Содержание

1	Тривиум	2
2	Теорема Турана и её обобщения	2
3	Тоерема Эрдёша-Стоуна	3

Тривиум

Если $\forall e \in E \rightarrow |e| = k$, то гиперграф k-однородный (k = 2 — обычный граф).

Определение 2. Число рёбер гиперграфа |E| или |E(H)| = e(H).

Степень вершины $v \in V - \deg v = \#\{e \in E \mid v \in e\}.$

$$\sum\limits_{v \in V} \deg v = \sum\limits_{e \in E} |e| = k|E|$$
 (в случае k -однородности).

 $\Delta(H) = \max_{v \in V} \deg v.$

$$\delta(H) = \min_{v \in V} \deg v.$$

$$t(H) = \frac{1}{|V|} \sum_{v \in V} \deg v.$$

Определение 3. Степенью ребра в H = (V, E) называется $\deg e = \#\{f \in V, E\}$ $E \mid f \neq e, |f \cap e| \neq \emptyset$.

 $D(H)=\max_{e\in E}\deg e.$ Если H k-однороден, то $\Delta(H)-1\leqslant D(H)\leqslant k(\Delta(H)-1).$

Определение 4. $W \subset V$ в H = (V, E) называется *независимым*, если $\forall e \in E \rightarrow |e \cap W| < |e|$.

4ucno независимости $\alpha(H)$ — максимальный размер независимого множества в H.

Определение 5. Раскраска множества вершин H = (V, E) называется *пра*вильной, если любое ребро не является одноцветным. Равносильно: все цветовые множества независимы.

Хроматическое число $\chi(H)$ — минимальное число цветов в правильной раскраске гиперграфа.

Очевидно $\frac{|V|}{\alpha(H)} \leqslant \chi(H) \leqslant \Delta(H) + 1.$

2 Теорема Турана и её обобщения

 K_n — полный граф на n вершинах.

 $K_{n_1,...,n_r}$ — полный r-дольный граф с долями размера $n_1,...,n_r$.

 K_{m*r} — полный r-дольный граф с размерами долей = m.

Теорема 1 (Туран, 1941). Пусть n_1, \ldots, n_r числа, такие что $n_1 + \ldots + n_r =$ $n,n_i=\left\lceil \frac{n}{r} \right\rceil$ или $n_i=\left\lceil \frac{n}{r} \right\rceil$. Пусть граф G на n вершинах не содержит подграфа, изоморфного K_{r+1} . Тогда

$$|E(G)| \leq |E(K_{n_1,\dots,n_r})| \leq \left\lfloor \frac{n^2}{2} \left(1 - \frac{1}{r}\right) \right\rfloor$$

Доказательство. Пусть G = (V, E) — граф с максимальным числом вершин, не содержащий K_{r+1} . Покажем, что в G не существует тройки вершин u, v, w такой, что $(u, v) \in E, (u, w), (v, w) \notin E$. Пусть такая тройка есть, тогда

- \bullet Пусть $\deg w < \deg u$ (или $\deg w < \deg v$). Удалим w из G и заменим её на копию u — вершину u'. Получится граф с большим числом рёбер, при этом K_{r+1} он не содержит (иначе его содержал бы и G).
- Пусть $\deg w \geqslant \deg u, \deg w \geqslant \deg v$. Тогда удалим u, v из графа, добавим вместо них две копии вершины w. По аналогичному соображению число рёбер увеличилось, а K_{r+1} не появилось.

Вывод: отношение $u \sim v \Leftrightarrow (u,v) \notin E$ является отношением эквивалентности. Значит наш граф G является полным многодольным графом, притом ясно, что долей не больше r (будем считать, что ровно r, просто некоторые доли пусты). Покажем, что доли почти равны.

В самом деле, если |A| > |B| + 1, то при перекладывании одной вершины из A в B теряется |B| рёбер и проводится |A|-1 рёбер, стало быть число рёбер увеличивается. Значит размеры всех долей отличаются не более, чем на 1, что доказывает теорему.

Граф $K_{n_1,...,n_r}$ из теоремы Турана принято называть графом Турана.

Утверждение 1. Следствие: $\alpha(G) \geqslant \frac{n}{t(G)+1}$.

 ${\mathcal L}$ оказательство. Пусть $\alpha=\alpha(G)$, тогда \overline{G} не содержит $K_{\alpha+1}$. По теореме

Турана $|E(\overline{G})| \leqslant \left(1 - \frac{1}{\alpha}\right) \frac{n^2}{2} \Rightarrow |E(G)| \geqslant C_n^2 - \left(1 - \frac{1}{\alpha}\right) \frac{n^2}{2}$. Итак, $\frac{n^2}{2\alpha} \leqslant |E(G)| + \frac{n^2}{2} - C_n^2 = \frac{t(G)n}{2} + \frac{n}{2}$, что доказывает следствие. Получается, что оценка точна и достигается (с точностью до округления) на T(n,r).

3 Тоерема Эрдёша-Стоуна

Пусть H — произвольный граф. Числом Турана ex(n, H) называется

 $ex(n, H) = \max\{|E(G)| : |V(G)| = n, G \text{ не содержит подграфа, изоморфного } H\}.$

Теорема Турана говорит, что $ex(n, K_{r+1}) = |E(K_{n_1,...,n_r})|$.

