数据库系统原理

引用中国人民大学信息学院原版PPT 华中科技大学计算机学院左琼修改版

School of Computer Science and Technology, HUST 2020

第二章 关系数据库

- 2.1 关系数据结构及形式化定义
- 2.2 关系操作
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

案例: 教学数据库有三个关系

问题: 如何表示对该数据库的各种操作?

- 查询选修了"数据库"课程的学生姓名。
- 查询学习了1号课程<u>但没</u>学5号课程的学生 学号和姓名。
- 查询选修了全部课程的学生学号。

C

<u>Cno</u>	Cname	先行课号 Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2

<u>Sno</u>	Sname	Ssex	Sage	Sdept
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	正敏	女	18	MA
95004	张立	男	19	IS

SC	<u>Sno</u>	<u>Cno</u>	Grade
→ {	95001	1	92
	95001	2	85
	95001	3	88
	95002	2	90
	95002	3	80

2.4 关系代数

• 关系代数——将<u>关系</u>作为运算单位(操作数),用<u>关系代数表达式</u>表示的运算方法。

运算对象: 关系

运算结果: 关系

关系操作: 按运算符的不同主要分为两类:

传统的集合运算: 把关系看成元组的集合,从行的角度进行运算,包括并、差、交和笛卡尔积等。

· <u>专门的关系运算</u>:不仅从行的角度,也从列的角度进行运算,是为数据库的应用而引进的特殊运算。包括选择、投影、连接和除法等。

2.4.1 传统的集合运算

传统的集合运算是二目运算。

并不是任意的两个关系都能进行这种集合运算。

- 除笛卡尔积外,要求参加运算的关系必须具备相容性。

定义:设给定两个关系R、

S, 若满足:

- (1) 具有相同的度n,
- (2) R中第i个属性和S中第i 个属性来自同一个域,则 说关系R、S是相容的。

表 关系代数运算符

运算	符	含义	运算	符	含义
集	U	并	许	>	大于
合	-	差	牧	≥	大于等于
运	n	交	较运算	<	小于
算	×	笛卡	符	≤	小于等于
符		尔积		=	等于
				<	不等于
				>	

1. 并 (Union)

- •设两个关系*R* 和*S:*
 - -具有相同的目n (即两个关系都有n个属性)
 - -相应的属性取自同一个域

- -R和S的并 (记为: *R∪S*)
 - ·仍为n目关系,由属于R或属于S的元组组成

$$R \cup S = \{t \mid t \in R \lor t \in S\}$$

1. 并

-例:

A	В	C
a1	b 1	c1
a1	b 2	c2
a2	b2	c1

S

A	В	C
a1	b2	c2
a1	b 3	c2
a2	b 2	c1

R \cup **S**

A	В	C
a1	b 1	c1
a1	b2	c2
a2	b 2	c1
a1	b 3	c2

实例:

- 选修了1号或者2号课程的

学生选课记录。

2. 差 (difference)

- **-**R和 S
 - -具有相同的目*n*
 - -相应的属性取自同一个域
- -R-S
 - -仍为n 目关系,由属于R 而不属于S 的所有元组组成

$$R - S = \{ t \mid t \in R \land t \notin S \}$$

思考题 如何用差运算求补集?

已知所有选过课的学生和全校学生,查询那些

没有选过课的学生?

2. 差

-例:

R	A	В	C
	a1	b 1	c1
	a1	b2	c2
	a2	b2	c1

R-S	A	В	C
	a1	b1	c1

S	A	В	C
	a1	b 2	c2
	a1	b 3	c2
	a2	b 2	c1

实例:

——选修了1号课程但没选2号

课程的学生选课记录。

3. 交 (Intersection)

- -R和S
 - -具有相同的目*n*
 - -相应的属性取自同一个域
- -ROS
 - •仍为n目关系,由既属于R又属于S的元组组成

$$R \cap S = \{ t \mid t \in R \land t \in S \}$$

而交运算为非基本运算,不属于最小操作完备集中的操作,可以用差运算来表示:

$$R \cap S = R - (R - S)$$

或
$$R \cap S = S - (S-R)$$

3. 交

-例:

R	A	В	C
	a1	b1	c1
	a1	b 2	c2
	a2	b 2	c1

R∩S

A	В	C
a1	b 2	c2
a2	b 2	c1

 S
 A
 B
 C

 a1
 b2
 c2

 a1
 b3
 c2

 a2
 b2
 c1

实例:

—既选修了1号课程又选修

了2号课程的学生选课记录。

课堂练习:

- -设R和S同为相容的k元关系,R有m个元组,S有n个元组,则关于R∩S,以下论述错误的是()
 - -A. 等于R-(R-S)
 - -B. 等于S-(S-R)
 - •Ç. 最多有m个元组
 - -D. 最少有0个元组

4. 笛卡尔积 (Cartesian Product)

- 应用需求 应用程序中需查询来自两张表的信息,系统如何解决?将两张表合并为一张表。
- 严格地讲是广义笛卡尔积 (Extended Cartesian Product)
- R: *n* 目关系, *k*₁ 个元组
- -S: *m* 目关系, *k*₅个元组
- R×5
 - •列: (*n*+*m*) 列元组的集合
 - 元组的前*n*列是关系*R*的一个元组
 - ·后*m*列是关系*S*的一个元组
 - •行: *k*₁×*k*₂个元组 R×S = {t,t,| t,∈R∧t,∈S}
- 作用:将两个关系无条件的连接成一个新关系,可用于两关系的连接操作。

R	Α	В	С	S	Α	В	С
	a1	b1	c1		a1	b2	c2
	a1	b2	c2		a1	b3	c2
	a2	b2	c1		a2	b2	c1
		R.A	R.B	R.C	S.A	S.B	S.C
R	×s	a1	b1	c1	a1	b2	c2
		a1	b1	c1	a1	b3	c2
		a1	b1	c1	a2	b2	c1
		a1	b2	c2	a1	b2	c2
		a1	b2	c2	a1	b3	c2
		a1	b2	c2	a2	b2	c1
		a2	b2	c1	a1	b2	c2
		a2	b2	c1	a1	b3	c2
		a2	b2	c1	a2	b2	c1

先引入几个记号:

(1) R, $t \in \mathbb{R}$, $t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$,

它的一个关系设为R,

 $t \in R$ 表示 $t \in R$ 的一个元组,

 $t[A_i]$ 则表示元组t中相应于属性 A_i 的一个分量。

(2) A, t[A], \overline{A}

若 $A=\{A_{i1}, A_{i2}, ..., A_{ik}\}$,其中 $A_{i1}, A_{i2}, ..., A_{ik}$ 是 $A_{1}, A_{2}, ..., A_{n}$ 中的一部分,则A 称为属性列或属性组。

 \overline{A} 则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_{ik}\}$ 后剩余的属性组。 $t[A] = (t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])$ 表示元组t 在属性列A上诸分量的集合。

(3) 元组的连接 t, t_s

R为n目关系,S为m目关系,

 $t_r \in R$, $t_s \in S$, $t_r t_s$ 称为元组的连接。

t, t, 是一个n+m列的元组,前n个分量为R中的一个n元组,后m个分量为S中的一个m元组。

(4) 象集*Z*_x

给定一个关系R(X, Z), X和Z为属性组。

当t[X]=x时, x在R中的象集 (Images Set) 为:

$$Z_x = \{ t[Z] \mid t \in R, t[X] = x \}$$

它表示R中属性组X上值为x的诸元组在Z上分量的集合。

R

x 1	Z 1
x 1	Z2
x 1	Z 3
x2	Z2
x2	Z 3
х3	Z 1
х3	Z3

象集举例

• *x*₁在*R* 中的象集:

$$Z_{x1} = \{Z1, Z2, Z3\},$$

■ *x*₂在 *R* 中的象集:

$$Z_{x2} = \{Z2, Z3\},$$

• *x*₃在*R* 中的象集:

$$Z_{x3} = \{Z1, Z3\}$$

从R中选出在 X上取值为x的 元组,去掉X 上的分量,只 留Z上的分量

例1	
----	--

Z X

学号	姓名	性别	系别
0101	张	男	CS
0102	李	女	CS
0203	赵	男	MA
0103	吴	女	CS

关系模式: 学生(学号,姓名,性别,系别)

元组t: (0102,李,女,CS)

t[性别]: 女

属性列X: {性别,系别}

t[性别,系别]: (女,CS)

属性组Z: {学号,姓名}

t[X] = (女,CS)

X = (女,CS), Zx = ?

例2

X Z

姓名	课程
张蕊	物理
王红	数学
张蕊	数学

X=张蕊

 \mathbf{Z}_{x}

课程

数学

物理

张蕊同学所选修 的全部课程

CS系全部女生的学号,姓名

表 关系代数运算符

运算符	含义		运算符	含	义
专门的关系运算符	σ π Χ ÷	选择 投影 连接 除	逻辑运算 符	\ \ \ \	非与或

1. 选择 (Selection)

- σ
- -选择操作是根据某些条件对关系做水平分割,即选取符合条件的元组构成结果关系,又称为限制(Restriction)。
- •关系R关于公式F的选择记作:

$$\sigma_{\scriptscriptstyle F}(R) = \{t \mid t \in R \land F(t) = '\bar{\mathbf{q}}'\}$$

其中: σ 为选择运算符,F为条件表达式, $\sigma_F(R)$ 表示从R中挑选满足公式 F 的元组所构成的关系。

F: 是一个逻辑表达式,基本形式为: $X_1\theta Y_1$

F的组成:

- ❖ 运算对象:属性,常数(如数字)
- * 运算符: 算术运算符 (>, ≥, =, <, ≤, ≠),逻辑运算符 (∧, ∨, ¬)

1. 选择

[例1]

R	A	В	C
	1	2	3
	4	5	6
	2	2	3

$$\sigma_{A>1\wedge B=2}(R)$$

A	В	C
2	2	3

上式也可写作: $\sigma_{[1]>1\wedge[2]=2}(R)$

[例2] 在S(Sno,Sname,Ssex,Sage,Sdept)上查询年龄小于20岁的学生

$$\sigma_{\text{Sage} < 20}(S)$$
 或 $\sigma_{[4] < 20}(S)$

Sno	Sname	Ssex	Sage	Sdept
201415122	刘晨	女	19	IS
201415123	王敏	女	18	MA
201415125	张立	男	19	IS

1. 选择

例3: 用关系表达式表达下列查询

找前页关系S中计算机系(代号: 'CS')全部的男生

 $\sigma_{Sdept= 'CS' \land Ssex= '男'}$ (S)

Sno	Sname	Ssex	Sage	Sdept
201515121	张晨	男	19	CS
201515123	李敏	男	18	CS
201515127	何立	男	19	CS

2. 投影 (Projection)

-关系R上的投影是从*R*中选择出若干属性列组成新的关系。

$$\pi_A(R) = \{ t[A] \mid t \in R \}$$

A为R中的属性列,可用列的属性名或列在关系中的序号表示。

•特征:

- 1) 在单个关系上进行
- 2) 从列的角度进行运算
- 3) 投影的列可按自己的要求的顺序排列
- •作用: 在关系中选择某些需要的列, 并按要求组成一个新关系。

2. 投影

- 投影操作主要是从列的角度进行运算。
- -投影的结果中要去掉相同的行(避免重复行)。Why?
 - 投影之后不仅取消了原关系中的某些列,而且还可能取消某些元组。

解: 关系代数表达式为: $\pi_{A,C}(R)$ 或 $\pi_{[1],[3]}(R)$

<u> </u>				
A	В	C		
1	2	3		
4	5	6		
2	2	3		

 \mathbf{D}

$n_{A,C}(\mathbf{K})$		
A	C	
1	3	
4	6	
2	3	

 (\mathbf{D})

