ナノフォトニック・デバイスを用いた 光Race Logic arrayの提案と評価

浅井里奈

平成 28 年 2月

情報知能工学科

ナノフォトニック・デバイスを用いた 光Race Logic arrayの提案と評価

浅井里奈

内容梗概

高性能化や低消費電力を実現させるために、多くのアプリケーションにおいて専用アクセラレータが検討されてきた。その中でも、動的計画法 (Dynamic Programming,DP) によって解くことができる最適化問題の専用アクセラレータとして、"Race Logic"と呼ばれる新しいコンピューティングのアプローチが提案された。一方、光速度で演算を実現できる素子としてナノフォトニクスと呼ばれる新しい光素子技術を用いて機能を実現したナノフォトニック・デバイスが注目されている。本論文では、光デバイスと Race Logic の親和性に着目し、ナノフォトニック・デバイスを用いた光 Race Logic array を提案する。また、この光 Race Logic array において遅延時間・面積・消費電力のモデリングを行い、評価を行った。評価の結果、遅延時間は配列長 N に線形に従い、面積は配列長 N の 2 乗に従うことが分かった。

また、光 Race Logic array の性能や配列長 N に対するスケーリングを律速しうる要因や、複数の設計選択肢の存在を考察した.

目次

1	はじめに	1
2	Race Logic と CMOS による実装 2.1 Race Logic 2.2 配列アラインメント 2.3 CMOS による Race Logic 実装	3 3 5 9
3	ナノフォトニック・デバイスを用いた Race Logic 実装の提案3.1 光デバイスについて3.1.1 光デバイスの特徴3.1.2 光素子の説明3.1.3 ナノフォトニクスの性質3.1.4 光デバイスと Race Logic3.2 提案回路	12 12 13 19 21 21
4	検証・評価 4.1 検証・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30 34 34 35 37
5	考察 5.1 遅延時間差の検知 5.2 雑音の影響 5.2.1 光伝搬信号強度に影響を与える雑音 5.2.2 光伝搬信号の遅延時間に影響を与える雑音 5.3 遅延時間以外の設計選択肢	40 41 42 42 43
6	おわりに	45
謝	· · · · · · · · · · · · · · · · · · ·	47

参考文献 48

第1章

はじめに

高性能化や低消費電力を実現させるために多くのアプリケーションにおいて専用アクセラレータが検討されており、その中で"Race Logic"と呼ばれる新しいコンピューティングのアプローチが提案された [1]. Race Logic とは、回路を伝搬する信号の遅延時間がとある情報を保持しており、入力から出力までの伝搬時間を観測することで計算を行うことができる。このアプローチは、動的計画法(Dynamic Programming)によって解くことができる最適化問題の高速化させることができる。Race Logic の有効性は、CMOS を用いて実装されたDNA のグローバル配列アラインメントスコアを求める回路にて明らかにされている。

一方,ナノフォトニクスと呼ばれる新しい光素子技術が注目を集めている.このナノフォトニクスを用いて機能を実現したデバイスをナノフォトニック・デバイスという.ナノフォトニック・デバイスは光速度で演算を実現できる素子として注目されており,パタン検出機構や加算器などのアーキテクチャの検討がされている.

本研究では光デバイスと Race Logic との親和性に着目し、ナノフォトニック・デバイスを用いた Race Logic 回路の構成を目的とした。本論文では、ナノフォトニック・デバイスを用いた DNA のグローバル配列アラインメントスコアを求める回路を提案し、シミュレータを用いた回路の機能検証とモデル式を用いた評価を行うことでその有効性と実現に向けての問題点について検討する。

本論文の構成は以下の通りである.第 2 章で Race Logic 及び配列アラインメントの基本原理を説明し,CMOS を用いて実装された Race Logic に基づく回路例について述べる.第

3章では、光デバイスとナノフォトニクスの基本事項を説明し、ナノフォトニック・デバイスを用いた Race Logic に基づく DNA のグローバル配列アラインメントスコアを求める回路を提案する。第4章では提案した回路に対してシミュレータを用いた検証とモデル式を用いた評価を行い、第5章で考察を行う。最後に第6章でまとめを行う。

第 2 章

Race LogicとCMOSによる実装

本章では、まず Race Logic の基本原理を説明する.具体的な評価の対象アプリケーションである配列アラインメントと CMOS による実装例をまとめ、その後 Race Logic の検討において解決すべき課題について述べる.

2.1 Race Logic

Race Logic の基本概念は、回路に設定された競争条件を利用して、計算を実行することである。Race Logic の計算は有向非巡回グラフ(Directed Acyclic Graph)の最短・最長経路探索に帰結する。有向非巡回グラフとは、グラフ理論における閉路のない有向グラフの事である。その例を図 2.1 に示す。有向グラフは頂点と有向辺から構成される。その中でも、辺は点同士をつなぐが、ある頂点 v から出発し辺をたどっても頂点 v に戻ってこないというものが有向非巡回グラフである。ある頂点から別の頂点までの経路をパスと呼ぶ。Race logicでは最短・最長経路を探索するために、始点から終点までの各パスにおいて条件に合わせて重み付けを行い、出力時にその重みの総和を見る。その総和の最小値を見るか最大値を見るかが、最短・最長経路探索にそれぞれ対応している。

重みに遅延時間を選択することによって、各パスを通過する信号毎に入力から出力までの 伝搬時間が変わってくる、信号がRace Logic を用いた回路に入力されてから出力されるまで の回路伝搬遅延時間を計測することが、パスの重みの総和を見ることに等しい、最短経路検

図 2.1: 有向非巡回グラフの例

図 2.2: Race Logic の例

 P:ACTGGCTATC
O:AGCTACT

ACTGGCTA-TC A---GCTACT- GCTA-T GCTACT

ローカル配列アラインメン

図 2.3: グローバル配列アラインメントとローカル配列アラインメント

離を表している.

このように出力信号の遅延時間はとある情報を持っており、どのような情報を持つかは応用するアプリケーションによって異なる.

2.2 配列アラインメント

生物学の分野において注目されている生物配列 (DNA の塩基配列とタンパク質アミノ酸配列) の文字列処理 (配列情報解析) [2,3] の中でも,配列アラインメントに焦点を当てる.

DNA やタンパク質はユニットと名付けられた単位の物質が一列に並んだ高分子である.ここでいうユニットとは、DNA においては4種の核酸、タンパク質においては20種類のアミノ酸である.それぞれのユニットを文字としDNA やタンパク質の配列を単なる文字列だとみなして処理をしてもある種の本質は失われないという考えに基づき、文字列処理をすることで生物配列の解析を行う.DNA の塩基配列やタンパク質アミノ酸配列の研究は、バイオインフォマティクスの最重要課題の一つとして取り組まれてきた.配列情報解析の重要な対象であるゲノム塩基配列は、すでに200種類以上が決定されており、さらに多くの解析が進行中であるといわれている[4].

生物配列の文字列処理の中で、DNA 配列中に同じ順序で並んでいるユニットのパターンを見つける配列アラインメントがある [5]. アラインメントとは、複数の配列を入力として配列要素の間に最適な対応関係を求める処理である. 配列アラインメントの中には、グローバル配列アラインメントとローカル配列アラインメントがある. グローバル配列アラインメントは、ある2つ以上の配列全体の間でのアラインメントを見つけることであり、ローカル配列アラインメントは、ある2つ以上の配列の一部分で最も一致度が高い部分でのアラインメントを見つけることである. 例として、とある配列 P と配列 Q のグローバル配列アラインメントを回2.3 に示す.

