1

Z lineární algebry víme, že lineární zobrazení je jednoznačně určeno obrazy bázových prvků. Bází prostoru S^n je například $\frac{n(n+1)}{2}$ symetrických matic, které mají právě na 2 místech (symetricky) hodnotu 1, pokud jsou tyto místa mimo diagonálu, nebo matice s jednou jedničkou na diagonále. Každou symetrickou matici dokážeme vyjádřit jako linární kombinaci těchto matic. Bází prostoru S^2 by například byly tyto matice:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Položme $k:=\frac{n(n+1)}{2}$. Pro $i=1,\ldots,k:B_i$ budou prvky báze popsané výše. Pro libovolné $X\in S^n$ tedy existují $i=1,\ldots,k:a_i\in\mathbb{R}:X=\sum_{i=1}^k a_iB_i.$ f je lineární, takže $f(X)=f(\sum_{i=1}^k a_iB_i)=\sum_{i=1}^k a_if(B_i)$. Označme $i=1,\ldots,k:b_i=f(B_i)\in\mathbb{R}$. Z toho, jak je zvolena báze, je zřejmé, že každý prvek a_i je roven nějakému prvku $X_{i,j}=X_{j,i}$. Víme, že platí $\forall C,X\in S^n:Tr(CX)=\sum_{i=1}^n\sum_{j=1}^nC_{i,j}X_{i,j}$. Protože C,X jsou symetrické, tak sčítance mimo diagonálu $(i\neq j)$ $C_{i,j}X_{i,j}$ a $C_{j,i}X_{j,i}$ jsou identické. Důsledkem je, že tuto sumu dokážeme napsat jako sumu $k=n+\frac{n^2-n}{2}$ prvků následovně:

$$Tr(CX) = \sum_{i=1}^{n} (C_{i,i}X_{i,i}) + 2\sum_{i=1}^{n} \sum_{j=1}^{i-1} C_{i,j}X_{i,j}$$

Hledáme tedy matici $C \in S^n$. Porovnáme sčítance v sumách $f(X) = \sum_{i=1}^k a_i b_i$ a Tr(CX) (mají obě k sčítanců). Uvažujme například první sčítanec $C_{1,1}X_{1,1}$ a hledáme jeho odpovídající sčítanec $a_i b_i$. Jak bylo řečeno výše, tak víme, že $\exists i: a_i = X_{1,1}$ (jde jen o to jak si a_i zaindexujeme). Musí platit $a_i b_i = X_{1,1}C_{1,1} \implies b_i = C_{1,1}$. Obdobně pro všechny diagonální prvky. Stručně řečeno, na diagonále C jsou obrazy bázových prvků, které jsou diagonální matice. Pro zbylé prvky mimo diagonálu na indexech $i \neq j$ musí platit $\exists k: a_k b_k = 2C_{i,j}X_{i,j}$, kde $a_k = X_{i,j} = X_{j,i}$. Z toho plyne, že $C_{i,j} = C_{j,i} = \frac{1}{2}b_i$. Výsledkem je, že na diagonále C jsou obrazy bázových prvků, které jsou diagonální matice, a pro zbylé prvky je to polovina obrazu příslušného bázového prvku, který není diagonální.

$$C = \begin{pmatrix} f(B_{i_1}) & \frac{1}{2}f(B_{i_2}) & \dots \\ \frac{1}{2}f(B_{i_2}) & f(B_{i_3}) & \dots \\ \vdots & \ddots & \ddots \end{pmatrix} \text{ pro příslušné } i_1, i_2, \dots \text{ (záleží na indexování bázových prvků)}$$

2

3

Označíme si daných 14 předmětů čísly od 1 do 14 (1. je mapa a 14. je motorová pila). Proměnná u_i bude značit "efektivitu" i. předmětu v dz, w_i jeho váhu v kg a $b_i \in [0, 1]$ bude značit kolik daného přemětu si vybereme (1 odpovídá celému předmětu).