

APPLICANT : CORPORATIVO LANIX S.A. DE C.V.

EQUIPMENT: Mobile phone

BRAND NAME : LANIX

MODEL NAME : Ilium S105 FCC ID : ZC4S105

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Jul. 02, 2013 and completely tested on Jul. 18, 2013. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 1 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Testing Laboratory 2353

TABLE OF CONTENTS

RE	VISIO	ON HISTORY	3			
su	MMA	RY OF TEST RESULT	4			
1	GEN	GENERAL DESCRIPTION				
	1.1	Applicant	5			
	1.2	Manufacturer	5			
	1.3	Feature of Equipment Under Test	5			
	1.4	Product Specification of Equipment Under Test	5			
	1.5	Modification of EUT	6			
	1.6	Testing Site	6			
	1.7	Applied Standards	6			
2	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	7			
	2.1	Descriptions of Test Mode	7			
	2.2	Test Mode	8			
	2.3	Connection Diagram of Test System	9			
	2.4	Support Unit used in test configuration and system	10			
	2.5	EUT Operation Test Setup	10			
	2.6	Measurement Results Explanation Example	11			
3	TES	T RESULT	12			
	3.1	6dB Bandwidth Measurement	12			
	3.2	Peak Output Power Measurement	15			
	3.3	Power Spectral Density Measurement	17			
	3.4	Conducted Band Edges and Spurious Emission Measurement				
	3.5	Radiated Band Edges and Spurious Emission Measurement				
	3.6	AC Conducted Emission Measurement				
	3.7	Antenna Requirements	43			
4	LIST	OF MEASURING EQUIPMENT	44			
5	UNC	CERTAINTY OF EVALUATION	45			
ΑP	PEND	DIX A. PHOTOGRAPHS OF EUT				
ΑP	PEND	DIX B. SETUP PHOTOGRAPHS				

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 2 of 45
Report Issued Date : Jul. 23, 2013

Report No.: FR370202B

Report Version : Rev. 01

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR370202B	Rev. 01	Initial issue of report	Jul. 23, 2013

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 3 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202B

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)(1)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 9.77 dB at 696.900 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 6.19 dB at 0.590 MHz
0	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 4 of 45
Report Issued Date : Jul. 23, 2013

Report Version : Rev. 01

1 General Description

1.1 Applicant

CORPORATIVO LANIX S.A. DE C.V.

CARRETERA INTERNACIONAL HERMOSILLO-NOGALE KM 8.5 HERMOSILLO MEXICO

Report No.: FR370202B

1.2 Manufacturer

Shanghai Huaqin Telecom Technology Co., Ltd

Building1, 399 Keyuan Road, Pudong district, Shanghai, China

1.3 Feature of Equipment Under Test

Product Feature				
Equipment	Mobile phone			
Brand Name	LANIX			
Model Name	Ilium S105			
FCC ID	ZC4S105			
EUT supports Radios application	GSM/GPRS/WCDMA/HSPA/WLAN11bgn/Bluetooth2.1/4.0			
HW Version	A100P_MB_V2.0			
SW Version	ZA100EA_45A0_V8_1_H			
EUT Stage	Production Unit			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	40		
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)		
Maximum Output Power to Antenna	3.07 dBm (0.00203 W)		
Antenna Type	PIFA Antenna type with gain 1.10 dBi		
Type of Modulation	Bluetooth 4.0 - LE : GFSK		

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : 5 of 45

 TEL: +86-755-3320-2398
 Report Issued Date
 : Jul. 23, 2013

 FCC ID: ZC4S105
 Report Version
 : Rev. 01

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Site

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.			
	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan			
Test Site Location	warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.			
	TEL: +86-755- 3320-2398			
Toot Site No	S	porton Site N	0.	FCC/IC Registration No.
Test Site No.	TH01-SZ	CO01-SZ	03CH01-SZ	831040/4086F-1

The test site complies with ANSI C63.4 2003 requirement.

1.7 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- ANSI C63.10-2009

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 6 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

The RF output power was recorded in the following table:

		Bluetooth 4.0 – LE RF Output Power
Channel	Frequency	Data Rate / Modulation
Chamilei	Frequency	GFSK
		1Mbps
Ch00	2402MHz	2.41 dBm
Ch19	2440MHz	2.09 dBm
Ch39	2480MHz	3.07 dBm

Report No.: FR370202B

- a. The EUT has been associated with peripherals pursuant to ANSI C63.10-2009 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.
- b. AC power line Conducted Emission was tested under maximum output power.

