Clustering

•

Supervised v/s unsupervised learning

Supervised Learning
$$Y = f(x_1, x_2, x_3, x_4, \dots)$$
unsupervised Learning
$$X = f(x_1, x_2, x_3, x_4, \dots)$$

$$X = f(x_1, x_2, x_3, x_4, \dots)$$

$$X = f(x_1, x_2, x_3, x_4, \dots)$$

Unsupervised Learning

- Since there is no Y (response variable)
 - There is no possibility of prediction
- Goal in unsupervised learning
 - Discover aspects about the data and the variables
 - Mathematically visualize data
 - Are there sub-groups among the variables
- Type of unsupervised learning methods
 - PCA (Principal Component Analysis)
 - Clustering

Challenges in unsupervised learning

- It is a subjective process
- There is no criteria to objectively evaluate the results
 - No cross-validation methods
 - No possibility of validating results on independent data
- Consequently unsupervised learning is performed as part of:
 - Exploratory Data Analysis
 - In order to discover structure in the data

Examples of unsupervised learning

Measure-the following

- Viloration

- Current

During metal authing

Use of unsupervised learning

Measure the following

- Viloration

- Current

During metal authing

The groups observed

possibly indicate a

behavioural pattern of the

machine tool + zutting

tool system

Clustering

- Clustering: Unsupervised learning method
- Used to "discover" inherent grouping of data points
- Popular clustering methods
 - K-means clustering
 - Partition the observations into a pre-specified number of clusters
 - Hierarchical clustering
 - Number of possible clusters is an outcome of the clustering process

K-means Clustering

- Requires us to decide and specify, beforehand, the desired number of clusters
 - How do we decide?
 - Typically based on an understanding of the domain
- The method then results in assigning every point to one of these clusters
- Note:
 - Every data point will end up belonging to one and only one cluster

K-means Clustering

Approach

- Specify the number of desired clusters
- Algorithm begins by assigning input data points randomly to these clusters
- The algorithm then iterates:
 - Derives the centroid of every cluster
 - Finds distances of all input points from the centroids of all the clusters
 - Reassigns every data point to the "nearest" cluster
 - This process is continued until there are no more reassignments

- Assume the following :
 - Input point set: [1 2 3 5 7 8 10 13 16]
 - Points along X axis ...
 - Desired number of clusters: 3
- Initial cluster assignment ... random

Distance calculation & cluster re-assignment

Cluster re-assignment ... step 2

```
13
                                      10
                                                 16
                  3
    4.33
           3.33
                2.33 0.33 1.67
                                 2.67
                                      4.67
C1
                                                10.67
                                           7.67
                           0.33 0.67
    6.33 5.83 4.33
                      2.33
                                     2.67
C2
                                           5.67
                                                8.67
    8.00 7.00 6.00 4.00 200 1.00
                                     1.00
                                               4.00
C3
NEW
                             2
                                      3
                                           3
                                                3
```

CENTROIDS:
$$C1 = (1+2+3+5)/4 = 2.75$$

 $C2 = (7+8)/2 = 4.50$
 $C3 = (10+13+16)/3 = 13.00$

	DIS	TANCES	PRO	M NI	EW e	LUSTE	PS.		
PT	1							13	16
ci	[1.75]	0.75	0.25	2.25	4.25	5.25	7.25	10.25	13.25
C2	6.50	5.50	4.50	2.50	0.5	0.50	2.50	5.5	8.50
C3	12.00	11.00	10.00	8.00	6.0	5.0	3.0	0.0	3.0

Cluster re-assignment ... Step 3

CENTROIDS
$$c_1 = (1+2+3+5)/4 = 2.75$$

 $c_2 = (7+8+6)/3 = 8.33$
 $c_3 = (13+16)/2 = 14.5$

No change in clusters assignments. Algorithm stops.

DISTANCES FROM NEW CLUSTERS.

PT 1 2 3 5 7 8 10 13 16.

CI [1.75] [0.75] [0.75] [2.25] 4.25 5.25 7.25 10.25 13.25

C2 7.33 6.33 5.33 3.33 [1.33] [0.33] [1.67] 4.67 7.67

C3 13.5 12.5 11.5 950 7.50 6.5 4.50 [1.50] [1.50]

K-means Clustering: Final Clusters

- Input points
 - -[1 2 3 5 7 8 10 13 16]
- Clusters
 - **-** [1 2 3 5] [7 8 10] [13 16]
- Note:
 - In K-means clustering, the initial cluster assignments are random
 - Therefore, the resulting clusters could represent only a local minima
 - Given a data set, it is therefore important to run K-means clustering algorithm multiple times each starting from a distinct initial random cluster assignment

Formally ...

The K-means clustering procedure results from a simple and intuitive mathematical problem. We begin by defining some notation. Let C_1, \ldots, C_K denote sets containing the indices of the observations in each cluster. These sets satisfy two properties:

- 1. $C_1 \cup C_2 \cup \ldots \cup C_K = \{1, \ldots, n\}$. In other words, each observation belongs to at least one of the K clusters.
- 2. $C_k \cap C_{k'} = \emptyset$ for all $k \neq k'$. In other words, the clusters are non-overlapping: no observation belongs to more than one cluster.

Good clustering is one for which the **within cluster** variation is as less as possible

Formally ...

Using Euclidean distance, the total within cluster variation can be expressed as:

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$

 $|C_k|$ denotes the number of observations in the kth cluster

The clustering problem therefore reduces to:

$$\underset{C_1,...,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}$$

The k-means algorithm is based on this problem formulation $\frac{1}{|C_k|} \sum_{i:l\in C} \sum_{i=1}^p (x_{ij} - x_{i'j})^2 = 2 \sum_{i\in C} \sum_{i=1}^p (x_{ij} - \bar{x}_{kj})^2$

Formally ...

The K-means clustering procedure results from a simple and intuitive mathematical problem. We begin by defining some notation. Let C_1, \ldots, C_K denote sets containing the indices of the observations in each cluster. These sets satisfy two properties:

- 1. $C_1 \cup C_2 \cup \ldots \cup C_K = \{1, \ldots, n\}$. In other words, each observation belongs to at least one of the K clusters.
- 2. $C_k \cap C_{k'} = \emptyset$ for all $k \neq k'$. In other words, the clusters are non-overlapping: no observation belongs to more than one cluster.

- Hierarchical clustering does not require specify the number of clusters
- It results in a hierarchical, tree-like, representation of the observations
 - Known as a *Dendrogram*
 - (Based on bottom-up or agglomerative clustering)

Hierarchical Clustering: Method

- Given a point set, the Hierarchical Clustering algorithm proceeds as follows:
 - Every data point is assigned to its own unique cluster
 - The algorithm then iterates as follows:
 - A distance metric (Euclidean by default) is used to find out pairwise distance between all the clusters (see next slide)
 - A pair of clusters are found such that the distance between them is the smallest of all pair-wise distances
 - The two clusters are merged
 - The process is repeated till only one cluster remains
 - The above process results in a Dendrogram which, when cut at a particular level, results in a specific number of clusters
 - The required number of clusters can thus be obtained

Hierarchical Clustering: Distance between Clusters

• Distance between clusters is evaluated using one of the following "linkages": of these, **Average and Complete are used the most**

Linkage	Description
Complete	Maximal intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>largest</i> of these dissimilarities.
Single	Minimal intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>smallest</i> of these dissimilarities. Single linkage can result in extended, trailing clusters in which single observations are fused one-at-a-time.
Average	Mean intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>average</i> of these dissimilarities.
Centroid	Dissimilarity between the centroid for cluster A (a mean vector of length p) and the centroid for cluster B. Centroid linkage can result in undesirable $inversions$.

