

=> d his

(FILE 'HOME' ENTERED AT 09:55:46 ON 29 DEC 2003)

INDEX 'ADISCTI, ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, AQUASCI, BIOPBUSINESS, BIOCOPMERCE, BIOSIS, BIOTECHABS, BIOTECHDS, BIOTECHNO, CABA, CANCERLIT, CAPLUS, CEABA-VTB, CEN, CIN, CONFSCI, CROPB, CROPU, DISSABS, DDFB, DDFU, DGENE, DRUGB, DRUGMONOG2, ...' ENTERED AT 09:56:14 ON 29 DEC 2003

SEA EPIMERASE AND REDUCTASE

8 FILE AGRICOLA
1 FILE ANABSTR
3 FILE AQUASCI
2 FILE BIOPBUSINESS
96 FILE BIOSIS
21 FILE BIOTECHABS
21 FILE BIOTECHDS
52 FILE BIOTECHNO
12 FILE CABA
3 FILE CANCERLIT
218 FILE CAPLUS
2 FILE CEABA-VTB
12 FILE DISSABS
2 FILE DDFU
171 FILE DGENE
2 FILE DRUGU
1 FILE EMBAL
59 FILE EMBASE
44 FILE ESBIOBASE
1 FILE FEDRIP
3 FILE FSTA
662 FILE GENBANK
29 FILE IFIPAT
2 FILE JICST-EPLUS
34 FILE LIFESCI
104 FILE MEDLINE
1 FILE OCEAN
12 FILE PASCAL
2 FILE PROMT
97 FILE SCISEARCH
47 FILE TOXCENTER
270 FILE USPATFULL
9 FILE USPAT2
27 FILE WPIDS
27 FILE WPINDEX

L1 QUE EPIMERASE AND REDUCTASE

FILE 'USPATFULL, CAPLUS, MEDLINE, SCISEARCH, BIOSIS, EMBASE, BIOTECHNO, TOXCENTER, ESBIOBASE, LIFESCI, IFIPAT' ENTERED AT 09:57:24 ON 29 DEC 2003

L2 88 S L1 AND (BI-FUNCTION? OR BIFUNCTIO?)
L3 72 S L2 AND (ISOLAT? OR PURIF? OR CHARACT?)
L4 60 DUP REM L3 (12 DUPLICATES REMOVED)
L5 5 S L4 AND (GDP-4-KETO-6-DEOXY-D-MANNOSE)

L5 ANSWER 1 OF 5 USPATFULL on STN
ACCESSION NUMBER: 2002:272847 USPATFULL
TITLE: Glycoconjugate and sugar nucleotide synthesis using solid supports
INVENTOR(S): Wang, Peng G., Troy, MI, UNITED STATES
Chen, Xi, Norristown, PA, UNITED STATES

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2002150968	A1	20021017
APPLICATION INFO.:	US 2001-757846	A1	20010110 (9)
DOCUMENT TYPE:	Utility		
FILE SEGMENT:	APPLICATION		
LEGAL REPRESENTATIVE:	Brinks Hofer Gilson & Lione, P.O. Box 10395, Chicago, IL, 60610		
NUMBER OF CLAIMS:	43		
EXEMPLARY CLAIM:	1		
NUMBER OF DRAWINGS:	22 Drawing Page(s)		
LINE COUNT:	2405		

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB This invention relates to methods and compositions for the in vitro production of glycoconjugates. In particular, a preferred production system is provided that comprises a solid support, at least one sugar nucleotide producing enzyme, at least one glycosyltransferase, at least one bioenergetic, and at least one acceptor. The sugar nucleotide producing enzyme(s) is preferably immobilized on the solid support. The glycosyltransferase may be co-immobilized on the solid support with the sugar nucleotide producing enzyme(s), or may be provided to the solid support in solution.

