MATHEMATICS

- If $|x+5| \ge 10$ then 1.
 - 1) $x \in (-15,5]$

2) $x \in (-5,5]$

3) $x \in (-\infty, -15] \cup [5, \infty)$

- 4) $x \in [-\infty, -15] \cup [5, \infty)$
- 2. Everybody in a room shakes hands with everybody else. The total number of Handshakes is 45. The total number of persons in the room is
 - 1)9
- 2) 10
- 3)5
- 4) 15
- The constant term in the expansion of $\left[x^2 \frac{1}{x^2}\right]^{16}$ is 3.
 - 1) 16_{c_a}
- 2) 16_{c}
- 3) 16_C
- 4) 16_C
- If P(n): " $2^{2n} 1$ is divisible by k for all $n \in N$ " is true, then the value of 'k' is 4.
 - 1)6

2)3

- 3)7
- 4) 2
- The equation of the line parallel to the line 3x 4y + 2 = 0 and passing through 5. (-2, 3) is
 - 1) 3x 4y + 18 = 0

2) 3x - 4y - 18 = 0

3) 3x + 4y + 18 = 0

- 4) 3x + 4y 18 = 0
- If $\left[\frac{1-i}{1+i}\right]^{96} = a+ib$ then (a,b) is 6.
 - 1) (1,1)
- 2) (1.0)
- 3) (0,1)
- 4)(0,-1)
- The distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$. 7. Its equation is

 - 1) $x^2 y^2 = 32$ 2) $\frac{x^2}{4} \frac{y^2}{9} = 1$ 3) $2x^2 3y^2 = 1$ 4) $y^2 x^2 = 32$
- The number of ways in which 5 girls and 3 boys can be seated in a row so that 8. no two boys are together is
 - 1) 14040
- 2) 14440
- 3) 14000
- 4) 14400
- If a, b, c are three consecutive terms of an AP and x, y, z are three consecutive 9. Terms of a GP, then the value of x^{b-c} . y^{c-a} . z^{a-b}
 - 1)0
- 2) xyz
- 3) 1
- 4) 1

The value if $\lim_{x\to 0} \frac{|x|}{x}$ is 10.

Sri Ch	Sri ChaitanyaEducational Institutions, India				
	1) 1	2) -1	3) 0	4) does not exist	
11.	Let $f(x) = x - \frac{1}{x} tl$	nen f'(-1) is			
	1) 0	2) 2	3) 1	4) – 2	
12.	The negation of the	ne statement "72 is	divisible by 2 and 3	"is	
	1) 72 is not divisi	ble by 2 or 72 is no	t divisible by 3		
	2) 72 is divisible by 2 or 72 is divisible by 3				
	3) 72 is divisible by 2 and 72 is divisible by 3				
	4) 72 is not divisible by 2 and 3				
13.	The probability of	f happening of an e	vent A is 0.5 and tha	at of B is 0.3.	
	If and A and B are mutually exclusive events, then the probability of neither				
	A nor B is				
	1) 0.4	2) 0.5	3) 0.2	4) 0.9	
14.	In a simultaneous	throw of a pair of o	lice, the probability	of getting a total more	
	Than 7 is				
	1) $\frac{7}{12}$	2) $\frac{5}{36}$	3) $\frac{5}{12}$	4) $\frac{7}{36}$	
15.	If A and B are mu	itually exclusive ev	ents, given that P(A	$A = \frac{3}{5}, P(B) = \frac{1}{5}, \text{ then}$	
	P(AorB) is				
	1) 0.8	2) 0.6	3) 0.4	4) 0.2	
16.	Let $f, g: R \to R$ be	e two functions defi	ned as f(x) = x + x	and $g(x) = x - x \forall x \in R$	
	Then (fog) (x) for	x<0 is			
	1) 0	2)4x	3) -4x	4) 2x	
17.	A is a set having	6 elements. The nur	mber of distinct fun	ctions from A to A	
	Which are not bij	ections is			
	1) 6! - 6	2) $6^6 - 6$	3) $6^6 - 6!$	4) 6!	
18.	Let $f: R \to R$ be d	ifined by $f(x) = \begin{cases} 2x \\ x^2 \\ 3x \end{cases}$; $x > 3$; $1 < x \le 3$ then $f(x) \le x \le 1$	-1) + f(2) + f(4) is	

3) 5

2) 14

If $\sin^{-1} x + \cos^{-1} y = \frac{2\pi}{5}$, then $\cos^{-1} x + \sin^{-1} y$ is

1)9

19.

4) 10

- 1) $\frac{2\pi}{5}$
- 2) $\frac{3\pi}{5}$
- 3) $\frac{4\pi}{5}$
- 4) $\frac{3\pi}{10}$
- The value of the expression $\tan \left| \frac{1}{2} \cos^{-1} \frac{2}{\sqrt{5}} \right|$ is 20.
- 1) $2-\sqrt{5}$ 2) $\sqrt{5}-2$ 3) $\frac{\sqrt{5}-2}{2}$ 4) $5-\sqrt{2}$

- 21. If $A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$, then $A^n = 2^k A$, where $k = 2^k A$
- 2) n+1
- 3) n 1
- 4) 2(n-1)
- 22. If $\begin{vmatrix} 1 & +1 \\ -1 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} 2 \\ 4 \end{vmatrix}$, then the values of x and y respectively are
 - 1) 3, -1
- 2) 1,3
- 3) 3,1
- 4) 1.3

- 23. If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, then $AA^* =$
 - 1) A
- 2) Zero matrix
- 3) A`
- If x, y, $z \in R$, then the value of determinant $\begin{vmatrix} (5^x + 5^{-x})^2 & (5^x 5^{-x}) & 1 \\ (6^x + 6^{-x})^2 & (6^x 6^{-x})^2 & 1 \end{vmatrix}$ is $\begin{vmatrix} (7^x + 7^{-x})^2 & (7^x 7^{-x}) & 1 \end{vmatrix}$ 24.
 - 1) 10
- 2) 12
- 3) 1
- 4)0
- $\begin{vmatrix} a-b & b+c & a \end{vmatrix}$ The value of determinant |b-a c+a b| is 25. $\begin{vmatrix} c-a & a+b & c \end{vmatrix}$
 - 1) $a^3 + b^3 + c^3$

2) 3abc

3) $a^3 + b^3 + c^3 - 3abc$

- 4) $a^3 + b^3 + c^3 + 3abc$
- If $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) are the vertices of a triangle whose area is 'k' 26.

