Linear Regression 3 DS351

Credit balance data

Predictor with two levels

Find the difference in credit card balance (y_i) between **male** and **female**.

$$y_i = \begin{cases} \beta_0 + \epsilon_i & \text{if } i \text{th person is male.} \\ \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is female.} \end{cases}$$

Predictor with two levels

Find the difference in credit card balance (y_i) between **male** and **female**.

$$y_i = egin{cases} eta_0 + \epsilon_i & ext{if } i ext{th person is male.} \ eta_0 + eta_1 + \epsilon_i & ext{if } i ext{th person is female.} \end{cases}$$

Create a **dummy variable** x_i :

$$x_i = \begin{cases} 0 & \text{if } i \text{th person is male.} \\ 1 & \text{if } i \text{th person is female.} \end{cases}$$

Using x_i , the regression can be written as

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Estimates of coefficients

	\hat{eta}_{i}	$SE(\hat{\beta}_i)$	<i>t</i> -statistic	<i>p</i> -value
Intercept	509.80	33.13	15.389	< 0.0001
gender(Female)	19.73	46.05	0.429	0.6690

$$\hat{y}_i = 509.80 + 19.73x_i.$$

Main takeaway:

- ▶ Male has credit card debt of 509.80 **on average**.
- ► Female has credit card debt of 509.80+19.73 = 529.53 on average.
- ▶ The difference in credit card debt is $\hat{\beta}_1 = 19.73$ on average.

Estimates of coefficients

	\hat{eta}_{i}	$SE(\hat{\beta}_i)$	<i>t</i> -statistic	<i>p</i> -value
Intercept	509.80	33.13	15.389	< 0.0001
gender(Female)	19.73	46.05	0.429	0.6690

$$\hat{y}_i = 509.80 + 19.73x_i.$$

Main takeaway:

- ▶ Male has credit card debt of 509.80 **on average**.
- ► Female has credit card debt of 509.80+19.73 = 529.53 on average.
- ▶ The difference in credit card debt is $\hat{\beta}_1 = 19.73$ on average.

Question: Can we conclude that females have more credit debt on average than males?

Predictor with more than two levels

Find the difference in credit card balance (y_i) between **Asian**, Caucasian and African American.

$$y_i = \begin{cases} \beta_0 + \epsilon_i & \text{if } i \text{th person is African American.} \\ \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is Asian.} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if } i \text{th person is Caucasian.} \end{cases}$$

Predictor with more than two levels

Find the difference in credit card balance (y_i) between **Asian**, Caucasian and African American.

$$y_i = \begin{cases} \beta_0 + \epsilon_i & \text{if ith person is African American.} \\ \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is Asian.} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is Caucasian.} \end{cases}$$

Create two **dummy variables** x_{i1} and x_{i2} :

$$x_{i1} = \begin{cases} 0 & \text{if } i \text{th person is Asian.} \\ 1 & \text{if } i \text{th person is not Asian.} \end{cases}$$
 $x_{i2} = \begin{cases} 0 & \text{if } i \text{th person is Caucasian.} \\ 1 & \text{if } i \text{th person is not Caucasian.} \end{cases}$

Predictor with more than two levels

Find the difference in credit card balance (y_i) between **Asian**, **Caucasian** and **African American**.

$$y_i = \begin{cases} \beta_0 + \epsilon_i & \text{if ith person is African American.} \\ \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is Asian.} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is Caucasian.} \end{cases}$$

Create two **dummy variables** x_{i1} and x_{i2} :

$$x_{i1} = \begin{cases} 0 & \text{if } i \text{th person is Asian.} \\ 1 & \text{if } i \text{th person is not Asian.} \end{cases}$$
 $x_{i2} = \begin{cases} 0 & \text{if } i \text{th person is Caucasian.} \\ 1 & \text{if } i \text{th person is not Caucasian.} \end{cases}$

Using x_{i1} and x_{i2} , the regression can be written as

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

Estimates of coefficients

	\hat{eta}_{i}	$SE(\hat{\beta}_i)$	<i>t</i> -statistic	<i>p</i> -value
Intercept	531.00	46.32	11.464	j0.0001
ethnicity (Asian)	-18.69	65.02	-0.287	0.7740
ethnicity (Caucasian)	-12.50	56.68	-0.221	0.8260

Main takeaway: On average,

- African American has credit debt of 531.00.
- ▶ Asian has 18.69 less debt than the African American.
- ► Caucasian has 12.50 less debt than the African American.
- ► Asian has ______ less debt than Caucasian.

