Ejercicios de Análisis Matemático

Sucesiones numéricas

1. Dado $\varepsilon > 0$, calcula $m_{\varepsilon} \in \mathbb{N}$ tal que para todo $n \ge m_{\varepsilon}$ se verifique $|x_n - x| < \varepsilon$ donde x_n , x vienen dados en cada caso por:

a)
$$x_n = \frac{2n+3}{3n-50}$$
, $x = \frac{2}{3}$; b) $x_n = \sqrt[3]{n+1} - \sqrt[3]{n}$, $x = 0$
c) $x_n = \sqrt[n]{a}$ $(a > 0)$, $x = 1$; d) $x_n = \left(\frac{1}{\sqrt{2}}\right)^n$, $x = 0$
e) $x_n = n\left(\sqrt[n]{n+1} - \sqrt[n]{n}\right)$, $x = 0$; f) $x_n = n^2 a^n$ $(|a| < 1)$, $x = 0$

Sugerencia. Como consecuencia del binomio de Newton, para $x - 1 \ge 0$ se verifica que

$$x^n = (1 + (x-1))^n \ge 1 + n(x-1).$$

Esta desigualdad, convenientemente usada, permite resolver con facilidad los casos b), c), d) y e).

Solución. Como regla general, en este tipo de ejercicios hay que "trabajar hacia atrás", esto es, se calcula y simplifica $|x_n - x|$ y se convierte la desigualdad $|x_n - x| < \varepsilon$ en otra equivalente a ella de la forma $n > \varphi(\varepsilon)$ donde $\varphi(\varepsilon)$ es un número que depende de ε . Basta entonces tomar m_{ε} como la parte entera de $\varphi(\varepsilon)$ más $1, m_{\varepsilon} = E(\varphi(\varepsilon)) + 1$, con lo cual para todo $n \ge m_{\varepsilon}$ se tiene que $n < \varphi(\varepsilon)$ y, por tanto, $|x_n - x| < \varepsilon$.

Este procedimiento admite muchos atajos. Hay que tener en cuenta que no se pide calcular el m_{ε} "óptimo", es decir, el menor valor posible de m_{ε} tal que $n \geqslant m_{\varepsilon} \Longrightarrow |x_n - x| < \varepsilon$, sino que se pide calcular cualquier valor de m_{ε} para el cual sea cierta dicha implicación. Para ello es suficiente con obtener, a partir de la desigualdad $|x_n - x| < \varepsilon$, otra desigualdad del tipo $n > \varphi(\varepsilon)$ de forma que se verifique la implicación $n > \varphi(\varepsilon) \Longrightarrow |x_n - x| < \varepsilon$.

En este procedimiento hay que quitar valores absolutos. Esto siempre puede hacerse porque la desigualdad $|x_n - x| < \varepsilon$ equivale a las dos desigualdades $-\varepsilon < x - n - x < \varepsilon$. Con frecuencia, el número $x_n - x$ es siempre positivo o siempre negativo para todo $n \ge n_0$, lo que permite quitar directamente el valor absoluto y sustituirlo por la correspondiente desigualdad.

Por supuesto, en estos ejercicios hay que trabajar con un valor genérico de $\varepsilon > 0$, es decir, no está permitido considerar valores particulares de ε porque se trata de probar que una cierta desigualdad es válida para todo $\varepsilon > 0$.

La verdad es que se tarda más en escribir lo anterior que en hacer el ejercicio porque las sucesiones que se dan son muy sencillas y la sugerencia muy útil.

a) Tenemos que

$$|x_n - x| = \left| \frac{2n+3}{3n-50} - \frac{2}{3} \right| = \left| \frac{109}{9n-150} \right|.$$

El denominador es positivo para todo n > 17. Pongamos n = 17 + k donde $k \in \mathbb{N}$. Entonces

$$|x_n - x| = \frac{109}{9n - 150} = \frac{109}{3 + 9k} < \frac{109}{9k} < \frac{13}{k}.$$

Deducimos que para que se tenga $|x_n-x|<\varepsilon$ es suficiente que tomar n=17+k donde k se elige de forma que $\frac{13}{k}<\varepsilon$, es decir, $k>\frac{13}{\varepsilon}$. Por tanto, poniendo $m_{\varepsilon}=18+E(\frac{13}{\varepsilon})$ podemos asegurar que para todo $n\geqslant m_{\varepsilon}$ se verifica que $|x_n-x|<\varepsilon$.

Observa que las acotaciones $\frac{109}{3+9k} < \frac{109}{9k} < \frac{13}{k}$ no son imprescindibles; de hecho, podemos despejar k de la desigualdad $\frac{109}{3+9k} < \varepsilon$, pero las acotaciones hechas facilitan este paso (aunque se obtiene un valor de k mayor).

b) Tenemos que:

$$0 < x_n - 0 = \sqrt[3]{n+1} - \sqrt[3]{n} = \sqrt[3]{n} \left(\sqrt[3]{1 + \frac{1}{n}} - 1\right).$$

Pongamos $z_n = \sqrt[3]{1 + \frac{1}{n}} - 1$. Tenemos que $z_n \ge 0$ y, usando la sugerencia dada:

$$(1+z_n)^3 = 1 + \frac{1}{n} \geqslant 1 + 3z_n \Longrightarrow z_n \leqslant \frac{1}{3n}$$

Deducimos que:

$$x_n = \sqrt[3]{n} z_n \leqslant \frac{1}{3} \frac{1}{\sqrt[3]{n^2}} \leqslant \frac{1}{3} \frac{1}{\sqrt[3]{n}}$$

Por tanto:

$$\frac{1}{3} \frac{1}{\sqrt[3]{n}} < \varepsilon \Longrightarrow x_n < \varepsilon \Longrightarrow |x_n - 0| = x_n < \varepsilon$$

La designaldad $\frac{1}{3} \frac{1}{\sqrt[3]{n}} < \varepsilon$ se verifica para todo $n > \frac{1}{27\varepsilon^3}$. Por tanto, es suficiente tomar $m_\varepsilon = 1 + E\left(\frac{1}{27\varepsilon^3}\right)$.

Observa que la acotación $\frac{1}{3} \frac{1}{\sqrt[3]{n^2}} \leqslant \frac{1}{3} \frac{1}{\sqrt[3]{n}}$ no es imprescindible; de hecho, podemos despejar n en la desigualdad $\frac{1}{3} \frac{1}{\sqrt[3]{n^2}} < \varepsilon$, pero la acotación anterior facilita este paso (aunque se obtiene un valor mayor para n).

c) Sea a > 1. Entonces $1 < \sqrt[n]{a}$. Pongamos $z_n = |x_n - 1| = \sqrt[n]{a} - 1 > 0$. Tenemos que:

$$(1+z_n)^n = a > 1 + nz_n \Longrightarrow z_n < \frac{a-1}{n}$$

Deducimos que:

$$\frac{a-1}{n} < \varepsilon \Longrightarrow z_n = |x_n - 1| < \varepsilon$$

La desigualdad $\frac{a-1}{n} < \varepsilon$ se verifica para todo $n > \frac{a-1}{\varepsilon}$. Por tanto, es suficiente tomar $m_{\varepsilon} = 1 + E(\frac{a-1}{\varepsilon})$.

Si 0 < a < 1, poniendo $b = \frac{1}{a}$ y usando lo ya visto, tenemos que:

$$0 < 1 - \sqrt[n]{a} = \frac{\sqrt[n]{b} - 1}{\sqrt[n]{b}} < \sqrt[n]{b} - 1 < \frac{b - 1}{n} = \frac{1 - a}{a} \frac{1}{n}$$

De donde se sigue que podemos tomar $m_{\varepsilon} = 1 + E(\frac{1-a}{a\varepsilon})$.

e) Sea $x_n = n \left(\sqrt[n]{n+1} - \sqrt[n]{n} \right)$. Tenemos que:

$$0 < x_n = |x_n - 0| = n \left(\sqrt[n]{n+1} - \sqrt[n]{n} \right) = n \sqrt[n]{n} \left(\sqrt[n]{1 + \frac{1}{n}} - 1 \right).$$

Pongamos $z_n = \sqrt[n]{1 + \frac{1}{n}} - 1$. Tenemos que $z_n > 0$ y:

$$(1+z_n)^n = 1 + \frac{1}{n} > 1 + nz_n \Longrightarrow z_n < \frac{1}{n^2}.$$

Por tanto, usando la desigualdad ??, tenemos que:

$$|x_n - 0| = n \sqrt[n]{n} z_n < \frac{1}{n} \sqrt[n]{n} < \frac{1}{n} \left(1 + \frac{2}{\sqrt{n}} \right) 0 \frac{1}{n} + \frac{2}{n \sqrt[n]{n}} \le \frac{3}{n}$$

Deducimos que tomando $m_{\varepsilon} = 1 + E\left(\frac{3}{\varepsilon}\right)$, para todo $n \ge m_{\varepsilon}$ se verifica que $|x_n - 0| < \varepsilon$.

0

 Sea A un conjunto no vacío y mayorado de números reales. Prueba que un número real, β, es el supremo de A si, y sólo si, β es un mayorante de A y hay alguna sucesión de puntos de A que converge a β.

Solución. Supongamos que $\beta = \sup(A)$. Entonces β es, claro está, un mayorante de A. Veamos que hay una sucesión de puntos de A que converge a β . Como β es el mínimo mayorante de A, ningún número menor que β puede ser mayorante de A. Por tanto, dado $\varepsilon > 0$, como $\beta - \varepsilon < \beta$, tiene que haber algún $a_{\varepsilon} \in A$ tal que $\beta - \varepsilon < a_{\varepsilon}$. En particular, para $\varepsilon = \frac{1}{n}$ tiene que haber algún $a_n \in A$ tal que $\beta - \frac{1}{n} < a_n$ y, por supuesto, $a_n \le \beta$. Deducimos así la existencia de una sucesión, $\{a_n\}$, de puntos de A que verifica $\beta - \frac{1}{n} < a_n \le \beta$. Es claro que $\{a_n\} \to \beta$.

La afirmación recíproca te la dejo apara que la hagas tú.

3. Supuesto que $\lim \{x_n\} = x$, prueba que $A = \{x_n : n \in \mathbb{N}\} \cup \{x\}$ tiene máximo y mínimo.

Solución. Los elementos de A son los términos de la sucesión junto con el límite de la misma. Observa que el conjunto A puede ser finito o infinito. El caso en que A es finito es trivial porque sabemos que todo conjunto finito tiene máximo y mínimo. Conviene considerar, por tanto, que A es infinito. La idea para hacer este ejercicio es la siguiente: aún siendo A infinito, todos sus elementos están en un intervalo de la forma $]x-\varepsilon,x+\varepsilon[$, con la posible excepción de un número finito de elementos de A que pueden quedar fuera de dicho intervalo. Para probar que A tiene máximo debemos fijarnos en los elementos más grandes de A. Dichos elementos deberían estar a la derecha del número $x+\varepsilon$ para $\varepsilon>0$ suficientemente pequeño. Pero no tiene por qué haber ningún elemento de A en estas condiciones, y eso pasa justamente cuando x es el mayor elemento de A, en cuyo caso x sería el máximo de A.

Esto lleva a razonar de la siguiente forma. Si x es el máximo de A, hemos acabado. En otro caso, tiene que haber algún elemento en A, digamos $a \in A$ que sea mayor que x, a > x. Tomemos un $\varepsilon > 0$ tal que $x + \varepsilon < a$ (por ejemplo $\varepsilon = (a - x)/2$). Entonces, todos los elementos de A están en $]x - \varepsilon$, $x + \varepsilon$ [excepto un número finito de ellos que quedan fuera de dicho intervalo; además, como $a > x + \varepsilon$, el conjunto $B = \{u \in A : u > x + \varepsilon\}$ no es vacío $(a \in B)$, es finito y, evidentemente, se tiene que máx $(B) = \max(A)$.

