Atharva Jadhav Portfolio

Professional Background

Currently in Final Year, pursuing Bachelor of Technology in Electronics and Telecommunication Engineering from Pimpri Chinchwad College of Engineering, Pune.

I have several Technical skills including Data Analytics using python, Machine Learning, Deep Learning, Strong understanding of Excel, DBMS and SQL. I am interested in working in Computer Vision and Natural Language Processing.

I have also worked on a few personal projects such as Movie Recommendation using TF-IDF in NLP, Drive Drowsiness Detection using Computer Vision and CNN, Online Multiplayer Game utilizing a server and client to play from anywhere across the world.

I am also adept in competitive programming and have solved a decent number of problems on codechef, leetcode and geeksforgeeks, 500+ combined.

I am a highly motivated and results-driven individual interested in machine learning and data analysis. I am adept at leveraging data-driven insights to solve complex problems and drive informed decision-making. With a passion for innovation and a commitment to continuous learning, I am seeking an opportunity to contribute to a dynamic team and make a significant impact in the field of machine learning.

Table of Contents

1. Professional Background

2.	Table of Contents	2
3.	Data Analytics Process	4
4.	Instagram user analytics	5
	a. Description	5
	b. Approach	5
	c. Insights	6
	d. Results	12
5.	Operation Analytics and Investigating Metric Spike	13
	a. Description	13
	b. Approach	13
	c. Insights	14
	d. Results	23
6.	Hiring Process Analytics	24
	a. Description	24
	b. Approach	24
	c. Insights	25
	d. Results	32
7.	IMDB Movie Analysis	33
	a. Description	33
	b. Approach	35
	c. Insights	36
	d. Results	41
8.	Bank Loan Case Study	42
	a. Description	42
	b. Approach	42
	c. Insights	43
	d. Results	55
9.	Impact of Car Features on Price and Profitability	56
	a. Description	56
	b. Approach	56
	c. Data Cleaning	57
	d. Insights	59
	e. Making DashBoard	71

1

	f. Results	71
10.	ABC Call Volume Trend Analysis	72
	a. Description	72
	b. Approach	72
	c. Data Cleaning	73
	d. Insights	75
	e. Results	81
11.	Appendix	82

Data Analytics Process

Plan: Suppose we wish to buy a laptop. First we decide, from where to buy the device, from

the offline market or through e-commerce websites.

Prepare: Determine how much we are willing to spend on the laptop and set a budget.

Process: Then we research online and compare different laptop models based on their

specifications, features, and prices.

Then we determine the specific features and specifications desired in a laptop, such as processor, RAM, storage capacity, screen size, and any additional requirements

like a dedicated graphics card or touchscreen.

Also determine the type of laptop we want, such as a traditional laptop, 2-in-1 convertible, gaming laptop, or ultrabook, based on my usage and preferences.

Analyze: To analyze we read customer reviews and ratings for the shortlisted laptop models to

gather insights about their performance, reliability, and user experience.

Verify if the laptop comes with a warranty and reliable customer support options in

case any issues arise in the future.

We compare the prices of shortlisted laptops across different online stores to find

the best deal.

Share: If we have any specific queries or concerns, we can reach out to the online store's

customer support team to seek clarification.

Act: Add the chosen laptop to the online store's shopping cart and proceed to checkout.

Enter the required shipping information, such as the delivery address and contact details. Choose a preferred payment method, such as credit card, debit card, or

online payment platforms, to complete the purchase. Choose a preferred payment

method, such as credit card, debit card, or online payment platforms, to complete

the purchase.

Instagram User Analytics

Project Description:

This project focuses on analyzing user behavior on Instagram to provide insights for marketing and investor assessments. By using SQL fundamentals, we will answer specific questions from the marketing and management teams.

In the marketing section, we will find the oldest users, identify users who haven't posted photos, determine the winner of a contest, suggest popular hashtags, and provide insights on the best day to launch AD campaigns.

In the investor metrics section, we will analyze user engagement by calculating the average number of posts per user and assess the presence of fake accounts by identifying users who have liked every single photo.

Through this project, we aim to provide valuable data-driven recommendations to support marketing campaigns, inform decision-making, and evaluate Instagram's performance and authenticity compared to other platforms.

Approach:

As an individual working on this project, I followed a structured approach to analyze user behavior on Instagram and find meaningful insights. I began by carefully examining the provided database and familiarizing myself with its structure. Then, I utilized SQL fundamentals to retrieve the necessary information for each task, employing appropriate queries and functions. I focused on data accuracy and quality throughout the project, ensuring reliable results. By leveraging my SQL skills and maintaining a systematic workflow, I successfully executed the project and created a comprehensive report that fulfilled the objectives of providing marketing insights and investor metrics.

Tech-Stack Used:

For this project, I utilized MySQL Workbench 8.0 as the primary software tool. MySQL Workbench is an integrated development environment (IDE) for MySQL databases, providing a graphical interface for designing, querying, and managing databases.

Insights:

1. Rewarding Most Loyal Users: Identifying the oldest users of Instagram helps recognize and reward long-term user loyalty.

For finding most loyal users following query was used:

SELECT id, username, created_at FROM users
ORDER BY created_at
LIMIT 5;

Here we get the information of the oldest users from the "users" table, including their ID, username, and the date they joined, sorted in order of their joining date, we limit it to 5, to get top 5 users.

2. Remind Inactive Users to Start Posting: Users who have never posted a single photo on Instagram represent an opportunity for re-engagement through targeted promotional emails.

For finding inactive users following query was used:

SELECT users.id, users.username

FROM users

LEFT JOIN photos ON users.id = photos.user id

WHERE photos.id IS NULL;

Here we select the ID and username from the "users" table, where we find users who have not posted any photos based on the left join with the "photos" table, matching the user IDs. We filter out users who have a null value for the photo ID, indicating that they haven't posted any photos. Following is the result of query:

3. Declaring Contest Winner: The winner of a contest can be determined by the user with the most likes on a single photo, ensuring a fair and accurate declaration.

For finding user with most likes on a photo following query was used:

```
SELECT u.username, p.user_id, l.like_count
FROM (

SELECT photo_id, COUNT(*) AS like_count
FROM likes
GROUP BY photo_id
ORDER BY like_count DESC
LIMIT 1
) 1

JOIN photos p ON l.photo_id = p.id
JOIN users u ON p.user id = u.id;
```

Here we are finding the username, user ID, and number of likes for the user with the most popular photo. We count the likes for each photo, find the photo with the highest count, and then match it with the user who owns the photo. By joining the photos, users and likes table, we retrieve the username and user ID for the user with the most likes on their photo.

4. Hashtag Researching: Identifying the top five most commonly used hashtags on Instagram allows for effective hashtag selection to reach a broader audience.

For finding top 5 hashtags used most commonly, following query was used:

```
SELECT t.tag_name, COUNT(*) AS num_times_used FROM tags t

JOIN photo_tags pt ON t.id = pt.tag_id

GROUP BY t.tag_name

ORDER BY num_times_used DESC

LIMIT 5;
```

To find the top 5 most commonly used hashtags, we join the "tags" table with the "photo_tags" table using their respective IDs. By grouping the records based on the tag name, we count the number of times each tag has been used. We then sort the results in descending order based on the count of usage, selecting only the top 5.

5. Launch AD Campaign: Analyzing user registration patterns reveals the best day to launch advertisements, maximizing their potential impact and reach.

For finding day on which most users register, following query was used:

SELECT DAYNAME(created_at) AS registration_day, COUNT(*) AS registration_count FROM users
GROUP BY registration_day
ORDER BY registration_count DESC
LIMIT 1;

By selecting the day name from the "created_at" column of the "users" table, we group the registrations by day of the week. We count the number of registrations for each day and sort the results in descending order based on the registration count. We select only the top result, which represents the day of the week with the highest number of user registrations on Instagram. Following is the result of query:

6. User Engagement: Calculating the average number of posts per user provides insights into user activity levels and potential trends in engagement.

For finding average number of posts per user, following query was used:

SELECT COUNT(photos.id) / COUNT(DISTINCT users.id) AS average_posts_per_user FROM users

LEFT JOIN photos ON users.id = photos.user_id;

By joining the "users" table with the "photos" table using their respective IDs, we count the total number of photos. We also count the distinct number of users. Then, we divide the total number of photos by the distinct number of users to calculate the average posts per user. This gives an average number of posts per user.

7. Bots & Fake Accounts: Identifying users who have liked every single photo helps detect the presence of bots and fake accounts, ensuring a more authentic user community.

To find bots, we find the users who have liked every single photo on Instagram. First, we select all the photo IDs from the "photos" table. Next, we join this list of photo IDs (stored as "all_photos") with the "likes" table on the photo ID to find the corresponding user IDs who have liked those photos. We group the results by the user ID and filter them using the "HAVING" clause, where we count the distinct photo IDs liked by each user and compare it to the total count of photos in the "photos" table. Then, we join this result (stored as "bots") with the "users" table using the matching user IDs.

Results:

While working on this project, I have gained a better understanding of user analytics and SQL fundamentals. By analyzing user data on Instagram, I was able to provide insights on various aspects such as rewarding loyal users, identifying inactive users, declaring contest winners, researching popular hashtags, determining the best day to launch ad campaigns, assessing user engagement, and detecting fake accounts.

This project has helped me enhance my SQL skills, particularly in querying and manipulating data to derive meaningful insights. It has also improved my ability to interpret data and provide actionable recommendations based on the analysis. Overall, this project has deepened my understanding of user behavior analysis and its application in making informed decisions for product development and marketing strategies.

Operation Analytics and Investigating Metric Spike

Project Description:

Case Study 1 (Job Data):

This project focuses on analyzing a job_data table to answer specific questions using SQL fundamentals. The table contains information about jobs, including job_id, actor_id, event, language, time_spent, org, and ds columns. The questions include calculating the number of jobs reviewed per hour per day, analyzing throughput, determining the percentage share of each language, and identifying duplicate rows.

Case Study 2 (Investigating Metric Spike):

This project involves analyzing three tables: users, events, and email_events. The goal is to calculate metrics related to user engagement, user growth, weekly retention, weekly engagement per device, and email engagement. SQL fundamentals will be used to extract insights from the dataset and provide valuable information for marketing campaigns and decision-making.

Approach:

As an individual working on this project, I followed a structured approach to analyze the job_data table. I began by understanding the table structure and column definitions. Using SQL queries and functions, I calculated the number of jobs reviewed per hour per day for November 2020, analyzed throughput by calculating events per second and 7-day rolling average, determined the percentage share of each language in the last 30 days, and identified duplicate rows. I prioritized data accuracy, optimized queries for efficiency, and maintained documentation of my workflow. The project aimed to provide valuable insights for marketing and investor assessments, achieved through the successful application of SQL fundamentals.

Tech-Stack Used:

For this project, I utilized MySQL Workbench 8.0 as the primary software tool. MySQL Workbench is an integrated development environment (IDE) for MySQL databases, providing a graphical interface for designing, querying, and managing databases.

Insights:

Case Study 1(Job Data):

Number of jobs reviewed: The number of jobs reviewed per day per hour indicates the level of activity in job review processes.

To calculate the number of jobs reviewed per hour per day for November 2020, I utilized SQL queries to filter the data for the specified time period and grouped the results by hour and day.

Query:

SELECT DATE(ds) AS date,
HOUR(ds) AS hour,
COUNT(*) AS jobs_reviewed
FROM sheet1

WHERE ds BETWEEN '2020-11-01' AND '2020-11-30' GROUP BY DATE(ds), HOUR(ds)

ORDER BY DATE(ds), HOUR(ds);

Throughput: Throughput refers to the number of events happening per second, representing the system's processing capacity.

To calculate the 7-day rolling average of throughput, I used SQL queries to aggregate the events per second and then calculated the average over a rolling window of 7 days. This helps identify any trends or variations in the throughput metric. I prefer the 7-day rolling average because it provides a smoother representation of the metric, reducing the impact of daily fluctuations and offering a more comprehensive view of the system's performance.

```
Query:
SELECT date,
total_events,
total_events / (24 * 60 * 60) AS throughput,
AVG(total_events / (24 * 60 * 60)) OVER (ORDER BY date ROWS BETWEEN
6 PRECEDING AND CURRENT ROW) AS rolling_average
FROM (
SELECT DATE(ds) AS date, COUNT(*) AS total_events
FROM sheet1
WHERE ds BETWEEN '2020-11-01' AND '2020-11-30'
GROUP BY DATE(ds)
) AS subquery
GROUP BY date, total_events
ORDER BY date;
```


Percentage share of each language: The percentage share of each language in different contents provides insights into language preferences and content distribution. To calculate the percentage share of each language in the last 30 days, I used SQL queries to filter the data for the specified time period and performed calculations to determine the language distribution. By dividing the count of each language by the total count of contents, I obtained the percentage share for each language.

Query:

SELECT language,

COUNT(*) AS job_count,

ROUND(COUNT(*) * 100.0 / (SELECT COUNT(*) FROM sheet1 WHERE ds BETWEEN '2020-11-01' AND '2020-11-30'), 2) AS percentage_share FROM sheet1

WHERE ds BETWEEN '2020-11-01' AND '2020-11-30'

GROUP BY language

ORDER BY percentage_share DESC;

Duplicate rows: Duplicate rows refer to rows in the dataset that have the same values. If actor_id and job_id are the same for an entry, then that entry is considered to be duplicate. Comparing the values across columns, I can identify rows with identical values and retrieve them from the table.

```
Query:
SELECT *
FROM sheet1
WHERE (actor_id, job_id) IN (
SELECT actor_id, job_id
FROM sheet1
GROUP BY actor_id, job_id
HAVING COUNT(*) > 1
)
ORDER BY actor_id, job_id;
```


Case Study 2 (Investigating Metric Spike):

User Engagement: User engagement is a measure of how active users are and indicates their satisfaction with a product or service.

To calculate the weekly user engagement, I utilized SQL queries to analyze unique user engagement events within the specified week.

Query:

SELECT WEEK(occurred_at) AS week, COUNT(DISTINCT user_id) AS user_engagement

FROM events

WHERE event_type = 'engagement'

GROUP BY week;

User Growth: User growth measures the increase in the number of users over a specific period, reflecting the product's adoption and popularity.

To calculate user growth for a product, I used SQL queries to track the number of new users added over time. By comparing the count of users added in different weeks, we can identify growth of product.

Query:

SELECT WEEK(created_at) AS week, COUNT(DISTINCT user_id) AS user_growth FROM user

GROUP BY week;

Weekly Retention: Weekly retention evaluates the percentage of users who continue to use a product or service after signing up, indicating its ability to retain users. To calculate the weekly retention of users, I employed SQL queries to track the state of users and identify users who remained active in consecutive weeks. By comparing the count of retained users to the initial sign-up cohort, I determined the retention rate for each week.

Query:

SELECT WEEK(created_at) AS week, COUNT(DISTINCT user_id) AS weekly_retention
FROM user
WHERE state = 'active'
GROUP BY week;

Weekly Engagement: Weekly engagement measures the level of user activity and satisfaction with a product or service on a weekly basis.

To calculate the weekly engagement per device, I utilized SQL queries to analyze user interactions and activities categorized by device type. By selecting distinct users and their devices and grouping by week and device, I assessed the level of engagement for each device category.

Query:

SELECT WEEK(occurred_at) AS week, device, COUNT(DISTINCT user_id) AS weekly engagement

FROM events

GROUP BY week, device;

Email Engagement: Email engagement reflects user involvement and interaction with the email service.

To calculate email engagement metrics, I used SQL queries to analyze user email activities such as opens, clicks, and responses.

Query:

SELECT action, COUNT(DISTINCT user_id) AS email_engagement FROM email_events GROUP BY action;

Results:

While working on this project, I have gained a better understanding of user analytics and SQL fundamentals. By analyzing Operation Analytics and Investigating Metric Spike, I was able to provide insights on various aspects such as number of jobs analyzed per hour per day, 7 day rolling average of throughput, percentage share of each language, user engagement, user growth, weekly retention, weekly engagement per device, and email engagement.

This project has helped me enhance my SQL skills, particularly in querying and manipulating data to derive meaningful insights. It has also improved my ability to interpret data and provide actionable recommendations based on the analysis. Overall, this project has deepened my understanding of user behavior analysis and its application in making informed decisions for product development and marketing strategies.

Hiring Process Analytics

Project Description:

This project is all about analyzing a company's data on people who applied for different positions in different departments. We'll be using statistics and Excel formulas to make sense of the information and draw important conclusions about the company.

We'll go through several steps to understand the data, check for missing values, group different categories together, spot any outliers, and summarize the data.

Here are the tasks we'll be working on:

- 1. Hiring: We'll figure out how many guys and girls got hired by the company.
- 2. Average Salary: We'll calculate the average salary offered by the company.
- 3. Class Intervals: We'll create groups based on salary ranges.
- 4. Charts and Plots: We'll make cool graphs like Pie Charts or Bar Graphs to show the percentage of people in different departments.
- 5. Charts: We'll use more graphs to show the different levels of job positions.

This project will give us important insights to help the company make decisions and improve their hiring process.

Approach:

In analyzing the dataset of a company's registrations for different posts in various departments, I followed a structured approach using Google Sheets. Here's how I tackled the project:

- 1. Hiring: I used the COUNTIF function in Google Sheets to determine the number of males and females hired by the company.
- 2. Average Salary: To calculate the average salary offered by the company, I utilized the AVERAGE function in Google Sheets.
- 3. Class Intervals: I utilized MIN and MAX function in Google Sheets to draw class intervals and FREQUENCY function to find the distribution.
- 4. Charts and Plots: Using the Insert Chart feature in Google Sheets, I created Pie Charts to show the proportion of people working in different departments.
- 5. Post Tiers: I utilized the AVERAGEIF and MAXIF functions in Google Sheets to categorize different job positions into their respective tiers based on specific conditions, which were then used to create charts or graphs.

By leveraging the functions in Google Sheets, as well as utilizing the charting features, I obtained valuable insights to support decision-making and enhance the company's hiring process.

Tech-Stack Used:

For this project, I utilized Google Sheets as the primary software tool. Google Sheets is a spreadsheet application included as part of the free, web-based Google Docs Editors suite offered by Google.

Insights:

1. *Gender Distribution*: It is important to analyze the number of males and females hired to gain insights into the gender diversity of the company. This information helps evaluate the company's efforts in promoting equality and inclusivity in its hiring process.

To find number of male employees and female employees following formulas were used:

```
=COUNTIFS(D2:D,"Male",C2:C,"Hired")
=COUNTIFS(D2:D,"Female",C2:C,"Hired")
```

=SUM(J7,J9)

2. *Salary Analysis*: Calculating the average salary offered by the company provides valuable information about the overall compensation provided to employees. This insight allows us to assess the company's competitiveness in terms of salary and understand the salary structure within the organization.

To calculate average salary of the employees we can use the following function:

=AVERAGE(G2:G)

Average salary	49983.02902

As the G column contains the salary offered by the company, taking its average will give the average salary of the company.

3. Salary Distribution Visualization: Drawing class intervals for salaries helps us group salary data into meaningful ranges. This visualization allows us to observe patterns and identify any concentration or gaps in salary levels across the company, giving us a better understanding of the salary distribution.

To find class intervals we have to find upper and lower limits. We can do that as following:

=MIN(G2:G)

=MAX(G2:G)

100
400000

We can now divide the classes into appropriate limits, and find number of elements in those classes by:

=FREQUENCY(G2:G,L8:L11)

Class Interval	
Min Salary	100
Max Salary	400000
Class Intervals	Frequency
0-100000	7164
100000-200000	1
	1
200000-300000	

4. *Charts and Plots*: Creating a Pie Chart, Bar Graph, or other graphical representations helps visualize the proportion of people working in different departments. This visual representation provides a clear overview of the departmental distribution within the company, enabling us to identify the size and composition of each department.

To Create a Pie Chart of different departments we can use the chart in the insert menu.

Then we select Data Range and select chart type:

Department Pie Chart

5. *Visual Representation of Post Tiers*: Utilizing various charts and graphs, such as stacked bar graphs or grouped column charts, allows us to visually represent different post tiers within the company. This representation helps us compare job levels and understand the hierarchical structure of positions within the organization.

To plot charts and graphs of various post tiers, we have to find parameters for each post, such as average salary and maximum salary.

To find average salary and maximum salary we can use following formulae:

=AVERAGEIF(F2:F,I57,G2:G) =MAXIFS(G2:G,F2:F,I57)

I	J	K
Unique Posts	Average Salary	Max Salary
c8	50701.4625	99967
c5	50213.50372	99948
i4	48877.84091	400000
-	85914	85914
i 7	50065.36086	300000
n10	26990	26990
b9	49666.76458	200000
i5	49391.92503	98926
i1	49943.93694	99939
i6	48839.24858	99762
m6	34521.33333	68466
m7	41402	41402
c-10	51134.62069	99891
c9	50201.18583	99953
n9	46219	46219
n6	44700	44700

Now, to find how many jobs are there per post can be found using a column chart

To find distribution of Average and Maximum salary we use data we derived earlier.

This Chart gives Distribution of salary for posts, and makes it easier to understand where the difference between average salary and maximum salary is most.

Results:

While working on this project, I have gained a better understanding of hiring process analytics and Excel fundamentals. By analyzing hiring data, I was able to provide insights on various aspects such as gender gender distribution, average salary, salary distribution, Department size and human resource distribution, salary distribution across various posts.

This project has helped me enhance my Excel skills, particularly in functions and data visualization to derive meaningful insights. It has also improved my ability to interpret data and provide actionable recommendations based on the analysis.

IMDB Movie Analysis

Link for Google Sheets:

https://docs.google.com/spreadsheets/d/134qUS6AE1FmzjW2wKUem OOFuOD-CYimsf3JP27GIoPo/edit?usp=sharing

Project Description:

This project aims to analyze a dataset containing information about various movies from the IMDB database. The goal is to gain insights into different aspects of the movies, such as genre, duration, language, directors, and budgets, and their impact on the IMDB scores and financial success. By employing statistics and Excel formulas, we will extract meaningful conclusions to help understand the factors that contribute to a movie's popularity and success.

A. Movie Genre Analysis:

Task 1: Determine the most common genres of movies in the dataset.

Task 2: Calculate descriptive statistics (mean, median, mode, range, variance, standard deviation) of the IMDB scores for each genre.

B. Movie Duration Analysis:

Task 1: Analyze the distribution of movie durations.

Task 2: Visualize the relationship between movie duration and IMDB score.

C. Language Analysis:

Task 1: Determine the most common languages used in movies.

Task 2: Analyze the impact of language on IMDB scores using descriptive statistics.

D. Director Analysis:

Task 1: Identify the top directors based on their average IMDB score.

Task 2: Analyze the contribution of top directors to the success of movies using percentile calculations.

E. Budget Analysis:

Task 1: Analyze the correlation between movie budgets and gross earnings.

Task 2: Identify the movies with the highest profit margin.

By completing the above tasks and analyzing the data using statistics and Excel formulas, we will gain valuable insights into the impact of movie genres, duration, language, directors, and budgets on IMDB scores and financial success. These findings will assist in making informed

decisions to improve movie-making strategies and achieve greater popularity and profitability for future films.				

Approach:

Data Engineering:

Genre column has multiple genres in the same column and can't be used directly to find distinct genre count and use each genre effectively. So we first split it to multiple columns by "split text to column" method and then list all distinct genres in a column for future use. We can use "=UNIQUE()" formula to find distinct elements in any column, and will do so in any future analysis.

A. Movie Genre Analysis:

We will use Excel's COUNTIF function to count the occurrences of each genre.

To Calculate descriptive statistics (mean, median, mode, range, variance, standard deviation) of the IMDB scores for each genre. We will first need to manipulate the 'genres' column to separate multiple genres for a single movie. Then, we will use Excel's AVERAGE, MEDIAN, MODE, MAX, MIN, VAR, and STDEV functions to calculate the required statistics for each genre.

B. Movie Duration Analysis:

We will calculate descriptive statistics (mean, median, and standard deviation) for movie durations using Excel's functions.

We will create a scatter plot to visualize the relationship between movie duration and IMDB score. Additionally, we will add a trendline to assess the direction and strength of the relationship.

C. Language Analysis:

We will use Excel's COUNTIF function to count the number of movies for each language. We will calculate the mean, median, and standard deviation of the IMDB scores for each language using Excel's functions.

D. Director Analysis:

We will calculate the average IMDB score for each director and use Excel's PERCENTILE function to identify the directors with the highest scores.

We will compare the scores of the top directors to the overall distribution of scores to assess their impact.

E. Budget Analysis:

We will calculate the correlation coefficient between movie budgets and gross earnings using Excel's CORREL function.

We will calculate the profit margin (gross earnings - budget) for each movie and use Excel's MAX function to identify the movies with the highest profit margin.

Tech-Stack Used:

For this project, I utilized Google Sheets as the primary software tool. Google Sheets is a spreadsheet application included as part of the free, web-based Google Docs Editors suite offered by Google.

Insights:

A. Movie Genre Analysis:

It is important to analyze the distribution of movies across different genres and understand relationships between genre and IMDB score, to predict what kind of movies audiences prefer.

For this descriptive statistics can be used. For doing this following formulas were used.

To find distinct genres from column of genres, we first separated genres into multiple columns and then, made unique list of genres using following formula:

```
=UNIQUE(TOCOL(J:Q))
```

To count the number of movies per genre:

=COUNTIF(J:Q,AR3)

To find average IMDB Score per genre:

=ArrayFormula(AVERAGE(IF((J:J=AR3)+(K:K=AR3)+(L:L=AR3)+(M:M=AR3)+(N:N=AR3)+(O:O=AR3)+(P:P=AR3)+(Q:Q=AR3), AG:AG)))

To find median IMDB Score per genre:

=ArrayFormula(MEDIAN(IF((J:J=\$AR3)+(K:K=\$AR3)+(L:L=\$AR3)+(M:M=\$AR3)+(N:N=\$AR3)+(O:O=\$AR3)+(P:P=\$AR3)+(Q:Q=\$AR3), AG:AG)))

To find mode IMDB Score per genre:

=ArrayFormula(MODE(IF((J:J=\$AR3)+(K:K=\$AR3)+(L:L=\$AR3)+(M:M=\$AR3)+(N:N=\$AR3)+(O:O=\$AR3)+(P:P=\$AR3)+(Q:Q=\$AR3), AG:AG)))

To find minimum IMDB Score per genre:

=ArrayFormula(MIN(IF((J:J=\$AR3)+(K:K=\$AR3)+(L:L=\$AR3)+(M:M=\$AR3)+(N:N=\$AR3)+(O:O=\$AR3)+(P:P=\$AR3)+(Q:Q=\$AR3), AG:AG)))

To find maximum IMDB Score per genre:

=MAX(MAXIFS(AG:AG,J:J,AR3),MAXIFS(AG:AG,K:K,AR3),MAXIFS(AG:AG,L:L,AR3),MAXIFS(AG:AG,M:M,AR3),MAXIFS(AG:AG,N:N,AR3),MAXIFS(AG:AG,O:O,AR3),MAXIFS(AG:AG,P:P,AR3),MAXIFS(AG:AG,Q:Q,AR3))

To find variance in IMDB Score per genre:

=ArrayFormula(VAR(IF((J:J=\$AR3)+(K:K=\$AR3)+(L:L=\$AR3)+(M:M=\$AR3)+(N:N=\$AR3)+(O:O =\$AR3)+(P:P=\$AR3)+(Q:Q=\$AR3), AG:AG)))

To find standard deviation in IMDB Score per genre:

=ArrayFormula(STDEV(IF((J:J=\$AR3)+(K:K=\$AR3)+(L:L=\$AR3)+(M:M=\$AR3)+(N:N=\$AR3)+(O:O=\$AR3)+(P:P=\$AR3)+(Q:Q=\$AR3), AG:AG)))

We can automatically generate complete table for each genre by autofilling formulas in google sheets

Output:

Genres	Count	Average IMDB Score	Median IMDB Score	Mode IMDB Score	Min IMDB Score	Max IMDB score	Variance in IMDB Score	Standard Deviation
Action	1153	6.239895924	6.3	6.1	1.7	9.1	1.25179235	1.118835265
Adventure	923	6.441170098	6.6	6.7	1.9	8.9	1.279604703	1.131196138
Fantasy	610	6.30704918	6.4	6.7	1.7	8.9	1.347191607	1.160685835
Sci-Fi	616	6.281818182	6.4	6.7	1.9	8.8	1.466075388	1.210816001
Thriller	1411	6.314245216	6.4	6.1	2.2	9	1.111619625	1.054333735
Documentary	121	7.180165289	7.4	7.5	1.6	8.7	1.116269972	1.056536782
Romance	1107	6.450587173	6.5	6.5	2.1	8.6	0.9920860021	0.996035141
Animation	242	6.576033058	6.7	6.7	1.7	8.6	1.298676314	1.139594803
Comedy	1872	6.195245726	6.3	6.7	1.7	9.5	1.189656701	1.090713849
Family	546	6.245054945	6.4	6.7	1.7	8.7	1.443837887	1.201598055
Musical	132	6.507575758	6.7	7	2.1	8.5	1.502384918	1.225718123
Mystery	500	6.4864	6.6	6.6	2.2	8.6	1.189754549	1.090758703
Western	97	6.689690722	6.8	6.5	3.8	8.9	1.086767612	1.042481468
Drama	2594	6.763762529	6.9	7.2	2	9.3	0.9165266786	0.9573539986
History	207	7.083574879	7.2	7.5	2	8.9	0.7883696825	0.8879018428
Sport	182	6.606043956	6.8	7.2	2	8.7	1.214272661	1.101940407
Crime	889	6.564791901	6.6	6.6	2.4	9.3	1.053612597	1.02645633
Horror	565	5.843539823	5.9	6.2	2.2	8.7	1.277959079	1.130468522
War	213	7.070422535	7.1	7.1	2.7	8.6	0.7651116131	0.8747065868
Biography	293	7.150170648	7.2	7	4.5	8.9	0.5220290804	0.7225157994
Music	214	6.410280374	6.6	6.5	1.6	8.5	1.389659076	1.178838019
Game-Show	1	2.9	2.9	#N/A	2.9	2.9	#DIV/0!	#DIV/0!
Reality-TV	2	4.75	4.75	#N/A	2.9	6.6	6.845	2.61629509
News	3	7.533333333	7.4	#N/A	7.1	8.1	0.2633333333	0.5131601439
Short	5	6.38	6.5	#N/A	5.2	7.1	0.557	0.7463243263
Film-Noir	6	7.633333333	7.65	#N/A	7.1	8.2	0.1866666667	0.4320493799

Note that Mode is N/A where each element appears only once and variance and standard deviance can't be calculated for genre with single element.

B. Movie Duration Analysis:

To determine the ideal movie duration, that audience prefer is essential for a successful movie. So to find the relation between movie duration and IMDB Score we can use descriptive statistics to find average, median and standard deviation of movie duration. We can also create a scatterplot to better understand relationship and plot a trendline.

Formulae:

To find average duration of movies:

=AVERAGE(D:D)

To find median duration of movies:

=MEDIAN(D:D)

To find mode duration of movies:

=MODE(D:D)

To find standard deviation in duration of movies:

=STDEV(D:D)

Output:

Movie Duration Analysis	
Average Movie Duration	107.201074
Median Movie Duration	103
Mode Movie Duration	90
Standard Deviation in Duration	25.19744081

To Create a scatter plot of IMDB Score vs Movie duration we insert a chart and select scatterplot. We select data ranges and visualize the scatter plot. We add a trend line to better understand the relationship.

C. Language Analysis:

Determining which language the audience prefer to watch and where the majority of movies are successful is important for making a profit. That's why Descriptive statistics of Language and IMDB score are calculated.

Unique languages are found similarly unique genres are found, by using below formula:

=UNIQUE(AA3:AA)

To find count of movies in each language following formula is used:

=COUNTIF(AA:AA,AU68)

To find average IMDB Score per language:

=AVERAGEIF(AA:AA,AU68,AG:AG)

To find median IMDB Score per language:

=ArrayFormula(MEDIAN(if(AA:AA=\$AU68,AG:AG)))

To find standard deviation of IMDB Score per language:

=ArrayFormula(STDEV(if(AA:AA=AU68,AG:AG)))

Output:

Unique Languages	Movie Count	Average IMDB Score	Median IMDB Score	Standard Deviation of IMDB Score
English	4704	6.398426871	6.5	1.122067928
Japanese	18	7.39444444	7.6	0.9908239128
French	73	7.038356164	7.2	0.7269858124
Mandarin	26	6.788461538	7.05	1.042046802
Aboriginal	2	6.95	6.95	0.7778174593
Spanish	40	6.9375	7.15	0.8550566033
Filipino	1	6.7	6.7	#DIV/0!
Hindi	28	6.632142857	6.95	1.398955582
Russian	11	6.363636364	6.5	1.383671007
Maya	1	7.8	7.8	#DIV/0!
Kazakh	1	6	6	#DIV/0!
Telugu	1	8.4	8.4	#DIV/0!
Cantonese	11	6.954545455	7.2	0.7047888143
loelandic	2	7.55	7.55	0.9192388155
German	19	7.342105263	7.6	0.9541230933
Aramaic	1	7.1	7.1	#DIV/0!
Italian	11	7.227272727	7.3	1.244259546
Dutch	4	7.425	7.45	0.434932945
Dari	2	7.5	7.5	0.1414213562
Hebrew	5	7.58	7.6	0.3346640106
Chinese	3	5.666666667	5.7	0.5507570547
Mongolian	1	7.3	7.3	#DIV/0!
Swedish	5	7.44	7.6	0.7569676347
Korean	8	7.3875	7.5	0.825378701
Thai	3	6.633333333	6.6	0.4509249753
Polish	4	8.25	8.25	0.9814954576
Bosnian	1	4.3	4.3	#DIV/0!
None	2	7.95	7.95	0.7778174593
Hungarian	1	7.1	7.1	#DIV/0!
Portuguese	8	7.4875	7.7	0.8838834765
Danish	5	7.5	8.1	1.077032961
Arabic	5	7.38	7.4	0.8843076388
Norwegian	4	7.15	7.3	0.5744582847
Czech	1	7.4	7.4	#DIV/0!
Kannada	1	7.1	7.1	#DIV/0!
Zulu	2	7.1	7.1	0.2828427125
Panjabi	1	6.6	6.6	#DIV/0!
Tamil	1	5.1	5.1	#DIV/0!
Dzongkha	1	7.5	7.5	#DIV/0!
Vietnamese	1	7.4	7.4	#DIV/0!
Indonesian	2	7.9	7.9	0.4242640687
Urdu	1	7	7	#DIV/0!
Romanian	2	7.2	7.2	0.9899494937
Persian	4	7.575	7.95	1.203813385
Slovenian	1	6.4	6.4	#DIV/0!
Greek	1	7.3	7.3	#DIV/0!
Swahili	1	7.4	7.4	#DIV/0!

Note: Standard deviation of a single movie in a language can't be calculated.

D. Director Analysis:

Director of a movie plays a major role in the popularity of a movie, so finding popular directors with the most IMDB rating is detrimental in finding which movies are going to make it big in the market. To find top directors we have to first find average IMDB rating per director, and then we find top 1% directors by using "PERCENTILE" function in google sheets Formulae:

To find all unique directors:

=QUERY(B3:B, "SELECT B WHERE B <> " AND B IS NOT NULL", 0)

To find average IMDB score per directors:

=iferror(AVERAGEIF(B3:B,AR121,AG:AG),AG:AG)

To find value at 99%le of IMDB score:

=PERCENTILE(AS121:AS,99%)

To count of top 1% directors:

=COUNTIF(AS121:AS, ">= "&PERCENTILE(AS121:AS, 99%))

To find list of top 1% directors:

=ARRAYFORMULA(FILTER(AR121:AS, AS121:AS >= AW120))

Output:

Unique Directors	Average IMDB	Value at 99 Percentile	8.8
James Cameron	6.8	Count of Directors	147
Gore Verbinski	6.783333333		
Sam Mendes	6.585714286	Director	IMDB Rating
Christopher Nolan	6.842857143	Allison Burnett	8.8
Doug Walker	5.9	Sanjay Rawal	8.8
Andrew Stanton	6.4	Elia Kazan	8.8
Sam Raimi	7.008333333	Kat Coiro	8.8
Nathan Greno	7.6	Cristian Mungiu	8.8
Joss Whedon	6.6	Brian Dorton	8.8
David Yates	6.933333333	David Slade	8.8
Zack Snyder	7.3	Jamie Babbit	8.8
Bryan Singer	6.728571429	Maryam Keshavarz	8.8
Marc Forster	6.742857143	Ryan Coogler	8.8
Gore Verbinski	6.45	Ramaa Mosley	8.8
Gore Verbinski	6.725	James Algar	8.8
Zack Snyder	5.933333333	Charles Herman-Wurmfe	8.8
Andrew Adamson	6.35	Ric Roman Waugh	8.8
Joss Whedon	5.4	Mariette Monpierre	8.8
Rob Marshall	5.925	Tommy Oliver	8.8
Barry Sonnenfeld	6.666666667	Jamie Travis	8.8
Peter Jackson	6.5	Lee Toland Krieger	8.8
Marc Webb	4.85	Rich Christiano	8.8
Ridley Scott	6.35625	Paul Andrew Williams	8.8
Peter Jackson	6.39	Nick Love	8.8
Chris Weitz	6.45	Natalie Bible'	8.8
Peter Jackson	5.966666667	Asghar Farhadi	8.8
James Cameron	6.84	Justin Molotnikov	8.8

These lists are very long and only some part of it is shown in output.

E. Budget Analysis:

The most important factor in determining the success of a movie is if it made a profit or not. Profit can be defined as the subtraction of budget from gross income it made at box office. We can also find correlation coefficient to find how likely it is to create a profit by setting an effective budget.

Also It would help to find the movie which made most profit to learn from it, to produce more successful movies.

Formulae:

To find correlation between budget and gross profit:

=CORREL(AD3:AD,I3:I)

To find profit by subtracting budget from gross:

=ArrayFormula((I3:I-AD3:AD))

To find most profit made by a movie:

=MAX(AL:AL)

To find movie with most profit:

=if(AM3=AL:AL,S:S)

Output:

Correlation	Profit Margin	Max Profit	Movie Name
0.1021794535	523505847	523505847	Avatar
	9404152		
	-44925825		
	198130642		
	0		
	-190641321		

Note: Output is very large; only the first few lines are shown for the profit margin column.

Results:

While working on this project, I have gained a better understanding of IMDB movie analysis and Advanced Excel methodologies. By analyzing movie data, I was able to provide insights on various aspects such as genre distribution and relation with IMDB score, relation between movie duration and score and visualization, language and IMDB Score, Impacts of popularity of director on movie, and determining profit from budget and gross income.

This project has helped me enhance my Excel skills, particularly in functions and data visualization to derive meaningful insights. It has also improved my ability to interpret data and provide actionable recommendations based on the analysis.

Bank Loan Case Study

Link For Excel Sheet:

https://docs.google.com/spreadsheets/d/1mlateqxKvMcygMzOsjjxkT RCFzyoXbFu/edit?usp=sharing&ouid=107365393175079460343&rtp of=true&sd=true

Excel file contains different worksheets which have results of different tasks in them.

Project Description:

This project aims to analyze a dataset containing information about various bank loan applications. The goal is to gain insights about approval of bank loans, such as the relation between income and credit. The data provided has various missing or null Data, our task is to handle those missing values appropriately, by either deleting or imputing these data. There are various outliers in data, we have to find these outliers. We also have to check for data imbalance and perform various analyses on data, such as univariate and bivariate analysis. Finding correlation between various parameters would help us understand what factors affect most in bank loan application approval. Thus, by employing statistics and Excel formulas, we will extract meaningful conclusions to help understand the factors that contribute to a bank loan getting approved.

Approach:

As an individual working on this project, I followed a structured approach to analyze data about bank loan applications. I began by carefully examining the provided database and familiarizing myself with its structure and columns. I tried to find columns which had the most significance in the dataset. I handled missing values by eliminating columns which had most empty cells, and were not significant. And imputed data into cells that were necessary for analysis. Then, I utilized Excel fundamentals to retrieve the necessary information for each task, employing appropriate functions and statistical methods. I focused on data accuracy and quality throughout the project, ensuring reliable results. By leveraging my Excel skills and maintaining a systematic workflow, I successfully executed the project and created a comprehensive report that fulfilled the objectives of providing marketing insights and investor metrics.

Tech-Stack Used:

For this project, I utilized Microsoft Excel as the primary software tool.

Insights:

Task 1:

Identify Missing Data and Deal with it Appropriately (Data Cleaning):

To find data having missing values we utilized COUNTA function in Excel, which returns no. of cells which are not blank.

Formula:

=COUNTA(A4:A50002)

This gave us the number of rows in the TARGET column, which is the total number of rows which we have to consider for analysis.

C	17 🗸 :	$\times \checkmark j$	cash loans						
4	Α	В	С			D	E		
1	49999	49999		49999		49999		49999	
2	0	0		0		0		0	
3	SK_ID_CURR ▼	TARGET ▼	NAME_CONTRACT_	TYPE ▼	CODE	GENDER ▼	FLAG_OWN	CAR ▼	FLAG_
4	100002	1	Cash loans		M		N		Υ
5	100003	0	Cash loans		F		N		N
6	100004	0	Revolving loans		M		Υ		Υ
7	100006	0	Cash loans		F		N		Υ
8	100007	0	Cash loans		M		N		Υ
9	100008	0	Cash loans		M		N		Υ
10	100009	0	Cash loans		F		Υ		Υ

The columns which had missing data in them were found out by using the formula: =(100-(V1/\$A1)*100)

This formula gives us the percentage of missing values in the column.

Alignn	nent	□ Numbe	r 😼		Styles		Cells	
AO	AP	AQ	AR	AS	AT	AU	AV	
49999	21827	49873	40055	24614	20800	25605	16760	
0	56.3451269	0.25200504	19.88839777	50.77101542	58.39916798	48.78897578	66.47932959	
RGANIZATION_TYPE 🔻	EXT_SOURCE_1	EXT_SOURCE_2 E	XT_SOURCE_3	APARTMENTS_AVG	BASEMENTAREA_AVG 🔻	YEARS_BEGINEXPLUATATION_AVG -	YEARS_BUILD_AVG -	сом
usiness Entity Type 3	0.083036967	0.262948593	0.13937578	0.0247	0.0369	0.9722	0.6192	
chool	0.311267311	0.622245775		0.0959	0.0529	0.9851	0.796	
overnment		0.555912083	0.729566691					
usiness Entity Type 3		0.65044169						
eligion		0.322738287						
ther		0.354224732	0.621226338					
usiness Entity Type 3	0.774761413	0.723999852	0.492060094					
ther		0.714279286	0.54065445					
NA	0.587334047	0.205747288	0.751723715					
ectricity		0.746643629						
edicine	0.319760172	0.651862333	0.363945239					
NA	0.72204445	0.555183162	0.652896552					
usiness Entity Type 2	0.464831117	0.715041819	0.176652579	0.0825		0.9811		
elf-employed		0.566906613	0.77008707	0.1474	0.0973	0.9806	0.7348	
ansport: type 2	0.721939769	0.642656205		0.3495	0.1335	0.9985	0.9796	
usiness Entity Type 2	0.115634337	0.346633981	0.678567689					
overnment		0.23637784	0.062103038					
onstruction		0.683513346						
ousing		0.706428403	0.556727426	0.0278	0.0617	0.9881	0.8368	
ndergarten		0.58661714	0.477649155					
elf-employed	0.565654882	0.113374513		0.0722	0.0801	0.9781	0.7008	
ade: type 7	0.43770902	0.233766958	0.542445144					
elf-employed		0.457142972	0.358951229	0.0907	0.0795	0.9786	0.7076	
NA		0.624304737	0.669056695	0.1443	0.0848	0.9876	0.83	

We highlighted columns with missing values by using conditional formatting. We found no. of columns with missing values **greater** than 10% by this formula:

- =COUNTIF(A2:DR2,">10")
- =COUNTIF(A2:DR2,"<10")

No. of columns with missing data more than 10%	57	
No. of columns with missing data less than 10%	65	

We plotted a bar graph to better understand the number of columns containing missing values

To Visualize columns and their respective missing values.

We saved all 65 columns with least missing values in a new worksheet called Cleaned Data.

Task 2:

Identify Outliers in the Dataset:

To find Outliers in the Dataset we utilized functions like QUARTILE, IQR, and conditional formatting to identify potential outliers.

We first copied the columns of interest into a new worksheet for finding Outliers.

Columns Copied are:

	* *	-	_		_	•
	SK_ID_CURR ▼	TARGET ▼	AMT_INCOME_TOTAL	CNT_CHILDREN ▼	DAYS_EMPLOYED -	DAYS_EMPLOYED(ABS)
2	100002	1	202500	0	-637	637
3	100003	0	270000	0	-1188	1188

We used the QUARTILE function to find quartile 1 and quartile 3, along with the IQR and upper limit and lower limit ranges.

Formulae:

=QUARTILE.EXC(Table5[AMT INCOME TOTAL],1)

=QUARTILE.EXC(Table5[[#All],[AMT INCOME TOTAL]],3)

=I4-I2 (IQR)

=I4+1.5*I6 (Upper limit)

=I2-1.5*I6 (Lower limit)

=COUNTIF(C2:C50000,">337500") (Count of elements outside

limits)

			Outliers i	in AMT_INCOME_TOTAL		
Quartile 1	112500					
		Upper Limit	337500	Count of elements above upper limit	2295	
Quartile 3	202500					
		Lower Limit	-22500			
IQR	90000					

We used Conditional Formatting to highlight the cells which contain values outside the limits.

