Particle spectrograph

Wave operator and propagator

Quadratic (free) action $S = \frac{1}{S} = \frac{1}{S} \int (\phi \rho + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \beta \partial_{\alpha} \phi \partial^{\alpha} \phi + \frac{1}{2} \alpha (\partial_{\beta} h^{\chi}_{\chi} \partial^{\beta} h^{\alpha}_{\alpha} + 2 \partial_{\alpha} h^{\alpha\beta} \partial_{\chi} h^{\chi}_{\beta} - 2 \partial^{\beta} h^{\alpha}_{\alpha}}{\partial_{\chi} h^{\chi}_{\beta} - \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta}) [t, x, y, z] dz dy dx dt$

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\mathcal{T}_{0^{+}}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{-\alpha\beta}=0$	1
$\mathcal{T}_{1}^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total constraints/gauge generators:		4

Massive and massless spectra

(No massive particles)

 $\mathcal{T}_{0^{+}}^{\#1} \, \mathcal{T}_{0^{+}}^{\#2} \, \rho_{0^{+}}^{\#1}$

 $\mathcal{T}_{0}^{#2} \dagger 0$

Unitarity conditions

 α < 0 && β > 0