Assignment 6.3 (2)

Figure 1. The variation of the drift mobility with dopant concentration in Si for electrons and holes at $300~\mathrm{K}$

Question 1:

Consider a Si ($n_i = 1.45 \times 10^{10}$ cm³, ϵ_r is 11.9) pn junction diode, with an acceptor concentration N_a of 10^{18} cm⁻³ on the p-side and donor concentration N_d of 10^{15} cm⁻³ on the n-side. The drift mobility refers to Figure 1. The diode is forward biased and has a voltage of 0.6 V across it. The diode cross-sectional area is 1 mm². The minority carrier recombination time, τ , depends on the dopant concentration, N_{dopant} (cm⁻³), through the following approximate relation

$$\tau = \frac{5 \times 10^{-7}}{\left(1 + 2 \times 10^{-17} N_{\text{dopant}}\right)}$$

Calculate the diffusion current and the recombination current. What is your conclusion on the contributions to the total diode current?

Question 2:

An Si p^+n junction diode has a cross-sectional area of 1 mm², an acceptor concentration of 5×10^{18} cm⁻³ on the p-side, and a donor concentration of 10^{16} cm⁻³ on the n-side. The recombination lifetime of holes in the n-region is 420 ns, whereas that of electrons in the p-region is 5 ns due to a greater concentration of impurities (recombination centers) on that side. Mean thermal generation lifetime (τ_g) is about 1 µs.

- (a) Calculate the minority carrier diffusion lengths.
- (b) What is the built-in potential across the junction?
- (c) What is the current when there is a forward bias of 0.6 V across the diode at $27 \text{ }^{\circ}\text{C}$? Assume that the current is by minority carrier diffusion.
- (d) What is the reverse current when the diode is reverse biased by a voltage $V_r = 5 \text{ V}$?