Markov Chain Monte Carlo

Ed Herbst

March 16, 2023

The Metropolis-Hastings Algorithm

Metropolis-Hastings (MH) algorithm belongs to the class of Markov chain Monte Carlo (MCMC) algorithms.

Algorithm constructs a Markov chain such that the stationary distribution associated with this Markov chain is unique and equals the posterior distribution of interest.

► First version constructed by Metropolis et al. (1953). Later generalized by Hastings (1970). Tierney (1994) proved important convergence results for MCMC algorithms.

► Introduction: Chib and Greenberg (1995). Textbook Robert and Casella (2004) or Geweke (2005).

Markov Chain Monte Carlo

Importance sampler generates a sequence of independent draws from the posterior distribution $\pi(\theta)$, the MH algorithm generates a sequence of serially correlated draws.

As long as the correlation in the Markov chain is not too strong, Monte Carlo averages of these draws can accurately approximate posterior means of $h(\theta)$.

We are going to care a lot about this correlation. Why?

$$\sqrt{n}(\bar{X} - \mathbb{E}[\bar{X}]) \Longrightarrow N\left(0, \frac{1}{n} \sum_{i=1}^{n} \mathbb{V}[X_i] + \frac{1}{n} \sum_{i=1}^{n} \sum_{i \neq i} COV(X_i, X_j)\right)$$

The Metropolis Hastings Algorithm

A key ingredient is the proposal distribution $q(\vartheta|\theta^{i-1})$, which potentially depends on the draw θ^{i-1} in iteration i-1 of the algorithm.

Algorithm (Generic MH Algorithm)

For i=1 to N: Draw ϑ from a density $q(\vartheta|\theta^{i-1})$. Set $\theta^i=\vartheta$ with probability

$$\alpha(\vartheta|\theta^{i-1}) = \min\left\{1, \ \frac{p(Y|\vartheta)p(\vartheta)/q(\vartheta|\theta^{i-1})}{p(Y|\theta^{i-1})p(\theta^{i-1})/q(\theta^{i-1}|\vartheta)}\right\}$$

and $\theta^i = \theta^{i-1}$ otherwise.

Because $p(\theta|Y) \propto p(Y|\theta)p(\theta)$ we can replace the posterior densities in the calculation of the acceptance probabilities $\alpha(\vartheta|\theta^{i-1})$ This yields a Markov transition kernel $K(\theta|\tilde{\theta})$, where the conditioning value $\tilde{\theta}$ corresponds to the parameter draw from iteration i-1.

Convergence

Probability theory for MH is much harder than for IS.

- Suppose that $\theta^0 \sim g(\cdot)$ and θ^N is obtained by iterating the Markov transition kernel forward N times, then is it true that θ^N is approximately distributed according to $p(\theta|Y)$ and the approximation error vanishes as $N \longrightarrow \infty$?
- Suppose that (i) is true, is it also true that sample averages of θ^i , $i=1,\ldots,N$ satisfy a SLLN and a CLT?

Key property: invariance of Markov Chain.

$$p(\theta|Y) = \int K(\theta|\tilde{\theta})p(\tilde{\theta}|Y)d\tilde{\theta}. \tag{1}$$

Show this property using reversibility of the Markov Chain

Not sufficient for SLLN or CLT, these things depend on q and π .

Look at specific example.

A Specific Example

- Suppose the parameter space is discrete and θ can only take two values: τ_1 and τ_2 .
- The posterior distribution then simplifies to two probabilities which we denote as $\pi_I = \mathbb{P}\{\theta = \tau_I | Y\}, I = 1, 2.$
- ► The proposal distribution in Algorithm~1 can be represented as a two-stage Markov process with transition matrix

$$Q = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}, \tag{2}$$

where q_{lk} is the probability of drawing $\vartheta = \tau_k$ conditional on $\theta^{i-1} = \tau_l$.

Assume that

$$q_{11} = q_{22} = q$$
, $q_{12} = q_{21} = 1 - q$

and that the posterior distribution has the property

$$\pi_2 > \pi_1$$
.

