# Численное интегрирование и дифференцирование

Tema 5

# Квадратурные формулы численного интегрирования

$$\int f(x)dx = F(x) + C$$

$$\int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a)$$

где F(x) – первообразная функции f(x):

$$F(x)' = f(x)$$

# Вычислить определенный интеграл:

$$I = \int_{a}^{b} f(x) dx$$

при условии, что пределы интегрирования a и b конечны и f(x) является интегрируемой функцией на всем интервале  $x \in [a,b]$ .

Аналитический метод решения состоит в использовании формулы *Ньютона-Лейбница*:

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a)$$

где F(x) – первообразная функции f(x).

#### «Недостатки» формулы Ньютона-Лейбница:

На практике редко удается вычислить **точно** определенный интеграл по формуле Ньютона-Лейбница, так как

- первообразную функцию не всегда удается выразить через элементарные функции;
- ее нахождение связано с необходимостью выполнения весьма сложных преобразований;
- подынтегральная функция задана таблицей экспериментально полученных значений.

В этих случаях используются методы численного интегрирования.

Задача численного интегрирования состоит в нахождении *приближенного значения интеграла* по заданным или вычисляемым в процессе значениям функции.

Приближенное вычисление определенного интеграла основано на замене интеграла конечной суммой по формуле: b

 $\int_{a}^{\infty} f(x)dx \approx \sum_{k=0}^{n} C_{k} f(x_{k}),$ 

называемой квадратурной формулой,

где  $C_k$  - коэффициенты (или веса) квадратурной формулы, точки отрезка интегрирования  $x_k$ - узлы квадратурной формулы.

Разность  $R_n$  между точным и приближенным значениями интеграла называется погрешностью квадратурной формулы.

Определение. Квадратурная формула *точна для многочленов степени* m, если при замене f(x) на произвольный алгебраический многочлен  $P_m(x)$  степени m приближенное равенство становится точным:

$$\int_{a}^{b} P_m(x)dx = \sum_{k=0}^{n} C_k f(x_k).$$

# Простейшие квадратурные формулы

**1.** *Простейшие квадратурные* формулы могут быть получены на основании непосредственного определения интеграла

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

как предела последовательности интегральных сумм при неограниченном возрастании  $\mathbf{n}$ .

Любая интегральная сумма, соответствующая некоторому разбиению области интегрирования [a,b] на n частей и некоторому выбору точек  $\xi_1, \xi_2, ..., \xi_n$  на участках разбиения, может рассматриваться как приближенное значение определенного интеграла: b  $\int_{-\infty}^{\infty} f(x) dx \approx \sum_{n=1}^{\infty} f(\xi_n) \Delta x$ 

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

# Геометрическая интерпретация интегральной суммы



# Геометрическая интерпретация интегральной суммы

- 1. [a, b] разбивается на  $\mathbf n$  отрезков длиной  $\Delta x_i$  .
- 2. Произведение  $f(\xi_i)\Delta x_i$  численно равно площади прямоугольника с основанием  $\Delta x_i$  и высотой  $f(\xi_i)$
- 3. *Интегральная сумма* равна сумме площадей всех прямоугольников = площади ступенчатой фигуры.



# Простейшие квадратурные формулы

Простейшие квадратурные формулы – составные формулы прямоугольников, получаются при разбиении области интегрирования [a,b] на  $\mathbf{n}$  равных частей и определенном выборе точек  $\boldsymbol{\xi}_i$  на участках разбиения:

$$\xi_i = x_i$$
 - начало отрезка;

$$\xi_i = x_{i+1}$$
 - конец отрезка;

$$\xi_i = (x_i + x_{i+1})/2 = x_{i+1/2}$$
 - середина отрезка.

# Простейшие квадратурные формулы



# Метод левых прямоугольников



Высота - значение функции в левой точке основания каждой полосы.

Формула метода:

$$\int_{a}^{b} f(x)dx \approx h \cdot \sum_{i=0}^{n-1} f(a+i \cdot h)$$

# Метод правых прямоугольников



Высота - значение функции в правой точке основания каждой полосы.

Формула метода:

$$\int_{a}^{b} f(x)dx \approx h \cdot \sum_{i=1}^{n} f(a+i \cdot h)$$

# Метод средних прямоугольников



Высота - значение функции в середине основания каждой полосы.

Формула метода:

$$\int_{a}^{b} f(x)dx \approx h \cdot \sum_{i=0}^{n-1} f(a + \frac{h}{2} + i \cdot h)$$

**2.** Квадратурные формулы интерполяционного типа (формулы Ньютона-Котеса) получают заменой подынтегральной функции f(x) на [a,b] интерполяционным многочленом  $P_m(x)$  с узлами интерполяции в точках разбиения отрезка интегрирования  $x_0, x_1, x_2, \dots x_n$ :

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{m}(x)dx$$

или, точнее,

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} P^{(i)}_{m}(x)dx$$



Для получения простых формул используют полиномы нулевой, первой и второй степени и, соответственно, получают следующие методы и формулы численного интегрирования:

- методы прямоугольников;
- метод трапеций;
- метод Симпсона (парабол).

Очевидно, что во всех случаях замена функции f(x) интерполирующим полиномом приводит к образованию погрешности вычисления значения интеграла. Увеличение числа отрезков разбиения n (уменьшение длины шага интегрирования h) ведет к уменьшению погрешности.

Если в пределах каждого элементарного отрезка  $[x_i; x_{i+1}]$  подынтегральную функцию f(x) заменять интерполяционным полиномом нулевой степени, т.е. постоянной величиной – получаем методы прямоугольников.

Если в качестве значения подынтегральной функции берется ее значение в *левом* конце отрезка, то получается формула левых прямоугольников.

При использовании значения подынтегральной функции в *правом* конце отрезка получается *формула правых прямоугольников*.

При одном и том же числе отрезков разбиения *п* большую точность дает *метод средних прямоугольников*, в котором используется значение подынтегральной функции в *середине* отрезка.

#### Метод средних прямоугольников

$$P_0^i(x) = f(x_{i+1/2}) = y_{i+1/2}$$

Формула прямоугольников на элементарном отрезке:



#### Метод трапеций



$$\int_{x_i}^{x_{i+1}} f(x)dx \approx \int_{x_i}^{x_{i+1}} L_1^i(x)dx$$

Формула трапеций на элементарном отрезке:

$$\int_{x_i}^{x_{i+1}} f(x) dx \approx \frac{f_{i+1} + f_i}{2} \cdot h$$

# Метод трапеций



График функции на отрезке [a,b] заменяется ломаной линией

Составная формула трапеций:

$$\int_{a}^{b} f(x)dx \approx h \cdot \frac{f(a) + f(b)}{2} + h \cdot \sum_{i=1}^{n-1} f(a+i \cdot h)$$



График функции на отрезке [a,b] заменяется участками парабол

Каждая парабола заменяет исходную подынтегральную функцию сразу над двумя полосами. Следовательно, число разбиений должно быть четным



$$f(x) \approx P_2^{i}(x) = a_i x^2 + b_i x + c_i$$

$$\int_{x_i}^{x_{i+1}} f(x)dx \approx \int_{x_i}^{x_{i+1}} L_2^i(x)dx$$

$$L_{2}^{(i)}(x) = y_{i-1} \frac{(x - x_{i})(x - x_{i+1})}{(x_{i-1} - x_{i})(x_{i-1} - x_{i+1})} + y_{i} \frac{(x - x_{i-1})(x - x_{i+1})}{(x_{i} - x_{i-1})(x_{i} - x_{i+1})} + y_{i+1} \frac{(x - x_{i-1})(x - x_{i})}{(x_{i+1} - x_{i-1})(x_{i+1} - x_{i})}$$

Формула парабол на элементарном отрезке:

$$\int_{x_i}^{x_{i+2}} f(x)dx = \frac{h}{3} \cdot (f(x_i) + 4f(x_{i+1}) + f(x_{i+2}))$$

Составная формула парабол (Симпсона) [n=2m]:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} (f_0 + 4f_1 + 2f_2 + \dots + 2f_{n-2} + 4f_{n-1} + f_n)$$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} (f_0 + 4 \sum_{he \text{четн.}} f_{\text{нечетн.}} + 2 \sum_{n} f_{\text{четн.}} + f_n)$$

Квадратурную формулу парабол (Симпсона) можно записать для каждого элементарного отрезка, используя в качестве узлов начальную, конечную и среднюю точки. Тогда составная формулу парабол имеет следующий вид:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{6} \left( f(a) + 2\sum_{k=1}^{N-1} f(a+kh) + 4\sum_{k=0}^{N-1} f(a+(k+0.5)h) + f(b) \right)$$

Пример 1: Для оценки погрешности численного интегрирования сравним значения интеграла, рассчитанные различными численными методами с истинным значением интеграла, рассчитанным аналитически.

$$\int_{0}^{\pi/4} 10\sin 2x dx$$

Точное значение интеграла : I = 5

| Метод                           | n=4      |                     | n=10      |                     | n=50      |                     |
|---------------------------------|----------|---------------------|-----------|---------------------|-----------|---------------------|
|                                 | Значение | Погреш-<br>ность, % | Значение, | Погреш-<br>ность, % | Значение, | Погреш-<br>ность, % |
| Левых<br>прямоуголь-<br>ников   | 3,953831 | 20,9234             | 4,597016  | 8,0597              | 4,921049  | 1,5790              |
| Средних<br>прямоуголь-<br>ников | 5,032273 | 0,6454              | 5,005144  | 0,1029              | 5,000206  | 0,0041              |
| Трапеций                        | 4,935579 | 1,2884              | 4,989714  | 0,2057              | 4,999589  | 0,0082              |
| Симпсона                        | 5,000041 | 0,0008              | 5,000001  | 0,00002             | 5,000000  | ~10 <sup>-7</sup>   |
| Точное                          | значен   | 5                   |           |                     |           |                     |

**Пример 2.** Вычислить значение энтропии воды при нагревании ее от 400 до 500 К по формуле:

$$S = \int_{400}^{500} \frac{C_{v} dT}{T}$$

Принимаем значение теплоемкости при v=const:  $C_v=35,0$  Дж/моль\*К.

Разобьем интервал интегрирования на 10 равных частей.

Шаг интегрирования равен h=(500-400)/10=10.

$$f(T) = \frac{C_v}{T} = \frac{35}{T}$$

|     | -                |                  |                                           |           |                                             |
|-----|------------------|------------------|-------------------------------------------|-----------|---------------------------------------------|
| Т   | $f(T_i), i=1,3,$ | $f(T_i), i=2,4,$ | $f(\mathrm{T_0})$ // $f(\mathrm{T_{10}})$ | $T_{1/2}$ | $f(\overline{T}) = \frac{35}{\overline{T}}$ |
| 400 | _                |                  | 0.0875                                    | 405       | 0.08642                                     |
| 410 | 0.08536          |                  |                                           | 415       | 0.08434                                     |
| 420 |                  | 0.08333          |                                           | 425       | 0.08235                                     |
| 430 | 0.08140          |                  |                                           | 435       | 0.08046                                     |
| 440 |                  | 0.07955          |                                           | 445       | 0.07865                                     |
| 450 | 0.07778          |                  |                                           | 455       | 0.07692                                     |
| 460 |                  | 0.07609          |                                           | 465       | 0.07527                                     |
| 470 | 0.07447          |                  |                                           | 475       | 0.07368                                     |
| 480 |                  | 0.07292          |                                           | 485       | 0.07216                                     |

0.31189

0.0700

0.1575

0.07143

0.39044

490

500

Σ

0.07071

0.78096

495

#### Вычислим интеграл, используя данные таблицы:

- по формуле прямоугольников:

$$\Delta S = \int_{400}^{500} \frac{C_v dT}{T} = 10 * 0.78096 = 7.8096$$

- по формуле трапеций:

$$\Delta S = \int_{400}^{500} \frac{C_v dT}{T} = 10(\frac{0.1575}{2} + 0.39044 + 0.31189) = 7.8108$$

- по формуле Симпсона

$$\Delta S = \int_{400}^{500} \frac{C_{\nu}dT}{T} = \frac{10}{3}(0.1575 + 4 * 0.39044 + 2 * 0.31189) = 7.8101$$

#### Найдем точное значение интеграла:

$$\Delta S = \int_{400}^{500} \frac{C_{\nu}dT}{T} = C_{\nu}(\ln 500 - \ln 400) = 7.8100242955$$

#### погрешность вычислений по формуле:

прямоугольников – 0.0004242955 трапеций – -0.0007757045 Симпсона – -0.000142955

Таким образом, наибольшую точность вычислений получили по формуле Симпсона.

# Погрешность квадратурных формул

Независимо от выбранного метода, погрешность обобщенной квадратурной формулы будет уменьшаться при увеличении числа разбиений N за счет более точной аппроксимации подынтегральной функции. Однако при этом будет возрастать вычислительная погрешность суммирования частичных интегралов, и, начиная с некоторого  $N_o$ , она станет преобладающей.

Это особенность должна предостеречь от выбора чрезмерно большого числа N и привлечь внимание к важности как *априорной*, так и *апостериорной* оценок погрешности интегрирования.

# Погрешность квадратурных формул

Зависимость погрешности численного интегрирования от числа разбиений N интервала интегрирования