Estimates of coefficients

	\hat{eta}_{i}	$SE(\hat{\beta}_i)$	<i>t</i> -statistic	<i>p</i> -value
Intercept	531.00	46.32	11.464	j0.0001
ethnicity (Asian)	-18.69	65.02	-0.287	0.7740
ethnicity (Caucasian)	-12.50	56.68	-0.221	0.8260

Main takeaway: On average,

- African American has credit debt of 531.00.
- ▶ Asian has 18.69 less debt than the African American.
- ▶ Caucasian has 12.50 less debt than the African American.
- ▶ Asian has ______ less debt than Caucasian.

Question: How can we decide if there is any difference in credit card balance between the ethnicities?

Linear model diagnosis

1. Non-linearity of the data

► Maybe the relationship between the predictors and the response is non-linear.

Residual plot

▶ Plot between the **fitted values** \hat{y}_i and the **residuals** $y_i - \hat{y}_i$.

Non-linear regression

Try a polynomial function of the horsepower:

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon.$$

Estimates of coefficients

	\hat{eta}_{i}	$SE(\hat{\beta}_i)$	<i>t</i> -statistic	<i>p</i> -value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
$horsepower^2$	-0.0012	0.0001	10.1	< 0.0001

Two things indicate that the quadratic fit is better:

- ▶ The p-value of horsepower² is significant.
- ► The R² of this model is 0.688 compared to 0.606 of the linear model.

Residual plot of non-linear regression

The pattern disappears

We assumed that the error terms

$$\epsilon_1, \epsilon_2, \ldots, \epsilon_n$$

are independent to each other. This is an important assumption!

What happens if this is not the case?

Example: Suppose we accidentally doubled the data

$$(x_1, y_1), (x_1, y_1), (x_2, y_2), (x_2, y_2), \dots$$

and train the simple linear model

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon_i.$$

Recall that the standard error of a coefficient is

Model 2:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^{2n} (x_i - \bar{x})^2}$$
 (2*n* points)

compared to

Model 1:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \quad (n \text{ points})$$

Recall that the standard error of a coefficient is

Model 2:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^{2n} (x_i - \bar{x})^2}$$
 (2*n* points)

compared to

Model 1:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \quad (n \text{ points})$$

▶ The standard error of Model 2 is $\sqrt{2}$ times small than that of Model 1.

Recall that the standard error of a coefficient is

Model 2:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^{2n} (x_i - \bar{x})^2}$$
 (2*n* points)

compared to

Model 1:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \quad (n \text{ points})$$

- ► The standard error of Model 2 is $\sqrt{2}$ times small than that of Model 1.
- ► The confidence interval

$$[\hat{\beta}_1 - 2 \cdot \mathsf{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \mathsf{SE}(\hat{\beta}_1)]$$

is $\sqrt{2}$ times narrower.

- ► From previous example, we learn that correlated errors cause the confidence interval to be narrower.
- ► As a result, we could mistakenly conclude that the coefficients are significant.

- ► From previous example, we learn that correlated errors cause the confidence interval to be narrower.
- As a result, we could mistakenly conclude that the coefficients are significant.
- ▶ How can we detect correlated errors?
- Hard to detect in general, easier if we are studying time series.

- ► From previous example, we learn that correlated errors cause the confidence interval to be narrower.
- As a result, we could mistakenly conclude that the coefficients are significant.
- ▶ How can we detect correlated errors?
- Hard to detect in general, easier if we are studying time series.
- Detect by looking at the time vs residual plot.

Time vs residual plot

3. Non-constant variance of error terms

- ▶ We also assumed that the variance of $Var(\epsilon_i) = \sigma^2$ for all *i*.
- ► The formula for standard error, hypothesis test and confidence interval are all derived **under this assumption**.

3. Non-constant variance of error terms

- We also assumed that the variance of $Var(\epsilon_i) = \sigma^2$ for all i.
- ► The formula for standard error, hypothesis test and confidence interval are all derived **under this assumption**.
- ▶ For example, the formula

$$\operatorname{\mathsf{Cov}} \hat{\boldsymbol{\beta}} = \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}$$

holds because we assumed that ϵ_i 's share the same variance σ^2 .