7
5

选择与投影的区别

投影与选择

- -例1:
- 给出所有学生的姓名和年龄 Π_{Sname, Sage}(S)
- -找001号学生所选修的课程号

$$\Pi_{C\#}(\sigma_{S\#='001'}(SC))$$

S(S#,Sname,Sage)
Course(C#,Cname)
SC(C#,S#,Score)

投影与选择

· 复合运用投影、选择、笛卡尔运算,可以从任意n张表中截取满足条件 的子表

- 例2:

列出CS系和MA系学生的 学号和姓名。

- 方案1:

$$\Pi_{SNO,SNA}(\sigma_{DEPT} = 'CS' \vee DEPT = 'MA')$$

- 方案2:

$$\Pi_{SNO,SNA}(\sigma_{DEPT = 'CS'} (S)) \cup \Pi_{SNO,SNA}(\sigma_{DEPT = 'MA'} (S))$$

S

SNO	SNA	SEX	DEPT
0101	张	男	CS
0102	李	女	cs
0203	赵	男	MA
0103	吴	女	CS

3. 连接 (Join)

- -连接也称为0连接;
- •连接运算是从两个关系的笛卡尔积中选取满足连接条件的元组,记作:

$$\mathbf{R} \bowtie_{\mathbf{A} \in \mathbf{B}} \mathbf{S} = \left\{ \mathbf{t}_{\mathbf{r}} \mathbf{t}_{\mathbf{s}} \mid \mathbf{t}_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] \theta t_{\mathbf{s}}[B] \right\}$$

-其中:

- -A和B分别为R和S上度数相等且可比的属性组。
- -θ是比较运算符 (> ≥ = < ≤ ≠)。
- -连接运算从*R*和*S*的广义笛卡尔积*R×S*中选取(*R*关系)在*A*属性组上的值与(*S*关系)在*B*属性组上值满足比较关系θ的元组

3. 连接

- -2类常用连接运算:
- 等值连接(equijoin): θ为 "=" 的连接运算。

$$R \bowtie_{A=B} S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[A] = t_s[B] \}$$

- -含义:从关系*R与S*的广义笛卡尔积中选取*A、B*属性值相等的那些元组。
- •自然连接 (natural join) : 是一种特殊的等值连接。
 - -两个关系中进行比较的分量必须是相同的属性组
 - 在结果中把重复的属性列去掉

$$R \bowtie S = \{ \widehat{t_r t_s} \mid \mathbf{t_r} \in R \land t_s \in S \land t_r[B] = t_s[B] \}$$

- R和S具有相同的属性组B
- 当R与S无相同属性时,R ⋈ S = R×S

3. 连接

一般的连接操作是从行的角度进行运算。

- 自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。
- 自然连接的本质是将两张有关联的表,按照元组之间在属性B(外码)上的等值关系,合并为一张表。

3. 连接

运算步骤:

- 1) 求笛卡尔积 R×S
 - 2) 选择其中满足AθB的元组 $R \times S$

R

A	В	C
1	2	3
4	5	6
7	8	9

S

C	D
a	7
b	8

A	В	R.C	S.C	D
1	2	3	a	7
1	2	3	b	8
4	5	6	a	7
4	5	6	b	8
7	8	9	a	7
7	8	9	b	8

 $\mathbb{R} \bowtie \mathbb{S}$

戊 R ⋈ S

A	В	R.C	S.C	D
7	8	9	a	7
7	8	9	b	8

自然连接

R	A	В	C
	a	b	c
	b	a	f
	С	b	d

S	В	E	F
	b	c	f
	g	h	i

2) 选择R.B = S.B的元组

3) 去掉重复属性

1) 计算R×S

A	R. B	C	S.B	E	F
a	b	c	b	c	f
a	b	c	g	h	i
b	a	f	b	c	f
b	a	f	g	h	i
c	b	d	b	c	f
c	b	d	g	h	i

