Package 'pense'

April 14, 2021

```
Type Package
Title Penalized Elastic Net S/MM-Estimator of Regression
Version 2.0.3
Date 2021-04-12
Copyright See the file COPYRIGHT for copyright details on some of the
      functions and algorithms used.
Encoding UTF-8
Biarch true
SystemRequirements C++11
URL https://dakep.github.io/pense-rpkg/,
      https://github.com/dakep/pense-rpkg
BugReports https://github.com/dakep/pense-rpkg/issues
Description Robust penalized (adaptive) elastic net S and M estimators for
      linear regression. The methods are proposed in
      Cohen Freue, G. V., Kepplinger, D., Salibián-Barrera, M., and Smucler, E.
      (2019) <a href="https://projecteuclid.org/euclid.aoas/1574910036">https://projecteuclid.org/euclid.aoas/1574910036</a>>.
      The package implements the extensions and algorithms described in
      Kepplinger, D. (2020) <doi:10.14288/1.0392915>.
Depends R (>= 3.5.0),
      Matrix
Imports Rcpp,
      methods,
      parallel,
      lifecycle (>= 0.2.0),
      rlang (>= 0.4.0)
LinkingTo Rcpp,
      RcppArmadillo (>= 0.9.600)
Suggests testthat (>= 2.1.0),
      knitr,
      rmarkdown
License MIT + file LICENSE
NeedsCompilation yes
RoxygenNote 7.1.1
Roxygen list(markdown = TRUE, load = ``source")
```

54

Index

RdMacros lifecycle VignetteBuilder knitr

R topics documented:

coef.pense_cvfit
coef.pense_fit
consistency_const
deprecated_en_options
elnet
elnet_cv
enpy
enpy_initial_estimates
enpy_options
en_admm_options
en_algorithm_options
en_dal_options
en_lars_options
initest_options
mloc
mlocscale
mm_algorithm_options
mscale
mscale_algorithm_options
mstep_options
pense
pensem
pensem_cv
pense_cv
pense_options
plot.pense_cvfit
plot.pense_fit
predict.pense_cvfit
predict.pense_fit
prediction_performance
prinsens
regmest
regmest_cv
residuals.pense_cvfit
residuals.pense_fit
rho_function
starting_point
summary.pense_cvfit
tau_size

coef.pense_cvfit 3

coef.pense_cvfit

Extract Coefficient Estimates

Description

Extract coefficients from a PENSE (or LS-EN) regularization path with hyper-parameters chosen by cross-validation.

Usage

```
## S3 method for class 'pense_cvfit'
coef(
  object,
  lambda = c("min", "se"),
  se_mult = 1,
  sparse = NULL,
  standardized = FALSE,
  exact = deprecated(),
  correction = deprecated(),
  ...
)
```

Arguments

object	PENSE with cross-validated hyper-parameters to extract coefficients from.
lambda	either a string specifying which penalty level to use ("min" or "se") or a a single numeric value of the penalty parameter. See details.
se_mult	If lambda = "se", the multiple of standard errors to tolerate.
sparse	should coefficients be returned as sparse or dense vectors? Defaults to the sparse argument supplied to pense_cv(). Can also be set to sparse = 'matrix', in which case a sparse matrix is returned instead of a sparse vector.
standardized	return the standardized coefficients.
exact	deprecated. Always gives a warning if lambda is not part of the fitted sequence and coefficients are interpolated.
correction	defunct.
	currently not used.

Details

If lambda = "se" and object contains fitted estimates for every penalization level in the sequence, extract the coefficients of the most parsimonious model with prediction performance statistically indistinguishable from the best model. This is determined to be the model with prediction performance within se_mult * cv_se from the best model.

Value

either a numeric vector or a sparse vector of type dsparse Vector of size p+1, depending on the sparse argument. Note: prior to version 2.0.0 sparse coefficients were returned as sparse matrix of type dgCMatrix. To get a sparse matrix, use sparse = 'matrix'.

coef.pense_fit

See Also

Other functions for extracting components: coef.pense_fit(), predict.pense_cvfit(), predict.pense_fit(), residuals.pense_cvfit(), residuals.pense_fit()

Examples

```
# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
regpath <- pense(x, freeny$y, alpha = 0.5)</pre>
plot(regpath)
# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[40])
# What penalization level leads to good prediction performance?
cv_results <- pense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2,</pre>
                       cv_k = 4
plot(cv_results, se_mult = 1)
# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')
```

coef.pense_fit

Extract Coefficient Estimates

Description

Extract coefficients from a PENSE (or LS-EN) regularization path fitted by pense() or elnet().

```
## S3 method for class 'pense_fit'
coef(
  object,
  lambda,
  sparse = NULL,
  standardized = FALSE,
  exact = deprecated(),
  correction = deprecated(),
  ...
)
```

coef.pense_fit 5

Arguments

object PENSE regularization path to extract coefficients from.

lambda a single value of the penalty parameter.

sparse should coefficients be returned as sparse or dense vectors? Defaults to the

sparse argument supplied to pense(). Can also be set to sparse = 'matrix',

in which case a sparse matrix is returned instead of a sparse vector.

standardized return the standardized coefficients.

exact defunct Always gives a warning if lambda is not part of the fitted sequence and

hence coefficients are interpolated.

correction defunct.

... currently not used.

Value

either a numeric vector or a sparse vector of type dsparse Vector of size p+1, depending on the sparse argument. Note: prior to version 2.0.0 sparse coefficients were returned as sparse matrix of type dgCMatrix. To get a sparse matrix, use sparse = 'matrix'.

See Also

coef.pense_cvfit() for extracting coefficients from a PENSE fit with hyper-parameters chosen
by cross-validation

Other functions for extracting components: coef.pense_cvfit(), predict.pense_cvfit(), predict.pense_fit(), residuals.pense_cvfit(), residuals.pense_fit()

Examples

```
# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)
# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[40])
# What penalization level leads to good prediction performance?
cv_results <- pense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2,</pre>
                       cv_k = 4
plot(cv_results, se_mult = 1)
# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')
```

consistency_const

Get the Constant for Consistency for the M-Scale

Description

Get the Constant for Consistency for the M-Scale

Usage

```
consistency_const(delta, rho)
```

Arguments

```
delta desired breakdown point (between 0 and 0.5) rho the name of the chosen \rho function.
```

Value

consistency constant

See Also

Other miscellaneous functions: rho_function()

deprecated_en_options Deprecated

Description

[Deprecated]

Options for computing EN estimates.

```
en_options_aug_lars(use_gram = c("auto", "yes", "no"), eps = 1e-12)
en_options_dal(
   maxit = 100,
   eps = 1e-08,
   eta_mult = 2,
   eta_start_numerator = 0.01,
   eta_start,
   preconditioner = c("approx", "none", "diagonal"),
   verbosity = 0
)
```

elnet 7

Arguments

ignored. Should the Gram matrix be pre-computed. use_gram ignored. Numeric tolerance for convergence. eps maxit maximum number of iterations allowed. eta_mult multiplier to increase eta at each iteration. eta_start_numerator if eta_start is missing, it is defined by eta_start = eta_start_numerator /lambda. ignored. The start value for eta. eta_start preconditioner ignored. Preconditioner for the numerical solver. If none, a standard solver will be used, otherwise the faster preconditioned conjugate gradient is used. verbosity ignored.

Functions

```
• en_options_aug_lars: Superseded by en_lars_options().
```

• en_options_dal: Superseded by en_dal_options()

Warning

Do not use these functions in new code. They may be removed from future versions of the package.

See Also

Other deprecated functions: enpy(), initest_options(), mstep_options(), pense_options(), pensem()

elnet

Compute the Least Squares (Adaptive) Elastic Net Regularization Path

Description

Compute least squares EN estimates for linear regression with optional observation weights and penalty loadings.

```
elnet(
    x,
    y,
    alpha,
    nlambda = 100,
    lambda_min_ratio,
    lambda,
    penalty_loadings,
    weights,
    intercept = TRUE,
    en_algorithm_opts,
    sparse = FALSE,
```

8 elnet

```
eps = 1e-06,
standardize = TRUE,
correction = deprecated(),
xtest = deprecated(),
options = deprecated()
```

Arguments

x n by p matrix of numeric predictors.

y vector of response values of length n. For binary classification, y should be a

factor with 2 levels.

alpha elastic net penalty mixing parameter with $0 \le \alpha \le 1$. alpha = 1 is the LASSO

penalty, and alpha = 0 the Ridge penalty.

nlambda number of penalization levels.

lambda_min_ratio

Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 * alpha

alpha.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,

nlambda and lambda_min_ratio are ignored.

penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization

of each coefficient.

weights a vector of positive observation weights.

intercept include an intercept in the model.

en_algorithm_opts

options for the EN algorithm. See en_algorithm_options for details.

sparse use sparse coefficient vectors.

eps numerical tolerance.

standardize standardize variables to have unit variance. Coefficients are always returned in

original scale.

correction defunct. Correction for EN estimates is not supported anymore.

xtest deprecated. Instead, extract coefficients with coef.pense_fit() and compute

predictions manually.

options deprecated. Use en_algorithm_opts instead.

Details

The elastic net estimator for the linear regression model solves the optimization problem

$$argmin_{\mu,\beta}(1/2n)\sum_{i}w_{i}(y_{i}-\mu-x_{i}'\beta)^{2}+\lambda\sum_{j}0.5(1-\alpha)\beta_{j}^{2}+\alpha l_{j}|\beta_{j}|$$

with observation weights w_i and penalty loadings l_i .

elnet 9

Value

```
a list-like object with the following items
```

lambda the sequence of penalization parameters.

estimates a list of estimates. Each estimate contains the following information:

intercept intercept estimate.

beta beta (slope) estimate.

lambda penalization level at which the estimate is computed.

alpha alpha hyper-parameter at which the estimate is computed.

statuscode if > 0 the algorithm experienced issues when computing the estimate.

status optional status message from the algorithm.

call the original call.

predictions if xtest was given, a matrix of predicted values. Each column corresponds to the predictions from the estimate at the lambda value at the same index.

