each R³ is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, oxo, or heterocyclyl; and each R⁴ is independently alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, or R⁵; or R³ and R⁴ are joined to form a C₁₋₄ alkylene group, wherein the alkylene group is optionally substituted with 1 to 4 substituents independently selected from R⁵;

each R⁵ and R⁶ is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; or R⁵ and R⁶ together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms in the ring independently selected from oxygen, sulfur or nitrogen;

wherein for R^1 - R^6 , each alkyl, alkenyl, and alkynyl is optionally substituted with R^x , or with 1, 2, 3, or 4 substituents independently selected from R^b ; for R^1 - R^6 , each aryl and heteroaryl is optionally substituted with 1 to 4 substituents independently selected from R^c , and for R^1 - R^6 , each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^b and R^c ;

each R^a is independently $-OR^d$, $-NO_2$, halo, $-S(O)_mR^d$, $-SR^d$, $-S(O)_2OR^d$, $-S(O)_mNR^dR^e$, $-NR^dR^e$, $-O(CR^fR^g)_nNR^dR^e$, $-C(O)R^d$, $-CO_2R^d$, $-QO_2(CR^fR^g)_nCONR^dR^e$, $-OC(O)R^d$, -CN, $-CO(O)NR^dR^e$, $-NR^dC(O)R^e$, $-OC(O)NR^dR^e$, $-OC(O)NR^$

each R^b is independently R^a, oxo or =N-OR^e;

each R^c is independently R^a alkyl, alkenyl, or alkynyl; wherein each alkyl, alkenyl and alkynyl is optionally substituted with 1 to 4 substituents independently selected from R^b;

each R^d and R^e is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^d and R^e together with the atoms to which they are attached form a heterocyclic ring having from 5 to 7 ring atoms, wherein the heterocyclic ring optionally contains 1 or 2 additional heteroatoms independently selected from oxygen, sulfur or nitrogen;

each R^f and R^g is independently hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^f and R^g together with

Filing Date: August 30, 2001

le: SODIUM CHANNEL MODULATORS

Page 3 Dkt: 1343.008US1

the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms independently selected from oxygen, suffur or nitrogen;

each R^h is independently halo, $C_{1.6}$ alkyl, $C_{1.6}$ alkoxy, aryl, (aryl)- $C_{1.6}$ alkyl, heteroaryl, (heteroaryl)- $C_{1.6}$ alkyl, hydroxy, amino, -NHC_{1.6} alkyl, -N($C_{1.6}$ alkyl)₂, -OC(O)C_{1.6} alkyl, -C(O)C_{1.6} alkyl, -C(O)NHC_{1.6} alkyl, carboxy, nitro, -CN, or -CF₃;

R^k is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h;

R^m is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h;

each R^x is independently aryl, heteroaryl, cycloalkyl or heterocyclyl; wherein each aryl or heteroaryl is optionally substituted with 1 to 4 substituents selected from the group consisting of R^c, and wherein each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents selected from R^b;

m is 0, 1, or 2;

n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10;

p is 1, 2, or 3

r is 2, or 3; and

each w is independently 0, 1, 2, 3, or 4;

or a pharmaceutically-acceptable salt thereof.

Title: SODIUM CHANNEL MODULATORS

Page 4 Dkt: 1343.008US1

41. A compound of formula XXIX or XXX:

$$Y - R^2 \times X - R^2 \times Y$$

$$(XXIX)$$
 $Y - R^2 \times X - R^2 \times Y$

$$(XXXX)$$

$$(XXXX)$$

wherein:

Q is methylene;

each R¹ is chloro;

each R² is independently a covalent bond or alkylene; wherein alkylene is optionally substituted with 1 to 4 substituents independently selected from R^b;

each X is independently oxy (-O-) or $-X(R^m)$ -;

each Y is independently NRⁿR^p or a heterocyclyl containing at least one nitrogen atom, wherein each nitrogen of the heterocyclyl is substituted with R³ or is linked to R², and wherein each heterocycle of Y is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R⁴;

each R³ is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, oxo, or heterocyclyl; and each R⁴ is independently alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, or R⁵; or R³ and R⁴ are joined to form a C₁₋₄ alkylene group, wherein the alkylene group is optionally substituted with 1 to 4 substituents independently selected from R⁵;

wherein for R^1 - R^4 , each alkyl, alkenyl, and alkynyl is optionally substituted with R^x , or with 1, 2, 3, or 4 substituents independently selected from R^b ; for R^1 - R^4 , each aryl and heteroaryl is optionally substituted with 1 to 4 substituents independently selected from R^c , and for R^1 - R^4 , each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^b and R^c ;

each R^a is independently $-OR^d$, $-NO_2$, halo, $-S(O)_mR^d$, $-SR^d$, $-S(O)_2OR^d$, $-S(O)_mNR^dR^e$, $-NR^dR^e$, $-O(CR^fR^g)_nNR^dR^e$, $-C(O)R^d$, $-CO_2R^d$, $-CO_2(CR^fR^g)_nCONR^dR^e$, $-OC(O)R^d$, -CN, -CN,

