Анализ

Галкина

05.09.2022

Содержание

1	Ряды 1.1 Числовые ряды	2
2	Связь признака Даламбера и Коши	6
3	Оценка погрешности приближения какой-то величины с помощью положительного ряда	7
4	Знакопеременные ряды 4.1 Преобразование Абеля	7

Коэффициенты: Контр*0,4 Коллок*0,3 Экз*0,3

1 Ряды

- Числовые ряды
- Функциональные ряды (в т.ч. степенные, ряды Фурье)

1.1 Числовые ряды

Определение 1 Ряд - сумма счетного числа слагаемых:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$$

Определение 2 Частичная сумма S_n - сумма первых n слагаемых

Определение 3 Сумма ряда - предел последовательности частичных сумм $S=\lim_{n\to\infty}S_n$

Если предел существует и конечен, то ряд сходится. Если предел бесконечен, ряд расходится.

Определение 4 Остаток ряда - разность между частичной суммой и суммой $R_k = S - S_k = \sum_{n=k}^{\infty} a_k$

Пример. Геометрический ряд $a+aq+aq^2+\dots$ Имеем $S_n=\frac{1-q^n}{1-q}$. Имеем случаи:

- 1. |q| < 1: $S = \frac{a}{1-a}$
- 2. |q| > 0: $S = \infty$
- 3. q = 1: $S = \infty$

Итак, ряд сходится только если |q|>1.

Пример. $\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$. Введем $a_n = b_{n+1} - b_n$, $b_n = \sqrt{n+1} - \sqrt{n}$ Итак, $S = \lim_{n \to \infty}$

Итак, $S = \lim_{n \to \infty}$ Пример. $\sum_{n=1}^{\infty} \frac{n}{2^n} = 2$

Теорема 1 (необходимое условие сходимости ряда).

Eсли ряд cходится, то предел общего члена равен θ .

Равносильная формулировка: $\lim_{n\to\infty} a_n \neq_0 \Longrightarrow \sum_{n=1}^{\infty} a_n$ расходится.

Доказательство. По условию, существвует число - предел ряда. Тогда $\lim_{n\to\infty}a_n=\lim_{n\to\infty}(S-S_n)=S-S=0.$

Пример. $\sum_{n=1}^{\infty} \sin nx$, $x \neq \pi k$, $k \in \mathbb{Z}$. Зафиксируем х. Допустим, что $\lim_{n\to\infty} \sin nx = 0$. Но это противоре чит тому, что $\sin^2 + \cos^2 = 1$. Значит, ряд расходится.

Пример. Гармонический ряд расходится, т.к. расходится последовательность частичных сумм: $S_{2^n}>1+\frac{1}{2}+2\cdot\frac{1}{4}\ldots=1+\frac{n}{2}$

Сходящиеся ряды образуют линйеное пространство!

Теорема 2 (критерий Коши сходимости ряда) Ряд $\sum_{n=1}^{\infty} a_n$ сходится $\iff \forall \varepsilon > 0 \exists N(\varepsilon) \forall n > N \forall p \in \mathbb{N} : |a_{n+1} + \ldots + a_{n+p}| < \varepsilon$

Доказательство. Ряд сходится \longleftrightarrow существует предел частичных сумм. Применим к ним критерий Коши: $|S_{n+p} - S_n| < \varepsilon$

Теорема 3 (критерий сходимости через остаток)

- 1. Если ряд сходится, что сходится любой из его остатков.
- 2. Если хотя бы один остаток сходится, то ряд тоже сходится.

Доказательство. 1. По условию, существует сумма ряда. Рассмотрим частичный остаток с фиксированным номером $N \in \mathbb{N}$, рассмотрим $\sigma = \sum_{k=N+1}^{N+n} a_k$ - последовательность частичных сумм ряда R_N . Предел сигм равен пределу $(S_{n+N} - S_N) = S - S_N$.

