# Math #254 Notes

(Gautier) Cole Killian - 260910531December 8, 2019

# Contents

| 1  | Limit laws                                                                                                                    | 2                    |
|----|-------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2  | Monotone Sequences  2.1 Euler's constant                                                                                      |                      |
| 3  | 10-28 3.1 Criterion for the divergence of sequences                                                                           | <b>10</b>            |
| 4  |                                                                                                                               | <b>14</b>            |
| 5  | <b>10-30</b> 5.1 Properties of lim sup, lim inf                                                                               | <b>15</b>            |
| 6  | 11-06 6.1 Divergence to infinity                                                                                              |                      |
| 7  | Lecture 11-11           7.1 Limit Laws                                                                                        | <b>23</b> 26         |
| 8  | 8.1 Limits and Inequalities                                                                                                   | 30<br>31             |
| 9  | Lecture 11-18 9.1 Topological consequences of continuity                                                                      | <b>32</b><br>37      |
| 10 |                                                                                                                               | <b>37</b>            |
| 11 | Lecture 11-25                                                                                                                 | 37                   |
| 12 | Lecture 11-27 12.1 Application of Heine-Borel                                                                                 | <b>41</b>            |
| 13 | Lecture 12-02                                                                                                                 | 46                   |
| 14 | Lecture 12-03 14.1 Another method for proving that $\sqrt{x}$ is uniformly continuous on $[0, \infty[$ . 14.2 Differentiation | 48<br>49<br>50<br>52 |
| 15 | Sequences                                                                                                                     | 53                   |
|    |                                                                                                                               |                      |

# §1 Limit laws

#### Example 1.1

$$a_n = \frac{n}{4^n}$$

Show that  $\lim(a_n) = 0$  Try using bernoulli but here it doesn't help much.

$$4^n = (1+3)^n \ge 1 + 3n$$

$$\Rightarrow |a_n - 0| = \frac{n}{4^n} \le \frac{n}{1+3n} \to \frac{1}{3} \ne 0$$

Unfortunately  $\frac{n}{1+3n}$  does not converge to 0 so this estimate is too weak to be useful. Note: This argument can be save (see next assignment).

Different approach: We'll show that  $4^n \ge n^2$  for all  $n \in \mathbb{N}$ 

Proof by Induction. .

$$n = 1$$
:  $4^1 = 4 \ge 1 = 1^2$ 

 $n \to n+1$ : Assume that  $4^n \ge n^2$ , then

$$4^{n+1} = 4 \cdot 4^n \ge 4 \cdot n^2 = 2n^2 + n^2 + n^2 = 2n^2 + (n+1)^2 + (n-1)^n - 2$$
$$= (2n^2 - 2) + (n-1)^2 + (n+1)^2 \ge (n+1)^2$$
$$\Rightarrow 4^n \ge n^2 \ \forall n \in \mathbb{N}$$

Thus 
$$|a_n - 0| = \frac{n}{4^n} \le \frac{n}{n^2} \le \frac{1}{n} \to 0$$
  
Therefore  $\lim(a_n) = 0$ 

#### Theorem 1.2

Every convergent sequence is bounded.

*Proof.* Let  $(a_n)$  be a sequence with  $\lim(a_n) = L$ , and let  $\epsilon = 1$ .

Then  $\exists N \in \mathbb{N} \ \forall n \geq N : |a_n - L| < \epsilon = 1$ 

$$\Rightarrow |a_n| = |(a_n - L) + L| \le |a_n - L| + |L| < 1 + |L| \quad \forall n \ge N$$

This proves that when  $n \geq N$ ,  $a_n$  is bounded.

Now let  $M = \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, 1 + |L|\}$ 

Then  $|a_n| \leq M$  for all  $n \in \mathbb{N}$ .

**Remark 1.3.** The convergence condition is essential. The sequence  $(n) = (1, 2, 3, \dots)$ is unbounded.

#### Theorem 1.4

Let  $(a_n), (b_n)$  be convergent sequences. Then  $(a_n + b_n)$  is convergent with  $\lim(a_n + b_n) = \lim(a_n) + \lim(b_n)$ 

*Proof.* Let  $a = \lim(a_n), b = \lim(b_n)$ . Let  $\epsilon > 0$ .

$$|a_n + b_n - (a+b)| = |(a_n - a) + (b_n - b)| \le |a_n - a| + |b_n - b|$$

Since  $\lim(a_n) = a$ ,  $\exists N_1 \in \mathbb{N} \ \forall n \geq N_1 : |a_n - a| < \epsilon/2$ 

Similarly, because  $\lim(b_n) = b$ ,  $\exists N_2 \in \mathbb{N} : \forall n \geq N_2 : |b_n - b| < \frac{\epsilon}{2}$ .

Let  $N = \max\{N_1, N_2\}$ . Then

$$\forall n \ge N : |a_n - a| < \frac{\epsilon}{2} \land |b_n - b| < \frac{\epsilon}{2}$$

Therefore

$$|a_n + b_n - (a+b)| = |(a_n - a) + (b_n - b)| \le |a_n - a| + |b_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \forall n \ge N$$

Thus  $(a_n + b_n)$  converges and  $\lim(a_n + b_n) = a + b = \lim(a_n) + \lim(b_n)$ 

This is supposed to be relatively simple.

## Example 1.5

$$\lim(\frac{n+1}{n}) = \lim(1+\frac{1}{n}) = \lim(1) + \lim(\frac{1}{n}) = 1 + 0 = 1$$

#### Theorem 1.6

Let  $(a_n), (b_n)$  be convergent. Then  $(a_n b_n)$  converges and  $\lim (a_n b_n) = \lim (a_n) \cdot \lim (b_n)$ 

*Proof.* Let  $a = \lim(a_n), b = \lim(b_n)$ . Let  $\epsilon > 0$ .

$$|a_n b_n - ab| = |a_n b_n - ab_n + ab_n - ab|$$
  
=  $|(a_n - a)b_n + a(b_n - b)|$   
 $\le |a_n - a||b_n| + |a||b_n - b|$ 

Because  $(b_n)$  converges,  $(b_n)$  is bounded by a previous theorem. Thus  $\exists M_1 > 0$  such that  $|b_n| \leq M$  for all  $n \in \mathbb{N}$ .

$$|a_n b_n - ab| \le M_1 \cdot |a_n - a| + |a| \cdot |b_n - b|$$
  
Let  $M = \max\{M_1, |a|\}$   
$$\le M|a_n - a| + M|b_n - b| = M [|a_n - a| + |b_n - b|]$$

Since 
$$\lim(a_n) = a$$
,  $\exists N_1 \in \mathbb{N} \ \forall n \ge N_1 : |a_n - a| < \epsilon/2M$ 

Similarly, because  $\lim_{n \to \infty} |b_n| = b$ ,  $\exists N_2 \in \mathbb{N} : \forall n \geq N_2 : |b_n - b| < \frac{\epsilon}{2M}$ .

Let  $N = \max\{N_1, N_2\}$ . Then

$$\forall n \ge N : |a_n - a| < \frac{\epsilon}{2M} \land |b_n - b| < \frac{\epsilon}{2M}$$

Therefore

$$|a_nb_n - ab| \leq M \left[ |a_n - a| + |b_n - b| \right] < M(\frac{\epsilon}{2M} + \frac{\epsilon}{2M}) = M \cdot \frac{\epsilon}{M} = \epsilon \quad \forall n \geq N$$

Thus 
$$(a_n b_n)$$
 converges and  $\lim (a_n b_n) = ab = \lim (a_n) \cdot \lim (b_n)$ 

This can be applied to finitely many sequences.

$$\lim(\frac{1}{n^b}) = 0$$
 for all  $k \in \mathbb{N}$   
Proof. Because  $(\frac{1}{n})$  converges to  $0$ ,  $\lim(\frac{1}{n^k}) = \lim(\frac{1}{n}) \cdots \lim(\frac{1}{n}) = 0$ 

**Note 1.8.** Special case where  $(b_n)$  is constant. i.e.  $b_n = c$  for all  $n \in \mathbb{N}$ . Let  $(a_n)$  be convergent with  $\lim(a_n) = a$ . Then  $\lim(c \cdot a_n) = \lim(c) \cdot \lim(a_n) = c \cdot \lim(a_n)$ 

#### Example 1.9

$$\lim(\frac{n-1}{n}) = \lim(1 - \frac{1}{n}) = \lim(1 + (-\frac{1}{n})) = \lim(1) + \lim(-\frac{1}{n})$$
$$= 1 + \lim(-1 \cdot \frac{1}{n}) = 1 + -1 \cdot \lim(\frac{1}{n}) = 1 + -1 \cdot 0 = 1$$

#### Theorem 1.10

In general, if  $(a_n)$ ,  $(b_n)$  converges, then  $(a_n - b_n)$  converges and  $\lim(a_n - b_n) = \lim(a_n) - \lim(b_n)$ 

Proof.

$$\lim(a_n - b_n) = \lim(a_n + (-b_n)) = \lim(a_n) + \lim(-b_n) = \lim(a_n) + -1\lim(b_n) = \lim(a_n) - \lim(b_n) = \lim(a_n) + \lim(a_n) + \lim(a_n) = \lim(a_n) + \lim(a_n) = \lim(a_n) + \lim(a_n) + \lim(a_n) = \lim(a_n) + \lim(a_n) + \lim(a_n) = \lim(a_n) + \lim$$

#### Theorem 1.11

Let  $(a_n)$  be convergent with  $\lim(a_n) \neq 0$  and  $a_n \neq 0 \quad \forall n \in \mathbb{N}$ . Then  $(\frac{1}{a_n})$  converges and  $\lim(\frac{1}{a_n}) = \frac{1}{\lim(a_n)}$ 

*Proof.* Let  $\lim(a_n) = a$ ,  $a \neq 0$ . Let  $\epsilon > 0$ . Then

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| = \left| \frac{a - a_n}{a_n \cdot a} \right| = \frac{|a_n - a|}{|a_n| \cdot |a|} < \frac{|a_n - a|}{k|a|} = \frac{1}{k|a|} \cdot |a_n - a| = 0$$

By conv. criterion,  $(\frac{1}{a_n})$  converges to  $\frac{1}{a}$ 

#### **Lemma 1.12**

Let  $(a_n)$  be convergent with  $a_n \neq 0 \quad \forall n \in \mathbb{N}$  and  $\lim(a_n) = a \neq 0$ . Then there exists M > 0 such that  $\left|\frac{1}{a_n}\right| \leq M \quad \forall n \in \mathbb{N}$ .

*Proof.* Let  $a = \lim(a_n)$  and  $\epsilon = \frac{1}{2}|a|$ . Then  $\exists n \in \mathbb{N}$  such that  $|a_n - a| < \epsilon = \frac{1}{2}|a|$  for all  $n \ge N$ , then  $|a_n| = |a - (a - a_n)| \ge |a| - |a_n - a| > |a| - \frac{1}{2}|a| = \frac{1}{2}|a| > 0 \quad \forall n \ge N$ 

Let  $k = \min\{|a_1|, |a_2|, \dots, |a_{n-1}|, \frac{1}{2}|a|\} > 0$ , then  $|a_n| > k > 0 \quad \forall n \in \mathbb{N}$ 

$$\Rightarrow |\frac{1}{a_n}| < \frac{1}{k} = M \quad \forall n \in \mathbb{N}$$

#### Theorem 1.13

Let  $(a_n), (b_n)$  by convergent where  $\forall n \in \mathbb{N}$   $b_n \neq 0$  and  $\lim(b_n) \neq 0$ . Then  $\frac{a_n}{b_n}$  converges and  $\lim(\frac{a_n}{b_n}) = \frac{\lim(a_n)}{\lim(b_n)}$ 

# §2 Monotone Sequences

Recall 2.1. Monotone means increasing or decreasing in the non strict sense.

#### Theorem 2.2

Let  $(x_n)$  be a monotone sequence. Then  $(x_n)$  is convergent if and only if it is bounded. This is useful because it is easier to check whether or not a sequence is bounded than to check whether or not it is convergent.

*Proof.* Assume that  $(x_n)$  is increasing. We will show that  $(x_n)$  converges of the supremum.

What is the supremeum of a sequence. We take all the numbers and consider it a set in  $\mathbb{R}$  and then find the supremeum.  $x := \sup_{i=S} \underbrace{\{x_1, x_2, x_3, \dots\}}_{i=S}$ .

Let  $\epsilon > 0$ , then  $x - \epsilon$  is not an upper bound of S. Thus  $\exists N \in \mathbb{N}$  such that  $x - \epsilon < x_N \le X$  but  $(x_n)$  is increasing. We also have  $x - \epsilon < x_N \le x_{N+1} \le x_{N+2} \le \cdots \le x$ . i.e.  $\forall n \ge N : x - \epsilon < x_n \le x$ 

 $\Rightarrow x_n \in ]x - \epsilon, x]$  for all  $n \ge N$   $\subseteq ]x - \epsilon, x + \epsilon [= V_{\epsilon}(x)]$ . i.e.  $\forall n \ge N : x_n \in V_{\epsilon}(x)$ . Thus  $(x_n)$  converges to  $x \coloneqq \sup\{x_1, x_2, \dots\}$ . The case that  $(x_n)$  is decreasing is left as an exercise.

#### Example 2.3

$$x_1 = 1, x_{n+1} = \frac{1}{2}x_n + 2$$

Show that  $x_n$  converges and determine its limit. We will show that  $(x_n)$  is increasing and bounded; by monotone convergence theorem,  $(x_n)$  converges. Lastly, we will show that  $\lim(x_n) = 4$ .

*Proof.*  $(x_n)$  is bounded from above by 4. We'll show this using induction.

 $\underline{n=1}$ :  $1 \le 4 \checkmark$ 

 $\underline{n \to n+1}$ : Assume that  $x_n \leq 4$ . Then  $x_{n+1} = \frac{1}{2}x_n + 2 \leq \frac{1}{2} \cdot 4 + 2 = 4$ 

Therefore  $(x_n)$  is bounded from above by 4.

*Proof.* Proving that  $(x_n)$  is increasing. Consider  $x_{n+1} - x_n = \frac{1}{2}x_n + 2 - x_n = 2 - \frac{1}{2}x_n \ge 0$ .

$$\Rightarrow \forall n \in \mathbb{N} \quad x_{n+1} - x_n \ge 0$$
$$\Rightarrow \forall n \in \mathbb{N} \quad x_{n+1} \ge x_n$$

i.e.  $(x_n)$  is increasing.

By showing that  $(x_n)$  is bounded from above and increasing, we know that  $(x_n)$  is convergent by the monotone convergence theorem. Now to find where it converges.

Let  $x := \lim(x_n)$ .

$$\forall n \in \mathbb{N} \quad x_{n+1} = \frac{1}{2}x_n + 2$$

$$\Rightarrow \lim(x_{n+1}) = \lim(\frac{1}{2}x_n + 2) = \frac{1}{2}\lim(x_n) + 2 = \frac{1}{2}x + 2$$

$$\Rightarrow x = \frac{1}{2}x + 2$$

$$\Rightarrow \frac{1}{2}x = 2 \Rightarrow x = 4$$

Note 2.4. It is essential for this argument that we knew in advance that  $(x_n)$  is convergent.

We've now shown that  $\lim(x_n) = 4$ .

#### Example 2.5

Exercise for the reader:  $x_1 = 1$ .  $x_{n+1} = \sqrt{2 + x_n}$ .

Prove that  $(x_n)$  converges to 2.