SPORTON INTERNATIONAL (SHENZHEN) INC.

Page Number

: 7 of 45

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
rest item	Bluetooth 4.0 – LE / GFSK				
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
ics	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
108	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
AC	Mode 1 :GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from				
Conducted					
Emission	Adapter) + Earphone				

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 8 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2.3 Connection Diagram of Test System

<Bluetooth 4.0 - LE Tx Mode>

<AC Conducted Emission Mode>

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 9 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CBT	N/A	N/A	Unshielded, 1.8 m
2.	System Simulator	Agilent	8960	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	D-Link	DIR-612	N/A	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	P08S	FCC DoC	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
5.	Bluetooth Earphone	Nokia	BH-108	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth 4.0 – LE function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 10 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7.5 dB and 10dB attenuator.

Example:

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

= 7.5 + 10 = 17.5 (dB)

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 11 of 45
Report Issued Date : Jul. 23, 2013

Report No.: FR370202B

Report Version : Rev. 01

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

FCC ID: ZC4S105

Page Number : 12 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.1.5 Test Result of 6dB Bandwidth

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
00	2402	0.696	0.5	Pass
19	2440	0.684	0.5	Pass
39	2480	0.692	0.5	Pass

6 dB Bandwidth Plot on Channel 00

Date: 7.JUL.2013 23:23:50

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 13 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202B

6 dB Bandwidth Plot on Channel 19

Date: 7.JUL.2013 23:31:04

6 dB Bandwidth Plot on Channel 39

Date: 7.JUL.2013 23:39:48

TEL: +86-755-3320-2398 FCC ID: ZC4S105

Page Number Report Issued Date: Jul. 23, 2013 Report Version : Rev. 01

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 15 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.2.5 Test Result of Peak Output Power

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

F		RF Power (dBm)					
Channel	Frequency	GFSK	Max. Limits	Pass/Fail			
	(MHz)	1 Mbps	(dBm)	Pass/Faii			
00	2402	2.41	30.00	Pass			
19	2440	2.09	30.00	Pass			
39	2480	3.07	30.00	Pass			

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 16 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

Report No.: FR370202B

3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : 17 of 45

 TEL: +86-755-3320-2398
 Report Issued Date
 : Jul. 23, 2013

 FCC ID: ZC4S105
 Report Version
 : Rev. 01

3.3.5 Test Result of Power Spectral Density

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26℃	
Test Engineer :	Fly Chen	Relative Humidity :	50~53%	

Channal	Frequency	Power	Max. Limits			
Channel	(MHz)	PSD/100kHz (dBm)	PSD/3kHz (dBm)	(dBm/3kHz)	Pass/Fail	
00	2402	0.82	-13.70	8	Pass	
19	2440	0.77	-13.73	8	Pass	
39	2480	1.38	-13.10	8	Pass	

Note:

FCC ID: ZC4S105

- 1. Measured power density (dBm) has offset with cable loss.
- 2. The Measured power density (dBm)/ 100kHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: +86-755-3320-2398

Page Number : 18 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

Date: 7.JUL.2013 23:25:17

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 19 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No. : FR370202B

PSD 100kHz Plot on Channel 19

Date: 7.JUL.2013 23:31:53

PSD 100kHz Plot on Channel 39

Date: 7.JUL.2013 23:40:44

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 20 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00

Date: 7.JUL.2013 23:24:27

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 21 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202B

PSD 3kHz Plot on Channel 19

Date: 7.JUL.2013 23:31:37

PSD 3kHz Plot on Channel 39

Date: 7.JUL.2013 23:40:12

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 22 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

Report No.: FR370202B

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : 23 of 45

 TEL: +86-755-3320-2398
 Report Issued Date
 : Jul. 23, 2013

 FCC ID: ZC4S105
 Report Version
 : Rev. 01

3.4.5 Test Result of Conducted Band Edges

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26 ℃
Test Channel :	00 and 39	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

Low Band Edge Plot on Channel 00

Date: 7.JUL.2013 23:25:35

High Band Edge Plot on Channel 39

Date: 7.JUL.2013 23:41:05

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 24 of 45 Report Issued Date : Jul. 23, 2013

Report No.: FR370202B

Report Version : Rev. 01

3.4.6 Test Result of Conducted Spurious Emission

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26 ℃
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 7.JUL.2013 23:25:58

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 7.JUL.2013 23:26:17

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 25 of 45 Report Issued Date : Jul. 23, 2013

Report No.: FR370202B

Report Version : Rev. 01

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26 ℃
Test Channel :	19	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 7.JUL.2013 23:32:28

