Eti Zusammenfassung

Rebeca Stuber, Jasmin Lienhard & Fabio Oesch

5. Semester (HS 2014)

In halts verzeichn is

1 Endliche Automaten

1	Enc	lliche Automaten	1	M = {0,1}
		1.0.1 Notation	2	
	1.1	Satz 1	2	
	1.2	Nicht-deterministische, endliche Automaten (NFA) $\ \ldots \ \ldots \ \ldots$	3	
	1.3	DFA	3	Defi Fin and lighten Automat (deterministisch) ist ein 5 Tunel 4 (O. S. S. a. F.)
	1.4	NFA/ε	4	Def: Ein endlicher Automat (deterministisch) ist ein 5-Tupel $A=(Q,\Sigma,\delta,q_0,F)$
		1.4.1 ε -Hüllen der Zustände	4	Q Menge der Zustände
	1.5	Eigenschaften regulärer Sprachen	4	
		1.5.1 *- oder Kleene-Operation	4	Σ Alphabet
	1.6	Das Pumping-Lemma und der Satz von Myhill-Nerode	6	$\delta \ Q \times \Sigma \to Q$ Übergangsfunktion
		1.6.1 Pumping Lemma	6	
		1.6.2 Satz von Myhill-Nerode	6	q_0 Startzustand
	1.7	Minimierung endlicher Automaten (gilt nur für DFA)	7	
		1.7.1 Minimaler Automat	7	$F \subset Q$ akzeptierende Zustände
		1.7.2 Algorithmus zur Bestimmung der Äquivalezklassen von RL_A	7	Bsp: Sei $A = (Q, \Sigma, \delta, q_0, F)$
				mit $Q = \{q_0, q_1, q_2\}, \ \Sigma = \{0, 1\}, \ F = \{q_1\}$
				$egin{array}{ c c c c c c c c c c c c c c c c c c c$
2	Wei	iteres	7	$egin{array}{c c c} q_0 & q_1 & q_1 & q_2 & q_$
	2.1	Chomsky-Hierarchie	7	$q_2 \mid q_1 \mid q_2$

Antwortfunktion von A

 $r_A: \Sigma^* \to Q$

Bsp: $r_A(0,0,1,0) = q_2 \notin F \Rightarrow 0010 \notin L(A)$

 $L(A) = \{ \omega \in \Sigma^* \mid r_A(\omega) \in F \}$

1.0.1 Notation

Startzustand

akzept Zustand "gewöhnlicher" Zustand akzept. Startzustand

1.1 Satz 1

Vor: $A \in DFA$

Beh: L(A) ist regulär

Beweisidee:

$$Q_0 \qquad Q_1 \qquad Q_3 \qquad Q_4 \qquad Q_5 \qquad Q_5 \qquad Q_5 \qquad Q_6 \qquad Q_6 \qquad Q_7 \qquad Q_8 \qquad Q_8$$

$$\begin{split} \Sigma &= \{0,1\} \\ G &= (N,T,Q,S) \text{ regul\"{a}r mit } L(G) = L(A) \\ T &= \Sigma = \{a,b\} \\ N &= \{S = Sq_0, Sq_1, Sq_2, Sq_3\} \\ R &= \{Sq_0 \to aSq_1 \mid bSq_2, Sq1 \to aSq1 \mid bSq3, Sq2 \to aSq2 \mid bSq3, Sq3 \to aSq3 \mid bSq3 \mid a \mid b\} \end{split}$$

- 1. Zuordnung: Zustand \mapsto Nichtterminalsymbol
- 2. Jedem Pfeil im Diagramm ordnen wir eine oder zwei Regeln zu

(a)
$$q_i \stackrel{a}{\to} q_j \text{ mit } a_j \notin F$$

 $\Rightarrow Sq_i \to aSq_j$

(b)
$$q_i \stackrel{a}{\to} a_j \text{ mit } q_j \in F$$

 $Sq_i \to aSq_j$
 $Sq_i \to a$

Bsp:

