

Szabályozástechnikai szeminárium

2024. szeptember 27.

Kiss Domokos

Szabályozó tervezés összefoglaló

- A zárt kör átvitele: $H(s) = \frac{C(s)P(s)}{1+C(s)P(s)}$
- A zárt kör stabil, ha a pólusai negatív valós részűek.
- Adott zárt kör esetén a realizáló szabályozó:

$$C(s) = \frac{H(s)}{P(s)(1 - H(s))}$$

Áttekintés

1. rész – Sebességszabályozás

- Modellalkotás identifikációval
- Szabályozótervezés

2. rész – Vonalkövető szabályozás

- Modellalkotás
- Szabályozótervezés

Miért identifikáció?

 DC motorról alkothatnánk fizikai modellt is (ld. Robotirányítás rendszertechnikája c. tárgy)

 Vannak olyan hatások (terhelés, zavarás), amiket könnyebb megmérni, mint modellezni

Mérési regisztrátumok felvétele

- Mit fogunk mérni?
 - > Adott beavatkozásra adott válasz (sebesség)
 - > Az autó a mérés közben haladni fog
- Milyen gerjesztő jelet érdemes használni?
 - > Ugrásszerű változások
 - > Előre és hátra irányok

Mérési regisztrátumok felvétele

Mérési regisztrátumok felvétele

Identifikáció

- A rendszer válasza: egytárolós jelleg
- A választott modell: folytonosidejű egytárolós tag
- MATLAB: System Identification Toolbox
 - > Process model
 - > **pem** függvény
 - > Grafikus tool: systemIdentification

$$P(s) = \frac{K}{1 + sT}$$

Identifikáció

Mi lehet az oka a rossz illeszkedésnek?

• Alapvetően lineáris rendszert próbálunk leírni:

$$P(s) = \frac{K}{1 + sT}$$

Statikus karakterisztika

- Holtsáv
- Egyéb nemlinearitás
- Telítés (tápfeszültség)

Statikus linearizálás

Statikus linearizálás

Linearizált modell identifikációja

Folytonos idejű és mintavételes modell

Az identifikáció eredménye:

$$P(s) = \frac{K}{1 + sT}$$

Mintavételessé alakítva: c2d (sys, Ts, 'zoh')

$$P(z) = \frac{K_d}{z - p_d}$$
 $p_d = e^{-T_S/T}$ $K_d = K(1 - e^{-T_S/T})$

Folytonos PI szabályozó

$$P(s) = \frac{K}{1 + sT}$$

• Szabályozó:

$$C(s) = A_P \left(1 + \frac{1}{sT_I} \right) = A_P \frac{1 + sT_I}{sT_I}$$

• Felnyitott kör:

$$C(s)P(s) = A_P \frac{1 + sT_I}{sT_I} \cdot \frac{K}{1 + sT}$$

• $T_I = T$ választása mellett:

$$C(s)P(s) = \frac{A_P K}{sT_I} = \frac{1}{sT_{cI}}$$

Zárt kör:

$$H(s) = \frac{C(s)P(s)}{1 + C(s)P(s)} = \frac{\frac{1}{sT_{cl}}}{1 + \frac{1}{sT_{cl}}} = \frac{1}{1 + sT_{cl}}$$

Folytonos PI szabályozó

$$P(s) = \frac{K}{1 + sT}$$

• Zárt kör:

$$H(s) = \frac{C(s)P(s)}{1 + C(s)P(s)} = \frac{\frac{1}{sT_{cl}}}{1 + \frac{1}{sT_{cl}}} = \frac{1}{1 + sT_{cl}}$$

ullet Előírjuk a zárt kör időállandóját: T_{cl}

$$T_{cl} = \frac{T}{A_p K} \longrightarrow A_p = \frac{T}{T_{cl} K}$$

• A PI szabályozó méretezése tehát:

$$T_I = T$$

$$A_p = \frac{T}{T_{cl}K}$$

Mintavételes PI szabályozó

$$P(z) = \frac{K_d}{z - p_d}$$

Szabályozó:

$$C(z) = K_C \frac{z - z_d}{z - 1}$$

Felnyitott kör:

$$C(z)P(z) = K_C \frac{z - z_d}{z - 1} \frac{K_d}{z - p_d}$$

•
$$z_d = p_d$$
 választása mellett: $C(z)P(z) = \frac{K_C K_d}{z-1}$

• Zárt kör:

$$H(z) = \frac{C(z)P(z)}{1 + C(z)P(z)} = \frac{\frac{K_C K_d}{z - 1}}{1 + \frac{K_C K_d}{z - 1}} = \frac{K_C K_d}{z - (1 - K_C K_d)}$$

