Ejercicio.

$$s: 20 < 6^2$$

$$v(p) = V$$

$$v(q) = V$$

$$v(r) = F$$

$$v(s) = V$$

Escribir en lenguaje coloquial cada una de las siguientes proposiciones compuestas y analizar el valor de verdad de cada una de ellas

$$a) \sim p \vee r$$

$$b)\sim (p\vee r)$$

$$(a) \sim p \vee r$$
 $(b) \sim (p \vee r)$ $(c) \sim (p \wedge r) \Longrightarrow q$

$$d) (q \wedge r) \vee (s \Longrightarrow \sim q)$$

$$e) (-q \lor s) \Leftrightarrow (r \Longrightarrow p)$$

$$a) \sim p \vee r$$

 $\sim p \vee r$: 20 es un número impar o es divisible por 6

Como v(p) = V entonces $v(\sim p) = F$ y además, v(r) = F

Por lo tanto, $v(\sim p \lor r) = V$

p: 20 es un número par q: 5 divide a 20 r: 20 es divisible por 6 s: $20 < 6^2$

v(p) = V v(q) = V v(r) = F v(s) = V

$$\boldsymbol{b})\sim(p\vee r)$$

 $\sim (p \lor r)$: No es cierto que, 20 sea un número par o sea divisible por 6

$$v(p \lor r) = V$$
 pues $v(p) = V$ y $v(r) = F$. Entonces $v(\sim (p \lor r)) = F$

$$c)\underbrace{\sim(p \land r)}_{ANTECEDENTE} \Rightarrow q$$

 $v(p \land r) = F$ Pues una conjunción es Falsa cuando al menos una de las proposiciones lo es. Por lo tanto, $v(\sim(p \land r)) = V$

Por lo tanto, $v(\sim(p \land r) \Rightarrow q) = V$ Pues antecedente y consecuente lo son

$$p:20\ es\ un\ n\'umero\ par \quad q:5\ divide\ a\ 20 \quad r:20\ es\ divisible\ por\ 6 \qquad s:20<6^2$$

$$v(p) = V$$
 $v(q) = V$ $v(r) = F$ $v(s) = V$

$$d) (q \wedge r) \vee (s \Longrightarrow \sim q)$$

- $v(q \land r) = F$ Puesto que para que una conjunción sea Falsa basta con que alguna de las proposiciones lo sea.
- $v(s \Longrightarrow \sim q) = F$ Pues el antecedente es Verdadero y el Consecuente es falso ya que, v(q) = V

Por lo tanto, $v(q \land r) \lor (s \Rightarrow \sim q) = F$ pues una disyunción es Falsa cuando ambas proposiciones lo son.

$$e) (-q \lor s) \Leftrightarrow (r \Rightarrow p)$$

- v(-q) = F y v(s) = V por lo que su disyunción es Verdadera
- $(r \Rightarrow p) = V$ porque v(r) = F y si el antecedente es Falso la implicación resulta Verdadera.

Por lo tanto, $v((-q \lor s) \Leftrightarrow (r \Rightarrow p)) = V$ ya que un bicondicional es Verdadero cuando ambas proposiciones tienen el mismo valor de verdad.

Tautologías

Son formas proposicionales que toman el valor de verdad Verdadero para cualquier valor de verdad de las proposiciones simples que la componen.

Ejemplo: Analicemos el valor de verdad de:

p	V	~ p
V	V	F
F	V	V

$$b) (p \lor q) \lor (\sim p \land \sim q)$$

p	q	~ p	~ q	$p \lor q$	~ p ^~ q	$(p \lor q) \lor (\sim p \land \sim q)$
V	V	F	F	V	F	V
V	F	F	V	V	F	V
F	V	V	F	V	F	V
F	F	V	V	F	V	V

Contradicciones

Son formas proposicionales que toman valor de verdad Falso sin importar el valor de verdad de las proposiciones simples que la componen.

Ejercicio: Analicemos el valor de verdad de $\sim [(p \land q) \Longrightarrow q]$

p	q	$p \wedge q$	$(p \land q) \Longrightarrow q$	$\sim [(p \land q) \Longrightarrow q]$
V	V	V	V	F
V	F	F	V	F
F	V	F	V	F
F	F	F	V	F

Contingencias

Son las proposiciones compuestas cuya tabla de valores de verdad dan verdaderos y falsos

Ejemplo: analicemos el valor de verdad de la forma proposicional: $(p \land q) \lor (p \lor q)$

p	q	$p \wedge q$	$p \lor q$	$(p \land q) \lor (p \lor q)$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	F

Implicaciones asociadas

Sea la implicación $p \Rightarrow q$, que llamaremos directa

$$q \Longrightarrow p$$
 Recíproca

$$\sim p \Longrightarrow \sim q$$
 Contraria

Recíproca
$$\sim p \Longrightarrow \sim q$$
 Contraria $\sim q \Longrightarrow \sim p$ Contrarrecíproca

Ejercicio: Verificar que la implicación directa y la contrarrecíprocas son equivalentes

$$(p \Longrightarrow q) \Leftrightarrow (\sim q \Longrightarrow \sim p)$$

p	q	~ q	~ p	$p \Longrightarrow q$	$\sim q \Longrightarrow \sim p$	$(p \Longrightarrow q) \Longleftrightarrow (\sim q \Longrightarrow \sim p)$
V	V	F	F	V	V	V
V	F	V	F	F	F	V
F	V	F	V	V	V	V
F	F	V	V	V	V	V

Queda como ejercicio demostrar que la implicación recíproca y su contrarrecíproca son equivalentes: $(q \Rightarrow p) \Leftrightarrow (\sim p \Rightarrow \sim q)$

Ejercicio: Demostrar que:

a)
$$(p \Longrightarrow q) \Longleftrightarrow (\sim p \lor q)$$
 Definición de Implicación

p	q	~ p	$p \Longrightarrow q$	$\sim p \vee q$	$(p \Longrightarrow q) \Longleftrightarrow (\sim p \lor q)$
V	V	F	V	V	V
V	F	F	F	F	V
F	V	V	V	V	V
F	F	V	V	V	V

b)
$$\sim (p \Longrightarrow q) \Longleftrightarrow (p \land \sim q)$$
 Negación de una implicación

p	q	~ q	$p \Longrightarrow q$	$\sim (p \Longrightarrow q)$	<i>p</i> ∧~ <i>q</i>	$\sim (p \Longrightarrow q) \Longleftrightarrow (p \land \sim q)$
V	V	F	V	F	F	V
V	F	V	F	V	V	V
F	V	F	V	F	F	V
F	F	V	V	F	F	V

Implicaciones lógicas

Llamamos c: contradicción t: tautología

1. Adición:
$$p \Longrightarrow (p \lor q)$$

2. Simplificación:
$$(p \land q) \Rightarrow p$$

3. Modus ponens:
$$[(p \Rightarrow q) \land p] \Rightarrow q$$

4. Modus tollens:
$$[(p \Longrightarrow q) \land \sim q] \Longrightarrow \sim p$$

5. Silogismo disyuntivo:
$$[(p \lor q) \land \sim p] \Rightarrow q$$

6. Silogismo hipotético:
$$[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$$

7. Absurdo:
$$(p \Longrightarrow c) \Longrightarrow \sim p$$

Equivalencias lógicas

1. Doble negación: $\sim (\sim p) \Leftrightarrow p$

2. Leyes conmutativas:
$$(p \lor q) \Leftrightarrow (q \lor p)$$

 $(p \land q) \Leftrightarrow (q \land p)$
 $(p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p)$

3. Leyes de idempotencia:
$$(p \lor p) \Leftrightarrow p$$
 $(p \land p) \Leftrightarrow p$

4. Leyes de De Morgan:
$$\sim (p \lor q) \Leftrightarrow (\sim p \land \sim q)$$

 $\sim (p \land q) \Leftrightarrow (\sim p \lor \sim q)$

6. Leyes distributivas:
$$[(p \lor q) \land r] \Leftrightarrow [(p \land r) \lor (q \land r)]$$

$$[(p \land q) \lor r] \Leftrightarrow [(p \lor r) \land (q \lor r)]$$

7. Leyes de Absorción:
$$p \lor (p \land q) \Leftrightarrow p$$

$$p \land (p \lor q) \Leftrightarrow p$$

8. Leyes de Identidad:
$$(p \lor c) \Leftrightarrow p$$
 $(p \land c) \Leftrightarrow c$ $(p \lor t) \Leftrightarrow t$ $(p \land t) \Leftrightarrow p$

- 9. Definición de Implicación: $(p \Longrightarrow q) \Leftrightarrow (\sim p \lor q)$
- 10. Negación de la Implicación: $\sim (p \Longrightarrow q) \Longleftrightarrow (p \land \sim q)$

Ejercicio: Demostrar que $[(p \land q) \Rightarrow p] \Leftrightarrow t$

$$[(p \land q) \Rightarrow p] \underset{(1)}{\Longleftrightarrow} \sim (p \land q) \lor p \underset{(2)}{\Longleftrightarrow} (\sim p \lor \sim q) \lor p \underset{(3)}{\Longleftrightarrow} p \lor (\sim p \lor \sim q) \underset{(4)}{\Longleftrightarrow}$$

$$\Leftrightarrow (p \lor \sim p) \lor \sim q \underset{(5)}{\Longleftrightarrow} t \lor \sim q \underset{(6)}{\Longleftrightarrow} t$$

- (1) Definición de Implicación
- (2) De Morgan
- (3) Conmutatividad
- (4) Asociatividad
- (5) Tautología
- (6) Leyes de Identidad

Ejercicio: Si q es una proposición Verdadera, hallar el valor de verdad de:

$$\underbrace{\begin{array}{c} (p \Rightarrow q) \land (p \land \sim q) \\ V \\ V \end{array}}_{F} \underbrace{\begin{array}{c} V \\ F \\ F \end{array}}_{F}$$

Ejercicio: Sabiendo que $p \Rightarrow (q \lor \sim s)$ es una proposición falsa, hallar si es posible, el valor de verdad de:

$$(\sim p \land s) \Leftrightarrow [r \Rightarrow (\sim q \lor t)]$$

$$p \Longrightarrow (q \lor \sim s)$$

$$V$$

$$F \xrightarrow{F}$$

$$V$$

$$F$$

Así,
$$v(p) = V$$
, $v(q) = F$, $v(s) = V$

Con estos datos podemos analizar ahora el valor de verdad del bicondicional.

$$(\sim p \land s) \Leftrightarrow [r \Rightarrow (\sim q \lor t)]$$

$$V \longrightarrow F$$

$$V \longrightarrow V$$

$$V$$

$$V$$

$$V$$

$$V$$