Square units, then $\begin{vmatrix} x_1 & y_1 & 4 \\ x_2 & y_2 & 4 \\ x_3 & y_3 & 4 \end{vmatrix}$ is

- 1) $32k^2$
- 2) $16k^2$
- 3) $64k^2$
- 4) $48k^2$
- Let A be a square matrix of order 3×3 , then |5A| =27.
 - 1) 5|A|
- 2) 125|A|
- 3) 25|A|
- 4) 15|A|

- If $f(x) = \begin{cases} \frac{\sqrt{1 + kx} \sqrt{1 kx}}{x} & \text{if } -1 \le X < 0 \\ \frac{2x + 1}{x 1} & \text{if } 0 \le X \le 1 \end{cases}$ is continuous at x=0, then the value of k is 28.
- 3) k=0
- 4) k=2
- If $\cos y = x \cos(a + y)$ with $\cos a \neq \pm 1$, then $\frac{dx}{dy}$ is equal to 29.

- 1) $\frac{\sin a}{\cos^2(a+y)}$ 2) $\frac{\cos^2(a+y)}{\sin a}$ 3) $\frac{\cos a}{\sin^2(a+y)}$ 4) $\frac{\cos^2(a+y)}{\cos a}$
- If $f(x) = |\cos x \sin x|$, then $f\left[\frac{\pi}{6}\right]$ is equal to
- 1) $-\frac{1}{2}(1+\sqrt{3})$ 2) $\frac{1}{2}(1+\sqrt{3})$ 3) $-\frac{1}{2}(1-\sqrt{3})$ 4) $\frac{1}{2}(1-\sqrt{3})$

- 31. If $y = \sqrt{x + \sqrt{x + \sqrt{x + ...\infty}}}$, then $\frac{dy}{dx} =$

- 1) $\frac{1}{v^2-1}$ 2) $\frac{1}{2v+1}$ 3) $\frac{2y}{v^2-1}$ 4) $\frac{1}{2v-1}$
- 32. If $f(x) = \begin{cases} \frac{\log_e x}{x-1} & ; x \neq 1 \\ k & ; x = 1 \end{cases}$ is continuous at x=1, then the value of k is
 - 1) e
- 2) 1

- 3) -1
- 4)0
- Approximate change in the volume V f a cube of side x meters caused by increasing 33. The side by 3% is
 - 1) $0.09x^3m^3$
- 2) $0.03x^3m^3$
- 3) $0.06x^3m^3$
- 4) $0.04x^3m^3$

- The maximum value of $\left[\frac{1}{r}\right]^{x}$ is 34.
 - 1) e
- 2) e^{e}
- 3) $e^{1/e}$
- 4) $\left[\frac{1}{a}\right]^{1/e}$

- $f(x) = x^x$ has stationary point at 35.
- 2) $x = \frac{1}{c}$ 3) x = 1 4) $x = \sqrt{e}$
- The maximum area of a rectangle inscribed in the circle $(x+1)^2 + (y-3)^2 = 64$ is 36.
 - 1) 64 sq. units
- 2) 72 sq. units
- 3) 128 sq. units
- 4) 8 sq. units

 $\int \frac{1}{1+a^x} dx$ is equal to

$$1) \log_e \left[\frac{e^x + 1}{e^x} \right] + c$$

$$2) \log_e \left[\frac{e^x - 1}{e^x} \right] + c$$

$$3) \log_e \left[\frac{e^x}{e^x + 1} \right] + c$$

4)
$$\log_e \left[\frac{e^x}{e^x - 1} \right] + c$$

38.
$$\int \frac{1}{\sqrt{3-6x-9x^2}} dx$$
 is equal to

$$1) \sin^{-1} \left\lceil \frac{3x+1}{2} \right\rceil + c$$

$$2) \sin^{-1} \left\lceil \frac{3x+1}{6} \right\rceil + c$$

3)
$$\frac{1}{3}\sin^{-1}\left[\frac{3x+1}{2}\right] + c$$

4)
$$\sin^{-1} \left[\frac{2x+1}{3} \right] + c$$

39.
$$\int e^{\sin x} \cdot \left[\frac{\sin x + 1}{\sec x} \right] dx$$
 is equal to

1)
$$\sin x \cdot e^{\sin x} + c$$

$$2) \cos x \cdot e^{\sin x} + c$$

3)
$$e^{\sin x} + c$$

4)
$$e^{\sin x} (\sin x + 1) + c$$

40.
$$\int_{-2}^{2} |x \cos \pi x| dx$$
 is equal to

1)
$$\frac{8}{\pi}$$

2)
$$\frac{4}{\pi}$$

3)
$$\frac{2}{\pi}$$

4)
$$\frac{1}{\pi}$$

41.
$$\int_{0}^{1} \frac{dx}{e^{x} + e^{-x}}$$
 is equal to

1)
$$\frac{\pi}{4} - \tan^{-1}(e)$$

2)
$$\tan^{-1}(e) - \frac{\pi}{4}$$

3)
$$\tan^{-1}(e) + \frac{\pi}{4}$$

4)
$$tan^{-1}(e)$$

42.
$$\int_{0}^{1/2} \frac{dx}{(1+x^2)\sqrt{1-x^2}}$$
 is equal to

1)
$$\frac{1}{\sqrt{2}} \tan^{-1} \sqrt{\frac{2}{3}}$$

$$2) \ \frac{2}{\sqrt{2}} \tan^{-1} \left(\frac{3}{\sqrt{2}} \right)$$

$$3) \ \frac{\sqrt{2}}{2} \tan^{-1} \left(\frac{3}{2}\right)$$

4)
$$\frac{\sqrt{2}}{2} \tan^{-1} \left(\frac{\sqrt{3}}{2} \right)$$

- 43. The area of the region bounded by the curve $y = \cos x$ between x=0 and $x=\pi$ is
 - 1) 1sq. unit
- 2) 4sq. unit
- 3) 2sq. units
- 4) 3sq. units
- 44. The area bounded by the line y = x, x-axis and ordinates x = -1 and x = 2 is

