The Threshold Energy of Low Temperature Langevin Dynamics for Pure Spherical Spin Glasses

Mark Sellke Department of Statistics Harvard

Statistical Physics & Machine Learning Back Together Again Cargèse, August 2023

arxiv:2305.07956

Plan for this Talk

- Introduction and background
 - Spherical spin glasses and Langevin dynamics
 - Cugliandolo–Kurchan equations
 - Bounding flows
 - The threshold E_{∞}
- Main result: threshold energy of low temperature dynamics
 - Upper bound: Lipschitz approximation and BOGP
 - Lower bound: climbing near saddles
- Epilogue

Definition of Pure Spherical Spin Glasses

Pure *p*-spin Hamiltonian: random function $H_N : \mathbb{R}^N \to \mathbb{R}$ given by

$$H_N(\sigma) = N^{-(p-1)/2} \sum_{1 \le i_1, i_2, \dots, i_p \le N} J_{i_1, \dots, i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

with i.i.d. Gaussian coefficients $J_{i_1,...,i_n} \sim \mathcal{N}(0,1)$.

Inputs σ will be on the sphere: $S_N = \{ \sigma \in \mathbb{R}^N : \sum_{i=1}^N \sigma_i^2 = N \}$.

Definition of Pure Spherical Spin Glasses

Pure *p*-spin Hamiltonian: random function $H_N: \mathbb{R}^N \to \mathbb{R}$ given by

$$H_N(\sigma) = N^{-(p-1)/2} \sum_{1 \le i_1, i_2, \dots, i_p \le N} J_{i_1, \dots, i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

with i.i.d. Gaussian coefficients $J_{i_1,...,i_p} \sim \mathcal{N}(0,1)$.

Inputs σ will be on the sphere: $S_N = \{ \sigma \in \mathbb{R}^N : \sum_{i=1}^N \sigma_i^2 = N \}.$

Quick facts:

- $\ \, \text{Rotationally invariant Gaussian process:} \ \, \mathbb{E} H_N(\sigma) H_N(\rho) = N \left(\frac{\langle \sigma, \rho \rangle}{N} \right)^p.$

Spherical Langevin Dynamics

Langevin dynamics on S_N :

$$dx_t = \left(\beta \nabla_{\mathsf{sp}} H_N(x_t) - \frac{(N-1)x_t}{2N}\right) dt + P_{x_t}^{\perp} dB_t.$$

Invariant for Gibbs measure $\mu_{\beta}(d\sigma) = e^{\beta H_N(\sigma)} d\sigma/Z_N(\beta)$. Much is known about μ_{β} even at low temperature:

- Free energy is 1-RSB [Talagrand 06]
- Geometric description: orthogonal deep wells, extremes are Poisson-Dirichlet [Subag 17].

Spherical Langevin Dynamics

Langevin dynamics on S_N :

$$dx_t = \left(\beta \nabla_{\mathsf{sp}} H_N(x_t) - \frac{(N-1)x_t}{2N}\right) dt + P_{x_t}^{\perp} dB_t.$$

Invariant for Gibbs measure $\mu_{\beta}(d\sigma) = e^{\beta H_N(\sigma)} d\sigma/Z_N(\beta)$. Much is known about μ_{β} even at low temperature:

- Free energy is 1-RSB [Talagrand 06]
- Geometric description: orthogonal deep wells, extremes are Poisson-Dirichlet [Subag 17].

 $t_{\textit{mix}}(\beta) \geq e^{\Omega(\textit{N})}$ for large β , so μ_{β} will not be realistically accessed [Ben Arous-Jagannath 18].

Study of O(1)-time dynamics since [Sompolinsky-Zippelius 82] (SK model).

Physics Predictions and Rigorous Results

- Exact description via Cugliandolo-Kurchan equations [Crisanti-Horner-Sommers 93].
 - [Ben Arous-Dembo-Guionnet 06]: Yes (for soft spherical spins)
- 2 Fluctuation-dissipation relation & exponential decay of correlations at high temperature.
 - [Dembo-Guionnet-Mazza 07]: Yes, using 1.

Physics Predictions and Rigorous Results

- Exact description via Cugliandolo-Kurchan equations [Crisanti-Horner-Sommers 93].
 - [Ben Arous-Dembo-Guionnet 06]: Yes (for soft spherical spins)
- Pluctuation-dissipation relation & exponential decay of correlations at high temperature.
 - [Dembo-Guionnet-Mazza 07]: Yes, using 1.
- Aging at low temperatures [Cugliandolo-Kurchan 93].
 - [Ben Arous-Dembo-Guionnet 01]: **Yes**, for p = 2.

