Laboratorium Sterowania Robotów Mobilnych

Raport z zajęć

Szymon Kacperek, Tomasz Smaruj

AiR, studia stacjonarne II stopnia, specjalność SSiR, rok akademicki 2020/2021

Spis treści

1	Ws	stęp	1
2	Xr 2.1 2.2 2.3	Ciągły stabilizator Pometa jawnie zależny od czasu	1 1 1 1
3	3.1 3.2 3.3	3.1.1 Algorytm dla zadania odtwarzania pozycji	2 2 2 3 4 5 6 6 7
4	An	naliza wyników	8
5	Wı	nioski	8
 Wstęp Krótkie omówienie poszczególnych zadań sterowania i metod sterowania 			
2.	1	Sterowniki wynikające z technik linearyzacji	
2.	2	Ciągły stabilizator Pometa jawnie zależny od czasu	
2.	3	Sterowniki nieciągłe metody VFO	

3 Prezentacja wyników

3.1 Sterowniki wynikające z technik linearyzacji

3.1.1 Algorytm dla zadania odtwarzania pozycji

Rysunek 1: Wyniki symulacji dla $L_Z=0.5[m]$ oraz $\beta_Z=0.3[^\circ]$. Dobrano macierz wzmocnień $K={\tt diag}(2.0;1.0)$.

3.1.2 Algorytm dla zadania śledzenia trajektorii

Rysunek 2: Wyniki symulacji dla współczynników $\zeta=1, \quad \alpha=2, \quad k_{22}=k_{11}=-2\zeta\sqrt{u_{d1}^2+\alpha u_{d2}^2}$ oraz $k_{13}=-\alpha u_{d2}.$

3.1.3 Algorytm dla zadania odtwarzania ścieżki

Rysunek 3: Wyniki symulacji dla współczynników $\zeta=1,\quad \omega_n=3,\quad k_1=9,\quad k_2=6.$

3.2 Ciągły stabilizator Pometa jawnie zależny od czasu

Rysunek 4: Wyniki symulacji dla przyjętych współczynników $k_1=k_2=k_3=k_4=1, \quad \delta_p=0.01, \quad \Omega=1.$

3.3 Sterowniki nieciągłe metody VFO

3.3.1 Algorytm VFO dla zadania śledzenia trajektorii

Rysunek 5: Wyniki symulacji dla przyjętych współczynników $\zeta_d=1, \quad k_p=1, \quad \eta=0.8k_p, \quad \delta=0.001, \quad k_a=2k_p.$

3.3.2 Algorytm VFO dla zadania podążania do punktu

Rysunek 6: Wyniki symulacji dla przyjętych współczynników $\zeta_d=1, \quad k_p=1, \quad \eta=0.8k_p, \quad \delta=0.001, \quad k_a=2k_p.$

- 4 Analiza wyników
- 5 Wnioski