Intégration

Exercice 1. Soit a < b deux réels et soit $f: [a,b] \to \mathbb{R}$ une fonction continue de signe constant. Montrer: $\int_a^b f(t)dt = 0 \Leftrightarrow f = 0.$

Exercice 2. Lemme de Gronwall. Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction continue telle qu'il existe k > 0 tel que:

$$\forall x \ge 0, \ f(x) \le k \int_0^x f(t)dt.$$

Montrer que f est identiquement nulle.

Exercice 3. Soit f une fonction continue par morceaux définie sur [a, b]. Déterminer $\lim_{p\to\infty} (\int_a^b |f(t)|^p dt)^{1/p}$.

- Exercice 4. On pose $I_n = \int_0^{\pi/2} \sin^n x dt$. (i) Montrer que pour tout $n \in \mathbb{N}$, $nI_n = (n-1)I_{n-2}$. (ii) Montrer que (I_n) décroit, que nI_nI_{n-1} est constant et que $I_n \sim \sqrt{\frac{\pi}{2n}}$.

Exercice 5. Irrationalité de π . On suppose que $\pi = p/q$ avec $p, q \in \mathbb{N}^*$. Soit $f_n(x) = \frac{1}{n!} x^n (p - qx)^n$ et $I_n = \int_0^\pi f_n(x) \sin x dx$. (i) Montrer que pour tout $n \ge 0$, $I_n > 0$ et $\lim_{n \to +\infty} I_n = 0$. (ii) Montrer que pour tout $k \in \mathbb{N}$, $f_n^{(k)}(0) \in \mathbb{Z}$ et $f_n^{(k)}(p/q) \in \mathbb{Z}$ (on remarquera que $f_n(\frac{p}{q} - x) = f_n(x)$).

- (iii) En intégrant par parties, montrer que $I_n \in \mathbb{Z}$ et en déduire une contradiction.

Exercice 6. Soit *n* un entier non nul. Montrer que $I_{n,p} := \int_0^1 x^n (1-x)^p dx = \frac{p!}{(n+1)(n+2)...(n+p)(n+p+1)}$. (On pourra montrer $I_{n,p} = \frac{p}{n+1}I_{n+1,p-1}$.)

Exercice 7.

- (i) Soit $P \in \mathbb{C}[X]$. Montrer que $\int_{-1}^{1} P(t)^2 dt = -i \int_{0}^{\pi} P(e^{it}) e^{it} dt$.
- (ii) Soient $a_0, \ldots, a_n, b_0, \ldots, b_n$ des nombres réels. Montrer :

$$\sum_{0 \leq k, l \leq n} \frac{a_k b_l}{k+l+1} \leq \pi \sqrt{\sum_{0 \leq i \leq n} a_i^2 \sum_{0 \leq j \leq n} b_j^2}.$$

Exercice 8. Montrer que pour toute fonction $f:[0,1] \to \mathbb{R}$ de classe \mathcal{C}^1 :

$$\int_0^1 f(t)dt = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) + \frac{1}{2n} (f(1) - f(0)) + o\left(\frac{1}{n}\right).$$

(On pourra poser $F(x) = \int_0^x f(t)dt$, écrire $F(1) - F(0) = \sum_{k=0}^{n-1} \left(F\left(\frac{k+1}{n}\right) - F\left(\frac{k}{n}\right) \right)$ et montrer qu'il existe $\theta_{n,k} \in [k/n, (k+1)/n]$ tel que $F\left(\frac{k+1}{n}\right) - F\left(\frac{k}{n}\right) = \frac{1}{n}f(\frac{k}{n}) + \frac{1}{2n^2}f'(\theta_{n,k})$.)

Exercice 9. Soit f une fonction continue par morceaux définie sur [a,b]. On pose $I_n(f) = \int_a^b e^{int} f(t) dt$. Montrer que $\lim_{n\to+\infty} I_n(f) = 0$.

Exercice 10. Soit $f:[0,+\infty[\to\mathbb{R}]]$ une fonction continue par morceaux.

- (i) A-t-on $(\int_0^{+\infty} f(t)dt \text{ converge}) \Rightarrow \lim_{x \to +\infty} f(x) = 0$?
- (ii) Montrer que si $f: \mathbb{R}^+ \to \mathbb{R}$ est uniformément continue et que $\int_0^{+\infty} f(t)dt$ converge alors f a pour limite 0 en $+\infty$.

Exercice 11.

(i) Soit (f_n) la suite de fonctions de \mathbb{R}^+ dans \mathbb{R} définie par :

$$\begin{cases} f_n(x) = \frac{1}{n} & \text{si } x \in [n^2 - n, n^2 + n] \\ f_n(x) = 0 & \text{sinon.} \end{cases}$$

Montrer que la suite (f_n) converge uniformément vers 0. A-t-on : $\lim_{n\to+\infty} \int_0^{+\infty} f_n(t)dt = 0$?

(ii) Soit $f_n = [0,1] \to \mathbb{R}^+$ définie par

$$\begin{cases} f_n(x) = nx^{n-1} \text{ si } x \in [0, 1[\\ f_n(1) = 0. \end{cases}$$

Montrer que la suite (f_n) converge simplement vers la fonction nulle sur [0,1].

A-t-on: $\lim_{n\to+\infty} \int_0^1 f_n(t)dt = 0$?

Exercice 12. Soit la fonction $F: x \to \int_0^1 \frac{t-1}{\ln t} t^x dt$. Etudier F (domaine de définition, dérivabilité,...) et en déduire $\int_0^1 \frac{t-1}{\ln t} dt$.

Exercice 13. Soit $F(x) = \int_0^x e^{-u^2} du$ et $G(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{t^2+1} dt$. (i) Montrer que la fonction G est dérivable sur \mathbb{R} et exprimer G en fonction de F.

- (ii) En déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

Exercice 14.

- (i) Vérifier que pour tout $x \in \mathbb{R}$, $\arctan(x) = -\arctan(-x)$ et que pour tout x > 0, $\arctan(x) +$
- (ii) Déterminer deux réels a et b tels que l'intégrale $\int_{-\infty}^{+\infty} (\arctan(x^2) ax b) dx$ converge.

Exercice 15.

(i) Montrer que l'intégrale $\int_0^{+\infty} \frac{|\sin(t)|}{t} dt$ est divergente.

(ii) Montrer que l'intégrale $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est convergente.

Exercice 16. Soient a et b deux réels. Discuter en fonction de a et b la nature de l'intégrale $\int_{1}^{+\infty} \frac{\ln(1+t^a)}{t^b} dt.$

Exercice 17. On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur \mathbb{R} par $f_n(x) = \frac{x}{(1+x^2)^n}$

- (i) Montrer que la suite (f_n) converge simplement vers la fonction nulle sur \mathbb{R} .
- (ii) La convergence est-elle uniforme sur \mathbb{R} ?
- (iii) Montrer que $\lim_{n\to+\infty} \int_0^{+\infty} f_n(x) dx = 0$.

Exercice 18. Soit, pour $x \in \mathbb{R}$, $F(x) = \int_0^{\pi} \cos(x \sin(t)) dt$.

- (i) Montrer que F est continue sur \mathbb{R} .
- (ii) Montrer que F est dérivable sur \mathbb{R} et exprimer F' puis F'' sous forme intégrale.
- (iii) Montrer que F est solution de l'équation de Bessel $xF''(x) + F'(x) + x\bar{F}(x) = 0$. (On pourra calculer la dérivée par rapport à t de $\sin(x\sin(t))$.)

Exercice 19. Soit f une fonction continue de $[0, +\infty[$ dans \mathbb{R} . On suppose qu'il existe a > 0 et A > 0tels que:

$$\forall t \ge 0, |f(t)| \le Ae^{-at}.$$

- On définit la fonction F par $F(x) = \int_0^{+\infty} f(t)e^{-xt}dt$. (i) Montrer que F est dérivable sur $]a, +\infty[$ et exprimer F' sous forme intégrale.
 - (ii) On suppose que f admet une limite en $+\infty$. Montrer que :

$$\lim_{x \to 0} xF(x) = \lim_{x \to +\infty} f(x).$$

(iii) On suppose que f' admet une limite en $+\infty$. On pose $G(x)=\int_0^{+\infty}f'(t)e^{-xt}dt$. Démontrer :

$$G(x) = xF(x) - f(0).$$

Exercice 20. On considère la suite (a_n) de fonctions définies sur \mathbb{R} par :

$$u_n(x) = \frac{n^2 - x^2}{(n^2 + x^2)^2}.$$

- (i) Montrer que $\int_0^{+\infty} u_n(x) dx$ converge.
- (ii) Soit $a \ge 0$. Montrer : $\int_0^a u_n(x)dx = \frac{a}{n^2 + a^2}$. (On pourra faire une intégration par parties.)
- (iii) Montrer que la série $\sum_{n=0}^{\infty} u_n$ converge normalement sur [0,a].
- (iv) En déduire :

$$\int_0^a \left(\sum_{n=1}^{+\infty} u_n(x) \right) dx = \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2}.$$

Exercice 21.

(i) Démontrer que la fonction $\lambda_1: \mathbb{R} \to \mathbb{R}$ définie par

$$\lambda_1(x) = \begin{cases} 0 & \text{si } x \le 0\\ e^{-1/x} & \text{sinon} \end{cases}$$

est de classe C^{∞} , nulle pour $x \leq 0$, strictement positive pour x > 0.

- (ii) Démontrer qu'il existe une fonction $\lambda_2 : \mathbb{R} \to \mathbb{R}$, positive, non identiquement nulle, de classe \mathcal{C}^{∞} , à support contenu dans l'intervalle fermé [0, 1].
- (iii) Démontrer qu'il existe une fonction $\lambda_3:\mathbb{R}\to\mathbb{R}$, de classe \mathcal{C}^{∞} , à valeurs dans [0,1], telle que $\lambda_3(x) = 0$ pour $x \le 0$, $\lambda_3(x) = 1$ pour $x \ge 1$. On pourra considérer la fonction définie sur [0,1] par $(\int_0^x \lambda_2(t)dt)/(\int_0^1 \lambda_2(t)dt)$. (iv) Soient h et k des nombres réels tels que 0 < h < k. Démontrer qu'il existe une fonction $\lambda_4 : \mathbb{R} \to \mathbb{R}$,
- de classe \mathcal{C}^{∞} , à valeurs dans [0, 1], dont le support est contenu dans [-h, h], et qui vaut 1 sur [-k, k].
- (v) En conclure que l'adhérence de $\mathcal{C}_c^{\infty}(\mathbb{R})$ dans $L^1(\mathbb{R})$ contient les indicatrices d'intervalles ouverts bornés. (On rappelle que pour $k \geq 0$, $C_c^k(\mathbb{R})$ désigne l'espace des fonctions de classe C^k sur \mathbb{R} , à support compact.)

Exercice 22. Soit p > 1. Pour $f \in L^p([0, +\infty[), \text{ on note } F(x) = \frac{1}{x} \int_0^x f(t) dt$.

(i) On suppose $f \in \mathcal{C}_c(]0, +\infty[)$. Justifier l'égalité

$$\int_0^{+\infty} |f(x)|^p dx = -p \int_0^{+\infty} |f(x)|^{p-2} f(x) x f'(x) dx.$$

(ii) En déduire l'inégalité de Hardy :

$$||f||_p \le \frac{p}{p-1}||f||_p.$$

(iii) Etendre au cas où $f \in L^P([0, +\infty[)$.

Exercice 23. Calculer la transformée de Fourier de la fonction $x \mapsto e^{-\alpha x^2}$, avec $\alpha > 0$. Existe-t-il une valeur de α pour laquelle la fonction et sa transformée de Fourier sont égales?

Exercice 24.

- (i) Calculer la transformée de Fourier de la fonction indicatrice d'un intervalle.
- (ii) Pour $n \in \mathbb{N}^*$, soit g_n la fonction indicatrice de [-n,n) et h la fonction indicatrice de [-1,1]. Calculer explicitement $g_n * h$. Montrer que $g_n * h$ est la transformée de Fourier d'une fonction f_n que l'on déterminera.
- (iii) Montrer que $f_n \in L^1(\mathbb{R})$ et que $\lim_{n\to\infty} ||f_n||_1 = +\infty$.
- (iv) En déduire que l'application $f \to \hat{f}$ envoie $L^1(\mathbb{R})$ dans un sous-espace propre de $\mathcal{C}^0_c(\mathbb{R})$.