Bootstrap Confidence Intervals

MIT 18.443

Dr. Kempthorne

Spring 2015

Outline

- Approximate Confidence Intervals Using the Bootstrap
 - Bootstrap Confidence Intervals

Bootstrap Confidence Intervals

Bootstrap Framework

- Data Model : $\mathbf{X}_n = (X_1, X_2, \dots, X_n)$ i.i.d. sample with pdf/pmf $f(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$
- Data Realization: $\mathbf{X}_n = \mathbf{x}_n = (x_1, \dots, x_n)$
- $\hat{\theta}_n$: Estimate of θ given $\mathbf{x}_n = (x_1, \dots, x_n)$ ($\hat{\theta}_n$ can be MLE, MOM, or any well-defined estimate)
- θ_0 : the true value of the parameter θ .

Exact Confidence Interval

- Estimate Error: $\Delta = \hat{\theta}_n \theta_0 = g(\mathbf{X}_n, \theta_0)$
- Sampling Distribution of Δ : $\Delta \sim P_{\Delta}$, induced by $(X \mid \theta_0)$.
- ullet Exact confidence interval using Δ as a *pivotal*.
 - Set $\underline{\delta}$ and $\overline{\delta}$ as the $\alpha/2$ and $(1-\alpha/2)$ quantiles of P_{Δ}

•
$$P_{\Delta}(\underline{\delta} \leq \Delta \leq \overline{\delta}) = P_{\mathbf{X}_{n}|\theta_{0}}(\underline{\delta} \leq \hat{\theta}_{n} - \theta_{0} \leq \overline{\delta})$$

 $= P(\hat{\theta}_{n} - \overline{\delta} \leq \theta_{0} \leq \hat{\theta}_{n} - \underline{\delta})$
 $= 1 - \alpha$

Bootstrap Confidence Intervals

Approximating P_{Δ} : Sampling Distribution of

$$\Delta = \hat{\theta}_n - \theta_0 = g(\mathbf{X}_n, \theta_0)$$

- If θ_0 known, then
 - Simulate $\mathbf{X}_n^* \sim \mathbf{X}_n \mid \theta_0$
 - Use simulation distribution of $\Delta^* = g(\mathbf{X}_n^*, \theta_0)$
- θ_0 unknown, then
 - Simulate $\mathbf{X}_n^* \sim \mathbf{X}_n \mid \hat{\theta}_n$
 - Use simulation distribution of $\Delta^* = g(\mathbf{X}_n^*, \hat{\theta}_n)$

Bootstrap Confidence Interval

- ullet Generate B samples from the distribution of $[{f X}_n \mid \hat{ heta}_n]$
- Compute estimate $\hat{\theta}_j^*$ for each sample $j, j = 1, \dots, B$.
- Compute sample values: $\Delta_j^* = (\hat{\theta}_j^* \hat{\theta}_j), j = 1, \dots, B$.
- ullet Approximate $\underline{\delta}$ and $\overline{\delta}$ with appropriate quantiles of $\{\Delta_j^*\}$
- Plug $\hat{\theta}_n$, $\underline{\hat{\delta}}$, and $\overline{\hat{\delta}}$ into *pivotal* confidence interval formula

MIT OpenCourseWare http://ocw.mit.edu

18.443 Statistics for Applications

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.