

Universidade Eduardo Mondlane

Faculdade de Ciências

Departamento de Física

FÍSICA - II: (Cursos de Licenciatura em Engenharia Mecânica, Eléctrica, Electrónica, Química, Ambiente, Civil e G. Industrial)

Regente: Luís Consolo Chea

Assistentes: Marcelino Macome; Bartolomeu Ubisse; Belarmino Matsinhe; Enoque Malate; Graça

Massimbe & Valdemiro Sultane

2021 (Modo COVID) - AP # 5 - Corrente eléctrica contínua e resistência eléctrica

- 1. Explique resumidamente o significado das grandezas R, ρ , e σ Escreva também as equações que relacionam as grandezas acima indicadas.
- 2. O fusível de um circuito eléctrico é projectado de tal modo que ele funde, abrindo o circuito, se a corrente ultrapassar um determinado valor. Suponha que o material a ser usado em um fusível funde quando a densidade de corrente for de $400A/cm^2$. Que diâmetro de fio cilíndrico deve ser usado para fazer um fusível que limite a corrente a 0.50A?
- 3. A corrente eléctrica num condutor varia uniformemente de $I_i = 0$ até $I_f = 5.0 A$ durante um intervalo de tempo de 10s. (a) Determine a carga que atravessa o condutor. (b) Sabendo que quando uma corrente atravessa um condutor ocorre o efeito de Joule, caracterizado pela dissipação de energia sob a taxa temporal $P = I^2 R$, determine a energia dissipada num resistor de 10Ω (despreze a dependência térmica da resistência do condutor) durante o intervalo de tempo considerado.
- 4. Dois capacitores planos e idênticos (S,d_0) , carregados inicialmente com carga Q, são associados em paralelo. A distância entre as placas do primeiro capacitor começa a aumentar segundo a lei $d_1 = d_0 + v_0 t$, enquanto que o segundo capacitor começa a diminuir em conformidade com a lei $d_2 = d_0 v_0 t$. Determine a corrente eléctrica no circuíto fechado contendo os dois capacitores.
- 5. A resistência do enrolamento de um motor eléctrico (fio de cobre) é igual a 50Ω à 20° C (enquanto o motor estiver desligado). Após várias horas de funcionamento, a resistência au-

menta para 58Ω . Determine a temperatura do enrolamento se o coeficiente térmico do cobre é igual $3.8 \times 10^{-3}/^{o}C$.

- 6. A corrente eléctrica num condutor é dada por $I=4+2t^2$, com I em amperes e t em segundos. Determine o valor médio e rqm (raiz quadrada média) da corrente entre $t_0=0$ e $t_1=10s$.
- 7. Demonstrar que a resistência equivalente da rede infinita da fig.1 é igual a $(1+\sqrt{3})R$.

Figura 1:

8. Um anel é feito de um pedaço de fio (fig.2) com resistência total de 10Ω . Qual deve ser a relação entre os comprimentos A e B, para que a resistência de substituição do anel seja de 1.0Ω ?

Figura 2:

9. Determine a resistência equivalente da associação representada pela fig.3, assim como a corrente e a diferença de potencial em cada resistor. Use $R_1 = R_2 = ... = R_5 = 10\Omega$ e $I_0 = 20A$.

Figura 3:

10. Determine a resistência equivalente da associação, a corrente e a diferença de potencial em cada resistor do circuíto, fig.4 (os valores dos resistores estão em Ω).

Figura 4: