

Captain's Log zur Vorlesung

Analysis 2

Stefan Waldmann*

Julius Maximilian University of Würzburg
Institute of Mathematics
Chair of Mathematics X (Mathematical Physics)
Emil-Fischer-Straße 31
97074 Würzburg
Germany

Wintersemester 2023/2024

Zusammenfassung

In diesem Logbuch werden die Inhalte der einzelnen Vorlesungsstunden grob beschrieben und aufgelistet. Dies ist insbesondere nützlich, wenn man zu Hause lernen will oder eine Vorlesungsstunde verpasst hat.

 $^{^*{\}tt stefan.waldmann@mathematik.uni-wuerzburg.de}\\$

1. Vorlesung 16.10.2023

Organisatorisches

- Übungsbetrieb
- WueCampus und die Aufgabenblätter
- Prüfung
- Literatur und Vorlesungsskript
- Hausaufgaben

Kapitel 5: Differenzierbarkeit und die Ableitung

• Abschnitt 5.3: Hauptsätze für differenzierbare Funktionen Globale und lokale Extrema, Kriterien mittels Ableitung. Satz von Rolle, Mittelwertsatz, Monotonie, Schrankensatz, Zwischenwertsatz für die Ableitung.

2. Vorlesung 17.10.2023

- Abschnitt 5.3: Hauptsätze für differenzierbare Funktionen Sinus cardinalis und Regel von l'Hospital (ohne Beweis).
- Abschnitt 5.4: Höhere Ableitungen und \mathscr{C}^k -Funktionen

 Definition von \mathscr{C}^k -Funktionen, Beispiele für glatte Funktionen, Rechenregeln für \mathscr{C}^k -Funktionen.

 Hinreichende Bedingungen für lokale Extrema mittels zweiter Ableitung, Beispiele.

3. Vorlesung 18.10.2023

- \bullet Abschnitt 5.4: Höhere Ableitungen und \mathscr{C}^k -Funktionen Konvexe Funktionen und Charakterisierung durch zweite Ableitung. Die wichtigen Ungleichungen der Mathematik aus der Konvexität des Logarithmus.
- Abschnitt 5.5: Konvergenz von differenzierbaren Funktionen Gleichmäßige Approximation der Betragsfunktion durch Polynome. Differenzierbarkeit der Grenzfunktion bei gleichmäßiger Konvergenz der Ableitungen (Beweis begonnen).

4. Vorlesung 24.10.2023

- Abschnitt 5.5: Konvergenz von differenzierbaren Funktionen Differenzierbarkeit und lokal gleichmäßige Konvergenz. Konvergenz im \mathscr{C}^k -Sinne, Vollständigkeit von $\mathscr{C}^k(X)$. Differenzierbarkeit der ζ -Funktion.
- Abschnitt 5.6: Potenzreihen und Taylor-Entwicklung Glattheit von Potenzreihen (angefangen).

5. Vorlesung 25.10.2023

Abschnitt 5.6: Potenzreihen und Taylor-Entwicklung
 Glattheit von Potenzreihen, Beispiele. Formale Taylor-Reihe, Taylor-Entwicklung mit Restglied. Konvergenz der Taylor-Reihe.

6. Vorlesung 31.10.2023

• Abschnitt 5.6: Potenzreihen und Taylor-Entwicklung Konvergenz der Taylor-Reihe, Beispiele.

Kapitel 6: Das Riemann-Integral

7. Vorlesung 7.11.2023

- Abschnitt 6.1: Definition des Riemann-Integrals Eigenschaften von Riemann-integrierbaren Funktionen und des Riemann-Integrals.
- Abschnitt 6.2: Riemann-integrierbare Funktionen Riemann-integrierbare Funktionen sind beschränkt. Ober- und Untersummen, Darboux-Integral, erste Eigenschaften.

8. Vorlesung 8.11.2023

• Abschnitt 6.2: Riemann-integrierbare Funktionen Charakterisierung Darboux-integrierbarer Funktionen, Vergleich Darboux-Integral und Riemann-Integral, monotone Funktionen, Beispiele. Integration über Teilintervalle und Konstruktion der Integrale durch Folgen von Riemann-Summen.

9. Vorlesung 14.11.2023

- Abschnitt 6.3: Riemann-Integrale stetiger Funktionen $\mathscr{C} \circ \mathscr{R} \subseteq \mathscr{R}$ und $\mathscr{C} \subseteq \mathscr{R}$ mit einigen Folgerungen.
- Abschnitt 6.4: Der Hauptsatz und Stammfunktionen
 Integration bei variabler oberer Grenze. Stammfunktionen mit vielen Rechenregeln. Hauptsatz, Beispiele, partielle Integration und Substitutionsregel. Explizite Berechnung von Integralen.

