Sprawozdanie 2

Jan Bronicki Nr indeksu: 249011 Marcin Radke Nr indeksu: 241554 Ćwiczenie: 8

1 Wstęp Teoretyczny

Pomiar współczynnika lepkości η cieczy metodą Stokesaza za pomocą szerokiego cylindrycznego naczynia szklanego.

$$\eta = \frac{d^2 \cdot g \cdot t \cdot (\rho_k - \rho_c)}{18h}$$

Gdzie:

d - średnica kulki

g - przyspieszenie ziemskie $(9.81\frac{m}{c^2})$

 ρ_k - gęstość kulki

 ρ_c - gęstość cieszy (gliceryny)

h - długość trasy tonącej w glicerynie kulki

Lepkość zostanie wyznaczona na podstawie danych otrzymanych przez obserwacje kulki tonącej w glicerynie. Dzięki analizie ruchu kulki, znając jej parametry takie jak masa i średnica, które przekładają się na gęstość. Można zanalizować siły oporu, które stawia ciecz co przekłada się na współczynnik lepkości η .

W naszym eksperymencie wykorzystamy następujące przyrządy:

- Naczynie cylindryczne z badaną cieczą (w tym wypadku z gliceryną)
- Areometr do zbadania gęstości cieczy
- Trzy różne kolorowe kulki (Biała, Czarna i Niebieska)
- Waga
- Suwmiarka do pomiaru średnicy kulek
- Stoper
- Linijka z podziałką milimetrową

$\mathbf{2}$ Otrzymane pomiary i ich opracowanie

Nr pomiaru	d[m]	m[kg]	t[s]
1	0.008	0.000486	18.61
2	0.008	0.00048	18.48
3	0.008	0.0004824	20.36
4	0.008	0.0004844	18.18
5	0.008	0.000498	18.14
6	0.008	0.0004916	18.38
7	0.008	0.0004924	18.9
8	0.008	0.0004954	18.16
9	0.008	0.0004812	18.25
10	0.008	0.0004916	18.5
Srednia:	0.008	0.0004883	18.596

·	1. 1	[1]	
Nr pomiaru	d[m]	m[kg]	t[s]
1	0.006	0.0002364	21.83
2	0.006	0.000235	22.24
3	0.006	0.0002516	21.61
4	0.006	0.0002474	21.56
5	0.006	0.0002464	21.67
6	0.006	0.0002418	21.3
7	0.006	0.0002376	21.57
8	0.006	0.0002358	21.18
9	0.006	0.0002422	22.08
10	0.006	0.0002377	21.16
Srednia:	0.006	0.00024119	21.62

(a) Pomiary kulki Białej

(b) Pomiary kulki Czarnej

Nr pomiaru	d[m]	m[kg]	t[s]
1	0.006	0.0002364	21.83
2	0.006	0.000235	22.24
3	0.006	0.0002516	21.61
4	0.006	0.0002474	21.56
5	0.006	0.0002464	21.67
6	0.006	0.0002418	21.3
7	0.006	0.0002376	21.57
8	0.006	0.0002358	21.18
9	0.006	0.0002422	22.08
10	0.006	0.0002377	21.16
Srednia:	0.006	0.00024119	21.62

(c) Pomiary kulki Niebieskiej

Gęstość cieczcy została wyznaczona Areometrem:

$$\rho_c = 1330 \pm 10 \quad \left\lceil \frac{kg}{m^3} \right\rceil$$

 $\rho_c=1330\pm 10~\left[\frac{kg}{m^3}\right]$ Gęstość kulki obliczamy z następującego wzoru:

$$\rho_k = \frac{6m}{13}$$

 $\rho_k = \frac{6m}{\pi d^3}$ Niepewność gęstości kulki:

$$u_c(\rho_k) = \sqrt{\left(\frac{6}{-d^3}\right)^2 \cdot u^2(\bar{m}) + \left(\frac{12m}{-d^4}\right) \cdot u^2(d)}$$

$$u(\eta)_c = u_c(y) = \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 \cdot u^2(x_j)} =$$

Niepewność gęstości kulki:
$$u_c(\rho_k) = \sqrt{\left(\frac{6}{\pi d^3}\right)^2 \cdot u^2(\bar{m}) + \left(\frac{12m}{\pi d^4}\right) \cdot u^2(d)}$$
 Wzór na niepewność lepkości:
$$u(\eta)_c = u_c(y) = \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 \cdot u^2(x_j)} = \sqrt{\left(\frac{2 \cdot d \cdot g \cdot \bar{t} \cdot (\rho_k - \rho_c)}{18h}\right)^2 \cdot u_c^2(d) + \left(\frac{d^2 \cdot g \cdot (\rho_k - \rho_c)}{18h}\right)^2 \cdot u_c^2(t) + \left(\frac{d^2 \cdot g \cdot \bar{t}}{18h}\right)^2 \cdot u_c^2(\rho_k) + \left(\frac{-d^2 \cdot g \cdot \bar{t}}{18h}\right)^2 \cdot u_c^2(\rho_c) + \left(\frac{-d^2 \cdot g \cdot (\rho_k - \rho_c)}{18h^2}\right)^2 \cdot u_c^2(h)}$$

	$ar{m}[ext{kg}]$	$ar{d}[\mathrm{m}]$	h[m]	$\bar{t}[\mathrm{s}]$	$\rho_k \left[\frac{ks}{m^3} \right]$	$\rho_c \left[\frac{ks}{m^3} \right]$	$\eta\left[\frac{Ns}{M^2}\right]$
X	0.0004883	0.008	0.341	18.60	1821.45	1330	0.9348
u(X)		$\pm 0,00005$	± 0.001	± 0.21		±10	
$u_c(X)$	0,00000000004				± 34.26		0,0697

Rysunek 2: asdasdadsasd

	$ar{m}[ext{kg}]$	$ar{d}[\mathrm{m}]$	h[m]	$ar{t}[\mathrm{s}]$	$\rho_k \left[\frac{ks}{m^3} \right]$	$\rho_c \left[\frac{ks}{m^3} \right]$	$\eta\left[\frac{Ns}{M^2}\right]$
X	0.00024119	0.006	0.341	21.62	2132.59	1330	0.9984
u(X)		$\pm 0,00005$	±0.001	± 0.11		±10	
$u_c(X)$	0,00000000003				± 53.49		0,0700

Rysunek 3: asd

	$ar{m}[ext{kg}]$	$ar{d}[\mathrm{m}]$	h[m]	$ar{t}[\mathrm{s}]$	$\rho_k \left[\frac{ks}{m^3} \right]$	$\rho_c \left[\frac{ks}{m^3} \right]$	$\eta\left[rac{Ns}{M^2} ight]$
X	0.00040912	0.008	0.341	21.62	1526.1	1330	0.743
u(X)		$\pm 0,00005$	± 0.001	± 0.15		±10	
$u_c(X)$	0,000000000002				± 28.71		0,1156

Rysunek 4: aaaaa