Секунда и метр. Время и расстояния можно точно определить независимо от системы счисления даже в СТО (см. предыдущий листок). Конечно же, мы требуем, чтобы метр и секунда во всех системах отсчёта были «одинаковыми». Также мы будем требовать, чтобы сохранялось направление течения времени (например, следя за тем, чтобы распад частицы оставался распадом).

Опыты Майкельсона–Морли и Кеннеди–Торндайка показали, что скорость света «почти» не зависит от системы отсчёта. Если быть точнее, то было установлено, что скорости света во всех направлениях в двух системах отсчёта, двигающихся относительно друг друга со скоростью $60\,\mathrm{km/c}$, отличаются не более, чем на $2\,\mathrm{m/c}$. Позднее, постоянство скорости света было проверено множеством различных способов и с куда большей точностью.

Таким образом возникает основной постулат СТО: скорость света постоянна во всех системах отсчёта. Скорость света обозначается через $c.~(c\approx 299\,792,458\,\mathrm{m/c})$ Преобразование пространства-времени \mathbb{R}^4 , сохраняющие 1 метр, 1 секунду и скорость света называются преобразованиями *Лоренца*. Предполагается, что ничто не способно двигаться в пространствевремени быстрее, чем со скоростью света.

Для удобства будем измерять время в метрах $_{6}$ (и писать м $_{6}$). м $_{6}$ — время, за которое свет пролетает один метр. Это удобно потому, что скорость света становится равной 1 м/ м $_{6}$. Преобразования координат между инерциальными системами отсчёта в СТО называются npeofpasoвaниями Лоренца.

Одномерный мир

Задача 1. (Парадокс поезда) Пусть на поезде, движущемся со скоростью, близкой к скорости света (такой поезд, видимо, стоит ожидать раньше всего в Японии (если где-нибудь ещё не научатся значительно влиять на скорость света)), едут три человека: A в голове, O — в середине и B — в хвосте поезда. На земле около пути стоит четвёртый человек O'. В тот самый момент, когда O проезжает мимо O', сигналы ламп от A и B достигают O и O'. Покажите, что на вопрос «Кто раньше включил фонарь?» наблюдатели O и O' дадут различные ответы.

Задача 2. Найдите все возможные мировые линии света в одномерном мире \mathbb{R}^2 .

Задача 3. Изобразите в \mathbb{R}^2 и \mathbb{R}^3 множество точек: **a)** в которые можно попасть из данной (это множество называется *конусом будущего*); **б)** в которые можно посветить из данной; **в)** из которых можно попасть в данную (*конус прошлого*). Какой физический смысл конуса будущего и прошлого?

Задача 4. Преобразования Лоренца будучи аффинным имеют вид $f \begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ t \end{pmatrix} + \begin{pmatrix} x_0 \\ t_0 \end{pmatrix}$.

- а) Покажите, что |a+b| = |c+d| и |b-a| = |d-c|;
- **б)** Покажите, что матрица $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ имеет вид либо $\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}$, либо $\begin{pmatrix} -\alpha & -\beta \\ \beta & \alpha \end{pmatrix}$;
- в) Покажите, что определитель матрицы A должен быть равен ± 1 ;
- г) Покажите, что $\alpha = \operatorname{ch} \varphi$, а $b = \operatorname{sh} \varphi$ для некоторого φ . Число φ называется при этом napamempom cкорости или быстротой.

Задача 5. Фраза «перейти в систему отсчёта ракеты» означает перейти в такую систему отсчёта, в которой мировая линия ракеты является прямой $(0,t), t \in \mathbb{R}$.

а) Преобразование координат для перехода в систему отсчёта ракеты задаётся матрицей $\binom{\operatorname{ch} \varphi \operatorname{sh} \varphi}{\operatorname{sh} \varphi \operatorname{ch} \varphi}$). С какой скоростью летит ракета? **б**) Ракета движется в системе отсчёта лаборатории со скоростью u. Найдите преобразование, позволяющее перейти в систему отсчёта ракеты, а также преобразование, которое позволяет из системы отсчёта ракеты перейти в систему отсчёта лаборатории.

Задача 6. (Эффект Допплера) Ракета движется в системе отсчёта лаборатории со скоростью u. Каждую секунду в точке с координатой 0 в лаборатории моргает лампочка. С каким интервалом на ракете наблюдаются вспышки?

- **Задача 7. а)** Докажите, что для любой пары различных событий найдётся ракета, в системе которой события либо одновременны (говорят, что интервал между ними *пространственноподобный*), либо происходят в одной и той же точке пространства (интервал временноподобный), либо принадлежат мировой линии света (интервал *светоподобный*).
- **б)** Пускай одно из событий находится в начале координат. Найдите множество точек пространствавремени, для которых интервал пространственно-, временно- и светоподобный.

Задача 8. В системе отсчёта лаборатории два события происходят одновременно **a)** в одной и той же точке; **б)** в разных точках. В каких ещё системах отсчёта эти события также будут одновременными? **в)** Докажите, что для любых событий, соединяемых пространственноподобным интервалом, найдётся две ракеты такие, что в системе одной первое событие происходит раньше, а в системе другой — наоборот.

1	2	3 a	3 6	3 B	4 a	4 б	4 B	4 Г	5 a	5 6	6	7 a	7 6	8 a	8 6	8 B