

DUAL J-K FLIP FLOP WITH PRESET AND CLEAR

- HIGH SPEED :
 - $f_{MAX} = 80MHz$ (TYP.) at $V_{CC} = 6V$
- LOW POWER DISSIPATION: $I_{CC} = 2\mu A(MAX.)$ at $T_A = 25$ °C
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 73

The M74HC73 is an high speed CMOS DUAL J-K FLIP FLOP WITH CLEAR fabricated with silicon gate C²MOS technology.

Depending on the logic level applied to J and K inputs, this device changes state on the negative going transition of clock input pulse (CK). The

ORDER CODES

PACKAGE	TUBE	T&R
DIP	M74HC73B1R	
SOP	M74HC73M1R	M74HC73RM13TR
TSSOP		M74HC73TTR

clear function is accomplished independently of the clock condition when the clear input (CLR) is taken low.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

August 2001 1/11

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 5	1CK, 2CK	Clock Input
2, 6	1CLR, 2CLR	Asynchronous Reset Inputs
12, 9	1Q, 2Q	True Flip-Flop Outputs
13, 8	1Q, 2Q	Complement Flip-Flop Outputs
14, 7, 3, 10	1J, 2J, 1K, 2K	Synchronous Inputs Flip-Flop 1 and 2
11	GND	Ground (0V)
4	Vcc	Positive Supply Voltage

TRUTH TABLE

	INP	UTS		оит	PUTS	FUNCTION
CLR	J	K	СК	Q	Q	FUNCTION
L	Х	X	X	L	Н	CLEAR
Н	L	L		Q _n	\overline{Q}_n	NO CHANGE
Н	L	Н		L	Н	
Н	Н	L	L	Н	L	
Н	Н	Н	Z	\overline{Q}_n	Q _n	TOGGLE
Н	Х	Х		Q _n	\overline{Q}_n	NO CHANGE

X : Don't Care

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Ιο	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t _r , t _f		V _{CC} = 4.5V	0 to 500	ns
		V _{CC} = 6.0V	0 to 400	ns

DC SPECIFICATIONS

		٦	Test Condition				Value				
Symbol	Parameter	v _{cc}		Т	T _A = 25°C		-40 to 85°C		-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V _{OH} High L Voltage	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
	voitage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μА
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			2		20		40	μА

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		Test Condition		Value						
Symbol	Parameter	v _{cc}	Т	T _A = 25°C			85°C	-55 to 125°C		Unit
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0		30	75		95		110	
	Time	4.5		8	15		19		22	ns
		6.0		7	13		16		19	
t _{PLH} t _{PHL}	Propagation Delay	2.0		42	125		155		190	
	Time (CK - Q)	4.5		14	25		31		38	ns
		6.0		12	21		26		32	
t _{PLH} t _{PHL}	Propagation Delay	2.0		54	145		180		220	
	Time (CLR - Q)	4.5		18	29		36		44	ns
		6.0		15	25		31		37	
f _{MAX}	AX Maximum Clock	2.0	6	15		4.8		4		
	Frequency	4.5	30	60		24		20		MHz
		6.0	35	80		28		24		
t _{W(H)}	Minimum Pulse	2.0		18	75		95		110	
t _{W(L)}	Width (CK)	4.5		6	15		19		22	ns
		6.0		6	13		16		19	
t _{W(L)}	Minimum Pulse	2.0		21	75		95		110	
	Width (CLR)	4.5		7	15		19		22	ns
		6.0		6	13		16		19	
t _s	Minimum Set-up	2.0		30	75		95		110	
	Time	4.5		8	15		19		22	ns
		6.0		6	13		16		19	
t _h	Minimum Hold	2.0			0		0		0	
	Time	4.5			0		0		0	ns
		6.0			0		0		0	
t _{REM}	Minimum Removal	2.0		25	75		95		110	
	Time	4.5		7	15		19		22	ns
		6.0		6	13		16		19	

CAPACITIVE CHARACTERISTICS

	Test Condition		Value								
Symbol Parameter		V _{CC}	V _{CC}		T _A = 25°C			-40 to 85°C		-55 to 125°C	
		(V)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			35						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/2$ (per FLIP/FLOP)

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM 1: MINIMUM REMOVAL TIME (f=1MHz; 50% duty cycle)

WAVEFORM 3 : PROPAGATION DELAY TIME, MINIMUM PULSE WIDTH, SETUP AND HOLD TIME (f=1MHz; 50% duty cycle)

Plastic DIP-14 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

SO-14 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)	•			
D	8.55		8.75	0.336		0.344		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		7.62			0.300			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.68			0.026		
S			8° (max.)	•	•		

TSSOP14 MECHANICAL DATA

DIM.		mm.		inch				
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	4.9	5	5.1	0.193	0.197	0.201		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

