CMPSC 165B: Homework 4

Due on June 3, 2011

 ${\it James~Schaffer:~Monday~5:00p}$

Kyle Ibrahim

Contents

Problem 1 (Bayesian Belief Networks)	2
Problem 2 (Conditional Independence)	3
Problem 3 (Learning Theory)	3
Problem 4 (Regression)	4

Problem 1 (Bayesian Belief Networks)

Arc values:

	P(Muscles)		P(Cannon)		P(Side Kick)		P(Thinks Manly)		
ſ	wimpy	.33	big	.33	comic relief	<u>در</u> ا ا		E IIIIKS Widniy)	
ľ	average	.33	gigantic	.33		. 0	E	.0	
Ī	ripped	.34	obscene	.34	loyal martyr		Г	.5	

Note, whether or not Sally thinks you're manly is independent of being manly, thus, we don't need more than the above arcs for the above network.

-	iic varacs.						
		Kiss	Being Manly	P(Kiss)	Genes	Kiss	P(Genes)
P(Being Manly)		T	Т	.5	T	Т	.5
T	.5	T	F	.5	T	F	.5
F	.5	.5 F T		.5	F	Т	.5
		F	F	.5	F	F	.5

- 1. As these are independent: P(BeingManly=T) = .5
- 2. Again, these are independent: P(BeingManly=T) = .5

3.
$$.5*.5_{P(Being\ Manly=T)} + .5*.5_{P(Being\ Manly=F)} = .25 + .25 = .5$$

4.
$$.5 * .5_{P(Kiss=T)} + .5 * .5_{P(Kiss=F)} = .25 + .25 = .5$$

5.
$$.5*.5_{P(Kiss=T)} + .5*.5_{P(Kiss=F)} = .25 + .25 = .5$$
, as this is independent of rescuing Sally.

Problem 2 (Conditional Independence)

- 1. Yes, as they have no common ancestors and Z is not blocking
- 2. No, as W is a direct decedent of X and Z is not blocking
- 3. No, as Y remains a common ancestor
- 4. No, as Y remains a common ancestor
- 5. Yes given nothing else as they have no common ancestors
- 6. Yes given nothing else as there is not path from X to Z

Problem 3 (Learning Theory)

Assuming "better" infers more accurate classification in the average case, then no: a naive Bayesian classifier will, in general, perform as well as other classifiers over truly independent attributes.

Problem 4 (Regression)

- 1. It is a non-linear regression problem because w, which is the unknown to be solved, cannot be expressed as a linear function of \mathbf{x} .
- 2. We can use the log likelihood to find \hat{w} :

$$\ln \mathcal{L}(w|x_i) = \ln \left(\prod_{i=1}^n f(x_i|w) \right)$$
$$= \sum_{i=1}^n \ln \left(\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y_i - e^{wx_i})^2}{2} \right) \right)$$
$$= \sum_{i=1}^n \ln \left(\frac{1}{\sqrt{2\pi}} \right) - \frac{(y_i - e^{wx_i})^2}{2}, \ \hat{\ell} = \frac{\ln \mathcal{L}}{n}$$

$$\frac{\frac{\partial \ln \mathcal{L}}{\partial w} = 0 \Rightarrow}{\frac{\sum_{i=1}^{n} \ln\left(\frac{1}{\sqrt{2\pi}}\right) - \frac{\left(y_i - e^{wx_i}\right)^2}{2}}{\partial w}} = 0 \Rightarrow}$$

$$\frac{n \ln\left(\frac{1}{\sqrt{2\pi}}\right) - \sum_{i=1}^{n} \frac{y_i^2}{2} - y_i e^{wx_i} + \frac{\left(e^{wx_i}\right)^2}{2}}{\partial w} = 0 \Rightarrow}$$

$$-\sum_{i=1}^{n} -x_i y_i e^{wx_i} + x_i e^{2wx_i} = 0 \Rightarrow$$

$$\sum_{i=1}^{n} x_i e^{2wx_i} = \sum_{i=1}^{n} x_i y_i e^{wx_i}$$

Thus, equation ii should be used.