Nonlinear Derivative-free Constrained Optimization with a Mixed Penalty-Logarithmic Barrier Approach and Direct Search

Andrea Brilli², Ana Luísa Custódio¹, Giampaolo Liuzzi², and **Everton J Silva**¹

¹NOVA School of Science and Technology, NOVA MATH, Portugal ² "Sapienza" University of Rome, DIAG, Italy

CENTER FOR MATHEMATICS + APPLICATIONS

UI/BD/151246/2021

UIDB/00297/2020

UIDP/00297/2020

Outline

- Introduction
- Algorithmic Structure and Convergence Analysis
- 3 Implementation Details
- **4** Numerical Experiments
- 6 Conclusions and Future Work

Outline

- Introduction
- Algorithmic Structure and Convergence Analysis
- 3 Implementation Details
- 4 Numerical Experiments
- **5** Conclusions and Future Work

Problem Features

$$\begin{aligned} & \min \ f(\mathbf{x}) \\ & \text{s.t.} \ g(\mathbf{x}) \leq 0 \\ & h(\mathbf{x}) = 0 \\ & \mathbf{x} \in X \end{aligned}$$

$$f: X \subseteq \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$$

$$g: X \subseteq \mathbb{R}^n \to \{\mathbb{R} \cup \{+\infty\}\}^m$$

$$h: X \subseteq \mathbb{R}^n \to \{\mathbb{R} \cup \{+\infty\}\}^p$$

$$X = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} < \mathbf{b}\}$$

- f, g, and h are black-box type and continuously differentiable
- Computing f, g, and h is expensive

No derivatives available for use

Long runtime

Large memory requirement

^{*}Image credits to Joseph Simonis, ISMP 2009, Chicago, US

SID-PSM: Direct Search using Simplex Derivatives

 Search step based on the minimization of some quadratic polynomial model (interpolation, minimum $||.||_F$ or regression)

A. L. Custódio, H. Rocha, and L. N. Vicente Incorporating minimum Frobenius norm models in direct search Comput. Optim. Appl., 46: 265-278, 2010.

Order of the poll vectors according to a negative simplex gradient

A. L. Custódio and L. N. Vicente Using sampling and simplex derivatives in pattern search methods SIAM J. Optim., 18: 537-555, 2007.

- Handles constraints using an extreme barrier approach
- Efficient approaches to address general constraints (not yet!...)

SID-PSM: Direct Search using Simplex Derivatives

 Search step based on the minimization of some quadratic polynomial model (interpolation, minimum $||.||_F$ or regression)

A. L. Custódio, H. Rocha, and L. N. Vicente Incorporating minimum Frobenius norm models in direct search Comput. Optim. Appl., 46: 265-278, 2010.

Order of the poll vectors according to a negative simplex gradient

A. L. Custódio and L. N. Vicente Using sampling and simplex derivatives in pattern search methods SIAM J. Optim., 18: 537-555, 2007.

- Handles constraints using an extreme barrier approach
- Efficient approaches to address general constraints (not yet!...)

SID-PSM: Direct Search using Simplex Derivatives

 Search step based on the minimization of some quadratic polynomial model (interpolation, minimum $||.||_F$ or regression)

A. L. Custódio, H. Rocha, and L. N. Vicente Incorporating minimum Frobenius norm models in direct search Comput. Optim. Appl., 46: 265-278, 2010.

Order of the poll vectors according to a negative simplex gradient

A. L. Custódio and L. N. Vicente Using sampling and simplex derivatives in pattern search methods SIAM J. Optim., 18: 537-555, 2007.

- Handles constraints using an extreme barrier approach
- Efficient approaches to address general constraints (not yet!...)

SID-PSM – Algorithmic Structure

LOG-DFL: Logarithmic barrier penalty DFO algorithm

 New DFO method that uses a merit function with a log-barrier for inequality constraints and a penalty approach for equality constraints.

A. Brilli, G. Liuzzi, and S. Lucidi

An interior point method for nonlinear constrained derivative-free optimization

arXiv, 2108.05157 [math.OC], 2021.

Mixed Penalty-Log Barrier Approach in Direct Search

Given an initial point $\mathbf{x}_0 \in X$, define:

$$\mathcal{G}^{\text{log}} = \{\ell \mid g_{\ell}(\mathbf{x}_0) < 0\}$$

$$\mathcal{G}^{\text{ext}} = \{\ell \mid g_{\ell}(\mathbf{x}_0) \ge 0\}$$

Feasible region

 $\mathcal{F} = X \cap \Omega_{\mathcal{G}^{\log}} \cap \Omega_{\mathcal{G}^{\exp}} \cap \Omega_h \neq \emptyset$, a compact set.

