### **Partitions**

Ahmed, Aman, Henry, & Jack

**PROMYS** 

July-August 2022

## **Partitions**

• A partition of a positive integer n is an expression of n as a sum of positive integers, where the order does **not** matter. The integers which are summed to get n are called the parts of a partition.

- A partition of a positive integer n is an expression of n as a sum of positive integers, where the order does **not** matter. The integers which are summed to get n are called the parts of a partition.
- Ex) The partitions of 5 are 1+1+1+1+1+1+1+1+1+2, 1+2+2, 1+1+3, 2+3, 1+4, and 5.

- A partition of a positive integer n is an expression of n as a sum of positive integers, where the order does **not** matter. The integers which are summed to get n are called the parts of a partition.
- Ex) The partitions of 5 are 1+1+1+1+1+1+1+1+1+2, 1+2+2, 1+1+3, 2+3, 1+4, and 5.
- Partitions can be illustrated visually using a Ferrer's Diagram (also called a Young Diagram), which is a grid (usually of boxes or dots) representing the parts of the partition. Rows represent the value of each part, and they customarily appear in decreasing order.

- A partition of a positive integer n is an expression of n as a sum of positive integers, where the order does **not** matter. The integers which are summed to get n are called the parts of a partition.
- Ex) The partitions of 5 are 1+1+1+1+1+1+1+1+1+2, 1+2+2, 1+1+3, 2+3, 1+4, and 5.
- Partitions can be illustrated visually using a Ferrer's Diagram (also called a Young Diagram), which is a grid (usually of boxes or dots) representing the parts of the partition. Rows represent the value of each part, and they customarily appear in decreasing order.
- Ex) The partition 7 + 5 + 2 + 1 + 1 of 16 is represented like so:



# Recurrence And Counting Arguments

# Partitions with parts

• We denote a "part" in a partition of an integer *n* as one of the integers being used to sum up to *n*.

# Partitions with parts

- We denote a "part" in a partition of an integer n as one of the integers being used to sum up to n.
- For example, in this partition of 5,



both 2 and 1 are considered parts.

### Restrictions on Parts

• The number of partitions of n with the largest part of at most k can be denoted as  $p_k(n)$ .

### Restrictions on Parts

• The number of partitions of n with the largest part of at most k can be denoted as  $p_k(n)$ .

### Numerical 1

 $p_2(5)$  would be 3, as the only possible partitions are 1+1+1+1+1, 1+1+1+2, and 1+2+2. All other partitions contains elements greater than 2

### Restrictions on Parts

• The number of partitions of n with the largest part of at most k can be denoted as  $p_k(n)$ .

### Numerical 1

 $p_2(5)$  would be 3, as the only possible partitions are 1+1+1+1+1, 1+1+1+2, and 1+2+2. All other partitions contains elements greater than 2

• Since order doesn't matter, lets arrange all partitions such that the largest part *k* is always at the very end of the sum.

• We now try to derive a recursion that will give us the value of  $p_k(n)$   $\forall k, n \in \mathbb{N}$  based on partitions of different integers and different part restrictions.

- We now try to derive a recursion that will give us the value of  $p_k(n)$   $\forall k, n \in \mathbb{N}$  based on partitions of different integers and different part restrictions.
- To start, we can divide our partitions in  $p_k(n)$  into two cases: partitions where the largest part is k, and partitions where the largest part is less than k.

- We now try to derive a recursion that will give us the value of  $p_k(n)$   $\forall k, n \in \mathbb{N}$  based on partitions of different integers and different part restrictions.
- To start, we can divide our partitions in  $p_k(n)$  into two cases: partitions where the largest part is k, and partitions where the largest part is less than k.
- Going back to our example of  $p_2(5)$ , we can see that in our case with largest part of 2, we have 1+1+1+2 and 1+2+2.

