A phenome-wide association study of short tandem repeats in the UK Biobank

Celine Manigbas
NeuroPsychGen Works in Progress
Pl: Dr. Andrew Sharp
December 14th, 2023

Genome-wide association studies (GWAS) have identified thousands of risk loci for human disease and traits

However, GWAS signals can not fully explain estimated heritability, suggesting that other type of variants can be involved in modulating human traits

Short Tandem Repeats (STRs) represent an important source of genetic variation in the human genome

Short tandem repeats (STRs) are segments of DNA with multiple consecutive copies of a sequence unit (motif) ranging from 1 to 6 bp.

Motif: GATA; 10 copies

Over 1M STRs are annotated across the genome.

Due to their higher mutation rate, STRs are among the most polymorphic variants in the human genome.

Genome 1	CTACAGATAGATAGATAGATAGATAGATAGATAGATAGAT
Genome 2	CTACAGATAGATAGATAGATAGATAGATAGATAGATACTATACTAGACTAT
Genome 3	CTACAGATAGATAGATAGATAGATAGATAGATAGATAGAT
Genome 4	CTACAGATAGATAGATAGATAGATAGATACTATACTAGACTAT
Genome 5	CTACAGATAGATAGATAGATAGATAGATAGATAGATAGAT
Genome 6	CTACAGATAGATAGATAGATAGATAGATAGATAGATAGAT

Motif = GATA, range = 7-12 copies

Rare expanded alleles in STRs have been shown to play a role in 60+ human diseases

Disorder	Affected gene	Repeat ^a	Repeat location	Normal repeat no.	Symptomatic repeat no
Coding repeats					
DRPLA	ATN1	CAG	ORF	7–25	49–88
HD	HTT	CAG	ORF	6–34	36–180
SBMA	AR	CAG	ORF	11–24	40-62
SCA1	ATXN1	CAG	ORF	6-39	39–83
SCA2	ATXN2	CAG	ORF	15–29	34–59
SCA3	ATXN3	CAG	ORF	13-36	55–84
SCA6	CACNA1A	CAG	ORF	4–16	21–30
SCA7	ATXN7	CAG	ORF	4-35	34->300
SCA17	TBP	CAG	ORF	25-44	45–66
Noncoding repea	ts				
DM1	DMPK	CTG	3' UTR	5-37	>50->2000
DM2	CNBP	CCTG	Intron 1	<27	75–11,000
EPM1	CSTB	$(C)_4G(C)_4GCG$	Promoter	2–3	30–75
FXS	FMR1	CGG	5' UTR	6-52	~55->2000
FRAXE MR	AFF2/FMR3	CCG	5' end	6–25	>200
FRA12A MR	DIP2B	CGG	5' UTR	6–23	?
FRDA	FXN	GAA	Intron 1	7–22	>66->900
SCA10	ATXN10	ATTCT	Intron 9	10-29	280-4500
Coding and none	oding repeats				
SCA8	ATXN8/ATXN8OS	CAG and CTG	ORF and NCT	6–37	~107–250
Repeats with unc	ertain location				
HDL-2	JPH3	CAG/CTG	?	<50	>50
SCA12	PPP2R2B	CAG/CTG	?	<66	>66

Rare expanded alleles in STRs have been shown to play a role in 60+ human diseases

Disorder	Affected gene	Repeat ^a	Repeat location	Normal repeat no.	Symptomatic repeat no.
Coding repeats					
DRPLA	ATN1	CAG	ORF	7–25	49–88
HD	HTT	CAG	ORF	6–34	36–180

Normal Intermediate Pathogenic (HTT, Fragile X)

Repeat length range

Rare expanded alleles in STRs have been shown to play a role in 60+ human diseases

Disorder	Affected gene	Repeata	Repeat location	Normal repeat no.	Symptomatic repeat no
Coding repeats					
DRPLA	ATN1	CAG	ORF	7–25	49–88
HD	HTT	CAG	ORF	6–34	36–180
ZRIVIA	AK	CAG	OKF	11-24	40-62
SCA1	ATXN1	CAG	ORF	6-39	39-83
SCA2	ATXN2	CAG	ORF	15–29	34-59
SCA3	ATXN3	CAG	ORF	13–36	55-84
SCA6	CACNA1A	CAG	ORF	4–16	21–30
SCA7	ATXN7	CAG	ORF	4-35	34->300
SCA17	TBP	CAG	ORF	25-44	45–66
Noncoding repea	its	10-40-00-00-00-00-00-00-00-00-00-00-00-00			
DM1	DMPK	CTG	3' UTR	5–37	>50->2000
DM2	CNBP	CCTG	Intron T	<2/	/5-11,000
FPM1	CSTB	(C), $G(C)$, GCG	Promoter	2–3	30–75
FXS	FMR1	CGG	5' UTR	6-52	~55–>2000
FRAXE MR	AFF2/FMR3	CCG	5′ end	6–25	>200
FRA12A MR	DIP2B	CGG	5' UTR	6–23	?
FRDA	FXN	GAA	Intron 1	7–22	>66->900
SCA10	ATXN10	ATTCT	Intron 9	10-29	280-4500
Coding and none	coding repeats				
SCA8	ATXN8/ATXN8OS	CAG and CTG	ORF and NCT	6–37	~107–250
Repeats with unc	ertain location				
HDL-2	JPH3	CAG/CTG	?	<50	>50
SCA12	PPP2R2B	CAG/CTG	?	<66	>66

Common STR length variation influences molecular phenotypes

Abundant contribution of short tandem repeats to gene expression variation in humans

Melissa Gymrek¹⁻⁴, Thomas Willems^{1,4,5}, Audrey Guilmatre^{6,7}, Haoyang Zeng⁸, Barak Markus¹, Stoyan Georgiev⁹, Mark J Daly^{3,10}, Alkes L Price^{3,11,12}, Jonathan K Pritchard^{9,13}, Andrew J Sharp⁶ & Yaniv Erlich^{1,4,14,15}

Research

Genome-wide evaluation of the effect of short tandem repeat variation on local DNA methylation

Alejandro Martin-Trujillo, Paras Garg, Nihir Patel, Bharati Jadhav, and Andrew J. Sharp

¹Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai. Hess Center for Science and Medicine. New York. New York 10029. USA

Why haven't the impacts of STRs on human traits been systematically investigated?

1. STR variation is not well tagged by SNPs, and as a result, they're ignored in standard genetic studies

2. Methods of Detection

Traditional Methods

PCR-based methods

Labor-intensive and low throughput!

Methods Using Whole Genome Sequencing

Bioinformatic tools for genotyping

Genotyping STRs from whole genome sequencing data

We hypothesize that common variation at STRs can modulate phenotypic variation in humans, which can be elucidated through Phenome-Wide Association Studies

Cohort UK Biobank (UKB)

Whole Genome Sequencing data on 200,000 UK Biobank participants made available for research

WHOLE GENOME SEQUENCING DATA
ON 200,000 UK BIOBANK PARTICIPANTS
ARE NOW AVAILABLE FOR RESEARCH USE

This dataset represents the world's largest single release of Whole Genome Sequencing data

When combined with the extensive amount of lifestyle, biochemical and health outcome data already held for the participants in UK Biobank, it will enable researchers to better understand the role of genetics for health outcomes and to advance drug discovery and development

168,544 unrelated Europeans with WGS data and tens of thousands of harmonized phenotypes

168,544 unrelated Europeans in UKB with WGS and phenotype data

Genotype Data (STRs)
STR genotypes from WGS using
ExpansionHunter

Catalog of ~36,000 STRs

- highly polymorphic or undergo rare expansions
- Enriched for overlap with genes and regulatory elements

168,544 unrelated Europeans in UKB with WGS and phenotype data

Genotype Data (STRs)
STR genotypes from WGS using
ExpansionHunter

Catalog of ~36,000 STRs

- highly polymorphic or undergo rare expansions
- Enriched for overlap with genes and regulatory elements

Phenotype Data
ICD codes, quantitative, categorical,
and binary traits

30,304 diverse human traits

- 1,353 Quantitative Traits
- 28,951 Binary Traits

168,544 unrelated Europeans in UKB with WGS and phenotype data

Genotype Data (STRs)

36,085 STR genotypes from WGS using ExpansionHunter

Phenotype Data
30.304 diverse human traits

Association Test: STR average length per individual and traits

Phenome Wide Association Study (PheWAS)
For each STR, we ran association tests against all traits using REGENIE

168,544 unrelated Europeans in UKB with WGS and phenotype data

Genotype Data (STRs)
36,085 STR genotypes from
WGS using ExpansionHunter

Phenotype Data
30.304 diverse human traits

Association Test: STR average length and traits
Phenome Wide Association Study (PheWAS)
For each STR, we ran association tests against all traits

Multi-testing Correction

Identify genuine causal STRs
Conditional Analysis (lead SNP) and
fine-mapping with CAVIAR

Our PheWAS identified a total 5,378 associations involving 1,635 STRs and 461 traits

λ Genomic inflation = 1.061

Bonferroni p < 1.45×10^{-10}

Pathogenic intronic CAG repeat within *TCF4* has been previously associated with corneal dystrophy

TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease

Michael P. Fautsch^{a,*,1}, Eric D. Wieben^{b,1}, Keith H. Baratz^{a,1}, Nihar Bhattacharyya^{c,1}, Amanda N. Sadan^{c,1}, Nathaniel J. Hafford-Tear^{c,1}, Stephen J. Tuft^{c,d,1}, Alice E. Davidson^{c,1}

a Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA

^b Department of Biochemistry and Molecular Biology, 200 1st St SW, Mayo Clinic, Rochester, MN, USA

^c University College London Institute of Ophthalmology, London, ECIV 9EL, UK

d Moorfields Eye Hospital, London, EC1V 2PD, UK

Association of intronic CAG repeat within *TCF4* with ocular-related phenotypes

Association of intronic CAG repeat within *TCF4* with ocularrelated phenotypes

Identification of causal STRs using two complementary approaches

Casual STR: Conditional Analysis retains significance & show highest causa probability from CAVIAR

Our causal analysis identified a total of 47 causal STRs involving 101 associations

Our causal analysis identified a total of 47 causal STRs involving 101 associations

Known pathogenic repeats confirm that causal analysis is correctly identifying causal STRs

Our causal analysis identified a total of 47 causal STRs involving 101 associations

Novel Associations of Interest

Novel association between exonic CCA repeat within HRCT1 and high blood pressure

35,906,000

Novel association between exonic CCA repeat within HRCT1 and high blood pressure

~20% decrease for the risk of high blood pressure in the longest average alleles

HRCT1 shows highest expression in artery tissues

Conditional analysis and fine mapping results for exonic CCA repeat within *HRCT1* and high blood pressure

- ✓ HRCT1 repeat retains significance, indicating that the STR independently drives the association with high blood pressure
- ✓ HRCT1 repeat has the highest causal probability reported by CAVIAR.

Novel association between CGC repeat in the promoter of GNB2 and pulse rate

Novel association between CGC repeat in the promoter of GNB2 and pulse rate

Larger alleles have ~1bpm increase in pulse rate

Novel association between CGC repeat in the promoter of GNB2 and pulse rate

Relative allele frequency

Molecular Medicine

A Mutation in the G-Protein Gene *GNB2* Causes Familial Sinus Node and Atrioventricular Conduction Dysfunction

Birgit Stallmeyer,* Johanna Kuß,* Stefan Kotthoff, Sven Zumhagen, Kirsty Vowinkel, Susanne Rinné, Lina A. Matschke, Corinna Friedrich, Ellen Schulze-Bahr, Stephan Rust, Guiscard Seebohm, Niels Decher, Eric Schulze-Bahr

Average allele size

Larger alleles have ~1bpm increase in pulse rate

Replication in All of Us

Replication Cohort

 In All of Us, we used ~89,000 individuals from diverse backgrounds with WGS and trait information

Association Testing

- We matched causal traits identified in UK Biobank (UKB) with traits in All of Us, followed by targeted genotyping for causal STRs.
- We then conducted association tests between the average allele length of causal STRs per individual and the respective trait in All of Us.

After matching traits and filtering were able to replicate 74% of causal associations

Exonic CCA HRCT1 repeat and essential hypertension

GCC GNB2 repeat and pulse rate
• p = 3.88x10⁻⁸

 $p = 2.30x10^{-3}$

Rare expansions for the CAG repeat within HTT

Pathogenic STRs are driven by rare repeat expansions

For each causal STR:trait pair, we repeated association analysis excluding samples with alleles longer than 95th percentile

Pathogenic STRs are driven by rare repeat expansions

For each causal STR:trait pair, we repeated association analysis excluding samples with alleles longer than 95th percentile

For each causal STR:trait pair, we repeated association analysis excluding samples with alleles longer than 95th percentile

For each causal STR:trait pair, we repeated association analysis excluding samples with alleles longer than 95th percentile

Causal TRs are enriched for STRs that impact expression levels of nearby genes

Using GTEx data, we performed eQTL analysis using RNA-seq data and STR genotypes to identify functional STRs

Causal TRs are enriched for STRs that impact expression levels of nearby genes

Using GTEx data, we performed eQTL analysis using RNA-seq data and STR genotypes to identify functional STRs

Causal TRs are enriched for STRs that impact expression levels of nearby genes

Using GTEx data, we performed eQTL analysis using RNA-seq data and STR genotypes to identify functional STRs

Exonic STR in *HRCT1* has strong negative correlation with expression level of *HRCT1* in

1. Our PheWAS provided a comprehensive evaluation of the impact of STR variation on human traits

- 1. Our PheWAS provided a comprehensive evaluation of the impact of STR variation on human traits.
- 2. Causal analysis showed that a subset of STRs represent the causal variant responsible for the phenotypic variation.

- Our PheWAS provided a comprehensive evaluation of the impact of STR variation on human traits
- 2. Causal analysis showed that a subset of STRs represent the causal variant responsible for the phenotypic variation.
- 3. Causal STRs are strongly enriched for loci involved in the expression levels of nearby genes, providing insights about the molecular mechanism by which STRs regulate the associated trait.

- 1. Our PheWAS provided a comprehensive evaluation of the impact of STR variation on human traits.
- 2. Causal analysis showed that a subset of STRs represent the causal variant responsible for the phenotypic variation.
- 3. Causal STRs are strongly enriched for loci involved in the expression levels of nearby genes, providing insights about the molecular mechanism by which STRs regulate the associated trait.
- 4. Our results highlight the role of multi-allelic variants as contributors to the "missing heritability" of the genome and the importance of incorporating variation at STRs in future genetic studies.