L5 ANSWER 2 OF 5 USPATFULL on STN
ACCESSION NUMBER: 2002:243134 USPATFULL
TITLE: Glycoconjugate synthesis using a pathway-engineered organism
INVENTOR(S): Wang, Peng George, Troy, MI, UNITED STATES
Chen, Xi, Norristown, PA, UNITED STATES
Liu, Ziye, Detroit, MI, UNITED STATES
Zhang, Wei, Detroit, MI, UNITED STATES

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2002132320	A1	20020919
APPLICATION INFO.:	US 2001-758525	A1	20010110 (9)
DOCUMENT TYPE:	Utility		
FILE SEGMENT:	APPLICATION		
LEGAL REPRESENTATIVE:	BRINKS HOFER GILSON & LIONE, P.O. BOX 10395, CHICAGO, IL, 60610		
NUMBER OF CLAIMS:	51		
EXEMPLARY CLAIM:	1		
NUMBER OF DRAWINGS:	22 Drawing Page(s)		
LINE COUNT:	2558		

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB This invention relates to methods and compositions for the production of glycoconjugates. In particular, organisms are provided with at least one heterologous gene encoding an enzyme for regenerating a sugar nucleotide along with at least one glycosyltransferase. Such organisms are useful for the large-scale synthesis of glycoconjugates.

L5 ANSWER 3 OF 5 USPATFULL on STN
ACCESSION NUMBER: 2002:112578 USPATFULL
TITLE: Use of recombinant enzymes for preparing GDP-L-fucose and fucosylated glycans
INVENTOR(S): Renkonen, Risto, Espoo, FINLAND

Mattila, Pirkko, Espoo, FINLAND
Hirvas, Laura, Helsinki, FINLAND
Hortling, Solveig, Helsinki, FINLAND
Kallioinen, Tuula, Vantaa, FINLAND
Kauranen, Sirkka-Liisa, Espoo, FINLAND
Jarvinen, Nina, Saukkola, FINLAND
Maki, Minna, Helsinki, FINLAND
Niittymaki, Jaana, Espoo, FINLAND
Rabina, Jarkko, Helsinki, FINLAND

NUMBER KIND DATE

PATENT INFORMATION: US 2002058313 A1 20020516
APPLICATION INFO.: US 2001-962805 A1 20010926 (9)

NUMBER DATE

PRIORITY INFORMATION: FI 2000-2114 20000926
DOCUMENT TYPE: Utility
FILE SEGMENT: APPLICATION
LEGAL REPRESENTATIVE: CROWELL & MORING LLP, INTELLECTUAL PROPERTY GROUP, P.O.
BOX 14300, WASHINGTON, DC, 20044-4300

NUMBER OF CLAIMS: 44

EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 2 Drawing Page(s)

LINE COUNT: 1818

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Use of recombinant enzymes for the preparation of GDP-L-fucose and fucosylated glycans is disclosed. GDP-L-fucose functions as a fucose donor in the biosynthetic route leading to the fucosylated glycans, which have therapeutic utility. A process for preparing GDP-L-fucose and fucosylated glycans, and means useful in the process are provided. Said means include enzymes, chimeric enzymes, DNA sequences, genes, vectors and host cells. An assay for the determination of GDP-fucose and fucosyltransferase, and a test kit therefore are also provided.

L5 ANSWER 4 OF 5 USPATFULL on STN

ACCESSION NUMBER: 2002:22144 USPATFULL
TITLE: VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS
INVENTOR(S): BERRY, ALAN, BLOOMFIELD, NJ, UNITED STATES
 RUNNING, JEFFREY A., MANITOWOC, WI, UNITED STATES
 SEVERSON, DAVID K., TWO RIVERS, WI, UNITED STATES
 BURLINGGAME, RICHARD P., MANITOWOC, WI, UNITED STATES

NUMBER KIND DATE

PATENT INFORMATION: US 2002012979 A1 20020131
APPLICATION INFO.: US 1999-318271 A1 19990525 (9)

NUMBER DATE

PRIORITY INFORMATION: US 1998-88549P 19980608 (60)
 US 1999-125073P 19990317 (60)
 US 1999-125054P 19990318 (60)