Sri Ch	Sri ChaitanyaEducational Institutions, India				
	1) $\frac{3}{2}$	2) $\frac{5}{2}$	3) 2	4) 3	
45.	The degree and th	e order of the differ	rential equation $\frac{d^2y}{dx^2}$	$r = 3\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$	
	1) 2 and 3	2) 3 and 2	3) 2 and 2	4) 3 and 3	
46.	The solution of the	e differential equati	on $x \frac{dy}{dx} - y = 3$ repres	sents of a family of	
	1) straight lines	2) circles	3) parabolas	4) ellipses	
47.	The integrating fa	$\cot \text{ of } \frac{dy}{dx} + y = \frac{1+y}{x}$	is		
	1) xe^x	2) $xe^{1/x}$	3) $\frac{e^x}{x}$	4) $\frac{x}{e^x}$	
48.	If $\left \vec{a} \times \vec{b} \right ^2 + \left \vec{a} \cdot \vec{b} \right ^2 = 14$	14 and $ \vec{a} = 4$, then the	ne value of $ \vec{b} $ is		
	1) 1	2) 2	3) 3	4) 4	
49.	If $ \vec{a} $ and $ \vec{b} $ are m	utually perpendicul	ar unit vectors, the	$(3\vec{a} + 2\vec{b}).(5\vec{a} - 6\vec{b}) =$	
	1) 5	2) 3	3) 6	4) 12	
50.	If the vectors $a\hat{i}$ +	$\hat{j}+\hat{k}$, $\hat{i}+\hat{b}$ $\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$	$\hat{j} + c \hat{k}$ are coplanar	$(a \neq b \neq c \neq 1)$, then the	
	Value of $abc - (a +$	b+c)			
	1) 2	2) -2	3) 0	4) -1	
51.	If $\vec{a} = \hat{i} + \lambda \hat{j} + 2\hat{k}$; \vec{b}	$= \mu \hat{i} + \hat{j} - \hat{k}$ are ortho	gonal and $ \vec{a} = \vec{b} $ th	$\operatorname{den}(\lambda,\mu) =$	
	$1)\left(\frac{1}{4},\frac{7}{4}\right)$	$2)\left(\frac{7}{4},\frac{1}{4}\right)$	$3)\left(\frac{1}{4},\frac{9}{4}\right)$	$4)\left(\frac{-1}{4},\frac{9}{4}\right)$	
52.	The image of the j	point (1,6,3) in the l	line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$	is	
	1) (1,0,7)	2) (7,0,1)	3) (2,7,0)	4) (-1, -6, -3)	
53.	The angle between	the lines $2x = 3y = 3$	= - z and $6x = -y =$	- 4z is	
	1) 0°	2) 45	3) 90°	4) 30°	
54.	The value of k suc	ch that the line $\frac{x-4}{1}$	$= \frac{y-2}{1} = \frac{z-k}{2}$ lies of	on the plane $2x - 4y + z = 7$ is	
	1) – 7	2) 4	3) – 4	4) 7	
55.	The locus represen	nted by xy + yz = 0	is		
	1) a pair of perper	ndicular lines	2) a pair of paralle	el lines	

- 3) a pair of parallel planes
- 4) a pair of perpendicular planes
- 56. The feasible region of an LPP is shown in the figure. If z = 3x + 9y, then the Minimum value of z occurs at

- 1(5,5)
- 2) (0, 10)
- 3)(0,20)
- 4) (15, 15)
- 57. For the LPP; maximize z = x + 4y subject to the constraints $x + 2y \le 2$, $x + 2y \ge 8$, $x,y \ge 0$
 - 1) $z \max = 4$
- 2) z max = 8
- 3) z max = 16
- 4) Has no feasible solution

58. For the probability distribution given by

$X = x_i$	0	1	2
P_{i}	$\frac{25}{36}$	5 18	<u>1</u> 36

The standard deviation (σ) is

- 1) $\sqrt{\frac{1}{3}}$
- 2) $\frac{1}{3}\sqrt{\frac{5}{2}}$
- 3) $\sqrt{\frac{5}{36}}$
- 4) None of the above
- 59. A bag contains 17 tickets numbered from 1 to 17. A ticket is drawn at random, Then another ticket is drawn without replacing the first one. The probability that both the tickets may show even number is
 - 1) $\frac{7}{34}$
- 2) $\frac{8}{17}$
- 3) $\frac{7}{16}$
- 4) $\frac{7}{17}$
- 60. A flashlight has 10 batteries out of which 4 are dead. If 3 batteries are selected Without replacement and tested, then the probability that all 3 are dead is
 - 1) $\frac{1}{30}$
- 2) $\frac{2}{8}$
- 3) $\frac{1}{15}$
- 4) $\frac{1}{10}$

PHYSICS

61. A particle shows distance-time curve as shown in the figure. The maximum Instantaneous velocity of the particle is around the point

- 1) P
- 2) S
- 3) R
- 4) Q
- Which of the following graphs correctly represents the variation of 'g' on the Earth? 62.

R

- 63. A cup of tea cools from 65.5°C to 62.5°C in 1 minute in a room at 22.5°C. How Long will it take to cool from $46.5^{\circ}C$ to $40.5^{\circ}C$ in the same room?
 - 1) 4 minutes

3)

- 2) 2 minutes
- 3) 1 minute
- 4) 3 minutes
- The dimensions of the ratio magnetic flux (ϕ) and permeability (μ) are 64.

