Lecture 02

Vector Analysis (Contd.)

Outline

- 1 Position, Displacement, and Separation Vectors
 - Position Vector
 - Infinitesimal Displacement Vector
 - Separation Vector
- 2 The Operator ∇
- Gradient
 - Geometrical Interpretation of the Gradient
- 4 The Divergence
 - Geometrical Interpretation of divergence
- The Curl
 - Geometrical Interpretation of curl

Outline (contd.)

6 Product rules for gradient, divergence and curl

Position Vector

• The location of a point in three dimensions can be described by listing its Cartesian coordinates (x, y, z).

Position Vector: It is given by

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
 with magnitude
 $r = \sqrt{x^2 + y^2 + z^2} = (x^2 + y^2 + z^2)^{\frac{1}{2}}$

The unit vector of it is

$$\hat{r} = \frac{\vec{r}}{r} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{\sqrt{x^2 + y^2 + z^2}}$$

Infinitesimal Displacement Vector

• The infinitesimal displacement vector, from (x, y, z) to (x + dx, y + dy, z + dz), is

$$\vec{dl} = dx\hat{i} + dy\hat{j} + dz\hat{k}$$

Separation Vector

• In electrodynamics we frequently encounter problems involving $two\ points$ — typically, a source point, \vec{r}' , where an electric charge is located, and a field point, \vec{r} , at which we are calculating the electric or magnetic field (Figure 1).

Figure 1

Separation Vector (contd.)

• The **separation vector** from the source point to the field point is

$$\vec{z} = (\vec{r} - \vec{r}')$$

= $(x - x')\hat{i} + (y - y')\hat{j} + (z - z')\hat{k}$

• The unit vector of separation vector is given by

$$\mathbf{\hat{z}} = \frac{\vec{\mathbf{z}}}{\mathbf{z}} = \frac{(x - x')\hat{\mathbf{i}} + (y - y')\hat{\mathbf{j}} + (z - z')\hat{\mathbf{k}}}{\sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}}$$

The Operator ∇

 The vector differential operator del (nabla), defined in Cartesian coordinates as

$$\nabla = \hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}$$

Of course, del is not a vector, in the usual sense. Indeed, it is without specific meaning until we provide it with a function to act upon.

- ullet There are three ways the operator ∇ can act:
 - **1** On a scalar function $T : \nabla T$ (**the gradient**);
 - ② On a vector function \vec{v} , via the dot product: $\nabla \cdot \vec{v}$ (the divergence);
 - **3** On a vector function \vec{v} , via the cross product: $\nabla \times \vec{v}$ (**the curl**).

Suppose that we have a function of three variables—say, the temperature T(x, y, z) in a room. A theorem on partial derivatives states that

$$dT = \left(\frac{\partial T}{\partial x}\right) dx + \left(\frac{\partial T}{\partial y}\right) dy + \left(\frac{\partial T}{\partial z}\right) dz \tag{1}$$

This tells us how T changes when we alter all three variables by the infinitesimal amount dx, dy, dz.

Equation (1) can be written as

$$dT = \left(\frac{\partial T}{\partial x}\hat{i} + \frac{\partial T}{\partial y}\hat{j} + \frac{\partial T}{\partial z}\hat{k}\right) \cdot \left(dx\,\hat{i} + dy\,\hat{j} + dz\,\hat{k}\right)$$
$$= (\nabla T) \cdot \left(d\vec{l}\right)$$

Gradient (contd.)

where
$$\nabla T = \frac{\partial T}{\partial x}\hat{i} + \frac{\partial T}{\partial y}\hat{j} + \frac{\partial T}{\partial z}\hat{k}$$
 is the gradient of T

Geometrical Interpretation of the Gradient

$$dT = (\nabla T) \cdot \left(d\vec{l} \right) = |\nabla T| \left| d\vec{l} \right| \cos \theta$$

where θ is the angle between ∇T and $d\vec{l}$ Now, if we fix the magnitude $\left| d\vec{l} \right|$ and search around in various directions, the maximum change in T evidently occurs when $\theta = 0$ for then $\cos \theta = 1$. That is, for a fixed distance $\left| d\vec{l} \right|$, dT is greatest when we move in the same direction as ∇T . Thus:

Geometrical Interpretation of the Gradient (contd.)

