ATN

Aeronautical Telecommunication Network

Presented by

Na TAO

ALTRAN on behalf of ENAC

Objectives

- Describe data link chains
- Describe ATN

Outline

- Needs
- Integration into data link chains
 - ACARS
 - FANS 1/A
 - ATN

Introduction

Context ICAO Standardization

Needs vs. solutions

- Air-ground communication means
 - System oriented
 - Data transfer oriented
- Users' needs

For the user

- Network should be transparent
- QoS should be homogenous

Reminder

What we want

"How" is NOT their concern

The solutions

- ACARS: what existed (historical)
- FANS 1/A: the improvement
- ATN: the standardization

FANS 1/A transmissions

FANS 1/A performances (reminder)

- Round trip delay (CPDLC application)
 - Measured on MAS reception
 - Reims Trials (2008)
 - About 1700 data
- Min/Mean/Max : 2 / 13,4 / 347 secs
- Standard deviation: 19,1 sec
- Requirement:
 - -TT(95%) < 16s
- Actual performances:
 - TT(95%): 44 sec
 - <16 sec : 79 %

FANS 1/A performances (reminder)

- Due to its centralized architecture
- Depending on the A/G sub-network
- Performances may not comply with
 - ATC requirements
 - In continental regions

Consequences

- No ATC apps on pure ACARS
- ATC seems to be possible on FANS 1/A:
 - In non-dense areas
 - Applications requiring no QoS

ICAO Standardization

- Aims
 - Transparent supporting sub networks
 - End to end connectivity
 - Homogenous interfaces
 - Enhanced Quality of Service

-

- A requirement based approach

ICAO Standardization

- The choices
 - An aeronautical internet: ATN
 - One aircraft = one network
 - Routers between networks
 - At least same services
 - End-to-end connection
 - Sub network independent interface
 - ISO protocol based compliant with OSI model

ICAO Standardization

- Definition
 - The ATN is a global internetwork architecture providing a unique service for all the digital communications:
 - Reliable end to end COM services
 - Transparent to the end-user
 - Common for all the COM service types (ATC, AOC, AAC, APC)
 - A **single interface** for the applications
 - Integrating dissimilar networks (existing or emerging)

ATN Network

Network Architecture
Subnetworks
Protocol

ATN architecture

Functional principles of ATN

ATN and OSI model

6 - Presentation

5 - Session

4 - Transport

3c - SNICP

3b - SNDCF

3a - SNAcP

2 - Data-link

1 - Physical

AMSS Data 3

AMSS Data 3

- The aircraft declares itself on the network
- The communication is
 - X.25 type (ISO 8208)
 - Masking the communication node

AMSS Data 3

VDL

- Mask the VDL sub network as in AMSS
- Use of an ISO8208 interface
 - Transparent to the user
 - Similar to AMSS (homogenous)

VDL Mode 2

VDL Mode 2

VDL Mode 2

But

- When to trigger an X25 cnx request?
- Options:
 - By polling:
 - Always possible (ex. Satcom)
 - Event triggered:
 - Presence/absence declaration of the mobile network

Establishment

- The aircraft has the knowledge
 - Example with the GSIFs (Ground Station Information Frame) in VDL
 - It will initiate the X25 connection
 - Onboard sub network management
 - IS-SME (Intermediate System Subnetworking Management Entity)

IS-SME

- The IS-SME is responsible for the selection of specific A/G route based on owner preference and initiating subnetwork connection establishment
- Bound to
 - At one end to the sub network
 - On the other end, to the communication stack

VDL mode 2 example

- In the GSIF
 - Available ATN routers' @
 - The router choose among these
 - A « join event » is triggered and sent to IS-SME
- IS-SME request the X25 connection
- When the aircraft leaves the VDL coverage:
 - A « leave event » is triggered

VDL mode 2 example

- 1. GSIF received with available ATN routers
- 2. Choice of a ground router
- 3. Establish the end to end connection

ATN specificities

- Mobile connection (aircraft)
 - A single identifier for the router : the NSAP (Network Service Access Point)
 - Dynamic routing
 - End-to-end integrity problem
 - Application data encoding
 - Mobile SNDCF and routing to the aircraft
 - The mis-direction and the PM (Protected Mode)

ATN address format

Total: 20 bytes

VER : Version ADM : Administration Identifier

RDF : Routing Domain Format ARS : Admin Region Selector

LOC: Location

SYS : System Identifier SEL : NSAP Selector

A hierarchical address scheme

NSAP address

Prefix of a french domain Located in Toulouse

4700278183FR00TLS0000000001

Common European ATN prefix

4700278183FR00TLS

4700278183

English prefix (UK)

4700278183UK

NSAP address

4700278183UK00LON000000000

A hierarchical address scheme

- Prefix for China:
 - Asia region: 4700278181ZB00 (Hexadecimal Code of the ADM Field: 5A42)
 - Asia/Pacific/NAM: 4700278191ZB00

ATN network addressing

- Advantages
 - Facility determine Air/Ground/ATC/other
 - Hierarchy facilitating the responsibilities
 - Routing optimization
 - Reduces number of ground routes
 - Routing policy is eased

ATN dynamic routing

- IDRP (Inter domain Routing Protocol)
 - ISO 10747
 - Equivalent to BGP (Border Gateway Protocol) / Internet
 - « path vector »
 - Loop detection
 - Route aggregation
 - QoS routing
 - . . .

