رياضيات گسسته

۱۲ آبان ۱۳۹۹

فهرست مطالب

1																								٥	نزار	و گ	لمق	مند	•
١						٠						 					٠	ست	در	اِل	جدو	9	اوليه	ی	ها.	رابط	, '	۱.۱	
١		٠										 					•			(No	t) ,	نيض	ပ်	١.	1.1			
٢																							رکیب						
٢																							رکیب						
٢																							ی م						
٢							٠							٠						٠	نرطح	ب ش	کیب	تر	۵.	1.1			
٣							٠							٠						ِط	وشر	، د	رُکیبُ	تر	۶.	1.1			
٣							٠					 		٠						ماً	زاره	ر گ	واصر	ż	٧.	1.1			

۱ منطق و گزاره

گزاره یا Statement یک جمله خبری است که یا درست است و یا نادرست. امکان درستی و نادرستی همزمان یک گزاره وجود ندارد.

۱.۱ رابطهای اولیه و جدول درستی

تعداد ترکیبهای جدول درستی برای n گزارهٔ مبنا معادل Υ^n است. رابطهای گزارهای Υ^n ابزارهایی برای ایجاد گزارههای ترکیبی بکار میروند.

جدول ۱: جدول رابطهای اصلی گزارهای و نمادهای آنها

مفهوم	نماد	نام
چنین نیست	، بار بالای متغیر، $^\prime$ بعد از متغیر یا ! \sim	نقیض (Not)
q p	∧ یا ٠	ترکیب عطفی (And)
q یا p	+ یا +	ت <i>رکیب</i> فصلی (Or)
q فقط p یا فقط	⊻ يا ⊕	یای مانع جمع (Exclusive or / Aut)
q آنگاه p	\Rightarrow	ترکیب شرطی (الزام)
q اگر و فقط اگر p	\Leftrightarrow	ترکیب دوشرطی [`]

۱.۱.۱ نقیض (Not)

اگر p یک گزاره باشد، نقیض آن را به صورت p نشان میدهیم. این گزاره زمانی درست است که p نادرست باشد. با توجه به جدول ۲ میتوان نتیجه گرفت هردو همارز p هستند:

آنها — ارزشهای یکسان داشته باشند از لحاظ منطقی همارز هستند که آنرا با نماد ≡ نشان میدهیم. نشان میدهیم.

جدول ۲: جدول رابطهای اصلی گزارهای و نمادهای آنها

$$\begin{array}{c|c} \neg p & p \\ \hline 1 & \cdot \\ \cdot & 1 \end{array}$$

$$\neg(\neg p) \stackrel{*_{\alpha_{\gamma}} \mid_{\zeta(\zeta)}}{\equiv} p \tag{1}$$

۲۰۱۰۱ ترکیب عطفی (And)

اگر q و p دو گزاره باشند و بخواهیم از صحت هر دو اطمینان حاصل کنیم از ترکیب عطفی $(p \wedge q)$ استفاده می کنیم (جدول p).

جدول ٣: جدول مقادير تركيب عطفى

$p \wedge q$	q	p
1	١	١
•	٠	١
•	١	•
•	•	٠

۳.۱.۱ ترکیب فصلی (Or)

اگر q و p دو گزاره باشند و بخواهیم از صحت یکی از آنها اطمینان حاصل کنیم از ترکیب فصلی $(p \lor q)$ استفاده می کنیم (جدول ۴).

جدول ۴: جدول مقادیر ترکیب فصلی

$$\begin{array}{c|cccc} p \lor q & q & p \\ \hline \begin{matrix} 1 & 1 & 1 \\ 1 & \cdot & 1 \\ 1 & 1 & \cdot \\ \cdot & \cdot & \cdot \end{matrix}$$

۴.۱.۱ یای مانع جمع (انحصاری) (Exclusive or / Aut)

اگر q و p دو گزاره باشند و بخواهیم از صحت فقط یکی از آنها اطمینان حاصل کنیم از یای انحصاری $(p \oplus q)$ استفاده می کنیم (جدول ۵)

۵.۱.۱ ترکیب شرطی

هرگاه بخواهیم از گزاره p گزاره p را نتیجه بگیریم، از ترکیب شرطی استفاده می کنیم (جدول ۶). برای بیان آن مینویسیم $p \Rightarrow q$ که به شکلهای زیر میتواند خوانده شود:

- اگر p آنگاه p.
- q، p را نتیجه می دهد.
- از q نتیجه میدهد.

