4. depth shortening

Reduce no of i/p channels

Slide 7-12 13

2)-4) are apploximations of 1)

+ reduced complexity

- mostly at the price of a performance degradation

7.3 Pooling and unpooling layer

2D Pooling layer with stride sEN

· max pooling : P = max

of a, b, c...

· mean pooling : p = mean

· 12-norm pooling: p = 12 norm

Mostly we use the max pooling Slide 7-14

Difference you translation - invariant is translation equivalent.

we change in translation if the image is shifted by

I time frame, the opp is also

shifted by I time frame.

2D unpooling layer og 2 x 2

7.4 De convolutional layer

Stick 7-16

de convolutional layer \neq de convolution \uparrow $\hat{=}$ fractionally strided convolution \uparrow bad names $\hat{=}$ transposed strided convolution \downarrow $\hat{=}$ learnable upsampling

Goal . replaces unpooling

· increases spatial size/resolutions without changing the signal shape in the input

de convolutional layer =

- · zero insertion
- · convolution (low pass filtering) with a learnable kernel

Slide 7-18

Flatten layer can increase the number of computational complexity for the latter dense layer as its weight matrix is dependent on Nº i.e. quadratic on previous layer.

7.6 Global average pooling layer

GAP: more efficient attention layer than flatten layer.

- · replace each feature map by its a verage
- · much less neurons and weights in the final dense layers
- · Suitable for A) large DNN: reduced complexity

 A) small dataset: reduces overfitting

7.7 Architecture of CNNs

A CNN consists of mainly

- · Convolutional layer for heirarchical features learning
- · pooling layer to get abstract features

optionally

- · unpooling or deconvolutional layer
- · flatten or GAP layer
- · dense layers

(5

Why deep CNN?

- 1. Need deep architecture to extract heirarchical features from input
 - 2. large model capacity for difficult tasks.

Stide 7-19