United Arab Emirates University STAT 380 Midterm Exam

N	์ก	m	Δ	•
Τ.	а		C	۰

ID:

- There are a total of 110 points in this Question Paper. Answer as much as you can. If your acquired score is greater than equal to 100 it will be counted as 100%.
- There are three parts in this Exam. Part-I involves TRUE/FALSE or multiple choice answer type questions, Part-II contains a few short answer type questions, whereas Part-III consists of one descriptive answer type question.
- The Exam is scheduled for 75 minutes

For instructor's use only

Problem Number	Obtained Score	Total Score
Problem 1		45
Problem 2		25
Problem 3		20
Problem 4		20
TOTAL		110
TOTAL(out of 100)		100

You May Use This Page for Rough Work

Part-I

Pick the correct answer option for the questions in this part of the exam.

You May Use This Page for Rough Work

Odds					
				Score: Total Score:	5
Ans:	0.333	3.004	0.249	0.082	
least medi	10 years of "surv	ival" of a randomly .75. Based on the in	chosen patient who	that the probability of went through a specie the odds for at least	cifi
				Score: Total Score:	<u>.</u> 5
Ans:	0.25	3.0	4.0	1.098	
Wha	t is the value of the	e following function l	Logit(0.75)?		
				Score: Total Score:	- 5
are c	ontinuous (numeri	cal) in nature. We ki	now both the model	0.472 use while all the covariately; logistic regression to the corresponding of	ate
Consare construction the Construction Testing for the FAL:	sider analyzing a day continuous (numeri Quadratic Discrimi ation problem. To tructed. The result ng set. The AUC of the QDA appears SE.	ntaset that has a binary cal) in nature. We kn nant Analysis (QDA compare their perfecting Area Under the for the logistic regret to be 0.95. Identify the AUC criterion, the	y categorical responsion both the model of the correst ROC Curve (AUC) ession is obtained to whether the following the correst whether the following properties are the correst to the correst that the correst th	se while all the covaria	ate an ar ar on U(
Consare construction the Construction Testing for the FAL:	sider analyzing a day continuous (numeri Quadratic Discrimination problem. To tructed. The resulting set. The AUC for the QDA appears SE.	ntaset that has a binary cal) in nature. We kn nant Analysis (QDA compare their perfecting Area Under the for the logistic regret to be 0.95. Identify the AUC criterion, the	y categorical responsion both the model of the correst ROC Curve (AUC) ession is obtained to whether the following the correst whether the following properties are the correst to the correst that the correst th	ase while all the covariants; logistic regression to the corresponding corponding ROC curves to is calculated based to be 0.89 while the Aring statement is TRUE	ate an elas ar on .U(
Consare construction the Construction Testing for the FAL:	sider analyzing a day continuous (numeri Quadratic Discrimination problem. To tructed. The resulting set. The AUC for the QDA appears SE.	ntaset that has a binary cal) in nature. We kn nant Analysis (QDA compare their perfecting Area Under the for the logistic regret to be 0.95. Identify the AUC criterion, the	y categorical responsion both the model of the correst ROC Curve (AUC) ession is obtained to whether the following the correst whether the following properties are the correst to the correst that the correst th	ase while all the covariants; logistic regression of the corresponding corponding ROC curves is calculated based to be 0.89 while the Aring statement is TRUE registic Regression is be	ate an elas ar on .U(
Consare construction the Construction of the C	sider analyzing a day continuous (numeri Quadratic Discrimination problem. To tructed. The resulting set. The AUC for the QDA appears SE. TRUE TRUE c consider a Datase so to model a continue or False.	taset that has a binary cal) in nature. We knant Analysis (QDA compare their perfecting Area Under the for the logistic regreto be 0.95. Identify the AUC criterion, the for this data set. FALSE t that has 130 observations response varial possible to fit a Stan	y categorical responnow both the model a) can be applied to primance, the correst ROC Curve (AUC) ession is obtained to whether the following performance of Locations and 210 covable. Identify whether	ase while all the covariants; logistic regression of the corresponding corponding ROC curves is calculated based to be 0.89 while the Aring statement is TRUE registic Regression is be	ate an elas ar on U(E) con ette
Consare construction the Construction of the C	sider analyzing a dayontinuous (numeri Quadratic Discrimination problem. To tructed. The resulting set. The AUC is the QDA appears SE. TRUE TRUE TRUE TRUE c consider a Datase is to model a continue or False. TRUE It is Not I	taset that has a binary cal) in nature. We knant Analysis (QDA compare their perfecting Area Under the for the logistic regreto be 0.95. Identify the AUC criterion, the for this data set. FALSE t that has 130 observations response varial possible to fit a Stan	y categorical responnow both the model a) can be applied to primance, the correst ROC Curve (AUC) ession is obtained to whether the following performance of Locations and 210 covable. Identify whether	ase while all the covariates; logistic regression to the corresponding corponding ROC curves to is calculated based to the corresponding ROC curves to is calculated based to the corresponding ROC curves to is calculated based to the corporation of the corresponding statement is TRUE to the corporation of the corresponding statement is the corporation of the corporation of the corporation of the corporation of the corresponding statement is the corporation of the corresponding to the corr	ate an elass ar

Part-II

Answer the following short type questions. Show your steps to get full credit.

A newly developed spam-filtering algorithm is implemented in all the email user accounts of a corporate office. Based on a **total of 1354 external emails** received in the first few days, the company summarized the following data to evaluate its performance.

Among the 1354 emails that are considered it appears that in actuality (TRUTH), there is a total of 271 spam emails while the rest of the external emails are not spam. The Spam-filtering algorithm predicts and labels an external email to be either a Spam ('Positive' for spam') email or a 'Not-Spam' ('Negative' for Spam'). However, the Algorithm is not always accurate.

Out of the **271 spam emails the algorithm can correctly detect only 233**. On the other hand, it correctly identifies a total of **1071 out of 1083 non-Spam emails**. Based on the provided information, answer the following questions.

Construct a classification table for assessing the performance of the 'spam-filtering algorithm'.

(a)

Score: Total Score: 10

Calculate the 'Sensitivity' of the spam-filtering algorithm in detecting a spam email.

(b)

Score: Total Score: 5

Evaluate the 'Specificity' of the spam-filtering algorithm in identifying a not-spam email.

(c)

Score: Total Score: 5

What is the value of the corresponding Yuden-Index?

(d)

Score: Total Score: 5

This problem pertains to the dataset on the O-Ring failure of the Space Shuttles. It was known that there is an association between the O-Ring seal failure and the low atmosphere temperature during the corresponding shuttle launch. The variable "oringFail" in the data set indicates whether the shuttle experienced an O-ring failure during its launch. The "temperature" column lists the outside temperature at the time of the shuttle launch. A logistic regression model is considered with the following specification:

3.

$$Y_i \sim \text{Bernoulli}(\pi_i)$$

$$Logit(\pi_i) := \beta_0 + \beta_1 \times \text{'temperature'}.$$

Here the response variable $Y_i = 1$ if there is a 'O-Ring' failure corresponding to the ith data point. Answer the parts of this questions based on the following output from the R Statistical Software that is provided below:

Call:

glm(formula = oringFail ~ temperature, family = "binomial", data = oring12)

Deviance Residuals:

```
Min 1Q Median 3Q Max -1.2034 -0.7444 -0.4970 0.3563 2.0059
```

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) 10.18873 5.17679 1.968 0.0491 * temperature -0.16076 0.07457 -2.156 0.0311 *

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1 (Dispersion parameter for binomial family taken to be 1)

Null deviance: 34.795 on 29 degrees of freedom

Residual deviance: 28.688 on 28 degrees of freedom AIC: 32.688

Interpret the estimated value of regression coefficient corresponding to the variable 'temperature' in the context of the specific problem.

(a)

Score: Total Score: 10

Based on fitted model, derive the predicted probability of O-ring failure if the corresponding 'temperature' is 40 degrees Fahrenheit?

(b)

Score: Total Score: 10

Part-III

Answer the following descriptive type questions. Show your steps to get full credit.

- Let us consider a Dataset that has a continuous response Y, and numerical continuous covariates 4. $\mathbf{X} = (X_1, X_2, \dots, X_p)^T$. The observed data is provided as $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$, where *n* is the number of observations. Assume that $n \ge 100$.
 - Write down the objective function of a Ridge Regression model where denote the corresponding model selection parameter (tuning parameter) to be λ .

Score: Total Score: 5

For a given value of $\lambda > 0$, what is the formula for $\widehat{\beta}_{\text{Ridge}}$, the corresponding estimated regression coefficients for the regression parameter $\widehat{\beta}$?

Score: Total Score: 5

(b)

(a)

Write down the details of the Cross-Validation procedure to select the optimal value for the model selection parameter $\lambda > 0$.

Score: Total Score: 10

(c)