TD1

1 Opérations de symétrie

Il est possible de les lister, et une fois que l'on connaît le groupe de symétrie, il est aussi possible de « tricher » en regardant la table de caractères.

1.1 H₂O

Voir en 3D sur symotter

Déterminons le groupe de symétrie : il y a une opération C_2 et un plan σ_v , il s'agit donc du groupe C_{2v} dont la table est la suivante :

C_{2v}	Е	C ₂	$\sigma_{\rm v}$	$\sigma_{ m d}$	< R >		<d></d>
A_1	1	1	1	1	•••	Т	ТТ
A_2	1	1	-1	-1	Т		.T
B_1	1	-1	1	-1	.Т.	Т	T
B_2	1	-1	-1	1	T	.Т.	Т.

Tableau 1 – Table du groupe C_{2v}

Il y a donc l'opération identité, un axe C_2 , un plan σ_v et un plan σ_d .

Figure 1 – Éléments de symétrie pour la molécule d'eau.

1.2 NH₃

Voir en 3D sur symotter Idem : Opération E, C_3 et σ_v .

C _{3v}	Е	2 C ₃	3 σ _v	< R >		<d></d>
A_1	1	1	1	•••	Т	Т
A_2	1	1	-1	Т		••••
E	2	-1	0	TT.	TT.	TTTT.

Tableau 2 – Table du groupe C_{3v}

Figure 2 – Éléments de symétrie pour l'ammoniac.

1.3 CH₂Cl₂

C'est la même chose que pour la molécule d'eau : groupe $C_{2\nu}$

Figure 3 – Éléments de symétrie pour le dichlorométhane.

1.4 CH₄

Groupe T_d Voir sur symotter

T_d	Е	8 C ₃	3 C ₂	6 S ₄	$6 \sigma_d$	< R >	>	<d></d>
A_1	1	1	1	1	1			••••
A_2	1	1	1	-1	-1			••••
E	2	-1	2	0	0			TT
T_1	3	0	-1	1	-1	TTT		••••
T_2	3	0	-1	-1	1		TTT	TTT

Tableau 3 – Table du groupe C_{3v}

Figure 4 – Éléments de symétrie pour le méthane.

 $\begin{tabular}{ll} \textbf{1.5} & SF_6 \\ & Groupe O_h \begin{tabular}{ll} For each of the context o$

Oh	Е	8 C ₃	3 C ₂	6 C ₄	6 C' ₂	i	8 S6	$3 \sigma_h$	6 S4	$6 \sigma_d$	< R >		<-d>
A_{1g}	1	1	1	1	1	1	1	1	1	1	•••		
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1			••••
E_{g}	2	-1	2	0	0	2	-1	2	0	0			TT
T_{1g}	3	0	-1	1	-1	3	0	-1	1	-1	TTT		••••
T_{2g}	3	0	-1	-1	1	3	0	-1	-1	1			TTT
A_{lu}	1	1	1	1	1	-1	-1	-1	-1	-1			••••
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1			••••
$E_{\mathbf{u}}$	2	-1	2	0	0	-2	1	-2	0	0			••••
T_{1u}	3	0	-1	1	-1	-3	0	1	-1	1		TTT	••••
T_{2u}	3	0	-1	-1	1	-3	0	1	1	-1	•••	•••	

Tableau 4 – Table du groupe O_h

Figure 5 – Éléments de symétrie pour l'hexafluorure de soufre.

