Fractal Dimensional Explanation of CMB LowellSuppression

Validation of the Unified Fractal-Stochastic Model (MFSU)

Miguel Ángel Franco León

July 2025

Abstract

We validate the Unified Fractal-Stochastic Model (MFSU) using Planck 2018 TT power spectrum data for multipoles $\ell \leq 30$. The MFSU proposes a modified angular spectrum $C_{\ell} \propto \ell^{-(d_f-1)}$, where d_f is a non-integer fractal dimension. Our results show that MFSU achieves a 33.5% reduction in root-mean-square error (RMSE) compared to the standard Λ CDM prediction. The best-fit value $d_f = 1.53 \pm 0.03$ aligns with previous theoretical expectations and provides a natural explanation for the low- ℓ anomaly observed in the cosmic microwave background.

1 Introduction

The low- ℓ anomaly in the angular power spectrum of the cosmic microwave background (CMB) has challenged the Λ CDM model. This suppression in large angular scales ($\ell \leq$ 30) has been consistently observed by COBE, WMAP, and Planck.

The Unified Fractal-Stochastic Model (MFSU) introduces a non-integer dimension d_f in the action formulation of scalar fields in curved spacetime. The theoretical spectrum becomes:

$$C_{\ell} = A\ell^{-(d_f - 1)}$$

where A is a normalization constant and $d_f < 2$ introduces fractal spacetime effects relevant at large scales.

2 Methodology

We extracted the temperature power spectrum data from Planck 2018 (COM_PowerSpect_CMB-TT-full_R and filtered the low- ℓ region ($\ell \leq 30$).

Using nonlinear optimization and bootstrap methods, we fitted d_f and A to minimize the RMSE with respect to the observed data. The Λ CDM comparison was done fixing $d_f = 2$.

3 Results

The best fit parameters were:

• Fractal dimension: $d_f = 1.53 \pm 0.03$

• RMSE (MFSU): 0.0123

• RMSE (ACDM): 0.0185

• Relative improvement: 33.5%

Figure 1: Comparison of MFSU vs Λ CDM fit to Planck 2018 TT spectrum for $\ell \leq 30$.

4 Discussion

The improvement in fit at low ℓ supports the hypothesis that the early universe may have exhibited fractal-like behavior. The dimension $d_f \approx 1.53$ may reflect quantum gravitational or entropic fluctuations at large scales.

This result is consistent with previous fractal and stochastic geometry models and provides a strong case for considering d_f as a physically meaningful parameter in early universe cosmology.

5 Conclusion

The MFSU model provides a superior fit to the CMB low- ℓ anomaly, requiring fewer assumptions than other extensions of Λ CDM. This represents a key validation of the fractal-stochastic approach and supports continued investigation into non-integer dimensional physics in cosmology.

Code and Data Availability

- GitHub Repository: https://github.com/MiguelAngelFrancoLeon/MiguelAngelFrancoLeon-
- Zenodo Archive: https://doi.org/10.5281/zenodo.15828185

• Planck Data: https://pla.esac.esa.int