Chapter 2 Boolean Algebra and Logic Gates

Definitions

Theorems

Functions

Canonical and Standard Forms

Operations

Gates

Integrated Circuits

Duality

- The duality principle states that every algebraic expression deducible from the postulates of Boolean algebra remains valid if the operators and identity elements are interchanged.
 - The Huntington postulates have been listed in pairs and designed as part (a) and part (b).
 - If the dual of an algebraic equation is required, we interchange the OR and AND operators and replace 1's by 0's and 0's by 1's.
 - Example:

x	y	$\mathbf{x}\cdot\mathbf{y}$
0	0	0
0	1	0
1	0	0
1	1	1

x	y	x + y
0	0	0
0	1	1
1	0	1
1	1	1

Duality (More Examples)

x+0=x	x 1 = x
x+x'=1	x x' = 0
x + x = x	x x = x
x + 1 = 1	x 0 = 0
(x')' = x	
x+y = y+x	xy = yx
x+(y+z)=(x+y)+z	x(yz) = (xy)z
x(y+z)=xy+xz	x+yz=(x+y)(x+z)
(x+y)'=x'y'	(xy)'=x'+y'
x+xy=x	x(x+y) = x
	x+x' = 1 x + x = x x + 1 = 1 (x')' = x x+y = y+x x+(y+z)=(x+y)+z x(y+z)=xy+xz (x+y)' = x'y'

Basic Theorems

 The following six (6) theorems can be deduced from the Huntington postulates:

```
– Theorem 1(a):
                                        X + X = X
– Theorem 1(b):
                                        x \cdot x = x
– Theorem 2(a):
                                        x + 1 = 1
- Theorem 2(b):
                                        \mathbf{x} \cdot \mathbf{0} = \mathbf{0}
– Theorem 3 (involution):
                                        (x')' = x
- Theorem 4(a) (associative): x + (y + z) = (x + y) + z
- Theorem 4(b) (associative): x \cdot (y \cdot z) = (x \cdot y) \cdot z
- Theorem 5(a) (DeMorgan): (x + y)' = (x' \cdot y')
- Theorem 5(b) (DeMorgan): (x \cdot y)' = (x' + y')
- Theorem 6(a) (absorption): x + x \cdot y = x
– Theorem 6(b) (absorption):
                                 x \cdot (x + y) = x
```

Proving Theorem 1(a)

$$x + x = x$$

 $x + x = (x + x) \cdot 1$ By postulate: 2(b)
 $= (x + x) \cdot (x + x')$ 5(a)
 $= x + x \cdot x'$ 4(b)
 $= x + 0$ 5(b)
 $= x$ 2(a)

Proving Theorem 1(b)

$x \cdot x = x$			
$x \cdot x = x \cdot x + 0$	By postulate:	2(a)	
= x x + xx'		5(b)	
= x (x + x')		4(a)	
= x . 1		5(a)	
= x		2(b)	

Proving Theorem 2(a)

$$x + 1 = 1$$

 $x + 1 = 1 \cdot (x + 1)$ By postulate: 2(b)
 $= (x + x')(x + 1)$ 5(a)
 $= x + x' 1$ 4(b)
 $= x + x'$ 2(b)
 $= 1$ 5(a)

Theorem 2(b) can be proved by duality:

$$x \cdot 0 = 0$$

Proving Theorem 6(a)

```
x + x \cdot y = x

= x \cdot 1 + x \cdot y by postulate: 2(b)

= x \cdot (1 + y) 4(a)

= x \cdot (y + 1) 3(a)

= x \cdot 1 by theorem: 2(a)

= x by postulate: 2(b)
```

Proving Theorem 6(b)

```
x \cdot (x + y) =
= (x + 0) \cdot (x + y) by postulate: 2(a)
= x + 0 \cdot y 4(b)
= x + y \cdot 0 3(b)
= x + 0 by theorem: 2(b)
= x + 0 by postulate: 2(a)
```

DeMorgan's Theorem

- With truth table the validity of first DeMorgan's Theorem can be shown
- (x + y)' = x'y'

X	У	х+у	(x+y)'	X'	y'	x'y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Operator Precedence

- The operator precedence for evaluating Boolean expressions is:
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR

Boolean Functions

- A Boolean function is an expression described by:
 - binary variables
 - constants 0 and 1
 - logic operation symbols
- For a given value of the binary variables the result of the function can either be 0 or 1.
- An example function:
 - $F_1 = x + y'z$
 - $-F_1$ is equal to 1 if x is equal to 1 or if both y' and z equal to 1. F_1 is equal to 0 otherwise

Function as a Truth Table

- A Boolean function can be represented in a truth table.
 - A truth table is a list of combinations of 1's and 0's assigned to the binary variables and and a column that shows the value of the function for each binary combination

x	y	Z	$\mathbf{F_1} =$	x + y'z
0	0	0		0
0	0	1		1
0	1	0		0
0	1	1		0
1	0	0		1
1	0	1		1
1	1	0		1
1	1	1		1

Function as a Gate Implementation

- A Boolean function can be transformed from an algebraic expression into circuit diagram composed of logic gates.
 - $-F_1 = x + y'z$
 - The logic-circuit diagram for this function is shown below:

Fig. 2-1 Gate implementation of $F_1 = x + y'z$

Gate Implementation (Examples)

Gate Implementation (Examples)

Minimization

- Functions in algebraic form can be represented in various ways.
 - Remember the postulates and theorems that allows us to represent a function in various ways.
- We must keep in mind that the algebraic expression is representative of the gates and circuitry used in a hardware piece.
 - We want to be able to minimize circuit design to reduce cost, power consumption, and package count, and to increase speed.
- By manipulating a function using the postulates and theorems, we may be able to minimize an expression.

Non-Minimized Function

The following is an example of a non-minimized function:

$$- F_2 = x'y'z + x'yz + xy'$$

Minimization of the F₂

Implementation of Boolean Function

 Minimized Function

 $(b) F_2 = xy' + x'z$

Fig. 2-2 Implementation of Boolean function F_2 with gates