SHS

AIRs - LM in

Statistics and Probability Quarter 4: Week 4- Module 12 **Test-Statistic Value**

(Population Mean)

Statistics and Probability

Grade 11 Quarter 4: Week 4 - Module 12: Test-Statistic Value(Population Mean)
First Edition, 2021

Copyright © 2021 La Union Schools Division Region I

All rights reserved. No part of this module may be reproduced in any form without written permission from the copyright owners.

Development Team of the Module

Author: Hilario D. Garcia, TIII

Editor: SDO La Union, Learning Resource Quality Assurance Team

Illustrator: Ernesto F. Ramos Jr., PII

Management Team:

Atty. Donato D. Balderas, Jr. Schools Division Superintendent

Vivian Luz S. Pagatpatan, PHD Assistant Schools Division Superintendent

German E. Flora, PHD, CID Chief

Virgilio C. Boado, PHD, EPS in Charge of LRMS

Erlinda M. Dela Peña, EDD, EPS in Charge of Mathematics

Michael Jason D. Morales, PDO II

Claire P. Toluyen, Librarian II

In the previous lesson, statistical validity of the tests was insured by the Central Limit Theorem, with essentially no assumptions on the distribution of the population. When sample sizes are small, as is often the case in practice, the Central Limit Theorem does not apply.

This module presents the appropriate test statistic in testing a hypothesis and making conclusion about the population mean based on the test-statistic value and the rejection region.

After going through this module, you are expected to:

- 1. computes for the test-statistic value (population mean) (M11/12SP-IVd-1)
- 2. draws conclusion about the population mean based on the test-statistic value and the rejection region. (M11/12SP-IVd-2)

Subtasks:

- 1. define test statistic
- 2. identify the formula to be used in finding the test statistic value concerning the mean of the population.
- 3. recall some terms frequently encountered in doing hypothesis testing.
- 4. understand the underlying procedures in hypothesis testing

Before going on, check how much you know about this topic. Answer the pretest in a separate sheet of paper

Pretest

Directions : Choose the lette	er of the correct	answer. Write	your answer	on a
separate sheet of pape	er.			

	separate sheet of paper	•		
1	. What is the critical value, A.+ 1.94	/s of α= 0.05 in a tw B. + 1.95	o tailed test? C. +1.96	D. +1.97
2	. What is the critical value hypothesis indicates ≠?	of 0.01 level of signif	ficance when	the alternative
	A. 2.375	B. 2.575	C. 2.675	D. 2.775
3	. The average test score of teacher took a random s parameter mean?			
	A. 8	B. 10	C. 75	D.78
4	. The average test score for random sample of 12 studenthe sample mean?			
	A. 10	B. 12	C. 78	D. 80
5	The average test score for deviation of 8. A random statistic value using $z = \frac{1}{2}$	sample of 10 studer		
	A. 0.5906	B. 0.6906	C. 0.7906	D. 0.8906
m m gı	or items 6-8, use the proble A company claims that the ean carbohydrates content play be assumed that the starrams. A random sample of forams. Use a= 0.05.	e label on a can of pi per serving of canned ndard deviation of th	d pineapple is e carbohydra	over 50 grams. It te content σ is 4
6	. What is the tabulated val A. 1.92	ue of Z? B. 1.93	C. 1.95	D. 1.96
7	. What is the value of comp A. 3.6	outed Z? B. 3.61	C. 3.63	D. 3.64
8	B. No, because the	$\in Z_t$ is greater than Z_c $\in Z_t$ is less than Z_c . Let Z_t is greater than Z_c		
9	. The average test score of standard deviation 9. Th z-value.			

