SCRUM Domain Optimization Model From Entities, Relationships, Goals, Conditions, Decision Variables

${\bf Truely Most Wanted}$

August 12, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	6
5	5. DecisionVariables	7

1 1. Sets (Entities)

- \mathcal{P} (Project): The product or initiative to be developed.
- \mathcal{T} (Team): Self-organized, cross-functional development team.
- W (Worker/Employee): Individual team member working on the project. (Alias "Employee" in relationships)
- \mathcal{F} (Feature): Mid-sized functionality.
- \mathcal{S} (Skill): Professional or social competence of a worker.
- \mathcal{R} (Role): Defined responsibilities within the Scrum team.
- \mathcal{PO} (ProductOwner): Responsible for product vision and Product Backlog.
- \mathcal{SM} (ScrumMaster): Supports the team in applying Scrum.
- \mathcal{PB} (ProductBacklog): Ordered list of all requirements.
- \mathcal{SP} (Sprint): Fixed time period for creating an increment.
- SPP (SprintPlanning): Kick-off meeting for Sprint preparation.
- \mathcal{DS} (DailyScrum): Daily 15-minute team meeting.
- SR (SprintReview): Presentation and acceptance of results.
- \mathcal{SRE} (SprintRetrospective): Retrospective for process improvement.
- \mathcal{SBL} (SprintBacklog): Selected backlog items + implementation plan.
- \mathcal{SG} (SprintGoal): Objective to be achieved within the sprint.
- \mathcal{E} (Epic): Large requirement that can be split into stories.
- *US* (UserStory): Requirement from the perspective of a user.
- TSK (Task): Smallest unit of work within a sprint.
- \mathcal{DEV} (DevelopmentSnapshot): Product at the end of a sprint.
- \mathcal{BL} (Blocker): Obstacle hindering progress.
- \mathcal{SH} (Stakeholder): Interested party in the product.
- VEL (Velocity): Average amount of work per sprint.
- \mathcal{REP} (ReleasePlan): Plan for releasing specific features.
- \mathcal{RM} (Roadmap): Long-term planning across releases.
- \mathcal{SCB} (ScrumBoard): Visual representation of tasks during the sprint.
- \mathcal{FED} (Feature Documentation): Documentation for a specific feature.

Relationship-induced feasibility subsets (from Relationships.csv)

- $\mathcal{T} \rightarrow \mathcal{P}$: allowed team-project assignments (R1).
- $W \to T$: allowed worker-team memberships (R2).
- $W \to S$, $W \to R$: worker–skill and worker–role links (R3,R4).
- $\mathcal{PO} \leftrightarrow \mathcal{PB}$: one-to-one (R5).
- $\mathcal{T} \leftrightarrow \mathcal{SM}$: one-to-one (R6).
- $\mathcal{PB} \rightarrow \mathcal{F}, \mathcal{PB} \rightarrow \mathcal{E}$: backlog contains features/epics (R7,R8).
- $\mathcal{E} \rightarrow \mathcal{US}$: epic contains user stories (R9).
- $US \rightarrow TSK$: user story consists of tasks (R10).
- $\mathcal{US} \leftrightarrow \mathcal{SBL}$: user story assigned to sprint backlog (many-to-many) (R11). Feasible pair set $\mathcal{A}_{US,SBL} \subseteq \mathcal{US} \times \mathcal{SBL}$.
- $\mathcal{SBL} \rightarrow \mathcal{SP}$: each sprint backlog belongs to one sprint (R12).
- $\mathcal{SP} \rightarrow \mathcal{SG}$: each sprint pursues one goal (R13).
- $\mathcal{SCB} \rightarrow \mathcal{TSK}$: board contains sprint tasks (R14).
- $\mathcal{FED} \leftrightarrow \mathcal{F}$: documentation belongs to feature (R15).
- $TSK \leftrightarrow BL$: tasks can be blocked by blockers (R16).
- $\mathcal{SH} \rightarrow \mathcal{SR}$: stakeholders participate in sprint reviews (R17).
- $SM \rightarrow SRE$: SM moderates retrospectives (R18).
- $VEL \leftrightarrow T$: velocity refers to team (R19).
- $\mathcal{REP} \to \mathcal{F}$: release plan includes features (R20). Feasible pair set $\mathcal{A}_{F,REP} \subseteq \mathcal{F} \times \mathcal{REP}$.
- $\mathcal{REP} \rightarrow \mathcal{RM}$: release plan is part of roadmap (R21).
- $SP \rightarrow DEV$: sprint generates development snapshot (R22).

2 2. Indices

- $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, s \in \mathcal{S}, r \in \mathcal{R}.$
- po $\in \mathcal{PO}$, sm $\in \mathcal{SM}$, pb $\in \mathcal{PB}$, $sp \in \mathcal{SP}$, $spp \in \mathcal{SPP}$.
- $ds \in \mathcal{DS}$, $sr \in \mathcal{SR}$, $sre \in \mathcal{SRE}$, $sbl \in \mathcal{SBL}$, $sg \in \mathcal{SG}$.
- $e \in \mathcal{E}$, $us \in \mathcal{US}$, $tsk \in \mathcal{TSK}$, $dev \in \mathcal{DEV}$, $bl \in \mathcal{BL}$.
- $sh \in \mathcal{SH}, v \in \mathcal{VEL}, rep \in \mathcal{REP}, rm \in \mathcal{RM}, scb \in \mathcal{SCB}, fed \in \mathcal{FED}.$

Parameters (selected attributes as numeric inputs) For each referenced entity attribute in Goals/Conditions we assume given nonnegative parameters:

- effort_{tsk} (Task.effort), priority_f (Feature.priority), severity_{bl} (Blocker.severity).
- $\overline{\text{storypts}}_{us}$ (UserStory.story_points), attendees_{sr} (SprintReview.attendees_count).
- milestones_{rm} (Roadmap.milestones), entries_{pb} (ProductBacklog.number_of_entries).
- $avgSP_v$, $maxV_v$, $minV_v$ (Velocity.avg_story_points, max_velocity, min_velocity).
- goalach_{sq} (SprintGoal.achievement_status), sat_{sre} (SprintRetrospective.team_satisfaction).
- budgetCap_p (cap for Project.budget), statusActive_p $\in \{0,1\}$ (Project.status).
- numTasks $_{sbl}$, capEffort $_{sbl}$ (SprintBacklog.number_of_tasks, total_effort).
- $\operatorname{cards}_{scb}$ (ScrumBoard.number_of_cards), prio_f (Feature.priority).
- open_{bl} $\in \{0,1\}$ (Blocker.status indicator "open"), done_{tsk} $\in \{0,1\}$ (Task.status indicator "done").
- avail $_{po}$ (ProductOwner.availability).

Incidence/helper sets

- $\mathcal{A}_{US,SBL} \subseteq \mathcal{US} \times \mathcal{SBL}$ (feasible user story \leftrightarrow sprint backlog pairs).
- $\mathcal{A}_{F.REP} \subseteq \mathcal{F} \times \mathcal{REP}$ (feasible feature \leftrightarrow release plan pairs).
- $\mathcal{B}(tsk) = \{bl \in \mathcal{BL} : (tsk, bl) \text{ linked (R16)} \}$ (blockers of a task).

3 3. Goals

We aggregate multiple (min/max) goals into a single weighted objective:

$$\max Z = \sum_{g \in \mathcal{G}} \omega_g \, s_g \, G_g(\cdot),$$

where $\omega_g > 0$ is the weight from Goals.csv, $s_g = +1$ for GoalType = max and $s_g = -1$ for GoalType = min, and $G_q(\cdot)$ is the corresponding goal expression.

• G0 maximize_total_story_points (ID: G0)

Logical: Maximize total planned story points of user stories selected into any sprint backlog. Mathematical:

$$G_0 = \sum_{(us,sbl)\in\mathcal{A}_{US,SBL}} \overline{\text{storypts}}_{us} x_{us,sbl}.$$

• G1 minimize_total_task_effort (ID: G1)

Logical: Minimize the aggregate estimated effort of tasks in scope. Mathematical:

$$G_1 = \sum_{tsk \in \mathcal{TSK}} \text{effort}_{tsk}.$$

• G2 maximize_sprint_goal_achievement (ID: G2)

Logical: Maximize reported achievement of sprint goals. Mathematical:

$$G_2 = \sum_{sg \in \mathcal{SG}} \text{goalach}_{sg}.$$

• G3 minimize_blocker_severity (ID: G3)

Logical: Reduce severity of blockers impacting work.