Deriving the Transition Kernel

Suppose that $\theta^{i-1} = \tau_1$. Then with probability q, $\vartheta = \tau_1$. The probability that this draw will be accepted is

$$lpha(au_1| au_1) = \min\left\{1, rac{\pi_1/q}{\pi_1/q}
ight\} = 1.$$

▶ With probability 1-q the proposed draw is $\vartheta=\tau_2$. The probability that this draw will be rejected is

$$1 - lpha(au_2| au_1) = 1 - \min\left\{1, rac{\pi_2/(1-q)}{\pi_1/(1-q)}
ight\} = 0$$

because we previously assumed that $\pi_2 > \pi_1$.

▶ The probability of a transition from $\theta^{i-1} = \tau_1$ to $\theta^i = \tau_1$ is

$$k_{11} = q \cdot 1 + (1-q) \cdot 0 = q.$$

Transition Kernel, Continued

► Similar reasoning as before

$$\mathcal{K} = \left[egin{array}{cc} k_{11} & k_{12} \ k_{21} & k_{22} \end{array}
ight] = \left[egin{array}{cc} q & (1-q) \ (1-q)rac{\pi_1}{\pi_2} & q + (1-q)\left(1-rac{\pi_1}{\pi_2}
ight) \end{array}
ight].$$

▶ K has two eigenvalues λ_1 and λ_2 :

$$\lambda_1(K) = 1, \quad \lambda_2(K) = q - (1 - q) \frac{\pi_1}{1 - \pi_1}.$$
 (3)

Eigenvector associated with with $\lambda_1(K)$ determines the invariant distribution of the Markov chain (=posterior). If $\lambda_2(K) \neq 1$, this distribution is unique.

The persistence of the Markov chain is characterized by the eigenvalue $\lambda_2(K)$.

Markov Chain

We can represent the Markov Chain generated by MH as an AR(1). Define:

$$\xi^{i} = \frac{\theta^{i} - \tau_{1}}{\tau_{2} - \tau_{1}}, \quad \xi^{i} \in \{0, 1\}.$$

 ξ^i follows the first-order autoregressive process

$$\xi^{i} = (1 - k_{11}) + \lambda_{2}(K)\xi^{i-1} + \nu^{i}.$$
 (4)

Conditional on $\xi^{i-1} = j-1$, j=1,2, the innovation ν^i has support on k_{jj} and $(1-k_{jj})$, its conditional mean is equal to zero, and its conditional variance is equal to $k_{jj}(1-k_{jj})$.

More on Markov Chain

Persistence of the Markov chain depends on the proposal distribution, which in our discrete example is characterized by the probability q.

You could get an *iid* sample from the posterior by setting $q = \pi_1$, so $\lambda_2(K) = 0$.)

▶ OTOH, if q = 1, then $\theta^i = \theta^1$ for all i and the equilibrium distribution of the chain is no longer unique.

General goal of MCMC: keep the persistence of the chain as low as possible.

$$\bar{h}_N = \frac{1}{N} \sum_{i=1}^N h(\theta^i)$$

we deduce from a central limit theorem for dependent random variables that

$$\sqrt{N}(\bar{h}_N - \mathbb{E}_{\pi}[h]) \Longrightarrow N(0, \Omega(h)),$$

where $\Omega(h)$ is now the long-run covariance matrix

$$\Omega(h) = \lim_{L \longrightarrow \infty} \mathbb{V}_{\pi}[h] \left(1 + 2 \sum_{l=1}^{L} \frac{L-l}{L} \left(q - (1-q) \frac{\pi_1}{1-\pi_1} \right)^l \right).$$

In turn, the asymptotic inefficiency factor is given by

$$\operatorname{InEff}_{\infty} = \frac{\Omega(h)}{\mathbb{V}_{\pi}[h]} \\
= 1 + 2 \lim_{L \to \infty} \sum_{i=1}^{L} \frac{L-I}{L} \left(q - (1-q) \frac{\pi_{1}}{1-\pi_{1}} \right)^{I}.$$

(5)

Numerical Example

▶ Bernoulli distribution ($\tau_1 = 0, \tau_2 = 1$) with $\pi_1 = 0.2$.

Assess the effectiveness of different MH settings, we vary $q \in [0,1)$.

▶ Look at autocorrelation for $q = \{0, 0.2, 0.5, 0.99\}$.

▶ Ineff_∞ for $q \in [0,1)$.

 Relationship between across chain variance and within chain (HAC) estimates. This the heart of many convergence statistics.

Autocorrelation Functions

Log Inefficiency Factor as function of q

Convergence: within vs across chain variance estimates

Take Aways

high autocorrelation reflects the fact that it will take a high number of draws to accurately reflect the target distribution

for large values of q, the variance of Monte Carlo estimates of h drawn from the MH chain are much larger than the variance of estimates derived from iid draws

► HAC estimates bracket small-sample estimates, indicating convergence, but they tend to underestimate variance for all q.

How to pick q for a DSGE model?

Random Walk Metropolis-Hastings

▶ Most popular *q* for DSGE Models.

 $lacksq q(artheta| heta^{i-1})$ can be expressed as the random walk $artheta= heta^{i-1}+\eta$

ightharpoonup η is normally distributed with mean zero and variance $c^2\hat{\Sigma}$.

 Given the symmetric nature of the proposal distribution, the acceptance probability becomes

$$\alpha = \min \left\{ \frac{p(\vartheta|Y)}{p(\theta^{i-1}|Y)}, 1 \right\}.$$

▶ Still need to specify c and $\hat{\Sigma}$.

On $\hat{\Sigma}$

- ▶ Want $\hat{\Sigma}$ to incorporate information about the posterior.
- One approach: Schorfheide (2000), is to set $\hat{\Sigma}$ to be the negative of the inverse Hessian at the mode of the log posterior, $\hat{\theta}$, obtained by running a numerical optimization .

This has appealing large sample properties, but can be tedious and innacurate.

- Another (adaptive) approach: use prior variance for a first sequence of posterior draws, the compute the sample covariance matrix and use that as $\hat{\Sigma}$. Must be fixed eventually.
- Here we cheat:

$$\mathsf{RWMH-V}: \hat{\Sigma} = \mathbb{V}_{\pi}[\theta].$$

Picking Scaling c

► Goldilocks principal: choose *c* so that you don't reject too much or too little.

Roberts et al. (1997) have derived a limit (in the size of parameter vector) optimal acceptance rate of 0.234 for a special case (normal posterior).

▶ Most practitioners target an acceptance rate between 0.20 and 0.40.

Requites pre-estimation tuning.

From Prior to Posterior

- Prior distributions are used to describe the state of knowledge about the parameter vector θ before observing the sample Y.
- ▶ In our example, we have to specify a joint probability distribution in 13-dimensional parameter space.

Eliciting prior distributions Del Negro and Schorfheide (2008):

▶ Group parameters by categories: $\theta_{(ss)}$ (related to steady state), $\theta_{(exo)}$ (related to exogenous processes), $\theta_{(endo)}$ (affects mechanisms but not steady state).

$$\begin{array}{lcl} \theta_{(ss)} & = & [r^{(A)}, \pi^{(A)}, \gamma^{(Q)}]' \\ \theta_{(exo)} & = & [\rho_g, \rho_z, \sigma_g, \sigma_z, \sigma_R]' \\ \theta_{(endo)} & = & [\tau, \kappa, \psi_1, \psi_2, \rho_R]' \end{array}$$

Priors, Continued

- Priors for $\theta_{(ss)}$ are often based on pre-sample averages. If sample starts in 1983:I, the prior distribution for $r^{(A)}$, $\pi^{(A)}$, and $\gamma^{(Q)}$ may be informed by data from the 1970s.
- Priors for $\theta_{(endo)}$ may be partly based on microeconometric evidence.
- Priors for $\theta_{(exo)}$ are the most difficult to specify. You could specific indirectly, by looking at the volatility/autocorrelation of observables implied by $\theta_{(exo)}$ given other parameters.

Above all: Generate draws from the prior distribution of θ ; compute important transformations of θ such as steady-state ratios and possibly impulse-response functions or variance decompositions.

- ▶ Marginals may be plausible, while joint is not.
- Nonlinear transformations of uniform variables are not uniform!

Try not to set priors based Y

$$\rho = \frac{x^2}{x^2 + y^2}, x \sim U[0, 1], y \sim U[0, 1]$$

Density of ρ

Bayesian Estimation – Prior

Name	Domain	Prior			
		Density	Para (1)	Para (2)	
	Steady State Related Parameters $\theta_{(ss)}$				
$r^{(A)}$	\mathbb{R}^+	Gamma	0.50	0.50	
$\pi^{(A)}$	\mathbb{R}^+	Gamma	7.00	2.00	
$\gamma^{(Q)}$	\mathbb{R}	Normal	0.40	0.20	
End	Endogenous Propagation Parameters $\theta_{(endo)}$				
$\overline{\tau}$	\mathbb{R}^+	Gamma	2.00	0.50	
κ	[0, 1]	Uniform	0.00	1.00	
ψ_{1}	\mathbb{R}^+	Gamma	1.50	0.25	
ψ_{2}	\mathbb{R}^+	Gamma	0.50	0.25	
$ ho_{R}$	[0, 1)	Uniform	0.00	1.00	
Exogenous Shock Parameters $\theta_{(exo)}$					
ρ_{G}	[0, 1)	Uniform	0.00	1.00	
$ ho_Z$	[0, 1)	Uniform	0.00	1.00	
$100\sigma_R$	\mathbb{R}^+	InvGamma	0.40	4.00	
$100\sigma_G$	\mathbb{R}^+	InvGamma	1.00	4.00	
$100\sigma_Z$	\mathbb{R}^+	InvGamma	0.50	4.00	

Baseline Estimation

Table: Posterior Estimates of DSGE Model Parameters

	Mean	[0.05, 0.95]		Mean	[0.05,0.95]
$\overline{\tau}$	2.83	[1.95, 3.82]	ρ_r	0.77	[0.71, 0.82]
κ	0.78	[0.51, 0.98]	$ ho_{\sf g}$	0.98	[0.96, 1.00]
ψ_{1}	1.80	[1.43, 2.20]	ρ_z	0.88	[0.84, 0.92]
ψ_{2}	0.63	[0.23, 1.21]	σ_r	0.22	[0.18, 0.26]
$r^{(A)}$	0.42	[0.04, 0.95]	$\sigma_{\sf g}$	0.71	[0.61, 0.84]
$\pi^{(A)}$	3.30	[2.78, 3.80]	σ_{z}	0.31	[0.26, 0.36]
$\gamma^{(Q)}$	0.52	[0.28, 0.74]			

Notes: We generated N=100,000 draws from the posterior and discarded the first 50,000 draws. Based on the remaining draws we approximated the posterior mean and the 5th and 95th percentiles.

More on c

Vary $c \in (0,2]$. Look at effect on

- ► Acceptance Rate
- ightharpoonup Ineff $_{\infty}$
- ► Ineff_N

What is the relationship between acceptance rate and accuracy?

Effects of Scaling

Acceptance Rate vs. Accuracy

Convergence of Monte Carlo Average $\bar{ au}_{N|N_0}$

Notes: The \$x-\$axis indicates the number of draws N. N_0 is set to 0, 25,000 and 50,000, respectively.

Improvements to MCMC: Blocking

- ▶ In high-dimensional parameter spaces the RWMH algorithm generates highly persistent Markov chains.
- What's bad about persistence?

$$\sqrt{N}(\bar{h}_N - \mathbb{E}[\bar{h}_N]) \\
\implies N\left(0, \frac{1}{N}\sum_{i=1}^n \mathbb{V}[h(\theta^i)] + \frac{1}{N}\sum_{i=1}^N \sum_{j\neq i} COV[h(\theta^i), h(\theta^j)]\right).$$

- Potential Remedy:
 - Partition $\theta = [\theta_1, \dots, \theta_K]$.
 - lterate over conditional posteriors $p(\theta_k|Y,\theta_{<-k>})$.
- ➤ To reduce persistence of the chain, try to find partitions such that parameters are strongly correlated within blocks and weakly correlated across blocks or use random blocking.

Block MH Algorithm

Draw $\theta^0 \in \Theta$ and then for i = 1 to N:

- 1. Create a partition B^i of the parameter vector into N_{blocks} blocks $\theta_1, \ldots, \theta_{N_{blocks}}$ via some rule (perhaps probabilistic), unrelated to the current state of the Markov chain.
 - 1. For $b = 1, \ldots, N_{blocks}$:
 - 1. Draw $\vartheta_b \sim q(\cdot | \left[\theta_{< b}^i, \theta_b^{i-1}, \theta_{\geq b}^{i-1}\right])$.
 - 2. With probability,

$$\alpha = \max \left\{ \frac{p(\left[\boldsymbol{\theta}_{< b}^{i}, \boldsymbol{\vartheta}_{b}, \boldsymbol{\theta}_{> b}^{i-1}\right] | \boldsymbol{Y}) q(\boldsymbol{\theta}_{b}^{i-1}, | \boldsymbol{\theta}_{< b}^{i}, \boldsymbol{\vartheta}_{b}, \boldsymbol{\theta}_{> b}^{i-1})}{p(\boldsymbol{\theta}_{< b}^{i}, \boldsymbol{\theta}_{b}^{i-1}, \boldsymbol{\theta}_{> b}^{i-1} | \boldsymbol{Y}) q(\boldsymbol{\vartheta}_{b} | \boldsymbol{\theta}_{< b}^{i}, \boldsymbol{\theta}_{b}^{i-1}, \boldsymbol{\theta}_{> b}^{i-1})}, 1 \right\},$$

set $\theta_b^i = \theta_b^i$, otherwise set $\theta_b^i = \theta_b^{i-1}$.

Random-Block MH Algorithm

- Generate a sequence of random partitions $\{B^i\}_{i=1}^N$ of the parameter vector θ into N_{blocks} equally sized blocks, denoted by θ_b , $b=1,\ldots,N_{blocks}$ as follows:
 - 1. assign an iidU[0,1] draw to each element of θ ;
 - 2. sort the parameters according to the assigned random number;
 - 3. let the *b*'th block consist of parameters $(b-1)N_{blocks}, \ldots, bN_{blocks}$.

Execute Algorithm Block MH Algorithm.

Metropolis-Adjusted Langevin Algorithm

► The proposal distribution of Metropolis-Adjusted Langevin (MAL) algorithm is given by

$$\begin{split} &\mu(\theta^{i-1}) = \theta^{i-1} + \frac{c_1}{2} M_1 \frac{\partial}{\partial \theta} \ln p(\theta^{i-1}|Y) \bigg|_{\theta = \theta^{i-1}}, \\ &\Sigma(\theta^{i-1}) = c_2^2 M_2. \end{split}$$

that is θ^{i-1} is adjusted by a step in the direction of the gradient of the log posterior density function.

▶ One standard practice is to set $M_1 = M_2 = M$, with

$$M = -\left[\frac{\partial}{\partial \theta \partial \theta'} \ln p(\theta|Y)\Big|_{\theta=\hat{\theta}}\right]^{-1},$$

where $\hat{\theta}$ is the mode of the posterior distribution obtained using a numerical optimization routine.

Newton MH Algorithm

- Newton MH Algorithm replaces the Hessian evaluated at the posterior mode $\hat{\theta}$ by the Hessian evaluated at θ^{i-1} .
- ► The proposal distribution is given by

$$\mu(\theta^{i-1}) = \theta^{i-1} - s \left[\frac{\partial}{\partial \theta \partial \theta'} \ln p(\theta|Y) \Big|_{\theta = \theta^{i-1}} \right]^{-1}$$

$$\times \frac{\partial}{\partial \theta} \ln p(\theta^{i-1}|Y) \Big|_{\theta = \theta^{i-1}}$$

$$\hat{\Sigma}(\theta^{i-1}) = -c_2^2 \left[\frac{\partial}{\partial \theta \partial \theta'} \ln p(\theta|Y) \Big|_{\theta = \theta^{i-1}} \right]^{-1}.$$

▶ It is useful to let *s* be independently of θ^{i-1} :

$$c_1 = 2s$$
, $s \sim iidU[0, \overline{s}]$,

where \bar{s} is a tuning parameter.

Run Times and Tuning Constants for MH Algorithms

Algorithm	Run Time	Accpt.	Tuning
	[hh:mm:ss]	Rate	Constants
1-Block RWMH-I	00:01:13	0.28	c = 0.015
1-Block RWMH-V	00:01:13	0.37	c = 0.400
3-Block RWMH-I	00:03:38	0.40	c = 0.070
3-Block RWMH-V	00:03:36	0.43	c = 1.200
3-Block MAL	00:54:12	0.43	$c_1 = 0.4, c_2 = 0.750$
3-Block Newton MH	03:01:40	0.53	$\bar{s} = 0.7, c_2 = 0.600$

Notes: In each run we generate N=100,000 draws. We report the fastest run time and the average acceptance rate across $N_{run}=50$ independent Markov chains.

