Location 6: Aggregate Demand

- Locating an NF at the center of population of a region does not reduce the travel distance between the NF and the population to zero
 - Need to estimate the average distance from the center to the region
 - Will assume the population is uniformly distributed over a region
 - Useful for retail distribution where location of each EF is not known

Bottom-Up vs Top-Down Analysis

Bottom-Up: HW3 Q2

$$\mathbf{P}_{3\times 2}$$
 = lon-lat of EFs

$$\mathbf{f} = [48, 24, 35]$$
 (TL/yr)

$$r = 2$$
 (\$/TL-mi)

$$g = \frac{1}{3} \left[\frac{d_{RD}(\mathbf{P}_1, \mathbf{P}_2)}{d_{GC}(\mathbf{P}_1, \mathbf{P}_2)} + \frac{d_{RD}(\mathbf{P}_2, \mathbf{P}_3)}{d_{GC}(\mathbf{P}_2, \mathbf{P}_3)} + \frac{d_{RD}(\mathbf{P}_3, \mathbf{P}_1)}{d_{GC}(\mathbf{P}_3, \mathbf{P}_1)} \right]$$

$$TC(\mathbf{x}) = \sum_{i=1}^{3} f_i rg d_{GC}(\mathbf{x}, \mathbf{P}_i)$$
 (outbound trans. costs)

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} TC(\mathbf{x})$$

$$TC^* = TC(\mathbf{x}^*)$$

$$\mathbf{x}^{\text{cary}} = \text{lon-lat of Cary}$$

$$TC^{\text{cary}} = TC(\mathbf{x}^{\text{cary}})$$

$$\Delta TC = TC^{\text{cary}} - TC^*$$

Top-Down: estimate r
 (circuity factor cancels, so
 not needed, see HW 4 Q2)

$$TC_{\rm OLD} \rightarrow r_{\rm nom} \rightarrow TC_{\rm NEW}$$

$$TC^{\text{cary}} = \text{current known } TC$$

10 ton/TL= known tons per truckload

$$\mathbf{f} = [480, 240, 350]$$
 (ton/yr)

$$r_{\text{nom}} = \frac{TC^{\text{cary}}}{\sum_{i=1}^{3} f_i d_{GC}(\mathbf{x}^{\text{cary}}, \mathbf{P}_i)}$$
 (\$/ton-mi)

$$TC(\mathbf{x}) = \sum_{i=1}^{3} f_i r_{\text{nom}} d_{GC}(\mathbf{x}, \mathbf{P}_i)$$

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} TC(\mathbf{x})$$

$$TC^* = TC(\mathbf{x}^*)$$

$$\Delta TC = TC^{\text{cary}} - TC^*$$

Actual vs Population-Inferred Demand

- Actual demand:
 - Know location of each customer along with their demand
 - Example: U.S. foundries, concentrated in Great Lakes
- Population-inferred demand:
 - Assume demand proportional to geographical dispersion of population
 - Example: Any logistics network for retail

U.S. Geographic Statistical Areas

- Defined by Office of Management and Budget (OMB)
 - Each consists of one or more counties

Aggregate Demand Point Data Sources

- Aggregate demand point: centroid of population + area + population
- Good rule of thumb: use at least 10x number of NFs (\approx 100 pts provides minimum coverage for locating \approx 10 NFs)
- 1. City data: ONLY USE FOR LABELING!, not as aggregate demand points
- 2. 3-digit ZIP codes: \approx 1000 pts covering U.S., = 20 pts NC
- 3. County data: \approx 3000 pts covering U.S., = 100 pts NC
 - Grouped by state or CBSA
 - CBSA (Core-Based Statistical Area) defined by set of counties (918 in U.S.)
 - CSA (Combined Statistical Area) defined by set of CBSAs (180 in U.S.)
 - FIPS code = 5-digit state-county FIPS code
 = 2-digit state code + 3-digit county code
 = 37183 = 37 NC FIPS + 183 Wake FIPS
- 4. 5-digit ZIP codes: > 35K pts U.S., ≈ 1000 pts NC
- 5. Census Tract: > 84K pts U.S., \approx 2700 pts NC
- 6. Census Block Group: > 240K pts U.S., ≈ 1000 pts Raleigh-Durham-Cary, NC CSA
 - Grouped by state, county, CBSA, or CSA
 - Finest resolution aggregate demand data source
 - Each group is composed of several census blocks, but blocks don't have area info

