❤ 深度学习经典检测方法

🖉 two-stage (两阶段): Faster-rcnn Mask-Rcnn系列

Ø one-stage (单阶段): YOLO系列

✓ one-stage:

❷ 最核心的优势:速度非常快,适合做实时检测任务!

❷ 但是缺点也是有的,效果通常情况下不会太好!

Model	Train	Test	mAP	FLOPS	FPS	Cfg	Weights
SSD300	COCO trainval	test-dev	41.2	-	46		link
SSD500	COCO trainval	test-dev	46.5	-	19		link
YOLOv2 608x608	COCO trainval	test-dev	48.1	62.94 Bn	40	cfg	weights
Tiny YOLO	COCO trainval	-	-	7.07 Bn	200	cfg	weights

✓ two-stage:

❤ 指标分析

Ø IOU:

✓ 指标分析

❷ 这几个哥们咱得认识:

$$egin{aligned} Precision &= rac{TP}{TP + FP} \ Recall &= rac{TP}{TP + FN} \end{aligned}$$

已知条件: 班级总人数100人, 其中男生80人, 女生20人。

目标: 找出所有的女生。

结果:从班级中选择了50人,其中20人是女生,还错误的把30名男生挑选出来了。

	相关(Relevant),正类	无关(NonRelevant),负类
被检索到 (Retrieved)	true positives(TP 正类判定为正类,例子中就是正确的判定"这位是女生")	false positives(FP 负类判定为正类,"存伪",例子中就是分明是男生却判断为女生,当下伪娘横行,这个错常有人犯)
未被检索到 (Not Retrieved)	false negatives(FN 正类判定为负类,"去真",例子中就是,分明是女生,这哥们却判断为男生梁山伯同学犯的错就是这个)	

TP = 20; FP = 30; FN = 0; TN = 50;

✓ 指标分析

❷ 检测任务中的精度和召回率分别代表什么?

✅ 指标分析

₫ 基于置信度阈值来计算,例如分别计算0.9; 0.8; 0.7

Ø 0.9时: TP+FP = 1, TP = 1; FN = 2; Precision=1/1; Recall=1/3;

✅ 指标分析

∅ 如何计算AP呢?需要把所有阈值都考虑进来;MAP就是所有类别的平均

- ✓ YOLO-V1

 - ❷ 把检测问题转化成回归问题,一个CNN就搞定了!
 - ❷ 可以对视频进行实时检测,应用领域非常广!

✓ YOLO-V1

❤ 核心思想:

❤ 网络架构

❤ 每个数字的含义:

❷ 当前数据集中有20个类别

♂ 7*7表示最终网格的大小

Ø (S*S) * (B*5+C)

✅ 损失函数:

Cell i中的第j个box对这个

✓ NMS(非极大值抑制)

✓ YOLO-V1

♂ 优点:快速,简单!

∅ 问题1:每个Cell只预测一个类别,如果重叠无法解决

❷ 问题2: 小物体检测效果一般,长宽比可选的但单一

✓ YOLO-V2

❷ 更快! 更强!

	YOLO								YOLOv2
batch norm?		✓	✓	✓	√	✓	✓	✓	√
hi-res classifier?			1	1	1	1	1	✓	✓
convolutional?				1	1	1	1	1	✓
anchor boxes?				✓	1				
new network?					1	1	1	✓	✓
dimension priors?						√	1	✓	✓
location prediction?						✓	✓	✓	✓
passthrough?							1	✓	✓
multi-scale?								✓	✓
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

- ✓ YOLO-V2-Batch Normalization
 - ❷ V2版本舍弃Dropout,卷积后全部加入Batch Normalization
 - ❷ 网络的每一层的输入都做了归一化,收敛相对更容易

 - 从现在的角度来看, Batch Normalization已经成网络必备处理

- ✓ YOLO-V2-更大的分辨率

 - ♂可能导致模型水土不服, V2训练时额外又进行了10次448*448 的微调
 - Ø 使用高分辨率分类器后,YOLOv2的mAP提升了约4%

✓ YOLO-V2-网络结构

Ø DarkNet, 实际输入为416*416

∅ 没有FC层, 5次降采样, (13*13)

₫ 1*1卷积节省了很多参数

Type	Filters	Size/Stride	Output		
Convolutional	32	3 × 3	224×224		
Maxpool		$2 \times 2/2$	112×112		
Convolutional	64	3×3	112×112		
Maxpool	10000	$2 \times 2/2$	56×56		
Convolutional	128	3×3	56×56		
Convolutional	64	1 × 1	56×56		
Convolutional	128	3×3	56×56		
Maxpool	X25000740	$2 \times 2/2$	28×28		
Convolutional	256	3×3	28×28		
Convolutional	128	1 × 1	28×28		
Convolutional	256	3×3	28×28		
Maxpool	348.50	$2 \times 2/2$	14×14		
Convolutional	512	3×3	14×14		
Convolutional	256	1 × 1	14×14		
Convolutional	512	3×3	14×14		
Convolutional	256	1×1	14 × 14		
Convolutional	512	3×3	14×14		
Maxpool		$2 \times 2/2$	7 × 7		
Convolutional	1024	3×3	7 × 7		
Convolutional	512	1 × 1	7 × 7		
Convolutional	1024	3×3	7 × 7		
Convolutional	512	1 × 1	7 × 7		
Convolutional	1024	3 × 3	7 × 7		
Convolutional	1000	1 × 1	7 × 7		
Avgpool Softmax		Global	1000		