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 7.JUL.2013 23:32:47

TEL: +86-755-3320-2398 FCC ID: ZC4S105

Report Version : Rev. 01

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26 ℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

Report No.: FR370202B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 7.JUL.2013 23:41:26

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 7.JUL.2013 23:41:45

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 27 of 45
Report Issued Date : Jul. 23, 2013

Report Version : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 28 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.5.3 Test Procedures

- 1. The testing follows the guidelines in ANSI C63.10-2009.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR370202B

- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting	
Bluetooth 4.0 - LE	60.13	0.38	2.63	3kHz	

Note: For average measurement with duty cycle < 98%, use reduced VBW measurement method 4.2.3.2.3 in ANSI C63.10.

3.5.4 Test Setup

For radiated emissions below 30MHz

TEL: +86-755-3320-2398 FCC ID: ZC4S105

Page Number : 30 of 45 Report Issued Date: Jul. 23, 2013

Report No.: FR370202B

Report Version

: Rev. 01

Report No.: FR370202B

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: +86-755-3320-2398 FCC ID: ZC4S105

Page Number : 31 of 45 Report Issued Date: Jul. 23, 2013 Report Version : Rev. 01

3.5.6 Test Result of Radiated Band Edges

Test Mode :	Mode 1	Temperature :	23~25°C
Test Channel :	00	Relative Humidity :	49~53%
		Test Engineer :	Gavin Wu

Report No.: FR370202B

	ANTENNA POLARITY : HORIZONTAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV /m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2315.67	46.72	-27.28	74	38.97	32.02	5.53	29.8	109	52	Peak
2385.87	37.19	-16.81	54	29.25	32.14	5.59	29.79	109	52	Average

	ANTENNA POLARITY : VERTICAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV /m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2357.43	46.45	-27.55	74	38.58	32.1	5.56	29.79	100	269	Peak
2357.07	36.34	-17.66	54	28.47	32.1	5.56	29.79	100	269	Average

Test Mode :	Mode 3	Temperature :	23~25°C
Test Channel :	39	Relative Humidity :	49~53%
		Test Engineer :	Gavin Wu

	ANTENNA POLARITY : HORIZONTAL											
Frequency	ency Level Over Limit Read Antenna Cable Preamp Ant Table Remai											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.62	50.52	-23.48	74	42.3	32.27	5.71	29.76	133	310	Peak		
2495.86	38.72	-15.28	54	30.44	32.29	5.74	29.75	133	310	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	quency Level Over Limit Read Antenna Cable Preamp Ant Table Rema											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.71	49.87	-24.13	74	41.65	32.27	5.71	29.76	118	274	Peak		
2496.28	37.8	-16.2	54	29.52	32.29	5.74	29.75	118	274	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number : 32 of 45 TEL: +86-755-3320-2398 Report Issued Date: Jul. 23, 2013 FCC ID: ZC4S105 Report Version : Rev. 01

Report No.: FR370202B

FCC RF Test Report

3.5.7 Test Result of Radiated Emission (30 MHz ~ 10th Harmonic)

Note: Below 1GHz for radiated emission measurement, pre-scanned all test modes and only choose the worst case mode was recorded in the report.

Test Mode :	Mod	e 1	Temperature :	23~25°C				
Test Channel :	00		Relative Humidity :	49~53%				
Test Engineer :	Gav	in Wu	Polarization :	Horizontal				
	1.	2402 MHz is fundamer	ntal signal which can be ignored.					
	2.	7206 MHz is not within	n a restricted band, and	d its limit line is 20dB below the				
Remark :		highest emission level.	For example, 94.7 dB	μV/m - 20dB = 74.7 dBμV/m.				
	3.	Average measurement was not performed if peak level went lower than the						
		average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2402	94.7	-	-	86.72	32.14	5.62	29.78	109	52	Peak
2402	92.77	-	-	84.79	32.14	5.62	29.78	109	52	Average
4804	40.51	-33.49	74	55.84	33.63	8.33	57.29	120	110	Peak
7206	41.5	-33.2	74.7	53.57	35.27	9.95	57.29	132	310	Peak

Note: Other harmonics are lower than background noise.

