Рекурсивный спуск

Recursive Descent

 $S \rightarrow AB$ $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$

aaabb	ε	$S \rightarrow AB$	S
	AB		A B

$$S \rightarrow AB$$
 $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$

aaabb	AB	A → aA	s
<u>aa</u> abb	aAB		A B

$$S \rightarrow AB$$
 $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$

aaabb	aAB	A → aA	S
a <u>aa</u> bb	aaAB		a A A

$$S \rightarrow AB$$
 $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$

$$S \rightarrow AB$$
 $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$

aaabb	aaaB	$B \rightarrow bB$	
aaa <u>b</u> b	aaabB		S A A A A A A A A A A A A A A A A A A A

$$S \rightarrow AB$$
 $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$

aaabb	aaabB	$B \rightarrow b$	s
aaab <u>b</u> #	aaabb		A B B B A B B A B B B B B B B B B B B B

LL(k) Грамматики

• класс грамматик: LL(k)

- Грамматика из примера LL(2)
- На практике широко используются только LL(1)

$$S \rightarrow AB$$
 $A \rightarrow aA \mid a \mid B \rightarrow bB \mid b$

Рекурсивный спуск (всё хорошо)

• Грамматика

$$S \rightarrow ABd$$

$$A \rightarrow a \mid cA$$

$$B \rightarrow bA$$

 $A \rightarrow \alpha$ где $\alpha \in (VT \cup VN)^*$ $A \rightarrow a_1\alpha_1 \mid a_2\alpha_2 \mid ... \mid a_n\alpha_n$, $a_i \in VT \mid a_i \neq a_j \mid i \neq j \mid \alpha_i \in (VT \cup VN)^*$

• Принцип разбора

вывод начинается с $S \rightarrow ABd$

СФ $wB\alpha$, где $w \in T^*B$ — самый левый нетерминал то B → bA

СФ $wA\alpha$, где $w \in T^*A$ — самый левый нетерминал то

$$\alpha = a\alpha_1$$
 $A \rightarrow a$

$$\alpha = c\alpha_1$$
 $A \rightarrow cA$

LL(1)

Рекурсивный спуск (не всё хорошо)

• Грамматика

$$S \rightarrow aA \mid B \mid d$$

$$A \rightarrow d \mid aA$$

$$B \rightarrow aA \mid a$$

$$A \rightarrow a$$

$$S \rightarrow aA$$
 или $S \rightarrow B$

• Грамматика

$$S \rightarrow A \mid B$$

$$A \rightarrow aA \mid c$$

$$B \rightarrow aB \mid d$$

a.....ad <- Понятно!

Нужно раскрывать S → B

Множество FIRST

Рассмотрим сентенциальную форму $S \Rightarrow * αAbβ$ ($A \Rightarrow + cγ$)

Множество FIRST(A) — это множество терминальных символов, с которых начинаются цепочки, выводимые из A.

Расширим для цепочек.

FIRST
$$(\alpha) = \{ a \in VT \mid \alpha \Rightarrow * a\alpha_1, \alpha_1 \in (VT \cup VN)^* \}$$

Множество FIRST

$$S \rightarrow A\# A \rightarrow TB \quad B \rightarrow Z \mid \epsilon \quad Z \rightarrow +TY \quad Y \rightarrow Z \mid \epsilon \quad T \rightarrow b \mid (A)$$

Номер	FIRST(S)	FIRST(A)	FIRST(B)	FIRST(Z)	FIRST(Y)	FIRST(T)
шага						
0	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	{ ε }	{+}	{ ε }	{ b, (}
2	Ø	{ b, (}	{ ε, + }	{ + }	{ε,+}	{ b, (}
3	{ b, (}	{ b, (}	{ε,+}	{ + }	{ε,+}	{ b, (}
4	{ b, (}	{ b, (}	{ε,+}	{+}	{ε,+}	{ b, (}