Mintavételes PI szabályozó

$$P(z) = \frac{K_d}{z - p_d}$$

• Zárt kör:
$$H(z) = \frac{C(z)P(z)}{1 + C(z)P(z)} = \frac{\frac{K_C K_d}{z - 1}}{1 + \frac{K_C K_d}{z - 1}} = \frac{K_C K_d}{z - (1 - K_C K_d)}$$

Előírjuk a zárt kör pólusát:

$$p_{cl} = -\frac{1}{T_{cl}} \rightarrow p_{cl,d} = e^{-\frac{T_S}{T_{cl}}} = 1 - K_C K_d \rightarrow K_C = \frac{1}{K_d} (1 - e^{-T_S/T_{cl}})$$

• A PI szabályozó méretezése tehát:

$$z_d = p_d$$

$$K_C = \frac{1}{K_d} \left(1 - e^{-T_S/T_{cl}} \right)$$

Diszkrét ideális rendszermodell válasza

Bemenőjel (u) és kimenet (y)

Mintavételes PI szabályozó az ideális szakaszhoz

Alapjel (y_r) és kimenet (y)

Beavatkozójel (u)

Holtsáv figyelmen kívül hagyása

Alapjel (y_r) és kimenet (y)

Beavatkozójel (u)

Beavatkozó szerv telítés hatása

Alapjel (y_r) és kimenet (y)

Beavatkozójel a telítés előtt (u) és után (u_{sat})

Beavatkozó szerv telítés kezelése

FOXBORO struktúra

A lineáris tartományban:

$$C(z) = K_C \frac{1}{1 - \frac{1 - z_d}{z - z_d}} = K_C \frac{z - z_d}{z - z_d - (1 - z_d)} = K_C \frac{z - z_d}{z - 1}$$

Mintavételes FOXBORO PI szabályozó

Alapjel (y_r) és kimenet (y)

Beavatkozójel (u)

Mintavételes FOXBORO PI szabályozó

Alapjel (y_r) és kimenet (y)

Beavatkozójel (u)

Szabályozó implementáció

Algoritmus:

$$u_{2}[k] = z_{d} \cdot u_{2}[k-1] + (1-z_{d}) \cdot u[k-1]$$

$$u_{1}[k] = K_{c} \cdot e[k]$$

$$u[k] = f(u_{1}[k] + u_{2}[k])$$

Ackermann-kormányzás, kerékpármodell

Kinematikai mozgásegyenlet

$$\dot{x} = v \frac{\cos(\theta + \phi)}{\cos\phi}$$

$$\dot{y} = v \frac{\sin(\theta + \phi)}{\cos \phi}$$

$$\dot{\theta} = v \frac{\tan \phi}{L}$$

$$(v = v_r)$$

Egyszerű vonalérzékelési modell

Feltételezések:

- Egyetlen vonalszenzor az első keréktengelynél
- A vezetővonalat mindig párhuzamosnak feltételezi

$$\dot{p} = -v \cdot \tan \phi$$

Egyszerű vonalérzékelési modell

Ferde vonal, nulla kormányszög ($\phi=0$) esetén a modell kimenete nulla, ami nem fedi a valóságot:

$$\dot{p} = -v \cdot \tan \phi = 0$$

Új modell a ferde vonal esetére:

$$\dot{p} = v \cdot \tan \delta$$

Orientációs vonalérzékelési modell

Feltételezések:

- Nem nulla kormányszög
- A vonal ferde

Szuperpozíció nem érvényes!

$$\dot{p} = v \cdot \tan \delta - v \cdot \tan \phi - \frac{p}{L} \tan \delta \tan \phi$$

$$\dot{\delta} = -v \frac{\tan \phi}{L}$$

Vonalérzékelő elhelyezésének hatása

$$\tan \gamma = \tan \phi \cdot \frac{L+d}{L}$$

A modellben a módosított paramétereket kell használni:

$$L' = L + d$$

$$\phi' = \gamma$$

Modell linearizálása

- Adott egy nemlináris modell
- Lineáris szabályozót szeretnénk tervezni
- Munkaponti linearizálást alkalmazunk

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$

• Várhatóan p=0 és $\phi=0$ körül mozgunk majd:

$$\phi = 0 + \Delta \phi = \Delta \phi$$
$$p = 0 + \Delta p = \Delta p$$

Egyszerű modell linearizálása

Az egyszerű modell alakja:

$$\dot{p} = -v \tan \phi$$

A tangens függvény lineáris közelítése:

$$\tan(0 + \Delta\phi) \approx \tan 0 + \frac{1}{(\cos 0)^2} \Delta\phi = \Delta\phi$$

Egyszerű modell linearizálása

$$\dot{p} = -v \tan \phi$$

$$\frac{d(0+\Delta p)}{dt} = -v\tan(0+\Delta\phi)$$

$$\dot{\Delta p} \approx -v\Delta \phi$$

A továbbiakban a Δ jelölést elhagyjuk, mert 0-tól való eltérést nézünk

Egyszerű modell linearizálása

$$\dot{p} = -v \tan \phi \quad \rightarrow \quad \dot{p} \approx -v \phi$$

Mennyire jó a $\tan \phi \approx \phi$ közelítés?

