

Ngôn ngữ lập trình C++

§01§ BÀI TẬP LẬP TRÌNH NÂNG CAO

<mark>1♥.</mark> Lại bài toán cái túi

Có N đồ vật, và cái túi có sức chứa không quá M đơn vị khối lượng. Đồ vật thứ i có khối lượng là A_i và giá trị là C_i với i=1,2,...,N.

Yêu cầu: Hãy sắp xếp các đồ vật vào các túi sao cho tổng khối lượng các vật bỏ vào không quá *M* và tổng giá trị của các vật đó lớn nhất có thể.

Dữ liệu cho trong file KNAPAGAIN.INP gồm:

- Dòng đầu ghi hai số nguyên dương N và M tương ứng là số đồ vật và sức chứa tối đa của cái túi.
- Dòng thứ hai ghi N số nguyên dương $A_1, A_2, ..., A_N$ là khối lượng của N đồ vật.
- Dòng thứ ba ghi N số nguyên dương $C_1, C_2, ..., C_N$ là giá trị của N đồ vật.

Kết quả đưa ra file **KNAPAGAIN.OUT** là tổng giá trị lớn nhất có thể của các vật được bỏ vào túi. *Ví dụ:*

KNAPAGAIN.INP	KNAPAGAIN.OUT	
5 10	20	
1 2 2 9 10		
1 1 2 3 20		

Giới hạn:

- Sub 1: $N \le 20$; $A_i, C_i \le 10^8$; $M \le 10^9$;
- Sub 2: $N \le 40$; A_i , $C_i \le 10^8$; $M \le 10^9$;
- Sub 3: $N \le 1000$; A_i , $C_i \le 10^4$; $M \le 10^4$;
- Sub 4: $N \le 1000$; $A_i \le 10^8$; $C_i \le 50$; $M \le 10^9$;

2. Đường đi trên lưới

Cho lưới ô vuông kích thước $N \times N$. Ô trên trái có toạ độ (1, 1), ô dưới phải có toạ độ (N, N). Trên mỗi ô có ghi một số nguyên. Bạn phải đi từ ô trên trái xuống ô dưới phải theo các quy tắc sau:

- Không được ra ngoài lưới,
- Chỉ được đi sang phải hoặc xuống dưới theo các ô kề cạnh,
- Mỗi ô đi qua không quá một lần,
- Không được đi qua quá *K* ô chứa giá trị âm.

Yêu cầu: Cho N, K ($0 < N \le 1000$; $0 \le K \le 50$) và giá trị các ô trên lưới (số nguyên thuộc kiểu Integer). Hãy xác định tổng lớn nhất của đường đi theo quy tắc trên (tổng đường đi là tổng các ô trên đường đi). Nếu không có đường đi thoả mãn thì đưa ra thông báo NO.

Dữ liệu: Vào từ file văn bản GRID.INP gồm:

- Dòng đầu tiên chứa 2 số nguyên N, K.
- N dòng sau: mỗi dòng chứa N số nguyên mô tả một dòng của lưới, lần lượt từ trên xuống dưới.

Kết quả: Đưa ra file văn bản GRID.OUT, là kết quả tìm được.

Ví dụ:

GRID.INP	
4 1	
1 2 3 -5	
-10 6 0 -1	
-10 -10 -10 2	
0 0 0 1	

GRID	OUT.	*	
11			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1	2	3	-5
-10	6	0	1
-10	-10	-10	2
0	0	0	1

Giới hạn: Có 50% số test ứng với 50% số điểm của bài là $n \le 100$; $k \le 10$.

3X. Dãy con không giảm dài nhất khi đổi dấu không quá 3 số hạng

Cho dãy số nguyên a_1 , a_2 , ..., a_n . Bằng cách đổi dấu không quá 3 số hạng, hãy tìm dãy con tăng dài nhất của dãy đã cho, tức là tìm dãy chỉ số i_1 , i_2 , ..., i_k sao cho:

- $0 \quad 1 \leq i_1 < i_2 < \dots < i_k \leq n;$
- \circ Dãy con a_{i1} , a_{i2} , ..., a_{ik} là dãy không giảm nếu đổi dấu không quá 3 số hạng của dãy này;
- o k có giá trị lớn nhất có thể.

Dữ liệu cho trong file SEQD.INP như sau:

- Dòng thứ nhất ghi số nguyên dương $n (n \le 1000)$;
- Dòng thứ hai ghi n số nguyên $a_1, a_2, ..., a_n (|a_i| \le 10^9)$.

Kết quả ghi ra file SEQD.OUT là độ dài của xâu con dài nhất tìm được.

Ví dụ:

SEQD.INP		SEQD.OUT	SEQD.INP	SEQD.OUT
5	4	5	6	5
91234	***		9 9 1 0 -22 33	

4☼. Bài toán dồn sỏi

Có n đống sỏi xếp thành một hàng, đống thứ i có A_i viên sỏi. Ta có thể ghép hai đống sỏi kề nhau thành một đống và mất một chi phí bằng tổng hai đống sỏi đó. Hãy tìm cách ghép n đống sỏi này thành một đống với chi phí là nhỏ nhất.

Ví dụ: Với 5 đống sỏi:

← đống cuối cùng

Chi phí nhỏ nhất: 3 + 7 + 12 + 19 = 41.

Dữ liệu vào cho trong file Donsoi.inp có dạng:

- Dòng đầu tiên là số nguyên n ($n \le 500$) là số đống sỏi.
- Dòng thứ hai là n số nguyên là số sỏi của n đống. $(0 < A_i \le 100000)$.

Dữ liệu ra ghi trong file Donsoi.out là một số nguyên duy nhất là chi phí nhỏ nhất.

Ví du:

Donsoi.Inp	Donsoi.Out
5	41
4 1 2 7 5	

Cho lưới ô vuông gồm N dòng và M cột. Hãy cắt lưới ô vuông này theo các đường chia của lưới sao cho các phần tách ra sau khi cắt là các hình vuông. Chú ý là khi cắt theo các đường chia của lưới thì cắt hết đường chia đó.

Yêu cầu: Tìm cách cắt với số lần cắt là ít nhất.

Dữ liệu cho trong file **CutNet.Inp** gồm hai số nguyên dương N và M (N, $M \le 500$).

Kết quả ghi trong file CutNet.Out là số lần cắt ít nhất cần thực hiện.

Ví dụ:

CutNet.Inp	CutNet.Out
1 4	3