МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 6

ОТЧЕТ	4		
ЗАЩИЩЕН С ОЦЕНКОЇ	1		
ПРЕПОДАВАТЕЛЬ		, P	
ассистент		36 Rd. 10.24	К.В. Золотухин
должность, уч. степень, зн	вание	подпись, дата	инициалы, фамилия
		Отчет	
, ·	~ II		
о лабораторнои р	аооте «Исс.	ледование непрерывных осциллографа»	сигналов с помощью
		осциппографа//	
	по ди	сциплине: Метрология	
РАБОТУ ВЫПОЛНИЛИ			
			Kl
			Кий Е.С. Пистунова Въ В.Р. Быкадоров
	2212	22 10 24	В.Р. Быкадоров
СТУДЕНТЫ ГР. №	2212		Г.С. Солдатенков инициалы, фамилия

Пистунов Е.С. Быкадоров В.Р.

ЛАБОРАТОРНАЯ РАБОТА № 4.

ИССЛЕДОВАНИЕ МЕПРЕРЫВНЫХ СИГНАЛОВ

				(oci	цилл	torpac	p voice	1 2410	,			ГТ	
f, Kľu	К _{в1} , В/дел	К _{в2} , В/дел	<i>h</i> ₁ , дел	U_{m1} , B	h_2 , дел	U_{m2} , B	K_p , мкс/ дел	l_{t} дел	Т, мкс	Іф, дел	to, MKC	Кд	ф, град
					2	A.Ber	200	2,8		0.0			
0.5					2	E STORY	200	1,4		0,2			
1					2		100	1,4		0,4			
2					2	No.	20	2,6		0,5			
5	100000000000000000000000000000000000000				1,8		10	2,6		14/1			
10			-		1,4		5	7,5		1,8		100	
20	Mes 3						2	2,6		2			
50					0,7		1	2,5	No.	2			
100					0,4		S STATE OF THE			3			
200					0,2	4	0,5	2,8			ovina		*****

Результаты исследования АЧХ и ФЧХ делителя напряжения (осциллограф АКИП)

		(осцилло	граф Апл	12.1)			
<i>f,</i> кГц	K _{в2} , В/дел	U_{m1} , B	U_{m2} , B	K_p , мкс/ дел	Т, мкс	t_{φ} , MKC	K_{A}	ф, град
0.5								
1 -	1		1000					
2				1				
5								
10								
20								
50					-			
100								
200								

Осцилло-	h _{шк} дел	K _{в2} , В/дел	$U_{\text{пик}}$, В	h_0 , дел	К _р , мкс/ дел	U ₀ , B	l_t , дел	T, e	f, Tu
VoltCraft	3	5		1	\$2		3		50
АКИП							國際辦。 图		

		Гх, Гц	$n_{\rm B}$	$n_{\rm r}$	f _{хд} , Гц	Δf, Γμ	δf, %
$f_{\text{ном}}$, Γ ц	f ₀ , Γ ₁₁			VoltC	Craft / AKMII		
25							
50] =0 [
100	50						
150							

1. Цель работы.

Изучение универсального электронно-лучевого осциллографа (ЭЛО); получение навыков работы с ЭЛО; овладение методикой осциллографирования и измерение параметров непрерывных сигналов с помощью ЭЛО.

2. Выполнение лабораторной работы

<u>Задание №1: Получение амплитудно-частотной характеристики (АЧХ)</u> и фазочастотной характеристики делителя напряжения (ДН).

f, K_{B2} , h_1 , h_2 , K_p, l_t lφ, tφ, U_{m1} U_{m2} Τ, ф, гра кΓ В/де мкс/ де K_{π} де де де МK , B , B мкс Д Ц Л Л Л дел Л \mathbf{c} Л 0.5 1 3 3 2 2 200 2,8 1120 0 0 0,67 0 2 3 3 0,2 25,7 1 200 1,4 560 40 0,67 1 2 1 3 3 2 2 100 280 0,4 40 51,4 1.4 0,67 5 3 3 2 1 2 20 2,6 104 0,5 10 0,67 34,6 3 3 10 1 1,8 1.8 10 2,6 52 10 0,6 69,2 1 20 0,5 3 3 1,4 0,7 27 1,8 9 5 2,7 0,23 120 3 3 0,7 50 0,5 0,35 4 0,12 138,4 2,6 10,4 10 3 3 1 2,5 2 2 144 0,2 0,4 0,08 5 0,03 20 0,1 3 3 0.20,02 0,5 2,8 2,8 3 1,5 0,01 192,8

Таблица 1. АЧХ и ФЧХ делителя напряжения.

По результатам измерения значения амплитуд обоих сигналов вычисляются по расчетным формулам:

$$U_{m1} = h_1 * K_{B1}, U_{m2} = h_2 * K_{B2};$$

Период $T = 2 * l_t * K_p$;

Коэффициент деления $K_{\rm d} = U_{\rm m2}/U_{\rm m1}$;

Фазовый сдвиг между сигналами $\phi = 180^{\circ} \cdot l_{\phi}/l_{t} = 360^{\circ} \cdot t_{\phi}/T$.

Примеры расчетов:

$$U_{m1} = h_1 * K_{B1} = 3 * 1 = 3 B_1$$

$$U_{m2} = h_2 * K_{B2} = 2 * 1 = 2 B_1$$

$$T = 2 * l_t * K_p = 2 * 2,8 * 200 = 1120$$
 мкс;

 $K_{\text{д}} = U_{\text{m2}}/U_{\text{m1}} = 2/3 = 0,67;$ $\phi = 180^{\circ} \cdot l\phi/lt = (180 \cdot 0)/2,8 = 0$ град.

Рис. 1 - АЧХ

Рис. 2 - ФЧХ

Δ

<u>Задание №2: Наблюдение формы кривой и измерение параметров</u> <u>напряжения на клеммах 2-3 выпрямителя.</u>

Таблица 2. Параметры напряжения на клеммах выпрямителя.

f ₀ , Гц	К _{В,} В/д	К _{Р,} мкс/де	h _{пик,} дел	l _{t,} дел	h _{0,} дел	U _{пик,} В	U _{0,} B	Т,
		Л						
50	5	2	3	3	1	15	5	6

Рис.3 - Пример осциллограммы делителя напряжения

Рис.4 - Пример осциллограммы ивыпрямителя напряжения

Расчетные формулы:

Пиковое напряжение $U_{пик} = h_{пик} * K_B$, где $h_{пик} -$ амплитуда;

Постоянная составляющая напряжения $U_0 = h_0 * K_B$, h_0 - постоянная составляющая сигнала;

Период $T = l_t * K_p$, где l_t - длительность периода;

Частота f = 1/T.

Примеры расчетов:

$$U_{\pi \mu \kappa} = h_{\pi \mu \kappa} * K_B = 3 * 5 = 15 \mathrm{~B};$$

$$U_0 = h_0 * K_B = 1 * 5 = 5 B;$$

$$T=I_t*K_p=3*2=6$$
 MKC;

$$f = 1/T = 1/6 = 166,6 к$$
Гц.

Задание №3: Проверка градуировки генератора по частоте.

Проверка выполняется методом сравнения частоты f_X проверяемого генератора ГНЧ с образцовой частотой $f_0 = 50$ Гц (сеть переменного тока) с помощью ЭЛО при двух видах развертки: синусоидальной (по фигурам Лиссажу).

f_{XД}, Δf, Γц f_x, Гц f_0 , Γ ц δf, % $n_{\scriptscriptstyle B}$ n_{Γ} Γц 25/24 50 4 2 25 1 4 50/49 2 50 2 50 1 2 100/98 50 2 4 100 2 2 150/152 50 2 6 150 2 1

Таблица 3. Параметры фигур Лиссажу.

n_B - число пересечений фигуры Лиссажу с вертикальной линией;

 n_{Γ} - число пересечений с горизонтальной линией.

Расчетные формулы:

Действительное значение частоты генератора определяется по формуле:1. $f_{XJ} = f_0 * n_{\Gamma}/n_{B};$

Абсолютная погрешность градуировки шкалы $\Delta f = f_X - f_{XД};$

Относительная погрешность градуировки шкалы $\delta f = \Delta f/f_{X\!\!/\!\! L} * 100\%.$

Примеры расчетов:

$$1.\,f_{X\!A}=f_0*n_\Gamma/n_B=50*2/2=50$$
 Гц

$$\Delta f = f_X - f_{X\!A} = 152 - 150 = 2$$
 Гц

$$\delta f = \Delta f / f_{X\!A} * 100\% = 1/50 * 100\% = 2\%$$

3. Выводы:

- 1. Были получены амплитудно-частотные характеристики и фазочастотные характеристики делителя напряжения. По построенным графикам была выявлена зависимость фазового сдвига от частоты (фазовый сдвиг между сигналами увеличивается при увеличении частоты сигнала), и зависимость коэффициента деления от частоты (коэффициент деления K_{∂} уменьшается при увеличении частоты сигнала).
 - 2. Были получены фигуры Лиссажу на экране ЭЛО.
- 3. Была проверена градуировка генератора по частоте. С учетом погрешности действительное значение частоты генератора $f_{x\partial}$ (50±1) Γ ц равно образцовой частоте f_{∂} (50 Γ ц).

Таким образом нами был изучен принцип работы электронно-лучевого осциллографа и навыки работы с ЭЛО.