Digital Signal Processing SS 2024 – Exercise 2 Digital Signal Processing Tutorial

Group 23 Aaron Zettler, 12105021 Pascal Pilz, 12111234

Exercise 1

Exercise 2

Exercise 3

We have the impulse response of an LTI system h[n]=(0.25,0.5,0.25) at sample indices n=(0,1,2). The input signal is $x[n]=\cos\left(\frac{2\pi}{20}n\right)$ for $0\leq n<50$.

- a) From the lecture: If x[n] and h[n] have finite lengths N_x and N_h , the length of the output signal results to $N_y = N_x + N_h 1$. In our example we have $N_x = 50$ and $N_h = 3$, therefore we can calculate the length of the output signal L_y (N_y in the lecture) as $\underline{L_y = 52}$.
- b) For the actual implementation, see code Ex03.m. Here it was important to explicitly define x[n] to be 0 outside the given range.

c)

d) As we can see in the plot, the "true" y and our calculated y match up.

Exercise 4

a) See Ex04.m for the full code, here I show only the function dtft:

end

We call the function via X = dtft(@x, n, w), where

- $x(n) = ((0.8).^abs(n)) .* (u(n+10) u(n-11)) with u(n) = 1.*(n>=0)$
- n = -10:10
- w = linspace(Omega * -pi, Omega * pi, 1000) for Omega = 1
- b) What I can observe on the y-axis of the phase response plot is that the phase response for the settings described above is very small, in fact less than 10^{-14} .

Magnitude and Phase Response of X(e^{j Ω}) for -1 $\pi \leq \Omega \leq$ 1 π

c) If we change Omega from Omega = 1 to Omega = 5, we can see that the magnitude response has peaks and troughs at multiples of π . We can also see that the phase response seems to be mirrored and flipped around the y-axis (graphic on next page).

Magnitude and Phase Response of X(e $^{j\Omega}$) for -5 $\pi \leq \Omega \leq 5\pi$

