Matrices magiques

Dans tout le problème les matrices utilisées appartiennent à $M_3(\mathbb{R})$.

Toute matrice
$$M$$
 de $M_3(\mathbb{R})$ est notée : $M = \begin{pmatrix} a & b & c \\ k & \ell & m \\ r & s & t \end{pmatrix}$.

On appelle $\mathcal B$ la base canonique de $M_3(\mathbb R)$. Elle est formée des matrices :

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_4 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ E_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad E_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad E_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \qquad E_9 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

On peut donc écrire : $M = aE_1 + bE_2 + cE_3 + kE_4 + \ell E_5 + mE_6 + rE_7 + sE_8 + tE_9$.

A une telle matrice on associe les huit nombres :

$$\begin{split} s_1 &= a+b+c \;,\; s_2 = k+\ell+m \;,\; s_3 = r+s+t \;,\\ s_4 &= a+k+r \;,\; s_5 = b+\ell+s \;,\; s_6 = x+m+t \;,\\ s_7 &= a+\ell+t \;\; \text{et} \;\; s_8 = r+\ell+c \;. \end{split}$$

On note :
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

On note:

 \mathcal{S} le sous-espace vectoriel de $M_3(\mathbb{R})$ formé des matrices symétriques,

 \mathcal{A} le sous-espace vectoriel de $M_3(\mathbb{R})$ formé des matrices antisymétriques,

 \mathcal{V} le sous-espace vectoriel de $M_3(\mathbb{R})$ engendré par la matrice J

 ${\mathcal T}$ l'ensemble des matrices pour lesquelles le nombre $s_7(M)$ est nul (matrices de trace nulle).

 \mathcal{M} l'ensemble des matrices magiques de $M_3(\mathbb{R})$ i.e. des matrices dont les 8 nombres s_1, s_2, \ldots, s_8 sont égaux entre eux.

- 1.a Justifier que les sous-espaces vectoriels S et A sont supplémentaires dans $M_3(\mathbb{R})$.
- 1.b Quelles sont les dimensions de S et A?
- 1.c Montrer que $\mathcal T$ est un sous-espace vectoriel de $M_3(\mathbb R)$. Quelle est sa dimension ?
- 2. On considère l'application φ qui, à la matrice $M \in M_3(\mathbb{R})$, associe l'élément $(s_1, s_2, ..., s_8)$ de \mathbb{R}^8 .
- 2.a Montrer que φ est une application linéaire.
- 2.b Ecrire la matrice de φ en rapportant l'espace de départ $M_3(\mathbb{R})$ à la base \mathcal{B} et l'espace d'arrivée \mathbb{R}^8 à sa base canonique notée \mathcal{C} .
- 2.c Montrer que le rang de cette matrice est 7.
 On pourra remarquer que l'une des lignes est combinaison linéaire des autres, puis considérer une combinaison linéaire nulle des autres lignes.
- 2.d En déduire la dimension du noyau de φ .
- 3.a Justifier que \mathcal{M} est un sous-espace vectoriel de $M_3(\mathbb{R})$.
- 3.b Montrer que $\mathcal{M} \cap \mathcal{T}$ et \mathcal{V} sont des sous-espaces vectoriels supplémentaires de \mathcal{M} .

- 3.c En observant que $\mathcal{M} \cap \mathcal{T} = \ker \varphi$, déterminer la dimension \mathcal{M} .
- 4.a Déterminer une matrice de $\mathcal{M} \cap \mathcal{T}$ symétrique dont le coefficient d'indice (1,1) vaut 1.
- 4.b Déterminer une matrice de $\mathcal{M} \cap \mathcal{T}$ antisymétrique dont le coefficient d'indice (1,3) vaut 1.
- 4.c Former une base de \mathcal{M} .
- 5. Montrer qu'il n'existe qu'une matrice magique vérifiant a=1,b=2,c=3 et donner celle-ci.