Mathematical:

$$G_3 = \sum_{bl \in \mathcal{BL}} \text{severity}_{bl}.$$

• G4 maximize_delivery_of_high_priority_features (ID: G4)

Logical: Favor inclusion of higher-priority features into releases. Mathematical:

$$G_4 = \sum_{(f,rep)\in\mathcal{A}_{F,REP}} \text{priority}_f y_{f,rep}.$$

• G5 maximize_velocity_average_story_points (ID: G5)

Logical: Increase average velocity (story points) over observed sprints. Mathematical:

$$G_5 = \sum_{v \in \mathcal{VEL}} \operatorname{avgSP}_v.$$

• G6 minimize_daily_scrum_time (ID: G6)

Logical: Keep the total scheduled Daily Scrum time low. Mathematical:

$$G_6 = \sum_{ds \in \mathcal{DS}} \text{durDS}_{ds},$$

where $durDS_{ds}$ is the decision variable for Daily Scrum duration (see Section 5).

• G7 minimize_wip_in_sprint_backlog (ID: G7)

Logical: Reduce the number of tasks in each sprint backlog (proxy for WIP). Mathematical:

$$G_7 = \sum_{sbl \in \mathcal{SBL}} \text{numTasks}_{sbl}.$$

• G8 maximize_team_satisfaction (ID: G8)

Logical: Maximize team satisfaction reported in retrospectives. Mathematical:

$$G_8 = \sum_{sre \in \mathcal{SRE}} \operatorname{sat}_{sre}.$$

• G9 minimize_product_backlog_size (ID: G9)

Logical: Keep the number of entries in the product backlog lean. Mathematical:

$$G_9 = \sum_{pb \in \mathcal{PB}} \text{entries}_{pb}.$$

• G10 maximize_release_feature_coverage (ID: G10)

Logical: Maximize the number of features included across releases. Mathematical:

$$G_{10} = \sum_{(f,rep)\in\mathcal{A}_{F,REP}} y_{f,rep}.$$

• G11 maximize_roadmap_milestones (ID: G11)

Logical: Maximize the milestones realized on the roadmap. Mathematical:

$$G_{11} = \sum_{rm \in \mathcal{R}M} \text{milestones}_{rm}.$$

4 4. Conditions

All conditions apply simultaneously. When a condition naturally limits a decision variable it is stated as a hard constraint.

• C0 project_status_active_only (ID: C0)

Logical: Only projects with active status are considered.

Mathematical:

$$\forall p \in \mathcal{P} : \text{ statusActive}_p = 1 \quad \text{(filter/feasibility)}.$$

• C1 budget_cannot_exceed_limit (ID: C1)

Logical: Allocated budget per project must not exceed the approved cap. Mathematical:

$$\forall p \in \mathcal{P} : \text{budget}_p \leq \text{budgetCap}_p.$$

• C2 minimum_team_size (ID: C2)

Logical: Teams must meet a minimum effective size.

Mathematical:

$$\forall t \in \mathcal{T}: \text{ teamsize}_t \geq \underline{n}^{\text{team}} \text{ (here } \underline{n}^{\text{team}} = 3 \text{ from DV11 bounds)}.$$

• C3 maximum_daily_scrum_duration (ID: C3)

Logical: Daily Scrum duration should not exceed the target.

Mathematical:

$$\forall ds \in \mathcal{DS}: \text{ durDS}_{ds} \leq \overline{d}^{DS} \quad (\text{e.g., } \overline{d}^{DS} = 30 \text{ minutes from DV4}).$$

• C4 po_availability_required (ID: C4)

Logical: Product Owner availability must be present during sprint.

Mathematical:

$$\forall po \in \mathcal{PO} : avail_{po} \geq \underline{a}^{PO}$$
 (feasibility threshold).

• C5 scrum_master_experience_required (ID: C5)

Logical: Scrum Master experience must meet a minimum.

Mathematical:

$$\forall sm \in \mathcal{SM}: \exp_{sm} \ge \underline{e}^{SM}$$
 (feasibility threshold).

• C6 limit_wip_on_board (ID: C6)

Logical: Number of cards on Scrum Board must not exceed its WIP cap. Mathematical:

$$\forall scb \in \mathcal{SCB} : \operatorname{cards}_{scb} \leq \operatorname{wipcap}_{scb}$$
.

• C7 feature_effort_cap (ID: C7)

Logical: Do not pull features above an effort threshold.

Mathematical:

$$\forall f \in \mathcal{F} : \text{ estEffort}_f \leq \overline{E}^{\text{feat}}$$
 (feasibility threshold).

