Scientific Computing II

Programming assignment 1: Smoothing Properties of (weighted) Jacobi Method

We want to numerically solve the Poisson problem

$$-\frac{d^2u}{dx^2} = 0, \quad x \in (0,1),$$
$$u(0) = u(1) = 0,$$

with finite differences. Discretise the equation on a grid with N+1 points and mesh size h:=1/N.

- (a) Implement an iteration of the Jacobi method in Matlab or in any other programming language.
- (b) Carry out 10 relaxation steps with the initial condition $u_k(x) := \sin(\pi kx)$, k = 1, 3, 7, and mesh size h := 1/8. At which rate does the (discrete) error $e_k^{(n)} := \max_i |0 u_{k,i}^{(n)}|$ decrease in each iteration step? $(u_{k,i}^{(n)})$ is the value of the i-th grid point at iteration n with initial condition $u_k(x)$.) Measure $r := e_k^{(n)} / e_k^{(n-1)}$ for this purpose. Compare your results with the analytical findings.
- (c) What happens when decreasing the mesh size to h := 1/16 and keeping all other parameters unchanged?
- (d) Carry out the same study for the weighted Jacobi method with $\omega = \frac{1}{3}, \frac{2}{3}, \frac{1}{2}$.

Note: Do not stick to the description given here. Try other values of h, N, and k. You can also try to introduce a right hand side f(x).