Análisis complejo

Taller 10

Continuación analítica

Fecha de entrega: 24 de octubre de 2024

Sean $B_j := B_{r_j}(z_j)$ (j = 0, 1, ..., n) discos abiertos con $z_{j-1}, z_j \in B_{j-1} \cap B_j$ para todo j = 1, ..., n. Entonces $(B_0, B_1, ..., B_n)$ se llama cadena de discos. Si $f_j : B_j \to \mathbb{C}$ son funciones holomorfas tal que $f_{j-1} = f_j$ en $B_{j-1} \cap B_j$ para todo j = 1, ..., n, entonces f_n se llama extensión analítica de f_0 a lo largo de la cadena de discos $B_0, ..., B_n$.

- 1. Sea $\mathcal{B} = (B_0, \dots, B_n)$ una cadena de discos y sea $f_0 : B_0 \to \mathbb{C}$ una función analítica. Suponga que f'_0 tiene una extensión analítica a lo largo de \mathcal{B} . Demuestra que f_0 también tiene extensión analítica a lo largo de \mathcal{B} .
- 2. Sea $U = B_1(0)$ y

$$f: U \to \mathbb{C}, \quad f(z) = \sum_{n=1}^{\infty} 2^{-n^2} z^{2^n}.$$

Demuestre que f no tiene extensión análitica a ningún conjunto abierto G con $G \supseteq U$.

Hint. Demuestre que para todo $n \in \mathbb{N}$ existe un polinomio P_n tal que

$$f(e^{2\pi i/2^n}z) = P_n(z) + f(z).$$

3. Sea $U = B_1(0)$. Encuentre una continuación analítica a una región lo más grande posible de

$$f: U \to \mathbb{C}, \quad f(z) = \sum_{n=0}^{\infty} (-1)^n (2n+1)z^n.$$

Hint. Considere $f(w^2)$.

Sea X un espacio métrico. Una sucesión $(f_n)_{n\in\mathbb{N}}$ de funciones $U\to\mathbb{C}$ se llama continuamente convergente si para toda sucesión $(x_n)_{n\in\mathbb{N}}\subset X$ convergente el límite $\lim_{n\to\infty} f_n(x_n)$ existe.

- 4. (a) Sea X un espacio métrico y $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones en X que converge continuamente. Demuestre que $f: X \to \mathbb{C}, \ f(x) = \lim_{n\to\infty} f_n(x_n)$ está bien definido (es decir, que es independiente de la sucesión $(x_n)_{n\in\mathbb{N}}$ escogida) y que f es continua (inclusive si las f_n no lo son).
 - (b) Sea $U \subseteq \mathbb{C}$ abierto y $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones en U. Demuestre que lo siguiente es equivalente:
 - (i) $(f_n)_{n\in\mathbb{N}}$ converge compactamente a una función $f\in C(U)$.
 - (ii) $(f_n)_{n\in\mathbb{N}}$ converge continuamente.

En particular, una sucesión continuamente convergente de funciones holomorfas converge a una función holomorfa.