RWC23_ELT2_Regulated_Genes

RTPW

4/13/2020

Install Packages

```
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
# BiocManager::install()
# BiocManager::install("biomaRt")
# install.packages("tidyverse")
# install.packages("readxl")
# BiocManager::install("ComplexHeatmap")
# install.packages("matrixStats")
# install.packages("pheatmap")
# install.packages("RVAideMemoire")
# install.packages("dendextend")
# install.packages("binom")
```

Load Package Libraries

```
## Loading required package: grid
## ComplexHeatmap version 2.0.0
## Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
## Github page: https://github.com/jokergoo/ComplexHeatmap
## Documentation: http://jokergoo.github.io/ComplexHeatmap-reference
## If you use it in published research, please cite:
## Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional
## genomic data. Bioinformatics 2016.
library(matrixStats)
## Attaching package: 'matrixStats'
## The following object is masked from 'package:dplyr':
##
##
      count
library(pheatmap)
library(RVAideMemoire)
## *** Package RVAideMemoire v 0.9-78 ***
library(dendextend)
##
## Welcome to dendextend version 1.14.0
## Type citation('dendextend') for how to cite the package.
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## Or contact: <tal.galili@gmail.com>
## To suppress this message use: suppressPackageStartupMessages(library(dendextend))
## -----
##
## Attaching package: 'dendextend'
## The following object is masked from 'package:stats':
##
##
      cutree
```

```
library(binom)
library(circlize)
```

Background and Rationale

ELT-2 is the C. elegans intestine master regulator. Deletion of ELT-2 leads to a larval lethal phenotype, and expression of ELT-2 in non-intestine tissue induces an intestine fate.

This documet will generate plots to address the questions outlined below.

For genes differentially expressed during elt-2 (-) and/or elt-7(-):

- 1) which expression pattern clusters associate with ELT-2 binding?
- 2) which expression pattern clusters associate with ELT-2 binding categories?
- For all genes
- For only genes bound by ELT-2
- 3) Which expression pattern clusters associate with intestine expression? (MA plot for each expression set)
- For all genes
- For genes only bound by ELT-2

For clusters of transcription factors (TFs) differentially expressed during elt-2 (-) and/or elt-7(-):

- 1) which transcription factor clusters associate with ELT-2 binding?
- 2) which transcription factor clusters associate with ELT-2 binding categories
- for all TFs
- For only TFs bound by ELT-2
- 3) which transcription factor clusters associate with intestine expression?
- for all
- for only ELT-2 bound

Description of Data

I will integrate a RNA-seq experiment, a microarray experiment and a ChIP-seq experiments.

The first is a set of RNA-seq experiments in L1 stage worms (Dineen and Nishimura, 2018). They were collected from the following genotypes, all in the L1 stage:

- wildtype (wt)
- elt-7 deleted (elt7D)
- elt-2 deleted (elt2D)
- combination fo elt-7 and elt-2 deleted (elt2Delt7D)

The purpose of including elt-7 and elt-2/elt-7 double deletion is because these two transcription factors have overlapping functionality. Deletion of elt-7 alone does not have a phenotype, but deletion of elt-7 in combination with elt-2 has an enhanced lethal phenotype of just elt-2 alone.

The second dataset is from a 2011 paper using FACS sorting of Late Embryo (LE) and Larval Stage 2 (L2) intestine cells, measured with microarray. See Spencer et. al, (2011).

The ChIP-seq experiments are performed against ELT-2 and are from the following developmental stages:

- late embryo (LE)
- L1
- L3

They were collected as part of the modENCODE consortium and were processed by David King. He has provided gene mapping of ELT-2 targets and categories of ELT-2 binding. The ELT-2 binding categories are as follows:

- Not changing
- Larval
- L3 high
- Embryonic
- Increasing

Citations

- 1) Dineen, A., Osborne Nishimura, E., Goszczynski, B., Rothman, J. H., & McGhee, J. D. (2018). Quantitating transcription factor redundancy: The relative roles of the ELT-2 and ELT-7 GATA factors in the C. elegans endoderm. Developmental Biology, 435(2), 150–161. https://doi.org/10.1016/J.YDBIO.2017.12.023
- 2) Kudron, M. M., Victorsen, A., Gevirtzman, L., Hillier, L. W., Fisher, W. W., Vafeados, D., ... Waterston, R. H. (2018). The modern resource: genome-wide binding profiles for hundreds of Drosophila and Caenorhabditis elegans transcription factors. Genetics, 208(3), 937–949. https://doi.org/10.1534/genetics.117.300657
- 3) Spencer, W. C., Zeller, G., Watson, J. D., Henz, S. R., Watkins, K. L., McWhirter, R. D., Petersen, S., Sreedharan, V. T., Widmer, C., Jo, J., Reinke, V., Petrella, L., Strome, S., Von Stetina, S. E., Katz, M., Shaham, S., Rätsch, G., & Miller, D. M. (2011). A spatial and temporal map of C. elegans gene expression. Genome Research, 21(2), 325–341. https://doi.org/10.1101/gr.114595.110
- 4) Boeck, M. E., Huynh, C., Gevirtzman, L., Thompson, O. A., Wang, G., Kasper, D. M., Reinke, V., Hillier, L. W., & Waterston, R. H. (2016). The time-resolved transcriptome of C. elegans. Genome Research, 26(10), 1441–1450. https://doi.org/10.1101/gr.202663.115

Code

Source functions

```
source("../RWC23_Functions.R")
```

Load and Process Datasets

Load Dineen and Osborne Nishimura et. al. Data

```
##
                  wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt7D_sorted_1
## WBGene0000001
                     8.957161
                                 8.858238
                                              8.841623
                                                          8.923111
                                                                          8.505028
## WBGene00000002
                     7.489159
                                 7.382905
                                              7.518631
                                                          7.492399
                                                                         7.378168
## WBGene0000003
                     9.061810
                                 8.748589
                                              9.295497
                                                          9.286834
                                                                         9.480361
## WBGene0000004
                    10.916559
                                10.786200
                                             11.010430
                                                         10.826657
                                                                         10.836827
## WBGene0000005
                     2.990777
                                 2.864044
                                              3.116144
                                                          2.715502
                                                                         2.584081
## WBGene0000007
                     5.799066
                                 6.026780
                                              5.831420
                                                          6.072836
                                                                          5.699261
##
                  elt7D_sorted_2 elt7D_sorted_3 elt2D_sorted_1 elt2D_sorted_2
## WBGene0000001
                        8.568569
                                        8.517438
                                                       9.172904
                                                                       9.249496
## WBGene00000002
                        7.582425
                                        7.512668
                                                       7.503760
                                                                       7.289884
## WBGene0000003
                        9.451384
                                        9.008938
                                                       8.669299
                                                                       8.593847
## WBGene0000004
                       10.806534
                                       10.819497
                                                      10.303062
                                                                      10.296768
## WBGene0000005
                                        2.827526
                                                       2.953325
                        2.881642
                                                                       2.835451
## WBGene0000007
                        5.492677
                                        5.220378
                                                       4.683237
                                                                       4.797660
                  elt2D_sorted_3 elt2D_sorted_4 elt2Delt7D_sorted_1
## WBGene0000001
                        9.211660
                                        9.346959
                                                            9.379698
## WBGene00000002
                        7.386127
                                        7.262063
                                                            7.904008
## WBGene0000003
                        8.753835
                                        8.781267
                                                            8.791018
## WBGene0000004
                       10.356820
                                       10.366512
                                                           10.332489
## WBGene0000005
                        2.886842
                                        2.979650
                                                            2.499412
## WBGene00000007
                        4.495252
                                        4.593047
                                                            4.602235
##
                  elt2Delt7D_sorted_2 elt2Delt7D_sorted_3
## WBGene0000001
                             9.217403
                                                  9.101997
## WBGene00000002
                             7.870852
                                                  7.762023
## WBGene0000003
                             8.795191
                                                  8.936724
## WBGene0000004
                            10.223675
                                                 10.597407
## WBGene0000005
                             2.763405
                                                  2.428255
## WBGene0000007
                             4.641832
                                                  4.476899
```

list of all dynamically expressed genes

```
dynamic_regulated_genes <-</pre>
  read.table(file = "./01_input/2017-11-20_all_changing_genes_0.1alpha_0.8lfc.txt",
             quote = "",
             header = FALSE)
colnames(dynamic_regulated_genes) <- "WBGeneID"</pre>
dynamic_regulated_genes %>% head
           WBGeneID
## 1 WBGene00004020
## 2 WBGene00015956
## 3 WBGene00000216
## 4 WBGene00001795
## 5 WBGene00008167
## 6 WBGene00010049
Load differential expression clusters from Dineen and Nishimura et al (2018).
dineen_nishimura_clusters <-</pre>
  read_xlsx(path = "./01_input/Table_S6_All_Dynamically_Expressed_Genes_Clusters.xlsx",
            sheet = "dataset")
dineen_nishimura_sets <-
 dineen_nishimura_clusters %>% select(WBGeneID, set)
dineen_nishimura_sets_ascend <-</pre>
  arrange(dineen_nishimura_sets, WBGeneID)
dineen_nishimura_sets_ascend$set <-</pre>
  toupper(dineen nishimura sets ascend$set)
dineen_nishimura_sets_ascend %>% head
## # A tibble: 6 x 2
     WBGeneID set
##
##
     <chr>>
## 1 WBGene00000007 SET6
## 2 WBGene00000008 SET6
## 3 WBGene00000009 SET3
```

