# 基于强化学习的特征选择算法①

朱振国, 赵凯旋, 刘民康

(重庆交通大学信息科学与工程学院, 重庆400074) 通讯作者: 赵凯旋, E-mail: 285899326@qq.com

摘要:针对在数据挖掘过程中存在的维度灾难和特征冗余问题,本文在传统特征选择方法的基础上结合强化学习 中Q学习方法,提出基于强化学习的特征选择算法,智能体Agent通过训练学习后自主决策得到特征子集.实验结 果表明,本文提出的算法能有效的减少特征数量并有较高的分类性能.

关键词: 强化学习; 特征选择; Q 学习; 特征子集; 数据挖掘

引用格式: 朱振国,赵凯旋,刘民康,基于强化学习的特征选择算法.计算机系统应用,2018,27(10):214-218. http://www.c-s-a.org.cn/1003-3254/6594.html

## Feature Selection Algorithm Based on Reinforcement Learning

ZHU Zhen-Guo, ZHAO Kai-Xuan, LIU Min-Kang

(School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China)

Abstract: For the dimensional disaster and feature redundancy problems in the process of data mining, a reinforcement learning based feature selection algorithm, which is combined Q learning methods with traditional feature selection methods, is proposed in this study. In the proposed method, the agent acquires a subset of characteristics autonomously through training and learning. Experimental results show that the proposed algorithm can effectively reduce the number of features and has higher classification performance.

Key words: reinforcement learning; feature selection; Q-learning; feature subset; data mining

## 1 引言

随着互联网、物联网、传感器等技术的快速发展, 人们在生产和生活中产生了大量的数据,从这些数据 中可以挖掘到有价值的信息. 然而其中很多数据呈现 出样本数量庞大并且数据特征维度高的特点,这种特 点加大了数据挖掘的难度. 针对以上问题, 可以通过特 征选择 (Feature Selection) 删除数据中无关、冗余的特 征信息,从而降低数据维度、噪音的干扰和算法的复 杂度, 使模型变得简单且易于理解, 改进数据挖掘性能, 为后期的预测分析准备干净且可理解的数据. 在数据 挖掘领域,特征选择已经成为一个研究的热点.

目前特征选择问题的处理方法, 根据其是否依赖

后续的学习算法,大体上可以分为过滤式 (Filter) 和封 装式 (Wrapper) 两种方法[1]. Filter 方法一般使用距离、 信息、依赖性、一致性评价准则来增强特征与类的相 关性, 削弱特征之间的相关性, 从而选出更能代表原数 据特点的特征子集. 该类方法特征选择效率较高, 但对 噪声敏感, 在实际应用中一般都是采用此类方法进行 特征的初步筛选. Wrapper 方法和所使用的分类器关系 紧密,该方法在特征筛选过程中直接用所选特征子集 来训练分类器,之后用这个分类器在验证集上的表现 来评价所选的特征. 因其直接用学习算法评估特征子 集,有利于关键特征的提取,所以得到的特征子集有较 高的分类性能, 预测准确性较高; 但是 Wrapper 方法存

① 收稿时间: 2018-03-13; 修改时间: 2018-03-20; 采用时间: 2018-04-12; csa 在线出版时间: 2018-09-28

214 软件技术•算法 Software Technique Algorithm

在时间复杂度高的问题,不适用于超大规模的数据挖 掘任务. 然而随着计算能力提高和分布式技术的成熟, 在一定程度上解决了时间复杂度高的问题, Wrapper 方 法越发受到广大研究者的青睐[2,3].

强化学习 (Reinforcement Learning) 是机器学习中 的一个领域, 其基本思想是从环境中得到反馈而学习, 即所谓的试错学习方法. 在学习过程中, 智能体 Agent 不断地尝试进行选择, 并根据环境的反馈调整动 作的评价值, 最终智能体 Agent 选择获得最大回报的 策略作为最优策略[4]. DeepMind 团队提出的围棋机器 人 AlphaGo 的算法中就包含了强化学习算法思想[5].

研究中发现传统特征选择算法存在着不足,或是 选择的特征子集在进行分类任务时准确率较低,或是 选择的特征子集规模较大[6]. 针对以上问题, 本文结合 强化学习的决策能力和 Wrapper 特征选择方法, 提出 了一种基于强化学习的特征选择方法 (Reinforcement Learning for Feature Selection, RLFS), 将强化学习的学 习和决策能力应用于特征选择过程中, 通过训练学习 得到特征子集. 最后通过仿真实验证明了 RLFS 方法 有良好的降维能力,并有较高的分类准确率.

## 2 相关理论

## 2.1 信息熵

信息熵将随机变量取值的不确定性程度以数值的 大小形式来衡量,目的是描述信息含量的多少.假设 X是一个随机变量, X取值为 x 的概率用 p(x) 表示, 则 变量X的不确定程度可以表示为信息熵H(X)的形式,

$$H(X) = -\int_{x} p(x) \log p(x) dx \tag{1}$$

由此定义分析可得,信息熵 H(X) 只与变量 X 的概 率分布有关, 而与其取值无关. 这表明信息熵可以一定 程度上避免噪声数据的干扰. 并且当变量 X 的不确定 程度较高时,则概率分布越大,其信息熵也随之越大, 所需的信息量越多[7]. 在数据分类中每个特征 f 可看作 变量X, 此种情况下, 特征f的信息熵就是样本数据集 相对于特征f的不纯度 (Impurity) 的量化形式, 表示特 征f包含信息量的多少,H(f)越大,则表明取值范围分 布比较均匀, 信息纯度较低; 反之, 当H(f) 越小则说明 特征值分布较不均匀,可能某个或几个值的样本较多. 如某一个特征 f 在样本数据集中取值唯一时, H(f)=0, 此时数据集对于特征 f来讲是最纯的, 但这也意味该特 征不能为分类提供任何有用信息[8,9].

基于以上分析, 在特征选择过程中可以通过计算 每个特征的信息熵来衡量该特征所包含信息量的多少, 优先选择信息熵较大的特征.

#### 2.2 Pearson 相关系数

Pearson 相关系数反映了两个变量间的线性相关 程度,是一种线性相关系数.假设,X,Y为随机变量,两 个随机变量的 Pearson 相关系数定义如下,

$$\rho_{x,y} = \frac{\sum_{i=1}^{n} \left( X_i - \overline{X} \right) \left( Y_i - \overline{Y} \right)}{\sqrt{\sum_{i=1}^{n} \left( X_i - \overline{X} \right)^2} \sqrt{\sum_{i=1}^{n} \left( Y_i - \overline{Y} \right)^2}}$$
(2)

其中,  $\overline{X}$ ,  $\overline{Y}$ 分别为 X, Y 的均值,  $\rho_{x,y}$  的取值在[-1, 1]之 间,该值反映了两个变量的线性相关性的强弱程度,其 绝对值越大说明相关性越强. 当其取值为-1 或 1 时, 表 示两个变量完全相关, 其取值为0时, 表明两个变量不 是线性相关, 但可能存在其他方式的相关性. 当两个特 征的 Pearson 相关系数绝对值较大时, 两特征中有冗余 特征的可能性也较大[10,11].

基于以上分析, 在特征选择过程中可以计算特征 间的 Pearson 相关系数, 剔除特征空间中相关系数较大 的一对特征中的一个特征,尽量减少冗余特征.

## 2.3 Q学习

强化学习中Q学习方法符合马尔科夫决策过程 (Markov Decision Processes, MDP). 在决策过程中, Agent 可以感知周围环境,并可以执行动作列表中的任 何一个动作. 在 t 时刻, 当前环境状态为  $S_t$ , Agent 选择 并执行动作  $a_t$ , 环境状态则由  $S_t$  转变为  $S_{t+1}$ , 同时反馈 收益  $R(S_t, a_t)$  给 Agent, 智能体 Agent 一直重复以上过 程,直到训练学习过程结束.Q学习算法中用动作评价 函数  $Q(S_t, a_t)$  来表示在状态  $S_t$  时 Agent 选择动作  $a_t$  后 所得到的最大累计回报,此值是由 Agent 选择并执行 动作后的即时收益与之后周期执行最优策略所得到的 值, 其中  $O(S_r, a_r)$  的值可用公式表示为:

$$Q(S_t, a_t) = R(S_t, a_t) + \gamma \max_{t \in S_t} Q(S_{t+1}, a_{t+1})$$
 (3)

其中, a 为动作列表中任一动作, 常量参数  $y(0 \le y \le 1)$  称 作折扣系数. 在 Agent 训练学习过程中, 总是选择所对 应的状态拥有最大 Q 值的动作, 然后据此策略进行迭 代训练. 经过多次训练学习, 存储 Q 值的 Q 表不断更 新,以上即是Q学习算法的训练学习过程[12,13].

