GRADIENT DESCENT INTUITION

Parameter Learning

Gradient descent algorithm

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

$$\theta_1 := \theta_1 - \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

$$\theta_1 := \theta_1 - \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Suppose $heta_1$ is at a local optimum of $J(heta_1)$, such as shown in the figure.

What will one step of gradient descent $heta_1:= heta_1-lpha rac{d}{d heta_1}J(heta_1)$ do?

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

