

CSC3100 Data Structures Lecture 22: Graph shortest path

Yixiang Fang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

- We focus on weighted graphs
- Graphs with non-negative weights
 - Single-Source Shortest Path: Dijkstra's algorithm
- All-Pair Shortest Path: Floyd's algorithm
- Graphs with negative weights
 - Bellman-Ford algorithm

Weighted graphs

- In real world graphs, each edge may have weight
 - On road networks, each edge (a road segment) have a weight, which may be the distance between two road junctions or the travel time from one junction to another
 - In navigation systems, e.g., Google Map, we may want to find the path with minimum travel time between two locations

Shortest path problems

- How can we find the shortest route between two points on a road map?
- Model the problem as a graph problem:
 - Road map is a weighted graph:

```
vertices = cities
edges = road segments between cities
edge weights = road distances
```

Goal: find a shortest path between two vertices (cities)

👺 An example weighted graph

- A weighted graph is a graph such that each edge e is associated with a weight w(e)
 - We focus on directed graphs
 - The solution can be easily extended to undirected graphs

Shortest path problems

Input:

- Directed graph G = (V, E)
- Weight function w : E → \mathbf{R}
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$ $w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$

Shortest-path weight from u to v:

$$\delta(u, v) = \min \left\{ w(p) : u \stackrel{p}{\leadsto} v \text{ if there exists a path from } u \text{ to } v \right\}$$
otherwise

Note: there might be <u>multiple shortest</u> paths from u to v

Variants of shortest path

Single-source shortest paths

 \circ G = (V, E) \Rightarrow find a shortest path from a given source vertex s to each vertex v \in V

Single-destination shortest paths

- Find a shortest path to a given destination vertex t from each vertex v
- Reversing the direction of each edge ⇒ single-source

Single-pair shortest path

Find a shortest path from u to v for given vertices u and v

All-pairs shortest-paths

Find a shortest path from u to v for every pair of vertices u and v

Optimal substructure theorem

Given:

- A weighted, directed graph G = (V, E)
- A weight function w: $E \rightarrow \mathbf{R}$,

- A shortest path $p = \langle v_1, v_2, \dots, v_k \rangle$ from v_1 to v_k
- A subpath of p: $p_{i,j} = \langle v_i, v_{i+1}, \dots, v_j \rangle$, with $1 \le i \le j \le k$

Then: p_{ij} is a shortest path from v_i to v_j

Proof:
$$p = v_1 \stackrel{p_{1i}}{\leadsto} v_i \stackrel{p_{ij}}{\leadsto} v_j \stackrel{p_{jk}}{\leadsto} v_k$$

$$w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$$

Assume $\exists p_{ij}'$ from v_i to v_j with $w(p_{ij}') < w(p_{ij})$

$$\Rightarrow$$
 w(p') = w(p_{1i}) + w(p_{ij}') + w(p_{jk}) < w(p) contradiction!

Triangle inequality

For all $(u, v) \in E$, we have: $\delta(s, v) \le \delta(s, u) + \delta(u, v)$

Proof?

If u is on the shortest path to v we have the equality sign

- A simple case: unweighted graph
 - How to find the shortest path? Use BFS!
- A simple algorithm
 - 1. Mark the starting vertex, s
 - 2. Find and mark all unmarked vertices adjacent to s
 - 3. Find and mark all unmarked vertices adjacent to the marked vertices
 - 4. Repeat Step 3 until all vertices are marked
- For each vertex, keep track of
 - · whether the adjacent vertex has been marked
 - its distance from $s(d_v)$
 - previous vertex of the path from $s(p_v)$


```
/* Pseudocode for better unweighted shortest-path algorithm with O(|E| + |V|)
running time*/
 void unweighted(Vertex s) {
     Queue < Vertex > q = new Queue < Vertex > ();
     for each vertex { v.dist = INFINITY;}
     s.dist = 0;
     q.enqueue(s);
     while(!q.isEmpty()){
          Vertex v = q.dequeue();
          for each Vertex w adjacent to v
              if(w.dist == INFINITY){
                   w.dist = v.dist + 1:
                   w.path = v;
                   q.enqueue(w);
                                     Running time is O(|E| + |V|)
```


v	Known	d_v	p_v
v_1	F	∞	0
v_2	F	∞	0
v_3	F	0	0
v_4	F	8	0
v_5	F	∞	0
v_6	F	∞	0
v_7	F	∞	0

