PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

- (51) International Patent Classification 6: C07D 403/04, 401/04, 401/14, 405/14, 403/14, A01N 43/56, 43/54, 43/50, 43/40 // (C07D 403/04, 239:00, 231:00) (C07D 401/04, 231:00, 213:00)
- (11) International Publication Number:

WO 98/40379

- (43) International Publication Date: 17 September 1998 (17.09.98)

(21) International Application Number:

PCT/US98/04600

A1

(22) International Filing Date:

9 March 1998 (09.03.98)

(30) Priority Data:

60/039,544

11 March 1997 (11.03.97)

US

- (71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): SELBY, Thomas, P. [US/US]; 116 Hunter Court, Wilmington, DE 19808 (US).
- (74) Agent: GREGORY, Theodore, C.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, GW, HU, ID, IL, IS, IP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(54) Title: HETEROARYL AZOLE HERBICIDES

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 $(J-1)$
 R^{8}
 R^{4}
 $(J-2)$
 R^{5}
 R^{5}
 $(J-4)$
 R^{8}
 R^{8}
 R^{7}
 $(J-5)$

(57) Abstract

Compounds of Formula (I) and their N-oxides and agriculturally suitable salts, are disclosed which are useful for controlling undesired vegetation wherein J is (J-1), (J-2), (J-3), (J-4) or (J-5) and Q, W, X, Y, Z, and R^1 through R^8 are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula (I) and a method for controlling undesired vegetation which involves contacting the vegetation or its environment with an effective amount of a compound of Formula (I).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia '
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy `	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		•
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE HETEROARYL AZOLE HERBICIDES BACKGROUND OF THE INVENTION

This invention relates to certain heteroaryl azoles, their N-oxides, agriculturally suitable salts, compositions thereof, and methods of their use for controlling undesirable vegetation.

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, corn (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

WO 96/06096 discloses herbicidal substituted pyridines of the formula

$$Qa$$
 X Qb Qb

wherein, inter alia,

20

25

5

10

15

R¹, R², and R³ are each independently hydrogen, alkyl, alkoxy, cyano, nitro or halogen;

Qa is optionally substituted phenyl, pyrazolyl or pyridyl;

Ob is azolyl;

X is O, S or NR4; and

R⁴ is H or alkyl.

The heteroaryl azoles of the present invention are not disclosed in this publication.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I including all geometric and stereoisomers, N-oxides, and agriculturally suitable salts thereof, as well as agricultural compositions containing them and a method of their use for controlling undesirable vegetation:

wherein

5

10

15

20

J is

$$R^4$$
 , R^4 , R^4 , R^4 , R^5 , R^5 , R^5 , R^6 , R^7 , R^7

W is N or CR9;

X, Y and Z are independently N, CH or CR⁹, provided that only one of X, Y and Z is CR⁹;

Q is O, $S(O)_n$ or NR^{10} ;

R¹ and R² are independently H, halogen, cyano, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₂-C₄ alkoxyalkyl, C₃-C₅ dialkoxyalkyl, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkoxyalkyl, C₃-C₄ alkenyl, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, S(O)_nR⁸, C₂-C₄ alkylthioalkyl, C₂-C₄ alkylsulfonylalkyl, C₁-C₄ alkylamino or C₂-C₄ dialkylamino;

R³ is H, halogen, cyano, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl, C₂-C₄ alkoxyalkyl, C₃-C₄ alkenyl, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy or S(O)_nR⁸;

 R^4 is halogen, cyano, SF_5 , C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_nR^8$;

10

15

20

25

30

. 35

 R^5 is H, halogen, cyano, SF_5 , C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_nR^8$;

 R^6 is H, halogen, cyano, SF_5 , C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_n R^8$;

 R^7 is halogen, cyano, SF_5 , C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_n R^8$;

each R⁸ is independently C₁-C₄ alkyl or C₁-C₄ haloalkyl;

each R⁹ is independently halogen, cyano, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkoxyalkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, C₃-C₄ alkynyloxy or S(O)_nR⁸;

 R^{10} is H, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl; and each n is independently 0, 1 or 2.

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. The term "1-2 alkyl" indicates that one or two of the available positions for that substituent may be alkyl which are independently selected. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH₃OCH₂, CH₃OCH₂CH₂, CH₃CH₂OCH₂, CH₃CH₂CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. "Alkenyloxy" includes straight-chain or branched alkenyloxy moieties. Examples of "alkenyloxy" include H₂C=CHCH₂O, (CH₃)₂C=CHCH₂O, (CH₃)CH=CHCH₂O, (CH₃)CH=C(CH₃)CH₂O and CH₂=CHCH₂CH₂O. "Alkynyloxy" includes straight-chain or branched alkynyloxy moieties. Examples of "alkynyloxy" include HC≡CCH₂O, CH₃C≡CCH₂O and CH₃C≡CCH₂CH₂O. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Alkylthioalkyl" denotes alkylthio substitution on alkyl. Examples of "alkylthioalkyl" include CH3SCH2, CH3SCH2CH2, CH3CH2SCH2, CH₂CH₂CH₂CH₂SCH₂ and CH₃CH₂SCH₂CH₂. "Alkylthioalkoxy" denotes alkylthio substitution on alkoxy. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH₃S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), (CH₃)₂CHS(O) and the different butylsulfinyl, pentylsulfinyl and hexylsulfinyl isomers. Examples of "alkylsulfonyl" include CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂,

10

15

20

25

30

35

(CH₃)₂CHS(O)₂ and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. "Cyanoalkyl" denotes an alkyl group substituted with one cyano group. Examples of "cyanoalkyl" include NCCH₂, NCCH₂CH₂ and CH₃CH(CN)CH₂. "Alkylamino", "dialkylamino", "alkenylsulfinyl", "alkenylsulfonyl", "alkynylsulfonyl", "alkynylsulfonyl", and the like, are defined analogously to the above examples.

One skilled in the art will appreciate that not all nitrogen containing heterocycles can form N-oxides since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those nitrogen containing heterocycles which can form N-oxides. One skilled in the art will also recognize that tertiary amines can form N-oxides. Synthetic methods for the preparation of N-oxides of heterocycles and tertiary amines are very well known by one skilled in the art including the oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as t-butyl hydroperoxide, sodium perborate, and dioxiranes such as dimethyldioxirane. These methods for the preparation of N-oxides have been extensively described and reviewed in the literature, see for example: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149-161, A. R. Katritzky, Ed., Academic Press; M. Tisler and B. Stanovnik in Advances in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds., Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. The term "1-2 halogen" indicates that one or two of the available positions for that substituent may be halogen which are independently selected. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F₃C, ClCH₂, CF₃CH₂ and CF₃CCl₂. The terms "haloalkenyl", "haloalkynyl", "haloalkoxy", "haloalkylthio", and the like, are defined analogously to the term "haloalkyl". Examples of "haloalkenyl" include (Cl)₂C=CHCH₂ and CF₃CH₂CH=CHCH₂. Examples of "haloalkynyl" include HC=CCHCl, CF₃C=C, CCl₃C=C and FCH₂C=CCH₂. Examples of "haloalkynyl" include CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O and CF₃CH₂O. Examples of "haloalkylthio" include CCl₃S, CF₃S, CCl₃CH₂S and ClCH₂CH₂CH₂S. Examples of "haloalkylsulfinyl" include CF₃S(O), CCl₃S(O), CCl₃S(O), CF₃CH₂S(O) and CF₃CF₂S(O). Examples of "haloalkylsulfonyl" include CF₃S(O)₂, CCl₃S(O)₂, CF₃CH₂S(O)₂ and CF₃CF₂S(O)₂. Examples of "haloalkoxyalkoxy" include

10

15

20

25

30

35

CF₃OCH₂O, ClCH₂CH₂OCH₂CH₂O, Cl₃CCH₂OCH₂O as well as branched alkyl derivatives.

The total number of carbon atoms in a substituent group is indicated by the "C_i-C_j" prefix where i and j are numbers from 1 to 5. For example, C₁-C₃ alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C₂ alkoxyalkyl designates CH₃OCH₂; C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃), CH₃OCH₂CH₂ or CH₃CH₂OCH₂; and C₄ alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH₃CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. Examples of "alkylcarbonyl" include C(O)CH₃, C(O)CH₂CH₂CH₃ and C(O)CH(CH₃)₂. Examples of "alkoxycarbonyl" include CH₃OC(=O), CH₃CH₂OC(=O), CH₃CH₂CC(=O), (CH₃)₂CHOC(=O) and the different butoxy- or pentoxycarbonyl isomers. In the above recitations, when a compound of Formula I is comprised of one or more heterocyclic rings, all substituents are attached to these rings through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can exceed 1, said substituents (when they exceed 1) are independently selected from the group of defined substituents. Further, when the subscript indicates a range, e.g. $(R)_{i-j}$, then the number of substituents may be selected from the integers between i and j inclusive.

When a group contains a substituent which can be hydrogen, for example R¹⁰, then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

The compounds of this invention thus include compounds of Formula I, geometric and stereoisomers thereof, N-oxides thereof, and agriculturally suitable salts thereof. The compound of the invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. The salts of the compounds of the invention also include those formed with organic bases (e.g., pyridine, ammonia, or triethylamine) or inorganic

10

25

35

bases (e.g., hydrides, hydroxides, or carbonates of sodium, potassium, lithium, calcium, magnesium or barium) when the compound contains an acidic group such as a carboxylic acid or phenol.

Preferred compounds of the invention for reasons of better activity and/or ease of synthesis are:

Preferred 1. Compounds of Formula I above, geometric and stereoisomers thereof, N-oxides thereof, and agriculturally-suitable salts thereof, wherein:

Q is O;

 R^1 and R^2 are independently H, C_1 - C_4 alkyl or C_1 - C_4 alkoxy; and R^3 is halogen, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 haloalkylthio.

Preferred 2. Compounds of Preferred 1 wherein:

W is N:

Y is CR9; and

R⁵ is H.

15 Preferred 3. Compounds of Preferred 2 wherein:

R² is H: and

each R^4 is independently halogen, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 haloalkylthio.

Most preferred are compounds of Formula I above selected from the group:

- 20 (a) 5-methyl-4-[3-(trifluoromethyl)phenoxy]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine;
 - (b) 4-[3-(trifluoromethyl)phenoxy]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine;
 - (c) 5-methyl-4-[3-(trifluoromethoxy)phenoxy]-2-[4-(trifluoromethyl)-1*H*-imidazol-1-yl]pyrimidine;
 - (d) 5-methyl-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]-4-[[6-(trifluoromethyl)-2-pyridinyl]oxy]pyrimidine;
 - (e) 5-methyl-4-[3-(trifluoromethyl)phenoxy]-2-[3-(trifluoromethyl)-1H-1,2,4-triazol-1-yl]pyrimidine;
- 30 (f) 5-methyl-2-[4-(trifluoromethyl)-1*H*-imidazol-1-yl]-4-[3-(trifluoromethyl)phenoxy]pyrimidine;
 - (g) 5-ethyl-4-[3-(trifluoromethyl)phenoxy]-2-[3-(trifluoromethyl)-1H-pyrazol-1-yl]pyrimidine;
 - (h) 5-ethyl-4-[3-(trifluoromethoxy)phenoxy]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine;
 - (i) 5-ethyl-2-[4-(trifluoromethyl)-1*H*-imidazol-1-yl]-4-[3-(trifluoromethyl)phenoxy]pyrimidine; and

10

15

20

(j) 5-ethyl-4-[3-(trifluoromethoxy)phenoxy]-2-[4-(trifluoromethyl)-1*H*-imidazol-1-yl]pyrimidine.

This invention also relates to herbicidal compositions comprising herbicidally effective amounts of the compounds of the invention and at least one of a surfactant, a solid diluent or a liquid diluent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

DETAILS OF THE INVENTION

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-5. The definitions of J, Q, W, X, Y, Z, R¹, R² and R³ in the compounds of Formulae 1-4 below are as defined above in the Summary of the Invention.

Scheme 1 illustrates the preparation of compounds of Formula I wherein compounds of Formula 1 are allowed to react with compounds of Formula 2 and a suitable base such as potassium carbonate, potassium hydroxide or sodium hydride in a solvent such as *N,N*-dimethylformamide, acetonitrile, or tetrahydrofuran at temperatures ranging from 0 °C to 130 °C.

Scheme 1

L1 is a leaving group such as halogen or methylsulfonyl

Heterocycles of Formula 1 where L¹ is halogen can be prepared by reacting pyridines or pyrimidines of Formula 3 with azoles of Formula 4 in the presence of a base such as potassium carbonate, potassium hydroxide or sodium hydride in a solvent such as N,N-dimethylformamide, acetonitrile, or tetrahydrofuran at temperatures ranging from 0 °C to 130 °C (Scheme 2). This condensation generally gives rise to mixtures of products of Formula 1 and 1a which can be separated by silica gel chromatography.

1

. 8

Scheme 2

LI and L2 are halogen

As shown in Scheme 3, heterocycles of Formula 1 where L¹ is methylsulfonyl can be prepared from compounds of Formula 5 by oxidation with m-chloroperoxybenzoic acid in a halogenated solvent such as dichloromethane or with Oxone[®] (potassium peroxymonosulfate) in an alcohol solvent such as methanol at temperatures ranging from 0 °C to 60 °C. This type of oxidation reaction is well known in the art; for example, see

March, J. Advanced Organic Chemistry; John Wiley: New York, 1992; 4th edition, pp 1201-1203.

Scheme 3

15

20

Scheme 4 illustrates the preparation of compounds of Formula 5 wherein compounds of Formula 6 (where L^2 is halogen) are allowed to react with compounds of Formula 4 and a suitable base such as potassium carbonate, potassium hydroxide or sodium hydride in a solvent such as N_*N -dimethylformamide or acetonitrile at temperatures ranging from 0 °C to 130 °C.

Scheme 4

$$R^{1}$$
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{3}

(wherein L² is halogen)

Compounds of Formula 6 can be readily prepared by reaction of compounds of Formula 3 with the sodium or potassium salt of methyl mercaptan in a solvent such as tetrahydrofuran or dioxane at temperatures ranging from 0 °C to 80 °C.

Scheme 5

10

15

20

25

30

Dihaloheterocycles of Formula 3 can be obtained commercially or are readily prepared by known methods in the art; for example, see *Advances in Heterocyclic Chemistry*; Katritzky, A.R., Ed.; Academic Press: New York, 1993, volume 58, pp 301-305; *Heterocyclic Compounds*; Elderfield, R.C., Ed.; John Wiley: New York, 1957; volume 6, chapter 7, pp 265-270.

Compounds of Formula 4 can be obtained commercially or can be prepared by methods that are known in the art; for examples, see Elguero, J. et al. Organic Preparations and Procedures Int. (1995), 27, pp 33-74; Comprehensive Heterocyclic Chemistry; Potts, K., Ed.; Pergamon Press: New York, 1984; volume 5, chapters 4.04 - 4.13; Heterocyclic Compounds; Elderfield, R., Ed.; John Wiley: New York, 1957; volume 5, chapters 2 and 4; and Baldwin, J. et al. J. Med. Chem. (1975), 18, pp 895-900; Evans, J.J. et al. U.S. Patent 4,038,405 (1977).

As described for the oxidation above, compounds of Formula I wherein Q is $S(O)_n$ and n is 1 or 2 can be prepared from compounds of Formula I wherein Q is $S(O)_n$ and n is 0 by treatment with an oxidizing reagent such as m-chloroperoxybenzoic acid or Oxone® (potassium peroxymonosulfate).

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection

15

20

25

30

35

sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. 1 H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dt = doublet

EXAMPLE 1

Step A: Preparation of 2-bromo-6-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyridine

A mixture of 2,6-dibromopyridine (3.5 g, 22 mmol), 3-(trifluoromethyl)-1*H*-pyrazole

2.0 g, 15 mmol) and potassium carbonate (4.0 g, 29 mmol) was heated in 25 mL of *N*,*N*dimethylformamide at 90 °C for 3 h. The reaction mixture was partitioned between ethyl
acetate and water. The separated organic layer was washed twice with brine, dried over
magnesium sulfate, and evaporated under reduced pressure to give an oily residue which was
purified by flash chromatography on silica gel (50:1 to 20:1 hexane/ethyl acetate) to yield

1.2 g of the title compound of Step A as a white solid melting at 55-56 °C. ¹H NMR
(CDCl₃): δ 6.73 (d, 1H), 7.45 (d, 1H), 7.71 (t, 1H), 7.97 (d, 1H), 8.60 (d, 1H).

Step B: Preparation of 2-[3-(trifluoromethyl)phenoxy]-6-[3-(trifluoromethyl)-1*H*-

A mixture of the title compound of Step A (0.9 g, 3.1 mmol), 3-trifluoromethylphenol (0.7 g, 4.3 mmol) and potassium carbonate (0.9 g, 6.5 mmol) was heated in 15 mL of N,N-dimethylformamide at 110-120 °C for 7 h. The reaction mixture was then partitioned between ethyl acetate and water. The separated organic layer was washed

pyrazol-1-yl]pyridine

10

15

20

25

30

35

with water and brine, dried over magnesium sulfate, and evaporated under reduced pressure to give an oily residue. Purification by flash chromatography on silica gel (40:1 hexane/ethyl acetate) afforded 1.1 g of the title compound of Step B, a compound of this invention, as a white solid melting at 53-55 °C. ¹H NMR (CDCl₃): δ 6.60 (d, 1H), 6.92 (d, 1H), 7.36 (d, 1H), 7.43-7.60 (m, 3H), 7.73 (d, 1H), 7.88 (t, 1H), 8.12 (d, 1H).

EXAMPLE 2

A mixture of 2,4-dichloro-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine
A mixture of 2,4-dichloropyrimidine (3.0·g, 20 mmol), 3-(trifluoromethyl)-1*H*pyrazole (2.5 g, 18 mmol) and potassium carbonate (5.0 g, 36 mmol) was stirred in 25 mL of *N*,*N*-dimethylformamide at room temperature overnight. The reaction mixture was
partitioned between ethyl acetate and water. The separated organic layer was washed twice
with brine, dried over magnesium sulfate, and evaporated under reduced pressure to a crude
solid. Flash chromatography on silica gel (50:1 to 25:1 to 10:1 to 3:1 hexane/ethyl acetate)
afforded 0.5 g of the title compound of Step A as a solid melting at 123-125 °C and 2.3 g of
the isomer 2-chloro-6-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine as a solid melting at
111-112 °C. ¹H NMR (CDCl₃): δ 6.77 (d, 1H), 7.35 (d, 1H), 8.65 (d, 1H), 8.70 (d, 1H).

Step B:

Preparation of 4-[3-(trifluoromethyl)phenoxy]-2-[3-(trifluoromethyl)-1*H*pyrazol-1-yl]pyrimidine

A mixture of the title compound of Step A (0.5 g, 2 mmol), 3-trifluoromethylphenol (0.4 g, 2.5 mmol) and potassium carbonate (0.5 g, 3.6 mmol) was stirred in 10 mL of N,N-dimethylformamide at room temperature overnight. The reaction mixture was partitioned between ethyl acetate and water. The separated organic layer was washed twice with brine, dried over magnesium sulfate, and evaporated under reduced pressure to give an oily residue. Flash chromatography on silica gel (5:1 to 3:1 hexane/ethyl acetate) afforded 0.3 g of the title compound of Step B, a compound of this invention, as a white solid, melting at 72-73 °C. ¹H NMR (CDCl₃): δ 6.65 (d, 1H), 6.91 (d, 1H), 7.40-7.65 (m, 4H), 8.22 (d, 1H), 8.71 (d, 1H).

EXAMPLE 3

Step A: Preparation of 2-chloro-5-methyl-4-methylthiopyrimidine

To a solution of 2,4-dichloro-5-methylpyrimidine (10.0 g, 61 mmol) stirring in 200 mL of tetrahydrofuran was added sodium thiomethoxide (5.0 g, 71 mmol) and the mixture stirred at room temperature overnight. The reaction mixture was partitioned between 200 mL of ethyl acetate and 200 mL of water. The separated organic layer was washed twice with water and brine, dried over magnesium sulfate, and evaporated under reduced pressure to give a white solid which was suspended in a minimal amount of hexanes and filtered. Additional solid was filtered from the filtrate several times and all of the crops were combined to give 9.3 g of the title compound of Step A as a solid melting at 75-77 °C. ¹H NMR (CDCl₃): δ 8.02 (s,1H), 2.60 (s, 3H) 2.17 (s, 3H).

10

15

20

30

35

Step B: Preparation of 5-methyl-4-methylthio-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine

A mixture of 2-chloro-5-methyl-4-methylthiopyrimidine (2.5 g, 14 mmol), 3-(trifluoromethyl)-1*H*-pyrazole (2.3 g, 2.5 mmol) and potassium carbonate (4.8 g, 35 mmol) in 25 mL of *N*,*N*-dimethylformamide was heated at 70 °C with stirring for 5 hours. The reaction mixture was then partitioned between ethyl acetate and water. The organic layer was separated, washed twice with water and brine and dried over magnesium sulfate. The solvent was removed under reduced pressure to provide a white solid which was suspended in hexane and filtered to provide 2.4 g of the title compound of Step B as a solid melting at 126-127 °C. ¹H NMR (CDCl₃): δ 8.63 (d,1H), 8.24 (s, 1H), 6.73 (d, 1H), 2.68 (s, 3H) 2.25 (s, 3H).

Step C: Preparation of 5-methyl-4-(methylsulfonyl)-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine

To a solution of 5-methyl-4-methylthio-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine (2.4 g, 9 mmol) stirred in 40 mL of dichloromethane was added *m*-chloroperoxybenzoic acid (5 g, 57-86%). A solid gradually precipitated and the white slurry stirred overnight at room temperature. The reaction mixture was filtered and the filtrate evaporated under reduced pressure to give a residue which was dissolved in 130 mL of diethyl ether. After washing twice with aqueous sodium bisulfite, three times with aqueous sodium bicarbonate and brine, the organic layer was dried over magnesium sulfate. The solvent was removed under reduced pressure to give a white solid which was suspended in hexane and filtered to give 2.4 g of the title compound of Step C as a solid melting at 129-131 °C. ¹H NMR (CDCl₃): δ 8.87 (s,1H), 8.57 (d, 1H), 6.79 (d, 1H), 3.49 (s, 3H) 2.73 (s, 3H).

25 <u>Step D:</u> <u>Preparation of 5-methyl-4-[3-(trifluoromethyl)phenoxy]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine</u>

A mixture of 5-methyl-4-methylsulfonyl-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine (0.3 g, 1 mmol), 3-trifluoromethylphenol (0.2 mL, 1.3 mmol) and potassium carbonate (0.3 g, 2 mmol) in 10 mL of *N*,*N*-dimethylformamide was stirred at room temperature overnight. The reaction mixture was partitioned between ethyl acetate and water. The organic layer was separated and washed with water, saturated aqueous sodium bicarbonate and brine. After drying over magnesium sulfate, the solvent was removed under reduced pressure to give an oily residue. Purification by flash chromatography on silica gel (5:1 followed by 3:1 hexane/ethyl acetate) afforded 150 mg of the title compound of Step D, a compound of this invention, as a white solid melting at 113-115 °C. ¹H NMR (CDCl₃): 8 8.53 (s,1H), 8.07 (d, 1H), 7.65-7.58 (m, 2H), 7.57 (s, 1H), 7.47-7.40 (m, 1H), 6.61 (d, 1H), 2.48 (s, 3H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 5 can be prepared.

$$R^1$$
 W
 X
 X
 X
 Y
 Z
 Z
 Z

		<u>w</u>	herein X is	N and Y and 2	zare (<u>CH</u>				
$\underline{\mathbf{w}}$	<u>R1</u>	<u>R3</u>	<u>R</u> 4	W		<u>R</u> 1	<u>R</u> :	3	<u>R</u>	<u>4</u>
CH	H	CF ₃	3-CF ₃	N	Cl	H ₂ CH ₃	CF	·3	3-C	F3
CH	н	CF ₃	3-OCF ₃	N	CI	H ₂ CH ₃	CF	. 3	3-00	CF ₃
CH	H	CF ₃	3-SCF ₃	N	CI	H ₂ CH ₃	CF	3	3-SC	F ₃
CH	H	CF ₃	3-OCHF ₂	N	CI	H ₂ CH ₃	CF	3	3-OC	HF2
CH	H	CF ₃	3-SCHF ₂	N	CI	H ₂ CH ₃	CF	3	3-SC	HF ₂
CH	H	CF ₃	3-C1	N	CI	H ₂ CH ₃	CF	3	3-0	C1
СН	H	OCHF ₂	3-CF ₃	N	CI	H ₂ CH ₃	OCH	IF ₂	3-C	F3
CH	H	OCHF ₂	3-OCF ₃	N	CI	H ₂ CH ₃	OCH	IF ₂	3-00	CF3
CH	H	OCHF ₂	3-SCF ₃	N	CI	H ₂ CH ₃	OCH	IF ₂	3-SC	F ₃
CH	H	OCHF ₂	3-OCHF ₂	N	CI	I ₂ CH ₃	OCH	IF ₂	3-OC	HF ₂
CH	H	OCHF ₂	3-SCHF ₂	N	CI	H ₂ CH ₃	OCH	IF ₂	3-SC	HF ₂
СН	H	OCHF ₂	3-C1	N	CF	H ₂ CH ₃	OCH	IF ₂	3-0	C1
CH	Н	SCHF ₂	3-CF ₃	N	CF	I ₂ CH ₃	SCH	F ₂	3-C	F3
CH	H	SCHF ₂	3-OCF ₃	N	CI	H ₂ CH ₃	SCH	F ₂	3-00	F ₃
CH	H	SCHF ₂	3-SCF ₃	N	CF	H ₂ CH ₃	SCH	F ₂	3-SC	F ₃
CH	H	SCHF ₂	3-OCHF ₂	N	CH	I ₂ CH ₃	SCH	F ₂	3-OC	HF ₂
CH	H	SCHF ₂	3-SCHF ₂	N	CF	H ₂ CH ₃	SCH	$\mathbf{F_2}$	3-SCI	FF ₂
CH	H	SCHF ₂	3-C1	N	CF	H ₂ CH ₃	SCH	F ₂	3-0	21
CH	Н	OCF ₃	3-CF ₃	N	CF	I ₂ CH ₃	OCI	F3	3-C	F ₃
CH	Н	OCF ₃	3-OCF ₃	Ŋ	CF	I ₂ CH ₃	OCI	F3	3-00	F ₃
CH	н	OCF ₃	3-SCF ₃	N	CI	I ₂ CH ₃	OCI	⁷ 3	3-SC	F ₃
CH	H	OCF ₃	3-OCHF ₂ .	. N	CH	I ₂ CH ₃	OCI	⁷ 3	3-OCI	HF ₂
CH	H	OCF ₃	3-SCHF ₂	N	CF	I ₂ CH ₃	OCI	-3	3-SCI	IF ₂
CH	H	OCF ₃	3-C1	Ŋ	CH	I ₂ CH ₃	OCI	⁷ 3	3-0	1
CH	H	SCF ₃	3-CF ₃	N	CH	I ₂ CH ₃	SCF	² 3	3-C1	F3
CH	H	SCF ₃	3-OCF ₃	N	CF	I ₂ CH ₃	SCF	3	3-00	F3

			•			•	
CH	H	SCF ₃	3-SCF ₃	·N	CH ₂ CH ₃	SCF ₃	3-SCF ₃
СН	H	SCF ₃	3-OCHF ₂	$\cdot N$	CH ₂ CH ₃	SCF ₃	3-OCHF ₂
СН	H	SCF ₃	3-SCHF ₂	N	CH ₂ CH ₃	SCF ₃	3-SCHF ₂
СН	H	SCF ₃	3-Cl	N	СН ₂ СН ₃	SCF ₃	3-C1
СН	H	Cl	3-CF ₃	N	CH ₂ CH ₃	Cl	3-CF ₃
CH	H	Cl	3-OCF ₃	N .	CH ₂ CH ₃	Cl	3-OCF ₃
CH	H	Cl	3-SCF ₃	N	CH ₂ CH ₃	Cl	3-SCF ₃
CH	н	C1	3-OCHF ₂	N	CH ₂ CH ₃	Cl	3-OCHF ₂
CH	H	Cl	3-SCHF ₂	N	CH ₂ CH ₃	Cl	3-SCHF ₂
CH	H	Cl	3-C1	N	CH ₂ CH ₃	Cl	3-Cl
CH	CH ₃	CF ₃	3-CF ₃	N	CH ₃	.CF ₃	3-CF ₃
CH	CH ₃	CF ₃	3-OCF ₃	N	CH ₃	CF ₃	3-OCF ₃
CH	CH ₃	CF ₃	3-SCF ₃	N	CH ₃	CF ₃	3-SCF ₃
CH	CH ₃	CF ₃	3-OCHF ₂	N	CH ₃	CF ₃	3-OCHF ₂
CH	CH ₃	CF ₃	3-SCHF ₂	И	CH ₃	CF ₃	3-SCHF ₂
CH	CH ₃	CF ₃	3-C1	N	CH ₃	CF ₃	3-Cl
CH	CH ₃	OCHF ₂	3-CF ₃	N	CH ₃	OCHF ₂	3-CF ₃
CH	CH ₃	OCHF ₂	3-OCF ₃	N	CH ₃	OCHF ₂	3-OCF ₃
CH	CH ₃	OCHF ₂	3-SCF ₃	N	CH ₃	OCHF ₂	3-SCF ₃
CH	CH ₃	OCHF ₂	3-OCHF ₂	N	CH ₃	OCHF ₂	3-OCHF ₂
CH	CH ₃	OCHF ₂	3-SCHF ₂	N	CH ₃	OCHF ₂	3-SCHF ₂
CH	CH ₃	OCHF ₂	3-C1	Ŋ	CH ₃	OCHF ₂	3-Cl
CH	CH ₃	SCHF ₂	3-CF ₃	N	CH ₃	SCHF ₂	3-CF ₃
CH	CH ₃	SCHF ₂	3-OCF ₃	N	CH ₃	SCHF ₂	3-OCF ₃
CH	CH ₃	SCHF ₂	3-SCF ₃	N	CH ₃	SCHF ₂	3-SCF ₃
CH	CH ₃	SCHF ₂	3-OCHF ₂	N	CH ₃	SCHF ₂	3-OCHF ₂
CH	CH ₃	SCHF ₂	3-SCHF ₂	N	CH ₃	SCHF ₂	3-SCHF ₂
CH	CH ₃	SCHF ₂	3-Cl	N	CH ₃	SCHF2	3-C1 (
CH	CH ₃	OCF ₃	3-CF ₃	N	CH ₃	OCF ₃	3-CF ₃
CH	CH ₃	OCF ₃	3-OCF ₃	N	CH ₃	OCF ₃	3-OCF ₃
CH	CH ₃	OCF ₃	3-SCF ₃	N	CH ₃	OCF ₃	3-SCF ₃
CH	CH ₃	OCF ₃	3-OCHF ₂	N	CH ₃	OCF ₃	3-OCHF ₂
CH	CH ₃	OCF ₃	3-SCHF ₂	N	CH ₃	OCF ₃	3-SCHF ₂
CH	CH ₃	OCF ₃	3-Cl	N	CH ₃	OCF ₃	3-Cl
CH	CH ₃	SCF ₃	3-CF ₃	N	CH ₃	SCF ₃	3-CF ₃
CH	CH ₃	SCF ₃	3-OCF ₃	N	CH ₃	SCF ₃	3-OCF ₃
CH	CH ₃	SCF ₃	3-SCF ₃	N	CH ₃	SCF ₃	3-SCF ₃
CH	CH ₃	SCF ₃	3-OCHF ₂	N	CH ₃	SCF ₃	3-0CHF ₂