100007	0	121500
100008	0	99000
100009	0	171000
100010	0	360000
100011	0	112500
100012	0	135000
100014	0	112500
100015	0	20410 155

We also plotted A scatter plot to visualize the outliers

In the above plot the point which lies outside the general trend, and is very much out of the scope can be called an outlier.

Similar Steps were done for other columns and following results were obtained.

SK_ID_CURR TARGET AMT_INCOME_TOTAL CNT_CHILDREN DAYS_EMPLOYED DAYS	Δ	Α	В	С	D	E	F
3 100003 0 270000 0 -1188 1188 4 100004 0 67500 0 -225 225 5 100006 0 135000 0 -3039 3039 6 100007 0 121500 0 -3038 3038 7 100008 0 99000 0 -1588 1588 8 100009 0 171000 1 -3130 3130 10 100010 0 360000 0 -449 449 10 100011 0 112500 0 365243 365243 11 100012 0 112500 1 -679 679 13 100015 0 38419.155 0 365243 365243 14 100016 0 67500 0 -2217 22717 15 100017 0 225000 1 -3028 3028	1	SK_ID_CURR ▼	TARGET ▼	AMT_INCOME_TOTAL	CNT_CHILDREN ▼	DAYS_EMPLOYED -	DAYS_EMPLOYED(ABS) 🔻
4 100004 0 67500 0 -225 225 5 100006 0 135000 0 -3039 3039 6 100007 0 121500 0 -3038 3038 7 100008 0 99000 0 -1588 1588 8 100009 0 171000 1 -3130 3130 9 100010 0 360000 0 -4449 449 449 10 100011 0 112500 0 365243 365243 11 100012 0 135000 0 -2019 2019 12 100014 0 112500 1 -679 679 12 100015 0 38419-155 0 365243 365243 14 100016 0 67500 0 -2717 2717 2717 15 100017 0 225000 1 -3028 <td>2</td> <td>100002</td> <td>1</td> <td>202500</td> <td>0</td> <td>-637</td> <td>637</td>	2	100002	1	202500	0	-637	637
5 100006 0 135000 0 -3039 3039 6 100007 0 121500 0 -3038 3038 7 100008 0 99000 0 -1588 1588 8 100009 0 171000 1 -3130 3130 9 100010 0 360000 0 -449 449 10 100011 0 112500 0 365243 365243 11 100012 0 135000 0 -2019 2019 12 100014 0 112500 1 -679 679 13 100015 0 38419.155 0 365243 365243 14 100016 0 67500 0 -2717 2717 15 100017 0 225000 1 -3028 3028 16 100018 0 157500 0 -1157 11157 <	3	100003	0	270000	0	-1188	1188
6 100007 0 121500 0 -3038 3038 7 100008 0 99000 0 -1588 1588 8 100009 0 171000 1 -3130 3130 9 100010 0 360000 0 -449 449 10 100011 0 112500 0 365243 365243 11 100012 0 135000 0 -2019 2019 12 100014 0 112500 1 -679 679 13 100015 0 38419.155 0 365243 365243 14 100016 0 67500 0 -2717 2717 15 100017 0 225000 1 -3028 3028 16 100018 0 189000 0 -1157 1157 18 100019 0 157500 0 -1157 1157 <	4	100004	0	67500	0	-225	225
7 100008 0 99000 0 -1588 1588 8 100009 0 171000 1 -3130 3130 9 100010 0 366000 0 -449 449 10 100011 0 112500 0 365243 365243 11 100012 0 135000 0 -2019 2019 12 100014 0 112500 1 -679 679 13 100015 0 38419.155 0 365243 365243 14 100016 0 67500 0 -2717 2717 15 100017 0 225000 1 -3028 3028 16 100018 0 189000 0 -203 203 17 100019 0 157500 0 -1157 1157 18 100020 0 108000 0 -1317 1317 <t< td=""><td>5</td><td>100006</td><td>0</td><td>135000</td><td>0</td><td>-3039</td><td>3039</td></t<>	5	100006	0	135000	0	-3039	3039
8 100009 0 171000 1 -3130 3130 9 100010 0 360000 0 -449 449 10 100011 0 12500 0 365243 365243 11 100012 0 135000 0 -2019 2019 12 100014 0 13500 1 -679 679 13 100015 0 38419.155 0 365243 365243 14 100016 0 67500 0 -2717 2717 15 100017 0 225000 1 -3028 3028 16 100018 189000 0 -203 203 17 100019 0 157500 0 -1157 1157 18 100020 0 18000 1 -191 191 191 20 100021 0 18000 1 -191 191 191	6	100007	0	121500	0	-3038	3038
9	7	100008	0	99000	0	-1588	1588
10 100011 0 112500 0 365243 365243 11 100012 0 135000 0 -2019 2019 12 100014 0 112500 1 -679 679 13 100015 0 38419.155 0 365243 365243 14 100016 0 67500 0 -2717 2717 15 100017 0 225000 1 -3028 3028 16 100018 0 188000 0 -203 203 17 100019 0 157500 0 -1157 1157 18 100020 0 188000 0 -1317 1317 19 100021 0 81000 1 -191 191 20 100022 0 112500 0 -7804 7804 21 100023 0 90000 1 -2038 2038	8	100009	0	171000	1	-3130	3130
11 100012 0 135000 0 -2019 2019 12 100014 0 112500 1 -679 679 13 100015 0 38419.155 0 365243 365243 14 100016 0 67500 0 -2717 2717 15 100017 0 225000 1 -3028 3028 16 100018 0 189000 0 -203 203 17 100019 0 157500 0 -1157 1157 18 100020 0 108000 0 -1317 1317 19 100021 0 81000 1 -191 191 20 100022 0 112500 0 -7804 7804 21 100023 0 90000 1 -2038 2038 22 100024 0 135000 0 -4286 4286 <tr< td=""><td>9</td><td>100010</td><td>0</td><td>360000</td><td>0</td><td>-449</td><td>449</td></tr<>	9	100010	0	360000	0	-449	449
12 100014 0 112500 1 -679 679 13 100015 0 38419.155 0 365243 365243 14 100016 0 67500 0 -2717 2717 15 100017 0 225000 1 -3028 3028 16 100018 0 188000 0 -203 203 17 100019 0 157500 0 -1157 1157 18 10020 0 108000 0 -1317 1317 19 100021 0 81000 1 -191 191 20 100022 0 112500 0 -7804 7804 21 100023 0 9000 1 -2038 2038 22 100024 0 135000 0 -4286 4286 23 100025 0 202500 1 -4306 4306	10	100011	0	112500	0	365243	365243
13 100015 0 38419.155 0 365243 365243 14 100016 0 67500 0 -2717 2717 15 100017 0 225000 1 -3028 3028 16 100018 0 189000 0 -203 203 17 100019 0 157500 0 -1157 1157 18 100020 0 108000 0 -1317 1317 19 100021 0 81000 1 -191 191 191 20 100022 0 112500 0 -7804 7804 7804 21 100023 0 90000 1 -2038 2038 2038 22 100024 0 135000 0 -4286 4286 4286 23 100025 0 202500 1 -1652 1652 1652 1652 1652 1652 <t< td=""><td>11</td><td>100012</td><td>0</td><td>135000</td><td>0</td><td>-2019</td><td>2019</td></t<>	11	100012	0	135000	0	-2019	2019
14 100016 0 67500 0 -2717 2717 15 100017 0 225000 1 -3028 3028 16 100018 0 189000 0 -203 203 17 100019 0 157500 0 -1157 1157 18 100020 0 108000 0 -1317 1317 19 100021 0 81000 1 -191 191 20 100022 0 112500 0 -7804 7804 21 100023 0 90000 1 -2038 2038 22 100024 0 135000 0 -4286 4286 23 100025 0 202500 1 -1652 1652 24 100026 0 45000 1 -4306 4306 25 100027 0 83250 0 365243 365243	12	100014	0	112500	1	-679	679
15 100017 0 225000 1 -3028 3028 16 100018 0 189000 0 -203 203 17 100019 0 157500 0 -1157 1157 18 100020 0 108000 0 -1317 1317 19 100021 0 81000 1 -191 191 20 100022 0 112500 0 -7804 7804 21 100023 0 90000 1 -2038 2038 22 100024 0 135000 0 -4286 4286 23 100025 0 202500 1 -1652 1652 24 100026 0 450000 1 -4306 4306 25 100027 0 83250 0 365243 365243 26 100029 0 135000 2 -746 746	13	100015	0	38419.155	0	365243	365243
16 100018 0 189000 0 -203 203 17 100019 0 157500 0 -1157 1157 18 100020 0 108000 0 -1317 1317 19 100021 0 81000 1 -191 191 20 100022 0 112500 0 -7804 7804 21 100023 0 90000 1 -2038 2038 22 100024 0 135000 0 -4286 4286 23 100025 0 202500 1 -1652 1652 24 100026 0 450000 1 -4306 4306 25 100027 0 83250 0 365243 365243 26 100029 0 135000 2 -746 746 27 100030 0 90000 0 -3494 3494	14	100016	0	67500	0	-2717	2717
17 100019 0 157500 0 -1157 1157 18 100020 0 108000 0 -1317 1317 19 100021 0 81000 1 -191 191 20 100022 0 112500 0 -7804 7804 21 100023 0 90000 1 -2038 2038 22 100024 0 135000 0 -4286 4286 23 100025 0 202500 1 -1652 1652 24 100026 0 450000 1 -4306 4306 25 100027 0 83250 0 365243 365243 26 100029 0 135000 2 -746 746 27 10030 0 90000 0 -3494 3494 28 100031 1 112500 1 -1234 1234	15	100017	0	225000	1	-3028	3028
18 100020 0 108000 0 -1317 1317 19 100021 0 81000 1 -191 191 20 100022 0 112500 0 -7804 7804 21 100023 0 90000 1 -2038 2038 22 100024 0 135000 0 -4286 4286 23 100025 0 202500 1 -1652 1652 24 100026 0 450000 1 -4306 4306 25 100027 0 83250 0 365243 365243 26 100029 0 135000 2 -746 746 27 100030 0 90000 0 -3494 3494 28 100031 1 112500 0 -2628 2628 29 100032 0 112500 1 -1234 1234	16	100018	0	189000	0	-203	203
19 100021 0 81000 1 -191 191 20 100022 0 112500 0 -7804 7804 21 100023 0 90000 1 -2038 2038 22 100024 0 135000 0 -4286 4286 23 100025 0 202500 1 -1652 1652 24 100026 0 450000 1 -4306 4306 25 100027 0 83250 0 365243 365243 26 100029 0 135000 2 -746 746 27 100030 0 90000 0 -3494 3494 28 100031 1 112500 0 -2628 2628 29 100032 0 112500 1 -1234 1234 30 100033 0 270000 0 -1796 1796	17	100019	0	157500	0	-1157	1157
20 100022 0 112500 0 -7804 7804 21 100023 0 90000 1 -2038 2038 22 100024 0 135000 0 -4286 4286 23 100025 0 202500 1 -1652 1652 24 100026 0 450000 1 -4306 4306 25 100027 0 83250 0 365243 365243 26 100029 0 135000 2 -746 746 27 100030 0 90000 0 -3494 3494 28 100031 1 112500 0 -2628 2628 29 100032 0 112500 1 -1234 1234 30 100033 0 270000 0 -1796 1796 31 100034 0 90000 0 -1010 1010 <tr< td=""><td>18</td><td>100020</td><td>0</td><td>108000</td><td>0</td><td>-1317</td><td>1317</td></tr<>	18	100020	0	108000	0	-1317	1317
21 100023 0 90000 1 -2038 2038 22 100024 0 135000 0 -4286 4286 23 100025 0 202500 1 -1652 1652 24 100026 0 450000 1 -4306 4306 25 100027 0 83250 0 365243 365243 26 100029 0 135000 2 -746 746 27 10030 0 90000 0 -3494 3494 28 100031 1 112500 0 -2628 2628 29 100032 0 112500 1 -1234 1234 30 100033 0 270000 0 -1796 1796 31 100034 0 90000 0 -1010 1010 32 100035 0 292500 0 -2668 2668	19	100021	0	81000	1	-191	191
22 100024 0 135000 0 -4286 4286 23 100025 0 202500 1 -1652 1652 24 100026 0 450000 1 -4306 4306 25 100027 0 83250 0 365243 365243 26 100029 0 135000 2 -746 746 27 100030 0 90000 0 -3494 3494 28 100031 1 112500 0 -2628 2628 29 100032 0 112500 1 -1234 1234 30 100033 0 270000 0 -1796 1796 31 100034 0 90000 0 -1010 1010 32 100035 0 292500 0 -2668 2668 33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404	20	100022	0	112500	0	-7804	7804
23 100025 0 202500 1 -1652 1652 24 100026 0 450000 1 -4306 4306 25 100027 0 83250 0 365243 365243 26 100029 0 135000 2 -746 746 27 100030 0 90000 0 -3494 3494 28 100031 1 112500 0 -2628 2628 29 100032 0 112500 1 -1234 1234 30 100033 0 270000 0 -1796 1796 31 100034 0 90000 0 -1010 1010 32 100035 0 292500 0 -2668 2668 33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404 <tr< td=""><td>21</td><td>100023</td><td>0</td><td>90000</td><td>1</td><td>-2038</td><td>2038</td></tr<>	21	100023	0	90000	1	-2038	2038
24 100026 0 450000 1 -4306 4306 25 100027 0 83250 0 365243 365243 26 100029 0 135000 2 -746 746 27 100030 0 90000 0 -3494 3494 28 100031 1 112500 0 -2628 2628 29 100032 0 112500 1 -1234 1234 30 100033 0 270000 0 -1796 1796 31 100034 0 90000 0 -1010 1010 32 100035 0 292500 0 -2668 2668 33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404 35 100039 0 360000 1 -2060 2060 <tr< td=""><td>22</td><td>100024</td><td>0</td><td>135000</td><td>0</td><td>-4286</td><td>4286</td></tr<>	22	100024	0	135000	0	-4286	4286
25 100027 0 83250 0 365243 365243 26 100029 0 135000 2 -746 746 27 100030 0 90000 0 -3494 3494 28 100031 1 112500 0 -2628 2628 29 100032 0 112500 1 -1234 1234 30 100033 0 270000 0 -1796 1796 31 100034 0 90000 0 -1010 1010 32 100035 0 292500 0 -2668 2668 33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404 35 100039 0 360000 1 -2060 2060 36 100040 0 135000 0 -4585 4585 <tr< td=""><td>23</td><td>100025</td><td>0</td><td>202500</td><td>1</td><td>-1652</td><td>1652</td></tr<>	23	100025	0	202500	1	-1652	1652
26 100029 0 135000 2 -746 746 27 100030 0 90000 0 -3494 3494 28 100031 1 112500 0 -2628 2628 29 100032 0 112500 1 -1234 1234 30 100033 0 270000 0 -1796 1796 31 100034 0 90000 0 -1010 1010 32 100035 0 292500 0 -2668 2668 33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404 35 100039 0 360000 1 -2060 2060 36 100040 0 135000 0 -4585 4585 37 100041 0 112500 0 -1275 1275	24	100026	0	450000	1	-4306	4306
27 100030 0 90000 0 -3494 3494 28 100031 1 112500 0 -2628 2628 29 100032 0 112500 1 -1234 1234 30 100033 0 270000 0 -1796 1796 31 100034 0 90000 0 -1010 1010 32 100035 0 292500 0 -2668 2668 33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404 35 100039 0 360000 1 -2060 2060 36 100040 0 135000 0 -4585 4585 37 100041 0 112500 0 -1275 1275 38 100043 0 198000 2 -768 768	25	100027	0	83250	0	365243	365243
28 100031 1 112500 0 -2628 2628 29 100032 0 112500 1 -1234 1234 30 100033 0 270000 0 -1796 1796 31 100034 0 90000 0 -1010 1010 32 100035 0 292500 0 -2668 2668 33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404 35 100039 0 360000 1 -2060 2060 36 100040 0 135000 0 -4585 4585 37 100041 0 112500 0 -1275 1275 38 100043 0 198000 2 -768 768	26	100029	0	135000	2	-746	746
29 100032 0 112500 1 -1234 1234 30 100033 0 270000 0 -1796 1796 31 100034 0 90000 0 -1010 1010 32 100035 0 292500 0 -2668 2668 33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404 35 100039 0 360000 1 -2060 2060 36 100040 0 135000 0 -4585 4585 37 100041 0 112500 0 -1275 1275 38 100043 0 198000 2 -768 768	27	100030	0	90000	0	-3494	3494
30 100033 0 270000 0 -1796 1796 31 100034 0 90000 0 -1010 1010 32 100035 0 292500 0 -2668 2668 33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404 35 100039 0 360000 1 -2060 2060 36 100040 0 135000 0 -4585 4585 37 100041 0 112500 0 -1275 1275 38 100043 0 198000 2 -768 768	28	100031	1	112500	0	-2628	2628
31 100034 0 90000 0 -1010 1010 32 100035 0 292500 0 -2668 2668 33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404 35 100039 0 360000 1 -2060 2060 36 100040 0 135000 0 -4585 4585 37 100041 0 112500 0 -1275 1275 38 100043 0 198000 2 -768 768	29	100032	0	112500	1	-1234	1234
32 100035 0 292500 0 -2668 2668 33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404 35 100039 0 360000 1 -2060 2060 36 100040 0 135000 0 -4585 4585 37 100041 0 112500 0 -1275 1275 38 100043 0 198000 2 -768 768	30	100033	0	270000	0	-1796	1796
33 100036 0 112500 0 -1104 1104 34 100037 0 90000 0 -4404 4404 35 100039 0 360000 1 -2060 2060 36 100040 0 135000 0 -4585 4585 37 100041 0 112500 0 -1275 1275 38 100043 0 198000 2 -768 768	31	100034	0	90000	0	-1010	1010
34 100037 0 90000 0 -4404 4404 35 100039 0 360000 1 -2060 2060 36 100040 0 135000 0 -4585 4585 37 100041 0 112500 0 -1275 1275 38 100043 0 198000 2 -768 768	32	100035	0	292500	0	-2668	2668
35 100039 0 360000 1 -2060 2060 36 100040 0 135000 0 -4585 4585 37 100041 0 112500 0 -1275 1275 38 100043 0 198000 2 -768 768	33	100036	0	112500	0	-1104	1104
36 100040 0 135000 0 -4585 4585 37 100041 0 112500 0 -1275 1275 38 100043 0 198000 2 -768 768	34	100037	0	90000	0	-4404	4404
37 100041 0 112500 0 -1275 1275 38 100043 0 198000 2 -768 768	35	100039	0	360000	1	-2060	2060
38 100043 0 198000 2 -768 768	36	100040	0	135000	0	-4585	4585
	37	100041	0	112500	0	-1275	1275
39 100044 0 121500 0 -1288 1288	38	100043	0	198000	2	-768	768
	39	100044	0	121500	0	-1288	1288

In the above image all highlighted cells are outliers.

Task 3:

Analyze Data Imbalance:

Data imbalance can affect the accuracy of the analysis, especially for binary classification problems. Understanding the data distribution is crucial for building reliable models.

To find Data Imbalance we find the number of each element in the TARGET column. For doing this we use the COUNTIF formula.

Formulae:

- =COUNTIF(B:B,0)
- =COUNTIF(B:B,1)
- =F4/49999*100 (Percentage)
- =F5/4999*100 (Percentage)

We also plot this Data in Pie Chart to visualize the Data Imbalance.

As we can see the no. of 0 in TARGET is very large compared to no. of 1. This will result in a very large data imbalance. Which might skew the results and give less accurate results.

Task 4:

Perform Univariate, Segmented Univariate, and Bivariate Analysis:

To perform Univariate/ Segmented Univariate analysis, we have to utilize functions such as COUNT, AVERAGE, or MEDIAN to find out the total number of applicants over a particular range or how much credit one shall receive according to their income, and other such relations.

We start by selecting two columns, Credit and Income, we have selected this columns as they have higher correlation. We find maximum and minimum values of these columns excluding outliers.

Maximum Income	117000000	Maximum Credit	4050000	
Excluding Outlier	3825000			
Minimum Income	25650	Minimum Credit	45000	

This Data helps us to define ranges to find how many applicants fall in each range. We Define Ranges on particular Intervals

Income Ranges
25000-50000
50000-75000
75000-100000
100000-125000
125000-150000
150000-175000
175000-200000
200000-225000
225000-250000
250000-275000
275000-300000
300000-325000
325000-350000
350000-375000
375000-400000
400000-425000
425000-450000
450000-475000
475000-500000
500000+

Credit Ranges	ı
0-200000	
200000-400000	
400000-600000	
600000-800000	
800000-1000000	
1000000-1200000	
1200000-1400000	
1400000-1600000	
1600000-1800000	
1800000-2000000	
2000000-2200000	
2200000-2400000	Γ
2400000-2600000	Γ
2600000-2800000	
2800000-3000000	
3000000-3200000	
3200000-3400000	
3400000-3600000	
3600000-3800000	
3800000+	Γ

We find number of applicants over these ranges by utilizing functions such as:

- =FREQUENCY(C:C,X5:X23)
- =FREQUENCY(D:D,Y5:Y23)

We also plot bar charts to visualize the frequency of applicants in each range.

Similarly for segmented univariate analysis we split the Data into two classes according to TARGET.

To perform Bivariate Analysis, we need to find the average of credit per income range, for that we use the AVERAGEIF function.

52

= AVERAGEIFS (\$D\$2:\$D\$50000,\$C\$2:\$C\$50000,">"&X4,\$C\$2:\$C\$50000,"<="&X5)

Above formula checks two conditions, if element is greater than lower limit and smaller than upper limit, and only then is considered for average.

We plotted a Bar Graph Similar to above analysis

Task 5:

Identify Top Correlations for Different Scenarios:

To find Correlation of different columns we utilized the CORREL function of Excel. We first separated the data into three tables, one having only 0 Target, one having 1 Target and both combined Target. We found correlation tables for all these by using the CORREL function, and made it better for visualization using conditional formatting.

Formulae:

- =CORREL(\$C:\$C,B:B)
- =CORREL('Target 0 Data'!C:C,'Target 0 Data'!\$F:\$F)
- =CORREL('Target 1 Data'!B:B,'Target 1 Data'!\$F:\$F)

For better visualization heatmaps of correlation matrix were created.

			_					_		_	
DAYS_ID_PUBLISH	<u> </u>	0.104298561	-0.270382022	0.270825141	-0.004345136 0.270825141	0.006716454	-0.01222876	0.003506646	-0.032115773	0.04693	DAYS_ID_PUBLISH
DAYS_REGISTRATION	0.104298561	1	-0.204680611	0.333632509	-0.059322344 0.333632509	0.033218936	0.009952379 0.003448569	0.009952379	0.181217183	0.04234	DAYS_REGISTRATION
DAYS_EMPLOYED	-0.270382022	-0.204680611	1	-0.61355397	-0.004101686	-0.110449038	-0.031615555 -0.07047139	-0.031615555	-0.239693041	-0.0403	DAYS_EMPLOYED
DAYS_BIRTH	0.270825141	0.333632509	-0.613553972	1	-0.032513748	0.007712245	-0.05934266	0.016002774	0.329263754	0.07679	DAYS_BIRTH
6 REGION_POPULATION_RELATIVE	-0.004345136	-0.059322344	-0.004101686	-0.03251375	7	0.115111507	0.029841469 0.095111221	0.029841469	-0.025555665	-0.0408	REGION_POPULATION_RELATIVE
154 AMT_ANNUITY	0.006716454	0.033218936	-0.110449038	0.007712245	0.115111507	lu-t	0.769498914	0.083008508	0.026178823	-0.0124	AMT_ANNUITY
55 AMT_CREDIT	-0.012228765	0.003448569	-0.070471393	-0.05934266	0.095111221	0.769498914	1	0.069315897	0.00497156	-0.0324	AMT_CREDIT
46 AMT_INCOME_TOTAL	0.003506646	0.009952379	-0.031615555	0.029841469 0.016002774		0.083008508	0.069315897		0.009588558	0.01089	AMT_INCOME_TOTAL
3 CNT_CHILDREN	-0.032115773	0.181217183	-0.239693041	0.329263754	-0.025555665 0.329263754	0.026178823	0.00497156	0.009588558	1	0.02636	CNT_CHILDREN
45 TARGET	0.046926745	0.042342679	-0.040294905	0.076787685	-0.040799172 0.076787685	-0.012399094	0.010893745 -0.03242835	0.010893745	0.026363931	1	TARGET
	DAYS_ID_PUBLISH	DAYS_REGISTRATION	DAYS_EMPLOYED	DAYS_BIRTH	target ont children amt income total amt credit amt annuity region population relative (days birth days employed) days registration (days id publish	AMT_ANNUITY	AMT_CREDIT	AMT_INCOME_TOTAL	CNT_CHILDREN	TARGET	
					Correlation for All Targets						

						Correlation for Target 0					
	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	arget ont children amt income total amt credit amt annuity region population relative (days birth days employed) days registration (days id publish	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_REGISTRATION	DAYS_ID_PUBLISH	
TARGET	1	0.026363931	0.010893745	-0.03242835	-0.012399094	-0.040799172	0.076787685	-0.040294905	0.042342679	0.046926745	6745 TARGET
CNT_CHILDREN	0.02636	1	0.036319722	0.036319722 0.005705458	0.02638217	-0.024912809 0.335876269	0.335876269	-0.243591518	0.183072478	-0.032537221	37221 CNT_CHILDREN
AMT_INCOME_TOTAL	0.01089	0.036319722	1	0.377965752	0.451135696	0.181941261	0.073769425	-0.162702675	0.06893375	0.032286356	0.032286356 AMT_INCOME_TOTAL
AMT_CREDIT	-0.0324	0.005705458	0.377965752	1	0.770772965	0.095539444	-0.05108418	-0.077367219	0.008053758	-0.008290189 AMT_CREDIT	1MT_CREDIT
AMT_ANNUITY	-0.0124	0.02638217	0.451135696	0.770772965	1	0.117280752	0.009915685	-0.113007146	0.034609089	0.009426496	0.009426496 AMT_ANNUITY
REGION_POPULATION_RELATIVE -0.0408	-0.0408	-0.024912809	0.181941261	0.181941261 0.095539444	0.117280752	1	-0.03043542	-0.006610653	-0.058501361	-0.002236288 F	-0.002236288 REGION_POPULATION_RELATIVE
DAYS_BIRTH	0.07679	0.335876269	0.073769425	-0.05108418	0.009915685	-0.030435419	1	-0.615289978	0.335028046	0.270073313 DAYS_BIRTH	DAYS_BIRTH
DAYS_EMPLOYED	-0.0403	-0.243591518	-0.162702675	-0.07736722	-0.113007146	-0.006610653	-0.61528998	<u></u>	-0.204370881	-0.27222439	-0.27222439 DAYS_EMPLOYED
DAYS_REGISTRATION	0.04234	0.183072478	0.06893375	0.008053758	0.034609089	-0.058501361	0.335028046	-0.204370881	1	0.103548902	0.103548902 DAYS_REGISTRATION
DAYS_ID_PUBLISH	0.04693	-0.032537221	0.032286356	-0.00829019	0.009426496	-0.002236288	0.270073313	-0.27222439	0.103548902	1	DAYS_ID_PUBLISH
	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	TARGET CNT_CHILDREN AMT_INCOME_TOTAL AMT_CREDIT AMT_ANNUITY REGION_POPULATION_RELATIVE DAYS_BIRTH DAYS_EMPLOYED DAYS_REGISTRATION DAYS_ID_PUBLISH	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_REGISTRATION	DAYS_ID_PUBLISH	

						Correlation for Target 1					
	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	target cnt_children amt_income_total amt_credit amt_annuity region_population_relative days_errib days_employed days_registration days_edployed	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_REGISTRATION	HSIJBUA_DI_SYAD	
TARGET	1	0.026363931	0.010893745	0.010893745 -0.03242835	-0.012399094	-0.040799172 0.076787685	0.076787685	-0.040294905	0.042342679	0.046926745 TARGET	TARGET
CNT_CHILDREN	0.02636	1	0.010110177	0.007601905	0.029172977	-0.020359154	0.2496732	-0.189324184	0.152113117	-0.042360717	-0.042360717 CNT_CHILDREN
AMT_INCOME_TOTAL	0.01089	0.010110177	1	0.015271444	0.018004594	-0.006180303	0.009033662	-0.011555963	-0.009561152	-0.009122006	-0.009122006 AMT_INCOME_TOTAL
AMT_CREDIT	-0.0324	0.007601905	0.015271444	1	0.749665201	0.067775624	0.067775624 -0.14250603	0.016039571	-0.042844404	-0.043771901	3771901 AMT_CREDIT
AMT_ANNUITY	-0.0124	0.029172977	0.018004594	0.749665201	1	0.073123998	-0.00875171	-0.079556008	0.021581654	-0.02132109	2132109 AMT_ANNUITY
REGION_POPULATION_RELATIVE	-0.0408	-0.020359154	-0.006180303	0.067775624	0.073123998	1	-0.01646873	0.007742909	-0.046130288	-0.005118563	-0.005118563 REGION_POPULATION_RELATIVE
DAYS_BIRTH	0.07679	0.2496732	0.009033662	-0.14250603	-0.008751713	-0.016468731	1	-0.581479041	0.288437837	0.247896571 DAYS_BIRTH	DAYS_BIRTH
DAYS_EMPLOYED	-0.0403	-0.189324184	-0.011555963	0.016039571	-0.079556008	0.007742909	-0.58147904	1	-0.188718437	-0.230063668	-0.230063668 DAYS_EMPLOYED
DAYS_REGISTRATION	0.04234	0.152113117	-0.009561152	-0.0428444	0.021581654	-0.046130288 0.288437837	0.288437837	-0.188718437	1	0.09029149	9029149 DAYS_REGISTRATION
DAYS_ID_PUBLISH	0.04693	-0.042360717	-0.009122006	-0.0437719	-0.02132109	-0.005118563 0.247896571	0.247896571	-0.230063668	0.09029149	1	DAYS_ID_PUBLISH
	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	target cnt_children amt_income_total amt_credit amt_annuity region_population_relative days_birth days_employed days_registration days_in_publish	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_REGISTRATION	DAYS_ID_PUBLISH	

54

Results:

While working on this project, I have gained a better understanding of Bank Loan Application Process and Analytics and Advanced Excel methodologies. By analyzing Application Data, I was able to provide insights on various aspects such as Cleaning the Data, Outliers in the Data, Data Imbalance, Univariate and Bivariate Analysis, and correlation between various parameters in bank loan application.

