

BCC5NA REDES DE COMPUTADORES

Programa da Disciplina

INTRODUÇÃO	1.1.Conceito e Exemplos de Rede de Computadores 1.2.Estrutura de Uma Rede – Seus Principais Componentes 1.3.Comunicação na Rede: Funções, mensagens e protocolos 1.4.Organizando Tudo: o OSI e o TCP/IP
IDENTIFICAÇÃO NA REDE	2.1.Endereço Físico: Endereço Telefônico e Endereço de Rede Local 2.2.Endereço de Rede: Endereço IP e Mapeamento ARP e DHCP 2.3.Nomes de Hosts: Estrutura e Hierarquia de Nomes e o DNS 2.4.Conceito de Porta de Transporte e Operação Fim-a-fim
APLICAÇÕES	3.1.Introdução: Modelo Cliente/Servidor 3.2.Correio Eletrônico 3.3.Transferência de Arquivos 3.4.A WEB e o HTTP 3.5 VoIP over IP
INTERCONEXÃO DE REDES	4.1.Protocolos TCP e UDP 4.2.Endereçamento: revisão 4.3.O Protocolo IP e o ICMP 4.4.Roteamento
COMUNICAÇÃO DE DADOS	5.1.Redes Locais (LAN): Ethernet 5.2.Redes de Longa Distância (WAN): RS-232 e Modems, PPP e Frame Relay

Cap. 1 - Introdução - 2 BCC - 5NA

Referências Bibliográficas

Básicas

- COMER, D. E. Redes de Computadores e Internet. Bookman Companhia Editora, Porto Alegre. 2ª Edição. 2001.
- KUROSE, J. "Redes de Computadores e a Internet Uma Nova Abordagem", Addison Wesley, 2003.
- TANENBAUM, A. S. "Redes de Computadores", Editora Campus, 1997.

Cap. 1 - Introdução - 3

Referências Bibliográficas

Adicionais

- Farrel, A. A Internet e seus protocolos: uma análise comparativa. Editora Campus, 2005.
- SOUZA, Vandenberg D. de. DIMARZIO, J.F. Projeto e arquitetura de redes : um guia de campo para profissionais de TI - Rio de Janeiro: Campus, 2001
- GALLO, Michael A.. HANCOCK, William M.. SILVA, Flavio Soares Corrêa da. CARNEIRO, Márcio Rodrigo de Freitas. MELO, Ana Cristina Vieira de. Comunicação entre computadores e tecnologias de rede - São Paulo: Pioneira Thomson Learning, 2003.
- GASPARINI, A. F. L., BARRELLA, F. E., BORTOLLI, L. F. e DAL'BÓ, P. E.
 "Projetos para Redes Metropolitanas e de Longa Distância MAN, Campus e WAN Backbone Designer". Editora Érica. 1a. Edição, 1999. São Paulo.

<u>Avaliação</u>

Nota Semestral = 0.2*Av1 + 0.2*Av2 + 0.3*Av3 + 0.3*Av4

A Avaliação Substitutiva repõe alguma prova que o aluno tenha faltado. É aplicada sobre a matéria toda do semestre.

Nota Semestral Final = (Nota Semestral + 2*Recuperação)/3

A Prova de Recuperação é para aqueles que não conseguiram a média mínima 6,0 após as provas.

Capítulo 1: INTRODUÇÃO

BCC – 5NA Cap. 1 - Introdução - 6

1.1 Conceito e Exemplos de Redes de Computadores

BCC – 5NA Cap. 1 - Introdução - 7

Redes de Computadores

Conjuntos de computadores interligados através de redes de comunicação de dados.

Rede de 2 Computadores

Rede Local com 5 Computadores

Classificação das Redes

- Redes Locais (LANs Local Area Networks)
- Redes Metropolitanas (MANs Metropolitan Area Networks)
- Redes de Longa Distância (WANs Wide Area Networks)
- Redes Pessoais (PANs Personal Area Networks)
- Redes no Corpo Humano (BANs Body Area Networks)

Classes de Redes: Redes Locais: LANs

- Podem-se identificar cinco classes básicas de redes:
 - Redes Locais (LAN Local Area Networks):
 - Área geográfica pequena, tal como um escritório, um prédio ou um pequeno cluster de prédios;
 - Taxas de transmissão variam de 10 Mbps a 10 Gbps;
 - Distância de até 5 Km.

