4-19 패스 파인딩 (Path finding)

패스 파인딩 vs. 모션 플래닝

패스 파인딩

- 로봇이 시작 위치에서 목표 위치까지 최단 경로를 찾는 것
- 보통 단일 점(point)처럼 간주하거나, 로봇 크기/형상을 미리 축소하여 무시
- 속도나 가속도 같은 동역학(dynamics)조건은 대부분 고려하지 않음
- 예시: 게임 캐릭터의 이동, 물류로봇 자동화

최단 경로 알고리즘

모션 플래닝

- 로봇이 실제 물리적·기하학적 제약
 아래에서 장애물을 피하며 움직일 수 있는
 연속적인 경로를 생성
- 로봇의 형상(shape), 크기(size),
 관절(joint) 제약, 속도·가속도 같은
 동역학(dynamics)까지 반영
- 예시: 로봇팔 플래닝

어떻게 솔루션을 찾을까?→ 서치 알고리즘

테스크 ----- 데이터 구조로 ----- 경로 탐색 ----- 경로 문제를 정의

테스크 ----- 데이터 구조로 ----- 경로 탐색 ----- 경로 문제를 정의

테스크 ----- 데이터 구조로 ----- 경로 탐색 ----- 경로 문제를 정의

• V: 로봇의 위치

● E: 이동가능한 스텝 (가중치=1)

- 최단 경로 알고리즘
 - Dijkstra
 - A*
 - BFS
- 최단 경로 알고리즘이 아니라면?
 - DFS

테스크 배정 (Task Assignment) — (Task Allocation)

패스 파인딩

최적화 문제 (Linear Program) 멀티로봇 경로탐색 알고리즘

테스크 배정 (Task Assignment) ─────────────── 패스 파인딩 (Task Allocation)

최적화 문제 (Linear Program)

멀티로봇 경로탐색 알고리즘

$$\min_{oldsymbol{x} \in \mathcal{X}} f(oldsymbol{x}) \ g_i(x) \leq 0, \ h_j(x) = 0$$

2대의 모바일 로봇 (A, B, C, D) 이 4개의 픽업 (Pick-up) 작업(Task 1, 2, 3, 4)을 수행하는데 가장 짧은 방법은?

- ullet 목적 함수 (objective function) $\min_{i \in \{A,B,C,D\}} \sum_{j=1}^{r} d_{i,j} \, x_i$
- ullet 설계 변수 (design variables) $x_{i,j} = egin{cases} 1, & 로봇 i 가 Task j 를 수행한다, \ 0, & 그렇지 않다, \end{cases}$ $i \in \{A,B,C,D\}, \ j \in \{1,2,3,4\}$

테스크 배정 (Task Assignment) ──────────────── 패스 파인딩 (Task Allocation)

최적화 문제 (Linear Program)

멀티로봇 경로탐색 알고리즘

왜 멀티 로봇 상황에서 경로를 찾는 것이 어려운가?

→ 탐색의 경우의 수가 기하급수적으로 증가하기 때문

왜 멀티 로봇 상황에서 경로를 찾는 것이 어려운가?

→ 탐색의 경우의 수가 기하급수적으로 증가하기 때문

왜 멀티 로봇 상황에서 경로를 찾는 것이 어려운가?

→ 탐색의 경우의 수가 기하급수적으로 증가하기 때문

- 왜 멀티 로봇 상황에서 경로를 찾는 것이 어려운가?
- → 탐색의 경우의 수가 기하급수적으로 증가하기 때문
- → 로봇 간 충돌을 고려해야 하기 때문