ĊН	CH ₃	SCF ₃	3-SCHF ₂	'n	CH ₃	SCF ₃	3-SCHF ₂
СН	CH ₃	SCF ₃	3-C1	N	CH ₃	SCF ₃	3-C1
СН	CH ₃	Cl	3-CF ₃	N	CH ₃	Cl	3-CF ₃
CH	CH ₃	Cl	3-OCF ₃	Ņ	CH ₃	Cl	3-OCF ₃
СН	CH ₃	Cl	3-SCF ₃	N	CH ₃	Cl ,	3-SCF ₃
СН	CH ₃	Cl	3-OCHF ₂	N	CH ₃	Cl	3-OCHF ₂
CH	CH ₃	Cl	3-SCHF ₂	N	СН3	C1	3-SCHF ₂
СН	CH ₃	Cl	3-Cl	N	CH ₃	Cl	3-Cl-
CH	OCH ₃	CF ₃	3-CF ₃	N-	OCH ₃	CF ₃	3-CF ₃
СН	осн3	CF ₃	3-OCF3	N	OCH ₃	° CF ₃	3-OCF ₃
CH	OCH ₃	CF ₃	3-SCF ₃	N	OCH ₃	CF ₃	3-SCF ₃
CH	OCH ₃	CF ₃	3-OCHF ₂	N	OCH ₃	CF ₃	3-OCHF ₂
CH	OCH ₃	CF ₃	3-SCHF ₂	N	OCH ₃	CF ₃	3-SCHF ₂
СĦ	OCH ₃	CF ₃	3-Cl	N	OCH ₃	CF ₃	3-C1
CH	OCH ₃	OCHF ₂	3-CF ₃	И	OCH ₃	OCHF ₂	3-CF ₃
CH	OCH ₃	OCHF ₂	3-OCF ₃	N	OCH ₃	OCHF ₂	3-OCF ₃
CH	OCH ₃	OCHF ₂	3-SCF ₃	N	OCH ₃	OCHF ₂	3-SCF ₃
CH	OCH ₃	OCHF ₂	3-OCHF ₂	N	OCH ₃	OCHF ₂	3-OCHF ₂
CH	OCH ₃	OCHF ₂	3-SCHF ₂	N	OCH ₃	OCHF ₂	3-SCHF ₂
CH	OCH ₃	OCHF ₂	3-Cl	N	OCH ₃	OCHF ₂	3-C1
CH	OCH ₃	SCHF ₂	3-CF ₃	N	OCH ₃	SCHF ₂	3-CF ₃
CH	OCH ₃	SCHF ₂	3-OCF ₃	Ň	OCH ₃	SCHF ₂	3-OCF ₃
CH	OCH ₃	SCHF ₂	3-SCF ₃	. N	OCH ₃	SCHF ₂	3-SCF ₃
СН	OCH ₃	SCHF ₂	3-OCHF ₂	N	OCH ₃	SCHF ₂	3-OCHF ₂
СН	OCH ₃	SCHF ₂	3-SCHF ₂	N	OCH ₃	SCHF ₂	3-SCHF ₂
СН	OCH ₃	SCHF ₂	3-C1	N	OCH ₃	SCHF ₂	3-C1
CH	OCH ₃	OCF ₃	3-CF ₃	Ň	OCH ₃	OCF ₃	3-CF ₃
CH	OCH ₃	OCF ₃	3-OCF ₃	N	OCH ₃	OCF ₃	3-OCF ₃
CH	OCH ₃	OCF ₃	3-SCF ₃	N	OCH ₃	OCF ₃	3-SCF ₃
CH	осн3	OCF ₃	3-OCHF ₂	N	OCH ₃	OCF ₃	3-OCHF ₂
CH	осн3	OCF ₃	3-SCHF ₂	N	OCH ₃	OCF ₃	3-SCHF ₂
CH	OCH ₃	OCF ₃	3-C1	N	OCH ₃	OCF ₃	3-Cl
CH .	OCH ₃	SCF ₃	3-CF ₃	Ŋ	OCH ₃	SCF ₃	3-CF ₃
CH	OCH ₃	SCF ₃	3-OCF ₃	N	OCH ₃	SCF ₃	3-OCF ₃
CH	OCH ₃	SCF ₃	3-SCF ₃	N	OCH ₃	SCF ₃	3-SCF ₃
CH	OCH ₃	SCF ₃	3-OCHF ₂	N	OCH ₃	SCF ₃	3-OCHF ₂
CH	OCH ₃	SCF ₃	3-SCHF ₂	N	OCH ₃	SCF ₃	3-SCHF ₂
CH	OCH ₃	SCF ₃	3-Cl	N	OCH ₃	SCF ₃	3-Cl

				10			
СН	OCH ₃	Cl	3-CF ₃	N	осн ₃	Cl	3-CF ₃
CH	осн3	Cl	3-OCF ₃	. N	OCH ₃	CI	3-OCF ₃
CH	OCH ₃	Cl	3-SCF ₃	N	OCH ₃	Cl	3-SCF ₃
CH	OCH ₃	Cl	3-OCHF ₂	Ŋ	OCH ₃	Cl	3-OCHF ₂
CH	осн3	Cl	3-SCHF ₂	N	OCH ₃	CI	3-SCHF ₂
CH	OCH ₃	Cl	3-C1	И	OCH ₃	Ci	3-Cl
					•		
		w	herein Z is I	V and X and Y	are CH		
$\underline{\mathbf{w}}$	<u>R</u> 1	<u>R</u> 3	<u>R</u> 4	w	\mathbb{R}^1	<u>R</u> 3	<u>R</u> 4
CH	H	CF ₃	3-CF ₃	N	CH ₂ CH ₃	CF ₃	3-CF ₃
CH	H	CF ₃	3-OCF ₃	N	CH ₂ CH ₃	CF ₃	3-OCF ₃
CH	H	CF ₃	3-SCF ₃	N	CH ₂ CH ₃	CF ₃	3-SCF ₃
СН	H	CF ₃	3-OCHF ₂	N	CH ₂ CH ₃	CF ₃	3-OCHF ₂
СН	н	CF ₃	3-SCHF ₂	N	CH ₂ CH ₃	CF ₃	3-SCHF ₂
CH	H	CF ₃	3-C1	N	CH ₂ CH ₃	CF ₃	3-Cl
CH	H	OCHF ₂	3-CF ₃	N	CH ₂ CH ₃	OCHF ₂	3-CF ₃
CH	H	OCHF ₂	3-OCF ₃	N	CH ₂ CH ₃	OCHF ₂	3-OCF ₃
CH	H	OCHF ₂	3-SCF ₃	N	CH ₂ CH ₃	OCHF ₂	3-SCF ₃
CH	H	OCHF ₂	3-OCHF ₂	N	CH ₂ CH ₃	OCHF ₂	3-OCHF ₂
CH	H	OCHF ₂	3-SCHF ₂	N	CH ₂ CH ₃	OCHF ₂	3-SCHF ₂
СН	H	OCHF ₂	3-C1	N	CH ₂ CH ₃	OCHF ₂	3-C1
CH	H	SCHF ₂	3-CF ₃	N	CH ₂ CH ₃	SCHF ₂	3-CF ₃
CH	H	SCHF ₂	3-OCF ₃	N	CH ₂ CH ₃	SCHF ₂	3-OCF ₃
CH	H	SCHF ₂	3-SCF ₃	N	CH ₂ CH ₃	SCHF ₂	3-SCF ₃
CH	H	SCHF ₂	3-OCHF ₂	N	CH ₂ CH ₃	SCHF ₂	3-OCHF ₂
CH-	H	SCHF ₂	3-SCHF ₂	Ŋ	CH ₂ CH ₃	SCHF ₂	3-SCHF ₂
CH	H	SCHF ₂	3-Cl	N	CH ₂ CH ₃	SCHF ₂	3-C1
CH	H	OCF ₃	3-CF ₃	N	CH ₂ CH ₃	OCF ₃	3-CF ₃
CH	H	OCF ₃	3-OCF ₃	N	CH ₂ CH ₃	OCF ₃	3-OCF ₃
CH	H	OCF ₃	3-SCF ₃	N	CH ₂ CH ₃	OCF ₃	3-SCF ₃
CH	H	OCF ₃	3-OCHF ₂	N	CH ₂ CH ₃	OCF ₃	3-OCHF ₂
СН	H	OCF ₃	3-SCHF ₂	N	CH ₂ CH ₃	OCF ₃	3-SCHF ₂
CH	H	OCF ₃	3-CI	N	CH ₂ CH ₃	OCF ₃	3-Cl
CH	H	SCF ₃	3-CF ₃	N	CH ₂ CH ₃	SCF ₃	3-CF ₃
CH	H	SCF ₃	3-OCF ₃	N	CH ₂ CH ₃	SCF ₃	3-OCF ₃
СН	H	SCF ₃	3-SCF ₃	N	СH ₂ CH ₃	SCF ₃	3-SCF ₃
СН	H	SCF ₃	3-OCHF ₂	N _.	CH ₂ CH ₃	SCF ₃	3-OCHF ₂
CH	Н	SCF ₃	3-SCHF ₂	N	СH ₂ CH ₃	SCF ₃	3-SCHF ₂

СН	Н	SCF ₃	3-C1	N	CH ₂ CH ₃	SCF ₃	3-Cl
CH	H	Cl	3-CF ₃	N	CH ₂ CH ₃	Cl	3-CF ₃
CH	H	Cl	3-OCF ₃	N	CH ₂ CH ₃	Cl	3-OCF ₃
CH	н	Cl	3-SCF ₃	N	CH ₂ CH ₃	Cl	3-SCF ₃
СН	н	Cl	3-OCHF ₂	N	CH ₂ CH ₃	Cl	3-OCHF ₂
CH	H	Cl	3-SCHF ₂	N	CH ₂ CH ₃	C1	3-SCHF ₂
CH	н	Cl	3-Cl	N	CH ₂ CH ₃	Cl	3-Cl
CH	CH ₃	CF ₃	3-CF ₃	N	CH ₃	CF ₃	3-CF ₃
CH	CH ₃	CF ₃	3-OCF ₃	N	CH ₃	CF ₃	3-OCF ₃
CH	CH ₃	CF ₃	3-SCF ₃	N	CH ₃	CF ₃	3-SCF ₃
CH	CH ₃	CF ₃	3-OCHF ₂	N	CH ₃	CF ₃	3-OCHF ₂
CH	CH ₃	CF ₃	3-SCHF ₂	N	CH ₃	CF ₃	3-SCHF ₂
CH	CH ₃	CF ₃	3-C1	N	CH ₃	CF ₃	3-C1
CH	CH ₃	OCHF ₂	3-CF ₃	N	CH ₃	OCHF ₂	3-CF ₃
CH	CH ₃	OCHF ₂	3-OCF ₃	N	CH ₃	OCHF ₂	3-OCF ₃
CH	CH ₃	OCHF ₂	3-SCF ₃	Ŋ	CH ₃	OCHF ₂	3-SCF ₃
CH	CH ₃	OCHF ₂	3-OCHF ₂	N	CH ₃	OCHF ₂	3-OCHF ₂
CH	CH ₃	OCHF ₂	3-SCHF ₂	N	CH ₃	OCHF ₂	3-SCHF ₂
CH	CH ₃	OCHF ₂	3-C1	N	CH ₃	OCHF ₂	3-Cl
CH	CH ₃	SCHF ₂	3-CF ₃	N	CH ₃	SCHF ₂	3-CF ₃
CH	CH ₃	SCHF ₂	3-OCF ₃	N	CH ₃	SCHF ₂	3-OCF ₃
CH	CH ₃	SCHF ₂	3-SCF ₃	Ŋ	CH ₃	SCHF ₂	3-SCF ₃
CH	CH ₃	SCHF ₂	3-OCHF ₂	N	CH ₃	SCHF ₂	3-OCHF ₂
CH	СН3	SCHF ₂	3-SCHF ₂	N	CH ₃	SCHF ₂	3-SCHF ₂
CH	CH ₃	SCHF ₂	3-Cl	N	CH ₃	SCHF ₂	3-CI
CH	CH ₃	OCF ₃	3-CF ₃	N.	CH ₃	OCF ₃	3-CF ₃
CH	CH ₃	OCF ₃	3-OCF ₃	N	CH ₃	OCF ₃	3-OCF ₃
CH	CH ₃	OCF ₃	3-SCF ₃	N	CH ₃	OCF ₃	3-SCF ₃
CH	CH ₃	OCF ₃	3-OCHF ₂	N	CH ₃	OCF ₃	3-OCHF ₂
CH	CH ₃	OCF ₃	3-SCHF ₂	N	CH ₃	OCF ₃	3-SCHF ₂
CH	CH ₃	OCF ₃	3-C1	N	CH ₃	OCF ₃	3-Cl
CH	CH ₃	SCF ₃	3-CF ₃	N	CH ₃	SCF ₃	3-CF ₃
CH	CH ₃	SCF ₃	3-OCF ₃	N	CH ₃	SCF ₃	3-OCF ₃
CH	CH ₃	SCF ₃	3-SCF ₃	N	CH ₃	SCF ₃	3-SCF ₃
CH	CH ₃	SCF ₃	3-OCHF ₂	N	CH ₃	SCF ₃	3-OCHF ₂
CH	CH ₃	SCF ₃	3-SCHF ₂	N	CH ₃	SCF ₃	3-SCHF ₂
CH	CH ₃	SCF ₃	3-C1	N	CH ₃	SCF ₃	3-Cl
CH	CH ₃	Cl	3-CF ₃	N	CH ₃	Cl	3-CF ₃

							• .
СН	CH ₃	Cl	3-OCF ₃	N	CH ₃	Cl	3-OCF ₃
CH	CH ₃	Cl	3-SCF ₃	N	CH ₃	Cl	3-SCF ₃
CH	CH ₃	Cl	3-OCHF ₂	N	CH ₃	Cl	3-OCHF ₂
CH	CH ₃	Cl	3-SCHF ₂	N	CH ₃	Cl	3-SCHF ₂
CH	CH ₃	Cl	3-Cl	N	CH ₃	C1	3-Cl
CH	OCH ₃	CF ₃	3-CF ₃	N	OCH ₃	CF ₃	3-CF ₃
СН	OCH ₃	CF ₃	3-OCF ₃	N	OCH ₃	CF ₃	3-OCF ₃
СН	OCH ₃	CF ₃	3-SCF ₃	N	осн3	CF ₃	3-SCF ₃
СН	OCH ₃	CF ₃	3-OCHF ₂	N	осн3	· CF ₃	3-OCHF ₂
СН	OCH ₃	CF ₃	3-SCHF ₂	N	осн3	CF ₃	3-SCHF ₂
СН	OCH ₃	CF ₃	3-Cl	N	OCH ₃	CF ₃	3-C1
СН	OCH ₃	OCHF ₂	3-CF ₃	N	OCH ₃	OCHF ₂	3-CF ₃
СН	OCH ₃	OCHF ₂	3-OCF ₃	N	OCH ₃	OCHF ₂	3-OCF ₃
СН	OCH ₃	OCHF ₂	3-SCF ₃	N	OCH ₃	OCHF ₂	3-SCF ₃
СН	OCH ₃	OCHF ₂	3-OCHF ₂	И	OCH ₃	OCHF ₂	3-OCHF ₂
CH	OCH ₃	OCHF ₂	3-SCHF ₂	И	осн3	OCHF ₂	3-SCHF ₂
СН	OCH ₃	OCHF ₂	3-Ci	N	OCH ₃	OCHF ₂	3-C1
CH	осн3	SCHF ₂	3-CF ₃	N	OCH ₃	SCHF ₂	3-CF ₃
СН	OCH ₃	SCHF ₂	3-OCF ₃	N	OCH ₃	SCHF ₂	3-OCF ₃
СН	OCH ₃	SCHF ₂	3-SCF ₃	N	OCH ₃	SCHF ₂	3-SCF ₃
СН	OCH ₃	SCHF ₂	3-OCHF ₂	N	OCH ₃	SCHF ₂	3-OCHF ₂
CH	осн3	SCHF ₂	3-SCHF ₂	N	осн3	SCHF ₂	3-SCHF ₂
СН	OCH ₃	schf ₂	3-Cl	N	OCH ₃	SCHF ₂	3-Cl
СН	OCH ₃	OCF ₃	3-CF ₃	N	осн3	OCF ₃	3-CF ₃
СН	OCH ₃	OCF ₃	3-OCF ₃	N	OCH ₃	OCF ₃	3-OCF ₃
CH	OCH ₃	OCF ₃	3-SCF ₃	N	осн3	OCF ₃	3-SCF ₃
CH	OCH ₃	OCF ₃	3-OCHF ₂	N	осн3	OCF ₃	3-OCHF ₂
CH	OCH ₃	OCF ₃	3-SCHF ₂	N	OCH ₃	OCF ₃	3-SCHF ₂
CH	OCH ₃	OCF ₃	3-C1	N	осн3	OCF ₃	3-Cl
CH	OCH ₃	SCF ₃	3-CF ₃	N	осн3	SCF ₃	3-CF ₃
CH	OCH ₃	SCF ₃	3-OCF ₃	N	OCH ₃	SCF ₃	3-OCF ₃
СН	осн3	SCF ₃	3-SCF ₃	N	OCH ₃	SCF ₃	3-SCF ₃
CH	OCH ₃	SCF ₃	3-OCHF ₂	N	OCH ₃	SCF ₃	3-OCHF ₂
СН	осн3	SCF ₃	3-SCHF ₂	N	OCH ₃	SCF ₃	3-SCHF ₂
СН	OCH ₃	SCF ₃	3-C1	N	осн3	SCF ₃	3-Cl
СН	OCH ₃	Cl	3-CF ₃	N	OCH ₃	Cl	3-CF ₃
СН	OCH ₃	Cl	3-OCF ₃	N	OCH ₃	Cl	3-OCF ₃

PCT/US98/04600

	98/40379	
W// 1	UX/AII 5 / V	
710	70/700/7	

19

СН	OCH ₃	Cl	3-SCF ₃	· N	осн3	Cl	3-SCF ₃
СН	OCH ₃	Cl	3-OCHF ₂	N	OCH ₃	Cl	3-OCHF ₂
CH	OCH ₃	Cl	3-SCHF ₂	N	OCH ₃	CI	3-SCHF ₂
CH	OCH ₃	Cl	3-Cl	N	OCH ₃	Cl	3-C1

wherein X is N and Y and Z are CH										
$\underline{\mathbf{w}}$	<u>R1</u>	<u>R</u> 3	<u>R</u> 4	<u>y</u>	<u>V</u>	<u>R1</u>	<u>R</u> 3	<u>R</u> 4		
CH	H	CF ₃ -	6-CF ₃	1	1	CH ₂ CH ₃	CF ₃	6-CF ₃		
CH	н	CF ₃	6-OCF ₃	1	1	CH ₂ CH ₃	CF ₃	6-OCF3		
CH	Н	OCHF ₂	6-CF ₃	Y	1	CH ₂ CH ₃	OCHF ₂	6-CF ₃		
CH	H	OCHF ₂	6-OCF ₃	ì	1	CH ₂ CH ₃	OCHF ₂	6-OCF ₃		
CH	н	SCHF ₂	6-CF ₃	ì	1	CH ₂ CH ₃	SCHF ₂	6-CF ₃		
CH	н	SCHF ₂	6-OCF ₃	Ŋ	1	CH ₂ CH ₃	SCHF ₂	6-OCF ₃		
CH	Н	OCF ₃	6-CF ₃	1	1	CH ₂ CH ₃	OCF ₃	6-CF ₃		
CH	н	OCF ₃	6-OCF ₃	Ŋ	1	CH ₂ CH ₃	OCF ₃	6-OCF ₃		
CH	H	SCF ₃	6-CF ₃	ľ	1	CH ₂ CH ₃	SCF ₃	6-CF ₃		
CH	н	SCF ₃	6-OCF ₃	ŀ	1	CH ₂ CH ₃	SCF ₃	6-OCF ₃		
CH	H	Cl	6-CF ₃	1	1	CH ₂ CH ₃	Cl	6-CF ₃		
CH	H	Ci	6-OCF ₃	ì	1	CH ₂ CH ₃	Cl	6-OCF ₃		
CH	CH ₃	CF ₃	6-CF ₃	ı	4	CH ₃	CF ₃	6-CF ₃		
CH	CH ₃	CF ₃	6-OCF ₃	ľ	1	CH ₃	CF ₃	6-OCF ₃		
CH	CH ₃	OCHF ₂	6-CF ₃	Ŋ	1	CH ₃	OCHF ₂	6-CF ₃		
CH	CH ₃	OCHF ₂	6-OCF ₃	Y	1	CH ₃	OCHF ₂	6-OCF ₃		
СН	CH ₃	SCHF ₂	6-CF ₃	1	1	CH ₃	SCHF ₂	6-CF ₃		
CH	CH ₃	SCHF ₂	6-OCF ₃	r	1	CH ₃	schf ₂	6-OCF ₃		
CH	CH ₃	OCF ₃	6-CF ₃	ľ	1	CH ₃	OCF ₃	6-CF ₃		
CH	CH ₃	OCF ₃	6-OCF ₃	Ŋ	1	CH ₃	OCF ₃	6-OCF ₃		
CH	CH ₃	SCF ₃	6-CF ₃	ľ	1	CH ₃	SCF ₃	6-CF ₃		
CH	CH ₃	SCF ₂	6-OCF ₃	1	1	CH ₃	SCF ₂	6-OCF ₃		

CH	CH ₃	Cl	6-CF ₃	N	CH ₃	Cl	6-CF ₃
CH	CH ₃	Cl	6-OCF ₃	N	CH ₃	Cl	6-OCF ₃
CH	OCH ₃	CF ₃	6-CF ₃	N	OCH ₃	CF ₃	6-CF ₃
CH	OCH ₃	CF ₃	6-OCF ₃	N	OCH ₃	CF ₃	6-OCF ₃
CH	OCH ₃	OCHF ₂	6-CF ₃	N	OCH ₃	OCHF ₂	6-CF ₃
CH	OCH ₃	OCHF ₂	6-OCF ₃	· N	OCH ₃	OCHF ₂	6-OCF ₃
CH	OCH ₃	SCHF ₂	6-CF ₃	N	OCH ₃	SCHF ₂	6-CF ₃
CH	OCH ₃	SCHF ₂	6-OCF ₃	N	OCH ₃	SCHF ₂	6-OCF ₃
CH	OCH ₃	OCF ₃	6-CF ₃	N	OCH ₃	OCF ₃	6-CF ₃
CH	OCH ₃	OCF ₃	6-OCF ₃	N	OCH ₃	OCF ₃	6-OCF ₃
CH	OCH ₃	SCF ₃	6-CF ₃	Ņ	OCH ₃	SCF ₃	6-CF ₃
CH	OCH ₃	SCF ₃	6-OCF ₃	N	OCH ₃	SCF ₃	6-OCF ₃
CH	OCH ₃	Cl	6-CF ₃	N	OCH ₃	Cl	6-CF ₃
CH	OCH ₃	Cl	6-OCF ₃	N	OCH ₃	Cl	6-OCF ₃
		w	herein Z i	s N and X and	Y are CH		
w	<u>R1</u>	R3	<u>R</u> 4	W	<u>R1</u>	<u>R</u> 3	<u>R</u> 4
СН	H	CF ₃	6-CF ₃	N	CH ₂ CH ₃	CF ₃	6-CF ₃
СН	H	CF ₃	6-OCF ₃	N	CH ₂ CH ₃	CF ₃	6-OCF ₃
СН	H	OCHF ₂	6-CF ₃	N	CH ₂ CH ₃	OCHF ₂	6-CF ₃
СН	н	OCHF ₂	6-OCF ₃	N	CH ₂ CH ₃	OCHF ₂	6-OCF ₃
СН	H.	SCHF ₂	6-CF ₃	N	CH ₂ CH ₃	SCHF ₂	6-CF ₃
CH	Н	SCHF ₂	6-OCF ₃	N	CH ₂ CH ₃	SCHF ₂	6-OCF ₃
CH	H	OCF ₃	6-CF ₃	N	CH ₂ CH ₃	OCF ₃	6-CF ₃
СН	H	OCF ₃	6-OCF ₃	N	CH ₂ CH ₃	OCF ₃	6-OCF ₃
CH	H	SCF ₃	6-CF ₃	N	CH ₂ CH ₃	SCF ₃	6-CF ₃
СН	н	SCF ₃	6-OCF ₃	N	CH ₂ CH ₃	SCF ₃	6-OCF ₃
СН	H	Cl	6-CF ₃	N	CH ₂ CH ₃	. Cl	6-CF ₃
СН	H	Cl	6-OCF ₃	N	сн ₂ сн ₃	Cl	6-OCF ₃
СН	CH ₃	CF ₃	6-CF ₃	N	CH ₃	CF ₃	6-CF ₃
СН	CH ₃	CF ₃	6-OCF ₃	N	CH ₃		6-OCF ₃
CH	CH ₃	OCHF ₂	6-CF ₃	N	CH ₃	OCHF ₂	6-CF ₃
СН	CH ₃	OCHF ₂	6-OCF ₃	N	CH ₃	OCHF ₂	6-OCF ₃
CH	CH ₃	SCHF ₂	6-CF ₃	N	CH ₃	SCHF ₂	6-CF ₃
СН	CH ₃	SCHF ₂	6-OCF ₃	N	CH ₃	SCHF ₂	6-OCF ₃
CH	CH ₃	OCF ₃	6-CF ₃	N	CH ₃	OCF ₃	6-CF ₃
CH	CH ₃	OCF ₃	6-OCF ₃	N.	CH ₃	OCF ₃	6-OCF ₃
CH	CH ₃	SCF ₃	6-CF ₃	N	CH ₃	SCF ₃	6-CF ₃

CH	CH ₃	SCF ₃	6-OCF ₃	N	CH ₃	SCF ₃	6-OCF ₃
CH	CH ₃	Cl	6-CF ₃	N	CH ₃	Cl	6-CF ₃
CH	CH ₃	Cl	6-OCF ₃	Ņ	CH ₃	Cl	6-OCF ₃
CH	OCH ₃	CF ₃	6-CF ₃	N	OCH ₃	CF ₃	6-CF ₃
CH	OCH ₃	CF ₃	6-OCF ₃	N.	OCH ₃	CF ₃	6-OCF ₃
CH	OCH ₃	OCHF ₂	6-CF ₃	N	OCH ₃	OCHF ₂	6-CF ₃
CH	OCH ₃	OCHF ₂	6-OCF ₃	N	OCH ₃	OCHF ₂	6-OCF ₃
СН	OCH ₃	SCHF ₂	6-CF ₃	N	OCH ₃	SCHF ₂	6-CF ₃
CH	OCH ₃	SCHF ₂	6-OCF ₃	N	OCH ₃	schf ₂	6-OCF ₃
CH	OCH ₃	OCF ₃	6-CF ₃	N	OCH ₃	OCF ₃	6-CF ₃
CH	OCH ₃	OCF ₃	6-OCF ₃	N	OCH ₃	OCF ₃	6-OCF ₃
CH	OCH ₃	SCF ₃	6-CF ₃	N	OCH ₃	SCF ₃	6-CF ₃
CH	OCH ₃	SCF ₃	6-OCF ₃	N	OCH ₃	SCF ₃	6-OCF ₃
СН	OCH ₃	Cl	6-CF ₃	N	OCH ₃	Cl	6-CF ₃
СН	OCH ₃	Cl	6-OCF ₃	N	ОСӉ3	C1	6-OCF ₃

$$\begin{array}{c|c}
1 & 6 & 5 & R^1 \\
2 & 4 & 0 & N & N & X \\
R^4 & 3 & 0 & N & N & X
\end{array}$$

wherein	Y:	e N	and V	and 7	are CH
wilelein			20 T T	MINI Z	311E (.F)

$\underline{\mathbf{w}}$	<u>R1</u>	<u>R³</u>	<u>R</u> 4		<u>w</u>	<u>R1</u>	<u>R</u> 3	<u>R</u> 4
CH	H	CF ₃	2-CF ₃		N	CH ₂ CH ₃	CF ₃	2-CF ₃
CH	H	CF ₃	2-OCF ₃		N	CH ₂ CH ₃	CF _{3.}	2-OCF ₃
CH	H	OCHF ₂	2-CF ₃		N	CH ₂ CH ₃	OCHF ₂	2-CF ₃
CH	H	OCHF ₂	2-OCF ₃		N	CH_2CH_3	OCHF ₂	2-OCF ₃
CH	H	SCHF ₂	2-CF ₃		N	CH ₂ CH ₃	SCHF ₂	2-CF ₃
CH	H	SCHF ₂	2-OCF ₃		N	CH ₂ CH ₃	SCHF ₂	2-OCF ₃
CH	H	OCF ₃	2-CF3		N	CH ₂ CH ₃	OCF ₃	2-CF ₃
CH	H	OCF ₃	2-OCF ₃		N	CH ₂ CH ₃	OCF ₃	2-OCF ₃
CH	H	SCF ₃	2-CF ₃		N	CH ₂ CH ₃	SCF ₃	2-CF ₃
CH	Н	SCF ₃	2-OCF ₃		N	CH ₂ CH ₃	SCF ₃	2-OCF ₃
CH	H	Cl	2-CF ₃		N	CH ₂ CH ₃	Cl	2-CF ₃
CH	Н	Cl	2-OCF ₃	•	N	CH ₂ CH ₃	Cl	2-OCF ₃

