Appendice A

Lemma 7.5.1 (Lemma di Gauss per m=2) $Aut(\mathbb{Z}_{p^2})$ è ciclico.

Dimostrazione: Dal Lemma 7.4.2, esiste $[r]_p$, generatore di Aut $(\mathbb{Z}_p) = U(\mathbb{Z}_p) \cong \mathbb{Z}_{p-1}$, con $o([r]_p) = p-1$. Mostriamo che sia $[r]_{p^2}$ sia $[r+p]_{p^2}$ generano Aut (\mathbb{Z}_{p^2}) .

Sia $x = o([r]_{p^2})$. Allora:

$$([r]_{p^2})^x = [r^x]_{p^2} = [1]_{p^2} \Rightarrow p^2 \mid (r^x - 1) \Rightarrow p \mid (r^x - 1) \Rightarrow [r]_p^x = [1]_p \Rightarrow x = s(p - 1)$$

per un certo $s \in \mathbb{N}$.

Inoltre, poiché $|\operatorname{Aut}(\mathbb{Z}_{p^2})| = \varphi(p^2) = p(p-1)$, si ha:

$$([r]_{p^2})^{p(p-1)} = [1]_{p^2} \Rightarrow x = s(p-1) \mid p(p-1),$$

dove $x = p^a(p-1)$ con a = 0, ..., m-1. Dimostreremo ora che $x = p^{m-1}(p-1)$.

Supponiamo per assurdo che $x = p^b(p-1)$ con b = 0, ..., m-2. Allora:

$$([r]_{p^2})^{p^{m-2}(p-1)} = [1]_{p^2}.$$

Ne consegue che:

$$[1]_{p^2} = ([r]_{p^2})^{p^{m-2}(p-1)} = ([r^{p-1}]_{p^2})^{p^{m-2}} = ([1+kp]_{p^2})^{p^{m-2}} = [1+kp^{m-1}]_{p^2},$$

dove abbiamo usato il Lemma 7.5.3 per ottenere l'ultima uguaglianza. Tuttavia, $[1+kp^{m-1}]_{p^2} \neq [1]_{p^2}$, poiché $p \nmid k$. Questa è l'assurdo che cercavamo.

Poiché $|\operatorname{Aut}(\mathbb{Z}_{p^2})|=p(p-1)$, segue che $\operatorname{Aut}(\mathbb{Z}_{p^2})$ è generato da $[r]_{p^2}$ o $[r+p]_{p^2}$ e quindi è ciclico.

Esempio 7.5.2 Il generatore di Aut(\mathbb{Z}_3) = {[1]₃, [2]₃} $\cong \mathbb{Z}_2$ è [2]₃. I generatori di Aut(\mathbb{Z}_9) = {[1]₉, [2]₉, [4]₉, [5]₉, [7]₉, [8]₉} $\cong \mathbb{Z}_6$ sono [2]₉ e [5]₉. Osserviamo che [8]₉ = [5+3]₉ non è un generatore, poiché [8]₉² = [1]₉.

Prima di dimostrare il Lemma di Gauss in generale abbiamo bisogno di due lemmi aggiuntivi.

Lemma 7.5.3 Siano $k \in \mathbb{Z}$ e p un primo dispari. Allora per ogni naturale $a \geq 1$ si ha

$$\left([1+kp]_{p^{a+2}} \right)^{p^a} = [1+kp^{a+1}]_{p^{a+2}} \tag{7.2}$$

Dimostrazione: La (7.2) é equivalente all'esistenza di $m_a \in \mathbb{Z}$ tale che

$$(1+kp)^{p^a} = 1 + kp^{a+1} + m_a p^{a+2}, (7.3)$$

per ogni $a \ge 1$.

Dimostriamo quindi la (7.3) per induzione su a. Se a = 1 allora

$$(1+kp)^p = \sum_{j=0}^p \binom{p}{j} k^j p^j = 1 + kp^2 + k^2 \binom{p}{2} p^2 + p^3 \sum_{j=3}^p \binom{p}{j} k^j p^{j-3}.$$

Siccome $p \neq 2$ e p é primo allora $p|\binom{p}{2}$ e quindi $k^2\binom{p}{2}p^2 = n_1p^3$ per un certo naturale n_1 . Segue che

$$(1+kp)^p = 1 + kp^2 + m_1p^3.$$

con $m_1 = n_1 + \sum_{j=3}^{p} {p \choose j} k^j p^{j-3}$.

Supponiamo che la (7.3) sia vera e dimostriamola per a + 1. Allora

$$(1+kp)^{p^{a+1}} = [(1+kp)^{p^a}]^p = (1+kp^{a+1}+m_ap^{a+2})^p = \sum_{i=0}^p \binom{p}{i} (1+kp^{a+1})^{p-i} m_a^i p^{i(a+2)}.$$
(7.4)

Osserviamo che per $i \geq 1$ tutti i termini della somma precedente sono divisibili per p^{a+3} (infatti per i=1 compare il termine $\binom{p}{1}p^{a+2}=p^{a+3}$, mentre per $i\geq 2$ compare il termine $p^{i(a+2)}$ che é sempre divsibile per p^{a+3} essendo $a\geq 1$. Quindi esiste $n_a\in\mathbb{Z}$ tale che

$$\sum_{i=1}^{p} \binom{p}{i} (1 + kp^{a+1})^{p-i} m_a^i p^{i(a+2)} = n_a p^{a+3}. \tag{7.5}$$

