Metoda končnih elementov: Poissonova enačba

Miha Čančula

24. april 2012

1 Polje kovinskega traku

Ko kovinski trak razdelimo na panele s konstantno gostoto naboja, lahko prispevek vsakega panela na vse ostale zložimo v matriko. Na ravnem traku z enakomerno delitvijo v panele je ta matrika simetrična, saj je medsebojni vpliv dveh vzporednih panelov vedno vzajemen.

Desna stran je v tem primeru potencial na traku, ki je za prevodni trak konstanten. Ta vrednost predstavlja le multiplikativno konstanto v gostoti naboja, na kapaciteto pa sploh ne vpliva, zato sem jo postavil na 1. Gostoto naboja na posameznem panelu dobimo kot rešitev matričnega sistema.

1.1 Rezultati

Iz znane porazdelitve naboja izračunamo kapaciteto elektrode kot razmerje med skupnim nabojem in potencialom na njej. Izračunana vrednost je odvisna od števila uporabljenih panelov, ampak pri vedno bolj finih delitvah konvergira k končni vrednosti.

Podobno kot skalarjem v prejšnjih nalogah sem odvisnosti C(N) prilagodil funkcijo $C(N) = C_{\infty} + B/N$. Iz dobrega prileganja (na sliki) lahko potrdimo, da kapaciteta konvergira k vrednosti $C_{\infty} \approx 5.117$, s podvojitvijo števila panelov pa zmanjšamo napako na polovico.

2 Problem obtekanja

Namesto električnih nabojev tokrat na površino telesa posejemo izvore hitrosti. Robni pogoj je, da tekočina ne more prehajati skozi povšino telesa, zato v matrični enačbi nastopa samo pravokotna komponenta hitrosti.

Hitrost tekočine v vsaki točki sestavljajo prispevki vseh panelov in zunanje hitrosti \mathbf{u}_{∞} . Za izračun medsebojnega vpliva dveh panelov moramo najprej preslikati celotno sliko v koordinatni sistem prvega, kjer lahko uporabimo podani enačbi za $\mathbf{v}=(v_{\parallel},v_{\perp})$. Nato moramo izračunani hitrosti zavrteti v sistem drugega in pravokotno komponento vstaviti v matriko. Zaradi različnih velikosti panelov in kotov med njimi matrika ni več simetrična.

Rešitev sistema ima fizikalni pomen tlaka tik ob površini telesa. Za rekonstrukcijo hitrostnega polja v celotnem prostoru spet uporabimo enačbi za \mathbf{v} in seštejemo po vseh panelih. Na ta način lahko določimo tudi tangencialno komponento hitrosti ob površini, s pomočjo katere lahko izračunamo silo zaradi viskoznosti tekočine.

2.1 Rezultati

Za tri različne geometrije telesa sem najprej izračunal gostoto izvirov na površini, ki je na slikah ponazorjena z barvo. Nato sem izračunal hitrost in smer toka tekočine, na podlagi tega pa še tokovnice.

Slika 1: Obtekanje elipsoidnega valja z razmerjem stranic b = 1/5

Slika 2: Obtekanje profila NACA-0015

Slika 3: Obtekanje krila Žukovskega s parametri $A=-0.2,\,B=0.1$

