

Introduction

- History
- Guidelines for Effective Maintenance
- SCADA System Basics
- Maintenance of Field Devices
- Maintenance of PLCs
- Maintenance of Computers
- SCADA System Life Cycle Replacement
- Maintenance Tools/Software
- Q&A

- NFPA 70B Recommended Practice for Electrical Equipment Maintenance
 - Developed originally in 1968
 - Current Edition: 2013
 - Purpose: ".....to reduce hazards to life and property that can result from failure or malfunction of industrial-type electrical systems and equipment." (NFPA 70B, 1.2)

History

- Causes of electrical equipment failure
 - Excessive heat
 - Lack of ventilation/cooling
 - Build-up of dirt, dust, contaminants
 - High equipment loads
 - Frequent cycling
 - Deterioration of materials
 - Corrosive or damp environment
 - Temperature swings
 - Excessive heat and/or loading
 - Infrequent use

Guidelines for Effective Maintenance

- Develop an Electrical Preventive Maintenance (EPM) program
- Essential elements
 - Identify qualified personnel
 - Determine maintenance requirements, priorities, and budget
 - Develop scheduled inspection, testing, and service of equipment
 - Identify and perform corrective work
 - Document results of inspection, testing, and work performed
- Goals of an effective EPM program
 - Maximize personnel safety

- Minimize equipment loss
- Maximize production economics

Guidelines for Effective Maintenance

- Maintain adequate spare parts inventory
 - Critical components
 - Continuously operating equipment
 - Equipment without redundancy
 - Obsolete, unsupported, or proprietary equipment
 - Parts no longer available
 - Hardware incompatible with current software
 - Long lead time equipment
 - Volatile pricing

Maintenance of Electrical Field Devices

- Motor Control Centers
 - Suction/Cloth Cleaning
 - Annually
 - Increases longevity/life of sensitive electronics by reducing heat
 - Thermal scanning
 - Annually
 - "Hot spots" show potential locations for fire/ignition to occur
 - Excessive heat breaks down conductor insulation, reducing life
 - Bolted bus and wire connections should be scanned
 - Circuit breaker inspection and exercise
 - Every 1-3 years, depending on type and use
 - Physical breaker operation
 - Trip overloads if breaker-style allows
 - Check for excessive heating, discoloration, cracking
 - Thermal scan can identify unbalanced loads

Maintenance of Electrical Field Devices

- Motor Control Centers Failure Scenario
 - Premature failure of Motor Control Center (i.e. WWTP or Well)
 - Dirt accumulation and lack of ventilation caused increased heat build-up and premature failure of main circuit breaker
 - Outage occurs on Sunday afternoon
 - Overtime labor to respond to alarm
 - Operation of standby generator (diesel fuel) during outage
 - Expedited manufacture, shipping, delivery, and installation costs
 - EPM would have identified "hot spot" and lack of ventilation
 - Planned outage could be performed during normal working hours
 - Equipment life extended
 - Lower repair cost

Maintenance of Electrical Field Devices

- Motor starters
 - Annually
 - Suction/Cloth Cleaning
 - Verify/test overload tripping
 - Check for loose connections and signs of overheating

- Annually
 - Suction/Cloth Cleaning
 - Check for loose connections and signs of overheating
 - Check current and voltage output
 - Verify control/reference signals
 - Follow manufacturer's recommendations

Maintenance of Electrical Field Devices

- Motor Starters Failure Scenario
 - Variable Frequency Drive Failure
 - One of the VFD cooling fans fails
 - Increased heat inside VFD cabinet
 - VFD replacement required before end of life
 - Unit out of service, could be as long as several months (reduced capacity)
 - EPM would have found inoperable cooling fan
 - Equipment life extended

Maintenance of Electrical Field Devices

- Pressure transducers
 - Annually, depending on manufacturer
- Flowmeters
 - Propeller
 - Annually
 - Magnetic
 - 3-5 years. Typically has to be returned to the manufacturer

- Submersible
 - Annually
- Ultrasonic
- Annually
- Analytical instruments
 - Chlorine residual
 - Monthly, quarterly, and annually
 - Fluoride residual
 - Monthly, quarterly, and annually
- Scales
 - Annually
- Chemical leak detection
 - Monthly

Maintenance of Electrical Field Devices

- Instrumentation Failure Scenario
 - Well pump flowmeter calibration drifts
 - Flow pacing of chemical feed could be excessive or inadequate
 - High flow readings may give false indication of water loss
 - WWTP influent flowmeter calibration drifts
 - Flow pacing of chemical feed could be excessive or inadequate
 - Flow paced operation of equipment may be affected
 - Samplers, RAS Pumps, etc
 - Undesirable conditions may occur in treatment process
 - Too few samples, low sludge blanket, etc

- EPM would have maintained proper calibration
 - Production/treatment errors minimized

Maintenance of PLCs

- Check normal operation
 - Monthly
 - Verify I/O for each card regularly (annually)
 - Check wiring for excessive heat and loose connections (annually)
- Memory Modules/EEPROMs
 - Annually, more often as needed
 - Download to device after all program changes
 - Periodic simulation to reload program from memory device
 - Maintain spare for critical locations

Maintenance of PLCs

- PLCs Failure Scenario (memory module)
 - Utility switching creates high voltage condition
 - PLC Fault Occurs
 - Memory module has "old" PLC program
 - Plant controls adversely affected
 - Service call required from SCADA system supplier

Maintenance of PLCs

- PLCs Failure Scenario (UPS battery)
 - Natural utility power fluctuation
 - UPS on-line intermittently
 - Battery at end of life, doesn't function properly
 - PLC sees loss of power, reloads program from memory module
 - Setpoints "magically" change
 - Last time program was saved to memory module

Maintenance of Computers - Physical

- Location of Computer
 - Not on floor
 - Adequate airflow don't cover!
 - Physical orientation
 - Vertical towers installed vertically, same with horizontal desktops, to keep hard drive mounted flat
 - Installing improperly can cause failure in as little as 2 years, due to improper stress on hard drive bearing
 - Not subject to dust/dirt, which create excessive heat
 - Heat is computer's greatest enemy
 - Just 0.005 mm of dust (barely enough to see) can raise internal temperature of components by 5%!
 - Verify compliance/requirements of manufacturer's warranty

Maintenance of Computers - Physical

- Cleaning
 - Internal components, fans, openings
 - Bi-annually, more if adverse environment
 - Use suction cleaning to extent possible
 - Can of air for inaccessible locations
 - Verify compliance/requirements of manufacturer's warranty (some are voided when case is opened)
 - Verify power is off and proper grounding
 - Monitor
 - Every two years
 - Clean dirt/dust off ventilation/openings
 - Keyboard
 - Use suction cleaning to extent possible, then can of air
 - Purchase "in-use" cover for dirty/dusty locations

Maintenance of Computers - Operational

- REBOOT, REBOOT, REBOOT
 - SCADA Computers typically in operation 24/7
 - "Flushes" computer's Random Access Memory (RAM)
 - Memory used "as-needed" by operating programs
 - Inefficiencies of Windows operating system does not release all memory in use
 - Can cause computer to operate very slowly over time
 - Can cause files to become corrupt and loss of data
 - Perform reboot <u>MINIMUM</u> of twice/month, preferably weekly
 - Alleviates most operational problems

Maintenance of Computers - Security

- SCADA System Security
 - Follow recommendations of Vulnerability Assessment (VA) and Anti-Terrorism guidelines
 - SCADA Computers <u>NOT</u> recommended to be connected to Internet
 - Run anti-virus software manually
 - Can interfere with SCADA programs
 - Update anti-virus definitions, minimum monthly
 - Firewall should be configured if computer has remote access via dial-up or internet
 - Will need to be configured to run with SCADA software