Osserviamo che il termine in (7.4) per i = 0 si scrive come

$$(1 + kp^{a+1})^p = \sum_{j=0}^p \binom{p}{j} k^j p^{j(a+1)} = 1 + kp^{a+2} + \sum_{j=2}^p \binom{p}{j} k^j p^{j(a+1)}$$
 (7.6)

e $p^{a+3}|p^{ja+j}$ per ogni $j\geq 2.$ Esiste quindi $n_a'\in\mathbb{Z}$ tale che

$$\sum_{j=2}^{p} \binom{p}{j} k^{j} p^{j(a+1)} = n'_{a} p^{a+3}. \tag{7.7}$$

7.5. ESERCIZI 111

Mettendo insieme la (7.5), la (7.6) e la (7.7) e ponendo $m_{a+1} = n_a + n'_a$ possiamo scrivere la (7.4) come

$$(1+kp)^{p^{a+1}} = 1+kp^{a+2}+m_{a+1}p^{a+3}$$

che é quello che volevamo dimostrare.

Osservazione 7.5.4 Nel corso della dimostrazione del Lemma 7.5.3 abbiamo usato l'ipotesi che p fosse un primo dispari solo solo nell'ipotesi induttiva.

Lemma 7.5.5 Sia p un primo (non necessariamente dispari). Se $Aut(\mathbb{Z}_{p^m})$ é ciclico e $[r]_{p^m}$ é un suo generatore allora $[r]_{p^{m-1}}$ é un generatore di $Aut(\mathbb{Z}_{p^m-1})$. Se $[r]_{p^2}$ é un generatore di $Aut(\mathbb{Z}_{p^2})$ allora

$$r^{p-1} = 1 + kp (7.8)$$

per qualche intero k tale che p \nmid *k.*

Dimostrazione: L'applicazione

$$\operatorname{Aut}(\mathbb{Z}_{p^m}) = U(\mathbb{Z}_{p^m}) \to \operatorname{Aut}(\mathbb{Z}_{p^{m-1}}) = U(\mathbb{Z}_{p^{m-1}}), [u]_{p^m} \mapsto [u]_{p^{m-1}}$$

è un omomorfismo suriettivo di gruppi e quindi se $\operatorname{Aut}(\mathbb{Z}_{p^m})$ é ciclico allora $\operatorname{Aut}(\mathbb{Z}_{p^{m-1}})$ é ciclico e se $[r]_{p^m}$ é un generatore di $\operatorname{Aut}(\mathbb{Z}_{p^m})$ allora generatore $[r]_{p^{m-1}}$ é un generatore di $\operatorname{Aut}(\mathbb{Z}_{p^{m-1}})$. Se, in particolare, $[r]_{p^2}$ é un generatore di $\operatorname{Aut}(\mathbb{Z}_{p^2})$ allora $[r]_p$ é un generatore di $\operatorname{Aut}(\mathbb{Z}_p)$ e quindi $([r]_p)^{p-1} = [1]_p$ ossia $r^{p-1} = 1 + kp$, per qualche intero k. Inoltre $p \nmid k$ altrimenti $[r]_{p^2}^{p-1} = [1]_{p^2}$ in contrasto col fatto che $[r]_{p^2}$ genera $\operatorname{Aut}(\mathbb{Z}_{p^2})$ e quindi ha ordine p(p-1). \square

Dimostrazione del Lemma di Gauss (Lemma 7.4.1) Sia p un primo dispari. Dimostriamo che Aut(\mathbb{Z}_{p^m}) è ciclico per ogni $m \geq 3$. Sia $[r]_{p^2}$ un generatore di Aut(\mathbb{Z}_{p^2}) la cui esistenza è garantita dal Lemma 7.5.1. Sia $x = o([r]_{p^m})$. Allora:

$$([r]_{p^m})^x = [r^x]_{p^m} = [1]_{p^m} \Rightarrow p^m|(r^x - 1) \Rightarrow p|(r^x - 1) \Rightarrow [r^x]_p = [1]_p \Rightarrow x = s(p - 1),$$

per un certo $s \in \mathbb{N}_+$. Inoltre

$$[r^{p^{m-1}(p-1)}]_{p^m} = [1]_{p^m} \Rightarrow x = s(p-1) \mid p^{m-1}(p-1),$$

Allora $x=p^a(p-1)$ dove $a=0,\ldots,m-1$. La dimostrazione sará conclusa se si dimostra che $x=p^{m-1}(p-1)$ (infatti in questo caso $[r]_{p^m}$ un generatore di $\operatorname{Aut}(\mathbb{Z}_{p^m})$ che ha cardinalitá $p^{m-1}(p-1)$). Supponiamo per assurdo che $x=p^b(p-1)$, $b=0,\ldots,m-2$. Allora, in particolare,

$$([r]_{p^m})^{p^{m-2}(p-1)} = [1]_{p^m}.$$

Segue che

$$[1]_{p^m} = ([r]_{p^m})^{p^{m-2}(p-1)} = ([r^{p-1}]_{p^m})^{p^{m-2}} = ([1+kp]_{p^m})^{p^{m-2}} = [1+kp^{m-1}]_{p^m}$$

dove nell'ultima uguaglianza abbiamo usato la (7.2) del Lemma 7.5.3 con m=a+2. D'altra parte $[1+kp^{m-1}]_{p^m}\neq [1]_{p^m}$ in quanto $p\nmid k$. Questo é l'assurdo desiderato e la dimostrazione é conclusa.