СН	CH ₃	CF ₃	2-CF ₃	Й	СН3	CF ₃	2-CF ₃
CH	CH ₃	CF ₃	2-OCF ₃	N	CH ₃	CF ₃	2-OCF ₃
CH	CH ₃	OCHF ₂	2-CF3	N	CH ₃	OCHF ₂	2-CF ₃
CH	CH ₃	OCHF ₂	2-OCF ₃	Ń	CH ₃	OCHF ₂	2-OCF ₃
CH	CH ₃	SCHF ₂	2-CF ₃	N	CH ₃	SCHF ₂	2-CF ₃
CH	CH ₃	SCHF ₂	2-OCF ₃	N	CH ₃	SCHF ₂	2-OCF ₃
CH	CH ₃	OCF ₃	2-CF3	N	CH ₃	OCF ₃	2-CF ₃
CH	CH ₃	OCF ₃	2-OCF ₃	N	CH ₃	OCF ₃	2-OCF ₃
CH	CH ₃	SCF ₃	2-CF3	N	CH ₃	SCF ₃	2-CF ₃
CH	CH ₃	SCF ₃	2-OCF ₃	N	CH ₃	SCF ₃	2-OCF ₃
CH	CH ₃	Cl	2-CF ₃	N	CH ₃	Cl	2-CF ₃
CH	CH ₃	Cl	2-OCF ₃	N	CH ₃	Cl	2-OCF ₃
СН	OCH ₃	CF ₃	2-CF ₃	N	OCH ₃	CF ₃	2-CF ₃
СН	OCH ₃	CF ₃	2-OCF ₃	N	OCH ₃	CF ₃	2-OCF ₃
CH	OCH ₃	OCHF ₂	2-CF ₃	N	OCH ₃	OCHF ₂	2-CF ₃
CH	OCH ₃	OCHF ₂	2-OCF ₃	N	OCH ₃	OCHF ₂	2-OCF ₃
CH	OCH ₃	SCHF ₂	2-CF ₃	N	OCH ₃	SCHF ₂	2-CF ₃
CH	осн3	SCHF ₂	2-OCF ₃	Ņ	OCH ₃	SCHF ₂	2-OCF ₃
CH	OCH ₃	OCF ₃	2-CF ₃	N	OCH ₃	OCF ₃	2-CF ₃
CH	осн3	OCF ₃	2-OCF ₃	· N	OCH ₃	OCF ₃	2-OCF ₃
CH	OCH ₃	SCF ₃	2-CF ₃	N	OCH ₃	SCF ₃	2-CF ₃
CH	OCH ₃	SCF ₃	2-OCF ₃	N	OCH ₃	SCF ₃	2-OCF ₃
СН	OCH ₃	Cl	2-CF ₃	N	OCH ₃	Cl	2-CF ₃
CH	OCH ₃	Cl	2-OCF ₃	N	осн3	Cl	2-OCF ₃
	•	w	herein Z is	N and X and Y	are CH		
w	<u>R1</u>	<u>R</u> 3	<u>R</u> 4	w	<u>R1</u>	R ³	<u>R</u> 4
CH	H H	CF ₃	2-CF ₃	N	CH ₂ CH ₃	CF ₃	2-CF ₃
СН	Н	CF ₃	2-OCF ₃	N	CH ₂ CH ₃	CF ₃	2-OCF ₃
СН	н	OCHF ₂	2-CF ₃	N	CH ₂ CH ₃	OCHF ₂	2-CF ₃
СН	Н	OCHF ₂	2-OCF ₃	N	CH ₂ CH ₃	OCHF ₂	2-OCF ₃
СН	н	SCHF ₂	2-CF ₃	N	CH ₂ CH ₃	SCHF ₂	2-CF ₃
СН	н	SCHF ₂	2-OCF ₃	N	CH ₂ CH ₃	SCHF ₂	2-OCF ₃
СН	н	OCF ₃	2-CF ₃	N	CH ₂ CH ₃	_	2-CF ₃
СН	н	OCF ₃	2-OCF ₃	N.	CH ₂ CH ₃	-	2-OCF ₃
СН	н	SCF ₃	2-CF ₃	N	CH ₂ CH ₃		2-CF ₃
СН	н	SCF ₃	2-OCF ₃	N	CH ₂ CH ₃	•	2-OCF ₃
СН	н	Cl	2-CF ₃	N	CH ₂ CH ₃	Cl	2-CF3
			•				

СН	н	Cl	2-OCF ₃	N	CH ₂ CH ₃	Cl	2-OCF ₃
CH	CH ₃	CF ₃	2-CF ₃	N	CH ₃	CF ₃	2-CF ₃
CH	CH ₃	CF ₃	2-OCF ₃	N	CH ₃	CF ₃	2-OCF ₃
CH	CH ₃	OCHF ₂	2-CF ₃	N	CH ₃	OCHF ₂	2-CF ₃
CH	СН3	OCHF ₂	2-OCF ₃	N	CH ₃	OCHF ₂	2-OCF ₃
CH	CH ₃	SCHF ₂	2-CF ₃	N	CH ₃	SCHF ₂	2-CF ₃
CH	CH ₃	SCHF ₂	2-OCF ₃	N	CH ₃	SCHF ₂	2-OCF ₃
СН	CH ₃	OCF ₃	2-CF ₃	Ņ	CH ₃	OCF ₃	2-CF ₃
CH	CH ₃	OCF ₃	2-OCF ₃	N	CH ₃	OCF ₃	2-OCF ₃
CH	CH ₃	SCF ₃	2-CF ₃	N	CH ₃	SCF ₃	2-CF ₃
СН	CH ₃	SCF ₃	2-OCF ₃	N	CH ₃	SCF ₃	2-OCF ₃
СН	CH ₃	Cl	2-CF ₃	N	CH ₃	Cl	2-CF ₃
СН	CH ₃	C1	2-OCF ₃	N	CH ₃	C1	2-OCF ₃
CH	OCH ₃	CF ₃	2-CF ₃	N	OCH ₃	CF ₃	2-CF ₃
CH	осн3	CF ₃	2-OCF ₃	N	OCH ₃	CF ₃	2-OCF ₃
CH	OCH ₃	OCHF ₂	2-CF ₃	N	OCH ₃	OCHF ₂	2-CF ₃
CH	OCH ₃	OCHF ₂	2-OCF ₃	N	OCH ₃	OCHF ₂	2-OCF ₃
CH	OCH ₃	SCHF ₂	2-CF ₃	N	OCH ₃	SCHF ₂	2-CF ₃
CH	OCH ₃	SCHF ₂	2-OCF ₃	N	OCH ₃	SCHF ₂	2-OCF ₃
CH	осн3	OCF ₃	2-CF ₃	N	OCH ₃	OCF ₃	2-CF ₃
СН	осн3	OCF ₃	2-OCF ₃	N	OCH ₃	OCF ₃	2-OCF ₃
CH	OCH ₃	SCF ₃	2-CF ₃	N	OCH ₃	SCF ₃	2-CF ₃
CH	OCH ₃	SCF ₃	2-OCF ₃	N	OCH ₃	SCF ₃	2-OCF ₃
СН	OCH ₃	Cl	2-CF ₃	Ń	OCH ₃	Cl	2-CF ₃
CH	OCH ₃	Cl	2-OCF ₃	N	OCH ₃	Cl	2-OCF ₃

TABLE 4

$$F = \begin{cases} 0 & R^1 \\ 0 & N \end{cases} \quad X = R^3$$

	1.			77	
***			and Y and Z are C		D3
<u>W</u>	<u>R</u> 1	<u>R</u> 3	<u>w</u>	<u>R1</u>	<u>R</u> 3
CH	H	CF ₃	N	CH ₂ CH ₃	CF ₃
CH	H	OCHF ₂	N	CH ₂ CH ₃	OCHF ₂
CH	H	SCHF ₂	N	CH ₂ CH ₃	SCHF ₂
CH	H	OCF ₃	N	CH ₂ CH ₃	OCF ₃
CH	H	SCF ₃	N	CH ₂ CH ₃	SCF ₃
CH	H	Cl	N	CH ₂ CH ₃	Cī
CH	CH ₃	CF ₃	N	CH ₃	CF ₃
CH	CH ₃	OCHF ₂	N	CH ₃	OCHF ₂
CH	CH ₃	SCHF ₂	N	CH ₃	SCHF ₂
CH	CH ₃	OCF ₃	N	CH ₃	OCF ₃
CH	CH ₃	SCF ₃	N	CH ₃	SCF ₃
CH	CH ₃	Cl	N	CH ₃	Cl
CH	OCH ₃	CF ₃	N	OCH ₃	CF ₃
CH	OCH ₃	OCHF ₂	N	OCH ₃	OCHF ₂
CH	OCH ₃	SCHF ₂	N	OCH ₃	SCHF ₂
CH	OCH ₃	OCF ₃	N	OCH ₃	OCF3
CH	OCH ₃	SCF ₃	N	OCH ₃	SCF ₃
СН	осн ₃	Cl	И	OCH ₃	Cl
	wher	rein Z is N :	and X and Y are C	н	
w	R ¹	R ³	W	<u>R1</u>	R ³
CH	H	CF ₃	N	CH ₂ CH ₃	CF ₃
СН	H	OCHF ₂	N	CH ₂ CH ₃	OCHF ₂
СН	н	SCHF ₂	N		SCHF ₂
CH	н	OCF ₃	И	CH ₂ CH ₃	_
		_		CH ₂ CH ₃	OCF ₃
CH	H	SCF ₃	N	CH ₂ CH ₃	SCF ₃
CH	Н	Cl CT	N	CH ₂ CH ₃	Cl
CH	CH ₃	CF ₃	N	CH ₃	CF ₃

CH	CH ₃	OCHF ₂	N	CH ₃	ochf ₂
CH	CH ₃	SCHF ₂	N	CH ₃	SCHF ₂
CH	CH ₃	OCF ₃	N	CH ₃	OCF ₃
CH	CH ₃	SCF ₃	N	CH ₃	SCF ₃
CH	CH ₃	Cl	И	CH ₃	Cl
CH	OCH ₃	CF ₃	N	OCH ₃	CF ₃
CH	OCH ₃	OCHF ₂	N	OCH ₃	OCHF ₂
CH	OCH ₃	SCHF ₂	N	OCH ₃	SCHF ₂
CH	OCH ₃	OCF ₃	N	OCH ₃	OCF ₃
CH	OCH ₃	SCF ₃	N	OCH ₃	SCF ₃
CH	OCH ₃	Cl	N	OCH ₃	Cl

$$R^7$$
 R^1
 W
 $Y=Z$
 R^3

wherein X is N	I and Y and Z are CH			
w	<u>R</u> 1	<u>R</u> 3	<u>R</u> 7	<u>R</u> 8
CH	H	CF ₃	CF ₃	CH ₃
CH	H	CF ₃	CF ₃	CH ₂ CF ₃
CH	H	OCHF ₂	CF ₃	CH ₃
CH	H	OCHF ₂	CF ₃	CH ₂ CF ₃
CH	H	SCHF ₂	CF ₃	CH ₃
CH	H	SCHF ₂	CF ₃	CH ₂ CF ₃
CH	CH ₃	CF ₃	CF ₃	CH ₃
CH	CH ₃	CF ₃	CF ₃	CH ₂ CF ₃
CH	CH ₃	OCHF ₂	CF ₃	CH ₃
CH	CH ₃	OCHF ₂	CF ₃	CH ₂ CF ₃
CH	CH ₃	SCHF ₂	CF ₃	CH ₃
CH	CH ₃	SCHF ₂	CF ₃	CH ₂ CF ₃
CH	OCH ₃	CF ₃	CF ₃	CH ₃
CH	OCH ₃	CF ₃	CF ₃	CH ₂ CF ₃
CH	OCH ₃	OCHF ₂	CF ₃	CH ₃

СН	осн ₃	OCHF ₂	CF ₃	CH ₂ CF ₃
. CH	OCH ₃	SCHF ₂	CF ₃	CH ₃
CH	OCH ₃	SCHF ₂	CF ₃	CH ₂ CF ₃
N	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃
N	СH ₂ CH ₃	CF ₃	CF ₃	CH ₂ CF ₃
N	CH ₂ CH ₃	OCHF ₂	CF ₃	CH ₃
N	CH ₂ CH ₃	OCHF ₂	CF ₃	CH ₂ CF ₃
N	CH ₂ CH ₃	SCHF ₂	CF ₃	CH ₃
N	CH ₂ CH ₃	SCHF ₂	CF ₃	CH ₂ CF ₃
N	CH ₃	CF ₃	CF ₃	CH ₃
N	CH ₃	CF3	CF ₃	CH ₂ CF ₃
N	CH ₃	OCHF ₂	CF ₃	CH ₃
N	CH ₃	OCHF ₂	CF ₃	CH ₂ CF ₃
N	CH ₃	SCHF ₂	CF ₃	CH ₃
'N	CH ₃	SCHF ₂	CF ₃	CH ₂ CF ₃
N	OCH ₃	CF ₃	CF ₃	CH ₃
N	OCH ₃	CF ₃	CF ₃	CH ₂ CF ₃
N	OCH ₃	OCHF ₂	CF ₃	CH ₃
N	OCH ₃	OCHF ₂	CF ₃	CH ₂ CF ₃
N	OCH ₃	SCHF ₂	CF ₃	CH ₃
N	OCH ₃	SCHF ₂	CF ₃	CH ₂ CF ₃
CH	Н	CF ₃	OCHF ₂	CH ₃
СН	H	CF ₃	OCHF ₂	CH ₂ CF ₃
CH	H	OCHF ₂	OCHF ₂	CH ₃
CH	H	OCHF ₂	OCHF ₂	CH ₂ CF ₃
CH	H	SCHF ₂	OCHF ₂	СН3
CH	Н	SCHF ₂	OCHF ₂	CH ₂ CF ₃
CH	CH ₃	CF ₃	OCHF ₂	CH ₃
CH	CH ₃	CF ₃	OCHF ₂	CH ₂ CF ₃
CH	CH ₃	OCHF ₂	OCHF ₂	CH ₃
CH	CH ₃	OCHF ₂	OCHF ₂	CH ₂ CF ₃
СН	CH ₃	SCHF ₂	OCHF ₂	CH ₃
CH	CH ₃	SCHF ₂	OCHF ₂	CH ₂ CF ₃
CH	OCH ₃	CF ₃	OCHF ₂	CH ₃
CH	OCH ₃	CF ₃	OCHF ₂	CH ₂ CF ₃
CH	OCH ₃	OCHF ₂	OCHF ₂	CH ₃
СН	OCH ₃	OCHF ₂	OCHF ₂	CH ₂ CF ₃
CH	OCH ₃	SCHF ₂	OCHF ₂	CH ₃

CH	OCH ₃	SCHF ₂	OCHF ₂	CH ₂ CF ₃
N	CH ₂ CH ₃	CF ₃	OCHF ₂	CH ₃
N	CH ₂ CH ₃	CF ₃	OCHF ₂	CH ₂ CF ₃
Ņ	CH ₂ CH ₃	OCHF ₂	OCHF ₂	CH ₃
N	CH ₂ CH ₃	OCHF ₂	OCHF ₂	CH ₂ CF ₃
N	CH ₂ CH ₃	SCHF ₂	OCHF ₂	CH ₃
N	CH ₂ CH ₃	SCHF ₂	OCHF ₂	CH ₂ CF ₃
N	CH ₃	CF ₃	OCHF ₂	CH ₃
Ņ	CH ₃	CF ₃	OCHF ₂	CH ₂ CF ₃
Ň	CH ₃	OCHF ₂	OCHF ₂	CH ₃
N	CH ₃	OCHF ₂	OCHF ₂	CH ₂ CF ₃
N	CH ₃	SCHF ₂	OCHF ₂	CH ₃
N	CH ₃	SCHF ₂	OCHF ₂	CH ₂ CF ₃
N	OCH ₃	CF ₃	OCHF ₂	CH ₃
N	OCH ₃	CF ₃	OCHF ₂	CH ₂ CF ₃
. N	OCH ₃	OCHF ₂	OCHF ₂	CH ₃
N	OCH ₃	OCHF ₂	OCHF ₂	CH ₂ CF ₃
N	OCH ₃	SCHF ₂	OCHF ₂	CH ₃
N	OCH ₃	SCHF ₂	OCHF ₂	CH ₂ CF ₃
СН	Н	CF ₃	SCHF ₂	CH ₃
CH	· H	CF ₃	SCHF ₂	CH ₂ CF ₃
CH	Н	OCHF ₂	SCHF ₂	CH ₃
CH	H	OCHF ₂	SCHF ₂	CH ₂ CF ₃
CH	Н	SCHF ₂	SCHF ₂	CH ₃
CH	Н	SCHF ₂	SCHF ₂	CH ₂ CF ₃
CH	CH ₃	CF ₃	SCHF ₂	CH ₃
CH	CH ₃	CF ₃	SCHF ₂	CH ₂ CF ₃
CH	CH ₃	OCHF ₂	SCHF ₂	CH ₃
CH	CH ₃	OCHF ₂	SCHF ₂	CH ₂ CF ₃
CH	CH ₃	SCHF ₂	SCHF ₂	CH ₃
CH	CH ₃	SCHF ₂	SCHF ₂	CH ₂ CF ₃
CH	OCH ₃	CF ₃	SCHF ₂	CH ₃
CH	OCH ₃	CF ₃	SCHF ₂	CH ₂ CF ₃
CH	OCH ₃	OCHF ₂	SCHF ₂	CH ₃
CH	OCH ₃	OCHF ₂	SCHF ₂	CH ₂ CF ₃
CH	OCH ₃	SCHF ₂	SCHF ₂	СН3
CH	OCH ₃	SCHF ₂	SCHF ₂	CH ₂ CF ₃
N	CH ₂ CH ₃	CF ₃	SCHF ₂	CH ₃

		20			
N	CH ₂ CH ₃	CF ₃	SCHF ₂	CH ₂ CF ₃	
N	CH ₂ CH ₃	OCHF ₂	SCHF ₂	CH ₃	
N	CH ₂ CH ₃	OCHF ₂	SCHF ₂	CH ₂ CF ₃	
N	CH ₂ CH ₃	SCHF ₂	SCHF ₂	.CH ₃	
N	CH ₂ CH ₃	SCHF ₂	SCHF ₂	CH ₂ CF ₃	
N	CH ₃	CF ₃	SCHF ₂	CH ₃	
N	CH ₃	CF ₃	SCHF ₂	CH ₂ CF ₃	
N	CH ₃	OCHF ₂	SCHF ₂	CH ₃	
N	CH ₃	OCHF ₂	SCHF ₂	CH ₂ CF ₃	
N	CH ₃	SCHF ₂	SCHF ₂	CH ₃	
N	CH ₃	SCHF ₂	SCHF ₂	CH ₂ CF ₃	
N	OCH ₃	CF ₃	SCHF ₂	CH ₃	
N	OCH ₃	CF ₃	SCHF ₂	CH ₂ CF ₃	
N	OCH ₃	OCHF ₂	SCHF ₂	CH ₃	
N	OCH ₃	OCHF ₂	schf ₂	CH ₂ CF ₃	
N	OCH ₃	SCHF ₂	SCHF ₂	CH ₃	
N	OCH ₃	SCHF ₂	SCHF ₂	CH ₂ CF ₃	
			-		
	and X and Y are CH	-	4	_ 0	
$\underline{\mathbf{w}}$	$\underline{\mathbf{R}^{1}}$	<u>R</u> 3	<u>R</u> 7	<u>R8</u>	
СН	н	CF ₃	CF ₃	CH ₃	*
CH	Н	CF ₃	CF ₃	CH ₂ CF ₃	
СН	Н	OCHF ₂	CF ₃	CH ₃	
CH	н	OCHF ₂	CF ₃	CH ₂ CF ₃	
СН	Н	SCHF ₂	CF ₃	CH ₃	
CH	H	SCHF ₂	CF ₃	CH ₂ CF ₃	
CH	CH ₃	CF ₃	CF ₃	CH ₃	
СН	CH ₃	CF3	CF ₃	CH ₂ CF ₃	
CH	CH ₃	OCHF ₂	CF ₃	CH ₃	
CH	CH ₃	OCHF ₂	CF ₃	CH ₂ CF ₃	
CH	CH ₃	SCHF ₂	CF ₃	CH ₃	
CH	CH ₃	SCHF ₂	CF ₃	CH ₂ CF ₃	
CH	OCH ₃	CF ₃	CF ₃	CH ₃	
CH	OCH ₃	CF ₃	CF ₃	CH ₂ CF ₃	
СН	OCH ₃	OCHF ₂	CF ₃	CH ₃	
CH	OCH ₃	OCHF ₂	CF ₃	CH ₂ CF ₃	
CH	OCH ₃	SCHF ₂	CF ₃	CH ₃	
CH	OCH ₃	SCHF ₂	CF ₃	CH ₂ CF ₃	

		•	_	
N	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃
N	CH ₂ CH ₃	CF ₃	CF ₃	CH ₂ CF ₃
N	CH ₂ CH ₃	ochf₂	CF ₃	CH ₃
N	CH ₂ CH ₃	OCHF ₂	CF ₃	CH ₂ CF ₃
N	CH ₂ CH ₃	SCHF ₂	CF ₃	CH ₃
N	CH ₂ CH ₃	SCHF ₂	CF ₃	CH ₂ CF ₃
N	CH ₃	CF ₃	CF ₃	CH ₃
N	CH ₃	CF ₃	CF ₃	CH ₂ CF ₃
Ň	CH ₃	OCHF ₂	CF ₃	CH ₃
N	CH ₃	OCHF ₂	CF ₃	CH ₂ CF ₃
N	CH ₃	SCHF ₂	CF ₃	CH ₃
N	CH ₃	SCHF ₂	CF ₃	CH ₂ CF ₃
N	OCH ₃	CF ₃	CF ₃	CH ₃
N	OCH ₃	CF ₃	CF ₃	CH ₂ CF ₃
N	OCH ₃	OCHF ₂	CF ₃	CH ₃
N	OCH ₃	OCHF ₂	CF ₃	CH ₂ CF ₃
N	OCH ₃	SCHF ₂	CF ₃	CH ₃
N	OCH ₃	SCHF ₂	CF ₃	CH ₂ CF ₃
CH	H	CF ₃	OCHF ₂	CH ₃
CH	Н	CF ₃	OCHF ₂	CH ₂ CF ₃
CH	H	OCHF ₂	OCHF ₂	CH ₃
CH	H	OCHF ₂	OCHF ₂	CH ₂ CF ₃
CH	H	SCHF ₂	OCHF ₂	CH ₃
CH	H	SCHF ₂	OCHF ₂	CH ₂ CF ₃
CH	CH ₃	CF ₃	OCHF ₂	CH ₃
CH	CH ₃	CF ₃	OCHF ₂	CH ₂ CF ₃
CH	CH ₃	OCHF ₂	OCHF ₂	CH ₃
CH	CH ₃	OCHF ₂	OCHF ₂	CH ₂ CF ₃
CH	CH ₃	SCHF ₂	OCHF ₂	CH ₃
CH	CH ₃	SCHF ₂	OCHF ₂	CH ₂ CF ₃
CH	OCH ₃	CF ₃	OCHF ₂	CH ₃
CH	OCH ₃	CF ₃	OCHF ₂	CH ₂ CF ₃
CH	OCH ₃	OCHF ₂	OCHF ₂	CH ₃
CH	OCH ₃	OCHF ₂	OCHF ₂	CH ₂ CF ₃
CH	OCH ₃	SCHF ₂	OCHF ₂	CH ₃
CH	OCH ₃	SCHF ₂	OCHF ₂	CH ₂ CF ₃
N	CH ₂ CH ₃	CF ₃	OCHF ₂	CH ₃
N	CH ₂ CH ₃	CF ₃	OCHF ₂	CH ₂ CF ₃

N	CH ₂ CH ₃	OÇHF ₂	OCHF ₂	CH ₃
N	CH ₂ CH ₃	OCHF ₂	OCHF ₂	CH ₂ CF ₃
N	CH₂CH₃	SCHF ₂	OCHF ₂	CH ₃
Ņ	CH ₂ CH ₃	SCHF ₂	OCHF ₂	CH ₂ CF ₃
Ŋ	CH ₃	CF ₃	OCHF ₂	CH ₃
N	CH ₃	CF ₃	OCHF ₂	CH ₂ CF ₃
N	CH ₃	OCHF ₂	OCHF ₂	CH ₃
N	CH ₃	OCHF ₂	OCHF ₂	CH ₂ CF ₃
N	CH ₃	SCHF ₂	OCHF ₂	CH ₃
N	CH ₃	SCHF ₂	OCHF ₂	CH ₂ CF ₃
N .	OCH ₃	CF ₃	OCHF ₂	CH ₃
N	OCH ₃	CF ₃	OCHF ₂	CH ₂ CF ₃
N	OCH ₃	OCHF ₂	OCHF ₂	CH ₃
N	OCH ₃	OCHF ₂	OCHF ₂	CH ₂ CF ₃
N	OCH ₃	SCHF ₂	OCHF ₂	CH ₃
N	OCH ₃	SCHF ₂	OCHF ₂	CH ₂ CF ₃
CH	Н	CF ₃	SCHF ₂	CH ₃
CH	н	CF ₃	SCHF ₂	CH ₂ CF ₃
CH	H	OCHF ₂	SCHF ₂	CH ₃
CH	H	OCHF ₂	SCHF ₂	CH ₂ CF ₃
СН	Н	SCHF ₂	SCHF ₂	CH ₃
CH	· H	SCHF ₂	SCHF ₂	CH ₂ CF ₃
CH	CH ₃	CF ₃	SCHF ₂	CH ₃
CH	CH ₃	CF ₃	SCHF ₂	CH ₂ CF ₃
CH	CH ₃	OCHF ₂	SCHF ₂	CH ₃
CH	CH ₃	OCHF ₂	SCHF ₂	CH ₂ CF ₃
CH	CH ₃	SCHF ₂	SCHF ₂	CH ₃
CH	CH ₃	SCHF ₂	SCHF ₂	CH ₂ CF ₃
CH	OCH ₃	CF ₃	SCHF ₂	CH ₃
CH	OCH ₃	CF ₃	SCHF ₂	CH ₂ CF ₃
CH	OCH ₃	OCHF ₂	SCHF ₂	CH ₃
CH	OCH ₃	OCHF ₂	SCHF ₂	CH ₂ CF ₃
CH	OCH ₃	SCHF ₂	SCHF ₂	CH ₃
CH	OCH ₃	SCHF ₂	SCHF ₂	CH ₂ CF ₃
N	CH ₂ CH ₃	CF ₃	SCHF ₂	CH ₃
N	CH ₂ CH ₃	CF ₃	SCHF ₂	CH ₂ CF ₃
N	CH ₂ CH ₃	OCHF ₂	SCHF ₂	CH ₃
N	CH ₂ CH ₃	OCHF ₂	SCHF ₂	CH ₂ CF ₃

2.7	CH-CH-	CCUE.	SCHF ₂	CH ₃
N	CH ₂ CH ₃	SCHF ₂	SÇHF2	-
. N	CH ₂ CH ₃	SCHF ₂	SCHF ₂	CH ₂ CF ₃
N	CH ₃	CF ₃	SCHF ₂	CH ₃
N	CH ₃	CF ₃	SCHF ₂	CH ₂ CF ₃
N	CH ₃	OCHF ₂	SCHF ₂	CH ₃
N	CH ₃	OCHF ₂	SCHF ₂	CH ₂ CF ₃
N	CH ₃	SCHF ₂	SCHF ₂	CH ₃
N	CH ₃	SCHF ₂	SCHF ₂	CH ₂ CF ₃
N	OCH ₃	CF ₃	SCHF ₂	CH ₃
N	OCH ₃	CF ₃	SCHF ₂	· CH ₂ CF ₃
N	OCH ₃	OCHF ₂	SCHF ₂	CH ₃
N	OCH ₃	OCHF ₂	SCHF ₂	CH ₂ CF ₃
Ņ	OCH ₃	SCHF ₂	SCHF ₂	CH ₃
N	OCH ₃	SCHF ₂	SCHF ₂	CH ₂ CF ₃

Formulation/Utility

5

10

15

20

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

10

15

20

25

	Weight Percent		
·	Active Ingredient	Diluent	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	5_90	0-92	1–15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5–50	20–95	0-15
Dusts Granules and Pellets	1–25 0.01–99	70–99 5–99.99	0–5 0–15
High Strength Compositions	90-99	0–10	0-2

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1962, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, *N*,*N*-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, talc, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, *N*,*N*-dimethylformamide, dimethyl sulfoxide, *N*-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 2-hydroxy-2-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for example, U.S. 3,060,082. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 2, 1967, pp 127-28, Perry's Chemical Engineer's Handbook, 2nd Ed., McGraw-Hill, New York, 1963, pages 8-57 and following,

15

and WO 91/13526. Pellets can be prepared as described in U.S. 2,172,712. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 2,122,050, U.S. 3,920,222 and DE 3,226,293. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-21; U.S. 3,309,192, Col. 5, line 23 through Col. 7, line 62 and Examples 8, 12, 15, 39, 21, 52, 53, 58, 132, 138-120, 162-162, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-2; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-D.

	Example A			
	High Strength Concentrate			
	Compound 20	98.5%		
	silica aerogel	0.5%		
20	synthetic amorphous fine silica	1.0%.		
	Example B			
	Wettable Powder			
	Compound 49	65.0%		
	dodecylphenol polyethylene glycol ether	2.0%		
25	sodium ligninsulfonate	2.0%		
	sodium silicoaluminate	6.0%		
	montmorillonite (calcined)	23.0%.		
	Example C			
	<u>Granule</u>			
30	Compound 12	10.0%		
	attapulgite granules (low volatile matter,			
	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%.		

Example D

Extruded Pellet

5

10

15

20

25

30

35

Compound 56	25.0%
anhydrous sodium sulfate	10.0%
crude calcium ligninsulfonate	5.0%
sodium alkylnaphthalenesulfonate	1.0%
calcium/magnesium bentonite	59.0%.

Test results indicate that the compounds of the present invention are highly active preemergent and postemergent herbicides or plant growth regulants. Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Some of the compounds are useful for the control of selected grass and broadleaf weeds with tolerance to important agronomic crops which include but are not limited to alfalfa, barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, rice, oats, peanuts, vegetables, tomato, potato, perennial plantation crops including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea and forests such as eucalyptus and conifers (e.g., loblolly pine), and turf species (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass). Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is 0.001 to 20 kg/ha with a preferred range of 0.002 to 1.0 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

Compounds of this invention can be used alone or in combination with other commercial herbicides, insecticides or fungicides. Compounds of this invention can also be used in combination with commercial herbicide safeners such as benoxacor, dichlormid and furilazole to increase safety to certain crops. A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, ametryn, amidosulfuron, amitrole, ammonium sulfamate, anilofos, asulam, atrazine, azafenidin, azimsulfuron, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, bifenox, bispyribac and its sodium salt, bromacil, bromoxynil, bromoxynil octanoate, butachlor, butralin, butroxydim (ICIA0500), butylate,

caloxydim (BAS 620H), carfentrazone-ethyl, chlomethoxyfen, chloramben, chlorbromuron, chloridazon, chlorimuron-ethyl, chlornitrofen, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, cinmethylin, cinosulfuron, clethodim, clomazone, clopyralid, clopyralid-olamine, cyanazine, cycloate, cyclosulfamuron, 2,2-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, 5 daimuron, dalapon, dalapon-sodium, dazomet, 2,2-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl, 2-[2,5-dihydro-2-methyl-2-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3pyridinecarboxylic acid (AC 263,222), difenzoquat metilsulfate, diflufenican, dimepiperate, 10 dimethenamid, dimethylarsinic acid and its sodium salt, dinitramine, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron-methyl, ethofumesate, ethoxysulfuron, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, fluazifop-butyl, fluazifop-P-butyl, fluchloralin, 15 flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, flupyrsulfuron-methyl and its sodium salt, fluridone, flurochloridone, fluroxypyr, fluthiacet-methyl, fomesafen, fosamine-ammonium, glufosinate, glufosinate-ammonium, glyphosate, glyphosate-isopropylammonium, glyphosate-sesquisodium, glyphosate-trimesium, halosulfuron-methyl, haloxyfop-etotyl, haloxyfop-methyl, 20 hexazinone, imazamethabenz-methyl, imazamox, imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isouron, isoxaben, isoxaflutole, lactofen, lenacil, linuron, maleic hydrazide, MCPA and its dimethylammonium, potassium and 25 sodium salts, MCPA-isoctyl, mecoprop, mecoprop-P, mefenacet, mefluidide, metam-sodium, methabenzthiazuron, methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyl [[[1-[5-[2-chloro-2-(trifluoromethyl)phenoxy]-2-nitrophenyl]-2methoxyethylidene]amino]oxy]acetate (AKH-7088), methyl 5-[[[[(2,6-dimethyl-2pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-(2-pyridinyl)-1H-pyrazole-2-carboxylate 30 (NC-330), metobenzuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron, napropamide, naptalam, neburon, nicosulfuron, norflurazon, oryzalin, oxadiazon, oxasulfuron, oxyfluorfen, paraquat dichloride, pebulate, pendimethalin, pentoxazone (KPP-312), perfluidone, phenmedipham, picloram, picloram-potassium, pretilachlor, primisulfuron-methyl, prometon, prometryn, propachlor, 35 propanil, propaquizafop, propazine, propham, propyzamide, prosulfuron, pyrazolynate, pyrazosulfuron-ethyl, pyridate, pyriminobac-methyl, pyrithiobac, pyrithiobac-sodium, quinclorac, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron,

sethoxydim, siduron, simazine, sulcotrione (ICIA0051), sulfentrazone, sulfometuron-methyl,

TCA, TCA-sodium, tebuthiuron, terbacil, terbuthylazine, terbutryn, thenylchlor, thiafluamide (BAY 11390), thifensulfuron-methyl, thiobencarb, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane, trifluralin, triflusulfuron-methyl, and vernolate.

In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for preventing the development of resistant weeds.

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Tables A-E for compound descriptions. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

INDEX TABLE A

15

5

<u>Cmpd</u>	$\underline{\mathbf{w}}$	<u>R</u> 1	<u>R</u> 2	X	Y	. <u>Z</u>	<u>R³</u>	<u>mp (°C)</u>
1 (Ex. 1)	CH	H	н	N	CH	СН	CF ₃	53-55
2	CH	H	H	CCI	CH	N	Cl	oil *
3	CH	H	H	N	CH	CBr	H	63-65
4	CH	H	H	N	CH	N	Cl	83-86
5	CH	H	H	CH	СН	N	CF ₃	78-79 ,
6 (Ex. 2)	N	Н	H	N	CH	СН	CF ₃	72-73
7	N	Н	H	CCI	CH	N	Cl	80-89
8	N	H	Н	N	CCH ₃	СН	CF ₃	110-112
9	N	н	. н	N	CH	CBr	H	oil *
10	N	H	H	N	CH	N	Cl	83-86
11	N	H	CH ₃	N	CH	СН	CF ₃	93-95
12 (Ex. 3)	N	CH ₃	H	N	CH	CH	· CF ₃	113-115
13	N	CH ₃	H	CH	CH	N	CF ₃	63-66
14	N	CH ₃	H	N	CH	CCI	CF ₃	108-109
15	N	CH ₃	CH ₃	N	CH	CH	CF ₃	107-108
16	N	CH ₃	H	N	CH	N	CF ₃	114-115

WO 98/40379 PCT/US98/04600

37

17	N	CH ₃	H	N	CH	CCN	CF ₃	141-142
18	N	CH ₂ CH ₃	H	N	CH	N	CF ₃	97-98

*See Index Table E for ¹H NMR data.

INDEX TABLE B

$$\mathbb{R}^4$$
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^3

								mp (°C)
Cmpd	R^1	<u>R</u> 3	<u>R</u> 4	Q	X	<u>Y</u>	<u>Z</u>	<u>or M+1</u>
19	CH ₃	CF ₃	OCF ₃	0	N	CH	CH	72-73
20	CH ₃	CF ₃	OCF ₃	0	CH	CH	N	oil*
21	CH ₃	CF ₃	CF ₃	S	N	CH	CH	101-102
22	CH ₃	CF ₃	OCF ₃	0	N	СН	CCI	92-93
23	CH ₃	CF ₃	OCF ₃	0	N	CH	CCN	139-141
24	CH ₃	CF ₃	OCF ₃	0	N	CH	N	95-97
25	CH ₃	CF ₃	SCF ₃	0	N	CH	CH	94-97
26	CH ₃	CF ₃	SCF ₃	0	CH	CH	N	73-77
27	CH ₃	CF ₃	SCF ₃	0	N	CH	CCI	98-101
28	CH ₃	CF ₃	Cl	0	N	CH	CH	69-70
29	CH ₃	C_2F_5	CF ₃	0	N	CH	CH	91-92
30	CH ₃	CF ₃	CF ₃	0	CH	CCH ₃	N	77-81
31	CH ₃	SO ₂ CH ₂ CH ₃	CF ₃	0	N	CH	CH	117.5-119.5
32	CH ₃	CF ₃	CF ₃	0	CH	CCH ₂ CH ₃	N	113-115
33	CH ₃	CHF ₂	CF ₃	0	N	CH	CH	67-72
34	CH ₂ CH ₃	CF ₃	CF ₃	0	СН	CH	N	53-55
35	CH ₂ CH ₃	CF ₃	OCF ₃	0	CH	CH	N	oil *
36	CH ₂ CH ₃	CF ₃	CF ₃	0	N	CH	CH	108-109
37	CH ₂ CH ₃	CF ₃	OCF ₃	0	N	CH	CH	64-66
38	CH ₃	CF ₃	C(CH ₃) ₃	0	N	СН	CH	83-85
39	OCH ₃	CF ₃	CF ₃	0	N	CH	CH	109-111
40	OCH ₃	CF ₃	OCF ₃	0	N	CH	CH	94-97
41	Br	CF ₃	CF ₃	0	N	CH	CH	139-142

WO 98/40379 PCT/US98/04600

~	0
	O

114-118	СН	CH	N	0	CF ₃	CF ₃	CHF ₂	42
106-108	CH	CH	N	0	CF ₃	CF ₃	CHBr ₂	43
m/z 346	CH	CH	N	0	CN	CF ₃	CH ₃	44
m/z 339	СН	CH	N	. 0	F	CF ₃	CH ₃	45
m/z 447	СН	CH	N	0	Ï	CF ₃	CH ₃	46
m/z 447	CI	CH	N	0	CF ₃	H	CH ₃	47
m/z 404	CI	CH	N	0	CN	н	CH ₂	48

^{*}See Index Table E for ¹H NMR data.

INDEX TABLE C

$$F_3C$$
 R^1
 N
 N
 N
 X
 CF_3

5

<u>Cmpd</u>	<u>R1</u>	X	<u>Z</u>	mp (°C)
49	CH ₃	N	СН	173-174
50	CH ₃	CH	N	145-146
51	CH ₃	N	CCI	178-179
52	CH ₂ CH ₃	N	CH	146-147
53	OCH ₃	N	CH	178-180
54	CH ₂ CH ₃	N	CCN	103-108
55	CH ₃	N	N	150-151

INDEX TABLE D

$$F_3C$$
 N
 N
 N
 X
 CF_3

<u>Cmpd</u>	<u>X</u>	<u>Z</u>	<u>mp (°C)</u>
56	N	CH	170-172
57	N	CCI	150-153
58	N	N	149-150

INDEX TABLE E

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
2	δ 7.06 (d, 1H), 7.31 (d, 1H), 7.35-7.60 (m, 2H), 7.72 (s, 1H), 7.93 (dd,
	1H).
9	δ 6.85 (d, 1H), 7.20-7.27 (m, 1H), 7.50 (s, 1H), 7.58-7.65 (m, 2H), 7.75
	(s, 1H), 8.18 (s, 1H), 8.65 (d, 1H).
20	δ 8.38 (s, 1H), 8.28 (s, 1H), 7.89 (s, 1H), 7.49 (t, 1H), 7.25-7.10 (m, 3H),
	2.37 (s, 3H).
35	δ 8.41 (s, 1H), 8.30 (s, 1H), 7.90 (s, 1H), 7.51 (t, 1H), 7.23 (d, 1H), 7.18-
	7.10 (m. 2H), 2.80 (g. 2H), 1.37 (t. 3H).

a ¹H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet, (dd)-doublet of doublets, (dt)-doublet of triplets, (br s)-broad singlet.

BIOLOGICAL EXAMPLES OF THE INVENTION

TEST A

5

10

15

20

25

Seeds of broadleaf signalgrass (Brachiaria decumbens), barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), rape (Brassica napus), redroot pigweed (Amaranthus retroflexus), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. A sprayed paddy pot was treated with some designated compounds. This paddy contained rice, barnyardgrass, smallflowered flatsedge (Cyperus difformis) and duck salad (Heteranthera limosa) as the target species and was sprayed alongside the other crop and weed species.

At the same time, these crop and weed species were also treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table A, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

Table A			СОМ	POU	ND				Table A		CO	MPO	UND
Rate 2000 g/ha	1	2	3	4	5	6	7	11	Rate 1000 g/ha 1	L3	14	19	49
POSTEMERGENCE									POSTEMERGENCE				
B. signalgrass	-	-	-	-	-	-	-	•	B. signalgrass	ιo	8	7	8
Barley	6	3	2	5	5	5	4	2	Barley	-	-	-	•
Barnyardgrass	4	3	6	. 7	9	8	4	3	Barnyardgrass	-	-	-	•
Bedstraw	9	9	10	10	9	9	9	3	Bedstraw	9	10	9	9
Blackgrass	8	4	3	5	8	9	3	3	Blackgrass	8	9	6	8
Chickweed	7	6	6	9	9	9	6	5	Chickweed	-	-	-	-
Cocklebur	7	6	4	7	8	8	8	6	Cocklebur	9	10	8	9
Corn	3	2	2	3	3	3	2	3	Corn	6	4	7	8
Cotton	8	6	10	8	10	9	9	8	Cotton	-	-	-	-
Crabgrass	8	4	8	9	9	9	6	8	Crabgrass	9	10	9	9
Downy brome	3	3	2	3	6	5	3	2	Downy brome	-	-	•	•
Giant foxtail	4	3	4	9	9	9	4	6	Giant foxtail	9	10	9	9
Lambsquarters	9	8	9	9	9	9	7	9	Lambsquarters	-	-	-	-
Morningglory	9	4	9	7	9	9	9	8	Morningglory 1	.0	10	8	9
Nutsedge	2	-	0	-	2	2	0	0	Nutsedge	2	3	0	3
Rape	8	7	9	10	10	10	9	9	Rape 1	0.	10	9	10
Redroot pigweed	-	-	-	-	-	-	-	-	Redroot pigweed	9	10	9	9
Rice	3	2	3	3	4	3	1	3	Rice	-	-	-	-
Sorghum	4	2	3	3	4	4	2	2	Sorghum	-	-	-	-
Soybean	9	3	5	6	8	9	. 8	8	Soybean 1	0	10	8	10
Sugar beet	9	8	10	10	10	10	9	9	Sugar beet	9	10	9	9
Velvetleaf	7	7	7	7	9	9	7	1	Velvetleaf	9	9	7	9
Wheat	0	2	2	3	4	3	2	1	Wheat	5	4	3	3
Wild buckwheat	7	8	5	9	8	9	10	6	Wild buckwheat	-	-	-	-
Wild oat	4	3	4	4	5	5	4	3	Wild oat	7	9	8	8
Table A		(сомі	וטספ	MD				Table A		CON	1POU	JND
Rate 2000 g/ha	1	2	3	4	5	6	7	11	Rate 1000 g/ha 1	3	14	19	49
PREEMERGENCE									PREEMERGENCE				
B. signalgrass	-	-	-	-	-	-	-	-	B. signalgrass 1	0	10	10	10
Barley	6	0	0	2	5	8	1	2	Barley	-	-	-	-
Barnyardgrass	9	0	9	9	9	10	3	9	Barnyardgrass	-	-	-	-
Bedstraw	8	1	8	4	10	8	3	8	Bedstraw 1	0	10	9	10
Blackgrass	10	0	8	10	9	10	4	10	Blackgrass 1	0	10	9	10

41

Chickweed	9	4	5	8	10	10	2	9	Chickweed	•	-	•	-
Cocklebur	0	0	0	0	3	2	0	0	Cocklebur	8	7	2	6
Corn	2	0	0	1	2	3	0	1	Corn	5	4	7	7
Cotton	3	2	2	1	7	4	0	0	Cotton	-	-	-	•
Crabgrass	10	1	9	10	10	10	9	10	Crabgrass	10	10	10	10
Downy brome	10	0	2	7	9	10	2	5	Downy brome	-	-	-	•
Giant foxtail	10	2	9	10	10	10	9	10	Giant foxtail	10	10	10	10
Lambsquarters	9	9	9	9	10	10	8	10	Lambsquarters	-	-	-	•
Morningglory	3	1	2	4	8	10	3	3	Morningglory	10	10	10	10
Nutsedge	•	0	0	0	0	-	-	-	Nutsedge	0	1	0	1
Rape	8	2	2	4	9	10	6	7	Rape	10	10	10	10
Redroot pigweed	•	-	-	-	-	-	-	•	Redroot pigweed	10	10	10	10
Rice	2	0	0	0	2	1	0	0	Rice	-	-	-	•
Sorghum	7	0	0	2	1	4	0	4	Sorghum	-	-	-	-
Soybean	1	0	0	0	2	4	0	1	Soybean	6	5	3	7
Sugar beet	10	0	3	9	10	10	6	10	Sugar beet	10	10	10	10
Velvetleaf	2	0	0	1	10	10	2	2	Velvetleaf	10	10	10	10
Wheat	9	0	0	2	7	9	0	1	Wheat	7	9	2	7
Wild buckwheat	5	1	1	6	9	10	2	8	Wild buckwheat	-	-	-	-
Wild oat	10	3	7	9	9	10	5	10	Wild oat	10	10	10	10

Rate 400 g/ha 1 2 3 4 5 6 7 8 10 11 POSTEMERGENCE B. signalgrass 3 2 2 3 3 3 3 0 Barley Barnyardgrass 9 7 8 7 7 8 9 1 7 2 Bedstraw 3 3 2 3 3 2 0 3 1 Blackgrass 4 5 Chickweed 5 2 7 8 5 0 3 4 6 5 4 6 7 5 5 0 Cocklebur 5 4 2 1 2 2 2 2 0 1 2 Corn 0 Cotton 7 9 9 9 7 7 9 3 0 2 6 5 3 Crabgrass 3 1 2 3 3 2 0 2 0 Downy brome 1 Giant foxtail 2 3 2 3 6 6 2 0 1 3 Lambsquart rs 8 8 6 9 9 9 7 0 3 9 8 4 8 7 8 9 7 1 2 7 Morningglory

COMPOUND

Table A

Nutsedge	1	0	0	0	0	2	0	0	0	0
Rape	6	7	6	8	7	10	8	1	6	8
Redroot pigweed	•	-	•	-	-	-	-	•	-	-
Rice	2	2	2	2	2	2	1	0	1	2
Sorghum	3	1	0	1	2	3	2	0	0	2
Soybean	6	3	3	5	. 7	9	4	2	2	6
Sugar beet	9	8	9	9	9	9	8	1	7	9
Velvetleaf	2	6	5	1	8	8	2	0	2	1
Wheat	0	2	1	3	2	1	2	0	1	0
Wild buckwheat	7	7	2	9	4	8	7	1	0	3
Wild oat	3	2	1	2	3	4	2	0	2	2
Table A		С	OMF	IUO	MD					
Rate 400 g/ha	1	2	3	4	5	6	7	8	10	11
PREEMERGENCE										
B. signalgrass	•	-	•	•	-	-	-	•	-	-
Barley	1	0	0	0	2	4	0	0	0	0
Barnyardgrass	3	0	0	0	5	5	0	2	1	4
Bedstraw	.3	0	0	-	6	8	0	0	0	0
Blackgrass	9	0	0	2	3	9	0	0	0	8
Chickweed	9	0	0	0	10	9	0	0	0	8
Cocklebur	0	0	0	0	1	.0	0.	0	0	0
Corn	0	0	0	0	0	1	0	0	0	0
Cotton	-	0	0	0	-	1	0	0	0	0
Crabgrass	9	0	3	6	9	10	3.	2	8	9
Downy brome	6	0	0	0	4	6	0	0	0	1
Giant foxtail	10	1	4	6	7	10	4	0	3	9
Lambsquarters	9	3	0	0	9	10	2	0	0	9
Morningglory	2	0	0	0	8	6	0	0	0	2
Nutsedge	0	0	-	•	0	-	•	•	0	0
Rape	2	0	0	0	8	9	0	0	0	3
Redroot pigweed	-	-	-	•	•.	•	•	•	•	-
Rice	0	0	0	0	0	0	0	2	0	0
Sorghum	2	0	0	0	0	2	0	0	0	2
Soybean	0	0	0	0	1	2	0	0	0	0
Sugar b et	7	0	0	3	9	10	0	0	0	6
Velvetleaf	0	0	0	0	7	7	0	0	1	0
Wheat	2	0	0	0	2	3	0	0	0	0

Wild buckwheat	0	0	0	0	5	6	0	0	0	2
Wild oat	9	0	0	3	8	10	0	0	0	7

Table A			COM	POU	ND	Table A		(сом	POU	ND
Rate 200 g/h	a 12	13	14	19	49	Rate 200 g/ha	12	13	14	19	49
POSTEMERGENCE					•	PREEMERGENCE					
B. signalgras	s -	4	3	4	5	B. signalgrass	-	10	9	8	10
Barley	4	-	-	-	•	Barley	5	-	-	-	•
Barnyardgrass	9	-	-	-	-	Barnyardgrass	10	- .	-	-	•
Bedstraw	9	9	10	9	9	Bedstraw	7	8	10	10	9
Blackgrass	4	6	8	4	7	Blackgrass	10	10	10	9	10
Chickweed	8	-	-	-	-	Chickweed	9	-	•	-	-
Cocklebur	9	6	10	8	9	Cocklebur	2	8	4	1	2
Corn	5	4	2	3	3	Corn	3	4	2	4	3
Cotton	10	-	-	-	•	Cotton	4	•	-	-	-
Crabgrass	9	8	10	8	9	Crabgrass	10	10	10	10	10
Downy brome	6	-	-	-	•	Downy brome	10	-	-	-	•
Giant foxtail	8	9	6	8	9	Giant foxtail	10	10	10	10	10
Lambsquarters	9	-	-	-	-	Lambsquarters	10	٠-	-	-	•
Morningglory	9	8	10	8	9	Morningglory	8	6	10	9	5
Nutsedge	2	1	3	0	1	Nutsedge	0	0	0	0	0
Rape	10	10	10	9	10	Rape	9	9	10	8	9
Redroot pigwe	ed -	9	10	9	9.	Redroot pigweed	-	10	10	10	10
Rice	3	-	-	-	•	Rice	2	-	-	-	-
Sorghum	4	-	-	-	•	Sorghum	7	-	-	-	•
Soybean	9	8	10	8	10	Soybean	0	2	4	1	4
Sugar beet	9	9	10	9	9	Sugar beet	10	10	10	10	10
Velvetleaf	9	9	9	7	9	Velvetleaf	10	9	8	9	10
Wheat	3	3	3	1	2	Wheat	4	3	3	1	2
Wild buckwhea	t 8	-	-	-	•	Wild buckwheat	4	-	-	-	-
Wild oat	7	3	5	4	4	Wild oat	10	10	9	8	10
Table A	сомрот	JND		Та	ble	A COMPOUND Tab	le	A		cc	MPOU

Table A	A CO	1POT	JND	Table	A	CO	IPOU	ND	Ta	ble .	A	CO	MPO	JND
Rate 1	100 g/ha	8	10	Rate	100	g/ha	8	10	Ra	te	50	g/ha	9	12
POSTEM	ERGENCE			PREEM	ERGEN	CE			PC	STEM	ERGI	ENCE		
B. sign	nalgrass	-	•	B. sie	gnalg	rass	•	-	в.	sig	nalç	grass	-	-
Barley	,	0	2	Barle	Y		0	0	Ba	rley			0	3
Barnyar	rdgrass	0	0	Barny	ardgr	ass	0	0	Ba	rnya	rdgı	rass	0	5

Downy brome 0 7

•								•	•		
Bedstraw	0	4	Bedstraw		0	0	Beds	str	aw	3	9
Blackgrass	0	2	Blackgrass		0	0	Blac	kg:	rass	0	3
Chickweed	0	2	Chickweed		0	0	Chic	:kw	eed	3	7
Cocklebur	0	3	Cocklebur		0	0	Cocl	le	bur	2	7
Corn	0	. 0	Corn		0	0	Corr	1		1	3
Cotton	0	1	Cotton		0	0	Cott	.on		2	10
Crabgrass	0	1	Crabgrass		0	0	Crab	gr	ass	0	8
Downy brome	0	1	Downy brome		0	0 .	Dowr	ıy l	brome	0	6
Giant foxtail	0	1	Giant foxtai	11	0	.0	Giar	ıt :	foxtail	0	4
Lambsquarters	0	2	Lambsquarter	:s	0	0	Lamb	gra	uarters	1	9
Morningglory	0	2	Morningglory	7	0	0	Morr	in	gglory	2	8
Nutsedge	0	0	Nutsedge		0	0	Nuts	ed	ge	0	0
Rape	0	5	Rape		0	0	Rape	2		3	10
Redroot pigweed	-	-	Redroot pigw	veed	-	-	Redr	00	t pigweed	•	-
Rice	0	0	Rice		0	0	Rice	2		0	2
Sorghum	0	0	Sorghum		0	0	Sorg	hur	n	0	2
Soybean	0	1	Soybean		0	0	Soyb	eai	n	1	8
Sugar beet	0	4	Sugar beet		0	0	Suga	r l	oeet	2	9
Velvetleaf	0	1	Velvetleaf		0	.0	Velv	et:	leaf	0	8
Wheat	0	0	Wheat.		0	0	Whea	t		0	2
Wild buckwheat	0	0	Wild buckwhe	eat	0	0	Wild	bı	ıckwheat	1	8
Wild oat	0	1	Wild oat	•	0	0	Wild	loa	at	0	3
Table A COM	DOU	ND		Gian	at f	oxtai	1	0	10		
Rate 50 g/ha	9	12		Lami	psqu	arter	8	0	9		
PREEMERGENCE				Mori	ninç	glory		0	5		
B. signalgrass	-	-		Nuts	sedç	re .		0	0		
Barley	0	1		Rape	€			0	7		
Barnyardgrass	0	8		Redi	coot	. pigw	eed	•	-		
Bedstraw	0	5		Rice	€			0	1		
Blackgrass	0	8		Sor	ghun	1		0	3		
Chickweed	0	9		Soyl	oear	ı		0	0		
Cocklebur	0	2	•	Suga	ar b	eet		0	9		
Corn	0	2		Velv	vet]	.eaf		0	10	-	
Cotton	0	1		Whea	at			0	1		
Crabgrass	0	10		Wild	i bi	ıckwhe	at	0	3		

Wild oat

45

Table A	1	COM	ipot	DMC	Table A		CO	MP(
Rate 1000 g/ha	13	14	19	49	Rate 200 g/ha	13	14	19
SPRAYED PADDY					SPRAYED PADDY			
Barnyardgrass	9	9	8	9	Barnyardgrass	8	6	7
Ducksalad	8	7	6	9	Ducksalad	5	7	4
Rice	9	5	6	9	Rice	5	3	5
S. flatsedge	9	9	8	9	S. flatsedge	8	8	8

TEST B

5

10

15

Seeds of broadleaf signalgrass (Brachiaria decumbens), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), cocklebur (Xanthium strumarium), corn (Zea mays), crabgrass (Digitaria sanguinalis), giant foxtail (Setaria faberii), morningglory (Ipomoea hederacea), rape (Brassica napus), redroot pigweed (Amaranthus retroflexus), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, these crop and weed species were also treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Plant species in the flood test consisted of rice (Oryza sativa), smallflower flatsedge (Cyperus difformis), duck salad (Heteranthera limosa) and barnyardgrass (Echinochloa crus-galli) grown to the 2-leaf stage for testing. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table B, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

Table B	COMPO	JND	Table B Co	OMPO	JND
Rate 1000 g/h	ıa 5	26	Rate 1000 g/ha	5	26
Postemergence	•		Preemergence		
B. signalgras	s 3	8	B. signalgrass	9	9
Barnyardgrass	8	6	Blackgrass	9	10
Blackgrass	5	9	Cocklebur	2	8
Cocklebur	8	10	Corn	3	3
Corn	3	6	Crabgrass	10	10
Crabgrass	10	8	Galium	10	7
Ducksalad	7	6	Giant foxtail	10	10
Galium	10	10	Morningglory	10	10

Giant foxtail	7	8						Ŋ	lutsedge	10	0
Morningglory	9	9						F	tape	10	10
Nutsedge	0	2						F	dedroot pigweed	10	10
Rape	10	10						5	Soybean	1	8
Redroot pigweed	10	9						5	ugarbeets	10	10
Rice	5	5						V	elvetleaf	9	10
S. Flatsedge	8	9		•				W	heat	4.	2
Soybean	6	9						W	ild oats	10	9
Sugarbeets	10	10									
Velvetleaf	8	10									
Wheat	4	3									
Wild oats	5	7									
Table B		(COM	2001	ND						
Rate 500 g/ha	5	15	20	21	26	29	30	31			
Postemergence											
B. signalgrass	2	3	3	-	8	6	9	2			
Barnyardgrass	6	0	6	0	6	7	6	4			
Blackgrass	2	3	8	9	8	9	б	2			
Cocklebur	6	6	9	9	9	9	8	9			
Corn	2	2	6	2	4	3	3	2			
Crabgrass	4	6	9	8	8	9	9	8			
Ducksalad	6	2	5	2	4	8	4	1			
Galium	10	5	9	9	10	9	10	7			
Giant foxtail	3	3	9	7	8	9	9	6			
Morningglory	9	8	10	8	9	10	8	9			
Nutsedge	0	0	1	0	2	-	0	2			
Rape	10	8	9	9	10	9	10	8			
Redroot pigweed	10	9	9	9	9	9	10	9			
Rice	4	2	7	3	4	5	5	3			
S. Flatsedge	7	4	9	8	9	9	9	9			
Soybean	5	6	9	1	8	9	9	8			
Sugarbeets	10	8	10	9	10	9	10	9			
Velvetleaf	7	4	10	5	10	10	9	8			
Wheat	3	3	5	2	3	3	4	2			
Wild oats	3	4	6	3	5	6	6	2			

m-1-1-	_				aa	DOT*				
Table	В			,	COM	POU	ND			
Rate	500	g/ha	5	15	20	21	26	29	30	31
Preeme	erge	nce								
B. siç	mal	grass	9	5	10	-	9	10	9	3
Blacko	ras	s	8	5	10	9	9	10	8	1
Cockle	bur		0	0	9	1	8	9	7	3
Corn			0	0	3	1	2	3	1	0
Crabgi	ass		10	10	10	10	10	10	10	10
Galium	1		9	8	9	9	7	10	8	0
Giant	fox	tail	10	10	10	10	10	10	10	1
Mornin	gglo	ory	8	-	10	8	10	10	10	10
Nutsed	lge		3	0	-	0	0	1	0	Ō
Rape			9	8	10	9	10	10	7	3
Redroc	t p	igweed	10	9	10	10	10	10	10	8
Soybea	n		0	0	7	0	6	3	4	1
Sugarb	eets	3	10	8	10	10	10	10	10	10
Velvet	leaf	Ī	8	2	10	7	9	10	10	10
Wheat			2	0	8	1	2	9	3	1
Wild o	ats		8	7	10	9	9	10	9	1

	U	O.	COMPOUND	Θ																						•	
5 12 13 14 15	14		7		16	17	19 2	20 2	21 2	22 2	23 24	4 25	26	27	28	29	30	31	34	35	36	37	38	39	40.	41	44
2 - 4 3 3	m		٣		ω	ო	М	7			m	9 8	7	m	6	4	∞	~	М	4	œ	7	7	2	S	7	•
5 6 5 5 0	ß		0		7	4	7	9	0	Ŋ	ص ص	5	4	4	9	9	4	٣	9	7	δ	σ	7	7	m	4	4
2 9 8 6 2	9		7		9	7	4	9	9	&	4	8	9	7	œ	2	m		4	₹*	8	7	7	9	7	7	•
9 6 6 6 9	0		9		10	σ	œ	σ	0	60	œ	8	9	œ	0	9	∞	•	œ	6	6	σ	7	œ	10	œ	•
2 3 4 3 2	ю		~		9	4	m	٣	-	7	7	5	4	<u>.</u> س	Ŋ	m	m	8	7	m	4	S	7	m	4	7	•
19995	Ø		Ŋ		9	σ	7	0	7	6	œ	9	.5	ις O	σ	9	O	7	7	6	9	σ	7	œ	. o	œ	•
6 9 6 3 0	ო		0		6	æ	4	4	0	, M	9	7 8	~	ις C	9	œ	7	Н	9	4	œ	_. ور	m	Ŋ	4	4	9
7 9 9 9 4	6		4		٠	10	9	6	œ		ο.	6	7	9	10	σ	10	7	6	•	σ	O	٠	10	•	10	i
3 9 9 9 3	6		m		0	6	7	œ	7	7	ω	9		4	10	S	œ	m	œ	9	8	Ø	7	O	0	7	٠.
10 10 8 10 7	10 7	7			10	9	7	10	œ	σ	9 10	0 10	6	4	10	σ	∞	oب و	œ	6	10	œ	Ŋ	œ	9	7	•
0 2 3 2 0	7		0		0	0	0	0	0	0	0	1 4	-		m	•	0	-	~	0	7	0	0	~	ო	0	. •
8 10 9 10 8	10		œ		0	10	7 1	10	9 1	10	8 10	0 10	10	10	10	σ	10	œ	δ	δ	σ	σ	m	10	10	₹	. •
6 6 6 6 6	О		Q		σ	9	0	ο,	7 1	10	9 10	6 0	6	10	6	6	10	6	6	Q	œ	6	, co	10	9	æ	•
3 6 5 6 0	9		0		œ	m	7	9	7	٣	0	9	5	m 	5	4	S	7	7	m	7	~	7	9	4	4	4
7 .9 .9 9 3	6		က		9	9	δ	6	ω	m	 ထ	6	8	9	0	œ	œ	o	œ	9	9	δ	9	6	თ	6	٠٥
1 9 9 8 5	80		S		σ	7	9	8	_	6	y	9 10	8	œ 	10	œ	Q	œ	10	10	10	10	9	œ	0		. •
8 6 6 6 6	6		œ		6	10	9	10	6	6	9	10 10	0 10	10	10	6	10	9	6	9	9	œ	7	10	10	œ	•
7 9 9 9 3	6		m		6	œ	7	δ	Ŋ	0	9	o.	6	80	9	6	œ	9	6	9	6	6	m	œ	œ	7	٠
2 2 4 3 2	m		7		r	П	7	7		m	7	7	4 2	2	m	c	က	~	Н	-	4	4	~	က	4	7	•
2 6 4 5 3	ß		٣		ა	4	m	4	٣	7	m	5	9	- N	9	2	Ŋ	Н	ო	٣	9	9	7	Ŋ	Ŋ	က	•

