Ch 25 - Séries numériques - démonstrations non faites en classe.

Proposition:

On ne modifie pas la <u>nature</u> (convergente/divergente) d'une série $\sum u_n$ lorsqu'on modifie un nombre fini de termes de la suite (u_n) .

Soit (u_n) une suite, et soit (v_n) une suite obtenue à partir de (u_n) en modifiant seulement un nombre fini de termes. Nécessairement, il existe un rang n_0 à partir duquel les suites coïncident :

$$\forall k \geq n_0, \ u_k = v_k$$

On peut supposer $n_0 > 0$.

Notons, pour tout $n \in \mathbb{N}$, S_n la somme partielle d'indice n associée à $\sum u_n$, et T_n la somme partielle d'indice n associée à $\sum v_n$.

Pour tout $n \geq n_0$,

$$S_n = \sum_{k=0}^n u_k = \sum_{k=0}^{n_0 - 1} u_k + \sum_{k=n_0}^n u_k$$

$$| | |$$

$$T_n = \sum_{k=0}^n v_k = \sum_{k=0}^{n_0 - 1} v_k + \sum_{k=n_0}^n v_k$$

Donc pour tout $n \ge n_0$, $T_n - S_n = M$ où $M = \sum_{k=0}^{n_0-1} v_k - \sum_{k=0}^{n_0-1} u_k$ est une constante.

Ainsi (T_n) et (S_n) sont égales à une constante près à partir du rang n_0 , donc (T_n) converge si et seulement si (S_n) converge.

Autrement dit, les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Théorème:

Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont des suites positives, et si $u_n = o(v_n)$ ou $u_n = o(v_n)$, alors :

- $\sum v_n$ converge $\Longrightarrow \sum u_n$ converge
- $\sum u_n$ diverge $\Longrightarrow \sum v_n$ diverge

On suppose que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont des suites positives, et que $u_n=o(v_n)$ ou $u_n=O(v_n)$. Ainse, la suite $\left(\frac{u_n}{v_n}\right)$ est convergente vers 0 ou bornée; dans tous les cas, elle est majorée. Il existe un réel M qu'on peut supposer strictement positif tel que :

$$\forall n \in \mathbb{N}, \frac{u_n}{v_n} \leq M$$

Comme (v_n) est positive, ainsi que (u_n) , on peut écrire :

$$\forall n \in \mathbb{N}, \ 0 \le u_n \le Mv_n$$

- Si $\sum v_n$ converge, alors $\sum Mv_n$ aussi, donc, par le 1er théorème de comparaison, $\sum u_n$ converge.
- Si $\sum u_n$ diverge, alors $\sum Mv_n$ diverge; comme $M \neq 0$, on en tire que $\sum v_n$ diverge aussi.

Théorème:

(Théorème d'équivalence)

Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont des suites positives, et si $u_n \underset{n\to+\infty}{\sim} v_n$

Alors $\sum u_n$ et $\sum v_n$ sont de même nature, autrement dit :

$$\sum u_n \text{ converge } \iff \sum v_n \text{ converge}$$

$$\sum u_n \text{ diverge } \iff \sum v_n \text{ diverge}$$

Supposons que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ soient des suites positives et que $u_n \underset{n\to+\infty}{\sim} v_n$

La suite $\left(\frac{u_n}{v_n}\right)$ tend vers 1, donc elle est bornée. Donc $u_n = O(v_n)$. Par le théorème précédent :

 $\sum v_n$ converge $\Longrightarrow \sum u_n$ converge (et $\sum u_n$ diverge $\Longrightarrow \sum v_n$ diverge).

Mais on a également $v_n \underset{n \to +\infty}{\sim} u_n$, donc on a, en inversant les rôles :

 $\sum u_n$ converge $\Longrightarrow \sum v_n$ converge (et $\sum v_n$ diverge $\Longrightarrow \sum u_n$ diverge).

Ainsi on a bien:

$$\sum u_n$$
 converge $\iff \sum v_n$ converge

(et $\sum u_n$ diverge $\iff \sum v_n$ diverge, mais cela s'obtient aussi comme conséquence).

Théorème :

On s'intéresse à la série $\sum f(n)$ où :

$$f:[0,+\infty[\to\mathbb{R}^+ \ \]$$
 positive, continue, décroissante

Alors:

la série
$$\sum f(n)$$
 converge \iff la suite $\left(\int_0^n f(t) dt\right)_{n \in \mathbb{N}}$ converge

• Soit $k \in \mathbb{N}$. Pour tout $t \in [k, k+1]$,

$$f(k) \ge f(t) \ge f(k+1)$$
 car f décroissante sur \mathbb{R}^+

Par croissance de l'intégrale sur le segment [k, k+1]:

$$\int_{k}^{k+1} f(k) dt \ge \int_{k}^{k+1} f(t) dt \ge \int_{k}^{k+1} f(k+1) dt$$

Comme f(k) et f(k+1) sont des constantes vis-à-vis de t et qu'on intègre par rapport à t:

$$f(k) \ge \int_k^{k+1} f(t) dt$$
 et $\int_k^{k+1} f(t) dt \ge f(k+1)$

• Prenons maintenant $n \ge 1$, on va sommer les inégalités obtenues : de k = 0 à n pour la première et de k = 0 à n - 1 pour la deuxième :

$$\sum_{k=0}^{n} f(k) \geq \sum_{k=0}^{n} \int_{k}^{k+1} f(t) dt \quad \text{et} \quad \sum_{k=0}^{n-1} \int_{k}^{k+1} f(t) dt \geq \sum_{k=0}^{n-1} f(k+1)$$

- * Tout à gauche, c'est S_n ;
- * Tout à droite, par le changement d'indice j = k + 1, c'est

$$\sum_{k=0}^{n-1} f(k+1) = \sum_{j=1}^{n} f(j) = S_n - f(0);$$

 \ast Et les sommes d'intégrales se simplifient grâce à la relation de Chasles :

$$\sum_{k=0}^{n} \int_{k}^{k+1} f(t) dt = \int_{0}^{1} f(t) dt + \int_{1}^{2} f(t) dt + \dots + \int_{n}^{n+1} f(t) dt = \int_{0}^{n+1} f(t) dt$$

et de même
$$\sum_{k=0}^{n-1} \int_k^{k+1} f(t) dt = \int_0^n f(t) dt.$$

Finalement, pour tout $n \in \mathbb{N}^*$: $S_n \geq \int_0^{n+1} f(t) dt$ et $\int_0^n f(t) dt + f(0) \geq S_n$. D'où, en rassemblant :

$$\int_0^{n+1} f(t)dt \le S_n \le \int_0^n f(t)dt + f(0)$$

On note, pour tout $n \in \mathbb{N}$, $I_n = \int_0^n f(t) dt$. On a donc, pour tout $n \in \mathbb{N}^*$, $I_{n+1} \leq S_n \leq I_n + f(0)$. Comme (S_n) est la suite des sommes partielles associée à une série à termes positifs (puisque pour tout $n \in \mathbb{N}$, $f(n) \geq 0$), la suite (S_n) est croissante.

Par ailleurs, grâce à la relation de Chasles, on trouve que pour tout $n \in \mathbb{N}$, $I_{n+1} - I_n = \int_n^{n+1} f(t) dt$, et cette quantité est positive puisque f est positive et que $n \le n+1$. Ainsi la suite (I_n) est croissante également.

$$\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ S_n < M.$$

Avec l'après l'encadrement ci-dessus, pour tout $n \in \mathbb{N}$ tel que $n \geq 2$, $I_n \leq S_{n-1} \leq M$. Puisque (I_n) est croissante, l'inégalité $I_n \leq M$ valable pour $n \geq 2$ est même valable pour $n \geq 0$. La suite (I_n) est croissante et majorée, donc elle converge!

• Supposons maintenant que (I_n) converge. Elle est donc majorée :

$$\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ I_n \leq M.$$

Donc, pour tout $n \in \mathbb{N}^*$, $S_n \leq M + f(0)$. De même, puisque (S_n) est croissante, l'inégalité $S_n \leq M + f(0)$ valable pour $n \geq 1$ est même valable pour $n \geq 0$. La suite (S_n) est croissante et majorée, donc elle converge, ce qui signifie que la série $\sum f(n)$ converge.

Théorème:

Si la série $\sum u_n$ est absoluement convergente alors elle est convergente, et on a :

$$\left| \sum_{n=0}^{+\infty} u_n \right| \le \sum_{n=0}^{+\infty} |u_n|$$

Cas réel

On suppose que (u_n) est une suite <u>réelle</u> et que $\sum |u_n|$ converge. Pour tout $n \in \mathbb{N}$, par définition :

- $|u_n|$ vaut u_n quand $u_n \ge 0$, autrement dit quand $\max(u_n, 0) = u_n$. Remarquons qu'on a alors, comme $-u_n \le 0$, $\max(-u_n, 0) = 0$.
- $|u_n|$ vaut $-u_n$ quand $u_n \le 0$, autrement dit quand $\max(-u_n, 0) = -u_n$. Remarquons qu'on a alors, comme $u_n \le 0$, $\max(u_n, 0) = 0$.

Ainsi, en posant, pour tout $n \in \mathbb{N}$, $u_n^+ = \max(u_n, 0)$ et $u_n^- \max(-u_n, 0)$, on a :

$$|u_n| = u_n^+ + u_n^-$$

Donc, comme (u_n^+) et (u_n^-) sont positives, pour tout $n \in \mathbb{N}$, $0 \le u_n^+ \le |u_n|$ et $0 \le u_n^- \le |u_n|$. Comme $\sum |u_n|$ converge, par théorème de majoration, $\sum u_n^+$ et $\sum u_n^-$ convergent. Or, on peut également constater que pour tout $n \in \mathbb{N}$, $u_n = u_n^+ - u_n^-$ (il suffit de faire à nouveau les cas $u_n \le 0$ et $u_n \ge 0$).

Comme $\sum u_n^+$ et $\sum -u_n^-$ convergent, on a donc $\sum u_n$ convergente.

• Cas complexe

On suppose que (u_n) est une suite <u>complexe</u> et que $\sum |u_n|$ converge. D'après une inégalité vue au chapitre 4 (au moment de l'inégalité triangulaire) :

$$\forall n \in \mathbb{N}, \quad 0 \le |\operatorname{Re}(u_n)| \le |u_n| \quad \text{et} \quad 0 \le |\operatorname{Im}(u_n)| \le |u_n|$$

Par le théorème de majoration, on obtient que les séries $\sum |\text{Re}(u_n)|$ et $\sum |\text{Im}(u_n)|$ convergent. Comme $(\text{Re}(u_n))$ et $(\text{Im}(u_n))$ sont des suites réelles, on peut se servir du cas réel et conclure que les séries $\sum \text{Re}(u_n)$ et $\sum \text{Im}(u_n)$ convergent.

Comme pour tout $n \in \mathbb{N}$, $u_n = \text{Re}(u_n) + i\text{Im}(u_n)$, on peut conclure que $\sum u_n$ converge.