$\frac{1}{3} = \sqrt{\pi y_i} = \left(e^{\left(s_i \frac{\pi}{n_i} y_i\right)^{1/n}}\right) = e^{\left(s_i \frac{\pi}{n_i} y_i\right)^{1/n}}$

e 1/2. \(\Sigma\) = e /0/4;

$$V_i^* = \frac{V_i}{\overline{Y}}$$

Ho: no dif.
Ho: is a ris. dif

2)
$$EST$$
 - Y_i | X_i -> PSS_2

$$\frac{h}{2}$$
 | $\log \frac{PSS_1}{PSS_2}$ | $\sim \chi_1^2$

		Problem 1. (UoL Exam). The	rise in price:	s for public	transport lea	ds to lower	corporate ear	rnings, as pe	eople	17		_
		tend to choose cheaper alternative	ves. The stud	dent tries to	find the best	form of dep	pendence of	the volume	of	<i>y</i> =	po + p.	lnx;
		transportation $ T_i $ of some 50 tra $ P_i $ (in cents per one kilometer	•	•						dy:		
		logarithmic functions), she also								d lax	-B,	1
		(variable $\overline{TZ_i}$ is defined as $\overline{TZ_i}$				-	TA 8/1		11	T	P. 100	· /.
		B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1)	(2)	(3) <	(4)	(5)	(6)			V	-
		Dependent variable	8.74	12.26	$\log(T_i)$	$\frac{\log(T_i)}{2.635}$	1.171	1.641.	6		,	
		Independent variable\Constant	-0.339	12.26	-0.0045	2.033	-0.0045	1.041.		γ¥	Inx	
		$\log(P_i)$	-	-1.362	-	-0.179	-	-0.179		·	· · · - ·	
		R^2	0.638	0.738	0.665	0.755	0.638	0.738				
		RSS	4.481	3.247	0.068	0.051	0.080	0.058	V	r Y) hx	,
	-	(a) Explain the differences in the both regressions.	he values of	fa slope coe	efficient in re	egression (1)	and (4) givi	ing interpret	ation to	V		
	—	(b) Explain the differences in the	he values of	f a slope coe	efficient in re	gression (2)	and (3) giv	ing interpret	ation to	V		
		both regressions. (c) Explain using some math w	hy your inte	erpretation o	of regression	(4) is correc	et using diffe	rent method	ls.			
		Do the same for regressions 2-3. (d) Which pairs of regressions		able directly	without Za	rembka tran	sformation)	Which reg	ressions			
		becomes comparable after Zarer										
		* 4 1 4 4 1			• •							
	۵۱	A la Caria	a 0	proce	h							
	U)) Algebraie	9	Y	-							
					V		, -					
		(0g Y = 0	R + B	· 1 28	Χ		109	l = 2	.6 -	- 72	· 10g	P
				•							σ	
		X1 1% X	(4+	100)								
		1			,							
		logX	+	ل) يوما	L + 1 100	,						
In (1+	a ') ≈ L	22		_							
		log X	t	1								
		O		·								
		log (4+	(Y &	= (a +	l (los >	۲ ,	11	\		
		U					0	1	DO '			
		lg (4+01	<u> </u>	Con	٧ _	В						
		9 61 8	.)		(-	100	2					

Problem 1. (Uol. Exam). The rise in prices for public transport leads to lower corporate earnings, as people tend to choose cheaper alternatives. The student tries to find the best form of dependence of the volume of transportation \mathcal{T}_{i} of some 50 transportation companies (in millions of dollars) from the prices of transportation P_i (in cents per one kilometer of transportation). She runs regressions (1-4) (linear, logarithmic and semilogarithmic functions), she also runs two auxiliary regressions (5-6) performing Zarembka transformation

(variable $\overline{TZ_i}$ is defined as $\overline{TZ_i}$	+ w	Ŋ	K			
	(1)	(2)	(3)	(4)	(5)	(6)
Dependent variable	T_i	T_i	$\log(T_i)$	$\log(T_i)$	TZ_i	TZ_i
Independent variable\Constant	8.74	12.26	2.175	2.635	1.171	1.641
$ P_i $	-0.339	-	-0.0045		-0.0045	
$\log(P_i)$	-	-1.362	-	-0.179	-	-0.179
R^2	0.638	0.738	0.665	0.755	0.638	0.738
RSS	4.481	3.247	0.068	0.051	0.080	0.058

- (a) Explain the differences in the values of a slope coefficient in regression (1) and (4) giving interpretation to
- (b) Explain the differences in the values of a slope coefficient in regression (2) and (3) giving interpretation to both regressions.
- (c) Explain using some math why your interpretation of regression (4) is correct using different methods. Do the same for regressions 2-3.
- (d) Which pairs of regression are comparable directly without Zarembka transformation). Which regressions becomes comparable after Zarembka transformation? Compare some regressions performing appropriate tests.

