Regression - STAT110 Otago

Students also viewed

Terms in this set (60)

types of regression	linear (continuous data), logistic (categorical data), cox (categorical data in a survival analysis)
X	Explanatory variable (X), also known as covariate, predictor, or independent variable.
Υ	Outcome variable (Y), also known as response or dependent variable
Simple linear regression (SLR)	looks at a relationship between two continuous variables where the relationship between the two variables is approximately a straight line

	$Y = \beta 0 + \beta 1x + e$ implies that the mean response is $\mu Y = \beta 0 + \beta 1x$.	related to x by
SLR equation	Y is the numerical outcome variable approximately so) x is the explanatory variable β0 is the intercept or constant (who crosses the y axis) β1 is the slope of the line e (often denoted ε) is the random term	ere the line
SLR equation for estimating	$= \hat{\beta}_0 + \lambda$	
residual ('estimated error') term	^ei = yi - ^yi	Îŷi }ê;*
How to find regression line	The line of best fit minimises the sum of the squares of the residuals.	2 3 4 5 6 7 8
equation for how to find regression line	$\frac{1}{n} = \sum_{i=1}^{n} (y_i)$	
How to calculate betal and beta0	$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$ $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$	

example for how to calculate regression (Stress and Blood Pressure)	 get n, n = 6 find the explanatory and outcome calculate beta 1 and beta 0 get the regression equation using R for SLR
Assumptions for Simple Linear Regression(LINE)	Linearity: The relationship between the mean response μY and x is described by a straight line. Independence The responses Y1,Y2, ,Yn are statistically independent. Normality The error terms e1, e2, , en come from a normal distribution. Equal variance The errors terms all have the same variance, σ2 ('homoscedastic').
What diagram is used for checking linearity	residual $ = y_i - \hat{y}_i $ $ = y_i - (\hat{\beta}_0 + \hat{\beta}_1) $ $ = y_i - \hat{\beta}_0 - \hat{\beta}_1 x $
failure of linearity assumption	Fitted line plot Residuals versu Residuals versu
linearity assumption holds	Fitted line plot Residuals versus A G G G G G G G G G G G G G G G G G G
Checking independence assumption	May get insight by thinking about the study design. (Ask yourself questions)
plot for <i>Checking the</i> normality assumption	Q - Q plot
pass of normality assumption	Histogram of residuals Normal Q-Q Theoretical Qu Theoretical Qu

fail of normality assumption	Histogram of residuals Normal Q-C Provided In the control of the
Checking equal variance assumption (homoscedasticity)	pass if the residual plot is not like this
what is the impact if <i>Fail</i> of the linearity assumption	critical If that assumption fails, all conclusions drawn from the model will be invalid.
what is the impact if Fail of independence or equal variance assumptions	remain valid However, estimates can be inefficient Follows that fitted regression line is useable. Any test results or confidence intervals based on the regression model will be invalid.
what is the impact if Fail of inormality assumption	typically least important . Effects validity of confidence intervals and test results when the sample size n is small .
what to do with outliers	the first thing to do is check that the data are correctly recorded If data cannot be corrected, try refitting regression with outliers removed, but still investigate cause of outliers - may be very important.
estimate of error variance	$s_e^2 = \frac{1}{n-2} \sum_{i=1}^n$ $= 1$ \hat{e}_i^2 is the $residua$
(estimated) standard error	$\frac{s_e}{\sqrt{\sum_{i=1}^n (x_i)}}$
degree of freedom for SLR's CI	v = n - 2 because there're two parameters

what is the multiplier for SLR's CI	stimate – std. err	
what is the SE for SLR's CI	$\sqrt{\sum_{i=1}^{n}}$	
Using R to find SLR's CI	(model1) 2.5 % 3) 24.8300345 6 0.2557407	
β1 = 0 indicates what	that the response is not (linearly) is predictor. so the estimated slope will (almost zero: ^β1/= 0.	
Steps to test to assess strength of evidence in the data for β1 != 0	 Setting up the hypotheses H0: β1 = 0, HA: β1/= 0. Calculating The test statistic (picture) Computing the p-value draw conclusion with rejecting or not H0 	$t=rac{\hat{eta}_1}{s_{\hat{eta}_1}}.$
when predicting the data	ignore e_0	
why not recommend to extrapolate when predicting data	plot may not be linear	Stress vs Blood Pressure
prediction error	The prediction error is analogous to a standard error, but takes account of both sources of uncertainty. For prediction at x0, the prediction error is:	$\sqrt{1+rac{1}{n}+rac{1}{\sum}}$