図 2.4: 編集距離と編集グラフ

配列アラインメントには、動的計画法による解法として Needleman-Wunsch アルゴリズム [6] や Smith-Waterman アルゴリズム [7] が存在する。配列アラインメントは生物学において重要な手法であり、計算機を用いた処理の高速化は従来より多くの研究がなされてきた [8–12].

文字列の類似度を知るための典型的な手法は,情報理論に由来する編集距離 (edit distance) である.編集距離は,一方の文字列をもう一方の文字列に変形するのに必要な手順である一文字の挿入・削除・置換にそれぞれ編集スコアを割り当て,そのスコアの和として定義される.編集距離の理解を助けるために,長さ N=5 の文字列 X= "TCGAT"と長さ M=5 の文字列 Y= "GTCAC"を考える.図 2.4(a) と図 2.4(c) は,文字列 A を B に変換する 2 つの方法を示している.上の行のスペースは挿入を表し,下の行のスペースは削除を表す.両方の

行に同じ文字がある列は一致と呼ぶ.図 2.4(a) の方法は文字 G と T を削除し,G と C を挿入する一方で,図 2.4(c) の方法は文字列 A を完全に削除して文字列 B を挿入している.

図 2.4(b) および図 2.4(d) は, 2つのアラインメント方法の代替表現である.任意の位置の数字は,図 2.4(a) および図 2.4(c) の方法においてその位置までに存在する記号の数を示している.この表示は各列の数値が図 2.4(e) に示す 2次元の編集グラフの座標と考えることができる.このグラフを編集グラフという.編集グラフは 2つの文字列間において,取りうる限りの配置の二次元表現である有向非巡回グラフ(DAG)である.全てのエッジが編集操作に対応していて,垂直の矢印は挿入を,水平の矢印は削除を,斜めの矢印は一致を表している.任意のアラインメントはこのグラフのパスで表現できる.例えば、図 2.4(e) の青と赤の矢印は,それぞれ図 2.4(a) および図 2.4(c) に示す 2つのアライメントに対応している.

2つの文字列間の編集距離は、動的計画法を用いて計算できる。動的計画法は小さな部分問題から始めて次第に大きな問題を漸進的に解決し、各ステップはそれ以前の計算の結果に依存している。編集グラフ上の各ノードは、部分問題の最適解に対応するスコア、すなわち最初のノードから自身への最短経路に対応するスコアを計算している。隣接するノードは、計算が対角線に沿って進むにつれてそれ以前の最適解を利用して自身のスコアを計算する。編集グラフ自体は最初のノードから最後のノードまでの経路として、表現される可能性のあるすべてのアライメントから構成されている。よって、上記の方法は比較対象の文字列間の最適なアライメントについて空間全体の検索が保証されている。

任意の2つの文字列が与えられた場合,多数の異なるパスがあり,それぞれが独自のアラインメントを持つ.ある特定のアライメントの相対的なメリットを決定するためにスコアマトリックスが導入される.このスコアマトリックスは効果的に編集グラフの各エッジの重みを定義することができる.スコアマトリックスとはあるユニット間の一致不一致や置換確率から求められるスコアからなる行列である.一致・不一致スコアと対数オッズスコアの式を式2.1と式2.2にそれぞれ示す.

$$S(A,B) = \begin{cases} \alpha & A = B \\ \beta & A \neq B \end{cases}$$
 (2.1)

$$S(A,B) = \log \frac{q(A,B)}{p(A)p(B)}$$
(2.2)

	А	С	Т	G
А	2	1	1	1
С	1	2	1	1
Т	1	1	2	1
G	1	1	1	2

	А	С	Т	G
А	1	2	2	2
С	2	1	2	2
Т	2	2	1	2
G	2	2	2	1

(a) 最長経路探索に用いられるスコア (b) 最短経路探索に用いられるスコア マトリックス マトリックス

図 2.5: スコアマトリックスの例

ここで q(A, B) は進化上の関係から $A \subset B$ の対応が生じた確率, p(A) は偶然に A が生じた確 率, p(A)P(B) は偶然に Aと Bの対応が生じた確率である. 図 2.5 には式 2.1 に具体的な数値 を当てはめた場合のスコアマトリックス例を示す.一般的に,不一致のペナルティは特定の 文字のペアにも依存することに注意が必要である.

あるノードにおけるスコアの最大値と最小値を求める関数は式 2.3a と式 2.3b のように書 ける.

$$S_{i,j} = max \begin{cases} S_{i-1,j} + \delta(-, P_j) \\ S_{i,j-1} + \delta(Q_i, -) \\ S_{i-1,j-1} + \delta(Q_i, P_j) \end{cases}$$

$$S_{i,j} = min \begin{cases} S_{i-1,j} + \delta(-, P_j) \\ S_{i,j-1} + \delta(Q_i, -) \\ S_{i,j-1} + \delta(Q_i, -) \end{cases}$$
(2.3a)

$$S_{i,j} = min \begin{cases} S_{i-1,j} + \delta(-, P_j) \\ S_{i,j-1} + \delta(Q_i, -) \\ S_{i-1,j-1} + \delta(Q_i, P_j) \end{cases}$$
 (2.3b)

iとjは図2.4(e)に示す行と列のインデックスである.

アラインメントのメリットを決定することとはつまり、図 2.5(a) のマトリックスと式 2.3a を用いて最長経路を探索すること, または図 2.5(b) のマトリックスと式 2.3b を用いて最短 経路を探索することと等しい.

- (a) Race Logic を用いた配列アラインメントアクセラレータの構成
- (b) Race Logic Array の構成

図 2.6: 配列アラインメントアクセラレータの基本構造

2.3 CMOSによる Race Logic 実装

本節では、CMOSを用いた Race Logic 実装例として、配列アラインメントアクセラレータを説明する。Race Logic の考えを用いて実装された配列アラインメントアーキテクチャの基本構造を図 2.6 に示す。この Race Logic Array はセルと呼ばれる単位のユニットが繰り返される構造をとっている。図 2.4(e) に示す編集グラフに対して、Race Logic Array が編集グラフ全体に、セルがノードに対応する。セルは上・斜上・左のセルから信号の入力を受け付ける。信号が入力された後、設定された条件に合わせて適切な処理をした後に、次のセルへと信号を出力する。実装の選択肢として、セルへの信号伝搬をクロックと同期させない非同期型とがある。

最短経路探索を行うことで DNA グローバル配列アラインメントスコアを得る配列アラインメントアクセラレータについて、同期型と非同期型を見ていく.

CMOS による同期型 Race Logic 実装
 CMOS で実装された同期型 Race Logic のセルの構造を図 2.7 に示す。

ブール値 "1" の信号は左・斜上・上のセルのいずれからも入力される。入力された信号は OR ゲートを通過して、飽和アップカウンタにおいて N クロックサイクルに 0 を

図 2.7: CMOS で実装された同期型 Race Logic のセル構造 [1]

カウントする. この飽和アップカウンタをクロックと同期させる. これにより,1つのセルを通過し,右・下のセルへと伝搬する際に1クロックサイクルを要する. 各着色ゲートでは伝搬信号に対してそれぞれ違う伝搬遅延時間を付加し,MUXで所望の伝搬遅延時間を付加するゲートからの出力を選択することができる. 生成される出力信号がパルスではなく固定ブール値"1"であることを確実にするために,到着回路のセットが配置され,各計算の最後にリセットされている.

図 2.7 のセルを繰り返した構造を持つアレイに信号が入力された時から出力信号を得るまでのクロック数をカウントするカウンタがアレイ外部に存在する. このカウンタが計測した値が最短経路をパスした時のクロック数となる.

