## Lesson 5.8 Using Pythagorean Theorem

If a, b, and c are the lengths of the sides of this triangle,  $a^2 + b^2 = c^2$ .



If 
$$a = 3$$
 and  $b = 4$ , what is  $c$ ?

$$a^2 + b^2 = c^2$$

$$3^2 + 4^2 = c^2$$

$$9 + 16 = c^2$$

$$25 = c^2$$

$$\sqrt{25} = c$$

$$5 = c$$

If 
$$a = 4$$
 and  $b = 6$ , what is  $b$ ?

$$a^2 + b^2 = c^2$$

$$4^2 + 6^2 = c^2$$

$$16 + 36 = c^2$$

$$52 = c^2$$

$$\sqrt{52} = c$$

$$c = about 7.21$$

Use the Pythagorean Theorem to determine the length of c. Assume that each problem describes a right triangle. Sides a and b are the legs and the hypotenuse is c.

I. If 
$$a = 9$$
 and  $b = 4$ ,  $c = \sqrt{\phantom{a}}$  or about \_\_\_\_\_\_.

**2.** If 
$$a = 5$$
 and  $b = 7$ ,  $c = \sqrt{\phantom{a}}$  or about \_\_\_\_\_\_.

**3.** If 
$$a = 3$$
 and  $b = 6$ ,  $c = \frac{\sqrt{\phantom{a}}}{\phantom{a}}$  or about \_\_\_\_\_\_.

**4.** If 
$$a = 2$$
 and  $b = 9$ ,  $c = \frac{\sqrt{}}{}$  or \_\_\_\_\_.

**5.** If 
$$a = 5$$
 and  $b = 6$ ,  $c = \frac{\sqrt{}}{}$  or about \_\_\_\_\_\_.

**6.** If 
$$a = 3$$
 and  $b = 5$ ,  $c = \frac{\sqrt{}}{}$  or about \_\_\_\_\_\_.

**7.** If 
$$a = 7$$
 and  $b = 6$ ,  $c = \frac{\sqrt{}}{}$  or about \_\_\_\_\_\_.

**8.** If 
$$a = 8$$
 and  $b = 6$ ,  $c = \sqrt{\phantom{a}}$  or \_\_\_\_\_\_.

**9.** If 
$$a = 7$$
 and  $b = 2$ ,  $c = \sqrt{\phantom{a}}$  or about \_\_\_\_\_\_.

**10.** If 
$$a = 8$$
 and  $b = 5$ ,  $c = \sqrt{\phantom{a}}$  or about \_\_\_\_\_\_.