Hierarchical Clustering: Example

- Input point set: [1 2 3 5 7 8 10 13 16]
- Initial cluster: [1] [2] [3] [5] [7] [8] [10] [13] [16]
- Inter-cluster distance: Using "Complete Linkage"

	1	2	3	5	7	8	10	13	16
1	-	1	2	4	6	7	9	12	15
2	-	-	1	3	5	6	8	11	14
3	-	-	-	2	3	5	7	10	13
5	-	-	-	-	2	3	5	8	11
7	-	-	-	-	-	1	3	6	9
8	-	-	-	-	-	-	2	5	8
10	-	-	-	-	-	-	-	3	6
13	-	-	-	-	-	-	-	-	3
16	-	-	-	-	-	-	-	-	-

Hierarchical Clustering: Example

	1	2	3	5	7	8	10	13	16
1	-	1	2	4	6	7	9	12	15
2	-	-	1	3	5	6	8	11	14
3	-	-	-	2	3	5	7	10	13
5	-	-	-	-	2	3	5	8	11
7	-	-	-	-	-	1	3	6	9
8	-	-	-	-	-	-	2	5	8
10	-	-	-	-	-	-	-	3	6
13	-	-	-	-	-	-	-	-	3
16	-	-	-	-	-	-	-	-	-

Hierarchical Clustering: Example

	[1 2]	3	5	7	8	10	13	16
[1 2]	-	2	4	6	7	9	12	15
3	-	-	2	4	5	7	10	13
5	-	-	-	2	3	5	8	11
7	-	-	-	-	1	3	6	9
8	-	-	-	-	-	2	5	8
10	-	-	-	-	-	-	3	6
13	-	-	-	-	-	-	-	3
16	-	-	-	-	-	-	-	-

	[1 2]	3	5	[7 8]	10	13	16
[1 2]	-	2	4	7	9	12	15
3	-	-	2	5	7	10	13
5	-	-	-	3	5	8	11
[7 8]	-	-	-	-	3	6	9
10	-	-	-	-	-	3	6
13	-	-	-	-	-	-	3
16	-	-	-	-	-	-	-

	[1 2 3]	5	[7 8]	10	13	16
[1 2 3]	-	4	7	9	12	15
5	-	-	3	5	8	11
[7 8]	-	-	-	3	6	9
10	-	-	-	-	3	6
13	-	-	-	-	-	3
16	-	-	-	-	-	-

• Step 4

	[1 2 3]	[5 7 8]	10	13	16
[1 2 3]	-	7	9	12	15
[5 7 8]	-	-	5	8	11
10	-	-	-	(3)	6
13	-	-	-	-	3
16	-	-	-	-	-

	[1 2 3]	[5 7 8]	[10 13]	16
[1 2 3]	-	7	12	15
[5 7 8]	-	-	8	11
[10 13]	-	-	-	6
16	-	-	-	-

• Step 6

	[1 2 3]	[5 7 8]	[10 13]	16
[1 2 3]	-	7	12	15
[5 7 8]	-	-	8	11
[10 13]	-	-	-	6
16	-	-	-	-

Step 7

	[1 2 3]	[5 7 8]	[10 13 16]
[1 2 3]	-	7	15
[5 7 8]	-	-	11
[10 13 16]	-	-	-

Step 8

	[1 2 3 5 7 8]	[10 13 16]
[1 2 3 5 7 8]	-	15
[10 13 16]	-	-

Step 9: Final

	[1 2 3 5 7 8 10 13 16]
[1 2 3 5 7 8 10 13 16]	-

Resulting Dendrogram

Cutting the dendrogram to get clusters

Resulting clusters: [1 2 3] [5 7 8] [10 13 16]

Interpreting the Dendrogram

- No conclusions can be drawn
 - Based on the proximity of branches along the horizontal axis
- Observations that fuse lower in the tree
 - Close to each other
- Observations that fuse higher in the tree
 - Are dissimilar
- Height of the fusion
 - Indicate how different the branches / leaves are
- Identifying distinct number of groups
 - Based on the leg lengths

Interpreting the Dendrogram

Comparison between linkages

Points to be considered in clustering

- Which dissimilarity measure (linkage)?
- How many clusters?
- Presence of outliers
 - Since every point is forced into a cluster
 - This may lead to distortions
- Observations at different scales
 - How to handle such observations?
 - Should they be centered and scaled?

Clustering performance

