SC-RR-69-572

TID-4500 (53rd Ed.) UC-35 Nuclear Explosions--Peaceful Applications D-4

Research Report

SC-RR-69-572 December 1969

CLIMATOLOGY OF AIRBLAST PROPAGATIONS FROM NEVADA TEST SITE NUCLEAR AIRBURSTS

Jack W. Reed Test Effects Department 9150 Sandia Laboratories, Albuquerque

Approved for Public Release
Distribution Unlimited

SANDIA LABORATORIES

OPERATED FOR THE UNITED STATES ATOMIC ENERGY COMMISSION BY SANDIA CORPORATION ALBUQUERQUE, NEW MEXICO LIVERMORE CALIFORNIA

TOTAL CONTRACTOR INTERPRETA

20000915 043

Issued by Sandia Corporation a prime contractor to the United States Atomic Energy Commission

-LEGAL NOTICE-

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" Includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in the United States of America
Available from

Clearinghouse for Federal Scientific and Technical Information National Bureau of Standards, U. S. Department of Commerce Springfield, Virginia 22151

Price: Printed Copy \$3.00; Microfiche \$9.65

TID-4500 (53rd Ed.) UC-35 Nuclear Explosions--Peaceful Applications

SC-RR-69-572

CLIMATOLOGY OF AIRBLAST PROPAGATIONS FROM NEVADA TEST SITE NUCLEAR AIRBURSTS

Jack W. Reed Test Effects Department 9150 Sandia Laboratories, Albuquerque

December 1969

ABSTRACT

Microbarograph data from Nevada atmospheric nuclear tests of 1951-1962 have been assembled to show climatological patterns for long range propagations. Amplitudes have been normalized to 1-kiloton yield, free-airburst, after actual height-of-burst effects were removed.

On-site propagations under early morning inversions often showed double the amplitudes expected for standard hemispherical wave expansion. These enhanced blasts were blocked by mountains and did not penetrate off-site. Strong winds at higher altitudes gave as much as 5X blast magnifications at Indian Springs and Las Vegas.

Ducting at very high altitude, to 30 miles or 150,000 feet, is seasonally directed eastward in winter, westward in summer. Resulting amplitudes in the sound ring near 135 miles range show as large as 3X magnification downwind and 0.006X reduction upwind. On the average the annual cycling in east and west directions ranges from near standard, 1X, downwind amplitudes to 0.016X upwind amplitudes. The seasonal reversal periods when upper winds are nearly calm, occur about May 5 and September 20. At that time amplitudes in all directions shown an average 0.28X reduction below standard.

TABLE OF CONTENTS

	Page
Introduction	5
Troposphere Propagations	7
Ozonosphere Propagations	13
Calibration Shot Data	27
Distributions of Downwind Ozonosphere Amplitudes	27
Tropospheric Propagation Climatology	32
Conclusions	32
References	35
Appendix	37

LIST OF ILLUSTRATIONS

Figure		Page
1.	Height-of-Burst Effect on Airblasts from Nuclear Tests	5
2.	Summary of Troposphere Propagations, Upshot-Knothole, 3/17 - 6/4 1953	8
3.	Summary of Troposphere Propagations, Teapot, 2/18 - 5/15 1955	9
4.	Summary of Troposphere Propagations, Plumbbob, 5/28 - 10/7 1957	10
5.	Summary of Troposphere Propagations, Hardtack II, 9/19 - 10/29 1958	11
6.	Ozonosphere Signal Amplitudes, St. George, Utah	14
7.	Ozonosphere Signal Amplitudes, Bishop, California	15
8.	Ozonosphere Signal Amplitudes, Lund, Nevada	16
9.	Ozonosphere Signal Amplitudes, China Lake, California	17
10.	Ozonosphere Signal Amplitudes, Las Vegas, Nevada	18
11.	Ozonosphere Signal Amplitudes, Boulder City, Nevada	19
12.	Ozonosphere Signal Amplitudes, Caliente, Nevada	20
13.	Ozonosphere Signal Amplitudes, Tonopah, Nevada	21
14.	Average Ozonosphere Signal Amplitudes, Seasonal Cycling	25
15.	Distribution of Amplitudes in Transition Periods, R = 135 mi., W = 1 kt NE F.A.B.	26
16.	Check Shot Amplitudes, Ozonosphere Signals, St. George, Utah, for 1.2-ton HE Surface Bursts (Before 1960)	28
17.	Check Shot Amplitudes, Ozonosphere Signals, St. George, Utah, for 1.2-ton HE at 15-ft. HOB (1960 to Present)	29
18.	Distribution of Atmospheric Focus Factors, St. George, Utah, Winter Data (November - March)	30
19.	Troposphere Signals Scaled to 1-kt Free-Airburst Recorded Peak-to-Peak Amplitudes, Indian Springs (38 Miles)	33

CLIMATOLOGY OF AIRBLAST PROPAGATIONS FROM NEVADA TEST SITE NUCLEAR AIRBURSTS

Introduction

Now that several years have elapsed since atmospheric nuclear tests were last conducted at the Nevada Test Site (NTS), recollections of the characteristics of long-range airblast propagations have dimmed. However, during this time there have been significant improvements in understanding these phenomena. A review of our collection of microbarograph (MB) amplitudes is now appropriate in light of current concern over propagations predicted for the escalating yields of Plowshare cratering experiments.

This review will not go into detailed analysis or case studies. The main point is to present yield data which have now been declassified, and normalize it to a reference yield of a 1-kiloton nuclear explosive (NE) free-airburst (FAB). Bursts at various heights above ground—on towers, on balloons, or from bombs dropped from airplanes—may have enhanced blast pressures where the ground-reflected shock overtakes and combines with the incident shock wave. This is described in The Effects of Nuclear Weapons, and this fused shock, called the Mach stem, has higher overpressures which depend upon burst height, yield, and distance.

Figure 1. Height-of-Burst Effect on Airblasts from Nuclear Tests

Height-of-burst (HOB) effects have been removed from mb data by assuming that Mach stem wave strengths could be simulated by larger apparent yields, W_A . Actual burst height divided by the cube root of the radiochemical yield, $W^{1/3}$, gives scaled HOB. A function relating apparent yield enhancement to scaled HOB was generated from curves of HOB effects at the Δp = 2 lb/in. overpressure contour, and is shown in Figure 1. Experiment has shown that these blast enhancements are carried to long ranges. Note that surface bursts are not exactly constrained to the model of a hemisphere and a perfectly reflecting plate, W_A/W = 2, because much energy is absorbed in cratering and ground shock. The "optimum" HOB for 1 kiloton is near 900 feet.

It was further assumed that wave overpressures and amplitudes decay inversely with distance, R, raised to the 1.2 power. The difference between $R^{-1.2}$ decay and acoustic R^{-1} decay is attributed to losses observed by experiments with unrefracted propagations. Distances to constant blast pressure are scaled in proportion to $W^{1/3}$, and the result is, for power law decay, that, at a fixed distance, amplitudes increase in proportion to $W^{0.4}$.

Reported yields and HOB's have been used to calculate W_A and $W_A^{0.4}$ for each event, and each microbarogram amplitude has been appropriately reduced to W_A = 1 kiloton, NE FAB. The standard incident overpressure curve for this explosion yield at sea level ambient pressure, p = 1000 mb, and at R \geq 9000 feet, is

$$\Delta p \text{ mb} = 357 (R \text{ kilofeet})^{-1.2}$$
; (1)

and for the altitude of NTS, using the CP-1 (Yucca Pass Control Point) elevation of 4144 feet MSL, standard pressure altitude p = 870 mb, is

$$\Delta p \text{ mb} = 328 \text{ (R kilofeet)}^{-1.2}$$
 (2)

Peak-to-peak incident amplitude, p_k , used because it averages out some of the deviations, uncertainties, and nonrepeatabilities in both positive and negative phases at long range, is obtained by multiplying Δp at NTS altitude by 1.35 (from IBM Problem M), so that

$$p_{k} \text{ mb} = 444 \text{ (R kilofeet)}^{-1.2}$$
 (3)

In the distant field, ozonosphere signals often strike ground at relatively large incidence angles of up to 40 degrees above horizontal. They are nearly doubled by reflection because the ground is a near-perfect reflector of these wavelengths. Consequently,

reference curves for ozonosphere signals will be recorded, $\underline{\text{reflected}}$ amplitudes, $p_k^{\,*}$, where

$$p_k^* \text{ mb} = 888 (R \text{ kilofeet})^{-1.2}$$
 (4)

Troposphere Propagations

There are three paths for blast waves propagating to long range through the troposphere. One, when sound velocity decreases with altitude, is called the gradient situation, and wave rays are turned upward away from ground. No acoustic rays reach ground outside the range of direct rays from elevated bursts. Some blast energy scatters out into this "silent" area, however, and gives detectable amplitudes from large nuclear explosions even at long range. The pressure-distance decay rate is very rapid.

A second possible wave path is under a near-surface inversion which may generate from nighttime cooling in the air near ground level. A sound velocity inversion may also result from wind direction or velocity shears with height. For early morning shot times at NTS this was a normal ducting mode, as far as propagations through Yucca or Frenchman's Flats were concerned. Mountains usually prevented this ducting from spreading out with large amplitudes into surrounding communities.

The third path, and the one which caused concern for off-site safety from nuclear tests, is ducted downwind by jet stream or other high-wind speeds. This condition may cause considerable blast magnification at ranges up to 100 miles.

There has been no attempt to separate these modes of propagation in the data assemblages of Figures 2 through 5. In these figures points are connected where they represent stations in a general line, often toward Las Vegas, from the shot point. Some isolated points show values at other azimuths which do not conform to the pattern for other directions. Data from 11 events of Operation Upshot-Knothole are shown in Figure 2. Figure 3 presents data from events of Operation Teapot. Data from 23 Plumbbob and 17 Hardtack events are entered in Figures 3 and 4, respectively. In all of these figures there is too much overlap to allow clear identification of the curve for each event, so they have not been labeled. Microbarograph amplitude data are listed in the Appendix, if more detailed case studies are needed. It may be concluded that the low pressures and rapid decays with distance were associated with atmospheric gradient conditions for propagation. Very high amplitudes, in excess of standard at long range, were associated with ducting by high wind speeds at altitudes as high as 30,000 feet MSL. High pressures at

Figure 2. Summary of Troposphere Propagations, Upshot-Knothole, 3/17 - 6/4 1953

Figure 3. Summary of Troposphere Propagations, Teapot, 2/18 - 5/15 1955

Figure 4. Summary of Troposphere Propagations, Plumbbob, 5/28 - 10/7 1957

Figure 5. Summary of Troposphere Propagations, Hardtack II, 9/19 - 10/29 1958

intermediate ranges are attributable to surface inversion ducting. On occasion this extends to 40 miles. Beyond this intermediate range amplitudes drop rapidly with increased distance.

Large troposphere signal amplitudes were recorded at Las Vegas and Boulder City several times during Upshot-Knothole and Teapot. Jet streams are frequent visitors to Nevada skies during late winter and through the spring. The summer series, Plumbbob, had no case with even near-standard propagation into Las Vegas. This is as expected from consideration of atmospheric conditions with high surface temperatures, unstable temperature lapse rates, and relatively weak southwesterly summer winds aloft. During the autumn when Hardtack was conducted, there were a number of occasions of strong relative propagation, but shots in this series were mostly very small yields that resulted in no claims or damages. The one nominal-yield test which was planned was canceled lest it focus a strong airblast on Las Vegas, as was predicted by both ray trace calculations and numerous check shots of a ton or less high explosives.

Maximum propagations to long range through the troposphere reached magnifications of 5X, and were below the extremes found in the Blast Unit Research Project (BURP) experiment, which was searching for foci. Lower maxima obtained from nuclear tests than from 1.2-ton HE bursts in BURP may show results from less scatter for long wavelengths. Alternatively and less comforting, it may reflect our concerted efforts to avoid firing nuclear tests under long range propagation conditions which could cause off-site damage and hazards.

Also interesting is the rapid decay of amplitude with distance in gradient conditions; this was particularly noticeable from Plumbbob data which had an average power-law decay near $p_k^* \sim R^{-2.8}$. This decay is faster than was usually observed from Pacific tests which were also fired in gradient conditions indigenous to tropical oceania. Faster decay at NTS may have been caused by the general land slope toward the southeast observing line, with propagation further refracted up and away from ground by higher temperatures at lower altitudes, as compared to propagation along the horizontal boundary plane of the sea.

The extreme minimum propagation curve in Hardtack can probably be discounted. It was recorded from the Vista event, a 24-ton burst on the surface. This small yield may be uncertain, and the $W_{\rm A}$ = 1.6 W assumption may well be in error. It is generally valid for large nuclear events and generally invalid for high explosives. 6

With gradient conditions, where there is no acoustic amplitude calculation for propagation into the "silent" zone, a safety envelope can be constructed between the standard

curve at 100,000 feet and 0.1 mb at 300,000 feet. This would allow assurance that no windows would break ($p_k^* \ge 4$ mb) from less than an 8-kiloton yield at 20 miles range, or from less than 10 megatons at 60 miles, from tropospheric propagation of midday or afternoon blasts with light wind speeds at all troposphere altitudes.

The upper envelope of empirical amplitudes shows that windows can be broken by 4-mb recorded amplitudes in Las Vegas by an apparent airburst yield of 9.9 kilotons, which could be generated by a 1.9-kiloton burst at 1100 feet above the surface.

