|
| 1      | I like tesla                                 |  |  |  |  |
| 2      | I love electric vehicles                     |  |  |  |  |
| 3      | I love electric vehicles but It is expensive |  |  |  |  |

### Step 1: TF

|   | i   | like | tesla | love | electric | vehicles | but | it  | is  | expensive |
|---|-----|------|-------|------|----------|----------|-----|-----|-----|-----------|
| 1 | 1/3 | 1/3  | 1/3   | 0    | 0        | 0        | 0   | 0   | 0   | 0         |
| 2 | 1/4 | 0    | 0     | 1/4  | 1/4      | 1/4      | 0   | 0   | 0   | 0         |
| 3 | 1/8 | 0    | 0     | 1/8  | 1/8      | 1/8      | 1/8 | 1/8 | 1/8 | 1/8       |

### Step 2: IDF

| Term | i          | like     | tesla    | love     | electric | vehicles | but      | it       | is       | expensive |
|------|------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| IDF  | log(3/3)=0 | log(3/1) | log(3/1) | log(3/2) | log(3/2) | log(3/2) | log(3/1) | log(3/1) | log(3/1) | log(3/1)  |

### Step 3: TF×IDF

|   | i | like     | tesla    | love     | electric | vehicles | but      | it       | is       | expensive |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| 1 | 0 | 0.477121 | 0.477121 | 0        | 0        | 0        | 0        | 0        | 0        | 0         |
| 2 | 0 | 0        | 0        | 0.176091 | 0.176091 | 0.176091 | 0        | 0        | 0        | 0         |
| 3 | 0 | 0        | 0        | 0.176091 | 0.176091 | 0.176091 | 0.477121 | 0.477121 | 0.477121 | 0.477121  |



# **Word Embeddings**

| Words / Features | is_vehicle | needs_fuel | can_flow |
|------------------|------------|------------|----------|
| Cars             | 0.9        | 0.95       | 0.01     |
| Tesla            | 0.8        | 0.89       | 0.02     |
| Water            | 0.01       | 0.02       | 0.93     |



### **How does it work? - By Using Neural Network**



### **Continuous Bag of Words (CBOW)**



# **K Means**



## **K** Means



#### The Formula

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} \left\| x_i^{(j)} - c_j \right\|^2$$
Objective Function Distance Function

$$k = no. of clusters$$
  
 $n = no. of cases$   
 $x_i^{(j)} = case i in j^{th} cluster$   
 $c_j = centroid for cluster j$ 

## K Means on Word2Vec

**Train Word2Vec Model** 

**Interpret the Clusters** 

**Extract Word Vectors** 

Use the Clusters to understand the Sentiments

**Cluster the Word Vectors** 

# K Means Result

| Cluster 1      |          |  |  |  |  |
|----------------|----------|--|--|--|--|
| moron          | 0.163284 |  |  |  |  |
| decline        | 0.110696 |  |  |  |  |
| climate_change | 0.137932 |  |  |  |  |
| crisis         | 0.112269 |  |  |  |  |
| expensive      | 0.169612 |  |  |  |  |

| Cluster 2  |          |  |  |  |  |
|------------|----------|--|--|--|--|
| innovate   | 0.135221 |  |  |  |  |
| impressive | 0.149991 |  |  |  |  |
| faster     | 0.147905 |  |  |  |  |
| efficient  | 0.140876 |  |  |  |  |
| price_drop | 0.126916 |  |  |  |  |

| Cluster 3  |          |  |  |  |  |
|------------|----------|--|--|--|--|
| car        | 0.157001 |  |  |  |  |
| package    | 0.149991 |  |  |  |  |
| electric   | 0.147905 |  |  |  |  |
| motorist   | 0.144958 |  |  |  |  |
| automotive | 0.126916 |  |  |  |  |

| Recoding |          |  |  |  |  |
|----------|----------|--|--|--|--|
| -1       | Negative |  |  |  |  |
| 0        | Neutral  |  |  |  |  |
| 1        | Positive |  |  |  |  |

# The Clusters

**Sentiment Distribution of Words** 





### EDA and Visualizations

Sentiments for other brands: (Ford, BMW, Audi, Tesla, Hyundai)

Sentiments for hashtags: (costs, batteries, climate, fuel, price, tax, afford, money)





