Zarządzanie ruchem i jakością usług w sieciach komputerowych

Część 1 wykładu

SKO2

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- □ Techniki QoS
 - O ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- Techniki QoS
 - O ATM
 - Wstęp do sieci ATM
 - Adresowanie, sygnalizacja i kontrola dopuszczalności połączeń w ATM
 - Ruting w ATM
 - Egzekwowanie kontraktu ruchowego w ATM
 - Zarządzanie ruchem i kontrola przeciążenia w ATM
 - Intersieci IP/ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

Asynchronous Transfer Mode

- □ Sieć ATM = sieć danych + sieć telefoniczna
- Połączenie komutacji pakietów i komutacji kanałów:
 - o komutacja wirtualnych kanałów
- Miało połączyć najlepsze cechy obu

Historia ATM

- 1983: wdrożenie TCP/IP
- □ 1985: Ethernet
- □ standard ATM opracowano jako element Broadband-ISDN przez CCITT w 1988 roku
- wczesne lata 1990: WWW
- późne lata 1990: komercjalizacja WWW
- □ 1996: Gigabit Ethernet
- □ ATM Forum
 - 1999 rok
 - organizacja ma około 600 członków
 - publikuje standardy ATM

Sieć ATM a sieci telefoniczne

- Obecnie używane sieci telefoniczne są synchroniczne (okresowe)
 - ATM = Asynchronous Transfer Mode
- Sieci telefoniczne używają komutacji kanałów
 - ATM: komutacja pakietów (zwanych komórkami, ang. "Cell")
- W sieciach telefonicznych, wszystkie dostępne przepustowości są wielokrotnościami 8 kb/s
 - Usługi w sieci ATM mogą otrzymać dowolną przepustowość i zmieniać ją w dowolnym czasie
- W sieciach telefonicznych, kanały o dużej przepustowości są tworzone ręcznie
 - ATM pozwala na automatyczne utworzenie dowolnego wirtualnego kanału

Sieć ATM a sieci komunikacji danych

- Sygnalizacja: obecny protokół Internetu (IP) jest bezpołączeniowy.
 - Nie można z góry zarezerwować przepustowości.
 - sieć ATM używa wirtualnych kanałów.
 Przed użyciem sieci, usługa deklaruje swoje zapotrzebowanie.
- PNNI: ścieżka oparta o żądaną jakość usług (QoS)
- Przełączanie: W IP, każdy pakiet jest adresowany i przetwarzany oddzielnie.
 - W sieci ATM, komórki mają identyfikatory wirtualnej ścieżki
- Zarządzanie ruchem:
 - W sieciach IP, poprzez odrzucanie pakietów (straty).
 - W sieciach ATM, technologia zarządzania ruchem z 1996 roku. (W IP: dużo starsza, lata 80te)
 - Wymagana dla szybkich i zmiennych przepływów.
- Komórki: ustalona długość (53 bajty)

Format nagłówka komórki

- Identyfikator wirtualnej ścieżki (Virtual Path ID, VPI), wirtualnego kanału (Virtual Channel ID, VCI),
- Typ protokołu (Protocol Type ID, PTI)
- Priorytet utraty komórki (Cell Loss Priority, CLP)
- GFC = Generic Flow Control
 - Zależnie od rodzaju interfejsu ATM (UNI, NNI)
- Suma kontrolna nagłówka (Header Error Check)

Ścieżki i kanały wirtualne

- □ 24/28 bitowy identyfikator połączenia
 - O Pierwsze 8/12 bitów: identyfikator ścieżki
 - dłuższy dla interfejsu NNI
 - ostatnie 16 bitów: identyfikator kanału
- Usługa wirtualnych ścieżek pozwala na tworzenie nowych wirtualnych kanałów bez interwencji operatora

Przydzielanie i wykorzystanie wirtualnych ścieżek i kanałów

<u>Przełączanie, ścieżki, kanały i połączenia</u>

- □ Switch ATM może przełączać ścieżki lub kanały
 - O Cross-connect: switch ATM, który przełącza tylko ścieżki
- □ Identyfikatory VPI i VCI zmieniają się na każdym etapie rutingu
- Przełączanie może być w oparciu o ścieżkę przez część trasy, potem w oparciu o kanał wirtualny
- □ Tablice w switchu ATM są tworzone przy tworzeniu *połączenia* ATM
 - dwa typy połączeń: PVC (Permanent Virtual Connection) i SVC (Switched Virtual Connection)
 - o dwa rodzaje połączeń: 1-1 oraz 1-n