- -20° és 20° között egészen jó, ez nagyjából a kormányszög korlátja
- Fontos a mértékegység: a szögeket radiánban használjuk!

Egyszerű modell linearizálása

Ez egy egyszerű integrátor:

$$\dot{p} = -v\phi$$

$$P_e(s) = -v\frac{1}{s}\Phi(s)$$

Egyszerű modell linearizálása

$$P_e(s) = -v\frac{1}{s}\Phi(s)$$

Mennyire jó ez a modell?

Orientációs modell linearizálása

Az orientációs modell alakja:

$$\dot{\delta} = -\frac{v}{L} \tan \phi$$

$$\dot{p} = v \left(\tan \delta - \tan \phi - \frac{p}{L} \tan \delta \tan \phi \right)$$

• Linearizálva $\delta=\phi=p=0$ körül:

$$\dot{\Delta \delta} = -\frac{v}{L} \Delta \phi$$

$$\dot{\Delta p} = v \left(\Delta \delta - \Delta \phi - \frac{p}{L} (\Delta \delta) (\Delta \phi) \right) \approx v (\Delta \delta - \Delta \phi)$$

A Δ jelölést elhagyjuk:

$$\dot{\delta} = -\frac{v}{L}\phi, \qquad \dot{p} = v(\delta - \phi)$$

Orientációs modell linearizálása

$$\dot{\delta} = -\frac{v}{L}\phi \qquad \dot{p} = v(\delta - \phi)$$

Állapotteres leírás (p a kimenet):

$$x = \begin{bmatrix} \delta & p \end{bmatrix}^{T}$$

$$\dot{x} = \begin{bmatrix} 0 & 0 \\ v & 0 \end{bmatrix} x + \begin{bmatrix} -v/L \\ -v \end{bmatrix} \phi$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

Átviteli függvény:

$$P_o(s) = C(sI - A)^{-1}B = -\frac{vs + \frac{v^2}{L}}{s^2}$$

Fontos: Csak ϕ a bemenet, v-t rendszerparaméternek tekintjük!

Orientációs modell linearizálása

$$P_o(s) = -\frac{vs + v^2/L}{s^2}$$

Mennyire jó ez a modell?

Modell kiválasztása

- Láttuk, hogy a kifinomultabb modellel érdemes dolgozni, sokat hoz a konyhára
- Innen kezdve az orientációs modellhez tervezzük a szabályozókat
- A szabályozótervezésnél a linearizált modellt használjuk
- A verifikációt a nemlineáris modellen végezzük el

A modellben elhanyagolt valós hatások

- Kormányszervó késleltetése
- Vonalérzékelő kvantálása
- Vonalérzékelő szélessége
- A vonal nem mindig egyenes

Kormányszervó késleltetése

- Modellszervók fontos katalógusadatai:
 - Analóg vagy digitális
 - Műanyag vagy fémfogaskerekes
 - Beállási idő $[sec/60^{\circ}]$ - Nyomaték $[kg \cdot cm]$ Tápfeszültség-függő adatok!
- Az autóban lévő gyári szervó: HPI MS-22
 - Analóg, műanyag fogaskerekes (műszaki adatok nem elérhetők)
- Néhány másik típus:
 - Carson CS-6 (Digitális, fém fogaskerekes)
 - $0.2 s/60^{\circ}$, 6 kgcm (6V-os tápfeszültségnél)
 - Tactic TSX47 (Digitális, fém fogaskerekes)
 - $0.16 \text{ s}/60^{\circ}$, 9.5 kgcm (6V-os tápfeszültségnél)
 - SRT BH922S (Digitális, fém fogaskerekes)
 - 0.08 s/60°, 17 kgcm (6V-os tápfeszültségnél)

Kormányszervó késleltetése

Kormányszervó késleltetése

Maximális meredekségből számolt beállási idő:

• HPI MS-22: 0.41 s/60° (5V)

• Carson CS-6: 0.23 s/60° (6V)

• Tactic TSX47: 0.17 s/60° (6V)

A katalógusadatoktól való eltérések előfordulhatnak:

- Terhelés
- Kormányrudazat áttétele (nem a szervó, hanem a kerék szögét mértük)

A tényleges beállási idő ebből még nem adódik közvetlenül!

