

PB-groupoids vs VB-groupoids

Francesco Cattafi and Alfonso Garmendia

arXiv:2406.06259

1. Classical PB-VB correspondence

In differential geometry, the notions of principal bundles and vector bundles over a smooth manifold M are intimately related by a standard correspondence.

Principal GL(k)-bundles over $M \longrightarrow \{ Vector bundles of rank <math>k$ over $M \}$

This correspondence can be seen in many general textbooks but we will review it here for the sake of self-containment:

• Given a vector bundle $E \to M$ of rank k, let

$$P := \{ \operatorname{Frames}(E_x) : x \in M \} \cong \{ \text{ordered basis of } E_x : x \in M \}.$$

The Lie group GL(k) acts canonically in P, and for any $x \in M$ and $p,q \in P_x$ there is a unique $A \in GL(k)$ such that p = qA, implying that P is a principal GL(k)-bundle over M.

• Given a principal GL(k)-bundle $P \to M$, let

$$E := (P \times \mathbb{R}^k) / \{ (p, v) \sim (pA, A^{-1}v) \,\forall \, A \in \operatorname{GL}(K) \}.$$

This correspondence, is the base for many results in mathematics, particularly for the study of connections, gauge theories and geometric structures.

2. Lie groupoids and VB-groupoids

For proofs and more info about these objects see [2]. A Lie groupoid can be seen in different ways. This poster will see them as a manifold with a set of relations. To use the standard notation for these objects, the manifold will be called the base and the relations will be called arrows.

Definition 2.1. A Lie groupoid is a pair of manifolds, \mathcal{G} called the set of arrows and M called the base, together with smooth maps:

- surjective submersions: $s: \mathcal{G} \to M$ called source and $t: \mathcal{G} \to M$ called target.
- $m: \mathcal{G}_{\mathbf{s}} \times_{\mathbf{t}} \mathcal{G} \to \mathcal{G}, (g_2, g_1) \mapsto g_2 \circ_m g_1$ called composition.
- $u: M \to \mathcal{G}$ called units and $\tau: \mathcal{G} \to \mathcal{G}; g \mapsto g^{\tau}$ called inverse.

such that, for all $(g_2,g_1)\in\mathcal{G}_{\mathbf{s}}\times_{\mathbf{t}}\mathcal{G}$ there is $s(g_2\circ_m g_1)=s(g_1)$, $t(g_2\circ_m g_1)=t(g_2)$; m is associative, the image of u is a set of units for m, and τ assigns to each arrow an inverse for

Example 2.2. Let $\pi: M \to N$ be a surjective submersion. The fiber product groupoid is given by M as the base and by $M \times_{\pi} M$ as the arrows. The maps are given by:

$$s(x,y) = y$$

$$t(x,y) = x$$

$$u(x) = (x,x) \quad (x,y) \circ_m (y,z) = (x,z) \quad (x,y)^{\tau} = (y,x)^{\cdot}$$

Following the logic of manifold with a set of relations, we can consider vector bundles over these as vector bundles on the manifold ans on the set of relations.

Definition 2.3. A VB-groupoid of rank (l, k) is a commutative diagram

$$E_{\mathcal{G}} \xrightarrow{\pi_{\mathcal{G}}} \mathcal{G}$$

$$\widetilde{t} \downarrow \downarrow \widetilde{s} \qquad t \downarrow \downarrow s$$

$$E_{M} \xrightarrow{\pi_{M}} M$$

such that

- $\pi_{\mathcal{G}}: E_{\mathcal{G}} \to \mathcal{G}$ is a vector bundle of rank l+k and $\pi_M: E_M \to M$ is a vector bundle of rank
- $\mathcal{G} \rightrightarrows M$ and $E_{\mathcal{G}} \rightrightarrows E_{M}$ are Lie groupoids;
- the structure maps $(\widetilde{s},s),(\widetilde{t},t),(\widetilde{m},m),(\widetilde{u},u),(\widetilde{\tau},\tau)$ are morphisms of vector bundles.

Example 2.4. Given any Lie groupoid $\mathcal{G} \rightrightarrows M$, the tangent manifold of the arrows $T\mathcal{G} \rightrightarrows TM$ is a VB-groupoid over $\mathcal{G} \rightrightarrows M$.

Example 2.5. Given any VB groupoid $E_{\mathcal{G}} \rightrightarrows E_M$ over a Lie groupoid $\mathcal{G} \rightrightarrows M$ there is a vector bundle over M called the core, and given by the set

$$C_M = u^* \ker(\widetilde{s}) = \{ v \in \ker(\widetilde{s})_{u(x)} \subset (E_{\mathcal{G}})_{u(x)} : x \in M \}.$$

Moreover there is a canonical Lie groupoid structure in the dual spaces of $E_{\mathcal{G}}$ and C_M making it a VB-groupoid $E_{\mathcal{G}}^* \rightrightarrows C_M^*$ over $\mathcal{G} \rightrightarrows M$.