The gradient ∇T points in the direction of maximum increase of the function T

Moreover:

The magnitude $|\nabla T|$ gives the slope (rate of increase) along this maximal direction.

Example 1

Suppose that the temperature T at the point (x, y, z) is given by the equation $T = x^2 - y^2 + xyz + 273$. In which direction is the temperature increasing most rapidly at (-1,2,3) and at what rate?

Geometrical Interpretation of the Gradient (contd.)

Solution:

Here,
$$T = x^2 - y^2 + xyz + 273$$

$$\nabla T = \frac{\partial T}{\partial x}\hat{i} + \frac{\partial T}{\partial y}\hat{j} + \frac{\partial T}{\partial z}\hat{k}$$

$$= \frac{\partial}{\partial x} (x^2 - y^2 + xyz + 273)\hat{i} + \frac{\partial}{\partial y} (x^2 - y^2 + xyz + 273)\hat{j}$$

$$+ \frac{\partial}{\partial z} (x^2 - y^2 + xyz + 273)\hat{k}$$

$$= (2x + yz)\hat{i} + (-2y + xz)\hat{j} + (xy)\hat{k}$$

$$= 4\hat{i} - 7\hat{i} - 2\hat{k} \quad \text{at } (-1, 2, 3)$$

Geometrical Interpretation of the Gradient (contd.)

The increase in temperature is fastest in the direction of this vector.

The rate of increase is

$$|\nabla T| = \sqrt{(4)^2 + (-7)^2 + (-2)^2} = \sqrt{69}$$

Geometrical Interpretation of the Gradient (contd.)

Note:

Gravitational Potential Energy near the Earth

$$U = mgz$$

where z is the height from some arbitrary reference level

$$\nabla U = \frac{\partial U}{\partial x}\hat{i} + \frac{\partial U}{\partial y}\hat{j} + \frac{\partial U}{\partial z}\hat{k}$$

$$= \frac{\partial}{\partial x}(mgz)\hat{i} + \frac{\partial}{\partial y}(mgz)\hat{j} + \frac{\partial}{\partial z}(mgz)\hat{k} = mg\hat{k}$$

Gravitational force, $\vec{F} = -mg\hat{k} = -mg\hat{k} = -\nabla U$ So, the maximum change in gravitational potential energy is vertically upwards from the centre of Earth.

Geometrical Interpretation of the Gradient (contd.)

Gradient of a scalar field T

$$\nabla T = \frac{\partial T}{\partial x}\hat{i} + \frac{\partial T}{\partial y}\hat{j} + \frac{\partial T}{\partial z}\hat{k}$$

- \bullet ∇ , turns a scalar field into a vector field.
- ∇T points in the direction of maximum increase of T.
- $|\nabla T|$ is the rate of maximum increase.

The divergence of a vector \vec{F} , written div \vec{F} or, $\nabla \cdot \vec{F}$ is defined as follows:

The divergence of a vector is the limit of its surface integral per unit volume as the volume enclosed by the surface goes to zero. That is,

$$\operatorname{div} \vec{F} = \nabla \cdot \vec{F} = \lim_{V \to 0} \frac{1}{V} \oint_{S} \vec{F} \cdot d\vec{a}$$

The divergence is clearly a scalar point function (scalar field), and it is defined at the limit point of the surface integration.

In Cartesian coordinate it can be expressed as

$$\operatorname{div} \vec{F} = \nabla \cdot \vec{F}$$

The Divergence (contd.)

$$\nabla \cdot \vec{F} = \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right) \cdot \left(F_x\hat{i} + F_y\hat{j} + F_z\hat{k}\right)$$

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

Geometrical Interpretation of divergence

• The divergence of a vector function \vec{v} , i.e. $\nabla \cdot \vec{v}$ is a measure of how much the vector \vec{v} spreads out (diverges) from the point in question.

Geometrical Interpretation of divergence (contd.)

For example,

The vector function in Figure 2 has a large positive divergence.

Figure 2

Geometrical Interpretation of divergence (contd.)

The vector function in Figure 3 has zero divergence.

Geometrical Interpretation of divergence (contd.)

- Imagine you are standing at the edge of a pond. Sprinkle some sawdust or pine needles on the surface. If the material spreads out, then you dropped it at a point of positive divergence; if it collects together, you dropped it at a point of negative divergence. (The vector function \vec{v} in this model is the velocity of water.)
- A point of positive divergence is a source, or "faucet"; a point of negative divergence is a sink, or "drain".

Geometrical Interpretation of divergence (contd.)

• If at some point P,

 $\nabla \cdot \vec{v} > 0$, then \vec{v} has a source at P

 $\nabla \cdot \vec{v} < 0$, then \vec{v} has a sink at P.

 $\nabla \cdot \vec{v} = 0$, then \vec{v} is said to be solenoidal

Example:

• Calculate the divergence of vector function $\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}$.

Solution:

$$\nabla \cdot \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

$$= \frac{\partial}{\partial x} (x) + \frac{\partial}{\partial y} (y) + \frac{\partial}{\partial z} (z)$$

$$= 1 + 1 + 1$$

$$= 3$$

The Divergence (contd.)

Example:

② If $\vec{A} = x^2z\hat{i} - 2y^3z^2\hat{j} + xy^2z\hat{k}$, find $\nabla \cdot \vec{A}$ at point (1, -1, 1). Solution:

$$\nabla \cdot \vec{A} = \frac{\partial}{\partial x} (x^2 z) + \frac{\partial}{\partial y} (-2y^3 z^2) + \frac{\partial}{\partial z} (xy^2 z)$$

$$= 2xz - 6y^2 z^2 + xy^2$$

$$= 2(1)(1) - 6(-1)^2 (1)^2 + (1)(-1)^2 \text{ at } (1, -1, 1)$$

$$= 2 - 6 + 1$$

$$= -3$$

The curl of a vector function \vec{F} is written as $\operatorname{curl} \vec{F}$ or $\nabla \times \vec{F}$ and defined as follow.

The component of curl \vec{F} in the direction of the unit vector \hat{n} is the limit of a line integral per unit area, as the enclosed area goes to zero, this area being perpendicular to \hat{n} . That is,

$$\hat{n} \cdot \text{curl } \vec{F} = \hat{n} \cdot (\nabla \times \vec{F}) = \lim_{S \to 0} \frac{1}{S} \oint_C \vec{F} \cdot d\vec{l}$$

where the curve C, which bounds the surface S, is in a plane normal to \hat{n} .

The Curl (contd.)

In Cartesian coordinate, the curl of a vector function \vec{v} can be expressed as:

$$\operatorname{curl} \vec{v} = \nabla \times \vec{v}$$

$$= \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right) \times \left(v_x\hat{i} + v_y\hat{j} + v_z\hat{k}\right)$$

$$= \hat{i}\left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) + \hat{j}\left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) + \hat{k}\left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right)$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_x & v_y & v_z \end{vmatrix}$$

Geometrical Interpretation of curl

• The curl of a vector function \vec{v} , $\nabla \times \vec{v}$ is a measure of how much the vector \vec{v} "curls around" the point in question.

For example,

The vector function in Figure 4 has a substantial curl, pointing in the z-direction, as the natural right-hand rule would suggest.

Geometrical Interpretation of curl (contd.)

Figure 4

Geometrical Interpretation of curl (contd.)

• Imagine you are standing at the edge of a pond. Float a small paddle-wheel (a cork with toothpicks pointing out radially would do); if it starts to rotate, then you placed it at a point of nonzero curl. (The vector function \vec{v} in this model is the velocity of water.)