See Also

```
pense() for an S-estimate of regression with elastic net penalty.
coef.pense_fit() for extracting coefficient estimates.
plot.pense_fit() for plotting the regularization path.
Other functions for computing non-robust estimates: elnet_cv()
```

Examples

```
# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
regpath <- elnet(x, freeny$y, alpha = 0.75)</pre>
plot(regpath)
# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[5])
# What penalization level leads to good prediction performance?
cv_results <- elnet_cv(x, freeny$y, alpha = 0.75, cv_repl = 10,</pre>
                       cv_k = 4, cv_measure = 'tau')
plot(cv_results, se_mult = 1)
plot(cv_results, se_mult = 1, what = 'coef.path')
# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')
```

10 elnet_cv

elnet_cv

Cross-validation for Least-Squares (Adaptive) Elastic Net Estimates

Description

Perform (repeated) K-fold cross-validation for elnet().

Usage

```
elnet_cv(
    x,
    y,
    lambda,
    cv_k,
    cv_repl = 1,
    cv_metric = c("rmspe", "tau_size", "mape", "auroc"),
    fit_all = TRUE,
    cl = NULL,
    ncores = deprecated(),
    ...
)
```

Arguments

n by p matrix of numeric predictors.

y vector of response values of length n. For binary classification, y should be a

factor with 2 levels.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,

nlambda and lambda_min_ratio are ignored.

cv_k number of folds per cross-validation.

cv_repl number of cross-validation replications.

cv_metric either a string specifying the performance metric to use, or a function to eval-

uate prediction errors in a single CV replication. If a function, the number of arguments define the data the function receives. If the function takes a single argument, it is called with a single numeric vector of prediction errors. If the function takes two or more arguments, it is called with the predicted values as first argument and the true values as second argument. The function must always return a single numeric value quantifying the prediction performance. The

order of the given values corresponds to the order in the input data.

fit_all If TRUE, fit the model for all penalization levels. Otherwise, only at penalization

level with smallest average CV performance.

cl a parallel cluster. Can only be used if ncores = 1, because multi-threading can

not be used in parallel R sessions on the same host.

ncores deprecated and not used anymore.

... Arguments passed on to elnet

alpha elastic net penalty mixing parameter with $0 \le \alpha \le 1$. alpha = 1 is the LASSO penalty, and alpha = 0 the Ridge penalty.

nlambda number of penalization levels.

elnet_cv 11

lambda_min_ratio Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 * alpha.

penalty_loadings a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient.

standardize standardize variables to have unit variance. Coefficients are always returned in original scale.

weights a vector of positive observation weights.

intercept include an intercept in the model.

sparse use sparse coefficient vectors.

en_algorithm_opts options for the EN algorithm. See en_algorithm_options for details.

eps numerical tolerance.

xtest deprecated. Instead, extract coefficients with coef.pense_fit() and compute predictions manually.

options deprecated. Use en_algorithm_opts instead.

correction defunct. Correction for EN estimates is not supported anymore.

Details

The built-in CV metrics are

"tau_size" τ -size of the prediction error, computed by tau_size() (default).

"mape" Median absolute prediction error.

"rmspe" Root mean squared prediction error.

"auroc" Area under the receiver operator characteristic curve (actually 1 - AUROC). Only sensible for binary responses.

Value

a list with components:

lambda the sequence of penalization levels.

cvres data frame of average cross-validated performance.

cv_replications matrix of cross-validated performance metrics, one column per replication. Rows are in the same order as in cvres.

call the original call.

estimates the estimates fitted on the full data. Same format as returned by elnet().

See Also

```
elnet() for computing the LS-EN regularization path without cross-validation.
pense_cv() for cross-validation of S-estimates of regression with elastic net penalty.
coef.pense_cvfit() for extracting coefficient estimates.
plot.pense_cvfit() for plotting the CV performance or the regularization path.
Other functions for computing non-robust estimates: elnet()
```

12 enpy

Examples

```
# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
regpath <- elnet(x, freeny$y, alpha = 0.75)
plot(regpath)
# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[5])
# What penalization level leads to good prediction performance?
cv_results <- elnet_cv(x, freeny$y, alpha = 0.75, cv_repl = 10,</pre>
                       cv_k = 4, cv_measure = 'tau')
plot(cv_results, se_mult = 1)
plot(cv_results, se_mult = 1, what = 'coef.path')
# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
\# ... or at the penalization level with prediction error
\mbox{\tt\#} statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')
```

enpy

Deprecated

Description

[Deprecated]

Compute initial estimates for EN S-estimates using ENPY. Superseded by enpy_initial_estimates().

Usage

```
enpy(x, y, alpha, lambda, delta, cc, options, en_options)
```

Arguments

x data matrix with predictors.

y response vector.

alpha, lambda EN penalty parameters (NOT adjusted for the number of observations in x).

delta desired breakdown point of the resulting estimator.

cc tuning constant for the S-estimator. Default is to chosen based on the breakdown

point delta. Should never have to be changed.

options **ignored.** Additional options for the initial estimator. en_options **ignored.** Additional options for the EN algorithm.

Value

coeff	A numeric matrix with one initial coefficient per column

objF A vector of values of the objective function for the respective coefficient

enpy_initial_estimates 13

Warning

Do not use this function in new code. It may be removed from future versions of the package.

See Also

```
Other deprecated functions: deprecated_en_options, initest_options(), mstep_options(), pense_options(), pensem()
```

```
enpy_initial_estimates
```

ENPY Initial Estimates for EN S-Estimators

Description

Compute initial estimates for the EN S-estimator using the EN-PY procedure.

Usage

```
enpy_initial_estimates(
    x,
    y,
    alpha,
    lambda,
    bdp = 0.25,
    cc,
    intercept = TRUE,
    penalty_loadings,
    enpy_opts = enpy_options(),
    mscale_opts = mscale_algorithm_options(),
    eps = 1e-06,
    sparse = FALSE,
    ncores = 1L
)
```

Arguments

n by p matrix of numeric predictors. Х vector of response values of length n. alpha elastic net penalty mixing parameter with $0 \le \alpha \le 1$. alpha = 1 is the LASSO penalty, and alpha = 0 the Ridge penalty. lambda a vector of positive values of penalization levels. bdp desired breakdown point of the estimator, between 0 and 0.5. cutoff value for the bisquare rho function. By default, chosen to yield a consis- CC tent estimate for the Normal distribution. intercept include an intercept in the model. penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient. Only allowed for alpha > 0.

14 enpy_options

enpy_opts options for the EN-PY algorithm, created with the enpy_options() function.

mscale_opts options for the M-scale estimation. See mscale_algorithm_options() for details.

eps numerical tolerance.

sparse use sparse coefficient vectors.

ncores number of CPU cores to use in parallel. By default, only one CPU core is used.

May not be supported on your platform, in which case a warning is given.

Details

If these manually computed initial estimates are intended as starting points for pense(), they are by default *shared* for all penalization levels. To restrict the use of the initial estimates to the penalty level they were computed for, use as_starting_point(..., specific = TRUE). See as_starting_point() for details.

References

Cohen Freue, G.V.; Kepplinger, D.; Salibián-Barrera, M.; Smucler, E. Robust elastic net estimators for variable selection and identification of proteomic biomarkers. *Ann. Appl. Stat.* **13** (2019), no. 4, 2065–2090 doi: 10.1214/19AOAS1269

See Also

Other functions for initial estimates: prinsens(), starting_point()

enpy_options

Options for the ENPY Algorithm

Description

Additional control options for the elastic net Peña-Yohai procedure.

```
enpy_options(
  max_it = 10,
  keep_psc_proportion = 0.5,
  en_algorithm_opts,
  keep_residuals_measure = c("threshold", "proportion"),
  keep_residuals_proportion = 0.5,
  keep_residuals_threshold = 2,
  retain_best_factor = 2,
  retain_max = 500
)
```

en_admm_options 15

Arguments

max_it maximum number of EN-PY iterations.

keep_psc_proportion

how many observations should to keep based on the Principal Sensitivity Components.

en_algorithm_opts

options for the LS-EN algorithm. See en_algorithm_options for details.

keep_residuals_measure

how to determine what observations to keep, based on their residuals. If proportion, a fixed number of observations is kept. If threshold, only observations with residuals below the threshold are kept.

keep_residuals_proportion

proportion of observations to kept based on their residuals.

keep_residuals_threshold

only observations with (standardized) residuals less than this threshold are kept.

retain_best_factor

only keep candidates that are within this factor of the best candidate. If \leftarrow 1,

only keep candidates from the last iteration.

retain_max maximum number of candidates, i.e., only the best retain_max candidates are

retained.

Details

The EN-PY procedure for computing initial estimates iteratively cleans the data of observations with possibly outlying residual or high leverage. Least-squares elastic net (LS-EN) estimates are computed on the possibly clean subsets. At each iteration, the Principal Sensitivity Components are computed to remove observations with potentially high leverage. Among all the LS-EN estimates, the estimate with smallest M-scale of the residuals is selected. Observations with largest residual for the selected estimate are removed and the next iteration is started.

Value

options for the ENPY algorithm.

en_admm_options

Use the ADMM Elastic Net Algorithm

Description

Use the ADMM Elastic Net Algorithm

Usage

```
en_admm_options(max_it = 1000, step_size, acceleration = 1)
```

Arguments

max_it maximum number of iterations. step_size step size for the algorithm.

acceleration acceleration factor for linearized ADMM.

16 en_dal_options

Value

options for the ADMM EN algorithm.

See Also

```
Other EN algorithms: en_dal_options(), en_lars_options()
```

Description

The package supports different algorithms to compute the EN estimate for weighted LS loss functions. Each algorithm has certain characteristics that make it useful for some problems. To select a specific algorithm and adjust the options, use any of the en_***_options functions.

Details

- en_lars_options(): Use the tuning-free LARS algorithm. This computes *exact* (up to numerical errors) solutions to the EN-LS problem. It is not iterative and therefore can not benefit from approximate solutions, but in turn guarantees that a solution will be found.
- en_admm_options(): Use an iterative ADMM-type algorithm which needs O(np) operations per iteration and converges sub-linearly.
- en_dal_options(): Use the iterative Dual Augmented Lagrangian (DAL) method. DAL needs $O(n^3p^2)$ operations per iteration, but converges exponentially.

en_dal_options

Use the DAL Elastic Net Algorithm

Description

Use the DAL Elastic Net Algorithm

```
en_dal_options(
  max_it = 100,
  max_inner_it = 100,
  eta_multiplier = 2,
  eta_start_conservative = 0.01,
  eta_start_aggressive = 1,
  lambda_relchange_aggressive = 0.25
)
```

en_lars_options 17

Arguments

max_it maximum number of (outer) iterations.

max_inner_it maximum number of (inner) iterations in each outer iteration.

eta_multiplier multiplier for the barrier parameter. In each iteration, the barrier must be more restrictive (i.e., the multiplier must be > 1).

eta_start_conservative

conservative initial barrier parameter. This is used if the previous penalty is undefined or too far away.

eta_start_aggressive

aggressive initial barrier parameter. This is used if the previous penalty is close.

lambda_relchange_aggressive

how close must the lambda parameter from the previous penalty term be to use an aggressive initial barrier parameter (i.e., what constitutes "too far").

Value

options for the DAL EN algorithm.

See Also

Other EN algorithms: en_admm_options(), en_lars_options()

en_lars_options

Use the LARS Elastic Net Algorithm

Description

Use the LARS Elastic Net Algorithm

Usage

```
en_lars_options()
```

See Also

Other EN algorithms: en_admm_options(), en_dal_options()

18 initest_options

initest_options

Deprecated

Description

[Deprecated]

Options for computing initial estimates via ENPY. Superseded by enpy_options().

Usage

```
initest_options(
  keep\_solutions = 5,
 psc_method = c("exact", "rr"),
 maxit = 10,
 maxit_pense_refinement = 5,
 eps = 1e-06,
 psc_keep = 0.5,
  resid_keep_method = c("proportion", "threshold"),
  resid_keep_prop = 0.6,
 resid_keep_thresh = 2,
 mscale_{eps} = 1e-08,
 mscale_maxit = 200
)
```

Arguments

The method to use for computing the principal sensitivity components. See psc_method details for the possible choices. maximum number of refinement iterations. maxit maxit_pense_refinement ignored. Maximum number of PENSE iterations to refine initial estimator. ignored. Numeric tolerance for convergence. eps psc_keep proportion of observations to keep based on the PSC scores. resid_keep_method How to clean the data based on large residuals. If "proportion", observations with the smallest resid_keep_prop residuals will be retained. If "threshold",

keep_solutions how many initial estimates should be kept to perform full PENSE iterations?

all observations with scaled residuals smaller than the threshold resid_keep_thresh will be retained.

resid_keep_prop, resid_keep_thresh

proportion or threshold for observations to keep based on their residual.

mscale_eps, mscale_maxit

ignored. Maximum number of iterations and numeric tolerance for the M-scale.

Warning

Do not use this function in new code. It may be removed from future versions of the package.

mloc 19

See Also

Other deprecated functions: deprecated_en_options, enpy(), mstep_options(), pense_options(), pensem()

mloc

Compute the M-estimate of Location

Description

Compute the M-estimate of location using an auxiliary estimate of the scale.

Usage

```
mloc(x, scale, rho, cc, opts = mscale_algorithm_options())
```

Arguments

x	numeric values. Missing values are verbosely ignored.
scale	scale of the x values. If omitted, uses the mad().
rho	the ρ function to use. See rho_function() for available functions.
СС	value of the tuning constant for the chosen ρ function. By default, chosen to achieve 95% efficiency under the Normal distribution.
opts	a list of options for the M-estimating algorithm, see mscale_algorithm_options() for details.

Value

a single numeric value, the M-estimate of location.

See Also

Other functions to compute robust estimates of location and scale: mlocscale(), mscale(), tau_size()

mlocscale

Compute the M-estimate of Location and Scale

Description

Simultaneous estimation of the location and scale by means of M-estimates.

```
mlocscale(
    x,
    bdp = 0.25,
    scale_cc = consistency_const(bdp, "bisquare"),
    location_rho,
    location_cc,
    opts = mscale_algorithm_options()
)
```

Arguments

x numeric values. Missing values are verbosely ignored. bdp desired breakdown point (between 0 and 0.5). scale_cc cutoff value for the bisquare ρ function for computing the scale estimate. By default, chosen to yield a consistent estimate for normally distributed values. location_rho, location_cc $\rho \text{ function and cutoff value for computing the location estimate. See rho_function()}$ for a list of available ρ functions. a list of options for the M-estimating equation, see mscale_algorithm_options()

Value

a vector with 2 elements, the M-estimate of location and the M-scale estimate.

for details.

See Also

Other functions to compute robust estimates of location and scale: mloc(), mscale(), tau_size()

mm_algorithm_options MM-Algorithm to Compute Penalized Elastic Net S- and M-Estimates

Description

Additional options for the MM algorithm to compute EN S- and M-estimates.

Usage

```
mm_algorithm_options(
  max_it = 500,
  tightening = c("adaptive", "exponential", "none"),
  tightening_steps = 10,
  en_algorithm_opts
)
```

Arguments

max_it maximum number of iterations.

tightening how to make inner iterations more precise as the algorithm approaches a local minimum.

tightening_steps
for adaptive tightening strategy, how often to tighten until the desired tolerance is attained.

en_algorithm_opts
options for the inner LS-EN algorithm. See en_algorithm_options for details.

Value

options for the MM algorithm.

mscale 21

mscale

Compute the M-Scale of Centered Values

Description

Compute the M-scale without centering the values.

Usage

```
mscale(
    x,
    bdp = 0.25,
    cc = consistency_const(bdp, "bisquare"),
    opts = mscale_algorithm_options(),
    delta = deprecated(),
    rho = deprecated(),
    eps = deprecated(),
    maxit = deprecated()
)
```

Arguments

X	numeric values. Missing values are verbosely ignored.
bdp	desired breakdown point (between 0 and 0.5).
СС	cutoff value for the bisquare rho function. By default, chosen to yield a consistent estimate for the Normal distribution.
opts	a list of options for the M-scale estimation algorithm, see ${\tt mscale_algorithm_options}()$ for details.
delta	deprecated. Use bpd instead.
rho, eps, maxit	deprecated. Instead set control options for the algorithm with the opts arguments.

Value

the M-estimate of scale.

See Also

Other functions to compute robust estimates of location and scale: mlocscale(), mloc(), tau_size()

22 mstep_options

```
mscale_algorithm_options
```

Options for the M-scale Estimation Algorithm

Description

Options for the M-scale Estimation Algorithm

Usage

```
mscale_algorithm_options(max_it = 200, eps = 1e-08)
```

Arguments

max_it maximum number of iterations.

numerical tolerance to check for convergence. eps

Value

options for the M-scale estimation algorithm.

mstep_options

Deprecated

Description

[Deprecated]

Additional options for computing penalized EN MM-estimates. Superseded by mm_algorithm_options() and options supplied directly to pensem_cv().

Usage

```
mstep_options(
  cc = 3.44,
  maxit = 1000,
  eps = 1e-06,
  adjust_bdp = FALSE,
  verbosity = 0,
  en_correction = TRUE
)
```

Arguments

ignored. Tuning constant for the M-estimator. СС maximum number of iterations allowed. maxit

eps **ignored.** Numeric tolerance for convergence. $adjust_bdp$

ignored. Should the breakdown point be adjusted based on the effective degrees

of freedom?

verbosity ignored. Verbosity of the algorithm.

ignored. Should the corrected EN estimator be used to choose the optimal en_correction

lambda with CV. If TRUE, as by default, the estimator is "bias corrected".

pense 23

Warning

Do not use this function in new code. It may be removed from future versions of the package.

See Also

Other deprecated functions: deprecated_en_options, enpy(), initest_options(), pense_options(), pensem()

pense

Compute (Adaptive) Elastic Net S-Estimates of Regression

Description

Compute elastic net S-estimates (PENSE estimates) along a grid of penalization levels with optional penalty loadings for adaptive elastic net.

```
pense(
  х,
  alpha,
  nlambda = 50,
  nlambda_enpy = 10,
  lambda,
  lambda_min_ratio,
  enpy_lambda,
  penalty_loadings,
  intercept = TRUE,
  bdp = 0.25,
  cc,
  add_zero_based = TRUE,
  enpy_specific = FALSE,
  other_starts,
  eps = 1e-06,
  explore_solutions = 10,
  explore_tol = 0.1,
  max_solutions = 10,
  comparison_tol = sqrt(eps),
  sparse = FALSE,
  ncores = 1,
  standardize = TRUE,
  algorithm_opts = mm_algorithm_options(),
  mscale_opts = mscale_algorithm_options(),
  enpy_opts = enpy_options(),
  cv_k = deprecated(),
  cv_objective = deprecated(),
)
```

24 pense

Arguments

x n by p matrix of numeric predictors.

y vector of response values of length n. For binary classification, y should be a

factor with 2 levels.

alpha elastic net penalty mixing parameter with $0 \le \alpha \le 1$. alpha = 1 is the LASSO

penalty, and alpha = 0 the Ridge penalty.

nlambda number of penalization levels.

nlambda_enpy number of penalization levels where the EN-PY initial estimate is computed.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,

nlambda and lambda_min_ratio are ignored.

lambda_min_ratio

Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 * alpha

alpha.

enpy_lambda optional user-supplied sequence of penalization levels at which EN-PY initial

estimates are computed. If given and not NULL, nlambda_enpy is ignored.

penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization

of each coefficient. Only allowed for alpha > 0.

intercept include an intercept in the model.

bdp desired breakdown point of the estimator, between 0 and 0.5.

cc tuning constant for the S-estimator. Default is to chosen based on the breakdown

point bdp. Does not affect the estimated coefficients, only the estimated scale of

the residuals.

add_zero_based also consider the 0-based regularization path. See details for a description.

enpy_specific use the EN-PY initial estimates only at the penalization level they are computed

for. See details for a description.

other_starts a list of other staring points, created by starting_point(). If the output of

enpy_initial_estimates() is given, the starting points will be *shared* among all penalization levels. Note that if a the starting point is *specific* to a penalization level, this penalization level is added to the grid of penalization levels (either the manually specified grid in lambda or the automatically generated grid of size

nlambda). If standardize = TRUE, the starting points are also scaled.

eps numerical tolerance.

explore_solutions

number of solutions to compute up to the desired precision eps.

explore_tol numerical tolerance for exploring possible solutions. Should be (much) looser

than eps to be useful.

