Całkowanie macierzy [Hbc] oraz wektora obciążeń {P} metodą Gaussa

dr inż. Kustra Piotr WIMiIP, KISiIM, AGH B5, pokój 710

- węzeł ma kontakt z otoczeniem warunek brzegowy
- węzeł nie ma kontaktu z otoczeniem

Obliczanie fragmentu macierzy H – macierz Hbc

 $N3 = 0.25(1 + \xi)(1 + \eta)$

 $N4 = 0.25(1 - \xi)(1 + \eta)$

Obliczanie macierzy Hbc

Obliczanie macierzy Hbc

Obliczanie Macierzy H_{bc}

$$[H_{BC}] = \int_{S} \alpha(\{N\}\{N\}^{T}) dS = \sum_{i=1}^{n_{pc}} f(pc_{i}) w_{i} \det[J]$$

$$[H_{BC}] = H_{BCpc41} + H_{BCpc42}$$

рс	ksi	eta	N1	N2	N3	N4	
41	-1	0,5773	0,2113	0	0	0,7886	
42	-1	-0,5773	0,7886	0	0	0,2113	

$$N1 = 0.25(1 - \xi)(1 - \eta)$$

$$N2 = 0.25(1 + \xi)(1 - \eta)$$

$$N3 = 0.25(1 + \xi)(1 + \eta)$$

$$N4 = 0.25(1 - \xi)(1 + \eta)$$

$$\det[J] = \frac{dx}{dKsi} = \frac{L}{2} = 0.0125$$

Obliczenia wykonano dla $\alpha = 25$

$$[H_{BC}] = \int_{S} 25 \begin{pmatrix} N1 \\ N2 \\ N3 \\ N4 \end{pmatrix} \{N1 \quad N2 \quad N3 \quad N4\} ds = \begin{pmatrix} w_{1} * 25 * \begin{pmatrix} 0,2113 \\ 0 \\ 0,7886 \end{pmatrix} \{0,2113 \quad 0 \quad 0 \quad 0,7886 \} \end{pmatrix} + w_{2} * 25 * \begin{pmatrix} 0,7886 \\ 0 \\ 0,2113 \end{pmatrix} \{0,7886 \quad 0 \quad 0 \quad 0,2113 \} \end{pmatrix} * det[J]$$

pc1	0,21132	0	0	0,78867
0,21132	1,11645	0	0	4,16666
0	0	0	0	0
0	0	0	0	0
0,78867	4,16666	0	0	15,5502

pc2	0,7886751	0	0	0,211325
0,78867	15,550211	0	0	4,16666
0	0	0	0	0
0	0	0	0	0
0,21132	4,1666666	0	0	1,11645

*det[J] = 0,0125

sum	1	2	3	4
1	0,20833	0	0	0,10416
2	0	0	0	0
3	0	0	0	0
4	0,10416	0	0	0,20833

Pow_3	1	2	3	4
1	0	0	0	0
2	0	0	0	0
3	0	0	0,20833	0,10416
4	0	0	0,10416	0,20833

Pow_2	1	2	3	4
1	0	0	0	0
2	0	0,20833	0,10416	0
3	0	0,10416	0,20833	0
4	0	0	0	0

Pow_1	1	2	3	4
1	0,20833	0,10416	0	0
2	0,10416	0,20833	0	0
3	0	0	0	0
4	0	0	0	0

Obliczanie Wektora P przy wykorzystaniu funkcji kształtu 1d.

sum	1	2
1	0,208333	0,104167
2	0,104167	0,208333

sum	1	2
1	0,208333	0,104167
2	0,104167	0,208333

Dla dolnego boku:

N1=0.25*(1-ksi)(1-eta)

eta = -1

N1=0.25*(1-ksi)(1-(-1))

Funkcja kształtu 2d zamienia się w funkcje kształtu 1d:

N1=0.5*(1-ksi)

```
Czytanie siatki z pliku - > tworzenie struktur danych — element, node, element uniwersalny Implementacja pętli po elementach e:
```

Pobieranie wartości x oraz y węzłów elementu skończonego e, Pętla po punktach całkowania pc ($dla\ 2d\ pc = 4,\ 9,\ 16...$)

Obliczanie macierzy Jakobiego J, Jakobianu i macierzy odwrotnej J⁻¹ dla punktu całkowania *pc*

Obliczamy dN/dx oraz dN/dy -> Macierz H w dla punktu całkowania pc Sumujemy macierze H z punktów całkowania $pc_1 - pc_n$ (dla 2d $pc_n = 4, 9, 16...$) Obliczamy macierz Hbc dla każdej ściany elementu "e" i sumujemy

Struct GaussIntegration w, pc

Struct Elem2d 4 (element uniwersalny)

dNdKsi[4 lub 9 lub 16(zależne od npc)][4] dNdEta[4 lub 9lub 16 (zależne od npc)][4]

Struct Surface N[2 lub 3 lub 4 (npc)][4] Surface[4] Struct Element id[4]
H[4][4]
Hbc[4][4]

Struct node x, y, BC

Struktura bok – w elemencie uniwersalnym:

- ilość punktów całkowania po powierzchni,
- współrzędne punktów całkowania,
- wartości funkcji kształtu w punktach całkowania.

рс	ksi	eta	N1	N2	N3	N4
11	-0,57735	-1	0,788675	0,211325	0	0
12	0,57735	-1	0,211325	0,788675	0	0

Struktura bok – w elemencie uniwersalnym:

- ilość punktów całkowania po powierzchni,
- współrzędne punktów całkowania,
- wartości funkcji kształtu w punktach całkowania.

рс	ksi	eta	N1	N2	N3	N4
11	-0,7746	-1	0,887298	0,112702	0	0
12	0	-1	0,5	0,5	0	0
13	0,7746	-1	0,112702	0,887298	0	0

$$[P] = \int_{S} \alpha\{N\}t_{ot} dS = \sum_{i=1}^{n_{pc}} f(pc_i) w_i \det[J]$$

$$[P] = P_{pc1} + P_{pc2}$$

рс	ksi	eta	N1	N2	N3	N4	
1	-1	0,5773	0,2113	0	0	0,7886	
2	-1	-0,5773	0,7886	0	0	0,2113	

ID	1	2	3	4
X	0	0,025	0,025	0
У	0	0	0,025	0,025

$$\det[J] = \frac{L}{2} = 0.0125$$

$$t_{ot} = 1200C$$
 (temp. otoczenia)

$$\{P\} = \int_{S} 25 \begin{pmatrix} \binom{N1}{N2} \\ N3 \\ N4 \end{pmatrix} 1200 ds = 25 \begin{pmatrix} w_{1} * \begin{pmatrix} \binom{0,2113}{0} \\ 0 \\ 0,7886 \end{pmatrix} 1200 + w_{2} * \begin{pmatrix} \binom{0,7886}{0} \\ 0 \\ 0,2113 \end{pmatrix} 1200 \end{pmatrix} *det[J]$$

$$[P] = \int_{S} \alpha\{N\}t_{ot} dS = \sum_{i=1}^{n_{pc}} f(pc_i) w_i \det[J]$$

$$[P] = P_{pc1} + P_{pc2} + P_{pc3}$$

рс	ksi	eta	N1	N2	N3	N4	
41	-1	0,7746	0,112702	0	0	0,887298	
42	-1	0	0,5	0	0	0,5	_
43	-1	-0,7746	0,887298	0	0	0,112702	

ID	1	2	3	4
X	0	0,025	0,025	0
У	0	0	0,025	0,025

$$\det[J] = \frac{L}{2} = 0,0125$$

$$t_{ot} = 1200C$$

$$\begin{aligned} \mathbf{t}_{\text{ot}} &= \mathbf{1200C} \\ &[\boldsymbol{P}] = 25 \left(w_1 * \left(\begin{cases} 0,1127 \\ 0 \\ 0,8872 \end{cases} 1200 \right) + w_2 * \left(\begin{cases} 0,5 \\ 0 \\ 0,5 \end{cases} 1200 \right) + w_3 * \left(\begin{cases} 0,8872 \\ 0 \\ 0,1127 \end{cases} 1200 \right) \right) *det[\boldsymbol{J}] \end{aligned}$$


```
Czytanie siatki z pliku - > tworzenie struktur danych — element, node, element uniwersalny
Implementacja pętli po elementach e:

Pobieranie wartości x oraz y węzłów elementu skończonego e,
Pętla po punktach całkowania pc (dla 2d pc = 4, 9, 16...)

Obliczanie macierzy Jakobiego J, Jakobianu i macierzy odwrotnej J<sup>-1</sup>

dla punktu całkowania pc

Obliczamy dN/dx oraz dN/dy -> Macierz H w dla punktu całkowania pc

Sumujemy macierze H z punktów całkowania pc_1 - pc_n (dla 2d pc_n = 4, 9, 16...)

Obliczamy macierz Hbc dla każdej ściany elementu "e" i sumujemy

Obliczamy wektor P dla każdej ściany elementu "e" i sumujemy
```

```
Struct GaussIntegration

w, pc

Struct Elem2d_4 (element uniwersalny)
dNdKsi[4 lub 9 lub 16(zależne od npc)][4]
dNdEta[4 lub 9lub 16 (zależne od npc)][4]

Struct Surface
N[2 lub 3 lub 4 (npc)][4]

Surface[4]

Struct Flement
id[4]
H[4][4]
H[4][4]
P[4]
Struct Surface
x, y, BC
```