实验五 混频器与 AGC 中频放大系统

一、 实验电路简介

(一) 混频器实验电路

(1) 模拟相乘器混频

乘法器混频实验电路原理框图如图 3.5.10 所示。

图 3.5.10 乘法器混频实验电路原理框图

本振信号 u_L 由 P1 或 TP1 输入,射频信号 u_s 由 P2 或 TP2 输入。乘法器输出端连接两个带通滤波器,中心频率分别为 4.5MHz 和 465KHZ,均为陶瓷滤波器。根据 JK1 的状态可实现混频频率的选择。

JK1 拨向上时(LED1 亮),乘法器混频输出频率为 4.5MHz。此时,本振信号 u_L 由主控 -信号源提供,频率 f_L 设置为 10.5MHz。射频信号 u_s 由 G03 模块的晶体振荡器提供,频率 为 6MHz(即 f_s)。由 4.5MHz 陶瓷滤波器取出 f_{L-} f_s =4.5MHz 的分量作为中频信号,从 P3 或 TP3 输出。

JK1 拨向下时(LED2 亮),乘法器混频输出频率为 465KHz。此时,本振信号 u_L 由主控-信号源提供,频率 f_L 设置为 6.465MHz。射频信号 u_s 由 G03 模块的晶体振荡器提供,频率为 6MHz(即 f_s)。由 465KHz 陶瓷滤波器取出 f_{L-} f_s =465KHz 的差频分量作为中频信号,从 P3 或 TP3 输出。

参数调整与控制:

JK1: 用于混频器输出频率的选择。通过显示屏触摸对应的电子开关,进行调整。也可通过本模块右侧的选择键 \bullet 先选中 JK1,选中时,相应的 LED 会点亮,然后通过上键 \bullet 和下键 \bullet 进行状态调整。

测试端口说明:

- P1: 为本振信号输入端口, 其在线测试点为 TP1。
- P2: 为参考信号输入端口, 其在线测试点为 TP2。
- P3: 为混频输出端口, 其在线测试点为 TP3。

(2) 三极管混频

三极管混频器实验电路如图 3.5.11 所示,本电路采用共射组态。射频信号 u_s 从混频三极管 Q1 的基极 P6 或 TP6 输入,本振信号 u_L (10.5MHz) 由 Q1 的射极 P7 或 TP7 输入,通过 Q1 混频后的信号含有 f_L 与 f_s 的各次谐波 (f_L 、 $2f_L$ 、 $3f_L$及 f_L \sharp_s 、 $2f_L$ \sharp_s 、 $3f_L$ \sharp_s ),由 L2、C4、C6、D8 组成的 LC 谐振回路及带通滤波器取出基波差频(f_{L-} f_s =4.5MHz)分量作为中频信号 u_I ,从 P8 或 TP8 端口输出。

图 3.5.11 三极管混频实验电路

参数调整与控制:

W1、W2:调节W1可改变加在晶体管Q1基极的电压大小,即改变Q1的静态工作点。调节W2可改变加在变容二极管D8两端的电压,进而改变其电容量。

通过显示屏触摸对应的可变电阻,进行调整。也可通过本模块右侧的选择键●先选中W1或W2,选中时,相应的LED会点亮,然后通过上键▲和下键▼进行参数调整。

测试端口说明:

P6: 为参考信号输入端口, 其在线测试点为 TP6。

P7: 为本振信号输入端口, 其在线测试点为 TP7。

P8: 为混频输出端口, 其在线测试点为 TP8。

(二) 中放 AGC 实验电路

中放及 AGC 实验电路如图 3.5.12 所示。

中放是使用 U9(TL082)实现的同相比例运算放大,放大后经 4.5MHz 陶瓷滤波后输出。 C38 用作隔直,只对交流信号放大。实验电路是对 4.5MHz 中频进行选频放大。

中频信号由 P4 端口输入,经过放大后从 P5 端口输出。其中放大部分由 U9、R40、R43、W3 构成, W3 控制 U9 的 4 脚的电压,控制电路的放大增益。

AGC 电路中,+12V 电源经电阻分压后提供基准电压,当整形放大输出的直流控制信号大于基准电压时,比较器才能输出 AGC 控制电压,以控制数字电位器 W3 的阻值自动变化,从而保持输出增益的相对恒定。

图 3.5.12 中放及 AGC 电路图

参数调整与控制:

JK2: 控制着 AGC 控制链路的接入,当 JK2 断开时,电路为中频放大电路,当 JK2 闭合时,电路为 AGC 自动增益控制电路。

W3: 选频放大的增益控制。

通过显示屏触摸对应的电子开关,如 JK2,可进行调整。也可通过本模块右侧的选择键 ●先选中 LED4,选中时,LED 会点亮,然后通过上键▲和下键▼进行参数调整。

测试端口说明:

P4: 为中频输入端口, 其在线测试点为 TP4。

P5: 为中频放大输出端口, 其在线测试点为 TP5。

二、 实验内容及步骤

(一) 混频器电路测试

(示波器: ① 输入耦合→AC; ② 带宽限制→打开)

- 1、 集成模拟乘法器混频
- (1) 465KHz 混频输出信号观测
- ① 系统搭建及信号参数设置

各模块断电(主控单元可保留电源开启)状态下,按照图 3.5.13 进行连线。

图 3.5.13 465KHz/4.5MHz 乘法器混频连线图

按照表 3.5.1 进行信号参数设置。

表 3.5.1 465KHz 混频输出信号参数及观测连线表

源端口	目的端口	连线说明
主控&信号源: A1 u_{LPP} = 800mV, f_{L} =6.465MHz	G02 号板: 【乘法器混频】的 P1	本振信号输入
G03 号板:【晶体振荡器】的 P4 $u_{SPP} = 700 \text{mV}, f_{S} = 6 \text{MHz}$	G02 号板: 【乘法器混频】的 P2	射频信号输入

(晶振调试方法: 在显示屏主界面选择【实验项目】→【正弦波振荡】→【晶体振荡实验】,调节 W1 使晶振输出信号幅度改变)

② 混频滤波器选择

显示屏界面,点击【实验项目】 \to 【混频】 \to 【乘法器混频实验】。进入到实验界面。 点击 JK1,使 G02 模块 LED2 指示灯亮,即混频输出的信号通过中心频率为 465KHz 的带通 滤波器,进行滤波处理。

③ 实验现象观测

- a) 用示波器观测记录 G02 模块 TP3 测试点输出的中频信号 u₁的波形及参数。
- b) 保持 u_L 和 u_S 幅度不变, 保持 f_S 不变, 适当改变 f_L , **频谱仪【RF IN】接 P3 或 TP3**, 观测混频输出信号的频率 f_L 的变化,数据填入表 3.5.2,分析其频率关系。

表 3.5.2 465KHz 混频输出信号频率的变化

fs (晶体振荡)		6MHz								
f _L /MHz (本振信号)	6.42	6.43	6.44	6.45	6.46	6.47	6.48	6.49		
f _I /MHz (混频输出)										

c) 恢复 f_L 为 6.465MHz,保持 $u_{SPP} = 700$ mV 不变,调整本振信号 u_L 的幅值,用示波器观测 G02 模块 TP1 处 u_L 的幅值以及 TP3 处混频输出信号 u_I 的幅值,填入表 3.5.3,并算出其混频增益。

表 3.5.3 465KHz 混频输出信号幅值数据表

u _{LPP/} mV(本振信号)	500	600	700	800	900	1000
u _{IPP} /mV(混频输出)						
混频增益 K _V						

(2) 4.5MHz 混频输出信号观测

① 实验电路搭建及信号参数设置

各模块断电(主控单元可保留电源开启)状态下,按照图 3.5.14 进行连线。按照表 3.5.4 进行信号参数设置。

表 3.5.4 4.5MHz 混频器信号参数及观测连线表

源端口	目的端口	连线说明
主控&信号源: A1 u_{LPP} = 800mV, f_{L} = 10.5MHz)	G02 号板: 【乘法器混频】的 P1	本振信号输入
$G03$ 号板:【晶体振荡器】的 P4 $u_{SPP} = 700 \text{mV}$, $f_{S} = 6 \text{MHz}$	G02 号板: 【乘法器混频】的 P2	射频信号输入

