límsup y líminf

Mariano Suárez-Alvarez

7 de mayo, 2013

§1. Límites superiores y límites inferiores

1.1. Definiciones

1.1. Sea $(a_n)_{n\geq 1}$ una sucesión de números reales que es acotada superiormente. Si para cada $n\geq 1$ ponemos $\mathscr{A}_n=\{a_m:m\geq n\}$, que es un conjunto no vacío y acotado superiormente, y $A_n=\sup\mathscr{A}_n$, obtenemos una nueva sucesión $(A_n)_{n\geq 1}$. Esta sucesión es decreciente: si $n\geq 1$, entonces $\mathscr{A}_n\supseteq\mathscr{A}_{n+1}$, así que $A_n=\sup\mathscr{A}_n\geq\sup\mathscr{A}_{n+1}=A_{n+1}$.

Si la sucesión $(A_n)_{n\geq 1}$ está acotada inferiormente, entonces converge y llamamos a su límite el *límite superior* de la sucesión $(a_n)_{n\geq 1}$, y lo escribimos límsup $_{n\to\infty}$ a_n . Si, en cambio, la sucesión $(A_n)_{n\geq 1}$ no está acotada inferiormente, convenimos en decir que el límite superior de la sucesión $(a_n)_{n\geq 1}$ es límsup $_{n\to\infty}$ $a_n=-\infty$.

Finalmente, si $(a_n)_{n\geq 1}$ es una sucesión de números reales que no es acotada superiormente, convenimos en que límsup $_{n\to\infty}$ $a_n=+\infty$.

1.2. De manera similar, si $(a_n)_{n\geq 1}$ es una sucesión de números reales inferiormente acotada, para todo $n\geq 1$ ponemos $\mathscr{A}'_n=\{a_m:m\geq n\}$ y $A'_n=\inf\mathscr{A}_n$. La sucesión $(A'_n)_{n\geq 1}$ es creciente; si es acotada superiormente, de manera que converge, llamamos *límite inferior* de la sucesión $(a_n)_{n\geq 1}$ a su límite, y si no lo es decimos que el límite inferior de la sucesión $(a_n)_{n\geq 1}$ es $+\infty$. Finalmente, si la sucesión $(a_n)_{n\geq 1}$ no es inferiormente acotada, convenimos en poner líminf $_{n\to\infty}$ $a_n=-\infty$.

1.2. Propiedades básicas

1.3. Proposición. $Si(a_n)_{n\geq 1}$ es una sucesión de números reales, entonces

$$\liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n, \tag{1}$$

Compilado: 9 de mayo de 2015

y vale la igualdad si y solamente si la sucesión converge. En este último caso, el límite inferior, el límite superior y el límite de la sucesión coinciden.

Demostración. Supongamos primero que la sucesión es acotada. Para cada $n \ge 1$ sea como antes $\mathscr{A}_n = \{a_m : m \ge n\}$, de manera que las sucesiones $A = (A_n)_{n \ge 1}$ y $A' = (A'_n)_{n \ge 1}$ definidas arriba tienen $A_n = \sup \mathscr{A}_n$ y $A'_n = \inf \mathscr{A}_n$ para todo $n \ge 1$. Es claro que si $n \ge 1$ es $A'_n = \inf \mathscr{A}_n \le \sup \mathscr{A}_n = A_n$, así que

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} A'_n \le \lim_{n\to\infty} A_n = \limsup_{n\to\infty} a_n.$$

Si, por el contrario, la sucesión no es acotada, o bien no es acotada inferiormente y líminf $_{n\to\infty}a_n=-\infty$ o bien no es acotada superiormente y límsup $_{n\to\infty}a_n=+\infty$: en cualquiera de estos dos casos la desigualdad (1) del enunciado es inmediata.

Esto prueba la primera parte de la proposición. Ocupémonos ahora de la segunda. Supongamos primero que líminf $_{n\to\infty}a_n$ y límsup $_{n\to\infty}a_n$ son iguales, y llamemos α a su valor común. Tenemos que considerar tres casos, según α sea un número real, $+\infty$ o $-\infty$.

