- 1 X is an impure sample of a Group 2 metal carbonate, MCO₃. X contains 57% by mass of MCO₃. The impurities in X do **not** react with hydrochloric acid.
 - 7.4 g of X is reacted with an excess of dilute hydrochloric acid.
 - 0.050 mol of the Group 2 metal chloride is produced.

What is the identity of the Group 2 metal?

A Mg

B Ca

C Sr

D Ba

- 2 Which of these samples of gas contains the same number of atoms as 1 g of hydrogen gas?
 - A 22 g of carbon dioxide (M_r : CO₂, 44)
 - **B** 8 g of methane (M_r : CH₄, 16)
 - \mathbf{C} 20 g of neon (M_r : Ne, 20)
 - **D** 8 g of ozone $(M_r: O_3, 48)$
- 3 What is the total number of protons, neutrons and electrons present in an ammonium ion with a relative formula mass of 21?

	number of protons	number of neutrons	number of electrons
Α	11	10	10
В	10	11	11
С	10	11	10
D	11	10	11

4 This question is about the first ionisation energies of magnesium and neon.

Which row is correct?

	first ionisation	type of electron removed				
	energy	from Mg	from Ne			
Α	Mg > Ne	р	s			
В	Mg > Ne	s	р			
С	Ne > Mg	р	s			
D	Ne > Mg	s	р			

					-
25	Which alkene	shows	geometric	isomerism'	-

- A CH₃CH₂CH₂CH=CH₂
- B CH₃CH₂CH=CHCH₃
- C CH₃CH₂C=CH₂ CH₃
- D CH₃CH=CCH₃

26 What is the correct name of the major product of the reaction of HBr with 3-ethylhex-3-ene?

- A 3-bromo-3-ethylhexane
- B 3-bromo-4-ethylhexane
- C 4-bromo-3-ethylhexane
- D 4-bromo-4-ethylhexane
- 27 The alkane CH₃CH₂CH(CH₃)₂ undergoes free radical substitution with chlorine. No C–C bonds are broken in this reaction.

How many isomeric products, including positional and optical isomers, of molecular formula $C_5H_{11}Cl$ can be formed?

A 4

- **B** 5
- **C** 6
- **D** 7
- 28 What is involved in the mechanism of the reaction between aqueous NaOH and 1-bromobutane?
 - A attack by a nucleophile on a carbon atom with a partial positive charge
 - B heterolytic bond fission and attack by a nucleophile on a carbocation
 - C homolytic bond fission and attack by an electrophile on a carbanion
 - D homolytic bond fission and attack by a nucleophile on a carbocation

29 But-2-ene reacts with cold dilute acidified KMnO₄ to give product X.

But-2-ene reacts with an excess of hot concentrated acidified KMnO₄ to give product Y.

Which statement about X and Y is correct?

- A Only one of X and Y reacts with 2,4-dinitrophenylhydrazine.
- **B** X and Y both react with sodium hydroxide.
- C X and Y both react with sodium metal.
- **D** Y reacts with LiA*l*H₄ to give X.
- 30 When heated with KOH dissolved in ethanol, halogenoalkanes can undergo an elimination reaction to form alkenes.

What are the possible elimination products when 2-bromobutane is heated with KOH dissolved in ethanol?

- A CH₃CH=CHCH₃ only
- B CH₃CH₂CH=CH₂ only
- C CH₃CH=CHCH₃ and CH₃CH₂CH=CH₂
- **D** CH₃CH=CHCH₃ and CH₂=CHCH=CH₂
- 31 Chloroethane can be used to make sodium propanoate.

chloroethane \rightarrow intermediate Q \rightarrow sodium propanoate

Intermediate Q is hydrolysed with boiling aqueous NaOH to give sodium propanoate.

Which reagent would produce intermediate Q from chloroethane?

