Affine pavings of partial flag varieties

Xiaoxiang Zhou

Advisor: Prof. Dr. Catharina Stroppel Second Advisor: Dr. Jens Niklas Eberhardt

Universität Bonn

March 12, 2023

Process

- Setting and Statement
- 2 Case study
- 3 Auslander-Reiten theory
- f 4 Tackle the type E case

Process

000000

- Setting and Statement

Affine paving

Setting

 $K = \mathbb{C}$, X: algebraic variety over K.

Definition

An **affine paving** of X is a filtration

$$\emptyset = X_0 \subset X_1 \subset \cdots \subset X_d = X$$

with X_i closed and $X_{i+1} \setminus X_i \cong \mathbb{A}^k_{\kappa}$.

$$\mathbb{P}^1 = \{\infty\} \sqcup \mathbb{A}^1$$

 $\mathbb{P}^1 \setminus \{0, \infty\}$ has no affine paving

Quiver and quiver representation

Quiver is a graph. It has some vertices & arrows. In this talk, all the quivers are finite and connected.

Quiver and quiver representation

We focus on the Dynkin quiver.

That means, the graph of the Dynkin diagrams in the ADE series.

Quiver representation

Partial flag variety

Definition

Fix a quiver Q and $M \in \operatorname{rep}(Q)$,

$$\operatorname{Flag}_{d}(M) := \{F : 0 \subseteq N_{1} \subseteq \cdots \subseteq N_{d} \subseteq M\}$$

$$\operatorname{Flag}_{\mathbf{f}}(M) := \{F : 0 \subseteq N_{1} \subseteq \cdots \subseteq N_{d} \subseteq M \mid \operatorname{\underline{\mathbf{dim}}} N_{i} = \underline{\mathbf{f}}_{i}\}$$

Partial flag variety

Definition

Fix a quiver Q and $M \in \operatorname{rep}(Q)$,

$$\operatorname{Flag}_{d}(M) := \{F : 0 \subseteq N_{1} \subseteq \cdots \subseteq N_{d} \subseteq M\}$$

$$\operatorname{Flag}_{\mathbf{f}}(M) := \{F : 0 \subseteq N_{1} \subseteq \cdots \subseteq N_{d} \subseteq M \mid \underline{\dim} N_{i} = \underline{\mathbf{f}}_{i}\}$$

Example

$$Q = \bullet$$
, $M = \mathbb{C}^n$,
 $\operatorname{Flag}_1(\mathbb{C}^n) = \{F : 0 \subseteq N_1 \subseteq \mathbb{C}^n\} = \bigsqcup_{k=0}^n \operatorname{Gr}(n,k)$
 $\operatorname{Flag}_{(k)}(\mathbb{C}^n) = \operatorname{Gr}(n,k)$

Statement

Theorem

For a Dynkin quiver Q and $M \in \operatorname{rep}(Q)$,

 $\operatorname{Flag}_d(M)$ has an affine paving.

Process

- Setting and Statemen
- 2 Case study
- 3 Auslander-Reiten theory
- \P Tackle the type E case

Task 1. $Q = \bullet$, $M = \mathbb{C}^n$

Task 1.
$$Q = \bullet$$
, $M = \mathbb{C}^n$

In this case.

$$\operatorname{GL}_n(\mathbb{C}) \odot \mathbb{C}^n$$
 \longrightarrow $\operatorname{GL}_n(\mathbb{C}) \odot \operatorname{Flag}_d(\mathbb{C}^n)$ \longrightarrow $B \odot \operatorname{Flag}_d(\mathbb{C}^n)$

 $\operatorname{Flag}_d(\mathbb{C}^n)$ has an affine paving given by Schubert cells (i.e., B-orbits).

Task 1.
$$Q = \bullet$$
, $M = \mathbb{C}^n$

In this case.

 $\operatorname{Flag}_d(\mathbb{C}^n)$ has an affine paving given by Schubert cells (i.e., B-orbits).

Note

When $Q = \bullet \longrightarrow \bullet$, $\operatorname{Flag}_{\mathbf{f}}(M)$ have no natural group actions.

Task 2a.
$$Q=ullet o ullet, M=\left[\mathbb{C}^2 \stackrel{0}{ o} \mathbb{C}^2\right], d=1$$

Task 2a.
$$Q = \bullet \to \bullet$$
, $M = \left[\mathbb{C}^2 \stackrel{0}{\to} \mathbb{C}^2\right]$, $d = 1$

 $\mathbf{f} = (1, 1)$:

$$\underline{\mathbf{f}} = (1,0) : \qquad \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \mathbb{P}^1$$

$$\underline{\mathbf{f}} = (0,0) : \qquad \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \{*\}$$

$$\underline{\mathbf{f}} = (1,1) : \qquad \operatorname{Flag}_{\mathbf{f}}(M) = \mathbb{P}^1 \times \mathbb{P}^1$$

$$\begin{split} \underline{\mathbf{f}} &= (1,0): & \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \mathbb{P}^1 \\ \underline{\mathbf{f}} &= (0,0): & \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \{*\} \\ \underline{\mathbf{f}} &= (1,1): & \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \mathbb{P}^1 \times \mathbb{P}^1 \end{split}$$

In this case,

$$\operatorname{Flag}_{(a,b)}(M) \cong \operatorname{Flag}_{(a)}(\mathbb{C}^2) \times \operatorname{Flag}_{(b)}(\mathbb{C}^2)$$

has an affine paving.

Task 2b. $Q=ullet o ullet, \ M=\left\lceil \mathbb{C}^2 \stackrel{\mathrm{Id}}{ o} \mathbb{C}^2 \right
ceil$, d=1

Task 2b.
$$Q = \bullet \to \bullet$$
, $M = \left[\mathbb{C}^2 \stackrel{\mathrm{Id}}{\to} \mathbb{C}^2\right]$, $d = 1$

$$\underline{\mathbf{f}} = (1,0): \qquad \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \emptyset$$

$$\underline{\mathbf{f}} = (0,0): \qquad \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \{*\}$$

$$\underline{\mathbf{f}} = (1,1): \qquad \operatorname{Flag}_{\mathbf{f}}(M) = \mathbb{P}^1$$

$$\underline{\mathbf{f}} = (0,1): \qquad \operatorname{Flag}_{\mathbf{f}}(M) = \mathbb{P}^1$$

Task 2b.
$$Q = \bullet \to \bullet$$
, $M = \left[\mathbb{C}^2 \stackrel{\mathrm{Id}}{\to} \mathbb{C}^2\right]$, $d = 1$

$$\begin{split} \underline{\mathbf{f}} &= (1,0): & \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \varnothing \\ \underline{\mathbf{f}} &= (0,0): & \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \{*\} \\ \underline{\mathbf{f}} &= (1,1): & \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \mathbb{P}^1 \\ \underline{\mathbf{f}} &= (0,1): & \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \mathbb{P}^1 \end{split}$$

In this case.

$$\operatorname{Flag}_{(a,b)}(M) \cong \operatorname{Flag}_{\binom{b}{a}}(\mathbb{C}^2)$$

has an affine paving.

Task 2c.
$$Q=ullet o ullet$$
, $M=\left[\mathbb{C}^2 \xrightarrow{\binom{100}{000}} \mathbb{C}^2\right]$, $d=1$

Task 2c.
$$Q=ullet o ullet$$
, $M=\left[\mathbb{C}^2 \xrightarrow{\binom{10}{00}} \mathbb{C}^2\right]$, $d=1$

$$\underline{\mathbf{f}} = (1,0): \qquad \operatorname{Flag}_{\mathbf{f}}(M) = \{*\}$$

$$\underline{\mathbf{f}} = (0,0): \qquad \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \{*\}$$

$$\underline{\mathbf{f}} = (1,1): \qquad \operatorname{Flag}_{\mathbf{f}}(M) = \mathbb{P}^1 \vee \mathbb{P}^1$$

$$\underline{\mathbf{f}} = (0,1): \dots$$

Task 2c.
$$Q=\bullet \to \bullet$$
, $M=\left[\mathbb{C}^2 \xrightarrow{\binom{10}{00}} \mathbb{C}^2\right]$, $d=1$

$$\underline{\mathbf{f}} = (1,0): \qquad \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \{*\}$$

$$\underline{\mathbf{f}} = (0,0): \qquad \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \{*\}$$

$$\underline{\mathbf{f}} = (1,1): \qquad \operatorname{Flag}_{\underline{\mathbf{f}}}(M) = \mathbb{P}^1 \vee \mathbb{P}^1$$

$$\mathbf{f} = (0,1): \qquad \dots$$

To construct affine pavings systematically, we need to construct an uniform method.

Task 2c.
$$Q = \bullet \to \bullet$$
, $M = \left[\mathbb{C}^2 \xrightarrow{\binom{10}{00}} \mathbb{C}^2\right]$, $d = 1$

First try

Let
$$X=\left[0\longrightarrow\mathbb{C}\right]$$
, $S=\left[\mathbb{C}^2\stackrel{(10)}{\longrightarrow}\mathbb{C}\right]$, then $M=X\oplus S$, and the short exact sequence

$$0 \longrightarrow X \stackrel{\iota}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} S \longrightarrow 0$$

induces

$$\Psi : \operatorname{Flag}_d(M) \longrightarrow \operatorname{Flag}_d(X) \times \operatorname{Flag}_d(S)$$

$$F \longmapsto (\iota^{-1}(F), \pi(F))$$

Idea of affine pavings

Find a nice short exact sequence

$$0 \longrightarrow X \stackrel{\iota}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} S \longrightarrow 0$$

which induces a nice morphism

$$\Psi: \operatorname{Flag}_d(M) \longrightarrow \operatorname{Flag}_d(X) \times \operatorname{Flag}_d(S)$$
$$F \longmapsto \left(\iota^{-1}(F), \pi(F)\right)$$

We construct the affine paving of $\operatorname{Flag}_d(M)$ from the affine paving of $\operatorname{Flag}_d(X)$ and $\operatorname{Flag}_d(S)$. Then, we use mathematical induction.

Example.
$$Q = \bullet$$
, $M = \mathbb{C}^2$

$$0 \longrightarrow \mathbb{C} \xrightarrow{\iota} \mathbb{C}^2 \xrightarrow{\pi} \mathbb{C} \longrightarrow 0$$

Example.
$$Q = \bullet$$
, $M = \mathbb{C}^2$

$$0 \longrightarrow \mathbb{C} \stackrel{\iota}{\longrightarrow} \mathbb{C}^2 \stackrel{\pi}{\longrightarrow} \mathbb{C} \longrightarrow 0$$

$$\Psi_1: \operatorname{Flag}_1(\mathbb{C}^2) \longrightarrow \operatorname{Flag}_1(\mathbb{C}) \times \operatorname{Flag}_1(\mathbb{C})$$

$$\begin{array}{ccccc} \Psi_{(1)}: \operatorname{Flag}_{(1)}(\mathbb{C}^2) & \longrightarrow & \operatorname{Flag}_{(1)}(\mathbb{C}) \times \operatorname{Flag}_{(0)}(\mathbb{C}) \ \bigsqcup & \operatorname{Flag}_{(0)}(\mathbb{C}) \times \operatorname{Flag}_{(1)}(\mathbb{C}) \\ & \mathbb{P}^1 & \longrightarrow & \{*\} & \bigsqcup & \{*\} \end{array}$$

Example. $Q = \bullet$, $M = \mathbb{C}^2$

Example.
$$Q = \bullet$$
, $M = \mathbb{C}^8 = \bigoplus_{i=1}^8 \mathbb{C}v_i$

$$0 \longrightarrow \mathbb{C}^{3} \xrightarrow{\iota} \mathbb{C}^{8} \xrightarrow{\pi} \mathbb{C}^{5} \longrightarrow 0$$

$$\Psi : \operatorname{Flag}_{(3)}(\mathbb{C}^{8}) \longrightarrow \operatorname{Flag}_{(1)}(\mathbb{C}^{3}) \times \operatorname{Flag}_{(2)}(\mathbb{C}^{5}) \coprod \cdots$$

$$\Psi^{-1}(\langle v_{1} \rangle, \langle v_{4}, v_{5} \rangle) = \left\{ \langle v_{1}, v_{4} + av_{2} + bv_{3}, v_{5} + cv_{2} + dv_{3} \rangle \mid a, b, c, d \in \mathbb{C} \right\}$$

$$\cong \mathbb{C}^{4}$$

 $\simeq \mathbb{C}^4$

$$0 \longrightarrow \mathbb{C}^{3} \stackrel{\iota}{\longrightarrow} \mathbb{C}^{8} \stackrel{\pi}{\longrightarrow} \mathbb{C}^{5} \longrightarrow 0$$

$$\Psi : \operatorname{Flag}_{(3)}(\mathbb{C}^{8}) \longrightarrow \operatorname{Flag}_{(1)}(\mathbb{C}^{3}) \times \operatorname{Flag}_{(2)}(\mathbb{C}^{5}) \coprod \cdots$$

$$\Psi^{-1}(\langle v_{1} \rangle, \langle v_{4}, v_{5} \rangle) = \left\{ \langle v_{1}, v_{4} + av_{2} + bv_{3}, v_{5} + cv_{2} + dv_{3} \rangle \mid a, b, c, d \in \mathbb{C} \right\}$$

 Ψ is a Zarisky-locally trivial affine bundle of rank $2 \cdot (3-1) = 4$.