• Pongámonos primero en el caso en que $\alpha \in \mathbb{R}$ y sea $\varepsilon > 0$. La hipótesis es que $\alpha = \lim_{n \to \infty} A_n = \lim_{n \to \infty} A_n'$, y existe entonces $N \ge 1$ tal que

$$n \geq N \implies |A_n - \alpha| < \varepsilon, \quad |A'_n - \alpha| < \varepsilon.$$

En particular, si $n \ge N$, vemos que

$$\alpha - \varepsilon < A'_n = \inf \mathscr{A}_n \le a_n \le \sup \mathscr{A}_n = A_n < \alpha + \varepsilon$$

de manera que $|a_n - \alpha| < \varepsilon$. Tenemos en consecuencia que

$$n \geq N \implies |a_n - \alpha| < \varepsilon$$

y —en vista de la arbitrariedad de ε — la sucesión $(a_n)_{n\geq 1}$ converge a α .

• Si líminf $_{n\to\infty}a_n=+\infty$, entonces la sucesion $(a_n)_{n\geq 1}$ está acotada inferiormente y la sucesion $(A'_n)_{n\geq 1}$ con $A'_n=$ ínf \mathscr{A}'_n para cada $n\geq 1$ (notemos que estos ínfimos tienen sentido , porque los conjuntos \mathscr{A}'_n están acotados inferiormente) no es acotada superiormente. Si $K\in\mathbb{R}$, entonces existe $N\geq 1$ tal que $A'_N>K$ y esto nos dice que

$$n \ge N \implies a_n > K$$
.

Vemos así que $\lim_{n\to\infty} a_n = +\infty$.

• Finalmente, tenemos que considerar el caso en que límsup $_{n\to\infty} a_n = -\infty$. Éste puede ser manejado de manera similar al anterior.

Recíprocamente, supongamos que la sucesión $(a_n)_{n\geq 1}$ es convergente y sea α su límite, que es o un número real, o $+\infty$ o $-\infty$.

• Consideremos primero el caso en que α es un número real y sea $\varepsilon>0$. Como $\lim_{n\to\infty}a_n=\alpha$, existe $N\geq 1$ tal que

$$n \geq N \implies \alpha - \varepsilon < a_n < \alpha + \varepsilon$$
.

Si $n \ge N$, entonces esto nos dice que $\alpha - \varepsilon$ y $\alpha + \varepsilon$ son, respectivamente, una cota inferior y una cota superior para el conjunto \mathcal{A}_n , y en consecuencia

$$\alpha - \varepsilon \leq \inf \mathscr{A}_n = A'_n$$

y

$$\alpha + \varepsilon \ge \sup \mathscr{A}_n = A_n$$
.

Estas desigualdades implican inmediatamente que

$$\alpha - \varepsilon \leq \lim_{n \to \infty} A'_n = \liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n = \lim_{n \to \infty} A_n \leq \alpha + \varepsilon$$

Concluimos así que para todo $\varepsilon > 0$ es

$$\begin{split} 0 & \leq \limsup_{n \to \infty} a_n - \liminf_{n \to \infty} a_n \leq (\alpha + \varepsilon) - (\alpha - \varepsilon) = 2\varepsilon, \\ \left| \limsup_{n \to \infty} a_n - \alpha \right| < \varepsilon & \left| \liminf_{n \to \infty} a_n - \alpha \right| < \varepsilon. \end{split}$$

Esto es sólo posible si límsup $_{n\to\infty} a_n = \text{líminf}_{n\to\infty} a_n = \alpha$, como queríamos.

• Supongamos ahora que $\lim_{n\to\infty} a_n = +\infty$. Existe entonces $N_0 \ge 1$ tal que $a_n > 0$ si $n \ge N_0$ y entonces la sucesión está acotada inferiormente, ya que el número $\min\{0, a_1, \ldots, a_{N_0}\}$ es una cota inferior.