Mode ((1) & (3)
$$|o_3 - 1|$$
 near v_5 | near mod

$$\chi^2 = \frac{50}{2} \cdot \left| log \frac{0.08}{0.068} \right| = 4.063$$

$$\chi^2 = 3.84$$

$$\chi^2 = \frac{50}{2} \cdot \left| \log \frac{0.068}{0.061} \right| = 3.2$$

	Question 7. (ICEF Exam) An employee of a real estate agency in a Russian city with a developed subway network is interested in
	estimating of the influence of the distance from the city center $CENTER_i$ (in kilometers) on the price of an
	two-room apartment in millions of rubles. Based on the data of 21 apartments sold during a period under
	consideration she runs a regression.
	$PRICE_i = 12.39 - 0.20 \cdot CENTER_i$ $R^2 = 0.17$ (1)
	(0.88) (0.10) $RSS = 103.4$
	(a) Is the regression coefficient significant (take into account that the realtor did not know exactly the sign + - + + + + + + + + + + + + + + + + +
	of its coefficient before the regression calculation)?
. 0 -	\square Are the results of the estimation compatible with the hypothesis that true regression coefficient is positive?
). A 20	of its coefficient before the regression calculation)? Are the results of the estimation compatible with the hypothesis that true regression coefficient is positive? Are the results of the estimation compatible with the hypothesis that true regression coefficient is 0.1?
<u> </u>	☐ How the conclusion on significance of the slope would change if the manager could use the assumption 4.5.
1. BC0	that the influence of the $CENTER_i$ on the apartment price is not positive?
v	☐ Is intercept of the equation significant? Summarize all information on the test results and discuss
	economic meaning of the equation (1).
	The <u>realtor</u> , not satisfied with the obtained result, decided to take into account the additional factor – the
	distance to the nearest subway station METRO, (also in kilometers).
	$PRICE_{i} = 13.71 - 0.22 \cdot CENTER_{i} - 0.58 \cdot METRO_{i} \qquad R^{2} = 0.37$ $(0.97) (0.09) \qquad (0.25) \qquad RSS = 79.29$ (2)
	During the discussion at the workshop, the realtor received advice from a colleague to use Ramsey's test for this
	equation. Since the realtor was not experienced enough in econometrics, a colleague helped her calculate
	appropriate equation (using in the right side of (3) estimated values $PRICE_i^*$ from equation (2):
	$PRICE_i = 0.023 + 0.13 \cdot CENTER_i + 0.35 \cdot METRO_i + 0.07 \cdot (PRICE_i^*)^2 \qquad R^2 = 0.51$ (3)
	$ \begin{array}{c ccccc} (6.04) & (0.18) & (0.47) & (0.033) & RSS = 60.64 \\ \hline \end{array} $
	Then the colleague helped her to estimate a new equation $\log PRICE_i = 2.62 - 0.019 \cdot CENTER_i - 0.059 \cdot METRO_i \qquad R^2 = 0.32$
	$\frac{\log PRICE_i = 2.02 - 0.019 \cdot CENIER_i - 0.059 \cdot MEIRO_i}{(0.10)(0.0095)} \qquad (0.026) \qquad RSS = 0.8448$
	and did Ramsey's test again (using in the right side of (5) estimated values \log_{PRICE} from equation (4):
	PRICE OCCUPANCIONE CONTROLOGIA METEROLOGIA DE PRICETA PER ANO
	$\frac{\log PRICE_i = 0.62 + 0.030 \cdot CENTER_i + 0.084 \cdot METRO_i + 0.012 \cdot (\log PRICE_i)}{(1.53)(0.039)} (0.11) (0.0088) RSS = 0.7672$ (5)
	(b) ☐ Help the realtor to understand the logic of her colleague in estimating these equations.
	□ Explain what the Ramsey test is, what is the null hypothesis and what statistics it uses; use them to
	perform the necessary calculations. She estimated non-linear regression (4) using logarithm of dependent variable
	$\log PRICE_i = 2.62 - 0.019 \cdot CENTER_i - 0.059 \cdot METRO_i \qquad R^2 = 0.32 $ (4)
	(0.10)(0.0095) (0.026) $RSS = 0.8448$
	and evaluates Ramsey test again
	$ = \frac{\log PRICE_i = 0.62 + 0.030 \cdot CENTER_i + 0.084 \cdot METRO_i + 0.012 \cdot (\log PRICE_i^{**})^2 R^2 = 0.39}{(1.53)(0.039)} $ (0.11) (0.0088) $RSS = 0.7672$ (5)
	□ What conclusions can be drawn from the results in this part of the study?
	leset Test (Ramsey test)
	Leset lest (rounsey lest)
	U
	Los denctional form test
	gover a govern
	Ho: Y; = Po+ B, X, i + + Br - X K: + Ei (1)
	Mo: Y: = Jo + B, X, i + + BR - / K + E; (1)
	\] . /
	Ha: functional (x) is wrong
	/ No A Maria A
	(omitted ven. or quadr
	2 hould be added)
	1 y; \ X2 XL => \(\frac{1}{y} \);
	$\lambda \lambda: \chi_{\lambda} \Rightarrow \forall i$
	7 7 7

