

Dohr, Markus

ADVANCED SOX ALGORITHMS

STATE OF CHARGE ESTIMATION

- nonlinear dynamic models based on local model network (data driven); to be used for any type of cell & chemistry
- optimum design of experiment to reduce testing and calibration efforts without reducing model accuracy
- automated parameterization of models for online state estimation

STATE OF HEALTH AND LIFETIME PREDICTION

- SOH including resistance, capacity and other parameters based on nonlinear observers
- Implementation of aging/lifetime prediction model
- Combination of SOH observer and lifetime prediction model

STATE OF FUNCTION CALCULATION

- Based on SOC SOH and lifetime estimates
- Optimization of operating strategy to e.g. reach lifetime target
 - Adaptation of SOF based on predicted lifetime and SOH estimates

References

- 1. 'State of charge estimation for Lithium Ion cells: Design of experiments, nonlinear identification and fuzzy observer design', Christoph Hametner Vienna University of Technology, Journal of Power Sources, 2013
- 2. 'Local Model Network based Dynamic Battery Cell Model Identification', Christoph Hametner Vienna University of Technology, ACM, 2012
- 3. 'Model based Lithium Ion cell ageing data analysis', Christoph Hametner Vienna University of Technology, IEEE, 2014

Calibration of Local Models Optimum Design of Experiment - DOE

DoE

Modelling

Nonlinear battery model

- Inputs:
 - Current
 - State of Charge
 - Temperature
- Output: Terminal Voltage

Local model network

 Local linear models (diff. equ.):

$$\hat{y}_i(k) = \mathbf{x}^T(k)\mathbf{\theta}_i$$

• Model output (weighted aggregation):

$$\hat{y}(k) = \sum_{i=1}^{M} \Phi_i(k)\hat{y}_i(k)$$

Calibration Result

SoC Estimation Model Structure and Observer Design

Based on model that can describe input to output dynamic characteristics of the battery => LMN

Local model network based observer design

- **Extended Kalman filter**: The filter gain is computed using the local Jacobian of the nonlinear model
- Fuzzy observer: Linear combinations of the local filters are used to derive the global filter
- **Linear Observer**: Gain is predetermined and used for correction of internal states

$$SoC^*(k) = \widehat{SoC}(k-1) + \frac{1}{c}i(k)$$

$$\widehat{SoC}(k) = SoC^*(k) + (\widehat{u} - u)K$$

SoH Estimation Model Structure and Observer Design

- SoH estimates the ageing parameters (capacity, internal resistance, stationary gain, time constants)
- SoH observer is coupled with the SoC observer
 - Cascaded Observer

• Extended Kalman Filter estimates the parameters of the system along with the states

Ageing Modelling

Ageing prediction model

- SoH prediction based on a future load signal
- Allows to modify and optimize the operating strategy in (hybrid) electrical vehicles in order to extend the battery life
- Combination with SoH observer to increase accuracy and robustness of aging model - online adaptation of model parameters

Question

- Which ageing factors are relevant for the ageing prediction model?
- How can the nonlinearities present in ageing cells be represented?

Ageing Modelling Model Formulation

Aging Models which are investigated

- 2 Linear Models with low/high number of parameters
- 2 Hazard Function Models with low/high number of parameters
- 2 Decision Trees with low/high number of parameters (modeled on the rate)
- 1 Arrhenius-based Model

Data-driven live prediction model

- Delta model: damage contribution of one load cycle
- Parameter changes are summed up to obtain the overall change

Hazard Function

Useful in modeling capacity loss as show in the figures before

Ageing Factors to be considered

N - Equivalent number of cycles	t_cycle - Sum of cycling times
T – Average temperature	SoC – Average state of charge
Crate – Average C-rate	t_total – Time between the start of 2 consecutive intervals.
Qch – Charging Ah	Qdis – Discharging Ah
Ich - Charging current	Idis - Discharging current
${f ddod}$ – Delta depth of discharge $\Delta {\it DoD}$	wddod – ΔDoD cycling frequency
V – Average terminal voltage	${f dI}$ - Delta current (similar to ΔDoD)
wdl - Delta current cycling frequency	I2avg – Average of squared current
I2sum – Sum of squared current (~heating term)	

Ageing of LiIon Cells

Correlation between resistance & capacity change

- Cells of the same type are cycled with different load until EOL
- Load profile is defined as following:

Testing Results 25°C, 50%SoC

Т	CC	ADC	PDC	F	SoC	dSoC
20	0,2	1	12	0,1	55	80

Т	CC	ADC	PDC	F	SoC	dSoC
-10	0,2	0,2	6	0,03	55	15

Testing Results 25°C, 50%SoC

Т	CC	ADC	PDC	F	SoC	dSoC
20	2,4	0,2	0,2	0,5	50	60

Т	CC	ADC	PDC	F	SoC	dSoC
40	2,4	2	3	0,03	25	15

Testing Results 25°C, 50%SoC

Т	СС	ADC	PDC	F	SoC	dSoC
-10	0,2	1,3	2	0,5	55	50

Т	CC	ADC	PDC	F	SoC	dSoC
5	0,2	0,2	12	0,03	60	70