

2021q1

Trabajo de una fuerza Definiciones y ejemplos

FIUBA [Física I] – Presentación

Curso 4

Experiencia práctica

Cuando modificamos el movimiento...

Levantamos un cuerpo 1 metro Trasladamos un objeto por el piso

estamos...

Aplicando alguna fuerza \vec{F} La fuerza causa movimiento \overrightarrow{dr}

LA FUERZA **TRABAJO**

Física I – Trabajo por definición – Curso 4 – 2021q1

Trabajo hecho por una fuerza constante

Sears p.182

Trabajo hecho por una fuerza constante

 $\theta = 90^{\circ}$

Trabajo hecho por una fuerza constante

 $\theta < 90^{\circ}$

Física I – Trabajo por definición – Curso 4 – 2021q1

Definición

Diferencial de trabajo (componente horizontal)

$$dW = \overrightarrow{F} \cdot \overrightarrow{dr} = |\overrightarrow{F}| |d\overrightarrow{r}| \cos \theta$$

Trabajo hecho por una fuerza a un cuerpo al trasladarse A → B : sumatoria de todos los dW

$$W_F^{A,B} = \int_A^B \overrightarrow{F} \cdot \overrightarrow{dr}$$

Física I – Trabajo por definición – Curso 4 – 2021q1

La magnitud trabajo

El trabajo es una magnitud ESCALAR (es el resultado de una integral, y dentro de la integral hay un número, resultado de un producto escalar)

$$[W] = [F][dr] = N \cdot m = Joule$$

Joule es un apellido, no se castellaniza (ej no se dice "Julio"), tampoco se escribe con minúscula (no se escribe "j" en todo caso "J" mayúscula)

8.2 Trabajo

Consideremos una partícula A que se mueve a lo largo de una curva C bajo la acción de una fuerza F (Fig. 8-1). En un tiempo muy corto dt la partícula se mueve de A a A', siendo el desplazamiento $\overline{AA'} = d\mathbf{r}$. El trabajo efectuado por la fuerza F durante tal desplazamiento se define por el producto

$$dW = \mathbf{F} \cdot d\mathbf{r}. \tag{8.2}$$

Alonso p.203

Alonso p.204

6

Revisando libros

rabajo efectuado por una fuerza variable o en una ayectoria curva: Si la fuerza varía durante un desplazamiento rectilíneo, el trabajo que realiza está dado por una integral [ecuación (6.7)]. (Véanse los ejemplos 6.6 y 6.7.) Si la partícula tiene una trayectoria curva, el trabajo efectuado por una fuerza \vec{F} está dado por una integral en la que interviene el ángulo ϕ entre la fuerza y el desplazamiento. Esta expresión es válida aun cuando la magnitud de la fuerza y el ángulo ϕ varían durante el desplazamiento (Véanse los ejemplos 6.8 y 6.9.)

aplica el producto escalar,

 $dW = \vec{F} \cdot d\vec{l} = F \cos \phi \, dl$

Sears p.197

Serway p.170

 $^{
m c}$ ara el caso general de una fuerza neta Σ $ec{f F}$ cuya magnitud y dirección puede variar, so

 $\sum W = W_{\text{neto}} = \left[\left(\sum \vec{\mathbf{f}} \right) \cdot d\vec{\mathbf{r}} \right]$

La ec. (8.2) da el trabajo para un desplazamiento infinitesimal. El trabajo total sobre la partícula cuando ésta se mueve de A a B (Fig. 8-3) es la suma de todos los trabajos infinitesimales efectuados en los sucesivos desplazamientos infinitesimales. Esto es.