### EDA and Visualizations

Tweets per Year Tweets Sentiments per Year

**Top 10 Highest Tweeting Usernames** 





# Tesla Stock Association with Sentiments









#### **Elon Musk**

@elonmusk

nothing

A Shortfall of Gravitas



Joined February 2008

#### Tesla

@Tesla

Electric vehicles, giant batteries & solar





**Example 2008** tesla.com iii Joined February 2008

# Tesla Dataset

|     | JANUARY 2018 |     |     |       |     |     |  |  |
|-----|--------------|-----|-----|-------|-----|-----|--|--|
| Sun | Mon          | Tue | Wed | Thurs | Fri | Sat |  |  |
|     | 1            | 2   | 3   | 4     | 5   | 6   |  |  |
| 7   | 8            | 9   | 10  | 11    | 12  | 13  |  |  |
| 14  | 15           | 16  | 17  | 18    | 19  | 20  |  |  |
| 21  | 22           | 23  | 24  | 25    | 26  | 27  |  |  |
| 28  | 29           | 30  | 31  |       |     |     |  |  |

| DECEMBER 2020 |                           |    |    |    |    |    |  |  |
|---------------|---------------------------|----|----|----|----|----|--|--|
| Sun           | Mon Tue Wed Thurs Fri Sat |    |    |    |    |    |  |  |
|               |                           | 1  | 2  | 3  | 4  | 5  |  |  |
| 6             | 7                         | 8  | 9  | 10 | 11 | 12 |  |  |
| 13            | 14                        | 15 | 16 | 17 | 18 | 19 |  |  |
| 20            | 21                        | 22 | 23 | 24 | 25 | 26 |  |  |
| 27            | 28                        | 29 | 30 | 31 |    |    |  |  |

| Sr. No. | Date       | Open      | High      | Low       | Close     | Adj Close | Volume    | Symbol | Month | Year |
|---------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------|-------|------|
| 0       | 02-01-2018 | 20.799999 | 21.474001 | 20.733334 | 21.368668 | 21.368668 | 65283000  | TSLA   | 1     | 2018 |
| 1       | 03-01-2018 | 21.4      | 21.683332 | 21.036667 | 21.15     | 21.15     | 67822500  | TSLA   | 1     | 2018 |
| 2       | 04-01-2018 | 20.858    | 21.236668 | 20.378668 | 20.974667 | 20.974667 | 149194500 | TSLA   | 1     | 2018 |
| 3       | 05-01-2018 | 21.108    | 21.149332 | 20.799999 | 21.105333 | 21.105333 | 68868000  | TSLA   | 1     | 2018 |
| 4       | 08-01-2018 | 21.066668 | 22.468    | 21.033333 | 22.427334 | 22.427334 | 147891000 | TSLA   | 1     | 2018 |
| 5       | 09-01-2018 | 22.344    | 22.586666 | 21.826668 | 22.246    | 22.246    | 107199000 | TSLA   | 1     | 2018 |
| 6       | 10-01-2018 | 22.146667 | 22.466667 | 22        | 22.32     | 22.32     | 64648500  | TSLA   | 1     | 2018 |
| 7       | 11-01-2018 | 22.349333 | 22.987333 | 22.217333 | 22.530001 | 22.530001 | 99682500  | TSLA   | 1     | 2018 |
| 8       | 12-01-2018 | 22.575333 | 22.694    | 22.244667 | 22.414667 | 22.414667 | 72376500  | TSLA   | 1     | 2018 |
| 9       | 16-01-2018 | 22.502666 | 23        | 22.32     | 22.670668 | 22.670668 | 97114500  | TSLA   | 1     | 2018 |
| 10      | 17-01-2018 | 22.698    | 23.266666 | 22.65     | 23.143999 | 23.143999 | 106552500 | TSLA   | 1     | 2018 |

### **EDA**





**Closing prices of Tesla** 

Sentiments about Tesla

# Mapping the Sentiment with the Stocks

(Monthly Sentiments + Monthly Log Returns)



# Moving Average Method as Stock Level Indicators

- Moving Average is a Technical Analysis tool in which the actual index data is compared with its average taken over a period of time.
- We have employed Simple Moving Average (SMA), the periods for moving averages are 5 days, 10 days, and 15 days.
- The main advantages of Moving Average Stock Level Indicator is that it offers a smooth line and also helps to cut down the amount of noise on price chart compared with other level of indicators.

