EE5138 OPTIMIZATION FOR ELECTRICAL ENGINEERING/ EE6138 OPTIMIZATION FOR ELECTRICAL ENGINEERING (ADVANCED)

Lecture 5: Numerical Algorithms

Outline

- uncontrained minimization
 - gradient descent method
 - Newton's method
- equality constrained minimization
 - eliminating equality constraints
 - Newton's method with equality constraints
- inequality constrained minimization
 - logarithmic barrier function and central path
 - interior-point (e.g. barrier) method
 - feasibility and phase I methods
 - generalized inequalities

Required reading: textbook chapter 9 (9.1.1, 9.2, 9.3.2, 9.5.1-9.5.2, 9.5.4), 10 (10.1, 10.2.1-10.2.2, 10.4.3), 11(11.1, 11.2, 11.3.1-11.3.2, 11.4.1, 11.6.1-11.6.3)

Unconstrained minimization

minimize
$$f(x)$$

- f convex, twice continuously differentiable (hence $\operatorname{dom} f$ open)
- we assume optimal value $p^* = \inf_x f(x)$ is attained (and finite)

unconstrained minimization methods

• produce sequence of points $x^{(k)} \in \operatorname{dom} f$, $k = 0, 1, \ldots$ with

$$f(x^{(k)}) \to p^*$$

• can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^{\star}) = 0$$

Descent methods

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)})$$

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ (i.e., Δx is a descent direction)

General descent method.

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. Determine a descent direction Δx .
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search types

exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

• starting at t=1, repeat $t:=\beta t$ until

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$$

• graphical interpretation: backtrack until $t \leq t_0$

Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. $\Delta x := -\nabla f(x)$.
- 2. Line search. Choose step size t via exact or backtracking line search.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_2 \le \epsilon$
- \bullet convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on m, $x^{(0)}$, line search type

very simple, but often very slow; rarely used in practice

a problem in $\ensuremath{\mathsf{R}}^{100}$

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

'linear' convergence, i.e., a straight line on a semilog plot

Newton step

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

interpretations

• $x + \Delta x_{\rm nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{\rm nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

$$\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$$

- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{\rm nt}$.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are

$$y^{(k)} = T^{-1}x^{(k)}$$

example in R^{100} (see slide 7)

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$
- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm (quadratic local convergence)

Equality constrained minimization

minimize
$$f(x)$$
 subject to $Ax = b$

- f convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A = p$
- ullet we assume p^{\star} is finite and attained

optimality conditions: x^* is optimal iff there exists a ν^* such that

$$\nabla f(x^*) + A^T \nu^* = 0, \qquad Ax^* = b$$

equality constrained quadratic minimization (with $P \in S_+^n$)

minimize
$$(1/2)x^TPx + q^Tx + r$$
 subject to $Ax = b$

optimality condition:

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x^{\star} \\ \nu^{\star} \end{array}\right] = \left[\begin{array}{c} -q \\ b \end{array}\right]$$

coefficient matrix is called KKT matrix

Eliminating equality constraints

represent solution of $\{x \mid Ax = b\}$ as

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}\$$

- \hat{x} is (any) particular solution
- range of $F \in \mathbf{R}^{n \times (n-p)}$ is nullspace of A (rank F = n p and AF = 0)

reduced or eliminated problem

minimize
$$f(Fz + \hat{x})$$

- an unconstrained problem with variable $z \in \mathbf{R}^{n-p}$
- from solution z^* , obtain x^* as

$$x^{\star} = Fz^{\star} + \hat{x}$$

example: optimal allocation with resource constraint

minimize
$$f_1(x_1) + f_2(x_2) + \cdots + f_n(x_n)$$

subject to $x_1 + x_2 + \cdots + x_n = b$

eliminate $x_n = b - x_1 - \cdots - x_{n-1}$, *i.e.*, choose

$$\hat{x} = be_n, \qquad F = \begin{bmatrix} I \\ -\mathbf{1}^T \end{bmatrix} \in \mathbf{R}^{n \times (n-1)}$$

reduced problem:

minimize
$$f_1(x_1) + \cdots + f_{n-1}(x_{n-1}) + f_n(b - x_1 - \cdots - x_{n-1})$$

(variables x_1, \ldots, x_{n-1})

Newton step

Newton step $\Delta x_{\rm nt}$ of f at feasible x is given by solution v of

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

interpretations

• $\Delta x_{\rm nt}$ solves second order approximation (with variable v)

minimize
$$\begin{array}{ll} \widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2) v^T \nabla^2 f(x) v \\ \text{subject to} & A(x+v) = b \end{array}$$

ullet $\Delta x_{
m nt}$ equations follow from linearizing optimality conditions

$$\nabla f(x+v) + A^T w \approx \nabla f(x) + \nabla^2 f(x)v + A^T w = 0, \qquad A(x+v) = b$$

Newton's method with equality constraints

given starting point $x \in \operatorname{dom} f$ with Ax = b, tolerance $\epsilon > 0$. repeat

- 1. Compute the Newton step and decrement $\Delta x_{\rm nt}$, $\lambda(x)$.
- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{\rm nt}$.

