第八章 假设检验

probability

§ 8.1 假设检验的基本思想与步骤

§8.2 正态总体的参数检验

§ 8.1 假设检验的基本思想与步骤

一.假设检验的基本思想

引例1 已知一个暗箱中有100个白色与黑色球,不知各有多少个.现有人猜测其中有95个白色球,是否能相信他的猜测呢?

他相当于提出假设:

p=P(A)=0.05, $A=\{$ 任取一球是黑球 $\}$.

现随意从中抽出一个球,发现是黑球,怎样 解释这一事实?

可有两种解释:

- 1) 他的猜测是正确的,恰抽得黑球是随机性 所致;
 - 2) 他的猜测错了. 应接受哪一种呢?

根据小概率事件原理, 事件A的发生不能不使人们怀疑他的猜测,更倾向于认为箱中白球个数不是95个.

引例 2

假设检验基本思想:提出统计假设,根据小概率事件原理对其进行检验.

二、基本概念

工件直径的假设检验

- 1. 参数与分布的假设检验
- 1) 关于总体参数的假设检验, 如 H_0 : $\mu = \mu_0$

2) 关于总体分布的假设检验,如

$$H_0$$
: $F(x) = \Psi(x; \mu, \sigma^2)$

2. 原假设与备择假设

根据问题的需要提出的一对对立的假设,

记H₀为原假设或零假设;

与原假设 H_0 相对立的假设称为备选假设,记为 H_1 .

相对于原假设, 可考虑不同的备选假设, 如

1)
$$H_0$$
: $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$;

- 2) $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$;
- 3) $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$;
- 3. 检验统计量 用做检验统计推断的统计量.
- 4. 假设检验的接受域和拒绝域 根据假设检验目的,由样本去推断是否接 受原假设H₀.

接受域 使 H_0 得以接受的检验统计量取值的区域A.

否定域: 使 H_0 被否定的检验统计量取值的区域R.

三.假设检验的基本步骤

包装机工作正常与否的判断

1.提出原假设: 根据实际问题提出原假设 H_0 和备选假设 H_1 ;

2. 建立检验统计量: 寻找参数的一个良好估计量, 据此建立一个不带任何未知参数的统计量U作为检验统计量, 并在H₀成立的条件下,确定U的分布(或近似分布); 2

3.确定 H_0 的否定域:根据实际问题选定显著性水平 α ,依据检验统计量的分布与 H_0 的内容,确定 H_0 的否定域;

4. 对 H_0 作判断:根据样本值算出检验统计量的统计值u,判断u是否落在拒绝域,以确定拒绝或接受 H_0 .

对原假设 H_0 做出判断,称为对 H_0 做显著性检验, $1-\alpha$ 称为置信水平.

注1 对不同的显著性水平α,有不同的否定域,从而可能有不同的判断结论.

如在工件直径的假设检验问题中,设 $\alpha_1 < \alpha_2 < \alpha_3$,对不同的分位数

显著性水平 α_2 下接受 H_0

 $\alpha_1 < \alpha_2 < \alpha_3$

注2 在确定 H_0 的拒绝域时应遵循有利准则: 将检验统计量对 H_0 有利的取值区域确定为接 受域,对 H_1 成立有利的区域作为拒绝域.

如在工件直径假设检验问题中

1) 若检验 H_0 : $\mu = \mu_0 = 2$, H_1 : $\mu \neq \mu_0 = 2$; 取检验统计量

$$U = \frac{\overline{X} - 2}{\sigma_0 / \sqrt{n}}$$

 \overline{X} 的值越接近于 $\mu_0=2$,越有利于 H_0 成立,不利于 H_1 成立,故对给定 α , H_0 的拒绝域为:

$$\left|\overline{x}-\mu_0\right| > \frac{\sigma_0}{\sqrt{n}}u_{\alpha/2}$$

或

$$|u| = \frac{|\overline{x} - \mu_0|}{\sigma_0 / \sqrt{n}} > u_{\alpha/2}$$

2) 若检验 H_0 : $\mu = \mu_0 = 2$, H_1 : $\mu < \mu_0$; 取检验统计量

$$U = \frac{\overline{X} - 2}{\sigma_0 / \sqrt{n}}$$

检验 $H_0: \mu = \mu_0 = 2$, $H_1: \mu < \mu_0$

给定 α , H_0 的否定域为:

$$\overline{X} - \mu_0 < -\frac{\sigma_0}{\sqrt{n}} u_\alpha$$
, $\mathbb{P}: U < -u_\alpha$

例中

$$u = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}} = -2.2 < -u_{0.05} = -1.645$$

拒绝H₀, 即认为新工艺使工件直径偏小.