 - 1) $\lceil M^0 L^1 T^0 A^1 \rceil$ 2) $\lceil M^0 L^{-3} T^0 A^1 \rceil$ 3) $\lceil M^0 L^1 T^1 A^{-1} \rceil$ 4) $\lceil M^0 L^2 T^0 A^1 \rceil$
- 65. A mass 'm' on the surface of the Earth is shifted to a target equal to the radius Of the earth. If 'R' is the radius and 'M' is the mass of the earth, then work done In this process is
 - 1) $\frac{mgR}{2}$
- 2) mgR 3) 2 mgR
- 4) $\frac{mgR}{4}$
- First overtone frequency of a closed pipe of length l_1 is equal to the 2^{nd} harmonic 66. Frequency of an open pipe of length l_2 The ratio $\frac{l_1}{l_2}$

Sri Ch	Sri ChaitanyaEducational Institutions, India						
	1) $\frac{3}{4}$	2) $\frac{4}{3}$	3) $\frac{3}{2}$	4) $\frac{2}{3}$			
67.	The resistance $R =$	$= \frac{V}{I} \text{ where } V = (100 \pm$	5) V and $I = (10 \pm 0.2)$	A.The percentage error			
	in R is						
	1) 5.2%	2) 4.8%	3) 7%	4) 3%			
68.	A block rests on a	rough inclined plan	ne making an angle	of 30° with the horizontal			
	The coefficient of	static friction betw	een the block and the	he plane is 0.8. If the			
	Frictional force or	the block is 10 N,	the mass of the blo	ock is $\left(g = 10ms^{-2}\right)$			
	1) 1 kg	2) 2 kg	3) 3 kg	4) 4 kg			
69.	Two particles of n	nasses m_1 and m_2 have	ve equal kinetic ene	ergies. The ratio of their			
	Momenta is	Momenta is					
	1) $m_1: m_2$	2) $m_2: m_1$	3) $\sqrt{m_1}:\sqrt{m_2}$	4) $m_1^2:m_2^2$			
70.	The pressure at the	e bottom of a liquid	tank is not proport	ional to the			
	1) Acceleration du	1) Acceleration due to gravity					
	2) Density of the l	iquid					
	3) Height of the lie	quid					
	4) Area of the liqu	iid surface					
71.	A Carnot engine to	akes 300 calories of	f heat from a source	e at 500 K and rejects			
	150 calories of hea	at to the sink. The	temperature of the s	sink is			
	1) 125K	2) 250K	3) 750K	4) 1000K			
72.	Pressure of an idea	al gas is increased b	by keeping tempera	ture constant. The			
	Kinetic energy of molecules						
	1) Decreases						
	2) Increases						
	3) Remains same						
		reases depending or					
73.	A man weighing 6	60 kg is in a lift mov	ving down with an	acceleration of 1.8 ms ⁻²			
	The force exerted	by the floor on him	is				
	1) 588 N	2) 480 N	3) Zero	4) 696 N			
74.	Moment of inertia	of a body about tw	o perpendicular ax	es X and Y in the plane			

of lamina are 20 kg m^2 and 25 kg m^2 respectively. Its moment of inertia about an axis perpendicular to the plane of the lamina and passing through the point of intersection of X and Y axes is

- 1) $5 \text{ kg} m^2$
- 2) $45 \text{ kg} m^2$
- 3) $12.5 \text{ kg} m^2$ 4) $500 \text{ kg} m^2$
- 75. Two wires A and B are stretched by the same load. If the area of cross-section of wire 'A' is double that of 'B', then the stress on 'B' is
 - 1) Equal to that on A

2) Twice that on A

3) Half that on A

- 4) Four times that on A
- 76. The magnitude of point charge due to which the electric field 30 cm away has The magnitude 2 NC⁻¹ will be
 - 1) $2 \times 10^{-11} C$

- 2) $3 \times 10^{-11} C$ 3) $5 \times 10^{-11} C$ 4) $9 \times 10^{-11} C$
- A mass of 1 kg carrying a charge of 2 C is accelerated through a potential of 77. 1 V. The velocity acquired by it is
 - 1) $\sqrt{2}ms^{-1}$
- 2) $2ms^{-1}$
- 3) $\frac{1}{\sqrt{2}}ms^{-1}$ 4) $\frac{1}{2}ms^{-1}$
- The force of repulsion between two identical positive charges when kept 78. With a separation 'r' in air is 'F'. Half the gap between the two charges is Filled by a dielectric constant =4. Then the new force of repulsion between Those two charges becomes
 - 1) $\frac{F}{2}$
- 2) $\frac{F}{2}$
- 3) $\frac{F}{4}$ 4) $\frac{4F}{9}$
- 79. For the arrangement of capacitors as shown in the circuit, the effective capacitance Between the points A and B is (capacitance of each capacitor is $4 \mu F$)

- 1) $4 \mu F$
- 2) $2\mu F$
- $3) 1\mu F$
- 4) $8\mu F$
- 80. The work done to move a charge on an equipotential surface is
 - 1) Infinity
- 2) Less than 1
- 3) Greater than 1 4) Zero
- Two capacitors of $3 \mu F$ and $6 \mu F$ are connected in series and a potential difference 81.

Of 900 V is applied across the combination. They are then dissconnected and reconnected in parallel. The potential difference across the combination is

- 1) Zero
- 2) 100 V
- 3) 200 V
- 4) 400 V

- 82. Ohm's Law is applicable to
 - 1) Diode
- 2) Transistor
- 3) Electrolyte
- 4) Conductor
- If the last band on the carbon resistor is absent, then the tolerance is 83.
 - 1) 5%
- 2) 20%
- 3) 10%
- 4) 15%
- 84. The effective resistance between P and Q for the following network is

- 1) $\frac{1}{12}\Omega$
- 2) 21Ω
- 3) 12Ω
- 4) $\frac{1}{21}\Omega$
- Five identical resistors each of resistance $R = 1500 \Omega$ are connected to a 300 V 85. Battery as shown in the circuit. The reading of the ideal ammeter A is

- 1) $\frac{1}{5}$ A
- 2) $\frac{3}{5}$ A
- 3) $\frac{2}{5}$ A 4) $\frac{4}{5}$ A
- Two cells of internal resistances r_1 and r_2 and of same emf are connected in series, 86. across a resistor of resistance R. If the terminal potential difference across the cells of internal resistance r_i is zero, then the value of R is
 - 1) $R = 2(r_1 + r_2)$ 2) $R = r_2 r_1$ 3) $R = r_1 r_2$ 4) $R = 2(r_1 r_2)$

- The I V graphs for two different electrical appliances P and Q are shown in the 87. Diagram. If R_p and R_Q be the resistances of the devices, then

- 1) $R_{P} = R_{O}$
- 2) $R_P > R_Q$
- 3) 3) $R_P < R_Q$ 4) 4) $R_P = \frac{R_Q}{2}$
- 88. The correct Biot- Savart law in vector form is
 - 1) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I(d\vec{l} \times \vec{r})}{r^2}$

2) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I(d\vec{l} \times \vec{r})}{r^3}$

3) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l}}{r^2}$

- 4) $d\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{Id\vec{l}}{r^3}$
- 89. An electron is moving in a circle of radius r in a uniform magnetic field B.

