Finite element Modelling of a Cantilever beam

Sakib Ashraf Zargar

Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA

$$\rightarrow m = 100 \text{ lbm/ft} = (100/32.2) \text{ lbf} - \text{s}^2/\text{ft}^2 = 3.1056 \text{ lbf} - \text{s}^2/\text{ft}^2$$

$$\rightarrow EI_1 = EI_3 = 5 \times 10^6 \text{ lbf} - \text{in}^2 = (5 \times 10^6)/144 \text{ lbf} - \text{ft}^2 = 3.47 \times 10^6 \text{ lbf} - \text{ft}^2$$

$$\rightarrow EI_2 = EI_4 = 2(EI_1) \qquad \rightarrow l = 0.25 \text{ ft} \qquad \rightarrow k = 2400 \text{ lbf/ft}$$

1. Plot the displacement of point A as a function of time when $v(x) = p_0 = 0$ i.e., there is no distributed load and

$$P(t) = \begin{cases} 500 \text{ lbf} & ... & 0 \le t \le 0.01 \text{ sec} \\ 0 & \text{lbf} & ... & t > 0.01 \text{ sec} \end{cases}$$

also plot the bending moment at point C.

- 2. Plot the displacement of point A as a function of time when $v(x) = p_0 = 0$ i.e., there is no distributed load and $P(t) = 500 \sin(2.\pi.10.t)$ lbf, also plot the bending moment at point C.
- 3. Plot the displacement of points A and B when P(t) = 0 and

$$\rightarrow p_0 = \left\{ \begin{array}{ccc} 100 \; lbf/in = 1200 \; lbf/ft & \dots t \geq 0 \; sec \\ 0 \; \; lbf/ft & \dots t < 0 \; sec \end{array} \right.$$

The generalized displacement vector for the beam element i can be defined as:

$$\rightarrow \boldsymbol{q}^{(i)} = [q_1{}^{(i)}, q_2{}^{(i)}, q_3{}^{(i)}, q_4{}^{(i)}]^T = [y_1{}^{(i)}, \theta_1{}^{(i)}, y_2{}^{(i)}, \theta_2{}^{(i)}]^T$$

2.2:

The 1st step is to derive the element shape functions. The displacement at any point x along the beam can be written in terms of the shape functions and the generalized coordinates as

$$\rightarrow y(x,t) = \phi_1(x)q_1(t) + \phi_2(x)q_2(t) + \phi_3(x)q_3(t) + \phi_4(x)q_4(t) = \phi(x)q(t)$$

Since there are 4 d.o.f, the shape function $\phi(x)$ can be written as

$$\to \phi(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 \qquad \Longrightarrow \phi(\zeta) = c_1 + c_2 \zeta + c_3 \zeta^2 + c_4 \zeta^3$$

where $\zeta = (x/l)$ represents the non-dimensional position along the length of the beam. The derivation of the 4 shape functions is shown next.

If
$$q_1 = 1$$
, $q_2 = q_3 = q_4 = 0 \implies y(\zeta, t) = \phi_1(\zeta)$

$$\rightarrow y(\zeta, t) = \phi_1(\zeta) = c_1 + c_2\zeta + c_3\zeta^2 + c_4\zeta^3$$

$$\rightarrow y'(\zeta, t) = \frac{dy(\zeta, t)}{dx} = \frac{c_2}{l} + \frac{2c_3\zeta}{l} + \frac{3c_4\zeta^2}{l}$$
Using the 4 BCs to get the 4 constants, we have

(1)
$$y(0,t) = 1$$
: $c_1 = 1$

(2)
$$y'(0,t) = 0$$
: $c_2 = 0$

(2)
$$y'(\mathbf{0}, t) = \mathbf{0}$$
: $c_2 = 0$
(3) $y(\mathbf{1}, t) = \mathbf{0}$: $c_3 + c_4 = -1$

(4)
$$y'(1,t) = 0$$
: $2c_3 + 3c_4 = 0$

$$\therefore c_1 = 1, c_2 = 0, c_3 = -3, c_4 = 2$$

$$\Rightarrow \phi_1(\zeta) = 1 - 3\zeta^2 + 2\zeta^3$$

If
$$q_2 = 1$$
, $q_1 = q_3 = q_4 = 0 \implies y(\zeta, t) = \phi_2(\zeta)$
 $\rightarrow y(\zeta, t) = \phi_2(\zeta) = c_1 + c_2 \zeta + c_3 \zeta^2 + c_4 \zeta^3$
 $\rightarrow y'(\zeta, t) = \frac{dy(\zeta, t)}{dx} = \frac{c_2}{l} + \frac{2c_3 \zeta}{l} + \frac{3c_4 \zeta^2}{l}$

