

				Sub	ject	Coc	le: ŀ	KEC.	051
Roll No:									

B TECH. (SEM V) THEORY EXAMINATION 2021-22 COMPUTER ARCHITECTURE AND ORGANIZATION

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Printed Page: 1 of 2

Qno.	Question	Marks	CO
a.	Write short note on PLDs.	2	1
b.	Define design methodology.	2	1
c.	Explain one, two, and three address instruction.	2	2
d.	Discuss Floating point number representation.	2	2
e.	Analyze overflow conditions for addition and subtraction.	2	3
f.	What is meant by ALU fast multiplication?	2	3
g.	What is interrupt?	2	4
h.	What do you mean by pipelining?	2	4
i.	Explain the concept of memory transfer.	2	5
j.	What is Cache?	2	5

SECTION B

2. Attempt any *three* of the following:

Qno.	Question	Marks	СО
a.	Explain the general register organization with the help of suitable	10	1
	diagram.		
b.	Describe fixed point representation and floating-point representation.	10	2
c.	Examine with a neat block diagram how floating-point addition is	10	3
	carried out in a computer system.		
d.	Explain single cycle and pipelined performance with examples.	10	4
e.	A computer employs RAM chips of 256×8 and ROM chips of size	10	5
	1024×8. Extend the memory system to 4096 bytes of RAM and 4096		
	bytes of RAM. List the memory address map and indicate what size		
	decoders are needed?		

SECTION C

3. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Discuss about advantages and disadvantages of PLD's. Design a 4-bit	10	1
	register with parallel I/O and 4-bit register with parallel load.		
b.	A computer has 16-bit address and 16-bit data-lines.	10	1
	i. What is maximum address space?		
	ii. What is size of each location in bytes?		
	iii. What is size of PC, AR, DR, IR?		

				Sub	ject	Coc	le: I	KEC	051
Roll No:									

Printed Page: 2 of 2

4. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Draw and explain typical micro programmed controller. What is	10	2
	program control unit? Design a state transition graph for the		
	accumulator-based CPU with an example.		
b.	Write a program to evaluate arithmetic expression	10	2
	X = (A - B) * (((C - D) / F) / G)		
	Using a general register computer with three, two, one & zero address		
	instructions.		

5. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Explain how Booth's algorithm is suitable for signed number	10	3
	multiplication. Explain the floating-point multiplication with the help of		
	flowchart.		
b.	What are high speed adders? Design a Carry Look ahead adder.	10	3

6. Attempt any *one* part of the following:

Qno.		Question	Marks	CO		
a.	Desci	Describe the following control units				
	i.	i. Hardwired control unit				
	ii.	Micro-programmed control unit				
b.	Discu	ass the following	10	4		
	i.	Interleaving				
	ii.	Hit rate and Miss penalty				
	iii.	Pre-fetching				

7. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Explain VHDL. What is device modeling? What are complier and	10	5
	simulator? Explain structural modeling with an example.		
b.	What is Cache Memory? How is it implemented? A two way set	10	5
	associated 'cache memory uses blocks of four words. The cache can		
	accommodate a total of 2048 words from main memory. The main		
	memory size is 128K x32.		
	i. Formulate all pertinent information required to construct the		
	cache memory.		
	ii. What is the size of cache memory?		