

Tarea 4

6 de octubre de 2020

 $2^{\underline{0}}$ semestre 2020 - Profesores G. Diéguez - F. Suárez

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59:59 del 19 de octubre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada problema debe entregarse en un archivo independiente de las demas preguntas.
 - Los archivos que debe entregar son un archivo PDF por cada pregunta con su solución con nombre numalumno-P1.pdf y numalumno-P2.pdf, junto con un zip con nombre numalumno.zip, conteniendo los archivos numalumno-P1.tex y numalumno-P2.tex que compilan su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1 - Relaciones de orden

Dados conjuntos A_1, \ldots, A_n y relaciones R_1, \ldots, R_n , donde cada R_i es una relación binaria sobre A_i , definimos el **producto directo** como el par (A, R), donde $A = A_1 \times \ldots \times A_n$, y R es una relación binaria sobre A tal que

$$(a_1,\ldots,a_n)R(b_1,\ldots,b_n)$$
 si y solo si $a_iR_ib_i$ para cada $i\in 1,\ldots,n$

Demuestre que si todos los R_i son relaciones de orden parcial, entonces R es una relación de orden parcial.

Solución

PD: R es una relación de orden parcial.

■ Refleja: Sea $a = (a_1, ..., a_n) \in A$. Como los R_i son órdenes parciales para todo i, en particular son reflejas. Luego, para todo i:

$$a_i R_i a_i$$

Como esto se cumple para todo i tenemos que

aRa

Concluimos que R es refleja.

■ Antisimétrica: Sean $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in A$ tales que

$$aRb \wedge bRa$$

Luego, para todo i se cumple que:

$$a_i R_i b_i \wedge b_i R_i a_i$$

Como los R_i son ordenes parciales, en particular son antisimétricas, y entonces

$$a_i = b_i$$

Como esto se cumple para todo i tenemos que

$$a = b$$

Concluimos que R es antisimétrica.

■ Transitiva: Sean $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n), c = (c_1, \ldots, c_n) \in A$ tales que $aRb \wedge bRc$

Luego para todo i se cumple que:

$$a_i R_i b_i \wedge b_i R_i c_i$$

Como los R_i son ordenes parciales, en particular son transitivas, y entonces

$$a_i R_i c_i$$

Como esto se cumple para todo i tenemos que

aRc

Concluimos que R es transitiva.

Por lo tanto, tenemos que R es una relación de orden parcial.

Pauta (6 pts.)

- 2.0 ptos. por demostrar que R es refleja.
- 2.0 ptos. por demostrar que R es antisimétrica.
- 2.0 ptos. por demostrar que R es transitiva.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Problema 2 - Funciones y cardinalidad

- a) Sea $S = \{1, \dots, 2n\}$. Demuestre, utilizando el principio del palomar, que todo $X \subseteq S$ tal que |X| = n + 1 contiene un par de números consecutivos.
- b) Dados conjuntos X, Y, definimos

$$\phi(X,Y) = \{ f \mid f : X \to Y \}$$

Demuestre que si $|Y| \ge 2$ entonces $X \not\approx \phi(X, Y)$.

Hint: Use una demostración por contradicción.

Solución

a) Considere el siguiente conjunto de pares ordenados

$$A = \{(1, 2), (3, 4), \dots, (2n - 1, 2n)\}\$$

Además, sea $X\subseteq S$ un subcojunto arbitrario tal que |X|=n+1. Por un lado, notemos que A tiene n elementos y por ende |A|=n. Por otro lado, podemos modelar el problema de asignar los elementos de X a S como el de asignar los elementos de X a los pares ordenados de A. Esto, ya que por construcción todos los elementos de S están en por lo menos un par ordenado. En términos formales, esta asignación corresponde a una función $f:X\to A$. Finalmente como |X|=n+1 y |A|=n, por principio del palomar f no puede ser inyectiva y por ende existen 2 elementos de X que son mapeados a un par de consecutivos en A.

b) Por contradicción, asumiremos que $X \approx \phi(X,Y)$. Luego, por definición de equinumerosidad, sabemos que existe un función $h: X \to \phi(X,Y)$ biyectiva. Ahora, para cada $x \in X$ definimos $u_x \in Y$ como (h(x))(x), es decir, el valor de la función $h(x) \in \phi(X,Y)$ sobre el elemento x. Dado que $|Y| \geq 2$ podemos tomar un $v_x \in Y$ tal que $u_x \neq v_x$. Luego, podemos definir la siguiente función $g \in \phi(X,Y)$ tal que $g(x) = v_x$ para todo $x \in X$.

Finalmente, dado que h es sobreyectiva, debe existir un $x^* \in X$ tal que $h(x^*) = g$. Sin embargo, en ese caso se debe tener que $h(x^*)$ y g tienen los mismos valores sobre todo el dominio, en particular, sabemos que $g(x^*) = (h(x^*))(x^*)$. Esto es una contradicción, ya que $g(x^*) = v_{x^*} \neq u_{x^*} = (h(x^*))(x^*)$. y por ende $X \not\approx \phi(X, Y)$.

Pauta (6 pts.)

- a) 3.0 ptos.
- b) 3.0 ptos.

Puntajes parciales y soluciones alternativas a criterio del corrector.