北京邮电大学 2006——2007 学年第 1 学期

《通信原理》期中考试试题(A卷)

包括选择填空在内的所有答题都应写在答题纸上,否则不计成绩! 试卷最后一页有公式提示

一.选择填空(每空1分,共25分)

答案必须来自下列答案,必须是最合理的答案。

按"空格编号答案编号"的格式答题,例如:26f;27甲

(a)3	(<i>b</i>)2	(c)频带传输	$(d)\cos 32\pi t$				
(e)50	(f)高斯		(<i>h</i>)5				
(<i>i</i>)4	(<i>j</i>)1	(k)隔直流传输	(<i>l</i>)10				
(<i>m</i>)6	(<i>n</i>)16	(0)24	$(p)\sqrt{2}\cos 32\pi t$				
(q)8	(r)瑞利	(s)128	(t)64				
(u)12	(v)莱斯	(w)均匀	(x)指数				
$(y) \sin 32\pi t$	$(z)\sqrt{2}\sin 32\pi t$	(甲)32	(乙)120				
(丙)高	(丁)低	(戊)200	(己)160				
(庚) $H(f)+H(2f_c-$	-f)=1	(辛)奈奎斯特准则					
$(\pm)H(f+f_c)+H($	$(f-f_c)=1$	$(\mathbf{Z})H(f)=1$					

- 1. 若等概分布的 16 进制数字信号的符号速率是 2.5×10^5 符号/秒 , 那么比特速率 是 $\frac{1}{2} \times 10^5$ 比特/秒 , 符号间隔是 $\frac{2}{2}$ 微秒 , 比特间隔是 $\frac{3}{2}$ 微秒。
- $2. m(t) = 2\cos(32\pi t + \pi/4)$ 的平均功率是4 瓦, $m^2(t)$ 的平均功率是5 瓦。
- 3 .设模拟基带信号的带宽是 4kHz。用此信号进行调制指数为 a=1 的 AM 调制(具有离散大载波的双边带幅度调制),则已调信号的带宽是 $6 \ kHz$;用此信号进行调制指数为 $\beta_f=1$ 的 FM 调制,则已调信号的近似带宽是 $7 \ kHz$ 。
- 4. HDB3 码的信号波形有8 种不同的电压值,数字分相码(Manchester 码)的信号波形有9 种不同的电压值,这两种信号都适合于10。

- 6. 已知白高斯噪声的双边功率谱密度为 $N_0/2=10^{-6}$ 瓦/Hz ,将其通过一个等效噪声带宽为 16kHz 的窄带滤波器后,输出噪声的功率是10 毫瓦,输出电压的瞬时值服从14 分布,包络服从15 分布。
- 7.某调频信号的表达式是 $s(t) = \cos\left[2000\pi t + 4\cos\left(32\pi t\right)\right]$,它的最大频偏是 $\frac{16}{100}$ Hz,近似带宽是 $\frac{17}{100}$ Hz。若还已知产生此调频信号的调频器的基带输入是某个功率为 1 的模拟基带信号 m(t) 的微分,那么 $m(t) = \frac{18}{1000}$ 。
- 8. 设信源是独立等概的二进制序列,速率是 2kbps。若采用幅度为 20 伏的双极性不归零信号,则平均比特能量是 19×10^{-3} 焦耳,主瓣带宽是 20×10^{-3} 焦耳,
- 10 . VSB 调制是将 DSB 信号 $m(t)\cos 2\pi f_c t$ 通过一个带通滤波器 H(f) 形成的,其中 H(f) 在 $f\in [f_c-W,f_c+W]$ 范围内满足 ②5。
- 二 $.(10\ f)$ 某 64 进制基带传输系统的发送滤波器、信道和接收滤波器的总传输特性 H(f) 如下两图所示。分别就图(a)和图(b)的情形确定出系统无码间干扰传输时的最高符号速率 R_s 、比特速率 R_s 、以波特/Hz 为单位的频带利用率以及以 bps/Hz 为单位的频带利用率。

 Ξ .(12分)已知b(t)的波形如下图所示,此信号受到白高斯噪声的干扰。

- (1)画出对b(t) 匹配的匹配滤波器的冲激响应h(t)的波形,要求h(t)幅度最大为1、因果、且时延最小;
- (2)求白高斯噪声通过此匹配滤波器后的平均功率;
- (3)求b(t)通过此匹配滤波器后的最大输出幅度。

四 . (10 分)某系统在[0,T]时间内以等概方式发送信号 $s_1(t)$ 和 $s_2(t)$ 之一,其中 $s_1(t) = \begin{cases} 1 & 0 \le t < T \\ 0 &$ 其它 $t \end{cases}$, $s_2(t) = -s_1(t)$ 。接收信号为 $r(t) = s_i(t) + n_w(t)$,i = 1, 2。将 r(t)

通过一个冲激响应为 $h(t) = s_1(t)$ 滤波器,其输出信号 y(t) 在 t = T 时刻的值是 y 。

- (1)求发送 $s_1(t)$ 条件下的均值 $E[y|s_1]$ 、方差 $D[y|s_1]$ 和概率密度函数 $p(y|s_1)$;
- (2)若判决门限为 $V_{th}=0$, 求发送 $s_1(t)$ 而误判为 $s_2(t)$ 的概率。

五.(12分)设模拟基带信号 $m(t) = \cos 2\pi f_m t$,载波 $c(t) = \cos 2\pi f_c t$, $f_c >> f_m$ 。

- $(1) s_1(t) = m(t)c(t)$ 是什么调制?试画出其傅氏变换的幅度谱图,并画出解调框图;
- (2)将 $s_1(t)$ 通过一个截止频率为 f_c 的理想低通滤波器得到 $s_2(t)$,请问 $s_2(t)$ 对于m(t)来说是什么调制?写出 $s_2(t)$ 的表达式;
- (3)分别写出 $s_1(t)$ 和 $s_2(t)$ 的复包络。

六.(12 分)已知模拟基带信号 m(t) 的带宽为 B_m ,功率为 P_m 。 已调信号 $s(t)=m(t)\cos 2\pi f_c t + \hat{m}(t)\sin 2\pi f_c t$ 经过信道传输时经历了衰减并受到了白高斯噪声 $n_w(t)$ 的干扰,接收信号为 $r(t)=0.1s(t)+n_w(t)$ 。 下图是接收机框图。图中 BPF 的幅度增益为 1,带宽恰好使有用信号无失真通过。图中 LPF 的带宽为 B_m ,幅度增益为 4。

- (1)求 A 点已调信号的功率 P_A 和噪声功率 P_{nL} ;
- (2)写出 B 点信号的表达式;
- (3)若 $P_m/(N_0B_m)=10^5$,求B点的信噪比。

七 . (10 分)PAM 信号 $s(t) = \sum_{n=-\infty}^{\infty} a_n g(t-nT_s)$ 。已知序列 $\{a_n\}$ 的自相关函数为

$$R_a(m) = \begin{cases} 1 & m = 0 \\ -1/2 & m = \pm 1 \\ 0 & |m| > 1 \end{cases}, 脉冲 g(t) = \begin{cases} 1 & |t| \le 1 \\ 0 & |t| > 1 \end{cases}, 符号间隔 T_s = 5 秒。求 s(t)的功率$$

谱密度。

八 $.(9\ f)$ 数字基带二进制双极性序列 $\{a_n\}$ 经过一个如图所示的非理想的基带传输系统传输,抽样时刻存在码间干扰。已知 a_n 以独立等概的方式取值于(+1,-1)。试写出抽样时刻产生的码间干扰 y_{tst} 的各种可能取值,以及它们的出现概率。

公式提示

(1)信号
$$s(t) = \sum_{n=-\infty}^{\infty} a_n g\left(t-nT_s\right)$$
 的功率谱密度为 $P_s(f) = \frac{1}{T_s} P_a(f) \left|G(f)\right|^2$,其中
$$G(f) \not \models g(t)$$
 的傅氏变换, $P_a(f) = \sum_{m=-\infty}^{\infty} R_a(m) e^{-j2\pi f m T_s}$, $R_a(m) \not \models F$ 列 $\{a_n\}$ 的自相关函数。

- (2)若x(t)的傅氏变换是X(f),则 $\int_{-\infty}^{\infty} |X(f)|^2 df = \int_{-\infty}^{\infty} |x(t)|^2 dt$
- (3)本试题中的出现的"白高斯噪声"一律具备平稳、遍历特性,其均值为零,双边功率谱密度为 $N_0/2$ 。本试题中,记号 $n_w(t)$ 总指白高斯噪声。若令 $z(t) = \int_0^t n_w(t) dt \ , \ \, \text{则} \ \, z(t)$ 的均值为零,方差为 $N_0 t/2$ 。
- (4) 若随机变量 $x \sim N(0,\sigma^2)$, z > 0 , 则 $P(|x| > z) = \operatorname{erfc}\left(\frac{z}{\sqrt{2\sigma^2}}\right)$, 其中 $\operatorname{erfc}(u) \triangleq \frac{2}{\sqrt{\pi}} \int_u^{\infty} e^{-t^2} dt$
- $(5) 2\cos x \cos y = \cos(x-y) + \cos(x+y) , 2\sin x \cos y = \sin(x-y) + \sin(x+y)$

(6)若
$$f(x) = \begin{cases} 1 & |x| \le x_0/2 \\ 0 & |x| > x_0/2 \end{cases}$$
 , 则 $\int_{-\infty}^{\infty} f(x) e^{j2\pi\tau x} dx = x_0 \operatorname{sinc}(\tau x_0)$

《通信原理》期中考试 A 卷参考答案

一.选择填空

空格编号	1	2	3	4	5	6	7	8	9	10	(11)	(12)	(13)
答案编 号	l	i	j	b	m	q	n	a	b	k	h	j	甲
空格编号	(14)	(15)	(16)	17)	(18)	19	20	21)	22	23)	24)	25)	
答案编 号	f	r	t	己	p	戊	b	e	i	h	丁	庚	

