

COMP261 Lecture 21

Marcus Frean

Data Compression 3 (or Using Predictions 1):

Arithmetic Coding

the problem: encoding data succinctly

 Opportunity #1: some symbols are used more

• Claude Shannon proved (1940's) there's a way to transmit symbol strings from alphabet *X* with an average of *H(X)* bits/symbol, called the *entropy:*

$$H(X) = \sum_{i} P_{i} \log_{2} \frac{1}{P_{i}}$$

- He showed it was possible, but not how to do it!
- Huffman Coding gets quite close

P(x)0.0575 0.0128 0.02630.02850.0913 0.01730.0133 0.0313 0.05990.00060.0084 0.03350.02350.0596 0.06890.0192 0.0008 0.0508 0.05670.0706 0.03340.00690.0119 0.00730.01640.0007

0.1928

n

q

r

Huffman recap

- send each symbol as soon as it occurs (symbol code)
- optimal, given this restriction
- but wastes bits
- drop the restriction?(→ stream code
 - (→stream codes)

		T			
,	a_i	p_i	$\log_2 \frac{1}{p_i}$	l_i	$c(a_i)$
·	a	0.0575	4.1	4	0000
L	b	0.0128	6.3	6	001000
	С	0.0263	5.2	5	00101
	d	0.0285	5.1	5	10000
	е	0.0913	3.5	4	1100
	f	0.0173	5.9	6	111000
	g	0.0133	6.2	6	001001
	h	0.0313	5.0	5	10001
	i	0.0599	4.1	4	1001
	j	0.0006	10.7	10	1101000000
	k	0.0084	6.9	7	1010000
	1	0.0335	4.9	5	11101
	m	0.0235	5.4	6	110101
	n	0.0596	4.1	4	0001
	0	0.0689	3.9	4	1011
	p	0.0192	5.7	6	111001
	q	0.0008	10.3	9	110100001
	r	0.0508	4.3	5	11011
	S	0.0567	4.1	4	0011
	t	0.0706	3.8	4	1111
	u	0.0334	4.9	5	10101
	v	0.0069	7.2	8	11010001
	W	0.0119	6.4	7	1101001
	X	0.0073	7.1	7	1010001
)	У	0.0164	5.9	6	101001
/	z	0.0007	10.4	10	1101000001
	_	0.1928	2.4	2	01

the problem: encoding data succinctly

- Opportunity #1: some symbols are used more
- Opportunity #2: the sequence isn't random
 - → Lempel-Ziv
 - → Arithmetic Coding, based on rather different ideas

- reaches the Shannon limit, for random ordered symbols, and
- in conjunction with a predictive language model, it does better still

think of bit strings as intervals

0.00					
0.00	0	00	000	0000	
				0001	
			001	0010	gel
0.25				0011	The total symbol code budget
0.25		01	010	0100	(A)
				0101	pc
			011	0110)
0.50				0111	[00]
0.50	1	10	100	1000	m
				1001	Sy
			101	1010	tal
0.75				1011	to
0.75		11	110	1100	he
				1101	
			111	1110	
1.00			111	1111	

...and ←→ think of intervals as bit-strings

- the interval corresponding to *n*-bits has width $1/2^n$
- to specify interval of size α , we will need about $\log_2 1/\alpha$ bits

eg: if $\alpha=1/8$ we need $\log_2 1/\alpha = 3$ bits

next slide considers sending symbols in a simple alphabet of just {a,b, □}

to send symbol string, send interval (as bit-string

■ To send a string, I recursively partition up the interval [0,1] into segments...

(but <u>don't worry</u> about the partitioning scheme just yet!)

- I send you the binary string that corresponds to the largest interval enclosed by the string I want to send.
- You should be able to decode this, provided you use the same scheme for partitioning as I did!

on-the-fly encoding: transmitting bbba

on-the-fly encoding

on-the-fly encoding

on-the-fly encoding

on-the-fly decoding

The first '1' arrives.

Could be b, or \square .

Don't emit anything yet

_						
a			- 00000 0000 - 0000 - 0001 0001 - 00101 0011 - 00111 0011 - 0100 010 - 0101 010 - 0111 0111 - 01111 - 01111 - 10011 - 10111 - 10111 - 10111 - 10111 - 10111 - 11011 - 11101 - 11101 - 11111 11111 11111	00		
_			= 01000 = 01001 = 01010 = 01011 = 01100 = 01101	01		
	ba		= 01110 = 01111 0111			
	bb	bba	- 10000 - 10001 - 10010 - 10010	,		
b		bbba <u></u> bbb bbbb	= 10011 = 10100 = 10101 = 10110 = 10111	10		
		bb□	= 11000 = 11001 = 11010 1100	— 1		
	b□		= 11001 = 11010 = 11011 1101			
			= 11100 = 11101 1110 = 11110 1111 = 11111 1111	11		

on-the-fly decoding

'10' has arrived

this is wholly enclosed by the 'b' interval, so now we can safely emit 'b'

a					00000 00001 00010 00011 00010 00100 00101 00110 00110 00111 00111	00	 - -
				——————————————————————————————————————	01000 01001 01010 01011 01011 01100 01101 01101 01110 01110	01	0
	ba				01110 01111 0111		
		bba	bbba ==	— <u>=</u> === ===	10001 1000 10010 1001 10011 1001	10	
b	bb		bbbb	=- 	10100 10101 10110 1011		
	<u></u>	bb□	bbb□	— <u>=</u> — <u>=</u>	10111 1011 11000 1100 11001 1100 11010 1101		1
				— — — — — — — — — — — — — — — — — — —	11011 1101 11100 11101 1110 11111 1111 11111 1111	11	
_				=	11111		

3. what's the best partitioning scheme?

- suppose our scheme gives string **S** an interval of size α_s
- this is going to require $\log_2 1/\alpha_s$ bits
- expected message length will be $\sum_{s} P_{s} \log_{2} \frac{1}{\alpha_{s}}$
- If we set $\alpha_s = P_s$ this matches the Shannon limit! (and any other scheme is worse)

So this is the code that Shannon knew must exist!

4. best partitioning for an entire string?

- thought: is there a recursive way to do the partitioning, which gives the right "real estate" to a whole **string**, not just individual symbols?
- remarkably, yes!
- based on the recursive "chain rule" of probabilities...

$$P(s_1, s_2) = P(s_1)P(s_2 | s_1)$$

$$P(s_1, s_2, s_3) = P(s_1)P(s_2 | s_1)P(s_3 | s_1, s_2)$$
:

← details *not* examinable

• to do it, we need to build a predictive model of the language - Machine Learning, 400 level.

dasher

- 'dasher' started out life as a demonstration program to illustrate the process of arithmetic coding...
- a brand new way of writing:
 - 1. scratching squiggly shapes
 - 2. punching keys
 - 3. dasher

- <u>http://en.wikipedia.org/wiki/Dasher</u> David MacKay
- For more on Arithmetic Coding see chapter 6 of David's (free) book

summary on Arithmetic Coding

key insight is to make a stream code

with a fixed partitioning, based on fixed symbol probabilities from a look-up table, we get to the Shannon limit for "random looking" text

■ with partitioning based on dynamic symbol probabilities (via a learned *predictive model*) we get close to the entropy of the *strings in the language*, ie. the theoretical limit ©