2. По условию, существует такое n_0 , что R_{n_0} сходится. Тогда $\exists \lim_{n\to\infty} \sigma_n = \sigma$, $\sigma_n = a_{n_0} + \ldots + a_{n_0+n}$. Пусть $n_0 + n = m$, тогда $\lim_{n\to\infty} S_m = \lim_{n\to\infty} (S_{n_0} + \sigma_{m-n_0}) = S_{n_0} + \sigma$, то есть основный рядсходится. \square

Теорема 4 (критерий сходимости для неотрицательных рядов)

 $\Pi y cm b dah p n d$. Torda p n d cxodum c n dah nochedo в a mень ность частичных сумм ограничена сверху.

Доказательство. \Rightarrow . По услови, существует предел $limS_n = S \in \mathbb{R} \Rightarrow \{S_n\}_n \in \mathbb{N}$ ограничена В другую сторону. По условию, $\{S_n\}$ ограничена сверху, \Rightarrow по тео реме Вейрштрасса для ограниченной неубывающей последовательности имеется предел \square

Признак сравнения. С чем же сравнивать? С геометрической прогрессией, с обобщенным гармоническим рядом (с произвольной степенью числа).

Теорема 5 (признак сравнения в оценочной форме)

Дано $0 \leqslant a_n \leqslant b_n \ \forall n \in \mathbb{N}$: Тогда из сходимости B следует сходимость A, из расходимости A следует расходимость B.

Доказательство. Докажем исходя из критерия сходимости.

1. Пусть A_n, B_n - частичные суммы своих рядов. Так как ряд В сходится, то существует верхний предел для его частичных сумм. Так как ряд А меньше Б, по транзитиавности неравенств верхняя граница В лежит выше чем А. ЧТо по тому же критерию дает сходимость. 2. \square

Пример. Рассмотрим $p<1,\ n^p<1,\ \frac{1}{n^p}>\frac{1}{n}.$ Так как гармонический ряд расходится, то $sum\frac{1}{n^p}$ расходится.

Пример. Найти сумму. $\sqrt{2}+\sqrt{2-\sqrt{2}}+\sqrt{2-\sqrt{2}+\sqrt{2}}+...,\ a_{n+1}=\sqrt{2-b_n},$ $b_{n+1}=\sqrt{2+b_n}.$ Заметим, что $b_1=2\cos\frac{\pi}{4},\ b_2\cos\frac{\pi}{8}.$ Дальше эта формула выводится по индукции. $b_n=2\cos\frac{\pi}{2^{n+1}}.\ a_n=\sqrt{2-b_{n-1}}=\sqrt{2-2\cos\frac{\pi}{2^n}}=2\sin\frac{\pi}{2^{n+1}}$ Ита, $a_n\leqslant 2\cdot\frac{\pi}{2^{n+1}}=\frac{\pi}{2^n}$

Теорема 6 (Признак сравнения в предельной форме)

Пусть даны неотрицательные ряды $\sum\limits_{n=1}^{\infty}a_n,\;\sum\limits_{n=1}^{\infty}b_n.$ Если предел отношения общего

члена

- 1. Равен конечной (ненулевой) константе. Тогда ряды сходятся или расходятся
- 1.1. \vec{B} частности, npu mkk=1, pяды эквивалентны. 2. Ecnu $\lim_{n\to\infty}\frac{a_n}{b_n}=0$, то имеет место "В сходится \Rightarrow А сходится"3. Если этот предел равен ооо, то: "А сходится $\Rightarrow B \ cxodumcs''$

Доказательство. По опреелению предела. $\lim_{n\to\infty}a_{\frac{n}{b_n}}=k$ для $\varepsilon=k/2>0 \exists n_0(\varepsilon) \forall n>n_0: k/2<\frac{a_n}{b_n}<3k/2$. тогда если В сходится, А сходится. 2. Пусть $\lim_{n\to\infty}a_{\frac{n}{b_n}}=0$. Lkz $\varepsilon=1$, тогда для этого эпсилон $\exists n_0$ утверждение следует

из первого признака сравнения.

Пункт 3 напрямую следует из второго.

Пример. 3 $\sum_{n=1}^{\infty} (\frac{1}{n^{\alpha}} - \frac{1}{(n+1)^{\alpha}})$. Имеем $S_n = 1 - \frac{1}{(n+1)^{\alpha}}$ Прии альфа>0 сходится к 1, при альфа<0 ряд расходится. (Іјнайддем область расходимости обобщенного гармонического рядва с помощью уже известного)

Теорема 7 (тертий признак сравнения.)