CMOS による非同期型 Race Logic 実装
 CMOS で実装された非同期型 Race Logic のセルの構造を図 2.8 に示す。

ブール値 "1"の信号は左・斜上・上のセルのいずれからも入力される。入力された信号は OR ゲート,リセットのための AND ゲートを通過する。アレイのリセットのタイ

図 2.8: CMOS で実装された非同期型 Race Logic のセル構造 [13]

ミングは、全ての遅延素子が確実にリセットされるように外部から調整される. AND ゲートを通過後に次のセルへの伝搬に向けて分けられ、それぞれの経路で遅延素子を通過する. 各着色した経路では遅延素子によって起こる遅延に変化をつけている. 同期型と同様、アルファベットの符号化を入力とする MUX から所望の遅延を選択することができる. ダミーのパスゲートは、全ての遅延経路に亘って同様の遅延を保証するために斜下へのパス以外に追加されている.

図 2.8 のセルを繰り返した構造を持つアレイに信号が入力された時から出力信号を得るまでの遅延時間をカウントするカウンタがアレイ外部に存在する.

上記の回路については、シミュレーションをもってその有効性が明らかにされている.

第 3 章

ナノフォトニック・デバイスを用いたRace Logic実装の提案

本章では、本提案のナノフォトニック・デバイスを用いた Race Logic (以下、光 Race Logic) array を理解する上で必要な光デバイスに関する基本事項を説明し、光 Race Logic 実装について述べる.

3.1 光デバイスについて

本節では、まず光デバイスの特徴と代表的な光素子、ナノフォトニクスについて説明する. その後、光デバイスと Race Logic の親和性について述べる.

3.1.1 光デバイスの特徴

以下に光デバイスの特徴をまとめ、詳細を説明する。光デバイスは光が信号を伝搬する素子全般のことを指す。一方、本論文では電気デバイスとは電気が信号を伝搬する CMOS トランジスタを指すものと定義する。

• デバイスサイズ

現状, 光デバイスのゲート長は $cm \sim mm$ オーダーのスケールである. 後述するナノフォトニクスを用いたとしても, そのスケールのオーダーは μm である.

信号の周波数帯域

光デバイスにおいて、信号の伝搬は光信号が通過するか否かで行われる. 電気デバイスのように時定数によって周波数帯域が制限されることがない. よって、その周波数帯域は広帯域であると言える.

データの蓄積

電気デバイスは、電荷を貯めることでデータを保持できる。光デバイスは光を留めておくことが難しいため、データの蓄積は困難である。電気デバイスの方が、光デバイスよりもデータの蓄積が容易であると言える。

• スループット

データ処理やネットワークにおいてのスループットについて述べる.スループットとは単位時間あたりの処理量や処理可能なデータ量のことである.光信号は多重性と呼ばれる複数の異なる周波数を多重して送る事ができる性質を持つ.光デバイスは光信号の広帯域性や,波長多重,位相多重と言った多重性を利用して,伝搬信号自体の情報量を増加させることで,データ転送速度を向上させることが可能である.

電気デバイスはデバイスの小型化が可能という特徴から集積度を上げることが可能である. それに比べ、現状では光デバイスはデバイスの小型化に向いておらず、集積度を上げることが困難であった。よって演算には電気デバイスが用いられてきた。一方、光デバイスは伝搬信号の情報量が大きく、信号の移動速度も速いという特徴から通信に使われてきた.

3.1.2 光素子の説明

本項では、代表的な光素子について説明する. その説明にあたり、語句を定義する.

• 光伝搬信号

光デバイスおよび, そのデバイスを用いて構成した回路において, 情報を伝搬する光信号を指す.

● 光伝搬入力信号および光伝搬出力信号光デバイスおよび、そのデバイスを用いて構成した回路において、入力される光伝搬

信号を光伝搬入力信号,出力される光伝搬信号を光伝搬出力信号と呼ぶ.光入力信号 および光出力信号と略す.

- 光伝搬入力信号強度および光伝搬出力信号強度
 光伝搬入力信号および光伝搬出力信号の信号強度を指す。単位は [W] である。光入力信号強度および光出力信号強度と略す。
- 光制御信号光デバイスを制御するための光信号を指す。
- 光制御信号強度光制御信号の信号強度を指す.単位は[W]である.
- 電気制御信号光デバイスを制御するための電気信号を指す。
- 電気制御信号強度電気制御信号の信号強度を指す.単位は[V]である.

光スイッチ

光スイッチとは、光伝搬信号を通過させるか否かでオン動作およびオフ動作をする光デバイスである。光スイッチの性能指標として、よく用いられるのが漏れ率および透過率、消光比である。光スイッチへの光入力信号強度を P_{in} 、光出力信号強度を P_{out} とした場合の、光入力信号強度と光出力信号強度の関係を図 3.1 に示す。図の縦軸は光出力信号強度、横軸は時間を表している。理想的なスイッチでは、光伝搬信号の漏れが無いため光出力信号強度は図の青線に示す関係を取る。しかしながら、実際にはオン動作とオフ動作どちらの場合でも光伝搬信号の漏れがあるため、光出力信号強度は図の赤線に示す関係を取る。以下にそれぞれの性能指標の定義を示す。

• 漏れ率,透過率

漏れ率とは、スイッチがオン動作とオフ動作の際、それぞれどの程度の光伝搬信号が漏れるかということを表す指標である。図 3.1 に示す α は、スイッチがオン動作の際

図 3.1: 光スイッチの光入力信号強度と光出力信号強度

にスイッチから回路外へ光伝搬信号がどの程度漏れ出すかを表す漏れ率である.また,スイッチがオン動作の際にどの程度の光伝搬信号を透過させられるかを表す指標を透過率と呼び,漏れ率 α を用いて表すと $1-\alpha$ となる.光スイッチへの光入力信号強度を P_{in} ,オン動作をする際の光出力信号強度を P_{1out} とすると, $\frac{P_{1out}}{P_{in}}=1-\alpha$ である.図 3.1 に示す β は,スイッチがオフ動作の際に光伝搬信号を遮断しきれずに,どの程度出力へ漏れ出すかを表す漏れ率である.光スイッチへの光入力信号強度を P_{in} ,オフ動作をする際の光出力信号強度を P_{0out} とすると, $\frac{P_{0out}}{P_{in}}=\beta$ である. α , β の値が小さいほどスイッチの性能が高いと言える.

• 消光比

消光比とは、スイッチの光出力信号が $1 \ge 0$ の場合の光出力信号強度比である. 透過率 $1-\alpha$ および漏れ率 β 用いると、式 (3.1) で表される.

消光比 =
$$\frac{1-\alpha}{\beta}$$
 (3.1)

消光比は,透過率および漏れ率を用いて議論することが可能であるとわかる.よって本論 文では透過率,漏れ率に着目し,これらをスイッチ性能として議論する.

受光器

光の素粒子は一般に光子 (フォトン) と呼ばれる. 全ての粒子が波動性を持つことを, 粒子と波動の二重性と言う. 光子も粒子性と波動性の2つの性質を持つ [14]. 光子のエネルギーは光の周波数 (波長) で決定する.

$$E = h\nu \tag{3.2}$$

E は光子のエネルギー, h はプランク定数, ν は光の周波数である。光の強度は光子の数によって決定する。

物質中の電子のエネルギーは、取り得るエネルギー準位が限定されている.そのエネル ギー準位は帯構造を取り,図 3.2 に示すようにそれぞれ伝導帯,禁制帯,価電子帯と呼ばれ る.伝導帯とは,電子が占めているエネルギー帯のうち最も高いエネルギー準位を示すエネ ルギー帯である.この伝導帯は電子が充填されておらず,このエネルギー帯に存在する電子 は自由電子として振る舞う. 価電子帯は価電子によって充填されたエネルギー帯である. 禁 制帯とは電子が存在できないエネルギー帯である.この禁制帯の幅が図 3.2 に示す Eg であ り、エネルギーギャップと呼ばれる、半導体物質において、エネルギーギャップを超えるの に十分なエネルギーを持った光子1つが入射した際に、自由電子と正孔のペア1つを生成す る.この現象を**吸収**という.光子のエネルギーはその光の周波数で決まるため,エネルギー ギャップの大きさに対応した周波数がある. 逆の現象が, 放出である. これは, 自由電子と 正孔が再結合した際に、そのエネルギーギャップ $Eq = h\nu$ に相当するエネルギーを持つ光 子を放出する現象である.図 3.3 に吸収と放出の様子を示す.図 3.3(a) におけるエネルギー ギャップが,緑の光の光子の持つエネルギーと等しいとする.この際,緑の光を入射すると 電子正孔対が生成される.しかしながら、赤の光は緑の光よりも周波数が小さいため、光子 のエネルギーが緑の光と比べて小さい、よって赤の光を入射しても電子は伝導帯へと励起す ることができず、電子正孔対は生成されない. 受光器であるフォトダイオードはこの吸収の 現象を利用して光を検出する.

フォトダイオードはp型半導体と真性半導体とn型半導体を接合したpin接合という構造を持ち,空乏層で発生した電子や正孔が移動することで電流が流れる.この電流のことを光電流と呼ぶ.流れる光電流の大きさは光の強度に比例する.図 3.4 に受光器のエネルギーバンド図を示す.

図 3.2: 半導体のエネルギーバンド図

図 3.3: 光の吸収と放出

受光器の性能は受光感度として表される. 受光感度は、光入力信号強度を [W]、光電流を [A] で表した場合、両者の比で表される. 受光感度は式 (3.3) で表される. 式 (3.3) によって 導かれる値が 1 に近い程、感度の良い受光器であることを示す.

受光感度 =
$$\frac{A}{W}$$
 (3.3)

もう一つ重要な性能指標が受光器の最小受光感度である.最小受光感度とは,受光器が検出可能な最小の信号強度のことである.

図 3.4: 受光器のエネルギーバンド図

光カプラ

光カプラとは、1つの入力端子に入射した光伝搬信号を複数の出力端子に出射する分岐・分配機能と複数の入力端子に入射した光伝搬信号を1つの出力端子に出射する結合機能を持つデバイスである。光分岐結合器、光分岐挿入器とも呼ばれる。光カプラの分類を図3.5に示す。4端子で2入力2出力または3入力1出力のものが光方向性結合器(図3.5(a))、1入力N出力のものが光分配器もしくは光分岐器(図3.5(b))、N入力1出力のものが光結合器(図3.5(c))、N入力M出力のものが光スターカプラ(図3.5(d))と呼ばれている。光スターカプラの中には透過型と反射型という分類が存在する。光結合器の多くが入出力端子を逆にすることで光分配器としても使うことができる[15]。また、光の結合・分配の際には損失が発生する。

光遅延素子

光遅延素子は光伝搬信号に伝搬遅延を付加できる素子のことを指す. その実現は様々な方法があり, いずれの方法を用いても遅延を付加する際には損失が発生する.

図 3.5: 光カプラの分類

3.1.3 ナノフォトニクスの性質

ナノフォトニクスとは、ナノ加工技術をベースとして、近接場光の性質を活かした技術である.近接場光とは物質の表面付近に局在する非伝播な電磁場であり、その局在範囲は光の波長と同程度かそれに比べ小さい。近接場光の概要を図3.6に示す。物質から遠ざかるにつれて電磁場は減少するため、その特徴からエバネッセント光とも呼ばれる。屈折率が大きい媒質から屈折率の小さい媒質に光を入射させる。この場合ある角度を超えると、光は境界面を通過せず全て反射する。この現象を全反射と言う。物質表面に全反射が起こるように光を入射した際、反射が起こっている物質境界面付近では局在する電磁場が発生する。この電磁場光がエバネッセント光である。エバネッセント光が発生した際、境界面から離れる方向に電磁場が弱くなる。図3.7はエバネッセント光が発生する様子である。従来の光通信で広く使われている光素子の素材はガラスである。これを半導体微細加工技術を用いて、半導体へ

図 3.6: 近接場光

図 3.7: エバネッセント光

と置き換える.この技術によって半導体内を光が伝送できる.ガラスから半導体へと素材を変えただけでは、光素子のゲート長のスケールはcmからmmのサイズに小さくなる.これを μm のスケールにするためには、半導体などのナノ加工技術がベースとしてある.半導体のナノ加工技術が素子の加工技術のベースになり、近接場光の局在性をはじめとする近接場光にしかない特徴を活かして、光信号をナノレベルで制御することが可能になって成り立つ技術がナノフォトニクスである.

3.1.4 光デバイスと Race Logic

前述した通り、光デバイスとは光伝搬信号を取り扱う素子を指す.光伝搬信号の情報媒体は信号強度や位相、遅延時間といったアナログ量であり、光伝搬信号はアナログ信号である.電気デバイスである CMOS トランジスタは電気信号を取り扱い、その電気信号はデジタル信号である.扱う信号がデジタル信号であるかアナログ信号であるかは二つのデバイスの大きな違いである.

また、Race Logic は動的計画法で解くことができる最適化問題の答えを遅延時間というアナログ量で表現するアプローチである.

本研究では、情報媒体にアナログ量を取り扱う光デバイスと Race Logic との親和性に着目した。ナノフォトニクック・デバイスをはじめとする光デバイスの光速での信号処理という特徴から、CMOS デバイスを用いた Race Logic 回路よりも性能において優位になると考え、光 Race Logic 回路を提案する.

3.2 提案回路

ナノフォトニック・デバイスを用いた Race Logic(以下,光 Race Logic)回路も,図 2.6(a)に示すようにコントロールと光伝搬出力信号の array 伝搬遅延時間を計測する部分と array からなるものを想定する.本論文では,光 Race Logic array のセル構造を提案する.図 3.8に光 Race Logic array のセルの概要を示す.

セルは3つのユニットから構成される.合波ユニットは,左,斜上,上のセルからの光伝搬入力信号を合波させるユニットである.最長経路探索や最短経路探索,回路に設定する競争条件に合わせてその処理・構成が変わる.その後,光伝搬信号はアンプユニットで光強度を増幅された後,メインユニット到達する.メインユニットでは光伝搬信号の分波と任意の処理を施して,光伝搬信号を次のセルへと出力する.このユニットの構成と処理は回路に設定された競争条件によって変化する.また,同期・非同期の処理に関しては合波ユニットもしくはメインユニット,あるいはその両方の構成で設定する.対象とするアプリケーションや設定する競争条件によって,セルの構成は詳細に決定する.

本論文では DNA のグローバル配列アラインメントスコア計算を対象とした非同期型光 Race Logic 回路の array を提案する. 今回の提案回路で非同期型の構成を選択したのは、光

図 3.8: 光 Race logic 回路におけるセルの概要

伝搬信号は蓄積が困難であるという点を考慮した結果である. 計算に用いるスコアマトリクスは式 2.1 を用いて求めた. そのスコアマトリクスを図 3.9 に示す. 最下行と最右列はギャップスコアを表している.

図3.10に提案する回路のセル構造を示す.

提案回路のセルにおける、3つのユニットの構成・動作を述べる.

