Study of Spatial Biases in KNN Distance Metrics

David Pojunas

Advisor: Dr. Ferrer

Motivation

- ☐ Spatial biases are usually ignored when classifying images, or extracting features
- A preliminary investigation on how spatial biases affect the error rate in k-nearest-neighbor classifiers using different distance metrics.
- Does permuting the order of image pixels significantly alter the classification accuracy?

Metrics

- Images
- BRIEF descriptors
- ☐ Dr. Ferrer's Convolutional Method

BRIEF

Goal:

Represent features in an image with a binary representation of relations of pixels

Algorithm:

- 1. Pick n pairs of pixels (x,y)
- If x < y, return 1
 If x ≥ y, return 0

Convolutional Method (One Image)

1

Extract 3x3 kernels from an image pixel by pixel

2

Cluster 8 kernels with K-means

5

Convolve each kernel with the image

4

For each image we have 8 versions in an array, and we do this for all images

Evaluating KNN Distance Metrics

LOAD LABELED DATA FOR TRAINING AND TESTING

FILTER ALL IMAGES

BRIEF

Returns all images in a binary format defined by the spatial bias.

OR

CONVOLUTIONAL

Returns all images as a list of convolved images from each kernel

EVALUATE DISTANCES THROUGH KNN

BRIEF

Distance is defined as the hamming distance

OR

CONVOLUTIONAL

Distance is defined as the sum of distances between all kernized images

Dr. Ferrers Results

Error Rates (%)					
Distance Metric	Original	Permuted			
Euclidean	3.12	3.08			
Convolutional Euclidean	2.72	6.09			
Uniform Classical BRIEF	3.47	3.54			
Gaussian Classical BRIEF	3.98	5.54			
3x3 Neighbor BRIEF	5.42	3.39			
Uniform Neighbor BRIEF	3.44	3.47			
Gaussian Neighbor BRIEF $(\frac{1}{3})$	3.23	3.44			
Gaussian Neighbor BRIEF $(\frac{3}{7})$	3.47	3.41			

Table 1:	MNIST	Error	Rates	(%)
----------	-------	-------	-------	-----

Execution Times (s)					
Distance Metric	Conversion	Evaluation			
Euclidean	0	914			
Convolutional Euclidean	3358.00	15414			
Uniform Classical BRIEF	3.18	651			
Gaussian Classical BRIEF	4.17	621			
3x3 Neighbor BRIEF	3.76	655			
Uniform Neighbor BRIEF	3.24	622			
Gaussian Neighbor BRIEF $(\frac{1}{3})$	3.25	637			
Gaussian Neighbor BRIEF $(\frac{1}{7})$	3.40	640			

Table 2: Execution Times (s)

What's Next

- 1) Generalize the convolutional method for any we can define a distance between
- 2) Test and research new distance metrics for BRIEF descriptors
- 3) Deploy these methods for classifying real time images
 - a) Use image datasets derived from robots in realistic environments

Generalizing the Convolutional Method

Issues with the Generalization

- Convolving binary images was challenging
 - Each convolution defined the distance between the kernel and neighborhood of pixels
- ☐ Generalizing the code slowed down performance and caused BUGS!
- Increased the number of images needed to store in memory
 - ☐ All training images, all BRIEF descriptors, and all convolved images
- □ Slow and memory intensive process for running BASIC Images through the
 - **Convolutional Method**
 - ☐ Clustering images through k-means took a long time

New Direction

- ☐ We started to blame k-means for poor performance
- ☐ Dr. Ferrer had a replacement clustering algorithm
 - Self Organizing Custers (SOC)
- □ Next step: Implement and deploy new clustering algorithm

Self Organizing Clusters vs. K-means

Testing Method: SOC vs k-means

60,000 Images

<u>K-MEANS</u> 3557.204 seconds

<u>SOC</u> 123.619 seconds

Initial Findings

Clusters as KNN backend

Clusters 8	Correct	Incorrect
k-means	5844	4156
soc uniform	3408	6592
random	3488	6512
Clusters 12	Correct	Incorrect
Clusters 12 k-means	Correct 6102	Incorrect 3898

<u>Clustering Counts</u>								
Cluster	C1	C2	С3	C4	C5	C6	С7	C8
k-means:	[7291	, 8950,	5057,	8017,	10690,	9268,	, 5842	, 4885]
soc:	[743]	7, 3276	1, 444	6, 1356	53, 135	4, 116	5, 327,	4]
uniform random:	[7531	, 7490,	7476,	7451,	7534, 7	7458, 7	7524, 7	7528]

Can We Find Outliers?

- ☐ For each cluster what label would it be?
- ☐ Looked at every cluster and counted what label is assigned to each image in the cluster
- ☐ The reason why k-means was a better backend to KNN than the self organizing cluster

k-means	gini %	6 of total	soc	gini	% of total
cluster-0	0.1301603927	0.084	cluster-0	0.8553339997	0.070
cluster-1	0.2525019984	0.081	cluster-1	0.7159045192	0.076
cluster-2	0.71091586	0.12	cluster-2	0.8847461958	0.20
cluster-3	0.5945320733	0.17	cluster-3	0.8726457832	0.21
cluster-4	0.6647465133	0.13	cluster-4	0.8678705434	0.07
cluster-5	0.2681977512	0.10	cluster-5	0.875632851	0.12
cluster-6	0.6890316238	0.15	cluster-6	0.8938628415	0.23
cluster-7	0.729119827	0.15	cluster-7	0.6761667066	0.03

Final Thoughts

- ☐ We attempted to remove outliers in the self-organizing clusters
- ☐ Concluded that k-means still wins for clustering images
- ☐ We are still looking to improve the self-organizing clusters
- Eventually tie these clustering methods back in with the convolution method