Small Test Grid Search Solution

This is the example vignette for function: snw_vfi_main_grid_search from the PrjOptiSNW Package. This function solves for policy function using grid search. Small Solution Analysis. Small Solution Analysis, husband 5 shocks, wife 1 shocks.

Test SNW_VFI_MAIN_GRID_SEARCH Defaults Small

Call the function with defaults parameters.

```
mp_param = snw_mp_param('default_small');
[V VFI,ap VFI,cons VFI,mp valpol more] = snw vfi main grid search(mp param);
SNW VFI MAIN GRID SEARCH: Finished Age Group:18 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:17 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:16 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:15 of 18
SNW VFI_MAIN_GRID_SEARCH: Finished Age Group:14 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:13 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:12 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:11 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:10 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:9 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:8 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:7 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:6 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:5 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:4 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:3 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:2 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:1 of 18
Elapsed time is 3.829158 seconds.
Completed SNW_VFI_MAIN_GRID_SEARCH; SNW_MP_PARAM=default_small; SNW_MP_CONTROL=default_base
```

Small Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = [19, 22:5:97, 100];
agrid = mp_param('agrid')';
eta_H_grid = mp_param('eta_H_grid')';
eta_S_grid = mp_param('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_param('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'Hshock', eta_H_grid});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
```

```
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Savings and Shocks

First, analyze Savings Levels and Shocks, Aggregate Over All Others, and do various other calculations.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
```

MEAN(VAL(A,Z)), MEAN(AP(A,Z)), MEAN(C(A,Z))

Tabulate value and policies along savings and shocks:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar permute = [1,4,5,6,3,2];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(A,Z))", V_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, ar
mean_Hshock_0
                                               mean_Hshock__0_91976
                        mean_Hshock__1_8395
                                                                                      mean_Hshock_0_91976
                                                                                                             mea
   group
             savings
     1
                              -17.394
                                                                         -4.4582
                                                       -9.166
                                                                                            -1.6255
     2
            0.0097656
                               -16.968
                                                      -9.0297
                                                                          -4.383
                                                                                            -1.5651
     3
             0.078125
                               -15.017
                                                      -8.2656
                                                                         -3.9672
                                                                                            -1.2425
     4
                               -11.958
                                                                                           -0.73314
              0.26367
                                                      -6.9235
                                                                         -3.2427
     5
                0.625
                               -8.614
                                                      -5.2917
                                                                         -2.3144
                                                                                           -0.18776
     6
               1.2207
                               -5.6438
                                                      -3.6124
                                                                         -1.3711
                                                                                            0.33039
     7
               2.1094
                              -3.2727
                                                      -2.0767
                                                                        -0.51202
                                                                                             0.8309
     8
               3.3496
                                                     -0.79383
                              -1.4899
                                                                         0.23904
                                                                                             1.2876
     9
                    5
                             -0.18672
                                                     0.21807
                                                                         0.87882
                                                                                             1.6686
    10
               7.1191
                              0.75696
                                                     0.99324
                                                                          1.4131
                                                                                             1.9855
    11
               9.7656
                               1.4411
                                                      1.5836
                                                                          1.8494
                                                                                             2.2522
    12
               12.998
                               1.9409
                                                      2.0281
                                                                          2.1992
                                                                                             2.4786
    13
               16.875
                               2.3126
                                                      2.3665
                                                                          2.4779
                                                                                             2.6713
    14
               21.455
                               2.5903
                                                       2,6255
                                                                          2.6981
                                                                                             2.8331
               26.797
                               2.8009
    15
                                                       2.8241
                                                                          2.8737
                                                                                              2.968
               32.959
    16
                               2.9638
                                                       2.9792
                                                                          3.0129
                                                                                             3.0797
    17
                   40
                               3.0907
                                                       3.1014
                                                                          3.1247
                                                                                             3.1725
    18
               47.979
                               3.1906
                                                      3.1981
                                                                          3.2147
                                                                                             3.2492
    19
               56.953
                               3.2703
                                                       3.2756
                                                                          3.2877
                                                                                             3.3131
    20
               66.982
                               3.3347
                                                       3.3386
                                                                          3.3473
                                                                                             3.3663
    21
               78.125
                               3.3872
                                                         3.39
                                                                          3.3965
                                                                                             3.4106
    22
               90.439
                               3.4302
                                                       3.4324
                                                                          3.4373
                                                                                              3.448
    23
               103.98
                               3.4659
                                                       3.4675
                                                                          3.4712
                                                                                             3.4795
    24
               118.82
                               3.4957
                                                       3.497
                                                                          3.4998
                                                                                             3.5062
    25
                  135
                               3.5208
                                                       3.5218
                                                                           3.524
                                                                                              3.529
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(A,Z))", ap_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a
```