大样本假设检验例子

四、两类错误

- 1)假设检验的主要依据是<u>"小概率事件原</u>理",而小概率事件并非绝对不发生.
- 2)假设检验方法是依据样本去推断总体, 样本只是总体的一个局部,不能完全反映整体特性.

无论接受或拒绝原假设H₀都可能做出错误的判断

检验 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0;$

第一类错误(弃真): 在 H_0 成立的情况下,错误地否定了 H_0 ;

第二类错误(纳伪): 在 H_0 不成立的情况下,错误地接受了 H_0 .

检验假设 H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$,

$$U = \frac{\bar{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0, 1)$$

当 H_0 成立时, $\frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}} = U_1 \sim N(0,1)$

显著性水平

若 H_1 成立时,(即 μ ≠ μ 0)

$$\frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}} = U_2 = \frac{\bar{X} - \mu}{\sigma_0 / \sqrt{n}} + \frac{\mu - \mu_0}{\sigma_0 / \sqrt{n}} \sim N(\frac{\mu - \mu_0}{\sigma_0 / \sqrt{n}}, 1)$$

犯第一类错误的概率为

$P\{|U|>u_{\underline{\alpha}}|H_0$ 真}= $P\{|U_1|>u_{\underline{\alpha}}\}=\alpha$

犯第二类错误的概率 $\beta(\mu)$

$$P_{\mu}\{|U| \le u_{\frac{\alpha}{2}} | H_0 \oplus \} = P\{|U_2| < u_{\frac{\alpha}{2}}\} = \beta(\mu), \mu \ne \mu_0$$

电子科技大学

两类错误

判断 正误	H_0 真	H_1 真
拒绝H ₀	犯第一类错误(弃真)	判断正确
接受 H_0	判断正确	犯第二类错误(纳伪)

不可能使两类错误同时都尽可能小! 减小一类错误,必然使另一错误增大.

例8.1.1 在一次社交聚会中,一位女士宣称 她能区分在熬好的咖啡中,是先加奶还是先 加糖,并当场试验,结果 8 杯中判断正确 7 杯.但因她未完全说正确,有人怀疑她的能力! 该如何证明她的能力呢?

在场的一位统计学家给出了如下的推理思路: 设该女士判断正确的概率为p

原假设 H_0 : p=1/2 即该女士凭猜测判断,

对立假设 H_1 : p>1/2 即该女士确有判断力.

在假设 H_0 下,8杯中猜对7杯以上的概率为 0.0352 (用二项分布计算).

若H₀正确,则小概率事件发生!

— 故拒绝 H_0 , 即认为该女士确有鉴别能力.

例 8.1.2 工厂生产的工件直径标准为 μ_0 =2 (cm),现从采用新工艺生产的产品中抽取出 100个,算得直径 $\bar{x}=1.978$ (cm),问 \bar{x} 与 μ_0 的差异是否反映了工艺条件的改变引起工件 直径发生了显著的变化? (已知 $\sigma=\sigma_0=0.1$).

解 用X 表示新工艺生产的工件直径总体, 设 $X \sim N(\mu, \sigma^2)$. $X_1, X_2, ..., X_n$ 是总体X 的样本

提出统计假设

 $H_0: \mu=2$; (原假设), $H_1: \mu\neq\mu_0=2$ (备择假设)

原假设H。相当于"新工艺对工件直径无显著

影响"

若H。成立,则有 标准化

$$U = \frac{\overline{X} - 2}{\sigma_0 / \sqrt{n}} \sim N(0,1)$$

$$P\left\{\left|\frac{\bar{X}-2}{\sigma_0/\sqrt{n}}\right| \leq u_{\alpha/2}\right\} = 1-\alpha, (\alpha = 0.05)$$

$$P\{\left|\frac{\bar{X}-2}{\sigma_0/\sqrt{n}}\right| > u_{\alpha/2}\} = \alpha, 小概率事件$$

$$|u| = \left| \frac{\bar{x} - 2}{\sigma_0 / \sqrt{n}} \right| = \frac{|1.978 - 2|}{0.1/100} = 2.2 > 1.96,$$

小概率事件在一次试验中竟发生,无理由接受原假设 H_0 ,即认为新工艺对工件有显著的影响.

