Chapter 3:

Problem 4:

Let $m^*(E) = \infty$ for an infinite set and $m^*(E) = |E|$ for a finite set.

It's clear that m^* is defined for all sets of real numbers, is translation invariant, and countably additive. So m^* is a measure; we call it the counting measure.

Problem 7:

If $m^*(E)$ is the Lebesgue Outer Measure, it's somewhat clear that it's translation invariant; we can do this by making an open cover and shifting it.

Problem 8:

If $m^*(A) = 0$, then $m^*(A \cup B) \ge m^*(B)$, by monotonicity.

But also, $m^*(A \cup B) \le m^*(A) + m^*(B) = m^*(B)$ by countable subadditivity.

So $m^*(A \cup B) = m^*(B)$.

Problem 11:

Each (a, ∞) is measurable.

We have $\bigcap_{n=0}^{\infty} (n, \infty) = \emptyset$ which has measure 0, but $m((n, \infty)) \to \infty$. So $m(\bigcap_{n=0}^{\infty} E_i) \not\to m(\bigcap_{n=0}^{\infty} E_n)$

Problem 12:

Let $\langle E_i \rangle$ be a sequence of disjoint measurable sets, and A be a set.

Then
$$m^*(A \cap \bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} m^*(A \cap E_i)$$
.
So $m^*(A \cap \bigcup_{i=1}^{n} E_i) \ge \sum_{i=1}^{n} m^*(A \cap E_i)$.

So
$$m^*(A \cap \bigcup_{i=1}^{\infty} E_i) \ge \sum_{i=1}^{n} m^*(A \cap E_i)$$
.

But n is arbitrary, so $m^*(A \cap \bigcup_{i=1}^{\infty} E_i) \ge \sum_{i=1}^{\infty} m^*(A \cap E_i)$. Either by employing a similar argument or appealing to countable subadditivity, we get $m^*(A \cap \bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} m^*(A \cap E_i)$.

Problem 14:

Part a:

The Cantor set has measure zero; it's usually defined as

$$[0,1] \setminus ((1/3,2/3) \cup ((1/9,2/9) \cup (7/9,8/9)) \cup \ldots)$$

Now, [0,1] has measure 1, and is measurable.

Also, $((1/3, 2/3) \cup ((1/9, 2/9) \cup (7/9, 8/9)) \cup ...)$ has measure 1 (consider the geometric series $1/3, 2(1/3)^2 \dots$ It sums up to 1).

So the measure of the cantor set is 1 - 1 = 0.

Part b:

If we only remove $\alpha 3^- n$ at each step when we define the cantor set, then we can show that it would still be closed (as a complement in [0,1] of an open set) and by employing the same geometric series argument, it would have measure $1 - \alpha$.

Problem 17:

Part a:

Consider the P_i s as defined in this section. We're given that m[0,1) = $\sum m^* P_i = \sum m^* P$, so that the right hand side is either zero or infinite. But if it was zero, then we break countable subadditivity; it must be infinite. So we have an example where $m(\bigcup E_i) \leq \sum m^*(E_i)$.

Part b:

Define $E_0 = [0,1) \setminus P_0$ and $E_n = [0,1) \setminus P_n$ to get the desired result.

Problem 22:

Part a:

If f is measurable, then the restriction of f to any measurable set is measurable. If D_1 isn't measurable, then the interesection of all of the $\{x: f(x) \ge n\}$ isn't measurable, which is bad. Similarly, D_2 must be measurable.

Now, if all of D_1 , D_2 and the restriction of f to $D \setminus D_1 \cup D_2$ are measurable, then for each α we get $\{x : f(x) \geq \alpha\}$ the union of D_1 and a measurable set, so we win.

Part b:

Apply the same trick as used earlier this chapter; prove that if f and g measurable, then so is f^2 and f+g, and win using $fg=1/2[(f+g)^2-f^2-g^2]$.

Parts c and d are painfully trivial.

Problem 23:

This was a homework problem; just go there.

Problem 28:

I'm not sure how to do this one.

Problem 31:

Not sure how to do this one either. It looks like a very likely qual problem, too...:/

Chapter 4:

Problem 2:

Part a: Let f be a bounded function on [a,b] and let h be the upper envelope of f (that is, $h(x) = \inf_{\delta > 0} \sup_{|x-y| < \delta} (f(y)))$

Then $U - \int_a^b f \ge \int_a^b h$; let ϕ be a step function with $\phi \ge f$. Then $\phi \ge h$ except at a finite number of points, because step functions are discontinuous on only finitely many points and the upper envelope is lower than any continuous function above f.