Ozonosphere Propagations

Above the tropopause, which is usually near 40,000 feet MSL, temperatures are nearly constant for a while, then increase with altitude to a maximum near 0°C at about 160,000 feet in the ozonosphere. Temperatures decrease again above this altitude to another minimum at the base of the ionosphere near 300,000 feet. The warm ozonosphere layer of relatively high sound speeds serves as a foundation for wind ducting. Wind speeds at these altitudes may exceed 150 mph and cause the sound or wave velocity in downwind directions to exceed the ground level value. This allows ducting and refractive ray bending so that the explosion wave is returned to ground at ranges of from 75 to 150 miles. These upper winds in temperate latitudes blow as seasonal monsoons from west to east in winter and from east to west in summer. In reversing in spring and fall, they become nearly calm for short periods of about two weeks.

Even with calm upper winds, the high temperature layer does serve as a source for wave scattering into the silent zone. A pressure oscillation is always recorded, even at 135 miles upwind, from kiloton or larger nuclear bursts. The result, either in the east or west, is an annual march of amplitudes of quasi-sinusoidal form. Large values occur during the downwind period and small values during the upwind season. The transition may be gradual or truncated, but the scatter in observed transition dates probably obscures the true form in these data, which have been obtained from a small (climatologically speaking) number of events.

Amplitudes from the various tests have been plotted by station in Figures 6 through 13. Bearings and distances to these various stations are listed in Table I. Identification of the graph symbols is given in a legend on Figure 6, St. George data. This figure has the most definitive seasonal data, since this station was the most regularly operated and it is near the right direction and range for maximum amplitude in the seasonal cycling.

Figure 6. Ozonosphere Signal Amplitudes, St. George, Utah

Figure 7. Ozonosphere Signal Amplitudes, Bishop, California

Figure 8. Ozonosphere Signal Amplitudes, Lund, Nevada

Figure 9. Ozonosphere Signal Amplitudes, China Lake, California

Figure 10. Ozonosphere Signal Amplitudes, Las Vegas, Nevada

Ozonosphere Signal Amplitudes, Boulder City, Nevada Figure 11.

Figure 12. Ozonosphere Signal Amplitudes, Caliente, Nevada

Figure 13. Ozonosphere Signal Amplitudes, Tonopah, Nevada

Five points from the shots with the very largest apparent yields have been identified to show that there seems to be no particular bias from yield-scaling assumptions. The standard amplitude for a 1-kiloton airburst, at 135 miles range, is shown, although specific shots were at individual distances which may be a few miles different. Also, these reference lines on this and successive figures were not adjusted for local pressure altitude. This correction gives a reduction to the standard curve which ranges from 3.6 percent for Las Vegas to 10.9 percent for Lund.

TABLE I

Microbarograph Station Location Vectors*

	Bearing	Dis	Distance	
Station	(Deg.)	Miles	Kilofeet	
Indian Springs, Nevada	142	39	207	
Boulder City, Nevada	139	102	536	
Caliente, Nevada	64	98	516	
St. George, Utah	90	135	714	
Lund, Nevada	25	136	717	
Tonopah, Nevada	317	90	479	
Bishop, California	278	131	692	
China Lake, California	223	132	700	
Las Vegas, Nevada	142	80	424	

^{*}Referenced to Area 7, Yucca Flat

There were no atmospheric nuclear tests in December or January, and few in February and November, so it is impossible to tell whether the winter peak has been missed at St. George. Ray calculations for strongest midwinter rocket winds show the strongest caustics landing at ranges short of St. George, so the annual curve at a fixed distance may well have a flat maximum as shown by these data.

In summer the St. George minimum was well above the value obtained by extrapolating along $p_k^* \sim R^{-2}$ and using a source point at Δp = 400 mb. These ozonospherescattered waves were stronger than waves which were propagated along the ground under gradient conditions, although the latter were frequently detectable above ambient wind noise levels.

It is clear that an average of downwind propagations is about equal to the standard amplitude curve. This appears to contradict previous contentions that the average focus factor for ozonosphere signals was near 2X. Recall, however, that the standard here assumes doubling by ground reflection to give recorded amplitude; whereas, previous comparisons had reference to incident amplitude extrapolations, in keeping with convention for close-in blast measurements. In summary, at St. George one would expect 4 mb recorded amplitudes during the winter phase from 400 kilotons free airburst. This amplitude could come, however, with random focusing from only 32 kilotons FAB, or even 6.3 kiloton burst near 1650 feet HOB.

In the opposite direction toward Bishop, California, the same general pattern was observed, as shown by Figure 7, but with a 6-month phase change. The one extremely high point was actually observed at Deep Springs, about 20 miles east of Bishop, from the Small Boy event in 1962. This amplitude was reduced to correspond to the larger distance at Bishop. The focus factor for this wave was 3.2X.

Propagations in directions quartering to the winds, shown for Lund, Nevada, in Figure 8, are nearly the opposite direction of those for China Lake, California (Figure 9). Both appear to have downwind season averages near standard and similar to the results at St. George and Bishop, which were directly downwind of seasonal mean wind circulations. Lund and China Lake also show a tendency to have larger minimum amplitudes in their upwind seasons, as might be expected for scattered propagations. This filling of the minimum is more pronounced at Lund, bearing N25°E, than at China Lake, bearing S45°W, which is further consistent with the scattering model.

At shorter distances, the southeast line through Las Vegas and Boulder City shows lower amplitudes. At Las Vegas, range 80 miles, there is only slight indication of a seasonal wind influence in phase with ozonosphere cycling (Figure 10). The weak maximum in spring is its only manifestation. As shown in Figure 11, there is more of an annual wave at Boulder City, range 105 miles, but it is not nearly so pronounced as at longer ranges (135 miles) at the four stations described earlier. Boulder City clearly appears to be inside the range of maximum signals. In midwinter months of December and January, they could, however, get larger signals.

Caliente data taken at about 95 miles average range (Figure 12) show stronger amplitudes in winter than do those for Boulder City. Data are sparse for Caliente, but if the appearance is real it may be explained by the observation that very strong winter ozonosphere circulation causes the downwind caustic to land at short range, sometimes

as close as Caliente. The quartering cross-wind component was apparently not strong enough to pull the caustic in to the range of Boulder City during the months of testing.

Finally, Tonopah data in Figure 13 show a pattern similar to Las Vegas, with little apparent seasonal cycling, but slightly larger average amplitudes and some more scatter.

A check was made to see if yield-scaling factor corrections for the observed distance decay ⁷ reduced the scatter at St. George. It did not noticeably affect the variability. Thus, the more complicated calculation does not appear to improve predictability.

Upwind propagation between Caliente and St. George, and between Las Vegas and Boulder City, appears to decay like R^{-2} , but the coefficients depend on direction across the wind field. China Lake seems to be an exception to the upwind directional effect. Since these upwind waves are of such little importance to damage prediction, this inconsistency will be ignored and an approximate rule of thumb may be used: Recorded upwind ozonosphere signal amplitudes obtain from an extension from the end of IBM Problem M (Δp is multiplied by 2.7 to give recorded amplitude) with R^{-2} slope. This value is shown on all ozonosphere amplitude figures, and in equation form as

Upwind Ozonosphere:
$$p_k$$
 mb ≈ 6200 (W kiloton NE)^{0.4} (R kilofeet)⁻² (5)

One point of interest noted is that the maxima in summer appear to lag two or three weeks behind the summer solstice, conforming with the surface temperature.

The freehand mean curves of Figures 6 through 13 have been assembled in Figure 14, which shows the transition season intersections which correspond to the no-wind condition. No confident explanation is made for the fact that amplitudes are smaller in the fall transition than during the spring reversal. It probably results from higher surface temperatures in late September than in early May, which would tend to reduce the amount of energy reflected back to ground level. It may be only a statistical observation from the small data sample and, in fact, this must be assumed for the present.

This transition period is of considerable importance because it is the time when maximum yields may be detonated without damage at long range in any direction. The distributions of data points from Figures 6 through 9 (nearly equal ranges at 135 miles) have been examined to find out how long an interval may be expected to be suitable for large yield experiments. Figure 15 shows distributions of amplitudes for ±5 days and ±20 days around May 5 and September 20 dates. As this interval is enlarged, scatter is increased to contain more points of both summer and winter propagation regimes.

Figure 14. Average Ozonosphere Signal Amplitudes, Seasonal Cycling

Figure 15. Distribution of Amplitudes in Transition Periods, R = 135 mi., W = 1 kt NE F.A.B.

The average amplitude during these wind transitions is near 0.1 mb at 135 miles, and it is larger than recorded amplitudes at shorter ranges. This hump on the pressure-distance curve indicates that there is a tendency for a sound ring to occur even when the ozonosphere is calm. Even scattered or diffracted waves tend to strike the 135-mile range and skip the shorter ranges.

Calibration Shot Data

There is some concern that data obtained from 1.2-ton HE check shots or calibration shots may bias our interpretations of propagations from underground bursts. Figures 16 and 17 show amplitude versus date plots of some of these data from recordings made at St. George. Check shots were used 1 and 2 hours prior to atmospheric nuclear tests and were fired on the ground surface. Each was made up of four 600-pound depth charges, surplus from World War II. The equivalent yield for HE surface bursts is assumed to be 0.6 W; thus, $W_A = 1.44 \times 10^{-3}$ kilotons NE FAB, and the "standard" line in Figure 16 reflects this assumption. Later, explosives were mounted at 15 feet above ground to enhance the apparent yield, give better repeatability, and minimize cratering. These calibration shots are assumed to yield $W_A = 5.04 \times 10^{-3}$ kilotons NE FAB, to give the standard line in Figure 17. Note the changed date scale in Figure 17, used to accommodate the December and January ozonosphere data which have been accumulated in more recent years.

From these figures it is not clear that these waves suffered any significant average attenuation because of their higher frequency. A calculated downwind season average would probably give less than standard amplitude, but with the large scatter the probable error in the mean would also be relatively large. A further point is that the microbarograph recorders have a nonlinear attenuator set to damp high-frequency, low-amplitude signals so that many of the small reported data points may have really been overattenuated.

Distributions of Downwind Ozonosphere Amplitudes

Recordings at St. George, made during the downwind months of November through March and analyzed in terms of focus factor statistics, are shown in Figure 18. Freehand

Check Shot Amplitudes, Ozonosphere Signals, St. George, Utah, for 1.2-ton HE Surface Bursts (Before 1960) Figure 16.

Check Shot Amplitudes, Ozonosphere Signals, St. George, Utah, for 1.2-ton HE at 15-Ft. HOB (1960 to Present) Figure 17.

Figure 18. Distribution of Atmospheric Focus Factors, St. George, Utah, Winter Data (November - March)

curves of the separate distributions for NE and HE data give log-normal distribution functions

NE:
$$F = 0.81 \times (1.86)^{\pm 1}$$

HE: $F = 0.6 \times (2.23)^{\pm 1}$

The distribution midpoint for HE data is at F<1.0, but it seems premature to adopt this without more detailed case studies. The Prairie Flat experiment ⁸ showed that, on the average, there was no significant difference between the attenuations of the 1.2-ton HE calibration shots and the 500-ton HE surface burst.

At any rate, the nuclear data show F = 1 very near the 50 percent line, particularly when the distribution for the data-half with large amplitudes is extended. Most important is the appearance of less scatter to the nuclear data, although the reduction of scatter is not as marked as that found by comparison of different yields of HE at Prairie Flat.

A comparison with a distribution of calculated focus factors is also shown. Ray trace calculations for 415 rocket soundings at Battery MacKenzie, Canal Zone, were used for a source of focus factors at R = 700,000 feet on days when some ducting was calculated. Of these, the calculated rays landed short of 700,000 feet on 275 occasions and long on 17 occasions, and a wave was found to strike this range on 123 occasions. The distribution of calculated F values is shown on Figure 18. Quite clearly, the real atmosphere attenuates the strong foci and fills the calculated silent zones with waves. There may be a significant difference between downwind propagations from NTS and from Panama, but it should depend only on the mere presence of adequate wind-aloft speeds to cause ducting. There is almost twice as much energy flux calculated by numerical integration of $F^2 dP$, where P is probability, as was observed by the NTS distribution. The most likely repository for this excess of calculated ducted energy is in the multiplicity of wave cycles recorded by microbarographs.. The acoustic ray calculation often shows only one wave cycle and sometimes two, rarely three or more. In reality, as described in the Prairie Flat analysis. 8 the upper wind structure has many reflecting layers which are not observable by present rocket sounding techniques. These strata tend to break up the wave into more fronts which spread over the sound ring and extend its boundaries. The result gives the observed attenuation, similar to the effect of turbulence. Most significiantly, it reduces the expectation of very large amplitudes and strong foci which result from simple acoustic ray calculation, but for the present it makes deterministic prediction for a specific event much more uncertain.

Tropospheric Propagation Climatology

Since experience with strong tropospheric ducting has been truncated by our attempts to prevent damage to outlying communities, it may be questioned that we call this observed collection of nuclear blast amplitudes a climatology. On the other hand, since the dominant concern was with jet-stream ducting, low altitude ducting under temperature and wind shear inversions was largely neglected so these results may be typical. This only affected on-site damages or, at worst, damages to the "controlled" population at Indian Springs. Since it may sometimes be useful in predicting inversion propagations, the amplitude distribution at Indian Springs is shown in Figure 19. Reference back to Figures 2 through 5 shows that large amplitudes on-site were common, but after travel over the mountains to Indian Springs the average focus factor had dropped from above 1 to near 1/2. Scatter was great, however, with ±1 σ ranging from near 0.1 to 2.0 mb.

No attempt has been made to analyze on-site data distributions because the short distances would require a distance normalization calculation in addition to the yield normalization.

Conclusions

There are three atmospheric sound ducts for significant airblast propagation off-site from NTS explosive tests. Strong propagation under inversions is usually restricted to the test basins of Yucca Flat or Frenchman's Flat by the surrounding mountains. These amplitudes decay rapidly with distance to off-site communities.

Strong winds in the troposphere can duct strong waves off-site and cause damages at Indian Springs and Las Vegas. Jet-stream ducting has given as much as 5X magnification in recorded nuclear blast waves, referenced to standard propagation in a homogeneous, calm atmosphere with spherical wave expansion and no refraction.

Ozonosphere ducting, from altitudes near 150,000 feet MSL, goes in seasonal directions: east in winter, west in summer. Maximum amplitudes usually strike at ranges near 135 miles but they may scatter from 75 miles to 150 miles. Maximum observed focusing from nuclear events is near 3X, and average downwind amplitudes fall near the standard curve. Upwind propagations are scattered into areas where there are no calculated acoustic ray penetrations, and amplitudes at 135 miles show an average 0.016X reduction below standard. During the short semi-annual periods of near-calm conditions

Figure 19. Troposphere Signals Scaled to 1-kt Free-Airburst Recorded Peak-to-Peak Amplitudes, Indian Springs (38 Miles)

at high altitudes, the average reduction is 0.28X in all directions. This occurs as seasonal wind directions reverse in early May and late September, but may happen early or late by as much as a month in a specific year.

Check shots and calibration shots, 1.2-ton HE bursts, give nearly the same amplitude propagation patterns as nuclear bursts and they do not appear to be specially attenuated because of their higher frequency components. Waves from these small yields have more scatter and non-repeatability in amplitude because their higher frequencies interact more with atmospheric turbulence and small-scale layer structures.

REFERENCES

- D. T. Griggs, and F. Press, "Probing the Earth with Nuclear Explosives,"
 University of California, Lawrence Radiation Laboratory, Appendix A, UCRL-6013,
 July 7, 1960.
- 2. S. Glasstone, Editor, The Effects of Nuclear Weapons, rev. ed., DOD/AEC, U. S. Govt. Printing Office, Washington, D. C., April 1962.
- 3. H. W. Church, Height-of-Burst Effects on Long-Range Propagated Blast Pressures, Sandia Corporation, SC-4687(TR), May 1962.
- 4. C. D. Broyles, <u>IBM Problem M Curves</u>, Sandia Corporation, SCTM-268-56(51), December 1, 1956.
- 5. J. W. Reed, Explosion Wave Amplitude Statistics for a Coustic at Ranges of 30 to 45 Miles, Sandia Laboratories, SC-RR-67-860, February 1968.
- 6. L. J. Vortman, and J. D. Shreve, Jr., The Effect of Height of Explosion on Blast Parameters, Sandia Corporation, SC 3858(TR), June 20, 1956.
- 7. J. W. Reed, <u>Airblast Yield Scaling in Refracting Atmospheres</u>, Sandia Corporation, SC-RR-65-369, July 1965.
- 8. J. W. Reed, "Distribution of Airblast Amplitudes in the Ozonosphere Sound Ring," Project Prairie Flat Report, Sandia Laboratories, SC-M-69-33, February 1969.

APPENDIX

MAXIMUM SIGNAL AMPLITUDES FROM MICROBAROGRAPH RECORDS OF ATMOSPHERIC NUCLEAR TESTS

APPENDIX

MAXIMUM SIGNAL AMPLITUDES FROM MICROBAROGRAPH RECORDS OF ATMOSPHERIC NUCLEAR TESTS

The following tables show, for each Nevada nuclear test in Operation Tumbler-Snapper through Operation Hardtack-II, maximum peak-to-peak recorded airblast amplitudes which were propagated to each microbarograph via each of the three major atmospheric channels. The quality of these data generally improved with time as we developed our predictive and measuring capabilities. There are inconsistencies which may have resulted from any of several factors. Original records were not re-read at this time in hope of finding corrections. Past efforts to check specific questionable points have usually shown them to be impossible to adjust because of partial failures either by the equipment or the operators. Hopefully, in this large sample of data, the overall effect of these wild points is negligible.

For example, in the first table, for Tumbler-Snapper Event No. 1, the two sensors at St. George, C (close) and F (far), show a factor of four difference in amplitude for both troposphere and ozonosphere signals. On the check shots, however, there was not this disagreement, so it does not appear that set calibration was in error. Instead, it is likely that the operator failed to make the correct range switch setting or there was faulty wiring on one set for the full-scale test recording, but there is no way to establish which set was correct. Check shot amplitudes could be projected for calculations about which was correct but this would assume near-constant atmosphere propagation for 1 or 2 hours. That assumption could also be subject to considerable error.

Distance figures are also subject to some error, but they are probably not significant in this context. Some early station survey data were classified at their issuance and have since been destroyed. Only approximate locations were kept. This should seldom cause even a 1-mile error. Very accurate surveys (to ±0.1 foot) were made for many stations during 1954, for sound-ranging calculations, so that distances are available to much greater precision than these tables show.

There has been no attempt to be consistent with significant figures in reporting amplitudes. Depending on ambient or electrical noise levels, calibration procedures, etc., original data tabulations reflected varying confidence, so one-, two- and three-significant figures are used indiscriminantly.

OPERATION	Buste	er-Jai	ngle	_EVENT _	Able	_ DATE	10/22/51	TIME 1400 Z
YIELD	<0.1	kt	BURST	HEIGHT_	100 ft	t. LO	CATION_	A-3
APPARENT	BLAST	YIEI	LD , W _a	= >0.238	kt, \	$W_a^{0.4}$	>0.562	

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBAR			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE	
Las Vegas	141	405	86			
Henderson	139	464	47	10.7		
Boulder City	138	523	51	12.8		
Caliente	065	481		(1)		
St. George	089	713		38.5		
		18.00				

⁽¹⁾ No signal/noise.

OPERATIO	N Bust	ter-Ja	ngle	_EVENT _	Baker		DATE 10 / 28 / 51 TIME 1520	<u>Z</u>
YIELD	3.5	_ kt	BURST	HEIGHT	1118	ft.	LOCATION_A-3	_
APPAREN1	T BLAS	T YIE	LD, Wa	= 16.9	kt,	W	0.4 3.09	_

MB	MB AZIMUTH (DEG.)		RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION			TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
Indian Springs	150	197	520				
Las Vegas	141	405	9. 5	134			
Henderson	139	464	5.5	>180			
Boulder City	138	523		415			
Caliente	065	481	15.5	85			
St. George	089	713		345			
Beatty	257	220	65				
Goldfield	304	424	930				

OPERATION _	Buster-Jangle	EVENT Char	lie D	ATE 10 / 30 /51	TIME	1500 Z
YIELD 14.0	kt BURST	HEIGHT 113	³² ft.	LOCATION_	A-3	
	LAST YIELD , W _a					

10001	RANGE			PEAK-TO-PEAK ITUDE (MICROBARS)		
(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE			
150	197	850				
141	405	4. 4	134			
139	464		330			
138	523		>340			
065	481	37	390			
089	713		840			
257	220	>630				
304	424	310				
	141 139 138 065 089 257 304	141 405 139 464 138 523 065 481 089 713 257 220 304 424	150 197 850 141 405 4.4 139 464 4.4 138 523 37 065 481 37 089 713 5630 304 424 310	150 197 850 141 405 4.4 134 139 464 330 138 523 >340 065 481 37 390 089 713 840 257 220 >630 304 424 310		

OPERATION	Buster-Jangle	_EVENT _	Dog	DATE 11/ 1 /51	TIME <u>1530 Z</u>
YIELD 21	kt BURST	HEIGHT	<u>1417</u> ft.	LOCATION	A-3
APPARENT B	BLAST YIELD , Wa	= 77.4	kt, W	0.4 5. 69	

MB	AZIMUTH	RANGE (KFT)	- PEAK NCROBARS)		
STATION	STATION (DEG.)		TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
Indian Springs	150	197	>770		
Las Vegas	141	405	>1080 (2)		
Henderson	139	464	>910		
Boulder City	138	523	>1040		
Caliente	065	481	470	545	
St. George	089	713	705	>1200	
Beatty	257	220	295		
Goldfield	304	424	(1)	(1)	
					·

(1) No signal/noise.

⁽²⁾ U.S. Weather Bureau, McCarran Field, barograph showed 2.4 MB amplitude but this equipment is heavily damped.

OPERATIO	Bust	er-J	angle	_EVENT _	Easy	_DATE 11/5 /5	1 TIME	<u>1630 Z</u>
YIELD	31.4	_kt	BURST	HEIGHT	1314 ft	. LOCATION	A-3	
A PPARENT	BLAS	ΓΥΙΙ	ELD , W _a	=	kt, V	Va ^{0.4}		

MB	AZIMUTH	1 11. 11. 11. 11. 11. 11. 11. 11. 11. 1				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE	
Indian Springs	150	197	>800			
Las Vegas	141	405	>770			
Henderson	139	464	>900			
Boulder City	138	523	225			
Caliente	065	481	>900	710		
St. George	089	713	175	>295		
Beatty	257	220	>400			
Goldfield	304	424	950			

OPERATION _	Buster-Jangle	_EVENT _	Sugar	D <i>A</i>	\TE 11/19/5:	1 TIME	1700 Z
YIELD 1.2	kt BURST	HEIGHT	4	_ft.	LOCATION	A-10	
APPARENT BL	AST YIELD , W _a	= 1.92	kt,	$W_a^{0.4}$	1.298		

MB	AZIMUTH	E .	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	ATION (DEG.) (KF		TROPO - S PHERE	IONO - SPHERE			
Indian Springs	153	232	53				
Las Vegas	144	438		25			
Henderson	141	496		93			
Boulder City	140	555		130			
Caliente	070	472	625				
St. George	092	718	163	152			
Beatty	247	225	>82				
Goldfield	300	399	(1)	(1)			

⁽¹⁾ No signal/noise.

OPERATION	Buster-Ja	ngle	_EVENT _	Uncle	D	ATE 11/29 /51	TIME <u>2000 Z</u>
YIELD 1.2	kt	BURST	HEIGHT	-17	_ft.	LOCATION_	A-10
APPARENT	BLAST YIEL	D, Wa	= 1. 92 (e	est'd) kt,	W_a^0 .	4 1.298 (est	'd)

MB	AZIMUTH (DEG.)	RANGE (KFT)	RECORD PRESSURE A	ED PEAK-TO MPLITUDE (<i>M</i>	
STATION			TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE
Indian Springs	153	232	130		
Las Vegas	144	438	29.5	15. 4	
Henderson	141	496	40	130	
Boulder City	140	555	4. 2	102	
Caliente	070	472	142	71	
St. George	092	718	102	610	
Beatty	247	225	25. 5		
Goldfield	300	399		33	

OPERATION	Tumbler-S	Snapper	EVENT_	TS-1	D	ATE	4/1	/ ₅₂ TIME	1700 Z
YIELD	<u>1.1</u> kt	BURST	HEIGHT	793	ft.	LO	CATIO	ON_FF	
APPARENT	BLAST YIE	LD, W _a	5. 45	kt,	W_a^0	.4 _{_1.}	97		

MB	AZIMUTH	i i	RANGE		RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE				
Las Vegas C	137	332	280						
Las Vegas F	137	336	300						
Henderson	134	399	65	3/19/44					
Boulder City	134	445	85						
Caliente	055	507		21					
St. George C	082	692	50	98					
St. George F	082	696	210	440 (1)					
Goldfield	310	472		4					

⁽¹⁾ Discrepancy between sensors was not significant on check shots; suspect one range setting was made incorrectly.

OPERATION	Tumbler-	Snapper EVENT	TS-2	D	OATE 4 /15 /52 TIME	1730 Z
YIELD	1. 2 kt	BURST HEIGH	1109	_ft.	LOCATION A-3	
APPARENT E	BLAST YIE	LD, $W_a = 5.55$	kt,	W_a^0	.4_1.99	

MB	AZIMUTH	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFI)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
Las Vegas	141	404	31	47			
Henderson	139	464	74				
Boulder City	138	523		105			
St. George C	089	712		250			
St. George F	089	716		420			
Albuquerque	110	2920		(1)			
· · · · · · · · · · · · · · · · · · ·							

⁽¹⁾ Loud bang distinctly heard by many residents, no MB recording.

OPERATION	Tumbler	-Snapper	_EVENT .	TS-3	DATE	4/22/52	TIME	1730 Z
YIELD 30.7	kt kt	BURST	HEIGHT	3447	ft. LO	CATION_	A-3	
APPARENT E	BLAST YI	ELD , Wa	= 133	kt,	$W_a^{0.4}$ _7	. 07	····	

MB	AZIMUTH (DEG.)	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION			TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
Las Vegas	141	404	740 (1)	120			
Henderson	139	464	800	160			
Boulder City C	138	523	520	180			
Boulder City F	138	528	600	220			
Caliente	065	481	480				
St. George	089	713		230			
Goldfield	304	424	1005 (1)				
				- Lander - Control - Contr			

⁽¹⁾ Some confusion on timing; these signals were originally recorded as ozonosphere propagations.

OPERATION	Tumbler-	Snapper	_EVENT _	TS-4	D	ATE	5/1	/ 52	TIME	1630 Z
YIELD 19.2	kt	BURST	HEIGHT	1040	_ft.	LO	CATIO	_NC	A-3	
APPARENT	BLAST YI	ELD , W _a	= 57. 2	kt,	W_a^0	.4	. 04			

MB	AZIMUTH (DEG.)	RANGE (KFT)		ED PEAK-TO MPLITUDE (M	
STATION			TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE
Las Vegas	141	404	305	180	
Henderson	139	464	210		
Boulder City C	138	523	100	110	
Boulder City F	138	528	180	210 (2)	
Caliente	065	481	230	205	
St. George C	089	712	100	115	
St. George F	089	716	103	800 (1)	
Goldfield	304	424	280		

⁽¹⁾ Very doubtful report.(2) Suspect one set out of calibration.

