

CMPS 460 - Spring 2022

MACHINE

LEARNING

Tamer Elsayed

Practical Issues: Dealing with Features

Sec 2.7, Sec. 3.1, **Sec 5-5.4**

Roadmap ...

- Learning algorithm is only one of many steps in designing a ML application
- Practical strategies:
 - Improving features
 - Evaluation
 - Cross Validation
 - Statistical Significance
 - Debugging
- Fundamental ML concepts: estimation vs. approximation error

ML Application ...

Typical Design Process for a ML Appinion

ı
/
m
ck
5,
ı
5

Dealing with Features

چامهة قطر QATAR UNIVERSITY

Features, values, vectors ...

- To a machine, the features themselves have no meaning.
 - Only the **feature values!**
- Feature vector $x = [x_1, x_2, ..., x_D]$: consisting of one "dimension" for each feature, where each dimension is simply some real value.

```
[0.1 -3.4 5.0 1.0 ...... 0.0 4.1 0.69] value of feature #3
```

Feature Types

Quantitative

- Binary: 0/1, -1/1, T/F
- Real-valued: GPA, temperature, salary

mapping in a feature vector?

Categorical

- Sports, health, political, educational, economical
- Red, green, blue, yellow

Ordinal

- Low, medium, high
- Weak, fair, strong, very strong
- Positive, neutral, negative

Raw text cannot be used directly in ML.

Why?

- Text is composed of a sequence of words.
- Words indicate meaning.

Words as features!

Text Representation: Bag of Words

Simple representation of text used in NLP and IR.

 Text (e.g., sentence, tweet, article, web page) is represented as the bag (or a set) of its words, ignoring its order.

- Each word is a feature
 - the feature value can be binary (appears in the text or not) or frequency of the word in the text (or even better later).

Given the following collection of documents:

d₁: he likes to wink he likes to drink

d₂: he likes to drink and drink and drink

d₃: the thing he likes to drink is ink

d₄: the ink he likes to drink is pink

d₅: he likes to wink and drink pink ink

Vocabulary

Feature vectors: binary values

(he	1
likes	1
to	1
wink	1
drink	1
and	0
the	0
thing	0
ink	0
is	0
pink	0

d	
d_2	
1	
1	
1	
0	
1	
1	
0	
0	
0	
0	
0	

d ₃	
1	
1	
1	
0	
1	
0	
1	
1	
1	
1	
0	

d_4	
1	
1	
1	
0	
1	
0	
1	
0	
1	
1	
1	
- /	

d ₅	
1	
1	
1	
1	
1	
1	
0	
0	
1	
0	
1	

Vocabulary

Feature vectors: frequency values Feature vectors: frequency values

	d_1
(he	2
likes	2
to	2
wink	1
drink	1
and	0
the	0
thing	0
ink	0
is	0
pink	0

d_2	
1	
1	
1	
0	
3	
2	
0	
0	
0	
0	
0	

d_3	
1	
1	
1	
0	
1	
0	
1	
1	
1	
1	
0	

d_4	
1	
1	
1	
0	
1	
0	
1	
0	
1	
1	

d_5	
1	
1	
1	
1	
1	
1	
0	
0	
1	
0	
1	

جامعة قطر QATAR UNIVERSITY

Importance of Good Features ...

- "Garbage in, Garbage out"!
- Learning algorithms can't compensate for useless training examples
 - e.g., if all features are irrelevant

- Feature design can have bigger impact on performance than tweaking the learning algorithm
 - e.g., feature combination

جامعة قطر Qatar university

Irrelevant & Redundant Features

- Irrelevant features: completely uncorrelated with the prediction task.
 - e.g., the word "the"

- Redundant features: highly correlated, regardless of being relevant or not.
 - e.g., close pixels in images

kNN?

Perceptron?

Feature Pruning

Very useful and applied in many applications.

- Easiest in the case of binary features.
 - If appears some small number K times
 - e.g., misspellings
 - If appears in all-but-K times
 - e.g., the word "the"

- For real-valued features
 - look for features with low variance.

Normalization

Feature normalization

Centering:

Variance Scaling:

Absolute Scaling:

where:

Min-max Scaling

Example normalization

$$x_{n,d} \leftarrow x_{n,d} - \mu_d$$

$$x_{n,d} \leftarrow x_{n,d}/\sigma_d$$

$$x_{n,d} \leftarrow x_{n,d}/r_d$$

$$\mu_d = \frac{1}{N} \sum_{n} x_{n,d}$$

$$\sigma_d = \sqrt{\frac{1}{N-1} \sum_n (x_{n,d} - \mu_d)^2}$$

$$r_d = \max_n \left| x_{n,d} \right|$$

$$X_{norm} = rac{X - X_{min}}{X_{max} - X_{min}}$$

$$x_n \leftarrow x_n / ||x_n||$$

$$x_{n,d} \leftarrow x_{n,d} - \mu_d$$

http://luisevalencia.com/feature-normalization/

Centering:

 $x_{n,d} \leftarrow x_{n,d} - \mu_d$

Variance Scaling:

 $x_{n,d} \leftarrow x_{n,d}/\sigma_d$

https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35

CMPS 460: Machine Learning

Normalization: Absolute Scaling

$$x_{n,d} \leftarrow x_{n,d}/r_d$$

https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35

Normalization: Min-max Scaling

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35

Normalization: Example Normalization

$$x_n \leftarrow x_n / ||x_n||$$

https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35

Logarithmic Transformation

- Mainly for textual features.
- Importance is not linear with frequency

$$x_d \mapsto \log_2(x_d + 1)$$

Feature Combination

DT is essentially building meta features.

How?

- Constructing meta features for perceptron from DT
 - train a shallow DT to extract meta features
 - add only those feature combinations to the feature set for the perceptron.