Tableau périodique des éléments

Tableau de Mendeleïev

	1 IA																	18 VIIIA
1	1 2.20 1s H Hydrogène 1.00784–1.00811	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 1s He Hélium 4.002602(2)
2	3 0.98 2s Li Lithium 6.938-6.997	Li Be Lithium Béryllium Nom Nom S: sous-conde électronique Sy: symbole Sy: symbole											5 2.04 2p B Bore 10.806-10.821	6 2.55 2p C Carbone 12.0096–12.0116	7 3.04 2p N Azote 14.00643- 14.00728	8 3.44 2p Oxygène 15.99903- 15.99977	9 3.98 2p F Fluor 18.998403163(6)	10 2p Ne Néon 20.1797(6)
3	11 0.93 3s Na Sodium 22.98976928(2)	12 1.31 3s Mg Mg Magnésium 24.304–24.307	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	13 1.61 3 <i>p</i> Al Aluminium 26.9815385(7)	14 1.90 3 <i>p</i> Si Silicium 28.084-28.086	15 2.19 3 <i>p</i> P Phosphore 30.973761998(5)	16 2.58 3 <i>p</i> S Soufre 32.059–32.076	17 3.16 3 <i>p</i> Cl Chlore 35.446-35.457	18 3p Ar Argon 39.948(1)
4	${\displaystyle \mathop{K}_{\text{Potassium}}^{19~0.82~4s}}$	20 1.00 4s Ca Calcium 40.078(4)	21 1.36 3 <i>d</i> Sc Scandium 44.955908(5)	22 1.54 3 <i>d</i> Ti Titane 47.867(1)	$\begin{array}{ccc} 23 & 1.63 & 3d \\ & \mathbf{V} \\ & \text{Vanadium} \\ & 50.9415(1) \end{array}$	24 1.66 3 <i>d</i> * Cr Chrome 51.9961(6)	$\begin{array}{cc} 25 & 1.55 & 3d \\ \hline \mathbf{Mn} \\ \text{Manganèse} \\ \text{54.938044(3)} \end{array}$	26 1.83 3 <i>d</i> Fe Fer 55.845(2)	27 1.88 3 <i>d</i> CO Cobalt 58.933194(4)	28 1.91 3 <i>d</i> Ni Nickel 58.6934(4)	29 1.90 3 <i>d*</i> Cu Cuivre 63.546(3)	30 1.65 3 <i>d</i> 2n Zinc 65.38(2)	31 1.81 4p Ga Gallium 69.723(1)	32 2.01 4p Ge Germanium 72.630(8)	33 2.18 4p As Arsenic 74.921595(6)	34 2.55 4 <i>p</i> Se Sélénium 78.971(8)	35 2.96 4 <i>p</i> Br Brome 79.901-79.907	36 3.00 4p Kr Krypton 83.798(2)
5	37 0.82 5s Rb Rubidium 85.4678(3)	38 0.95 5s Sr Strontium 87.62(1)	39 1.22 4 <i>d</i> Y Yttrium 88.90584(2)	40 1.33 4 <i>d</i> 2r Zirconium 91.224(2)	41 1.6 4 <i>d*</i> Nb Niobium 92.90637(2)	42 2.16 4 <i>d*</i> Mo Molybdène 95.95(1)	$\begin{array}{ccc} 43 & 1.9 & 4d \\ & Tc \\ & { m Techn\'etium} \\ & { m (98)} \end{array}$	44 2.2 4 <i>d*</i> Ru Ruthénium 101.07(2)	45 2.28 4 <i>d</i> * Rh Rhodium 102.90550(2)	46 2.20 4 <i>d*</i> Pd Palladium 106.42(1)	47 1.93 4 <i>d</i> * Ag Argent 107.8682(2)	48 1.69 4 <i>d</i> Cd Cadmium 112.414(4)	49 1.78 5 <i>p</i> In Indium 114.818(1)	$\begin{array}{ccc} 50 & 1.96 & 5\rho \\ & \mathbf{Sn} \\ & \text{Étain} \\ & & \\$	51 2.05 5 <i>p</i> Sb Antimoine 121.760(1)	$\begin{array}{ccc} 52 & 2.1 & 5p \\ & Te \\ & \begin{array}{c} \text{Tellure} \\ & 127.60(3) \end{array} \end{array}$	53 2.66 5 <i>p</i> I Iode 126.90447(3)	54 2.60 5 <i>p</i> Xe Xénon 131.293(6)
6	55 0.79 6s CS Césium 132.90545196(6)	56 0.89 6s Ba Baryum 137.327(7)	* Lanthanides	72 1.3 5 <i>d</i> Hf Hafnium 178.49(2)	73 1.5 5 <i>d</i> Ta Tantale 180.94788(2)	74 2.36 5 <i>d</i> W Tungstène 183.84(1)	75 1.9 5 <i>d</i> Re Rhénium 186.207(1)	76 2.2 5 <i>d</i> Os Osmium 190.23(3)	77 2.20 5 <i>d</i> Ir Iridium 192.217(3)	78 2.28 5 <i>d*</i> Pt Platine 195.084(9)	79 2.54 5 <i>d</i> * Au Or 196.966569(5)	80 2.00 5 <i>d</i> Hg Mercure 200.592(3)	81 1.62 6 <i>p</i> T1 Thallium 204.382-204.385	82 1.87 6 <i>p</i> Pb Plomb 207.2(1)	83 2.02 6 <i>p</i> Bi Bismuth 208.98040(1)	84 2.0 6 <i>p</i> Po Polonium (209)	85 2.2 6 <i>p</i> At Astate (210)	86 2.2 6p Rn Radon (222)
7	$egin{array}{ccc} 87 & 0.7 & 7s \\ \hline Fr \\ Francium \\ (223) \end{array}$	$egin{array}{ccc} 88 & 0.9 & 7s \ & \mathbf{Ra} \ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & $	** Actinides	$ \begin{array}{c} \text{104} & 6d \\ \text{Rf} \\ \text{Rutherfordium} \\ ^{(261)} \end{array} $	$\begin{array}{c} 105 & 6d \\ \textbf{Db} \\ \text{Dubnium} \\ \text{\tiny (268)} \end{array}$	$\begin{array}{cc} 106 & 6d \\ \mathbf{Sg} \\ \mathbf{Seaborgium} \\ ^{(269)} \end{array}$	$ \begin{array}{cc} 107 & 6d \\ \mathbf{Bh} \\ \text{Bohrium} \\ (270) \end{array} $	${ m Hs} \atop { m Hassium} \atop { m (269)}$	Mt	$\overset{110}{\mathrm{Ds}}\overset{6d}{\mathrm{Darmstadtium}}$	Rg	$\begin{array}{c} 112 & \textit{6d} \\ \textbf{Cn} \\ \text{Copernicium} \\ \text{\tiny (285)} \end{array}$	Nh Nihonium (286)	114 7 <i>p</i> Fl Flérovium (289)	Mc Moscovium (289)	$\begin{array}{cc} 116 & 7p \\ \textbf{Lv} \\ \text{Livermorium} \\ \text{\tiny (293)} \end{array}$	\mathbf{Ts} Tennesse (294)	$ \begin{matrix} \mathbf{Og} \\ \mathbf{Oganesson} \\ \mathbf{Oganesson} \\ \mathbf{(294)} \end{matrix} $
	Métal alcalin Métal alcalino-terreux Métal Métalloïde		*	57 1.1 5 <i>d</i> * La Lanthane 138.90547(7)	58 1.12 4 <i>f</i> * Ce Cérium 140.116(1)	59 1.13 4f Pr Praséodyme 140.90766(2)	60 1.14 4f Nd Néodyme 144.242(3)	61 1.13 4 <i>f</i>	62 1.17 4f Sm Samarium 150.36(2)	63 1.2 4f Eu Europium 151.964(1)	64 1.2 4f* Gd Gadolinium 157.25(3)	$\begin{array}{cccc} 65 & 1.1 & 4f \\ & Tb \\ & &$	66 1.22 4f Dy Dysprosium 162.500(1)	67 1.23 4 <i>f</i> Ho Holmium 164.93033(2)	68 1.24 4f Er Erbium 167.259(3)	69 1.25 4f Tm Thulium 168.93422(2)	70 1.1 4 <i>f</i> Yb Ytterbium 173.045(10)	$\begin{array}{ccc} 71 & 1.27 & 4f \\ & Lu \\ & \text{Lut\'ecium} \\ & _{174.9668(1)} \end{array}$
	Non-métal Halogène Gaz noble Lanthanide	/Actinide	**	89 1.1 6 <i>d*</i> Ac Actinium (227)	90 1.3 5f* Th Thorium 232.0377(4)	91 1.5 5f* Pa Protactinium 231.03588(2)	92 1.38 5f* U Uranium 238.02891(3)	93 1.36 5 <i>f</i> *	94 1.28 5 <i>f</i> Pu Plutonium (244)	95 1.13 5 <i>f</i>	96 1.28 5 <i>f</i> * Cm Curium (247)	$\begin{array}{ccc} 97 & 1.3 & 5f \\ & \mathbf{Bk} \\ & & \\ \text{Berk\'elium} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$	$\begin{array}{ccc} 98 & 1.3 & 5f \\ \hline \textbf{Cf} \\ \text{Californium} \\ \text{\tiny (251)} \end{array}$	99 1.3 5 <i>f</i> Es Einsteinium (252)	100 1.3 5 <i>f</i> Fm Fermium (257)	$\begin{array}{ccc} 101 & 1.3 & 5f \\ \hline \mathbf{Md} \\ \mathrm{Mend\acute{e}l\acute{e}vium} \\ ^{(258)} \end{array}$	$\begin{array}{ccc} 102 & 1.3 & 5f \\ \hline \textbf{No} \\ \text{Nobélium} \\ \text{\tiny (259)} \end{array}$	103 1.3 5 <i>f</i> Lr Lawrencium (266)

Les poids atomiques standards sont issus de la Commission on Isotopic Abundances and Atomic Weights (ciaaw.org/atomic-weights.htm). Une astérisque (*) apposée à une sous-couche électronique indique une exception (au principe d'Aufbau) dans la configuration des électrons à l'état fondamental.