Load ELT-2 ChIP-seq binding annotations

4 WBGene00000013 SET1 ## 5 WBGene00000016 SET1 ## 6 WBGene00000017 SET1

```
elt2_peaks <-
    read_xlsx("./01_input/200410_peaksForBigBed.xlsx", sheet = "full cluster assignment")

## New names:
## * '' -> ...12
```

```
# elt2_peaks <- readRDS("./01_input/annotatedPeaks.rds")</pre>
colnames(elt2_peaks) <-</pre>
  c(
    "chrom",
    "start",
    "end",
    "peak.name",
    "WBGeneID",
    "mapping",
    "cluster",
    "cluster.description",
    "kweight",
    "LE",
   "L1",
    "L3",
    "peak.summit.agreement"
elt2_peaks$cluster.description <-</pre>
  factor(
    elt2_peaks$cluster.description,
    levels = c(
      "LE-specific",
      "Post-embryonic",
      "Increasing",
      "L3-high",
      "Not-changing or not IDR-passing"
    ),
    labels = c(
      "Embryo_Specific",
      "Larval",
      "Increasing",
      "L3_High",
      "Not_Changing"
    )
  )
elt2_cluster_names <- c("Embryo_Specific",</pre>
                        "Larval",
                        "Increasing",
                        "L3_High",
                        "Not_Changing")
elt2_peaks %>% head
## # A tibble: 6 x 13
     chrom start end peak.name WBGeneID mapping cluster cluster.descrip~ kweight
##
   <chr> <dbl> <dbl> <chr>
                                           <chr> <dbl> <fct>
                                 <chr>
                                                                              <dbl>
## 1 chrI 3691 4222 ELT2peak~ WBGeneO~ overla~
                                                      4 Increasing
                                                                              0.818
## 2 chrI 11044 11533 ELT2peak~ WBGeneO~ overla~
                                                       4 Increasing
                                                                              0.913
## 3 chrI 13560 14890 ELT2peak~ WBGeneO~ inside
                                                       2 Larval
                                                                              0.876
## 4 chrI 15179 15647 ELT2peak~ WBGeneO~ inside
                                                       4 Increasing
                                                                              0.993
```

```
## 5 chrI 16706 17483 ELT2peak~ WBGeneO~ overla~
                                                          3 L3 High
                                                                                0.989
## 6 chrI 26789 27576 ELT2peak~ WBGeneO~ downst~
                                                          1 Embryo_Specific
                                                                                0.92
## # ... with 4 more variables: LE <dbl>, L1 <dbl>, L3 <dbl>,
## # peak.summit.agreement <dbl>
Make a set of genes with ELT-2 binding detected in the L1 stage.
elt2_detected_in_L1 <-
  elt2_peaks %>% select(WBGeneID, L1) %>% filter(L1 == 1) %>% select(WBGeneID) %>% unique()
elt2_detected_in_L1 %>% head
## # A tibble: 6 x 1
     WBGeneID
##
     <chr>>
## 1 WBGene00022277
## 2 WBGene00022276
## 3 WBGene00021026
## 4 WBGene00022038
## 5 WBGene00022043
## 6 WBGene00022042
elt2_detected_in_L1 %>% dim
## [1] 2430
               1
Make a dataframe that records the number of peaks per gene that fall in a particular binding catagory.
binding_cluster_gene_counts <-
  table(elt2_peaks$WBGeneID, elt2_peaks$cluster.description)
binding_cluster_gene_counts <-</pre>
  as.data.frame.matrix(binding_cluster_gene_counts)
binding_cluster_gene_counts %>% head()
##
                  Embryo_Specific Larval Increasing L3_High Not_Changing
## WBGene0000003
                                 0
                                        0
                                                    1
                                                            0
                                                                          0
## WBGene0000004
                                 0
                                        2
                                                    0
                                                            0
                                                                          0
                                        0
## WBGene0000007
                                 0
                                                    1
                                                            0
                                                                          0
                                        0
## WBGene00000008
                                 0
                                                    1
                                                            0
                                                                          0
## WBGene00000009
                                 0
                                        1
                                                    1
                                                            0
                                                                          0
```

Load Spencer et. al. intestine expression

WBGene0000010

This data is from a 2011 paper using FACS sorting of Late Embryo (LE) and Larval Stage 2 (L2) intestine cells, measured with microarray. See Spencer et. al, (2011).

```
spencerLEgenes <-
   read.table(
   "./01_input/Spencer_et_al_2010_FACS_and_pulldown_tilling_array/LE-intestine_enr_vs_ref.WS200.txt",
   quote = "\"",</pre>
```

```
comment.char = "",
    header = TRUE
colnames(spencerLEgenes) <-</pre>
  str_c("spencer_LE_", colnames(spencerLEgenes))
spencer_LE_subset <-</pre>
  spencerLEgenes %>% select(spencer_LE_ID,
                             spencer_LE_AveExpr,
                             spencer_LE_adj_P_Val,
                             spencer_LE_FC)
spencer_LE_subset %>% head
##
      spencer_LE_ID spencer_LE_AveExpr spencer_LE_adj_P_Val spencer_LE_FC
## 1 WBGene00008163
                                   7.57
                                                                       13.86
## 2 WBGene00021252
                                   8.21
                                                            0
                                                                       7.30
                                                            0
## 3 WBGene00019986
                                   9.29
                                                                       10.67
## 4 WBGene00007904
                                   8.16
                                                            0
                                                                        6.89
## 5 WBGene00012018
                                  10.14
                                                            0
                                                                        6.25
## 6 WBGene00010540
                                   8.43
                                                                        4.15
spencerL2genes <-
  read.table(
    "./01_input/Spencer_et_al_2010_FACS_and_pulldown_tilling_array/L2-intestine_enr_vs_ref.WS200.txt",
    quote = "\"",
    comment.char = "",
    header = TRUE
  )
colnames(spencerL2genes) <-</pre>
  str_c("spencer_L2_", colnames(spencerL2genes))
spencer_L2_subset <- spencerL2genes %>%
  select(spencer_L2_ID,
         spencer L2 AveExpr,
         spencer_L2_adj_P_Val,
         spencer_L2_FC)
spencer_L2_subset %>% head
      spencer_L2_ID spencer_L2_AveExpr spencer_L2_adj_P_Val spencer_L2_FC
##
## 1 WBGene00020352
                                   7.52
                                                                        7.51
## 2 WBGene00017225
                                   7.28
                                                            0
                                                                        5.32
## 3 WBGene00007973
                                   7.91
                                                            0
                                                                        5.93
## 4 WBGene00018683
                                   8.27
                                                            0
                                                                        5.10
## 5 WBGene00003696
                                   7.95
                                                            0
                                                                        3.73
                                   7.77
## 6 WBGene00044776
                                                                        6.65
```

