A számítástudomány alapjai 2022. I. félév

8. gyakorlat. Osszeállította: Fleiner Tamás (fleiner@cs.bme.hu)

Tudnivalók

Def: Az \mathbb{R}^n tér elemei az n magasságú oszlopvektorok, a műveletek pedig a (koordinátánkénti) vektorösszeadás, és a vektor skalárral szorzása. Nullvektor a csupa0 vektor (jel: 0), az i-dik egységvektort pedig \underline{e}_i jelöli, az i-dik koordináta 1, a többi 0.

Állítás: Tetsz. $\underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n$ ill. $\lambda, \mu \in R$ esetén (1) $\underline{u} + \underline{v} = \underline{v} + \underline{u}$, (2) $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$, (3) $\lambda(\underline{u} + \underline{v}) = \lambda \underline{u} + \lambda \underline{v}$, (4) $(\lambda + \mu)\underline{u} = \lambda \underline{u} + \lambda \underline{v}$, ill. (5) $(\lambda \mu)\underline{u} = \lambda(\mu \underline{u})$ teljesül.

Konvenció: $-\underline{v} := (-1) \cdot \underline{v}$ ill. $\underline{u} - \underline{v} := \underline{u} + (-\underline{v})$.

Def: $V \subseteq \mathbb{R}^n$ altér (jel: $V \leq \mathbb{R}^n$), ha V zárt a műveletekre, azaz $\underline{u} + \underline{v}$, $\lambda \underline{u} \in V$ teljesül $\forall \underline{u}, \underline{v} \in V$ ill $\forall \lambda \in \mathbb{R}$ esetén. \mathbb{R}^n triviális alterei: $\{\underline{0}\}$ és \mathbb{R}^n .

Állítás: Alterek metszete altér: ha $V_i \leq \mathbb{R}^n \ \forall i$, akkor $\bigcap_i V_i \leq \mathbb{R}^n$.

Def: Az $\underline{u}_1, \dots \underline{u}_k$ vektorok *lineáris kombinációja* alatt egy $\sum_{i=1}^k \lambda_i \underline{u}_i = \lambda_1 \underline{u}_1 + \dots \lambda_k \underline{u}_k$ kifejezést értünk, ahol $\lambda_i \in \mathbb{R} \ \forall i$. Triviális lineáris kombináció: olyan lin.komb., ahol $\lambda_i = 0 \ \forall i$. Az $\underline{u}_1, \dots \underline{u}_k$ vektorok lin.komb.-inak halmazát (avagy az $\underline{u}_1, \dots \underline{u}_k$ által generált alteret) $\langle \underline{u}_1, \dots \underline{u}_k \rangle$ jelöli.

Def: Az $\underline{u}_1, \dots \underline{u}_k$ vektorok a $V \leq \mathbb{R}^n$ altér generátorrendszere, ha $\langle \underline{u}_1, \dots \underline{u}_k \rangle = V$.

Megfigyelés: $V \leq \mathbb{R}^n \iff V$ zárt a lineáris kombinációra.

Def: Az $\{\underline{u}_1, \dots \underline{u}_k\}$ vektorrendszer *lineárisan független*, ha csak a triviális ha a nullvektort csak a triviális lineáris kombinációjuk állítja elő: $\lambda_1 \underline{u}_1 + \ldots + \lambda_k \underline{u}_k = \underline{0} \Rightarrow \lambda_1 = \ldots = \lambda_k = 0.$ Ha ezen vektorok nem lin. ftn-ek, akkor *lineárisan összefüggők*.

Lemma: Az $\{\underline{u}_1, \dots \underline{u}_k\}$ vektorrendszer pontosan akkor lineárisan független, ha egyetlen \underline{u}_i sem áll elő a többi u_i lineáris kombinációjaként.

Megfigyelés: (1) Ha G a $V \leq \mathbb{R}^n$ generátorrendszere és $G \subseteq G' \subseteq V$, akkor G' is a Vgenerátorrendszere. (2) Ha $F \subseteq \mathbb{R}^n$ lin.ftn és $F' \subseteq F$, akkor F' is lin.ftn.

Állítás: Tfh $\underline{v} \in \mathbb{R}^n$, $\underline{v} \notin G$ és $\langle G \cup \{\underline{v}\} \rangle = V \leq \mathbb{R}^n$. Ekkor $(\langle G \rangle = V) \iff (\underline{v} \in \langle G \rangle)$

Lemma: Tfh $F = \{\underline{f}_1, \dots, \underline{f}_k\} \subseteq \mathbb{R}^n$ lin.ftn. Ekkor $(F \cup \{\underline{f}\} \text{ lin.ftn.}) \iff (\underline{f} \notin \langle F \rangle)$ **Kicserélési lemma:** Ha $F \subseteq V \leq \mathbb{R}^n$ lin.ftn. és $\langle G \rangle = V$ gen.rsz. akkor $\forall \underline{f} \in F \exists \underline{g} \in G$, amire $F \setminus \{f\} \cup \{g\}$ is lin.ftn.

FG-egyenlőtlenség: Tfh G a $V \leq \mathbb{R}^n$ generátorrendszere, és $F \subseteq V$ lin.ftn. Ekkor $|F| \leq |G|$.

Állítás: Tfh $F \subseteq \mathbb{R}^n$ lin.ftn és $f \in \langle F \rangle$. Ekkor f egyértelműen áll elő F-beli vektorok lin.kombjaként.

Állítás: Tfh M'-t ESÁ-okkal kaptuk az $M \in \mathbb{R}^{n \times k}$ mátrixból. Ha S ill. S' az M ill. M'sorvektorainak halmaza, akkor $\langle S \rangle = \langle S' \rangle$.

Állítás: Tfh az $M \in \mathbb{R}^{n \times k}$ mátrixból M'-t ESÁ-okkal kaptuk és $O = \{\underline{o}_1, \dots \underline{o}_k\}$ ill. O' = $\{\underline{o}_1',\ldots\underline{o}_k'\}$ az oszlopvektoraik halmaza. Ekkor O-n és O'-n ugyanazok a lineáris összefüggések teljesülnek: $(\sum_{i=1}^k \lambda_i \underline{o}_i = \sum_{i=1}^k \mu_i \underline{o}_i) \iff (\sum_{i=1}^k \lambda_i \underline{o}_i' = \sum_{i=1}^k \mu_i \underline{o}_i').$ Megfigyelés: Az $M \in \mathbb{R}^{n \times k}$ mátrix pontosan akkor RLA, ha M előállítható az $\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_\ell$ n

magasságú oszlopvektorokból alkotta mátrixból olyan oszlopok beszúrásával, amelyek mindegyike az őt megelőző \underline{e}_i oszlopok lineáris kombinációja.

Gyakorlatok

- 1. Alteret alkotnak-e \mathbb{R}^4 -ben az alábbi részhalmazok? A V_1 elemei azok a vektorok, amelyeknek minden koordinátája 0 és 1 között van, a határokat is megengedve, míg V_2 -t azok a vektorok alkotják, amelyeknek a második koordinátája megegyezik a 4-dikkel. V_3 mindazon vektorok halmaza, amelyeknek a koordintái monoton növekvő sorozatot alkotnak, V_4 pedig azokat a vektorokat tartalmazza, amelyek páros koordinátáinak összege megegyezik a páratlan koordináták összegével. V_5 ill. V_6 azon vektorokból állnak, amelyeknek a koordinátái számtani ill. mértani sorozatot alkotnak.
- 2. Tekintsük az $\underline{u} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$, $\underline{v} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$, $\underline{w} = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$, $\underline{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ és $\underline{b} = \begin{pmatrix} 7 \\ 6 \\ -5 \end{pmatrix}$ \mathbb{R}^3 -beli vektorokat. Döntsük el, hogy az alábbi vektorrendszerek lineárisan függetlenek-e, és határozzuk meg egyes halmazok által generált altereket. Az altereket meghatározását úgy végezzük, hogy egy tetszőlegesen megadott \mathbb{R}^3 -beli <u>x</u> vektorról gyorsan, néhány egyszerű teszt elvégzésével

el tudjuk dönteni, hogy \underline{x} az adott altérbe esik-e vagy sem. $A = \{\underline{u}, \underline{v}, \underline{w}\}, B = \{\underline{u}, \underline{v}, \underline{a}\}, C = \{\underline{u}, \underline{u}\}, D = \{\underline{u}, \underline{v}, \underline{w}, \underline{b}\}$ ill. $E = \{\underline{u}, \underline{v}, \underline{b}\}.$

- 3. Döntsük el, hogy a $V = \left\langle \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 7 \\ 1 \end{pmatrix} \right\rangle$ altérhez tartoznak-e az $\underline{u} = \begin{pmatrix} 5 \\ -1 \\ -7 \end{pmatrix}, \underline{v} = \begin{pmatrix} -5 \\ 4 \\ 8 \end{pmatrix}, \underline{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ vektorok. Döntsük el továbbá, hogy e három vektor közül a V-beliek generálják-e a V alteret.
- 4. Tegyük fel, hogy $\underline{a}, \underline{b}, \underline{c}$ az \mathbb{R}^n tér lin.ftn vektorai. Igaz-e, hogy $2\underline{a}, \underline{a} + \underline{b}, \underline{a} + \underline{c}$ is lin.ftn vektorok?
- 5. Tfh $\underline{a}, \underline{b}, \underline{c} \in \mathbb{R}^n$ vektorok. Legyen $\underline{u} = 2\underline{a} + \underline{b}, \underline{v} = \underline{b} \underline{c}$, ill. $\underline{w} = \underline{c} + 2\underline{a}$. Igaz-e, hogy ha $\underline{a}, \underline{b}, \underline{c}$ lin.ftn-ek, akkor $\underline{u}, \underline{v}$ és \underline{w} is lin.ftn-ek, akkor $\underline{a}, \underline{b}, \underline{c}$ is lin.ftn-ek?
- 6. Tegyük fel, hogy $\underline{a}, \underline{b}, \underline{c}$ az \mathbb{R}^n tér lin.ftn vektorai. Igaz-e, hogy $2\underline{a}, \underline{a} + \underline{b}, \underline{a} + \underline{c}$ is lin.ftn vektorok?
- 7. Tegyük fel, hogy $\underline{a}, \underline{b}, \underline{c}$ az \mathbb{R}^n tér lin.ftn vektorai, továbbá, hogy a $\underline{a} + \underline{b} + \underline{c}$, $\underline{a} \underline{b} 3\underline{d}$, $\underline{a} + \underline{c} + \underline{5}d$ lineárisan összefüggők. Következik-e ebből, hogy $\underline{d} \in \langle \underline{a}, \underline{b}, \underline{c} \rangle$?
- 8. Tfh a $\underline{v}_1, \dots, \underline{v}_k \in \mathbb{R}^n$ vektorokra teljesül, hogy $\underline{v}_1 \in \langle \underline{v}_2, \dots, \underline{v}_k \rangle$, azonban $1 < i \le k$ esetén $\underline{v}_i \notin \langle \underline{v}_1, \dots, \underline{v}_{i-1}, \underline{v}_{i+1} \dots \underline{v}_k \rangle$. Határozzuk meg a \underline{v}_1 vektort.
- 9. Tegyük fel, hogy $\underline{u}, \underline{v}, \underline{w}$ az \mathbb{R}^n tér lin.ftn vektorai. A p valós paraméter mely értékeire lesznek az $\underline{a} = \underline{u} \underline{v}, \, \underline{b} = \underline{u} + \underline{w}, \, \underline{c} = \underline{u} + \underline{v} \underline{w}$ és $\underline{d} = p\underline{u} + \underline{v} + \underline{w}$ vektorok lin.ftn-ek? Ha valamely p-re nem lin.ftn-ek a fenti vektorok, akkor határozzunk meg közöttük egy nemtriviális lineáris összefüggést.
- 10. Legyen $\underline{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\underline{b} = \begin{pmatrix} 3 \\ 7 \\ 1 \end{pmatrix}$, $\underline{c} = \begin{pmatrix} 1 \\ -2 \\ 36 \end{pmatrix}$ és $\underline{v} = \begin{pmatrix} 1 \\ -2p \\ 1+p \end{pmatrix}$. Hogyan válasszuk a valós p paramétert annak érdekében, hogy a \underline{v} vektor előálljon $\underline{v} = \alpha \underline{a} + \beta \underline{b} + \gamma \underline{c}$ alakban, és $|\alpha| + |\beta| + |\gamma|$ a lehető legkisebb legyen? (*)
- 11. Tfh G_1 és G_2 az $V \leq \mathbb{R}^n$ altér generátorrendszerei. Bizonyítsuk be, hogy bármely $\underline{g}_1 \in G_1$ vektorhoz található olyan $\underline{g}_2 \in G_2$ vektor, amire $G_1 \setminus \{\underline{g}_1\} \cup \{\underline{g}_2\}$ ill. $G_2 \setminus \{\underline{g}_2\} \cup \{\underline{g}_1\}$ egyaránt a V generátorrendszerei. (*)
- 12. Tfh $G=\{\underline{g}_1,\dots,\underline{g}_k\}$ a $V\leq\mathbb{R}^n$ altér generátorrendszere (azaz $V=\langle G\rangle$) és G vektorainak mindegyikéhez tartozik egy $k(\underline{g}_i)\geq 0$ költség. Javasoljunk hatékony algoritmust, aminek a segítségével meghatározható a V altér egy olyan $G'\subseteq G$ generátorrendszere, amire a G'-beli vektorok összköltsége a lehető legkisebb. (*)