1.6 N₂

Groupe $D_{\infty h}$

T 40 .4 Character table § 16 –4, p. 7

$\overline{\mathbf{D}_{\infty h}}$	E	$2C_{\infty}(\phi)$	C_2	$\infty \sigma_v(\varphi)$	σ_h	$2S_{\infty}(\phi)$	i	$\infty C_2'(\varphi + \frac{\pi}{2})$	τ
$\overline{A_{1g} (\Sigma_g^+)}$	1	1	1	1	1	1	1	1	a
$A_{2g} \left(\Sigma_g^- \right)$	1	1	1	-1	1	1	1	-1	a
$E_{1g} (\Pi_g)$	2	$2\cos\phi$	-2	0	-2	$-2\cos\phi$	2	0	a
$E_{2g} (\Delta_g)$	2	$2\cos 2\phi$	2	0	2	$2\cos 2\phi$	2	0	a
$E_{3g} (\Phi_g)$	2	$2\cos 3\phi$	-2	0	-2	$-2\cos 3\phi$	2	0	a
$E_{n,g}$	2	$2\cos n\phi$	$2(-1)^n$	0	$2(-1)^n$	$2(-1)^n \cos n\phi$	2	0	a
$A_{1u} \ (\Sigma_u^+)$	1	1	1	1	-1	-1	-1	-1	a
$A_{2u} (\Sigma_u^-)$	1	1	1	-1	-1	-1	-1	1	a
$E_{1u} (\Pi_u)$	2	$2\cos\phi$	-2	0	2	$2\cos\phi$	-2	0	a
$E_{2u} (\Delta_u)$	2	$2\cos 2\phi$	2	0	-2	$-2\cos 2\phi$	-2	0	a
$E_{3u} (\Phi_u)$	2	$2\cos 3\phi$	-2	0	2	$2\cos 3\phi$	-2	0	a
$E_{n,u}$	2	$2\cos n\phi$	$2(-1)^n$	0	$-2(-1)^n$	$-2(-1)^n\cos n\phi$	-2	0	a
$E_{1/2,g}$	2	$2\cos\frac{1}{2}\phi$	0	0	0	$2\sin\frac{1}{2}\phi$	2	0	c
$E_{3/2,g}$	2	$2\cos\frac{3}{2}\phi$	0	0	0	$2\sin\frac{3}{2}\phi$	2	0	c
$E_{5/2,g}$	2	$2\cos\frac{5}{2}\phi$	0	0	0	$2\sin\frac{5}{2}\phi$	2	0	c
$E_{7/2,g}$	2	$2\cos\frac{7}{2}\phi$	0	0	0	$2\sin\frac{7}{2}\phi$	2	0	c
$E_{n+1/2,g}$	2	$2\cos(n+\frac{1}{2})\phi$	0	0	0	$2\sin(n+\frac{1}{2})\phi$	2	0	c
$E_{1/2,u}$	2	$2\cos\frac{1}{2}\phi$	0	0	0	$-2\sin\frac{1}{2}\phi$	-2	0	c
$E_{3/2,u}$	2	$2\cos\frac{3}{2}\phi$	0	0	0	$-2\sin\frac{3}{2}\phi$	-2	0	c
$E_{5/2,u}$	2	$2\cos\frac{5}{2}\phi$	0	0	0	$-2\sin\frac{5}{2}\phi$	-2	0	c
$E_{7/2,u}$	2	$2\cos\frac{7}{2}\phi$	0	0	0	$-2\sin\frac{7}{2}\phi$	-2	0	c
$E_{n+1/2,u}$	2	$2\cos(n+\frac{1}{2})\phi$	0	0	0	$-2\sin(n+\frac{1}{2})\phi$	-2	0	c

 $0 < \phi < \pi, \qquad 0 \le \varphi < \pi, \qquad n = 4, 5, 6, \dots$

Figure 6 – Table du groupe $D_{\infty h}$

Figure 7 – Éléments de symétrie pour le diazote.

2 Tables de multiplication

2.1 Unicité dans chaque ligne/colonne des tables de multiplication

On prend un groupe muni de l'opération E et de quatre opérations A,B,C,D telles que :

$$AB = CB = D \tag{1}$$

avec $A \neq C$, alors en multipliant à droite par B^{-1} :

$$A = C = DB^{-1} \tag{2}$$

Ce qui est contraire à l'hypothèse de départ.

2.2 NH₃

Il y a deux méthodes possibles:

- 1. Regarder l'effet de chaque opération sur les coordonnées de la molécule. Puis appliquer tous les produits d'opération $A \times B$ sur les coordonnées pour voir quel est l'opération C qui a le même effet sur les coordonnées.
- 2. Ou plus directement : écrire les matrices correspondant à chacune des opérations, faire les produits de matrice $A \times B$ et regarder quelle opération C a la même matrice que le produit.

La première méthode est plus facile à appliquer mentalement mais plus longue, la deuxième est plus directe mais demande plus de réflexion initiale pour être sûr d'avoir les bonnes matrices pour chaque opération.