Software Technique Algorithm 软件技术•算法 215



为了让 Q 学习在适当的时刻收敛, 在公式中加入了适当的学习率. 当引入学习率 $\alpha$ 后,  $Q(S_t, a_t)$  表示为:

$$Q(S_t, a_t) = (1 - \alpha) Q(S_t, a_t) + \alpha (R(S_t, a_t) + \gamma \max_{t \in S_t} Q(S_{t+1}, a_{t+1}))$$
(4)

其中,  $\alpha(0 < \alpha < 1)$ 是控制 Q 学习算法收敛的学习率,  $\gamma(0 \le \gamma \le 1)$  为折扣系数.

## 3 RLFS 算法实现

本文所提出的 RLFS 算法, 将 Q 学习方法应用于特征选择过程中. 定义初始特征子集为空集, 动作列表中定义了添加和删除两个动作, 分别表示添加一个特征和删除一个特征操作. 结合 Wrapper 特征选择方法, 使用高斯贝叶斯分类器的在当前状态 (特征子集) 下的分类准确率作为即时收益. 具体方法如图 1 所示.



图 1 RLFS 算法示意图

其中步骤 A 到 F 所代表的处理过程如下:

- A) 数据预处理,包括对原始数据集进行归一化和 离散化处理,得到训练数据.
- B) 计算每个特征的信息熵和信息熵均值, 并将特征信息熵高于信息熵均值的特征记录在信息熵表.
- C) 计算每两个特征 Pearson 相关系数以及 Pearson 相关系数的均值, 将高于 Pearson 相关系数均值的特征对记录在 Pearson 表.
- D) 此步骤为 Q 学习算法中 Agent 进行迭代训练学习并逐步进行决策的核心过程. 将训练数据和 Pearson 表以及信息熵表代入 Agent, Agent 根据添加和

删除特征的动作所带来的不同收益作出决策.

E) 当 Agent 训练学习完成后输出 Q 表, 通过对 Q 表的分析得到经过 RLFS 算法选择后的特征子集.

根据以上算法流程, 给出 RLFS 的算法步骤. 假设原始数据集为  $X=(X_{ij})_{N\times D}$ , 代表 N 个样本 D 个特征, 则样本的类别向量为  $C=(c_i)_{N\times 1}$ , 样本向量为  $(x_1, x_2, \cdots, x_N)^{\mathsf{T}}$ , 特征向量为  $(f_1, f_2, \cdots, f_D)$ . 将 RLFS 算法思想总结为下表所示, 并有以下定义.

- 1) S 是经 RLFS 算法选择到的最优特征子集;
- 2) *T* 为当前特征子集, 其表示 Agent 在某时刻已 经选择特征的集合;
- 3) H 为候选特征子集, 其表示未被选入 T 中的特征集合:
- 4) 将选中要添加的特征称为 $f_{add}$ , 将选中要删除的特征称为 $f_{del}$ ;
- 5) 其中,  $T \leftarrow T \cup \{f_{add}\}$ 表示将 T 与特征  $f_{add}$  取并集的结果赋值给 T,  $H \leftarrow H \setminus \{f_{add}\}$ 表示将从 H 中删除特征  $f_{add}$  的结果赋值给 H.

