Lecture 2 Exercises

Quantum Information, PSI START Summer 2023

Instructor: Aaron Szasz

TA: Jake Barnett

Exercise #1:

Let

$$|\Psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

Show that there do not exist $|\psi_1\rangle = \alpha|0\rangle + \beta|1\rangle$ and $|\psi_2\rangle = \gamma|0\rangle + \delta|1\rangle$ such that $|\Psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$.

Exercise #2:

Let H be the operator

$$H = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \langle 0| + \frac{|0\rangle - |1\rangle}{\sqrt{2}} \langle 1|$$

Find $(H \otimes \mathrm{Id})|00\rangle$

Exercise #3:

Prove that $a|00\rangle + b|11\rangle$ is equivalent to $a|11\rangle + b|00\rangle$.

In other words, explicitly find U_A and U_B , valid one-qubit state transformations (unitaries) such that

$$(U_A \otimes U_B)(a|00\rangle + b|11\rangle) = b|00\rangle + a|11\rangle$$

Exercise #4:

Prove the following:

- Suppose $|\Psi\rangle$ and $|\Phi\rangle$ have the same (a,b). In other words, suppose $|\Psi\rangle = (U_A \otimes U_B)(a|00\rangle + b|11\rangle)$ and $|\Phi\rangle = (U'_A \otimes U'_B)(a|00\rangle + b|11\rangle)$, where U_A , U_B , U'_A , and U'_B are one-qubit unitaries. Prove that $|\Psi\rangle$ and $|\Phi\rangle$ are equivalent.
- Conversely, suppose $|\Psi\rangle$ and $|\Phi\rangle$ are equivalent. Prove that they have the same (a,b).

Exercise #5:

We measure $a|00\rangle + b|11\rangle$ in the ZZ-basis, $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$.

- (a) What is the probability of getting $|0\rangle$ for the first qubit? This is the sum of the probability of getting $|00\rangle$, and $|01\rangle$, and we denote the probability as $P(0)_1$. Also find $P(1)_1$, $P(0)_2$, and $P(1)_2$.
- (b) If the probabilities for qubits 1 and 2 were independent, what would be the probability that the measurements agree?
- (c) What is the actual probability that the measurements agree?
- (d) If (b) and (c) have different answers, what does that say about entanglement as a function of a and b?

Exercise #6:

We repeat the previous exercise, but measuring $a|00\rangle + b|11\rangle$ in the XX-basis, $\{|++\rangle, |+-\rangle, |-+\rangle, |--\rangle\}$ where for example $|++\rangle$ is shorthand for $|+\rangle \otimes |+\rangle$, and $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$, $|-\rangle = (|0\rangle - |1\rangle)/\sqrt{2}$.

- (a) Find the probabilities of the outcomes $|+\rangle$ and $|-\rangle$ on each qubit, $P(+)_1$, $P(+)_2$, $P(-)_1$, $P(-)_2$.
- (b) If the probabilities were independent, what would be the probability that the measurements agree?
- (c) What is the actual probability that the measurements agree?
- (d) If (b) and (c) have different answers, what does that say about entanglement as a function of a and b?