

F18.

(SEQ ID NO: 54) Human Antibody sequence (TT sequence) Heavy Chain: cloning sites Xho I and Spe I are underlined gag gtg cag ctg CTC GAG CAG TCT GGG GCT GAG GTG AAG CCT GGG TCC TCG GTG AAG glu val gln leu leu glu gln ser gly ala glu val lys lys pro gly ser ser val lys 31 21 GTC TCC TGC AGG GCT TCT GGA GGC ACC TTC AAC AAT TAT GCC ATC AGC TGG GTG CGA CAG val ser cys arg ala ser gly gly thr phe asn asn tyr ala ile ser trp val arg gln 51 GCC CCT GGA CAA GGG CTT GAG TGG ATG GGA GGG ATC TTC CCT TTC CGT AAT ACA GCA AAG ala pro gly gln gly leu glu trp met gly gly ile phe pro phe arg asn thr ala lys TAC GCA CAA CAC TTC CAG GGC AGA GTC ACC ATT ACC GCG GAC GAA TCC ACG GGC ACA GCC tyr ala gln his phe gln gly arg val thr ile thr ala asp glu ser thr gly thr ala 91 81 TAC ATG GAG CTG AGC CTG AGA TCT GAG GAC ACG GCC ATA TAT TAT TGT GCG AGA GGG tyr met glu leu ser ser leu arg ser glu asp thr ala ile tyr tyr cys ala arg gly 111 101 GAT ACG ATT TTT GGA GTG ACC ATG GGA TAC TAC GCT ATG GAC GTC TGG GGC CAA GGG ACC asp thr ile phe gly val thr met gly tyr tyr ala met asp val trp gly gln gly thr 131 121 ACG GTC ACC GTC TCC GCA GCC TCC ACC AAG GGC CCA TCG GTC TTC CCC CTG GCA CCC TCC thr val thr val ser ala ala ser thr lys gly pro ser val phe pro leu ala pro ser 151 TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG GGC TGC CTG GTC AAG GAC TAC TTC CCC ser lys ser thr ser gly gly thr ala ala leu gly cys leu val lys asp tyr phe pro 171 GAA CCG GTG ACG GTG TCG TGG AAC TCA GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG glu pro val thr val ser trp asn ser gly ala leu thr ser gly val his thr phe pro 191 181 GCT GTC CTA CAG TCC TCA GGA CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC ala val leu gln ser ser gly leu tyr ser leu ser ser val val thr val pro ser ser 211 AGC TTG GGC ACC CAG ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG ser leu gly thr gln thr tyr ile cys asn val asn his lys pro ser asn thr lys val GAC AAG AAA GTT GAG CCC AAA TCT TGT GAC AAA act aqt asp lys lys val glu pro lys ser cys asp lys thr ser

Fig. 2A

Human Antibody Sequence (TT sequence) (SEQ ID NO: 55)

Light Chain: cloning sites Sac I and Xba I are underlined gag ete acg cag tet eea gge ace etg tet ttg tet ccA ggg gaa aga gee ace ete tee glu leu thr gln ser pro gly thr leu ser leu ser pro gly glu arg ala thr leu ser 21 31 tgc agg gcc agt cac agt gtt agc agg gcc tac tta gcc tgg tac cag cag aaa cct ggc cys arg ala ser his ser val ser arg ala tyr leu ala trp tyr gln gln lys pro gly 41 51 cag get ecc agg etc etc atc.tat ggt aca tec age agg gee act gge atc eca gae agg gln ala pro arg leu leu ile tyr gly thr ser ser arg ala thr gly ile pro asp arg 61 71 ttc agt ggc agt ggg tct ggg aca gac ttc act ctc acc atc agc aga ctg gag cct gaa phe ser gly ser gly ser gly thr asp phe thr leu thr ile ser arg leu glu pro glu 91 gat ttt gca gtg tac tac tgt cag cag tat ggt ggc tca ccg tgg ttc ggc caa ggg acC asp phe ala val tyr tyr cys gln gln tyr gly gly ser pro trp phe gly gln gly thr 111 AAG GTG GAA CTC AAA CGA ACT GTG GCT GCA CCA TCT GTC TTC ATC TTC CCG CCA TCT GAT lys val glu leu lys arg thr val ala ala pro ser val phe ile phe pro pro ser asp 121 131 GAG CAG TTG AAA TCT GGA ACT GCC TCT GTT GTG TGC CTG CTG AAT AAC TTC TAT CCC AGA glu gln leu lys ser gly thr ala ser val val cys leu leu asn asn phe tyr pro arg 151 GAG GCC AAA GTA CAG TGG AAG GTG GAT AAC GCC CTC CAA TCG GGT AAC TCC CAG GAG AGT glu ala lys val gln trp lys val asp asn ala leu gln ser gly asn ser gln glu ser 161 171 GTC ACA GAG CAG GAC AGC AGC AGC ACC TAC AGC CTC AGC ACC CTG ACG CTG AGC val thr glu gln asp ser lys asp ser thr tyr ser leu ser ser thr leu thr leu ser 181 191 AAA GCA GAC TAC GAG AAA CAC AAA GTC TAC GCC TGC GAA GTC ACC CAT CAG GGC CTG AGC lys ala asp tyr glu lys his lys val tyr ala cys glu val thr his gln gly leu ser 201 211 TTG CCC GTC ACA AAG AGC TTC AAC AGG GGA GAG TGT TAG Ttc tag a leu pro val thr lys ser phe asn arg gly glu cys AMB

Fig. 2B

Method of grafting peptide into antibody with random sequences surrounding peptide

TATTAT-TGT-GCG-AGA-NNR-NNR-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TPO Mimetic Peptide FR4 G ப X X I FR3 sednence (SEQ ID NO: 67) ~ (SEQ ID NO: **56**

W L A A R A X X W G Q G T TGG-CTG-GCG-CGC-GCG-NNY-NNY-TGG-GGC-CAA-GGG-ACC-

The TPO mimetic peptide was grafted into the heavy chain CDR3 region of the tetanus toxoid antibody. The peptide was flanked on either side by two random amino acids, shown as "X"s in the figure.

Fig. 4

iddass...cos

CLONE	AMINO ACID SEQUENCE	SEO ID NO.
X1a	Pro-Pro-11e-G1u-G1y-Pro-Thr-Leu-Arg-G1n-Trp-Leu-A1a-A1a-Arg-A1a-G1y-G1y CCG-CCC-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-GGA-GGC	25 26
X1a-11	GIy-GIy-IIe-GIu-GIy-Pro-Thr-Leu-Arg-GIn-Trp-Leu-AIa-AIa-Arg-AIa-GIy-GIy GGG-GGT-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-GGC-GGA	27 . 28
X1a-13	Gly-Gly-11e-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Gly-Gly-Gly-Ggly-Ggly-Ggly-Ggly-Ggly-Gg	29 30
X1c	Trp-Leu-IIe-GIu-GIy-Pro-Thr-Leu-Arg-GIn-Trp-Leu-AIa-AIa-AIa-AIa-Pro-VaI TGG-CTG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-GTC	31 32
X2c	Met-lle-lle-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Val-Gly ATG-ATA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-GTT-GGC	33
X3a	Val-Val-II e-GI u-GI y-Pro-Thr-Leu-Arg-GIn-Trp-Le u-AIa-AIa-Arg-AIa-Pro-Val GTG-GTA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-GTT	35 36
ХЗР	Gly-Pro-11e-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Pro-Asp GGG-CCG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCC-GAT	37
X4b	Leu-Pro-11e-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Pro-Val TTG-CCA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-GTT	39 40
X4c	Ser-Leu-IIe-GIu-GIy-Pro-Thr-Leu-Arg-GIn-Trp-Leu-Ala-Ala-Arg-Ala-Pro-IIe TCA-CTG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCC-ATC	41
X5a	Thr-Met-11e-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Pro-Val ACA-ATG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCC-GTT	43 44
X5c	Thr-Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Pro-Val ACG-ACA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-GTC	45 46
X7a	Thr-Arg-lle-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Cys-Ser ACA-CGG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-TGC-AGC	47
X7b	no peptide deletion mutant	
Х7с	GIn-Thr-Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Pro-Asp CAG-ACA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-CAC	49 50

pRL8

(SEQ ID NO: 60)

GGGAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAA ATCAGCTCATTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATC AAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGT CCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATC AGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTC GAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATITAGA GAAAGGAGCGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGT AACCACCACACCCGCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGC ACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACA TTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAAT ATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCC TTTTTTGCGGCATTTTGCCTTCTGTTTTTGCTCACCCAGAAACGCTGGTGAAA GTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGG ATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCA ATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGA CGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTG GTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAA GAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTT ACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAAC CCATACCAAACGACGAGCTGTACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAAT TAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGC CCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGT CTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGT AGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACA GATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAA GTTTACTCATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGG ATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTT CTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAA GGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAG CCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGC TCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTA CCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTG AACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA

ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGG AGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGC ACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGT AGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTG CTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAA CCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACC GAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAA CCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTT TCCCGACTGGAAAGCGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTC ACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTG TGGAATTGTGAGCGGATAACAATTGAATTCAGGAGGAATTTAAAATGAAAAA GACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTGGCCCAG GCGGCCGAGCTCGGCCATGGCTGGTTGGGCAGCGAGTAATAACAATCCAGCG GCTGCCGTAGGCAATAGGTATTTCATTATGACTGTCTCCTTGGCGACTAGCTA GTTTAGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCC GCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGG GGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGC TTTCCAGTCGGGAAACCTGTCGTGTTACTAATGATGGTGATGGTGATGGCTAG TTTTGTCACAAGATTTGGGCTCAACTTICTTGTCCACCTTGGTGTTGCTGGGCT TGTGATTCACGTTGCAGATGTAGGTCTGGGTGCCCAAGCTGCTGGAGGGCAC GGTCACCACGCTGCTGAgGGAGTAGAGTCCTGAGGACTGTAGGACAGCCGGG AAGGTGTGCACGCCGCTGGTCAgGGCGCCTGAgTTCCACGACACcGTCGCCGG TTCgGGGAAGTAGTCCTTGACCAGGCAGCCCAGGGCCGCTGTGCCCCCAGAG GTGCTCTTGGAGGAGGGTGCCAGGGGGAAGACCGATGGGCCCTTGGTGGAG GCTGCGGAGACGGTGACCGTGGTACCAGCAGAAACCTGGCCAGGCTCCCAG GCTCCTCATCTATGGTACATCCAGCAGGGCCACTGGCATCCCAGACAGGTTC AGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC CTGAAGATTTTGCAGTGTACTACTGTCAGCAGTATGGTGGCTCACCGTGGTTC GGCCAAGGGACCAAGGTGGAACTCAAACGAACTGTGGCTGCACCATCTGTCT TCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTG TGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG CAAGGACAGCACCTACAGCCTCAGCACCCTGACGCTGAGCAAAGCAGA CTACGAGAAACACAAAGTCTACGCCTGCGAAGTCacccatcagggcctgagttcgccgtcac aaagagcttcaacggaggaggagtgttaatTCTAGATAATTAGTAGGAGGAATTTAAAATGAAATACCTATTGCCTACGGCAGCCGCTGGATTGTTATTACTCGCTGCCCAACCAG CCATGGCCGAGGTGCAGCTGCTCGAGATGAGCGATAAAATTATTCACCTGAC TGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGGGGATCCTCGTC GATTTCTGGGCAGAGTGGTGCGGTCCGTGCAAAATGATCGCCCCGATfCTGG ATGAAATCGCTGACGAATATCAGGGCAAACTGACCGTTGCAAAACTGAACAT CGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACT CTGCTGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTTG TCTAAAGGTCAGTTGAAAGAGTTCCTCGACGCTAACCTGGCGTACCGGTACG ACGTTCCGGACTACGGTTCTACTAGTccgaaaccgtctaccccaccgggctcttcctgcggtggccgc afegecegtetggaggaaaaagtgaaaaccetgaaageteagaacteegagetggegteeactgecaacatgetgegegaac

Fig. 6B

Fig. 6C

Fig. 7

M N H G G C A S G O A G O H H H H H H H G A Y P Y D V K T L K A 0 -- fun dimerization domain --CGTTCCGGACTACGCTTCTTAGGAGGGTGGTGGCTCTGAG 270 E 0 V A 0 L K 0 (SEQ ID NO: 53) - P K P S T P P G V P D Y A S — HA tag and Amber stop

Fig. 8

	Sample	nnk	nnk	nnk	nnk	Amino	Acids	Amino	Acids
		1	2	3	4	1	2	3	4
HC CDR3	X1c	tgg.	ctg	cct	gtc	Trp	Leu	Pro	Val
	X3a	gtg	gta	cct	gtt	Val	Val	Pro	Val
	X3b	ggg	ccg	ccc	gat	Gly	Pro	Pro .	Asp
1,1-	X4b	ttg	cca	cct	gtt	Leu	Pro	Pro	Val
	X4c	tca	ctg	ccc	atc	Ser	Leu	Pro	Ile
	X5a	aca	atg	ccc	gtt	Thr	Met	Pro	Val
	X5c	acg	aca	cct	gtc	Trp	Leu	Pro	Val
	X7c	cag	aca	cct	cac	Gln	Thr	Pro .	Asp
HC CDR2	24	ctt	tat	tct	aat	Leu	Tyr	Ser .	Asn
	39	act	tac	ttg	cat	Thr	Tyr	Leu	His
	3	agg	atg	ctc	gag	Arg	Met	Leu	Glu
	7	aag	gaa	tct	aag	Lys	Glu	Ser	Lys
	8	gcg	cat	gtg	cag	Ala	His	Val	Gln
	10	cag	gag	att	aqt	Gln	Glu	Ile	Ser
	11	cgg	aat	aat	ccg	Arg	Asn	Asn	Pro
	19	cag	cta	aat	tct	Gln	Leu	Asn	Ser
	25	agt	att	ttt	gtc	Ser	Ile		Val
	28	aga	CCC	act	agt	Gly	Pro	Thr	Ser
LC CDR1	10	aag	ggt	gtt	agt	Lys	Gly	Val	Ser
HC CDIXI	11	cat	ggg	gtg	gct	His	Gly		Ala
	12a	cgt	acg	atg	gct	Arg	Thr		Ala
	12b	cgt	ggt	gtt	aat	Arg	Gly		Asn
	14	cgt	tcg	ctt	gcg	Arg	Ser		Ala
	16	cgg	ggt	gtt	gcg	Arg	Gly	+	Ala
	18	agg	acg	gtg	tct	Arg	Thr	Val	Ser
·	47	aag	ggg	gtg	gcg	Lys	Gly		Ala
LC CDR2	1	aat	ccg	agg	ggt	Asn	Pro		Gly
EC CDR2	2	tcg	cct	cgg	agt	Ser	Pro	Arg	Ser
	3	tcg	cct	cgt	acg	Ser	Pro	Arg	Thr
	4	tcg	cct	tgg	cgt	Ser	Pro	Trp	Arg
	5	act	ccg	aat	tgg	Thr	Pro	Asn	Trp
	6	aat	cct	gcg	agg	Asn	Pro	Ala	Arg
	7	aat	ccg	tcg	ggg	Asn	Pro	Ser	Gly
	9	aat	cct	tat	tag	Asn	Pro	Tyr	Stop
	10	aat	ccg	cgg	tct	Asn	Pro	Arg	Ser
	11	aat	ccg	gat	gtg	Asn	Pro	Asp	Val
	12	tcg	ccg	tcq	cgg	Ser	Pro	Ser	Arg
	13	aat	cct	ctg	ttt	Asn	Pro	Leu	Phe
	14	aat	ctt		tat	Asn	Pro	Gly	Tyr
	15	aat	cct	att	agt	Asn	Pro	Ile	Ser
	16	aat	cct	cag	cgg	Asn	Pro	Gln	Arg
	18	aat	ccg	cgg	acg	Asn	Pro	Arg	Thr
	19	aat	ccg	cgt	ggg	Asn	Pro	Arg	Gly
-	20	cat	ttg	aga	ctg	His	Leu	Arg	Leu
	21	aag	tag	att	tat	Lys	Stop	Ile	Tyr
	23	aat	cct	ggt	aag	Asn	Pro	Gly	Lys
	24	aat	cct	cgt	ggg	Asn	Pro	Arg	Gly
	26	aat	cct	aat	gtg	Asn	Pro	Asn	Val
	27	tct	ccg	cgg	gtt	Ser	Pro	Arq	Val
	29		cct	cgg	ggt	Thr	Pro	Arg	Gly
		acg						+	Trp
	30	cct	tag	tgg	tgg	Pro	Stop	Trp	110

FIG. 9

Activity of Fab clones containing 2 TPO mimetic peptides

FIGURE 10

Activity of Fab clones containing 2 or 3 TPO mimetic peptides

FIGURE 11

0557840/3 < x 5 840/0 65 S > 840/S mimetic peptides HC CDR2 HCCDR3 5, 181012 Test alloys OE 57 840/2 Test samples mimetic peptides * 1.87.840/2 LC CDR2 HC CDR2 HC CDR3 ACATAL CONTRACTOR CONTRACTOR ETS7 840/3 S က Relative fold luciferase activity

Fig. 12

-(SEQ ID NO: 67)

5G1.1 – TPO Heavy Chain (Bold denotes TPO mimetic) Amino acid sequence:

MKIVSIVVILFLLSVTAGVHSQVQLVQSGAEVKKPGASVKVSCKASGYIFSNYWIQW

VRQAPGQGLEWMGEILPGSGSTEYTENFKDRVTMTRDTSTSTVYMELSSLRSED

TAVYYCARLPIEGPTLRQWLAARAPVWGQGTLVTVSSASTKGPSVFPLAPCSR

STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV

PSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKP

KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTY

RVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQ

EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRL

TVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK.

(SEQ ID NO: 68)

<u> 5G1.1 – TPO Heavy Chain (Bold denotes TPO mimetic) Nucleic acid sequence:</u> ATGAAGTGGAGCTGGGTTATTCTCTTCCTCCTGTCAGTAACTGCCGGCGTCCA CTCCCAAGTCCAACTGGTGCAATCCGGCGCCGAGGTCAAGAAGCCAGGGGCC TCAGTCAAAGTGTCCTGTAAAGCTAGCGGCTATATTTTTTCTAATTATTGGAT TTACCGGGCTCTGGTAGCACCGAATATACCGAAAATTTTAAAGACCGTGTTA CTATGACGCGTGACACTTCGACTAGTACAGTATACATGGAGCTCTCCAGCCTG CGATCGGAGGACACGCCGTCTATTATTGCGCGCGTTTGCCAATTGAAGGG CCGACGCTGCGCCAATGGCTGCCGCGCGCGCCCTGTTTGGGGTCAAG GAACCCTGGTCACTGTCTCGAGCGCCTCCACCAAGGGCCCATCCGTCTTCCCC CTGGCGCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCC TGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGC CCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCT ACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAACTTCGGCACCCAGAC CTACACCTGCAACGTAGATCACAAGCCCAGCAACACCCAAGGTGGACAAGAC AGTTGAGCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAGCACCACCTGTG GCAGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGAT CTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACCTGAGCCAGGAAGAC CCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCA AGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCG TCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCC AAAGGGCAGCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAG GAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACC CCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACT ACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGC AGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCT CCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCT **GTCTCTGGGTAAATGA**

(SEQ ID NO: 69)

5G1.1 Light Chain Amino Acid Sequence

➤ MDMRVPAQLLGLLLIWLRGARCDIQMTQSPSSLSASVGDRVTITCGASENIYGALN WYQQKPGKAPKLLIYGATNLADGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQ NVLNTPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTH QGLSSPVTKSFNRGEC.

