WORD EMBEDDINGS

Квантитативный анализ текста

Кирилл Александрович Маслинский 23.05.2022 / 10

НИУ ВШЭ Санкт-Петербург

ПРОСТРАНСТВЕННОЕ

МОДЕЛИРОВАНИЕ СЕМАНТИКИ

WORD SPACE

Schütze

Vector similarity is the only information present in Word Space: semantically related words are close, unrelated words are distant.

ПРОСТРАНСТВЕННАЯ МЕТАФОРА

Lakoff & Johnson, Metaphors we live by, 1980

Метафоры — основа всех абстрактных понятий. Язык вообще и языковое значение в частности построено на метафорах.

Первичные метафоры — непосредственно связаны с телесным опытом.

- Пространство:
 - расположение
 - направление
 - близость (расстояние)

ГЕОМЕТРИЧЕСКАЯ МЕТАФОРА ЯЗЫКОВОГО ЗНАЧЕНИЯ

В основе первичные метафоры:

- похожее = близкое
- сущность = место (понятие = место)

Геометрическая метафора языкового значения:

Значения — это точки в семантическом пространстве, семантическое сходство — расстоние между точками в этом пространстве.

Дистрибутивная семантика

Дистрибутивная гипотеза

Слова со сходными дистрибутивными свойствами обладают сходным значением.

Способы представить дистрибутивное сходство:

- соседствуют с одними и теми же словами
- употребляются в одних и тех же документах
- ...

ПРОСТРАНСТВЕННЫЕ МОДЕЛИ ЗНАЧЕНИЯ

- · LSA/LSI (Latent Semantic Analysis/Indexing) [1988]
- word2vec [2013]
- ELMo/BERT/GPT-2/GPT-3 [2017-2020]

Все они по-разному реализуют одну и ту же идею:

- геометрическая метафора значения
- дистрибуитвный метод: построение пространства на основе информации о контекстах слов
- моделируют семантическую близость: смысл в модели имеет только расстояние, но не измерения пространства

Выводы о дистрибутивной семантике

В «семантическом пространстве» (word space):

- **Имеет смысл** анализ расстояния между **близкими** по значению словами.
- **Не имеет смысла** анализ расстояния между не связанными по значению словами (удаленными областями в word space). Что общего между вороном и конторкой?

WORD EMBEDDINGS

ТЕРМИНОЛОГИЯ

Word embeddings — dense representations of words in a low-dimensional vector space

neural word embeddings word embeddings learned by a neural network

Alternate terms: distributional semantic model/semantic vector space/word space

SERENDIPITY:

$king - man + woman \approx queen$

SERENDIPITY:

$king - man + woman \approx queen$

Семантическая алгебра

ПРОРЫВ И ФАВОРИТЫ

word2vec Mikolov et al. in 2013 GloVe Pennington et al. 2014

НЕЙРОННЫЕ СЕТИ И DEEP LEARNING REVIVAL

УСПЕХ И ПОЛЬЗА

Unsupervised method:

- -> большой неаннотированный корпус текстов
- -> pre-trained embeddings
- -> применение к небольшим массивам размеченных данных

Применения word2vec

Hamilton W. L., Leskovec J., Jurafsky D. Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change //Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). – 2016. – C. 1489-1501.

Применения word2vec

Hamilton W. L. et al. Inducing domain-specific sentiment lexicons from unlabeled corpora //Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing. – NIH Public Access, 2016. – T. 2016. – C. 595.

SGNS — SKIP-GRAM WITH NEGATIVE SAMPLING AKA WORD2VFC

ILLUSTRATIONS FROM:

HTTP://JALAMMAR.GITHUB.IO/ILLUSTRATED-

WORD2VEC/

Русский перевод:

HTTPS://HABR.COM/RU/POST/446530/

Языковая модель: задача предсказания слова

input/feature #1 input/feature #2 output/label

Thou shalt

Языковая модель: задача предсказания слова

Языковая модель: задача предсказания слова

МЕТОД СКОЛЬЗЯЩЕГО ОКНА

МЕТОД СКОЛЬЗЯЩЕГО ОКНА

Jay was hit by a _____ bus in...

red

bus

by

а

in

Jay was hit by a red bus in...