Table B		(СОМ	POUI	MD.				
Rate 250 g/ha	45	46	49	51	52	53	54	56	57
Postemergence									
B. signalgrass	4	8	5	-	-	-	٠-	3	2
Barnyardgrass	6	5	6	0	6	1	3	7	4
Blackgrass	6	6	8	3	6	б	4	8	3
Cocklebur	6	9	10	6	7	6	8	7	8
Corn	4	4	4	3	6	1	4	7	2
Crabgrass	-	10	10	6	9	1	3	6	4
Ducksalad	5	2	8	0	4	0	2	9	6
Galium	7	9	9	9	9	· 7	. 8	9	9
Giant foxtail	6	8	10	4	9	1	2	9	6
Morningglory	10	10	9	4	9	7	6	9	•
Nutsedge	0	0	2	0	1	0	1	1	0
Rape	9	10	9	7	7	1	6	9	10
Redroot pigweed	9	10	9	9	9	8	9	10	9
Rice	3	5	6	0	5	0	2	8	4
S. Flatsedge	9	8	9	0	9	5	6	9	9
Soybean	-	7	9	5	8	2	7	6	4
Sugarbeets	9	10	9	8	9	7	9	9	9
Velvetleaf	8	8	9	3	6	5	7	9	7
Wheat	2	3	3	3	3	1	2	1	1
Wild oats	4	5	5	2	9	1	3	4	2

Table B		_	õ	COMPOUND	£																									
Rate 250 g/ha	Ŋ	12	13	14	15	16	17	13	20	21	22	23	24	25	26	27	28	29	30	31	34	35	36	33	38	39	40	41	45	
Preemergence																														
B. signalgrass	Ŋ	٠	10	•	c	10	∞	∞	•	•	:	6	10	10	7	8	10	10	8	Н	œ	∞	•	٠	7	6	9	œ	0	
Blackgrass	-	10	10	Ø	7	10	10	ø	σ	7	σ	σ	10	10	7	ထ	10	10	7	0	σ	σ	10	10	٦	ø	œ	10	. 01	
Cocklebur	0	6	œ	9	0	7	4	m	7	0	7	œ	10	œ	æ	n	7	Ŋ	•	•	က	7	7	œ	0	٠	10	m	0	
Corn	0	m	7		0	4	7	က	-	-	-	-	ស	7		0	Н	7	٦	0	-	-	5	4	0	~	-	Н	0	
Crabgrass	œ	10	10	10	7	10	10	10	10	10	10	10	10	10	9	Q	10	10	10	0	σ	10	10	10	Ť	10	10	10	10	
Galium	6	σ	œ	œ	4	10	10	7	0	Н	œ	10	œ	10	7	0	6	٥.	8	0	σ	∞	10	6	0	σ	10	9	Н	
Giant foxtail	0	10	10	10	7	10	10	10	10	10	10	10	10	10	Q	6	10	10	10	0	10	10	10	10	4	10	10	10	6	
Morningglory	Q	10	10	10	0	10	10	10	10	. co	0	10	10	10	Ø	Ŋ	10	10	12	10	10	12	10	10	Н	10	10	ف	10	
Nuts dge	0	Н	0	•	0	•	0	0	0	0	0	-	0	4	0	•	S	-	•	0	~	-	-	•	0	•	Н	•	. 0	
Каре	œ	10	10	10	2	10	10	Q	10	œ	10	10	10	10	σ	9	6	2	7	. ⊣	10	်	10	10	Н	10	σ	7	7	
Redroot pigweed	10	10	10	10	. 5	10	10	σ	10	10	10	10	10	10	10	10	10	10	10	9	10	10	10	10	ά	10	10	10	10	
Soybean	0	5	S	7	0	7	m	m	4	0	7	7	œ	m	Ŋ	-	m	~	m	0	Н	4	7	7	0	4	ო	~1		
Sugarb ets	6	20	10	10	7	10	. 10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	.4	10	10	10	10	
V lvetleaf	œ	10	10	10		0 10	10	10	10	7	10	10	10	10	&	10	10	10	80	œ	10	7	10	10	7	10	10	Н	10	
Wheat	0	က	4	S	0	4	73	7	4	0	9	m.	9	7	H	m	-	m	7	0	7	က	4	Ŋ	0	~	4	4	.0	
Wild oats	9	10	10	10	7	10	∞		9	7	10	ω	10	10	80	8	10	10	œ	Н	œ	σ	10	10	7	σ	6	œ	10	

							_			
Table	В			(COM	POU	ND.			
Rate	250	g/ha	46	49	51	52	53	54	56	57
Preeme	erger	ice								
B. siç	nalç	grass	9	10	3	•	-	· -	9	8
Black	grass	3	8	10	5	-	2	2	9	7
Cockle	bur		2	8	2	7	0	2	3	0
Corn			1	5	0	5	0	0	4	0
Crabgr	ass		9	10	9	9	3	9	10	10
Galium	n		4	9	9	9	7	8	9	8
Giant	foxt	ail	9	10	9	10	2	3	10	9
Mornin	ngglo	ory	9	10	10	8	6	7	10	10
Nutsed	lge		0	1	0	0	0	0	0	-
Rape			7	10	8	9	1	2	10	10
Redroc	t pi	.gweed	9	10	10	10	9	6	10	10
Soybea	ın		1	5	1	2	0	1	1	1
Sugarb	eets	}	10	10	10	10	8	9	10	10
Velvet	leaf	•	9	10	5	8	0	7	10	7
Wheat [.]			4	4	3	3	0	1	4	1
Wild o	ats		9	10	3	9	2	4	10	9

Table B		J	COMPOUND	NO OT	Ð																							
Rate 125 g/ha	S	12	13	14	15	16	11	19	20 :	21 2	22 2	23 2	24 25	5 26	5 27	7 28	29	30	31	34	35	36	37	38 3	39 4	40 41		44
Postemergence																												
B. signalgrass	Н	٠	m	ო	c	9	7	~	7			~	9	4	4	3 6	m	8	7	٣	ო	9	9	-1	S	4		S
Barnyardgrass	m	2	4	4	0	9	٣	ស	ß	0	4	7	4	9	4	3 5	4	4	m	5	4	œ	œ	-	9	m	æ	3
Blackgrass	⊣	7	9	3	2	8	Ŋ	7	2	•	7	m	m	7	9	9 /	 m	c	7	m	4	7	9	Н	2	9	-	2
Cocklebur	9	œ	Q	9	2	10	σ	7	œ		&	∞	∞	6	6	8	∞ ~	œ	8	7	δ	6	6	7	∞	6	9	
Corn	7	7	7	~	~	4	7	-	٣	•	н	-	Ś	4	m	3	m	ო	8	7	က	4	S	~	7	m	-	4
Crabgrass	m	6	Φ	6	4	0	7	4	6		œ	S	∞	ر ت	ις.	8		œ	Н	7	9	0	6	ч	7	7	7	æ
Ducksalad	4	6	٠	m	0	8	8	7	m	0	7	7	•		. 2	4 4	1 7	0	0	ო	က	ស	6	64	4	с	М	છ
Galium	7	δ	0	9	4	10	10	œ	6		Q		σ.	6		10	6	10	4	6	•	9	6	7 1	10		œ	6
Giant foxtail	7	∞.	7	ù	7	Q	œ	S	4	•	4	9	σ,	S.	. 2	4 6	ີ M	₹.	m	່ທ	'n	8	. ف	-	7	. 6	e	6 0
Morningglory	7	10	œ	10	9	9	6	~	6	٠	δ	7	6.	10	4. 9	1 10	9 (æ	9	œ	9	9	8	7	, co	6	m	6
Nutsedge	0	-	-	٦	0	0	0	0	0		0	0	0	3	0	0 1	0	0	0	ч	0	~	0	0	-	.0		0
Rape	9	10	σ	10	7	6	9	7	10	•	10	7 1	10 1	10 10	0 10	0 10	6	σ	7	6	თ	σ	6	ω.	10 1	10	7	œ
R droot pigweed	œ	Q	ò	Q	σ	9	6	9	0		σ	9 1	10	9	9 10	.و	. 60	œ	9	Q	9	œ	∞	ស	10	6	æ	6
Rice	Н	2	4	ß	0	9	က	ស	2	0	7	-	IS	4	7	2 4	۳ -	Ŋ	0	ù	7	9	9	0	9	m	-0	ю
S. Flatsedge	7	Ð	6	m	7	Q	σ	7	6	2	8	7	œ	₩ ₩	. 8	4	8	7	7	7	9	σ	6	2	8	6	7	6
Soybean	4	œ	œ	8	ഹ	6	7	₩	æ	. 1	7	ß	∞	6	∞	8	80	O	7	6	10	10	6	ဗ	œ	&	0	6
Sugarbeets	9	9	0	ø,	8	Q	9	O	10		6	9 1	10	9 10	0	9 10	6	10	80	δ	D	6	œ	4	10	σ	8 1	10
Velvetleaf	7	Q	0	Q	m	0	∞	ო	6	٠	6	•	<u>ه</u>	6	6	8	80	. ထ	9	σ	Q	9	œ	7	æ	∞	0	6
Wheat	7	7	m	7	-	7	٦	7	7	•	-	~	rd.	., Б		2		7	7	₽	-	æ	4	-	7	m	7	4
Wild oats	C	~	4	4	~	4	c	c	~		7	~	4	ī,		יר	4	~	-	~	"	¥	ľ	-	Ľ	4	ç	٧

Table	В			(COMI	POUI	ND				
Rate	125	g/ha	45	46	49	51	52	53	54	56	57
Poster	nerge	ence									
B. siq	nal	grass	4	8	4	-	-	-	-	3	1
Barnya	ardg	rass	3	4	5	0	5	0	2	7	4
Black	ras	5	5	5	6	3	5	4	3	7	2
Cockle	bur		4	9	10	5	5	6	8	6	7
Corn			4	3	3	2	5	0	3	5	2
Crabgi	ass		6	8	9	3	5	1	3	4	3
Ducksa	ılad		5	2	8	0	3	0	2	9	5
Galium	n		7	9	9	8	8	8	. 8	9	9
Giant	fox	tail	4	6	9	1	8	1	2	7	6
Mornin	ıgglo	ory	10	10	8	3	8	6	6	9	9
Nutse	lge		0	0	2	0	0	0	0	0	0
Rape			8	8	9	7	7	0	5	9	8
Redro	t p	igweed	9	10	9	9	9	7	9	9	9
Rice			3	4	5	0	4	0	0	8	4
S. Fla	tsec	ige	9	7	8	0	9	4	5	9	9
Soybea	an		9	7	8	4	6	0	4	6	2
Sugarl	eets	S	9	10	9	8	9	7	9	9	9
Velvet	:leai	E	7	8	9	· 3	6	2	6	8	7
Wheat			2	٦,	2	2	3	1	1	1	1
Wild o	ats		3	4	5	2	. 4	1	2	4	2

Table B		_	COMPOUND	Pod	Ð																								
Rate 125 g/ha	ស	12	13	14	15	16	11	19	70	22	23	24	25	3 6	27	28	29	30	31	34	35	36	37	38	39	40	41	44	45
Preemergence																													
B. signalgrass	7	•	10	•	-	10	æ -	7	•	•	œ	9	10	2	8	10	O	®	-	œ	9	•	•		7	6	7	7	8
Blackgrass	0	7	σ	9	-	10	9	m	σ	ω	7	æ	9	ß	Ŋ	6	9	m	0	œ	Ω	10	10	0	9	9	7	7	S
Cocklebur	0	9	•	ι	0	7	4	0	7	0	9	8	7	٠	-	Н	-	•	0	•		7	ო	0	1	9	+	0	
Corn	0	7	7	-	0	-	0	7	-	-	-	m	-	0	0	П	7	H	0	7	П	7	7	0	0	Н	1	8	0
Crabgrass	4	10	10	10	, - 1	10	10	on .	10	10	10	10	10	0	σ	δ	10	Q	9	6	10	10	10	Н	6	10	10	10	10
Galium	9	9	ω	ω	m	10	10	7	σ	7	00	∞.	10	4	7	m	9	7	0	9	æ	10	9	0	∞	œ	۰.	ស	-
Giant foxtail	5	10	10	σ	m	10	10	6	10	10	10	10	10	0	9	10	10	10	æ	6	10	10	10	က	10	10	10	10	9
Morningglory	7	10	10	10	0	10	10	0	10	9	ω	10	10	ß	2	10	10	10	9	9	Q	10	. و	0	10	10	က	Q	6
Nutsedge	0	0	0	0	0	0	0	0	0	0	0	0	Н	0	•	-	•	0	0	0	-	•	0	0	٠	-	0	0	0
Rape	7	σ	10	∞.	ιΩ	10	10	∞	6	σ	10	10	10	œ	9	8	10	7	-	o	∞.	10	10	0	7	6	4	œ	4
Redroot pigweed	Ø	10	10	σ	Н	10	10	σ	10	10	10	10	10	œ	7	10	10	10	2	10	10	10	10	0	6	œ	10	6	6
Soybean	0	7	m	2	0	4	-		7	Н	171	7	7	4		7	7	n	0	~	7	7	Н	0	က	n	0	Ŋ	~
Sugarb ets	œ	10	10	10	m	10	10	10	10	0	10	10	10	10	0	10	10	20	m	10	σ	10	10	7	10	2	S	10	10
Velvetleaf	7	10	10	7	0	10	10	7	10	7	80	10	Ø	œ	7	10	10	7	4	œ	9	10	œ	н	Q	10	0	10	7
Wheat	0	7	7	Ü	0	- 7	7	0	m	c	7	က	٢	ન	-	0	ო	7	0	7	~	7	'n	0		3	7	~	0
Wild oats	4	10	Q	6	0	10	7 (S	∞ .	6	œ	Q	10	7	9	10	Q	œ	0	œ	7	10	10	7	9	6	7	2	6

		-						
Table B		•	СОМ	POUI	MD.			
Rate 125 g/ha	46	49	51	52	53	54	56	57
Preemergence								
B. signalgrass	9	10	1	-	-	-	7	7
Blackgrass	5	10	1	7	2	2	4	2
Cocklebur	1	2	1	2	0	1	Ō	Ô
Corn	1	3	0	5	0	0	2	0
Crabgrass	7	10	6	9	0	6	10	9
Galium	3	9	7	9	3	6	8	7
Giant foxtail	9	10	9	10	1	3	10	9
Morningglory	6	10	5	8	0	7	10	10
Nutsedge	0	1	0	0	-	0	-	0
Rape	6	10	7	9	0	0	10	9
Redroot pigweed	9	10	7	10	3	6	10	10
Soybean	1	3	0	0	0	0	1	0
Sugarbeets	10	10	10	10	3	9	10	9
Velvetleaf	9	10	5	6	0	7	10	7
Wheat	3	1	1	3	0	0	3	1
Wild oats	7	10	2	9	2	1	10	9

Table B		J	COMPOUND	ğ	9																						•	
62 g/ha	12	13	14	15	16	17	19	20	21	22	23	24	25 2	27 2	28 2	29 30	0 31	1 34	35	36	37	38	39	40	41	44	45	46
Postemergence																												
B. signalgrass	•	7	က	m	m	7	-		٠		7	က	4	7	9	e	 ∞	~	3	Ŋ	Ŋ	-	m	m	Н	ю	4	7
Barnyardgrass	S	4	₩	0	4	ო	4	4	0	4	7	m	2	7	4	М	4	e m	4	7	2	0	4	7	m	٣	~	٣
Blackgrass	4	ស	4	-	n	က	7	က	က	9	٣	က	5	7	4	7	7	-	3	7	4	-	7	2	-	ю	4	٣
Cocklebur	ω	9	σ	7	9	ω	7	œ	7	7	œ	7	9	7	7	ω	7	- &	7 8	<u>о</u>	σ	7	æ	æ	•	•	4	Q
	7	7	7	~	7	~		7	-	Н	7	m	4	7	m	7	m	~	2	m	4	-	7	ന	1	4	က	٣
Crabgrass	7	®	4	က	0	9	က	9	7	9	4	œ	٣	က	7	m	و	~	5	œ	2	0	n	2	m	. rv	7	٣
Ducksalad	0	7	0	0	æ	8	0	7	0	0	-	2	4	r	4	9	0	0	1 2	4	4	0	m	2	7	9	0	н
	0	S	œ	4	10	٠	7	œ	7	σ	•	σ	9	10	9	8 1	10	8	6	∞	∞	⊣	10	•	œ	6	4	0
Giant foxtail	2	7	7	~	∞	.	w	7	7	4	9	7	٣		'n		Ŋ	~		7	4		9	9	7	9	~	m
Morningglory	10	œ	9	7	œ	6	7	9	7	œ	•.	7	Q,	4	œ	e	80	∞	80	8	7	-	7	0	Э	80	10	7
Nutsedge	Н	•	↔	0	0	0	0	0	0	0	0	0	m	-1	0		0	0	1 0	7	0		0	0	0	•	0	0
	10	S	9	9	0	7	9	œ	Q	10	•	σ	9	10 1	10	œ		រេ	6	_ თ	σ	က	10	10	7	ω	œ	œ
Redroot pigweed	σ	σ	œ	œ	σ	6	6.	6	4	σ	6	10	60	10	6	6	∞	&	6	ω	ω	•	10	σ	7	Q	თ	6
	4	က	4	0	ب	7	٣	4	0	7	-1	S	٣	-	4	~	4	.	1	<u>د</u>	Ŋ	0	2	7	-	М	H	က
S. Flatsedge	0	œ	m	0	တ်	æ	1	&	က	7	7	œ	œ		0	7	S	9	5	9	∞	7	80	9	7	σ	. ∞	7
Soybean	9	9	∞	Ŋ	7	9	7	7	0	2	က	∞	∞	7	∞	∞	6	4 10		8	0	-	∞	∞	9	'س	Ð	7
Sugarb ets	Q	σ	œ	œ	œ	6	6	œ	9	9	9	10	0	6	თ	6	6	∞	6	6	∞	4	10	σ	9	10	Q	10
Velvetleaf	Q	6	œ	ო	7	7	က	œ	7	6	9	9	9	8	80	œ	8	9	6	80	80	-	ω.	7		œ	-	œ
	1	7	Н	0	Н	-	-	4	Н	-	н	н	ო	-	m	m	-		 H	<u>π</u>	4	0	~	m	Н	7	H	3
מלפה הרוש	c	٧	~	-	"	c	c	C	ç	¥	~	c	r	~	4	۳,	~	_		ر ب	4	-	C	4	-	c	~	4

Table B		(COM	POUI	ØV.		
Rate 62 g/ha	49	51	52	53	54	56	57
Postemergence							
B. signalgrass	3	-	-	-	-	2	. 1
Barnyardgrass	5	0	4	0	1	6	2
Blackgrass	5	2	5	1	3	3	2
Cocklebur	9	4	5	3	6	6	6
Corn	3	2	3	0	1	3	2
Crabgrass	9	2	4	0	2	3	3
Ducksalad	6	0	0	0	0	. 8	3
Galium	9	8	8	7	8	9	8
Giant foxtail	8	1	5	1	1	7	4
Morningglory	8	3	6	1	6	9	9
Nutsedge	2	0	0	0	0	0	0
Rape	8	' 7	7	0	4	9	8
Redroot pigweed	9	9	9	5	6	9	9
Rice	4	0	3	0	0	7	3
S. Flatsedge	8	0	5	2	5	9	8
Soybean	8	4	5	0	4	5	2
Sugarbeets	9	7	9	6	9	9	9.
Velvetleaf	9	3	6	2	6	6	7
Wheat	2	2	3	0	1	0	1
Wild oats	5	2	4	0	2	3	1

Table B

Rate 62 g/ha	17	13	14	15	16	17	19	20	21	22	23	24	25 2	27 2	28 2	29 30	0 31	1 34	35	36	37	38	40	41	44	45	46	49	
Pr emergence									,																				
B. signalgrass	•	6	•	0	6	S	S	•	•	•	7	σ	D	9	6	60	7	0 7	3	•	•	0	&	4	S	ω	Ŋ	10	
Blackgrass	7	7	9	0	9	m	7	4	7	ю	9	9	œ	٣	9	2	H	0	3	9	10	0	2	m	7	æ	m	10	
Cocklebur	7	S	+	0	-	٣	0	က	0	0	S	7	7	0	•		•	0	0 1		m	0	9	0	0	0	٦		
Corn	7	-	0	0	-	0	0	0	0	0	~1	-1	-	0	-	-	0	0	1 1	-	٦.	0	-	0	0	0	0	~	
Crabgrass	10	10	0	-	10	σ	80	œ	7	10	Ð	10	6	4	8 1	10	ω	7	9	10	10	н	9	œ	Ø	œ	7	10	
Galium	9	7	00	m	10	0			0	7	œ	7	œ.	ى .	М	œ	9	0	6 7	ω	ω	0	œ	9	'n	0	7	6	
Giant foxtail	10	10	0	Н	10	Q	7	œ	6	10	O	10	10		10 1	10	6	4	8	10	10	. ~	σ	Q	Q	4	9	10	
Morningglory	7	2	ω	0	10	9	0	œ	н	⋪.	₹'	10	œ	5	10	6	7	5	4 5	œ	80		œ	m	œ	ယ်	'n	10	
Nutsedge		0	0	0	0	0	0	0	0	0	0	0	-		0	0		0			. •	0	0	0	0	0	0	0	
Rape	9	10	8	0	10	10	4	0	œ	∞	10	10	7	S	ω	7	m		8	σ,	80	0	Ð	~	8	0	Ŋ	10	
Redroot pigweed	d 10	10	9	-	10	10	Ð	10	10	10	œ	10	0	m	9	10	œ	2	8 10	10	10	.0	œ	6	Q	9	9	10	
Soybean	m	۲.	Н.	0	+-1	1	0	7	0	7	-	~	н	-	н	-	- н	0	0 1	н	-	0	н	0	1	0	Ô	Н	
Sugarbeets	10	10	9	7	10	10	10	10	9	œ	10	10	10	6	6	6	ω	ω.	8	۰ ص	10		10	2	10	Q	6	10	
Velvetleaf	σ	œ	7	0	10	∞	m	10	7	2		10	6	9	6	10	4	4	8 5	10	7	0	10	0	10	0	8	10	
Wheat	7	1	н		7	7	0	Н	0	7	~	7	П	, c l	0	7	-	0	1 1	П		0	m	7	7	0	m	7	
Wild oats	σ	σ	α	c	10	7	C	ĸ	Ľ	œ	ľ	σ	σ	'n	œ	α	·	_	4	10	~	0	α	4	4	σ	r	10	

Table B		(COM	POU	ND.	
Rate 62 g/ha	51	52	53	54	56	57
Preemergence						
B. signalgrass	-	-	•	-	6	3
Blackgrass	1	1	0	1	2	. 1
Cocklebur	1	1	0	0	0	0
Corn	0	3	0	0	2	0
Crabgrass	6	9	0	4	9	8
Galium	4	5	3	4	8	6
Giant foxtail	7	10	0	1	10	9
Morningglory	4	3	0	3	9	3
Nutsedge	0	0	0	0	0	0
Rape	7	6	0	0	10	8
Redroot pigweed	7	9	2	1	10	8
Soybean	0	0	0	0	0	0
Sugarbeets	9	10	2	9	10	7
Velvetleaf	5	5	0	2	9	2
Wheat	0	1	0	0	1	0
Wild oats	0	4	0	1	10	4

56		7	9	7	ĸ	7	ú	7	6	7	œ	,•	Q	· ∞	9	9	5	σ	9	0	2
54		•	-	7	9	-	-	0	œ	 1	9	0	7	.ن	0	-	m	œ	9	0	0
53		•	0	0	က	0	. •	0	7	0	-	0	0	4	0	7	0	ß	0	0	0
52		•	က	4	ស	7	m	0	œ	.m	9	0	7	œ	-	5	5	. ه	4	7	m
51		•	0	7	4	7	~	0	œ	0	m	0	7	9	0	0	4	7	m	Н	Н
49		က	4	4	Q	7	∞	m	Q	5	9	73	œ	Q	m	7	œ	Q	œ	7	4
46		ស	ო	7	æ	7	7	0	7	7	n	0	8	9	7	7	9	9	7	m	7
45		n	7	7	4	က	7	7	4	7	7	0	7	σ	.0	∞	œ	6	. 6	0	7
44		n	က	n	œ	m	7	က	7	m	œ	0	7	œ	c	œ	5	9	9	7	~
41	•	-	7	← 1	•	0	3	~	7	7	7	0	Н	9	Н	7	0	9	0	↔	H
40		m	-	4	∞	m	n		•	4	œ	0	10	6	7	4	9	0	7	m	c
39		7	4	. ~	œ	-	m	7	10	2	7	0	10	6	7	∞	7	9	9	2	7
38		-	0	0	7		0	0	0	7	-	0	.7	7	0	7	7	m	Н	0	0
37		4	4	က	œ	ന	Ŋ	2	œ	c	7	0	6	∞	4	9	0	œ	7	m	4
36		ザ	2	4	œ	n	7	က	œ	9	œ	•	∞	9	4	9	7	· Ø	7	က	4
35		2	က	-	ð		m	-	•	7	7	0	9	ი	0	c	7	.ص	0	-	7
34		~	m	7	7	7	m	0	9	4	•	•	Q	9	7		7	9	œ	-	-
28	•	7	m	m	9	~	m	~	œ	. m	•	0	S	6	c	æ	œ	σ	æ	~	'n
27		2	~	m	7	~1	7	7	œ	~	7	0	9	٠ د	0	7	9	6	7	-	7
25		m	4	4	o	က	m	4	9	m	σ	•	8	σ	7	9	7	œ	∞	m	4
24		m	7	7	9	7	7		7	φ	•	0	•	10	4	7	4	10	∞	-	7
23		7	7	~	. •	-	7	-	6	,m	m	0	7	O	Н	9	m	σ	9	-	~
22		•	m	m	m	Τ.	m	0	Ŋ	7	ω	0	6	œ	0		9	ø.	∞	-	m
19		-	77		9	₩.	7	0	7		7	-	٠.	&	ન	7	4	ω	 m		
17				7	7		m	~	•	4	ω	-	7	<u>.</u>	7	∞	9	o	9		~
16		7	4	m 	O	7	ω	_ 7	•	ω	₹ -	-	9	6	Ω	<u>ه</u>		ω.	7	н	~
14		6	m		7	~	4	0	œ 	77	10	0	80	σο	m	-	7	7		н	m
13		7	۳ -	m	œ 	~		•	œ 	2			80	0			9	9	ص ص	٠.	~
12		•	4	~	8	-	9	7	Φ	7	10	-	Q	9	4	∞	Ŋ	7	8	н	7
/ha	é	888	82							=======================================	_			reed		m					
ر 1	en(lgra	gra	89	u		rn.	art.		kta:	lor			ig.		gge		S	æ	•	20
, C	ner	gna.	ard	grai	ebu		ras	a1a(Ę	ţô	ngg.	dge		ot i		ats(ä	eec	t]e		Jati
Rate 31 g/ha	Postemergence	B. signalgrass	Barnyardgrass	Blackgrass	Cocklebur	E	Crabgrass	Ducksalad	Galium	Giant foxtail	Morningglory	Nutsedge	9	Redroot pigweed	Rice	S. Flatsedge	Soybean	Sugarbeets	Velvetleaf	Wheat	Wild oats
Rai	Po	B.	Ba	Bl	Š	Corn	Cr	ğ	Ga	Gi	Mo	Nu	Rape	Rec	Ric	လ	SO	Suç	Ve.	Wb	×

Table	В	COMPO	UND
Rate	31	g/ha	57
Poster	nerg	ence	
B. si	gnal	grass	1
Barnya	ardg	rass	1
Black	gras	5	1
Cockl	ebur		6
Corn			1
Crabg	cass		2
Ducks	alad		2
Galiu	n		8
Giant	fox	tail	3
Morni	nggl	ory	9
Nutse	dge		0
Rape			8
Redro	ot p	igweed	9
Rice			3
s. Fla	atse	dge	6
Soybe	an		2
Sugar	beet	s	8
Velve	tlea:	£	6
Wheat			1
Wild o	oats		1

Table B

26		4	7	0		6	7	10	က	0	6	10	0	10	ស	0	0
			0	0	0	-	н	0 1	e	0	0	7		9 1	0	0	0
3 54			0	0	0	.0	0	0	0				0	0	0	0	0
2 53			_	_	m	∞	m		~	0	2	9	0	o	7	0	~
. 52			0	_	0	~		1 10	4	_		7		. 60		0	0
51							•			_	-		Ξ.	10 (
49		o	6		_	10	6	10	7	0	Ø	10	~		10	Γ.	3 10
45 46		4	٦	-	0		7	Ŋ		0	က	∞	0	œ	7	-	
45		Ŋ	m	•	0	0	0	7	-	0	0	S	0	7	0	0	9
44		4	7	0	0	2	7	œ	7	0	7	œ	0	6	m	0	0
41		m	n	0	0	က	-1	` '	7	0	0	7	0	-	0	0	~
40		œ	7	•	0	Q	9	0	7	0	œ	œ	0	9	7	7	9
39 40 41 44		9	က		0	6	<u>.</u>	10	7	0	က	4	7	œ	က	0	~
38		0	0	0	0	Н	0	Н	0	0	0	0	0	0	0	0	0
37 38		•	∞	-	-	6	œ	10	7	•	4	10	H	Q	ស	-	4
		•	S	Н		10	7	10	m	0	·œ	œ	0	6	7	Н	œ
35 36		~	~	-	0	œ	ო	9	~	0	ო	7	Н	'n	2	0	2
34		ന	~	0	0	7	~	œ	7	0	4	က	0	9	9	0	~
88		6	2	•	0	7	Η	œ	.∞	0	7	∞	7	σ	~	0	7 3
25 27 28		Ŋ	Н	0	0	က	• .	ស	7	0	7	m	0	σ	7	0	~
52		æ	4	9	0	Ŋ	&	∞	9	0	വ	9	-	σ	7	0	7
24		0	4	0	-	Q	9	0	10	0	10	9	7	10	10	-	7
23		3	7	7	0	œ	œ	œ	4	0	σ	œ	-	10	9	-	7
22		•	-	0	0	9	က	œ	7	0	က	Ŋ	⊣	7	4	₩.	9
19 22		~	7	0	0	9	~	'n	œ	0	4	σ	0	10	7	0	c
17		4	7	-	0	o	9	O	က	0	10	ო	-	O	7	Н	S
13 14 16 17		æ	က	-	0	10	7	10	10		10	10	Н	10	œ	ч	0
4		•	e	ر ۔ ا	0	7	m	σ.	4	0	Ŋ	∞	0	9	2	Н	œ
<u>ы</u>		σ	9	, ,	0	0	9	σ	σ.	0	σ	10	Н	10	œ	~	7
12 1			c	-	-	6	9	6	2	0	9	10 1	~ -1	10 1	œ	⊣	00
	•											д 1					
31 g/ha	a	ass						ij	>			wee					
1 д	enc	lgr	83	ы		80		xta	lor			pig		t B	ä		U .
	Preemergence	B. signalgrass	Blackgrass	Cocklebur		Crabgrass	Ę	Giant foxtail	Morningglory	Nutsedge		Redroot pigweed	g	Sugarbeets	Velvetleaf		Wild oats
Rate	ĕ	siç	Š	k1(Ħ	фđ	Galium	int	nii	sec	ŏ	ľro	Soybean	lari	N.	ät	פ
Rat	Pre	ä.	Bla	ပ္ပ	Corn	Cra	Ga]	Gia	Mor	Nut	Rape	Reó	Soy	Sug	Vel	Wheat	Wil
				-			-	-								-	

Table B COMP	OUND		Table	В	СОМРО	DIND
Rate 31 g/ha	57		Rate	16	g/ha	44
Preemergence			Poster	nerg	ence	
B. signalgrass	2		B. si	nal	grass	3
Blackgrass	1	•	Barnya	ardg	rass	-
Cocklebur	0		Black	gras	s	2
Corn	0		Cockle	ebur	:	8
Crabgrass	3		Corn			3
Galium	2		Crabgi	cass		2
Giant foxtail	8		Ducksa	alad		•
Morningglory	2		Galiun	n		7
Nutsedge	0		Giant	foxt	tail	2
Rape	7 .		Mornin	ıgglo	ory	8
Redroot pigweed	5		Nutsed	lge		0
Soybean	0		Rape			7
Sugarbeets	4		Redroc	ot pi	igweed	8
Velvetleaf	2	•	Rice			-
Wheat	0	•	S. Fla	tsec	ige	-
.Wild oats	3		Soybea	ın -		3
			Sugarh	eets	3	9
			Velvet	leaí	Ē	6
			Wheat	•		1
•		•	Wild c	ats		1
Table B COMPO	UND	Morningo	glory		1	•
Rate 16 g/ha	44	Nutsedge	3		0	
Preemergence		Rape			0	
B. signalgrass	2	Redroot	pigwe	ed .	7	
Blackgrass	1	Soybean			0 -	
Cocklebur	0	Sugarbee	ets		7	
Corn	0	Velvetle	eaf		0	
Crabgrass	3	Wheat			0	
Galium	1	Wild oat	s		0	
Giant foxtail	3					

TEST C

5

10

15

20

25

The compounds evaluated in this test were formulated in a non-phytoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application), to water that covered the soil surface (flood application), and to plants that were in the one-to-four leaf stage (postemergence application). A sandy loam soil was used for the preemergence and postemergence tests, while a silt loam soil was used in the flood application. Water depth was approximately 2.5 cm for the flood application and was maintained at this level for the duration of the test.

