Влияние ультразвуковой обработки на фотоэлектрические и люминесцентные свойства кристаллов ZnSe

© Е.М. Зобов , М.Е. Зобов, Ф.С. Габибов, И.К. Камилов, Ф.И. Маняхин*, Е.К. Наими*

Институт физики Дагестанского научного центра Российской академии наук, 367003 Махачкала. Россия

* Московский государственный институт стали и сплавов (Технологический университет)

119991 Москва, Россия

(Получена 25 апреля 2007 г. Принята к печати 11 августа 2007 г.)

Приведены результаты влияния ультразвуковой обработки кристаллов ZnSe на структуру энергетического спектра электронных состояний центров с глубокими уровнями, формирующими фотоэлектрические и люминесцентные свойства данного соединения. Впервые экспериментально доказано, что движение краевых дислокаций под действием ультразвука приводит к перегруппировке и генерации дефектов, образующих глубокие уровни, проявляющиеся в эффектах фоточувствительности и излучательной рекомбинации.

PACS: 71.55.Gs, 72.40.+w, 78.55.Et

1. Введение

Влияние ультразвука на фотоэлектрические и люминесцентные свойства полупроводников группы А^{II}В^{VI} интенсивно исследуется на протяжении многих лет [1-6]. Основная цель исследований — изучение целенаправленного преобразования энергетического спектра глубоких центров, контролирующих генерационно-рекомбинационные процессы, при возбуждении в них ультразвуковых (УЗ) колебаний путем приложения к кристаллам высокочастотного электрического поля (т.е. за счет собственного пьезоэффекта кристалла). Накопленный при исследовании кристаллов CdS экспериментальный материал показывает, что введение в кристалл мощного ($W > 1 \,\mathrm{Br/cm}^2$) ультразвука частотой в пределах 1-100 МГц приводит к акустолюминесценции [1], образованию новых точечных дефектов [2-3], преобразованию структуры имеющихся в них сложных центров [4], размножению дислокаций [5]. Это сопровождается изменением фотоэлектрических и люминесцентных свойств данного материала. Однако особенности микромеханизмов, приводящих к изменениям в структуре энергетического спектра электронных состояний при возбуждении в кристаллах УЗ колебаний, остаются до конца не выясненными.

В целью раскрытия механизмов перестройки структуры энергетического спектра глубоких центров в кристаллах ZnSe, которые подвергались "мягкой" ультразвуковой обработке, нами проведены исследования их фотоэлектрических и люминесцентных свойств в широком спектральном ($h\nu \approx 0.3-3.0$ эВ) и температурном ($T=90-300~{\rm K}$) диапазонах.

2. Методика эксперимента

Исследовались нелегированные высокоомные (темновое удельное сопротивление $\rho_T \approx 10^8 - 10^{10} \ {\rm Cm \cdot m}$)

монокристаллы ZnSe, имеющие форму параллелепипеда размером $4 \times 3 \times 2$ мм. Обработка кристаллов ультразвуком осуществлялась по методике, разработанной Наими [7]. Схема установки приведена на рис. 1. Пьезокварц возбуждался на частоте первой гармоники 64 кГц. Акустический контракт между кварцем и кристаллом ZnSe создавался посредством тонкого промежуточного слоя — клея БФ-6, с помощью которого кристалл крепился к средней части пьезокварцевого стержня, где располагается пучность стоячей продольной волны напряжения (деформации). Максимальная амплитуда механического напряжения в пучности УЗ волны составляла $G_0 \approx 2.8 \cdot 10^6$ Па. Время УЗ обработки варьировалось от 1 ло 3 ч.

Для снятия спектральных характеристик фотолюминесценции и фотопроводимости использовался модернизированный спектрально-вычислительный комплекс КСВУ-23.

3. Экспериментальные результаты

Исследования фотолюминесценции (ФЛ) показали, что в исходных образцах наблюдается характерная для самоактивированных кристаллов ZnSe широкая полоса излучения с $\lambda_{\rm max}^{(1)} \approx 630\,{\rm hm}$ ($h\nu_{\rm max} \approx 1.97\,{\rm pB}$, перехо-

Рис. 1. Блок-схема установки для ультразвуковой обработки кристаллов: I — ультразвуковой генератор типа Γ 3-33; 2 — частотомер типа Π 3-3A; Π 3, Π 4 — милливольтметры переменного тока типа Π 5-40; Π 6 — Π 7 — измерительное сопротивление; Π 9 — пьезокварц; Π 9 — кристалл.

[¶] E-mail: zem07@mail.ru

Рис. 2. Зонная структура, нарушенная заряженной дислокацией, ее уровни $(E_{\rm d})$ и распределение энергетических уровней центров, обусловливающих фотоэлектрические и люминесцентные свойства кристаллов ZnSe до (a) и после (b) обработки ультразвуком. Стрелками показаны электронно-дырочные переходы.

