

CSE 4392 SPECIAL TOPICS NATURAL LANGUAGE PROCESSING

Recurrent Neural Networks

1

2024 Spring

OVERVIEW

- What is a recurrent neural network (RNN)?
- Simple RNNs
- Backpropagation through time
- Long short-term memory networks (LSTMs)
- Applications
- Variants: Stacked RNNs, Bidirectional RNNs

RECURRENT NEURAL NETWORKS (RNNS)

 A class of neural networks designed to handle variable length inputs.

• A function: $y = RNN(x_1, x_2, ..., x_n) \in \mathbb{R}^d$ where $x_i \in \mathbb{R}^{d_{in}}$

RECURRENT NEURAL NETWORKS (RNNS)

• Shown to be a highly effective approach to language model, sequence tagging and classification tasks:

RECURRENT NEURAL NETWORKS

• Form the basis for the modern approaches to machine translation, question answering and dialogue:

WHY VARIABLE LENGTH?

• Recall the feed-forward neural LMs we learned:

The dogs are <u>barking</u>

the dogs in the neighborhood are ___

SIMPLE RNNS

 $oldsymbol{o} h_0 \in \mathbb{R}^d$ is an initial state

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t) \in \mathbb{R}^d$$

 \circ h_t : hidden states which store information from x_1 to x_t

• Simple RNNs:

$$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^d$$

g: nonlinearity (e.g. tanh),

$$\mathbf{W} \in \mathbb{R}^{d \times d}, \mathbf{U} \in \mathbb{R}^{d \times d_{in}}, \mathbf{b} \in \mathbb{R}^d$$

QUIZ: ACTIVATION FUNCTIONS

• What's the main difference between sigmoid and tangent hyperbolic (tanh) functions as activation functions?

SIMPLE RNNS

$$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^d$$

 \circ Key idea: apply the same weights W repeatedly

RNNs vs. Feedforward NNs

Feed-Forward Neural Network

Recurrent Neural Network

RECURRENT NEURAL LANGUAGE MODELS (RNNLMS)

$$P(w_1, w_2, ..., w_n) = P(w_1) \times P(w_2 \mid w_1) \times P(w_3 \mid w_1, w_2) \times ... \times P(w_n \mid w_1, w_2, ..., w_{n-1})$$

$$= P(w_1 \mid \mathbf{h}_0) \times P(w_2 \mid \mathbf{h}_1) \times P(w_3 \mid \mathbf{h}_2) \times ... \times P(w_n \mid \mathbf{h}_{n-1})$$

- o Denote $\hat{\boldsymbol{y}}_t = softmax(\boldsymbol{W}_o \boldsymbol{h}_t), W_o \in \mathbb{R}^{|V| \times d}$
- Cross-entropy loss:

$$L_{CE}(\hat{\mathbf{y}}_t, \mathbf{y}_t) = -\log \hat{\mathbf{y}}_t[w_{t+1}]$$

(the negative log probability the model assigns to the next word in the training sequence)

TRAINING RNNLMS

• Back-propagation? Yes, but not so simple!

• The algorithm is called *Backpropagation Through Time* (BPTT)

BACKPROPAGATION THROUGH TIME

$$\mathbf{h}_1 = g(\mathbf{W}\mathbf{h}_0 + \mathbf{U}\mathbf{x}_1 + \mathbf{b})$$

$$\mathbf{h}_2 = g(\mathbf{W}\mathbf{h}_1 + \mathbf{U}\mathbf{x}_2 + \mathbf{b})$$

$$\mathbf{h}_3 = g(\mathbf{W}\mathbf{h}_2 + \mathbf{U}\mathbf{x}_3 + \mathbf{b})$$

$$L_3 = -\log \mathbf{\hat{y}}_3(w_4)$$

• You should know how to compute: $\frac{\partial L_3}{\partial \mathbf{h}_3}$

$$\frac{\partial L_3}{\partial \mathbf{W}} = \frac{\partial L_3}{\partial \mathbf{h}_3} \frac{\partial \mathbf{h}_3}{\partial \mathbf{W}} + \frac{\partial L_3}{\partial \mathbf{h}_3} \frac{\partial \mathbf{h}_3}{\partial \mathbf{h}_2} \frac{\partial \mathbf{h}_2}{\partial \mathbf{W}} + \frac{\partial L_3}{\partial \mathbf{h}_3} \frac{\partial \mathbf{h}_3}{\partial \mathbf{h}_2} \frac{\partial \mathbf{h}_2}{\partial \mathbf{h}_1} \frac{\partial \mathbf{h}_1}{\partial \mathbf{W}}$$

$$\left| \frac{\partial L}{\partial \mathbf{W}} = -\frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{t} \frac{\partial L_{t}}{\partial \mathbf{h}_{t}} \left(\prod_{j=k+1}^{t} \frac{\partial \mathbf{h}_{j}}{\partial \mathbf{h}_{j-1}} \right) \frac{\partial \mathbf{h}_{k}}{\partial \mathbf{W}} \right|$$

TRUNCATED BACKPROPAGATION THOUGH TIME

 Backpropagation is very expensive if the input sequence is long.

- Run forward and backward through chunks of sequence instead of the whole sequence
- Carry hidden state forward forever, but only backpropagate for some smaller number of steps

QUIZ: BACKPROPAGATION THOUGH TIME

$$\frac{\partial L}{\partial \mathbf{W}} = -\frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{t} \frac{\partial L_{t}}{\partial \mathbf{h}_{t}} \left(\prod_{j=k+1}^{t} \frac{\partial \mathbf{h}_{j}}{\partial \mathbf{h}_{j-1}} \right) \frac{\partial \mathbf{h}_{k}}{\partial \mathbf{W}}$$

• Suppose n is the input length, the backpropagation length is m, please re-derive the above formula for $\frac{\partial L}{\partial \mathbf{w}}$ while backpropagating only m steps.

PROGRESS ON LANGUAGE MODELS

• On the Penn Treebank (PTB) dataset:

• Metric: Perplexity

KN5: Kneser-Ney 5-gram

Model	Individual	
KN5	141.2	
KN5 + cache	125.7	
Feedforward NNLM	140.2	
Log-bilinear NNLM	144.5	
Syntactical NNLM	131.3	
Recurrent NNLM	124.7	
RNN-LDA LM	113.7	

PROGRESS ON LANGUAGE MODELS

- On the Penn Treebank (PTB) dataset:
- Metric: Perplexity

Model	#Param	Validation	Test
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache	9M [‡]	-	92.0
Zaremba et al. (2014) – LSTM	20M	86.2	82.7
Gal & Ghahramani (2016) – Variational LSTM (MC)	20M	-	78.6
Kim et al. (2016) – CharCNN	19M	-	78.9
Merity et al. (2016) – Pointer Sentinel-LSTM	21M	72.4	70.9
Grave et al. (2016) – LSTM + continuous cache pointer [†]	-	-	72.1
Inan et al. (2016) - Tied Variational LSTM + augmented loss	24M	75.7	73.2
Zilly et al. (2016) – Variational RHN	23M	67.9	65.4
Zoph & Le (2016) – NAS Cell	25M	-	64.0
Melis et al. (2017) – 2-layer skip connection LSTM	24M	60.9	58.3
Merity et al. (2017) - AWD-LSTM w/o finetune	24M	60.7	58.8
Merity et al. (2017) – AWD-LSTM	24M	60.0	57.3
Ours – AWD-LSTM-MoS w/o finetune	22M	58.08	55.97
Ours – AWD-LSTM-MoS	22M	56.54	54.44
Merity et al. (2017) – AWD-LSTM + continuous cache pointer [†]	24M	53.9	52.8
Krause et al. (2017) – AWD-LSTM + dynamic evaluation [†]	24M	51.6	51.1
Ours – AWD-LSTM-MoS + dynamic evaluation [†]	22M	48.33	47.69

(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

Vanishing/Exploding Gradients

• Consider the gradient of L_t at step t, with respect to the hidden state \mathbf{h}_k at some previous step k (k < t):

$$\frac{\partial L_t}{\partial \mathbf{h}_k} = \frac{\partial L_t}{\partial \mathbf{h}_t} \left(\prod_{t \ge j > k} \frac{\partial \mathbf{h}_j}{\partial \mathbf{h}_{j-1}} \right)
= \frac{\partial L_t}{\partial \mathbf{h}_t} \times \prod_{t \ge j > k} \left(diag \left(g'(\mathbf{W} \mathbf{h}_{j-1} + \mathbf{U} \mathbf{x}_j + \mathbf{b}) \right) \mathbf{W} \right)$$

- (Pascanu et al, 2013) showed that if the largest eigenvalue of **W** is less than 1 for g = tanh, then the gradient will shrink exponentially. This problem is called **vanishing gradients**.
- In contrast, if the gradients are getting too large, it is called **exploding gradients**.

WHY IS EXPLODING GRADIENT A PROBLEM?

- When gradients are too large, we take very big steps in SGD, making the algorithm difficult to converge.
- Solution: Gradient clipping if the norm of the gradient is beyond a threshold, scale it down before applying SGD update.

Algorithm 1 Pseudo-code for norm clipping

$$egin{aligned} \hat{\mathbf{g}} \leftarrow rac{\partial \mathcal{E}}{\partial heta} \ & ext{if} \quad \|\hat{\mathbf{g}}\| \geq threshold \ & \hat{\mathbf{g}} \leftarrow rac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}} \ & ext{end if} \end{aligned}$$

WHY IS VANISHING GRADIENT A PROBLEM?

- If the gradients becomes vanishingly small over *long distances* (step *k* to step *t*), then we can't tell whether:
 - We don't need long-term dependencies, or
 - We have wrong parameters to capture the true dependency

the dogs in the neighborhood are ____

Still difficult to predict "barking"

- How to fix vanishing gradient problem?
 - LSTMs: Long short-term memory networks
 - GRUs: Gated recurrent units

- A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the vanishing gradients problem
- Work extremely well in practice
- Basic idea: turning multiplication into addition
- Use "gates" to control how much information to add/erase

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t) \in \mathbb{R}^d$$

At each timestep, there is a hidden state $h_t \in \mathbb{R}^d$ and also a cell state $c_t \in \mathbb{R}^d$

- c_t stores long-term information
- We write/erase c_t after each step
- We read \boldsymbol{h}_t from \boldsymbol{c}_t

- There are three gates:
 - each is a feed-forward layer, followed by a sigmoid activation function, followed by an element-wise multiplication with the layer being gated
 - Note we use ⊙ and ⊗ interchangeably to denote element-wise multiplication

o forget gate (how much to erase)

$$\mathbf{f}_t = \sigma(\mathbf{W}^{(f)}\mathbf{h}_{t-1} + \mathbf{U}^{(f)}\mathbf{x}_t + \mathbf{b}^{(f)}) \in \mathbb{R}^d$$

o input gate (how much to write)

$$\mathbf{i}_t = \sigma(\mathbf{W}^{(i)}\mathbf{h}_{t-1} + \mathbf{U}^{(i)}\mathbf{x}_t + \mathbf{b}^{(i)}) \in \mathbb{R}^d$$

output gate (how much to reveal)

$$\mathbf{o}_t = \sigma(\mathbf{W}^{(o)}\mathbf{h}_{t-1} + \mathbf{U}^{(o)}\mathbf{x}_t + \mathbf{b}^{(o)}) \in \mathbb{R}^d$$

o new cell values

$$\mathbf{g}_t = \tanh(\mathbf{W}^{(c)}\mathbf{h}_{t-1} + \mathbf{U}^{(c)}\mathbf{x}_t + \mathbf{b}^{(c)}) \in \mathbb{R}^d$$

Final memory cell:

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \mathbf{g}_t$$

• Final hidden cell: $\mathbf{h}_t = \mathbf{o}_t \odot \mathbf{c}_t$

Uninterrupted gradient flow!

- LSTM doesn't guarantee there is no vanishing/exploding gradients.
- It does provide an easier way for models to learn long-distance dependencies.
- LSTM was first invented in 1997, but wasn't working until 2013-2015.

IS LSMT ARCHITECTURE OPTIMAL?

MUT1:

$$z = \operatorname{sigm}(W_{xz}x_t + b_z)$$

$$r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + \operatorname{tanh}(x_t) + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

MUT2:

$$z = \operatorname{sigm}(W_{xz}x_t + W_{hz}h_t + b_z)$$

$$r = \operatorname{sigm}(x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

MUT3:

$$z = \operatorname{sigm}(W_{xz}x_t + W_{hz} \tanh(h_t) + b_z)$$

$$r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \tanh(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

Arch.	Arith.	XML	PTB
Tanh	0.29493	0.32050	0.08782
LSTM	0.89228	0.42470	0.08912
LSTM-f	0.29292	0.23356	0.08808
LSTM-i	0.75109	0.41371	0.08662
LSTM-o	0.86747	0.42117	0.08933
LSTM-b	0.90163	0.44434	0.08952
GRU	0.89565	0.45963	0.09069
MUT1	0.92135	0.47483	0.08968
MUT2	0.89735	0.47324	0.09036
MUT3	0.90728	0.46478	0.09161

Next-step-prediction accuracies

Arch.	5M-tst	10M-v	20M-v	20M-tst
Tanh	4.811	4.729	4.635	4.582 (97.7)
LSTM	4.699	4.511	4.437	4.399 (81.4)
LSTM-f	4.785	4.752	4.658	4.606 (100.8)
LSTM-i	4.755	4.558	4.480	4.444 (85.1)
LSTM-o	4.708	4.496	4.447	4.411 (82.3)
LSTM-b	4.698	4.437	4.423	4.380 (79.83)
GRU	4.684	4.554	4.559	4.519 (91.7)
MUT1	4.699	4.605	4.594	4.550 (94.6)
MUT2	4.707	4.539	4.538	4.503 (90.2)
MUT3	4.692	4.523	4.530	4.494 (89.47)

Perplexity on PTB

REFERENCE TO LSTM

- Section 9.5 of Jurafsky and Martin
- https://colah.github.io/posts/2015-08-Understanding-LSTMs/