2	0.0097656	1.0463	1.1852	1.6343	2.6065
3	0.078125	1.7917	1.9815	2.1806	2.8519
4	0.26367	2.9306	3.0231	3.2083	3.6065
5	0.625	4.0509	4.1296	4.2454	4.5185
6	1.2207	5.1296	5.2176	5.2639	5.3889
7	2.1094	6.1065	6.1852	6.2361	6.2454
8	3.3496	7.0324	7.0648	7.1574	7.1481
9	5	7.9259	7.963	8.037	8.0648
10	7.1191	8.8519	8.875	8.9306	9.0093
11	9.7656	9.7824	9.7963	9.8472	9.9259
12	12.998	10.593	10.625	10.639	10.722
13	16.875	11.481	11.491	11.537	11.597
14	21.455	12.407	12.407	12.426	12.486
15	26.797	13.282	13.296	13.306	13.356
16	32.959	14.116	14.12	14.153	14.19
17	40	14.981	14.981	14.991	15.032
18	47.979	15.88	15.88	15.884	15.912
19	56.953	16.75	16.769	16.782	16.796
20	66.982	17.681	17.685	17.699	17.722
21	78.125	18.495	18.5	18.509	18.551
22	90.439	19.338	19.338	19.347	19.37
23	103.98	20.25	20.264	20.269	20.278
24	118.82	21.097	21.097	21.13	21.144
25	135	21.963	21.968	21.977	21.995

% Consumption Choices

tb_az_c = ff_summ_nd_array("MEAN(C(A,Z))", cons_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a

group`	C(A,Z)) xxxxx savings	mean_Hshock1_8395	mean_Hshock0_91976	mean_Hshock_0	mean_Hshock_0_91976
1	0	0.31042	0.44057	0.71427	1.2574
2	0.0097656	0.3215	0.4505	0.72262	1.2662
3	0.078125	0.38861	0.50889	0.7788	1.329
4	0.26367	0.51067	0.62506	0.88538	1.4326
5	0.625	0.686	0.78667	1.0455	1.6042
6	1.2207	0.9128	0.98784	1.2592	1.8667
7	2.1094	1.2523	1.3082	1.5599	2.2603
8	3.3496	1.7189	1.8031	1.9833	2.7116
9	5	2.3724	2.4345	2.6057	3.2749
10	7.1191	3.1536	3.2269	3.4012	3.948
11	9.7656	4.0911	4.176	4.3322	4.8361
12	12.998	5.4598	5.4763	5.7216	6.1634
13	16.875	6.9683	7.0533	7.1634	7.6403
14	21.455	8.5994	8.7201	8.9245	9.3583
15	26.797	10.632	10.678	10.918	11.355
16	32.959	13.22	13.312	13.401	13.881
17	40	16.041	16.161	16.385	16.799
18	47.979	18.978	19.099	19.35	19.836
19	56.953	22.58	22.534	22.697	23.281
20	66.982	26.096	26.175	26.329	26.804
21	78.125	30.85	30.924	31.108	31.367
22	90.439	35.936	36.056	36.235	36.674
23	103.98	40.993	40.925	41.151	41.738
24	118.82	47.079	47.199	47.025	47.532
25	135	53.5	53.545	53.689	54.103

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(a,z))'};
ff_graph_grid((tb_az_ap{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["k0M0", "K1M0", "K2M0", "k0M1", "K1M1", "K2M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = { 'o', 'd', 's', 'o', 'd', 's'};
mp_support_graph('cl_colors') = {'red', 'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

% Consumption Choices

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(KM,J))", V_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc, a
xxx MEAN(VAL(KM,J))
                     XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    group
            kids
                    marry
                             mean_age_19
                                            mean age 22
                                                          mean age 27
                                                                         mean age 32
                                                                                        mean age 37
                                                                                                      mean age 42
                      0
                                                                            1.9428
                                                                                           1.9141
                                                                                                         1.8282
     1
             1
                                1.4134
                                              1.6987
                                                             1.8877
                      0
     2
             2
                              -0.11224
                                             0.38086
                                                            0.75969
                                                                           0.96426
                                                                                           1.0617
                                                                                                         1.0785
             3
                                                                           0.20487
     3
                      0
                                             -0.40356
                                                            -0.0148
                                                                                          0.31925
                                                                                                         0.35976
                              -0.88391
     4
             1
                      1
                                1.9721
                                               2.188
                                                             2.3283
                                                                            2.3713
                                                                                           2.3479
                                                                                                         2.2743
     5
             2
                               0.97335
                      1
                                               1.2928
                                                             1.5422
                                                                            1.6825
                                                                                           1.7486
                                                                                                         1.7527
      6
             3
                      1
                               0.52474
                                              0.81914
                                                             1.0571
                                                                            1.1945
                                                                                           1.2619
                                                                                                          1.277
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(KM,J))", ap_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
xxx MEAN(AP(KM,J))
                    XXXXXXXXXXXXXXXXXXXXXXXXXXXX
    group
            kids
                    marry
                             mean_age_19
                                            mean_age_22
                                                          mean_age_27
                                                                         mean_age_32
                                                                                        mean_age_37
                                                                                                      mean_age_42
     1
             1
                      0
                               12.948
                                               12.92
                                                            13.052
                                                                           13.152
                                                                                           13.22
                                                                                                         13.264
     2
             2
                      0
                               12.924
                                               12.88
                                                            13.004
                                                                           13.092
                                                                                          13.156
                                                                                                          13.1
     3
             3
                      0
                                                            12.972
                                                                                          13.104
                                                                                                         13.02
                               12.856
                                              12.848
                                                                            13.08
     4
             1
                      1
                                12.86
                                              12.856
                                                            12.972
                                                                           13.072
                                                                                          13.132
                                                                                                         13.184
     5
             2
                      1
                               12.876
                                              12.82
                                                            12.956
                                                                           13.028
                                                                                          13.096
                                                                                                        13.124
      6
             3
                      1
                                 12.8
                                              12.784
                                                            12.912
                                                                           12.984
                                                                                          13.056
                                                                                                        13.032
```