Przełączanie ścieżek i kanałów wirtualnych

Interfejsy ATM

Interfejsy ATM

Interfejsy ATM

- User to Network Interface (UNI):
 - Public UNI, Private UNI
- □ Network to Node Interface (NNI):
 - Private NNI (P-NNI)
 - Public NNI = Inter-Switching System Interface (ISSI)
 Intra-LATA ISSI (operatorzy regionalni)
 - Inter-LATA ISSI (operatorzy sieci szkieletowej)
 - Broadband Inter-Carrier Interface (B-ICI)
- □ Interfejsy UNI i NNI różnią się formatami komórek
 - NNI ma dłuższy identyfikator VPI
- Interfejs NNI występuje tam, gdzie jest używany protokół NNI
- Data Exchange Interface (DXI)
 - Pomiędzy ruterami a DSU (ATM Digital Service Unit)

Warstwy protokołów

End System

End System

ATM Adaptation Layer

Switch

ATM Adaptation Layer

ATM Layer ATM Layer

ATM Layer

Physical Layer Physical Layer Physical Layer

Warstwy protokołów

- Warstwa adaptacyjna ATM (ATM Adaptation Layer, AAL)
 - Dzieli komunikat na komórki
 - Egzekwowanie kontraktu (zasada izolacji)
- □ Warstwa ATM (sieci)
 - transmisja/przełączanie/odbiór
 - kontrola przeciążenia, przepływu, zarządzanie buforami
 - enkapsulacja/dekapsulacja
 - translacja adresów komórek
 - zachowanie kolejności komunikacji komórek

Warstwy adaptacyjne

- □ AAL typ 1
 - wykorzystywany dla ruchu CBR głos, dźwięk, wideo w czasie rzeczywistym
 - stała, gwarantowana prędkość transmisji w trybie połączeniowym
- □ AAL typ 2
 - wykorzystywany dla ruchu rt-VBR wideo strumieniowe, głos kompresowany
 - gwarantowane maksymalne opóźnienie, bez stałej prędkości transmisji
- □ AAL typ 3/4
 - wykorzystywany dla ruchu UBR
 - bez zależności czasowych, tryb bezpołączeniowy i połączeniowy
- □ AAL typ 5
 - o ruch ABR, nrt-VBR
 - o bez zależności czasowych, tryb połączeniowy; ruch IP

AAL5

- Zaprojektowane dla komunikacji danych
- Mniej bitów nagłówkowych niż w AAL 3/4
 - Simple and Efficient AAL (SEAL)
- Brak pola długości komórki, brak sumy kontrolnej komórki

<u>AAL2</u>

- Idealna dla komunikacji głosowej o małej przepustowości
- Zmienna lub stała przepustowość głosu, wideo
- Wielu użytkowników na jednym wirtualnym kanale
- Eliminacja ciszy i kompresja
- Eliminacja nieaktywnych kanałów

Oryginalne klasy ruchu

	Klasa A	Klasa B	Klasa C	Klasa D
Synchronizacja czasowa	Tak	Tak	Nie	Nie
Przepustowość	Stała	Zmienna	Zmienna	Zmienna
Połączeniowa	Tak	Tak	Tak	Nie
Przykłady	Emulacja kanałów	Wideo	Frame Relay	SMDS
AAL	AAL1	AAL2	AAL3	AAL4

Kategorie usług w sieci ATM

- □ ABR (Available Bit Rate)
 - Nadawca otrzymuje sygnalizację od sieci w celu kontroli przeciążenia
 - Jak największa przepustowość, jak najmniejsze straty
- □ UBR (*Unspecified Bit Rate*)
 - Użytkownik wysyła, kiedy chce
 - Nie ma sygnalizacji od sieci
 - Zawodna komunikacja: komórki zostaną wyrzucone przy przeciążeniu
 - odpowiednik modelu "best effort" w IP

Kategorie usług w sieci ATM

- CBR (Constant Bit Rate)
 - o użytkownik deklaruje, ile potrzebuje przepustowości
 - Przepustowość, opóźnienie i zmienność opóźnień są gwarantowane
- □ VBR (Variable Bit Rate)
 - użytkownik deklaruje średnią i maksymalną przepustowość
 - ort-VBR
 - dla wideokonferencji
 - · maksymalne opóźnienie gwarantowane
 - o nrt-VBR
 - bez gwarancji opóźnienia

Mechanizmy QoS w ATM

- Na brzegu sieci: klasyfikacja i egzekwowanie (izolacja)
- w sieci: kontrola
 dopuszczania połączeń,
 ruting
- w przełącznikach:szeregowanie
- pomiędzy przełącznikami i hostami: sygnalizacja

w ATM

UPC - Usage Parameter
Control

CAC - Call Admission Control PNNI

Nie standardyzowane

Standardy sygnalizacyjne: Q.2931

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- □ Techniki QoS
 - O ATM
 - Wstęp do sieci ATM
 - Adresowanie, sygnalizacja i kontrola dopuszczalności połączeń w ATM
 - Ruting w ATM
 - Egzekwowanie kontraktu ruchowego w ATM
 - Zarządzanie ruchem i kontrola przeciążenia w ATM
 - Intersieci IP/ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

Meta-Sygnalizacja

- Używana do tworzenia połączeń w celu sygnalizacji
- Wszystkie komunikaty meta-sygnalizacji zajmują jedną komórkę i mają identyfikator połączenia VPI/VCI = 0/1
- □ Meta-sygnalizacja tworzy 3 rodzaje połączeń:
 - punkt-punkt
 - Rozsiewcze do wszystkich
 - Rozsiewcze do wybranych odbiorców
 - Mające identyfikator połączenia VPI/VCI = 0/5 (UNI)
- Meta-sygnalizacja udostępnia funkcje:
 - Tworzące nowe połączenia sygnalizacyjne
 - Zwalniające połączenia sygnalizacyjne
 - Weryfikujące połączenia sygnalizacyjne

Sygnalizacja w ATM

- Sygnalizacja = protokoły używane do zarządzania połączeniami
 - o w telefonii, sygnalizacja służy do zestawiania połączenia
- Sygnalizacja wymaga adresów, które identyfikują zakończenia połączeń
- □ W ATM, obowiązują standardy UNI 3.0/3.1/4.0
 - O UNI 3.1 jest oparty na ITU-Q.2931
 - UNI 3.0 mało się różni, ale nie jest kompatybilny z UNI 3.1
 - UNI 4.0 modyfikuje
 - połączenia multicast (dołączanie węzłów na żądanie)
 - anycast
 - negocjację kontraktu ruchowego
 - · przełączane ścieżki wirtualne

Trochę historii...

ATM Forum brało pod uwagę dwa modele dla sieci ATM: peer oraz overlay

Trochę historii...

- W modelu peer, sieć ATM używała by adresów IP
- □ W modelu *peer*, sieć ATM nie potrzebowała by tłumaczenia adresów IP na adresy ATM przez ARP
- W modelu peer, sieć ATM używała by rutingu IP
- □ Ale.. w modelu *peer*, jak ruting ma realizować mechanizmy jakości obsługi ATM?
 - Model overlay pozwala też na oddzielenie sieci ATM od sieci IP, co upraszcza switche ATM i rozwój sieci ATM
- Z tych powodów ATM używa modelu overlay, a w nim
 - oddzielnej adresacji
 - tłumaczenia adresów innych sieci na adresy ATM
 - oddzielnego rutingu

Adresy w sieciach ATM

- Adresy w ATM identyfikują urządzenia, lecz nie komórki
- Komórki nie posiadają pól adresowych, lecz pola identyfikujące wirtualne ścieżki i kanały
- Adresy ATM są wykorzystywane jedynie do zestawiania połączeń pomiędzy urządzeniami

Adresy w sieciach ATM

- ATM Forum ustaliło trzy formaty adresów ATM
 - Format DCC
 - Format ICD
 - Format E.164 (ISDN)