# §2.1 Euler's constant

Consider the squence  $x_n = (1 + \frac{1}{n})^n$  and  $y_n = (1 + \frac{1}{n})^{n+1}$ .

We will show that  $(x_n)$  increases and that  $(y_n)$  decreases.

*Proof.*  $(x_n)$  is increasing. We have to show that  $\forall n \in \mathbb{N} : x_n \leq x_{n+1}$ . i.e. that

$$(1 + \frac{1}{n})^n \le (1 + \frac{1}{n+1})^n + 1$$
  

$$\Leftrightarrow (1 + \frac{1}{n+1})^{n+1} \ge (1 + \frac{1}{n})^n$$
  

$$\Leftrightarrow 1 + \frac{1}{n+1} \ge {n+1 \choose 1} (1 + \frac{1}{n})^n$$

Recall the inequality of the algebraic and geometric mean. If  $a_1, a_2, \ldots, a_n \geq 0$ , then

$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \times \dots \times a_n}$$

Let  $a_1 = \dots = a_n = 1 + \frac{1}{n}$  and  $a_{n+1} = 1$ . Then

$$\frac{n+1\sqrt{a_1 \times \dots \times a_n \times a_{n+1}}}{n+1} = \sqrt[n+1]{(1+\frac{1}{n})^n}$$
and
$$\frac{a_1 + \dots + a_n + a_{n+1}}{n+1} = \frac{n(1+\frac{1}{n})+1}{n+1} = \frac{n+1+1}{n+1} = \frac{n+2}{n+1} = 1 + \frac{1}{n+1}$$

Thus, by AGM-inequality,  $1 + \frac{1}{n+1} \ge \sqrt[n+1]{(1+\frac{1}{n})^n}$ .

*Proof.* Now to show that  $y_n$  is decreasing. Similar strategy, but take inverse to reverse inequality.

It follows from the above proofs that, Claim:

$$\forall n, k \in \mathbb{N} : x_n < y_n$$

#### Definition 2.6.

$$e \coloneqq \lim \left( (1 + \frac{1}{n})^n \right) = \lim \left( (1 + \frac{1}{n})^{n+1} \right)$$

In analysis 2, you'll see that

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

From which it can be shown that e is irrational.

Estimates for e. Since  $(x_n)$  is increasing and  $(y_n)$  is decreasing, we have that  $\forall n \in \mathbb{N} : x_n \leq e \leq y_n$ .

$$\frac{5}{2} < e < 3 \Leftarrow \begin{cases} x_6 \ge \frac{5}{2} = 2.5\\ y_5 < 3 \end{cases}$$

# §2.2 Subsequences

**Definition 2.7.** Let  $n_1 < n_2 < n_3 < \dots$  be natural numbers and let  $(x_n) = (x_1, x_2, x_3, \dots)$  be a sequence. Then  $(x_{n_k}) = (x_{n_1}, x_{n_2}, x_{n_3}, \dots)$  is called a subsequence of  $(x_n)$ .

#### Example 2.8

Let  $(x_1, x_2, x_3, \dots)$  be a sequence. Then  $(x_1, x_3, x_5, x_7, \dots)$  is called the subsequence of odd indices; here  $n_k = 2k - 1$ .

Likewise,  $(x_2, x_4, x_6, x_8, \dots)$  is called the subsequence of even indices; here  $n_k = 2k$ .

#### Theorem 2.9

Let  $(x_n)$  be convergent. Then every subsequence  $(x_{n_k})$  of  $(x_n)$  also converges to the same limit.

Proof. Next class.

#### Example 2.10

Let 0 < a < 1; consider  $(a^n)$ . We will show that  $\lim(a^n) = 0$ . Note that  $(a^n)$  is decreasing and is bounded from below. By monotone convergence theorem,  $(a^n)$  converges.

Let  $x := \lim(a^n)$ . Now consider the subsequence of even terms  $(a^{2n})$ . By the theorem above, this subsequence converges and has the same limit. i.e.  $\lim(a^{2n}) = x$ .

On the other hand, we can rewrite this as

$$\lim((a^n)^2) = [\lim(a^n)]^2 = x^2 = x$$

$$\Rightarrow x^2 - x = 0$$

$$\Rightarrow x(x - 1) = 0$$

This means that either x = 0 or x = 1. But  $a^3 < a^2 < a^1 = a < 1 \Rightarrow x < 1 \Rightarrow x = 0$ .

# §3 10-28

#### Theorem 3.1

Let  $(x_n)$  be a convergent sequence, then every subsequence of  $(x_n)$  also converges to the same limit. i.e.  $\lim(x_{n_k}) = \lim(x_n)$ .

## Lemma 3.2

If  $n_1 < n_2 < n_3 < \dots$  where  $n_k \in \mathbb{N}$  for all k, then  $n_k \ge k$  for all  $k \in \mathbb{N}$ .

*Proof.* By induction.

k = 1: Base case where  $n_k \ge k$ .

 $k \to k+1$  : Assume that  $n_k \ge k.$  Then

$$n_{k+1} > n_k \ge k \Rightarrow n_{k+1} > k \Rightarrow n_{k+1} \ge k+1$$

Thus  $n_k \geq k$  for all  $k \in \mathbb{N}$ .

*Proof.* Let  $x := \lim(x_n)$ . Let  $\epsilon > 0$ , then  $\exists N \in \mathbb{N} \quad \forall n \ge N : |x_n - x| < \epsilon$ .

Since  $n_k \geq k$ , by the lemma, we also have that  $|x_{n_k} - x| < \epsilon$  for all  $k \geq N$ , since  $n_k \geq k \geq N$ .

Thus  $(x_{n_k})$  converges to x.

# §3.1 Criterion for the divergence of sequences

#### **Theorem 3.3** (1)

Let  $(x_n)$  be a sequence such that  $(x_n)$  has a subsequence  $(x_{n_k})$  that diverges.

*Proof.* If  $(x_n)$  were convergent,  $(x_{n_k})$  would converge, but it doesn't. Thus  $(x_n)$  diverges.

### Theorem 3.4

Let  $(x_n)$  be a sequence such that there exists two subsequences  $(x_{n_k})$  and  $(x_{n_j})$  that converge to different limits, then  $(x_n)$  diverges.

*Proof.* If  $(x_n)$  was convergent to  $x_1$ , then  $(x_{n_k})$  and  $(x_{n_j})$  would converge to  $x_1$ ; but they don't. Thus  $(x_n)$  diverges.

 $x_n = (-1)^n$ . Consider the subsequences of the even and odd terms  $(x_{2n})$  and  $(x_{2n-1})$ .

 $x_{2n} = (-1)^{2n} = 1^{2n} = 1$ . i.e.  $(x_{2n})$  is a constant sequence and  $\lim(x_{2n}) = 1$ .

Similarly,  $x_{2n-1} = (-1)(-1)^{2n} = -1$ . i.e.  $(x_{2n-1})$  is a constant sequence and  $\lim(x_{2n-1}) = -1$ .

According to one of the criterion for the divergence of sequences theorems,  $(x_n)$ 

#### Example 3.6

 $x_n: 1, 1, 2, \frac{1}{2}, 3, \frac{1}{3}, 4, \frac{1}{4}$ . Then  $x_{2n-1}: 1, 2, 3, 4, \ldots$ . Which diverges, thus  $(x_n)$  diverges.

 $x_n = \sqrt[n]{n}$ ; Prove that  $(x_n)$  converges to 1.

1st step:  $(x_n)$  is eventually decreasing.

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)^{\frac{1}{n+1}}}{n^{\frac{1}{n}}}$$

$$\Rightarrow (\frac{x_{n+1}}{x_n})^{n(n+1)} = \frac{1}{n} \cdot \frac{n+1}{n}^n = \frac{1}{n} \cdot (1+\frac{1}{n})^n \le \frac{1}{n} \cdot e < \frac{3}{n} \le 1$$

As long as  $n \geq 3$ . Thus  $(x_n)$  is decreasing for all  $n \geq 3$ .

Furthermore,  $(x_n)$  is bounded from below by 1. Thus  $(x_n)$  is bounded and eventually decreasing  $\Rightarrow$   $(x_n \text{ converges by monotone convergence theorem. Let } x := \lim(x_n)$ .

Second step: Show that x = 1.

Consider the subsequence  $(x_{2n})$  of even terms.

$$x_{2n} = \sqrt[2n]{2n} \Rightarrow x_{2n}^2 = \sqrt[n]{2n} = \sqrt[n]{2} \cdot \sqrt[n]{n} = \sqrt[n]{2} \cdot x_n$$

Thus

$$\lim(x_{2n}^2) = \lim(\sqrt[n]{2} \cdot x_n) = \underbrace{\lim(\sqrt[n]{2})}_{=1} \cdot \lim(x_n)$$

$$\lim(x_{2n}^2) = (\lim(x_{2n}))^2$$

$$\Rightarrow x^2 = x \Rightarrow x^2 - x = 0 \Rightarrow x(x - 1) = 0$$

$$\Rightarrow x = 0 \lor x = 1. \text{ but } x_n \ge 1 \quad \forall n \in \mathbb{N}$$

$$\Rightarrow x = 1$$

#### Theorem 3.8 (Bolzano - Weirstrass)

Let  $(x_n)$  be a <u>bounded</u> sequence. Then  $(x_n)$  has a convergent subsequence.

*Proof.* Since  $(x_n)$  is bounded,  $\exists \mu > 0$  such that  $x_n \in \underbrace{[-M, M]}_{=I_1}$  for all  $n \in \mathbb{N}$ .

Divide  $I_1$  into two subintervals of equal width. At least one of these subintervals contains infinitely many terms of  $(x_n)$ . Choose this one of these intervals and call it  $I_2$ .

Divide  $I_2$  into 2 subintervals of equal width. At least one of them, called  $I_3$  contains infinitely many terms of  $(x_n)$ . Etc...

We obtain an infinite sequence  $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$  of closed and bounded intervals. By the nested interval property of  $\mathbb{R}$  we know that the intersection over all of these intervals is not empty. i.e.  $\cap_{n\in\mathbb{N}}I_n\neq\emptyset$ .

Let  $x \in \cap_{n \in \mathbb{N}} I_n$ . We will now show that there exists a subsequence  $(x_{n_k})$  of  $(x_n)$  with  $\lim_{n \to \infty} (x_{n_k}) = x$ .

Let  $n_1 \in \mathbb{N}$  be arbitrary. We know that  $x_{n_1} \in I_1$  because all elements are in  $I_1$ .  $I_2$  contains infinitely many terms of  $(x_n)$ . Thus there exists  $n_2 > n_1$  such that  $x_{n_2} \in I_2$ . The same goes for  $I_3$ ; etc...

We obtain  $n_1 < n_2 < n_3 < \dots$  such that  $x_{n_k} \in I_k$  for all  $k \in \mathbb{N}$ .

We also have that  $x \in I_k$  for all  $k \in \mathbb{N}$ . This gives that  $|x_{n_k} - x| \leq |I_k|$  where  $|I_1| = 2M$ ,  $|I_2| = M$ ,  $|I_3| = \frac{M}{2}$ , ....

$$\Rightarrow |I_k| = \frac{2M}{2^{k-1}} = \frac{4M}{2^k} \Rightarrow |x_{n_k} - x| \le 4M \cdot (\frac{1}{2})^k$$

for all  $k \in \mathbb{N}$ . By convergence criterion,  $\lim(x_{n_k}) = x$ ; especially,  $(x_{n_k})$  converges. Corner stone of the proof is the nested interval property of  $\mathbb{R}$ .

**Definition 3.9.** Let  $(x_n)$  be a sequence and let  $(x_{n_k})$  be a convergent subsequence. Let  $x := \lim(x_{n_k})$ . Then x is called an <u>accumulation point</u> or a <u>subsequential limit</u> (point) of  $(x_n)$ .

#### Example 3.10

 $x_n = (-1)^n$ . The accumulation points of  $(x_n)$  are +1 and -1.

#### Example 3.11

Let  $x_n$  be an enumeration of Q. Every real number is an accumulation point because Q is dense in  $\mathbb{R}$ .

#### Theorem 3.12

Let  $(x_n)$  be a sequence.  $x \in \mathbb{R}$  is an accumulation point of  $(x_n)$  iff  $\forall \epsilon > 0 : V_{\epsilon}(x)$  contains infinitely many terms of  $(x_n)$ .

Proof.

- ( $\Rightarrow$ ) Let x be an accumulation point of  $(x_n)$ . Thus there exists a subsequence  $(x_{n_k})$  of  $(x_n)$  with  $\lim(x_{n_k}) = x$ . Then  $\exists k \in \mathbb{N} : \forall k \geq N x_{n_k} \in V_{\epsilon}(x)$ . Thus  $V_{\epsilon}(x)$  contains infinitely many terms of  $(x_n)$ .
- ( $\Leftarrow$ ) Let  $x \in \mathbb{R}$  be such that  $\forall \epsilon > 0 : V_{\epsilon}(x)$  contains infinitely many terms of  $(x_n)$ . Let  $\epsilon := 1$ . Then  $V_1(x)$  contains infinitely many terms of  $(x_n)$ . Let  $n_1 \in \mathbb{N}$  such that  $x_{n_1} \in V_1(x)$ .

Let  $\epsilon := \frac{1}{2}$ . Then  $V_{\frac{1}{2}}(x)$  contains infinitely many terms of  $(x_n)$ . Thus  $\exists n_l > n_1$  such that  $x_{n_2} \in V_{\frac{1}{2}}(x)$ .

:  $\epsilon = \frac{1}{k}$ . Then  $V_{\frac{1}{k}}(x)$  contains infinitely many terms of  $(x_n)$  thus  $\exists n_k > n_{k-1}$  such that  $x_{n_k} \in V_{\frac{1}{k}}(x)$ 

Since  $n_1 < n_2 < n_3 < \dots$ , we obtain a subsequence  $(x_{n_k})$  of  $(x_n)$  with  $x_{n_k} \in V_{\frac{1}{k}}(x)$ . Now let  $\epsilon > 0$  and let  $k > \frac{1}{\epsilon} \Leftrightarrow \frac{1}{k} < \epsilon \Rightarrow x_{n_k}, x_{n_{k+1}}, x_{n_{k+2}}, \dots \in V_{\frac{1}{k}}(x) \subseteq V_{\epsilon}(x)$ .

$$x_{n_k} \in V_{\epsilon}(x) \quad \forall k \ge K \Rightarrow x_{n_k} \text{ converges to } x$$

# §4 Tutorial 10-30

#### §4.1 e

#### Example 4.1

1.

$$\lim(1 - \frac{1}{n})^{-n} = e$$

2.

$$(1 + \frac{1}{2n})^n = ((1 + \frac{1}{2n})^{2n})^{\frac{1}{2}} = (e)^{\frac{1}{2}}$$

Because  $(1 + \frac{1}{2n})$  is a subsequence of  $(1 + \frac{1}{n})$  which converges to e.

3.  $(1+\frac{n}{2})^{\frac{n}{2}}$  is <u>not</u> a subsequence of  $(1+\frac{1}{n})^n$ . It's the other way around.

Let 
$$a > 0$$
. Pick  $x_1 > 0$ . Let  $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n}) > 0$ 

Prove that  $x_n \to \sqrt{a}$ .

# **§5** 10-30

#### Theorem 5.1

A bounded sequence converges if and only if it has exactly one accumulation point.

Proof.

- ( $\Rightarrow$ ) Let  $(x_n)$  be convergent.  $x := \lim(x_n)$ . Then every subsequence  $(x_{n_k})$  of  $(x_n)$  converges to x. Thus x is the only accumulation point of  $(x_n)$ .
- ( $\Leftarrow$ ) Let  $(x_n)$  be a bounded sequence which has only one accumulation point x. We will show that  $(x_n)$  converges to x. Assume that this is <u>not</u> the case.

Convergence:  $\forall \epsilon > 0, \ \exists N \in \mathbb{N} : \forall n \geq N, \ |x_n - x| < \epsilon$ Negation:  $\exists \epsilon > 0 : \forall N \in \mathbb{N}, \ \exists n \geq N : |x_n - x| \geq \epsilon$ 

Thus  $\exists$  infinitely many  $n \in \mathbb{N}$  such that  $|x_n - x| \ge \epsilon_0$ . Let  $n_1 < n_2 < n_3 < \dots$  such that  $\forall k \in \mathbb{N} : |x_{n_k} - x| \ge \epsilon_0$ .

Consider the subsequence  $(x_{n_k})$  of  $(x_n) \Rightarrow (x_{n_k})$  is bounded because  $(x_n)$  is bounded.

By Bolzano-weierstrass,  $(x_{n_k})$  has a convergent subsequence  $(x_{n_{k_j}})$ . Let  $\sim x := \lim(x_{n_{k_j}})$ . Since it is a subsequence of  $(x_n)$  which has only one accumulation point. It follows that  $\sim x = x$ .

Thus  $\lim(it) = x$  and  $\forall j \in \mathbb{N}, |it - x| \ge \epsilon_0 CONTRADICTION$ Thus our assumption was wrong which proves that  $(x_n)$  converges to x.

#### Theorem 5.2

Let  $(x_n)$  be a bounded sequence and let A be the set of all accumulation points of  $(x_n)$ . Then  $A \neq \emptyset$  and A is compact (i.e. A is closed and bounded).

*Proof.* By BOLZANO-WEIERSTRASS,  $(x_n)$  has at least one convergent subsequence. Its limit is an accumulation point of  $(x_n) \Rightarrow A \neq \emptyset$ .

<u>A is bounded</u>:  $(x_n)$  is bounded i.e.  $\exists M > 0$  such that  $\forall n \in \mathbb{N}, -M \leq x_n \leq M$ .

Let  $x \in A$  be arbitrary. Then  $\exists$  subsequence  $(x_{n_k})$  of  $(x_n)$  with  $x = \lim(x_{n_k})$ . We have that  $\forall k \in \mathbb{N} : -M \leq x_{n_k} \leq M \Rightarrow -M \leq x \leq M$ .  $\Rightarrow x \in [-M, M]$  for all accumulation points x of  $(x_n)$ .  $\Rightarrow A \subseteq [-M, M] \Rightarrow A$  is bounded.

A is closed: Let  $x \in \mathbb{R} \setminus A$  i.e. x is <u>not</u> an accumulation point. Thus  $\exists \epsilon > 0 : V_{\epsilon}(x)$  contains at most finitely many terms of  $(x_n)$ .

Let  $t \in V_{\epsilon}(x)$ .  $V_{\epsilon}(x)$  is open. Thus  $\exists \tilde{\epsilon} > 0 : V_{\tilde{\epsilon}(t)} \subseteq V_{\epsilon}(x)$ .

Thus  $V_{\tilde{\epsilon}(t)}$  contains at most finitely many terms of  $(x_n)$ . Thus t is <u>not</u> an accumulation point  $\Rightarrow$  no point in  $V_{\epsilon}(x)$  is an accumulation point of  $(x_n) \Rightarrow V_{\epsilon}(x) \subseteq \mathbb{R} \setminus A$ . Thus  $\mathbb{R} \setminus A$  is open  $\Rightarrow A$  is closed.

We've just seen that the set of all accumulation points of a bounded sequence  $(x_n)$  is  $\neq 0$ , closed, and bounded.

Since A is bounded, it has a supremum and an infimum. Both sup and inf are boundary points. A is closed so it contains sup and inf. Therefore  $\sup(A)$  is the Maximum of A and  $\inf(A)$  is the minimum of A. i.e.  $\sup(A)$  is an accumulation point of  $(x_n)$ , the greatest accumulation point of  $(x_n)$ . Similarly  $\inf(A)$  is the least accumulation point of  $(x_n)$ .

#### Definition 5.3.

- 1. Let  $(x_n)$  be a bounded sequence. Then the greatest accumulation point of  $(x_n)$  is called the <u>LIMES SUPERIOR</u> of  $(x_n)$ . In symbols:  $\limsup (x_n)$ .
- 2. The <u>least</u> accumulation point of  $(x_n)$  is called the <u>LIMES INFERIOR</u> of  $(x_n)$ . In symbols:  $\liminf (x_n)$ .

#### Theorem 5.4

Let  $(x_n)$  be a bounded sequence. Then  $(x_n)$  is convergent if and only if

$$\lim\inf(x_n) = \lim\sup(x_n)$$

Proof.

 $(\Rightarrow)$  Let  $x := \lim(x_n)$ . Then every subsequence  $(x_{n_k})$  of  $(x_n)$  converges to x.

$$\Rightarrow A = \{x\} \Rightarrow \liminf(A) = x = \limsup(A)$$

 $(\Leftarrow)$  Assume that  $\liminf(x_n) = \limsup(x_n) := x$ .

$$A = \{x\}$$

i.e.  $(x_n)$  has only one accumulation point. By previous theorem,  $(x_n)$  converges.

17

#### Example 5.5

1.

$$x_n = (-1)^n$$

Accumulation points are -1 and  $1 \Rightarrow \liminf(x_n) = -1$  and  $\limsup = 1$ . Especially,  $(-1)^n$  diverges because  $\liminf \neq \limsup$ .

2. Let  $(x_n)$  be an enumeration of  $\mathbb{Q} \cap [a,b]$  where a < b. We'll show that  $\liminf = a$  and that  $\limsup = b$ .

*Proof.* Let x > b. Let  $\epsilon := b - x > 0$ . Then  $\forall n \in \mathbb{N}, x_n \notin V_{\epsilon}(x) \Rightarrow x$  is <u>not</u> an accumulation point of  $(x_n)$ .

Let  $x \in [a, b]$  and let  $\epsilon > 0$ ; consider  $V_{\epsilon}(x) = ]x - \epsilon, x + \epsilon[$ . By the density of  $\mathbb{Q}$  in  $\mathbb{R}$ ,  $V_{\epsilon}(x)$  contains infinitely many rational numbers, especially,  $V_{\epsilon}(x_n)$  contains infinitely many terms of  $(x_n) \Rightarrow x$  is an accumulation point of  $(x_n)$ .

 $\underline{\mathbf{x}} = \underline{\mathbf{a}}$ : By density of  $\mathbb{Q}$  in  $\mathbb{R}$ ,  $]a, a + \epsilon[$  contains infinitely many terms of  $(x_n) \Rightarrow a$  is an accumulation point of  $(x_n)$ . Similarly for x = b.

Therefore  $A := [a, b] \Rightarrow \liminf(x_n) = a$  and  $\limsup(x_n) = b$ .

3. Find all accumulation points of the following sequence.

$$x_n: 1, 1, \frac{1}{2}, 1, \frac{1}{2}, \frac{1}{3}, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Claim:  $A = \{0\} \cup \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ 

*Proof.* For every  $k \in \mathbb{N}$ , the constant sequence  $\frac{1}{n}, \frac{1}{n}, \frac{1}{n}$  is a subsequence of  $(x_n)$ .

$$\frac{1}{n} = \lim(\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \dots) \in A$$

and  $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$  is a subsequence of  $(x_n)$ . Thus

$$0 = \lim(1, \frac{1}{2}, \frac{1}{3}, \dots) \in A$$

Now let x > 1,  $\epsilon := x - 1 > 0$ . Then  $\forall n \in \mathbb{N} : x_n \notin V_{\epsilon}(x) \Rightarrow x \notin A$ .

Similarly,  $x \notin A$  for all x < 0. Let 0 < x < 1;  $x \notin A$ . Then  $\exists n \in \mathbb{N} : \frac{1}{n+1} < x < \frac{1}{n}$ .

Let  $\epsilon := \min\{x - \frac{1}{n+1}, \frac{1}{n} - x\} > 0$ . Then  $\frac{1}{n+1} \notin V_{\epsilon}(x) \vee \frac{1}{n} \notin V_{\epsilon}(x)$ 

$$\Rightarrow x_n \notin V_{\epsilon}(x) \ \forall n \in \mathbb{N}$$

x is not an accumulation point of  $(x_n)$ 

Thus 
$$A = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$$

# **§5.1** Properties of $\limsup$ , $\liminf$

#### Theorem 5.6

Let  $(x_n)$  be a bounded sequence and let  $\epsilon > 0$ . Then  $\exists N \in \mathbb{N} \ \forall n \geq N : x_n \in ] \liminf(x_n), \limsup(x_n) + \epsilon[$ . i.e. at most finitely many terms of  $(x_n)$  have the property that  $x_n > \limsup(x_n) + \epsilon$  or  $x_n < \liminf(x_n) - \epsilon$ 

Proof. assignment 8

#### Theorem 5.7

Let  $(x_n)$  be a bounded sequence. Then  $\limsup (x_n) = \lim (\sup \{x_k : k \ge n\})$  and  $\lim \inf (x_n) = \lim (\inf \{x_k : k \ge n\})$ .

Remark 5.8. It is not clear initially whether this is well defined. We'll prove this.

Let  $y_n := \sup\{x_k : k \ge n\}$ . Then  $(y_n)$  is bounded because  $(x_n)$  is bounded.

Let A, B be bounded with  $A \subseteq B$ . Then  $\sup(A) \le \sup(B)$ .

**Note 5.9.**  $\{x_k : k \ge n+1\} \subseteq \{x_k : k \ge n\}.$ 

Therefore  $\sup\{x_k : k \ge n+1\} \le \sup\{x_k : k \ge n\}$ .

Therefore  $(y_n)$  is bounded and decreasing and therefore converges.

Thus  $\lim(\sup\{x_k : x \geq n\})$  exists. A similar argument applies to  $\lim(\inf\{x_k : k \geq n\})$ .

*Proof.* Examination material. This is the cutoff for the midterm exam. Next week coshy sequences. 3.4 in the textbook. Important: This doesn't mean that you don't have to remember the stuff from before. If you don't know stuff from before you will be closed. I used open and closed todayand left it to you to know what open and closed means. It did not contain interior and closure so that is midterm 2 material. And you need to know what boundary sets are in order to make sense of these things but I won't ask a separate question on these things.  $\Box$ 

# §6 11-06

#### **§6.1** Divergence to infinity

**Definition 6.1.** Let  $(x_n)$  be a sequence. We say that  $(x_n)$  diverges to  $+\infty$  if

$$\forall M > 0, \ \exists N \in \mathbb{N}, \ \forall n \geq N : x_n > M$$

In symbols:

$$\lim(x_n) = +\infty$$

 $(x_n)$  diverges to  $-\infty$  if

$$\forall M > 0 (\exists N \in \mathbb{N}) (\forall \geq N) : x_n < -M$$

In symbols:

$$\lim(x_n) = -\infty$$

**Remark 6.2.** If  $\lim(x_n) = +\infty$  or  $\lim(x_n) = -\infty$ , then the sequence diverges. The limit laws thus do NOT apply.

 $\lim(n^2) = +\infty$ . Let M > 0. Then  $n^2 > M \Leftrightarrow n > \sqrt{M}$ . Let  $N > \sqrt{M}$ . Then  $\forall n \geq N : n^2 \geq N^2 > M \Rightarrow n^2 > M$  for all  $n \geq M \Rightarrow (n^2)$  diverges to  $+\infty$ .

#### Example 6.4

Let a > 1. Show that  $\lim_{n \to \infty} (a^n) = +\infty$ .

Since a > 1, b := a - 1 > 0. Then a = 1 + b and  $a^n = (1 + b)^n$ . Applying bernoulli's:

$$(1+b)^n \ge 1 + nb > nb > M \Leftrightarrow n > \frac{M}{b}$$

 $(1+b)^n \ge 1 + nb > nb > M \Leftrightarrow n > \frac{M}{b}$  Let  $N > \frac{M}{b}$ . Then  $\forall n \ge N$ , we know that  $a^n > nb \ge Nb > M$ . Thus  $a^n$  diverges to  $+\infty$ .

# §6.2 Chapter 4: Limits of functions

Preparatory definition:

**Definition 6.5** (In A). Let  $A \subseteq \mathbb{R}$ . A sequence  $(x_n)$  is said to be in A if  $\forall n \in \mathbb{N} : x_n \in A$ .

**Definition 6.6** (Cluster point). Let  $A \subseteq \mathbb{R}$ . A point  $x \in \mathbb{R}$  is called a cluster point of A if:

$$\forall \epsilon > 0: \underbrace{V_{\epsilon}(x) \setminus \{x\}}_{\text{Punctured neighborhood}} \cap A \neq \emptyset$$

Note 6.7. Notation for punctered neighborhoods:

$$V_{\epsilon}^*(x) := V_{\epsilon}(x) \setminus \{x\}$$

i.e. x is a cluster point of A if  $\forall \epsilon > 0 : V_{\epsilon}^*(x) \cap A \neq \emptyset$ .

**Remark 6.8.** Cluster points of A are <u>not</u> necessarily elements of A.

**Definition 6.9** (Isolated Point). Let  $A \subseteq \mathbb{R}$ .  $x \in A$  is called an isolated point of A if  $\exists \epsilon > 0 : V_{\epsilon}^*(x) \cap A = \varnothing.$ 

i.e. x is the only element of A that is in  $V_{\epsilon}(x)$ .

#### Example 6.10

 $S\coloneqq\{0\}\cup\{\tfrac{1}{n}:n\in\mathbb{N}\}.$ 

Claim: 0 is the only cluster point of S. All points  $\frac{1}{n}: n \in \mathbb{N}$  are isolated points of S.

0 is a cluster point. Let  $\epsilon > 0$ . Then  $V_{\epsilon}(0)$  contains infinitely many numbers of the form  $\frac{1}{n}$  because  $\lim(\frac{1}{n}) = 0$ . Thus 0 is a cluster point of S.

Let  $x \neq 0$ . Then  $\exists \epsilon > 0 : V_{\epsilon}^*(x) \cap S = \emptyset$  (left as exercise). Especially, such  $\epsilon > 0$  exists for all  $x = \frac{1}{n}$ . Thus every  $\frac{1}{n}$  is an isolated point of S.

#### Example 6.11

Let  $A := \mathbb{Q}$ . Then every real number is a cluster point of A.

*Proof.* Let  $x \in \mathbb{R}$  be arbitrary and let  $\epsilon > 0$ . Since  $\mathbb{Q}$  is dense in  $\mathbb{R}$ ,  $V_{\epsilon}(x)$  contains infinitely many rational numbers. Thus  $V_{\epsilon}^*(x)$  contains at least one (in fact infinitely many) rational numbers. i.e.

 $V_{\epsilon}^*(x) \cap A \neq \emptyset \Rightarrow x$  is a cluster point of A

**Exercise 6.12.** Let I be an interval. Then the set of all cluster points of I is  $\overline{I}$ 

#### Theorem 6.13

Let  $A \subseteq \mathbb{R}$ . Then  $x \in \mathbb{R}$  is a cluster point of A if and only if there exists a sequence  $(x_n)$  in  $A \setminus \{x\}$  with  $\lim(x_n) = x$ .

