微介實驗六 中斷

日期:10月27日

報告者: 陳韋翰

- 實驗內容
- 學習重點
- 實驗器材
- 中斷介紹
- 實驗電路
- 軟體流程
- 程式設計

- 實驗內容
- 學習重點
- 實驗器材
- 中斷介紹
- 實驗電路
- 軟體流程
- 程式設計

實驗內容

利用一顆外接按鈕實現外部中斷,並藉由LED之閃爍呈現結果。

基礎題有兩小題,分別用兩種方式觸發中斷。

(1.負緣觸發2.低準位觸發)

- 實驗內容
- 學習重點
- 實驗器材
- 中斷介紹
- 實驗電路
- 軟體流程
- 程式設計

學習重點

- 了解中斷用途。
- 認識8051的中斷源以及與中斷相關之暫存器。
- 熟悉8051中斷流程。

- 實驗內容
- 學習重點
- 實驗器材
- 中斷介紹
- ●實驗電路
- 軟體流程
- 程式設計

實驗器材

器材	數量	
AT8	9S51	1
12MHz 石	1	
LED_	8	
按壓	3	
65.7 0	1kΩ	10
電阻	10kΩ	1
商应	20pF	2
電容	10μF	1

- 實驗內容
- 學習重點
- 實驗器材
- 中斷介紹
- 實驗電路
- 軟體流程
- 程式設計

中斷vs.輪詢

MCU服務周邊裝置的方法有兩種:

• 中斷(Interrupt):

當中斷訊號產生時,主程式會暫停執行,並跳去執行中斷服務程式 (ISR, Interrupt Service Routines)。

若同時有很多中斷訊號產生,則會依照優先權決定順序。

• 輪詢(Polling):

程式不斷詢問某個條件是否達成,當條件達成,就去執行使用者需求。

中斷基本流程

8051的五個中斷源

• INTO:外部中斷

• INT1: 外部中斷

• T0:計時/計數器中斷

• T1:計時/計數器中斷

• UART(RI和TI):串列埠中斷

備註: 8052有六個中斷源(多了T2)

中斷向量 (interrupt vector)

中斷源	中斷向量(位址值)	旗標	所屬暫存器
INT0	03H	IEO	TCON.1
T0	OBH	TF0	TCON.5
INT1	13H	IE1	TCON.3
T1	1BH	TF1	TCON.7
UART(RXD)	23H	RI	SCON.0
UART(TXD)	23Π	TI	SCON.1

中斷致能(IE)暫存器

IE.7	EA	中斷總開關。
IE.6	-	未使用。
IE.5	ET2	T2之中斷開關(8052才有)。
IE.4	ES	串列埠之中斷開關。
IE.3	ET1	T1之中斷開關。
IE.2	EX1	INT1之中斷開關。
IE.1	ETO	TO之中斷開關。
IE.0	EX0	INTO之中斷開關。

中斷致能(IE)暫存器

- reset後IE值均為0,若設定為1則可啟用該中斷。
- IE暫存器為可位元定址(bit addressable)。

計時/計數器控制(TCON)暫存器

	7	6	5	4	3	2	1	0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	!E0	IT0

TCON.7	TF1				
TCON.6	TR1	計時/計數器功能。 (實驗七-計時/計數器會做介紹)			
TCON.5	TF0				
TCON.4	TR0	、貝燃气-11时/11数66省101161			
TCON.3	IE1	INT1之中斷旗標。(產生中斷時IE變為1)			
TCON.2	IT1	INT1之觸發模式。(預設0 時為低準位觸發,設1 時為負緣觸發)			
TCON.1	IEO	INTO之中斷旗標。(產生中斷時IE變為1)			
TCON.0	ITO	INTO之觸發模式。(預設0 時為低準位觸發,設1 時為負緣觸發)			

- 8051的訊號的採樣方式可分為低準位觸發以及負緣觸發。(每一個 machine cycle 採樣一次)
- 進入中斷服務程式後,IEO(TCON.1)與IE1(TCON.3)的值會被 CPU清除。

- ▶準位觸發(level-triggered)
 - 高準位觸發high level-triggered
 - 低準位觸發low level-triggered

- ➤邊緣觸發(edge-triggered)
 - 正緣觸發rising edge-triggered
 - 負緣觸發falling edge-triggered

CPU透過INTO、INT1接腳接受外部中斷需求。

- ➤INTO接腳(Pin12,與Port3.2共用)
- 此腳位接收到low level或falling edge訊號時,IEO會被CPU自動設為1
- ,產生外部中斷。
- ➤INT1接腳(Pin13,與Port3.3共用)
- 此腳位接收到low level或falling edge訊號時,IE1會被CPU自動設為1
- ,產生外部中斷。

控制流程

串列埠中斷 (UART)

CPU透過RXD、TXD接腳接受或傳送中斷需求。

- ▶RXD接腳(Pin10,與Port3.0共用) 對應旗標為RI(Receive Interrupt),接受中斷需求。
- ▶TXD接腳(Pin11,與Port3.1共用) 對應旗標為TI(Transfer Interrupt),傳送中斷需求。

串列埠中斷(UART)

- 當其對應旗標TI或RI設定為1後,中斷服務程式將會執行。
- 共用一個向量,ISR必須自己判斷是TI或RI造成中斷。
- TI變成1表示資料傳完;RI變成1表示接收到資料。
- CPU不會自動清除TI與RI。

中斷優先等級(IP)暫存器

 7
 6
 5
 4
 3
 2
 1
 0

 IP
 PT2
 PS
 PT1
 PX1
 PT0
 PX0

IP.7	-	未使用。
IP.6	-	未使用。
IP.5	PT2	TF2之中斷優先等級。(8052才有)
IP.4	PS	串列埠之中斷優先等級。
IP.3	PT1	TF1之中斷優先等級。
IP.2	PX1	INT1之中斷優先等級。
IP.1	PT0	TFO之中斷優先等級。
IP.0	PX0	INTO之中斷優先等級。

IE暫存器與IP暫存器位置相對應

	7	6	5	4	3	2	1	0
IE	EA	ı	ET2	ES	ET1	EX1	ET0	EX0
	7	6	5	4	3	2	1	0
IP	-	-	PT2	PS	PT1	PX1	PT0	PX0

中斷優先等級(IP)暫存器

- reset後IP值均為0,代表為相同的低層次優先權,若設定為1則會變為高層次優先權。
- 相同層次仍有預設優先順序:INTO>TFO>INT1>TF1>RI/TI
- IP暫存器為可位元定址(bit addressable)。

中斷2的優先層次低於或等於中斷1時

中斷2的優先層次高於中斷1時

中斷流程

中斷發生時

- 1. PC值會被push進stack
- 2. PC值會被設成相對應的中斷向量位址

執行RETI來結束中斷服務程式

- 1. return address會被從stack中pop到PC
- 2. 繼續執行中斷前的主程式

中斷流程

進入中斷服務程式後,依照應用情況,必要時會將主程式的資料push進stack(例如:PSW、ACC等)。

若中斷服務程式中會使用到同樣的暫存器,也會在進入中斷服務程式後切換暫存器庫。

結束中斷服務程式前,須將原本主程式的 狀態從stack中pop出來。

- 實驗內容
- 學習重點
- 實驗器材
- 元件原理
- ●實驗電路
- 軟體流程
- 程式設計

實驗電路

- 實驗內容
- 學習重點
- 實驗器材
- 中斷介紹
- 實驗電路
- 軟體流程
- 程式設計

軟體流程

主程式:

中斷服務程式:

- 實驗內容
- 學習重點
- 實驗器材
- 中斷介紹
- 實驗電路
- 軟體流程
- 程式設計

程式設計

1.	ORG 00H	;code start from 00H
2.	SJMP MAIN	;jump to MAIN
3.	ORG 03H	;vector address for INTO
4.	SJMP INTO_ISR	;jump to INTO_ISR
5.	ORG 030H	;after vector table space
6. MAIN:	MOV IE,#1000001B	;enable EA and EXO
7.	MOV SP,#30H	;stack start from #30H
8.	SETB ITO	;falling edge-triggered
9.	MOV A,#0000000B	;set ACC as 0000000B
10. LOOP:	MOV P2,A	;P1 = A (LED output)
11.	CALL DELAY	;call delay function
12.	CPL A	;reverse A
13.	SJMP LOOP	;infinite loop

程式設計-中斷服務程式

14. INTO_ISR:	PUSH PSW	;push PSW into stack
15.	PUSH ACC	;push ACC into stack
16.	SETB RS0	;switch to RB1
17.	MOV A,#11111110B	;set ACC as 11111110B
18.	MOV R0,#24	;loop counter = 24
19. ROTATE_L:	MOV P2,A	;P2 = A (LED output)
20.	CALL DELAY	;call delay function
21.	RL A	;rotate left
22.	DJNZ RO, ROTATE_L	;loop until R0 is 0
23.	POP ACC	;pop out ACC fromstack
24.	POP PSW	;pop out PSW fromstack
25.	RETI	;return from ISR

程式設計

26. DELAY: MOV R7,#200

27. D1: MOV R6,#250

28. DJNZ R6,\$

29. DJNZ R7,D1

30. RET ;return

31. END ;end the code

Q&A