A. 3.771 B. 3.778 C. 3.877 D. 3. 678

	is the test statistic w , standard deviation A1.18					
hypot	11. The null hypothesis H $_0$: μ = 12 will be rejected in favor of the alternative hypothesis H $_a$: μ > 12 at the α = 0.05 level, what would be the value of the z test statistic?					
	A. Greater than 1.6 C. Greater than 1.9		B. Greater than 1.6 D. Greater than 2.0			
hypot	is conducted with the chesis H _a : μ < 10 at would be your concl	the α = 0.05 level. The				
	A. Fail to reject the C. Only possible at	null hypothesis	B. Reject the null h			
For items 13-15, use the problem below. The average score in the entrance examination in Mathematics at SRNHS is 80 with a standard deviation of 10. A random sample of 40 students taken from this year's examinees and it was found the mean score of 84. The level of significance is 0.05.						
13. Which	n of these are the crit A. <u>+</u> 1.93	tical values? B. <u>+</u> 1.94	C. <u>+</u> 1.95	D. <u>+</u> 1.96		
14. Using	the Z- test formula, A. 2.53	what is the compute B. 2.54	ed test-statistic? C. 2.55	D. 2.56		
15. Which is the appropriate conclusion about the hypothesized and the sample mean?						
A. The hypothesized mean is greater than the sample mean.B. There is no relationship between the hypothesized and the sample mean.						
C. There is significant difference between the hypothesized mean and the sample mean.D. There is no significant difference between the hypothesized mean and the sample mean.						

For you to understand the lesson well, do the following activities.

Have fun and good luck!

Activity 1. Recalling It!

Directions. Using the z-table, find the critical value/s for each.

- 1. α = 0.01 two-tailed test
- 2. α = 0.10 left -tailed test
- 3. α = 0.005 right-tailed test
- 4. α = 0.02 right-tailed test
- 5. α = 0.01 left-tailed test

Activity 2. Accept or Reject!

Directions: Complete the table below. Write accept or reject the hypothesis given the level of significance, Ztab, Zcom and the rejection region.

Level of		Zcomputed	Rejection	Accept/
significance	(\mathbf{Z}_{t})	$(\mathbf{Z}_{\mathbf{c}})$	region	Reject
0.05	<u>+</u> 1.96	<u>+</u> 2.53	Two-tailed	
0.05	<u>+</u> 1.65	<u>+</u> 2.53	Two -tailed	
0.01	-2.33	-1.67	Left-tailed	
0.01	2.33	1.67	Right-tailed	
0.05	-1.708	-1.85	Left-tailed	

Activity 3. Bowling League

Directions: Read the situation and answer the following questions.

Myla runs a large bowling league. She suspects that the league average score is greater than 150 per game. She takes a random sample of 36 game scores from the league data. The scores in the sample have a mean of 156 and a standard deviation of 30.

Fernanda wants to use these sample data to conduct a test-statistic on the mean. Assume that all conditions for inference have been met.

- a. What is the sample mean (x)?
- b. What is the population mean (μ) ?
- c. What is the sample standard deviation (s)?
- d. What is the sample score (n)?
- e. Which of the two formulae will be used?

1.
$$z = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}}$$
 2. $t = \frac{x - \mu}{\frac{s}{\sqrt{n}}}$

f. Calculate the test-statistic for Myla's test.

You may round your answer to two decimal places.

A **test statistic** is used in a hypothesis test when you are deciding to support or reject the null hypothesis. The test statistic takes your data from an experiment or survey and compares your results to the results you would expect from the null hypothesis.

In large sample test concerning the population mean, the test statistic to be used is the \mathbf{z} .

The **Z**-test statistic is use when the sample size is greater than $30(n \ge 30)$, or when the population is normally distributed and α is known. The formula and the steps below will be used and followed to solve problems concerning the mean of the population.

Formula for z-test statistic:

$$z = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}}$$

where: x = mean score of the sample

 μ = population mean

 σ = population standard deviation

n = sample size

Steps in hypothesis testing using the Z-test statistic.

- 1. State the hypotheses
- 2. Identify the level of significance
- 3. Determine the critical values and rejection region

- 4. State the decision rule
- 5. Compute the test statistic
- 6. Make a decision.

Let's consider the examples illustrating the steps in hypothesis testing using the z-test statistic.

Example 1. A manufacturer claims that the average lifetime of his lightbulbs is 3 years or 36 months. The standard deviation is 8 months. Fifty bulbs are selected, and the average lifetime is found to be 32 months. Should the manufacturer's statement be rejected at $\alpha = 0.01$?