Mixed Penalty-Logarithmic Barrier function

$$Z(\mathbf{x}; \rho) = f(\mathbf{x}) - \rho \sum_{\ell \in \mathcal{G}^{\text{log}}} \log(-g_{\ell}(\mathbf{x})) + \frac{1}{\rho^{\nu-1}} \left(\sum_{\ell \in \mathcal{G}^{\text{ext}}} \left(\max\{g_{\ell}(\mathbf{x}), 0\} \right)^{\nu} + \sum_{j=1}^{p} \left| h_{j}(\mathbf{x}) \right|^{\nu} \right),$$

where $\rho > 0$ and $\nu \in (1, 2]$.

Mixed Penalty-Log Barrier Approach in Direct Search

Given an initial point $\mathbf{x}_0 \in X$, define:

$$\mathcal{G}^{\text{log}} = \{ \ell \mid g_{\ell}(\mathbf{x}_0) < 0 \}$$

$$\mathcal{G}^{\text{ext}} = \{ \ell \mid g_{\ell}(\mathbf{x}_0) \ge 0 \}$$

Feasible region

$$\mathcal{F} = X \cap \Omega_{\mathcal{G}^{\log}} \cap \Omega_{\mathcal{G}^{\text{ext}}} \cap \Omega_h \neq \emptyset$$
, a compact set.

Mixed Penalty-Logarithmic Barrier function

$$Z(\mathbf{x}; \rho) = f(\mathbf{x}) - \rho \sum_{\ell \in \mathcal{G}^{\text{log}}} \log(-g_{\ell}(\mathbf{x})) + \frac{1}{\rho^{\nu-1}} \left(\sum_{\ell \in \mathcal{G}^{\text{ext}}} \left(\max\{g_{\ell}(\mathbf{x}), 0\} \right)^{\nu} + \sum_{j=1}^{p} \left| h_{j}(\mathbf{x}) \right|^{\nu} \right),$$

where $\rho > 0$ and $\nu \in (1, 2]$.

Mixed Penalty-Log Barrier Approach in Direct Search

Given an initial point $\mathbf{x}_0 \in X$, define:

$$\begin{array}{lcl} \mathcal{G}^{\text{log}} & = & \{\ell \mid g_{\ell}(\mathbf{x}_0) < 0\} \\ \mathcal{G}^{\text{ext}} & = & \{\ell \mid g_{\ell}(\mathbf{x}_0) \geq 0\} \end{array}$$

Feasible region

$$\mathcal{F} = X \cap \Omega_{\mathcal{G}^{\log}} \cap \Omega_{\mathcal{G}^{\text{ext}}} \cap \Omega_h \neq \emptyset$$
, a compact set.

Mixed Penalty-Logarithmic Barrier function

$$Z(\mathbf{x};\rho) = f(\mathbf{x}) - \rho \sum_{\ell \in \mathcal{G}^{\text{log}}} \log(-g_{\ell}(\mathbf{x})) + \frac{1}{\rho^{\nu-1}} \left(\sum_{\ell \in \mathcal{G}^{\text{ext}}} \left(\max\{g_{\ell}(\mathbf{x}), 0\} \right)^{\nu} + \sum_{j=1}^{p} \left| h_{j}(\mathbf{x}) \right|^{\nu} \right),$$

where $\rho > 0$ and $\nu \in (1, 2]$.

Mixed Penalty-Logarithmic Barrier function

$$Z(\mathbf{x};\rho) = f(\mathbf{x}) - \rho \sum_{\ell \in \mathcal{G}^{\text{log}}} \log(-g_{\ell}(\mathbf{x})) + \frac{1}{\rho^{\nu-1}} \left(\sum_{\ell \in \mathcal{G}^{\text{ext}}} \left(\max\{g_{\ell}(\mathbf{x}), 0\} \right)^{\nu} + \sum_{j=1}^{p} \left| h_{j}(\mathbf{x}) \right|^{\nu} \right),$$

where $\rho > 0$ and $\nu \in (1, 2]$.