Using the 4 BCs to get the 4 constants, we have

(1)
$$y(0,t) = 0$$
: $c_1 = 0$

(2)
$$y'(0,t) = 1$$
: $c_2 = l$

(3)
$$y(1,t) = 0$$
: $c_3 + c_4 = -l$

(4)
$$y'(1,t) = 0$$
: $2c_3 + 3c_4 = -l$

$$\therefore c_1 = 0, c_2 = l, c_3 = -2l, c_4 = l$$

$$\Rightarrow \phi_2(\zeta) = l\zeta - 2l\zeta^2 + l\zeta^3$$

If
$$q_3 = 1$$
, $q_1 = q_2 = q_4 = 0 \implies y(\zeta, t) = \phi_3(\zeta)$
 $\rightarrow y(\zeta, t) = \phi_3(\zeta) = c_1 + c_2\zeta + c_3\zeta^2 + c_4\zeta^3$
 $\rightarrow y'(\zeta, t) = \frac{dy(\zeta, t)}{dx} = \frac{c_2}{l} + \frac{2c_3\zeta}{l} + \frac{3c_4\zeta^2}{l}$

Using the 4 BCs to get the 4 constants, we have

(1)
$$y(0,t) = 0$$
: $c_1 = 0$

(2)
$$y'(0,t) = 0$$
: $c_2 = 0$

(3)
$$y(1,t) = 1$$
: $c_3 + c_4 = 1$

(4)
$$y'(1,t) = 0$$
: $2c_3 + 3c_4 = 0$

$$\therefore c_1 = 0, c_2 = 0, c_3 = 3, c_4 = -2$$

$$\Rightarrow \qquad \phi_3(\zeta) = 3\zeta^2 - 2\zeta^3$$

If
$$q_4 = 1$$
, $q_1 = q_2 = q_3 = 0 \implies y(\zeta, t) = \phi_4(\zeta)$
 $\rightarrow y(\zeta, t) = \phi_4(\zeta) = c_1 + c_2 \zeta + c_3 \zeta^2 + c_4 \zeta^3$
 $\rightarrow y'(\zeta, t) = \frac{dy(\zeta, t)}{dx} = \frac{c_2}{l} + \frac{2c_3 \zeta}{l} + \frac{3c_4 \zeta^2}{l}$

Using the 4 BCs to get the 4 constants, we have

(1)
$$y(0,t) = 0$$
: $c_1 = 0$

(2)
$$y'(0,t) = 0$$
: $c_2 = 0$

(3)
$$y(1,t) = 0$$
: $c_3 + c_4 = 0$

(4)
$$y'(1,t) = 1$$
: $2c_3 + 3c_4 = l$

$$\therefore c_1 = 0, c_2 = 0, c_3 = -l, c_4 = l$$

$$\Rightarrow \phi_4(\zeta) = -l\zeta^2 + l\zeta^3$$

$$\Rightarrow \boldsymbol{\phi}(\zeta) = \begin{bmatrix} \phi_1(\zeta) \\ \phi_2(\zeta) \\ \phi_3(\zeta) \\ \phi_4(\zeta) \end{bmatrix}^T = \begin{bmatrix} 1 - 3\zeta^2 + 2\zeta^3 \\ l\zeta - 2l\zeta^2 + l\zeta^3 \\ 3\zeta^2 - 2\zeta^3 \\ -l\zeta^2 + l\zeta^3 \end{bmatrix}^T$$

2.3:

The element mass matrix $M^{(i)}$ and the stiffness matrix $K^{(i)}$ can be derived from the kinetic and potential energy respectively using the element shape functions.

Element mass matrix using Kinetic energy

This needs to be evaluated to obtain the element mass matrix. As an example the calculation of $M_{11}^{(i)}$ is shown next:

By repeating the same for all the elements, the following element mass matrix can be obtained:

$$\rightarrow M^{(i)} = \frac{ml}{420} \begin{bmatrix} 156 & 22l & 54 & -13l \\ 22l & 4l^2 & 13l & -3l^2 \\ 54 & 13l & 156 & -22l \\ -13l & -3l^2 & -22l & 4l^2 \end{bmatrix}$$

Element stiffness matrix using Potential energy

This needs to be evaluated to obtain the element stiffness matrix. As an example the calculation of $K_{11}^{(i)}$ is shown next:

$$\rightarrow K_{11} = EI \int_{0}^{l} \phi_{1,xx} \phi_{1,xx} dx = EI \int_{0}^{l} \left(\frac{-6}{l^{2}} + \frac{12x}{l^{3}} \right)^{2} dx = \frac{12EI}{l^{3}}$$

By repeating the same for all the elements, the following element stiffness matrix can be obtained:

$$\rightarrow K^{(i)} = \frac{EI}{l^3} \begin{bmatrix} 12 & 6l & -12 & 6l \\ 6l & 4l^2 & -6l & 2l^2 \\ -12 & -6l & 12 & -6l \\ 6l & 2l^2 & -6l & 4l^2 \end{bmatrix}$$

For this problem, before writing the *M* and *K* matrices for the 4 elements, we need to know how to handle distributed loads, off-node point-loads and spring elements. This can be done using work equivalence as follows:

Thus, the spring is handled by adding this matrix to the stiffness matrix of the element to which the spring is attached.

The M, K, Q matrices can now be written for each element which gives the element equations of motion. (calculated using MATLAB)

2.3.1) Element 1:

M1 = 0.0102 0.0998 -0.00600.2884 0.0102 0.0005 0.0060 -0.00030.0998 0.0060 0.2884 -0.0102 -0.0060-0.0003 -0.0102 0.0005 K1 = 1.0e+07 * 2.6667 0.3333 -2.6667 0.3333 0.3333 0.0556 -0.33330.0278 -2.6667 -0.3333 2.6667 -0.3333 0.3333 0.0278 -0.33330.0556 Q1 =

2.3.2) Element 2:

$$\rightarrow M2 = M1$$

$$\rightarrow K2 = 2 \times K1$$

$$\rightarrow Q2 = Q1$$

2.3.3) Element 3:

0 0 0

$$\rightarrow M3 = M1$$
 $\rightarrow Q3 = Q1$
 $\rightarrow K3 = K1 + K3_{spring}$

K3_mod =

1.0e+07 *

2.6668 0.3333 -2.6666 0.3333 0.0278 -2.6666 -0.3333 2.6667 -0.3333 0.0278 -0.3333 0.0556

The effect of the spring is very small which is understandable.

2.3.4) Element 4:

p0/8 - (20*P)/27

P/27 - p0/192

$$\rightarrow M4 = M1$$

$$\rightarrow K4 = (2 \times K1) + K4_{spring}$$

$$K4_mod =$$

$$1.0e+07 *$$

$$5.3334 0.6667 -5.3333 0.6667$$

$$0.6667 0.1111 -0.6667 0.0556$$

$$-5.3333 -0.6667 5.3334 -0.6667$$

$$0.6667 0.0556 -0.6667 0.1111$$

$$Q4(p0, P) =$$

$$p0/8 - (7*P)/27$$

$$p0/192 - P/54$$

2.4:

The element M, k and Q are then combined using their respective transformation matrices to obtain the global M, k and Q.

$$\rightarrow M = \sum_{i=1}^{4} A^{(i)^{T}} M^{(i)} A^{(i)} \qquad \rightarrow K = \sum_{i=1}^{4} A^{(i)^{T}} K^{(i)} A^{(i)} \qquad \rightarrow Q = \sum_{i=1}^{4} A^{(i)^{T}} Q^{(i)}$$

M =										
0.2884	0 0102	a anno	0 0060	0	0	0	0	0	0	
	0.0102	0.0998	-0.0060		0	_		_	_	
0.0102	0.0005	0.0060	-0.0003	0	0	0	0	0	0	
0.0998	0.0060	0.5768	0	0.0998	-0.0060	0	0	0	0	
-0.0060	-0.0003	0	0.0009	0.0060	-0.0003	0	0	0	0	
0	0	0.0998	0.0060	0.5768	0	0.0998	-0.0060	0	0	
0	0	-0.0060	-0.0003	0	0.0009	0.0060	-0.0003	0	0	
0	0	0	0	0.0998	0.0060	0.5768	0	0.0998	-0.0060	
0	0	0	0	-0.0060	-0.0003	0	0.0009	0.0060	-0.0003	
0	0	0	0	0	0	0.0998	0.0060	0.2884	-0.0102	
0	0	0	0	0	0	-0.0060	-0.0003	-0.0102	0.0005	
		l .								
K =										
1.0e+07 >	k	!								
2.6667	0.3333	-2.6667	0.3333	0	0	0	0	0	0	
0.3333	0.0556	-0.3333	0.0278	0	0	0				
-2.6667	-0.3333	8.0000	0.3333	-5.3333	0.6667	0	0	0	0	
0.3333	0.0278	0.3333	0.1667	-0.6667	0.0556	0	0	0	0	
0	0	-5.3333 0.6667	-0.6667 0.0556	8.0001 -0.3333	-0.3333 0.1667	-2.6666 -0.3333	0.3333 0.0278	0	0	
0	0		0.0556	-0.3333		8.0001		0 -5.3333	-	
0	0	0	_		-0.3333		0.3333		0.6667 0.0556	
0	0	0	0	0.3333 0	0.0278 0	0.3333 -5.3333	0.1667 -0.6667	-0.6667 5.3334		
0 0	0	0	0	0	0	0.6667	0.0556		-0.6667 0.1111	
0	0	v	0	0	0	0.000/	0.0556	-0.6667	0.1111	

 \rightarrow These are 10×10 matrices, however the 1st two degrees of freedom are Zero, so the 1st two rows and columns are deleted to obtain the reduced *M* and *K* matrices.

Q(p0, P) =

This is a
$$10 \times 1$$
 matrix, however the 1^{st} two degrees of freedom are Zero, so the 1^{st} two rows are deleted to obtain the reduced Q matrix.

p0/8 - $(7*P)/27$
p0/192 - P/54
p0/8 - $(20*P)/27$
P/27 - p0/192

After getting these reduced matrices, we are now ready to solve the system.

$$\to [M]_{8\times 8} [\ddot{q}]_{8\times 1} + [K]_{8\times 8} [q]_{8\times 1} = [Q]_{8\times 1}$$

(a) Verification 1: by taking a simple beam and comparing the analytically calculated mode frequencies and mode shapes with those obtained from the code.

From the data book, the 1st three mode frequencies are equal to:

$$\rightarrow \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = \sqrt{\frac{EI_1}{m(4l)^4}} \begin{bmatrix} (1.875104)^2 \\ (4.694091)^2 \\ (7.854757)^2 \end{bmatrix} = \begin{bmatrix} 371.7769 \\ 2.3299 \times 10^3 \\ 6.5237 \times 10^3 \end{bmatrix} \text{ rad/s}$$

The values obtained from FEM code are as follows:

which matches the results obtained above.

Comparison of the mode shapes is given next which again looks pretty satisfactory.

(b) Verification 2: by calculating the static deflection under a constant point force at the end analytically and comparing it with that obtained from the code.

$$\rightarrow y(A) = \frac{P(4l)^3}{3EI_1} = 0.005 \text{ ft}$$

which looks pretty reasonable considering that the beam is modelled using just 4 elements.

(c) Once the verification is done, we can now perform the simulation for the original beam given in the problem for the three cases:

1. Plot the displacement of point A as a function of time when $v(x) = p_0 = 0$ i.e., there is no distributed load and

$$\Rightarrow P(t) = \begin{cases} 500 \text{ lbf} & \dots 0 \le t \le 0.01 \text{ sec} \\ 0 \text{ lbf} & \dots t > 0.01 \text{ sec} \end{cases}$$

also plot the bending moment at point C.

Displacement at Point (A)

Bending Moment at Point (C)

2. Plot the displacement of point A as a function of time when $v(x) = p_0 = 0$ i.e., there is no distributed load and $P(t) = 500 \sin(2.\pi.10.t)$ lbf, also plot the bending moment at point C.

Displacement at Point (A)

Bending Moment at Point (C)

\3. Plot the displacement of points A and B when P(t) = 0 and

0

$$\rightarrow p_0 = \left\{ \begin{array}{ccc} 100 \; lbf/in = 1200 \; lbf/ft & \; \ldots t \geq 0 \; sec \\ 0 \; \; lbf/ft & \; \ldots t < 0 \; sec \end{array} \right.$$

Point (B)

0.1 time (s)

0.06

0.08

