Name-Surname :ÖZGÜR KAN Email :ozgurkan2020@gmail.com

No :15011702 Signature :

HOME WORK 1 (Return by 09.01.2021)

BLM3590 - Statistical Data Analysis

T1(10)	T2(15)	T3(15)	T4(15)	T5(15)	T6(15)	T7(15)		Total(100)

The attached Excel file (**SdA-HW**) consists of two data types (embolic signals (**type 1**), and Doppler speckle (**type 2**)) recorded from stroke patients and some relevant numerical variables (**tpthrt**, **pkthrt**, **dfdrrt**, **time**, **rrt**, **frt**). Using this data file, implement the following tasks in **R**. You must include the **R** scripts in your answers.

T1: Show how to read this Excel datafile into **R** environment.

library(readxl)

SdA_HW <- read_excel("C:/Users/ozgur/Desktop/HW/SdA-HW.xls") View(SdA_HW)

T2: This data file requires some preprocessing as it inludes a column with no value, some cells with no numerical value (divide by 0 error, etc.), and some cells with zero. Write required script in \mathbf{R} to remove the empty column and correct the cells with no numerical value and zero by using simple interpolation.

DELETE EMPTY COLUMN

 $delete_empty_column <- SdA_HW[!sapply(SdA_HW, function (x) all(is.na(x) | x == ""))]$ $View(delete_empty_column)$

SIMPLE INTERPOLATION

install.packages("zoo")
update.packages("zoo")
library(zoo)
interpolation <- delete_empty_column
interpolation\$tpthrt <- na.approx(interpolation\$tpthrt, method="linear")
interpolation\$pkthrt <- na.approx(interpolation\$pkthrt, method="linear")
interpolation\$dfdrrt <- na.approx(interpolation\$dfdrrt, method="linear")
interpolation\$rrt <- na.approx(interpolation\$rrt, method="linear")
interpolation\$frt <- na.approx(interpolation\$frt, method="linear")
interpolation <-na.approx(replace(interpolation, interpolation == 0, NA), method="linear")
View(interpolation)

T3: Find Five-number data summary of the variables for each data type in this dataset.

TYPE 1

type1 <-interpolation[interpolation[,"type"]==1,]</pre>

View(type1)

fivenum(type1[,"tpthrt"])

summary(type1[,"tpthrt"])

fivenum(type1[,"pkthrt"])

summary(type1[,"pkthrt"])

fivenum(type1[,''dfdrrt''])

summary(type1[,"dfdrrt"])

fivenum(type1[,"rrt"])

summary(type1[,"rrt"])

fivenum(type1[,"frt"])

summary(type1[,"frt"])

TPTHRT

TPTHK	I				
0.33637	11.70441	14.73410	19.47500	28.86399	
Min. 0.3364	1st Qu. 11.7300	Median 14.7300	Mean 15.4800	3rd Qu. 19.4700	Max. 28.8600
PKTHR'	\mathbf{T}				
-8.358763	3.299621	5.949281	8.369141	19.906871	
Min. -8.359	1st Qu. 3.320	Median 5.949	Mean 5.793	3rd Qu. 8.319	Max. 19.910
DFDRR'	$f \Gamma$				
0.26008	12.06188	17.85649	22.45371	45.41403	
Min. 0.2601	1st Qu. 12.2700	Median 17.8600	Mean 17.5900	3rd Qu. 22.4100	
RRT					
-59.765200	2.920039	5.654713	9.475557	20.609650	
Min. -59.770	1st Qu. 2.925	Median 5.655	Mean 4.236	3rd Qu. 9.469	Max. 20.610
FRT					
0.952463	4.544763	6.596013	10.113480	24.732330	
Min	1at On	Modian	Moon	2nd Ov	Mov
Min. 0.9525	1st Qu. 4.5470	Median 6.5960	Mean 7.5670	3rd Qu. 10.1000	Max. 24.7300
U+7020	100710	0.0700	1.5010	10.1000	411 000

TYPE 2

type2 <-interpolation[interpolation[,"type"]==2,] View(type2) fivenum(type2[,"tpthrt"]) summary(type2[,"tpthrt"]) fivenum(type2[,"pkthrt"]) summary(type2[,"pkthrt"]) fivenum(type2[,"dfdrrt"]) summary(type2[,"dfdrrt"])

fivenum(type2[,"rrt"])

summary(type2[,"rrt"])

fivenum(type2[,"frt"])

summary(type2[,"frt"])