```
xxx MEAN(C(KM,J))
                     XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    group
             kids
                                                                                mean_age_32
                                                                                                                mean_age_42
                      marry
                               mean_age_19
                                                mean_age_22
                                                                mean_age_27
                                                                                                mean_age_37
              1
                        0
                                  6.6347
                                                  6.7448
                                                                  6.9773
                                                                                                  7.2321
                                                                                                                  7.2843
      1
                                                                                  7,1425
      2
              2
                        0
                                  6.6476
                                                  6.7581
                                                                  6.9907
                                                                                  7.1658
                                                                                                  7.2726
                                                                                                                  8.8505
      3
              3
                        0
                                  6.6714
                                                  6.7696
                                                                  7.0001
                                                                                  7.1702
                                                                                                  7.8471
                                                                                                                  9.5071
```

tb_az_c = ff_summ_nd_array("MEAN(C(KM,J))", cons_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,

4	1	1	6.885	7.0096	7.2673	7.4592	7.5807	7.6332
5	2	1	6.856	6.987	7.2319	7.4245	7.5495	7.8087
6	3	1	6.8708	6.9855	7.2175	7.4148	7.5369	8.689

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(KM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(KM,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EKM,J)), MEAN(AP(EKM,J)), MEAN(C(EKM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar permute = [2,3,6,1,4,5];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(EKM,J))", V_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
           edu
                 marry
                         mean_age_19
                                      mean_age_22
                                                   mean_age_27
                                                                mean_age_32
                                                                             mean_age_37
                                                                                           mean_age_42
     1
            0
                   0
                          -0.27576
                                        0.0889
                                                     0.38392
                                                                  0.55759
                                                                               0.6492
                                                                                            0.67483
     2
            1
                   0
                           0.55395
                                        1.0284
                                                      1.3712
                                                                   1.5171
                                                                               1.5475
                                                                                             1.5028
     3
                   1
                           0.78157
                                        1.0452
                                                       1.254
                                                                   1.3788
                                                                               1.4422
                                                                                              1.453
                           1.5319
                                        1.8215
                                                      2.0311
                                                                     2.12
                                                                               2.1301
                                                                                              2.083
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(EKM,J))", ap_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
                 marry
                         mean_age_19
                                      mean_age_22
                                                   mean_age_27
                                                                mean_age_32
                                                                             mean_age_37
                                                                                           mean_age_42
     1
            0
                   0
                           12.989
                                        12.976
                                                     13.032
                                                                  13.091
                                                                               13.125
                                                                                            13.069
     2
            1
                   0
                                        12.789
                                                                  13.125
                                                                                            13.187
                           12.829
                                                     12.987
                                                                               13,195
     3
                                        12.923
                                                     12.976
                                                                                            13.075
            0
                   1
                           12.933
                                                                  13.021
                                                                               13.067
     4
            1
                           12.757
                                        12.717
                                                     12.917
                                                                  13.035
                                                                               13.123
                                                                                            13.152
                   1
% Consumption Choices
tb_az_c = ff_summ_nd_array("MEAN(C(EKM,J))", cons_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
           edu
                 marry
                         mean_age_19
                                      mean_age_22
                                                   mean_age_27
                                                                mean_age_32
                                                                             mean_age_37
                                                                                           mean_age_42
     1
            0
                   0
                           6.6262
                                        6.6905
                                                     6.8287
                                                                  6.9345
                                                                               7.2519
                                                                                            8.4212
     2
            1
                   0
                           6.6762
                                        6.8246
                                                     7.1501
                                                                  7.3846
                                                                               7.6493
                                                                                            8,6734
     3
            0
                   1
                           6.8114
                                        6.8929
                                                     7.0479
                                                                  7.1732
                                                                                7.262
                                                                                            7.8099
     4
            1
                   1
                           6.9297
                                        7.0952
                                                     7.4299
                                                                  7.6925
                                                                               7.8494
                                                                                            8.2774
```

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(EM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(EK,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(EK,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


