WX Automator

Alex Dering

What is WX Automator?

 WX Automator is a Python program I wrote to automate the collection of weather data at each utility pole.

- To run WX Automator, you need the following three files:
 - CSV of time points (.dxf file exported to .csv file)
 - CSV of pole points
 - CSV/XLSX of weather data

How do I use WX Automator?

- Time points CSV
 - Open the .dbf file in Global Mapper (probably called export mission.dbf)
 - Export it as a CSV file and make sure your export options match the image (File > Export > Export Vector/Lidar Format > CSV)
 - Must have columns X, Y, and TIME
- Pole points CSV
 - You should be given this, it is just a list of poles in PNEZD format
 - Must have columns Northing and Easting
- Weather data file
 - This is a file containing detailed weather data recorded every minute

CSV Export Options X

Options Tiling Export Boun	ıds
Field Separator	
	Semicolon (;)
	Tab
0,	100
Coordinate Precision	
Use Default Precision I	
Use Specific Number of	of Decimal Digits: 3
Coordinate Formatting	
Export Area and Line F	Features (Use WKT Coordinate Format)
Include Elevation Value	ies for Each Point (If Available)
Write Elevation Co	olumn Before XY Columns
Export Separate Lat/Lo	on Coordinates for Each Point
Format Lat/Lon Coordin	inates with Position Display Format
Use Comma for Decim	nal Separator
ADVANCED: Export E	CEF (Earth-Centered Earth Fixed)
Export MGRS String for	r Each Point
Coordinate Column Names	5
X / Easting / Longitude:	X
Y / Northing / Latitude:	Y
Z / Elevation:	ELEV
Attribute/Field Options	
✓ Include Column Names	s in First Row of File
✓ Include Attribute Value	
Use UTF-8 Encoding for	for Text Values
Ose of the Elicoding i	
=	vith Feature Description if Applicable
=	
Add LAYER Column wi	
Add LAYER Column wi	

Running WX Automator

- 1. Run the file. Open up a terminal, and type python 'path/to/wx_automator_v1.py', then hit enter. Read the start menu then press enter to proceed.
- 2. **Select files.** Once you press enter you will be asked to select the files. First, open your 'time points.csv' file then select your 'poles.csv'.
 - This may not be the actual file names, make sure you don't have either file open when you run the program.
- 3. **Select time range.** Use the sliders and information on the display to select your desired time range to use for the nearest neighbor algorithm.
 - This can help improve the accuracy by ignoring unnecessary parts of the path.
- 4. **Select the weather data file.** Select the file containing your weather data (*.xlsx,*.csv). Make sure the file contains columns: Time, Temp Out, Wind Speed, and Wind Dir
- 5. **Analyze the output.** Read the final output. Check for error messages. Inspect the three output files and make sure the data appears consistent.

Step 1: Run the file

- > cd "path/to/wx automator v1.py"
- > python wx automator v1.py

```
)####)
   =#########
                                               ###-
   =########
                                               ###*
                            ##############
   =########-
                                      : ]####
                                               ###+
                                                                    +####1:)#
   =#########
                                         ###
                                               ###+
                                                                             -]=[} +### +########
                -###############
   =########>
                                  }####
                                          ##
                                               ###+
                                                     ###<
   =###########
                                          ##
                                               ###+
   =###########
   WX ~ [ Automator ] ~ 2024
   @author alex.dering
[ Welcome ]
.... If you already know what you're doing just press ENTER,
.... otherwise please consult the README.txt file before proceeding.
.... WARNING: Please close all files that you are passing to the program before running
                     Press ENTER to proceed...
```

Step 2: Select files Time points, pole points

Select time points CSV file

Step 3: Select time range

Earliest/Latest = Minimum/Maximum possible time

```
Poles.csv, columns ['Easting', 'Northing', 'Point Number']
[134/134]
time points.csv, columns ['X', 'Y', 'TIME']
 [50000/1067242]
 100000/1067242]
 [150000/1067242]
 200000/1067242]
                          Select Time Range
                                                                                          X
 250000/1067242]
 300000/1067242]
                          Earliest Time: 10:42:28
 [350000/1067242]
                          Latest Time: 12:11:19
 400000/1067242]
 450000/1067242]
                                                 227073
                          Start Time:
 500000/1067242]
 550000/1067242]
                                              # of seconds since Sunday at 12:00:00 AM
                                                                                   230756
 [600000/1067242]
                          End Time:
 650000/1067242]
 700000/1067242]
                          11:04:33 Selected start time (24 hr)
 750000/1067242]
                          12:05:56 Selected end time (24 hr)
 800000/1067242]
 850000/1067242]
                           Submit
 [900000/1067242]
 950000/1067242]
 1000000/1067242]
```

[1050000/1067242] [1067242/1067242]

Step 4: Select weather data

Time, Temperature, Wind Speed, and Wind Direction required columns (*.xlsx, *.csv)

Step 5: Analyze output

Check the output files and verify data consistency

```
Time Out (F) Speed (mph)
                                Dir
    10:12 a
                            0.0
    10:13 a
                            0.0 ---
    10:14 a
               75.2
                            1.0
                                  W
               75.3
    10:15 a
                            2.0
    10:16 a
               75.5
                            3.0 SSW
121 12:13 p
               83.5
                            2.0
122 12:14 p
               83.5
                            2.0 SSE
123 12:15 p
               83.6
                            4.0 WNW
124 12:16 p
               83.6
                            2.0
                                 SW
125 12:17 p
               83.6
                            2.0
                                  W
[126 rows x 4 columns]
Could not convert string, could not convert string to float: '---', to float, skipping row...
           COMPLETE .....
  ....Previewing dataframe....
      point number
                   northing
                                easting elevation
                                                        time x formatted time
                                                                               out
                                                                                    speed dir
                 934143.73
                            576426.71
          115000
                                             0.0 11;31;37 AM
                                                                   11:31 AM 81.5
                                                                                    2.0 SW
          115001 934164.37 576429.77
                                                 11;31;37 AM
                                                                   11:31 AM 81.5
                                                                                    2.0 SW
                                             0.0
          115007
                 933358.90
                            576316.55
                                                 11;31;29 AM
                                                                   11:31 AM 81.5
                                                                                    2.0
                                                                                         SW
          115008 933158.50 576291.69
                                                 11;31;27 AM
                                                                   11:31 AM 81.5
                                                                                    2.0
                                                                                         SW
          115009
                  932965.84
                            576268.80
                                                 11;31;25 AM
                                                                   11:31 AM
                                                                            81.5
                                                                                    2.0
                                                                                         SW
                                             . . .
                                                          . . .
                                                 11;51;19 AM
          115121
                  914689.35
                            576191.30
                                             0.0
                                                                   11:51 AM
120
                                                                             82.4
                                                                                    2.0
                                                                                         NE
121
          115131
                  914146.24
                            576450.99
                                                 11;51;12 AM
                                                                   11:51 AM
                                                                            82.4
                                                                                    2.0 NE
                                             0.0
122
          115128
                  918639.42 573005.50
                                             0.0 11;45;22 AM
                                                                   11:45 AM 82.0
                                                                                    2.0
                                                                                        NW
                 918595.72 572488.64
                                             0.0 11;45;16 AM
123
          115129
                                                                   11:45 AM 82.0
                                                                                    2.0
                                                                                         NW
124
          115130 918549.00 571946.86
                                             0.0 11;45;09 AM
                                                                   11:45 AM 82.0
                                                                                    2.0 NW
[125 rows x 9 columns]
```