Conflict-Based Search (CBS)

$$R_1 - B1, B2, B3, B4, C4$$

 $R_2 - A2, B2, C2, D2, D3$

cost: 4

Conflict-Based Search (CBS)

$$R_1 - B1, B2, B3, B4, C4$$

 $R_2 - A2, B2, C2, D2, D3$

cost: 4

Conflict-Based Search (CBS)

$$< R_1, R_2, B2, 1>$$

cost: 4

 R_1 cannot stay at B2 at timestep 1

 R_2 cannot stay at B2 at timestep 1

 $< R_1, R_2, B2, 1 >$

cost: 6

 $R_1 - B1, B2, B3, B4, C4, C4, C4$ $R_2 - A2, A2, A2, B2, C2, D2, D3$

 $< R_1, R_2, B2, 1 >$

cost: 6

$$R_1 - B1$$
, $B1$, $B1$, $B2$, $B3$, $B4$, $C4$
 $R_2 - A2$, $B2$, $C2$, $D2$, $D3$, $D3$, $D3$

$$< R_1, R_2, B2, 1 >$$

$$R_1 - B1, B1, B1, B2, B3, B4, C4$$

 $R_2 - A2, B2, C2, D2, D3, D3, D3$

$$< R_1, R_2, B2, 1 >$$

$$R_1 - B1, B1, B1, B2, B3, B4, C4$$

 $R_2 - A2, B2, C2, D2, D3, D3, D3$

$$< R_1, R_2, B2, 1 >$$

$$R_1 - B1, B1, B1, B2, B3, B4, C4$$

 $R_2 - A2, B2, C2, D2, D3, D3, D3$

$$< R_1, R_2, B2, 1 >$$

$$R_1 - B1, B1, B1, B2, B3, B4, C4$$

 $R_2 - A2, B2, C2, D2, D3, D3, D3$

$$< R_1, R_2, B2, 1 >$$

Conflict-Based Search (CBS)

$$< R_1, R_2, B2, 1>$$

cost: 4

 R_1 cannot stay at B2 at timestep 1

 R_2 cannot stay at B2 at timestep 1

 $< R_1, R_2, B2, 1 >$

cost: 6

 $R_1 - B1, B2, B3, B4, C4, C4, C4$ $R_2 - A2, A2, A2, B2, C2, D2, D3$

 $< R_1, R_2, B2, 1 >$

cost: 6

Conflict-Based Search (CBS)

$$< R_1, R_2, B2, 1>$$

cost: 4

 R_1 cannot stay a at timestep 1

cannot stay at B2

at timestep 1

cost: 6

 $R_1 - B1, B2, B3, B4, C4, C4, C4$ $R_2 - A2, A2, A2, B2, C2, D2, D3$

 $< R_1, R_2, B2, 1 >$

cost: 6

Conflict!

Conflict!

- 이중 레벨 구조 (Two-Level Search)
 - → High-level: Conflict Tree (CT) 탐색
 - → Low-level: 각 로봇 별로 제약조건을 만족하는 독립적인 최단 경로 탐색

- 이중 레벨 구조 (Two-Level Search)
 - → High-level: Conflict Tree (CT) 탐색
 - → Low-level: 각 로봇 별로 제약조건을 만족하는 독립적인 최단 경로 탐색
- 완전성 (Completeness)
 - → 해 (solution)가 존재한다면 유한 시간 내에 반드시 해를 찾을 수 있음

- 이중 레벨 구조 (Two-Level Search)
 - → High-level: Conflict Tree (CT) 탐색
 - → Low-level: 각 로봇 별로 제약조건을 만족하는 독립적인 최단 경로 탐색
- 완전성 (Completeness)
 - → 해 (solution)가 존재한다면 유한 시간 내에 반드시 해를 찾을 수 있음
- 최적성 (Optimality)
 - → 전체 경로 길이 (makespan)을 최소화하는 최적해를 보장
 - → CT 에서 cost가 낮은 노드부터 탐색하도록 하여 최적 해를 보장
- 확장성: Meta-CBS, Windowed-CBS, Suboptimal-CBS, ...

강의 요약

01

패스 파인딩 vs. 모션 플래닝 02

멀티 로봇 패스 파인딩

- Task Allocation
- Multi-robot Path Finding

03

- Two-level Search
- 최적성