buffer chips slow down the DIMM and are not effective at higher speeds. For this reason, all PC systems use unbuffered DIMMs. The voltage is simple—DIMM designs for PCs are almost universally 3.3v. If you install a 5v DIMM in a 3.3v socket, it would be damaged, but fortunately, keying in the socket and on the DIMM prevents that.

Modern PC systems use only unbuffered 3.3v DIMMs. Apple and other non-PC systems can use the buffered 5v versions. Fortunately, the key notches along the connector edge of a DIMM are spaced differently for buffered/unbuffered or 3.3v/5v DIMMs, as shown in Figure 6.8. This prevents inserting a DIMM of the wrong type into a given socket.

Figure 6.8 168-pin DRAM DIMM notch key definitions.

DDR DIMM Pinouts

Table 6.14 shows the pinout configuration of a 184-pin DDR SDRAM DIMM. Note again that the pins on each side of the DIMM are different.

Table 6.14 184-Pin DDR DIMM Pinouts

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
1	Reference +1.25v	47	Data Strobe 8	93	GND	139	GND
2	Data Bit 0	48	Address Bit 0	94	Data Bit 4	140	Data Strobe 17
3	GND	49	Parity Bit 2	95	Data Bit 5	141	Address Bit 10
4	Data Bit 1	50	GND	96	I/O +2.5v	142	Parity Bit 6
5	Data Strobe 0	51	Parity Bit 3	97	Data Strobe 9	143	I/O +2.5v
6	Data Bit 2	52	Bank Address 1	98	Data Bit 6	144	Parity Bit 7
7	+2.5v	53	Data Bit 32	99	Data Bit 7	145	GND
8	Data Bit 3	54	I/O +2.5v	100	GND	146	Data Bit 36
9	NC	55	Data Bit 33	101	NC	147	Data Bit 37
10	NC	56	Data Strobe 4	102	NC	148	+2.5v
11	GND	57	Data Bit 34	103	AddressBit 13	149	Data Strobe 13
12	Data Bit 8	58	GND	104	I/O +2.5v	150	Data Bit 38
13	Data Bit 9	59	Bank Address 0	105	Data Bit 12	151	Data Bit 39
14	Data Strobe 1	60	Data Bit 35	106	Data Bit 13	152	GND
15	I/O +2.5v	61	Data Bit 40	107	Data Strobe 10	153	Data Bit 44
16	Clock 1	62	I/O +2.5v	108	+2.5v	154	RAS#

Memory Modules

Chapter 6

445

Table 6.14 Continued

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
17	Clock 1#	63	WE#	109	Data Bit 14	155	Data Bit 45
18	GND	64	Data Bit 41	110	Data Bit 15	156	I/O +2.5v
19	Data Bit 10	65	CAS#	111	Clock Enable 1	157	SO#
20	Data Bit 11	66	GND	112	I/O +2.5v	158	S1#
21	Clock Enable 0	67	Data Strobe 5	113	Bank Address 2	159	Data Strobe 14
22	I/O +2.5v	68	Data Bit 42	114	Data Bit 20	160	GND
23	Data Bit 16	69	Data Bit 43	115	Address Bit 12	161	Data Bit 46
24	Data Bit 17	70	+2.5v	116	GND	162	Data Bit 47
25	Data Strobe 2	<i>7</i> 1	S2#	117	Data Bit 21	163	S3#
26	GND	72	Data Bit 48	118	Address Bit 11	164	I/O +2.5v
27	Address Bit 9	73	Data Bit 49	119	Data Strobe 11	165	Data Bit 52
28	Data Bit 18	74	GND	120	+2.5v	166	Data Bit 53
29	Address Bit 7	75	Clock 2#	121	Data Bit 22	167	FETEN
30	I/O +2.5v	76	Clock 2	122	Address Bit 8	168	+2.5v
31	Data Bit 19	77	I/O +2.5v	123	Data Bit 23	169	Data Strobe 15
32	Address Bit 5	78	Data Strobe 6	124	GND	170	Data Bit 54
33	Data Bit 24	79	Data Bit 50	125	Address Bit 6	1 <i>7</i> 1	Data Bit 55
34	GND	80	Data Bit 51	126	Data Bit 28	172	I/O +2.5v
35	Data Bit 25	81	GND	127	Data Bit 29	173	NC
36	Data Strobe 3	82	+2.5vID	128	I/O +2.5v	174	Data Bit 60
37	Address Bit 4	83	Data Bit 56	129	Data Strobe 12	1 <i>7</i> 5	Data Bit 61
38	+2.5v	84	Data Bit 57	130	Address Bit 3	176	GND
39	Data Bit 26	85	+2.5v	131	Data Bit 30	1 <i>77</i>	Data Strobe 16
40	Data Bit 27	86	Data Strobe 7	132	GND	178	Data Bit 62
41	Address Bit 2	87	Data Bit 58	133	Data Bit 31	179	Data Bit 63
42	GND	88	Data Bit 59	134	Parity Bit 4	180	I/O +2.5v
43	Address Bit 1	89	GND	135	Parity Bit 5	181	SPD Address 0
44	Parity Bit 0	90	SPD Write Protect	136	I/O +2.5v	182	SPD Address 1
45	Parity Bit 1	91	SPD Data	137	Clock 0	183	SPD Address 2
46	+2.5v	92	SPD Clock	138	Clock 0#	184	SPD +2.5v

Gnd = Ground

SPD = Serial presence detect

 $NC = No\ connection$

DDR DIMMs use a single key notch to indicate voltage, as shown in Figure 6.9.

184-pin DDR DIMMs use two notches on each side to enable compatibility with both low- and high-profile latched sockets. Note that the key position is offset with respect to the center of the DIMM to prevent inserting it backward in the socket. The key notch is positioned to the left, centered, or to the right of the area between pins 52 and 53. This is used to indicate the I/O voltage for the DDR DIMM and to prevent installing the wrong type into a socket that might damage the DIMM.