

Computational Fluid Dynamics 5 Errors

Dr Ignazio Maria Viola Institute for Energy Systems School of Engineering

Some slides are edited from those of used by Prof. Ingram in 2015

Main sources of error

- Physics
 - □ Have you chosen the right model (equations, BC, IC)
- Grid resolution
 - □ Is it sufficiently fine?
- □ Time Step
 - □ Is it sufficiently small?
- Convergence
 - □ Have you performed enough iterations?
- □ Round off
 - □ Are you using enough digits?

- Compressibility
- □ Turbulence (which turbulence model?)
- Multi-phase
- Wall geometry and surface finish
- Velocity and pressure at the boundaries
- Initial velocity and pressure

Grid resolution

- Test the grid resolution by varying the grid resolution
 - Vary the distribution of grid density based on the solution
 - Refine the grid uniformly (double every cell in two steps)
- Plot your solutions and extrapolate to grid spacing of zero
 - Richardson extrapolation

Extrapolation

For any computed quantity ϕ

Grid and wall treatment

 \square If you use a wall function, the first cell centre should be in the log region. In practice the finer mesh should have $y^+\approx 70$

 \square If you do not use a wall function, the first cell centre should be smaller than the viscous length, i.e. $y^+ < 1$

- □ Test the time resolution by varying the time step
 - Double and halve the time step several times
- Plot your solutions and extrapolate to zero time step
 - □ Richardson extrapolation

Extrapolation

For any computed quantity ϕ

Discretisation of the equations

- Order of solution is that of the first missing term in the expansion (discretisation) of the pde
- □ 1st order can give sufficiently good results in some cases
- □ 2nd order is required for most cases
- If solutions with high degree of accuracy are required
 4th order can be used
- Solution order and grid refinement, or time step, can be balanced

Test the convergence by solving more iterations

- Plot your solutions and extrapolate to zero time step
 - Richardson extrapolation

Convergence

Iterations

Convergence

Numerical errors

- □ Single precision, 32bits, 6-9 digits accurate
- □ Double precision, 64 bits, 15-17 digits accurate
- Star is mixed precision (32bits for position and 64bits for other variables) or double precision
- □ Test the difference
- Note that Star uses real reals, i.e. does not scale the problem to fit the arithmetic to the processor
 - Use non dimensional values of the order of one