MODULE 6

RANDOM VECTOR AND ITS JOINT DISTRIBUTION

PROBLEMS

1. (i) Let $F: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$F(x,y) = \begin{cases} 1, & \text{if } x + 2y \ge 1 \\ 0, & \text{if } x + 2y < 1 \end{cases}.$$

Does $F(\cdot,\cdot)$ define a distribution function?

(ii) Let $F: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$F(x,y) = \begin{cases} 0, & \text{if } x < 0 \text{ or } x + y < 1 \text{ or } y < 0 \\ 1, & \text{otherwise} \end{cases}.$$

Does $F(\cdot, \cdot)$ define a distribution function?

- (iii) Let $F_{X,Y}(\cdot,\cdot)$ be the distribution function of some two-dimensional random vector (X,Y), and let $F_X(\cdot)$ and $F_Y(\cdot)$, respectively, be the marginal distribution functions of X and Y. Define $H(x,y) = \min\{F_X(x), F_Y(y)\}, (x,y) \in \mathbb{R}^2$ and $G(x,y) = \max\{F_X(x) + F_Y(y) 1, 0\}, (x,y) \in \mathbb{R}^2$. Prove that:
 - (a) $G(\cdot,\cdot)$ and $H(\cdot,\cdot)$ are each distribution functions and that their marginal distribution functions are the same as those of $F_{X,Y}(\cdot,\cdot)$;

(b)
$$G(x,y) \le F_{X,Y}(x,y) \le H(x,y), \forall (x,y) \in \mathbb{R}^2$$
.

(*Note:* Let the random variable X have distribution function $F_X(\cdot)$ and let Y = g(X) have distribution function $F_Y(\cdot)$, where $g(\cdot)$ is some Borel function. If $g(\cdot)$ is strictly increasing (decreasing), then $F_{X,Y}(x,y) = U(x,y) \left(F_{X,Y}(x,y) = L(x,y) \right)$.

2. Let the random vector $\underline{X} = (X_1, X_2)$ have the joint distribution function

$$F_{X_1,X_2}(x_1,x_2) = \begin{cases} 0, & \text{if } x_1 < 0 \text{ or } x_2 < 0 \\ \frac{x_1x_2}{8}, & \text{if } 0 \leq x_1 < 1, 0 \leq x_2 < 2 \text{ or } 1 \leq x_1 < 2, 0 \leq x_2 < 1 \\ \frac{x_1}{4}, & \text{if } 0 \leq x_1 < 1, x_2 \geq 2 \\ \frac{1}{2} + \frac{x_1x_2}{8}, & \text{if } 1 \leq x_1 < 2, 1 \leq x_2 < 2 \\ \frac{1}{2} + \frac{x_1}{4}, & \text{if } 1 \leq x_1 < 2, x_2 \geq 2 \\ \frac{x_2}{4}, & \text{if } x_1 \geq 2, 0 \leq x_2 < 1 \\ \frac{1}{2} + \frac{x_2}{4}, & \text{if } x_1 \geq 2, 1 \leq x_2 < 2 \\ 1 & \text{if } x_1 \geq 2, x_2 \geq 2 \end{cases}.$$

Find $P(\{(X_1, X_2) = (0,0)\})$ and $P(\{(X_1, X_2) = (1,1)\})$. Is $\underline{X} = (X_1, X_2)$ of absolutely continuous type?

3. Let the random vector (X, Y) have the p.m.f.

$$f_{X,Y}(x,y) = \begin{cases} \frac{(x+y+k-1)!}{x! \, y! \, (k-1)!} \theta_1^x \theta_2^y (1-\theta_1-\theta_2)^k, & \text{if } (x,y) \in \mathbb{Z}_+ \times \mathbb{Z}_+, \\ 0, & \text{otherwise} \end{cases}$$

where $k \ge 1$ is an integer, $0 < \theta_i < 1, i = 1, 2, \theta_1 + \theta_2 < 1$ and $\mathbb{Z}_+ = \{0, 1, 2, ...\}$. Find the marginal p.m.f.s of X and Y and the conditional distributions. (*Note:* A distribution with above p.m.f. is called a bivariate negative binomial distribution).