Maintenance of Computers - Security

- Usernames and Passwords should be setup for Operating System <u>and</u> SCADA HMI software
 - Independent usernames
 - Auto-logoff after period of inactivity
- Passwords should be "strong" passwords
 - Mixed upper and lower case, numbers, symbols
 - Minimum of 8 characters
 - Fewer than 8 characters can be cracked in a matter of days
 - Example: Wtr\$caDa23
- Change passwords regularly
 - Minimum of 3 times per year

Maintenance of Computers – Data Management

- Historical and Reporting Data
 - Store on hard disk as long as operationally useful
 - Excessive data can cause computer to slow down and lock-up
- Data Back-up and Archiving
 - Back-up data as frequent as necessary
 - For what time period can you accept a loss of data?
 - Is there redundant data storage?
 - Minimum recommendation for back-up is monthly
 - Archive data periodically for off-site storage
 - Catastrophic loss (i.e. fire, lightning strike, etc)
 - Use two different mediums (i.e. compact disc, hard drive, cloud)
 - Use built-in back-up utilities if available within software packages (i.e. reporting software)

Maintenance of Computers - Software

- Licensing and Support Contracts Windows software
 - Microsoft life-cycle varies, 3-10 years
 - 5 years of mainstream support
 - 5+ years of expended support
 - Updates, patches, downloads available to licensed users throughout life cycle
 - May or may not be beneficial to end-user
 - May be required to be compatible with new software
- Licensing and Support Contracts HMI software
 - Quarterly software updates
 - Annual support contracts
 - Annual support cost ~15-20% of initial software purchase
 - Equates to re-purchase of software ~5-6 years
 - Includes Technical support from software manufacturer
 - May or may not be beneficial to end-user
 - Valuable if computer/operating system is replaced frequently

Maintenance of Computers – Operating System

- Regular Computer Maintenance Recommended
 - Remove unused programs/software
 - Annually
 - May be removed if pre-installed with computer

- Free-up wasted space using Windows Disk Clean-up tool
 - Quarterly
 - Removes temporary files, compressed files, old files, and empties recycle bin
- Run Windows Disk Defragmenter regularly
 - Quarterly
 - Optimizes storage of files within Windows, allows computer to run more efficiently

SCADA System Life Cycle Replacement

- Computer replacement recommended every 3-5 years
 - Manufacturer's warranty can be 3-5 years
 - Parts may be unavailable after 3 years
 - Software may not be supported after 5 years
 - Catastrophic failure more likely after 3 years, increased after 5 years

- Computer replacement warrants hardware and software replacement
 - New OS not compatible with old versions of HMI or reports
 - New/existing hardware not compatible with earlier software
 - Earlier versions of software may no longer be supported
 - New software = more efficient, new/enhanced features

0

SCADA System Life Cycle Replacement

- PLCs, VFDs, and Instrumentation, 10-15 year expected lifetime
 - Parts may be unavailable after 10 years
 - Hardware may no longer be supported after 10 years
 - Catastrophic failure more likely after 10 years, increased after 15 years
 - Wiring and I/O can typically be reused
 - Earlier replacement means increased chance of re-using existing programming
- Electrical wiring replacement recommended after 30 years
 - Insulation degrades and becomes brittle
 - Increased chance of fire, shorting, ground faults, and damage to equipment
 - Equipment vibration can cause loose connections, creating hot-spots

Summary

- Electrical systems/equipment require maintenance!
- Key to maximizing safety, maximizing economics, and reducing down-time is an effective EPM
- Standards/guidelines are available as a resource
- Utilize SCADA and maintenance software as a tool

Reference Materials

- NFPA 70B Recommended Practice for Electrical Equipment Maintenance
- NEMA Standards Publication AB 4-2009
- Eaton Electrical Corporation, Publication No. MZ01220001E
- Microsoft (<u>www.microsoft.com</u>), Computer Setup and Maintenance
- PC World (<u>www.pcworld.com</u>), Hardware Tips: Complete PC Preventive Maintenance Guide

