

UNITED STATES PATENT AND TRADEMARK OFFICE

UNDER SECRETARY OF COMMERCE FOR INTELLECTUAL PROPERTY AND DIRECTOR OF THE UNITED STATES PATENT AND TRADEMARK OFFICE

September 21, 2005

MATTINGLY, STANGER, MALUR & BRUNDIDGE, P.C. 1800 DIAGONAL ROAD SUITE 370 ALEXANDRIA, VA 22314 US

Dear Sir/Madam,

Your refund request for 09811459 in the amount of \$100.00 has been denied .

You had 8 new claims x \$50.00 = \$400.00 This is not an error

Sincerely,

ELEANOR KURTZ Technical Center Others 703 308-9010 x177

U.S.: Application No. «ApplicationNo»

500.39908X00

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Katsuyuki OKEYA

Serial No.:

09/811,459

Filed:

March 20, 2001

For:

METHOD OF CALCULATING MULTIPLICATION BY SCALARS

ON AN ELLIPTIC CURVE AND APPARATUS USING SAME

AND RECORDING MEDIUM

Group:

2134

Examiner:

J. Lipman

Customer No.:

24956

Director of the U.S. Patent and Trademark Office Mail Stop 16 P.O. Box 1450 Alexandria, VA 22313-1450

REQUEST FOR REFUND

Sir:

Applicants request a refund in the above-identified application due to an error on the part of the Patent Office.

On March 1, 2005, Applicants filed an Amendment containing claims in excess of twenty (20). A total of fourteen (14) claims had been previously filed, of which eight (8) were independent claims. The March 1, 2005 amendment added eight (8) claims, all of which were dependent claims.

However, the Applicants' representatives Monthly Statement of Account for March, 2005 (copy enclosed) indicates that on March 11, 2005, Applicants were charged \$200.00 for two independent claims. A copy of the claims from the

Appl. No. 09/811,459 Request for Refund dated July 6, 2005

amendment filed on March 1, 2005 is enclosed as evidence that the additional claims were dependent claims and the charge for additional claims should have been \$100.00

Please credit a refund in the amount of \$100.00 to the Deposit Account No. 50-1417.

Respectfully submitted,

MATTINGLY, STANGER & MALUR, P.C.

Frederick D. Bailey

Registration No. 42,282

FDB/kkt (703) 684-1120

Deposit Account Statement

Requested Statement Month: March 2005 **Deposit Account Number:** 501417

Name: MATTINGLY STANGER & MALUR, P.C.

Attention:

Address: 1800 DIAGONAL ROAD, SUITE 370

City: **ALEXANDRIA**

State: VA Zip: 22314

Country: **UNITED STATES OF AMERICA**

DATE	SEQ	POSTING REF TXT	ATTORNEY DOCKET NBR	FEE CODE	AMT	BAL
03/03	1	09518690	ASA-761-03	1806	\$180.00	\$9,511.00
03/03	2	09518675	ASA-761-02	1806	\$180.00	\$9,331.00
03/03	207	5644539	566.104760	8008	\$200.00	\$9,131.00
03/03	208	09103056	566.104760	8008	\$200.00	\$8,931.00
03/07	2	09645450	ASA-912	1203	\$300.00	\$8,631.00
03/07	147	11070885	WL-103	1081	\$120.00	\$8,511.00
03/08	1	10694771	H-593-04	1806	\$180.00	\$8,331.00
03/09	99	11072414	T&A-138	1081	\$240.00	\$8,091.00
03/11	1	09811459	500.39908X00	1202	\$400.00	\$7,691.00
03/11	7	5644539		8009	\$440.00	\$7,251.00
03/14	33	11052787	ASA-715-06	1081	\$500.00	\$6,751.00
03/15	20	11057495	H-772-06	1081	\$500.00	\$6,251.00
03/16	2	09923427	500-40449X00	1201	\$200.00	\$6,051.00
03/16	3	09923427	500-40449X00	1202	\$50.00	\$6,001.00
03/16	280	PCT/US05/07624	WRR-105-PCT	1702	\$633.00	\$5,368.00
03/16		PCT/US05/07624	WRR-105-PCT	1703	\$117.00	\$5,251.00
03/16	283	PCT/US05/07624	WRR-105-PCT	8007	\$40.00	\$5,211.00
03/17	30	11057755	500.43322CX02	1201	\$200.00	\$5,011.00
03/18	32	10418360	520.38682CX1	1464	\$130.00	\$4,881.00
03/18	33	10418360	520.38682CX1	1801	\$790.00	\$4,091.00
03/21	18	11059651	NIT-458	1081	\$250.00	\$3,841.00
03/31		10828283	NIT-316-02	1501	\$1,400.00	\$2,441.00
03/31		09884067	500.40255X00	1251	\$120.00	\$2,321.00
03/31	302	10828283	NIT-316-02	1504	\$300.00	\$2,021.00
		START BALANCE	SUM OF CHARGES	SUM OF REPLENISH	END BALANCE	

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Katsuyuki OKEYA

Serial No.:

09/811,459

Filed:

March 20, 2001

For:

METHOD OF CALCULATING MULTIPLICATION BY SCALARS

ON AN ELLIPTIC CURVE AND APPARATUS USING SAME

AND RECORDING MEDIUM

Group:

2134

Examiner:

J. Lipman

AMENDMENT

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450 March 1, 2005

Sir:

In response to the Office Action dated October 1, 2004, the period for reply thereto being extended two months by the attached Petition for Extension of Time to expire March 1, 2005, reconsideration and withdrawal of the outstanding rejections and allowance of the present application are respectfully requested in view of the following amendments and remarks.

Amendments to the Claims begin on page 2.

Remarks are included following the amendments.

Amendment to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) A scalar multiplication calculation method in an elliptic curve cryptosystem for calculating a scalar multiplied point on the basis of a scalar value and a point on an elliptic curve in an elliptic curve cryptosystem, comprising the steps of:

judging determining a value of a bit of said scalar value; and executing operations on said elliptic curve a predetermined number of times and in a predetermined order without depending on said judged determined value of said bit to calculate a scalar multiplied point;

wherein said operations include calculations of addition and doubling, said operations being selected for scalar values of one or zero, the scalar value determining the selection of said addition and doubling calculations executed.

2. (currently amended) A scalar multiplication calculation method in an elliptic curve cryptosystem for calculating a scalar multiplied point on the basis of a scalar value and a point on an elliptic curve in an elliptic curve cryptosystem, comprising the steps of:

judging determining a value of a bit of said scalar value; and executing calculations of addition on said elliptic curve and doubling on said elliptic curve in the order that said doubling on said elliptic curve is executed after said addition on said elliptic curve is executed to calculate a scalar multiplied point;

wherein said addition and doubling calculations are selected for scalar values of one or zero, the scalar value determining the selection of said addition and doubling calculations executed.

3. (currently amended) A scalar multiplication calculation method in an elliptic curve cryptosystem for calculating a scalar multiplied point on the basis of a scalar multiplied point on an elliptic curve in an elliptic curve cryptosystem, comprising

doubling calculations executed.

5. (currently amended) A scalar multiplication calculation method in an elliptic curve cryptosystem for calculating a scalar multiplied point on the basis of a scalar value and a point on an elliptic curve in an elliptic curve cryptosystem, comprising the steps of:

executing addition on said elliptic curve;

judging determining a value of a bit of said scalar value; and executing doubling calculations on said elliptic curve to calculate a scalar multiplied point;

wherein said doubling calculations are selected for scalar values of one or zero, the scalar value determining the selection of said doubling calculations executed.

6. (currently amended) A scalar multiplication calculation method in an elliptic curve cryptosystem for calculating a scalar multiplied point on the basis of a scalar value and a point on an elliptic curve in an elliptic curve cryptosystem, comprising the steps of:

randomizing calculation order of addition on said elliptic curve and doubling on said elliptic curve;

judging determining a value of a bit of said scalar value; and executing said addition on said elliptic curve and said doubling on said elliptic curve in said order randomized by said step of randomizing calculation order of addition on said elliptic curve and doubling on said elliptic curve to calculate a scalar multiplied point;

wherein said calculations of addition and doubling are selected for scalar values of one or zero, the scalar value determining the selection of said addition and doubling calculations executed.

7. (currently amended) A scalar multiplication calculation method in an elliptic curve cryptosystem for calculating a scalar multiplied point on the basis of a scalar value and a point on an elliptic curve in an elliptic curve cryptosystem, comprising the steps of:

judging determining a value of a bit of said scalar value;

randomizing calculation order of addition on said elliptic curve and doubling on said elliptic curve; and

executing said addition on said elliptic curve and said doubling on said elliptic curve in said order randomized by said step of randomizing calculation order of addition on said elliptic curve and doubling on said elliptic curve to calculate a scalar multiplied point:

wherein said calculations of addition and doubling are selected for scalar values of one or zero, the scalar value determining the selection of said addition and doubling calculations executed.

- 8. (original) A data generation method for generating second data from first data, comprising the step of calculating a scalar multiplication by use of a scalar multiplication calculation method according to any one of Claims 1 to 7.
- 9. (original) A signature generation method for generating signature data from data, comprising the step of calculating a scalar multiplication by use of a scalar

multiplication calculation method according to any one of Claims 1 to 7.

- 10. (original) A decryption method for generating decrypted data from encrypted data, comprising the step of calculating a scalar multiplication by use of a scalar multiplication calculation method according to any one of Claims 1 to 7.
- 11. (currently amended) A scalar multiplication calculator for calculating a scalar multiplied point on the basis of a scalar value and a point on an elliptic curve in an elliptic curve cryptosystem, comprising:

bit value judgement judgment means for judging determining a value of a bit of said scalar value;

addition operation means for executing addition <u>calculations</u> on said elliptic curve; and

doubling operation means for executing doubling <u>calculations</u> on said elliptic curve;

wherein after the value of said bit of scalar value is <u>judged_determined_by_said</u> bit value <u>judgement_judgment_means</u>, said addition on said elliptic curve and said doubling on said elliptic curve are executed by said addition operation means and said doubling operation means a predetermined number of times and in a predetermined order so as to calculate a scalar multiplied point.

wherein said addition and doubling calculations are selected for scalar values
of one or zero, the scalar value determining the selection of said addition and
doubling calculations executed.

12. (original) A recording medium for storing a program relating to a scalar

multiplication calculation method according to any one of Claims 1 to 7.

- 13. (original) A scalar multiplication calculation method according to any one of Claims 1 to 7, wherein a Montgomery-form elliptic curve is used as said elliptic curve.
- 14. (original) A scalar multiplication calculation method according to any one of Claims 1 to 7, wherein an elliptic curve defined on a finite field of characteristic 2 is used as said elliptic curve.
 - 15. (new) The multiplication calculation method according to claim 1, wherein

calculations include doubling the point mP to obtain 2(mP) where m comprises the scalar value and P comprises the point, and

wherein when the value of the bit of the scalar value is 1, the addition calculation includes adding a point mP to a double point of the point (m+1)P and the doubling calculations include doubling the double point of the point (m+1)P to obtain 2((m+1)P) where m comprises the scalar value and P comprises the point.

17. (new) The multiplication calculation method according to claim 3, wherein when the value of the bit of the scalar value is 0, the addition calculation includes adding a point mP to a double point of the point (m+1)P and the doubling calculations include doubling the point mP to obtain 2(mP) where m comprises the scalar value and P comprises the point, and

wherein when the value of the bit of the scalar value is 1, the addition calculation includes adding a point mP to a double point of the point (m+1)P and the doubling calculations include doubling the double point of the point (m+1)P to obtain 2((m+1)P) where m comprises the scalar value and P comprises the point.

18. (new) The multiplication calculation method according to claim 4, wherein when the value of the bit of the scalar value is 0, the addition calculation includes adding a point mP to a double point of the point (m+1)P and the doubling calculations include doubling the point mP to obtain 2(mP) where m comprises the scalar value and P comprises the point, and

U.S. Application No. 09/811,459

doubling calculations include doubling the double point of the point (m+1)P to obtain 2((m+1)P) where m comprises the scalar value and P comprises the point.

21. (new) The multiplication calculation method according to claim 7, wherein when the value of the bit of the scalar value is 0, the addition calculation includes adding a point mP to a double point of the point (m+1)P and the doubling calculations include doubling the point mP to obtain 2(mP) where m comprises the scalar value and P comprises the point, and

wherein when the value of the bit of the scalar value is 1, the addition calculation includes adding a point mP to a double point of the point (m+1)P and the doubling calculations include doubling the double point of the point (m+1)P to obtain 2((m+1)P) where m comprises the scalar value and P comprises the point.

22. (new) The multiplication calculation method according to claim 11, wherein when the value of the bit of the scalar value is 0, the addition calculation includes adding a point mP to a double point of the point (m+1)P and the doubling calculations include doubling the point mP to obtain 2(mP) where m comprises the scalar value and P comprises the point, and

wherein when the value of the bit of the scalar value is 1, the addition calculation includes adding a point mP to a double point of the point (m+1)P and the doubling calculations include doubling the double point of the point (m+1)P to obtain 2((m+1)P) where m comprises the scalar value and P comprises the point.