DOCUMENT TYPE: Utility

FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: SHERIDAN ROSS PC, 1560 BROADWAY, SUITE 1200, DENVER,
CO, 80202

NUMBER OF CLAIMS: 72

EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 12 Drawing Page(s)

LINE COUNT: 8483

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB A biosynthetic method for producing vitamin C (ascorbic acid, L-ascorbic

acid, or AA) is disclosed. Such a method includes fermentation of a genetically modified microorganism or plant to produce L-ascorbic acid. In particular, the present invention relates to the use of microorganisms and plants having at least one genetic modification to increase the action of an enzyme involved in the ascorbic acid biosynthetic pathway. Included is the use of nucleotide sequences encoding epimerases, including the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway and homologues thereof for the purposes of improving the biosynthetic production of ascorbic acid. The present invention also relates to genetically modified microorganisms, such as strains of microalgae, bacteria and yeast useful for producing L-ascorbic acid, and to genetically modified plants, useful for producing consumable plant food products.

L5 ANSWER 5 OF 5 CAPLUS COPYRIGHT 2003 ACS on STN
ACCESSION NUMBER: 2000:704879 CAPLUS
DOCUMENT NUMBER: 134:67994
TITLE: Probing the Catalytic Mechanism of GDP-
4-keto-6-deoxy-
D-mannose Epimerase/
Reductase by Kinetic and Crystallographic
Characterization of Site-specific Mutants
AUTHOR(S): Rosano, Camillo; Bisso, Angela; Izzo, Gaetano;
Tonetti, Michela; Sturla, Laura; De Flora, Antonio;
Bolognesi, Martino
CORPORATE SOURCE: Department of Physics and Advanced Biotechnology
Center-IST, INFN, University of Genova, Genoa,
I-16132, Italy
SOURCE: Journal of Molecular Biology (2000), 303(1), 77-91
CODEN: JMBAK; ISSN: 0022-2836 (1304.2000)
PUBLISHER: Academic Press
DOCUMENT TYPE: Journal
LANGUAGE: English
AB GDP-4-keto-6-deoxy-
D-mannose epimerase/reductase is a
bifunctional enzyme responsible for the last step in the
biosynthesis of GDP-L-fucose, the substrate of fucosyl transferases.
Several cell-surface antigens, including the leukocyte Lewis system and
cell-surface antigens in pathogenic bacteria, depend on the availability
of GDP-L-fucose for their expression. Therefore, the enzyme is a
potential target for therapy in pathol. states depending on
selectin-mediated cell-to-cell interactions. Previous crystallog.
investigations have shown that GDP-4-keto-
6-deoxy-D-mannose epimerase
/reductase belongs to the short-chain dehydrogenase/
reductase protein homol. family. The enzyme active-site region is
at the interface of an N-terminal NADPH-binding domain and a C-terminal
domain, held to bind the substrate. The design, expression and functional
characterization of seven site-specific mutant forms of
GDP-4-keto-6-deoxy-
D-mannose epimerase/reductase are
reported here. In parallel, the crystal structures of the native
holoenzyme and of three mutants (Ser107Ala, Tyr136Glu and Lys140Arg) have
been investigated and refined at 1.45-1.60 ANG. resoln., based on
synchrotron data (R-factors range between 12.6 % and 13.9 %). The refined
protein models show that besides the active-site residues Ser107, Tyr136
and Lys140, whose mutations impair the overall enzymic activity and may
affect the coenzyme binding mode, side-chains capable of proton exchange,
located around the expected substrate (GDP-4-
keto-6-deoxy-D-mannose)
binding pocket, are selectively required during the epimerization and
redn. steps. Among these, Cys109 and His179 may play a primary role in
proton exchange between the enzyme and the epimerization catalytic

intermediates. Finally, the addnl. role of mutated active-site residues involved in substrate recognition and in enzyme stability has been analyzed. (c) 2000 Academic Press.

REFERENCE COUNT: 55 THERE ARE 55 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT