CHAPTER 4 特征函数

ZEYU XIE¹

[1]

1. 母函数

Definition 1 (母函数). 对任何实数列 $\{p_n\}$, 如果幂级数

(1)
$$G(s) = \sum_{n=0}^{\infty} p_n s^n$$

的收敛半径 $s_0 > 0$,则称 G(s) 为 $\{p_n\}$ 的母函数。 特别地,当 $\{p_n\}$ 为某非负整值随机变量 ξ 的概率分布时, G(s) 至少在区间 [-1,1] 上绝对收敛且一致收敛、此时有

$$(2) G(s) = E(s^{\xi})$$

称此 G(s) 为随机变量 ξ 或其概率分布 $\{p_n\}$ 的母函数。

Example 1: 求 Possion 分布和几何分布的母函数。

Solution 1:

(a) Possion 分布的母函数

(3)
$$G(s) = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} e^{-\lambda} s^n = e^{\lambda(s-1)}$$

收敛域为 $(-\infty, +\infty)$ 。

(b) 几何分布的母函数

(4)
$$G(s) = \sum_{n=0}^{\infty} (1-p)^{n-1} p s^n = \frac{ps}{1 - (1-p)s}$$

收敛域为 $\left(-\frac{1}{1-p}, \frac{1}{1-p}\right)$ 。

E-mail address: xie.zeyu20@gmail.com.

Date: 2024 年 4 月 17 日.

¹ Department of Mathematics, Tsinghua University, Beijing, China.

Proposition 1 (分布由母函数唯一确定). 显然母函数由分布唯一确定, 反过来说, 由于 G(s) 至少可以在区间 (-1,1) 内逐项求导, 再令 s=0 得

(5)
$$p_n = \frac{1}{n!} G^{(n)}(0)$$

所以母函数 G(s) 也可以由分布 $\{p_n\}$ 唯一确定。

Proposition 2 (母函数与数学期望、方差的关系). 设非负整值随机变量 ξ 的母函数为 G(s), 如果 E(ξ) 和 $E(ξ^2)$ 有限, 那么

(6)
$$G'(1) = E(\xi)$$
$$G''(1) = E(\xi^2) - E(\xi)$$

Proposition 3 (独立和的母函数). 设 ξ 和 η 是两个独立的非负整值随机变量, 分别有概率分布 $\{a_n\}$ 和 $\{b_n\}$, 母函数为 A(s) 和 B(s), 则 $\xi + \eta$ 的母函数为

(7)
$$C(s) = A(s)B(s)$$

Proposition 4 (随机多个非负整值随机变量之和的母函数). 设 $\{\xi_k\}$ 为相互独立的非负整值随机变量序列,有共同的母函数 G(s)。若 η 为另一非负整值随机变量, 其母函数为 F(s),那么当 η 与每个 ξ_k 均独立时, $\xi = \sum_{k=1}^{\eta} \xi_k$ 的母函数为

(8)
$$H(s) = F[G(s)]$$

2. 特征函数

Definition 2 (特征函数). 设 F(x) 为 $\mathbb{R} = (-\infty, +\infty)$ 上的一个分布函数, 称

(9)
$$f(t) = \int_{-\infty}^{+\infty} e^{itx} dF(x)$$

为 F(x) 的特征函数。

Definition 3 (随机变量的特征函数). 设 F(x) 为随机变量 ξ 的分布函数,则此 f(t) 也称为 ξ 的特征函数,此时有

$$(10) f(t) = E(e^{it\xi})$$

注:对 $\forall t, x \in \mathbb{R}$,总有 $|e^{itx}| = 1$,故 10 式右端积分的模不超过 1。因此对任意的概率分布,其特征函数唯一确定地存在。 1

Definition 4 (离散型随机变量的特征函数). 设 ξ 为离散型随机变量, 其概率分 布为 $\{p_n\}$, 则其特征函数为

(11)
$$f(t) = \sum_{k=0}^{\infty} p_k e^{itx_k}, \quad p_k = P\{\xi = x_k\}$$

¹这就比只对非负整值随机变量有定义的母函数好很多

Definition 5 (连续型随机变量的特征函数). 设 ξ 为连续型随机变量, 其概率密度函数为 p(x), 则其特征函数为

(12)
$$f(t) = \int_{-\infty}^{+\infty} p(x)e^{itx}dx$$

Proposition 5 (各种分布的特征函数). 离散型随机变量的特征函数

表 1. 离散型随机变量的特征函数

分布类型	特征函数
Bernoulli 分布	$f(t) = q + pe^{it}$
二项分布	$f(t) = (q + pe^{it})^n$
几何分布	$f(t) = \frac{pe^{it}}{1 - (1 - p)e^{it}}$
Pascal 分布	$f(t) = \left[\frac{pe^{it}}{1 - (1 - p)e^{it}}\right]^n$ $f(t) = e^{\lambda(e^{it} - 1)}$
Possion 分布	$f(t) = e^{\lambda(e^{it} - 1)}$

连续型随机变量的特征函数

表 2. 连续型随机变量的特征函数

分布类型	特征函数
正态分布	$f(t) = e^{-\frac{1}{2}\sigma^2 t^2}$
Gamma 分布	$f(t) = (1 - \frac{it}{\lambda})^{-\alpha}$
指数分布	$f(t) = \frac{\lambda}{\lambda - it}$
均匀分布	$f(t) = \frac{e^{itb} - e^{ita}}{it(b-a)}$

Proposition 6 (特征函数基本性质). (a) $|f(t)| \le f(0) = 1$

- (b) 共轭对称性: $f(-t) = \overline{f(t)}$
- (c) f(t) 在 $t \in \mathbb{R}$ 上一致连续
- (d) 半正定性:任意 $n \ge 1$,任意 n 个实数 t_1, t_2, \dots, t_n ,任意 n 个复数 a_1, a_2, \dots, a_n ,

(13)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i \overline{a_j} f(t_i - t_j) \ge 0$$

(e) $f_{a+b\xi}(t) = e^{iat} f_{\xi}(bt)$

3. 多元正态分布

References

[1] 杨振明. 概率论(第二版). 北京: 科学出版社, 2007.