Universidad Industrial de Santander - Escuela de Física **Introducción a la Física (Asorey-Sarmiento-Pinilla)**

Guía 01: Vectores 1ra Parte 2014

- 1) Sean $\vec{a} = (1,3,6)$, $\vec{b} = (4,-3,3)$ y $\vec{c} = (2,1,5)$ tres vectores de \mathbb{R}^3 . Obtenga:
 - 1) $\vec{a} + \vec{b}$
 - 2) $\vec{a} \vec{b}$
 - 3) $\vec{a} + \vec{b} \vec{c}$
 - 4) $7\vec{a} 2\vec{b} 3\vec{c}$
 - 5) $2\vec{a} + \vec{b} 3\vec{c}$
 - 6) $-\frac{5}{4}\vec{a} + \frac{2}{9}\vec{b} \frac{7}{2}\vec{c}$
 - 7) $\pi \vec{a} + \frac{\pi}{2} \vec{b} \frac{\pi}{3} \vec{c}$
 - 8) $\pi \vec{a} + 0.2 \vec{b} \frac{3}{4} \vec{c}$
- 2) Sean $\vec{a} = (2,1)$ y $\vec{b} = (1,3)$ dos vectores de \mathbb{R}^2
 - 1) Dibuje un sistemas de coordenadas para \mathbb{R}^2 y dibuje los vectores \vec{a} y \vec{b} .
 - 2) En la misma figura anterior, dibuje los vectores \vec{c} , obtenidos a partir de $\vec{c} = \vec{a} + t\vec{b}$, donde t va tomando los siguientes valores: $t = \frac{1}{3}$; $t = \frac{1}{2}$; $t = \frac{3}{4}$; t = 1; t = 2; t = -1; t = -2.
- 3) Repita el ejercicio anterior pero ahora suponiendo que $\vec{c} = t \vec{a} + \vec{b}$.
- 4) Sean $\vec{a} = (2,1)$ y $\vec{b} = (1,3)$, y $\vec{c} = s\vec{a} + t\vec{b}$ tres vectores de \mathbb{R}^2 , donde s y t son números reales (\mathbb{R}).
 - 1) Dibuje un sistemas de coordenadas para \mathbb{R}^2 y dibuje el vector \vec{c} para cada uno de los siguientes pares de valores para s y t: $s=t=\frac{1}{2};\ s=\frac{1}{4},t=\frac{3}{4};\ s=2,t=-1;\ s=-\frac{1}{2},t=\frac{3}{2}.$
 - 2) De una idea del conjunto de todos los vectores \vec{c} que se obtendrían si s y t pueden variar en forma independiente en los intervalos $0 \le s \le 1$ y $0 \le t \le 1$, y haga un esquema del conjunto.
- 5) Dibujando vectores en el plano \mathbb{R}^2 , ilustre el significado geométrico de las dos leyes distributivas:
 - 1) $(s+t)\vec{a} = s\vec{a} + t\vec{a}$
 - 2) $s(\vec{a} + \vec{b} = s\vec{a} + s\vec{b})$
- 6) Sea en \mathbb{R}^2 el cuadrilátero con vértices OABC, donde los puntos A y C son los vértices opuestos del cuadrilátero y el punto O corresponde al origen de coordenadas. Muestre que los vectores \vec{a} , \vec{b} , y \vec{c} , asociados respectivamente a los puntos A, B y C, verifican la siguiente relación:

$$\vec{a} + \frac{1}{2}(\vec{c} - \vec{a}) = \frac{1}{2}\vec{b}$$
.

7) Sean $\vec{a} = (1,1,1)$, $\vec{b} = (0,1,1)$ y $\vec{c} = (1,1,0)$ tres vectores de \mathbb{R}^3 , y sea $\vec{d} = x\vec{a} + y\vec{b} + z\vec{c}$, donde x, y y z son números reales, y sea $S = \{\vec{a}; \vec{b}; \vec{c}\}$

- 1) Verifique que el conjunto S es un conjunto de generadores de \mathbb{R}^3
- 2) Verifique que los vectores del conjunto *S* forman un conjunto linealmente independiente.
- 3) El conjunto S, ¿es una base de \mathbb{R}^3 ? Justifique
- 4) Encuentre los valores de x y y z para el obtener el vector $\vec{d} = (1,2,3)$.
- 8) Sean $\vec{a} = (1,1,1)$, $\vec{b} = (0,1,1)$ y $\vec{c} = (2,1,1)$ tres vectores de \mathbb{R}^3 , y sea $\vec{d} = x\vec{a} + y\vec{b} + z\vec{c}$, donde x, y y z son números reales, y sea el conjunto $S = \{\vec{a}; \vec{b}; \vec{c}\}$.
 - 1) Muestre que no es posible obtener el vector $\vec{d} = (1,2,3)$ como una combinación lineal de los vectores de S.
 - 2) En función del resultado anterior, diga si S es un conjunto de generadores de \mathbb{R}^3
 - 3) Verifique si los vectores de S forman un conjunto linealmente independiente
 - 4) Responda: el conjunto S, ¿es una base de \mathbb{R}^3 ? Justifique
- 9) Diga si los vectores del conjunto $B = \{\vec{u} = (1,1,1); \vec{v} = (1,1,0); \vec{w} = (1,0,0)\}$ forman una base de \mathbb{R}^3 .
- 10) Verificar si los siguientes conjuntos forman bases de \mathbb{R}^3 . Justifique su respuesta:
 - 1) $A = {\vec{u} = (1, 1, 1); \vec{v} = (1, 1, 0); \vec{w} = (1, 0, 0)}$
 - 2) $B = {\vec{u} = (0, 1, 0); \vec{v} = (0, 0, 1); \vec{w} = (1, 0, 0)}$
 - 3) $C = {\vec{u} = (0,0,0); \vec{v} = (0,1,0); \vec{w} = (0,0,1)}$
 - 4) $D = {\vec{u} = (1, 1, 1); \vec{v} = (1, 2, 3); \vec{w} = (4, 5, 1)}$
 - 5) $E = {\vec{u} = (1, 1, 1); \vec{v} = (1, 2, 3); \vec{w} = (4, 5, 6)}$