- A concentrated ammonia solution
- B dilute sulfuric acid
- C hydrogen cyanide in water
- **D** potassium cyanide in ethanol
- **32** Four different alcohols are treated with alkaline I₂(aq).

Which row is correct?

	name of alcohol	formulae of products
Α	butan-2-ol	CH ₃ COO ⁻ and CH ₃ CI ₃
В	propan-1-ol	CH₃COO⁻ and CHI₃
С	propan-2-ol	CH₃COO⁻ and CHI₃
D	butan-2-ol	CH ₃ CH ₂ COO ⁻ and CH ₃ I

33 The M_r of compound X is 88.

Compound X is heated under reflux with an excess of acidified potassium dichromate(VI) to produce compound Y.

Compound Y reacts with compound X under suitable conditions to produce compound Z. The M_r of compound Z is 172.

What is compound X?

- A CH₃CH₂CHOHCH₂CH₃
- B (CH₃)₂COHCH₂CH₃
- C (CH₃)₂CHCHOHCH₃
- D (CH₃)₃CCH₂OH
- 34 Butanedione, CH₃COCOCH₃, is a yellow liquid.

How does butanedione react with 2,4-dinitrophenylhydrazine reagent and Fehling's reagent?

	2,4-dinitrophenylhydrazine	Fehling's
Α	positive	positive
В	positive	negative
С	negative	positive
D	negative	negative

- 35 Which substance reacts with ethanoic acid to give the organic product with the highest M_r ?
 - A lithium aluminium hydride
 - **B** magnesium
 - C potassium carbonate
 - D propan-2-ol
- 36 A sample of propyl ethanoate is hydrolysed by heating under reflux with aqueous NaOH. The two organic products of the hydrolysis are separated, purified and weighed.

Out of the total mass of products obtained, what is the percentage by mass of each product?

- **A** 32.4% and 67.6%
- **B** 38.3% and 61.7%
- **C** 42.3% and 57.7%
- **D** 50.0% and 50.0%

Which statement about PVC is correct? 37 Combustion products of PVC are very alkaline and harmful to breathe in. The empirical formula of PVC is the same as the empirical formula of the monomer. В Molecules of PVC are unsaturated. The repeat unit of PVC is (CH_2CCl_2) . Compound Q reacts separately with HCN and NaBH₄ under suitable conditions. Both reactions produce an organic product with a chiral centre. What is compound Q? butanone В ethanal propanal propanone 39 Compound X has the following properties. When 0.20 mol of X undergoes complete combustion, 14.4 dm³ of carbon dioxide is produced, measured under room conditions. X reacts with 2,4-dinitrophenylhydrazine reagent to give an orange crystalline product. X does **not** give a yellow precipitate with alkaline $I_2(aq)$. What could be X? hexan-3-one В propanal

propan-1-ol

propanone

BLANK PAGE

BLANK PAGE

Important values, constants and standards

<u></u>	
molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 {}^{\circ}C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment, Cambridge Assessment is the brand name of the University of Cambridge

