

組込みシステムにおける モデルベース開発(MBD)技術者 のスキル標準

~事例: 自動車分野のMBD技術者に必要なスキル(ETSS-JMAAB)~

三菱電機(株)姫路製作所 制御機器第一製造部 山田元美

目次

- 0. JMAABとは
- 1. 背景と目的
- 2. 実施施策
- 3. ETSS-JMAABの説明
 - 3.1 ETSS-JMAAB
 - 3.2 スキル標準
 - 3.3 スキル基準
 - 3.4 キャリア基準
 - 3.5 補足説明
- 4. ETSS-JMAABの活用方法
- 5. まとめとお願い

0. JMAABとは

O-1. 名称·活動目的

JMAAB (Japan MATLAB Automotive Advisory Board)

国内自動車メーカーと、同自動車用制御装置サプライヤーの MATLABユーザー会

活動目的

- モデルベース開発(MBD)の推進、MBDプロセスの早期実現
- MATLAB®/Simulink®ベースでの設計・開発環境の発展
- 自動車メーカーとサプライヤーの境界を越えた効率的な開発 環境の実現

0-2. スローガン

活動内容

- MBD情報共有
- MAAB(MathWorks Automotive Advisory Board)への対応
- 開発元(The MathWorks)への要求
- サイバネットシステムへの要求

スローガン

開発環境構築は協調し、競争は製品で!

優れた環境でレベルの高い競争をしよう

O-3. JMAABの組織構成

ボードメンバー(9名)

大井(デンソー)、大畠(トヨタ自動車)、尾形(ミツバ)、片山(トヨタ自動車)、久保(アイシンAW) 嶋田(本田技術研究所)、進矢(マツダ)、鈴木(デンソー)、山中(日立製作所) 【50音順】

コアメンバー(20社)

アイシン精機、アイシンAW、アドヴィックス、いすゞ自動車、 ジヤトコ、スズキ、デンソー、トヨタ自動車、日産自動車、 日立製作所、富士重工、本田技術研究所、マツダ、 三菱電機、三菱自動車、ヤマハ発動機、三菱ふそう、 日産ディーゼル、ミツバ、Hyundai自動車

一般メンバー(1351名 389社: 2008年6月25日現在)

WEBでの登録ユーザ数。自動車業界をはじめ、エレクトロニクス、航空宇宙、精密機器、教育機関など、多数の業界からも登録

1. 背景と目的

1.1 MBDとは

「MATLAB®/ Simulink®をコアツールとした車両制御システムの開発」

1-2. MBDエンジニア育成活動の背景

- ■各社においては、MBD適用が普及しつつある。
- ■さらにMBDを普及、定着させるためには要員教育が課題と

認識

<各社の具体的認識課題>

- キャリアパスに沿った「将来」のイメージ作り
- 開発プロセスにおける「役割」の正確な理解
- 自身と上司 各々が思う「育成目標」のズレ
- 業界で通用する レベルか 否か 不明
- 関連技術の「何を」「どこまで」習得するかの指針
- 体系化された教育プログラムの 計画的な受講制度

MBDの優れたツールやモデル化手法などの技術もそれを 十分に取り扱える人材がいなければ成果を出すことができない。

✓JMAABでMBDエンジニア育成のWG活動を行う!

1-3. MBDエンジニア育成の狙い

- トモデルベースの自動車制御システム開発において
- ▶自動車メーカーとサプライヤーの視点から
 - 図 モデリングやツールに関する知識、技術
 - 図 設計プロセスにおける活用手法
 - 図 マネージャ/技術リーダー/実務担当者を対象
- ▶共通課題を明らかにして
- ①共通指標となる認定レベルの制定
- ② MBDエンジニアに必要となる教育プログラムの企画