LAN: Ex. 1: LAN Party

LAN: Ex. 2: Data Center 1

LAN: Ex. 3: Data Center 2

LAN: Ex. 4: Data Center 2

LAN: Ex. 5: Data Center 3

Wireless LANs

Classes de Redes: Redes Metropolitanas: MANs

Redes Metropolitanas (MAN - Metropolitan Area Networks):

- Interconexão de redes locais e hosts situados em um campus ou até mesmo em uma cidade.
- Opera em áreas de até 100 km
- Rede de Acesso: taxa de transmissão que varia entre 45 Mbps a 10 Gbps. 100 Gbps já está pronto;
- Backbone: velocidades da ordem de centenas de Gbps.

Rede Metropolitana de Alta Velocidade de Porto Alegre

REMAV SP:

Rede Metropolitana de Alta Velocidade de São Paulo Projeto INTERNET 2

MAN: Anéis de Fibra Ótica

MANs: Exemplos de Equipamentos

BCC – 5NA Cap. 1 - Introdução - 23

Classes de Redes: Redes de Longa Distância: WANs

Redes de Longa Distância (WAN - Wide Area Networks):

- Interconexão de sistemas computacionais e redes menores dentro de áreas geográficas grandes, que podem envolver uma cidade, um país ou até o mundo inteiro;
- Redes de Acesso: velocidades de até 1 a 10 Gbps (utilizando as próprias redes metropolitanas);
- Backbones podem trabalhar a taxas de dezenas ou centenas de Gbps. O total agregado de uma rede pode passar de 1 Tbps (Tera).

Transmissão para WAN

• Microondas

• Fibra Ótica

Cap. 1 - Introdução - 25

WANs:

Rede de Fibra Ótica Petrobrás e Eletrobrás

BCC – 5NA Cap. 1 - Introdução - 27

Cabos Submarinos e Rede Telegráfica em 1901

WANs: A INTERNET

Cap. 1 - Introdução - 29

Classes de Redes: PANs

Redes Locais Pessoais (PAN - Personal Area Networks):

- Interconexão de dispositivos, tais como celulares, palmtops, controles remotos, impressoras, etc
- Distâncias da ordem de 1 a 100 m
- Comunicação wireless;
- Velocidades na ordem de 1 a 10 Mbps (alguns padrões podem chegar a 50 Mbps).

PANs: Exemplos

BCC - 5NA

Rede de sensores sem fio

É formada por um conjunto de dispositivos sensores sem fio distribuídos de forma densa capazes de organizar a rede automaticamente e obter informações do ambiente.

Exemplos de Sensores

Redes de Sensores: Monitoração

BCC – 5NA Cap. 1 - Introdução - 35

Classes de Redes: Redes Locais Corporais: BANs

- Redes Locais Corporais (BAN Body Area Network):
 - Tecnologias recentes, ainda em fase de protótipo;
 - Interconexão de dispositivos de computação vestida
 - Baixo alcance e velocidade.

BANs: Exemplos (1)

Computação Vestida

Monitoração

BCC - 5NA

1.2 Estrutura de Uma Rede

Partes de Uma Rede (1)

Partes de Uma Rede (2)

Switch de acesso

Cabeamento

Tomadas RJ-45

Enlaces de Longa Distância

- Linhas telefônicas (par trançado);
- Rádios de Micro-ondas;
- Fibra ótica

Sistema de Fibra Ótica Urbana

Cabos de Fibra Ótica

Rede Fibra Ótica AES Atimus SP

Rede de Longa Distância (1)

Long-Haul Networks (WANs)

BCC – 5NA Cap. 1 - Introdução - 48

1.3 Comunicação na Rede

CONCLUSÕES

- A comunicação entre os equipamentos da rede é feita hoje, na sua grande maioria, através de mensagens, carregadas em um conjunto de um ou mais pacotes.
- Esses pacotes são unidades de informação, transmitidas normalmente de maneira serial, bit a bit, pelas linhas ou canais de comunicação.
- Essas mensagens v\u00e3o comandar a execu\u00e7\u00e3o do mais diverso n\u00eamero de fun\u00e7\u00f3es e opera\u00e7\u00e3es na rede.
- Essas mensagens precisam possuir formatos bem definidos para que os programas de comunicação dos computadores e equipamentos de rede interpretem exatamente o que significam e o que devem fazer.

