

Welcome to

Big Data & Hadoop

An Introductory Session

Please introduce yourselves using Chat Window while others are joining us.

Session I

Welcome to

Big Data & Hadoop

An Introductory Session

Please introduce yourselves using Q/A while others are joining us.

Session I

WELCOME - KNOWBIGDATA

- Expert Instructors
- CloudLabs
- Lifetime access to LMS
 - Presentations
 - Class Recording
 - Assignments + Quizzes
 - Project Work

- Real Life Project
- Course Completion Certificate
- 24x7 support
- KnowsBigData Alumni
 - Jobs
 - Stay Abreast (Updated Content, Complimentary Sessions)
 - Stay Connected

ABOUT INSTRUCTOR - SANDEEP GIRI

2014	KnowBigData	Founded			
2014	Amazon	Built High Throughput Systems for <u>Amazon.com</u> site using inhouse NoSql.			
2012	InMobi	Built Recommender that churns 200 TB			
2011	tBits Global	Founded tBits Global Built an enterprise grade Document Management System			
2006	D.E.Shaw	Built the big data systems before the term was coined			
2002	IIT Roorkee	Finished B.Tech.			

COURSE CONTENT

7)	Understanding BigData, Hadoop Architecture				
	Ш	Cluster Setup, ETL, Project Environment				
	III	MapReduce framework				
	IV	Adv MapReduce & Testing				
	V	Analytics using Pig				
	VI	Hive				
	VII	NoSQL & HBase				
	VIII	ZooKeeper, Flume				
	IX	X Sqoop, Oozie				
	X	Spark, Storm, Mahout				
	XI	Comparisons of No SQLs, Project Assignment				

TODAY'S CLASS

- What/why of Big Data?
- Components Hadoop

Why Now?

HDFS Architecture

- Examples Customers
- NameNode

What is Hadoop?

Further Reading/Assignment

WHAT IS BIG DATA?

WHAT IS BIG DATA?

- Simply: Data of Very Big Size
- Can't process with usual tools
- Distributed Architecture Needed
- Structured / Unstructured

WHAT IS BIG DATA?

Data at Rest

Terabytes to exabytes of existing data to process

Velocity

Data in Motion

Streaming data, milliseconds to seconds to respond

Variety

Data in Many Forms

Structured, unstructured, text, multimedia

Veracity*

Data in Doubt

Uncertainty due to data inconsistency & incompleteness, ambiguities, latency, deception, model approximations

Facebook: 500TB /day Boeing737: 240 TB / flight

. Clickstreams: ~ Im events / sec

Geospatial data
3D data
audio & video
Unstructured text

How many bytes in a petabyte?

How many bytes in petabytes?

1.1259×10¹⁵

How many bytes in petabytes?

1.1259x10¹⁵

Kilo		1024	Bytes	1024	Bytes
Mega	a	1024	KB	1024	Bytes
Giga		1024	MB	1024	Bytes
Tera	,	1024	GB	1024^4	Bytes
Peta		1024	Tera	1024	Bytes
Exa		1024	Peta	1024	Bytes
Zeta	L	1024	Exa	1024	Bytes
Yotta	a	1024	Zeta	1024	Bytes

I byte = 8 bit = can store 256 states

Is IPetaByte Big Data?

Is I Peta Byte Big Data?

Yes.

Most of the existing systems can't handle it.

WHY BIG DATA

WHY IS IT IMPORTANT NOW?

Smart Phones

Connectivity: Internet Of Things

Connectivity: Social Networks

4.6 billion mobile-phones.1 - 2 billion people accessing the internet.

Facebook: 1.06 bn monthly active users, 30 billion pieces shared monthly.

~175 million tweets every day

The connectivity improved.

The devices became cheaper, faster and smaller.

BIG DATA PROBLEM

I. CPU Speed

4. Network

2. RAM - Speed & Size

3. Disk Size + Speed

BIG DATA PROBLEM

I. CPU Speed

To process & store data we need

4. Network

And at least one of these become bottle neck

2. RAM - Speed & Size

3. Disk Size + Speed

EXAMPLE BIG DATA CUSTOMERS

Web and e-commerce

- 1. Recommendation Engines
- 2. Search Quality
- 3. Sentiment Analyses
- 4.Ad Targeting

Telecommunications

- Customer Churn Prevention
- 2. Network Performance Optimization
- 3. Calling Data Record (CDR) Analysis
- 4. Analyzing Network to Predict Failure

EXAMPLE BIG DATA CUSTOMERS

Government

- I.Fraud Detection
- 2. Cyber Security Welfare
- 3. Justice

Healthcare & Life Sciences

- I. Health information exchange
- 2. Gene sequencing
- 3. Healthcare improvements
- 4. Drug Safety

AND MANY MORE...

Bloomberg

II COMMON MYTHS

BIG DATA

- I. Always means data above or in range of TB
- 2. Is always about social media. Doesn't apply to me.
- 3. Will replace EDW
- 4. Is just a buzz word. No Practical Applications
- 5.Is New Concept
- 6. Will be future.
- 7.Is Expensive
- 8. Is only for data scientists. Or is magic.
- 9. We have enough hardware. Don't need any more.
- 10.We will build it when we need it.
- 11. Big Data is about Hadoop.

Q2:How important it is to know big data to make a fast growing IT career?

Short Answer: Very Important

Number of Jobs

	indeed.com	naukri.com
Hadoop	1,102	2312
Big Data	1,255	659

Analyst Reports

Gartner Top 10, 2014: Point #1, #4, #9, #10,

Forbes top 10 tech trends: Point #5, #6, #8, #9

WHAT IS HADOOP?

- A. Created by Doug Cutting (of Yahoo) and Mike Cafarella
- B. Built for Nutch search engine project
- C. Named after Toy Elephant
- D. Open Source Apache
- E. Power, Popular & Supported
- F. Framework to handle Big Data
- G. For reliable, scalable, distributed computing
- H. Written in Java

Components

Components

Break of 10 mins. Lets come back 10:08pm IST

Q: If you have 100TB data, How would you store it?

Q: If you have 100TB data, How would you store it?

A: Build NAS or SAN i.e.

Have 100 ITB drives and make 100 subfolders mount these.

Problems?

Q: If you have 100TB data, How would you store it?

A: Have 100 ITB drives and make 100 subfolders mount these.

Challenges?

- What about fail overs & Backups?
- How would distribute the data uniformly?
- Is this best value for money?
- is this best use of resources? We might have hundreds of smaller drives already.
- What about Increasing accessibility?
- Scaling out?

Then?

Q: If you have 100TB data, How would you store it?

A: Have 100 ITB drives and make 100 subfolders mount these.

Challenges?

- What about fail overs & Backups?
- How would distribute the data uniformly?
- Is this best value for money?
- is this best use of resources? We might have hundreds of smaller drives already.
- What about Increasing accessibility?
- Scaling out?

Then?

Hadoop Distributed File System or HDFS

HDFS

HDFS - BLOCKS

- 1. The files are split into a chunk of 128M blocks.
- 2. Helps fitting big files into small discs
- 3. Leaves less unused space on the disc.
- 4. Optimises the transfer
- 5. Distributes the load to multiple machines

HDFS - REPLICATIONS

Each block in DataNode has multiple copies Called Replication Factor, default 3.

No two copies are on same data node.

Data node fails => The lost blocks are copied to other nodes.

Typical Server Bottleneck

HDFS - NO BOTTLE NECK

ANATOMY OF A FILE WRITE

ANATOMY OF A FILE READ

NAMENODE METADATA

Meta-data in Memory

- I. The entire metadata is in main memory.
- 2. On demand paging of FS meta-data

Types of Metadata

- 1. List of files
- 2. List of Blocks for each file
- 3. List of DataNode for each block
- 4. File attributes, e.g. access time, replication factor

A Transaction Log

1. Records file creations, file deletions. etc

NameNode

(File Name, numReplicas, block-ids,...)
/users/sgiri/data/part-0,r:2, {1,3},...
/users/sgiri/data/part-1,r:3, {2,4,5},...

NameNode

Keeps track of overall file directory structure and the placement of Data Block

Components Machine Workflow learning / New Language **STATS** SQL Inteface CLI/Java/Python Oozie Hive Pig (Latin) Mahout Compute Map Reduce Spark Engine **HBASE YARN** NoSQL Database Flume Sqoop Structured Data **Unstructured Data** Main Component

10010 10101

What Is CloudLabsTM?

- For Real Life Experience
- An online cluster of servers
- With all required tools installed
- Accessible globally
- Do not require high end configuration

ASSIGNMENT / PRE-WORK

- Go through Cloud Labs:
 - Admin Console (Ambari) http://hadoopl.knowbigdata.com:8080
 - Hue http://hadoopl.knowbigdata.com:8000
 - SSH
- 2.Go through LMS: http://www.knowbigdata.com/my-courses
- 3. Setup Hadoop (optional) Environment based on the VM
- 4. Finish the quiz from LMS
- 5. See Assignment section on LMS

FULL COURSE

www.KnowBigData.com

- 1. Second Class Onwards from 18 Jan, 8:30pm IST
- 2. Every Saturday-Sunday 3 hours
- 3.33 hours 3 hr x 11 classes
- 4.₹18747 (25% off) (Incl. Taxes)
- 5. Cluster for Hands-On Experiments

+91-9538998962

reachus@KnowBigData.com

Big Data & Hadoop

Thank you.

+91-9538998962

reachus@knowbigdata.com

COLLECT YOUR CERTIFICATE

www.KnowBigData.com/Intinfotech

- I.Permanent URL / Link
- 2. Crawl-able
- 3. Verifiable
- 4. Display on LinkedIn
- 5. Put in Social Profile

FURTHER READING

http://en.wikipedia.org/wiki/Apache_Hadoop

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

