Hands-on Machine Learning

4. Training Linear Models

How Things Work

- Having a good understanding of how things work can help you:
 - > choose the appropriate model.
 - > choose the right training algorithm to use.
 - choose a good set of hyperparameters for your task.
 - > debug issues and perform error analysis more efficiently.
- What you learn about linear models will be essential in understanding, building, and training neural networks.

1. Linear Regression

Linear Model

➤ A linear model makes a prediction by computing a weighted sum of the input features, plus a constant called the *bias term* (also called the *intercept term*):

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

- \triangleright \hat{y} is the predicted value.
- \triangleright *n* is the number of features.
- $\rightarrow x_i$ is the *i-th* feature value.
- \triangleright θ_j is the j-th model parameter (including the bias term θ_0 and the feature weights $\theta_1, \theta_2, \dots, \theta_n$).

Matrix Form of Linear Model

Linear model can be written in matrix form using vectors:

$$\hat{y} = h_{\theta}(\mathbf{x}) = \boldsymbol{\theta}.\mathbf{x}$$

- \triangleright θ is the model's parameter vector: $\theta = [\theta_0 \ \theta_1 \ \theta_2 \ ... \ \theta_n]$
- $ightharpoonup \mathbf{x}$ is the instance's *feature vector*: $\mathbf{x} = [x_0 \ x_1 \ x_2 \ ... \ x_n]$ with $x_0 = 1$.
- \triangleright θ . x is the dot product of the vectors θ and x:

$$\boldsymbol{\theta}.\mathbf{x} = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

- $\succ h_{m{ heta}}$ is the hypothesis function, using the model parameters $m{ heta}$.
- > If θ and \mathbf{x} are column vectors, then the prediction is $\hat{y} = \theta^T \mathbf{x}$ where θ^T is the *transpose* of θ .

Training the Model

 \succ To train a Linear Regression model, we need to find the value of θ that minimizes the Mean Squared Error (MSE).

$$ext{MSE}\left(\mathbf{X}, h_{oldsymbol{ heta}}
ight) = rac{1}{m} \sum_{i=1}^{m} \left(oldsymbol{ heta}^\intercal \mathbf{x}^{(i)} - y^{(i)}
ight)^2$$

 \succ To find the value of θ that minimizes the cost function, there is a closed-form solution, which is called the *Normal Equation*:

$$\widehat{\boldsymbol{\theta}} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

- $\triangleright \widehat{\boldsymbol{\theta}}$ is the value of $\boldsymbol{\theta}$ that minimizes the cost function.
- \triangleright **y** is the vector of target values containing $y^{(1)}$ to $y^{(m)}$.

Example

Generate some linear-looking data:

```
import numpy as np

np.random.seed(42) # to make this code example reproducible
m = 100 # number of instances
X = 2 * np.random.rand(m, 1) # column vector
y = 4 + 3 * X + np.random.randn(m, 1) # column vector
```

 \triangleright Compute $\widehat{\boldsymbol{\theta}}$ using the Normal Equation:

```
from sklearn.preprocessing import add_dummy_feature

X_b = add_dummy_feature(X) # add x0 = 1 to each instance
theta_best = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ y
```


Comparing with LinearRegression

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
lin_reg.intercept_, lin_reg.coef_
(array([4.21509616]), array([[2.77011339]]))
```

- ➤ The LinearRegression class is based on the scipy.linalg.lstsq() function.
- \triangleright This function computes $\widehat{\theta} = X^+y$ where X^+ is the pseudoinverse of X.
- \triangleright The complexity of inverting $\mathbf{X}^T\mathbf{X}$ is of $O(n^{2.376})$ to $O(n^3)$.
- \triangleright The complexity of computing pseudoinverse using Singular Value Decomposition (SVD) is $O(mn + n^2)$.

Make a Prediction

```
X_new = np.array([[0], [2]])
  X_new_b = add_dummy_feature(X_new) # add x0 = 1 to each instance
  y_predict = X_new_b @ theta_best
  y predict
  array([[4.21509616],
           [9.75532293]])
                                                         14
                                                                  Predictions
                                                         12
                                                         10
 ▶ lin_reg.predict(X_new)
                                                        y 8
   array([[4.21509616],
          [9.75532293]])
                                                          2
                                                                0.25
                                                          0.00
                                                                     0.50
                                                                           0.75
                                                                                1.00
                                                                                      1.25
                                                                                           1.50
                                                                                                 1.75
                                                                                                       2.00
```

 x_1

2. Gradient Descent

Gradient Descent

- Gradient Descent is a generic optimization algorithm capable of finding optimal solutions to a wide range of problems.
- ➤ The general idea of Gradient Descent is to tweak parameters iteratively in order to minimize a cost function.
- We start by filling θ with random values (random initialization).
- ➤ Improve it gradually, taking one baby step at a time, each step attempting to decrease the cost function (e.g., the MSE), until the algorithm converges to a minimum.

Learning Rate

- \triangleright Learning Rate (η) : a hyperparameter of gradient descent that determines the size of the steps.
 - > Too small: convergence will take a long time.
 - > Too large: the algorithm might diverge.

Challenges with Gradient Descent

- > The MSE cost function for a Linear Regression model is a *convex function*.
- ➤ MSE is a continuous function with a slope that never changes abruptly.
 - For Gradient Descent is guaranteed to approach arbitrarily close the global minimum (if you wait long enough and if the learning rate is not too high).

Contour Plot

Effect of Feature Scaling

➤ When using Gradient Descent, ensure that all features have a similar scale (e.g., using Scikit-Learn's StandardScaler class), or else it will take much longer to converge.

Gradient Descent with (left) and without (right) feature scaling

Batch Gradient Descent

- \triangleright To implement Gradient Descent, you need to compute the gradient of the cost function with regard to each model parameter θ_i .
- \triangleright Take partial derivative of the cost function with regard to θ_i :

$$egin{aligned} ext{MSE}\left(\mathbf{X},h_{oldsymbol{ heta}}
ight) &= rac{1}{m} \sum_{i=1}^{m} \left(oldsymbol{ heta}^{\intercal} \mathbf{x}^{(i)} - y^{(i)}
ight)^{2} \ &rac{\partial}{\partial heta_{j}} ext{MSE}\left(oldsymbol{ heta}
ight) &= rac{2}{m} \sum_{i=1}^{m} \left(oldsymbol{ heta}^{\intercal} \mathbf{x}^{(i)} - y^{(i)}
ight) x_{j}^{(i)} \ & & & & & & \\ \nabla_{oldsymbol{ heta}} ext{MSE}\left(oldsymbol{ heta}
ight) &= rac{2}{m} \mathbf{X}^{\intercal} \left(\mathbf{X}oldsymbol{ heta} - \mathbf{y}
ight) \ & & & & & & & \\ rac{\partial}{\partial heta_{i}} ext{MSE}\left(oldsymbol{ heta}
ight) &= rac{2}{m} \mathbf{X}^{\intercal} \left(\mathbf{X}oldsymbol{ heta} - \mathbf{y}
ight) \end{aligned}$$

Batch Gradient Descent

- ightharpoonup Gradient vector involves calculations over the full training set \mathbf{X} , at each Gradient Descent step: $\nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta}) = \frac{2}{m} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \boldsymbol{\theta} \mathbf{y})$
 - > This is why the algorithm is called *Batch Gradient Descent*.
- ightharpoonup Gradient Descent step: $heta^{(\text{next step})} = heta \eta \nabla_{ heta} \, \text{MSE}(heta)$

```
eta = 0.1 # Learning rate
n_epochs = 1000
m = len(X_b) # number of instances

np.random.seed(42)
theta = np.random.randn(2, 1) # randomly initialized model parameters

for epoch in range(n_epochs):
    gradients = 2 / m * X_b.T @ (X_b @ theta - y)
    theta = theta - eta * gradients
```

Convergence Rate

- > To find a good learning rate, use grid search with limited iterations.
- \succ Set a very large number of iterations but interrupt the algorithm when the gradient vector norm is smaller than a tolerance ϵ .
- \triangleright It takes $O(1/\epsilon)$ iterations for Batch Gradient Descent with a fixed learning rate to reach the optimum within a range of ϵ .

Stochastic Gradient Descent

- ➤ **Batch** Gradient Descent uses the **whole training set** to compute the gradients at every step, which makes it very slow.
- > Stochastic Gradient Descent (SGD) picks a random instance in the training set at every step and computes the gradients based only on that single instance.
 - Much faster because it has little data to manipulate at every step.
 - Possible to train on huge training sets, since only one instance needs to be in memory at each iteration (an out-of-core algorithm)
- Stochastic nature of SGD makes it much less regular than Batch Gradient Descent.

Pros and Cons of SGD

- In SGD the cost function will bounce up and down, decreasing only on average.
- ➤ Once the algorithm stops, the final parameter values are good, but not optimal.

- ➤ Irregular changes in the cost function can help the algorithm jump out of local minima, so SGD has a better chance of finding the global minimum.
- The randomness is good to escape from local optima, but bad because the algorithm can never settle at the minimum.

Simulated Annealing

- Simulated annealing: gradually reduce the learning rate.
- ➤ The steps start out large (helps make quick progress and escape local minima), then get smaller, allowing the algorithm to settle at the global minimum.
- > The function that determines the learning rate at each iteration is called the *learning schedule*.
 - > If the learning rate is reduced too quickly, you may get stuck in a local minimum, or even end up frozen halfway to the minimum.
 - > If the learning rate is reduced too slowly, you may jump around the minimum for a long time and end up with a suboptimal solution.

Simulated Annealing

Implementation of SGD

```
\mid n epochs = 50
  t0, t1 = 5, 50 # Learning schedule hyperparameters
  def learning_schedule(t):
      return t0 / (t + t1)
  np.random.seed(42)
  theta = np.random.randn(2, 1) # random initialization
  for epoch in range(n epochs):
      for iteration in range(m):
          random_index = np.random.randint(m)
          xi = X b[random index : random index + 1]
          yi = y[random index : random index + 1]
          gradients = 2 * xi.T @ (xi @ theta - yi) # for SGD, do not divide by m
          eta = learning_schedule(epoch * m + iteration)
          theta = theta - eta * gradients
```

Implementation of SGD

> The first 20 steps of Stochastic Gradient Descent:

SGD with Scikit-Learn

➤ To perform Linear Regression using SGD with Scikit-Learn, you can use the SGDRegressor class:

Scikit-Learn estimators can be trained using the fit() method, but some estimators also have a partial_fit() method to run a single round of training on one or more instances.

Mini-batch Gradient Descent

- > Mini-batch Gradient Descent: at each step, compute the gradients on small random sets of instances called mini-batches.
- Gets a performance boost from hardware optimization of matrix operations, especially when using GPUs.
- > Gets a bit closer to the optimum.
- > Harder to escape from local minima.

Comparison of algorithms for linear regression

Algorithm	Large m	Out-of-core support	Large n	Hyperparams	Scaling required	Scikit-Learn
Normal equation	Fast	No	Slow	0	No	N/A
SVD	Fast	No	Slow	0	No	LinearRegression
Batch GD	Slow	No	Fast	2	Yes	N/A
Stochastic GD	Fast	Yes	Fast	≥2	Yes	SGDRegressor
Mini-batch GD	Fast	Yes	Fast	≥2	Yes	N/A