CONCLUSÕES

- Além disso, as operações entre os equipamentos possuem sequências bem definidas, como por exemplo:
 - 1. Enviar o pedido de conexão;
 - 2. Esperar a resposta do pedido;
 - 3. Recebeu a resposta afirmativa;
 - 4. Enviar uma mensagem de dados;
 - 5. Esperar a confirmação da chegada.
- A definição do formato das mensagens, o significado de cada uma e a seguência de operações correta e suas variações é denominado no conjunto de PROTOCOLO DE COMUNICAÇÃO

1.4 Organizando Tudo

1.4.1 Modelo em Camadas

BCC – 5NA Cap. 1 - Introdução - 54

ESTRUTURA DE

TECNOLOGIA DA INFORMAÇÃO

MEIOS DE CARACTERIZAÇÃO

- DE ACORDO COM A APLICAÇÃO:
 - bancárias,
 - "bureau" de serviços,
 - sistemas cient./empresários,
 - etc.
- ◆ DE ACORDO COM A TOPOLOGIA:
 - estrela,

- árvore,
- multiponto,
- mista,

anel,

· mista de árvores.

- ♦ DE ACORDO COM A GEOGRAFIA:
 - · locais,
 - metropolitanas
 - · longa distância.
- DE ACORDO COM O PROPRIETÁRIO OU ADMINISTRADOR:
 - pública,
 - privada,
 - mista.

NÃO REVELAM EXATAMENTE O QUE A REDE ESTÁ FAZENDO.

◆ CARACTERIZAÇÃO POR FUNÇÕES:

Enumerar o conjunto de funções que a rede realiza (ou deveria) para assegurar um CAMINHO DE ACESSO entre DOIS USUÁRIOS FINAIS.

DESCRIÇÃO DE FUNÇÕES DE COMUNICAÇÃO:

Exemplo: Diálogo Humano

PROPRIEDADES DO MODELO

- Todos os níveis são mutuamente independentes;
- Apesar de usarem as funções de níveis inferiores, não lhes importam como são implementados;
- ◆ As partes envolvidas entram em acordo antecipadamente a respeito <u>de detalhes</u> (regras) da conversa em <u>cada</u> nível: Protocolo de Comunicação

FUNÇÕES DE REDE (II)

TAREFAS	FERRAMENTAS
Manter Caminho Físico	Linhas de Comunicação de Dados (LPs, linhas disc., microondas)
Garantir "Conversa" em Bits	Modems
Transportar Mensagens Individuais	DCL: "Data Link Control"
Proporcionar Economia de Recursos (compartilhamento)	Discagem, Linhas Multiponto, Multiplexação, Chaveamento de Pacotes
Mensagens p/ Destino Correto Evitando Linhas/nós Defeituosos	Endereçamento e Roteamento
Acomodar Diferenças de Tamanho de Mensagens	Empacotamento e Desempacotamento
Resolver Problemas de Diferenças de Velocidade de Processamento	Armazenamento e Controle de Fluxo
Acomodar Padrões Diferentes de Intermitência	Datagrama, Sist. de Transação, Geren. de Diálogo de Sesssão
Acomodar Diferenças de: Formato, Códigos, Linguagens Entre Usuários Finais	Conversão de Protocolos

INTERAÇÃO AOS PARES (I)

2 WORKSTATION

INTERAÇÃO AOS PARES (III)

1.4.2 Arquiteturas para Redes de Computadores

ARQUITETURA X IMPLEMENTAÇÃO

ARQUITETURA

Definição das funções que uma rede de computadores e seus componentes devem executar.

IMPLEMENTAÇÃO

Distribuição dessas funções através dos elementos de hardware e software da rede.

ARQUITETURA DE SISTEMA DE COMUNICAÇÃO

Conjunto de funções que interagem aos pares através de um conjunto de acordos chamado <u>PROTOCOLO.</u>

Portanto encontramos:

<u>ARQUITETURAS DE REDES</u> especificadas em termos de <u>PROTOCOLOS DE COMUNICAÇÃO</u> entre <u>PARES IGUAIS DE NÍVEIS</u>.

Elementos de um Protocolo

- 1. Sintaxe (formato)
- 2. Semântica (significado)
- 3. Sequências (mecanismos)

ARQUITETURA TCP/IP

CAMADAS

EXEMPLOS DE ARQUITETURAS

São exemplos de arquiteturas:

- TCP/IP: Transmission Control Protocol / Internet Protocol (DoD)
- SNA: Systems Network Architecture (IBM)
- IPX/SPX: Novell Architecture
- OSI: Open Systems Interconnections (ISO)

Orgãos de Padronização em Redes e Telecomunicações

- ISO International Standards Organization (Suiça)
- ITU International Telecommunication Union (Ex CCITT) (Suiça)
- **EIA Eletronic Industries Association (USA)**
- IEEE Institute of Eletrical and Eletronics Engineers (USA)

Administração e padronização na Internet

- IAB The Internet Architecture Board
- IRTF The Internet Reserach Task Force
- **IETF The Internet Engineering Task Force**
- IANA The Internet Assigned Numbers Authority
- InterNIC The Internet Network Information Center
- CERT/CC Computer Emergency Response Team Coordinate Center

BCC - 5NA

ARQUITETURA TCP/IP CAMADAS

1.4.4 O Modelo OSI: Visão Geral das Camadas

ARQUITETURA OSI

O modelo de referência é composto por sete camadas

Arquitetura TCP/IP

APLICAÇÃO

APRESENTAÇÃO

SESSÃO

TRANSPORTE

REDE

ENLACE

FÍSICA

Aplicações

Transporte

Rede

Enlace

Física

Aplicações

Transporte

IP

Sub-rede

CAMADA FÍSICA

- ◆ Transmissão transparente de sequências de bits pelo meio físico;
- ♦ Contém padrões mecânicos, funcionais, elétricos e procedimentos para acesso a esse meio físico;
- Mantém a conexão física entre sistemas;
 - Vários tipos de conexão:
 - Ponto-a-ponto ou multiponto
 - Full ou half duplex
 - Serial ou paralela

CAMADA DE ENLACE

- ◆ Esconde características físicas do meio de transmissão;
- ◆ Provê meio de transmissão confiável entre dois sistemas adjacentes;
- ♦ Funções mais comuns:
 - Delimitação de quadro
 - Detecção de erros
 - Seqüencialização
 - Controle de fluxo

CAMADA DE REDE

- Provê canal de comunicação independente do meio e dos meios;
- Efetua operações de chaveamento;
- Funções características:
 - Acesso à sub-rede
 - Operação da rede
 - Interconexão de redes e de sub-redes
 - Endereçamento lógico
 - Roteamento

CAMADA DE TRANSPORTE

- ◆Controla a comunicação fim-a-fim. Provê confiabilidade para as aplicações;
- ◆Transferência de dados transparente, independente de sub-redes;
- ◆ Significado fim-a-fim, independente de topologias de redes;
- Controle de qualidade de serviço de rede global:

classes de serviços:

- 0 Simples
- 1 Recuperação de erros básicos
- 2 Multiplexação
- 3 Recuperação de erro e multiplexação
- 4 Detecção, recuperação de erros e multiplexação

CAMADA DE SESSÃO

- ◆ Provê sincronismo de diálogo: Recepção x transmissão
- Recupera conexões de transporte sem perder conexões de sessão;
- ♦ Possui mecanismos de verificação (sincronização);
- Não efetua multiplexação da camada de transporte;
- ♦ Utiliza mesma conexão de transporte para várias conexões de sessão não simultâneas;