OPERATION	Tumbler-	Snapper	_EVENT _	TS-5	D	ATE 5 / 7 / 52	TIME 1215	<u>5 Z</u>
YIELD 12.	<u>0</u> kt	BURST	HEIGHT	300	_ft.	LOCATION_	T-1	
APPARENT I	BLAST YIE	LD, Wa	= 24.2	kt,	W_a^0	.4 3. 58		

МВ	AZIMUTH	1	RECORD PRESSURE AI	ED PEAK-TO MPLITUDE (<i>M</i>	
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE
Las Vegas C	141	435		190	
Las Vegas F	141	440		210	
Boulder City C	137	539		210	
Boulder City F	137	547		240	
Caliente	067	505	>950	410	
St. George C	090	730	650		
St. George F	090	733	560		
Goldfield	304	405		115	

OPERATION	Tumbler-S	Snapper	_EVENT _	TS-6		DATE 5 / 25 / 52	TIME.	1200 Z
YIELD	11. 1 kt	BURST	HEIGHT	300	ft.	LOCATION_	T-4	<u> </u>
APPARENT	BLAST YIE	LD , Wa	= 22.5	kt,	W	0.4 _{3.48}		

MB	AZIMUTH (DEG.)	RANGE (KFT)	RECORD PRESSURE AI	ED PEAK-TO MPLITUDE (<i>M</i>	
STATION			TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
Las Vegas	142	447		130	
Henderson	139	490	45	80	
Boulder City C	138	551		85	
Boulder City F	138	558		170	
Caliente	068	498		120	
St. George C	091	733	40		47
St. George F	091	737	45		37
Goldfield	306	393	140		
				W-W	

OPERATION	Tumb	ler-S	napper	_EVENT _	TS-7	1	OATE 6 / 1 /52	TIME <u>1155Z</u>
YIELD 1	4. 6	kt	BURST	HEIGHT	300	ft.	LOCATION_	T-3
APPARENT	BLAST	YIEI	LD , Wa	= 29,4	kt,	Wa	3. 86	

MB	AZIMUTH (DEG.)	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION			TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
Las Vegas	143	419	260	110			
Henderson	139	464	52	90			
Boulder City C	139	522		100			
Boulder City F	139	529		180			
Caliente	065	484		180			
St. George C	089	709		55	110		
St. George F	089	714		60	140		
Goldfield	304	424		105			
Los Angeles	212	1220		(1)			

⁽¹⁾ Heard, record for Pasadena not available.

OPERATION	Tumbler-S	Snapper	_EVENT _	TS-8	[OATE 6 / 5 /	52 TIME	1155 Z
YIELD 13.	9 k t	BURST	HEIGHT	300	ft.	LOCATION	T-2	
APPARENT E	BLAST YIEI	LD, Wa	= 28.0	kt,	W_a^0	3. 79		

MB	AZIMUTH	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)		TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
Las Vegas	143	462		110			
Boulder City C	139	565		140			
Boulder City F	139	572		160			
Caliente	070	497	30	90			
St. George C	092	737		13	44		
St. George F	092	741		20	100		
Goldfield	300	411	460	87			
Los Angeles	212	1220		88			

OPERATION	Ups	hot-	Knothole	_EVENT _	Annie	D	OATE 3 /17 /53 TIME <u>1</u>	320 Z
YIELD	16.2	kt	BURST	HEIGHT	300	_ft.	LOCATION_T-3	
APPARENT	BLAS1	YI	ELD , Wa	= 32.4	kt,	W_a^0	.4 4.02	

MB	AZIMUTH	•		RECORDED PEAK-TO-PEAK ESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
Mercury	177	141.5	5100				
Indian Springs F	152	193.2	3102				
Las Vegas C	137	411	360				
Las Vegas F	137	415	390				
St. George C	089	709	585				
St. George F	089	714	525				
Goldfield C	304	425		210			
Pasadena	212	1221		130	80		
					-		

OPERATION Upshot-Knothole EVENT Nancy DATE 3/24/53 TIME 1310 Z YIELD 24.4 kt BURST HEIGHT 300 ft. LOCATION T-4

APPARENT BLAST YIELD , $W_a = 47.9$ kt, $W_a^{0.4}$ 4.70

MB	AZIMUTH (DEG.)	RANGE (KFT)	11	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFI)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
CP-1	167	59.9	9600				
FFT	167	109.0	1300				
Mercury	169	161.9	325				
Indian Springs C	149	216	280				
Las Vegas C	142	439		380			
Las Vegas F	142	444		460			
Boulder City	138	550.7		526			
Caliente	068	498.4		2000			
St. George C	091	732.7		2000			
StGeorge F	091	737		1600			
Cedar City C	077	906	120	1200			
Cedar City F	077	911.6	120	1320			
Goldfield C	304	394	55	100			
Goldfield F	304	396	70	120			
Albuquerque	110	2920		103			
Pasadena	212	1229		56	90		

OPERATION	Upshot-Kno	thole EVENT	Ruth	D <i>i</i>	ATE 3 /31 /53	TIME 1300 Z
YIELD 0.2	<u>2kt</u>	BURST HEIGHT	300	_ft.	LOCATION_	A-7.5
APPARENT E	BLAST YIELI	$V_a = 0.882$	kt,	$W_a^{0.4}$	4 0.73	

MB	AZIMUTH	RANGE	RECORD PRESSURE A	ED PEAK-TO MPLITUDE (M	- PEAK ICROBARS)
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
CP-1	191	54. 7	8400		
XMF-1	185	68.9	4500		
XM F-2	185	68.9	4500		
FFT	179	101.8	3200		
SCU	178	133	3900		
Mercury	177	154.9	2160		
Indian Springs C	154	205. 0	690		
Las Vegas C	144	429.0	132		
Las Vegas F	144	435	110		
Boulder City	140	531. 7	22.6		
Caliente	067	477. 7	123.0		
St. George C	090	708.6	20	220	
St. George F	090	712.4		260	
Cedar City C	076	884	7.8	97.2	
Cedar City F	076	889. 2		84	
Goldfield C	304	417		10.2	
Albuquerque	110	2920		29.3	
Pasadena	212	1229		22.0	20.0

OPERATION Upshot-Knothole EVENT Dixie DATE 4 /6 / 53TIME 1530 Z YIELD 10.9 kt BURST HEIGHT 6020 ft. LOCATION A-7.3

APPARENT BLAST YIELD , $W_a = 10.9$ kt, $W_a^{0.4} = 2.60$

MB	AZIMUTH	I U	RECORD PRESSURE A	ED PEAK-TO MPLITUDE (M	
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
CP-1	191	55 . 5	10168		
XFM	185	69.5	3970		
FFT	179	101.8	3683		
SCU	178	133	4078		
Mercury	177	154.9	2280		
HWY	177	176	1880		
Indian Springs C	154	200.5	> 3200		
Indian Springs F	154	205.0	> 3200		
Las Vegas C	144	429.0	> 2320		
Las Vegas F	144	425	2480		
Boulder City	140	531.7	2320		
Caliente	067	477.7	> 878		
St. George C	090	708. 6	1000		
St. George F	090	712.4	78∪		
Cedar City C	076	884	336	732	
Cedar City F	076	889.2	312	636	
Goldfield C	304	417		328	
Goldfield F	304	421		400	
Pasadena	212	1 2 29	46.5	96.0	

OPERATION _	Upshot-Knothole	_EVENT _	Ray	DATE	4 / 11 / 53	TIME 1245 2
	kt BURST					
	 LAST YIELD , W _a					

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)					
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE			
CP-1	167	55.9	5300					
XFM	172	77.3	4800					
SCU	165	142	3300					
Mercury	169	161.9	2080					
Indian Springs	149	220.2	2663					
Indian Springs F	149	224.9	2250					
Las Vegas C	142	446.9	420					
Las Vegas F	142	452	476					
Henderson	140	524	620					
Boulder City	138	558	200					

OPERATION	Upshot-Kno	othole	_EVENT _	Badger	D	ATE 4/18/5	3 TIME	1235 Z
YIELD 23.0	kt	BURST	HEIGHT	300	_ft.	LOCATION	T-2	
APPARENT E	BLAST YIEL	D, W _a	= 45.8	kt,	W_a^0 .	4.61		

МВ	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)					
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE			
XFM	166	92.8	8160					
FFT	166	125. 2	6740					
SCU	167	158. 5	4500					
Mercury	168	178. 1	2840					
HWY	168	200.6	2400					
Indian Springs C	150	231.4	3570					
Indian Springs F	150	235.9	3400					
Las Vegas C	143	456	330					
Las Vegas F	143	461.9	360					
Boulder City	139	572.5	467	204				
Caliente	070	496.7	>960					
St. George C	092	737.0	>960	540				
St. George F	092	741	>960	600				
Cedar City C	078	908	>320	>320	72			
Cedar City F	078	911.9	>320	>320	168			
Goldfield C	304	378	30	255	36			
Goldfield F	304	382		>215				
Albuquerque	110	2920	8.1	18.9				
Pasadena	212	1232		117.0	56.4			

OPERATION Upshot-Knothole EVENT Simon DATE 4 k_{25} / 53TIME 1230 Z YIELD 42.7 kt BURST HEIGHT 300 ft. LOCATION T-1 APPARENT BLAST YIELD , W_a = 83.3 kt, $W_a^{0.4}$ 5.85

MB	AZIMUTH	RANGE	RECORD PRESSURE AI	ED PEAK-TO MPLITUDE (<i>N</i>	
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE
XMF	163	61.4	11100		
FFT	163	94. 2	4760		
SCU	165	125.2	3290		
Mercury	167	146.6	1960		
Indian Springs C	146	202.5	> 900		
Indian Springs F	146	207.0	> 780		
Las Vegas C	141	431	283	259	
Las Vegas F	141	434.9	232	165	
Boulder City	137	546.7		870	
Caliente	067	504.5	585	362	
St. George C	090	733.0		1000	
Cedar City C	076	912	90	1440	180
Cedar City F	076	915.6	94	1680	210
Goldfield F	304	405	103.2	190	
Beatty	254	191	408		
Albuquerque	110	2920		180	
Pasadena	212	1210	10	150	

OPERATION Upshot-Knothole EVENT	Encore DATE 5/8 /53 TIME 1530 Z
YIELD 26.5 kt BURST HEIGHT	2425 ft. LOCATION FF
APPARENT BLAST YIELD, Wa = 133.8	kt, Wa ^{0.4}

МВ	AZIMUTH	RANGE	RECORD PRESSURE A	ED PEAK-TO MPLITUDE (<i>N</i>	
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
CP-1	323	61.7	8475		
Mercury	200	53.3	20600 (1)		
Indian Springs C	141	97. 5	4300		
Indian Springs F	141	102.0	4460		
Las Vegas C	137	327	648		
Las Vegas F	137	331.6	600		
Las Vegas #3	137	335	675		
Boulder City	134	437.9	120		
Caliente	055	507.3	4320		
St. George C	082	691.7	2000		
St. George F	082	695.2	1930		
Cedar City C	069	893	1530		
Cedar City F	069	897.9	1640		
Goldfield C	312	497		480	
Goldfield F	312	502		516	
Bishop C	285	748. 2		2046	
Bishop F	285	752.8		1160	
Albuquerque	110	2920		(2)	
Pasadena	215	1160		200	

⁽¹⁾ Broke small windows.

⁽²⁾ No signal/noise.

OPERATION Upshot-Knothole EVENT Harry DATE 5 /19 /53 TIME 1205 Z YIELD 32.4 kt BURST HEIGHT 300 ft. LOCATION T-3A APPARENT BLAST YIELD , $W_a = 63.9$ kt, $W_a^{0.4} = 5.26$

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE		
Mercury	176	139.0	2000				
Indian Springs C	151	187	> 3200				
Indian Springs F	151	191.4	2464				
Las Vegas C	143	412	2380	186			
Las Vegas F	143	417.1	2210	194			
Boulder City	139	527.9	850	238			
Caliente	065	486.1	310	240			
St. George C	089	710.6	540	252	18		
St. George F	089	715	505	252	24		
Cedar City C	075	891	90	120	60		
Cedar City F	075	895.2	80	140	60		
Goldfield C	304	421		640			
Goldfield F	304	425		720			
Bishop C	279	700.3		1488	223		
Bishop F	279	705.0		1320	160		
Pasadena	212	1218		350	135		
Albuquerque	110	2890	6	24			

OPERATIO)N Ups	shot-F	Knothole	_EVENT _	Grabl	<u>e</u> [DATE 5	/ 25 / 53	TIME _	1530 Z
YIELD	14.9	_ kt	BURST	HEIGHT	524	_ft.	LOCA	_NOITA	FF	
APPAREN	T BLAS	T YIE	ELD , Wa	= 33.4	kt,	Wa	0.44	. 07		

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S P HERE		
CP-1	324	61.7	14700				
Mercury	200	53. 3	7440				
Groome Mine	020	203	15000				
Indian Springs C	141	97. 5	> 960				
Indian Springs F	141	102.0	> 960				
Las Vegas C	137	327	123	336			
Las Vegas F	137	331.6	112	269			
Boulder City	134	437.9	36	168			
Caliente	055	507.3	2760		,		
St. George C	082	691.7	1650				
St. George F	082	695 . 2	1800				
Cedar City C	069	893	1320				
Cedar City F	069	897.9	1160				
Goldfield C	312	497	1125	280			
Goldfield F	312	502	920	260			
Bishop C	285	748. 2		1140			
Bishop F	285	752.8		1590			
Pasadena	215	116 0		140	60		
Albuquerque	110	2920		(1)			

⁽¹⁾ No signal/noise.