City vs CSA Population Data

Rank	City; State	2010 population	2012 population
1	New York City; New York	8,175,133	8,336,697
2	Los Angeles; California	3,792,621	3,857,799
3	Chicago; Illinois	2,695,598	2,714,856
4	Houston; Texas	2,099,451	2,160,821
5	Philadelphia; Pennsylvania	1,526,006	1,547,607
6	Phoenix; Arizona	1,445,632	1,488,750
7	San Antonio; Texas	1,327,407	1,382,951
8	San Diego; California	1,307,402	1,338,348
9	Dallas; Texas	1,197,816	1,241,162
10	San Jose; California	945,942	982,765
11	Austin; Texas	790,390	842,592
12	Jacksonville; Florida	821,784	836,507
13	Indianapolis; Indiana	820,445	834,852
14	San Francisco; California	805,235	825,863
15	Columbus; Ohio	787,033	809,798
16	Fort Worth; Texas	741,206	777,992
17	Charlotte; North Carolina	731,424	775,202
18	Detroit; Michigan	713,777	701,475
19	El Paso; Texas	649,121	672,538
20	Memphis; Tennessee	646,889	655,155

Resolution of Aggregate Data Points

Demand Point Aggregation

- Existing facility (EF): actual physical location of demand source
 - Each EF has a well-defined weight w_i and location x_i
- Aggregate demand point: single location representing multiple demand sources in a region
 - Need to determine aggregate weight w_{agg} and location x_{agg}
 - Also, need measure a of extent of region, (length, 1-D; area, 2-D), since assuming demand is uniformly spread over region

Centroid as Aggregate Location

Calculation of aggregate location depends on objective

For minisum location, would like for any location x:

$$(w_1 + w_2)d(x, x_{agg}) = w_1d(x, x_1) + w_2d(x, x_2), \quad \text{let } x = 0, x_1, x_2 > 0$$

$$(w_1 + w_2)x_{agg} = w_1x_1 + w_2x_2$$

$$x_{agg} = \frac{w_1x_1 + w_2x_2}{w_1 + w_2} \Rightarrow \quad \text{centroid}$$

Note: if $x_1 < x < x_2$, then x_{agg} not centroid

• For squared distance: $(w_1 + w_2) x_{agg}^2 = w_1 x_1^2 + w_2 x_2^2$

$$x_{\text{agg}} = \sqrt{\frac{w_1 x_1^2 + w_2 x_2^2}{w_1 + w_2}} \Rightarrow \text{not centroid}$$

1-D Average Distance

 Define region enclosing multiple points, with total weight of points spread uniformly across region

- Calculation of average distance d_a from x to all points in region differs if inside/outside region
 - $-\ d_a^{\ 0}$ (average distance if x at centroid) used to approximate d_a
 - **Note:** d_a^0 and $d_a > 0$ even when d = 0

$$d = |x - x_{\text{centroid}}|, \quad r = \frac{|x_{\text{end}} - x_{\text{begin}}|}{2}$$

$$d_a = \begin{cases} \frac{r}{2} + \frac{d^2}{2r}, & \text{if } d < r \\ d, & \text{otherwise} \end{cases}$$

$$d_a^0 = \max\left\{d, \frac{r}{2}\right\} \approx d_a$$

2-D Average Distance

$$a = \pi r^2 \Rightarrow r = \sqrt{\frac{a}{\pi}}$$

Total distance centroid to all points (x, y) in a:

$$\iint_{a} \sqrt{x^{2} + y^{2}} dx dy = \int_{0}^{r} \int_{0}^{2\pi} s \cdot s d\theta ds = 2\pi \int_{0}^{r} s^{2} ds = \frac{2}{3} \pi s^{3} \Big|_{s=0}^{r} = \frac{2}{3} \pi r^{3}$$

Dividing total distance by a gives approx. average distance:

$$\frac{\frac{2}{3}\pi r^3}{a} = \frac{2}{3}r \Rightarrow d_a^0 = \max\left\{d, \frac{2r}{3}\right\} \approx d_a$$

Empirical estimate, where $d_a > d$ even when d > r:

Estimate for
$$d < r$$

$$d_a = \begin{cases} \frac{2r}{3} + \frac{d}{48} + \frac{9d^2}{20r}, & \text{if } d < r \\ d + \frac{3r^2}{23d}, & \text{otherwise} \end{cases}$$