The Periodic Table of Elements

	18	2	He	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	궃	krypton 83.8	54	Xe	131.3	98	R	radon	118	Og	oganesson -
	17				6	Щ	fluorine 19.0	17	Cl	chlorine 35.5	35	B	bromine 79.9	53	П	iodine 126.9	85	Αt	astatine -	117	<u>L</u>	tennessine -
	16				80	0	oxygen 16.0	16	ഗ	sulfur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	Ро	polonium	116	_	livermorium -
	15				7	z	nitrogen 14.0	15	<u>а</u>	phosphorus 31.0	33		arsenic 74.9					<u>B</u>		115	Mc	moscovium
	14				9	O	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	50	Sn	tin 118.7	82	Pb	lead 207.2	114	ŀΙ	flerovium
	13				2	В	boron 10.8	13	Νſ	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	l_l	thallium 204.4	113	R	nihonium —
										12	30	Zu	zinc 65.4	48	ပ္ပ	cadmium 112.4	80	£	mercury 200.6	112	ပ်	copernicium
										7	29	Cn	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium
Group										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	풉	platinum 195.1	110	Ds	darmstadtium -
Gro										တ	27	ပိ	cobalt 58.9	45	R	rhodium 102.9	77	Ţ	iridium 192.2	109	Μ	meitnerium -
		-	I	hydrogen 1.0						∞	26	Ьe	iron 55.8	44	Ru	ruthenium 101.1	9/	Os	osmium 190.2	108	Hs	hassium -
					Te					7	25	Mn	manganese 54.9	43	JC	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium
						pol	ass			9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium -
				Key	atomic number	atomic symbol	name relative atomic mass			2	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Db	dubnium —
						atc	rek			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	士	hafnium 178.5	104	¥	rutherfordium -
										က	21	လွ	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89-103	actinoids	
	2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	ഗ്	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium _
	-				က	<u>'</u>	lithium 6.9	1	Na	sodium 23.0	19	¥	potassium 39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	<u>ن</u>	francium

S
0
0
9
ŧ
岩

actinoids

71	3	lutetium 175.0	103	۲	lawrencium	1
70	Υp	ytterbium 173.1	102	9	nobelium	1
69	T	thulium 168.9	101	Md	mendelevium	3
89	ш	erbium 167.3	100	Fm	fermium	1
29	웃	holmium 164.9		Es	einsteinium	ī
99	ò	dysprosium 162.5	86	ರ	californium	1
65	Tp	terbium 158.9	26	ă	berkelium	1
64	gq	gadolinium 157.3	96	Cm	curium	ī
63	En	europium 152.0	95	Am	americium	1
62	Sm	samarium 150.4	94	Pu	plutonium	1
61	Pm	promethium -	93	ď	neptunium	ī
09	ρN	neodymium 144.4	92	⊃	uranium	238.0
59	Ā	praseodymium 140.9	91	Ра	protactinium	231.0
58	Ce	cerium 140.1	06	Th	thorium	232.0
22	Га	lanthanum 138.9	88	Ac	actinium	1

40 Measles is an infectious disease caused by a virus.

The graph shows the number of cases of measles each year in a country before and after a vaccine was introduced.

What could have caused the decrease in the number of cases of measles after vaccination was introduced?

	vaccines provided artificial active immunity in people	vaccines provided artificial passive immunity in people	fewer people are able to act as hosts for the virus	
Α	✓	×	✓	key
В	×	✓	✓	✓ = yes
С	X	✓	×	x = no
D	✓	×	×	

5 Arsenic forms a compound with fluorine. In this compound, the arsenic atom has no lone pair of electrons and there are no dative bonds.

Selenium also forms a compound with fluorine. In this compound, the selenium atom has no lone pair of electrons and there are no dative bonds.

In which compounds are there two different bond angles?

(In this question, 180° bond angles should be ignored.)

- A both arsenic fluoride and selenium fluoride
- B arsenic fluoride only
- C selenium fluoride only
- D neither arsenic fluoride nor selenium fluoride
- 6 A structure for borazole, N₃B₃H₆, is shown.

$$H$$
 B^{-}
 H^{\dagger}
 H^{\dagger}

Which shape is borazole and how many π electrons are there in the structure?

	shape	number of π electrons
Α	non-planar	3
В	non-planar	6
С	planar	3
D	planar	6

7 The diagram shows the apparatus used to find the relative molecular mass of a volatile liquid.

When 0.10 g of a volatile liquid is injected into the syringe, all of the volatile liquid evaporates and the volume increases by 85 cm³.

The heater maintains a temperature of 400 K and the experiment is carried out at a pressure of 101 300 Pa.

If the vapour of the volatile liquid behaves as an ideal gas, which expression can be used to calculate the relative molecular mass of the liquid?

