

Service Manual

Cassette Deck

RS-M240X(Silver Face)
Black Face

dbx Equipped Stereo Cassette Deck
with Soft-Touch Controls and
Peak Hold FL Meters

RS-M24 MECHANISM SERIES

Specifications

Track system:	4-track 2-channel stereo recording and playback	Inputs:	MIC; sensitivity 0.25 mV, input impedance 47 kΩ applicable microphone impedance 400Ω—10 kΩ
Tape speed:	4.8 cm/s	Outputs:	LINE; sensitivity 60 mV, input impedance 47 kΩ
Wow and flutter:	0.048% (WRMS), ±0.14% (DIN)	Bias frequency:	LINE; output level 400 mV, output impedance 1.5 kΩ or less, load impedance 22 kΩ over
Frequency response:	Metal tape; 20—18,000 Hz 30—17,000 Hz (DIN) 30—16,000 Hz ±3 dB	Motor:	HEADPHONES; output level 80 mV, load impedance 8Ω
	CrO ₂ tape; 20—18,000 Hz 30—16,000 Hz (DIN) 30—16,000 Hz ±3 dB	Heads:	Electronically controlled DC motor
	Normal tape; 20—17,000 Hz 30—15,000 Hz (DIN) 30—14,000 Hz ±3 dB	Power requirement:	2-head system 1-SX head for record/playback
Dynamic range:	dbx* in; 110 dB (at 1 kHz)	Preset power voltage:	1-double-gap ferrite head for erasure
Max. input level:	10 dB or more improved with dbx in (at 1 kHz)	AC; 110/125/220/240V, 50-60 Hz	
Signal-to-noise ratio:	dbx in; 91 dB Dolby** NR in; 67 dB (above 5 kHz) Dolby NR out; 57 dB (signal level=peak level a weighted, CrO ₂ type tape)	Power consumption:	220V 240V
Fast forward and rewind time:	Approx. 90 seconds with C-60 cassette tape	Dimensions:	15W 13W
		Weight:	43.0 cm(W) × 11.9 cm(H) × 24.6 cm (D) 4.6 kg

Specifications are subject to change without notice.

* The term dbx is a registered trademark of dbx Inc.

**'Dolby' and the double-D symbol are trademarks of Dolby Laboratories.

Technics

Matsushita Electric Trading Co., Ltd.

P.O. Box 288, Central Osaka Japan

CONTENTS

ITEM	PAGE
LOCATION OF CONTROLS AND COMPONENTS	1
DISASSEMBLY INSTRUCTIONS	2
MEASUREMENT AND ADJUSTMENT METHODS (WITHOUT dbx SYSTEM)	3
OUTLINE OF dbx SYSTEM	9
THE BLOCK DIAGRAM OF dbx SYSTEM	10
MEASUREMENT AND ADJUSTMENT METHODS (FOR dbx SYSTEM)	11
• TROUBLESHOOTING CHART FOR dbx SYSTEM	11
• ADJUSTMENT PARTS LOCATION OF dbx SYSTEM	12
• SIGNAL WAVE FORMS AT INDIVIDUAL SECTIONS OF THE RMS DETECTOR CIRCUIT & VCA CIRCUIT	12
• dbx SYSTEM CHECKING METHOD	12
• ADJUSTMENT OF dbx SYSTEM	12
• CHECKING PROCEDURE FOR PROBLEMS	13
HOW TO REPAIR PRINTED RESISTORS	14
ELECTRICAL PARTS LOCATION	14
SCHEMATIC DIAGRAM (MAIN AMP SECTION)	15
CIRCUIT BOARDS (MAIN AMP/FL METER SECTION)	16
SCHEMATIC DIAGRAM (dbx SECTION)	17
CIRCUIT BOARD (dbx SECTION)	18
WIRING CONNECTION DIAGRAM	18
MECHANICAL PARTS LOCATION	19
CABINET PARTS LOCATION	19

LOCATION OF CONTROLS AND COMPONENTS

DISASSEMBLY INSTRUCTIONS

Ref. No.	Procedure	To remove —	Remove —	Shown in fig. —
1	1	Case cover	• 4 screws (A)	1
2	2	Bottom cover	• 3 screws (B)	2
3	1→3	dbx circuit board	• 2 red screws (C)	3
4	1→2→4	Front panel	• Cassette lid (D) • 2 volume knobs (E) • 4 screws (F)	1 1 2, 3
5	1→2→4→5	FL meter	• Meter cover (G) • 2 meter holders (H)	4 5
6	1→2→3→4→6	Main circuit board	• 8 red screws (I) • 2 select knobs (J) • 2 push buttons (K) • Recording wire (L)	5, 6 5 5 3
7	1→2→4→7	Mechanism unit	• 4 red screws (M)	5
8	1→2→4→7→8	Operation button unit	• Cassette holder (N) • 2 screws (O)	7 8

MEASUREMENT AND ADJUSTMENT METHODS

(WITHOUT dbx SYSTEM)

- CIRCUIT BOARDS AND ADJUSTMENT PARTS LOCATION

Tape speed adjustment VR
Please use non metal type screwdriver when you adjust tape speed on this unit.

Fig. 1

Fig. 2

• MEASUREMENT AND ADJUSTMENT METHODS

NOTES: Keep good condition, set switches and controls in the following positions, unless otherwise specified.

- Make sure heads are clean.
- Make sure capstan and pressure roller are clean.
- Judgeable room temperature: $20 \pm 5^\circ\text{C}$ ($68 \pm 9^\circ\text{F}$)
- NR switch: OUT

- Tape selector: Normal position
- Input selector: Line in
- Input level controls: Maximum

ITEM	MEASUREMENT & ADJUSTMENT
A Head position adjustment Condition: * Playback and pause mode	<p>(The head adjusting plate is provided to adjust the tape touch of the head in cue or review mode.)</p> <ol style="list-style-type: none"> 1. Press the playback button and pause button. 2. Measure the space between the pressure roller and the capstan. <div style="border: 1px solid black; padding: 5px; margin-top: 10px;"> Standard value: $0.5 \pm 0.3\text{ mm}$ </div> <ol style="list-style-type: none"> 3. If the measured value is not within the standard value, untighten screw (A), and slide the head adjusting plate in the direction of arrow (B) for adjustment. <p style="text-align: right;">Fig. 3</p>
B Head azimuth adjustment Condition: * Playback mode Equipment: * VTVM * Oscilloscope * Test tape (azimuth) ... QZZCFM	<p>L-ch/R-ch output balance adjustment</p> <ol style="list-style-type: none"> 1. Make connections as shown in fig. 4. 2. Playback the 8kHz signal from the test tape (QZZCFM). Adjust screw (B) in fig. 5 for maximum output L-ch and R-ch levels. When the output levels of L-ch and R-ch are not at maximum at the same time, readjust as follows. 3. Turn the screw shown in fig. 5 to find angles A and C (points where peak output levels for left and right channels are obtained). Then, locate the angle B between angles A and C, i.e., a point where L-ch and R-ch output levels come together at maximum. (Refer to figs. 5 and 6.) <p style="text-align: right;">Fig. 4</p> <p style="text-align: right;">Fig. 5</p> <p style="text-align: right;">Fig. 6</p> <p>L-ch/R-ch phase adjustment</p> <ol style="list-style-type: none"> 4. Make connections as shown in fig. 7. 5. Playback the 8kHz signal from the test tape (QZZCFM). Adjust screw (B) shown in fig. 5 so that pointers of the two VTVMs swing to maximum and a waveform as illustrated in fig. 8 is obtained on the oscilloscope. <p style="text-align: center;">Fig. 7</p> <p style="text-align: center;">Fig. 8</p>
C Tape speed Condition: * Playback mode Equipment: * Digital electronic counter or frequency counter * Test tape ... QZZCWAT	<p>Tape speed accuracy</p> <ol style="list-style-type: none"> 1. Test equipment connection is shown in fig. 9. 2. Playback test tape (QZZCWAT 3,000 Hz), and supply playback signal to frequency counter. 3. Take measurement at middle section of tape. 4. Measure this frequency. 5. On the basis of 3,000 Hz, determine value by following formula: $\text{Tape speed accuracy} = \frac{f - 3,000}{3,000} \times 100 (\%) \quad \text{where, } f = \text{measured value}$ <div style="border: 1px solid black; padding: 5px; margin-top: 10px;"> Standard value: $\pm 1.5\%$ </div> <p>Adjustment method</p> <ol style="list-style-type: none"> 1. Playback the test tape (middle). 2. Adjust so that frequency becomes 3,000 Hz. 3. Tape speed adjustment VR shown in fig. 1. <p style="text-align: center;">Fig. 9</p>

ITEM	MEASUREMENT & ADJUSTMENT
	<p>Tape speed fluctuation Make measurements in same manner as above (beginning, middle and end of tape), and determine the difference between maximum and minimum values and calculate as follows:</p> $\text{Tape speed fluctuation} = \frac{f_1 - f_2}{3,000} \times 100 (\%) \quad f_1 = \text{maximum value}, f_2 = \text{minimum value}$ <p>Standard value: Less than 1%</p> <p>Note: Please use non metal type screwdriver when you adjust tape speed accuracy on this unit.</p>
<p>D Playback frequency response</p> <p>Condition: * Playback mode * Tape selector ... Normal position</p> <p>Equipment: * VTVM * Oscilloscope * Test tape... QZZCFM</p>	<ol style="list-style-type: none"> Test equipment connection is shown in fig. 4. Place UNIT into playback mode. Playback the frequency response test tape (QZZCFM). Measure output level at 315Hz, 12.5kHz, 8kHz, 4kHz, 1kHz, 250Hz, 125Hz and 63Hz, and compare each output level with the standard frequency 315Hz, at LINE OUT. Make measurement for both channels. Make sure that the measured value is within the range specified in the frequency response chart (shown in fig. 10). <p>Playback frequency response chart</p> <p>Fig. 10</p>
<p>E Playback gain</p> <p>Condition: * Playback mode * Tape selector ... Normal position</p> <p>Equipment: * VTVM * Oscilloscope * Test tape... QZZCFM</p>	<ol style="list-style-type: none"> Test equipment connection is shown in fig. 4. Playback standard recording level portion on test tape (QZZCFM 315Hz), and using VTVM measure the output level at LINE OUT. Make measurement for both channels. <p>Standard value: $0.42V \pm 2dB$ [around 0.42V: at test points TP3 (L-CH) and TP4 (R-CH)]</p> <p>Adjustment</p> <ol style="list-style-type: none"> If measured value is not within standard, adjust VR1 (L-CH), VR2 (R-CH) (See fig. 2 on page 3). After adjustment, check "Playback frequency response" again.
<p>F Bias leakage</p> <p>Condition: * Record mode * Input level controls ... MAX * Tape selector ... Metal position</p> <p>Equipment: * VTVM * Oscilloscope</p>	<ol style="list-style-type: none"> Test equipment connection is shown in fig. 11. Press the record and playback buttons. Adjust trap coils L1 (L-CH), L2 (R-CH), so that measured value becomes minimum. Make adjustment for both channels. <p>Fig. 11</p>
<p>G Erase current</p> <p>Condition: * Record mode * Tape selector ... Metal position</p> <p>Equipment: * VTVM * Oscilloscope</p>	<ol style="list-style-type: none"> Test equipment connection is shown in fig. 12. Press the record and pause buttons. Set the tape selector to metal position. Read voltage on VTVM and calculate erase current by following formula: $\text{Erase current (A)} = \frac{\text{Voltage across both ends of R301}}{1 (\Omega)}$ <p>Standard value: $155 \pm 15mA$ (Metal position)</p> <ol style="list-style-type: none"> If measured value is not within standard, adjust as follows. <p>Adjustment</p> <ol style="list-style-type: none"> Open the point (A) and short the point (B) on the main circuit board in the circuit board diagram (See page 16). Make measurement for erase current. Make sure that the measured value is within the erase current of 140mA to 170mA. If it is beyond the value, carry out the following adjustments: <ul style="list-style-type: none"> If the erase current is less than 140mA, short the point (A). If the erase current is more than 170mA, open the points (A) and (B). <p>Fig. 12</p>

ITEM	MEASUREMENT & ADJUSTMENT
<p>H Overall frequency response</p> <p>Condition:</p> <ul style="list-style-type: none"> * Record/playback mode * Tape selector <ul style="list-style-type: none"> ... Normal position ... CrO₂ position ... Fe-Cr position ... Metal position * Input level controls ... MAX <p>Equipment:</p> <ul style="list-style-type: none"> * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600 Ω) * Test tape <p>(reference blank tape)</p> <ul style="list-style-type: none"> ... QZZCRA for Normal ... QZZCRX for CrO₂ ... QZZCRY for Fe-Cr ... QZZCRZ for Metal 	<p>Note 1: Before measuring and adjusting, make sure of the playback frequency response (For the method of measurement, please refer to the playback frequency response).</p> <p>Note 2: Test tape QZZCRA to be supplied after July 1980 has higher recording sensitivity in the middle and high frequency range.</p> <p>Overall frequency response chart (Normal)</p> <p>Refer to note 2.</p> <p>Fig. 13</p> <p>* This chart indicates the standard values for the new type of QZZCRA when in use.</p> <p>* This chart indicates the standard values for the former type of QZZCRA when in use.</p> <p>The new type of QZZCRA is marked as shown in fig. 14.</p> <p>Former type → New type </p> <p>Fig. 14</p> <p>Overall frequency response adjustment by recording bias current</p> <p>Note 1: On RS-M240X, overall frequency response is adjusted with tape selector set at Normal.</p> <p>Note 2: Recording equalizer is fixed.</p> <ol style="list-style-type: none"> 1. Make connections as shown in fig. 15. 2. Input a 1kHz, -24 dB signal through LINE IN. Place the set in record mode. 3. Fine adjust the attenuator to obtain 0.42V LINE OUT output. * Make sure that the input signal level is -24 ± 4 dB with 0.42V output voltage. 4. Set the tape selector to Normal, and load the test tape (QZZCRA). 5. Adjust the attenuator to reduce the input signal level by 20 dB. 6. Adjust the AF oscillator to generate 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz and 10kHz signals, and record these signals on the test tape. 7. Playback the signals recorded in step 6, and check if the frequency response curve is within the limits shown in the overall frequency response chart for Normal tapes (fig. 13). (If the curve is within the charted specifications, proceed to steps 8, 9 and 10.) <p>If the curve is not within the charted specifications, adjust as follows:</p> <p>Adjustment ①: When the curve exceeds the overall frequency response chart specifications (fig. 13) as shown in fig. 16.</p> <p>Fig. 16</p> <p>Adjustment ②: When the curve falls below the overall frequency response chart specifications (fig. 13) as shown in fig. 17.</p> <p>Fig. 17</p>

Fig. 13**Fig. 14****Fig. 15****Adjustment ①:**

When the curve exceeds the overall frequency response chart specifications (fig. 13) as shown in fig. 16.

Fig. 16**Adjustment ②:**

When the curve falls below the overall frequency response chart specifications (fig. 13) as shown in fig. 17.

Fig. 17

ITEM	MEASUREMENT & ADJUSTMENT
	<p>1) Increase bias current by turning VR7 (L-CH) and VR8 (R-CH). (See fig. 2 on page 3.)</p> <p>2) Repeat steps 6 and 7 to confirm. (Proceed to steps 8, 9 and 10 if the curve is now within the charted specifications in fig. 13.)</p> <p>3) If the curve still exceeds the specifications (fig. 13), increase bias current further and repeat steps 6 and 7.</p> <p>8. Switch the tape selector to CrO₂, change test tape to QZZCRX, and record 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz and 12.5kHz signals. Then, playback the signals and check if the curve is within the limits shown in the overall frequency response chart for CrO₂ tapes (fig. 18).</p> <p>9. Switch the tape selector to Fe-Cr, change test tape to QZZCRY, and record 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz and 12.5kHz signals. Then, playback the signals and check if the curve is within the limits shown in the overall frequency response chart for Fe-Cr tapes (fig. 18).</p> <p>10. Switch the tape selector to Metal, change test tape to QZZCRZ, and record 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz and 12.5kHz signals. Then, playback the signals and check if the curve is within the limits shown in the overall frequency response chart for Metal tapes (fig. 18).</p> <p>11. Confirm that bias currents are approximately as follows when the tape selector is set at different positions.</p> <ul style="list-style-type: none"> * Read voltage on VTVM and calculate bias current by following formula: $\text{Bias current (A)} = \frac{\text{Value read on VTVM (V)}}{10 (\Omega)}$ <div style="border: 1px solid black; padding: 5px; margin-top: 10px;"> <p>around 410μA (Normal position) around 440μA (Fe-Cr position) around 545μA (CrO₂ position) around 800μA (Metal position)</p> <p style="margin-left: 20px;">}: measured at TP1 (L-CH) and TP2 (R-CH)</p> </div>
<p>① Overall gain</p> <p>Condition:</p> <ul style="list-style-type: none"> * Record/playback mode * Input level controls ... MAX * Standard input level; MIC -72 ± 4 dB LINE IN ... -24 ± 4 dB <p>Equipment:</p> <ul style="list-style-type: none"> * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω) * Test tape (reference blank tape) ... QZZCRA for Normal 	<p>1. Test equipment connection is shown in fig. 19.</p> <p>2. Place UNIT into record mode, and tape selector to Normal position.</p> <p>3. Supply 1kHz signal (-24 dB) from AF oscillator, through ATT to LINE IN.</p> <p>4. Adjust ATT until monitor level at LINE OUT becomes 0.42V.</p> <p>5. Using test tape, make recording.</p> <p>6. Playback recorded tape, and make sure the value at LINE OUT on VTVM becomes 0.42V.</p> <p>7. If measured value is not 0.42V, adjust VR5 (L-CH), VR6 (R-CH) (See fig. 2).</p> <p>8. Repeat from step 2.</p>
<p>② Fluorescent meter</p> <p>Condition:</p> <ul style="list-style-type: none"> * Record mode * Input level controls ... MAX * Tape selector ... Normal position 	<p>1. Test equipment connection is shown in fig. 19.</p> <p>2. As shown in fig. 20, connecting the base of Q402 and ground stops the oscillation of the astable multivibrator comprising Q402 and Q403.</p> <p>3. Supply 1kHz signal (-24 dB) to the LINE IN jack, then press the record button.</p> <p>4. Adjust the ATT so that the output level at LINE OUT jack becomes 0.42 V (The input level at this condition is termed the standard input level).</p>

Overall frequency response chart
(CrO₂, Fe-Cr, Metal)

Fig. 18

Fig. 19

Fig. 20

ITEM	MEASUREMENT & ADJUSTMENT
Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	<p>5. Adjustment at “-20 dB”:</p> <ol style="list-style-type: none"> Adjust the ATT so that input level is -20dB below standard recording level. Adjust VR401 so that the -20dB segment lights up in the -20 ± 0.8 dB range (L-CH ONLY) (See fig. 22). <p>6. Adjustment at “0 dB”:</p> <ol style="list-style-type: none"> Adjust the ATT so that the output level at LINE OUT jack becomes 0.42V. (The input level at this condition is termed the standard input level.) Adjust VR402 so that the +1dB segment lights up in the 0 ± 0.2 dB range of the standard input level (See fig. 22). <p>7. Repeat twice between steps 5 and 6 above.</p> <p>8. Adjust ATT and check that all segments light up when an input signal level is increased to 10 dB higher than the standard input level (See fig. 23).</p>
⑤ Dolby NR circuit Condition: * Record mode * NR switch ... Dolby IN/OUT * Input level controls ... MAX Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	<p>1. Test equipment connection is shown in fig. 24.</p> <p>2. Place UNIT into record mode, set the NR switch to OUT position and supply to LINE IN to obtain -35 dB (17.5mV) at TP3 (L-CH), TP4 (R-CH) (frequency 5kHz).</p> <p>3. Confirm that the value at Dolby IN position is 8 ± 2.5 dB greater than the value at Dolby OUT position of NR switch.</p>

Fig. 21

Fig. 22

Fig. 23

Fig. 24

OUTLINE OF dbx SYSTEM

In 1971, the dbx company of Massachusetts, U.S.A., succeeded in developing a logarithmic compression/expansion system for audio signals which extends across an extremely wide amplitude range and results in a very low distortion rate.

In this system, the dynamic range of the input signal is compressed to 1/2 its original level (measured in decibels), and then recorded. The recorded signal is then expanded (2x) prior to playback, in order to restore it to the original level. By this process, a dynamic range exceeding 100dB can be easily obtained by using an ordinary tape recorder.

This system is referred to as a decilinear noise reduction system, but is generally called the "dbx system", the name being derived from the dbx company.

• The features of the dbx system

1. A significant noise reduction (approximately 30dB or more) is obtained over the entire audible frequency range.

Noise reduction mode	S/N ratio RS-M240X	Remarks
Noise reduction "OUT"	58dB	CrO ₂ tape, peak level
Dolby NR "IN"	66dB	CrO ₂ tape, peak level
dbx "IN"	92dB	CrO ₂ tape, peak level

2. A great improvement in the dynamic range makes it possible to extend the range to 110dB (at 1kHz, CrO₂ tape).
3. The direct logarithmic method of compression and expansion protects against problems caused by level mismatching.
4. Even if phase distortion occurs in the signal transmission system, precise operation is maintained by means of the RMS level detector.
5. A low distortion rate is maintained throughout the frequency range.
 - Improvement of high frequency response. The dbx system solves the problem of deteriorated high frequency at higher input levels which is an inherent fault of cassette tape equipment. The response at approx. 8,000Hz at 10dB input is improved as much as 14dB. As a result, flatter response is obtained at both low and high input levels.