Suddenly the field is reduced to $\frac{B}{2}$. The radius of the circular path now becomes

- 1) $\frac{r}{2}$
- 2) 2r
- 3) $\frac{r}{4}$
- 4) 4r
- 90. A charge q is accelerate through a potential difference V. It is then passed Normally through a uniform magnetic field, where it moves in a circle of radius r. The potential difference required to move it in a circle of radius 2r is
 - 1) 2 V
- 2) 4 V
- 3) 1 V
- 4) 3 V
- 91. A cyclotron's oscillator frequency is 10 MHz and the operating magnetic field is 0.66 T. If the radius of its dees is 60 cm, then the kinetic energy of the proton beam produced by the accelerator is
 - 1) 9 MeV
- 2) 10 MeV
- 3) 7 MeV
- 4) 11 MeV
- Needles N_1, N_2 and N_3 are made of a ferromagnetic, a paramagnetic and a 92. Diamagnetic substance respectively. A magnet when brought close to them Will
 - 1) Attract all three of them
 - 2) Attract N_1 strongly, N_2 weakly and repel N_3 weakly
 - 3) Attract N_1 strongly but repel N_2 and N_3 weakly

- 4) Attract N_1 and N_2 strongly but repel N_3
- 93. The strength of the Earth's magnetic field is
 - 1) Constant everywhere
 - 2) Zero everywhere
 - 3) Having very high value
 - 4) Varying from place to place on the Earth's surface
- 94. A jet plane having a wing-spam of 25 m is travelling horizontally towards east with a speed of 3600 km/hour. If the Earth's magnetic field at the location is $4 \times 10^{-4} T$ and the angle of dip is 30° , then, the potential difference between the ends of the wing is
 - 1) 4 V
- 2) 5 V
- 3) 2 V
- 4) 2.5 V
- 95. Which of the following , represents the variation of inductive reactance (X_L) with the frequency of voltage source (v)?

- 96. The magnetic flux linked with a coil varies as $\phi = 3t^2 + 4t + 9$. The magnitude Of the emf induced at t=2 seconds is
 - 1) 8V
- 2) 16V
- 3) 32V
- 4) 64V
- 97. A 100 W bulb is connected to an AC source of 220 V, 50 Hz. Then the Current flowing through the bulb is
 - 1) $\frac{5}{11}A$
- 2) $\frac{1}{2}$ *A*
- 3) 2A
- 4) $\frac{3}{4}A$
- 98. In the series LCR circuit, the power dissipation is through
 - 1) R
- 2) L
- 3) C
- 4) Both L and C
- 99. In Karnataka, the normal domestic power supply AC is 220 V, 50 Hz.
 - Here 220 V and 50 Hz refer to
 - 1) Peak value of voltage and frequency

Sri Ch	naitanyaEducationa				
	2) rms value of voltage and frequency				
		voltage and frequen	•		
	4) Peak value of v	oltage and angular	frequency		
100.	A set-up transform	ner operates on a 23	30 V line and a load	current of 2A.	
	The ratio of prima	ary and secondary w	vindings is1:25. The	en the current in the	
	Primary is				
	1) 25 A	2) 50 A	3) 15 A	4) 12.5 A	
101.	The number of ph	otons falling per se	cond on a complete	ly darkened plate	
	To produce a force	e of 6.62×10^{-5} N is	'n' if the wavelengt	h of the light falling	
	Is $5 \times 10^{-7} m$, then n	$n = \underline{\qquad} \times 10^{22} \cdot (h = 6$	$.62\times10^{-34}J-s\big)$		
	1) 1	2) 5	3) 0.2	4) 3.3	
102.	An object is place	d at the principle fo	ocus of a convex mi	rror. The image will	
	Be at				
	1) Centre of curva	nture	2) Principal focus		
	3) Infinity		4) No image will l	be formed	
103.	An object is place	ed at a distance of 20	0 cm from the pole	of a concave mirror	
	Of focal length10	cm. The distance o	f the image formed	is	
	1) +20 cm	2) +10 cm	3) - 20 cm	4) - 10 cm	
104.	A candle placed 2	5 cm from a lens fo	orms an image on a	screen placed 75cm	
	On the other side	of the lens. The foc	al length and type o	of the lens should be	
	1) + 18.75cm and	convex lens	2) - 15.75cm and	concave lens	
	3) + 20.25cm and	l convex lens	4) - 20.25cm and	concave lens	
105.	A plane wavefron	t of wavelength λ is	s incident on a singl	e slit of width a.	
	The angular width	of principal maxin	num is		
	1) $\frac{\lambda}{a}$	$2) \frac{2\lambda}{a}$	3) $\frac{a}{\lambda}$	4) $\frac{a}{2\lambda}$	
106.	In a Fraunhofer di	iffraction at a single	slit, if yellow light	illuminating the slit	
	Is replaced by blu	e light, then diffrac	tion bands		
	1) Remain unchar	nged	2) Become wider		
	3) Disappear		4) Become narrow	ver	
107.	In young's double	e slit experiment, tw	vo wavelengths $\lambda_1 =$	780 <i>nm</i> and	

Sri Ch	aitanyaEducationa	l Institutions, India				
	$\lambda_2 = 520 \text{ nm}$ are used to obtain interference fringes. If the n^{th} bright band due					
	To λ_1 coincides with $(n+1)^{th}$ bright band due to λ_2 , then the value of an is					
	1) 4	2) 3	3) 2	4) 6		
108.	In Young's double	e slit experiment, sl	its are separated by	2mm and the screen		
	Is placed at a dista	ance of 1.2 m from	the slits. Light cons	sisting of two		
	Wavelengths 6500	A and 5200 Å are	used to obtain inter	ference fringes.		
	Then the separation	on between the four	th bright fringes of	two different		
	Patterns produced	by the two wavele	ngths is			
	1) 0.312 mm	2) 0.123 mm	3) 0.213 mm	4) 0.412 mm		
109.	The maximum kir	netic energy of emit	ted photoelectrons	depends on		
	1) Intensity of inc	ident radiation				
	2) Frequency of in	ncident radiation				
	3) Speed of incide	ent radiation				
	4) Number of pho	tons in the incident	radiation			
110.	A proton and an a	α particle are accele	rated through the sa	ame potential		
	difference V. The	ratio of their de Br	oglie wavelengths			
	1) $\sqrt{2}$	2) $2\sqrt{2}$	3) $\sqrt{3}$	4) $2\sqrt{3}$		
111.	The total energy of	of an electron revolv	ving in the second o	orbit hydrogen		
	Atom is					
	1) – 13 .6 eV	2) – 1.51 eV	3) - 3.4 eV	4)Zero		
112.	The period of revo	olution of an electro	on in the ground sta	te of hydrogen atom		
	Is T. The period o	f revolution of the	electron in the first	excited state is		
	1) 2T	2) 4T	3) 6T	4) 8T		
113.	The energy equiva	alent to a substance	of mass 1 g is			
	1) $18 \times 10^{13} J$	2) $9 \times 10^{13} J$	3) $18 \times 10^6 J$	4) $9 \times 10^6 J$		
114.	The half-life of tri	tium is 12.5 years.	What mass of tritiu	m of initial mass		
	64 mg will remain	undecayed after 5	0 years?			
	1) 32 mg	2) 8 mg	3) 16 mg	4) 4 mg		
115.	In a CE amplifier,	the input ac signal	to be amplified is a	applied across		
	1) Forward biased	emitter-base junct	ion			
	2) Reverse biased	collector-base junc	tion		Dago O	

C: Ol-	-:	Haratta at a un la atta			
Sri Cr	aitanyaEducationa 3) Reverse biased	emitter-base juncti	on		
		l collector-base junc			
116.	_				
	1) B	2) <i>B</i>	3) A	4) Ā	
117.	The density of an	electron-hole pair i	n a pure germaniun	n is $3 \times 10^{16} m^{-3}$ at	
	Room temperature	e. On doping with a	luminium, the hole	density increases to	
	$4.5 \times 10^{22} m^{-3}$. Now	the electron density	$y(\text{ in } m^{-3}) \text{in doped } y$	germanium will be	
	1) 1×10 ¹⁰	2) 2×10 ¹⁰	3) 0.5×10 ¹⁰	4) 4×10 ¹⁰	
118.	The dc common e	mitter current gain	of a n-p-n transisto	r is 50. The	
	Potential difference	ce applied across th	e collector and emi	tter of a transistor	
	Used in CE config	guration is, $V_{CE} = 2V$.	If the collector resi	istance, $R_C = 4K\Omega$,	
	The base current (I_B) and the collector current (I_C) are				
	1) $I_B = 10\mu A$, $I_C = 0.5 mA$ 2) $I_B = 0.5 \mu A$, $I_C = 10 mA$				
	3) $I_B = 5\mu A, I_C = 1m$	aA	4) $I_B = 1\mu A, I_C = 0.5$	δmA	
119.	The radius of the	earth is 6400km. If	the height of an an	tenna is 500 m, then	
	Its range is				
	1) 800 km	2) 100 km	3) 80 km	4) 10 km	
120.	A space station is	at a height equal to	the radius of the E	arth. If v_E is the	
	Escape velocity or	n the surface of the	Earth, the same on	the space	
	Station is ti	imes v_E .			
	1) $\frac{1}{2}$	2) $\frac{1}{4}$	3) $\frac{1}{\sqrt{2}}$	4) $\frac{1}{\sqrt{3}}$	
	2	4	√2	√3	

Sri Ch	naitanya Educationa	al Institutions, India		
		CH	EMISTRY	
121.	1.0 g of Mg is bru	nt with 0.28 g of O	in a closed vessel.	Which reactant is left in excess
	and how much?			
	1) Mg, 5.8 g	2) Mg, 0.58 g	$3) O_2, 0.24 g$	4) O_2 , 2.4 g
122.	The orbital neares	at to the nucleus is		
	1) 4f	2) 5d	3) 4s	4) 7p
123.	Which of the follo	owing is the correct	order of radius?	
	1) $H^- > H > H^+$	2) $Na^+ > F^- > O^{2-}$	3) $F^- > O^{2-} > Na^+$	4) $A1^{3+} > Mg^{2+} > N^{3-}$
124.	The intramolecula	ar hydrogen bond is	present in	
	1) Phenol 2) o-Nitrophenol			
	3) p-Nitrophenol 4) p-Cresol			
125.	5. The state of hybrid orbitals of carbon in CO_2 , CH_4 CO_3^{2-} respectively is			espectively is
	1) sp^3 , sp^2 and sp		2) sp^3 , sp and sp^2	
	3) sp, sp^3 and sp^2		4) sp^2 , sp^3 and sp	
126.	For an ideal gas, o	compressibility factor	or is	
	1) 0	2) 1	3) – 1	4) + 2
127.	The relationship b	between K_p and K_c is	$K_p = K_c (RT)^{\Delta n} . Wh$	nat would be the value of $\triangle n$ for
	the reaction NH_4C	$NH_3(g) + HG$	Cl(g)?	
	1) 1	2) 0.5	3) 1.5	4) 2
128.	Acidity of BF ₃ can	be the explained or	n which of the follo	owing concepts?
	1) Arrhenius conc	ept	2) Bronsted-Lowr	y concept
	3) Lewis concept		4) Bronsted-Lowr	y as well as Lewis concept
129.	For the redox read	etion $x Mn O_4^- + yH_2C_3$	$_2O_4 + zH^+ \rightarrow mMn^{2+} +$	$nCO_2 + pH_2O$, the values of x,
	y, m and n are			
	1) 10, 2, 5, 2	2) 2, 5, 2, 10	3) 6, 5, 2, 10	4) 6, 4, 2, 5
130.	H_2O_2 is			
	1) An oxidizing a	gent		
	2) A reducing age	ent		