Plant species in the preemergence and postemergence tests consisted of barnyardgrass (Echinochloa crus-galli), winter barley (Hordeum vulgare), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn 1 (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), johnsongrass (Sorghum halpense), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), pigweed (Amaranthus retroflexus), rape (Brassica napus), Italian ryegrass (Lolium multiflorum), soybean (Glycine max), speedwell (Veronica persica), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), and wild oat (Avena fatua). All plant species were planted one day before application of the compound for the preemergence portion of this test. Plantings of these species were adjusted to produce plants of appropriate size for the postemergence portion of the test. Plant species in the flood test consisted of rice (Oryza sativa), umbrella sedge (Cyperus difformis), duck salad (Heteranthera limosa) and barnyardgrass 1 (Echinochloa crus-galli) to the 2 leaf stage for testing.

All plant species were grown using normal greenhouse practices. Visual evaluations of injury expressed on treated plants, when compared to untreated controls, were recorded approximately fourteen to twenty one days after application of the test compound. Plant response to the test compound is summarized in Table C, recorded on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

				•	
Table C COMPO	UND	Table C COMP	OUND	Table C COMPO	UND
Rate 500 g/ha	6	Rate 500 g/ha	6	Rate 250 g/ha	6
POSTEMERGENCE		PREEMERGENCE		POSTEMERGENCE	
Barley (winter)	40	Barley (winter)	10	Barley (winter)	30
Barnyardgrass	60	Barnyardgrass	.85	Barnyardgrass	40
Barnyardgrass 1	80	Bedstraw	80	Barnyardgrass 1	50
Bedstraw	95	Blackgrass	100	Bedstraw	90
Blackgrass	40	Chickweed	95	Blackgrass	35
Chickweed	90	Cocklebur	0	Chickweed	90

Cocklebur	80	Corn 1	0	Cocklebur	70
Corn 1	30	Cotton	0	Corn 1	30
Cotton	100	Crabgrass	.100	Cotton	70
Crabgrass	80	Downy brome	70	Crabgrass	70
Downy brome	30	Giant foxtail	100	Downy brome	20
Dućksalad	50	Italn. ryegrass	50	Ducksalad	30
Giant foxtail	50	Johnsongrass	100	Giant foxtail	30
Italn. ryegrass	35	Lambsquarter	90	Italn. ryegrass	25
Johnsongrass	70	Morningglory	100	Johnsongrass	50
Lambsquarter	100	Rape .	100	Lambsquarter	90
Morningglory	90	Redroot pigweed	100	Morningglory	90
Rape	100	Soybean	0	Rape	100
Redroot pigweed	90	Speedwell	100	Redroot pigweed	90
Rice japonica	20	Sugar beet	100	Rice japonica	10
Soybean	80	Velvetleaf	40	Soybean	70
Speedwell	100	Wheat	0	Speedwell	100
Sugar beet	90	Wild buckwheat	70	Sugar beet	90
Umbrella sedge	80	Wild oat	95	Umbrella sedge	80
Velvetleaf	70			Velvetleaf	.50
Wheat	25			Wheat	25
Wild buckwheat	95			Wild buckwheat	90
Wild oat	60			Wild oat	50
			·		
Table C COMP	OUND	Table C COMP	OUND	Table C COMPO	DUND
Rate 250 g/ha	6	Rate 125 g/ha	6	Rate 125 g/ha	6
PREEMERGENCE		POSTEMERGENCE		PREEMERGENCE	
Barley (winter)	0	Barley (winter)	25	Barley (winter)	0
Barnyardgrass	35	Barnyardgrass	20	Barnyardgrass	20
Bedstraw	70	Barnyardgrass 1	30	Bedstraw	30
Blackgrass	80	Bedstraw	90	Blackgrass	70
Chickweed	95	Blackgrass	30	Chickweed	70
Cocklebur	0	Chickweed	90	Cocklebur	0
Corn 1	0	Cocklebur ·	70	Corn 1	0
Cotton	0	Corn 1	25	Cotton	0
Crabgrass	100	Cotton	70	Crabgrass	90
Downy brome	20	Crabgrass	60	Downy brome	10
Giant foxtail	100	Downy brom	10	Giant foxtail	95
Italn. ry grass	30	Ducksalad	20	Italn. ry grass	20

Johnsongrass	80	Giant foxtail	30	Johnsongrass	80
Lambsquarter	90	Italn. ryegrass	20	Lambsquarter	70
Morningglory	70	Johnsongrass	40	Morningglory	35
Rape	80	Lambsquarter	90	Rape	40
Redroot pigweed	100	Morningglory	80	Redroot pigweed	100
Soybean	0	Rape	100	Soybean	0
Speedwell	100	Redroot pigweed	90	Speedwell	90
Sugar beet	100	Rice japonica	0	Sugar beet	80
Velvetleaf	20	Soybean	60 ·	Velvetleaf	10
Wheat	0	Speedwell	100	Wheat	0
Wild buckwheat	70	Sugar beet	90	Wild buckwheat	40
Wild oat	80	Umbrella sedge	70	Wild oat	50
		Velvetleaf	40	•	
		Wheat	15		
		Wild buckwheat	80		
		Wild oat	40		

Table C COMPO	JND	Table C COMPOUND
Rate 62 g/ha	6	Rate 62 g/ha 6
POSTEMERGENCE		PREEMERGENCE
Barley (winter)	25	Barley (winter) 0
Barnyardgrass	15	Barnyardgrass 0
Barnyardgrass 1	20	Bedstraw 20
Bedstraw	70	Blackgrass 35
Blackgrass	20	Chickweed 50
Chickweed	70 .	Cocklebur 0
Cocklebur	60	Corn 1 0
Corn 1	25	Cotton 0
Cotton	30	Crabgrass 35
Crabgrass	40	Downy brome 0
Downy brome	0	Giant foxtail 90
Ducksalad	0	Italn. ryegrass 10
Giant foxtail	20	Johnsongrass 20
Italn. ryegrass	15	Lambsquarter 40
Johnsongrass	40	Morningglory 0
Lambsquarter	90	Rape 0
Morningglory	80	Redroot pigweed 100
Rape	90	Soybean 0

PCT/US98/04600

67

Redroot pigweed	90	Speedwell	80
Rice japonica	0	Sugar beet	80
Soybean	50	Velvetleaf	10
Speedwell	100	Wheat	0
Sugar beet	90	Wild buckwheat	20
Umbrella sedge	50	Wild oat	10
Velvetleaf	30	•	
Wheat	10		
Wild buckwheat	80		
Wild oat	40	•	

TEST D

5

10

15

20

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to plants that were grown for various periods of time before treatment (postemergence application). A mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include arrowleaf sida (Sida rhombifolia), barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), common ragweed (Ambrosia elatior), corn 1 (Zea mays), cotton (Gossypium hirsutum), eastern black nightshade (Solanum ptycanthum), fall panicum (Panicum dichotomiflorum), field bindweed (Convolvulus arvensis), giant foxtail (Setaria faberii), hairy beggarticks (Bidens pilosa), ivyleaf morningglory (Ipomoea hederacea), johnsongrass (Sorghum halepense), ladysthumb smartweed (Polygonum persicaria), lambsquarters (Chenopodium album), large crabgrass (Digitaria sanguinalis), purple nutsedge (Cyperus rotundus), redroot pigweed (Amaranthus retroflexus), soybean 1(Glycine max), surinam grass (Brachiaria decumbens), velvetleaf (Abutilon theophrasti) and wild poinsettia (Euphorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 14 to 21 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table D, were based upon a 0 to 100 scale where 0 was no effect and 100 was complete control. A dash response (-) means no test result.

Table D

21		100	20	10	•	10	40	100	70	75	95	65	75	10	100	100	95	0	100	0	40
26		100	40	10	100	35	20	100 100	90	100	100	10	82	30	80	100	20	0	100	15	20
49		100	70	40	100	Ŋ	55	100	100	100	100	20	100	55	•	100	100	0	100	30	100
40		90	70	•	100	0	0	90	100	95	25	20	20	20	•	100	100	0	100	0	25
37		92	40	20	90	10	100	100	100	100	100	95	75	40	100	100	100 100	0	100	15	100
36		95	20	0	95	20	9	100	100	100	100	92	40	20	100	100	100	0	100	20	80
35		95	25	10	9	10	40	95	95	100	9	92	30	25	100	100	100	0	100	15	35
34		95	40	20	100	10	20	90	100	100	100	92	9	40	95	100	100	0	100	15	80
23		90	35	•	•	10	70	95	92	100	100	32	,	82	100	100	100	•		10	95
25		95	10	10	95	10	20	80	95	100	85	10	20	10	100	100	100	0	100 100	10	70
22		100	Ŋ	0	52	0	•	70	90	•	. 06	٠	w.	20	•	80	100	0		ഗ	20
20		100	10	20	100	S	95	100	100	100	100	100	100	30	100	100	100	Ŋ	100 100	15	70
11		90	20	•	25	20	15	100	70	95	100	90	25	20	٠	95	100 100 100	0	100	0	75
16		100	20	10	20	32	15	95	100	90	20	10	09	20	•	95	100	•	100 100 100	0	30
14		100	Ŋ,	S	100	Ŋ	40	100	100	100	100	82	80	10	100	100	100	0	100	S	70
13		100	40	ß	100	2	80	100	100	100	100	100	100	20	•	100	100	0	100	20	80
12		100	100	ß	82	ß	75	100	100	100	100	80	100	100	100	100	100	0	100	20	100
Rate 140 g/ha	PREEMERGENCE	Arrowleaf sida	Barnyardgrass	Cocklebur	Common ragweed	Corn 1	Cotton	E. blacknightsh	Fall panicum	Field bindweed	Giant foxtail	H. beggarticks	I. morningglory	Johnsongrass	Ladysthumb	Lambsquarters	Large crabgrass	Purple nutsedge	Redroot pigweed 100	Soybean 1	Surinam grass

Velvetleaf	100	90	90	20	90	70	20	80	95	100	100	100 100 100	100	82	100	100	100	
Wild poinsettia	20	80	10	100		9	30	40	65	75	90	100	70	9	80	100	40	
Table D		SO	сомроимр	Ð						٧								
Rate 70 g/ha	12	13	14	16	17	20	22	25	53	34	35	36	37	40	49	26	57	
PREEMERGENCE																		
Arrowleaf sida	100	100 100	100	90	82	100	95	100	75	90	80	90	92	90	100	100	95	
Barnyardgrass	5	ß	2	10	10	ស	0	10	10	20	20	20	20	25	10	20	10	
Cocklebur	0	Ω.	0	10	10	ß	0	0	0	10	0	•	20	0	0	0	0	
Common ragweed	82	100	95	10	10	80	Ŋ	.02	•	9	20	100 100	100	95	9	20		
Corn 1	0	Ŋ	0	10	0	Ŋ	0	S	10	10	10	15	0	0	Ŋ	25	ស	
Cotton	S	5	40	10	•	Ŋ	0	20	40	25	•	40	20	0	22	10	15	
E. blacknightsh	100	100	100	95	100	100	20	20	82	90	9	100	100	80	100	100	80	
Fall panicum	100	100	100	95	9	100	S	80	30	100	100	100	100	100	100	70	25	
Fi ld bindweed	100	100	100	80	9	100	10	70	70	80	100	100	90	9	100	95	75	
Giant foxtail	100	100 100	100	. 50	95	100	45	20	95	80	10	100	10	20	100	80	80	
H. beggarticks	80	100	80	10	80	100	20	10	35	70	95	20	82	20	45	•	20	
I. morningglory	80	Ŋ	10	20	10	80	5	25	20	35	30	25	20	50	30	40	20	
Johnsongrass	20	30	10	20	25	10	ហ	10	20	15	10	20	25	20	20	0	10	
Ladysthumb	100	•	100	•	•	9	40	20	100	70	100	100	70	٠	. •	80	20	
Lambsquarters	100	100	100	80	90	100	80	95	٠	100	100	100	100	100	100	100	80	
Large crabgrass	100	100	100	75	100	100	40	9	100	100	•	75	100	80	100	40	75	
Purple nutsedge	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Lambsquarters	100	100	100	20	8	100	09	82	ς Σ	3	υ Ω	100	100	20	100	700	20
Large crabgrass 100 100 100 50 75 100 40 50 85 100 100 50 25 50 80 30 25	100	100	100	20	75	100	40	20	82	100	100	20	25	20	80	30	25
Purple nutsedge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	.0
Redroot pigweed 100 100 100 50 100 100 50 80 100 90 50 .90 100 80 100 95 95	100	100	100	20	100	100	20	80	100	90	20	90	100	80	100	95	95
Soybean 1	ß	0	5 0 5 0 0 5 0 - 0 5 0 10 5 0 5 0 0	0	0	Ŋ	0	•	0	S	o	10	ß	0	ß	0	0
Surinam grass	45	10	45 10 5 10 10 5 5 20 65 20 10 30 20 10 10 20 15	10	10	ഹ	Ŋ	70	65	20	10	30	20	10	10	70	15
Velvetleaf	75	20	75 50 20 10 40 50 0 50 50 90 80 75 60 20 60 100 40	10	40	20	0	20	20	90	80	75	9	20	9	100	40
Wild noingettia 15 30 5 10 - 30 0 10 .10 20 25 70 40 10 10 10 10	7	30	Ľ	10	٠	30	0	10	.10	20	25	70	40	10	10	10	10

Table D		CON	4POUN	TD				
Rate 17 g/ha	12	16	17	20	29	36	37	40
PREEMERGENCE								
Arrowleaf sida	90	80	90	25	25	80	80	70
Barnyardgrass	0	10	0	10	5	10	5	10
Cocklebur	0	•	0	0	0	0	0	0
Common ragweed	10	10	0	25	-	30	10	10
Corn 1	5	0	0	0	5	10	0	0
Cotton	10	0	0	10	20	5	10	0
E. blacknightsh	25	100	25	80	70	50	75	80
Fall panicum	20	25	10	2 0	10	70	50	50
Field bindweed	65	35	20	50	20	80	70	20
Giant foxtail	20	20	20	10	30	10	10	0
H. beggarticks	0	0	10	10	10	0	10	0
I. morningglory	10	40	10	20	10	10	10	10
Johnsongrass	10	10	0	10	5	5	10	0
Ladysthumb	80	-	-	15	10	10	50	-
Lambsquarters	100	•	10	70	20	50	95	10
Large crabgrass	40	50	20	40	60	30	25	25
Purple nutsedge	0	0	0	0	0	0	0	0
Redroot pigweed	100	-	65	65	95	90	65	70
Soybean 1	5	0	0	0	0	0	5	0
Surinam grass	20	10	10	10	25	10	10	10
Velvetleaf	30	0	10	50	-	50	50	10
Wild poinsettia	10	0	0	10	. 0	20	10	0

TEST E

5

10

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods of time before treatment (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test, and 13 days after the last postemergence planting.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include alexandergrass (*Brachiaria*

10

plantaginea), black nightshade (Solanum americanum), apple-of-Peru (Nicandra physaloides), arrowleaf sida (Sida rhombifolia), Brazilian sicklepod (Cassia tora Brazilian), Brazilian signalgrass (Brachiaria decumbens), bristly starbur (Acanthospermum hispidum), capim-colchao (Digitaria horizontalis), corn (Zea mays), soybean 1 (Glycine max cv. Cristalina), hairy beggarticks (Bidens pilosa), slender amaranth (Amaranthus viridis), southern sandur (Cenchrus echinatus), tall morningglory (Ipomoea purpurea), tropical spiderwort (Commelina benghalensis), Soybean 2 (Glycine max cv. W20), Soybean 3 (Glycine max cv. W4-4) and wild pointsettia (Eupohorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 13 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table E, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

Table E		CO	(POU	ND		
Rate 140 g/ha	12	13	14	20	22	49
PREEMERGENCE						
Alexandergrass	80	70	60	85	60	10
Apple-of-Peru	100	100	90	100	90	5
Arrowleaf sida	100	100	100	100	90	80
B. Signalgrass	100	70	50	70	80	10
Blk nightshade	100	100	100	100	100	90
Braz sicklepod	50	80	70	90	60	0
Bristly starbur	100	60	90	100	100	0
Capim-Colch	100	100	90	100	60	70
Corn	10	5	5	,5	5	20
H. beggarticks	0	100	90	100	100	0
Morningglory	80	70	70	40	· 60	40
S. amaranth	100	100	100	100	100	100
S. sandbur	80	75	50	50	60	5
Soybean 1	70	40	35	25	60	5
Soybean 2	50	10	10	60	45	5
Soybean 3	80	20	10	10	70	10
Tr. Spiderwort	100	100	85	95	90	0
Wild poinsettia	100	90	50	60	70	100

WO 98/40379 PCT/US98/04600 - 75

Table E		CO	MPOU	NTD.		
Rate 70 g/ha	12	13	14	20	22	49
PREEMERGENCE	12	13	14	20	44	49
Alexandergrass	60	40	30	10	60	0
	100	90	70	100	80	0
Apple-of-Peru Arrowleaf sida	100	100	90	100	-	80
			20	50	40	0
B. Signalgrass	60	40				_
Blk nightshade	100	100	100	100	90	80
Braz sicklepod	40	10	5	40	•	0
Bristly starbur	5	-	40	100	40	0
Capim-Colch	90	90	90	100	60	70
Corn	5	5	0	0	0	5
H. beggarticks	0	100	10	90	100	0
Morningglory	40	50	10	40	50	5
S. amaranth	100	100	100	100	100	100
S. sandbur	75	40	5	30	•	0
Soybean 1	35	30	15	25	50	0
Soybean 2	40	5	10	15	5	5
Soybean 3	50	15	5	10	10	0
Tr. Spiderwort	80	100	60	95	90	0
Wild poinsettia	100	50	10	30	-	5
Table E		COF	(POU	1D		
Rate 35 g/ha	12	13	14	20	22	49
PREEMERGENCE						
Alexandergrass	60	30	20	10	0	0
Apple-of-Peru	10	80	5	90	80	0
Arrowleaf sida	90	80	85	90	80	0
B. Signalgrass	30	5	5	5	10	0
Blk nightshade	100	100	90	90	90	50
Braz sicklepod	0	0	0	5	20	0
Bristly starbur	5	0	0	90	•	-
Capim-Colch	90	80	50	90	10	60
Corn	0	0	0	0	0	0
H. beggarticks	0	50	0.	100	0	0
Morningglory	5	50	5	10	50	0
S. amaranth	100	100	90	100	85	80
S. sandbur	20	5	0	10	0	0

Soybean 1	10	10	5	10	10	0
Soybean 2	5	5	5	15	, 5	0
Soybean 3	10	10	5	5	5	0
Tr. Spiderwort	20	10	0	20	40	0
Wild poinsettia	5	5	-	30	40	0
Table E		COM	IPOUN	D		
Rate 17 g/ha	12	13	14	20	22	49
PREEMERGENCE						
Alexandergrass	5	0	0	0	0	0
Apple-of-Peru	-	0	0	85	-80	0
Arrowleaf sida	85	70	80	70	5.0	0
B. Signalgrass	5	0	0	0	-	0
Blk nightshade	85	85	80	90	80	10
Braz sicklepod	•	0	0	5	20	0
Bristly starbur	-	0	0	85	20	0
Capim-Colch	50	40	20	80	-	0
Corn	0	0	0	0	0	0
H. beggarticks	0	-	0	0	0	0
Morningglory	0	0	0	5	5	. 0
S. amaranth	100	60	90	60	80	70
S. sandbur	0	0	0	0	0	0
Soybean 1	5	5	0	10	10	0
Soybean 2	5	5	0	5	5	0
Soybean 3	0	10	0	5	5	0
Tr. Spiderwort	5	0	0	0	• .	0
Wild poinsettia	5	5	5	10	40	0

TEST F

5

10

Seeds, tubers, or plant parts of alexandergrass (Brachiaria plantaginea), broadleaf signalgrass (Brachiaria decumbens), bermudagrass (Cynodon dactylon), common purslane (Portulaca oleracea), common ragweed (Ambrosia elatior), common groundsel (Senecio vulgaris), dallisgrass (Paspalum dilatatum), goosegrass (Eleusine indica), guineagrass (Panicum maximum), itchgrass (Rottboellia exaltata), johnson grass (Sorghum halepense), large crabgrass (Digitaria sanguinalis), pitted morningglory (Ipomoea lacunosa), peanuts (Arachis hypogaea), purple nutsedge (Cyperus rotundus), sandbur (Cenchrus echinatus), sourgrass (Trichachne insularis), Spanishneedles (Bidens bipinnata), sugarcane (Saccharum officinarum), surinam grass (Brachiaria decumbens) and tall mallow (Malva sylvestris)

were planted into greenhouse pots of flats containing greenhouse planting medium. Plant species were grown grown in separate pots or individual compartments. Preemergence applications were made within one day of planting the seed or plant part. Postemergence applications were applied when the plants were in the two to four leaf stage (three to twenty cm).

Test chemicals were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied preemergence and postemergence to the plants. Untreated control plants and treated plants were placed in the greenhouse and visually evaluated for injury 13 to 21 days after herbicide application. Plant response ratings, summarized in Table F, are based on a 0 to 100 scale where 0 is no injury and 100 is complete control. A dash (-) response means no test result.

Table F COMP	סמטכ			Table F		CO	4POU	Œν
Rate 1000 g/ha	13			Rate 500 g/ha	12	13	19	20
POST DIRECTED				PREEMERGENCE				
Citrus	0			A. bluegrass	-	-	-	•
				Alexandergrass	100	-	100	100
				Arrowleaf sida	•	-	•	•
Table F		COMPOU	ND.	B. signalgrass	•	•	-	-
Rate 500 g/ha	12	13 19	20	Barnyardgrass ·	-	-	-	•
POSTEMERGENCE				Bermudagrass	100	-	100	100
Alexandergrass	100	- 100	90	C. purslane	100	•	100	100
B. signalgrass	-		•	C. ragweed	100	-	100	100
Bermudagrass	50	- 10	40	Com. chickweed	-	-	-	-
C. purslane	75	- 75	70	Com. groundsel	100	-	100	100
C. ragweed	100	- 75	90	Cotton		-	-	-
Com. groundsel	40	- 30	100	Dallisgrass	100	-	100	100
Dallisgrass	•	- 65	85	Goosegrass	100	•	100	100
Goosegrass	90	- 75	90	Green foxtail	-	-	•	-
Guineagrass	95	- 70	85	Guineagrass	-	-	-	-
Itchgrass	90	- 65	75	Itchgrass	98	-	90	100
Johnsongrass	90	- 75	90	Johnsongrass	100	-	70	100
Large crabgrass	80	- 70	85	Kochia	-	-	-	-
P. morninglory	90	- 75	90	Large crabgrass	100	-	100	100
Peanuts	-		-	Leafy spurge	-	-	-	-
Purple nutsedge	0	- 0	5	P. morninglory	100	-	80	100
Sandbur	-	- 10	70	P anuts	-	-	-	-
Sourgrass	40	- 75	60	Purple nutsedge	10	-	0	0

Spanishneedles	20	-	30	50		. Q	uack	gras	s		.	. -	-	•
Sugarcane	•	20	-	-		S	andb	ur		1	οó	-	50 1	.00
Surinam grass	90	•	75	80		S	ourg	rass		1	00	- 1	QO 1	.00
Tall Mallow	100	•	95	1,00		S	pani	shne	edle	s 1	00	- 1	00 1	.00
						S	ugar	cane			- 1	00	-	-
					•	S	urin	am g	rass	1	00	-	98 1	.00
•			•			T	all :	Ma11	ow	1	00	- 1	00 1	.00
•														
Table F		CO	MPOU	ND										
Rate 250 g/ha	12	13	16	17	19	20	23	25	35	36	37	49	50	56
POSTEMERGENCE								•						
Alexandergrass	90	75	85	40	30	50	25	8.0	30	95	90	10	20	80
B. signalgrass	-	80	-	-	. •			-	-	•	-	-	-	-
Bermudagrass	40	10	20	10	10	40	10	30	30	40	40	0	20	10
C. purslane	75	100	30	20	75	70	25	75	70	65	70	10	25	75
C. ragweed	75	65	80	75	•	70	30	50	100	65	50	70	45	40
Com. groundsel	40	•	80	100	. 0	90	70	80	60	80	85	10	.70	95
Dallisgrass	90	10	80	90	65	75	65	80	95	80	95	30	80	75
Goosegrass	90	20	80	90	-	90	10	90	95	90	90	10	30	80
Guineagrass	80	95	70	70	20	75	75	65	40	80	80	50	40	30
Itchgrass	90	40	85	80	20	65	10	40	75	65	60	60	85	40
Johnsongrass	85	40	85	30	75	75	10	35	65	40	75	20	65	20
Large crabgrass	80	95	85	85	35	75	60	80	75	90	85	40	20	70
P. morninglory	95	95	85	80	65	80	40	85	90	90	90	50	75	80
Peanuts	-	75	-	-	-	-	-	-	٠,	•	•	•	٠.	•
Purple nutsedge	0	20	40	10	0	5	5	5	0	10	· 5	0	20	40
Sandbur	60	20	0	40	5	30	10	20	20	20	65	0	0	0
Sourgrass	40	35	- 20	10	30	60	10	30	20	60	30	40	10	40
Spanishneedles	20	-	20	20	10	40	10	60	35	70	65	10	10	40
Sugarcane	-	25	-	-		-	-	:	-	-	-	-	-	-
Surinam grass	75	85	70	40	75	50	10	30	•	40	75	10	10	20
Tall Mallow	100	-	85	85	98	100	45	90	100	90	85	65	75	85
·														
Table F		CO	MPOU	ND	•									
Rate 250 g/ha	12	13	16	17	19	20	23	25	35	36	. 37	49	50	56
PREEMERGENCE														
A. bluegrass	100	•	•	•	-	100	•	-		100	100	-	-	100
Alexandergrass	100	100	100	80	65	100	95	100	100	100	100	30	30	-

														_
Arrowleaf sida	100	100	-	-	-	100	-	-	-	100	100	-	•	100
B. signalgrass	100	100	-	-	-	100	-	-	-	100	100	. 20	-	100
Barnyardgrass	100	98	-	-	•	100	-	-	• -	100	100	-	-	90
Bermudagrass	100	100	100	100	100	100	100	100	100	100	100	98	100	-
C. purslane	100	100	100	100	100	100	100	100	100	100	100	100	100	100
C. ragweed	100	100	100	100	100	100	100	100	100	100	100	95	100	-
Com. chickweed	100	100		-	-	100	-	-	•	100	100	-	-	100
Com. groundsel	100	100	100	100	75	100	100	100	100	100	100	. 0	100	-
Cotton	•	90	-	•	-	-	-	-	-	-	-	0	-	-
Dallisgrass	100	100	100	100	95	100	100	100	100	100	100	70	95	•
Goosegrass	100	100	100	100	100	100	100	100	100	100	100	98	100	100
Green foxtail	100	100	-	-	-	100	•	•	-	100	100	•	•	100
Guineagrass	-	100	100	100	-	-	100	100	-	100	100	100	50	-
Itchgrass	100	60	90	60	80	100	75	75	95	85	95	30	65	-
Johnsongrass	100	70	80	100	50	. 98	65	15	100	100	100	20	60	-
Kochia	100	100	-	• -	•	100	-	•	-	100	100	-	-	100
Large crabgrass	100	100	100	100	100	100	100	100	100	100	100	98	90	100
Leafy spurge	100	100	-	-	-	100	-	-	•	100	100	. •	•	100
P. morninglory	100	95	100	90	80	100	90	100	100	98	98	10	100	100
Peanuts	-	10	-	-	-	-		-	• -	. •	-	0	-	•
Purple nutsedge	0	20	20	0	10	0	0	20	0	0	0	0	20	. 75
Quackgrass	100	98	-	-	-	100	-	-	-	100	100		-	100
Sandbur	100	80	100	50	30	100	65	50	90	100	100	0	20	80
Sourgrass	100	100	100	100	100	100	100	100	100	100	100	100	100	-
Spanishneedles	100	100	90	100	50	100	100	100	100	100	100	30	100	•
Sugarcane	-	15	-	-	-	-	-	-	-	•	•		-	-
Surinam grass	100	100	100	98	90	100	85	100	100	100	100	10	20	75
Tall Mallow	100	100	100	100	100	100	100	100	100	100	100	100	98	•
Table F		CON	1POUI	MD										
Rate 125 g/ha	12	13	19	20	25	35	36	37	49	.56				
POSTEMERGENCE														
Alexandergrass	80	20	30	20	20	30	30	50	40	30				
B. signalgrass	-	50	-	•	-	-	-	-	-20	•				
Bermudagrass	30	10	10	30	10	30	20	20	10	10				
C. purslan	65	90	75	70	60	70	65	60	100	60				

C. ragweed 75 100 40 70 50 65 35 35 100 30 Com. groundsel 35 - 0 80 30 60 75 75 - 80

Dallisgrass	80	10	65	40	20		•	75	0	70				
Goosegrass	90	0	-	75	90		•			70		•		
Guineagrass	80	30	10	30	40	20		75						
Itchgrass	60	20	20	.65	10	75	35	35	20	10				
Johnsongrass	75	35	40	75	10	65	35	40	35	10				
Large crabgrass	80	60	35	7 5	80	30	. 30	75	65	70				
P. morninglory	95	100	50	80	. 85	90	85	85	85	85		•		
Peanuts	-	50	-	-	-		-	-	70	-		•		
Purple nutsedge	0	10	0	, 0	0	0	0	5	Ö	Ō				•
Sandbur	40	0	0	20	20	10	5	40	0	0				
Sourgrass	20	20	30	35	30	20	35	30	20	35				
Spanishneedles	20	-	10	40	40	· 5	40	50	•	30				
Sugarcane	-	20	-	-	-	-	-	-	•	-				
Surinam grass	65	65	30	35	30	70	35	35	65	10				
Tall Mallow	100	-	98	100	80	100	90	85	-	98				
					-									
Table F		COM	POUN)										
Rate 125 g/ha	12	13	16	17	19	20	23	25	35	36	37	49	50	56
PREEMERGENCE														
A. bluegrass	100	-	-	-	٠-	100	-	-	-	100	100	-	-	100
Alexandergrass	100	75	100	50	0	100	75	80	100	100	100	90	10	-
Arrowleaf sida	100	95	-	-	-	100	-	-	-	100	100	-	-	100
B. signalgrass	100	90	-	-	-	100	-	-	-	100	100	100	-	100
Barnyardgrass	90	80	-	-	-	95	-	•	-	100	100	-	-	80
Bermudagrass	100	100	100	100	98	100	100	100	100	100	100	100	100	-
C. purslane	100	100	100	100	100	100	100	100	100	100	100	100	100	100
C. ragweed	100	100	100	100	65	100	100	100	100	100	100	100	100	-
Com. chickweed	100	100	-	-	-	100		-	-	100	100	-		100
Com. groundsel	100	100	98	100	75	100	100	100	100	100	100	0	100	•
Cotton:	-	4,0	-	-	-	-	-	-	-	. <u>.</u>	-	40	-	-
Dallisgrass	100	100	100	100	80	100	100	100	100	100	100	100	70	-
Goosegrass	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Green foxtail	100	100	-	-	-	100	•	-	-	100	100	-		100
Guineagrass	-	100	100	98	-	•	100	100	-	100	100	100	20	
Itchgrass	95	20	60	40		100				75	80	65	40	_
Johnsongrass	100	0		100	20	80	30	5	50		100		30	-
Kochia		100		-				-						100
Larg crabgrass					· ·									100

•						81									
Leafy spurge	100	100	-			100	-	<u>:</u>	-	100	100	•	-	100	
P. morninglory	100	75	100	90	80	100	98	100	100	100	98	80	80	100	
Peanuts	•	10	-	-	-		-	•	-	. •	.• -	0	-	-	
Purple nutsedge	0	0	20	0	10	Ō	0	0	0	. 0	. 0	30	•	10	
Quackgrass	100	95	-	-	-	100	-	•	-	100	100	-	•.	100	
Sandbur	100	10	100	10	10	100	40	10	75	90	60	40	0	60	
Sourgrass	100	100	100	100	100	100	100	100	100	100	100	100	100	-	
Spanishneedles	90	100	70	80	30	100	80	100	100	100	100	0	50	-	
Sugarcane	-	15	-	-	-	-	-	. •	-		•	-	-	-	
Surinam grass	100	75	100	40	10	100	85	100	95	100	100	100	0	65	
Tall Mallow	100	100	100	100	100	100	100	100	100	100	100	100	100	-	
														•	
Table F		CON	1POUI	AD											
Rate 64 g/ha	12	13	19	20	35	49									
POSTEMERGENCE															
Alexandergrass	90	20	20	-	10	10									
B. signalgrass	•	20	-	-	•	10									
Bermudagrass	20	10	10	20	20	.10									

95 100 100

Tall Mallow

Table F		COMP	OUND			T	able	F			cc	MPOU	IND
Rate 32 g/ha	12	19	20			R	late	32	g/h	a	12	19	20
POSTEMERGENCE					-	F	POSTE	MERG	ENCE	:			
Alexandergrass	40	0	20			J	ohns	ongr	ass		20	20	65
B. signalgrass	-	-	-			. I	arge	cra	bgra	ası	20	10	40
Bermudagrass	10	0	20			P	. mo	rnin	glor	У	65	60	80
C. purslane	65	50	70			P	eanu	ts			•	-	•
C. ragweed	50	30	50			P	urpl	e nu	tsed	lge	0	0	0
Com. groundsel	20	0	0			S	andb	ur			0	0	5
Dallisgrass	35	20	10			S	ourg	rass			10	20	20
Goosegrass	75	70	75			S	pani	shne	edle	S	5	10	35
Guineagrass	20	0	10			S	ugar	cane			-	-	-
Itchgrass	20	5	20			S	urin	am g	rass		65	30	20
						T	all	Mall	ow		90	75	80
Table F		CO	MPOU	ND				•					
Rate 32 g/ha	12	13	16	17	19	20	23	25	36	37	49	50	56
PREEMERGENCE													
A. bluegrass	98	-	•	•	•	100			100	80		•	80
Alexandergrass	75	10	30	0	0	50	10	35	75	•	0	0	35
Arrowleaf sida	100	90	-	•	-	100	•		100			-	100
B. signalgrass	85	0	-	•	•	80	-		100		0	•	75
Barnyardgrass	5	20		•	•	10	•	•	30	20	•	-	35
Bermudagrass	100	60	100	90	60	100			100		10	75	
C. purslane	100		100	100			100		100		80		100
C. ragweed	100	60	90	90	0	98	98	90		100	90	98	90
Com. chickweed	95	65		-	•	100	•		100	98	•		100
Com. groundsel	98	100	75	100	0		100				0	75	50
Cotton	-	0		-	•	-		•	-		0		
Dallisgrass	80		100	70	0	98	30	80		100	0	20	65
Goosegrass	100		100	80	U		100						100
Green foxtail		100	-	٠.	•	100	-		100			•	
Guineagrass	40	80	90	60	•	-	70	70		100		•	85
Itchgrass	40	0	20	20	-	75	20	5	0	65	0	20	-
Johnsongrass Kochia	30 100	0 98	10	100	0		10	5	5	100	0	10	5
			100	•		100		-		100			
Large crabgrass				80		100	35		100			20	85
Leafy spurge	100	75	•	-	-	100	•	-	100	100	•	-	100

Spanishneedles 60 0 50 70 20 100 70 40 100 100 0 0 Sugarcane - 10 -														
Purple nutsedge 0	P. morninglory	100	10	80	. 0	35	100	40	100	25	100	0	65	70
Quackgrass 50 0 - - 35 - - 95 90 - - - - 95 90 -	Peanuts	•	0	-	-	-	•	•	•	-	:	. 0	-	•
Sandbur	Purple nutsedge	0	0	0	. 0	0	. 0	0	. 0	. 0	0	0	0	0
Sourgrass 98 98 100 90 0 100 90 100 100 100 40 98 10 Spanishneedles 60 0 50 70 20 100 70 40 100 100 0 0 0 Sugarcane	Quackgrass	50	0	-	-	-	35	-		95	90	· •	-	65.
Syanishneedles 60 0 50 70 20 100 70 40 100 100 0 0 0 Sugarcane Surinam grass 75 10 35 20 10 50 10 40 10 100 0 0 0 Tall Mallow 100 98 100 100 100 100 100 98 100 100 100 100 98 10	Sandbur	35	0	10	0	. 0	0	0	٥.	0	60	0	0	0
Sugarcane	Sourgrass	98	98	100	90	0	100	90	100	100	100	40	98	100
Surinam grass	Spanishneedles	60	0	50	70	20	100	70	40	100	100	0	0	5
Tall Mallow 100 98 100 100 100 100 98 100 98 100 98 98 100 98 98 100 100 100 100 100 98 100 98 98 100 98 98 100 100 100 100 100 100 98 100 98 98 100 100 100 100 100 100 100 100 100 10	Sugarcanė	-	10	-	. •	-	. -	-	•	-	. -	•	-	-
Table F COMPOUNT Rate 16 g/ha 12 13 16 17 20 23 25 36 37 49 50 56 PREEMERGENCE A. bluegrass 35 50 50 - 680 80 - 20 20 Alexandergrass - 0 0 0 0 - 0 10 - 0 98 98 - 95 B. signalgrass 20 0 0 - 20 10 - 98 98 98 - 95 Barnyardgrass 5 20 0 - 20 0 - 20 10 - 0 0 70 98 Barnyardgrass - 40 100 75 - 80 10 - 0 0 70 98 C. purslane 100 98 100 100 100 100 100 100 40 95 100 C. ragweed - 65 20 - 65 - 90 0 0 - 25 0 95 Com. chickweed 95 20 - 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Surinam grass	75	10	35	20	10	50	10	40	. 10	100	0	0	0
Rate 16 g/ha 12 13 16 17 20 23 25 36 37 49 50 56 56 56 56 56 56 56	Tall Mallow	100	98	100	100	100	100	98	100	98	100	98	98	100
Rate 16 g/ha 12 13 16 17 20 23 25 36 37 49 50 56 PREEMERGENCE A. bluegrass 35														
PREEMERGENCE A. bluegrass	Table F		COM	POUNI)									
A. bluegrass	Rate 16 g/ha	12	13	16	17	20	23	. 25	36	37	49	50	56	
Alexandergrass - 0 0 0 0 - 0 10 - 0 0 0 0 0 0 0 0 0 0	PREEMERGENCE													
Arrowleaf sida	A. bluegrass	35	-	-	-	50	-	-	80	.80	•	-	20	
B. signalgrass 20 0 - 20 - 90 90 0 - 5 Barnyardgrass 5 20 - 0 - 80 10 - 20 10 - 5 Bermudagrass - 40 100 75 - 80 10 - 0 0 70 98 C. purslane 100 98 100 100 100 100 100 100 100 40 95 100 C. ragweed - 65 - 90 0 0 - 25 0 95 Com. chickweed 95 20 - 80 0 - 98 80 - 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Alexandergrass	•	0	0	0	-	0	10	-		0	0	0	
Barnyardgrass 5 20 - 0 - 20 10 - - 5 Bermudagrass - 40 100 75 - 80 10 - 0 70 98 C. purslane 100 98 100 100 100 100 100 100 100 40 95 100 C. ragweed - - 65 - 90 0 - - 25 0 95 Com. chickweed 95 20 - 80 - 98 80 - - 80 Com. groundsel - 100 50 95 - 100 95 - 0 20 0 Cotton - 0 0 10 - 20 10 - 0 0 5 Goosegrass 100 60 100 5 100 40 75 100	Arrowleaf sida	95	75	-	•	100	•	-	98	98	-	-	95	
Bermudagrass 40 100 75 - 80 10 - 0 70 98 C. purslane 100 98 100 100 100 100 100 100 100 100 40 95 100 C. ragweed - 65 - 80 90 0 - 98 80 - 25 0 95 Com. chickweed 95 20 - 80 95 100 95 - 98 80 - 98 80 - 80 90 95 95 - 98 80 - 80 90 90 95 95 95 95 95 95 95 95 95 95 95 95 95	B. signalgrass	20	0	-	-	20	-	•	90	90	0	•	5	
C. purslane	Barnyardgrass	5	20	-	-	. 0	•	-	20	10	-	•	5	
C. ragweed	Bermudagrass	•	40	100	75	-	80	10	-	-	0	70	98	
Com. chickweed 95 20 - - 80 - 98 80 - - 80 Com. groundsel - 100 50 95 - 100 95 - - 0 20 0 Cotton - 0 - - - - - - - 0 20 0 Dallisgrass - 40 0 10 - 20 10 - - 0 0 5 Goosegrass 100 60 100 5 100 40 75 100 100 10 80 Green foxtail 100 80 - 80 - 100 75 - 25 Guineagrass - 60 90 40 - 30 0 - - 0 100 100 Itchgrass - 0 10 20 - 0	C. purslane	100	98	100	100	100	100	100	100	100	40	95	100	
Com. groundsel - 100 50 95 - 100 95 - 0 20 0 Cotton - 0 <	C. ragweed	-	-	65	-	•	90	0	•	-	25	0	95	
Cotton	Com. chickweed	95	20	-	-	80	-	-	98	80	-	-	80	
Dallisgrass - 40 0 10 - 20 10 - 0 0 0 5 Goosegrass 100 60 100 5 100 40 75 100 100 0 10 80 Green foxtail 100 80 - 80 0 10 0 75 0 0 0 10 Guineagrass - 60 90 40 - 30 0 - 0 0 0 10 Itchgrass - 0 10 20 - 20 0 - 0 0 10 Johnsongrass - 0 50 0 50 - 0 0 0 0 - 0 0 10 Kochia 90 98 - 98 0 0 0 0 0 0 0 0 0 0 0 0 0 35 Leafy spurge 80 75 - 90 20 20 60 60 30 0 30 70 P anuts - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Com. groundsel	•	100	50	95	-	100	95	•	- .	0	20	0	
Goosegrass 100 60 100 5 100 40 75 100 100 0 10 80 Green foxtail 100 80 - 80 - 100 75 - 25 Guineagrass - 60 90 40 - 30 0 - 0 0 100 100 Itchgrass - 0 10 10 20 - 20 0 - 0 0 10 5	Cotton	•	0	-	•-	-	-	-	-	-	0	-	•	
Green foxtail 100 80 80 - 100 75 - 25 Guineagrass - 60 90 40 - 30 0 0 0 100 Itchgrass - 0 10 20 - 20 0 - 0 10 10 Johnsongrass - 0 0 50 - 0 0 0 0 10 5 Kochia 90 98 - 98 - 100 100 100 100 - 100 Large crabgrass 90 30 70 5 75 5 35 100 50 0 0 35 Leafy spurge 80 75 - 90 - 90 - 90 100 - 100 P. morninglory 20 0 50 0 20 20 60 60 30 0 30 70 Panuts 0 Purple nutsedge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dallisgrass	•	40	0	10	-	20	10	-	-	0	0	5	
Guineagrass - 60 90 40 - 30 0 - - 0 100 100 Itchgrass - 0 10 20 - 20 0 - - 0 10 10 Johnsongrass - 0 0 50 - 0 0 - - 0 10 5 Kochia 90 98 - - 98 - - 100 100 - - 100 10 5 Large crabgrass 90 30 70 5 75 5 35 100 50 0 35 Leafy spurge 80 75 - - 90 - - 90 100 - - 100 30 70 P. morninglory 20 0 50 0 20 20 60 60 30 0 30 70	Goosegrass	100	60	100	5	100	40	75	100	100	0	10	80	
Itchgrass - 0 10 20 - 20 0 - - 0 0 10 50 Johnsongrass - 0 0 50 - 0 0 - - 0 10 5 Kochia 90 98 - - 98 - - 100 100 - - 100 Large crabgrass 90 30 70 5 75 5 35 100 50 0 0 35 Leafy spurge 80 75 - - 90 - - 90 100 - - 100 P. morninglory 20 0 50 0 20 20 60 60 30 0 30 70 Panuts -	Green foxtail	100	80	-	-	80	-	-	100	75	•	•	25	
Johnsongrass - 0 0 50 - 0 0 - - 0 10 5 Kochia 90 98 - - 98 - - 100 100 - - 100 Large crabgrass 90 30 70 5 75 5 35 100 50 0 0 35 Leafy spurge 80 75 - - 90 - - 90 100 - - 100 35 P. morninglory 20 0 50 0 20 20 20 60 60 30 0 30 70 P anuts -<	Guineagrass	•	60	90	40	-	30	0	-	•	0	0	100	
Kochia 90 98 - - 98 - - 100 100 - - 100 Large crabgrass 90 30 70 5 75 5 35 100 50 0 35 Leafy spurge 80 75 - - 90 - - 90 100 - - 100 P. morninglory 20 0 50 0 20 20 60 60 30 0 30 70 Panuts - </td <td>Itchgrass</td> <td>•</td> <td>0</td> <td>10</td> <td>20</td> <td>-</td> <td>20</td> <td>0</td> <td>•</td> <td>•</td> <td>0</td> <td>0</td> <td>10</td> <td></td>	Itchgrass	•	0	10	20	-	20	0	•	•	0	0	10	
Large crabgrass 90 30 70 5 75 5 35 100 50 0 0 35 Leafy spurge 80 75 - - 90 - - 90 100 - - 100 P. morninglory 20 0 50 0 20 20 60 60 30 0 30 70 Panuts - - - - - - - - 0<	Johnsongrass	•	0	0	50	-	0	0	•	-	0	10	5	
Leafy spurge 80 75 - - 90 - - 90 100 - - 100 P. morninglory 20 0 50 0 20 20 60 60 30 0 30 70 Panuts - - - - - - - - 0	Kochia	90	98	•	-	98	-	-	100	100	•	•	100	
P. morninglory 20 0 50 0 20 20 60 60 30 0 30 70 P anuts -	Large crabgrass	90	30	70	5	75	5	35	100	50	.0	0	35	,
Panuts 0 Purple nutsedge 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Leafy spurge	80	75	-	-	90	-	-	90	100	.•.	•	.100	
Purple nutsedge 0 0 0 0 0 0 0 0 0 0 0 0	P. morninglory	20	0	50	0	20	20	60	60	30	Ó	30	70	
\cdot	P anuts	-	•	-		-	•	•	•		0	•	•	
Quackgrass 10 0 10 80 50 0	Purple nutsedge	0	0	0	0	0	0	0	0	0	0	0	0	
	Quackgrass	10	0	-	•	10	•	•	80	50	•	•	0	

Sandbur	0	0	0	0	. 0	0	0	5	20	0.	0	0		
Sourgrass	-	30	100	0	•	70	85	•	•	0	50	100.		
Spanishneedles	-	0	0	20	•	0	3 о	-	•	0	0	5		
Sugarcane	-	-	-		-	-	-	-	-	-	-	-		
Surinam grass	30	10	35	-	30	0	5	10	70	0	0	0		
Tall Mallow	•	98	100	90	-	80	95	-	-	0	98	98		
			•							·				
Table F		CO	MPOU	ND		Ta	able	F			C	ОМРО	ND	
Rate 8 g/ha	12	20	36	37	56	Ra	ate	8	g/ha	. 12	2	0 36	37	56
PREEMERGENCE						PI	REEME	ERGE	ICE					
A. bluegrass	0	40	40	80	.20	Į It	chgi	ass		-		-	-	0
Alexandergrass	-	-	•	-	0	Jo	ohnsc	ngra	ess	-			•	0
Arrowleaf sida	0	85	95	90	95	K	ochia	ì.		65	10	0 98	100	90
B. signalgrass	10	0	35	70	5	La	arge	crat	grass	3,0		0 65	50	35
Barnyardgrass	0	0	20	10	0	Le	eafy	spus	ge	65	7	5 70	80	80
Bermudagrass	-	-	-	-	25	P	. mor	ning	lory	0	2	0 60	-	30
C. purslane	75	100	100	100	85	Pe	anut	:s		-		-	-	-
C. ragweed	-	-	-	-	75	Pι	rple	nut	sedge	0	•	o o	0	0
Com. chickweed	20	60	20	70	0	Qı	ıackç	rass	ı	10		0 55	10	0
Com. groundsel	-	-	-	-	• -	Sa	andbu	ır		. 0		0 0	0	0
Cotton	-	-	-	•	-	Sc	ourgi	ass		-		-		50
Dallisgrass	-	-	-	•	0	Sı	panis	hnee	dles	-			-	0
Goosegrass	65	10	•	100	65	St	ıgaro	ane		- .		-	-	-
Green foxtail	95	50	85	-	-	Sı	ırina	ım gi	ass	0		0 10	65	0
Guineagrass	-	•	-	-	60	Ta	all M	fallo	w .	•			-	100

TEST G

5

10

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to plants that were in the 1- to 4-leaf stage (postemergence application). A mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include alfalfa (Medicago sativa), annual bluegrass (Poa annua), blackgrass 2 (Alopecurus myosuroides), black nightshade (Solanum nigra), chickweed (Stellaria media), common poppy (Papaver rhoeas), deadnettle (Lamium amplexicaule), downy brome (Bromus tectorum), field violet (Viola arvensis), galium 2 (Galium aparine), green foxtail (Setaria viridis), ryegrass (Lolium multiflorum), jointed

goatgrass (Aegilops cylindrica), kochia (Kochia scoparia), lambsquarters (Chenopodium album), lentil (Lens culinaris), littleseed canarygrass (Phalaris minor), pea (Pisum sativum), potato (Solanum tuberosum), rape 1 (Brassica napus), redroot pigweed (Amaranthus retroflexus), Russian thistle (Salsola kali), scentless chamomile (Matricaria inodora), spring barley (Hordeum vulgare), sugar beet (Beta vulgaris), sunflower (Helianthus annuus), ivyleaf speedwell (Veronica hederaefolia), spring wheat (Triticum aestivum), winter wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat 1 (Avena fatua), windgrass (Apera spica-venti) and winter barley (Hordeum vulgare).

Treated plants and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table G, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

15

Table G	COMP	OUND	Table G		CO	MPOU	ND		
Rate · 250 g/ha	20	24	Rate 250 g/ha	20	25	29	36	37	. 57
POSTEMERGENCE			PREEMERGENCE						
Annual bluegras	60	50	Alfalfa		. •	-	-	-	-
Barley (winter)	50	10	Annual bluegras	100	90	85	85	100	75
Blackgrass (2)	30	30	Barley (winter)	30	10	30	20	10	. 5
Blk nightshade	95	100	Blackgrass (2)	90	70	50	100	70	30
Chickweed	90	65	Blk nightshade	100	100	100	100	100	100
Common poppy	100	70	Chickweed	85	85	100	100	100	70
Deadnettle	95	70	Common poppy	100	100	100	100	100	100
Downy brome	40	20	Deadnettle	70	70	100	85	70	-
Field violet	100	100	Downy brome	100	85	20	100	100	30
Galium (2)	60	65	Field violet	100	100	85	50	100	. 60
Green foxtail	85	95	Galium (2)	100	100	85	100	100	100
I. Ryegrass	20	20	Green foxtail	100	100	100	100	100	100
Jointed goatgra	. 30	30	I. Ryegrass	75	65	65	100	100	10
Kochia	75	70	Jointed goatgra	65	40	20	90	65	10
Lambsquarters	100	75	Kochia	85	100	100	100	100	100
LS canarygrass	65	30	Lambsquarters	75	85	70	85	70	70
Rape (1)	100	100	Lentil	-	-	•	-	-	-
Redroot pigweed	75	70	LS canarygrass	100	65.	85	75	70	70
Russian thistle	80	65	Pea	•	•	•	-	•	•
Scentless chamo	100	75	Potato	•	. -	-	•		. :

Table G

Spring Barley	30	10	Rape (1)	90	100	85	85	75	100
Sugar beet	100	100	Redroot pigweed	100	85	100	100	85	75
Sunflower	60	60	Russian thistle	100	85	100	100	100	60
Veronica hedera	-	70	Scentless chamo	85	70	85	85	70	75
Wheat (spring)	30	15	Sorghum	-	-	-	-	-	-
Wheat (winter)	20	10	Spring Barley	20	10	10	20	20	10
Wild buckwheat	55	70	Sugar beet	100	100	100	100	100	70
Wild mustard	100	100	Sunflower	30	80	35	60	80	10
Wild oat (1)	45	30	Veronica hedera	100	100	100	100	100	-
Windgrass	60	60	Wheat (spring)	30	10	10	40	30	10
			Wheat (winter)	20	10	10	20	30	5
			Wild buckwheat	100	90	100	100	100	100
			Wild mustard	100	100	100	100	100	100
			Wild oat (1)	90	60	75	85	90	20
			Windgrass	100	100	. 85	100	70	100

COMPOUND

Scentless chamo	10	70	60	100	70	95	100	30	50
Spring Barley	20	20	20	20	20	60	10	40	10
Sugar beet	100	100	100	100	60	95	100	70	100
Sunflower	10	30	30	45	30	60	35	50	20
Veronica hedera	55	98	90	-	80	100	100	70	70
Wheat (spring)	10	20	30	20	10	60	10	30	10
Wheat (winter)	10	10	10	20	10	50	10	30	10
Wild buckwheat	40	40	50	80	70	50	65	40	45
Wild mustard	100	98	100	80	75	100	100	100	85
Wild oat (1)	10	20	20	30	20	90	20	30	10
Windgrass	10	50	50	30	20	50	50	20	50

ဗ		S	сомроимр	Ð	٠												
g/ha	9	12	13	14	16	70	21	22	24	25	29	36	37	49	51	26	57
	•	100	٠	•	•	٠	•	•	•	•	•	٠	•	٠	•	•	•
Annual bluegras	75	100	82	70	20	100	9	85	70	80	82	100	100	82	35	100	70
Barl y (winter)	0	25	30	30	15	20	0	20	15	10	20	10	10	20	ഹ	10	ഗ
Blackgrass (2)	10	75	9	40	20	82	20	40	20	55	20	70	9	20	15	30	20
Blk nightshade	10	100	100	100	40	100	10	40	65	85	100	90	100	100	30	100	80
	20	82	82	70	75	75	30	100	75	85	100	100	100	82	20	100	65
Common poppy	•	٠	100	100	100	100	100	100	100	100	100	100	100	100	9	100	100
	82	82	70	70	70	82	•	75	70	70	75	70	90	100	40	•	•
	10	100	20	9	40	80	10	30	55	55., 65	10	100	100	20	0	10	20
Fi 1d violet	80	82	82	82	70	100	10	85	85.	82	85.	65	100	100	85	100	9
	30	100	100	100	100	100	30	70	100	100	100	100	100	•	70	100	100
foxtail	.09	100	100	75	100	100	9	100	100	100	100		100 100	100	80	100	32
	20	100	20	20	20	75	45	15	20	30	30	100	70	30	10	20	10
Jointed goatgra	10	22	30	45	30	9	0	15	30	30	10	20	35	20	10	30	2
	82	•	82	75	65	75	Ŋ	9	90	70	70	100	100	70	09	70	100
Lambsquarters	10	70	82	70	75	75	20	82	70	70	70	75	70	70	70	70	70
	•	9	•	•	•	•	•	٠	٠	•	•	•	٠	•	•	•	•
LS canarygrass	10	100	65	82	40	100	9	9	40	9	100	75	100	85	20	100	9
	•	20	•	•	•	٠	•	•	٠	٠	•	٠	٠	•	•	٠.	٠
	٠	0	•	٠	•	•	•	•	٠	•	•	•	•	•	٠	٠	•

Rape (1)	10	82	90	82	70	82	10	09	. 69	82	82	82	82	100	20	100	90	
Redroot pigweed	82	100	82	82		75 100	20	50 100 70	70	70	70	70	70	85	70	70	75	
Russian thistle	0	100	20	20	40	80	.0	20	9	65	9	100	100	100	10	100	20	
Scentless chamo	55	•	•	•	- 100 100	100	.•	•	70	70	70	70	70	85	•	75	70	
Sorghum	•	30	•	•	•	•		•	•	•	•	•	•	•	•	•	,	
Spring Barley	0	20	20	20	20	10	0	20	10	10	10	10	10	20	10	10	Z	
Sugar beet	•	100	100 100		85 100 100	100	40	100	100	40 100 100 100 100 100 100	100	100	100	100	9	85	75	
Sunflower	0	30	20	20	20	25	0		20 30	9	20	20	9	15	10	10	10	
Veronica hedera	9	100	100	100	100 100 100 100	100	9	100	100	60 100 100 100 100 100	100	100	100	•	100	•	•	
Wheat (spring)	10	25	20	30	30 20	10	0		10	10 10 10 2 30 30	7	30	30	20	2	20	2	
Wheat (winter)	0	20		20 .40	10	10	0	20	10	0	7	20	10	10	10	10	7	
Wild buckwheat	10	75	100	82	55	80	40	09	9	82	82	95	100	100	30	82	82	
Wild mustard	. 50	100	100	100	100 100 100 100 100	100	80		100	85 100 100 100 100 100	100	100	100	100	100	82	82	
Wild oat (1)	10	10 75 50 50 55 85	20	20	52	82	30		09 09	20	45 45	45	20	20	10	10	20	
Windgrass	20	50 100 100 100 100 100	100	100	100		70		85.100 100	100	85	100	100	85, 100, 100, 100	70	75	75	