Proof.

 $(\Rightarrow)$  Let x be a cluster point of A.

Let  $\epsilon := 1$ . Then  $V_{\epsilon}^*(x) \cap A \neq \emptyset$ . Let  $x_1 \in V_1^*(x) \cap A$ .

Let  $\epsilon := \frac{1}{2}$ . Then  $V_{\epsilon}^*(x) \cap A \neq \emptyset$ . Let  $x_2 \in V_{\frac{1}{2}}^*(x) \cap A$ .

We obtain a sequence  $(x_n)$  in  $A \setminus \{x\}$  with  $\forall n \in \mathbb{N} : x_n \in V_{\frac{1}{n}}^*(x) \cap A$ .

Let  $\epsilon > 0$ . Let  $N > \frac{1}{\epsilon} \Leftrightarrow \frac{1}{N} < \epsilon$ . Then

$$\forall n \ge N : x_n \in V_{\frac{1}{n}}^*(x) \cap A \subseteq V_{\frac{1}{n}}^*(x) \subseteq V_{\frac{1}{n}}(x) \subseteq V_{\frac{1}{N}}(x) \subseteq V_{\epsilon}(x).$$

i.e.  $\forall n \geq N : x_n \in V_{\epsilon}(x) \Rightarrow (x_n)$  converges to x.

( $\Leftarrow$ ) Let  $(x_n)$  be a sequence in  $A \setminus \{x\}$  such that  $\lim(x_n) = x$ . Let  $\epsilon > 0$ . Then  $\exists N \in \mathbb{N}, \ \forall n \geq N : x_n \in V_{\epsilon}(x)$ . But since  $x_n \in A \setminus \{x\}, \ x_n \neq x$ . This means that  $x_n \in V_{\epsilon}^*(x)$  and  $x_n \in A$ . Thus  $\forall n \geq N : x_n \in V_{\epsilon}^*(x) \cap A$ . Thus  $v_{\epsilon}^*(x) \cap A \neq \emptyset \Rightarrow x$  is a cluster point.

#### Theorem 6.14

Let  $A \subseteq \mathbb{R}$ . Let x be a cluster point of A. Then  $x \in A$ .

*Proof.* Let x be a cluster point of A. By previous theorem,  $\exists (x_n)$  is  $A \setminus \{x\}$  such that  $\lim(x_n) = 0$ .

Since  $\forall n \in \mathbb{N} : x_n \in A \setminus \{x\}$ . We have that  $\forall n \in \mathbb{N} : x_n \in \overline{A} \supseteq A \setminus \{x\}$ .

Since  $\overline{A}$  is closed,  $\lim(x_n) \in \overline{A}$  (see assignment 6).

### **Definition 6.15** (The limit of a function: Sequential Definition).

Let  $f: A \subseteq \mathbb{R} \to \mathbb{R}$ . Let  $x_0 \in \mathbb{R}$ , we say that L is a limit of f as  $x \to x_0$ . In symbols:

$$L = \lim_{x \to x_0} f(x)$$

if for <u>all</u> sequences  $(x_n)$  in  $A \setminus \{x_0\}$  with  $\lim(x_n) = x_0$ , we have that  $\lim(f(x_n)) = L$ .

#### Example 6.16

Let

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \to \frac{x^2}{|x|}$$

Note that for  $x \neq 0$  we have that

$$\frac{x^2}{|x|} = |x|$$

Claim:  $\lim_{x\to 0} f(x) = 0$ .

Let  $(x_n)$  be a sequence such that  $x_n \neq 0$  for all  $n \in \mathbb{N}$  and such that  $\lim (x_n) = 0$ . We need to show that  $(f(x_n))$  converges to 0. Note that  $f(x_n) = |x_n|$ .

Let  $\epsilon > 0$ . Since  $\lim(x_n) = 0$ , there exists  $(N \in \mathbb{N})(\forall n \geq N) : |x_n - 0| = |x_n| < \epsilon$ .

Thus  $\forall n \geq N : ||x_n| - 0| = ||x_n|| = |x_n| < \epsilon \Rightarrow \lim(f(x_n)) = 0$ . Thus:

$$\lim_{x \to x_0} f(x) = 0$$

$$\lim_{x \to x_0} f(x) = \frac{1}{x_0}$$

Let  $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$  where  $x \to \frac{1}{x}$ . Let  $x_0 \neq 0$ . Show that  $\lim_{x \to x_0} f(x) = \frac{1}{x_0}$   $Proof. \text{ Let } (x_n) \text{ be a sequence in } \mathbb{R} \setminus \{0, x_0\} \text{ with } \lim(x_n) = x_0. \text{ Then } \lim(f(x_n)) = \lim(\frac{1}{x_n}) = \frac{1}{\lim(x_n)} = \frac{1}{x_0}.$ 

#### Example 6.18

Let  $f: \mathbb{Z} \to \mathbb{R}$  where  $x \to 0$ . Let  $L \in \mathbb{R}$  be arbitrary. Then

$$\lim_{x \to 0} f(x) = L$$

Since 0 is an <u>isolated</u> point in  $\mathbb{Z}$ , there doesn't exist <u>any</u> sequence in  $\mathbb{Z} \setminus \{0\}$  that converges to 0. Thus <u>all</u> sequences  $(x_n)$  in  $\mathbb{Z} \setminus \{0\}$  that converge to 0 hvae that property that

$$\lim_{x \to 0} f(x_0) = L$$

Thus  $\lim_{x\to 0} f(x) = L$  for any  $L \in \mathbb{R}$ .

Remark 6.19. This example shows that we should avoid isolated points when considering limits.

#### Theorem 6.20

Let  $f: A \to \mathbb{R}$  where  $x_0$  is a cluster point of A.

Then: if f has a limit as x approaches  $x_0$ , then this limit is uniquely determined.

*Proof.* Let  $L_1, L_2$  be limits of f as x approaches  $x_0$ . Then  $\exists (x_n)$  is  $A \setminus \{x_0\}$  with  $\lim_{n \to \infty} (x_n) = x_0$ . Because f has a limit at  $x_0$ ,  $\lim_{n \to \infty} (f(x_n)) = \lim_{n \to \infty} (f(x_n)) = L_2$ .

# §7 Lecture 11-11

**Definition 7.1** (Weierstrass). The  $\epsilon$  definition of the limit of a function.

Let  $f: A \subseteq \mathbb{R} \to \mathbb{R}$ , and  $x_0 \in \mathbb{R}$ . We say that L is a limit of f as x approaches  $x_0$  if:

$$\forall \epsilon > 0, \ \exists \delta > 0, \ \forall x \in A : 0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \epsilon$$

This can be rewritten in several ways:

1.  $\forall \epsilon > 0, \ \exists \delta > 0 : x \in V_{\delta}^*(x_0) \cap A \Rightarrow f(x) \in V_{\epsilon}(L)$ 

2.  $\forall \epsilon > 0, \ \exists \delta > 0 : f(V_{\delta}^*(x_0) \cap A) \subseteq V_{\epsilon}(L)$ 

#### Theorem 7.2

Let  $f: A \to \mathbb{R}$  be a function. Let  $x_0 \in \mathbb{R}$  and  $L \in \mathbb{R}$ . Then:

$$\lim_{x \to x_0} f(x) = L$$

in the sequential sense if and only if this holds in the  $\epsilon - \delta$  sense.

Proof.

1. " $\epsilon - \delta \Rightarrow$  Sequential":

Let  $\epsilon > 0$ . Let  $\delta > 0$  be such that  $f(V_{\delta}^*(x_0) \cap A) \subseteq V_{\epsilon}(L)$ .

Let  $(x_n)$  be a sequence in  $A \setminus \{x_0\}$  with  $\lim(x_n) = x_0$ . Then  $\exists N \in \mathbb{N}, \ \forall n \geq N : x_n \in V_{\delta}(x_0)$ .

We also have that  $x_n \neq x_0$  and  $x_n \in A$  for all  $n \in \mathbb{N}$ . This implies that

$$\forall n \ge N : x_n \in V_{\delta}^*(x_n) \cap A$$
  

$$\Rightarrow \forall n \ge N : f(x_n) \in V_{\epsilon}(L)$$
  

$$\Rightarrow (f(x_n)) \text{ converges } toL$$

2. "Sequential  $\Rightarrow \epsilon - \delta$ ":

Assume that the sequential definition holds but that there exists  $\epsilon > 0$  for which ulno  $\delta > 0$  exists that satisfies  $\epsilon - \delta$ .

i.e. assume that  $f(V_{\delta}^*(x_0) \cap A) \not\subseteq V_{\epsilon}(L)$  for all  $\delta > 0$ . Especially:

$$\delta = 1: \quad f(V_1^*(x_0) \cap A) \not\subseteq V_{\epsilon}(L)$$
  
 
$$\Rightarrow \exists x_1 \in V_1^*(x_0) \cap A \text{ such that } f(x_1) \notin V_{\epsilon}(L)$$

$$\delta = \frac{1}{2}: \quad f(V_{\frac{1}{2}}^*(x_0) \cap A) \not\subseteq V_{\epsilon}(L)$$
  
 
$$\Rightarrow \exists x_2 \in V_{\frac{1}{2}}^*(x_0) \cap A \text{ such that } f(x_2) \notin V_{\epsilon}(L)$$

÷

We then obtain a sequence  $(x_n)$  such that  $x_n \in V_{\frac{1}{n}}^*(x_0) \cap A$  but  $f(x_n) \notin V_{\epsilon}(L)$ .

Thus  $\lim(x_n) = x_0$  but  $(f(x_n))$  does <u>not</u> converge to L. This contradicts the sequential definition of limit.

Thus  $\exists \delta > 0$  such that  $f(V_{\delta}^*(x_0) \cap A) \subseteq V_{\epsilon}(L)$ .

#### Example 7.3

Show that:

$$\lim_{x \to x_0} x^2 = x_0^2$$

Solution.

1. Sequential:

Let  $(x_n)$  be a sequence in  $\mathbb{R} \setminus \{x_0\}$  with  $\lim(x_n) = x_0$ . Then  $\lim(f(x_n)) = \lim(x_n^2) = [\lim(x_n)]^2 = x_0^2$ 

2.  $\epsilon - \delta$ :

Let  $\epsilon > 0$ . Let  $\delta > 0$  be arbitrary for now and assume that  $|x - x_0| < \delta$ . Then

$$|f(x) - f(x_0)| = |x^2 - x_0^2| = \underbrace{|x - x_0|}_{<\delta} \cdot |x + x_0|$$

$$\Rightarrow < |x + x_0|\delta = |x - x_0 + 2x_0|\delta \le (|x - x_0| + 2|x_0|)\delta$$

$$< (\delta + 2|x_0|)\delta < (\delta + 2|x_0|) \cdot \delta < \epsilon$$

Assume that  $\delta < 1$ . Then  $|f(x) - f(x_0)| < (\delta + 2|x_0|)\delta < (1 + 2|x_0|)\delta < \epsilon$ 

Now let:

$$\delta < \min(1, \frac{\epsilon}{1 + 2|x_0|})$$

Then if  $|x - x_0| < \delta$ , then  $|f(x) - f(x_0)| < \epsilon \Rightarrow$ 

$$\lim_{x \to x_0} x^2 = x_0^2$$

### Example 7.4

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \to \frac{1}{x}$$

Let  $x_0 \in \mathbb{R} \setminus \{0\}$ . Show that:

$$\lim_{x \to x_0} \frac{1}{x} = \frac{1}{x_0}$$

Solution

Solution.

1. Sequential:

Let  $(x_n)$  be a sequence in  $\mathbb{R} \setminus \{0, x_0\}$  with  $\lim(x_n) = x_0$ . Then:

$$\lim(f(x_n)) = \lim(\frac{1}{x_n}) = \frac{1}{\lim(x_n)} = \frac{1}{x_0}$$

2. With  $\epsilon - \delta$ :

Let  $\epsilon > 0$ . Let  $\delta > 0$  be arbitrary for now. Let  $|x - x_0| < \delta$ . Then:

$$|f(x) - f(x_0)| = \left| \frac{1}{x} - \frac{1}{x_0} \right| = \left| \frac{x_0 - x}{x x_0} \right|$$
$$= \frac{|x - x_0|}{|x||x_0|} < \frac{\delta}{|x||x_0|}$$

Let  $\delta < \frac{1}{2}|x_0|$ . Then for all x with  $|x - x_0| < \delta$  we have:

$$|x| = |(x - x_0) + x_0| \ge |x| - |x - x_0| > |x_0| - \frac{1}{2}|x_0| = \frac{1}{2}|x_0|$$

i.e.  $|x| \ge \frac{1}{2}|x_0|$  Now:

$$|f(x) - f(x_0)| < \frac{\delta}{|x||x_0|} \le \frac{\delta}{\frac{1}{2}|x_0||x_0|} = \frac{2\delta}{x_0^2} < \epsilon$$

$$\Leftrightarrow \delta < \frac{x_0^2}{2} \cdot \epsilon$$

Let  $\delta < \min(\frac{1}{2}|x_0|, \frac{1}{2}x_0^2\epsilon)$ . Then if  $|x - x_0| < \delta$ , we have that:

$$|f(x) - f(x_0)| < \epsilon \Rightarrow \lim_{x \to x_0} \frac{1}{x} = \frac{1}{x_0}$$

# §7.1 Limit Laws

#### **Theorem 7.5** (Limit of a Sum is the Sum of the Limits)

Let  $f, g: A \to \mathbb{R}$ , and  $x_0$  be a cluster point of A. Assume that  $\lim_{x \to x_0} f(x) = L_1$  and that  $\lim_{x \to x_0} g(x) = L_2$ .

Then

$$\lim_{x \to x_0} [(f+g)(x)] = \lim_{x \to x_0} [f(x) + g(x)] = L_1 + L_2$$
$$= \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

i.e.

$$\lim_{x \to x_0} [(f+g)(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

*Proof.* We'll use the sequential criterion to prove this theorem. Let  $(x_n)$  be a sequence in  $A \setminus \{x_0\}$  with  $\lim(x_n) = x_0$ . Then

$$\lim((f+g)(x_n)) = \lim(f(x_n) + g(x_n))$$

$$= \lim(f(x_n)) + \lim(g(x_n)) = L_1 + L_2 = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

### Theorem 7.6 (Limit of a Product is the Product of the Limits)

Let  $f, g: A \to \mathbb{R}$  and  $x_0$  be a cluster point of A. Assume that  $\lim_{x\to x_0} g(x)$  exist. Then:

$$\lim_{x\to x_0}[(f\cdot g)(x)]=\lim_{x\to x_0}[f(x)\cdot g(x)]=\lim_{x\to x_0}f(x)\cdot \lim_{x\to x_0}g(x)$$

*Proof.* Let  $(x_n)$  be a sequence in  $A \setminus \{x_0\}$  with  $\lim(x_n) = x_0$ . Then:

$$\lim_{x \to x_0} \left[ (f \cdot g)(x) \right] = \lim(f(x_n) \cdot g(x_n)) = \lim(f(x_n)) \cdot \lim(g(x_n)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Especially, let  $c \in \mathbb{R}$ . Then

$$\lim_{x\to x_0}[c\cdot f(x)]=c\cdot \lim_{x\to x_0}f(x)\quad \text{Think of it as choosing }g=c$$

Therefore:

$$\lim_{x \to x_0} [f(x) - g(x)] = \lim_{x \to x_0} [f(x) + (-1) \cdot g(x)] = \lim_{x \to x_0} f(x) + \lim[(-1)g(x)]$$

$$= \lim_{x \to x_0} f(x) + (-1) \lim_{x \to x_0} g(x) = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x)$$

$$\Rightarrow \lim_{x \to x_0} [f(x) - g(x)] = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x)$$

#### Theorem 7.7

Let  $f, g: A \to \mathbb{R}$  and  $x_0$  be a cluster point of A. Furthermore, let  $\forall x \in A, \ g(x) \neq 0$  and let  $\lim_{x \to x_0} f(x), \lim_{x \to x_0} g(x)$  exist where  $\lim_{x \to x_0} g(x) \neq 0$ . Then:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$

# §8 Lecture 11-13

# §8.1 Limits and Inequalities

#### **Theorem 8.1** (Bounded Limit Theorem for Functions)

Let  $f: A \to \mathbb{R}$ , and  $x_0$  be cluster point of A. Assume that  $\lim_{x \to x_0} f(x)$  exists.

Furthermore, assume that  $\exists a, b \in \mathbb{R}$  such that  $a \leq f(x) \leq b$  for all  $x \in A \setminus \{x_0\}$ . Then  $a \leq \lim_{x \to x_0} f(x) \leq b$ .

*Proof.* Let  $\lim_{x\to x_0} f(x) = L$ . Then  $\forall (x_n)$  in  $A \setminus \{x_0\}$  with  $\lim(x_n) = x_0$ , it holds that  $\lim(f(x_n)) = L$ .

Since  $\forall n \in \mathbb{N} : x_n \in A \setminus \{x_0\}$ , we have that

$$a \le f(x_n) \le b$$
  $\Longrightarrow$   $a \le L = \lim(f(x_n)) \le b$ 

Theorem from Chapter 3

 $\Rightarrow a \le \lim_{x \to x_0} f(x) \le b$ 

### **Theorem 8.2** (Squeeze Theorem for Functions)

Let  $f, g, h: A \to \mathbb{R}$ , and let  $x_0$  be a cluster point of A. Assume that

$$g(x) \le f(x) \le h(x)$$

For all  $x \in A \setminus \{x_0\}$ .

Furthermore, assume that

$$L \coloneqq \lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x)$$

Then the limit of f(x) as  $x \to x_0$  exists and equals L.

*Proof.* Let  $(x_n)$  be a sequence in  $A \setminus \{x_0\}$  such that  $\lim(x_n) = x_0$ . Then  $\lim(g(x_n)) = L$  and  $\lim(h(x_n)) = L$ .

And since  $\forall n \in \mathbb{N} : x_n \in A \setminus \{x_0\}$ , we know that

$$g(x_n) \le f(x_n) \le h(x_n)$$

By the squeeze theorem for sequences it now follows that  $(f(x_n)$  converges to L. Since this holds for  $\underline{\text{any}}(x_n)$  in  $A \setminus \{x_0\}$  with  $\lim(x_n) = x_0$ , it follows from sequence criterion that

$$\lim_{x \to x_0} f(x) = L$$

#### Example 8.3

Consider the following function:

$$f(x): \mathbb{R} \setminus \{0\} \text{ where } x \to x \cdot \sin(\frac{1}{x})$$

Solution.

$$|x \cdot \sin(\frac{1}{x})| = |x| \cdot |\sin(\frac{1}{x})| \le |x|$$
$$\Rightarrow -|x| \le x \sin(\frac{1}{x}) \le |x|$$

for all  $x \in \mathbb{R} \setminus \{0\}$ .

Note that

$$\lim_{x \to x_0} |x| = 0$$

$$\lim_{x \to x_0} (-|x|) = -\lim_{x \to x_0} |x| = 0$$

Therefore, by squeeze theorem we have that

$$-|x| \le x \sin(\frac{1}{x}) \le |x|$$
  $\Longrightarrow \lim_{x \to x_0} (x \sin(\frac{1}{x})) = 0$ 

#### Example 8.4

Let  $f: \mathbb{R}^+ \to \mathbb{R}$  and  $x \to x^{3/2}$ . We want to find  $\lim_{x \to 0} x^{3/2}$ .

Restrict f to the interval [0,1]. On this interval we have that

$$0 \le x \le x^{1/2}$$
$$\Rightarrow 0 \le x^{3/2} \le x$$

and  $\lim_{x\to 0} x = 0$ .

Therefore, by squeeze theorem,

$$\underbrace{0}_{=0} \le x^{3/2} \le \underbrace{x}_{=0} \Rightarrow \lim_{x \to 0} x^{3/2} = 0$$

### §8.2 Criteria for non-existence of limits of functions

### **Theorem 8.5** (Non-existence criteria where $(f(x_n))$ diverges.)

Let  $f: A \to \mathbb{R}$  and  $x_0$  be a cluster point of A. If  $\exists (x_n)$  in  $A \setminus \{0\}$  such that  $\lim_{x \to x_0} f(x)$  but such that  $\lim_{x \to x_0} f(x)$  DNE.

*Proof.* If  $\lim_{x\to x_0} f(x)$  would exist, then  $\lim(f(x_n) = \lim_{x\to x_0} f(x))$  but  $f(x_n)$  diverges  $\Rightarrow \lim_{x\to x_0} f(x)$  DNE.

# **Theorem 8.6** (Non-existence criteria where $(f(x_n))$ and $(f(t_n))$ converge to different limits)

Let  $f: A \to \mathbb{R}$  and  $x_0$  be a cluster point of A. Assume that  $\exists (x_n), (t_n)$  in  $A \setminus \{x_n\}$  such that  $\lim(x_n) = x_0 = \lim(t_n)$  and such that both  $(f(x_n))$  and  $(f(t_n))$  converge but to <u>different</u> limits. Then  $\lim_{x\to x_0} f(x)$  does not exist.

*Proof.* Assume that  $\lim_{x\to x_0} f(x) = L$ . Then  $\lim(f(x_n)) = L = \lim(f(t_n))$ . Contradiction because  $\lim(f(x_n)) \neq \lim(f(t_n))$ . Thus  $\lim_{x\to x_0} f(x)$  diverges.

### Example 8.7

Let  $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$  and  $x \to \sin(1/x)$ . Show that  $\lim_{x \to 0} f(x)$  DNE.

1. Solution using the 2-sequence criterion.

Choose  $(x_n)$  where  $x_n := \frac{1}{\pi n}$  for all  $n \in \mathbb{N}$ . Then  $f(x_n) = \sin(\pi n) = 0$  for all  $n \in \mathbb{N}$ . i.e.  $\lim_{n \to \infty} (f(x_n)) = 0$ .

Now choose  $(t_n)$  where  $t_n := \frac{1}{\pi/2 + 2\pi n}$ . Then  $f(t_n) = \sin(\pi/2 + 2\pi n) = \sin(\pi/2) = 1$  for all  $n \in \mathbb{N}$ .

$$\Rightarrow \lim(f(t_n)) = 1 \neq 0 = \lim(f(x_n))$$
$$\Rightarrow \lim_{x \to 0} f(x) \text{ DNE}$$

2. Solution using the 1-sequence criterion.

Let  $x_n := \frac{1}{(2n-1)\pi/2}$ . Then  $\lim(x_n) = 0$  and  $f(x_n) = \sin((2n-1)\pi/2) = (-1)^n$  for all  $n \in \mathbb{N}$ . i.e.  $(f(x_n)) = ((-1)^n)$  which diverges!

$$\Rightarrow \lim_{x\to 0} f(x)$$
 DNE

#### §8.3 One-sided limits (Brief)

In calculus you've seen

$$\lim_{x \to x_0 +} f(x) \text{ and } \lim_{x \to x_0^-} f(x)$$

How do we define these properly?

**Definition 8.8** (Definition of limit from left and right). Let  $f: A \to \mathbb{R}$  and  $x_0 \in \mathbb{R}$ .

$$\lim_{x\to x_0^+} f(x)\coloneqq f_{\left|A\cap\right]x_0,\infty[}(x)$$

$$\lim_{x \to x_0^+} f(x) \coloneqq f_{\left|A \cap \left]x_0, \infty\right[}(x)$$

$$\lim_{x \to x_0^-} f(x) \coloneqq f_{\left|A \cap \left]-\infty, x_0\right[}(x)$$

 $f: \mathbb{R} \to \mathbb{R} \text{ where } x \to |x|. \text{ Determine } \lim_{x \to 0^+} f(x) \text{ and } \lim_{x \to 0^-} f(x).$   $\lim_{x \to 0} x = 0 \Rightarrow \lim_{x \to x^+} |x| = 0$   $\lim_{x \to 0} x = 0 \Rightarrow \lim_{x \to x^-} |x| = 0$ 

$$\lim_{x \to 0} x = 0 \Rightarrow \lim_{x \to \infty^+} |x| = 0$$

$$\lim_{x \to 0} x = 0 \Rightarrow \lim_{x \to x^{-}} |x| = 0$$

Theorem 8.10 (Limit of function exists iff limits from left and right exists and are

Let  $f: A \to \mathbb{R}$  and  $x_0$  be a cluster point of A. Then  $\lim_{x \to x_0} f(x)$  exists if and only if  $\lim_{x \to x_0^+} f(x)$  and  $\lim_{x \to x_0^-} f(x)$  exist and are equal.

#### §8.4 Chapter 5: Continuity

**Definition 8.11** (Defining a continuous function). Let  $f: A \to \mathbb{R}$  and  $x_0 \in A$ . We say that f is continuous at  $x_0$  if

$$\lim x \to x_0 f(x)$$

exists and is equal to  $f(x_0)$ . i.e  $\lim_{x\to x_0} f(x) = f(x_0)$ .

**Remark 8.12.** In the case that  $x_0$  is an isolated point, this definition should be read as follows: f is continuous at  $x_0$  if it has a limit at  $x_0$  which equals  $f(x_0)$ . In other words, all functions are continuous at all isolated points. Continuous is thus only interesting at cluster points.

# §9 Lecture 11-18

Definition of continuity:  $\forall \epsilon > 0$ ,  $\exists \delta > 0 : f(V_{\delta}(x_0) \cap A) \subseteq V_{\epsilon}(f(x_0))$ 

**Remark 9.1.** Let  $x_0$  be an isolated point of A. Then any function  $f:A\to\mathbb{R}$  is continuous at  $x_0$ .

*Proof.* Let  $f: A \to \mathbb{R}$  and let  $\epsilon > 0$ . Since  $x_0$  is an isolated point of  $A, \exists \delta: V_{\delta}(x_0) \cap A =$  $\{x_0\}.$ 

Then, 
$$f(V_{\delta}(x_0) \cap A) = f(\{x_0\}) = \{f(x_0)\}$$
. Thus f is continuous at  $x_0$ .

### Theorem 9.2 (Algebraic Rules for Continuity)

Let  $f, g : A \to \mathbb{R}$  and let  $x_0 \in A$  be a cluster point of A. f, g is continuous at  $x_0$ , then:

- (a) f + g is continuous at  $x_0$ .
- (b)  $f \cdot g$  is continuous at  $x_0$ .
- (c) f g is continuous at  $x_0$ .
- (d) f/g is continuous at  $x_0$  if  $\forall x \in A, g(x) \neq 0$ .

Proof.

(a) Let  $(x_n)$  be a sequence in A with  $\lim(x_n) = x_0$ .

Since f and g are continuous at  $x_0$ , we have that  $\lim(f(x_n)) = f(x_0)$  and  $\lim(g(x_n)) = g(x_0)$ .

Thus,

$$\lim((f+g)(x_0)) = \lim(f(x_0) + g(x_0))$$

$$= \lim(f(x_n)) + \lim(g(x_n)) = f(x_0) + g(x_0) = (f+g)(x_0)$$

$$\Rightarrow f + g \text{ is continuous at } x_0$$

Alternatively, we can use the limits of functions. f, g are continuous at  $x_0$  so

$$\lim_{x \to x_0} f(x) = f(x_0)$$
$$\lim_{x \to x_0} g(x) = g(x_0)$$

Thus

$$\lim_{x \to x_0} [(f+g)(x)] = \lim_{x \to x_0} [f(x) + g(x)]$$

$$= \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = f(x_0) + g(x_0) = (f+g)(x_0)$$

$$\Rightarrow f + g \text{ is continous at } x_0$$

- (b) Left as an exercise
- (c) Left as an exercise
- (d) Left as an exercise

#### **Theorem 9.3** (Compositions of continuous functions)

Let  $f: A \to B$ , and  $g: B \to \mathbb{R}$  where  $f(A) \subseteq B$ . Let  $x_0 \in A$ , and let f be continuous at  $x_0$ , and g is continuous at  $f(x_0)$ , then  $g \circ f$  is continuous at  $x_0$ .

Proof.

1. Proof with  $\epsilon - \delta$ 

Let  $\epsilon > 0$ . Because g is continuous at  $f(x_0)$ , we get that

$$\exists \nu > 0 \text{ such that } g(V_{\nu}(f(x_0)) \cap B) \subseteq V_{\epsilon}(g(f(x_0))). \tag{1}$$

And since f is continuous at  $x_0$ , we get that

$$\exists \delta > 0 \text{ such that } f(V_{\delta}(x_0) \cap A) \subseteq V_{\nu}(f(x_0))$$
 (2)

Combining (1) and (2) we get that

$$(g \circ f)(V_{\delta}(x_0) \cap A) = g(f(V_{\delta}(x_0) \cap A) \subseteq g(V_{\nu}(f(x_0) \cap B) \subseteq V_{\epsilon}(g(f(x_0))))$$

$$\Rightarrow (g \circ f)(V_{\delta}(x_0) \cap A) \subseteq V_{\epsilon}((g \circ f)(x_0))$$

 $\Rightarrow g \circ f$  is continuous at  $x_0$ 

2. Proof with sequential method

Let  $(x_n)$  be a sequence with  $\lim(x_n) = x_0$ . Since f is continuous at  $x_0$ , we have that  $\lim(f(x_n)) = f(x_0)$ .

Because g is continuous at  $f(x_0)$ , we have that

$$\lim(g(f(x_n))) = g(f(x_0))$$

$$\Rightarrow \lim((g \circ f)(x_n)) = (g \circ f)(x_0)$$

 $\Rightarrow g \circ f$  is continuous at  $x_0$ 

**Definition 9.4.** A function  $f: A \to \mathbb{R}$  is called <u>continuous</u> (on A) if f is continuous at all  $x_0 \in A$ .

### Example 9.5

- 1. x is continuous on  $\mathbb{R}$ .
- 2. Because products of continuous functions are continuous,  $x^n$  is continuous on  $\mathbb{R}$  for all  $n \in \mathbb{N}$ .

Note also that if  $c_n \in \mathbb{R}$ ,  $c_n x^n$  is continuous on  $\mathbb{R}$ .

- 3. Since sums of continuous functions are continuous, every polynomial  $p(x) := a_0 + a_1 x + \cdots + a_n x^n$  is continuous on  $\mathbb{R}$ .
- 4. Since quotients of continuous functions are continuous, wherever the denominator is non-zero, we have that all rational functions  $R(x) := \frac{P(x)}{Q(x)}$ , P, Q polynomials are continuous on  $\mathbb{R}/N$  where  $N := \{x \in \mathbb{R} : Q(x) = 0\}$ .
- 5. We've seen that  $\lim_{x\to x_0} \sqrt{x} = \sqrt{x_0}$  for all  $x_0 \in \mathbb{R}_0^+$ . Thus  $\sqrt{x}$  is continuous on  $\mathbb{R}_0^+$ .
- 6. sin and cos are continuous on  $\mathbb{R}$ . See assignment 11.

