Vehicle dynamics

Lesson n.1:

Fundamentals

Outline

- Introduction
- •Vehicle dynamics in general
- •Lumped parameter modelling
- •Reference frames
- •Fundamentals of rigid-body dynamics

Introduction

VEHiCLE DYNAMICS

Naval

Aerospace

Rail

Road vehicles

Tires → control forces at road-tire interface patches

Scope of the course

Longitudinal dynamics

- Acceleration
- Braking

Vertical dynamics

- Ride ($f \le 50 \text{ Hz}$)
- Noise (50 Hz \le f \le 20 kHz)

-Reference frames

- -Suspensions
- -Tire-road contact

Lateral dynamics

- -Handling
- -Manoeuvring

Lumped parameter modelling

Sprung mass

Suspensions

Unsprung mass

- 1. Control forces transfer from tire-road contact patches to vehicle body
- 2. Comfort for passengers and goods

Vehicle reference frame

SAE Vehicle axis system

- CG Centre of Gravity
- x-axis: longitudinal, forward
- y-axis: lateral, pointing to the left
- z-axis: vertical, aligned with \mathbf{g}

- displacement along x
- displacement along y
- displacement along z
- Rotation p around x-axis
- Rotation q around y-axis
- Rotation z around z-axis
- Roll (moto di rollio)
- Pitch (moto di beccheggio)
- Yaw (moto di imbardata)

Earth-fixed axis system

SAE Earth-fixed axis system

- x0-axis: forward direction
- y0-axis: lateral direction
- z0-axis: vertical direction, aligned with -g

- Yaw
- Pitch
- Roll

Rigid-body dynamics

D'Alembert's Principles:

 $\sum F_X = M \cdot a_X$ (1-directional motion)

 $\sum T_X = I_{XX} \cdot \alpha_X$ (Planar motion)

Application example:

Hp: steady-state conditions (no pitching)

Let's compute

 $W_f e W_r$ to understand the following:

- How the static load is distributed between front and rear axle ($W_{fS} e W_{rS}$)
- How the road grade affects the load transfer
- How the acceleration affects the load transfer