Определение 1. Пусть a и m — целые числа, $m \neq 0$. Pasdenumb a на m c ocmamkom значит найти такие целые числа k (vacmhoe) и r (vacmhoe), что vacmam vacmam

Задача 1. Числа a и b — целые, b > 0. Отметим на числовой прямой все числа, кратные b. Они разобьют прямую на отрезки длины b. Точка a лежит на одном из них. Пусть kb — левый конец этого отрезка. Докажите, что k — частное, а r = a - kb — остаток от деления a на b.

Задача 2[©]. Найдите частные и остатки от деления 2018 на 23, -17 на 4 и $n^2 - n + 1$ на n при каждом n.

Определение 2. Говорят, что a сравнимо c b по модулю m, если a-b:m. Обозначение: $a\equiv b\pmod{m}$. (Например, $29\equiv -1\pmod{6},\ 9N\equiv 2N\pmod{7}$ при натуральном N, и т.п.)

Задача 3. Докажите, что $a \equiv b \pmod{m}$ если и только если у a и b одинаковые остатки от деления на m.

Задача 4. Могут ли среди m последовательных целых чисел какие-то два иметь равные остатки от деления на m?

Задача 5°. Пусть $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$. Докажите, что сравнения по одному и тому же модулю **a)** можно складывать и вычитать: $a + c \equiv b + d \pmod{m}$, $a - c \equiv b - d \pmod{m}$;

- **б)** можно перемножать: $ac \equiv bd \pmod{m}$;
- **в)** можно возводить в натуральную степень $n: a^n \equiv b^n \pmod{m}$;
- **г)** можно домножать на любое целое число k: $ka \equiv kb \pmod{m}$.

Задача 6. Найдите остаток от деления **a)** числа $1 + 31 + 331 + \ldots + 33333333331$ на 3; **б)** 6^{100} на 7.

Задача 7. Найдите остаток от деления числа $1 - 11 + 111 - 1111 + \ldots - 1111111111$ на 9.

Задача 8 $^{\varnothing}$. Найдите остатки от деления на 3 чисел 2N, 100N, 2^N , 100^N , 2007^N (ответ зависит от N).

Задача 9. Найдите остаток от деления **a)** 10! на 11; **б)** 11! на 12.

Задача 10 $^{\varnothing}$. а) Какой цифрой оканчивается 8^{18} ? б) При каких натуральных k число 2^k-1 кратно 7?

Задача 11. Найдите три последние цифры числа 1999²⁰⁰⁰.

Задача 12[©]. Докажите, что **a)** $30^{99} + 61^{100}$ делится на 31; **6)** $43^{95} + 57^{95}$ делится на 100.

Задача 13. Докажите, что $1^n + 2^n + \ldots + (n-1)^n$ делится на n при нечётном n.

Задача 14 $^{\varnothing}$. Числа x и y целые, причем x^2+y^2 делится на 3. Докажите, что и x и y делятся на 3.

Задача 15*. Докажите, что существует бесконечно много натуральных чисел, не представимых как сумма трёх или менее точных квадратов.

Задача 16°. Даны 20 целых чисел, ни одно из которых не делится на 5. Докажите, что сумма двадцатых степеней этих чисел делится на 5.

Задача 17 $^{\varnothing}$. Какие целые числа дают при делении на 3 остаток 2, а при делении на 5 — остаток 3?

Задача 18. Докажите, что остаток от деления простого числа на 30 есть или простое число или 1.

Задача 19*. Сколько есть способов записать 2018 как сумму натуральных слагаемых, любые два из которых равны или различаются на 1? (Способы лишь с разным порядком слагаемых считаем равными.)

Задача 20. Докажите, что из любых 52 целых чисел всегда можно выбрать два таких числа, что

а) их разность делится на 51; $\,$ б) их сумма или разность делится на 100.

Задача 21*. Докажите, что из любых n целых чисел всегда можно выбрать несколько, сумма которых делится на n (или одно число, делящееся на n).

Задача 22*. а) Докажите, что для любого натурального N существует делящееся на N натуральное число, все цифры которого только 0 и 1. б) Найдётся ли такое число вида $1 \dots 10 \dots 0$?

Задача 23*. Шайка из K разбойников отобрала у купца мешок с N монетами. Каждая монета стоит целое число грошей. Оказалось, что какую монету ни отложи, оставшиеся монеты можно поделить между разбойниками так, что каждый получит одинаковую сумму. Докажите, что N-1 делится на K.

$1 \parallel$	2	3	$\parallel 4$	5 a	5 6	5 B	5 Г	6 a	6 6	7	8	9 a	9 6	10 a	10 б	11	12 a	12 6	13	14	15	16	17	18	19	$\begin{vmatrix} 20 \\ a \end{vmatrix}$	20 6	21	$\begin{vmatrix} 22 \\ a \end{vmatrix}$	22 6	23