Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 5

Methods for Solving Recurrences

Iteration method

Substitution method

Recursion tree method

Master method

The recursion-tree method

Convert the recurrence into a tree:

- Each node represents the cost incurred at that level of recursion
- Sum up the costs of all levels

Used to "guess" a solution for the recurrence

Example 1

- Subproblem size at level i is: n/2ⁱ
- Subproblem size hits 1 when $1 = n/2^i \Rightarrow i = lgn$
- Cost of the problem at level $i = (n/2^i)^2$ No. of nodes at level $i = 2^i$

Total cost:

$$W(n) = \sum_{i=0}^{lgn-1} \frac{n^2}{2^i} + 2^{lgn} W(1) = n^2 \sum_{i=0}^{lgn-1} \left(\frac{1}{2}\right)^i + n \le n^2 \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i + O(n) \le \frac{n^2}{1 - \frac{1}{2}} + O(n)$$

$$\Rightarrow W(n) = O(n^2)$$
CS 477/677 - Lecture 5

Example 2

- Subproblem size at level i is: n/4ⁱ
- Subproblem size hits 1 when 1 = n/4ⁱ ⇒i = log₄n
- Cost of a node at level $i = c(n/4^i)^2$
- Number of nodes at level i = $3^i \Rightarrow last level has <math>3^{log_4^n} = n^{log_4^3}$ nodes
- Total cost:

+

$$\Rightarrow T(n) = O(n^2)$$

Example 2 - Substitution

$$T(n) = 3T(n/4) + cn^2$$

- Guess: $T(n) = O(n^2)$
 - Induction goal: $T(n) \le dn^2$, for some d and $n \ge n_0$
 - Induction hypothesis: $T(n/4) \le d(n/4)^2$
- Proof of induction goal:

T(n) =
$$3T(n/4) + cn^2$$

 $\le 3d (n/4)^2 + cn^2$
= $(3/16) d n^2 + cn^2$
= $d n^2 + cn^2 + (3/16) d n^2 - d n^2$
= $d n^2 + cn^2 - (13/16) d n^2$
 $\le d n^2$ if: $cn^2 - (13/16) d n^2 \le 0$
 $d \ge (16/13)c$

Therefore: $T(n) = O(n^2)$

Example 3

$$W(n) = W(n/3) + W(2n/3) + n$$

The longest path from the root to a leaf is:

$$n \to (2/3)n \to (2/3)^2 n \to ... \to 1$$

Subproblem size hits 1 when $1 = (2/3)^{i}n \Leftrightarrow i = \log_{3/2}n$

Total cost:

$$W(n) \leq n+n+\ldots=n$$
 for all levels

for all levels
$$\Rightarrow W(n) = O(n | gn)$$

$$W(n) \leq n+n+...=n * \sum_{i=0}^{\log_{3/2} n} 1 = n \frac{lgn}{lg 3/2} = \frac{1}{lg 3/2} n lgn$$

Example 3 - Substitution

$$W(n) = W(n/3) + W(2n/3) + n$$

- Guess: W(n) = O(nlgn)
 - Induction goal: $W(n) \le dn lg n$, for some d and $n \ge n_0$
 - Induction hypothesis: W(k) ≤ d klgk for any k < n (n/3, 2n/3)
- Proof of induction goal:

Try it out as an exercise!!

Master method

"Cookbook" for solving recurrences of the form:

$$T(n)=aT\left(\frac{n}{b}\right)+f(n)$$

where, a > 0, b > 1, and f(n) > 0

Idea: compare f(n) with nlog a

- f(n) is asymptotically smaller or larger than $n^{\log_b a}$ by a polynomial factor n^{ϵ}
- f(n) is asymptotically equal with $n^{\log_b a} |g^k n| (k \ge 0)$,

Master method

"Cookbook" for solving recurrences of the form:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

where, a > 0, b > 1, and f(n) > 0

Case 1: if
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some $\epsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

Case 2: if $f(n) = \Theta(n^{\log_b a} | g^k n)$, (for some $k \ge 0$) then:

$$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$

Case 3: if $f(n) = \Omega(n^{\log_b^{a+\epsilon}})$ for some $\epsilon > 0$, and if

 $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then:

regularity condition

$$T(n) = \Theta(f(n))$$

CS 477/677 - Lecture 5

Examples

$$T(n) = 2T(n/2) + n$$

$$a = 2, b = 2, log_2 2 = 1$$

Compare
$$f(n) = n$$
 with $n^{\log_2 2} = n$

$$\Rightarrow$$
 f(n) = Θ (nlg^on) \Rightarrow Case 2

$$\Rightarrow$$
 T(n) = Θ (nlgn)

Examples (cont.)

$$T(n) = 9T(n/3) + n$$

$$a = 9$$
, $b = 3$, $log_3 9 = 2$

Compare $f(n) = n \text{ with } n^{\log_3 9} = n^2$

$$\Rightarrow$$
 f(n) = O(n^{2-\varepsilon}) for $\varepsilon \le 1$ Case 1

$$\Rightarrow$$
 T(n) = Θ (n²)

Examples

$$T(n) = 2T(n/2) + n^2$$

$$a = 2$$
, $b = 2$, $log_2 2 = 1$

Compare $f(n) = n^2$ with n

$$\Rightarrow$$
 f(n) = Ω (n^{1+ ϵ})

Case 3 \Rightarrow verify regularity cond.: a $f(n/b) \le c f(n)$

$$\Rightarrow$$
 2 n²/4 \leq c n² \Rightarrow c = $\frac{1}{2}$ is a solution (c<1)

$$\Rightarrow$$
 T(n) = $\Theta(n^2)$

Examples (cont.)

$$T(n) = 2T(n/2) + \sqrt{n}$$

$$a = 2, b = 2, log_2 2 = 1$$

Compare $f(n) = n^{1/2}$ with n

$$\Rightarrow$$
 f(n) = O(n^{1-\varepsilon}) for $\varepsilon \le 1/2$ Case 1

$$\Rightarrow$$
 T(n) = Θ (n)

Readings

- For this lecture
 - Section 4.4
 - Coming next
 - Sections 4.5, 2.1, 2.2