Algorithms

Kiho Choi

Fall, 2022

2. Growth of Functions & Divide-and-Conquer

Contents

- Asymptotic notation
 - Asymptotic notation in equations
 - Comparing functions
- Recursion-tree method
- The master method

Problem 3:Thanksgiving trip

Growth of Functions

overview

- A way to describe behavior of functions in the limit.
 We're studying asymptotic efficiency.
- Describe growth of functions.
- Focus on what's important by abstracting away low-order terms and constant factors.
- How we indicate running times of algorithms.
- A way to compare "sizes" of functions:

$$\Omega \approx \geq$$

$$\Theta \approx =$$

$$\omega \approx >$$

0 -notation

 $O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c g(n)$ for all $n \ge n_0 \}$

g(n) is an asymptotic upper bound for f(n).

Ω - notation

```
\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c 
and n_0 such that 0 \le c \ g(n) \le f(n)
for all n \ge n_0 \}
```


g(n) is an asymptotic lower bound for f(n).

Θ - notation

```
\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}
```


g(n) is an asymptotically tight bound for f(n).

Θ - notation

• Engineering:

Drop low-order terms; ignore leading constants.

• Example: $3n^3 + 90n^2 - 5n + 6046 = \Theta(n^3)$

o - notation

o(g(n)): { f(n): for all constants c > 0, there exists a constant $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$ }.

Another view, probably easier to use: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.

$$n^{1.9999} = o(n^2)$$

 $n^2 / \lg n = o(n^2)$
 $n^2 \neq o(n^2)$ (just like $2 \neq 2$)
 $n^2 / 1000 \neq o(n^2)$

ω - notation

 ω (g(n)) = {f(n): for all constants c > 0, there exists a constant $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$ }.

Another view, again, probably easier to use: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$.

$$n^{2.0001} = \omega(n^2)$$

$$n^2 \lg n = \omega(n^2)$$

$$n^2 \neq \omega(n^2)$$

Comparing functions

Relational properties:

Transitivity:

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$.
Same for O, Ω, o , and ω .

Reflexivity:

$$f(n) = \Theta(f(n)).$$

Same for O and Ω .

Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$.
 $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

Divide-and-Conquer

Three methods for solving recurrences

- Substitution method
 - guess the bound and then use mathematical induction to prove our guess correct.

Recursion-tree method

- converts the recurrence into a tree whose nodes represent the costs incurred at various levels of the recursion.
- Master method
 - provides for recurrences of the form.

$$T(n) = aT(n/b) + f(n)$$

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:
 $T(n)$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:
$$T(n/4) \qquad T(n/2)$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$(n/4)^{2} \qquad (n/2)^{2} \qquad \frac{5}{16}n^{2}$$

$$(n/16)^{2} \qquad (n/8)^{2} \qquad (n/4)^{2} \qquad \frac{25}{256}n^{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\Theta(1) \qquad \text{Total } < n^{2} \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^{2} + \left(\frac{5}{16}\right)^{3} + \cdots\right)$$

$$= \Theta(n^{2}) \quad \text{geometric series}$$

The master method

The master method applies to recurrences of the form

$$T(n) = aT(n/b) + f(n),$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Three common cases

Compare f(n) with $n^{\log_b a}$: \rightarrow # of leaves

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log b^a}$ (by an n^{ε} factor).

```
Solution: T(n) = \Theta(n^{\log_b a}).
```

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

```
Solution: T(n) = \Theta(n^{\log_b a} \lg^{k+1} n).
```

Three common cases (cont'd)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})^{\frac{1}{\varepsilon}}$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log b^a}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Examples

```
Ex. T(n) = 4T(n/2) + n

a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.

Case 1: f(n) = O(n^{2-\epsilon}) for \epsilon = 1.

\therefore T(n) = \Theta(n^2).
```

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
Case 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \lg n)$.

Examples

```
Ex. T(n) = 4T(n/2) + n^3

a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.

Case 3: f(n) = \Omega(n^{2+\epsilon}) for \epsilon = 1

and 4(n/2)^3 \le cn^3 (reg. cond.) for c = 1/2.

\therefore T(n) = \Theta(n^3).
```


Appendix: geometric series

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x} \quad \text{for } x \neq 1$$

$$1 + x + x^{2} + \dots = \frac{1}{1 - x} \quad \text{for } |x| < 1$$

Implementation

Implementation of quick sort

```
QUICKSORT(A, p, r)
 if p < r
      q = PARTITION(A, p, r)
      QUICKSORT(A, p, q - 1)
      Quicksort(A, q + 1, r)
Initial call is QUICKSORT(A, 1, n).
Partition (A, p, r)
 x = A[r]
 i = p - 1
 for j = p to r - 1
     if A[j] \leq x
         i = i + 1
         exchange A[i] with A[j]
 exchange A[i + 1] with A[r]
 return i+1
```

```
# Definition of quick sort
def guickSort(A, p:int, r:int):
  if p < r:
    g = partition(A, p, r)
    quickSort(A, p, q-1)
    quickSort(A, q+1, r)
def partition(A, p:int, r:int):
  x = A[r]
  i = p-1
  for j in range(p, r):
    if A[j] < x:
      i += 1
      A[i], A[j] = A[j], A[i]
  A[i+1], A[r] = A[r], A[i+1]
  return i+1
```

Example code test

- Code test: https://www.acmicpc.net/problem/11004
- Solving the problem using quick sort
- Example result of submission

제출 번호	아이디	문제	결과	메모리	시간	언어	코드 길이	제출한 시간
48606321	aikiho	11004	맞았습니다!!	646904 KB	1936 ms	PyPy3 / 수정	1207 B	1분 전

THANK YOU_