Sea, como siempre, $\mathcal{A}_n = \{a_m : n \ge n\}$, que es un conjunto acotado inferioremente, y $A'_n = \inf \mathcal{A}_n$ para cada $n \ge 1$. Si $K \in \mathbb{R}$, entonces existe $N \ge 1$ tal que

$$n \geq N \implies a_n > K$$

de manera que K es una cota inferior de \mathscr{A}_N , y en consecuencia $A'_N \geq K$. Vemos así que la sucesión $(A_n)_{n\geq 1}$ no está acotada superiormente y que líminf $_{n\to\infty}$ $a_n=+\infty$. En vista de la desigualdad (1) se sigue de esto que también límsup $_{n\to\infty}$ $a_n=+\infty$.

• Finalmente, si $\alpha = -\infty$, un razonamiento análogo al que acabamos de hacer muestra que líminf $_{n\to\infty} a_n =$ límsup $_{n\to\infty} a_n = -\infty$.

Esto completa la prueba de la proposición.

- **1.4. Proposición.** Sea $(a_n)_{n>1}$ una sucesión de números reales.
 - (i) Es límsup $_{n\to\infty} a_n = \alpha \in \mathbb{R}$ si y solamente si para todo $\varepsilon > 0$
 - el conjunto $\{k \in \mathbb{N} : a_k > \alpha \varepsilon\}$ es infinito y

- *el conjunto* $\{k \in \mathbb{N} : a_k > \alpha + \varepsilon\}$ *es finito.*
- (ii) Es límsup $_{n\to\infty} a_n = +\infty$ si y solamente si para todo $K \in \mathbb{R}$
 - *el conjunto* $\{k \in \mathbb{N} : a_k > K\}$ *es infinito.*
- (iii) Es límsup $_{n\to\infty}a_n=-\infty$ si y solamente si para todo $K\in\mathbb{R}$
 - el conjunto $\{k \in \mathbb{N} : a_k > K\}$ es finito.
- (iv) Es líminf $_{n\to\infty} a_n = \alpha \in \mathbb{R}$ si y solamente si para todo $\varepsilon > 0$
 - el conjunto $\{k \in \mathbb{N} : a_k < \alpha + \varepsilon\}$ es infinito y
 - *el conjunto* $\{k \in \mathbb{N} : a_k < \alpha \varepsilon\}$ *es finito.*
- (v) Es líminf $_{n\to\infty} a_n = +\infty$ si y solamente si para todo $K \in \mathbb{R}$
 - *el conjunto* $\{k \in \mathbb{N} : a_k < K\}$ *es finito.*
- (vi) Es líminf $_{n\to\infty} a_n = -\infty$ si y solamente si para todo $K \in \mathbb{R}$
 - *el conjunto* $\{k \in \mathbb{N} : a_k < K\}$ *es infinito.*

Demostración. Probaremos solamente las afirmaciones (*i*)–(*iii*), ya que las afirmaciones (*iv*)–(*vi*) pueden probarse de forma enteramente similar. Como siempre, para todo $n \ge 1$ ponemos $\mathcal{A}_n = \{a_m : m \ge n\}$.

(i) Supongamos primero que límsup $_{n\to\infty}$ $a_n=\alpha\in\mathbb{R}$ y sea $\varepsilon>0$. La sucesión $(a_n)_{n\geq 1}$ es entonces superiormente acotada, están definidos los números $A_n=\sup \mathscr{A}_n$ para todo $n\geq 1$, y es $\lim_{n\to\infty} A_n=\alpha$. En particular, existe $N\geq 1$ tal que

$$n \ge N \implies \alpha - \varepsilon < A_n < \alpha + \varepsilon.$$
 (2)

Si $n \ge N$, entonces como $a_n \in \mathscr{A}_n$, es $a_n \le \sup \mathscr{A}_n = A_n < \alpha + \varepsilon$, y esto nos dice que $\{k \in \mathbb{N} : a_k > \alpha + \varepsilon\} \subseteq \{1, \dots, N-1\}$: en particular, el conjunto $\{k \in \mathbb{N} : a_k > \alpha + \varepsilon\}$ es finito. Por otro lado, supongamos, para llegar a un absurdo, que el conjunto

$$C = \{k \in \mathbb{N} : a_k > \alpha - \varepsilon\}$$

es finito, de manera que podemos considerar el número $c=\max C$. Es claro que si n>c entonces $a_n\leq \alpha-\varepsilon$, así que $\alpha-\varepsilon$ es una cota superior para \mathscr{A}_n siempre que n>c y, en consecuencia, $A_n\leq \alpha-\varepsilon$ para todo n>c. Esta desigualdad y la implicación (2) nos dicen que $\alpha-\varepsilon< A_{N+c+1}\leq \alpha-\varepsilon$, y esto es por supuesto imposible. Esta contradicción prueba que el conjunto C debe ser infinito, como queríamos.