OPERATION Upshot-Knothole EVENT Climax DATE 6 /4 /53 TIME 1115 Z YIELD 60.8 kt BURST HEIGHT 1334 ft. LOCATION T-7-3 APPARENT BLAST YIELD , $W_a = 165.1$ kt, $W_a^{0.4} = 7.70$

MB	AZIMUTH		RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)					
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE			
CP-1	191	55.3	22800					
Mercury	177	154.9	3200					
Indian Springs C	154	201	465					
Indian Springs F	154	205.0	485					
Las Vegas C	144	424		180				
Las Vegas F	144	429.0		180				
Las Vegas #3	144	433	40	220				
Boulder City	140	539.0		390				
Caliente	067	477. 7	180	280				
St. George C	090	708. 6		160	170			
St. George F	090	713		140	180			
Cedar City C	076	885		110	140			
Cedar City F	076	889.2		100	120			
Goldfield C	304	421	120	300				
Goldfield F	304	425	120	240				
Bishop C	277	699.2		2040	All the second s			
Bishop F	277	703.9		2460				
Pasadena	212	1218		300 (1)				
Albuquerque	110	2890		63.5				

⁽¹⁾ Newspapers headline "Mysterious Blast Rocks LA."

OPERATIO	۷ <u>Te</u>	apot		EVENT _	Wasp	D	ATE 2	/ 18 / 55	TIME.	2000 Z
YIELD	1.2	_ kt	BURST	HEIGHT	762	ft.	LOCA	TION_	Γ-7-4	
APPARENT	BLAS	T YIE	LD, W _a	= 5. 72	kt,	W_a^0 .	4 2.0	01		····

MB	AZIMUTH	RANGE		ORDED PEAK-TO-PEAK E AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
CP-1	191	55.3	5040				
Mercury	177	155. 2	2070				
Indian Springs	154	205. 4	2663				
Las Vegas	142	421.5	670	360	, , , , , , , , , , , , , , , , , , ,		
Boulder City	140	531.6	530	140			
Caliente	067	478.7		1600			
St. George	090	710. 1	40	260			
Cedar City	075	889		280			
Lund	024	708		192			
Tonopah	318	474.6		154			
Bishop	278	700.2		(1)			
Inyokern	224	700.4		(1)			

⁽¹⁾ No signal/noise.

OPERATION Teapot	EVENT _	Moth	_DATE 2 /22 / 55	TIME 1345 Z
YIELD <u>2.4</u> kt	BURST HEIGHT_	<u>300</u> ft.	LOCATION_	T-3
APPARENT BLAST YI	ELD, $W_a = 5.45$	kt, W	$\sqrt{a^{0.4}}$ 1.97	·

MB	AZIMUTH	RANGE (KET)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE	
CP-1	194	41.8	14640			
Mercury	177	141.5	5800			
Indian Springs	152	193. 2	5544			
Las Vegas	143	418.6	2992	88		
Boulder City	139	521.9	1121	162		
Caliente	065	483.7	32	1088		
St. George	089	709.3	232	1032		
Cedar City	075	893.3	72.6	386		
Lund	024	720.1	3. 6	389		
Tonopah	320	483.5		62.4		
Bishop .	279	701.1	·	4.2	>96	
Inyokern	224	689.8	4. 1	33.6	52.3	

OPERATION _	Teapot	EVENT	Tesla	_DATE 3 / 1 /55	TIME 1330 Z
YIELD 6.8	kt	BURST HEIGHT_	<u> 300</u> ft	. LOCATION_	T-9B
APPARENT B	LAST YIEL	D, $W_a = 14.7$	kt, V	Va.4 2.93	

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - OZONO - IONO SPHERE SPHERE SPHE				
CP-1	182	69.3	11280				
Mercury	175	170.3	2088				
Indian Springs	154	221.9	> 2232				
Las Vegas	144	445.8	> 311	164.8	14		
Boulder City	140	548.3	160	344			
Caliente	069	479. 4	348	524			
St. George	092	716.5	329	» 960			
Lund	025	702.4	126	>> 888			
Tonopah	318	457.0	21.0	126			
Bishop	276	689.1			51. 0		
Inyokern	222	704.7		13. 2	104.8		

OPERATION	Teapot	EVENT _	Turk		DATE 3	3 / 7 / 5	5 TIME	1320 Z
YIELD 43	kt	BURST HEIGHT	500	_ft.	LOC	ATION	T-2	
APPARENT I	BLAST YIEL	_D , W _a =	kt,	. W	0.4			

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	1 1		IONO - S P HERE	
CP-1	166	76.2	>14880 (1)			
Mercury	168	178. 1	1760			
Indian Springs	150	235.9	416			
Las Vegas	143	461.9	54.0	480		
Boulder City	139	565.3	48	454		
Caliente	070	496.7	240	1410		
St. George	092	737.0	60	4080		
Lund	027	706.9	48	4128		
Tonopah	320	440.1	1464	562		
Bishop	276	668.2	13.2	138	94.2	
Beatty	244	210	1144			
Inyokern	221	699.1	10	80	124	
				Julius Programme Control of the Cont		

⁽¹⁾ $\Delta p > 12$ mb.

OPERATION	Teapot		_EVENT _	Hornet	D.	ATE ³	/12/59	TIME 1	320 Z
YIELD 3.	6kt	BURST	HEIGHT	300	_ft.	LOCA	ATION_	T-3A	
APPARENT E	BLAST YIEL	D, W _a	= 7.85	kt,	W_a^0 .	4	2.28		

MB	AZIMUTH	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	STATION (DEG.)		TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE	
CP-1	193	39. 1	13080			
Mercury	176	139. 0	1560			
Indian Springs	151	191.4	728			
Las Vegas	143	417.1	42.0	148.8		
Boulder City	139	520.6	12.0	184. 2		
Glendale	110	459	94.8	202.8		
Caliente	065	486.1	60	210		
St. George	089	710.6	20	256		
Lund	024	728.0		410		
Tonopah	320	484.8		256.8		
Bishop	279	700. 3		120	60	
Inyokern	224	691.7		126.6	33.0	

OPERATION	Teapot	EVENT	Bee	D <i>i</i>	ATE 3/22/55TIME	1305 Z
YIELD 8.1	kt	BURST HEIGHT_				1
APPARENT E	BLAST YIE	LD, $W_a = 19.05$	kt,	W_a^0 .	4 3.25	

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE		
CP-1	189	58.8	13200				
Mercury	177	158.7	7703				
Indian Springs	154	208.7	5685				
Las Vegas	144	432.7	2904	216			
Henderson	141	493	2416	432			
Boulder City	140	542.5	1440	280			
Caliente	067	477.3		548			
St. George	091	709.7	36	3120			
Lund	025	709.7		900			
Tonopah	318	469.9		108			
Bishop	277	697.5		49.5	22.8		
Inyokern	223	706.1	12	24			

OPERATION _	Teapot	EVENT _	ESS	[OATE 3/23/55	TIME 2030 Z
YIELD 1.1	kt	BURST HEIGHT	-67	_ft.	LOCATION_	T-10
APPARENT BI	LAST YIE	LD , W _a <u>=</u>	kt,	W_a^0	.4	

MB STATION	AZIMUTH (DEG.)	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)		
			TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
CP-1	182	85.7	400		
FFT	176	133.2	384		
Mercury	176	186.4	230		
Indian Springs	156	235.9	16		
Las Vegas	146	458.1	<20 (1)		
Boulder City	141	559.7		63	
Caliente	071	472.1		260	
St. George	093	715.3		166	
Lund	026	687.1		358	
Tonopah	317	446.0		<48 (1)	
Bishop	275	688.6		12	6
Inyokern	221	722.2		7.6	13

⁽¹⁾ No signal/noise.

OPERATION Te	apot	EVENT _	Appl	<u>e-I</u> [DATE 3 /29 / 55	TIME <u>1255 Z</u>
YIELD 14.2	_ kt	BURST HEIGHT_	500	ft.	LOCATION_	T-4
APPARENT BLAS	TYLE	ELD, $W_a = 31.3$	kt	W_a^0	3. 96	

МВ	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
CP-1	167	59.9	6120				
Mercury	169	161.9	2240	280			
Indian Springs	149	220.2	3840	315			
Las Vegas	142	446.9	2040	285			
Boulder City	138	558.0	1624	488			
Caliente	068	498.4	340	550			
St. George	091	732.7	255	1452			
Lund	026	719. 1	632	760			
Tonopah	320	454.9		160			
Bishop	277	674.7		44. 4	28.5		
Inyokern	222	690.4		192	36		

OPERATION	Teapot	EVENT _	Wasp-Pr	<u>ime</u> D	ATE	3/29/55	TIME 1	800 Z
YIELD 3. 2	<u>k</u> t	BURST HEIGHT	740	_ft.	LO	CATION_	T-7-4	
APPARENT	BLAST YIE	LD , $W_a = 11.6$	kt,	W_a^0	.4	2.67		***************************************

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE	
CP-1	191	55.3	4068			
Mercury	177	154.9	204	42		
Indian Springs	154	205.0	408	187		
Las Vegas	144	429.0	> 320	248		
Boulder City	140	531.7	696	583		
Caliente	067	477. 7	2320	496	160	
St. George	090	708.6	308	368		
Tonopah	318	473.5		35		
Bishop	277	703.9		14. 4	24.0	
Inyokern	224	699.6		91.8		
-						

OPERATION _	Teapot	EVENT _	HA	DATE 4 /6	/55 TIME <u>1800 Z</u>
YIELD 3.3	kt	BURST HEIGHT	36,620 f f	t. LOCATI	ON_T-5G
APPARENT B	LAST YIE	LD , W _a = 3.3	kt,	$W_a^{0.4}$ 1.61	2

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE	
CP-1-P (1)	179	47.0	13200			
FFT-P (1)	170	89.2	7760 (2)			
MER-P (1)	172	140.0	2208 (2)			
Indian Springs	148	192.5	1002			
Las Vegas	141	419.7	42	138		
Boulder City	138	531.2		572		
Caliente	065	496.4		474		
St. George	089	720.3		756		
Lund	025	735.7		204		
Tonopah	321	482.1		65.4		
Bishop	279	691.8			54.0	
Inyokern	224	681.9		20	78	

⁽¹⁾ MB sensor on 40-foot pole.(2) No step recorded to show reflected wave.

OPERATIO	N	Γeapot	EVENT _	Post	D	ATE	4/9/59	TIME	1230 Z
YIELD	1.5	kt	BURST HEIGHT	300	_ft.	LOC	CATION_	T-9C	
APP ARENT	BLA	ST YIE	LD , W _a = 3.6	kt,	W_a^0 .	.4	1.67		

МВ	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE		
ОВА	183	63.7	7200				
CP-1	185	68.4	4680				
Mercury	176	168.9	340				
Indian Springs	154	219.0	180				
Las Vegas	145	442.6	87				
Boulder City	141	552.1		342			
Caliente	069	476.3		207			
St. George	092	712.7		1014			
Lund	025	701.9		626			
Tonopah	318	460.4	3.6	58.2			
Bishop	276	693.0		19.2	10.2		
Inyokern	222	711.1		51.0			

OPERATION	Teapot	EVENT	MET	DATE	4/15/55	TIME	<u>1915 Z</u>
YIELD 22	<u>. o</u> kt	BURST HEIGHT_	400	ft. LO	CATION_	FF	
APPA RENT	BLAST YIEI	LD , W _a = 45.1	kt,	W ₀ .4_4	. 58		

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE	
CP-1	323	61.7	>8880 (1)			
OBA	200	34.5	24400			
Mercury	200	53.3	>> 3200			
Indian Springs	141	102.0	>3200 (2)			
Las Vegas	137	331.6	410	256		
Boulder City	134	437.9	110	552		
Caliente	055	507.3	1200	320		
St. George	082	691.7	354	4540		
Lund	020	800.2	48.0	714	60	
Tonopah	323	571.9		554		
Bishop	285	748.2		114		
Inyokern	232	654.9		290	98	
				·		
	-					

⁽¹⁾ Estimated 11,000.(2) Estimated 3,600.

OPERATION Teapot	EVENT _	Apple-II	DATE	5/5/55	TIME <u>121</u>	<u>0 Z</u>
YIELD <u>28.5</u> kt	BURST HEIGHT	f	ft. LO	CATION_	T-1	
APPARENT BLAST YIE	LD , W _a = 59.9	kt,	$W_a^{0.4}_{-5}$. 14		

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
CP-1	162	44.8	21300				
Mercury	167	146.6	620				
Indian Springs	146	207. 0	182.4	256			
Las Vegas	141	434.9	492	422	70.8		
Boulder City	147	546.7		960	80		
Caliente	067	504.5	84.8	>160	71.0		
St. George	090	733.0		>840	125. 4		
Lincoln Mine	027	238	5112				
Lund	026	733.0	724	416			
Tonopah	322	467.1	1960	120	304		
Bishop	279	677.3		744	69.0		
Inyokern	223	679.2		500			

OPERATION _	Teapot		EVENT	Zucchini	D	ATE	5/15/5	5 TIME <u>120</u>	0 Z
YIELD 28.2	kt	BURST	HEIGHT	500	_ft.	LOC	CATION	T-7-1	
APPARENT B	LAST YIEL	D, Wa	= 59.2	kt,	W_a^0	.4_5	. 10		

MB	AZIMUTH		RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE		
CP-1	189	58.8	12480				
Mercury	177	158. 7	2100				
Indian Springs	154	208.7	825				
Las Vegas	154	432.7	664	160			
Boulder City	140	535.3	480	260			
Glendale	110	458	1170				
Caliente	067	477.3	1830	120			
St. George	091	709.7	1680	120			
Lund	025	709.7	300	870			
Tonopah	318	469.9	155. 4	295. 2			
Bishop	277	697.5		540			
Inyokern	223	706.1		460			

OPERATION _	Plumbbo	ob	EVENT.	Boltzmann	D <i>A</i>	ATE 5/28/	57TIME	1155 Z
YIELD 11.5	kt	BURST	HEIGHT	500	ft.	LOCATION	V <u>T-7C</u>	
APPARENT BL	AST YIE	LD, W _a	26. 1	kt,	$W_a^{0.4}$	4 3.69		

MB STATION	AZIMUTH (DEG.)	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	() ()	(1011)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
CP-1	189	58.8	5976				
Las Vegas	143	423.9		202.2			
Boulder City	140	535.3		177. 0	34.2		
St. George	091	709. 7		92.4	76. 2		
Tonopah	318	469.9	48	268			
Bishop	277	697.5	12	480			
Inyokern	223	701.4		1152	26.0		

OPERATION _	Plumbbob	EVENT _	Franklin	DATE	6/2 /57	7 TIME <u>1155 Z</u>
YIELD 0.14	kt	BURST HEIGHT	<u>300</u> ft.	LO	CATION	T-3
APPARENT B	LAST YIEL	$D , W_a = 0.569$	kt, W	$0.4_{-0.4}$. 798	

MB	AZIMUTH	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	STATION (DEG.) (K		TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE	
CP-1	194	41.9	6800			
Las Vegas	141	410.8	3.0	24.6		
Boulder City	139	521. 9	1.2	24.6		
St. George	089	709.3		6.6	21.0	
Tonopah	320	483.5	6	48		
Bishop	279	701.1		254. 4		
Inyokern	224	689.8		568	20	
					· · · · · · · · · · · · · · · · · · ·	
					., ., ., ., ., ., ., ., ., ., ., ., ., .	
			·			

OPERATION Plumbbe	ob EVENT _	Lassen	_ DATE 6 /5	/57 TIME 1145 Z
YIELD 0. 47-ton	BURST HEIGHT_	<u>500</u> ft	. LOCATI	ON_B-9A
APPARENT BLAST YI	ELD, $W_a = 4.7 \times 10$) ⁻⁴ kt, \	N 0.4 4.97 x	10 ⁻²

MB STATION	AZIMUTH (DEG.)	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFI)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
CP-1	184	73.2	80				
Las Vegas	144	445.8		0.4			
Boulder City	140	548.3		0.4(1)			
St. George	092	716.5		0,4(1)			
Tonopah	318	457.0		0.8			
Bishop	277	689.0		14			
Inyokern	222	704.7		6.0			
1							
					- Marie		
· · · · · · · · · · · · · · · · · · ·							
				-			

⁽¹⁾ No signal/noise.

OPERATION Plumbbob	EVENT	Wilson	_DATE 6/18/57	TIME <u>1145 Z</u>
YIELD 10.3 kt	BURST HEIGHT_	<u>500</u> ft.	. LOCATION_	B-9A
APPARENT BLAST YIELI	D, $W_a = 23.4$	kt, V	$V_a^{0.4}$ 3. 52	

MB	AZIMUTH	i i	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	STATION (DEG.) (KFT)		TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
CP-1	177	72.7	4620				
Las Vegas	144	447. 4	17.4	97.8			
Boulder City	140	549.6		75.0			
St. George	092	714. 9	149.4	40.2	82.2		
Lund	025	698.8	30.6	218.4			
Tonopah	318	455.8	26	182			
Bishop	277	690.4		1160			
Inyokern	222	708.3		800	24		
					,		

OPERATI (ON Plu	mbbo	b EVENT _	Priscil	la l	DATE	6/24/5	7TIME	1330 Z
YIELD	36.6	_ kt	BURST HEIGHT_	700	_ft.	LO	CATION	B-FF	
APPAREN	IT BLAS	TYIE	$ELD , W_a = 81.7$	kt,	Wa).4_ ₌	5. 80		

AZIMUTH	1	I RESSERE THAT ELLES ELLES				
		TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
323	61.7	24000 (1)				
200	53.3	12960 (2)		<u></u>		
135	325.4	85.2	112.2	25.8		
134	437.9	26.4	96.0			
082	691.7	14.4	58.8	66.0		
020	800.1	6.0	120	38		
323	571.9		704			
285	748.7		1650	144		
232	650.4		1566			
196	1528		(3)			
	(DEG.) 323 200 135 134 082 020 323 285 232	(DEG.) (KFT) 323 61. 7 200 53. 3 135 325. 4 134 437. 9 082 691. 7 020 800. 1 323 571. 9 285 748. 7 232 650. 4	AZIMUTH (DEG.) RANGE (KFT) TROPO- SPHERE 323 61.7 24000 (1) 200 53.3 12960 (2) 135 325.4 85.2 134 437.9 26.4 082 691.7 14.4 020 800.1 6.0 323 571.9 285 748.7 232 650.4	AZIMUTH (DEG.) RANGE (KFT) TROPO - OZONO - SPHERE 323 61.7 24000 (1) 200 53.3 12960 (2) 135 325.4 85.2 112.2 134 437.9 26.4 96.0 082 691.7 14.4 58.8 020 800.1 6.0 120 323 571.9 704 285 748.7 1650 232 650.4 1566		

⁽¹⁾ $\Delta p = 17.52 \text{ mb} = 0.254 \text{ lb/in.}^2$. (2) Door torn off house at Indian Springs, no MB recorder.

⁽³⁾ No MB recorder, audible disturbance.

OPERATION	Plumbbob		_EVENT _	Hood		DATE 7 / 5	/57 TIME 1140	<u>Z</u>
YIELD	74.3 kt	BURST	HEIGHT	1500	ft.	LOCATIO	ON_B-9A	
APPARENT	BLAST YIEL	D, Wa	= 208.5	k	ct, W	0.4 8.46		

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE	
Indian Springs	155	224.1	540			
Las Vegas	145	447.4	30	198	42	
Boulder City	140	549.6		126	57	
St. George	092	714. 9	24	73.1	168	
Lund	025	698.8	269	365	221	
Tonopah	318	455.8	610	390		
Bishop C	277	690.4		2760	90	
Bishop F	277	694.6		2280		
Inyokern	222	708.3		1728	108	
Gov ' t Peak	226	790		3240	108	
Daggett	203	765		928	156	
-						

OPERATI	ON Plui	mbbob	EVENT	Diablo		DATE 7 /15 / 57	TIME <u>1130</u>	<u>Z</u>
YIELD_	17.0	_ kt	BURST HEIGHT	500	_ft.	LOCATION_	T -2B	
APPAREI	NT BLAS	TYIE	$ELD , W_a = 37.1$	kt,	Wa).4 _{4.24}		

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE		
CP-1	166	79. 8	8150				
Las Vegas	143	463.7	7. 2	113.2	10. 2		
Boulder City	139	566.8		54	40.8		
St. George	092	734.8		15.6	93.5		
Lund	027	702.0	12	97	104		
Tonopah	320	438.3	182	64.8			
Bishop C	276	670.2		1040			
Bishop F	276	674.9		1616			
Inyokern	221	699.7		1768	50		

OPERATION	Plumbbob	EVENT _	John	D <i>A</i>	TE 7 /19 / 5	7TIME	1400 Z
YIELD 2	kt	BURST HEIGHT	30,000	_ft.	LOCATION_	A-9	
APPARENT I	BLAST YIEL	D, W _a = 2	kt,	$W_a^{0.4}$	1.32		

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE	
CP-1	177	74.4	2440			
Las Vegas	144	447. 4	3.0	73. 2		
Boulder City	140	549.6		66	12	
St. George	092	714.9		34.2	45	
Lund	025	698.8	22.8	52.8	63	
Tonopah	318	455.8	6	60.2		
Coaldale	302	618.5		284	20	
Bishop	277	690.4		556		
Inyokern	222	708.3		800	40	
				·		
		-				

OPERATION	Plumbbob	EVENT _	Kepler	D	ATE 7/24/57	TIME <u>1150 Z</u>
YIELD 10.	3 kt	BURST HEIGHT	500	_ft.	LOCATION_	T-4
APPARENT B	LAST YIE	LD, $W_{a} = 23.5$	kt,	W_a^0	.4 3.53	

MB STATION	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE	
CP-1	167	59 . 9	14320			
Las Vegas	140	434.9	22	96		
Boulder City	138	551.8	57	128		
St. George	091	734.5		34	72	
Lund	026	720.0	18.4	160	52	
Tonopah	320	450.0	37.2	198		
Coaldale	304	618		870		
Sodaville	308	792		1020		
Bishop	278	674.8		840		
Inyokern	222	685.0		1332		

Marine Control of the						

OPERATION _	Plumbbob	EVENT _	Owens	DATE 7/25/57TIME <u>13</u>	30 Z
YIELD 9.7	kt BURS	T HEIGHT_	500	ft. LOCATION_B-9A	
APPARENT BL	AST YIELD , W	a = 22.2	kt,	$W_a^{0.4}$ _3.46	

MB	AZIMUTH		RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
CP-1	183	72.7	7740				
Las Vegas	144	447. 4	57				
Boulder City	140	549.6		39	33		
St. George	092	714.9	9.6	29	78		
Lund	025	698.8	10.7	12.0			
Tonopah	318	455.8	110	246			
Sodaville	306	725.5		870			
Bishop C	277	690.4		690			
Bishop F	277	693		780	90		
Inyokern	222	708.3		780			

OPERATION	Plumbbob	EVENT _	Stokes	DATE 8 / 7 / 57	TIME <u>1225 Z</u>
YIELD 19.1	kt BURS	T HEIGHT	1500	ft. LOCATION_	B-7B
APPARENT B	BLAST YIELD , W	$V_a = \frac{76.0}{}$	kt,	Wa ^{0.4} 5.66	

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
UCC	185	48.7	>16000				
CP-1	189	55.8	16640				
Las Vegas	144	430.2	8.0	89.6			
Boulder City	140	532.9		81.0			
St. George	091	709.2	11.6	43.4	70. 4		
Lund	025	712.4	797	157	37.8		
Tonopah	318	472.2	725	178. 2			
Bishop	277	697.8		1440			
Inyokern C	223	694.2		638	100		
Inyokern F	223	698.9		896			

OPERAT	ION .	Plumbbob		_EVENT _	Shasta	D	OATE 8 / 18 / 5	7TIME	1200 Z
YIELD_	16.5	kt	BURST	HEIGHT	500	_ft.	LOCATION	T-2A	
APPARE	NT B	LAST YIEL	D, Wa	= 35.8	kt,	W_a^0	.4 4. 19		

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
UCC	165	64	10640				
CP-1	166	71.6	7360				
Las Vegas	143	456.7	28.8	147			
Boulder City	139	560.0	12	152	7. 2		
St. George	092	733.7	1.8	48	48		
Lund	027	709.1	36	391	36		
Tonopah	320	445.1	1103	220			
Bishop	276	671.9	48	486	48		

OPERATION .	Plumbbob	EVENT	Doppler	DATE	8/23/57	TIME	1230 Z
YIELD 10.7	kt BUR	ST HEIGHT_	<u>1500</u> ft.	LOC	CATION_	B-7B	
APPARENT B	LAST YIELD,	W _a = 49.0	kt, W	0.4 a	4. 74		

MB	AZIMUTH	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFI)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE		
UCC	185	48.7	17640				
CP-1	189	55.8	13500				
Las Veg as	144	430.2	1.8	141			
Boulder City	140	532.9	1.2	165			
St. George	091	709. 2	6	51.6	85.7		
Lund	025	712.4	30	180	50		
Tonopah	318	472.2	428	222.4			
Bishop	277	697.8		780	48		
Inyokern	223	698.9		948	54		

OPERATION _	Plumbbob	_ EVENT Prime	DATE 8/30/5	7TIME 1240 Z
YIELD 4.7	kt BURST	HEIGHT 750	_ft. LOCATION	B-7B
APPARENT BI	LAST YIELD , Wa	= 10.44 kt,	$W_{a}^{0.4}$ 2.56	

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE		
UCC	185	48. 7	5220				
CP-1	189	55.8	6160				
Las Vegas	144	430.2	11	92.8			
Boulder City	140	532.9	·	151.2			
St. George	091	709. 2	16	66.2	46		
Lund	025	712.4	24	120	33		
Tonopah	318	472.2	66	158			
Bishop	277	697.8		944	40		
Inyokern	223	698.9		620	90		
Daggett	203	790		570	100		
		Market Control of the					

OPERATION	Plumbbob	EVENT	Smokey	DAT	E 8/31/57	TIME 1230) <u>Z</u>
YIELD 44	kt BUR	ST HEIGHT_	700	_ft. L	OCATION_	T-2C	
APPARENT E	BLAST YIELD , '	W _a = 96.5	kt,	$W_a^{0.4}$	6.22		

MB	AZIMUTH	1 !!	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
CP-1	190	91.8	15200				
Las Vegas	143	467.6	138	204			
Boulder City	139	585.2	60	204	16		
St. George	092	723.8	234	167	42.6		
Lund	027	684.8	4.8	317	84.5		
Tonopah	320	435.6	7.2	660	,		
Bishop	276	680.5		1080	280		
Inyokern	221	717. 5		918	96		
Daggett	203	790	108	900	90		

OPERATION .	Plumbbob	EVENT Ga	lileo	DATE 9/2 /57	TIME <u>12</u>	40 Z
YIELD 11.4	kt BUR	ST HEIGHT	₅₀₀ ft.	LOCATION	T-1	
APPARENT B	LAST YIELD,	$W_a = 25.7$	kt, W	$0.4_{-3.66}$		

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
UCC	160	38.5	38300				
CP-1	162	44.8	16680				
Las Vegas	141	427.7	21	156	24		
Boulder City	137	539.5	6	156	6		
St. George	090	733.0		108			
Lund	026	733. 0	12	408	158		
Tonopah	322	467.1	186	504			
Bishop	279	677.3		420	18		
Inyokern	223	674.6		510	60		
			,				

OPERATI	ON _	Plumbbob)	_EVENT _	Wheel	er	DATE	9/	6 / 57	TIME	1245 Z
YIELD_	0. 197	kt	BURST	HEIGHT	500	ft.	LO	CAT	ION_	B-9A	<u> </u>
APPAREI	NT BL	AST YIEL	D, W _a	= 1, 025	kt	, W	0.4 _{1.}	. 01			

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
UCC	180	64.1	3200				
CP-1	183	72.7	1710				
Las Vegas	144	447.4		28.6			
Boulder City	140	549.6	1.2	41.0			
St. George	092	714.9		30			
Lund	025	698.8	12	180			
Tonopah	318	455.8	123	18			
Bishop	277	690.4	3.0	45	15		
Inyokern	222	708.3		50	30		
	,						
		-					

OPERATION	Plumb		_ EVENT _							
(Not released	d) kt	BURS	r HEIGHT	750	_ft.	LO	CATIO	ON_	B-7B	
APPARENT BL	AST YIE	LD , W	a =	kt,	W_a^{C}	.4				

MB	AZIMUTH	RANGE	RECORD PRESSURE A	ED PEAK-TO MPLITUDE (<i>N</i>	- PEAK II CROBARS)
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
UCC	185	48.7	12600		
CP-1	189	55.8	5600		
Las Vegas	144	430.2	10	52	
Boulder City	140	532.9		150	
St. George	091	709.2	3	41	14
Lund	025	712.4	6	60	6
Tonopah	318	472.2	15	79.5	33
Bishop	277	697.8	6	240	15
Inyokern	223	698.9		492	66

OPERATION .	Plumbbob	EVENT _	Fizeau	_ DATE 9 / 14 / 5′	7TIME 1645 Z
YIELD 11.	1 kt B	BURST HEIGHT	ft	LOCATION_	T-3B
APPARENT B	LAST YIELD	$_{1}$, $W_{a} = 25.3$	kt, \	$W_{a}^{0.4}$	

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
UCC	190	29.0	30480				
Las Vegas	143	417. 1	30.6	141	15		
Boulder City	139	520.6	12.6	216			
St. George	089	710.6	4.8	171	98. 4		
Lund	024	728.0	2. 4	163. 2	45		
Tonopah	320	484.8	18	121.8			
Bishop	279	700. 3		280	76		
Inyokern	224	691.7		346	30		
		(6)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)					

OPERATION	Plumbbob	EVENT	Newton	_ DATE 9 / 16 / 57	TIME <u>1250 Z</u>
YIELD 12	kt	BURST HEIGHT	1500ft.	LOCATION_	B-7B
APPARENT	BLAST YIEL	$D , W_a = 53.6$	kt, W	$\frac{10.4}{4.91}$	

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE		
CP-1	189	55.8	11100				
Las Vegas	144	430, 2	96	133.5	·		
Boulder City	140	532.9	50	195			
Glendale	110	448	475	90			
St. George	091	709.2	496	128			
Lund	025	712.4	56	220	34		
Tonopah	318	472.2	6	396			
Bishop	277	697.8		550	70		
Inyokern	223	698.9		1000	100		
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

OPERATION _	Plumbbob	EVENT _	Rainier	DATE	9/19/5	TIME 1700 Z
YIELD 1.7	kt E	BURST HEIGHT	- 790	ft. LO	CATION_	U-126
APPARENT B	LAST YIELD), W _a =	kt,	$W_a^{0.4}$		

MB STATION	AZIMUTH (DEG.)	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)					
STATION			TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE			
UCC	151	95	(1)					
CP-1	154	101.5	(1)					
Las Vegas	141	483.1	(1)					
Boulder City	138	591.4	(1)					
St. George	092	761	2.4					
Lund	029	707. 5	(1)					
Tonopah	318	467.3		(1)				
Bishop	276	652.1		5. 4				
Inyokern	219	699.6		(1)				

⁽¹⁾ No signal/noise.

OPERAT	ION Plu	mbbob	EVENT	Whitne	у	DATE $_{9}$ I_{23} I_{57}	TIME	1230 Z
YIELD_	18.5	kt	BURST HEIGHT_	500	_ft.	LOCATION_	T-2	
APPARE	NT BLAS	ST YIE	$LD , W_a = 40.0$	kt,	W	0.4 4.37		

MB	AZIMUTH	1	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE		
UCC	163	69.3	5400				
CP-1	166	76.2	4300				
Las Vegas	143	454.2	12	210	18		
Boulder City	139	565.3	30	280			
St. George	092	737.0	9.0	336			
Lund	027	706.9	49.2	696			
Tonopah	320	440.1	300	210			
Bishop	276	668.1		340	120		
Inyokern	221	694.4		330	20		
				<i></i>			

OPERATION _	Plumbbob		_EVENT _	Charlestor	<u>n</u>	DATE	9 / 28 / 57	TIME	1300 Z
YIELD 11.5	kt	BURST	HEIGHT	1500	_ft.	LOC	CATION_	B-9A	·
APPARENT B	LAST YIELI	D, Wa	= 52.6	kt,	W;	0.4 4	. 88		

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)				
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
CP-1	183	72.7	4680				
Las Vegas	145	447. 4		156			
Boulder City	140	549.6	,	408			
St. George	092	714.9	30	268	20		
Lincoln Mine	022	164	5160				
Lund	025	698.8	1069	180			
Tonopah	318	455.8	96	90			
Bishop	277	690.4		152	34		
Inyokern	222	708.3		318	48		
Daggett	203	865		190	76		

OPERATION		Plumbbo	b EVENT _	Morga	n	DATE 10/6 /57 TIME	1300 Z
YIELD	8	kt	BURST HEIGHT_	500	_ft.	LOCATION B-9A	
APPARENT	BLA	ST YIE	LD , W _a = 18.96	kt	, W;	0.4 3.24	

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE	
CP-1	183	72.7	8640			
Las Vegas	145	447. 4		148		
Boulder City	140	549.6	84	376		
Alamo	069	275	>960			
Coyote	064	317	2320			
St. George	092	714.9	480	422		
Lund	025	698.8	367	542		
Tonopah	318	455. 8	206	168		
Bishop	277	690.4		42.0	57.6	
Inyokern	222	708.3		145, 2	15	

OPERATION _	Hardtack II	_ EVENT _	Eddy	D	ATE 9 / 19/ 58	TIME <u>1400 2</u>	<u>Z</u>
YIELD 83-ton	BURS1	HEIGHT_	500	_ft.	LOCATION_	B-7B	_
APPARENT BI	LAST YIELD , W	= 0.34	kt,	W_a^0	.4 0.65		_

МВ	AZIMUTH	1 11	18	DED PEAK-TO MPLITUDE (<i>N</i>	-TO-PEAK (MICROBARS)		
STATION	(DEG.)	(DEG.) (KFT) TROPO - S PHERE		OZONO - S PHERE	IONO - S PHERE		
UCC	185	46.5	3040				
CP-1	189	55.0	2588				
МОВ	189	55.8	1880				
Las Vegas	144	430.2	1.2	11			
Boulder City	140	532.9	0.8	11.8			
St. George	091	709. 2		12.8			
Bishop	277	697.8		66.6			
Inyokern	223	698.9		48.6	4.8		

OPERATION	Hardtack II	_ EVENT _	Mora	[OATE 9 /29 / 58	BTIME <u>1405 Z</u>
YIELD 2	kt BURST	HEIGHT	1500	_ft.	LOCATION_	B-7B
APPARENT	BLAST YIELD , W _a	= 7.76	kt,	W_a^0	.4 2.27	

MB AZIMUTH RANGE PRESSURE AMPLITUD						
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE	
CP-1	189	55 . 8	17500			
FFO	178	143	6020			
Las Vegas	144	430. 2	210	60		
Boulder City	140	532.9	28	50		
St. George	091	709. 2		408		
Bishop	277	697.8		71.4	18	
Inyokern	223	698.9	10	176	44	
			<u> </u>			

OPERATION Hardta	ck II EVENT	Hidal	go [DATE 10/ 5 / 58	TIME <u>1410 Z</u>
YIELD 77-ton	BURST HEIGHT	377	ft.	LOCATION_	B-7B
APPARENT BLAST Y	$VIELD , W_a = 0.393$	kt	, Wa	0.689	

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE		IONO - S PHERE	
UCC	185	46.5	2540			
CP-1	189	55.8	2640			
Las Vegas	144	430.2	18	5.8		
Boulder City	140	532.9	28.4	34		
St. George	091	709.2		53.4		
Bishop	277	697.8		6	9	
Inyokern	223	698.9		6.6	29	
			,			
		.,,,,				

OPERATION	Hardtack II	EVENT _	Quay	D	ATE 10/10/58	TIME	1430 Z
YIELD 79-to	<u>n</u> BUF	RST HEIGHT_	100	_ft.	LOCATION_	T-7C	
APPARENT E	BLAST YIELD ,	$W_a = 0.182$	kt,	W_a^0	.4 0. 506		

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE	
UCC	191	43.6	3180			
CP-1	188	59.0	4250			
Las Vegas	144	432.9		14		
Boulder City	140	535.5		22		
St. George	091	709.5	3. 2	217.6	7. 0	
Bishop	278	697.1		4.5		
Inyokern	223	701.2		7. 0		

OPERATION _	Hardtack I	EVENT _	Lea	DATE	10/ 13/58 T	ME <u>1320</u> Z
YIELD 1.4	kt B	URST HEIGHT	1500	ft. LO	CATION	B-7B
APPARENT BL	.AST YIELD	$W_{a} = 4.37$	kt,	$W_a^{0.4}$ _1.	80	

MB	AZIMUTH	RANGE (KFT)	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFI)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE	
CP-1	185	55.8	7200			
CP-1M	185	55.8	6300			
Las Vegas	144	430.2	10.6	59		
Boulder City	140	531.7		102		
St. George	091	709. 2		344		
Bishop	278	697.8		30.6	26.4	
Inyokern	223	698.9		57.0	18. 4	
		· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·						
		ç				

OPERATION .	Hardtack II	EVENT Hamilton	DATE 10/15/58TIME 1600 Z
YIELD <u>1.17-</u>	ton BURS	T HEIGHT 50	_ft. LOCATION_FF-T-1
APPARENT B	LAST YIELD , W	$a = 4.11 \times 10^{-3}$ kt,	Wa ^{0.4}

MB	AZIMUTH	1	1 1 1 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE	
CP-1	323	61.7	732			
Las Vegas	137	326		<1.6 (1)		
Boulder City	134	437.9		1	·	
St. George	082	691.7		20		
Bishop	285	748. 7	2	1		
Inyokern	232	650, 4		<1 (1)		
			·			
			·			

⁽¹⁾ No signal/noise.

OPERATION _	Hardtack II	_EVENT _	Dona Ana	D <i>A</i>	ATE 10/16/58	BTIME 1420 Z
YIELD 37-ton	BURST	HEIGHT	500	ft.	LOCATION_	B-7B
APPARENT BL	AST YIELD , W _a	= 0.0904	kt,	$W_a^{0.4}$	0.373	

MB	AZIMUTH	RANGE		ED PEAK-TO MPLITUDE (M	
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
CP-1	185	55.8	4620		
Las Vegas	144	430.2		5.0	
Boulder City	140	532.9		5.0	
St. George	091	709. 5		139	
Bishop	278	697.8		<0.3 (1)	
Inyokern	223	698.9		1.0	
				3	

⁽¹⁾ No signal/noise.

OPERATION	Hardtack	II	_ EVENT .	Rio Arı	riba	DATE 10 / 18 / 5	8TIME <u>14</u>	125 Z
YIELD 90	-ton	BURST	HEIGHT	70	ft.	LOCATION	T-3S	
APPARENT	BLAST YIEL	D, W _a	= 0.187	k	kt, W	0.4		

MB	AZIMUTH		III KESSOKE AMA ELITODE AM OKOBAKS			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE	
UCC	190	32.9	3600			
CP-1	194	41.8	2400			
Las Vegas	143	418.6	4	18		
Boulder City	139	529.1		33		
St. George	089	709.3	6	216		
Bishop	279	701.1		2	13	
Inyokern	224	689.8		(1)		
			1			

⁽¹⁾ No signal/noise.

OPERATION _F	Hardtack II	_ EVENT _	Vesta	D	ATE 10/	18 / 58 T	TME 2	300 Z
YIELD 24-ton	BURST	HEIGHT_	0	_ft.	LOCAT	ION_	GG-9	
APPARENT BLA	AST YIELD , W _a	= 0.0456	kt,	W_a^0 .	4 0. 290)		_

MB	AZIMUTH	RANGE	RECORDED PEAK-TO-PEAK PRESSURE AMPLITUDE (MICROBARS)			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - SPHERE	
ВЈҮ	205	22.3	630			
CP-1	184	69.9	37.0			
Las Vegas	145	446		3.6		
Boulder City	141	556		11.4		
St. George	092	714	>96			
Bishop	276	691	12	<6 (1)		
Inyokern	222	708		3		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

⁽¹⁾ No signal/noise.