 $\verb|max_solutions| & only \ retain \ up \ to \ \verb|max_solutions| \ unique \ solutions \ per \ penalization \ level.$

comparison_tol numeric tolerance to determine if two solutions are equal. The comparison is

first done on the absolute difference in the value of the objective function at the solution If this is less than comparison_tol, two solutions are deemed equal if the squared difference of the intercepts is less than comparison_tol and the

squared L_2 norm of the difference vector is less than comparison_tol.

pense 25

sparse use sparse coefficient vectors.

ncores number of CPU cores to use in parallel. By default, only one CPU core is used.

May not be supported on your platform, in which case a warning is given.

standardize logical flag to standardize the x variables prior to fitting the PENSE estimates.

Coefficients are always returned on the original scale. This can fail for variables with a large proportion of a single value (e.g., zero-inflated data). In this case, either compute with standardize = FALSE or standardize the data manually.

algorithm_opts options for the MM algorithm to compute the estimates. See mm_algorithm_options()

for details.

mscale_opts options for the M-scale estimation. See mscale_algorithm_options() for de-

tails.

enpy_opts options for the ENPY initial estimates, created with the enpy_options() func-

tion. See enpy_initial_estimates() for details.

cv_k, cv_objective

deprecated and ignored. See pense_cv() for estimating prediction performance

via cross-validation.

... ignored. See the section on deprecated parameters below.

Value

a list-like object with the following items

lambda the sequence of penalization levels.

estimates a list of estimates. Each estimate contains the following information:

intercept intercept estimate.

beta beta (slope) estimate.

lambda penalization level at which the estimate is computed.

alpha alpha hyper-parameter at which the estimate is computed.

objf_value value of the objective function at the solution.

statuscode if > 0 the algorithm experienced issues when computing the estimate.

status optional status message from the algorithm.

call the original call.

Strategies for Using Starting Points

The function supports several different strategies to compute, and use the provided starting points for optimizing the PENSE objective function.

Starting points are computed internally but can also be supplied via other_starts. By default, starting points are computed internally by the EN-PY procedure for penalization levels supplied in enpy_lambda (or the automatically generated grid of length nlambda_enpy). By default, starting points computed by the EN-PY procedure are *shared* for all penalization levels in lambda (or the automatically generated grid of length nlambda). If the starting points should be *specific* to the penalization level the starting points' penalization level, set the enpy_specific argument to TRUE.

In addition to EN-PY initial estimates, the algorithm can also use the "0-based" strategy if add_zero_based = TRUE (by default). Here, the 0-vector is used to start the optimization at the largest penalization level in lambda. At subsequent penalization levels, the solution at the previous penalization level is also used as starting point.

At every penalization level, all starting points are explored using the loose numerical tolerance explore_tol. Only the best explore_solutions are computed to the stringent numerical tolerance eps. Finally, only the best max_solutions are retained and carried forward as starting points for the subsequent penalization level.

26 pensem

Deprecated Arguments

Starting with version 2.0.0, cross-validation is performed by separate function pense_cv(). Arguments related cross-validation cause an error when supplied to pense(). Furthermore, the following arguments are deprecated as of version 2.0.0: initial, warm_reset, cl, options, init_options, en_options. If pense() is called with any of these arguments, warnings detail how to replace them.

See Also

```
pense_cv() for selecting hyper-parameters via cross-validation.
coef.pense_fit() for extracting coefficient estimates.
plot.pense_fit() for plotting the regularization path.
Other functions to compute robust estimates: regmest()
```

Examples

```
# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)
# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[40])
# What penalization level leads to good prediction performance?
cv_results <- pense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2,</pre>
                       cv_k = 4
plot(cv_results, se_mult = 1)
# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')
```

pensem

Deprecated Alias of pensem_cv

Description

```
pensem() is a deprecated alias for pensem_cv().
```

```
pensem(x, ...)
```

Arguments

```
x either a numeric matrix of predictor values, or a cross-validated PENSE fit from pense_cv().
```

... ignored. See the section on deprecated parameters below.

See Also

```
Other deprecated functions: deprecated_en_options, enpy(), initest_options(), mstep_options(), pense_options()
```

pensem_cv

Compute Penalized Elastic Net M-Estimates from PENSE

Description

This is a convenience wrapper around pense_cv() and regmest_cv(), for the common use-case of computing a highly-robust S-estimate followed by a more efficient M-estimate using the scale of the residuals from the S-estimate.

```
pensem_cv(x, ...)
## Default S3 method:
pensem_cv(
  Х,
  у,
  alpha = 0.5,
  nlambda = 50,
  lambda_min_ratio,
  lambda_m,
  lambda_s,
  standardize = TRUE,
  penalty_loadings,
  intercept = TRUE,
  bdp = 0.25,
  ncores = 1,
  sparse = FALSE,
  eps = 1e-06,
  cc = 4.7,
  cv_k = 5,
  cv_repl = 1,
  c1 = NULL,
  cv_metric = c("tau_size", "mape", "rmspe"),
  add_zero_based = TRUE,
  explore_solutions = 10,
  explore_tol = 0.1,
  max\_solutions = 10,
  fit_all = TRUE,
  comparison_tol = sqrt(eps),
```

```
algorithm_opts = mm_algorithm_options(),
  mscale_opts = mscale_algorithm_options(),
  nlambda_enpy = 10,
  enpy_opts = enpy_options(),
)
## S3 method for class 'pense_cvfit'
pensem_cv(
  Х,
  scale,
  alpha,
  nlambda = 50,
  lambda_min_ratio,
  lambda_m,
  standardize = TRUE,
  penalty_loadings,
  intercept = TRUE,
  bdp = 0.25,
  ncores = 1,
  sparse = FALSE,
  eps = 1e-06,
  cc = 4.7,
  cv_k = 5,
  cv_repl = 1,
  c1 = NULL,
  cv_metric = c("tau_size", "mape", "rmspe"),
  add_zero_based = TRUE,
  explore_solutions = 10,
  explore_tol = 0.1,
  max\_solutions = 10,
  fit_all = TRUE,
  comparison_tol = sqrt(eps),
  algorithm_opts = mm_algorithm_options(),
  mscale_opts = mscale_algorithm_options(),
  x_train,
  y_train,
```

Arguments

```
either a numeric matrix of predictor values, or a cross-validated PENSE fit from pense_cv(). . . . ignored. See the section on deprecated parameters below.  

y vector of response values of length n. For binary classification, y should be a factor with 2 levels.  

alpha elastic net penalty mixing parameter with 0 \le \alpha \le 1. alpha = 1 is the LASSO penalty, and alpha = 0 the Ridge penalty.  

nlambda number of penalization levels.  

lambda_min_ratio
```

Smallest value of the penalization level as a fraction of the largest level (i.e.,

the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 * alpha.

lambda_m, lambda_s

optional user-supplied sequence of penalization levels for the S- and M-estimates. If given and not NULL, nlambda and lambda_min_ratio are ignored for the respective estimate (S and/or M).

standardize logical flag to standardize the x variables prior to fitting the PENSE estimates.

Coefficients are always returned on the original scale. This can fail for variables with a large proportion of a single value (e.g., zero-inflated data). In this case, either compute with standardize = FALSE or standardize the data manually.

penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization

of each coefficient. Only allowed for alpha > 0.

intercept include an intercept in the model.

bdp desired breakdown point of the estimator, between 0 and 0.5.

ncores number of CPU cores to use in parallel. By default, only one CPU core is used.

May not be supported on your platform, in which case a warning is given.

sparse use sparse coefficient vectors.

eps numerical tolerance.

cc cutoff constant for Tukey's bisquare ρ function in the M-estimation objective

function.

cv_knumber of folds per cross-validation.cv_replnumber of cross-validation replications.

cl a parallel cluster. Can only be used if ncores = 1, because multi-threading can

not be used in parallel R sessions on the same host.

cv_metric either a string specifying the performance metric to use, or a function to eval-

uate prediction errors in a single CV replication. If a function, the number of arguments define the data the function receives. If the function takes a single argument, it is called with a single numeric vector of prediction errors. If the function takes two or more arguments, it is called with the predicted values as first argument and the true values as second argument. The function must always return a single numeric value quantifying the prediction performance. The

order of the given values corresponds to the order in the input data.

