22 DE FEBRERO DE 2024

DESCESO DEL GRADIENTE

IVAN YUTLANIH MORALES ZEPEDA CRUZ GALLEGOS RAMSES AARÓN SEM INTELIGENCIA ARTIFICIAL 2 MTRO: CAMPOS PEÑA DIEGO

INDICE

Introducción	2
Desarrollo	2
Código	3
Resultados	
Conclusiones	F

INTRODUCCIÓN

El descenso de gradiente es un algoritmo fundamental en el campo del aprendizaje automático y la optimización. Su objetivo es encontrar el mínimo (o máximo) de una función. Consta de tres partes importante:

- Función Objetivo: Se define una función matemática que se busca minimizar o maximizar. En este caso, utilizamos la función: f(x1, x2) = 10 e^(-(x1^2 + 3*x2^2)).
- **Gradiente**: Se calcula el gradiente de la función, que es un vector que indica la dirección y magnitud del cambio más rápido en la función. El gradiente es un guía hacia el mínimo local.
- Actualización de Parámetros: Iterativamente, se actualizan los valores de los parámetros (x1 y x2) utilizando la fórmula: x -= lr * grad, donde lr es el learning rate (tasa de aprendizaje).

DESARROLLO

- 1. Función Objetivo (f(x1, x2)):
 - o La función f(x1, x2) es: $f(x1, x2) = 10 e^{-(x1^2 + 3x2^2)}$
 - Esta función toma dos argumentos (x1 y x2) y devuelve un valor numérico.
- 2. Gradiente de la Función (gradient(x1, x2)):
 - El gradiente de la función se calcula con la función gradient(x1, x2).
 - El gradiente es un vector que indica la dirección y magnitud del cambio más rápido en la función.
 - En este caso, se derivan las componentes de f(x1, x2) con respecto a x1 y x2.
- 3. Descenso de Gradiente (gradient_descent(lr, num_iterations)):
 - El descenso de gradiente es un algoritmo de optimización que busca el mínimo de una función.
 - Ir (learning rate) es un hiperparámetro que controla el tamaño de los pasos en cada iteración.
 - o num iterations es el número de iteraciones que se realizarán.
 - Se comienza con valores iniciales aleatorios para x1 y x2.
 - En cada iteración, se calcula el gradiente y se actualiza x1 y x2 usando la fórmula: x
 = Ir * grad.
- 4. Resultado Final:
 - o El programa ejecuta el descenso de gradiente con los parámetros dados.
 - o Imprime el punto óptimo (x1 y x2) y el valor mínimo de la función.

CÓDIGO

```
import numpy as np
import matplotlib.pyplot as plt
# Función objetivo
def f(x1, x2):
    return 10 - np.exp(-(x1**2 + 3*x2**2))
# Gradiente de la función
def gradient(x1, x2):
    df dx1 = 2 * x1 * np.exp(-(x1**2 + 3*x2**2))
    df dx2 = 6 * x2 * np.exp(-(x1**2 + 3*x2**2))
    return np.array([df_dx1, df_dx2])
# Descenso de gradiente
def gradient descent(lr, num iterations):
    x = np.random.uniform(-1, 1, size=2)
    points history = [x.copy()] # Inicializar lista para historial de
puntos
    for _ in range(num_iterations):
        grad = gradient(x[0], x[1])
        x -= lr * grad
        points history.append(x.copy()) # Agregar el nuevo punto al
    return points history
# Parámetros
learning rate = 0.1
iterations = 100
# Creación de la gráfica
x1 \text{ vals} = np.linspace(-1, 1, 100)
x2 \text{ vals} = \text{np.linspace}(-1, 1, 100)
X1, X2 = np.meshgrid(x1 vals, x2 vals)
Z = f(X1, X2)
plt.figure()
plt.contour(X1, X2, Z, cmap='viridis')
plt.xlabel('x1')
plt.ylabel('x2')
plt.title('Convergencia del Error en Descenso de Gradiente')
# Ejecución del descenso de gradiente
points history = gradient descent(learning rate, iterations)
```

```
for point in points_history:
    plt.scatter(point[0], point[1], color='red', s=5) # Graficar cada
punto del historial

# Obtener y mostrar el punto óptimo y el valor mínimo de la función
optimal_point = points_history[-1]
min_value = f(*optimal_point)
print("\nPunto óptimo:", optimal_point)
print(f'Valor mínimo de la función:, {min_value}\n')

plt.show()
```

RESULTADOS

- Podemos observar cómo los valores de (x_1) y (x_2) evolucionan a lo largo de las iteraciones hasta alcanzar un mínimo local de la función.
- La función (f) disminuye a medida que avanzan en las iteraciones. El algoritmo busca los valores de (x_1) y (x_2) que minimizan (f).
- Los resultados muestran convergencia (es decir, la función se estabiliza en un valor mínimo), significa que el descenso de gradiente ha encontrado una solución.

CONCLUSIONES

Este algoritmo nos permite encontrar soluciones óptimas en problemas de optimización, ya que el descenso gradiente es altamente utilizado en el aprendizaje automático y la ciencia de datos.

Los resultados del algoritmo fueron satisfactorios, logrando optimizar la función objetivo. El desarrollo del código no representó un problema mayor y con base a los resultados interpretamos que la implementación del código es correcta porque observamos como los valores de X1 y X2 minimizaron la función objetivo hasta encontrar el valor mínimo.

GITHUB

- I. SEM-IA-2/R_Pre_1.3_DescesoDelGradiente at main · CRUZITO4O4/SEM-IA-2 (github.com)
- II. https://github.com/lvanYMz/SSPIA2-Tareas