- 4. Three balls are randomly placed in three empty boxes B_1 , B_2 and B_3 . Let N denote the total number boxes which are occupied and let X_i denote the number of balls in the box B_i , i = 1, 2, 3.
 - (i) Find the joint p.m.f. of (N, X_1) ;
 - (ii) Find the joint p.m.f. of (X_1, X_2) ;
 - (iii) Find the marginal p.m.f.s of N and X_2 ;
 - (iv) Find the marginal p.m.f. of X_1 from the joint p.m.f. of (X_1, X_2) .
- 5. Let X_1 and X_2 have the joint p.m.f

$$f_{\underline{X}}(x_1, x_2) = \begin{cases} \left(\frac{2}{3}\right)^{x_1 + x_2} \left(\frac{1}{3}\right)^{2 - x_1 - x_2}, & \text{if } (x_1, x_2) = (0, 0), (0, 1), (1, 0), (1, 1), (0, 0), (0, 1), (0, 0), (0, 1), (0, 0), (0, 1), (0, 0), (0, 1), (0, 0), (0$$

- (i) Find the joint p.m.f. of $Y_1 = X_1 X_2$ and $Y_2 = X_1 + X_2$;
- (ii) Find the marginal p.m.f.s of Y_1 and Y_2 ;

- (iii) Find $E(Y_1^2Y_2)$.
- 6. Let $\underline{X} = (X_1, X_2)$ have the joint p.m.f.

$$f_{\underline{X}}(x_1, x_2) = \begin{cases} \frac{x_1 x_2}{36}, & \text{if } x_1 = 1,2,3\\ 0, & \text{otherwise} \end{cases}$$

and let $Y_1 = X_1 X_2$ and $Y_2 = X_2$.

- (i) Find the joint p.m.f. of (Y_1, Y_2) ;
- (ii) Find the marginal p.m.f. of Y_1 .
- (iii) Find $P({X_1 + X_2 = 4})$.
- 7. Suppose that $X_1, ..., X_n$ are i.i.d. random variables and that $P(X_1 = 0) = 1 p = 1 P(X_1 = 1)$, for some $p \in (0, 1)$. Let X denote the number of $X_1, ..., X_n$ that are as large as X_1 . Find the p.m.f. of X.
- 8. Suppose that the number, X, of eggs laid by a bird has the $P(\lambda)$ distribution (the Poisson distribution with mean λ), and the probability that an egg would finally develop is $p \in (0,1)$; here $\lambda > 0$. Further suppose that eggs develop independently of each other. Show that the number, Y, of eggs surviving has the $P(\lambda p)$ distribution. Also, find the conditional distribution of X given Y = y, where $y \in \{0, 1, 2, ...\}$.
- 9. Let the random vector (X, Y) have the joint p.d.f.

$$f_{X,Y}(x,y) = \begin{cases} \frac{\Gamma(\theta_1 + \theta_2 + \theta_3)}{\Gamma(\theta_1)\Gamma(\theta_2)\Gamma(\theta_3)} x^{\theta_1 - 1} y^{\theta_2 - 1} (1 - x - y)^{\theta_3 - 1}, & \text{if } x > 0, y > 0, x + y < 1, \\ 0, & \text{otherwise} \end{cases}$$

where $\theta_i > 0$, i = 1, 2, 3. Find the marginal p.d.f.s of X and Y and the conditional p.d.f.s. (*Note:* A distribution with above p.d.f. is called a bivariate beta distribution).