 ${\tt add_zero_based} \quad also \ consider \ the \ 0{\textrm -}based \ regularization \ path. \ See \ details \ for \ a \ description. \\ {\tt explore_solutions}$

number of solutions to compute up to the desired precision eps.

explore_tol numerical tolerance for exploring possible solutions. Should be (much) looser

than eps to be useful.

max_solutions only retain up to max_solutions unique solutions per penalization level.

fit_all If TRUE, fit the model for all penalization levels. Otherwise, only at penalization

level with smallest average CV performance.

comparison_tol numeric tolerance to determine if two solutions are equal. The comparison is

first done on the absolute difference in the value of the objective function at the solution If this is less than comparison_tol, two solutions are deemed equal if the squared difference of the intercepts is less than comparison_tol and the

squared L_2 norm of the difference vector is less than comparison_tol.

algorithm_opts options for the MM algorithm to compute the estimates. See mm_algorithm_options() for details.

mscale_opts options for the M-scale estimation. See mscale_algorithm_options() for details.

nlambda_enpy number of penalization levels where the EN-PY initial estimate is computed.

enpy_opts options for the ENPY initial estimates, created with the enpy_options() function. See enpy_initial_estimates() for details.

scale initial scale estimate to use in the M-estimation. By default the S-scale from the PENSE fit is used.

x_train, y_train override arguments x and y as provided in the call to pense_cv(). This is useful

if the arguments in the pense_cv() call are not available in the current environ-

Details

The built-in CV metrics are

"tau_size" τ -size of the prediction error, computed by tau_size() (default).

"mape" Median absolute prediction error.

"rmspe" Root mean squared prediction error.

"auroc" Area under the receiver operator characteristic curve (actually 1 - AUROC). Only sensible for binary responses.

Value

an object of cross-validated regularized M-estimates as returned from regmest_cv().

See Also

pense_cv() to compute the starting S-estimate.

Other functions to compute robust estimates with CV: pense_cv(), regmest_cv()

pense_cv

Cross-validation for (Adaptive) PENSE Estimates

Description

Perform (repeated) K-fold cross-validation for pense().

adapense_cv() is a convenience wrapper to compute adaptive PENSE estimates.

Usage

```
pense_cv(
    x,
    y,
    standardize = TRUE,
    lambda,
    cv_k,
    cv_repl = 1,
    cv_metric = c("tau_size", "mape", "rmspe", "auroc"),
    fit_all = TRUE,
    cl = NULL,
    ...
)

adapense_cv(x, y, alpha, alpha_preliminary = 0, exponent = 1, ...)
```

Arguments

x n by p matrix of numeric predictors.

y vector of response values of length n. For binary classification, y should be a

factor with 2 levels.

standardize whether to standardize the x variables prior to fitting the PENSE estimates. Can

also be set to "cv_only", in which case the input data is not standardized, but the training data in the CV folds is scaled to match the scaling of the input data. Coefficients are always returned on the original scale. This can fail for variables with a large proportion of a single value (e.g., zero-inflated data). In this case,

either compute with standardize = FALSE or standardize the data manually.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,

nlambda and lambda_min_ratio are ignored.

cv_k number of folds per cross-validation.

cv_repl number of cross-validation replications.

cv_metric either a string specifying the performance metric to use, or a function to eval-

uate prediction errors in a single CV replication. If a function, the number of arguments define the data the function receives. If the function takes a single argument, it is called with a single numeric vector of prediction errors. If the function takes two or more arguments, it is called with the predicted values as first argument and the true values as second argument. The function must always return a single numeric value quantifying the prediction performance. The

order of the given values corresponds to the order in the input data.

fit_all If TRUE, fit the model for all penalization levels. Otherwise, only at penalization

level with smallest average CV performance.

cl a parallel cluster. Can only be used if ncores = 1, because multi-threading can

not be used in parallel R sessions on the same host.

... Arguments passed on to pense

nlambda number of penalization levels.

lambda_min_ratio Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 * alpha.

nlambda_enpy number of penalization levels where the EN-PY initial estimate is computed.

- penalty_loadings a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient. Only allowed for alpha > 0.
- enpy_lambda optional user-supplied sequence of penalization levels at which EN-PY initial estimates are computed. If given and not NULL, nlambda_enpy is ignored.
- other_starts a list of other staring points, created by starting_point(). If the output of enpy_initial_estimates() is given, the starting points will be *shared* among all penalization levels. Note that if a the starting point is *specific* to a penalization level, this penalization level is added to the grid of penalization levels (either the manually specified grid in lambda or the automatically generated grid of size nlambda). If standardize = TRUE, the starting points are also scaled.
- intercept include an intercept in the model.
- bdp desired breakdown point of the estimator, between 0 and 0.5.
- cc tuning constant for the S-estimator. Default is to chosen based on the breakdown point bdp. Does *not* affect the estimated coefficients, only the estimated scale of the residuals.
- eps numerical tolerance.
- explore_solutions number of solutions to compute up to the desired precision eps.
- explore_tol numerical tolerance for exploring possible solutions. Should be (much) looser than eps to be useful.
- max_solutions only retain up to max_solutions unique solutions per penalization level.
- comparison_tol numeric tolerance to determine if two solutions are equal. The comparison is first done on the absolute difference in the value of the objective function at the solution If this is less than comparison_tol, two solutions are deemed equal if the squared difference of the intercepts is less than comparison_tol and the squared L_2 norm of the difference vector is less than comparison_tol.
- add_zero_based also consider the 0-based regularization path. See details for a description.
- enpy_specific use the EN-PY initial estimates only at the penalization level they are computed for. See details for a description.
- sparse use sparse coefficient vectors.
- ncores number of CPU cores to use in parallel. By default, only one CPU core is used. May not be supported on your platform, in which case a warning is given.
- algorithm_opts options for the MM algorithm to compute the estimates. See mm_algorithm_options() for details.
- mscale_opts options for the M-scale estimation. See mscale_algorithm_options() for details.
- enpy_opts options for the ENPY initial estimates, created with the enpy_options() function. See enpy_initial_estimates() for details.
- cv_objective deprecated and ignored. See pense_cv() for estimating prediction performance via cross-validation.
- elastic net penalty mixing parameter with $0 \le \alpha \le 1$. alpha = 1 is the LASSO penalty, and alpha = 0 the Ridge penalty.

alpha

```
alpha_preliminary
```

alpha parameter for the preliminary estimate.

exponent

the exponent for computing the penalty loadings based on the preliminary esti-

Details

The built-in CV metrics are

"tau_size" τ -size of the prediction error, computed by tau_size() (default).

"mape" Median absolute prediction error.

"rmspe" Root mean squared prediction error.

"auroc" Area under the receiver operator characteristic curve (actually 1 - AUROC). Only sensible for binary responses.

adapense_cv() is a convenience wrapper which performs 3 steps:

- 1. compute preliminary estimates via pense_cv(...,alpha = alpha_preliminary),
- 2. computes the penalty loadings from the estimate beta with best prediction performance by adapense_loadings = 1 / abs(beta)^exponent, and
- 3. compute the adaptive PENSE estimates via pense_cv(...,penalty_loadings = adapense_loadings).

Value

a list with components:

lambda the sequence of penalization levels.

cvres data frame of average cross-validated performance.

cv_replications matrix of cross-validated performance metrics, one column per replication. Rows are in the same order as in cvres.

call the original call.

estimates the estimates fitted on the full data. Same format as returned by pense().

the object returned by adapense_cv() has additional components

preliminary the CV results for the preliminary estimate.

penalty_loadings the penalty loadings used for the adaptive PENSE estimate.

See Also

```
pense() for computing regularized S-estimates without cross-validation.
coef.pense_cvfit() for extracting coefficient estimates.
plot.pense_cvfit() for plotting the CV performance or the regularization path.
Other functions to compute robust estimates with CV: pensem_cv(), regmest_cv()
Other functions to compute robust estimates with CV: pensem_cv(), regmest_cv()
```

34 pense_options

Examples

```
# Compute the adaptive PENSE regularization path for Freeny's
# revenue data (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
## Either use the convenience function directly \dots
ada_convenience <- adapense_cv(x, freeny$y, alpha = 0.5,
                                cv_repl = 2, cv_k = 4)
\#\# ... or compute the steps manually:
# Step 1: Compute preliminary estimates with CV
preliminary_estimate <- pense_cv(x, freeny$y, alpha = 0,</pre>
                                 cv_repl = 2, cv_k = 4)
plot(preliminary_estimate, se_mult = 1)
# Step 2: Use the coefficients with best prediction performance
# to define the penality loadings:
prelim_coefs <- coef(preliminary_estimate, lambda = 'min')</pre>
pen_loadings <- 1 / abs(prelim_coefs[-1])</pre>
# Step 3: Compute the adaptive PENSE estimates and estimate
# their prediction performance.
ada_manual <- pense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2,
                        cv_k = 4, penalty_loadings = pen_loadings)
# Visualize the prediction performance and coefficient path of
# the adaptive PENSE estimates (manual vs. automatic)
def.par <- par(no.readonly = TRUE)</pre>
layout(matrix(1:4, ncol = 2, byrow = TRUE))
plot(ada_convenience$preliminary)
plot(preliminary_estimate)
plot(ada_convenience)
plot(ada_manual)
par(def.par)
```

pense_options

Deprecated

Description

[Deprecated]

Additional options for computing penalized EN S-estimates. Superseded by mm_algorithm_options() and options supplied directly to pense().

```
pense_options(
  delta = 0.25,
  maxit = 1000,
  eps = 1e-06,
  mscale_eps = 1e-08,
  mscale_maxit = 200,
```

plot.pense_cvfit 35

```
verbosity = 0,
cc = NULL,
en_correction = TRUE
)
```

Arguments

delta desired breakdown point of the resulting estimator.

maxit maximum number of iterations allowed.
eps numeric tolerance for convergence.

mscale_eps, mscale_maxit

maximum number of iterations and numeric tolerance for the M-scale.

verbosity **ignored.** Verbosity of the algorithm.

cc **ignored.** Tuning constant for the S-estimator. Default is to chosen based on the

breakdown point delta. Should never have to be changed.

en_correction ignored. Should the corrected EN estimator be used to choose the optimal

lambda with CV. If TRUE, as by default, the estimator is "bias corrected".

Warning

Do not use this function in new code. It may be removed from future versions of the package.

See Also

Other deprecated functions: deprecated_en_options, enpy(), initest_options(), mstep_options(), pensem()

plot.pense_cvfit

Plot Method for Penalized Estimates With Cross-Validation

Description

Plot the cross-validation performance or the coefficient path for fitted penalized elastic net S- or LS-estimates of regression.

