DEGREE IN COMPUTER ENGINEERING

PHYSICS EXERCISES CH 4

Gauss' Law.

1. Find the electric flux going through each side of the closed triangular prism in the figure, and the net electric flux, knowing that $\vec{E}=150\vec{i}$ N/C.

- **2.** Calculate the electric flux produced by a positive Gadolinium ion Gd^+ through one of the faces of a cubic closed surface of l=1 m centred on the ion.
- **3.** An electric field is $\vec{E}=200\vec{i}$ N/C for x>0 and $\vec{E}=-200\vec{i}$ N/C for x<0. A closed cylinder of length 20 cm and radius R=5 cm has its centre at the origin and its axis along the x axis, so that one end is at x=10 cm and the other at x=-10 cm.
- (a) What is the flux through each end?
- (b) What is the flux through the curved surface of the cylinder?
- (c) What is the net outward flux through the entire closed surface?
- (d) What is the net charge enclosed in the cylinder?
- **4.** (a) Use Gauss' law to find the electric field due to a line of charge with linear charge density λ in all regions of space. (b) An infinite charged line with linear charge density $\lambda=-1.5~\mu\text{C/m}$ is parallel to the Y axis on x = -2 m, z = 0 m. A point charge of 1.3 μ C is located at (1, 2, 0) m. Find the net electric field at (2, 1.5, 0) m.
- **5.** Three infinite parallel plates have surface charge densities of $+\sigma$, $+\sigma$ and $-\sigma$, respectively. Find the magnitude and direction of the electric field on each of the four regions indicated in the figure.

- **6.** A charged cylindrical foil of length 24 cm and radius 6 cm is centred at the origin of a Cartesian reference frame with its axis coinciding with the Y axis. It has a surface charge density of σ =9 nC/m².
 - (a) What is the total charge of the cylinder?
 - (b) Use Gauss' law to find the electric field due to an infinite cylindrical foil with surface charge density σ in all regions of space.
 - (c) At which points of space could we use Gauss' Law to find the electric field due to the charged cylindrical foil of length 24 cm and radius 6 cm?
 - (d) Find the electric field at: (2, 0, 5) cm and (10, 0, 0) cm.
 - (e) Find the electric force acting on an electron located at (4,0,-2) cm.

DEGREE IN COMPUTER ENGINEERING

PHYSICS EXERCISES CH 4

Gauss' Law.

7. (a) Find the electric field in all regions of space due to the following spherical charge distribution of radius R:

$$\rho(r)=0$$
 0
 $\rho(r)=\rho_0$ R/2\rho_0 constant)

(b) Graphically represent E as a function of the distance r for this charge distribution.

(c) Considering R = 3 m and ρ_0 = $8.85x10^{-12}$ C/m³, find the electric field at (2, - 4, 0) m in rectangular coordinates if the spherical charge distribution is centred at the origin of the reference frame.

8. A solid sphere of radius 20 cm is uniformly charged with a net charge of 10 nC. Deduce the electric field 5 cm away from its centre. Use Gauss' Law to find the electric field.

9. A solid sphere of radius R_1 has its centre on the X axis at $x=R_1$. It is uniformly charged with a volume charge density ρ_0 . A spherical shell concentric with the solid sphere has a radius of $R_2=2R_1$ and a uniform surface charge density of σ_0 . Find the magnitude of the electric field at $(R_1/2, 0, 0)$, $(5R_1/2, 0, 0)$ and $(2R_2, R_2, 0)$.

10. Two infinite lines with linear charge density $\lambda > 0$ perpendicular to the XY plane are located at x = a and x = -a, as shown in the attached figure. Find the expression of the electric field for any point along the Y axis having y>0.

11. A hollow sphere with radii $R_1 = 2$ cm and $R_2 = 4$ cm (see figure) has a volume density $\rho = -3x10^{-6}$ C/m³. Also, there is a point charge of 4 μ C located at (0, 6, 0) cm. Find:

(a) The total charge contained in the hollow sphere.

(b) The electric force on an electron located at (0, -3, 1) cm.

(c) The electric force on an electron located at (0, 0, 0) cm.

DEGREE IN COMPUTER ENGINEERING

PHYSICS EXERCISES CH 4

Gauss' Law.

ANSWERS

Back area : $\Phi = -4.5 \frac{\text{N.m}^2}{\text{C}}$; Bottomarea = Lateral areas : $\Phi = 0$; Top area : $\Phi = 4.5 \frac{\text{N.m}^2}{\text{C}}$ $\Phi_{net} = 0$

2.
$$\Phi = 3.02 \times 10^{-9} Nm^2 C^{-1}$$

3. (a)
$$\Phi_{\text{base1}} = \Phi_{\text{base2}} = 0.5\pi \text{ N m}^2/\text{C}$$
 (b) $\Phi_{\text{lateral}} = 0$ (c) $\Phi_{\text{net}} = \pi \text{ N m}^2/\text{C}$ (d) $Q_{\text{inside}} = 2.78 \ 10^{-11} \text{ C}$

4. (a)
$$\vec{E} = \frac{\lambda}{2\pi\epsilon_0 r} \vec{u}_r (N/C)$$
 (b) $\vec{E} = 1.7 \times 10^3 \vec{i} - 4.2 \times 10^3 \vec{j}$ N/C

5. (Y axis: perpendicular to the plates; positive direction: from region I to region IV)

$$\vec{E}_I = -\frac{\sigma}{2\varepsilon_0}\vec{J}\;;\;\; \vec{E}_{II} = \frac{\sigma}{2\varepsilon_0}\vec{J}\;;\;\; \vec{E}_{III} = \frac{3\sigma}{2\varepsilon_0}\vec{J}\;;\;\; \vec{E}_{IV} = \frac{\sigma}{2\varepsilon_0}\vec{J}$$

6. (a) Q=0.814 nC (b)
$$\vec{E}_{inside} = 0$$
; $\vec{E}_{outside} = \frac{\sigma R}{\varepsilon_0 r} \vec{u}_r (N/C)$ (d) $\vec{E}(2,0,5) = 0$ (e) $\vec{E}(10,0,0) = 610 \vec{i}$ N/C (e) $\vec{F}_e = 0$ (c) We can use GL at points (x, 0, z)

7. (a)
$$\vec{E}(r < R/2) = 0;$$
 $\vec{E}(R/2 < r < R) = \left(\frac{\rho_o r}{3\varepsilon_o} - \frac{\rho_o R^3}{24\varepsilon_o r^2}\right) \vec{u}_r;$ $\vec{E}(r > R) = \frac{7\rho_o R^3}{24\varepsilon_o r^2} \vec{u}_r$ (b) $\vec{E} = 0.18\vec{i} - 0.35\vec{j}$ (N/C)

8.
$$\vec{E} = 562 \, \vec{u}_r \, (\text{N/C})$$

9.

Positions	E
$(R_1/2, 0, 0)$	$\frac{\rho_0 R_1}{6\epsilon_0}$
(== (= = =)	Ů
$(5R_1/2, 0, 0)$	$\frac{4\rho_0 R_1}{}$
	$27 \epsilon_0$
(4R ₁ , 2R ₁ , 0)	$\frac{1}{13\varepsilon_0} \left[\frac{\rho_0 R_1}{3} + 4\sigma_0 \right]$

10.

$$\vec{E}(y) = \frac{\lambda y}{\pi \, \varepsilon_0 \, (a^2 + y^2)} \, \vec{J}$$

11.

a)
$$Q_{esf} = -7.04 \times 10^{-10} \text{ C}$$

b)
$$\vec{F} = 6.98 \times 10^{-13} \, \vec{j} - 7.71 \times 10^{-14} \, \vec{k}$$
 [N]

c)
$$\vec{F} = 1.6 \times 10^{-12} \, \vec{j} \quad [N]$$