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad C_3^1 = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad C_3^2 = \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) & 0 \\ \sin(2\theta) & \cos(2\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(3)

$$\sigma^{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \sigma^{2} = C_{3}^{1} \times \sigma^{1} \times (C_{3})^{-1} = \begin{pmatrix} \cos(2\theta) & \sin(2\theta) & 0 \\ \sin(2\theta) & -\cos(2\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(4)

$$\sigma^{3} = C_{3}^{2} \times \sigma^{1} \times (C_{3}^{2})^{-1} = \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0\\ \sin(\theta) & -\cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$
 (5)

La matrice de NH₃ est de la forme :

$$M_{\text{NH}_3} = \begin{pmatrix} 0 & 1 & \cos(\theta) & \cos(2\theta) \\ 0 & 0 & \sin(\theta) & \sin(2\theta) \\ 0 & -1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & \cos(\theta) & \cos(\theta) \\ 0 & 0 & \sin(\theta) & -\sin(\theta) \\ 0 & -1 & -1 & -1 \end{pmatrix}$$
(6)

Pour le produit $\sigma^2 \times \sigma^1$:

Méthode nº 1

$$\sigma^{2} \times \sigma^{1} \times M_{\text{NH}_{3}} = \sigma^{2} \times \begin{pmatrix} 0 & 1 & \cos(\theta) & \cos(\theta) \\ 0 & 0 & -\sin(\theta) & \sin(\theta) \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \cos(2\theta) & \cos(\theta)\cos(2\theta) - \sin(\theta)\sin(2\theta) & \cos(\theta)\cos(2\theta) + \sin(\theta)\sin(2\theta) \\ 0 & \sin(2\theta) & \cos(\theta)\sin(2\theta) + \sin(\theta)\cos(2\theta) & \cos(\theta)\sin(2\theta) - \sin(\theta)\cos(2\theta) \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \cos(2\theta) & \cos(3\theta) & \cos(-\theta) \\ 0 & \sin(2\theta) & \sin(3\theta) & \sin(\theta) \\ 0 & -1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & \cos(2\theta) & 1 & \cos(\theta) \\ 0 & \sin(2\theta) & 0 & \sin(\theta) \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$(9)$$

Il faut chercher l'opération qui donne la même matrice finale :

$$C_3^2 \times M_{\text{NH}_3} = \begin{pmatrix} 0 & \cos(2\theta) & 1 & \cos(\theta) \\ 0 & \sin(2\theta) & 0 & \sin(\theta) \\ 0 & -1 & -1 & -1 \end{pmatrix}$$
 (10)

Ce qui permet de conclure sur le fait que $\sigma^2\times\sigma^1=C_3^2$

Figure 8 – Méthode nº 1 : Table de multiplication les chiffres en noir sont le résultat obtenu après la première opération (colonne) les chiffre colorés sont ceux obtenus après la deuxième opération (lignes).

Cette méthode ne marche pas systématiquement. Si tous les atomes de la molécules sont placés sur des éléments de symétrie particuliers, alors il peut y avoir des confusions : par exemple, pour l'éthylène dans le groupe D_{2h} .

Méthode nº 2 Il n'y a qu'à faire le produit des matrices concernées.

$$\sigma^{2} \times \sigma^{1} = \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) & 0\\ \sin(2\theta) & \cos(2\theta) & 0\\ 0 & 0 & 1 \end{pmatrix} = C_{3}^{2}$$
(11)

Méthode nº 3 On peut prendre un point quelconque de l'espace et regarder l'action des opérateurs sur chaque composante. Cela revient à faire la multiplication :

$$XV = V'$$
 avec $V = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ (12)

et regarder ensuite pour les produits d'opérateurs :

$$X_1 X_2 V = V" \tag{13}$$

et regarder quel opérateur X respecte le fait que V' = V".

Par exemple:

$$\sigma_{1} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -y \\ z \end{pmatrix} \qquad \sigma_{2} \sigma_{1} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \cos(2\theta) - y \sin(2\theta) \\ x \sin(2\theta) + y \cos(2\theta) \\ z \end{pmatrix}$$

$$C_{3}^{2} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \cos(2\theta) - y \sin(2\theta) \\ x \sin(2\theta) + y \cos(2\theta) \\ x \sin(2\theta) + y \cos(2\theta) \\ z \end{pmatrix}$$

$$(14)$$

$$C_3^2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x\cos(2\theta) - y\sin(2\theta) \\ x\sin(2\theta) + y\cos(2\theta) \\ z \end{pmatrix}$$
(15)

Cette méthode est très formelle sur papier, mais pour les personnes ayant une bonne vision dans l'espace, ça se fait sans aucun calcul.

C _{3v}	Е	C_3^1	C_{3}^{2}	σ_{v}^{1}	σ_{v}^{2}	σ_{v}^{3}
$C_3^1 \\ C_3^2 \\ \sigma_v^1$	$\begin{array}{c} C_{3}^{1} \\ C_{3}^{2} \\ \sigma_{v}^{1} \\ \sigma_{v}^{2} \end{array}$	C_3^2 E σ_v^2 σ_v^3	C_{3}^{2} E C_{3}^{1} σ_{v}^{3} σ_{v}^{1} σ_{v}^{2}	σ_v^3 σ_v^2 E C_3^2	σ_v^1 σ_v^3 C_3^1 E	σ_v^2 σ_v^1 C_3^2 C_3

Tableau 5 – Table de multiplication du groupe C_{3v}.

https://github.com/MartinVerot/pyTh-a-Gr/blob/master/TD1/python/MultiplyNH3-2. py applique les deux méthodes.

2.3 H₂O

C_{2v}	Е	C_2	$\sigma_{y}(xz)$	$\sigma_{x}(yz)$
Е	E	C_2	σ_{y}	σ_{x}
C_2	C_2	E	σ_{x}	σ_{y}
$\sigma_{y}(xz)$	σ_{y}	$\sigma_{x} \\$	E	C_2
$\sigma_{x}(yz)$	$\sigma_{\scriptscriptstyle X}$	σ_{y}	C_2	E

Tableau 6 – Table de multiplication de C_{2v}

3 Non commutativité

On peut voir dans le tableau 5 que le produit $\sigma_v^2 \times C_3^1 = \sigma_v^2$ alors que $C_3^1 \times \sigma_v^2 = \sigma_v^1$ (la matrice n'est pas symétrique)

4 Groupes ponctuels de symétrie

$\textbf{4.1} \quad C_2H_2Cl_2$

 $trans/E\ C_{2h}: \texttt{https://www.chemtube3d.com/sym-c2htrans-12-dichloroethylene/cis/Z\ C_{2v}}$

4.2 Éthane

éclipsé D_{3h} : https://www.chemtube3d.com/symethaneecld3h/décalé D_{3d} : Voir sur symotter intermédiaire D_3

4.3 ferrocène D_{5h} , D_{5d}

éclipsé : $D_{5h} \, \mbox{Voir sur symotter}$, décalé : $D_{5d} \, \mbox{Voir sur symotter}$

4.4 PCl₅

Voir sur symotter

Figure 9 – $PCl5 : D_{3h}$

4.5 Allène

Voir sur symotter

Figure 10 - Allène: D_{2d}

4.6 H₂O₂

 C_2 Voir sur symotter trans/E C_{2h} cis/Z C_{2v}

4.7 CH₄

T_d (cf ci-dessus) Voir sur symotter

4.8 CH₃D

C_{3v} Voir sur symotter

4.9 CH₂D₂

 C_{2v}

4.10 cyclohexane chaise D_{3d}

Voir sur symotter

5 Classes

Il suffit de regarder les tables des caractères, où les opérations de symétries sont déjà regroupées en classes de symétrie.

Sinon, on peut utiliser la définition d'une classe de symétrie (ensemble des opérations de symétries conjuguées entre elles, sachant que les opérations de symétries R et P sont dites conjuguées ssi on $R = X^{-1}PX$ pour une opération de symétrie X du groupe), ou on peut inspecter les tables de multiplication. Mais ça devient rapidement fastidieux...

5.1 NH₃

On regarde le tableau : E, 2 C_3 , 3 σ_v .

Le script https://github.com/MartinVerot/pyTh-a-Gr/blob/master/TD1/python/Classes-NH3.py fait le calcul pour déterminer les classes associées à chaque opérateur.

5.2 CH₄

On regarde le tableau : E,8 C_3 ,3 C_2 ,6 S_4 ,6 σ_d

Le script https://github.com/MartinVerot/pyTh-a-Gr/blob/master/TD1/python/Classes-CH4.py fait le calcul pour déterminer les classes associées à chaque opérateur.

5.3 C_6H_6

On regarde le tableau : E, 2 C₆, 2 C₃, C₂, 3 C₂", i, 2 S₃, 2 S₆, σ_h , 3 σ_d , 3 σ_v