SKIPGRAM

input word	target word	
not	thou	
not	shalt	
not	make	
not	a	
make	shalt	
make	not	
make	а	
make	machine	
a	not	
a	make	
a	machine	
a	in	
machine	make	
machine	a	
machine	in	
machine	the	
in	а	
in	machine	
in	the	
in	likeness	

Обучение модели

NEGATIVE SAMPLING

NEGATIVE SAMPLING

NEGATIVE SAMPLING

NOISE-CONTRASTIVE ESTIMATION

input word	target word	
not	thou	
not	shalt	
not	make	
not	а	
make	shalt	
make	not	
make	а	
make	machine	

input word	output word	target
not	thou	1
not	shalt	1
not	make	1
not	а	1
make	shalt	1
make	not	1
make	а	1
make	machine	1

Noise-contrastive estimation

NOISE-CONTRASTIVE ESTIMATION

input word	output word	target	
not	thou	1	
not		0	Negative examples
not		0	Megative examples
not	shalt	1	
not	make	1	

NOISE-CONTRASTIVE ESTIMATION

SGNS: SKIPGRAM WITH NEGATIVE SAMPLING

Skipgram

shalt	not	mak	e	а	machine
		output			
make			shalt		
make			not		
make			а		
make				mac	hine

Negative Sampling

input word	output word	target
make	shalt	1
make	aaron	0
make	taco	0

Обучение модели word2vec (SGNS)

input word	output word	target	input • output
not	thou	1	0.2
not	aaron	0	-1.11
not	taco	0	0.74

input word	output word	target	input • output	sigmoid()
not	thou	1	0.2	0.55
not	aaron	0	-1.11	0.25
not	taco	0	0.74	0.68

input word	output word	target	input • output	sigmoid()	Error
not	thou	1	0.2	0.55	0.45
not	aaron	0	-1.11	0.25	-0.25
not	taco	0	0.74	0.68	-0.68

Параметры модели word2vec

Размер контекстного окна

Количество отрицательных примеров

Negative samples: 2

input word	output word	target
make	shalt	1
make	aaron	0
make	taco	0

Negative samples: 5

	•	
input word	output word	target
make	shalt	1
make	aaron	0
make	taco	0
make	finglonger	0
make	plumbus	0
make	mango	0

DISTRIBUTIONAL SEMANTIC MODELS

WORD EMBEDDINGS AND

Сравнение с дистрибутивными моделями

модели	контекст	тип отноше-	пример
		ния	
LSA, pLSA, LDA	документ	semantic	boat — water
		relatedness	
word	слова	semantic	boat — ship
embeddings,		similarity	
HAL, Random			
indexing,			
BEAGLE			

Как мы и думали, никакой разницы!

levy2014neural

WORD2VEC: CEKPET YCTEXA

PRE-PROCESSING

- Dynamic context window: decay = 1/distance
- Subsampling frequent words: randomly delete words that are too common
- Deleting rare words

ASSOCIATION METRIC

- Shifted PMI SPPMI(w, c) = max(pmi(w, c) log(k), 0)
- Context distribution smoothing

$$pmi(w,c) = log \frac{p(w,c)}{p(w)p_{\alpha}(c)}, where p_{\alpha}(c) = \frac{f(c)^{\alpha}}{\sum_{c} f(c)^{\alpha}}, \alpha = \frac{3}{4}$$

LEVY ET AL 2015 TAKEAWAYS

- Hyperparameters vs. algorithms:
 Hyperparameter settings are often more important than algorithm choice. No single algorithm consistently outperforms the other methods.
- Hyperparameters vs. more data: Training on a larger corpus helps for some tasks. In 3 out of 6 cases, tuning hyperparameters is more beneficial.

DEBUNKING PRIOR CLAIMS

- 1. Are embeddings superior to distributional methods? With the right hyperparameters, no approach has a consistent advantage over another.
- Is GloVe superior to SGNS?SGNS outperforms GloVe on all tasks.
- 3. Is CBOW a good word2vec configuration? CBOW does not outperform SGNS on any task.

EXPLAINING WORD EMBEDDINGS

POINTWISE MUTUAL INFORMATION

PMI

$$pmi(x;y) = log \frac{p(x,y)}{p(x)p(y)} = log \frac{p(x|y)}{p(x)} = log \frac{p(y|x)}{p(y)}$$

Positive PMI

$$ppmi(x; y) = max(pmi(x; y), 0)$$

Figure 2: Interconnection between semantic relationships: relatedness is a base pairwise comparison (measured by PMI); *global relatedness* considers relatedness to all words (PMI vector); similarity, paraphrase and analogy depend on global relatedness between words ($w \in \mathcal{E}$) and word sets ($W \subseteq \mathcal{E}$).

¹Allen, C., Balazevic, I., & Hospedales, T. (2019). What the vec? towards probabilistically grounded embeddings. Advances in Neural Information Processing Systems, 32, 7467-7477.