SmartGarden: loT for Indoor Plant Care

Onose Alexandra, Transilvania University of Braşov alexandra.onose@student.unitbv.ro

SmartGarden: IoT for Plant

SmartGarden is an affordable, open-source, IoT-based platform designed for monitoring and automating the care of indoor plants. The system integrates environmental sensors, including temperature, humidity, and soil moisture sensors, with a local mobile application for real-time plant management. By using open hardware like Arduino and ESP-01 modules, SmartGarden offers a customizable, offline solution that doesn't depend on cloud services, ensuring privacy and control. Users can monitor plant health, receive alerts, and manually or automatically water plants.

System Overview

SmartGarden is built using affordable, open-source hardware components, including an Arduino Pro Mini and ESP-01 Wi-Fi module. It uses environmental sensors (SHT21 for temperature and humidity, resistive soil moisture sensor) to monitor plant conditions. The data is sent to a Flutter-based mobile app, enabling real-time monitoring and control. The system is powered by a USB or battery source, and users can manually or automatically irrigate their plants based on sensor feedback.

Key Features

SmartGarden is an affordable and open-source design that allows real-time monitoring through sensors for temperature, humidity, and soil moisture. It offers both manual and automatic watering control, and the system operates through a local mobile app, eliminating the need for cloud dependency. The platform is scalable, making it suitable for managing multiple plants or entire indoor gardens.

Figure 1: Physical Setup

Figure 2: System Architecture

The images show the SmartGarden hardware and how its components connect to monitor and water plants via a mobile app.

Experimental Results & Future

The SmartGarden system was successfully tested on a Monstera Deliciosa plant. During the trial, the system demonstrated accurate sensor readings for soil moisture, temperature, and humidity, while effectively managing watering based on sensor data. The ESP-01 module maintained stable Wi-Fi communication and ensured real-time updates through the mobile app.

Future improvements include the integration of additional sensors for light, pH, and water levels, as well as the addition of Al-based image processing for plant health diagnostics. The system will also be expanded to support cloud synchronization for enhanced data management and remote monitoring.

References

^[2] S. Mishra et al., 'IoT-Based Plant Monitoring Systems: A Review', IEEE Access, 2021.

^[3] D. Kumar and P. Singh, 'Smart Irrigation Using IoT', IJETT, 2020.

