3. Übung zur finiten Elemente Methode - stationäre Probleme 24. Oktober 2012

1. Sei $\Omega=(0,\pi)$ und $u=\sum_{i=1}^\infty u_i\sin(ix)$ die Zerlegung der Funktion u in ihre Fourierkoeffizienten. Wir definieren für $s\in[0,\frac32)$ die $\|\cdot\|_{H^s_0}$ Norm mittels

$$||u||_{H_0^s}^2 := \sum_{i=1}^{\infty} i^{2s} u_i^2.$$

Bem.: Damit gilt $||u||_{H_0^0} \cong ||u||_{L_2}$ sowie $||u||_{H_0^1} \cong ||\nabla u||_{L_2}$.

a.) Sei $0 < a < \pi$. Für welche s liegt die Funktion u_1 mit

$$u_1(x) := \begin{cases} 1 & x > a \\ 0 & x \le a \end{cases}$$

in H_0^s ? Der Raum H_0^s ist als Abschluss $\overline{C_0^\infty(\Omega)}^{\|\cdot\|_{H_0^s}}$ erklärt.

- b.) Für welche s liegt das Punktauswertungsfunktional $f: u \mapsto u(a)$ in $(H_0^s)^*$?
- 2. Sei $s\in(\frac{1}{2},\frac{3}{2})$ und $u\in H^s_0$. Dann ist u Hölderstetig mit Exponent $\alpha=s-\frac{1}{2}$, d.h. es gilt

$$|u(x) - u(y)| \le c |x - y|^{\alpha}$$

3. Seien X,Y Hilberträume mit gemeinsamer VR-Struktur. Auf dem Summenraum $X+Y:=\{z=x+y:x\in X\;y\in Y\}$ sei

$$||z||_{X+Y} := \inf_{\substack{z=x+y\\x\in X,y\in Y}} \sqrt{||x||_X^2 + ||y||_Y^2}.$$

Zeigen Sie, dass $\|\cdot\|_{X+Y}$ eine Hilbertraumnorm ist. Hinweis: Parallelogrammeigenschaft.

4. Führen Sie die FEM Rechnung zu Beispiel 6 des 2. Übungsblattes durch (Matlab, C++)! Zeigen Sie außerdem die Identität (J aus Ue 1, Bsp. 1)

$$J(u_h) - J(u) = \frac{1}{2} ||u - u_h||_A^2.$$

Aus den "berechenbaren" Größen $J(u), J(u_h)$ lässt sich also der Fehler in der Energienorm berechnen. Implementieren Sie zusätzlich diesen Fehlerschätzer, den Wert von J(u) ermitteln Sie hierfür mit einer sehr genauen Rechnung. Plotten Sie den Fehler $\|u-u_h\|_A$ über der Elementanzahl n.

1

5. Betrachten Sie nochmals Beispiel 6 des 2. Übungsblattes. Berechnen Sie nun anstatt mit finiten Elementen erster Ordnung die resultierende Systemmatrix A sowie den rechte Seite Vektor f unter Verwendung quadratischer finiter Elemente. Der diskrete Raum V_h ist dabei durch

$$V_h := \{ v \in C(0,1) : v \big|_{(x_i, x_{i+1})} \in P^2((x_i, x_{i+1})) \}$$

gegeben. Wählen Sie eine Basis für $V_h!$