Insper

Ciência dos Dados

Aula 29 – Projeto 5 Modelo de regressão linear

Projeto 5

O Projeto 5 é composto por três etapas:

- 1^a. Etapa: Escolha das variáveis
- **2ª. Etapa:** Entendimento teórico dos parâmetros de um modelo de regressão múltipla.
- **3ª. Etapa:** Analise descritiva e análise de regressão nos dados definidos na Etapa 1 e sob o modelo teórico estudado na Etapa 2. E ainda avaliação se o modelo de regressão obtido é igualmente bom quando os países são separados em subgrupos (com critérios consistentes a definir).

Projeto 5

Exemplos de variáveis que devem ser extraídas do **GapMinder**:

- Fertilidade (Children per women)
- Expectativa de Vida (Life expectancy)
- Mortalidade infantil (Child mortality)
- Índice de percepção de corrupção (Corruption Perception Index - CPI)
- Taxa de emprego (Employment rate)
- Taxa de desemprego (Unemployment rate)
- Score de democracia (Democracy score)

Os slides a seguir descrevem as características e cuidados com uma Análise de Regressão

Pesquise alguma referência bibliográfica para mais detalhes!!

A presença ou ausência de **relação linear** pode ser investigada sob dois pontos de vista:

- a) Quantificando a força dessa relação: correlação.
- b) Explicitando a forma dessa relação: <u>regressão</u>.

Graficamente, a relação entre duas variáveis quantitativas pode ser feita via **Gráfico de Dispersão.**Inshe

Insper Instituto de Ensino e Pesquisa

Um particular problema

Investimentos na saúde e saneamento básico têm alguma relação com a sobrevida de uma população?

Objetivo – Um particular problema

Para o Projeto 5, é necessário que o grupo trace um problema/pergunta que deseja avaliar!!

Exemplo:

Investimentos na saúde e saneamento básico têm alguma relação com sobrevida de uma população?

Variáveis selecionadas que podem auxiliar na análise:

Expectativa de vida

Gasto com Saúde per capita (em US\$)

% do PIB investido na saúde

% gasto pelo governo com a saúde

% da população com acesso ao saneamento

Análise Descritiva

	ExpVida
ExpVida	1.000000
PercSaudePIB	0.236452
GastoSaudePerCap	0.553312

Transformação na variável

	ExpVida
ExpVida	1.000000
PercSaudePIB	0.236452
GastoSaudePerCap	0.553312
PercSaudeGov	0.361530
PropPopSanea	0.802367
LNGasto Saude Per Cap	0.763843

Análise de regressão

"A coleção de ferramentas estatísticas que são usadas para modelar e explorar relações entre variáveis que estão relacionadas de maneira não determinística é chamada de análise de regressão."

Montgomery, D.C. e Runger, G.C. **Estatística aplicada e probabilidade para engenheiros.** 6ª. Edição. Rio de Janeiro: LTC, 2016.

Análise de regressão

- Objetivo: Explicar como uma ou mais variáveis se comportam em função de outra.
- Variável dependente (resposta) y: variável de interesse, cujo comportamento se deseja explicar.
- Variável independente (explicativa) x:
 variável ou variáveis que são utilizadas para
 explicar a variável dependente.
- Modelo de regressão: equação (reta) que associa y e um ou vários x.

Análise de regressão

Metodologia estatística que estuda (modela) a relação entre duas ou mais variáveis

Expectativa de vida ⇒ variável resposta
 Gasto com saúde (per capita) ⇒ variável explicativa

modelo de regressão linear simples

Expectativa de vida ⇒ variável resposta
 Gasto com saúde (per capita) ⇒ variável explicativa
 % população com saneamento ⇒ variável explicativa

modelo de regressão linear múltipla

Modelo de regressão linear múltipla a ser estimado

Motivados pela análise descritiva (gráfico de dispersão e coeficiente de correlação), a escolha das variáveis para o modelo foram:

ExpVida: Expectativa de vida como variável resposta.

GtSaude: Gasto com saúde (per capita) considerando a transformação ln decorrente gráfico descrito no slide 9.

Sanea: % população com saneamento sem considerar transformação decorrente interpretação gráfica no slide 10.

Nota: Ambas variáveis explicativas têm forte correlação com a variável resposta.

Modelo de regressão múltipla:

$$ExpVida = \beta_0 + \beta_1 Sanea + \beta_2 \ln(GtSaude) + \varepsilon$$

Insper Instituto de Ensino e Pesquisa

Modelo de regressão simples

Teoria

Modelo de Regressão Linear Simples

Método dos Mínimos Quadrados

Os valores populacionais de β_0 e β_1 são desconhecidos.

Para estimá-los, é necessário minimizar o resíduo que é dado pela diferença entre o valor verdadeiro de y e seu valor estimado \hat{y} , ou seja,

$$\hat{\varepsilon}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i.$$

O método utilizado na estimação desses parâmetros é o método dos mínimos quadrados.

Logo, o método dos mínimos quadrados requer que consideremos a soma dos n resíduos quadrados, denotado por SQRes:

$$SQRes = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

Qualidade do ajuste

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$SQT = SQReg + SQRes$$

$$R^{2} = \frac{\text{SQReg}}{\text{SQT}}$$

$$= \frac{\text{SQT-SQRes}}{\text{SQT}}$$

$$= 1 - \frac{\text{SQRes}}{\text{SOT}}$$

$$0 \le R^{2} \le 1$$

Interpretação do Coeficiente de determinação: mede a fração da variação total de Y explicada pela regressão.

Inferência em Análise de Regressão

Usualmente, uma das hipóteses em análise de regressão é avaliar a significância da regressão.

Ou seja,

$$H_0$$
: $\beta_1 = 0$ \rightarrow não há relação entre $x \in Y$

$$H_1$$
: $\beta_1 \neq 0$ \rightarrow há relação entre $x \in Y$

Para realizar esse teste de hipóteses, será necessário atribuir distribuição aos erros ε_i , além de outras suposições ao modelo.

Suposições do modelo linear simples

 Os erros têm distribuição normal com média e variância constante, ou seja,

$$\varepsilon_i \sim N(0,\sigma^2)$$
.

Os erros são independentes entre si, ou seja,

$$Corr(\varepsilon_i, \varepsilon_i)=0$$

- Modelo é linear nos parâmetros.
- Homocedasticidade: $Var(\varepsilon_i) = \sigma^2$ para qualquer i = 1, ..., n.

Análise de Resíduos

Interpretação das estimativas dos coeficientes de um modelo de regressão

Modelos lineares nos coeficientes e nas variáveis

Modelo de regressão linear simples – Lin-Lin

Reta estimada:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Interpretação do coeficiente linear estimado:

O intercepto é o valor previsto (esperado ou médio) para y quando x=0.

Quando não fizer sentido zerar a variável x, o valor $\hat{\beta}_0$, por si só, não será muito interessante.

Interpretação do coeficiente angular estimado:

De maneira geral, a cada variação Δx na variável explicativa x, $\hat{\beta}_1$ é a variação prevista (esperada ou média) na variável resposta.

$$\hat{\beta}_1 = \frac{\Delta \hat{y}}{\Delta x}$$

Modelo de regressão linear simples – Lin-Lin

Reta estimada:

$$\widehat{Salario} = -0.90 + 0.54 Educ$$

Interpretação do coeficiente angular estimado:

A cada um ano a mais de educação formal, a variação média no salário é de 0,54 dólar/hora.

Wooldridge, J. M. Introdução à econometria. São Paulo: Pioneira Thomson Learning, 2006.

Interpretação das estimativas dos coeficientes de um modelo de regressão

Modelos lineares nos coeficientes, mas não lineares em algumas das variáveis

Modelos Linearizáveis

Modelo Padrão:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

exponencial

$$Y_i = \beta_0 e^{\beta_1 x_i} \varepsilon_i \quad \Rightarrow \quad \ln Y_i = \ln \beta_0 + \beta_1 x_i + \ln \varepsilon_i \quad \Rightarrow \quad Y_i' = \beta_0' + \beta_1 x_i + \varepsilon_i'$$

potencial

$$Y_i = \beta_0 x_i^{\beta_i} \varepsilon_i \quad \Rightarrow \quad \ln Y_i = \ln \beta_0 + \beta_1 \ln x_i + \ln \varepsilon_i \quad \Rightarrow \quad Y_i' = \beta_0' + \beta_1 x_i' + \varepsilon_i'$$

Caso tenha transformação na(s) variável(is), é necessário ter cuidado com a interpretação das estimativas dos coeficientes.

