Ejemplo. Reducción de L_U a HP

Definición de la función de reducción.

Para pares válidos (<M>, w), se define

$$f((, w)) = (, w)$$

tal que M' se comporta como M, salvo que cuando M se detiene en q_R , M' no se detiene.

La función f es total computable.

Si la entrada no es una cadena válida (<M>, w), la MT M $_f$ genera la cadena 1. En caso contrario, para generar <M $^{\prime}>$ la MT M $_f$ modifica <M> de modo tal que M $^{\prime}$ entre en un *loop* cuando M se detiene en q $_R$: por ejemplo, como ya se vio en el Teorema 3.1, se puede reemplazar q $_R$ por un estado nuevo q y definir una 5-tupla (q, x, q, x, S) por cada símbolo x del alfabeto de M.

Se cumple $(<M>, w) \in L_U \leftrightarrow f((<M>, w)) \in HP$.

 $(<M>, w) \in L_U \leftrightarrow M$ acepta $w \leftrightarrow M'$ se detiene a partir de $w \leftrightarrow (<M'>, w) \in HP$.

Ejemplo. Reducción de $L_U{}^C$ a L_{Σ^*}

Se probará que $L_{\Sigma^*} = \{ \langle M \rangle \mid L(M) = \Sigma^* \} \notin RE$. Se hará L_U^C α L_{Σ^*} . Como $L_U \in RE - R$, entonces $L_U^C \notin RE$, y así, con la reducción propuesta se probará que $L_{\Sigma^*} \notin RE$ (si L_{Σ^*} fuera recursivamente numerable también lo sería el lenguaje L_U^C).

Definición de la función de reducción.

Para pares válidos (<M>, w) se define

$$f((< M>, w)) = < M_w>$$

donde M_w es una MT que a partir de una entrada v simula a lo sumo |v| pasos de M a partir de w (M podría detenerse antes), y acepta si y sólo si M no acepta w. Se comprueba fácilmente que:

- Si M no acepta w, entonces $L(M_w) = \Sigma^*$
- Si M acepta w, digamos en k pasos, entonces $L(M_w) = \{v \mid |v| < k\}$ (es decir que $L(M_w) \neq \Sigma^*$, que es lo que se necesita)

La función f es total computable.

Si la entrada no es una cadena válida (<M>, w), y establecemos por convención que la misma pertenece a L_U^C , entonces M_f genera un código <M $_\Sigma*>$ tal que $LM_{\Sigma*}) = \Sigma*$. En caso contrario, para generar <M $_w>$, la MT M_f le agrega al código <M> un fragmento que calcula el tamaño i de la entrada, decrementa i en 1 toda vez que se ejecuta un paso, detiene la ejecución cuando i=0, y acepta si y sólo si no se alcanza al final el estado q_A .

$$\begin{aligned} &\underline{\text{Se cumple }}(<\!\!M\!\!>,w)\in L_{\textbf{U}}{}^{\!C} \longleftrightarrow f((<\!\!M\!\!>,w))\in L_{\underline{\Sigma}^*}.\\ &(<\!\!M\!\!>,w)\in L_{\textbf{U}}{}^{\!C} \longleftrightarrow M \text{ no acepta } w \longleftrightarrow L(M_w)=\Sigma^* \longleftrightarrow <\!\!M_w\!\!>\in L_{\underline{\Sigma}^*}. \end{aligned}$$

Ejemplo. Reducciones de L_U^C a L_{REC} y L_{REC}^C

Probaremos que es indecidible determinar si el lenguaje aceptado por una MT es recursivo. El lenguaje que representa el problema es $L_{REC} = \{ <M > \mid L(M) \in R \}$. Demostraremos directamente que L_{REC} no es recursivamente numerable. Se hará L_U^C α L_{REC} . Como $L_U^C \notin RE$, entonces $L_{REC} \notin RE$.

Definición de la función de reducción.

Para pares válidos (<M>, w) se define

$$f((< M>, w)) = < M_w>$$

donde Mw es una MT que, a partir de una entrada v:

- 1. Simula M a partir de w.
- 2. Si M no acepta, entonces M_w no acepta.
- 3. Si M_U es una MT que acepta L_U , entonces M_w simula M_U a partir de v, y acepta si y sólo si M_U acepta.

Se comprueba fácilmente que:

- Si M no acepta w, entonces $L(M_w) = \emptyset$ (que es un lenguaje recursivo).
- Si M acepta w, entonces $L(M_w) = L_U$ (que no es un lenguaje recursivo).

La función f es total computable.

Si la entrada no es una cadena válida (<M>, w), la MT M_f genera un código <M \varnothing >, con L(<M \varnothing >) = \varnothing . En caso contrario genera <M $_w$ >, básicamente agregándole a <M> un código <M $_U$ > y un fragmento que primero reemplaza la entrada v por la cadena w y luego la restituye para continuar la ejecución.

$$\begin{split} &\underline{\text{Se cumple }(<\!\!M\!\!>,w)} \in L_U{}^C \longleftrightarrow f((<\!\!M\!\!>,w)) \in L_{REC}.\\ &(<\!\!M\!\!>,w) \in L_U{}^C \longleftrightarrow M \text{ no acepta } w \longleftrightarrow L(M_w) = \varnothing \longleftrightarrow <\!\!M_w\!\!> \in L_{REC}. \end{split}$$

También se prueba que L_{REC}^{C} no es recursivamente numerable. Por lo tanto, al igual que L_{Σ^*} , el lenguaje L_{REC} habita la clase más difícil de la jerarquía de la computabilidad. Se hará L_{U}^{C} α L_{REC}^{C} . Como $L_{U}^{C} \notin RE$, entonces probaremos que $L_{REC}^{C} \notin RE$.

Definición de la función de reducción.

Para pares válidos (<M>, w) se define

$$f((< M>, w)) = < M_w>$$

donde M_w es una MT que, a partir de una entrada v, simula en paralelo M a partir de w y M_U a partir de v, aceptando si y sólo si alguna de las dos MT acepta. Se comprueba fácilmente que:

- Si M no acepta w, entonces $L(M_w) = L_U$ (que no es un lenguaje recursivo).
- Si M acepta w, entonces $L(M_w) = \Sigma^*$ (que es un lenguaje recursivo).

La función f es total computable.

Si la entrada no es una cadena válida (<M>, w), la MT M_f genera un código <M $_U>$, que pertenece a $L_{REC}{}^C$. En caso contrario, genera <M $_w>$ básicamente agregándole a <M>, un código <M $_U>$ más un fragmento que permite ejecutar en paralelo M a partir de w y M $_U$ a partir de v.

Se cumple
$$(, w) \in L_U^C \leftrightarrow f((, w)) \in L_{REC}^C$$
.
 $(, w) \in L_U^C \leftrightarrow M$ no acepta $w \leftrightarrow L(M_w) = L_U \leftrightarrow \in L_{REC}^C$.

Ejemplo. Reducción de PCP a VAL

Sea VAL = $\{\phi \mid \phi \text{ es una fórmula válida de la lógica de primer orden}\}$. Vamos a construir una reducción de PCP a VAL. Como PCP no es recursivo, entonces demostraremos que VAL tampoco lo es. Dada una secuencia S de pares de cadenas de unos y ceros no vacías $(s_1, t_1), \ldots, (s_k, t_k)$, la función de reducción le asignará a S una fórmula ϕ de la lógica de primer orden válida si y sólo si S tiene solución, en el sentido del problema de correspondencia de Post. Como símbolos de función utilizamos e, de aridad 0 (es una constante), y f_0 y f_1 , de aridad 1. La idea es que e represente la cadena vacía, y f_0 y f_1 la concatenación, al final de una cadena, del dígito 0 o 1, respectivamente. De este modo, la cadena $b_1...b_m$ de dígitos binarios b_i se puede representar por el término $f_{bm}(\ldots(f_{b1}(e))\ldots)$, que para facilitar la notación lo abreviaremos con $f_{b1...bm}(e)$. Finalmente, como símbolo de predicado utilizamos P, de aridad 2; el significado entendido para P(s, t) es que existe una secuencia de índices i_1 , ..., i_n , tal que el término s representa una cadena con subcadenas s_i de unos y ceros de la forma $s_{i1}...s_{in}$, y el término t representa una cadena con subcadenas t_i de unos y ceros de la forma $t_{i1}...t_{in}$.

Definición de la función de reducción.

La fórmula que se asigna, por la función de reducción f, a una secuencia S (sintácticamente correcta) de pares $(s_1, t_1), ..., (s_k, t_k)$, es

```
\begin{split} \phi &= \phi_1 \wedge \phi_2 \mathop{\rightarrow} \phi_3, \, con ; \\ \phi_1 &= \bigwedge_{i=1,k} \, P(f_{si}\left(e\right), \, f_{ti}\left(e\right)) \\ \phi_2 &= \forall v \forall w \colon P(v, \, w) \mathop{\rightarrow} \bigwedge_{i=1,k} \, P(f_{si}(v), \, f_{ti}(w)) \\ \phi_3 &= \exists z \colon P(z, \, z) \end{split}
```

La función f es total computable.

Claramente, existe una MT M_f que dada una secuencia S sintácticamente correcta genera la fórmula ϕ descripta previamente (en otro caso M_f genera la cadena 1). Se cumple $S \in PCP \leftrightarrow f(S) \in VAL$.

a. Supongamos primero que ϕ es válida, lo que se denota con $\models \phi$. Vamos a probar que S tiene solución. Más específicamente, vamos a encontrar un modelo M_0 para ϕ que establezca la existencia de una secuencia de índices que soluciona S. El dominio de M_0 contiene todas las cadenas finitas de unos y ceros, incluyendo la cadena vacía λ . La interpretación de e es λ , lo que se denota con $e^{M0} = \lambda$. La

interpretación de f_0 es la concatenación de un 0 al final de una cadena, lo que se denota con $f_0^{M0}(s) = s0$. De la misma manera se define $f_1^{M0}(s) = s1$. Finalmente, la interpretación de P es la siguiente: se cumple $P^{M0}(s,t)$ cuando existe una secuencia de índices i_1, \ldots, i_n , tal que $s = s_{i1} \ldots s_{in}, t = t_{i1} \ldots t_{in}, y \ s_i \ y \ t_i$ son cadenas de unos y ceros de S. Como vale $|= \phi$, se cumple en particular $M_0 |= \phi$. Claramente vale $M_0 |= \phi_1$, porque se cumple $P^{M0}(s_i,t_i)$ para $i=1,\ldots,k$. Veamos que también vale $M_0 |= \phi_2$, que establece que cuando el par (s,t) está en P^{M0} , también lo está el par (ss_i,t_i) , para $i=1,\ldots,k$. Si $(s,t)\in P^{M0}$, entonces existe una secuencia de índices i_1,\ldots,i_n , tal que $s=s_{i1}\ldots s_{in}\ y \ t=t_{i1}\ldots t_{in}$. Definiendo una nueva secuencia de índices i_1,\ldots,i_n , i_n ,

b. Supongamos ahora que S tiene solución, digamos la secuencia de índices i₁, ..., i_n. Vamos a probar que cualquiera sea el modelo M, con una constante e^M, dos funciones unarias f_0^M y f_1^M , y un predicado binario P^M , entonces M satisface φ , es decir M $\models \varphi$. Dada la fórmula $\varphi = \varphi_1 \land \varphi_2 \rightarrow \varphi_3$, vamos a asumir M $\models \varphi_1 \land \varphi_2$ y demostraremos M $\models \varphi_3$. Para la interpretación de las cadenas finitas de unos y ceros en el dominio de M definimos inductivamente una función denominada interpret, de la siguiente manera: interpret(λ) = e^{M} , interpret(s0) = $f_0^M(\text{interpret}(s))$, e interpret $(s1) = f_1^M(\text{interpret}(s))$. Por ejemplo, a la cadena 110 se le asigna $f_0^M(f_1^M(f_1^M(e^M)))$. Más genéricamente, si una cadena s de dígitos binarios b_i tiene la forma $b_1...b_m$, entonces interpret $(b_1...b_m) =$ $f_{bm}^{M}(...(f_{b1}^{M}(e^{M}))...)$, abreviado con $f_{s}^{M}(e)$ como indicamos antes. Entonces, como vale M $\models \phi_1$, se cumple (interpret(s_i), interpret(t_i)) $\in P^M$, para i = 1, ..., k. Como también vale $M \models \phi_2$, entonces para todo par $(s, t) \in P^M$ se cumple $(interpret(ss_i), interpret(tt_i)) \in P^M$, para i=1, ..., k. De esta manera, comenzando con $(s, t) = (s_{i1}, t_i)$, si se considera repetidamente la última observación se obtiene (interpret($s_{i1}...s_{in}$), interpret($t_{i1}...t_{in}$)) $\in P^M$, y dado que las cadenas $s_{i1}...s_{in}$ y $t_{i1}...t_{in}$ son iguales porque $i_1, ..., i_n$ es una solución de S, entonces interpret $(s_{i1}...s_{in})$ = interpret $(t_{i1}...t_{in})$. De este modo se cumple la fórmula $\exists z$: P(z, z), y así $M \models \varphi_3$.

Ejemplo. L_{imp0} no es recursivo

Sea $L_{imp0} = \{ <M> \mid M \text{ es una MT que a partir de toda entrada escribe alguna vez el símbolo 0} \}$. Como los códigos <M> no se definen en términos de L(M), tampoco en este caso puede aplicarse el Teorema de Rice. Probaremos que $L_{imp0} \notin R$, mediante una reducción de problemas de HP a L_{imp0} .

Definición de la función de reducción.

Para pares válidos (<M>, w) se define

$$f((< M>, w)) = < M_w>$$

tal que < Mw> tiene las siguientes características:

- Un primer fragmento borra la entrada y la reemplaza por la cadena w', tal que w' es como w salvo que en lugar del símbolo 0 tiene un símbolo x que no existe en el alfabeto de M.
- Un segundo fragmento tiene las mismas tuplas que M, salvo que en lugar del símbolo 0 utiliza el símbolo x, y en lugar de los estados finales q_A y q_R utiliza, respectivamente, nuevos estados no finales q_A' y q_R'.
- Un último fragmento tiene nuevas tuplas definidas a partir de los estados q_A ' y q_R ' y todos los símbolos z del alfabeto de M_w menos el símbolo 0, de la forma $\delta(q_A$ ', z) = $(q_A, 0, S)$ y $\delta(q_R$ ', z) = $(q_A, 0, S)$.

La idea es que M_w replique los pasos de M sin escribir nunca el símbolo 0, y sólo en el caso de que M se detenga, M_w haga un paso más escribiendo el 0.

La función f es total computable.

La función de reducción es claramente total computable (si la entrada no es una cadena válida (<M>, w), la MT M $_{\rm f}$ genera la cadena 1).

Se cumple $(<M>, w) \in HP \leftrightarrow <M_w \ge \in L_{imp0}$.

 $(<M>, w) \in HP \leftrightarrow M$ se detiene a partir de $w \leftrightarrow M_w$ a partir de toda entrada escribe el símbolo $0 \leftrightarrow <M_w> \in L_{imp0}$.