

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Робототехники и комплексной автоматизации ФАКУЛЬТЕТ

КАФЕДРА Системы автоматизированного проектирования (РК-6)

J

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТ				
Студент	Гусаров Аркадий Андреевич			
Группа	РК6-53Б			
Тип задания	Лабораторная работа №2			
Тема лабораторной работы	Факториальный алгоритм левого дополнения с инкрементом			
Студент				
	подпись, дата фамилия, и.о.			

Оценка

Задание на лабораторную работу

Перечислить все перестановки первых 5-ти натуральных чисел, используя факториальный алгоритм левого дополнения с инкрементом.

Цель выполнения лабораторной работы

Цель — ознакомление и применение на практике факториального метода получения перестановок.

Теоретическая часть. Описание алгоритма

Наиболее простые алгоритмы перестановок основаны на рекурсивном определении факториала.

Алгоритм получает перестановки n чисел из перестановки n-1 чисел.

В факториальном алгоритме левого дополнения с инкрементом каждую перестановку (n-1) натуральных чисел нужно последовательно сопоставить со всеми различными целыми значениями m от 1 до n. При этом необходимо увеличить на 1 значения всех элементов p_j , которые не меньше очередного значения параметра m:

$$p_j < -p_j + 1; p_j \ge m=1, ... n.$$

Затем следует дополнить модифицированную перестановку текущим значением параметра m. В итоге из каждой перестановки (n-1) элементов получается n перестановок целых чисел от 1 до n.

Пример алгоритма

Минимальная начальная перестановка состоит из одного числа {1}.

Последовательность действий:

$N_{\underline{o}}$	Начальная перестановка	Конечная перестановка
1	{1}, m = 1	{1,1+1} = {1, 2}
	{1}, m = 2	{2,1}
2.1	{2, 1}, m = 1	$\{1, 2+1, 1+1\} = \{1, 3, 1\}$
	{2, 1}, m = 2	${2, 2+1, 1+1} = {2, 3, 1}$
	{2, 1}, m = 3	{1, 2, 3}
2.2	{1, 2}, m = 1	$\{1, 1+1, 2+1\} = \{1, 2, 3\}$
	{1, 2}, m = 2	$\{2, 1, 2+1\} = \{2, 1, 3\}$
	{1, 2}, m = 3	{3, 1, 2}
• • •		

Далее действия выполняются рекурсивно, что в конечном итоге позволит получить все перестановки первых 5-ти натуральных чисел.

Код программы

```
#include <iostream>
#include <vector>
void print_vect(std::vector<int> &arr) {
     for (auto &i: arr)
           std::cout << i << " ";
     std::cout << std::endl;</pre>
}
void FactorialLeftAddition(std::vector<int> &arr, int &globalCounter, int
maxNumber) {
     int mPosition = 0;
     auto iter = arr.cbegin();
     arr.insert(iter, 0);
     std::vector<int> arrayCopy = arr;
     int m = 1;
     for (; m != arr.size() + 1; m++) {
           arr = arrayCopy;
           arr[mPosition] = m;
           for (int j = 1; j != arr.size() + 1; j++) {
                if (arr[j] >= m)
                      arr[j]++;
           }
           if (arr.size() == maxNumber) {
                std::cout << globalCounter++ << ") ";</pre>
                print vect(arr);
           } else if (m != arr.size() + 1)
                FactorialLeftAddition(arr, globalCounter, maxNumber);
           else
                return;
     }
}
int main(int argc, char *argv[]) {
     int globalCounter = 1;
     int arrayLength = 5;
     std::vector<int> array;
     array.push back(1);
     FactorialLeftAddition(array, globalCounter, arrayLength);
     return 0;
}
```

Результат работы программы

1) 1 2 3 4 5	41) 1 2 5 3 4	81) 1 2 4 5 3
2) 2 1 3 4 5	42) 2 1 5 3 4	82) 2 1 4 5 3
3) 3 1 2 4 5	43) 3 1 5 2 4	83) 3 1 4 5 2
4) 4 1 2 3 5	44) 4 1 5 2 3	84) 4 1 3 5 2
5) 5 1 2 3 4	45) 5 1 4 2 3	85) 5 1 3 4 2
6) 1 3 2 4 5	46) 1 3 5 2 4	86) 1 3 4 5 2
7) 2 3 1 4 5	47) 2 3 5 1 4	87) 2 3 4 5 1
8) 3 2 1 4 5	48) 3 2 5 1 4	88) 3 2 4 5 1
9) 4 2 1 3 5	49) 4 2 5 1 3	89) 4 2 3 5 1
10) 5 2 1 3 4	50) 5 2 4 1 3	90) 5 2 3 4 1
11) 1 4 2 3 5	51) 1 4 5 2 3	91) 1 4 3 5 2
12) 2 4 1 3 5	52) 2 4 5 1 3	92) 2 4 3 5 1
13) 3 4 1 2 5	53) 3 4 5 1 2	93) 3 4 2 5 1
14) 4 3 1 2 5	54) 4 3 5 1 2	94) 4 3 2 5 1
15) 5 3 1 2 4	55) 5 3 4 1 2	95) 5 3 2 4 1
16) 1 5 2 3 4	56) 1 5 4 2 3	96) 1 5 3 4 2
17) 2 5 1 3 4	57) 2 5 4 1 3	97) 2 5 3 4 1
18) 3 5 1 2 4	58) 3 5 4 1 2	98) 3 5 2 4 1
19) 4 5 1 2 3	59) 4 5 3 1 2	99) 4 5 2 3 1
20) 5 4 1 2 3	60) 5 4 3 1 2	100) 5 4 2 3 1
21) 1 2 4 3 5	61) 1 2 3 5 4	101) 1 2 5 4 3
22) 2 1 4 3 5	62) 2 1 3 5 4	102) 2 1 5 4 3
23) 3 1 4 2 5	63) 3 1 2 5 4	103) 3 1 5 4 2
24) 4 1 3 2 5	64) 4 1 2 5 3	104) 4 1 5 3 2
25) 5 1 3 2 4	65) 5 1 2 4 3	105) 5 1 4 3 2
26) 1 3 4 2 5	66) 1 3 2 5 4	106) 1 3 5 4 2
27) 2 3 4 1 5	67) 2 3 1 5 4	107) 2 3 5 4 1
28) 3 2 4 1 5	68) 3 2 1 5 4	108) 3 2 5 4 1
29) 4 2 3 1 5	69) 4 2 1 5 3	109) 4 2 5 3 1
30) 5 2 3 1 4	70) 5 2 1 4 3	110) 5 2 4 3 1
31) 1 4 3 2 5	71) 1 4 2 5 3	111) 1 4 5 3 2
32) 2 4 3 1 5	72) 2 4 1 5 3	112) 2 4 5 3 1
33) 3 4 2 1 5	73) 3 4 1 5 2	113) 3 4 5 2 1
34) 4 3 2 1 5	74) 4 3 1 5 2	114) 4 3 5 2 1
35) 5 3 2 1 4	75) 5 3 1 4 2	115) 5 3 4 2 1
36) 1 5 3 2 4	76) 1 5 2 4 3	116) 1 5 4 3 2
37) 2 5 3 1 4	77) 2 5 1 4 3	117) 2 5 4 3 1
38) 3 5 2 1 4	78) 3 5 1 4 2	118) 3 5 4 2 1
39) 4 5 2 1 3	79) 4 5 1 3 2	119) 4 5 3 2 1
40) 5 4 2 1 3	80) 5 4 1 3 2	120) 5 4 3 2 1

Список использованных источников

1. Волосатова Т.М. курс лекций по дисциплине «Методы комбинаторных вычислений».