核心知识点

・晶体管饱和状态下的基本公式

	弱反型区	强反型区	速度饱和区
电流ID	$I_{D0} \frac{W}{L} e^{\frac{V_{GS}}{nkT/q}}$	$\frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$	$WC_{OX}v_{sat}(V_{GS}-V_{TH})$
	I	$\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) =$	

 $2\mu_n C_{ox} \frac{W}{L} I_{DS} = \frac{2I_{DS}}{V_{GS} - V_{TH}}$

 $WC_{OX}v_{sat}$

跨导gm $\frac{I_{D,wi}}{nkT/q}$

》) 第一章: 晶体管

 \cdot g_m/I_D 在所有区间内大约在【25, 1】的范围内变动,是设计的首要出发点。比如正常偏置下, $V_{GST}=0.2V$,则 $g_m/I_D=10$

>>> 第一章: 晶体管

·特征频率由晶体管跨导g_m和寄生电容C_{GS}决定

$$f_{T} = \frac{g_{m}}{2\pi C_{GS}}$$

•特征尺寸下:

反型区
$$\Rightarrow$$
 $=$ $\frac{1}{2\pi} \frac{3}{2n} \frac{\mu}{L^2} (V_{GS} - V_T)$ or $\approx \frac{V_{Sat}}{2\pi L}$ \Leftarrow 速度饱和区

·在0.18um工艺下,0.5V以下的V_{GST}可以认为没有进入速度饱和区

>>> 第二章:模拟电路的基本构成

・单晶体管放大器

$$A_{v} = g_{m}r_{DS} = \frac{2 I_{DS}}{V_{GS}-V_{T}} \frac{V_{E}L}{I_{DS}} = \frac{2 V_{E}L}{V_{GS}-V_{T}}$$

・V_E大约为40V/um

》) 第二章:模拟电路的基本构成

· Cascode (共源共栅极)

·从源极看将漏极阻抗缩小A倍,最小至自身跨导倒数1/gm

》) 第二章:模拟电路的基本构成

· Cascode (共源共栅极)

$$A_v = (g_m r_{DS})_1 (g_m r_{DS})_2$$

·从漏极看将源极阻抗放大A倍

》) 第二章:模拟电路的基本构成

・二极管连接的晶体管

》) 第三章: 噪声

・晶体管的热噪声

$$\overline{di_n^2} = 4kT/R = 4kT\gamma g_m$$

 $dv_{ieqn}^2 = 4kT\gamma/g_m$

・通道电流等效

・输入电压等效

· 热噪声由晶体管跨导gm决定

》) 第三章: 噪声

・晶体管的闪烁噪声

$$\frac{\overline{dv_{ieqf}^2}}{dV_{ieqf}^2} = \frac{KF_F}{WLC_{OX}^2} \frac{\delta f}{f} \quad \cdot 输入电压等效$$

·闪烁噪声由晶体管面积决定

》) 第三章: 噪声

· 输入等效噪声的换算: 所有噪声在输出出累加, 然后根据放大倍 数转换到输入

》) 第四章: 失调

• 随机失调由三部分组成:

$$I_{DS} = K' W/L(V_{GS} - V_T)^2$$

- 1. 阈值电压V_{TH}的偏差
- 2. 晶体管尺寸的偏差
- 3. 半导体参数的偏差, 基本可以忽略

$$\sigma_{\Delta VT} = \frac{A_{VT}}{\sqrt{WL}}$$

$$A_{VT} \sim t_{ox} \sqrt[4]{N_B}$$

$$\frac{\Delta W/L}{\overline{W}/L} = A_{WL} \sqrt{\frac{1}{W^2} + \frac{1}{L^2}}$$

$$A_{WL} \approx 0.02 \text{ mV um}$$

$$\frac{\Delta K'}{\overline{K'}} = \frac{A_{K'}}{\sqrt{WL}}$$

$$A_{K'} \approx 0.0056 \text{ um}$$

》) 第四章: 失调

•等效输入随机失调的主要构成:

差分对的阈值 电压失调

过跨导比例转

对过驱动电压 转换

>>> 第五章: 运放的稳定性与系统性设计

>>> 第五章: 运放的稳定性与系统性设计

• 次极点的选择取决于系统的要求

$$\frac{f_2}{\text{GBW}} \quad \text{PM (°)} \quad \zeta = \frac{1}{2} \sqrt{\frac{f_2}{\text{GBW}}} \qquad \text{P}_f (\text{dB}) \qquad \text{P}_t (\text{dB})$$

$$0.5 \quad 27 \quad 0.35 \quad 3.6 \quad 2.3$$

$$1 \quad 45 \quad 0.5 \quad 1.25 \quad 1.3$$

$$1.5 \quad 56 \quad 0.61 \quad 0.28 \quad 0.73$$

$$2 \quad 63 \quad 0.71 \quad 0 \quad 0.37$$

$$3 \quad 72 \quad 0.87 \quad 0 \quad 0.04$$

)) 第五章: 运放的稳定性与系统性设计

- · 两级运放的GBW由第一级跨导g_{m2}和补偿电容C_c决定
- ·次极点由第二级跨导g_{m2}和负载电容C_L决定

$$GBW = \frac{g_{m1}}{2\pi C_c}$$

$$f_{nd} = 3 \text{ GBW} = \frac{g_{m2}}{2\pi C_L} \frac{1}{1 + \frac{C_{n1}}{C_c}}$$

$$\approx 0.3$$

$$\frac{g_{m2}}{g_{m1}} \approx 4 \frac{C_L}{C_c}$$

Larger current in 2nd stage!

》) 第五章: 运放的稳定性与系统性设计

GBW =
$$\frac{g_{m1}}{2\pi C_c}$$
 $f_{nd} = 3 \text{ GBW} = \frac{g_{m2}}{2\pi C_L} \frac{1}{1 + \frac{C_{n1}}{C_c}}$

- ·为什么Cc不能太大?
 - · C_C太大会使g_{m1}的要求过大,导致功耗激增

- ·为什么Cc不能太小?
 - $\cdot C_C$ 太小会 f_{nd} 中的系数(1+ C_{n1}/C_C)快速上升,导致 f_{nd} 下降

)) 第五章: 运放的稳定性与系统性设计

$$GBW = \frac{g_{m1}}{2\pi C_c}$$

$$C_c$$

$$C_c$$

$$C_c$$

$$C_c = \beta C_{n1} = \beta C_{GS6}$$

$$GBW = \frac{g_{m6}}{2\pi C_c}$$

$$C_c$$

$$C_c = \beta C_{n1} = \beta C_{GS6}$$

$$GBW$$

$$f_{nd} = \gamma GBW$$

$$\gamma \approx 2$$

$$C_{GS} = kW$$
 $k = 2fF/um$, for minL

α **≈ 2**

γ ≈ 2

》) 第五章: 运放的稳定性与系统性设计

- 1. 选择 αβγ
- 2. 找到满足GBW最小的f_T
- 3. 根据增益要求选择L6
 - · 得到f_{TH6}
- 4. 根据C_L和L₆计算W₆
- 5. 根据I_{DSH6}和反型系数i计算I_{DS6}
 - $K_n' = 280uA/V^2$
- 6. 通过选择的 α 和 C_L 计算 C_C
- 7. 通过C_C计算g_{m1}和I_{DS1}

如果没有增益要求,可以使用 最小长度。根据所选择长度计 算晶体管可以支持的频率。

如若没有面积限制,宽度越宽 越好,直至C_{GS}(C_{n1})的限制

根据计算所得长宽比,得到该 尺寸强反型区的跨导gm;根 据该跨导和所需跨导的比例, 计算偏置电流。