Done by Marcus Pang in 2021

Statements

- 1. Universal (all, every, any): $\forall x \in D(Q(x))$ is **true** if and only if Q(x) is **true** for every $x \in D$
- 2. Conditional (if...then): $\forall x \in D \ (P(x) \Longrightarrow Q(x))$ is **true** if and only if $(\sim P(x) \lor Q(x))$ is **true** for every $x \in D$
- 3. Existential (there exists, there is, some): $\exists x \in D$ such that Q(x) is **true** for at least one $x \in D$

Definitions

- 1. Divisibility: if $n, d \in \mathbb{Z} \land n \neq 0$, $d \mid n \iff \exists k \in \mathbb{Z}(n = dk)$
- 2. Congruence: if $a, b \in \mathbb{Z} \land n \in \mathbb{Z}^+$, $a \equiv b \pmod{n} \iff n \mid (a b)$
- 3. Rational: $n \in \mathbb{Q} \iff \exists a,b \in \mathbb{Z} \left(n = \frac{a}{b} \land b \neq 0\right)$
- 4. Even: $n \text{ is even } \iff \exists k \text{ such that } n = 2k$
- 5. Odd: $n \text{ is odd} \iff \exists k \text{ such that } n = 2k + 1$
- 6. Prime:

$$\forall r, s \in \mathbb{Z}^+ (n = rs \implies (r = 1 \land s = n) \lor (r = n \land s = 1))$$

7. Composite:

$$\exists r, s \in \mathbb{Z}^+ ((n = rs) \land (1 < r < n)$$
$$\land (1 < s < n))$$

- 8. Fraction in lowest term: largest integer that divides numerator and denominator is 1
- 9. Negation of p is $\sim p$
- 10. Conjuction of p and q is $p \wedge q$
- 11. Disjunction of p and q is $p \vee q$
- 12. Statement/Propositional form: expression made of statement variables and logical connectives that becomes a statement when actual statements are substituted for the component statement variables
- 13. Logical equivalence: statements with identical truth values for each possible substitution of statements for their statement variables
- 14. Tautology/Contradiction: statement form that is always **true/false** regardless of the truth values of the individual statements substituted for its statement variables

- 15. Conditional (sufficient condition, only if) of q by p is "if p then q" or "p implies q" denoted as $p \implies q$
- p is the hypothesis/antecedent and q is the conclusion/consequent.
- 16. Contrapositive (sufficient condition, only if): $\sim q \implies \sim p \equiv p \implies q$
- 17. Converse (necessary condition, if): $q \implies p$
- 18. Inverse (necessary condition, if): $\sim p \implies \sim q \equiv q \implies p$
- 19. Biconditional (if and only if):

$$p \iff q \equiv (p \implies q) \land (q \implies p)$$

- 20. Argument: sequence of statements, where all statements (except the last one) are called premises/assumptions/hypothesis. The final statement is called the conclusion.
- (a) Syllogism: argument with 2 premises and 1 conclusion
- (b) Critical Row: row in truth table where all premises are **true**
- (c) If there is a critical row in which the conclusion is **false**, then the argument form is invalid
- (d) If for all critical rows the conclusion is **true**, then the argument form is valid.
- (e) Sound if and only if it is valid and all its premises are true
- 21. Predicate: sentence that contains a finite number of variables and becomes a statement when specific values are substituted for the variables, $P(x_1, x_2, ...)$
- 22. Domain of a predicate variable: set of all values that may be substituted in place of the variable
- 23. Truth set of P(x): set of all elements of D that make P(x) **true** when substituted for x, $\{x \in D \mid P(x)\}$
- 24. Set: unordered collection of objects
- (a) Sets of size 1 are called singletons
- (b) A set is finite if it has finitely many distinct elements
- 25. Set Equality: sets with all the same elements $A = B \iff \forall z (z \in A \iff z \in B)$
- 26. Subset: set where all elements are contained

by another set (set included by another set) $A \subseteq B \iff \forall z(z \in A \implies z \in B)$

- 27. Power set: the set of all subsets, $\mathcal{P}(A)$
- 28. Cardinality: the number of (distinct) elements in a set, |A|
- 29. Ordered pairs: expressions of the form (x, y)
- 30. Ordered *n*-tuples: $(x_1, x_2, ..., x_n), n \ge 2$ $(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_n) \iff$ $x_1 = y_1 \land x_2 = y_2 \land ... x_n = y_n$
- 31. Cartesian product of sets: $A\times B=\{x\in A\wedge x\in B\}$
- 32. Union of sets:
- 33. Intersection of sets:
- $A \cap B = \{x \mid x \in A \land x \in B\}$ 34. Complement of a set in another set:

$$\overrightarrow{A} - B = A \backslash B = \{x \mid x \in A \land x \notin B\}$$

 $\overline{B} = U \backslash B$

 $A \cup B = \{x \mid x \in A \lor x \in B\}$

- 35. Disjoint sets: $A \cup B = \emptyset$
- 36. Pairwise/Mutually disjoint sets: for all distinct $i, j = \{1, 2, ..., n\}$,

$$A_i \cap A_j = \varnothing$$

- 37. Partition of set: \mathscr{C} is a partition of a set A if it is a set of mutually disjoint nonempty subsets (components) of A whose union is A
- (a) $\forall S \in \mathscr{C}(\varnothing \neq S \subseteq A)$
- (b) $\forall x \in A \ \exists S \in \mathscr{C}(x \in S) \land$ $\forall x \in A \ \forall S_1, S_2 \in \mathscr{C}$ $(x \in S_1 \land x \in S_2 \implies S_1 = S_2)$ $\therefore \forall x \in A \ \exists ! S \in \mathscr{C}(x \in S)$
- 38. Relation:
- (a) $R \subseteq A \times B$
- (b) x R y for $(x, y) \in R \land x \not R y$ for $(x, y) \notin R$ $R = \{(x, y) \in A \times B \mid x R y\}$ $R^{-1} = \{(y, x) \in B \times A \mid y R^{-1} x\}$
- 39. Binary relation on a set: relation from A to A
- 40. Reflexive: $\forall x \in A(x R x)$
- 41. Symmetric: $\forall x, y \in A(x R y \implies y R x)$
- 42. Transitive: $\forall x, y, z \in A(x \ R \ y \land y \ R \ z \implies x \ R \ z)$

- 43. Anti-symmetric: $\forall x, y \in A (x R y \land y R x \implies x = y)$
- 44. Comparable: $x R y \vee y R x$
- 45. Equivalence relation: relation that is reflexive, symmetric, and transitive, usually \sim
- 46. Equivalence class of x w.r.t \sim : set of all elements that are \sim -related to x

$$[x]_{\sim} = \{y \in A \mid x {\sim} y\}$$

47. Set of all equivalence classes (quotient of set by relation):

$$A/{\sim} = \{[x]_{\sim} \mid x \in A\}$$

- 48. Representative of an equivalence class: element of the equivalence class
- 49. Quotient \mathbb{Z}/\sim_n is denoted as \mathbb{Z}_n or $\mathbb{Z}/n\mathbb{Z}$, and addition/multiplication is defined as follows [x] + [y] = [x + y] $[x] \cdot [y] = [x \cdot y]$
- 50. (Non-strict) Partial Order: relation that is reflexive, anti-symmetric, and transitive, denoted with \leq and $x \prec y \equiv x \leq y \land x \neq y$
- 51. (Non-strict) Total/Linear Order: partial order where every pair of elements is comparable
- 52. Partially Ordered Set (Poset) refers to the ordered pair (A, R) where R is a partial order on A
- 53. Hasse Diagram of \preccurlyeq : if $x \prec y$ and no $z \in A$ such that $x \prec z \prec y$, then x is placed below y and a line joins x to y, else no line
- 54. Minimal Element: $\forall x \in A (x \leq c \implies c = x)$
- 55. Maximal Element: $\forall x \in A(c \leq x \implies c = x)$
- 56. Smallest Element: $\forall x \in A(c \leq x)$
- 57. Largest Element: $\forall x \in A(x \leq c)$
- 58. Linearization of \preccurlyeq is a total order \preccurlyeq^* such that