Autocorrelation Function of τ^i

Notes: The autocorrelation functions are computed based on a single run of each algorithm.

Inefficiency Factor $InEff_N[\bar{\tau}]$

Notes: The small-sample inefficiency factors are computed based on $N_{run} = 50$ independent runs of each algorithm.

IID Equivalent Draws Per Second

 $\textit{iid} \text{-equivalent draws per second} = \frac{\textit{N}}{\mathsf{Run Time [seconds]}} \cdot \frac{1}{\mathsf{InEff}_\textit{N}}.$

Algorithm	Draws Per Second
1-Block RWMH-V	7.76
3-Block RWMH-V	5.65
3-Block MAL	1.24
3-Block RWMH-I	0.14
3-Block Newton MH	0.13
1-Block RWMH-I	0.04

Performance of Different MH Algorithms

Notes: Each panel contains scatter plots of the small sample variance $\mathbb{V}[\bar{\theta}]$ computed across multiple chains (x-axis) versus the $\mathsf{HAC}[\bar{h}]$ estimates of $\Omega(\theta)/N$ (y-axis).

Recall: Posterior Odds and Marginal Data Densities

▶ Posterior model probabilities can be computed as follows:

$$\pi_{i,T} = \frac{\pi_{i,0} p(Y|\mathcal{M}_i)}{\sum_i \pi_{i,0} p(Y|\mathcal{M}_i)}, \quad j = 1, \dots, 2,$$
 (6)

where

$$p(Y|\mathcal{M}) = \int p(Y|\theta, \mathcal{M})p(\theta|\mathcal{M})d\theta \tag{7}$$

► Note:

$$\ln p(Y_{1:T}|\mathcal{M}) = \sum_{t=1}^{T} \ln \int p(y_t|\theta, Y_{1:t-1}, \mathcal{M}) p(\theta|Y_{1:t-1}, \mathcal{M}) d\theta$$

Posterior odds and Bayes Factor

$$\frac{\pi_{1,T}}{\pi_{2,T}} = \underbrace{\frac{\pi_{1,0}}{\pi_{2,0}}}_{Prior\ Odds} \times \underbrace{\frac{p(Y|\mathcal{M}_1)}{p(Y|\mathcal{M}_2)}}_{Bayes\ Factor}$$
(8)

Computation of Marginal Data Densities

- Reciprocal importance sampling:
 - Geweke's modified harmonic mean estimator
 - Sims, Waggoner, and Zha's estimator

Chib and Jeliazkov's estimator

For a survey, see Ardia, Hoogerheide, and van Dijk (2009).

Modified Harmonic Mean

► Reciprocal importance samplers are based on the following identity:

$$\frac{1}{p(Y)} = \int \frac{f(\theta)}{p(Y|\theta)p(\theta)} p(\theta|Y) d\theta, \tag{9}$$

where $\int f(\theta) d\theta = 1$.

ightharpoonup Conditional on the choice of $f(\theta)$ an obvious estimator is

$$\hat{p}_G(Y) = \left[\frac{1}{N} \sum_{i=1}^{N} \frac{f(\theta^i)}{p(Y|\theta^i)p(\theta^i)} \right]^{-1}, \tag{10}$$

where θ^i is drawn from the posterior $p(\theta|Y)$.

► Geweke (1999):

$$f(\theta) = \tau^{-1} (2\pi)^{-d/2} |V_{\theta}|^{-1/2} \exp\left[-0.5(\theta - \bar{\theta})' V_{\theta}^{-1}(\theta - \bar{\theta})\right] \times \left\{ (\theta - \bar{\theta})' V_{\theta}^{-1}(\theta - \bar{\theta}) \le F_{\chi_{d}^{2}}^{-1}(\tau) \right\}.$$
(11)

Chib and Jeliazkov

► Rewrite Bayes Theorem:

$$p(Y) = \frac{p(Y|\theta)p(\theta)}{p(\theta|Y)}.$$
 (12)

► Thus,

$$\hat{p}_{CS}(Y) = \frac{p(Y|\tilde{\theta})p(\tilde{\theta})}{\hat{p}(\tilde{\theta}|Y)},$$
(13)

where we replaced the generic θ in~(12) by the posterior mode $\tilde{\theta}$.

