CSC 348 Spring 2020

Homework 4 Due: May 7th, 2020

1. Consider the following graph:

- (a) Give a walk in this graph from v_3 to v_1 of length 2.
- (b) Give a trail in this graph from v_0 to v_3 of length 5.
- (c) Give a circuit starting and ending at v_0 of length 4.
- (d) Is it possible to make a path of length 5 in this graph? If so, give one. If not, briefly explain why.
- 2. Consider the following graph:

- (a) What is the highest degree vertex, and what is its degree?
- (b) Give a circuit of length 6 in the graph.
- (c) Is it possible to make a cycle of length 5 in this graph?
- 3. Let G = (V, E) be a graph. Prove that, if G contains an Eulerian circuit C, then C passes through every vertex in G.
- 4. Let $m, n \in \mathbb{Z}$. Prove that, if nm is even, then n or m is even.

Definition 1. Let $a, b \in \mathbb{Z}$ and $k \in \mathbb{N}^+$. k is the **greatest common divisor** of a and b if the following are true:

- $k \mid a \text{ and } k \mid b$
- for $l \in \mathbb{N}^+$ such that $l \mid a$ and $l \mid b, k \geq l$.

This can be written as gcd(a, b) = k

- 5. Let $p, n \in \mathbb{Z}$. Show that, if p is prime, then gcd(p, n) = 1 or gcd(p, n) = p using...
 - (a) Proof by contraposition
 - (b) Proof by contradiction
- 6. Let A be a set. Prove that $\emptyset \times A = \emptyset$
- 7. Consider the following "proof"

Theorem 1. All horses in a set of n horses are the same color for n > 0.

Proof. Proceed with induction over n:

Base case: Consider n = 1. Clearly, a set containing one horse contains only horses of the same color **Inductive hypothesis:** Suppose the statement holds for a set of k horses.

Inductive step: We will show that the hypothesis implies that the statement holds for a set of k = 1 horses. Let $H = \{h_1, h_2, ..., h_k, h_{k+1}\}$ be a set of k + 1 horses. Further let $H_1 = \{h_1, h_2, ..., h_k\}$ and $H_2 = \{h_2, ..., h_k, h_{k+1}\}$. $H_1, H_2 \subseteq H$ and $|H_1| = |H_2| = k$. By the hypothesis, H_1 and H_2 contain only horses of the same color.

Note that $h_2 \in H_1$ and $h_2 \in H_2$. Then h_2 must be the same color as all other horses in H_1 and H_2 cannot be two different colors at once. Then all of the horse in H_1 and H_2 must all have the same color. Thus, H contains only horses of the same color.

Therefore, by the principle of mathematical induction, all horses in as set of n horses have the same color for $n \in \mathbb{Z}^+$.

What is wrong with this "proof"?

- 8. Let P(n) be the statement " $1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$,"
 - (a) What is the statement P(1)?
 - (b) Show P(1) is true, completing the basis step of the proof
 - (c) What is the inductive hypothesis?
 - (d) Complete the inductive step, identifying where you use the inductive hypothesis
- 9. Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$ for all positive integers n
- 10. Prove that 3 divides $n^3 + 2n$ for all positive integers n

Definition 2. Let $A_1, A_2, ..., A_n$ be sets.

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n$$

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

- 11. Let $A, B_1, B_2, ..., B_n$ be sets. Prove the following theorems ¹ for $n \in \mathbb{Z}_{\geq 2}$. You may use the distributive laws previously given to you as a base case.
 - (a)

$$A \cup \bigcap_{i=1}^{n} B_i = \bigcap_{i=1}^{n} (A \cup B_i)$$

(b)

$$A \cap \bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} (A \cap B_i)$$

¹Generalized Distributive Laws for Sets