Michael Silverstein

Thanks Wikipedia <3

Aim 2: General Disease Predictor - Multiclass Bayesian Classifier

Step 1: Parameter training

Observed bacterial abundance values for all features (bacterial phylums) for a given sample, i, with class label, k_j , is denoted by the vector, $\mathbf{x}_{i \, k j}$. All \mathbf{n} sample vectors are concatenated into a **training set**, $X = \mathbf{n}$

$$\begin{bmatrix} \mathbf{x}_{1,k_j} \\ \vdots \\ \mathbf{x}_{n,k_j} \end{bmatrix} = \begin{bmatrix} x_{1,1,k_j} & \dots & x_{1,b,k_j} \\ \vdots & \vdots & \vdots \\ x_{n,1,k_j} & \dots & x_{n,b,k_j} \end{bmatrix}, \text{ for } b, \text{ features.}$$

The **joint probability** for a given sample, x, with class, k_i , is,

$$P(\boldsymbol{x}|k_j) = P(x_1, \dots, x_i|k_j) [\boldsymbol{Eq. 1}]$$

A mean vector, $\mu_{b,kj}$, can be constructed to describe the expected value of feature vector, B_{kj} , for feature b, for class, k_j , and for all samples within a given class, m,

$$\mu_{k_j} = E\left[B_{k_j}\right] = \left[E\left[B_{1,k_j}\right], \dots, E\left[B_{m,k_j}\right]\right] [Eq. 2]$$

Where the **expected value** of a vector, B_{kj} , for, m, observations is the arithmetic mean,

$$E\left[\boldsymbol{B}_{k_j}\right] = \overline{\boldsymbol{B}_{k_j}} = \frac{1}{m} \sum_{i=1}^{m} B_i \left[\boldsymbol{E}\boldsymbol{q}.3\right]$$

The maximum likelihood estimator of the **covariance matrix**, Σ_{k_j} , for a vector, B_{k_j} , with m observations is,

$$\Sigma_{k_j} = \frac{1}{m} \sum_{i=1}^{m} \left(B_i - \overline{B_{k_j}} \right) \left(x_i - \overline{B_{k_j}} \right)^T [Eq. 4]$$

Step 2: Label assignment

After model parameters have been calculated for each class, labels can be assigned to a **test set** with t

samples,
$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_t \end{bmatrix} = \begin{bmatrix} y_{1,1} & \dots & y_{1,b} \\ \vdots & \vdots & \vdots \\ y_{t,1} & \dots & y_{t,b} \end{bmatrix}$$
.

Assuming that each feature is normally distributed, the joint probability from Eq. 1 can be described by a multivariate normal probability density function (PDF) for a vector of observables, y, for each class, k_j ,

$$f_{k_{j}}(\mathbf{y}) = \frac{\exp\left(-\frac{1}{2}\left(\mathbf{y} - \boldsymbol{\mu}_{k_{j}}\right)^{T} \boldsymbol{\Sigma}_{k_{j}}^{-1} \left(\mathbf{y} - \boldsymbol{\mu}_{k_{j}}\right)\right)}{\sqrt{2\pi^{i} \left|\boldsymbol{\Sigma}_{k_{j}}\right|}} \text{ or } \mathbf{y} \sim \mathcal{M}(\boldsymbol{\mu}_{k_{j}}, \boldsymbol{\Sigma}_{k_{j}}) \text{ [Eq. 5]}$$

A label, C_i , is then stochastically assigned to sample, y, after the PDF of y has been calculated from each class. C_i is drawn from the normalized distribution of each PDF, f_{k_i} ,

$$C_i \sim \frac{\left[f_{k_1}(\mathbf{y}), \dots, f_{k_j}(\mathbf{y})\right]}{\sum_{All\ classes} f_{k_i}(\mathbf{y})} [Eq. 6]$$

Naïve Bayes Assumption

Notice that the multivariate PDF requires taking the inverse of the covariance matrix, therefore the covariance matrix must be non-singular in order to calculate the probability $f_B(B)$. This requires that no columns of the covariance matrix be linearly dependent, the probability of which increases as the amount of "missing data" (zero-inflated data) increases. Intuitively, this makes sense: the covariance matrix must span *all b* dimensions of the feature space in order for the variance between each dimension to be represented.

The Naïve Bayes assumption addresses this by assuming class conditional independence, which alters Eq. 1 to,

$$P(\mathbf{x}|k_j) = P(x_1|k_j)P(x_2|k_j) \dots P(x_b|k_j) = \prod_{i=1}^b P(x_i|k_j) [\mathbf{Eq.7}]$$

With the Naïve Bayes assumption, given a class features are considered to be independent of one another. Instead of using multivariate distribution to describe the PDF over each class, each class, k_j , is described by the product of **normal univariate distributions**, for each feature b, altering Eq. 5 to,

$$f_{k_j}(\mathbf{y}) = \prod_{i=1}^{b} \frac{1}{\sqrt{2\pi\sigma_{i,k_j}^2}} \exp\left(-\frac{\left(y_i - \mu_{i,k_j}\right)^2}{2\sigma_{i,k_j}^2}\right) \text{ or } \mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}_{k_j}, \boldsymbol{\sigma}_{k_j})[\boldsymbol{Eq}.8]$$

Where, μ_{i,k_j} is the **mean** (an element from the mean vector $\boldsymbol{\mu_{k_j}}$ calculated in [*Eq. 2J*) and σ_{i,k_j} , is the **standard deviation** of feature, i, for class, k_j , and is contained within a set of all standard deviations for class k_j in the vector, $\boldsymbol{\sigma_{k_j}}$,

$$\sigma_{k_j} = \bigcup_{i=1}^{b} \sqrt{\frac{1}{m} \sum_{l=1}^{m} (B_l - \mu_{i,k_j})^2} \quad [Eq. 9]$$

DISCUSS WHY NAÏVE AND NON-NAÏVE IN RESULTS/DISCUSSION

A summary of the above equations can be seen in Table 1 and a graphical representation of the workflow can be seen in Figure 1.

Method	Expected value of class	Variance of class	PDF
Non-Naïve Bayes	μ_{k_j} [Eq. 3]	Σ_{k_j} [Eq. 4]	$\mathcal{M}(\mu_{k_j}, \Sigma_{k_j})$ [Eq. 5]
Naïve Bayes	μ_{k_i} [Eq. 3]	σ_{k_i} [Eq. 9]	$\mathcal{N}(\mu_{k_i}, \sigma_{k_i})$ [Eq. 8]

Table 1 Description of statistical building blocks of the Naive and Non-Naive Bayesian classifiers

Figure 1 Bayesian Classification (Naive and Non-Naive) Workflow