10. Let the random variable $\underline{X} = (X_1, X_2)$ have the joint p.m.f.

$$f_{\underline{X}}(x_1, x_2) = \begin{cases} \frac{x_1 + 2x_2}{18}, & \text{if } (x_1, x_2) \in \{1, 2\} \times \{1, 2\}, \\ 0, & \text{otherwise} \end{cases}$$

Determine the conditional mean and conditional variance of X_2 given $X_1 = x_1$, $x_1 \in \{1, 2\}$.

11. Let $\underline{X} = (X_1, X_2, X_3)$ be a random vector with joint p.m.f.

$$f_{X_1,X_2,X_3}(x_1,x_2,x_3) = \begin{cases} \frac{1}{4}, & \text{if } (x_1,x_2,x_3) \in A, \\ 0, & \text{otherwise} \end{cases}$$

where $A = \{(1,0,0), (0,1,0), (0,0,1), (1,1,1)\}.$

- (i) Are X_1, X_2, X_3 independent?
- (ii) Are X_1, X_2, X_3 pairwise independent?
- (iii) Are $X_1 + X_2$ and X_3 independent?
- 12. Let X and Y be two random variables such that $(\{X \in \{0,1\}\}) = P(\{Y \in \{0,1\}\}) = 1$. If $P(\{X = 1, Y = 1\}) = P(\{X = 1\})P(\{Y = 1\})$, show that X and Y are independent random variables.
- 13. Five cards are drawn at random without replacement from a deck of 52 cards. Let the random variables X_1, X_2 and X_3 , respectively, denote the number of spades, the number of hearts and the number of diamonds among the five drawn cards.
 - (i) Find the joint p.m.f. of (X_1, X_2, X_3) ;
 - (ii) Are random variables X_1 , X_2 and X_3 independent?
- 14. Consider a sample of size 3 drawn with replacement from an urn containing 3 white, 2 black and 3 red balls. Let the random variables X_1 and X_2 , respectively, denote the number of white balls and the number of black balls in the sample. Determine whether or not X_1 and X_2 are independent.
- 15. The joint p.d.f. of (X, Y) is given by

$$f_{X,Y}(x,y) = \begin{cases} 4xy, & \text{if } 0 < x < 1, 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

- (i) Verify whether *X* and *Y* are independent;
- (ii) Find the marginal p.d.f.s. of *X* and *Y*;
- (iii) Find $P(\{0 < X < \frac{1}{2}, \frac{1}{4} < Y < 1\})$ and $P(\{X + Y < 1\})$.
- 16. The joint p.d.f. of (X, Y) is given by

$$f_{X,Y}(x,y) = \begin{cases} ce^{-(2x+3y)}, & \text{if } 0 < x < y < \infty, \\ 0, & \text{otherwise} \end{cases}$$

where c is a real constant.

- (i) Find the value of the constant c;
- (ii) Verify whether *X* and *Y* are independent;
- (iii) Find the marginal p.d.f.s of *X* and *Y*;

- (iv) Find $P\left(\left\{X < \frac{Y}{2}\right\}\right)$.
- 17. Let f and g be two p.d.f.s with respective distribution functions F and G. Define $h: \mathbb{R}^2 \to [0, \infty)$ as

$$h(x,y) = [1 + \alpha \{2F(x) - 1\} \{2G(y) - 1\}] f(x)g(y),$$

where $\alpha \in [-1,1]$.

- (i) Show that h is a p.d.f. of some random vector (X, Y);
- (ii) Show that the marginal p.d.f.s of X and Y are f and g, respectively;
- (iii) Does there exist a value of $\alpha \in [-1,1]$ such that X and Y are independent?
- 18. Let $\underline{X} = (X_1, X_2, X_3)$ be a random vector with joint p.d.f.

$$f_{\underline{X}}(x_1,x_2,x_3) = \frac{1}{(2\pi)^{\frac{3}{2}}} e^{-\frac{\left(x_1^2 + x_2^2 + x_3^2\right)}{2}} \left(1 + x_1 x_2 x_3 e^{-\frac{\left(x_1^2 + x_2^2 + x_3^2\right)}{2}}\right), \quad x_i \in \mathbb{R}, i = 1,2,3.$$

- (i) Are X_1, X_2, X_3 independent?
- (ii) Are X_1, X_2, X_3 pairwise independent?
- (iii) Find the marginal p.d.f.s of (X_1, X_2) , (X_1, X_3) , and (X_2, X_3) .
- 19. A point X_1 is chosen at random from the interval (0,1) and then a point X_2 is chosen at random from the interval $(0,X_1)$. Compute $P(\{X_1 + X_2 \ge 1\})$ and find the conditional mean $E(X_1|X_2 = x_2), x_2 \in (0,1)$.
- 20. With the help of a counter example, show that if the random variables X_1 and X_2 are uncorrelated, then this does not, in general, imply that X_1 and X_2 are independent.
- 21. Let $\underline{X} = (X_1, X_2)$ be a random vector having the p.d.f.

$$f(x_1, x_2) = \begin{cases} \frac{1}{2x_1^2 x_2}, & \text{if } 1 < x_1 < \infty, \frac{1}{x_1} < x_2 < x_1, \\ 0, & \text{otherwise} \end{cases}$$

- (i) Find the marginal p.d.f.s of X_1 and X_2 ;
- (ii) Find the conditional means and variances of X_1 given $X_2 = x_2$ ($x_2 \in (0, \infty)$) and X_2 given $X_1 = x_1$ ($x_1 \in (1, \infty)$);
- (iii) Are X_1 and X_2 independent random variables?
- (iv) Find $Corr(X_1, X_2)$;
- (v) Find $P({X_2 < \frac{1}{2}}|{X_1 = 2});$
- (vi) Find $P(\{X_2 < \frac{1}{2}\} | \{X_1 > 3\})$.

22. Let (X, Y) be a random vector such that the p.d.f. of X is

$$f_X(x) = \begin{cases} 4x(1-x^2), & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

and, for fixed $x \in (0,1)$, the conditional p.d.f. of Y given X = x is

$$f_{Y|X}(y|x) = \begin{cases} \frac{2y}{1 - x^2}, & \text{if } x < y < 1\\ 0, & \text{otherwise} \end{cases}.$$

- (i) For $y \in (0,1)$, find conditional p.d.f. of X given Y = y;
- (ii) Find $E(X|Y = \frac{1}{2})$ and $Var(X|Y = \frac{1}{2})$;

(iii) Find
$$P\left(\left\{0 < Y < \frac{1}{3}\right\}\right)$$
 and $P\left(\left\{\frac{1}{3} < Y < \frac{2}{3}\right\} \middle| \left\{X = \frac{1}{2}\right\}\right)$.

23. Let (X, Y) be a random vector with joint p.m.f. given by:

	$f_{X,Y}(x,y)$						
$y \downarrow x \rightarrow$	1	2	3	4			
4	.08	.11	.09	.03			
5	.04	.12	.21	.05			
6	.09	.06	.08	.04			

- (i) Find the conditional p.m.f. of X, given Y = 5;
- (ii) Find the probabilities $P(\{X + Y \le 8\})$, $P(\{X + Y > 7\})$, $P(\{XY \le 14\})$, $P(\{XY > 18\})$, $P(\{X = 3\} | \{Y = 5\})$ and $P(\{Y = 5\} | \{X = 3\})$;
- (iii) Find Corr(X, Y).
- 24. Let $X_1, ..., X_n$ be n random variables with $E(X_i) = \mu_i$, $Var(X_i) = \sigma_i^2$ and $\rho_{ij} = Corr(X_i, X_j)$, i, j = 1, ..., n, $i \neq j$. For real numbers $a_i, b_i, i = 1, ..., n$, define $Y = \sum_{i=1}^n a_i X_i$ and $Z = \sum_{i=1}^n b_i X_i$. Find Cov(Y, Z).
- 25. Let X_1, X_2 and X_3 be three independent random variables each with a variance σ^2 . Define the random variables

$$W_1 = X_1$$
, $W_2 = \frac{\sqrt{3} - 1}{2}X_1 + \frac{3 - \sqrt{3}}{2}X_2$, and $W_3 = (\sqrt{2} - 1)X_2 + (2 - \sqrt{2})X_3$.
Find $Corr(W_1, W_2)$, $Corr(W_1, W_3)$ and $Corr(W_2, W_3)$.

26. Let *X* and *Y* be jointly distributed random variables with E(X) = E(Y) = 0, $E(X^2) = E(Y^2) = 2$ and Corr(X, Y) = 1/3. Find $Corr(\frac{X}{3} + \frac{2Y}{3}, \frac{2X}{3} + \frac{Y}{3})$.

27. Let (X, Y) have the joint p.m.f. given by:

(x,y)	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)
$f_{X,Y}(x,y)$	2	4	3	1	1	4
	$\frac{\overline{15}}{15}$	$\frac{\overline{15}}{15}$	$\frac{\overline{15}}{15}$	$\frac{\overline{15}}{15}$	$\frac{\overline{15}}{15}$	$\overline{15}$

and $f_{X,Y}(x,y) = 0$, elsewhere. Find $\rho = \text{Corr}(X,Y)$.

- 28. Let X_1, X_2 and X_3 be three random variables with means, variances and correlation coefficients denoted by μ_1, μ_2, μ_3 ; $\sigma_1^2, \sigma_2^2, \sigma_3^2$ and $\rho_{12}, \rho_{13}, \rho_{23}$, respectively. If $E((X_1 - \mu_1)|X_2 = x_2, X_3 = x_3) = b_2(x_2 - \mu_2) + b_3(x_3 - \mu_3)$, for some constants b_2 and b_3 , determine b_2 and b_3 in terms of the variances and correlation coefficients.
- 29. Let $X_1, ..., X_n$ denote a random sample, where $X_1, ..., X_n$ are positive with probability one. Show that

$$E\left(\frac{X_1 + X_2 + \dots + X_k}{X_1 + X_2 + \dots + X_n}\right) = \frac{k}{n}, \ k = 1, 2, \dots, n.$$

- 30. Let $X_1, ..., X_n$ be a random sample of absolutely continuous type random variables. If the expectation of X_1 is finite and the distribution of X_1 is symmetric about $\mu \in$ $(-\infty, \infty)$ then show that
 - (i) $X_{r:n} \mu \stackrel{d}{=} \mu X_{n-r+1:n}, r = 1, ..., n;$ (ii) $E(X_{r:n} + X_{n-r+1:n}) = 2\mu, r = 1, ..., n;$

 - (iii) $E\left(X_{\frac{n+1}{2}:n}\right) = \mu$, if n is odd;
 - (iv) $P\left(X_{\frac{n+1}{2}:n} > \mu\right) = \frac{1}{2}$, if n is odd.
- 31. Let $X_1, ..., X_n$ be a random sample and let $E(X_1)$ be finite.
 - (i) Find the conditional expectation $E(X_1|X_1+\cdots+X_n=t)$, where $t\in\mathbb{R}$ is such that the conditional expectation is defined.
 - (ii) If X_1 is of absolutely continuous type and $(\pi_1, ..., \pi_n)$ is a permutation of (1, ..., n), find $P(X_{\pi_1} < \cdots < X_{\pi_n})$.
- 32. Let X_1 and X_2 be i.i.d. N(0,1) random variables and let $Y = X_1 + X_2$, $Z = X_1^2 + X_2^2$.
 - Show that the m.g.f. of (Y,Z) is $M_{Y,Z}(t_1,t_2) = \frac{e^{\frac{t_1}{1-2t_2}}}{t_1-2t_2}$, $t_2 < \frac{1}{2}$; (i)
 - (ii) Using (a), find Corr(Y, Z).

- 33. Suppose that the lifetimes of electric bulbs manufactured by a manufacturer follows exponential distribution with mean of 50 hours. Eight such bulbs are chosen at random.
 - (i) Find the probability that, among eight chosen bulbs, 2 will last less than 40 hours, 3 will last anywhere between 40 and 60 hours, 2 will last anywhere between 60 and 80 hours and 1 will last for more than 80 hours;
 - (ii) Find the expected number of bulbs in the lot of 8 chosen bulbs with lifetime between 60 and 80 hours;
 - (iii) Find the expected number of bulbs in the lot of 8 chosen bulbs with lifetime between 60 and 80 hours, given that the number of bulbs in the lot with lifetime anywhere between 40 and 60 hours is 2.
- 34. Suppose that $\underline{X} \sim \text{Mult}(30, \theta_1, \theta_2, \theta_3, \theta_4)$. Find the conditional probability mass function of (X_1, X_2, X_3, X_4) given that $X_1 + X_2 + X_3 + X_4 = 28$.
- 35. Let $X = (X_1, X_2)$ have the joint p.d.f.

$$f_{\underline{X}}(x_1, x_2) = \phi(x_1)\phi(x_2)[1 + \alpha(2\Phi(x_1) - 1)(2\Phi(x_2) - 1)], x_i \in \mathbb{R}, i = 1, 2,$$
 where $|\alpha| \le 1$.

- (i) Verify that $f_X(x_1, x_2)$ is a p.d.f.;
- (ii) Find the marginal p.d.f.s of X_1 and X_2 ;
- (iii) Is (X_1, X_2) jointly normal?
- 36. Let $\underline{X} = (X_1, X_2) \sim N_2(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ and, for real constants a_1, a_2, a_3 , and a_4 ($a_i \neq 0$, $i = 1, 2, 3, 4, a_1 a_4 \neq a_2 a_3$), let $Y = a_1 X_1 + a_2 X_2$ and $Z = a_3 X_1 + a_4 X_2$.
 - (i) Find the joint p.d.f. of (Y, Z);
 - (ii) Find the marginal p.d.f.s. of Y and Z.
- 37. Let *X* and *Y* be i.i.d. $N(0, \sigma^2)$ random variables.
 - (i) Find the joint p.d.f. of (U, V), where U = aX + bY and V = bX aY ($a \ne 0, b \ne 0$);
 - (ii) Show that U and V are independent;
 - (iii) Show that $\frac{X+Y}{\sqrt{2}}$ and $\frac{X-Y}{\sqrt{2}}$ are i.i.d. $N(0, \sigma^2)$ random variables.
- 38. Let $\underline{X} = (X_1, X_2) \sim N_2(0, 0, 1, 1, \rho)$.
 - (i) Find the m.g.f. of $Y = X_1X_2$;
- (ii) Using (i), find $E(X_1^2X_2^2)$;
- (iii) Using conditional distribution of X_1 given X_2 , find $E(X_1^2X_2^2)$.

39. Let $\underline{X} = (X_1, X_2)$ have the joint p.d.f.

$$f(x,y) = \begin{cases} \frac{1}{\pi} e^{-\frac{1}{2}(x^2 + y^2)}, & \text{if } xy > 0\\ 0, & \text{otherwise} \end{cases}.$$

Show that $X_i \sim N(0,1)$, i = 1, 2, but $\underline{X} = (X_1, X_2)$ does not have a bivariate normal distribution.

40. For a fixed $\rho \in (-1,1)$ and $\alpha \in (0,1)$, let the random variable (X,Y) have the joint p.d.f.

$$g_{\rho}(x,y) = \alpha f_{\rho}(x,y) + (1-\alpha)f_{-\rho}(x,y)$$
,

where $f_r(\cdot,\cdot)$, -1 < r < 1, denotes the pdf of $N_2(0,0,1,1,r)$. Show that X and Y are normally distributed but the distribution of (X,Y) is not bivariate normal.

- 41. Consider the random vector (X, Y) as defined in Problem 39.
 - (i) Find Corr(X, Y);
 - (ii) Are *X* and *Y* independent?
- 42. Suppose that $\underline{X} \sim N_2(0, 0, 1, 1, 0)$. Find c_1 such that $P(-c_1 \le X_1 \le c_1, -c_1 \le X_2 \le c_1) = 0.95$.
- 43. (i) Let $(X, Y) \sim N_2(5, 8, 16, 9, 0.6)$. Find $P(\{5 < Y < 11\}) | \{X = 2\}\}, P(\{4 < X < 6\})$ and $P(\{7 < Y < 9\}\})$;
 - (ii) Let $(X, Y) \sim N_2(5, 10, 1, 25, \rho)$, where $\rho > 0$. If $P(\{4 < Y < 16\})|\{X = 5\}) = 0.954$, determine ρ .
- 44. (i) Let $X \sim \text{Bin}(n_1, p)$ and $Y \sim \text{Bin}(n_2, p)$ be independent random variables. For $t \in \{0, 1, ..., \min(n_1, n_2)\}$, find the conditional distribution and conditional mean of X given X + Y = t.
 - (ii) Let $X \sim P(\lambda_1)$ and $Y \sim P(\lambda_2)$ be independent random variables. For $t \in \{0,1,...\}$, find the conditional distribution and conditional mean of X given X + Y = t
- 45. Let *X* and *Y* be independent random variables with respective p.d.f.s.

$$f_X(x) = \begin{cases} \frac{1}{3}, & \text{if } 1 \le x \le 4\\ 0, & \text{otherwise} \end{cases}$$

and

$$f_Y(y) = \begin{cases} e^{-(y-2)}, & \text{if } y \ge 2\\ 0, & \text{otherwise.} \end{cases}$$

Find the distribution function of $T = \frac{X}{Y}$ and hence find the p.d.f. of T.

- 46. Let X and Y be i.i.d. U(0,1) random variables. Find the marginal p.d.f.s. of
 - (i) $X + Y, X Y, \frac{X+Y}{X-Y}, |X-Y|;$
 - (ii) $\min(X,Y)$, $\max(X,Y)$, $\frac{\min(X,Y)}{\max(X,Y)}$;
 - (iii) $X^2 + Y^2$.
- 47. Let $W \sim Be(\alpha_1, \alpha_2)$ and $T \sim G(\alpha_1 + \alpha_2, \theta)$ be independent random variables. Using Example 10.2.11, show that $WT \sim G(\alpha_1, \theta)$.
- 48. Let *X* and *Y* be i.i.d. random variables with common p.d.f. $f(x) = \frac{c}{1+x^4}$, $-\infty < x < \infty$, where *c* is the normalizing constant. Find the p.d.f. of $Z = \frac{X}{Y}$.
- 49. Let *X* and *Y* be i.i.d. N(0,1) random variables. Define the random variables *R* and Θ by $X = R \cos \Theta$, $Y = R \sin \Theta$.
 - (i) Show that R and Θ are independent with $\frac{R^2}{2} \sim \text{Exp}(1)$ and $\Theta \sim U(0, 2\pi)$;
 - (ii) Show that $X^2 + Y^2$ and $\frac{X}{Y}$ are independently distributed;
 - (iii) Show that $\sin \Theta$ and $\sin 2\Theta$ are identically distributed and hence find the p.d.f. of $T = \frac{XY}{\sqrt{X^2 + Y^2}}$;
 - (iv) Find the distribution of $U = \frac{3X^2Y Y^3}{X^2 + Y^2}$.
- 50. Let U_1 and U_2 be i.i.d. U(0,1) random variables. Show that $X_1 = \sqrt{-2 \ln U_1} \cos(2\pi U_2)$ and $X_2 = \sqrt{-2 \ln U_1} \sin(2\pi U_2)$ are i.i.d. N(0,1) random variables. (This is known as *the Box-Muller transformation*).
- 51. Let $(X, Y) \sim N_2(0, 0, 1, 1, \rho)$.
 - (i) Show that $P(\{X > 0, Y > 0\}) = \frac{1}{4} + \frac{\arcsin \rho}{2\pi}$. Also find $P(\{X < 0, Y < 0\}), P(\{X > 0, Y < 0\})$ and $P(\{X < 0, Y > 0\})$;
 - (ii) Show that $P(\{XY > 0\}) = \frac{1}{2} + \frac{\arcsin \rho}{\pi}$ and $P(\{XY < 0\}) = \frac{1}{2} \frac{\arcsin \rho}{\pi}$.
- 52. Let $X_1, ..., X_n$ be a random sample from the Exp(1) distribution.

(i) Find the marginal distributions of $Y_1, ..., Y_n$, where

$$Y_i = rac{\sum_{j=1}^i X_j}{\sum_{j=1}^{i+1} X_j}$$
 , $i=1,\ldots,n-1, \qquad Y_n = X_1 + \cdots + X_n;$

- (ii) Are $Y_1, ..., Y_n$ independent?
- 53. Let X_1, X_2, X_3 be i.i.d. G(m, 1) random variables. Let $Z_1 = X_1 + X_2 + X_3$, $Z_2 = \frac{X_2}{X_1 + X_2 + X_3}$ and $Z_3 = \frac{X_3}{X_1 + X_2 + X_3}$.
 - (i) Show that Z_1 and (Z_2, Z_3) are independent and find marginal p.d.f.s. of Z_1, Z_2 and Z_3 ;
 - (ii) Find $E(Z_1^2 Z_2 Z_3)$.
- 54. Let X_1 and X_2 be independent random variables with $X_i \sim \text{Bin}\left(n_i, \frac{1}{2}\right)$, i = 1, 2. Using the m.g.f. technique, find the distribution of $Y = X_1 X_2 + n_2$.
- 55. Let $X_{1:n} \le X_{2:n} \le \cdots$, $\le X_{n:n}$ be the set of order statistics associated with a random sample of size $n \ge 2$ from the Exp(1) distribution.
 - (i) Let $Z_1 = nX_{1:n}$, $Z_i = (n i + 1)(X_{i:n} X_{i-1:n})$, i = 2, ..., n. Show that $Z_1, ..., Z_n$ are i.i.d. Exp(1) random variables;
 - (ii) Using (i), or otherwise, find $E(X_{r:n})$, $Var(X_{r:n})$ and $Cov(X_{r:n}, X_{s:n})$, $1 \le r < s \le n$;
 - (iii) Show that $X_{r:n}$ and $X_{s:n} X_{r:n}$ are independent for any s > r;
 - (iv) Find the p.d.f. of $X_{r+1:n} X_{r:n}$, r = 1, 2, ..., n.
- 56. Let $X_1, ..., X_n$ be i.i.d. non-negative random variables $(P(\{X_1 \ge 0\}) = 1)$ of the absolutely continuous type. If $E(|X_1|) < \infty$ and $M_n = \max(X_1, ..., X_n)$, show that

$$E(M_n) = E(M_{n-1}) + \int_{0}^{\infty} (F(x))^{n-1} (1 - F(x)) dx.$$

57. Let $X_{1:n} \le X_{2:n} \le \cdots \le X_{n:n}$ be the order statistics associated with a random sample of size $n \ge 2$ from the U(0,1) distribution. Let $Y_i = \frac{X_{i:n}}{X_{i+1:n}}$, i = 1, ..., n-1, and $Y_n = X_{n:n}$. Show that $Y_1, ..., Y_n$ are independent and find the p.d.f of $Y_i, i = 1, ..., n$.