(SEQ ID NO: 70)

5G1.1 Light Chain Nucleic Acid Sequence

ATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTACTCTGGCTCCG
AGGTGCCAGATGTGATATCCAGATGACCCAGTCCCCGTCCTCCCTGTCCGCCT
CTGTGGGCGATAGGGTCACCATCACCTGCGGCGCCAGCGAAAACATCTATGG
CGCGCTGAACTGGTATCAACAGAAACCCGGGAAAGCTCCGAAGCTTCTGATT
TACGGTGCGACGAACCTGGCAGATGGAGTCCCTTCTCGCTTCTCTGGATCCGG
CTCCGGAACGGATTCACTCTGACCATCAGCAGTCTGCAGCCTGAAGACTTC
GCTACGTATTACTGTCAGAACGTTTTAAATACTCCGTTGACTTTCGGACAGGG
TACCAAGGTGGAAATAAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCC
CGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTG
AATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCC
TCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACA
GCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCCAAAGCAGACTACGAGA
AACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGT
CACAAAGAGCTTCAACAGGGGAGAGTGTTAG

Note: Italics denotes leader sequence

FIGURE 14

FIGURE 15

VARIABLE REGION OF 4-29 LIGHT CHAIN

~(SEQ ID NO: 116)

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 TAT TAC TGC CAA CAG TAT AAT AGT TAC CCT CCC ACT TTC GGC CCT GGG ACC AAA GTG GAT ATC AAA CDR3

Fig. 16

Fig. 18

Fig. 19

+ EcoRI to KhoI fragment of pAX 131 Kappa

Fig. 20

			¥17	्र श्रेम	·	
Psii	00	200	300	400	900	009
BseRI Sspl	(SEQ ID NO: 111)	BSaXI TAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGGAAAA f1 ori	Dralli ACCGICTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAAATCGGAACCCTAAAGGGA	NgoMIV Nael GCCCCCGATTTAGAGCTTGACGGGGAAAGGGAAAGGAAA	GGTCACGCTGCGCGTAACCACCACACCGCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATT	BsrBI BspHI TGTTTATTTTCTAAATACATTCAAATGCTCAAAAAGGAAGAGTATGAGTATTGAAAAAAGGAAGAGTATGAGTATTC

Agra.

		Fig. 21B		·.
700	7ral 800	006	1000	1100
AACATITCCGTGTCGCCCTTATTCCCTTTTTGCGCATTTTGCCTGTTTTTGCTCACCCCAGAAACGCTGGTGAAAGGTAAAAGATGCTGAAGATCA	ApaLI BssSI Exp57I CTTGGGTGCACGAGGGTTACATCGAACTGGATCTTCAAGATCCTTGAGAGTTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGGACTTTT Book	Bcgl Bcgl AAAGTTCTGCTATGGCGCGGTATTGACGCCGGCAAGAGCAACTCGGTCGCCGCATACACTTCTCAGAATGACTTGGTTGAGTACT Scal Bcgl Bcgl Bcgl Bcgl Bcgl Bcgl Bcgl Bcg	BtsI CACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAAATTATGCAGTGCTGCCCATAACCATGAGTGATAACACTGCGGCCAACTTACTT	Pvul GACAACGATCGCAGGACCGAAGGAGCTAACCGCTTTTTTGCACATGGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAA

	•						•	•
				. 21C	giŦ			
	5		3500	3600	BgIII 3700	Bsgl	3800	3900
BsrBI DrallI CCGTGGGGCTGGTGGCGCGGTTGCGTGAGGGGGCGGCCACGTAGTGTTGCGCTGGCTCCCGCCGCCTGAGACACCCATGACGTCTCACATCCGCTACGA	HC stuffer	Aatil Eagl BsmBi NgoMIV Dralli Blpl BspMl GGTGGACGTCTCGGCCGCAACGGCGTACAGAGGTGGAGATCCTGGAGGCCGCCCCACCGAGTGTGTGCTGAGCAACCTGCGGGCCGAAC		CGCTACACCTTCGCCGTCCGCGCGTATGGCTGAGCCTGGGCGGCTTCTGGAGCGCCTGGTCGGAGCCTGTGCTGGTGGCTGACGCCTAGCGACCTAGCACCTAGCACCTAGCACCTAGCACCTAGCACCTAGCACCTAGCACACCTAGCACCTAGCACCTAGCACCTAGCACACACA	TGACCGTGCTCCCCACCGCCGGGCTCTGAAGCAGAA	HC stuffer Eco57I Stul Earl Pvull Bs	GATCTGGCCTGGCATCCCGAGCCCAGAGGCGAGTTTGAAGGCCTCTTCACCACACGCTAAGGGTAACTTCCAGCTGTGGCTGTACCAGAATGATGGCTGC HC stuffer	BspMI Afel Btsl CTGTGGTGGGGGCCCCTTCACGGGGGGGCGCTGCTCCTCTCAGAGCGCTGCTGGGGGGACGATGCAGGCAG
81	1 1	ပ္	111	811			5111	511