PRELIMINARY AMENDMENT

Serial Number: 09/943,420 Filing Date: August 30, 2001

Title: SODIUM CHANNEL MODULATORS

 $C(O)NR^dR^e$, $-NR^dC(O)R^e$, $-OC(O)NR^dR^e$, $-NR^dC(O)OR^e$, $-NR^dC(O)NR^dR^e$, $-CR^d(=N-OR^e)$, $-CF_3$, or $-OCF_3$;

each R^b is independently R^a, oxo or =N-OR^e;

each R^c is independently R^a, alkyl, alkenyl, or alkynyl; wherein each alkyl, alkenyl and alkynyl is optionally substituted with 1 to 4 substituents independently selected from R^b;

each R^d and R^e is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^d and R^e together with the atoms to which they are attached form a heterocyclic ring having from 5 to 7 ring atoms, wherein the heterocyclic ring optionally contains 1 or 2 additional heteroatoms independently selected from oxygen, sulfur or nitrogen;

each R^f and R^g is independently hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^f and R^g together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms independently selected from oxygen, sulfur or nitrogen;

each R^h is independently halo, $C_{1.6}$ alkyl, $C_{1.6}$ alkoxy, aryl, (aryl)- $C_{1.6}$ alkyl, heteroaryl, (heteroaryl)- $C_{1.6}$ alkyl, hydroxy amino, -NHC_{1.6} alkyl, -N($C_{1.6}$ alkyl)₂, -OC(O)C_{1.6} alkyl, -C(O)C_{1.6} alkyl, -C(O)NHC_{1.6} alkyl, carboxy, nitro, -CN, or -CF₃;

R^m is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h;

each Rⁿ and R^p is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h;

each R^x is independently aryl, heteroaryl, cycloalkyl or heterocyclyl; wherein each aryl or heteroaryl is optionally substituted with 1 to 4 substituents selected from the group consisting of R^c, and wherein each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents

Filing Date: August 30, 2001
Title: SODIUM CHANNEL MODULATORS

Page 6 Dkt: 1343.008US1

selected from Rb;

m is 0, 1, or 2; and

n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10;

or a pharmaceutically-acceptable salt thereof;

provided that when any Y is NRⁿR^p or a nitrogen-linked heterocyclyl, then the R² attached to that Y is not a covalent bond or methylene.

The compound of claim 40 which is a compound of formula II: 42.

wherein:

Q is -O-, -S(\emptyset)_m-, or -CR⁵R⁶-;

each y is independently 0, 1, 2, or 3; and

each z is independently 0, 1, 2, 3, or 4;

or a pharmaceutically-acceptable salt thereof.

SODIUM CHANNEL MODULATORS

Page 7

Dkt: 1343.008US1

The compound of claim 40 which is a compound of formula (III):

wherein

Q is -O-, $-S(O)_m$ -, or $-CR^5R^6$ -;

each R^7 is independently hydrogen, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, cycloalkyl, or Ra;

each R³ is independently hydrogen, C₁₋₁₀ alkyl, or oxo;

each R⁵ and R⁶ is independently hydrogen or C₁₋₁₀ alkyl; or R⁵ and R⁶ together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1/or 2 heteroatoms in the ring independently selected from oxygen, sulfur and nitrogen;

wherein for R³, R⁵, R⁶, and R⁷, each alkyl, alkenyl, and alkynyl is optionally substituted with R^x, or with 1 to 4 substituents independently selected from R^b; and each cycloalkyl is optionally substituted with 1 to 4 substituents independently selected from R^b and R^c; and

each y is independently 1, 2, or 3;

or a pharmaceutically-acceptable salt thereof.

Title: SODIUM CHANNEL MODULATORS

Page 8 Dkt: 1343.008US1

44. The compound a claim 40 which is a compound of formula XXIX:

wherein:

Q is methylene;

each R1 is chloro;

each Y is independently a heterocyclyl containing at least one nitrogen atom, wherein each nitrogen of the heterocyclyl is substituted with R³; and

and R² and X have any of the values defined in claim 1; or a pharmaceutically-acceptable salt thereof.

45. The compound a claim 40 which is a compound of formula XXX:

wherein:

Q is methylene;

each Ry is chloro;

each Y is independently a heterocyclyl containing at least one nitrogen atom, wherein each nitrogen of the heterocyclyl is substituted with R³; and

and R² and X have any of the values defined in claim 40; or a pharmaceutically acceptable salt thereof.

- 46. The compound of claim 40 wherein each R^1 is independently C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, cycloalkyl, or R^a .
- 47. The compound of claim 40 wherein each R¹ is independently C₁₋₁₀ alkyl or halo.
- 48. The compound of claim 40 wherein each R is independently methyl, ethyl, propyl, chloro, bromo, fluoro, or isopropyl.
- 49. The compound of claim 40 wherein each R¹ is independently methyl, or chloro.
- 50. The compound of claim 40 or 41 wherein each R^2 is independently a covalent bond or C_{1-10} alkylene.
- 51. The compound of claim 40 or 41 wherein each R² is independently a covalent bond, methylene, 1,2-ethylene, 1,3-propylene, (2R)-2-(methyl)ethane-1,2-diyl, (2S)-2-(methyl)ethane-1,2-diyl, 1-(methyl)butane-1,4-diyl, 1-(methyl)ethane-1,2-diyl, or 2,2-(dimethyl)propane-1,3-diyl.
- 52. The compound of claim 40 or 41 wherein each R² is independently a covalent bond, methylene, or ethylene.
- 53. The compound of claim 40 wherein Q is -O-, $-S(O)_m$ -, or $-(CR^5R^6)_p$ -.
- 54. The compound of claim 40 wherein Q is -O-, $-S(O)_m$ -, or $-N(R^k)$ -.
- 55. The compound of claim 40 wherein Q is $-(CR^5R^6)_p$, or $-O(CR^5R^6)_rO$.

- The compound of claim 40 wherein Q is -O-, $-S(O)_m$ -, $-(CR^5R^6)_n$ -, or $-N(R^k)$ -;
- 57. The compound of claim 40 wherein Q is methylene, 1,2-ethylene, 3,4-hexylene, dimethylmethylene, oxy, -NH-, -OCH₂CH₂O-, or a group -C(R⁵)(R⁶)- wherein R⁵ and R⁶ together with the carbon to which they are attached form a cyclohexylene ring.
- 58. The compound of claim 40 or 41 wherein each X is oxy.
- The compound of claim 40 or 41 wherein each X is -NI 59.
- 60. The compound of claim 41 wherein each Y is independently NRⁿR^p.
- 61. The compound of claim 41 wherein each Y is independently a heterocyclyl containing at least one nitrogen atom, wherein each ni rogen of the heterocyclyl is substituted with R3 or linked to R², and wherein each heterocycle of his opponally substituted with 1, 2, 3, or 4 substituents independently selected from R⁴.
- 62. The compound of claim 41 wherein each Y is independently a heterocyclyl containing at least one nitrogen atom, wherein each nitrogen of the heterocyclyl is linked to R², and wherein each heterocycle of Y is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R⁴.
- 63. The compound of claim 40 or 41 wherein each Y is independently a heterocyclyl selected from pyrrolidinyl, piperidinyl, and morpholinyl, wherein each heterocycle of Y is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R⁴.
- 64. The compound of claim 41 wherein Y is independently amino, diethylamino, dimethylamino, 1-methyl-4-piperidinyl, 1-methyl-3-piperidinyl, 1-methyl-2-piperidinyl, 4piperidinyl, 3-piperidinyl, 2-piperidinyl, 1-isopropyl/3-pyrrolidinyl, morpholino, (2R,4R)-2-

Dkt: 1343.008US1

methoxycarbonyl-4-pyrrolidinyl, 1-methyl-3-pyrrolidinyl, 1-methyl-2-pyrrolidinyl, 3pyrrolidinyl, 2-pyrrolidinyl, 1-pyrrolidinyl, (2S,4R)-2-methyl-4-pyrrolidinyl, (2R,4R)-2-carboxy-4-pyrrolidinyl, (2S,4S)-2-(N,N-dimethylamino)carbonyl-4-pyrrolidinyl, (2R,4R)-2hydroxymethyl-4-pyrrolidinyl, or (2R,4R)-2-methoxymethyl-4-pyrrolidinyl.

- 65. The compound of claim 40 wherein each w is $\sqrt{0}$.
- 66. The compound of claim 40 wherein each w is 1.
- 67. The compound of claim 40 wherein each w is 2.
- 68. The compound of claim 42 or 43 wherein each y is independently 1 or 2.
- 69. The compound of claim 42 wherein each z is independently 0, 1, or 2.
- The compound of claim 40 which is compound of any one of formulae V-XXX, shown 70. in Figures 1-3, wherein X, Y, Q, R¹, R², and have the values given in claim 40.
- 71. The compound of claim 40, which is any one of compounds 1-11 shown in Table 1; or a pharmaceutically acceptable salt thereof.
- 72. A pharmaceutical composition comprising a compound as described in claim 40 or 41; and a pharmaceutically acceptable carrier.
- 73. A method of treating a disease or condition associated with sodium channel activity in a mammal, comprising administering to the mammal, a therapeutically effective amount of a pharmaceutical composition of claim 72.