DERWENT-ACC-NO: 1986-202839

DERWENT-WEEK:

198631

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE:

Drill for deep-hole boring in metals - uses

additional

tool edge with apex axially offset from gauging

tip using

sharpening geometry parameter formula

INVENTOR: GALITSKII, V V

PATENT-ASSIGNEE: KIEV POLY[KIPO]

PRIORITY-DATA: 1983SU-3568774 (March 30, 1983)

PATENT-FAMILY:

LANGUAGE PUB-DATE PUB-NO

PAGES MAIN-IPC

N/ADecember 23, 1985 SU 1199480 A

N/A003

APPLICATION-DATA:

APPL-DESCRIPTOR APPL-NO PUB-NO

APPL-DATE

1983SU-3568774 N/ASU 1199480A

March 30, 1983

INT-CL (IPC): B23B051/06

ABSTRACTED-PUB-NO: SU 1199480A

BASIC-ABSTRACT:

The drill consists of outer, inner and auxiliary cutting edges and a gauging

tio. One of the quides (4) has an additional cutting edge (9) axially offset

in relation to the tip (13). The edge width hi is formulated in accordance

with the geometrical parameters involved in tool sharpening thus hi should be

greater than: DELTAi/tan PHIH - SC PHIB(tan THETA UB sin PSI + sin PHIB cos

PSI) in PHIH is the outer cutting edge angle in plane view, PHIB the inner

7/17/2006, EAST Version: 2.0.3.0

cutting edge (7) angle in olane, THETA UB the relief angle of the inner cutting

edge in normal section; DELTAi is the offset of the additional edge apex (12)

relative the gauging tin (13) and PSI represents the angle between tip and apex.

In drilling, the cutter olate (5) aoex makes contact with the component endface

at the same time as the apex (12) of the additional edge (9). The chip breaker

groove (15) extends along the guide (4) leading surface (10) to take the chip

from the additional tool edge (9) either for transfer to the main groove (16)

or an outlet.

USE/ADVANTAGE - Deep hole boring in metal working. Additional cutting edge and

tip offset ensures stable tool performance during cutting-in and conforms with

sharpening parameters in extended tool life. Bul.47/23.12.85

CHOSEN-DRAWING: Dwg.2/2

TITLE-TERMS: DRILL DEEP HOLE BORE METAL ADD TOOL EDGE APEX AXIS OFFSET GAUGE

TIP SHARP GEOMETRY PARAMETER FORMULA

DERWENT-CLASS: P54

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1986-151369

(5D 4 B 23 B 51/06

(19) SU (1) 1199480

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(22) 30.03.83

(46) 23.12.85. Бюл. № 47

(71) Киевский ордена Ленина политехнический институт им. 50-летия Великой Октябрьской социалистической революции

(72) В.В.Галнцкий

(53) 621.951.7(088.8)

(56) Тронцкий Н.Д. Скоростное сверление глубоких отверстий диаметром 30 мм и выше. - Л.: ЛДНТП, 1960.

(54)(57) СВЕРЛО ОДНОСТОРОННЕГО РЕЗА-НИЯ для обработки точных отверстий с направляющими элементами и режущим элементом, содержащий наружную, внутреннюю и вспомогательную режущие кромки и капибрующую вершину, о тл и ч а ю щ е е с я тем, что, с целью повышения точности обработки начального участка отверстия, на одном из направляющих элементов выполнена дополнительная режущая кромка, смещенная в осевом направлении относительно калибрующей вершины, ширина h, которой выбрана исходя из геометрических параметров
заточки режущего элемента по формуле

где Ч_н - угол в плане наружной режущей кромки;

Ч_в - угол в плане внутренней режущей кромки;

 $\theta_{\rm ив}$ - задний угол внутренней режущей кромки в нормальном сечении;

 ∆ - величина смещения вершины дополнительной режущей кромки относительно капибрующей вершины режущего элемента;

Ч - угол между калибрующей вершиной и вершиной дополнительной режущей кромки.

us SU m 1199480

10

30

Изобретение относится к металлообработке, в частности к обработке

глубоких отверстий.

Цель изобретения - повышение точности обработки начального участ- ка отверстия.

Указанная цель достигается тем, что на одной из твердосплавных направляющих выполнена дополнительная режущая кромка, улучшающая центрирование сверла при срезании.

На фиг. 1 показано предложенное сверло, вид сверху; на фиг. 2 - то же, вид с торца; на фиг. 3 - сечение А-А на фиг. 2.

Сверло состоит из корпуса 1 с отверстнем 2 для подвода СОЖ. Базовые направляющие 3 и 4 и основная режущая пластина 5, содержащая наружную 6, внутреннюю 7 и вспомогательную 8 режущие кромки, закреплены в корпусе 1 сверла. Дополнительная режущая кромка 9 образована пересечением передней 10 и задней 11 поверхностей базовой направляющей 4. Для обеспечения процесса резания по всей длине режущей кромки 9 дополнительной базовой направляющей 4, высоту h, направляющей 4 находят из соотношения

где Ч_и - угол в плане наружной режущей кромки 6;

 Ψ_{B} - угол в плане внутренней режущей кромки 7;

θ_{ив} - задний угол внутренней режущей кромки 7 в нормальном сечении;

Феличина, определяющая смещение вершины 12 дополнительной режущей кромки 9 относительно калибрующей вершины 13 режущей пластины 5;

 угол между калибрующей вер шиной режущей пластины и
 вершиной дополнительной ре жущей кромки 9.

Угол Ψ определяется из соотношения $\frac{M \sin \Psi_B + t e^2 \theta_{uB} \sqrt{t e^2 \theta_{vB} + \sin^2 \Psi_B + M^2}}{t e^2 \theta_{uB} + \sin^2 \Psi_B}$

Величина М определяется по формуле 55

$$M = \frac{(R-md) tg \, \Psi_H - m \, dtg \, \Psi_B - \Delta_i}{R} \cos \Psi_B,$$

где R - радиус инструмента;

md - величина, определяющая смещение вершины режущей пластины 5 относительно оси инструмента;

Заточкой сверла по задней плоской поверхности 14 внутренней режущей кромки 7 с углом $\theta_{\rm MB}$ в сечении, нормальном этой кромке, равным

добиваются требуемой величины смещения Д; вершины 12 дополнительной режущей кромки 9 относительно калибрующей вершины 13 режущей пластины 5 в случае, если положение базовой направляющей 4 строго определено фиксированной величиной угла Ч. В случае, если параметры заточки сверла строгоопределены фиксированными значениями ($\Psi_{\rm H}$, $\Psi_{\rm B}$, $\theta_{\rm MB}$, md), требуемая величина д. смещения вершины 12 дополнительной режущей кромки 9 относительно калибрующей вершины 13 режущей пластины 5, достигается при размещемии дополнительной базовой направляющей 4 с углом Ч.

Паз 15 расположен вдоль базовой направляющей 4 со стороны ее передней поверхности 10 на длину; равную не менее 2/3 длины базовой направляющей 4, и служит пространством для размещения образующейся при резании материала детали кромки 9 стружки. В зависимости от характера образующейся стружки, ее отвод в полость стружкоотводящего желоба 16 сверла осуществляется либо через отверстие 17, либо в пространство между поверхностью резания и телом стебля сверла.

В процессе сверления вершины 18 режущей пластины 5 касается торца обрабатываемой детали, например, одновременно с вершиной 12 дополнительной режущей кромки 9. Таким образом обеспечивается стабильное базирование сверла в обрабатываемом отверстии в период врезания, а окончательно отверстие формируется калибрующей вершиной 13 режущей пластить 155 ны 5.

Предлагаемая конструкция инструмента обеспечивает улучшение условий базирования сверла при врезании и в зависимости от параметров заточки , дополнительной режущей кромки и от положения ее вершины относительно калибрующей вершины режущей пластины повышает стойкость сверла.

Составитель Н. Кириллова
Редактор Е.Папп Техред А. Бойко Корректор Г. Решетник
Заказ 7766/14 Тираж 1085 Подписное
ВНИИЛИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5
Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4