- **合波ユニット** このユニットでは3入力1出力の光カプラを用いて合波が行われる.図3.11 にその動作を示す.この時,3方向それぞれからの光入力信号が光カプラに到達するまでの時間は同じでなければならない.
- アンプユニット 合波ユニットを経た光伝搬信号は、光アンプにて増幅される。図 3.12 にその動作を示す。この光アンプでは、光伝搬信号が各素子を伝搬した際の強度損失を補う役割をしている。

	А	С	Т	G	-
Α	1	∞	∞	∞	1
С	∞	1	∞	∞	1
Т	∞	∞	1	∞	1
G	∞	∞	∞	1	1
_	1	1	1	1	1

図 3.9: 使用するスコアマトリクス

図 3.10: 提案回路のセル構造

メインユニット メインユニットに求められる機能は右、下、斜下の3つの経路への分波と、 各伝搬経路ごとにスコアマトリクスに基づく重み付けである。右、下、斜下の3つの経 路への分波は、図3.13に挙動を示すように1入力3出力の光カプラを用いて行われる。

図 3.11: 合波ユニットの挙動

図 3.12: アンプユニットの挙動

次に各伝搬経路ごとのスコアマトリクスに基づいての重み付けについて説明する. 斜下への伝搬経路では、文字列の一致・不一致によってそれぞれ違う重み付けがされなければならない. 今回使用するスコアマトリクスにおいて、一致スコアは 1, 不一致スコアは ∞ である. このスコアに基づく重み付けを行うため、光スイッチを使用した. 光スイッチのオン/オフを決定する制御信号は、コントロール部分において比較する文字列が一致した場合オン動作となるように, 不一致の場合にオフ動作となるように設定する. 光スイッチがオフ動作の時、光伝搬信号は斜下のセルに伝搬されない. これ

図 3.13: メインユニット・1 入力 3 出力光カプラの挙動

は無限大の遅延時間を付加された、と考えることができ、不一致スコアに対応した重み付けがされたとみなすことができる。光スイッチがオン動作の時、光伝搬信号は光スイッチを通過し次のセルへと出力される。この時の伝搬遅延時間をスコアマトリクスにおける一致スコアの1の重みを表す量として取り扱う。右、下への伝搬経路はそれぞれ、文字列の欠損と挿入に対応し、セルへの伝搬は文字列の一致・不一致に関わらず無条件に行われる。文字列の欠損と挿入をギャップといい、ギャップに対応したスコアをギャップスコアという。右、下への伝搬経路ではギャップスコアに基づく遅延が発生するように、光遅延素子を設定する。

今回使用するスコアマトリクスにおいては、ギャップスコアは1の重み付けをされており、これは一致スコアと同じ重みである。よって今回、光遅延素子で設定すべき遅延時間は、光遅延素子を通過して次のセルへ出力されるまでの遅延時間が斜め下への伝搬経路で発生する遅延時間と同じになるような量である。3つの伝搬経路において遅延時間の重み付けをされた光伝搬信号は次のセルへと伝搬される。

図 3.14 に比較する文字列が一致した場合と不一致の場合それぞれのメインユニットの挙動を示す.

このセルを並べることで DNA 配列アラインメントスコア計算を対象とした光 Race Logic array を構築する. 配列長 N=2 の時の光 Race Logic array の構成, 比較する文字列が完全

(a) 比較する文字列が一致した場合のメインユ (b) 比較する文字列が不一致の場合のメインユ ニットの挙動 ニットの挙動

図 3.14: メインユニットの挙動

に一致するの場合の光 Race Logic array の挙動, 比較する文字列が完全に不一致の場合の光 Race Logic array の挙動をそれぞれ図 3.15, 図 3.16, 図 3.17 に示す. 図 3.16, 図 3.17 の赤く示した経路が光伝搬信号が伝搬している経路と到達する素子である.

図 3.15: 配列長 N=2 の光 Race Logic array の構造

図 3.16: 比較する文字列が完全に一致するの場合の光 Race Logic array の挙動

図 3.17: 比較する文字列が完全に不一致の場合の光 Race Logic array の挙動

第 4 章

検証・評価

本章では提案した DNA 配列アラインメントスコア計算用の光 Race Logic 回路について機能検証と評価を行う.

4.1 検証

検証に用いたのはOptiwave 社が提供するOptisystem というシミュレータである。OptiSystem は光ネットワークのあらゆるタイプの広範囲のシステムの設計,評価,シミュレーションを行なうソフトウェアである。素子レベルからシステムレベルまでの物理レイヤー上の光通信システムの設計と解析を行うことができる。

配列長 N=2 のアラインメントスコアを求める提案回路について,光 Race Logic array の動作を確認した.今回のシミュレーションにおいて,各素子において光伝搬信号に影響を与える雑音や損失は考慮していない.また Optisystem の仕様上,遅延素子で付与された遅延時間のみが考慮され,素子や導波路の伝搬遅延については考慮されていない.配列長 N=2 の光 Race logic array の光スイッチは,配列の組み合わせによってその状態を変える.回路のスイッチが取りうる全状態を図 4.1 に示す.図 4.1 中のスイッチは,白塗りがオンの状態を,黒塗りがオフの状態をそれぞれ表している図 4.1(a) ~図 4.1(b) は配列が完全に一致する場合,図 4.1(c) ~図 4.1(k) は配列中 1 文字がする場合,図 4.1(l) は配列が完全に不一致の場合である.

1 3 状態1 2ns図 4.2(a), 4.2(b) の $ns \sim ns$ 区間 2ns状態2 2ns図 4.2(a),4.2(b) の ns~ns 区間 2ns状態3 図 4.2(a), 4.2(b) の $ns \sim ns$ 区間 3ns3ns状態4 図 4.2(a), 4.2(b) の $ns \sim ns$ 区間 3ns3ns状態5 図 4.2(c), 4.2(d) の $ns \sim ns$ 区間 3ns3ns状態6 図 4.2(c), 4.2(d) の $ns \sim ns$ 区間 3ns3ns状態7 図 4.2(c), 4.2(d) の $ns \sim ns$ 区間 3ns3ns状態8 図 4.2(c), 4.2(d) の $ns \sim ns$ 区間 3ns3ns状態9 図 4.2(e), 4.2(f) の $ns \sim ns$ 区間 3ns3ns状態 10 図 4.2(e), 4.2(f) の $ns \sim ns$ 区間 3ns3ns状態 11 図 4.2(e), 4.2(f) の $ns \sim ns$ 区間 3ns3ns図 4.2(e),4.2(f) の ns~ns 区間 状態 12 4ns4ns

表 4.1: 配列長 N=2 の光 Race Logic array の動作検証結果

Optisystem でのシミュレーションの結果を図 4.2 に示す.今回のシミュレーションでは光遅延素子で発生する遅延時間が 1ns と設定した.

表 4.1 に、図 4.1 のそれぞれの状態ごとの、

- 1. 最初の光伝搬出力信号の伝搬遅延時間の想定値
- 2. シミュレータ上の回路のスイッチがその状態を取る区間
- 3. 結果から読み取った最初の光伝搬出力信号の伝搬遅延時間

を示す.

この機能検証結果から、光 Race Logic array が想定した動作をしていることが確認できた.

