CLAIMS

What is claimed is:

1	1. A method for securing data in communications between a client and server using an
2	unencrypted transfer protocol that does not encrypt a payload defined by the transfer
3	protocol, the method comprising the computer-implemented steps of:
4	selecting a subset from a set of data to be communicated between the client and the
5	server in a particular payload of the unencrypted transfer protocol;
6	determining a secret integer that is unique for the subset among a plurality of subsets
7.	in a plurality of payloads;
8	based on the subset and the secret integer, generating encrypted data that is
9	impractical for a device other than the client and the server to decrypt; and
10	sending, from a sending device of the client and the server to a receiving device of the
11	client and the server, in the particular payload, the encrypted data and clue
12	information to determine, only at the client and the server, the secret integer
13	for decrypting the encrypted data.

- 1 2. A method as recited in Claim 1, wherein the unencrypted transfer protocol is
- 2 Hypertext Transfer Protocol (HTTP).
- 1 3. A method as recited in Claim 1, said step of determining a secret integer that is unique
- 2 for the subset further comprising the steps of:
- generating a first integer using a random number generator;

4	determining a shared secret key to be shared with the receiving device based on the
5	first integer and a first public key associated with the receiving device; and
6	selecting the secret integer based on the shared secret key.
1	4. A method as recited in Claim 3, said step of sending the information to determine the
2	secret integer further comprising the steps of:
3	determining a second public key associated with the sending device based on the first
4	integer; and
5	including the second public key in the information to determine the secret integer.
6	
1	5. A method as recited in Claim 3, said step of sending the information to determine the
2	secret integer further comprising the steps of:
3	determining a plurality of second public keys associated with the sending device
4	based on the first integer, wherein each of the second public keys is associated
5	with one of a plurality of subsets from the set of data; and
6	including the plurality of second public keys in the information to determine the
7	secret integer.
1	6. A method as recited in Claim 3, said step of setting the secret integer further
2	comprising the step of applying a particular hash function to the shared secret key to generate
3	the secret integer.

9

1	7.	A method as recited in Claim 3, said step of generating encrypted data further
2	comp	rising the step of performing an exclusive or (XOR) operation between corresponding
3	bits of	f the subset and the secret integer to generate the encrypted data.
1	8.	A method as recited in Claim 1, wherein:
2		said step of determining the secret integer further comprises the step of applying a
3		particular hash function a plurality of times to a shared secret key shared with
4		the receiving device; and
5		said step of sending the information to determine the secret integer further comprises
6		the step of storing, as part of the clue information, data that indicates a number
7		of times the particular hash function has been applied.
1	9.	A method as recited in Claim 8, said step of determining the secret integer further
2	comp	rising the steps of:
3		determining a first integer formed after the particular hash function is applied the
4		number of times indicated in the information;
5		determining a second integer formed after the particular hash function is applied
6		fewer times than the number of times indicated in the information; and
7		performing an exclusive or (XOR) operation between corresponding bits of the first
8		integer and the second integer.

1	10.	A method as recited in Claim 8, said step of determining the secret integer further
2	comp	rising the steps of:
3		determining a first integer formed after the particular hash function is applied the
4		number of times indicated in the information;
5		determining a second integer formed after a second hash function is applied for the
6		number of times indicated in the information, wherein the second hash
7		function is different from the particular hash function that is used to determine
8		the first integer; and
9		performing an exclusive or (XOR) operation between corresponding bits of the first
10		integer and the second integer.
1	11.	A method as recited in Claim 8, further comprising, before said step of determining
2	the se	ecret integer, performing the steps of:
3		determining the shared secret key based on a particular communication between the
4		client and the server; and
5		storing the shared secret key in a secure data structure.
1	12.	A method as recited in Claim 1, wherein the secret integer has a particular number of
2	bits f	ixed for all subsets in all payloads communicated during a communication session
3	betw	een the client and the server.