RLFS 算法主要步骤

输入: 数据集X

输出: 最优特征子集 S

- 1) 初始化当前特征子集 T=0, 候选特征集合为  $H=\{f_1,f_2,\cdots,f_D\}$ .
- 2) 计算每个特征的信息熵以及信息熵均值, 将高于信息熵均值的特征记入 *HS*.
- 3) 计算每两个特征间的 Pearson 相关系数以及 Pearson 相关系数的均值, 将高于均值的特征记入 PS.
- 4) 当 T=0时,随机添加一个特征  $f_{add}(f_{add} \in H)$ , $T\leftarrow T \cup \{f_{add}\}$ , $H\leftarrow H \setminus \{f_{add}\}$ .
- 5) 从  $H \cap HS$  中随机选择一个特征  $f_{add}$ ,计算特征 子集  $T \cup \{f_{add}\}$  分类准确率记为  $R_{add}$ . 通过查询 PS 找 到 T 中特征间相关系数中较大的几对特征,随机选择几对特征中的一个特征  $f_{del}$ ,计算特征子集  $T \setminus \{f_{del}\}$  分类准确率记为  $R_{del}$ ,执行  $R_{add}$  和  $R_{del}$  中值较大的那个动作当作此轮决策,即

If  $R_{add}$ > $R_{del}$ :  $T \leftarrow T \cup \{f_{add}\}$ ,  $H \leftarrow H \setminus \{f_{add}\}$ If  $R_{add}$ < $R_{del}$ :  $T \leftarrow T \setminus \{f_{del}\}$ ,  $H \leftarrow H \cup \{f_{del}\}$ 根据公式 (4) 计算 Q 值, 并更新 Q 表.

6) 判断是否满足终止条件, 若满足则停止并通过 Q 表输出最大 Q 值所对应的特征子集 S, 不满足则重

216 软件技术•算法 Software Technique Algorithm

复步骤 4)-6).

## 4 实验设计与结果比较

#### 4.1 实验数据

本文选用的数据集是 UCI Machine Learning Repository<sup>[14]</sup>. 在数据挖掘等相关领域中, 常用该数据 集验证算法的性能, 现已经成为该领域公认的标准数 据集. 实验部分主要使用了其中四个数据集. 各数据集 具体的描述信息见表 1.

表 1 实验数据描述

| 序号 | 数据集   | 样本数量 | 特征数量 | 类别数量 |
|----|-------|------|------|------|
| 1  | Wine  | 178  | 13   | 3    |
| 2  | Zoo   | 101  | 16   | 7    |
| 3  | Iono  | 351  | 34   | 2    |
| 4  | Sonar | 208  | 60   | 2    |

#### 4.2 实验环境

为了验证 RLFS 算法的有效性, 从 Filter、Wrapper 方法中选择了3个经典特征选择算法[6]进行对比,基于 相互关系度量的特征选择算法 FCBF、基于支持向量 机的递归消除方法 SVM-RFE、基于 L2 正则化的 SVM 特征选择算法 SVM-L2. 以特征选择数量和特 征子集的分类准确率作为评价指标进行了两个对比 实验.

### 4.3 实验结果

实验 1. 以选择的特征数量作为评价标准进行对比. 通过 RLFS、FCBF、SVM-RFE、SVM-L2 算法所 选取的特征数量信息见表 2. 表中 Raw 列表示数据集 原始特征的数量. 此外, Average 行统计了各算法在每 个数据集所选特征数量的均值.

表 2 各算法选择的特征数量

| Data Set         | Raw   | FCBF | SVM-RFE | SVM-L2 | RLFS |
|------------------|-------|------|---------|--------|------|
| WineZooIonoSonar | 13    | 1    | 11      | 1      | 5    |
| Zoo              | 16    | 8    | 8       | 4      | 7    |
| Iono             | 34    | 2    | 2       | 2      | 4    |
| Sonar            | 60    | 4    | 4       | 8      | 3    |
| Average          | 16.75 | 3.75 | 6.25    | 3.75   | 4.75 |

由表 2 中的数据对比分析可得, 这五种算法都可 以有效地减少特征数量. 观察各算法在数据集所选特 征数量的均值, 可以发现 FCBF 和 SVM-L2 算法的特 征降维效果最为明显, 而基于 Wrapper 的两种特征选 择算法 SVM-RFE、RLFS 特征降维水平相对较弱, 但 RLFS 算法的降维能力高于经典的 SVM-RFE 算法.

实验 2. 以特征选择后特征子集的分类准确率作 为评价指标进行对比.

为了减少在单一分类器上表现过好或过差而对实 验分析产生影响,在实验中采用 KNN(K 近邻)、 LSVM(线性支持向量机)、朴素贝叶斯、决策树四个 经典分类器进行验证. 为了减少过拟合对实验结果的 影响,实验中采用10折交叉验证的平均分类精度的值 来评价特征子集优劣. 实验结果记录于表 3 至表 6 中, 其中 KNN 算法中参数 K 取值为 10. 表中数值为 10 折 交叉验证分类准确率均值, 括号内为标准差.

表 3 不同特征选择算法在 KNN 分类器下分类准确度对比 (单位:%)

| Data Set | Raw          | FCBF        | SVM-RFE     | SVM-L2      | RLFS        |
|----------|--------------|-------------|-------------|-------------|-------------|
| Wine     | 96.67(3.70)  | 79.27(1.30) | 97.74(2.76) | 66.76(8.76) | 97.81(3.66) |
| Zoo      | 90.52(5.49)  | 84.78(8.34) | 89.67(5.92) | 87.73(4.93) | 91.03(6.41) |
| Iono     | 85.27(4.41)  | 81.93(9.51) | 83.62(9.87) | 84.80(1.20) | 91.83(4.71) |
| Sonar    | 60.48(10.75) | 63.88(6.33) | 78.43(5.42) | 76.98(5.63) | 80.02(5.88) |
| Average  | 83.23        | 77.46       | 87.36       | 79.06       | 90.17       |

表 4 不同特征选择算法在 LSVM 分类器下分类准确度对比 (单位:%)

| Data Set | Raw          | FCBF         | SVM-RFE      | SVM-L2       | RLFS        |
|----------|--------------|--------------|--------------|--------------|-------------|
| Wine     | 98.31(2.59)  | 78.65(11.81) | 95.89(2.22)  | 63.94(13.65) | 96.93(3.56) |
| Zoo      | 92.07(4.27)  | 91.34(4.93)  | 90.58(5.50)  | 89.33(4.74)  | 91.56(6.41) |
| Iono     | 87.57(6.12)  | 74.99(7.66)  | 81.86(4.81)  | 88.98(6.04)  | 87.82(5.55) |
| Sonar    | 65.16(10.93) | 66.78(9.28)  | 71.69(10.07) | 72.28(10.45) | 77.50(7.39) |
| Average  | 85.77        | 77.94        | 85.00        | 78.63        | 88.45       |

通过表 3 到表 6, 分析可得以下几点:

1) 通过对比 4 种特征选择算法在不同分类器下平均

分类准确度,可以看出本文提出的 RLFS 算法在不同 的数据集上均有较好的表现, 算法平均分类准确度较高.

Software Technique Algorithm 软件技术•算法 217



| 表 5 | 不同特征选择算法在朴素贝叶斯分类器下分类准确度对比(单位:%) |  |
|-----|---------------------------------|--|
|     |                                 |  |

| Data Set | Raw          | FCBF         | SVM-RFE      | SVM-L2       | RLFS        |
|----------|--------------|--------------|--------------|--------------|-------------|
| Wine     | 96.16(4.24)  | 79.86(10.87) | 97.80(2.68)  | 61.20(15.31) | 96.16(5.50) |
| Zoo      | 95.20(4.88)  | 95.17(6.19)  | 91.07(3.31)  | 91.07(3.31)  | 95.40(4.63) |
| Iono     | 87.52(6.43)  | 74.99(7.66)  | 84.40(5.47)  | 80.40(7.18)  | 86.42(6.19) |
| Sonar    | 60.88(13.62) | 63.42(12.38) | 60.07(11.74) | 70.71(15.72) | 74.69(9.25) |
| Average  | 84.94        | 78.36        | 83.33        | 75.84        | 88.18       |

不同特征选择算法在决策树分类器下分类准确度对比(单位:%)

| Data Set | Raw         | FCBF         | SVM-RFE     | SVM-L2       | RLFS         |
|----------|-------------|--------------|-------------|--------------|--------------|
| Wine     | 90.58(7.02) | 71.32(1.36)  | 88.91(7.00) | 60.21(11.30) | 91.72(6.57)  |
| Zoo      | 95.31(4.74) | 94.12(4.96)  | 95.32(5.35) | 89.32(4.74)  | 95.46(4.60)  |
| Iono     | 87.86(7.21) | 81.60(9.02)  | 87.00(6.57) | 84.10(7.05)  | 89.51(5.24)  |
| Sonar    | 59.71(4.31) | 60.25(11.49) | 65.95(3.02) | 73.62(4.33)  | 74.95(11.02) |
| Average  | 83.36       | 76.82        | 84.29       | 76.81        | 87.91        |

2) RLFS 算法在少数情况中表现不如其它算法, 如 在 LSVM 分类器下的 Iono 数据集上准确率低于 SVM-L2, 在朴素贝叶斯分类器下的 Wine 数据集上准 确率低于 SVM-RFE, 但相差较小, 而在其余情况均高 于其它算法.

计算机系统应用

3) 在某些分类器下的数据集上, 经特征选择算法 找到的特征子集分类准确率低于原始特征,例如在线 性支持向量机分类器上, 所有算法不如原始特征分类 准确率高, 但偏差不大. 这在现实中是可能出现的, 因 为特征选择的目标有两点,其一是删除不相关特征和 冗余特征; 其二是找出关键特征缩减特征数目, 提高预 测准确率. 因此牺牲较小的分类准确率得到特征数目 较少的优质数据也是可行的.

综合实验1和实验2数据可知,本文提出的特征 选择算法可以明显减少特征数目,并在此基础上有较 高的分类准确率, 在进行实验的四个数据集上本文算 法的平均分类准确率均高于 FCBF、SVM-RFE、 SVM-L2 算法.

## 5 总结

结合 Wrapper 特征选择方法, 本文提出了基于强 化学习的特征选择算法 (RLFS), 通过智能体训练学习, 以最大化收益的方式自主决策进行特征选择得到特征 子集, 此算法在公开的四个 UCI 数据集上进行实验, 通 过与其它特征选择算法进行对比实验, 发现本算法能 够选择较少的特征并获得较高的分类准确率.

## 参考文献

- 1 Gheyas IA, Smith LS. Feature subset selection in large
- 218 软件技术•算法 Software Technique Algorithm

- dimensionality domains. Pattern Recognition, 2010, 43(1): 5-13. [doi: 10.1016/j.patcog.2009.06.009]
- 2 刘景华, 林梦雷, 张佳, 等. 一种启发式的局部随机特征选 择算法. 计算机工程与应用, 2016, 52(2): 170-174, 185. [doi: 10.3778/j.issn.1002-8331.1401-0302]
- 3 戴平, 李宁. 一种基于 SVM 的快速特征选择方法. 山东大 学学报 (工学版), 2010, 40(5): 60-65.
- 4 Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529-533. [doi: 10.1038/nature14236]
- 5 赵冬斌, 邵坤, 朱圆恒, 等. 深度强化学习综述: 兼论计算机 围棋的发展. 控制理论与应用, 2016, 33(6): 701-717.
- 6 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述. 控制与决 策, 2012, 27(2): 161–166, 192.
- 7 刘华文. 基于信息熵的特征选择算法研究[博士学位论文]. 长春: 吉林大学, 2010.
- 8 董红斌, 滕旭阳, 杨雪. 一种基于关联信息熵度量的特征选 择方法. 计算机研究与发展, 2016, 53(8): 1684-1695.
- 9 王晨曦, 林耀进, 刘景华, 等. 基于最近邻互信息的特征选 择算法. 计算机工程与应用, 2016, 52(18): 74-78. [doi: 10.3778/j.issn.1002-8331.1412-0214]
- 10 李叶紫, 周怡璐, 王振友. 基于互信息的组合特征选择算 法. 计算机系统应用, 2017, 26(8): 173-179. [doi: 10.15888/j. cnki.csa.005891]
- 11 仇利克, 郭忠文, 刘青, 等. 基于冗余分析的特征选择算法. 北京邮电大学学报, 2017, 40(1): 36-41.
- 12 章惠龙, 李龙澍. Q 学习在 RoboCup 前场进攻动作决策中 的应用. 计算机工程与应用, 2013, 49(7): 240-242. [doi: 10.3778/j.issn.1002-8331.1108-0114]
- 13 Goldberg Y, Kosorok MR. Q-learning with censored data. Annals of Statistics, 2012, 40(1): 529-560. [doi: 10.1214/12-AOS968]
- 14 UCI 机器学习数据集数据库. http://archive.ics.uci.edu/ml/ datasets.html.