1-4. MBDエンジニア育成の目指す世界 J

2. 実施施策

2-1. ETSS-JMAABの具体化

ETSS(組込みスキル標準)をベースにした。

ETSS: Embedded Technology Skill Standardの略称でIPA/SECが策定公開

IPA/SEC:独立行政法人情報処理推進機構ソフトウェア・エンジニアリングセンター

2-2. その他教育カリキュラムについな//**JMF**

3. ETSS-JMAABの説明

3.1 ETSS-JMAAB

3.1-1. ETSS-JMAABの入手方法

3.1-2. ETSS-JMAAB 4種類の文書//// 🤳

3.2 スキル標準

3.2-1. スキル標準: 内容

はじめに

- 1. 背景
- 2. モデルベース開発 (MBD: Model Based Development) とは
- I. 概要
 - 1. 本ドキュメントの位置づけ
 - 2. 本ドキュメントの構成
 - 3. ETSS組込みスキル標準との関係
- II. ETSS-JMAABとは
 - 1. ETSS-JMAABの概要
 - 2. ETSS-JMAABの構成
 - 3. スキルレベルとキャリアレベルの考え方
 - 4. ETSS-JMAABに期待される効果
- 皿. 用語解説
 - 1. スキル、技術、キャリア
 - 2. 教育プログラム
 - 3. MBD

付録 ETSSとの関連

3.2-2. ETSS-JMAABフレームワーク JNRAB

3.3 スキル基準

3.3-1. スキル基準: 内容

I. 概要

- 1. MBDエンジニアスキル基準の概要
- 2. MBDエンジニアスキル基準の必要性
- 3. MBDエンジニアスキル基準で期待される効果
- 4. MBDエンジニアスキル基準では解決されない問題
- II. MBDエンジニアスキルフレームワーク
 - 1. 概要
 - 1.1. スキルの定義
 - 1.2. MBDエンジニアスキルフレームワークの構造
 - 2. MBDエンジニアスキルカテゴリの説明
 - 3. MBDエンジニアスキルレベルの定義
 - 3.1. MBDエンジニアスキルレベルの定義
 - 3.2. MBDエンジニアスキルレベルの説明
- Ⅲ. MBDエンジニアスキル基準
 - 1. MBDエンジニアスキルカテゴリ
 - 1.1. 技術要素スキルカテゴリ
 - 1.2. 開発技術スキルカテゴリ
 - 1.3. 管理技術スキルカテゴリ
 - 2. MBDエンジニアスキルの記述範囲
 - 3. 継続的な見直し

付録 ETSSとの関連

3.3-2. スキルの定義

3.3-3. スキルレベルの概念

レベル0:

レベル1:初心

内容を知らない

内容を知っている

出発点 4

3.3-4. スキル基準フレームワーク

	スキル粒度				スキルレベル					
スキル カテゴリ	第1 階層	第2 階層	第3 階層 (例)	説明	0	1 初心	2 初級	3 中級	4 上級	5 最上級
נואן אלנ				 を実現す 見するたる 				を組み込	むことか	 べできる。─_
開発 技術		 発技術 使って <i>△</i> 		 開発ツー きる。 	I ル名 I	, 称、△,	△:開発	プロセス	 名称 	
管理 技術	_	「 き理技術 使って∠ 「		 管理ツー 	·ル名	称、△∠	△:管理	プロセス	【 《名称─ —	

↑第3階層は、各企業で定義

3.3-5. 技術要素

第1階層		第2階層、 第3階層(例)		
1	通信	有線、無線、放送、インターネット CAN、GPS、車-局間通信、(車載ネットワーク)・・・		
2	マルチメデイア	音声、静止画、動画、統合 音声認識、データ処理、画像解析、画像認識・・・		
3	計測•制御	理化学系入出力、故障診断、デジタル信号 処理、計測処理、制御設計 故障モード分析、フーリエ変換、伝達関数・・・		
4	電子システムプラットフォー ム	プロセッサ、基本ソフトウェア、ハードウェア、 記録媒体、支援機能 パイプライン処理、リアルタイムOS、メディア、エ ミュレーション、シミュレーション・・・		

