

Práctica Resumen

Programación I

Grado en Ingeniería Informática y Tecnologías Virtuales Grado en Ingeniería del Software Curso académico 2024/2025

Objetivos

Con la realización de esta práctica se pretende que el alumnado:

- Repase todos los conceptos aprendidos durante la asignatura.
- Siga las recomendaciones del profesor acerca de la tabulación del código, espaciado, documentación y nombre de las variables.

Muy importante

- Todos los programas deben ser resueltos haciendo uso de funciones.
- Se utilizará la cuarta forma para la organización de los ficheros, es decir, fichero de cabecera.h, fichero de definición de funciones cabecera.cpp y fichero principal main.cpp.
- Todas las funciones deberán estar correctamente documentadas.
- Auto documentación: identificadores de variables y funciones que clarifiquen su propósito.
- El alumnado debe decidir como modularizar el código, por lo que pueden existir muchas alternativas de implementación.
- Con respecto al punto anterior, si se detecta copia de código, el alumno deberá ir con toda la asignatura a extraordinaria y se comunicará al órgano competente cómo se establece en las normas de la Universidad.
- En Moodle, se entregará cada ejercicio en una tarea independiente.

Práctica Resumen

Ejercicio 1: Simulación de Predicción Meteorológica en una Región . (6 puntos)

Objetivo: Diseñar un programa que simule una predicción meteorológica en una región dividida en una cuadrícula de $M \times N$ celdas. Cada celda representa una zona y contiene valores de temperatura, humedad y velocidad del viento. La simulación mostrará cómo cambian estas condiciones a lo largo de varios días en función de ciertas reglas.

Requerimientos:

1. Inicialización de la Región:

- $_{\odot}$ El programa debe pedir al usuario las dimensiones de la región (M filas y N columnas), con un máximo de M=30, N=30.
- o Inicializar cada celda con valores aleatorios de:
 - Temperatura (en grados Celsius, entre -10 y 40).
 - Humedad (en porcentaje, entre 0 y 100).
 - Velocidad del viento (en km/h, entre 0 y 100).

2. Simulación de Cambios Diarios:

- La simulación se realiza por un número de días que el usuario define, con un límite máximo de 30 días.
- o Para cada día, actualizar las condiciones de cada celda siguiendo las reglas:
 - La temperatura de cada celda se ajusta según el promedio de las temperaturas de las celdas vecinas.
 - La humedad se reduce en un 5% en celdas con temperaturas mayores a 30 grados y aumenta un 3% en celdas con temperaturas menores a 0 grados. En el resto, se producen cambios de forma aleatoria(+/-2%).

 La velocidad del viento cambia en un valor aleatorio (+/- 10 km/h) sobre el promedio de las celdas vecinas, pero sin exceder 100 km/h ni ser menor de 0 km/h.

3. Especificaciones para Cálculos de Vecinos:

- Para cada celda de la matriz, calcular el promedio de los valores de sus celdas vecinas. A continuación, se detalla cómo manejar las celdas en el borde y las esquinas:
 - Celdas internas (no en el borde): se consideran los 8 vecinos (superior, inferior, izquierda, derecha y las 4 diagonales).

Celdas en los bordes laterales:

- Si una celda está en la primera o última fila (borde superior o inferior), se considera solo 5 vecinos: el vecino a la izquierda, derecha y los 3 vecinos de la fila adyacente (o inferior si es el borde superior y viceversa).
- Si una celda está en la primera o última columna (borde izquierdo o derecho), también tiene solo 5 vecinos: el vecino arriba, abajo y los 3 vecinos en la columna adyacente.

Esquinas:

- Las esquinas solo tienen 3 vecinos:
 - Esquina superior izquierda: los vecinos son el de la derecha, abajo y la diagonal inferior derecha.
 - Esquina superior derecha: los vecinos son el de la izquierda, abajo y la diagonal inferior izquierda.
 - Esquina inferior izquierda: los vecinos son el de arriba, derecha y la diagonal superior derecha.
 - Esquina inferior derecha: los vecinos son el de arriba, izquierda y la diagonal superior izquierda.

4. Mostrar Resultados:

- o Al final de cada día, el programa debe mostrar:
 - La temperatura, humedad y velocidad del viento, en cada celda. La forma de presentarse ha de ser en forma de tabla. Se deben sacar tres tablas, una para cada medida, para ese día.
 - Temperatura promedio, humedad promedio y velocidad del viento promedio de toda la región, para ese día.
 - La celda con la temperatura más alta y la más baja, con sus coordenadas, para ese día.
 - Número de celdas que superan el 80% de humedad y que tienen menos de 10 km/h de viento, para ese día.
 - Al final de cada día, debe parar el programa hasta que se pulse la tecla [Intro].
 - Los valores meteorológicos deben mostrarse con un solo decimal.

5. Finalización de la Simulación:

- Al completar la simulación, el programa debe presentar un resumen final con la siguiente información:
 - Condiciones promedio de toda la región para cada parámetro (temperatura, humedad y velocidad del viento) calculadas como el promedio de todos los valores en la matriz tras el último día de simulación, de todos los días.
 - Valor máximo y mínimo registrado de cada parámetro (temperatura, humedad y velocidad del viento) durante la simulación de todos los días, indicando las coordenadas de la celda y el día en que ocurrieron.
 - Resumen de celdas por condiciones específicas, incluyendo:
 - Número total de celdas con humedad superior al 80% y velocidad del viento inferior a 10 km/h de todos los días.
 - Porcentaje de celdas con temperaturas mayores a 30 grados de todos los días.

Ejercicio 2: Inventario de Productos en una Tienda (4 puntos)

- Objetivo: Desarrollar un programa que gestione el inventario de productos de una tienda. El programa debe permitir almacenar información detallada de cada producto en el inventario y realizar diversas operaciones de consulta y actualización. El inventario tendrá como máximo 1000 productos
- 2. **Descripción del Producto:** Cada producto en el inventario debe contener la siguiente información:
 - **ID del producto**: un identificador único para cada producto.
 - Nombre del producto: el nombre específico del producto.
 - Categoría: el tipo o categoría a la que pertenece el producto (por ejemplo, alimentos, electrónicos, ropa, etc.).
 - Cantidad en stock: la cantidad actual de este producto en el inventario.
 - Precio unitario: el precio de una unidad del producto.

3. Requerimientos:

- Inicialización del Inventario: El Inventario debe comenzar inicialmente vacío. En caso de estar vacío, bien porque no se ha introducido nada o por que se ha borrado todo el inventario, el programa no hará nada en ninguna opción del menú salvo en la 1 y en la 8.
- Operaciones Disponibles:
 - 1) Añadir un nuevo producto al inventario.
 - 2) Eliminar un producto especificado del inventario.
 - 3) Buscar un producto por su identificador y mostrar toda su información.
 - 4) Listar todos los productos disponibles en el inventario.
 - 5) Calcular y mostrar el valor total del inventario, considerando la cantidad y el precio de cada producto.
 - 6) Filtrar y mostrar todos los productos de una categoría específica indicada por el usuario.
 - 7) Determinar y mostrar los datos del producto más caro y del producto más barato en el inventario.
 - 8) Salir del programa.

Nota: El programa debe estar organizado modularmente, de manera que cada operación se realice en una función independiente.