	1200	1300	چ GIS. عiF	I 0091		1600
BSrDI Acil FSpI ATACCAAACGACGAGCTGTACCATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACT	beta-lactamase ————————————————————————————————————	Asel AATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGCCACTTCTGCGCTCGCCTTCCGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGA AATTAATAGACTGGAGGCGGATAAAGTTGCAGGACCGGTGA AATTAATAGACTGGAGGCGGATAAAGTTGCAGGACCGGTGA AATTAATAGACTGGACGGGATAAAGTTGCAGGACCGGTGA AATTAATAGATTGCTGATAAAATCTGGAGCCGTGA	Bpml BsrDI Bmrl BcccTcccGTATCGTAGTTATCTACACGACGGAGTCAGGCAACTATGGATGAA GCCTTCCCGTATCGTAGTTATCTACACGACGGAGTCAGGCAACTATGGATGAA beta-lactamase	Dral CGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATT	Dral BspHI	ACAAAAGATCTAAAAGGATCTTGAGAGATCCTTTTTGATAATCTCAAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGT AGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTTTT

· :		. 21E			·
1800	1900	2000	2100	2200	2300
GATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACCACCACCACCACCACCACCACCACCACCAC	TCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTC	ApaLI AAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCGTTCGTGCACACACA	Ecil BciVI ÇTACAGCGTGAGCTATGAGAAAGGGCCACGCTTCCCGAAGGGGAGAAGGCGGACAGGTTCCGGTCGGAACAGGAGAGGCGCACGAGGG cole lorigin	AGCTTCCAGGGGGAAACGCCTGGTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGGG	Ecil CCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGCCCACATGTTCTTTCCTGCGTTATCCCTGATTCTGTG colE lorigin

	001	000	8 FIS.gi	H g	
BsrBl Sapl BsaXI	GATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGACCGA	BsaXI' Asel Pvull TACGCAAACCGCCTCTCCCCGCGCGTTCATTAATGCAGCTGGCACGACGACGCGCAGTGAGCGGCAGTGAGCGCAATTAA 1ac promoter	TGTGAGTTAGCTCACTCATTAGGCTCCCAGGCTTTACACTTTATGCTTCCGGCTCGTAGTTGTGTGAGATTGTGAGTAACAATTGAATTCAAGG PsrB Mfel EcoRI 2600 2600 140 1	BbsI TGTGGCTGCACCATCT 2700 L Kappa constant —	Xmnl GTCTTCATCTTCCCGCCATCTGAAGTTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGT 2800 Kappa constant

