次の問2から問7までの6間については、この中から4間を選択し、選択した問題については、答案用紙の選択欄の(選)をマークして解答してください。

なお,5問以上マークした場合には,はじめの4問について採点します。

問2 JKフリップフロップに関する次の記述を読んで、設問1~3に答えよ。

JK フリップフロップは,二つの信号入力端子 J と K,一つのクロック信号入力端子 CLK,及び二つの信号出力端子 Q と \overline{Q} をもつ回路である。図 1 に JK フリップフロップの記号を示す。

図1 JKフリップフロップの記号

入出力される信号の値は高,低の二つの電圧レベルのいずれかである。クロック信号の値は,周期的に高と低を繰り返す。Q の値は, \overline{Q} の値が高であれば低,低であれば高となる。

各入出力端子の信号の値を当該端子記号で表し、信号の値が高の場合を論理値の 1、低の場合を論理値の 0 として表記する。また、信号の値が低から高に変化することを $0\rightarrow 1$ 、高から低に変化することを $1\rightarrow 0$ と表記する。

CLK の立ち下がり($1 \rightarrow 0$)時に,その時点での J,K,Q の値に基づき,その後の Q の値が決定される。この様子を図 2 に示す。CLK の立ち下がり時刻を t_1 ,その後の Q の値が決定した時刻を t_2 として,時刻 t_1 での J,K,Q の値(J_1 , K_1 ,Q $_1$ と表記)と時刻 t_2 の Q の値(Q_2 と表記)の関係を表 1 の真理値表に示す。ここで,時刻 t_1 と t_2 の時間間隔は極めて短く,CLK の 1 周期に比べても十分に短いものとする。

図2 CLKの立ち下がりとQの値の変化例

表 1 真理値表

J_1	K ₁	Q_1	Q_2
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

設問1 次の記述中の に入れる正しい答えを, 解答群の中から選べ。

図 3 に示すとおり、J と Q、K と \overline{Q} をそれぞれ同一の値の信号とする回路(端 子間を結線する) にクロック信号 (CLK) を入力したとき、CLK の立ち下がり でQの値は 。ここで、Qの初期値は0とする。

解答群

ア 0のままである

イ 0→1と変化する

ウ 0→1. 1→0と変化する

エ $0\rightarrow 1$, $1\rightarrow 0$ の変化を繰り返す

設問 2 表 1 の真理値表を基に、 Q_1 から Q_2 への変化に着目し、そのときの J_1 、 K_1 との関係を表 2 にまとめ直した。表 2 中の に入れる正しい答えを、解答 群の中から選べ。

表 2 Qの値の変化と J₁, K₁の値の関係

J_1	K ₁	$\mathbf{Q}_1 \! \to \! \mathbf{Q}_2$	
b		0→0	
任意	1	1→0	
1	任意	0→1	
С		1→1	

注記 任意:0又は1のいずれの値もあり得る。

b, cに関する解答群

ア 0 任意

工 任意 0

 イ
 1
 1

 オ
 任意
 1

ウ 1 任意

設問3 JK フリップフロップ 1 個を使って、図 4 のように動作する 2 進カウンタを構成する。ここで、2 進カウンタとは、CLK の 1 周期ごとに Q の値が変化するものである。次の記述中の に入れる正しい答えを、解答群の中から選べ。

図4 2進カウンタの動作例

図 4 の例では、Q の値は、1 回目の CLK の立ち下がりで $0 \to 1$ 、2 回目の CLK の立ち下がりで $1 \to 0$ に変化し、以降も CLK の立ち下がりごとにこれを繰り返す。

表 2 から、1 回目の CLK の立ち下がりのときの J、K、Q の値の組合せと、2 回目の CLK の立ち下がりのときの J、K、Q の値の組合せが、表 3 のようであればよいことが分かる。

表3 CLKの立ち下がりのときのJ, K, Qの値の組合せ

	J	K	Q
1回目の CLK の立ち下がり	1	任意 K	0
2回目のCLKの立ち下がり	任意」	1	1

例えば、表3の任意 $_{\rm I}$ の値を0、任意 $_{\rm K}$ の値を1にするためには、 $\bar{\rm Q}$ を $\bar{\rm J}$ の入力に、 $\bar{\rm K}$ の入力の値を常に1にすればよい。(以下、($\bar{\rm J}$, $\bar{\rm K}$) = ($\bar{\rm Q}$, 1) と表記する)この構成例を図5に示す。

図5 2進カウンタ構成例

同様に、表 3 の任意 $_{\rm I}$ と任意 $_{\rm K}$ を組み合わせると、他の構成案として次の三つ がある。

d~fに関する解答群

 \mathcal{F} 1, 1 \mathcal{I} 1, Q \mathcal{I} 1, $\bar{\mathcal{Q}}$ \mathcal{I} Q, 1

オ Q, Q カ Q, Q