図 4.1: 取りうる全スイッチの状態

(c) 光 Race Logic array への光伝搬入力信号 2

(e) 光 Race Logic array への光伝搬入力信号 3 (f) 光 Race Logic array への光伝搬出力信号 3

図 4.2: Optisystem での光伝搬入出力信号

4.2 評価

本節では、提案した光 Race Logic array が一組の配列のアラインメントを求める(以後、これを一計算と呼称する)ために必要な遅延時間や面積及び消費電力が配列長 N によってどう変化するかを見積るために各項目を算出するモデル式を構築し、評価を行う。

4.2.1 遅延時間

光 Race Logic array に光伝搬信号が入射されてから array 内を伝搬し、最初に出力された信号が受光器で検出されるまでの遅延時間を考える.配列長 N の光 Race logic array において、最初に光伝搬信号が出力されるまでの回路遅延時間は配列の組み合わせによって異なる.二つの配列が完全に不一致の場合、最初に光伝搬信号が出力されるまでの回路遅延時間は最長となる.今回はこのワーストケースの遅延時間をモデル化した.

図 3.10 の構造より構築した遅延時間 T のモデル式を式 4.1 に示す.

$$T = T_{wire} + 2N \times T_{cell-pass} + T_{pd}$$

$$T_{cell-pass} = T_{cell-wire} + T_{coupler} + T_{amp} + T_{splitter} + T_{switch-pass}$$

$$(4.1)$$

 T_{wire} はセル間の配線遅延時間, $T_{cell-pass}$ は一つのセルを通過する遅延時間, T_{pd} は受光器の応答時間である. $T_{cell-pass}$ の内訳は $T_{cell-wire}$ がセル内部の配線遅延, $T_{coupler}$ ・ $T_{splitter}$ がそれぞれ光結合器・光分配器の遅延時間, T_{amp} がアンプの遅延時間, $T_{switch-pass}$ が光スイッチ遅延時間である. T_{wire} と $T_{cell-pass}$ が光伝搬入力信号が光 Race Logic arrayを伝搬するために必要な時間, T_{pd} が受光器が光出力信号を検出するまでに必要な時間である. 式 4.1 に示す通り,遅延時間は配列長 N に線形にスケーリングする.

光伝搬信号は光デバイス内部を光速で通過するため、光デバイス内の遅延時間は素子のゲート長に依存する。今回は、ナノフォトニック・デバイスのゲート長が 100, 10, $1\mu m$ の場合の光 Race Logic array の遅延時間を示す。なお、配線遅延に関しては今回は無視している。図 4.3 の縦軸は遅延時間、横軸は配列長 N である。図 4.3 より、ナノフォトニック・デバイスのゲート長が小さいほど遅延時間が小さくなることが読み取れる。

図 4.3: 光 Race Logic array の遅延時間

4.2.2 面積

提案したセルの構成(図 3.10)より、セルーつの面積 A_{cell} を表すモデル式は式 4.2 と書ける.

$$A_{cell} = A_{cell-wire} + A_{coupler} + A_{amp} + A_{splitter} + A_{switch} + 2A_{delay}$$

$$\tag{4.2}$$

 $A_{cell-wire}$ はセル内部の配線面積, A_{amp} がアンプの面積, $A_{coupler}$ ・ $A_{splitter}$ はそれぞれ光結合器・光分配器の遅延時間, A_{switch} が光スイッチの面積, A_{delay} は光遅延素子の面積である.このセルを基準セルとする.

セルを並べて array を構成した時に、図 3.15 に示すように、外周のセルはこの基準セルとは違う構成となる。この差異に留意しながら、配列長 N の光 Race logic array の面積 A をモ

図 4.4: 光 Race Logic array の面積

デル化した. モデル式を式 4.3 に示す.

$$A = A_{wire} + N^2 \times A_{cell} + 2N \times (A_{delay} + A_{amp}) + Als + A_{pd}$$

$$\tag{4.3}$$

 A_{wire} はセル間の配線面積, Als は光源の面積, A_{pd} は受光器の面積である. 式 4.3 が示すように,面積は配列長 N の 2 乗にスケーリングする.

ナノフォトニック・デバイスのゲート長が 100, 10, $1\mu m$ の場合の光 Race Logic array の面積を示す。なお,配線面積に関しては今回は無視している。図 4.4 の縦軸は光 Race Logic array の面積,横軸は配列長 N である。

図 4.5: 光素子における損失例

4.2.3 消費電力

ここで本提案の光 Race Logic array での消費電力について考える.この回路での消費電力は,式 4.4 に示すように 光源の消費電力 P_{ls} ,アンプ P_{amp} の消費電力の二つのみで考えることができる.

$$P = P_{ls} + P_{amp} \tag{4.4}$$

Pの値は、光 Race Logic array が機能を担保できる値に設定しなければならない. そこで、 光 Race Logic array の機能担保について具体的に見ていく.

配列長 N の光 Race Logic array の N 行 N 列目のセルからの光伝搬出力信号強度 $P_{out\,N,N}$ は 式 4.5 と表せる.

$$P_{out N,N} = Loss_{N,N}(P_{out (N-1),(N-1)} + P_{out (N-1),N} + P_{out N,(N-1)})$$
(4.5)

 $N \ge 0, P_{out-1,-1} = P_{ls}, P_{out-1,0} = 0, P_{out0,-1} = 0$ である. $Loss_{N,N}$ は N 行 N 列目のセルに 光伝搬信号が入力されてから出力される際のロスである.

 $P_{out\,N,N}$ の値は配列の組み合わせ,即ちスイッチの状態によって大きく変化する.光 Race Logic array からの光伝搬出力信号は受光器で検出されなければならない.受光器の最小受光感度 P_r を用いると, $P_{out\,N,N}$ の最小値 $\geq P_r$ となるように P の値を決定することが必要となる.

ケーススタディ:配列長 N=2 の光 Race logic array における消費電力

ここで、図 4.5 に示すように各素子における損失が一律で α の場合において、配列長 N=2 の光 Race logic array における消費電力を考える.この α は $0\sim1$ の範囲の値を取る.図 3.10 に示すセルにおいて、光信号を伝搬させる際に損失を与える素子は光結合器、光分配器、光

スイッチ、光遅延素子とする.この4つの素子での損失を α とし、その他の損失は考えない.今回は回路規模が小さいので、各セルのアンプユニットでの光伝搬信号強度の増幅は行わず、光源の光出力信号強度を変えることによって $P_{out\,N,N}$ の最小値 $\geq P_r$ となるようにする.この光 Race logic array の消費電力 P は $P=P_{ls}$ となる.

配列長 N=2 の光 Race logic array の光スイッチは,図 4.1 に示す 12 通りのいずれかの状態を取る.各状態での出力を以下に示す.

- 状態 1(図 4.1(a))の出力 $P_{out\,2,2}=P_{ls}rac{(1-lpha)^6}{3^2}$
- 状態 2(図 4.1(b))の出力 $P_{out 2,2} = P_{ls} \frac{(1-\alpha)^6}{3^2}$
- 状態 3(図 4.1(c))の出力 $P_{out \, 2,2} = P_{ls} \frac{2(1-\alpha)^7}{3^2}$
- ・ 状態 4 (図 4.1(d)) の出力 $P_{out\,2,2} = P_{ls} \frac{(1-\alpha)^7 \left\{2(1-\alpha)+1\right\}}{3^2}$
- ・ 状態 5(図 4.1(e))の出力 $P_{out \, 2,2} = P_{ls} \frac{(1-\alpha)^7 \left\{ \frac{2}{3} (1-\alpha) + 1 \right\}}{3^2}$
- ・ 状態 6 (図 4.1(f)) の出力 $P_{out \, 2,2} = P_{ls} \frac{(1-\alpha)^7 \left\{2(1-\alpha)+1\right\}}{3^2}$
- ・ 状態 7(図 4.1(g))の出力 $P_{out \, 2,2} = P_{ls} \frac{(1-\alpha)^7 \left\{ \frac{2}{3} (1-\alpha) + 1 \right\}}{3^2}$
- 状態 8(図 4.1(h))の出力 $P_{out 2,2} = P_{ls} \frac{2(1-\alpha)^8}{3^2}$
- 状態 9(図 4.1(i))の出力 $P_{out 2.2} = P_{ls} \frac{(1-\alpha)^7}{32}$