- 4. a) Sea $\{x_n\}$ una sucesión y supongamos que hay números $\rho \in]0, 1[, p \in \mathbb{N}, \text{ tales que para todo } n \ge p \text{ es } |x_{n+1}| \le \rho |x_n|$. Prueba que lím $\{x_n\} = 0$.
 - b) Sea $\{x_n\}$ una sucesión de números no nulos verificando que $\lim \frac{|x_{n+1}|}{|x_n|} = \lambda$, donde $0 \le \lambda < 1$. Prueba que $\lim \{x_n\} = 0$.

Aplicación. Dados $a \in]-1, 1[, k \in \mathbb{N}, \text{ prueba que } \lim_{n \to \infty} \{n^k a^n\} = 0.$

Solución. a) Podemos hacer este apartado de dos maneras. La primera consiste en darse cuenta de que la hipótesis $|x_{n+1}| \le \rho |x_n|$ para todo $n \ge p$, junto con que $0 < \rho < 1$, implica que la sucesión $\{|x_{n+p}|\}_{n \in \mathbb{N}}$ es decreciente y, como es de números positivos, tiene que converger a un número $\alpha \ge 0$. Por tanto lím $\{|x_n|\} = \alpha$. La desigualdad $|x_{n+1}| \le \rho |x_n|$ implica que $\alpha \le \rho \alpha$ y, como $0 < \rho < 1$, la única posibilidad para que dicha desigualdad se cumpla es que $\alpha = 0$.

Otra forma consiste en escribir para n > p:

$$|x_{n+1}| = \frac{|x_{n+1}|}{|x_n|} \frac{|x_n|}{|x_{n-1}|} \frac{|x_{n-1}|}{|x_{n-2}|} \cdots \frac{|x_{p+1}|}{|x_p|} |x_p| \le \rho^{n-p+1} |x_p| = \rho^{n+1} \frac{|x_p|}{\rho^p} = M\rho^{n+1}$$

donde hemos puesto $M = \frac{|x_p|}{\rho^p}$ que es una constante que no depende de n. La desigualdad anterior, teniendo en cuenta que, por ser $0 < \rho < 1$, se verifica que $\rho^n \to 0$, implica que $|x_n| \to 0$.

b) Tomando $\varepsilon > 0$ de forma que $\rho = \lambda + \varepsilon < 1$ (basta tomar $\varepsilon = (1 - \lambda)/2$), se sigue que hay un número $p \in \mathbb{N}$ tal que para todo $n \ge p$ se verifica que:

$$\frac{|x_{n+1}|}{|x_n|} \leqslant \rho \Longrightarrow |x_{n+1}| \leqslant \rho |x_n|.$$

Y, por lo visto en el apartado anterior, concluimos que $\{x_n\} \to 0$.

La aplicación que se propone en este ejercicio es un resultado importante que debes memorizar. Pongamos $x_n = n^k a^n$, donde se entiende que k es un número natural fijo y a es un número real con |a| < 1. Tenemos que:

$$\frac{|x_{n+1}|}{|x_n|} = \left(\frac{n+1}{n}\right)^k |a| \Longrightarrow \lim_{n \to \infty} \frac{|x_{n+1}|}{|x_n|} = |a| < 1.$$

Y podemos aplicar el resultado del punto anterior para concluir que $\lim_{n\to\infty} \{n^k a^n\} = 0$.

5. Estudia la convergencia de las sucesiones siguientes.

a)
$$x_n = \frac{2n + (-1)^n (n+2)}{7n+3}$$
 b) $x_n = n \left(\frac{1 + (-1)^n}{3}\right)^n$
c) $x_n = n^2 \left(\frac{1+n}{3n}\right)^n$ d) $x_n = \sqrt[n]{a^n + b^n}$ $(a > 0, b > 0)$
e) $x_n = \sum_{k=1}^n \frac{1}{\sqrt{k+n^2}}$ f) $x_n = \frac{x^n}{n!}$ $(x \in \mathbb{R})$
g) $x_n = \sqrt{n^2 + 3n + 2} - n$ h) $x_n = \left(\sqrt{n^2 + \sqrt{n}} - n\right)\left(\sqrt{n+1} + \sqrt{2n}\right)$

Sugerencia. En algunos casos puede usarse el principio de las sucesiones encajadas o el ejercicio anterior.

Solución. a) Tenemos que $\{x_{2n}\} \to 3/7, \{x_{2n-1}\} \to 1/7$. Luego $\{x_n\}$ no converge porque tiene dos sucesiones parciales que convergen a límites distintos.

- b) Tenemos que $0 \le x_n \le n\left(\frac{2}{3}\right)^n$ y, como $n\left(\frac{2}{3}\right)^n \to 0$ por lo visto en el ejercicio anterior, se sigue que $\{x_n\} \to 0$.
- d) Sea $\alpha = \max a, b$. Entonces $\alpha \le x_n \le \sqrt[n]{2}\alpha$. Como $\sqrt[n]{2} \to 1$, concluimos que $\{x_n\} \to \alpha$.
- e) Tenemos que:

$$\frac{n}{\sqrt{n+n^2}} \le \sum_{k=1}^n \frac{1}{\sqrt{k+n^2}} \le \frac{n}{\sqrt{1+n^2}}.$$

Puesto que $\lim_{n \to \infty} \frac{n}{\sqrt{n+n^2}} = \lim_{n \to \infty} \frac{n}{\sqrt{1+n^2}} = 1$, el principio de las sucesiones encajadas implica que $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{k+n^2}} = 1$.

$$\left(\sqrt{n^2 + \sqrt{n}} - n\right) \left(\sqrt{n+1} + \sqrt{2n}\right) = \frac{n^2 + \sqrt{n} - n^2}{\sqrt{n^2 + \sqrt{n}} + n} \left(\sqrt{n+1} + \sqrt{2n}\right) =$$

$$= \frac{\sqrt{n^2 + n} + \sqrt{2}n}{\sqrt{n^2 + \sqrt{n}} + n} = \frac{\sqrt{1 + \frac{1}{n}} + \sqrt{2}}{\sqrt{1 + \frac{1}{n\sqrt{n}}} + 1} \to \sqrt{2}$$

6. Estudia la convergencia de la sucesión:

$$x_n = 2\sqrt{n} - \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

 \odot

0

Solución. Estudiaremos la monotonía y acotación. Tenemos que:

$$x_{n+1} - x_n = 2\sqrt{n+1} - 2\sqrt{n} - \frac{1}{\sqrt{n+1}} = \frac{2n+1-2\sqrt{n^2+n}}{\sqrt{n+1}} > \frac{2n+1-2\sqrt{n^2+n}+\frac{1}{4}}{\sqrt{n+1}} = 0.$$

Por tanto $x_{n+1} > x_n$ y la sucesión es estrictamente creciente. Además:

$$x_{k+1} - x_k = 2\sqrt{k+1} - 2\sqrt{k} - \frac{1}{\sqrt{k+1}} = \frac{2}{\sqrt{k+1} + \sqrt{k}} - \frac{1}{\sqrt{k+1}} < \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}$$

Sumando estas desigualdades para $1 \le k \le n-1$ obtenemos que $x_n-x_1 < 1-\frac{1}{\sqrt{n}} < 1$, de donde se sigue que $x_n < 2$ para todo $n \in \mathbb{N}$. Luego $\{x_n\}$ es creciente y mayorada, por tanto es convergente.

Alternativamente, aplicando el teorema del valor medio a la función $f(x) = 2\sqrt{x}$ en el intervalo [k, k+1] tenemos que hay algún número $c \in k, k+1$ tal que:

$$2\sqrt{k+1} - 2\sqrt{k} = \frac{1}{\sqrt{c}}$$

Como k < c < k + 1 se verifica que:

$$\frac{1}{\sqrt{k+1}} < \frac{1}{\sqrt{c}} < \frac{1}{\sqrt{k}}.$$

Deducimos que:

$$0 < 2\sqrt{k+1} - 2\sqrt{k} - \frac{1}{\sqrt{k+1}} < \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}$$

Y volvemos a obtener las acotaciones anteriores de forma más cómoda.

7. Prueba que la sucesión dada por $x_1 = 0$ y para $n \ge 2$:

$$x_n = \log(\log n) - \sum_{k=2}^{n} \frac{1}{k \log k}$$

es convergente y su límite es menor o igual que log(log 2).

Solución. Tenemos que:

$$x_{k+1} - x_k = \log(\log(k+1)) - \log(\log k) - \frac{1}{(k+1)\log(k+1)}.$$

Aplicando el teorema del valor medio a la función $f(x) = \log(\log x)$) en el intervalo [k, k+1] para $k \ge 2$, tenemos que hay algún número $c \le k, k+1$ [tal que:

$$\log(\log(k+1)) - \log(\log k) = \frac{1}{c \log c}.$$

Como k < c < k + 1 se verifica que:

$$\frac{1}{(k+1)\log(k+1)} < \frac{1}{c\log c} < \frac{1}{k\log k}.$$

Deducimos que:

$$0 < x_{k+1} - x_k < \frac{1}{k \log k} - \frac{1}{(k+1)\log(k+1)}.$$

Esta desigualdad prueba que la sucesión $\{x_n\}$ es creciente. Además, sumando las desigualdades anteriores desde k=2 hasta k=n resulta que:

$$x_{n+1} - x_2 < \frac{1}{2\log 2} - \frac{1}{(n+1)\log(n+1)} < \frac{1}{2\log 2} \Longrightarrow x_{n+1} < x_2 + \frac{1}{2\log 2} = \log(\log 2).$$

Por tanto, la sucesión está mayorada y, como es creciente, es convergente y su límite es menor o igual que log(log 2).

8. Dados $0 < a_1 < b_1$, definamos para todo $n \in \mathbb{N}$:

$$b_{n+1} = \frac{a_n + b_n}{2}, \quad a_{n+1} = \sqrt{a_n b_n}.$$

Justifica que las sucesiones así definidas son monótonas y convergen al mismo número (que se llama media aritmético-geométrica de a_1 y b_1).

Solución. Teniendo en cuenta que la media geométrica de dos números es menor que su media aritmética, y que ambas están comprendidas entre dichos números, se sigue que $a_1 < a_2 < b_2 < b_1$. Volvemos a razonar ahora igual con $a_2 < b_2$ para obtener que $a_2 < a_3 < b_3 < b_2$. Este proceso puede continuarse indefinidamente. Deducimos que $\{a_n\}$ es creciente y $\{b_n\}$ es decreciente. Además, ambas están acotadas porque para todo $n \in \mathbb{N}$ es $a_1 < a_n < b_n < b_1$. Por tanto, ambas convergen. Pongamos $\{a_n\} \to a$ y $\{b_n\} \to b$. De la igualdad $a_{n+1} = \frac{a_n + b_n}{2}$ se sigue que $a = \frac{a+b}{2}$, de donde se obtiene que a = b.

- 9. Estudia la convergencia de las siguientes sucesiones.
 - a) $x_1 = 1, x_{n+1} = \sqrt{3x_n}$.

b)
$$x_1 = 3, x_{n+1} = \frac{3 + 3x_n}{3 + x_n}$$

c)
$$x_1 = 1, x_{n+1} = \frac{4+3x_n}{3+2x_n}$$
.

d) Dado
$$a \in]-2, -1[$$
, definimos $x_1 = a, x_{n+1} = \frac{x_n - 2}{x_n + 4}.$

e) Dado
$$a > 0$$
, definimos $x_1 = \sqrt{a}$, $x_{n+1} = \sqrt{a + x_n}$.

f)
$$x_1 = 0, x_{n+1} = \frac{1}{3 - x_n^2}$$
.

g) Dado
$$a > 0, a \ne 1$$
, definimos $x_1 = a, x_{n+1} = \frac{1}{3} \left(2x_n + \frac{a}{x_n^2} \right)$.

h) Dado
$$a \in \mathbb{R}$$
, definimos $x_1 = a$, $x_{n+1} = \frac{1}{4} + (x_n)^2$.

i) Dado
$$a \in]-2, 1[$$
, definimos $x_1 = a, 3x_{n+1} = 2 + (x_n)^3$.

Sugerencia. Estudia en cada caso monotonía y acotación. La convergencia puede depender del valor inicial de *a*.

Solución. En este tipo de ejercicios puede ser útil calcular de entrada, cuando sea posible y bajo el supuesto de que la sucesión sea convergente, el límite de la sucesión. Después deberemos probar que efectivamente la sucesión converge.

a) Supuesto que $\{x_n\} \to \alpha$, de la igualdad $x_{n+1} = \sqrt{3x_n}$, se sigue que $\alpha = \sqrt{3\alpha}$, por lo que $\alpha = 3$. Observa que no hemos probado que $\{x_n\}$ sea convergente. Lo que hemos probado es que, suponiendo que $\{x_n\}$ sea convergente, entonces su límite es 3. Este dato nos ayudará en lo que sigue. Por ejemplo, como $x_1 = 1 < x_2 = \sqrt{3}$, podemos sospechar que $\{x_n\}$ es creciente. En tal caso debería verificarse que $x_n < 3$ para todo $n \in \mathbb{N}$. Empezaremos probando esta desigualdad.

Tenemos que $x_1 = 1 < 3$; supuesto que $x_n < 3$ deducimos que $x_{n+1} = \sqrt{3x_n} < \sqrt{9} = 3$. Luego, por inducción, concluimos que $x_n < 3$ para todo $n \in \mathbb{N}$. Probemos ahora que $\{x_n\}$ es creciente. Tenemos que:

$$3x_n = x_{n+1}^2 = x_{n+1}x_{n+1} < 3x_{n+1} \implies x_n < x_{n+1}$$

por tanto, la sucesión es estrictamente creciente y, como está mayorada por 3, es convergente y, por lo visto al principio, su límite es 3.

b) Supuesto que $\{x_n\} \to \alpha$, de la igualdad $x_{n+1} = \frac{3+3x_n}{3+x_n}$, se sigue que $\alpha = \frac{3+3\alpha}{3+\alpha}$, de donde resulta que $\alpha^2 = 3$, por lo que deberá ser $\alpha = \sqrt{3}$ ya que el límite debe ser un número no negativo pues, evidentemente, todos los términos de la sucesión son positivos. Observa que no hemos probado que $\{x_n\}$ sea convergente. Lo que hemos probado es que, suponiendo que $\{x_n\}$ sea convergente, entonces su límite es $\sqrt{3}$. Este dato nos ayudará en lo que sigue. Por ejemplo, como $x_1 = 3 > x_2 = 2$, podemos sospechar que $\{x_n\}$ es decreciente. En tal caso debería verificarse que $x_n > \sqrt{3}$ para todo $n \in \mathbb{N}$. Empezaremos probando esta desigualdad.

Claramente $x_1 = 3 > \sqrt{3}$. Por otra parte:

$$x_{n+1} > \sqrt{3} \iff \frac{3+3x_n}{3+x_n} > \sqrt{3} \iff 3+3x_n > 3\sqrt{3} + \sqrt{3}x_n \iff x_n\sqrt{3}(\sqrt{3}-1) > 3(\sqrt{3}-1) \iff x_n > \sqrt{3}$$

Por tanto, si $x_n > \sqrt{3}$ también es $x_{n+1} > \sqrt{3}$. Luego, por inducción, concluimos que $x_n > \sqrt{3}$ para todo $n \in \mathbb{N}$. Probemos ahora que $\{x_n\}$ es decreciente. Tenemos que:

$$x_{n+1} - x_n = \frac{3 + 3x_n}{3 + x_n} - x_n = \frac{3 - x_n^2}{3 + x_n} < 0 \implies x_{n+1} < x_n$$

por tanto, la sucesión es estrictamente decreciente y, como está minorada por $\sqrt{3}$, es convergente y, por lo visto al principio, su límite es $\sqrt{3}$.

Estrategia. Para estudiar las sucesiones recurrentes pueden usarse técnicas de derivadas; para ello hay que expresar la sucesión recurrente en la forma $x_{n+1} = f(x_n)$, donde la función f generalmente es fácil de obtener a partir de la definición de la sucesión. En nuestro caso, tenemos que $x_{n+1} = \frac{3+3x_n}{3+x_n}$, por lo que deberemos considerar la función $f(x) = \frac{3+3x}{3+x}$. Con ello, tenemos que $x_{n+1} = f(x_n)$. Esta relación, junto con $x_1 = 3$ determina la sucesión. Seguidamente, hay que elegir un intervalo donde la función f va a estar definida. Tenemos que elegir dicho intervalo de forma que la función tome valores en él. En nuestro caso, la elección es fácil pues, si $x \ge 0$ también es $f(x) \ge 0$, por ello vamos a considerar que f está definida en \mathbb{R}^+_0 . Podemos volver a enunciar nuestro ejercicio como sigue.

Sea $f: \mathbb{R}_0^+ \to \mathbb{R}$ la función dada para todo $x \ge 0$ por $f(x) = \frac{3+3x}{3+x}$. Definamos $\{x_n\}$ por $x_1 = 3$ y $x_{n+1} = f(x_n)$. Estudiar la convergencia de $\{x_n\}$.

Lo primero que debemos observar es que la sucesión está bien definida pues $x_1 = 3 > 0$ y, supuesto que $x_n > 0$, también es $x_{n+1} = f(x_n) > 0$ por lo que tiene sentido $f(x_{n+1})$. Si la sucesión converge, su límite debe ser un número $\alpha \ge 0$ y, por ser f continua, f permuta con el límite, por lo que debe verificarse que

$$\alpha = \lim\{x_{n+1}\} = \lim\{f(x_n)\} = f(\lim\{x_n\}) = f(\alpha).$$

De donde se obtiene que $\alpha = \sqrt{3}$.

Para estudiar la monotonía calculamos la derivada de f. Tenemos que $f'(x) = \frac{6}{(3+x)^2}$. Como f'(x) > 0, se sigue que f es estrictamente creciente. Como $x_1 = 3 > x_2 = f(x_1) = 2$ y, al ser creciente, f conserva las desigualdades, se sigue que $x_2 = f(x_1) > f(x_2) = x_3$. Este proceso

0

puede seguirse indefinidamente, esto es, la misma relación de orden que hay entre dos términos consecutivos se conserva siempre:

$$x_n > x_{n+1} \implies x_{n+1} = f(x_n) > f(x_{n+1}) = x_{n+2}.$$

Obtenemos así que $\{x_n\}$ es decreciente. Además, como es de términos positivos, está minorada, luego es convergente. Su límite ya sabemos que es $\sqrt{3}$.

Observa que, al proceder de esta forma, podemos probar muy fácilmente el decrecimiento de la sucesión, sin necesidad de probar previamente que $x_n > \sqrt{3}$.

Las sucesiones recurrentes del tipo $x_{n+1} = f(x_n)$ donde f es una función continua, cuando son convergentes, $\{x_n\} \to \alpha$, su límite viene dado por $\alpha = f(\alpha)$, es decir, es un *punto fijo* de la función f.

e) Definamos $f: \mathbb{R}_0^+ \to \mathbb{R}$ por $f(x) = \sqrt{a+x}$. La sucesión está dada por $x_1 = \sqrt{a}$ y $x_{n+1} = f(x_n)$. Como f es continua, si la sucesión es convergente, su límite debe ser un punto fijo de f, es decir, debe ser solución de la ecuación $\alpha = f(\alpha)$, lo que implica que $\alpha^2 = a + \alpha$ y deducimos que

$$\alpha = \frac{1 + \sqrt{1 + 4a}}{2},$$

donde hemos elegido la solución positiva de la ecuación. Puesto que $x_1 = \sqrt{a} < x_2 = \sqrt{2a}$ y, evidentemente, f es estrictamente creciente, se sigue $x_2 = f(x_1) < f(x_2) = x_3$ y, en general, $x_n < x_{n+1}$. Por tanto $\{x_n\}$ es estrictamente creciente. Veamos que está mayorada. Probaremos que $x_n < \alpha$. Claramente $x_1 = \sqrt{a} < \alpha$. Supongamos que $x_n < \alpha$. Entonces:

$$x_{n+1}^2 = a + x_n < a + \alpha = \alpha^2 \implies x_{n+1} < \alpha$$

Concluimos, por inducción, que $x_n < \alpha$ para todo $n \in \mathbb{N}$. Luego $\{x_n\}$ es creciente y mayorada, por tanto converge y su límite es α .

Para a = 1, tenemos que:

$$\frac{1+\sqrt{5}}{2} = \lim \sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}$$

f) Tenemos que $x_1 = 0$ y $x_{n+1} = \frac{1}{3 - x_n^2}$. Consideremos la función $f(x) = \frac{1}{3 - x^2}$. La sucesión que nos dan está definida por $x_1 = 0$, $x_{n+1} = f(x_n)$. La derivada de f viene dada por $f'(x) = \frac{2x}{(3 - x^2)^2}$. Debemos considerar definida la función f en un intervalo I que contenga el 0 (porque $x_2 = f(0) = 1/3$) y de forma que $f(I) \subset I$. Como f(0) = 1/3 debe estar en I, deberá ser $I \subset [0, \sqrt{3}[$. Como f es creciente en $[0, \sqrt{3}[$ y f(1) = 1/2, se sigue que $f([0, 1]) \subset [0, 1/2] \subset [0, 1]$. Consideraremos en lo que sigue que la función f está definida en el intervalo [0, 1]. Como

Consideraremos en 10 que sigue que la funcion f esta definida en el intervalo [0,1]. Como $f([0,1]) \subset [0,1]$ y los valores de la sucesión $\{x_n\}$ son valores de f obtenidos por aplicación reiterada de f a partir del valor inicial $x_1 = 0 \in [0,1]$, dichos valores están siempre en [0,1]. Por tanto $0 \le x_n \le 1$ para todo $n \in \mathbb{N}$. Como f es estrictamente creciente en [0,1] y $x_1 = 0 < x_2 = f(0) = 1/3$, se sigue que $x_2 = f(x_1) < f(x_2) = x_3$ y, en general, supuesto que $x_{n-1} < x_n$, se sigue que $x_n = f(x_{n-1}) < f(x_n) = x_{n+1}$. Luego $\{x_n\}$ es estrictamente creciente. Como está acotada, concluimos que $\{x_n\}$ es convergente. Sea $\{x_n\} \to \alpha$. Como $0 \le x_n \le 1$, se sigue que $0 \le \alpha \le 1$. Además, como f es continua en [0,1], α debe ser un punto fijo de f, esto es, $f(\alpha) = \alpha$. Deducimos que α verifica la ecuación $\alpha^3 - 3\alpha + 1 = 0$.

Las raíces de la ecuación $x^3 - 3x + 1 = 0$ no son inmediatas de calcular pero podemos decir algunas cosas sobre ellas. Pongamos $h(x) = x^3 - 3x + 1$. Tenemos que h(-2) = -1 < 0,

h(0) = 1 > 0, h(1) = -1 < 0 y h(2) = 3 > 0. Deducimos que en cada uno de los intervalos]-2, 0[,]0, 1[y]1, 2[hay una única raíz de la ecuación. Por tanto, la sucesión dada converge a la única raíz de la ecuación $x^3 - 3x + 1 = 0$ que está en]0, 1[.

g) Dado a > 0 y $a \ne 1$, definimos $x_1 = a$, $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{a}{x_n^2} \right)$. Tenemos, evidentemente, que $x_n > 0$ para todo $n \in \mathbb{N}$. Consideremos la función $f(x) = \frac{1}{3} \left(2x + \frac{a}{x^2} \right)$ donde, en principio, x > 0. Tenemos que:

$$f'(x) = \frac{2}{3} \frac{x^3 - a}{x^3}$$

Deducimos que f'(x) < 0 para $0 < x < \sqrt[3]{a}$ y f'(x) > 0 para $x > \sqrt[3]{a}$. Por tanto f es estrictamente decreciente en $]0, \sqrt[3]{a}]$ y estrictamente creciente en $[\sqrt[3]{a}, +\infty[$. Concluimos que en $\sqrt[3]{a}$ la función f tiene un mínimo absoluto en \mathbb{R}^+ . Como todos los términos de la sucesión $\{x_n\}$ son (con la posible excepción del primero $x_1 = a$) valores que toma f en puntos de \mathbb{R}^+ , se sigue que $x_n > f(\sqrt[3]{a})$ para todo $n \ge 2$. Un calculo inmediato da $f(\sqrt[3]{a}) = \sqrt[3]{a}$, es decir, resulta que $\sqrt[3]{a}$ es un punto fijo de f en \mathbb{R}^+ . Como f es continua en \mathbb{R}^+ , si $\{x_n\}$ es convergente dicho punto debe ser el límite de $\{x_n\}$. Pero antes debemos probar que $\{x_n\}$ es convergente.

Para estudiar la monotonía debemos tener en cuenta que como $x_n > \sqrt[3]{a}$ para todo $n \ge 2$, todos los términos de la sucesión están en el intervalo $I = [\sqrt[3]{a}, +\infty[$. No es por eso restrictivo suponer que a > 1 (porque si fuera 0 < a < 1, podemos eliminar el primer término de la sucesión lo que no afecta para nada a su estudio). Comparemos x_1 con x_2 . Tenemos que:

$$x_2 - x_1 = \frac{1}{3} \left(a - \frac{a}{a^2} \right) - a = \frac{2a^2 + 1}{3a} - a = \frac{1 - a^2}{3a} < 0$$

Por tanto se tiene que $x_2 < x_1$ y, como f es estrictamente creciente en I, las desigualdades se conservan por f, luego, supuesto que $x_n < x_{n-1}$, se tiene también que $x_{n+1} = f(x_n) < f(x_{n-1}) = x_n$. Resulta así que $\{x_n\}$ es decreciente. Además es de términos positivos (de hecho mayores que $\sqrt[3]{a}$), luego $\{x_n\}$ es convergente y su límite es $\sqrt[3]{a}$.

h) Consideremos la función $f(x) = \frac{1}{4} + x^2$. Tenemos que $f(x) \geqslant \frac{1}{4}$. Como los términos de la sucesión dada, con la posible excepción del primero, son todos ellos valores de f, se cumple que $x_n \geqslant \frac{1}{4}$ para todo $n \geqslant 2$. No es restrictivo por eso suponer que $a \geqslant \frac{1}{4}$. Pongamos $I = [1/4, +\infty[$. Tenemos que $f(I) \subset I$. Como f'(x) = 2x, se sigue que f es estrictamente creciente en I. Por tanto la sucesión $\{x_n\}$ será monótona creciente si $x_1 \leqslant x_2$ y será monótona decreciente si $x_2 < x_1$. Tenemos que:

$$x_1 \le x_2 \iff a \le a^2 + \frac{1}{4} \iff 0 \le a^2 + \frac{1}{4} - a = \left(a - \frac{1}{2}\right)^2$$

Deducimos que se verifica $x_1 \le x_2$ y, por tanto, la sucesión es creciente. Cuando dicha sucesión esté mayorada será convergente y su límite debe ser un punto fijo de f en I. Tenemos que f(x) = x es lo mismo que $x^2 - x + \frac{1}{4} = 0$, esto es, $\left(x - \frac{1}{2}\right)^2 = 0$, cuya única solución es x = 1/2. En consecuencia, la sucesión $\{x_n\}$ será convergente a $\frac{1}{2}$ solamente cuando $x_n \le \frac{1}{2}$ para todo $n \in \mathbb{N}$, esto es, $a^2 + \frac{1}{4} \le \frac{1}{2}$, que equivale a que $a^2 \le \frac{1}{4}$, esto es, $|a| \le \frac{1}{2}$ y, como $a \ge \frac{1}{4}$, resulta que debe ser $\frac{1}{4} \le a \le \frac{1}{2}$. Deducimos también que para $a > \frac{1}{2}$, la sucesión no puede ser convergente y, al ser creciente, no está mayorada. Observa que cuando $a = \frac{1}{2}$ resulta la sucesión constante $x_n = \frac{1}{2}$ para todo $n \in \mathbb{N}$.

10. Para cada $n \in \mathbb{N}$ sea

$$x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \log(n), \quad y_n = x_n - \frac{1}{n}.$$

Prueba que $\{x_n\}$ es estrictamente decreciente e $\{y_n\}$ es estrictamente creciente. Deduce que ambas sucesiones convergen a un mismo número. Dicho número se llama la *constante de Euler*, se representa por la letra griega γ .

a) Deduce que
$$\lim_{n \to \infty} \frac{1 + 1/2 + \dots + 1/n}{\log(n)} = 1$$
.

b) Justifica que
$$\lim_{n \to \infty} \left\{ \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right\} = \log 2$$
.

c) Justifica que
$$\lim_{n \to \infty} \left\{ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} \right\} = \log 2.$$

Solución. Tenemos que:

$$x_n - x_{n+1} = \log(n+1) - \log n - \frac{1}{n+1} = \log\left(1 + \frac{1}{n}\right) - \frac{1}{n+1} > 0.$$

Desigualdad que es consecuencia de que $\log(1+x) < x$ para todo x > 0. También podemos tomar logaritmos en las desigualdades **??** para obtener que:

$$\frac{1}{n+1} < \log\left(1 + \frac{1}{n}\right) < \frac{1}{n}$$

Deducimos que $\{x_n\}$ es estrictamente decreciente. Tenemos también:

$$y_n - y_{n+1} = \log(n+1) - \log n - \frac{1}{n} = \log\left(1 + \frac{1}{n}\right) - \frac{1}{n} < 0.$$

Deducimos que $\{y_n\}$ es estrictamente creciente. Además, para todo $n \in \mathbb{N}$ tenemos que $x_1 < x_n < y_n < y_1$, por lo que ambas sucesiones están acotadas. Concluimos que dichas sucesiones convergen. Como $x_n - y_n = \frac{1}{n} \to 0$, deducimos que $\lim \{x_n\} = \lim \{y_n\}$.

a)

$$\frac{1 + 1/2 + \dots + 1/n}{\log(n)} = \frac{\log n + x_n}{\log n} = 1 + \frac{x_n}{\log n}.$$

Como $\{x_n\}$ es convergente y $\frac{1}{\log n} \to 0$, se sigue que $\frac{x_n}{\log n} \to 0$.

b) Pongamos $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$. Tenemos que:

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} = H_{2n} - H_n = x_{2n} + \log(2n) - x_n + \log n = x_{2n} - x_n + \log 2$$

Como $\{x_{2n}\}$ es una sucesión parcial de $\{x_n\}$ se tiene que $\{x_{2n} - x_n\} \rightarrow \gamma - \gamma = 0$.

c) Pongamos $A_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n}$. Tenemos que:

$$A_{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots + \frac{1}{2n-1} - \frac{1}{2n} =$$

$$= \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}\right) - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2n}\right) =$$

$$= \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}\right) - \frac{1}{2}H_n = H_{2n} - \frac{1}{2}H_n - \frac{1}{2}H_n = H_{2n} - H_n$$

Por el apartado anterior, tenemos que lím $\{A_{2n}\}$ = log 2. Como $A_{2n-1} = A_{2n} + \frac{1}{2n}$, deducimos que también lím $\{A_{2n-1}\}$ = log 2. Concluimos que (ver ejercicio resuelto ??) lím $\{A_n\}$ = log 2.

La sucesión $\{A_n\}$ se llama **serie armónica alternada**.

Estrategia. Para calcular límites donde interviene la serie armónica

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

puede ser conveniente escribir dicha sucesión como $H_n = \log n + \gamma_n$ donde $\{\gamma_n\} \to \gamma$.

11. Sea $\{x_n\}$ una sucesión y supongamos que hay dos sucesiones parciales $\{x_{\sigma(n)}\}$ y $\{x_{s(n)}\}$ que convergen a un mismo número x y tales que $\sigma(\mathbb{N}) \cup s(\mathbb{N}) = \mathbb{N}$. Prueba que $\{x_n\}$ converge a x.

Solución. Dado $\varepsilon > 0$, existen números naturales m_{ε} y n_{ε} tales que $|x_{\sigma(n)} - x| < \varepsilon$ para todo $n \ge m_{\varepsilon}$ y $|x_{s(n)} - x| < \varepsilon$ para todo $n \ge m_{\varepsilon}$ y $|x_{s(n)} - x| < \varepsilon$ para todo $n \ge m_{\varepsilon}$. Sea $p = \max\{m_{\varepsilon}, n_{\varepsilon}\}$ y pongamos $A = \{\sigma(n) : n \ge p\} \cup \{s(n) : n \ge p\}$. Como, por hipótesis es $\sigma(\mathbb{N}) \cup s(\mathbb{N}) = \mathbb{N}$, se sigue que el conjunto $B = \mathbb{N} \setminus A$ es finito pues $B \subset \{\sigma(n) : 1 \le n < p\} \cup \{s(n) : 1 \le n < p\}$. Definamos $m = \max(B) + 1$. Para $q \ge m$ se tiene que $q \notin B$, o sea, $q \in A$, es decir, q es de la forma $q = \sigma(n)$ o q = s(n) con $n \ge p$, en cualquier caso se verifica que $|x_q - x| < \varepsilon$.

Este resultado suele aplicarse cuando $\sigma(n) = 2n$ y s(n) = 2n - 1, es decir, a las sucesiones parciales de los términos pares e impares. Cuando sabemos que $\{x_{2n}\}$ y $\{x_{2n-1}\}$ convergen a un mismo número, podemos concluir que $\{x_n\}$ converge a dicho número.

Este resultado puede generalizarse de manera fácil. Por ejemplo si $\{x_{3n}\}$, $\{x_{3n-1}\}$ y $\{x_{3n-2}\}$ convergen todas a un mismo número, también $\{x_n\}$ converge a dicho número.

12. Sea $\{x_n\}$ una sucesión de números reales y supongamos que hay números $\rho \in]0, 1[$, M > 0 y $p \in \mathbb{N}$ tales que $|x_{n+1} - x_n| \le M\rho^n$ para todo $n \ge p$. Prueba que $\{x_n\}$ es convergente.

