- Apostila Fernando Livro Ex 9.3 9.5 9.7 9.14
 9.66 9.15 9.26 9.8
- Exercicios Oppenheim 9.28 9.30
- Exemplos 9.25, 9.26 Oppenheim

Exemplo 9.25

Seja um sistema LTI com entrada x(t) e saida y(t):

$$x(t) = e^{-3t}u(t)$$

$$y(t) = [e^{-2t} - e^{-t}]u(t)$$

Determina a função de transferência e a eq diferencial do sistema

SOL

$$H(s) = Y(s) = \frac{s+3}{s^2+3s+2} \quad RE(s) > -1$$

$$X(s) = \frac{1}{s+3} \quad RE(s) > -3; \quad = Y(s) = \frac{1}{s+1} \frac{1}{s+2} \quad RE(s) > -1$$

então a eq diff é

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = \frac{dx(t)}{dt} + 3x(t)$$

P20.1

Consider the signal $x(t) = 3e^{2t}u(t) + 4e^{3t}u(t)$.

- (a) Does the Fourier transform of this signal converge?
- (b) For which of the following values of σ does the Fourier transform of $x(t)e^{-\sigma t}$ converge?
 - (i) $\sigma = 1$
 - (ii) $\sigma = 2.5$
 - (iii) $\sigma = 3.5$
- (c) Determine the Laplace transform X(s) of x(t). Sketch the location of the poles and zeros of X(s) and the ROC.

- (a) The Fourier transform of the signal does not exist because of the presence of growing exponentials. In other words, x(t) is not absolutely integrable.
- **(b)** (i) For the case $\sigma = 1$, we have that

$$x(t)e^{-\sigma t} = 3e^{t}u(t) + 4e^{2t}u(t)$$

Although the growth rate has been slowed, the Fourier transform still does not converge.

(ii) For the case $\sigma = 2.5$, we have that

$$x(t)e^{-\sigma t} = 3e^{-0.5t}u(t) + 4e^{0.5t}u(t)$$

The first term has now been sufficiently weighted that it decays to 0 as t goes to infinity. However, since the second term is still growing exponentially, the Fourier transform does not converge.

(iii) For the case $\sigma = 3.5$, we have that

$$x(t)e^{-at} = 3e^{-1.5t}u(t) + 4e^{-0.5t}u(t)$$

Both terms do decay as t goes to infinity, and the Fourier transform converges. We note that for any value of $\sigma > 3.0$, the signal $x(t)e^{-\sigma t}$ decays exponentially, and the Fourier transform converges.

(c) The Laplace transform of x(t) is

$$X(s) = \frac{3}{s-2} + \frac{4}{s-3} = \frac{7(s-\frac{17}{7})}{(s-2)(s-3)},$$

and its pole-zero plot and ROC are as shown in Figure S20.1.

Note that if $\sigma > 3.0$, $s = \sigma + j\omega$ is in the region of convergence because, as we showed in part (b)(iii), the Fourier transform converges.

P20.4

Determine x(t) for the following conditions if X(s) is given by

$$X(s) = \frac{1}{(s+1)(s+2)}$$

- (a) x(t) is right-sided
- **(b)** x(t) is left-sided
- (c) x(t) is two-sided

(a) For x(t) right-sided, the ROC is to the right of the rightmost pole, as shown in Figure S20.4-1.

Using partial fractions,

$$X(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s+1} - \frac{1}{s+2}$$

so, by inspection,

$$x(t) = e^{-t}u(t) - e^{-2t}u(t)$$

(b) For x(t) left-sided, the ROC is to the left of the leftmost pole, as shown in Figur S20.4-2.

