## 

Крейнин Матвей Вадимович

## МЕТОДЫ ПРЕДОБУСЛАВЛИВАНИЯ С ЗАТУХАНИЕМ ВЕСОВ

03.03.01 - Прикладные математика и физика

Выпускная квалификационная работа бакалавра

Научный руководитель:

к.ф.-м.н. А. Н. Безносиков

## Аннотация

Исследуется задача минимизации целевой функции потерь. Рассматривается проблема оптимизации целевой функции потерь градиентными методами первого порядка. Исследуется сходимость методов градиентной оптимизации с предобуславливанием, использующих регуляризацию с затуханием весов. Специально рассматриваются популярные методы оптимизации из данного класса методов такие как AdamW и OASIS. Исследуются различные альтернативы этим методам с целью изучения их скорости сходимости и точности, показываемой моделью. Предлагается новый способ добавления регуляризации в метод оптимизации Adam. Доказывается теорема о скорости сходимости данных методов при различных допущениях на функцию потерь и показывается сходимость к исходной функции потерь. Проводятся вычислителные эксперименты с различными эталонными наборами данных, моделями и проводится анализ гиперпараметров, чтобы сравнить их на реальных задачах.

## Содержание

| 1            | Вве            | дение                                                       | 4  |
|--------------|----------------|-------------------------------------------------------------|----|
| 2            | Обз            | ор литературы                                               | 7  |
| 3            | Основная часть |                                                             | 8  |
|              | 3.1            | Обозначения                                                 | 8  |
|              | 3.2            | Затухание весов                                             | 8  |
|              | 3.3            | Скорость сходимости методов с предобуславливанием и затуха- |    |
|              |                | нием весов                                                  | 10 |
|              | 3.4            | Решение методов с предобуславливанием и затуханием весов    | 15 |
|              | 3.5            | Эксперименты                                                | 17 |
| 4            | Зак            | Заключение 2                                                |    |
| $\mathbf{A}$ | Приложение     |                                                             | 26 |
|              | A.1            | Доказательство лемм                                         | 26 |
|              | A.2            | Доказательства теорем                                       | 27 |

## 1 Введение

Огромная часть машинного обучения основана на решении задачи оптимизации без ограничений

$$\min_{w \in \mathbb{R}^d} f(w).$$
(1)

Задачи вида (1) охватывают множество приложений, включая минимизацию эмпирического риска [1], глубокое обучение [2], и задачи обучения с учителем [3] такие, как наименьшие квадраты с регуляризацией [4] или логистическая регрессия [5].

Классический метод решения задачи оптимизации (1) это градиентный спуск.

$$w_{t+1} = w_t - \eta \nabla f(w_t), \tag{2}$$

Задача минимизации (1) может быть трудноразрешимой особенно, когда размер выборки крайне велик или размерность задачи велика.

В таких случаях подсчет полного градиента на каждой итерации в градиентном спуске становится очень дорогим в плане времени или вычислительных ресурсов, которые нужны для этого, особенно учитывая, что градиентному спуску часто требуется большое количество итераций для сходимости. В современном машинном обучении, особенно с появлением глубокого обучения, растет интерес к решению все более больших и сложных задач. Популярным решением для таких проблем стал стохастический градиентный спуск [6].

С течением времени методы оптимизации постоянно совершенствовались и развивались, становясь все более сложными и запутанными. Одним из важнейших аспектов в оптимизации является правильный подбор размера шага в ходе итерационного процесса. Адаптивные методы с градиентным масштабированием динамически регулируют этот размер шага на основе информации о градиенте. Такое адаптивное поведение, применяемое к каждой переменной, улучшает процесс оптимизации, эффективно перемещаясь по сложным

ландшафтам и обеспечивая оптимальный прогресс для каждой переменной [7]. В частности, эти методы приобрели значительную популярность в области машинного обучения, где преобладают высокоразмерные задачи [8, 9].

Более подробно под методами с масштабированным градиентом понимаются техники, предполагающие предобуславливание градиента задачи по определенной матрице  $D_t$ , что позволяет градиенту учитывать геометрию задачи. В общем случае шаг алгоритмов с предуславливанием может быть выражен как следующая модернизация шага (2):

$$w_{t+1} = w_t - \eta \cdot D_t^{-1} g_t, (3)$$

где  $g_t$  - несмещенный стохастический градиент.

Идея использования матрицы шкалирования отсылает нас к методу Ньютона, где  $D_t = \nabla^2 f(w)$ . Однако вычисление и обращение гессиана сопряжено со значительными трудностями, что приводит нас к необходимости использования определенных эвристик в качестве замены матрицы  $D_t$ . Примерами таких эвристических методов являются Adagrad [10], Adam [11], RMSProp, OASIS [12] и так далее, где стратегии вычислений для  $D_t$  не требуют оценки гессиана. Например, в Adagrad предусловие представлено в виде:

$$D_t = \operatorname{diag}\left\{\sqrt{\sum_{t'=0}^t g_{t'} \odot g_{t'}}\right\},\,$$

где · Адамарово произведение. На самом деле этот подход использует только стохастические градиенты.

RMSProp и Adam используют похожие идеи:

$$D_t^2 = \beta D_{t-1}^2 + (1 - \beta) \operatorname{diag} \{g_t \odot g_t\}$$

где  $\beta \in (0,1)$  представляет собой степень учета предыдущих итераций [11]. В OASIS используется другой подход:

$$D_t = \operatorname{diag}\left\{z_k \odot \nabla^2 f(w_t) z_k\right\},\,$$

где  $z_k$  - случайный вектор из распределения Рандамахера, т.е. каждый элемент вектора  $z_k^i \in \{-1,1\}$  с вероятностью  $\frac{1}{2}$  [12]. На первый взгляд кажется, что используется матрица гессиана, но на самом деле она аппроксимируется через дифференцирование скалярной функции.

Несмотря на преимущества методов предобусловливания, они склонны к переобучению, таким образом, возникает необходимость в их совместном применении с регуляризацией. Этот подход широко применяется для решения различных задач машинного обучения, включая классификацию изображений [13], распознавание речи [14] и обработку естественного языка [15], и показал свою эффективность в улучшении обобщающей способности нейронных сетей [16].

С регуляризацией задача (1) переформулируется как

$$\min_{w \in \mathbb{R}^d} F(w) := f(w) + r(w), \tag{4}$$

где r - функция регуляризации.

В методах с предуславливанием есть несколько способов добавления регуляризации. Можно добавить регуляризатор r в подсчет  $g_t$ , и тогда он будет учитываться при вычислении  $D_t$ . Этот способ равносилен рассмотрению оптимизационной задачи (4). Или же мы можем добавить регуляризатор только на последнем шаге, уменьшая норму w [17]. Такой способ регуляризации называется затуханием весов и, как ни странно, оказывается более эффективным в практических задачах. Существует и другой способ рассмотрения регуляризатора, который будет рассмотрен далее в статье.

Несмотря на свою практическую эффективность, методы, использующие затухание весов, относительно мало изучены с точки зрения теории сходимости методов. В связи с этим возникает ряд исследовательских вопросов:

- Сходятся ли с теоретической точки зрения методы с предобуславливанием и затуханием весов?
- Если сходятся, то какова скорость их сходимости?
- К какой задаче они сходятся?

## 2 Обзор литературы

Стохастические методы имеют обширный анализ их сходимости [18, 19, 20], в то время как методы, включающие предобуславливаниям, являются относительно новыми и неизученными. В одной из первых работ по предобуславливанию [10] авторы провели тщательный анализ теории сходимости Adagrad. Однако в более поздних работах, например, обсуждающих RMSProp [21] или Adam [11], теоретическим аспектам уделяется мало внимания, либо существующая теория содержит неточности в доказательстве.

