Partielle Differentialgleichungen – Übungsblatt 6

Aufgabe 14. Es sei $U \subset \mathbb{R}^n$ ein beschränktes Gebiet und $u \in C^2(U) \cap C(\overline{U})$ eine Lösung von

$$-\Delta u = f(u, x)$$
 in U , $u = g$ auf ∂U ,

wobei f und g im Folgenden spezifisch gewählt werden.

- (a) Es sei $f(u,x) = u u^3$ und g = 0. Beweisen Sie mit elementaren Methoden die Abschätzung $-1 \le u(x) \le 1$ für alle $x \in \overline{U}$.
- (b) Es sei $U = (-a, a)^n$ für ein a > 0, f(u, x) = -1 und g = 0. Finden Sie möglichst gute obere und untere Schranken für u(0), indem Sie eine harmonische Funktion der Form v = u + w betrachten, wobei w geeignet zu wählen ist
- (c) Es sei $U = B_1(0)$, f(u, x) = h(x) mit $h, g \in C^1(\mathbb{R}^n, \mathbb{R})$. Zeigen Sie, dass es eine von n, h, g und u unabhängige Konstante c > 0 gibt, für die gilt:

$$\max_{\overline{B_1(0)}} |u| \le c \cdot \left(\max_{\partial B_1(0)} |g| + \max_{\overline{B_1(0)}} |h| \right)$$

Hinweis: Betrachten sie u-v, wobei $v(x) = \max_{\partial B_1(0)} |g| + (e^2 - e^{x_1+1}) \max_{\overline{B_1(0)}} |h|$.

(zu a) Es sei $f(u) = u - u^3$ und $g \equiv 0$. Da U beschränktes Gebiet ist und \overline{U} eine abgeschlossene Menge, ist also \overline{U} kompakt. Da u stetig auf \overline{U} ist, nimmt u ein Maximum in einem $x_0 \in \overline{U}$ an. Nehmen wir an es sei $u(x_0) > 1$. Es gilt $\equiv g \equiv 0$ auf ∂U , d.h. um ein Maximum $u(x_0 > 1$ zu besitzen, muss $x_0 \in \text{int } U$ sein. Da $u(x_0)$ Maximum ist mit $u \in C^2(U)$, gilt $u_{x_ix_i}(x_0) \leq 0$ für alle $i = 1, \ldots, n$. Nach Differentialgleichung ist dann also

$$0 \le -\Delta u(x_0) = -\sum_{i=1}^n u_{x_i x_i}(x_0) = u(x_0) - u^3(x_0) = u(x_0) \left(1 - u(x_0)^2\right) \stackrel{u(x_0) > 1}{<} 0$$

ein Widerspruch. Somit ist dann $u(x_0) \leq 1$ und aufgrund der Maximalität von $u(x_0)$ auch $u(x) \leq u(x_0) \leq 1$ für alle $x \in \overline{U}$.

Analog dazu nimmt u auf \overline{U} ein globales Minimum in $x_0 \in \overline{U}$ an, für welches nach gleicher Argumentation wie oben $x_0 \in \text{int } U$ gilt. Nehmen wir an, es sei $u(x_0) < -1$. Als Minimalstelle gilt $u_{x_ix_i}(x_0) \geq 0$ für alle i = 1, ..., n. Nach PDE gilt dann

$$0 \ge -\Delta u(x_0) = -\sum_{i=1}^{n} u_{x_i x_i}(x_0) = u(x_0) - u^3(x_0) = u(x_0) \left(1 - u(x_0)^2\right) \stackrel{u(x_0) < -1}{<} 0$$

ein Widerspruch. Somit ist $u(x) \ge u(x_0) \ge -1$ für alle $x \in \overline{U}$ und schließlich gilt die Einschließung $-1 \le u(x) \le 1$ für alle $x \in \overline{U}$.

(zu b) Sei a>0 und $U=(-a,a)^n$ ein n-dimensionaler (offener) Quader. Weiter sei $f\equiv -1$ und $g\equiv 0$. Gesucht sind "gute" (obere und untere) Schranken von u(0). Wir betrachten eine harmonische Funktion v der Form v=u+w, d.h. $0=\Delta v=\Delta u+\Delta w=-f(u,x)+\Delta w=1+\Delta w$. Somit suchen wir nun eine Funktion w mit $\Delta w=-1$. Eine Lösung dieser PDE erhalten wir beispielsweise mit $w(x)=-\frac{1}{2n}|x|^2=-\frac{1}{2n}\sum_{i=1}^n x_i^2$.