### **Example 9.6** (Examples of discontinuous functions. sgn, Dirichlet, Thomae)

1.

$$sgn(x) := \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$



Let  $(x_n)$  be a sequence with  $x_n > 0$  for all  $n \in \mathbb{N}$  and  $\lim(x_n) = 0$  (e.g.  $x_n = 1/n$ . Then  $\operatorname{sgn}(x_n) = 1$  for all  $n \in \mathbb{N}$ . Thus  $(\operatorname{sgn}(x_n))$  converges to 1.

But!  $sgn(0) = 0 \neq 1 = lim(sgn(x_n))$ . Thus sgn is discontinuous at 0.

2. Dirichlet's Function.  $f:[0,1]\to\mathbb{R}$  where f is defined as follows:

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Claim: f is discontinuous at all  $x_0 \in [0, 1]$ .

*Proof.* Proof by cases where  $x_0 \in \mathbb{Q}$  and  $x_0 \in \mathbb{R} \setminus \mathbb{Q}$ :

a) Let  $x_0$  be rational. Because  $\mathbb{R} \setminus \mathbb{Q}$  is dense in  $\mathbb{R}$ , we know that  $\exists (x_n) \in [0,1]$  such that  $\lim (x_n) = x_0$  and that  $\forall n \in \mathbb{N} : x_n \in \mathbb{R} \setminus \mathbb{Q}$ .

Then  $\forall n \in \mathbb{N}$  we have that  $f(x_n) = 0 \Rightarrow \lim(f(x_n)) = 0 \neq 1 = f(x_0)$ .

b) Let  $x_0 \in \mathbb{R} \setminus \mathbb{Q}$ . Because  $\mathbb{Q}$  is dense in  $\mathbb{R}$ , we know that  $\exists (x_n) \in [0,1]$  with  $\lim_{n \to \infty} (x_n) = x_0$  and  $\forall n \in \mathbb{N} : x_n \in \mathbb{Q}$ .

Then  $\forall n \in \mathbb{N} : f(x_n) = 1 \Rightarrow \lim(f(x_n)) = 1 \neq 0 = f(x_0).$ 

3. Thomae's Function Consider  $f:[0,1]\to\mathbb{R}$  such that

$$f(x) = \begin{cases} 1/q, & x = n/q, \ \gcd(n,q) = 1\\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Claim: f is <u>continuous</u> at all irrational numbers, but <u>discontinuous</u> at all rational numbers.

# §9.1 Topological consequences of continuity

### Exercise.

- 1. Let  $I \subseteq \mathbb{R}$  be an interval and let  $f: I \to \mathbb{R}$  be continuous. Is f(I) an interval? (Yes, we will see later)
- 2. If  $U \subseteq \mathbb{R}$  is open and  $f: U \to \mathbb{R}$  is continuous, is f(U) open? (No. Find a counterexample).
- 3. If  $V \subseteq \mathbb{R}$  is closed, is f(V) closed? (No)
- 4. If  $S \subseteq \mathbb{R}$  is bounded, is f(S) bounded (No)
- 5. If  $C \subseteq \mathbb{R}$  is compact (recall that this means closed and bounded), is f(C) compact? Solution.
  - 1. We will see later.
  - 2. Let  $f: ]-1,1[ \to \mathbb{R}$  where  $x \to x^2$ . Then ]-1,1[ is open, but f(]-1,1[)=[0,1[ which is <u>not</u> open.
  - 3.  $f:[1,\infty[\to\mathbb{R} \text{ where } x\to 1/x. \text{ Then } f([1,\infty[)=]0,1] \text{ which is } \underline{\text{not}} \text{ closed.}$
  - 4.  $f:]0,1] \to \mathbb{R}$  where  $x \to 1/x$ . The domain of f is bounded. But  $(]0,1]) = [1,\infty[$  is unbounded.

5.

# §10 Lecture 11-20

### §10.1 Preservation of compactness

We'll need the following theorem:

 $A \subseteq \mathbb{R}$  is closed iff every cauchy sequence in A has its limit in A.

*Proof.* Let A be closed and let  $(x_n)$  be a cauchy sequence in A. Assume that  $x_0 := \square$ 

# §11 Lecture 11-25

**Definition 11.1.** Let  $A \subseteq \mathbb{R}$  and let  $c := \{U_i : i \in I\}$ , where I is an index set,  $U_i$  is open for all  $i \in I$ .

Then c i scalled an open cover of A if  $A \subseteq U_{i \in I}U_i$ . i.e. every  $x \in A$  is contained.

If  $y \subseteq I$  such that  $\{U_j : j \in J\}$  coloneq $q\varphi$  is still a cover of A, we say that  $\varphi'$  is a finite subcover of  $\varphi$ .

### Example 11.2

Let A = [0,1] and let  $\varphi := \{V_{1/2}(x) : x \in [0,1]\}.$ 

Then  $\varphi$  is an open cover of [0,1] because

$$[0,1] \subseteq \bigcup_{x \in [0,1]} V_{1/2}(x) : x \in [0,1] \subseteq ]-1/2,3/2[$$

### **Theorem 11.3** (Heine-Borel)

 $A \subseteq \mathbb{R}$  is compact (closed and bounded) if and only if <u>every</u> open cover of A has a finite subcover.

Proof.

 $\Rightarrow$  Special Case: A is a closed and bounded interval  $[a,b] := I_0$ . Assume that c is an open cover of  $I_0$  that doesn't have a finite subcover. Divide  $I_0$  into two closed subintervals of equal width [a,c] and [c,b] where  $c=\frac{a+b}{2}$ .

For at least one of these subintervals,  $\varphi$  does not have a finite subcover. Otherwise,  $\varphi$  would have a finite subcover  $\varphi'$  of  $[a, \varphi]$  and  $\varphi''$  of  $[\varphi, b]$ . Then  $\varphi' \cup \varphi''$  would be a finite open cover of  $I_0$ , which doesn't exist.

Let  $I_1$  be (one of) the subinterval(s) without finite subcover. Divide  $I_1$  into 2 closed subintervals of equal width. At least one of them doesn't have A.

We obtain a nested sequence  $I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$  of closed and bounded intervals. Then

$$\cap_{n\in\mathbb{N}_0}I_n\neq\varnothing$$

by the nested interval property.

Let  $x_0 \in \bigcap_{n \in \mathbb{N}_0} I_n$ . Then  $x_0 \in I_0$ , thus  $\exists i \in I$  such that  $x_0 \in U_i$  which is open. Thus,  $\exists \epsilon > 0 : V_{\epsilon}(x_0) \subseteq U_i$ .

Claim:  $\exists n \in \mathbb{N}_0 : I_n \subseteq V_{\epsilon}(x_0).$ 

*Proof.*  $|I_n| = 1/2^n |I_0|$ . Let  $n \in \mathbb{N}_0$  such that  $1/2^n |I_0| < \epsilon$ .

Let  $x \in I_n$  be arbitrary. Then  $|\underbrace{x}_{\in I_n} - \underbrace{x_0}_{\in I_n}| \le 1/2^n |I_0| < \epsilon \Rightarrow x \in V_{\epsilon}(x_0)$ .

 $\Rightarrow I_n \subseteq V_{\epsilon}(x_0)$ . Now we have:

$$I_n \subseteq V_{\epsilon}(x_0) \subseteq U_i$$

i.e.  $\{U_i\}$  covers  $I_n$ 

 $\varphi$  has a finite (of length 1) subcover for  $I_n$ . CONTRADICTION.

 $\Rightarrow \varphi$  does have a finite subcover.

General Case;  $A \subseteq \mathbb{R}$  compact.  $\varphi$  open cover. Since A is bounded,  $\exists M > 0$  such that  $A \subseteq [-M, M]$ . Let  $U := \mathbb{R}/A$  which is open.

Consider  $\varphi' := \varphi \cap \{U\}$ . Then  $\varphi'$  covers  $\mathbb{R}$ . Thus  $\varphi'$  covers [-M, M] which is closed and bounded interval by special case.

By special case,  $\varphi'$  has a finite subcover  $\varphi''$ .  $\varphi''$  may not be a subcover of  $\varphi$  because  $\varphi''$  may contain U. However, if  $\varphi''$  should contain U, we can simply remove it.

i.e. if  $U \in \varphi''$ , let  $\varphi''' = \varphi''/\{U\}$ . If  $U \notin \varphi''$ , let  $\varphi''' \coloneqq \varphi''$ .

Since  $U = \mathbb{R}/A$ ,  $\varphi'''$  will still cover A. Thus we've obtained a finite subcover of A.

### Theorem 11.4

 $A \subseteq \mathbb{R}$  is compact (closed and bounded) if and only if <u>every</u> open cover of A has a finite subcover.

Proof.

 $\Leftarrow$  Let A not be compact. We need to find an open cover of A without a finite subcover. A not closed: assignment 12.

### A unbounded

Let  $\varphi := \{U_n : n \in \mathbb{N}\}$  where  $U_n := ]-n, n[$ . Then  $\varphi$  covers  $\mathbb{R}$  and thus A. Consider any finite subset  $m\{U_{n_1}, \cdots, U_{n_k}\}$ .

**Remark 11.5.** THe "classical" definition of compacness is closed and bounded, however this definition doesn't generalize will beyond  $\mathbb{R}^n$  since there isn't even a notion of boundedness on general "topological spaces" However, open covers still make perfect sense on topological spaces. Thus, the <u>def</u> of compactness was revised to

**Definition 11.6** (Modern definition of compactness). A is called compact if every open cover of A has a finite subcover.

"Modern" heine borel becomes:

**Definition 11.7.**  $A \subseteq \mathbb{R}$  is compact if and only if A is closed and bounded.

Applications of heine borel: It can often be useful to generalize "local" properties of functions to "global" properties if the domain is compact.

**Definition 11.8.**  $f: A \to \mathbb{R}$  is called <u>locally bounded</u> if  $\forall x_0 \in A, \exists \epsilon > 0 : f$  is bounded on the domain  $V_{\epsilon}(x_0)$ .

### Example 11.9

 $f: ]0, \infty[ \to \mathbb{R}, x \to 1/x.$ 

f is bounded on any neighborhood about  $x_0$  that does not contain 0 is in its boundary. Thus f is locally bounded, but <u>not</u> (globally) bounded!

However, this can't happen if the domain is compact

### Theorem 11.10

Let  $A \subseteq \mathbb{R}$  be compact.  $f: A \to \mathbb{R}$  be locall bounded. Then f is bounded (on A).

*Proof.* Let  $x \in A$  be arbitrary. f locally bounded  $\Rightarrow \exists \epsilon_x > 0$  such that f is bounded on interval  $V_{\epsilon_x}(x)$ .

Then  $\varphi := \{V_{\epsilon_x} : x \in A \text{ is an open cover of } A. \text{ Since } A \text{ is compact, } \varphi \text{ has a finite subcover } \{V_{\epsilon_{x_1}}, \cdots, V_{\epsilon_{x_n}}(x_n)\}.$ 

On each of these n neighborhoods, f is bounded.

$$\Rightarrow \exists M_1, \cdots, M_n \geq 0$$

such that  $|f|(x) \leq M_1, \dots, |f|(x) \leq M_n$  bounded on  $V_{\epsilon_n}(x_n)$ .

Let 
$$M := \max\{M_1, \dots, M_n\}$$
. Then  $|f|(x) \leq M, \dots, |f| \leq M$ .

# §12 Lecture 11-27

# §12.1 Application of Heine-Borel

### Theorem 12.1

Let  $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$  be a nested sequence of compact sets. Then

$$\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset$$

(This is by the nested interval property, but we are going to prove it using heine-borel)

*Proof.*  $\forall n \in \mathbb{N}$ , let  $U_n := \mathbb{R} \setminus A_n \Rightarrow \forall n \in \mathbb{N} U_n$  is open and  $U_1 \subseteq U_2 \subseteq U_3 \subseteq \cdots$ 

By de morgans law, we have that

$$\bigcup_{n\in\mathbb{N}} U_n = \bigcup_{n\in\mathbb{N}} \mathbb{R} \setminus A_n \underbrace{=}_{\text{De morgans}} \mathbb{R} \setminus \bigcap_{n\in\mathbb{N}} A_n$$

Now assume that  $\cap_{n\in\mathbb{N}}A_n=\varnothing$ . Then  $\cup_{n\in\mathbb{N}}U_n=\mathbb{R}\setminus\varnothing=\mathbb{R}$ .

i.e. The  $U_n$  cover all of  $\mathbb{R}$  and thus especially  $A_1$ . By heine-borel, this open cover has a finite subcover.

$$\{U_{n_1}, \dots, U_{n_k}\}, n_1 < \dots < n_k$$

$$\Rightarrow A_1 \subseteq \bigcup_{i=1}^k U_{n_i} = U_{n_1} \cup \dots \cup U_{n_k} = U_{n_k}$$

$$\Rightarrow A_1 \subseteq U_{n_k}$$

$$\Rightarrow A_n \subseteq A_1 \subseteq U_{n_k} = \mathbb{R} \setminus A_{n_k}$$

$$\Rightarrow A_{n_k} \subseteq \mathbb{R} \setminus A_{n_k} \quad \not \downarrow$$

$$\Rightarrow \bigcap_{n \in \mathbb{N}} A_n \neq \emptyset$$

**Definition 12.2** (Uniform Continuity). Let's recall the definition of continuity of  $f: A \to \mathbb{R}$ :

$$(\forall x_0 \in A)(\forall \epsilon > 0)(\exists \delta = \delta(\epsilon, x_0)) : (\forall x \in A)(|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon)$$

**Note 12.3.** In general,  $\delta$  will depend on both  $\epsilon$  (unavoidable) and  $x_0$ .

It would be useful in many branches of analysis (e.g. Riemann integration) if  $\delta$  would only depend on  $\epsilon$  and <u>not</u>  $x_0$ .

i.e. we'd like to have this:

$$(\forall x_0 \in A)(\forall \epsilon > 0)(\exists \delta = \delta(\epsilon))(\forall x \in A) : (|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon)$$

$$\equiv$$

$$(\forall \epsilon > 0)(\exists \epsilon > 0)(\forall x_1, x_0 \in A) : (|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon)$$

Since  $x_0$  is actually a variable, we'll use  $\mu$  instead and obtain:

 $f: A \subseteq \mathbb{R} \to \mathbb{R}$  is called uniformly continuous on A if

$$(\forall \epsilon > 0)(\exists \delta > 0)(\forall x, \mu \in A) : (|x - \mu| < \delta \Rightarrow |f(x) - f(\mu)| < \epsilon)$$

### Example 12.4

Example 12.4 
$$f: \mathbb{R} \to \mathbb{R}, x \to x$$
. Claim:  $f$  is uniformally continuous.   
Proof. Let  $\epsilon > 0$  and let  $\delta := \epsilon$ . Then  $\forall x, \mu \in \mathbb{R}, |x - \mu| < \delta = \epsilon \Rightarrow |f(x) - f(\mu)| = |x - \mu| < \epsilon$ 

### **Lemma 12.5**

 $\forall x, \mu > 0$  where  $x \ge \mu$ , we have that  $\sqrt{x} - \sqrt{\mu} \le \sqrt{x - \mu}$ .

