TYPED FEATURE STRUCTURES AS DESCRIPTIONS

Paul John King*

Seminar für Sprachwissenschaft, Eberhard-Karls-Universität[†]

ABSTRACT

A description is an entity that can be interpreted as true or false of an object, and using feature structures as descriptions accrues several computational benefits. In this paper, I create an explicit interpretation of a typed feature structure used as a description, define the notion of a satisfiable feature structure, and create a simple and effective algorithm to decide if a feature structure is satisfiable.

1. INTRODUCTION

Describing objects is one of several purposes for which linguists use feature structures. A description is an entity that can be interpreted as true or false of an object. For example, the conventional interpretation of the description 'it is black' is true of a soot particle, but false of a snowflake. Therefore, any use of a feature structure to describe an object demands that the feature structure can be interpreted as true or false of the object. In this paper, I tailor the semantics of [King 1989] to suit the typed feature structures of [Carpenter 1992], and so create an explicit interpretation of a typed feature structure used as a description. I then use this interpretation to define the notion of a satisfiable feature structure.

Though no feature structure algebra provides descriptions as expressive as those provided by a feature logic, using feature structures to describe objects profits from a large stock of available computational techniques to represent, test and process feature structures. In this paper, I demonstrate the computational benefits of marrying a tractable syntax and an explicit semantics by creating a simple and effective algorithm to decide the satisfiability of a feature structure. Gerdemann and Götz's

Troll type resolution system implements both the semantics and an efficient refinement of the satisfiability algorithm I present here (see [GÖTZ 1993], [GERDEMANN AND KING 1994] and [Gerdemann (fc)]).

2. A FEATURE STRUCTURE **SEMANTICS**

A signature provides the symbols from which to construct typed feature structures, and an interpretation gives those symbols meaning.

Definition 1. Σ is a signature iff

 Σ is a sextuple $\langle \mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{S}, \mathfrak{A}, \mathfrak{F} \rangle$,

 \mathfrak{Q} is a set,

 $\langle \mathfrak{T}, \preceq \rangle$ is a partial order,

$$\mathfrak{S} = \left\{ \sigma \in \mathfrak{T} \middle| \begin{array}{l} \text{for each } \tau \in \mathfrak{T}, \\ \text{if } \sigma \leq \tau \text{ then } \sigma = \tau \end{array} \right\},$$

F is a partial function from the Cartesian product of \mathfrak{T} and \mathfrak{A} to \mathfrak{T} , and

for each $\tau \in \mathfrak{T}$, each $\tau' \in \mathfrak{T}$ and each $\alpha \in \mathfrak{A}$,

if $\mathfrak{F}(\tau,\alpha)$ is defined and $\tau \prec \tau'$ then $\mathfrak{F}(\tau',\alpha)$ is defined, and

 $\mathfrak{F}(\tau,\alpha) \prec \mathfrak{F}(\tau',\alpha).$

Henceforth, I tacitly work with a signature $\langle \mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{S}, \mathfrak{A}, \mathfrak{F} \rangle$. I call members of \mathfrak{Q} states, members of \mathfrak{T} types, \leq subsumption, members of \mathfrak{S} species, members of \mathfrak{A} attributes, and \mathfrak{F} appropriateness.

Definition 2. I is an interpretation iff

I is a triple $\langle U, S, A \rangle$,

U is a set,

S is a total function from U to \mathfrak{S}

A is a total function from \mathfrak{A} to the set of partial functions from U to U,

for each $\alpha \in \mathfrak{A}$ and each $u \in U$,

if $A(\alpha)(u)$ is defined

then $\mathfrak{F}(S(u),\alpha)$ is defined, and

 $\mathfrak{F}(S(u),\alpha) \leq S(A(\alpha)(u)),$ and

for each $\alpha \in \mathfrak{A}$ and each $u \in U$,

if $\mathfrak{F}(S(u),\alpha)$ is defined

then $A(\alpha)(u)$ is defined.

Suppose that I is an interpretation $\langle U, S, A \rangle$. I call each member of U an object in I.

Each type denotes a set of objects in I. The

^{*}The research presented in this paper was sponsored by Teilprojekt B4 "Constraints on Grammar for Efficient Generation" of the Sonderforschungsbereich 340 of the Deutsche Forschungsgemeinschaft. I also wish to thank Bob Carpenter, Dale Gerdemann, Thilo Götz and Jennifer King for their invaluable help with

[†]Wilhelmstr. 113, 72074 Tübingen, Germany. Email: king@sfs.nphil.uni-tuebingen.de.

denotations of the species partition U, and S assigns each object in I the unique species whose denotation contains the object: object u is in the denotation of species σ iff $\sigma = S(u)$. Subsumption encodes a relationship between the denotations of species and types: object u is in the denotation of type τ iff $\tau \leq S(u)$. So, if $\tau_1 \leq \tau_2$ then the denotation of type τ_1 contains the denotation of type τ_2 .

Each attribute denotes a partial function from the objects in I to the objects in I, and A assigns each attribute the partial function it denotes. Appropriateness encodes a relationship between the denotations of species and attributes: if $\mathfrak{F}\langle\sigma,\alpha\rangle$ is defined then the denotation of attribute α acts upon each object in the denotation of species σ to yield an object in the denotation of type $\mathfrak{F}\langle\sigma,\alpha\rangle$, but if $\mathfrak{F}\langle\sigma,\alpha\rangle$ is undefined then the denotation of attribute α acts upon no object in the denotation of species σ . So, if $\mathfrak{F}\langle\tau,\alpha\rangle$ is defined then the denotation of attribute α acts upon each object in the denotation of type τ to yield an object in the denotation of type $\mathfrak{F}\langle\tau,\alpha\rangle$.

I call a finite sequence of attributes a path, and write \mathfrak{P} for the set of paths.

Definition 3. P is the path interpretation function under I iff

I is an interpretation $\langle U, S, A \rangle$, P is a total function from \mathfrak{P} to the set of partial functions from U to U, and for each $\langle \alpha_1, \dots, \alpha_n \rangle \in \mathfrak{P}$, $P\langle \alpha_1, \dots, \alpha_n \rangle$ is the functional composition of $A(\alpha_1), \dots, A(\alpha_n)$.

I write P_I for the path interpretation function under I.

Definition 4. F is a feature structure iff F is a quadruple $\langle Q, q, \delta, \theta \rangle$, Q is a finite subset of \mathfrak{Q} , δ is a finite partial function from the Cartesian product of Q and \mathfrak{A} to Q, θ is a total function from Q to \mathfrak{T} , and for each $q' \in Q$, for some $\pi \in \mathfrak{P}$, π runs to q' in F, where $\langle \alpha_1, \ldots, \alpha_n \rangle$ runs to q' in F iff $\langle \alpha_1, \ldots, \alpha_n \rangle \in \mathfrak{P},$ $q' \in Q$, and for some $\{q_0, \ldots, q_n\} \subseteq Q$, $q = q_0,$ for each i < n, $\delta(q_i, \alpha_{i+1})$ is defined, and $\delta(q_i, \alpha_{i+1}) = q_{i+1}$, and

Each feature structure is a connected Moore machine (see [MOORE 1956]) with finitely

 $q_n = q'$.

many states, input alphabet \mathfrak{A} , and output alphabet \mathfrak{T} .

Definition 5. F is true of u under I iff F is a feature structure $\langle Q, q, \delta, \theta \rangle$, I is an interpretation $\langle U, S, A \rangle$, u is an object in I, and for each $\pi_1 \in \mathfrak{P}$, each $\pi_2 \in \mathfrak{P}$ and each $q' \in Q$, if π_1 runs to q' in F, and π_2 runs to q' in F then $P_I(\pi_1)(u)$ is defined, $P_I(\pi_2)(u)$ is defined, $P_I(\pi_1)(u) = P_I(\pi_2)(u)$, and $\theta(q') \preceq S(P_I(\pi_1)(u))$.

Definition 6. F is a satisfiable feature structure iff

F is a feature structure, and for some interpretation I and some object uin I, F is true of u under I.

3. MORPHS

The abundance of interpretations seems to preclude an effective algorithm to decide if a feature structure is satisfiable. However, I insert *morphs* between feature structures and objects to yield an interpretation free characterisation of a satisfiable feature structure.

Definition 7. M is a semi-morph iff M is a triple $\langle \Delta, \Gamma, \Lambda \rangle$, Δ is a nonempty subset of \mathfrak{P} , Γ is an equivalence relation over Δ , for each $\alpha \in \mathfrak{A}$, each $\pi_1 \in \mathfrak{P}$ and each $\pi_2 \in \mathfrak{P}$, if $\pi_1 \alpha \in \Delta$ and $\langle \pi_1, \pi_2 \rangle \in \Gamma$ then $\langle \pi_1 \alpha, \pi_2 \alpha \rangle \in \Gamma$, Λ is a total function from Δ to \mathfrak{S} , for each $\pi_1 \in \mathfrak{P}$ and each $\pi_2 \in \mathfrak{P}$, if $\langle \pi_1, \pi_2 \rangle \in \Gamma$ then $\Lambda(\pi_1) = \Lambda(\pi_2)$, and for each $\alpha \in \mathfrak{A}$ and each $\pi \in \mathfrak{P}$, if $\pi \alpha \in \Delta$ then $\pi \in \Delta$, $\mathfrak{F}(\Lambda(\pi), \alpha)$ is defined, and $\mathfrak{F}(\Lambda(\pi), \alpha) \preceq \Lambda(\pi \alpha)$.

Definition 8. M is a morph iff M is a semi-morph $\langle \Delta, \Gamma, \Lambda \rangle$, and for each $\alpha \in \mathfrak{A}$ and each $\pi \in \mathfrak{P}$, if $\pi \in \Delta$ and $\mathfrak{F}(\Lambda(\pi), \alpha)$ is defined then $\pi \alpha \in \Delta$.

Each morph is the Moshier abstraction (see [Moshier 1988]) of a connected and totally well-typed (see [Carpenter 1992]) Moore machine with possibly infinitely many states, input alphabet $\mathfrak A$, and output alphabet $\mathfrak S$.

M is the abstraction of u under I.

```
Definition 9. M abstracts u under I iff
   M is a morph \langle \Delta, \Gamma, \Lambda \rangle,
   I is an interpretation \langle U, S, A \rangle,
   u is an object in I,
   for each \pi_1 \in \mathfrak{P} and each \pi_2 \in \mathfrak{P},
      \langle \pi_1, \pi_2 \rangle \in \Gamma
      iff P_I(\pi_1)(u) is defined,
            P_I(\pi_2)(u) is defined, and
            P_I(\pi_1)(u) = P_I(\pi_2)(u), and
   for each \sigma \in \mathfrak{S} and each \pi \in \mathfrak{P},
      \langle \pi, \sigma \rangle \in \Lambda
      iff P_I(\pi)(u) is defined, and
            \sigma = S(P_I(\pi)(u)).
Proposition 10. For each interpretation I
and each object u in I,
   some unique morph abstracts u under I.
I thus write of the abstraction of u under I.
Definition 11. u is a standard object iff
   u is a quadruple \langle \Delta, \Gamma, \Lambda, E \rangle,
   \langle \Delta, \Gamma, \Lambda \rangle is a morph, and
   E is an equivalence class under \Gamma.
I write U for the set of standard objects, write
\widetilde{S} for the total function from \widetilde{U} to \mathfrak{S}, where
   for each \sigma \in \mathfrak{S} and each \langle \Delta, \Gamma, \Lambda, E \rangle \in \widetilde{U},
      \widetilde{S}\langle\Delta,\Gamma,\Lambda,\mathrm{E}\rangle=\sigma
      iff for some \pi \in E, \Lambda(\pi) = \sigma,
and write \widetilde{A} for the total function from \mathfrak{A} to
the set of partial functions from \tilde{U} to \tilde{U}, where
   for each \alpha \in \mathfrak{A}, each \langle \Delta, \Gamma, \Lambda, E \rangle \in \widetilde{U} and
   each \langle \Delta', \Gamma', \Lambda', E' \rangle \in U,
      A(\alpha)\langle\Delta,\Gamma,\Lambda,\mathrm{E}\rangle is defined, and
      \widetilde{A}(\alpha)\langle\Delta,\Gamma,\Lambda,E\rangle = \langle\Delta',\Gamma',\Lambda',E'\rangle
      iff \langle \Delta, \Gamma, \Lambda \rangle = \langle \Delta', \Gamma', \Lambda' \rangle, and
           for some \pi \in E, \pi \alpha \in E'.
Lemma 12. \langle \widetilde{U}, \widetilde{S}, \widetilde{A} \rangle is an interpretation.
I write \widetilde{I} for \langle \widetilde{U}, \widetilde{S}, \widetilde{A} \rangle.
Lemma 13. For each \langle \Delta, \Gamma, \Lambda, E \rangle \in \widetilde{U}, each
\langle \Delta', \Gamma', \Lambda', E' \rangle \in \widetilde{U} and each \pi \in \mathfrak{P},
   P_{\widetilde{I}}(\pi)\langle\Delta,\Gamma,\Lambda,\mathrm{E}\rangle is defined, and
   P_{\widetilde{I}}(\pi)\langle \Delta, \Gamma, \Lambda, E \rangle = \langle \Delta', \Gamma', \Lambda', E' \rangle
   iff \langle \Delta, \Gamma, \Lambda \rangle = \langle \Delta', \Gamma', \Lambda' \rangle, and
        for some \pi' \in E, \pi' \pi \in E'.
Proof. By induction on the length of \pi.
```

