

Analyse de Données

Par: Houda Benbrahim

7

Régression Linéaire Simple

• La relation entre deux variables x et y est décrite par:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Où θ_0 et β_1 sont deux constantes que l'on cherche à évaluer et ϵ est un terme aléatoire que l'on appelle erreur.

Pour estimer θ_0 et β_1 on dispose d'un échantillon $(x_1, y_1), ..., (x_n, y_n)$ supposé vérifier:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, pour $i = 1, 2, \dots, n$.

 Définition
 Régression Linéaire Simple
 Régression Linéaire Multiple
 Conclusion

 Généralité
 Modèle
 Propriétés
 Inférence
 Intervalle de Prédiction
 SPSS

Modèle de Régression Linéaire Simple

• La relation entre deux variables x et y est décrite par:

$$y_i = a \times x_i + b + \varepsilon_i$$
, pour $i = 1, 2, \dots, n$.

- > a et b sont les paramètres du modèle.
- > a est la pente, b est la constante.
- > ε est l' erreur du modèle.
- > ε résume toute l'information qui n'est pas prise en compte dans la relation linéaire.
- Les propriétés des estimateurs reposent sur les hypothèses que nous
- ₂₇ formulons sur ε.

H. Benbrahim

Définition Régression Linéaire Simple Régression Linéaire Multiple Conclusion

Généralité Modèle Propriétés Inférence Intervalle de Prédiction SPSS

Exemple: Rendement de mais et quantité d'engrais

- On dispose de n = 10 observations . On cherche à expliquer Y le rendement en maïs (en quintal) de parcelles de terrain, à partir de X la quantité d'engrais (en kg) que l'on y a épandu.
- L'objectif est de modéliser le lien à travers une relation linéaire.
- si l'on ne met pas d'engrais du tout, il sera quand même possible d'obtenir du maïs, c'est le sens de la constante *b de la régression* Sa valeur devrait être positive.
- Ensuite, plus on mettra de l'engrais, meilleur sera le rendement. On suppose que cette relation est linéaire, d'où l'expression $a \times x$, on imagine à l'avance que a devrait être positif.

	T	Λ
1	16	20
2	18	24
3	23	28
4	24	22
5	28	32
6	29	28
7	26	32
8	31	36
9	32	41
10	34	41

19

Définition Régression Linéaire Simple Régression Linéaire Multiple Conclusion Généralité Modèle Propriétés Inférence Intervalle de Prédiction SPSS

Décomposition de la variance – Equation d'analyse de variance

• L'objectif est de construire des estimateurs qui minimisent la somme des

carrés des résidus: $SCR = \sum_i \hat{\varepsilon}_i^2$ $= \sum_i (y_i - \hat{y}_i)^2$

- Prédiction parfaite \rightarrow SCR = 0.
- Mais dans d'autre cas, qu'est-ce qu'une bonne régression ?
- A partir de quelle valeur de SCR peut-on dire que la régression est mauvaise ?
- Comparer la SCR avec une valeur de référence ?

41

H. Benbrahim

Définition Régression Linéaire Simple Régression Linéaire Multiple Conclusion

Généralité Modèle Propriétés Inférence Intervalle de Prédiction SPSS

Décomposition de la variance – Equation d'analyse de variance

→décomposer la variance de Y:

On appelle somme des carrés totaux (SCT) la quantité suivante :

$$SCT = \sum_{i} (y_i - \bar{y})^2$$

$$= \sum_{i} (y_i - \hat{y}_i + \hat{y}_i + \bar{y})^2$$

$$= \sum_{i} (\hat{y}_i - \bar{y})^2 + \sum_{i} (y_i - \hat{y}_i)^2 + 2\sum_{i} (\hat{y}_i - \bar{y})(y_i - \hat{y}_i)$$

Dans la régression avec constante, et uniquement dans ce cas, on montre que

$$2\sum_{i} (\hat{y}_{i} - \bar{y})(y_{i} - \hat{y}_{i}) = 0$$

• La statistique **F**:

$$F = \frac{CME}{CMR} = \frac{\frac{SCE}{1}}{\frac{SCR}{n-2}}$$

- ➤ Cette statistique indique si la variance expliquée est significativement supérieure à la variance résiduelle.
- ➤ l'explication emmenée par la régression traduit une relation qui existe réellement dans la population.
- La statistique F:

$$F = \frac{\frac{R^2}{1}}{\frac{(1-R^2)}{n-2}}$$

59

H. Benbrahim

 Définition
 Régression Linéaire Simple
 Régression Linéaire Multiple
 Conclusion

 Généralité
 Modèle
 Propriétés
 Inférence
 Intervalle de Prédiction
 SPSS

Test de significativité globale de la régression

- Distribution sous HO:
 - ✓ SCE est distribué selon un $\chi 2(1)$
 - ✓ SCR est distribué selon un χ 2(n 2)

7

$$F \equiv \frac{\frac{\chi^2(1)}{1}}{\frac{\chi^2(n-2)}{n-2}} \equiv \mathcal{F}(1, n-2)$$

- ✓ Sous H0, F est donc distribué selon une loi de Fisher à (1, n 2) degrés de liberté.
- La région critique du test:
 - ✓ correspondant au rejet de H0
 - √au risque α est définie pour les valeurs anormalement élevées de F
 - → R.C.: $F > F_{1-\alpha}(1, n-2)$
- Décision à partir de la p-value:
 - \checkmark la probabilité critique (p-value) α ' = probabilité que la loi de Fisher dépasse la statistique calculée F.
 - 60 \checkmark la règle de décision au risque α : R.C. : α' < α

Définition Régression Linéaire Simple Régression Linéaire Multiple Conclusion Généralité Modèle Propriétés Inférence Intervalle de Prédiction SPSS Distribution de la variance de l'erreur • On a par hypothèse: $\varepsilon_i \equiv \mathcal{N}(0, \sigma_{\varepsilon})$ • $\frac{\hat{\varepsilon}_i}{\sigma_{\varepsilon}} \equiv \mathcal{N}(0, 1)$ • $\left(\frac{\hat{\varepsilon}_i}{\sigma_{\varepsilon}}\right)^2 = \frac{\sum_i \hat{\varepsilon}_i^2}{\sigma_{\varepsilon}^2} \equiv \chi^2(n-2)$ • $\frac{\hat{\sigma}_{\varepsilon}^2}{\sigma_{\varepsilon}^2} \equiv \frac{\chi^2(n-2)}{n-2}$

49

Définition

Régression Linéaire Simple Régression Linéaire Multiple

Principe de la régression multiple

On veut construire une fonction de prédiction (explication) telle que

$$Y = f(X, \alpha)$$

Obiectif de I 'apprentissage Utiliser un échantillon Ω a (extraite de la population) pour Choisir la fonction f et ses paramètres α telle que l'on minimise la somme des carrés des erreurs

$$S = \sum_{\Omega} [Y - \hat{f}(X, \hat{\alpha})]^2$$

Problèmes :

il faut choisir une famille de fonction

💝 on utilise un échantillon pour optimiser sur la population

Régression Linéaire Simple

Régression Linéaire Multiple

La régression linéaire multiple

- · Se restreindre à une famille de fonction de prédiction linéaire
- · Et à des exogènes continues (éventuellement des qualitatives recodées)

$$y_i = a_0 + a_1 x_{i,1} + a_2 x_{i,2} + \dots + a_p x_{i,p} + \varepsilon_i$$
; $i = 1, \dots, n$

Le terme aléatoire ϵ cristallise toutes les « insuffisances » du modèle :

- · le modèle n'est qu'une caricature de la réalité, la spécification (linéaire notamment) n'est pas toujours rigoureusement exacte
- · les variables qui ne sont pas prises en compte dans le modèle
- · les fluctuations liées à l'échantillonnage (si on change d'échantillon, on peut obtenir un résultat différent)

 ϵ quantifie les écarts entre les valeurs réellement observées et les valeurs prédites par le modèle

 $(a_0,a_1,\ldots,a_p) \qquad \text{Sont les pur unien} \\ \text{l'aide des données}$ Sont les paramètres du modèle que 'l'on veut estimer à

Définition Régression Linéaire Simple Régression Linéaire Multiple Conclusion

La régression linéaire multiple

Démarche de modélisation

La démarche de modélisation est toujours la même

- · estimer les paramètres « a » en exploitant les données
- · évaluer la précision de ces estimateurs
- · mesurer le pouvoir explicatif du modèle
- · évaluer l'influence des variables dans le modèle
 - · globalement (toutes les p variables)
 - · individuellement (chaque variable)
 - un bloc de variables (q variables, q < p)
- · sélectionner les variables les plus « pertinentes »
- $\boldsymbol{\cdot}$ évaluer la qualité du modèle lors de la prédiction (intervalle de prédiction)
- · détecter les observations qui peuvent influencer exagérément les résultats (points atypiques).

« e », l'erreur observée est une évaluation du terme résiduel ${\mathcal E}$

Régression Linéaire Simple Régression Linéaire Multiple Les hypothèses des moindres carrés « â » deviennent les EMCO (estimateurs des moindres carrés ordinaires) Hypothèses probabilistes • le modèle est linéaire en X · les X sont observés sans erreur • $E(\varepsilon) = 0$, en moyenne le modèle est bien spécifié • $E(\varepsilon^2)$ = $\sigma^2_{\ \varepsilon}$ la variance de l'erreur est constante (hétéroscédasticité) • E(ε_i, ε_i)=0, les erreurs sont non-corrélés • $Cov(\varepsilon, x)$ =0, l'erreur est indépendante de la variable explicative • $\varepsilon \equiv Normale(0, \sigma_{\varepsilon}^2)$ Hypothèses structurelles • Rang(X 'X)=p+1 càd (X 'X)-1 existe • (X 'X)/n tend vers une matrice finie non singulière • n>p+1, le nombre d'observations est supérieur au nombre de variables explicatives Idée : rendre les calculs possibles et délimiter les propriétés des estimateurs Définition

Régression Linéaire Simple Régression Linéaire Multiple

Les estimateurs des MCO

Pour trouver les paramètres « a » qui minimise 5 :

$$S = \sum_{i} \varepsilon_{i}^{2} = \sum_{i} [y_{i} - (a_{0} + a_{i,1}x_{1} + \dots + a_{i,p}x_{p})]^{2}$$

$$\frac{\partial S}{\partial a} = 0$$

On doit résoudre $\frac{\partial S}{\partial a} = 0 \qquad \qquad \text{Il y a (p+1) équations dites « équations normales » à résoudre}$

L'estimateur des moindres carrés ordinaires s'écrit :

 $\hat{a} = (X'X)^{-1}X'Y$

N.B. Compte tenu des hypothèses ci-dessus :

- · â est sans biais
- · â est convergent
- · â est BLUE (c.-à-d. il n'existe pas d'estimateur linéaire sans biais de variance plus petite)

Régression Linéaire Simple Régression Linéaire Multiple

Evaluation globale de la régression

Tableau d'analyse de variance et Coefficient de détermination

Équation d'analyse de variance -Décomposition de la variance

$$\sum_{i} (y_{i} - \overline{y})^{2} = \sum_{i} (\hat{y}_{i} - \overline{y})^{2} + \sum_{i} (y_{i} - \hat{y}_{i})^{2}$$

SCT SCE SCR SCR Variabilité totale Variabilité expliquée par le Wariabilité non-expliquée (Variabilité résiduelle)

Source de variation			Carrés moyens
Modèle	SCE	р	SCE/p
Résiduel	SCR	n-p-1	SCR/(n-p-1)
Total	SCT	n-1	

Tableau d'analyse de variance

Un indicateur de qualité du modèle : le coefficient de détermination, il exprime la proportion de variabilité de Y qui est traduite par le modèle

$$R^2 = \frac{SCE}{SCT} = 1 - \frac{SCR}{SCT}$$

Rº#1, le modèle est intéressant Rº#0, le modèle est mauvais

Définition

Régression Linéaire Simple Régression Linéaire Multiple

Test associé à l'évaluation globale du modèle

Test de Fisher

Quelques formulations du test de « signification » globale :

- · le modèle est-il pertinent pour expliquer les valeurs de Y?
- · la liaison linéaire y / X1,...,Xp est-elle licite?
- · test d'hypothèse

$$\begin{cases} \boldsymbol{H}_0: \boldsymbol{a}_1 = \boldsymbol{a}_2 = \dots = \boldsymbol{a}_p = 0 \\ \boldsymbol{H}_1: \text{il en existe au moins} \neq 0 \end{cases}$$
 Attention, on n'inclut pas la constante dans le test dans le test existe au moins une variable qui emmène de l'information? Ou il n'est pas possible d'effectuer une prédiction/explication meilleure que la simple constante?

Attention, on n'inclut pas la constante

Statistique du test

$$F = \frac{R^2/p}{(1-R^2)/(n-p-1)} \equiv Fisher(p, n-p-1)$$

- A un niveau de signification donné (ex. 10%, 5%, 1%...) >> Comparer le F-calculé avec le F-théorique fourni par la table
- >> Comparer la p-value avec le niveau de signification

Régression Linéaire Simple

Régression Linéaire Multiple

Évaluation individuelle des coefficients

Une variable contribue-t-elle de manière significative dans la régression ?

Test d'hypothèse associé

$$\begin{cases} H_0: a_j = 0 \end{cases}$$

 $\begin{cases} H_0: a_j = 0 \end{cases} \begin{tabular}{l} H0 \text{ v\'erifi\'ee signifie que la variable peut \'etre supprimée du modèle sans en détériorer le pouvoir explicatif} \\ H_1: a_j \neq 0 \end{cases}$

Statistique du test : il s'appuie sur â et l'estimation de son écart-type

$$t = \frac{\hat{a}_j}{\hat{\sigma}_{\hat{a}_j}} \equiv Student(n-p-1)$$

A un niveau de signification donné (ex. 10%, 5%, 1%...)

- » Comparer le t-calculé avec le t-théorique fourni par la table de Student
- >> Comparer la p-value avec le niveau de signification

