

Exercice 1: La fonction exponentielle.

- 1. Montrez que la série entière complexe $\sum_{n\geq 0} \frac{z^n}{n!}$ a un rayon de convergence infini. On note $\exp(z)$ sa somme. On définit ainsi la fonction exponentielle sur \mathbb{C} .
- 2. Justifiez que $x \mapsto \exp(x)$ est de classe C^{∞} sur \mathbb{R} . Montrez que $\exp' = \exp$.
- 3. Montrez que pour tout $z_1, z_2 \in \mathbb{C}$, $\exp(z_1 + z_2) = \exp(z_1) \exp(z_2)$. (Indication: pensez au produit de Cauchy)
- 4. Montrez que $\overline{\exp(z)} = \exp(\overline{z})$ pour tout $z \in \mathbb{C}$. En déduire que $|\exp(it)| = 1$ pour tout $t \in \mathbb{R}$.
- 5. On définit, pour $\theta \in \mathbb{R}$, $\sin(\theta) = \text{Im}(\exp(i\theta))$ et $\cos(\theta) = \text{Re}(\exp(i\theta))$. Montrez que pour tout $\theta \in \mathbb{R}$

$$\sin(\theta) = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n+1}}{(2n+1)!}$$
 et $\cos(\theta) = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n}}{(2n)!}$

6. Vérifiez que sin et cos sont de classe C^{∞} sur \mathbb{R} et que sin' = cos, cos' = - sin.

Exercice 2: Série de fonctions.

On considère la série de fonction $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n+x^2}$

- 1. Montrez que la série converge simplement sur \mathbb{R} . On note S sa somme.
- 2. Montrez que la série converge uniformément sur \mathbb{R} .
- 3. Soit $A \subset \mathbb{R}$, non vide. Montrez que la série ne converge pas normalement sur A.
- 4. Montrez que la somme de la série est dérivable sur \mathbb{R} .
- 5. Déterminez la limite de S(x) quand $x \to +\infty$.

Exercice 3: Formule de Cauchy, thèorème de Liouville

Soit $\sum_{n\geq 0} a_n z^n$ une série entière complexe de rayon de convergence R>0 et de somme f.

1. Soit $r \in]0, R[$, montrez

$$\forall n \in \mathbb{N}, \ a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta$$

- 2. Application (théorème de Liouville): on suppose que $R=+\infty$. Montrez que si f est bornée sur \mathbb{C} , alors elle est constante.
- 3. Ce dernier résultat subsiste-t-il si l'on suppose seulement f bornée sur \mathbb{R} ?

Remarque: le théorème de Liouville permet de montrer facilement le théorème de d'Alembert-Gauss, à savoir "un polynôme complexe non constant admet au moins une racine sur $\mathbb C$ ". Pour le démontrer, on procède par l'absurde en considérant un polynôme P non constant ne s'annulant pas sur $\mathbb C$. On peut alors montrer que $z\mapsto \frac{1}{P(z)}$ est la somme d'une série entière de rayon de convergence infini. P est non constant donc $|P(z)|\xrightarrow[|z|\to\infty]{}+\infty$. On en déduit que $\frac{1}{P}$ est bornée sur $\mathbb C$ et donc constante par le théorème de Liouville, ce qui est absurde!

1

Exercice 4: Zéros et convergence uniforme.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues sur [a,b] convergent uniformément vers une fonction f sur [a,b]. On suppose que chaque fonction f_n admet un zéro sur [a,b]. Montrez que f admet un zéro sur [a,b].

Exercice 5: Unicité des coefficients et principe des zéros isolés.

Soit $S = \sum_{n \ge 0} a_n z^n$ une série réelle complexe de rayon de convergence $\rho > 0$.

- 1. On suppose dans cette question qu'il existe $0 < r < \rho$ tel que S est nulle sur le disque ouvert B(0,r). Montrez que $\forall n \in \mathbb{N}, \ a_n = 0$.
- 2. En déduire que si deux séries entières sont égales sur un disque centré en 0 de rayon strictement positif, alors leurs coefficients sont égaux.
- 3. On suppose maintenant qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ de points de $B(0,\rho)\setminus\{0\}$, convergent vers 0. On suppose en outre que pour tout $n\in\mathbb{N}$, $S(x_n)=0$. Montrez que $\forall n\in\mathbb{N}$, $a_n=0$. (Indication: on pourra raisonner par l'absurde et considérer le plus petit $p\in\mathbb{N}$ tel que $a_p\neq 0$).

Exercice 6: Dénombrement et séries entières.

Le but de cet exercice est de calculer $a(k,n) = \#\{(i_1,\ldots,i_k) \in \{1,\ldots,n\}^k \mid i_1+\cdots+i_k=n\}$, pour $n,k\geq 1$.

1. Montrez que pour tout $z \in \mathbb{C}$ tel que |z| < 1 on a

$$\frac{1}{(1-z)^k} = \sum_{n=0}^{\infty} a(k,n)z^n$$

(Indication: utilisez le produit de Cauchy)

2. En développant $(1-z)^{-k}$ en série entière d'une autre façon, calculer a(k,n) en fonction de n et k. (On pourra utiliser le résultat de la question 2 de l'exercice 5)

