РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра теории вероятностей и кибербезопасности

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 16

дисциплина: Моделирование информационных процессов

Студент: Маслова Анастасия

Группа: НКНбд-01-21

Постановка задачи:

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ. Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a, b].

Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска.

Исходные данные: $\mu = 1$, 75 мин, a = 1 мин, b = 7 мин.

Задание:

- составить модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом;
- свести полученные статистики моделирования в таблицу 16.1.
- по результатам моделирования сделать вывод о наилучшей стратегии обслуживания автомобилей;
- изменив модели, определить оптимальное число пропускных пунктов (от 1 до 4) для каждой стратегии при условии, что:
 - о коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
 - о среднее число автомобилей, одновременно находящихся на контрольнопропускном пункте, не должно превышать 3;
 - о среднее время ожидания обслуживания не должно превышать 4 мин.

Показатель		стратегия 1	стратегия 2	
	пункт 1	пункт 2	в целом	
Поступило автомобилей				
Обслужено автомобилей				
Коэффициент загрузки				
Максимальная длина очереди				
Средняя длина очереди				
Среднее время ожидания				

Таблица 16.1

Выполнение работы:

Для построения модели первой стратегии я использовала код, представленный ниже:

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl 2; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl 1; длина оч. 1= длине оч. 2
TRANSFER 0.5, Obsl 1, Obsl 2; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl 1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2; присоединение к очереди 2
SEIZE punkt2; занятие пункта 2
DEPART Other2; выход из очереди 2
ADVANCE 4,3; обслуживание на пункте 2
RELEASE punkt2; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Для этой стратегии я получила следующий отчет (рис. 1).

Untitled Model 3.1.1 - REPORT GPSS World Simulation Report - Untitled Model 3.1.1 суббота, июня 08, 2024 15:26:40 START TIME END TIME BLOCKS FACILITIES STORAGES 10080.000 0.000 18 NAME VALUE OBSL_1 5.000 OBSL 2 11.000 10000.000 OTHER1 OTHER2 10001.000 PUNKTI 10003.000 PUNKT2 10002.000 LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY GENERATE 5853 TEST 5853 0 TEST TEST TRANSFER 4162 2431 0 3 0 4 0 QUEUE OBSL 1 2928 387 SEIZE DEPART 2541 2541 0 6 0 8 ADVANCE 9 RELEASE 10 TERMINATE 2541 2540 2540 0 2925 11 QUEUE 12 SEIZE OBSL_2 388 2537 0 0 DEPART 13 2537 ADVANCE RELEASE 2537 2536 14 1 15 TERMINATE 16 2536 0 1 GENERATE 17 TERMINATE 18 0 ENTRIES UTIL. AVE. TIME AVAIL. OWNER PEND INTER RETRY DELAY 2537 0.996 3.957 1 5078 0 0 0 388 2541 0.997 3.955 1 5079 0 0 0 387 FACILITY PUNKT2 PUNKT1 MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY OUEUE 393 387 2928 12 187.098 644.107 393 388 2925 12 187.114 644.823 OTHER1 646.758 0 OTHER2 647.479 ASSEM CURRENT NEXT PARAMETER BDT FEC XN PRI VALUE 10081.102 5855 0 1 10083.517 5079 8 9 10083.808 5078 14 15 5079 0

рис. 1 Отчет о результатах моделирования

После этого я написала код для второй стратегии, выглядит он так:

14

20160.000 5856 0 17

```
punkt STORAGE 2
GENERATE (Exponential (1,0,1.75))
QUEUE Line
SEIZE punkt
```

ADVANCE 4,3 RELEASE punkt TERMINATE

DEPART Line

5078 0

5856 0

Для этого кода я получила следующий отчет (рис. 2).

Untitled N	Model 4.20.1	- REPORT	ī								
	CDS	S World	Simul	ation	Report	- Untit	led Mode	1 4.2	0 . 1		
	010	5 W0224	022		Nepo20	0020	200 11000				
		суббо	та, ию	ня 08,	2024	15:55:20					
	START	TIME		END	TIME	BLOCKS	FACILITI	ES S	TORAGES		
	0	.000		10080	0.000	9	1		1		
	NAM	E			V.	ALUE					
	LINE				1000	1.000					
	PUNKT				1000	0.000					
LABEL		100	DI ACT	TVDE	E-11	TDV COIN	T CURREN	T CO!!	מעמט או	v	
LADEL		1	GENER	ATE		5744		0	0	ı	
		2	OUEUE			5744	3	233	0		
			SEIZE			2511					
		4	DEPAR	T		2511		0	0		
		5	ADVAN	CE		2511		1	0		
			RELEA			2510		0	0		
			TERMI	NATE		2510		0	0		
		8	GENER	ATE		1		0	0		
		9	TERMI	NATE		1			0		
FACILITY		ENTRIES	UTIL	A	Æ. TIM	E AVAIL.	OWNER P	END I	NTER RE	TRY I	DELAY
PUNKT		2511	1.0	00	4.0	14 1	2512	0	0	0	3233
LINE		3234 3	233	5744	1	1617.67	6 2838	.819	2839.	313	0
STODACE		CAD	DEM M	ITNI M7	V PN	דם דבי אנז	T 30F	C 11T	דד סקיד	יח עם	2T 3V
PUNKT							0.00				
		_	_			_		-			
FEC XN	PRI						PARAME	TER	VALUE		
2512	0	10080.	255	2512	5	6					
	0	10080.									
	0										

рис. 2 Отчет о результатах симуляции

Проанализировав эти два отчета, я заполнила таблицу (табл. 1).

Показатель		стратегия 1	стратегия 2	
Horasaresis	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719

Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,996	0,997	0,9965	1
Максимальная длина очереди	393	393	786	668
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

табл. 1

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели — значит, продуктивность работы выше. Об этом же говорит и тот факт, что для второй модели коэффициент загрузки равен 1 — значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии, из чего можно сделать вывод, что вторая стратегия эффективнее.

Вывод: в ходе лабораторной работы были построены две различные модели обслуживания с приоритетами, сгенерированы и проанализированы отчеты к каждой из моделей.