ды 5, 6 и 5′, 6′ на рис. 2) [8], имеющая "хвост" в коротковолновой части спектра (рис. 3, кривая I). Обработка кристаллов ультразвуком в течение 60 мин приводит к росту интенсивности излучения и трансформации спектра. Максимум полосы ФЛ смещается в коротковолновую область, достигая значения $\lambda_{\rm max}^{(2)} \approx 565$ нм $(h\nu_{\rm max} \approx 2.2\,{\rm pB})$ (рис. 3, кривая 2). Дальнейшее увеличение времени УЗ обработки ($t=135\,{\rm muh}$) приводит к росту интенсивности излучения во всем спектральном диапазоне (рис. 3, кривая 3).

На спектрах фотопроводимости (ФП) исходных кристаллов ZnSe при 300 K наблюдаются две полосы (рис. 4, кривые I и 2). Коротковолновая граница высокоэнергетической полосы ФП расположена вблизи $hv \approx 2.6$ эВ, что отвечает ширине запрещенной зоны данного материала при комнатной температуре (переходы I и I' на рис. 2). После обработки кристаллов ультразвуком интенсивность данной полосы ФП незначительно увеличивается, а в длинноволновой области появляется структура с красной границей $hv_r \approx 2.2$ эВ (см. кривую 3).

Полоса примесной ФП с $h\nu_{\rm max} \approx 1.25$ эВ и $h\nu_{\rm r} \approx 1.1$ эВ (кривая 2) имеет маленькую интенсивность и проявля-

ется только после предварительного фотовозбуждения образца светом из области фундаментального поглощения $(hv > E_{\rm g})$.

Охлаждение образца до 90 K и предварительное его фотовозбуждение светом $h\nu > E_g$ приводит к значительному увеличению ФП в примесной области и смещению красной границы фотоэффекта до $h\nu_r \approx 0.5$ эВ, при этом структура спектра существенно изменяется (рис. 4, кривая 4). Анализ показывает, что за неравновесную фоточувствительность кристаллов ZnSe в примесной области при 90 K ответственны центры, уровни которых квазидискретно распределены в интервале энергий $h\nu \approx 0.5-1.1$ эВ (переходы 2-4 на рис. 2).

Обработка кристаллов ZnSe ультразвуком в течение 135 мин существенно изменяет энергетический спектр электронных состояний и на спектрах $\Phi\Pi$ при 90 K доминируют две полосы с $hv_{\rm max}^{(1)}\approx 0.7$ эВ и $hv_{\rm max}^{(2)}\approx 1.0$ эВ (рис. 4, кривая 5).

Рис. 3. Спектры фотолюминесценции кристаллов ZnSe при 77 K до (кривая I) и после (кривые 2 и 3) их обработки ультразвуком. Время обработки t, мин: 2-60, 3-135.

Рис. 4. Спектры фотопроводимости кристаллов ZnSe до (кривые 1, 2, 4) и после (кривые 3, 5) их обработки ультразвуком в течение 135 мин. Спектры 1-3 измерены при 300 K. Температура измерения спектров 4 и 5-90 K.

Рис. 5. Микрофотографии травления дислокаций на поверхности кристалла ZnSe до (a) и после (b) их обработки ультразвуком.

SEM-исследования на электронном микроскопе LEO-1450 показывают (рис. 5), что УЗ обработка кристаллов приводит к росту плотности дислокации на поверхности кристаллов, что, вероятно, связано с движением дислокаций.

4. Интерпретация экспериментальных результатов

В настоящее время установлено [9], что движущимися дислокациями в соединениях А^{II}В^{VI} являются краевые α - и β -дислокации. Эти дислокации имеют в своем ядре оборванные связи. Как было показано Ридом [10,11], наличие оборванных связей в ядре дислокации обусловливает захват на них электронов, появление дислокационного энергетическогго уровня $E_{\rm d}$ в запрещенной зоне полупроводника и возникновение электрического заряда вдоль линий дислокации. За счет кулоновского отталкивания электронов на уровне $E_{\rm d}$ этот уровень по мере его заполнения электронами поднимается и очень быстро достигает значения химического потеницала μ , после чего его заполнение прекращается. Движение дислокации увеличивает ее заряд за счет обмена электронами между дислокацией и точечными дефектами, заметаемыми ею при своем движении, что приводит к смещению уровня $E_{\rm d}$ к дну зоны проводимости. К подобному смещению уровня E_d приводит и увеличение плотности дислокаций, и слияние отдельных трубок их пространственного заряда [12].

Экспериментально установлено, что в кристаллах ZnSe дислокационный уровень $E_{\rm d}$ расположен вблизи уровня $E_{\rm c}-1.2$ эВ [13]. Поэтому мы предполагаем, что наблюдаемая на спектре ФП полоса с $h\nu_{\rm max}\approx 1.25$ эВ и $h\nu_{\rm r}\approx 1.1$ эВ (рис. 4, кривая 2) связана с переходом электронов именно с уровня $E_{\rm d}$ в зону проводимости (переходы 2, рис. 2).

УЗ обработка вызывает движение дислокаций и выводит их на поверхность кристалла. В процессе движения дислокация увеличивает свой заряд за счет центра с уровнем $E_{\rm c} - 0.5\,{\rm pB}$, что сопровождается смещением уровня $E_{\rm d}$ вплоть до $E_{\rm c} - 0.85\,{\rm эB},$ и полоса $\Phi\Pi$ с $h\nu_{\rm max}\approx 1.25\,{\rm эB}$, обусловленная фотоионизацией E_d уровня неподвижной дислокации, сменяется на спектре ФП полосой с $hv_{\text{max}} \approx 1.0$ эВ (рис. 4, кривая 5; переходы 2' на рис. 2). Полоса $\Phi\Pi \ h\nu_{\rm max} \approx 0.6\,{\rm эB}$, связанная с уровнем $E_{\rm c} - 0.5\,{\rm эB}$, после УЗ обработки кристалла исчезает, что свидетельствует в пользу того, что именно этот центр заменяется дислокацией в процессе движения. Облучение кристалла квантами света с энергией $h\nu > 0.5$ эВ приводит к фотоионизации центров, которые обусловливают полосу $\Phi\Pi$ с $h\nu_{\rm max}\approx 0.7\,{
m sB}$ (переходы 4 и 4' на рис. 2). По всей видимости, данные центры в кристалле локализованы вдали от дислокационных трубок и движущаяся дислокация их не затрагивает.

Обработка кристаллов ZnSe ультразвуком приводит к генерации в них глубоких центров с уровнем вблизи $E_{\rm v}+0.4\,{\rm эB}$. В результате красная граница высокоэнергетической полосы ФП (кривая 3 на рис. 4) смещается в длинноволновую область спектра и на ней проявляется структура с красной границей $h\nu_{\rm r}\approx 2.2\,{\rm эB}$ (переходы 7' на рис. 2). Излучательный захват на эти центры неравновесных электронов и дырок в процессе возбуждения фотолюминесценции (переходы 8' и 9' на рис. 2) приводит к открытию нового канала излучательной рекомбинации, в результате чего максимум излучения на спектрах ФЛ (кривая 2 на рис. 4) смещается в коротковолновую область спектра, достигая значения $\lambda_{\rm max}^{(2)}\approx 565\,{\rm hm}$ $(h\nu_{\rm max}\approx 2.2\,{\rm эB})$ (рис. 4, кривая 2).

5. Заключение

Таким образом, проведенные в работе исследования являются прямым экспериментальным доказательством того, что "мягкая" обработка кристаллов ZnSe ультразвуком приводит к движению краевых дислокаций. В результате наблюдается перегруппировка и генерация дефектов, образующих глубокие уровни фоточувствительности и излучательной рекомбинации.

Авторы благодарят А. Асварову за проведение SEMисследований.

Работа выполнена при поддержке Фонда содействия отечественной науке.

Список литературы

- [1] И.В. Островский, В.Н. Лысенко. ФТП, **15**(9), 1844 (1981).
- [2] И.В. Островский, В.Н. Лысенко. ФТТ, 24(4), 1206 (1982).
- [3] А.П. Здепский, С.С. Остапенко, А.У. Савчук и др. Письма ЖТФ, 10(20), 1243 (1984).
- [4] А.П. Здепский, Н.В. Миронюк, С.С. Остапенко и др. ФТП, **20**(10), 1861 (1986).
- [5] В.Л. Громашевский, В.В. Дякин, Е.А. Сальков и др. УФЖ, 29(4), 550 (1984).
- [6] И.В. Островский, В.Н. Лысенко. ФТТ, 26(2), 531 (1984).
- [7] Ф.И. Маняхин, Е.К. Наими, О.И. Рабинович, В.П. Сушков. Завод. лаб., сер. Диагностика материалов, 72(5), 20 (2006).
- [8] Д.Д. Недеогло, А.В. Симашкевич. Электрические и люминесцентные свойства селенида цинка (Кишинев, Штиинца, 1984).
- [9] Φ изика и химия соединений $A^{II}B^{VI}$, под ред. А.Н. Георгобиани, М.К. Шейнкман (М., Наука, 1986).
- [10] W.T. Read. Phil. Mag., 45, 775 (1954).
- [11] W.T. Read. Phil. Mag., 45, 1119 (1954).
- [12] Г. Матаре. Электроника дефектов в полупроводниках, под ред. С.А. Медведева (М., Мир, 1974).
- [13] Л.Г. Кириченко, В.Ф. Петренко, Г.В. Уймин. ЖЭТФ, 74(2), 742 (1978).

Редактор Т.А. Полянская

Influence of ultrasonic on photo-electric and luminescent properties of crystals ZnSe

E.M. Zobov, M.E. Zobov, F.S. Gabibov, I.K. Kamilov, F.I. Manyakhin*, E.K. Naimi*

Institute of Physics, Dagestan Scientific Center of Russian Academy of Sciences, 367003 Makhachkala, Russia
* Moscow State Institute of Steel and Alloys (Technological University), 119991 Moscow, Russia

Abstract The results of influence of ultrasonic crystals ZnSe processing on the structure of the electron spectrum of the centers with deep levels are submitted. The deep levels form photo-electric and luminescent properties ZnSe after of ultrasonic processing. For the first time is experimentally proved that the regional dislocations movement under action of ultrasound results in a regrouping and generation of defects. They form deep levels of photosensitivity and light emitting recombination.