Penalized problem

$$\min \ Z(\mathbf{x}; \rho)$$
 s.t. $\mathbf{x} \in X \cap \mathring{\Omega}_{\mathcal{G}^{\log}}$

Equivalent Reformulation

 $\min \ Z(\mathbf{x}; \rho)$
s.t. $\mathbf{x} \in X$

• ρ must be driven to zero to solve the original problem

Mixed Penalty-Logarithmic Barrier function

$$Z(\mathbf{x};\rho) = f(\mathbf{x}) - \rho \sum_{\ell \in \mathcal{G}^{\text{log}}} \log(-g_{\ell}(\mathbf{x})) + \frac{1}{\rho^{\nu-1}} \left(\sum_{\ell \in \mathcal{G}^{\text{ext}}} \left(\max\{g_{\ell}(\mathbf{x}), 0\} \right)^{\nu} + \sum_{j=1}^{p} \left| h_{j}(\mathbf{x}) \right|^{\nu} \right),$$

where $\rho > 0$ and $\nu \in (1, 2]$.

Penalized problem

$$\min \ Z(\mathbf{x}; \rho)$$
 s.t. $\mathbf{x} \in X \cap \mathring{\Omega}_{G^{\log}}$

Equivalent Reformulation

$$\min \ Z(\mathbf{x}; \rho)$$
 s.t. $\mathbf{x} \in X$

• ρ must be driven to zero to solve the original problem

Mixed Penalty-Logarithmic Barrier function

$$Z(\mathbf{x};\rho) = f(\mathbf{x}) - \rho \sum_{\ell \in \mathcal{G}^{\text{log}}} \log(-g_{\ell}(\mathbf{x})) + \frac{1}{\rho^{\nu-1}} \left(\sum_{\ell \in \mathcal{G}^{\text{ext}}} \left(\max\{g_{\ell}(\mathbf{x}), 0\} \right)^{\nu} + \sum_{j=1}^{p} \left| h_{j}(\mathbf{x}) \right|^{\nu} \right),$$

where $\rho > 0$ and $\nu \in (1, 2]$.

Penalized problem

$$\min \ Z(\mathbf{x}; \rho)$$
 s.t. $\mathbf{x} \in X \cap \mathring{\Omega}_{G^{\log}}$

Equivalent Reformulation

$$\min \ Z(\mathbf{x}; \rho)$$
 s.t. $\mathbf{x} \in X$

• ρ must be driven to zero to solve the original problem

Outline

- Introduction
- Algorithmic Structure and Convergence Analysis
- 3 Implementation Details
- 4 Numerical Experiments
- **5** Conclusions and Future Work

LOG-SID-PSM - Algorithmic Structure

Everton Silva (NOVA FCT)

Penalty Parameter Update.

Step 3. Set
$$(g_{\min})_k = \min_{\ell \in \mathcal{G}^{\log}} \{|g_\ell(\mathbf{x}_{k+1})|\}$$

If $\alpha_{k+1} < \alpha_k$ and $\alpha_{k+1} \leq \min\{\rho_k^\beta, (g_{\min})_k^2\}$

Then set $\rho_{k+1} = \theta_\rho \rho_k$

Else set $\rho_{k+1} = \rho_k$

The measure of stationarity α_k should go to zero faster than:

- the measure of quality ρ_k
- the measure of proximity $(g_{\min})_k$

Theorem

$$\lim_{k \to +\infty} \rho_k = 0 \text{ and } \lim_{k \to +\infty} \alpha_k = 0.$$

Penalty Parameter Update.

Step 3. Set
$$(g_{\min})_k = \min_{\ell \in \mathcal{G}^{\log}} \{|g_\ell(\mathbf{x}_{k+1})|\}$$
If $\alpha_{k+1} < \alpha_k$ and $\alpha_{k+1} \leq \min\{\rho_k^\beta, (g_{\min})_k^2\}$
Then set $\rho_{k+1} = \theta_\rho \rho_k$
Else set $\rho_{k+1} = \rho_k$

The measure of stationarity α_k should go to zero faster than:

- ullet the measure of quality ho_k
- the measure of proximity $(g_{\min})_k$

Theorem

$$\lim_{k\to +\infty} \rho_k = 0 \text{ and } \lim_{k\to +\infty} \alpha_k = 0$$

Penalty Parameter Update.

Step 3. Set
$$(g_{\min})_k = \min_{\ell \in \mathcal{G}^{\log}} \{|g_\ell(\mathbf{x}_{k+1})|\}$$
If $\alpha_{k+1} < \alpha_k$ and $\alpha_{k+1} \leq \min\{\rho_k^\beta, (g_{\min})_k^2\}$
Then set $\rho_{k+1} = \theta_\rho \rho_k$
Else set $\rho_{k+1} = \rho_k$

The measure of stationarity α_k should go to zero faster than:

- the measure of quality ρ_k
- the measure of proximity $(g_{\min})_k$

Theorem

$$\lim_{k\to +\infty} \rho_k = 0 \text{ and } \lim_{k\to +\infty} \alpha_k = 0$$

Penalty Parameter Update.

Step 3. Set
$$(g_{\min})_k = \min_{\ell \in \mathcal{G}^{\log}} \{|g_\ell(\mathbf{x}_{k+1})|\}$$

If $\alpha_{k+1} < \alpha_k$ and $\alpha_{k+1} \leq \min\{\rho_k^\beta, (g_{\min})_k^2\}$
Then set $\rho_{k+1} = \theta_\rho \rho_k$
Else set $\rho_{k+1} = \rho_k$

The measure of stationarity α_k should go to zero faster than:

- ullet the measure of quality ho_k
- the measure of proximity $(g_{\min})_k$

Theorem

$$\lim_{k\to +\infty} \rho_k = 0 \text{ and } \lim_{k\to +\infty} \alpha_k = 0$$

Penalty Parameter Update.

Step 3. Set
$$(g_{\min})_k = \min_{\ell \in \mathcal{G}^{\log}} \{|g_\ell(\mathbf{x}_{k+1})|\}$$

If $\alpha_{k+1} < \alpha_k$ and $\alpha_{k+1} \leq \min\{\rho_k^\beta, (g_{\min})_k^2\}$
Then set $\rho_{k+1} = \theta_\rho \rho_k$
Else set $\rho_{k+1} = \rho_k$

The measure of stationarity α_k should go to zero faster than:

- the measure of quality ρ_k
- the measure of proximity $(g_{\min})_k$

Theorem

$$\lim_{k \to +\infty} \rho_k = 0 \text{ and } \lim_{k \to +\infty} \alpha_k = 0.$$

Penalty Parameter Update.

Step 3. Set
$$(g_{\min})_k = \min_{\ell \in \mathcal{G}^{\log}} \{|g_{\ell}(\mathbf{x}_{k+1})|\}$$
If $\alpha_{k+1} < \alpha_k$ and $\alpha_{k+1} \leq \min\{\rho_k^{\beta}, (g_{\min})_k^2\}$
Then set $\rho_{k+1} = \theta_{\rho}\rho_k$
Else set $\rho_{k+1} = \rho_k$

The measure of stationarity α_k should go to zero faster than:

- the measure of quality ρ_k
- the measure of proximity $(g_{\min})_k$

Theorem

$$\lim_{k\to +\infty}\rho_k=0 \text{ and } \lim_{k\to +\infty}\alpha_k=0.$$

Globalization Strategy

Forcing Function $\xi:[0,+\infty)\to[0,+\infty)$

- a continuous and nondecreasing function
- $\xi(t)/t \to 0$ when $t \to 0$
- If $\xi(t) \to 0$ then $t \to 0$

Mangasarian-Fromovitz Type Constraint Qualification

MFCQ

Let $x \in X$ and $T_X(\mathbf{x})$ be the tangent cone at \mathbf{x} with respect to the linear constraints. The point \mathbf{x} is said to satisfy the MFCQ if the two following conditions are satisfied:

(a) There does not exist a nonzero vector $\alpha = (\alpha_1, \dots, \alpha_q)$ such that:

$$\left(\sum_{i=1}^{q} \alpha_i \nabla h_i(\mathbf{x})\right)^{\top} \mathbf{d} \ge 0, \qquad \forall \mathbf{d} \in T_X(\mathbf{x});$$

(b) There exists a feasible direction $\mathbf{d} \in T_X(\mathbf{x})$, such that:

$$\nabla g_{\ell}(\mathbf{x})^{\mathsf{T}} \mathbf{d} < 0, \quad \forall \ell \in I_{+}(\mathbf{x}), \quad \nabla h_{j}(\mathbf{x})^{\mathsf{T}} \mathbf{d} = 0, \quad \forall j = 1, \dots, p$$

where
$$I_+(\mathbf{x}) = \{\ell \mid g_\ell(\mathbf{x}) \ge 0\}.$$

Active Constraints and Tangent Cone

For every $x \in X$, i.e., such that $Ax \le b$:

$$I_X(\mathbf{x}) = \{i \mid \mathbf{a}_i^{\top} \mathbf{x} = b_i\}$$
 (set of indices of active constraints)

$$T_X(\mathbf{x}) = \{ \mathbf{d} \in \mathbb{R}^n \mid \mathbf{a}_i^\top \mathbf{d} \le 0, \ i \in I_X(\mathbf{x}) \}$$
 (tangent cone at \mathbf{x})