Со временем ошибки были исправлены, что привело к разработке надежных теорий сходимости для методов с предобуславливанием [22, 23]. В другом исследовании Лощилов и Хуттер [17] исследовали свойства алгоритмов Adam и AdamW в терминах гиперпараметров, а также изучили методы рестартов. Чжан и др.[24] исследовали механизм заглядывания в будущее в Adam. В [25] исследователи из Nvidia предложили новый способ добавления регуляризации в алгоритм Adam, который на их экспериментах дал прирост в качестве обучения. Совсем недавно были созданы теории сходимости для современных методов, таких как OASIS [12, 26]. Кроме того, появилась теория, рассматривающая изменяющиеся во времени матрицы предобуславливания [27]. Тем не менее, многие вопросы в этой области остаются без ответа. Некоторые из нашей статье.

### 3 Основная часть

#### 3.1 Обозначения

- Мы использкем  $x^i$ , где x это вектор и  $i \in \overline{1,d}$  обозначает i-ю компоненту d-мерного вектора x.
- Для любых  $x,y \in \mathbb{R}^d$  скалярное произведение обозначается, как  $\langle x,y \rangle := \sum_{i=1}^d x^i y^i$ .
- $L_f$  константа липшица функции f, то есть  $\forall x,y \in \mathbb{R}^d \to f(x) \le f(y) + \langle \nabla f(y), x-y \rangle + \frac{L_f}{2} \|x-y\|^2$
- $||x||:=\sqrt{\langle x,x\rangle}$ , где  $x\in\mathbb{R}^d$  это  $l_2$  норма вектора x.
- $||x||_A^2 := x^T A x$ , где  $x \in \mathbb{R}^d, A \in \mathbb{R}^{d \times d}$
- Для матрицы  $A \in \mathbb{R}^{d \times d}$ ,  $A^{-1}$  обратная матрица.
- Мы используем  $A \preccurlyeq B$  для двух матриц  $A, B \in \mathbb{R}^{d \times d}$ , чтобы обозначить что  $x^T A x \leq x^T B x$  для любых  $x \in \mathbb{R}^d$ .
- diag  $\{\beta_1 \dots, \beta_d\}$  диагональная матрица, состоящая из элементов:  $\beta_1, \dots, \beta_d \in \mathbb{R}$ .

#### 3.2 Затухание весов

Как было сказано выше, в методах с предобуславливанием существует несколько техник добавления регуляризации в оптимзируемую функцию. Мы рассмотрим три различных подхода, которые проиллюстрированы в Алгоритм 1 с помощью различных цветов (каждый отдельный цвет это отдельный алгоритм).

Algorithm 1 Различные способы использования предобуславливания с регуляризацией

Require:  $\eta$  — шаг обучения, f — оптимзируемая функция

while w не сойдется do t = t + 1  $g_t \leftarrow$  стохастический градиент f  $g_t \leftarrow g_t + \nabla r(w_t)$  обычная регуляризация  $D_t \leftarrow$  матрица предобуславливания с помощью  $g_t$   $w_t \leftarrow w_{t-1} - \eta \cdot D_t^{-1} g_t$  обычная регуляризация,  $w_t \leftarrow w_{t-1} - \eta \cdot D_t^{-1} (g_t + \nabla r(w_t))$  масштабированное затухание весов,  $w_t \leftarrow w_{t-1} - \eta \cdot D_t^{-1} g_t - \eta \cdot \nabla r(w_t)$  затухание весов,

end while

Если говорить более конкретно, то первая техника регуляризации, показанная в синим, заключается в простом добавлении регуляризационного члена к оптизируемой функции. Этот регуляризатор включается в стохастический градиент и учитывается при вычислении  $D_t$ . По сути, этот подход предполагает применение базового метода оптимизации с предобусловляиванием к задаче (4). Вторая техника регуляризации, показанная на рисунке оранжевым, является новым подходом. Хотя член регуляризатора не влияет на вычисление матрицы предобуславливания  $D_t$ , он добавляется перед применением  $D_t$ . Это означает, что скорость обучения принимается одинаковой для градиента и регуляризатора. Последний рассматриваемый нами подход к регуляризации известен как затухание веса, в алгоритме он подсвечивается цветом красным в алгоритме 1. Как и во втором методе, матрица  $D_t$  вычисляется без использования регуляризатора, а в этом методе регуляризатор включен на шаге обновления весов, что позволяет изъежать влияния регуляризации на матрицу предобуславливания.

Важно учитывать влияние регуляризации при разработке алгоритмов

оптимизации, и я надеюсь, что моё исследование окажется полезным для исследователей в этой области.

# 3.3 Скорость сходимости методов с предобуславливанием и затуханием весов

Давайте попробуем оценить скорость сходимости методов с предобуславливанием и затуханием весов.

Хотя шаг оптимизации весов модели может показаться простым, он может быть рассмотрен с другой стороны. Давайте вынесем матрицу  $D_t^{-1}$  за скобки, что даёт нам следующий шаг:

$$w_{t+1} = w_t - \eta \cdot D_t^{-1}(\nabla f(w_t) + D_t \nabla r(w_t)).$$
 (5)

Это подталкивает нас к тому, чтобы вести новую функцию  $\tilde{r}$ , такую, что  $\nabla \tilde{r}_t(w) = D_t \nabla r(w)$  и новую целевую функцию

$$\tilde{F}_t(w) := f(w) + \tilde{r}_t(w), \tag{6}$$

, где новая целевая функция  $\widetilde{F}_t$  меняется на каждом оптимизационном шаге, так как  $D_t$  тоже обновляется на каждом оптимизационном шаге.

Новый адаптивный регуляризатор  $\tilde{r}_t$  в общем случае к сожалению не существует. Поэтому мы наложим ограничения на начальный регуляризатор и структуру предобусловливателя, которые будут оформлены в виде следующих предположений на функцию регуляризации.

**Предположение 1.** (Структура регулязитора) Регуляризатор r сепарабелен, то есть он может быть представлен в следующем виде:

$$r(w) = \sum_{i=1}^{d} r_i(w^i),$$

где  $r_i(x) \geq 0$  для  $i \in \overline{1, d}$  и  $x \in \mathbb{R}$ .

**Предположение 2.** (Структура матрицы предобуславливания) Матрица предобуславливания  $D_t$  может быть представлена в следующем виде:

$$D_t = diag\left\{d_t^1 \dots, d_t^d\right\}.$$

Хотя эти предположения являются достаточно сильными, но они выполняются для упомянутых ранее методов с предобуславливанием и затуханием весов, также это верно для таких популярных функций регуляризации как регуляризация Тиханова и LASSO регуляризация. Скорость сходимости обычно исчисляется количеством итераций, которые необходимы для достижения определенного уровня погрешности. Чтобы получить оценки количества итераций, необходимых для сходимости к заданной ошибке, мы должны наложить определенные предположения на оптимизируемую функцию потерь. На протяжении всего последующего анализа я предполагаю, что  $f: \mathbb{R}^d \to \mathbb{R}$  является L- гладким и дважды дифференцируемым.

#### Предположение 3. (L-гладкость)

• Градиент функции f является  $L_f$ -гладким, то есть существует такая константа  $L_f > 0$  такая, что  $\forall x, y \in \mathbb{R}^d$ ,

$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L_f}{2} ||x - y||^2.$$

• Градиент функции r является  $L_r$ -гладким, то есть существует такая константа  $L_r > 0$  такая, что  $\forall x, y \in \mathbb{R}^d$ ,

$$r(x) \le r(y) + \langle \nabla r(y), x - y \rangle + \frac{L_r}{2} ||x - y||^2.$$

Для того чтобы работать в невыпуклом случае, необходимо ввести ограничение на значения функции регуляризации, это описано в 4.

