MAT137 PS6 3a

Wei Hao Ma

December 2, 2023

Let $a, b \in \mathbb{R}$ with a < b and assume the following:

- f is a function that is continuous on [a, b]
- f is differentiable on (a, b) and f' is bounded on (a, b)
- $P = \{x_0, x_1, x_2, \dots, x_n\}$ (where $n \in \mathbb{N}$) is a partition of [a, b]

Let $i \in \{1, 2, ..., n\}$ be given. The i^{th} rectangle of the P-upper sum (or the P-lower sum) corresponds to the rectangle above the interval $[x_{i-1}, x_i]$.

Claim 1. We claim that $\exists C > 0$ which does not depend on i such that $\forall s, t \in [x_{i-1}, x_i], |f(s) - f(t)| \leq C|s - t|$.

Proof. We begin by declaring all of the above variables and assuming they meet their outlined characteristics. Assume that i has been given like above. We know that f' is bounded on $(a,b) \implies f'$ has an infimum and supremum on (a,b). Let

$$C = \max\{|\sup_{x \in (a,b)} f'(x)|, |\inf_{x \in (a,b)} f'(x)|, 1\}.$$
 (1)

We will show that this is the required C. It is clear that C > 0 since the lowest value C can take is 1. We know that given any interval $[x_{i-1}, x_i]$ from partition $P, [x_{i-1}, x_i] \subseteq [a, b]$ because P is a partition of [a, b]. Since f on [a, b] satisfies the requirements of the Mean Value Theorem (as it is described above), so does f on $[x_{i-1}, x_i]$. With the same logic, f on all subintervals of $[x_{i-1}, x_i]$ satisfy the requirements of the Mean Value Theorem. Thus, by the Mean Value Theorem, $\forall s, t \in [x_{i-1}, x_i]$,

$$t > s \implies \exists c \in (s, t) \text{ s.t. } f'(c) = \frac{f(t) - f(s)}{t - s}.$$
 (2)

The conclusion of (2) can be rewritten to show (using the same variables as above)

$$\exists c \in (s, t) \text{ s.t. } f'(c)(t - s) = f(t) - f(s)$$
 (3)

$$\implies \exists c \in (s, t) \text{ s.t. } |f'(c)||t - s| = |f(t) - f(s)|.$$
 (4)

We know that $c \in (s,t) \subseteq (a,b)$, thus, by definition, $\inf_{x \in (a,b)} f'(x) \le f'(c) \le \sup_{x \in (a,b)} f'(x)$. It follows that, by (1), $|f'(c)| \le C$. Finally, rewriting all of (2) and using a modified version of (4) gives us: $\forall s,t \in [x_{i-1},x_i], t > s$

$$\implies \exists c \in (s,t) \text{ s.t. } |f(t) - f(s)| = |f'(c)||t - s| \le C|t - s| \tag{5}$$

$$\implies \exists c \in (s,t) \text{ s.t. } |f(t) - f(s)| \le C|t - s|. \tag{6}$$

(5) holds true because C > 0 and moreover, $C \ge |f'(c)|$. (6) concludes that, $\forall s, t \in [x_{i-1}, x_i], t > s \implies |f(t) - f(s)| \le C|t - s|$, which is a portion of what we wanted to show. Observe that $\forall s, t \in [x_{i-1}, x_i], s = t \implies |f(t) - f(s)| \le C|t - s|$ as well. In this case, it is clear that |f(t) - f(s)| = 0 and |t - s| = 0 since s = t, so the conclusion results in $0 \le 0$ which is true. Finally, using the same variables, we can rewrite (6) to show that

$$\exists c \in (s,t) \text{ s.t. } |-(-f(t)+f(s))| \le C|-(-t+s)| \tag{7}$$

$$\implies \exists c \in (s,t) \text{ s.t. } |f(s) - f(t)| \le C|s - t| \text{ (after simplifying)}.$$
 (8)

With (8), we have shown that $\forall s, t \in [x_{i-1}, x_i], t > s \implies |f(s) - f(t)| \le C|s - t|$ as well. Combining all 3 cases from above, we have proved $\forall s, t \in [x_{i-1}, x_i], |f(s) - f(t)| \le C|s - t|$ and indeed, C is a constant that does not depend on i; $C = \max\{|\sup_{x \in (a,b)} f'(x)|, |\inf_{x \in (a,b)} f'(x)|, 1\}$.