- a) Das Wort aab akzeptieren. $q_0 \rightarrow q_1 \rightarrow q_1 \rightarrow q_3$
- b) Das Wort aab generieren. $Sq_0 \Rightarrow aSq_1 \Rightarrow aaSq_1 \Rightarrow aab$

1.2 Nicht-deterministische, endliche Automaten (NFA)

Bsp:

 $baa \notin L(A), aab \in L(A)$

0	a	6
q_0	$\{q_1\}$	Ø
q_1	$\{q_1\}$	$ \{q_2, q_3\}$
q_2	$\{q_2\}$	Ø
q_3	Ø	$\{q_4\}$

Satz: Vor. $A \in NFA$ Beh. $\exists B \in DFA : L(A) = L(B)$

 $\overline{F} = \{a_2, a_3\}, \{a_2\}, \{a_4\}$

Satz: Vor. $L \subset \Sigma^*$ regulär, Beh. $\exists A \in NFA : L(A) = L$

Beweis regulär
$$\Rightarrow \exists$$
 reguläre Grammatik $G = (N, T, R, S)$ mit $N = \{S, A, B, ...\}$, $T = \Sigma$, $R = \{...A \rightarrow aB, A \rightarrow a...\}$

- 1. Jedem Nichtterminalsymbol ordnen wir einen Zustand zu. z.B. $A\mapsto q_A$
- 2. Jeder Regel vom Typ $A \to aB$ ordnen wir einen Pfeil im Diagramm zu: $q_A \stackrel{a}{\to} q_B$
- 3. Wir fügen einen **neuen** akzeptierenden Zustand E zu Q hinzu und für jede Regel $A \to b$ ein Pfeil $q_A \stackrel{b}{\to} E$ $Q = \{q_S, q_A, q_B, \dots, E\}$

1.3 DFA

Bsp: $\Sigma = \{a, b\}, G = (N, T, R, S)$ mit $N = \{S, A\}, T = \Sigma, R = \{S \to aA, S \to a, A \to bA, A \to b\}$ $\mathbf{A} := (Q, \Sigma, \delta, q_S, F)$ $Q = \{q_S, q_A, E\}$ $F = \{E\}$

Def. Zwei endliche Automaten A und B heisen **äquivalent**: $\Leftrightarrow L(A) = L(B)$

1.4 NFA/ ε

1.4.1 ε -Hüllen der Zustände

$$\begin{split} [q]_{\varepsilon}^* &:= \{r \in Q \mid q \xrightarrow{\varepsilon^*} r\} \\ \mathbf{Bsp \ anhand \ Bild \ 9} \\ [q_0]_{\varepsilon}^* &= \{q_0\}, \ [q_1]_{\varepsilon}^* = \{q_1, q_2, q_3\}, \ [q_2]_{\varepsilon}^* = \{q_2, q_3\}, \ [q_3]_{\varepsilon}^* = \{q_3\} \end{split}$$

NFA

$$B = (\overline{Q}, \Sigma, \overline{\delta}, \overline{q_0}, \overline{F})$$

$$\overline{\delta}(q, a) = \bigcup_{r \in [q]_{\varepsilon}^*} \delta(r, a) \tag{1}$$

δ	a	b
$\overline{q_0}$	$\{q_1\}$	$\{q_2\}$
q_1	$\{q_2\}$	$\{q_1,q_3\}$
q_2	$\{q_2\}$	$\{q_1,q_3\}$
q_3	$\{q_2\}$	$\{q_3\}$
$\overline{F} =$	$\{q\in Q$	$ [q]_{\varepsilon}^* \cap F \neq \emptyset]$

1.5 Eigenschaften regulärer Sprachen

Sei Σ ein Alphabet

 $C \subset P(\Sigma^*)$ Menge von Sprachen

Frage: Führen Operationen auf den Elementen von C aus C heraus?