✓ YOLO-V2-聚类提取先验框

 \mathscr{O} K-means聚类中的距离: d(box, centroids) = 1-IOU(box, centroids)

✓ YOLO-V2-Anchor Box

❷ 跟faster-rcnn系列不同的是先验框并不是直接按照长宽固定比给定

without anchor	69.5 mAP	81% recall
with anchor	69.2 mAP	88% recall

✓ YOLO-V2-Directed Location Prediction

♂ tx=1,则将bbox在x轴向右移动wp; tx=-1则将其向左移动wp

❷ 这样会导致收敛问题,模型不稳定,尤其是刚开始进行训练的时候

✓ YOLO-V2-Directed Location Prediction

が算公式为: $egin{aligned} b_x &= \sigma(t_x) + c_x \ b_y &= \sigma(t_y) + c_y \ b_w &= p_w e^{t_w} \ b_h &= p_h e^{t_h} \end{aligned}$

Ø 例如预测值(σ tx, σ ty,tw,th)=(0.2,0.1,0.2,0.32), anchor框 $p_w = 3.19275, p_h = 4.00944$

在特征图位置:
$$b_x = 0.2 + 1 = 1.2$$

$$b_y = 0.1 + 1 = 1.1$$

$$b_w = 3.19275 * e^{0.2} = 3.89963$$

$$b_h = 4.00944 * e^{0.32} = 5.52151$$
 在原位置:
$$b_x = 1.2 * 32 = 38.4$$

$$b_y = 1.1 * 32 = 35.2$$

$$b_w = 3.89963 * 32 = 124.78$$

$$b_h = 5.52151 * 32 = 176.68$$

✅ 感受野

∅ 概述来说就是特征图上的点能看到原始图像多大区域

❤ 感受野:

∅ 如果堆叠3个3*3的卷积层,并且保持滑动窗口步长为1,其感受野就是7*7的了, 这跟一个使用7*7卷积核的结果是一样的,那为什么非要堆叠3个小卷积呢?

❤ 感受野

❷ 假设输入大小都是h*w*c,并且都使用c个卷积核(得到c个特征图),可以来计算一下其各自所需参数:

一个7*7卷积核所需参数:

3个3*3卷积核所需参数:

 $= C \times (7 \times 7 \times C) = 49 C^{2}$

 $= 3 \times C \times (3 \times 3 \times C) = 27 C^{2}$

❷ 很明显, 堆叠小的卷积核所需的参数更少一些, 并且卷积过程越多, 特征提取也会越细致, 加入的非线性变换也随着增多, 还不会增大权重参数个数, 这就是VGG网络的基本出发点, 用小的卷积核来完成体特征提取操作。

✓ YOLO-V2-Fine-Grained Features

✓ YOLO-V2-Multi-Scale

最小的图像尺寸为320 x 320

最大的图像尺寸为608 x 608

✓ YOLO-V3

Ø 这张图讲道理真的过分了!!!我不是针对谁,在座的各位都是、、、

✓ YOLO-V3

∅ 特征做的更细致,融入多持续特征图信息来预测不同规格物体

♂先验框更丰富了,3种scale,每种3个规格,一共9种

∅ 为了能检测到不同大小的物体,设计了3个scale

✓ scale变换经典方法

♂ 左图:图像金字塔;右图:单一的输入;

✓ scale变换经典方法

Ø 左图:对不同的特征图分别利用;右图:不同的特征图融合后进行预测;

✓ 残差连接-为了更好的特征

必 从今天的角度来看,基本所有网络架构都用上了残差连接的方法

- ❤ 核心网络架构
 - ❷ 没有池化和全连接层,全部卷积

 - ♂ 3种scale,更多先验框

❤ 核心网络架构

边框置信度

❤ 先验框设计

♂ YOLO-V2中选了5个,这回更多了,一共有9种

∅ 13*13特征图上: (116x90), (156x198), (373x326)

26*26特征图上: (30x61), (62x45), (59x119)

52*52特征图上: (10x13), (16x30), (33x23)

特征图	13*13			26*26			52*52		
感受野	大			中			/]\		
先验框	(116x90)	(156x198)	(373x326)	(30x61)	(62x45)	(59x119)	(10x13)	(16x30)	(33x23)

❤ 先验框设计

♂ YOLO-V2中选了5个,这回更多了,一共有9种

- ✓ softmax层替代
 - ∅ 物体检测任务中可能—个物体有多个标签
 - ❷ logistic激活函数来完成,这样就能预测每一个类别是/不是

