Nome e Cognome:	 Matricola:	

Esercizio 1 [punti: 4]. Quanti ripetizioni indipendenti del lancio di una moneta non truccata devono essere effettuate affinché la probabilità che esca almeno una volta "testa" superi il 99%?

SOLUZIONE. Calcoliamo la probabilità che lanciando ripetutamente la moneta non esca mai "testa", in funzione del numero n di ripetizioni. Per ipotesi, gli eventi definiti, per ogni $j \in \{1, ..., n\}$, da

$$E_j = \{ \text{non esce "testa" all'} j\text{-esimo lancio} \}$$

sono indipendenti e si verificano ciascuno con probabilità $Pr(E_i) = 1/2$. Quindi,

$$\Pr(E_1 \cap E_2 \cap \ldots \cap E_n) = \Pr(E_1) \cdot \Pr(E_2) \cdot \ldots \cdot \Pr(E_n) = 2^{-n}.$$

Affinché la probabilità richiesta superi il 99%, occorre che la probabilità appena calcolata non ecceda l'1%, cioè $2^{-n} \le 0.01$, ovvero $n \ge \ln(100)/\ln(2) = 6.6438...$, il che si verifica se e solo se $n \ge 7$. Quindi, la risposta è che servono 7 ripetizioni.

Nome e Cognome:	 Matricola:	
<u> </u>		

Esercizio 2 [punti: 6]. Dati due eventi A, B in uno spazio di probabilità $(\mathcal{S}, \mathbb{P})$, supponiamo che

- con probabilità 0.46 si verifichi almeno uno dei due;
- con probabilità 0.04 si verifichino entrambi;
- $\mathbb{P}(A) = 4 \cdot \mathbb{P}(B)$.

Calcolare le probabilità $\mathbb{P}(A)$, $\mathbb{P}(B)$. Usare il risultato per dire se gli eventi A, B sono indipendenti.

Soluzione. Sappiamo che $\mathbb{P}(A \cup B) = 0.46$ e $\mathbb{P}(A \cap B) = 0.04$. Inoltre, in generale, si ha

$$\mathbb{P}(A \cup B) + \mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B).$$

Quindi,

$$\mathbb{P}(A) + \mathbb{P}(B) = 0.5.$$

Sappiamo, poi, anche che

$$\mathbb{P}(A) - 4 \, \mathbb{P}(B) = 0 \, .$$

Sommando quest'ultima identità alla precedente moltiplicata per 4 si ottiene che $\mathbb{P}(A) = 0.4$. Dunque, usando nuovamente il fatto che $\mathbb{P}(A) = 4 \mathbb{P}(B)$, ricaviamo $\mathbb{P}(B) = 0.1$. Pertanto,

$$\mathbb{P}(A) \cdot \mathbb{P}(B) = 0.04.$$

Siccome per ipotesi si ha pure $\mathbb{P}(A \cap B) = 0.04$, si conclude che A, B sono eventi indipendenti. \square

Nome e Cognome:	 Matricola:	

Esercizio 3 [punti: 8]. Si lancia un dado a sei facce non truccato. Nel caso esca un numero pari, si guadagnano 3 euro; se esce 3 oppure 5, si perdono 4 euro; se esce 1, si perde 1 euro.

- [2 pt] Detto X il guadagno ottenuto in un lancio, determinarne la densità discreta p_X , calcolarne il valor medio $\mathbb{E}[X]$ e la varianza Var(X).
- [2 pt] Date N copie X_1, \ldots, X_N di X, indipendenti e identicamente distribuite, si consideri

$$\overline{X}_N = \frac{X_1 + \ldots + X_N}{N} \,.$$

Quanto grande deve essere N affinché la varianza σ_N^2 della media empirica \overline{X}_N sia ≤ 0.01 ?

• [4 pt] Usare il calcolo precedente per dire quanto grande deve essere il numero di volte N che va lanciato il dado affinché la probabilità che $|\overline{X}_N| < 1$ superi il 99%.

SOLUZIONE.

 \bullet X assume i valori 3, -4, e -1 con probabilità, rispettivamente, date da

$$p_X(3) = \frac{1}{2}, \ p_X(-4) = \frac{1}{3}, \ p_X(-1) = \frac{1}{6},$$

perciò $\mathbb{E}[X] = 3 \cdot \frac{1}{2} - 4 \cdot \frac{1}{3} - 1 \cdot \frac{1}{6} = 0$. Pertanto

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[X^2] = 9 \cdot \frac{1}{2} + 16 \cdot \frac{1}{3} + 1 \cdot \frac{1}{6} = 10.$$

• Essendo le X_i variabili indipendenti e distribuite tutte come X, si ha

$$\sigma_N^2 = \operatorname{Var}(\overline{X}_N) = \frac{1}{N} \operatorname{Var}(X) = \frac{10}{N}.$$

Quindi, $\sigma_N^2 \leq 0.01$ se, e soltanto se, $N \geq 1000$.

• Dal punto precedente, $10\sigma_N \leq 1$ se e soltanto se $N \geq 1000$ e, in tal caso, si ha

$$\{|X_N| \ge 1\} \subseteq \{|X_N| \ge 10\sigma_N\}$$

il che implica la disuguaglianza $\Pr(|X_N| \ge 1) \le \Pr(|X_N| \ge 10\sigma_N)$. Combinando quest'ultima con la disuguaglianza $\Pr(|X_N| \ge 10\sigma_N) \le 0.01$ di Chebyshev¹, si ricava $\Pr(|X_N| \ge 1) \le 0.01$. In conclusione, la probabilità

$$\Pr(|X_N| < 1) = 1 - \Pr(|X_N| \ge 1)$$

supera la soglia 0.99 se $N \ge 1000$.

