ECN 7060, cours 10

William McCausland

2022-11-15

Éléments de la théorie de décision

Objets:

- $ightharpoonup X = (X_1, \dots, X_n)$, données aléatoires
- $ightharpoonup x = (x_1, \dots, x_n)$, réalisation des données
- ightharpoonup heta, le paramètre de la loi des données
- ightharpoonup a, une action (par exemple, le choix d'une estimation de θ)

Fonctions primitives:

- $f(x|\theta)$, la densité des données
- $\blacktriangleright \pi(\theta)$, la densité *a priori* de θ
- \blacktriangleright $L(\theta, a)$, une fonction de perte

Fonction (ou règle) de décision :

 \triangleright $\delta(X)$ est l'action comme fonction des données.

Fréquentiste et bayésien avant l'observation des données

Fréquentiste et bayésien après l'observation des données

Fonction de risque

Pour une fonction de perte $L(\theta,a)$ donnée et une fonction de décision (souvent un estimateur) $\delta(X)$ donnée, la fonction de risque est, dans la notation de Casella et Berger :

$$R(\theta, \delta) = E_{\theta}[L(\theta, \delta(X))].$$

- L'espérance est par rapport à la loi de X pour θ donné.
- Pour un bayésien, θ est aléatoire et on peut écrire

$$R(\theta, \delta) = E[L(\theta, \delta(X))|\theta].$$

- Problèmes :
 - Spécifier la fonction $\delta(\cdot)$ peut être onéreux et il est nécessaire pour calculer $R(\theta, \delta)$ même pour une seule valeur de θ .
 - ▶ $R(\theta, \delta)$ est une fonction de θ . Ce qui marche bien pour une valeur de θ ne marche pas toujours bien pour une autre.

Risque de Bayes

Le risque de Bayes, pour une densité a priori $\pi(\theta)$ donnée, est

$$r(\pi, \delta) \equiv E[R(\theta, \delta)] = \int \pi(\theta) E[L(\theta, \delta(X))|\theta] d\theta$$
$$= E[E[L(\theta, \delta(X))|\theta]]$$
$$= E[L(\theta, \delta(X))].$$

- Attention : la première espérance est par rapport à la loi *a priori* de θ , la denière espérance est par rapport à la loi conjointe de θ et X.
- En même temps,

$$r(\pi, \delta) = E[E[L(\theta, \delta(X))|X]].$$

Règles (de décision) de Bayes

- ► Rappel : $r(\pi, \delta) = E[E[L(\theta, \delta(X))|X]]$.
- ▶ Une *règle de Bayes* est une fonction de décision δ^* qui minimise $r(\pi, \delta)$ pour $\pi(\theta)$ et $L(\theta, a)$ donnés.
- Difficultés potentielles :
 - ightharpoonup non-unicité de δ
 - lacktriangle absence d'une solution parce que $r(\pi,\delta)=\infty$ pour tous δ
- Même si $r(\pi, \delta)$ est toujours infini, on peut souvent trouver, pour x donné, $\delta(x)$ qui minimise la perte a posteriori espérée $E[L(\theta, \delta(X))|X]$ quand X = x.
 - C'est une règle de Bayes généralisée.
 - ► En pratique, on calcule $\delta(\cdot)$ à x observée seulement; $\delta(x)$ a souvent la même dimension que θ .
 - Pour la perte quadratique, $\delta(x)$ est la moyenne a posteriori.
 - Pour la perte valeur absolue, $\delta(x)$ est la médiane a posteriori.
 - Pour une autre perte, on peut approximer $\delta(x)$ par simulation.

Dominance et admissibilité

- La fonction de décision δ^* domine la fonction de décision δ par rapport à la fonction de perte $L(\theta,a)$ si $R(\theta,\delta^*) \leq R(\theta,\delta)$, avec une inégalité stricte pour au moins une valeur de θ .
- Une fonction de décision est admissible s'il n'y a pas d'autre fonction de décision qui la domine.
- Analogie : l'admissibilité et l'optimalité dans le sens de Pareto
 - $ightharpoonup R(\theta, \delta)$ comme moins l'utilité pour l'individu θ de l'allocation δ .
 - Comme une allocation Pareto peut être très injuste, une règle admissible peut être très mauvaise pour des valeurs importantes de θ : l'estimateur $\delta(X)=0$ de θ dans le modèle Bernoulli avec perte quadratique ne peut pas être dominée.

