Tarea 1

Programación Básica

I. Usando tablas de verdad (recuadro izquierdo) comprueba las siguientes equivalencias

p	q	$p \vee q$	$p \oplus q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$	
0	0	0	0	0	1	1	
0	1	1	1	0	1	0	
1	0	1	1		0	0	
1	1	1	0	1	1	1	
_	-	-	9	-	-	1	

II. Demostrar mediante induccion matemática que

 $p \leftrightarrow q \equiv q \leftrightarrow p$

14)

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Nota: realmente tiene que ser por inducción matemática y no por cualquier otro método.

III. Usando el programa Inkscape has una linea de tiempo con la historia de los lenguajes de programación. Pon fechas, datos curiosos, imágenes, y no olvides poner las fuentes que usaste para obtener la información.

IV. Autoevaluación: ¿Qué calificación le pones a esta tarea? (el no contestar a esta pregunta automaticamente conlleva un cero en la tarea.

Finalmente, haz esta tarea como un sólo archivo PDF que subirás en la plataforma Github Classroom (Nota: los cálculos matemáticos pueden ser añadidos como fotografías legibles de resultados hechos a mano que después tienes que poner dentro del pdf, para lo cual puedes hacer uso de inkscape).