Introduction to Cryptography

F. Koeune - O. Pereira

MAT2450 - Slides 8

Message integrity revisited

Goal: ensure integrity and origin of message

We had a solution with MACs However, same key used to generate and check MACs

- ⇒ Anyone who can check a MAC can also *forge* one
 - Cannot work if all participants do not trust each other
 - Cannot be used to prove a commitment to a third party (see why?)

Couldn't asymmetric cryptography provide us with a better solution?

Digital signature

Principle

- ▶ Bob generates a key pair pk, sk
- ▶ sk is kept secret, and used to sign messages
- pk is made public, and used to verify signatures

So

- Only Bob can produce signatures
- ► Anyone (who has Bob's public key) can verify that Bob's signature is authentic

Advantages over MAC (1)

Simpler key management

- Signature: with one key pair, Bob can send authenticated messages to as many users as he wants
- ▶ MAC: typically, Bob will need one key per contact

Publicly verifiable

- Signature: if Alice receives a message signed by Bob, she knows that everyone else will also consider it authentic
- ► MAC: Bob could have sent a valid Mac_k(m) to Alice, but an invalid Mac_{k'}(m) to Steve

Advantages over MAC (2)

Transferable

- Signature: Alice knows she can bring a signed message to a third party (e.g. a judge) and convince him that Bob signed the message
- MAC:
 - Alice would need to reveal the key to the third party
 - ▶ Even if she does, Alice could have generated the MAC herself

Non repudiable

▶ Bob cannot later deny that he had signed the message

So, why would we use MACs?

Because electronic signature is more expensive

Same as "symmetric vs. asymmetric encryption" argument: 100-1000 times less efficient (for short messages, at least)

Because they are very useful to strengthen symmetric encryption: non-malleable/authenticated encryption, . . .

Definition

A signature scheme is a triple $\Pi := \langle Gen, Sign, Vrfy \rangle$

- ▶ Gen probabilistically selects (pk, sk) ← Gen(1ⁿ) pk/sk are the public/private key
- ▶ Sign provides $\sigma \leftarrow \operatorname{Sign}_{sk}(m)$
- ▶ Vrfy outputs a bit $b := \text{Vrfy}_{pk}(m, \sigma)$ (1 meaning valid, 0 meaning invalid)

s.t.
$$\forall n, (pk, sk) \leftarrow \text{Gen}(1^n), m :$$

$$\text{Vrfy}_{pk}(m, \text{Sign}_{sk}(m)) = 1$$
(except, possibly, with negligible probability)

Remark: can be defined

- ► For fixed-length messages
- ► For arbitrary-length messages

Usage

- 1. Bob uses Gen (once and for all) to generate a key pair (pk, sk)
- 2. Bob advertises pk (website, directory, . . .)
- 3. When he wants to transmit m, Bob computes $\sigma \leftarrow \operatorname{Sign}_{sk}(m)$ and sends (m, σ)
- 4. Receiver retrieves pk
- 5. Receiver checks that $\operatorname{Vrfy}_{\mathit{pk}}(m,\sigma)=1$. This ensures that
 - m originates from Bob
 - m has not been modified

Remarks

- Does not say when m was emitted
- Nor that m is not a replay
- ⇒ Specific measures have to be added if this is a concern

Key distribution

This scheme assumes that recipient can obtain a valid and authentic copy of pk

- Difficulty not to be underestimated
- ▶ We will come back to it

But, at least, we need to do it only once

Secure signature

Now we need to define security

Intuition: no adversary can produce a valid signature for a message that was not previously signed, even if he can obtain signatures of messages of his choice.

