构造格点计数模型 证明一类组合等式

黄俊峰 袁方程

湖北省大冶市第一中学,435100)

利用构造法证明组合等式,可以说是智者见智、仁者见仁,新思路、新方法层出不穷.这些方法构思新颖,从不同角度挖掘组合等式的内涵.本文将利用格点的有关知识给出组合等式的又一证明方法,望能给同学们提供一新思路.

在平面直角坐标系 本〇У(如图 1)中,坐标为非负整数的点构成一个个边长为 1个单位小方格,从点 (0 0)开始,每步只走 1个单位,且每步只能选择沿 袖或 轴正方向,最终到达点 (艸 n). 我们把按这样规定所经过的路线称为点 (0 0)到点 (艸 n)的递增路径,以下简称路径. 如图中已给出了一条点 (0 0)到点 (艸 n)的路径. 显然,由组合知识可得下面的基本结论:

结论 点 (0, 0) 到点 (a, b) 的路径数为 C_{a+b}

证明 点(0,0)到点(a,b)的路径,需水平方向前进 步,沿垂直方向前进 步,从这 a 十 b 步,任取 步沿水平方向,其中 b 步沿垂直方向,这样的取法共有 (a,b)的一条路径,反对应着点(0,0)到点(a,b)的一条路径,反之,一条路径也对应着一种取法.故点(0,0)到点(a,b)的路径数为 (a,b)的路径数为 (a,b)

进一步有点 (n, n) 到点 (a, b) (其中 a> m, b> n) 的路径数为 (a, b, m, a, b)

下面用以上结论给出几个组合等式的证明.

证明 点 (0,0)到点 (a,b)的路径数为 C_{+}^{a} ,点 (0,0)到点 (a,b)的路径数为 C_{+}^{b} ,又由对称性知:点 (0,0)到点 (a,b)的路径数与点 (0,0)到点 (a,b)的路径数相等.故 $C_{+,b}^{a}$ = $C_{+,b}^{b}$.

例 2 求证:
$$C_{a+b}^a = C_{a+b-1}^{a-1} + C_{a+b-1}^a$$
.

证明 如图 2 现考查点 (Q 0) 到点 (a b) 的路径:

一方面,点(0,0)到(a,b)的路径数为 C^a_{a+b}

另一方面,点(0 0)到点(a b)的路径可分解为点(0 0)经点(a-1, b)再到(a b)和点(0 0)经点(a b-1)再到(a b)两种情形.显然由图可看出,点(0 0)经点(a-1, b)再到(a b)的路径数与点(0 0)到点(a-1, b)的路径数相等;点(0 0)经(a b-1)再到(a b)的路径数与点(0 0)到点(a b-1)的路径数相等,它们分别为 C+1 和 C+

 $C_{a+b-1}^{a-1} + C_{a+b-1}^{a}$

这一等式的简化形式为 $C_n^n = C_{n-1}^{n-1} + C_{n-1}^n$. 例 3 求证:

$$C^r_{n_+r_{+1}} = C_n + C_{n_{+1}} + \cdots + C_{n_{+n}}$$

证明 如图 3 点 (0,0)到点 $(,r)^n+1)$ 的路径数可分解为所有从点 (,i0)垂直开始到点 $(,r)^n+1)$ 的路径数之和 (其中 i=0 1,2 \cdots , n, 而显然从点 (,i0)垂直开始到点 $(,r)^n+1)$ 的路径数与点 (,i1)到点 $(,r)^n+1)$ 的路径数相等 (其中 i=0 1,2 \cdots , n, 点 (0,0)到点 $(,r)^n+1)$ 的路径数为 C_{n+1} , 点 (,i1)到点 $(,r)^n+1)$ 的路径数为 C_{n+1} , 点 (,i1)到点 $(,r)^n+1)$ 的路径数为 C_{n+1} , 点 (,i1)到点 $(,r)^n+1$

综上所述, $C_{h+r_1} = C_h + C_{h+1} + \dots + C_{h+r_n}$ 例 4 求证: $C_{h+1}^{r+1} = C_r + C_{h+1}^r + \dots + C_h$ 证明 如图 4点(00)到点(r+1, $n-r_n$)的路径可分解为所有从点(00)出发经点(r),再水平开始到点(r+1, $n-r_n$)的路径之和(其中 i=01,2 ……, $n-r_n$,而显然,从点(00)出发经点(r),再水平开始到点(r+1, $n-r_n$)的路径数与点(00)到点(r)的路径数相等(其中 i=01,2 …, $n-r_n$)。

而点 (0,0)到点 (+1, n-1)的路径数为 C_{n+1}^{n+1} ; 点 (0,0)到点 (-1,0)的路径数为 C_{n+1}^{n+1} ; 其中 $:= 0,1,2,\cdots,n-1$.

综上所述,有 $C_{h+1}^{-1}=C_f+C_{h+1}+\dots+C_h$. 例 5 求证: $C_n+C_n+C_n+\dots+C_n=2^n$. 证明 所有从 $(0\ 0)$ 点开始的 n步路径

证明 所有从 $(0\ 0)$ 点开始的 n步路径一定终止在某个点 $(k\ n-k)$ (其中 $k=0\ 1$ 2 …, n), 点 $(0\ 0)$ 到点 $(k\ n-k)$ 的路径数为 C_n^* (其中 $k=0\ 1, 2$ …, n).

另一方面, n 步路径中的每一步都有垂直、水平两种选择,故按乘法规则共有 n 种法.

综上所述、
$$C_n + C_n + C_n + C_n + \cdots + C_n^n = 2^n$$
.
例 6 求证: $C_{m+n}^r = C_m^r C_n + C_m^{r-1} + C_m^r C_n^{r-2} + \cdots + C_m^r C_n^{r-2}$.

证明 如图 5 一方面,点(0 0)到点($^{\rm m}$ + $^{\rm n}$ -, $^{\rm r}$, $^{\rm n}$)的路径可分解为所有从点(0 0)出发经点($^{\rm m}$ - $^{\rm k}$, $^{\rm k}$)再到点($^{\rm m}$ + $^{\rm n}$ -, $^{\rm r}$, $^{\rm n}$)的路径之和(其中 $^{\rm k}$ = 0 1,2 ..., $^{\rm r}$).

点 (0,0) 到点 (m-k) 的 的路径数为 C_m^{m-k} 也即 C_n^{k} 点 (m-k) 到点 (m+n-r) 的路径数为 C_n^{n-k-r} 也即 C_n^{-k} 因此从点 (0,0) 出发经点 (m-k) 的再到点 (m+n-r) 的路径数为 C_m^{k} (其中 $k=0,1,2,\cdots$, 5. 故点 (0,0) 到点 (m+n-r) 的路径数为 C_n^{k} C_n^{-k}

另一方面,点(0,0)到点(m+n-,r)的路径数为 C_{m+n}

综上所述, $C_{m+n}^r = C_m^r C_n^r + C_m^r C_n^{r-1} + C_m^r C_n^{r-2} + \dots + C_m^r C_n^r$