一、程式架構

這次作業要實現 randomized quicksort,關於 quicksort 的架構和執行方式如下圖:

(圖源:https://www.techiedelight.com/quicksort/)

而下面這張則是 merge sort:

(圖源:https://en.wikipedia.org/wiki/Merge_sort)

Quick sort 和 Merge sort 最大的不同在於其分堆方式,merge sort 只是把 array 以 recursive 持續分成兩等分,最後再依序比較兩份中的值並組合。Quick sort 則是會在 array 中先選定 pivot,把比 pivot 大和比 pivot 小的分成左右兩堆,接著在左右兩堆中再分別找新的 pivot,持續分堆。如此,只需要在同一個 array 上處理資料,可以節省記憶體空間,也不用像 merge sort 一樣,最後合併時尋找應該放入哪個元素。

二、程式碼解釋

```
void RM_Quicksort(int *array1, int p, int r){
   if (p<r){
      int q = RM_Partition(array1, p, r);
      RM_Quicksort(array1, p, q-1);
      RM_Quicksort(array1, q+1, r);
   }
}</pre>
```

在 RM_Quicksort 中,要先判斷 p 是否小於 r。接著,q 代表被設為 pivot 的那個位置,所以下面兩行 RM_Quicksort 的開頭會是 p,並且結束在 q-1,另一行則是由 q+1 開始到 r。

These values are <= pivot			pivot	These values are > pivot			
р		q-1	q	q+1			r
進入下一個 RM_Quicksort		_	進入下一個 RM_Quicksort			sort	

```
int RM_Partition(int *array1, int p, int r){
   int i = rand()%(r-p+1)+p; // p~r
   swap(array1[r], array1[i]);
   return Partition(array1, p, r);
}
```

在 RM_Partition 中,會從 p 到 r 間找一數字 i, 並把 array1[r]和 array1[i] 對調。經過這個步驟, pivot 就不一定是 array1[r]的值, 而是 random 的,如 次有機會縮短 quick sort 的執行時間。

```
int Partition(int *array1, int p, int r){
    int x = array1[r];
    int i = p-1;
    for(int j=p; j<r; j++){
        if(array1[j] <= x){
            i++;
             swap(array1[i], array1[j]);
        }
    }
    swap(array1[i+1], array1[r]);
    return i+1;
}</pre>
```

在 Partition 中,pivot 會落在 i+1 這個位子,而 p 到 i 位置上的 value 會 <= pivot,i+2 到 r 位置上的 value 則>pivot。最後回傳 pivot 的位置,即 i+1。

三、時間複雜度

1. Quick sort

在 Quick sort 中因為涉及 pivot 的選擇,所以時間複雜度的計算會較複雜。下面有兩種 case:

第一種,假設 x 介在 Z_i 和 Z_j 間,即 Z_i $< x < Z_j$,則 Z_i 和 Z_j 兩者,在之後的 partition 中都不會互相被比較。第二種,當 Z_i 或 Z_j 被選為 pivot,則他會被拿來和 Z_{ij} 中的其他 elements 做比較。

由上可發現, Z_i 和 Z_j 兩者能互相比較的機率相當於 Z_i 或 Z_j 被選為 pivot 的機率-t,又等於 Z_i 被選為 pivot 的機率加上 Z_j 被選為 pivot 的機率(以下記作 Pr)。

$$Pr = \frac{1}{j-i+1} + \frac{1}{j-i+1} = \frac{2}{j-i+1}$$

期望值
$$E[x] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} < \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} = \sum_{i=1}^{n-1} O(logn) = O(nlogn)$$

所以 Quick sort 的 time complexity 的平均值是 O(nlogn)。在 worst case 時,Partition 這個 function 裡面的 swap 會每次都執行,發生在 input 是排好的陣列且選擇最後一個 index 做為 pivot,此時的時間複雜度是 O(n²)。

2. Merge sort

Merge sort 中有遞迴和排列,平均和最糟的時間複雜度都是 O(nlogn)。

$$T(n) = \sum T(\frac{n}{n}) + p(n) + C(n)$$

$$= \sum T(\frac{n}{n}) + p(T) + p(n)$$

$$= cn \log n + cn$$

$$= Cn \log n + cn$$

$$T(n) = p(n \log n)$$

四、實際測試

Please enter the size of the array: 10000 randomized quicksort time: 0.003

<- 輸出結果截圖

Size of	RM_Quicksort (sec.)		Merge sort (sec.)		
the array	srand(5)	srand(30)	srand(5)	srand(30)	
100	0	0	0	0	
500	0	0	0.001	0.001	

1000	0	0	0.001	0.001
3200	0.001	0	0.004	0.006
10000	0.002	0.003	0.022	0.017
32000	0.006	0.009	0.04	0.043
100000	0.03	0.022	0.148	0.141
320000	0.2	0.096	0.611	0.501
1000000	0.435	0.455	1.365	1.348

上表橫軸為陣列大小,縱軸為執行時間。程式中 srand 的 seed 原本是time(NULL),但為了測試執行時間,我把 seed 設成 5 和 30 並分別測試,圖表中的結果是由兩者做平均所得。Seed 設為定值的原因是為了在測試時,陣列內容能有一定相似性,隨著陣列大小增加,陣列會在保有原先內容的情況下被加上其他數值。

觀察上圖,上升程度雖然看似 n,但因為 $\log n < n^{\varepsilon}$ for any $0 < \varepsilon < 1$,在 size 不夠還有 rand()的操作下,可能造成 n 和 nlogn 看起來相似,而經過理論推導,可以知道 RM_Quicksort(正常狀況下)和 Merge sort 都是 nlogn的演算法。下圖則是 Insertion sort 和 Merge sort 的比較,可以清楚看見 n^2 和 nlogn 的差異程度。

下面兩張圖是 $nlogn \cdot n^2$ 和 n 的圖, 左邊為 $n\epsilon [0:100]$, 右邊則是 $n\epsilon [0:1000]$ 。

圖源: https://stackoverflow.com/questions/23329234/which-is-better-on-log-n-or-on2