	Initial State		
v	Known	d_v	p_v
v_1	F	8	0
v_2	F	œ	0
v_3	F	0	0
v_4	F	8	0
<i>v</i> ₅	F	8	0
v_6	F	oc	0
v_7	F	oc	0
Q		<i>v</i> ₃	

	v ₃ Dequeued		
v	Known	d_v	p_v
v_1	\mathbf{F}	1	v_3
v_2	F	8	0
<i>v</i> ₃	1	0	0
v_4	F	8	0
v_5	F	8	0
v_6	F	1	<i>v</i> ₃
v_7	F	∞	0
Q	v_1, v_6		

	v ₁ Dequeued		
v	Known	d_v	p_v
v_1	T	1	v_3
v_2	F	2	v_1
v_3	T	0	0
v_4	F	2	v_1
v_5	F	8	0
v_6	F	1	v_3
v_7	F	8	0
Q	v_6, v_2, v_4		

	v ₆ Dequeued		
v	Known	d_v	p_v
v_1	T	1	v_3
v_2	F	2	v_1
v_3	T	0	0
v_4	F	2	v_1
v_5	F	8	0
v_6	T	1	v_3
v_7	F	∞	0
Q	v_2, v_4		

	v ₂ Dequeued		
v	Known	d_v	p_v
v_1	T	1	v_3
v_2	T	2	v_1
v_3	T	0	0
v_4	F	2	v_1
<i>v</i> ₅	F	3	v_2
v_6	T	1	v_3
v ₇	F	8	0
Q	<i>v</i> ₄ , <i>v</i> ₅		

	v ₄ Dequeued		
v	Known	d_v	p_{v}
v_1	T	1	v_3
v_2	T	2	v_1
v_3	T	0	0
v_4	T	2	v_1
<i>v</i> ₅	F	3	v_2
v_6	T	1	v_3
v ₇	F	3	<i>v</i> ₄
Q	v_5, v_7		

	v ₅ Dequeued		
v	Known	d_v	p_v
v_1	T	1	v_3
v_2	T	2	v_1
v_3	T	0	0
v_4	T	2	v_1
<i>v</i> ₅	T	3	v_2
v_6	T	1	v_3
v_7	F	3	v_4
Q	v_7		

	v ₇ Dequeued		
v	Known	d_v	p_{v}
v_1	T	1	v_3
v_2	T	2	v_1
v_3	T	0	0
v_4	T	2	v_1
<i>v</i> ₅	T	3	v_2
v_6	T	1	v_3
v_7	T	3	v_4
Q	empty		

- Dijkstra's Algorithm for weighted graphs
 - A greedy algorithm, solving a problem by stages by doing what appears to be the best thing at each stage
 - \circ Select a vertex v, which has the smallest d_v among all the unknown vertices, and declare that the shortest path from s to v is known
 - For each adjacent vertex, w, update $d_w = d_v + c_{v,w}$ if this new value for d_w is an improvement

Example of Dijkstra's algorithm

Given a graph, find the shortest path starting from v_1 :

v	Known	d_v	p_{v}
v_1	0	0	0
v_2	0	8	0
v_3	0	8	0
v_4	0	8	0
v_5	0	8	0
v_6	0	8	0
v_7	0	∞	0

Initial configuration

where v_1 is the start vertex

After v_1 is declared known

v	Known	d_v	p_{v}
v_1	1	0	0
v_2	0	2	v_1
v_3	0	∞	0
v_4	0	1	v_1
v_5	0	oc	0
v_6	0	∞	0
v_7	0	∞	0

After v₄ is declared known

v	Known	d_v	p_{v}
v_1	1	0	0
v_2	0	2	v_1
<i>v</i> ₃	0	3	v_4
v_4	1	1	v_1
<i>v</i> ₅	0	3	v_4
v_6	0	9	v_4
v_7	0	5	v_4

After v_2 is declared known

v	Known	d_v	p_{v}
v_1	1	0	0
v_2	1	2	v_1
<i>v</i> ₃	0	3	v_4
v_4	1	1	v_1
<i>v</i> ₅	0	3	v_4
v_6	0	9	v_4
<i>v</i> ₇	0	5	<i>v</i> ₄

After v_5 and then v_3 are declared known

v	Known	d_v	p_v
v_1	1	0	0
v_2	1	2	v_1
v_3	1	3	v_4
v_4	1	1	v_1
v_5	1	3	v_4
v_6	0	8	v_3
v_7	0	5	v_4

After v₇ is declared known

v	Known	d_v	p_{v}
v_1	1	0	0
v_2	1	2	v_1
<i>v</i> ₃	1	3	v_4
v_4	1	1	v_1
<i>v</i> ₅	1	3	v_4
v_6	0	6	v_7
v_7	1	5	v_4

After v₆ is declared known

v	Known	d_v	p_{v}
v_1	1	0	0
v_2	1	2	v_1
v_3	1	3	v_4
v_4	1	1	v_1
<i>v</i> ₅	1	3	v_4
v_6	1	6	<i>v</i> ₇
v_7	1	5	v_4

Initialization

```
Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

1. for each v \in V

2. do d[v] \leftarrow \infty

3. p[v] \leftarrow NIL

4. d[s] \leftarrow 0
```

All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE

Relaxation step

Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

```
If d[v] > d[u] + w(u, v)
we can improve the shortest path to v
```

- \Rightarrow d[v]=d[u]+w(u,v)
- $\Rightarrow p[v] \leftarrow u$

After relaxation: d[v] = d[u] + w(u, v)

Dijkstra (G, w, s)

```
INITIALIZE-SINGLE-SOURCE(V, s) \leftarrow \Theta(V)
2. S ← Ø
     Q \leftarrow V[G] \leftarrow O(V) build min-heap
     while Q \neq \emptyset 	— Executed O(V) times do u \leftarrow EXTRACT-MIN(Q) \leftarrow O(lgV) O(VlgV)
5.
        \mathsf{S} \leftarrow \mathsf{S} \cup \{\mathsf{u}\}
6.
          for each vertex v \in Adj[u] \leftarrow O(E) times (total)
7.
                    do RELAX(u, v, w)
8.
                    Update Q (DECREASE_KEY) ← O(IqV)
9.
```

Running time: O(VlgV + ElgV) = O(ElgV)

Show the steps of Dijkstra's algorithm

Dijkstra (G, w, s)

Example (cont.)

Example (cont.)

Correctness of Dijkstra's algorithm

For each vertex $u \in V$, we must have $d[u] = \delta(s, u)$ at the time when u is added to S

Proof:

- Let u be the first vertex for which $d[u] \neq \delta(s, u)$ when added to S
- Let's look at a true shortest path p from s to u:

Correctness of Dijkstra's algorithm

0: Suppose the shortest to u is via u'

1. What is the value of d[u]? $d[u] \le d[v] + w(v,u) = \delta(s,v) + w(v,u)$

2. What is the value of d[u']? $d[u'] \le d[v'] + w(v',u') = \delta(s,v') + w(v',u')$

- 3. Since u' is in the shortest path of u: $d[u'] < \delta(s,u)$
 - 4. however, from definition: $d[u] >= \delta(s,u)$

d[u'] < d[u]

5. Contradiction!

Priority Queue Q: <u, ..., u',> (i.e., d[u]<...<d[u']<...)

- ▶ Given a directed graph G=(V,E) where each edge (u, v) has an associated value r(u,v), which is a real number in the range $0 \le r(u,v) \le 1$ that represents the reliability of a communication channel from vertex u to vertex v
 - We interpret r(u,v) as the probability that the channel from u to v will not fail, and we assume that these probabilities are independent
 - Give an efficient algorithm to find the most reliable path between two given vertices

- Solution 1: modify Dijkstra's algorithm
 - r(u,v) = Pr(channel from u to v will not fail)
 - Assuming that the probabilities are independent, the reliability of a path $p = \langle v_1, v_2, ..., v_k \rangle$ is: $r(v_1, v_2) r(v_2, v_3) ... r(v_{k-1}, v_k)$
 - Find the channel with the highest reliability, i.e.,

$$\max_{p} \prod_{(u,v)\in p} r(u,v)$$

But Dijkstra's algorithm computes

$$\min_{p} \sum_{(u,v)\in p} w(u,v)$$

Perform relaxation as follows:

Use "EXTRACT_MAX" instead of "EXTRACT_MIN"

Exercise 1 (cont.)

- Solution 2: use Dijkstra's algorithm without any modifications!
 - · Goal

$$\max_{p} \prod_{(u,v)\in p} r(u,v)$$

Take the Ig

$$\lg(\max_{p} \prod_{(u,v)\in p} r(u,v)) = \max_{p} \sum_{(u,v)\in p} \lg(r(u,v))$$

Turn this into a minimization problem by taking the negative:

$$-\min_{p} \sum_{(u,v)\in p} \lg(r(u,v)) = \min_{p} \sum_{(u,v)\in p} -\lg(r(u,v))$$

Run Dijkstra's algorithm using

$$w(u, v) = -\lg(r(u, v))$$

Recommended reading

- Reading materials
 - Textbook Chapters 24&25
- Next lecture
 - All pairs shortest path