$$\forall x, y \in A(x \leq y \implies x \leq^* y)$$

- 59. Function or a map from A to B: assignment to each element of A exactly one element of B, $f:A\to B$
- (a) If $x \in A$ then f(x) is the image of x under f, if y = f(x) then f maps x to y, denoted as $f: x \mapsto y$
- (b) A is the domain of f, B is the codomain of f
- 60. Identity function: id: $A \to A$, which satisfies $\forall x \in A (\mathrm{id}_A(x) = x)$

Order of Operations

 $2. \wedge \text{and} \vee$

 $1. \sim$

- 2. /\ and \
- $3. \implies \text{and} \iff$

Argument Forms

Rules of Inferences

 $\operatorname{premise}_1 \wedge \ldots \wedge \operatorname{premise}_n \Longrightarrow \operatorname{conclusion}$

- 1. Modus Ponens and Universal Modus Ponens $p \implies q$
 - $p \\ \therefore q$
- 2. Modus Tollens and Universal Modus Tollens $p \implies q$
 - $\sim q$ $\therefore \sim p$
- 3. Generalization
 - $\begin{array}{ccc} p & & q \\ \therefore p \vee q & & \therefore p \vee q \end{array}$
- 4. Specialization
 - $\begin{array}{ccc} p \wedge q & & p \wedge q \\ \therefore p & & \therefore q \end{array}$
- 5. Conjunction
 - $\stackrel{p}{q} \\ \therefore p \wedge q$
- 6. Elimination
- $\begin{array}{ccc} p \lor q & p \lor q \\ \sim q & \sim p \\ \therefore p & \therefore q \end{array}$
- 7. Transitivity
- $\begin{array}{c}
 p \Longrightarrow q \\
 q \Longrightarrow r \\
 \therefore p \Longrightarrow r
 \end{array}$
- 8. Proof by division into cases
 - $\begin{array}{c}
 p \lor q \\
 p \Longrightarrow r \\
 q \Longrightarrow r \\
 \vdots r
 \end{array}$
- 9. Contradiction rule $\sim p \implies \text{false}$

 $\therefore p$

Rules of Inference for Quantified Statements

- 1. Universal Modus Ponens
- $\forall x \in D(P(x) \Longrightarrow Q(x))$ P(a) for a particular $a \in D$

- $\therefore Q(a)$
- 2. Universal Modus Tollens

 $\forall x \in D(P(x) \implies Q(x))$ $\sim Q(a) \text{ for a particular } a \in D$ $\therefore \sim P(a)$

3. Universal Transitivity

 $\forall x \in D(P(x) \Longrightarrow Q(x))$ $\forall x \in D(Q(x) \Longrightarrow R(x))$ $\therefore \forall x (P(x) \Longrightarrow R(x))$

4. Universal Instantiation

 $\forall x \in D(P(x))$ $\therefore P(a) \text{ if } a \in D$ 5. Universal Generalization

 $\forall P(a) \text{ for every } a \in D$

 $\forall x \ (a) \text{ for every } a \in D$ $\therefore \forall x \in D(P(x))$ 6. Existential Instantiation

.

 $\exists x \in D(P(x))$ $\therefore P(a) \text{ for some } a \in D$

7. Existential Generalization

P(a) for some $a \in D$ $\therefore \exists x \in D(P(x))$

Common Fallacies

- 1. Ambiguous premises
- 2. Circular reasoning
- 3. Jumping to a conclusion
- 4. Converse/Inverse error

Proof Types

- 1. Direct Proof: using algebra/definitions to construct an argument
- 2. By Construction: form of direct proof which comes up with a specific example to prove/disprove the statement
- 3. By Contradiction: assume the negation of the statement and arrive to the conclusion that the negation is false, and since every step is logically correct, the assumption must be false
- 4. By Exhaustion: list all possible scenarios (for finite cases)

(T2.1.1) Logical Equivalences

- 1. Commutative Law $p \wedge q \equiv q \wedge p$
- $p\vee q\equiv q\vee p$

2. Associative laws

3. Distributive laws

 $p \wedge q \wedge r \equiv (p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$ $p \vee q \vee r \equiv (p \vee q) \vee r \equiv p \vee (q \vee r)$

 $p \land (q \lor r) \equiv (p \land q) \lor (q \land r)$

 $p \lor (q \land r) \equiv (p \lor q) \land (q \lor r)$

- 4. Identity laws $p \land \mathbf{true} \equiv p$ $p \lor \mathbf{false} \equiv p$
- 5. Negation laws $p \ \lor \sim p \equiv {\bf true} \qquad \quad p \ \land \sim p \equiv {\bf false}$
- 6. Double negative law ${\sim}({\sim}p) \equiv p$
- 7. Idempotent laws $p \wedge p \equiv p \qquad \qquad p \vee p \equiv p$
- 8. Universal bound laws $p \vee \mathbf{true} \equiv \mathbf{true} \qquad p \wedge \mathbf{false} \equiv \mathbf{false}$
- 9. De Morgan's laws $\sim (p \wedge q) \equiv \sim p \vee \sim q$ $\sim (p \vee q) \equiv \sim p \wedge \sim q$
- 10. Absorption laws $p\vee (p\wedge q)\equiv p \qquad \qquad p\wedge (p\vee q)\equiv p$
- 11. Negation of true and false \sim true \equiv false \sim false \equiv true

(T5.3.5) Set Identities

- 1. Identity Law $A \cup \emptyset = A$ $A \cap U = A$
- 2. Universal Bound Law $A \cup U = U \qquad \qquad A \cap \varnothing = \varnothing$
- 3. Idempotent Law*
- 4. Double Complement Law $\overline{(\overline{A})} = A$
- 5. Commutative Law*
- 6. Associative Law*
- 7. Distributive Law*
- 8. De Morgan's Law*
- 9. Absorption Law*
- 10. Complement Law $A\cup\overline{A}=U \qquad \qquad A\cap\overline{A}=\varnothing$
- 11. Set Difference Law $A \backslash B = A \cap \overline{B}$
- 12. Top and Bottom Law $\overline{\varnothing} = U \qquad \qquad \overline{U} = \varnothing$

Theorems (5^{th} edition)

- 1. (T4.8.1) $\sqrt{2}$ is irrational
- 2. (P4.7.4) $\forall n \in \mathbb{Z}(n^2 \text{ is even } \Longrightarrow n \text{ is even})$
- 3. (T3.2.1) $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \text{ such that } P(x)$
- 4. (T3.2.2) $\sim (\exists x \in D \text{ such that } P(x)) \equiv \forall x \in D, P(x)$
- 5. (T4.3.1) Every integer is a rational number
- 6. (T4.3.2) Sum of any two rational number is rational
- 7. (C4.2.3) Double of a rational number is rational
- 8. $(T4.4.1) \forall a, b \in \mathbb{Z}^+(a \mid b \implies a \leq b)$
- 9. (T4.4.2) The only divisors of 1 are 1 and -1 $\,$
- 10. (T4.4.3) $\forall a, b, c \in \mathbb{Z}(a \mid b \land b \mid c \implies a \mid c)$