3. Non-constant variance of error terms

- We also assumed that the variance of $Var(\epsilon_i) = \sigma^2$ for all i.
- ► The formula for standard error, hypothesis test and confidence interval are all derived **under this assumption**.
- ▶ For example, the formula

$$\mathsf{Cov}\hat{\boldsymbol{\beta}} = \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}$$

holds because we assumed that ϵ_i 's share the same variance σ^2 .

Again, detect non-constant variance using fitted value vs residual plot.

Fitted value vs residual plot

- ▶ The variance increases as the fitted value increases.
- ▶ Try transformation $Y \rightarrow \log(Y)$ or $Y \rightarrow \sqrt{Y}$ before training the model.

4. Outliers

We can detect outliers with actual data plot (single variable) or the residual plot (multiple variables).

4. Outliers

A single point can heavily influence the RSE and \mathbb{R}^2 of the model.

	RSE	R²
Model with outlier	1.09	0.805
Model without outlier	0.77	0.892
Improvement	29%	11%

5. High leverage points

- ▶ **High leverage point** is a point with an unusual value of x_i .
- Detect high leverage points using the leverage statistic.

- collinearity problem happens when two predictors are highly correlated to each other.
- Highly correlated variables cause problems when training the model.

- collinearity problem happens when two predictors are highly correlated to each other.
- Highly correlated variables cause problems when training the model.

Example: Suppose we have data with two predictors x and z.

$$(y_1, x_1, z_1), (y_2, x_2, z_2), \dots$$

where $z_i = 2x_i$.

Suppose that we have a solution (0,1,1)

$$\hat{y}_i = x_i + z_i$$

Suppose that we have a solution (0,1,1)

$$\hat{y}_i = x_i + z_i$$

Since $z_i = 2x_i$

$$\hat{y}_i = x_i + 2x_i$$
$$= 3x_i$$

In other words, (0,3,0) is also a solution.

Suppose that we have a solution (0,1,1)

$$\hat{y}_i = x_i + z_i$$

Since $z_i = 2x_i$

$$\hat{y}_i = x_i + 2x_i$$
$$= 3x_i$$

In other words, (0,3,0) is also a solution. In fact, any (0,a,b) where a+b=3 is also a solution. This causes confusion when implemented by a computer program!

Suppose that we have a solution (0,1,1)

$$\hat{y}_i = x_i + z_i$$

Since $z_i = 2x_i$

$$\hat{y}_i = x_i + 2x_i$$
$$= 3x_i$$

In other words, (0,3,0) is also a solution. In fact, any (0,a,b) where a+b=3 is also a solution. This causes confusion when implemented by a computer program!

Detect collinearity using **correlation matrix**. Remove a variable if the correlation is close to -1 or 1.

Credit balance data

Multicollinearity

Multicollinearity happens when a predictor is a linear combination of other predictors.

Multicollinearity

Multicollinearity happens when a predictor is a linear combination of other predictors.

Example: Predictors x_i , z_i and w_i where $x_i = z_i + 2w_i$.

Multicollinearity

Multicollinearity happens when a predictor is a linear combination of other predictors.

Example: Predictors x_i , z_i and w_i where $x_i = z_i + 2w_i$.

Cannot be detected with correlation matrix. Instead, we use variance inflation factor

$$VIF(\hat{\beta}_i) = \frac{1}{1 - R_{X_i|X_{-i}}^2},$$

where $R_{X_i|X_{-i}}^2$ is the R^2 from a regression of X_i onto all other predictors.

Variance inflation factor

$$VIF(\hat{\beta}_i) = \frac{1}{1 - R_{X \mid X}^2}.$$

[High multicol. in $X_i] o [R^2_{X_i|X_{-i}}$ is close to $1] o [\mathsf{high}\ \mathit{VIF}(\hat{eta}_i)]$

Variance inflation factor

$$VIF(\hat{\beta}_i) = \frac{1}{1 - R_{X_i|X_i}^2}.$$

[High multicol. in X_i] o [$R^2_{X_i|X_{-i}}$ is close to 1] o [high $VIF(\hat{eta}_i)$]

General rule: There is multicollinearity if VIF is higher than 5 or 10

Solution: Drop the variable (in this case, X_i).

Acknowledgement

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani