Matemática Discreta y Lógica Matemática I

Doble Grado en Ingeniería Informática - Matemáticas Doble Grado en Administración y Dirección de Empresas - Ingeniería Informática Grados en Ingeniería Informática, Ingeniería del Software, Ingeniería de Computadores

Examen Final - Febrero 2021		
NOMBRE Y APELLIDOS: GRUPO:		
Lee atentamente las siguientes instrucciones: • Escribe tu nombre, apellidos y grupo en el lugar indicado en esta hoja.		
■ NO puedes usar calculadora. Desconecta el teléfono móvil (si lo tienes contigo).		
El examen durará 2 horas y media estrictamente.		
Cada una de las cuatro primeras preguntas es tipo test y tiene una única respuesta correcta. Cada pregunta de ellas respondida correctamente puntuará 0,5 puntos. Cada pregunta respondida incorrectamente puntuará -0,15 puntos. Las preguntas sin contestar puntuarán 0 puntos. La puntuación total del teserá, como mínimo, de 0 puntos, nunca será negativa. Deja totalmente clara la respuesta escogida, bien que no quieres contestar una pregunta, sobre todo cuando haya alguna tachadura.		
■ Cada una de las preguntas a desarrollar restantes vale 1,5 puntos, salvo la séptima, que vale 1 punto.		
■ El examen se calificará sobre 9 puntos . A esta nota se le sumará la evaluación por curso (de 0 a 1 punto		
Preguntas de Test		
(1) (0.5 puntos) Sean $a, b, c \in \mathbb{Z}$ tales que $a (b \cdot c)$. Entonces siempre sucede que		
(2) (0.5 puntos) Dados los conjuntos $\{x \in \mathbb{R} \mid -5 < x < 5\}$, $\{X \in \mathcal{P}(\mathbb{N}) \ tal \ que \ X = 2\}$ y $\mathbb{Q} \times \mathbb{R}$ marca la respuesta correcta:		
Los tres conjuntos son no numerables.		
El primero es el único no numerable.		
El primero y el tercero son los únicos no numerables.		
El primero y el segundo son los únicos no numerables.		
(3) (0.5 puntos) Sea A un conjunto finito y sea $f:A\to B$. Definimos una relación de equivalence R sobre A como		
$xRy \Longleftrightarrow f(x) = f(y)$		
Para que $ A/R = A $:		
\Box f tiene que ser suprayectiva.		
\Box f tiene que ser inyectiva.		
\Box f tiene que ser biyectiva.		

 \square Se verifica siempre, cualquiera que sea f.

4	(0.5 puntos) Sean (A, \sqsubseteq_1) y (B, \sqsubseteq_2) dos conjuntos totalmente ordenados tales que $ A , B \ge 2$. Si definimos la relación binaria en $A \times B$
	$(x,y) \sqsubseteq (x',y') \Longleftrightarrow x \sqsubseteq_1 x' \land y \sqsubseteq_2 y'$
	Señala la respuesta correcta:
	$\hfill \sqsubseteq$ no es una relación de orden.
	\sqsubseteq es una relación de orden pero no es total.
	\sqsubseteq es una relación de orden total.
	\sqsubseteq es una relación de orden estricto.
	Preguntas de Desarrollo
5	(1.5 puntos) Dada la siguiente función definida recursivamente
	$\int 6 \qquad \qquad \text{si } n = 0$
	$f(n) = \begin{cases} 6 & \text{si } n = 0\\ 2 & \text{si } n = 1\\ 6f(n-2) - f(n-1) & \text{si } n \ge 2 \end{cases}$
	Demuestra por inducción matemática que para todo número natural n , $f(n) = 2(2^{n+1} + (-3)^n)$. Indica el tipo de inducción que utilizas.
6	(1.5 puntos) Si A , B , C y D son conjuntos cualesquiera, demuestra:
	(a) $(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$
	(b) $(A \times B) \setminus (C \times D) = ((A \setminus C) \times B) \cup (A \times (B \setminus D))$
7	(1 punto) Sea $f: \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathcal{P}(\mathbb{N})$ una función definida por $f(X) = X \setminus \{m \text{\'mimo}(X)\}$. Estudia si f es inyectiva y/o suprayectiva . En cada caso debes demostrar formalmente si se cumple la propiedad o dar un contraejemplo si no se cumple.
8	(1.5 puntos) Considera la relación $R \subseteq \mathbb{Z} \times \mathbb{Z}$ definida por
	$x R y \iff 4 \mid (x - y + 2) \lor 4 \mid (x - y).$
	(a) Demuestra que R es una relación de equivalencia .
	(b) Describe con precisión la clase de equivalencia de 7, justificando tu respuesta.
	(c) ¿Cuántos elementos tiene el conjunto cociente \mathbb{Z}/R ? Descríbelo detalladamente.
9	(1.5 puntos) Sea R una relación sobre \mathbb{N} , definida como $aRb \iff Existe\ n \in \mathbb{N}\ tal\ que\ a=b^n.$
	(a) Demuestra que R es una relación de orden .
	(b) Sea $A = \{1, 2, 3, 4, 5, 9\}$. Dibuja el diagrama de Hasse para el conjunto ordenado (A, R) .
	(c) ¿Cuáles son los elementos maximales y minimales de A? ¿Tiene máximo y/o mínimo?

Justifica tu respuesta.