In [1] we described the VB-PB correspondence for VB-groupoids. Future works may investigate gauge theories, connections and G-structures.

3. VB-groupoids and Poisson geometry

Let us state a list of facts to motivate the relation between VB-groupoids and Poisson geometry. These facts are part of the folklore knowledge but it can be traced to the work "Groupoïdes Symplectiques" of Coste, Dazord and Weinstein in 1987.

- Any Lie groupoid has an asociated Lie algebroid. This construction is given by the core of the tangent Lie groupoid. More precisely, the Lie algebroid associated to $\mathcal{G} \rightrightarrows M$ is the core of $T\mathcal{G} \rightrightarrows TM$ given by $C_M = u^* \ker(\widetilde{s} = ds)$.
- Any Poisson manifold (M,π) has an associated Lie algebroid $\pi^{\sharp} : T^*M \to TM$.
- For any manifold M the cotangent T^*M is a symplectic manifold and therefore a Poisson manifold. For a Lie groupoid $\mathcal{G} \rightrightarrows M$ the cotangent of \mathcal{G} i.e. $T^*\mathcal{G}$ is a symplectic manifold.
- One of the basic examples of Poisson manifolds is given by the dual of a Lie algebra g. In this case, linear functions on \mathfrak{g}^* corresponds to elements in $x,y\in\mathfrak{g}$ and for any $\alpha\in\mathfrak{g}^*$ there is $\{x,y\}\alpha = \alpha([x,y])$. There is a similar construction for the dual of a Lie algebroid, so dual of Lie algebroids are also Poisson manifolds. For the Lie algebroid TM we get the symplectic (therefore Poisson) manifold of T^*M .
- The dual of the tangent groupoid $T^*\mathcal{G} \rightrightarrows C_M^*$ is the symplectic groupoid integrating the Poisson manifold C_M^* .
- In particular for a Lie algebra $\mathfrak g$ with Lie groupo G the Lie groupoid $T^*G \rightrightarrows \mathfrak g^*$ is symplectic integrating \mathfrak{g}^* .

4. Lie 2-groupoids and GL(l, k)

In general, since we will consider different groupoid structures on the same space, we adopt the notation $s_{ij}, t_{ij}, m_{ij}, u_{ij}, \tau_{ij}$ for the structure maps of a Lie groupoid $\mathcal{G}_i \rightrightarrows \mathcal{G}_j$.

Definition 4.1. (see [3]) A Lie 2-groupoid $\mathcal{G}_2 \Rightarrow \mathcal{G}_1 \Rightarrow \mathcal{G}_0$ is a double Lie groupoid where the base groupoid $\mathcal{G}_0 \rightrightarrows M = \mathcal{G}_0$ is the unit groupoid. In other words it is a commutative diagram of Lie groupoids

such that where the following three conditions are satisfied:

- 1. all the source and targets maps are Lie groupoid morphisms;
- 2. the interchange law

$$(g_1 \circ_{m_{20}} g_2) \circ_{m_{21}} (g_3 \circ_{m_{20}} g_4) = (g_1 \circ_{m_{21}} g_3) \circ_{m_{20}} (g_2 \circ_{m_{21}} g_4)$$

holds for all $g_i \in \mathcal{G}_2$ such that the compositions above make sense;

We will focus in a particular Lie 2-groupoid which we describe here below:

Definition-Example 4.2. For any pair (l, k) of natural numbers the **general linear 2-groupoid** of rank (l, k), denoted by GL(l, k), is the Lie 2-groupoid with

$$\operatorname{GL}(l,k)_2 := \left\{ \left(d, \begin{pmatrix} A & JB \\ 0 & B \end{pmatrix} \right) \in \operatorname{Hom}(\mathbb{R}^l, \mathbb{R}^k) \times \operatorname{GL}(l+k) : (I_l + Jd) \in \operatorname{GL}(l) \text{ and } (I_k + dJ) \in \operatorname{GL}(k) \right\}$$

$$\operatorname{GL}(l,k)_1 := \operatorname{Hom}(\mathbb{R}^l, \mathbb{R}^k) \times \operatorname{GL}(l) \times \operatorname{GL}(k),$$

ure on
$$\operatorname{GL}(l,k)_2 \rightrightarrows \operatorname{GL}(l,k)_0$$
 is the unique one with source and $\operatorname{GL}(l,k)_0$ given by:

• The groupoid structure on $GL(l,k)_2 \rightrightarrows GL(l,k)_0$ is the unique one with source and target maps $t_{20}, s_{20} \colon \operatorname{GL}(l, k)_2 \to \operatorname{GL}(l, k)_0$ given by:

 $GL(l,k)_0 := Hom(\mathbb{R}^l, \mathbb{R}^k).$

$$((I+dJ)B)^{-1}dA \xleftarrow{t_{20}} \left(d, \begin{pmatrix} A & JB \\ 0 & B \end{pmatrix}\right) \xrightarrow{s_{20}} d ,$$

and composition map $m_{20}: (\operatorname{GL}(l,k)_2) |_{s_{20}} \times_{t_{20}} (\operatorname{GL}(l,k)_2) \to \operatorname{GL}(l,k)_2$ given by the matrix multiplication:

$$\left(\begin{pmatrix} d, \begin{pmatrix} A & JB \\ 0 & B \end{pmatrix} \right), \begin{pmatrix} t_{20} \begin{pmatrix} d, \begin{pmatrix} A & JB \\ 0 & B \end{pmatrix} \end{pmatrix}, \begin{pmatrix} A' & J'B' \\ 0 & B' \end{pmatrix} \right) \right) \xrightarrow{m_{20}} \left(d, \begin{pmatrix} AA' & (AJ'B^{-1} + J)BB' \\ 0 & BB' \end{pmatrix} \right)$$

• The groupoid structure on $GL(l,k)_2 \rightrightarrows GL(l,k)_1$ is the unique one with source and target maps $t_{21}, s_{21} \colon \operatorname{GL}(l, k)_2 \to \operatorname{GL}(l, k)_1$ given by:

$$(d, A, (I+dJ)B) \stackrel{t_{21}}{\longleftarrow} \left(d, \begin{pmatrix} A & JB \\ 0 & B \end{pmatrix}\right) \stackrel{s_{21}}{\longmapsto} (d, (I+Jd)^{-1}A, B) ,$$

and composition map $m_{21}: (\operatorname{GL}(l,k)_2) \ _{s_{21}} \times_{t_{21}} (\operatorname{GL}(l,k)_2) \to \operatorname{GL}(l,k)_2$ given by:

$$\left(\begin{array}{ccc} \left(d, \begin{pmatrix} A & J(I+dJ')B' \\ 0 & (I+dJ')B' \end{pmatrix}\right), \left(d, \begin{pmatrix} (I+Jd)^{-1}A & J'B' \\ 0 & B' \end{pmatrix}\right)\right) \xrightarrow{m_{21}} \left(d, \begin{pmatrix} A & (JdJ'+J+J')B' \\ 0 & B' \end{pmatrix}\right)$$

• The groupoid $GL(l,k)_1 \Rightarrow GL(l,k)_0$ is given by the action groupoid of the canonical left action of $GL(l) \times GL(k)$ on $GL(l, k)_0$.

5. Frame principal bundle of a VB-groupoid

Definition 5.1. (see [1]) Let $E_{\mathcal{G}} \rightrightarrows E_M$ be a VB-groupoid of rank (l,k) over $\mathcal{G} \rightrightarrows M$. A frame $\phi_q \in Fr(E_{\mathcal{G}})$ is called an **s-bisection frame** if the following two conditions holds: 1. $\phi_g|_{\mathbb{R}^l \times \{0\}}$ takes value in $\ker(\widetilde{s}_g)$;

2. $\phi_g|_{\{0\}\times\mathbb{R}^k}$ is a bisection frame (i.e. its image is transverse to $\ker(\widetilde{t}_g)$).

$$\operatorname{Fr}(E_{\mathcal{G}})^{\operatorname{sbis}} := \{ \phi_g : \mathbb{R}^{l+k} \to (E_{\mathcal{G}})_g \mid \phi_g \text{ s-bisection frame} \} \subseteq \operatorname{Fr}(E_{\mathcal{G}}).$$

This set of s-bisection frames of $E_{\mathcal{G}}$ is called the **s-bisection frame bundle** of $E_{\mathcal{G}}$.

Proposition 5.2. (see [1]) There is a groupoid structure on $Fr(E_{\mathcal{G}})^{\text{sbis}}$ over $Fr(C_M) \times_M Fr(E_M)$. **Proposition 5.3.** (see [1]) There is a canonical principal $GL(l,k)_1 \implies GL(l,k)_0$ action on $\operatorname{Fr}(E_{\mathcal{G}})^{\operatorname{sbis}}$, and a canonical $\mathcal{G}(l,k)_1 \Rightarrow \operatorname{GL}(l,k)_0$ action on $\operatorname{Fr}(C_M) \times_M \operatorname{Fr}(E_M)$ extending to a Lie 2-groupoid action:

We called PB-groupoid a diagram as above, with a principal Lie 2-groupoid action on a Lie groupoid. Then we get a correspondence:

 $\{ \operatorname{GL}(l,k)\text{-PB-groupoids over } \mathcal{G} \rightrightarrows M \} \longleftrightarrow \{ \operatorname{VB-groupoids of rank } (l,k) \text{ over } \mathcal{G} \rightrightarrows M \}$

References

- [1] Francesco Cattafi and A. G. PB-groupoids vs VB-groupoids arXiv:2406.06259
- [2] Kirill C.H. Mackenzie General theory of Lie groupoids and Lie algebroids. London Mathematical Society., Lecture notes Series Vol 213, 2005.
- [3] Matias del Hoyo and Davide Stefani The general linear 2-groupoid *Pacific J.Math* 298.1 pp.33-57, 2019.