Since

$$X(s) = \frac{1}{s+1} - \frac{1}{s+2},$$

we conclude that

$$x(t) = -e^{-t}u(-t) - (-e^{-2t}u(-t))$$

(c) For the two-sided assumption, we know that x(t) will have the form

$$f_1(t)u(-t) + f_2(t)u(t)$$

We know the inverse Laplace transforms of the following:

$$\begin{split} \frac{1}{s+1} &= \begin{cases} e^{-\iota}u(t), & \text{assuming right-sided,} \\ -e^{-\iota}u(-t), & \text{assuming left-sided,} \end{cases} \\ \frac{1}{s+2} &= \begin{cases} e^{-2\iota}u(t), & \text{assuming right-sided,} \\ -e^{-2\iota}u(-t), & \text{assuming left-sided} \end{cases} \end{split}$$

Which of the combinations should we choose for the two-sided case? Suppose we choose

$$x(t) = e^{-t}u(t) + (-e^{-2t})u(-t)$$

We ask, For what values of σ does $x(t)e^{-\sigma t}$ have a Fourier transform? And we see that there are no values. That is, suppose we choose $\sigma > -1$, so that the first term has a Fourier transform. For $\sigma > -1$, $e^{-2t}e^{-\sigma t}$ is a growing exponential as t goes to negative infinity, so the second term does not have a Fourier transform. If we increase σ , the first term decays faster as t goes to infinity, but

the second term grows faster as t goes to negative infinity. Therefore, choosing $\sigma > -1$ will not yield a Fourier transform of $x(t)e^{-\sigma t}$. If we choose $\sigma \leq -1$, we note that the first term will not have a Fourier transform. Therefore, we conclude that our choice of the two-sided sequence was wrong. It corresponds to the *invalid* region of convergence shown in Figure S20.4-3.

If we choose the other possibility,

$$x(t) = -e^{-t}u(-t) - e^{-2t}u(t),$$

we see that the valid region of convergence is as given in Figure S20.4-4.

P20.5

An LTI system has an impulse response h(t) for which the Laplace transform H(s) is

$$H(s) = \int_{-\infty}^{+\infty} h(t)e^{-st}dt = \frac{1}{s+1}, \quad Re\{s\} > -1$$

Determine the system output y(t) for all t if the input x(t) is given by

$$x(t) = e^{-t/2} + 2e^{-t/3}$$
 for all t .

We consider the solution of this problem as the superposition of the respons to two signals $x_1(t)$, $x_2(t)$, where $x_1(t)$ is the noncausal part of x(t) and $x_2(t)$ is the causal part of x(t). That is,

$$x_1(t) = e^{-t/2}u(-t) + 2e^{-t/3}u(-t),$$

$$x_2(t) = e^{-t/2}u(t) + 2e^{-t/3}u(t)$$

This allows us to use Laplace transforms, but we must be careful about the ROCs Now consider $\mathcal{L}\{x_1(t)\}$, where $\mathcal{L}\{\cdot\}$ denotes the Laplace transform:

$$\mathcal{L}\{x_1(t)\} = X_1(s) = -\frac{1}{s+\frac{1}{2}} - \frac{2}{s+\frac{1}{3}}, \qquad Re\{s\} < -\frac{1}{2}$$

Now since the response to $x_1(t)$ is

$$y_1(t) = \mathcal{L}^{-1}\{X_1(s)H(s)\},$$

then

$$\begin{split} Y_1(s) &= -\frac{1}{(s+1)(s+\frac{1}{2})} - \frac{2}{(s+\frac{1}{3})(s+1)}, \qquad -1 < Re\{s\} < -\frac{1}{2}, \\ &= \frac{2}{s+1} + \frac{-2}{s+\frac{1}{2}} + \frac{-3}{s+\frac{1}{3}} + \frac{3}{s+1}, \\ &= \frac{5}{s+1} - \frac{2}{s+\frac{1}{2}} - \frac{3}{s+\frac{1}{3}}, \end{split}$$

so

$$y_1(t) = 5e^{-t}u(t) + 2e^{-t/2}u(-t) + 3e^{-t/3}u(-t)$$

Next consider the response $y_2(t)$ to $x_2(t)$:

$$egin{aligned} x_2(t) &= e^{-t/2}u(t) + 2e^{-t/3}u(t), \ X_2(s) &= rac{1}{s+rac{1}{2}} + rac{2}{s+rac{1}{3}}, & Re\{s\} > -rac{1}{3}, \ Y_2(s) &= X_2(s)H(s) &= rac{1}{(s+rac{1}{2})(s+1)} + rac{2}{(s+rac{1}{3})(s+1)}, \ Y_2(s) &= rac{2}{s+rac{1}{4}} + rac{-2}{s+1} + rac{3}{s+rac{1}{4}} + rac{-3}{s+1}, \end{aligned}$$

so

$$y_2(t) = -5e^{-t}u(t) + 2e^{-t/2}u(t) + 3e^{-t/3}u(t)$$

The pole-zero plot and associated ROC for $Y_2(s)$ is shown in Figure S20.5-2.

Since
$$y(t) = y_1(t) + y_2(t)$$
, then

$$y(t) = 2e^{-t/2} + 3e^{-t/3}$$
 for all t

P21.2

Consider the LTI system with input $x(t) = e^{-t}u(t)$ and impulse response $h(t) = e^{-2t}u(t)$.

- (a) Determine X(s) and H(s).
- (b) Using the convolution property of the Laplace transform, determine Y(s), the Laplace transform of the output, y(t).
- (c) From your answer to part (b), find y(t).

S21.2

(a) By definition,

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$$
$$= \int_{0}^{\infty} e^{-t}e^{-st} dt$$

We limit the integral to $(0, \infty)$ because of u(t), so

$$X(s) = \int_0^\infty e^{-(1+s)t} dt = \frac{-1}{1+s} e^{-(1+s)t} \Big|_0^\infty$$

If the real part of (1 + s) is positive, i.e., $Re\{s\} > -1$, then

$$\lim_{t\to\infty}e^{-(1+s)t}=0$$

Thus

$$X(s) = \frac{0(-1)}{1+s} - \frac{1(-1)}{1+s} = \frac{1}{1+s}, \quad Re(s) > -1$$

The condition on $Re\{s\}$ is the ROC and basically indicates the region for which 1/(1+s) is equal to the integral defined originally. Similarly,

$$H(s) = \int_{-\infty}^{\infty} e^{-2t} u(t) e^{-st} dt = \int_{0}^{\infty} e^{-(2+s)t} dt = \frac{1}{s+2}, \quad Re\{s\} > -2$$

b) By the convolution property of the Laplace transform, Y(s) = H(s)X(s) in a manner similar to the property of the Fourier transform. Thus,

$$Y(s) = \frac{1}{(s+1)(s+2)}, \quad Re(s) > -1,$$

where the ROC is the intersection of individual ROCs.

c) Here we can use partial fractions:

$$\frac{1}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2},$$

$$A = Y(s)(s+1) \Big|_{s=-1} = 1,$$

$$B = Y(s)(s+2) \Big|_{s=-2} = -1$$

Thus,

$$Y(s) = \frac{1}{s+1} - \frac{1}{s+2}, \quad Re(s) > -1$$

Recognizing the individual Laplace transforms, we have

$$y(t) = e^{-t}u(t) - e^{-2t}u(t)$$

P21.4

Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by the differential equation

$$\frac{d^2y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t)$$

Let X(s) and Y(s) denote the Laplace transforms of x(t) and y(t), and let H(s) denote the Laplace transform of the impulse response h(t) of the preceding system.

- (a) Determine H(s). Sketch the pole-zero plot.
- (b) Sketch the ROC for each of the following cases:
 - (i) The system is stable.
 - (ii) The system is causal.
 - (iii) The system is neither stable nor causal.
- (c) Determine h(t) when the system is causal.

(a) From the properties of the Laplace transform,

$$Y(s) = X(s)H(s)$$

A second relation occurs due to the differential equation. Since

$$\frac{d^k x(t)}{dt^k} \stackrel{\mathcal{L}}{\longleftrightarrow} s^k X(s)$$

and using the linearity property of the Laplace transform, we can take Laplace transform of both sides of the differential equation, yielding

$$s^2Y(s) - sY(s) - 2Y(s) = X(s).$$

Therefore,

$$H(s) = \frac{Y(s)}{X(s)} = \frac{1}{s^2 - s - 2} = \frac{1}{(s - 2)(s + 1)}$$

The pole-zero plot is shown in Figure S21.4-1.

(b) (i) For a stable system, the ROC must include the $j\omega$ axis. Thus the ROC must be as drawn in Figure S21.4-2.

(ii) For a causal system, the ROC must be to the right of the rightmost pole, as shown in Figure S21.4-3.

(iii) For a system that is not causal or stable, we are left with an ROC that is to the left of s = -1, as shown in Figure S21.4-4.

(c) To take the inverse Laplace transform, we use the partial fraction expansion:

$$H(s) = \frac{1}{(s+1)(s-2)} = \frac{A}{s+1} + \frac{B}{s-2} = \frac{-\frac{1}{3}}{s+1} + \frac{\frac{1}{3}}{s-2}$$

We now take the inverse Laplace transform of each term in the partial fraction expansion. Since the system is causal, we choose right-sided signals in both cases. Thus,

$$h(t) = -\frac{1}{3}e^{-t}u(t) + \frac{1}{3}e^{+2t}u(t)$$

Consider the following system function H(s) and its corresponding pole-zero plot in Figure P21.5.

$$H(s) = \frac{s}{s+1}$$

Using the graphical method discussed in the lecture, find |H(0)|, $\triangleleft H(0)$, |H(j1)|, $\triangleleft H(j1)$, $|H(j\infty)|$, and $\triangleleft H(j\infty)$. Sketch the functions $|H(j\omega)|$ and $\triangleleft H(j\omega)$.

 $\omega=0$: Since there is a zero at s=0, |H(j0)|=0. You may think that the phase is also zero, but if we move slightly on the $j\omega$ axis, $\not < H(j\omega)$ becomes

(Angle to
$$s = 0$$
) – (Angle to $s = -1$) = $\frac{\pi}{2} - 0 = \frac{\pi}{2}$

 $\omega = 1$: The distance to s = 0 is 1 and the distance to s = -1 is $\sqrt{2}$. Thus

$$|H(j1)| = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

The phase is

(Angle to
$$s = 0$$
) – (Angle to $s = -1$) = $\frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} = 4$ $(j1)$

 $\omega = \infty$: The distance to s = 0 and s = -1 is infinite; however, the ratio tends to 1 as ω increases. Thus, $|H(j\infty)| = 1$. The phase is given by

The magnitude and phase of $H(j\omega)$ are given in Figure S21.5.

(a) Draw the block diagram for the following second-order system in terms of integrators, coefficient multipliers, and adders.

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

- (b) Sketch the pole-zero plot of H(s) and plot $|H(j\omega)|$ under the following conditions.
 - (i) ω_n is kept constant, but ζ is varied from close to 0 to close to 1.
 - (ii) ζ is kept constant, but ω_n is varied from about 0 to infinity.

You don't have to be precise but show how the bandwidth and location of the peak changes for the two cases above.

S21.7

(a) Let y(t) be the system response to the excitation x(t). Then the differential equation relating y(t) to x(t) is

$$\frac{d^2y(t)}{dt^2} + 2\zeta\omega_n\frac{dy(t)}{dt} + \omega_n^2y(t) = \omega_n^2x(t)$$

Integrating twice, we have

$$y(t) + 2\zeta \omega_n \int_{-\infty}^t y(\tau) d\tau + \omega_n^2 \int_{-\infty}^t \int_{-\infty}^{\tau'} y(\tau) d\tau d\tau' = \omega_n^2 \int_{-\infty}^t \int_{-\infty}^{\tau'} x(\tau) d\tau d\tau',$$

or

$$y(t) = -2\zeta\omega_n \int_{-\infty}^t y(\tau) d\tau - \omega_n^2 \int_{-\infty}^t \int_{-\infty}^{\tau} y(\tau) d\tau d\tau' + \omega_n^2 \int_{-\infty}^t \int_{-\infty}^{\tau} x(\tau) d\tau d\tau',$$
(b) (i)

shown in Figure S21.7-1.

For a constant ω_n and $0 \le \zeta < 1$, H(s) has a conjugate pole pair on a circle centered at the origin of radius ω_n . As ζ changes from 0 to 1, the poles move from close to the $j\omega$ axis to $-\omega_n$, as shown in Figures S21.7-3, S21.7-4, and S21.7-5.

Figure S21.7-3 shows that for $\zeta \simeq 0$ the pole is close to the $j\omega$ axis, so $|H(j\omega)|$ has a peak very near ω_n .

Figure S21.7-4 shows that the peaks are closer together and more spread out at $\zeta = 0.5$.

Figure S21.7-5 shows that at $\zeta \simeq 1$ the poles are so close together and far from the $j\omega$ axis that $|H(j\omega)|$ has a single peak.

(ii) For constant ζ between 0 and 1, the poles are located on two straight lines. As ω_n increases, the peak frequency increases as well as the bandwidth, as indicated in Figures S21.7-6 and S21.7-7.

P21.8

(a) Consider the following system function H(s).

$$H(s) = \frac{s}{s^2 + s + 1} + \frac{1}{s^2 + 2s + 2}$$

Draw the block diagram for H(s) implemented as

- (i) a parallel combination of second-order systems,
- (ii) a cascade combination of second-order systems.
- **(b)** Is implementation (ii) unique?

(a) (i) The parallel implementation of H(s), shown in Figure S21.8-1, can be drawn directly from the form for H(s) given in the problem statement. The corresponding differential equations for each section are as follows:

$$\frac{d^2y_1(t)}{dt^2} + \frac{dy_1(t)}{dt} + y_1(t) = \frac{dx(t)}{dt},$$

$$\frac{d^2y_2(t)}{dt^2} + \frac{2dy_2(t)}{dt} + 2y(t) = x(t),$$

$$y(t) = y_1(t) + y_2(t)$$

(ii) To generate the cascade implementation, shown in Figure S21.8-2, we first express H(s) as a product of second-order sections. Thus,

$$H(s) = \frac{s(s^2 + 2s + 2) + (s^2 + s + 1)}{(s^2 + s + 1)(s^2 + 2s + 2)} = \frac{s^3 + 3s^2 + 3s + 1}{(s^2 + s + 1)(s^2 + 2s + 2)}$$

Now we need to separate the numerator into two sections. In this case, the numerator equals $(s + 1)^3$, so an obvious choice is

$$(s+1)(s^2+2s+1)$$

Thus,

$$H(s) = \left(\frac{s+1}{s^2+s+1}\right) \left(\frac{s^2+2s+1}{s^2+2s+2}\right)$$

The corresponding differential equations are as follows:

$$\begin{split} \frac{d^2 r(t)}{dt^2} + \frac{d r(t)}{dt} + r(t) &= x(t) + \frac{d x(t)}{dt}, \\ \frac{d^2 y(t)}{dt^2} + \frac{2 d y(t)}{dt} + 2 y(t) &= \frac{d^2 r(t)}{dt^2} + \frac{2 d r(t)}{dt} + r(t) \end{split}$$

(b) We see that we could have decomposed H(s) as

$$H(s) = \left(\frac{s^2 + 2s + 1}{s^2 + s + 1}\right) \left(\frac{s + 1}{s^2 + 2s + 2}\right)$$

Thus, the cascade implementation is not unique.

9.28. (a) The possible ROCs are

(ii)
$$-2 < \Re e\{s\} < -1$$
.

$$(iii) -1 < Re\{s\} < 1.$$

(b) (i) Unstable and anticausal.

- (ii) Unstable and non causal.
- (iii) Stable and non causal.
- (iv) Unstable and causal.

9.28. Consider an LTI system for which the system function H(s) has the pole-zero pattern shown in Figure P9.28.

Figure P9.28

- (a) Indicate all possible ROCs that can be associated with this pole-zero pattern.
- (b) For each ROC identified in part (a), specify whether the associated system is stable and/or causal.

9.30. A pressure gauge that can be modeled as an LTI system has a time response to a unit step input given by $(1 - e^{-t} - te^{-t})u(t)$. For a certain input x(t), the output is observed to be $(2 - 3e^{-t} + e^{-3t})u(t)$.

For this observed measurement, determine the true pressure input to the gauge as a function of time.

9.30. For the input x(t) = u(t), the Laplace transform is

$$X(s) = \frac{1}{s}, \quad \Re e\{s\} > 0.$$

The corresponding output $y(t) = [1 + e^{-t} - te^{-t}]u(t)$ has the Laplace transform

$$Y(s) = \frac{1}{s} - \frac{1}{s+1} - \frac{1}{(s+1)^2} = \frac{1}{s(s+1)^2}, \quad \Re\{s\} > 0.$$

Therefore.

$$H(s) = \frac{Y(s)}{X(s)} = \frac{1}{(s+1)^2}, \quad \Re\{s\} > 0.$$

Now, the output $y_1(t) = [2 - 3e^{-t} + e^{-3t}]u(t)$ has the Laplace transform

$$Y_1(s) = \frac{2}{s} - \frac{3}{s+1} + \frac{1}{s+3} = \frac{6}{s(s+1)(s+3)}, \quad \Re\{s\} > 0.$$

Therefore, the Laplace transform of the corresponding input will be

$$X_1(s) = \frac{Y_1(s)}{H(s)} = \frac{6(s+1)}{s(s+3)}, \quad \Re\{s\} > 0.$$

Taking the inverse Laplace transform of the partial fraction expansion of $X_1(s)$, we obtain

$$x_1(t) = 2u(t) + 4e^{-3t}u(t).$$

Considere o sinal $\,$

$$x(t) = e^{-5t}u(t) + e^{-\beta t}u(t)$$

e que a sua Transformada de Laplace é X(s). Quais são as restrições a serem impostas sobre a parte real e imaginária de β para que a região de convergência de X(s) seja $\Re(s) > -3$?

1) (9.3)

$$\kappa(t) = e^{-st} u(t) + e^{-\beta t} u(t)$$

$$\chi(s) = \mathcal{L} \{ \kappa(t) \}$$

$$= \frac{1}{s+r} + \frac{1}{(s+\beta)} = \frac{(2s+(\beta+5))}{(s+\beta)(s+\beta)}$$

RDC:
$$Re\{s\} > max(-s, Re\{s\})$$

At $Re\{s\} > 3$
 $\Rightarrow Re\{s\} = 3$
 $Im\{s\} = bj$, $\forall b \in R$

$$|x(t)| = e^{-at}u(t) \stackrel{\mathcal{L}}{\leadsto} \chi(s) = \frac{1}{s+a}$$

• EXERCÍCIO 0.3 (Up 9.4) mario de convergencia Determine quantos sinais tem Tranformada de Laplace expressa por

$$\frac{s-1}{(s+2)(s+3)(s^2+s+1)}$$

considerando suas regiões de convergência.

3) (9.4)
$$\chi(t) \stackrel{\mathcal{L}}{\rightleftharpoons} \chi(s) = \frac{(s-1)}{(s+2)(s+3)(s^2+s+1)}$$

$$\chi(t) ?$$

$$\frac{-1}{2} \stackrel{!}{=} \frac{1}{3} \stackrel{!}{=} \frac{$$

Considerando que existem 4 possíveis RDC

exation 4 providers riviais bilaterous associados à esta transformada de laplace

\$1.4

2. Usinago

$$w(t) = q(t)w(t)$$

x(t) = -g(t). u(-t)

Relst Zd, em que d GR+

exemple: v,(11= e at u(t) 12(t) = - e-at W-t).

- EXERCÍCIO 0.4 (\mathbb{Q}_p 9.14) Suponha que os seguintes fatos sobre o sinal x(t) com Transformada de Laplace X(s) foram dados:
 - 1. x(t) é real e par
 - 2. X(s) tem quatro pólos finitos mas nenhum zero finito
- 3. X(s) tem um pólo em $s = \frac{e^{j\pi/4}}{2}$
 - $4. \int_{-\infty}^{\infty} x(t)dt = 4$

 $x(t) \stackrel{\mathcal{L}}{\leadsto} x(s)$

i) x(t) & R, x(t)=x(-t)

ii) K(s) ten 4 pelas finitas m

ν(ε) df = 4

i) se nell o pour > nell o' bil

$$(s+a)(s+b)(s+c)(s+b)$$

(ii)
$$S = \frac{e^{i\frac{\pi}{4}}}{2} = \frac{\cos^{\frac{\pi}{4}}}{2} + j\frac{\sin^{\frac{\pi}{4}}}{2} = \frac{\sqrt{2}}{4} + j\frac{\sqrt{2}}{4}$$

1) $\kappa(1) \in \mathbb{R}$

$$\alpha = \frac{\sqrt{2}}{4} + j\frac{\sqrt{2}}{4}, \quad b = \frac{\sqrt{2}}{4} - j\frac{\sqrt{2}}{4}$$

i)s (ii) re $\kappa(t)$ of pour => aprenenta sumetria de polos = $\kappa(t)$ = $\kappa(t)$ iii) $\chi(s)$ tens um pilo um $s = \frac{1}{4} - \frac{1}{4} \cdot \frac{$

$$(S - \frac{G}{4} - \frac{1}{4})(S - \frac{G}{4} + \frac{1}{4})$$

• EXERCÍCIO 0.9 (Up. 9.66)

Considere o circuito RL mostrado abaixo. Assuma que a corrente i(t) tenha alcançado o regime permamente com a chave na posição A. No tempo t=0, a chave é movida da posição A para B.

- (a) Encontre a equação diferencial relacionando i(t) e $v_2(t)$ para $t < 0^-$. Determine a condição inicial, $i(0^-)$, para a equação diferencial em termos de $v_1(t)$.
- (b) Usando as propriedades da Transformada de Laplace Unilateral, determine e esboce a corrente i(t) para cada um dos seguintes valores de $v_1(t)$ e $v_2(t)$:
 - (i) $v_1 = 0 \ V$, $v_2 = 2 \ V$
 - (ii) $v_1 = 4V$, $v_2 = 0$ V
 - (iii) $v_1=4V,\ v_2=2\ V.$ O que pode ser dito desta condição em relação às outras?

a) $v_i(t) = R_i(t) + k_i(t)$, em que t < 0- significa o tempo quando a chare A uslá aleita

$$V_{1}(s) = R I(s) + Ls I(s)$$

$$I(s) = \frac{V_{1}(s)}{L s + R}$$

$$V_{2}(s) = R I(s) + L(s I(s) - i(0))$$

$$V_{3}(s) = \frac{V_{3}(s)}{L s + R} + \frac{L(i \cdot l_{3})}{L s + R}$$

$$I(s) = \frac{V_{3}(s)}{L s + R} + \frac{L(i \cdot l_{3})}{L s + R}$$

 $ve V_1|S| = \frac{V_1}{S} \implies i(0-) = \lim_{t \to \infty} i(t) = \lim_{s \to 0} S I|S| = \lim_{s \to 0} \frac{V_1}{S} \cdot \frac{1}{LSIR}$ $= \frac{V_1}{R} = V_1$

1)
$$\theta_{1} = 0$$
, $\theta_{2} = 2V \Rightarrow CI = 0$

$$\frac{V_{2}(s)_{-}}{s} = \frac{2}{s}$$

$$\frac{2|s|}{s+1} = \frac{2}{(s+1)s} = \frac{A}{s} + \frac{B}{(s+1)} + \frac{A(s+1) + B(s)}{(A+B) + D}$$

$$= \frac{2}{s} + \frac{2}{s+1}$$

$$\frac{A(s+1) + B(s+1) + B(s+1)}{(A+B) + D}$$

$$= \frac{2}{s} + \frac{2}{s+1}$$

$$A(s+1) + B(s+1) + B(s+1) + B(s+1)$$

$$A(s+1) + B(s+1) + B(s+1) + B(s+1)$$

$$A(s+1) + B(s+1) + B(s+1) + B(s+1)$$

$$A(s+1) + B(s+1) + B(s+1) + B(s+1) + B(s+1)$$

$$A(s+1) + B(s+1) + B(s+1) + B(s+1) + B(s+1)$$

$$A(s+1) + B(s+1) + B(s+1) + B(s+1) + B(s+1)$$

$$A(s+1) + B(s+1) + B(s+1) + B(s+1) + B(s+1) + B(s+1)$$

$$A(s+1) + B(s+1) + B(s+$$

9.15. Consider two right-sided signals x(t) and y(t) related through the differential equations

$$\frac{dx(t)}{dt} = -2y(t) + \delta(t)$$

and

$$\frac{dy(t)}{dt} = 2x(t).$$

Determine Y(s) and X(s), along with their regions of convergence.

m(t), y(t) não runais à dureita

$$\{\dot{x} = -2\dot{y} + \delta(t)\}$$

 $\dot{y} = 2\dot{x}$

XIS) & YIS) & RDC?

$$\frac{2}{s \times s} \left\{ \begin{array}{l} s \times s(s) = -2 \times s(s) + 1 \\ s \times s(s) = 2 \times s(s) \end{array} \right.$$

$$\left\{ \begin{array}{l} s \times s(s) = 2 \times s(s) + 1 \\ s \times s(s) = 2 \times s(s) \end{array} \right.$$

$$\left\{ \begin{array}{l} s \times s(s) = -2 \times s(s) + 1 \\ s \times s(s) = 2 \times s(s) \end{array} \right.$$

$$\left\{ \begin{array}{l} s \times s(s) = -2 \times s(s) + 1 \\ s \times s(s) = 2 \times s(s) \end{array} \right.$$

:
$$Y(s) = \frac{2}{s^2 + 4}$$
 = polos em z_i | RbC: $R\{s\} > 0$ pois $x(l)$

$$X(s) = \frac{s}{s^2 + 4}$$
 = $s = \pm 2i$ | $s = \pm 2i$

9.26. Consider a signal y(t) which is related to two signals $x_1(t)$ and $x_2(t)$ by

$$y(t) = x_1(t-2) * x_2(-t+3)$$

where

$$x_1(t) = e^{-2t}u(t)$$
 and $x_2(t) = e^{-3t}u(t)$.

Given that

$$e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a}, \quad \Re e\{s\} > a,$$

use properties of the Laplace transform to determine the Laplace transform Y(s) of y(t).

6) (9.26)

$$y(t) = \kappa_1(t-2) * \kappa_2(t-2)$$

$$y(t) = x_1(t-2) * x_2(-t+3)$$

em que
$$\kappa_1(t) = e^{-2t} u(t)$$
; $e^{-at} u(t) \stackrel{!}{=} \frac{1}{s+a}$, $Rdst > -a$.

$$x_1(t-2) \stackrel{!}{=} x_1(s) = \frac{e^{-2s}}{s+2}$$

$$(2(-1+3))$$
 $(2(-1+3))$ $(2(-1+3))$ $(2(-1+3))$ $(2(-1+3))$ $(2(-1+3))$ $(2(-1+3))$

$$-\frac{(s-3)}{(s-3)}$$

9.8. Let x(t) be a signal that has a rational Laplace transform with exactly two poles, located at s = -1 and s = -3. If $g(t) = e^{2t}x(t)$ and $G(j\omega)$ [the Fourier transform of g(t)] converges, determine whether x(t) is left sided, right sided, or two sided.

ilp. 9.8

x(t) . L X(s) i racional tem pilos em S = 1 e S = 3

 $g(t) = e^{2t} \kappa(t)$ e Gyu) converge

x(t) é alerto à esquerda, à drieita ou é belatiral?

 \Rightarrow g(t) = $e^{2t}x(t)$. $\stackrel{?}{\leftarrow}$ G(s) = X(s-2)Lego G(s) tem péles em S = 1 e S = -1.

deslocados de 2 poura a directa

como Gljul moter a ROC melui.

como x(1) é um senal belateral.

como x(1) = e-2t g(1), tem re que
x(1) também é belateral.

G(s)