Probemos ahora la implicación recíproca. Sea $\varepsilon > 0$. Si $k \ge 1$, entonces \mathscr{A}_k y $\{a_k : a_k > \alpha - \varepsilon\}$ tienen intersección no vacía, porque $\{k \in \mathbb{N} : a_k > \alpha - \varepsilon\}$ es infinito por hipótesis: esto nos dice que $\alpha - \varepsilon$ no es una cota superior para \mathscr{A}_k y entonces que $A_k = \sup \mathscr{A}_k > \alpha - \varepsilon$; podemos concluir de esto que

$$\limsup_{n\to\infty}=\lim_{n\to\infty}A_n\geq\alpha-\varepsilon.$$

Por otro lado, como el conjunto $\{k \in \mathbb{N} : a_k > \alpha + \epsilon\}$ es finito, existe $N \ge 1$ tal que

$$n \geq N \implies a_n \leq \alpha + \varepsilon$$
,

y entonces, si $n \ge N$ el número $\alpha + \varepsilon$ es una cota superior para el conjunto \mathcal{A}_n , de manera que $A_n = \sup \mathcal{A}_n \le \alpha + \varepsilon$. Esto implica que

$$\limsup_{n\to\infty} a_n = \lim_{n\to\infty} A_n \le \alpha + \varepsilon.$$

Así, hemos probado que para todo $\varepsilon > 0$ es

$$\alpha - \varepsilon \leq \limsup_{n \to \infty} a_n \leq \alpha + \varepsilon$$
,

y esto solo es posible si, de hecho, límsup $_{n\to\infty} a_n = \alpha$. Esto es lo que queríamos probar.

(ii) Para cada $K \in \mathbb{R}$ sea $C_K = \{k \in \mathbb{N} : a_k > K\}$. Supongamos primero que límsup $_{n\to\infty} a_n = +\infty$, de manera que la sucesión $(a_n)_{n\geq 1}$ no es acotada superiormente. Sea $K \in \mathbb{R}$. Si el conjunto C_K fuese finito, entonces $\max\{K\} \cup \{a_k : k \in C_K\}$ sería una cota superior para $(a_n)_{n\geq 1}$, lo que es absurdo: esto implica que C_K es infinito.

Recíprocamente, supongamos que la sucesión $(a_n)_{n\geq 1}$ es tal que para todo $K\in\mathbb{R}$ el conjunto C_K es infinito. En particular, para todo $n\in\mathbb{N}$ existe $n_k\in C_n$, y entonces $a_{n_k}>n$. Esto claramente nos dice que $(a_n)_{n\geq 1}$ no está acotada superiormente y, en consecuencia que límsup $_{n\to\infty}a_n=+\infty$.

(iii) Otra vez, sea $C_K = \{k \in \mathbb{N} : a_k > K\}$ para cada $K \in \mathbb{R}$. Supongamos primero que límsup $_{n \to \infty} a_n = -\infty$, de manera que la sucesión $(a_n)_{n \ge 1}$ está acotada superiormente y la sucesión $(A_n)_{n \ge 1}$ con $A_n = \sup \mathscr{A}_n$ no está acotada inferiormente. Sea $K \in \mathbb{R}$. Como K no es una cota inferior para $(A_n)_{k \ge 1}$, existe $N \ge 1$ tal que sup $\mathscr{A}_N = A_N < K$: esto nos dice que $a_n < K$ para todo $n \ge N$, así que el conjunto C_K está contenido en $\{1, \ldots, N-1\}$ Y, en particular, es finito .

Recíprocamente, supongamos que para todo $K \in \mathbb{R}$ el conjunto C_K es cualquiera. Si $K \in \mathbb{R}$, el conjunto C_{K-1} es finito, así que existe $N \ge 1$ tal que $n \notin C_{K-1}$ para todo $n \ge N$, y entonces

$$n \ge N \implies a_n \le K - 1 < K$$
.

Esto nos dice que $\lim_{n\to\infty} a_n = -\infty$ y, de acuerdo a la Proposicion 1.3, esto implica que $\limsup_{n\to\infty} a_n = -\infty$.

1.5. Lema. Sean $(a_n)_{n\geq 1}$ y $(b_n)_{n\geq 1}$ dos sucesiones de números reales. Si $a_n\leq b_n$ para todo $n\geq 1$, entonces

$$\limsup_{n\to\infty} a_n \leq \limsup_{n\to\infty} b_n, \qquad \qquad \liminf_{n\to\infty} a_n \leq \liminf_{n\to\infty} b_n.$$

Demostración. Probemos la desigualdad de los límites superiores; la prueba de la otra es similar. Notemos que si límsup $_{n\to\infty} b_n = +\infty$ no hay nada que probar, así que podemos suponer que no es este el caso. Entonces la sucesión $(b_n)_{n\geq 1}$ es superiormente

acotada y, en consecuencia, también lo es la sucesión $(a_n)_{n\geq 1}$. Para cada $n\geq 1$ sean $\mathscr{A}_n=\{a_m:m\geq n\}$ y $\mathscr{B}_n=\{b_m:m\geq n\}$, y pongamos $A_n=\sup\mathscr{A}_n$ y $B_n=\sup B_n$.

Sea $n \ge 1$. Si $m \ge n$, entonces $a_m \le b_m \le B_n$, porque $b_m \in \mathcal{B}_n$, así que B_n es una cota superior para \mathcal{A}_n y entonces $A_n = \sup \mathcal{A}_n \le B_n$. Vemos así que

$$\limsup_{n\to\infty} a_n = \lim_{n\to\infty} A_n \le \lim_{n\to\infty} B_n = \limsup_{n\to\infty} b_n.$$

Esto prueba la afirmación de la proposición relativa a los límites superiores. Aquella referida a los límites inferiores puede probarse de manera similar.

1.6. Lema. $Si(a_n)_{n\geq 1}$ es una sucesión de números reales $y(a_{n_k})_{k\geq 1}$ es una subsucesión, entonces $\limsup_{n\to\infty}a_n\geq \limsup_{k\to\infty}a_{n_k}$ y $\liminf_{n\to\infty}a_n\leq \liminf_{k\to\infty}a_{n_k}$.

Demostración. Otra vez, probamos solamente la afirmación sobre los límites superiores. Si límsup_{$n\to\infty$} $a_n=+\infty$ no hay nada que probar, así que podemos suponer que no es este el caso, y entonces la sucesión $(a_n)_{n\geq 1}$ es superiormente acotada. Por supuesto, que la subsucesión $(a_{n_k})_{k>1}$ también lo es.

Si $n \ge 1$, sean $\mathscr{A}_n = \{a_m : m \ge n\}$ y $\mathscr{B}_n = \{a_{n_k} : k \ge n\}$, y sean $A_n = \sup \mathscr{A}_n$ y $B_n = \sup \mathscr{B}_n$; es entonces $\lim_{n \to \infty} A_n = \limsup_{n \to \infty} a_n$ y $\lim_{n \to \infty} B_n = \limsup_{n \to \infty} a_{n_k}$. Como la sucesión $(n_k)_{k \ge 1}$ es estrictamente creciente, es $n_k \ge k$ para todo $k \ge 1$, y entonces $\mathscr{A}_n \supseteq \mathscr{B}_n$ para todo $n \ge 1$, de manera que $A_n = \sup \mathscr{A}_n \ge \sup \mathscr{B}_n = B_n$. Esto implica que

$$\limsup_{n\to\infty} a_n = \lim_{n\to\infty} A_n \ge \lim_{n\to\infty} B_n = \limsup_{k\to\infty} a_{n_k},$$

que es lo que queríamos probar.