2) y; = B, + B, X, i + + BLXe; + + M. y: + ... + Tp y: + E. F - Aat. T, = ... = 8p=0 F ~ ≠ p, n-k-p The realtor, not satisfied with the obtained result, decided to take into account the additional factor - the distance to the nearest subway station $\overline{METRO_i}$ (also in kilometers). $PRICE_{c} = 13.71 - 0.22 \cdot CENTER_{c} - 0.58 \cdot METRO_{c}$ $R^{2} = 0.37$ (0.97) (0.09) (0.25) RSS = 79.29During the discussion at the workshop, the realter received advice from a colleague to use Ramsey's test for this equation. Since the realtor was not experienced enough in econometrics, a colleague helped her calculate appropriate equation (using in the right side of (3) estimated values $PRICE^*$ from equation (2): $PRICE_i = 0.023 + 0.13 \cdot CENTER_i + 0.35 \cdot METRO_i + 0.07 \cdot (PRICE_i)^2$ $R^2 = 0.51$ (6.04) (0.18) (0.47) (0.033) Then the colleague helped her to estimate a new equation $\log PRICE_i = 2.62 - 0.019 \cdot CENTER_i - 0.059 \cdot METRO_i$ $R^2 = 0.32$ (0.10)(0.0095) (0.026) RSS = 0.8448and did Ramsey's test again (using in the right side of (5) estimated values \log_{PRICE} from equation (4): $\log PRICE_i = 0.62 + 0.030 \cdot CENTER_i + 0.084 \cdot METRO_i + 0.012 \cdot (\log PRICE_i^{-1})^2 \cdot R^2 = 0.39$ (1.53)(0.039) (0.11) (0.0088)(1.53) (0.039)

Help the realtor to understand the logic of her colleague in estimating these equations.

Explain what the Ramsey test is, what is the null hypothesis and what statistics it uses; use them to (b) ☐ Help the realtor to understand the logic of her colleague in estimating these equations. perform the necessary calculations. She estimated non-linear regression (4) using logarithm of dependent variable $log PRICE_i = 2.62 - 0.019 \cdot CENTER_i - 0.059 \cdot METRO_i$ $R^2 = 0.32$ => some non-lin.
is present (0.10) (0.0095) (0.026) RSS = 0.8448and evaluates Ramsey test again $\log PRICE_i = 0.62 + 0.030 \cdot CENTER_i + 0.084 \cdot METRO_i + 0.012 \cdot (\log PRICE_i^{**})^2 \cdot R^2 = 0.39$ (5) (1.53)(0.039) (0.11) (0.0088) RSS = 0.7672

□ What conclusions can be drawn from the results in this part of the study?

Question 1. (17 marks)

Two students developed different models for their course papers: student (a) was convinced that the coefficient of variable Z_i is equal to 1, while student (b) believed that this coefficient is the opposite of the coefficient for the variable X_i

$$Y_i = \beta_1 + \beta_2 X_i + Z_i + u_i$$
 (a)
 $Y_i = \beta_1 + \beta_2 X_i - \beta_2 Z_i + v_i$ (b)

They think that in fact both models will give the same estimates of β_2 , but both faced unexpected difficulties when trying to evaluate these models (what difficulties?). So they decided instead to calculate sample variances and covariances on the base of the same data (n observations): Var(Y) = 4, Var(X) = 3, Var(Z) = 5, Cov(Y, X) = 6, Cov(Y, Z) = 1, Cov(X, Z) = 2.

- (a) \square Help the students to find the least squares estimates of β_2 for their models, indicating all necessary steps.
- □ Are these estimates really the same as students think?

$$\frac{(6-2)/3}{(b)} = \frac{(6-2)}{(b)} = \frac{(6-2)}{(b)} = \frac{6-1}{3+5-2\cdot 2} = \frac{5}{4}$$

- **(b)** The scientific advisor told the students that both their models are restricted versions of the more general model
- What are restrictions in each case? $(c). \qquad \begin{array}{c} \mathbf{Z} : \quad Y_i = \beta_1 + \beta_2 X_i + \beta_3 Z_i + w_i \\ \mathbf{Z} : \quad Y_i = \beta_1 + \beta_2 X_i + Z_i + u_i \\ \mathbf{Z} : \quad Y_i = \beta_1 + \beta_2 X_i \beta_2 Z_i + v_i \end{array}$
- ☐ How to test the restriction for the model (a)? Indicate necessary steps.
- □ What model should be chosen if both restrictions are invalid? What model (a), (b) or (c) should be chosen if only one restiction is valid?
- □ Let both restrictions be valid. Which model out of (a) and (b) is preferable and why? Use numerical data above to choose between (a) and (b).

$$(a) \quad 6 \quad \lambda = \frac{6^2}{h \cdot Var(x)}$$

(b)
$$6^{\frac{2}{p^{2}}} = \frac{6^{\frac{2}{p^{2}}}}{\text{n. Var}(X^{*})} = \frac{6^{\frac{2}{p^{2}}}}{\text{n. Var}(X-2)}$$

Thout
$$S = S \cdot 2i + U$$
.

Thout $S = S \cdot 2i + U$.

Thout $S = S \cdot 2i + U$.

Thout $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$ is the second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$ is the second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$ is the second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$ is the second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$ is the second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$ is the second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$ is the second $S = S \cdot 2i + U$.

The second $S = S \cdot 2i + U$ is the second $S = S$

Question 5. [25 marks] A lazy student found an interesting paper with econometric models describing how COVID - aggregate anti COVID expendidtures, depend on GDP, aggregate gross national product, and POP, total population, for a sample of 70 countries in the second quarter of 2020. COVID and GDP are both measured in US\$ billion. POP is measured in million. RSS – Residual Sum of Squares. He decided to use this article in his course paper pretending that he got all equations himself using original data (what in fact was not true). He wrote the equations on a paper:

$$\log \frac{COVID}{POP} = -3.74 + 1.27 \log \frac{GDP}{POP}$$

$$R^2 = 0.90 \quad RSS = 15.45$$
(1)

$$\log COVID = -3.60 + 1.27 \log GDP - 0.33 \log POP$$
 $R^2 = 0.95$ $RSS = 13.90$ (2)

$$\log \frac{COVID}{POP} = -3.60 + 1.27 \log \frac{GDP}{POP} - 0.06 \log POP \quad R^2 = 0.91 \quad RSS = 13.90$$
 (3)

But when he wrote his coursework some details seemed a little strange to him and he began to doubt that he had

correctly rewritten the equations on paper. He asked your advice. 2 + 62 - 1 = 62(a) \Box The student now believes that by mistake he repeated the same coefficient 1.27 in equations (1), (2) and (3), as well as he repeated the intercept - 3.60 in equations (2) and (3), but he does not remember the correct values. Are these coincedences really happened by mistake?

(1)
$$\log \frac{\cos x}{\log x} = \beta_0 + \beta_1 \cdot \log \frac{609}{\log x}$$

(2)
$$\log lor = \beta + \beta_1 \cdot \log 600 + \beta_2 \cdot \log 600$$

(3) $\log lor = \beta + \beta_1 \cdot \log 600 + (1 - \beta_1 + \beta_2) \log paper$

 \Box It seems strange to him that both coefficietns of the variable $\log POP$ in equations (2) and (3) are negative but different in absolute value. Help the student to understand these.