E-Active Constraints and Tangent Cone

For every $x \in X$, i.e., such that $Ax \le b$:

$$I_X(\mathbf{x}_k, \boldsymbol{\varepsilon}) = \{i \mid \mathbf{a}_i^{\top} \mathbf{x}_k \geq b_i - \boldsymbol{\varepsilon}\}$$
 (set of indices of $\boldsymbol{\varepsilon}$ -active constraints)

$$T_X(\mathbf{x}_k, \pmb{\varepsilon}) = \{\mathbf{d} \in \mathbb{R}^n \mid \mathbf{a}_i^\top \mathbf{d} \leq 0, \ i \in I_X(\mathbf{x}_k, \pmb{\varepsilon})\} \quad \big(\pmb{\varepsilon}\text{-tangent cone at } \mathbf{x}_k \big)$$

Proposition

Let $\{\mathbf{x}_k\}_{k\in\mathbb{N}}$ be a sequence of points in X converging to $\mathbf{x}^*\in X$. Then, there exists an $\varepsilon^*>0$ (depending only on \mathbf{x}^*) such that for any $\varepsilon\in(0,\varepsilon^*]$ there exists $k_\varepsilon\in\mathbb{N}$ such that

$$I_X(\mathbf{x}^*) = I_X(\mathbf{x}_k, \varepsilon)$$

 $T_X(\mathbf{x}^*) = T_X(\mathbf{x}_k, \varepsilon)$

for all $k > k_c$.

E-Active Constraints and Tangent Cone

For every $x \in X$, i.e., such that $Ax \le b$:

$$I_X(\mathbf{x}_k, \boldsymbol{\varepsilon}) = \{i \mid \mathbf{a}_i^{\top} \mathbf{x}_k \geq b_i - \boldsymbol{\varepsilon}\}$$
 (set of indices of $\boldsymbol{\varepsilon}$ -active constraints)

$$T_X(\mathbf{x}_k, \pmb{\varepsilon}) = \{\mathbf{d} \in \mathbb{R}^n \mid \mathbf{a}_i^\top \mathbf{d} \leq 0, \ i \in I_X(\mathbf{x}_k, \pmb{\varepsilon})\} \quad \big(\pmb{\varepsilon}\text{-tangent cone at } \mathbf{x}_k \big)$$

Proposition

Let $\{\mathbf{x}_k\}_{k\in\mathbb{N}}$ be a sequence of points in X converging to $\mathbf{x}^*\in X$. Then, there exists an $\varepsilon^*>0$ (depending only on \mathbf{x}^*) such that for any $\varepsilon\in(0,\varepsilon^*]$ there exists $k_\varepsilon\in\mathbb{N}$ such that

$$I_X(\mathbf{x}^*) = I_X(\mathbf{x}_k, \varepsilon)$$

 $T_X(\mathbf{x}^*) = T_X(\mathbf{x}_k, \varepsilon)$

for all $k > k_{\varepsilon}$.

Geometry Assumption

Let $\{\mathbf{x}_k\}_{k\in\mathbb{N}}$ be a sequence of points such that $\mathbf{x}_k\in X$. The sequence \mathbb{D}_k of poll directions satisfies:

$$\mathbb{D}_k = \{ \mathbf{d}_k^i \mid ||\mathbf{d}_k^i|| = 1, i = 1, \dots, |\mathbb{D}_k| \}$$

and for some $\bar{\varepsilon}>0$,

$$cone(\mathbb{D}_k \cap T_X(\mathbf{x}_k, \varepsilon)) = T_X(\mathbf{x}_k, \varepsilon), \quad \forall \ \varepsilon \in (0, \overline{\varepsilon}].$$

Furthermore, $\mathcal{D} = \bigcup_{k=0}^{+\infty} \mathbb{D}_k$ is a finite set, and $|\mathbb{D}_k|$ is bounded.