Теорема 2 (Эрдёш-Стоун, 1946). Пусть $r \geqslant 2$, H - фиксированный граф $c \chi(H) = r + 1$, morda $ex(n, H) = (1 - \frac{1}{r}) \frac{n^2}{2} + o(n^2)$.

Доказательство.

Лемма. Пусть $r \geqslant 1, \varepsilon > 0$. Тогда для всех достаточно больших n любой граф на n вершинах $c\left(1-\frac{1}{r}+\varepsilon\right)C_n^2$ рёбрами содержит подграф $K_{t*(r+1)}$, $r\partial e \ t = \Omega_{r,\varepsilon}(\log n).$

Доказательство. Рассмотрим сначала случай, когда все вершины имеют степень не менее $(1 - \frac{1}{r} + \varepsilon) n$. Будем доказывать по индукции по r.

База, r=1, надо найти $K_{t,t}$. Пусть v_1,\ldots,v_t — случайно выбранные t вершин из V, а X число их общих соседей.

$$EX = \sum_{u \in V} \frac{C_{\deg u}^t}{C_n^t} \geqslant n \frac{C_{n\varepsilon}^t}{C_n^t} \geqslant n \frac{(n\varepsilon - t)^t}{n^t} = n \left(\frac{n\varepsilon - t}{n}\right)^t.$$

Хотим, чтобы EX > t, для этого можно взять $t = \Omega_{\varepsilon}(\log n)$ подходит для небольшой константы. При таком t существуют v_1, \ldots, v_t с не менее, чем t общими соседями, это и есть $K_{t,t}$.

Докажем шаг индукции. Пусть мы нашли K_{T*r} , где $T=\Omega_{r,\varepsilon}(\log n)$ в графе G. Обозначим U_1,\dots,U_r — доли этого графа, $U=\bigcup_{i=1}^r U_i$.

Пусть v — случайная вершина G, X_v — число её соседей внутри U.

$$EX_v = \frac{1}{n} \sum_{v \in V} \sum_{(u,v) \in E} 1 = \frac{1}{n} \sum_{u \in U} \deg u \geqslant rT \left(1 - \frac{1}{r} + \varepsilon \right).$$

Однако $X_v \leqslant rT$, значит

$$\begin{split} EX_v \leqslant rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)P\left(X_v < rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)\right) + \\ rTP\left(X_v > rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)\right) = \\ rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right) + rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)P\left(X_v > rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)\right). \end{split}$$

Отсюда
$$P\left(X_v > rT\left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right)\right) \geqslant \frac{rT\frac{\varepsilon}{2}}{rT\left(\frac{1}{r} - \frac{\varepsilon}{2}\right)} \geqslant \frac{r\varepsilon}{r} \geqslant \varepsilon$$
.

Вывод: не менее εn вершин имеют хотя бы $rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)$ соседей в U. Обозначим его через $S,\,|S|\geqslant \varepsilon n.$

Далее, любая вершина из S имеет хотя бы εT соседей внутри U_i . Иначе, множество соседей в U имеет мощности сторого меньше, чем

$$\varepsilon T + (r-1)T = rT\left(1 - \frac{1}{r} + \frac{\varepsilon}{r}\right) \leqslant rT\left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right).$$

Пусть W_1,\dots,W_r случайные t-подмножества U_1,\dots,U_r , а X — число их общих соседей внутри S.

 $EX\geqslant |S|\left(rac{C_{arepsilon T}t}{C_T^t}
ight)^r$, тогда положим $t=rac{arepsilon}{2}T$, тогда $EX\geqslant arepsilon n\left(rac{arepsilon}{2}
ight)^{rt}\geqslant t$. Это выполнено при $t=c(r,arepsilon)\log n$ для подходящей константы c(r,arepsilon)>0.

Обратимся теперь к случаю, если не все степени достаточно большие. Покажем, что в G существует индуцированный подграф G' на s вершинах, все степени которого не меньше $\left(1-\frac{1}{r}+\varepsilon\right)s$, а $s\geqslant\frac{1}{2}\sqrt{\varepsilon}n$. Тогда по предыдущему рассуждению G' содержит K_{t*r} , где $t=\Omega_{r,\varepsilon}(\log s)=\Omega_{r,\varepsilon}(\log s)$.

Построим G' следующим образом: $G_n = G$. Далее:

- ullet если G_m содержит вершину степени $<\left(1-rac{1}{r}+rac{arepsilon}{2}
 ight)m,$ то удалим её из $G_m.$
- продолжаем, пока процесс не остановится.

Пусть G_s — итоговый граф, тогда в нём не менее чем $|E(G_n)| - \left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right) (n + n - 1 + \ldots + s + 1) \geqslant \left(1 - \frac{1}{r} + \varepsilon\right) C_n^2 - \left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right) C_{n+1}^2 = \frac{\varepsilon}{2} C_n^2 - n$ рёбер. С другой стороны, $|E(G_s)| \leqslant C_s^2 \Rightarrow C_s^2 \geqslant \frac{\varepsilon}{2} C_n^2 - n \Rightarrow s \geqslant \frac{1}{2} \sqrt{\varepsilon} n$. Итак, лемма доказана.