Prof. DI Dr. Erich Gams

Einführung und Anwendung Mongober

informationssysteme htl-wels

Übersicht • Was lernen wir?

- Partitionierung oder Sharding
- Hands-on -> Tutorial

Partitionierung oder Sharding

- Ist die Verteilung der Daten auf mehrere Netzwerkknoten.
- Collections werden in kleinere Einheiten, sogenannte Chunks aufgeteilt, von denen jeder auf genau einem Sharding-Knoten (sogenannte shards) liegt.
- Sie werden redundanzfrei persistiert!

Verteilung der Daten anhand des ShardKeys

Brauche ich Sharding?

- + Plattenplatz eines Knotens reicht nicht aus.
- + Durchsatz an Schreiboperationen kann von einer Server-Instanz nicht mehr bewältigt werden.
- Keine besonderen Anforderungen an Schreibund Lesezugriffe.
- Nicht mehr als ein paar Terrabyte an Daten.

Bereichspartitionierung (range partitioning) - Beispiel

- Shard 1: Personen [A-F]
- Shard 2: Personen [G-N]
- Shard 3: Personen [O-Z]
- Abfrage der Person Franka -> Shard 1
- Einfügen der Person Paul -> Shard 3
- Verteilung der Last!
- Wird ein Chunk zu groß, wird er auf zwei aufgesplittet und einer auf einen anderen Knoten verlegt.

Schlüssel zur Verteilung der Daten

- Strings oder Ganzzahlwerte
 - sofern große Teile des Wertebereichs ausgeschöpft werden
 - Bei großer Variabilität der Werte (Zuordnung zu vielen verschiedenen Chunks)
 - Boolsche Werte?
- Verteilung der Schlüsselwerte
 - Monoton steigend bzw. fallende Werte
 - Hashwerte
 - Mischformen
- Abhängig von der Relation von Schreib- und Lesewerten

Monoton steigende Werte

- > z.B.:Felder mit Datum
- Es wird immer nur auf den aktuellen letzten Chunk geschrieben.
- Nachteil beim Einfügen -> Bottleneck
- > Bereichsabfragen performant

Monoton steigende Werte

Hash partitioning - Hashwerte

- › Können von der Anwendung oder automatisch vergeben werden. (Indextyp: {vnr: "hashed"})
- Einfügen performant (Verteilung)
- > Bereichsabfragen gehen (meist)immer über alle Shards

Hashwerte

Mischform

- Zusammengesetzter Shard Key
- > Beispiel: E-Mail System
- Erster Teil
 - sorgt für grobgranulare Einteilung und gleichmäßige Verteilung auf die Shards
 - z.B.: Username
- Zweiter Teil
 - Zeitstempel: Erzeugungszeit
 - Variabilität auf Ebene des Dokuments

- Die Anwendung wendet sich mit einer Anfrage an einen der Router.
- Der Router befragt einen Konfig-Server welchen Shard er auswählen soll. Konfig Server enthalten sämtliche Metadaten (Welche Rechner nehmen am Sharding teil, wo findet man welche Dokumente usw.).
- Die Anfrage wird an den Knoten gereicht und der Router fasst die Antwort zusammen und verweist an die Anwendung.

Shards

mongod Instanz oder replica set

Config servers

 mongod Instanz (In produktiven System werden laut Doku 3 empfohlen). Kann am Shards Server laufen.

> Router

 Jeder Router ist eine mongos Instanz. Können am Applikationsserver laufen.

Sharding

> Übung!