Physics Predictions and Rigorous Results

- Exact description via Cugliandolo-Kurchan equations [Crisanti-Horner-Sommers 93].
 - [Ben Arous-Dembo-Guionnet 06]: Yes (for soft spherical spins)
- Pluctuation-dissipation relation & exponential decay of correlations at high temperature.
 - [Dembo-Guionnet-Mazza 07]: Yes, using 1.
- 3 Aging at low temperatures [Cugliandolo-Kurchan 93].
 - [Ben Arous-Dembo-Guionnet 01]: **Yes**, for p = 2.
- Large time threshold energy $E_{\infty}(p) \equiv 2\sqrt{\frac{p-1}{p}}$ as $\beta \to \infty$ [Biroli 99].
 - [Ben Arous-Gheissari-Jagannath 18]: Explicit bounds via differential inequalities.

Cugliandolo-Kurchan Equations

Closed system of equations as $N \to \infty$ for:

$$C(s,t) \equiv \langle x_s, x_t \rangle / N,$$

 $R(s,t) \equiv \langle x_s, B_t \rangle / N.$

Cugliandolo-Kurchan Equations

Closed system of equations as $N \to \infty$ for:

$$C(s,t) \equiv \langle x_s, x_t \rangle / N,$$

 $R(s,t) \equiv \langle x_s, B_t \rangle / N.$

Tells you everything in principle, but hard to work with. For $s \ge t \ge 0$:

$$\begin{split} \partial_s R(s,t) &= -\mu(s) R(s,t) + \beta^2 p(p-1) \int_t^s R(u,t) R(s,u) C(s,u)^{p-2} \, \mathrm{d}u, \\ \partial_s C(s,t) &= -\mu(s) C(s,t) + \beta^2 p(p-1) \int_0^s C(u,t) R(s,u) C(s,u)^{p-2} \, \mathrm{d}u \\ &+ \beta^2 p \int_0^t C(s,u)^{p-1} R(t,u) \, \mathrm{d}u; \\ \mu(s) &\equiv \frac{1}{2} + \beta^2 p^2 \int_0^s C(s,u)^{p-1} R(s,u) \, \mathrm{d}u. \end{split}$$

Bounding Flows Approach

Rigorously understanding the Cugliandolo-Kurchan equations is difficult at low temperature.

[Ben Arous-Gheissari-Jagannath 18]: bounding flows method of differential inequalities.

- Shows $d(H_N(x_t), \|\nabla H_N(x_t)\|^2) \in \Gamma(H_N(x_t), \|\nabla H_N(x_t)\|^2) \subseteq \mathbb{R}^2$.
- Quantitative lower bounds on $H_N(x_T)$, even for disorder dependent $x_0 \in S_N$.

Bounding Flows Approach

Rigorously understanding the Cugliandolo-Kurchan equations is difficult at low temperature.

[Ben Arous-Gheissari-Jagannath 18]: bounding flows method of differential inequalities.

- Shows $d(H_N(x_t), \|\nabla H_N(x_t)\|^2) \in \Gamma(H_N(x_t), \|\nabla H_N(x_t)\|^2) \subseteq \mathbb{R}^2$.
- Quantitative lower bounds on $H_N(x_T)$, even for disorder dependent $x_0 \in S_N$.

Intuition for E_{∞}

[Biroli 99]: $E_{\infty}=2\sqrt{\frac{p-1}{p}}$ should be the threshold energy in the limit $\beta\to\infty$.

The Hessian's maximum eigenvalue "equals zero at zero temperature, as is expected for a dynamics in a rugged energy landscape".

Intuition for E_{∞}

[Biroli 99]: $E_{\infty}=2\sqrt{\frac{p-1}{p}}$ should be the threshold energy in the limit $\beta \to \infty$.

The Hessian's maximum eigenvalue "equals zero at zero temperature, as is expected for a dynamics in a rugged energy landscape".

