Хэширование Есть задача сравнения объектов:

$$U = \{objects\}, \ u, v \in U: \ u \neq v?$$

Введем функцию $h:\ U\to \mathbb{Z}_m$, такую что $\forall\ u,v\in U:\ u\sim v\to h(v)=h(u).$ Обычно $m\ll |U|.$ Зачем юзать хэши, а не наивное сравнение?

- Бывает много сравнений, и мы не хотим дублировать вычисления
- Безопасность
- Для некоторых хешей верно, что h(f(v,u)) = g(h(v),h(u)). То есть можно вычислить хэш от некоего объекта, пользуясь уже посчитанными хэшами для других объектов.
- Иногда мы сравниваем объекты не на равенство, а на изоморфность.
- Сравнивать объекты бывает дорого

Требования к хэшу:

- вычислим за линейное время
- детерменирован
- семейство хэш-функций H (и можем взять сколько угодно оттуда)
- равномерность $\forall_{v\neq u}v, u: p_{h\in\mathbb{H}}(h(u)=h(v))\simeq \frac{1}{m}$
- масштабируемость
- необратимость
- (optional) лавинный эффект (при маленьком изменении объекта хэш меняется сильно)

Важно, что мы хотим брать случайную функцию из семейства Ш на момент старта программы, потому что псевдослучайная функция на самом деле нам дает детерменированный алгоритм, который неверен.

Идеальная хэш-функция Так как объектов счетно, то отсортируем их, далее для каждого объекта запомним случайную величину от 1 до m (или даже можем запоминать ее лениво!).

Полиномиальный хэш Сводим объекты к строкам и хэшируем строки:

$$s = c_0 c_2 c_3 \dots c_{n-1}, \ c_i > 0$$

$$h_b(s) = \sum_{i=0}^{n-1} c_i \cdot b^i \pmod{m}$$

$$p_b(h_b(s_1) = h_b(s_2)) \le \frac{n}{m}$$
 для фиксированного m

Доказательство: Рассмотрим функцию как многочлен, теперь для равных функций смотрим на то, равна ли разность многочленов нулю для какого-то b. У многочлена от b степень равна n, а вероятность попасть в конкретный модуль $\frac{1}{m}$.

$$h(s_1 + s_2) = h(s_1) + h(s_2) \cdot b^{|s_1|}$$