1 Preliminaries

In this section we will review some basic concepts of linear algebra and vector calculus that will be used throughout the document.

1.1 Properties of cross and dot products

Proposition 1. Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$. Then:

$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u} \tag{1}$$

$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w} \tag{2}$$

Proof. Let $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$. Then:

$$((\mathbf{u} \times \mathbf{v}) \times \mathbf{w})_1 = (u_3 v_1 - u_1 v_3) w_3 - (u_1 v_2 - u_2 v_1) w_2$$

$$= (u_2 w_2 + u_3 w_3) v_1 - (v_2 w_2 + v_3 w_3) u_1$$

$$= (u_1 w_1 + u_2 w_2 + u_3 w_3) v_1 - (v_1 w_1 + v_2 w_2 + v_3 w_3) u_1$$

$$= ((\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{v} \cdot \mathbf{w}) \mathbf{u})_1$$

The other components are treated similarly. The second equality follows in a similar way.

Proposition 2. Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$. Then:

1.
$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} \cdot \mathbf{w} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u} \cdot \mathbf{w}$$

1.2 Conics in a nutshell

Definition 3. A conic is the curve obtained as the intersection of a plane with the surface of a double cone (a cone with two *nappes*).

In Fig. 1, we show the 3 types of conics: the ellipse, the parabola, and the hyperbola, which differ on their eccentricity, as we will see later. Note that the circle is a special case of the ellipse.

Figure 1: The black boundaries of the colored regions are conic sections. The other half of the hyperbola, which is not shown, is the other nappe of the double cone.

Figure 2: Reference frame centered at the focus of the conic and whose axes are such that the y-axis is parallel to the directrix and the x-axis is perpendicular to the directrix. The directions of the axes are chosen arbitrarily, subject to the constraint that a positive basis is chosen.

Definition 4. The *locus* is a set of points that satisfy a given condition.

The following proposition gives a characterization of the conics.

Proposition 5. A conic is the locus of all points P such that the distance from P to a fixed point F is a multiple of the distance from P to a fixed line D. Mathematically, this is expressed as:

$$d(P,F) = ed(P,D) \tag{3}$$

where d is the Euclidean distance. The point F is called the *focus*; the line D, *directrix*, and the constant of proportionality e, *eccentricity*.

Note that using the polar coordinates (r, ν) as in Fig. 2, we can rewrite Eq. (3) as:

$$r = e(\ell - r\cos\nu) \implies r = \frac{e\ell}{1 + e\cos\nu} = \frac{p}{1 + e\cos\nu}$$
 (4)

where we have defined $p := e\ell$.

Definition 6. Le C be a conic and e be its eccentricity. We say that C is

- an ellipse if $0 \le e < 1$,
- a parabola if e = 1, and
- a hyperbola if e > 1.

If e = 0, the conic is a *circle*.

1.3 Spherical harmonics

1.3.1 Legendre polynomials, regularity and orthonormality

Definition 7. Consider the following second-order differential equation:

$$y'' + p_1(x)y' + p_0(x)y = 0 (5)$$

We say that a is an ordinary point if p_1 and p_2 are analytic at x = a. We say that a is a regular singular point if p_1 has a pole up to order 1 at a and p_0 has a pole of order up to 2 at a. Otherwise we say that a is a irregular singular point.

Definition 8. Consider the following second-order differential equation called *Legendre differential equation*:

$$(1 - x^2)y'' - 2xy' + \lambda y = 0 \tag{6}$$

for $n \in \mathbb{N} \cup \{0\}$. This equation can be written as:

$$((1 - x^2)y')' + \lambda y = 0 \tag{7}$$

If seek for analytic solutions of this equation using the power series method, i.e. looking for solutions of the form $y(x) = \sum_{j=0}^{\infty} a_j x^j$ one can check that we obtain this recursion:

$$a_{j+2} = \frac{j(j+1) - \lambda}{(j+1)(j+2)} a_j \quad j = 0, 1, 2, \dots$$
 (8)

From here we can obtain two independent solutions by setting the initial conditions a_0 and a_1 of the iteration. For example, setting $a_1 = 0$ we obtain a series that has only even powers of x. On the other hand, setting $a_0 = 0$ we obtain a series that has only odd powers of x. These two series converge on the interval (-1,1) by the ratio test (by looking at Eq. (8)) and can be expressed compactly as [?]:

$$y_{e}(x) = a_{0} \sum_{j=0}^{\infty} \left[\prod_{k=0}^{j-1} (2k(2k+1) - \lambda) \right] \frac{x^{2j+1}}{(2j)!} \qquad y_{o}(x) = a_{1} \sum_{j=0}^{\infty} \left[\prod_{k=1}^{j} (2k(2k+1) - \lambda) \right] \frac{x^{2j+1}}{(2j+1)!}$$
(9)

However either for all $\lambda \in \mathbb{R}$ either one of these series diverge at $x = \pm 1$, as it behaves as the harmonic series in a neighbourhood of ± 1 . We are interested, though, in the solutions that remain bounded on the whole interval [-1,1]. Looking at the expressions of Eq. (9) one can check that the only possibility to make the series converge on [-1,1] is when $\lambda = n(n+1)$, $n \in \mathbb{N} \cup \{0\}$. In this case, either one of the

Figure 3: Graphic representation of the first eight Legendre polynomials.

\underline{n}	$P_n(x)$
0	1
1	x
2	$\frac{1}{2}(3x^2-1)$
3	$\frac{1}{2}(5x^3-3x)$
4	$\frac{1}{8}(35x^4 - 30x^2 + 3)$
5	$\frac{1}{3}(63x^5 - 70x^3 + 15x)$
6	$\frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)$
7	$\frac{1}{16}(429x^7 - 693x^5 + 315x^3 - 35x)$

Table 1: First eight Legendre polynomials

series is in fact a polynomial. In both cases it reduces to a polynomial of degree n. For each $n \in \mathbb{N} \cup \{0\}$ if we choose a_0 or a_1 be such that the polynomial evaluates to 1 at x=1, these polynomials are called Legendre polynomials and they are denoted by $P_n(x)$. The other (divergent) series is usually denoted in the literature by $Q_n(x)$ (check [?]). And so the general solution of Eq. (7) for $\lambda = n(n+1)$ can be expressed as a linear combination of P_n and Q_n .

Proposition 9. Consider the function $g_x(t) = \frac{1}{\sqrt{1-2xt+t^2}}$ with $|x| \le 1$. Then, the generating function of g is:

$$\frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n \tag{10}$$

Proof. Assume that formally $\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} Q_n(x)t^n$. We want to check that $Q_n(x) = P_n(x)$ for all $n \in \mathbb{N} \cup \{0\}$. Differentiating the equation with respect to x and with respect to t we obtain:

$$\frac{x-t}{(1-2xt+t^2)^{3/2}} = \sum_{n=0}^{\infty} nQ_n(x)t^{n-1} \qquad \frac{t}{(1-2xt+t^2)^{3/2}} = \sum_{n=0}^{\infty} Q_n't^n$$
 (11)

The second equation can be rewritten as:

$$t\sum_{n=0}^{\infty} Q_n t^n = (1 - 2xt + t^2) \sum_{n=0}^{\infty} Q_n'(x) t^{n-1}$$
(12)

So equating the coefficients of t^n we get:

$$Q_n = Q_{n+1}' - 2xQ_n' + Q_{n-1}' \tag{13}$$

Moreover, from Eq. (11) we have that:

$$t\sum_{n=0}^{\infty} nQ_n(x)t^{n-1} = (x-t)\sum_{n=0}^{\infty} Q_n'(x)t^n$$
(14)

Again equating the coefficients of t^n we get:

$$nQ_n = xQ_n' - Q_{n-1}' (15)$$

Hence differentiating $(1-x^2)P_n'$ we have:

$$((1-x^2)P_n')' = -2xP_n' + (1-x^2)P \tag{16}$$

Proposition 10. Let y(x) be a solution to the Legendre differential equation. Then, $\forall m \in \mathbb{Z}$ the function

$$w_m(x) = (1 - x^2)^{m/2} \frac{\mathrm{d}^m y(x)}{\mathrm{d}x^m}$$
 (17)

solves the general Legendre differential equation:

$$(1 - x^2)y'' - 2xy' + \left(\lambda - \frac{m^2}{1 - x^2}\right)y = 0$$
(18)

In particular if $\lambda = n(n+1)$ for $n \in \mathbb{N} \cup \{0\}$, then w(x) is denoted as

$$P_n^m(x) := (1 - x^2)^{m/2} \frac{\mathrm{d}^m P_n}{\mathrm{d} x^m} \tag{19}$$

and it is called the associated Legendre polynomial of degree n and order m.

Note that although these functions P_n^m are referred to *polynomials*, they are only *real* polynomials if m is even. But we have opt to call them as it is the common practice in the literature (see [?]). Moreover, from the definition of P_n^m , we can see $P_n^0 = P_n$ and that $P_n^m = 0$ if m > n. So we can restrict the domain of m to the set $\{0, 1, \ldots, n-1, n\}$.

Definition 11. Let $n \in \mathbb{N} \cup \{0\}$ and $m \in \{0, 1, \dots, n-1, n\}$. We define the spherical harmonic Y_n^m as:

$$Y_n^m(\theta,\phi) = P_n^{|m|}(\cos\phi)e^{im\theta}$$
(20)

1.3.2 Laplace equation in spherical coordinates

Definition 12. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a twice-differentiable function. The Laplace equation is the equation

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0 \tag{21}$$

where Δ is the Laplace operator.

The next proposition gives the Laplace equation in spherical coordinates.

Proposition 13. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a twice-differentiable function. Then:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial f}{\partial r}\right) + \frac{1}{r^2\sin\phi}\frac{\partial}{\partial\phi}\left(\sin\phi\frac{\partial f}{\partial\phi}\right) + \frac{1}{r^2(\sin\phi)^2}\frac{\partial^2 f}{\partial\theta^2} = 0 \tag{22}$$

where r denotes the radial distance, θ denotes the azimuthal angle, and ϕ , the polar angle.

Recall that a solutions to the *Dirichlet problem* on a bounded domain $\Omega \subset \mathbb{R}^3$

$$\begin{cases} \Delta u = 0 & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$
 (23)

exists and is unique if g is sufficiently smooth. Theorem 14 gives them as a function of the so-called

Theorem 14. The regular solutions in a bounded region $\Omega \subseteq \mathbb{R}^3$ such that $0 \notin \overline{\Omega}$ to the Laplace equation in spherical coordinates are of the form

$$f(r,\theta,\phi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (c_n^m r^n + d_n^m r^{-n-1}) P_n^{|m|}(\cos\phi) e^{im\theta} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (c_n^m r^n + d_n^m r^{-n-1}) Y_n^m(\theta,\phi)$$
(24)

where $c_n^m, d_n^m \in \mathbb{C}$.

Proof. Let $f(r, \theta, \phi)$ be a solution of Eq. (22) Using separation variables $f(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$ one can write:

$$\frac{\Theta\Phi}{r^2}(r^2R')' + \frac{R\Theta}{r^2\sin\phi}(\sin\phi\Phi')' + \frac{R\Phi}{r^2(\sin\phi)^2}\Theta'' = 0$$
 (25)

Isolating R from Θ and Φ yields:

$$\frac{(r^2R')'}{R} = -\frac{1}{\sin\phi\Phi}(\sin\phi\Phi')' - \frac{1}{(\sin\phi)^2\Theta}\Theta''$$
(26)

Since the left-hand side depends entirely on r and the right-hand side does not, we must need that both sides are constant. Hence:

$$\frac{\left(r^2R'\right)'}{R} = \lambda \tag{27}$$

$$\frac{(r^2R')'}{R} = \lambda$$

$$\frac{1}{\sin\phi\Phi}(\sin\phi\Phi')' + \frac{1}{(\sin\phi)^2\Theta}\Theta'' = -\lambda$$
(27)

with $\lambda \in \mathbb{R}$. Similarly from Eq. (28) we obtain that the equations

$$\frac{1}{\Theta}\Theta'' = -m^2 \tag{29}$$

$$\frac{\sin\phi}{\Phi}(\sin\phi\Phi')' + \lambda(\sin\phi)^2 = m^2 \tag{30}$$

must be constant with $m \in \mathbb{C}$ (a priori). The solution to Eq. (29) is a linear combination of the exponentials $e^{im\theta}$, $e^{-im\theta}$. Note, though, that since Θ must be a 2π -periodic function, that is satisfying $\Theta(\theta+2\pi)=\Theta(\theta)\ \forall \theta\in\mathbb{R},\ m$ must be an integer. On the other hand making the change of variables $x = \cos \phi$ and $y = \Phi(\phi)$ in Eq. (30), that equation becomes:

$$(1-x^2)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\lambda - \frac{m^2}{1-x^2}\right)y = 0 \tag{31}$$

which is the associate Legendre equation. We have argued in Proposition 10 that we need $\lambda = n(n+1)$ and $m \le n$ in order to get regular solutions at $x = \cos \phi = \pm 1$. Moreover these solutions are $P_n^m(\cos \phi)$. Finally note that equation Eq. (27) is a Cauchy-Euler equation (check [?]) and so it general solution is

$$R(r) = c_1 r^n + c_2 r^{-n-1} (32)$$

because $\lambda = n(n+1)$. So the general solution becomes a linear combination of the each solution founded varying $n \in \mathbb{N} \cup \{0\}$ and $m \in \{0, 1, \dots, n-1, n\}$:

$$f(r,\theta,\phi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (c_n^m r^n + d_n^m r^{-n-1}) P_n^{|m|}(\cos\phi) e^{im\theta}$$
(33)

From now we are not concerning of the singularity at r=0 of Eq. (24) (see SECTION-POTENTIAL for more details).

With a bit of patience one can prove that $\forall n_1, n_2 \in \mathbb{N} \cup \{0\}$ and all $0 \le m \le \min\{n_1, n_2\}$:

$$\int_{0}^{1} P_{n_{1}}^{m}(x) P_{n_{2}}^{m}(x) dx = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!} \delta_{n_{1},n_{2}}$$
(34)

where δ_{n_1,n_2} denotes the Kronecker delta. From here it's not hard to prove the spherical harmonics behave in a similar way:

$$\int_{0}^{2\pi} \int_{0}^{\pi} Y_{n_1}^{m_1}(\theta, \phi) \overline{Y_{n_2}^{m_2}(\theta, \phi)} \, d\phi \, d\theta = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!} \delta_{n_1, n_2} \delta_{m_1, m_2}$$
(35)

Moreover, an important result in the Sturm-Liouville Theory of second order differential equations ([?, ?]) says that the family of spherical harmonics $\{Y_n^m(\theta,\phi):n\in\mathbb{N}\cup\{0\},|m|\leq n\}$ form a complete set in the sense that any smooth function defined on the sphere $f: S^2 \to \mathbb{R}$ can be expanded in a series of spherical harmonics:

$$f(\theta,\phi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} c_n^m Y_n^m(\theta,\phi)$$
 (36)

5