Homework 12, Fundamental Theorem Solutions

Claim: Let K/F be Galois, let G = Gal(K/F), let E be an intermediate field, and let H = Gal(K/E) so that E = Inv(H). Then E/F is Galois if and only if Inv(E) is a normal subgroup.

Proof. We'll prove the claim in three sections.

1

Let H be any subgroup of G, and define $g(E) = \{ga|g \in G, a \in E\}$ and $gHg^{-1} = \{ghg^{-1}|g \in G, h \in H\}$. Then for b = ga, $ghg^{-1}b = ghg^{-1}(ga) = gha$. Since a is fixed by h, gha = ga = b, so $ghg^{-1}b = b$ for any $b \in g(E)$.

Conversely, let some $b \in \text{Inv}(gHg^{-1})$ be given. There is some $a \in K$ such that $g^{-1}b = a$, so b = ga and $ghg^{-1}b = ghg^{-1}ga = gha = b$. But ga = b, so ga = gha and a must therefore be fixed by h. So a is in E and $b \in g(E)$. It follows that $\text{Inv}(gHg^{-1}) = g(E)$.

$\mathbf{2}$

Assume that g(E) = E for all $g \in G$. Let $f_g(j) = gj$ for $j \in \operatorname{Gal}(E/F)$, and define a mapping $\varphi : \operatorname{Gal}(K/F) \to \operatorname{Gal}(E/F)$ by $\varphi(g) = f_g(j)$ For $g \in \operatorname{Gal}(K/E)$, g fixes elements of E so $f_g(j) = j = f_{id}(j)$ where id is the identity permutation. This implies that $\operatorname{Gal}(K/E)$ is the kernel of φ and $j \in \operatorname{Gal}(E/F)$ are mapped to non-identity permutations of E.

Now let $a, b \in G$ be given. Then $\varphi(ab) = f_{ab}(j) = abj$. Similarly, $\varphi(a)\varphi(b) = f_a \circ f_b(j) = f_a(bj) = abj$, so φ is a homomorphism of the Galois group.

3

Suppose that E is Galois over F; then E is the splitting field of some $f(x) \in F[x]$ and all roots of f(x) are contained in E. For any $g \in G$, g permutes roots of f(x) by Theorem 12.2 of Hungerford. Since all roots of f(x) are in E, it follows that for any $e \in E$, $ge \in E$ and thus g(E) = E.

We have shown that Inv(E) being normal in G implies that E is Galois over F, and conversely, if E is Galois over F, then $g(E) = E = gHg^{-1}$ and Inv(E) is normal in G.