表 4.2: 配列長 N=2 の光 Race Logic array の消費電力

	$\alpha = 0.1$	$\alpha = 0.01$
$P_{ls}[mW]$	0.314	0.144

- 状態 10(図 4.1(j))の出力 $P_{out \, 2,2} = P_{ls} \frac{(1-\alpha)^7}{3^2}$
- 状態 11(図 4.1(k))の出力 $P_{out 2,2} = P_{ls} \frac{2(1-\alpha)^8}{3^3}$
- ・ 状態 12(図 4.1(l))の出力 $P_{out \, 2,2} = P_{ls} \frac{2(1-\alpha)^8 \left\{ \frac{2}{3} (1-\alpha)^2 + 1 \right\}}{3^2}$

以上のスイッチ状態の中で,その出力強度が最小となるのは状態 11(図 4.1(k))の場合である.よって,各素子における損失が一律で α の配列長 N=2の光 Race logic array では, $P_{ls}\frac{2(1-\alpha)^8}{3^3} \geq P_r$ となるように P_{ls} の値を決定する必要がある.

 $P_{ls} \frac{2(1-\alpha)^8}{3^3} = P_r$ とする時,受光器の最小受光感度を $P_r = -20[dBm] = 0.01[mW]$, $\alpha = 0.1$,0.01 の場合の P_{ls} を表 4.2 に示す.

第5章

考察

本章では、その性能や回路スケールに影響を及ぼす要因や遅延時間以外の設計選択肢について考察していく.

5.1 遅延時間差の検知

光 Race Logic 回路は図 2.6(a) に示すようにコントロールと光伝搬出力信号の array 伝搬遅延時間を計測する部分と array からなるものを想定し、本論文にて光 Race Logic array を提案した。光伝搬出力信号の array 伝搬遅延時間を計測する部分を検知部分と呼称し、本節ではこの検知部分について考察する。

本提案の光 Race Logic array は図 3.9 に示すスコアマトリクスを使用している.この場合には,光伝搬出力信号の時間差は一つのセルの通過時間単位で変化する.よって,検知部分では一つのセルの通過時間の差を検知できれば良い.ゲート長が $1\mu m$ の場合,一つのセルの通過時間は $12.52 \mathrm{ps}$ である.デジタルカウンタを用いて遅延時間差を検知部分を構成すると,カウンタを約 $80 \mathrm{GHz}$ で動作させなければならない.

また、使用するスコアマトリクスを変化させた場合も考える。図 5.1 にスコアマトリクスの一例を示す。このスコアマトリクスでは、図 3.9 に示すスコアマトリクスとは違い、欠損・挿入に対応するギャップスコアが 2 となっている。本提案の光 Race Logic array では、光遅延素子で発生させる遅延時間を光スイッチを通過する際の伝搬遅延時間の倍とすることで図

	Α	С	Т	G	1
Α	1	∞	8	∞	2
С	8	1	8	∞	2
Т	8	∞	1	∞	2
G	∞	∞	∞	1	2
_	2	2	2	2	2

図 5.1: スコアマトリクスの一例

5.1 に示すスコアマトリクスに基づく配列アラインメントスコアを求めることができる.この場合,光伝搬出力信号の時間差は光スイッチの通過時間単位で変化し,光スイッチの通過時間はそのゲート長にて決定される.ゲート長の最小加工寸法が $1~\mu m$ である時,光スイッチを通過する際の遅延時間は 10fs であり,光遅延素子にて発生させる遅延時間は 20fs である.検知部分では 10fs の遅延時間差を検知できなければならない.もしデジタルカウンタを用いて遅延時間差を検知部分を構成する仮定すると,カウンタを 100THz で動作させなければならない.

その様な動作周波数でデジタルカウンタを動作させることは不可能である.よって、検知部分をデジタルカウンタで構成した場合には、検知部分が光 Race Logic 回路の性能を律速する要因となる.

光 Race Logic array をもって光伝搬信号の遅延時間に情報を付与できることは本研究の検証によって明らかになった。光 Race Logic array の光速での計算能力を活かす検知部分の構成を考えることが必要である。

5.2 雑音の影響

光伝搬信号の特徴として、伝搬するに従って雑音が蓄積していくというものがある.本節では、光伝搬信号の強度や遅延時間に影響を与える雑音について考察していく.

5.2.1 光伝搬信号強度に影響を与える雑音

ここでは光伝搬信号強度に影響を与える雑音を考える.

光スイッチの漏れ率 β はスイッチがオフ動作の際に光伝搬信号を遮断しきれずに,どの程度出力へ漏れ出すかを表す漏れ率である.遮断しきれずに漏れ出した光伝搬信号は次のセルへと伝搬し光アンプにて増幅され,雑音信号のように振る舞う.具体例として,配列長 N=2 の光 Race Logic array の出力を考える.光 Race Logic array のスイッチ状態が図??の状態を取る時,1つのセルの伝搬遅延時間を1ns とすると,最初に光伝搬出力信号が検出されるのは入力から4ns 後と想定される.図??に光 Race Logic array に光伝搬信号を入力してからの様子を示す.これを繰り返す事で本来は光 Race Logic array から信号が出力されないと想定されるタイミングで漏れ出した信号が出力され,受光器によって検知される可能性がある

また、光スイッチにはスイッチがオン動作の際にスイッチから回路外へ光伝搬信号がどの程度漏れ出すかを表す漏れ率 α が存在する.この漏れ率 α は光スイッチの製造ばらつきや光スイッチの制御信号の揺らぎによってその値にばらつきが生じる.光結合器,光分配器,光遅延素子での損失に関しても、製造ばらつきなどによってその値にばらつきが生じる.4.2.3 項で述べたように、光 Race Logic array の機能を担保するためには array からの出力の最小値が受光器によって検出可能な強度でなければならない.漏れや損失のばらつきによって array からの出力の最小値が揺らぎ、これを考慮して光 Race Logic array の機能を担保するための光源・アンプの消費電力を設定しなければならないことが考えられる.

上記 2 つの光伝搬信号強度に関する雑音によって配列長 N のスケーリングに影響を及ぼす可能性がある.

5.2.2 光伝搬信号の遅延時間に影響を与える雑音

ここでは光伝搬信号の遅延時間に影響を与える雑音を考える.

光デバイスの伝搬遅延時間は製造ばらつきを主な要因とする誤差が存在する.提案した非同期型の光 Race Logic array では、光伝搬信号の遅延時間の誤差も伝搬するに従って蓄積されていく.これにより、とある配列の組み合わせにおいて想定される光伝搬信号の出力のタイミングと実際の出力のタイミングに差が生じることが考えられる.

この遅延時間の誤差は、スコア1の重みをどの程度の遅延時間と定めるかによってその影響が変化する。また、製造ばらつきを要因とする誤差はチューニングをすることによってある程度吸収が可能であると推察する。

遅延時間のばらつきが配列長Nのスケーリングにどう影響を及ぼすのかを考えていく必要がある.

