

Поскольку силовые линии стационарного (постоянного) тока замкнуты, то он может быть организован только в <u>замкнутом</u> проводнике.

Т. к. работа сил электростатического поля вдоль длительного замкнутого контура равна нулю, TO для поддержания постоянного тока В замкнутом проводнике действия на носители тока (заряженные частицы) только сил электростатического поля недостаточно.

Поэтому, на каком-либо участке замкнутого проводника (или во всем проводнике) на заряженные частицы должны действовать ещё силы неэлектростатической природы — *сторонние силы*.

Сторонними называются действующие на электрические заряды силы <u>неэлектростатического</u> происхождения.

Эти силы могут быть обусловлены химическими или тепловыми процессами, вихревыми электрическими полями, порождаемыми переменными во времени магнитными полями, и т. д.

Обобщенный закон Ома в дифференциальной форме:

Плотность тока $\vec{j}(\vec{r})$ в точке изотропной проводящей среды (проводника) с радиус-вектором \vec{r} прямо пропорциональна напряженности $\vec{E}(\vec{r})$ электрического поля в этой же точке:

$$\vec{j}(\vec{r}) = \sigma_R \cdot \vec{E}(\vec{r}), \tag{10.45}$$

где σ_R – *удельная* электропроводимость среды – величина, обратная удельному сопротивлению ρ_R этой среды:

$$\sigma_R = \frac{1}{\rho_R},\tag{10.46}$$

в СИ $[\sigma_R] = C_M/M$;

$$\vec{E}(\vec{r}) = \vec{E}_{\text{at.ct}}(\vec{r}) + \vec{E}_{\text{crop}}(\vec{r})$$
 (10.47)

— напряженность электрического поля в данной точке, состоящая из суммы напряженности $\vec{E}_{\text{эл.ст}}\left(\vec{r}\right)$ электростатического поля и напряженности $\vec{E}_{\text{стор}}\left(\vec{r}\right)$ поля сторонних сил.