

We are looking for a data structure

That can do the following operations
very fast:

1 - Insert an element into The set

2 - Find the smallest (largest)
element in the set.

insert	Find smallert
0(1)	O(n) -
O(n)	O(1)
0(1)	O(n)
O(n)	0(1)
	O(1) O(1)

Def. A data structure which provides

fast

- insert

- find-min

operations is called a

privily greve.

Def. A binary tree of depth ke
which has exactly 2-1 nodes in
called a full binary Tree.

Def. A binary tree with 1 nodes and
of depth/k is complete iff

its nodes correspond to the nodes
which are numbered 1 to 11

in the full binary tree of depth k

Traversing a complete binary tree
Parent (i) is at [i/2] if i +1
if i=1, Then i is the root
Lohib(i) is at 2i if 2i sn otherwise it has no left child Rohild(i) is at 2 i+1 if 2i+1 sn
Rohild(i) in at zi+1 if zi+1 < n
Ther were it has no right child
Det. A binary heap is a complete binary tree up the property that the value (of the key) at each node is at least
children. (Max heap)

