Stellen Sie das Tensorfeld

$$\mathcal{I} = y^2 \vec{e}_x \otimes \vec{e}_x - x^2 \vec{e}_y \otimes \vec{e}_y$$

in ebenen Polarkoordinaten dar, wobei die Zusammenhänge

$$x = \varrho \cos(\alpha),$$
 $\vec{e}_x = \cos(\alpha)\vec{e}_\varrho - \sin(\alpha)\vec{e}_\alpha$
 $y = \varrho \sin(\alpha),$ $\vec{e}_y = \sin(\alpha)\vec{e}_\varrho + \cos(\alpha)\vec{e}_\alpha$

bestehen.

Ein dickwandiger, dielektrischer Kreiszylinder ist radial starr mit $\mathcal{P}=|\mathcal{P}|=const$ elektrisch polarisiert, sonst aber ladungsfrei. Angenommen, der Zylinder rotiert in bezug auf ein Inertialsystem (Laborsystem) mit der Winkelgeschwindigkeit Ω (nichtrelativistisch) um seine raumfeste Achse.

- (i) Bestimmen Sie die zugehörigen Felder der elektrischen Polarisation und der Magnetisierung bezüglich des Laborsystems.
- (ii) Berechnen Sie daraus die effektive Strom- und Ladungsverteilung, die im Laborsystem beobachtet wird.

In der Mittenebene zweier parallel in Luft verlaufender metallener Kreiszylinder, zwischen denen die elektrische Spannung U liegt, bildet sich die elektrische Feldstärke

$$\vec{E}(x) = \frac{E_0 \vec{e}_y}{1 + [x/\sqrt{a(a+d)}]^2}$$
mit $E_0 = \frac{1}{\sqrt{1+d/a} \ln(\sqrt{1+a/d} + \sqrt{a/d})} \cdot \frac{U}{2a}$

aus. Berechnen Sie die längenbezogene Kraft, die der obere Zylinder auf den unteren ausübt.

Hinweis:
$$\int \frac{dx}{(1+x^2)^2} = \frac{x}{2(1+x^2)} + \frac{1}{2} \arctan(x) + const.$$

STATES AND AND STATES ----------MERCELLER COLLEGE OF STREET THE PRESENT NEWSTREET, SANSTREET, -----------LANGE LE STREET, GOT AND ALAREST WEEK SWINSH GEN TIMETERSON ALW SPANNING D

Hinweis: Die Verwendung des eleatrischen Vektorpotentiele erweist sich zur Fludderechnung als begren.

Die beiden Hälften eines Stabes (Länge 22 Querschnittsfläche A) aus schwach elektrisch leitfähigem Material (Konduktivität γ, Permittivität ϵ) sind entgegengesetzt gleichförmig geladen (längenbezogene Ladung Q'). Berechnen Sie für die nachfolgende Relaxation die elektrische Stromdichte J(x,t),

 $-l \leq x \leq l, \quad t \geq 0.$

Magnetisches Vektorpotential 3:

Ein ebenes magnetisches Feld wird in einer gewissen Umgebung der z-Achse eines kartesischen Koordinatensystems durch die Flußdichte

$$\vec{B} = \frac{B_o}{a} \left(x \vec{e}_x - y \vec{e}_y \right)$$

beschrieben.

- (i) Geben Sie ein zugehöriges, Maxwell-geeichtes magnetisches Vektorpotential an.
- (ii) Skizzieren Sie den Verlauf der magnetischen Flußdichtelinien in der xy-Ebene.
- (iii) Welche einfache Anordnung von Linienströmen erzeugt ein erster Näherung das angegebene Feld im sonst leeren Raum.

An einer magnetisierbaren und elektrisch leitfähigen Schicht der Dicke d mit Abmessungen in y- und z-Richtung $\gg d$ liegt beidseitig tangential eine zeitlich sinusförmige, magnetische Feldstärke. Für die flächenbezogenen Wirbelstromverluste in der Schicht ergibt sich

$$P'' = \frac{\hat{H}_0^2 d}{\gamma \delta^2} \operatorname{Re} \left[j \frac{\tan (kd/2)}{kd/2} \right] = \frac{\hat{H}_0^2 \sinh (d/\delta) - \sin (d/\delta)}{\gamma \delta \cosh (d/\delta) + \cos (d/\delta)},$$

wobei $\delta = \sqrt{2/(\mu\gamma\omega)}$ die Eindringtiefe bedeutet. Für welche Schichtdicke d ist P'' bei festen Werten \hat{H}_0 und ω maximal? Wie groß ist in diesem Fall P''?

Ein dem Punkt P zugeordneter Vektor D besitze einen konstanten Betrag und eine Richtung, die parallel zur xy-Ebene mit der konstanten Winkelgeschwindigkeit ω rotiert. Stellen Sie den Vektor in der Form

$$\overline{v}(t) = Re(\overline{v}e^{j\omega t})$$

dar, d.h. bestimmen Sie den komplexen, zeitunabhängigen Vektor 📆 .

Das Bild zeigt den Querschnitt eines TEM-Wellenleiters - bestehend aus zwei an Masse liegenden Metallplatten und einem dazwischen liegenden Metallstreifen - zusammen mit dem ebenen elektrostatischen Feld. Zu den konstanten Potentialschritten $\Delta \varphi$ zwischen aufeinanderfolgenden Potentialflächen (strichliert gezeichnet) gehören dabei die längenbezogenen elektrischen Flüsse $\varepsilon_o \Delta \varphi$ der Flußröhren, begrenzt durch die Feldlinien (durchgezogene Linien mit Pfeilen).

Bestimmen Sie die zugehörige TEM-Wellenimpedanz unter der Annahme ideal metallischer Randbedingungen.

Angenommen, f und g sind zwei ausreichend glatte Skalarfelder im dreidimensionalen euklidischen Raum. Formen Sie die beiden Ausdrücke

$$\vec{\nabla}\times(f\vec{\nabla}g)\quad\text{und}\quad\vec{\nabla}\times(g\vec{\nabla}f)$$
um und zeigen Sie, dass sich das Flächenintegral

$$\int_{\mathcal{A}} [(\vec{\nabla} f) \times (\vec{\nabla} g)] \cdot \vec{n} \, \mathrm{d}A$$

auf zwei äquivalente Arten als Kurvenintegral über den Rand der darstellen lässt.