Learning Guide Module

Subject Code Math 3 Mathematics 3 **Module Code** 7.0 *Inverse Functions*

Lesson Code 7.2.1 *Graphs of Inverse Functions 1*

Time Limit 30 minutes

Time Allocation: 1 minute
Actual Time Allocation: minutes

By the end of this learning guide, the student will have been able to:

1. sketch the graph of the inverse of a function given the graph of the function

Time Allocation: 9 minutes
Actual Time Allocation: ____ minutes

In the previous learning guides, we have learned that the inverse function of a given function f is represented by $f^{-1}(x)$, read as "finverse of x". To recall how to determine the inverse of a function, let's answer the following.

Recall that to determine the inverse of a function, we change f(x) to y, interchange x and y, then solve for y. Let's do these steps to determine the inverse of the functions below.

1.
$$f(x) = 1 + x^{3}$$

 $y = 1 + x^{3}$
 $x = 1 + y^{3}$
 $x - 1 = y^{3}$
 $y^{3} = x - 1$
 $y = \sqrt[3]{x - 1}$
 $f^{-1} = \sqrt[3]{x - 1}$

$$2. f(x) = 3 - 2x$$

$$y = 3 - 2x$$

$$x = 3 - 2y$$

$$x - 3 = -2y$$

$$\frac{x - 3}{-2} = y$$

$$f^{-1} = \frac{3 - x}{2}$$

Question: Which of the following functions have a defined inverse function?

1.
$$f(x) = |x - 3|$$

2.
$$f(x) = x^3$$

3.
$$f(x) = 9 - x^2$$

Answers:

- 1. The function is not a one to one function, therefore, it has no defined inverse.
- 2. It has a defined inverse.
- 3. The function is not a one to one function, therefore, it has no defined inverse.

Recall from learning guide 7.1 how we can restrict the domain of functions 1 and 2 for them to have a defined inverse function. This time, we are going to graph the inverse of a function given the graph of the function.

Time Allocation: 20 minutes
Actual Time Allocation: ____ minutes

Let us start exploring our topic by answering this question: *How are functions and their inverses related?*

Determine the inverse of $f(x) = \frac{x-3}{2}$

Step 1:

a) *Make Table*: Plug in 5 different values for x to get your y values using the table.

x	f(x) = y	ordered pair		

b) Graph function: Plot the points from the table on the given coordinate plane below and draw the line that passes through them. Label the graph as f.

Step 2:

a) Interchange coordinates: Switch the

Switch the x and y-coordinates of the ordered pairs found in Step 1. Example: $(2, 3) \rightarrow (3, 2)$ and write in the new table.

x	f(x) = y	ordered pair		

b) Graph function: Plot the points on the same graph and draw the line that passes through them. Label it as f^{-1} .

Draw the graphs of f and f^{-1} on the coordinate plane at the right.

Step 3:

Write equation: Write and equation of the line from Step 2. Write this function as

$$g(x) = mx + b.$$

$$b = g(x) =$$

Step 4:

Compare graphs: Fold your graph paper so that the graphs of f and g coincide (lie on top of one another). How are the graphs **geometrically** related?

Your Answer: _____

GRAPH OF INVERSE FUNCTIONS

m =

Recall that to determine the inverse of a function, we interchange x and y and then solve for y. We shall use the same concept to sketch the graph of $f^{-1}(x)$ using the given graph of f. If the graph of f contains the point (x, f(x)), therefore, the graph of its inverse, f^{-1} will contain the point (f(x), x) and this is illustrated in Figure 1 below:

Figure 1: Graphs of a function and its inverse

Image Source: http://www.teaching.martahidegkuti.com/shared/lnotes/4CollegeAlgebra/inverse.pdf

We can see from our previous activity and from figure 1 that the graphs of f and f^{-1} are symmetric with respect to the line y = x. Recall that when we reflect a point (x, y) across the line y = x, the image is (y, x).

