Standardized Test Prep

MULTIPLE CHOICE

Use the diagram below to answer questions 1–2.

- **1.** What changes would take place if the electron moved from point A to point B in the uniform electric field?
 - **A.** The electron's electrical potential energy would increase; its electric potential would increase.
 - **B.** The electron's electrical potential energy would increase; its electric potential would decrease.
 - **C.** The electron's electrical potential energy would decrease; its electric potential would decrease.
 - **D.** Neither the electron's electrical potential energy nor its electric potential would change.
- **2.** What changes would take place if the electron moved from point A to point C in the uniform electric field?
 - **F.** The electron's electrical potential energy would increase; its electric potential would increase.
 - **G.** The electron's electrical potential energy would increase; its electric potential would decrease.
 - **H.** The electron's electrical potential energy would decrease; its electric potential would decrease.
 - **J.** Neither the electron's electrical potential energy nor its electric potential would change.

Use the following passage to answer questions 3–4.

A proton ($q = 1.6 \times 10^{-19}$ C) moves 2.0×10^{-6} m in the direction of an electric field that has a magnitude of 2.0 N/C.

3. What is the change in the electrical potential energy associated with the proton?

A.
$$-6.4 \times 10^{-25}$$
 J

B.
$$-4.0 \times 10^{-6} \text{ V}$$

C.
$$+6.4 \times 10^{-25}$$
 J

D.
$$+4.0 \times 10^{-6} \text{ V}$$

4. What is the potential difference between the proton's starting point and ending point?

F.
$$-6.4 \times 10^{-25} \text{ J}$$

G.
$$-4.0 \times 10^{-6} \text{ V}$$

H.
$$+6.4 \times 10^{-25}$$
 J

$$I. + 4.0 \times 10^{-6} \text{ V}$$

5. If the negative terminal of a 12 V battery is grounded, what is the potential of the positive terminal?

A.
$$-12 \text{ V}$$

B.
$$+0 \text{ V}$$

C.
$$+6 \text{ V}$$

D.
$$+ 12 \text{ V}$$

6. If the area of the plates of a parallel-plate capacitor is doubled while the spacing between the plates is halved, how is the capacitance affected?

G. *C* is increased by four times

H. *C* is decreased by 1/4

J. *C* does not change

Use the following passage to answer questions 7–8.

A potential difference of 10.0 V exists across the plates of a capacitor when the charge on each plate is 40.0 μ C.

7. What is the capacitance of the capacitor?

A.
$$2.00 \times 10^{-4} \text{ F}$$

B.
$$4.00 \times 10^{-4} \text{ F}$$

C.
$$2.00 \times 10^{-6} \text{ F}$$

D.
$$4.00 \times 10^{-6} \text{ F}$$