Target Brazil E-commerce Analysis

Business Case:

- # Target, a leading retailer, aims to optimize its Brazilian e-commerce operations.
- # This project analyzes ~100,000 orders from 2016–2018 to uncover patterns in orders,
- # payments, delivery performance, and customer satisfaction using Google BigQuery SQL.

Tools:

- Google BigQuery
- SQL (BigQuery Standard SQL dialect)
- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
- **1.A:** Check data types of all columns in the "customers" table.

Ans:

select
column_name, data_type
from `target.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'customers';

Row	column_name ▼	data_type ▼
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

Insights:

We see that customer_id, customer_unique_id, customer_city, customer_state are "STRING" Data Type and customer_zip_code_prefix is of "INTEGER" Data Type.

1.B: Get the time range between which the orders were placed.

Ans:

```
select
min(order_purchase_timestamp) as start_date,
max(order_purchase_timestamp) as end_date
from `target.orders`;
```


Insights:

From the data set, we see that the first order was made in 04.09.2016 and last order was made in 17.10.2018.

1.C. Count distinct cities and states in customer table

select

count(distinct customer_city) as unique_cities, count(DISTINCT customer_state) as unique_states from `target.customers`;

Insights:

Customers who ordered are from 4119 cities in 27 states.

2. In-depth Exploration:

2.A. Is there a growing trend in the no. of orders placed over the past years?

Ans:

```
select
  extract(year from order_purchase_timestamp) as year,
  count(*) as no_of_orders
from `target.orders`
group by year
order by year;
```

Row	year ▼	no_of_orders ▼
1	2016	329
2	2017	45101
3	2018	54011

Insights:

Yes, there a growing trend in the no. of orders placed over the past years.

2.B. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

Ans:

```
select month_name, month, year,count(month) as no_of_orders from ( select *, extract(month from order_purchase_timestamp) as month, extract(year from order_purchase_timestamp) as year, format_datetime('%b', order_purchase_timestamp) as month_name, from `target.orders`)a group by 1,2,3 order by 2,3;
```

Row	month_name ▼	month ▼	year ▼	no_of_orders ▼
1	Jan	1	2017	800
2	Jan	1	2018	7269
3	Feb	2	2017	1780
4	Feb	2	2018	6728
5	Mar	3	2017	2682
6	Mar	3	2018	7211
7	Apr	4	2017	2404
8	Apr	4	2018	6939

Insights:

Yes, we can see some kind of monthly seasonality in "Jan 2018 and March 2018" and "Feb 2018 and April 2018"

2.C. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
i) 0-6 hrs: Dawn ii) 7-12 hrs: Mornings iii) 13-18 hrs: Afternoon iv) 19-23 hrs: Night
```

Ans:

select

CASE

WHEN extract(hour from order_purchase_timestamp) BETWEEN 0 AND 6 THEN 'Dawn'
WHEN extract(hour from order_purchase_timestamp) BETWEEN 7 AND 12 THEN 'Morning'
WHEN extract(hour from order_purchase_timestamp) BETWEEN 13 AND 18 THEN 'Afternoon'
WHEN extract(hour from order_purchase_timestamp) BETWEEN 19 AND 23 THEN 'Night'
END AS time_of_day,
COUNT(*) AS order_count
FROM `target.orders`
GROUP BY time_of_day
ORDER BY order_count DESC;

Row	11	time_of_day ▼	order_count	· //
	1	Afternoon		38135
	2	Night		28331
	3	Morning		27733
	4	Dawn		5242

Insights:

From the given data set we see Brazilian customers mostly place their orders in Afternoon then Night and Mornings. Very few only place their orders in Dawn.

3. Evolution of E-commerce orders in the Brazil region:

3.A. Get the month on month no. of orders placed in each state.

Ans:

```
select
customer_state,
extract(month from order_purchase_timestamp) as month,
count(*) as no_of_orders,
from `target.orders`
join `target.customers` using (customer_id)
group by customer_state, month
order by customer_state asc, month asc;
```

Row	customer_state ▼	month ▼	no_of_orders ▼
1	AC	1	8
2	AC	2	6
3	AC	3	4
4	AC	4	9
5	AC	5	10
6	AC	6	7
7	AC	7	9

Insights:

From the given data set we found the month on month orders placed in each state.

3.B. How are the customers distributed across all the states?

Ans:

```
select
customer_state,
count(customer_id) as no_of_customers
from `target.customers`
group by customer_state
order by no_of_customers desc;
```

Row	customer_state ▼	no_of_customers •
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	ВА	3380
8	DF	2140
9	ES	2033

Insights:

From the given data set we found that maximum number of customers from SP state.

- 4. Economic Impact Analysis: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - **4.A.** Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