Convergence of LOG-SID-PSM

Lagrange Multipliers

$$\nabla Z(\mathbf{x}; \rho_k) = \nabla f(\mathbf{x}) + \sum_{\ell \in \mathcal{G}^{\log}} \frac{\rho_k}{-g_\ell(\mathbf{x})} \nabla g_\ell(\mathbf{x}) + \sum_{\ell \in \mathcal{G}^{\text{ext}}} \nu \left(\frac{\max\{g_\ell(\mathbf{x}), 0\}}{\rho_k} \right)^{\nu - 1} \nabla g_\ell(\mathbf{x}) + \sum_{j=1}^p \nu \left(\frac{|h_j(\mathbf{x})|}{\rho_k} \right)^{\nu - 1} \nabla h_j(\mathbf{x})$$

$$\lambda_{\ell}(\mathbf{x}; \rho) = \begin{cases} \frac{\rho}{-g_{\ell}(\mathbf{x})}, & \text{if } \ell \in \mathcal{G}^{\text{log}} \\ \nu \left(\frac{\max\{g_{\ell}(\mathbf{x}), 0\}}{\rho} \right)^{\nu - 1}, & \text{if } \ell \in \mathcal{G}^{\text{ext}} \end{cases}$$

$$\mu_j(\mathbf{x}; \rho) = \nu \left(\frac{|h_j(\mathbf{x})|}{\rho}\right)^{\nu-1}, \quad j = 1, \dots, p$$

Convergence of LOG-SID-PSM

Lagrange Multipliers

$$\nabla Z(\mathbf{x}; \rho_k) = \nabla f(\mathbf{x}) + \sum_{\ell \in \mathcal{G}^{\log}} \frac{\rho_k}{-g_{\ell}(\mathbf{x})} \nabla g_{\ell}(\mathbf{x}) + \sum_{\ell \in \mathcal{G}^{\text{ext}}} \nu \left(\frac{\max\{g_{\ell}(\mathbf{x}), 0\}}{\rho_k} \right)^{\nu - 1} \nabla g_{\ell}(\mathbf{x}) + \sum_{j=1}^p \nu \left(\frac{|h_j(\mathbf{x})|}{\rho_k} \right)^{\nu - 1} \nabla h_j(\mathbf{x})$$

$$\lambda_{\ell}(\mathbf{x}; \rho) = \begin{cases} \frac{\rho}{-g_{\ell}(\mathbf{x})}, & \text{if } \ell \in \mathcal{G}^{\text{log}} \\ \nu \left(\frac{\max\{g_{\ell}(\mathbf{x}), 0\}}{\rho} \right)^{\nu - 1}, & \text{if } \ell \in \mathcal{G}^{\text{ext}} \end{cases}$$

$$\mu_j(\mathbf{x}; \rho) = \nu \left(\frac{|h_j(\mathbf{x})|}{\rho}\right)^{\nu-1}, \quad j = 1, \dots, p$$

Convergence of LOG-SID-PSM

Theorem

Let $\{\mathbf{x}_k\}_{k\in\mathbb{N}}$ be the sequence of iterates generated by LOG-SID-PSM. Consider the set $K=\{k\in\mathbb{N}: \rho_{k+1}<\rho_k\}$, assume that the sets of directions $\{\mathbb{D}_k\}_{k\in\mathbb{N}}$, used by the algorithm, satisfy the Geometry Assumption and let x^* be a limit point of $\{\mathbf{x}_k\}_{k\in\hat{K}}$, $\hat{K}\subseteq K$, that satisfies the MFCQ. Then

- (i) The sequences of Lagrange multipliers $\{\lambda_{\ell}(\mathbf{x}_k; \rho_k)\}_{k \in \hat{K}}$, $\ell = 1, \ldots, m$ and $\{\mu_j(\mathbf{x}_k; \rho_k)\}_{k \in \hat{K}}$, $j = 1, \ldots, p$ are bounded.
- (ii) x^* is a stationary point

Outline

- 1 Introduction
- 2 Algorithmic Structure and Convergence Analysis
- 3 Implementation Details
- 4 Numerical Experiments
- **5** Conclusions and Future Work

LOG-SID-PSM

- Direct Search Matlab code
- Attempts a search step based on the minimization of quadratic models
- Orders the poll vectors according to a negative simplex gradient
- Handles constraints using a mixed Penalty-Logarithmic Barrier

Sufficient decrease condition

$$Z(\mathbf{x}_{k+1}; \rho_k) \le Z(\mathbf{x}_k; \rho_k) - \gamma \alpha_k^2$$

where $\gamma = 10^{-9}$

LOG-SID-PSM

- Direct Search Matlab code
- Attempts a search step based on the minimization of quadratic models
- Orders the poll vectors according to a negative simplex gradient
- Handles constraints using a mixed Penalty-Logarithmic Barrier

