

Continuous Assessment Test (CAT) - 1 - August 2024

	Fall 24-25			
Programme	:	B. Tech CSE Specialization (BDS)	Semester	CH2024250100678
Course Code & Course Title	:		Class Numee	E2+TE2
Faculty	1	Dr. Linda Joseph	Slot	100
Duration	1	1.30 Hrs	Max. Mark	50

Q. No	Sub-	Question Text	Marks			
Q. No.	datam	i) A typical processor processes each instruction cycle as two sub cycles and the size of each instruction being 40 bits in word length. For the given pseudocode: BEGIN NUMBER \$1, \$2, sum INPUT \$1, \$2 sum=\$1+\$2 OUTPUT sum END Trace the contents of different registers namely the Program counter, Memory address register, Memory buffer register, Instruction register, Instruction buffer register and Accumulator. [7 marks]				
2		ii) Provide valid justifications for why a memory buffer register may be necessary in this architecture. [3 Marks] The given diagram below depicts the storage scheme of a generic computer. Use the instructions LOAD, STORE, PROD and MULT tofind out the product of two numbers and then store the result back in				
		to a memory location. A D B E C F Registers Execution Unit				

	(ii) 1	liagram. [7 marks]	tion set with a neat architecture and disadvantages of the above		
3	(ii) I	Using the floating-point arithmetic, sum up the numbers (0.75) ₁₀ and (-0.275) ₁₀ in binary and show how the output is stored using the IEEE single precision format. [8 Marks] Determine whether there is any overflow or underflow for the computed output. [2 Marks]			
4	(i) Perform non-restoring binary division for computing the quotient and the reminder of Dividend: (1011) ₂ and Divisor: (0101) ₂ . [7 Marks] (ii) List out the differences between the restoring and non-restoring division methods. [3 Marks]				
5	instructio	the Effective address and con "Move to AC" given the c. Register Indirect, Direct, Ir Marrary Cantent (1200) 1800 1800 1800 1800 Alone to AC (1200) Mere to AC (1200)	ntent of the accumulator for the following addressing modes: adirect and Index Address.		
1	2064	MATA (1000)	2	10	

******All the best*******