Sears p.202

 $W = \mathbf{F_1} \cdot d\mathbf{r}_1 + \mathbf{F_2} \cdot d\mathbf{r}_2 + \mathbf{F_3} \cdot d\mathbf{r}_3 + \dots$

 $W = \int_{-B}^{B} \mathbf{F} \cdot d\mathbf{r} = \int_{-B}^{B} F_{T} \, ds.$

FACULTAD DE INGENIERIA

Ejemplo 1

Ejemplo 1

$$W_F^{A,B} = \int_{x_A}^{x_B} -|\vec{F}| \underbrace{\check{i} \cdot \check{i}}_{=1} dx = -|\vec{F}| \int_{x_A}^{x_B} dx$$

$$= -|\vec{F}|(x_B - x_A) = -|\vec{F}| d \quad \theta = 180^\circ$$
y daría positivo si \Rightarrow $|\vec{F}| d \quad \theta = 0$

FACULTAD
DE INGENIERIA
Universidad de Buenos Aires

Física I – Trabajo por definición – Curso 4 – 2021q1

Física I – Trabajo por definición – Curso 4 – 2021q1

Ejemplo 2

Giancoli p.88

Desde la <u>experiencia humana</u> (sin saber física): el auto frena Desde la <u>cinemática</u>: el auto tiene un MRUV Desde la <u>dinámica</u>: la causa del MRUV es una fuerza Desde <u>TyE</u>: la fuerza le realiza un trabajo al auto

12

10

TIRO OBLICUO

Desde la <u>cinemática</u>: el proyectil tiene un movim. curvilíneo Desde la <u>dinámica</u>: la causa (luego del disparo) es el peso Desde TyE: el peso le realiza un trabajo al proyectil

9

Resumen de casos

Signos del trabajo

1) ≃para mismo lado:

2) ≃para lado contrario:

 $\theta > 90^{\circ}$

3) perpendiculares:

 $\theta = 90^{\circ}$

Revisando libros

Física I – Trabajo por definición – Curso 4 – 2021q1

13

15

Física I – Trabajo por definición – Curso 4 – 2021q1

14

Sears p.184

Reviendo casos

Indicar el signo del trabajo de cada una de las fuerzas dibujadas, si el cuerpo se mueve como indica dr

Ejemplos de trabajo por definición

Cómo hacer los ejercicios

Ejemplo 4: calcular W_F para A → B

Física I – Trabajo por definición – Curso 4 – 2021q1

Física I – Trabajo por definición – Curso 4 – 2021q1

18

20

1 – parametrizar

a) Igualar el parámetro a una de las coordenadas:

$$\lambda = x$$
 δ $\lambda = y$

- b) Parámetro creciente $\lambda \in [\lambda_{INIC}; \lambda_{FINAL}]$, o invertir signo
- c) Opcional: ajustar parámetro para empezar en cero

1 – parametrizar

$$y = x + 4$$
 $\lambda = 0$ en $A \land \lambda$ creciente hacia B

$$x = 2$$

$$x = -\lambda + 2$$

$$y = 6$$

$$y = -1$$

$$y = (-\lambda + 2) + 4 = -\lambda + 6$$
 $\lambda = 7$

Ya tenemos ahora el sentido del movimiento

2 – vector posición

Es construír la posición usando las ecuaciones paramétricas

$$\vec{r}(\lambda) = (-\lambda + 2) \ \check{\imath} + (-\lambda + 6) \ \check{\jmath}$$

3 – diferencial de desplazamiento

Hacer la diferencial al vector posición:

$$\vec{r}(\lambda) = (-\lambda + 2) \ \check{\iota} + (-\lambda + 6) \ \check{\jmath}$$

$$d\vec{r}(\lambda) = -d\lambda\,\dot{i} - d\lambda\,\dot{j}$$

21

23

Física I – Trabajo por definición – Curso 4 – 2021q1

22

Física I – Trabajo por definición – Curso 4 – 2021q1

4 y 5 – producto escalar e integral

$$W_F^{A,B} = \int_A^B \vec{F} \cdot \vec{dr} = \int_A^B (2x + y) \, j \cdot (-d\lambda \, i - d\lambda \, j)$$

$$W_F^{A,B} = \int_A^B [2(-\lambda + 2) + (-\lambda + 6)] \, j \cdot (-d\lambda \, i - d\lambda \, j)$$

$$W_F^{A,B} = -\int_A^B (-3\lambda + 10) \underbrace{\check{j}.\check{i}}_{=0} d\lambda - \int_A^B (-3\lambda + 10) \underbrace{\check{j}.\check{j}}_{=1} d\lambda$$

4 y 5 – producto escalar e integral

$$W_F^{A,B} = -\int_{\lambda=0}^{\lambda=7} (-3\lambda + 10) d\lambda = \frac{7}{2} Joule$$

<u>Conceptual</u>: ¿cuál será el signo del trabajo de F entre A y la intersección con el eje y (ordenada al origen)?

Expresión alternativa del trabajo

$$W_F^{\;A,B} = \int_A^B \overrightarrow{F} \; . \; \overrightarrow{dr} \;$$
 Trabajo de F sobre un cuerpo

Recordando que:

$$\vec{a}$$
 . $\vec{b} = |\vec{a}| |\vec{b}| \cos \theta = a_x b_x + a_y b_y$

Expresión alternativa del trabajo

$$W_F^{A,B} = \int_A^B F_x \ dx + \int_A^B F_y \ dy$$

Y esto permite trabajar con dos integrales escalares directamente (esto si el movimiento es en el plano, en el espacio serían tres integrales F, dz)

Física I – Trabajo por definición – Curso 4 – 2021q1

Física I – Trabajo por definición – Curso 4 – 2021q1

Ejemplo 5: calcular W_F para $A \rightarrow C \rightarrow B$

$$\vec{F} = 3x \, \check{\iota} \, \frac{N}{m}$$

$$A \rightarrow C$$
: $d\vec{r} = dx \, i$

$$A \rightarrow C$$
: $d\vec{r} = dx \ \check{\iota}$
 $C \rightarrow B$: $d\vec{r} = dy \ \check{\jmath}$

Ejemplo 5: calcular W_F para $A \rightarrow C \rightarrow B$

$$\vec{F} = 3x \, i \, \frac{N}{m}$$

$$C$$

$$W_F^{A,B} = \int_A^C \vec{F} \cdot \vec{dr} + \int_C^B \vec{F} \cdot \vec{dr}$$

$$= \int_{3}^{8} 3x \, i.i \, dx + \int_{7}^{22} 3x \, i.j \, dy = 3 \int_{3}^{8} x \, dx = 82,5 \, Joule$$

26

25

Ejemplo 6: se mueve a derecha

$$m = 2 kg$$

$$\mu_d = 0,25$$

$$x_A = -3 m$$

$$x_B = 7 m$$

Ejemplo 6: se mueve a derecha

$$\begin{array}{cccc}
\overrightarrow{dr} & \xrightarrow{A} & \xrightarrow{B} & \times \\
& \xrightarrow{X_{A}} & \overrightarrow{f}_{r}d & \xrightarrow{X_{B}}
\end{array}$$

$$W_{frd}^{A,B} = \int_A^B \overrightarrow{f}_{rd} \cdot \overrightarrow{dr}$$

$$\vec{f}_{rd} = -f_{rd} \, \check{\imath} = -\mu_d \, m \, g \, \check{\imath} \qquad \overrightarrow{dr} = \check{\imath} \, dx$$

$$\overrightarrow{dr} = i dx$$

$$= \int_{x_A}^{x_B} -f_{rd} \, \check{i} \, . \, \check{i} \, dx = \int_{-3 \, m}^{7 \, m} - \underbrace{\mu_d \, m \, g}_{=5N} dx = -5N \int_{-3 \, m}^{7 \, m} dx = -50J$$

Física I – Trabajo por definición – Curso 4 – 2021q1

30

Física I – Trabajo por definición – Curso 4 – 2021q1

Más problemas → PDF aula virtual

Trabajo por definición

$$W_F^{A,B} = \int_{-1}^{B} \vec{F} \cdot d\vec{r}$$

Problemas con fuerza conocida en cada punto del espacio

Para los siguientes problemas (1-5), donde una partícula se mueve desde A hasta B, calcular, por definición, el trabajo que la fuerza $ec{F}$ le realiza a la partícula a lo largo de la trayectoria AB indicada, usando un parámetro creciente: $t \in [t_A, t_B]$.

$$\mathbf{1)} \quad \vec{F} = 3x \, \check{\imath} \, \frac{N}{m}$$

a) La partícula recorre la trayectoria siguiente $A \rightarrow B$:

29