This project has helped me enhance my Excel skills, particularly in functions and data visualization to derive meaningful insights. It has also improved my ability to interpret data and provide actionable recommendations based on the analysis.

Impact of Car Features on Price and Profitability

Link for Excel sheet:

https://docs.google.com/spreadsheets/d/10QceKTy49wcBmaG8W8Pht OBoad8L1MI_/edit?usp=sharing&ouid=107365393175079460343&rt pof=true&sd=true

Project Description:

This project aims to analyze a dataset containing information about various Car Brands, Car models they make and their respective car features along with their prices. The goal is to gain insights about impact of car features on price and profitability, performing various analysis tasks and also build a dashboard to better visualize the insights. The data provided has various missing or null Data, our task is to handle those missing values appropriately, by either deleting or imputing these data. There are various outliers in data, we have to find these outliers. We utilize various excel features such as pivot tables and charts to better represent data. We find trends in car features and their popularities by implementing various methodologies and data analysis techniques such as regression. Thus, by employing statistics and Excel formulas, we will extract meaningful conclusions to help understand the factors that contribute to popularity and profitability of particular cars.

Approach:

As an individual working on this project, I followed a structured approach to analyze data about Car Brands, models and features. I began by carefully examining the provided database and familiarizing myself with its structure and columns. I tried to find columns which had the most significance in the dataset. I handled missing values by eliminating columns which had most empty cells, and were not significant. And imputed data into cells that were necessary for analysis. Then, I utilized Excel fundamentals to retrieve the necessary information for each task, employing appropriate functions and statistical methods. I focused on data accuracy and quality throughout the project, ensuring reliable results. By leveraging my Excel skills and maintaining a systematic workflow, I successfully executed the project and created a comprehensive report that fulfilled the objectives of providing marketing insights and investor metrics.

Tech-Stack Used:

For this project, I utilized Microsoft Excel as the primary software tool.

Data Cleaning:

Given Data had various missing and duplicate values. For accurate analysis we need to handle this missing data, and eliminate the duplicate data as it is redundant and might skew the results. For Removing the duplicate data we used excel's Remove Duplicates feature in the Data Tools Tab. We had 715 duplicate rows, which were removed completely.

To find missing values we used the COUNTBLANK formula in excel. =COUNTBLANK(A\$2:A\$11160)

Columns	No. of Null values	Count N/A or Unknown
Make	0	0
Model	0	0
Year	0	0
Engine Fuel Type	3	0
Engine HP	69	0
Engine Cylinders	30	0
Transmission Type	0	0
Driven_Wheels	0	0
Number of Doors	6	0
Market Category	0	3376
Vehicle Size	0	0
Vehicle Style	0	0
highway MPG	0	0
city mpg	0	0
Popularity	0	0
MSRP	0	0

We removed rows which had less no. of nulls and imputed values in columns such as Engine HP and Engine Cylinders according to the given data.

Data also had some outliers or false values, which needed to be handled. We plotted these outliers using BOX and Whisker chart type.

As seen in the The chart below the features have outliers, some of which are justified but, feature Highway MPG has value which is a bit out of range. So we check with the data of similar Cars and adjust it accordingly.

Insights:

Analysis:

Task 1:

Insight Required: How does the popularity of a car model vary across different market categories?

To perform this task we utilized a pivot table in excel that shows the number of car models in each market category and their corresponding popularity scores.

4	A	U	_
1	Market Category	Count of Market Category	Average of Popularity
2	Flex Fuel,Diesel	16	5657
3	Hatchback,Flex Fuel	7	5657
4	Crossover,Flex Fuel,Performance	6	5657
5	Crossover,Luxury,Performance,Hybrid	2	3916
6	Crossover, Factory Tuner, Luxury, Performance	5	2607.4
7	Crossover, Performance	69	2585.956522
8	Crossover, Hybrid	42	2563.380952
9	Diesel,Luxury	47	2416.106383
10	Luxury,Performance,Hybrid	11	2333.181818
11	Hatchback, Factory Tuner, Performance	20	2271.9
12	Flex Fuel	855	2225.71345
13	Crossover,Luxury,Diesel	33	2195.848485
14	Factory Tuner,Luxury,High-Performance	215	2133.367442
15	Hybrid	121	2116.586777
16	Hatchback,Hybrid	64	2111.15625
17	Crossover,Flex Fuel	64	2073.75
18	Crossover Hatchhack Factory Tuner Performance	6	2009

This pivot table shows Market Category with its count and average popularity for each. From the above pivot table we plot a combo chart of column-line charts. We select a secondary axis for count to better visualize the chart.

Task 2:

Insight Required: What is the relationship between a car's engine power and its price? To find the relationship between a car's engine power that is Engine HP and its MSRP, we utilize power pivot to find average MSRP for each Engine HP. We then copy this data into a new table and then create a scatter plot of Engine HP vs average MSRP.

					•	
Δ	A	R	C	U	E	F
1	Engine HP	Average of MSRP		Engine HP 🔻	Average of MSRP 🔻	
2	163	2000		163	2000	
3	114	2000		114	2000	
4	102	2000		102	2000	
5	105	2000		105	2000	
6	63	2000		63	2000	
7	113	2000		113	2000	
8	73	2000		73	2000	
9	62	2000		62	2000	
0	96	2000		96	2000	
11	97	2000		97	2000	
12	82	2000		82	2000	
13	81	2000		81	2000	
4	90	2000		90	2000	
15	118	2000		118	2000	
16	92	2000		92	2000	
17	55	2000		55	2000	
8	214	2000		214	2000	
	405	2000		405	2000	

We now Create a scatter plot for the above table.

We have also added trendlines to understand how MSRP is changing according to the change in Engine HP. Trend seems to increase exponentially rather than linearly, but to predict more accurately we need to have more data available.

Task 3:

Insight Required: Which car features are most important in determining a car's price? To perform this analysis, we need to consider every feature which is correlated with the price of a car. For this we need to perform regression analysis and then plot coefficients of each feature to check which have most impact on MSRP. But for regression analysis we need to have numerical data, so we first convert the data into numerical data by converting categorical data into encoded data.

I		
2	Vehicle Size	Encoding
3	Compact	1
4	Large	3
5	Midsize	2
6		
7	Vehicle Style	Encoding
8	Coupe	1
9	Sedan	2
0	Convertible	3
1	4dr SUV	4
2	Wagon	5
3	Crew Cab Pickup	6
4	Extended Cab Pickup	7
5	4dr Hatchback	8
6	Regular Cab Pickup	9

We use this type of conversion to encode data into numerical values.

D	F	Н		J		K	L	N	P	Q
	Make (Encoded) ▼	Year	-	Engine Fuel Type (Encoded)	Engir	ne HP →	Engine Cylinders	Transmission Type (Encoded)	Driven Wheels (Encoded 🔻	Number of Doors ▼ Vehic
	1	. 20	800	1		1001	16	3	3	2
	1	20	009	1		1001	16	3	3	2
	1	. 20	800	1		1001	16	3	3	2
	2	20	16	2		1000	0	1	3	4
	2	20	016	2		1000	0	1	3	4
	2	20	15	2		1000	0	1	3	4
	2	20)14	2		1000	0	1	3	4
	2	20	14	2		1000	0	1	1	4
	2	20	016	2		1000	0	1	3	4
	2	20	15	2		1000	0	1	3	4
	2	20	015	2		1000	0	1	1	4

We get this type of data. But we have to normalize it first. As the parameters have very large differences in their ranges.

To normalize we find maximum and minimum values in each column and then, normalize them using the following formula.

=(Analysis_Task3!\$F2-Analysis_Task3!F\$11199)/Analysis_Task3!F\$11201

Here we subtract minimum values from each value and then divide with the difference between maximum and minimum values, to get normalized values between 0 and 1.

Thus all of the values will get converted into range from 0 to 1.

We now use this data to perform regression analysis by using the Data Analysis feature in the Data menu. We get following output:

SUMMARY OUTPUT								
Regression Statisti	ics							
Multiple R	0.693768659							
R Square	0.481314952							
Adjusted R Square	0.480758373							
Standard Error	0.021486617							
Observations	11196							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	12	4.790932299	0.399244358	864.7741572	0			
Residual	11183	5.162908281	0.000461675					
Total	11195	9.95384058						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.031589947	0.001778814	-17.75899174	1.32073E-69	-0.035076737	-0.028103158	-0.035076737	-0.02810315
Make (Encoded)	-0.000126829	0.000898814	-0.141107322	0.887787701	-0.001888663	0.001635004	-0.001888663	0.00163500
Engine Fuel Type (Encoded)	-0.008170822	0.000930401	-8.782046676	1.83872E-18	-0.009994572	-0.006347073	-0.009994572	-0.00634707
Engine HP	0.109738052	0.003028023	36.24082452	5.1054E-272	0.103802594	0.115673511	0.103802594	0.11567351
Engine Cylinders	0.099772838	0.003461532	28.82331736	2.7635E-176	0.092987626	0.106558051	0.092987626	0.10655805
Transmission Type (Encoded)	-0.002025972	0.00084897	-2.386386485	0.017031389	-0.003690103	-0.00036184	-0.003690103	-0.0003618
Driven Wheels (Encoded)	0.001653045	0.000658457	2.510481034	0.012070678	0.000362352	0.002943737	0.000362352	0.00294373
Number of Doors	-0.000224093	0.000559842	-0.400279344	0.688958426	-0.001321482	0.000873295	-0.001321482	0.00087329
Vehicle Size (Encoded)	-0.016006733	0.000670551	-23.87101698	7.0368E-123	-0.017321131	-0.014692335	-0.017321131	-0.01469233
Vehicle Style (Encoded)	-0.006067337	0.001019628	-5.950541158	2.75268E-09	-0.008065987	-0.004068687	-0.008065987	-0.00406868
highway MPG	0.065650438	0.017952962	3.65680265	0.000256553	0.030459471	0.100841405	0.030459471	0.10084140
city mpg	0.035422796	0.006433244	5.506210878	3.74738E-08	0.022812505	0.048033086	0.022812505	0.04803308
							-0.007322902	-0.00370311

By using this we can plot a bar graph to see which features are affecting the MSRP most.

We select coefficients of each features and create a bar graph as below:

As we can see from above graph that Engine HP, Cylinders and MPG are some of the deciding factors for the MSRP of a car.

Task 4: Insight Required: How does the average price of a car vary across different manufacturers? For doing this task we utilized pivot tables and found the average price of a car for each car manufacturer.

	M	U
	Car Manufactures	→ Average of MSRP
	Bugatti	1757223.667
	Maybach	546221.875
Ļ	Rolls-Royce	351130.6452
	Lamborghini	331567.3077
,	Bentley	247169.3243
•	McLaren	239805
	Ferrari	238218.8406
,	Spyker	214990
0	Aston Martin	198123.4615
1	Maserati	113684.4909
2	Porsche	101622.3971
3	Tesla	85255.55556
4	Mercedes-Benz	72135.02647
5	Lotus	68377.14286
6	Land Rover	68067.08633

By using this we can plot a column chart to visualize this data.

We can see here that brands such as Bugatti have very high average MSRP as they are into high end cars and don't have any cars in lower price segments.

Task 5:

Insight Required: What is the relationship between fuel efficiency and the number of cylinders in a car's engine?

To find relationships between fuel efficiency and number of cylinders in a car's engine we have to create a scatter plot of number of cylinders vs its MPG and see if there exists any trend by plotting a trendline.

We select two columns Engine Cylinders and Highway MPG and create a scatter plot.

We also create a correlation matrix to check if there exist any correlation between them. We create a pivot table of no. of Cylinders and Highway MPG and City MPG. We create a correlation matrix by using the CORREL function in excel and conditional formatting.

Α	В	С	D	E	F	G		Н
No. of Cylinders 🔻 Av	erage of highway MPG	Average of city mpg		No.	of Cylinders 🔻	Average of highway MF	PG▽	Average of city mpg
0	81.6627907	90.1744186		0		81.662	27907	90.174418
3	38.66666667	32.03333333		3		38.6666	66667	32.0333333
4	31.50057484	23.9029662		4		31.5005	7484	23.902966
5	26.06508876	18.77514793		5		26.0650	8876	18.7751479
6	24.00679634	17.13452074		6		24.0067	79634	17.134520
8	20.17278287	14.18399592		8		20.1727	78287	14.1839959
10	20	12.56923077		10			20	12.569230
12	17.73684211	11.25		12		17.7368	34211	11.2
16	14	8		16		1	14	
Grand Total	26.61403352	19.73214446						
J		K				L		M
	Correlati	on Between Cylin	ders an	d Highway M	IPG			
	No. of C	/linders			Averag	e of highway MPG	Ave	rage of city mpg
No. of Cylinders					1			
Average of high	way MPG			-0.77712	2379	1		
Average of city n	npg			-0.72977	75621	0.996412646		1

As we can see there is less correlation between MPG and no. cylinders. But there is high correlation between highway MPG and city MPG.

Dashboard:

Task 1: How does the distribution of car prices vary by brand and body style?

We created a stacked column chart of car price for each brand and each body style in that column. To create this chart, we first need to create a pivot table consisting of Sum of MSRP for each category. These categories being, brand of car in row and body style in columns and we get an interactive table consisting of total MSRP for each body style that each car brand makes. Table looks like below:

A	В	С	D	E	F	G	Н	1	J	K		L	М	N	1	0	Р	Q	R
1 Sum of MSRP	Body Style 🔻																		
	→ 2dr Hatchback	2dr SUV 4d	r Hatchback	4dr SUV	Cargo Minivan	Cargo Van Co	onvertible	Convertible SUV	Coupe	Crew Cab Pickup	Extended	Cab Pickup	Passenger Mini	van Passeng	er Van Re	gular Cab Picku	o Sedan	Wagon	Grand Total
3 Genesis					U				•	•		•					139850)	139850
4 Plymouth	40000		14000				85631		8000)			3:	1688			38759	16000	0 234078
5 Alfa Romeo							129800		178200)									308000
6 Spyker							219990		209990										429980
7 HUMMER				377490						242405	5								619895
8 Scion	366325		282470						330210								32500	184445	
9 McLaren							280225		918800										1199025
10 FIAT	420715			369305			327965											287570	
11 Tesla																	1534600		1534600
12 Oldsmobile				238150			2000		274015	5			492	2055			665161		
13 Lotus							413260		1501300									2000	1914560
14 Saab	12000		34586	541905			632628		02000								1066500	751280	
15 Pontiac	148782		162975	401550			463914		663715				54	192			1156535		
16 Mitsubishi	370169		403835	2009807			209893			240210)	134360		2000		800			4438837
17 Chrysler	98805			250545			628105		112510		-			295			2479859		
18 Bugatti									5271671								2		5271671
19 Buick				2141770			179325		18534				330	0065			2838590	8212	
20 Subaru	12000		678060	2539900			1,5020		354476				33.				1833110		
21 Kia	22000		406960	2049645					142630				494	1650			1976360		
22 Suzuki	44496	12000	584387	2303493				12019		30413:		259659		.050			1797070		
23 Maserati	44430	12000	504507	155000			2342963		1972284		•	255055					1782400		6252647
24 Hyundai	789650		528880				2542505		685920				133	3075			2323987		6455902
25 Lincoln	705050		320000	3422570					17342		1		15.	,075			2458245		
26 Volvo	157550			3131700			121600		6000		,						2072945		
27 Mazda	18000	12000	853180	3175515			870505		541879			580033	443	3130		26548			
28 Acura	480917	12000	357440				870303		793748			360033	44.	1130		20540	4134552		
29 Maybach	400317		337440	2003505			2762750		755740	,							5976800		8739550
30 Land Rover		476394		8839200			2702750	14573									3370000		9461325
31 Lexus		.70354	94700	3152974			472065		1016472	,							4837596	31105	
32 Rolls-Royce			5-700	3132314			2141365		2204675								6539010		10885050
33 Honda	413200		1919260	3800589			252135		1588705		5		55:	3185			2264390		11541679
34 Dodge	38000	12000	16000	2462875		338497	6000		2973842			684682		7425	70708	65140			
35 Porsche	28827	12300	10000	1815200		330437	4504586		4758533		•	004002	33.	720	,0,00	05140	2713500		13820646
36 Infiniti	20027			4340200			980050		2175750								6490009		13986009
37 GMC		118835		6633919		460085	200030		21/3/30	4062482	,	2175866	15/	0630	599670	128432			15628565
38 Nissan	14683	110000	1347320			400003	1406552	12107	2937632			1026379		3320	333070	120432		175000	
39 Ferrari	14083		134/320	4149030	128020		4723811		11713289		,	1020379	41:	320		199.	.+ 1/0313U	1/3000	16437100
29 reman							4/23811		11/13285	,									1043/100

We can plot a stacked column chart from this table where each column in the chart for a particular brand would have the total sum of MSRP of all body styles and sections would have different colors to identify each body style. Chart looks like below:

We can also change chart features by changing the filter in the pivot table.

Task 2: Which car brands have the highest and lowest average MSRPs, and how does this vary by body style?

We created a clustered column chart of average car price for each brand and each body style in that column. To create this chart, we first need to create a pivot table consisting of the average of MSRP for each category. These categories being, brand of car in row and body style in columns and we get an interactive table consisting of average MSRP for each body style that each car brand makes.

Pivot table looks like below:

Average of MSI	RP Body Style 💌															
Car Brands	→ 2dr Hatchback	2dr SUV	4dr Hatchback 4	4dr SUV	Cargo Minivan Cargo Van	Convertible	Convertible SUV	Coupe	Crew Cab Pickup	Extended Cab Pickup	Passenger Minivan	Passenger Van	Regular Cab Pickup	Sedan	Wagon	Grand Total
Bugatti								1757223.667								1757223.66
Maybach						1381375								426914.2857		546221.87
Rolls-Royce						428273		367445.8333						326950.5		351130.645
Lamborghini						336402.381		328291.9355								331567.307
Bentley						250536.25		254270.4						236836		247169.324
McLaren						280225		229700								23980
Ferrari						214718.6818		249218.9149								238218.840
Spyker						219990		209990								21499
Aston Martin						203379.3056		192892.6042						206962.1429		198123.461
Maserati				77500		130164.6111		116016.7059						99022.22222		113684.490
Porsche	5765.4			82509.09091		115502.2051		99136.10417						123340.9091		101622.397
Tesla														85255.55556		85255.55556
Mercedes-Benz	2		40933.33333	68400.13889	28950	104617.5273		109713.678			32500			48833.90299	43069	72135.02647
Lotus						51657.5		75065								68377.1428
Land Rover		39699.5		71283.87097			48577									68067.0863
BMW	26699		55155	58536.11111		63814.07246		52445.25397						71832.11009	43266.66667	62162.5586
Alfa Romeo						64900		59400								6160
Cadillac				72551.06061		70400.5		45439.6	66572.22222					51178.5163	47364	56368.2651
Audi	2000			48634.54545		70029.89362		93586.57895						46391.87013	33894	54574.121
Lexus			31566.66667	45042.48571		52451.66667		50823.6						48864.60606	31105	47549.0693
Genesis														46616.66667		46616.6666
Lincoln				50331.91176				2167.75	41205.45455					41665.16949	44950.83333	43560.0131
Infiniti				45686.31579		46669.04762		40291.66667						41076.00633		42640.2713
HUMMER				37749					34629.28571							36464.4117
Acura	17175.60714		51062.85714	42959.75806				39687.4						33614.2439	33560	35087.487
GMC		8488.214286		37479.76836	23791.66667 21908.80952				39062.32692	27895.7179	5 25105	28555.71429	25182.90196			32695.7426
Volvo	26258.33333			45386.95652		40533.33333		2000						22289.73118	26271.42391	29724.6842
Buick				33996.34921		25617.85714		2059.333333			30005.90909			29568.64583	2053	29034.1894
Chevrolet	2000	13807.85714	18930.29412	33553.95876	20007.14286 8298.666667	62835	17716.66667	38939.16667	39255.74172	24170.1627	9 24934.28571	28555.71429	19824.84211	19882.64865	15825	29018.3500
Volkswagen	24134.62963		28416.21053	41699.1		27673.68675		2000			29239.67742			30795.79861	26385.64815	28978.5228
Nissan	2097.571429		24059.28571	34294.46281	21436.66667	39070.88889	43691.66667	35393.15663	32733.78378	20527.5	8 22962.22222		2212.666667	22604.23077	17500	28921.1524
Toyota	18950		22186.50794	40851.6		25777.86667		15615.28846	36845.82353	26251.3082	7 30038.73846		17592.66667	24800.27083	31742.4359	28846.560
Ford	2000	16133.55172	19572.93103	42027.60577	19700 20605.59259	34762.2381		34101.07317	41566.13187	23808.1666	7 22587.17391	32836.45946	17797.80822	23258.65306	30066.01852	28525.1828
Saab	2000		2034.470588	41685		28755.81818								36775.86207	34149.09091	27879.8073
Chrysler	32935			35792.14286		25124.2		22502			29751.45161			26103.77895	26372.36842	26990.2378
Honda	17216.66667		26656.38889	28575.85714		36019.28571		21763.08219	34100.68182		36879			26027.47126		26655.1478
Kia			19379.04762	31533				20375.71429			32976.66667			23811.56627	20326.44737	25513.7554

We can plot a clustered column chart from this table where each cluster in the chart for a particular brand would have the column of average MSRP of all body styles and sections would have different colors to identify each body style. Chart looks like below:

Task 3: How do the different features such as transmission type affect the MSRP, and how does this vary by body style?

To find the effect of transmission type on MSRP we have to create a pivot table and add body style as column and transmission type as row. We consider the average of MSRP to better visualize the data. We get the following pivot table.

	· · · ·	J**							
4	Α	В	С	D	Е	F	G	Н	
	Average of MSRP	Body Style 🔻							
2	Transmission Type	2dr Hatchback	2dr SUV	4dr Hatchback	4dr SUV	Cargo Minivan	Cargo Van	Convertible	Conve
3	AUTOMATED_MANUAL	27470.41667		29347.04545	40451.15385			129082.2339	
ı	AUTOMATIC	20784.09901	24153.60606	23888.73529	41658.40017	20292.93103	17019.29762	95153.3131	
5	DIRECT_DRIVE	31800		32799.72973	49800				
5	MANUAL	12840.65556	9173.018519	17500.36364	17422.08791			64794.34437	
7	Grand Total	16220.74634	14855.31034	22416.46757	40747.54467	20292.93103	17019.29762	88439.88633	
3									
)									

We copy down the contents of the pivot table to create a scatter plot. Scatter plot look like below:

Task 4: How does the fuel efficiency of cars vary across different body styles and model years? To find how fuel efficiency of a car varies across different body styles across different years we create a pivot table consisting of average highway MPG and City MPG across body styles as columns and years as rows. We get following table:

_ ^				_	1	V	- 11		,
	Body Style 🔻								
	2dr Hatchback		2dr SUV		4dr Hatchback		4dr SUV		Cargo Minivan
Year	Average of city mpg	Average of highway MPG	Average of city mpg	Average of highway MPG	Average of city mpg	Average of highway MPG	Average of city mpg	Average of highway MPG	Average of city mp
1990	23.6	30.4	15.25	20	22	31			
1991	22.16666667	29.83333333	12.5	16.25			14.5	20)
1992	22.39285714	29.39285714	13.85714286	18.28571429	21.33333333	28.16666667	15.5	21	
1993	21.48148148	28.25925926	14	18.85714286	22.25	28.125	15.5	21	
1994	20.42105263	27.05263158	13.25	17.625	21.28571429	27.14285714	15	20)
1995	21.6	28.6	12	16	22	27.66666667			16
1996	21.2	28.8	16.2	20	18.625	26.125	18.5	21.25	16
1997	19.5	26.25	18.66666667	22	18.88888889	26.66666667	16	19.7	'
1998	17.2	23.2	22	26	18	24.5	18.22222222	22.11111111	
1999	24	30.33333333	14	18.5			13.3	18.3	
2000	24	31.22222222	14	18.5			13.6	17.73333333	
2001	22.28571429	29	14.33333333	18.66666667			14.45454545	18.72727273	
2002	17	25.25	14.25	19			15.73529412	19.79411765	
2003	22	29.75	14.08333333	18.75			14.97142857	19.22857143	15.166666
2004	22.28571429	29.71428571	14.25	18.75	27	34	14.65306122	19.04081633	14
2005	22.55555556	30.33333333	14.33333333	18.66666667	22.8	30.6	14.19047619	19.33333333	15.333333
2006	19.66666667	27.25			20.58333333	28.75	15.58333333	20.19444444	16.333333
2007	17.72727273	25.09090909			18.54545455	27.45454545	15.38888889	20.46296296	i :
2008	18.85714286	26.42857143			20.16666667	28.33333333	15.78125	20.765625	
2009	20.25	29			24	31	17.39784946	22.59139785	
2010	19	27.125			21.8125	29.5	18.21818182	23.25454545	
2011	19.83333333	27.83333333			21.44827586	28.93103448	18.68055556	23.58333333	
2012	21.35714286	30.21428571			24.78571429	31.76190476	19.15555556	23.84444444	
2013	23.45454545	31.90909091			26.11764706	32.8627451	19.12280702	24.47368421	
2014	28.25	34.75			43.82978723	45.46808511	18.15702479	24.2231405	
2015	28.41176471	36.10294118	21	30	35.95138889	41.57638889	19.04283054	25.76350093	22
2016	28.85714286	36.26530612	21	30	37.456	42.28	19.61025641	26.1965812	22.333333
2017	31.75	37.4375	21	29	34.75630252	40.29411765	19.36016949	25.70974576	;
Grand Tot	tal 24.0804878	31.37804878	14.85057471	19.55172414	32.08898944	37.81146305	18.48456155	24.508028	18.517241

We use this table to create a line plot with markers to visualize the data as a timeline and across different body types.

Task 5: How does the car's horsepower, MPG, and price vary across different Brands? To find relationships between a car's horsepower and MPG and price across different brands we can create a bubble plot to better visualize, for this we find average MPG, price and horsepower across each brand and create a pivot table. This pivot table looks like below:

4	Α		В	С	D	E	
	Row Labels	¥	Average of Engine HP	Average of city mpg	Average of highway MPG	Average of MSRP	
	Acura		244.9634146	20.00406504	28.2195122	35087.4878	
	Alfa Romeo		237	24	34	61600	
	Aston Martin		483.7582418	12.56043956	18.93406593	198123.4615	
	Audi		280	19.63551402	28.92834891	54574.1215	
	Bentley		533.8513514	11.55405405	18.90540541	247169.3243	
•	BMW		329.6203704	20.70061728	29.12654321	62162.55864	
	Bugatti		1001	8	14	1757223.667	
	Buick		220.0105263	18.78421053	27.01052632	29034.18947	
0	Cadillac		332.7954545	17.36111111	25.24494949	56368.26515	
1	Chevrolet		249.4837512	19.12070566	25.93221913	29018.35005	
2	Chrysler		230.5351351	17.74054054	26.38378378	26990.23784	
3	Dodge		254.5984848	16.45643939	22.99810606	24900.33523	
4	Ferrari		511.9565217	10.56521739	15.72463768	238218.8406	
5	FIAT		136.6129032	30.64516129	37.33870968	22670.24194	
5	Ford		248.7730061	17.89815951	23.87730061	28525.18282	
7	Genesis		347.3333333	16.33333333	25.33333333	46616.66667	
3	GMC		268.2949791	15.79916318	21.47698745	32695.74268	
9	Honda		195.8637413	25.2147806	32.39953811	26655.14781	
0	HUMMER		261.2352941	13.52941176	17.29411765	36464.41176	

We copy this contents to create a table to create a bubble plot.

On the X axis there would be average horsepower and on the Y axis average MPG. Each bubble would represent each car brand and would be labeled to better identify the brands

Making Dashboard:

We have created each chart to visualize different parameters and relationships and trends, we can now create a dashboard by combining all these charts into one single worksheet to have a better understanding of the data. We copy all these charts into one worksheet and add slicers to change parameters which are shown the data point for. We add two slicers in the worksheet, make, and vehicle style, which represent car brand and body style. We then make connections with these slicers with all the charts to make the dashboard functional. Now we can easily find different trends and relationships between price and parameters.

Dashboard looks like below:

Results:

While working on this project, I have gained a better understanding of Impact of Car Features on Price and Profitability as well as popularity of the Car. I have improved my understanding of Advanced Excel methodologies. By analyzing Car features Data, I was able to provide insights on various aspects such as Features most affecting MSRP, Outliers in the Data, relation between Engine HP and MSRP, Regression Analysis, average MSRP across different brands and relation between no. of cylinders and fuel efficiency. I was also able to create different visualizations to improve data understanding and create a dashboard for ease of understanding between various parameters in Car Features.

This project has helped me enhance my Excel skills, particularly in data visualization and creating pivot tables and charts to derive meaningful insights. It has also improved my ability to interpret data and provide actionable recommendations based on the analysis.

ABC Call Volume Trend Analysis

Excel Sheet:

https://docs.google.com/spreadsheets/d/1lqsTTNInPiGetvTCOAvujjX yOyGqSLMX/edit?usp=sharing&ouid=107365393175079460343&rtp of=true&sd=true

Project Description:

This project aims to analyze a dataset containing information about call trends in a company's customer care. The goal is to gain insights about trends in calls received, such as average call duration, call volume analysis, distribution of calls across various time buckets, and employee distribution according to call volume. The data provided has various missing or null Data, our task is to handle those missing values appropriately, by either deleting or imputing these data. We utilize various excel features such as pivot tables and charts to better represent data. We find trends in call volume and employee distribution by implementing various methodologies and formulae and visualization techniques in Excel. Thus, by employing statistics and Excel formulas, we will extract meaningful conclusions to help understand how to better utilize manpower in handling the call volumes across various time buckets.

Approach:

As an individual working on this project, I followed a structured approach to analyze data about Call volume and Employees. I began by carefully examining the provided database and familiarizing myself with its structure and columns. I tried to find columns which had the most significance in the dataset. I handled missing values by eliminating columns which had most empty cells, and were not significant. And imputed data into cells that were necessary for analysis. Then, I utilized Excel fundamentals to retrieve the necessary information for each task, employing appropriate functions and statistical methods. I focused on data accuracy and quality throughout the project, ensuring reliable results. By leveraging my Excel skills and maintaining a systematic workflow, I successfully executed the project and created a comprehensive report that fulfilled the objectives of providing marketing insights and investor metrics.

Tech-Stack Used:

For this project, I utilized Microsoft Excel as the primary software tool.