A	R. B	C	S.B	E	F
a	b	c	b	c	f
c	b	d	b	c	f

A	В	C	E	F
a	b	c	c	f
c	b	d	c	f

3. 连接(续)

问题: 自然连接会丢失信息,需引入新的连接运算

例如: student ⋈ sc会将一个未选课的学生丢失

•外连接

-如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null), 这种连接就叫做外连接(OUTER JOIN)。

左外连接

-如果只把左边关系*R*中要舍弃的元组保留就叫做左外连接(LEFT OUTER JOIN或LEFT JOIN)

•右外连接

•如果只把右边关系*S*中要舍弃的元组保留就叫做右外连接(RIGHT OUTER JOIN或RIGHT JOIN)。

3. 连接例子

R В 5 **b1 a**1 **b2** 6 **a1** a2

-	
b 3	8

a2	b4	12

¬般连接 $R_{C < E}$ S的结果如下:

R	\bowtie	S
($\leq E$	7

	A	R.B	С	S.B	Ε
-	a_1	b_1	5	b_2	7
ć	a_1	b_1	5	b_3	10
ć	a_1	b_2	6	b_2	7
ć	a_1	b_2	6	b_3	10
(a_2	b_3	8	b_3	10

В	Е	
b1	3	
b2	7	
b3	10	
b3	2	
b 5	2	

3. 连接例子

R

Α	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

S	В	Ε
	b1	3
	b2	7
	b3	10
	b3	2
	b5	2

等值连接	R	\bowtie	5	的结果
	R	B=S.	B	

如下:

A	R.B	С	S.B	Е
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_3	8	b_3	2

3. 连接例子

自然连接 $R \bowtie S$ 的结果如下:

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2

Α	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

	_
В	Е
b1	3
b2	7
b3	10
b3	2
b5	2

3. 连接例子

关系R和关系S的外连接:

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL
NULL	b_5	NULL	2

(a) 外连接

Α	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

S	В	Е
	b1	3
	b2	7
	b 3	10
	b 3	2
	b5	2

Huazhong University Of Science & Technology

3. 连接例子

R

Α	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

Huazhong Univer		
В	Ε	
b1	3	
b2	7	
b 3	10	
b3	2	
b 5	2	

关系R和关系S的左、	右外
连接:	

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL

A	В	C	Ε
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
NULL	b_5	NULL	2

(b) 左外连接

(c) 右外连接

外连接运算

- -外连接 外连接运算是扩展运算,可以用其它运算代数表达式表示。
- -例如 左外连接可以写成 (r⋈s)∪(r-π_R(r⋈s))×{(null,.....null)}
- -分析 问题的关键是如何求r与s的自然连接后丢失的r中元组? 利用减法运算求补集 表达式r-π_R(r ⋈ s) 为所需丢失元组
- -思考题 写出右外连接和全连接的代数式

关系运算综合举例

- •常用的代数思维解决方法:
- 1) 整体法

首先分析所需信息来自哪些表:

其次用适当的连接运算合并表:

再用选择运算σρ行分解表,通过P去除无用元组

最后用投影运算π_Δ列分解表,通过A选择所需结果

2) 分步法

首先将问题分解为多个简单步骤(可用单表解决) 其次对最里层的问题用一个代数表达式表示结果 再将结果作为已知值,代入上一层步骤中 注 分步法也可以是从外层向里层的迭代过程

案例: 教学数据库有三个关系:

C

Cno	Cname	先行课号 Cpno	Ccredi t
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2

S

<u>Sno</u>	Sname	Ssex	Sage	Sdept
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

SC

<u>Sno</u>	<u>Cno</u>	Grade
95001	1	92
95001	2	85
95001	3	88
95002	2	90
95002	3	80

问题:如何表示对该数据库的各种操作?