Bsp: von Operationen

$$\overline{L} := \Sigma * \backslash L$$

$$L_1 \cup L_2$$

$$L_1 \cap L_2$$

$$L_1 \cdot L_2 = \{\omega_1 \omega_2 | \omega_1 \in L_1, \omega_2 \in L_2\}$$

Bsp:
$$L_1 = \{0,1\}$$
, $L_2 = \{\varepsilon,1\} \Rightarrow L_1 \cdot L_2 = \{0\varepsilon,1\varepsilon,01,11\}$ Notation: $L^0 := \{\varepsilon\}$

$$L^1 := L$$

$$L^2 := L \cdot L$$
 (Konkatenation)

$$L^3 := L \cdot L^2 = L^2 \cdot L$$

1.5.1 *- oder Kleene-Operation

$$L^* := L^0 \cup L^1 \cup L^2 \cup L^3 \cup \dots$$

Bsp: $\Sigma = \{0,1\}, \ \Sigma^* = \{\varepsilon\} \cup \{0,1\} \cup \{00,01,10,11\} \cup \dots$ **Notation:** $Reg_{\Sigma} :=$

Menge der regulären Sprachen über Σ .

Satz: Vor. $L_1, L_2 \in Reg_{\Sigma}$

Beh. $\overline{L_1}, L_1 \cup L_2, L_1 \cap L_2, L_1 \cdot L_2, L_1^* \in Reg_{\Sigma}$

Bew.

1. $I_1 \in Reg_{\Sigma} \Rightarrow \exists A = (Q, \Sigma, \delta, q_0, F) \in DFA \text{ mit } L(A) = L$

$$\frac{L(A)}{L(A)} = \{1w, 01^*0\omega | \omega \in \Sigma^*\}$$

$$\frac{L(A)}{A} = \{01^*, \varepsilon\}$$

$$\frac{L(A)}{A} = \{0, \Sigma, \delta, \sigma_0, \overline{F} := O \setminus F\}$$

$$\overline{A} := (Q, \Sigma, \delta, q_0, \overline{F}) := Q \backslash F$$

 $L(\overline{A}) = I$

Achtung: Gilt nur für DFA's! Bsp:

2. $L_1 \cup L_2 \in Reg_{\Sigma}$

$$L(C) = L_1 \cup L_2$$

3. $L_1 \cap L_2 \in Reg_{\Sigma}$

1. Beweis De Morgan: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ Bsp:

4. $L_1 \cdot L_2 \in Reg_{\Sigma}$ $L_1 = \{01^+\}$ $L_2 = \{\varepsilon, 01, 11, 101\}$

1.6 Das Pumping-Lemma und der Satz von Myhill-Nerode

Frage: Wie zeigen wir, dass eine Sprache $L \notin Reg_{\Sigma}$? Gegeben: $L \in Reg_{\Sigma} \Rightarrow \exists A = (Q, \Sigma, \delta, q_0, F) \in DFA$ n := |Q| (Anzahl der Zustände)

1.6.1 Pumping Lemma

Vor. $L \in Reg_{\Sigma}$

Beh. $\exists n \in \mathbb{N}^* : \forall \omega \in L, |\omega| \geq n \exists x, y, z \in \Sigma^*$

xist Weg vom Anfangszustand zum wiederholenden Zustand, yist der Loop (vom wiederholenden zum wiederholenden Zustand), zder Weg vom wiederholenden Zustand zum akzeptierenden Zustand

- 1. $\omega = xyz$
- 2. $|y| \ge 1$
- $3. \mid xy \mid \leq n$
- 4. $\forall i \in \mathbb{N} : xy^iz \in L$

Bsp:

1.
$$\Sigma = \{0,1\}, L = \{0^k1^k \mid k \in \mathbb{N}^*\}$$

 $G = (N,T,R,S), N = \{S\}, T = \{0,1\}, R = \{S \to 01,S \to 0S1\}$ (kontext-frei) $\} = L(G) = L$

Annahme L ist regulär

 $\forall n \in \mathbb{N}^*$: Wählen wir ein Wort $\omega_n \in L$ mit $|\omega_n| \ge n$. $\omega_n = 0^n 1^n = \begin{vmatrix} 0 & \dots & 0 & | & 1 & \dots & 1 \\ \hline x & |y| & |z| > 3$. Bedingung: $y = 0 & \dots & 0 \ge 1 \end{vmatrix}$ ($|\omega_n| = 2n$)

Bedingung 4: $xyyz \in L$ geht nicht, da mindestens eine weitere 0 hinzugefügt wird.