Also, $U - \int_{a}^{b} f \leq \int_{a}^{b} h$; there's a sequence of step functions converging downwards to h, so by bounded convergence, we have our result. So $U - \int_a^b f = \int_a^b h$.

So
$$U - \int_a^b f = \int_a^b h$$
.

Part b:

We get a similar result for the lower envelope. So a bounded function on [a, b] is Riemann-integrable if and only if the integrals of its upper and lower envelopes are equal.

If the upper and lower envelopes are unequal on a set of greater than measure zero, this fails, as the lower envelope is always lower than the upper envelope.

If the upper and lower envelopes are equal except on a set of measure zero, this succeeds, rather obviously.

So a bounded function on [a, b] is Riemann-integrable if and only if the upper and lower envelopes are equal except on a set of measure zero. That is, a bounded function on [a, b] is Riemann-integrable if and only if the function is continuous except on a set of measure zero.

Problem 8:

Let $\langle f_n \rangle$ be a sequence of nonnegative functions on a domain, E. Define $f(x) = \liminf f_n(x).$

Let $h \leq f$ be any non-negative, simple function with finite measure support on the domain (say it has finite measure support on F.

Then define $h_n = \min(h, f_n)$. Now, $\int_E h \le \int_F h = \lim_F \int_F h_n \le \lim_E \int_E f_n$.

By taking supremums over h, we have our result.

Problem 14:

Part a:

Let $\langle g_n \rangle \to g$ almost everywhere, $\langle f_n \rangle \to f$ almost everywhere, and $|f_n| \le$ g_n , with all of the above functions being measurable, and $\int g = \lim \int g_n$.

Then $\int |f_n - f| \le \left| \int f_n - f \right| = \left| \int f_n - \int f \right| \to 0.$

Part b: NOTE: a similar problem was an exam problem. This problem can be generalized, and should be done in the context of L^p spaces.

Let $\langle f_n \rangle$ be a sequence of integrable functions in L^p with $f_n \to f$ almost everywhere.

If $||f_n|| \to ||f||$, then there's an $\epsilon > 0$ and a subsequence f_{n_k} with $|||f_{n_k}|| - ||f||| \ge$ ϵ . But

$$2||f_n - f|| \ge |||f_n|| - ||f|||$$

$$\to 0$$

If $||f_n|| \to ||f||$, then:

$$||f_n - f|| \le |||f_n|| - ||f|||$$
 (By reverse triangle inequality.)

So $||f_n - f|| \to 0$ if and only if $||f_n|| \to ||f||$.

Problem 15:

The entire problem is "Apply Littlewood's Three Principles" and the " $2^{-n}\epsilon$ trick". (On [-1,1] there is a (property) function such that $|f-\phi_1|$ $2^{-1}\epsilon/2...$ similarly, there is such a function on [-2, -1) and (1, 2] such that $|f - \phi_2| < 2^{-2} \epsilon/2$...induct, paste everything together, integrate, geometric series, win.)

Problem 16: NOTE: this was an exam problem.

First, note that if we have that this is true for all step functions vanishing except on a vinite interval, then we have our result; if $\lim \cos(nx)\phi(x)dx = 0$ for all such step functions ϕ , then because there's such a step function with $\int |f - \phi| < \epsilon$ for all $\epsilon > 0$, we have our result.

So, let ϕ be a step function on [a,b], and let $\epsilon > 0$. Partition [a,b] by $a = x_0 < x_1 \dots x_l = b$ so that ϕ is constant on each $(x_i, x_i + 1)$. Let M be the maximum of $|\phi|$ (which exists, as ϕ takes only finitely many values). Pick n large enough so that $2\pi/n < \epsilon/(lM)$. Integrate over each chunk of the partition; we end up with everything cancelling out except on sets of length less than $2\pi/n$. There's at most l of them, having magnitude at most M; we've won.

Problem 22:

Note: This problem is lol.

Let there be a sequence, $\langle f_n \rangle$, of measurable functions on a set, E, of finte measure, with $f_n \to f$ in measure.

Then every subsequence of f_n converges to f in measure, so every subsequence has a subsequence converging to f in measure.

Now, let there be a sequence, $\langle f_n \rangle$, of measurable functions on a set, E, of finte measure, with every subsequence of f_n having a subsequence converging to f in measure. Then every subsequence of f_n has a subsequence which has every subsequence have a subsequence that converges almost everywhere to f. Thus, every subsequence of f_n has a subsequence that converges almost everywhere to f. So f_n converges to f in measure.

Problem 25:

 \dots Seriously, the hint gives this entire question away. Pretty lame stuff, bro.

Chapter 5:

Problem	4:		
Problem	5:		
Problem	8:		
Problem	10:		
Problem	14:		
Problem	16:		
Problem	20:		
Problem	23:		

Problem 24: