Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра ІПІ

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних 2. Структури даних»

"Проектування і аналіз алгоритмів внутрішнього сортування"

Виконав(ла)	<u>ІП-13 Пархомчук Ілля Вікторович</u> (шифр, прізвище, ім'я, по батькові)						
Перевірив							

3MICT

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ	3
2 ЗАВДАННЯ	4
3 ВИКОНАННЯ	
3.1 Аналіз алгоритму на відповідність властивостям	5
3.2 ПСЕВДОКОД АЛГОРИТМУ	6
3.3 Аналіз часової складності	7
3.4 ПРОГРАМНА РЕАЛІЗАЦІЯ АЛГОРИТМУ	8
3.4.1 Вихідний код	8
3.4.2 Приклад роботи	8
3.5 ТЕСТУВАННЯ АЛГОРИТМУ	10
3.5.1 Часові характеристики оцінювання	10
3.5.2 Графіки залежності часових характеристик оцінюванн	ıя від
розмірності масиву	13
ВИСНОВОК	15

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи – вивчити основні методи аналізу обчислювальної складності алгоритмів внутрішнього сортування і оцінити поріг їх ефективності.

2 ЗАВДАННЯ

Виконати аналіз алгоритму внутрішнього сортування на відповідність наступним властивостям (таблиця 2.1):

- стійкість;
- «природність» поведінки (Adaptability);
- базуються на порівняннях;
- необхідність додаткової пам'яті (об'єму);
- необхідність в знаннях про структуру даних.

Записати алгоритм внутрішнього сортування за допомогою псевдокоду (чи іншого способу по вибору).

Провести аналіз часової складності в гіршому, кращому і середньому випадках та записати часову складність в асимптотичних оцінках.

Виконати програмну реалізацію алгоритму на будь-якій мові програмування з фіксацією часових характеристик оцінювання (кількість порівнянь, кількість перестановок, глибина рекурсивного поглиблення та інше в залежності від алгоритму).

Провести ряд випробувань алгоритму на масивах різної розмірності (10, 100, 1000, 5000, 10000, 20000, 50000 елементів) і різних наборів вхідних даних (впорядкований масив, зворотно упорядкований масив, масив випадкових чисел) і побудувати графіки залежності часових характеристик оцінювання від розмірності масиву, нанести на графік асимптотичну оцінку гіршого і кращого випадків для порівняння.

Зробити порівняльний аналіз двох алгоритмів.

Зробити узагальнений висновок з лабораторної роботи.

Таблиця 2.1 – Варіанти алгоритмів

•	Nº	Алгоритм сортування
	1	Сортування бульбашкою
4	2	Сортування гребінцем («розчіскою»)

3 ВИКОНАННЯ

3.1 Аналіз алгоритму на відповідність властивостям

Аналіз алгоритму сортування бульбашкою на відповідність властивостям наведено в таблиці 3.1.1

Таблиця 3.1.1 – Аналіз алгоритму на відповідність властивостям

Властивість	Сортування бульбашкою
Стійкість	Так
«Природність» поведінки	Так
(Adaptability)	
Базуються на порівняннях	Так
Необхідність в додатковій пам'яті	Hi
(об'єм)	
Необхідність в знаннях про структури	Так(Масив)
даних	

Аналіз алгоритму сортування гребінцем на відповідність властивостям наведено в таблиці 3.1.2

Таблиця 3.1.2 – Аналіз алгоритму на відповідність властивостям

Властивість	Сортування гребінцем
Стійкість	Hi
«Природність» поведінки	Так
(Adaptability)	
Базуються на порівняннях	Так
Необхідність в додатковій пам'яті	Hi
(об'єм)	
Необхідність в знаннях про структури	Так(Масив)
даних	

3.2 Псевдокод алгоритму

Сортування бульбашкою

```
ВubbleSort(arr[], size)

для і від 0 до size -1, 3 кроком 1 повторити

для ј від 0 до size -1, 3 кроком 1 повторити

якщо arr[j] > arr[j + 1]

то

temp := arr[j]

arr[j] := arr[j + 1]

arr[j+1] := temp

все якщо

все повторити

все повторити
```

Сортування гребінцем

```
GetGap(gap)
gap := gap / 1.3
якщо gap < 1
то
gap := 1
все якщо
```

повернути дар

CombSort(arr[], size)

gap := size

swapped := *icmина*

повторити поки gap > 1 або swapped

swapped := $xu\delta a$

gap = GetGap(gap)

для і від 0 до size -gap, з кроком 1 повторити

якщо arr[i] > arr[i + gap]

T0

temp := arr[i]

arr[i] := arr[i + gap]

arr[i+gap] := temp

swapped := icmuнa

все якщо

все повторити

все повторити

3.3 Аналіз часової складності

Сортування бульбашкою

Випадок	Складність
Найгірший	n^2
Середній	n^2
Найкращий	n^2

Сортування гребінцем

Випадок	Складність
Найгірший	n^2
Середній	$n \log n$
Найкращий	$n \log n$

3.4 Програмна реалізація алгоритму

3.4.1 Вихідний код

```
Сортування бульбашкою
```

```
void BubbleSort(int* Arr, int size)
       int temp;
       for (int i = 0; i < size-1; i++)</pre>
              for (int j = 0; j < size-1; j++)</pre>
                     if (Arr[j] > Arr[j + 1])
                            temp = Arr[j];
                            Arr[j] = Arr[j + 1];
                            Arr[j + 1] = temp;
                     }
              }
       }
Сортування гребінцем
 int GetGap(int gap)
 {
       gap /= 1.3;
       if (gap < 1)
       gap = 1;
       return gap;
}
 void CombSort(int* arr, int size)
       int temp, gap = size;
       bool swapped = true;
       while (gap > 1 || swapped)
              swapped = false;
              gap = GetGap(gap);
              for (int i = 0; i < size - gap; ++i)</pre>
                     if (arr[i] > arr[i + gap])
                     {
                            temp = arr[i];
                            arr[i] = arr[i + gap];
                            arr[i + gap] = temp;
                            swapped = true;
                     }
              }
       }
}
```

3.4.2 Приклад роботи

На рисунках 3.1 i 3.2 показані приклади роботи програми сортування масивів на 100 i 1000 елементів відповідно.

Рисунок 3.1 – Сортування масиву на 100 елементів

Microsoft	t Visual S	Studio E	ebug (Console																														-	
erated Ar 801 27390		24761	16207	15009	2435	17049	14047	20002	22522	2220	5192	32171	11703	26430	20034	12084	707	31/112	10377	13/19	5015	18621	9357	0304	16048	25078	14673	28901	10996	14202	6544	20067	31934	30040	26008
36 3681																																			
945 8707																																		10618	
867 15487																																			9287
73 21971																																			
24 30035																																		19425	
03 22689																																			
73 24937																																			
71 15257																																			
06 2112																																			
14 31075																																			
50 16742																																			
97 5338																	21619																		
85 20433																																			
47 10248																																			
53 17280	19392	24185	14415	30585	3044	28955	20864	23010	30461	9243	23009	25053	27629	19940	13568	28756	25934	26293	495	20642	18264	12023	30788	12687	17669	4046	5732	10882	8308	27118	1282	8434	19083	18096	21474
97 8036	29667	1278	28891	12009	4668	26745		380	14598	25048	2563	14030	22779	28539		10841		970	8102	30195	17370	15471	28103	676	6862	6595	9085	7093	14153	19077	18133	14345	22899	24530	28625
37 32081	1989	17338	15194	22959	6146	22089		9035	27570		2406	7474	2307	806			17800		749	11481	31196	5041	24588	6168	6280	23986	14904	25158	11302	22424	3197	4303	199	18502	16646
91 7503																																			
94 28964	9488	15184	14583	15228	19311	30528	14918	20856	4099	6444	31688	13406	6474	28333	4483	29103	8721	23913	18519	26969	30429	31461	11908	17454	25226	22171	1389	11925	20018	10829			6224	25752	30213
05 16844	25487			26363	28112	17890	16361		15384	8820	12342	15266	21938		13697	9289	25702	26205	8832	19761		7250	31815	1069	26779	11431	7020	12685	20046	1872	26729	13042	4939	22032	14145
45 561		14231	18947	17016	9435	18844	10763	17752		1691	14783	19302	13864	29681	26840	17933	26272	22660	21363	20099		2982	9817	2299	6145	4186	6275	18461	19965	30598	7646	1203	14987	12841	14155
40 21119																																			
88 5542																																			
42 32487																																			
20 14212											12976		1897	28222	8518	21061		8215	5267	1809	22708		16801	23520	7836	13874	21376	1298	29404	1328	20875	24356	10315	22831	15084
40 15583		17778	18017		7491	5525	28916	4355	23741	28302																									
ed Array																																			
42 54									380	495															806	822	855	876	918	945				1069	
.73 1203							1328										1723							1858										2291	
18 2319		2334					2563				2902						3205													3835		3846			3978
46 4083		4099							4274																			4789		4851			4939		5016
41 5084																																			
75 6280																	6774													7152					
	7491																																		
22 8434																																			
94 9435																																			
72 10507 85 12301																																			
96 13818																																			
89 14598 83 15690																																			
16 17048 46 18148																																			
46 18148 16 19425																																			
16 19425 54 20875																																			
81 22032																																			
01 22032 10 23053																																			
10 23053 30 24555																																			
30 24555 16 25837																																			
15 26840																																			
15 26840 57 28275																																			
37 29900																																			
	30928																																		

Рисунок 3.2 – Сортування масиву на 1000 елементів

3.5 Тестування алгоритму

3.5.1 Часові характеристики оцінювання

В таблиці 3.2.1 наведені характеристики оцінювання числа порівнянь і числа перестановок алгоритму сортування бульбашки для масивів різної розмірності, коли масив містить упорядковану послідовність елементів.

Таблиця 3.2.1 – Характеристики оцінювання алгоритму сортування бульбашки для упорядкованої послідовності елементів у масиві

Розмірність масиву	Число порівнянь	Число перестановок
10	81	0
100	9801	0
1000	998001	0
5000	24990001	0
10000	99980001	0
20000	399960001	0
50000	2499900001	0

В таблиці 3.2.2 наведені характеристики оцінювання числа порівнянь і числа перестановок алгоритму сортування гребінцем для масивів різної розмірності, коли масив містить упорядковану послідовність елементів.

Таблиця 3.2.2 – Характеристики оцінювання алгоритму сортування гребінцем для упорядкованої послідовності елементів у масиві

Розмірність масиву	Число порівнянь	Число перестановок
10	32	0
100	1003	0
1000	18713	0
5000	123386	0
10000	276739	0
20000	613402	0
50000	1683412	0

В таблиці 3.3.1 наведені характеристики оцінювання числа порівнянь і числа перестановок алгоритму сортування бульбашки для масивів різної розмірності, коли масиви містять зворотно упорядковану послідовність елементів.

Таблиця 3.3.1 — Характеристики оцінювання алгоритму сортування бульбашки для зворотно упорядкованої послідовності елементів у масиві.

Розмірність масиву	Число порівнянь	Число перестановок
10	81	45
100	9801	4950
1000	998001	499500
5000	24990001	12497500
10000	99980001	49995000
20000	399960001	199990000
50000	2499900001	1249975000

В таблиці 3.3.2 наведені характеристики оцінювання числа порівнянь і числа перестановок алгоритму сортування гребінцем для масивів різної розмірності, коли масиви містять зворотно упорядковану послідовність елементів.

Таблиця 3.3.2 — Характеристики оцінювання алгоритму сортування гребінцем для зворотно упорядкованої послідовності елементів у масиві.

Розмірність масиву	Число порівнянь	Число перестановок
10	41	7
100	1102	122
1000	19712	1582
5000	128385	9572
10000	286738	20078
20000	633401	42634
50000	1733411	116838

У таблиці 3.4.1 наведені характеристики оцінювання числа порівнянь і числа перестановок алгоритму сортування бульбашки для масивів різної розмірності, масиви містять випадкову послідовність елементів.

Таблиця 3.4.1 — Характеристика оцінювання алгоритму сортування бульбашки для випадкової послідовності елементів у масиві.

Розмірність масиву	Число порівнянь	Число перестановок
10	81	14
100	9801	2401
1000	998001	249351
5000	24990001	6344409
10000	99980001	25124386
20000	399960001	100130948
50000	2499900001	624639797

У таблиці 3.4.2 наведені характеристики оцінювання числа порівнянь і числа перестановок алгоритму сортування гребінцем для масивів різної розмірності, масиви містять випадкову послідовність елементів.

Таблиця 3.4.2 – Характеристика оцінювання алгоритму сортування гребінцем для випадкової послідовності елементів у масиві.

Розмірність масиву	Число порівнянь	Число перестановок
10	41	6
100	1300	267
1000	23708	4322
5000	143382	28741
10000	326734	62564
20000	673399	132277
50000	2283400	373305

3.5.2 Графіки залежності часових характеристик оцінювання від розмірності масиву

На рисунку 3.3 показані графіки залежності часових характеристик оцінювання від розмірності масиву для випадків, коли масиви містять упорядковану послідовність елементів (зелений графік), коли масиви містять зворотно упорядковану послідовність елементів (червоний графік), коли масиви містять випадкову послідовність елементів (синій графік), також показані асимптотичні оцінки гіршого (фіолетовий графік) і кращого (жовтий графік) випадків для порівняння.

Сортування бульбашкою

Сортування гребінцем

Рисунок 3.3 – Графіки залежності часових характеристик оцінювання

ВИСНОВОК

При виконанні даної лабораторної роботи я ознайомився з нотацією великого О. Навчився оцінювати швидкодію алгоритмів бульбашки та гребінцем. Мною був написаний програмний код та проведено тестування алгоритмів з фіксуванням кількості порівнянь та кількості перестановок. На основі отриманих даних було побудовано графіки із залежністю кількості операцій від кількості елементів.

Я помітив, що сортування бульбашкою у всіх випадках веде себе майже однаково й очікувано. Однак, сортування гребінцем на прямо та зворотно упорядкованій послідовності елементів веде себе краще, чим на випадковій послідовності. Це пояснюється основою ідеєю алгоритму, щоб великі елементи зразу ставити ближче до кінця, а маленькі – ближче до початку.