Optimal Uniform and L^p Rates for Random Fourier Features

Zoltán Szabó

Joint work with Bharath K. Sriperumbudur (PSU)

Gatsby Unit, Research Talk September 7, 2015

Recap

Given:

$$k(\mathbf{x}, \mathbf{y}) = \int_{\mathbb{R}^d} e^{i\boldsymbol{\omega}^T(\mathbf{x} - \mathbf{y})} \mathrm{d}\Lambda(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \cos\left(\boldsymbol{\omega}^T(\mathbf{x} - \mathbf{y})\right) \mathrm{d}\Lambda(\boldsymbol{\omega}).$$

• $s^{\mathbf{p},\mathbf{q}}(\mathbf{x},\mathbf{y})$: Monte-Carlo estimator of $\partial^{\mathbf{p},\mathbf{q}}k(\mathbf{x},\mathbf{y})$ using $(\omega_j)_{j=1}^m \overset{i.i.d.}{\sim} \Lambda$.

Recap

Given:

$$k(\mathbf{x}, \mathbf{y}) = \int_{\mathbb{R}^d} e^{i\boldsymbol{\omega}^T(\mathbf{x} - \mathbf{y})} d\Lambda(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \cos\left(\boldsymbol{\omega}^T(\mathbf{x} - \mathbf{y})\right) d\Lambda(\boldsymbol{\omega}).$$

- $s^{p,q}(\mathbf{x}, \mathbf{y})$: Monte-Carlo estimator of $\partial^{p,q} k(\mathbf{x}, \mathbf{y})$ using $(\omega_j)_{j=1}^m \overset{i.i.d.}{\sim} \Lambda$.
- Last time:

$$\|\partial^{\mathbf{p},\mathbf{q}}k - s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathfrak{X})} = \mathfrak{O}_{a.s.}\left(\frac{\sqrt{|\mathfrak{X}|}}{\sqrt{m}}\right).$$

Derivatives: ' $supp(\Lambda)$ is bounded' requirement.

Today: one-page summary

1 Tighter L^{∞} guarantee in terms of $|\mathcal{K}|$:

$$\|\partial^{\mathbf{p},\mathbf{q}}k - s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathcal{K})} = \mathcal{O}_{a.s.}\left(\frac{\sqrt{\log |\mathcal{K}|}}{\sqrt{m}}\right)$$

 $\Rightarrow \mathcal{K}$ can grow exponentially $[|\mathcal{K}_m| = e^{o(m)}]$ – optimal!

Today: one-page summary

1 Tighter L^{∞} guarantee in terms of $|\mathcal{K}|$:

$$\|\partial^{\mathbf{p},\mathbf{q}}k - s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathcal{K})} = \mathfrak{O}_{a.s.}\left(\frac{\sqrt{\log |\mathcal{K}|}}{\sqrt{m}}\right)$$

- $\Rightarrow \mathcal{K}$ can grow exponentially $[|\mathcal{K}_m| = e^{o(m)}]$ optimal!
- ② Finite sample L^r guarantees, $r \in [1, \infty)$.

Today: one-page summary

1 Tighter L^{∞} guarantee in terms of $|\mathcal{K}|$:

$$\|\partial^{\mathbf{p},\mathbf{q}}k - s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathcal{K})} = \mathfrak{O}_{a.s.}\left(\frac{\sqrt{\log |\mathcal{K}|}}{\sqrt{m}}\right)$$

- $\Rightarrow \mathcal{K}$ can grow exponentially $[|\mathcal{K}_m| = e^{o(m)}]$ optimal!
- ② Finite sample L^r guarantees, $r \in [1, \infty)$.
- **1** Moment constraints on Λ are enough (example: RBF k).

Dissemination

 Theoretical foundations: Bharath K. Sriperumbudur, Zoltán Szabó (contributed equally). Optimal Rates for Random Fourier Features. In NIPS-2015, accepted [for spotlight presentation - 3.65%].

Dissemination

- Theoretical foundations: Bharath K. Sriperumbudur, Zoltán Szabó (contributed equally). Optimal Rates for Random Fourier Features. In NIPS-2015, accepted [for spotlight presentation - 3.65%].
- Infinite dimensional exponential family fitting application: Heiko Strathmann, Dino Sejdinovic, Samuel Livingston, Zoltán Szabó, Arthur Gretton. Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families. In NIPS-2015, accepted.

[Csörgő and Totik, 1983]'s asymptotic result:

- $|\mathcal{K}_m| = e^{o(m)}$ is the optimal rate for a.s. convergence,
- ② For faster growing $|\mathcal{K}_m|$: even convergence is probability fails.

[Csörgő and Totik, 1983]'s asymptotic result:

- $|\mathcal{K}_m| = e^{o(m)}$ is the optimal rate for a.s. convergence,
- ② For faster growing $|\mathcal{K}_m|$: even convergence is probability fails.

Goal:

- finite sample L^{∞} guarantee,
- 2 which implies this optimal rate.

We saw $[h_a = cos^{(a)}]$:

$$\|\partial^{\mathbf{p},\mathbf{q}}k - s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathfrak{X})} \lesssim \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathcal{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) + \frac{1}{\sqrt{m}},$$

We saw
$$[h_a = cos^{(a)}]$$
:

$$\|\partial^{\mathbf{p},\mathbf{q}}k - s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathbb{X})} \precsim \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathfrak{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) + rac{1}{\sqrt{m}},$$

$$\mathbb{R}\left(\mathcal{G}, oldsymbol{\omega}_{1:m}
ight) := \mathbb{E}_{\epsilon} \sup_{g \in \mathcal{G}} \left| rac{1}{m} \sum_{j=1}^{m} \epsilon_{j} g(\omega_{j})
ight|$$

We saw
$$[h_a = cos^{(a)}]$$
:

$$\begin{split} \|\partial^{\mathbf{p},\mathbf{q}}\mathbf{k} - s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathfrak{K})} & \lesssim \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathfrak{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) + \frac{1}{\sqrt{m}}, \\ & \mathfrak{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) := \mathbb{E}_{\epsilon} \sup_{g \in \mathcal{G}} \left| \frac{1}{m} \sum_{j=1}^{m} \epsilon_{j} g(\omega_{j}) \right| \\ & \lesssim \frac{1}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), r)} \mathrm{d}r, \end{split}$$

We saw
$$[h_a = cos^{(a)}]$$
:

$$\begin{split} \|\partial^{\mathbf{p},\mathbf{q}} k - s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathbb{K})} & \lesssim \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{R} \left(\mathcal{G}, \boldsymbol{\omega}_{1:m} \right) + \frac{1}{\sqrt{m}}, \\ & \mathbb{R} \left(\mathcal{G}, \boldsymbol{\omega}_{1:m} \right) := \mathbb{E}_{\boldsymbol{\epsilon}} \sup_{\boldsymbol{g} \in \mathcal{G}} \left| \frac{1}{m} \sum_{j=1}^{m} \epsilon_{j} \boldsymbol{g}(\omega_{j}) \right| \\ & \lesssim \frac{1}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), r)} \mathrm{d}r, \\ & \mathcal{G} = \{ \boldsymbol{g}_{\mathbf{z}}(\boldsymbol{\omega}) = \boldsymbol{\omega}^{\mathbf{p}} (-\boldsymbol{\omega})^{\mathbf{q}} h_{|\mathbf{p}+\mathbf{q}|}(\boldsymbol{\omega}^{T} \mathbf{z}) : \mathbf{z} \in \mathcal{K}_{\Delta} \}, \end{split}$$

