AUTOTUNING UNDER TIGHT BUDGET CONSTRAINTS: A DESIGN OF EXPERIMENTS APPROACH

Pedro Bruel, Steven Quinito Masnada, Brice Videau, Arnaud Legrand, Jean-Marc Vincent, Alfredo Goldman April 28, 2019

OUTLINE

Autotuning

Applying Design of Experiments to Autotuning

Results

AUTOTUNING: OPTIMIZING PROGRAM CONFIGURATIONS

Architectures for High Performance Computing

How to write efficient code for each of these?

Autotuning

The process of automatically finding a configuration of a program that optimizes an objective

Configurations

- Program Configuration
 - Algorithm, block size, . . .
- Source code transformation
 - Loop unrolling, tiling, rotation . . .
- Compiler configuration
 - –02, vectorization, . . .
- . . .

Objectives

- Execution time
- Memory & power consumption
- ...

AUTOTUNING: SEARCH SPACES

Search Spaces

Represent the effect of all possible configurations on the objectives

Can be difficult to explore, with multiple local optima and undefined regions

Unrolling, blocking and Mflops/s for matrix multiplication

Seymour K, You H, Dongarra J. A comparison of search heuristics for empirical code optimization. In CLUSTER 2008 Oct 1 (pp. 421-429)

AUTOTUNING: EXPLORING SEARCH SPACES

Issue 1: Exponential Growth

Simple factors can generate large spaces:

• 30 boolean factors \rightarrow 2³⁰ combinations

Issue 2: Geometry

- Discrete or continous factors
- · "Smoothness"
- Interactions between factors

Issue 3: Measurement Time

Time to compile:

- Benchmark GPU applications: 1~10s
- Benchmark FPGA applications: 1~10min
- Industrial FPGA applications: 1~10h

AUTOTUNING: MULTIPLE APPROACHES

Popular Approaches

- Exhaustive
- Meta-Heuristics
- Machine Learning

System	Domain	Approach
ATLAS	Dense Linear Algebra	Exhaustive
INSIEME	Compiler	Genetic Algorithm
Active Harmony	Runtime	Nelder-Mead
ParamILS	Domain-Agnostic	Stochastic Local Search
OPAL	Domain-Agnostic	Direct Search
OpenTuner	Domain-Agnostic	Ensemble
MILEPOST GCC	Compiler	Machine Learning
Apollo	GPU kernels	Decision Trees

Main Issues

- These approaches assume:
 - A large number of function evaluations
 - Seach space "smoothness"
 - Good solutions are reachable
- After optimizing:
 - Learn "nothing" about the search space
 - Can't explain why optimizations work

DESIGN OF EXPERIMENTS

Factors, Levels, Experiments & Designs

- Factors: program parameters
- Levels: possible factor values
- Experiment: setting each factor to a level
- Design: a selection of experiments to run

Analysis

Experiment results can be used to:

- Identify relevant parameters
- Fit a regression model

A small design for 7 2-level factors:

Run	Α	В	С	D	Е	F	G
1	1	-1	1	-1	-1	1	1
2	1	1	1	-1	1	-1	-1
3	-1	1	-1	-1	1	1	1
4	-1	1	1	1	-1	1	-1
5	1	-1	-1	1	1	1	-1
6	1	1	-1	1	-1	-1	1
7	-1	-1	1	1	1	-1	1
8	-1	-1	-1	-1	-1	-1	-1

APPLYING DESIGN OF EXPERIMENTS TO AUTOTUNING

Our Approach

We are using:

- Efficient experimental designs to overcome issues related to exponential growth, geometry, and measurement time
- Analysis of variance to find relevant parameters
- · User input to guide optimization

Design Requirements

- Support a large number of factors (Exponential Growth)
- Support numerical and categorical factors (Geometry)
- Minimize function evaluations (Measurement Time)

D-Optimal Designs

- Minimize variance of regression coefficient estimators
- Supports different factor types and numbers

D-OPTIMAL DESIGNS: EXAMPLE

Example

Factors & Levels:

$$X = (x_1 = (1, ..., 5),$$

 $x_2 = ("A", "B", "C"))$

• Model: $\mathbf{Y} = \mathbf{X}\beta + \varepsilon$

Source code

Output

```
ŚD
[1] 0.5656854
ŚΑ
[1] 3.828125
$Ge
[1] 0.64
$Dea
[1] 0.57
$design
X1 "-2" " 2" "-2" " 2" " 0"
X2 "1" "1" "2" "2" "3"
Śrows
[1] 1 5 6 10 13
```

DESIGN EFFICIENCY

Linear Regression Model

The linear regression model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon$$

We want to estimate $\beta_{0,...,k}$:

- Using n > k observations $y_{1,...,n}$
- Distinct $x_{i_1,...,i_k}, i = 1,...,n$

Experiments represented by:

$$y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ik} + \epsilon_i$$

Ordinary Least Squares Estimator $\hat{oldsymbol{eta}}$

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}$$

The variance of $\hat{\beta}$ is proportional to the covariance matrix $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$

Design Criteria using $(X^TX)^{-1}$

- D: determinant, minimizes generalized variance of $\hat{\beta}$
- A: trace, average variance of $\hat{\beta}$

SAMPLING STRATEGIES

A DESIGN OF EXPERIMENTS APPROACH TO AUTOTUNING

GPU LAPLACIAN KERNEL: A MOTIVATING EXAMPLE

The Search Problem

- Relatively small valid search space
- Completely evaluated
- Known global optimum
- Known model approximation
- Budget of 125 points

Results

Initial Model

$$\label{eq:cost} \begin{split} cost &= y_component_number + 1/y_component_number + \\ & vector_length + lws_y + 1/lws_y + \\ & load_overlap + temporary_size + \\ & elements_number + 1/elements_number + \\ & threads_number + 1/threads_number \end{split}$$

GPU Laplacian Kernel: A Motivating Example

	Mean	Max
RS	120.00	125.00
LHS	98.92	125.00
GS	22.17	106.00
GSR	120.00	120.00
GA	120.00	120.00
LM	119.00	119.00
DLMT	54.84	56.00

Table 1: Points used by applications

Summary

Our approach:

- Was always close to the optimum
- Used half of the budget

SPAPT: SEARCH PROBLEMS IN AUTOMATIC PERFORMANCE TUNING

Kernel	Operation	Factors	Size
atax	Matrix transp. & vector mult.	18	2.6×10^{16}
dgemv3	Scalar, vector & matrix mult.	49	3.8×10^{36}
gemver	Vector mult. & matrix add.	24	2.6×10^{22}
gesummv	Scalar, vector, & matrix mult.	11	5.3×10^{9}
hessian	Hessian computation	9	3.7×10^{7}
mm	Matrix multiplication	13	1.2×10^{12}
mvt	Matrix vector product & transp.	12	$1.1 imes 10^9$
tensor	Tensor matrix mult.	20	1.2×10^{19}
trmm	Triangular matrix operations	25	3.7×10^{23}
bicg	Subkernel of BiCGStab	13	3.2×10^{11}
lu	LU decomposition	14	9.6×10^{12}
adi	Matrix sub., mult., & div.	20	6.0×10^{15}
jacobi	1-D Jacobi computation	11	5.3×10^{9}
seidel	Matrix factorization	15	1.3×10^{14}
stencil3d	3-D stencil computation	29	9.7×10^{27}
correlation	Correlation computation	21	4.5×10^{17}

Balaprakash P, Wild SM, Norris B. SPAPT: Search problems in automatic performance tuning. Procedia Comp. Sci. 2012 Jan 1;9:1959-68.

SPAPT: PRELIMINARY RESULTS

SPAPT: PRELIMINARY RESULTS

SPAPT: SUMMARY

Experimental Settings

- Using the same model for all applications
- Fixed number of iterations
- Automated approach

Summary

- Performance similar to random sampling
- Using less points

CONCLUSION

Summary

Our approach uses:

- Efficient experimental designs to overcome issues related to exponential growth, geometry, and measurement time
- Analysis of variance to find relevant parameters
- User input to guide optimization

Perspectives

- Explore tailored models for each application
- Leverage user input and analysis
- Use our approach to autotune industrial-level FPGA applications

AUTOTUNING UNDER TIGHT BUDGET CONSTRAINTS: A DESIGN OF EXPERIMENTS APPROACH

Pedro Bruel, Steven Quinito Masnada, Brice Videau, Arnaud Legrand, Jean-Marc Vincent, Alfredo Goldman April 28, 2019

SPAPT: PRELIMINARY RESULTS

DESIGN EFFICIENCY: INTRODUCTION

Linear Regression Model

A simple regression model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon$$

We want to estimate $\beta_{0,...,k}$:

- Using n > k observations $y_{1,...,n}$
- Distinct $x_{i_1,...,i_k}, i = 1,...,n$

We will use *n* experiments such as:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i$$

Least Squares Method

Writing in matrix form we get:

$$Y = X\beta + \epsilon$$

The least squares method aims to minimize:

DESIGN EFFICIENCY: ESTIMATING MODEL COEFFICIENTS

Minimizing Least Squares

The least squares method aims to minimize:

$$L = \mathbf{Y}^{\mathsf{T}}\mathbf{Y} - 2\boldsymbol{\beta}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{Y} + \boldsymbol{\beta}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta}$$

Derivative with respect to β , evaluated at $\hat{\beta}$:

$$\left. \frac{\partial L}{\partial \boldsymbol{\beta}} \right|_{\hat{\boldsymbol{\beta}}} = -2\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y} + 2\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\hat{\boldsymbol{\beta}} = 0$$

Where $\hat{\beta}$ is an estimator of β

Computing $\hat{oldsymbol{eta}}$

The previous equation simplifies to:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}$$

The estimator $\hat{\beta}$ is proportional to $(X^TX)^{-1}$

Dispersion or Covariance Matrix

- Information matrix: X^TX
- Dispersion or Covariance matrix: $(X^TX)^{-1}$

DESIGN EFFICIENCY: THE DISPERSION MATRIX

Computing $(X^TX)^{-1}$

A design $D_{n,2}$, with 2-level factors, will have a 3×3 dispersion matrix, if we assume linear relationships and no factor interactions:

```
factorial <- gen.factorial(c(2, 2))
model <- model.matrix(~., factorial)
dispersion <- t(model) %*% model
eigen(dispersion)$values</pre>
```

	(Intercept)	Х1	Х2
(Intercept)	4	0	0
X1	0	4	0
X2	0	0	4

[1] 4 4 4

Interpreting Eigenvalues of $(X^TX)^{-1}$

The eigenvalues $\lambda_{0,1,2}$ of the dispersion matrix can represent its "size":

We can minimize the coefficient estimator $\hat{\beta}$ by minimizing the eigenvalues of $(X^TX)^{-1}$

DESIGN EFFICIENCY: METRICS

Defining a Design

Consider a design $D_{n,k-1}$:

- $x_{1,...,k-1}$ 2-level factors
- *n* experiments

Its $k \times k$ dispersion matrix $(X^TX)^{-1}$:

• Constructed using the linear model:

•
$$Y = \beta X + \epsilon$$

• With eigenvalues $\lambda_{0,...,m}$

We can define efficiency metrics for $oldsymbol{\beta}$ based on the eigenvalues of the dispersion matrix

Some Efficiency Metrics based on $(X^TX)^{-1}$

A-Efficiency

$$A_{eff} = \left(n \times \operatorname{tr} \left(\left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \right)^{-1} \right) / k \right)^{-1}, \; A_{eff} \in [0, 1]$$

"Arithmetic mean" of eigenvalues of $(X^TX)^{-1}$

D-Efficiency

$$D_{eff} = \left(n \times \left| \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \right|^{1/k} \right)^{-1}, \ D_{eff} \in [0, 1]$$

"Geometric mean" of eigenvalues of $(X^TX)^{-1}$

AUTOTUNING: SEARCH SPACES

Compiler impact on performance

 $Seymour\,K, You\,H, Dongarra\,J.\,A\,comparison\,of\,search\,heuristics\,for\,empirical\,code\,optimization.\,In CLUSTER\,2008\,Oct\,1\,(pp.\,421-429)$

APPLYING DESIGN OF EXPERIMENTS TO AUTOTUNING

Our Approach

Using efficient experimental design to overcome issues related to exponential growth, geometry, and measurement time

Design Requirements

- Support a large number of factors (Exponential Growth)
- Support numerical and categorical factors (Geometry)
- Minimize function evaluations (Measurement Time)

Main Design Candidates

Screening designs:

- · Estimate main effects
- · Aim to minimize runs
- Assume interactions are negligible

Mixed-Level designs:

- Factors have different numbers of levels
- Many optimality criteria

SCREENING DESIGNS

A Plackett-Burman screening design for 7 2-level factors:

Run	Α	В	С	D	Е	F	G
1	1	-1	1	-1	-1	1	1
2	1	1	1	-1	1	-1	-1
3	-1	1	-1	-1	1	1	1
4	-1	1	1	1	-1	1	-1
5	1	-1	-1	1	1	1	-1
6	1	1	-1	1	-1	-1	1
7	-1	-1	1	1	1	-1	1
8	-1	-1	-1	-1	-1	-1	-1

Screening Designs

Plackett-Burman designs for 2-level factors:

- Orthogonal arrays of strength 2
- Estimate the main effects of n factors with n + 1 runs

Construction:

- For n + 1 multiple of 4
- Identical to a fractional design if n + 1 is a power of two

LOOKING AT DATA: CUDA COMPILER FLAGS

CUDA Compiler Flags

- Rodinia benchmark
- 15 factors, few with multiple levels
- 10⁶ combinations
- 1~10s to measure
- Screening experiment:
 - 15 "2-level" factors
 - 4 "dummy" factors

MIXED-LEVEL DESIGNS

A multi-level design for 1 2-level factor and 3 3-level factors:

Run	Α	В	С	D
1	1	1	1	3
2	1	1	2	1
3	1	1	3	2
4	1	2	1	2
5	1	2	2	3
6	1	2	3	1
7	1	3	1	1
8	1	3	2	2
9	1	3	3	3
10	2	1	1	1
11	2	1	2	2
12	2	1	3	3
13	2	2	1	3
14	2	2	2	1
15	2	2	3	2
16	2	3	1	2
17	2	3	2	3
18	2	3	3	1

Mixed-Level Designs

Strategy 1: Contractive Replacement

- Find specific sets of k-level columns of a design, contract the set into a new factor of with more levels
- · Maintain orthogonality of the design

Strategy 2: Direct Construction

Directly generate small mixed-level designs by solving Mixed Integer Programming problems

Strategy 3: D-Optimal Designs

LOOKING AT DATA: FPGA COMPILER PARAMETERS

FPGA Compiler Parameters

- CHStone benchmark
- 141 factors, most with multiple levels
- 10¹²⁸ combinations
- 1~10min to measure
- Multiple objectives
- · Search with meta-heuristics:
 - Unstructured data difficults analysis
 - We are working on obtaining more data