12. (T5.1.1.7) Empty set is a unique set with no

- 11. (T4.7.1) There is no greatest integer
- element
- 13. (T5.2.4) For finite sets, $|\mathcal{P}(A)| = 2^{|A|}$
- 14. (T5.3.12) For (pairwise) disjoint sets, $|A \cup B| = |A| + |B|$
- $|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1| + |A_2| + \ldots + |A_n|$ 15. (T5.3.13) Inclusion-Exclusion Principle: for
- finite sets, $|A \cup B| = |A| + |B| |A \cap B|$ 16. (L6.4.4) Let \sim be an equivalence relation,
- 16. (L6.4.4) Let \sim be an equivalence relation then

- 17. (T6.4.9) A/\sim is a partition of A
- 18. (P7.1.5) Addition/Multiplication is well-defined on \mathbb{Z}_n . $\forall n \in \mathbb{Z}^+$,

 $[x_1] = [x_2] \land [y_1] = [y_2] \Longrightarrow$ $[x_1] + [y_1] = [x_1 + y_1] = [x_2 + y_2] = [x_2] + [y_2]$ $\land [x_1] \cdot [y_1] = [x_1 \cdot y_1] = [x_2 \cdot y_2] = [x_2] \cdot [y_2]$

- 19. (P7.4.4) For posets, a smallest element is minimal and there is at most one smallest element
- 20. (P7.4.6) For a nonempty finite poset, a minimal element can be found
- 21. (T7.4.10) For any partial order on a set, there exists a total order on that set

22. (Tutorial 4) Division Theorem:

$$\forall n \in \mathbb{Z}, d \in \mathbb{Z}^+ \exists ! q, r \in \mathbb{Z} \text{ s.t.}$$

$$n = dq + r \land 0 \le r < d$$

- 23. (P6.2.16) $\sim_{\mathscr{C}}$ the same-component relation is an equivalence relation
- 24. (P6.3.4) \sim_n the congruence-mod-n relation is an equivalence relation

Set Notations

- 1. Roster notation: $\{x_1, x_2, ..., x_n\}$
- 2. Set builder notation: $\{x \in U \mid P(x)\}$
- 3. Replacement notation: $\{f(x) \mid x \in U\}$

Useful

- 1. $(p \lor q) \land \sim (p \land q) \equiv p \oplus q$
- 2. $(A \cap B) \cup (A \setminus B) = A$
- 3. $A \cap B \subseteq A$
- 4. (Tutorial 4) The following are equivalent:
- (a) $\forall x, y \in A(x R y \implies y R x)$
- (b) $R = R^{-1}$
- (c) $\forall x, y \in A(x R y \iff y R x)$
- 5. (Tutorial 4) Relation on \mathbb{Q} :
- (a) $xy \ge 0$ is reflexive and symmetric
- (b) xy > 0 is symmetric and transitive
- 6. (Quiz 3)
- (a) Order of quantifiers can be freely arranged if all quantifiers are of the same type
- (b) $\forall (P(x) \land Q(x)) \iff \forall x P(x) \land \forall x Q(x)$
- (c) $\exists (P(x) \lor Q(x)) \iff \exists x P(x) \lor \exists x Q(x)$
- 7. (Quiz 5)
- (a) $\mathcal{P}(\emptyset) = {\emptyset}$ has 1 element and 2 subsets
- (b) For all sets, $B \times A \neq A \times B$
- 8. (Quiz 6)
- (a) non-symmetric relations which are reflexive ⇒ they are antisymmetric
- (c) symmetric relations may be antisymmetric or not
- (d) antisymmetric relations may be symmetric or not

- (e) $\min(|R|) = n$ if R is an equivalence relation on A where |A| = n
- 9. (Quiz 7.3/7.4)
- (a) not symmetric may not be antisymmetric
- (b) for finite posets,
 - i. any minimal element is not necessarily smallest
 - ii. any smallest is minimal
 - iii. the smallest element is unique
 - iv. \exists smallest *implies* exactly 1 minimal
 - v. exactly 1 minimal \implies \exists smallest

Assumptions

- 1. every integer is even or odd, but not both
- 2. every rational can be reduced to a fraction in its lowest term