We saw
$$[h_a = cos^{(a)}]$$
:

$$\begin{split} \|\partial^{\mathbf{p},\mathbf{q}} k - s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathcal{K})} & \lesssim \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathcal{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) + \frac{1}{\sqrt{m}}, \\ \mathcal{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) &:= \mathbb{E}_{\boldsymbol{\varepsilon}} \sup_{\boldsymbol{g} \in \mathcal{G}} \left| \frac{1}{m} \sum_{j=1}^{m} \epsilon_{j} \boldsymbol{g}(\omega_{j}) \right| \\ & \lesssim \frac{1}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), r)} \mathrm{d}r, \\ \mathcal{G} &= \{g_{\mathbf{z}}(\boldsymbol{\omega}) = \boldsymbol{\omega}^{\mathbf{p}}(-\boldsymbol{\omega})^{\mathbf{q}} h_{|\mathbf{p}+\mathbf{q}|}(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z}) : \mathbf{z} \in \mathcal{K}_{\Delta}\}, \\ \mathcal{N}\left(\mathcal{G}, L^{2}(\Lambda_{m}), r\right) &\leq \left(\frac{4|\mathcal{K}|A_{\mathbf{p},\mathbf{q}}}{r} + 1\right)^{d}, \end{split}$$

We saw
$$[h_a = cos^{(a)}]$$
:

$$\begin{split} \|\partial^{\mathbf{p},\mathbf{q}}k - s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathcal{K})} & \lesssim \mathbb{E}_{\omega_{1:m}} \mathcal{R}\left(\mathcal{G}, \omega_{1:m}\right) + \frac{1}{\sqrt{m}}, \\ \mathcal{R}\left(\mathcal{G}, \omega_{1:m}\right) &:= \mathbb{E}_{\epsilon} \sup_{g \in \mathcal{G}} \left| \frac{1}{m} \sum_{j=1}^{m} \epsilon_{j} g(\omega_{j}) \right| \\ & \lesssim \frac{1}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), r)} \mathrm{d}r, \\ \mathcal{G} &= \{g_{\mathbf{z}}(\omega) = \omega^{\mathbf{p}}(-\omega)^{\mathbf{q}} h_{|\mathbf{p}+\mathbf{q}|}(\omega^{T} \mathbf{z}) : \mathbf{z} \in \mathcal{K}_{\Delta}\}, \\ \mathcal{N}\left(\mathcal{G}, L^{2}(\Lambda_{m}), r\right) &\leq \left(\frac{4|\mathcal{K}|A_{\mathbf{p},\mathbf{q}}}{r} + 1\right)^{d}, \\ A_{\mathbf{p},\mathbf{q}} &= \sqrt{\frac{1}{m} \sum_{j=1}^{m} \left|\omega_{j}^{2(\mathbf{p}+\mathbf{q})}\right| \left\|\omega_{j}\right\|_{2}^{2}}. \end{split}$$

Key observation:

$$\log\left[\mathcal{N}\left(\mathcal{G},L^{2}(\Lambda_{m}),r\right)\right] \leq d\log\left(\frac{4|\mathcal{K}|\sqrt{\frac{1}{m}\sum_{j=1}^{m}\left|\omega_{j}^{2(\mathbf{p}+\mathbf{q})}\right|\left\|\omega_{j}\right\|_{2}^{2}}}{r}+1\right),$$

 $\log(u+1) \le u$ was applied $\Rightarrow |\mathcal{K}|$.

$$L^{\infty}$$
 guarantee: $T_{\mathbf{p},\mathbf{q}} = \sup_{\omega \in \mathit{supp}(\Lambda)} |\omega^{\mathbf{p}+\mathbf{q}}|$

$$\Re\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) \leq \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}} \sqrt{\log\left(\frac{4|\mathcal{K}|A_{\mathbf{p},\mathbf{q}}}{r}+1\right)} \, \mathrm{d}r$$

L^{∞} guarantee: $T_{\mathbf{p},\mathbf{q}} = \sup_{\boldsymbol{\omega} \in supp(\Lambda)} |\boldsymbol{\omega}^{\mathbf{p}+\mathbf{q}}|$

$$\mathcal{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) \leq \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}} \sqrt{\log\left(\frac{4|\mathcal{K}|A_{\mathbf{p},\mathbf{q}}}{r} + 1\right) dr} \\
\stackrel{\text{(a)}}{\leq} \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}} \sqrt{\log\left(\frac{4|\mathcal{K}|A_{\mathbf{p},\mathbf{q}} + 2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}}{r}\right) dr}$$

(a):
$$r \leq 2\sqrt{T_{2p,2q}}$$

L^{∞} guarantee: $T_{\mathbf{p},\mathbf{q}} = \sup_{oldsymbol{\omega} \in \mathit{supp}(oldsymbol{\Lambda})} |oldsymbol{\omega}^{\mathbf{p}+\mathbf{q}}|$

$$\mathcal{R}\left(\mathcal{G}, \omega_{1:m}\right) \leq \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}} \sqrt{\log\left(\frac{4|\mathcal{K}|A_{\mathbf{p},\mathbf{q}}}{r} + 1\right) dr}$$

$$\stackrel{\text{(a)}}{\leq} \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}} \sqrt{\log\left(\frac{4|\mathcal{K}|A_{\mathbf{p},\mathbf{q}} + 2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}}{r}\right) dr}$$

(a):
$$r \leq 2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}$$
, (b): $2|\mathcal{K}|A_{\mathbf{p},\mathbf{q}} + \sqrt{T_{2\mathbf{p},2\mathbf{q}}} \leq (2|\mathcal{K}| + \sqrt{T_{2\mathbf{p},2\mathbf{q}}})(A_{\mathbf{p},\mathbf{q}} + 1)$.

L^{∞} guarantee: $T_{\mathbf{p},\mathbf{q}} = \mathsf{sup}_{oldsymbol{\omega} \in \mathit{sup}_{p(\Lambda)}} |oldsymbol{\omega}^{\mathbf{p}+\mathbf{q}}|$

$$\mathcal{R}(\mathcal{G}, \boldsymbol{\omega}_{1:m}) \leq \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}} \sqrt{\log\left(\frac{4|\mathcal{K}|A_{\mathbf{p},\mathbf{q}}}{r} + 1\right) dr} \\
\stackrel{\text{(a)}}{\leq} \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}} \sqrt{\log\left(\frac{4|\mathcal{K}|A_{\mathbf{p},\mathbf{q}} + 2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}}{r}\right) dr} \\
\stackrel{\text{(b)}}{\leq} \frac{8\sqrt{2d}}{\sqrt{m}} \left(\int_{0}^{2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}} \sqrt{\log\frac{2\left(2|\mathcal{K}| + \sqrt{T_{2\mathbf{p},2\mathbf{q}}}\right)}{r}} dr \\
+ 2\sqrt{T_{2\mathbf{p},2\mathbf{q}} \log(A_{\mathbf{p},\mathbf{q}} + 1)}\right).$$

(a): $r \le 2\sqrt{T_{2\mathbf{p},2\mathbf{q}}}$, (b): $2|\mathcal{K}|A_{\mathbf{p},\mathbf{q}} + \sqrt{T_{2\mathbf{p},2\mathbf{q}}} \le (2|\mathcal{K}| + \sqrt{T_{2\mathbf{p},2\mathbf{q}}})(A_{\mathbf{p},\mathbf{q}} + 1)$.

$$\mathcal{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) \overset{(a)}{\leq} \frac{16\sqrt{2d}}{\sqrt{m}} \sqrt{T_{2\mathbf{p}, 2\mathbf{q}}} \left(\int_{0}^{1} \sqrt{\log \frac{B_{\mathbf{p}, \mathbf{q}} + 1}{r}} \, \mathrm{d}r + \sqrt{\log(A_{\mathbf{p}, \mathbf{q}} + 1)} \right),$$

(a): change of variables, $B_{\mathbf{p},\mathbf{q}} := \frac{2|\mathcal{K}|}{\sqrt{T_{2\mathbf{p},2\mathbf{q}}}}$

$$\mathcal{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) \overset{(a)}{\leq} \frac{16\sqrt{2d}}{\sqrt{m}} \sqrt{T_{2\mathbf{p}, 2\mathbf{q}}} \left(\int_{0}^{1} \sqrt{\log \frac{B_{\mathbf{p}, \mathbf{q}} + 1}{r}} \, \mathrm{d}r + \sqrt{\log(A_{\mathbf{p}, \mathbf{q}} + 1)} \right),$$

(a): change of variables,
$$B_{\mathbf{p},\mathbf{q}} := \frac{2|\mathcal{K}|}{\sqrt{T_{2\mathbf{p},2\mathbf{q}}}}$$
, (b):

$$\int_0^1 \sqrt{\log \frac{a}{\epsilon}} \, \mathrm{d}\epsilon \le \sqrt{\log a} + \frac{1}{2\sqrt{\log a}} \, (a > 1).$$

$$\mathcal{R}\left(\mathcal{G}, \omega_{1:m}\right) \stackrel{(a)}{\leq} \frac{16\sqrt{2d}}{\sqrt{m}} \sqrt{T_{2\mathbf{p},2\mathbf{q}}} \left(\int_{0}^{1} \sqrt{\log \frac{B_{\mathbf{p},\mathbf{q}}+1}{r}} \, \mathrm{d}r + \sqrt{\log(A_{\mathbf{p},\mathbf{q}}+1)} \right),$$

$$\stackrel{(b)}{\leq} \frac{16\sqrt{2d}}{\sqrt{m}} \sqrt{T_{2\mathbf{p},2\mathbf{q}}} \left[\sqrt{\log(B_{\mathbf{p},\mathbf{q}}+1)} + \frac{1}{2\sqrt{\log(B_{\mathbf{p},\mathbf{q}}+1)}} + \sqrt{\log(A_{\mathbf{p},\mathbf{q}}+1)} \right],$$

$$+ \sqrt{\log(A_{\mathbf{p},\mathbf{q}}+1)} ,$$

(a): change of variables,
$$B_{\mathbf{p},\mathbf{q}} := \frac{2|\mathcal{K}|}{\sqrt{T_{2\mathbf{p},2\mathbf{q}}}}$$
, (b):

$$\int_0^1 \sqrt{\log \frac{a}{\epsilon}} \, \mathrm{d}\epsilon \le \sqrt{\log a} + \frac{1}{2\sqrt{\log a}} \, (a > 1). \quad \Rightarrow$$

L^{∞} result for $\mathbf{p} = \mathbf{q} = \mathbf{0} \ (k)$

Let k be continuous, $\sigma^2 := \int \|\omega\|^2 d\Lambda(\omega) < \infty$. Then for $\forall \tau > 0$ and compact set $\mathcal{K} \subset \mathbb{R}^d$

$$\Lambda^{m}\left(\|\hat{k}-k\|_{L^{\infty}(\mathfrak{K})} \geq \frac{h(d,|\mathfrak{K}|,\sigma)+\sqrt{2\tau}}{\sqrt{m}}\right) \leq e^{-\tau},$$

$$h(d,|\mathfrak{K}|,\sigma) := 32\sqrt{2d\log(2|\mathfrak{K}|+1)}+16\sqrt{\frac{2d}{\log(2|\mathfrak{K}|+1)}}+32\sqrt{2d\log(\sigma+1)}.$$

Consequence-1 (Borel-Cantelli lemma)

• A.s. convergence on compact sets: $\hat{k} \xrightarrow{m \to \infty} k$ at rate $\sqrt{\frac{\log |\mathcal{K}|}{m}}$.

Consequence-1 (Borel-Cantelli lemma)

- ullet A.s. convergence on compact sets: $\hat{k} \xrightarrow{m o \infty} k$ at rate $\sqrt{\frac{\log |\mathfrak{K}|}{m}}$.
- Growing diameter:
 - $ullet \frac{\log |\mathcal{K}_m|}{m} \xrightarrow{m o \infty} 0$ is enough (i.e., $|\mathcal{K}_m| = e^{o(m)}$) \leftrightarrow
 - Our old result: $|\mathcal{K}_m| = o(\sqrt{m})$.

Consequence-1 (Borel-Cantelli lemma)

- A.s. convergence on compact sets: $\hat{k} \xrightarrow{m \to \infty} k$ at rate $\sqrt{\frac{\log |\mathcal{K}|}{m}}$.
- Growing diameter:
 - $\bullet \xrightarrow{\log |\mathcal{K}_m|} \xrightarrow{m \to \infty} 0$ is enough (i.e., $|\mathcal{K}_m| = e^{o(m)}$) \leftrightarrow
 - Our old result: $|\mathcal{K}_m| = o(\sqrt{m})$.
- Specifically:
 - asymptotic optimality [Csörgő and Totik, 1983, Theorem 2] (if $k(\mathbf{z})$ vanishes at ∞).

Consequence-2: L^r guarantee $(1 \le r)$

Idea:

Note that

$$\|\hat{k} - k\|_{L^{r}(\mathcal{K})} := \left(\int_{\mathcal{K}} \int_{\mathcal{K}} |\hat{k}(\mathbf{x}, \mathbf{y}) - k(\mathbf{x}, \mathbf{y})|^{r} \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y} \right)^{\frac{1}{r}}$$

$$\leq \|\hat{k} - k\|_{L^{\infty}(\mathcal{K})} \mathrm{vol}^{2/r}(\mathcal{K}).$$

Consequence-2: L^r guarantee $(1 \le r)$

Idea:

Note that

$$\begin{aligned} \|\hat{k} - k\|_{L^{r}(\mathcal{K})} &:= \left(\int_{\mathcal{K}} \int_{\mathcal{K}} |\hat{k}(\mathbf{x}, \mathbf{y}) - k(\mathbf{x}, \mathbf{y})|^{r} \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y} \right)^{\frac{1}{r}} \\ &\leq \|\hat{k} - k\|_{L^{\infty}(\mathcal{K})} \mathrm{vol}^{2/r}(\mathcal{K}). \end{aligned}$$

• $\operatorname{vol}(\mathcal{K}) \leq \operatorname{vol}(B)$, where $B := \left\{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_2 \leq \frac{|\mathcal{K}|}{2} \right\}$,

Consequence-2: L^r guarantee $(1 \le r)$

Idea:

Note that

$$\begin{aligned} \|\hat{k} - k\|_{L^{r}(\mathcal{K})} &:= \left(\int_{\mathcal{K}} \int_{\mathcal{K}} |\hat{k}(\mathbf{x}, \mathbf{y}) - k(\mathbf{x}, \mathbf{y})|^{r} \, d\mathbf{x} \, d\mathbf{y} \right)^{\frac{1}{r}} \\ &\leq \|\hat{k} - k\|_{L^{\infty}(\mathcal{K})} \text{vol}^{2/r}(\mathcal{K}). \end{aligned}$$

