June 27, 2003 - Elementary Number Theory

I. Divisibility and remainders

- 1. Prove that for any positive integer n, 3 does not divide $n^2 + 1$.
- 2. Find the remainder when 6^{100} is divided by 7.
- 3. Prove that 31 divides $30^{99} + 61^{100}$.
- 4. Prove that
- a) 66 divides $43^{101} + 23^{101}$:
- b) (a + b) divides $a^n + b^n$ for any odd n.
- 5. Prove that n divides $(1^n + 2^n + \ldots + (n-1)^n)$ for any odd n.
- 6. There is a box with n balls in it. Each one of two players takes up to 7 balls. One who takes the last ball wins. For which n the first player can win?
- 7. Prove that there exists an infinite number of positive integers n that cannot be presented in the form $n = m^3 + p^3 + d^3$, where m, p and d are positive integers.
- 8. Prove that numbers of the type 10^{3n+1} cannot be presented as a sum of two squares.
- 9. Prove that among any 501 numbers there are two numbers a and b such that a^2 and b^2 have the same three last digits.
- 10. Let us call a number "convenient" if $10^6 + 1$ divides $n^2 + 1$. Prove that there is an even number of convenient numbers among $1, 2, \ldots, 10^6$.
- 11. Is it possible to compose the square of a positive integer using the digits 2,3,7,8 only (probably some of them several times)?
- 12. Let k be the product of the first n primes. Prove that neither k-1 nor k+1 are squares.
- 13. For how many numbers among $1, 2, \ldots, 10000$ does 7 divide $2^n n^2$?
- 14. Does there exist such a positive integer that 2005 divides $n^2 + n + 1$?
- 15. Prove that 133 divides $11^{n+2} + 12^{2n+1}$ for any positive integer n.
- 16. Suppose 24 divides n + 1. Prove that 24 also divides the sum of all positive integer divisors of n.
- 17. Let $a_{n+2} = a_{n+1}a_n + 1$. Prove that
- a) if $a_1 = a_2 = 1$ then 4 does not divide any a_n ; b) for any n > 10 the number $a_n 22$ is composite.
- 18. Find the remainder of the number $10^{10} + 10^{100} + 10^{1000} + ... + 10^{10^{10}}$ when divided by 7.

II. Divisibility and the decimal representation of integers

- 19. n is a positive integer, the last digit of n^2 is 6. Prove that the digit before the last one in n^2 is odd.
- 20. Prove that 2^n cannot have 4 equal final digits, where n is a positive integer.
- 21. Is it possible to write the square of an integer using 10 times each one of the following digits:
- a) 2,3,6

- b) 1,2,3
- 22. n is a positive integer. Can the sum of the digits of n^2 be equal to 2003?
- 23. We found the sum of the digits of 2^{100} , then the sum of the digits of the sum and so on. Finally, we have a one-digit number. What is it?
- 24. A is the sum of the digits of the number 4444^{4444} , B is the sum of the digits of A. Find the sum of the digits of B.
- 25. 15 divides $\overline{a15b}$. Find a, b.
- 26. How many numbers $\overline{a97b}$ exist, such that 45 divides this number?
- 27. What is the smallest positive integer n, such that 36 divides n and the decimal representatio of N contains all 10 digits?
- 28. Is it possible to find two integers n = 19m, such that all the digits of n, m are 2,3,4 or 9?
- 29. Does there exist such a number \overline{abc} that $\overline{abc} \overline{cba}$ is the square of a positive integer?
- 30. Find digits a, b and an integer n, such that $\overline{aabb} = n^2$.

III. The Little Fermat's Theorem

Theorem. If p is prime and p does not divide A then p divides $A^{p-1} - 1$.

- 31. Prove that $1001 \text{ divides } 300^{3000} 1.$
- 32. Prove that 143 divides $7^{120} 1$.
- 33. Prove that $30^{239} + 239^{30}$ is a composite number.
- 34. Prove that p divides $(a+b)^p a^p b^p$ for any integers a, b and for any prime number p.
- 35. Let p be a prime number that does not divide a. Prove that there exists such a positive integer b that p divides ab-1.
- 36. (Wilson's Theorem) Let p be prime. Prove that p divides (p-1)! + 1.
- 37. a) Let $p \neq 3$ be prime. Prove that p does not divide $11 \dots 1$ (p digits).
- b) Let p > 5 be prime. Prove that p divides $11 \dots 1$ (p-1) digits.