Data Cleaning:

Given Data had various missing values, for better analysis of the data, we had to handle these missing values.

We found missing values by using following formulae:

- =COUNTIF(B:B,"#N/A")
- =COUNTBLANK(Table1[Wrapped _By])

Output:

Columns	No. of null or N/A
Agent_ID	34198
Customer_Phone_No	34198
Queue_Time(Secs)	0
Date_&_Time	0
Time	0
Time_Bucket	0
Duration(hh:mm:ss)	0
Call_Seconds (s)	0
Call_Status	0
Wrapped _By	47877
Ringing	0
IVR _Duration	0

As there is a lot of missing data in Wrapped_By column we begin by handling these values. We create a pivot table to understand the data.

Count of Customer_Phone_I	No Column Labels 🗔			
Row Labels	▼ (blank)	AutoWrapped	Agent	Grand Total
abandon	34403			34403
answered	13362	9715	59375	82452
transfer	112		1021	1133
Grand Total	47877	9715	60396	117988

As we can see here most of the blank values are in abandon calls. To better understand the data we visualize it using Bar Chart

As most of the calls answered and transferred are by agent we check with the call_status column and impute appropriate values in the Wrapped_By column. We impute value Agent, if call is answered or transferred, else abandon.

Formula:

=IF(I7="abandon","abandon","Agent")

Agent ID column also had missing values where call were abandoned, so we replaced #NA with abandon.

Thus, we got our cleaned Data.

	_		-						-
Agent_ID 🔻	Customer_Phone_No 🔻	Queue_Time(Secs) 🔻 Da	ite_&_Time 🔻 Ti	me 🔻 Time_Bucket 🖪	Duration(hh:mm:ss) 🔻 Cal	l_Seconds (s) ▼ Call_Status ▼	Wrapped _B	y 🔻 Ringing 🔻	IVR _Duration 🔻
1000042	98502XXXXX	2	01-01-2022	9.00 9_10	00:01:36	96.00 answered	Agent	YES	00:00:16
1000004	80595XXXXX	0	01-01-2022	9.00 9_10	00:02:20	140.00 answered	Agent	YES	00:00:26
1000065	70202XXXXX	0	01-01-2022	9.00 9_10	00:01:25	85.00 answered	AutoWrapped	YES	00:00:16
1000055	96104XXXXX	1	01-01-2022	9.00 9_10	00:01:31	91.00 answered	Agent	YES	00:00:25
1000021	82001XXXXX	0	01-01-2022	9.00 9_10	00:02:45	165.00 answered	Agent	YES	00:00:23
abandon	96424XXXXX	13	01-01-2022	9.00 9_10	00:00:00	0.00 abandon	abandon	YES	00:00:16
1000055	96737XXXXX	79	01-01-2022	9.00 9_10	00:01:25	85.00 answered	AutoWrapped	I 📆	00:00:13
abandon	96392XXXXX	60	01-01-2022	9.00 9_10	00:00:00	0.00 abandon	abandon	YES	00:00:17
1000042	90820XXXXX	52	01-01-2022	9.00 9_10	00:01:05	65.00 answered	Agent	YES	00:00:20
1000065	97410XXXXX	62	01-01-2022	9.00 9_10	00:03:00	180.00 answered	AutoWrapped	YES	00:00:44
1000004	1 70076XXXXX	52	01-01-2022	9.00 9_10	00:01:48	108.00 answered	Agent	YES	00:00:15
1000021	82505XXXXX	89	01-01-2022	9.00 9_10	00:03:06	186.00 answered	Agent	YES	00:00:16
abandon	97232XXXXX	120	01-01-2022	9.00 9_10	00:00:00	0.00 abandon	abandon	YES	00:00:40
1000055	96392XXXXX	45	01-01-2022	9.00 9_10	00:01:40	100.00 answered	AutoWrapped	YES	00:00:42
1000042	97471XXXXX	55	01-01-2022	9.00 9_10	00:01:15	75.00 answered	AutoWrapped	l YES	00:00:19
abandon	77082XXXXX	16	01-01-2022	9.00 9_10	00:00:00	0.00 abandon	abandon	YES	00:00:18
abandon	95255XXXXX	44	01-01-2022	9.00 9_10	00:00:00	0.00 abandon	abandon	YES	00:00:17
1000004	79725XXXXX	88	01-01-2022	9.00 9_10	00:04:03	243.00 answered	AutoWrapped	YES	00:00:15
1000049	98344XXXXX	46	01-01-2022	9.00 9_10	00:04:10	250.00 answered	Agent	YES	00:00:19
1000050	96873XXXXX	64	01-01-2022	9.00 9_10	00:03:28	208.00 answered	Agent	YES	00:00:48
1000042	79899XXXXX	52	01-01-2022	9.00 9_10	00:02:34	154.00 answered	Agent	YES	00:00:26
1000065	95754XXXXX	67	01-01-2022	9.00 9_10	00:02:07	127.00 answered	AutoWrapped	YES	00:00:45
1000055	70546XXXXX	64	01-01-2022	9.00 9_10	00:03:11	191.00 answered	AutoWrapped	I YES	00:00:40
1000021	97050XXXXX	47	01-01-2022	9.00 9_10	00:03:23	203.00 answered	Agent	YES	00:00:25
abandon	89680XXXXX	120	01-01-2022	9.00 9_10	00:00:00	0.00 abandon	abandon	YES	00:00:25
1000059	99954XXXXX	75	01-01-2022	9.00 9_10	00:02:30	150.00 answered	AutoWrapped	YES	00:00:21
1000016	90074XXXXX	71	01-01-2022	9.00 9_10	00:04:13	253.00 answered	Agent	YES	00:00:20
abandon	96048XXXXX	65	01-01-2022	9.00 9 10	00:00:00	0.00 abandon	abandon	YES	00:00:17
1000042	99971XXXXX	27	01-01-2022	9.00 9_10	00:00:44	44.00 answered	Agent	YES	00:00:16
	63523XXXXX	36	01-01-2022	9.00 9_10	00:01:27	87.00 answered	Agent	YES	00:00:17
1000050) 99824XXXXX	36	01-01-2022	9.00 9 10	00:01:16	76.00 answered	AutoWrapped		00:00:17

Insights:

Question 1: What is the average duration of calls for each time bucket?

To find the average duration of calls for each time bucket, we can create a pivot table, we select time bucket as row and the average of call duration in seconds as the field value. We get the following Table.

Time Buckets	▼ Average of Call_Seconds (s)
9_10	92.01032541
10_11	97.42402163
11_12	116.7837413
12_13	144.7250237
13_14	149.5409567
14_15	146.9693211
15_16	169.8968228
16_17	181.4393491
17_18	179.7245137
18_19	174.3246753
19_20	144.5825468
20_21	105.9491371
Grand Total	139.5321473

We can visualize this on a column chart and also create a slicer to visualize the data according to various filters.

Question 2: Can you create a chart or graph that shows the number of calls received in each time bucket?

To Create a chart that shows the number of calls received in each time bucket, we first have to create a table which has a count of calls in each time bucket. To do this, we can create a pivot table. Pivot table has time buckets as rows and counts of customer phone numbers as fields, we also select call status as column to better understand trends.

We get following pivot table:

Count of Customer_Phone_No	Column Labels			
Time Buckets	abandon	answered :	transfer	Grand Total
10_11	6911	6368	34	13313
11_12	6028	8560	38	14626
12_13	3073	9432	147	12652
13_14	2617	8829	115	11561
14_15	2475	7974	112	10561
15_16	1214	7760	185	9159
16_17	747	7852	189	8788
17_18	783	7601	150	8534
18_19	933	6200	105	7238
19_20	1848	4578	37	6463
20_21	2625	2870	10	5505
9_10	5149	4428	11	9588
Grand Total	34403	82452	1133	117988

From this table we can create Column Charts that show the number of calls received in each time bucket. We create two charts one stacked column chart, and clustered column chart:

Question 3: What is the minimum number of agents required in each time bucket to reduce the abandon rate to 10%?

To find the minimum number of agents required to reduce abandonment rate to 10% first we have to find the current abandonment rate, total number of calls per day and total number of calls to be answered to reduce the rate to 10%.

We create a table which consists of total abandoned call per time bucket, total answered call per bucket and find average calls abandoned and answered per day. From that we find the total number of calls received per day. Thus, we find an abandoned percentage. We find number of calls answered at abandon rate 10% by multiplying total number of call received by 0.9 Table below shows all values discussed above.

Time Buckets	Count of Abandoned calls	Count of Answered Calls	avg abandoned calls per day	avg answered calls per day	Total calls per day	Abandon Percentage	answered calls at 10% abandon
9_10	5149	4428	224	193	417	53.71702638	375
10_11	6911	6368	300	277	579	51.8134715	521
11_12	6028	8560	262	372	636	41.19496855	572
12_13	3073	9432	134	410	550	24.36363636	495
13_14	2617	8829	114	384	503	22.6640159	453
14_15	2475	7974	108	347	459	23.52941176	413
15_16	1214	7760	53	337	398	13.31658291	358
16_17	747	7852	32	341	382	8.376963351	344
17_18	783	7601	34	330	371	9.164420485	334
18_19	933	6200	41	270	315	13.01587302	284
19_20	1848	4578	80	199	281	28.46975089	253
20_21	2625	2870	114	125	239	47.69874477	215

As per the given data, an agent works for 9 hrs per day, of which 1.5 hrs is break. So effectively the agent works 7.5 hrs per day. Which means total working seconds are 16200 seconds. On average a call lasts 199 seconds. Thus, an agent can answer 81 calls per day effectively. And can answer 18 calls per hour.

Work Hours :	9
Break :	1.5
Actual Working Hours:	7.5
Total Working Seconds :	16200
Average Call Time/Agent :	199
Call Capacity of an Agent/day:	81
Call Capacity of an Agent/Hour:	18

We find no. of agents by dividing no. of calls answered by 18 for each time bucket. Similarly we can find agents required to reduce abandonment rate.

Time_Bucket	Answered Calls/Day	If an Agent answers 18 calls/hr. No. of Agents reed		No. of Agents needed to Answer updated Target
09_10	1	.93 1	1 375	21
10_11	2	.77 1	5 520	29
11_12	3	72 2	1 571	. 32
12_13	4	10 2	3 489	27
13_14	3	84 2	1 448	25
14_15	3	147	9 409	23
15_16	3	37 1	9 351	. 20
16_17	3	41 1	9 336	19
17_18	3	30 1	8 328	18
18_19	2	270 1	5 279	16
19_20	1	.99 1	1 251	. 14
20_21	1	.25	7 215	12

To better understand the trend we plot clustered column chart to find differences in number of agents, as well as line chart.

Question 4: Propose a manpower plan for each time bucket throughout the day, keeping the maximum abandon rate at 10%.

To create a manpower plan for each time bucket throughout the day, we have to find manpower required at night. As per given information, for per 100 calls that customers make during each time bucket during day, they make 30 calls at night. And distribution of these 30 calls is as below.

Distribution of 30 calls coming in night for every 100 calls coming in between 9am - 9pm (i.e. 12 hrs slot)											
9pm- 10pm	10pm - 11pm	11pm- 12am	12am- 1am	1am - 2am	2am - 3am	3am - 4am	4am - 5am	5am - 6am	6am - 7am	7am - 8am	8am - 9am
3	3	22	2	1	1	1	1	3	4	4	5

We find total number of calls made during night, by multiplying total number of calls made an average during day by 0.3

We can find distribution of calls for each time bucket during night by using formula below: =ROUND(P\$148*[@[Distribution of 30 calls]]/Q\$148,0)

Here, we are multiplying total calls made at night by distribution of calls divided by 30. We get following results:

Time_Bucket	No. of Calls to be Answered/Day with Abandon % at 10	Distribution of 30 calls	No. of calls at Night	Time_Bucket(Night)	No. of Employees Needed
09_10	375	3	137	9pm-10pm	8
10_11	520	3	137	10pm-11pm	8
11_12	571	2	91	11pm-12am	5
12_13	489	2	91	12am-1am	5
13_14	448	1	46	1am-2am	3
14_15	409	1	46	2am-3am	3
15_16	351	1	46	3am-4am	3
16_17	336	1	46	4am-5am	3
17_18	328	3	137	5am-6am	8
18_19	279	4	183	6am-7am	10
19_20	251	4	183	7am-8am	10
20_21	215	5	229	8am-9am	13,
Total Calls on an average/day	4573				
Total Calls on Night	1372	30	1372		

To find the number of employees, we divided the total number of calls by 18(number of calls an employee can answer per hour).

We plot this using a line chart to better visualize the data.

We also combine this data with no. of employees required for abandoned rate at 10% received from previous question and create a combined manpower table.

Updated Time_Bucket	▼ No. of Employees Needed	¥
09_10	2	1
10_11	2	9
11_12	3	32
12_13	2	7
13_14	2	25
14_15	2	3
15_16	2	20
16_17	1	9
17_18	1	8.
18_19	1	6
19_20	1	4
20_21	1	2
21_22		8
22_23		8
23_00		5
00_01		5
01_02		3
02_03		3
03_04		3
04_05		3
05_06		8
06_07	1	.0
07_08	1	.0
08_09	1	3

We create a line Chart of combined Data to visualize manpower distribution for a complete day.

Results:

While working on this project, I have gained a better understanding of Call Volume Trends. I have improved my understanding of Advanced Excel methodologies. By analyzing Customer Experience Call Data, I was able to provide insights on various aspects such as average calls made throughout the day for each time bucket, total number of calls per time bucket, how to reduce abandon rate by increasing manpower, and how manpower distribution would look like for night shift. I was also able to create different visualizations to improve data understanding. This project has helped me enhance my Excel skills, particularly in data visualization and creating pivot tables and charts to derive meaningful insights. It has also improved my ability to interpret data and provide actionable recommendations based on the analysis.

Appendix

LINK TO PROJECT REPORTS

1. DATA ANALYTICS PROCESS

https://drive.google.com/file/d/1YHjZQ2n5kCDr5dqxEtenZF0_YsOgLBeG/view?usp=drive_link

2. INSTAGRAM USER ANALYTICS

https://drive.google.com/file/d/1A-LkZFnR9MNt4lEMzT_lY7xtBLHpCIj-/view?usp=drive link

3. OPERATION ANALYTICS AND INVESTIGATING METRIC SPIKE

https://drive.google.com/file/d/18xLe2WK0T3aZ_19d24rycsopw9t7nwIH/view?usp=drive_link

4. HIRING PROCESS ANALYTICS

https://drive.google.com/file/d/1kbWxPJmIbiU-AtWxFPetBeBPbtzQjTq-/view?usp=drive_link

5. IMDB MOVIE ANALYSIS

https://drive.google.com/file/d/1uqiD-G8iaM_eEpFZuxBCMyYPfUj1lEtI/view?usp=drive_link

6. BANK LOAN CASE STUDY

https://drive.google.com/file/d/13Ou0ZeU6McaOub29tOcV4BrpZNErvKQs/view?usp=drive_link

7. ANALYZING THE IMPACT OF CAR FEATURES ON PRICE AND PROFITABILITY

https://drive.google.com/file/d/1dVQLHpXHKUxFGdx0UFZlwDeGrgtjex38/view?usp=drive_link

8. ABC CALL VOLUME TREND ANALYSIS

https://drive.google.com/file/d/1PJZGza8caECbIOGXIulkKkla9bJ13NyB/view?usp=drive_link