16.265 Logic De	esign
Student Logic Number	140
Name	Dangnhi Ngo
E-mail address (print)	Nhi_Ngo@student.uml.edu
Experiment Number	4
Date	11/27/2017

For grader use	
Schematic diagram submitted is different from the one in the report. (Need to re-submit the schematic diagram in the report or will be graded based on a maximum of 50 points.)	5 points deduction
Cannot open file	·
File is not readable	
Date student is notified to re-submit a schematic file by e-mail	
Date schematic file received	

Report will be graded based on a maximum of 50 (out of 100 points) if a schematic diagram is not received within three calendar days of notification or the re-submitted schematic file still cannot be opened or is not readable.

Grade: 100

Experiment 4 Six-State Up-Down Counter

1. Sequence assignment

2. Next-state maps

Construction of transition table

Present state	Next state	$Q^{+}_{2} Q^{+}_{1} Q^{+}_{0}$
$Q_2 Q_1 Q_0$	C = 0	C = 1
0 0 0	001	110
0 0 1	011	000
0 1 0	ddd	ddd
0 1 1	100	001
1 0 0	111	011
1 0 1	ddd	ddd
1 1 0	000	111
1 1 1	110	J 000

Convert the transition table to next-state maps.

Q_2	Q ₁	01	11	10	Q_2	Q ₁	01	11	10	Q_2	Q ₁	01	11	10
00	0	d	0	1	00	0	d	0	1	00	1	d	0	1
01	0	1	1	d	01	1	0	1	d	01	1	0	0	d
11	0	0	1	d	11	0	0	0	d	11	0	1	0	d
10	1	d	1	0	10	1	d	1	1	10	0	d	1	1
		Q	2+		-		Q	1+				Q) ⁺	

Design using D flip-flops

Determine the excitation functions from the next state maps. $\begin{array}{l} D_2 = \ \mathcal{C}^1 \left(\ \mathcal{Q}_{\underline{1}} \mathcal{Q}_{\underline{1}} + \ \mathcal{Q}_{\underline{2}} \mathcal{Q}_{\underline{1}}^1 \right) + \ \mathcal{C} \left(\ \mathcal{Q}_{\underline{2}} \mathcal{Q}_{\underline{1}} + \ \mathcal{Q}_{\underline{2}}^1 \mathcal{Q}_{\underline{0}}^1 \right) \\ D_1 = \ \mathcal{C} \mathcal{Q}_{\underline{0}}^1 + \ \mathcal{Q}_{\underline{2}} \mathcal{Q}_{\underline{1}}^1 + \left(\ \mathcal{Q}_{\underline{1}}^1 + \ \mathcal{Q}_{\underline{2}} \right) \mathcal{C}^1 \mathcal{Q}_{\underline{0}} \\ D_0 = \ \mathcal{Q}_{\underline{1}}^1 \mathcal{C}^1 + \left(\ \mathcal{Q}_{\underline{2}} \mathcal{Q}_{\underline{1}}^1 + \ \mathcal{Q}_{\underline{1}}^1 \mathcal{Q}_{\underline{1}} \right) \mathcal{C} \\ \end{array}$

$$D_2 = C'(Q_1Q_1 + Q_2Q_1) + C(Q_2Q_1 + Q_2Q_1)$$

$$D_1 = CQ_0' + Q_0Q_1' + (Q_1' + Q_2)CQ_1'$$

$$D_0 = Q_1'C' + (QQ' + Q'Q)C$$

List of ICs and unused gates for design using D flip-flops

IC number	Type number	Function	Unused gates
1	7474	Dual D type flip-flops	None
2	7474	Dual D type flip-flops	1 D flip-flop
3	7400	2 Input NAND Grates	None
4	7400	2 Input NAND Grates	None
5	7400	2 Input NAND Gates	None
6	7400	2 Input NAND Grates	None
7	7410	3 Input NAND Grates	None
8		,	

Simulation results for design using D flip-flops

Draw the schematic diagrams for the counter using D flip-flops. Insert a complete schematic diagram including the title box.

4. Design using JK flip-flops

Q_2	Q ₁	01	11	10	CQ_0	Q ₁	01	11	10	CQ_0	Q ₁	01	11	10
00	0	d	0	1	00	0	d	0	1	00	1	d	0	1
01	0	1	1	d	01	1	0	1	d	01	1	0	0	d
11	0	0	1	d	11	0	0	0	d	11	0	1	0	d
10	1	d	1	0	10	1	d	1	d	10	0	d	1	1
$\mathrm{Q_2}^+$					Qı	+				Qo)+			

Partition the next state maps into K-maps for the excitation functions. (Don't forget to label the variables at the upper left corner of each K-map.)

5

Determine the excitation functions from the six K-maps.

$$J_{2} = C'Q_{1} + CQ_{0}'$$

$$J_{1} = Q_{2} + (C \oplus Q_{0})$$

$$J_{0} = Q_{1}'C' + Q_{2}C$$

$$K_{2} = CQ_{\underline{1}}^{1} + C^{\dagger}Q_{\underline{0}}^{\dagger}Q_{\underline{1}}$$

$$K_{1} = Q_{\underline{2}}^{1} + CQ_{\underline{0}} + C^{\dagger}Q_{\underline{0}}^{\dagger}$$

$$K_{0} = Q_{\underline{2}} + (Q_{\underline{1}} \oplus C)$$

List of ICs and unused gates for design using JK flip-flops

IC number	Type number	Function	Unused gates
1	7476	Dual JK type flip-flops	None
2	7476	Dual JK type flip-flops	1 JK flip-flop
3	7400	2 Input NAND Gerles	None
4	7400	2 Input NAND Grates	None
5	7400	2 Input NAND Grotes	None
6	7400	2 Input NAND Gentes	1
7	74 10	3 Input NAND Gentes	1
8	7486	2 Input XOR Grates	2

Simulation results for design using JK flip-flops

Draw the schematic diagrams for the counter using JK flip-flops. Insert a complete schematic diagram including the title box.