```
Ans:
```

```
with base_1 as
 select
 from 'target.orders'
 inner join `target.payments` using (order_id)
 where extract(year from order purchase timestamp) between 2017 and 2018 and
extract(month from order_purchase_timestamp) between 1 and 8
base_2 as
 select
 extract(year from order_purchase_timestamp) as year,
 round(sum(payment_value),2) as cost
 from base 1
 group by year
 order by year
),
base_3 as
 select
 *, lead(cost) over(order by cost) as cost_next_year
from base_2
select *, (cost_next_year - cost) / cost * 100 as percent_increase
from base 3
```

Row / year	, 0	ost ▼	cost_next_year ▼ //	percent_increase 🔻
1	2018	8694733.84	null	null
2	2017	3669022.12	8694733.84	136.9768716466

Insights:

From the given data set we found that 138% increase in the cost of orders from year 2017 to 2018.

4.B. Total & average order price per state

Ans:

```
select
customer_state,
round(sum(price),2) as total_price,
round(avg(price),2) as average_price
from `target.customers`
inner join `target.orders` using (customer_id)
inner join `target.order_items` using (order_id)
group by customer_state
order by customer_state;
```

Row	customer_state ▼	total_price ▼	average_price ▼
1	AC	15982.95	173.73
2	AL	80314.81	180.89
3	AM	22356.84	135.5
4	AP	13474.3	164.32
5	ВА	511349.99	134.6
6	CE	227254.71	153.76
7	DF	302603.94	125.77
8	ES	275037.31	121.91
9	GO	294591.95	126.27
10	MA	119648.22	145.2

Insights:

From the given data set we found Total price and Average price of product for each state.

4.C. Total & Average value of order freight for each state.

Ans:

```
select
customer_state,
round(sum(freight_value),2) as total_freight_price,
round(avg(freight_value),2) as average_freight_price
from `target.customers`
inner join `target.orders` using (customer_id)
inner join `target.order_items` using (order_id)
group by customer_state
order by customer_state;
```

Row	customer_state ▼	total_freight_price •	average_freight_pric
1	AC	3686.75	40.07
2	AL	15914.59	35.84
3	AM	5478.89	33.21
4	AP	2788.5	34.01
5	BA	100156.68	26.36
6	CE	48351.59	32.71
7	DF	50625.5	21.04
8	ES	49764.6	22.06
9	GO	53114.98	22.77

Insights:

From the given data set we found Total Freight Price and Average Freight Price of product for each state.

5. Analysis based on sales, freight and delivery time.

5.A. Find the no. of days taken to deliver each order from the order's purchase date as delivery time. Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

Ans:

```
select
order_id,
timestamp_diff(order_delivered_customer_date, order_purchase_timestamp,day) as
time_to_deliver,
timestamp_diff(order_delivered_customer_date, order_estimated_delivery_date,day) as
diff_estimated_delivery
from `target.orders`
where order_status = 'delivered';
```

Row //	order_id ▼	time_to_deliver ▼ //	diff_estimated_d
1	bfbd0f9bdef84302105ad712db	54	36
2	98974b076b01553d49ee64679	43	-6
3	c4b41c36dd589e901f6879f25a	36	-14
4	d2292ff2201e74c5db154d1b7a	29	-20
5	95e01270fcbae986342340010	30	-19
6	ed8c7b1b3eb256c70ce0c7423	44	-5
7	5cc475c7c03290048eb2e742c	68	18
8	6b3ee7697a02619a0ace2b3f0a	47	-2
9	3b2ca3293a7ce539ea2379d70	43	-7

Insights:

From the given data set we found Delivered time and Difference in estimated delivery time.

5.B. Find out the top 5 states with the highest & lowest average freight value.