Consider the short exact sequence of representations

$$\eta: 0 \longrightarrow X \stackrel{\iota}{\longrightarrow} Y \stackrel{\pi}{\longrightarrow} S \longrightarrow 0$$

which induce maps

$$\begin{array}{ccc} \Psi: & \operatorname{Flag}_d(Y) & \longrightarrow & \operatorname{Flag}_d(X) \times \operatorname{Flag}_d(S) \\ \Psi_{\operatorname{\mathbf{f}},\operatorname{\mathbf{g}}}: & \operatorname{Flag}(Y)_{\operatorname{\mathbf{f}},\operatorname{\mathbf{g}}} & \longrightarrow & \operatorname{Flag}_{\operatorname{\mathbf{f}}}(X) \times \operatorname{Flag}_{\operatorname{\mathbf{g}}}(S) \end{array}$$

$$\Psi_{\underline{\mathbf{f}},\underline{\mathbf{g}}}: \operatorname{Flag}(Y)_{\underline{\mathbf{f}},\underline{\mathbf{g}}} \longrightarrow \operatorname{Flag}_{\underline{\mathbf{f}}}(X) \times \operatorname{Flag}_{\mathbf{g}}(S)$$

$$\eta: 0 \longrightarrow X \stackrel{\iota}{\longrightarrow} Y \stackrel{\pi}{\longrightarrow} S \longrightarrow 0$$

which induce maps

$$\begin{array}{ccc} \Psi: & \operatorname{Flag}_d(Y) & \longrightarrow & \operatorname{Flag}_d(X) \times \operatorname{Flag}_d(S) \\ \Psi_{\mathbf{f},\mathbf{g}}: & \operatorname{Flag}(Y)_{\mathbf{f},\mathbf{g}} & \longrightarrow & \operatorname{Flag}_{\mathbf{f}}(X) \times \operatorname{Flag}_{\mathbf{g}}(S) \end{array}$$

$$\Psi_{\underline{\mathbf{f}},\underline{\mathbf{g}}}: \operatorname{Flag}(Y)_{\underline{\mathbf{f}},\underline{\mathbf{g}}} \longrightarrow \operatorname{Flag}_{\underline{\mathbf{f}}}(X) \times \operatorname{Flag}_{\underline{\mathbf{g}}}(S)$$

Theorem A

When η splits, then Ψ is surjective.

Moreover, if $\operatorname{Ext}^1(S,X)=0$, then

 $\Psi_{\mathbf{f},\mathbf{g}}$ is a Zarisky-locally trivial affine bundle.

$$\eta: 0 \longrightarrow X \stackrel{\iota}{\longrightarrow} Y \stackrel{\pi}{\longrightarrow} S \longrightarrow 0$$

which induce maps

$$\begin{array}{ccc} \Psi: & \operatorname{Flag}_d(Y) & \longrightarrow & \operatorname{Flag}_d(X) \times \operatorname{Flag}_d(S) \\ \Psi_{\mathbf{f},\mathbf{g}}: & \operatorname{Flag}(Y)_{\mathbf{f},\mathbf{g}} & \longrightarrow & \operatorname{Flag}_{\mathbf{f}}(X) \times \operatorname{Flag}_{\mathbf{g}}(S) \end{array}$$

$$\Psi_{\underline{\mathbf{f}},\underline{\mathbf{g}}}: \operatorname{Flag}(Y)_{\underline{\mathbf{f}},\underline{\mathbf{g}}} \longrightarrow \operatorname{Flag}_{\underline{\mathbf{f}}}(X) \times \operatorname{Flag}_{\underline{\mathbf{g}}}(S)$$

Theorem A

When η splits, then Ψ is surjective.

Moreover, if $\operatorname{Ext}^1(S,X)=0$, then

 $\Psi_{\mathbf{f},\mathbf{g}}$ is a Zarisky-locally trivial affine bundle.

By this theorem,

 $\operatorname{Flag}_d(Y)$ has an affine paving $\longleftarrow \operatorname{Flag}_d(X)$, $\operatorname{Flag}_d(S)$ have.

 η splits and $\operatorname{Ext}^1(S,X)=0$ are necessary for Theorem A.

Warming

 η splits and $\operatorname{Ext}^1(S,X)=0$ are necessary for Theorem A.

Example

Consider the quiver $Q: \bullet \to \bullet \leftarrow \bullet$ and the short exact sequence

$$0 \longrightarrow \left\lceil \mathbb{C}e_1 \to \mathbb{C}^2 \leftarrow \mathbb{C}e_2 \right\rceil \longrightarrow \left\lceil \mathbb{C}^2 \overset{\mathrm{Id}}{\to} \mathbb{C}^2 \overset{\mathrm{Id}}{\leftarrow} \mathbb{C}^2 \right\rceil \longrightarrow \left\lceil \mathbb{C}e_2 \to 0 \leftarrow \mathbb{C}e_1 \right\rceil \longrightarrow 0$$

Warming

 η splits and $\operatorname{Ext}^1(S,X)=0$ are necessary for Theorem A.