Solution: Step 1. State the hypotheses

 $H_0: \mu = 36 \text{ months}$

 $H_{\alpha}: \mu \neq 36 \text{ months}$

Step 2. Level of significance $\alpha = 0.01$

Thus,
$$\frac{0.01}{2} = 0.005$$

Step 3. Determine the critical values and rejection region.

Since $\alpha = 0.01$, and it is two-tailed, the critical values are

$$Z_t = \pm 2.57$$

Step 4. Compute the test-statistic

Given: X = 32, $\mu = 36$ $\sigma = 8$ n = 50

Solution

$$z = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{32 - 36}{\frac{8}{\sqrt{50}}} = -3.54$$

Step 5. Decision rule: Reject H_0 if the test statistic is lesser than critical value

Illustrating our solution in the normal curve, we have

Step 6.

Conclusion: Since -3.54 < -2.5, which falls in the rejection region in the left tail. **we reject H₀**.. Therefore, the average lifetime of lightbulbs of the manufacturer is not 6 months.

Example 2.

A test on car braking reaction times for men between 18 and 30 years old have produced a mean and standard deviation of 0.610 sec and 0.123 sec. respectively. When 40 male drivers of this age group were randomly selected and tested for their breaking reaction times, a mean of 0.587 second came out. At the α = 0.10 level of significance, test claim of the driving instructor that his graduates had faster reaction times.

Solution: The claim of instructor means that his graduates have a mean breaking reactions time of less than 0.610 sec.

Step 1.
$$H_0: \mu = 0.610 \text{ sec}$$

$$H_a : \mu < 0.610 \text{ sec}$$

Step 2.
$$\alpha = 0.10$$

Step 3. Since α = 0.10 and the test is left-tailed, Z_t = -1.28

Step 4. Test statistics

Given:
$$X = 0.587$$
, $\mu = 0.610$ $\sigma = 0.123$ $n = 40$

Solution:

$$z = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{0.587 - 0.610}{\frac{0.123}{\sqrt{40}}} = -1.18$$

Step 5. Decision Rule: Reject H_0 if $Z_c > -1.28$.

Illustrating our solution in the normal curve, we have

Step 6.

Conclusion: Since the test statistic falls within the noncritical region,

do not reject H_o. There is not enough evidence to support the instructor's claim.

Example 3. A researcher reports that the average salary of College Deans is more than P 63,000. A sample of 35 College Deans has a mean salary of P 65,700. At α = 0.01, test the claim that the College Deans earn more than P63,000 a month. The standard deviation is P 5,250.

Step1. State the hypothesis and the alternative hypothesis.

$$H_0: \mu < P 63,000$$

$$H_a : \mu > P 63,000$$

Step 2. The level of significance: α = 0.01

Step 3. The Z critical value is 2.326 (it is a one-tailed test, since it does mention about the direction of the distribution.

Step 4. Compute the Z-test value using the formula,

Given:
$$X = P 65,700$$
, $\mu = P 63,000$ $\sigma = P 5,250$ $n = 35$

Solution:

$$Z = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{65,700 - 63,000}{\frac{5250}{\sqrt{35}}} = 3.043$$

Step 5. Decision rule: Reject the null hypothesis at $\alpha = 0.01$,

since
$$3.043 > 2.326$$
.

Step 6.

Conclusion: Since we **reject the null hypothesis**, we can conclude that there is enough evidence to support the claim that the monthly salary of College Deans is more than P 63,000.

Here are some enrichment activities for you to work on to master and strengthen the basic concepts you have learned from this lesson.

Activity 4: Test me!

Directions: Complete the solution in each of the following problem.