جدول ۵: جدول مقادیر یای انحصاری

$$\begin{array}{c|cccc} p \oplus q & q & p \\ \hline \cdot & & 1 & 1 \\ 1 & & \cdot & 1 \\ 1 & & 1 & \cdot \\ \cdot & & \cdot & \cdot \\ \end{array}$$

جدول ۶: جدول مقادیر ترکیب شرطی

$$\begin{array}{c|cccc} p \Rightarrow q & q & p \\ \hline & 1 & 1 & 1 \\ & \cdot & \cdot & 1 \\ & 1 & 1 & \cdot \\ & 1 & \cdot & \cdot \end{array}$$

در عبارت $\mathfrak{p} = \mathfrak{p} + \mathfrak{p}$ مقدم و \mathfrak{p} تالی است. با توجه به جدول مقادیر (جدول ۶) میتوان نتیجه گرفت:

$$\neg p \lor q \quad \equiv \quad p \Rightarrow q \tag{(Y)}$$

۶.۱.۱ ترکیب دوشرطی

اگر بخواهیم از گزاره p گزاره p را نتیجه بگیریم و از گزاره p گزاره p را، مینویسیم $p \Leftrightarrow q$ (جدول ۷).

جدول ۷: جدول مقادیر ترکیب دوشرطی

$p \Leftrightarrow q$	$q \Rightarrow p$	$p \Rightarrow q$	q	p
1	١	1	١	١
•	١	•	•	١
•		١	١	•
١	١	١	•	•

با توجه به جدول مقادیر (۷) میتوان نتیجه گرفت:

$$p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p) \equiv (\neg p \lor q) \land (\neg q \lor p) \tag{Υ}$$

گزاره راستگو گزارهای است که همواره برابر با ۱ باشد. گزارهای که همواره ۱ است را گزاره متناقض گویند.

۷.۱.۱ خواص گزارهها

گزارهها خواصی دارند که به شرح زیر است:

خودتوانی
$$\begin{cases} p \lor p &\equiv p \\ p \land p &\equiv p \end{cases}$$
 خودتوانی

جذبی
$$\begin{cases} p \lor (p \land q) & \equiv & p \\ p \land (p \lor q) & \equiv & p \end{cases}$$
 (۵)

جابهجایی
$$\begin{cases} p \lor q &\equiv q \lor p \\ p \land q &\equiv q \land p \end{cases}$$

$$\left\{ egin{array}{lll} p \lor (q \lor r) & \equiv & (p \lor q) \lor r \\ p \land (q \land r) & \equiv & (p \land q) \land r \end{array} \right.$$
 (Y)

$$\left\{ egin{array}{lll} p \lor (q \land r) & \equiv & (p \land q) \lor (p \land r) \\ p \land (q \lor r) & \equiv & (q \lor q) \land p(p \lor r) \end{array}
ight.$$
 (A)

متمم
$$\begin{cases} p \lor \neg p & \equiv & \mathsf{N} \\ p \land \neg p & \equiv & \mathsf{\cdot} \end{cases} \tag{9}$$

(De Morgan) قانون دمورگان
$$\begin{cases} \neg (p \lor q) & \equiv & \neg p \land \neg q \\ \neg (p \land q) & \equiv & \neg p \lor \neg q \end{cases}$$

$$\left\{ egin{align*} (p \wedge \mathbf{1}) &\equiv p \\ (p \wedge \cdot) &\equiv \cdot \\ (p \vee \mathbf{1}) &\equiv \mathbf{1} \\ (p \vee \cdot) &\equiv p \end{array} \right.$$
قانون همانی