(X,p) putting space

Thm TFAE:

- 1) X is compact
- ② X is sequentially compact
- 3) X is complete & totally bounded.

 $\forall \epsilon, \exists x_{i_1, \dots, i_n} \in X \text{ s.t. } X \subset \bigcup_{i=1}^n \mathbb{B}_{\epsilon}(x_i)$

(orollery. Suppose (X,p) is complete & ACX.

A is compact iff A is totally bold.

A totally bild \Rightarrow \overline{A} totally bild priz question.

Def (X, τ) locally cpt if $\forall x \in X$, $\exists open U \ni x s.t. \overline{u}$ is cpt.

LCH: locally opt Hausdorff.

Exercises: X is LCH

- 1) Hopen MCX, XEV, Foper VCX s.t. XEVEVCU and Vcpt.

(3) (Unysohn) if KCUCX as a bove, \exists cts $f: X \to Co, i$ $f: K \to K$ and $f|_{K} = 0$. - actually, f=0 outside a opt set containing K. ($f \in C_c(X)$ s.t. $f|_{K} = 1$).

(Tietze) if kcX is cpt & $f \in C(K)$, $\exists F \in C_c(X)$ s.t. $F|_{K} = f$.

Def suppose X is LCH. Afr $f \in C(X)$ Vanishes at ∞ if $\forall \epsilon > 0$, $\{|f| > \epsilon\}$ is cp+.

$$C_{\delta}(X) = \{ ds \ f : X \longrightarrow C \ \text{which vanish at } \infty \}$$

$$((X) = \{ ds bdd f: X \rightarrow C \}$$

$$(X) \subset (X) \subset (X) \subset (X)$$

The uniform/so norm on $C_b(X)$ is $\|f\|_{\infty} := \sup \{|f(x)| \mid x \in X\}$

· cheek it's a norm.

Prop: Suppose X is LCH.

- O C_b(X) is complete wrt $\|\cdot\|_{\infty}$.
- ② C_o(X) ⊂ C_b(X) is a closed linear subspace.
- $\widehat{\mathcal{C}_{c}(X)}^{\parallel l_{\infty}} = \mathcal{C}_{o}(X).$

Pf O if (fn) is uniformly cauchy,

- $(f_n(x))$ is cauchy in C, let $f(x) := \lim_{x \to \infty} f_n(x)$ ets.
- " $(\|f_n\|) \subset [0,\infty)$ bodd by Δ -ineq. Since $f_n \to f$ unif
- $\sup |f(x)| < \sup ||f_n|| < \infty$. $|f_m f_n| < \varepsilon$
- ② Suppose $(f_n) \subset C_o(X)$ s.t. $f_n \rightarrow f$ in $C_b(X)$.

Let $\epsilon>0$. Pick N s.t. $n \ge N \implies \|f-f_n\| < \frac{\epsilon}{2}$.

 $K := \{|f_N| \geqslant \frac{\xi}{2}\}$ is cpt.

Then $\{|f| \ge \xi\} \subset \{|f_N| \ge \frac{\varepsilon}{2}\}$ dose of V

③ f∈ C_o(X). Then $K = \{ |f| \ge \epsilon \} \text{ is apt.}$ by LCH Unysohn's Lemma, $\exists \text{ cts } g: X \longrightarrow [0,1]$ S.t. $g|_{K} = 1$ & $g \in C_{c}(X)$. then $gf \in C_{\epsilon}(x)$ & $\|f-gf\|_{\infty} < \epsilon$.