1. Какое преимущество дают сверточные нейронные сети над обычными сетями прямого распространения?

Использование единого весового ядра освобождает сеть от создания и корректировки слишком большого количества весов. Этот подход хорошо зарекомендовал себя в плане эффективности и оптимизации в области распознания образов (например, изображений). Такая структура сети позволяет ей при обучении обобщать поступающую информацию, а не анализировать данных поэлементно. Отсюда следует гибкость сверточных сетей к «сдвигам образов», т. е., например, в классификации изображений сверточные сети будут менее чувствительны к их поворотам или сдвигам.

2. Для чего нужна регуляризация весов?

В процессе обучения какие-то веса могут начать приобретать слишком большие или слишком маленькие значения. Например, какой-то один вес значительно возрастет и в результате сильно увеличит сумму взвешенных входных параметров, поступающую в функцию активации в соответствующем нейроне. Подобное поведение модели при обучении может приводить к сильной чувствительности ее к небольшим изменениям (колебаниям, шумам) входных данных. Алгоритмы регуляризации направлены, в основном, на корректировку весов в таких ситуациях, т. е. на приведение значений весов модели на определенных слоях к одним числовым промежуткам.

3. Как могут сказаться на качестве обучения не нормализованные данные?

Разные входные параметры принадлежат, как правило, к разным промежуткам, однако при последующем их использовании сетью для получения ответа на задачу серьезные различия в значениях входных данных могут привести к некорректным результатам, например, это может привести к сильной чувствительности модели касательно незначительного изменения определенных входных параметров. Сеть рано или поздно научится работать с такими данными, но на это уйдет слишком много времени обучения. Поэтому принято нормализировать входные параметры перед использованием, т. е. приводить их к единому числовому промежутку.

4. На странице 6 Вы утверждаете, что при 6 блоках у Вас наиболее низкое отклонение. Как Вы выяснили, что это наиболее низкое отклонение и ниже быть не может?

Модель исследовалась при различных значениях К. Целью была сборка, при которой средняя оценка отклонений прогнозов стоимости домов будет наименьшей, и такая, при которой время обучения модели будет наиболее оптимальным. Показатели уменьшались с ростом K, однако данная тенденция изменилась в обратную сторону после K = 6 (оценка на 6-ти блоках сильнее уменьшилась по отношению к 5-ти, чем, например, при 5-ти по

отношению к 4-м и т. д.). В отчете для наглядности приведены результаты для K = 7 и 8. Далее тесты не проводились, т. к. время обучения таких моделей стало слишком велико для целесообразности их использования.

5. Как можно улучшить перекрестную проверку по к блокам?

Необходимо перемешать примеры рабочей выборки (на которой осуществляется обучение и тестирование модели).

6. Почему анализируется mae, а не mse?

MSE основывается на вычислении среднего квадрата разности между вычисленным и целевым значением, а MAE – на той же разности, но просто по модулю. Следовательно, MSE будет более чувствительно к скачкам (выбросам), что на больших отклонениях неблагоприятно скажется на результате вычислений. Другими словами, среднеквадратическое отклонение придает относительно большой вес большим ошибкам.

7. Почему Вы установили batch size равный 1?

Такое значение наиболее целесообразно на данной (небольшой) обучающей выборке. Значение batch_size = 1 было приведено в листинге работы и не являлось объектом исследования, поэтому я не включил это в отчет. Однако протестировал модель с разными значениями batch_size (кол-во эпох – 50): при единице модель дает наименьшую оценку отклонений прогнозов (около 2.25). При значении 5 оценка увеличилась до 2.3, при 10-ти – примерно 2.32, при 30-ти – 2.4. Следовательно batch_size = 1 – остается наиболее оптимальным выбором.