Sugerencia. Teniendo ahora en cuenta que para todos $n, h \in \mathbb{N}$ se verifica que:

$$\rho^{n+h-1} + \rho^{n+h-2} + \dots + \rho^n < \frac{\rho^n}{1-\rho}$$

deduce que $\{x_n\}$ verifica la condición de Cauchy.

Solución. Sean $n, h \in \mathbb{N}$, tenemos:

$$|x_{n+h} - x_n| = \left| \sum_{k=1}^{h-1} (x_{n+k+1} - x_{n+k}) \right| \le \sum_{k=0}^{h-1} |x_{n+k+1} - x_{n+k}| \le M \sum_{k=0}^{h-1} \rho^{n+k} =$$

$$= M \rho^n \sum_{k=0}^{h-1} \rho^k = M \rho^n \frac{1 - \rho^h}{1 - \rho} < \rho^n \frac{M}{1 - \rho} = K \rho^n$$

Donde hemos puesto $K = \frac{M}{1 - \rho}$, que es una constante independiente de n y de h. Deducimos que:

$$K\rho^n < \varepsilon \implies |x_{n+h} - x_n| < \varepsilon \text{ para todo } h \in \mathbb{N}$$

Dado $\varepsilon > 0$, determinamos m_{ε} por la condición de que $\rho^{m_{\varepsilon}} < \varepsilon/K$. Entonces para todo $n \ge m_{\varepsilon}$ y para todo $h \in \mathbb{N}$ se verifica que $|x_{n+h} - x_n| < \varepsilon$, lo que prueba que la sucesión $\{x_n\}$ verifica la condición de Cauchy y, por tanto, es convergente.

13. Sea $\{x_n\}$ una sucesión de números reales y supongamos que existen $\rho \in]0,1[, p \in \mathbb{N},$ tales que $|x_{n+1}-x_n| \le \rho |x_n-x_{n-1}|$ para todo n>p. Prueba que $\{x_n\}$ es convergente.

Sugerencia. Justifica que $|x_{n+1} - x_n| \le M\rho^n$ donde M es una constante independiente de n.

Solución. Es muy fácil, basta iterar la desigualdad del enunciado. Sea n > p:

$$|x_{n+1} - x_n| \le \rho |x_n - x_{n-1}| \le \rho^2 |x_{n-1} - x_{n-2}| \le \dots \le \rho^{n-p} |x_{p+1} - x_p| = M\rho^n.$$

Donde $M = \frac{|x_{p+1} - x_p|}{\rho^p}$ es una constante independiente de n. El ejercicio anterior nos dice que la sucesión $\{x_n\}$ es convergente.

14. Sea I un intervalo cerrado (puede ser $I = \mathbb{R}$); $f: I \to \mathbb{R}$ una función, y supongamos que hay un número $\alpha \in]0, 1[$ tal que:

$$|f(x) - f(y)| \le \alpha |x - y|$$
, para todos x, y en I . (1)

0

Se dice entonces que f es una **función contractiva** en I. Supongamos además que $f(x) \in I$ para todo $x \in I$. Dado un punto $a \in I$, definamos $\{x_n\}$ por $x_1 = a$, y $x_{n+1} = f(x_n)$ para todo $n \in \mathbb{N}$.

- a) Prueba que $\{x_n\}$ converge a un punto $x \in I$ que es el único punto fijo de f, es decir, f(x) = x.
- b) Justifica que si la función f es derivable en I y se verifica que hay un número $\alpha \in]0, 1[$ tal que $|f'(x)| \leq \alpha$ para todo $x \in I$, entonces f es contractiva en I.

Solución. a) Es consecuencia inmediata del ejercicio anterior.

- b) Es consecuencia inmediata del teorema del valor medio.
- 15. Estudia la convergencia de las sucesiones definidas para todo $n \in \mathbb{N}$ por:

a)
$$x_1 = 1$$
, $x_{n+1} = \frac{1}{1 + x_n}$; b) $x_1 = \sqrt{2}$, $x_{n+1} = \sqrt{2 - x_n}$.

Solución. a) Consideremos la función dada por $f(x) = \frac{1}{1+x}$. La sucesión que nos piden estudiar es la sucesión de iteradas de dicha función a partir del valor inicial $x_1 = 1$. Como $f'(x) = -\frac{1}{(1+x)^2} < 0$, la función f es estrictamente decreciente. Por tanto, la sucesión $x_{n+1} = f(x_n)$ no es monótona. Pues si, por ejemplo es $x_{n-1} < x_n$, como f, al ser decreciente, invierte las desigualdades, se tendrá que $x_n = f(x_{n-1}) > f(x_n) = x_{n+1}$.

Es evidente que $x_n > 0$ para todo $n \in \mathbb{N}$. Por tanto $1 + x_n > 1 \Longrightarrow x_{n+1} < 1$, luego $x_n \le 1$ para todo $n \in \mathbb{N}$, de donde $1 + x_n \le 2 \Longrightarrow x_{n+1} \ge \frac{1}{2}$. Deducimos que todos los términos de la sucesión están en el intervalo $I = [1/2, +\infty[$. Para $x \ge 1/2$ se tiene que $|f'(x)| \le \frac{4}{9}$. Podemos aplicar, por tanto, el ejercicio anterior y deducimos que $\{x_n\}$ es convergente. Además, su límite es el único punto fijo de f en I, que viene dado por $x = \frac{1}{1+x} \Longrightarrow x^2 + x - 1 = 0$, de donde,

$$x = \frac{-1 + \sqrt{5}}{2}.$$

16. Supongamos que la ecuación $x^2 = bx + a$ tiene dos raíces reales distintas α y β . Dados dos números reales λ y μ , definamos $\{x_n\}$ por:

$$x_1 = \lambda + \mu$$
, $x_2 = \lambda \alpha + \mu \beta$, $x_{n+2} = bx_{n+1} + ax_n$

Prueba que $x_n = \lambda \alpha^{n-1} + \mu \beta^{n-1}$ para todo $n \in \mathbb{N}$.

Aplicaciones. i) La sucesión $\{x_n\}$ definida para todo $n \in \mathbb{N}$ por:

$$x_1 = x_2 = 1$$
, $x_{n+2} = x_{n+1} + x_n$

se llama **sucesión de Fibonacci**. Calcula explícitamente x_n .

ii) Estudia la convergencia de la sucesión definida para todo $n \in \mathbb{N}$ por:

$$x_1 = a, x_2 = b, x_{n+2} = \frac{1}{2}(x_{n+1} + x_n).$$

Solución. La igualdad $x_n = \lambda \alpha^{n-1} + \mu \beta^{n-1}$ es cierta para n = 1 y para n = 2. Sea $n \in \mathbb{N}$, con $n \ge 2$, y supongamos que la igualdad se verifica para todo $k \in \mathbb{N}$ con $k \le n$. Entonces, teniendo en cuenta que $\alpha^2 = b\alpha + a$ y $\beta^2 = b\beta + a$, tenemos que:

$$x_{n+1} = bx_n + ax_{n-1} = b\lambda\alpha^{n-1} + b\mu\beta^{n-1} + a\lambda\alpha^{n-2} + a\mu\beta^{n-2} =$$

= $\lambda(b\alpha + a)\alpha^{n-2} + \mu(b\mu + a)\beta^{n-2} = \lambda\alpha^n + \mu\beta^n$

Lo que prueba la igualdad para n+1. Concluimos, por inducción, que la igualdad es cierta para todo $n \in \mathbb{N}$.

i) Como $x_{n+2} = x_{n+1} + x_n$, deducimos que a = b = 1. Por tanto, α y β son las raíces de $x^2 = x + 1$, las cuales vienen dadas por:

$$\alpha = \frac{1 - \sqrt{5}}{2}, \qquad \beta = \frac{1 + \sqrt{5}}{2}$$

Calculemos λ y μ por las condiciones $x_1 = 1 = \lambda + \mu =$, $x_2 = 1 = \lambda \alpha + \mu \beta$. Fácilmente se obtiene que:

$$\lambda = \frac{5 - \sqrt{5}}{2}, \qquad \mu = \frac{5 + \sqrt{5}}{2}$$

Deducimos, por lo antes visto, que:

$$x_n = \frac{5 - \sqrt{5}}{2} \left(\frac{1 - \sqrt{5}}{2} \right)^{n-1} + \frac{5 + \sqrt{5}}{2} \left(\frac{1 + \sqrt{5}}{2} \right)^{n-1}$$

iii) Pongamos $x_1 = a^1 b^0$, $x_2 = a^0 b^1$, $x_n = a^{p_n} b^{q_n}$. Entonces:

$$x_{n+2} = a^{p_{n+2}}b^{q_{n+2}} = a^{\frac{1}{2}(p_{n+1}+p_n)}b^{\frac{1}{2}(q_{n+1}+q_n)}.$$

Tenemos las ecuaciones:

$$p_1 = 1$$
, $p_2 = 0$, $2p_{n+2} = p_{n+1} + p_n$, $q_1 = 0$, $q_2 = 1$, $2q_{n+2} = q_{n+1} + q_n$

Ambas ecuaciones son de la forma $2x_{n+2} = x_{n+1} + x_n$ por lo que a = b = 1 y α y β son las raíces de $2x^2 = x + 1$. Por tanto $\alpha = 1$, $\beta = -\frac{1}{2}$. En consecuencia:

$$p_n = \lambda_1 + \mu_1 \left(-\frac{1}{2}\right)^{n-1}, \qquad q_n = \lambda_2 + \mu_2 \left(-\frac{1}{2}\right)^{n-1},$$

Debemos ahora calcular λ_1 , μ_1 y λ_2 , μ_2 para que se verifiquen las respectivas condiciones iniciales $p_1=1$, $p_2=0$ y $q_1=0$, $q_2=1$. Fácilmente se obtiene que $\lambda_1=\frac{1}{3}$, $\mu_1=\frac{2}{3}$, $\lambda_2=\frac{2}{3}$, $\mu_2=-\frac{2}{3}$. Deducimos que:

$$x_n = a^{\frac{1}{3} + \frac{2}{3} \left(-\frac{1}{2}\right)^{n-1}} b^{\frac{2}{3} - \frac{2}{3} \left(-\frac{1}{2}\right)^{n-1}} \longrightarrow a^{\frac{1}{3}} b^{\frac{2}{3}} = \sqrt[3]{ab^2}.$$

0

17. Prueba que $\{\log n!\}$ es asintóticamente equivalente a $\{n \log n\}$.

Solución. Pongamos $x_n = n \log n$, $y_n = \log n!$. Aplicaremos el criterio de Stolz para calcular el límite de la sucesión $\{\frac{x_n}{y_n}\}$. Tenemos que:

$$\frac{x_{n+1} - x_n}{y_{n+1} - y_n} = \frac{(n+1)\log(n+1) - n\log n}{\log(n+1)} = \frac{n\log\left(\frac{n+1}{n}\right)}{\log(n+1)} + 1$$

Teniendo en cuenta que $n \log \left(\frac{n+1}{n}\right) = \log \left(1 + \frac{1}{n}\right)^n \to 1$ y que $\log n \to +\infty$, obtenemos que $\left\{\frac{x_{n+1}-x_n}{y_{n+1}-y_n}\right\} \to 1$ y, por el criterio de Stolz, concluimos que $\left\{\frac{x_n}{y_n}\right\} \to 1$.

18. Justifica que la sucesión $\{\sqrt[n]{1+1/n^{\alpha}}-1\}$ es asintóticamente equivalente a $\{1/n^{\alpha+1}\}$, donde $\alpha>0$.