OPERATION _	Hardtack II	_EVENT _	Socorro	D	ATE 10/22/58	TIME <u>1330 Z</u>
YIELD 6	kt BURST	HEIGHT	1500	_ft.	LOCATION_	B 7B
APPARENT B	LAST YIELD , W _a	= 30.36	kt,	W_a^0	.4 3.92	

MB	AZIMUTH	1 1	RECORD PRESSURE A	ED PEAK-TO MPLITUDE (<i>M</i>	- PEAK I CROBARS)
STATION	(DEG.) (KFT)		TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
UCC	187	47.5	22800		
CP-1	190	55.8	18960		
Las Vegas	144	430.2	160.8	146.4	
Boulder City	140	532.9	64.2	237.6	
Coyote	050	233	3624		
St. George	091	709.2	240	1398	60
Bishop	278	697.8		1.62	12.6
Inyokern	223	698.9		13	16
			•		
					·

OPERATION	Hardtack	II	_EVENT _	Wrangell	[DATE 10/ 22	2/58	TIME .	1650 Z
YIELD 0. 115	<u> </u>	BURST	HEIGHT	1500	_ft.	LOCATIO	ON_	B-FF	
APPARENT B	BLAST YIE	LD, W _a	= 0.115	kt,	W_a^0	0.421			

MB	AZIMUTH	RANGE	RECORD PRESSURE AI	ED PEAK-TO MPLITUDE (<i>M</i>	
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
CP-1	323	61.7	3720		
UCC	328	67.9	3540		
Las Vegas	135	325.4	33.0	9.6	
Boulder City	134	437.9	17. 4	18.6	
Coyote	033	288	3 5 40		
St. George	082	691.7		210	
Bishop	285	748. 7	9		12
Inyokern	232	650.4		<4 (1)	

⁽¹⁾ No signal/noise.

OPERATION	Hardtack I	<u> </u>	_EVENT _	Rushmor	e D <i>i</i>	ATE 10/22 /58	BTIME.	2340 Z
YIELD 0. 188	ktkt	BURST	HEIGHT	500	ft.	LOCATION	B-9B	
APPARENT E	BLAST YIEL	D, W _a	= 0.960	kt,	W_a^{0} .	4 0. 984		

MB	AZIMUTH	RANGE			ED PEAK-TO-PEAK MPLITUDE (MICROBARS)		
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
UCC	180	64.2	600				
CP-1	183	72.7	440				
Las Vegas	145	447.4	5.0	26.0			
Boulder City	140	549.6	2.0	92	11		
Coyote	050	225	330				
St. George	092	714.9		220			
Bishop	277	690.4			36		
Inyokern	222	708.3		2			
				4,140,1			

OPERATION	Hardtack II	EVENT _C	Catron	DAT	E 10/24/58	TIME	1500 Z
YIELD 0.02	1kt BURS	T HEIGHT_	72.5	ft. L	OCATION_	T-3	
APPARENT B	BLAST YIELD , W	a = 0.0498	kt,	$W_a^{0.4}$ _	0.299		

MB	AZIMUTH	RANGE		DED PEAK-TO MPLITUDE (<i>M</i>			
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE		
UCC	190	27.3	4800				
CP-1	194	41.8	3120				
Las Vegas	143	410.8	2.7	11.5	14		
Boulder City	139	521.9		21	8		
Coyote	050	214	72				
St. George	089	709.3		150			
Bishop	279	701.1		(1)			
Inyokern	224	689.8		(1)			
			<u> </u>				
		······					

⁽¹⁾ No signal/noise.

OPERATION .	Hardtack II	EVENT	Sanford	<u>d</u> [DATE 10/26/58	BTIME <u>1020 Z</u>
YIELD 4.9	kt BURS	T HEIGHT_	1500	_ft.	LOCATION_	B-FF
APPARENT B	LAST YIELD , W	a = 25.0	kt,	W_a^0).4 _{3.62}	

MB	AZIMUTH		RECORD PRESSURE A	ED PEAK-TO MPLITUDE (<i>M</i>	- PEAK II CROBARS)
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
CP-1	323	61.7	11400		
BJY	338	103.3	7600		
Mercury	200	53.3	7600		
Las Vegas	135	325.4	312	156	
Boulder City	134	437.9	1140	78	
St. George	082	691.7	750	1920	
Bishop	285	748.7		7.8	35.4
				-	

OPERATION _	Hardtack II	_EVENT _	DeBaca		DATE 10/26/68	BTIME :	1600 Z
YIELD 2.2	kt BURST	HEIGHT	1500	_ft.	LOCATION_	B-7B	
APPARENT BL	AST YIELD , W _a	= 8.93	kt,	W	0.4 2. 41		

MB	AZIMUTH	RANGE	RECORD PRESSURE A	DED PEAK-TO MPLITUDE (<i>N</i>	
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO- SPHERE
UCC	187	47.5	15300		
CP-1	190	55. 8	10380		
Mercury	178	155.6	468		
Las Vegas	144	430, 2	15.3	78	
Boulder City	140	532.9		456	
St. George	091	709.2	348	1590	
Bishop	277	6 97. 8		9	72
Inyokern	223	701.2		9.6	55.6
4					

OPERATION _	Hardtac	k II	_EVENT _	Chavez	<u> </u>	DATE 10/27 /58 TIME <u>14</u>	<u>130 Z</u>
(Not YIELD <u>Releas</u>	sed) kt	BURST	HEIGHT	52.5	_ft.	LOCATION A-3	
APPARENT B	LAST YIE	LD , W _a	=	kt,	Wa	0.4	

MB	AZIMUTH	RANGE	RECORI PRESSURE A		
STATION	(DEG.)	(KFT)	TROPO - S PHERE	OZONO - S PHERE	IONO - S PHERE
UCC	193	34. 7	1476		
CP-1	194	41.8	1402		
Las Vegas	143	410.8		6	2
Boulder City	139	521.9		8. 7	
St. George	089	709.3		13	
Bishop	279	701.1		3.3	1. 2
Inyokern	224	689.8		(1)	

⁽¹⁾ No signal/noise.

DISTRIBUTION:

TID 4500 (53rd Ed.) UC-35 (260)

U.S. Atomic Energy Commission Washington, D.C. 20545

Attn: Brig. Gen. E. B. Giller, DMA

R. E. Allen, DOS

J. S. Kelly, DPNE

T. J. McCarvill, DPNE

R. Hamburger, DPNE

U.S. Atomic Energy Commission

Nevada Operations Office P.O. Box 14100

Las Vegas, Nevada 89114

Attn: R. E. Miller

R. H. Thalgott

A. D. Thornbrough

E. M. Douthett

A. W. Klement

F. D. Cluff

R. A. Johnson

U.S. Atomic Energy Commission Albuquerque Operations Office

P.O. Box 5400

Albuquerque, New Mexico 87115

Attn: R. L. Hilty

E. L. Brawley

University of California

Lawrence Radiation Laboratory

P.O. Box 808

Livermore, California 94550

Attn: DeWitt Allen

H. W. Ellsaesser

Edward Fleming

G. H. Higgins

M. W. Knapp

J. B. Knox

M. D. Nordyke

H. A. Tewes

G. C. Werth

Los Alamos Scientific Laboratory

P.O. Box 1663

Los Alamos, New Mexico 87544

Attn: W. E. Ogle

C. E. Browne

R. R. Brownlee

J. S. Malik

D. S. Sappenfield

Southwest Radiological Health Laboratory

P.O. Box 15027

Las Vegas, Nevada 89114

Attn: Dr. Melvin Carter

J. R. McBride

F. C. Buck

Mr. Phillip W. Allen, Chief

Air Resources Laboratories, Las Vegas

P.O. Box 14100

Las Vegas, Nevada 89114

Environmental Science Services Administration Institute for Atmospheric Sciences (R321)

Silver Spring, Maryland 20910

Attn: Robert J. List

James K. Angell

U.S. Army Engineering Nuclear Cratering Group

Lawrence Radiation Laboratory

P.O. Box 808

Livermore, California 94550

Attn: Col. W. E. Vandenberg

W. C. Day

Jacksonville District

U.S. Army, Corps of Engineers

P.O. Box 49i0

Jacksonville, Florida 32201

Attn: Col. J. F. McElhenny

E. W. Eden, Jr.

Atlantic-Pacific Interoceanic Canal Study

Commission

726 Jackson Place, N.W.

Washington, D.C. 20506

Attn: Executive Secretary

K. E. Fields

U.S. Army Electronics Research and

Development Activity

White Sands Missile Range,

New Mexico 88002

Attn: Willis L. Webb

Martin Diamond

Lt. Col. T. S. Scanlon, Jr.

Joint Task Force Eight

Sandia Base, New Mexico 87115

U.S. Air Force Weapons Laboratory

Kirtland Air Force Base

Albuquerque, New Mexico 87117

Attn: W. A. Whitaker (WLRTH)

F. H. Peterson (WLDC)

A. J. Smith (WLAS-3)

Commander

U.S. Army Meteorological Team

P.O. Drawer 942

Ft. Clayton, Canal Zone

R. W. Bachman, SEG, AFSC (SEFSL)

Wright-Patterson AFB, Ohio 45433

Earl Franzell

Pacific Missile Range

Point Mugu, California 93041

Jack Kelso

Hq/DASA

Washington, D.C. 20305

J. J. Meszaros

U.S. Army Ballistic Research Laboratories

Aberdeen, Maryland 21005

DISTRIBUTION (cont.):

George Olmsted AFTAC Washington, D. C. 20333

Harold Richie Naval Ordnance Test Station China Lake, California 93555

Leonard Rudlin U.S. Naval Ordnance Laboratory Silver Spring, Maryland 20910

Leo Imgram U.S. Army Waterways Experiment Station P.O. Box 631 Vicksburg, Mississippi 39180

H. H. Hubbard, Acoustics Branch Dyn. Loads Division, NASA Langley Research Center, Virginia 23365

O. E. Smith, M-AERO-GT NASA Marshall Space Flight Center Huntsville, Alabama 35804

C. B. King, I-MT-T NASA Mississippi Test Facility Bay St. Louis, Missouri 39520

J. P. Taylor, NAS 2101 Constitution Avenue, N.W. Washington, D.C. 20418

J. C. Muirhead D. R. B. Suffield Experiment Station Ralston, Alberta, Canada

R. A. Siddons, A.W.R.E. Aldermaston, England

B. A. Bodhaine Department of Meteorology University of Hawaii Honolulu, Hawaii 96822

John A. Blume John A. Blume and Associates 612 Howard Street San Francisco, California 94105

C. Eugene Buell Kaman Nuclear Colorado Springs, Colorado 80907

Everett F. Cox 401 Bradford Place Benton Harbor, Michigan 49022

R. S. Davidson Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201

R. C. DeHart Southwest Research Institute 8500 Culebra Road San Antonio, Texas 78206 Ulf A. Ericsson Research Institute of National Defence Stockholm, Sweden

H. J. Gomberg Puerto Rico Nuclear Center Capana Heights Station San Juan, Puerto Rico 00935

G. W. Johnson Gulf General Atomic P.O. Box 608 San Diego, California 92112

Paul Kruger Civil Engr. Dept. Stanford University Stanford, California 94305

P. C. Loux Environmental Research Corporation P.O. Box 1061 Alexandria, Virginia

Joseph E. Minor Civil Engr. Dept. Texas Tech University Lubbock, Texas 79409

N. M. Newmark Department of Civil Engr. University of Illinois Urbana, Illinois 61801

J. A. Robertson U.S. Gypsum Company 1011 Arlington Boulevard Arlington, Virginia 22306

K. C. SpenglerAmerican Meteorological Society45 Beacon StreetBoston, Massachusetts 02108

Col. A. G. Sutton, Jr. Turner, Collie, and Braden, Inc. P.O. Box 13089 Houston, Texas 77019

R. H. Tatlow Abbott-Merkt Company 630 Third Avenue New York, New York 10017

J. N. Thompson Balcones Research Center University of Texas Rt. 4, Box 189 Austin, Texas 78712

T. E. Weirick3-M CorporationBox 3331St. Paul, Minnesota 55101

DISTRIBUTION (cont.):

J. H. Wiggins Company

P.O. Box 192 2516 Via Tejon

Palos Verdes Estates, California 90274

J. H. Zettel

Johns-Manville R and D Center Manville, New Jersey 00835

C. A. Coonce, 1211

P. F. Jones, 1651

R. J. Thompson, 1722

C. R. Mehl, 5230

L. B. Smith, 5235

R. A. Bice, 7000

L. E. Hollingsworth, 7200

K. R. Fortman, 7222

S. A. Moore, 7230

H. J. Plagge, 7251

T. B. Cook, 8000

C. S. Selvage, 8180

G. A. Fowler, 9000

B. F. Murphey, 9100

L. J. Vortman, 9111

C. D. Broyles, 9110

G. E. Hansche, 9120

H. E. Viney, 9130

B. G. Edwards, 9131

R. K. Petersen, 9132

A. B. Church, 9132

J. R. Bannister, 9150

M. L. Merritt, 9150

J. W. Reed, 9150 (5)

H. W. Church, 9344

R. S. Gillespie, 3411

B. R. Allen, 3424

B. F. Hefley, 8232

C. H. Sproul, 3428-1 (15)