 \Rightarrow Die Sprache ist kontextfrei den
n $xz \not\in L$

Bsp.
$$G^n_{arith} = (N, T, R, \langle arithmAusdruecke \rangle) // \langle AA \rangle$$

 $N = \{\langle AA \rangle, \langle Vor \rangle\}, T = \{(,), +, -, x_1, x_2, \dots, x_n\}$
 $R = \{\langle AA \rangle \rightarrow \langle Var \rangle, \langle Var \rangle \rightarrow x_1, \langle Var \rangle \rightarrow x_2, \dots, \langle Var \rangle \rightarrow x_n,$
 $\langle AA \rangle \rightarrow (\langle AA \rangle + \langle AA \rangle), \langle AA \rangle \rightarrow (\langle AA \rangle \cdot \langle AA \rangle)\}$
Augfaben:

1. Gegeben für Bsp für Wörter aus $L(G_{arith}^n)$ $x_1, x_2, x_n, (x_1 + x_2)$

2. Welcher Klasse gehört G_{arith}^n an. kontextfrei

3. In welchek Klasse liegt $L(G_{arith}^n)$ Es wird angenommen, dass die Sprache nicht regulär ist, da man Zählen muss, wieviele Klammern geöffnet worden sind.

Annahme:
$$L(G_{arith}^n) \in Reg$$

 $n \in \mathbb{N}^* \ \omega_n$
 $\omega_n = \underbrace{((((\dots (x_1 + x_2) \dots)))}_n$
Da $|xy| \le n \text{ und } y \ne \varepsilon \Rightarrow y = (^n | n \in \mathbb{N})$
 $\omega_n = xyz, \ \tilde{\omega} = xyyz \notin L(G_{arith}^n)$

Falls man Zählen muss ist die Sprache mit grosser Wahrscheinlichkeit keine reguläre Sprache. Zählen bedeutet zum Beispiel, dass bei 0^n1^n man die Nullen zählen muss da es genau gleich viele Einsen haben muss.

Bsp.
$$\Sigma = \{0, 1\}$$

 $L = \{\omega \in \Sigma^* \mid \omega \text{ endet auf } 00\}$
Erste Frage: Was sind die Äquivalezklassen? $R_L = [\varepsilon], [0], [00], \Sigma^* = [\varepsilon] \cup [0] \cup [00]$
 $A = (Q, \Sigma, \delta, q_0, F), Q = \{[\varepsilon], [0], [00]\}, q_0 := [\varepsilon], F := \{[00]\}, \delta([\omega], a) := [\omega a]$

1.6.2 Satz von Myhill-Nerode

Anzahl der Äquivalezklassen wird definiert durch $ind(R) := |\{[x] \mid x \in M\}|$ Satz 2.33 (Myhill-Nerode) Es sei $L \subset \Sigma^*$ eine Sprache. L ist genau dann regulär, wenn $ind(R_L) < \infty$

1.7 Minimierung endlicher Automaten (gilt nur für DFA) $A \in DFA$

Problem: Gegeben: $A = (Q, \Sigma, \delta, q_0, F)$ mit L(A) = L

Gesucht: Minimaler DFA, der L akzeptiert.

Notation: Sei $q \in Q$

$$L(A,q) := \{ \omega \in \Sigma^* \mid r_A(q,\omega) \in F \}$$

Bsp. $L(A, q_0) = L(A)$

Wir führen auf Q eine Relation RL_A ein:

Seien $q_l, q_i \in Q$

$$(q_l, q_j) \in RL_A :\Leftrightarrow L(A, q_i) = L(A, q_j)$$

Bem. RL_A ist eine Äquivalenzrelation

1.7.1 Minimaler Automat

- 1. Elimination von aus q_0 nicht erreichbaren Zuständen
- 2. Bestimmen der Äquivalezklassen von RL_A
- 3. $A_{Min} = (\bar{Q}, \Sigma, \bar{\delta}, \bar{q_0}, \bar{F})$ mit $\bar{Q} := \{[q] \mid q \in Q\}, \ \bar{q_0} := [q_0], \ \bar{F} := \{[q] \mid q \in F\}, \ \bar{\delta} := [\delta(q, a)]$