11

1	13.	A method as recited in Claim 1, wherein the secret integer has a number of bits that
2	varies	in accordance with lengths of payloads that are communicated during a communication
3	sessio	n between the client and the server.

- A method for securing data in communications between a client and server using an 1 14. unencrypted transfer protocol that does not encrypt a payload associated with the transport 2 protocol, the method comprising the computer-implemented steps of: 3 receiving, at a receiving device of the client and the server from a sending device of 4 the client and the server, in a particular payload of the unencrypted transfer 5 protocol, encrypted data and clue information to determine, only at the client 6 and the server, a secret integer unique for the encrypted data in the particular 7 payload among a plurality of subsets in a plurality of payloads; 8 determining the secret integer based, at least in part, on the clue information; and 9 based on the secret integer, decrypting the encrypted data to generate a subset of data 10
 - 1 15. A method as recited in Claim 14, wherein the unencrypted transfer protocol is the 2 Hypertext Transfer Protocol (HTTP).

to be communicated between client and server.

- 1 16. A method as recited in Claim 14, said step of determining the secret integer further comprising the steps of:
- based on the clue information, determining a shared secret key shared with the sending device; and

5		generating the secret integer based on the shared secret key.
1	17.	A method as recited in Claim 16, said step of generating the secret integer further
2	compr	ising the step of applying a particular hash function to the shared secret key to generate
3	the sec	cret integer.
1	18.	A method as recited in Claim 14, wherein:
2		the method further comprises the steps of
3		determining a shared secret key based on a particular communication between
4		the client and the server, and
5		storing the shared secret key in a secure data structure; and
6		the clue information indicates a number of times a particular hash function is applied
7		to the shared secret key in generating the secret integer.
1	19.	A method as recited in Claim 18, said step of determining the secret integer further
2	comp	rising the step of causing the particular hash function to be applied the number of times
3	indica	ated by the clue information to the shared secret key:
1	20.	A method as recited in Claim 19, said step of determining the secret integer further
2	comp	rising the steps of:
3		determining a first integer formed after the particular hash function is applied the
4		number of times indicated by the clue information;
5		determining a second integer formed after the particular hash function is applied
6		fewer times than the number of times indicated by the clue information; and

2

3

7	performing an exclusive or (XOR) operation between corresponding bits of the first	
8	integer and the second integer.	
1	21. A method as recited in Claim 19, said step of determining the secret integer further	
2	comprising the steps of:	
3	determining a first integer formed after the particular hash function is applied the	
4	number of times indicated in the information;	
5	determining a second integer formed after a second hash function is applied for the	
6	number of times indicated in the information, wherein the second hash	
7	function is different from the particular hash function that is used to determine	:
8	the first integer; and	
9	performing an exclusive or (XOR) operation between corresponding bits of the first	
10	integer and the second integer.	
1	22. A method as recited in Claim 14, said step of decrypting the encrypted data further	
2	comprising the step of performing an exclusive or (XOR) operation between corresponding	
3	bits of the encrypted data and the secret integer to generate the subset of data.	
1	23. A method as recited in Claim 14, wherein the secret integer has a particular number of	f

bits fixed for all subsets in all payloads communicated during a communication session

between the client and the server.

1	24. A computer-readable medium carrying one or more sequences of instructions for
2	securing data in communications between a client and server using an unencrypted transfer
3	protocol that does not encrypt a payload defined by the transport protocol, which instructions,
4	when executed by one or more processors, cause the one or more processors to carry out the
5	steps of:
6	selecting a subset from a set of data to be communicated between the client and the
7	server in a particular payload of the unencrypted transfer protocol;
8	determining a secret integer that is unique for the subset among a plurality of subsets
9	in a plurality of payloads;
10	based on the subset and the secret integer, generating encrypted data that is practically
11	unintelligible to a device other than the client and the server; and
12	sending, from a sending device of the client and the server to a receiving device of the
13	client and the server, in the particular payload, the encrypted data and
14	information to determine, only at the client and the server, the secret integer
15	for decrypting the encrypted data.

1	25. A computer-readable medium carrying one or more sequences of instructions for
2	securing data in communications between a client and server using an unencrypted transfer
3	protocol that does not encrypt a payload defined by the transport protocol, which instructions,
4	when executed by one or more processors, cause the one or more processors to carry out the
5	steps of:
6	receiving, at a receiving device of the client and the server from a sending device of
7	the client and the server, in a particular payload of the unencrypted transfer
8	protocol, encrypted data and information to determine, only at the client and
9	the server, a secret integer unique for the encrypted data in the particular
0	payload among a plurality of subsets in a plurality of payloads;
1	determining the secret integer based, at least in part, on the information; and
12	based on the secret integer, decrypting the encrypted data to generate a subset of data
13	to be communicated between client and server.
1	26. An apparatus for securing data in communications between a client and server using
2	an unencrypted transfer protocol that does not encrypt a payload defined by the transport
3	protocol, comprising:
4	means for selecting a subset from a set of data to be communicated between the client
5	and the server in a particular payload of the unencrypted transfer protocol;
6	means for determining a secret integer that is unique for the subset among a plurality
7	of subsets in a plurality of payloads;
8	means for generating, based on the subset and the secret integer, encrypted data that is
9	practically unintelligible to a device other than the client and the server; and

10	means for sending to a receiving device of the client and the server, in the particular
11	payload, the encrypted data and information to determine, only at the client
12	and the server, the secret integer for decrypting the encrypted data.
1	27. An apparatus for securing data in communications between a client and server using
2	an unencrypted transfer protocol that does not encrypt a payload defined by the transport
3	protocol, comprising:
4	means for receiving, at a receiving device of the client and the server from a sending
5	device of the client and the server, in a particular payload of the unencrypted
6	transfer protocol, encrypted data and information to determine, only at the
7	client and the server, a secret integer unique for the encrypted data in the
8	particular payload among a plurality of subsets in a plurality of payloads;
9	means for determining the secret integer based, at least in part, on the information;
10	and
11	means for decrypting the encrypted data, based on the secret integer, to generate a
12	subset of data to be communicated between client and server.
1	28. An apparatus for securing data in communications between a client and server using
2	an unencrypted transfer protocol that does not encrypt a payload defined by the transport
3	protocol, comprising:
4	a network interface that is coupled to the data network for sending one or more packet
5	flows thereto;
6	a processor;

7	one or more stored sequences of instructions which, when executed by the processor,
8	cause the processor to carry out the steps of:
9	selecting a subset from a set of data to be communicated between the client
10	and the server in a particular payload of the unencrypted transfer
11	protocol;
12	determining a secret integer that is unique for the subset among a plurality of
13	subsets in a plurality of payloads;
14	based on the subset and the secret integer, generating encrypted data that is
15	practically unintelligible to a device other than the client and the
16	server; and
17	sending, to a receiving device of the client and the server, in the particular
18	payload, the encrypted data and information to determine, only at the
19	client and the server, the secret integer for decrypting the encrypted
20	data.
1	29. An apparatus for securing data in communications between a client and server using
2	an unencrypted transfer protocol that does not encrypt a payload defined by the transport
3,	protocol, comprising:
4	a network interface that is coupled to the data network for receiving one or more
5	packet flows therefrom;
6	a processor;
7	one or more stored sequences of instructions which, when executed by the processor
8	cause the processor to carry out the steps of:

9	receiving, from a sending device of the client and the server, in a particular
10	payload of the unencrypted transfer protocol, encrypted data and
11	information to determine, only at the client and the server, a secret
12	integer unique for the encrypted data in the particular payload among a
13	plurality of subsets in a plurality of payloads;
14	determining the secret integer based, at least in part, on the information; and
15	based on the secret integer, decrypting the encrypted data to generate a subset
16	of data to be communicated between client and server.