0		3	9	13	19		
AFI	DCC	HO-DSP	HO-DSP		SEL		
Adres ATM w formacie DCC							
AFI	ICD	HO-DSP		ESI	SEL		
Adres ATM w formacie ICD							
AFI		E.164	HO-DSP	ESI	SEL		

Adres ATM w formacie E.164

Adresy w sieciach ATM

- Adresy są hierarchiczne
 - Pierwsze 13 bajtów umożliwia 104 poziomy hierarchii
 - hierarchia od lewej do prawej, bez ustalonych granic
- □ Numer E.164 to numer telefoniczny
 - ATM Forum rozszerzyło adres E.164 do formatu NSAP (Network Service Access Point)
- □ Publiczne sieci ATM muszą używać E.164
 - o mogą też obsługiwać DCC lub ICD
- □ Prywatne sieci ATM mogą używać DCC lub ICD
 - o muszą także obsługiwać E.164

Rodzaje połączeń

- □ stałe połączenie wirtualne (ang. Permanent Virtual Circuit, PVC)
 - zestawiane przez administratora
 - o administrator może konfigurować:
 - porty urządzeń
 - trasę przez sieć
 - parametry określające jakość transmisji
- przełączane połączenie wirtualne (ang. Switched Virtual Circuit, SVC)
 - zestawiany na żądanie za pomocą sygnalizacji
 - podawana jest żądana jakość
 - podczas zestawiania, każdy przełącznik ATM sprawdza możliwość realizacji
 - tworzony jest stan w przełącznikach dla połączenia

Rodzaje połączeń

- Punkt-punkt
 - symetryczna lub asymetryczna przepustowość (jedno, lub dwukierunkowe)
- Punkt-wielopunkt
 - o informacje sa komunikowane tylko w jednym kierunku
 - komunikacja rozsiewcza (multicast): warstwa sieci kopiuje komórki
 - hosty dołączają same (Leaf-Initiated Join, LIJ, UNI 4.0) lub są dołączane (non-LIJ)

Kontrakt ruchowy

- □ W UNI 3.0/3.1, można było tylko podać klasę obsługi
 - klasy konfigurowane przez administratorów sieci
- W UNI 4.0, można dodatkowo podać parametry obsługi
 - o dla każdego kierunku oddzielnie (po 6)
 - o dla każdej wartości Cell Loss Priority (O lub 1) oddzielnie (po 3)
 - O Peak Cell Rate
 - Sustainable Cell Rate
 - Maximum Burst Size

Kontrola dopuszczalności połączeń

- ang. Call Admission Control
- Ogólna kontrola (GCAC)
 - o wykonuje ją przełącznik, który wybiera trasę
 - określa, która ścieżka może obsłużyć połączenie
- Szczegółowa kontrola (ACAC)
 - wykonuje ją każdy przełącznik
 - określa, czy przełącznik może obsłużyć połączenie

Kontrola dopuszczalności połączeń

- ☐ Cele CAC:
 - Umożliwienie gwarancji wymaganych parametrów QoS dla każdego połączenia poprzez izolację ruchu
 - Maksymalizacja wykorzystania sieci
- Nie ma w tej dziedzinie zdefiniowanych standardów
- □ Większość algorytmów CAC używa metody Równoważnej przepustowości
 - o parametry QoS są redukowane do pojedynczej wartości
 - ta wartość określa, jaką przepustowość musi zarezerwować algorytm CAC

Kontrakty dla kategorii usług

CBR

- potrzebuje stałej przepustowości przez cały czas trwania połączenia
- o stałą przepustowość opisuje parametr PCR
- źródło może nadawać z prędkością PCR przez dowolny czas
- straty, maksymalne opóźnienie i zmienność opóźnień opisywane przez CLR, maxCTD, CDV

VBR

- opisywana przez PCR, SCR i MBS
- dla rt-VBR, straty, maksymalne opóźnienie i zmienność opóźnień opisywane przez CLR, maxCTD, CDV
- dla nrt-VBR, tylko CLR