- We now try to derive a recursion that will give us the value of  $p_k(n)$   $\forall k, n \in \mathbb{N}$  based on partitions of different integers and different part restrictions.
- To start, we can divide our partitions in  $p_k(n)$  into two cases: partitions where the largest part is k, and partitions where the largest part is less than k.
- Going back to our example of  $p_2(5)$ , we can see that in our case with largest part of 2, we have 1+1+1+2 and 1+2+2.
- However, since we always end with 2 in the three above examples, we can draw a bijection between  $p_2(5-2)$  and  $p_2(5)$  with largest part 5. This is due to the fact that by adding 2 to every partition in  $p_2(3)$ , we guarantee that there will be a largest part of 2 in the new partitions that add up to 3+2=5.

- We now try to derive a recursion that will give us the value of  $p_k(n)$   $\forall k, n \in \mathbb{N}$  based on partitions of different integers and different part restrictions.
- To start, we can divide our partitions in  $p_k(n)$  into two cases: partitions where the largest part is k, and partitions where the largest part is less than k.
- Going back to our example of  $p_2(5)$ , we can see that in our case with largest part of 2, we have 1+1+1+2 and 1+2+2.
- However, since we always end with 2 in the three above examples, we can draw a bijection between  $p_2(5-2)$  and  $p_2(5)$  with largest part 5. This is due to the fact that by adding 2 to every partition in  $p_2(3)$ , we guarantee that there will be a largest part of 2 in the new partitions that add up to 3+2=5.
- Thus, to generalize, for  $p_k(n)$  where all partitions have the largest part k, it is equivalent to  $p_k(n-k)$ .

• Now we observe the case where the largest part isn't necessarily k.

- Now we observe the case where the largest part isn't necessarily k.
- In that case, it's simply equivalent to  $p_{k-1}(n)$ , as this covers all partitions of n with parts less than or equal to k-1, which makes up the complete set of numbers that are less than k.

- Now we observe the case where the largest part isn't necessarily k.
- In that case, it's simply equivalent to  $p_{k-1}(n)$ , as this covers all partitions of n with parts less than or equal to k-1, which makes up the complete set of numbers that are less than k.
- So summing the two cases up, we have  $p_k(n) = p_k(n-k) + p_{k-1}(n)$ .

# Power of Young Diagrams

#### Numerical 2

There are 7 partitions of 6 with largest part at most 3:

$$1+1+1+1+1+1+1, 1+1+1+1+1+2, 1+1+2+2, 2+2+2+2, 1+1+1+3, 1+2+3, and 3+3.$$
 There are also 7 partitions of 6 with at

 $\textit{most 3 parts: } 6,\, 5+1,\, 4+2,\, 4+1+1,\, 3+3,\, 3+2+1,\, \textit{and } 2+2+2.$ 

#### Theorem:

The number of partitions of n with at most k parts is equal to the number of partitions of n with no part exceeding k.

# Interpreting This Visually

Take any arbitrary partition of n with at most k parts:



Then, all rows of this Young Diagram have length at most k.

# Interpreting This Visually

Now, imagine reflecting this diagram over its diagonal, swapping the rows with the columns:



This diagram can have at most k columns, so this new Young Diagram represents a partition of n with at most k parts.

# Analyzing Triangles with Partitions

# Scalene Triangle Curiosities

• Let  $t_n$  denote the number of distinct (non-congruent) scalene triangles with integer side lengths and perimeter n.

# Scalene Triangle Curiosities

- Let  $t_n$  denote the number of distinct (non-congruent) scalene triangles with integer side lengths and perimeter n.
- $t_n$  counts the triples of integers (a, b, c) such that a + b + c = n a > b > c > 0, and a < b + c.

# Scalene Triangle Curiosities

- Let  $t_n$  denote the number of distinct (non-congruent) scalene triangles with integer side lengths and perimeter n.
- $t_n$  counts the triples of integers (a, b, c) such that a + b + c = n a > b > c > 0, and a < b + c.
- Ex)  $t_{15} = 3$ , since we have 3 such triples: (6,5,4), (7,5,3), (7,6,2)

### Motivational Numerical Patterns

### Numerical 3

 $t_{17}$  is 4, our four triples are: (8,7,2), (8,6,3), (8,5,4), (7,6,4). There are also four partitions of 17 into parts 2, 3, and 4, such that each part is used at least once: 2+2+2+2+2+3+4, 2+2+2+3+4+4, 2+2+3+3+3+4, 2+3+4+4+4

## Motivational Numerical Patterns

### Numerical 3

 $t_{17}$  is 4, our four triples are: (8,7,2), (8,6,3), (8,5,4), (7,6,4). There are also four partitions of 17 into parts 2, 3, and 4, such that each part is used at least once: 2+2+2+2+2+3+4, 2+2+2+3+4+4, 2+2+3+3+3+4, 2+3+4+4+4

#### Numerical 4

 $t_{19}$  is 5, our five triples are: (9,8,2), (9,7,3), (9,6,4) (8,7,4), (8,6,5) There are also five partitions of 19 into parts 2, 3, and 4, such that each part is used at least once: 2+2+2+2+2+3+4, 2+2+2+2+3+4+4, 2+2+2+3+4+4, 2+3+3+3+4+4

## Motivational Numerical Patterns

### Numerical 3

 $t_{17}$  is 4, our four triples are: (8,7,2), (8,6,3), (8,5,4), (7,6,4). There are also four partitions of 17 into parts 2, 3, and 4, such that each part is used at least once: 2+2+2+2+2+3+4, 2+2+2+3+4+4, 2+2+3+3+3+4, 2+3+4+4+4

#### Numerical 4

 $t_{19}$  is 5, our five triples are: (9,8,2), (9,7,3), (9,6,4) (8,7,4), (8,6,5)There are also five partitions of 19 into parts 2, 3, and 4, such that each part is used at least once: 2+2+2+2+2+3+4, 2+2+2+2+3+4+4, 2+2+2+3+3+3+4+4, 2+3+3+3+4+4

#### Theorem:

 $t_n$  is equivalent to the number of partitions of n into parts 2, 3, and 4, such that each part is used at least once

• Consider our side lengths as buckets A, B, and C, holding a, b, and c drops respectively for the triple (a, b, c).

- Consider our side lengths as buckets A, B, and C, holding a, b, and c drops respectively for the triple (a, b, c).
- "two-plop", where we put one drop in A, one drop in B, and no drops in C

- Consider our side lengths as buckets A, B, and C, holding a, b, and c
  drops respectively for the triple (a, b, c).
- "two-plop", where we put one drop in A, one drop in B, and no drops in C
- "three-plop", where we put one drop in A, one drop in B, and one drop in C

- Consider our side lengths as buckets A, B, and C, holding a, b, and c drops respectively for the triple (a, b, c).
- "two-plop", where we put one drop in A, one drop in B, and no drops in C
- "three-plop", where we put one drop in A, one drop in B, and one drop in C
- "four-plop", where we put two drops in A, one drop in B, and one drop in C

- Consider our side lengths as buckets A, B, and C, holding a, b, and c drops respectively for the triple (a, b, c).
- "two-plop", where we put one drop in A, one drop in B, and no drops in C
- "three-plop", where we put one drop in A, one drop in B, and one drop in C
- "four-plop", where we put two drops in A, one drop in B, and one drop in C
- $\langle 1, 1, 0 \rangle$ ,  $\langle 1, 1, 1 \rangle$ ,  $\langle 2, 1, 1 \rangle$

- Consider our side lengths as buckets A, B, and C, holding a, b, and c drops respectively for the triple (a, b, c).
- "two-plop", where we put one drop in A, one drop in B, and no drops in C
- "three-plop", where we put one drop in A, one drop in B, and one drop in C
- "four-plop", where we put two drops in A, one drop in B, and one drop in C
- (1,1,0), (1,1,1), (2,1,1)
- Adding plops preserves the inequalities a > b > c > 0, a < b + c, since in each plop:  $a \ge b \ge c \ge 0$ ,  $a \le b + c$

## An Intuition for Plops

- Consider our side lengths as buckets A, B, and C, holding a, b, and c drops respectively for the triple (a, b, c).
- "two-plop", where we put one drop in A, one drop in B, and no drops in C
- "three-plop", where we put one drop in A, one drop in B, and one drop in C
- "four-plop", where we put two drops in A, one drop in B, and one drop in C
- (1,1,0), (1,1,1), (2,1,1)
- Adding plops preserves the inequalities a > b > c > 0, a < b + c, since in each plop:  $a \ge b \ge c \ge 0$ ,  $a \le b + c$
- 2, 3, and 4 totals are reminiscent of our numerical motivation, and we need at least one of each plop to form a working triangle triple!

• For  $t_{17}$  we have four triples: (8,7,2), (8,6,3), (8,5,4), (7,6,4), and four partitions of 17 into parts 2, 3, and 4, such that each part is used at least once: 2+2+2+2+2+3+4, 2+2+3+4+4, 2+2+3+3+3+4, 2+2+3+4+4+4

- For  $t_{17}$  we have four triples: (8,7,2), (8,6,3), (8,5,4), (7,6,4), and four partitions of 17 into parts 2, 3, and 4, such that each part is used at least once: 2+2+2+2+2+3+4, 2+2+2+3+4+4, 2+2+3+3+3+4, 2+3+4+4+4
- For each of these partitions, let the number of 2s be the number of two-plops, the number of 3s be the number of three-plops, and the number of 4s be the number of four-plops

- For  $t_{17}$  we have four triples: (8,7,2), (8,6,3), (8,5,4), (7,6,4), and four partitions of 17 into parts 2, 3, and 4, such that each part is used at least once: 2+2+2+2+2+3+4, 2+2+3+4+4, 2+2+3+3+3+4, 2+3+4+4+4
- For each of these partitions, let the number of 2s be the number of two-plops, the number of 3s be the number of three-plops, and the number of 4s be the number of four-plops
- Our partitions yield the following triples (x, y, z) of x two-plops, y three-plops, and z four-plops: (5, 1, 1), (3, 1, 2), (2, 3, 1), (1, 1, 3)

- For  $t_{17}$  we have four triples: (8,7,2), (8,6,3), (8,5,4), (7,6,4), and four partitions of 17 into parts 2, 3, and 4, such that each part is used at least once: 2+2+2+2+2+3+4, 2+2+3+3+4+4, 2+2+3+3+3+4, 2+3+4+4+4
- For each of these partitions, let the number of 2s be the number of two-plops, the number of 3s be the number of three-plops, and the number of 4s be the number of four-plops
- Our partitions yield the following triples (x, y, z) of x two-plops, y three-plops, and z four-plops: (5, 1, 1), (3, 1, 2), (2, 3, 1), (1, 1, 3)
- After applying our plop-operations, each of these triples yields a unique triple from  $t_{17}$ :  $(5,1,1) \rightarrow (8,7,2)$ ,  $(3,1,2) \rightarrow (8,6,3)$ ,  $(2,3,1) \rightarrow (7,6,4)$ ,  $(1,1,3) \rightarrow (8,5,4)$

### A Conjecture with a Gameplan

#### Theorem:

The number of ways to distribute n drops into our 3 buckets using twoplops, three-plops, and four-plops, where every plop is used at least once, is the same as the number of ways to distribute n drops into our three buckets A, B, and C such that a > b > c > 0, and a < b + c

• To show  $t_n$  is the number of partitions of n with parts 2, 3, and 4, where each part is used at least once, we show:

## A Conjecture with a Gameplan

#### Theorem:

The number of ways to distribute n drops into our 3 buckets using twoplops, three-plops, and four-plops, where every plop is used at least once, is the same as the number of ways to distribute n drops into our three buckets A, B, and C such that a > b > c > 0, and a < b + c

- To show  $t_n$  is the number of partitions of n with parts 2, 3, and 4, where each part is used at least once, we show:
- (1) a bijection between the number of partitions of n we can form with our plops, using each plop at least once, and the partitions of n with parts 2, 3, and 4, where each part is used at least once

## A Conjecture with a Gameplan

#### Theorem:

The number of ways to distribute n drops into our 3 buckets using twoplops, three-plops, and four-plops, where every plop is used at least once, is the same as the number of ways to distribute n drops into our three buckets A, B, and C such that a > b > c > 0, and a < b + c

- To show  $t_n$  is the number of partitions of n with parts 2, 3, and 4, where each part is used at least once, we show:
- (1) a bijection between the number of partitions of n we can form with our plops, using each plop at least once, and the partitions of n with parts 2, 3, and 4, where each part is used at least once
- (2) a bijection between the number of partitions of n we can form with our plops, using each plop at least once, and  $t_n$ , the number of ways to distribute n drops into our three buckets A, B, and C such that a > b > c > 0, and a < b + c

#### Claim:

the number of ways to distribute n drops into our 3 buckets using two, three, and four plops, where every plop is used at least once is exactly the same as the number of partitions of n into parts of 2, 3, and 4 where every part is used at least once.

#### Claim:

the number of ways to distribute n drops into our 3 buckets using two, three, and four plops, where every plop is used at least once is exactly the same as the number of partitions of n into parts of 2, 3, and 4 where every part is used at least once.

• For a distribution of n drops into the 3 buckets using x two-plops, y three-plops, and z four-plops, where  $x, y, z \ge 1$ , we have that 2x + 3y + 4z = n.

#### Claim:

the number of ways to distribute n drops into our 3 buckets using two, three, and four plops, where every plop is used at least once is exactly the same as the number of partitions of n into parts of 2, 3, and 4 where every part is used at least once.

- For a distribution of n drops into the 3 buckets using x two-plops, y three-plops, and z four-plops, where  $x, y, z \ge 1$ , we have that 2x + 3y + 4z = n.
- Thus we can partition n into x 2s, y 3s, and z 4s such that  $x, y, z \ge 1$ .

#### Claim:

the number of ways to distribute n drops into our 3 buckets using two, three, and four plops, where every plop is used at least once is exactly the same as the number of partitions of n into parts of 2, 3, and 4 where every part is used at least once.

- For a distribution of n drops into the 3 buckets using x two-plops, y three-plops, and z four-plops, where  $x, y, z \ge 1$ , we have that 2x + 3y + 4z = n.
- Thus we can partition n into x 2s, y 3s, and z 4s such that  $x, y, z \ge 1$ .
- For the backwards direction, we just apply the same logic in reverse

## Bijection 2: Plops to Scalene Triangles

#### Claim:

the number of ways to distribute n drops into our 3 buckets using twoplops, three-plops, and four-plops, where every plop is used at least once, is the same as the number of ways to distribute n drops into our three buckets A, B, and C such that a > b > c > 0, and a < b + c

( $\Leftarrow$ ) We start by showing each integer triple (a, b, c) such that a+b+c=n, a>b>c>0, and a<b+c maps to a unique way to distribute our n drops into the three buckets using two-plops, three-plops, and four-plops, where every plop is used at least once:

( $\Leftarrow$ ) We start by showing each integer triple (a, b, c) such that a+b+c=n, a>b>c>0, and a<b+c maps to a unique way to distribute our n drops into the three buckets using two-plops, three-plops, and four-plops, where every plop is used at least once:

• For any such triple (a, b, c), we then have:

$$(b-c),(b+c-a),(a-b)\geq 1$$

( $\Leftarrow$ ) We start by showing each integer triple (a, b, c) such that a+b+c=n, a>b>c>0, and a<b+c maps to a unique way to distribute our n drops into the three buckets using two-plops, three-plops, and four-plops, where every plop is used at least once:

- For any such triple (a, b, c), we then have:  $(b-c), (b+c-a), (a-b) \ge 1$
- Note that taking (b-c) two-plops  $\langle 1,1,0\rangle$ , (b+c-a) three-plops  $\langle 1,1,1\rangle$ , and (a-b) four-plops  $\langle 2,1,1\rangle$  yields a total of: 2(b-c)+3(b+c-a)+4(a-b)=a+b+c=n drops

( $\Leftarrow$ ) We start by showing each integer triple (a, b, c) such that a+b+c=n, a>b>c>0, and a<b+c maps to a unique way to distribute our n drops into the three buckets using two-plops, three-plops, and four-plops, where every plop is used at least once:

- For any such triple (a, b, c), we then have:  $(b-c), (b+c-a), (a-b) \ge 1$
- Note that taking (b-c) two-plops  $\langle 1,1,0\rangle$ , (b+c-a) three-plops  $\langle 1,1,1\rangle$ , and (a-b) four-plops  $\langle 2,1,1\rangle$  yields a total of: 2(b-c)+3(b+c-a)+4(a-b)=a+b+c=n drops
- Thus each scalene triple (a, b, c) corresponds to a unique triple ((b-c), (b+c-a), (a-b)), and each such triple maps to a unique way to distribute our n drops using each plop at least once

 $(\Rightarrow)$  Now we show that each distribution of n drops into our 3 buckets using x two-plops, y three-plops, and z four-plops such that  $x,y,z\geq 1$  corresponds to a unique triangle triple (a,b,c) such that a+b+c=n, a>b>c>0, and a<b+c:

• Considering our buckets A, B, C, we have: a = x + y + 2z, b = x + y + z, and c = y + z.

- Considering our buckets A, B, C, we have: a = x + y + 2z, b = x + y + z, and c = y + z.
- Each unique triple (x, y, z) maps to a unique triple ((x + y + 2z), (x + y + z), (y + z)) = (a, b, c)

- Considering our buckets A, B, C, we have: a = x + y + 2z, b = x + y + z, and c = y + z.
- Each unique triple (x, y, z) maps to a unique triple ((x + y + 2z), (x + y + z), (y + z)) = (a, b, c)
- a > b > c > 0, since x + y + 2z > x + y + z > y + z > 0

- Considering our buckets A, B, C, we have: a = x + y + 2z, b = x + y + z, and c = y + z.
- Each unique triple (x, y, z) maps to a unique triple ((x + y + 2z), (x + y + z), (y + z)) = (a, b, c)
- a > b > c > 0, since x + y + 2z > x + y + z > y + z > 0
- b + c > a, since x + 2y + 2z > x + y + 2z

- Considering our buckets A, B, C, we have: a = x + y + 2z, b = x + y + z, and c = y + z.
- Each unique triple (x, y, z) maps to a unique triple ((x + y + 2z), (x + y + z), (y + z)) = (a, b, c)
- a > b > c > 0, since x + y + 2z > x + y + z > y + z > 0
- b + c > a, since x + 2y + 2z > x + y + 2z
- a + b + c = 2x + 3y + 4z = n total drops

- Considering our buckets A, B, C, we have: a = x + y + 2z, b = x + y + z, and c = y + z.
- Each unique triple (x, y, z) maps to a unique triple ((x + y + 2z), (x + y + z), (y + z)) = (a, b, c)
- a > b > c > 0, since x + y + 2z > x + y + z > y + z > 0
- b + c > a, since x + 2y + 2z > x + y + 2z
- a + b + c = 2x + 3y + 4z = n total drops
- From each unique distribution of n drops using plops, with each plop used at least once, we have generated a unique triple of integers (a, b, c) such that a > b > c > 0, a < b + c, and a + b + c = n

### Finale!

Partitions of n using parts of 2, 3, and 4, such that each part is used at least once



Distributions of n drops using two-plops, three-plops, and four-plops such that each plop is used at least once



Distributions of n drops into the three buckets A, B, C, such that a > b > c > 0 and a < b + c, or  $t_n$ 

# Even More Applications in Geometry

## Different integer triangles with largest side *n*

Let x, y, and n be the sides of the triangle and n is the largest sides. So,

$$x + y > n$$
 from triangle inequality. (1a)

$$n > x$$
 from the problem assumption (1b)

$$n > y$$
 (1c)

By graphing all these inequalities, we get the following graph. To consider all different triangle, we should exclude the values when x=y. This equation is symmetric around the line x=y.



Figure: All inequalities

- By rotating the upper triangle by 270 degrees, it would form a square with side length of  $\frac{n}{2}$ . We should also exclude the lattice point on the side of the this formed square.
- So, we would get a square with side length of  $\frac{n-1}{2}$ . Thus, the number of different triangle with integer sides and largest side in is

$$\lfloor \frac{(n-1)^2}{4} \rfloor$$



(a) Upper triangle



(b) Triangle rotation

**Figure** 

# **Generating Functions**

## How do Generating Functions Work?

 Generating functions are a way of representing sequences of numbers using a power series. Generating functions are useful because they can be used to solve combinatorial problems using algebra.

## How do Generating Functions Work?

- Generating functions are a way of representing sequences of numbers using a power series. Generating functions are useful because they can be used to solve combinatorial problems using algebra.
- Generating functions and partitions go hand in hand because finding all partitions of positive integers summing to n is equivalent to finding the coefficient of the  $x^n$  term in some generating function.

### Patterns in Numericals

### Numerical 5

There are five partitions of 7 into all odd parts: 1+1+1+1+1+1+1+1, 1+1+1+1+1+3, 1+1+5, 1+3+3, and 7. There are also five partitions of 7 into all distinct parts: 7, 6+1, 5+2, 4+3, and 4+2+1.

### Patterns in Numericals

### Numerical 5

There are five partitions of 7 into all odd parts: 1+1+1+1+1+1+1+1, 1+1+1+1+1+3, 1+1+5, 1+3+3, and 7. There are also five partitions of 7 into all distinct parts: 7, 6+1, 5+2, 4+3, and 4+2+1.

### Numerical 6

There are eight partitions of 10 into all odd parts:

### Patterns in Numericals

#### Numerical 5

There are five partitions of 7 into all odd parts: 1+1+1+1+1+1+1+1, 1+1+1+1+1+3, 1+1+5, 1+3+3, and 7. There are also five partitions of 7 into all distinct parts: 7, 6+1, 5+2, 4+3, and 4+2+1.

### Numerical 6

There are eight partitions of 10 into all odd parts:

### Conjecture:

Is the number of partitions of n into odd parts the same as the number of partitions of n into distinct parts?

## Generalizing This Pattern

### Numerical 7

## Generalizing This Pattern

### Numerical 7

#### Theorem:

The number of partitions of n into parts not divisible by k is the same as the number of partitions of n into parts which appear less than k times.

#### Proving Our Conjecture With Generating Functions

We can use generating functions to prove the conjecture.

#### Proving Our Conjecture With Generating Functions

We can use generating functions to prove the conjecture.

The generating function for a general partition is

$$\prod_{i=1}^{\infty} \sum_{j=0}^{\infty} x^{ij} = (1+x+x^2+\cdots)(1+x^2+x^4+\cdots)(1+x^3+x^6+\cdots)\cdots$$

(Why?)

#### Proving Our Conjecture With Generating Functions

We can use generating functions to prove the conjecture.

The generating function for a general partition is

$$\prod_{i=1}^{\infty} \sum_{j=0}^{\infty} x^{ij} = (1+x+x^2+\cdots)(1+x^2+x^4+\cdots)(1+x^3+x^6+\cdots)\cdots$$

(Why?)

The coefficient of  $x^n$  in this product is the number of partitions of n. We can modify this generating function to count only the partitions of n which have no parts divisible by k (call this generating function A(x)), as well as the partitions of n which have no parts appearing k or more times (call this generating function B(x)).

### Finding A(x)

The generating function for general partitions contains a factor of  $1 + x^i + x^{2i} + x^{3i} + \cdots$  for every natural number i because there are no restrictions on any partition's parts.

### Finding A(x)

The generating function for general partitions contains a factor of  $1+x^i+x^{2i}+x^{3i}+\cdots$  for every natural number i because there are no restrictions on any partition's parts. So, the generating function for partitions with no parts divisible by k is

$$A(x) = \prod_{\substack{i=1\\k \nmid i}}^{\infty} \sum_{j=0}^{\infty} x^{ij}$$

$$= (1 + x + x^{2} + \cdots)(1 + x^{2} + x^{4} + \cdots)\cdots$$
$$(1 + x^{k-1} + x^{2k-2} + \cdots)(1 + x^{k+1} + x^{2k+2} + \cdots)\cdots$$

### Finding B(x)

The generating function for general partitions contains infinitely many terms in each factor  $1 + x^i + x^{2i} + x^{3i} + \cdots$  because there are no restrictions on any partition's parts.

### Finding B(x)

The generating function for general partitions contains infinitely many terms in each factor  $1 + x^i + x^{2i} + x^{3i} + \cdots$  because there are no restrictions on any partition's parts. So, the generating function for partitions with no parts appearing k or more times is

$$B(x) = \prod_{i=1}^{\infty} \sum_{j=0}^{k-1} x^{ij}$$

$$(1+x+x^2\cdots+x^{k-1})(1+x^2+x^4+\cdots+x^{2k-2})(1+x^3+x^6+\cdots+x^{3k-3})\cdots$$

$$B(x) = \prod_{i=1}^{\infty} \sum_{j=0}^{k-1} x^{ij}$$

$$B(x) = \prod_{i=1}^{\infty} \sum_{j=0}^{k-1} x^{ij}$$

$$= \prod_{i=1}^{\infty} \frac{1 - x^{ik}}{1 - x^{i}} \qquad \text{(geometric series formula)}$$

$$\begin{split} B(x) &= \prod_{i=1}^{\infty} \sum_{j=0}^{k-1} x^{ij} \\ &= \prod_{i=1}^{\infty} \frac{1 - x^{ik}}{1 - x^i} \qquad \text{(geometric series formula)} \\ &= \left(\prod_{i=1}^{\infty} \frac{1}{1 - x^i}\right) \left(\prod_{j=1}^{\infty} 1 - x^{jk}\right) \end{split}$$

$$B(x) = \prod_{i=1}^{\infty} \sum_{j=0}^{k-1} x^{ij}$$

$$= \prod_{i=1}^{\infty} \frac{1 - x^{ik}}{1 - x^i} \qquad \text{(geometric series formula)}$$

$$= \left(\prod_{i=1}^{\infty} \frac{1}{1 - x^i}\right) \left(\prod_{j=1}^{\infty} 1 - x^{jk}\right)$$

$$= \prod_{i=1 \atop j \neq k}^{\infty} \frac{1}{1 - x^i}$$

$$B(x) = \prod_{i=1}^{\infty} \sum_{j=0}^{k-1} x^{ij}$$

$$= \prod_{i=1}^{\infty} \frac{1 - x^{ik}}{1 - x^i} \qquad \text{(geometric series formula)}$$

$$= \left(\prod_{i=1}^{\infty} \frac{1}{1 - x^i}\right) \left(\prod_{j=1}^{\infty} 1 - x^{jk}\right)$$

$$= \prod_{\substack{i=1\\i \nmid k}}^{\infty} \frac{1}{1 - x^i}$$

$$= (1 + x + x^2 + \cdots)(1 + x^2 + x^4 + \cdots)(1 + x^3 + x^6 + \cdots) \cdots$$

$$= A(x).$$

#### Finishing Touches

$$A(x) = B(x)$$

#### Finishing Touches

$$A(x) = B(x)$$

$$\uparrow$$

The number of partitions of n with no part divisible by k is the same as the number of partitions of n with no part appearing k or more times.

Thank You David Fried and PROMYS!