BLG 231E - Digital Circuits

Assignment 2

Name Surname: Seyfülmülük Kutluk

Student ID: 150180073

CRN: 11623

1. The truth table for a function y(A, B, C, D) is given below:

	Α	В	С	D	V
0	0	0	0	0	<u>y</u> 0 1
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	_1_
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	
13	1	1	0	1	0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1	1	1	0	1
15	1	1	1	1	1

a. Write the expressions of y in the first and second canonical forms.

 1^{st} canonical form of y in SOP ($\Sigma\Pi$) form:

 2^{nd} canonical form of y in POS ($\Pi\Sigma$) form:

$$y(A,B,C,D)=ABCD+ABC'D+AB'CD+AB'C'D+AB'C'D'+A'BCD+A'BC'D'+A'BC'D'$$

b. Minimize the expression in the first canonical form using axioms and theorems of Boolean algebra.

Show all steps in your minimization and write the name of the axiom/theorem/property you use on the right-hand side of the expression at each step.

=A'B'C'D + A'B'CD+A'BC'D+AB'C'D+AB'CD'+ABCD'+ABCD'+ABCD // Consensus

- =A'B'C'D+A'B'CD+A'BC'D+AB'C'D+AB'CD'+ABC'D'+ABCD'+ABCD+A'B'D// Absorption
- =A'BC'D+AB'C'D+AB'CD'+ABC'D'+ABCD'+ABCD+A'B'D// Consensus
- =A'BC'D+AB'C'D+AB'CD'+ABC'D'+ABCD+A'B'D+ABC// Absorption
- =A'BC'D+AB'C'D+AB'CD'+ABC'D'+A'B'D+ABC// Consensus
- =A'BC'D+AB'C'D+AB'CD'+ABC'D'+A'B'D+ABC+ABD'/// Absorption
- =A'BC'D+AB'C'D+AB'CD'+A'B'D+ABC+ABD'// Consensus
- =A'BC'D+AB'C'D+AB'CD'+A'B'D+ABC+ABD'+ACD'// Absorption
- =A'BC'D+AB'C'D+A'B'D+ABC+ABD'+ACD'// Consensus
- =A'BC'D+AB'C'D+A'B'D+ABC+ABD'+ACD'+B'C'D// Absorption
- =A'BC'D+A'B'D+ABC+ABD'+ACD'+B'C'D// Consensus
- =A'BC'D+A'B'D+ABC+ABD'+ACD'+B'C'D+<mark>A'C'D</mark>// Absorption
- = A'B'D+ABC+ABD'+ACD'+B'C'D+A'C'D

c. Draw the circuit for the minimized expression in (b) using 2-input NAND gates only. Show all steps

and explain your work leading up to the final circuit.

This is the circuit for A'B'D+ABC+ABD'+ACD'+B'C'D+A'C'D with using AND,OR and NOT gates. I will convert all of the AND,OR and NOT to NAND gate.

I changed all the gates to 2 input NAND gate.