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

- \bullet a feasible descent method: $x^{(k)}$ feasible and $f(x^{(k+1)}) < f(x^{(k)})$
- affine invariant

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$ (1)

- f_i convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A = p$
- ullet we assume p^{\star} is finite and attained
- ullet we assume problem is strictly feasible: there exists ilde x with

$$\tilde{x} \in \operatorname{dom} f_0, \quad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \quad A\tilde{x} = b$$

hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

subject to
$$Fx \leq g$$

$$Ax = b$$

with
$$\operatorname{dom} f_0 = \mathbf{R}_{++}^n$$

- differentiability may require reformulating the problem, e.g., piecewise-linear minimization or ℓ_{∞} -norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Logarithmic barrier

reformulation of (1) via indicator function:

$$\begin{array}{ll} \text{minimize} & f_0(x) + \sum_{i=1}^m I_-(f_i(x)) \\ \text{subject to} & Ax = b \end{array}$$

where $I_{-}(u) = 0$ if $u \leq 0$, $I_{-}(u) = \infty$ otherwise (indicator function of \mathbf{R}_{-})

approximation via logarithmic barrier

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$
 subject to $Ax = b$

- an equality constrained problem
- for t > 0, $-(1/t)\log(-u)$ is a smooth approximation of I_-
- ullet approximation improves as $t o \infty$

logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \mathbf{dom} \, \phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central path

• for t > 0, define $x^*(t)$ as the solution of

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

(for now, assume $x^*(t)$ exists and is unique for each t > 0)

• central path is $\{x^*(t) \mid t > 0\}$

example: central path for an LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, 6$

hyperplane $c^Tx=c^Tx^{\star}(t)$ is tangent to level curve of ϕ through $x^{\star}(t)$

Dual points on central path

 $x = x^*(t)$ if there exists a w such that

$$t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \qquad Ax = b$$

• therefore, $x^*(t)$ minimizes the Lagrangian

$$L(x, \lambda^{*}(t), \nu^{*}(t)) = f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*}(t) f_{i}(x) + \nu^{*}(t)^{T} (Ax - b)$$

where we define $\lambda_i^{\star}(t) = 1/(-tf_i(x^{\star}(t)))$ and $\nu^{\star}(t) = w/t$

• this confirms the intuitive idea that $f_0(x^*(t)) \to p^*$ if $t \to \infty$:

$$p^{\star} \geq g(\lambda^{\star}(t), \nu^{\star}(t))$$

$$= L(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t))$$

$$= f_0(x^{\star}(t)) - m/t$$

Interpretation via KKT conditions

$$x = x^*(t), \ \lambda = \lambda^*(t), \ \nu = \nu^*(t)$$
 satisfy

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, Ax = b
- 2. dual constraints: $\lambda \succeq 0$
- 3. approximate complementary slackness: $-\lambda_i f_i(x) = 1/t$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

Barrier method

given strictly feasible x, $t:=t^{(0)}>0$, $\mu>1$, tolerance $\epsilon>0$. repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. *Update.* $x := x^{*}(t)$.
- 3. Stopping criterion. quit if $m/t < \epsilon$.
- 4. Increase $t. \ t := \mu t$.

(one particular example of the interior-point method)

- terminates with $f_0(x) p^* \le \epsilon$ (stopping criterion follows from $f_0(x^*(t)) p^* \le m/t$)
- ullet centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu = 10$ –20
- several heuristics for choice of $t^{(0)}$

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

- starts with x on central path $(t^{(0)} = 1$, duality gap 100)
- terminates when $t = 10^8 \text{ (gap } 10^{-6}\text{)}$
- centering uses Newton's method with backtracking
- ullet total number of Newton iterations not very sensitive for $\mu \geq 10$

geometric program (m = 100 inequalities and n = 50 variables)

minimize
$$\log \left(\sum_{k=1}^{5} \exp(a_{0k}^T x + b_{0k})\right)$$

subject to $\log \left(\sum_{k=1}^{5} \exp(a_{ik}^T x + b_{ik})\right) \le 0, \quad i = 1, \dots, m$