Usage

```
## S3 method for class 'pense_cvfit'
plot(x, what = c("cv", "coef.path"), se_mult = 1, ...)
```

Arguments

x fitted estimates with cross-validation information.
 what plot either the CV performance or the coefficient path.
 se_mult if plotting CV performance, multiplier of the estimated SE.
 currently ignored.

See Also

Other functions for plotting and printing: plot.pense_fit(), prediction_performance(), summary.pense_cvfit()

36 plot.pense_fit

Examples

```
# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)
# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[40])
# What penalization level leads to good prediction performance?
cv_results <- pense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2,</pre>
                       cv_k = 4
plot(cv_results, se_mult = 1)
# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
\# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')
```

plot.pense_fit

Plot Method for Penalized Estimates

Description

Plot the coefficient path for fitted penalized elastic net S- or LS-estimates of regression.

Usage

```
## S3 method for class 'pense_fit'
plot(x, ...)
```

Arguments

. . .

fitted estimates. х currently ignored.

See Also

Other functions for plotting and printing: plot.pense_cvfit(), prediction_performance(), summary.pense_cvfit()

Examples

```
# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
```

predict.pense_cvfit 37

Description

Predict response values using a PENSE (or LS-EN) regularization path with hyper-parameters chosen by cross-validation.

Usage

```
## S3 method for class 'pense_cvfit'
predict(
  object,
  newdata,
  lambda = c("min", "se"),
  se_mult = 1,
  exact = deprecated(),
  correction = deprecated(),
  ...
)
```

Arguments

object	PENSE with cross-validated hyper-parameters to extract coefficients from.	
newdata	an optional matrix of new predictor values. If missing, the fitted values are computed.	
lambda	either a string specifying which penalty level to use or a a single numeric value of the penalty parameter. See details.	
se_mult	If lambda = "se", the multiple of standard errors to tolerate.	
exact	deprecated. Always gives a warning if lambda is not part of the fitted sequence and coefficients are interpolated.	
correction	defunct.	
	currently not used.	

38 predict.pense_fit

Details

If lambda = "se" and object contains fitted estimates for every penalization level in the sequence, extract the residuals of the most parsimonious model with prediction performance statistically indistinguishable from the best model. This is determined to be the model with prediction performance within se_mult * cv_se from the best model.

Value

a numeric vector of residuals for the given penalization level.

See Also

```
Other functions for extracting components: coef.pense_cvfit(), coef.pense_fit(), predict.pense_fit(), residuals.pense_cvfit(), residuals.pense_fit()
```

Examples

```
# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
regpath <- elnet(x, freeny$y, alpha = 0.75)
# Predict the response using a specific penalization level
predict(regpath, newdata = freeny[1:5, 2:5],
        lambda = regpath$lambda[10])
# Extract the residuals at a certain penalization level
residuals(regpath, lambda = regpath$lambda[5])
# Select penalization level via cross-validation
cv_results <- elnet_cv(x, freeny$y, alpha = 0.5, cv_repl = 10,</pre>
                       cv_k = 4
# Predict the response using the "best" penalization level
predict(cv_results, newdata = freeny[1:5, 2:5])
# Extract the residuals at the "best" penalization level
residuals(cv_results)^2
# Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = 'se')
```

predict.pense_fit

Predict Method for PENSE Fits

Description

Predict response values using a PENSE (or LS-EN) regularization path fitted by pense() or elnet().

predict.pense_fit 39

Usage

```
## S3 method for class 'pense_fit'
predict(
   object,
   newdata,
   lambda,
   exact = deprecated(),
   correction = deprecated(),
   ...
)
```

Arguments

object PENSE regularization path to extract residuals from.

newdata an optional matrix of new predictor values. If missing, the fitted values are

computed.

lambda a single value of the penalty parameter.

exact defunct Always gives a warning if lambda is not part of the fitted sequence and

coefficients need to be interpolated.

correction defunct.

... currently not used.

Value

a numeric vector of residuals for the given penalization level.

See Also

```
Other functions for extracting components: coef.pense_cvfit(), coef.pense_fit(), predict.pense_cvfit(), residuals.pense_cvfit(), residuals.pense_fit()
```

Examples

```
# Extract the residuals at the "best" penalization level
residuals(cv_results)^2
# Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = 'se')
```

prediction_performance

Prediction Performance of Adaptive PENSE Fits

Description

Extract the prediction performance of one or more (adaptive) PENSE fits.

Usage

```
prediction_performance(..., lambda = c("min", "se"), se_mult = 1)
## S3 method for class 'pense_pred_perf'
print(x, ...)
```

Arguments

one or more (adaptive) PENSE fits with cross-validation information.

a string specifying which penalty level to use ("min" or "se"). See details.

se_mult

If lambda = "se", the multiple of standard errors to tolerate.

x an object with information on prediction performance created with prediction_performance().

Details

If lambda = "se" and the cross-validation was performed with multiple replications, use the penalty level whit prediction performance within se_mult of the best prediction performance.

Value

a data frame with details about the prediction performance of the given PENSE fits. The data frame has a custom print method summarizing the prediction performances.

See Also

```
summary.pense_cvfit() for a summary of the fitted model.
```

Other functions for plotting and printing: $plot.pense_cvfit()$, $plot.pense_fit()$, $summary.pense_cvfit()$

prinsens 41

Description

Compute Principal Sensitivity Components for Elastic Net Regression

Usage

```
prinsens(
   x,
   y,
   alpha,
   lambda,
   intercept = TRUE,
   penalty_loadings,
   en_algorithm_opts,
   eps = 1e-06,
   sparse = FALSE,
   ncores = 1L,
   method = deprecated()
)
```

Arguments

x n by p matrix of numeric predictors.y vector of response values of length n.

alpha elastic net penalty mixing parameter with $0 \le \alpha \le 1$. alpha = 1 is the LASSO

penalty, and alpha = 0 the Ridge penalty.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,

nlambda and lambda_min_ratio are ignored.

intercept include an intercept in the model.

penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization

of each coefficient. Only allowed for alpha > 0.

en_algorithm_opts

options for the LS-EN algorithm. See en_algorithm_options for details.

eps numerical tolerance.

sparse use sparse coefficient vectors.

ncores number of CPU cores to use in parallel. By default, only one CPU core is used.

May not be supported on your platform, in which case a warning is given.

method defunct. PSCs are always computed for EN estimates. For the PY procedure for

unpenalized estimation use package pyinit.

Value

a list of principal sensitivity components, one per element in lambda. Each PSC is itself a list with items lambda, alpha, and pscs.

42 regmest

References

Cohen Freue, G.V.; Kepplinger, D.; Salibián-Barrera, M.; Smucler, E. Robust elastic net estimators for variable selection and identification of proteomic biomarkers. *Ann. Appl. Stat.* **13** (2019), no. 4, 2065–2090 doi: 10.1214/19AOAS1269

Pena, D., and Yohai, V.J. A Fast Procedure for Outlier Diagnostics in Large Regression Problems. *J. Amer. Statist. Assoc.* **94** (1999). no. 446, 434–445. doi: 10.2307/2670164

See Also

Other functions for initial estimates: enpy_initial_estimates(), starting_point()

regmest

Compute (Adaptive) Elastic Net M-Estimates of Regression

Description

Compute elastic net M-estimates along a grid of penalization levels with optional penalty loadings for adaptive elastic net.

Usage

```
regmest(
 х,
 у,
 alpha,
 nlambda = 50,
  lambda,
  lambda_min_ratio,
  scale,
  starting_points,
 penalty_loadings,
  intercept = TRUE,
  cc = 4.7,
  eps = 1e-06,
  explore_solutions = 10,
 explore_tol = 0.1,
 max_solutions = 10,
 comparison_tol = sqrt(eps),
  sparse = FALSE,
 ncores = 1,
  standardize = TRUE,
 algorithm_opts = mm_algorithm_options(),
 add_zero_based = TRUE,
 mscale\_bdp = 0.25,
 mscale_opts = mscale_algorithm_options()
```

regmest 43

Arguments

x n by p matrix of numeric predictors.

y vector of response values of length n. For binary classification, y should be a

factor with 2 levels.

alpha elastic net penalty mixing parameter with $0 \le \alpha \le 1$. alpha = 1 is the LASSO

penalty, and alpha = 0 the Ridge penalty.

nlambda number of penalization levels.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,

nlambda and lambda_min_ratio are ignored.

lambda_min_ratio

Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 * alpha

alpha.

scale fixed scale of the residuals.

starting_points

a list of staring points, created by starting_point(). The starting points are shared among all penalization levels.

penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization

of each coefficient. Only allowed for alpha > 0.

intercept include an intercept in the model.

cc cutoff constant for Tukey's bisquare ρ function.

eps numerical tolerance.

explore_solutions

number of solutions to compute up to the desired precision eps.

explore_tol numerical tolerance for exploring possible solutions. Should be (much) looser

than eps to be useful.

max_solutions only retain up to max_solutions unique solutions per penalization level.

comparison_tol numeric tolerance to determine if two solutions are equal. The comparison is

first done on the absolute difference in the value of the objective function at the solution If this is less than comparison_tol, two solutions are deemed equal if the squared difference of the intercepts is less than comparison_tol and the

squared L_2 norm of the difference vector is less than comparison_tol.

sparse use sparse coefficient vectors.

ncores number of CPU cores to use in parallel. By default, only one CPU core is used.

May not be supported on your platform, in which case a warning is given.

standardize logical flag to standardize the x variables prior to fitting the M-estimates. Coef-

ficients are always returned on the original scale. This can fail for variables with a large proportion of a single value (e.g., zero-inflated data). In this case, either

compute with standardize = FALSE or standardize the data manually.

algorithm_opts options for the MM algorithm to compute estimates. See mm_algorithm_options()

for details.

add_zero_based also consider the 0-based regularization path in addition to the given starting

points.

mscale_bdp, mscale_opts

options for the M-scale estimate used to standardize the predictors (if standardize = TRUE).