Example 1. Sketch the graph of $g^{-1}(x)$ for the given function $g(x) = \frac{1}{2}x + 3$.

Solution: Let us first graph the function g. Getting the inverse of a function literally interchanges the assignment of x and y. Thus, if (2,4) and (-2,2) are points on the graph of g, then interchanging the two coordinates provides us points on the graph of its inverse. Therefore, (4,2) and (2,-2) are points on the graph of the inverse. We will apply this method to obtain more points:

Points on g	(-2,2)	$\left(-1,\frac{5}{2}\right)$	(0,3)	$\left(1,\frac{7}{2}\right)$	(2, 4)	$\left(3,\frac{9}{2}\right)$	(4,5)
Points on g^{-1}	(2,-2)	$\left(\frac{5}{2},-1\right)$	(3,0)	$\left(\frac{7}{2},1\right)$	(4,2)	$\left(\frac{9}{2},3\right)$	(5,4)

Locating the points, we have the following graphs.

Figure 2: Graph of *g*

Figure 3: Graph of g^{-1}

Figure 4: Graphs of g and g^{-1}

Example 2. Given $h(x) = x^2$, sketch the graph of its inverse along with the line y = x.

Solution: We will determine some points on the graph of h. Then, we will interchange their coordinates to obtain points on the graph of h^{-1} .

Points on h	(-3,9)	(-2,4)	(-1,1)	(0,0)	(1,1)	(2,4)	(3,9)
Points on h^{-1}	(9, -3)	(4, -2)	(1,-1)	(0,0)	(1,1)	(4,2)	(9,3)

Plotting and connecting the points, we have the graphs below.

Figure 5: Graph of *h*

Figure 6: Graph of h^{-1}

Figure 7: Graph of h and h^{-1}

As we can observe from the figures above, the graph of g^{-1} illustrates a function while the graph of h^{-1} does not. Between g and h, only g will pass the horizontal line test. Thus, g is a one-to-one function. We have also learned that the inverse of one – to – one functions is a function. Therefore, g^{-1} is a function while h^{-1} is not a function since h is not one – to – one.

Note:

Consider f as a function and its inverse relation denoted by f^{-1} , the inverse of f is a function if and only if the function f is one-to-one.

Take the next example when a function is not one-to-one but we would still like to have an inverse that is a function (and not just a relation). We could have a one - to - one function by restricting its domain.

Example 3.

Let us use h(x) in Example 2, applying the horizontal line test, we can say that h is not one – to – one function but we can make it so by restricting its domain. We will just choose a part of its domain to make it one – to – one, either $(-\infty, 0]$ or $[0, +\infty)$.

Using the restricted domain, $[0, +\infty)$, the graphs are shown below.

Figure 8: Graph of h

Figure 9: Graph of h^{-1}

Figure 10: Graph of h and h^{-1}

Using $(-\infty, 0]$, the graphs are shown below.

Figure 11: Graph of *h*

Figure 12: Graph of h^{-1}

Figure 13: Graph of h and h^{-1}

References:

Albarico, J.M. (2013). THINK Framework. (Based on Ramos, E.G. and N. Apolinario. (n.d.) *Science LINKS*. Rex Bookstore, Inc.)

Franklin, Scott R. (2016). *Geogebra – 2D Graphing*. Retrieved from https://www.geogebra.org/m/Adc44ZZq

Marta Hidegkuti Website (n.d). *Inverse Functions*. Retrieved from http://www.teaching.martahidegkuti.com/shared/lnotes/4CollegeAlgebra/inverse.pdf

Mathcentre Website (n.d). *Inverse Functions*. Retrieved from http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-inverse-2009-1.pdf

Prepared by: Frederick F. Faz Reviewed by: Virginia A. Barlas

Position: Special Science Teacher (SST) II Position: Special Science Teacher (SST) IV

Campus: PSHS – MRC Campus: PSHS - WVC

Mathematics 3 | Page 5 of 5