11 אלגברה לינארית (2) תשע'ט 2018-2019 - סמסטר ב' - תרגיל

הנחיות: כתבו את הפתרון בכתב יד ברור, בצירוף **שם (פרטי ומשפחה) ומספר ת.ז.** יש לציין **כותרת ברורה בראש הדף הכוללת את שם הקורס ומספר התרגיל.** סרקו את הפתרון, כאשר השאלות בסדר עולה, והגישו אלקטרונית באתר הקורס עד ל־ 5.6.19 בשעה 21:00.

- . | a+2b+3c | $\leqslant 4\sqrt{a^2+b^2+c^2}$: מתקיים $a,b,c\in\mathbb{R}$.1 .1
- . $u_1=\begin{bmatrix}1\\1\\1\\1\\1\end{bmatrix}$, $u_2=\begin{bmatrix}1\\i\\-1\\-i\\1\end{bmatrix}$, $u_3=\begin{bmatrix}1\\2\\4\\8\\16\end{bmatrix}$: בממ"פ \mathbb{C}^5 עם המכפלה הסקלרית נתןנים הוקטורים : 2
 - (א) הראו כי (u_1, u_2, u_3) בת"ל.
- . Span $\{u_1,u_2,u_3\}$ על מנת לקבל בסיס או"נ של (u_1,u_2,u_3) על מידט על גראם־שמידט על (ב)
- - $\left[egin{array}{c}1\2\4\8\16\end{array}
 ight]$ על על על על . U או חשבו את ההטלה האורתוגונלית של
 - \mathbb{C}^5 ביחס לבסיס הסטנדרטי של ביחס מייצגת של ביחס המטריצה המייצגת (ב)
 - . $\left\langle \left[egin{array}{c} x_1\\ x_2\\ x_3 \end{array}
 ight] \mid \left[egin{array}{c} y_1\\ y_2\\ y_3 \end{array}
 ight]
 ight
 angle = x_1y_1 + 2x_2y_2 + 3x_3y_3 + x_2y_3 + x_3y_2$ על ידי $\left\langle \cdot \mid \cdot \right\rangle : \mathbb{R}^3 imes \mathbb{R}^3 o \mathbb{R}$ על ידי את ההעתקה. 4.
 - (א) הוכיחו כי $\langle\cdot\mid\cdot
 angle$ הינה מכפלה פנימית.
 - . $U=\mathrm{Span}\left\{\left[egin{array}{c}1\\0\\0\end{array}
 ight],\left[egin{array}{c}0\\1\\0\end{array}
 ight]
 ight\}$ עבור עבור (ב)
 - . U אע $\left[egin{array}{c} 0 \\ 0 \\ 1 \end{array}
 ight]$ על על על , את ההטלה האורתוגונלית של
 - . \mathbb{R}^3 את המטריצה המייצגת של ביחס ביחס אם ביחס ביחס המייצגת המייצגת את (ד)
- . $\langle f\mid g \rangle = \int_{-1}^{1} f\left(x\right)g\left(x\right)dx$ מרחב הפנימית ([-1,1]) עם המכפלה הפנימית ([-1,1]) מצאו בסיס או"נ למרחב $\{1,x,x^2\}$. Span $\{1,x,x^2\}$
 - . $||v||^2\geqslant\sum_{i=1}^m|\ \langle b_i\ |\ v
 angle\ |^2$ כי הוכיחו הוכיחו . $v\in V$ בסיס אורתונורמלי של בסיס הוכיחו ל (b_1,\dots,b_m) , (b_1,\dots,b_m) . 6.
 - . $v\in V$ ויהי , $W\subseteq U$ כך של ממ`פ סופי של ממימד סופי תת־מרחבים , U,W ויהי . .7 יהיו על על v של האורתוגונלית או ההטלה האור על על על v על על v האורתוגונלית האורתוגונלית על על ווu
 - . $d(v,u) \leqslant d(v,w)$ (ב) . $||u|| \geqslant ||w||$ (৪)
 - . אופרטור לינארי. $V \to V$ יהי $V \to V$ יהי היי מרפלה פנימית. יהי יהי יהי אופרטור לינארי. $\mathcal{B}=(b_1,\ldots,b_n)$ מרחב מכפלה פנימית. יהי $A=(a_{i,j}=\langle b_i\mid T(b_j)\rangle$ מתקיים: $A=(a_{i,j}=\langle b_i\mid T(b_j)\rangle)$ מהיי מתקיים: מתקיים: $A=(a_{i,j}=\langle b_i\mid T(b_j)\rangle)$
 - . $\langle f\mid g \rangle = \int_0^1 f\left(x\right)g\left(x\right)dx$ מרחב הפנימית ב־ ([0,1]) עם המכפלה הפנימית ([0,1]) מרחב הפונקציות הממשיות הרציפות ב־ $W=\{f\in C\left([0,1]\right):f(0)=0\}$. מא) הוכיחו
 - ($f=xg\in W$ אז $g\in W^\perp$ אם : אם) . $W\subsetneq (W^\perp)^\perp$ והסיקו ש־ $W^\perp=\left\{ \vec{0} \right\}$ והכיחו כי