

The R package VineCopula

Thomas Nagler <thomas.nagler@tum.de>

History

- Successor of the CDVine package (Brechmann and Schepsmeier, 2012)
- First version on CRAN in June 2012.
- Many former authors and contributors

Ulf Schepsmeier [aut], Jakob Stoeber [aut], Eike Christian Brechmann [aut], Benedikt Graeler [aut], Thomas Nagler [aut, cre], Tobias Erhardt [aut], Carlos Almeida [ctb], Aleksey Min [ctb, ths], Claudia Czado [ctb, ths], Mathias Hofmann [ctb], Matthias Killiches [ctb], Harry Joe [ctb]

Current version on CRAN: 2.0.4

Outline

- 1 Bivariate copula modeling
- 2 Vine copula modeling
- 3 Further remarks

Bivariate copula modelingOverview

EDA	Inference	Properties			
BiCopKDE BiCopLambda BiCopChiPlot BiCopKPlot BiCopCompare	BiCopEst BiCopSelect BiCopGofTest BiCopVuongClarke BiCopIndepTest	BiCopPDF BiCopCDF BiCopSim BiCopPar2Tau/Tau2Par BiCopPar2TailDep BiCopDeriv			

...and more!

Copula families

Families are encoded into numbers

0: Indep. 1: Gaussian 3: Clayton 7: BB1 104: Tawn I 2: Student t 4: Gumbel 8: BB6 204: Tawn II

> 5: Frank 9: BB7 6: Joe 10: BB8

For rotations add multiples of 10

```
> contour(BiCop(family = 104, par = 3, par2 = 0.5))
> contour(BiCop(family = 114, par = 3, par2 = 0.5))
> contour(BiCop(family = 124, par = -3, par2 = 0.5))
> contour(BiCop(family = 134, par = -3, par2 = 0.5))
```



```
# rank transform to pseudo observations
> u <- pobs(dat)
# scatter plot
> plot(u)
# plot kernel contours (with normal margins)
> BiCopKDE(u[, 1], u[, 2])
```



```
> fit1 <- BiCopEst(u[, 1], u[, 2], family = 4)
> summary(fit1)
Name: Gumbel
Parameter(s)
par: 1.6 (SE = 0.05)
Dependence measures
Kendall's tau: 0.38 (empirical = 0.37, p value < 0.01)
Upper TD:
         0.46
Lower TD:
Fit statistics
logLik: 145.48
AIC: -288.96
BIC: -284.48
```



```
> BiCopKDE(u[, 1], u[, 2])
> contour(fit1, col = 2, add = TRUE, drawlabels = FALSE)
```



```
> fit2 <- BiCopSelect(u[, 1], u[, 2])
Bivariate copula: Survival Clayton (par = 1.16, tau = 0.37)
> contour(fit2, col = 3, add = TRUE, drawlabels = FALSE)
```


Code example: EDA and inference

> BiCopCompare(u[, 1], u[, 2])

Code example: Conditional copulas

Useful for conditional copula modeling: Many BiCop- functions are vectorized w.r.t family and parameters.

Example: Given covariate X, simulate (U, V) from Clayton copula with Kendall's τ equal to X^2

Outline

- 1 Bivariate copula modeling
- 2 Vine copula modeling
- 3 Further remarks

Vine copulas

- ... build a model for the dependence from (conditional) pairs.
- ... can be represented as a graphical model (a *vine*).
- ... link each edge to a bivariate copula function.

EDA

Inference

Properties

pairs.copuladata TauMatrix RVineMLE/SeqEst RVineCopSelect RVineStructureSelect RVineGofTest RVineVuongTest RVinePDF RVineGrad RVineHessian RVineSim

...and more!


```
data(daxreturns)
u <- daxreturns[, 1:4]
pairs.copuladata(u)</pre>
```



```
> vinefit <- RVineStructureSelect(u)
> summary(vinefit)
```

tree	edge	1	No.	family	par	par2	1	tau	UTD	LTD
1	2,3		2	t	0.61	4.62		0.42	0.29	0.29
	1,2	-	2	t	0.59	4.61	\perp	0.40	0.28	0.28
	4,1	-	14	SG	1.61	0.00	-	0.38	-	0.46
2	1,3;2	-	2	t	0.18	10.21	-	0.12	0.02	0.02
	4,2;1	1	2	t	0.27	14.41	1	0.17	0.01	0.01
3	4,3;1,2	1	5	F	0.65	0.00	1	0.07	-	-
type:	D-vine		logLi	k: 868	AIC	: -1716	3	BIC	: -166	5.46
1 <->	ALV.DE,		2 <->	BAS.DE,	, 3	<-> BAY	'N	.DE,	4 <->	BMW.
DI	Ξ									

ТΙΠ

Code Example

> contour(vinefit, type = 2)


```
> usim <- RVineSim(1158, vinefit)
> pairs(u, pch = ".")
> pairs(usim, pch = ".")
```


Outline

- 1 Bivariate copula modeling
- 2 Vine copula modeling
- 3 Further remarks

Additional features

Most functions can handle NAs

- Functions C2RVine/D2RVine for easy transition from CDVine package
- Interface to copula package makes additional families and vines accessible for rCopula etc.

Related packages

- CDVine (Brechmann and Schepsmeier, 2013)
- copula (Hofert et al., 2016)
- gamCopula (Vatter and N, 2016)
- kdecopula (N, 2016a)
- kdevine (N, 2016b)

Remarks

■ Package is available on CRAN or

github.com/tnagler/VineCopula

Bug reports and feature requests via mail to

thomas.nagler@tum.de

- Feel free to cite the package in your paper
 - > citation("VineCopula")

References

Brechmann, E. C. and Schepsmeier, U. (2013).

Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine.

Journal of Statistical Software, 52(3):1–27.

Hofert, M., Kojadinovic, I., Maechler, M., and Yan, J. (2016).

copula: Multivariate Dependence with Copulas.

R package version 0.999-15, URL: http://CRAN.R-project.org/package=copula.

Nagler, T. (2016a).

kdecopula: Kernel Smoothing for Bivariate Copula Densities.

R package version 0.6.0, URL: http://CRAN.R-project.org/package=kdecopula.

Nagler, T. (2016b).

kdevine: Multivariate Kernel Density Estimation with Vine Copulas.

R package version 0.2.1, URL: github.com/tnagler/kdevine.

Vatter, T. and Nagler, T. (2015).

gamCopula: Generalized Additive Models for Bivariate Conditional Dependence

Structures and Vine Copulas.

R package version 0.0-1, URL: github.com/tvatter/gamCopula.