COSC 290 Discrete Structures

Lecture 25: Relations, II

Prof. Michael Hay

Wednesday, Nov. 1, 2017

Colgate University

Plan for today

- 1. Relations
- 2. Graphical representations
- 3. Properties of relations
- 4. Closures

Relations

Recall: Relations

A (binary) relation on $A \times B$ is a subset of $A \times B$.

Sometimes interested in relations on A \times A which is sometimes simply called a relation on A.

2

Recall: inverse of a relation

Definition (Inverse)

Let R be a relation on $A \times B$. The inverse R^{-1} of R is a relation on $B \times A$ defined by $R^{-1} := \{ \langle b, a \rangle \in B \times A : \langle a, b \rangle \in R \}$

Intuition for inverse: think of R a table with columns A, B, inverse reorders the columns B, A.

3

Recall: composing two relations

Definition (Composition)

The composition of R and S is a relation on $A \times C$, denoted $S \circ R$, where $\langle a, c \rangle \in S \circ R$ iff there exists a $b \in B$ such that $\langle a, b \rangle \in R$ and $\langle b, c \rangle \in S$.

Intuition for composition: think of R a table with columns A, B and think of S a table with columns B, C. Composition creates new table with columns A,C by matching rows from R and S that having match B values.

(write on the board for later use)

Example relations

Suppose we have the following three relations:

- $taughtIn \subseteq Classes \times Rooms$
- $taking \subseteq Students \times Classes$
- at \subseteq Classes \times Times

What is at^{-1} ?

What is at ∘ taking?

Poll: deriving new relations, part 1

Suppose we have the following three relations:

- $taughtIn \subseteq Classes \times Rooms$
- $taking \subseteq Students \times Classes$
- at \subseteq Classes \times Times

Let's derive a new relation R from the above relations plus the inverse and composition operators: $R \subseteq Students \times Students$ where $\langle s, s' \rangle \in R$ indicates that students s and s' are taking at least one class together.

- 1. taking ∘ taking
- 2. $taking \circ taking^{-1}$
- 3. $taking^{-1} \circ taking$
- 4. None of the above / More than one

Poll: deriving new relations, part 2

Suppose we have the following three relations:

- taughtIn \subseteq Classes \times Rooms
- taking \subseteq Students \times Classes
- at \subseteq Classes \times Times

Let's derive a new relation R from the above relations plus the inverse and composition operators: $R \subseteq Students \times Students$ where $\langle s, s' \rangle \in R$ indicates that students s and s' sit in the same room (but not necessarily for the same class).

- A) $(taughtIn \circ taking) \circ (taughtIn \circ taking)^{-1}$
- B) $taking^{-1} \circ taughtIn^{-1} \circ taughtIn \circ taking$
- C) $(taughtIn \circ taking)^{-1} \circ (taughtIn \circ taking)$
- D) $((taughtIn \circ taking) \circ (taughtIn \circ taking))^{-1}$
- E) None of the above / More than one

Poll: Cardinality

Suppose that sets A, B, C have cardinalities n_A , n_B , n_C respectively. Let R be a relation on $A \times B$ and S a relation on $B \times C$. What is the maximum cardinality of $S \circ R$? (In discussion, justify your answer.)

- 1. *n*_B
- 2. $n_A + n_C$
- 3. $n_A \cdot n_C$
- 4. $\min \{ n_A, n_C \}$
- 5. $\min \{ n_A, n_B, n_C \}$

Graphical representations

Graphical representations of relations

Let $A := \{a, b, c\}$. And consider relation R on A defined as

$$R := \{ \langle a, b \rangle, \langle b, b \rangle, \langle b, c \rangle, \langle b, a \rangle \}$$

We can represent this graphically several ways (shown on board).

9

Properties of relations

Reflexivity

A relation R on A is reflexive if for every $a \in A$, $\langle a, a \rangle \in R$.

A relation R on A is irreflexive if for every $a \in A$, $\langle a, a \rangle \notin R$.

A relation can be reflexive, irreflexive, or neither.

examples drawn on board

Symmetry

A relation R on A is symmetric if for every $a,b\in A$, if $\langle a,b\rangle\in R$, then $\langle b,a\rangle\in R$ too.

A relation R on A is antisymmetric if for every $a,b\in A$, if $\langle a,b\rangle\in R$ and $\langle b,a\rangle\in R$, then a=b.

A relation R on A is asymmetric if for every $a,b\in A$, if $\langle a,b\rangle\in R$, then $\langle b,a\rangle\not\in R$.

A relation can be none of the above, or more than one of the above.

examples drawn on board

Transitive

A relation R on A is transitive if for every $a,b,c\in A$, if $\langle a,b\rangle\in R$ and $\langle b,c\rangle\in R$, then $\langle a,c\rangle\in R$ too.

A relation can be transitive, or not.

examples drawn on board

Poll: ancestorOf

- **R** reflexive: for every $a \in A$, $\langle a, a \rangle \in R$.
- **IR** *irreflexive*: for every $a \in A$, $\langle a, a \rangle \notin R$.
- **S** symmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \in R$.
- antiS antisymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$ and $\langle b,a\rangle\in R$, then a=b.
 - **AS** asymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$, then $\langle b,a\rangle\not\in R$.
 - **T** transitive: for every $a, b, c \in A$, if $\langle a, b \rangle \in R$ and $\langle b, c \rangle \in R$, then $\langle a, c \rangle \in R$.

Consider the *ancestorOf* relation on persons where $\langle a,p\rangle\in ancestorOf$ if person a is an ancestor of person p. Which properties does this relation have? (You can choose more than one.)

- A) R
- B) IR
- c) s
- D) antiS
- E) AS
- F) T

Poll: implies

- **R** reflexive: for every $a \in A$, $\langle a, a \rangle \in R$.
- **IR** *irreflexive*: for every $a \in A$, $\langle a, a \rangle \notin R$.
- **S** symmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \in R$.
- antiS antisymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$ and $\langle b,a\rangle\in R$, then a=b.
 - **AS** asymmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \not\in R$.
 - **T** transitive: for every $a,b,c\in A$, if $\langle a,b\rangle\in R$ and $\langle b,c\rangle\in R$, then $\langle a,c\rangle\in R$.

Consider the *implies* relation on all possible propositions expressed in the English language where $\langle p, q \rangle \in implies$ if $p \implies q$ is true. Which properties does this relation have? (You can choose more than one.)

- A) R
- B) IR
- c) s
- D) antiS
- E) AS
- F) T

Poll: unequal sets

- **R** reflexive: for every $a \in A$, $\langle a, a \rangle \in R$.
- **IR** *irreflexive*: for every $a \in A$, $\langle a, a \rangle \notin R$.
- **S** symmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \in R$.
- antiS antisymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$ and $\langle b,a\rangle\in R$, then a=b.
 - **AS** asymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$, then $\langle b,a\rangle\not\in R$.
 - **T** transitive: for every $a,b,c\in A$, if $\langle a,b\rangle\in R$ and $\langle b,c\rangle\in R$, then $\langle a,c\rangle\in R$.

Let X be an arbitrary set. Consider the relation diffSize on $\mathcal{P}(X)$ where $\langle S_1, S_2 \rangle \in diffSize$ if $|S_1| \neq |S_2|$. Which properties does this relation have? (You can choose more than one.)

- A) R
- B) IR
- c) s
- D) antiS
- E) AS
- F) T

Poll: even divider

- **R** reflexive: for every $a \in A$, $\langle a, a \rangle \in R$.
- **IR** *irreflexive*: for every $a \in A$, $\langle a, a \rangle \notin R$.
- **S** symmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \in R$.
- antiS antisymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$ and $\langle b,a\rangle\in R$, then a=b.
 - **AS** asymmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \not\in R$.
 - **T** transitive: for every $a,b,c\in A$, if $\langle a,b\rangle\in R$ and $\langle b,c\rangle\in R$, then $\langle a,c\rangle\in R$.

Consider the relation R on \mathbb{Z} where $\langle x,y\rangle\in R$ if $x\mod 2=0$ and $y\mod x=0$. Which properties does this relation have? (You can choose more than one.)

- A) R
- B) IR
- c) s
- D) antiS
- E) AS
- F) T

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

• symmetric closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

· transitive closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

transitive closure:
(hint: what does R ∘ R give you?)

Poll: towards transitive closure

Consider the *parentOf* relation on persons where $\langle p, c \rangle \in parentOf$ if p is the parent of c. What is $parentOf \circ parentOf$?

- A) ancestorOf
- B) grandParentOf
- C) parentOf
- D) childOf
- E) grandChildOf
- F) descendantOf

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

· transitive closure:

$$R' = R \cup (R \circ R) \cup ((R \circ R) \circ R) \cup \cdots$$

Poll: transitive closure

Consider the *parentOf* relation on persons where $\langle p, c \rangle \in parentOf$ if p is the parent of c. What is the transitive closure of $parentOf^{-1}$?

- A) ancestorOf
- B) parentOf
- C) childOf
- D) descendantOf
- E) siblingOf