• C8 sprint_backlog_effort_cap (ID: C8)

Logical: Total planned effort in a sprint backlog must stay within its capacity. Mathematical (story-points proxy):

$$\forall sbl \in \mathcal{SBL}: \sum_{\substack{us \in \mathcal{US} \\ (us,sbl) \in \mathcal{A}_{US,SBL}}} \overline{\text{storypts}}_{us} \, x_{us,sbl} \, \leq \, \text{capEffort}_{sbl}.$$

• C9 min_sprint_review_attendees (ID: C9)

Logical: Sprint Review must have at least a minimum number of attendees. Mathematical:

 $\forall sr \in \mathcal{SR} : \text{ attendees}_{sr} \geq \underline{A}^{SR}.$

• C10 min_velocity_floor (ID: C10)

Logical: Maintain a minimum team velocity across sprints. Mathematical:

 $\forall v \in \mathcal{VEL} : \min V_v > V.$

• C11 blocker_status_cannot_be_open_in_done (ID: C11)

Logical: No open blockers are allowed on tasks marked "done".

Mathematical (implication as linear constraint via big-M indicator):

$$\forall tsk \in \mathcal{TSK}, \ \forall bl \in \mathcal{B}(tsk): \quad done_{tsk} = 1 \ \Rightarrow \ open_{bl} = 0.$$

(In MILP one may encode open_{bl} $\leq 1 - \text{done}_{tsk}$.)

5 5. DecisionVariables

• DV0 assign_user_story_to_sprint:

 $x_{us,sbl} \in \{0,1\}$ for $(us,sbl) \in \mathcal{A}_{US,SBL}$ (assign user story to a sprint backlog).

• DV1 select_feature_for_release:

 $y_{f,rep} \in \{0,1\}$ for $(f,rep) \in \mathcal{A}_{F,REP}$ (include feature in a release plan).

 \bullet DV2 allocate_worker_to_team:

 $a_{w,t} \in \{0,1\}$ (assign worker to team for a sprint).

• DV3 set_task_priority_level:

 $\operatorname{prioVar}_{tsk} \in \mathbb{Z} \text{ with } 1 \leq \operatorname{prioVar}_{tsk} \leq 5.$

• DV4 schedule_daily_scrum_duration:

 $durDS_{ds} \in \mathbb{Z}$ with $10 \le durDS_{ds} \le 30$ (minutes).

• DV5 budget_allocation_per_project:

 $\operatorname{budget}_{p} \in \mathbb{R}_{+} \text{ with } 0 \leq \operatorname{budget}_{p} \leq 1,000,000.$

• DV6 limit_wip_tasks_per_board:

wipcap_{scb} $\in \mathbb{Z}_+$ with $0 \le \text{wipcap}_{scb} \le 200$.

 \bullet DV7 assign_scrum_master_to_team:

 $z_{\text{sm},t}^{SM} \in \{0,1\}$ (Scrum Master to team).

• DV8 prioritize_user_story:

 $\pi_{us} \in \mathbb{Z}_+$ with $1 \le \pi_{us} \le 100$ (ordering rank).

• DV9 estimate_story_points:

 $\widehat{SP}_{us} \in \mathbb{Z}_+$ with $1 \leq \widehat{SP}_{us} \leq 13$ (planning estimate, if used in place of $\overline{storypts}_{us}$).

• DV10 set_sprint_length_days:

 $L_{sp} \in \mathbb{Z}_+$ with $7 \le L_{sp} \le 28$ (days).

• DV11 set_team_size:

 $teamsize_t \in \mathbb{Z}_+$ with $3 \le teamsize_t \le 12$.

Common logical/domain constraints

• Each user story assigned at most once:

$$\forall us \in \mathcal{US}: \sum_{\substack{sbl \in \mathcal{SBL} \\ (us,sbl) \in \mathcal{A}_{US,SBL}}} x_{us,sbl} \leq 1.$$

• Feature selection respects release feasibility:

$$\forall rep \in \mathcal{REP}: \sum_{\substack{f \in \mathcal{F} \\ (f,rep) \in \mathcal{A}_{F,REP}}} y_{f,rep} \leq \overline{N}_{rep}^{\text{feat}} \quad \text{(optional capacity)}.$$

• Unique Scrum Master per team (if required):

$$\forall t \in \mathcal{T}: \sum_{\text{sm} \in \mathcal{SM}} z_{\text{sm},t}^{SM} = 1.$$