

Art of Problem Solving 2015 Iran MO (3rd round)

National Math Olympiad (3rd round) 2015

_	Algebra
1	x,y,z are three real numbers inequal to zero satisfying $x+y+z=xyz$. Prove that $\sum (\frac{x^2-1}{x})^2 \geq 4$
	Proposed by Amin Fathpour
2	Prove that there are no functions $f,g:\mathbb{R}\to\mathbb{R}$ such that $\forall x,y\in\mathbb{R}:f(x^2+g(y))-f(x^2)+g(y)-g(x)\leq 2y$ and $f(x)\geq x^2$. Proposed by Mohammad Ahmadi
3	Does there exist an irreducible two variable polynomial $f(x,y) \in \mathbb{Q}[x,y]$ such that it has only four roots $(0,1),(1,0),(0,-1),(-1,0)$ on the unit circle.
4	$p(x) \in \mathbb{C}[x]$ is a polynomial such that: $\forall z \in \mathbb{C}, z = 1 \Longrightarrow p(z) \in \mathbb{R}$ Prove that $p(x)$ is constant.
5	Find all polynomials $p(x) \in \mathbb{R}[x]$ such that for all $x \in \mathbb{R}$: $p(5x)^2 - 3 = p(5x^2 + 1)$ such that: $a)p(0) \neq 0$ $b)p(0) = 0$
6	$a_1, a_2, \ldots, a_n > 0$ are positive real numbers such that $\sum_{i=1}^n \frac{1}{a_i} = n$ prove that: $\sum_{i < j} \left(\frac{a_i - a_j}{a_i + a_j} \right)^2 \le \frac{n^2}{2} \left(1 - \frac{n}{\sum_{i=1}^n a_i} \right)$
_	Number Theory
1	Prove that there are infinitely natural numbers n such that n can't be written as a sum of two positive integers with prime factors less than 1394.
2	$M_0 \subset \mathbb{N}$ is a non-empty set with a finite number of elements. Ali produces sets $M_1, M_2,, M_n$ in the following order: In step n , Ali chooses an element of M_{n-1} like b_n and defines M_n as
	$M_n = \{b_n m + 1 m \in M_{n-1}\}$

Art of Problem Solving 2015 Iran MO (3rd round)

	Prove that at some step Ali reaches a set which no element of it divides another element of it.
3	Let $p > 5$ be a prime number and $A = \{b_1, b_2, \dots, b_{\frac{p-1}{2}}\}$ be the set of all quadratic residues modulo p , excluding zero. Prove that there doesn't exist any natural a, c satisfying $(ac, p) = 1$ such that set $B = \{ab_1 + c, ab_2 + c, \dots, ab_{\frac{p-1}{2}} + c\}$ and set A are disjoint modulo p .
	This problem was proposed by Amir Hossein Pooya.
4	a, b, c, d, k, l are positive integers such that for every natural number n the set of prime factors of $n^k + a^n + c, n^l + b^n + d$ are same. prove that $k = l, a = b, c = d$.
5	$p > 30$ is a prime number. Prove that one of the following numbers is in form of $x^2 + y^2$.
	p+1, 2p+1, 3p+1,, (p-3)p+1
_	Geometry
1	Let $ABCD$ be the trapezoid such that $AB \parallel CD$. Let E be an arbitrary point on AC . point F lies on BD such that $BE \parallel CF$. Prove that circumcircles of $\triangle ABF, \triangle BED$ and the line AC are concurrent.
2	Let ABC be a triangle with orthocenter H and circumcenter O . Let K be the midpoint of AH . point P lies on AC such that $\angle BKP = 90^{\circ}$. Prove that $OP \parallel BC$.
	Let ABC be a triangle. consider an arbitrary point P on the plain of $\triangle ABC$. Let R,Q be the reflections of P wrt AB,AC respectively. Let $RQ \cap BC = T$. Prove that $\angle APB = \angle APC$ if and if only $\angle APT = 90^{\circ}$.
4	Let ABC be a triangle with incenter I . Let K be the midpoint of AI and $BI \cap \odot(\triangle ABC) = M, CI \cap \odot(\triangle ABC) = N$. points P,Q lie on AM,AN respectively such that $\angle ABK = \angle PBC, \angle ACK = \angle QCB$. Prove that P,Q,I are collinear.
5	Let ABC be a triangle with orthocenter H and circumcenter O . Let R be the radius of circumcircle of $\triangle ABC$. Let A', B', C' be the points on $\overrightarrow{AH}, \overrightarrow{BH}, \overrightarrow{CH}$ respectively such that $AH.AA' = R^2, BH.BB' = R^2, CH.CC' = R^2$. Prove that O is incenter of $\triangle A'B'C'$.

Art of Problem Solving 2015 Iran MO (3rd round)