IV.6

IV.6 Détermination de la constante de partage du diiode entre deux solvants, H₂O et cyclohexane

Temps de manipulation : 2 h

Matériel:

- 3 erlenmeyers 250 mL + bouchons
- 3 burettes 50 mL
- 2 béchers 150 mL
- 2 erlenmeyers 150 mL
- 1 pipette jaugée 5 mL
- 1 pipette jaugée 50 mL
- 1 pipette graduée 20 mL
- 3 ampoules à décanter 250 mL (ou plus) + supports
- 3 agitateurs magnétiques + barreaux
- 1 fiole jaugée 20 mL
- 1 fiole jaugée 100 mL
- 2 fioles jaugées 250 mL
- 1 fiole jaugée 200 mL

Produits:

- I₂ △
- C₆H₁₂[△] (cyclohexane)
- KI (sol. aqueuse à 2,0 mol.L⁻¹)
- -Na₂S₂O₃
- empois d'amidon
- eau permutée

IV.6.1 Objectifs

Illustrer de manière colorée la solubilité du diiode dans deux solvants non miscibles (eau et cyclohexane C_6H_{12}) et calculer la constante thermodynamique K de cet équilibre de partage (NB : dans la première édition de cet ouvrage, les solvants étaient l'eau et le tétrachlorure de carbone CCl_4 dont la toxicité est telle que nous avons choisi de le remplacer par le cyclohexane).

IV.6.2 Manipulation¹⁰

IV.6.2.1 PRÉPARATION DES SOLUTIONS

- $\mbox{ Solution de } I_2 \mbox{ dans } C_6 H_{12} \mbox{ à 0,040 mol.} L^{-1} : \mbox{ dissoudre 1,0 g de diiode} \mbox{ $^{\triangle}$} ({\bm L} + {\bm G} + {\bm H}) \mbox{ dans une fiole jaugée de 100 mL avec du } C_6 H_{12} \mbox{ $^{\triangle}$} ({\bm L} + {\bm G} + {\bm H}).$
- Solution aqueuse de $Na_2S_2O_3$ à $1,0.10^{-2}$ mol. L^{-1} : dissoudre 0,375 g de thiosulfate de sodium anhydre dans une fiole de 250 mL avec de l'eau permutée.
- Solution aqueuse de KI à 2,0 mol.L⁻¹: dissoudre 6,7 g d'iodure de potassium dans une fiole de 20 mL avec de l'eau permutée.

IV.6.2.2 VISUALISATION DU PARTAGE DU DIIODE ENTRE H₂O ET CYCLOHEXANE

Dans des erlenmeyers de 250 mL numérotés 1, 2 ou 3, préparer les trois mélanges décrits tableau IV.6-I.

¹⁰ Département de chimie, Université de Cergy-Pontoise.

Tableau IV.6-I: Volumes à prélever pour réaliser les mélanges 1, 2 ou 3.

Erlenmeyer	I ₂ dans C ₆ H ₁₂	C ₆ H ₁₂ pur	H_2O
1	20,0 mL	0 mL	200 mL
2	15,0 mL	5,0 mL	200 mL
3	10,0 mL	10,0 mL	200 mL

Placer les erlenmeyers munis de bouchons sur les agitateurs magnétiques et agiter pendant 30 min. Transvaser dans des ampoules à décanter et laisser décanter 15 min $(\text{sans bouchon})^{\triangle}$ (H).

IV.6.2.3 DOSAGE DU DIIODE

a) Phase organique

Prélever 5,0 mL de la phase organique à l'aide d'une pipette et les mettre dans un erlenmeyer de 150 mL. Ajouter environ 2 mL de solution aqueuse de KI de concentration 2,0 mol.L⁻¹ pour provoquer une extraction complète du diiode. Effectuer le dosage par la solution de thiosulfate de sodium à 1,0.10⁻² mol.L⁻¹. Agiter fortement après chaque addition de thiosulfate de sodium. À l'équivalence, la solution devient incolore. Noter les volumes équivalents V_{e_1} , V_{e_2} et V_{e_3} de thiosulfate de sodium ajoutés aux solutions organiques 1, 2 et 3.

Remarque: KI ne passe pas dans la phase organique.

b) Phase aqueuse

Transvaser une grande partie de la phase aqueuse dans un bécher. Prélever, à la pipette, 50.0 mL et les placer dans un erlenmeyer de 150 mL. Doser par la solution de thiosulfate de sodium à $1.0.10^{-2}$ mol.L⁻¹. À l'équivalence, la solution vire au jaune pâle : ajouter alors 5 gouttes d'empois d'amidon et la solution devient bleue. Verser 1 goutte de solution de thiosulfate de sodium : la solution se décolore. Noter les trois volumes équivalents V'_{e_1} , V'_{e_2} et V'_{e_3} de thiosulfate de sodium ajoutés aux solutions aqueuses 1, 2 et 3.

Tableau IV.6-II : Résultats du dosage du diiode par le thiosulfate de sodium à 1,0.10-2 mol.L-1 (19 °C). $\bar{K}=66\pm3$ à 19 °C.

Erlenmeyer	V _e (organique)	V' _e (aqueuse)	$[l_2]$ (mol.L ⁻¹)	$[l_2]$ ' (mol.L $^{-1}$)	K
1	31,85	4,85	0,0318	0,485.10-3	66 ± 2
2	23,40	3,65	0,0234	$0,365.10^{-3}$	64 ± 2
3	15,55	2,30	0,0156	$0,230.10^{-3}$	68 ± 3