School of Mathematical Sciences

Modelling with ODEs

Semester 1, 2019

Assignment 2

Due 5pm Monday, Week 6: Submit via MyUni

You will be marked on the presentation of your answers (including clarity of explanations)!

1. Consider the following ODEs:

(a)
$$\dot{x} = r + x - \log(1+x)$$
; (b) $\dot{x} = x - rx(1-x)$; (c) $\dot{x} = rx - 4x^3$.

For each ODE:

- Find the bifurcation value \bar{r} . You may find it helpful to use MATLAB.
- State the type of bifurcation with reason.
- Produce the bifurcation diagram, with the stable and unstable branches indicated.
- 2. In Tutorial 2 you studied the ODE

$$\frac{dx}{d\tau} = s - rx + \frac{x^2}{1 + x^2},\tag{1}$$

which models the dynamics of a (nondimensional) gene product $x(\tau)$, activated by a (nondimensional) biochemical substance $s \geq 0$, and with parameter r > 0.

- (a) Let r = 0.4, and assume that initially there is no gene product, i.e. x(0) = 0. Suppose that the biochemical substance is introduced by slowly increasing s from zero up to 0.2.
 - i. Explain what happens to $x(\tau)$ and why.
 - ii. Explain (with reasons) what happens if the biochemical substance is then slowly decreased back to zero.
- (b) Consider ODE (1) for two varying parameters, $s \ge 0$ and r > 0.
 - i. Calculate the bifurcation curves.
 - ii. Plot the bifurcation curves in the (r, s)-plane.
 - iii. Determine the number of steady states and their stability in each region of your plot, and describe what happens on the bifurcation curves.