Um exemplo de transformação na variável resposta

Um exemplo de transformação na variável resposta

Transformações Logarítmicas

Transformações logarítmicas nos permitem modelar relações em termos "percentuais" (Na economia, essas relações são conhecidas como elasticidades).

Resultado:

$$ln(1+x) \cong x \ quando \ x \to 0$$

Propriedade usada nas variáveis transformadas:

$$\ln(x + \Delta x) - \ln(x) =$$

$$= \ln\left(1 + \frac{\Delta x}{x}\right) \cong \frac{\Delta x}{x}$$

Modelo de regressão linear simples – Lin-Log

Reta estimada:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \ln(x_i)$$

Interpretação do coeficiente angular estimado:

De maneira geral, a cada variação percentual $\%\Delta x$ na variável explicativa x, $\hat{\beta}_1$ tem interpretação de variação prevista na variável resposta quando dividido 100:

$$\frac{\hat{\beta}_1}{100} = \frac{\Delta \hat{y}}{\% \Delta x}$$

Modelo de regressão linear simples – Lin-Log

Reta estimada:

$$\widehat{Nota} = 557.8 + 36.4 \ln(Renda)$$

Interpretação do coeficientes angular estimado:

✓ A cada aumento de 1% na Renda, há um aumento previsto de 0,36 pontos na nota da prova.

Modelo de regressão linear simples – Log-Lin

Reta estimada:

$$\widehat{\ln(y_i)} = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Interpretação do coeficiente angular estimado:

De maneira geral, a cada variação Δx na variável explicativa x, $\hat{\beta}_1$ tem interpretação de variação percentual prevista na variável resposta quando multiplicado por 100:

$$100\hat{\beta}_1 = \frac{\%\Delta\hat{y}}{\Delta x}$$

Modelo de regressão linear simples – Log-Lin

Reta estimada:

$$ln(\widehat{Salario}) = 0.584 + 0.083 Educ$$

Interpretação do coeficientes angular estimado:

✓ A cada um ano a mais de educação formal, o salário aumenta, em média, 8,3%.

Wooldridge, J. M. Introdução à econometria. São Paulo: Pioneira Thomson Learning, 2006.

Modelo de regressão linear simples - Log-Log

Reta estimada:

$$\widehat{\ln(y_i)} = \hat{\beta}_0 + \hat{\beta}_1 \ln(x_i)$$

Interpretação do coeficiente angular estimado:

De maneira geral, a cada variação percentual Δx na variável explicativa x, $\hat{\beta}_1$ tem interpretação de variação percentual prevista na variável resposta :

$$\hat{\beta}_1 = \frac{\%\Delta \hat{y}}{\%\Delta x}$$

Modelo de regressão linear simples - Log-Log

Reta estimada:

$$ln(\widehat{Salario}) = 4,822 + 0,257 ln(Vendas)$$

Interpretação do coeficientes angular estimado:

✓ A cada aumento de 1% nas vendas da empresa, a variação prevista no salário dos diretores é de 0,257% interpretação usual de elasticidade.

Wooldridge, J. M. Introdução à econometria. São Paulo: Pioneira Thomson Learning, 2006.

Resumo das formas funcionais envolvendo transformações logarítmicas

- Há três casos de modelos (Lin-Log; Log-Lin e Log-Log), podendo a transformação log ser apenas em x, apenas em y ou em ambas.
- Os coeficientes podem ser estimadores via MQO (mínimos quadrados ordinários).
- Os testes de hipóteses em β_i 's são os mesmos do que os utilizados em modelos de regressão Lin-Lin.
- Cuidado: a interpretação da estimativa do coeficiente angular difere com o caso de transformação.
- A escolha da variável transformada deve ser auxiliada por bom senso e principalmente análise gráfica.

ATENÇÃO: Associação não é causalidade

Suponha que encontremos alta correlação entre duas variáveis A e B. Podem existir diversas explicações do porque elas variam conjuntamente, incluindo:

- Mudanças em outras variáveis causam mudanças tanto em A quanto em B.
- Mudanças em A causam mudanças em B.
- Mudanças em B causam mudanças em A.
- A relação observada é somente uma coincidência (correlação espúria). CUIDADO!!