Permit No. 2975/PSD-TX-778M1

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	<u>Emissi</u>	on Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
SMO1	No. 1 Smelt Tank	TSP	10.9	47.7
	Scrubber (d)	PM ₁₀	10.9	47.7
		VOC (b)	3.3	14.3
		SO_2	7.5	24.7
		SO₃	0.2	0.9
		TRS (a)	1.8	7.9
		NO_x	1.8	7.9
		NH_3	2.1	8.9
SMO2**	No. 2 Smelt Tank	TSP	18.9	82.6
	Scrubber (c)	PM_{10}	18.9	82.6
		VOC (b)	6.0	26.1
		SO_2	13.4	58.7
		SO₃	0.4	1.9
		TRS (a)	3.1	13.9
		NO_x	3.3	14.3
		NH_3	3.8	16.5
CLTO1, WLT01,	No. 1 Black Liquor	VOC (b)	1.7	7.5
HLT01	Storage Tank	TRS (a)	1.1	5.0
CLTO2, WLT02,	No. 2 Black Liquor	VOC (b)	2.1	9.3
HLT02	Storage Tanks	TRS (a)	1.4	6.2
SCT01, SS01	No. 1 Soap Tanks	VOC (b)	0.5	2.2
	·	TRS (a)	0.3	1.5
SCT02, SST02,	No. 2 Soap Tanks	VOC (b)	1.7	7.2
SS02	-	TRS (a)	1.1	4.8
FOT02, FORT01	Fuel Oil Tanks	VOC (b)	0.7	3.1
,	-	TRS (a)	0.5	2.1
BATO1	No. 1 Boiler Ash Tank	VOC (b)	1.2	5.3
-		()	<u>-</u>	

Emission	Source	Air Contaminant	<u>Emissior</u>	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
		TRS (a)	1.2	5.3
PATO1	No. 1 Precipitator	VOC (b)	1.2	5.3
	Ash Tank	TRS (a)	1.6	7.0

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	<u>Emissio</u> lb/hr	n Rates * TPY
(e)	Misc. Black Liquor Service Vessels	VOC (b) TRS (a)	2.8 1.9	12.4 8.4
PBO2	Power Boiler No. 2 (f)	$\begin{array}{c} TSP \\ PM_{10} \\ VOC \ (b) \\ NO_{x} \\ SO_{2} \\ CO \end{array}$	111.0 111.0 76.4 332.0 770.0 1337.0	486.2 486.2 334.6 1454.2 3372.6 5856.0
LKO2**	Lime Kiln No. 2 (g)	TSP PM_{10} NO_x SO_2 SO_3 CO $TRS (a)$ $VOC (b)$	26.3 26.3 33.3 1.2 0.2 4.2 2.5 4.0	115.2 115.2 145.9 5.3 1.1 18.5 11.1 17.5
LS01**	No. 1 Lime Slaker	$TSP_{PM_{10}}$ NH_3	0.2 0.2 7.6	1.0 1.0 33.1
LS02**	No. 2 Lime Slaker	$TSP_{PM_{10}}$ NH_3	0.2 0.2 14.1	1.0 1.0 61.8
CP01	No. 1 Causticizier Tanks	NH_3	2.1	9.1
CP02	No. 2 Causticizier Tanks	NH_3	3.9	17.0
(i)	A-Line Brown Stock Washer	VOC (b) TRS (a)	25.4 26.0	111.2 114.1
(j)	B-Line Brown Stock Washer	VOC (b) TRS (a) CO	80.6 30.2 6.0	352.9 133.4 26.3

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	<u>Emissic</u> lb/hr	on Rates * TPY
BP14	B-Line Bleach Plant Scrubber (North)	Cl ₂ /ClO ₂ CO VOC (b) TRS (a)	4.3 19.2 2.1 0.1	18.9 84.3 9.2 0.2
BP15	B-Line Bleach Plant Scrubber (South)	Cl ₂ /ClO ₂ CO VOC (b) TRS (a)	4.3 19.2 2.1 0.1	18.9 84.3 9.2 0.2
BP16	A-Line Bleach Plant Scrubber	Cl ₂ /ClO ₂ CO VOC (b) TRS (a)	12.1 23.6 2.6 0.1	52.9 103.5 11.3 0.3
BP0351	Methanol Storage Tank	CH₃OH	0.3	1.4
BP0368	Hydrogen Peroxide Tank	H_2O_2	<0.1	0.2
WLOXT1	White Liquor	NH_3	0.1	0.4
EX5 and EX7 (n)	Extruder Vents and Fugitives (4)	VOC (b) NO _x CO	6.4 1.2 3.2	28.0 5.3 13.9
PM1 and PM3d(p)	Paper Machines No. 1 and No. 3	VOC (b) NOx CO	29.0 0.1 1.0	127.0 0.4 4.4
RBO1A (d,r)	No. 1 Recovery Boiler North Stack	TSP PM_{10} $VOC (b)$ NO_{x} $SO_{2} (r)$ SO_{3} CO $TRS (a)$	30.9 30.9 10.4 34.7 172.0 0.7 325.4 6.7	135.3 135.3 45.6 152.1 251.1 3.1 1425.1 29.3

Emission	Source	Air Contaminant	<u>Emissio</u>	on Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
RBO1B (d,r)	No. 1 Recovery Boiler	TSP	30.9	135.3
	South Stack	PM_{10}	30.9	135.3
		VOC (b)	10.4	45.6
		NO _x	34.7	152.1
		SO ₂ (r)	172.0	251.1
		SO₃	0.7	3.1
		CO	325.4	1425.1
		TRS (a)	6.7	29.3

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	<u>Emissior</u> lb/hr	n Rates * TPY
RBO2A** (c)	No. 2 Recovery Boiler	TSP	42.5	176.9
NDOZA (C)	West Stack	PM ₁₀	42.5	176.9
	West Stack	VOC (b)	23.9	99.5
		NO _x	112.4	467.7
		SO ₂	377.0	522.8
		SO₃	14.1	19.6
		CO	218.5	908.9
		TRS (a)	3.3	13.9
		THO (d)	0.0	20.0
RBO2B** (c)	No. 2 Recovery Boiler	TSP	42.5	176.9
	East Stack	$PM_{\mathtt{10}}$	42.5	176.9
		VOC (b)	23.9	99.5
		NO _x	112.4	467.7
		SO ₂	377.0	522.8
		SO ₃	14.1	19.6
		CO	218.5	908.9
		TRS (a)	3.3	13.9
		(3)		
NCG01**	NCG Oxidation Unit	VOC (b)	< 0.1	0.3
	Scrubber	NO _x	3.1	13.6
		SO ₂	16.0	70.1
		CO	6.6	29.0
		SO₃	6.0	26.3
		TRS (a)	0.9	4.0
NCG02**	Condensate Tank	TRS (a)	< 0.1	0.4
REJCYC1A and	Reject Cyclones (k)	TSP	1.6	7.0
REJCYC1B		PM_{10}	1.6	7.0
		VOC (b)	1.1	4.8
		TRS (a)	<0.1	0.1
(h)	Material Handling and	TSP	1.7	7.5
	Misc. Vessels (4)	PM_{10}	8.0	3.4
		NH_3	6.0	26.2
NCGF1**	NCG Fugitives (4)	TRS (a)	0.4	1.6
			. .	2.0
CPS1 (m)	Misc. Wood Handling	TSP	11.4	50.2

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
	Fugitives (4)	PM_{10}	3.4	15.2
		VOC (b)	40.3	176.8
		TRS (a)	<0.1	0.1
BP01	Bleach Plant	Cl_2	0.2	1.0
	Fugitives (4)	CIO ₂	0.2	1.0
DIG1	Batch Digestor	VOC (b)	1.6	7.1
	Fugitives (4)	TRS (a)	0.6	2.5
WWTS1	Waste Water Treatment	VOC (b)	8.1	35.2
	Fugitives (4)	TRS (a)	8.9	39.0

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) TSP total suspended particulate, including PM₁₀.
 - PM₁₀ particulate matter less than 10 microns in diameter.
 - VOC volatile organic compounds as defined in General Rule 101.1
 - SO₂ sulfur dioxide
 - SO₃ sulfur trioxide
 - TRS total reduced sulfur
 - NO_x nitrogen oxides
 - NH₃ ammonia
 - Cl₂ chlorine
 - ClO₂ chlorine dioxide (chlorine peroxide)
 - CO carbon monoxide
 - H₂S hydrogen sulfide
- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- * Unless otherwise specified, emission rates are based on operating 8,760 hours per year or 817,803 Air Dried Unbleached Tons (ADUBT) per year (736,022 Bone Dry Unbleached Tons [BDUBT] per year) of pulp.
- ** These facilities are also covered by PSD-TX-778M1.

Notes:

(a) The TRS emission rates are reported as H_2S .

- (b) The VOCs are reported as carbon.
- (c) The No. 2 Recovery Boiler is limited to 99.25 tons per hour of virgin black liquor solids.
- (d) The No. 1 Recovery Boiler is limited to 54.50 tons per hour of virgin black liquor solids.
- (e) Black Liquor Digestor Fill Tank (BLDF01), Spill Collection Tank (CT01), Swing Tank (ST01), Spare Liquor Storage (SLST01), Evaporator Boil-Out Tank (BOR01), Black Liquor Dump Tank (DT01), Weak Liquor Soap Concentrator Tank (WLSC01).
- (f) The SO₂ hourly rates for the power boiler are based on combustion of total reduced sulfur compounds during periods when the NCG oxidizer is inoperable.
- (g) The No. 2 Lime Kiln is limited to 400 tons per day of lime.
- (h) Green liquor clarifiers (2), green liquor storage tanks (3), weak wash storage tanks (2), white liquor storage tanks (4), white liquor/digestor fill tank, mud washers (2), conveyors, elevators, and hot lime silos (2).
- (i) Consists of the washers, screen dilution tank, decker hood and seal pit, washed stock chest, low density chest, waste stock chest, and brown stock high density tanks (2).
- (j) Consists of the washers, screen dilution tank, decker hood and seal pit, washed stock chest, low density chest, waste stock chest, and the oxygen blow tank (with its associated equipment: the roll press, press level tank, press filtrate tank, and the surge tank).
- (k) Only one cyclone will be in operation at a time.
- (m) These fugitives occur from the chip handling operations, the log processing, and from the rejects bin.
- (n) Includes the pre-treater stacks (2), the laminator stacks (2), the post-treater stack, and fugitives.
- (p) The No. 1 and No. 3 Paper Machines consist of 18 exhaust vents and fugitive emissions.
- (r) The SO₂ emission rates have been determined from and are based on continuous emission monitoring data and Special Condition No. 15 which limits the maximum hourly in-stack average to 300 ppmv and the annual average in-stack SO₂ concentrations to 100 ppmv.