 Gyorsuló és lassuló szakaszokat figyelembe kell venni

Kormányszervó modellezése

Egyszerű pozíciószabályozott DC motor

- DC motor+áttétel modellje: Egytárolós tag (feszültség bemenet, szögsebesség kimenet)
- Integrátor: Szögsebességből szög lesz
- Szabályozó: Viszonylag nagy erősítésű arányos tag
- **Telítés:** Nagyobb pozícióhibák esetén a sebesség "kikoppan" a maximumon
- Holtidő: A kezdeti lassú indulás modellezésére

Kormányszervó modellezése

Hogyan érdemes vonalpozíciót mérni?

1. Küszöbözés, küszöb feletti jelű szenzorok pozíciójának átlaga

Küszöbértéktől függ, erősen kvantált

Hogyan érdemes vonalpozíciót mérni?

2. Analóg értékekkel súlyozott pozícióátlag

$$p = \frac{\sum_{i=1}^{n} y_i h_i}{\sum_{i=1}^{n} h_i}$$

- Független a küszöbözéstől
- Sokkal finomabb felbontást kapunk

A beavatkozó jel a hiba konstansszorosa:

$$C(s) = k_p$$

Ehhez a szabályozáshoz tartozó zárt kör:

$$H_A(s) = -\frac{k_p v \left(s + \frac{v}{L}\right)}{s^2 - k_p v s - \frac{k_p v^2}{L}}$$

Stabilitásvizsgálat:

Karakterisztikus egyenlet:

$$s^2 - k_p v s - \frac{k_p v^2}{L} = 0$$

Pólusok:

$$s_{1,2} = \frac{k_p v \pm \sqrt{k_p^2 v^2 + 4\frac{k_p v^2}{L}}}{2}$$

- Ha $k_p>0$, akkor a rendszer instabil (pozitív valós pólus)
- Ha $k_p < 0$, akkor a rendszer stabil:

$$k_p^2 v^2 + 4 \frac{k_p v^2}{L} < 0$$
 \rightarrow $k_p \left(k_p + \frac{4}{L} \right) < 0$

- > Ha $k_p < -rac{4}{L}$, akkor negatív valós pólusok
- > Ha $-\frac{4}{L}$ < k_p < 0 , akkor komplex póluspár (oszcilláló tranziens)

$$H_A(s) = -\frac{k_p v \left(s + \frac{v}{L}\right)}{s^2 - k_p v s - \frac{k_p v^2}{L}}$$

- Statikus átvitel (s = 0): mindig 1
- Telítéskezelés egyszerű
- Viszonylag nagy túllendülés

Ugyanaz, csak kvantáltabb vonalérzékeléssel

Valós mérési adatok

Állapotteres leírás:

$$x = \begin{bmatrix} \delta & p \end{bmatrix}^{T}$$

$$\dot{x} = \begin{bmatrix} 0 & 0 \\ v & 0 \end{bmatrix} x + \begin{bmatrix} -v/L \\ -v \end{bmatrix} \phi$$

Képezzük a beavatkozó jelet az állapotokból

$$u[k] = 0 - k_{\delta}\delta - k_{p}p$$

Az így visszacsatolt rendszer állapotmátrixai (folytonos idő)

$$A_k = \begin{bmatrix} \frac{k_{\delta}v}{L} & \frac{k_{p}v}{L} \\ v(1+k_{\delta}) & vk_{p} \end{bmatrix}, \quad B_k = \begin{bmatrix} -v/L \\ -v \end{bmatrix}, \quad C_k = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

A zárt kör átvitele:

$$H_k(s) = -k_p \frac{vs + \frac{v^2}{L}}{s^2 + s\left(-\frac{k_\delta v}{L} - vk_p\right) - \frac{v^2}{L}k_p}$$

Az eredeti szakasz átvitele:

$$P_o(s) = -\frac{vs + \frac{v^2}{L}}{s^2}$$

 A számláló nem változik, tehát a visszacsatolással olyan pólusáthelyezés érhető el, amit szeretnénk

$$k_p = -\frac{L}{v^2} s_1 s_2, \qquad k_\delta = \frac{L}{v} ((s_1 + s_2) - v k_p)$$

$$H_k(s) = -k_p \frac{vs + \frac{v^2}{L}}{s^2 + s\left(-\frac{k_\delta v}{L} - vk_p\right) - \frac{v^2}{L}k_p}$$

- Statikus átvitel: $g_{\infty} = 1$, sebességtől függetlenül
- Negatív visszacsatoló k_δ és k_p értékek esetén mindig stabil a zárt kör, sebességtől függetlenül

- $u[k] = -k_{\delta}\delta k_{p}p$
- (Az alapjel nulla)
- Telítéskezelés könnyű
- Mérni kell mind p, mind δ értékét

- Hogyan válasszuk meg a pólusokat?
 - $> \xi$: csillapítási tényező
 - > T : időállandó
 - $>\omega_0=1/T$: sajátfrekvencia
 - > 5%-os beállási idő:

$$t_{5\%} \approx \frac{3T}{\xi}$$

> 5%-os beállási út:

$$d_{5\%} = v \cdot t_{5\%}$$

Javasolt méretezési stratégia:

$$\xi$$
, $d_{5\%} \rightarrow t_{5\%} \rightarrow T \rightarrow s_1$, s_2

 Érdemes a beállási úthosszt is sebességfüggővé tenni:

$$d_{5\%}(v)$$

A beállási távolság, ill. beállási idő megválasztása a sebesség függvényében

Ugyanaz, csak kvantáltabb vonalérzékeléssel

Valós mérési adatok

Állapotvisszacsatolás – δ mérése nélkül

Mi van, ha nem mérhető mindkét változó? (egy szenzorsor)

$$H_k(s) = -k_p \frac{vs + \frac{v^2}{L}}{s^2 + s\left(-\frac{k_\delta v}{L} - vk_p\right) - \frac{v^2}{L}k_p}$$
$$P_o(s) = -\frac{vs + \frac{v^2}{L}}{s^2}$$

• Ezek alapján a $H_k(s)$ -t realizáló soros szabályozó:

$$C(s) = \frac{H_k(s)}{P_o(s)(1 - H_k(s))} = \frac{k_p s}{s - k_\delta \frac{v}{L}}$$

Állapotvisszacsatolás – δ mérése nélkül

- Csak p mérésével megoldható a feladat, a fenti szabályzó valójában becsli a nem mért δ értékét
- Kifejezve a $p o \delta$ becslő átviteli függvényét:

$$E_{\delta}(s) = \frac{s}{sL + v}$$

- ullet Differenciáló tagnak felel meg, vagyis δ értékét p deriváltjával közelítjük
- Gyakorlatilag egy PD jellegű szabályozót kaptunk

Állapotvisszacsatolás – δ mérése nélkül

- Előnye
 - > Csak a vonalpozíciót kell mérni
- Hátrányai
 - > Telítéssel kezdeni kell valamit (a szabályozó dinamikus rendszer lett)
 - > A linearizált modellt feltételezi, így pontatlanabb, mintha közvetlenül mérnénk δ -t
- Tanács: amit lehet, mérjünk

Hogyan mérjünk vonalorientációt?

• Két szenzorsor: $\Delta \delta_k = \operatorname{atan} \frac{p_{1,k} - p_{2,k}}{L_{sensor}}$

 $p_{1,k}, p_{2,k}$ a két helyen mért vonalpozíció L_{sensor} a két sor távolsága Sebességfüggetlen pontosság

• Egy szenzorsor: $\Delta \delta_k = \operatorname{atan} \frac{p_k - p_{k-1}}{v_k T_s}$

 p_k, p_{k-1} az aktuális és az előző vonalpozíció

 v_k az aktuális sebesség

 $T_{\scriptscriptstyle S}$ a mintavételi idő

Sebességtől és kanyarodástól függő pontosság

PI szabályozó

- Miért fontos, hogy tudjuk, mit csinálunk?
- Használjunk empirikusan behangolt PI szabályzót

$$P_o(s) = -\frac{vs + v^2/L}{s^2}; \quad C_{PI}(s) = A^{\frac{1+sT}{s}}$$

• Így a nyílt kör átvitele

$$L_{PI}(s) = -\frac{Av^2(1+sT)(1+\frac{L}{v}s)}{s^3}$$

PI szabályozó

$$L_{PI}(s) = -\frac{Av^{2} (1 + sT) \left(1 + \frac{L}{v}s\right)}{L}$$

$$H_{PI}(s) = \frac{L_{PI}(s)}{1 + L_{PI}(s)}$$

- A nyílt körben jól látható, hogy a sebesség változásával a körerősítés és egy zérus helye is változik
- ullet Hogyan alakulnak a zárt kör pólusai v függvényében?

PI szabályozó

ullet Hogyan alakulnak a zárt kör pólusai v függvényében?