Value

```
a list-like object with the following items

lambda the sequence of penalization levels.

scale the used scale of the residuals.

estimates a list of estimates. Each estimate contains the following information:

intercept intercept estimate.

beta beta (slope) estimate.

lambda penalization level at which the estimate is computed.

alpha alpha hyper-parameter at which the estimate is computed.

objf_value value of the objective function at the solution.

statuscode if > 0 the algorithm experienced issues when computing the estimate.

status optional status message from the algorithm.

call the original call.
```

See Also

```
regmest_cv() for selecting hyper-parameters via cross-validation.
coef.pense_fit() for extracting coefficient estimates.
plot.pense_fit() for plotting the regularization path.
Other functions to compute robust estimates: pense()
```

regmest_cv

Cross-validation for (Adaptive) Elastic Net M-Estimates

Description

Perform (repeated) K-fold cross-validation for regmest(). adamest_cv() is a convenience wrapper to compute adaptive elastic-net M-estimates.

Usage

```
regmest_cv(
    x,
    y,
    standardize = TRUE,
    lambda,
    cv_k,
    cv_repl = 1,
    cv_metric = c("tau_size", "mape", "rmspe", "auroc"),
    fit_all = TRUE,
    cl = NULL,
    ...
)
adamest_cv(x, y, alpha, alpha_preliminary = 0, exponent = 1, ...)
```

Arguments

n by p matrix of numeric predictors. х

vector of response values of length n. For binary classification, y should be a У

factor with 2 levels.

standardize whether to standardize the x variables prior to fitting the PENSE estimates. Can

> also be set to "cv_only", in which case the input data is not standardized, but the training data in the CV folds is scaled to match the scaling of the input data. Coefficients are always returned on the original scale. This can fail for variables with a large proportion of a single value (e.g., zero-inflated data). In this case, either compute with standardize = FALSE or standardize the data manually.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,

nlambda and lambda_min_ratio are ignored.

cv_k number of folds per cross-validation.

number of cross-validation replications. cv_repl

cv_metric either a string specifying the performance metric to use, or a function to eval-

> uate prediction errors in a single CV replication. If a function, the number of arguments define the data the function receives. If the function takes a single argument, it is called with a single numeric vector of prediction errors. If the function takes two or more arguments, it is called with the predicted values as first argument and the true values as second argument. The function must always return a single numeric value quantifying the prediction performance. The

order of the given values corresponds to the order in the input data.

If TRUE, fit the model for all penalization levels. Otherwise, only at penalization

level with smallest average CV performance.

cl a parallel cluster. Can only be used if ncores = 1, because multi-threading can

not be used in parallel R sessions on the same host.

Arguments passed on to regmest

scale fixed scale of the residuals.

nlambda number of penalization levels.

lambda_min_ratio Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 * alpha.

penalty_loadings a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient. Only allowed for alpha > 0.

starting_points a list of staring points, created by starting_point(). The starting points are shared among all penalization levels.

intercept include an intercept in the model.

add_zero_based also consider the 0-based regularization path in addition to the given starting points.

cc cutoff constant for Tukey's bisquare ρ function.

eps numerical tolerance.

explore_solutions number of solutions to compute up to the desired precision eps.

explore_tol numerical tolerance for exploring possible solutions. Should be (much) looser than eps to be useful.

fit_all

max_solutions only retain up to max_solutions unique solutions per penalization level.

comparison_tol numeric tolerance to determine if two solutions are equal. The comparison is first done on the absolute difference in the value of the objective function at the solution If this is less than comparison_tol, two solutions are deemed equal if the squared difference of the intercepts is less than comparison_tol and the squared L_2 norm of the difference vector is less than comparison_tol.

sparse use sparse coefficient vectors.

ncores number of CPU cores to use in parallel. By default, only one CPU core is used. May not be supported on your platform, in which case a warning is given.

algorithm_opts options for the MM algorithm to compute estimates. See ${\sf mm_algorithm_options}$ () for details.

mscale_bdp options for the M-scale estimate used to standardize the predictors (if standardize = TRUE).

mscale_opts options for the M-scale estimate used to standardize the predictors (if standardize = TRUE).

alpha

elastic net penalty mixing parameter with $0 \le \alpha \le 1$. alpha = 1 is the LASSO penalty, and alpha = 0 the Ridge penalty.

alpha_preliminary

alpha parameter for the preliminary estimate.

exponent

the exponent for computing the penalty loadings based on the preliminary estimate.

Details

The built-in CV metrics are

"tau_size" τ -size of the prediction error, computed by tau_size() (default).

"mape" Median absolute prediction error.

"rmspe" Root mean squared prediction error.

"auroc" Area under the receiver operator characteristic curve (actually 1 - AUROC). Only sensible for binary responses.

adamest_cv() is a convenience wrapper which performs 3 steps:

- compute preliminary estimates via regmest_cv(...,alpha = alpha_preliminary),
- 2. computes the penalty loadings from the estimate beta with best prediction performance by adamest_loadings = 1 / abs(beta)^exponent, and
- 3. compute the adaptive PENSE estimates via regmest_cv(...,penalty_loadings = adamest_loadings).

Value

a list with components:

lambda the sequence of penalization levels.

scale the used scale of the residuals.

cvres data frame of average cross-validated performance.

cv_replications matrix of cross-validated performance metrics, one column per replication. Rows are in the same order as in cvres.

```
call the original call.

estimates the estimates fitted on the full data. Same format as returned by regmest().

the object returned by adamest_cv() has additional components

preliminary the CV results for the preliminary estimate.

penalty_loadings the penalty loadings used for the adaptive elastic net M-estimate.
```

See Also

```
regmest() for computing regularized S-estimates without cross-validation.
coef.pense_cvfit() for extracting coefficient estimates.
plot.pense_cvfit() for plotting the CV performance or the regularization path.
Other functions to compute robust estimates with CV: pense_cv(), pensem_cv()
Other functions to compute robust estimates with CV: pense_cv(), pensem_cv()
```

Examples

```
# Compute the adaptive PENSE regularization path for Freeny's
# revenue data (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
## Either use the convenience function directly ...
ada_convenience <- adapense_cv(x, freeny$y, alpha = 0.5,
                                cv_repl = 2, cv_k = 4)
## ... or compute the steps manually:
# Step 1: Compute preliminary estimates with CV
preliminary_estimate <- pense_cv(x, freeny$y, alpha = 0,</pre>
                                 cv_repl = 2, cv_k = 4)
plot(preliminary_estimate, se_mult = 1)
# Step 2: Use the coefficients with best prediction performance
# to define the penality loadings:
prelim_coefs <- coef(preliminary_estimate, lambda = 'min')</pre>
pen_loadings <- 1 / abs(prelim_coefs[-1])</pre>
# Step 3: Compute the adaptive PENSE estimates and estimate
# their prediction performance.
ada_manual <- pense_cv(x, freenyy, alpha = 0.5, cv_repl = 2,
                       cv_k = 4, penalty_loadings = pen_loadings)
# Visualize the prediction performance and coefficient path of
# the adaptive PENSE estimates (manual vs. automatic)
def.par <- par(no.readonly = TRUE)</pre>
layout(matrix(1:4, ncol = 2, byrow = TRUE))
plot(ada_convenience$preliminary)
plot(preliminary_estimate)
plot(ada_convenience)
plot(ada_manual)
par(def.par)
```

residuals.pense_cvfit

```
{\tt residuals.pense\_cvfit} \ \ \textit{Extract Residuals}
```

Description

48

Extract residuals from a PENSE (or LS-EN) regularization path with hyper-parameters chosen by cross-validation.

Usage

```
## S3 method for class 'pense_cvfit'
residuals(
  object,
  lambda = c("min", "se"),
  se_mult = 1,
  exact = deprecated(),
  correction = deprecated(),
  ...
)
```

Arguments

object	PENSE with cross-validated hyper-parameters to extract coefficients from.
lambda	either a string specifying which penalty level to use or a a single numeric value of the penalty parameter. See details.
se_mult	If lambda = "se", the multiple of standard errors to tolerate.
exact	deprecated. Always gives a warning if lambda is not part of the fitted sequence and coefficients are interpolated.
correction	defunct.
	currently not used.

Details

If lambda = "se" and object contains fitted estimates for every penalization level in the sequence, extract the residuals of the most parsimonious model with prediction performance statistically indistinguishable from the best model. This is determined to be the model with prediction performance within se_mult * cv_se from the best model.

Value

a numeric vector of residuals for the given penalization level.

See Also

```
Other functions for extracting components: coef.pense_cvfit(), coef.pense_fit(), predict.pense_cvfit(), predict.pense_fit(), residuals.pense_fit()
```

residuals.pense_fit 49

Examples

```
# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
regpath <- elnet(x, freeny$y, alpha = 0.75)</pre>
# Predict the response using a specific penalization level
predict(regpath, newdata = freeny[1:5, 2:5],
        lambda = regpath$lambda[10])
# Extract the residuals at a certain penalization level
residuals(regpath, lambda = regpath$lambda[5])
# Select penalization level via cross-validation
cv_results <- elnet_cv(x, freeny$y, alpha = 0.5, cv_repl = 10,</pre>
                       cv_k = 4
# Predict the response using the "best" penalization level
predict(cv_results, newdata = freeny[1:5, 2:5])
# Extract the residuals at the "best" penalization level
residuals(cv_results)^2
# Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = 'se')
```

Description

Extract residuals from a PENSE (or LS-EN) regularization path fitted by pense() or elnet().

Usage

```
## S3 method for class 'pense_fit'
residuals(object, lambda, exact = deprecated(), correction = deprecated(), ...)
```

Arguments

object PENSE regularization path to extract residuals from.

lambda a single value of the penalty parameter.

exact defunct Always gives a warning if lambda is not part of the fitted sequence and

coefficients need to be interpolated.

correction defunct.

... currently not used.

Value

a numeric vector of residuals for the given penalization level.