Solución. Pongamos $x_n = \sqrt[n]{1 + 1/n^{\alpha}}$. Como $1 \le x_n \le \sqrt[n]{2}$, deducimos, por el principio de las sucesiones encajadas, que $\{x_n\} \to 1$. Sabemos que $\lim_{x \to 1} \frac{\log x}{x - 1} = 1$, porque dicho límite es la derivada en 1 de la función logaritmo. Por tanto, para toda sucesión $\{z_n\} \to 1$ se verifica que

lím $\frac{\log(z_n)}{z_n-1}=1$, esto es, $z_n-1\sim\log(z_n)$. Análogamente, se tiene que $\log(1+u_n)\sim u_n$ para toda sucesión $\{u_n\}\to 0$. Deducimos que:

$$x_n - 1 \sim \log(x_n) = \frac{1}{n} \log\left(1 + \frac{1}{n^{\alpha}}\right) \sim \frac{1}{n} \frac{1}{n^{\alpha}} = \frac{1}{n^{\alpha+1}}$$

19. Calcula los límites de las sucesiones $\{x_n\}$ definidas por:

a)
$$x_n = \frac{1^{\alpha} + 2^{\alpha} + 3^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}}$$
, donde $\alpha > -1$.

b)
$$x_n = \sqrt[k]{(n+a_1)(n+a_2)\cdots(n+a_k)} - n$$
, donde $k \in \mathbb{N}$, $a_j \in \mathbb{R}$, $1 \le j \le k$.

c)
$$x_n = \left(\frac{\alpha \sqrt[n]{a} + \beta \sqrt[n]{b}}{\alpha + \beta}\right)^n$$
 donde $a > 0, b > 0$ y $\alpha, \beta \in \mathbb{R}, \alpha + \beta \neq 0$.

d)
$$x_n = \left(\frac{1 + 2^{p/n} + 3^{p/n} + \dots + p^{p/n}}{p}\right)^n$$
, donde $p \in \mathbb{N}$.

e)
$$x_n = n \left(\frac{1 + 2^k + 3^k + \dots + n^k}{n^{k+1}} - \frac{1}{k+1} \right)$$
, donde $k \in \mathbb{N}$.

f)
$$x_n = \left(\frac{3}{4} \frac{1+3^2+5^2+\dots+(2n-1)^2}{n^3}\right)^{n^2}$$

g)
$$x_n = n \left[\left(1 + \frac{1}{n^3 \log(1 + 1/n)} \right)^n - 1 \right]$$

h)
$$x_n = \frac{1}{n} \left(n + \frac{n-1}{2} + \frac{n-2}{3} + \dots + \frac{2}{n-1} + \frac{1}{n} - \log(n!) \right)$$

Solución. a) Pongamos $x_n = \frac{u_n}{v_n}$. Aplicamos el criterio de Stolz, lo cual puede hacerse porque, al ser $\alpha > -1$ se tiene que $n^{\alpha+1}$ es una sucesión estrictamente creciente.

$$\frac{u_{n+1} - u_n}{v_{n+1} - v_n} = \frac{(n+1)^{\alpha}}{(n+1)^{\alpha+1} - n^{\alpha+1}} = \left(\frac{n+1}{n}\right)^{\alpha} \frac{1}{n\left[\left(1 + \frac{1}{n}\right)^{\alpha+1} - 1\right]}$$

Usando las equivalencias asintóticas $x_n - 1 \sim \log(x_n)$, válida cuando $\{x_n\} \to 1$, y $\log(1 + u_n) \sim u_n$, válida cuando $\{u_n\} \to 0$, tenemos que:

$$n\left[\left(1+\frac{1}{n}\right)^{\alpha+1}-1\right] \sim n\log\left(1+\frac{1}{n}\right)^{\alpha+1} = (\alpha+1)n\log\left(1+\frac{1}{n}\right) \sim (\alpha+1)n\frac{1}{n} = \alpha+1.$$

Deducimos que lím $\frac{u_{n+1}-u_n}{v_{n+1}-v_n}=\frac{1}{\alpha+1}$ y, por el criterio de Stolz, lím $x_n=\frac{1}{\alpha+1}$

b)Tenemos que:

$$\sqrt[k]{(n+a_1)(n+a_2)\cdots(n+a_k)} - n = n\left(\sqrt[k]{(1+\frac{a_1}{n})(1+\frac{a_2}{n})\cdots(1+\frac{a_k}{n})} - 1\right) \sim \\
\sim n\frac{1}{k}\log\left[\left(1+\frac{a_1}{n}\right)(1+\frac{a_2}{n})\cdots(1+\frac{a_k}{n})\right] = \\
= \frac{1}{k}\sum_{j=1}^k n\log\left(1+\frac{a_j}{n}\right) \to \frac{a_1+a_2+\cdots+a_k}{k}.$$

Donde hemos tenido en cuenta que $\lim_{n\to\infty} n \log\left(1+\frac{a}{n}\right) = a$.

c) Es una sucesión de potencias de la forma $x_n = u_n^{v_n}$, donde

$$u_n = \frac{\alpha \sqrt[n]{a} + \beta \sqrt[n]{b}}{\alpha + \beta}, \qquad v_n = n$$

Claramente $u_n \to 1$, por lo que tenemos una indeterminación del tipo 1^{∞} . Usaremos el criterio de equivalencia logarítmica.

$$v_n(u_n - 1) = n\left(\frac{\alpha\sqrt[n]{a} + \beta\sqrt[n]{b}}{\alpha + \beta} - 1\right) = n\left(\frac{\alpha(\sqrt[n]{a} - 1) + \beta(\sqrt[n]{b} - 1)}{\alpha + \beta}\right) =$$

$$= \frac{\alpha}{\alpha + \beta}n(\sqrt[n]{a} - 1) + \frac{\beta}{\alpha + \beta}n(\sqrt[n]{b} - 1) \to$$

$$\to \frac{\alpha}{\alpha + \beta}\log a + \frac{\beta}{\alpha + \beta}\log b = \log\left(a^{\frac{\alpha}{\alpha + \beta}}b^{\frac{\beta}{\alpha + \beta}}\right)$$

Deducimos que $\lim_{n\to\infty} \{x_n\} = a^{\frac{\alpha}{\alpha+\beta}} b^{\frac{\beta}{\alpha+\beta}}$.

d) Es una sucesión de potencias de la forma $x_n = u_n^{v_n}$, donde

$$u_n = \frac{1 + 2^{\frac{p}{n}} + 3^{\frac{p}{n}} + \dots + p^{\frac{p}{n}}}{p}, \quad v_n = n$$

Claramente $u_n \to 1$, por lo que tenemos una indeterminación del tipo 1^{∞} . Usaremos el criterio de equivalencia logarítmica.

$$v_n(u_n - 1) = n \left(\frac{1 + 2^{\frac{p}{n}} + 3^{\frac{p}{n}} + \dots + p^{\frac{p}{n}}}{p} - 1 \right) =$$

$$= \frac{1}{p} \left(n \left(2^{\frac{p}{n}} - 1 \right) + n \left(3^{\frac{p}{n}} - 1 \right) + \dots + n \left(p^{\frac{p}{n}} - 1 \right) \right)$$

Teniendo en cuenta que lím $n(\sqrt[n]{a} - 1) = \log a$, deducimos que:

$$\lim_{n\to\infty} v_n(u_n-1) = \log 2 + \log 3 + \dots + \log n = \log n! \Longrightarrow \lim\{x_n\} = n!.$$

f) Es una sucesión de potencias $x_n = u_n^{v_n}$, donde:

$$u_n = \frac{3}{4} \frac{1 + 3^2 + 5^2 + \dots + (2n - 1)^2}{n^3}, \quad v_n = n^2.$$

La base $\{u_n\}$ converge a 1, pues aplicando Stolz con $a_n = 1 + 3^2 + 5^2 + \dots + (2n-1)^2$ y $b_n = n^3$, tenemos:

$$\frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \frac{(2n+1)^2}{(n+1)^3 - n^3} = \frac{4n^2 + 4n + 1}{3n^2 + 3n + 1} \to \frac{4}{3}.$$

Se trata de una indeterminación del tipo 1^{∞} . Aplicaremos el criterio de equivalencia logarítmica.

$$v_n(u_n - 1) = n^2 \left(\frac{3}{4} \frac{1 + 3^2 + 5^2 + \dots + (2n - 1)^2}{n^3} - 1 \right) =$$

$$= \frac{3}{4} \frac{3(1 + 3^2 + 5^2 + \dots + (2n - 1)^2) - 4n^3}{n}$$

Apliquemos ahora el criterio de Stolz con $z_n = 3(1+3^2+5^2+\cdots+(2n-1)^2)-4n^3, w_n = n$. Tenemos:

$$\frac{z_{n+1} - z_n}{w_{n+1} - w_n} = 3(2n+1)^2 - 4(n+1)^3 + 4n^3 = -1.$$

Deducimos que $v_n(u_n-1) \to -\frac{3}{4}$ y, por tanto, $\lim\{x_n\} = e^{-\frac{3}{4}} = \frac{1}{4\sqrt{a^3}}$.

g) $x_n = n \left[\left(1 + \frac{1}{n^3 \log(1 + 1/n)} \right)^n - 1 \right]$. Pongamos $z_n = \left(1 + \frac{1}{n^3 \log(1 + 1/n)} \right)^n$. La sucesión $\{z_n\}$ es una indeterminación del tipo 1^∞ . Tenemos que:

$$n \frac{1}{n^3 \log(1 + 1/n)} = \frac{1}{n} \frac{1}{n \log(1 + 1/n)} \to 0 \implies z_n \to 1.$$

En consecuencia:

$$x_n \sim n \log(z_n) = n^2 \log \left(1 + \frac{1}{n^3 \log \left(1 + \frac{1}{n} \right)} \right) \sim n^2 \frac{1}{n^3 \log \left(1 + \frac{1}{n} \right)} = \frac{1}{n \log \left(1 + \frac{1}{n} \right)}.$$
Luego lím $\{x_n\} =$ lím $\frac{1}{n \log \left(1 + \frac{1}{n} \right)} = 1.$

20. Calcula los límites de las sucesiones $\{x_n\}$ definidas por:

a)
$$x_n = \frac{\log\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)}{\log(\log n)}$$
 b) $x_n = \frac{e\sqrt{e\sqrt[3]{e} \dots \sqrt[n]{e}}}{n}$
c) $x_n = \frac{1}{n}\left(1 + \frac{\log n}{n}\right)^n$ d) $x_n = \left(\frac{\log(n+2)}{\log(n+1)}\right)^{n\log n}$
e) $x_n = \frac{1}{n}\sum_{k=1}^n \frac{1}{k}\log\prod_{j=1}^k \left(1 + \frac{1}{j}\right)^j$ f) $x_n = \frac{(2\sqrt[n]{n} - 1)^n}{n^2}$
g) $x_n = \log n\left[\left(\frac{\log(n+1)}{\log n}\right)^n - 1\right]$ h) $x_n = \sqrt[n]{\frac{(pn)!}{(qn)^{pn}}}$ $(p, q \in \mathbb{N})$
i) $x_n = \left(\frac{5\sum_{k=1}^n k^4}{n^5}\right)^n$ j) $x_n = \log\left(1 + \frac{1}{n}\right)\sqrt[n]{n!}$
k) $x_n = n\frac{\sqrt[n]{e} - e^{\sin(1/n)}}{1 - n\sin(1/n)}$ l) $x_n = \frac{\frac{2}{1} + \frac{3^2}{2} + \frac{4^3}{3^2} + \dots + \frac{(n+1)^n}{n^{n-1}}}{n^2}$

Solución. a) Usaremos la estrategia ??. Pongamos $H_n = \log n + x_n$ donde $\{x_n\} \to \gamma$. Tenemos que:

$$\frac{\log\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)}{\log(\log n)} = \frac{\log(\log n + x_n)}{\log(\log n)} = \frac{\log\left(\log n \left(1 + \frac{x_n}{\log n}\right)\right)}{\log(\log n)} = \frac{\log(\log n) + \log\left(1 + \frac{x_n}{\log n}\right)}{\log(\log n)} = 1 + \frac{\log\left(1 + \frac{x_n}{\log n}\right)}{\log(\log n)} \to 1.$$

Observacion. Es sabido que $H_n \sim \log n$, pero de aquí no puede deducirse directamente que $\log(H_n) \sim \log(\log n)$ que es lo que hemos probado. La razón es que no es cierto en general que si $\{x_n\} \sim \{y_n\}$ también sea $\log(x_n) \sim \log(y_n)$. Por ejemplo, las sucesiones $\{e^{\frac{1}{n}}\}$ y $\{e^{\frac{1}{n^2}}\}$ son asintóticamente equivalentes porque ambas convergen a 1, pero sus logaritmos son las sucesiones $\{\frac{1}{n}\}$ y $\{\frac{1}{n^2}\}$ que no son asintóticamente equivalentes.