Process rlog counts

Subset rlog matrix based on presence in list 2017-11-20_all_changing_genes_0.1alpha_0.8lfc.txt. Row scale and center the rlog counts per genes.

```
dynamic_counts_matrix <-</pre>
  matrix_select(dineen_nishimura_counts_matrix,
                dynamic regulated genes$WBGeneID)
dynamic_counts_matrix_scaled <-</pre>
  t(apply(unlist(dynamic_counts_matrix), 1, scale))
rownames(dynamic_counts_matrix_scaled) <-</pre>
  rownames(dynamic counts matrix)
colnames(dynamic_counts_matrix_scaled) <-</pre>
  colnames(dynamic_counts_matrix)
dynamic_counts_matrix_scaled %>% head
##
                  wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt7D_sorted_1
## WBGene0000007
                     1.0068329
                               1.37348252
                                             1.0589277
                                                          1.4476397
                                                                         0.84613352
## WBGene00000008
                    2.2632093
                               1.13063525
                                             1.1251278
                                                          1.0262925
                                                                        -0.03607787
## WBGene00000009
                    0.1468716 -0.09556483
                                            -0.3465276
                                                         -0.8378633
                                                                         0.07003147
## WBGene0000013
                   -1.0765042
                                            -1.0478603
                                                         -0.4296435
                               0.04628523
                                                                        -0.61401384
## WBGene0000016
                   -0.1629274
                                0.14035593
                                            -0.8318355
                                                         -0.2209018
                                                                        -0.52814604
  WBGene00000017
                    0.1344074 0.43209491
                                            -0.4453539
                                                          0.5202470
                                                                        -0.19720767
##
                  elt7D_sorted_2 elt7D_sorted_3 elt2D_sorted_1 elt2D_sorted_2
## WBGene00000007
                      0.51350637
                                      0.07506888
                                                      -0.7898010
                                                                      -0.6055647
## WBGene00000008
                      -0.39030667
                                      0.02722321
                                                                      -1.0292850
                                                      -0.4521136
## WBGene00000009
                      -0.11586861
                                      0.42221560
                                                       0.8406016
                                                                       1.2349599
## WBGene0000013
                      -0.58009755
                                     -0.38693983
                                                      -0.4767996
                                                                      0.3851813
                      -0.50445577
## WBGene0000016
                                     -0.16186256
                                                      -0.5681545
                                                                      -0.6137809
## WBGene0000017
                      0.05519157
                                      0.37152702
                                                      -0.9790560
                                                                      -1.0378885
##
                  elt2D_sorted_3 elt2D_sorted_4 elt2Delt7D_sorted_1
## WBGene0000007
                     -1.09248186
                                      -0.9350192
                                                           -0.9202246
## WBGene00000008
                      -0.46498937
                                      -0.8771172
                                                           -0.9402531
## WBGene00000009
                      0.98161197
                                       1.7266509
                                                           -1.7004545
                                      -0.5163112
## WBGene0000013
                      0.09286966
                                                            2.5457794
## WBGene0000016
                      -0.75209134
                                      -1.0136068
                                                            1.7015008
## WBGene0000017
                      -1.16996644
                                      -1.7376299
                                                            1.4066491
                  elt2Delt7D_sorted_2 elt2Delt7D_sorted_3
## WBGene0000007
                            -0.8564679
                                                -1.1220323
## WBGene00000008
                            -0.5550156
                                                 -0.8273297
## WBGene00000009
                            -0.8668929
                                                 -1.4597714
## WBGene0000013
                             1.4999051
                                                  0.5581492
                                                  1.3805110
## WBGene0000016
                             2.1353949
## WBGene0000017
                             1.6701858
                                                  0.9767996
dynamic_counts_matrix_scaled_ascend <-</pre>
  dynamic_counts_matrix_scaled[order(rownames(dynamic_counts_matrix_scaled)),]
```

Must use arrange to sort genes in descending order to ensure row order is preserved

Recreate Supplementary Figure S4a from Dineen and Nishimura et al.

Use expression clusters from Dineen and Nishimura et al to split the clusters.

```
Heatmap(
    dynamic_counts_matrix_scaled_ascend,
    name = "elt2D-elt7D\nRNAseq",
    col = colorRampPalette(c("cyan", "black", "yellow"))(1000),
    cluster_columns = FALSE,
    clustering_distance_rows = "spearman",
    clustering_method_rows = "complete",
    show_row_names = FALSE,
    show_column_names = TRUE,
    row_names_gp = gpar(cex = 0.2),
    column_names_gp = gpar(cex = 0.4),
    heatmap_legend_param = list(color_bar = "continuous"),
    row_split = dineen_nishimura_sets_ascend$set
)
```


Add expression set and column labels.

```
RNA_column_order <-
  factor(c(
    rep("WT", 4),
    rep("elt7D", 3),
    rep("elt2D", 4),
    rep("elt7Delt2D", 3)
),
  levels = c("WT", "elt7D", "elt7Delt2D"))
RNA_column_order</pre>
```

```
## [1] WT
                   WT
                               WT
                                          WT
                                                     elt7D
                                                                 elt7D
## [7] elt7D
                   elt2D
                               elt2D
                                          elt2D
                                                     elt2D
                                                                 elt7Delt2D
## [13] elt7Delt2D elt7Delt2D
## Levels: WT elt7D elt2D elt7Delt2D
column labels <-
  structure(
    c(
      "rep1",
      "rep2",
      "rep3",
      "rep4".
      "rep1",
      "rep2",
      "rep3",
      "rep1",
      "rep2",
      "rep3",
      "rep4",
      "rep1",
      "rep2",
      "rep3"
    ),
    names = colnames(dynamic_counts_matrix_scaled_ascend)
  )
column_labels
##
           wt_sorted_1
                                wt_sorted_2
                                                    wt_sorted_3
                                                                         wt_sorted_4
##
                                                          "rep3"
                                                                               "rep4"
                "rep1"
                                     "rep2"
        elt7D_sorted_1
##
                             elt7D_sorted_2
                                                 elt7D_sorted_3
                                                                      elt2D_sorted_1
##
                "rep1"
                                     "rep2"
                                                          "rep3"
                                                                               "rep1"
##
        elt2D\_sorted\_2
                             elt2D_sorted_3
                                                 elt2D_sorted_4 elt2Delt7D_sorted_1
                "rep2"
                                     "rep3"
                                                          "rep4"
                                                                               "rep1"
## elt2Delt7D_sorted_2 elt2Delt7D_sorted_3
                                     "rep3"
##
                "rep2"
Ha <- Heatmap(</pre>
 dynamic_counts_matrix_scaled_ascend,
 name = "elt2D-elt7D\nRNAseq",
  col = colorRampPalette(c("cyan", "black", "yellow"))(1000),
  cluster_columns = FALSE,
  clustering_distance_rows = "spearman",
  clustering_method_rows = "complete",
  show_row_names = FALSE,
  show_column_names = TRUE,
  column_labels = column_labels[colnames(dynamic_counts_matrix_scaled_ascend)],
  column_names_gp = gpar(cex = 0.7),
  heatmap_legend_param = list(color_bar = "continuous"),
  row_split = dineen_nishimura_sets_ascend$set,
  row_title = NULL,
  column title = NULL,
  column_split = RNA_column_order,
```

```
bottom_annotation = HeatmapAnnotation(
  foo = anno_block(
    labels = c("WT", "elt7D", "elt2D", "elt7D;elt2D"),
    labels_gp = gpar(cex = .8),
    gp = gpar(border = NA, lty = "blank")
    ),
  foo2 = anno_block(gp = gpar(fill = "black"), height = unit(0.5, "mm"))
),
  left_annotation = rowAnnotation(foo = anno_block(
    labels = c("SET1", "SET2", "SET3", "SET4", "SET5", "SET6"),
    labels_rot = 0,
    gp = gpar(border = NA, lty = "blank", cex = 0.4)
))
)
Ha
```


Sanity check to ensure that cluster splitting is occuring correctly. Remap the Set assignments back to the heatmap as a row annotation.

```
Ha + rowAnnotation(set = dineen_nishimura_sets_ascend$set)
```


Add L1 stage ELT-2 binding

This section will add annotation to the rows of the elt2/elt7 differentiall expression heatmap with ELT-2 ChIP-seq binding during the L1 stage. This will determine what differential expression sets associate with ELT-2 binding during the L1 stage. The reason L1 stage ChIP-seq eaks are being used is because the elt2/elt7 RNA-seq experiment was conducted in the L1 stage.

In ComplexHeatmap the row order of input matrix and annotation df must be identical to accurately plot data.

elt2_L1_anno %>% head()

```
## WBGeneID elt2_detected_in_L1
## 1 WBGene00000007 not.bound
## 2 WBGene00000009 bound
## 3 WBGene00000009 not.bound
## 4 WBGene00000013 not.bound
## 5 WBGene00000016 not.bound
## 6 WBGene00000017 not.bound
```

Incorporate this into a heatmap annotation


```
 \# \ pdf("./03\_plots/01a\_DE\_Heatmap\_elt2elt7DERNAseq\_L1elt2bound\_200615.pdf", \ height = 4, \ width = 4.5) \\ \# \ Ha\_L1chip \\ \# \ dev.off()
```

```
spencer_rna_anno <- data.frame(</pre>
  spencerLE = ifelse(
    test = rownames(dynamic_counts_matrix_scaled_ascend) %in% spencer_LE_subset$spencer_LE_ID,
    yes = "enriched",
   no = "depleted"
  ),
  spencerL2 = ifelse(
    test = rownames(dynamic_counts_matrix_scaled_ascend) %in% spencer_L2_subset$spencer_L2_ID,
    yes = "enriched",
    no = "depleted"
  )
)
Ha_L1chip_spencer <- Ha_L1chip +</pre>
  rowAnnotation(
    LE.intestine = spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  ) +
  rowAnnotation(
    L2.intestine = spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  )
Ha_L1chip_spencer
```



```
 \begin{tabular}{ll} \# pdf("./03\_plots/01b\_DE\_Heatmap\_elt2elt7DERNAseq\_L1elt2bound\_spencerRNA\_200913.pdf", height = 6.5, widdle the properties of the prop
```

Visually it appears that some elt2/elt7 differential expression clusters have more or less ELT-2 binding associated with the sets. I would like to be more quantitative with this assessment.

