Theory of Locality Sensitive Hashing

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Recap: Finding similar documents

 Task: Given a large number (N in the millions or billions) of documents, find "near duplicates"

Applications:

- Mirror websites, or approximate mirrors
 - Don't want to show both in a single set of search results

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

Recap: 3 Essential Steps

- 1. Shingling: Convert docs to sets of items
 - Document is a set of k-shingles
- 2. *Min-Hashing*: Convert large sets into short signatures, while preserving similarity
 - Want hash func. that $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - For the Jaccard similarity Min-Hash has this property!
- 3. Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents
 - Split signatures into bands and hash them
 - Documents with similar signatures get hashed into same buckets: Candidate pairs

Recap: The Big Picture

Recap: Shingles

- A k-shingle (or k-gram) is a sequence of k
 tokens that appears in the document
 - Example: k=2; D_1 = abcab Set of 2-shingles: C_1 = $S(D_1)$ = {ab, bc, ca}
- Represent a doc by the set of hash values of its k-shingles
- A natural document similarity measure is then the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

Similarity of two documents is the Jaccard similarity of their shingles

Recap: Minhashing

Prob. $h_{\pi}(C_1) = h_{\pi}(C_2)$ is the same as $sim(D_1, D_2)$: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(D_1, D_2)$

Permutation π

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

Input matrix (Shingles x Documents)

P		(<u> </u>
1	0	1	0
1	0	0	1
0	1	О	1
0	1	О	1
0	1	0	1
1	О	1	О
1	О	1	О

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities of columns and signatures (approx.) match!

1-3 2-4 1-2 3-4 **Col/Col** 0.75 0.75 0 **Sig/Sig** 0.67 1.00

Recap: LSH

- Hash columns of the signature matrix M: Similar columns likely hash to same bucket
 - Divide matrix M into b bands of r rows (M=b·r)
 - **Candidate** column pairs are those that hash to the same bucket for ≥ 1 band

Recap: The S-Curve

The S-curve is where the "magic" happens

Similarity *t* of two sets

Similarity t of two sets

This is what 1 hash-code gives you

$$\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(D_1, D_2)$$

This is what we want!

How to get a step-function?

By choosing r and b!

How Do We Make the S-curve?

- Remember: b bands, r rows/band
- Let $sim(C_1, C_2) = t$
- Pick some band (r rows)
 - Prob. that elements in a single row of columns C₁ and C₂ are equal = t
 - Prob. that all rows in a band are equal = t'
 - Prob. that some row in a band is not equal = 1 t'
- Prob. that all bands are not equal $= (1 t^r)^b$
- Prob. that at least 1 band is equal = $1 (1 t^r)^b$

 $P(C_1, C_2 \text{ is a candidate pair}) = 1 - (1 - t^r)^b$

Similarity *t*

S-curves as a func. of b and r

Given a fixed threshold **s**.

We want choose r and b such that the P(Candidate pair) has a "step" right around s.

Theory of LSH

Theory of LSH

We have used LSH to find similar documents

- More generally, we found similar columns in large sparse matrices with high Jaccard similarity
 - For example, customer/item purchase histories
- Can we use LSH for other distance measures?
 - e.g., Euclidean distances, Cosine distance
 - Let's generalize what we've learned!

Families of Hash Functions

- For Min-Hashing signatures, we got a Min-Hash function for each permutation of rows
- A "hash function" is any function that takes two elements and says whether they are "equal"
 - Shorthand: h(x) = h(y) means "h says x and y are equal"
- A family of hash functions is any set of hash functions from which we can pick one at random efficiently
 - Example: The set of Min-Hash functions generated from permutations of rows

Locality-Sensitive (LS) Families

- Suppose we have a space S of points with a distance measure d(x,y)
- A family H of hash functions is said to be (d_1, d_2, p_1, p_2) -sensitive if for any x and y in S:
 - 1. If $d(x, y) \le d_1$, then the probability over all $h \in H$, that h(x) = h(y) is at least p_1
 - 2. If $d(x, y) \ge d_2$, then the probability over all $h \in H$, that h(x) = h(y) is at most p_2

Note: Here x,y are "fixed" and the randomness is over the hash functions

A (d_1, d_2, p_1, p_2) -sensitive function

Large distance, low probability of hashing to the same value

Example of LS Family: Min-Hash

Let:

- S = space of all sets,
- d = Jaccard distance,
- H is family of Min-Hash functions for all permutations of rows
- Then for any hash function h∈ H:

$$Pr[h(x) = h(y)] = 1 - d(x, y)$$

 Simply restates theorem about Min-Hashing in terms of distances rather than similarities

Example: LS Family – (2)

Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-sensitive family for S and d.

If distance $\leq 1/3$ (so similarity $\geq 2/3$)

Then probability that Min-Hash values agree is $\geq 2/3$

- For Jaccard similarity, Min-Hashing gives a $(d_1,d_2,(1-d_1),(1-d_2))$ -sensitive family for any $d_1 < d_2$
- Theory leaves unknown what happens to pairs that are at distance between d₁ and d₂
 - Consequence: No guarantees about fraction of false positives in that range

Amplifying a LS-Family

Can we reproduce the "S-curve" effect we saw before for any LS family?

- The "bands" technique we learned for signature matrices carries over to this more general setting
 - So we can do LSH with any (d_1, d_2, p_1, p_2) -sensitive family
- Two constructions:
 - AND construction like "rows in a band"
 - OR construction like "many bands"

Amplifying Hash Functions: AND and OR

AND of Hash Functions

- Given family H, construct family H' consisting of r functions from H
- For $h = [h_1,...,h_r]$ in H', we say h(x) = h(y) if and only if $h_i(x) = h_i(y)$ for all i
 - Note this corresponds to creating a band of size r
- **Theorem:** If H is (d_1, d_2, p_1, p_2) -sensitive, then H' is $(d_1, d_2, (p_1)^r, (p_2)^r)$ -sensitive
- Proof: Use the fact that h_i's are independent

Subtlety Regarding Independence

- Independence of hash functions (HFs) really means that the prob. of two HFs saying "yes" is the product of each saying "yes"
 - But two hash functions could be highly correlated
 - For example, in Min-Hash if their permutations agree in the first one million entries
 - However, the probabilities in definition of a LSH-family are over all possible members of H, H'

OR of Hash Functions

- Given family H, construct family H' consisting of b functions from H
- For $h = [h_1,...,h_b]$ in H', h(x) = h(y) if and only if $h_i(x) = h_i(y)$ for at least 1 i
- **Theorem:** If H is (d_1, d_2, p_1, p_2) -sensitive, then H' is $(d_1, d_2, 1-(1-p_1)^b, 1-(1-p_2)^b)$ -sensitive
- Proof: Use the fact that h_i's are independent

Effect of AND and OR Constructions

- AND makes all probs. shrink, but by choosing r
 correctly, we can make the lower prob. approach 0
 while the higher does not
- OR makes all probs. grow, but by choosing b correctly, we can make the upper prob. approach 1 while the lower does not

Similarity of a pair of items

Similarity of a pair of items

Composing Constructions

- r-way AND followed by b-way OR construction
 - Exactly what we did with Min-Hashing
 - If bands match in all r values hash to same bucket
 - Cols that are hashed into ≥ 1 common bucket \rightarrow Candidate
- Take points x and y s.t. Pr[h(x) = h(y)] = p
 - H will make (x,y) a candidate pair with prob. p
- Construction makes (x,y) a candidate pair with probability $1-(1-p^r)^b$ The S-Curve!
 - Example: Take H and construct H' by the AND construction with r = 4. Then, from H', construct H" by the OR construction with b = 4

Table for Function 1-(1-p4)4

р	1-(1-p ⁴) ⁴
.2	.0064
.3	.0320
.4	.0985
.5	.2275
.6	.4260
.7	.6666
.8	.8785
.9	.9860

r = 4, b = 4 transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.8785,.0064)-sensitive family.

How to choose *r* and *b*

Picking r and b: The S-curve

- Picking r and b to get desired performance
 - 50 hash-functions (r = 5, b = 10)

Blue area X: False Negative rate
These are pairs with sim > s but the X
fraction won't share a band and then
will never become candidates. This
means we will never consider these
pairs for (slow/exact) similarity
calculation!

Green area Y: False Positive rate
These are pairs with *sim* < *s* but
we will consider them as candidates.
This is not too bad, we will consider
them for (slow/exact) similarity
computation and discard them.

Picking *r* and *b*: The S-curve

- Picking r and b to get desired performance
 - 50 hash-functions (r * b = 50)

OR-AND Composition

- Apply a b-way OR construction followed by an r-way AND construction
- Transforms probability p into $(1-(1-p)^b)^r$
 - The same S-curve, mirrored horizontally and vertically
- Example: Take H and construct H' by the OR construction with b = 4. Then, from H', construct H" by the AND construction with r = 4

Table for Function (1-(1-p)4)4

р	(1-(1-p) ⁴) ⁴
.1	.0140
.2	.1215
.3	.3334
.4	.5740
.5	.7725
.6	.9015
.7	.9680
.8	.9936

The example transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9936,.1215)-sensitive family

Cascading Constructions

- Example: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction
- Transforms a (.2, .8, .8, .2)-sensitive family into a (.2, .8, .9999996, .0008715)-sensitive family
 - Note this family uses 256 (=4*4*4*4) of the original hash functions

Summary

- Pick any two distances $d_1 < d_2$
- Start with a $(d_1, d_2, (1-d_1), (1-d_2))$ -sensitive family
- Apply constructions to **amplify** (d_1, d_2, p_1, p_2) -sensitive family, where p_1 is almost 1 and p_2 is almost 0
- The closer to 0 and 1 we get, the more hash functions must be used!

WANTED.

Graders

We need help grading the problem sets. Grading is paid 15\$/h. If interested send us email.

ECAU OCOLES CALWAR

LHS for other distance metrics

LSH for other Distance Metrics

- LSH methods for other distance metrics:
 - Cosine distance: Random hyperplanes
 - Euclidean distance: Project on lines

Cosine Distance

- Cosine distance = angle between vectors from the origin to the points in question d(A, B) = θ = arccos(A·B / ||A||·||B||)
 Has range 0 ... π (equivalently 0...180°)
 - lacktriangle Can divide lacktriangle by $oldsymbol{\pi}$ to have distance in range 0...1
- Cosine similarity = 1-d(A,B)
 - But often defined as **cosine sim:** $cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$

В

LSH for Cosine Distance

- For cosine distance, there is a technique called Random Hyperplanes
 - Technique similar to Min-Hashing
- Random Hyperplanes method is a $(d_1, d_2, (1-d_1/\pi), (1-d_2/\pi))$ -sensitive family for any d_1 and d_2
- Reminder: (d_1, d_2, p_1, p_2) -sensitive
 - 1. If $d(x,y) \le d_1$, then prob. that h(x) = h(y) is at least p_1
 - 2. If $d(x,y) \ge d_2$, then prob. that h(x) = h(y) is at most p_2

Random Hyperplanes

- Pick a random vector \mathbf{v} , which determines a hash function $\mathbf{h}_{\mathbf{v}}$ with two buckets
- $h_v(x)$ = +1 if $v \cdot x \ge 0$; = -1 if $v \cdot x < 0$
- LS-family H = set of all functions derived from any vector
- Claim: For points x and y, $Pr[h(x) = h(y)] = 1 - d(x,y) / \pi$

Proof of Claim

Signatures for Cosine Distance

- Pick some number of random vectors, and hash your data for each vector
- The result is a signature (sketch) of
 +1's and -1's for each data point
- Can be used for LSH like we used the Min-Hash signatures for Jaccard distance
- Amplify using AND/OR constructions

How to pick random vectors?

- Expensive to pick a random vector in *M* dimensions for large *M*
 - Would have to generate M random numbers
- A more efficient approach
 - It suffices to consider only vectors v
 consisting of +1 and -1 components
 - Why is this more efficient?

LSH for Euclidean Distance

- Simple idea: Hash functions correspond to lines
- Partition the line into buckets of size a
- Hash each point to the bucket containing its projection onto the line
- Nearby points are always close;
 distant points are rarely in same bucket

Projection of Points

projection

different buckets

Multiple Projections

Projection of Points

Points at distance d

If **d** << **a**, then the chance the points are in the same bucket is at least **1** – **d/a**.

Projection of Points

An LS-Family for Euclidean Distance

- If points are distance d ≤ a/2, prob.
 they are in same bucket ≥ 1- d/a = ½
- If points are distance d ≥ 2a apart, then they can be in the same bucket only if d cos θ ≤ a
 - $\cos \theta \le \frac{1}{2}$
 - $60 \le \theta \le 90$, i.e., at most 1/3 probability
- Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a
- Amplify using AND-OR cascades

Fixup: Euclidean Distance

- Projection method yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions
- For previous distance measures, we could start with an (d_1, d_2, p_1, p_2) -sensitive family for any $d_1 < d_2$, and drive p_1 and p_2 to 1 and 0 by AND/OR constructions
- Note: Here, we seem to need $d_1 \le 4 d_2$
 - In the calculation on the previous slide we only considered cases $d \le \alpha/2$ and $d \ge 2\alpha$

Fixup – (2)

- But as long as $d_1 < d_2$, the probability of points at distance d_1 falling in the same bucket is greater than the probability of points at distance d_2 doing so
- Thus, the hash family formed by projecting onto lines is an (d_1, d_2, p_1, p_2) -sensitive family for some $p_1 > p_2$
 - Then, amplify by AND/OR constructions