¹Con altri metodi non approfonditi a lezione si sarebbe potuta dare una risposta migliore.

Nome e Cognon	ne:	

Matricola:

Calcolo delle probabilità - Secondo Appello

Esercizio 4 [punti: 6]. Fra 2n studenti (di cui n di Ingegneria e n di Informatica) si sceglie a caso un gruppo di 3k persone (dove $3k \le n$) per formare un gruppo. Supponiamo che tutti i possibili gruppi di 3k studenti abbiano la stessa probabilità di essere scelti.

- [2 pt] Qual è la cardinalità dello spazio campionario S?
- [2 pt] Qual è la probabilità che il gruppo includa almeno uno studente di Informatica?
- [2 pt] Con che probabilità il gruppo ha 2k studenti di Ingegneria e k di Informatica?

SOLUZIONE.

 \bullet È pari al numero di sottoinsiemi di 3k persone da un insieme di 2n studenti, cioè

$$\binom{2n}{3k}$$

• Essendoci

$$\binom{n}{3k}$$

gruppi formati da soli studenti di Ingegneria, la probabilità richiesta è

$$1 - \frac{\binom{n}{3k}}{\binom{2n}{3k}}$$

• Vi sono $\binom{n}{2k}$ modi di scegliere i 2k ingegneri e $\binom{n}{k}$ modi di scegliere i k informatici. Essendo scelte indipendenti, la probabilità richiesta è

$$\frac{\binom{n}{k}\binom{n}{2k}}{\binom{2n}{3k}}$$

Nome e Cognome:	Matricola:	
O		

Esercizio 5 [punti: 6]. Una ditta riceve merce da tre fornitori A, B e C nelle seguenti proporzioni: A fornisce metà della merce, B un quarto e C ciò che resta. È noto che la probabilità che un pezzo sia difettoso è, rispettivamente, $\frac{1}{10}$ se fornito da A, $\frac{1}{5}$ se fornito da B, $\frac{1}{2}$ se fornito da C.

- [3 pt] Calcolare la probabilità che un pezzo estratto casualmente sia difettoso;
- [3 pt] esaminato un pezzo e trovatolo difettoso, con che probabilità proviene da B?

SOLUZIONE.

• L'evento D che sia diffettoso ha probabilità

$$\Pr(D) = \Pr(D|A)\Pr(A) + \Pr(D|B)\Pr(B) + \Pr(D|C)\Pr(C) = \frac{1}{10} \cdot \frac{1}{2} + \frac{1}{5} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} = \frac{9}{40}$$

• Per il Teorema di Bayes e per il calcolo precedente, con probabilità

$$\Pr(B|D) = \frac{\Pr(D|B)\Pr(B)}{\Pr(D)} = \frac{\frac{1}{5} \cdot \frac{1}{4}}{\frac{9}{40}} = \frac{2}{9}.$$

Nome e Cognome:	 Matricola:	
_		

Esercizio 6 [8 punti]. Una macchina di trasmissione dati introduce mediamente 1 errore di bit per pacchetto durante l'invio di informazioni; ogni bit ha una fissata probabilità p di errore, indipendentemente dagli altri. Supponiamo che ogni pacchetto consista di n bit. Viene scelto a caso un pacchetto e in esso si riscontrano 3 errori di bit: si tratta di un evento raro? Rispondere

- [4 pt] supponendo n = 20 e calcolando la probabilità $\mathbb{P}(X > 2)$ che ci siano più di 2 errori;
- [4 pt] supponendo che n sia ignoto e calcolando altrimenti la probabilità $\mathbb{P}(X > 2)$.

Motivare la scelta di modello probabilistico fatta per descrivere la variabile aleatoria X nei due casi.

SOLUZIONE.

• Conoscendo n è naturale, per definizione di binomiale, ipotizzare che $X \sim \text{Bin}(n, p)$, con n = 20. Per stabilire il valore di p, usiamo il fatto che $np = \mathbb{E}[X] = 1$, per ipotesi. Quindi p = 1/n = 1/20. Pertanto

$$\mathbb{P}(X > 2) = 1 - \mathbb{P}(X = 0) - \mathbb{P}(X = 1) - \mathbb{P}(X = 2)$$

$$= 1 - \left(\frac{19}{20}\right)^{20} - 20\frac{1}{20}\left(\frac{19}{20}\right)^{19} - \frac{20 \cdot 19}{2}20^{2}\left(\frac{19}{20}\right)^{18} \approx 0.077$$

• Siamo nella stessa situazione di prima, per cui la scelta naturale sarebbe quella di modellare X con una binomiale di parametri n e p tali che np = 1. Tuttavia, questa volta non conosciamo n (né, dunque, p). Siccome nel caso precedente avevamo p = 1/20, facciamo l'ipotesi che p sia piccolo e n sia grande, sempre con prodotto pari a 1. Di conseguenza è naturale modellare X con una Poisson di parametro λ , da cui, sapendo che $\mathbb{E}[X] = \lambda$, deduciamo che $\lambda = 1$. Pertanto, analogamente a quanto fatto sopra, si arriva a una probabilità ≈ 0.08 .