Matrix theory Assignment 10

K R Sai Pranav

Abstract—This document explains the conversion of a matrix into both row and column reduced echelon form.

Download all python codes from

https://github.com/saipranavkr/EE5609/codes

and latex-tikz codes from

https://github.com/saipranavkr/EE5609

1 Problem

Let A be a $m \times n$ matrix. Show that by a finite number of elementary row and/or column operations one can pass from A to a matrix R which is both row-reduced echelon and column-reduced echelon, i.e., $R_{ij} = 0$ if $i \neq j$, $R_{ii} = 1$, $1 \leq i \leq r$, $R_{ii} = 0$, if i > r. Show that R = PAQ, where P is an invertible $m \times m$ matrix and Q is an invertible $n \times n$ matrix.

2 Lemma

Every elementary matrix is invertible and the inverse is again an elementary matrix. If an elementary matrix E is obtained from I by using a certain row or column operation q, then E^{-1} is obtained from I by the "inverse" operation q^{-1} .

3 Solution

Given **A** is a $m \times n$ matrix. Converting **A** into row reduced echelon form by performing a series of elementary row operations **P**. Let **R'** be the row reduced echelon matrix. Also, by using the lemma we can tell that **P** is invertible and order $m \times m$.

$$\mathbf{R}' = \mathbf{P}\mathbf{A} \tag{3.0.1}$$

where,

$$\mathbf{R}' = \begin{pmatrix} \mathbf{I} & \mathbf{F} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

I is an identity matrix, F is Free variables matrix and 0 represents a block of zeroes

 \mathbf{R}' is in row-reduced echelon form. To perform column operations, elementary matrices should be multiplied on the right side in order to convert the \mathbf{R}' into column-reduced echelon form

$$\mathbf{R} = \mathbf{R}'\mathbf{O} \tag{3.0.2}$$

But performing column operations on a matrix is equivalent to performing row operations on the transposed matrix.

$$\mathbf{R}^{T} = (\mathbf{R}'\mathbf{Q})^{T}$$

$$\implies \mathbf{R}^{T} = \mathbf{Q}^{T}\mathbf{R}'^{T}$$
(3.0.3)

Hence, by using lemma it can be observed that \mathbf{Q}^T is invertible and of the order $n \times n$. Converting \mathbf{R}^T to row-reduced echelon is equivalent to converting \mathbf{R} to column-reduced echelon.

$$\mathbf{R} = \mathbf{PAQ} \tag{3.0.4}$$

where,

$$\mathbf{R} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \tag{3.0.5}$$

I is an identity matrix and **0** represents a block of zeroes. **R** in (3.0.4) is in both row and column reduced echelon form. Hence proved.

4 Example

Let,

$$\mathbf{A} = \begin{pmatrix} 1 & 5 & 6 & 2 \\ 2 & 12 & 7 & 5 \end{pmatrix} \tag{4.0.1}$$

To convert (4.0.1) into row reduced echelon form, **A** has to be multiplied by **P**

$$\mathbf{P} = \begin{pmatrix} 1 & -5 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 6 & -\frac{5}{2} \\ -1 & \frac{1}{2} \end{pmatrix}$$
(4.0.2)

$$\mathbf{R'} = \mathbf{PA} = \begin{pmatrix} 1 & 0 & \frac{37}{2} & -\frac{1}{2} \\ 0 & 1 & -\frac{5}{2} & \frac{1}{2} \end{pmatrix}$$
(4.0.3)

R' is in row reduced echelon form. To convert (4.0.3) into column-reduced echelon form, elemen-

tary operations have to be performed on $\mathbf{R}^{\prime T}$. By multiplying all the elementary matrices,

$$\mathbf{Q}^{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{37}{2} & \frac{5}{2} & 1 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 & 1 \end{pmatrix}$$
(4.0.4)

$$\mathbf{Q}^{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{37}{2} & \frac{5}{2} & 1 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 & 1 \end{pmatrix}$$

$$\implies \mathbf{Q} = \begin{pmatrix} 1 & 0 & -\frac{37}{2} & \frac{1}{2} \\ 0 & 1 & \frac{5}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(4.0.4)$$

So **PAQ** is in both row-reduced and column-reduced echelon form.

$$\mathbf{R} = \mathbf{PAQ} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \tag{4.0.6}$$

The inverses of P and Q are,

$$\mathbf{P}^{-1} = \begin{pmatrix} 1 & 5 \\ 2 & 12 \end{pmatrix}; \quad \mathbf{Q}^{-1} = \begin{pmatrix} 1 & 0 & \frac{37}{2} & -\frac{1}{2} \\ 0 & 1 & -\frac{5}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(4.0.7)