MATH 9500 **FALL 2020** HOMEWORK 6

Due Monday, November 9, 2020

- 1. (5 pts) Let R be an integral domain. Show that R is a Prüfer domain if and only if every overring of R is integrally closed. (Hint: consider R_M for some maximal ideal and if x, y in R_M , consider $R_M[\frac{y^2}{x^2}]).$
- 2. (5 pts) Show that if K is a field then any maximal ideal of $K[x_1, x_2, \cdots, x_n]$ can be generated by n elements.
- 3. Let R be a commutative ring with 1 and $S \subset R$ a multiplicatively closed subset not containing 0.
 - a) (5 pts) Show that $R[x]_S = R_S[x]$.
 - b) (5 pts) Show that $R[[x]]_S \subseteq R_S[[x]]$.
 - c) (5 pts) Let $S = R \setminus \{0\}$. Show that equality in b) holds if and only if for every countable collection $\{a_i\}_{i\in\mathbb{N}}$ of elements of S, $\bigcap_{i\in\mathbb{N}}(a_i)\neq 0$. d) (5 pts) Show that if R is a PID then every $S\subseteq R$ satisfies the above property if and only if
 - R is a field.
- 4. (5 pts) Show that if R is a 0-dimensional rings then any nonunit of R is a zero-divisor.