Kontrakty dla kategorii usług

- ABR
 - przeznaczona dla zmiennego ruchu, którego przepustowość jest znana w przybliżeniu
 - opisywana przez PCR i MCR
- UBR
 - o brak gwarancji, brak opisu w kontrakcie ruchowym
 - usługa best-effort
- □ Straty w ABR i UBR
 - wysokość strat jest minimalizowana, jeśli użytkownik zachowuje się zgodnie z kontraktem ruchowym oraz kontrolą przeciążenia
 - ABR ani UBR nie używają pozostałych parametrów jakości (maxCTD, CDV)

Stos protokołów sygnalizacyjnych

- Oddzielny Signaling AAL (SAAL)
 - interfejs do Q.2931: Service Specific Coordination Function (SSCF)
 - niezawodny protokół warstwy łącza: Service Specific Connection Oriented Protocol (SSCOP)
 - o wykrywanie błędów: AAL Common Part (AAL CP)

Q.2931		TCP/IP	LMI, SNMP
SAAL	SSCF Q.2130	AAL	AAL
	SSCOP Q.2110		
	AAL CP I.363		
ATM I.361			
SONET, DS1, E1, etc. I.432			

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- Techniki QoS
 - O ATM
 - Wstęp do sieci ATM
 - Adresowanie, sygnalizacja i kontrola dopuszczalności połączeń w ATM
 - Ruting w ATM
 - Egzekwowanie kontraktu ruchowego w ATM
 - Zarządzanie ruchem i kontrola przeciążenia w ATM
 - Intersieci IP/ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

PNNI

- Private Network-to-network Interface
- Private Network Node Interface

Cechy i funkcje PNNI

- □ Protokół stanu łącza
- Okresowo rozsyła pakiety, zawierające stan wszystkich sąsiadujących łącz
- Pakiet jest rozgłaszany przez zalew do wszystkich węzłów w sieci

Cechy i funkcje PNNI

- □ Połączenia punkt-punkt i punkt-wielopunkt
- Wiele poziomów hierarchii skalowalny dla globalnych sieci
- Może traktować fragment sieci jako jedno logiczne łącze
- Automatycznie poznaje topologię sieci
 - o nie jest potrzebna ręczna konfiguracja
- □ Połączenie jest na tej samej trasie, co komunikat tworzący połączenie

Cechy i funkcje PNNI

- Jako miary odległości, używa:
 - koszt, przepustowość łącz, ograniczenia w wykorzystaniu łącza, czas propagacji
 - także: opóźnienie komórek, zmienność opóźnień, aktualne średnie obciążenie, aktualne maksymalne obciążenie
- Używa zarówno parametrów łącz, jak i węzłów
- Umożliwia wybór operatora sieci szkieletowej (tranzytowej)
- Umożliwia anycast

Informacja o stanie topologii

- □ Topologia: łącza + węzły
- Miara: sumowana dla każdego łącza na ścieżce, np. opóźnienie
- Atrybut: dotyczy każdego elementu sieci
 - o np. przepustowość
- Parametr stanu: miara lub atrybut
- PNNI Topology State Element (PTSE): informacja rutingu wysyłana do grupy partnerów
- □ PNNI Topology State Packet (PTSP): komórka zawierająca jeden komunikat PTSE

Parametry Stanu Topologii

■ Miary:

- maksymalne opóźnienie komórki (MCTD)
- maksymalna zmienność opóźnienia komórki (MCDV)
- maksymalna stopa strat komórek (MCLR)
- waga administracyjna

Atrybuty

- Dostępna prędkość wysyłania komórek (ACR)
- Błąd prędkości wysyłania komórek (CRM)
 CRM = Zarezerwowana Faktyczna prędkość wysyłania
- Zmienność (VF) = CRM / Stdv(Faktyczna prędkość)
- O Flaga podziału: czy obsługuje ruch punkt-wielopunkt
- Flaga ograniczenia tranzytu: czy dopuszcza ruch tranzytowy

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- □ Techniki QoS
 - O ATM
 - Wstęp do sieci ATM
 - Adresowanie, sygnalizacja i kontrola dopuszczania połączeń w ATM
 - Ruting w ATM
 - Egzekwowanie kontraktu ruchowego w ATM
 - Zarządzanie ruchem i kontrola przeciążenia w ATM
 - Intersieci IP/ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii