

Article Content Classification with NLP

Text Classification
Data Science 4 - Dataloper

Abiyyu Fathin Derian Alifia C. Harmadi Dhea Fajriati Anas Hendri Prabowo Nikolas Rakryan Widagdo

TABLE OF CONTENTS

Ol DATASET O4 MODELS

TEXT PREPROCESSING 05 EVALUATION

O3 FEATURE EXTRACTION **O6** CONCLUSION

O1 DATASET

Total Data Per Label

1	Bisnis	40
2	Lifestyle	40
3	Sport	40

Source:

https://drive.google.com/drive/folders/13YkQF8A1bD_xNrqBv2lGk7ziM3d24OLd?usp=sharing

Labelling

Create a new column named "label" and label according to the file name

Join Data

- bisnis.csv
- lifestyle.csv
- sport.csv

Drop Column

Drop all column except "label" and "content" column

O2 Text Preprocessing

PROCESSING DATA

Cancel

Case Folding

Remove Whitespace

Tokenizing

Remove Punctuation

Stemmer

Remove Stopword

PRE-PROCESSING STEP

```
#preprocessing function
def preprocessing(sentence):
    sentence = sentence.lower()
    #remove white spaces
    sentence = sentence.strip()
    #tokenization
    words = sentence.split()
    #remove punctuation/ special character
    remove table = str.maketrans("", "", punctuation)
    words = [x.translate(remove table) for x in words]
    #remove nonalphanumeric <= 3 chars
    #words = (x \text{ for } x \text{ in words if } x.isalnum() \text{ and len}(x) > 3)
    words = [stemmer.stem(w) for w in words]
    #remove stopwords
    words = [x for x in words if x not in stop words ]
    #rejoining the words
    sentence = " ".join(words)
    return sentence
```

before pre-processing : 26072 after pre-processing : 11555 delete : 14517

O3 Feature Extraction

Countvectorizer

transform a given text into a vector on the basis of the frequency (count) of each word that occurs in the entire text

TF-IDF

evaluates how relevant a word is to a document in a collection of documents

O4 Models

MODELS

Logistic Regression

Multinomial logistic regression

Support Vector Machine

Using linear kernel

Naive Bayes

Multinomial naive bayes

Random Forest

Random forest with bootstrap

The data is divided into two parts, i.e., 80% training and 20% testing

O5Evaluation

ACCURACY (Countvectorizer)

Without Preprocessing

ACCURACY (TF-IDF)

Without Preprocessing

(CountVectorizer w/o Pre-processing)

Logistic Regression

Naive Bayes

SVM

Random Forest

(Count Vectorizer with Pre-processing)

Logistic Regression

Naive Bayes

(TF-IDF w/o Pre-processing)

Logistic Regression

Naive Bayes

Random Forest

(TF-IDF with Pre-processing)

Logistic Regression

Naive Bayes

CLASSIFICATION REPORT (CountVectorizer)

Class	Precision	Recall	F1 Score
Logistic Regression			
1	1.00	0.86	0.92
2	0.83	1.00	0.91
3	1.00	0.86	0.92
SVM			
1	1.00	0.86	0.92
2	0.83	1.00	0.91
3	1.00	0.86	0.92
Naive Bayes			
1	1.00	1.00	1.00
2	1.00	1.00	1.00
3	1.00	1.00	1.00
Random Forest			
1	1.00	1.00	1.00
2	0.91	1.00	0.95
3	1.00	0.86	0.92

Class	Precision	Recall	F1 Score	
	Logistic Regression			
1	1.00	1.00	1.00	
2	1.00	1.00	1.00	
3	1.00	1.00	1.00	
_	SVM			
1	1.00	1.00	1.00	
2	1.00	1.00	1.00	
3	1.00	1.00	1.00	
	Naive Bayes			
1	1.00	1.00	1.00	
2	1.00	1.00	1.00	
3	1.00	1.00	1.00	
Random Forest				
1	1.00	1.00	1.00	
2	0.91	1.00	0.95	
3	1.00	0.86	0.92	

w/o Pre-processing

with Pre-processing

CLASSIFICATION REPORT (TF-IDF)

Class	Precision	Recall	F1 Score
Logistic Regression			
1	1.00	1.00	1.00
2	1.00	1.00	1.00
3	1.00	1.00	1.00
SVM			
1	1.00	1.00	1.00
2	0.91	1.00	0.95
3	1.00	0.86	0.92
Naive Bayes			
1	1.00	1.00	1.00
2	1.00	1.00	1.00
3	1.00	1.00	1.00
Random Forest			
1	1.00	1.00	1.00
2	0.91	1.00	0.95
3	1.00	0.86	0.92

Class	Precision	Recall	F1 Score	
	Logistic Regression			
1	1.00	1.00	1.00	
2	1.00	1.00	1.00	
3	1.00	1.00	1.00	
SVM				
1	1.00	1.00	1.00	
2	1.00	1.00	1.00	
3	1.00	1.00	1.00	
	Naive Bayes			
1	1.00	1.00	1.00	
2	1.00	1.00	1.00	
3	1.00	1.00	1.00	
Random Forest				
1	1.00	1.00	1.00	
2	0.91	1.00	0.95	
3	1.00	0.86	0.92	

w/o Pre-processing

with Pre-processing

O6Conclusion

DATA

Conclusion

- Based on the modelling evaluation, we found that the best model for categorizing articles in this case is Naive Bayes with an accuracy score 100%
- The implementation of TF-IDF as feature extraction increases the accuracy of model compared to CountVectorizer from 91.67% to 95.83% for Logistic Regression and from 91.67% to 100% for SVM
- Pre-processing implementation gains the accuracy score of modelling from 91.67% to 100% with CountVectorizer for Logistic Regression and SVM and from 95.83% to 100% with TF-IDF for Logistic Regression

Thank You