En general, no hay garantías de que una equivalencia asintótica entre sucesiones se conserve por una determinada función.

c) Tomando logaritmos tenemos que:

$$\log x_n = n \log \left(1 + \frac{\log n}{n} \right) - \log n = n \left(\log \left(1 + \frac{\log n}{n} \right) - \frac{\log n}{n} \right)$$

Esta expresión es de la forma $\log(1+u_n)-u_n$ donde $u_n\to 0$. Recordemos que:

$$\lim_{x \to 0} \frac{\log(1+x) - x}{x^2} = -\frac{1}{2}$$

Tenemos que:

$$\log x_n = \frac{\log\left(1 + \frac{\log n}{n}\right) - \frac{\log n}{n}}{\left(\frac{\log n}{n}\right)^2} \frac{(\log n)^2}{n}$$

Poniendo $u_n = \frac{\log n}{n}$, como $u_n \to 0$, deducimos que la primera de las dos fracciones anteriores converge a $-\frac{1}{2}$ y la segunda $\frac{(\log n)^2}{n} \to 0$. Concluimos que $\log x_n \to 0$ y, por tanto, $\{x_n\} \to 1$.

e)
$$x_n = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{k} \log \prod_{j=1}^{k} \left(1 + \frac{1}{j}\right)^j$$
. Pongamos:

$$z_k = \frac{1}{k} \log \prod_{j=1}^k \left(1 + \frac{1}{j}\right)^j = \frac{\sum_{j=1}^k j \log\left(1 + \frac{1}{j}\right)}{k}.$$

De esta forma, se tiene que:

$$x_n = \frac{\sum_{k=1}^n z_k}{n}.$$

Como $\{z_n\}$ es la sucesión de medias aritméticas de la sucesión $y_n = n \log \left(1 + \frac{1}{n}\right)$, y lím $\{y_n\} = 1$, se sigue, por el criterio de la media aritmética, que $\{z_n\} \to 1$. Como $\{x_n\}$ es la sucesión de las medias aritméticas de $\{z_n\}$, volviendo ahora a aplicar el mismo criterio, deducimos que $\{x_n\} \to 1$.

f)
$$x_n = \frac{(2\sqrt[n]{n}-1)^n}{n^2}$$
. Pongamos:

$$x_n = \left(\frac{2\sqrt[n]{n} - 1}{\sqrt[n]{n^2}}\right)^n = \left(2\sqrt[n]{\frac{1}{n}} - \sqrt[n]{\frac{1}{n^2}}\right)^n$$

Se trata de una sucesión de potencias de la forma $x_n = u_n^{v_n}$ donde $u_n = 2\sqrt[n]{\frac{1}{n}} - \sqrt[n]{\frac{1}{n^2}}$ y $v_n = n$. Claramente $u_n \to 1$, por lo que se trata de una indeterminación del tipo 1^{∞} . Aplicaremos el criterio de equivalencia logarítmica.

$$v_n(u_n - 1) = n\left(2\sqrt[n]{\frac{1}{n}} - \sqrt[n]{\frac{1}{n^2}} - 1\right) = -n\left(\sqrt[n]{\frac{1}{n}} - 1\right)^2 \sim$$
$$\sim -n\left(\log\sqrt[n]{\frac{1}{n}}\right)^2 = \frac{\log n}{n} \to 0.$$

Deducimos que $x_n \to 1$.

g) La sucesión $x_n = \log n \left[\left(\frac{\log(n+1)}{\log n} \right)^n - 1 \right]$ es de la forma $b_n(a_n-1)$ donde $a_n = \left(\frac{\log(n+1)}{\log n} \right)^n$, $b_n = \log n$. Veamos que $\{a_n\} \to 1$. Para ello, como se trata de una indeterminación del tipo 1^∞ , aplicamos el criterio de equivalencia logarítmica:

$$n\left(\frac{\log(n+1)}{\log n} - 1\right) = \frac{n\log\left(1 + \frac{1}{n}\right)}{\log n} = \frac{\log\left(1 + \frac{1}{n}\right)^n}{\log n} \to 0$$

Por tanto, $\{a_n\} \to 1$. Podemos aplicar ahora el criterio de equivalencia logarítmica a la sucesión $b_n(a_n - 1)$. Tenemos que:

$$a_n^{b_n} = \left(\frac{\log(n+1)}{\log n}\right)^{n\log n}$$

Esta sucesión es una indeterminación del tipo 1^{∞} y podemos volver a aplicarle el criterio de equivalencia logarítmica.

$$n\log n\left(\frac{\log(n+1)}{\log n}-1\right)=n\log\left(1+\frac{1}{n}\right)\to 1.$$

Concluimos que $\{x_n\} \to 1$.

h) $x_n = \sqrt[n]{\frac{(pn)!}{(qn)^{pn}}}$ donde $p, q \in \mathbb{N}$. Es una sucesión del tipo $x_n = \sqrt[n]{z_n}$ donde $z_n = \frac{(pn)!}{(qn)^{pn}}$. Tenemos que:

$$\frac{z_{n+1}}{z_n} = \frac{(pn+p)!}{(qn+q)^{pn+p}} \frac{(qn)^{pn}}{(pn)!} = \frac{(pn+1)(pn+2)\cdots(pn+p)}{(qn+q)^p} \left(\frac{n}{n+1}\right)^{pn}$$

La fracción $\frac{(pn+1)(pn+2)\cdots(pn+p)}{(qn+q)^p}$ es un cociente de dos polinomios en la variable n del mismo grado p y coeficientes líder iguales a p^p y q^p respectivamente, por tanto su límite es igual a $\left(\frac{p}{q}\right)^p$. La sucesión $\left(\frac{n}{n+1}\right)^{pn} = \left(1 - \frac{1}{n+1}\right)^{np}$ converge a e^{-p} . Por tanto, en virtud del corolario n27, la sucesión dada converge a n2p4.

k)
$$x_n = n \frac{\sqrt[n]{e} - e^{\sin(1/n)}}{1 - n \sin(1/n)} = \frac{e^{\frac{1}{n}} - e^{\sin(\frac{1}{n})}}{\frac{1}{n} - \sin(\frac{1}{n})}$$
. Consideremos la función $f(x) = \frac{e^x - e^{\sin x}}{x - \sin x}$. Pongamos $y_n = \frac{1}{n}$. Tenemos que $x_n = f(y_n)$. Como $y_n \to 0$, el límite de $\{x_n\}$ es igual al límite de $f(x)$ en $x = 0$. Tenemos que:

$$f(x) = \frac{e^x - e^{\sin x}}{x - \sin x} = e^{\sin x} \frac{e^{x - \sin x} - 1}{x - \sin x} \sim e^{\sin x} \sim 1 \qquad (x \to 0)$$

Donde hemos usado que la función $\frac{e^{x-\operatorname{sen} x}-1}{x-\operatorname{sen} x}$ es de la forma $\frac{e^{h(x)}-1}{h(x)}$ donde $\lim_{x\to 0} h(x)=0$, por lo que dicha función tiene límite igual a 1 en x=0.

21. Sabiendo que $\{a_n\} \to a$, calcula el límite de las sucesiones:

a)
$$x_n = n(\sqrt[n]{a_n} - 1)$$

b)
$$x_n = \frac{\exp(a_1) + \exp(a_2/2) + \dots + \exp(a_n/n) - n}{\log n}$$

c)
$$x_n = \frac{a_1 + a_2/2 + \dots + a_n/n}{\log n}$$

Solución. b) Es una sucesión del tipo $x_n = \frac{u_n}{v_n}$. Aplicaremos el criterio de Stolz.

$$\frac{u_{n+1} - u_n}{v_{n+1} - v_n} = \frac{\exp\left(\frac{a_{n+1}}{n+1}\right) - 1}{\log\left(1 + \frac{1}{n}\right)} \sim n \frac{a_{n+1}}{n+1} \to a.$$

Donde hemos usado la equivalencia asintótica $e^{z_n} - 1 \sim z_n$ válida siempre que $z_n \to 0$ y $\log(1 + y_n) \sim y_n$, válida siempre que $y_n \to 0$. Concluimos que $\{x_n\} \to a$.

22. Sea $\{x_n\}$ una sucesión de números positivos tal que $\left\{\frac{x_{n+1}}{x_n}\right\} \to L > 0$. Calcula el límite de la sucesión $\sqrt[n]{\frac{x_n}{\sqrt[n]{x_1 x_2 \cdots x_n}}}$

Solución. Es una sucesión del tipo $w_n = \sqrt[n]{y_n}$ donde $y_n = \frac{x_n}{\sqrt[n]{x_1 x_2 \cdots x_n}}$. Aplicaremos el corolario **??**. Tenemos que:

$$\frac{y_{n+1}}{y_n} = \frac{x_{n+1}}{x_n} \frac{\left(x_1 x_2 \cdots x_n\right)^{\frac{1}{n}}}{\left(x_1 x_2 \cdots x_n x_{n+1}\right)^{\frac{1}{n+1}}} \sim L \frac{1}{x_n x_n} \left(x_1 x_2 \cdots x_n\right)^{\frac{1}{n(n+1)}}$$

En virtud, del citado corolario, se tiene que $n+\sqrt[4]{x_{n+1}} \to L$. Sea $z_n = (x_1x_2\cdots x_n)^{\frac{1}{n(n+1)}}$. Consideremos la sucesión:

$$\log z_n = \frac{\log(x_1) + \log(x_2) + \dots + \log(x_n)}{n(n+1)}$$

Pongamos $a_n = \log(x_1) + \log(x_2) + \cdots + \log(x_n)$, $b_n = n(n+1)$. Aplicaremos el criterio de Stolz.

$$\frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \frac{\log(x_{n+1})}{2n+2} = \frac{1}{2} \log^{n+1} \sqrt{x_{n+1}} \to \frac{1}{2} \log L = \log \sqrt{L}.$$

Deducimos que $\log z_n \to \log \sqrt{L}$, por lo que $z_n \to \sqrt{L}$ y también $\frac{y_{n+1}}{y_n} \to \sqrt{L}$. El citado corolario ?? implica que $w_n \to \sqrt{L}$.