1.7.2 Algorithmus zur Bestimmung der Äquivalezklassen von RL_A

- 1. $\forall q_i, q_j \in Q \text{ mit } q_i \in Q \backslash F \text{ und } a_j \in F \Rightarrow [q_i] \neq [q_j]$ **Beweis.** $\varepsilon \notin L(A, q_i) \text{ und } \varepsilon \in L(A, q_j)$
- 2. Sei $[q_i] \neq [q_j]$ und $\tilde{q_k}, \tilde{q_e} \in Q$ $\exists a \in \Sigma : \left\{ \begin{array}{c} \delta(\tilde{q_k}, a) = q_i \\ \delta(\tilde{q_e}, a) = q_j \end{array} \right\} \Rightarrow [\tilde{q_k}] \neq [\tilde{q_e}]$ $L(A, q_i) \neq L(A, q_j) \Rightarrow L(A, \tilde{q_k} \neq L(A, \tilde{q_e})$

2 Weiteres

2.1 Chomsky-Hierarchie

Klasse	Bezeichnung	Bedingung
0	allgemein	keine
1	kontextsensitiv	$u = \omega_1 A \omega_2, v = \omega_1 \omega \omega_2 \text{ mit } A \in N,$
		$\omega_1, \omega_2 \in (N \cup T)^*, \ \omega \in (N \cup T)^+.$
2	kontextfrei	$u \in N, v \in (N \cup T)^+$
3	regulär	$u \in N, v = a \text{ oder } v = aA \text{ (oder } v = Aa)$
		$mit \ a \in T, \ A \in N$

Bemerkung 1.8 Die Regeln der Klassen 1 , 2 und 3 sind nicht verkürzend $|u| \leq |v|$. Deshalb können Grammatiken der Klassen 1 , 2 und 3 , wie sie

oben beschrieben sind, keine Sprachen erzeugen, die das leere Wort enthalten. Um auch solche Sprachen beschreiben zu können, lassen wir zu, dass diese Grammatiken die Regel $S \to \varepsilon$ enthalten dürfen. In diesem Fall darf aber das Startsymbol S nur auf der linken Seite von Regeln erscheinen.

Bemerkung 1.9 Eine Grammatik mit Regeln der Form v = aA heisst rechtslinear, eine mit Regeln der Form v = Aa heisst links-linear. Die Menge der rechtsund links-linearen Grammatiken bildet die Klasse der regulären Grammatiken. Eine Grammatik mit Regeln der Form v = aA und der Form v = Aa heisst linear und ist nicht regulär.

Bemerkung 1.10 Es gilt Klasse $3 \subset \text{Klasse } 2 \subset \text{Klasse } 1 \subset \text{Klasse } 0$.

Beispiel 1.11 Wenn eine Sprache durch eine kontextsensitive und eine reguläre Grammatik erzeugt werden kann, dann ist die Klasse der Sprache regulär.

L3 = Menge aller endlichen Wörter, die gleich oft die

 $\Sigma = \{0, 1\}, L = \{0100\}$ u ber Σ . alle Äquivalenzklassen der zur Sprache L gehörigen Relation RL

Menge eines Automaten:

- 1. alle akzept. Zustände in Tabelle einzeichnen.
- 1. a) 2 verschiedene akzept. Zustände liegen in der gleichen Äguivalenzklasse. Also: kein Stern
- 2. mit 0 und 1 Wege schaffen. neue Zustände müssen 1x akzept. und 1x nicht akzept. sein.
- 3. wenn kein Stern gemacht werden kann, vorläufig überspringen.
- 3. a) Schritt drei so lange wiederholen bis alles ausgefüllt.
- 4. leere Felder prüfen und schauen ob ein Stern kommt: wenn der neue Zustand (qi, qi) in Tabelle einen Stern hat, dann auch einen Stern zeichnen.
- 5, dort wo in Tabelle keine Sterne sind; von rechts (waagrecht) Zustand streichen und mit senkrechtem ersetzen.