ÜBUNGEN ZU "C*-ALGEBREN UND K-THEORIE" ÜBUNGSBLATT 14 ABGABE: 6.2.2017

VL: PD DR. A. ALLDRIDGE; ÜBUNGEN: CH. MAX, MSC, D. OSTERMAYR, MSC

(4 Punkte) Aufgabe 1.

- (a) Zeigen Sie die folgende Isomorphismen abelscher Gruppen und bestimmen Sie Repräsentanten für die Erzeuger:
 - (i) $K_0(\mathbb{C}) \cong \mathbb{Z}$, $K_1(\mathbb{C}) = 0$.
 - (ii) $K_0(\mathbb{C}^+) \cong \mathbb{Z} \oplus \mathbb{Z}, K_1(\mathbb{C}^+) = 0.$
- (iii) $K_0(\mathcal{C}(\mathbb{S}^1)) \cong \mathbb{Z}$, $K_1(\mathcal{C}(\mathbb{S}^1)) \cong \mathbb{Z}$. (b) Sei $f_n \colon \mathbb{S}^1 \longrightarrow \mathbb{S}^1$, $f_n(z) = z^n$, und $f_n^{\sharp} \colon \mathcal{C}(\mathbb{S}^1) \longrightarrow \mathcal{C}(\mathbb{S}^1)$ der induzierte Morphismus $f_n^{\sharp}(g) = g \circ f_n$. Man berechne $(f_n^{\sharp})_*$ auf $K_i(\mathcal{C}(\mathbb{S}^1))$ $(i \in \{0, 1\})$.

Aufgabe 2. Sei A eine unitale C^* -Algebra. Man zeige:

(6 Punkte)

(a) Für $n \ge 1$ induzieren die Abbildungen

$$\iota_n \colon A \longrightarrow M_n(A), \ a \longmapsto \operatorname{diag}(a, 0_{n-1})$$

 $\varepsilon_n \colon A \longrightarrow M_n(A), \ a \longmapsto \operatorname{diag}(a, 1_{n-1})$

einen Isomorphismus auf K_0 bzw. auf K_1 .

(b) Für jedes $x \in K_0(A)$ gibt es ein $n \ge 1$ und einen unitalen *-Morphismus $\psi \colon \mathbb{C}^+ \to M_n(A)$, so dass x im Bild der folgenden Abbildung liegt:

$$((\iota_n)_*)^{-1} \circ \psi_* \colon K_0(\mathbb{C}^+) \longrightarrow K_0(A).$$

(c) Für jedes Element $x \in K_1(A)$ gibt es ein $n \ge 1$ und einen unitalen *-Morphismus $\psi \colon \mathcal{C}(\mathbb{S}^1) \longrightarrow M_n(A)$, so dass x im Bild der folgenden Abbildung liegt:

$$((\varepsilon_n)_*)^{-1} \circ \psi_* \colon K_1(\mathcal{C}(\mathbb{S}^1)) \longrightarrow K_1(A).$$

Aufgabe 3. Seien $\varepsilon_1, \, \varepsilon_2 \in \{0,1\}$. Eine natürliche Transformation $F: K_{\varepsilon_1} \longrightarrow K_{\varepsilon_2}$ besteht aus einer Familie von Gruppenhomomorphismen

$$F_A: K_{\varepsilon_1}(A) \longrightarrow K_{\varepsilon_2}(A),$$

für jede unitale C*-Algebra A, so dass für jeden unitalen *-Morphismus $\psi \colon A \longrightarrow B$ das folgende Diagramm kommutiert:

$$K_{\varepsilon_{1}}(A) \xrightarrow{F_{A}} K_{\varepsilon_{2}}(A)$$

$$\psi_{*} \downarrow \qquad \qquad \downarrow \psi_{*}$$

$$K_{\varepsilon_{1}}(B) \xrightarrow{F_{B}} K_{\varepsilon_{2}}(B)$$

Man zeige die folgenden Aussagen:

- (a) Ist $|\varepsilon_1 \varepsilon_2| = 1$, so ist $F_A = 0$ für alle A.
- (b) Ist $|\varepsilon_1 \varepsilon_2| = 0$, so gibt es ein $k \in \mathbb{Z}$ mit der Eigenschaft, dass $F_A(x) = k \cdot x$ für jede unitale C^* -Algebra A und jedes $x \in K_{\varepsilon_1}(A)$.
- (c) Bis auf Multiplikation mit ± 1 gibt es höchstens einen natürlichen Isomorphismus $K_0 \longrightarrow K_2$. Dabei ist ein natürlicher Isomorphismus eine natürliche Transformation F, so dass alle F_A Gruppenisomorphismen sind.

Hinweis: Man benutze Aufgabe 2, um die Aussage auf $K_0(\mathbb{C}^+)$ und $K_1(\mathfrak{C}(\mathbb{S}^1))$ zurückzuführen.