Пусть даны ряды A и B ($\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$), и выполняется $a_{n+1}/a_n \leqslant b_{n+1}/b_n$ Тогда B сходится \Rightarrow A сходится (если A расходится, B расходится)

Доказательство. так как все неравенства полоэительные, их всех можно перемножить: тогда утверждение следует из первого признака сравнения. \square

Теорема 8 (Признак Даламбера в оценочной форме)

Доказательство.

Теорема 9 Признак даламбера в предельной форме: lim

Доказательство.

Теорема 10 (признак Даламбера в предельной форме)

Пусть дан знакоположительный ряд. Тогда

- 1. $\overline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} = q < 1$, то ряд сходится. 2. $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = r > 1$, то ряд расходится.

Доказательство. Пусть верхний предел равен q<1. Возьмем $\varepsilon=\frac{1-q}{2}$. Тогда $\exists n_0 \in \mathbb{N} \, \forall n > n_0 : \frac{a_{n+1}}{a_n} \leqslant q + \varepsilon.$ По теореме Больцано-Вейерштрасса. Тогда по признаку Даламебра в оценочной форме ряд сходится.

Далее, пусть существует нижний предел. Тогда ряд сходится по признаку Даламберав оценочной форме, или от противного: через отрицание необходимого признака.

Замечание. Если предел равен 1, то r = q = 1

Замечание. В отличие от признака Коши, в п.2 нельзя заменить нижний предел на верхний.

Замечание. Если все-таки получилась единица, то ряд может как сходиться, так и расходиться.

Теорема 11 (признак Коши в оценочной форме)

 $\Pi y cm$ ь дан знакоположительный ряд. $\Pi y cm$ ь $\sqrt[n]{a_n} \leqslant q < 1$. Тогда ряд cxoдится. Пусть $\sqrt[n]{a_n} \geqslant 1$. Тогда ряд расходится.

Доказательство. Сравним с геометрической прогрессией: $a_n \leqslant q^n \implies$ из сходимости прогрессии следует сходимость ряда.

Теорема 12 (признак Коши в предельной форме) $\Pi y cmv \ \overline{\lim_{n \to \infty}} \sqrt[n]{a_n} = q.$

- 1. $q < 1 \implies pяд cxodumcs$.
- $2. q > 1 \implies pяд pacxodumcs$.

Доказательство. Аналогично признаку Даламбера. Избавимся от верхнего предела, взяв предел подпоследовательности. Значит, тогда все числа попадают в эпсилонокрестность числа q. Но тогда не выполнено необходимое условие. \square

Пример. $\sum_{n=1}^{\infty} \left(\frac{2+(-1)^n}{5+(-1)^{n+1}}\right)^n$. Кошируя это ряд, взяв наибольшую подпоследовательность, получим предел $\frac{3}{4}$, значит, ряд сходится. Можно ещё просто втупую посчитать

Пример. $\sum_{n=1}^{\infty} \left(\frac{1+\cos n}{2+\cos n}\right)^{2n-\ln n}$. Оценим это рядом $b_n = \left(\frac{1+n}{2+n}\right)^{2n-\ln n}$. В итоге получится, что ряд сходится.

Теорема 13 (признак Раабе в оценочной форме)

Пусть дан знакоположительный ряд с общим членом $a_n > 0$. Тогда:

- 1. Если $\frac{a_{n+1}}{a_n}\geqslant_1-\frac{1}{n}$, ряд расходится. 2. Если $\exists \alpha>0: \frac{a_{n+1}}{a_n}\leqslant 1-\frac{\alpha}{n}$ тогда ряд сходится.

Доказательство. 1. $\frac{a_{n+1}}{a_n} \geqslant \frac{n-1}{n}$, $b_n = \frac{1}{n-1}$. $\frac{a_{n+1}}{a_n} \geqslant \frac{b_{n+1}}{b_n}$, если ряд b_n расходится, то ряд расходится по третьему признаку сравнения.