Explanation:

• For $x \in S_N$, the spherical Hessian $\nabla^2_{sp} H_N(x)$ is a shifted GOE:

$$\nabla_{\rm sp}^2 H_N(x) \stackrel{d}{=} \sqrt{p(p-1)} \ GOE(N-1) - p \cdot \frac{H_N(x)}{N}.$$

- The prediction above says $\lambda_{\sf max} ig(
 abla_{\sf sp}^2 H_{N}(x_T) ig) pprox 0.$
- Since $\lambda_{\max}(GOE(N-1)) \approx 2$, we should also predict energy E_{∞} , i.e.

$$\lim_{\beta, T \to \infty} \operatorname{p-lim}_{N \to \infty} H_N(x_T)/N = E_{\infty}.$$

New Results: E_{∞} is the Threshold Energy as $\beta \to \infty$

Theorem (**S** 23, Upper Bound)

For any β there is $\delta > 0$ such that for any T, if $x_0 \in \mathcal{S}_N$ is independent of H_N :

$$\mathbb{P}\left[\sup_{t\in[0,T]}H_N(x_t)/N\leq E_{\infty}-\delta\right]\geq 1-e^{-cN}.$$

New Results: E_{∞} is the Threshold Energy as $\beta \to \infty$

Theorem (**S** 23, Upper Bound)

For any β there is $\delta > 0$ such that for any T, if $x_0 \in \mathcal{S}_N$ is independent of H_N :

$$\mathbb{P}\left[\sup_{t\in[0,T]}H_N(x_t)/N\leq E_{\infty}-\delta\right]\geq 1-e^{-cN}.$$

Theorem (S 23, Lower Bound)

For any $\eta > 0$, with $T_0 = T_0(\eta)$ and $\beta \ge \beta_0(\eta)$, even if x_0 is disorder dependent:

$$\mathbb{P}\left[\inf_{t\in[T_0,T_0+e^{cN}]}H_N(x_t)/N\geq E_\infty-\eta\right]\geq 1-e^{-cN}.$$

New Results: E_{∞} is the Threshold Energy as $\beta \to \infty$

Theorem (**S** 23, Upper Bound)

For any β there is $\delta > 0$ such that for any T, if $x_0 \in \mathcal{S}_N$ is independent of H_N :

$$\mathbb{P}\left[\sup_{t\in[0,T]}H_N(x_t)/N\leq E_\infty-\delta\right]\geq 1-e^{-cN}.$$

Theorem (S 23, Lower Bound)

For any $\eta > 0$, with $T_0 = T_0(\eta)$ and $\beta \ge \beta_0(\eta)$, even if x_0 is disorder dependent:

$$\mathbb{P}\left[\inf_{t\in[T_0,T_0+e^{cN}]}H_N(x_t)/N\geq E_\infty-\eta\right]\geq 1-e^{-cN}.$$

For large constant times $t \in [T_0, T]$ and large β , the energy stays uniformly just below E_{∞} :

$$H_N(x_t)/N \in [E_{\infty} - \eta, E_{\infty} - \delta].$$

Once energy settles, the gradient stays small:

$$\lim_{N\to\infty} \mathbb{P}\Big[\sup_{t\in [T_0,T]} \|\nabla_{\mathrm{sp}} H_N(x_t)\|/\sqrt{N} \leq \delta\Big] = 1, \quad \forall \ \beta \geq \beta_0(\delta), \ T\geq T_0(\delta).$$

Once energy settles, the gradient stays small:

$$\lim_{N\to\infty} \mathbb{P}\Big[\sup_{t\in [T_0,T]} \|\nabla_{\mathrm{sp}} H_N(x_t)\|/\sqrt{N} \leq \delta\Big] = 1, \quad \forall \ \beta \geq \beta_0(\delta), \ T\geq T_0(\delta).$$

Mixed *p*-spin models with covariance $\xi(t) = \sum_{p \geq 2} \gamma_p^2 t^p$:

- Upper bound: $ALG(\xi) = \int_0^1 \sqrt{\xi''(t)} dt$.
- Lower bound: E_{∞}^- from [Auffinger-Ben Arous 2013].

Once energy settles, the gradient stays small:

$$\lim_{N\to\infty} \mathbb{P}\Big[\sup_{t\in [T_0,\,T]} \|\nabla_{\mathrm{sp}} H_N(x_t)\|/\sqrt{N} \leq \delta\Big] = 1, \quad \forall \ \beta \geq \beta_0(\delta), \ T \geq T_0(\delta).$$

Mixed *p*-spin models with covariance $\xi(t) = \sum_{p \geq 2} \gamma_p^2 t^p$:

- Upper bound: $ALG(\xi) = \int_0^1 \sqrt{\xi''(t)} dt$.
- Lower bound: E_{∞}^- from [Auffinger-Ben Arous 2013].
- In mixed models, $\lambda_{\text{max}} \approx 0$ can hold in a range of energies, e.g. $[E_{\infty}^-, E_{\infty}^+]$.
- For pure multi-species spherical spin glasses, bounds continue to match at E_{∞} .

Once energy settles, the gradient stays small:

$$\lim_{N\to\infty} \mathbb{P}\Big[\sup_{t\in [T_0,\,T]} \|\nabla_{\mathrm{sp}} H_N(x_t)\|/\sqrt{N} \leq \delta\Big] = 1, \quad \forall \ \beta \geq \beta_0(\delta), \ T \geq T_0(\delta).$$

Mixed *p*-spin models with covariance $\xi(t) = \sum_{p \geq 2} \gamma_p^2 t^p$:

- Upper bound: $ALG(\xi) = \int_0^1 \sqrt{\xi''(t)} dt$.
- Lower bound: E_{∞}^- from [Auffinger-Ben Arous 2013].
- In mixed models, $\lambda_{\text{max}} \approx 0$ can hold in a range of energies, e.g. $[E_{\infty}^-, E_{\infty}^+]$.
- For pure multi-species spherical spin glasses, bounds continue to match at E_{∞} .

Initializing via high-temperature dynamics changes neither bound.

- ullet For pure models, threshold equals E_{∞} regardless of early dynamics.
- [Folena–Franz–Ricci-Tersenghi 21]: this <u>does</u> change the eventual energy for mixed models.

Upper bound uses hardness for Lipschitz optimization algorithms (Brice's talk yesterday).

Definition

An L-Lipschitz algorithm is an $\mathcal{A}_N : \mathbb{R}^{N^p} \times \Omega \to \mathcal{S}_N$ which is L-Lipschitz in 1st coordinate.

Upper bound uses hardness for Lipschitz optimization algorithms (Brice's talk yesterday).

Definition

An L-Lipschitz algorithm is an $\mathcal{A}_N : \mathbb{R}^{N^p} \times \Omega \to \mathcal{S}_N$ which is L-Lipschitz in 1st coordinate.

Theorem (Huang-**S** 21 & 23)

Fix any L, $\eta > 0$. If \mathcal{A}_N is an L-Lipschitz algorithm, then for N large enough,

$$\mathbb{P}[H_N(\mathcal{A}_N(H_N))/N \le E_{\infty} + \eta] \ge 1 - e^{-cN}.$$

(Informally: Lipschitz algorithms cannot access energies above $E_{\infty} + o_N(1)$.)

Upper bound uses hardness for Lipschitz optimization algorithms (Brice's talk yesterday).

Definition

An L-Lipschitz algorithm is an $\mathcal{A}_N : \mathbb{R}^{N^p} \times \Omega \to \mathcal{S}_N$ which is L-Lipschitz in 1st coordinate.

Theorem (Huang-**S** 21 & 23)

Fix any L, $\eta > 0$. If \mathcal{A}_N is an L-Lipschitz algorithm, then for N large enough,

$$\mathbb{P}[H_N(\mathcal{A}_N(H_N))/N \le E_{\infty} + \eta] \ge 1 - e^{-cN}.$$

(Informally: Lipschitz algorithms cannot access energies above $E_{\infty} + o_N(1)$.)

Proof: branching overlap gap property. Run \mathcal{A}_N on correlated copies of H_N . Extends OGP from [Gamarnik-Sudan 14,...].

Remains to approximate x_T by an $L(\beta, T)$ -Lipschitz function of $(J_{i_1,...,i_p})_{i_k=1}^N$ for each $B_{[0,T]}$.

Previously known for <u>soft</u> spherical Langevin dynamics [Ben Arous-Dembo-Guionnet 06]. We approximate the hard dynamics pathwise by soft dynamics, which suffices.

Remains to approximate x_T by an $L(\beta, T)$ -Lipschitz function of $(J_{i_1,...,i_p})_{i_k=1}^N$ for each $B_{[0,T]}$.

Previously known for <u>soft</u> spherical Langevin dynamics [Ben Arous-Dembo-Guionnet 06]. We approximate the hard dynamics <u>pathwise</u> by soft dynamics, which suffices.

Combined with [Ben Arous-Dembo-Guionnet 06, Dembo-Guionnet-Mazza 07], a byproduct:

Corollary (S 23)

The hard spherical dynamics are described by Cugliandolo-Kurchan equations. They are given by a limit of those for the soft dynamics.

Remains to approximate x_T by an $L(\beta, T)$ -Lipschitz function of $(J_{i_1,...,i_p})_{i_k=1}^N$ for each $B_{[0,T]}$.

Previously known for <u>soft</u> spherical Langevin dynamics [Ben Arous-Dembo-Guionnet 06]. We approximate the hard dynamics pathwise by soft dynamics, which suffices.

Combined with [Ben Arous-Dembo-Guionnet 06, Dembo-Guionnet-Mazza 07], a byproduct:

Corollary (S 23)

The hard spherical dynamics are described by Cugliandolo-Kurchan equations. They are given by a limit of those for the soft dynamics.

Improving the upper bound from $E_{\infty} + o_N(1)$ to $E_{\infty} - o_{\beta}(1)$:

- [Ben Arous-Gheissari-Jagannath 18]: $\|\nabla_{sp}H_N(x_t)\| \ge \delta_1(\beta)\sqrt{N}$ for all times t.
- Hence a final noise-less gradient step slightly improves the energy.
- This modified algorithm is just as Lipschitz as before.

Lower Bound: Reaching Approximate Local Maxima

Definition

 $x \in \mathcal{S}_N$ is an ε -approximate local maximum if both:

- $2 \lambda_{\varepsilon N} (\nabla_{\mathsf{sp}}^2 H_N(x)) \leq \varepsilon.$

If \bigcirc holds but \bigcirc doesn't, then x is an ε -approximate saddle.

Lower Bound: Reaching Approximate Local Maxima

Definition

 $x \in S_N$ is an ε -approximate local maximum if both:

- $2 \lambda_{\epsilon N} (\nabla_{sp}^2 H_N(x)) \leq \epsilon.$
- If \bigcirc holds but \bigcirc doesn't, then x is an ε -approximate saddle.

Proposition (Specific to Pure *p*-Spin Models)

With probability $1 - e^{-cN}$, all ε -approximate local maxima satisfy $H_N(x)/N \ge E_{\infty} - o_{\varepsilon}(1)$.

Lower Bound: Reaching Approximate Local Maxima

Definition

 $x \in \mathcal{S}_N$ is an ε -approximate local maximum if both:

- $2 \lambda_{\varepsilon N} (\nabla_{\mathsf{sp}}^2 H_N(x)) \leq \varepsilon.$
- If ① holds but ② doesn't, then x is an ε -approximate saddle.

Proposition (Specific to Pure *p*-Spin Models)

With probability $1 - e^{-cN}$, all ε -approximate local maxima satisfy $H_N(x)/N \ge E_\infty - o_\varepsilon(1)$.

Theorem (Only Uses 3rd-Order Smoothness of H_N ; cf [ZLC 17, JNGKJ 21])

Suppose all ε -approximate local maxima satisfy $H_N(x)/N \geq E_*(\varepsilon)$.

Then for large T_0 , β depending on ϵ , and disorder-dependent $x_0 \in \mathcal{S}_N$:

$$\mathbb{P}\left[\inf_{t\in[T_0,T_0+e^{cN}]}H_N(x_t)/N\geq E_*(\varepsilon)-o_{\varepsilon}(1)\right]\geq 1-e^{-cN}.$$

Energy Gain While Below $E_*(\varepsilon)$

We directly show $H_N(x_t)$ increases while $H_N(x_t)/N \le E_*(\varepsilon)$. This is formalized with a closely spaced sequence of stopping times

$$0=\tau_0<\tau_1<\cdots<\tau_M\approx T$$

Energy Gain While Below $E_*(\varepsilon)$

We directly show $H_N(x_t)$ increases while $H_N(x_t)/N \le E_*(\varepsilon)$. This is formalized with a closely spaced sequence of stopping times

$$0 = \tau_0 < \tau_1 < \cdots < \tau_M \approx T$$

Definition of $E_*(\varepsilon)$ leads to three cases:

- Large energy: $H_N(x_\tau)/N \ge E_*(\varepsilon)$.
- 2 Large gradient: $\|\nabla_{\rm sp} H_N(x_{\tau})\| \ge C\beta^{-1/2} \sqrt{N}$.
- **3** Approximate saddle: $\|\nabla_{\mathsf{sp}} H_{N}(x_{\tau})\| \leq C \beta^{-1/2} \sqrt{N}$ and $\lambda_{\varepsilon N} (\nabla_{\mathsf{sp}}^{2} H_{N}(x_{\tau})) \geq \varepsilon$.

Energy Gain While Below $E_*(\varepsilon)$

We directly show $H_N(x_t)$ increases while $H_N(x_t)/N \le E_*(\varepsilon)$. This is formalized with a closely spaced sequence of stopping times

$$0=\tau_0<\tau_1<\cdots<\tau_M\approx T$$

Definition of $E_*(\varepsilon)$ leads to three cases:

- **1** Large energy: $H_N(x_\tau)/N \geq E_*(\varepsilon)$.
- 2 Large gradient: $\|\nabla_{\rm sp} H_N(x_{\tau})\| \ge C\beta^{-1/2} \sqrt{N}$.
- $\textbf{ Approximate saddle: } \|\nabla_{\mathsf{sp}}H_{\mathcal{N}}(x_{\tau})\| \leq C\beta^{-1/2}\sqrt{N} \ \ \mathsf{and} \ \ \lambda_{\mathcal{E}\mathcal{N}}\big(\nabla_{\mathsf{sp}}^2H_{\mathcal{N}}(x_{\tau})\big) \geq \epsilon.$

If x_{τ} is in Case **1**, simply stop once the energy drops below $E_*(\varepsilon)$.

In Cases 2, 3, we will show $H_N(x_t)$ increases.

Energy Gain From Large Gradient

Lemma (Large Gradient Case)

If
$$\|\nabla_{sp}H_N(x_{\tau})\| \ge C\beta^{-1/2}\sqrt{N}$$
 then with probability $1 - e^{-cN}$:

$$H_N(x_{\tau+\beta^{-10}})-H_N(x_\tau)\geq \beta^{-10}N.$$

Energy Gain From Large Gradient

Lemma (Large Gradient Case)

If $\|\nabla_{sp}H_N(\mathbf{x}_{\tau})\| \geq C\beta^{-1/2}\sqrt{N}$ then with probability $1 - e^{-cN}$:

$$H_N(x_{\tau+\beta^{-10}}) - H_N(x_{\tau}) \ge \beta^{-10} N.$$

Proof: large gradient overwhelms the Itô term.

$$dH_N(x_t) = \left(\underbrace{\beta \|\nabla_{\operatorname{sp}} H_N(x_t)\|^2 \pm O(N)}_{\geq CN \text{ on } \tau \leq t \leq \tau + \beta^{-10}} dt + \underbrace{\beta \|\nabla_{\operatorname{sp}} H_N(x_t)\|}_{O(\sqrt{N})} dB_t.$$

Energy Gain From Large Gradient

Lemma (Large Gradient Case)

If $\|\nabla_{sp}H_N(\mathbf{x}_{\tau})\| \geq C\beta^{-1/2}\sqrt{N}$ then with probability $1 - e^{-cN}$:

$$H_N(x_{\tau+\beta^{-10}}) - H_N(x_{\tau}) \ge \beta^{-10} N.$$

Proof: large gradient overwhelms the Itô term.

$$dH_N(x_t) = \left(\underbrace{\beta \|\nabla_{\mathsf{sp}} H_N(x_t)\|^2 \pm O(N)}_{\geq CN \text{ on } \tau \leq t \leq \tau + \beta^{-10}} dt + \underbrace{\beta \|\nabla_{\mathsf{sp}} H_N(x_t)\|}_{O(\sqrt{N})} dB_t.$$

Noise level is so small that differential inequalities remain true with probability $1 - e^{-cN}$. (Similarly, bound growth of $||x_t - x_\tau||^2$ with another differential inequality.)

Gaining Energy Near Approximate Saddles

Remains to show the following (with $\beta\gg\overline{C}(\epsilon)\gg1/\epsilon\gg C\asymp1$).

Lemma

If
$$\|\nabla_{sp}H_N(x_{\tau})\| \leq C\beta^{-1/2}\sqrt{N}$$
 and $\lambda_{\epsilon N}(\nabla_{sp}^2H_N(x_{\tau})) \geq \epsilon$:

$$H_N(x_{\tau+\overline{C}(\varepsilon)\beta^{-1}})-H_N(x_{\tau})\geq \beta^{-1}N.$$

Gaining Energy Near Approximate Saddles

Remains to show the following (with $\beta\gg\overline{C}(\epsilon)\gg1/\epsilon\gg C\asymp1$).

Lemma

If
$$\|\nabla_{sp}H_N(x_{\tau})\| \leq C\beta^{-1/2}\sqrt{N}$$
 and $\lambda_{\epsilon N}(\nabla_{sp}^2H_N(x_{\tau})) \geq \epsilon$:

$$H_N(x_{\tau+\overline{C}(\varepsilon)\beta^{-1}})-H_N(x_{\tau})\geq \beta^{-1}N.$$

Wishful thinking: imagine H_N is quadratic and flatten the domain S_N to \mathbb{R}^{N-1} .

Gaining Energy Near Approximate Saddles

Remains to show the following (with $\beta \gg \overline{C}(\epsilon) \gg 1/\epsilon \gg C \approx 1$).

Lemma

If
$$\|\nabla_{sp}H_N(x_{\tau})\| \leq C\beta^{-1/2}\sqrt{N}$$
 and $\lambda_{\epsilon N}(\nabla_{sp}^2H_N(x_{\tau})) \geq \epsilon$:

$$H_N(x_{\tau+\overline{C}(\varepsilon)\beta^{-1}})-H_N(x_{\tau})\geq \beta^{-1}N.$$

Wishful thinking: imagine H_N is quadratic and flatten the domain S_N to \mathbb{R}^{N-1} .

Then $x_{\tau+t}$ would be a multi-dimensional OU process. Easy to analyze!

- Positive eigendirections: exponentially fast energy gain.
- Negative eigendirections: trapped or diffusive movement.
- Overall energy gain of $\Omega(N\beta^{-1})$ after time $\overline{C}(\epsilon)\beta^{-1}$.
- (But, energy can initially drop. This is a problem for differential inequalities.)

Ornstein-Uhlenbeck Approximation via Taylor Expansion

In general: map S_N to \mathbb{R}^{N-1} and Taylor expand the SDE coefficients near x_{τ} .

- A suitable approximation exactly yields a multi-dimensional OU process.
- Suffices to carefully estimate the approximation error.

Ornstein-Uhlenbeck Approximation via Taylor Expansion

In general: map S_N to \mathbb{R}^{N-1} and Taylor expand the SDE coefficients near x_{τ} .

- A suitable approximation exactly yields a multi-dimensional OU process.
- Suffices to carefully estimate the approximation error.

Use stereographic projection map $\Gamma_{x_{\tau}}$ centered at $-x_{\tau}$:

$$\Gamma_{x_{\tau}}: \mathcal{S}_{N} \setminus \{-x_{\tau}\} \to \mathbb{R}^{N-1},$$

$$\Gamma_{x_{\tau}}(x_{\tau}) = \vec{0},$$

$$\Gamma_{x_{\tau}}(x_{t}) = \hat{x}_{t},$$

$$\widehat{H}_{N}(\hat{x}_{t}) = H_{N}(\Gamma_{x_{\tau}}^{-1}(\hat{x}_{t})) = H_{N}(x_{t})$$

Ornstein-Uhlenbeck Approximation via Taylor Expansion

In general: map S_N to \mathbb{R}^{N-1} and Taylor expand the SDE coefficients near x_{τ} .

- A suitable approximation exactly yields a multi-dimensional OU process.
- Suffices to carefully estimate the approximation error.

Use stereographic projection map $\Gamma_{x_{\tau}}$ centered at $-x_{\tau}$:

$$\begin{split} &\Gamma_{\boldsymbol{x}_{\tau}}: \mathcal{S}_{N} \backslash \{-\boldsymbol{x}_{\tau}\} \rightarrow \mathbb{R}^{N-1}, \\ &\Gamma_{\boldsymbol{x}_{\tau}}(\boldsymbol{x}_{\tau}) = \vec{0}, \\ &\Gamma_{\boldsymbol{x}_{\tau}}(\boldsymbol{x}_{t}) = \hat{\boldsymbol{x}}_{t}, \\ &\widehat{H}_{N}(\widehat{\boldsymbol{x}}_{t}) = H_{N}(\Gamma_{\boldsymbol{x}_{\tau}}^{-1}(\widehat{\boldsymbol{x}}_{t})) = H_{N}(\boldsymbol{x}_{t}) \end{split}$$

Projected dynamics in \mathbb{R}^{N-1} and quadratic approximation:

$$\begin{split} \mathrm{d}\widehat{x}_t &= \vec{b}_t(\widehat{x}_t) \; \mathrm{d}t + \sigma_t \mathrm{d}\boldsymbol{W}_t, \\ \mathrm{d}\boldsymbol{x}_t^{(Q)} &= \beta \nabla H_N^{(Q)}(\boldsymbol{x}_t^{(Q)}) \mathrm{d}t + \mathrm{d}\boldsymbol{W}_t. \end{split}$$

Required Estimates for Ornstein-Uhlenbeck Approximation

We show $x_t^{(Q)} pprox \widehat{x}_t$ via more scalar approximate differential inequalities.

• Movement is small on $O(1/\beta)$ time-scales since $\|\nabla_{sp}H_N(x_\tau)\| \leq C\beta^{-1/2}\sqrt{N}$:

$$\|\widehat{\mathbf{x}}_{\tau+\overline{C}\beta^{-1}} - \widehat{\mathbf{x}}_t\| \le O_{\overline{C}}(\beta^{-1/2}\sqrt{N}),$$

$$\implies \|\nabla \widehat{H}_N(\widehat{\mathbf{x}}_{\tau+\overline{C}\beta^{-1}})\| \le O_{\overline{C}}(\beta^{-1/2}\sqrt{N}).$$
(1)

• Since $H_N^{(Q)}$ is a 2nd order Taylor approximation for \widehat{H}_N , (1) gives:

$$\left| H_N^{(Q)}(\mathbf{x}_{\tau + \overline{C}\beta^{-1}}^{(Q)}) - \widehat{H}_N(\mathbf{x}_{\tau + \overline{C}\beta^{-1}}^{(Q)}) \right| \le O_{\overline{C}}(\beta^{-3/2}N). \tag{2}$$

• Same-time approximation $\pmb{x}_t^{(Q)} \approx \widehat{\pmb{x}}_t$ turns out to be better since $\mathsf{d} B_t$ cancels:

$$\|\boldsymbol{x}_{\tau+\overline{C}\beta^{-1}}^{(Q)}-\widehat{\boldsymbol{x}}_{\tau+\overline{C}\beta^{-1}}\|\leq O_{\overline{C}}(\beta^{-1}\sqrt{N}).$$

Combining the previous two,

$$\left|\widehat{H}_{N}(\widehat{\mathbf{x}}_{\tau+\overline{C}\beta^{-1}}) - \widehat{H}_{N}(\mathbf{x}_{\tau+\overline{C}\beta^{-1}}^{(Q)})\right| \leq O_{\overline{C}}(\beta^{-3/2}N). \tag{3}$$

• Energy gain of $H_N^{(Q)}(\mathbf{x}_t^{(Q)})$ is $\Omega(\beta^{-1}N)$ by explicit OU computation. Combining with (2), (3):

$$H_N(\boldsymbol{x}_{\tau+\overline{C}\boldsymbol{\beta}^{-1}}) - H_N(\boldsymbol{x}_{\tau}) = \widehat{H}_N(\widehat{\boldsymbol{x}}_{\tau+\overline{C}\boldsymbol{\beta}^{-1}}) - \widehat{H}_N(\widehat{\boldsymbol{x}}_{\tau}) \geq \Omega(\boldsymbol{\beta}^{-1}\boldsymbol{N}).$$

Conclusion

Pure *p*-spin Hamiltonian:

$$H_N(\sigma) = N^{-(p-1)/2} \sum_{1 \le i_1, i_2, \dots, i_p \le N} J_{i_1, \dots, i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Main result: for spherical Langevin dynamics:

$$\lim_{T,\beta\to\infty} \operatorname{p-lim}_{N\to\infty} H_N(x_T)/N = E_{\infty}(p) \equiv 2\sqrt{\frac{p-1}{p}}.$$

Upper bound holds for Lipschitz algorithms via branching overlap gap property.

Lower bound: dynamics reach approximate local maxima in general smooth landscapes.

• Holds for disorder-dependent $x_0 \in S_N$, and uniformly in $t \in [T_0, T_0 + e^{cN}]$.

Still Open: monotonicity of asymptotic energy in time for fixed β ? Existence of a limit?