Les règles de bayes et l'admissibilité

- L'admissibilité de δ est quasi-nécessaire pour que δ soit une règle de bayes; elle est quasi-suffisante pour que δ soit une règle de bayes généralisée.
- Supposons que δ minimise $r(\pi, \delta) = \int \pi(\theta) R(\theta, \delta) d\theta$, pour une fonction $\pi \colon \Theta \to \mathbb{R}_+$. L'inadmissibilité de δ est possible seulement si δ est dominé sur un ensemble de π -mesure zéro :
 - Si δ est inadmissible, il existe une δ^* qui la domine : il y a un ensemble $\bar{\Theta}$ où $R(\theta,\delta)>R(\theta,\delta^*)$. Il faut que $\pi(\bar{\Theta})=0$. Sinon, $r(\pi,\delta^*)< r(\pi,\delta)$ et $\delta(x)$ ne minimise pas $r(\pi,\delta)$.
- À quelques conditions techniques près, un estimateur admissible est une règle de Bayes généralisée (avec possiblement une loi a priori impropre). (Complete class theorem)

Biais, EMQ

- Notation, définitions
 - W est un estimateur de θ ou plus généralement de $\tau(\theta)$
 - ▶ Le biais de W est $E_{\theta}[W] \theta$ ou $E_{\theta}[W] \tau(\theta)$
 - L'espérance moyenne quadratique est $E_{\theta}[(W \theta)(W \theta)^{\top}] = \operatorname{Var}_{\theta}[W] + \operatorname{biais}_{\theta}[W] \operatorname{biais}_{\theta}[W]^{\top}.$
- L'importance du biais et l'EMQ est largement due à la solubilité des problèmes.
- ► La perte quadratique est seulement un choix possible parmi plusieurs. Quelques problèmes :
 - paramètres d'échelle, qui sont toujours positifs,
 - impossibilité de la perte asymétrique,
 - non-existance de la moyenne ou la variance d'un estimateur.
- ▶ Le non-biais n'est pas un principe fiable, si on considère l'exemple suivant.

Un estimateur non-biaisé ridicule (RUBE)

- $ightharpoonup X_i \sim \text{Po}(\lambda), \ n=1.$
- ▶ On veut estimer $\tau(\lambda) = e^{-3\lambda}$.
- ▶ Considérons la statistique $T(X) = (-2)^X$.
- ► Vraiment ridicule :
 - Pour x = 9, 10, 11, T(x) = -512, 1024, -2048
 - Pour $\lambda = 10$, $e^{-3\lambda} \approx 9.357623 \times 10^{-14}$.
- ► Mais non-biaisé :

$$E[T] = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(-2)^k \lambda^k}{x!} = e^{-3\lambda}.$$

- Par complétion de la famille de loi Poisson, T est l'estimateur unique non-biaisé de $\tau(\lambda)$.
 - Si $E_{\lambda}[g(X)] = 0$ pour tous λ , $P(\{g(X) = 0\}) = 1$.
 - Soit g(x) = T(x) T'(x) la différence entre deux candidats pour un estimateur non-biaisé.

Statistiques suffisantes dans un modèle gaussien

- ▶ Modèle : $X_i \sim \text{iid } N(\mu, \sigma^2)$, $\theta = (\mu, \sigma^2)$
- ► Densité des données :

$$f(x|\theta) = \prod_{i=1}^{n} (2\pi\sigma^{2})^{-1/2} \exp\left[-\frac{1}{2} \frac{(x_{i} - \mu)^{2}}{\sigma^{2}}\right]$$

$$= (2\pi)^{-n/2} \sigma^{-n} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right]$$

$$= (2\pi)^{-n/2} \sigma^{-n} \exp\left[-\frac{1}{2\sigma^{2}} ((n-1)S^{2} + n(\bar{x} - \mu)^{2})\right]$$
où $S^{2} \equiv \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$

• Une statistique suffisante minimale pour (μ, σ^2) : (\bar{x}, S^2) .