Chib and Jeliazkov

- ▶ Use output of Metropolis-Hastings Algorithm.
- ▶ Proposal density for transition $\theta \mapsto \tilde{\theta}$: $q(\theta, \tilde{\theta}|Y)$.
- ▶ Probability of accepting proposed draw:

$$\alpha(\theta, \tilde{\theta}|Y) = \min \left\{ 1, \frac{p(\tilde{\theta}|Y)/q(\theta, \tilde{\theta}|Y)}{p(\theta|Y)/q(\tilde{\theta}, \theta|Y)} \right\}.$$

Note that

$$\int \alpha(\theta, \tilde{\theta}|Y) q(\theta, \tilde{\theta}|Y) p(\theta|Y) d\theta$$

$$= \int \min \left\{ 1, \frac{p(\tilde{\theta}|Y)/q(\theta, \tilde{\theta}|Y)}{p(\theta|Y)/q(\tilde{\theta}, \theta|Y)} \right\} q(\theta, \tilde{\theta}|Y) p(\theta|Y) d\theta$$

$$= p(\tilde{\theta}|Y) \int \min \left\{ \frac{p(\theta|Y)/q(\tilde{\theta}, \theta|Y)}{p(\tilde{\theta}|Y)/q(\theta, \tilde{\theta}|Y)}, 1 \right\} q(\tilde{\theta}, \theta|Y) d\theta$$

$$= p(\tilde{\theta}|Y) \int \alpha(\tilde{\theta}, \theta|Y) q(\tilde{\theta}, \theta|Y) d\theta$$

Chib and Jeliazkov

Posterior density at the mode can be approximated as follows

$$\hat{p}(\tilde{\theta}|Y) = \frac{\frac{1}{N} \sum_{i=1}^{N} \alpha(\theta^{i}, \tilde{\theta}|Y) q(\theta^{i}, \tilde{\theta}|Y)}{\frac{1}{J} \sum_{j=1}^{J} \alpha(\tilde{\theta}, \theta^{j}|Y)},$$
(14)

- \blacktriangleright $\{\theta^i\}$ are posterior draws obtained with the the M-H Algorithm;
- $\{\theta^j\}$ are additional draws from $q(\tilde{\theta}, \theta|Y)$ given the fixed value $\tilde{\theta}$.

MH-Based Marginal Data Density Estimates

Model	$Mean(ln \hat{p}(Y))$	Std. Dev.(In $\hat{p}(Y)$)
Geweke $(\tau = 0.5)$	-346.17	0.03
Geweke $(au=0.9)$	-346.10	0.04
SWZ $(q = 0.5)$	-346.29	0.03
SWZ $(q = 0.9)$	-346.31	0.02
Chib and Jeliazkov	-346.20	0.40

Notes: Table shows mean and standard deviation of log marginal data density estimators, computed over $N_{run}=50$ runs of the RWMH-V sampler using N=100,000 draws, discarding a burn-in sample of $N_0=50,000$ draws. The SWZ estimator uses J=100,000 draws to compute $\hat{\tau}$, while the CJ estimators uses J=100,000 to compute the denominator of $\hat{p}(\tilde{\theta}|Y)$.

References

- Chib, S. and E. Greenberg (1995): "Understanding the Metropolis-Hastings Algorithm," *The American Statistician*, 49, 327–335.
- DEL NEGRO, M. AND F. SCHORFHEIDE (2008): "Forming Priors for DSGE Models (and How it Affects the Assessment of Nominal Rigidities)," *Journal of Monetary Economics*, 55, 1191–1208.
- GEWEKE, J. (2005): Contemporary Bayesian Econometrics and Statistics, John Wiley & Sons, Inc.
- HASTINGS, W. (1970): "Monte Carlo Sampling Methods Using Markov Chains and Their Applications," *Biometrika*, 57, 97–109.
- METROPOLIS, N., A. ROSENBLUTH, M. ROSENBLUTH, A. TELLER, AND E. TELLER (1953): "Equations of State Calculations by Fast Computing Machines," *Journal of Chemical Physics*, 21, 1087–1091.
- ROBERT, C. P. AND G. CASELLA (2004): *Monte Carlo Statistical Methods*, Springer.
- ROBERTS, G., A. GELMAN, AND G. W.R. (1997): "Weak