Travaux Dirigés: 3

Matière: Analyse & Programmation

Enseignante: F. BENDAIDA

Exercice 1:

Ecrire un algorithme qui demande un nombre compris entre 10 et 20, jusqu'à ce que la réponse convienne. En cas de réponse supérieure à 20, on fera apparaître un message : « Plus petit! », et inversement, « Plus grand! » si le nombre est inférieur à 10.

Exercice 2:

Ecrire un algorithme qui demande un nombre de départ, et qui ensuite affiche les dix nombres suivants. Par exemple, si l'utilisateur entre le nombre 17, le programme affichera les nombres de 18 à 27.

Exercice 3:

Ecrire un algorithme qui demande un nombre de départ, et qui ensuite écrit la table de multiplication de ce nombre, présentée comme suit (cas où l'utilisateur entre le nombre 7) : Table de 7 :

 $7 \times 1 = 7$

 $7 \times 2 = 14$

 $7 \times 3 = 21$

. . .

 $7 \times 10 = 70$

Exercice 4:

Ecrire un algorithme qui demande un nombre de départ, et qui calcule la somme des entiers jusqu'à ce nombre. Par exemple, si l'on entre 5, le programme doit calculer : 1+2+3+4+5=15

NB: on souhaite afficher uniquement le résultat, pas la décomposition du calcul.

Exercice 5:

1- Ecrire un algorithme qui demande successivement 20 nombres à l'utilisateur, et qui lui dise ensuite quel était le plus grand parmi ces 20 nombres :

Entrez le nombre numéro 1 : 12

Entrez le nombre numéro 2:14

. . .

Entrez le nombre numéro 20:6

Le plus grand de ces nombres est : 14

2- Modifiez ensuite l'algorithme pour que le programme affiche de surcroît en quelle position avait été saisie ce nombre :

C'était le nombre numéro 2

Exercice 6:

Réécrire l'algorithme précédent, mais cette fois-ci on ne connaît pas d'avance combien l'utilisateur souhaite saisir de nombres. La saisie des nombres s'arrête lorsque l'utilisateur entre un zéro.

Exercice 7:

Écrire un algorithme qui permette de connaître ses chances de gagner au tiercé, quarté, quinté et autres impôts volontaires.

On demande à l'utilisateur le nombre de chevaux partants, et le nombre de chevaux joués. Les deux messages affichés devront être :

-Dans l'ordre : une chance sur X de gagner

-Dans le désordre : une chance sur Y de gagner

X et Y nous sont donnés par la formule suivante, si n est le nombre de chevaux partants et p le nombre de chevaux joués (on rappelle que le signe ! signifie "factorielle", comme dans l'exercice 5.6 ci-dessus) :

$$X = n! / (n - p)!$$

 $Y = n! / (p! * (n - p)!)$

Exercice 8: Calculer la moyenne de notes fournies au clavier avec un dialogue de ce type :

note 1:12

note 2:15.25

note 3:13.5

note 4:8.75

note 5:-1

moyenne de ces 4 notes : 12.37

Le nombre de notes n'est pas connu a priori et l'utilisateur peut en fournir autant qu'il le désire. Pour signaler qu'il a terminé, on convient qu'il fournira une note fictive négative. Celle-ci ne devra naturellement pas être prise en compte dans le calcul de la moyenne.

Exercice 9 : Calculez la factorielle N! = 1*2*3*...*(N-1)*N d'un entier naturel N en respectant que 0!=1.

- a) Utilisez Tantque,
- b) Utilisez pour.