Input File Format

Time points: Header with at least X, Y, and TIME

A	А	В	C	D	Е	F	G	Н		J
1	X	Υ	TIME	NORTH_VE	EAST_VEL	DOWN_VEI	ROLL	PITCH	HEADING	ELEVATION
2	600595.6	969116.52	225748.01	2,3098	-2.0347	0.8792	-1.6581	0.1588	143.2147	428.545
3	600595.64	969116.49	225748.01	2.2808	-2.0793	0.8739	-1.652	0.1447	144.5669	428.56
4	600595.32	969115.9	225748.02	2.2411	-2.1267	0.8631	-1.6472	0.1264	146.1066	428.48
5	600595.35	969115.87	225748.02	2.2496	-2.1222	0.8569	-1.6226	0.1142	146.0994	428.494

Pole points: Header with at least Northing and Easting

A	A	В	c	D	E		
1	Point Number	Northing	Easting	Point Elevation	Raw Description		
2	115000	934160.6997	576311.3581	388.6509	TOP		
3	115001	934185.3221	576288.1816	387.2827	TOP		
4	115002	934047.8185	576146.5725	406.903	TOP		
5	115003	934026.9803	576169.3256	394.246	TOP		
6	115004	933883.349	576015.4146	422.2539	TOP		

Ideal WX Formatting (eg. 24003809 - ORU)

<u>Weather data (WX):</u> The program is reading columns 1, 2, 7, and 8 by default. These columns **MUST** be Time, Temp Out, Wind Speed, and Wind Direction.

- "Time" column must be named as such (ignores case)
- All other column names do not matter as long as the data is in the aforementioned columns

	0	1	2	3	4	5	6	7	8
4	А	В	С	D	Е	F	G	Н	1
1			Temp	Hi	Low	Out	Dew	Wind	Wind
2	Date	Time	Out	Temp	Temp	Hum	Pt.	Speed	Dir
3	10/3/2023	12:04 PM	22	22	22	69	16	0.4	SSE

Some more notes:

- Notice the time column format. This is fine, the program will parse it and read it as a time
- Notice the blank/null values in the Temp and Wind Dir columns (---). This is also fine, the program ignores values of the wrong type.

program ignores values or the mong type.										
1										
Column9 -										
Wind										
Dir										
222										
W										
S										

All acceptable time formats:

- **H:M** [24 hour]
- *H:M:S* [24 hour]
- H:M am/pm
- H:Mam/pm
- H:M:S am/pm
- H:M:Sam/pm
- H:M a/p
- H:Ma/p

Bad WX Formatting (eg. 23012083 - Georgia Power)

File headers are completely different than expected

2240482.19

2240578.27

2240593.46

1349908.33

1349781.71

1349742.92

2023040091 Grady Klondike WX

185676

10953 102B

227280 102C

5

3 From Structure | From Structure From Easting

331

Columns are also not in the correct positions in the Excel file

4	185676	331	2240482.19	1349908.33						
5	10953	102B	2240578.27	1349781.71						
6	227280	102C	2240593.46	1349742.92						
7	10969	102A	2240629.46	1349745.84						
0	10000	102	כר מחדחוורר	12/0675 27	าววางก	1020				
	0	1	2	3	4	5	6	7	8	
	A	В	C	D	E	F	G	Н	I I	J
1	2023040091_Gr	ady_Klondike_WX				100				
2										
3	From Structure	From Structure Fr	om Easting	From Northing	To Structure ID	To Structure Number	To Easting	To Northing	DATE CST	TIME CST

9/30/2023

9/30/2023

9/30/2023

13:05

13:04

13:04

From Northing To Structure ID To Structure Number

Point Popper

What is point popper?

- Point popper is another Python program I wrote to chop down the trajectory data and organize it into a CAD points file
- When you run it, select your full trajectory CSV file then specify the interval at which to take rows
- To run point popper all you need is the CSV file of the trajectory data

Common Issues

WX Automator

- Make sure your poles file has a header with columns Easting, Northing, and Point Number
- Make sure the time points file has a header with columns X, Y, and TIME
- In order to make this program as useful as possible we should try to standardize the format of the data files

Point Popper

Make sure there is a header row

 Make sure the Excel file is closed before running

Demonstration