注:25 题的条件是 $f \in [f_c - W, f_c + W]$, 因此答案是庚 , 不是壬。

二.答:对于图 a,最高符号速率是 200 波特,比特速率是 1200bps,频带利用率:1Baud/Hz,6bps/Hz。

对于图 b,最高符号速率是 300 波特,比特速率是 1800bps,频带利用率:1.5Baud/Hz,9bps/Hz。

三.解:(1)

$$(2) \sigma^{2} = \int_{-\infty}^{\infty} \frac{N_{0}}{2} \left| H(f) \right|^{2} dt = \frac{N_{0}}{2} \int_{-\infty}^{\infty} h^{2}(t) dt = \frac{N_{0}}{2} \left\{ \int_{0}^{2} \left(\frac{t}{2} \right)^{2} dt + \int_{2}^{4} 1^{2} dt \right\} = \frac{N_{0}}{2} \times \frac{8}{3} = \frac{4N_{0}}{3}$$

(3)信号通过匹配滤波器后,在最佳取样时刻最大。对本题,最佳取样时刻是 t=4 秒,因此最大输出幅度是 $\int_{-\infty}^{\infty}b\big(4-\tau\big)h\big(\tau\big)d\tau=\int_{-\infty}^{\infty}2h\big(\tau\big)h\big(\tau\big)d\tau=\frac{16}{3}$ 。

四 . 解 : (1) 滤 波 器 的 输 出 是 $y(t) = \int_{-\infty}^{\infty} h(\tau) r(t-\tau) d\tau = \int_{0}^{T} \left[s_{i}(t) + n_{w}(t) \right] dt = \pm T + \int_{0}^{T} n_{w}(t) dt .$

令 $Z=\int_0^T n_{_{\!\scriptscriptstyle W}} ig(tig) dt$,则其均值为 0 ,方差为 $\frac{N_0T}{2}$ 。 因此 $E\big[y\,|\,s_1\big]=T$, $D\big[y\,|\,s_1\big]=\frac{N_0T}{2}$,

$$p(y \mid s_1) = \frac{1}{\sqrt{\pi N_0 T}} \exp\left(-\frac{(y-T)^2}{N_0 T}\right).$$

(2)
$$P(s_2 | s_1) = P(y < 0 | s_1) = P(T + Z < 0) = P(Z < -T) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{T}{N_0}}\right)$$

五.解:(1)DSB,幅度谱如下:

解调框图:

- (2)下单边带调制, $s_2(t) = \frac{1}{2}\cos\left[2\pi(f_c f_m)t\right]$
- $(3) \, s_1 \left(t \right) \, \text{的复包络是} \cos 2 \pi \, f_m t \, \, , \, \, s_2 \left(t \right) \, \text{的复包络是} \, \frac{1}{2} \left[\cos 2 \pi \, f_m t j \sin 2 \pi \, f_m t \right] = \frac{1}{2} e^{-j 2 \pi f_m t}$

六.解:(1) $P_{\!\scriptscriptstyle A}=0.01P_{\!\scriptscriptstyle m}$, $P_{\scriptscriptstyle n_{\scriptscriptstyle A}}=N_{\scriptscriptstyle 0}B_{\!\scriptscriptstyle m}$ 。

- (2) $y(t)=0.2m(t)+2n_c(t)$,其中 $n_c(t)$ 是 A 点噪声的同相分量 ,其功率为 N_0B_m 。
- (3)输出信噪比为 $\frac{P_m}{100N_0B_m} = 10^3$ 。

七.解:
$$P_a(f) = \sum_{m=-\infty}^{\infty} R_a(m) e^{-j10\pi mf} = 1 - \frac{1}{2} \left(e^{j10\pi f} + e^{-j10\pi f} \right) = 1 - \cos 10\pi f = 2\sin^2 5\pi f$$

$$G(f) = 2\operatorname{sinc}(2f) \text{ , 因此}$$

$$P_s(f) = \frac{1}{5} \times 2\sin^2(5\pi f) \times \left[2\sin(2f)\right]^2 = \frac{8}{5}\sin^2(5\pi f)\sin^2(2f)$$

八.解:忽略噪声,抽样时刻的波形是
$$y(t) = \left\{\sum_{n=-\infty}^{\infty} a_n \delta\left(t - nT_s\right)\right\} \otimes h(t) = \sum_{n=-\infty}^{\infty} a_n h(t - nT_s)$$

抽样值是
$$y(kT_s) = \sum_{n=-\infty}^{\infty} a_n h(kT_s - nT_s) = a_k h(0) + a_{k-1} h(T_s) = a_k + \frac{1}{2} a_{k-1}$$

所产生的码间干扰是
$$y_{ISI}=\frac{1}{2}a_{k-1}$$
 ,其可能取值是 $-\frac{1}{2}$ 和 $\frac{1}{2}$,出现概率都是 $\frac{1}{2}$ 。