Neural network attacks using side-channel leakages to break ECC implementations on consumer electronics

Michele Corrias - 808746

Supervisor: Prof. Danilo Bruschi Co-supervisor: Eng. Guido Bertoni Examiner: Prof. Vincenzo Piuri

University of Milan Security Pattern

June 09, 2022

Breaking The Key

Background

```
ADD(x, y, modulo)
begin
    result = x + y
    if result \geq modulo then
        return result - modulo
    else
        return result
end
```


Background

```
ADD(x, y, modulo)
begin
    result = x + y
    if result \geq modulo then
        return result - modulo
    else
        return result
```


Background

end

```
ADD(x, y, modulo)
begin
    result = x + y
    if result \geq modulo then
        return result - modulo
    else
        return result
```


Previous Results

Accuracy on a single trace of the previous work

- correct predictions and wrong predictions
- accuracy = $\frac{\text{correct classifications}}{\text{total windows of samples}}$

Simulation Environment

Simulation Environment

Improvements

- dataset balancing and scaling
- horizontal component
- vertical and horizontal noises

Simulation Results

- ullet synthetic trace \sim real trace
- STOP with 100% accuracy

LSTM

Input

Dataset from a power consumption trace of a cryptographic computation

LSTM

- sequences of data and time series
- memory over time and temporal consciousness
- Human Activity Recognition

Output

Binary classification of the windows composing the dataset

Experiment

(a) STM32f415RG

(b) ChipWhisperer-Pro

A few numbers

- trace size \in [7, 10] million samples

- dataset size $\simeq 700 \ thousand \ windows$

- window size = 500 samples

Results

Neural Network Properties

- LSTM correct predictions and wrong predictions
- accuracy = $\frac{\text{correct classifications}}{\text{total windows of samples}} > 97\%$
- LSTM able to recognize the length of modular operations

Conclusions & Future Works

Conclusions

- success in automatic recognition of operations during a ECC computation
- ullet LSTM accuracy allows a key-recovery attack o an attacker could retrieve the entire user private key

Work highlights:

- focus on MCU running ECC implementation
- SCA on power consumption
- NN implementation, training and testing

Future Works

- LSTM testing with different SCAs on different microcontrollers and software libraries
- paper

Thanks for your attention!

Key Recovery

Michele Corrias NN SCA to break ECC on MCU June 09, 2022 1/

Datasets Sizes

Table: Sizes of four real power consumption traces, acquired for testing, with derived datasets

Trace	Trace Size	Trace	Samples	Detect size	Dataset Windows		
		SO samples	LO samples	Dataset size	true- <i>tag</i>	false- <i>tag</i>	
T1	7032251	524697	6507554	703176	86948	616228	
T2	7002209	522537	6479672	700171	86739	613432	
Т3	7005521	525957	6479564	700503	87086	613417	
T4	7027186	524247	6502939	702669	86893	615776	

Accuracy Results

Table: Accuracy results on four real power consumption traces

Trace	Pred	ictions	Accuracy	Loss	
Trace	#right	#wrong	Accuracy		
T1	686165	17011	0.9758	0.0621	
T2	683800	16371	0.9766	0.0603	
Т3	683410	17093	0.9756	0.0646	
T4	683536	19133	0.9728	0.0702	

Similarity Metrics

Table: Results of similarity metrics to compare raw predictions with raw ground-truth

ID	VI	NMI	AMI	ARS	VM
T1	0.0	0.756	0.756	0.867	0.756
T2	0.0	0.757	0.757	0.871	0.757
Т3	0.0	0.752	0.752	0.866	0.752
T4	0.0	0.738	0.738	0.852	0.738

Post-processing Results

Table: Post-processing results on the four real power consumption traces

	Post-processed	Post-prod	c. Ground-truth	Post-processed	Post-proc. Predictions		
Trace	Ground-truth	SO perfo	orming modulus	Predictions	SO performing modulus		
	(total #SO)	#yes	#no	(total #SO)	#yes	#no	
T1	1770	1209	561	1803	1386	417	
T2	1770	1188	582	1799	1323	476	
Т3	1770	1223	547	1803	1376	427	
T4	1770	1214	556	1794	1440	354	

Scalar Multiplication & ECDLP

Scalar Multiplication

k integer, P point of $\mathcal{E}_{\mathbb{F}_p}$ elliptic curve: the scalar multiplication kP is the result of adding P to itself k times

$$kP = \underbrace{P + P + \dots + P}_{k \text{ TIMES}} \tag{1}$$

The scalar multiplication is the core operation of ECC, in which the scalar is usually secret.

Elliptic Curve Discrete Logarithm Problem

Elliptic curve $\mathcal{E}_{\mathbb{F}_p}$ defined over a finite field \mathbb{F}_p , two points G and Q of the curve.

ECDLP: find a positive integer k, if there exists, such that:

$$Q = kG (2)$$

where kG is the result of scalar multiplication between k and G.

Differential Power Analysis

Figure: $key = 2^{160} - 9839030998049910 - n = 250 - 8$ bits to guess

Michele Corrias NN SCA to break ECC on MCU June 09, 2022 1

ECDSA Sign

ECDSA

- authentication
- non-repudiation

```
procedure ECDSA SIGN
input: d private key, m message
output: (r, s) signature of m
   k random integer \in [1, n-1]
   (x_1, y_1) = k \times G \mid G base point, n \times G = \mathcal{O}
   r = x_1 \mod n
   e_{10} = HASH(m)
   s = k^{-1}(e + dr) \mod n
   return: (r, s)
end procedure
```

```
procedure ECDSA VERIFY
input: r,s, m message
output: (r, s) signature of m
   (r, s) \in [1, n-1]
   e = HASH (m)
   u_1 = es^{-1} \mod n
   u_2 = rs^{-1} \mod n
   Calculate the curve point (x_1,y_1) = u_1 \times G + u_2 \times Q_A
   if (x_1,y_1) = \mathcal{O} then signature invalid
   if r \equiv x_1 \pmod{n} then signature valid
   else return signature invalid
end procedure
```

Power Consumption as Leakage

- realization of power analysis is easier than anything else
- quality of signal
- number of traces to collect

Conditions

- in secp160r1 nonce k is random scalar 160 bits long
- in EccPoint_mult scalar multiplication:
 - XYCZ-IDBL
 - \bigcirc a cycle of 160 iterations on 160 bits of nonce k, starting from MSB
 - XYcZ_addC e XYcZ_add in the cycle
 - the last bit of nonce k, at LSB, outside of the cycle
- affines standard coordinates in two dimensions
- projective coordinates: different possible representations of a point P on an elliptic curve, as by a triplet (X, Y, Z)
- ullet a point has several projective coordinates, as many as different Z
- Montgomery ladder with (X, Y)-only co-Z addition implements scalar multiplication
 - projective coordinates: faster
- first, initial_Z = 1 in XYCZ-IDBL
- then, no restrictions on initial_Z in the paper

Fingerprint Operations

Montgomery ladder with (X, Y)-only co-Z addition:

- b current target bit
- $(R_{1-b}, R_b) \leftarrow \texttt{XYCZ-ADDC}(R_b, R_{1-b}) = \mathsf{P} + \mathsf{Q}, \, \mathsf{P} \mathsf{Q}$
- $(R_b, R_{1-b}) \leftarrow \texttt{XYCZ-ADD}(R_{1-b}, R_b) = \mathsf{P} + \mathsf{Q}, \mathsf{P}$
- ullet fixed P, Q $\in \mathcal{E}$, the operands depend directly on the value of the processed bit of the scalar

For the first bit of the nonce k:

• according to Montgomery ladder, $R_0 = P$, $R_1 = 2P$

if b = 0

$$(R_1, R_0) \leftarrow \mathtt{XYCZ-ADDC}(R_0, R_1) = \mathtt{XYCZ-ADDC}(P, 2P) = (3P, -P)$$

$$(R_0, R_1) \leftarrow \mathtt{XYCZ}\mathtt{-ADDC}(R_1, R_0) = \mathtt{XYCZ}\mathtt{-ADD}(3P, -P) = (2P, 3P)$$

if b = 1

$$(R_0, R_1) \leftarrow \texttt{XYCZ-ADDC}(R_1, R_0) = \texttt{XYCZ-ADDC}(2P, P) = (3P, P)$$

$$(R_1, R_0) \leftarrow \text{XYCZ-ADDC}(R_0, R_1) = \text{XYCZ-ADD}(3P, P) = (4P, 3P)$$

GPUs

Cloud Service	NVIDIA GPU	CUDA Version	GPU RAM (GB)	CPU Chip	Chip Speed (GHz)	CPU Cores	CPU RAM (Total GB)	L3 Cache (MB)	Disk Space (Total GB)	Max Idle Time (hrs)	Max Session Time (hrs)	Max Commit Time (hrs)
Colab	Tesla K80	10.0	12.0	Intel Xeon CPU	2.2 or 2.3	2	13.3	56	359	1.5	12	n/a
Kaggle	Tesla P100	9.2	17.1	Intel Xeon CPU	2.2 or 2.3	2	16.4	46	220	1	9	6
Command	!nvidia-smi	!cat /usr/local/cuda/version.tx t	!nvidia-sm i		!cat /proc/cpuinfo	multiprocessing .cpu_count()	!cat /proc/meminf o	!cat /proc/cpuinfo	!df -h	docs	docs	docs