Test Mode :	Мо	de 1	Temperature :	23~25°C				
Test Channel :	00		Relative Humidity :	49~53%				
Test Engineer :	Ga	vin Wu	Polarization :	Vertical				
	1.	2402 MHz is fundament	tal signal which can be ignored.					
	2.	7206 MHz is not within	206 MHz is not within a restricted band, and its limit line is 20dB below					
Remark :		highest emission level.						
3. Average measurement was not performed if peak level went lower that								
		average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2402	90.74	-	-	82.76	32.14	5.62	29.78	100	269	Peak
2402	88.68	-	-	80.7	32.14	5.62	29.78	100	269	Average
4804	38.46	-35.54	74	53.79	33.63	8.33	57.29	120	110	Peak
7206	39.25	-31.49	70.74	51.32	35.27	9.95	57.29	132	310	Peak

Note: Other harmonics are lower than background noise.

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 33 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode: Mode 2 Temperature: 23~25°C Test Channel: 19 49~53% Relative Humidity: Test Engineer : Polarization: Gavin Wu Horizontal 1. 2440 MHz is fundamental signal which can be ignored. Remark: 2. Average measurement was not performed if peak level went lower than the average limit.

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2440	96.63	-	-	88.53	32.22	5.65	29.77	136	49	Peak
2440	94.58	-	-	86.48	32.22	5.65	29.77	136	49	Average
4880	38.84	-35.16	74	53.8	33.8	8.41	57.17	110	245	Peak
7320	40.82	-33.18	74	52.64	35.32	10	57.14	184	225	Peak

Note: Other harmonics are lower than background noise.

Test Mode :	Mode 2	Temperature :	23~25°C
Test Channel :	19	Relative Humidity :	49~53%
Test Engineer :	Gavin Wu	Polarization :	Vertical
	1. 2440 MHz is fundament	al signal which can be	ignored.
Remark :	2. Average measurement	was not performed if	peak level went lower than the
	average limit.		

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2440	90	-	-	81.9	32.22	5.65	29.77	100	100	Peak
2440	87.78	-	-	79.68	32.22	5.65	29.77	100	100	Average
4880	38.66	-35.34	74	53.62	33.8	8.41	57.17	110	245	Peak
7320	40.44	-33.56	74	52.26	35.32	10	57.14	184	225	Peak

Note: Other harmonics are lower than background noise.

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 34 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	Mode 3	Temperature :	23~25°C
Test Channel :	39	Relative Humidity :	49~53%
Test Engineer :	Gavin Wu	Polarization :	Horizontal
	1. 2480 MHz is fundament	al signal which can be	ignored.
Remark :	2. Average measurement	was not performed if	peak level went lower than the
	average limit.		

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
62.67	27.26	-12.74	40	51.42	5.53	0.85	30.54	-	-	Peak
105.6	33.59	-9.91	43.5	51.26	11.8	1.18	30.65	100	120	Peak
186.33	26.79	-16.71	43.5	46.84	9	1.33	30.38	-	-	Peak
352.5	27.86	-18.14	46	41.09	14.77	1.83	29.83	-	-	Peak
531.7	24.22	-21.78	46	33.22	18.1	2.19	29.29	-	-	Peak
696.9	36.23	-9.77	46	43.49	19.38	2.43	29.07	-	-	Peak
2480	97.19	-	-	88.97	32.27	5.71	29.76	133	310	Peak
2480	96.35	-	-	88.13	32.27	5.71	29.76	133	310	Average
4960	38.76	-35.24	74	53.28	34.01	8.49	57.02	150	135	Peak
7440	39.9	-34.1	74	51.48	35.37	10.04	56.99	175	260	Peak

Note: Other harmonics are lower than background noise.

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 35 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	Mode 3	Temperature :	23~25°C			
Test Channel :	39	Relative Humidity :	49~53%			
Test Engineer :	Gavin Wu	Polarization :	Vertical			
	2480 MHz is fundamental signal which can be ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the					
	average limit.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	/ dBu\//m \	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
, ,	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
84	24.22	-15.78	40	45.66	8.1	1.08	30.62	-	-	Peak
95.88	31.31	-12.19	43.5	50.41	10.4	1.16	30.66	-	-	Peak
172.56	31.61	-11.89	43.5	51.12	9.63	1.28	30.42	120	210	Peak
353.9	28.66	-17.34	46	41.87	14.77	1.84	29.82	-	-	Peak
533.1	25.37	-20.63	46	34.37	18.1	2.19	29.29	-	-	Peak
898.5	29.93	-16.07	46	34.81	21.22	2.71	28.81	-	-	Peak
2480	94.2	-	-	85.98	32.27	5.71	29.76	118	274	Peak
2480	92.96	-	-	84.74	32.27	5.71	29.76	118	274	Average
4960	38.63	-35.37	74	53.15	34.01	8.49	57.02	150	135	Peak
7440	40.56	-33.44	74	52.14	35.37	10.04	56.99	175	260	Peak

Note: Other harmonics are lower than background noise.