Proof.

$$\sqrt{x} - \sqrt{\mu} \le \sqrt{x - \mu}$$

$$\Leftrightarrow (\sqrt{x} - \sqrt{\mu})^2 \le (\sqrt{x - \mu})^2 = x - \mu$$

$$\Leftrightarrow x - 2\sqrt{x}\sqrt{\mu} + \mu \le x - \mu$$

$$\Leftrightarrow 2\mu - 2\sqrt{x}\sqrt{\mu} \le 0$$

$$\Leftrightarrow 2\sqrt{\mu}\underbrace{(\sqrt{\mu} - \sqrt{x})}_{>0} \le 0 \checkmark$$

Because we only used equivalence statements, this final true statement proves that

$$\sqrt{x} - \sqrt{\mu} \le \sqrt{x - \mu}$$

### Example 12.6

 $f: \mathbb{R}_0^+ = [0, \infty[ \to \mathbb{R}, x \to \sqrt{x}]$ . Claim: f is uniformally continuous.

**Remark 12.7.** We did prove in chapter 4 that  $\sqrt{x}$  is continuous on  $[0, \infty[$ . Back then, the  $\delta$  value we obtained did depend on both  $\epsilon$  and x!

However, this does <u>not</u> necessarily mean that  $\sqrt{\ }$  is not uniformally continuous! It might just mean that we need better estimates!

*Proof.* Let  $\epsilon > 0$ , let  $\delta > 0$  be arbitrary for now. Let  $x, \mu \in [0, \infty[$ . We may assume without loss of generality that  $x \ge \mu$ . Let  $|x - \mu| = x - \mu < \delta$ . Then:

$$|f(x) - f(\mu)| = |\sqrt{x} - \sqrt{\mu}| = \sqrt{x} - \sqrt{\mu} \le \sqrt{x - \mu} < \sqrt{\delta} < \epsilon$$

$$\Leftrightarrow \delta < \epsilon^2$$

Note that  $\delta$  is independent of x and  $\mu$ !

With this <u>uniform</u>  $\delta$ , we have

$$|x - \mu| < \delta \Rightarrow |f(x) - f(\mu)| < \epsilon \Rightarrow \sqrt{x}$$

is uniform continuous on  $[0, \infty[$ .

How can we see whether a function is not uniformally continuous?

 $f: A \to \mathbb{R} \text{ not continuous:}$ 

$$\neg(\forall \epsilon > 0)(\exists \delta > 0)(\forall x, \mu \in A) : (|x - \mu| < \delta \Rightarrow |f(x) - f(\mu)| < \epsilon)$$

$$\equiv \neg(\forall \epsilon > 0)(\exists \delta > 0)(\forall x, \mu \in A) : (|x - \mu| \ge \delta \lor |f(x) - f(\mu)| < \epsilon)$$

$$\equiv (\exists \epsilon > 0)(\forall \delta > 0)(\exists x, \mu \in A) : (|x - \mu| < \delta \land |f(x) - f(\mu)| \ge \epsilon)$$

Recall 12.8.  $P \Rightarrow Q \equiv \neg P \lor Q$ 

### **Theorem 12.9** (2 sequence criterion for non-uniform continuity)

Let  $f: A \to \mathbb{R}$ . Let  $\epsilon_0 > 0$  and let  $(x_n), (\mu_n)$  be sequences in A such that  $\lim(x_n - \mu_n) = 0$  and  $|f(x_n) - f(\mu_n)| \ge \epsilon_0$  for all  $n \in \mathbb{N}$ . Then f is not uniformally continuous on A.

*Proof.* Assume that f is uniform continuous. Then  $\exists \delta > 0$  such that  $\forall x, \mu \in A$ :  $|x - \mu| < \delta \Rightarrow |f(x) - f(\mu)| < \epsilon_0.$  (\*)

Now  $\lim (x_n - \mu_n) = 0$ . Then  $(\exists N \in \mathbb{N})(\forall n \geq N) : |x_n - \mu_n| < \delta$ . Especially,  $|x_n - \mu_n| < \delta.$ In  $(*) :\Rightarrow |f(x_N) - f(\mu_N)| < \epsilon_0$ 

In 
$$(*):\Rightarrow |f(x_N)-f(\mu_N)|<\epsilon_0$$

Thus f is <u>not</u> uniformally continuous on A.

### **Example 12.10**

 $f: \mathbb{R} \to \mathbb{R}, x \to x^2$ .

Let  $x_n \coloneqq n, \ u_n \coloneqq n + 1/n$ 

Then  $|x_n - \mu_n| = 1/n \Rightarrow \lim(x_n - \mu_n) = 0$ 

But  $|f(x_n) - f(\mu_n)| = |n^2 - (n+1/n)^2| = |n^2 - n^2 - 2 - 1/n^2| = 2 + 1/n^2 > 2$ . Let  $\epsilon_0 := 2$ . Then  $\lim_{n \to \infty} (x_n - \mu_n) = 0$ , but  $\forall n \in \mathbb{N} : |f(x_n) - f(\mu_n)| \ge \epsilon_0$ .

 $\Rightarrow x^2$  is <u>not</u> uniformally continuous on  $\mathbb{R}$ .

### **Example 12.11**

 $f: ]0, \infty[ \to \mathbb{R}, x \to 1/x]$ 

Let  $x_n \coloneqq 1/n, \, \mu_n \coloneqq 1/(n+1).$ 

Then,  $|x_n - \mu_n| = |1/n - 1/(n+1)| = |(x+1-x)/(n(n+1))| = 1/(n(n+1)) \le 1/(n(n+1))$ 

By convergence criterion,  $\lim (x_n - \mu_n) = 0$ .

But,  $|f(x_n) - f(\mu_n)| = |n - (n+1)| = 1$ . Let  $\epsilon_0 := 1$ .

Then  $\lim (x_n - \mu_n) = 0$ . But  $|f(x_n) - f(\mu_n)| \ge \epsilon_0$ .

Therefore 1/x is <u>not</u> uniformally continuous on  $]0,\infty[.$ 

### Theorem 12.12

Every continuous function on a compact domain is uniformally continuous.

*Proof.* Let  $f: A \to \mathbb{R}$ , A be compact, and f continuous on A.

Let 
$$\epsilon > 0$$
, then  $(\forall x \in A)(\exists \delta_x > 0) : (|x - \mu| < \delta_x \Rightarrow |(f(x) - f(\mu))| < \epsilon/2)$ 

Now consider the neighborhoods  $V_{(1/2)\delta_x}(x)$  for all  $x \in A$ .

Then  $\varphi := \{V_{(1/2)\delta_x}(x) : x \in A\}$  is an open cover of A. (Even just the centres of these neighborhoods already cover A)

By Heine-Borel,  $\varphi$  has a finite subcover  $\{V_{(1/2)\delta_{x_1}}, \ldots, V_{(1/2)\delta_{x_n}}\}$  where  $x_1, \ldots, x_n \in A$ .

Let 
$$\delta := \min\{\frac{1}{2}\delta_{x_1}, \dots, \frac{1}{2}\delta_{x_n}\} > 0.$$

We'll prove that with this  $\delta$ , we have that  $|x - \mu| < \delta \Rightarrow |f(x) - f(\mu)| < \epsilon$ .

Let  $x, \mu \in A$  such that  $|x - \mu| < \delta$ . Since  $x \in A$ ,  $\exists 1 \leq k \leq n$  such that  $x \in V_{(1/2)\delta_{x_k}}(x_k)$ 

$$\Rightarrow |x - x_k| < \frac{1}{2}\delta_{x_k} < \delta_{x_k}$$

and

$$|\mu - x_k| = |(\mu - x) + (x - x_k)| \le |x - \mu| + |x - x_k| < \delta + \frac{1}{2} \delta_{x_k} = \delta_{x_k}$$

$$\Rightarrow x, \mu \in V_{\delta_{x_k}}(x_k)$$

$$\Rightarrow |f(x) - f(\mu)| = |(f(x) - f(x_k)) + f(x_k) - f(\mu))|$$

$$\le \underbrace{|f(x) - f(x_k)|}_{\le \epsilon/2} + \underbrace{|f(\mu) - f(x_k)|}_{\le \epsilon/2} < \epsilon$$

Because  $|x - x_k| < \delta_{x_k}$  and  $|\mu - x_k| < \delta_{x_k}$ .

i.e. if  $|x - \mu| < \delta \Rightarrow |f(x) - f(\mu)| < \epsilon \Rightarrow f$  is uniform continuous on A

### Example 12.13

 $x^2$  is uniform continuous on <u>all</u> intervals [-a, a] where a > 0.

### **Example 12.14**

1/x is uniform continuous on <u>all</u> intervals [a, 1] where 0 < a < 1.

# §13 Lecture 12-02

### Theorem 13.1

Let  $f: A \to \mathbb{R}$  be uniformly continuous on A.

Let  $(x_n)$  be a cauchy sequence in A. Then  $(f(x_n))$  is also a cauchy sequence.

*Proof.* Let  $\epsilon > 0$ . Then  $\exists \delta > 0$  such that  $|x - \mu| < \delta \Rightarrow |f(x) - f(\mu)| < \epsilon$ 

 $(x_n)$  cauchy then  $\exists N \in \mathbb{N}$  such that  $\forall n, m \geq N : |x_n - x_m| < \delta \Rightarrow |f(x_n) - f(x_m)| < \epsilon$ . i.e.  $(\exists N \in \mathbb{N})(\forall n, m \geq N : |f(x_n) - f(x_m)| < \epsilon \Rightarrow (f(x_n))$  is a cauchy sequence.  $\square$ 

**Remark 13.2.** This result is, in general, false, if f is just continuous on A.

### Example 13.3

 $f: ]0, \infty[ \to \mathbb{R}, x \to 1/x.$ 

f is continuous but <u>not</u> uniformally continuous on  $]0,\infty[$ .

Consider  $x_n := 1/n$ . Then  $(x_n)$  is a cauchy sequence but  $(f(x_n)) = (n)$  which

$$\Rightarrow (f(x_n))$$
 is not a cauchy sequence

However: if  $f:A\to\mathbb{R}$  is continuous,  $(x_n)$  is a convergent sequence in A such that  $\lim(x_n) \in A$ . Then:

 $\lim(x_n) := x \in A$ . Then f is continuous at x. Thus let  $\lim(f(x_n)) = f(x)$  be the sequence of continuity. Especially,  $(f(x_n))$  is cauchy sequence in this case.

This can be turned into another criterion for non-uniform continuous functions.

**Theorem 13.4** (One sequence criterion for a non-uniform continuous function) Let  $f:A\to\mathbb{R}$ . If  $(x_n)$  is cauchy sequence in A such that  $(f(x_n))$  is not cauchy, then f is not uniformally continuous on A.

$$x_n \coloneqq \frac{1}{n}$$

cauchy but  $(f(x_n)) = (n)$  is not cauchy.

 $\Rightarrow f$  is not uniformly continuous on  $]0,\infty[$ 

### Theorem 13.6

Let  $f: A \to \mathbb{R}$ , A bounded, f a uniformly continuous on A, then f is bounded (i.e. f(A) is bounded.

*Proof.* Assume that f is unbounded. Then  $\forall n \in \mathbb{N}, \exists x_n \in A : |f(x_n)| \geq n$ .

Consider  $(x_n)$ . Since A is bounded,  $(x_n)$  is bounded and thus has a convergent subsequence  $(x_{n_k})$ . Thus  $(x_{n_k})$  is cauchy  $\Rightarrow (f(x_{n_k}))$  is cauchy and thus especially bounded. But  $|f(x_{n_k})| \ge n_k \ge k$  for all  $k \in \mathbb{N}$ .

This implies that  $f(x_{n_k})$  is unbounded. Contradiction!

Thus f is bounded.

### Example 13.7

 $f: ]0,1[ \to \mathbb{R}, x \to 1/x$ . Then f is unbounded on the bounded domain  $]0,1[ \Rightarrow f$  is not continuous on ]0,1[.

# §14 Lecture 12-03

Lipschitz Continuous.

### Example 14.1

Last class:  $\sqrt{x}$  is <u>not</u> lipschitz on  $[0, \infty[$ , however  $\sqrt{x}$  is lipschitz on  $[a, \infty[$  for any a > 0.

*Proof.* Let  $x, \mu \in [a, \infty[$ . Then

$$|\sqrt{x} - \sqrt{\mu}| = \left| \frac{(\sqrt{x} - \sqrt{\mu})(\sqrt{x} + \sqrt{\mu})}{\sqrt{x} + \sqrt{u}} \right|$$

$$\leq \frac{1}{2\sqrt{a}} |x - \mu|$$

i.e.  $\sqrt{x}$  is lipschitz continuous on  $[a, \infty[$  with lipschitz constant  $k = \frac{1}{2\sqrt{a}}$ 

### Example 14.2

Last class:  $x^2$  is lipschitz on ]-a,a[, a>0.

However,  $x^2$  is <u>not</u> lipschitz on  $\mathbb{R}$ .

*Proof.*  $x^2$  isn't even uniformly continuous on  $\mathbb{R}$  and thus cannot be lipschitz.

**Definition 14.3** (Geometric interpretation of lipschitz continuous). Geometric interpretation of lipschitz continuous:

 $f:A\to\mathbb{R}$  is lipschitz if

$$\exists k>0 \ : \ \forall x,\mu \in A \ : \ |f(x)-f(\mu)| \leq k \cdot |x-\mu|$$
 if  $x \neq \mu \Leftrightarrow \underbrace{|\frac{f(x)-f(\mu)}{x-\mu}|}_{\text{Difference Quotient}} \leq k$ 

i.e. f is lipschitz if and only if the average slope of f is bounded on A.

# §14.1 Another method for proving that $\sqrt{x}$ is uniformly continuous on $[0,\infty[$ .

<u>Idea</u>: If  $x \geq 1$ ,  $\sqrt{x}$  is lipschitz on  $[1, \infty[$  and thus uniformly continuous. And: if  $0 \leq x \leq 1 : \sqrt{x}$  is uniformly continuous since it is continuous and [0, 1] is compact. Q:  $if\sqrt{x}$  is uniformly continuous on [0, 1] and  $[1, \infty[$ , does it follow that f is uniformly continuous on  $[0, \infty[$ .

A: Yes; this requries proof!

### Theorem 14.4

Let f be uniformly continuous on intervals  $I_1$ ,  $I_2$  where  $I_1$  is closed on the right with  $\sup I_1 = \max I_1 = b$ . And  $I_2$  is closed on the left with  $\inf I_2 = \min I_2 = b$ , then f is uniformly continuous on  $I = I_1 \cup I_2$ .

*Proof.* Let  $\epsilon > 0$ , f uniformly continuous on  $I_1$ , thus  $\exists \delta_1 > 0$  such that  $|x - \mu| < \delta_1 \Rightarrow |f(x) - f(\mu)| < \epsilon/2$ .

f is uniformly continuous on  $I_2$ . Thus  $\exists \delta_2 > 0$  such that  $|x - \mu| < \delta_2 \Rightarrow |f(x) - f(\mu)| < \epsilon/2$ .

Let  $\delta := \min\{\delta_1, \delta_2\}$ .

1. Case  $x, \mu \in I_1$ 

$$|x - \mu| < \delta \le \delta_1 \Rightarrow |f(x) - f(\mu)| < \epsilon/2 < \epsilon$$

2. Case  $x, \mu \in I_2$ 

$$|x - \mu| < \delta \le \delta_2 \Rightarrow |f(x) - f(\mu)| < \epsilon/2 < \epsilon$$

3. Case  $x \in I_1, \mu \in I_2$ 

$$|x - \mu| < \delta \Rightarrow |x - b|\delta \wedge |u - b| < \delta$$
 Thus  $|f(x) - f(b)| < \frac{\epsilon}{2}$  and  $|f(\mu) - f(b)| < \frac{\epsilon}{2}$  Now:  $|f(x) - f(\mu)| = |[f(x) - f(b)] - [f(\mu) - f(b)]|$  
$$\leq |f(x) - f(b)| + f(\mu) - f(b)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 i.e.  $|x - \mu| < \delta \Rightarrow |f(x) - f(\mu)| < \epsilon$  
$$\Rightarrow f \text{ is uniformly continous on } I = I_1 \cup I_2$$

Application:  $\sqrt{x}$  is uniformly continuous on [0,1] and  $[1,\infty] \Rightarrow \sqrt{x}$  is uniformly continuous on  $[0,\infty]$ .

### §14.2 Differentiation

**Definition 14.5** (Differentiable Definition). Let  $f: I \to \mathbb{R}$ , I be an interval,  $x_0 \in I$ .

We say that f is <u>differentiable</u> at  $x_0$ , if

$$\lim_{x \to x_0} \underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\text{Difference Quotient}} \text{ exists.}$$

If the limit exists, we call its value the <u>derivative</u> of f at  $x_0$ , denoted by

$$f'(x_0) = \frac{df}{dx}(x_0)$$

If f is differentiable at all  $x_0 \in I$ , we say that f is differentiable on I.

### Theorem 14.6 (Caratheodory Alternative Description of Differentiability)

Let  $f: I \to \mathbb{R}$ ,  $x_0 \in I$ , then f is differentiable at  $x_0$  if and only if there exists a function  $\phi: I \to \mathbb{R}$  continuous at  $x_0$  such that

$$\forall x \in I \quad f(x) = f(x_0) + \phi(x)(x - x_0)$$

If  $\phi$  exists, it holds that  $\phi(x_0) = f'(x_0)$ .

*Proof.* " $\Rightarrow$ " Let f be differentiable at  $x_0$ . Let

$$\phi(x) := \begin{cases} \frac{f(x) - f(x_0)}{x - x_0}, & x \neq x_0 \\ f'(x_0), & x = x_0 \end{cases}$$

Then

$$\lim_{x \to x_0} \phi(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = \phi(x_0)$$

$$\Rightarrow \phi \text{ is continuous at } x_0$$

"\( = " \) Let  $\phi: I \to \mathbb{R}$ , continuous at  $x_0$  such that

$$f(x) = f(x_0) + \phi(x)(x - x_0)$$

Let 
$$x \neq x_0$$
.  $\Rightarrow \phi(x) = \frac{f(x) - f(x_0)}{x - x_0}$ 

 $\phi$  continuous at  $x_0 \Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$  exists and equals  $\phi(x_0) \Rightarrow f$  is differentiable at  $x_0$  and  $f'(x_0) = \phi(x_0)$ 

Applications: Differentiable implies continuous. i.e. if  $f: I \to \mathbb{R}$  is differentiable at  $x_0 \in I$ , then f is continuous at  $x_0$ .

Proof. f differentiable at  $x_0 \Rightarrow \exists \phi : I \to \mathbb{R}$ , continuous at  $x_0$  such that  $\forall x \in I$ ,  $f(x) = \underbrace{f(x_0) + \phi(x) \cdot (x - x_0)}_{\text{continuous at } x_0}$ 

### Theorem 14.7 (Product Rule)

Let  $f, g: I \to \mathbb{R}$  be differentiable at  $x_0$ . Then  $f \cdot g$  is differentiable at  $x_0$  and  $(f \cdot g)'(x_0) = f'(x_0)g(x_0) - f(x_0) \cdot g'(x_0)$ .

*Proof.* f, g differentiable at  $x_0 \Rightarrow \exists \phi, \psi : I \to \mathbb{R}$  continuous at  $x_0$  such that

$$f(x) = f(x_0) + \phi(x)(x - x_0)$$
  

$$g(x) = g(x_0) + \psi(x)(x - x_0)$$
  

$$\Rightarrow (f \cdot g)(x) = f(x) \cdot g(x)$$

$$= f(x_0)g(x_0) + f(x_0)\psi(x)(x - x_0) + g(x_0)\psi(x)(x - x_0) + \phi(x)\psi(x)(x - x_0)^2$$
  

$$\Rightarrow (f \cdot g)(x) = f(x_0)g(x_0) + [f(x)g(x_0) + f(x_0)\psi(x) + \phi(x)\psi(x)(x - x_0)] \cdot (x - x_0)$$

### **Theorem 14.8** (Chain Rule)

Let  $f: I \to \mathbb{R}$ ,  $f: J \to \mathbb{R}$ ,  $f(I) \subseteq J$ ,  $x_0 \in I$ , f differentiable at  $x_0$ , g differentiable at  $y_0 := f(x_0)$ , then  $g \circ f$  is differentiable at  $x_0$ , and  $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x)$  f differentiable at  $x_0 \Rightarrow \exists \phi: I \to \mathbb{R}$ , continuous at  $x_0$  such that  $f(x) = f(x_0) + \phi(x)(x - x_0)$ .

g differentiable at  $y_0 \Rightarrow \exists \psi : J \to \mathbb{R}$  continuous at  $y_0$  such that  $g(y) = g(y_0) + \psi(y) \cdot (y - y_0)$ . Therefore

$$g(f(x)) = g(f(x_0)) + \psi(f(x_0) + \phi(x)(x - x_0)) \cdot [f(x_0) + \phi(x)(x - x_0) - f(x_0)]$$
  
=  $g(f(x_0)) + \psi(f(x_0) + \phi(x)(x - x_0)) \cdot \phi(x) \cdot (x - x_0) := \Theta(x)$ 

Then  $\Theta$  is continuous at  $x_0$  as a composition of 2 continuous functions.  $\Rightarrow g \circ f$  is differentiable at  $x_0$ 

$$(g \circ f)'(x_0) = \Theta(x_0)$$

$$= \psi(f(x_0) + \phi(x_0) \cdot 0) \cdot \phi(x_0)$$

$$= \psi(f(x_0)) \cdot \phi(x_0)$$

$$= \psi(y_0) \cdot \phi(x_0)$$

$$= g'(y_0) \cdot f'(x_0)$$

$$= g'(f(x_0)) \cdot f'(x_0)$$

# §14.3 Relationship Between Lipschitz Continuity and Differentiability

**Recall 14.9** (Mean Value Theorem). The mean value theorem. Let  $I = [a, b], f : I \to \mathbb{R}$  differentiable on ]a, b[ and continuous on the entire interval. Then there exists  $c \in ]a, b[$  such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

### Theorem 14.10

Let  $f: I \to \mathbb{R}$  be differentiable. Then f is lipschitz on I if and only if f' is bounded on I.

*Proof.* " $\Rightarrow$ " Let f be lipschitz with lipschitz constant k.

$$-k \le \frac{f(x) - f(\mu)}{x - \mu} \le k$$

$$\Rightarrow -k \le \lim_{x \to \mu} \frac{f(x) - f(\mu)}{x - \mu} \le k$$
$$\Rightarrow -k \le f'(\mu) \le k$$
$$\Rightarrow |f'(\mu)| \le k \ \forall \ \mu \in I$$
$$\Rightarrow f' \text{ is bounded on } I$$

" $\Leftarrow$ " Assume that f' is bounded on I.

Let k > 0 such that  $|f'(x)| \le k$  for all  $x \in I$ .

Let  $x < \mu$ ,  $x, \mu \in I$ . Apply mean value theorem to f on  $[x, \mu]$  then  $\exists c \in ]x, \mu[$  such that

$$\frac{f(x) - f(\mu)}{x - \mu} = f'(c) \Rightarrow \frac{|f(x) - f(\mu)|}{|x - \mu|} = |f'(c)| \le k$$
$$\Rightarrow |f(x) - f(\mu)| \le k|x - \mu|$$
$$\Rightarrow f \text{ is lipschitz on } I$$

# §15 Sequences

**Definition 15.1.** Limit.  $x_n \to x$  if  $\forall \epsilon > 0$ ,  $\exists k \in \mathbb{N}$  such that  $|x_n - x| < \epsilon$ .  $\forall n \geq K$ .

### Example 15.2

$$\lim(\frac{2n}{n+1}) = 2$$

Let  $\epsilon > 0$ . Compute (for any  $n \in \mathbb{N}$ )

$$|\frac{2n}{n+1}-2|=|\frac{2n-2n-2}{n+1}|=\frac{2}{n+1}<\frac{2}{n}$$

By A.P,  $\exists k \in \mathbb{N}$  such that  $K > \frac{2}{\epsilon}$ . Then  $\forall n \geq K$ :

$$\left|\frac{2n}{n+1} - 2\right| < \frac{2}{n} \le \frac{2}{k} < \epsilon$$

### Example 15.3

$$\lim \frac{3n+1}{2n+5} = \frac{3}{2}$$

First, for any  $n \in \mathbb{N}$ , we have that

$$\left|\frac{3n+1}{2n+5} - \frac{3}{2}\right| = \left|\frac{6n+2-6N-15}{2(2n+5)}\right| = \frac{13}{4n+10} \le \frac{10^6}{n}$$

Note: If unsure, use number much bigger i.e.  $10^6 > 13$ .

Now, for any  $\epsilon > 0$ , by A.P,  $\exists k \in \mathbb{N}$  such that  $k > \frac{10^6}{\epsilon}$ . Then,  $\forall n \geq K$ :

$$|\frac{3n+1}{2n+5} - \frac{3}{2}| \le \frac{10^6}{n} \le \frac{10^6}{k} < \epsilon$$

# Example 15.4

$$\lim \frac{n^2 - 1}{2n^2 + 3} = \frac{1}{2}$$

$$\lim \frac{1}{2n^2+3} = \frac{1}{2}$$
 First,  $\forall n \in \mathbb{N}$ , 
$$|\frac{n^2-1}{2n^2+3} - \frac{1}{2}| = |\frac{2n^2-2-2n^2-3}{2(2n^2+3)}| = \frac{5}{4n^2+6} \le \frac{5}{n^2}$$
 
$$\forall \epsilon > 0, \ \exists k \in \mathbb{N} \text{ such that } k > \sqrt{\frac{5}{\epsilon}}$$
 Then, for any  $n \ge k$  
$$|\frac{n^2-1}{2n^2+3} - \frac{1}{2}| \le \frac{5}{n^2} \le \frac{5}{k^2} < \epsilon$$

$$|\frac{n^2-1}{2n^2+3}-\frac{1}{2}| \leq \frac{5}{n^2} \leq \frac{5}{k^2} < \epsilon$$

### Example 15.5

$$\lim \frac{\sqrt{n}}{n+1} = 0$$

$$\left|\frac{\sqrt{n}}{n+1} - 0\right| = \frac{\sqrt{n}}{n+1} \le \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$$

 $|\frac{\sqrt{n}}{n+1} - 0| = \frac{\sqrt{n}}{n+1} \le \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$  So,  $\forall \epsilon > 0$ , let  $k \in \mathbb{N}$  be such that  $k > \frac{1}{\epsilon^2} \Rightarrow \epsilon^2 > \frac{1}{k} \Rightarrow \epsilon > \frac{1}{\sqrt{k}}$  Then for any  $n \ge k$ ,  $|\frac{\sqrt{n}}{n+1} - 0| \le \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{k}} < \epsilon$  Note:  $\epsilon > \frac{1}{\sqrt{k}} \Leftrightarrow \epsilon^2 > \frac{1}{k} \Leftrightarrow k > \frac{1}{\epsilon^2}$ 

$$\left|\frac{\sqrt{n}}{n+1} - 0\right| \le \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{k}} < \epsilon$$

### **Proposition 15.6**

If  $x_n \to x$ , then  $|x_n| \to |x|$ .

*Proof.* Let  $\epsilon > 0$  be arbitrary. We know that  $\exists k \in \mathbb{N}$  such that  $|x_n - x| < \epsilon \quad \forall n \geq K$ .

$$||x_n| - |x|| \le |x_n - x| < \epsilon \quad \forall n \ge k$$

Side proof

Proof.

$$|x_n| = |x_n - x + x| \le |x_n - x| + |x|$$
$$\Rightarrow |x_n| - |x| \le |x_n - x|$$

•••

# **Proposition 15.7**

If  $|x_n| \to 0$ , then  $x_n \to 0$ .

*Proof.* Let  $\epsilon > 0$ . Then  $\exists k \in \mathbb{N}$  such that

$$|x_n - 0| = |x_n| = ||x_n| - 0| < \epsilon \quad \forall n \ge k$$

**Exercise 15.8.** Show that if a > 1, then  $\frac{1}{a^n} \to 0$ .

*Proof.* If a > 1, then a = 1 + r where r > 0.

$$a^n = (1+r)^n \ge 1 + rn$$
 Bernoulli
$$\Rightarrow \left| \frac{1}{a^n} - 0 \right| = \frac{1}{a^n} \le \frac{1}{1+rn} \le \frac{1}{rn}$$

For any  $\epsilon > 0$ , we can pick  $K \in \mathbb{N}$  such that  $K > \frac{1}{r\epsilon}$ . Then  $\forall n \geq k$ 

$$|\frac{1}{a^n} - 0| \le \frac{1}{rn} \le \frac{1}{rK} < \epsilon$$

**Exercise 15.9.** Show that if  $a \in (-1,1)$ , then  $a^n \to 0$ .

*Proof.* First, if a = 0, we are done.

If a > 0, pick  $b = \frac{1}{a}$ .  $a^n = \frac{1}{b^n} \to 0$ .

If 
$$a < 0$$
, then  $0 < |a| < 1 \Rightarrow |a|^n \to 0 \Rightarrow |a^n| \to 0 \Rightarrow a^n \to 0$ 

Note 15.10.

$$\lim_{m \to \infty} \lim_{n \to \infty} a_{n,m} \neq \lim_{n \to \infty} \lim_{m \to \infty} a_{n,m}$$

**Definition 15.11.** Another definition of limit: We have  $x_n \to x$  if and only if for any open set  $x \in U$ ,  $\forall \epsilon > 0$ ,  $\exists K \in \mathbb{N}$  such that  $x_n \in U$  for all  $n \geq K$ .

 $(\Rightarrow)$  First, suppose  $x_n \to x$ . Let  $U \ni x$  where U is open. We know that  $\exists \epsilon > 0$  such that  $V_{\epsilon}(x) \subseteq U$ . This means that  $y \in \mathbb{R}$  such that  $|x - y| < \epsilon \Rightarrow y \in U$ .

 $\exists K \in \mathbb{N} \text{ such that } |x_n - x| < \epsilon \quad \forall n \geq K. \text{ So, if } n \geq K, \text{ then } |x_n - x| < \epsilon \Rightarrow x_n \in V_{\epsilon}(x) \subseteq U$ 

 $(\Leftarrow)$  Fix  $\epsilon > 0$ . We know that  $V_{\epsilon}(x)$  is open. So,  $\exists K \in \mathbb{N}$  such that  $x_n \in V_{\epsilon}(x) \forall n \geq K \Rightarrow |x_n - x| < \epsilon \quad \forall n \geq K$ 

# **Proposition 15.12**

Let  $x_n$  be a positive sequence. If  $\lim$ ...