Summary of Formulae

Sample mean and variance

Mean:
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$

Probability Rules

$$\begin{split} \Pr(A \text{ or } B) &= \Pr(A) + \Pr(B) - \Pr(A \text{ and } B) \\ \Pr(A \text{ and } B) &= \Pr(A) \Pr(B|A) = \Pr(B) \Pr(A|B) \\ \Pr(A|B) &= \frac{\Pr(A \text{ and } B)}{\Pr(B)} = \frac{\Pr(B|A) \Pr(A)}{\Pr(B|A) \Pr(A) + \Pr(B|A^{\complement}) \Pr(A^{\complement})} \end{split}$$

Random Variables

If X and Y are random variables with means E[X] and E[Y] respectively, then

$$E[aX + bY] = a E[X] + b E[Y].$$

If X and Y are independent random variables with variances Var(X) and Var(Y) respectively, then

$$Var(aX + bY) = a^{2} Var(X) + b^{2} Var(Y).$$

Discrete Distributions

Mean:
$$E[Y] = \sum_{i=1}^{k} y_i \Pr(Y = y_i)$$
 Variance: $Var(Y) = \sum_{i=1}^{k} (y_i - E[Y])^2 \Pr(Y = y_i)$

Normal Distribution

A normal random variable, Y, has mean $E[Y] = \mu$ and variance $Var(Y) = \sigma^2$. A standard normal random variable, Z, has mean 0 and variance 1. To transform a normal random variable Y into a standard normal Z (and vice versa):

$$Z = \frac{Y - \mu}{\sigma} \qquad Y = Z\sigma + \mu$$

Binomial Distribution

A binomial random variable X has mean E[X] = np and variance Var(X) = np(1-p).

Distributions of Statistics

- The distribution of \bar{y} has mean μ and standard error $\frac{\sigma}{\sqrt{n}}$
 - Estimate of standard error $\frac{s}{\sqrt{n}}$
- The distribution of $\bar{y}_1 \bar{y}_2$ has mean $\mu_1 \mu_2$ and standard error $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$.
 - Estimate of standard error $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$.
- The distribution of $\hat{p} = \frac{x}{n}$ has mean p and standard error $\sqrt{\frac{p(1-p)}{n}}$
 - For hypothesis test with $H_0: p=p_0$ the standard error is $\sqrt{\frac{p_0(1-p_0)}{n}}$
- The distribution of $\hat{p}_1 \hat{p}_2$ has mean $p_1 p_2$ and standard error $\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$
 - For hypothesis test with $H_0: p_1 p_2 = 0$ the estimated standard error is $\sqrt{\frac{\hat{p}^*(1-\hat{p}^*)}{n_1} + \frac{\hat{p}^*(1-\hat{p}^*)}{n_2}}$
 - $-\hat{p}^* = \frac{x_1 + x_2}{n_1 + n_2} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$

Contingency Tables

- Test statistic: $X^2 = \sum \frac{(\text{observed-expected})^2}{\text{expected}}$
- df = (R-1)(C-1), where R and C are the number of rows and columns respectively
- The expected count: expected = $\frac{\text{row total} \times \text{column total}}{\text{table total}}$

Regression

The simple linear regression model is: $y = \beta_0 + \beta_1 x + \varepsilon$, where ε is normally distributed with mean 0 and variance σ_{ε}^2 . The fitted model is: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$