```
Ans:
```

```
select
(a.customer_state) as highest_avg_freight_state, a.highest_avg_freight_value,
(b.customer_state) as lowest_avg_freight_state,
b.lowest_avg_freight_value
from
(select customer_state, round(avg(freight_value),2) as highest_avg_freight_value,
row_number() over(order by round(avg(freight_value),2) asc) as rnk from `target.customers` c
inner join 'target.orders' ord on ord.customer_id = c.customer_id
inner join 'target.order_items' o on o.order_id = ord.order_id
group by 1
order by highest_avg_freight_value desc
limit 5) a
inner join
(select customer_state, round(avg(freight_value),2) as lowest_avg_freight_value, row_number()
over(order by round(avg(freight_value),2) desc) rnk from
`target.customers` c
inner join 'target.orders' ord on ord.customer_id = c.customer_id
inner join `target.order_items` o on o.order_id = ord.order_id
group by 1
order by lowest_avg_freight_value
limit 5) b on a.rnk = b.rnk;
```

Row //	highest_avg_freight_state ▼ //	highest_avg_freight_value 🔻	lowest_avg_freight_state ▼	lowest_avg_freight_value
1	RR	42.98	SP	15.15
2	PB	42.72	PR	20.53
3	RO	41.07	MG	20.63
4	AC	40.07	RJ	20.96
5	PI	39.15	DF	21.04

Insights:

From the given data set we found Five Highest Avg Freight State and Five Lowest Avg Freight State.

5.C. Top 5 states with the highest & lowest average delivery time.

Ans:

```
select (a.customer_state) as highest_avg_time_deliver_state, a.highest_average_time_deliver,
(b.customer_state) as lowest_avg_time_deliver_state, b.lowest_average_time_deliver
from
(select customer state, round(avg(time to deliver), 2) as highest average time deliver,
row_number() over(order by round(avg(time_to_deliver),2) desc) as rnk
from
(select customer state, timestamp diff(order delivered customer date,
order_purchase_timestamp, day) as time_to_deliver from `target.customers` c
inner join `target.orders` ord on ord.customer_id = c.customer_id
inner join 'target.order items' o on o.order id = ord.order id)a
group by 1
order by 2 desc
limit 5)a
inner join
(select customer_state, round(avg(time_to_deliver),2) as lowest_average_time_deliver,
row number() over(order by round(avg(time to deliver),2) asc) as rnk
from
(select customer_state, timestamp_diff(order_delivered_customer_date,
order_purchase_timestamp, day) as time_to_deliver
from `target.customers` c
inner join `target.orders` ord on ord.customer_id = c.customer_id
inner join `target.order_items` o on o.order_id = ord.order_id)a
group by 1
order by 2
limit 5)b on a.rnk =b.rnk;
```

Row	highest_avg_time_deliver_state •	highest_average_time_deliver	lowest_avg_time_deliver_state ▼	lowest_average_time_deliver ▼//
1	1 RR	27.83	SP	8.26
2	2 AP	27.75	PR	11.48
3	3 AM	25.96	MG	11.52
4	4 AL	23.99	DF	12.5
5	5 PA	23.3	SC	14.52

Insights:

From the given data set we found Five Highest Avg Time Delivery State and Five Lowest Avg Time Delivery State.

5.D. Top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

Ans:

```
select
  customer_state as state,
  round(avg(timestamp_diff(order_delivered_customer_date, order_purchase_timestamp,
  day)),2) as avg_del_time,
  round(avg(timestamp_diff(order_estimated_delivery_date,order_purchase_timestamp,
  day)),2) as avg_est_del_time
  from `target.orders`
  inner join `target.customers` using (customer_id)
  where order_status = 'delivered'
  group by state
  order by (avg_del_time - avg_est_del_time)
  limit 5;
```

Row //	state ▼	avg_del_time ▼	avg_est_del_time 🗸
1	AC	20.64	40.73
2	RO	18.91	38.39
3	AP	26.73	45.87
4	AM	25.99	44.92
5	RR	28.98	45.63

Insights:

From the given data set we found Five Fastest Delivery State.

6. Analysis based on the payments:

6.A. Month on month no. of orders placed using different payment types.

Ans:

```
select
extract ( month from order_purchase_timestamp) as month,
extract ( year from order_purchase_timestamp) as year,payment_type,
count(distinct order_id) as total_orders
from `target.orders`
inner join `target.payments` using (order_id)
group by month, year, payment_type
order by month, year;
```

Row //	, month ▼	year ▼	payment_type ▼	total_orders ▼
1	1	2017	credit_card	582
2	1	2017	UPI	197
3	1	2017	debit_card	9
4	1	2017	voucher	33
5	1	2018	credit_card	5511
6	1	2018	UPI	1518
7	1	2018	voucher	304

Insights:

From the given data set we found most of the purchase was done by Credit card only.

6.B. Find the no. of orders placed on the basis of the payment installments that have been paid.

Ans:

```
select
payment_installments,
count(distinct order_id) as num_orders,
from `target.payments`
where payment_installments >= 1
group by payment_installments
order by payment_installments;
```

Row //	payment_installm	num_orders	· //
1	1		49060
2	2		12389
3	3		10443
4	4		7088
5	5		5234
6	6		3916
7	7		1623

Insights:

From the given data set we found the installments that have been paid.