

### Ch.6 Multiple Regression: Further Issues 1. Effects of Data Scaling on OLS Statistics 2. More on Functional Form 3. More on Goodness-of-Fit & Selection of Regressors 4. Prediction & Residual Analysis\*

6.1 Effects of Data Scaling

Redefining Variables

Changing the scale of the variable will lead to a corresponding change in the scale of the coefficients and standard errors, but no change in the significance or interpretation.

→ see table 6.1.







| Effects of                   | Data S                | caling              |                      |
|------------------------------|-----------------------|---------------------|----------------------|
| <b>Dependent Independent</b> | y                     | cy                  | у                    |
| $x_1$                        | $\beta_1 (se_1)$      | $c\beta_1 (c*se_1)$ |                      |
| $dx_1$                       |                       |                     | $\beta_1/d (se_1/d)$ |
| $x_2$                        | $\beta_2 (se_2)$      | $c\beta_2 (c*se_2)$ | $\beta_2 (se_2)$     |
| Intercept                    | $\beta_0 (se_0)$      | $c\beta_0 (c*se_0)$ | $\beta_0 (se_0)$     |
| R-squared                    | $R^2$                 | $R^2$               | $R^2$                |
| SSR                          | SSR                   | c <sup>2</sup> *SSR | SSR                  |
| Standard errors in p         | parentheses<br>Econon | netrics             |                      |

### Beta Coefficients

- ♦ Idea is to replace *y* and each *x* variable with a standardized version subtract mean and divide by standard deviation.
- Coefficient reflects standard deviation of *y* for a one standard deviation change in *x*.
  - We can compare the magnitudes of the resulting beta coefficients and conclude that "which variable is most important," etc.
  - Whether we use standardized or unstandardized variables does not affect statistical significance.

Econometrics

# 6.2 More on Functional Form ◆ Functional Forms OLS can be used for relationships that are not strictly linear in x and y by using nonlinear functions of x and y – will still be linear in the parameters. • the natural log of x, y or both • quadratic forms of x • interactions of x variables





### Log models are invariant to the scale of the variables since measuring percent changes. They give a direct estimate of elasticity. For models with y > 0, the conditional distribution is often heteroskedastic or skewed, while ln(y) is much less so. The distribution of ln(y) is more narrow, limiting the effect of outliers.

Why use log models?

### Some Rules of Thumb for "log"

- What types of variables are often used in log form?
  - Dollar amounts that must be positive
  - Very large variables, such as population
- What types of variables are often used in level form?
  - Variables measured in years
  - Variables that are a proportion or percent

Econometrics

tries

### Quadratic Models

- 6-2b Models with Quadratics
  - For a model of the form

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u,$$

we can't interpret  $\beta_1$  alone as measuring the change in y with respect to x, we need to take into account  $\beta_2$  as well, since

$$\frac{\partial \hat{y}}{\partial x} \approx \hat{\beta}_1 + 2\hat{\beta}_2 x$$

conometrice

### More on Quadratic Models

- For the case of the coefficient on x > 0 and the coefficient on  $x^2 < 0$ , y is increasing in x at first, but will eventually turn around and be decreasing in x (see fig.6.1).
- For the case of the coefficient on x < 0 and the coefficient on  $x^2 > 0$ , y is decreasing in x at first, but will eventually turn around and be increasing in x (see fig.6.2).
- ♦ For both case, the turning point will be at

$$x^* = |\hat{\beta}_1/(2\hat{\beta}_2)|.$$

ometrics

### **Interaction Terms**

- 6-2c Models with Interaction Terms
  - For a model of the form

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + u$$

we can't interpret  $\beta_1$  alone as measuring the change in y with respect to  $x_1$ , we need to take into account  $\beta_3$  as well, since

$$\frac{\partial y}{\partial x} = \beta_1 + \beta_3 x_2$$

• To summarize the effect of  $x_1$  on y, we typically evaluate the above at average of  $x_2$ .

Econometrics

,

### 6.3 More of Goodness-of-Fit

### Adjusted R-Squared

- Recall that the R<sup>2</sup> will always increase as more variables are added to the model.
- ◆ The adjusted R² takes into account the number of variables in a model, and may decrease

$$\overline{R}^2 = 1 - \frac{\left[SSR/(n-k-1)\right]}{\left[SST/(n-1)\right]} = 1 - (1-R^2)\frac{n-1}{n-k-1}$$
 (6.22)

Econometrics

### Cont. Adjusted R-Squared

- Most PC packages will give you both  $R^2$  and adj- $R^2$ .
- You can compare the fit of 2 models (with the same y) by comparing the adj- $R^2$ .
- However, you cannot use the adj- $R^2$  to compare models with different y's.
  - *e.g. y* vs. ln(*y*).

conometrics

18

## R<sup>2</sup> & Selection of regressors • It is important not to fixate too much on adj R<sup>2</sup> and lose sight of theory and common sense. • If economic theory clearly predicts a variable belongs, generally leave it in the model. • Don't want to include a variable that prohibits a sensible interpretation of the variable of interest – remember ceteris paribus interpretation of multiple regression. • g. housing price = f (# of rooms, square footage)

Econometrics