Example

Consider the quiver $Q: \bullet \to \bullet \leftarrow \bullet$ and the short exact sequence

$$0 \longrightarrow \left[\mathbb{C}e_1 \to \mathbb{C}^2 \leftarrow \mathbb{C}e_2\right] \longrightarrow \left[\mathbb{C}^2 \overset{\mathrm{Id}}{\to} \mathbb{C}^2 \overset{\mathrm{Id}}{\leftarrow} \mathbb{C}^2\right] \longrightarrow \left[\mathbb{C}e_2 \to 0 \leftarrow \mathbb{C}e_1\right] \longrightarrow 0$$

we get

$$\operatorname{Im} \Psi_{(0,1,0),(1,0,1)} \cong (\mathbb{P}^1 \setminus \{0,\infty\}) \times \{*\} \cong \mathbb{C}^*,$$

so Ψ is not surjective.

Warming

 η splits and $\operatorname{Ext}^1(S,X)=0$ are necessary for Theorem A.

Example

Consider the quiver $Q: \bullet \to \bullet \leftarrow \bullet$ and the short exact sequence

$$0 \longrightarrow \left[\mathbb{C}e_1 \to \mathbb{C}^2 \leftarrow \mathbb{C}e_2\right] \longrightarrow \left[\mathbb{C}^2 \stackrel{\text{Id}}{\to} \mathbb{C}^2 \stackrel{\text{Id}}{\leftarrow} \mathbb{C}^2\right] \longrightarrow \left[\mathbb{C}e_2 \to 0 \leftarrow \mathbb{C}e_1\right] \longrightarrow 0$$

we get

$$\operatorname{Im} \Psi_{(0,1,0),(1,0,1)} \cong \left(\mathbb{P}^1 \smallsetminus \{0,\infty\}\right) \times \{*\} \cong \mathbb{C}^*,$$

so Ψ is not surjective.

In this way, we get a bad stratification

$$\operatorname{Flag}_{(1,1,1)}(Y) \cong \mathbb{P}^1 = \{0\} \sqcup \{\infty\} \sqcup \mathbb{C}^*.$$

Task 3.
$$Q=$$
 , $M={}^1_{121}\oplus{}^1_{111}\oplus{}^1_{111}$

$$0 \longrightarrow_{111}^{1} \oplus_{111}^{1} \longrightarrow M \longrightarrow_{121}^{1} \longrightarrow 0$$
$$0 \longrightarrow_{111}^{1} \longrightarrow_{111}^{1} \oplus_{111}^{1} \longrightarrow_{111}^{1} \longrightarrow 0$$

to reduced the problem to indecomposable representations.

Task 3.
$$Q=$$
 , $M={}^1_{121}\oplus{}^1_{111}\oplus{}^1_{111}$

$$0 \longrightarrow {}^1_{111} \oplus {}^1_{111} \longrightarrow M \longrightarrow {}^1_{121} \longrightarrow 0$$

$$0 \longrightarrow {}^{1}_{111} \longrightarrow {}^{1}_{111} \oplus {}^{1}_{111} \longrightarrow {}^{1}_{111} \longrightarrow 0$$

to reduced the problem to indecomposable representations.

Notice that we use the result

$$\operatorname{Ext}^{1}(\frac{1}{121}, \frac{1}{111}) = 0, \qquad \operatorname{Ext}^{1}(\frac{1}{111}, \frac{1}{111}) = 0.$$

Task 3.
$$Q=$$
 , $M={}^1_{121}\oplus{}^1_{111}\oplus{}^1_{111}$

$$0 \longrightarrow {}^{1}_{111} \oplus {}^{1}_{111} \longrightarrow M \longrightarrow {}^{1}_{121} \longrightarrow 0$$

$$0 \longrightarrow {}^{1}_{111} \longrightarrow {}^{1}_{111} \oplus {}^{1}_{111} \longrightarrow {}^{1}_{111} \longrightarrow 0$$

to reduced the problem to indecomposable representations.

Notice that we use the result

$$\operatorname{Ext}^{1}(_{121}^{1},_{111}^{1}) = 0, \qquad \operatorname{Ext}^{1}(_{111}^{1},_{111}^{1}) = 0.$$

We can't put $\frac{1}{121}$ on the left, since

$$\operatorname{Ext}^1\left(\begin{smallmatrix} 1\\111 \end{smallmatrix}, \begin{smallmatrix} 1\\121 \end{smallmatrix}\right) \cong \mathbb{C} \neq 0.$$

Task 3.
$$Q=$$
 , $M={}^1_{121}\oplus{}^1_{111}\oplus{}^1_{111}$

$$0 \longrightarrow {}_{111}^{1} \oplus {}_{111}^{1} \longrightarrow M \longrightarrow {}_{121}^{1} \longrightarrow 0$$

$$0 \longrightarrow {}_{111}^1 \longrightarrow {}_{111}^1 \oplus {}_{111}^1 \longrightarrow {}_{111}^1 \longrightarrow 0$$

to reduced the problem to indecomposable representations.

 $\operatorname{Flag}_d(\frac{1}{111})$ has an affine paving: obvious.

 $\operatorname{Flag}_d(\frac{1}{121})$ has an affine paving: it is \mathbb{P}^1 , $\{*\}$ or empty.

Task 3.
$$Q=$$
 , $M={}^1_{121}\oplus{}^1_{111}\oplus{}^1_{111}$

$$0 \longrightarrow {}^{1}_{111} \oplus {}^{1}_{111} \longrightarrow M \longrightarrow {}^{1}_{121} \longrightarrow 0$$

$$0 \longrightarrow {}^1_{111} \longrightarrow {}^1_{111} \oplus {}^1_{111} \longrightarrow {}^1_{111} \longrightarrow 0$$

to reduced the problem to indecomposable representations.

 $\operatorname{Flag}_d(\frac{1}{111})$ has an affine paving: obvious.

 $\operatorname{Flag}_d(\frac{1}{121})$ has an affine paving: it is \mathbb{P}^1 , $\{*\}$ or empty.

Need: more informations of indecomposable representations!

Process

- Setting and Statemen
- 2 Case study
- 3 Auslander–Reiten theory
- \P Tackle the type E case

$$\begin{array}{c}
4\\\downarrow\\2\rightarrow1\leftarrow3
\end{array}$$

Vertices ← Indecomposable representations

Arrows \iff Irreducible morphisms

Paths ← Morphisms

Shift cards \iff Switch arrows in Q

$$\begin{array}{c} 4\\ \downarrow\\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

Vertices ← Indecomposable representations

irreducible rep, projective rep, injective rep

Arrows \iff Irreducible morphisms

Instead, I will show you how to construct AR-quiver.

$$\begin{array}{c}
4\\\downarrow\\2\rightarrow1\leftarrow3\end{array}$$

Auslander-Reiten theory 0000000000

$$\begin{array}{c} 4\\ \downarrow\\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

Auslander-Reiten theory 0000000000

$$0 \longrightarrow P(1) \longrightarrow P(2) \oplus P(4) \oplus P(3) \longrightarrow {}^{1}_{21} \longrightarrow 0$$

$$\begin{array}{c} 4\\ \downarrow\\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

Auslander–Reiten theory

$$0 \longrightarrow P(1) \longrightarrow P(2) \oplus P(4) \oplus P(3) \longrightarrow {}^{1}_{121} \longrightarrow 0$$

$$\begin{array}{c}
4\\\downarrow\\2\rightarrow1\leftarrow3\end{array}$$

$$0 \longrightarrow P(2) \longrightarrow {}^1_{121} \longrightarrow {}^1_{011} \longrightarrow 0$$

$$\begin{array}{c}
4\\\downarrow\\2\rightarrow1\leftarrow3
\end{array}$$

$$0 \longrightarrow P(2) \longrightarrow {}^{1}_{121} \longrightarrow {}^{1}_{011} \longrightarrow 0$$

$$\begin{array}{c}
4\\\downarrow\\2\rightarrow1\leftarrow3\end{array}$$

$$\begin{array}{c} 4\\ \downarrow\\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

Construction:

AR-quiver, AR-sequence, AR-translation

$$\begin{array}{c} 4 \\ \downarrow \\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

Construction:

AR-quiver, AR-sequence, AR-translation

$$\begin{array}{c}
4\\\downarrow\\2\rightarrow1\leftarrow3
\end{array}$$

Construction:

AR-quiver, AR-sequence, AR-translation

$$\begin{array}{c} 4 \\ \downarrow \\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

Paths \iff Morphisms

In the Dynkin quiver case,

$$\operatorname{Hom}(T,T')\cong \langle \text{ paths from } T \text{ to } T' \rangle /_{\mathsf{AR-seq}}$$

For example,

$$\operatorname{Hom}({}^{\ 1}_{010},{}^{\ 1}_{011})\cong \mathbb{C},\quad \operatorname{Hom}({}^{\ 1}_{010},{}^{\ 0}_{111})\cong 0,\quad \operatorname{Hom}({}^{\ 1}_{010},{}^{\ 1}_{111})\cong \mathbb{C}$$

$$\begin{array}{c} 4\\ \downarrow\\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

$$\operatorname{Ext}^1(T, T') \cong \overline{\operatorname{Hom}}(T', \tau T)^{\vee}$$

For example,

$$\operatorname{Ext}^{1}(\frac{1}{121}, \frac{0}{111}) \cong \operatorname{Hom}(\frac{0}{111}, \frac{0}{010})^{\vee} \cong 0$$

$$\begin{array}{c} 4\\ \downarrow\\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

$$\operatorname{Ext}^1(T, T') \cong \overline{\operatorname{Hom}}(T', \tau T)^{\vee}$$

For example,

$$\operatorname{Ext}^{1}(\frac{1}{121}, \frac{0}{111}) \cong \operatorname{Hom}(\frac{0}{111}, \frac{0}{010})^{\vee} \cong 0$$

First application

Corollary

For a Dynkin quiver, we can give an total order to the set of all indecomposable representations, such that

$$i \leqslant j \implies \operatorname{Ext}^1(M_i, M_j) = 0.$$

First application

Corollary

For a Dynkin quiver, we can give an total order to the set of all indecomposable representations, such that

$$i \leqslant j \implies \operatorname{Ext}^1(M_i, M_j) = 0.$$

By Theorem A, the problem reduced to

For a Dynkin quiver Q and $M \in \operatorname{ind}(Q)$,

 $\operatorname{Flag}_d(M)$ has an affine paving.

$$\begin{array}{c} 4\\ \downarrow\\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

Shift cards \iff Switch arrows in Q

$$\begin{array}{c}
4\\\downarrow\\2\rightarrow1\leftarrow3\end{array}$$

$$\begin{array}{c} 4\\ \downarrow\\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

$$\begin{array}{c} 4\\ \downarrow\\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

$$\begin{array}{c} 4 \\ \downarrow \\ 2 \rightarrow 1 \leftarrow 3 \end{array}$$

Interactive webversion

Indecomposable representations of low order are easy!

Lemma

Suppose Q is a tree. For $M \in \operatorname{ind}(Q)$, $\operatorname{ord}(M) \leq 2$,

$$\operatorname{Flag}_{\mathbf{f}}(M) \cong \mathbb{P}^1 \times \cdots \times \mathbb{P}^1 \quad \text{or} \quad \varnothing.$$

Example

$$Q = \bigcup_{\bullet \to \bullet \leftarrow \bullet}^{\bullet} \bigcup_{\bullet \to \bullet}^{\bullet} M = \bigcup_{\mathbb{C} \hookrightarrow \mathbb{C}^2 \, \widetilde{\leftarrow} \, \mathbb{C}^2 \, \twoheadrightarrow \, \mathbb{C}}^{\mathbb{C}} \quad \underline{\mathbf{f}} = \begin{pmatrix} 0 \\ 1211 \\ 0 \\ 1101 \end{pmatrix}$$

$$\begin{aligned} \operatorname{Flag}_{\underline{\mathbf{f}}}(M) &\hookrightarrow \operatorname{Flag}_{\binom{1}{1}}(\mathbb{C}) \times \operatorname{Flag}_{\binom{2}{1}}(\mathbb{C}^2) \times \operatorname{Flag}_{\binom{0}{0}}(\mathbb{C}^2) \\ &\times \operatorname{Flag}_{\binom{1}{1}}(\mathbb{C}) \times \operatorname{Flag}_{\binom{0}{0}}(\mathbb{C}) \\ &\simeq \mathbb{P}^1 \times \mathbb{P}^1 \end{aligned}$$

Continue

	$\mathbb{C} \hookrightarrow \mathbb{C}^2$		$\mathbb{C}^2 \twoheadrightarrow \mathbb{C}$		$\mathbb{C}^2 o \mathbb{C}^2$	
No restriction	_	2	0	_	_	1
	0	_	1	2	0	0
Reduce	1	1	1	1	1	0
Impossible	2	1	1	0	2	0
	2	0				
	1	0				

Corollary

The main theorem is true for quivers of type A, D.

Process

- Setting and Statement
- 2 Case study
- 3 Auslander-Reiten theory
- f 4 Tackle the type E case

 $\operatorname{Flag}(M)$ any representation M


```
E_7:
                             1
```

 E_8 :


```
E_7:
E_8:
                                                                4
                             3
                                  3
                                                        3
                                                             3
                                        4
                                             4
                                                  4
                                          3
                                                3
```


$$\eta: 0 \longrightarrow X \xrightarrow{\iota} Y \xrightarrow{\pi} S \longrightarrow 0$$

which induce maps

$$\Psi: \operatorname{Flag}_d(Y) \longrightarrow \operatorname{Flag}_d(X) \times \operatorname{Flag}_d(S)$$

$$\begin{array}{ccc} \Psi: & \operatorname{Flag}_d(Y) & \longrightarrow & \operatorname{Flag}_d(X) \times \operatorname{Flag}_d(S) \\ & \overset{\cup}{\Psi_{\mathbf{f},\mathbf{g}}}: & \operatorname{Flag}(Y)_{\mathbf{f},\mathbf{g}} & \longrightarrow & \operatorname{Flag}_{\mathbf{f}}(X) \times \operatorname{Flag}_{\mathbf{g}}(S) \end{array}$$

Theorem B

When η does not split and generates $\operatorname{Ext}^1(S,X)$,

 $\Psi_{\mathbf{f},\mathbf{g}}$ is a Zarisky-locally trivial affine bundle over $\operatorname{Im} \Psi_{\mathbf{f},\mathbf{g}}$. In this case, we have a clear description of $\operatorname{Im}\Psi_{\mathbf{f},\mathbf{g}}$.

How to find nice η ?

Proposition

For $X \hookrightarrow Y$ irreducible mono, the induced SES

$$\eta: 0 \longrightarrow X \stackrel{\iota}{\longrightarrow} Y \stackrel{\pi}{\longrightarrow} S \longrightarrow 0$$

satisfies the condition of Theorem B. Moreover.

$$\operatorname{Im} \Psi_{\underline{\mathbf{f}},\underline{\mathbf{g}}} = \begin{cases} \left(\operatorname{Flag}_{\underline{\mathbf{f}}}(X) \smallsetminus \operatorname{Flag}_{\underline{\mathbf{f}}}(X_S)\right) \times \operatorname{Flag}_{\underline{\mathbf{g}}}(S), & \underline{\mathbf{g}}_i = \underline{\dim} S \\ \operatorname{Flag}_{\underline{\mathbf{f}}}(X) \times \operatorname{Flag}_{\underline{\mathbf{g}}}(S), & \textit{otherwise} \end{cases}$$

where

$$X_S := \max \{ M \subseteq X \mid \operatorname{Ext}^1(S, X/M) \cong \mathbb{C} \} \subseteq X.$$

How to find nice η ?

Proposition

For $X \hookrightarrow Y$ irreducible mono, the induced SES

$$\eta: 0 \longrightarrow X \stackrel{\iota}{\longrightarrow} Y \stackrel{\pi}{\longrightarrow} S \longrightarrow 0$$

satisfies the condition of Theorem B. Moreover,

$$\operatorname{Im} \Psi_{\underline{\mathbf{f}},\underline{\mathbf{g}}} = \begin{cases} \left(\operatorname{Flag}_{\underline{\mathbf{f}}}(X) \smallsetminus \operatorname{Flag}_{\underline{\mathbf{f}}}(X_S)\right) \times \operatorname{Flag}_{\underline{\mathbf{g}}}(S), & \underline{\mathbf{g}}_i = \underline{\dim} \, S \\ \operatorname{Flag}_{\underline{\mathbf{f}}}(X) \times \operatorname{Flag}_{\underline{\mathbf{g}}}(S), & \textit{otherwise} \end{cases}$$

How to find nice η ?

Proposition

For $X \hookrightarrow Y$ irreducible mono, the induced SES

$$\eta: 0 \longrightarrow X \xrightarrow{\iota} Y \xrightarrow{\pi} S \longrightarrow 0$$

satisfies the condition of Theorem B. Moreover,

$$\operatorname{Im} \Psi_{\underline{\mathbf{f}},\underline{\mathbf{g}}} = \begin{cases} U_{\underline{\mathbf{f}}}(X, X_S), \\ \operatorname{Flag}_{\underline{\mathbf{f}}}(X) \times \operatorname{Flag}_{\mathbf{g}}(S), \end{cases}$$

 $\underline{\mathbf{g}}_i = \underline{\mathbf{dim}} S$ otherwise

Induction?

Proposition

For $X \hookrightarrow Y$ irreducible mono, the induced SES

$$\eta: 0 \longrightarrow X \stackrel{\iota}{\longrightarrow} Y \stackrel{\pi}{\longrightarrow} S \longrightarrow 0$$

satisfies the condition of Theorem B. Moreover,

$$\operatorname{Im} \Psi_{\underline{\mathbf{f}},\underline{\mathbf{g}}} = \begin{cases} U_{\underline{\mathbf{f}}}(X,X_S), & \underline{\mathbf{g}}_i = \underline{\dim} S \\ \operatorname{Flag}_{\underline{\mathbf{f}}}(X) \times \operatorname{Flag}_{\underline{\mathbf{g}}}(S), & \text{otherwise} \end{cases}$$

Proposition

In addition,

$$X_S = 0$$
 or $X_S \hookrightarrow X$ is irreducible mono.

Corollary

For $M \in \operatorname{ind}(Q)$, if exist irreducible mono $X \hookrightarrow M$, then $\operatorname{Flag}_d(M)$ has an affine paving.


```
E_7:
E_8:
                                                               4
                             3
                                  3
                                                        3
                                                             3
                                       4
                                             4
                                                  4
```

3 3


```
E_7:
```


Thank you! Any questions?