- 查询选修了"数据库"课程的学生姓名。
- 查询学习了1号课程但没学5号课程的学生学号和姓名。
- 查询选修了全部课程的学生学号。

关系运算综合举例

例 查询选修了一门其直接先行课为5号课程的学生姓名

整体法

问题分析 该查询是查找选过…课程的学生,所以先将学生表、选修表、 课程表合并

Course ⋈ **SC** ⋈ **Student**

再确定选择运算谓词P为cpno=5

 $\sigma_{Cpno='5'}$ (Course \bowtie SC \bowtie Student))

最后投影所需的学生姓名即可

 $\pi_{Sname}(\sigma_{Cpno='5'})$ (Course \bowtie SC \bowtie Student))

关系运算综合举例

解法2: 分步法

首先找出先修课为5的课程

 $\sigma_{Cpno='5'}$ (Course)

再找出选过上表达式结果的选课元组中学号

 π_{Sno} (SC \bowtie $\sigma_{Cpno='5'}$ (Course))

最后从学生表中找出学号为上一步结果的学生

 π_{Sname} (π_{Sno} (SC $\bowtie \sigma_{Cpno='5'}$ (Course)) \bowtie Student)

注 上述例子中我们通过自然连接实现了选择运算的功能能否用

嵌套方法实现选择? 例如: 第二步改为:

 $\sigma_{cno=\pi cno} (\sigma^{Cpno='5'} (Course))$ (SC) ?

Student (Sno, Sname, Ssex, Sage, Sdept)

Course (Cno, Cname, Cpno, Ccredit)

SC (sno, cno, grade)

[上例] 查询至少选修了一门其直接先行课为5号课程的学生姓名。

 $\pi_{Sname}(\sigma_{Cpno='5'}(Course \bowtie SC \bowtie Student))$

或

 $\pi_{\text{Sname}}(\sigma_{\text{Cpno='5'}}(\text{Course}) \bowtie \text{SC} \bowtie \pi_{\text{Sno, Sname}}(\text{Student}))$

或

 $\pi_{\text{Sname}}(\pi_{\text{Sno}}(\sigma_{\text{Cpno='5'}}(\text{Course}) \bowtie \text{SC}) \bowtie \pi_{\text{Sno, Sname}}(\text{Student}))$

4. 除 (Division)

- -引入动机 在查询中,经常需要查询包含短语"所有的"这样的查询。
- 例如,找出选过学分为3分的所有课程的学生?
- 如何解决:
- -1) 找出学分为3分的所有课程;
- -2) 从选课表中,找出学生,其所选课程包含1)中结果;

令S'=分组以后的由Cno分组构成的表;若S'包含S,则将这样的学生放入结果集

记作
$$SC \div \pi_{cno}$$
 ($\sigma_{Ccredit=3}$ (Course))

■语义 R÷S是指从R中去除哪些不包含S的元组,即:从R中查找"选过所有的S" 的查询

4. 除 (Division)

给定关系R(X, Y)和S(Y, Z),其中X, Y, Z为属性组。

- R中的 Y 与 S中的 Y 可以有不同的属性名,但必须出自相同的域集。
- R与S的除运算得到一个新的关系P(X),
- P是 R中满足下列条件的元组在 X 属性列上的投影:

元组在X上分量值x的象集Y,包含S在Y上投影的集合,记作:

$$R \div S = \{t_r[X] \mid t_r \in R \land \pi_Y(S) \subseteq Y_X\}$$

 Y_x : x 在 R 中的象集, $x = t_r[X]$

- 除操作是同时从行和列角度进行运算

4. 除

为方便起见, 我们假设 S 的属性为 R 中后 s 个属性。

1) T =
$$\pi_{1,2,...,r-s}(R)$$

2)
$$W = (T \times S) - R$$

3)
$$V = \pi_{1,2,...,r-s}(W)$$

4)
$$R \div S = T - V$$

Huazhong University Of Science & Technology

R	A	В	C	D

A	В	C	D
a	b	c	d
a	b	e	f
a	b	d	e
b	c	e	f
e	d	c	d
e	d	e	f

S	C	D
	c	d
	e	f

1)
$$T = \pi_{A,B}(R)$$

$$\begin{array}{c|ccc}
A & B \\
\hline
a & b \\
\hline
b & c \\
\hline
e & d
\end{array}$$

2)	W	= (T	$\times S$)-	$-\mathbf{R}$

A	В	C	D
a	b	c	d
a	b	e	f
b	c	c	d
b	c	e	f
e	d	С	d
e	d	e	f

3)
$$V = \pi_{A,B}(W)$$

A	В
b	c

4)
$$\mathbf{R} \div \mathbf{S} = \mathbf{T} - \mathbf{V}$$

A	В
a	b
e	d

華中科技大學

Huazhong University Of Science & Technology

$R \div S = \Pi_X(R) - \Pi_X(\Pi_X(R) \times \Pi_Y(S) - R)$

课程 数学 物理

姓名 X 张军 王红 姓名 张军 王红 张军 王红

姓名

王红

所有学生选 修全部课程

课程 姓名 张军 物理 数学 王红 张军 数学 王红 物理

姓名 课程 张军 物理 数学 王红 张军 数学

姓名 王红

课程

物理

数学

数学

物理

没有选修全部 课程的学生

> 选修了全部 课程的学生

姓名 王红 张军

姓名 张军

除——分析

例:设关系R、S分别为下图的(a)和(b), $R \div S$ 的结果为图(c)

R		
A	В	C
a_1	b_1	c_2
a_2	b_3	c_7
a_3	b_4	c_6
a_1	b_2	c_3
a_4	b_6	c_6
a_2	b_2	c_3
a_1	b_2	c_1
	(a)	

В	C	D
b_1	c_2	d_1
b_2	c_1	d_1
b_2	c_3	d_2

 $\begin{array}{c}
R \div S \\
\hline
A \\
\hline
a_1 \\
\hline
(c)
\end{array}$

除——分析

-在关系R中, A可以取四个值{a1, a2, a3, a4}

```
a_1的象集为 \{(b_1, c_2), (b_2, c_3), (b_2, c_1)\}
a_2的象集为 \{(b_3, c_7), (b_2, c_3)\}
a_3的象集为 \{(b_4, c_6)\}
a_4的象集为 \{(b_6, c_6)\}
```

• S在(B, C)上的投影为:

{(b1, c2), (b2, c1), (b2, c3)}

■<u>只有a₁的象集包含了S在(B, C)属性组上的投影</u>

所以,
$$R \div S = \{a_1\}$$

姓名	课程	成绩
张军	物理	88
王红	数学	80
张军	数学	90

课程 数学 物理

姓名

选修了全部课程 的学生的姓名

除

计算机学院数据库所 Zuo

$\Pi_{姓名,课程}(R) \div S$

R姓名课程成绩张军物理88王红数学80张军数学90

Π_y(S)={课程}, Y_x = {课程}, _____ X={姓名,成绩}

S课程数学物理

$$R \div S =$$

Y	Z
T (0)	\ 7
11 _y (S)	$\subseteq Y_x$
	Π _y (S)

{张军, 88}={物理},

{王红,80}={数学},

{张军,90}={数学}

没有哪个X的象集包含了 {物理,数学},所以答 案应该是空集!

除运算示例

例 查询选修了全部课程的学生号码和姓名。

解与上题类似

 $\pi_{Sno, Cno}$ (SC) $\div \pi_{Cno}$ (Course)

是选过全部课程的学生号

将其与Student自然合并,为所需结果

 $\pi_{Sno,Cno}$ (SC) $\div \pi_{Cno}$ (Course) $\bowtie \pi_{Sno,Sname}$ (Student)

例 查询选过学分为3分的所有课程的学生姓名?

 $\pi_{\text{sno,sname,cno}}(\text{Student} \bowtie \text{SC}) \div \pi_{\text{cno}}(\sigma_{\text{credit}=3}(\text{Course}))$