A whirlpool would be a region of large curl.

• If $\nabla \times \vec{v} = 0$, then \vec{v} is irrotational.

• Calculate curl of the vector function $\vec{v} = x\hat{j} - y\hat{i}$. Solution:

$$\nabla \times \vec{v} = \nabla \times \left[x \hat{j} - y \hat{i} \right] = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & x & 0 \end{vmatrix}$$
$$= \hat{i} \left[\frac{\partial}{\partial y} (0) - \frac{\partial}{\partial z} (x) \right] - \hat{j} \left[\frac{\partial}{\partial x} (0) - \frac{\partial}{\partial z} (-y) \right]$$
$$+ \hat{k} \left[\frac{\partial}{\partial x} (x) - \frac{\partial}{\partial y} (-y) \right]$$
$$= \hat{i} [0] - \hat{j} [0 - 0] + \hat{k} [1 - (-1)] = 2\hat{k}$$

The Curl (contd.)

Examples:

② If $\vec{A} = xz^3\hat{i} - 2x^2yz\hat{j} + 2yz^4\hat{k}$, find $\nabla \times \vec{A}$ at point (1, -1, 1). Solution:

$$\nabla \times \vec{v} = \nabla \times \left[xz^3 \hat{i} - 2x^2 yz \hat{j} + 2yz^4 \hat{k} \right] = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xz^3 & -2x^2 yz & 2yz^4 \end{vmatrix}$$
$$= \hat{i} \left[\frac{\partial}{\partial y} \left(2yz^4 \right) - \frac{\partial}{\partial z} \left(-2x^2 yz \right) \right] - \hat{j} \left[\frac{\partial}{\partial x} \left(2yz^4 \right) - \frac{\partial}{\partial z} \left(xz^3 \right) \right]$$
$$+ \hat{k} \left[\frac{\partial}{\partial x} \left(-2x^2 yz \right) - \frac{\partial}{\partial y} \left(xz^3 \right) \right]$$

The Curl (contd.)

Examples:

$$= \hat{i} \left[2z^4 + 2x^2y \right] - \hat{j} \left[0 - 3xz^2 \right] + \hat{k} \left[-4xyz - 0 \right]$$

$$= \left[2z^4 + 2x^2y \right] \hat{i} + 3xz^2 \hat{j} - 4xyz \hat{k}$$

$$= \left[2(1)^4 + 2(1)^2 (-1) \right] \hat{i} + 3(1)(1)^2 \hat{j} - 4(1)(-1)(1) \hat{k}, \text{ at } (1, -1, 1)$$

$$= 3\hat{j} + 4\hat{k}$$

Product rules for gradient, divergence and curl

There are *six* product rules as shown in Eq. (2) to (7), two for gradients:

$$\nabla(fg) = f\nabla g + g\nabla f \tag{2}$$

$$\nabla(\vec{A} \cdot \vec{B}) = \vec{A} \times (\nabla \times \vec{B}) + \vec{B} \times (\nabla \times \vec{A}) + (\vec{A} \cdot \nabla)\vec{B} + (\vec{B} \cdot \nabla)\vec{A}$$
 (3)

two for divergences:

$$\nabla \cdot (f\vec{A}) = f(\nabla \cdot \vec{A}) + \vec{A} \cdot (\nabla f) \tag{4}$$

$$\nabla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\nabla \times \vec{A}) - \vec{A} \cdot (\nabla \times \vec{B})$$
 (5)

two for curls:

$$\nabla \times (f\vec{A}) = f(\nabla \times \vec{A}) - \vec{A} \times (\nabla f)$$
 (6)

$$\nabla \times (\vec{A} \times \vec{B}) = (\vec{B} \cdot \nabla)\vec{A} - (\vec{A} \cdot \nabla)\vec{B} + \vec{A}(\nabla \cdot \vec{B}) - \vec{B}(\nabla \cdot \vec{A}) \tag{7}$$

End of Lecture 02 Thank you