

Inference

MAP

Max-Sum Exact Inference

Product ⇒ Summation

$$P_{\Phi}(\boldsymbol{x}) \propto \prod_k \phi_k(\boldsymbol{D}_k)$$

$$\operatorname{argmax} \prod_{k} \phi_{k}(\boldsymbol{D}_{k})$$

$$\operatorname{argmax} \sum_{k} \theta_k(\boldsymbol{D}_k)$$

$$\theta(X_1, \dots, X_n)$$

a^1	b ¹ 8	
a^1	b ²	1
a^2	b¹	0.5
a ²	b ²	2

a^1	b¹	3
a^1	b ²	0
a^2	b¹	-1
a ²	b ²	1

Max-Sum Elimination in Chains

O(A,B,C,D,E)

$$\max_{D} \max_{C} \max_{B} \max_{A} \left(\theta_{1}(A, B) + \theta_{2}(B, C) + \theta_{3}(C, D) + \theta_{4}(D, E) \right)$$

$$\max_{D} \max_{C} \max_{B} \left(\theta_{2}(B,C) + \theta_{3}(C,D) + \theta_{4}(D,E) + \max_{A} \theta_{1}(A,B) \right)$$

$$\max_{D} \max_{C} \max_{B} \left(\theta_{2}(B,C) + \theta_{3}(C,D) + \theta_{4}(D,E) + \lambda_{1}(B) \right)$$

Factor Summation

Factor Maximization

max - marginalization

					_			
~	a^1	b¹	c ¹					
	a^1	b¹	c ²	4.5				
→	a^1	b ²	c¹	0.2		a ¹	c ¹	7
	a ¹	b ²	c ²	2		α ¹	c ²	4.5
	a ²	b¹	c¹	3		a ²	c ¹	3
	a ²	b¹	c ²	0.5		a ²	c ²	3
	a ²	b ²	c¹	1.2				
	a ²	b ²	c ²	3				

Max-Sum Elimination in Chains

$$\max_{D} \max_{C} \max_{B} \left(\theta_{2}(B,C) + \theta_{3}(C,D) + \theta_{4}(D,E) + \lambda_{1}(B) \right)$$

$$\max_{D} \max_{C} \left(\theta_{3}(C,D) + \theta_{4}(D,E) + \max_{B} \left(\theta_{2}(B,C) + \lambda_{1}(B) \right) \right)$$

$$\max_{D} \max_{C} (\theta_3(C, D) + \theta_4(D, E) + \lambda_2(C))$$

Max-Sum Elimination in Chains

$$\max_{D} \max_{C} (\theta_3(C, D) + \theta_4(D, E) + \lambda_2(C))$$

$$\max_{D} (\theta_4(D, E) + \lambda_3(D))$$

$$\lambda_{4}(E)$$

$$\lambda_4(e) = \max_{\bullet,b,e,d} \frac{\Theta(\bullet,b,e,d,e)}{\Theta(\bullet,b,e,d,e)}$$

can get if we mandate E=e

Max-Sum in Clique Trees

Daphne Koller

Convergence of Message Passing

- Once C_i receives a final message from all neighbors except C_i , then $\lambda_{i \to j}$ is also final (will never change)
- Messages from leaves are immediately final

Simple Example

Simple Example (3) b^1 b^2 c^2 1.5 b^1 b^2 c^1 0.2 b^2 c^2 2 2: B B,C 3 1 3+4=7 4+3=7 0+2=2 1.5+3=4.5 4 -1+4=3 2 0.2+1=1.2 b^2 b^2 b^2 1+2=3 b^2 c^2 2+1=3

Daphne Koller

Max-Sum BP at Convergence

• Beliefs at each clique are max-marginals
$$\beta_i(C_i) = \theta_i(C_i) + \sum_k \lambda_{k \to i}$$
 wigs
$$\beta_i(\underline{C}_i) = \max_{\boldsymbol{W}_i} \theta(\boldsymbol{C}_i, \boldsymbol{W}_i)$$

$$\underline{\boldsymbol{W}_i = \{X_1, \dots, X_n\} - \boldsymbol{C}_i\}}$$

Calibration: cliques agree on shared variables

	$oldsymbol{C}_{i}$ –	$\underset{\boldsymbol{S}_{i,j}}{\text{ax}} \beta_i(\boldsymbol{C}_i) =$	$\max_{\boldsymbol{C}_{j}-\boldsymbol{S}_{i,j}} \beta_{j}(\boldsymbol{C}_{j})$	$_{j})$
p^1	3+4=7	L. 7	b .7	b
) ²	0+2=2	12.3	6. 2	Ь
p^1	-1+4= 3	9	0 2 /	b

b^1	c ¹	4+3=7
b¹	c ²	1.5+3=4 .5
b ²	c ¹	0.2+1=1 .2
b ²	c ²	2+1=3

Daphne Koller

Summary

- The same clique tree algorithm used for sum-product can be used for max-sum
- As in sum-product, convergence is achieved after a single up-down pass
- Result is a max-marginal at each clique C:
 - For each assignment ${\bf c}$ to ${\bf C}$, what is the score of the best completion to ${\bf c}$