МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБО6РОСТРОЕНИЯ»

	КАФЕДРА № 43			
ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ				
ПРЕПОДАВАТЕЛЬ				
Старший преподаватель		С.А. Рогачев		
должность, уч. степень, звание	подпись, дата	инициалы, фамилия		
ОТЧЕТ О ЛАБОРАТОРНОЙ	РАБОТЕ №4			
Основ	ные понятия теории конечных авто	матов		
по куј	рсу: Теория Вычислительных Проц	ессов		
РАБОТУ ВЫПОЛНИЛ				
СТУДЕНТ ГР. № 413	34к	Н.А. Костяков		

Санкт-Петербург 2024

подпись, дата

инициалы, фамилия

Цель работы:

Построить конечный автомат Мили, который осуществляет проверку входного слова на допустимость в заданном регулярном выражении; Задать построенный КНА, тремя способами.

Постановка задачи

4) $(\langle x|c\rangle|n)(b|d)\langle a|k\rangle y$ – регулярное выражение

Строим конечный автомат Мили:

Чтобы построить конечный автомат Мили для проверки допустимости слов, соответствующих данному регулярному выражению, нужно:

1. Определить состояния:

- q0 начальное состояние.
- q1 состояние после первого символа (могут быть x, с или n).
- q2— состояние после второго символа (могут быть b или d).
- q3— состояние после третьего символа (могут быть а или k).
- q4— принимающее состояние (после символа у).

2. Алфавит:

- Входной алфавит: {x,c,n,b,d,a,k,y}.
- Алфавит выходных символов: {0,1}

3. **Функции переходов** (δ) и выходов (λ):

- **Функция переходов δ**: Она определяет, в какое состояние автомат перейдёт при поступлении определённого символа.
- **Функция выходов λ** : Она определяет, какой выход будет сгенерирован при поступлении определённого символа в конкретном состоянии

Конечный автомат заданный тремя способами

Матричный

Состояние	Символ	Следующее состояние	Выход
q0	n	Q1	
q0	С	Q5	
q0	X	Q5	
q0	b	q 7	
q0	d	q 7	

q1	X	q1	
q1	b	q7	
q1	d	q7	
q5	b	q 7	
q5	d	q 7	
q2	b	q7	
q2	d	q 7	
q7	a	q6	
q6	a	q6	
q7	y	q4	Успешно
q7	k	q3	
q3	k	q3	
q3	y	q4	Успешно
q6	y	q4	Успешно
Q1,q2,q3,q5,q6,q7	Не алфавит		Ошибка

Граф переходов

Автоматная таблица

$(\langle x|c\rangle|n)(b|d)\langle a|k\rangle y$

Состоян ие	Вход х	Вход с	Вход п	Вход b	Вход d	Вход а	Вход k	Вход у	Выход
q0	q1	q5	q2	q 7	q7				
q1	q1			q 7	q7				
q2				q7	q7		q3		
q3								q4	
q4									принято
q5		q5		q7	q7				
q6						q6		q4	
q 7						q6	q3	q4	

Вывод

Я задал конечный автомат который проверяет входное слово на допустимость в заданном регулярном выражении тремя способами