Wenden wir das Maximumsprinzip auf v an, dann nimmt damit v sein Maximum in einem $x_0 \in \partial U$ an. Aufgrund der Randwertbedingung gilt dort $u \equiv 0$. Wir betrachten oBdA den Randpunkt $x_0 = (a,0,\ldots,0) \in \partial U$. Dieser minimiert $\sum_{i=1}^n x_i^2$, da jeder andere Randpunkt auch mindestens eine Koordinate $j \in \{1,\ldots,n\}$ mit $x_j = \pm a$ besitzt. Somit gilt dann schlussendlich

$$u(0) = v(0) - w(0) = v(0) \le \max_{x \in U} v(x) \le \max_{x \in \partial U} (u(x) + w(x)) \le w(x_0) = -\frac{1}{2n}a^2$$

Analog liefert das Minimumsprinzip die Existenz des Minimum in $x_0 \in \partial U$. Nach Randwertbedingung gilt dort wieder $u(x_0) = 0$. Die Funktion w wird auf dem Rand minimiert durch den Punkt $x_0 = (a, \ldots, a) \in \partial U$ mit Minimalwert $w(x_0) = -\frac{1}{2n} \sum_{i=1}^n a^2 = -\frac{1}{2}a^2$. Analog zu oben gilt nun

$$u(0) = v(0) - w(0) = v(0) \ge \min_{x \in U} v(x) \ge \min_{x \in \partial U} (u(x) + w(x)) \ge w(x_0) = -\frac{1}{2}a^2$$

Somit ist schließlich $-\frac{1}{2}a^2 \le u(0) \le -\frac{1}{2n}a^2$.

(zu c) Sei $U = B_1(0)$ und f(u,x) = h(x)) für $g,h \in C^1(\mathbb{R}^n,\mathbb{R})$. Gemäß Hinweis betrachten wir u - v mit $v(x) := \max_{\partial B_1(0)} |g| + (e^-e^{x_1+1}) \cdot \max_{\overline{B_1(0)}} |h|$. Es ist $\Delta v(x) = -e^{x_1+1} \cdot \max_{\overline{B_1(0)}} |h| \le -\max_{\overline{B_1(0)}} |h|$. Somit ist

$$-\Delta(u-v)(x) = -\Delta u(x) + \Delta v(x) = f(u,x) - \Delta v(x) \le h(x) - \max_{B_1(0)} |h| \le 0 \quad \forall x \in B_1(0)$$

Damit ist u-v subharmonisch und mit dem Maximumsprinzip gilt auch hier, dass das Maximum in einem $x_0 \in \partial B_1(0)$ angenommen wird. Dementsprechend gilt

$$\frac{\max(u - v) \le \max_{\partial B_1(0)} (u - v) \le \max_{\partial B_1(0)} u + \max_{\partial B_1(0)} (-v) = \max_{\partial B_1(0)} |g| - \max_{\partial B_1(0)} |g| = 0$$

sowie daraus folgend

$$\begin{split} \frac{\max}{B_1(0)} u &\leq \frac{\max}{B_1(0)} (u - v) + \frac{\max}{B_1(0)} v = \frac{\max}{B_1(0)} v \\ &= \max_{\partial B_1(0)} |g| + \underbrace{\max}_{B_1(0)} |h| \cdot \underbrace{\max}_{B_1(0)} \left(e^2 - e^{x_1 + 1} \right) \\ &= \max_{\partial B_1(0)} |g| + \left(e^2 - \underbrace{e^0}_{=1} \right) \cdot \underbrace{\max}_{B_1(0)} |h| \end{split}$$

Die gleiche Rechnung funktioniert auch mit -u bzw. f(u, x) = -h(x), sodass $c := e^2 - 1$ vollständig unabhängig ist.

Aufgabe 15. Für t>0 ist die Fundamentallösung der Wärmeleitungsgleichung auf \mathbb{R}^n gegeben durch $u(x,t)=(ct)^{-n/2}e^{-\frac{|x|^2}{4t}}$ mit einer Konstante c>0. Zeigen Sie:

- (a) $u_t = \Delta u$ auf $\mathbb{R}^n \times \mathbb{R}_+$.
- (b) $\lim_{t\to 0+} u(x,t) = 0$ für $x \neq 0$, $\lim_{t\to 0+} u(0,t) = \infty$ und $\lim_{t\to\infty} u(x,t) = 0$.
- (c) $\int_{\mathbb{R}^n} u(x,t)dx = 1$ für alle t > 0 und $c = 4\pi$.
- (zu a) Es sei $u(x,t)=(ct)^{-\frac{n}{2}}\cdot e^{-\frac{|x|^2}{4t}}$. Dann ist

$$u_{t}(x,t) = c^{-\frac{n}{2}} \left(-\frac{n}{2}\right) t^{-\frac{n}{2}-1} e^{-\frac{|x|^{2}}{4t}} + (ct)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4t}} \cdot \frac{4|x|^{2}}{16t^{2}}$$

$$= (ct)^{-\frac{n}{2}} \cdot e^{-\frac{|x|^{2}}{4t}} \cdot \left(-\frac{n}{2}t^{-1} + \frac{|x|^{2}}{4t^{2}}\right)$$

$$= (ct)^{-\frac{n}{2}} \cdot e^{-\frac{|x|^{2}}{4t}} \cdot \left(\frac{|x|^{2} - 2nt}{4t^{2}}\right)$$

$$u_{x_{i}}(x,t) = (ct)^{-\frac{n}{2}} \cdot e^{-\frac{|x|^{2}}{4t}} \cdot \left(-\frac{2x_{i}}{4t}\right) = -(ct)^{-\frac{n}{2}} \cdot e^{-\frac{|x|^{2}}{4t}} \cdot \frac{x_{i}}{2t}$$

$$u_{x_{i}x_{i}}(x) = (ct)^{-\frac{n}{2}} \left(e^{-\frac{|x|^{2}}{4t}} \cdot \frac{x_{i}}{2t} \cdot \frac{x_{i}}{2t} - \frac{1}{2t}e^{-\frac{|x|^{2}}{4t}}\right)$$

$$= (ct)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4t}} \left(\frac{x_{i}^{2}}{4t^{2}} - \frac{1}{2t}\right)$$

$$\Delta_{x}u(x,t) = \sum_{i=1}^{n} x_{x_{i}x_{i}}(x) = (ct)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4t}} \left(\frac{1}{4t^{2}} \cdot \sum_{i=1}^{n} x_{i}^{2} - \frac{n}{2t}\right)$$

$$= \sum_{i=1}^{n} x_{x_{i}x_{i}}(x) = (ct)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4t}} \left(\frac{|x|^{2} - 2nt}{4t^{2}}\right)$$

Somit gilt also $u_t = \Delta u$ auf $\mathbb{R}^n \times \mathbb{R}_+$.

(zu b) • Sei $x \neq 0$. Es ist

$$\lim_{t \to 0+} \frac{n}{2} \ln(t) + \frac{|x|^2}{4} \cdot \frac{1}{t} = \lim_{t \to 0+} \frac{2nt \ln(t) + |x|^2}{4t}$$

Betrachten wir zunächst den Ausdruck $2nt \cdot \ln(t) = 2n \cdot \frac{\ln(t)}{\frac{1}{t}}$. Mit der Regel von l'Hôpital erhalten wir

$$\lim_{t \to 0+} 2n \cdot \frac{\ln(t)}{\frac{1}{t}} = 2n \cdot \lim_{t \to 0+} \frac{\frac{1}{t}}{-\frac{1}{t^2}} = -2n \cdot \lim_{t \to 0+} t = 0$$

Damit erhalten wir dann recht einsichtig

$$\lim_{t \to 0+} \frac{2nt \ln(t) + |x|^2}{4t} = \infty$$

und schließlich

$$\lim_{t \to 0+} (ct)^{-\frac{n}{2}} \cdot e^{-\frac{|x|^2}{4t}} = c' \cdot \lim_{t \to 0+} e^{\ln(t^{-\frac{n}{2}})} \cdot e^{-\frac{|x|^2}{4t}} = c' \cdot \lim_{t \to 0+} e^{-\left(\frac{n}{2}\ln(t) + \frac{|x|^2}{4t}\right)} = 0$$

■ Sei $t_k \to 0+$ für $k \to \infty$. Dann ist

$$\lim_{t \to 0+} u(0,t) = \lim_{k \to \infty} (c \ t_k)^{-\frac{n}{2}} = \lim_{k \to \infty} \frac{1}{(c \ t_k)^{\frac{n}{2}}} = \infty$$

 \bullet Sei nun $t_k \to \infty$ für $k \to \infty$. Dann ist

$$\lim_{t \to \infty} (c \ t)^{-\frac{n}{2}} e^{-\frac{|x|^2}{4t}} = \lim_{k \to \infty} \frac{1}{(c \ t_k)^{\frac{n}{2}}} \cdot \exp\left(\lim_{k \to \infty} -\frac{|x|^2}{4t_k}\right) = 0 \cdot 1 = 0$$

(zu c) Wir wollen die Substitution $y_i = \frac{x_i}{2\sqrt{t}}$ verwenden. Dabei ist $\frac{d}{dx_i}y_i = \frac{1}{2\sqrt{t}}$. Es gilt

$$\int_{\mathbb{R}^{n}} (ct)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4t}} dx = (ct)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{-\frac{|x|^{2}}{4t}} dx$$

$$= (ct)^{-\frac{n}{2}} \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} e^{\frac{-x_{1}^{2} - \cdots - x_{n}^{2}}{4t}} dx_{1} \dots dx_{n}$$

$$= (ct)^{-\frac{n}{2}} \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \prod_{i=1}^{n} e^{\frac{-x_{i}^{2}}{4t}} dx_{1} \dots dx_{n}$$

$$= (4\pi t)^{-\frac{n}{2}} \prod_{i=1}^{n} \int_{\mathbb{R}} e^{-\frac{x_{i}^{2}}{4t}} dx_{i}$$

$$= \pi^{-\frac{n}{2}} \prod_{i=1}^{n} \int_{\mathbb{R}} e^{-\frac{x_{i}^{2}}{4t}} \cdot \frac{1}{2\sqrt{t}} dx_{i}$$

$$\sup_{i=1}^{n} \int_{\mathbb{R}} e^{-y_{i}^{2}} dy_{i}$$

$$= \prod_{i=1}^{n} \underbrace{\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-y_{i}^{2}} dy_{i}}_{=1}$$