**Предположение 4.** (Ограниченность регуляризатора) Регуляризатор ограничен, то есть существует константа  $\Omega > 0$  такая, что  $\forall w \in \mathbb{R}^d$ 

$$|r(w)| \leq \Omega.$$

Мы используем обычное ограничение на матрицу предобуславливания, которое сформулировано в предположении 5.

**Предположение 5.** (Ограниченность предобуславливателя) Существуют константы  $\alpha, \Gamma \in \mathbb{R}: 0 < \alpha < \Gamma$  такие, что

$$\alpha I \preceq D_t \preceq \Gamma I \Leftrightarrow \frac{I}{\Gamma} \preceq D_t^{-1} \preceq \frac{I}{\alpha}.$$

Это было доказано в [27], что это предположение справедливо для всех современных и популярных алгоритмов с предобуславливанием, таких как Adam, Adagrad, OASIS.

В нашем анализе мы рассматриваем два способа обновления матрицы предобуславливания. В первом методе матрица обновляется через квадраты:

$$(D_{t+1})^2 = \beta(D_t)^2 + (1-\beta)(H_t)^2, \tag{7}$$

, где  $H_t$  - матрица, содержащая новую информацию, а  $\beta$  [0,1] - параметр импульса. Этот подход используется в Adam, а также в более старых методах, таких как RMSProp и AdaHessian. Второй способ является более современным и предполагает использование первых степеней матриц, сохраняя форму преобразования

$$D_{t+1} = \beta D_t + (1 - \beta) H_t, \tag{8}$$

Этот подход используется в OASIS, недавно придуманным методом. В обеих случаях параметр импульса  $\beta$  обычно подбирается близким к 1, что означает, что  $D_t$  незначительно меняется в ходе обучения, что может быть формально сформулировано в лемме 1.

Выполнение предположения 5 имеет решающее значение для сходимости и теоретического анализа, и поэтому в алгоритмах часто используется метод императивного выбора для нижней границы матрицы  $D_t$ 

$$\hat{D}_{t+1}^{ii} = \max\{\alpha, D_t^{ii}\}. \tag{9}$$

**Лемма 1.** (Эволюция  $D_t$ , Безносиков) Предположим, что для начальной матрицы  $D_0$  выполнены предположения 2 и 5,  $H_t$  диагональна с максимальным значением меньше или равным  $\Gamma$  на каждом временном шаге t, и  $D_t$ 

эволюционирует в соответствии c (7), (9) или (8), (9), тогда справедливы следующие утверждения:

1. 2 и 5 выполняется для  $\hat{D}_t$  для всех t;

2. 
$$||\hat{D}_{t+1} - \hat{D}_t||_{\infty} \le \frac{(1-\beta)\Gamma^2}{2\alpha} \text{ for } (7);$$

3. 
$$||\hat{D}_{t+1} - \hat{D}_t||_{\infty} \le 2(1 - \beta)\Gamma$$
 for (8).

Эта лемма доказана в ??, где мы опираемся на [27].

Чтобы проводить стохастический анализ, мы должны включить ограничения на стохастический градиент функции. Это формализуется в следующем предположении

**Предположение 6.** (Ожидания)  $g_t$  являются несмещенными и имеют ограниченную вариацию на любом шаге, то есть

$$\mathbb{E}\left[g_t\right] = \nabla f(w_t), \mathbb{E}\left[||g_t - \nabla f||^2\right] \le \sigma^2. \tag{10}$$

Чтобы получить дополнительные оценки на сходимость методов с предобуславливанием и затуханием весов мы накладываем сильную выпуклость 7 на целевую функцию потерь.

**Предположение 7.** (Сильная выпуклость) Сушествует  $\mu_f$  такая, что  $\forall x, y \in \mathbb{R}^d$  выполняется:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu_f}{2} ||x - y||_2^2$$

С помощью предположений 1 и 2 мы можем доказать существование  $\widetilde{r}$  и, следовательно,  $\widetilde{F}$ . Мы оформим это в лемме 2. Мы показываем только существование, но не единственность функции, но в наших оценках  $\widetilde{F}$  может быть найдена до константы.

**Лемма 2.** (Существование  $\widetilde{r}$ ) Предполагая, что 1, 2 выполняются, функция  $\widetilde{r}$  существует и имеет следующую форму:

$$\widetilde{r}_t(w) = \sum_{i=1}^d d_t^i r_i(w_i)$$

Используя введенное предположение 3, мы можем гарантировать гладкость для  $\widetilde{r}$  и оценить его константу Липшица, что формально сформулировано и доказано в лемме 3.

**Лемма 3.** (L-гладкость  $\tilde{r}$ ) Предполагая, что 1, 2, 3, 5 выполняются, градиент  $\tilde{r}$  является  $L_{\tilde{r}}$ -непрерывным, то есть существует константа  $L_{\tilde{r}} > 0$  такая, что  $\forall x, y \in \mathbb{R}^d$ ,

$$\widetilde{r}_t(x) \le \widetilde{r}_t(y) + \langle \nabla \widetilde{r}_t(y), x - y \rangle + \frac{L_{\widetilde{r}}}{2} ||x - y||^2,$$

 $u L_{\tilde{r}} = \Gamma L_r$ .

Используя введенные предположения, мы доказали сходимость методов с предобусловливанием и затуханием в общем виде. Наши результаты оформлены в Теорему 1 и Теорему 2. Доказательства теорем можно найти в Приложении A.2.

**Теорема 1.** Предполагая, что 1, 2, 3, 4, 5 выполняются, положим ошибку  $\varepsilon > 0$  и шаг обучения удовлетворяют условию:

$$\eta < \frac{2\alpha}{L_f + \Gamma L_r},$$

где  $L_f, L_r$  - константа Липшица функций f и r. Пусть существует начальная матрица предобуславливания, которая обновляется в соответствии c условиями леммы 1. Тогда количество итераций, выполняемых алгоритмами c предусловием и убывающим весом, начиная c начальной точки  $w_0 \in \mathbb{R}^d$  c  $\Delta_0 = \tilde{F}_0(w_0) - f^*$ , где  $\tilde{F}_t$  определено b (6) и b решением задачи (1), необходимое для b-приближения нормы градиента b b0, может быть ограничено количеством шагов

$$T = \mathcal{O}\left(\frac{\Delta_0 \Gamma}{\left(\eta - \frac{\tilde{L}\eta^2}{2\alpha}\right) \left(\varepsilon - \frac{\delta \Gamma}{\eta - \frac{\tilde{L}\eta^2}{2\alpha}}\right)}\right),\,$$

где  $\widetilde{L} = L_f + \Gamma L_r$  и  $\delta$  может выбрано сколь угодно малым c помощью выбора гиперпараметров  $\alpha, \beta, \Gamma$ 

1. 
$$\delta = \frac{(1-\beta)\Gamma^2}{2\alpha}$$
 for (7);

2. 
$$\delta = 2(1 - \beta)\Gamma \text{ for } (8)$$
.