TPTHRT

11.451825 14.274517 20.963047 0.008013 8.021390

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.008013	8.039000	11.450000	11.090000	14.270000	20.960000

PKTHRT

-9.622567 -1.020240 1.276692 4.162536 7.323946

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	
-9.623	-1.003	1.277	1.301	4.161	7.324	

DFDRRT

-3.475887 6.807376 13.798834 21.922938 40.545011

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-3.476	7.022	13.800	14.420	21.880	40.550

RRT

26.127030 -68.801400 -7.294725 2.210573 4.650650

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-68.800	-7.168	2.211	-3.131	4.616	26.130

FRT

0.057293 2.127381 3.901223 6.326019 32.282380

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.05729	2.16400	3.90100	4.93300	6.30500	32.28000

T4: Plot **boxplots** of the **variables** for each **data type** and determine if there is any outlier in these variables.

boxplot(type1[,"tpthrt"],main="TYPE 1- TPTHRT")
boxplot(type1[,"pkthrt"],main="TYPE 1- PKTHRT")
boxplot(type1[,"dfdrrt"],main="TYPE 1- DFDRRT")
boxplot(type1[,"rrt"],main="TYPE 1- RRT")
boxplot(type1[,"frt"],main="TYPE 1- FRT")

boxplot(type2[,"tpthrt"],main="TYPE 2- TPTHRT")
boxplot(type2[,"pkthrt"],main="TYPE 2- PKTHRT")
boxplot(type2[,"dfdrrt"],main="TYPE 2- DFDRRT")
boxplot(type2[,"rrt"],main="TYPE 2- RRT")
boxplot(type2[,"frt"],main="TYPE 2- FRT")

TYPE 1- TPTHRT

0 5 10 15 20 25 30

TYPE 2- TPTHRT

For "TYPE1-TPTHRT", the boxplot is almost symmetric, there is no outlier, central tendency is around 15. For "TYPE2-TPTHRT", the boxplot is almost symmetric, there is no outlier, central tendency is around 10-15.

TYPE 1- PKTHRT TYPE 2- PKTHRT

For "TYPE1-PKTHRT", the boxplot have outlier. The central tendency is around 5-10. For "TYPE2- PKTHRT", the boxplot have outlier. The central tendency is around 0-5.

TYPE 1- DFDRRT

TYPE 2- DFDRRT

For "TYPE1-DFDRRT", the boxplot have outlier. The central tendency is around 10-20. For "TYPE2- DFDRRT", the boxplot is almost symmetric, there is no outlier, central tendency is around 10-20.

TYPE 1- RRT

TYPE 2- RRT

For "TYPE1-RRT", the boxplot have outlier. The central tendency is around 0-20. For "TYPE2-RRT", the boxplot have outlier. The central tendency is around 0-20.

TYPE 1- FRT

TYPE 2- FRT

For "TYPE1-FRT", the boxplot have outlier. The central tendency is around 5-10. For "TYPE2-FRT", the boxplot have outlier. The central tendency is around 0-5.

T5: Plot histograms of the **variables** for each **data type**, compare the histograms, and comment on the distributions.

hist(type1[,"tpthrt"],main="TYPE 1- TPTHRT") hist(type1[,"pkthrt"],main="TYPE 1- PKTHRT") hist(type1[,"dfdrrt"],main="TYPE 1- DFDRRT") hist(type1[,"rrt"],main="TYPE 1- RRT") hist(type1[,"frt"],main="TYPE 1- FRT")

hist(type2[,"tpthrt"],main="TYPE 2- TPTHRT") hist(type2[,"pkthrt"],main="TYPE 2- PKTHRT") hist(type2[,"dfdrrt"],main="TYPE 2- DFDRRT") hist(type2[,"rrt"],main="TYPE 2- RRT") hist(type2[,"frt"],main="TYPE 2- FRT")

TYPE 1- TPTHRT

Preduency 10 20 25 30 type1[, "tpthrt"]

TYPE 2- TPTHRT

TYPE 1- PKTHRT

TYPE 2- PKTHRT

TYPE 1- DFDRRT

TYPE 2- DFDRRT

Freduency

-60 -40 -20 0 20

type1[, "rrt"]

TYPE 1- RRT

TYPE 2- RRT

T6: First, normalize the variables for each data type so that the values of these variables range between 0 and 1, and then line-plot (using different colors) each variables for both data types in one figure (total 5 figures). Comment on the similarities of the variables for each plot. normalizedtype1 <-type1 normalizedtype1 < (type1[, c(2, 3, 4, 5,6)]-min(type1[, c(2, 3, 4, 5,6)])/(max(type1[, c(2, 3, 4, 5,6)])min(type1[, c(2, 3, 4, 5,6)]))View(normalizedtype1) normalizedtype2 <-type2 normalizedtype2 < (type2[, c(2, 3, 4, 5,6)]-min(type2[, c(2, 3, 4, 5,6)])/(max(type2[, c(2, 3, 4, 5,6)])min(type2[, c(2, 3, 4, 5,6)]))View(normalizedtype2) plot(x=1:100,y=normalizedtype1[,"tpthrt"],type = 'l',col = "red",main="TPTHRT") lines(x=1:100, y=normalizedtype2[,"tpthrt"],type = 'l',col = "blue") # Add a legend to the plot legend("topright", legend=c("TYPE 1", "TYPE 2"), col=c("red", "blue"), lty = 1:2, cex=0.8)plot(x=1:100,y=normalizedtype1[,"pkthrt"],type = 'l',col = "red",main="PKTHRT") lines(x=1:100, y=normalizedtype2[,"pkthrt"],type = 'l',col = "blue") # Add a legend to the plot legend("topright", legend=c("TYPE 1", "TYPE 2"), col=c("red", "blue"), lty = 1:2, cex=0.8)plot(x=1:100,y=normalizedtype1[,"dfdrrt"],type = 'l',col = "red",main="DFDRRT") lines(x=1:100, y=normalizedtype2[,"dfdrrt"],type = 'l',col = "blue") # Add a legend to the plot legend("topright", legend=c("TYPE 1", "TYPE 2"), col=c("red", "blue"), lty = 1:2, cex=0.8)plot(x=1:100,y=normalizedtype1[,"rrt"],type = 'l',col = "red",main="RRT") lines(x=1:100, y=normalizedtype2[,"rrt"],type = 'l',col = "blue") # Add a legend to the plot legend("topright", legend=c("TYPE 1", "TYPE 2"), col=c("red", "blue"), lty = 1:2, cex=0.8)plot(x=1:100,y=normalizedtype1[,"frt"],type = 'l',col = "red",main="FRT") lines(x=1:100, y=normalizedtype2[,"frt"],type = 'l',col = "blue") # Add a legend to the plot

legend("topright", legend=c("TYPE 1", "TYPE 2"), col=c("red", "blue"), lty = 1:2, cex=0.8)

1:100

DFDRRT

FRT

- When we look at the first, second, third and fifth figures, type1 and type2 are not alike. While the values in the variable type1 decrease, the values in the type2 variable increase. Therefore, we can say that there is no similarity between the two types.
- When we look at the RRT variable in the fourth figure, it is seen that type1 and type2 behave similarly.

T7: First, determine how similar the variables tpthrt and pkthrt are for each data type, and then determine how similar tpthrt of data type 1 and tpthrt of data type 2 by using similarity metric (correlation).

```
cor(normalizedtype1[,"tpthrt"],normalizedtype1[,"pkthrt"],method = c("pearson"))
cor(normalizedtype2[,"tpthrt"],normalizedtype2[,"pkthrt"],method = c("pearson"))
cor(normalizedtype1[,"tpthrt"],normalizedtype2[,"tpthrt"],method = c("pearson"))
```

Type 1(tpthrt and pkthrt)=
$$0.6417237$$

Type 2(tpthrt and pkthrt)= 0.2726601

TPTHRT(Type1 and Type2)= -0.1859388

- When we examined the results, it was observed that the variables in type 1 were a little more similar to each other, but it was observed that the variables in type 2 were not alike.
- (+) correlation coefficient indicates that the two variables are in the same direction, while a negative (-) relationship indicates an inverse relationship between the two variables. Therefore, we can say that TPTHRT variable type1 and type2 also showed an inverse relationship.