1.7. Lema. Una sucesión de números reales que no es acotada superiormente posee una subsucesión estrictamente creciente y no acotada superiormente.

Demostración. Sea $a=(a_n)_{n\geq 1}$ una sucesión de números reales que no es acotada superiormente. Para cada número real x escribamos $x^+=\max\{0,x\}$. Construimos inductivamente una sucesión $(n_k)_{k\geq 1}$ de enteros positivos de la siguiente manera:

- Como 0 no es una cota superior de la sucesión, existe $n_1 \ge 1$ tal que $0 < a_{n_1}$.
- Supongamos que $k \ge 1$ y que construimos el entero n_k . Como la sucesión $(a_n)_{n \ge 1}$ no es acotada, el número $\sum_{i=1}^{n_k} a_i^+$ no es una de sus cotas superiores y existe entonces $n_{k+1} \ge 1$ tal que $1 + \sum_{i=1}^{n_k} a_i^+ < a_{n_{k+1}}$.

Por construcción, la sucesión $(n_k)_{k\geq 1}$ es tal que $a_{n_k}>0$ y $1+\sum_{i=1}^{n_k}a_i^+< a_{n_{k+1}}$ para todo $k\geq 1$. Una simple inducción a partir de esto muestra, por un lado, que $(n_k)_{k\geq 1}$ es una sucesión estrictamente creciente, así que $(a_{n_k})_{k\geq 1}$ es una subsucesión de $(a_n)_{n\geq 1}$ y, por otro, que la sucesión $(a_{n_k})_{k\geq 1}$ es estrictamente creciente y que $a_{n_k}>k$ para todo $k\geq 1$: esto prueba el lema.

- **1.8. Proposición.** Sea $(a_n)_{n>1}$ una sucesión de números reales.
 - (i) Si $(a_{n_k})_{k\geq 1}$ es una subsucesión convergente de $(a_n)_{n\geq 1}$, entonces

$$\liminf_{n\to\infty} a_n \leq \lim_{k\to\infty} a_{n_k} \leq \limsup_{n\to\infty} a_n.$$

- (ii) Existe una subsucesión de $(a_n)_{n\geq 1}$ que converge a límsup $_{n\to\infty} a_n$.
- (iii) Existe una subsucesión de $(a_n)_{n\geq 1}$ que converge a límin $f_{n\to\infty}a_n$.

Demostración. Probaremos solamente las afirmaciones relativas al límite superior; las restantes, relativas al límite inferior, se prueban de manera similar.

(*i*) Si (a_{n_k}) es una subsucesión convergente de $(a_n)_{n\geq 1}$, entonces

$$\lim_{k\to\infty}a_{n_k}=\limsup_{k\to\infty}a_{n_k}\leq\limsup_{n\to\infty}a_n$$

en vista de la segunda parte de la Proposición 1.3 y de la Lema 1.6.

(ii) Si límsup $_{n\to\infty}$ $a_n=+\infty$, entonces la sucesión $(a_n)_{n\geq 1}$ es no acotada superiormente, así que el Lema 1.7 nos dice que posee una subsucesión $(a_{n_k})_{k\geq 1}$ estrictamente creciente y no acotada superiormente: entonces $\lim_{k\to\infty}a_{n_k}=+\infty$, que coincide con límsup $_{n\to\infty}a_n$.

Si límsup $_{n\to\infty}a_n=-\infty$, entonces necesariamente líminf $_{n\to\infty}a_n=-\infty$, de acuerdo a la Proposición 1.3, y entonces por esa misma proposición vemos que $\lim_{n\to\infty}a_n=-\infty$: como la sucesión $(a_n)_{n\geq 1}$ es una subsucesión de si misma, otra vez en este caso alcanzamos la conclusión que buscamos.

Nos queda entonces solamente considerar el caso en que $\alpha = \limsup_{n \to \infty} a_n$ es un número real. Para cada $n \ge 1$ sean $\mathscr{A}_n = \{a_m : m \ge n\}$ y $A_n = \sup \mathscr{A}_n$, de manera que $\alpha = \lim_{n \to \infty} A_n$. Esta última igualdad implica que para cada $k \ge 1$ existe $N_k \ge k$ tal que

$$n \ge N_k \implies \alpha - \frac{1}{k} < A_n < \alpha + \frac{1}{k}$$

Si $k \ge 1$, entonces esto nos dice que $\alpha - \frac{1}{k} < A_{N_k} < \alpha + \frac{1}{k}$ y, como $A_{N_k} = \sup \mathscr{A}_{N_k}$, vemos que existe $n_k \ge N_k$ tal que $\alpha - \frac{1}{k} < a_{n_k} < \alpha + \frac{1}{k}$. Es inmediato de esto que $\lim_{k \to \infty} a_{n_k} = \alpha$. Por otro lado, como $n_k \ge N_k \ge k$ para todo $k \ge 1$, la sucesión de enteros $(n_k)_{k \ge 1}$ no es acotada y entonces —de acuerdo al Lema 1.7— posee una subsucesión $(n_{k_i})_{i \ge 1}$ que es estrictamente creciente. Esto significa que $(a_{n_{k_i}})_{i \ge 1}$ es una subsucesión de $(a_n)_{n \ge 1}$; como es al mismo tiempo una subsucesión de $(a_{n_k})_{k \ge 1}$, su límite es α .

1.9. Corolario. Sea $(a_n)_{n\geq 1}$ una sucesión de números reales y sea $\mathscr L$ el conjunto de los límites de las subsucesiones convergentes de $(a_n)_{n\geq 1}$. Entonces el conjunto $\mathscr L$ es no vacío y acotado, y es límsup $_{n\to\infty}a_n=\max\mathscr L$ y líminf $_{n\to\infty}a_n=\min\mathscr L$.

Demostración. Esto es una consecuencia inmediata de la Proposición 1.8 □

1.3. Álgebra de límites

1.10. Proposición. $Si(a_n)_{n\geq 1}y(b_n)_{n\geq 1}$ son dos sucesiones acotadas de números reales, entonces la sucesión $(a_n+b_n)_{n\geq 1}$ es acotada, y

$$\begin{split} \liminf_{n \to \infty} a_n + \liminf_{n \to \infty} b_n & \leq \liminf_{n \to \infty} (a_n + b_n) \leq \liminf_{n \to \infty} a_n + \limsup_{n \to \infty} b_n \\ & \leq \limsup_{n \to \infty} (a_n + b_n) \leq \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n. \end{split}$$

Demostración. □

- **1.11.** Notemos que en general no valen las igualdades en la Proposición 1.10
- **1.12. Proposición.** Si $(a_n)_{n\geq 1}$ es una sucesión acotada de números reales $y \lambda \in \mathbb{R}$, entonces $(\lambda a_n)_{n\geq 1}$ es una sucesión acotada de números reales y
 - (i) $si \lambda \geq 0$, entonces

$$\limsup_{n\to\infty} \lambda a_n = \lambda \limsup_{n\to\infty} a_n, \qquad \qquad \liminf_{n\to\infty} \lambda a_n = \lambda \liminf_{n\to\infty} a_n;$$

(ii) $y si \lambda < 0$, entonces

$$\limsup_{n\to\infty}\lambda a_n=\lambda \liminf_{n\to\infty}a_n, \qquad \qquad \liminf_{n\to\infty}\lambda a_n=\lambda \limsup_{n\to\infty}a_n;$$

Demostración. □

1.13. Proposición. $Si(a_n)_{n\geq 1} y(b_n)_{n\geq 1}$ son dos sucesiones acotadas de números reales positivos, entonces la sucesión $(a_nb_n)_{n\geq 1}$ es acotada, y

$$\liminf_{n \to \infty} a_n \cdot \liminf_{n \to \infty} b_n \leq \liminf_{n \to \infty} a_n b_n \leq \liminf_{n \to \infty} a_n \cdot \limsup_{n \to \infty} b_n \\ \leq \limsup_{n \to \infty} a_n b_n \leq \limsup_{n \to \infty} a_n \cdot \limsup_{n \to \infty} b_n.$$

Demostración. □