23. Sean a, b números positivos; definamos $x_k = a + (k-1)b$ para cada $k \in \mathbb{N}$ y sea G_n la media geométrica de x_1, x_2, \ldots, x_n y A_n su media aritmética. Calcula el límite de la sucesión $\frac{G_n}{A_n}$.

Solución. Tenemos que $A_n = \frac{na + \frac{n(n-1)}{2}b}{n} = a + \frac{n-1}{n}b$. Por tanto:

$$\frac{G_n}{A_n} = \frac{\sqrt[n]{x_1 x_2 \cdots x_n}}{a + \frac{n-1}{n}b} = \frac{1}{\frac{a}{n} + \frac{n-1}{2n}b} \sqrt[n]{\frac{x_1 x_2 \cdots x_n}{n^n}}$$

Calcularemos el límite de la sucesión $U_n = \sqrt[n]{\frac{x_1 x_2 \cdots x_n}{n^n}}$ que es del tipo $U_n = \sqrt[n]{z_n}$, usando el corolario ??, tenemos:

$$\frac{z_{n+1}}{z_n} = \frac{x_{n+1}}{(n+1)^{n+1}} n^n = \frac{x_{n+1}}{n+1} \left(1 - \frac{1}{n+1} \right)^n \to \frac{b}{e}.$$

Deducimos que $\{\frac{G_n}{A_n}\} \to \frac{2}{e}$.

24. Sea $\{x_n\} \to x$, $\{y_n\} \to y$, $x \neq y$. Definamos $z_{2n-1} = x_n$, y $z_{2n} = y_n$. Justifica que la sucesión

$$\left\{\frac{z_1+z_2+\cdots+z_n}{n}\right\}$$

es convergente.

Solución. Pongamos $u_n = \frac{z_1 + z_2 + \dots + z_n}{n}$. Tenemos que:

$$u_{2n} = \frac{z_1 + z_3 + \dots + z_{2n-1}}{2n} + \frac{z_2 + z_4 + \dots + z_{2n}}{2n} =$$

$$= \frac{1}{2} \frac{x_1 + x_2 + \dots + x_n}{n} + \frac{1}{2} \frac{y_1 + y_2 + \dots + y_n}{n} \to \frac{x}{2} + \frac{y}{2} = \frac{x + y}{2}.$$

Donde hemos aplicado el criterio de la media aritmética. Análogamente se comprueba que $\{u_{2n-1}\} \to \frac{x+y}{2}$. Concluimos que $\{u_n\} \to \frac{x+y}{2}$.

0

Observa que no se puede calcular el límite de $\{u_n\}$ aplicando el criterio de Stolz. Llamando $Z_n = z_1 + z_2 + \cdots + z_n$, $V_n = n$, tenemos $u_n = \frac{Z_n}{V_n}$ y:

$$\frac{Z_{n+1} - Z_n}{V_{n+1} - V_n} = Z_{n+1} - Z_n = \begin{cases} x_{m+1}, & \text{si } n = 2m \text{ es par;} \\ y_m, & \text{si } n = 2m - 1 \text{ es impar.} \end{cases}$$

Por tanto, la sucesión $\frac{Z_{n+1}-Z_n}{V_{n+1}-V_n}$ no es convergente.

25. a) Justifica las desigualdades:

$$0 < \log \frac{e^x - 1}{x} < x \ (x > 0); \ x < \log \frac{e^x - 1}{x} < 0 \ (x < 0).$$

b) Dado $x \neq 0$ definamos $x_1 = x$, y para todo $n \in \mathbb{N}$:

$$x_{n+1} = \log \frac{\mathrm{e}^{x_n} - 1}{x_n}.$$

Estudia la convergencia de $\{x_n\}$.

Solución. a) En virtud del teorema del valor medio tenemos que:

$$\frac{e^x - e^0}{x - 0} = \frac{e^x - 1}{x} = e^c$$

donde c es un punto comprendido entre x y 0, esto es, $c \in]0, x[$ si x > 0, y $c \in]x, 0[$ si x < 0. En el primer caso es $1 < e^c < e^x$ y en el segundo es $e^x < e^c < 1$. Á partir de aquí se deducen enseguida las desigualdades del enunciado.

- b) Definamos $f(x) = \log \frac{e^x 1}{x}$ y f(0) = 0. La función f es continua en \mathbb{R} . Supongamos que x < 0. Entonces, como consecuencia de la segunda de las desigualdades del apartado anterior, se tiene que la sucesión $\{x_n\}$ es creciente y $x_n < 0$ para todo $n \in \mathbb{N}$. Por tanto, dicha sucesión converge y su límite es un número $\alpha \le 0$, que debe verificar la igualdad $\alpha = f(\alpha)$ lo que exige que $\alpha = 0$.
- 26. Se considera la función $f: \mathbb{R}^+ \to \mathbb{R}$ definida para todo x > 0 por $f(x) = \log x x + 2$.
 - a) Prueba que f tiene exactamente dos ceros, α y β , con α < 1 < β .
 - b) Dado $x_1 \in]\alpha, \beta[$, se define la siguiente sucesión por recurrencia:

$$x_{n+1} = \log x_n + 2$$
, $\forall n \in \mathbb{N}$.

Prueba que $\{x_n\}$ es una sucesión monótona creciente y acotada que converge a β .

Solución. a) Como $\lim_{x\to 0} f(x) = \lim_{x\to +\infty} f(x) = -\infty$ y f(1) = 1 > 0 y, evidentemente, la función f es continua en \mathbb{R}^+ , podemos aplicar el teorema de Bolzano a los intervalos]0,1] y $[1,+\infty[$, para deducir que f tiene algún cero en cada uno de ellos.

Como $f'(x) = \frac{1}{x} - 1 = \frac{1-x}{x}$, se sigue que f es estrictamente decreciente en $[1, +\infty[$ y estrictamente creciente en [0, 1]. Por tanto solamente puede anularse una vez en dichos intervalos.

b) Como la función $h(x) = \log x + 2$ es estrictamente creciente para x > 0 y $h(\alpha) = \alpha$, $h(\beta) = \beta$, se deduce que para todo $x \in]\alpha$, $\beta[$ es $\alpha < h(x) < \beta$. Además, como h(x) - x es continua y no se anula en $]\alpha$, $\beta[$ debe tener signo constante. Como h(1) > 0, deducimos que x < h(x) para todo $x \in]\alpha$, $\beta[$. Por tanto, dado $x_1 \in]\alpha$, $\beta[$, se tiene que $x_1 < h(x_1) = x_2$ y, supuesto que $x_{n-1} < x_n$ se tiene que $x_n = h(x_{n-1}) < h(x_n) = x_{n+1}$. Por tanto $\{x_n\}$ es una sucesión estrictamente creciente y, además, todos sus términos están en $]\alpha$, $\beta[$, luego dicha sucesión converge y su límite, λ , debe verificar la igualdad $\lambda = h(\lambda)$; puesto que $\alpha < \lambda \le \beta$, se sigue que $\lambda = \beta$.

- 27. Dado un número $\alpha \in]0, \pi[$, se define la sucesión $\{x_n\}$ dada por $x_1 = \operatorname{sen} \alpha, x_{n+1} = \operatorname{sen} x_n$.
 - (a) Justifica que la sucesión $\{x_n\}$ es convergente y calcula su límite.

(b) Calcula el límite de la sucesión
$$z_n = \frac{1}{x_{n+1}^2} - \frac{1}{x_n^2}$$

Solución. a) La conocida desigualdad 0 < sen x < x, válida para todo $x \in]0, \pi[$, implica que la sucesión es estrictamente decreciente y de números positivos. De aquí se deduce enseguida que es convergente y su límite es 0.

b)

$$z_n = \frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} = \frac{1}{\sin^2(x_n)} - \frac{1}{x_n^2} = \frac{x_n^2 - \sin^2(x_n)}{x_n^2 \sin^2(x_n)} \sim \frac{x_n^2 - \sin^2(x_n)}{x_n^4} = \frac{\sin(x_n) + x_n}{x_n} \frac{x_n - \sin(x_n)}{x_n^3} \to \frac{1}{3}.$$

28. Calcula el límite de la sucesión $z_n = n \left(\sqrt[n]{2} \left(\cos \frac{\pi}{2n} + i \operatorname{sen} \frac{\pi}{2n} \right) - 1 \right)$.

Sugerencia. Recuerda que el límite de la sucesión $n(\sqrt[n]{2}-1)$ es bien conocido.

Solución.

$$z_{n} = n \left(\sqrt[n]{2} \left(\cos \frac{\pi}{2n} - 1 \right) + i \sqrt[n]{2} \sin \frac{\pi}{2n} + \sqrt[n]{2} - 1 \right) =$$

$$= n \left(\sqrt[n]{2} - 1 \right) + \sqrt[n]{2} \frac{\pi}{2} \frac{\cos \left(\frac{\pi}{2n} \right) - 1}{\frac{\pi}{2n}} + i \sqrt[n]{2} \frac{\pi}{2} \frac{\sin \left(\frac{\pi}{2n} \right)}{\frac{\pi}{2n}} \to \log 2 + i \frac{\pi}{2}$$

29. Sea $z \in \mathbb{C}$, con |z| = 1, $z \neq 1$. Prueba que la sucesión $\{z^n\}$ no converge (¿qué pasa si supones que converge?). Deduce que si φ es un número real que no es un múltiplo entero de π , las sucesiones $\{\cos(n\varphi)\}$ y $\{\sin(n\varphi)\}$ no convergen.

Solución. Siguiendo la sugerencia, supongamos que $\{z^n\}$ converge a un número $w \in \mathbb{C}$. Como $|z^n| = |z|^n = 1$, debe ser |w| = 1. Por una parte, es claro que $\{z^{n+1}\} \to w$ y también $\{z^{n+1}\} = z\{z^n\} \to zw$, por tanto debe ser z = wz, lo que implica que (z-1)w = 0 lo cual es imposible porque $z \neq 1$ y $w \neq 0$. Concluimos que $\{z_n\}$ no converge.

Sea φ un número real que no es un múltiplo entero de π . Pongamos $z = \cos \varphi + i \sec \varphi$. Tenemos que $z \neq 1$ y |z| = 1. Por lo antes visto, la sucesión $\{z^n\} = \{\cos(n\varphi) + i \sec(n\varphi)\}$ no converge. Veamos que esto implica que ninguna de las sucesiones $\{\cos(n\varphi)\}$, $\{\sin(n\varphi)\}$ converge.

En efecto, de la igualdad:

$$\operatorname{sen}((n+1)\varphi) = \operatorname{sen}(n\varphi)\cos\varphi + \cos(n\varphi)\sin\varphi \Longrightarrow \cos(n\varphi) = \frac{1}{\operatorname{sen}\varphi} \left(\operatorname{sen}((n+1)\varphi) - \operatorname{sen}(n\varphi)\cos\varphi\right)$$

se deduce que si $\{sen(n\varphi)\}$ converge, también converge $\{cos(n\varphi)\}$ y, por tanto, la sucesión $\{cos(n\varphi) + i sen(n\varphi)\}$ converge, lo que es contradictorio.

Análogamente, de la igualdad:

$$\cos((n+1)\varphi) = \cos(n\varphi)\cos\varphi - \sin(n\varphi)\sin\varphi \Longrightarrow \sin(n\varphi) = \frac{1}{\sin\varphi} \left(\cos((n+1)\varphi) - \cos(n\varphi)\cos\varphi\right)$$

se deduce que si $\{\cos(n\varphi)\}$ converge, también converge $\{\sin(n\varphi)\}$ y, por tanto, la sucesión $\{\cos(n\varphi) + i \sin(n\varphi)\}$ converge, lo que es contradictorio.

(:)