Х24 — Физика дождевых капель

A1^{1.00} Найдите изменение свободной энергии водяного пара, если из него образовать каплю радиуса r. Выразите ответ через r, σ , φ , R, T, ρ_L , μ .

- **0.30** Записан поверхностный вклад в свободную энергию $\Delta G_{surf} = 4\pi\sigma r^2$.
- **0.20** Найдено количество вещества в капле $v = \frac{4\pi \rho_L r^3}{3\mu}$.
- $oldsymbol{0.30}$ Объемный вклад в свободную энергию $-rac{4\pi
 ho_L}{3u}r^3RT\ln \phi$
- **0.20** Правильные знаки

A2^{0.80} Найдите критическое значение радиуса капли r_c , при котором ΔG максимально, а также соответствующее значение ΔG_c . Выразите ответ через σ , φ , R, T, ρ_L , μ . Найдите численное значение r_c при $\varphi = 1.01$.

- **0.20** Вычислена производная $\partial \Delta G/\partial r$
- $\mathbf{0.20} \quad r_c = \frac{2\sigma\mu}{\rho_L RT \ln \varphi}.$
- **0.10** $r_c = 1.15 \cdot 10^{-7} \text{M}$
- 0.30

$$\Delta G_c = \frac{16\pi}{3} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}$$

0.10 Ошибка в безразмерном численном коэффициенте в ΔG_c

А3^{0.70} Рассмотрим каплю критического радиуса r_c . Определите время τ , за которое количество молекул в ней увеличится на g. Выразите ответ через r_c , g, p_s , m, k, T, φ . Считайте, что в процессе роста радиус капли не меняется, испарением молекул из капли можно пренебречь. Известно, что на площадь dS поверхности за время dt попадает

$$dN = dtdS \frac{p_{v}}{\sqrt{2\pi mkT}}$$

молекул. Здесь p_{v} - давление пара, m - масса молекул, T - температура газа.

- **0.10** $p_{v} = p_{s} \varphi$
- **0.30** Записан полный поток молекул в каплю
- 0.30

$$\tau = \frac{g\sqrt{2\pi mkT}}{4\pi r_c^2 p_s \varphi}.$$

0.20 Ошибка в численном коэффициенте

А4^{0.60} Найдите количество капель J, которые образуются в единицу времени в единице объема перенасыщенного водяного пара. Выразите ответ через σ , φ , p_s , r_c , T, g.

- **0.10** Использована формула $J=n_c/ au$
- 0.40

$$J = \frac{4\pi r_c^2}{\sqrt{2\pi mkT}} \frac{p_s^2 \varphi^2}{kT} \frac{1}{g} \exp\left(-\frac{16\pi}{3kT} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}\right) = \frac{4\pi r_c^2}{\sqrt{2\pi mkT}} \frac{p_s^2 \varphi^2}{kT} \frac{1}{g} \exp\left(-\frac{4\pi r_c^2 \sigma}{3kT}\right).$$

- $oldsymbol{0.10}$ Концентрация выражена через давление $p_{
 m s}$
- **0.20** Ошибка в численном коэффициенте или в ответе остались не приведенные в условии величины

с Страница 1 из 3 ≈ ∞

А5^{0.90} Из результатов предыдущего пункта следует, что скорость образования капель очень сильно зависит от коэффициента перенасыщения пара. Определите численно значение коэффициента перенасыщения пара φ , при котором при температуре $T=283 {\rm K} \, {\rm B} \, 1 {\rm cm}^3$ воздуха рождается одна капля в секунду. Считайте, что g=100. Остальные численные данные приведены в начале задачи.

- 2 ×
- **0.20** Найдены численные значения коэффициента перед экспонентой (J_0) и постоянной в экспоненте A, или аналогичные им
 - **0.50** Численный ответ $\varphi \in [3.8, 3.9]$

В1^{0.80} Для насыщенного пара, находящегося в равновесии с жидкостью, выразите производную давления по температуре dp_s/dT через p_s , L, R, T, μ . Используя полученный результат, найдите относительное изменение плотности насыщенного водяного пара $\Delta \rho_s/\rho_s$ при малом изменении температуры ΔT . Выразите ответ через ΔT , T, L, μ , R. Вы можете использовать связь малых изменений давления, плотности и температуры идеального газа

$$\frac{\Delta p_s}{p_s} = \frac{\Delta \rho_s}{\rho_s} + \frac{\Delta T}{T}.$$

- 0.30 Использовано или получено уравнение Клапейрона-Клаузиуса в любом виде
- 0.20

$$\frac{dp_s}{dT} = \frac{L\mu p_s}{RT^2}.$$

0.30

$$\frac{\Delta \rho_{s}}{\rho_{s}} = \frac{\Delta T}{T} \left(\frac{\mu L}{RT} - 1 \right).$$

- ${f B2^{0.20}}$ Выразите dQ/dt через dM/dt и L.
 - 0.20

$$\frac{dQ}{dt} = L \frac{dM}{dt}$$

B3^{0.30} Используя результат предыдущего пункта и уравнение теплопроводности, выразите разность температур капли и атмосферы, $T_r - T$, через dM/dt, а также r, L, K.

0.10

$$T_r - T = \frac{1}{4\pi r K} \frac{dQ}{dt}$$

0.20

$$T_r - T = \frac{L}{4\pi r K} \frac{dM}{dt}.$$

В4^{0.30} Будем считать, что вблизи поверхности капли плотность водяного пара равна плотности насыщенного пара при температуре капли. Считая разности температур и плотностей малыми и используя результаты B1, B3 выразите отношение $(\rho_r - \rho_s)/\rho_s$ (ρ_r - давление пара вблизи поверхности капли) через L, r, K, μ , R, T и dM/dt.

0.30

$$\frac{\rho_r - \rho_s}{\rho_s} = \left(\frac{\mu L}{RT} - 1\right) \frac{L}{4\pi r KT} \frac{dM}{dt}.$$

 $f B5^{0.30}$ Используя уравнение диффузии, выразите отношение $(
ho_rho_v)/
ho_s$ через $dM/dt, r, D,
ho_s$.

0.30

$$\frac{\rho_r - \rho_v}{\rho_s} = -\frac{1}{4\pi r \rho_s D} \frac{dM}{dt}$$

0.10 Ошибка в знаке

0.30 Получено корректное соотношение, не содержащее ho_r

0.30

$$\frac{dM}{dt} = \frac{4\pi r (\varphi - 1)}{\left(\frac{\mu L}{RT} - 1\right)\frac{L}{KT} + \frac{RT}{\mu p_s D}}$$

0.10 Не подставлено значение $ho_{
m s}$

B7^{0.50} Скорость увеличения радиуса капли имеет вид

$$\frac{dr}{dt} = \frac{\xi}{r^k}.$$

Определите k и ξ , выразите ответ через φ , ρ_L , μ , R, T, D, p_s , L, K.

0.20 dr/dt выражено через dM/dt

0.10 k = 1

0.20

$$\xi = \frac{\varphi - 1}{\left(\frac{\mu L}{RT} - 1\right)\frac{L}{KT} + \frac{RT}{\mu p_s D}} \frac{1}{\rho_L}.$$

B8^{0.50} Найдите зависимость радиуса капли от времени. Начальный радиус капли равен r_0 . Выразите ответ через r_0 , ξ , t.

0.20 Уравнение корректно проинтегрировано

0.30

$$r(t) = \sqrt{r_0^2 + 2\xi t}.$$

0.10 Ошибка в численном коэффициенте

В9^{0.50} Пусть начальный радиус капли равен $r_0=0.7$ мкм. Найдите численное значение времени, за которое она вырастет до размера $r_1=10$ мкм при коэффициенте перенасыщения $\phi=1.1$. Остальные численные значения приведены в начале этой части.

0.30

$$t = \frac{r_1^2 - r_0^2}{2\xi}$$

0.20

$$t = 5.50c.$$