```
In [1]: #import libraries
   import pandas as pd
   import numpy as np
   import seaborn as sns
   import statsmodels.formula.api as smf
```

In [4]: #import dataset
 data=pd.read_csv(r'delivery_time.csv')
 data

	data	· -	
Out[4]:		Delivery Time	Sorting Time
	0	21.00	10
	1	13.50	4
	2	19.75	6
	3	24.00	9
	4	29.00	10
	5	15.35	6
	6	19.00	7
	7	9.50	3
	8	17.90	10
	9	18.75	9
	10	19.83	8
	11	10.75	4
	12	16.68	7
	13	11.50	3
	14	12.03	3
	15	14.88	4
	16	13.75	6
	17	18.11	7
	18	8.00	2

19

20

17.83

21.50

7

5

In [6]: #EDA and data visualization data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21 entries, 0 to 20
Data columns (total 2 columns):
Column Non-Null Count Dtype
--- 0 Delivery Time 21 non-null float64
1 Sorting Time 21 non-null int64
dtypes: float64(1), int64(1)

In [7]: sns.distplot(data['Delivery Time'])

memory usage: 464.0 bytes

C:\Users\Win\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Futur eWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histo grams).

warnings.warn(msg, FutureWarning)

Out[7]: <AxesSubplot:xlabel='Delivery Time', ylabel='Density'>

In [9]: sns.distplot(data['Sorting Time'])

C:\Users\Win\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Futur eWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histo grams).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='Sorting Time', ylabel='Density'>

Out[10]:

	delivery_time	sorting_time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
4	29.00	10
5	15.35	6
6	19.00	7
7	9.50	3
8	17.90	10
9	18.75	9
10	19.83	8
11	10.75	4
12	16.68	7
13	11.50	3
14	12.03	3
15	14.88	4
16	13.75	6
17	18.11	7
18	8.00	2
19	17.83	7
20	21.50	5

In [11]: #Correlation Analysis
 data.corr()

Out[11]:

	delivery_time	sorting_time
delivery_time	1.000000	0.825997
sorting time	0.825997	1.000000

```
In [12]: sns.regplot(x=data['sorting_time'],y=data['delivery_time'])
```

Out[12]: <AxesSubplot:xlabel='sorting_time', ylabel='delivery_time'>

In [14]: #Model Building
 model=smf.ols("delivery_time~sorting_time",data=data).fit()
 data

In [15]: #Model Testing
 # Finding Coefficient parameters
 model.params

Out[15]: Intercept 6.582734 sorting_time 1.649020 dtype: float64

16

17

18

19

20

In [16]: # Finding tvalues and pvalues
model.tvalues , model.pvalues

13.75

18.11

8.00

17.83

21.50

6 7

2

7 5

Out[16]: (Intercept 3.823349 sorting_time 6.387447 dtype: float64, Intercept 9.001147 sorting_time dtype: float64)

```
In [17]: # Finding Rsquared Values
         model.rsquared , model.rsquared_adj
Out[17]: (0.6822714748417231, 0.6655489208860244)
In [18]: #Model Predictions
         # Manual prediction for say sorting time 5
         new_data=pd.Series([5,8])
         new_data
Out[18]: 0
              5
         dtype: int64
In [19]: | data_pred=pd.DataFrame(new_data,columns=['sorting_time'])
         data_pred
Out[19]:
             sorting_time
          0
                     5
          1
                     8
In [20]: model.predict(data_pred)
Out[20]: 0
              14.827833
              19.774893
         dtype: float64
```

In [2]: data_2=pd.read_csv(r'Salary_Data.csv')
 data_2

Out[2]:

	YearsExperience	Salary	
0	1.1	39343.0	
1	1.3	46205.0	
2	1.5	37731.0	
3	2.0	43525.0	
4	2.2	39891.0	
5	2.9	56642.0	
6	3.0	60150.0	
7	3.2	54445.0	
8	3.2	64445.0	
9	3.7	57189.0	
10	3.9	63218.0	
11	4.0	55794.0	
12	4.0	56957.0	
13	4.1	57081.0	
14	4.5	61111.0	
15	4.9	67938.0	
16	5.1	66029.0	
17	5.3	83088.0	
18	5.9	81363.0	
19	6.0	93940.0	
20	6.8	91738.0	
21	7.1	98273.0	
22	7.9	101302.0	
23	8.2	113812.0	
24	8.7	109431.0	
25	9.0	105582.0	
26	9.5	116969.0	
27	9.6	112635.0	
28	10.3	122391.0	
29	10.5	121872.0	

In [3]: data_2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30 entries, 0 to 29
Data columns (total 2 columns):

Column Non-Null Count Dtype
--- ----0 YearsExperience 30 non-null float64
1 Salary 30 non-null float64

dtypes: float64(2)
memory usage: 608.0 bytes

In [4]: | sns.distplot(data_2['YearsExperience'])

C:\Users\Win\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Futur eWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histo grams).

warnings.warn(msg, FutureWarning)

Out[4]: <AxesSubplot:xlabel='YearsExperience', ylabel='Density'>

In [5]: | sns.distplot(data_2['Salary'])

C:\Users\Win\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Futur eWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histo grams).

warnings.warn(msg, FutureWarning)

Out[5]: <AxesSubplot:xlabel='Salary', ylabel='Density'>

In [6]: data_2.corr()

Out[6]:

	YearsExperience	Salary
YearsExperience	1.000000	0.978242
Salary	0.978242	1.000000

In [7]: model=smf.ols("Salary~YearsExperience",data=data_2).fit()

In [8]: model.params

Out[8]: Intercept 25792.200199 YearsExperience 9449.962321

dtype: float64

In [9]: model.tvalues, model.pvalues

Out[9]: (Intercept 11.346940 YearsExperience 24.950094

dtype: float64,

Intercept 5.511950e-12 YearsExperience 1.143068e-20

dtype: float64)

```
In [10]: model.rsquared , model.rsquared_adj
Out[10]: (0.9569566641435086, 0.9554194021486339)
In [11]: Salary = (25792.200199) + (9449.962321)*(3)
         Salary
Out[11]: 54142.087162
         # Automatic Prediction for say 3 & 5 Years Experience
In [12]: new_data=pd.Series([3,5])
         new_data
Out[12]: 0
               3
               5
         dtype: int64
In [13]: | data_pred=pd.DataFrame(new_data,columns=['YearsExperience'])
         data_pred
Out[13]:
             YearsExperience
                         3
          0
          1
                         5
In [14]: | model.predict(data_pred)
Out[14]: 0
              54142.087163
              73042.011806
         dtype: float64
 In [ ]:
```