Multi-Armed Bandits

Daniel Brown

Evaluative feedback

Reading	B
Writing	C-
Mathematics	D
Science	C-
History	B+
Art	B-
P.E.	В

Applications

- Online Advertising and Recommendation
- Clinical Trials
- Robotics
- Dynamic Pricing
- Search Engine Optimization
- Education and Learning Platforms

Problem formalism

- Arms $\mathcal{A} = \{a_1, \dots, a_k\}$
 - Each arm is associated with an unknown reward distribution
- Rewards $r_t(a_i)$
- Possible Goals
 - Maximize cumulative reward (Minimize regret)
 - Best arm identification
- Assumptions
 - Independence: Rewards from each arm are independent
 - Stationarity: Reward distributions don't change over time

How should we solve this problem?

Random

Greedy

Exploration

ϵ -Greedy

Sutton/Barto figure

- 10 arms
- Each arm has stochastic reward

$$r \sim N(Q^*(a), 1)$$

• Averaged over 2000 bandit problems where each problem starts with $Q^*(a) \sim N(0,1)$ for all a

Problems?

Boltzmann (Softmax) Exploration

Chernoff-Hoeffding Inequality

- Let $X_1, X_2, ..., X_n$ be independent random variables in the range [0,1]
- Let $\bar{X} = \frac{1}{n} \sum_{i} X_{i}$ (the empirical average)
- Then we have $P(\bar{X} \geq \mathbb{E}[X] + c) \leq e^{-2nc^2}$

Some fun math

- $P(\bar{X} \ge \mathbb{E}[X] + c) \le e^{-2nc^2}$
- Typically, we want to pick some kind of high confidence $1-\delta$ such that we are very confident about our sample mean being close to the true expectation.
- Quiz 1: if we want

$$P(\bar{X} \ge \mathbb{E}[X] + c) \le \delta$$

What is c?

More math

ullet We can pick δ to be whatever we want, so let's pick

•
$$\delta = \frac{1}{t^2}$$

Quiz 2: What is c?

UCB1 (UCB = Upper Confidence Bound)

Key Idea: Optimism in the face of uncertainty

- Play each action once to get initial averages of arm values
- Keep track of counts for each arm n_i
- At each step t select $\arg \max \overline{X}_i + c(i, t)$
 - Where $c(i, t) = \sqrt{\frac{log(t)}{n_i}}$

Regret

- Define μ^* as the maximum expected payoff over all k arms
- Regret(T) = $T\mu^* \sum_{t=1}^T r_t$
- Epsilon-Greedy Regret
 - O(T)
- UCB1 Regret
 - $O(\sqrt{kT \log(T)})$
- A **No-Regret** algorithm is such that Regret(T)/T $\rightarrow 0$ as $T \rightarrow \infty$
 - Average regret goes to zero

Regret Bound vs. Turn

k (number of arms): 2 \checkmark T (number of steps): 1000 \checkmark

https://cse442-17f.github.io/LinUCB/

Regret Bound vs. Turn

k (number of arms): 100 \checkmark T (number of steps): 1000 \checkmark

https://cse442-17f.github.io/LinUCB/

Other Bandit Topics

- Thompson Sampling
- Best Arm Identification
- Adversarial Bandits
- Contextual Bandits
 - State information, s_t
 - Reward depends on state, and action
- Linear Bandits
 - Type of contextual bandit
 - · Reward is a linear combination of state features.