Exercícios

- 1. Os computadores utilizam o sistema binário, ou de base 2, que é um sistema de numeração em que todas as quantidades se representam com base nos números 0 e 1.
 - (a) Como será a representação binária do número 2024 em um computador?

R.: 0111 1110 1000

(b) Como será a representação desse mesmo número nas bases octal e hexadecimal?

R.:

• Octal: 3750

• Hexadecimal: 7E8

(c) Se os computadores trabalham representando informações com números binários, por que estudar as bases octal e hexadecimal?

R.: As bases octal e hexadecimal são diferentes formas de representar a base binária de forma compactada, facilitando o entendimento. Atualmente, a base octal é menos utilizada que a hexadecimal, porém ambas ainda são válidas.

- 2. Realize as seguintes conversões:
 - (a) 325 para binário

R.: 0001 0100 0101₂

Passo a passo: Divida 325 por 2 até o quociente ser 0, anotando os restos:

- $325 \div 2 = 162$, resto 1
- $162 \div 2 = 81$, resto 0
- $81 \div 2 = 40$, resto 1
- $40 \div 2 = 20$, resto 0
- $20 \div 2 = 10$, resto 0
- $10 \div 2 = 5$, resto 0
- $5 \div 2 = 2$, resto 1
- $2 \div 2 = 1$, resto 0
- $1 \div 2 = 0$, resto 1

Os restos lidos de baixo para cima formam o número binário: 101000101₂.

(b) 10100_2 para decimal

R.: 20

Passo a passo: Multiplique cada dígito pelo valor da posição correspondente (potência de 2):

- $1 \times 2^4 = 16$
- $0 \times 2^3 = 0$
- $1 \times 2^2 = 4$
- $0 \times 2^1 = 0$
- $0 \times 2^0 = 0$

Somando os valores: 16 + 4 = 20.

(c) 455₈ para hexadecimal

R.: $12D_{16}$

Passo a passo: Converta primeiro de octal para binário e depois de binário para hexadecimal:

- $4_8 = 100_2$
- $5_8 = 101_2$
- $5_8 = 101_2$

Juntando os binários: 100101101₂. Agrupe em blocos de 4 bits: 0001 0010 1101₂. Converta cada bloco para hexadecimal:

- 0001 = 1
- 0010 = 2
- 1101 = D

Portanto, $455_8 = 12D_{16}$.

(d) ABAE₁₆ para decimal

R.: 43.950

Passo a passo: Multiplique cada dígito pelo valor da posição correspondente (potência de 16):

- A = 10; B = 11; A = 10; E = 14
- $10 \times 16^3 = 40.960$
- $11 \times 16^2 = 2.816$
- $10 \times 16^1 = 160$
- $14 \times 16^0 = 14$

Somando os valores: 40.960 + 2.816 + 160 + 14 = 43.950.

(e) 101111000_2 para hexadecimal

R.: B8₁₆

Passo a passo: Agrupe em blocos de 4 bits: 1011 1000₂. Converta cada bloco para hexadecimal:

- 1011 = B
- 1000 = 8

Portanto, $10111000_2 = B8_{16}$.

(f) 23,1875 para binário

R.: 0001 0111,0011₂

Passo a passo: Converta a parte inteira e a parte fracionária separadamente:

Parte inteira:

- $23 \div 2 = 11$, resto 1
- $11 \div 2 = 5$, resto 1
- $5 \div 2 = 2$, resto 1
- $2 \div 2 = 1$, resto 0
- $1 \div 2 = 0$, resto 1

Lendo os restos de baixo para cima: 10111₂.

Parte fracionária:

- $0.1875 \times 2 = 0.375$, parte inteira 0
- $0.375 \times 2 = 0.75$, parte inteira 0
- $0.75 \times 2 = 1.5$, parte inteira 1
- $0.5 \times 2 = 1.0$, parte inteira 1

Lendo as partes inteiras: 0011_2 . Portanto, $23,1875 = 10111,0011_2$.

(g) 0,1 para binário

 $\mathbf{R}.: 0000,1111 \ 1111 \ 1111_2$

Passo a passo: Multiplique a parte fracionária por 2 repetidamente:

- $0.1 \times 2 = 0.2$, parte inteira 0
- $0.2 \times 2 = 0.4$, parte inteira 0
- $0.4 \times 2 = 0.8$, parte inteira 0
- $0.8 \times 2 = 1.6$, parte inteira 1
- $0.6 \times 2 = 1.2$, parte inteira 1
- $0.2 \times 2 = 0.4$, parte inteira 0
- $0.4 \times 2 = 0.8$, parte inteira 0
- $0.8 \times 2 = 1.6$, parte inteira 1
- $0.6 \times 2 = 1.2$, parte inteira 1
- $0.2 \times 2 = 0.4$, parte inteira 0
- $0.4 \times 2 = 0.8$, parte inteira 0
- $0.8 \times 2 = 1.6$, parte inteira 1
- $0.6 \times 2 = 1.2$, parte inteira 1

- $0.2 \times 2 = 0.4$, parte inteira 0
- $0.4 \times 2 = 0.8$, parte inteira 0
- $0.8 \times 2 = 1.6$, parte inteira 1

Portanto, $0.1 = 0.00011001100110011..._2$ (repetindo).

(h) $11101,01_2$ para decimal

R.: 29,25

Passo a passo: Converta a parte inteira e a parte fracionária separadamente: Parte inteira:

- $1 \times 2^4 = 16$
- $1 \times 2^3 = 8$
- $1 \times 2^2 = 4$
- $0 \times 2^1 = 0$
- $1 \times 2^0 = 1$

Somando os valores: 16 + 8 + 4 + 0 + 1 = 29.

Parte fracionária:

- $0 \times 2^{-1} = 0$
- $1 \times 2^{-2} = 0.25$

Somando os valores: 0 + 0.25 = 0.25.

Portanto, $11101,01_2 = 29,25$.

(i) 678,25 para binário

R.: 0010 1010 0110,01₂

Passo a passo: Converta a parte inteira e a parte fracionária separadamente: Parte inteira:

- $678 \div 2 = 339$, resto 0
- $339 \div 2 = 169$, resto 1
- $169 \div 2 = 84$, resto 1
- $84 \div 2 = 42$, resto 0
- $42 \div 2 = 21$, resto 0
- $21 \div 2 = 10$, resto 1
- $10 \div 2 = 5$, resto 0
- $5 \div 2 = 2$, resto 1
- $2 \div 2 = 1$, resto 0
- $1 \div 2 = 0$, resto 1

Lendo os restos de baixo para cima: 1010100110_2 .

Parte fracionária:

- $0.25 \times 2 = 0.5$, parte inteira 0
- $0.5 \times 2 = 1.0$, parte inteira 1

Lendo as partes inteiras: 01_2 . Portanto, $678,25 = 1010100110,01_2$.

(j) 11100,011₂ para decimal

R.: 28,375

Passo a passo: Converta a parte inteira e a parte fracionária separadamente: Parte inteira:

- $1 \times 2^4 = 16$
- $1 \times 2^3 = 8$
- $1 \times 2^2 = 4$
- $0 \times 2^1 = 0$
- $0 \times 2^0 = 0$

Somando os valores: 16 + 8 + 4 + 0 + 0 = 28.

Parte fracionária:

• $0 \times 2^{-1} = 0$

•
$$1 \times 2^{-2} = 0.25$$

•
$$1 \times 2^{-3} = 0.125$$

Somando os valores: 0 + 0.25 + 0.125 = 0.375.

Portanto, $11100,011_2 = 28,375$.

(k) A64₁₆ para binário

R.: 1010 0110 0100₂

Passo a passo: Converta cada dígito hexadecimal para binário:

•
$$A = 1010$$

•
$$6 = 0110$$

Portanto, $A64_{16} = 1010\ 0110\ 0100_2$.

(l) $D52_{16}$ para decimal

R.: 3.410

Passo a passo: Multiplique cada dígito pelo valor da posição correspondente (potência de 16):

•
$$D = 13; 5 = 5; 2 = 2$$

•
$$13 \times 16^2 = 3.328$$

•
$$5 \times 16^1 = 80$$

•
$$2 \times 16^0 = 2$$

Somando os valores: 3.328 + 80 + 2 = 3.410.

- 3. A maioria das pessoas pode contar até 10 nos dedos das mãos. Porém, cientistas da computação podem fazer melhor:
 - (a) Se você considerar cada dedo como um bit binário, com o dedo estendido indicando 1 e o dedo recolhido indicando 0, até quanto você pode contar usando as mãos?

R.:
$$2^{10} - 1 = 1.023$$

(b) Se você considerar o dedão da mão esquerda como sendo um bit de sinal para números de complemento de dois, qual é faixa de números que é possível ser expressa dessa forma?

R.: -256 até 255