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 36 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MUz)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

See list of measuring instruments of this test report.

3.6.3 Test Procedures

- 1. The testing follows the guidelines in ANSI C63.10-2009.
- 2. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connecting to the other LISN.
- 5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 6. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 7. Both sides of AC line were checked for maximum conducted interference.
- 8. The frequency range from 150 kHz to 30 MHz was searched.
- 9. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

FCC ID : ZC4S105

Page Number : 37 of 45 Report Issued Date : Jul. 23, 2013

Report No.: FR370202B

Report Version : Rev. 01

Report No.: FR370202B

3.6.4 Test Setup

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 38 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.6.5 Test Result of AC Conducted Emission

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 39 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	Mode 1			Ten	peratu	re:	24~	.4~25°C	
Test Engineer :	Leo Jhou			Rela	ative H	umidity	: 48~	49%	
Test Voltage :	120Vac /	60Hz		Pha	Phase :			Neutral	
GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter) + Earphone									
100	Level (dBuV)				_	Dat	te: 2013-0	7-08 Time: 16:40:5	8
90)								_
80									_
70									_
60	Δ					0 1		FCC 15C_QP	_
50	MAN	WA A 1001	en salasanahila	Elecchionen	Milher for tall, at			FCC 15C_AVG	<u>i</u>
40		5 7	198722 27	9238941±	# ⁷ 4명취공55	5064 664 59683	had governor have been	Manuelle	1
20 10									-
(.15 .2	.5	1		2	5	10	20	
				Frequ	ency (MHz)				8.5
Site Condit:	: CO01-S ion: FCC 15		N N 2000	601 NEU:	TRAL				
			1000						
				TO ACCUST TO LA					
	Freq	Level	Over Limit		Read Level	LISN Factor	Cable Loss	Remark	
-	MHz	dBuV -	dB	dBuV	dBuV	dB	dB	-	
1		38.07 -						Average	
2 3	0.16	51.27 - 37.09 -			41.20	0.02	10.05	QP Average	
4	0.35	46.89 -	-12.11	59.00	36.80	0.02	10.07		
5		33.39 -						Average	
6		42.59 -				0.02		QP Average	
8	0.49				32.20	0.02	10.08	A CONTRACTOR OF THE SALE	
9		38.90		46.00		0.02	10.09	Average	
10 11 *	0.53			56.00	36.09	0.02	10.09		
12		39.81						Average	
13								Average	
14		43.62 -							
15								Average	
16 17		42.92 -						QP Average	
18		44.22 -							
19								Average	
20		43.63 -							
21 22		34.63 - 43.73 -						Average	
23								Average	
24		44.63 -							
25								Average	
26		44.13 -							
27 28		33.24 - 44.64 -						Average OP	
29								Average	
								3ES	

