R15

Code: 15A05404

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) Define a DFA formally.
 - (b) Differentiate between a Moore machine and a mealy machine.
 - (c) What are various forms in which we can represent regular languages?
 - (d) Construct a DFA that accepts strings which does not contain a substring of 110.
 - (e) State and prove ARDEN's theorem.
 - (f) When do we say a CFG is in Greibach Normal Form?
 - (g) Compare and contrast DPDA and NPDA.
 - (h) State the properties of LR grammars.
 - (i) Write short notes on Linear Bounded Automata.
 - (j) List the closure properties of Recursively Enumerable Languages.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

2 Convert the following mealy machine into its equivalent Moore machine.

From state	i/p	To state	o/p	i/p	To state	o/p
Q_0	0	Q ₁	N	1	Q_3	N
Q ₁	0	Q_2	N	1	Q_3	N
Q_2	0	Q_2	Υ	1	Q_3	N
Q_3	0	Q_1	N	1	Q_4	N
Q_4	0	Q ₁	N	1	Q_4	Υ

OR

3 Minimize the following automata.

UNIT – II

4 Prove that the language 0^p p is a prime number is not regular.

OR

- 5 (a) Explain how equivalence between two FA is verified with an example.
 - (b) What are the applications of regular expressions and finite automaton?

Contd. in page 2

Code: 15A05404

UNIT - III

6 Convert the following grammar into Greibach Normal form:

$$A_1 \rightarrow A_2 A_3; \; A_2 \rightarrow A_3 A_1 | \; b; \; A_3 \rightarrow A_1 A_2 | \; a;$$

OR

7 Explain the closure properties of Context Free languages.

(UNIT - IV)

8 Construct a PDA that recognizes balanced parentheses.

OR

9 Construct a PDA that recognizes strings of type aⁱbⁱc^{i+j}.

UNIT – V

10 Construct a Turing machine which carries out proper subtraction (a-b=0, if a<b).

OR

11 (a) Explain Chomsky Hierarchy of languages.

(b) Explain any four variations of Turing machines.