Sufficient decrease condition

$$Z(\mathbf{x}_{k+1}; \rho_k) \le Z(\mathbf{x}_k; \rho_k) - \gamma \alpha_k^2$$

where $\gamma = 10^{-9}$

LOG-SID-PSM

- Direct Search Matlab code
- Attempts a search step based on the minimization of quadratic models
- Orders the poll vectors according to a negative simplex gradient
- Handles constraints using a mixed Penalty-Logarithmic Barrier

Sufficient decrease condition

$$Z(\mathbf{x}_{k+1}; \rho_k) \le Z(\mathbf{x}_k; \rho_k) - \gamma \alpha_k^2$$

where $\gamma = 10^{-9}$

LOG-SID-PSM

- Direct Search Matlab code
- Attempts a search step based on the minimization of quadratic models
- Orders the poll vectors according to a negative simplex gradient
- Handles constraints using a mixed Penalty-Logarithmic Barrier

Sufficient decrease condition

$$Z(\mathbf{x}_{k+1}; \rho_k) \le Z(\mathbf{x}_k; \rho_k) - \gamma \alpha_k^2$$

where $\gamma = 10^{-9}$

LOG-SID-PSM

- Direct Search Matlab code
- Attempts a search step based on the minimization of quadratic models
- Orders the poll vectors according to a negative simplex gradient
- Handles constraints using a mixed Penalty-Logarithmic Barrier

Sufficient decrease condition

$$Z(\mathbf{x}_{k+1}; \rho_k) \le Z(\mathbf{x}_k; \rho_k) - \gamma \alpha_k^2$$

where $\gamma = 10^{-9}$

Search Step in LOG-SID-PSM – Model Building

• Reuses previous function evaluations and select points in $B(\mathbf{x}_k; \Delta_k)$, with

$$\Delta_k = \sigma \alpha_k \max_{\mathbf{d} \in D_{k-1}} \|\mathbf{d}\|$$

 Builds quadratic models for each function (f, g, and h) using the selected points:

$$\#$$
 points in $[n+2,(n+1)(n+2)/2[\Rightarrow MFN model]$

$$\#$$
 points $=(n+1)(n+2)/2 \Rightarrow \; \mathsf{Determined} \; \mathsf{interpolation} \; \mathsf{model}$

points in
$$](n+1)(n+2)/2,(n+1)(n+2)] \Rightarrow$$
 Regression mode

- 80% of the points selected nearest to the current iterate
- 20% of the points selected farthest away from the current iterate

Search Step in LOG-SID-PSM – Model Building

• Reuses previous function evaluations and select points in $B(\mathbf{x}_k; \Delta_k)$, with

$$\Delta_k = \sigma \alpha_k \max_{\mathbf{d} \in D_{k-1}} \|\mathbf{d}\|$$

 Builds quadratic models for each function (f, g, and h) using the selected points:

$$\#$$
 points in $[n+2,(n+1)(n+2)/2[\Rightarrow MFN model]$

$$\#$$
 points $=(n+1)(n+2)/2 \Rightarrow \; \mathsf{Determined} \; \mathsf{interpolation} \; \mathsf{model}$

$$\#$$
 points in $](n+1)(n+2)/2,(n+1)(n+2)] \Rightarrow \mathsf{Regression}$ model

- 80% of the points selected nearest to the current iterate
- 20% of the points selected farthest away from the current iterate

Search Step in LOG-SID-PSM - Model Building

• Reuses previous function evaluations and select points in $B(\mathbf{x}_k; \Delta_k)$, with

$$\Delta_k = \sigma \alpha_k \max_{\mathbf{d} \in D_{k-1}} \|\mathbf{d}\|$$

• Builds quadratic models for each function (f, g, and h) using the selected points:

points in
$$[n+2,(n+1)(n+2)/2] \Rightarrow MFN model$$

$$\#$$
 points $=(n+1)(n+2)/2 \Rightarrow$ Determined interpolation model

- # points in $](n+1)(n+2)/2,(n+1)(n+2)] \Rightarrow$ Regression model
 - 80% of the points selected nearest to the current iterate
 - $\bullet~20\%$ of the points selected farthest away from the current iterate

Search Step in LOG-SID-PSM

• Computes \mathbf{z}_k as the solution to the following problem:

$$\min \ Z_m(\mathbf{z};
ho_k)$$

s.t. $\mathbf{z} \in X \cap B(x_k; \Delta_k)$

where

$$Z_{m}(\mathbf{z}; \rho_{k})) = f^{m}(\mathbf{z}) - \rho_{k}^{\log 1} \sum_{\ell \in \mathcal{G}^{\log}} \log(-g_{\ell}^{m}(\mathbf{z})) + \frac{1}{\rho_{k}^{\text{ext}}} \left(\sum_{\ell \in \mathcal{G}^{\text{ext}}} (\max\{g_{\ell}^{m}(\mathbf{z}), 0\})^{\nu} + \sum_{j=1}^{p} |h_{j}^{m}(\mathbf{z})|^{\nu} \right),$$

with $\nu \in (1,2]$.