End to end integrity

- Undetected erroneous message < 10⁻⁸
- For a CRC, P < 2-length of CRC
- Length of CRC > 26 bits
 - Choice of a 32 bits CRC (4 bytes)
 - $-P < 2.10^{-10}$

Application data encoding

- Presentation layer of the OSI model
 - PER: packet encoding rules
 - No redundant/unused data
 - Coherent with the sub network performances
- Drawback: not easy to read or decode

The mobile SNDCF

- Why?
 - For accommodation purposes
 - Mobile sub network with ISO8208 interface
 - An internet type of protocol stack
 - Reduce the limits of mobile sub network compared to RCP
 - In particular capacity

The mobile SNDCF

- Requests X25 PLP cnx establishment
- Negotiates compression algorithms
 - LREF
 - Deflate

Initiation procedure

Airborne BIS with IDRP

ISO/IEC 10747 (IDRP)

> **ISO 8473** (CLNP)

ISO 9542 (ES-IS)

IS-SME

Mobile SNDCF

ISO 8208

ARINC 429 Williamsburg

ARINC 429

VDL ModeS **Satellite**

Application to VDL 2

Periodical broadcast of GSIF:

- « I am connected to »
 - •ADM1/ARS1
 - •ADM3/ARS3

VDR Transceiver
Decodes the GSIF
Chooses the router
Provides ADM + ARS

Join event sent By IS-SME Triggers ISO8208 Connection

Data: ISH (Intermediate System Hello) of aircraft's router

RGS VDL

Application à la VDL 2

Application à la VDL 2

- Island definition
- ATC Backbone definition
- Home Mobile Routing Domain definition
- Routing set up...

The Island concept

- Confederation:
 - A group of one or more routing domains (RD)
 - Sharing the same routing policies.
- A confederation not including mobile domain: an Island
 - This means: without aircraft
- The Backbone Island
 - The interconnection part, boundary for aggregation
 - Transmissions from one island to another REQUIRES transiting through the backbone

Island/confederations

HMRD

- Each aircraft is a mobile RD
 - A network, not a single host
 - A huge difference with mobile IP
- A mobile RD is associated to a ground RD
 - Can be shared with other mobile RD
 - Provides a route (common prefix)
 - e.g. all A/C fo an Airline
 - e.g. general aviation from the 'region'
 - The only use: stability and rapidity of routing convergence

Routing rules

- HMRD shall be declared to the BB
 - Sends route to the aircraft
- When an aircraft connects
 - The RD connected with the aircraft shall send the information to the aircraft's HMRD

- An aircraft connects to an RD
 - The router receiving the connection broadcasts the route into its island
 - The backbone router receiving the information forwards it after « reduction »
 - The aircraft is within its HMRD island (Island X): nothing changes for this prefix
 - The aircraft is outside its HMRD island: route cannot be reduced by the backbone router

Routing to mobiles (summary)

- In an island
 - Routes to A/C in my island
 - Routes to A/C in another island for which the HMRD is in my island
 - Routes to HMRD in my island
 - All A/C route
- In the backbone
 - Routes to A/C out of their HMRD island
 - Routes to HMRD

Integrity requirement

7 - Application

6 - Presentation

5 - Session

4 - Transport

3c - SNICP

3b - SNDCF

3a - SNAcP

2 - Data-link

1 - Physical

Development constraints

Protected by Transport Checksum

Required integrity level

Integrity level guaranteed by the transport checksum

Development constraints

- Requires software assurance level
 - DO178B level C
 - Costs!!!
- Protecting at application level
 - Reduces the costs
- → The Protected Mode (PM)

Protected Mode

- Combine:
 - Application message
 - Aircraft flight number
 - Ground system identifier
- Compute a checksum at application level
 - Digital signature
- Add it to the transmitted message

PM and integrity PM Level Required integrity level 7 - Application 6 - Presentation Protection PM Software 5 - Session constraints 4 - Transport Integrity level 3c - SNICP guaranteed by the transport 3b - SNDCF checksum 3a - SNAcP **Transport** 2 - Data-link Checksum 1 - Physical

Protected Mode

- Pros
 - Cost effective
 - Also mitigates risks outside the scope of the network (e.g. bad configuration)
- Cons
 - No recovery: go back to voice!

The future

- System requirements reinforcement
- Cost effectiveness requirements
- Use of IPv6 like standards

Bibliography

- ARINC 618 620 622 663 664
- OACI Annexe 10 Volume 3 Chap 3
- OACI CAMAL (Comprehensive ATN Manual)
- OACI Doc 9880 Manual on ATN technical specifications

