Graphs

A graph is a pair (V, E), where

- V is a set of nodes or vertices
- E is a collection of pairs of vertices (u,v), called edges, links, or arcs

$$V = \{a,b,c,d,e\}$$

 $E = \{(a,b),(a,c),(a,d),$
 $(b,e),(c,d),(c,e),(d,e)\}$

Edge Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination

Edge Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
- Undirected edge
 - unordered pair of vertices (u,v)

Edge Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
- Undirected edge
 - unordered pair of vertices (u,v)
- Directed graph or digraph
 - all the edges are directed
- Undirected graph
 - all the edges are undirected
- Mixed graph
 - directed and undirected edges

Applications

Computer networks

Applications

Transportation networks

Applications

Scheduling tasks

A typical student day

 End vertices (or endpoints) of an edge

U and V are the endpoints of a

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V

 End vertices (or endpoints) of an edge

U and V are the endpoints of a

Edges incident on a vertex

a, d, and b are incident on V

Adjacent vertices or neighbours

U and V are adjacent

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

A graph without parallel edges or self-loops is called a simple graph

- Path
 - sequence of adjacent vertices
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - $P_1 = (V, X, Z)$ is a simple path
 - $P_2=(U,W,X,Y,W,V)$ is a path that is not simple

Cycle

circular sequence of adjacent vertices

Simple cycle

 cycle such that all its vertices are distinct (except first and last)

Examples

- $C_1 = (V, X, Y, W, U, V)$ is a simple cycle
- $C_2 = (U, W, X, Y, W, V, U)$ is a cycle that is not simple

Properties

Notation

- number of vertices n
- number of edges m
- degree of vertex v deg(v)

Property 1

$$\Sigma_{v} \deg(v) = 2m$$

$$\sum_{v} \deg(v) = 2m$$

$$m = \frac{1}{2} \sum_{v} \deg(v)$$

Example

- n=4
- = m = 5
- $\bullet \deg(v) = 3$
- $\sum_{v} \deg(v) = 10$

Complete Graph or Clique

Each vertex is connected to every other vertex.

Connected Graph

A graph is connected if there is a path from each vertex to every other vertex

Connected Graph

A graph is connected if there is a path from each vertex to every other vertex

Trees

A tree is a graph without cycles.

$$m = n-1$$

Forest

A forest is a set of trees.

Subgraph

A subgraph is a subset of vertices and edges that forms a graph.

Graphs 20

Connected Component

A connected component is a maximal connected subgraph.

How many connected components does this graph have? G = (V, E) $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$ $E = \{(1,6), (1,12), (2,11), (3,4), (3,7), (4,6), (5,8), (5,9), (6,7), (6,13), (8,9), (8,10), (9,10), (11,14), (12,13)\}$

Connected Component

A connected component is a maximal connected subgraph.

Graph ADT

```
numVertices(): number of vertices of the graph
getEdge(u,v): returns the edge between vertices u and v
opposite(v,e): returns the vertex other than v that is incident on e
insertVertex(x): creates and returns a new vertex storing value x
insertEdge(u,v,x): creates an edge between u and v soring value x
removeVertex(v): removes vertex v and all edges incident on it
removeEdge(e): removes edge e
areAdjacent(u,v): returns true is u and v are adjacent; false
                  otherwise
incidentEdges(u): returns an iterator of all edges incident on
                  vertex u.
```

Data Structures to Store Erraphs Edge List

Data Structures to Store Graphs

Adjacency List Sparse graphs ("few" edges) degree (a) a

Space: C2n+ C1(2m) 60 (n+m)

Are adjacent (uiv): O(min {degree(u), degree(u))

Incident Edges (u): O(degree14))

Data Structures to Store Graphs

Adjacency Matrix

Space: O(n2)

Are Adjacent (uv): O(1)

Incident Edges (4): O(n)

Dense graphs ("Many edges")

Performance

■ <i>n</i> vertices, <i>m</i> edges	Edge List	Adjacency List	Adjacency Matrix
Space	O(n+m)	O(n+m)	$O(n^2)$
incidentEdges(v)	O(m)	$O(\deg(v))$	O(n)
areAdjacent (v, w)	O(m)	$O(\min\{\deg(v), \deg(w)\})$	O(1)
insertVertex(o)	O(1)	O(1)	$O(n^2)$
insertEdge(v, w, o)	O(1)	O(1)	O(1)
removeVertex(v)	O(m)	$O(\deg(v))$	$O(n^2)$
removeEdge(v,w)	O(m)	O(deg(u)+deg(v))	O(1)