3.3-6. 開発技術定義の前提

物理

有線

無線

放送

JMAABでは、以下のように定義した。

取り扱い対象:車載電子制御システム

〇システム設計

車両全体における制御対象と

制御装置の機能分担および性能分担

〇以降のプロセス

:制御システムとして制御装置を取り扱う

動画

3.3-7. 開発技術

開発技術の第1階層=MBDプロセス

システム要求分析

システム設計

制御システム要求分析

制御システム設計

ソフトウェア要求分析

ソフトウェア方式設計

ソフトウェア詳細設計

キャリブレーション

システム適格性確認テスト

システム結合

ソフトウェア適格性確認テスト

ソフトウェア結合

ソフトウェアコード作成とテスト

3.3-8. 管理技術

第1階層		第2階層		
		1	統合マネジメント	
		2	スコープマネジメント	
		3	タイムマネジメント	
		4	コストマネジメント	
1	プロジェクトマネジメント	5	品質マネジメント	
		6	組織マネジメント	
		7	コミュニケーションマネジメント	
		8	リスクマネジメント	
	ETSSに同じ	9	調達マネジメント	
		1	開発プロセス設定	
		2	知財マネジメント	
2	開発プロセスマネージメント	3	開発環境マネジメント	
		4	構成管理•変更管理	

3.4 キャリア基準

3.4-1. キャリア基準: 内容

I. 概要

- 1. MBDエンジニアキャリア基準とは
 - 1.1. MBDエンジニアキャリア基準の概要
 - 1.2. MBDエンジニアキャリア基準の必要性
 - 1.3. MBDエンジニアキャリア基準の期待される効果
- 2. キャリア・フレームワーク
 - 2.1. 職種

2.2. キャリアレベル

Ⅱ. キャリア基準

1. 職種とキャリアレベル

- 2. 職種と責任及び役割の対応
- 3. 職種のスキルレベル点数付けに関する補足事項
- 4. 職種
 - 4.1. プロダクトマネージャ

4.2. プロジェクトマネージャ

4.3. ドメインスペシャリスト

4.4. システムアーキテクト

4.5. モデルエンジニア

- 4.6. 制御アーキテクト
- 4.7. ソフトウェアエンジニア(アプリケーション)
- 4.8. ソフトウェアエンジニア(プラットフォーム)
- 4.9. 適合エンジニア

4.10. テストエンジニア

4.11. ブリッジSE

- 4.12. 開発環境エンジニア
- 4.13. 開発プロセス改善スペシャリスト
- 4.14. QA スペシャリスト
- 5. 各職種に求められるスキルレベルマップ
 - 5.1. 技術要素スキルレベルマップ
 - 5.3. 管理技術スキルレベルマップ
- 5.2. 開発技術スキルレベルマップ
- 5.4. 知識カテゴリレベルマップ

付録 ETSSとの関連

3.4-2. 職種

職種	役割
プロダクトマネージャ	製品を市場に投入する責任者
プロジェクトマネージャ	プロジェクトを指揮・監督する責任者
ドメインスペシャリスト	特定の技術・製品分野について高度な知識と技術を有する
システムアーキテクト	システム要求仕様をまとめる
モデルエンジニア	システム要求仕様に基きモデル開発を行う
制御アーキテクト	システム要求仕様に基き制御機能の分析・配置を行う
ソフトウェアエンジニア(アプリ)	ソフトウェアの設計、実装、テストを行う
ソフトウェアエンジニア(プラット フォーム)	ソフトウェアの設計、実装、テストを行う
適合エンジニア	制御システムの全体最適化を行う
テストエンジニア	テストに関わる業務を担当する
ブリッジSE	組織的、地理的分散の調整作業を担当する
開発環境エンジニア	ツール、設備などの開発環境を担当する
開発プロセス改善スペシャリスト	開発プロセスをアセスメントし改善推進を担当する
QAスペシャリスト	プロエジェクトの全工程における品質向上を推進する

3.4-3. 職種と組織のイメージ

3.4-4. 職種と開発プロセスのイメージ// **JMFF**

3.4-5. キャリアレベルの定義

価値創造 への貢献

要求作業 役割) の達成

エントリレベル	ミドルレベル	ハイレベル		
		社内をリードする		
	経験を知識化し、業務の改善や後進育成の面で応用で			
独力ですべてできる		べてできる		
指導の下でできる				

3.4-6. キャリアとスキルのマッピング///

エントリレベル / ミドルレベル / ハイレベル													
→ + 11	スキノ	レ粒度		スキルレベル									
スキル カテゴリ 	第1階層	第2階層		基準 レベル帆		0	1	2	3	4	5		
++ 45-			I	n	n-m								
技術 _西		• • •	ı	O:	〇キャリア基準の								
要素			l		●職種								
BB 5%			ı	●キャリアレベル毎○スキル基準の●スキルカテゴリ毎●スキルレベル									
開発			ı										
技術 	•••		ı										
fr/r TITI	•••		I										
管理 _{tt} を			ı		を点数	枚付け	ナする) _o					
技術 			ı	n	n-m	n-m							

3.4-7. 点数付け

- ●「ベースライン」
 - それぞれの職種には、主として担う分野(技術領域)がある。この技術領域で必要とされるスキルに対して、JMAABが考える基本となる点数を示す。
- スキルレベルの点数の分布
 - ■「ベースライン」に対して、必要に応じてこのスキルレベルにしてもよいという 範囲をスキルレベルの点数の分布として示す。
- キャリアレベルによる上限

■ エントリレベル: スキルレベル2を上限とする

■ ミドルレベル: スキルレベル3、もしくはスキルレベル4を上限とする

■ ハイレベル: 制限なし

	第1階層		第2階層	エントリレベル							
				基準 レベル幅 0 1 2 3				4	5		
		1	要求の獲得と調整	1	0-2						
1	1 システム要求分析	2	システム分析と要求定義	1	0-2						
		3	システム分析と 要求定義のレビュー	1	1-2						

	ミドルレベル											
I	基準	レベル幅	0	1	2	3	4	5				
	1	1-3										
	1	1-3										
	2	2-3										

- ベースライン(基準の値)
 - スキルレベルの点数の分布(レベル幅の値)
- 該当キャリアレベルに存在しない点数(レベル外の値)

3.4-8. 制御アーキテクトの例

第1階層			第2階層									
	ZIZ-TA/A				基準	レベル幅	0	1	2	3	4	5
	1		1	要求の獲得と調整	1	1-2						
		システム要求分析	2	システム分析と要求定義	1	1-2						
			3	システム分析と 要求定義のレビュー	1	0-2						
	2	システム設計	1	ハードウェアとソフトウェア機能 および性能分担の決定	1	0-2						
		ンヘノム設計	2	実現可能性の検証と デザインビュー	1	0-2			ントリレベル 1 2 3 4 5			
	0.1	制御システム要求分析	1	制御仕様要求の獲得と調整	2	2				3 4 5		
		四岬ンハ / ム安小刀が		引御仕様分析と要求定義のレビュ-	2	2						
	4		1	制御システム機能分解	2	2						
		 4 制御システム設計 	2	制御仕様設計	2	2						
			3	制御仕様の検証とデザインレビュ-	2	2						

	ミドルレベル											
基準	レベル幅	0	1	2	3	4	5					
2	2-3											
2	2-3											
2	1–3											
1	1-3											
1	1-3											
3	3-4											
3	3-4											
3	3-4											
3	3-4											
3	3-4											

3.5 補足説明

3.5-1. 補足説明: 内容

- 1. 概要
 - 1.1. はじめに
 - 1.2. 用語補足
- 2. 自動車制御系MBD未経験者向けの教育プログラム
 - 2.1. 教育プログラム概要
 - 2.2. 事前履修研修項目
 - 2.3. 科目一覧
 - 2.4. 科目体系図
 - 2.5. シラバス(科目概要)_MBD概論
 - 2.6. シラバス(教育項目)_MBD概論
 - 2.7. シラバス(科目概要)_MBDプロセス演習
 - 2.8. シラバス(教育項目)_MBDプロセス演習
 - 2.9. 科目の実施形態
 - 2.10. 科目の教育レベル
- 3. 教育プログラムデザインの作業計画

3.5-2. カリキュラム(シラバス例)

科目名称	MBDプロセス演習	3 3							
科目の教育レベル	□知識のみ	■初級 □中級	□上級 □聶	是上級					
スキルカテゴリ	□技術要素 ■ □その他(■開発技術 □管	管理技術 □パ−	-ソナル ロビジ	ネス)				
概要		7ト型演習を通して	て、実践的に習得す	る。本科目におけ	とした一連のMBDプロセスを疑似る、MBD技術者とは上司の指導の)を想定する。				
受講対象者 (教育対象)	MBDに関する業務経験はないが、MBD業務のエンジニアとして就業を目指す人材。 ETSS-JMAABのキャリア基準で定義された、「ドメインスペシャリスト」、「システムアーキテクト」、「モデルエンジニア」、「制御アーキテクト」、「ソフトウェアエンジニア(アプリ)」、「ソフトウェアエンジニア(プラットフォーム)」、「適合エンジニア」、「テストエンジニア」のエントリレベルに必要とされる「開発技術」に関する知識やスキルの習得を目的とする人材。								
履修条件	事前に事前履修研修項目を実施していること。								
実施形態	□CBT □通信教育 □ワークショップ □実機演習 □0JT ■プロジェクト型演習 □その他()								
		テキスト							
	ハードウエア環境 LEGO Mindstorms NXT GT								
教材	ソフトウエア環境 OSEK MATLAB 7.4.0 (R2007a)ファミリ、Embedded Coder Robot NXT、LEJOS								
				ルガイドラインVer					
実施期間	標準日数:		2 日	開催日程					
天心舟间	1日あたりの研修時	間: 7.5 時	間	折 住口 在					
教育目標	ETSS-JMAABのキャリア基準で定義された、「ドメインスペシャリスト」、「システムアーキテクト」、「モデルエンジニア」、「制御アーキテクト」、「ソフトウェアエンジニア(アプリ)」、「ソフトウェアエンジニア(プラットフォーム)」、「適合エンジニア」、「テストエンジニア」のエントリレベルに必要とされる「開発技術」に関する知識やスキル。								
お女代用の	■研修成果の評価	画を実施							
教育成果の 評価方法	評価方法	□筆記試験 □実持	支試験 口口頭試問						
日下川川ノノム	計巡刀法	□認定試験の受験() ■その他(レポート・アンケート等)							

4. ETSS-JMAABの活用方法

4-1. 個人における活用

スキルアップ

- ●弱みを把握した上で教育のエントリ/自己啓発を行いスキルを 補強する。
- ●強みを現状担当業務または希望担当業務に有効活用する。

キャリアアップ

- ●将来どうなりたいか(アーキテクトorマネージャ)の希望と その妥当性を確認する。
- ●目標に向けたスキル向上を図る。

4-2. 企業における活用

゙ プロジェクトマネージメント │

- ●頭数ではなく、職種とレベルで編成可能
- ●プロジェクト毎ではなく、開発工程毎に人員のシフトが可能
- ●品質問題、日程遅延等のリスクマネージメントに利用可能

企業戦略

- ●MBD対応力の強み、弱みの把握が可能
- ●事業案件対応のため具体的な人材採用・育成計画が可能

5. まとめとお願い

5-1. まとめ

JMAAB MBDエンジニア育成WGにおいて、自動車メーカーとサプライヤーが、共同でETSS-JMAABを作成、公開しました。 今後、教育機関、教育ベンダ、企業等の専門家の方々と連携させて頂きながら、より質の高い技術者教育を目指していきたいと考えています。 是非趣旨をご理解頂き、ドキュメントの改訂や実際の

カリキュラム開発など、ご協力頂けると幸いです。色々な分野の方

からの種々のご意見もお待ちしています。

ご清聴ありがとうございました