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 40 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	Mode 1		Temperati	ure :	24~2	-25 ℃			
Test Engineer :	Leo Jhou		Relative H	lumidity :	48~4	48~49%			
Test Voltage :	120Vac / 6	60Hz	Phase :		Neut	Neutral			
Function Type :	+ Earphone								
100 L	evel (dBuV)			Date	e: 2013-07	7-08 Time: 16:40:58			
90									
80									
70	-					FCC 15C_QP			
60	2					William William Control			
50	MARIA	4 10121 mb water	Describing was bearing at	dh.		FCC 15C_AVG			
40	, A.M.	WY WILL THAT	1000 1000 1000 1000 1000 1000 1000 100	Total Manual Village		1 A A A			
57500		57 19872	8785443 5 74853	5/5b 1	and march for depotent	we face of the first of the fir			
30				066B3	10 1000				
20									
					12 (03)(0)				
10									
10									
0.1 Site	: C001-SZ		2 Frequency (MH	5 z)	10	20 30			
0 Site	: CO01-SZ		Frequency (MH	327	10	20 30			
0 Site	: C001-SZ n: FCC 15C	_QP LISN_N_2000	Frequency (MH 601 NEUTRAL Limit Reac	z) l LISN	Cable				
0 Site	: C001-SZ n: FCC 15C	QP LISN_N_2000	Frequency (MH	z) l LISN	Cable	20 30			
Site Conditio	: COO1-SZ n: FCC 15C	_QF LISN_N_20000 Over Level Limit dBuV dB	Frequency (MH 601 NEUTRAL Limit Reac Line Level	LISN Factor	Cable Loss	Remark			
Site Condition	: C001-SZ n: FCC 15C Freq 1	_QF LISN_N_20000 Over Level Limit dBuV dB 46.14 -9.86	Frequency (MH 601 NEUTRAL Limit Read Line Level dBuV dBuV 56.00 36.00	LISN Factor dB 0.02	Cable Loss dB 10.12	Remark			
Site Conditio	: C001-SZ on: FCC 15C Freq 1 MHz 1.12 1.18	_QP LISN_N_20000 Over Level Limit dBuV dB 46.14 -9.86 33.84 -12.16	Frequency (MH 601 NEUTRAL Limit Reac Line Level	LISN Factor dB 0.02	Cable Loss dB 10.12	Remark QP Average			
Site Condition	Freq I	Over Level Limit dBuV dB 46.14 -9.86 33.84 -12.16 44.04 -11.96	Frequency (MH 601 NEUTRAL Limit Read Line Level dBuV dBuV 56.00 36.00 46.00 23.70	d LISN Factor dB 0.02 0.02 0.02	Cable Loss dB 10.12 10.12 10.12	Remark QP Average			
Site Condition	: C001-SZ on: FCC 15C Freq I	Over Level Limit dBuV dB 46.14 -9.86 33.84 -12.16 44.04 -11.96 35.65 -10.35 44.25 -11.75	Frequency (MH 601 NEUTRAL Limit Read Line Level dBuV dBuV 56.00 36.00 46.00 23.70 56.00 33.90	d LISN Factor 0.02 0.02 0.02 0.02 0.02	Cable Loss dB 10.12 10.12 10.12 10.12 10.12	Remark QP Average QP Average QP Average			
30 31 32 33 34 35	Freq I	Over Level Limit dBuV 46.14 -9.86 33.84 -12.16 44.04 -11.96 35.65 -10.35 44.25 -11.75 31.25 -14.75	Frequency (MH 601 NEUTRAL Limit Reac Line Level 600 36.00 46.00 23.70 56.00 33.90 46.00 25.51 56.00 34.11 46.00 21.10	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12	Remark QP Average QP Average QP Average QP Average			
30 31 32 33 34 35 36	: C001-SZ nn: FCC 15C Freq 1 MHz 1.12 1.18 1.18 1.30 1.30 1.35 1.35	Over Level Limit dBuV dB 46.14 -9.86 33.84 -12.16 44.04 -11.96 35.65 -10.35 44.25 -11.75 31.25 -14.75 42.85 -13.15	## Frequency (MH Frequency (d LISN Factor dB 0.02 0.02 0.02 0.02 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.12	Remark QP Average QP Average QP Average QP Average QP			
30 31 32 33 34 35 36 37	: C001-SZ nn: FCC 15C Freq 1 MHz 1.12 1.18 1.18 1.30 1.30 1.35 1.40	Over Level Limit dBuV dB 46.14 -9.86 33.84 -12.16 44.04 -11.96 35.65 -10.35 44.25 -11.75 31.25 -14.75 42.85 -13.15 35.75 -10.25	### Frequency (MH####################################	dB LISN Factor dB 0.02 0.02 0.02 0.02 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12	Remark QP Average QP Average QP Average QP Average QP Average			
30 31 32 33 34 35 36 37	: C001-SZ in: FCC 15C Freq 1 MHz 1.12 1.18 1.18 1.30 1.30 1.35 1.40 1.40	Over Level Limit dBuV dB 46.14 -9.86 33.84 -12.16 44.04 -11.96 35.65 -10.35 44.25 -11.75 31.25 -14.75 42.85 -13.15 35.75 -10.25 43.75 -12.25	### React Limit React Line Level #### ABUV ABUV 56.00 36.00 46.00 25.51 56.00 34.11 46.00 21.10 56.00 32.70 46.00 25.60 56.00 33.60 56.00 33.60	LISN Factor dB O 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12	Remark QP Average QP Average QP Average QP Average QP Average QP			
30 31 32 33 34 35 36 37 38	: C001-SZ nn: FCC 15C Freq 1 MHz 1.12 1.18 1.18 1.30 1.30 1.35 1.40 1.40 1.40 1.46	Over Level Limit dBuV dB 46.14 -9.86 33.84 -12.16 44.04 -11.96 35.65 -10.35 44.25 -11.75 31.25 -14.75 42.85 -13.15 35.75 -10.25 43.75 -12.25 35.95 -10.05	### React	d LISN Factor dB O.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12	Remark QP Average QP Average QP Average QP Average QP Average QP Average			
30 31 32 33 34 35 36 37 38 39	: C001-SZ on: FCC 15C Freq 1 MHz 1.12 1.18 1.18 1.30 1.30 1.35 1.40 1.40 1.46 1.46	Over Level Limit dBuV dB 46.14 -9.86 33.84 -12.16 44.04 -11.96 35.65 -10.35 44.25 -11.75 31.25 -14.75 42.85 -13.15 35.75 -10.25 43.75 -12.25 35.95 -10.05 43.75 -12.25	### Reac Limit Reac Line Level ### ABUV ABUV 56.00 36.00 46.00 25.51 46.00 25.60 32.70 46.00 25.60 56.00 33.60 46.00 25.75 56.00 33.60 46.00 25.75 56.00 33.60 46.00 25.75 56.00 33.55	LISN Factor dB 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03	Cable Loss 0B 10.12 10.12 10.12 10.12 10.12 10.12 10.13 10.13	Remark QP Average QP Average QP Average QP Average QP Average QP Average QP			
30 31 32 33 34 35 36 37 38 39 40 41	Freq I MHz 1.12 1.18 1.18 1.30 1.30 1.35 1.40 1.40 1.46 1.46 1.62	Over Level Limit dBuV dB 46.14 -9.86 35.65 -10.35 44.25 -11.75 31.25 -14.75 42.85 -13.15 35.75 -10.25 43.75 -12.25 35.95 -10.05 43.75 -12.25 33.96 -12.04	### Reac Limit Reac Line Level ### ABUV ABUV 56.00 36.00 ### 46.00 25.51 ### 46.00 25.60 ### 46.00 25.60 ### 46.00 25.60 ### 46.00 25.60 ### 46.00 25.60 ### 46.00 25.75 ### 46.00 25.80 ### 46.00 25.80 ### 46.00 25.80 ### 46.00 25.80 ### 46.00 25.80 ### 46.00 25.80 ### 46.00 23.80	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.13 10.13 10.13	Remark QP Average			
30 31 32 33 34 35 36 37 38 39 40 41 42	Freq I MHz 1.12 1.18 1.18 1.30 1.30 1.35 1.40 1.46 1.46 1.46 1.62 1.62	Over Level Limit dBuV 46.14 -9.86 33.84 -12.16 44.04 -11.96 35.65 -10.35 44.25 -11.75 31.25 -14.75 42.85 -13.15 35.75 -10.25 43.75 -12.25 35.95 -10.05 43.75 -12.25 33.96 -12.04 44.56 -11.44	## Frequency (MH 601 NEUTRAL Limit Read Line Level M	LISN Factor 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.0	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.13 10.13 10.13 10.13	Remark QP Average QP			
30 31 32 33 34 35 36 37 38 39 40 41 42 43	Freq I MHz 1.12 1.18 1.18 1.30 1.30 1.35 1.40 1.40 1.46 1.46 1.62 1.62 1.73	Over Level Limit dBuV 46.14 -9.86 33.84 -12.16 44.04 -11.96 35.65 -10.35 44.25 -11.75 31.25 -14.75 42.85 -13.15 35.75 -10.25 43.75 -12.25 35.95 -10.05 43.75 -12.25 33.96 -12.04 44.56 -11.44 31.57 -14.43	## Frequency (MH Frequency (LISN Factor dB 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.13 10.13 10.13 10.13	Remark QP Average			
30 31 32 33 34 35 36 37 38 39 40 41 42	Freq I MHz 1.12 1.18 1.18 1.30 1.30 1.35 1.40 1.40 1.46 1.46 1.62 1.62 1.73 1.73	Over Level Limit dBuV 46.14 -9.86 33.84 -12.16 44.04 -11.96 35.65 -10.35 44.25 -11.75 31.25 -14.75 42.85 -13.15 35.75 -10.25 43.75 -12.25 35.95 -10.05 43.75 -12.25 33.96 -12.04 44.56 -11.44	## Frequency (MH Frequency (LISN Factor dB 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.13 10.13 10.13 10.14 10.14	Remark QP Average QP			

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 41 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	Mode 1			Ten	peratu	re :	24~2	24~25℃		
Test Engineer :	Leo Jhou			Rela	ative H	umidity :	48~4	48~49%		
Test Voltage :	120Vac / 60Hz			Pha	se:		Neutral			
Function Type :		SSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Earphone							Adapter)	
100 L	evel (dBuV)				1	Date	e: 2013-0	7-08 Time: 16:40:58		
90										
80										
70										
	-							FCC 15C_QP		
60	200			16				FCC 15C_AVG		
50	MARINA	LAA	THEY	MANAMENT	WALL STREET	PAR PARALLE IN				
40		3 119	19870	797 19414	4749Fig	664	Mylaria bushaft	Mary Mary		
30		400			.64500	59663		American Albertaine		
20										
10	1 3						12 (33)(0)			
0										
	15 .2	.5	1	Frequ	2 ency (MHz)	5	10	20 30		
Condition	on: FCC 15			Limit	Read	LISN Factor		Remark		
_	Mu-	dp		-IP77	-lp		dB	·		
47	MHz 2.05	dBuV 34.69	dB -11.31	dBuV 46.00	dBuV 24.51			Average		
48	2.05		-11.81		34.01	0.03	10.15	QP		
49					22.00			Average		
50 51	2.33		-13.19 -14.68	46.00	32.60		10.17	QP Average		
52				56.00			10.18	V/ 5/5/2012 1		
53				46.00				Average		
54 55				56.00	31.60		10.18			
56			-15.47 -14.67		31.09		10.19	Average OP		
57						0.05				
58						0.05				
59								Average		
60						0.06				
61 62						0.06		Average		
63								Average		
64						0.07				

