Semestrální práce

Část 1: Práce bez vlastních dat

Příklad 1 (3 body):

Máte zadaný vektor X = {1, 1, 2, 2, 2, 3, 3, 1, 1, 2, 2, 2, 3, 3, 1, 1, 2, 2, 2, 3, 3, 1, 1, 2, 2, 2, 3, 3, 5}.

- 1. Veškeré sudé prvky vektoru X umocněte na druhou a odečtěte od nich číslo 1.
- 2. Následně veškeré prvky vektoru X celočíselně dělitelné číslem 3 vydělte třemi.
- 3. Z upraveného vektoru (viz. bod 1 a 2) vypočítejte průměr a sumu prvků vektoru.

Příklad 2 (5 bodů):

Načtěte a prohlídněte si data Blackmore z balíčku car (zavolejte library(car) a nahrajte si data Blackmore jako vlastní proměnnou). Dále si k těmto datům přečtěte dokumentaci a zjistěte význam jednotlivých sloupců.

- 1. Spočítejte počet duplicitních hodnot pro každý sloupec tohoto datového souboru.
- 2. Vypočítejte průměrný počet hodin věnovaných cvičení během jednoho týdne pouze pro subjekty starší 12 let a patřící do skupiny patient.
- 3. Vypočítejte maximální a minimální počet hodin věnovaných cvičení během jednoho týdne zvlášť pro skupinu control a pro skupinu patient.
- 4. Vytvořte krabičkový graf počtu hodin věnovaných cvičení během jednoho týdne zvlášť pro skupinu control a skupinu patient. Každý z těchto krabičkových grafů obarvěte jinou barvou.

Příklad 3 (3 body):

Vytvořte list obsahující dva prvky. První prvek pojmenujte Spolecnost_1, druhý pojmenujte Spolecnost_2. Nemusíte používat diakritiku.

- 1. Do prvku Spolecnost_1 vložte list, který bude obsahovat následující prvky:
 - a. Jméno společnosti: Firma 1
 - b. Forma: Akciovka
 - c. Počet zaměstnanců: 666
 - d. Tuzemská firma TRUE
- 2. Do prvku Spolecnost_2 vložte list, který bude obsahovat následující prvky:
 - a. Jméno společnosti: Firma 2
 - b. Forma: Akciovka
 - c. Počet zaměstnanců: 871
 - d. Tuzemská firma FALSE
- 3. Po vytvoření výše popsaných listů přidejte k oběma společnostem údaj o průměrném věku zaměstnanců. Průměrný věk si vymyslete.

Příklad 4 (4 body):

Vykreslete grafy podle následujících dvou funkcí na zadaném intervalu.

1.
$$f(x) = \sin\left(\frac{1}{x}\right)$$
 $x \in <0.1, 10>$

2.
$$f(x) = 2\cos(x) + \sin(2x) \cdot \cos(60x^2)$$
 $x \in <-10, 10>$

Příklad 5 (3 body):

Vytvořte funkci, která vrátí výsledek pro následující vzorec.

$$log_{y}(|x^{3}-7y|) * e^{x^{2}-\frac{y}{2}} * \sqrt{x^{4}+1} * cos(y)$$

Funkce se bude volat pomocí příkazu ve tvaru myF(x,y), kde x a y jsou parametry vstupující do vzorce.

Příklad 6 (3 body):

Vytvořte algoritmus, který uspořádá libovolně zadaný vektor. Jsou povoleny pouze základní matematické operace (+,-,*,÷,modulo), logické operace (&,k), operace porovnání, smyčky a vektorové operace. Algoritmus bude volaný jako funkce nazvaná mySort(v), kde v je vstupní vektor, a bude vracet uspořádaný vektor.

Příklad 7 (3 body):

Vytvořte algoritmus, který nalezne největší společný dělitel (NSD) dvou libovolně zadaných čísel $\{x,y\} \in \mathbb{N}^2$. Jsou povoleny pouze základní matematické operace $(+,-,*,\div,modulo)$, logické operace (&,k), operace porovnání, smyčky a vektorové operace. Algoritmus bude volaný jako funkce nazvaná NSD(x,y), kde x a y jsou dvě zadána čísla, ze kterých se NSD počítá. Funkce bude vracet jediné číslo.

Příklad 8 (3 body):

Vytvořte funkci, která nalezne z libovolně zadaného vektoru m-té nejmenší číslo. Jsou povoleny pouze základní matematické operace $(+,-,*,\div,modulo)$, logické operace (&,k), operace porovnání, smyčky a vektorové operace. Funkce se bude volat pomocí příkazu ve tvaru mMin(m,v), kde m je pořadové číslo, kolikáté nejmenší číslo se má vypsat, a v je vstupní vektor.

Příklad 9 (3 body):

Vytvořte funkci, která dokáže nalézt řešení libovolně zadané kvadratické rovnice. Pevně definujte vstup, v jakém má být kvadratická rovnice zadaná. Jsou povoleny pouze základní matematické operace $(+,-,*,\div,modulo)$, logické operace (&,k), operace porovnání, smyčky a vektorové operace. Funkce se bude volat pomocí příkazu ve tvaru solveQE(a,b,c), kde a, b, c jsou parametry kvadratické rovnice zadané ve tvaru $ax^2 + bx + c = 0$. Funkce nic nevrací, vypíše jediné číslo, pokud je jediný kořen, pokud jsou dva, vypíše kořeny ve tvaru reálných čísel, jinak vypíše "Neexistuji realne koreny pro tuto rovnici.". Nemusíte používat diakritiku.

Část 2: Práce s vlastními daty

Zvolte si vhodná data a proveďte na nich následující:

- 1. Krátce popište data a všechny sloupce, aby bylo zřejmé, s jakými daty pracujete.
- 2. K datům připojte alespoň jeden nový sloupec, který bude odvozen z již existujících sloupců.
- 3. Prozkoumejte data a vypište základní charakteristiky k datům:
 - a. Dimenzionalitu,
 - b. Obor hodnot proměnných, průměry (kde to dává smysl),
 - c. Boxploty (kde to dává smysl).
- 4. Vytvořte nad daty alespoň 4 grafy (vhodné pro daná data) s názvem, popsanými osami, a legendou. Alespoň jeden graf bude znázorňovat závislost mezi proměnnými, např. boxplot příjmů podle vzdělání, výška podle váhy, ...
- 5. Vytvořte alespoň jeden interaktivní graf (mapa, balíček *plotly*, ...).
- 6. Napište alespoň 3 vhodná filtrování na základě dat (neměňte data, jen vyfiltrovaná data vypište).