Top-Down Parsing (Objectives)

- Given a grammar, the student will be able to convert the grammar to LL(1) form if possible.
- Given an LL(1) grammar, the student will be able to construct a corresponding predictive parser for the grammar

1

Context-Free Grammars

- A context-free grammar G is a quadruple, (N,T,P,S) where N is a set of nonterminals, T is a set of terminals, P is a set of productions and S∈N is the start symbol.
- Example

```
E \rightarrow T + E \qquad \qquad N = \{E,T,F\}
\mid T - E \qquad \qquad T = \{+,-,^*,/,num,id\}
\mid T \qquad \qquad S = E
T \rightarrow F * T \qquad \qquad |F/T \qquad |F
\vdash \rightarrow num \qquad |id \qquad |id \qquad |id \mid E
```

2

Types of Context-Free Grammars

3

Top-Down Parsers

- Start at the root of the parse tree and fill in the children
 - expand the grammar from the start symbol
- pick a production and try to match the input token
- may require backtracking
 - if the picked production doesn't match the input at some point
- predictive recursive descent parsers do not require backtracking
- predictive parsers need LL(k) grammars
 - Left-to-right scan, Leftmost derivation, k symbols of lookahead
 - we will look at LL(1) grammars

Top-down Parsers w/o Lookahead

- To build a parse tree start with the root of the parse tree labeled with the start symbol
- Repeat the following steps until the left-to-right ordering of the leaves matches the input string
 - At a node labeled A select a production with A on its lhs and for each symbol on its rhs construct a parse tree.
 - When a terminal is added to a leaf of the parse tree that does not match the input string, backtrack up the tree to where a different choice could have been made that may lead to a correct derivation.
 - 3. Find the next node to be expanded and go to step 1.
- Key: select the right production in step 1.

5

Example Grammar

 $G \rightarrow E$ (1) $E \rightarrow E + T$ (2) | E - T (3) | T (4) $T \rightarrow T * F$ (5) | T / F (6) | F (7) $F \rightarrow \text{num}$ (8) | id (9) | id [E] (10)

Parse the string x - 2

6

Problems with No Lookahead

- Termination
 - should not depend on the choice of production
 - parsers should always terminate
- Determinism
 - parsers should be deterministic
 - there should be only one choice at each step of the parse
- Solution
 - add lookahead to the parsing algorithm
 - fix grammar so that infinite loops are not possible

Writing an LL(1) Grammar

- eliminate infinite loops
 - make it impossible to recursively expand a grammar symbol either immediately or through a chain of expansions
 - eliminate left recursion
- eliminate ambiguity
 - make at most one choice for expanding each grammar symbol based upon the next input character
 - left factor the grammar

Eliminating Left Recursion

A grammar is left recursive if

$$\exists A \in N \mid A \Rightarrow^* A\alpha$$

for some string α

Eliminating immediate left recursion

$$\begin{array}{cccc} \mathsf{A} \to \mathsf{A}\alpha & \text{becomes} & \mathsf{A} \to \mathsf{\beta}\mathsf{A}' \\ \mid \; \mathsf{\beta} & & \mathsf{A}' \to \alpha\mathsf{A}' \\ \mid \; \epsilon & & \end{array}$$

We must eliminate indirect left recursion too.

9

```
Algorithm
```

```
// grammar must have production S' \rightarrow S arrange non-terminals in some order for i=1 to n do for j=1 to i-1 do // make sure no A_j in rhs replace each A_i \rightarrow A_i \gamma by A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \ldots \mid \delta_k \gamma where A_j \rightarrow \delta_1 \mid \delta_2 \mid \ldots \mid \delta_k end // only immediate recursion left for A_i eliminate immediate left recursion for A_i end
```

10

Example

```
S \rightarrow Aa G \rightarrow E

A \rightarrow Bb E \rightarrow E + T

B \rightarrow Sc \mid c \mid E - T

\mid T

T \rightarrow T * F

\mid T \mid F

\mid F

\vdash F \rightarrow num

\mid id

\mid id \mid [E]
```

11

FIRST Sets

- For a production $A \rightarrow \alpha \mid \beta$ we would like a distinct way to choose the correct production.
 - Answer: use lookahead
- FIRST sets
 - \Box For some rhs of a production α , FIRST(α) is the set of tokens that appear as the first symbol in some string derived from α

```
x \in FIRST(\alpha) \Leftrightarrow \exists x \in \Sigma \mid \alpha \Rightarrow^* x \gamma
```

FIRST Sets

- KEY PROPERTYS: Whenever two productions $A \rightarrow \alpha \mid \beta$ both appear in the same grammar
 - 1. $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$
 - 2. At most one of α and β derives ϵ
 - 3. If $\beta \Rightarrow^* \epsilon$ then α does not derive any string beginning with a terminal in FOLLOW(A). (Similar for α)

This allows the parser to make the right choice of productions with one symbol of lookahead

- The text book define predict set:
 - □ predict(A $\rightarrow \alpha$) = FIRST(α) \cup (if $\alpha \Rightarrow^* \varepsilon$ then Follow(A) else \emptyset)
- Use left factoring to try to obtain this property

13

Computing First Sets

To build FIRST(X)

```
if X is a terminal then \begin{aligned} & FIRST(X) = \{X\} \\ & else & \text{if } X \to \epsilon \text{ then} \\ & FIRST(X) \cup= \{\epsilon\} \\ & else & \text{if } X \to Y_1Y_2 \dots Y_k \text{ then} \\ & FIRST(X) \cup= FIRST(Y_1) \\ & \forall i \mid \epsilon \in FIRST(Y_i), \ 1 \leq j < i, \ FIRST(X) \cup= FIRST(Y_i) \end{aligned}
```

14

Example

Compute FIRST sets for the expression grammar

FOLLOW Sets

- To construct FOLLOW sets:
 - 1. place \$ in FOLLOW(S')
 - 2. for A $\rightarrow \alpha B\beta$ add FIRST(β)-{ ϵ } to FOLLOW(B)
 - 3. for A $\rightarrow \alpha$ B add FOLLOW(A) to FOLLOW(B)
 - 4. for A $\rightarrow \alpha B\beta$ if $\epsilon \in FIRST(\beta)$ add FOLLOW(A) to FOLLOW(B)

Example

Compute FOLLOW sets for the expression grammar

17

Left Factoring

 Restructure the grammar so FIRST sets of possible productions do not intersect

```
while a common prefix for alternatives exists for some A do find the longest prefix \alpha common to two or more of A's alternatives replace productions \mathsf{A} \to \alpha \beta_1 \, \big| \, \alpha \beta_2 \, \big| \dots \, \big| \, \alpha \beta_n with  \begin{array}{c} \mathsf{A} \to \alpha \mathsf{L} \\ \mathsf{L} \to \beta_1 \, \big| \, \beta_2 \, \big| \dots \, \big| \, \beta_n \end{array}  end
```

18

Example

Left factor the expression grammar

n

```
Left Recursion and Left Factoring
                                      \mathsf{G}\to\mathsf{E}
G \rightarrow E
                                      E \rightarrow T E'
E \rightarrow E + T
                                      E' \rightarrow + T E'
                                         | - T E'
    IE-T
                                         3
    IT
                                      T \rightarrow F T'
T \rightarrow T * F
                                      T' \rightarrow * F T'
    | T/F
                                         İF
                                         3
F \rightarrow num
                                       F \rightarrow num
    | id
                                         | id F'
                                      F' \rightarrow [E]
    | id [E]
```

First and Follow Sets

	First	Follow
G	{num, id}	{\$}
E	{num, id}	{\$,]}
E'	{+, -, ε}	{\$,]}
Т	{num, id}	{\$, +, -,]}
T'	{*, /, ε}	{\$, + , -,]}
F	{num, id}	{\$, + , -, *, /,]}
F'	{ [, ε}	{\$, + , -, *, /,]}

21

LL(1)?

Show that the converted grammar is LL(1)

22

Predictive Parser

- If left factoring can be done and left recursion is removed, the grammar is LL(1)
- Construct a top-down predictive parser
 - Each non-terminal becomes a function
 - When a terminal is the first symbol on the rhs of a production, match that terminal with the next input symbol

```
Predictive Parser
                                             G() {
token = NextToken()
                                                      token == ID) then {
    if (E() == ERROR) then return ERROR;
                                                         ptoken = token;
                                                         token = NextToken();
                                                         if (ptoken == NUM) then
                                                           return OK;
E() {
                                                         else return F'(); }
    if (T() == ERROR)
return ERROR;
                                                  else return ERROR;}
    else return E'();
                                                 U {
  if (token == PLUS ||
    token == MINUS) then {
  token = NextToken();
  if (T() -- ERROR) then
  return ERROR
    if (F() == ERROR) then
     return ERROR
    else return T'();
                                                    else
                                                     return E'();}
                                                  else return OK;
                                              // T' is similar
```