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 42 of 45
Report Issued Date : Jul. 23, 2013

Report No.: FR370202B

Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Connected Construction

Non-standard connector used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 43 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 28, 2013	Jul. 07, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	N/A	Mar. 28, 2013	Jul. 07, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	N/A	Mar. 28, 2013	Jul. 07, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Thermal Chamber	Hongzhan	LP-150U	HD20120425	N/A	Mar. 28, 2013	Jul. 07, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
ESCI TEST Receiver	R&S	ESCI	100724	9kHz-3GHz	Mar. 28, 2013	Jul. 08, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
Spectrum Analyzer	R&S	FSP30	101362	9kHz~30GHz	Oct. 11, 2012	Jul. 08, 2013	Oct. 10, 2013	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 12, 2012	Jul. 08, 2013	Oct. 11, 2013	Radiation (03CH01-SZ)
Bilog Antenna	SCHAFFNER	CBL6112B	2614	30MHz~2GHz	Nov. 03, 2012	Jul. 08, 2013	Nov. 02, 2013	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz-3000MHz GAIN 30db	Mar. 28, 2013	Jul. 08, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
Amplifier	Yiai	AV3860B	04030	2GHz~26.5GHz	Mar. 28, 2013	Jul. 08, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
SHF-EHF-Horn	Schwarzbeck	BBHA9170	BBHA9170249	14GHz~40GHz	Nov. 23, 2012	Jul. 08, 2013	Nov. 22, 2013	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz-30MHz	Oct. 22, 2012	Jul. 08, 2013	Oct. 21, 2013	Radiation (03CH01-SZ)
Turn Table	EM Electronice	EM 1000	N/A	0 ~ 360 degree	N/A	Jul. 08, 2013	N/A	Radiation (03CH01-SZ)
Antenna Mast	EM Electronice	EM 1000	N/A	1 m - 4 m	N/A	Jul. 08, 2013	N/A	Radiation (03CH01-SZ)
ESCIO TEST Receiver	R&S	1142.800 7.03	100724	9kHz~3GHz	Mar. 28, 2013	Jul. 18, 2013	Mar. 27, 2014	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	ETS-LINDGREN	3816/2SH	00103892	0.1MHz~108MHz	Feb. 28, 2013	Jul. 18, 2013	Feb. 27, 2014	Conduction (CO01-SZ)
AC LISN	ETS-LINDGREN	3816/2SH	00103912	0.1MHz~108MHz	Feb. 28, 2013	Jul. 18, 2013	Feb. 27, 2014	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000891 N/A	N/A	Oct. 12, 2012	Jul. 18, 2013	Oct. 11, 2013	Conduction (CO01-SZ)

TEL: +86-755-3320-2398 FCC ID: ZC4S105 Page Number : 44 of 45
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Uncertainty of Evaluation 5

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.26
of 95% (U = 2Uc(y))	2.20

Report No.: FR370202B

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	2.54
of 95% (U = 2Uc(y))	2.34

<u>Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)</u>

Measuring Uncertainty for a Level of Confidence	4.72
of 95% (U = 2Uc(y))	4.72

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number : 45 of 45 TEL: +86-755-3320-2398 Report Issued Date: Jul. 23, 2013 Report Version : Rev. 01

FCC ID: ZC4S105

Appendix A. Photographs of EUT

Please refer to Sporton report number EP370202 as below.

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: +86-755-3320-2398

FCC ID: ZC4S105

Page Number : A1 of A1
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01