5.3 遅延時間以外の設計選択肢

これまで、回路からの出力信号の遅延時間というアナログ量にとある情報付加する Race Logic と情報媒体にアナログ量を取り扱う光デバイスの親和性に着目してきた。光デバイスが取り扱えるアナログ量は遅延時間だけではなく、位相、信号強度などが存在する。 Race Logic は伝搬信号に遅延時間を重みとして付与して動的計画法によって求められる最適化問題を解くという考えである。光デバイスを用いることで、その考えを発展させ、光伝搬信号の位相変化や強度変化を重みとして付与して動的計画法によって求められる最適化問題を解くものを考えることができる。今回はその中でも光伝搬信号の位相に着目して述べる。

設計選択肢として位相を選択する場合,光 Race Logic array からの光出力信号の位相を計測する.部分問題の解に相当する重み付けは位相シフタなどを用いて位相をずらすことによって行う. DNA 配列アラインメントスコアの例を用いて述べると,光出力信号の位相が完全一致において推定される出力信号の位相と差があるかがスコアに相当する.

位相は $0\sim2\pi$ の間の値を取る.光信号の位相計測器の分解能により,重み付けに用いる位相差の最小単位が決定される.また,光出力信号への重み付けに用いるスコアに負の値を用いることができるという特徴がある.配列アラインメントに用いられるスコアマトリクスには負の値を含むものも存在する.しかし,遅延時間を重みに選択した場合にはこの負のスコアを付与することができない.負の値を含むスコアマトリクスを使用する場合には,スコアマトリクスの値全体に対してバイアスをかける事で負の値を正の値へと変換することが必要になる.位相を重み付けに選択した場合,負のスコアを付与することが可能になる.図 5.2 に位相を用いて負のスコアを付与する例を示す. $-\frac{\pi}{4}$ の重み付けをする場合,位相を $\frac{7}{4}\pi$ ずらすことによってそれを表現できる.

しかしながら、光 Race Logic array からの出力信号の位相が負の値の場合や 2π を超える

図 5.2: 位相を用いて負のスコアを付与する例

場合にはそれを計測できない. 実装を検討する際には、これをどう取り扱うかが問題となる.

第6章

おわりに

ナノフォトニクスと呼ばれる新しい光素子技術とこのナノフォトニクスを用いて機能を実現したナノフォトニック・デバイスが光速度で演算を実現できる素子として注目されている。本研究では Race Logic と光デバイスとの親和性に着目し、ナノフォトニック・デバイスを用いたアーキテクチャ検討の一環として光 Race Logic array を提案した。また、遅延時間・面積・消費電力についてのモデリングを行い、配列長 N によってそれぞれの項目がどう変化するのかを示した。遅延時間は N に線形に従い、面積は N の 2 乗に従うことが分かった。消費電力に関しては、ケーススタディとして N=2 の場合の値を示した。

光 Race Logic 回路の性能を律速する要因として遅延時間差を検知する部分の構造が重要になることを考察した。検知部分は重み付けに用いる遅延時間の最小単位を検知できなければいけない。ゲート長によって遅延時間が決定する光デバイスにおいてゲート長を $1\mu m$ のサイズで加工するとき,重み付けに用いる遅延時間の最小単位は 10fs になる。この遅延時間の最小単位を計測することができる検知部分の構成を考える必要がある。

また、光伝搬信号の強度や遅延時間に影響を与える雑音が光 Race Logic array の規模を律速しうると考察した。雑音が光 Race Logic array の規模を具体的にどう律速するのかを考えていかなければならない。

更に、出力信号の遅延時間に情報を付与する Race Logic の考えを発展させ、光出力信号の位相や強度に情報を付与できる可能性も見えてきた。光デバイス独自の設計選択肢が存在するのである。

ナノフォトニック・デバイスを用いた光 Race Logic 回路の実現に向けて、雑音の影響を具体的に示すことと設計選択肢ごとの検知部分の構成が今後の課題である.

謝辞

本研究の進行および本論文執筆にあたりまして,懇切丁寧なご指導を頂きました井上弘士教授に心より感謝申し上げます。本論文執筆にあたり,多大なご指導を頂きました小野貴継助教に心より感謝申し上げます。本研究を行うにあたり,多大なご指導を賜りました日本電信電話株式会社物性科学基礎研究所ナノフォトニクスセンタ主幹研究員新家昭彦様に感謝の意を表するとともに厚く御礼申し上げます。本論文執筆にあたり多大な指導頂きました,井上研究室大学院博士2年川上哲志氏に深く感謝致します。

最後に、井上研究室の皆様の御意見、御厚意に感謝の意を表します.

参考文献

- [1] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. Race logic: A hardware acceleration for dynamic programming algorithms. *ACM SIGARCH Computer Architecture News*, Vol. 42, No. 3, pp. 517–528, 2014.
- [2] 浅井潔ほか. 配列情報と確立モデル (「分子生物情報学の新展開」). 人工知能学会誌, Vol. 15, No. 1, pp. 35-42, 2000.
- [3] 後藤修. マルチプルアラインメントは生体高分子情報の交差点. 生物物理, Vol. 38, No. 2, pp. 52–56, 1998.
- [4] 浅井潔ほか. バイオインフォマティクス: 7. ポストゲノム時代の配列情報解析. 情報処理, Vol. 46, No. 3, pp. 271–276, 2005.
- [5] 須戸里織, 吉見真聡, 三木光範. バイオインフォマティクスゲノム配列から機能解析へバイオインフォマティクスゲノム配列から機能解析へ, 2005. 電子情報通信学会技術研究報告. CPSY, コンピュータシステム, Vol. 111, No. 328, pp. 35–40, 2011.
- [6] Saul B Needleman and Christian D Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. *Journal of molecular biology*, Vol. 48, No. 3, pp. 443–453, 1970.
- [7] Temple F Smith and Michael S Waterman. Identification of common molecular subsequences. *Journal of molecular biology*, Vol. 147, No. 1, pp. 195–197, 1981.
- [8] 須戸里織, 吉見真聡, 三木光範. Gpu を用いた 3 次元 smith-waterman 法の高速化手法の提案. 電子情報通信学会技術研究報告. CPSY, コンピュータシステム, Vol. 111, No. 328, pp. 35–40, 2011.

- [9] 宗川裕馬, 伊野文彦, 萩原兼一ほか. 統合開発環境 cuda を用いた gpu での配列アライメントの高速化手法. 情報処理学会研究報告計算機アーキテクチャ (ARC), Vol. 2008, No. 19 (2008-ARC-177), pp. 13–18, 2008.
- [10] Edans Flavius de O Sandes and Alba Cristina MA de Melo. Smith-waterman alignment of huge sequences with gpu in linear space. In *Parallel & Distributed Processing Symposium (IPDPS)*, 2011 IEEE International, pp. 1199–1211. IEEE, 2011.
- [11] Yu Liu, Yang Hong, Chun-Yuan Lin, and Che-Lun Hung. Accelerating smith-waterman alignment for protein database search using frequency distance filtration scheme based on cpu-gpu collaborative system. *International journal of genomics*, Vol. 2015, , 2015.
- [12] 伊野文彦, 小谷裕基, 萩原兼一ほか. Gpu グリッドによる高速な塩基配列アライメント. 情報処理学会研究報告ハイパフォーマンスコンピューティング (HPC), Vol. 2007, No. 80 (2007-HPC-111), pp. 73-78, 2007.
- [13] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. A 4-mm 2 180-nm-cmos 15-giga-cell-updates-per-second dna sequence alignment engine based on asynchronous race conditions. In *Custom Integrated Circuits Conference (CICC)*, 2017 IEEE, pp. 1–4. IEEE, 2017.
- [14] 大津元一, 小林潔. ナノフォトニクスの基礎. オーム社, 2006.
- [15] 三木哲也, 須藤昭一. 光通信技術ハンドブック. (株) オプトロニクス社, 2002.