R denotes a commutative ring with $1 \neq 0$.

- 1. (a) Prove that $(\mathbb{Z}_n, +_n) \otimes_{\mathbb{Z}} (\mathbb{Z}_m, +_m) \cong (\mathbb{Z}_d, +_d)$ (tensor product of \mathbb{Z} -modules), where d = GCD(m, n).
 - (b) More generally, let $I, J \triangleleft R$. Prove that $R/I \otimes_R R/J \cong R/(I+J)$.
- 2. (a) Let G be an abelian group. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} G$ is a divisbke torsion-free group, hence a vector space over \mathbb{Q} .
 - (b) What is the dimension of this vector space?
 - (c) More generally let R be an integral domain, K its field of fractions (hence an R-module) and M an R-module. Prove that M is a torsion R-module $\iff K \otimes_R M = \{0\}.$
- 3. Assume M is a simle R-module. Prove that $End_R(M) \cong R/I$ for some maximal ideal $I \triangleleft R$.
- 4. From now on in the next problems R is a PID. Assume M is a torsion R-module.
 - (a)- Let $p \in R$ be prime. Check that M_p jest is a submodule of M.
 - (b) Let $\{p_i, i \in I\} \subset R$ be a se of representatives of the association classes of the prime elements of R. Prove that

$$M = \bigoplus_{i \in I} M_{p_i}.$$

- 5. (a) Assume M is a p-primary cyclic R-module. Prove that $M \cong R/(p^k)$ dla pewnego $k \leq 0$.
 - (b) Assume that M is cyclic. Prove that M is indecomposable $\iff M$ is torsion free or p-primary for some prime $p \in R$.
- 6. Which finitely generated indecomposable R-modules are simple?
- 7. Using the Jordan Theorem prove that if V is an n-dimensional vector space over a field K and $f \in End_K(V)$, then $\varphi_f(f) = 0$, where $\varphi_f(X)$ is the characteristic polynomial of f (Cayley-Hamilton Theorem).