② 混频滤波器选择

在显示屏点击【返回上级】,回到实验项目章节界面,点击【混频】→【乘法器混频实验】, 点击 JK1,使 G02 模块 LED1 指示灯亮,即混频输出的信号通过中心频率为 4.5MHz 的带通 滤波器,进行滤波处理。

③ 实验现象观测

- a) 用示波器观测记录 G02 模块 TP3 测试点输出的中频信号 u_1 的波形及参数。
- b) 保持 u_L 和 u_S 幅度不变,保持 f_S 不变,适当 f_L ,**频谱仪【RF IN】接 P3 或 TP3**,观测混频输出信号的频率 f_I 的变化。数据填入表 3.5.5,分析其频率关系。

表 3.5.5 4.5MHz 混频输出信号频率数据表

f _s (晶体振荡)	6MHz								
f _L /MHz(信号源)	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9
f _I /MHz(混频输出)									

c) 恢复 f_L 为 10.5MHz,保持 u_{LPP} = 800mV 不变,调整 G03 模块【晶体振荡器】的输出电压幅值(即参考输入信号 u_S 的幅值),频率为 6MHz 不变,用示波器观测 G02 号板 TP2 处 u_S 的幅值以及 TP3 处 u_I 的幅值,填入表 3.5.6 中,并算出其混频增益。

表 3.5.6 4.5MHz 混频输出信号幅值数据表

u _{SPP/} mV (本振信号)	200	300	400	500	600	700
<i>u</i> _{IPP} /mV(混频输出)						
混频增益 $K_{\rm V}$						

(3) 调频波经混频输出信号观测

① 系统搭建: 各模块断电(主控单元可保留电源开启)状态下,按图 3.5.14 进行连线。

图 3.5.14 调频波混频连线图

② 参数设置

a) 按照表 3.5.7 进行信号源参数设置。

表 3.5.7 调频波混频连线表

源端口	目的端口	连线说明
主控&信号源: A1 $(u_{LPP} = 800 \text{mV} , f_L = 10.5 \text{MHz})$	G02 号板: 【乘法器混频】的 P1	本振信号输入
SDG5112 信号源的 CH1 (载波频率: 6MHz, 幅度: 1Vpp, MOD: 调制 [打开],调制类型: FM, 信源选择: 内部,调制频率: 1KHz 频率偏移: 75KHz)	G02 号板: 【乘法器混频】的 P2	调频波输入

b) 在显示屏主点击【返回上级】,回到实验项目章节界面,点击【混频】→【乘法器混频实验】,点击 JK1,使 G02 号板上 LED1 指示灯亮,即混频输出的信号通过中心频率为 4.5MHz 的带通滤波器,进行滤波处理。

③ 实验现象观测

- a) 频谱仪【RF IN】连接 G02 的 P1 或 TP1, 观测记录本振信号的频谱及参数。 (FREQ: 10.5MHz)
- b) 频谱仪【RF IN】连接 G02 的 P2 或 TP2, 观测记录调频输入信号的频谱及参数。 (FREQ: 6MHz, SPAN: 300KHz)
- c) 频谱仪【RF IN】连接 G02 的 P3 或 TP3, 观测记录混频输出信号的频谱及参数。 (FREQ: 4.5MHz, SPAN: 300KHz)
- d) 将混频前后信号频谱进行对比分析。(提示:调频波频谱测试方法,参见实验三。)

2、三极管混频输出信号观测

(1) 实验电路搭建

G02、G03 模块断电(主控单元可保留电源开启)状态下,按图 3.5.15 所示框图进行连线(注:图中符号 表示同轴电缆高频连接线)。

图 3.5.15 三极管混频连线图

(2) 参数设置

按照表 3.5.8 进行信号源参数设置。

表 3.5.8 三极管混频连线表

源端口	目的端口	连线说明
主控&信号源: A1 $(u_{LPP} = 800 \text{mV}, f_L = 10.5 \text{MHz})$	G02 号板: 【晶体三极管混频】的 P7	本振信号输入
SDG5112 信号源的 CH1 $(u_{SPP} = 200 \text{mV})$, $f_{S} = 6 \text{MHz}$	G02 号板: 【晶体三极管混频】的 P6	射频信号输入

(3) 实验现象观测

- ① 在显示屏上选择【实验项目】→【混频】→【三极管混频实验】,进入到实验界面。
- ② 用示波器观测【晶体三极管混频】的输出(P8 或 TP8) u_I 信号的波形,调整电路中的 W1 和 W2,使 u_I 幅度最大且波形不失真。
 - ③ 分别记录 $u_{\rm L}$ 、 $u_{\rm S}$ 和 $u_{\rm I}$ 的波形及参数。
- ④ 改变信号源提供的本振信号的频率 f_L ,**频谱仪【RF IN】连接 P8 或 TP8**,观测混频输出信号的频率 f_L ,填入表 3.5.9 中,分析其频率关系。

表 3.5.9 混频输出信号频率数据表

fs (SDG5112 信号源)	6 MHz								
f _L /MHz (主控&信号源: A1)	10.2	10.3	10.4	10.5	10.6	10.7	10.8		
f _I /MHz									

⑤ 恢复 f_L 为 10.5MHz,保持 $u_{SPP}=200$ mV 不变,调整本振信号的电压幅值 u_{LPP} 为 1V 和 1.2V,用示波器观测记录【三极管混频】电路 P7 或 TP7 处的本振 u_{LPP} 以及 P8 或 TP8 处混频输出的 u_{IPP} ,并计算混频电压增益 K_V 。

(4) 调幅波经混频输出信号观测

① 系统搭建:关闭 G02 号板电源,拆除之前的连线,按照图 3.5.16 进行连线。

图 3.5.16 调幅波混频连线图

② 参数设置

- a) 在显示屏点击【返回上级】,回到实验项目章节界面,点击【混频】→【三极管混频实验】,进入到实验界面。
- b) 按照表 3.5.11 进行信号参数设置。

表 3.5.11 调幅波混频连线表

源端口	目的端口	连线说明
主控&信号源: A1 $(u_{LPP} = 1.2 \text{V} , f_L = 10.5 \text{MHz})$	G02 号板: 【三极管混频】的 P7	本振信号输入
SDG5112 信号源的 CH1 (载波频率: 6MHz, 幅度: 0.4Vpp, MOD: 调制 [打开], 调制类型: AM, 信源选择: 内部,调制频率: 2KHz 调制深度: 30%)	G02 号板: 【三极管混频】的 P6	调幅波输入

③ 实验现象观测

- a) 观测调幅输入信号(G02的 P6或 TP6)、本振信号(G02的 P7或 TP7)、混频输出信号(G02的 P8或 TP8)的波形,调节 W1、W2,使 TP8输出的调幅波形幅值较大且包络不失真。分别记录 TP6、TP7和 TP8的波形及参数。
- b) 频谱仪【RF IN】连接 G02 的 P7 或 TP7, 观测记录本振信号的频谱及参数。 (FREQ: 10.5MHz)
- c) 频谱仪【RF IN】连接 G02 的 P6 或 TP6, 观测记录调幅输入信号的频谱及参数。 (FREQ: 6MHz, SPAN: 10KHz)
- d) 频谱仪【RF IN】连接 G02 的 P8 或 TP8, 观测记录混频输出信号的频谱及参数。 (FREQ: 4.5MHz, SPAN: 10KHz)
- e) 将混频前后调幅信号的频谱进行对比分析。

(提示: AM 波频谱测量方法参见实验二或实验四。)

(二) AGC 中频放大系统测试

1、开环时(无 AGC)动态范围测量

(1) 实验电路搭建

实验模块关电,按照图 3.5.17 进行实验连线。 (注:图中符号 表示同轴电缆高频连接线)

图 3.5.17 自动增益控制 AGC 实验连线图

参照表 3.5.12 进行信号参数设置。

表 3.5.12 自动增益控制 AGC 实验连线表

源端口	目的端口	连线说明		
SDG5112 信号源的 CH1 $u_{\rm ipp} = 0.2 { m Vpp}$, $f_{\rm i} = 4.5 { m MHz}$	G02 号板: 【中放及 AGC】的 P4	中频信号输入		

G02 号模块打开电源,在显示屏界面点击【实验项目】→【反馈控制】→【自动增益控制】, 进入到实验框图界面。

(2) (不做)逐点描迹法测开环时电路幅频特性曲线

设置 JK2 处于"断开"的状态(**通过 SW2 选中 JK2 后点击 SW1,注意: 触屏操作,有时失灵**),此时电路模块上指示灯 LED4 熄灭,保持信号源的输出幅度不变,调整 W3,用示波器观测 TP5 处的波形,让其幅度最大,然后改变输入的中频信号的频率,将中频输出 TP5 点信号的幅度记录在表 3.5.13 中,并计算出开环电压增益,绘制 $K_{\rm V} \sim f$ 曲线。

表 3.5.13 开环时幅频特性测量数据表 (不做)

中频信号: 主控&信号源: A1 (<i>u</i> _{ipp} = 50mVrms)										
f/MHz	4.42	4.44	4.46	4.48	4.50	4.52	4.54	4.56	4.58	
V _o /mVrms										
$K_{ m v}$										

2、 测量开环 (无 AGC) 时中频放大器输入、输出特性曲线

- (1) 保持 JK2 为"断开",从【中放及 AGC】的输入端(P4 或 TP4)接入 4.5MHz、0.2Vpp 的正弦信号,调节 W3(通过 SW2 选中 W3 后点击 SW1 或 SW3 调节,注意:这里触屏操作失灵),使 其输出信号(P5 或 TP5)幅值最大且不失真,测量中放谐振电压放大倍数 $A_{\rm u}$ 。
- (2) 以 0.2Vpp 为步进单位改变输入信号幅值,从 0.1Vpp 增大到 1.7Vpp,测量中放输入 (TP4)、输出 (TP5) 电压幅值,数据填入表 3.5.14,并计算开环电压放大倍数 $A_{\rm u}$,绘制 u_o ~ u_i 曲线及 $A_{\rm u}$ ~ u_i 曲线。

表 3.5.14 开环输入、输出特性测量数据表

u_i/Vpp	0.1	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.7
u_o/Vpp									
$A_{ m u}$									

3、 测量闭环 (有 AGC) 时中频放大器输入、输出特性曲线

设置 JK2 处于"闭合"的状态(通过 SW2 选中 JK2 后点击 SW3,注意: 触屏操作,有时失灵),保持 W3 不变,按表 3.5.15 测量中放 AGC 系统输入(TP4)、输出(TP5)电压幅值及 AGC 控制电压 V_{AGC} (万用表 DC 档,在 W3 中心抽头即 JK2 左端点测量),绘制 $u_o \sim u_i$ 曲线、 $A_u \sim u_i$ 曲线及 $V_{AGC} \sim u_i$ 曲线。

表 3.5.15 闭环输入、输出特性测量数据表

u_i/Vpp	0.1	0.2	以 0.1Vpp 为步进	•••	起控电压	以 0.2Vpp 为步进	•••	失控 电压	失控电压 +0.2Vpp
u _o /Vpp									
V _{AGC} / V									
A_{u}									

三、 实验仪器及设备

- 1、 主控、G02 模块、G03 模块、G04 模块。
- 2、DSO-X 2014A 数字存储示波器。
- 3、SA1010 频谱分析仪。
- 4、KEYSIGHT 34450A 台式数字万用表

四、思考题

- 1、分析混频的必要性。
- 2、分析混频与调幅有什么异同。
- 3、简述 AGC 的控制原理。