Determine enrichment of ELT-2 binding during L1 stage. I will calculate the percentage of genes with an ELT-2 ChIP-seq peak detected during the L1 stage.

First use merge to combine the ELT-2 binding status and expression set for each gene.

```
expression_L1_binding <-
  merge(elt2_L1_anno, dineen_nishimura_sets_ascend, by = "WBGeneID")
expression_L1_binding %>% head
```

```
## WBGeneID elt2_detected_in_L1 set
## 1 WBGene00000007 not.bound SET6
## 2 WBGene00000008 bound SET6
## 3 WBGene00000009 not.bound SET3
## 4 WBGene00000013 not.bound SET1
## 5 WBGene00000016 not.bound SET1
## 6 WBGene00000017 not.bound SET1
```

Next use table to tally the number of bound and not bound genes per expression set.

```
clust_L1bound_counts <-
   table(expression_L1_binding$set,
        expression_L1_binding$elt2_detected_in_L1)
clust_L1bound_counts</pre>
```

```
##
##
          bound not.bound
##
             34
                       257
     SET1
##
     SET2
            176
                      1032
                       255
##
     SET3
            150
                       70
##
     SET4
             33
##
     SET5
                        54
             11
     SET6
            239
                       781
##
```

Use prop.table to convert these values to percentages within each set.

```
clust_L1bound_prop <- prop.table(clust_L1bound_counts, 1)
clust_L1bound_prop</pre>
```

```
##
## bound not.bound
## SET1 0.1168385 0.8831615
## SET2 0.1456954 0.8543046
## SET3 0.3703704 0.6296296
## SET4 0.3203883 0.6796117
## SET5 0.1692308 0.8307692
## SET6 0.2343137 0.7656863
```

Adjust the percentages object into a dataframe that ggplot2 can use.

```
clust_L1bound_prop_ggplot <- as.data.frame(clust_L1bound_prop)</pre>
colnames(clust_L1bound_prop_ggplot) <- c("SET", "Status", "Freq")</pre>
clust_L1bound_prop_ggplot$Status <-</pre>
  factor(clust_L1bound_prop_ggplot$Status,
         levels = c("not.bound", "bound"))
clust_L1bound_prop_ggplot$SET <-</pre>
  factor(
    clust_L1bound_prop_ggplot$SET,
    levels = c("SET6", "SET5", "SET4", "SET3", "SET2", "SET1")
  )
clust_L1bound_colors <- c("bound" = "green", "not.bound" = "black")</pre>
l1bound_percents <-
  ggplot(
    clust_L1bound_prop_ggplot %>% filter(Status == "bound"),
    aes(
      x = SET,
      y = Freq,
```

Percentage of L1 Stage ELT–2 Binding Per Expression Set

 $\#\ ggsave("./03_plots/02_proportion_of_l1elt2_per_expression_cluster_200428.pdf",\ height\ =\ 2,\ width\ =\ 5)$

This plot shows that all of the differential expression sets have less than 50% of genes bound by ELT-2. Rather than viewing percentages of genes bound, what is the number of "bound" vs "not.bound" per cluster?

```
clust_L1bound_counts_ggplot <- as.data.frame(clust_L1bound_counts)
colnames(clust_L1bound_counts_ggplot) <- c("SET", "Status", "Freq")</pre>
```

Number of L1 Stage ELT–2 Binding Site Per Expression Set

ggsave("./03_plots/03_number_of_l1elt2_per_expression_cluster_200428.pdf", height = 2, width = 5)

Use the binomial test to determine if the different expression clusters are enriched or depleted for ELT-2 binding.

Use binom.test and first do a two-tailed test.

First calculate the proportion of bound genes over the total number of genes in the analysis.

```
proportion = as.numeric(colSums(clust_L1bound_counts)[1]) /
   as.numeric(colSums(clust_L1bound_counts)[1] + colSums(clust_L1bound_counts)[2])
proportion
```

```
## [1] 0.207956
```

Use custom function ctable_binom() to calculate p-vaule and confidence intervals for each set.

```
l1bound_binom <- ctable_binom(clust_L1bound_counts, "two.sided")</pre>
```

```
## Set pval conf.lower conf.upper bool
## 1 SET1 6.426440e-05 0.08228607 0.1594291 TRUE
## 2 SET2 3.585965e-08 0.12626762 0.1668651 TRUE
## 3 SET3 8.109901e-14 0.32320354 0.4194467 TRUE
## 4 SET4 7.240238e-03 0.23184100 0.4195741 TRUE
## 5 SET5 5.413473e-01 0.08762605 0.2826562 FALSE
## 6 SET6 4.082629e-02 0.20862677 0.2615436 TRUE
```

This says that all sets but SET5 have a significant difference in genes bound compared to the entire dataset.

Now use the less or greater argument of binom.test to see if there is more or less binding.

```
ctable_binom(ctable = clust_L1bound_counts, alt = "less")
```

```
##
      Set
                 pval conf.lower conf.upper
## 1 SET1 3.238541e-05
                               0 0.1524937
                                             TRUE
## 2 SET2 1.733956e-08
                               0 0.1634451
                                            TRUE
## 3 SET3 1.000000e+00
                               0 0.4116901 FALSE
## 4 SET4 9.973903e-01
                               0 0.4041263 FALSE
## 5 SET5 2.752156e-01
                               0 0.2645358 FALSE
## 6 SET6 9.816208e-01
                               0 0.2571740 FALSE
```

This says that set 1 and 2 have less ELT-2 binding compared to the entire dataset.

Now try greater.

```
ctable_binom(clust_L1bound_counts, "greater")
```

This says that SET3, SET4 and SET6 have a higher percentage of genes bound compared the the "background" percent of bound genes for the entire dataset.

Make a plot that visually depicts this. Draw line on the percentage plot to indicate background percentage of L1 stage ELT-2 binding.

```
geom_errorbar(
   ymax = l1bound_binom$conf.upper,
   ymin = l1bound_binom$conf.lower,
   width = 0.25
) +
coord_flip() +
ggtitle("L1 stage ELT-2 binding per\nexperession set")
```

L1 stage ELT-2 binding per experession set SET1 SET2 **Expression Set** SET3 Status bound SET4 SET5 SET6 0.50 0.75 1.00 0.00 0.25

```
# ggsave(
# "./03_plots/04_percentage_l1bound_per_expression_cluster_200615.pdf",
# width = 4,
# height = 5
# )
```

Percentage

Use the hypergeometric test to determine: Are changing genes (all sets) enriched for L1 binding?

```
N <- 20470
k <- nrow(elt2_detected_in_L1)
x3 <- as.numeric(colSums(clust_L1bound_counts)[1])
m <-
   as.numeric(colSums(clust_L1bound_counts)[1] + colSums(clust_L1bound_counts)[2])
dhyper(x3, m, N, k)</pre>
```

```
## [1] 1.05078e-78
```

A very small p-value for the hypergeometric test suggests that the entire dataset is enriched for ELT-2.

The next section with compute pairwise fisher's exact tests for the different sets. I have a difficult time interpreting these results.

```
fisher.multcomp(clust_L1bound_counts, p.method = "bonferroni")
##
##
           Pairwise comparisons using Fisher's exact test for count data
##
  data: clust_L1bound_counts
##
##
             SET1
                        SET2
                                  SET3
                                         SET4 SET5
## SET2 1.000e+00
## SET3 2.072e-13 2.217e-19
## SET4 1.045e-04 2.783e-04 1.000e+00
## SET5 1.000e+00 1.000e+00 1.735e-02 0.4808
## SET6 9.200e-05 1.593e-06 5.232e-06 0.8164
##
## P value adjustment method: bonferroni
fisher.multcomp(clust_L1bound_counts, p.method = "bonferroni")$p.value < 0.05
##
               SET2
                     SET3
                                  SET5
         SET1
                            SET4
## SET2 FALSE
                 NA
                        NA
                              NA
                                    NA
## SET3
         TRUE
               TRUE
                        NA
                              NA
                                    NA
                              NA
## SET4
               TRUE FALSE
                                    NΑ
         TRUE
  SET5 FALSE FALSE
                     TRUE FALSE
                                    NA
## SET6
         TRUE
               TRUE
                     TRUE FALSE FALSE
```

Row annotation of ELT-2 Binding Pattern Clusters

This section will add annotation to the rows of the elt2/elt7 differentiall expression heatmap with ELT-2 ChIP-seq binding pattern clusters. This will determine what differential expression sets associate with ELT-2 binding patters.

Start by using custom function make_cluster_annotation(). This function takes two objects: the matrix of gene expression values and a dataframe of counts ELT-2 binding patterns per genes. It returns a dataframe with the number of ELT-2 binding categories associated with each gene.

```
##
           WBGeneID Embryo_Specific Larval Increasing L3_High Not_Changing
## 1 WBGene00000007
                                            0
                                                                               0
                                     0
                                                        1
                                                                 0
## 2 WBGene00000008
                                     0
                                                                               0
                                            0
                                                        1
                                                                 0
## 3 WBGene00000009
                                     0
                                                                 0
                                                                               0
                                            1
                                                        1
                                                                               0
## 4 WBGene0000013
                                     0
                                            0
                                                        0
                                                                 0
## 5 WBGene0000016
                                     0
                                            0
                                                        0
                                                                 0
                                                                               0
## 6 WBGene00000017
                                     0
                                            0
                                                        0
                                                                 0
                                                                               0
```

Sanity check to ensure that the order and number of rows is preserved.

```
unique(rownames(dynamic_counts_matrix_scaled_ascend) == chip_annotation$WBGeneID)
## [1] TRUE
```

```
nrow(dynamic_counts_matrix_scaled) == nrow(chip_annotation)
```

[1] TRUE

Build add row annotation for the number of ELT-2 binding clusters associated with each gene.

```
Ha_L1chip_bindcluster <- Ha_L1chip +
  rowAnnotation(Embryo_Specific = chip_annotation$Embryo_Specific) +
  rowAnnotation(Larval = chip_annotation$Larval) +
  rowAnnotation(Increasing = chip_annotation$Increasing) +
  rowAnnotation(L3_High = chip_annotation$L3_High) +
  rowAnnotation(Not_Changing = chip_annotation$Not_Changing)
Ha_L1chip_bindcluster</pre>
```


Have the colors match plot from David.

Convert ChIP binding clusters to a present/absence list.

```
chip_annotation_present_absent <-
make_cluster_binary_annotation(chip_annotation)</pre>
```

Plot the heatmap with presence/absence.

```
Ha_L1chip_clusterchip <-
   Ha_L1chip + binding_cluster_row_annotation(chip_annotation_present_absent)</pre>
Ha_L1chip_clusterchip
```



```
# The code below sometimes throws an error
# if so: print plot in console, then use Export>As PDF to save
```

```
 \# \ pdf("./03\_plots/05a\_DE\_Heatmap\_L1elt2bound\_elt2bindclusters\_anno\_200615.pdf", \ height = 6.5, \ width =
```

Add Spencer intestine RNA row annotation

```
Ha_L1chip_clusterchip_spencerRNA <- Ha_L1chip_clusterchip +</pre>
  rowAnnotation(
    LE.intestine = spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  ) +
  rowAnnotation(
    L2.intestine = spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  )
Ha_L1chip_clusterchip_spencerRNA
```



```
 \begin{tabular}{ll} \# pdf("./03\_plots/05b\_DE\_Heatmap\_L1elt2bound\_elt2bindclusters\_spencerRNA\_anno\_200913.pdf", height = 6.5 \\ \# Ha\_L1chip\_clusterchip\_spencerRNA \\ \# dev.off() \end{tabular}
```

Plot percentage of expression cluster group having binding pattern assignment.

```
exprclust_bindclust <-
  merge(
    dineen_nishimura_sets_ascend,
    chip_annotation_present_absent,
    by.x = "WBGeneID",
    by.y = "WBGeneID"
)</pre>
exprclust_bindclust %>% head
```

```
##
         WBGeneID set Embryo_Specific Larval Increasing L3_High Not_Changing
## 1 WBGene0000007 SET6
                             absent absent present absent
                                                                 absent
## 2 WBGene00000008 SET6
                            absent absent present absent
                                                                 absent
## 3 WBGene00000009 SET3
                            absent present present absent
                                                                 absent
## 4 WBGene00000013 SET1
                            absent absent
                                             absent absent
                                                                 absent
## 5 WBGene00000016 SET1
                            absent absent absent absent
                                                                 absent
## 6 WBGene00000017 SET1
                             absent absent absent
                                                                 absent
```

What is the percentage of genes with annotated ELT2 binding clusters per expression dataset?

Make a dataframe that addresses the question:

```
## set absent present ELT2_cluster percent
## 1 SET1 285 6 Embryo_Specific 0.020618557
## 2 SET2 1187 21 Embryo_Specific 0.017384106
```

```
## 3
      SET3
               397
                         8 Embryo_Specific 0.019753086
## 4
              103
                         0 Embryo_Specific 0.000000000
      SET4
                         3 Embryo_Specific 0.046153846
## 5
      SET5
               62
                        11 Embryo_Specific 0.010784314
## 6
      SET6
             1009
## 7
      SET1
              275
                        16
                                     Larval 0.054982818
## 8
      SET2
              1077
                       131
                                     Larval 0.108443709
## 9
      SET3
                                     Larval 0.190123457
               328
                        77
## 10 SET4
               84
                        19
                                     Larval 0.184466019
## 11 SET5
               58
                         7
                                     Larval 0.107692308
## 12 SET6
               874
                       146
                                     Larval 0.143137255
## 13 SET1
               235
                        56
                                 Increasing 0.192439863
## 14 SET2
               950
                       258
                                 Increasing 0.213576159
## 15 SET3
               212
                       193
                                 Increasing 0.476543210
## 16 SET4
                                 Increasing 0.495145631
               52
                        51
## 17 SET5
               51
                                 Increasing 0.215384615
                        14
## 18 SET6
               700
                       320
                                 Increasing 0.313725490
## 19 SET1
               255
                                    L3_High 0.123711340
                        36
## 20 SET2
              1048
                       160
                                    L3 High 0.132450331
## 21 SET3
              335
                                    L3_High 0.172839506
                        70
## 22 SET4
               89
                        14
                                    L3_High 0.135922330
## 23 SET5
               51
                        14
                                    L3_High 0.215384615
## 24 SET6
              872
                       148
                                    L3_High 0.145098039
## 25 SET1
                              Not_Changing 0.041237113
              279
                        12
## 26 SET2
             1174
                              Not Changing 0.028145695
                        34
                              Not_Changing 0.004938272
## 27 SET3
              403
                         2
## 28 SET4
               100
                         3
                              Not_Changing 0.029126214
## 29 SET5
               61
                         4
                               Not_Changing 0.061538462
## 30 SET6
             1009
                              Not_Changing 0.010784314
                        11
```

Make a plot that addresses the question: What is the percentage of genes with annotated ELT2 binding clusters per expression dataset?

ggsave("./03_plots/06_Cluster_percent_present_per_Set_200615.pdf")

What is the percentage of genes within each Expression Set that are associated with an ELT-2 binding cluster?

ggsave("./03_plots/07_Set_percent_present_per_Cluster_200615.pdf")

Make a series of horizontal barplots with percentage of ELT-2 binding cluster per expression cluster. First, calculate the percentage of each ELT-2 binding category against the total dataset.

Next calculate the the 95% Confidence Interval with the Bionomial Test.

```
## # A tibble: 30 x 3
               set [6]
##
   # Groups:
##
      set
            ELT2_cluster
                             percent
##
      <chr> <fct>
                               <dbl>
##
    1 SET1
            Embryo_Specific
                              0.0206
            Larval
                              0.0550
##
    2 SET1
##
    3 SET1
            Increasing
                              0.192
##
    4 SET1
            L3_High
                              0.124
    5 SET1
            Not_Changing
                              0.0412
            Embryo_Specific
    6 SET2
                              0.0174
```

```
## 7 SET2 Larval 0.108

## 8 SET2 Increasing 0.214

## 9 SET2 L3_High 0.132

## 10 SET2 Not_Changing 0.0281

## # ... with 20 more rows
```

Calculate the binomial pvalue and confidence intervals.

```
# Add a column for the background percentage of ELT2 binding clusters per the whole expression dataset
expression_binding_stats <-
  expressionSet_per_BindingCluster %>% group_by(ELT2_cluster) %>% mutate(background_percent = sum(prese
                                                                            (sum(present) + sum(absent))
# Use binom.test to calculate pualue and confidence intervales for the percentage of ELT2 binding clust
expression_binding_stats <- expression_binding_stats %>%
  group_by(ELT2_cluster, set) %>%
  mutate(
   pval = binom.test(
     x = c(present, absent),
     n = present + absent,
     p = background_percent,
     alternative = "two.sided"
   )$p.value,
    conf.upper = binom.test(
     x = c(present, absent),
     n = present + absent,
     p = background_percent,
      alternative = "two.sided"
    )$conf.int[2],
    conf.lower = binom.test(
     x = c(present, absent),
     n = present + absent,
      p = background_percent,
      alternative = "two.sided"
    )$conf.int[1]
  )
expression_binding_stats$set <-
 factor(
    expression_binding_stats$set,
    levels = c("SET6", "SET5", "SET4", "SET3", "SET2", "SET1")
  )
expression_binding_stats %>% head()
## # A tibble: 6 x 9
## # Groups:
               ELT2_cluster, set [6]
           absent present ELT2_cluster percent background_perc~
                                                                  pval conf.upper
##
     <fct>
          <int>
                    <int> <fct>
                                         <dbl>
                                                           <dbl> <dbl>
                                                                             <dbl>
## 1 SET1
              285
                                                          0.0158 0.475
                                                                            0.0443
                        6 Embryo_Spec~ 0.0206
## 2 SET2
             1187
                       21 Embryo_Spec~ 0.0174
                                                          0.0158 0.644
                                                                            0.0265
## 3 SET3
              397
                        8 Embryo_Spec~ 0.0198
                                                         0.0158 0.545
                                                                            0.0385
## 4 SET4
              103
                        0 Embryo_Spec~ 0
                                                          0.0158 0.417
                                                                            0.0352
```

```
## 5 SET5 62 3 Embryo_Spec~ 0.0462 0.0158 0.0844 0.129

## 6 SET6 1009 11 Embryo_Spec~ 0.0108 0.0158 0.257 0.0192

## # ... with 1 more variable: conf.lower <dbl>
```

```
ggplot(expression_binding_stats,
       aes(x = set,
           y = percent, fill = ELT2_cluster)) +
  geom_bar(stat = "identity") +
  scale_y_continuous(limits = c(0, 0.75)) +
  theme_classic() +
  geom_hline(
   data = percent_bound_per_ELT2_cluster,
   color = "red",
   linetype = "dashed",
   aes(yintercept = percent)
 ) +
  geom_errorbar(
   ymax = expression_binding_stats$conf.upper,
   ymin = expression_binding_stats$conf.lower,
   width = 0.1
  ) +
  coord_flip() +
  facet_grid(. ~ ELT2_cluster) +
  scale_fill_manual(values = as.character(cluster_colors$val))
```


Subset ELT-2/ELT-7 differentially expressed genes based on ELT-2 binding in L1 stage

```
RNA_heatmap2(
    dynamic_counts_matrix_scaled_ascend,
    column_split = RNA_column_order,
    row_split = elt2_L1_anno$elt2_detected_in_L1
) +
    elt2_l1_row_annotation(elt2_L1_anno) +
    binding_cluster_row_annotation(chip_annotation_present_absent)
```



```
11_bound_list <-
   elt2_L1_anno %>% filter(elt2_detected_in_L1 == "bound") %>% select(WBGeneID) %>% arrange(WBGeneID)

dynamic_counts_matrix_scaled_bound_only <-
   matrix_select(dynamic_counts_matrix_scaled_ascend, l1_bound_list$WBGeneID)

bound_only_elt2_clust_anno <-</pre>
```

```
make_cluster_binary_annotation(
    make_cluster_annotation(
        dynamic_counts_matrix_scaled_bound_only,
        binding_cluster_gene_counts
    )
)
bound_only_elt2_clust_anno %>% head()
```

```
##
          WBGeneID Embryo_Specific Larval Increasing L3_High Not_Changing
## 1 WBGene00000008
                          absent absent present absent
                                                                absent
## 2 WBGene00000064
                          absent absent present present
                                                                absent
## 3 WBGene00000067
                          absent present present absent
                                                                absent
## 4 WBGene00000107
                          absent absent present absent
                                                                absent
## 5 WBGene00000136
                          absent present present absent
                                                               absent
## 6 WBGene00000172
                          absent absent present absent
                                                                absent
```

Assign k-means clusters for rows before plotting

```
kclus <- kmeans(dynamic_counts_matrix_scaled_bound_only, 4)
bound_only_sets <-
   data.frame(
   WBGeneID = rownames(dynamic_counts_matrix_scaled_bound_only),
   set = paste("SET", kclus$cluster, sep = "")
)
head(bound_only_sets)</pre>
```

```
## WBGeneID set
## 1 WBGene00000008 SET4
## 2 WBGene00000064 SET3
## 3 WBGene00000067 SET1
## 4 WBGene00000107 SET4
## 5 WBGene00000136 SET4
## 6 WBGene00000172 SET2
```

Draw heatmap and check that set assignment is correct.


```
 \# \ pdf("./03\_plots/09a\_DE\_Heatmap\_L1elt2boundOnly\_200913.pdf", \ height = 6.5, \ width = 6) \\ \# \ Ha\_bound\_only \\ \# \ dev.off()
```

```
Ha_bound_only +
rowAnnotation(sets = bound_only_sets$set)
```



```
##
          WBGeneID Embryo_Specific Larval Increasing L3_High Not_Changing set
## 1 WBGene00000008
                            absent absent
                                              present absent
                                                                    absent SET4
## 2 WBGene00000064
                            absent absent
                                                                    absent SET3
                                              present present
## 3 WBGene00000067
                            absent present
                                                                    absent SET1
                                              present absent
## 4 WBGene00000107
                            absent absent
                                              present absent
                                                                    absent SET4
## 5 WBGene00000136
                            absent present
                                              present absent
                                                                    absent SET4
## 6 WBGene00000172
                            absent absent
                                              present absent
                                                                    absent SET2
```

```
Ha_bound_only_chipClust <-
   Ha_bound_only + binding_cluster_row_annotation(bound_only_elt2_clust_anno)
Ha_bound_only_chipClust</pre>
```



```
 \begin{tabular}{ll} \# pdf("./03\_plots/09b\_DE\_Heatmap\_L1elt2boundOnly\_elt2bindclusters\_anno\_200913.pdf", height = 6.5, width \\ \# Ha\_bound\_only\_chipClust \\ \# dev.off() \end{tabular}
```

Add Spencer intestine expression row annotation

```
bound_only_spencer_rna_anno <- data.frame(
    spencerLE = ifelse(
        test = rownames(dynamic_counts_matrix_scaled_bound_only) %in% spencer_LE_subset$spencer_LE_ID,
        yes = "enriched",
        no = "depleted"
    ),
    spencerL2 = ifelse(
        test = rownames(dynamic_counts_matrix_scaled_bound_only) %in% spencer_L2_subset$spencer_L2_ID,
        yes = "enriched",
        no = "depleted"
    )
)

Ha_bound_only_chipClust_spencer <- Ha_bound_only_chipClust +
    rowAnnotation(
    LE.intestine = bound_only_spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(</pre>
```

```
"enriched" = "blue", "depleted" = "white"
)),
border = TRUE
) +
rowAnnotation(
   L2.intestine = bound_only_spencer_rna_anno$spencerL2,
   col = list(L2.intestine = c(
        "enriched" = "blue", "depleted" = "white"
)),
   border = TRUE
)
Ha_bound_only_chipClust_spencer
```



```
 \begin{tabular}{ll} \# pdf("./03\_plots/09c\_DE\_Heatmap\_L1elt2bound0nly\_elt2bindclusters\_anno\_200913.pdf", height = 6.5, width \\ \# Ha\_bound\_only\_chipClust\_spencer \\ \# dev.off() \end{tabular}
```

What is the percentage of genes with annotated ELT2 binding clusters per expression dataset?

```
bound_only_exprclust_bindclust <-
merge(bound_only_sets,</pre>
```

```
chip_annotation_present_absent,
    by.x = "WBGeneID",
    by.y = "WBGeneID")

bound_only_exprclust_bindclust %>% head
```

```
WBGeneID set Embryo_Specific Larval Increasing L3_High Not_Changing
## 1 WBGene00000008 SET4
                                 absent
                                         absent
                                                   present absent
                                                                          absent
## 2 WBGene00000064 SET3
                                 absent absent
                                                   present present
                                                                         absent
## 3 WBGene00000067 SET1
                                 absent present
                                                   present absent
                                                                         absent
## 4 WBGene00000107 SET4
                                 absent absent
                                                   present absent
                                                                         absent
## 5 WBGene00000136 SET4
                                 absent present
                                                   present absent
                                                                         absent
## 6 WBGene00000172 SET2
                                 absent absent
                                                   present absent
                                                                         absent
```

Make a dataframe that addresses the question:

```
bound_only_expressionSet_per_BindingCluster <- data.frame()</pre>
for (i in elt2_cluster_names) {
  toappend <-
    table(bound_only_exprclust_bindclust$set,
          bound_only_exprclust_bindclust[[i]]) %>%
    as.data.frame.matrix() %>%
    rownames_to_column(var = "set") %>%
    mutate(ELT2_cluster = i,
           percent = present / (present + absent))
  bound_only_expressionSet_per_BindingCluster <-</pre>
    bind_rows(bound_only_expressionSet_per_BindingCluster, toappend)
}
bound_only_expressionSet_per_BindingCluster$ELT2_cluster <-
  factor (bound only expressionSet per BindingCluster $ELT2 cluster,
         levels = elt2_cluster_names)
bound_only_expressionSet_per_BindingCluster
```

```
##
       set absent present
                             ELT2 cluster
                                               percent
## 1 SET1
              138
                        2 Embryo Specific 0.014285714
## 2 SET2
              134
                        1 Embryo Specific 0.007407407
## 3 SET3
              145
                        3 Embryo_Specific 0.020270270
## 4 SET4
              218
                        2 Embryo_Specific 0.009090909
## 5 SET1
               93
                       47
                                   Larval 0.335714286
## 6 SET2
                                   Larval 0.303703704
               94
                       41
## 7
     SET3
              105
                       43
                                   Larval 0.290540541
## 8
     SET4
              148
                       72
                                   Larval 0.327272727
               30
## 9 SET1
                      110
                               Increasing 0.785714286
                               Increasing 0.82222222
## 10 SET2
               24
                      111
## 11 SET3
               41
                      107
                               Increasing 0.722972973
## 12 SET4
               63
                      157
                               Increasing 0.713636364
## 13 SET1
              105
                      35
                                  L3 High 0.250000000
## 14 SET2
              100
                       35
                                  L3_High 0.259259259
## 15 SET3
               90
                       58
                                  L3 High 0.391891892
## 16 SET4
              168
                       52
                                  L3_High 0.236363636
```

```
## 17 SET1 137 3 Not_Changing 0.021428571
## 18 SET2 134 1 Not_Changing 0.007407407
## 19 SET3 140 8 Not_Changing 0.054054054
## 20 SET4 217 3 Not_Changing 0.013636364
```

Make a plot that addresses the question: What is the percentage of genes with annotated ELT2 binding clusters per expression dataset?

ggsave("./03_plots/10a_Bound_Only_Cluster_percent_present_per_Set_200913.pdf")

What is the percentage of genes within each Expression Set that are associated with an ELT-2 binding cluster?

```
ggplot(
  bound_only_expressionSet_per_BindingCluster,
  aes(x = ELT2_cluster, y = present, fill = set)
) +
  geom_bar(stat = "identity", position = "fill") +
  theme_classic()
```


ggsave("./03_plots/10b_Bound_Only_Set_percent_present_per_Cluster_200913.pdf")

Make a series of horizontal barplots with percentage of ELT-2 binding cluster per expression cluster. First, calculate the percentage of each ELT-2 binding category against the total dataset.

Next calculate the the 95% Confidence Interval with the Bionomial Test.

```
bound_only_expressionSet_per_BindingCluster %>% group_by(set, ELT2_cluster) %>% summarise(percent = pre (present + absent))
```

```
## # A tibble: 20 x 3
## # Groups: set [4]
```

```
##
      set
            ELT2 cluster
                           percent
##
                             <dbl>
      <chr> <fct>
  1 SET1 Embryo_Specific 0.0143
##
## 2 SET1 Larval
                           0.336
##
   3 SET1
           Increasing
                           0.786
## 4 SET1 L3_High
                           0.25
           Not_Changing
## 5 SET1
                           0.0214
## 6 SET2
           Embryo_Specific 0.00741
## 7 SET2 Larval
                            0.304
## 8 SET2 Increasing
                           0.822
## 9 SET2 L3_High
                            0.259
## 10 SET2 Not_Changing
                           0.00741
## 11 SET3 Embryo_Specific 0.0203
## 12 SET3 Larval
                            0.291
## 13 SET3
                           0.723
          Increasing
## 14 SET3 L3_High
                           0.392
## 15 SET3 Not_Changing
                           0.0541
## 16 SET4 Embryo_Specific 0.00909
## 17 SET4 Larval
                           0.327
## 18 SET4
           Increasing
                           0.714
## 19 SET4 L3_High
                           0.236
## 20 SET4 Not_Changing
                           0.0136
```

Calculate the binomial pvalue and confidence intervals.

```
# Add a column for the background percentage of ELT2 binding clusters per the whole expression dataset
bound_only_expression_binding_stats <-</pre>
  bound_only_expressionSet_per_BindingCluster %>% group_by(ELT2_cluster) %>% mutate(background_percent
                                                                                        (sum(present) + s
# Use binom.test to calculate pualue and confidence intervales for the percentage of ELT2 binding clust
bound_only_expression_binding_stats <-
  bound_only_expression_binding_stats %>%
  group_by(ELT2_cluster, set) %>%
  mutate(
   pval = binom.test(
      x = c(present, absent),
      n = present + absent,
      p = background_percent,
      alternative = "two.sided"
   )$p.value,
    conf.upper = binom.test(
      x = c(present, absent),
      n = present + absent,
      p = background_percent,
      alternative = "two.sided"
    )$conf.int[2],
    conf.lower = binom.test(
      x = c(present, absent),
      n = present + absent,
      p = background_percent,
      alternative = "two.sided"
    )$conf.int[1]
```

```
bound_only_expression_binding_stats$set <-</pre>
 factor(bound_only_expression_binding_stats$set,
        levels = c("SET4", "SET3", "SET2", "SET1"))
bound_only_expression_binding_stats %>% head()
## # A tibble: 6 x 9
## # Groups: ELT2_cluster, set [6]
   set absent present ELT2_cluster percent background_perc~ pval conf.upper
    <fct> <int> <int> <fct>
                                                        <dbl> <dbl>
                                        <dbl>
                                                                          <dbl>
##
## 1 SET1
            138
                       2 Embryo_Spec~ 0.0143
                                                        0.0124 0.694
                                                                         0.0507
## 2 SET2
            134
                                                      0.0124 1
                                                                         0.0406
                      1 Embryo_Spec~ 0.00741
## 3 SET3
            145
                      3 Embryo_Spec~ 0.0203
                                                      0.0124 0.437
                                                                         0.0581
                      2 Embryo_Spec~ 0.00909
                                                        0.0124 1
                                                                         0.0325
## 4 SET4
             218
## 5 SET1
              93
                      47 Larval
                                                        0.316 0.649
                                                                         0.420
                                      0.336
## 6 SET2
              94
                      41 Larval
                                                        0.316 0.853
                                                                         0.389
                                      0.304
## # ... with 1 more variable: conf.lower <dbl>
ggplot(bound_only_expression_binding_stats,
      aes(x = set,
          y = percent, fill = ELT2_cluster)) +
 geom_bar(stat = "identity") +
 scale_y_continuous(limits = c(0, 1.5)) +
 theme_classic() +
 geom_hline(
   data = bound_only_percent_bound_per_ELT2_cluster,
   color = "red",
   linetype = "dashed",
   aes(yintercept = percent)
 ) +
 geom_errorbar(
   ymax = bound only expression binding stats$conf.upper,
   ymin = bound_only_expression_binding_stats$conf.lower,
   width = 0.1
 ) +
 coord_flip() +
 facet_grid(. ~ ELT2_cluster) +
 scale_fill_manual(values = as.character(cluster_colors$val))
```



```
# ggsave(filename = "./03_plots/11_Bound_Only_Percent_of_ELT2bindClust_per_ExpressionClust_200615.pdf",
# height = 5,
# width = 8)
```

Make a TF subset heatmap

```
show_row_names = TRUE,
show_column_names = TRUE,
column_title = "Differential Expression of\nAll Transcription Factors"
)
tf_heatmap
```



```
 \begin{tabular}{ll} \# pdf("./03\_plots/12\_Differential\_Expression\_of\_All\_TFs.pdf", height = 20, width = 4) \\ \# tf\_heatmap \\ \# dev.off() \end{tabular}
```

Add row annotation to indicate ELT-2 binding in L1 stage

```
elt2_detected_in_L1 %>% filter(WBGeneID %in% rownames(dynamic_counts_matrix_scaled_TFs))
```

```
## # A tibble: 18 x 1
##
      WBGeneID
##
      <chr>
## 1 WBGene00011376
   2 WBGene00003678
## 3 WBGene00016888
## 4 WBGene00004096
## 5 WBGene00019327
## 6 WBGene00003845
## 7 WBGene00021082
## 8 WBGene00019743
## 9 WBGene00003648
## 10 WBGene00012101
## 11 WBGene00014193
## 12 WBGene00016997
## 13 WBGene00018704
## 14 WBGene00016865
## 15 WBGene00019344
## 16 WBGene00017687
## 17 WBGene00003727
## 18 WBGene00003511
tf bound anno <-
  data.frame(
    WBGeneID = rownames(dynamic_counts_matrix_scaled_TFs),
    elt2_detected_in_L1 = ifelse(
      test = rownames(dynamic_counts_matrix_scaled_TFs) %in% elt2_detected_in_L1$WBGeneID,
      yes = "bound",
      no = "not.bound"
    )
  )
tf_heatmap_L1bound <-
  tf_heatmap +
  rowAnnotation(L1_bound = tf_bound_anno$elt2_detected_in_L1,
                col = list(L1_bound = c(
                  "bound" = "green", "not.bound" = "black"
                )))
tf_heatmap_L1bound
```

Differential Expression of All Transcription Factors


```
 \begin{tabular}{ll} \# pdf("./03\_plots/13a\_Differential\_Expression\_of\_All\_TFs\_L1elt2bound\_anno.pdf", height = 5, width = 5.5 \\ \# tf\_heatmap\_L1bound \\ \# dev.off() \end{tabular}
```

Add row annotation of intestine expression from Spencer intestine RNA data

```
tf_spencer_rna_anno <- data.frame(</pre>
  spencerLE = ifelse(
    test = rownames(dynamic_counts_matrix_scaled_TFs) %in% spencer_LE_subset$spencer_LE_ID,
    yes = "enriched",
    no = "depleted"
  ),
  spencerL2 = ifelse(
    test = rownames(dynamic_counts_matrix_scaled_TFs) %in% spencer_L2_subset$spencer_L2_ID,
    yes = "enriched",
    no = "depleted"
  )
tf_heatmap_L1bound_spencerRNA <- tf_heatmap_L1bound + rowAnnotation(</pre>
    LE.intestine = tf_spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
```

```
) +
rowAnnotation(
   L2.intestine = tf_spencer_rna_anno$spencerL2,
   col = list(L2.intestine = c(
        "enriched" = "blue", "depleted" = "white"
   )),
   border = TRUE
)

tf_heatmap_L1bound_spencerRNA
```

Differential Expression of All Transcription Factors


```
 \begin{tabular}{ll} \# pdf("./03\_plots/13b\_Differential\_Expression\_of\_All\_TFs\_L1elt2bound\_anno.pdf", height = 5, width = 5.5 \\ \# tf\_heatmap\_L1bound\_spencerRNA \\ \# dev.off() \end{tabular}
```

Split heatmap based on L1 binding


```
 \begin{tabular}{ll} \# pdf("./03\_plots/14a\_Differential\_Expression\_of\_All\_TFs\_L1elt2bound\_split.pdf", height = 5, width = 5. \\ \# tf\_heatmap\_L1bound\_split \\ \# dev.off() \end{tabular}
```

Add row annotation of intestine expression from Spencer intestine RNA data to split heatmap

```
tf_heatmap_L1bound_split_spencerRNA <- tf_heatmap_L1bound_split +</pre>
  rowAnnotation(
    LE.intestine = tf_spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  ) +
  rowAnnotation(
    L2.intestine = tf_spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  )
tf_heatmap_L1bound_split_spencerRNA
```



```
 \begin{tabular}{ll} \# pdf("./03\_plots/14b\_Differential\_Expression\_of\_All\_TFs\_L1elt2bound\_split\_spencerRNA.pdf", height = 5, \\ \# tf\_heatmap\_L1bound\_split\_spencerRNA \\ \# dev.off() \end{tabular}
```

Zoom in on only bound TFs

```
dynamic_counts_matrix_scaled_TFs_bound <-</pre>
  matrix_select(dynamic_counts_matrix_scaled_TFs,
                 elt2_detected_in_L1$WBGeneID)
dynamic_counts_matrix_scaled_TFs_bound_names <-</pre>
  id2name(dynamic_counts_matrix_scaled_TFs_bound)
HAboundTF <- Heatmap(</pre>
  dynamic_counts_matrix_scaled_TFs_bound_names,
  col = colorRampPalette(c("cyan", "black", "yellow"))(1000),
  cluster_columns = FALSE,
  clustering_distance_rows = "spearman",
  clustering_method_rows = "complete",
  show_row_names = TRUE,
  row_names_side = "left",
  show_column_names = TRUE,
  column_title = "Differential Expression of\nELT-2 Bound Transcription Factors"
)
HAboundTF
```

Differential Expression of ELT–2 Bound Transcription Factors


```
 \begin{tabular}{ll} \# pdf("./03\_plots/15a\_Differential\_Expression\_Bound\_TFs\_only.pdf", height = 5, width = 5.5) \\ \# HAboundTF \\ \# dev.off() \end{tabular}
```

```
tf_bound_spencer_rna_anno <- data.frame(</pre>
  spencerLE = ifelse(
    test = rownames(dynamic_counts_matrix_scaled_TFs_bound) %in% spencer_LE_subset$spencer_LE_ID,
    yes = "enriched",
    no = "depleted"
  ),
  spencerL2 = ifelse(
    test = rownames(dynamic_counts_matrix_scaled_TFs_bound) %in% spencer_L2_subset$spencer_L2_ID,
    yes = "enriched",
    no = "depleted"
  )
)
HAboundTF_spencerRNA <- HAboundTF + rowAnnotation(</pre>
    LE.intestine = tf_spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  rowAnnotation(
```

```
L2.intestine = tf_spencer_rna_anno$spencerL2,
  col = list(L2.intestine = c(
     "enriched" = "blue", "depleted" = "white"
  )),
  border = TRUE
)
HAboundTF_spencerRNA
```

Differential Expression of


```
 \begin{tabular}{ll} \# pdf("./03\_plots/15b\_Differential\_Expression\_Bound\_TFs\_only\_spencerRNA.pdf", height = 5, width = 5.5) \\ \# HAboundTF\_spencerRNA \\ \# dev.off() \end{tabular}
```

This plot suggests that transcription factors bound by ELT-2 are typically upregulated in the absence of ELT-2.

TFs to follow up: pqm-1 (intestine), zip-10, odd-1 (repressed by elt-2 alone, normally gut expressed). nhr-58 (vulva), zip-2 (neuron), cebp-1 (neuron), gla-3 (germline), zip-11

Session Info

```
sessionInfo()
```

```
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS High Sierra 10.13.1
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## BLAS:
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] grid
                 stats
                           graphics grDevices utils
                                                          datasets methods
## [8] base
##
## other attached packages:
## [1] circlize_0.4.8
                             binom_1.1-1
                                                   dendextend_1.14.0
## [4] RVAideMemoire 0.9-78 pheatmap 1.0.12
                                                   matrixStats 0.56.0
## [7] ComplexHeatmap_2.0.0 readxl_1.3.1
                                                   forcats_0.5.0
## [10] stringr 1.4.0
                             dplyr_0.8.5
                                                   purrr 0.3.3
## [13] readr_1.3.1
                             tidyr_1.0.2
                                                   tibble_3.0.0
## [16] ggplot2_3.3.0
                             tidyverse_1.3.0
                                                   biomaRt_2.40.5
##
## loaded via a namespace (and not attached):
## [1] nlme 3.1-144
                             bitops 1.0-6
                                                   fs 1.4.1
## [4] lubridate 1.7.8
                             bit64 0.9-7
                                                   RColorBrewer_1.1-2
## [7] progress_1.2.2
                             httr_1.4.1
                                                   tools_3.6.3
                                                   R6_2.4.1
## [10] backports_1.1.6
                             utf8_1.1.4
## [13] DBI_1.1.0
                             BiocGenerics_0.30.0
                                                   colorspace_1.4-1
## [16] GetoptLong_0.1.8
                             withr_2.1.2
                                                   gridExtra_2.3
## [19] tidyselect_1.0.0
                             prettyunits_1.1.1
                                                   curl_4.3
## [22] bit_1.1-15.2
                             compiler_3.6.3
                                                   cli_2.0.2
## [25] rvest_0.3.5
                             Biobase_2.44.0
                                                   xm12_1.3.1
                                                   digest_0.6.25
## [28] labeling_0.3
                             scales_1.1.0
## [31] rmarkdown 2.1
                             pkgconfig_2.0.3
                                                   htmltools 0.4.0
## [34] dbplyr_1.4.2
                             rlang_0.4.5
                                                   GlobalOptions_0.1.1
## [37] rstudioapi 0.11
                             RSQLite 2.2.0
                                                   farver 2.0.3
## [40] shape_1.4.4
                             generics_0.0.2
                                                   jsonlite_1.6.1
## [43] RCurl 1.98-1.1
                             magrittr_1.5
                                                   Rcpp_1.0.4.6
## [46] munsell_0.5.0
                             S4Vectors_0.22.1
                                                   fansi_0.4.1
## [49] viridis 0.5.1
                             lifecycle 0.2.0
                                                   stringi 1.4.6
## [52] yaml 2.2.1
                             blob 1.2.1
                                                   parallel 3.6.3
## [55] crayon 1.3.4
                             lattice_0.20-38
                                                   haven 2.2.0
## [58] hms_0.5.3
                                                   pillar_1.4.3
                             knitr_1.28
## [61] rjson_0.2.20
                             stats4_3.6.3
                                                   reprex_0.3.0
## [64] XML_3.99-0.3
                             glue_1.4.0
                                                   evaluate_0.14
## [67] modelr_0.1.6
                             png_0.1-7
                                                   vctrs_0.2.4
## [70] cellranger_1.1.0
                             gtable_0.3.0
                                                   clue_0.3-57
## [73] assertthat_0.2.1
                             xfun_0.13
                                                   broom_0.5.5
## [76] viridisLite_0.3.0
                             AnnotationDbi_1.46.1 memoise_1.1.0
## [79] IRanges_2.18.3
                             cluster_2.1.0
                                                   ellipsis_0.3.0
```