A
$$M_r = (85 \times 101300) \div (0.10 \times 8.31 \times 400)$$

B
$$M_r = (85 \times 101.3) \div (0.10 \times 8.31 \times 400)$$

C
$$M_r = (0.10 \times 8.31 \times 400) \div (85 \times 10^{-6} \times 101300)$$

D
$$M_r = (0.10 \times 8.31 \times 400) \div (85 \times 10^{-6} \times 101.3)$$

8 The table shows physical properties of four substances, W, X, Y and Z.

	melting point/°C	boiling point/°C	electrical conductivity of solid	electrical conductivity of liquid	electrical conductivity in water
W	993	1695	poor	good	good
X	-119	39	poor	poor	insoluble
Y	1535	2750	good	good	insoluble
Z	1610	2230	poor	poor	insoluble

What are the identities of W, X, Y and Z?

	W	X	Υ	Z
Α	MgO	C ₂ H ₅ Br	Fe	Al_2O_3
В	MgO	HC1	K	Al_2O_3
С	NaF	C ₂ H ₅ Br	Fe	SiO ₂
D	NaF	HC1	K	SiO ₂

9 The apparatus used to determine a value for the enthalpy of combustion of butan-1-ol is shown. The mass of 1.00 cm³ of water is 1.00 g.

initial mass of burner + butan-1-ol	58.34 g
initial temperature of water	17.6 °C
final mass of burner + butan-1-ol	57.85 g
final temperature of water	41.1°C

butan-1-ol $M_r = 74$

Which value, to three significant figures, for the enthalpy of combustion of butan-1-ol can be calculated from these data?

- **A** $-114 \,\mathrm{J} \,\mathrm{mol}^{-1}$
- **B** $-17.2 \, \text{kJ} \, \text{mol}^{-1}$
- $\mathbf{C} -2600 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- **D** $-4540 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

$$\frac{1}{2} N_2(g) + \frac{1}{2} O_2(g) \rightarrow NO(g)$$
 $\Delta H^{\Theta} = +90 \text{ kJ mol}^{-1}$

This reaction has activation energy E_a .

Which reaction pathway diagram correctly represents this reaction?

energy

extent of reaction

11 In which reaction does the oxidation number of chlorine change by the largest amount?

A
$$2KClO_3 \rightarrow 2KCl + 3O_2$$

energy

$$\mathbf{B} \quad 2\mathsf{C}l\mathsf{O}^- \to \mathsf{C}l^- + \mathsf{C}l\mathsf{O}_2^-$$

C
$$Cl_2 + H_2O \rightarrow HCl + HClO$$

D
$$2NaClO_2 + Cl_2 \rightarrow 2NaCl + 2ClO_2$$

extent of reaction

12 Hydrogen is produced industrially from methane as shown in the equation.

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$
 $\Delta H^{\circ} = +205 \text{ kJ mol}^{-1}$

Which conditions give the highest yield of hydrogen at equilibrium?

	pressure	temperature		
Α	low	high		
В	high	low		
С	high	high		
D	low low			

- 13 W moles of HNO₂ undergoes a disproportionation reaction to produce U moles of HNO₃ and V moles of NO.
 - No other nitrogen containing product is produced.
 - Nitrogen is the only element oxidised or reduced.

What are the values of W, U and V?

	W	U	V
Α	2	1	1
В	3	1	2
С	5	3	2
D	5	1	4

14 Gas X dissociates on heating to set up the following equilibrium.

$$X(g) \rightleftharpoons Y(g) + Z(g)$$

A quantity of gas X is heated at constant pressure, p, at a certain temperature. The equilibrium partial pressure of gas X is found to be $\frac{1}{7}p$.

What is the equilibrium constant, K_p , at this temperature?

 $\mathbf{A} = \frac{6}{7}p$

 $\mathbf{B} \quad \frac{9}{7}p$

C $\frac{36}{7}p$

D 9p

15 In the diagram, X is the Boltzmann distribution for the energies of the particles in a reaction and E_{A1} is the activation energy for that reaction.

