东南大学数字逻辑电路

实验报告

学号: 04022212

姓名: __ 钟 源___

2023年11月3日

实验名称:实验2组合逻辑电路设计实验

实验类型: 验证性

成绩:

一、实验内容提要

用逻辑门设计 2421BCD 码的检测电路:

- 1) 列出 2421BCD 码的真值表;
- 2) 给出电路实现方案;
- 3) 调试电路, 实现当检测到有效码时, LED 灯不亮; 当检测到无效码时, LED 灯亮起。

二、实验仪器与元器件

1.ADALM2000 1 台

2.面包板 1 块

3.集成芯片:

1) SN74HC20N 2 片

2) SN74HC04N 1片

3) SN74HC00N 1片

4.杜邦线 7条,导线若干。

三、设计过程及步骤

1.根据题目要求列出真值表:

A	В	C	D	F
0	Ď	0	0	0
D	0	0	1	D
0	0	١	0	0
0	O	1	Ĩ	0
0	Ī	0	0	0
0	1	D	1	1
0	1	1	0	Ī
0	1	- (1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	D	1	1	0
L	1	0	0	D
1	1	0	1	0
1	1	1	0	0
1	1	ſ	1	Ō

2.卡诺图:

AB	00	οl	П	lo
00	0	D	0	D
01	0	1	1	1
11	b	0	O	0
10	1	1	0	1

3.逻辑表达式:

$$\overline{F} = \overline{AB} + AB + B\widehat{CD} + ACD$$

$$= \overline{\overline{AB}} + AB + B\overline{CD} + ACD$$

$$= \overline{\overline{AB}} \cdot \overline{\overline{AB}} \cdot \overline{\overline{BCD}} \cdot \overline{\overline{ACD}}$$

$$\overline{R} F = \left(\overline{\overline{\overline{AB}}} \cdot \overline{\overline{AB}} \cdot \overline{\overline{BCD}} \cdot \overline{\overline{ACD}}\right)$$

4.电路设计图:

5.实现方法:

1) 使用 SN74HC04N:

得到 \overline{A} 、 \overline{B} 、 \overline{C} 、 \overline{D} ,并将最后的 \overline{F} 取反,得到 F ,具体接法如下引脚图所示:

2) 使用 SN74HC00N:

实现 $Y_1 = \overline{AB}$, $Y_2 = \overline{AB}$, 具体接法如下引脚图所示:

3) 使用 SN74HC20N:

实现 $Y_3 = \overline{ACD}$, $Y_4 = \overline{BCD}$, 具体接法如下引脚图所示:

4) 使用 SN74HC20N:

实现 $\overline{F} = \overline{Y_1} \overline{Y_2} \overline{Y_3} \overline{Y_4}$,具体接法如下引脚图所示:

6.电路照片:

四、结果分析

由照片可见,当检测到输入码有效时,LED 灯不亮;当检测到输入码无效时,LED 灯亮起。下面由数字 IO 的输入输出变量验证真值表(说明:数字 IO 的 0123 对应 ABCD, 4 对应 F)。

ABCD 输入: 0000 F 输出: 0

ABCD 输入: 0010 F 输出: 0

ABCD 输入: 0100 F 输出: 0

ABCD 输入: 0110 F 输出: 1

ABCD 输入: 0001 F输出: 0

ABCD 输入: 0011 F 输出: 0

ABCD 输入: 0101 F 输出: 1

ABCD 输入: 0111 F 输出: 1

于是得到真值表:

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

得到实验结论:输出结果与实验要求真值表一致,2421BCD 码的检测电路正确。当检测到有效码时, LED 灯不亮;当检测到无效码时,LED 灯亮起。

五、另一种实现方案

在实验过程中,我意识到还有一种通过非门和数据选择器实现电路的方案,于是又搭建了一个电路,经检验,电路实现功能完全一致。

1. 实验仪器与元器件

1) ADALM2000 1台

2) 面包板 1 块

3) 集成芯片:

①SN74HC04N 1片

②SN74LS151N 1片

4) 杜邦线 7条, 导线若干。

2.设计过程及步骤

1) 列出卡诺图:

ABCD	00	σl	n	10
00	0	0	0	D
01.	0			
11 -	0	0	· D·	. 0
10.		.1	. 0.	. 1).

2) 列出降维卡诺图:

3)实现方法:

①使用 SN74HC04N:

②使用 SN74HC151N:

4) 电路照片:

4.结果分析:

由照片可见,当检测到输入码有效时,LED 灯不亮;当检测到输入码无效时,LED 灯亮起。下面由数字 IO 的输入输出变量验证真值表(说明:数字 IO 的 0123 对应 ABCD, 4 对应 F)。

ABCD 输入: 0000 F 输出: 0 ABCD 输入: 0001 F 输出: 0 2 1 🔾 2 3 输入 输出 输入输出 输入 输出 输入 输出 ABCD 输入: 0011 F 输出: 0 ABCD 输入: 0010 F 输出: 0 1 0 1 0 ABCD 输入: 0100 F 输出: 0 ABCD 输入: 0101 F 输出: 1 2 1 2 — ABCD 输入: 0111 F 输出: 1 ABCD 输入: 0110 F 输出: 1 3 2 1 0 1 0 ABCD 输入: 1001 F 输出: 1 ABCD 输入: 1000 F 输出: 1 2 3 2 3 1 0 ABCD 输入: 1010 F 输出: 1 ABCD 输入: 1011 F 输出: 0 2 2 3 输入 输出 输入 输出 输入 输出 输入 输出 ABCD 输入: 1100 F 输出: 0 ABCD 输入: 1101 F 输出: 0 2 ABCD 输入: 1110 F 输出: 0 ABCD 输入: 1111 F 输出: 0

于是得到真值表:

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

输出结果与实验要求真值表一致,2421BCD 码的检测电路正确。当检测到有效码时,LED 灯不亮;当检测到无效码时,LED 灯亮起。可见该电路能实现完全相同的功能,且使用芯片较少。