• Remarkable dynamic range of 110dB

About dynamic range:

The dynamic range refers to the output range of an audio transmission system, extending from the lowest recognizable level to the highest possible level produced. Dynamic range is one of the values used to express the degree of fidelity of an audio transmission system.

Overall frequency response (RS-M240X)

Dynamic range: 1kHz (RS-M240X)

MEASUREMENT AND ADJUSTMENT METHODS (FOR dbx SYSTEM)

Fig. 1

• TROUBLESHOOTING CHART FOR dbx SYSTEM

The troubleshooting chart for the dbx system is shown in Fig. 1. Please follow the sequence of this chart for checking and repairing the dbx system. The figures shown in each block indicate the page on which the checking method, adjustment or measurement is explained.

- Compressing the dynamic range to 1/2 before recording, and then expanding it (by 2x) before playback produces the remarkable dynamic range of the dbx system.

The dynamic range of cassette tape with a saturation level of +10dB and a noise level of -45dB (such as Technics CrO₂ position tape) is 55dB. Any sounds with a level greater than +10dB will result in considerable distortion, and any sounds less than -45dB will be inaudible due to the effect of noise, making high-fidelity reproduction impossible.

The dbx system, however, linearly compresses the input level by a ratio of 1/2 in decibels prior to recording it onto the tape. A +20dB sound is thus compressed to +10dB, a -20dB sound is compressed to -10dB, and a -90dB sound is compressed to -45dB.

As a result, a signal with a dynamic range extending from -90dB to +20dB (a 110dB dynamic range) can be contained within a range which extends from -45dB to +10dB (a 55dB dynamic range). Recording onto a cassette tape with a 55dB dynamic range is then possible.

Prior to playback, the exact opposite process occurs and the sound levels are expanded. The +10dB sound is restored to its original level of +20dB, the -10dB sound is restored to -20dB, and the -45dB sound is restored to -90dB.

Therefore, the basic principle of the dbx system, as described above, is to compress the 110dB dynamic range by 1/2 to 55dB prior to recording, and then expand it (by 2x) prior to playback.

dbx system function diagram

Level compression/expansion diagram

THE BLOCK DIAGRAM OF dbx SYSTEM

(Block configuration change for dbx circuit Encode/Decode is electrically performed by switching transistors between blocks.)

ENCODER

- The portion of the dbx system with compresses the volume level of the input signal by 1/2 (measured in decibels), before sending it to the recording system, is called the encoder.

① INPUT BANDPASS FILTER (27Hz–20kHz)

To prevent pulse noise or other types of interference from causing erroneous operation of the dbx system, all signals outside the 27Hz–20kHz audio band range are eliminated here.

② PRE-EMPHASIS

The high frequency range, where hiss noise is prominent, is emphasized here during recording. The end result is that, although the dbx system is effective in reducing noise across entire frequency band, noise in the high frequency range is reduced still more by this pre-emphasis circuitry.

③ VCA (voltage-controlled amplifier/attenuator)

This is an extremely important circuitry in the construction of the dbx system. In response to the incoming DC control voltage, the VCA varies the degree of amplification logarithmically in the same manner as the direct current, resulting in compression and expansion of the input signal's dynamic range.

④ RMS DETECTOR (RMS: root mean square)

This is an important element in the composition of the dbx system, because its circuitry generates a DC voltage (the voltage that controls the degree of amplification in the VCA) in proportion to the size of the input signal.

It does this by detecting the root mean square value of the input signal, and then converting it to a DC voltage in proportion to the logarithm of the detected level.

Erroneous operation due to phase shift is prevented by monitoring of the voltage level derived from the root mean square value.

⑤ WEIGHTING

To prevent the saturation level of the tape deck in high frequencies, this increases the RMS DETECTOR high frequency sensitivity and decreases the VCA high frequency gain. As a result, the linearity of the tape deck is enhanced in the high frequency range.

⑥ RMS FILTER (27Hz to 10kHz)

This filter cuts any signal other than 27Hz to 10Hz that mixes in input signals to prevent the RMS DETECTOR from malfunctioning. Those to be cut include an FM tuner STEREO PILOT signal, tape deck bias leakage and record player motor rotational noise. In addition, the signal in the frequency range (27Hz to 10kHz) passing through the BAND PASS FILTER is comparatively small in level variations when handled by the tape deck.

This ensures correct complementarity in the operation of the RMS DETECTOR and VCA during Encoding and Decoding.

DECODER

As shown in the diagram on the previous page, for playback output, the decoder expands the constantly changing level to double the decibel range.

For example, a -30dB signal is expanded to -60dB, and a level of -45dB becomes -90dB. On the other hand, a playback output +10dB is expanded to +20dB, and a saturation level signal is also correspondingly increased.

In terms of the system's operation, the decoder's function is the exact opposite of the function of the previously mentioned encoder.

ITEM	ADJUSTMENT
Condition: * Record/stop mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	<p>②-1 Standard level adjustment in dbx Encode mode</p> <ol style="list-style-type: none"> 1. Make the connection as shown in fig. 12 and apply 1kHz -27dB signal from LINE IN, and set the noise reduction selector to dbx tape position. 2. Set unit to record mode, adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV. 3. Adjust VR607 (L-CH) and VR608 (R-CH) so that the output signal level at TP605 (L-CH) and TP606 (R-CH) becomes $300\text{mV} \pm 0.5\text{dB}$. <p>Fig. 12</p> <p>②-2 Standard level adjustment in dbx Decode mode</p> <ol style="list-style-type: none"> 1. Make the connection as shown in fig. 12 and apply 1kHz -27dB signal from LINE IN, and perform the following adjustments. 2. Set the noise reduction selector to disc position, and adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) becomes 300mV. 3. Adjust VR609 (L-CH) and VR610 (R-CH) so that the output signal level at TP605 (L-CH) and TP606 (R-CH) becomes $300\text{mV} \pm 0.5\text{dB}$.
③ Adjustment of output signal distortion factor Condition: * Stop mode * Input level controls ... MAX * Noise reduction selector ... disc Equipment: * VTVM * AF oscilloscope * ATT * Oscilloscope * Resistor (600Ω) * Distortion meter	<ol style="list-style-type: none"> 1. Make the connection as shown in fig. 13 and apply 1kHz -27dB signal from LINE IN, and perform the following adjustments. 2. Set the noise reduction selector to disc position, and adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) becomes 300mV - 3dB. 3. Adjust VR601 (L-CH) and VR602 (R-CH) so that output signal distortion at TP605 (L-CH) and TP606 (R-CH) is minimized. 4. Adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) becomes $300\text{mV} + 2\text{dB}$. 5. Adjust VR603 (L-CH) and VR604 (R-CH) so that output signal distortion at TP605 (L-CH) and TP606 (R-CH) is minimized. 6. Repeat adjustments 2 through 5 until the distortion factor is minimized. <p>Fig. 13</p> <p>NOTE: After adjustments ①, ② and ③, re-check according to "dbx SYSTEM CHECKING METHOD". If the specifications are not satisfied, perform the adjustments again.</p>

• CHECKING PROCEDURE FOR PROBLEMS

NOTES: Find defective parts according to the circuit operation checking method given below, and use the results for your reference during repair.

Remember to adjust after repair.

Keep good condition, set switches and controls in the following positions, unless otherwise specified.

- Input selector: Line in
- Input level controls: Maximum

ITEM	CHECKING METHOD
① Operation check of regulated power supply circuit in dbx circuit Equipment: * DC volt meter * Oscilloscope	<p>①-1 Check of 19V voltage Make the connection as shown in fig. 14 and make sure that the emitter voltage of Q645 (TP611) is around 19V.</p> <p>Fig. 14</p> <p>①-2 Check of 9.5V voltage Make the connection as shown in fig. 14 and make sure that the emitter voltage of Q647 is around 9.5V.</p>

ITEM	CHECKING METHOD																																																																																																																						
② Check of control circuit in dbx circuit Equipment: * DC volt meter	<p>E.C.B (G.S.D) voltage check of each switching transistor for Encode/Decode The terminal voltage of each switching transistor in Encode/Decode mode are shown in the table below.</p> <table border="1"> <thead> <tr> <th rowspan="2">Transistor Ref. No.</th> <th colspan="3">Encode</th> <th colspan="3">Decode</th> </tr> <tr> <th>E (G)</th> <th>C (S)</th> <th>B (D)</th> <th>E (G)</th> <th>C (S)</th> <th>B (D)</th> </tr> </thead> <tbody> <tr> <td>Q601, 602</td> <td>0V</td> <td>9.4V</td> <td>9.4V</td> <td>0V</td> <td>9.4V</td> <td>9.4V</td> </tr> <tr> <td>Q605</td> <td>10.3V</td> <td>9.5V</td> <td>0V</td> <td>10.3V</td> <td>10.2V</td> <td>10.8V</td> </tr> <tr> <td>Q606</td> <td>10.4V</td> <td>9.5V</td> <td>0V</td> <td>10.4V</td> <td>10.4V</td> <td>11.0V</td> </tr> <tr> <td>Q607</td> <td>10.3V</td> <td>10.3V</td> <td>10.8V</td> <td>0V</td> <td>10.3V</td> <td>0V</td> </tr> <tr> <td>Q608</td> <td>10.4V</td> <td>10.4V</td> <td>11.0V</td> <td>0V</td> <td>10.4V</td> <td>0V</td> </tr> <tr> <td>Q615</td> <td>0V</td> <td>9.5V</td> <td>0V</td> <td>9.5V</td> <td>9.5V</td> <td>10.0V</td> </tr> <tr> <td>Q628</td> <td>0V</td> <td>9.4V</td> <td>9.3V</td> <td>0V</td> <td>9.4V</td> <td>9.3V</td> </tr> <tr> <td>Q629, 630</td> <td>0V</td> <td>9.5V</td> <td>9.5V</td> <td>0V</td> <td>9.5V</td> <td>9.5V</td> </tr> <tr> <td>Q631, 632</td> <td>0V</td> <td>9.4V</td> <td>9.4V</td> <td>0V</td> <td>9.4V</td> <td>9.4V</td> </tr> <tr> <td>Q633</td> <td>0V</td> <td>9.1V</td> <td>9.0V</td> <td>0V</td> <td>9.1V</td> <td>9.0V</td> </tr> <tr> <td>Q634</td> <td>0V</td> <td>9.1V</td> <td>9.1V</td> <td>0V</td> <td>9.1V</td> <td>9.1V</td> </tr> <tr> <td>Q635, 636</td> <td>0V</td> <td>9.1V</td> <td>9.1V</td> <td>0V</td> <td>9.1V</td> <td>9.1V</td> </tr> <tr> <td>Q637</td> <td>0V</td> <td>0.3V</td> <td>0V</td> <td>0V</td> <td>0.6V</td> <td>0V</td> </tr> <tr> <td>Q638</td> <td>0V</td> <td>22.0V</td> <td>0V</td> <td>0V</td> <td>22.0V</td> <td>0V</td> </tr> <tr> <td>Q640</td> <td>0V</td> <td>0V</td> <td>0.7V</td> <td>0V</td> <td>17.4V</td> <td>0V</td> </tr> </tbody> </table> <p>NOTE: If no abnormality is found in steps ① and ②, check the operation for each part as follows:</p>	Transistor Ref. No.	Encode			Decode			E (G)	C (S)	B (D)	E (G)	C (S)	B (D)	Q601, 602	0V	9.4V	9.4V	0V	9.4V	9.4V	Q605	10.3V	9.5V	0V	10.3V	10.2V	10.8V	Q606	10.4V	9.5V	0V	10.4V	10.4V	11.0V	Q607	10.3V	10.3V	10.8V	0V	10.3V	0V	Q608	10.4V	10.4V	11.0V	0V	10.4V	0V	Q615	0V	9.5V	0V	9.5V	9.5V	10.0V	Q628	0V	9.4V	9.3V	0V	9.4V	9.3V	Q629, 630	0V	9.5V	9.5V	0V	9.5V	9.5V	Q631, 632	0V	9.4V	9.4V	0V	9.4V	9.4V	Q633	0V	9.1V	9.0V	0V	9.1V	9.0V	Q634	0V	9.1V	9.1V	0V	9.1V	9.1V	Q635, 636	0V	9.1V	9.1V	0V	9.1V	9.1V	Q637	0V	0.3V	0V	0V	0.6V	0V	Q638	0V	22.0V	0V	0V	22.0V	0V	Q640	0V	0V	0.7V	0V	17.4V	0V
Transistor Ref. No.	Encode			Decode																																																																																																																			
	E (G)	C (S)	B (D)	E (G)	C (S)	B (D)																																																																																																																	
Q601, 602	0V	9.4V	9.4V	0V	9.4V	9.4V																																																																																																																	
Q605	10.3V	9.5V	0V	10.3V	10.2V	10.8V																																																																																																																	
Q606	10.4V	9.5V	0V	10.4V	10.4V	11.0V																																																																																																																	
Q607	10.3V	10.3V	10.8V	0V	10.3V	0V																																																																																																																	
Q608	10.4V	10.4V	11.0V	0V	10.4V	0V																																																																																																																	
Q615	0V	9.5V	0V	9.5V	9.5V	10.0V																																																																																																																	
Q628	0V	9.4V	9.3V	0V	9.4V	9.3V																																																																																																																	
Q629, 630	0V	9.5V	9.5V	0V	9.5V	9.5V																																																																																																																	
Q631, 632	0V	9.4V	9.4V	0V	9.4V	9.4V																																																																																																																	
Q633	0V	9.1V	9.0V	0V	9.1V	9.0V																																																																																																																	
Q634	0V	9.1V	9.1V	0V	9.1V	9.1V																																																																																																																	
Q635, 636	0V	9.1V	9.1V	0V	9.1V	9.1V																																																																																																																	
Q637	0V	0.3V	0V	0V	0.6V	0V																																																																																																																	
Q638	0V	22.0V	0V	0V	22.0V	0V																																																																																																																	
Q640	0V	0V	0.7V	0V	17.4V	0V																																																																																																																	
③ Operation check of INPUT BAND PASS FILTER circuit (27Hz-20kHz) Condition: * Record mode * Input level controls ... MAX * Noise reduction selector ... dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	<ol style="list-style-type: none"> 1. Make the connections as shown in fig. 15, and apply 100Hz -27dB signal from LINE IN, and set the noise reduction selector to dbx tape position. 2. Set the unit to record mode. 3. Adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV. 4. Make sure that the emitter signal level of Q603 (L-CH) and Q604 (R-CH) is 300mV. 5. Set the input signal frequency to 5kHz and make sure that the emitter signal of Q603 (L-CH) and Q604 (R-CH) remains at the same level (300mV). <p>Fig. 15</p>																																																																																																																						
④ Operation check of VCA circuit and Pre-emphasis circuit Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	<p>④-1 Operation check of VCA circuit and Pre-emphasis circuit</p> <ol style="list-style-type: none"> 1. Make the connections as shown in fig. 16, and apply 100Hz -27dB signal from LINE IN. 2. Short-circuit both terminals of VR603 (L-CH) and VR604 (R-CH) as shown in fig. 17 to make the VCA control voltage $1/2\text{Vcc}$ (9.5V), so that the gain of VCA does not change. 3. Set the unit to record mode, and set the noise reduction selector to dbx tape position. 4. Adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV. 5. Make sure that the output signals at TP605 (L-CH) and TP606 (R-CH) are sinusoidal. (The operation of VCA can then be checked.) <p>Fig. 16</p> <p>Fig. 17</p>																																																																																																																						

ITEM	CHECKING METHOD																																																																																																																						
<p>2 Check of control circuit in dbx circuit</p> <p>E.C.B (G.S.D) voltage check of each switching transistor for Encode/Decode</p> <p>The terminal voltage of each switching transistor in Encode/Decode mode are shown in the table below.</p> <p>Equipment: * DC volt meter</p>	<table border="1"> <thead> <tr> <th rowspan="2">Transistor Ref. No.</th> <th colspan="3">Encode</th> <th colspan="3">Decode</th> </tr> <tr> <th>E (G)</th> <th>C (S)</th> <th>B (D)</th> <th>E (G)</th> <th>C (S)</th> <th>B (D)</th> </tr> </thead> <tbody> <tr><td>Q601, 602</td><td>0V</td><td>9.4V</td><td>9.4V</td><td>0V</td><td>9.4V</td><td>9.4V</td></tr> <tr><td>Q605</td><td>10.3V</td><td>9.5V</td><td>0V</td><td>10.3V</td><td>10.2V</td><td>10.8V</td></tr> <tr><td>Q606</td><td>10.4V</td><td>9.5V</td><td>0V</td><td>10.4V</td><td>10.4V</td><td>11.0V</td></tr> <tr><td>Q607</td><td>10.3V</td><td>10.3V</td><td>10.8V</td><td>0V</td><td>10.3V</td><td>0V</td></tr> <tr><td>Q608</td><td>10.4V</td><td>10.4V</td><td>11.0V</td><td>0V</td><td>10.4V</td><td>0V</td></tr> <tr><td>Q615</td><td>0V</td><td>9.5V</td><td>0V</td><td>9.5V</td><td>9.5V</td><td>10.0V</td></tr> <tr><td>Q628</td><td>0V</td><td>9.4V</td><td>9.3V</td><td>0V</td><td>9.4V</td><td>9.3V</td></tr> <tr><td>Q629, 630</td><td>0V</td><td>9.5V</td><td>9.5V</td><td>0V</td><td>9.5V</td><td>9.5V</td></tr> <tr><td>Q631, 632</td><td>0V</td><td>9.4V</td><td>9.4V</td><td>0V</td><td>9.4V</td><td>9.4V</td></tr> <tr><td>Q633</td><td>0V</td><td>9.1V</td><td>9.0V</td><td>0V</td><td>9.1V</td><td>9.0V</td></tr> <tr><td>Q634</td><td>0V</td><td>9.1V</td><td>9.1V</td><td>0V</td><td>9.1V</td><td>9.1V</td></tr> <tr><td>Q635, 636</td><td>0V</td><td>9.1V</td><td>9.1V</td><td>0V</td><td>9.1V</td><td>9.1V</td></tr> <tr><td>Q637</td><td>0V</td><td>0.3V</td><td>0V</td><td>0V</td><td>0.6V</td><td>0V</td></tr> <tr><td>Q638</td><td>0V</td><td>22.0V</td><td>0V</td><td>0V</td><td>22.0V</td><td>0V</td></tr> <tr><td>Q640</td><td>0V</td><td>0V</td><td>0.7V</td><td>0V</td><td>17.4V</td><td>0V</td></tr> </tbody> </table>	Transistor Ref. No.	Encode			Decode			E (G)	C (S)	B (D)	E (G)	C (S)	B (D)	Q601, 602	0V	9.4V	9.4V	0V	9.4V	9.4V	Q605	10.3V	9.5V	0V	10.3V	10.2V	10.8V	Q606	10.4V	9.5V	0V	10.4V	10.4V	11.0V	Q607	10.3V	10.3V	10.8V	0V	10.3V	0V	Q608	10.4V	10.4V	11.0V	0V	10.4V	0V	Q615	0V	9.5V	0V	9.5V	9.5V	10.0V	Q628	0V	9.4V	9.3V	0V	9.4V	9.3V	Q629, 630	0V	9.5V	9.5V	0V	9.5V	9.5V	Q631, 632	0V	9.4V	9.4V	0V	9.4V	9.4V	Q633	0V	9.1V	9.0V	0V	9.1V	9.0V	Q634	0V	9.1V	9.1V	0V	9.1V	9.1V	Q635, 636	0V	9.1V	9.1V	0V	9.1V	9.1V	Q637	0V	0.3V	0V	0V	0.6V	0V	Q638	0V	22.0V	0V	0V	22.0V	0V	Q640	0V	0V	0.7V	0V	17.4V	0V
Transistor Ref. No.	Encode			Decode																																																																																																																			
	E (G)	C (S)	B (D)	E (G)	C (S)	B (D)																																																																																																																	
Q601, 602	0V	9.4V	9.4V	0V	9.4V	9.4V																																																																																																																	
Q605	10.3V	9.5V	0V	10.3V	10.2V	10.8V																																																																																																																	
Q606	10.4V	9.5V	0V	10.4V	10.4V	11.0V																																																																																																																	
Q607	10.3V	10.3V	10.8V	0V	10.3V	0V																																																																																																																	
Q608	10.4V	10.4V	11.0V	0V	10.4V	0V																																																																																																																	
Q615	0V	9.5V	0V	9.5V	9.5V	10.0V																																																																																																																	
Q628	0V	9.4V	9.3V	0V	9.4V	9.3V																																																																																																																	
Q629, 630	0V	9.5V	9.5V	0V	9.5V	9.5V																																																																																																																	
Q631, 632	0V	9.4V	9.4V	0V	9.4V	9.4V																																																																																																																	
Q633	0V	9.1V	9.0V	0V	9.1V	9.0V																																																																																																																	
Q634	0V	9.1V	9.1V	0V	9.1V	9.1V																																																																																																																	
Q635, 636	0V	9.1V	9.1V	0V	9.1V	9.1V																																																																																																																	
Q637	0V	0.3V	0V	0V	0.6V	0V																																																																																																																	
Q638	0V	22.0V	0V	0V	22.0V	0V																																																																																																																	
Q640	0V	0V	0.7V	0V	17.4V	0V																																																																																																																	
<p>NOTE: If no abnormality is found in steps 1 and 2, check the operation for each part as follows:</p> <p>3 Operation check of INPUT BAND PASS FILTER circuit (27Hz—20 kHz)</p> <p>Condition: * Record mode * Input level controls ... MAX * Noise reduction selector ... dbx tape</p> <p>Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)</p>	<p>1. Make the connections as shown in fig. 15, and apply 100Hz —27 dB signal from LINE IN, and set the noise reduction selector to dbx tape position.</p> <p>2. Set the unit to record mode.</p> <p>3. Adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV.</p> <p>4. Make sure that the emitter signal level of Q603 (L-CH) and Q604 (R-CH) is 300mV.</p> <p>5. Set the input signal frequency to 5kHz and make sure that the emitter signal of Q603 (L-CH) and Q604 (R-CH) remains at the same level (300mV).</p> <p>Fig. 15</p>																																																																																																																						
<p>4 Operation check of VCA circuit and Pre-emphasis/ De-emphasis circuit</p> <p>Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape</p> <p>Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)</p>	<p>4-1 Operation check of VCA circuit and Pre-emphasis circuit</p> <p>1. Make the connections as shown in fig. 16, and apply 100Hz —27 dB signal from LINE IN.</p> <p>2. Short-circuit both terminals of VR603 (L-CH) and VR604 (R-CH) as shown in fig. 17 to make the VCA control voltage 1/2 Vcc (9.5V), so that the gain of VCA does not change.</p> <p>3. Set the unit to record mode, and set the noise reduction selector to dbx tape position.</p> <p>4. Adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV.</p> <p>5. Make sure that the output signals at TP605 (L-CH) and TP606 (R-CH) are sinusoidal. (The operation of VCA can then be checked.)</p> <p>Fig. 16</p> <p>Fig. 17</p>																																																																																																																						

ITEM	CHECKING METHOD
	<p>6. Shift the frequency of input signal to 5kHz, and make sure that the output signal levels at TP605 (L-CH) and TP606 (R-CH) are increased by about 12dB. (The operation of the Pre-emphasis circuit can then be checked.)</p> <p>4-2 Operation check of VCA circuit and De-emphasis circuit</p> <p>1. The procedure is the same as 1—2 for the above VCA circuit and Pre-emphasis circuit.</p> <p>2. Set the noise reduction selector to disc position.</p> <p>3. Adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV.</p> <p>4. Make sure that the output signals at TP605 (L-CH) and TP606 (R-CH) are sinusoidal. (The operation of VCA can then be checked.)</p> <p>5. Change the frequency of input signal to 5kHz and make sure that the output signal level at TP605 (L-CH) and TP606 (R-CH) is decreased by about 12dB. (The operation of the De-emphasis circuit can then be checked.)</p> <p>NOTE: After check, disconnect the short-circuited terminals of VR603 (L-CH) and VR604 (R-CH).</p>
<p>5 Operation check of RMS FILTER circuit (27Hz—10kHz)</p> <p>Condition: * Stop mode * Input level controls ... MAX * Noise reduction selector ... disc</p> <p>Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)</p>	<p>Fig. 18</p>

• ADJUSTMENT PARTS LOCATION OF dbx SYSTEM

Fig. 2

• SIGNAL WAVE FORMS AT INDIVIDUAL SECTIONS OF THE RMS DETECTOR CIRCUIT & VCA CIRCUIT (FOR OPERATION CHECK OF dbx SYSTEM)

Figures 4 and 5 show the signal waveforms at pins of the major ICs when an input signal (1kHz, 300mV) shown in Fig. 3 is applied to the input terminals TP603 (L-CH) and TP604 (R-CH) of the dbx system.

Measurement Method and condition

1. Make the connections as shown in fig. 6, and apply 1kHz -27 dB signal from LINE IN, and set the noise reduction selector to dbx tape position.
2. Set the unit to record mode, adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV.

Fig. 6

• dbx SYSTEM CHECKING METHOD

NOTES: Keep good condition, set switches and controls in the following positions, unless otherwise specified.

- Input selector: Line in
- Input level controls: Maximum

ITEM	CHECKING METHOD
A Check for expansion/compression Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	A-1 Check for expansion 1. Make the connections as shown in fig. 7 and apply 1kHz -27 dB signal from LINE IN, and set the noise reduction selector to disc position. 2. Adjust ATT, increase input signal level by 10dB, and make sure that the reading for VTVM increases by 20dB±1dB. 3. Adjust ATT, decrease the input signal level, and make sure that the reading for VTVM decreases by 20dB±1dB. A-2 Check for compression 1. Make the connections as shown in fig. 8 and apply 1kHz -27 dB signal from LINE IN, and set the noise reduction selector to dbx tape position. 2. Set the unit to record mode. 3. Adjust ATT, increase input signal level by 10dB, and make sure that the reading for VTVM at TP605 (L-CH) and TP606 (R-CH) increases by 5±1dB. 4. Adjust ATT, decrease the input signal level, and make sure that the reading for VTVM at TP605 (L-CH) and TP606 (R-CH) decreases by 5±1dB.
B Check for standard level of dbx Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	B-1 Check for standard level of dbx in dbx Encode mode 1. Make the connections as shown in fig. 8 and apply 1kHz -27 dB signal from LINE IN, and set the noise reduction selector to dbx tape position. 2. Set the unit to record mode, adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV. 3. Make sure that the signal level at TP605 (L-CH) and TP606 (R-CH) is 300mV±0.5dB. B-2 Check for standard level of dbx in dbx Decode mode 1. Make the connections as shown in fig. 8 and apply 1kHz -27 dB signal from LINE IN, and check as follows: 2. Set the noise reduction selector to disc position and adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) becomes 300mV. 3. Make sure that the signal level at TP605 (L-CH) and TP606 (R-CH) is 300mV±0.5dB.
C Check for output signal distortion factor (Check for distortion factor of VCA) Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω) * Distortion meter	C-1 Check for output signal distortion factor in dbx Decode mode 1. Make the connections as shown in fig. 9 and apply 1kHz -27 dB signal from LINE IN, and check as follows: 2. Set the noise reduction selector to disc position, and adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) becomes 300mV. 3. Measure the distortion factor of output signal at TP605 (L-CH) and TP606 (R-CH), and make sure that the distortion factor is less than 0.2%. 4. Next, adjust ATT to raise the output signal level by 10dB and measure the distortion of output factor at TP605 (L-CH) and TP606 (R-CH). Make sure that the distortion is less than 0.8%. 5. Adjust ATT to set the output signal at a level 10dB lower than the dbx reference level (300mV), and measure the output signal distortion at TP605 (L-CH) and TP606 (R-CH) to check that it is less than 0.3%. C-2 Check for output signal distortion factor in dbx Encode mode 1. The connection is the same as above, as is the input signal. 2. Set the noise reduction selector to dbx tape position, and the unit to record mode. 3. Adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV. 4. Measure the distortion factor of output signal at TP605 (L-CH) and TP606 (R-CH), and make sure that the distortion factor is less than 0.25%.

Fig. 7

Fig. 8

Fig. 9

① Check response circuit

Condition:
* Stop/rec
* Input lev
* Noise re

Equipment
* VTVM
* ATT
* Resistor

• ADJUS

NOTES: W

① Adjust detecto

Condition:
* Stop mo
* Input lev
* Noise re

Equipment
* VTVM
* ATT
* Resistor

② Adjust standa

• dbx SYSTEM CHECKING METHOD

NOTES: Keep good condition, set switches and controls in the following positions, unless otherwise specified.

- Input selector: Line in
- Input level controls: Maximum

ITEM	CHECKING METHOD
A Check for expansion/compression Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	A-1 Check for expansion 1. Make the connections as shown in fig. 7 and apply 1kHz -27dB signal from LINE IN, and set the noise reduction selector to disc position. 2. Adjust ATT, increase input signal level by 10dB, and make sure that the reading for VTVM increases by 20dB ±1dB. 3. Adjust ATT, decrease the input signal level, and make sure that the reading for VTVM decreases by 20dB ±1dB. A-2 Check for compression 1. Make the connections as shown in fig. 8 and apply 1kHz -27dB signal from LINE IN, and set the noise reduction selector to dbx tape position. 2. Set the unit to record mode. 3. Adjust ATT, increase input signal level by 10dB, and make sure that the reading for VTVM at TP605 (L-CH) and TP606 (R-CH) increases by 5±1dB. 4. Adjust ATT, decrease the input signal level, and make sure that the reading for VTVM at TP605 (L-CH) and TP606 (R-CH) decreases by 5±1dB.
B Check for standard level of dbx Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	B-1 Check for standard level of dbx in dbx Encode mode 1. Make the connections as shown in fig. 8 and apply 1kHz -27dB signal from LINE IN, and set the noise reduction selector to dbx tape position. 2. Set the unit to record mode, adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV. 3. Make sure that the signal level at TP605 (L-CH) and TP606 (R-CH) is 300mV ±0.5dB. B-2 Check for standard level of dbx in dbx Decode mode 1. Make the connections as shown in fig. 8 and apply 1kHz -27dB signal from LINE IN, and check as follows: 2. Set the noise reduction selector to disc position and adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) becomes 300mV. 3. Make sure that the signal level at TP605 (L-CH) and TP606 (R-CH) is 300mV ±0.5dB.
C Check for output signal distortion factor (Check for distortion factor of VCA) Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω) * Distortion meter	C-1 Check for output signal distortion factor in dbx Decode mode 1. Make the connections as shown in fig. 9 and apply 1kHz -27dB signal from LINE IN, and check as follows: 2. Set the noise reduction selector to disc position, and adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) becomes 300mV. 3. Measure the distortion factor of output signal at TP605 (L-CH) and TP606 (R-CH), and make sure that the distortion factor is less than 0.2%. 4. Next, adjust ATT to raise the output signal level by 10dB and measure the distortion of output factor at TP605 (L-CH) and TP606 (R-CH). Make sure that the distortion is less than 0.8%. 5. Adjust ATT to set the output signal at a level 10dB lower than the dbx reference level (300mV), and measure the output signal distortion at TP605 (L-CH) and TP606 (R-CH) to check that it is less than 0.3%. C-2 Check for output signal distortion factor in dbx Encode mode 1. The connection is the same as above, as is the input signal. 2. Set the noise reduction selector to dbx tape position, and the unit to record mode. 3. Adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV. 4. Measure the distortion factor of output signal at TP605 (L-CH) and TP606 (R-CH), and make sure that the distortion factor is less than 0.25%.

Fig. 7

Fig. 8

Fig. 9

ITEM	CHECKING METHOD
D Check the frequency response of the dbx circuit Condition: * Stop/record mode * Input level controls ... MAX * Noise reduction selector ... disc/dbx tape Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	D-1 Check the frequency response during decoding 1. Make the connections as shown in fig. 8 and apply 1kHz -27dB signal from LINE IN, and check as follows: 2. Set the noise reduction selector to disc position, and adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) becomes 300mV. 3. With the signal level at TP605 (L-CH) and TP606 (R-CH) as 0dB, change the signal frequency to 100Hz, 20Hz and 7kHz respectively. Read signal levels at TP605 (L-CH) and TP606 (R-CH) and check that they are within the specifications-1. D-2 Check the frequency response during encoding 1. Make the connections as shown in fig. 8 and apply 1kHz -27dB signal from LINE IN, and check as follows: 2. Set the noise reduction selector to dbx tape position, and the unit to record mode. 3. Adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) is 300mV. 4. With the signal level at TP605 (L-CH) and TP606 (R-CH) as 0dB, change the signal frequency to 100Hz and 7kHz respectively. Read signal levels at TP605 (L-CH) and TP606 (R-CH) and check that they are within the specifications-2.
	NOTES: • If the results of the above checks A, B, C and D do not satisfy the specifications, perform the following adjustments. If the specifications are not satisfied even after the adjustments, follow the checking procedure for problems. • If the output signal is not produced or is extremely distorted, follow the checking procedure for problems.

Specifications-1	
Frequency	Signal levels at TP605 and TP606
1kHz	0dB (300mV)
100Hz	-0.5dB ±1dB
20Hz	-28dB ±5dB
7kHz	+7dB ±1dB

Specifications-2	
Frequency	Signal levels at TP605 and TP606
1kHz	0dB (300mV)
100Hz	+0.5dB ±1dB
7kHz	-3.5dB ±1dB

• ADJUSTMENT OF dbx SYSTEM

NOTES: When adjusting the circuit of the dbx system, be sure to perform the adjustments in the following order:

- 1) Adjustment of RMS detector,
- 2) Adjustment of dbx standard level
- 3) Adjustment of output signal distortion factor.

Keep good condition, set switches and controls in the following positions, unless otherwise specified.

- Input selector: Line in
- Input level controls: Maximum

ITEM	ADJUSTMENT
① Adjustment of RMS detector Condition: * Stop mode * Input level controls ... MAX * Noise reduction selector ... disc Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600Ω)	1. Make the connections as shown in fig. 10, and set the noise reduction selector to disc position. 2. Apply 50Hz -27dB signal from LINE IN. 3. Adjust ATT so that the signal level at TP603 (L-CH) and TP604 (R-CH) becomes 300mV. 4. Make sure that the output signal at TP607 (L-CH) and TP608 (R-CH) is at 100Hz sine wave. If the output signal is not sinusoidal as shown in fig. 11, adjust VR605 (L-CH) and VR606 (R-CH) to make it sinusoidal. NOTE: The voltage of the output signal after adjustment is about 0.8 to 1.1mVrms.
② Adjustment of dbx standard level 	NOTE: Be sure to perform the standard level adjustment in dbx Encode, followed by the standard level adjustment in dbx Decode.

Fig. 10

Fig. 11

HOW TO REPAIR PRINTED RESISTORS

- The printed resistor is located on the printed circuit board as illustrated in Fig. 1.

(The through-holes are the points that connect the silver pattern and the pattern on the rear of the printed circuit board.)

- Repair the printed resistor, when disconnected, in the following procedure:

1. Using a pointed screwdriver or knife, completely scrape the printed resistor as illustrated in Fig. 2, and remove its shavings.

Fig. 1

Fig. 2

2. Turning the printed circuit board over as shown in Fig. 3, scrape the copper pattern surface near the through-holes until the copper foil surface can be exposed.
 3. Solder the carbon resistor, whose resistance value is identical to the removed printed resistor, to the exposed copper foil surface.
(Refer to the schematic diagram of the Service Manual for the resistance values of printed resistors.)

Fig. 3

ELECTRICAL PARTS LOCATION

ELECTRICAL PARTS LOCATION

Note: Cord connection using this nylon coupler (E54) requires a special tool.

* [N] ...For Asia, Latin America, Middle East and Africa areas.

* [D]

...For all European areas.

REPLACEMENT PARTS LIST

Important safety notice

Components identified by Δ mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description
ELECTRICAL PARTS					
E1	QWY4123Z	Record/Playback Head	E15	[N] Δ SJA88	AC Power Cord
E2	QWY2138Z	Erase Head	E16	[N] Δ RJA52Z-K	"
E3	QG01872	Push Button (Power ON/OFF)	E17	[N] Δ SJAG23	"
E4	QG01799S	Push Button	E18	[N] Δ QTW1195	Spark Killer Cover
E5	QML3664	(Input Selector and REC MUTE)	E19	[N] QTW1118	"
E6	QBS1130	Recording Lever	E20	[N] QTJ1054	Contact
E7	QJC0034	Recording Wire	E21	QJS1921TN	3 Pin Socket
E8	[N] Δ QTF1054	Earth Plate	E22	QJP1921TN	3 Pin Post
	*For all European areas.	Fuse Holder	E23	QJS1922TN	6 Pin Socket
	[N] Δ QTF1049	"	E24	QJP1922TN	6 Pin Post
	*For Asia, Latin America, Middle East and Africa areas.	"	E25	QJS1923TN	9 Pin Socket
E9	[N] Δ QTD1164	Cord Clamper	E26	QJP1923TN	9 Pin Post
	*For all European areas and Australia.	Cord Bushing	E27	QJS1924TN	12 Pin Socket
	[N] QTD1129	"	E28	QJP1924TN	12 Pin Post
	*For Asia, Latin America, Middle East and Africa areas.	Rotary Selector (for Switching S10)	E29	QMA4065	Circuit Board Angle-A
E10	ESA33227B	"	E30	QMA4066	Circuit Board Angle-B
E11	QNQ1070	Nut 12 ϕ	E31	QMA4067	Circuit Board Angle-C
E12	QSL5006RF	FL Meter	E32	QMA4068	Center Angle
E13	QKJ0406	Meter Holder	E33	QHQ1177S	Step Screw
E14	QTH1156	Heat Sink	E34	QMA3956	Volume Angle
			E35	QKJ0440	Pilot Lamp Cover
			E36	XWA26B	Washer 2.6 ϕ
			E37	XWG26	Washer 2.6 ϕ
			E38	XWA3B	Washer 3 ϕ
			E39	XSN26+8	Screw $\oplus 2.6 \times 8$
			E40	XSN3+8S	Screw $\oplus 3 \times 8$
			E41	XTN3+8B	Tapping Screw $\oplus 3 \times 8$
			E42	XTN3+10B	Tapping Screw $\oplus 3 \times 10$
			E43	XTB4+10BFN	Screw $\oplus 4 \times 10$
			E44	XTWQC3+8LFR	Screw $\oplus 3 \times 8$
			E45	QNQ1039	Nut 9 ϕ
			E46	QNQ1004	Nut 8 ϕ
			E47	QWQ1133	Washer 9 ϕ
			E48	QWQ2002	Washer 8 ϕ
			E49	QMA4278	Transformer Angle
			E50	QTS1553	Shield Plate
			E51	[N] Δ QTWM0026	Switch Cover (for S9)
				*For all European areas and Australia.	"
			E52	[N] Δ QMA4258	Terminal Plate Angle
				*For all European areas and Australia.	"
			E53	[N] Δ QJT4017	4 Pin Terminal Plate
				*For all European areas and Australia.	"
			E54	[N] Δ QJT1029	Nylon Coupler
				*For Asia, Latin America, Middle East and Africa areas.	Porcelain Tube (for R782, 789, 790 and D621)
			E55	[N] Δ QZE0003	Tapping Screw $\oplus 3 \times 16$
				*For all European areas and Australia.	"

1

2

3

4

5

6

7

8

9

SCHEMATIC DIAGRAM MAIN AMP SECTION

SPECIFICATIONS

- * Input level controls ... MAX

Playback S/N ratio Test tape ... QZZCFM	Greater than 45 dB
Overall distortion Test tape ... QZZCRA for Normal ... QZZCRX for CrO ₂ ... QZZCRY for Fe-Cr ... QZZCRZ for Metal	Less than 4%
Overall S/N ratio Test tape ... QZZCRA	Greater than 43 dB (without NAB filter)

EQUIVALENT CIRCUIT

IC3, 401 AN6552

IC402 AN6870

- NOTES:**
- S1-1—S1-14.....Record/Playback select switch (shown in playback position).
 - S2-1—S2-4Input select switch (shown in Line position).
 - S4-1—S4-4Tape select switch (shown in Normal position). (1...NORMAL, 2...Fe-Cr, 3...CrO₂, 4...METAL)
 - S5REC MUTE ON/OFF switch (shown in OFF position).
 - S6Playback muting switch (shown in ON position).
 - S7Fast wind muting switch (shown in OFF position).
 - S8Power ON/OFF switch (shown in OFF position).
 - S9AC power voltage select switch.
 - VR1, VR2Playback gain adjustment VR.
 - VR3, VR4Input level controls.
 - VR5, VR6Overall gain adjustment VR.
 - VR7, VR8Bias current adjustment VR (for normal tape).
 - VR401FL meter adjustment VR (for 0dB indication).
 - VR402FL meter adjustment VR (for -20dB indication).
 - L1, L2Bias trap adjustment coil.
 - Connection points (A) and (B)...For erase current adjustment points.
 - Resistance are in ohms (Ω), 1/4 watt unless specified otherwise. 1K = 1,000(Ω), 1M = 1,000K(Ω).
 - (—) indicates printed resistor.
 - Capacity are in microfarads (μF) unless specified otherwise. P = Pico-farads.
 - The mark (▼) shows test point. e.g. ▼ = Test point 1.
 - All voltage values shown in circuitry are under no signal condition and record mode with volume control at minimum position. However, the voltage in playback mode is indicated in () when it differs from that in record mode. For measurement, use VTVM.
 - (→) this arrow indicates the flow of the playback signal.
 - (→) this arrow indicates the flow of the recording signal.
 - Described in the schematic diagram are two types of numbers; the supply parts number and production parts number for transistors are diodes. One type of number is used for supply parts number and production parts number when they are identical.

e.g. Q1, 3
Supply parts number
2SD661T

Production parts number
(2SD661T or 2SD661U)

D301
(QVD1S2473T ← Production parts number
[MA161] ← Supply parts

* The supply parts number is described alone in the replacement parts list.

NOTES: RESISTORS

ERD...Carbon	ECBACeramic	ECQFPolypropylene
ERG...Metal-oxide	ECG□Ceramic	ECEDElectrolytic
ERS...Metal-oxide	ECK□Ceramic	ECEON ...Non polar electrolytic
ERO...Metal-film	ECC□Ceramic	ECQSPolystyrene
ERX...Metal-film	ECF□Ceramic	ECSDTantalum
ERQ...Fuse type metallic	ECQMPolyester film	QCSTantalum
ERC...Solid	ECQEPolyester film	
ERF...Cement		

CAPACITORS

Vcc	ECBACeramic	ECQFPolypropylene
Vin1	ECG□Ceramic	ECEDElectrolytic
Vin2	ECK□Ceramic	ECEON ...Non polar electrolytic
Vin3	ECC□Ceramic	ECQSPolystyrene
Vin4	ECF□Ceramic	ECSDTantalum
Vin5	ECQMPolyester film	QCSTantalum
Vin6	ECQEPolyester film	

REPLACEMENT PARTS LIST

Important safety notice

Components identified by △ mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.
RESISTORS									
R1, 2	ERD25FJ100	*For Asia, Latin America, Middle East, Africa areas and Australia.	R779, 780	ERD25TJ393	C59, 60	ECKD1H102MD	Z1	QCR0011	
R3, 4	ERD25FJ561		R781	ERD25FJ272	C61, 62	ECEA50Z1		*For all European areas and Australia.	
R5, 6	ERD25FJ104	R322 □ ERD50FJ821	R782 □ ERQ14AJ101	C63	ECEA1ES470		△ QCR0008		
R7, 8	ERD25FJ101	*For all European areas.	R643, 644	ERD25FJ102	C65, 66	ECEA50Z1		*For Asia, Latin America, Middle East and Africa areas.	
R9, 10	ERD25FJ154	[MA] □ ERD25FJ821	R645, 646	ERD25FJ103	C67, 68	ECEA1HS100		ECQM1H273Z	
R11, 12	ERD25FJ101	*For Asia, Latin America, Middle East, Africa areas and Australia.	R649, 650, 651, 652	ERD25TJ473	C69, 70	ECEA50Z1		ECOM1H123KZ	
R13, 14	ERD25FJ471				C71, 72	ECEA1HS100		ECQM1H124Z	
R15, 16	ERD25TJ224	R653, 654	ERD25FJ391	C73, 74	ECEA1HS100		ECQM1H473KZ		
R17, 18	ERD25FJ822	R655, 656	ERD25FJ102	C75, 76	ECEA1HS100		ECQM1H473KZ		
R19, 20	ERD25TJ224	R657, 658	ERD25CKG2200	R783	ERD25FJ221	C77, 78	ECEA1HS100		
R21, 22, 23, 24	R323	ERD25FJ472	R659, 660	ERD25TJ224	R787, 788	ERD25TJ473	C81, 82	ECEA50Z22	
R31, 32	R324	ERD25FJ821	R661, 662	ERD25FJ472	R789, 790	ERD25TJ473	C83, 84	ECEA50Z1	
R33, 34	R326	ERD25FJ102	R663, 664	ERD25TJ390	R791, 792	ERD25FJ390	C87, 88	ECCD1H100KC	
R36	R328	ERD25FJ560	R665, 666, 667, 668, 669, 670	ERD25FJ2200	R793	ERD25FJ222	C91, 92	MA161	
R43	R330	ERDQ14AJ390P	R667, 668	ERD25FJ101	R795, 796	ERD25FJ222	C93, 94	RVD1N4748	
R44	R332	*For all European areas.	R671, 672	ERD25TJ473	R797, 798	ERD25FJ471	C302	△ SM112	
R45	R334	[MA] □ ERD25FJ470	R673, 674	ERD25TJ333	R799, 800	ERD25FJ222	C303	TLR205	
R47, 48, 49, 50	R336	*For all European areas.	R675, 676	ERD25TJ224	R801, 802	ERD25FJ821	C304	MA161	
R51, 52	R338	ERD25FJ102	R677, 678	ERD25FJ472	R803	ERD25FJ472	C305	RVDRD6R8EB	
R53, 54	R340	ERD25TJ473	R679, 680	ERD25TJ184	R804	ERD25FJ102	C306	*For all European areas.	
R55, 56	R342	ERD25TJ105	R681, 682	ERD25TJ333	R805, 806	ERD25FJ103	C307	MA161	
R57, 58	R344	ERD25FJ181	R683, 684	ERD25FJ682	R807, 808, 809, 810	ERD25TJ225	C308	MA161	
R59, 60	R346	ERD25TJ221	R685, 686	ERD25FJ102	R811	ERD25FJ822	C314	RVDRD6R8EB	
R75	R348	ERD25FJ221	R687, 688	ERD25TJ183	R812	ERD25FJ221	C315	*For all European areas.	
R401, 402, 403, 404, 405, 406	R350	*For all European areas.	R689, 690	ERD25TJ332	R813	ERD25FJ472	C316	MA161	
R407, 408	R352	[MA] □ ERD25TJ221	R701, 702	ERD25TJ104	R814	ERD25FJ102	C317	D615, 616, 617, 618, 619, 620	
R409	R354	*For all European areas.	R703, 704	ERD25FJ220	R815	ERD25TJ103	C318	MA161	
R410	R356	[MA] □ ERD25TJ183	R705, 706	ERD25TJ391	R816	ERD25TJ225	C319	Q19 2SA722-S	
R411, 412	R358	*For Asia, Latin America, Middle East, Africa areas and Australia.	R707, 708	ERD25CKG1002	R817	ERD25TJ225	C320	2SB641S (or R)	
R413, 414	R360	ERD25FJ331	R709, 710	ERD25TJ225	R818	ERD25TJ225	C321	B 22.3V	
R415	R362	ERD25FJ224	R711, 712	ERD25CKG2002	R819	ERD25TJ225	C322	C 0V	
R416	R364	ERD25FJ392	R713, 714	ERD25TJ105	R820	ERD25TJ225	C323	E 22.3V	
R417	R366	ERD25FJ105	R715, 716	ERD25FJ392	R821	ERD25TJ225	C324	Q404 2SC1383Q (R or S)	
R418	R368	ERD25TJ564	R717, 718	ERD25FJ332	R822	ERD25TJ225	C325	2SD592NCS (or R)	
R420	R370	ERD25FJ103	R719, 720	ERD25FJ332	R823	ERD25TJ225	C326	B 22.3V	
R421	R372	[MA] □ ERG12AN221	R721, 722	ERD25TJ564	R824	ERD25TJ225	C327	C 26.5V (27.2V)	
R422, 423	R374	*For Asia, Latin America, Middle East, Africa areas and Australia.	R723, 724	ERD25TJ103	R825	ERD25TJ225	C328	E 22.2V	
R301	R376	ERD25FJ102	R725, 726	ERD25TJ224	C3, 4	ECEA16M10R	C329	Q304 2SC1864R (or S)	
R304	R378	ERD25FJ392	R727, 728	ERD25TJ224	C6	ECEA1ES470	C330	B 22.9V	
R305	R380	ERD25FJ821	R729, 730	ERD25TJ224	C623, 624	ECD1H331KD	C331	C 29.7V	
R306	R382	ERD25FJ152	R731, 732	ERD25TJ104	C7, 8	ECD1H221KD	C332	E 22.3V	
R307	R384	ERD25FJ821	R733, 734	ERD25TJ104	C11, 12	ECD1H102KVY	C333	Q17, 18	
R308	R386	[MA] □ ERG12AN181	R735, 736, 737, 738	ERD25TJ473	C13, 14	ECD1H102KVY	C334	Q19 2SA722-S	
R309	R388	*For all European areas.	R739, 740	ERD25CKG3901	C15, 16	ECD1H681KB	C335	2SD636R (or S)	
R601, 602	R390	[MA] □ ERD25FJ221	R741, 742	ERD25CKG4701	C17, 18	ECD1H102KVY	C336	B	

ECQF Polypropylene
 ECEO Electrolytic
 ECEON Non polar electrolytic
 ECQS Polystyrene
 ECSO Tantalum
 QCS Tantalum

portant for safety.
s specified parts.

Part No.	Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.
tin America, Africa areas	R779, 780	ERD25TJ393	C59, 60	ECKD1H102MD	SPARK KILLER	
a.	R781	ERD25FJ272	C61, 62	ECEA50Z1	Z1 QCR0011	
D25FJ102	R782	ERQ14AJ101	C63	ECEA1ES470	*For all European areas.	
D25FJ103			C65, 66	ECEA50Z1	NA QCR0015	
D25KG3302			C67, 68	ECEA1HS100	*For Asia, Latin America, Middle East, Africa areas and Australia.	
652			C69, 70	ECEA50Z1	NA QCR0008	
D25TJ473			C71, 72	ECQM1H273JZ	*For Asia, Latin America, Middle East and Africa areas.	
D25FJ391	R783	ERD25FJ221	C73, 74	ECQM1H23KZ		
D25FJ102	R784, 785, 786	ERD25FJ472	C75, 76	ECQM1H124KZ		
D25KG2200			C77, 78	ECQM1H473KZ		
D25TJ224	R787, 788	ERD25TJ473	C79, 80	ECQM1H273KZ		
D25FJ472	R789, 790	ERG1ANJ221	C81, 82	ECQM1H473KZ		
D25FJ390			C83, 84	ECEA50ZR22		
568, 669, 670			C85	ECEA50Z1		
D25KG2200			C87, 88	ECCD1H100K		
D25TJ473						
*For all European areas.						
NA ERD25FJ221						
D25TJ473	C91, 92	ECEA1ES101	D301, 302, 303	MA161		
D25TJ333	C93, 94	ECCD1H101KD	D304	RVD1N4748		
D25TJ224	C301	ECQP1183JZ				
D25FJ333	C302	ECQM1H153JZ	D310, 311	MA161		
D25TJ472		ECEA1ES470	D313	TLR205		
D25TJ184	R793	ERD25FJ390	D314	MA161		
D25TJ333	R795, 796	ERD25FJ222	D401, 402	MA161		
D25FJ682	R797, 798	ERD25FJ471	D403	MV121		
D25FJ822	R799, 800	ERD25FJ222	D404, 405, 406	MA161		
D25FJ332	R801, 802	ECEA1VS221	D407	RVDRD6R8EB		
D25TJ333		ECEA1CS471				
D25FJ391			D601, 602, 603, 604, 605, 606,			
D25TJ103			607, 608, 609, 610			
D25FJ221			MA161			
D25FJ332			D615, 616, 617, 618, 619, 620			
D25FJ391			MA161			
D25FJ181			D621	RVDRD6R8EB		
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						
D25TJ221						
D25FJ332						
D25FJ391						
D25FJ181						
D25FJ103						

SCHEMATIC DIAGRAM

dbx SECTION

dbx CIRCUIT BOARD

NOTES:

- The circuit shown in **[]** on the conductor is +B (bias: 19V) circuit.
- The circuit shown in **[]** on the conductor is +B (bias: 9.6V) circuit.
- The circuit shown in **[]** on the conductor indicates printed circuit on the back side of the printed circuit board.
- Values indicated in **[]** are under no signal condition and record mode with volume control at minimum position.
- However, the voltage in playback mode is indicated in **()** when it differs from that in record mode.
- For measurement, use VTVM.

- Described in the circuit board diagram are two types of numbers; the supply parts number and production parts number for transistors.
- One type of number is used for supply parts number and production parts number when they are identical.
- e.g. **Q605**

 - Supply parts number: **2SD1010R (or S)**
 - Production parts number: **2SD1010R or 2SD1010S**

- The supply parts number is described alone in the replacement parts list.

WIRING CONNECTION DIAGRAM

GRAM

MECHANICAL PARTS LOCATION

When servicing this mechanism unit, refer to the disassembly notes and assembly instructions described in the service manuals of RS-M51, RS-M13, RS-M14, RS-M14 and RS-M04 (RS-M24 mechanism series).

REPLACEMENT PARTS LIST

Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description
		MECHANICAL PARTS	M17	QMR1821	Auto-Stop Connection Rod	M34	XUB3FT	Stop Ring 3φ	M49-2	QBW2026	Snap Ring	M67	QBT1597	Brake Arm Spring	M83	QMK1838	Upper Base Plate
M1	QBP1874	Cassette Pressure Spring	M18	QMR1822	Eject Rod	M35	QBW2012	Poly Washer	M50	QXD1143	Takeup Reel Table Assembly	M68	QBT1892	Head Release Spring	M85	QDP1828	Fast Forward Pulley
M2	QDG1201	Main Gear	M19	QMR1824	Control Rod	M36	QXL1354	Sub Lever Assembly	M51	QXL1382	Idler Lever Assembly	M69	QMA3858	Head Adjustment Plate	M86	QXH0327	Chassis Cover Assembly
M3	QDG1202	Sub Gear	M20	QMZ1239	Flywheel Thrust Retainer	M37	QXL1355	Main Lever Assembly	M52	QXI0111	Takeup Idler Assembly	M70	QXG1047	Takeup Gear Assembly	M87	QXA1088S	Tape Counter
M4	QMB1336	Supply Reel Table Hub	M21	QBC1357	Lock Pin Pressure Spring	M39	QBT1896	Lever Release Spring	M54	QXI0113	Takeup Idler Spring	M71	QXU0170	Motor Assembly	M88	QDB0240	Counter Belt
M5	QDR1139	Supply Reel Table	M22	QBT1682	Auto-Stop Connection Rod Spring	M40	QXL1381	Pressure Roller Assembly	M55	QXI0112	Rewind Idler Assembly	M73	QDG1199	Sub Chassis Assembly	M89	QMA3860	Counter Angle
M6	QFM2118	Fast Forward Arm Bracket	M23	QBT1894	Main Lever Spring	M56	QXL1383	Fast Forward Arm Assembly	M74	QDG1200	Auto-Stop Gear						
M7	QML3581	Sub Control Lever	M24	QBN1739	Selection Lever Spring	M41	QBN1743	Pressure Roller Spring	M57	QMK1840	Cam Gear	M90	XTN3+24B	Tapping Screw $\oplus 3 \times 24$			
M8	QML3583	Main Control Lever	M25	QBN1742	Pressure Roller Release Spring	M42	QML3588	Fast Forward Lever	M58	QMZ1241	Connection Pulley	M91	XSN26+3	Screw $\oplus 2.6 \times 3$			
M9	QML3584	Record Operation Lever	M26	QBN1744	Sub Gear Spring	M43	QBN1748	Sub Gear	M59	QBN1740	Head Base Plate	M76	QDB0281	Capstan Belt	M92	XTN2+6B	Tapping Screw $\oplus 2 \times 6$
M10	QML3586	Head Base Plate Lift Lever	M27	QBN1802	Main Gear Spring	M44	QMA4063	Flywheel Retainer	M60	QBC1278	Head Spacer	M77	QDB0274	Takeup Belt	M93	XTN26+6B	Tapping Screw $\oplus 2.6 \times 6$
M11	QML3594	Auto-Stop Release Arm	M28	QBN1746	Auto-Stop Lever Spring	M45	XSN2+10	Fast Forward Spring	M61	QBCA0008	Fast Forward Belt	M94	XTN26+10B	Tapping Screw $\oplus 2.6 \times 10$			
M12	QML3603	Erase Safety Lever	M29	QBN1747	Connection Spring	M46	QBN1741	Change Lever Spring	M62	QML2	Record/Playback Selection Arm Assembly	M95	XTN26+12B	Tapping Screw $\oplus 2.6 \times 12$			
M13	QML3604	Auto-Stop Driving Lever	M30	QBS1128	Lock Pin	M47	XWG2	Washer 2φ	M63	QML3591	Assembly	M96	XTN3+10B	Tapping Screw $\oplus 3 \times 10$			
M14	QML3605	Auto-Stop Detection Lever	M31	QBC1372	Reel Table Spring	M48	QMZ1254	Cord Clamper	M64	QMZ1240	Brake Arm	M80	QML3580	Record/Playback Selection Lever	M97	XTN26+6BFZ	Tapping Screw $\oplus 2.6 \times 6$
M15	QML3592	Change Lever	M32	QBW2008	Poly Washer	M49	QXF0164	Flywheel Assembly	M65	QMN2550	Sub Head Base Plate	M81	QBT1895	Poly Washer	M98	QBW2085	
M16	QMR1820	Record Rod	M33	XUB4FT	Stop Ring 4φ	M49-1	QBW2049	Poly Washer	M66	QDK1017	Roller	M82	QXP0607	Record/Playback Selection Lever			
									M67	QBP1873	Steel Ball 2φ			Fast Forward Connection Pulley Assembly			
											Head Base Plate Pressure Spring						

CABINET PARTS LOCATION

Ref. No.	Part No.	Part Name & Description
G5	QBG1691	Rubber Cushion
G6	QKA1081	Rubber Foot-A
G7	QGK3133	Meter Cover
	"Silver Type"	
	QGK3133K	"Black Type"
G8	QGL1154	Meter Filter
	"Silver Type"	
	QGL1154Y	"Black Type"
G9	QGC1189	"Silver Type"
G10	QKA1083	"Black Type"
G11	QHQ1299	Bottom Cover
G12	QYP1046	Rubber Foot-B
	"Silver Type"	
	QYP1047	Step Screw
	"Black Type"	
G13	QKF6005K	Front Panel Assembly
G14	QBP1900	
G15	QBN7008	
G16	XUB5FT	
G17	XTN26+6BFZ	
G18	QYF0492	
	"Silver Type"	
	QYF0504	
	"Black Type"	
G19	QXL1441	Eject Button Assembly
G20	QXL1442	Record Button Assembly
G21	QXL1443	Rewind/Review Button Assembly
G22	QXL1444	Fast Forward/Cue Button Assembly
G23	QXL1445	Playback Button Assembly
G24	QXL1446	Stop Button Assembly
G25	QXL1447	Pause Button Assembly
G26	QMR1823	Obstruction Rod
G27	QML3593	Lock Arm
G28	QPB1875	Operation Lever Spring
G29	QBT1597	Obstruction Rod Spring
G30	QMN2554	Operation Lever Shaft
G31	QDG1102	Holder Gear
G32	XUC4FT	Stop Ring 4φ
G33	QGT1495	Select Knob
G34	QKM1466S	Main Case
	"Silver Type"	
	QKM1466K	
	"Black Type"	
G35	XTN2+6B	Tapping Screw $\oplus 2 \times 6$
G36	QXA1044	Operation Button Angle Assembly
G37	XTS3+10B	Tapping Screw $\oplus 3 \times 10$
G38	XTN3+10B	"
G39	XTB4+10BFN	Screw $\oplus 4 \times 10$
	"Silver Type"	
	XTB4+10BFZ	
	"Black Type"	
G40	XTN3+10B	Tapping Screw $\oplus 3 \times 10$
		ACCESORIES
A1	RP023A	Connection Cord
A2	QQT3085	Instruction Book
	*For all European areas.	
	QQT3087	"
	*For Asia, Latin America, Middle East and Africa areas.	
	QQT3086	"
	*For Australia.	
A3	QJP0603S	AC Plug Adaptor
	*For Asia, Latin America, Middle East and Africa areas.	
		PACKINGS
P1	QPN4184	Inside Carton
	*For all European areas.	
	QPN4200	"
	*For Asia, Latin America, Middle East and Africa areas.	
	QPN4199	"
	*For Australia.	
P2	XZB40X6A02	Poly Bag
P3	QPS0434	Pad
	*For all European areas and Australia.	
P4	QPC0072	Poly Sheet (for AC Power Cord)
P5	QPC0078	Poly Sheet
P6	QPA0558	Cushion-R
	*For all European areas, Asia, Latin America, Middle East and Africa areas.	
	QPA0626	"
	*For Australia.	
P7	QPA0559	Cushion-L
	*For all European areas, Asia, Latin America, Middle East and Africa areas.	
	QPA0627	"
	*For Australia.	

REPLACEMENT PARTS LIST

Important safety notice
Components identified by Δ mark have special characteristics important for safety.
When replacing any of these components, use only manufacturer's specified parts.

Ref. No.	Part No.	Part Name & Description
CABINET PARTS		
G1	QGC1188S	Case Cover
	"Silver Type"	
	QGC1188K	
	"Black Type"	
G2	QYT0623	Volume Knob-A Assembly
G3	QYT0611	Volume Knob-B Assembly
G4	QGS2917	Main Name Plate
	*For all European areas.	
	QGS2909	"
	*For Asia, Latin America, Middle East and Africa areas.	
	QGS2918	"
	*For Australia.	