WINTER-2013

UNIT 1

Q1 .	a)	What	is	statement	formula?	What	are	the	rules	for
generating well-formedformula.									(6)	

b) Show the following equivalences

(7)

i.
$$A \to (P \lor C) \Leftrightarrow (A \land \neg P) \to C$$
 ii. $(P \lor Q) \to C \Leftrightarrow (P \to C) \land (Q \to C)$

Q2. a) Explain

i. Tautological Implication. ii. Normal form. iii. PolishNotation (6)

b) Obtained the principle disjunctive normal form of $(\neg P \rightarrow R) \land (Q \leftrightarrows P)$ (7)

UNIT 2

Q3. a) Show that $R \to S$ can be derived from the premises $P \to (Q \to S)$, $\neg R \lor P$, and Q.

b) Show that $(\exists x)M(x)$ follows logically from the premises $(x)(H(x) \to M(x))$ and $(\exists x)H(x)$.

Q4. a) Symbolize the following statements, (8)

i. all cats are animals

ii. Some cats are black

iii. Some real numbers are rational

iv. Any integer is either positive or negative.

b) Explain: i. Predicate calculus. inferences.

ii. Rules for **(6)**

UNIT 3

Q5. a) Show that: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

By i. Formal proof.

ii. Venn diagram

(6)

b) Let R and S be the given relations as

(7)

 $R = \{<1, 2>, <3, 4>, <2, 2>\}$ and $S = \{<4, 2>, <2, 5>, <3, 1>, <1, 3>\}$

Find $R \circ S$, $S \circ R$, $R \circ R$, $R \circ (S \circ R)$, $(R \circ S) \circ R$, $R \circ R$, $S \circ S$

Q6. a) Explain with example: i. Set, ii. Subset

iii. Proper subset, iv. Universal set (6)

b) Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = (\langle x, y \rangle | x - y)$ is divisible by 3. Show that R is an equivalent relation. Draw the graph of R.

UNIT 4

Q7. a) Explain: i. Group ii. Subgroup

iii. Monoids iv. Sub Monoids. (8)

b) Write down the composition table for: i. $\langle z_7, +_7 \rangle$ ii. $\langle z_7, \times_7 \rangle$ (6)

Q8. a) Show that if every element in a group is its own inverse, then the group must be Abelian. (7)

b) What is coset? Find the left coset of $\{[0], [3]\}$ in a group $\langle z_6, +_6 \rangle$.

UNIT 5

Q9. a) Obtained the sum of product canonical form of the following using three variables x_1 , x_2 and x_3 : i. $x_1 + x_2$

ii.
$$(x_1 + x_2)' + (x_1 * x_3)$$
 (7)

b) Let n is integer and Sn contains all divisors of n which are less than or equal to n. Let D denote relation of division such that a, b ε Sn and a \leq b if a divides b. draw the lattice \langle Sn, D \rangle for n = 6, 8, 24, 30 and 75. **(6)**

Q10. a) For the function f = w' + y (x' + z') give (7)

1. The circuit diagram representation.

2. The truth table representation.

3. The Karnaugh map representation.

b) Prove the Boolean identities (6)

i. a * (a' ⊕ b) = a * b ii. (a * b) ⊕ (a * b')
= a

UNIT 6

Q11. a) Prove that let $G = \{V, E\}$ be a graph the sum of the degrees of all the nodes in V is twice the number of edges in E. (7)

- **b)** Give the directed tree representation of the formula, (6) $(P \lor (\neg P \land Q)) \land ((\neg P \land Q) \land \neg R)$
- Q12. a) Explain: i. Graph ii. Tree iii. Binary tree & complete binary tree iv. Adjacency matrix (7)
- b) Give the Warshall's algorithm for path matrix with example, (6)www.aditya.publication.com