CONVERGENCE OF SEQUENCES

Definition: Let $\{a_n\}_{n=1}^{\infty}$ be an arbitrary sequence and L a real number. We say $\{a_n\}_{n=1}^{\infty}$ converges to L provided if for every real number $\varepsilon > 0$, there is a real number N such that $|a_n - L| < \varepsilon$ for all natural numbers n such that n > N.

To prove that a particular sequence $\{a_n\}_{n=1}^{\infty}$ converges to a particular real number L directly from the definition:

- Let $\varepsilon > 0$ be arbitrary.
- Take N = [expression from scratchwork outside of the proof, maybe in terms of ε , that makes $|a_n L| < \varepsilon$ whenever n > N].
- Let n > N be a natural number.
- ullet [Argument that $|a_n-L|<arepsilon$ (that cannot refer to the previous scratchwork outside the proof)]
- Thus $\{a_n\}_{n=1}^{\infty}$ converges to L.
- (1) Let c be a real number. Prove that the constant sequence $\{c\}_{n=1}^{\infty}$ converges to c.
- (2) Prove that the sequence $\left\{\frac{1}{\sqrt{n}}\right\}_{n=1}^{\infty}$ converges to 0.
- (3) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence. Suppose we know that $\{a_n\}_{n=1}^{\infty}$ converges to 1. Prove that there is a natural number $n \in \mathbb{N}$ such that $a_n > 0$.
- (4) Prove or disprove: The sequence $\left\{\frac{n+1}{2n}\right\}_{n=1}^{\infty}$ converges to 0.
- (5) Prove or disprove: The sequence $\{a_n\}_{n=1}^{\infty}$ where

$$a_n = \begin{cases} 1 & \text{if } n = 10^m \text{ for some } m \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

converges to 0.

Definition: A sequence $\{a_n\}_{n=1}^{\infty}$ is *convergent* if there is a real number L such that $\{a_n\}_{n=1}^{\infty}$ converges to L. Otherwise, it is said to be *divergent*.

- (6) In this problem, we will prove that the sequence $\{(-1)^n\}_{n=1}^{\infty}$ is divergent.
 - Proceed by contradiction and suppose it converges to L.
 - Apply the definition of "converges to L" with $\varepsilon = \frac{1}{2}$, so we get some N.
 - Take an odd integer n bigger than N: what does this say about L?
 - Take an even integer n bigger than N: what does this say about L?
 - Conclude the proof.

¹By \sqrt{n} , we mean the positive number whose square is n. Such a number exists by a proof similar to the one that $\sqrt{2}$ exists.