PAM

Itzel Teodocio Olivares

2022 - 06 - 05

#	PARTIT	ION AROUND	MEDOIDS (PA	M)		
librar	y(cluster)					
Carg	gar la matı	riz de dat	os.			
X<-as.	data.frame(sta	ate.x77)				
	"Population" "HS Grad"		"Illiteracy" "Area"	"Life Exp"	"Murder"	

Transformacion de datos

1.- Transformacion de las variables x1,x3 y x8 con la funcion de logaritmo.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Metodo PAM

1.- Separacion de filas y columnas.

```
dim(X)
```

```
## [1] 50 8
n<-dim(X)[1]
p<-dim(X)[2]
```

2.- Estandarizacion univariante.

3.- Aplicacion del algoritmo

```
pam.3<-pam(X.s,3)
```

4.- Clusters

```
cl.pam<-pam.3$clustering
cl.pam</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	2	1	1	3
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	2	3	1	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	2	3	3	2
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	2	1	1	2	3
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	3	3	2	1	3
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
## ##	Montana 2	Nebraska 2	Nevada 2	New Hampshire 2	New Jersey 3
		2	Nevada 2 North Carolina	2	New Jersey 3 Ohio
##	2	2	2	2	3
## ##	2	2	2 North Carolina 1	2 North Dakota 2	3
## ## ##	New Mexico	New York 3	2 North Carolina 1	2 North Dakota 2	3 Ohio 3
## ## ## ##	2 New Mexico 1 Oklahoma	New York 3	2 North Carolina 1	2 North Dakota 2	3 Ohio 3
## ## ## ##	New Mexico 1 Oklahoma 3	New York 3 Oregon 2	2 North Carolina 1 Pennsylvania 3	North Dakota 2 Rhode Island 2	3 Ohio 3 South Carolina 1
## ## ## ## ##	New Mexico 1 Oklahoma 3	New York 3 Oregon 2 Tennessee	2 North Carolina 1 Pennsylvania 3	North Dakota 2 Rhode Island 2 Utah	South Carolina Vermont 2

#5.- Scatter plot de la matriz con los grupos

```
col.cluster<-c("blue","red","green")[cl.pam]
pairs(X.s, col=col.cluster, main="PAM", pch=19)</pre>
```

PAM

Visualizacion con Componentes Principales

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

Silhouette

Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

1.- Generacion de los calculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.pam<-silhouette(cl.pam, dist.Euc)</pre>
```

2.- Generacion del grafico

Silhouette for PAM

Average silhouette width: 0.22

##Sugerir número de cluster

#_____PARTITION AROUND MEDOIDS (PAM)_____# Cargar la matriz de datos.

X<-as.data.frame(state.x77)
colnames(X)

[1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"

[6] "HS Grad" "Frost" "Area"

Transformacion de datos

1.- Transformacion de las variables x1,x3 y x8 con la funcion de logaritmo.

```
X[,1] <-log(X[,1])
colnames(X)[1] <-"Log-Population"

X[,3] <-log(X[,3])
colnames(X)[3] <-"Log-Illiteracy"

X[,8] <-log(X[,8])
colnames(X)[8] <-"Log-Area"</pre>
```

Metodo PAM

1.- Separación de filas y columnas.

dim(X)

[1] 50 8

n<-dim(X)[1]
p<-dim(X)[2]</pre>

2.- Estandarizacion univariante.

X.s<-scale(X)</pre>

3.- Aplicacion del algoritmo

pam.6<-pam(X.s,6)

4.- Clusters

cl.pam<-pam.6\$clustering</pre>

cl.pam

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	2	3	1	3
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	4	5	5	3	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	3	4	6	6	4
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	4	1	1	5	6
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	6	6	4	1	6
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	2	1	2	5	6
	-	-	2	U	0
##	New Mexico	New York	North Carolina	· ·	Ohio
## ##	New Mexico	New York	North Carolina	· ·	Ohio 6
	New Mexico 1 Oklahoma	New York 3 Oregon	1	North Dakota	_
##	1	3	1	North Dakota	6
## ##	1	3	1	North Dakota	6 South Carolina 1
## ## ##	1 Oklahoma 6	3 Oregon 4	1 Pennsylvania 6	North Dakota 4 Rhode Island 5	6 South Carolina 1
## ## ##	1 Oklahoma 6	3 Oregon 4 Tennessee 1	1 Pennsylvania 6	North Dakota 4 Rhode Island 5	6 South Carolina 1 Vermont 5

5.- Scatter plot de la matriz con los grupos

```
col.cluster<-c("pink","red","green","blue","purple","orange")[cl.pam]
pairs(X.s, col=col.cluster, main="PAM", pch=19)</pre>
```

PAM

Visualizacion con Componentes Principales

CLUSPLOT(X.s)

Silhouette

Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

```
1.- Generacion de los calculos
```

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.pam<-silhouette(cl.pam, dist.Euc)</pre>
```

2.- Generacion del grafico

Silhouette for PAM

Average silhouette width: 0.27