**Теорема 2.** Преполагая, что 1, 2, 3, 4, 5, 7 выполняются, положим ошибку  $\varepsilon > 0$  и шаг обучения удовлетворяют условию:

$$\eta < \eta_{min} = \min \left\{ \frac{2L_f\Omega_0^2}{\alpha\beta^2}; \frac{\alpha}{4L_f}; \frac{8\mu_f L_f^2\Omega_0^4}{\alpha^2\beta^4} + \frac{L_f\Omega_0^2}{\alpha\beta^2} \right\},\,$$

гиперпараметры удовлетворяют условиям:  $\lambda < \frac{\alpha\beta^2}{8L_f\Omega_0^2}$ ,  $\beta \geq 1 - \frac{\eta(\mu_f + \lambda)\alpha}{2\Gamma^2}$ . Получаем оценку на необходимое количество шагов для сходимости алгоритма к заданной точности:

$$T = \mathcal{O}\left(\log\left(\frac{R_0^2 + \frac{8\lambda\Omega_0^2\Gamma^2}{\alpha^2(\mu_f + \lambda)}\sigma_0^2}{\varepsilon}\right) \frac{4}{\eta_{min}(\mu_f + \lambda) \cdot \min\left\{1; \frac{2\alpha}{\Gamma^2}\right\}}\right)$$

Эти теоремы устанавливают сходимость методов с предобуславливанием и затуханием весов различных предположениях, а также определяют необходимое количество итераций для заданной точности. Для наших задач простой факт сходимости этих методов имеет огромное значение.

Однако характеристики решения  $\widetilde{w}^*$  задачи

$$\min_{w \in \mathbb{R}^d} \tilde{F}(w) = f(w) + \tilde{r}(w), \tag{11}$$

к которым сходится этот метод, требуют более глубокого исследования, которое будет рассмотрено в следующем разделе.

## 3.4 Решение методов с предобуславливанием и затуханием весов

В предыдущем подразделе мы доказали сходимость методов с предобуславливанием, однако выше мы указали, что методы с затуханием весов сходятся к исходному решению задачи оптимизации (4)  $w^*$ , а к исходному решению  $\widetilde{w}^*$  задачи (1), это достигается за счет следующего. Мы получили новую целевую

функцию потерь, в которой величина регуляризации динамически изменяется от шага к шагу, на основании матрицы предобуславливания, учитывая, что матрица составляется на основе стохастических градиентов, полученных в ходе обновления весов модели, получается, что регуляризация получается тем больше, чем больше градиент по данному весу модели, и наоборот тем меньше, чем меньше градиент по весу модели. То есть регуляризация не штрафует веса модели, где градиент вышел на значения близкие к нулю. То есть мы стараемся выйти делать больший шаг там, где стохастический градиент не приблизился к каким-то околнулевым значениям, то есть пока мы не оказались в окрестности какого-то экстремума. За счёт этого получается более разнообразная траектория обновления весов модели, которая позволяет нам получать лучшую сходимость на практике. Эти рассуждения подтверждаются экспериментами, подробно описанными в разделе 3.5.

Оценим разницу между решениями задач (4) и (6). Это ограничение основано на предположениях (3) и свойствах матрицы  $D_t$ .

**Лемма 4.** (Lower bound) Предполагая, что 1, 2 и 3 выполняются, также предполагая, что задачи (6) и (4) имеют соответствующие решения  $\widetilde{w}^*$  и  $w^*$ , тогда разница между решениями может быть ограничена снизу:

$$\|\widetilde{w}^* - w^*\|L_F \ge \|\nabla r(\widetilde{w}^*)(I - D_t)\|.$$

Следовательно, можно заметить, что использование регуляризации весов не в прямом подсчете градиента, которое влечет и учет их в матрице предобуславливания приводит к сходимости к решению исходной задачи, в то время, как прямое использование функции регуляризации для подсчета стохастического градиента приводит нас к альтернативному решению. Расхождение между этими решениями зависит от нормы разности между  $D_t$  и матрицей тождества ( $||D_t - I||$ ). В результате анализ распределения элементов  $D := \lim_{t \to \infty} D_t$  может дать представление о сходимости метода с затуханием весов.

#### 3.5 Эксперименты

Мы рассмотрим два алгоритма OASIS [12] и Adam [11], а также их вариации. Их основное отличие заключается в вычислении матрицы предобуславливания. В Adam это диагональная матрица, состоящая из квадратов производных, в OASIS - стохастический гессиан, который вычисляется через случайную величину из распределения Рандемахера. Я показываю три варианта регуляризации для Adam и OASIS в Алгоритме 2 и Алгоритме 3 соответственно.

#### Algorithm 2 Различные способы добавления регуляризации для Adam

**Require:**  $\eta, \beta_1, \beta_2, \epsilon, f, r$ 

t = t + 1

while  $\theta$  не сойдется do

$$g_t = \nabla f(w_{t-1}) + \nabla r(w_{t-1})$$
$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$$

AdamL2

$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$$

$$v_{t} = \beta_{2} \cdot v_{t-1} + (1 - \beta_{2}) \cdot g_{t}^{2}$$
$$\hat{m_{t}} = \frac{m_{t}}{1 - \beta_{1}^{t}} + \nabla r(w_{t-1})$$

AdamWH

$$\hat{v_t} = \frac{v_t}{1 - \beta_2^t}$$

$$w_t = w_{t-1} - \eta \cdot \frac{\hat{m_t}}{\sqrt{v_t} + \epsilon} - \eta \nabla r(w_{t-1})$$

AdamW

end while

#### Algorithm 3 Различные способы добавления регуляризации для OASIS

Require: 
$$w_{0}, \eta_{0}, D_{0}, \theta_{0} = +\infty$$

$$w_{1} = w_{0} - \eta \hat{D_{0}}^{-1} \nabla f(w_{0})$$
for  $k = 1, 2, ...$  do
$$g_{k} = \nabla f(w_{k}) + \nabla r(w_{t-1}) \qquad \text{OASISL2}$$

$$D_{k} = \beta D_{k-1} + (1 - \beta_{2}) \cdot diag\left(z_{k} \odot \nabla^{2}\left(f(w_{k}) + r(w_{k})\right)z_{k}\right) \qquad \text{OASISWH}$$

$$(\hat{D_{k}})_{ii} = max\{|D_{k}|_{i,i}; \alpha\}, \ \forall i = \overline{1, d}$$

$$\eta_{k} = min\{\sqrt{1 + \theta_{k-1}} \cdot \eta_{k-1}; \frac{||w_{k} - w_{k-1}||_{\hat{D_{k}}}}{2||\nabla f(w_{k}) - \nabla f(w_{k-1})||_{\hat{D_{k}}}^{*}}\}$$

$$w_{k+1} = w_{k} - \eta_{k}g_{k}D_{k}^{-1} - \eta \nabla r(w_{t-1}) \qquad \text{OASISW}$$

$$\theta_{k} = \frac{\eta_{k}}{\eta_{k-1}}$$

В этом разделе приводится численные эксперименты для вышеупомянутых методов оптимизации. Эксперименты проводились на процессоре x86 и графическим ускорителем NVIDIA GeForce RTX 3090, эскперименты были воспроизведены на 8-ми ядерном процессоре на архитектуре ARM-64.

end for



Рис. 1: Adam и AdamW по классическому критерию



Рис. 2: Adam и AdamW с модифицированным критерием



Puc. 3: OASIS и OASISW по классическому критерию

Нужно пояснить данные графики, в первой теореме мы приводим оценку сходимости необходимого количества шагов для нормы градиента измененной функции  $\tilde{F}$ . На графиках 1 и 3 приведена норма градиента изначальной функции потерь от итерации, как видно из графиков норма изначального градиента для метода с затуханием весов не убывает с итерациями, на графиках 2 и 4 построены графики для нормы градиента модифицированной функции потерь



Puc. 4: OASIS и OASISW с модифицированным критерием

 $ilde{F}$ . Различие сходимости в методах Adam и OASIS иллюстрирует выбранный критерий сходимости в первой теореме, это подтверждает, что методы с предобуславливанием и затуханием весов оптимизируют не функцию потерь F, а  $ilde{F}$ . Именно градиент  $ilde{F}$  убывает с итерациями в то время, как градиент F остается неизменным.



Рис. 5: Adam и AdamW по классическому критерию в слое нейронной сети



Рис. 6: Adam и AdamW с модифицированным критерием в слое нейронной сети

Это явление можно наблюдать при обучении нейроных сетей на задачу классификации, в силу сложности современных нейронных сетей этот эффект наблюдается в отдельных слоях нейронной сети, но все таки он есть и он влияет на сходимость.

## 4 Заключение

Доказаны две теоремы, анализирующие скорость сходимости методов оптимизации с предобуславливанием, при различных предположениях на функцию потерь и регуляризации. Первая теорема доказана Проведен вычислительный эксперимент, позволящий анализировать свойства методов предобуславливания методов и их эффективность. Проведен анализ альтернативного метода добавления затухания весов в алгоритмы с предобуславливанием.

## Список литературы

- [1] Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. Vicinal risk minimization. Advances in neural information processing systems, 13, 2000.
- [2] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444, 2015.
- [3] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised learning. *Machine learning techniques for multimedia: case studies on organization and retrieval*, pages 21–49, 2008.
- [4] Ryan M Rifkin and Ross A Lippert. Notes on regularized least squares. 2007.
- [5] Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning:* From theory to algorithms. Cambridge university press, 2014.
- [6] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400–407, 1951.
- [7] Elad Hazan, Alexander Rakhlin, and Peter Bartlett. Adaptive online gradient descent. Advances in Neural Information Processing Systems, 20, 2007.
- [8] Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay regularization. arXiv preprint arXiv:1810.12281, 2018.
- [9] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael W. Mahoney. Adahessian: An adaptive second order optimizer for machine learning, 2021.
- [10] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of machine learning* research, 12(7), 2011.

- [11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- [12] Andrew Goldberg, Xiaojin Zhu, Alex Furger, and Jun-Ming Xu. Oasis: Online active semi-supervised learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 25, pages 362–367, 2011.
- [13] Feng Zhu, Hongsheng Li, Wanli Ouyang, Nenghai Yu, and Xiaogang Wang. Learning spatial regularization with image-level supervisions for multi-label image classification. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 5513–5522, 2017.
- [14] Yingbo Zhou, Caiming Xiong, and Richard Socher. Improved regularization techniques for end-to-end speech recognition. arXiv preprint arXiv:1712.07108, 2017.
- [15] Tingting Wu, Xiao Ding, Minji Tang, Hao Zhang, Bing Qin, and Ting Liu. Stgn: an implicit regularization method for learning with noisy labels in natural language processing. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pages 7587–7598, 2022.
- [16] Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization theory and neural networks architectures. *Neural computation*, 7(2):219–269, 1995.
- [17] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
- [18] Johannes Schneider and Scott Kirkpatrick. Stochastic optimization. Springer Science & Business Media, 2007.
- [19] Daniel P Heyman and Matthew J Sobel. Stochastic models in operations research: stochastic optimization, volume 2. Courier Corporation, 2004.
- [20] James C Spall. Implementation of the simultaneous perturbation algorithm for stochastic optimization. *IEEE Transactions on aerospace and electronic systems*, 34(3):817–823, 1998.

- [21] T. Tieleman and G. Hinton. Lecture 6.5 rmsprop: Divide the gradient by a running average of its recent magnitude. Lecture 6.5 rmsprop: Divide the gradient by a running average of its recent magnitude, 2012.
- [22] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond, 2019.
- [23] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof of adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.
- [24] Michael R. Zhang, James Lucas, Geoffrey Hinton, and Jimmy Ba. Lookahead optimizer: k steps forward, 1 step back, 2019.
- [25] Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M. Cohen. Stochastic gradient methods with layer-wise adaptive moments for training of deep networks, 2020.
- [26] Abdurakhmon Sadiev, Aleksandr Beznosikov, Abdulla Jasem Almansoori, Dmitry Kamzolov, Rachael Tappenden, and Martin Takáč. Stochastic gradient methods with preconditioned updates. arXiv preprint arXiv:2206.00285, 2022.
- [27] Aleksandr Beznosikov, Aibek Alanov, Dmitry Kovalev, Martin Takáč, and Alexander Gasnikov. On scaled methods for saddle point problems. arXiv preprint arXiv:2206.08303, 2022.

## А Приложение

#### А.1 Доказательство лемм

Доказательство. (Лемма 1)

- 1. Благодаря выражению (9)  $\hat{D}_t$  ограничена снизу. Из уравнений обновления матрицы предобуславливания (8) и (9) можно сделать вывод, что условие 2 выполняется из итерационного обновления матрицы, а также абсолютное значение диагональных элементов матрицы  $D_t$  ограниченно сверху после каждого обновления, по причине того, что матрица  $H_t$  ограниченна сверху.
- 2. Можем ограничить норму разности сверху, используя (7) и тот факт, что все матрицы диагональные

$$||\hat{D}_{t+1} - \hat{D}_t||_{\infty} \le ||D_{t+1} - D_t||_{\infty} = ||((D_{t+1})^2 - (D_t)^2)(D_{t+1} + D_t)^{-1}||_{\infty}$$

$$\le (1 - \beta)||((H_t)^2 - (D_t)^2)(D_{t+1} + D_t)^{-1}||_{\infty}$$

$$\le (1 - \beta)\frac{\Gamma^2}{2\alpha}.$$

Ограничили каждый фактор по отдельности:  $||(D_t)^2 - (H_t)^2||_{\infty}$  ограничен  $\Gamma^2$ , так как каждый из диагональных элементов  $(D_t)^2$  и  $(H_t)^2$  больше 0 и меньше  $\Gamma^2$ . Второй коэффициент ограничен, поскольку и  $D_{t+1}$ , и  $D_t$  больше или равны  $\alpha$ , как доказано в первом утверждении этой леммы, следовательно,

$$(D_{t+1} + D_t)^{-1} \preccurlyeq \frac{1}{2\alpha}.$$

3. Можем ограничить норму разности сверху, используя (8), аналогично доказательству второго утверждения этой леммы

$$||\hat{D}_{t+1} - \hat{D}_t||_{\infty} \le ||D_{t+1} - D_t||_{\infty} \le (1 - \beta)||H_t - D_t||_{\infty} \le 2\Gamma(1 - \beta).$$

Используем первое утверждение этой леммы об ограниченности диагональных элементов.

Доказательство. (Лемма 2)

Используя предположения 1, 2, мы можем записать градиент  $\widetilde{r}$ 

$$\nabla \widetilde{r} = \nabla \left( \sum_{i=1}^{d} D_t^i r_i(w_i) \right) = D_t \begin{pmatrix} r_1'(w_1) \\ \vdots \\ r_d'(w_d) \end{pmatrix} = D_t \nabla r.$$

П

Доказали необходимое на утверждение.

Доказательство. (Лемма 3) Мы можем написать определение гладкости, используя лемму 2, а затем применить 3 и 5.

$$||\nabla \widetilde{r}(x) - \nabla \widetilde{r}(y)|| = \left\| \nabla \left( \sum_{i=1}^{d} D_t^i r_i(x_i) \right) - \nabla \left( \sum_{i=1}^{d} D_t^i r_i(y_i) \right) \right\|$$
$$= ||D_t \left( \nabla r(x) - \nabla r(y) \right)|| \le ||D_t|| L_r \le \Gamma L_r$$

Доказали необходимое нам утверждение.

Доказательство. (Proof of lemma 4) Напишем определения решений  $w^*$ ,  $\widetilde{w}^*$ :

$$\begin{cases} \nabla f(\widetilde{w}^*) + D_t \nabla r(\widetilde{w}^*) = 0 \\ \nabla f(w^*) + \nabla r(w^*) = 0 \end{cases},$$

Тогда мы можем получить нижнюю границу из определения  $L_F$ -контрастности функции F.

$$\|\widetilde{w}^* - w^*\| L_F \ge \|\nabla f(\widetilde{w}^*) + \nabla r(\widetilde{w}^*) - \nabla f(w^*) - \nabla r(w^*)\|$$

$$= \| -D_t \nabla r(\widetilde{w}^*) + \nabla r(\widetilde{w}^*)\| = \|\nabla r(\widetilde{w}^*)(I - D_t)\|.$$

Доказали утверждение.

#### А.2 Доказательства теорем

Доказательство. (Теорема 1)

Используем предположение (3) для шагов t и t+1:

$$f(w_{t+1}) \le f(w_t) + \langle \nabla f(w_t), w_{t+1} - w_t \rangle + \frac{L_f}{2} ||w_{t+1} - w_t||^2, \tag{12}$$

По определению нашего алгоритма мы имеем:

$$w_{t+1} - w_t = -\eta D_t^{-1} \nabla f(w_t) - \eta \nabla r(w_t).$$

Из предыдущего выражения выбираем градиент функции

$$\nabla f(w_t) = \frac{1}{\eta} D_t(w_t - w_{t+1}) - D_t \nabla r(w_t),$$

заменим  $\nabla f(w_t)$  в 12 и по предположению 5,,  $I \preccurlyeq \frac{D_t}{\alpha}$ 

$$f(w_{t+1}) \leq f(w_t) + \langle \frac{1}{\eta} D_t(w_t - w_{t+1}) - D_t \nabla r(w_t), w_{t+1} - w_t \rangle + \frac{L_f}{2\alpha} ||w_{t+1} - w_t||_{D_t}^2$$
  
=  $f(w_t) + \left(\frac{L_f}{2\alpha} - \frac{1}{\eta}\right) ||w_{t+1} - w_t||_{D_t}^2 - \langle D_t \nabla r(w_t), w_{t+1} - w_t \rangle,$ 

используя обозначение  $\widetilde{r}_t$ :  $\nabla \widetilde{r}_t = D_t \nabla r(w_t)$ , мы можем переписать шаг, используя переменную и предположение (3)

$$\widetilde{r}(w_{t+1}) \leq \widetilde{r}(w_t) + \langle \nabla \widetilde{r}(w_t), w_{t+1} - w_t \rangle + \frac{L_{\widetilde{r}}}{2} ||w_{t+1} - w_t||_2^2.$$

Заменим старую функцию регуляризации на новую

$$f(w_{t+1}) \le f(w_t) + \left(\frac{L_f}{2\alpha} - \frac{1}{\eta}\right) ||w_{t+1} - w_t||_{D_t}^2 + \tilde{r}(w_t) - \tilde{r}(w_{t+1}) + \frac{\Gamma L_{\tilde{r}}}{2} ||w_{t+1} - w_t||_{D_t}^2.$$

Теперь давайте определим новую функцию потерь  $\widetilde{F}_t(w) := f(w) + \widetilde{r}_t(w),$   $(\widetilde{L} = L_f + \Gamma L_r),$  мы получаем:

$$\widetilde{F}_t(w_{t+1}) \leq \widetilde{F}_t(w_t) + \left(\frac{\widetilde{L}}{2\alpha} - \frac{1}{\eta}\right) ||w_{t+1} - w_t||_{D_t}^2,$$

мы выбираем шаг таким образом, чтобы  $\frac{\tilde{L}}{2\alpha} - \frac{1}{\eta} < 0 \Leftrightarrow \eta < \frac{2\alpha}{\tilde{L}}$ 

$$\left(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha}\right) ||w_{t+1} - w_t||_{D_t}^2 \le \tilde{F}_t(w_t) - \tilde{F}_t(w_{t+1}).$$
(13)

Тогда заметим, что согласно алгоритму

$$||w_{t+1} - w_t||_{D_t}^2 = || - \eta D_t^{-1} \nabla f(w_t) - \eta \nabla r(w_t)||_{D_t}^2$$

$$= \eta^2 ||D_t^{-1} (\nabla f(w_t) + \nabla \widetilde{r}_t(w_t))||_{D_t}^2$$

$$= \eta^2 (\nabla f(w_t) + \nabla \widetilde{r}_t(w_t))^T D_t^{-1} D_t D_t^{-1} (\nabla f(w_t) + \nabla \widetilde{r}_t(w_t))$$

$$\geq \frac{\eta^2}{\Gamma} ||\nabla f(w_t) + \nabla \widetilde{r}_t(w_t)||^2 = \frac{\eta^2}{\Gamma} ||\nabla \widetilde{F}_t(w_t)||^2,$$

и заменим  $||w_{t+1}-w_t||_{D_t}^2$  в (13) предыдущим уравнением и получим

$$\left(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha}\right) \frac{\eta^2}{\Gamma} ||\nabla \tilde{F}_t(w_t)||^2 \le \tilde{F}_t(w_t) - \tilde{F}_t(w_{t+1}).$$
(14)

Чтобы получить уравнение, мы связываем норму разности  $\tilde{F}_{t+1}$  и  $\tilde{F}_t$  при равных переменных w:

$$|\widetilde{F}_{t+1}(w) - \widetilde{F}_{t}(w)| = |\widetilde{r}_{t+1}(w) - \widetilde{r}_{t}(w)| = \left| \sum_{i=0}^{d} (d_{t+1}^{i} - d_{t}^{i}) r_{i}(w^{i}) \right|$$

$$\leq \sum_{i=0}^{d} |d_{t+1}^{i} - d_{t}^{i}| r_{i}(w^{i}) \leq ||D_{t+1} - D_{t}||_{\infty} |r(w)|$$

$$\leq \Omega ||D_{t+1} - D_{t}||_{\infty},$$

где мы используем предположение 1 и предположение 4.

Затем нам нужно оценить  $|\widetilde{F}_{t+1}(w) - \widetilde{F}_t(w)|$ , используя лемму 1. Мы связываем последнее уравнение с  $\delta$  и уточняем  $\delta$  для случаев (7) и (8)

$$|\widetilde{F}_{t+1}(w) - \widetilde{F}_t(w)| \le \Omega ||D_{t+1} - D_t||_{\infty} \le \delta, \tag{15}$$

где 
$$\delta = egin{cases} rac{(1-eta)\Gamma^2}{2lpha}\Omega & \text{для } (7) \\ 2(1-eta)\Gamma\Omega & \text{для } (8) \end{cases}.$$

Теперь мы можем оценить следующую разность, используя (14) и (15).

$$\widetilde{F}_t(w_t) - \widetilde{F}_{t+1}(w_{t+1}) = \widetilde{F}_t(w_t) - \widetilde{F}_t(w_{t+1}) + \widetilde{F}_t(w_{t+1}) - \widetilde{F}_{t+1}(w_{t+1})$$

$$\geq \left(\frac{1}{\eta} - \frac{\widetilde{L}}{2\alpha}\right) \frac{\eta^2}{\Gamma} ||\nabla \widetilde{F}_t(w_t)||^2 - \delta,$$

и перепишем

$$\left(\frac{1}{\eta} - \frac{\widetilde{L}}{2\alpha}\right) \frac{\eta^2}{\Gamma} ||\nabla \widetilde{F}_t(w_t)||^2 \le \widetilde{F}_t(w_t) - \widetilde{F}_{t+1}(w_{t+1}) + \delta.$$

Теперь просуммируем все итерации предыдущего выражения

$$\frac{\eta^{2}(T+1)}{\Gamma} \left( \frac{1}{\eta} - \frac{\tilde{L}}{2\alpha} \right) \cdot \min_{t \in \overline{0,T}} ||\nabla \widetilde{F}_{t}(w_{t})||^{2} \leq \frac{\eta^{2}}{\Gamma} \left( \frac{1}{\eta} - \frac{\tilde{L}}{2\alpha} \right) \cdot \sum_{t=0}^{T} ||\nabla \widetilde{F}_{t}(w_{t})||^{2}$$
$$\leq \widetilde{F}(w_{0}) - \widetilde{F}^{*} + \delta \cdot (T+1)$$

Переместив все в правую часть, мы получим следующую оценку

$$\min_{t \in \overline{0,T}} ||\nabla f(w_t) + \nabla \tilde{r}(w_t)||^2 \le \frac{(\tilde{F}(w_0) - \tilde{F}(w_*))\Gamma}{(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha})\eta^2(T+1)} + \frac{\delta\Gamma}{(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha})\eta^2} = \varepsilon,$$

$$T + 1 \ge \frac{\Delta_0\Gamma}{(\eta - \frac{\tilde{L}\eta^2}{2\alpha})\left(\varepsilon - \frac{\delta\Gamma}{\eta - \frac{\tilde{L}\eta^2}{2\alpha}}\right)}.$$

Мы получаем оценку количества шагов, необходимых для достижения заданной точности

$$T = \mathcal{O}\left(\frac{\Delta_0 \Gamma}{\left(\eta - \frac{\tilde{L}\eta^2}{2\alpha}\right) \left(\varepsilon - \frac{\delta \Gamma}{\eta - \frac{\tilde{L}\eta^2}{2\alpha}}\right)}\right).$$

Доказательство. (Теорема 2) В дальнейшем доказательстве нам понадобятся вспомогательный термин -  $\sigma_{t+1}^2$ , он понадобится нам для записи рекурсии:

$$\sigma_{t+1}^2 = ||D_{t+1}||_2^2 = ||\beta D_t + (1-\beta)H_t||_2^2 = \beta^2 ||D_t + \frac{1-\beta}{\beta}H_t||_2^2.$$

Тогда давайте перепишем:

$$\sigma_{t+1}^{2} \leq \beta^{2} (1 + \frac{1}{a}) \sigma_{t}^{2} + \left(\frac{1 - \beta}{\beta}\right)^{2} (1 + a) ||\nabla f(w_{t})||_{2}^{2}$$

$$= \beta^{2} (1 + \frac{1}{a}) \sigma_{t}^{2} + \left(\frac{1 - \beta}{\beta}\right)^{2} (1 + a) ||\nabla f(w_{t}) - \nabla f(w_{*})||_{2}^{2}$$

$$\leq \beta^{2} (1 + \frac{1}{a}) \sigma_{t}^{2} + 2 \left(\frac{1 - \beta}{\beta}\right)^{2} (1 + a) L_{f}(f(w_{t}) - f(w_{*})).$$

Выберем  $a = \frac{\beta}{1-\beta}$ , чтобы получить  $\beta^2(1+\frac{1}{a}) = \beta$ , учтем это в уравнении  $\sigma^2$ :

$$\sigma_{t+1}^2 \le \beta \sigma_t^2 + 2 \frac{1-\beta}{\beta^2} L_f(f(w_t) - f(w_*)).$$

Запишем норму между текущими весами и решением исходной задачи:

$$||w_{t+1} - w_*||_{D_t}^2 = ||w_t - w_*||_{D_t}^2 - 2\eta \langle \nabla f(w_t) + D_t \nabla r(w_t), w_t - w_* \rangle + \eta^2 ||\nabla f(w_t) + D_t \nabla r(w_t)||_{L^2}^2 + \eta^2 ||\nabla f(w_t) - w_*||_{L^2}^2 + \eta^2 ||_{L^2}^2 + \eta^2 ||\nabla f(w_t) - w_*||_{L^2}^2 + \eta^2 ||\nabla$$

С предположением 7 на f:

$$||w_{t+1} - w_*||_{D_t}^2 \le ||w_t - w_*||_{D_t}^2 + 2\eta \left( f(w_*) - f(w_t) - \frac{\mu_f}{2} ||w_t - w_*||_2^2 \right) - 2\eta \langle \nabla r(w_t), w_t - w_* \rangle_{D_t} + \eta^2 ||\nabla f(w_t) + D_t \nabla r(w_t)||_{D_t^{-1}}^2.$$

В случае регуляризации  $\ell_2$  можем записать третий член:

$$-2\eta \langle D_{t} \nabla r(w_{t}), w_{t} - w_{*} \rangle = -2\lambda \eta \langle D_{t} w_{t}, w_{t} - w_{*} \rangle$$

$$= -2\lambda \eta \langle w_{t} - w_{*}, w_{t} - w_{*} \rangle_{D_{t}} - 2\lambda \eta \langle w_{*}, w_{t} - w_{*} \rangle_{D_{t}}$$

$$= -2\eta \lambda ||w_{t} - w_{*}||_{D_{t}}^{2} - 2\lambda \eta \langle w_{*} \sqrt{D_{t}}, \sqrt{D_{t}} (w_{t} - w_{*}) \rangle$$

$$\leq -2\eta \lambda ||w_{t} - w_{*}||_{D_{t}}^{2} + \lambda \eta ||w_{*} \sqrt{D_{t}}||_{2}^{2} + \lambda \eta ||w_{t} - w_{*}||_{D_{t}}^{2}$$

$$\leq -\eta \lambda ||w_{t} - w_{*}||_{D_{t}}^{2} + \frac{\lambda \eta \Omega_{0}^{2}}{\alpha} ||D_{t}||_{2}^{2}.$$

Здесь мы использовали, что 5,  $\alpha I \preccurlyeq D_t \preccurlyeq \Gamma I$  и  $||w_*|||_2^2 \leq \Omega_0^2$ . С помощью леммы 2 и L-гладкости 3 функции  $f, ||\nabla f(w_t) - \nabla f(w_*)||_2^2 \leq 2L_f(f(w_t) - f(w_*))$ :

$$\eta^{2}||\nabla f(w_{t}) + D_{t}\nabla r(w_{t})||_{D_{t}^{-1}}^{2} \leq 2\eta^{2}||\nabla f(w_{t}) - \nabla f(w^{*})||_{D_{t}^{-1}}^{2} + 4\eta^{2}||\nabla r(w_{t}) - \nabla r(w_{*})||_{D_{t}}^{2} + 4\eta^{2}||\nabla r(w_{*})||_{D_{t}}^{2} \\
- \nabla r(w_{*})||_{D_{t}}^{2} + 4\eta^{2}||\nabla r(w_{*})||_{D_{t}}^{2} \\
\leq 4\eta^{2}\lambda^{2}||w_{t} - w_{*}||_{D_{t}}^{2} + \frac{4\eta^{2}L_{f}}{\alpha}\left(f(w_{t}) - f(w_{*})\right) \\
+ 4\eta^{2}\lambda^{2}\Omega_{0}^{2}||D_{t}||_{2} \\
\leq 4\eta^{2}\lambda^{2}||w_{t} - w_{*}||_{D_{t}}^{2} + \frac{4\eta^{2}L_{f}}{\alpha}\left(f(w_{t}) - f(w_{*})\right) \\
+ 4\eta^{2}\frac{\lambda^{2}\Omega_{0}^{2}}{\alpha}||D_{t}||_{2}^{2}.$$

Наконец, используя дополнительные обозначения для  $R_{t+1}^2 = ||w_{t+1} - w_*||_{D_t}^2$  и леммы 1 об изменении  $D_t$ , мы получаем:

$$\begin{split} R_{t+1}^2 & \leq \left(1 - \eta \mu_f - \eta \lambda + 4 \eta^2 \lambda^2\right) \left(1 + \frac{(1 - \beta)\Gamma^2}{2\alpha}\right) R_t^2 + \left(\frac{4 \eta^2 \lambda^2 \Omega_0^2}{\alpha} + \frac{\lambda \eta \Omega_0^2}{\alpha}\right) \sigma_t^2 \\ & + \left(\frac{4 \eta^2 L_f}{\alpha} - 2 \eta\right) \left(f(w_t) - f(w_*)\right). \\ & \sigma_{t+1}^2 \leq \beta \sigma_t^2 + 2 \frac{1 - \beta}{\beta^2} L_f(f(w_t) - f(w_*)). \\ & R_{t+1}^2 + M \sigma_{t+1}^2 \leq \left(1 - \eta \mu_f - \eta \lambda + 4 \eta^2 \lambda^2\right) \left(1 + \frac{(1 - \beta)\Gamma^2}{2\alpha}\right) R_t^2 \\ & + \left(\frac{4 \eta^2 \lambda^2 \Omega_0^2}{\alpha} + \frac{\lambda \eta \Omega_0^2}{\alpha} + M \beta\right) \sigma_t^2 \\ & + \left(\frac{4 \eta^2 L_f}{\alpha} + 2 M \frac{1 - \beta}{\beta^2} L_f - 2 \eta\right) \left(f(w_t) - f(w_*)\right). \end{split}$$

Напишем ограничения на шаг алгоритма, то есть на  $\eta$ :

$$\beta \geq 1 - \frac{\eta(\mu_f + \lambda)\alpha}{2\Gamma^2},$$

$$\eta \leq \frac{\mu_f + \lambda}{8\lambda^2}$$

$$\left(1 - \eta\mu_f - \eta\lambda + 4\eta^2\lambda^2\right) \left(1 + \frac{(1-\beta)\Gamma^2}{2\alpha}\right) \leq \left(1 - \eta\frac{\mu_f + \lambda}{2}\right) \left(1 + (1-\beta)\frac{\Gamma^2}{2\alpha}\right)$$

$$\leq \left(1 - \eta\frac{\mu_f + \lambda}{2}\right) \left(1 + \eta\frac{\mu_f + \lambda}{4}\right)$$

$$= 1 + \eta\frac{\mu_f + \lambda}{4} - \eta\frac{\mu_f + \lambda}{2} - \eta^2\frac{(\mu_f + \lambda)^2}{8}$$

$$= 1 - \eta\frac{\mu_f + \lambda}{4} - \eta^2\frac{(\mu_f + \lambda)^2}{8}$$

$$< 1 - \eta\frac{\mu_f + \lambda}{4}.$$

Запишем ограничения на второй множитель выражения, причем ещё ограничение на шаг обучения  $\eta < \frac{1}{4\lambda}$ :

$$\left(\frac{4\eta^2\lambda^2\Omega_0^2}{\alpha} + \frac{\lambda\eta\Omega_0^2}{\alpha} + M\beta\right) \le \frac{2\lambda\eta\Omega_0^2}{\alpha} + M\beta = \left(\frac{1+\beta}{2}\right)M.$$

$$M = \frac{4\eta\lambda\Omega_0^2}{\alpha(1-\beta)}.$$

Запишем ограничения на третий множитель:

$$2\eta^2 \frac{L_f}{\alpha} - \eta + \frac{1-\beta}{\beta^2} L_f M = 2\eta^2 \frac{L_f}{\alpha} - \eta + \frac{1-\beta}{\beta^2} L_f \frac{4\eta \lambda \Omega_0^2}{\alpha(1-\beta)} \le 0.$$

Поделим обе части на  $\eta$ :

$$2\eta \frac{L_f}{\alpha} - 1 + \frac{1 - \beta}{\beta^2} L_f \frac{4\lambda \Omega_0^2}{\alpha(1 - \beta)} \le 0.$$

C ограничениями на  $\lambda$  :

$$\lambda \le \frac{\alpha \beta^2}{8L_f \Omega_0^2},$$

получили, что

$$\eta < \frac{\alpha}{4L_f} \le \frac{\alpha}{2L_f} \left( 1 - \frac{4L_f \lambda \Omega_0^2}{\alpha \beta^2} \right).$$

Наконец, мы можем запустить рекурсию:

$$R_{T+1}^{2} + M\sigma_{T+1}^{2} \leq \left(1 - \eta \frac{\mu_{f} + \lambda}{4}\right) R_{T}^{2} + \left(\frac{1 + \beta}{2}\right) \cdot M\sigma_{T}^{2}$$

$$\leq \exp\left(-\min\left\{\eta \frac{\mu_{f} + \lambda}{4}; -\log\left(\frac{1 + \beta}{2}\right)\right\}\right) \left(R_{T}^{2} + M\sigma_{T}^{2}\right)$$

$$\leq \exp\left(-\min\left\{\eta \frac{\mu_{f} + \lambda}{4}; \eta \frac{(\mu_{f} + \lambda)\alpha}{2\Gamma^{2}}\right\}\right) \left(R_{T}^{2} + M\sigma_{T}^{2}\right)$$

$$\leq \exp\left(-T\eta \frac{\mu_{f} + \lambda}{4} \cdot \min\left\{1; \frac{2\alpha}{\Gamma^{2}}\right\}\right) \left(R_{0}^{2} + M\sigma_{0}^{2}\right).$$

У нас есть список ограничений на гиперпараметры алгоритма:

1. 
$$\lambda < \frac{\alpha\beta^2}{8L_f\Omega_0^2}$$
.

2. 
$$\eta \le \frac{8\mu_f L_f^2 \Omega_0^4}{\alpha^2 \beta^4} + \frac{L_f \Omega_0^2}{\alpha \beta^2} < \frac{\mu_f + \lambda}{8\lambda^2}$$
.

3. 
$$\eta < \frac{2L_f\Omega_0^2}{\alpha\beta^2} \le \frac{1}{4\lambda}$$
.

4. 
$$\beta \ge 1 - \frac{\eta(\mu_f + \lambda)\alpha}{2\Gamma^2}$$
.

5. 
$$\eta < \frac{\alpha}{4L_f}$$
.

$$\eta_{min} = \min \left\{ \frac{2L_f \Omega_0^2}{\alpha \beta^2}; \frac{\alpha}{4L_f}; \frac{8\mu_f L_f^2 \Omega_0^4}{\alpha^2 \beta^4} + \frac{L_f \Omega_0^2}{\alpha \beta^2} \right\}.$$

Получили оценку количества шагов, необходимых для достижения заданной точности

$$T = \mathcal{O}\left(\log\left(\frac{R_0^2 + \frac{8\lambda\Omega_0^2\Gamma^2}{\alpha^2(\mu_f + \lambda)}\sigma_0^2}{\varepsilon}\right) \frac{4}{\eta_{min}(\mu_f + \lambda) \cdot \min\left\{1; \frac{2\alpha}{\Gamma^2}\right\}}\right)$$