		•		Fig. 21G		
Bipli T. Took	0067		3000	3100	Btrl G G 1 - 3200	3300
BbvCI Bpu10I BI TACAGCCTCAGCAGCCTGACGCT			CAAAGAGCTTCAACAGGGGAGAGTGT	NgoMIV Nael SCTGCTGGCGCGCAGCCGGCGATGG	Begl Bt	CAATGAAGTAGTGCTCCTAGACGCCC
BbvCI Bpu10I IGTAACTCCCAGGAGAGTGTCAGGAGGAGGAGGAGGACAGCAGCTTACAGCAGCAGCACCTGAGGC	- Kappa constant	AlwNi Bpu10i EcolCRI Saci	AGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAGAGCTTCAACAGGGGAGAGTGT	Sacil Sacil Nael Nael	EcoNI BssSI GTGTCGCTGCTGCTGCTTCTGGTGTTCGCTGCCTACAGCCGACACG HC stuffer	Begl' EcoRV TCGAGCTTCGTGCGTCACAGCAGCCTCCGGCGTTCGTCATCACCATCAATGAAGTAGTGCTCCTAGACGCCCCCAGAGCTAGACGTAGAGGTAGTGCTTCTAGACGCCCCCCAGAGCTAGAGTAGTGCTTCTAGACGCCCCCCCC
ACTCCCAGGAGAGTGT	Ka		CTACGCCTGCGAAGTC	ATAAATATGAAATATC	EcoNI	ACAGCAGCCTCCGGCG
GGAAGGTGGATAACGCCCTCCAATCGGGTA			כאככאאאככאפאכזאכפאפאאאפאכאאאפז	Eagl Notl TAAGCGGCCGCACTAGATATAATTAAGGAG	Xhol Bsgl CGCTCGAGCTGATGGCAGCTGTG	Bcgl' GCCCTAGAGTTGCGCGTC
GGAAGGTGGAT			сиссланаст	Eagl Notl TAAGCGGCCGC	Xhol CGCTCGAGCTG	TCGAGCTTCGT

	H)	[2.gi7	
4000	4100	4200	4300
			_
EcoNI CTGGGCTGCCTGGTCAAG	Bsu361 AGTCCTCAGGACTCTAC	CACCAAGGTGGACAAGA	BspEI GTTCCGGACTACGCTTC
GCACAGCGGCC	GGCTGTCCTAC	AAGCCCAGCAA	BsiWi
BseRI TCCCCCTGGCACCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTT	Kasi Sfol ApaLi Bbel Bou36i Bbu10i AcTCAGGCCCTGACGCCCTCAGGCTCTACAGTCCTCAGGACTCTACTCCTCAGGCCTCAGGCCTCAGGCCTCAGGCCTCAGGCCTCAGGCTCAGGCCCTCAGGCCCTCAGGCCTCAGGCCTCAGGCCTCAGGCCTCAGGCCTCAGGCCTCAGGCCTCAGGCCTCAGGCCTCAGGCCCCTCAGGCCCTCAGGCCCTCAGGCCCCTCAGGCCCCTCAGGCCCCTCAGGCCCCTCAGGCCCCTCAGGCCCCTCAGGCCCTCAGGCCCCTCAGGCCCCCTCAGGCCCCCTCAGGCCCCCCCC	Bpml BstEll Bcccrcccacccacccacacctacatctccacacctcacccacc	NgoMIV Bgil Sfil Nael Shel Mscl Fsel BStXI BSiWI BSPEI CCAAATCTTGTGACAAAACTAGTGGCGCCAGCACCATCACCATCACCATCACCGTACGGACTACGCTTCTTAGGAGGG
	Kasl Narl Sfol SAACTCAGGCGCCCTGACG	BstXI AGCTTGGGCACCCAGACCT	Mscl Fsel
PspOMI BbsI Apal AcccccATCcc	Tth1111 GACGGTGTCGTG	GTGCCCTCCAGC	Spel
PspOMI Bbsl Apal GGACAGATGATGAGGCCCATCGGTC	Agel Tth1111 CCCCGAACCGGTGACGGTGTGGA/	Bomi BstEII AGCGTGGTGACC	CCAAATCTTGTG

TGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGGGGTTCCGGTGGTTCCGGTGATTTTGATTATGAAAAGATGGCA 4400
AACGCTAATAAGGGGGCTATGACCGAAAAAAAAAAAAAA
ACTGGTGATTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGTGA 4600
CGGTGATAATTCACCTTTAATGAATAATTTCGTCAATATTTACCTTCCCTCCC
TAÍGAATTITCTATTGATTGTGACAAAATAAACTTATTCCGTGGTGTCTTTGCGTTTCTTTATATGTTGCCACCTTTATGTATG
Eagl NgoMIV Reagl Nael Fsel BgIII CTAACATACTGCGTAATAAGGGTAGCTAATTTAAGCGGCCGCCGCGCGCG