EMQ de $\hat{\sigma}^2$ et S^2 dans le modèle $X_i \sim \operatorname{iid} N(\mu, \sigma^2)$

- ► Rappel: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$.
- L'estimateur EMV de (μ, σ^2) est $(\hat{\mu}, \hat{\sigma}^2) = (\bar{x}, \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2)$.
- ▶ S^2 est non-biaisé ; $\hat{\sigma}^2$ est biaisé mais sa EMQ est moins grande, peu importe la valeur de σ^2 . (exemples 7.3.3, 7.3.4)

Analyse bayésienne avec une loi a priori conjugée

- Soit $\omega = \sigma^{-2}$, $\theta = (\mu, \omega)$.
- ightharpoonup Densité des données, en termes de ω :

$$f(x|\theta) \propto \omega^{n/2} \exp\left[-rac{\omega}{2}((n-1)S^2 + n(\bar{x}-\mu)^2)
ight]$$

- ▶ La famille des lois *a priori* conjugée est Normal-gamma, où
 - $\omega \sim \text{Ga}(\alpha_0, \beta_0)$
 - $\blacktriangleright \mu | \omega \sim N(\mu_0, (\omega \lambda_0)^{-1})$

$$\omega | x \sim \operatorname{Ga}\left(\alpha_0 + n/2, \beta_0 + \frac{1}{2}\left((n-1)S + \frac{\lambda_0 n(\bar{x} - \mu_0)^2}{\lambda_0 + n}\right)\right),$$

$$\mu | \omega, x \sim N\left(\frac{\lambda_0 \mu_0 + n\bar{x}}{\lambda_0 + n}, (\omega(\lambda_0 + n))^{-1}\right).$$

▶ Détails à https://en.wikipedia.org/wiki/Normal-gamma_distribution, section "Posterior distribution of the parameters"

La fonction de score

- ▶ Soit $L(\theta; x)$ une vraisemblance, $f(x|\theta)$ la densité des données.
- La fonction de score est le gradient :

$$V(\theta, x) = \frac{\partial \log L(\theta; x)}{\partial \theta^{\top}} = \frac{1}{L(\theta; x)} \frac{\partial L(\theta; x)}{\partial \theta}.$$

► Si on peut changer l'ordre de l'intégrale et la dérivée,

$$E\left[\frac{\partial \log L(\theta; x)}{\partial \theta^{\top}}\right] = \int \frac{f(x|\theta)}{f(x|\theta)} \frac{\partial f(x|\theta)}{\partial \theta^{\top}} dx = \frac{\partial \int f(x|\theta) dx}{\partial \theta^{\top}} = 0.$$

- ➤ Conditions suffisantes pour pouvoir changer l'ordre de l'intégrale et la dérivée
 - 1. La densité $f(x|\theta)$ a un support borné et ce support ne dépend pas de θ .
 - 2. La densité $f(x|\theta)$ a un support infini et est continument différentiable en θ ; l'intégral converge uniformement sur Θ .

Inégalité Cramér-Rao

- Échantillon X_1, \ldots, X_n , pas nécessairement iid, densité $f(x|\theta)$.
- ▶ Supposons que $E[V(\theta, X)] = 0$, où $V(\theta, X)$ est la fonction de score.
- Supposons que W(X) est un estimateur de $\tau(\theta)$, $\operatorname{Var}_{\theta}[W(X)] < \infty$, et

$$\frac{d}{d\theta}E_{\theta}[W(X)] = \int \frac{\partial}{\partial \theta}[W(x)f(x|\theta)] dx.$$

Alors

$$\operatorname{Var}_{\theta}[W(X)] \geq \frac{\left(\frac{d}{d\theta}E_{\theta}[W(X)]\right)^2}{E_{\theta}[V(\theta,X)^2]}.$$