LOG-SID-PSM Penalty Parameters Rule

Penalty Function

$$Z(\mathbf{x}; \rho_k) = f(\mathbf{x}) - \frac{\rho_k^{\log}}{\rho_k^{\log}} \sum_{\ell \in \mathcal{G}^{\log}} \log(-g_\ell(\mathbf{x})) + \frac{1}{\rho_k^{\text{ext}}} \left(\sum_{\ell \in \mathcal{G}^{\text{ext}}} \left(\max\{0, g_\ell(\mathbf{x})\}\right)^{\nu} + \sum_{j=1}^p |h_j(\mathbf{x})|^{\nu} \right)$$

• The updating rule splits into

Updating ρ_{k}^{\log}

$$\alpha_{k+1} \le \min\{(\rho_k^{\log})^{\beta}, (g_{\min})_k^2\}$$

Updating ρ_k^{ext}

$$\alpha_{k+1} \le (\rho_k^{\mathsf{ext}})^{\beta}$$

$$\rho_{k+1}^{\log} = \rho_k^{\log} \min\{\eta, \max\{(g_{\min})_k^2, \zeta\}\}$$

$$\rho_{k+1}^{\texttt{ext}} = \min \left\{ \zeta \rho_k^{\texttt{ext}}, \frac{\sqrt{\alpha_{k+1}}}{10} \right\}.$$

where
$$\beta = 1 + 10^{-9}$$
, $\nu = 1.1$, and $\zeta = 10^{-2}$.

Outline

- Introduction
- Algorithmic Structure and Convergence Analysis
- 3 Implementation Details
- **4** Numerical Experiments
- **5** Conclusions and Future Work

Numerical Settings

- 96 problems with nonlinear constraints and bounds from the CUTEst collection
 - number of variables between 1 and 50
 - number of nonlinear inequality constraints between 1 and 144
 - number of nonlinear equality constraints between 0 and 30
 - number of linear inequality constraints (other than bounds) between 0 and 123
- Initialization: provided in CUTEst collection
- Stopping criterion:
 - $-\alpha_k < 10^{-8}$
 - Maximum of 2000 function evaluations

General Linear Constraints

Set of poll directions conforms to the geometry of nearby constraints.

Implementation based in Abramson, Brezhneva, Dennis, and Pingel [2008].

(in Kolda, Lewis, and Torczon [2003])

Comparison between strategies for linear constraints

 $*\oplus \pm e \equiv [e - e I - I]$

LOG-SID-PSM vs SID-PSM

*28 problems from CUTEst

Comparison with other solvers (all problems)

Comparison with other solvers (only inequality constraints)

Outline

- Introduction
- 2 Algorithmic Structure and Convergence Analysis
- 3 Implementation Details
- 4 Numerical Experiments
- 6 Conclusions and Future Work

Conclusions and Future Work

Conclusions

- LOG-SID-PSM keeps the basic algorithmic features of SID-PSM
- LOG-SID-PSM provides a mixed log-barrier approach to address nonlinear contraints in SID-PSM
- LOG-SID-PSM is competitive with state-of-the-art solvers for DFO problems with nonlinear constraints

Future Work

- Extension of the theoretical analysis for nonsmooth functions (A. Brilli, A.L. Custódio, G. Liuzzi, and E.J. Silva) ongoing work
- Extension of the constraint handling strategy to nonlinear derivative-free multiobjective optimization

Conclusions and Future Work

Conclusions

- LOG-SID-PSM keeps the basic algorithmic features of SID-PSM
- LOG-SID-PSM provides a mixed log-barrier approach to address nonlinear contraints in SID-PSM
- LOG-SID-PSM is competitive with state-of-the-art solvers for DFO problems with nonlinear constraints

Future Work

- Extension of the theoretical analysis for nonsmooth functions (A. Brilli, A.L. Custódio, G. Liuzzi, and E.J. Silva) ongoing work
- Extension of the constraint handling strategy to nonlinear derivative-free multiobjective optimization

Thank you for your attention!

Thechnical report will appear soon!