Database Systems, Even 2020-21

Normalization

Third Normal Form

A relation schema R is in third normal form (3NF) if for all:

$$\alpha \to \beta$$
 in F^+

at least one of the following holds:

- $-\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
- $-\alpha$ is a superkey for R
- Each attribute A in β α is contained in a candidate key for R (**NOTE**: each attribute may be in a different candidate key)
- If a relation is in BCNF, it is in 3NF (since in BCNF one of the first two conditions above must hold)
- Third condition is a minimal relaxation of BCNF to ensure dependency preservation (will see why later)

3NF Example

Consider a schema:

With function dependencies:

$$i_ID \rightarrow dept_name$$

s_ID, dept_name $\rightarrow i_ID$

- Two candidate keys = {s_ID, dept_name}, {s_ID, i_ID}
- We have seen before that dept_advisor is not in BCNF
- R, however, is in 3NF
 - s_ID, dept_name is a superkey
 - i_ID → dept_name and i_ID is NOT a superkey, but:
 - \circ {dept_name} {i_ID} = {dept_name} and
 - dept_name is contained in a candidate key

Redundancy in 3NF

- Consider the schema R below, which is in 3NF
 - -R=(J,K,L)
 - $F = \{JK \rightarrow L, L \rightarrow K\}$
 - And an instance table:

J	L	K
<i>j</i> ₁	11	k ₁
j_2	11	k_1
j ₃	11	k_1
null	I_2	k ₂

- What is wrong with the table?
 - Repetition of information
 - Need to use null values (e.g., to represent the relationship l_2 , k_2 , where there is no corresponding value for J)

Goals of Normalization

- Let R be a relation scheme with a set F of functional dependencies
- Decide whether a relation scheme R is in "good" form
- In the case that a relation scheme R is not in "good" form, need to decompose it into a set of relation scheme $\{R_1, R_2, ..., R_n\}$ such that:
 - Each relation scheme is in good form
 - The decomposition is a lossless decomposition
 - Preferably, the decomposition should be dependency preserving

How Good is BCNF?

- There are database schemas in BCNF that do not seem to be sufficiently normalized
- Consider a relation

- Where an instructor may have more than one phone and can have multiple children
- Instance of inst_info

ID	child_name	phone
99999	David	512-555-1234
99999	David	512-555-4321
99999	William	512-555-1234
99999	William	512-555-4321

- There are no non-trivial functional dependencies and therefore the relation is in BCNF
- Insertion anomalies, i.e., if we add a phone 981-992-3443 to 99999, we need to add two tuples:

(99999, David, 981-992-3443)

(99999, William, 981-992-3443)

Higher Normal Forms

- Therefore, it is better to decompose inst_info into:
 - inst child:

ID	child_name
99999	David
99999	William

– inst_phone:

ID	phone
99999	512-555-1234
99999	512-555-4321

This suggests the need for higher normal forms, such as Fourth Normal Form (4NF),
 which we shall see later

Functional-Dependency Theory Roadmap

- We now consider the formal theory that tells us which functional dependencies are implied logically by a given set of functional dependencies
- We then develop algorithms to generate lossless decompositions into BCNF and 3NF
- We then develop algorithms to test if a decomposition is dependency-preserving

Closure of a Set of Functional Dependencies

- Given a set F set of functional dependencies, there are certain other functional dependencies that are logically implied by F
 - If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
 - etc.
- The set of all functional dependencies logically implied by F is the closure of F
- We denote the closure of F by F⁺

Closure of a Set of Functional Dependencies

- We can compute F+, the closure of F, by repeatedly applying **Armstrong's Axioms**:
 - Reflexive rule: If $\beta \subseteq \alpha$, then $\alpha \to \beta$
 - Augmentation rule: If $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
 - **Transitivity rule:** If $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$
- These rules are:
 - Sound: Generate only functional dependencies that actually hold, and
 - Complete: Generate all functional dependencies that hold

Example of F+

```
• R = (A, B, C, G, H, I)

F = \{A \rightarrow B

A \rightarrow C

CG \rightarrow H

CG \rightarrow I

B \rightarrow H\}
```

- Some members of F⁺
 - $-A \rightarrow H$
 - o By transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - $-AG \rightarrow I$
 - o By augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - $CG \rightarrow HI$
 - o By augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$, and augmenting of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity

Procedure for Computing F+

 $F^+ = F$

To compute the closure of a set of functional dependencies F:

```
repeat

for each functional dependency f in F^+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F^+

for each pair of functional dependencies f_1 and f_2 in F^+

if f_1 and f_2 can be combined using transitivity

then add the resulting functional dependency to F^+

until F^+ does not change any further
```

NOTE: We shall see an alternative procedure for this task later

Closure of Functional Dependencies

- Additional derived rules:
 - **Union rule**: If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds
 - **Decomposition rule**: If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds
 - **Pseudotransitivity rule**: If $\alpha \to \beta$ holds and $\gamma \not \beta \to \delta$ holds, then $\alpha \gamma \to \delta$ holds
- The above rules can be inferred from Armstrong's axioms

Closure of Attribute Sets

- Given a set of attributes a, define the *closure* of a under F (denoted by a+) as the set of attributes that are functionally determined by a under F
- Algorithm to compute a+, the closure of a under F

```
\begin{tabular}{l} \textit{result} := a; \\ \textbf{while} (\textit{changes to } \textit{result}) \ \textbf{do} \\ \textbf{for each } \beta \to \gamma \ \textbf{in } F \ \textbf{do} \\ \textbf{begin} \\ \textbf{if } \beta \subseteq \textit{result then } \textit{result} := \textit{result} \cup \gamma \\ \textbf{end} \\ \end{tabular}
```

Example of Attribute Set Closure

```
• R = (A, B, C, G, H, I)

• F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}
```

- (AG)⁺
 - 1. result = AG
 - 2. result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. result = ABCGH (CG \rightarrow H and CG \subseteq AGBC)
 - 4. result = ABCGHI (CG $\rightarrow I$ and CG $\subseteq AGBCH$)
- Is AG a candidate key?
 - Is AG a super key?
 - Does $AG \rightarrow R? == Is R \supseteq (AG)^+$
 - Is any subset of AG a superkey?
 - Does $A \rightarrow R$? == Is $R \supseteq (A)^+$
 - Does $G \rightarrow R$? == Is R \supset (G)+
 - o In general: Check for each subset of size n-1

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of R
- Testing functional dependencies
 - To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$
 - That is, we compute α^+ by using attribute closure, and then check if it contains β
 - Is a simple and cheap test, and very useful
- Computing closure of F
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$

Normalization

Thank you for your attention...

Any question?

Contact:

Department of Information Technology, NITK Surathkal, India

6th Floor, Room: 13

Phone: +91-9477678768

E-mail: shrutilipi@nitk.edu.in