Отчет по лабороторной работе Интерферометр Майкельсона

Мамнтов Владислав Группа БФЗ201

9 июня 2022 г.

Содержание

Устройство интерферометра	3
Знакомство с интерферометром	3
Определение длины волны	4
Спектрометр	4
Определение показателя преломления	5
Тепловое расширение	6

Устройство интерферометра

Рис. 1: Схема прохода лучей в интерферометре.

В качестве когерентного источника излучения использовался лазер $\lambda = 532$ нм.

Знакомство с интерферометром

При значительном удлинении одного из плеч интерферометра, картина, вместо значительного изменения периода интерфериционной картины, просто становилась менее контрастной, что связано с неидеальной монохроматичностью источника излучения, что будет более подробно затронуто в следующий частях лабороторной.

При нагревании воздуха одного из плеч интерферометра, картина интерференции приходила в движение, что связано с разностью в показателях приломления воздуха при разных температурах, а значит, и разностью оптических путей.

Так же, интерферометр имеет два выхода, по обе стороны от полупрозрачного зеркалаё, в чем можно убедиться поставив еще одно со стороны второго выхода и направив его на экран:

Рис. 2: картина с двух выходов интерферометра.

Определение длины волны

Интерфереционная картина переодична относительно изменения длины плеча с периодом в длину волны излучаемого света. Значит, изменяя длину плеча на какое-то значение Δl картина должна пройти через $\frac{2\Delta l}{\lambda}$ своих максимумов. При измерении была проблема связанная с застоем микрометрической стойки, которая решалилась тем, сто потребовалось начать считать проходящие максимумы не со статического положения интерферометра, а когда он уже был приведен в движение, а значит это повысило неточность снимаемых данных, но зато приблизило их среднее к истинному результату.

Число переходов	Сдвиг зеркала, мкм	Расчётная длина волны, нм			
50	13,5	540			
50 13,5		540			
50	13	520			
50	13	520			

$$\lambda = 530 \pm 10nm$$

Спектрометр

Если излучение происходит на двух дискретных частотах, то можно подобрать разность длин плеч таким образом, чтобы максимумы одной частоты соответствовали минимумам другой, и наоборот. В таком случае картина будет выглядеть неразличимым пятном. Такие положения у интерферометра есть при его движении в обе стороны от положения с равными плечами. Посчитаем длину смещения плеча, до максимального достижения этого эффекта.

$$l = \frac{\lambda_0^2}{\Delta \lambda} \Rightarrow \Delta \lambda = \frac{\lambda_0^2}{\Delta I} = \frac{\lambda_0^2}{2\Delta} s$$

 $l=\frac{\lambda_0^2}{\Delta\lambda}\Rightarrow \Delta\lambda=\frac{\lambda_0^2}{\Delta l}=\frac{\lambda_0^2}{2\Delta}s$ Получили, что сежду двумя такими положениями 21 поворот, следовательно: $\Delta\lambda = \frac{530^2}{2.1 \cdot 10^6} = 0,133 \pm 0,07$ hm

Рис. 3: Спектр лазера.

Видно, что $\Delta\lambda(20)\approx 0,1$ нм и растет при больших значениях температуры.

Определение показателя преломления

Поместив в одно из плеч материал с показателем преломления n можно изменять оптическую разность хода луча. Поворачивая материал, тем самым изменяя ширину прохождения объекта лазером, будет меняться интерфериционная картина. N сменам максимумов картины будет соответствовать показатель преомления:

$$n = \frac{sin^{2}\alpha + (\frac{N\lambda}{2t} + cos\alpha - 1)^{2}}{2(1 - \frac{N\lambda}{2t} - cos\alpha)}$$

Для всех измерений учитывалась погрешность $\Delta \alpha \pm 20'$ и $\delta N = \pm 1$. Все измерения проводились с излучением лазера длиной волны $\lambda = 532$ нм. Толщину пластинки измеряли штангенциркулем. В таблице ниже приведены результаты измерений для пластинки толщиной $t=7.3mm\pm0.1, \alpha_0=348, 30'$ Получаем, что $n = 1, 5 \pm 0, 1$, что похоже на правду.

α	N	$\Delta \alpha$	n	$\delta n,\%$
353 °	32	4 °30'	1.6	14
344 °	27	4 °30'	1.5	14
351 °	9	2 °30'	1.5	23

Тепловое расширение

Закрепив одно из зеркал на металлическом стержне, можно измерить коэффициэнт теплового расширения, нагревая его.

$$L = L_0 e^{\alpha \Delta T} \approx L_0 + L_0 \alpha \Delta T$$
$$L = L_0 + \frac{N\lambda}{2}$$
$$\Rightarrow \alpha \approx \frac{N\lambda}{2L_0 \Delta T}$$

Будем подавать напряжение, дожидать установления стационарного режима, считая количество смен максимумов. Построим зависимость по данным точкам:

Напряжение, В	T_0 , deg	T_{fin}, \deg	ΔT , deg	ΔN	N	L, см
5	26	29	3	15	15	9,00312
7	29	33	4	25	40	9,00832
9	33	41	8	59	99	9,020592
11	41	52	11	90	189	9,039312

$$\alpha = 1,6 \pm 0,06 \cdot 10^{-4} K^{-1}$$

, что тоже удовлетворяет реальным техническим характеристикам.