50 rho_function

See Also

Other functions for extracting components: coef.pense_cvfit(), coef.pense_fit(), predict.pense_cvfit(), predict.pense_fit(), residuals.pense_cvfit()

Examples

```
# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])</pre>
regpath <- elnet(x, freeny$y, alpha = 0.75)
# Predict the response using a specific penalization level
predict(regpath, newdata = freeny[1:5, 2:5],
        lambda = regpath$lambda[10])
# Extract the residuals at a certain penalization level
residuals(regpath, lambda = regpath$lambda[5])
# Select penalization level via cross-validation
cv_results <- elnet_cv(x, freeny$y, alpha = 0.5, cv_repl = 10,</pre>
                       cv_k = 4
# Predict the response using the "best" penalization level
predict(cv_results, newdata = freeny[1:5, 2:5])
# Extract the residuals at the "best" penalization level
residuals(cv_results)^2
# Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = 'se')
```

 ${\it rho_function}$

List Available Rho Functions

Description

List Available Rho Functions

Usage

```
rho_function(rho)
```

Arguments

rho

the name of the ρ function to check for existence.

Value

if rho is missing returns a vector of supported ρ function names, otherwise the internal integer representation of the ρ function.

starting_point 51

See Also

Other miscellaneous functions: consistency_const()

starting_point

Create Starting Points for the PENSE Algorithm

Description

Create a starting point for starting the PENSE algorithm in pense(). Multiple starting points can be created by combining starting points via c(starting_point_1, starting_point_2,...).

Usage

```
starting_point(beta, intercept, lambda)
as_starting_point(object, specific = FALSE, ...)
## S3 method for class 'enpy_starting_points'
as_starting_point(object, specific = FALSE, ...)
## S3 method for class 'pense_fit'
as_starting_point(object, specific = FALSE, lambda, ...)
## S3 method for class 'pense_cvfit'
as_starting_point(
   object,
   specific = FALSE,
   lambda = c("min", "se"),
   se_mult = 1,
   ...
)
```

Arguments

beta	beta coefficients at the starting point. Can be a numeric vector, a sparse vector of class dsparse Vector, or a sparse matrix of class dgCMatrix with a single column.
intercept	intercept coefficient at the starting point.
lambda	optionally either a string specifying which penalty level to use ("min" or "se") or a numeric vector of the penalty levels to extract from object. Penalization levels not present in object are ignored with a warning. If NULL, all estimates in object are extracted.
object	an object with estimates to use as starting points.
specific	whether the estimates should be used as starting points only at the penalization level they are computed for. Defaults to using the estimates as starting points for all penalization levels.
	further arguments passed to or from other methods.
se_mult	If lambda = "se", the multiple of standard errors to tolerate.

52 summary.pense_cvfit

Details

A starting points can either be *shared*, i.e., used for every penalization level PENSE estimates are computed for, or *specific* to one penalization level. To create a specific starting point, provide the penalization level as lambda. If lambda is missing, a shared starting point is created. Shared and specific starting points can all be combined into a single list of starting points, with pense() handling them correctly. Note that specific starting points will lead to the lambda value being added to the grid of penalization levels. See pense() for details.

Starting points computed via enpy_initial_estimates() are by default *shared* starting points but can be transformed to *specific* starting points via enpy_starting_point(..., specific = TRUE).

When creating starting points from cross-validated fits, it is possible to extract only the estimate with best CV performance (lambda = "min"), or the estimate with CV performance statistically indistinguishable from the best performance (lambda = "se"). This is determined to be the estimate with prediction performance within se_mult * cv_se from the best model.

Value

an object of type starting_points to be used as starting point for pense().

See Also

Other functions for initial estimates: enpy_initial_estimates(), prinsens()

```
summary.pense_cvfit Summarize Cross-Validated PENSE Fit
```

Description

If lambda = "se" and object contains fitted estimates for every penalization level in the sequence, extract the coefficients of the most parsimonious model with prediction performance statistically indistinguishable from the best model. This is determined to be the model with prediction performance within se_mult * cv_se from the best model.

Usage

```
## S3 method for class 'pense_cvfit'
summary(object, lambda = c("min", "se"), se_mult = 1, ...)
## S3 method for class 'pense_cvfit'
print(x, lambda = c("min", "se"), se_mult = 1, ...)
```

Arguments

```
object, x an (adaptive) PENSE fit with cross-validation information.

lambda either a string specifying which penalty level to use ("min" or "se") or a a single numeric value of the penalty parameter. See details.

se_mult If lambda = "se", the multiple of standard errors to tolerate.

... ignored.
```

tau_size 53

See Also

prediction_performance() for information about the estimated prediction performance.
coef.pense_cvfit() for extracting only the estimated coefficients.
Other functions for plotting and printing: plot.pense_cvfit(), plot.pense_fit(), prediction_performance()

tau_size

Compute the Tau-Scale of Centered Values

Description

Compute the τ -scale without centering the values.

Usage

```
tau_size(x)
```

Arguments

Х

numeric values. Missing values are verbosely ignored.

Value

the τ estimate of scale of centered values.

See Also

Other functions to compute robust estimates of location and scale: mlocscale(), mloc(), mscale()

Index

* EN algorithms	pense, 23
en_admm_options, 15	regmest, 42
en_dal_options, 16	* miscellaneous functions
en_lars_options, 17	<pre>consistency_const, 6</pre>
* deprecated functions	rho_function,50
deprecated_en_options, 6	
enpy, 12	adaelnet (elnet), 7
initest_options, 18	adaen (elnet), 7
mstep_options, 22	adamest_cv(regmest_cv),44
pense_options, 34	adapense (pense), 23
pensem, 26	adapense_cv (pense_cv), 30
* functions for computing non-robust	<pre>as_starting_point(starting_point), 51</pre>
estimates	as_starting_point(), 14
elnet, 7	
elnet_cv, 10	coef.pense_cvfit, 3, 5, 38, 39, 48, 50
* functions for extracting components	coef.pense_cvfit(), 5, 11, 33, 47, 53
coef.pense_cvfit,3	coef.pense_fit, 4, 4, 38, 39, 48, 50
coef.pense_fit, 4	coef.pense_fit(), 8, 9, 11, 26, 44
<pre>predict.pense_cvfit, 37</pre>	consistency_const, 6, 51
predict.pense_fit, 38	
residuals.pense_cvfit,48	deprecated_en_options, 6, 13, 19, 23, 27, 35
residuals.pense_fit,49	dgCMatrix, 51
* functions for initial estimates	dsparseVector, $3, 5, 51$
<pre>enpy_initial_estimates, 13</pre>	elnet, 7, 10, 11
prinsens, 41	elnet(), 4, 10, 11 elnet(), 4, 10, 11, 38, 49
starting_point, 51	elnet_cv, 9, 10
* functions for plotting and printing	en_admm_options, 15, 17
plot.pense_cvfit, 35	en_admm_options(), 16
plot.pense_fit, 36	en_algorithm_options, 8, 11, 15, 16, 20, 41
prediction_performance, 40	en_dal_options, 16, 16, 17
summary.pense_cvfit,52	en_dal_options(), 7, 16
* functions to compute robust estimates of	en_lars_options, <i>16</i> , <i>17</i> , 17
location and scale	en_lars_options(), 7, 16
mloc, 19	en_options_aug_lars
mlocscale, 19	(deprecated_en_options), 6
mscale, 21	en_options_dal (deprecated_en_options),
tau_size, 53	6
* functions to compute robust estimates	enpy, 7, 12, <i>19</i> , <i>23</i> , <i>27</i> , <i>35</i>
with CV	enpy_initial_estimates, 13, 42, 52
pense_cv, 30	enpy_initial_estimates(), 12, 24, 25, 30,
pensem_cv, 27	32, 52
regmest_cv, 44	enpy_options, 14
* functions to compute robust estimates	enpy_options(), 14, 18, 25, 30, 32

INDEX 55

```
initest_options, 7, 13, 18, 23, 27, 35
mad(), 19
mloc, 19, 20, 21, 53
mlocscale, 19, 19, 21, 53
mm_algorithm_options, 20
mm_algorithm_options(), 22, 25, 30, 32, 34,
mscale, 19, 20, 21, 53
mscale_algorithm_options, 22
mscale_algorithm_options(), 14, 19-21,
         25, 30, 32
mstep_options, 7, 13, 19, 22, 27, 35
parallel, 10, 29, 31, 45
pense, 23, 31, 44
pense(), 4, 5, 9, 14, 30, 33, 34, 38, 49, 51, 52
pense_cv, 30, 30, 47
pense_cv(), 3, 11, 25-28, 30, 32
pense_options, 7, 13, 19, 23, 27, 34
pensem, 7, 13, 19, 23, 26, 35
pensem_cv, 27, 33, 47
pensem_cv(), 22, 26
plot.pense_cvfit, 35, 36, 40, 53
plot.pense_cvfit(), 11, 33, 47
plot.pense_fit, 35, 36, 40, 53
plot.pense_fit(), 9, 26, 44
predict.pense_cvfit, 4, 5, 37, 39, 48, 50
predict.pense_fit, 4, 5, 38, 38, 48, 50
prediction_performance, 35, 36, 40, 53
prediction_performance(), 53
prinsens, 14, 41, 52
print.pense_cvfit
         (summary.pense_cvfit), 52
print.pense_pred_perf
         (prediction_performance), 40
regmest, 26, 42, 45
regmest(), 44, 47
regmest_cv, 30, 33, 44
regmest_{cv}(), 27, 30, 44
residuals.pense_cvfit, 4, 5, 38, 39, 48, 50
residuals.pense_fit, 4, 5, 38, 39, 48, 49
rho_function, 6, 50
rho_function(), 19, 20
starting_point, 14, 42, 51
starting_point(), 24, 32, 43, 45
summary.pense_cvfit, 35, 36, 40, 52
summary.pense_cvfit(), 40
tau_size, 19-21, 53
tau_size(), 11, 30, 33, 46
```