2. Пусть $\beta \in (1, \alpha)$, тогда $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^{\beta}}$ сходится. Далее, $\frac{b_{n+1}}{b_n} = (\frac{n}{n+1})^{\beta} = (1-\frac{1}{n})^{-\beta} = 1-\frac{\beta}{n}+O*(\frac{1}{n^2})$. Затем, $-\frac{\beta}{n}>-\frac{\alpha}{n} \Longrightarrow 1-\frac{\beta}{n}>1-\frac{\alpha}{n}$. Так как $O(\frac{1}{n^2})$ - бесконечно малая более высокого порядка, чем $\frac{\alpha}{n}$ и $\frac{\beta}{n}$, то $\exists n_0 \in \mathbb{N} \ \forall n>n_0: 1-\frac{\alpha}{n}<1-\frac{\beta}{n}+O(\frac{1}{n^2})$. Правая часть равна $\frac{b_{n+1}}{b_n}$. По условию, $\frac{a_{n+1}}{a_n}\leqslant 1-\frac{\alpha}{n}$. Из этих двух условий по свойству транзитивности неравенств получаем оценку $\frac{a_{n+1}}{a_n}<\frac{b_{n+1}}{b_n}$, откуда следует сходимость ряда \square ряда. 🗆

Теорема 14 (Признак Раабе в предельной форме)

Пусть $\lim_{n\to\infty} n(1-\frac{a_{n+1}}{a_n}) = R$. Тогда: 1. R < 1 - ряд расходится

- 2. R > 1 ряд сходится.

Доказательство.

Теорема 15 (признак Куммера)

Даны две последовательности a_n и c_n . Тогда:

- 1. $Ecnu \exists \alpha > 0 \exists n_0 \in \mathbb{N} \ \forall n > n_0 : C_n C_{n+1} \cdot \frac{a_{n+1}}{a_n} \geqslant \alpha psd \ cxodumcs$.
- 2. Если ряд $\sum_{n=0}^{\infty} \frac{1}{C_n}$ расходится и $C_n C_{n+1} \frac{a_{n+1}}{a_n} \leqslant 0$, то ряд расходится.

Доказательство. Пж убейте меня бля я больше не могу 🗆

Следствие 1. Признак Даламбера при $C_n \equiv 1$

Следствие 2. Признак Раабе. Возьмем $C_n=n-1$. Имеем 1. $n-1-n\cdot \frac{a_{n+1}}{a_n}\geqslant \alpha$ $1-rac{1}{n}-rac{a_{n+1}}{a_n}\geqslantrac{lpha}{n}\impliesrac{a_{n+1}}{a_n}\leqslant 1-rac{1+lpha}{n}.$ Подставляя в пункт

Теорема 16 (признак Бертрана/следствие из признака Куммера) 1.
$$C_n = (n-2)\ln(n-1)$$
. $\frac{a_{n+1}}{a_n} \geqslant_1 - \frac{1}{n} - \frac{1}{n\ln n}$ - ряд сходится 2.

Доказательство.

Teopema 17 ($npuзнак \Gamma aycca$)

Пусть дан положительный ряд. Пусть его можно представить в виде

$$\frac{a_{n+1}}{a_n} = D - \frac{r}{n} + \frac{\theta_n}{n^{1+\alpha}}$$

Тогда:

- 1. Если D > 1 ряд расходится
- 2. Ecлu D < 1 pяд cxodumcs
- 3. Если D=1, $R\leqslant 1$ ряд расходится
- 4. Ecau D=1, R>1 pad cxodumca.

Доказательство. 🗆

Теорема 18 (интегральный признак)

Пусть ряд знакопостоянен. Ряд $\sum_{n=1}^{\infty} a_n$ и интеграл $\int\limits_{1}^{\infty} f(x) dx$ сходятся и расходятся oдновременно, причем $f(n)=a_n$, функция определена, непрерывна, неотрицательна и невозрастающая на $[1, \infty)$. Оценка погрешности:

Доказательство. $\forall x \geqslant 1 \; \exists k \in \mathbb{N} : k \leqslant x \leqslant k+1$. По условию невозрастания имеем $f(k) \geqslant f(x) > f(k+1)$. $a_{k+1} < f(x) \leqslant a_k, \, a_{k+1} \square \, \mathbf{\Pi}$ ример. Исследуем $\sum_{k=1}^{\infty} \frac{1}{n^p}$. Взятием интеграла получаем условия сходимости:

$$\Big\{$$
сходится при $p>1$ расходится при $p\leqslant 1$

Связь признака Даламбера и Коши 2

Если $\frac{a_n}{a_{n-1}} \leqslant q$ для всех п начиная с 1, то $a_n = a_1 q^n$, откуда следует признак Коши.

$$\sqrt[n]{a_n} \leqslant \sqrt[n]{a_1} \cdot q$$

Значит, Коши покрывает больше случаев.

3 Оценка погрешности приближения какой-то величины с помощью положительного ряда

$$\int_{n+1}^{\infty} f(x)dx < R_n \leqslant \int_{n}^{\infty} f(x)dx$$

Из доказательства интегрального признака

$$a_{k+1} < \int_{k}^{k+1} f(x)dx \le a_{k}$$

$$\int_{k}^{k+1} f(x)dx \le a_{k} \int_{k-1}^{k} f(x)dx$$

$$R_{n} = \sum_{k=n+1}^{\infty} a_{k}$$

Итак,

$$\int_{n+1}^{\infty} \leqslant R_n < \int_{n}^{\infty} f(x) dx$$

Пример. Вычислим с точностью до 0,001 ряд $\sum_{n=1}^{\infty} \frac{1}{n^4}$. Ответ: 1,082 \pm 0,001 (точный ответ $\frac{\pi^4}{90}$)

4 Знакопеременные ряды

Пусть теперь ряд знакопеременный.

Определение 5 Ряд сходится абсолютно, если сходится ряд из модулей. Ряд сходится условно, если абсолютно расходится, но сам сходится.

Теорема 19 Если ряд сходится абсолютно, то ряд сходится.

Доказательство. Следует напрямую из критерия Коши и свойства модуля: $||a_1| + ... |a_n|| \geqslant |a_1 + ... + a_n|$. \square

Теорема 20 (признак Лейбница для знакочередующихся рядов)

Пусть ряд имеет вид $\sum_{n=1}^{\infty} (-1)^n v_n$, где $v_n > 0$ и монотонно убывает. Тогда ряд сходится. Более того, имеет место оценка погрешности $|R_n| \leqslant v_n$

Доказательство. 1. Посчитаем частичную сумму для 2k:

$$S_{2k} = v_1 - v_2 + \dots - v_{2k}$$

$$S_{2k+2} = S_{2k} + v_{2k+1} - v_{2k+2}$$

$$S_{2k+2} - S_{2k} = v_{2k+1} - v_{2k+2}$$

$$S_{2k} = v_1 - (v_2 - v_3) - (v_4 - v_5) - \dots - (v_{2k-2} - v_{2k-1}) - v_{2k}$$

Значит, эта последовательность возрастает и ограничена сверху, значит, у неё есть конечный предел: $S_{2k} \leqslant u_1$

$$\lim_{k \to \infty} S_{2k+1} = \lim_{k \to \infty} (S_{2k} + v_{2k+1}) = S$$

Следовательно,

$$\exists \lim_{n \to \infty} S_n = S$$

Последовательность частичных сумм для нечетных чисел также убывает, доказательство аналогичное.

2. Докажем оценку погрешности. $|R_{2k}| = S - S_{2k} < S_{2k+1} - S_{2k}$. Итак,

$$|R_{2k}| \leqslant v_{2k+1}$$

$$R_{2k+1} = S_{2k+1} - S < S_{2k+1} - S_{2k+2}$$

$$|R_{2k+1}| \leqslant v_{2k+2}$$

4.1 Преобразование Абеля

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n, \ B_i = \sum_{k=1}^{i} b_k$$

Доказательство. $b_k = B_k - B_{k-1}, \ k \in \{2,...,n\}$ ВСТАВКА

Теорема 21 (неравенство Абеля)

Пусть последовательность монотонно возрастает или убывает. И пусть $\exists M \forall k \in \{1...n\} |B_k| \leqslant M$. Тогда модуль конечной суммы $\leqslant M(|a_1|+2|a_n|)$

Доказательство. Юра, допиши пж

Теорема 22 (признак Дирихле)

Доказательство. 🗆