Table G		CON	MPOUI	ND							•	
Rate 62 g/ha	12	13	14	20	21	22	49	50	51	52	56	57
POSTEMERGENCE												
Annual bluegras	30	20	30	20	20	50	30	50	20	50	60	60
Barley (winter)	10	10	10	. 30	30	60	10	40	50 [°]	50	10	10
Blackgrass (2)	10	10	10	20	10	40	20	30	20	40	20	20
Blk nightshade	100	85	100	100	75	90	100	60	90	80	100	90
Chickweed	55	60	60	.70	30	75	70	30	40	60	60	50
Common poppy	100	60	100	85	40	100	100	70	30	80	100	50
Deadnettle	100	85	80	85	30	100	100	70	60	70	80	65
Downy brome	10	10	20	15	5	30	10	0	10	30	10	10
Field violet	100	100	100	100	30	90	100	90	30	70	100	80
Galium (2)	65	50	50	55	. 20	70	65	30	50	70	60	55
Green foxtail	65	50	40	60	10	50	50	20	20	60	65	50
I. Ryegrass	1,0	10	10	10	2	20	15	20	20	20	10	5
Jointed goatgra	10	10	10	10	5	40	10	20	20	30	10	10
Kochia	70	60	55	65	30	70	75	70	60	60	70	85
Lambsquarters	85	100	80	85	30	90	90	80	50	80	80	65
LS canarygrass	20	20	30	30	20	60	30	40	30	40	60	25
Rape (1)	100	85	80	100	100	80	95	60	50	50	100	80
Redroot pigweed	85	65	60	80	70	95	90	90	50	95	70	80
Russian thistle	70	70	60	75	30	50	75	30	. 40	40	70	65
Scentless chamo	55	-	30	65	50	80	60	80	30	30	30	30
Spring Barley	10	10	10	10	10	50	10	40	30	40	10	10
Sugar beet	100	90	100	100	50	9.0	100	80	50	80	100	80
Sunflower	20	20	20	50	30	60	30	70	40	50	10	40
Veronica hedera	100	98	100	-	75	100	100	100	80	95	75	60
Wheat (spring)	10	10	20	10	10	50	10	30	30	30	10	15
Wheat (winter)	10	10	10	10	10	40	10	30	20	30	10	10
Wild buckwheat	40	40	30	80	45	50	40	30	40	50	60	50
Wild mustard	100	80	100	70	75	100	100	60	100	90	100	95
Wild oat (1)	20	10	10	20	20	70	15	20	30	50	10	10
Windarass	20	20	20	30	10	30	30	20	. 20.	30	30	30

Table	ტ		Ö	COMPOUND	ð														
Rate	62 g/ha	12	13	14	20	21	22	24	25	29	36	37	49	20	51	52	99	57	
PREEM	PREEMERGENCE																		
Alfalfa	fa	100	٠	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•		
Annua	Annual bluegras	100	75	70	85	20	100	9	9	55	70	70	80	20	82	20	75	70	
Barle	Barley (winter)	10	35	20	10	0	10	2	10	30	10	10	10	30	0	10	ນ	10	
Black	Blackgrass (2)	20	15	55	20	40	20	20	30	30	55	9	20	30	10	20	10	10	
Blk n	Blk nightshade	65	82	65	9	0	30	9	20	82	9	100	100	0	20	10	100	09	
Chickweed	weed	80	85	85	82	.15	20	75	85	75	100	82	80	30	50	70	80	09	
Common	Common poppy	•	100	100	100	70	70	100	100	100	100	100	100	90	•	09	100	100	
Deadnettle	ettle	75	70	85	100	•	82	9	55	70	82	85	100	100	30	10	•	•	
Downy	Downy brome	65	3.0	20	52	20	20	30	20	40	85	20	25	20	Ŋ	Ŋ	20	2	
Fi 1d	Fi 1d violet	100	100	82	100	0	100	70	65	. 70	65	9	82	20	65	09	100	09	
Galium (2)	(2)	100	100	100	100	0	9	100	100	100 100 100	100	100	•	40	•	40	100	100	
Green	Green foxtail	100	100	9	100	20	100		85 100		100 100	100.100	100	80	35	100	100	10	
I. Ry	I. Ryegrass	10	30	30	20	10	10	2 0	30	20	85	65	55	0	10	10	10	2	
Joint	Jointed goatgra	20	20	10	•	2	•	30	30	10	30	35	10	20	0	10	Ŋ	0	
Kochia	ά	•	70	40	70	Ŋ	20	22	100	9	100	100	. 60	30	30	9	9	20	
Lambso	Lambsquarters	70	65	65	70	. 30	65	70	. 70	70	70	70	70	80	9	82	100	70	
Lentil	_	30	•	•	٠	٠	•	•	•	•	•	•	•	•	٠	•	•	•	
LS ca	LS canarygrass	100	20	9	75	20	45	30	50	20	65	9	82	40	40	30	.30	20	
Pea		10	•	•	•	•	•	•	•	٠	•	·	•	•	•	•	•	•	
Potato	c	0	•	•	•	•	•	•	•		•	•	•		•	•	•		

Rape (1)	80	100	65		80 · 10	52	65	75	80	82	82	82	30	10	40	30 10 40 100 100	100
Redroot pigweed	100	100	82	20	0	82	70	70	70	70	•	100	90	•	- 100 100	100	70
Russian thistle	100		20	09	0	10	30	30	70	100	20	35	20	ស	0	20	30
Scentless chamo	70	•	•	80	•	•	70	70	70	70	70	09	90	•	•	70	70
Sorghum	10	•	•	•	•	•		,	٠	٠	•	•	٠.	•	•		•
Spring Barley	20	10	10	10	0	10	Ω	10	10	Ŋ	10	20	. 0	2	S	10	~
Sugar beet	100	100	82	100	20	20	20 100	100	82	100	100 85 100 100 100	100	30	22	09	30	82
Sunflower	20	20	10	15	10	10	20	22	20	35	9		30	Ŋ	10	5	0
Veronica hedera	100	100	100	100	20	70	70 100	100 100 100	100	100	100	•	٠	- 100	100	٠	•
Wheat (spring)	10	10	10		10	10	2	10 5 2	7	2 10	20	20	30	30 0 0	0	10	5
Wheat (winter)	10	20	30	10	Ŋ	10	ß	0	ß	20	20	10	10	0	໌ທ		0
Wild buckwheat	30	82	9	. 70	വ	25	09	80	ຮູ	80	75	80	30	20	20	30	20
Wild mustard	100	100	70	100	22	80	æ	2 100	85	85 100	100 100	100	80	09	70	8	70
Wild oat (1)	30	40	20	30	10	30	ñ	20	30	30 30	20	80	20	0	20	10	10
Windgrass	100	100 85 100	100	85 15 50 100 100 100 100 100 100 000 60	15	50	100	100	100	100	100	100	70		70	70	

Table G		CO	мрош	ND		•					
Rate 31 g/ha	13	14	20	21	22	49	50	51	52	56	57
POSTEMERGENCE									•		
Annual bluegras	10	20	15	20	30	20	50	10	30	50	50
Barley (winter)	10	10	20	10	60	10	40	50	50	10	10
Blackgrass (2)	10	10	10	10	20	10	30	10	30	10	10
Blk nightshade	100	75	100	70	. 90	100	60	70	90	75	80
Chickweed	50	50	55	45	70	6 Ò	10	40	60	60	50
Common poppy	50	85	85	30	100	.100	50	20	60	85	50
Deadnettle	85	60	80	30	70	-85	60	60	40	75	60
Downy brome	10	20	10	2	30	10	0	10	20	10	5
Field violet	100	100	100	10	80	100	60	30	50	70	70
Galium (2)	40	40	50	20	50	70	40	30	50	60	50
Green foxtail	30	10	30	10	30	10	0	20	30	30	60
I. Ryegrass	10	10	10	0	20	10	Ö	20	20	10	5
Jointed goatgra	10	10	10	2	30	10	20	20	30	10	10
Kochia	50	50	60	20	60	75	50	60	60	60	60
Lambsquarters	100	85	80	0	70	100	50	30	70	75	65
LS canarygrass	10	20	20	10	40	10	40	20	30	55	20
Rape (1)	85	55	100	60	60	75	60	20	50	70	65
Redroot pigweed	55	50	70	60	90	85	50	20	80	70	70
Russian thistle	60	50	70	20	40	60	20	20	30	60	70
Scentless chamo	30	20	70	0	70	50	80	20	20	10	10
Spring Barley	10	10	15	5	40	10	50	30.	40	10	10
Sugar beet	65	55	100	30	60	75	100	40	70	98 -	98
Sunflower	15	20	30	30	30	20	50	20	30	20	30
Veronica hedera	100	98	-	70	100	100	50	70	90	70	55
Wheat (spring)	10	10	10	· . 5	40	10	20	10·	20	10	10
Wheat (winter)	10	10	10	5	30	10	30	10	30	10	5
Wild buckwheat	30	20	30	30	5 0.	40	45	20	50	40	55
Wild mustard	60	70	100	60	100	95	40	70	90	90	95
Wild oat (1)	10	10	10	30	60	10	0	20	40	20	10
Windgrass	10	10	20	10	30	20	20	10	20	20	20

PCT/US98/04600 WO 98/40379

Table
PREEMERGENCE Alfalfa 60
Alfalfa 60
Annual bluegras 100 55 60 30 60 10 50 50 50 60 75 40 10 10 40 Barley (winter) 10 10 10 5 5 10 5 5 10 0 0 20 0 0 5 2 Blackgrass (2) 30 10 10 20 70 50 50 60 50 10 30 5 10 10 Bk nightshade 35 60 50 70 70 60 10 20 50 60 50 60 50 10 30 5 10 10 Bk nightshade 75 85 70 70 70 60 10 20 70 85 70 85 0 60 50 10 30 85 Common poppy 7 85 100 100 100 100 100 100 100 100 100 10
Barley (winter) 10 10 10 5 5 5 10 5 5 10 0 20 0 0 5 2 Blackgrass (2) 30 10 10 20 10 30 10 30 20 50 10 30 5 10 10 Blk nightshade 35 60 50 70 70 60 10 20 70 85 70 85 0 30 30 85 Common poppy - 85 100 100 100 65 60 100 100 100 100 100 90 25 20 100 Deadnettle 30 70 60 85 - 30 70 85 60 85 50 10 30 85 Common poppy - 85 100 100 100 100 100 100 100 100 100 10
Blackgrass (2) 30 10 10 20 10 30 10 30 20 50 10 30 5 10 10 Blk nightshade 35 60 50 20 50 0 20 50 60 50 60 50 60 10 10 5 60 Chickweed 75 85 70 70 85 70 85 70 85 70 85 60 60 60 10 10 100 100 100 100 100 100
Blk nightshade
Chickweed 75 85 70 70 60 10 20 70 85 70 85 0 30 30 85 Common poppy - 85 100 100 100 100 100 100 100 90 25 20 100 Deadnettle 30 70 60 60 85 - 30 70 55 65 85 50 20 5 5 Downy brome 20 40 30 15 10 10 10 20 50 50 10 50 0 0 0 Field violet 50 70 70 70 70 70 70 50 50 60 10 50 60 30 70 65 30 Galium (2) 100 55 50 100 70 70 70 70 70 70 70 70 70 70 70 70 7
Common poppy
Deadnettle 30 70 60 60 85 - 30 70 55 65 85 50 20 5 - Downy brome 20 40 30 15 10 10 20 50 50 10 50 10 50 0 0 Field violet 50 70 70 70 70 70 50 50 60 10 50 60 30 70 65 30 Galium (2) 100 100 55 50 10 70 70 100 0 30 50 100 100 100 100 40 10 55 60 10 60 10 100 100 55 60 10 55 60 10 50 60 10 60 60 10 60 60 10 60 60 60 60 60 60 60 60 60 60 60 60 60
Downy brome 20 40 30 15 10 10 10 20 50 50 10 50 0 0 0 Field violet 50 70 70 70 70 70 50 50 60 10 50 60 30 70 65 30 Galium (2) 100 100 55 50 100 100 100 50 60 100 60 60 60 60 60 60 60 60 60 60 60 60 6
Field violet 50 70 70 70 70 50 50 60 10 50 60 30 70 65 30 Galium (2) 100 100 55 50 100 100 30 50 100 100 100 100 100 55 60 100 60 - 0 10 20 100 Green foxtail 100 55 50 100 100 30 50 100 100 100 100 40 10 55 60 1. Ryegrass 20 20 45 10 20 20 10 20 10 20 10 30 10 10 0 0 5 20 Jointed goatgra 10 10 20 10 10 0 0 0 10 20 10 10 55 20 10 10 Kochia - 65 30 60 60 60 0 30 50 100 100 55 20 10 50 50 Lambsquarters 65 70 65 70 55 60 30 70 60 65 70 30 50 100 100 100 100 100 100 100 100 100
Galium (2) 100 100 70 70 100 0 50 60 100 60 - 0 10 20 100 Green foxtail 100 55 50 100 100 30 50 100 100 100 100 40 10 55 60 I. Ryegrass 20 20 45 10 10 10 0 0 10 20 10 20 50 20 Jointed goatgra 10 10 20 10 10 0 0 10 20 20 5 20 Jointed goatgra 10 10 20 10 10 0 0 0 10 20 20 5 20 5 20
Green foxtail 100 55 50 100 100 30 50 100 100 100 100 40 10 55 60 I. Ryegrass 20 20 45 10 20 20 10 20 10 30 10 0 0 0 5 20 Jointed goatgra 10 10 20 10 10 0 0 10 100 55 20 0 5 10 Kochia - 65 30 60 60 0 30 50 100 100 55 20 10 50 50 Lambsquarters 65 70 65 70 55 60 30 70 60 65 70 30 50 100 100 55 20 100 100 Lentil 20
I. Ryegrass 20 20 45 10 20 20 10 20 10 30 10 0 0 5 20 Jointed goatgra 10 10 20 10 10 0 0 10 20 20 5 20 0 5 10 Kochia - 65 30 60 60 0 30 50 100 100 55 20 10 50 Lambsquarters 65 70 65 70 55 60 30 70 60 65 70 30 50 100 100 Lentil 20
Jointed goatgra 10 10 20 10 10 0 0 10 20 20 5 20 0 5 10 Kochia - 65 30 60 60 0 30 50 100 100 55 20 10 50 50 Lambsquarters 65 70 65 70 55 60 30 70 60 65 70 30 50 100 100 Lentil 20 - 7 7 7 70 70 10 10 10 10 10 10 10 10 10 10 10 10 10
Kochia - 65 30 60 60 0 30 50 100 100 55 20 10 50 50 Lambsquarters 65 70 65 70 55 60 30 70 60 65 70 30 50 100 100 Lentil 20 -
Lambsquarters 65 70 65 70 55 60 30 70 60 65 70 30 50 100 100 Lentil 20
Lentil 20
LS canarygrass 100 20 30 20 20 10 15 20 - 60 75 50 5 20 20 Pea 10 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -
Pea 10 -
Potato 10 - </td
Rape (1) 65 50 10 60 50 0 30 60 60 100 65 0 10 20 100 Redroot pigweed 80 70 85 70 75 30 60 70 - 65 100 90 50 65 100 Russian thistle 100 30 10 20 30 5 0 20 20 30 20 0 0 0 10 Scentless chamo 70 70 70 100 60 70 70 50 10 Sorghum 5 70 70 70 100 60 70 70 70 50 10
Redroot pigweed 80 70 85 70 75 30 60 70 - 65 100 90 50 65 100 Russian thistle 100 30 10 20 30 5 0 20 20 30 20 0 0 0 10 Scentless chamo 5 - 70 70 70 - 100 60 70 70 50 - 100 Sorghum
Russian thistle 100 30 10 20 30 5 0 20 20 30 20 0 0 0 10 Scentless chamo 70 70 - 100 60 70 70 50 - 100 Sorghum 5 - 70 70 - 70 70 - 70 70 70 70 70 70 70 70 70 70 70 70 70
Scentless chamo 70 70 100 60 70 70 50 10 Sorghum 5
Sorghum 5
•
Spring Barley 10 10 10 2 5 0 10 2 10 10 10 0 2 5 5
Sugar beet 100 85 70 60 65 30 35 90 100 100 100 30 10 50 45
Sunflower 20 0 10 40 10 10 0 0 25 55 10 30 0 5 5
Veronica hedera 100 100 100 70 100 50 100 100 100 100 65 100 -
Wheat (spring) 5 5 20 10 0 0 5 2 10 10 10 10 0 0 10
Wheat (winter) 5 5 20 0 5 0 5 2 10 0 0 10 0 0
Wild buckwheat 20 65 55 30 60 0 10 35 60 65 50 30 20 10 40
Wild mustard 100 85 65 100 85 40 60 70 100 100 60 50 55 100
Wild oat (1) 20 20 30 20 10 20 10 20 20 20 30 50 0 10 10
Windgrass 100 50 100 100 55 50 45 80 100 100 50 30 60 50

Table G COMPO	UND	Table G		COMPOUND		
Rate 16 g/ha	52	Rate 16 g/ha	12	5 <u>2</u>	56	57
POSTEMERGENCE		PREEMERGENCE				₹.
Annual bluegras	20	Alfalfa	50	-	-	
Barley (winter)	40	Annual bluegras	30	5	20	10
Blackgrass (2)	20	Barley (winter)	5	0	5	10
Blk nightshade	90	Blackgrass (2)	50	5	5	0
Chickweed	60	Blk nightshade	30	2	30	35
Common poppy	40	Chickweed	. 10	0	75	50
Deadnettle	20	Common poppy	. •	65	60	100
Downy brome	10	Deadnettle	20	0	65	30
Field violet	30	Downy brome	10	10	5	5
Galium (2)	20	Field violet	20	10	5	. 0
Green foxtail	30	Galium (2)	60	10	40	30
I. Ryegrass	0	Green foxtail	60	50	60	30
Jointed goatgra	20	I. Ryegrass	10	. 0	5	5
Kochia	50	Jointed goatgra	. 5	0	10	0
Lambsquarters	30	Kochia	-	30	50	10
LS canarygrass	30	Lambsquarters	1.5	30	70	65
Rape (1)	30	Lentil	10	٠.	-	•
Redroot pigweed	30	LS canarygrass	1.0	5	20	5
Russian thistle	10	Pea	· 5	-	-	-
Scentless chamo	0	Potato	0	-	•	-
Spring Barley	30	Rape (1)	55	10	85	65
Sugar beet	50	Redroot pigweed	70	55	70	40
Sunflower	20	Russian thistle	85	0	50	10
Veronica hedera	80	Scentless chamo	-	-	0	20
Wheat (spring)	10	Sorghum	5	-		-
Wheat (winter)	30	Spring Barley	.5	0	10	0
Wild buckwheat	60	Sugar beet	100	10	40	65
Wild mustard	70	Sunflower	. 10	0	10	10
Wild oat (1)	30	Veronica hedera	100	100	100	100
Windgrass	10	Wheat (spring)	5	0	0	0
		Wheat (winter)	. 0	0	0	0
		Wild buckwheat	10	0	30	20
		Wild mustard	100	45	100	50
		Wild oat (1)	10	15	5	Ó
		Windgrass	100	45	10	10

Table G COMPOU	ND	Table G COMPOU	DIND	Table G COMPO	UND
Rate 8 g/ha	12	Rate 4 g/ha	12	Rate 2 g/ha	12
PREEMERGENCE		PREEMERGENCE		PREEMERGENCE	
Alfalfa	50	Alfalfa	20	Alfalfa	30
Annual bluegras	-	Annual bluegras	-	Annual bluegras	-
Barley (winter)	5	Barley (winter)	0	Barley (winter)	0
Blackgrass (2)	•	Blackgrass (2)	•	Blackgrass (2)	•
Blk nightshade	-	Blk nightshade	-	Blk nightshade	-
Chickweed	-	Chickweed	•	Chickweed	-
Common poppy	•	Common poppy	•	Common poppy	-
Deadnettle ·	-	Deadnettle	-	Deadnettle	-
Downy brome	•	Downy brome	-	Downy brome	-
Field violet	•	Field violet	•	Field violet	-
Galium (2)	•	Galium (2)	•	Galium (2)	-
Green foxtail	-	Green foxtail	-	Green foxtail	-
I. Ryegrass	-	I. Ryegrass	-	I. Ryegrass	-
Jointed goatgra	-	Jointed goatgra	•	Jointed goatgra	-
Kochia	•	Kochia	•	Kochia	-
Lambsquarters	-	Lambsquarters	-	Lambsquarters	-
Lentil	5	Lentil	0	Lentil	0
LS canarygrass	-	LS canarygrass	•	LS canarygrass	-
Pea	5	Pea	10	Pea	. 0
Potato	0	Potato	0	Potato	0
Rape (1)	10	Rape (1)	20	Rape (1)	10
Redroot pigweed	-	Redroot pigweed	-	Redroot pigweed	-
Russian thistle	-	Russian thistle	-	Russian thistle	-
Scentless chamo	•	Scentless chamo	-	Scentless chamo	-
Sorghum	2	Sorghum	0	Sorghum	0
Spring Barley	5	Spring Barley	0	Spring Barley	0
Sugar beet	LO	Sugar beet	15	Sugar beet	.0
Sunflower	0	Sunflower	0	Sunflower	0
Veronica hedera	•	Veronica hedera	-	Veronica hedera	-
Wheat (spring)	0	Wheat (spring)	0	Wheat (spring)	0
Wheat (winter)	0	Wheat (winter)	0	Wheat (winter)	. 0
Wild buckwheat	-	Wild buckwheat	•	Wild buckwheat	-
Wild mustard	•	Wild mustard	-	Wild mustard	-
Wild oat (1)	-	Wild oat (1)	•	Wild oat (1)	•
Windgrass	•	Windgrass	-	Windgrass	-

Table G COMPO	UND	Lentil	0
Rate 1 g/ha	12	LS canarygrass	-
PREEMERGENCE		Pea	0
Alfalfa	5	Potato	0
Annual bluegras	<u>-</u>	Rape (1)	0
Barley (winter)	0	Redroot pigweed	-
Blackgrass (2)	•	Russian thistle	•
Blk nightshade	•	Scentless chamo	-
Chickweed	-	Sorghum	0
Common poppy	•	Spring Barley	0
Deadnettle	-	Sugar beet	0
Downy brome	•	Sunflower	0
Field violet	-	Veronica hedera	-
Galium (2)	•	Wheat (spring)	0
Green foxtail	-	Wheat (winter)	0
I. Ryegrass	•	Wild buckwheat	•
Jointed goatgra	•	Wild mustard	•
Kochia	-	Wild oat (1)	-
Lambsquarters	-	Windgrass	•

CLAIMS

What is claimed is:

1. A compound selected from Formula I, geometric or stereoisomers thereof, N-oxides thereof, and agriculturally suitable salts thereof,

5

$$\begin{array}{c|c}
R^1 & W \\
V = Z
\end{array}$$
I

wherein

J is

$$R^4$$
 R^5
 R^5
 R^6
 R^7
 R^4
 R^6
 R^7

10

W is N or CR9;

X, Y and Z are independently N, CH or CR⁹, provided that only one of X, Y and Z is CR⁹;

J-5

Q is O, $S(O)_n$ or NR^{10} ;

J-4

 R^1 and R^2 are independently H, halogen, cyano, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ haloalkoxy, $C_2\text{-}C_4$ alkoxyalkyl, $C_3\text{-}C_5$ dialkoxyalkyl, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_2\text{-}C_4$ alkoxyalkyl, $C_3\text{-}C_4$ alkenyl, $C_3\text{-}C_4$ alkenyl, $C_3\text{-}C_4$ alkenyloxy, $C_3\text{-}C_4$ alkynyloxy, $S(O)_nR^8$, $C_2\text{-}C_4$ alkylthioalkyl, $C_2\text{-}C_4$ alkylsulfonylalkyl, $C_1\text{-}C_4$ alkylamino or $C_2\text{-}C_4$ dialkylamino;

20

15

- R³ is H, halogen, cyano, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl, C₂-C₄ alkoxyalkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy or S(O)_nR⁸;
- R^4 is halogen, cyano, SF_5 , C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_nR^8$;
- R^5 is H, halogen, cyano, SF_5 , C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_n R^8$;
- R^6 is H, halogen, cyano, SF_5 , C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_nR^8$;
- 10 R^7 is halogen, cyano, SF_5 , C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_nR^8$;

each R⁸ is independently C₁-C₄ alkyl or C₁-C₄ haloalkyl;

each R^9 is independently halogen, cyano, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkoxyalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl, C_3 - C_4 alkynyloxy or $S(O)_nR^8$;

 R^{10} is H, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl; and each n is independently 0, 1 or 2.

- 2. A compound of Claim 1 wherein:
- 20 Q is O;

 R^1 and R^2 are independently H, C_1 - C_4 alkyl or C_1 - C_4 alkoxy; and R^3 is halogen, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 haloalkylthio.

- 3. A compound of Claim 2 wherein:
- 25 W is N; Y is CR⁹; and R⁵ is H.
 - 4. A compound of Claim 3 wherein:
- R² is H; and each R⁴ is independently halogen, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy or C₁-C₄ haloalkylthio.
 - 5. The compound of Claim 4 which is selected from the group:
- 35 (a) 5-methyl-4-[3-(trifluoromethyl)phenoxy]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine;
 - (b) 4-[3-(trifluoromethyl)phenoxy]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine;

- (c) 5-methyl-4-[3-(trifluoromethoxy)phenoxy]-2-[4-(trifluoromethyl)-1*H*-imidazol-1-yl]pyrimidine;
- (d) 5-methyl-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]-4-[[6-(trifluoromethyl)-2-pyridinyl]oxy]pyrimidine;
- (e) 5-methyl-4-[3-(trifluoromethyl)phenoxy]-2-[3-(trifluoromethyl)-1*H*-1,2,4-triazol-1-yl]pyrimidine;
 - (f) 5-methyl-2-[4-(trifluoromethyl)-1*H*-imidazol-1-yl]-4-[3-(trifluoromethyl)phenoxy]pyrimidine;
 - (g) 5-ethyl-4-[3-(trifluoromethyl)phenoxy]-2-[3-(trifluoromethyl)-1H-pyrazol-1-yl]pyrimidine;
 - (h) 5-ethyl-4-[3-(trifluoromethoxy)phenoxy]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine;
 - (i) 5-ethyl-2-[4-(trifluoromethyl)-1*H*-imidazol-1-yl]-4-[3-(trifluoromethyl)phenoxy]pyrimidine; and
- (j) 5-ethyl-4-[3-(trifluoromethoxy)phenoxy]-2-[4-(trifluoromethyl)-1*H*-imidazol-1-yl]pyrimidine.
 - 6. A compound selected from Formula 1a and agriculturally suitable salts thereof,

$$H_3C$$
 S
 N
 N
 X
 R^3
 X
 R^3

1a

20

5

10

wherein

- X, Y and Z are independently N, CH or CR⁹, provided that only one of X, Y and Z is CR⁹:
- R¹ is H, C₁-C₄ alkyl or C₁-C₄ alkoxy;
- 25 R³ is halogen, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy or C₁-C₄ haloalkylthio; each R⁹ is independently halogen or cyano; and n is 0, 1 or 2.
 - 7. A compound of Claim 6 wherein
- 30 R^1 is C_1 - C_4 alkyl; and R^3 is C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy.

- 8. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
- 9. A method for controlling the growth of undesired vegetation comprising
 5 contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.

INTERNATIONAL SEARCH REPORT

PCT/US 98/04600

		101703 30	7 0 7 0 0 0
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07D403/04 C07D401/04 C07D401 A01N43/56 A01N43/54 A01N43/ //(C07D403/04,239:00,231:00),(C07	50 A01N43/40	403/14
According to	International Patent Classification (IPC) or to both national classific		
B. FIELDS	SEARCHED		
Minimum do IPC 6	ocumentation searched (classification system followed by classification CO7D AOIN	lon symbols)	
Documenta	tion searched other than minimum documentation to the extent that o	such documents are included in the fields see	arched
Electronic d	ata base consuited during the international search (name of data be	ase and, where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the re	levant passages	Relevant to claim No.
Y	EP 0 723 960 A (AMERICAN CYANAMI July 1996 see claims 1-4,7	D CO) 31	1-9
Y	EP 0 572 093 A (SHELL INT RESEAR December 1993 see claims 1-7,10	CH) 1	1-9
Y	DATABASE WPI Week 9615 Derwent Publications Ltd., Londo AN 96-151315 XP002071053 & WO 96 06096 A (NISSAN CHEM. IN , 29 February 1996 cited in the application see abstract		1-9
X Furt	ther documents are listed in the continuation of box C.	Patent family members are listed	in annex.
"A" docum consk "E" earlier filling ("L" docum which citatic "O" docum other "P" docum tater t	ent defining the general state of the art which is not defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filling date but than the priority date claimed actual completion of the international search	"T" later document published after the interest or priority date and not in conflict with cited to understand the principle or the invention." "X" document of particular relevance; the carnot be considered novel or cannot involve an inventive step when the dramatic properties of the carnot be considered to involve an indecument is combined with one or ments, such combination being obvious in the art. "&" document member of the same patent. Date of mailing of the international sec	the application but the every underlying the claimed invention it be considered to occument is taken alone claimed invention inventive step when the one other such document to a person skilled it family
Name and	mailing address of the ISA European Patent Offics, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	Authorized officer Frelon. D	

INTERNATIONAL SEARCH REPORT

i. mational Application No PCT/US 98/04600

	Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
	EP 0 216 360 A (SCHERING AG) 1 April 1987 see claims 1,3	1-9				
A	DE 29 35 578 A (HOKKO CHEM IND CO) 2 April 1981 see abstract; table 1	1-9				
A,P	WO 98 04550 A (AMERICAN CYANAMID CO) 5 February 1998 see abstract	1-9				

INTERNATIONAL SEARCH REPORT

Information on patent family members

rnational Application No PCT/US 98/04600

					FC1/U3 96/U4600		
Patent document cited in search report		Publication date	Patent family member(s)		Publication date		
EP	0723960	Α	31-07-1996	AU	4216496 A	01-08-1996	
				CA	2167982 A	27-07-1996	
			•	CN	1143078 A	19-02-1997	
				CZ	9600175 A	14-08-1996	
				HU	9600161 A	28-02-1997	
				JP	8277268 A	22-10-1996	
				SG	33666 A	18-10-1996	
				SK 	10996 A	10-09-1997 	
ΕP	0572093	Α	01-12-1993	BR	9302077 A	30-11-1993	
				CN	1079220 A	08-12-1993	
				JP	6040813 A	15-02-1994	
				US	5374604 A	20-12-1994	
EP	0216360	Α	01-04-1987	DE	3534391 A	02-04-1987	
				DE	3605343 A	20-08-1987	
				AU	589685 B	19-10-1989	
				AU	6312486 A	26-03-1987	
				BR	8604598 A	26-05-1987	
				DK	455886 A	25-03-1987	
				FI	863833 A	25-03-1987	
				JP	62123185 A	04-06-1987	
				SU	1560052 A	23-04-1990	
		-	•	US	4891428 A	02-01-1990	
				US	4776876 A	11-10-1988	
DE	2935578	Α	02-04-1981	NONE			
WO	9804550	Α	05-02-1998	AU	3816997 A	20-02-1998	