This would be called a forgery

Secure signature

Define the signature forgery experiment Sig-forge_{A,Π}(n)

- 1. Choose $(pk, sk) \leftarrow \text{Gen}(1^n)$
- 2. \mathcal{A} receives pk and oracle access to $\operatorname{Sign}_{sk}(\cdot)$ for messages of his choice (denote by \mathcal{Q} the set of these messages)
- 3. \mathcal{A} outputs (m, σ)
- 4. Define Sig-forge_{A,Π}(n) := 1 iff $Vrfy_{pk}(m, \sigma) = 1$ and $m \notin Q$

Secure signature

A signature scheme $\Pi = \langle \text{Gen}, \text{Sign}, \text{Vrfy} \rangle$ is existentially unforgeable under an adaptive chosen-message attack (EUF-CMA) if \forall PPT \mathcal{A} , \exists negl. ϵ :

$$\Pr[\mathsf{Sig}\text{-}\mathsf{forge}_{\mathcal{A},\Pi}(n)=1] \leq \epsilon(n)$$

NI Schnorr can be turned into a signature scheme:

▶ just hash message together with a!

Schnorr's signature scheme:

- ▶ Gen(1ⁿ) runs $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) , then picks $x \leftarrow \mathbb{Z}_q$, sets $h = g^x$ and returns (pk, sk) = (h, x)
- ▶ Sign_v(m) picks $r \leftarrow \mathbb{Z}_q$, sets $a = g^r$, $e = \mathcal{H}(a, m)$, f = r + ex, and returns (e, f)
- ▶ Vrfy_b(m, (e, f)) computes $a = g^f/h^e$ and checks if $\mathcal{H}(a, m) = e$.

Observe: h is not included in the inputs of \mathcal{H}

▶ not needed if h is published prior any signing

Security:

Schnorr's signature scheme is EUF-CMA secure in the ROM. assuming that the DL problem is hard wit respect to \mathcal{G} .

Let:

- \triangleright A be an EUF-CMA adversary against Schnorr's signature making at most t queries to the RO (all distinct) and winning with probability ϵ
- ▶ P* be an adversary against the soundness of Schnorr's protocol

We show that P^* can win with probability $\epsilon/t + \text{negl.}$

If ϵ is non-negligible, then:

- ▶ The DL problem is not hard w.r.t. G, or
- Schnorr's protocol is not sound

P^* proceeds as follows:

- 1. Receives proof statement $h = g^x$ Submit it as public key to A
- 2. Picks a random $j \leftarrow \{1, \dots, t\}$
- 3. When A makes its i-th RO query, on (g^r, m) :
 - If i = j, submits g^r to the Schnorr verifier, get e, set $\mathcal{H}(g^r, m) = e$ and return e to \mathcal{A}
 - ▶ If $i \neq i$, returns a random value
- 4. When A asks for a signature on m, runs Schnorr's simulator to get (a, e, f) and sets $\mathcal{H}(a, m) = e$
- 5. When \mathcal{A} outputs a forgery (m^*, e^*, f^*) , outputs f^* to the Schnorr verifier

This strategy wins if:

- A indeed produces a forgery $(Pr = \epsilon)$
- ▶ P^* did not define $\mathcal{H}(g^r, m)$ before the *j*-th query (Pr overwhelming)
- ▶ P^* made a correct guess, i.e., $g^{f^*}/h^{e^*} = g^r$ and $m^* = m$ with (g^r, m) as in the j-th query (Pr > 1/q)

Since P^* cannot solve the DL and can only break soundness with negligible probability, ϵ must be negligible.

DSA – ECDSA [1991]

- ▶ Gen(1ⁿ) runs $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) , then picks $x \leftarrow \mathbb{Z}_q$, sets $h = g^{x}$ and returns (pk, sk) = (h, x)
- ▶ Sign_x(m) picks $k \leftarrow \mathbb{Z}_q^*$, sets $r = F(g^k)$, define $s = k^{-1}(\mathcal{H}(m) + xr) \mod q$, and returns (r, s)
- ▶ Vrfy_h(m,(r,s)) checks if $r = F\left(g^{\mathcal{H}(m)s^{-1}}h^{rs^{-1}}\right)$.

F(x) (resp. F(x, y)) defined as $x \mod q$ in DSA (resp. ECDSA) Security:

- ▶ Secure if F, H are modeled as RO
- Very little known for actual F (clearly very far from RO)

Widely used standard since 1993, despite expiration of Schnorr's patent (2008)