Formula:

$$F_t = \frac{A_t + A_{t-1} + A_{t-2} \dots + A_{t-(n-1)}}{n}$$

n: Number of periods to be averaged

 $F_t$ :  $n^{th}$  order MA at time t

 $A_{t-n}$ : Actual occurrence in the past period for up to 'n' periods

| Proposed Predictive System (Moving Average) | Sensex-Moving Average Result |  |  |
|---------------------------------------------|------------------------------|--|--|
| 5 day MA > 10 day MA > 15 day MA            | Positive                     |  |  |
| 5 day MA < 10 day MA < 15 day MA            | Negative                     |  |  |
| 5 day MA < 10 day MA > 15 day MA            | Neutral                      |  |  |
| 5 day MA > 10 day MA < 15 day MA            | Neutral                      |  |  |

# The Mapping Relation for Moving Average

| Sentiment Analysis Result     | Sensex-Moving Average Result  | Sentiment + MA |
|-------------------------------|-------------------------------|----------------|
| Positive                      | Positive                      | Positive       |
| Negative                      | Negative                      | Negative       |
| Negative                      | Positive                      | Neutral        |
| Positive                      | Negative                      | Neutral        |
| Neutral                       | Positive / Negative / Neutral | Neutral        |
| Positive / Negative / Neutral | Neutral                       | Neutral        |

# Chi-Square Results

 $H_0$ : The sentiments and the direction of stock movements from MA are independent  $H_1$ : There is dependence between sentiments and the direction of stock movements LOS =  $\alpha = 10\% = 0.1$ 

| Sentiment → MA Result ↓ | Negative | Neutral | Positive |
|-------------------------|----------|---------|----------|
| Negative                | 5        | 20      | 185      |
| Neutral                 | 9        | 19      | 169      |
| Positive                | 7        | 18      | 309      |

| Alpha   | 0.1    |  |  |
|---------|--------|--|--|
| P-value | 0.0996 |  |  |

Since p-value  $\leq \alpha$ , we reject  $H_0$ Hence, there is dependence between sentiments and the direction of stock movements from MA

# Binning Method as Stock Level Indicators

| Proposed Predictive System (Binning)            | Stock Direction |
|-------------------------------------------------|-----------------|
| Closing Value > [ Open Value + ADV×Open Value ] | Positive        |
| Closing Value < [ Open Value – ADV×Open Value ] | Negative        |
| Otherwise                                       | Neutral         |

**ADV = Average Daily Variation** 

# Comparisons

**Binning** 

**MA Labels** 

Comparison of direction of stock price movements

**Binning** 

**Sentiment + MA** 

Comparison of direction of stock price movements by adding effect of sentiment on Moving Averages

# Conclusion

- Unlike the conventional stock market prediction systems, our novel approach combines the sentiments of common people through the tweets and NYSE data to analyze the behavior of Tesla stock.
- Sentiments and log returns have very low negative correlation of -0.04.
- The Moving Average method, when compared to the true values (obtained by binning), gives a percentage match of **37.43**%.
- By taking the sentiments into consideration and re-labelling the stock trends, the percentage match for the same increases to 51.67%.

## Limitations

- This project compares tweets on electric cars with key words like 'Tesla' and 'Teslarati'. But there could be a pool of tweets outside of the electric car keyword. This might not even be a comparison.
- K means, due to being an unsupervised algorithm, does not give us well defined clusters for our case.
- We considered Tesla stocks, which is listed in the NYSE market. But the twitter data collected comprised of English tweets from all over the world.

## References

1. Multiclass Classification of Tweets based on Kindness Analysis

http://cs229.stanford.edu/proj2016/report/HanHuangZhou-MulticlassClassificationOfTweetsBasedOnKindnessAnalysis-report.pdf

2. Sentiment Analysis for Effective Stock Market Prediction

https://www.google.com/searchq=sentiment+analysis+for+effective+stock+market+prediction&domains=inass.org&sitesearch=inass.org

3. How to Label Unlabelled Tweets – Unsupervised Learning https://medium.com/geekculture/how-to-label-unlabeled-tweets-fb701b97ebf

4. What is Word2Vec?
https://www.youtube.com/watch?v=IEzzgLh\_SFA

5. **Github Link** 

https://github.com/Leal-Miranda/Twitter-Sentiment-Analysis-of-Electric-Vehicles

# Thank You