10. Vorlesung 15.11.2023

Termin ausgefallen.

11. Vorlesung 21.11.2023

- Abschnitt 6.4: Der Hauptsatz und Stammfunktionen
 Beispiele für partielle Integration und Substitutionsregel. Fläche des Halbkreises. Taylor-Entwicklung mit Integraldarstellung des Restglieds.
- Abschnitt 6.5: Ungleichungen und Mittelwertsätze für Riemann-Integrale Hölder-Ungleichung, Cauchy-Schwarz-Ungleichung, Minkowski-Ungleichung und Jensen-Ungleichung. Mittelwertsatz.
- Abschnitt 6.6: Uneigentliche Riemann-Integrale Definition von uneigentlichen Riemann-Integralen.

12. Vorlesung 28.11.2023

Abschnitt 6.6: Uneigentliche Riemann-Integrale
 Eigenschaften und Beispiele für uneigentliche Riemann-Integrale. Majorantenkriterium,
 Cauchy-Kriterium und absolute Konvergenz. Reihen und uneigentliche Riemann-Integrale,
 Euler-Mascheroni-Konstante. Definition und erste Eigenschaften der Γ-Funktion.

13. Vorlesung 29.11.2023

Abschnitt 6.6: Uneigentliche Riemann-Integrale
 Funktionalgleichung der Γ-Funktion. Gleichmäßige Konvergenz und Riemann-Integrale.
 Riemann-Integrale von Potenzreihen, Taylor-Entwicklung von arctan.

Kapitel 7: Normierte, metrische und topologische Räume

• Abschnitt 7.1: Normierte Vektorräume und metrische Räume Definition normierter Vektorraum, Beispiele, Unterräume.

14. Vorlesung 5.12.2023

- Abschnitt 7.1: Normierte Vektorräume und metrische Räume Konstruktionen von Normen, Operatornorm. Definition metrischer Raum, erste Beispiele.
- Abschnitt 7.2: Konvergenz in metrischen Räumen
 Definition von Folgenkonvergenz und Häufungspunkten, Eigenschaften übertragen sich.
 Definition von offenen und abgeschlossenen Mengen und Umgebungen in metrischen Räumen, viele Eigenschaften übertragen sich.
- Abschnitt 7.3: Stetigkeit und Lipschitz-Stetigkeit Äquivalente Formulierungen von Stetigkeit an einem Punkt.

15. Vorlesung 6.12.2023

Abschnitt 7.3: Stetigkeit und Lipschitz-Stetigkeit
 Stetigkeit und Stetigkeit an einem Punkt. Lipschitz-Stetigkeit und lokale Lipschitz-Stetigkeit,
Beispiele. Stetigkeit linearer Abbildungen und Operatornorm, Beispiele.

16. Vorlesung 11.12.2023

- Abschnitt 7.3: Stetigkeit und Lipschitz-Stetigkeit
 Weitere Beispiele zu stetigen linearen Abbildungen. Gleichmäßige Stetigkeit.
- Abschnitt 7.4: Vollständigkeit und der Banachsche Fixpunktsatz Vollständige metrische Räume, Eigenschaften und Beispiele. Banachscher Fixpunktsatz.
- Abschnitt 7.5: Topologische Räume und Stetigkeit Definition topologischer Raum und viele Beispiele.

17. Vorlesung 12.12.2023

 Abschnitt 7.5: Topologische Räume und Stetigkeit Umgebungen, Berührpunkte, Abschluss. Unterraumtopologie und Produkttopologie, Spezialfall metrischer Produkte. Stetigkeit und einige Eigenschaften. Hausdorff-Eigenschaft. • Abschnitt 7.6: Kompaktheit und Zusammenhang in topologischen Räumen Definition Kompaktheit als Überdeckungskompaktheit.

18. Vorlesung 13.12.2023

- Abschnitt 7.6: Kompaktheit und Zusammenhang in topologischen Räumen Eigenschaften kompakter Teilmengen. Stetige Bilder kompakter Teilmengen. Satz von Tikhonov für endliche Produkte. Zusammenhang und Wegzusammenhang, Eigenschaften und Sinuskurve des Topologen.
- Abschnitt 7.7: Die Standardtopologie auf \mathbb{R}^n Erste Eigenschaften der Standardtopologie auf \mathbb{R}^n .

