Segvence Alegnment Problem Dynamic Programming

A DNA strand consists of a string of
mulecules called bases.

Adenine A

Cytosine C

Guanine G

Thynine T

SI = A C C G G T C G

Sz = C C A G G T G G C

For a given observant M between X&Y	
1- We incora a "gap penalty" of 8 (co.t of 8)	
	94
2 For each mismatch (of letters 9& we incur a mismatch cost of pg	
P9	

#	A	C	G	T	
A	0	X	X	×	
C		0	K	X	
G			0	Z	
T				0	

Similarity between strings X and Y
is the Min. Cost of an alignment
between X and Y

In an opt. alignment M, at least

one of the following is true:

1- (Xm, Yn) \in M=>

OPT(m,n)=OPT(M-1, n-1) +

XmYn

2- Xm is not matched =>

OPT(m,n) = OPT(m-1, n) + 8

3- Yn is not matched =>

OPT(m,n) = OPT(m, n-1) + 8

$$OPT(i,j) = Min \left(x_{xi,y} + \delta PT(i-1, j-1), \\ 8 + oPT(i-1,j), \\ \delta + oPT(i,j-1) \right]$$

Alignment (X, Y) Initialize A[i,0] = i8 foreach i A[i,j]=Min (axiy; + 8 + A[i-1, j]. 8+A[i,j-1]] A[m,n] takes O(mn)