Preuve de l'inégalité Cramér-Rao

L'égalité encore :

$$\operatorname{Var}_{\theta}[W(X)] \geq \frac{\left(\frac{d}{d\theta}E_{\theta}[W(X)]\right)^2}{E_{\theta}[V(\theta,X)^2]}.$$

Preuve :

$$\frac{d}{d\theta} E_{\theta}[W(X)] = \int W(x) \left[\frac{\partial f(x|\theta)}{\partial \theta} \right] dx$$

$$= \int W(x) \left[\frac{\partial \log f(x|\theta)}{\partial \theta} \right] f(x|\theta) dx$$

$$= E_{\theta} \left[W(X) V(\theta, X) \right] = \text{Cov}_{\theta} [W(X), V(\theta, X)]$$

et

$$\operatorname{Var}_{\theta}[V(\theta, X)] = E_{\theta}[V(\theta, X)^{2}]$$

et par l'inégalité de Cauchy-Schwarz :

$$\operatorname{Var}_{\theta}[W(X)]\operatorname{Var}_{\theta}[V(\theta,X)] \geq \operatorname{Cov}_{\theta}[W(X),V(\theta,X)]^{2}.$$

Remarques, inégalité Cramér-Rao

- Le dénominateur est l'information de Fisher, qui dépend du modèle et non l'estimateur.
- L'inégalité est très utile dans le cas où W(X) est non-biaisé pour $\tau(\theta) = \theta$:
 - $E_{\theta}[W(X)] = \theta$ alors le numérateur est 1
 - la variance $Var_{\theta}[W(X)]$ a une borne qui ne dépend pas de l'estimateur.
- La borne est toujours une fonction de θ , par contre.
- Un estimateur qui atteint la borne est dit "efficace".
- Attention :
 - un estimateur biaisé peut avoir une EMQ en dessous de cette borne.
 - le critère de non-biais et la fonction de perte quadratique ne sont pas sans difficultés.

Théorème Rao-Blackwell

- Soit $\delta(X)$ un estimateur de $\tau(\theta)$, T(X) une statistique exhaustive pour θ .
- ▶ Soit $\delta_1(X) = \delta_1(T(X)) = E[\delta|T]$, un autre estimateur de $\tau(\theta)$.
- ▶ Résultat : $\delta_1(X)$ est non-biasé ssi $\delta(X)$ est non-biasé.
- ▶ Preuve : $E[\delta(X)] = E[E[\delta(X)|T]] = E[\delta_1(X)]$.
- ► Théorème Rao-Blackwell :

$$E[(\delta_1(X) - \tau(\theta))^2] \le E[(\delta(X) - \tau(\theta))^2]$$

Preuve :

$$E[(\delta(X) - \tau(\theta))^{2}] = E[E[(\delta(X) - \tau(\theta))^{2} | T]]$$

$$= E[Var[\delta(X) | T] + (\delta_{1}(X) - \theta)^{2}]$$

$$\geq E[(\delta_{1}(X) - \theta)^{2}].$$

Exemple, Rao-Blackwellisation

- ▶ Soit $X_1, \ldots, X_n \sim \text{Po}(\lambda)$,
- Soit $\tau(\lambda) = e^{-\lambda}$ (probabilité de l'évènement $X_i = 0$)
- Soit $\delta(X) = 1_{\{X_1 = 0\}}$.
- ▶ Soit $S_n = \sum_{i=1}^n X_i$, une statistique exhaustive minimale.
- ightharpoonup Utilisez S_n pour améliorer l'estimateur :

$$\begin{split} \delta_1(X) &= E[\delta(X)|S_n = s_n] \\ &= P(X_1 = 0, \sum_{i=2}^n X_i = s_n)/P(S_n = s_n) \\ &= \frac{((n-1)\lambda)^{s_n} e^{-\lambda n}}{s_n!} \cdot \frac{s_n!}{(n\lambda)^{s_n} e^{-\lambda n}} = \left(1 - \frac{1}{n}\right)^{s_n}. \end{split}$$

Notez que $S_n \log(1 - \frac{1}{n}) \approx \frac{S_n}{n}$ pour *n* grand.