prediction interval formula	$-\frac{\alpha}{2}, n-2)$	
correlation coefficient (r)	summarises the strength of a linear relationship between variables. It is a measure of linear association between variables It describes both the strength and direction of the relationship. r∈ [-1, 1] A positive value of r means that Y and X increase together. A negative value of r means that as X increases, Y decreases (and vice-versa). The strength of the linear relationship increases as r tends towards 1 or -1. r = 0 corresponds to no linear relationship between the variables.	$\frac{1}{ x_i - \bar{x} } \frac{1}{ x_i - \bar{x} ^2}$
scatterplots for r	Correlation r = 0.03	
re-write for r	 s_x and s_y are sample standard deviations for x and y variables. s_xy is the sample covariance between x and y. 	$=\frac{s_{xy}}{s_x s_y}$

Correlation coefficient versus regression models	The correlation coefficient is a summary of the data. Unlike linear regression, the correlation coefficient does not specify a model for the data, and cannot (for example) be used for prediction. The correlation coefficient is symmetric in the variables. That is, correlation between x and y is the same as correlation between y and x. In regression, the variables are not handled symmetrically. Regression models look at variation in Y for fixed values of x.
coefficient of determination (R^2)	R^2 , is a measure of how well a regression model describes the data. R^2 is the squared correlation between the observed and predicted responses $R^2 \in [0, 1]$
meaning for the value of R^2	A high value of R2 (close to 1) indicates a regression model that describes the data very well. Conversely, a low value of R2 (close to 0) indicates a regression that describes the data poorly.
what describes the overall variation in the response variable?	total sum of squares $= \sum_{i=1}^{n} (y_i -$
what describes the total variation of the data points about the regression line?	residual sum of squares $=\sum_{i=1}^{n}(y_i-y_i)$ RSS can be thought of as variation not explained by the regression model

what describes <i>as the</i>	explained sum of squares	
amount of variation in	ESS = TSS - RSS	
the response that is		
explained by the		
regression model?		
Equation of R^2	$\frac{ESS}{TSS} = 1 -$	
	e.g., just because there's more ice cream in the	
Correlation does not	summer and more drowning in the summer doesn't	
equal causation	mean there's a link between ice cream and drowning.	
logistic regression	outcome variable is binary	
equation for logistic regression	Y is the binary outcome variable, $Y = 1$ or $Y = 0$ for each observation. p is the probability that specified category will occur; i.e. $p = Pr(Y = 1)$. x is the explanatory variable. Parameters $\beta 0$, $\beta 1$ are the regression coefficients. $\beta 0$ is intercept and $\beta 1$ slope 'on the logit scale' In formula, \log is the natural \log arithm (\log to base e).	
Which technique we use	maximum likelihood estimation	
when we estimating the		
regression coefficients?		

what will increasing x by one unit results in?	a multiplicative change of e^β1 to the odds
formula for <i>logistic curve</i> for the probability p	$\frac{\exp(\beta_0 + \beta_0)}{+ \exp(\beta_0 - \beta_0)}$
Testing in logistic regression	1. Define the hypotheses: H0: $\beta 1 = 0 \text{ and } HA : \beta 1! = 0.$ 2. The test statistic is: $\text{where s}_{_} \hat{\beta} 1 \text{ is the standard}$ $\text{error of } \hat{\beta} 1.$ The further away our test statistic, z, is from zero, the greater the evidence against H0. 3. get the corresponding p-value 4. reject/not reject H_0 5. conclusion
Multiple regression model	$\alpha_1 + \cdots$
mean value de la Multiple regression model	$\beta_1 x_1 +$
Applications of multiple regression	1 Adjusting for the effect of confounding variables. 2 Establishing which variables are important in explaining the values of the response variable. 3 Predicting values of the response variable. 4 Describing the strength of the association between the response variable and the explanatory variables.

least squares estimates	$_{=1}(y_i -$
RSS for ^e_i	to estimate the error variance $\sigma^2_e = \sum_{i=1}^{r}$
usual estimate	$=\frac{RSS}{n-k-}$