

-1 توان سیگنال و توان نویز در ورودی یک تقویت کننده به ترتیب -60dBm و -60dBm می باشد و توان سیگنال و توان نویز در خروجی تقویت کننده به ترتیب -40dBm و -40dBm می باشد. بهره و نویز فیگر این تقویت کننده را بدست آورید.

۲- برای مدار زیر ولتاژ نویز کلی در خروجی را به دست آورید.

 7 پارامتر های ادمیتانس یک تقویت کننده ترانزیستوری بصورت زیر داده شده است. پایداری تقویت کننده را بررسی کنید. اگر به منظور بهبود پایداری شبکه از یک خازن $^{6.5}$ (بصورت سری) در شبکه فیدبک استفاده کنیم، در صورتی که تقویت کننده در فرکانس 100 MHz کار کند، پایداری را بررسی کنید.

$$Y_i = 2.7 + j6.6 \text{ mW}$$

 $Y_0 = 0.1 + j1.5 \text{ mW}$
 $Y_r = -j0.5 \text{ mW}$
 $Y_f = 53 - j22 \text{ mW}$

جه در تقویت کننده شکل زیر، ادمیتانس منبع را برای داشتن بهره $G_T=16~dB$ و کمترین عدد نویز ممکن -۴ تعیین کنید. سپس مدار تطبیق ورودی را با دو عنصر راکتیو برای این شرایط طراحی کنید. فرکانس کاری $R_S=50~\Omega$ است.

در مدار شکل زیر فرکانس و دامنه ولتاژ $v_o(t)$ را بیابید.

$$\langle I_S = 3 \times 10^{-30} \; mA \; . \; R_2 = 100 k \Omega \; . \; C_2 = 0.04 \; \mu F \; . \; C_1 = 200 \; pF \; . \; M_{12} = 25 \mu H \; . \; L_2 = 250 \mu H \; . \; L_1 = 10 \mu H \rangle$$

($\omega_{s}=9 imes10^{7}$) را به دست آورید. ($v_{o}(t)$ نشان داده شده در شکل زیر، ($v_{o}(t)$ را به دست آورید.