- ullet vol $(\mathcal{K}) \leq ext{vol}(B)$, where $B := \Big\{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_2 \leq rac{|\mathcal{K}|}{2} \Big\}$,
- $\operatorname{vol}(B) = \frac{\pi^{d/2}|\mathfrak{K}|^d}{2^d\Gamma(\frac{d}{2}+1)}$, $\Gamma(t) = \int_0^\infty u^{t-1} \mathrm{e}^{-u} \, \mathrm{d}u$. \Rightarrow

L^r guarantee

Under the previous assumptions, and $1 \le r < \infty$:

$$\Lambda^{m}\left(\|\hat{k}-k\|_{L^{r}(\mathfrak{K})}\geq\left(\frac{\pi^{d/2}|\mathfrak{K}|^{d}}{2^{d}\Gamma(\frac{d}{2}+1)}\right)^{2/r}\frac{h(d,|\mathfrak{K}|,\sigma)+\sqrt{2\tau}}{\sqrt{m}}\right)\leq e^{-\tau}.$$

L^r guarantee

Under the previous assumptions, and $1 \le r < \infty$:

$$\Lambda^m \left(\|\hat{k} - k\|_{L^r(\mathcal{K})} \ge \left(\frac{\pi^{d/2} |\mathcal{K}|^d}{2^d \Gamma(\frac{d}{2} + 1)} \right)^{2/r} \frac{h(d, |\mathcal{K}|, \sigma) + \sqrt{2\tau}}{\sqrt{m}} \right) \le e^{-\tau}.$$

Hence,

$$\|\hat{k} - k\|_{L^r(\mathcal{K})} = O_{a.s.} \left(\underbrace{m^{-1/2} |\mathcal{K}|^{2d/r} \sqrt{\log |\mathcal{K}|}}_{L^r(\mathcal{K})\text{-consistency if } \frac{m \to \infty}{} 0} \right).$$

L^r guarantee

Under the previous assumptions, and $1 \le r < \infty$:

$$\Lambda^m \left(\|\hat{k} - k\|_{L^r(\mathcal{K})} \ge \left(\frac{\pi^{d/2} |\mathcal{K}|^d}{2^d \Gamma(\frac{d}{2} + 1)} \right)^{2/r} \frac{h(d, |\mathcal{K}|, \sigma) + \sqrt{2\tau}}{\sqrt{m}} \right) \le e^{-\tau}.$$

Hence,

$$\|\hat{k} - k\|_{L^r(\mathcal{K})} = O_{a.s.}(\underbrace{m^{-1/2}|\mathcal{K}|^{2d/r}\sqrt{\log|\mathcal{K}|}}_{L^r(\mathcal{K})\text{-consistency if }\underbrace{m \to \infty}_{0}}).$$

Uniform guarantee: $|\mathcal{K}_m| = e^{m^{\delta < 1}}$; now: $\frac{|\mathcal{K}_m|^{2d/r}}{\sqrt{m}} o 0 \Rightarrow |\mathcal{K}_m| = o(m^{\frac{r}{4d}})$.

Direct L^r guarantee (proof after discussion)

Under the previous assumptions, and $1 < r < \infty$:

$$\Lambda^{m}\left(\|\hat{k}-k\|_{L^{r}(\mathcal{K})} \geq \left(\frac{\pi^{d/2}|\mathcal{K}|^{d}}{2^{d}\Gamma(\frac{d}{2}+1)}\right)^{2/r}\left(\frac{C'_{r}}{m^{1-\max\{\frac{1}{2},\frac{1}{r}\}}} + \frac{\sqrt{2\tau}}{\sqrt{m}}\right)\right) \leq e^{-\tau},$$

 C'_r : universal constant; only r-dependent (not $|\mathcal{K}|$ or m-dep.).

Direct L^r guarantee (proof after discussion)

Under the previous assumptions, and $1 < r < \infty$:

$$\Lambda^{m} \left(\|\hat{k} - k\|_{L^{r}(\mathcal{K})} \geq \left(\frac{\pi^{d/2} |\mathcal{K}|^{d}}{2^{d} \Gamma(\frac{d}{2} + 1)} \right)^{2/r} \left(\frac{C'_{r}}{m^{1 - \max\{\frac{1}{2}, \frac{1}{r}\}}} + \frac{\sqrt{2\tau}}{\sqrt{m}} \right) \right) \leq e^{-\tau},$$

 C'_r : universal constant; only *r*-dependent (not $|\mathcal{K}|$ or *m*-dep.).

Note: if $2 \le r$, then

Direct L^r result: High-level idea

By the bounded difference property:

$$\|k-\hat{k}\|_{L^r(\mathcal{K})} \leq \mathbb{E}_{\omega_{1:m}} \|k-\hat{k}\|_{L^r(\mathcal{K})} + \operatorname{vol}^{2/r}(\mathcal{K}) \sqrt{\frac{2\tau}{m}}.$$

Direct L^r result: High-level idea

By the bounded difference property:

$$\|k-\hat{k}\|_{L^r(\mathcal{K})} \leq \mathbb{E}_{\omega_{1:m}} \|k-\hat{k}\|_{L^r(\mathcal{K})} + \operatorname{vol}^{2/r}(\mathcal{K}) \sqrt{\frac{2\tau}{m}}.$$

② By $L^r \cong (L^{r'})^*$ $(\frac{1}{r} + \frac{1}{r'} = 1)$, the separability of $L^{r'}(\mathfrak{K})$ and symmetrization [van der Vaart and Wellner, 1996, Lemma 2.3.1]:

$$\mathbb{E}_{\omega_{1:m}} \|k - \hat{k}\|_{L^{r}(\mathcal{K})} \leq \frac{2}{m} \mathbb{E}_{\omega_{1:m}} \underbrace{\mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \right\|_{L^{r}(\mathcal{K})}}_{=:(*)}.$$

Direct L^r result: High-level idea

By the bounded difference property:

$$\|k-\hat{k}\|_{L^r(\mathcal{K})} \leq \mathbb{E}_{\omega_{1:m}} \|k-\hat{k}\|_{L^r(\mathcal{K})} + \operatorname{vol}^{2/r}(\mathcal{K}) \sqrt{\frac{2\tau}{m}}.$$

② By $L^r \cong (L^{r'})^*$ $(\frac{1}{r} + \frac{1}{r'} = 1)$, the separability of $L^{r'}(\mathfrak{K})$ and symmetrization [van der Vaart and Wellner, 1996, Lemma 2.3.1]:

$$\mathbb{E}_{\omega_{1:m}} \|k - \hat{k}\|_{L^{r}(\mathcal{K})} \leq \frac{2}{m} \mathbb{E}_{\omega_{1:m}} \underbrace{\mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \right\|_{L^{r}(\mathcal{K})}}_{=:(*)}.$$

Since $L^r(\mathcal{K})$ is of type $\min(2, r) \exists C'_r$ such that

$$(*) \leq C'_r \left(\sum_{i=1}^m \|\cos(\langle \omega_i, \cdot - \cdot \rangle)\|_{L^r(\mathfrak{K})}^{\min(2,r)} \right)^{\frac{1}{\min(2,r)}}.$$

$$f(\boldsymbol{\omega}_1,\ldots,\boldsymbol{\omega}_m) := \|k-\hat{k}\|_{L^r(\mathcal{K})} \text{ has bounded difference:}$$

$$\hat{k}_i(\mathbf{x},\mathbf{y}) = \frac{1}{m} \sum_{j \neq i} \cos(\boldsymbol{\omega}_j^T(\mathbf{x}-\mathbf{y})) + \frac{1}{m} \cos(\tilde{\boldsymbol{\omega}}_i^T(\mathbf{x}-\mathbf{y})),$$

$$\sup_{(\boldsymbol{\omega}_i)_{i=1}^m,\tilde{\boldsymbol{\omega}}_i} \left| \|k-\hat{k}\|_{L^r(\mathcal{K})} - \|k-\hat{k}_i\|_{L^r(\mathcal{K})} \right| \leq$$

$$\leq \sup_{(\boldsymbol{\omega}_i)_{i=1}^m,\tilde{\boldsymbol{\omega}}_i} \|\hat{k}_i - \hat{k}\|_{L^r(\mathcal{K})}$$

$$f(\omega_1,\ldots,\omega_m):=\|k-\hat{k}\|_{L^r(\mathfrak{K})}$$
 has bounded difference:

$$\hat{k}_i(\mathbf{x}, \mathbf{y}) = \frac{1}{m} \sum_{i \neq i} \cos(\omega_j^T(\mathbf{x} - \mathbf{y})) + \frac{1}{m} \cos(\tilde{\omega}_i^T(\mathbf{x} - \mathbf{y})),$$

$$\begin{aligned} \sup_{(\omega_{i})_{i=1}^{m}, \tilde{\omega}_{i}} \left| \|k - \hat{k}\|_{L^{r}(\mathfrak{K})} - \|k - \hat{k}_{i}\|_{L^{r}(\mathfrak{K})} \right| \leq \\ \leq \sup_{(\omega_{i})_{i=1}^{m}, \tilde{\omega}_{i}} \|\hat{k}_{i} - \hat{k}\|_{L^{r}(\mathfrak{K})} \leq \frac{2}{m} \sup_{\omega_{i}} \|\cos(\langle \omega_{i}, \cdot - \cdot \rangle)\|_{L^{r}(\mathfrak{K})} \end{aligned}$$

$$f(\omega_1,\ldots,\omega_m):=\|k-\hat{k}\|_{L^r(\mathcal{K})}$$
 has bounded difference:

$$\hat{k}_i(\mathbf{x}, \mathbf{y}) = \frac{1}{m} \sum_{j \neq i} \cos(\omega_j^T(\mathbf{x} - \mathbf{y})) + \frac{1}{m} \cos(\tilde{\omega}_i^T(\mathbf{x} - \mathbf{y})),$$

$$\sup_{(\omega_{i})_{i=1}^{m},\tilde{\omega}_{i}} \left| \|k - \hat{k}\|_{L^{r}(\mathfrak{K})} - \|k - \hat{k}_{i}\|_{L^{r}(\mathfrak{K})} \right| \leq$$

$$\leq \sup_{(\omega_{i})_{i=1}^{m},\tilde{\omega}_{i}} \|\hat{k}_{i} - \hat{k}\|_{L^{r}(\mathfrak{K})} \leq \frac{2}{m} \sup_{\omega_{i}} \|\cos(\langle \omega_{i}, \cdot - \cdot \rangle)\|_{L^{r}(\mathfrak{K})}$$

$$\leq \frac{2}{m} \operatorname{vol}^{2/r}(\mathfrak{K}) =: c_{m}.$$

⇒ We can apply the McDiarmid inequality.

We write $\|\cdot\|_{L^r}$ as a countable sup

Let $1 < r' < \infty$.

• Let
$$(X, \mathcal{A}, \mu)$$
, $\mu(X) < \infty$, $\frac{1}{r} + \frac{1}{r'} = 1$. Then

$$\left[L^{r'}(X,\mathcal{A},\mu)\right]^* = \left\{F_f : f \in L^r(X,\mathcal{A},\mu)\right\},$$
$$F_f(u) = \int_X u f d\mu,$$

and
$$||f||_{L^r} = ||F_f|| = \sup_{||g||_{L^r}=1} |F_f(g)| =: (*).$$

We write $\|\cdot\|_{L^r}$ as a countable sup

Let $1 < r' < \infty$.

• Let (X, \mathcal{A}, μ) , $\mu(X) < \infty$, $\frac{1}{r} + \frac{1}{r'} = 1$. Then

$$\label{eq:force_force} \begin{split} \left[L^{r'}(X,\mathcal{A},\mu)\right]^* &= \left\{F_f: f \in L^r(X,\mathcal{A},\mu)\right\}, \\ F_f(u) &= \int_X u f \mathrm{d}\mu, \end{split}$$

and
$$||f||_{L'} = ||F_f|| = \sup_{||g||_{L'} = 1} |F_f(g)| =: (*).$$

• Moreover, since for $X = \mathcal{K}$, $L^{r'}(\mathcal{K})$ is separable [Cohn, 2013, Prop. 3.4.5] $\Rightarrow \exists \ \mathcal{G} \subseteq S_{L^{r'}(\mathcal{K})}(0,1)$ countable [Carothers, 2004, Lemma 6.7]: $(*) = \sup_{g \in \mathcal{G}} |F_f(g)|$.

$$\|k - \hat{k}\|_{L^{r}(\mathcal{K})} = \|F_{k - \hat{k}}\| = \sup_{\mathbf{g} \in \mathcal{G}} \left| \int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y}) \right] d\mathbf{x} d\mathbf{y} \right| =: (*)$$

$$\|k - \hat{k}\|_{L^{r}(\mathcal{K})} = \|F_{k - \hat{k}}\| = \sup_{g \in \mathcal{G}} \left| \int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y}) \right] d\mathbf{x} d\mathbf{y} \right| =: (*)$$

$$\int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y}) \right] d\mathbf{x} d\mathbf{y}$$

$$\begin{aligned} \|k - \hat{k}\|_{L^{r}(\mathcal{K})} &= \left\|F_{k - \hat{k}}\right\| = \sup_{g \in \mathcal{G}} \left|\int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] d\mathbf{x} d\mathbf{y}\right| =: (*) \\ &\int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] d\mathbf{x} d\mathbf{y} \\ &= \int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[\int_{\mathbb{R}^{d}} \cos(\omega^{T}(\mathbf{x} - \mathbf{y})) d(\Lambda - \Lambda_{m})(\omega)\right] d\mathbf{x} d\mathbf{y} \end{aligned}$$

$$\begin{aligned} \|k - \hat{k}\|_{L^{r}(\mathcal{K})} &= \left\|F_{k - \hat{k}}\right\| = \sup_{g \in \mathcal{G}} \left|\int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] d\mathbf{x} d\mathbf{y}\right| =: (*) \\ &\int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] d\mathbf{x} d\mathbf{y} \\ &= \int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[\int_{\mathbb{R}^{d}} \cos(\omega^{T}(\mathbf{x} - \mathbf{y})) d(\Lambda - \Lambda_{m})(\omega)\right] d\mathbf{x} d\mathbf{y} \\ &= \int_{\mathbb{R}^{d}} \underbrace{\int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \cos(\omega^{T}(\mathbf{x} - \mathbf{y})) d\mathbf{x} d\mathbf{y}}_{=: \tilde{g}_{g}(\omega): \text{ measurable}} d(\Lambda - \Lambda_{m})(\omega) \Rightarrow \end{aligned}$$

$$\begin{split} \|k - \hat{k}\|_{L^{r}(\mathcal{K})} &= \left\|F_{k - \hat{k}}\right\| = \sup_{g \in \mathcal{G}} \left|\int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] \, \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y}\right| =: (*) \\ &\int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] \, \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y} \\ &= \int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \left[\int_{\mathbb{R}^{d}} \cos(\omega^{T}(\mathbf{x} - \mathbf{y})) \mathrm{d}(\Lambda - \Lambda_{m})(\omega)\right] \, \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y} \\ &= \int_{\mathbb{R}^{d}} \underbrace{\int_{\mathcal{K} \times \mathcal{K}} g(\mathbf{x}, \mathbf{y}) \cos(\omega^{T}(\mathbf{x} - \mathbf{y})) \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y}}_{=: \tilde{g}_{g}(\omega): \text{ measurable } \Leftarrow \text{ dominated convergence}} \\ (*) &= \sup_{\tilde{g} \in \tilde{G}: = \{\tilde{g}_{g}: g \in \mathcal{G}\}} |(\Lambda - \Lambda_{m})\tilde{g}|, \end{split}$$

By symmetrization [(a)]

we get

$$\mathbb{E}_{\omega_{1:m}} \|k - \hat{k}\|_{L^{r}(\mathcal{K})} \overset{(a)}{\leq} 2\mathbb{E}_{\omega_{1:m}} \mathbb{E}_{\varepsilon} \sup_{\tilde{g} \in \tilde{\mathcal{G}}} \left| \frac{1}{m} \sum_{i=1}^{m} \varepsilon_{i} \tilde{g}(\omega_{i}) \right|$$

By symmetrization [(a)], \tilde{g} def. [(b)]

we get

$$\mathbb{E}_{\omega_{1:m}} \| k - \hat{k} \|_{L^{r}(\mathcal{X})} \overset{(a)}{\leq} 2 \mathbb{E}_{\omega_{1:m}} \mathbb{E}_{\varepsilon} \sup_{\tilde{g} \in \tilde{\mathcal{G}}} \left| \frac{1}{m} \sum_{i=1}^{m} \varepsilon_{i} \tilde{g}(\omega_{i}) \right|$$

$$\stackrel{(b)}{=} \frac{2}{m} \mathbb{E}_{\omega_{1:m}} \mathbb{E}_{\varepsilon} \sup_{g \in \mathcal{G}} \left| \sum_{i=1}^{m} \varepsilon_{i} \int_{\mathcal{X} \times \mathcal{X}} g(\mathbf{x}, \mathbf{y}) \cos \left(\omega_{i}^{T} (\mathbf{x} - \mathbf{y}) \right) d\mathbf{x} d\mathbf{y} \right|$$

By symmetrization [(a)], \tilde{g} def. [(b)]

we get

$$\begin{split} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \| \boldsymbol{k} - \hat{\boldsymbol{k}} \|_{L^{r}(\mathcal{K})} &\stackrel{(a)}{\leq} 2 \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\boldsymbol{\varepsilon}} \sup_{\tilde{\boldsymbol{g}} \in \tilde{\mathcal{G}}} \left| \frac{1}{m} \sum_{i=1}^{m} \varepsilon_{i} \tilde{\boldsymbol{g}}(\boldsymbol{\omega}_{i}) \right| \\ &\stackrel{(b)}{=} \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\boldsymbol{\varepsilon}} \sup_{\boldsymbol{g} \in \mathcal{G}} \left| \sum_{i=1}^{m} \varepsilon_{i} \int_{\mathcal{K} \times \mathcal{K}} \boldsymbol{g}(\mathbf{x}, \mathbf{y}) \cos \left(\boldsymbol{\omega}_{i}^{T} (\mathbf{x} - \mathbf{y}) \right) d\mathbf{x} d\mathbf{y} \right| \\ &= \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\boldsymbol{\varepsilon}} \sup_{\boldsymbol{g} \in \mathcal{G}} \left| \int_{\mathcal{K} \times \mathcal{K}} \boldsymbol{g}(\mathbf{x}, \mathbf{y}) \left[\sum_{i=1}^{m} \varepsilon_{i} \cos \left(\boldsymbol{\omega}_{i}^{T} (\mathbf{x} - \mathbf{y}) \right) \right] d\mathbf{x} d\mathbf{y} \right| \end{split}$$

By symmetrization [(a)], \tilde{g} def. [(b)] and $L^r \cong (L^{r'})^*$ [(c)], we get

$$\begin{split} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \| \boldsymbol{k} - \hat{\boldsymbol{k}} \|_{L^{r}(\mathcal{K})} & \leq 2 \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\boldsymbol{\varepsilon}} \sup_{\tilde{\boldsymbol{g}} \in \tilde{\mathcal{G}}} \left| \frac{1}{m} \sum_{i=1}^{m} \varepsilon_{i} \tilde{\boldsymbol{g}}(\boldsymbol{\omega}_{i}) \right| \\ & \stackrel{(b)}{=} \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\boldsymbol{\varepsilon}} \sup_{\boldsymbol{g} \in \mathcal{G}} \left| \sum_{i=1}^{m} \varepsilon_{i} \int_{\mathcal{K} \times \mathcal{K}} \boldsymbol{g}(\mathbf{x}, \mathbf{y}) \cos \left(\boldsymbol{\omega}_{i}^{T}(\mathbf{x} - \mathbf{y}) \right) d\mathbf{x} d\mathbf{y} \right| \\ & = \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\boldsymbol{\varepsilon}} \sup_{\boldsymbol{g} \in \mathcal{G}} \left| \int_{\mathcal{K} \times \mathcal{K}} \boldsymbol{g}(\mathbf{x}, \mathbf{y}) \left[\sum_{i=1}^{m} \varepsilon_{i} \cos \left(\boldsymbol{\omega}_{i}^{T}(\mathbf{x} - \mathbf{y}) \right) \right] d\mathbf{x} d\mathbf{y} \right| \\ & \stackrel{(c)}{=} \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\boldsymbol{\varepsilon}} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos \left(\langle \boldsymbol{\omega}_{i}, \cdot - \cdot \rangle \right) \right\|_{L^{r}(\mathcal{K})}. \end{split}$$

Rademacher functions: $r_j(s) = sgn\left(\sin\left(2^j\pi s\right)\right) \in L^2[0,1]$ $(j=1,\ldots)$.

Properties of Rademacher functions:

1 ONS in $L^2[0,1]$.

Properties of Rademacher functions:

- **1** ONS in $L^2[0,1]$.
- ② $[r_1(t); \ldots; r_m(t)] = [\epsilon_1; \ldots; \epsilon_m] \in \{-1, 1\}^m$ Rademacher vector, where $t \sim U[0, 1] \Rightarrow$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{j=1}^{m} \varepsilon_{j} f_{j} \right\| = \int_{0}^{1} \left\| \sum_{j=1}^{m} r_{j}(s) f_{j} \right\| ds.$$

A $(Z, \|\cdot\|)$ Banach space is of type $q \in (1, 2]$ if $\exists C \in \mathbb{R}$

$$\int_0^1 \left\| \sum_{j=1}^m r_j(s) f_j \right\| \mathrm{d}s \leq C \left(\sum_{j=1}^m \|f_j\|^q \right)^{\frac{1}{q}}, \forall m, \forall \{f_j\}_{j=1}^m \subseteq Z.$$

A $(Z, \|\cdot\|)$ Banach space is of type $q \in (1, 2]$ if $\exists C \in \mathbb{R}$

$$\int_0^1 \left\| \sum_{j=1}^m r_j(s) f_j \right\| \mathrm{d} s \leq C \left(\sum_{j=1}^m \|f_j\|^q \right)^{\frac{1}{q}}, \forall m, \forall \{f_j\}_{j=1}^m \subseteq Z.$$

Notes:

• q choice: \forall (\nexists) B-space is of type 1 (> 2).

A $(Z, \|\cdot\|)$ Banach space is of type $q \in (1, 2]$ if $\exists C \in \mathbb{R}$

$$\int_0^1 \left\| \sum_{j=1}^m r_j(s) f_j \right\| \mathrm{d}s \leq C \left(\sum_{j=1}^m \|f_j\|^q \right)^{\frac{1}{q}}, \forall m, \forall \{f_j\}_{j=1}^m \subseteq Z.$$

Notes:

- q choice: \forall (\nexists) B-space is of type 1 (> 2).
- \bigcirc \forall Hilbert space is of type 2.

A $(Z, \|\cdot\|)$ Banach space is of type $q \in (1, 2]$ if $\exists C \in \mathbb{R}$

$$\int_0^1 \left\| \sum_{j=1}^m r_j(s) f_j \right\| \mathrm{d} s \leq C \left(\sum_{j=1}^m \|f_j\|^q \right)^{\frac{1}{q}}, \forall m, \forall \{f_j\}_{j=1}^m \subseteq Z.$$

Notes:

- q choice: \forall (\nexists) B-space is of type 1 (> 2).
- ❷ ∀ Hilbert space is of type 2.
- § $Z = L^r(X, \mathcal{A}, \mu)$ is of type $q = \min(2, r)$ [Lindenstrauss and Tzafriri, 1979, page 73] \Rightarrow .

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \right\| \leq C'_{r} \left(\sum_{i=1}^{m} \| \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \|_{L^{r}(\mathfrak{K})}^{\min(2, r)} \right)^{\frac{1}{\min(2, r)}} =: (*)$$

$$\sum_{i=1}^{m}\|\cos(\langle\omega_{i},\cdot-\cdot\rangle)\|_{L^{r}(\mathfrak{K})}^{\min(2,r)}=$$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \right\|_{L^{r}(\mathcal{K})} \leq C'_{r} \left(\sum_{i=1}^{m} \| \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \|_{L^{r}(\mathcal{K})}^{\min(2, r)} \right)^{\frac{1}{\min(2, r)}} =: (*)$$

$$\sum_{i=1}^{m} \|\cos(\langle \boldsymbol{\omega}_{i}, \cdot - \cdot \rangle)\|_{L^{r}(\mathcal{K})}^{\min(2,r)} = \sum_{i=1}^{m} \left(\int_{\mathcal{K} \times \mathcal{K}} \underbrace{\left|\cos(\boldsymbol{\omega}_{i}^{T}(\mathbf{x} - \mathbf{y}))\right|^{r}}_{\leq 1} d\mathbf{x} d\mathbf{y} \right)^{\frac{\min(2,r)}{r}}$$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \right\| \leq C_{r}' \left(\sum_{i=1}^{m} \| \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \|_{L^{r}(\mathbb{X})}^{\min(2,r)} \right)^{\frac{1}{\min(2,r)}} =: (*)$$

$$\sum_{i=1}^{m} \| \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \|_{L^{r}(\mathbb{X})}^{\min(2,r)} = \sum_{i=1}^{m} \left(\int_{\mathbb{X} \times \mathbb{X}} \underbrace{\left[\cos(\omega_{i}^{T} (\mathbf{x} - \mathbf{y})) \right]^{r}}_{\leq 1} d\mathbf{x} d\mathbf{y} \right)^{\frac{\min(2,r)}{r}}$$

$$\leq m \left[\operatorname{vol}^{2}(\mathbb{X}) \right]^{\frac{\min(2,r)}{r}} \Rightarrow$$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \right\|_{L^{r}(\mathcal{K})}^{\leq C_{r}'} \left(\sum_{i=1}^{m} \| \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \|_{L^{r}(\mathcal{K})}^{\min(2,r)} \right)^{\frac{1}{\min(2,r)}} =: (*)$$

$$\sum_{i=1}^{m} \| \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \|_{L^{r}(\mathcal{K})}^{\min(2,r)} = \sum_{i=1}^{m} \left(\int_{\mathcal{K} \times \mathcal{K}} \underbrace{\left| \cos(\omega_{i}^{T} (\mathbf{x} - \mathbf{y})) \right|^{r}}_{\leq 1} d\mathbf{x} d\mathbf{y} \right)^{\frac{\min(2,r)}{r}} d\mathbf{x} d\mathbf{y}$$

$$\leq m \left[\operatorname{vol}^{2}(\mathcal{K}) \right]^{\frac{\min(2,r)}{r}} \Rightarrow$$

$$(*) \leq C_{r}' m^{\frac{1}{\min(2,r)}} = \max\{\frac{1}{2}, \frac{1}{r}\} \operatorname{vol}^{2/r}(\mathcal{K}).$$

Guarantee on derivatives with unbounded $supp(\Lambda)$

Assumptions:

- $\begin{array}{l} \textbf{ 2} \mapsto \nabla_{\textbf{z}} \left[\partial^{\textbf{p},\textbf{q}} \textbf{k}(\textbf{z}) \right] \text{: continuous; } \mathcal{K} \subset \mathbb{R}^d \text{: compact,} \\ E_{\textbf{p},\textbf{q}} := \mathbb{E}_{\boldsymbol{\omega} \sim \boldsymbol{\Lambda}} |\boldsymbol{\omega}^{\textbf{p}+\textbf{q}}| \left\| \boldsymbol{\omega} \right\|_2 < \infty. \end{array}$
- $\exists L > 0, \sigma > 0$

$$\mathbb{E}_{\boldsymbol{\omega} \sim \Lambda} |f(\mathbf{z}; \boldsymbol{\omega})|^{M} \leq \frac{M! \, \sigma^{2} L^{M-2}}{2} \quad (\forall M \geq 2, \forall \mathbf{z} \in \mathcal{K}_{\Delta}),$$
$$f(\mathbf{z}; \boldsymbol{\omega}) = \partial^{\mathbf{p}, \mathbf{q}} k(\mathbf{z}) - \boldsymbol{\omega}^{\mathbf{p}} (-\boldsymbol{\omega})^{\mathbf{q}} h_{|\mathbf{p} + \mathbf{q}|} (\boldsymbol{\omega}^{T} \mathbf{z}).$$

Guarantee on derivatives with unbounded $supp(\Lambda)$

Assumptions:

- ① $\mathbf{z} \mapsto \nabla_{\mathbf{z}} [\partial^{\mathbf{p},\mathbf{q}} k(\mathbf{z})]$: continuous; $\mathcal{K} \subset \mathbb{R}^d$: compact, $E_{\mathbf{p},\mathbf{q}} := \mathbb{E}_{\boldsymbol{\omega} \sim \Lambda} |\boldsymbol{\omega}^{\mathbf{p}+\mathbf{q}}| \|\boldsymbol{\omega}\|_2 < \infty$.
- $\exists L > 0, \sigma > 0$

$$\mathbb{E}_{\boldsymbol{\omega} \sim \Lambda} |f(\mathbf{z}; \boldsymbol{\omega})|^M \leq \frac{M! \, \sigma^2 L^{M-2}}{2} \quad (\forall M \geq 2, \forall \mathbf{z} \in \mathcal{K}_{\Delta}),$$
$$f(\mathbf{z}; \boldsymbol{\omega}) = \partial^{\mathbf{p}, \mathbf{q}} k(\mathbf{z}) - \boldsymbol{\omega}^{\mathbf{p}} (-\boldsymbol{\omega})^{\mathbf{q}} h_{|\mathbf{p} + \mathbf{q}|} (\boldsymbol{\omega}^T \mathbf{z}).$$

Then with $F_d:=d^{-\frac{d}{d+1}}+d^{\frac{1}{d+1}}$

$$\Lambda^{m}\left(\|\partial^{\mathbf{p},\mathbf{q}}k-s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathfrak{K})}\geq\epsilon\right)\leq$$

$$\leq 2^{d-1}e^{-\frac{m\epsilon^2}{8\sigma^2\left(1+\frac{\epsilon L}{2\sigma^2}\right)}} + F_d 2^{\frac{4d-1}{d+1}} \left[\frac{|\mathcal{K}|(D_{\mathbf{p},\mathbf{q},\mathcal{K}} + E_{\mathbf{p},\mathbf{q}})}{\epsilon}\right]^{\frac{d}{d+1}} e^{-\frac{m\epsilon^2}{8(d+1)\sigma^2\left(1+\frac{\epsilon L}{2\sigma^2}\right)}},$$

where
$$D_{\mathbf{p},\mathbf{q},\mathfrak{K}} := \sup_{\mathbf{z} \in conv(\mathfrak{K}_{\Delta})} \|\nabla_{\mathbf{z}} [\partial^{\mathbf{p},\mathbf{q}} k(\mathbf{z})]\|_{2}$$
.

Comments

 Proof idea: '[Rahimi and Recht, 2007]: Hoeffding (boundedness!) + Lipschitzness' → 'Bernstein + Lipschitzness'.

Comments

- Proof idea: '[Rahimi and Recht, 2007]: Hoeffding (boundedness!) + Lipschitzness' → 'Bernstein + Lipschitzness'.
- Example: Gaussian kernel.

Comments

- Proof idea: '[Rahimi and Recht, 2007]: Hoeffding (boundedness!) + Lipschitzness' → 'Bernstein + Lipschitzness'.
- Example: Gaussian kernel.
- It gives the (slightly worse)

$$\|\partial^{\mathbf{p},\mathbf{q}}k - s^{\mathbf{p},\mathbf{q}}\|_{L^{\infty}(\mathcal{K})} = O_{a.s.}\left(|\mathcal{K}|\sqrt{m^{-1}\log m}\right)$$

rate.

Summary

Finite sample

- $L^{\infty}(\mathfrak{K})$ guarantees $\xrightarrow{\text{spec.}} |\mathfrak{K}_m| = e^{o(m)}$ optimal!
- $L^r(\mathcal{K})$ results (\Leftarrow uniform, type of L^r).
- derivative approximation guarantees:
 - improved $|\mathcal{K}_m|$ growing bounded spectral support.
 - handling unbounded spectral support.

Research directions

- Tighter derivative guarantees (unbounded empirical processes).
- Error propagation to prediction.
- LCA/Mercer, ... extensions.

Thank you for the attention!

Carothers, N. L. (2004).

A Short Course on Banach Space Theory.

Cambridge University Press.

Cohn, D. L. (2013).

Measure Theory: Second Edition.

Birkhäuser Basel.

Csörgő, S. and Totik, V. (1983). On how long interval is the empirical characteristic function uniformly consistent?

Lindenstrauss, J. and Tzafriri, L. (1979).

Classical Banach Spaces II – Function Spaces.

Springer-Verlag.

Acta Sci. Math. (Szeged), 45:141–149.

Rahimi, A. and Recht, B. (2007).
Random features for large-scale kernel machines.

In Neural Information Processing Systems (NIPS), pages 1177–1184.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge University Press.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes.

Springer-Verlag.

Yurinsky, V. (1995).

Sums and Gaussian Vectors.

Springer.

Contents

- Borel-Cantelli lemma.
- McDiarmid inequality.
- Bernstein inequality.
- Support of a measure.
- $L^{\infty}(\mathfrak{K})$ is *not* separable.

Borel-Cantelli lemma

- Assume: $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$.
- Then $\mathbb{P}(\infty$ -ly many of them occur) = 0. Formally,

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=0,$$

$$\limsup_{n\to\infty}A_n:=\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k.$$

McDiarmid inequality [Shawe-Taylor and Cristianini, 2004]

Let $\omega_1, \ldots, \omega_m \in D$ be independent r.v.-s, and $f: D^m \to \mathbb{R}$ satisfy the bounded diff. property $(\forall r)$:

$$\sup_{u_1,\ldots,u_m,u_r'\in D} |f(u_1,\ldots,u_m) - f(u_1,\ldots,u_{r-1},u_r',u_{r+1},\ldots,u_m)| \le c_r.$$

Then for $\forall \beta > 0$

$$\mathbb{P}\left(f(\omega_1,\ldots,\omega_m)-\mathbb{E}\left[f(\omega_1,\ldots,\omega_m)\right]\geq\beta\right)\leq e^{-\frac{2\beta^2}{\sum_{r=1}^m c_r^2}}.$$

Note: specifically, if
$$c=c_r$$
 $(\forall r)$, $\tau=\frac{2\epsilon^2}{\sum_{r=1}^m c_r^2}=\frac{2\epsilon^2}{mc^2}\Leftrightarrow \epsilon=c\sqrt{\frac{\tau m}{2}}$ gives $\mathbb{P}\left(f(X_1,\ldots,X_m)<\mathbb{E}\left[f(X_1,\ldots,X_m)\right]+c\sqrt{\frac{\tau m}{2}}\right)\geq 1-e^{-\tau}$.

Bernstein inequality [Yurinsky, 1995]

Let $(\xi_j)_{j=1}^m \overset{i.i.d.}{\sim} \mathbb{P}$, $\mathbb{E}_{\xi_j \sim \mathbb{P}}[\xi_j] = 0$, and assume that $\exists L > 0, S > 0$

$$\sum_{j=1}^{m} \mathbb{E}_{\xi_{j} \sim \mathbb{P}} \left[|\xi_{j}|^{M} \right] \leq \frac{M! S^{2} L^{M-2}}{2} \quad (\forall M \geq 2).$$

Then for $\forall m \in \mathbb{N}^+$, $\forall \eta > 0$,

$$\left|\mathbb{P}^m\left(\left|\sum_{j=1}^m \xi_j\right| \geq \eta S\right) \leq e^{-\frac{1}{2}\frac{\eta^2}{1+\frac{\eta L}{S}}}.$$

Support of a measure

- Ingredients:
 - (X, τ) : topological space with a countable basis.
 - $\mathcal{B} = \sigma(\tau)$: sigma-algebra generated by τ .
 - Λ : measure on (X, \mathcal{B}) .

Then

$$supp(\Lambda) = \overline{\bigcup \{A \in \tau : \Lambda(A) = 0\}},$$

i.e., the complement of the union of all open Λ -null sets.

• Our choice: $X = \mathbb{R}^d$.

$L^{\infty}(\mathfrak{K})$ is *not* separable

- Assume that $0 \in \mathcal{K}$.
- Take $S := \{I_{B(0,r)}\}_{r>0} \subseteq L^{\infty}(\mathfrak{K}).$
- |S| > countable, and for $\forall s_1 \neq s_2 \in S$: $||s_1 s_2||_{L^{\infty}(\mathcal{K})} = 1$.