Parameter Estimation for Networks Processes

Steven Munn

University of California, Santa Barbara sjmunn@umail.ucsb.edu

May 31, 2016

Overview

Graph Attributes

Reaction Networks

Gibbs Sampling

Section 1

Graph Attributes

Attributed Graphs

Traffic Example

Website Visits Example

Section 2

Reaction Networks

Reaction Attributes

Graph Weights

$$\mathbf{W} = \left[\begin{array}{ccc} w_{00} & w_{01} & w_{02} \\ w_{10} & w_{11} & w_{12} \\ w_{20} & w_{21} & w_{22} \end{array} \right]$$

Reaction ODE

$$dM^T = \begin{bmatrix} 1 & 1 & 1 & \dots \end{bmatrix} \times \begin{bmatrix} w_{00} & w_{01} & w_{02} & \dots \\ w_{10} & w_{11} & w_{12} & \dots \\ w_{20} & w_{21} & w_{22} & \dots \\ \dots & \dots & \dots \end{bmatrix} \otimes \begin{bmatrix} 1 & M_0 & M_0 & \dots \\ M_1 & 1 & M_1 & \dots \\ M_2 & M_2 & 1 & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

Example: Homework One

$$dM^{T} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & \theta_{1} \\ 0 & 0 & \theta_{1} \\ 0 & \theta_{2} & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & M_{0} & M_{0} \\ M_{1} & 1 & M_{1} \\ M_{2} & M_{2} & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & \theta_{1} M_{0} \\ 0 & 0 & \theta_{1} M_{1} \\ 0 & \theta_{2} M_{2} & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \theta_{2} M_{2} & \theta_{1} (M_{0} + M_{1}) \end{bmatrix}$$

Section 3

Gibbs Sampling

Multiple Parameters Estimation

Start with parameters $\theta^{(t)}$ (e.g. sampled from a uniform distribution) Update each component one after the other as follows:

- Sample $\theta_1^{(t+1)}$ from $p(\theta_1|\mathsf{data},\theta_2,\theta_3,...)$
- Sample $\theta_2^{(t+1)}$ from $p(\theta_2|\mathsf{data},\theta_1,\theta_3,...)$
- ...

Gibbs Sampling for Reaction Networks

Step 1

Define an upper and lower bound ($m{W}_{\!\mathit{up}}$ and $m{W}_{\!\mathit{low}}$) on the graph weights.

Step 2

Initialize the probability for each parameter as a uniform distribution between the upper and lower bounds,

$$p(w_{ij}) = u\left((\boldsymbol{W}_{up})_{ij}, (\boldsymbol{W}_{low})_{ij} \right)$$

Gibbs Sampling for Reaction Networks

We now have an initial guess for the weights matrix \boldsymbol{W} . Next, we will update each component one at a time.

Gibbs Update for first component

We need to compute,

$$p(w_{00}|data, w_{01}, w_{02}, w_{10}, w_{11}, ...)$$

to sample a new value for w_{00} . Currently, we do this using the same Bayesian inference method from homework one.

Problems with Gibbs Sampling

Probability Distribution is not Helpful

Unfortunately, if the weight matrix is not close to the ground truth then,

$$p(w_{00}|data, w_{01}, w_{02}, w_{10}, w_{11}, ...)$$

yields a distribution that converges on meaningless values and Gibbs sampling gets stuck.