Segurança da Informação Contramedidas

Igor Machado Coelho

17/04/2024

- Módulo: Contramedidas
- 2 Contramedidas
- O Discussão
- 4 Agradecimentos

Section 1

Módulo: Contramedidas

Pré-Requisitos

São requisitos para essa aula o conhecimento de:

- Redes de Computadores (conceitos gerais)
- Módulo 1: princípios básicos
- Módulo 2: ameaças
- Módulo 3: requisitos
- Módulo 4: malware e vírus
- Módulo 5: worms
- Módulo 6: engenharia social e carga útil

Tópicos

Contramedidas

Igor Machado Coelho

Section 2

Contramedidas

CONTRAMEDIDAS PARA MALWARE

- Prevenção solução ideal, mas difícil
- Elementos da prevenção:
 - Política
 - Conscientização
 - Mitigação de vulnerabilidades
 - Mitigação de ameaças
- Em alguns casos a estratégia é similar, como no caso do worm *Creeper* e a contramedida (também um worm) *Reaper*
 - Exemplo prático no próximo slide para kits de ataque

Relembrando o Kit de Ataque Zeus

8/34

Contramedida para o Kit de Ataque Zeus

17/04/2024

9/34

Igor Machado Coelho Segurança da Informação

CONTRAMEDIDAS PARA MALWARE

- Política adequada em relação à prevenção oferece uma base para implementar contramedidas preventivas
 - Sistemas em sua versão mais atualizada
 - Controles de acesso adequados às aplicações e dados
 - Visam prevenir contra vírus, vermes e cavalos de Troia
- Propagação por engenharia social pode ser combatida com treinamento e conscientização

CONTRAMEDIDAS PARA MALWARE

- Se a prevenção falhar, mecanismos técnicos podem dar suporte às seguintes opções de mitigação das ameaças:
 - detecção
 - identificação
 - remoção
- Se for detectado, mas não é possível identificar ou remover, deve-se descartar e substituir os arquivos ou programas infectados ou maliciosos
- Infecções perniciosas podem exigir limpeza completa dos dispositivos de armazenamento

CONTRAMEDIDAS PARA MALWARE (parte 1/2)

Requisitos: Generalidade; Ação imediata; Resiliência; Custos mínimos de negação de serviço; Transparência; Abrangência global e local

Generalidade

A abordagem adotada deve ser capaz de manipular ampla variedade de ataques.

Ação imediata

A abordagem deve responder rapidamente de modo a limitar o número de programas ou sistemas infectados e a consequente atividade.

Resiliência

A abordagem deve ser resistente a técnicas de evasão empregadas por atacantes para ocultar a presença de seu malware.

CONTRAMEDIDAS PARA MALWARE (parte 2/2)

Custos mínimos de negação de serviço

A abordagem deve resultar em redução mínima de capacidade ou serviço como resultado das ações do software de contramedida, e não deve causar disrupção significativa da operação normal.

Transparência

O software e os dispositivos de contramedida não devem exigir a modificação de sistemas operacionais, softwares de aplicação e hardware existentes (atuais ou legados).

Abrangência global e local

A abordagem deve ser capaz de lidar com fontes de ataque internas, bem como externas à rede da empresa.

CONTRAMEDIDAS PARA MALWARE

A detecção pode ocorrer em três locais distintos:

C.1 Escaneadores baseados em estações

No sistema infectado, por programas antivírus que monitoram dados importados para dentro do sistema e a execução e o comportamento de programas

C.2 Abordagens de escaneamento de perímetro

No perímetro do sistema, com o uso de firewalls e sistemas de detecção de intrusão (IDS)

C.3 Abordagens de coleta de informação distribuída

De forma distribuída, por mecanismos que coletam dados de sensores em estações e no perímetro

C.1 EVOLUÇÃO DOS ANTIVÍRUS

- Vírus e tecnologia antivírus ambos evoluíram
- Código simples dos primeiros vírus, facilmente removido
- Como se tornam mais complexas, também devem as contramedidas

Igor Machado Coelho

EVOLUÇÃO DOS ANTIVIRUS - GERAÇÕES

Primeira geração

Escaneadores (varredura) simples (de assinatura)

Segunda geração

- escaneadores heurísticos
- Ou usam hash de programas para encontrar mudanças

Terceira geração

armadilhas de atividade (verificam as ações)

Quarta geração

proteção ampla: varredura, armadilhas, controle de acesso,...

DECODIFICAÇÃO GENÉRICA

- Executa arquivos executáveis através da tecnologia de decifração genérica:
 - Emulador de CPU para interpretar instruções
 - Scanner de vírus para verificar assinaturas de vírus conhecidas
 - Módulo de controle de emulação para gerenciar o processo
- Permite que o vírus se decodifique no interpretador
- Verifica periodicamente as assinaturas de vírus
- O problema é longo para interpretar e digitalizar
 - detecção x tempo

SOFTWARE DE BLOQUEIO DE COMPORTAMENTO (parte 1/2)

- Monitora os seguintes comportamentos
 - Tentativas de abrir, acessar, remover e/ou modificar arquivos
 - Tentativa de formatar drives de disco e outras operações irreversíveis de disco
 - Modificações na lógica de arquivos ou macros executáveis
 - Modificações de configurações críticas dos sistema, como as de inicialização
 - Exploração de scripts de clientes de e-mail e de mensagens instantâneas para enviar conteúdo executável
 - Iniciação de comunicações em rede

SOFTWARE DE BLOQUEIO DE COMPORTAMENTO (parte 2/2)

to run.

C.2 ABORDAGENS DE ESCANEAMENTO DE PERÍMETRO

- Usado no firewall ou IDS de uma organização
- Está limitada a escanear o conteúdo do malware, já que não fornece acesso ao comportamento de execução
- Firewalls externos ou honeypots
- Monitores de entrada
 - Localizados na borda entre a rede organizacional e a Internet
- Monitores de saída
 - Localizados nos pontos de saída de LANs

CONTRAMEDIDAS DE VERMES

- Sobrepõe-se a técnicas antivírus (A/V)
- Uma vez que o verme está no sistema, A/V pode detectar
- Os vermes também causam atividade significativa na rede
- As abordagens de defesa de vermes incluem:
 - filtragem de verificação de vermes baseada em assinatura
 - contenção de vermes baseada em filtro
 - contenção de vermes baseada na classificação da carga útil
 - detecção de varredura de caminhada aleatória
 - limitação de taxa e parada de taxa

CONTENÇÃO PROATIVA DE VERMES

Figure 4: Slides Kowada

C.3 ABORDAGENS DE COLETA DE INFORMAÇÃO DISTRIBUÍDA

- Sistema de análise central que recebe dados de sensores baseados em estação e de perímetro distribuídos
- Sistema imunológico digital
 - Abordagem abrangente de proteção desenvolvida pela IBM
 - Em 2010: 240 mil sensores 133 milhões de sistemas clientes

Igor Machado Coelho

SISTEMA IMUNOLÓGICO DIGITAL

Figure 5: Slides Kowada

DEFESA DE VERMES BASEADA EM REDE

Figure 6: Slides Kowada

25 / 34

Section 3

Discussão

Breve discussão

Cenário atual

- Já teve alguma experiência de uso de anti-virus?
 - Qual utilizado no momento?
 - Qual impacto no desempenho do sistema operacional?

Igor Machado Coelho

Leia mais

Livro:

- "Segurança de Computadores Princípios e Práticas 2012" Stallings, William; Brown, Lawrie & Lawrie Brown & Mick Bauer & Michael Howard
 - Em Português do Brasil, CAMPUS GRUPO ELSEVIER, 2ª Ed. 2014

Veja Capítulo 6, seção 6.9 e finaliza o capítulo 6.

Section 4

Agradecimentos

Pessoas

Em especial, agradeço aos colegas que elaboraram bons materiais, como o prof. Raphael Machado, Kowada e Viterbo cujos conceitos formam o cerne desses slides.

Estendo os agradecimentos aos demais colegas que colaboraram com a elaboração do material do curso de Pesquisa Operacional, que abriu caminho para verificação prática dessa tecnologia de slides.

Software

Esse material de curso só é possível graças aos inúmeros projetos de código-aberto que são necessários a ele, incluindo:

- pandoc
- LaTeX
- GNU/Linux
- git
- markdown-preview-enhanced (github)
- visual studio code
- atom
- revealjs
- groomit-mpx (screen drawing tool)
- xournal (screen drawing tool)
- . . .

Empresas

Agradecimento especial a empresas que suportam projetos livres envolvidos nesse curso:

- github
- gitlab
- microsoft
- google
- . . .

Reprodução do material

Esses slides foram escritos utilizando pandoc, segundo o tutorial ilectures:

https://igormcoelho.github.io/ilectures-pandoc/

Exceto expressamente mencionado (com as devidas ressalvas ao material cedido por colegas), a licença será Creative Commons.

Licença: CC-BY 4.0 2020

Igor Machado Coelho

This Slide Is Intentionally Blank (for goomit-mpx)

Igor Machado Coelho