Lemma 14. For each $\langle \Delta, \Gamma, \Lambda, E \rangle \in \widetilde{U}$, if E is the equivalence class of the empty path under Γ then the abstraction of $\langle \Delta, \Gamma, \Lambda, E \rangle$ under \widetilde{I} is $\langle \Delta, \Gamma, \Lambda \rangle$.

Proposition 15. For each morph M, for some interpretation I and some object u in I,

Definition 16. F approximates M iff F is a feature structure $\langle Q, q, \delta, \theta \rangle$, M is a morph $\langle \Delta, \Gamma, \Lambda \rangle$, and for each $\pi_1 \in \mathfrak{P}$, each $\pi_2 \in \mathfrak{P}$ and each if π_1 runs to q' in F, and π_2 runs to q' in Fthen $\langle \pi_1, \pi_2 \rangle \in \Gamma$, and $\theta(q') \leq \Lambda(\pi_1)$.

A feature structure approximates a morph iff the Moshier abstraction of the feature structure abstractly subsumes (see [Carpenter 1992) the morph.

Proposition 17. For each interpretation I, each object u in I and each feature structure F,

F is true of u under Iiff F approximates the abstraction of u

Theorem 18. For each feature structure F, F is satisfiable iff F approximates some morph.

Proof. From propositions 15 and 17.

4. RESOLVED FEATURE **STRUCTURES**

Though theorem 18 gives an interpretation free characterisation of a satisfiable feature structure, the characterisation still seems to admit of no effective algorithm to decide if a feature structure is satisfiable. However, I use theorem 18 and resolved feature structures to yield a less general interpretation free characterisation of a satisfiable feature structure that admits of such an algorithm.

Definition 19. R is a resolved feature structure iff

R is a feature structure $\langle Q, q, \delta, \rho \rangle$, ρ is a total function from Q to \mathfrak{S} , and for each $\alpha \in \mathfrak{A}$ and each $q' \in Q$, if $\delta(q', \alpha)$ is defined then $\mathfrak{F}(\rho(q'),\alpha)$ is defined, and $\mathfrak{F}(\rho(q'),\alpha) \leq \rho(\delta(q',\alpha)).$

Each resolved feature structure is a well-typed (see [Carpenter 1992]) feature structure with output alphabet \mathfrak{S} .

Definition 20. R is a resolvant of F iff R is a resolved feature structure $\langle Q, q, \delta, \rho \rangle$, F is a feature structure $\langle Q, q, \delta, \theta \rangle$, and for each $q' \in Q$, $\theta(q') \leq \rho(q')$.

Proposition 21. For each interpretation I, each object u in I and each feature structure F,

F is true of u under I

iff some resolvant of F is true of u under I. **Definition 22.** $(\mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{S}, \mathfrak{A}, \mathfrak{F})$ is rational iff for each $\sigma \in \mathfrak{S}$ and each $\alpha \in \mathfrak{A}$,

if $\mathfrak{F}(\sigma,\alpha)$ is defined then for some $\sigma' \in \mathfrak{S}$, $\mathfrak{F}(\sigma, \alpha) \leq \sigma'$.

Proposition 23. If $\langle \mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{S}, \mathfrak{A}, \mathfrak{F} \rangle$ is rational then for each resolved feature structure R, R is satisfiable.

Proof. Suppose that $R = \langle Q, q, \delta, \rho \rangle$ and β is a bijection from ordinal ζ to \mathfrak{S} . Let

$$\Delta_{0} = \left\{ \pi \middle| \begin{array}{l} \text{for some } q' \in Q, \\ \pi \text{ runs to } q' \text{ in } R \end{array} \right\},$$

$$\Gamma_{0} = \left\{ \left\langle \pi_{1}, \pi_{2} \right\rangle \middle| \begin{array}{l} \text{for some } q' \in Q, \\ \pi_{1} \text{ runs to } q' \text{ in } R, \text{ and} \\ \pi_{2} \text{ runs to } q' \text{ in } R \end{array} \right\},$$
and

 $\Lambda_0 = \left\{ \langle \pi, \sigma \rangle \middle| \begin{array}{l} \text{for some } q' \in Q, \\ \pi \text{ runs to } q' \text{ in } R, \text{ and } \\ \sigma = \rho(q') \end{array} \right\}.$

$$\Delta_{n+1} = \Delta_n \cup \left\{ \pi \alpha \middle| \begin{array}{l} \alpha \in \mathfrak{A}, \\ \pi \in \Delta_n, \text{ and} \\ \mathfrak{F}(\Lambda_n(\pi), \alpha) \text{ is defined} \end{array} \right\},$$

$$\Gamma_{n+1} = \left\{ \begin{array}{l} \alpha \in \mathfrak{A}, \\ \pi \in \Delta_n, \text{ and} \\ \mathfrak{F}(\Lambda_n(\pi), \alpha) \text{ is defined} \end{array} \right\},$$

$$\Delta_{n+1} = \Delta_n \cup \left\{ \pi \alpha \middle| \begin{array}{l} \alpha \in \mathfrak{A}, \\ \pi \in \Delta_n, \text{ and} \\ \mathfrak{F}(\Lambda_n(\pi), \alpha) \text{ is defined} \end{array} \right\},
\Gamma_{n+1} = \Gamma_n \cup \left\{ \langle \pi_1 \alpha, \pi_2 \alpha \rangle \middle| \begin{array}{l} \alpha \in \mathfrak{A}, \\ \pi_1 \alpha \in \Delta_{n+1}, \\ \pi_2 \alpha \in \Delta_{n+1}, \text{ and} \\ \langle \pi_1, \pi_2 \rangle \in \Gamma_n, \end{array} \right\}, \text{ and}$$

$$\Lambda_{n+1} = \begin{cases} \alpha \in \mathfrak{A}, \\ \langle \pi \alpha, \beta(\xi) \rangle \end{cases} \begin{vmatrix} \alpha \in \mathfrak{A}, \\ \pi \in \Delta_{n}, \\ \pi \alpha \in \Delta_{n+1} \setminus \Delta_{n}, \text{ and } \\ \xi \text{ is the least ordinal in } \zeta \text{ such that } \\ \mathfrak{F}(\Lambda_{n}(\pi), \alpha) \leq \beta(\xi) \end{cases}$$

For each $n \in \mathbb{N}$, $\langle \Delta_n, \Gamma_n, \Lambda_n \rangle$ is a semi-morph.

$$\Delta = \bigcup \{ \Delta_n \mid n \in \mathbb{N} \},$$

$$\Gamma = \bigcup \{ \Gamma_n \mid n \in \mathbb{N} \}, \text{ and }$$

$$\Lambda = \bigcup \{ \Lambda_n \mid n \in \mathbb{N} \}.$$

 $\langle \Delta, \Gamma, \Lambda \rangle$ is a morph that R approximates. By theorem 18, R is satisfiable.

Theorem 24. If $\langle \mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{S}, \mathfrak{A}, \mathfrak{F} \rangle$ is rational then for each feature structure F,

F is satisfiable iff F has a resolvant.

Proof. From propositions 21 and 23.

5. A SATISFIABILITY ALGORITHM

In this section, I use theorem 24 to show how - given a rational signature that meets reasonable computational conditions – to construct an effective algorithm to decide if a feature structure is satisfiable.

```
Definition 25.
                                 \langle \mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{S}, \mathfrak{A}, \mathfrak{F} \rangle is com-
putable iff
   \mathfrak{Q}, \mathfrak{T} and \mathfrak{A} are countable,
   S is finite,
   for some effective function SUB,
      for each \tau_1 \in \mathfrak{T} and each \tau_2 \in \mathfrak{T},
         if \tau_1 \leq \tau_2
         then SUB(\tau_1, \tau_2) = 'true'
         otherwise SUB(\tau_1, \tau_2) = 'false', and
   for some effective function APP.
      for each \tau \in \mathfrak{T} and each \alpha \in \mathfrak{A},
         if \mathfrak{F}(\tau,\alpha) is defined
         then APP(\tau, \alpha) = \mathfrak{F}(\tau, \alpha)
         otherwise APP(\tau, \alpha) = 'undefined'.
Proposition 26. If \langle \mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{S}, \mathfrak{A}, \mathfrak{F} \rangle is com-
putable then for some effective function RES,
   for each feature structure F,
      RES(F) = a list of the resolvants of F.
Proof. Since \langle \mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{S}, \mathfrak{A}, \mathfrak{F} \rangle is computable,
for some effective function GEN,
   for each finite Q \subseteq \mathfrak{Q},
      GEN(Q) = a list of the total functions
      from Q to \mathfrak{S},
for some effective function TEST_1,
   for each finite set Q, each finite partial
   function \delta from the Cartesian product of Q
   and \mathfrak{A} to Q, and each total function \theta from
      if for each \langle q, \alpha \rangle in the domain of \delta,
            \mathfrak{F}(\theta(q), \alpha) is defined, and
            \mathfrak{F}(\theta(q), \alpha) \leq \theta(\delta(q, \alpha))
      then TEST_1(\delta, \theta) = \text{'true'}
      otherwise TEST_1(\delta, \theta) = 'false',
and for some effective function TEST<sub>2</sub>,
   for each finite set Q, each total function \theta_1
   from Q to \mathfrak{T} and each total function \theta_2
   from Q to \mathfrak{T},
      if for each q \in Q, \theta_1(q) \leq \theta_2(q)
      then TEST_2(\theta_1, \theta_2) = \text{'true'}
      otherwise TEST_2(\theta_1, \theta_2) = 'false'.
Construct RES as follows:
   for each feature structure \langle Q, q, \delta, \theta \rangle,
      set \Sigma_{\rm in} = \mathtt{GEN}(Q) and \Sigma_{\rm out} = \langle \rangle
      while \Sigma_{\rm in} = \langle \rho, \rho_1, \dots, \rho_i \rangle is not empty
      do set \Sigma_{\rm in} = \langle \rho_1, \dots, \rho_i \rangle
           if TEST_1(\delta, \rho) = 'true',
              TEST_2(\theta, \rho) = 'true', and
              \Sigma_{\text{out}} = \langle \rho'_1, \dots, \rho'_i \rangle
           then set \Sigma_{\text{out}} = \langle \rho, \rho'_1, \dots, \rho'_i \rangle
      if \Sigma_{\text{out}} = \langle \rho_1, \dots, \rho_n \rangle
      then output \langle \langle Q, q, \delta, \rho_1 \rangle, ..., \langle Q, q, \delta, \rho_n \rangle \rangle.
RES is an effective algorithm, and
   for each feature structure F,
      RES(F) = a list of the resolvants of F.
```

Theorem 27. If $\langle \mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{S}, \mathfrak{A}, \mathfrak{F} \rangle$ is rational and computable then for some effective function SAT,

for each feature structure F, if F is satisfiable then SAT(F) ='true otherwise SAT(F) ='false'.

Proof. From theorem 24 and proposition 26.

Gerdemann and Götz's Troll system (see [GÖTZ 1993], [GERDEMANN AND KING 1994] and [GERDEMANN (FC)]) employs an efficient refinement of RES to test the satisfiability of feature structures. In fact, Troll represents each feature structure as a disjunction of the resolvants of the feature structure. Loosely speaking, the resolvants of a feature structure have the same underlying finite state automaton as the feature structure, and differ only in their output function. Troll exploits this property to represent each feature structure as a finite state automaton and a set of output functions. The Troll unifier is closed on these representations. Thus, though RES is computationally expensive, Troll uses RES only during compilation, never during run time.

References

[Carpenter 1992] Robert Carpenter The logic of typed feature structures. Cambridge tracts in theoretical computer science 32. Cambridge University Press, Cambridge, England. 1992.

[GERDEMANN (FC)] Dale Gerdemann. Troll: type resolution system, user's guide. Sonderforschungsbereich 340 technical report. Eberhard-Karls-Universität, Tübingen, Germany. Forthcoming.

[Gerdemann and King (1994)] Dale Gerdemann and Paul John King. The correct and efficient implementation of appropriateness specifications for typed feature structures. In these proceedings.

[GÖTZ 1993] Thilo Götz. A normal form for typed feature structures. Master's thesis. Eberhard-Karls-Universität, Tübingen, Germany. 1993.

[KING 1989] Paul John King. A logical formalism for head-driven phrase structure grammar. Doctoral thesis. The University of Manchester, Manchester, England. 1989.

[MOORE 1956] E. F. Moore. 'Gedanken experiments on sequential machines'. In Automata Studies. Princeton University Press, Princeton, New Jersey, USA. 1956.

[Moshier 1988] Michael Andrew Moshier. Extensions to unification grammar for the description of programming languages. Doctoral thesis. The University of Michigan, Ann Arbor, Michigan, USA. 1988.