- 1. The average score in the entrance examination in Mathematics at Sto. Rosario National High School is 80 with a standard deviation of 10. A random of 40 students was taken from this year's examinees and it was found to have a mean score of 84
- е a.

	was found to flave a finean score of o.
a.	Is there a significant difference between the known mean and the
	sample mean? Test at α = 0.05
	Solution:
	Step 1. H_o : μ = 80 : There is no significant difference between the
	hypothesized and the sample mean.
	$H_a: \mu \neq 80:$
	Step 2. Level of significance, $\alpha = 0.05$,
	Step 3. two tailed test, find the critical value, Zt =
	Step 4. Compute the test-statistic value:
	Zc =
	Step 5. Decision Rule:
	Step 6. Conclusion:
b.	Does this indicate that this year's batch is better in mathematics than
	the previous batches?
	Solution
	Step 1. Ho: μ This year's batch is as good as the previous batches
	in mathematics.
	Ha : μ
	Step 2. Level of significance, $\alpha = $
	Step 3. Find the critical value, Zt =
	Step 4. Compute the test statistic: Zc=

	Step 5. Decision Rule
	Step 6. Conclusion:
2.	A diet clinic states that there is an average loss of 24 pounds for those
	who stay on the program for 20 weeks. The standard deviation is 5
	pounds. The clinic tries a new diet reducing salt intake to see whether
	that strategy will produce a greater weight loss. A group of 40
	volunteers loses an average of 16.3 pounds each over 20 weeks. Should
	the clinic change the new diet? Use α = 0.05
Solution:	
	Step 1: H ₀ : μ
	$H_a:\mu$
	Step 2: α =
	Step 3: Zt =
	Step 4: Zc
	Step 5; Decision Rule:
	Step 6. Conclusion:
3.	The manufacturer of a certain brand of auto batteries claims that the
	mean life of these batteries is 45 months. A consumer protection
	agency that wants to check this claim took a random sample of 36
	such batteries and found that the mean life for this sample is 43.75
	months with the standard deviation of 4 months. Using the 0.025
	significance level, would you conclude that the mean life of these
	batteries is less than 45 months?
	ep 1. State the null hypothesis and alternative hypothesis:
	Ηο) μ
	Ha: μ
	tep 2. What is the level of significance?
	tep 3. What is the critical value? Zt =
	tep 4. Compute the test – statistic value: Zc=
	Step 5. What is your decision rule?
S	tep 6. What would be your conclusion based on the test-statistic value?
	Great job! You have understood the lesson.
	Are you ready to our mariga?

Activity 5: Repulse!

Answer the following questions.

- 1. A paint manufacturing company claims that the mean drying time for its paints is 45 minutes. A random sample of 35 gallons of paints selected from the production line of this company showed that the mean drying time for this sample is 50 minutes with standard deviation of 3 minutes. Assume that the drying time for these paints have a normal distribution, using the 1% significance level.
- 2. A researcher claims that the monthly load consumed of Grade 11 for their online learning class is more than P 3,000. In a sample of 35 randomly selected students, the mean monthly load consumed was P2,700 with the standard deviation of P 600. Is there sufficient evidence at 0.01 level of significance that the average monthly load consumed is more than P 3,000?
- 3. Average college cost of tuition fee for all private institutions last year was P 36,400. A random sample of costs this year for 45 institutions of higher learning indicated that the sample mean was P 37,900 and a sample standard deviation was P 5,600. At the 0.10 level of significance, is there sufficient evidence to conclude that the cost has increased?

Rubric for Problem Solving

4	3	2	1
Follow the steps	Follow the steps	Follow the steps	Attempt to solve
to come up with	to come up with	but came up	but does not
a correct	a solution but a	with an entirely	follow the steps
solution and	part of the	wrong solution	that led to a
draw at the	solution led to	and led to	wrong solution
correct	incorrect	incorrect	and incorrect
conclusion	conclusion	conclusion	conclusion

	Choose the letter e sheet of paper.	of the correct ans	wer. Write yo	ur answer on a
1. What is	the critical value/	s of α = 0.05 in a two	tailed test?	
A	. <u>+</u> 1.95	B <u>.+</u> 1.96	C. <u>+</u> 1.97	D. +1.98
2. What is	the critical value o	of 0.01 level of signif	icance when th	e alternative
hypothe	sis indicates ≠?			
A	. 2.575	B. 2.675	C. 2.775	D. 2.875
3. The avera	age test score of en	ntire school is 78 with	th standard de	viation 10. A
teacher to	ook a random san	aple of 10 students a	and scored 75?	What is the
paramete	er mean?			
A	. 8	B. 10	C. 75	D.78
4. The avera	age test score for e	entire school is 78. T	he standard de	eviation of a
random s	ample of 12 stude	nts is 10 with an av	erage test score	e of 80. What is
the sampl	le mean?			
A	. 10	B. 12	C. 78	D. 80
5. The avera	age test score for e	entire school is 85 w	ith a standard	
		sample of 10 studen	its scored above	e 87. Find the
statistic	value using $z = \frac{1}{2}$	$\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}$.		
A	. 0.6906	B. 0.7906	C. 0.8906	D. 0.9906
For item	s 6-8, use the pro	blem below.		
the mea grams. I content	n carbohydrates (It may be assume σ is 4 grams. A	hat the label on a can content per serving ed that the standard A random sample of 2.3 grams. Use a= 0.0	of canned pine d deviation of t of forty servin	apple is over 50 the carbohydrate
6. What is t	he tabulated valu	e of Z?		
A	. 1.93	B. 1.94	C. 1.96	D. 1.97
7. What is t	he value of compu	ited Z?		
A	.3.62	B. 3.63	C. 3.64	D. 3.65
8. Will you	accept the claim o	f the company?		
A	. No, because the	Zt is less than Zc		
В	. No, because the	Zt is greater than Z	Cc.	
C	. Yes, because the	zt is greater than Z	Zc.	
D	. Yes , because th	e Zt is less than Zc		

9. The average test score of standard deviation 9. T z-value.			-	
A. 3.771	В. 3.778	C. 3.877	D. 3. 678	
10. What is the test statistic	when the popu	lation mean is 0.610, t	the sample mean	
0.587, standard deviation	n is 0.123 and	the number of sample	es is 40?	
A1.17	B1.18	C1.19	D1.20	
11. The null hypothesis H o	$\mu = 12$ will be	rejected in favor of th	e alternative	
hypothesis H a: μ > 12 at	the $\alpha = 0.05$ le	evel, what would be th	e value of the z	
test statistic?				
A. Greater than 1	.93	B. Greater tha	ın 1.94	
C. Greater than 1	.96	D. Greater tha	an 2.0	
12. A test is conducted with	h the null hypo	othesis H_0 : μ = 10 vs. t	he alternative	
hypothesis H _a : μ < 10 a	t the $\alpha = 0.051$	evel. The test statistic	is $z = -1.75$.	
What would be your con	clusion?			
A. Accept the null hype	othesis	B. Reject the null hy	pothesis	
C. Only possible at the	$\alpha = 0.01$ level	D. Undecided		
For items 13-15, use the pr	oblem below.			
The average score	in the entrance	e examination in Mathe	matics at SRNHS	
is 80 with a standard de	eviation of 10. 2	A random sample of 40	0 students taken	
from this year's examine	es and it was f	ound the mean score o	f 84. The level of	
significance is 0.05.				
13. Which of these are the	critical values?			
A. <u>+</u> 1.96	B. <u>+</u> 1.97	C. <u>+</u> 1.98	D. <u>+</u> 1.99	
14. Using the Z- test formu	la, what is the	computed test-statisti	ic?	
A. 2.50	B. 2.51	C. 2.52	D. 2.53	
15. Which is the appropria	te conclusion a	bout the hypothesized	l and the	
sample mean?				
A. The hypothesiz	ed mean is gre	ater than the sample 1	mean.	
B. There is no rela	ationship betwo	een the hypothesized a	and the sample	
mean.	-		_	
C. There is signifi	cant difference	between the hypothes	sized mean and	
_	iple mean.	V -		
	D. There is no significant difference between the hypothesized mean			
_	sample mean.	- JP		
31333 0220	r			

References

Printed Materials:

Allan B. Melosantos, et.al Copyright 2016 Sibs Publishing House, Inc.

DIWA Textbook, Mathematics for the New Millennium

Introduction to Business Statistics by Winston S. Sirug

Math Connections in the Digital Age Statistics and Probability by Luis

MSA Statistics and Probability by Merle S. Alferez

Statistics and Probability by Rene R. Belcina et.al first Edition Copyright 2016, Ex Publishing Company, Inc

Website:

www.khanacade my.orig.