Exercise 1:

 $\Box \ \frac{6}{10}$

1.	On considère la fonction $f(x,y)=\sqrt{6x-8y}$. Quelle valeur approximative de $f(2.1,1)$ obtient-on en utilisant l'approximation linéaire $t_{(x_0,y_0)}(2.1,1)$ au point $(x_0,y_0)=(2,1)$?
	$\square \ 2.125$
	$\square \ 2.0125$
	$\square \ 2.025$
	$\square \ 2.25$
	\Box Aucune des réponses ci-dessus
2.	On considère la fonction $f(x,y)=xy^3-2x^3$. Quelle valeur approximative de $f(2.01,2.98)$ obtient-on en utilisant l'approximation linéaire $t_{(x_0,y_0)}(2.01,2.98)$ au point $(x_0,y_0)=(2,3)$?
	\square 36.95
	\square 37.95
	\square 39.95
	\square 38.95
	☐ Aucune des réponses ci-dessus
3.	Laquelle des expressions suivantes correspond à l'équation du plan tangent $t_{(x_0,y_0)}(x,y)$ de la fonction $f(x,y) = \ln(xy)$ au point $(x_0,y_0) = (\frac{1}{2},2)$?
	$\square \ 2y - \frac{1}{2}x - 2$
	$\square \ 2y + \frac{1}{2}x - 2$
	$\square \ 2x + \frac{1}{2}y - 2$
	$\square \ 2x - \frac{1}{2}y - 2$
	☐ Aucune des réponses ci-dessus
4.	Laquelle des expressions suivantes correspond à l'équation du plan tangent $t_{(x_0,y_0)}(x,y)$ de la fonction $f(x,y)=4x^2-y^2$ au point $(x_0,y_0)=(5,-8)$?
	$\Box 16x - 40y - 36$
	$\Box 16y + 40x + 36$
	$\Box 40y + 16x - 36$
	$\Box 16y + 40x - 36$
	☐ Aucune des réponses ci-dessus
5.	En utilisant la différentielle, approximer la variation de la fonction $f(x,y) = 3x^2 - xy$ lorsque (x,y) varie entre $(1,2)$ et $(1.01,198)$ (poser $(x_0,y_0) = (1,2)$).

 \square (0,2)

□ 0.006 □ 0.06 □ 0.6
\Box Aucune des réponses ci-dessus
6. Approximer la variation de la fonction $f(x) = x^2 - 3x^3y^2 + 4x - 2y^3 + 6$ en utilisant la différentielle, lorsque (x, y) varie entre $(-2, 3)$ et $(-2.02, 3.01)$ (poser $(x_0, y_0) = (-2, 3)$).
□ 7.38 □ 7.39 □ 7.4 □ 7.37
\square Aucune des réponses ci-dessus
7. On considère la fonction $f(x,y) = 6\sqrt[3]{x^2y}$. Pour lequel (ou lesquels), parmi les points suivant, l'approximation linéaire $t_{x_0,y_0}(x,y)$ au point $(x_0,y_0) = (1000,125)$ est-elle la meilleure?
□ $(1000, 126)$ □ $(1001, 125)$ □ $(1001, 124.5)$ □ $(1000.5, 125.5)$ □ Aucune des réponses ci-dessus
8. On considère la fonction $f(x,y) = x^4 + y^3 + 32x - 9y$. Au point $(x_0,y_0) = (2,-\sqrt{3})$, f admet
□ un maximum local □ un minimum local □ un maximum global □ un point-selle □ Aucune des réponses ci-dessus
9. On considère la fonction $f(x,y) = -\frac{1}{3}x^3 + xy + \frac{1}{2}y^2 - 12y$. Combien de points critiques possède-t-elle ?
□ 0 $□$ 1 $□$ 2 $□$ 4 $□$ Aucune des réponses ci-dessus
10. On considère la fonction $f(x,y) = \frac{1}{3}x^3 + \frac{1}{3}y^3 - \frac{3}{2}x^2 - 4y$. Parmi les points suivants, lesquels sont des points critiques de $f(x,y)$?

- \Box (2,0)
- \square (3,-2)
- \Box (-3,2)
- \square Aucune des réponses ci-dessus

Exercise 2:

Soit la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par:

$$f(x,y) = 2x^3 - x^2 + 2xy + 5y^2$$

- 1. Calculer les dérivées partielles premières et secondes de la fonction f.
- 2. Déterminer le(s) point(s) critique(s) de la fonction f.
- 3. Déterminer si chaque point critique de la fonction f est un maximum local, un minimum local ou un point selle.

Exercise 3:

Discuter l'existence et la nature des extremums de la fonction $f:\mathbb{R}^2 \to \mathbb{R}$, définie par :

$$f(x,y) = \frac{a}{2}(x^2 + y^2) + xy - y + x + 7$$

en fonction du paramètre $a \in \mathbb{R}$