FindAll: A Local Search **Engine for Mobile Phones**

Aruna Balasubramanian, Niranjan Balasubramanian, Sam Huston, Donald Metlzer, David Wetherall

W UMassAmherst Google

Motivation: Mobile web search depends heavily on connectivity

- But 3G connectivity is often poor (and expensive), or may not be available
 - Search is >10X slower than on desktop

Idea: Improve web search with better re-finding

Re-finding is very common

1) Visit a page on mobile (or desktop)

2) Later, search for same page on mobile

- Mobile: 70% of searches for 50% of users
- Non-Mobile: 40% to 60% of all searches

Our Solution: FindAll

 Local web search on mobile for re-finding with a Google/Bing-like search interface

Trades compute/storage for connectivity

 Will show lower search latency and improved availability with reduced energy cost

Why a local search engine?

- Search with indexes (ranking) is very effective compared to alternatives:
 - Browsing history is cumbersome
 - Keyword matching on cached pages is cheap and fast, but not very effective
 - Database of search queries misses query changes and non-searched pages

Challenge: search is memory/energy intensive

Talk & Contributions

I. User study

Identifies re-finding behaviors

2. FindAll

Design of search engine for mobile re-finding

3. Evaluation

Results of the tradeoffs in practice

User study

- Monitored 23 participants for I month
 - Grad and under-grad students
- Collected logs from user's mobile/desktop
 - Visited URL and search query (anonymized)
- Mark URL re-found if:
 - Page revisited via search query, and unchanged

Examples

Re-finding

URL:http://conferences.sigcomm.org/co-next/2012/

Search query: "conext 2012"

URL: http://conferences.sigcomm.org/co-next/2012/

Search query: "networking conference nice france"

URL: http://conferences.sigcomm.org/co-next/2012/

Not Re-finding

Search query: "weather"

URL: www.weather.com

Search query: "weather"

URL: www.weather.com

URL: http://wikipedia.org/wiki/J._K._Rowling

URL: http://wikipedia.org/wiki/J._K._Rowling

(Conservative rules, under-estimate re-finding)

Most search is re-finding

Lots of opportunity for improvement!

Most re-finds happen quickly

Need to index near when page is first accessed

Diverse behavior across users

Varying numbers of pages, fraction of re-finding

Re-finding behavior is fairly consistent for a given user

Sample user with avg. 43% re-finding with 9% std dev.

Can adapt to user behavior!

Outline

I. User study

Identifies key re-finding behaviors

2. FindAll

Design of search engine for mobile re-finding

3. Evaluation

Results of the tradeoffs in practice

FindAll architecture

- Indexes as pages are browsed for availability
- Merges partial indexes to save energy

Key question: When to index?

Tradeoff depends on user's behavior

Indexing strategy

- Index to maximize availability with energy consumption no higher than default search
- Index when:

Estimates need to be based on user behavior

Energy estimates [see paper]

- Energy of indexing, E[I]:
 - Cost of current block plus future penalty
- Energy of default search, E[¬I]:
 - Sum of page download x re-find prob. of page
- Train a classifier for re-find prob. of page
 - Depends on several user features

Prototype on Android OS

- Adapt Galago search engine for phones
 - Implement partial indexing
- Implement online energy cost estimator
 - Train classifier when mobile is charging
 - Make an indexing decision every 5 mins
- Runs on a Motorola DroidX mobile
 - Has WiFi and Verizon 3G
 - Energy from Monsoon power monitor

Outline

I. User study

Identifies key re-finding behaviors

2. FindAll

Design of search engine for mobile re-finding

3. Evaluation

Results of the tradeoffs in practice

Experiments

- Benefits and Costs
 - Latency, 3G data usage, availability
 - Energy, storage
- Alternate approaches
 - Cache keywords, query database
- Alternate indexing strategies
 - Cloud index, Always index, Fixed index

Results based on prototype and user trace

FindAll improves search latency

Average up to 2-fold better for high re-finders

FindAll reduces energy costs

Energy up to 30% lower for high re-finders

FindAll improves availability when disconnected

(Under a random 50% connectivity model)

FindAll indexing strategy is important for energy benefits

Plus better availability than Cloud/Fixed

Conclusions

- FindAll makes a win-win tradeoff for search
 - Can decrease latency and increase availability, all with reduced energy and bandwidth
 - But need to adapt to user behavior
- Future directions
 - Integrating re-finding with mobile apps
 - Prediction across devices and users

Thank you. Questions?