Latches e Flip-Flops

Circuitos Lógicos

DCC-IM/UFRJ

Prof. Gabriel P. Silva

Diagrama Geral de um Sistema Digital

"Latch" com Portas NOR

Set	Clear		Saída
0	0	i	Não muda
1	0		Q = 1
0	1	8	Q = 0
1	1		Inválida*

Diagrama de Tempos "Latch" com Portas NOR

"Gated Latch" c/ portas NOR

	Clk	S	R	Q(t+1)
•	0	X	X	Q(t) (no change)
	1	0	0	Q(t) (no change)
	1	0	1	0
	1	1	0	1
	1	1	1	x

"Gated Latch" c/ portas NOR

Dois estados de repouso possíveis quando SET=CLEAR=1

Quando a entrada SET pulsa para '0' força a saída Q para '1'.

Quando a entrada CLEAR pulsa para '0' força a saída Q para '0'.

(a) Latch com portas NAND; (b) Tabela-verdade.

Set	Clear		Saída
1	1	i	Não muda
0	1		Q = 1
1	0		Q = 0
0	0		Inválida*

*Produz Q =
$$\overline{Q}$$
 = 1

(b)

Diagrama de Tempos "Latch" com Portas NAND

Aplicação do "Latch"

"Gated SR Latch" com NAND

Qual a tabela verdade?

"Gated D Latch" com NAND

Clk	D	Q(t+1)
0	X	Q(t)
1	0	0
1	1	1

"Gated D Latch" com NAND

"Latch" Transparente

Diagrama de Tempos "Latch" Transparente

VHDL "Latch" Transparente

```
entity d latch is
  port ( d, clk : in bit; q : out bit );
end entity d latch;
architecture basic of d latch is
begin
   latch behavior: process is
   begin
     if clk = '1' then
        q <= d after 2 ns;
     end if;
     wait on clk, d;
  end process latch behavior;
end architecture basic;
```

Sinal de Relógio (Clock)

Flip-Flop

Flip-Flop SC ativado na transição positiva do "clock"

	Entrada	8	Saidas		
S	С	CLK	Q		
0 1 0 1	0 0 1 1	-	Q ₀ (não muda) 1 0 Ambigua		

Q₀ é o nivel lógico da saida antes da borda de subida(1) do CLK. A borda de descida (1) do CLK não gera mudança na saida Q.

(b)

Diagrama de Tempo Flip-Flop SC

Flip-Flop SC ativado na transição negativa do "clock"

E	Entr	adas	Saídas
S C CLK		CLK	Q
0	0	-	Q ₀ (não muda)
1	0		1
0	1	-	0
1	1	-	Ambígua

Circuito Interno Flip-Flop tipo SC

Circuito Detector de Transição

Flip-Flop JK

J	K	CLK	Q
0	0		Q ₀ (não muda)
1	0		1
0	1		0
1	1		Q ₀ (comuta)

(a)

Flip-Flop JK

Flip-Flop JK Transição Negativa

	J			K		CL	K		Q
	0			0					Q ₀ (não muda)
	1			0	- 0000	100			1
	0			1					0
				1					Q ₀ (comuta)
66	1000	555	000	100	999	1000	300	99	40 (00111414)

Flip-Flop Tipo D

Diagrama de Tempos Flip-Flop Tipo D

Aplicação do Flip-Flop Tipo D

^{*}Após a ocorrência da borda de descida.

Flip-Flop Tipo D com SET e RESET

Figure 6.13 Flip flop with clear and preset inputs.

Table 6.3 D flip flop with clear and preset inputs behavioral table.

PRE'	CLR'	D	q	q^*	
0 1 0	1 0 0	X X X	X X X	1 0	static immediate not allowed
1 1 1 1	1 1 1 1	0 0 1 1	0 1 0 1	0 0 1 1	clocked (as before)

Flip-Flop Tipo D com SET e RESET

Temporização

■Definição de termos

- Relógio: sinal elétrico periódico que provoca a mudança de estado do elemento de memória; (transição de subida ou descida, nível alto ou baixo)
- o Atraso de propagação: tempo máximo depois do evento de relógio (transição de subida ou descida) até a mudança do valor na saída do flip-flop ($T_{\rm PHL}$ e $T_{\rm PLH}$)
- o Tempo de setup: tempo mínimo antes do evento de relógio (transição de subida ou descida) em que a entrada precisa estar estável (Tsu)
- o Tempo de hold: tempo mínimo depois do evento de relógio (transição de subida ou descida) durante o qual a entrada precisa continuar estável (Th)

Atrasos de Propagação

Tempo de Setup e Hold

Temporização

Existe uma "janela" de tempo em torno da subida ou descida do relógio durante a qual a entrada precisa permanecer estável e inalterada para que seja corretamente reconhecida.

Temporização

Especificações de Tempo Típicas

- Positive edge-triggered D flip-flop
 - Tempos de Setup e Hold
 - Largura de clock mínima
 - Retardos de propagação (0 para 1, 1 para 0, máximo e típico)

Todas as medidas são feitas a partir do evento de clock, isto é, a partir da borda de subida do clock

Falha de Sincronização

- Ocorre quando a entrada do flip-flop muda próximo à borda do clock
 - FF pode entrar num estado metaestável nem 0 nem 1
 - o FF pode permanecer neste estado indefinidamente

probabilidade baixa, mas não nula, de que a saída do FF fique presa em um estágio intermediário gráficos no osciloscópio demonstrando falha de sincronização e eventual decaimento ao estado permanente

Lidando com a Falha de Sincronização

- □ Probabilidade da falha não pode ser reduzida a 0, mas pode ser diminuída
 - (1) desacelerar o clock do sistema: isto dá ao sincronizador mais tempo para entrar em um estado permanente; falha de sincronização se torna um grande problema para sistemas de alta velocidade
 - (2) usar no sincronizador a tecnologia mais rápida possível
 - (3) cascatear dois sincronizadores: isto efetivamente sincroniza duplamente