Feasibility and phase I methods

feasibility problem: find x such that

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over
$$x$$
, s) s
subject to $f_i(x) \le s, \quad i = 1, \dots, m$ (3)
 $Ax = b$

- if x, s feasible, with s < 0, then x is strictly feasible for (2)
- if optimal value \bar{p}^* of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^* = 0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^* = 0$ and not attained, then problem (2) is infeasible

Generalized inequalities (optional)

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq_{K_i} 0$, $i = 1, \ldots, m$ $Ax = b$

- f_0 convex, $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$, $i = 1, \dots, m$, convex with respect to proper cones $K_i \in \mathbf{R}^{k_i}$
- f_i twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ with $\operatorname{rank} A = p$
- ullet we assume p^{\star} is finite and attained
- we assume problem is strictly feasible; hence strong duality holds and dual optimum is attained

examples of greatest interest: SOCP, SDP

Generalized logarithm for proper cone (optional)

 $\psi: \mathbf{R}^q \to \mathbf{R}$ is generalized logarithm for proper cone $K \subseteq \mathbf{R}^q$ if:

- $\operatorname{dom} \psi = \operatorname{int} K$ and $\nabla^2 \psi(y) \prec 0$ for $y \succ_K 0$
- $\psi(sy) = \psi(y) + \theta \log s$ for $y \succ_K 0$, s > 0 (θ is the degree of ψ)

examples

- nonnegative orthant $K = \mathbf{R}^n_+$: $\psi(y) = \sum_{i=1}^n \log y_i$, with degree $\theta = n$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$:

$$\psi(Y) = \log \det Y \qquad (\theta = n)$$

• second-order cone $K = \{ y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1} \}$:

$$\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2) \qquad (\theta = 2)$$

Logarithmic barrier and central path (optional)

logarithmic barrier for $f_1(x) \leq_{K_1} 0, \ldots, f_m(x) \leq_{K_m} 0$:

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \mathbf{dom} \, \phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \dots, m\}$$

- ullet ψ_i is generalized logarithm for K_i , with degree θ_i
- \bullet ϕ is convex, twice continuously differentiable

central path: $\{x^*(t) \mid t > 0\}$ where $x^*(t)$ solves

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

Dual points on central path (optional)

 $x = x^{\star}(t)$ if there exists $w \in \mathbf{R}^p$,

$$t\nabla f_0(x) + \sum_{i=1}^m Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0$$

 $(Df_i(x) \in \mathbf{R}^{k_i \times n} \text{ is derivative matrix of } f_i)$

ullet therefore, $x^\star(t)$ minimizes Lagrangian $L(x,\lambda^\star(t),\nu^\star(t))$, where

$$\lambda_i^{\star}(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^{\star}(t))), \qquad \nu^{\star}(t) = \frac{w}{t}$$

• from properties of ψ_i : $\lambda_i^{\star}(t) \succ_{K_i^*} 0$, with duality gap

$$f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = (1/t) \sum_{i=1}^m \theta_i$$

example: semidefinite programming (with $F_i \in S^p$)

minimize
$$c^T x$$
 subject to $F(x) = \sum_{i=1}^n x_i F_i + G \leq 0$

- logarithmic barrier: $\phi(x) = \log \det(-F(x)^{-1})$
- central path: $x^*(t)$ minimizes $tc^Tx \log \det(-F(x))$; hence

$$tc_i - \mathbf{tr}(F_i F(x^*(t))^{-1}) = 0, \quad i = 1, \dots, n$$

• dual point on central path: $Z^*(t) = -(1/t)F(x^*(t))^{-1}$ is feasible for

maximize
$$\mathbf{tr}(GZ)$$

subject to $\mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n$
 $Z \succ 0$

• duality gap on central path: $c^T x^*(t) - \mathbf{tr}(GZ^*(t)) = p/t$

Barrier method (optional)

given strictly feasible x, $t:=t^{(0)}>0$, $\mu>1$, tolerance $\epsilon>0$. repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. *Update.* $x := x^*(t)$.
- 3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$.
- 4. Increase $t. \ t := \mu t$.

- ullet only difference is duality gap m/t on central path is replaced by $\sum_i heta_i/t$
- number of outer iterations:

$$\left\lceil \frac{\log((\sum_i \theta_i)/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

Examples

second-order cone program (50 variables, 50 SOC constraints in \mathbb{R}^6)

semidefinite program (100 variables, LMI constraint in S^{100})