CAMADA DE APRESENTAÇÃO

- ♦ Transparência de representação de dados: *sintaxes*
- **♦** Sintaxes:
 - Do transmissor
 - Do receptor
 - De transferência

Contexto de apresentação:

Sintaxe abstrata + sintaxe de transferência

CAMADA DE APLICAÇÃO

- Funções específicas de utilização dos sistemas;
- Categoria de processos de aplicação
 - Correio eletrônico
 - Transferência de arquivos
 - Serviço de diretório
 - Processamento de transações
 - Terminal virtual
 - Acesso a bancos de dados
 - Gerência de rede

Formato de dados

EDI/EDIFACT: electronic data interchange for administration, commerce, and trading

ODA/ODIF: open document architecture/interchange format

CGM/CGMIF: computer graphics metafile/interchange format

HTML: Hipertext Markup Language

XML: Extended Markup Language

MPEG: Moving Picture Especification Group

1.4.3 Arquitetura TCP/IP

Legenda:

ARP - Address Resolution Protocol

IP - Internet Protocol

RARP - Reverse Address Resolution Protocol

SMTP - Simple Mail Transfer Protocol

UDP - User Datagram Protocol

FTP - File Transfer Protocol

ICMP - Internet Control Message Protocol

SNMP - Simple Network Management Protocol

TCP - Transmission Control Protocol

Aplicações

Transporte

Rede

Acesso à Sub-Rede

- São definidas diversas aplicações:
 - Transferência de Arquivos:
 - FTP (File Transfer Protocol).
 - NFS (*Network File System*).
 - Correio Eletrônico:
 - SMTP (Simple Mail Transfer Protocol).
 - POP3 (Post Office Protocol).
 - Terminais Virtuais:
 - TELNET.
 - World Wide Web:
 - HTTP (Hipertext Transport Protocol).
 - Gerenciamento de Redes:
 - SNMP (Simple Network Management Protocol).

Aplicações

Transporte

Rede

Acesso à Sub-Rede

• TCP (Transmission Control Protocol):

- comunicação fim-a-fim confiável.
 - orientado à conexão.
 - implementa mecanismos de controle de erro e fluxo.

• UDP (User Datagram Protocol):

- comunicação fim-a-fim simples.
 - não-orientado à conexão.
 - não implementa mecanismos de controle de erro e de fluxo.
 - a aplicação é responsável por suportar mecanismos de confiabilidade.

Aplicações

Transporte

Rede

Acesso à Sub-Rede

• IP (Internet Protocol):

- comunicação fim-a-fim simples.
- não-orientado à conexão.

• ICMP(Internet Control Message Protocol)

- notificação de não-entrega de pacotes.
- teste de comunicação (e.g., eco).
- regulação de fluxo (source quench).

Protocolos de Tradução de Endereços:

- ARP (Address Resolution Protocol)
- RARP (*Reverse ARP*).

Protocolos de Roteamento:

- RIP (Routing Information Protocol).
- OSPF (*Open Shorthest Path First*).

 Os protocolos da Arquitetura TCP/IP podem ser empregados sobre diversas tecnologias de redes.

- Como exemplos, podem-se citar:
 - Ethernet.
 - Frame Relay
 - PPP
 - ADSL
 - etc

Exemplo de Comunicação em uma Rede TCP/IP

Cap. 1 - Introdução - 87

Identifique a Camada

Função ou Problema	Camada Responsável
Tecnologia para derivação multiponto de uma fibra ótica.	
Manter condições de desempenho de rede, tais como tempo de resposta e vazão.	
Permitir acesso de várias aplicações simultâneas à rede.	
Efetuar transformações de estrutura de armazenamento de tipos de matrizes de dados.	
Fazer criptografia dos dados em tempo real, ou seja, no momento da transmissão.	
Identificação de mensagem (quadro) de dados com tamanho incorreto, geralmente maior que o permitido.	
Recuperar-se de uma perda de comunicação.	