AHRQ Clinical Decision Support Consortium

April 5, 2009

Blackford Middleton, MD, MPH, MSc Dean Sittig, PhD Frank Sonnenberg, MD

Presenters

Blackford Middleton, MD, MPH, MSc

Corporate Director of Clinical Informatics Research & Development, and Chairman, Center for IT Leadership, Partners Healthcare System

Dean F. Sittig, PhD

Associate Professor, The University of Texas, School of Health Information Sciences at Houston

Frank A. Sonnenberg, MD

Professor of Medicine and Medical Director of Clinical Information Systems, UMDNJ Robert Wood Johnson Medical School

Learning Objectives

- Understand the research goals and objectives of the AHRQ Clinical Decision Support Consortium
- Understand the potential of clinical decision support to improve the quality and safety of the healthcare we deliver
- Understand the issues surrounding knowledge management for clinical decision support
- Compare and contrast with current clinical practice

CDS Consortium Goal

To assess, define, demonstrate, and evaluate best practices for knowledge management and clinical decision support in healthcare information technology at scale – across multiple ambulatory care settings and EHR technology platforms

Background

- Application of clinical decision support has many benefits
- Systematic reviews have shown that CDS can be useful across a variety of clinical purposes and topics
- Current adoption of advanced clinical decision support is limited due to a variety of reasons

Barriers

- Limited implementation of EMR, CPOE, PHR, etc.
- Difficulty developing clinical practice guidelines
- A lack of standards
- Absence of a central repository or knowledge resource
- A limited understanding of organizational, and cultural issues relating to clinical decision support

CDSC: Member Institutions

- Partners HealthCare
- Regenstrief Institute
- Veterans Health Administration
- Kaiser Permanente
- Siemens Medical Solutions/NextGen
- GE Healthcare
- Oregon Health and Science University
- University of Texas, Houston

Six Specific Research Objectives

1. Knowledge Management Life Cycle

- 2. Knowledge Specification
- 3. Knowledge Portal and Repository
- 4. CDS Public Services and Dashboard
- 5. Evaluation Process for each CDS Assessment and Research Area
 - 6. Dissemination Process for each Assessment and Research Area

Guidelines To Implement

Diabetes Mellitus

2007 Diabetes Management Standards of Care from the Clinical Practice recommendations of the ADA

Coronary Artery Disease

ACC guideline on Antiplatelet Therapy; USPSTF recommendation on Aspirin for the Primary Prevention of Cardiovascular Events

Hypertension

USPSTF recommendation on Screening for High Blood Pressure

Precision and executability

Multilayered model

Machine Execution

Abstract Representation

Semistructured Recommendation

Narrative Guideline

r lexibility and adapt 2.

Narrative Recommendation layer

Semi-Structured Recommendation layer

- Abstract Representation layer
 - Machine Executable layer
 - Knowledge encoded in a format that can be rapidly integrated into a
 - CDS tool on a specific HIT platform
 - E.g., rule could be encoded in Arden Syntax

A recommendation could have several different artifacts created in this layer, one for each of the different HIT platforms

Knowledge Pack

- Data standard (controlled medical terminology, concept definitions, allowable values)
- Logic specification (statement of rule logic)
- Functional requirement (specification of IT feature requirements for expression of rule, etc.)
- Report specification (description of method for CDS impact measurement and assessment)

Why Multilayered Representation?

- Allows us to balance between the competing requirements for flexibility in representation for various environments and the ability to deliver precise, executable knowledge that can be rapidly implemented
- Provides a path to achieve logical consistency from the narrative guideline to the execution layer

The CDSC/POET team is multidisciplinary

- Joan Ash, PhD, MLS, MBA
- Ken P. Guappone, MD, PhD
- Richard Dykstra, MD, MS
- Josh Richardson, MS
- Emily Campbell, RN, MS
- Carmit McMullen, PhD
- Adam Wright, PhD
- Dean F. Sittig, PhD

Thanks to the National Library of Medicine, NIH, for funding Grants LM06942, R56-LM006942 and ASMM10031

Conducted 5 site visits...

- Sites completed extensive CDS / KM survey
- Remote demo of the system
- Interviewed key stakeholders
 - Administrators, clinician leaders, IT professionals
- Observed clinicians as they worked
- Analyzed transcripts & field notes

Our qualitative, rapid,

ethnographies yield discoveries

"Not everything that can be counted counts, and not everything that counts can be counted."

Albert Einstein (1879-1955)

CDS means different things to different people

Users: anything that assists and guides them...

- Exchange of information, reports, notes, problem lists, and treatment plans is key
- Want to interact with other physicians about specific patients

Informaticists say...

Improving Outcomes with Clinical Decision Support: An Implementer's Guide

> Jerome A. Osheroff, MD,ACP, FACMI Eric A. Pifer, MD Jonathan M. Teich, MD, PhD, FACMI Dean F. Sittig, PhD, FACMI Robert A. Jenders, MD, MS, FACP

- Documentation templates
- Relevant Data Presentation
- Order Creation Facilitators
- Pathway support
- Reference Information
- Alerts & Reminders

What can we do?

- Speak in user terms
- CDS can be threatening
- Emphasize value to clinical practice
- Observe and listen to clinicians

Labs

Input Data Element	Rule Types	Rules
Laboratory result/observation	126	2,087
Drug list	108	4,752
Heenacific	P	Q 06

Förstient yeunieed P

Demog

Orders

Vitals

History

Race

1/18110212/ 1 001C111	7.7	1,200
ΒΔΤΔΙ	39	3,131
Ivonarug oraers	15	694
Gender	12	1,595
Family history	10	10
Allergy list	9	649
Weight	8	1,310
Surgical history	8	8
Reason for admission	2	148
Prior visit types	2	2

J Am Med Inform Assoc. 2007 Jul-Aug; 14(4): 489-496.

Content Library Management is necessary for CDS

- Standardize data across the environment
- Standardize knowledge and logic
- Organize knowledge maintenance

Multidisciplinary Team

A multidisciplinary team is responsible for creating and maintaining clinical content:

- Staff of dedicated knowledge engineers
- Subject matter experts
- Clinical content committees

An external repository of clinical content with web-based viewer

An internet-based tool to facilitate content development

Knowledge engineers are "special people"

- Knowledge engineers (KEs) encode the logic in the CIS
- KEs manage the controlled clinical vocabulary used to drive the CDS
- KEs work collaboratively with experts to create clinical content for CDS
- KEs must be technically astute as well as clinically knowledgeable

Work to facilitate translation for collaboration

- Culture clash between developers & clinical information systems and users
- An US vs. Them culture exists

Often physical separation, too!

The system, including the hardware, software and user interface must be easy to use and fast

- Users should not have to wait for CDS
- Users always want to see "everything" on "one-page"
- Organizations & users think they need to be able to customize CDS

Workflow analysis must be a part of the organizational culture

- Must balance need for standardization to improve quality & safety with need for individualized customization to improve workflow
- 80% of workflow in a clinic can be anticipated prior to implementation*
 - Additional 10% can be accommodated within existing system capabilities
 - □ Final 10% requires major software/hardware reconfiguration

^{*} Epic Systems Inc. Implementation Team at Kaiser Permanente

Communicating new CDS features and functions to clinicians is hard

- Most users learn about CDS by chance
- CDS developers do not get enough credit for the improvements
- Keeping clinical content current & accurate is difficult
- Communication about CDS must not add to "alert fatigue"

Metrics are necessary to monitor & manage the interventions

 Need to know raw usage figures for all CDS types

 Need to know override rates for alerts / reminders

Need to review and act upon information

Nurture and support your clinical champions

Clinical champions are key to successful CDS roll-outs

- Must work to maintain their energy and enthusiasm
- Need to channel their energy in positive ways
- Need an outlet to voice their concerns and ideas

Governance of clinical decision support is critical

- Must decide on CDS philosophical approach
- Need to set priorities for initiatives
- Assign responsibility and authority
- Provide & manage resources

CDSC and the Robert Wood Johnson Medical Group

- Lessons Learned from CDS Implementation
- The need for coded data
- Pitfalls
- How CDSC will help

Robert Wood Johnson Medical Group

- Over 500 physicians
- 400,000 ambulatory visits annually
- 300,000 inpatient visits annually
- GE Centricity EMR in process of deploying to 44 separate practices

Decision Support is often implicit

Flow sheets

Flowsheet: Enterprise/UMG/GIM/UMG GIM Diabetes

Value

1.4

Date

12/05/2007

Templates

HGBA1C 12/05/2007 6.8 MONOFILAM LF 12/15/2007 normal MONOFILAM RT 12/15/2007 normal MICRALB24H U MICROALB URN MICRALB RANU 12/05/2007 4 MICROALB/CRE IDIAB EYE EXI Dr. Robert Smith 08/30/2007

Order sets

☐ <u>Diabetes (LC)</u>
☐ HEMOGLOBIN A1C 83036
ASSAY, ALBUMIN, URINE, MICROABLUMIN, QUAN 82043
Lipid Mgm't (LC)
CREATINE KINASE, TOTAL, SERUM 82550
HEPATIC FUNCTION PANEL 80076
LIPID PANEL 80061

Data are needed to implement clinical decision support

- Diagnoses
- Medications
- Clinical observations
- Diagnostic tests
- Laboratory tests
- Preventive treatments

Data must be in coded format

M

CDS is not a "field of dreams"

You can't assume data will just magically appear...

If you build it, they won't necessarily come

Ŋ4

Work backwards from outcomes to decision support to define data needed

Data sources

What to do about paper reports?

- Scanned images contain no data
- Link to flow sheet unavoidable manual entry process

Data Capture Workflow

- Ensure that forms and templates capture necessary data
- Record data when/where it makes the most sense
- Maximize use of electronic data sources. A little effort can pay big dividends
- Coordinate data across practices

A Cautionary Tale

- Lack of specificity in ordering tests
- Interfaces that do not work together
- Failure to coordinate data across practices

Ordering the right test is key

Results must be mapped correctly

This can lead to errors in decision support

Collaboration and Governance

- Governance: buy-in from leadership
- Advisory Committee
- Collaborative teams

How CDSC will help

- Forum for collaborating to develop best practices for decision support
- Mechanism for sharing of CDS content in a platform independent format
- Decrease the need for customization
- Minimize duplication of effort across organizations
- Providers can focus more on workflow and less on technical details

Closing remarks

- CDS is critical to success, yet more difficult than expected to accomplish
- Knowledge centrally managed and readily available to implementers of HIT should help increase the value of HIT investments
- Collaborative knowledge engineering is more effective than each group implementing HIT doing it themselves
- Successful use of CDS requires careful attention to how clinical data are requested, collected and organized.

Thank you!

- Blackford Middleton bmiddleton1@partners.org
- Dean Sittig
 Dean.F.Sittig@uth.tmc.edu
- Frank Sonnenberg sonnenbe@umdnj.edu

HARVARD

AHRQ contract HHSA290200810010