FIRST для строки

```
FIRST (\alpha) = \{ a \in VT \mid \alpha \Rightarrow * a\alpha_1, \alpha_1 \in (VT \cup VN)^* \}
Расширим содержание функции isnullable следующим образом:
isnullable(t) = false for t \in VT
isnullable(\varepsilon) = true
isnullable(b_1b_2 ... b_k) = nullable(b_1) \land nullable(b_2) \land ... \land nullable(b_k);
тогда
FIRST(A\alpha) = FIRST(A) если isnullable(A) == false
FIRST(A\alpha) = FIRST(A) \cup FIRST (\alpha) если isnullable(A) == true.
```

Множество FIRST и рекурсивный спуск

Если в грамматике существуют альтернативные правые части для некоторого нетерминала $A \to \alpha \mid \beta$ такие, что FIRST(α) \cap FIRST(β) \neq \emptyset , то метод рекурсивного спуска **неприменим** для этой грамматики.

Что делать? Преобразовывать грамматику.

Не существует алгоритма, определяющего для произвольной КС-грамматики, существует ли для нее эквивалентная грамматика, к которой применим метод рекурсивного спуска

(т. е. это алгоритмически неразрешимая проблема)

Левая рекурсия.

Если в грамматике есть правило вида $A \to Aa$, то метод рекурсивного спуска неприменим.

- Устранение прямой левой рекурсии.
 - $A \to A\alpha_1 \mid ... \mid A\alpha_n \mid \beta_1 \mid ... \mid \beta_m$, где
- α_i ∈ (VT ∪ VN)+ для i = 1, 2, ..., n;
- $\beta_i \in (VT \cup VN)^*$

то левую рекурсию можно заменить правой:

- $A \rightarrow \beta_1 A' \mid ... \mid \beta_m A'$
- A' $\rightarrow \alpha_1$ A' | ... | α_n A' | ϵ < ----- !!!!!!

Устранение прямой левой рекурсии.

• Исходное правило

 $A \rightarrow Aa \mid Ab \mid Ac \mid d \mid e$

• Преобразованное правило.

Как реализовать процедуру для Х?

Множество FOLLOW

Рассмотрим сентенциальную форму $S \Rightarrow * αAbβ$ ($A \Rightarrow + cγ$)

Множество FOLLOW(A) для нетерминала А определяется как множество терминальных символов b, которые в сентенциальных формах располагаться непосредственно справа от А

Множество FOLLOW

```
Алгоритм 4.13 Построение множества FOLLOW
Bход: G = (VT, VN, P, S)
Выход: множества FOLLOW для нетерминалов грамматики G
       foreach A in VN do FOLLOW(A) = \{\}
       FOLLOW(S) = \{\$\}
       flag = 1
       while(flag) {
           flag = 0
           foreach A in VN {
              foreach B \rightarrow \alpha A\beta in P{
                FOLLOW(A) = FOLLOW(A) \cup FIRST(\beta);
                if is nullable (\beta)
                     FOLLOW(A) = FOLLOW(A) \cup FOLLOW(B);
                if FOLLOW(A) изменилось flag = 1
```

Множество FOLLOW

$$S \rightarrow A A \rightarrow TB \quad B \rightarrow Z \mid \epsilon \quad Z \rightarrow +TY \quad Y \rightarrow Z \mid \epsilon \quad T \rightarrow b \mid (A)$$

FOLLOW(A) = {a \in VT | S \Rightarrow * α A β , β \Rightarrow * a γ , A \in VN, α , β , γ \in (VT \cup VN)*}

	FLLW(S)	FLLW(A)	FLLW(B)	FLLW(T)	FLLW(Y)	FLLW(Z)
0	\$	Ø	Ø	Ø	Ø	Ø
1	\$	{ \$,) }	Ø	Ø	Ø	Ø
2	\$	{ \$,) }	{ \$,) }	Ø	Ø	Ø
3	\$	{ \$,) }	{ \$,) }	{ \$, + }	Ø	{ \$,) }
4	\$	{ \$,) }	{ \$,) }	{ \$, +,) }	Ø	{ \$,) }
5	\$	{ \$,) }	{ \$,) }	{ \$, +,) }	{ \$,) }	{ \$,) }
6	\$	{ \$,) }	{ \$,) }	{ \$, +,) }	{ \$,) }	{ \$,) }

Процедура для Х

```
    Правило
    X → a X
```

| c X

| E

```
void X()
if (token == 'a')
       {token = getchar(); X(); }
else if (token == 'b')
        {token = getchar(); X(); }
else if (token == 'c')
        {token = getchar(); X(); }
else if (token \in FOLLOW(X))
else Error();
```

Множество FOLLOW (продолжение)

Если в грамматике есть правила $A \to \alpha \mid \beta$, такие что $\beta \Rightarrow * \epsilon$, и FIRST(α) \bigcap FOLLOW(β) $\neq \emptyset$, то метод рекурсивного спуска **неприменим** к данной грамматике

А если А $\rightarrow \alpha \mid \beta$, такие что $\alpha \implies \epsilon$ и $\beta \implies \epsilon$ — тем более не допустим.

Левая факторизация.

$$A \to a\alpha_1 \mid a\alpha_2 \mid \mid a\alpha_n \mid \beta_1 \mid \mid \beta_m$$
 где $a \in VT; \alpha_i, \beta_j \in (VT \cup VN)^*;$ $A \to aA' \mid \beta_1 \mid \mid \beta_m$ $A' \to \alpha_1 \mid \alpha_2 \mid \mid \alpha_n$

• Правило

$$A \rightarrow aA \mid aB \mid aC \mid b \mid c$$

• После левой факторизации

$$A \rightarrow a X \mid b \mid c$$

 $X \rightarrow A \mid B \mid C$

Левая факторизация. Внимание!

• Правило A → a A | a B | a C | a | b • После левой факторизации

 $A \rightarrow a X \mid b$

 $X \rightarrow A \mid B \mid C \mid \epsilon$

Появилось ε – правило!

ПРИМЕР

• Исходная грамматика

$$S \rightarrow ABCd$$

A $\rightarrow Aa \mid Ac \mid a$

$$B \rightarrow b \mid bB$$

$$C \rightarrow c$$

- После устранения левой рекурсии и левой факторизации
- $S \rightarrow ABCd$
- A \rightarrow a X
- $B \rightarrow b Y$
- $X \rightarrow a X \mid cX \mid \epsilon$
- $Y \rightarrow B \mid \epsilon$
- $C \rightarrow c$

ПРИМЕР

```
Реализация.
void S()
 A();
 B();
 C();
 if (token == 'd')
 {token = getchar();
  if (token != '#')
    Error(); }
```

```
void A()
if (token == 'a')
 {token = getchar();
  X(); }
else Error();
В() и С() - аналогично
```

```
void X()
if (token == 'a')
{token = getchar(); X(); }
else if (token == 'c')
{token = getchar(); X(); }
else if (token == 'b'))
else Error();
```

ПРИМЕР

Как быть с			Для Y → B ε		
	$Y \rightarrow B \mid \epsilon$?			$FIRST(B) = \{b\} FOLLOW(B) = \{b\}$	
	Nullable	First	Follow	FIRST(B) \cap FOLLOW(B) = \emptyset void Y()	
Α		а	b	{	
В		b	С	if (token == 'b')	
C		С	d	{token = getchar(); B(
S		Α	\$	else if (token == 'c')	
X	1	асε	b	:	
Y	1	bε	С	else Error();	
				}	

Восходящий распознаватель

- Реализуется восходящий распознаватель с использованием стека (МП-автомат):
- На каждом шаге производится
 - сдвиг: текущий символ помещается в стек, читается следующий символ; или
 - свертка: если верхние m символов стека соответствуют правой части правила, они заменяются на левую часть правила (единственный нетерминал).
- Успех (цепочка принята) если на вершине стека остался единственный символ: начальный символ грамматики

Распознаватель типа Сдвиг-Свертка (2)

CTEK	состояние входа	действие
	Nat + Nat * Nat	←shift
Nat	+ Nat * Nat	↓reduce
Ex	+ Nat * Nat	←shift
Ex +	Nat * Nat	←shift
Ex + Nat	* Nat	↓reduce
Ex + Ex	* Nat	←shift
Ex + Ex *	Nat	←shift
Ex + Ex * Nat		√reduce
Ex + Ex * Ex		√reduce
Ex + Ex		√reduce
Ex		ACCEPT