Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1.	Which is an example of a classification task?	1/1 point
	O Based on a patient's age and blood pressure, determine how much blood pressure medication (measured in milligrams) the patient should be prescribed.	
	Based on the size of each tumor, determine if each tumor is malignant (cancerous) or not.	
	O Based on a patient's blood pressure, determine how much blood pressure medication (a dosage measured in milligrams) the patient should be prescribed.	
	○ Correct This task predicts one of two classes, malignant or not malignant.	
2.	Recall the sigmoid function is $g(z)=rac{1}{1+e^{-z}}$	1/1 point
	If z is a large positive number, then: $\bigcirc \ g(z) \ {\sf will} \ {\sf be} \ {\sf near} \ {\sf zero} \ ({\sf 0})$	
	igcomes g(z) is near negative one (-1)	
	$\bigcap_{z \in \mathcal{S}} g(z)$ will be near 0.5	
	lacktriangledown g(z) is near one (1)	
	\bigcirc correct Say z = $+100$. So e^{-z} is then e^{-100} , a really small positive number. So, $g(z)=rac{1}{1+{ m asmallpositivenumber}}$ which is close to 1	
3.	A cat photo classification model predicts 1 if it's a cat, and 0 if it's not a cat. For a particular photograph, the logistic regression model outputs $g(z)$ (a number between 0 and 1). Which of these would be a reasonable criteria to decide whether to predict if it's a cat? O Predict it is a cat if $g(z) < 0.5$	1/1 point
	Predict it is a cat if $g(z) >= 0.5$	
	Predict it is a cat if $g(z) < 0.7$ Predict it is a cat if $g(z) = 0.5$	
	○ Correct Think of g(z) as the probability that the photo is of a cat. When this number is at or above the threshold of 0.5, predict that it is a cat.	
4.		1 / 1 point
	True/False? No matter what features you use (including if you use polynomial features), the decision boundary learned by logistic regression will be a linear decision boundary.	
	O True	
	False	
	Correct The decision boundary can also be non-linear as described in the lectures	