3) Both oxidizing and reducing agent

Sri Ch	ri Chaitanya Educational Institutions, India				
	4) Neither oxidizing nor reducing agent				
131.	Dead burnt plaster is				
	1) <i>CaSO</i> ₄	2) $CaSO_4 \cdot \frac{1}{2}H_2O$	3) $CaSO_4.H_2O$	4) CaSO ₄ .2H ₂ O	
132.	Identify the follow	ving compound whi	ch exhibits geomet	rical isomerism	
	1) But-2-ene	2) But-1-ene	3) Butane	4) Isobutane	
133.	During the fusion	of organic compour	nd with sodium me	tal, nitrogen present in the	
	organic compound	d is converted into			
	1) NaNO ₂	2) <i>NaNH</i> ₂	3) NaCN	4) NaNC	
134.	The reagent 'X' u	sed for the followin	g reaction is		
	$R - C \equiv CR' + H$	$I_2 \xrightarrow{X} R C =$	C R'		
		н/	H		
	1) Ni	2) Pd/C	3) LiAl H_4	4) Na/Liquid NH ₃	
135.	Which of the follo	owing ions will caus	se hardness in water	c ?	
	1) Ca^{2+}	2) <i>Na</i> ⁺	3) <i>Cl</i> ⁻	4) <i>K</i> ⁺	
136.	Which of the follo	owing oxides shows	electrical propertie	es like metals?	
	1) <i>SiO</i> ₂	2) <i>MgO</i>	3) $SO_2(s)$	4) <i>CrO</i> ₂	
137.	Which of the follo	owing aqueous solut	tions should have th	ne highest boiling point?	
	1) 1.0 M NaOH		2) 1.0 M Na_2SO_4		
	3) 1.0 M <i>NH</i> ₄ <i>NO</i> ₃		4) 1.0 M KNO ₃		
138.	The charge require	ed for the reduction	of 1 Mole of MnO ₄	to MnO_2 is	
	1) 1 F	2) 3 F	3) 5 F	4) 7 F	
139.	For the reaction, 2	$SO_2 + O_2 \Longrightarrow 2SO_3$, t	the rate of disappea	rance of O_2 is	
	$2 \times 10^{-4} mol L^{-1} s^{-1}$ Th	ne rate of appearance	e of SO_3 is		
	1) $2 \times 10^{-4} mol L^{-1} s^{-1}$		2) $4 \times 10^{-4} mol L^{-1} s^{-1}$		
	3) $1 \times 10^{-1} mol L^{-1} s^{-1}$		4) $6 \times 10^{-4} mol L^{-1} s^{-1}$		
140.	Which of the follo	owing electrolytes w	vill have maximum	coagulating value for	
	$AgI/Ag^{+}sol$				
	1) <i>Na</i> ₂ <i>S</i>	2) <i>Na</i> ₃ <i>PO</i> ₄	3) Na_2SO_4	4) NaCl	

2LI CL	ori Chaitanya Educational Institutions, India				
141.	Electrolytic refining is used to purify which of the following metals?				
	1) Cu and Zn	2) Ge and Si	3) Zr and Ti	4) Zn and Hg	
142.	Dry ice is				
	1) Solid CO	2) Solid SO_2	3) Solid <i>CO</i> ₂	4) Solid <i>O</i> ₂	
143.	Which of the follo	owing is an amphote	eric oxide?		
	1) V_2O_5, Cr_2O_3	2) Mn_2O_7, Cr_2O_3	3) CrO , V_2O_5	4) V_2O_5, V_2O_4	
144.	The IUPAC name	of $\left[Co(NH_3)_4 Cl(NC) \right]$	C_{2} Cl is		
	1) tetraamminech	loridonitrito-N-coba	alt(III) chloride		
	2) tetraamminech	loridonitrocobalt(II)	Chloride		
	3) tetraamminech	loridonitrocobalt(I)	chloride		
	4) tetraamminech	loridodinitrocobalt(III) chloride		
145.	Which of the follo	owing statements is	true in case of alky	l halides?	
	1) They are polar	in nature			
	2) They can form	hydrogen bonds			
	3) They are highly	y soluble in water			
	4) They undergo a	addition reactions			
146.	Phenol can be dist	tinguished from eth	anol by the reagent		
	1) Bromine water		2) Sodium metal		
	3) Iron metal		4) Chlorine water		
147.	Which of the follo	owing compounds u	ndergoes haloform	reaction?	
	1) <i>CH</i> ₃ <i>COCH</i> ₃	2) <i>HCHO</i>	3) CH_3CH_2Br	4) $CH_3 - O - CH_3$	
148.	Which of the follo	owing will be the me	ost stable diazoniur	m salt $(RN_2^+X^-)$	
	1) $CH_3 N_2^+ X^-$	2) $C_6H_5N_2^+X^-$	3) $CH_3CH_2N_2^+X^-$	4) $C_6H_5CH_2N_2^+X^-$	
149.	Which of the follo	owing bases is not p	resent in DNA?		
	1) Adenine	2) Guanine	3) Cytosine	4) Uracil	
150.	Which one of the	following is a polya	amide polymer?		
	1) Terylene	2) Nylon-6,6	3) Buna-S	4) Bakelite	
151.	In F.C.C. the unit	cell is shared equal	ly by how many un	it cells	
	1) 10	2) 8	3) 6	4) 2	

Sri Ch	ori Chaitanya Educational Institutions, India				
152.	At a particular ten	nperature, the ratio	of molar conductan	ce to specific conductance of	
	0.01 M NaCl solu	tion is			
	1) $10^5 cm^3 mol^{-1}$	2) $10^3 cm^3 mol^{-1}$	3) $10 cm^3 mol^{-1}$	4) $10^5 cm^2 mol^{-1}$	
153.	Isotanic solutions	are solutions having	g the same		
	1) Surface tension		2) Vapour pressure	e	
	3) Osmotic pressu	re	4) Viscosity		
154.	The temperature c	oefficient of a react	tion is 2. When the t	emperature is increased from	
	30°C to 90°C, the	rate of reaction is ir	icreased by		
	1) 150 times	2) 410 times	3) 72 times	4) 64 times	
155.	Gold sol is not a				
1) Lyophobic sol 2) Negatively charged sol			rged sol		
	3) Macromolecular sol 4) Multimolecular colloid			colloid	
156.	The common impurity present in bauxite is				
	1) CuO	2) ZnO	3) Fe_2O_3	4) Cr_2O_3	
157.	Very pure N_2 can	be obtained by			
	1) Thermal decom	position of ammon	ium dichromate		
	2) Treating aqueon	us solution of NH ₄ C	l and $NaNO_3$		
	3) Liquifaction an	d fractional distillat	ion of liquid air		
	4) Thermal decom	position of sodium	azide		
158.	Which of the follo	owing oxidation stat	es is common for a	ll lanthanides?	
	1) + 2	2) + 3	3) + 4	4) + 5	
159.	The electronic cor	nfiguration of transi	tion element "X" in	its +3 oxidation state is	
	$[Ar]3d^5$. What is it	s atomic number?			
	1) 25	2) 26	3) 27	4) 24	
160.	n-Propyl chloride	reacts with sodium	metal in dry ether t	o give	
	$1) CH_3 - CH_2 - CH_2$	$CH_2 - CH_2 - CH_3$			
	2) $CH_3 - CH_2 - CH_3$	3			
	3) $CH_3 - CH_2 - CH_2$	$_{2}-CH_{3}$			
	4) $CH_3 - CH_2 - CH_2$	$_{2}-CH_{2}-CH_{2}-CH_{2}-$	CH_3		

