Transfer Learning

A quick overview

Roberto Souza Assistant Professor Electrical and Computer Engineering Schulich School of Engineering

October 2021

Outline

Learning Goals

Deep Learning Recap

Data Normalization

Transfer Learning

Summary

Learning Goals

Refresh the basic ideas behind transfer learning

Get an overview of different data normalization strategies

 Learn how to employ transfer learning in image classification problems

- Alternated stack of linear and non-linear operations
- Non-linear operations that come immediately after a linear operation are called "activations"
- The activation at the end of the network determines if the model is a regression or classification network
- You can have two consecutive non-linear operations
- Two consecutive linear operations often do not make sense

$$C = A \times B \rightarrow Equivalent linear operation$$

$$Y = A \times B \times X$$

X →Input

Y → Output

A → Linear operation

B → Linear Operation

Linear model

Non-linear models allow you to get more complex decision boundaries.

- 1. Data
- Model
- 3. Cost function or loss or objective

Fit the data to the model by minimizing your cost function.

- Gradient descent optimization of the cost function
 - Linear and non-linear operations need to be differentiable
- Compute the gradient across the training set (the whole set or mini-batches)
- Update the model weights by giving a step in the opposite direction (i.e., minimize the cost)
- Compute the average cost function in the train and validation sets after each epoch

Activations

$$| ReLU(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$\tanh(x) = \frac{e^{2x}-1}{e^{2x}+1}$$

ELU(x) =
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

Activations - ReLU

$$ReLU(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$\frac{dReLU(x)}{dx} = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$

Activations - Softmax

$$softmax(\vec{z}) = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$$

- Softmax converts a real vector to a vector of categorical probabilities.
- The elements of the output vector are in range (0, 1) and sum to 1.
- Softmax is often used as the activation for the last layer of a classification network -> results are interpreted as a probability distribution.

Deep Learning Intuition Summary

 Deep learning models alternate between differentiable linear and non-linear operations

 Deep learning models are fit (i.e., trained) to the data by minimizing a cost function using gradient descent methods

There are many potential non-linear operations

 ReLUs are commonly used due to their computational simplicity and simple derivative

Data Normalization

Data Normalization

 Reduce the influence of the different feature's scales (e.g., distance-based model where features have very different scales)

Improves model training

 Need to be mindful of your data scale and your network output activation scale

Sample-wise Min-max (statistics of the training set)

$$X_{train} = \frac{X_{train} - \min(X_{train})}{\max(X_{train}) - \min(X_{train})}$$

$$X_{val} = \frac{X_{val} - \min(X_{train})}{\max(X_{train}) - \min(X_{train})}$$

$$X_{test} = \frac{X_{test} - \min(X_{train})}{\max(X_{train}) - \min(X_{train})}$$

Sample-wise Standardization (statistics of the training set)

$$X_{train} = \frac{X_{train} - \text{mean}(X_{train})}{std(X_{train})}$$

$$X_{val} = \frac{X_{val} - \text{mean}(X_{train})}{std(X_{train})}$$

$$X_{test} = \frac{X_{test} - \text{mean}(X_{train})}{\text{std}(X_{train})}$$

Sample-wise (statistics of the sample)

Min-max:

$$X[i,:] = \frac{X[i,:] - \min(X[i,:])}{\max(X[i,:]) - \min(X[i,:])}$$

Standardization:

$$X[i,:] = \frac{X[i,:] - \operatorname{mean}(X[i,:])}{\operatorname{std}(X[i,:])}$$

Other Normalization Strategies

- Batch Normalization
- Layer Normalization
- Output normalization

https://keras.io/api/layers/normalization_layers/

Data Normalization Summary

- Normalization is an essential step for properly training neural networks, special when you have features with different scales
- Three main types of normalization:
 - Sample-wise normalization based on the statistics of all features in the training set
 - Sample-wise normalization based on the statistics of the sample
- There is not one definite normalization method.

Transfer Learning

Transfer Learning

 Transfer learning is the process of adapting a representation learned while solving one problem and adapting this representation to a different but related problem.

 It is very useful when you do not have large amounts of data to train your model from scratch.

 This Keras tutorial is highly recommended: https://keras.io/guides/transfer_learning/

Transfer Learning Intuition

Lasagna or endocarditis?

Transfer Learning

- Use a model pre-trained for a different task and:
 - Freeze the feature learning layers and re-train the classifier on new data
 - Then, unfreeze the feature learning layers and retrain them along with the classifier using a small learning rate

Which model to use?

- ImageNet is a large scale object classification challenge
- >14,000,000 annotated images
- >20,000 classes

In 2012 teams started using graphics processing units (GPUs)

VGG16 (2014)

ResNet (2015)

EfficientNet (2019)

Summary

 Transfer learning is a powerful technique for situations where your dataset has too little data to train a full-scale model from scratch

 It relies on the assumption that the representation that you learned for one problem will be useful for a separate but related problem

- Full list of Imagenet pre-trained models available on Keras:
 - https://keras.io/api/applications/

Thank you!