#

例8.1.3 某车间有一台葡萄糖自动包装机,额定标准为每袋重500克.设每袋产品重量 X~N(μ,15²),某天开工后,为了检验包装机工作是否正常,随机取得9袋产品,称得重量数据为(单位:克):

497	506	518	524	498	511	520	515	512
-----	------------	-----	-----	-----	-----	-----	-----	-----

问: 这天包装机是否工作正常?

分析: 设 $X_1, X_2, ..., X_n$ 是总体X的样本,若 $\mu = 500$

(克),则包装机工作正常,否则认为不正常.

第一步 根据实际问题提出一对假设

$$H_0$$
: $\mu = 500 = \mu_0$; H_1 : $\mu \neq \mu_0$;

若拒绝 H_0 ,表明包装机工作很可能不正常; 否则,可认为包装机工作正常.

第二步 构造适当的检验统计量.

由于 \overline{X} 是 μ 的良好估计量,且 $\sigma_0^2=15^2$,当

 H_0 成立时,有

$$U = \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} = \frac{\overline{X} - 500}{\sigma_0 / \sqrt{n}} \sim N(0,1),$$

第三步 确定出 的拒绝域

对给定的显著水平 $\alpha(0<\alpha<1)$,由正态分布表可查得 $u_{\alpha/2}$,使得

$$P\{ \mid U \mid > u_{\alpha/2} \} = \alpha$$

即

$$P\{\mid U\mid \leq u_{\alpha/2}\}=1-\alpha$$

于是H。的拒绝域为

$$(-\infty, -u_{a/2}) \cup (u_{a/2}, +\infty)$$

第四步 做出结论判断.

对给定的样本值 x_1, \ldots, x_n ,算出U的统计值

$$u = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}}$$
, 其中 $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$

若 $|u|>u_{\alpha/2}$ 则拒绝 H_0 (而接受 H_1); 否则接受 H_0 .

因若原假设 H_0 成立,小概率事件 $P\{|U|>u_{\alpha/2}\}=\alpha$ 发生,有理由怀疑原假设 H_0 是错误的.

若取 α =0.05, 查表得: $u_{\alpha/2}$ =1.96, 由样本可算得:

$$|u| = |\frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}}| = \frac{|511 - 500|}{15/3} = \frac{11}{5} = 2.2,$$

由于 |u|=2.2>1.96,故在显著性水平 $\alpha=0.05$ 之下拒绝 H_0 ,即认为包装机工作不正常.

例8.1.4 某系统中装有1024个同类元件,对系统进行一次周期性检查,更换了其中18个元件,是否可认为该批元件的更新率p为0.03.($\mathbf{N}\alpha=0.01)$

- 解 1) 需检验 H_0 : p=0.03; H_1 : $p\neq0.03$ 。
- 2) 用Y表示1024个元件中需更换的个数, 若 H_0 为真,则有

 $Y \sim B$ (1024, 0.03)

由D—L中心极限定理知

$$U = \frac{Y - np}{\sqrt{np(1-p)}} \sim N(0, 1)$$

近似成立.

3) 对给定 α (0 < α < 1), 有

$$P\{|U| \ge u_{\underline{\alpha}}\} = P\{\left|\frac{Y - np}{\sqrt{np1 - p}}\right| \ge u_{\underline{\alpha}}\} \approx \alpha$$

当 α =0.01, $u_{\alpha/2}$ = $u_{0.005}$ =2.575, H_0 的拒绝域为

$$(-\infty, -2.575) \cup (2.575, +\infty).$$

4) 统计量U的统计值

$$u = \frac{y - np}{\sqrt{np(1-p)}} = \frac{18 - 1024 \times 0.03}{\sqrt{1024 \times 0.03 \times 0.97}} = -2.330,$$

 $-2.330 \in (-2.575, 2.575),$

无理由拒绝 H_0 ,即在 $\alpha=0.01$ 的显著性水平下,可认为元件更新率为0.03.

若取 $\alpha=0.05$, $u_{\alpha/2}=u_{0.025}=1.96$, 则因

- 2.330 ∉ (- 1.96, 1.96) 无理由接受H₀,

即认为更新率不是0.03.