Which statement is correct?

- **A** E_{A2} is the activation energy at a higher temperature.
- **B** E_{A2} is the activation energy at a lower temperature.
- **C** Y is the Boltzmann distribution at a lower temperature.
- **D** Z is the Boltzmann distribution at a higher temperature.

16 Magnesium, aluminium and silicon are elements in the Periodic Table. Each element forms an oxide.

Which row is correct?

	MgO	Al_2O_3	SiO ₂	
Α	basic	amphoteric	amphoteric	
В	giant ionic	simple molecular	giant ionic	
С	high melting point	h melting point high melting point		
D	slight reaction with water	no reaction with water	no reaction with water	

- 17 Which statement correctly describes what happens when silicon tetrachloride is added to water?
 - **A** The SiC l_4 dissolves to give a neutral solution only.
 - **B** The SiC l_4 reacts to give an acidic solution only.
 - **C** The SiC l_4 reacts to give a precipitate and an acidic solution.
 - **D** The SiC l_4 reacts to give a precipitate and a neutral solution.

		Element X has a higher electrical conductivity than element Y. Element Y has a higher melting point than element X.							
	Wh	hich formula is a compound formed from element X and element Y?							
	Α	MgS	В	Mg ₂ Si	С	NaC <i>l</i>	D	SiCl ₄	
19		ample consisting	g of	1.0 mol of anhy	drous	s calcium nitra	ate is c	ompletely de	composed by strong
	Wh	at is the total an	noun	t of gas produc	ed in	this reaction?			
	Α	1.0 mol	В	2.0 mol	С	2.5 mol	D	3.0 mol	
20	Ste	am is passed ov	er h	eated magnesii	um to	give compou	nd J ar	nd hydrogen.	
	Wh	at is not a prope	erty	of compound J?	•				
	Α	It has an $M_{\rm r}$ of 40.3.							
	В	It is basic.							
	С	It is a white solid.							
	D	It is very soluble in water.							
21	Wh	ich statement is	corr	ect?					
	Α	Hydrogen bron	nide	reduces concer	ntrate	ed sulfuric acid	to form	n sulfur dioxi	de gas.
	В	Hydrogen bron	nide	decomposes at	a hig	gher temperat	ure tha	n hydrogen c	hloride.
	С	When hydrogen bromide gas is shaken with aqueous silver nitrate a yellow precipitate is formed.							
	D	When hydrogen bromide gas is bubbled through aqueous iodine the solution becomes colourless.							

18 X and Y are two elements from Period 3 of the Periodic Table.

22 ICl is made when Cl_2 and I_2 react together.

$$Cl_2 + I_2 \rightleftharpoons 2ICl$$

IC1 reacts with water.

$$5ICl + 3H_2O \rightarrow 5HCl + HIO_3 + 2I_2$$

Which row is correct?

	oxidation number of I in IC <i>1</i>	reaction occurring when IC <i>l</i> reacts with H₂O			
A +1 the iodine atoms are oxidised to form I					
В	B +1 the iodine atoms are oxidised to form H				
С	C _1 the chlorine atoms are reduced to form F				
D	■ The iodine atoms are oxidised to form HIC				

23 NH₄Cl reacts with NaOH in an aqueous solution.

Which statement is correct?

- A The reaction gives rise to two different polar product molecules.
- **B** The bond angle in the nitrogen-containing species remains unchanged.
- **C** The ammonium ion acts as a base.
- **D** The oxidation state of nitrogen increases in the reaction.
- 24 What is produced when 60 g of nitrogen monoxide reacts with an excess of carbon monoxide in a catalytic converter?
 - A 12 g of carbon and 92 g of nitrogen dioxide
 - **B** 24 g of carbon and 92 g of nitrogen dioxide
 - C 88 g of carbon dioxide and 28 g of nitrogen
 - **D** 88 g of carbon dioxide and 56 g of nitrogen