311 01	iaitariya Euucationa	I Institutions, India		
161.	When the vapours	of tertiary butyl al	cohol are passed the	rough heated copper at 573K,
	the product forme	d is		
	1) But-2-ene		2) 2-Butanone	
	3) 2-Methyl prope	ene	4) Butanal	
162.	What is the increa	sing order of acidic	strength among the	e following?
	i) CH_3COOH	ii) C_6H_5COOH	iii) <i>HCOOH</i>	
	1) ii < iii < I	2) iii < ii < I	3) i < ii < iii	4) i < iii < ii
163.	Which of the follo	owing is more basic	than aniline?	
	1) Diphenylamine		2) Triphenylamine	e
	3) p-nitroaniline		4) Benzyalamine	
164.	The two forma of	D-Glucopyranose a	are called	
	1) Diastereomers		2) Anomers	
	3) Epimers		4) Enantiomers	
165.	Among the follow	ring, the branched c	hain polymer is	
	1) Polyvinyl chlor	ride	2) Bakelite	
	3) Low density po	lythene	4) High density po	olythene
166.	Edge length of a c	tube is 300 pm. Its l	oody diagonal woul	d be
	1) 600 pm	2) 423 pm	3) 519.6 pm	4) 450.5 pm
167.	Which of the follo	owing is not a condu	uctor of electricity?	
	1) Solid Nacl	2) Cu	3) fused Nacl	4) Brine solution
168.	For a cell reaction	involving two elec	etron changes, $E_{cell}^0 =$	$0.3V$ at 25° C. The equilibrium
	constant of the rea	action is		
	1) 10 ⁻¹⁰	2) 3×10 ⁻²	3) 10	4) 1010
169.	The value of rate of	constant of a pseud	o first order reaction	n
	1) Depends only of	on temperature		
	2) Depends on the	concentration of re	eactants present in s	small amounts
	3) Depends on the	concentration of re	eactants present in e	excess
	4) Is independent	of the concentration	n of reactants	
170.	$(CH_3)_3$ SiCl is use	during polymerizat	ion of organosilicor	ns because
	 (CH₃)₃ SiCl is use during polymerization of organosilicons because The chain length of organosilicon polymers can be controlled by adding (CH₃)₃ SiCl 			

- $2)(CH_3)_3$ SiCl improves the quality and yield of the polymer
- 3) $(CH_3)_3$ SiCl does not block the end terminal of silicon polymer
- 4) $(CH_3)_3$ SiCl acts as a catalyst during polymerization
- 171. When PbO_2 reacts with concentrated HNO_3 , the gas evolved is
 - 1) *NO*₂
- 2) O₂
- 3) N_2
- 4) N_2O
- 172. $KMnO_4$ acts as an oxidizing agent in alkaline medium. When alkaline $KMnO_4$ is treated with KI, iodide ion is oxidized to
 - 1) I_{2}
- 2) 10-
- 3) IO_{3}^{-}
- 4) *IO*₄

- 173. $\lceil Fe(NO_2)_3 Cl_3 \rceil$ and $\lceil Fe(O-NO)_3 Cl_3 \rceil$ shows
 - 1) Linkage isomerism

2) Geometrical isomerism

3) Optical isomerism

- 4) Hydrate isomerism
- 174. Tertiary alkyl halide is practically inert to substitution by SN² mechanism
 - 1) Insolubility

2) Instability

3) Inductive effect

- 4) Steric hindrance
- 175. The products X and Z in the following reaction sequence are

$$+ CH_3 - CH = CH_2 \xrightarrow{AlCl_3/ether} X$$

$$\begin{array}{c} \text{OH} \\ \hline \\ \frac{\text{O}_2 \text{/ } 130^{\circ}\text{C}}{\text{M}} & \text{Y} & \xrightarrow{\text{H}^{+}/\text{H}_2\text{O}} \\ \hline \end{array} + Z$$

- 1) Isopropylbenzene and acetone
- 2) Cumene peroxide and acetone
- 3) Isopropylbenzene and isopropyl alcohol
- 4) Phenol and acetone
- 176. The appropriate reagent for the following transformation is

1) Zn /*HCl*

2) $H_2N - NH_2$, KOH/ethylene glycol

3) Ni/H_2

- 4) *NaBH*₄
- 177. In the following reaction

The compound Z is

1) Benzoic acid

2) Benzaldehyde

3) Acetophenone

- 4) Benzene
- 178. The reaction of Benzenediazonium chloride with aniline yields yellow dye. The name of the yellow dye is
 - 1) p-Hydroxyazobenzene
- 2) p-Aminoazobenzene

3) p-Nitroazobenzene

- 4) o-Nitroazobenzene
- 179. The glycosidic linkage involved in linking the glucose units in amylose part of starch is
 - 1) $C_1 C_4 \beta linkage$

2) $C_1 - C_6 \alpha - linkage$

3) $C_1 - C_6 \beta - linkage$

- 4) $C_1 C_4 \alpha linkage$
- 180. Ziegler-Natta catalyst is used to prepare
 - 1) Low-density polythene
- 2) Teflon
- 3) High density polythene
- 4) Nylon-6