UNIT 21 Probability of One Event

Overhead Slides

Overhead Slides

21.1.1	Probability	in	Words	1

- 21.1.2 Probability in Words 2
- 21.2.1 Probability Line 1
- 21.2.2 Probability Line 2
- 21.3 Probability of a Single Event
- 21.4 Relative Frequency
- 21.5 Relative Frequency Graph
- 21.6 Complementary Events
- 21.7 Estimating the Number of Outcomes
- 21.8 Mutually Exclusive Events
- 21.9 General Addition Law
- 21.10 Misconceptions

21.1.1

Cut out the six sections below, and place each one under the word on OS 21.1.2

which best describes its probability:

OS 21.1.2 (For use with OS 21.1.1) Probability in Words 2

IMPOSSIBLE

JNLIKELY

JKELY

CERTAIN

Cut out the six sections below, and place each one in the correct position on the probability line on OS 21.2.2.

Probability of an event = $\frac{\text{no. of successful outcomes}}{\text{total no. of outcomes}}$

- (A) When you roll a fair dice, what is the probability of obtaining:
 - (a) a 'five',
 - (b) an even number,
 - (c) a 'four' or a 'five'?

- (B) A bag of sweets contains 6 *mints* and 4 *eclairs*.One sweet is taken at random from the bag.What is the probability that this sweet is
 - (a) a mint,
 - (b) an eclair?

Toss a coin 20 times and record, on the chart below, the number of heads obtained: repeat in units of 20 up to a total of 400.

Number of		Cumulative Number of			
Tosses	Heads	Tosses	Heads	Relative Frequency	
20		20			
20		40			
20		60			
20		80			
20		100			
20		120			
20		140			
20		160			
20		180			
20		200			
20		220			
20		240			
20		260			
20		280			
20		300			
20		320			
20		340			
20		360			
20		380			
20		400			

Relative frequency = $\frac{\text{total no. of Heads}}{\text{total no. of Tosses}}$

What is happening to the relative frequency above?

If A is an event and A' is the complementary event,

or
$$p(A) + p(A') = 1$$

or $p(A') = 1 - p(A)$

(A) If the probability that it will rain tomorrow is $\frac{1}{5}$, what is the probability that it will *not* rain tomorrow?

(B) If the probability of a white Christmas next year is 0.02, what is the probability of there *not* being a white Christmas next year?

(C) If the probability that Jared Jones passes his driving test is 0.8, what is the probability that he fails?

Expected number of successful outcomes

= probability of success × total number of events

(A) You toss an unbiased coin 500 times.

How many times do you expect to obtain 'Heads'?

(B) You roll a fair dice 120 times.

How many times do you expect to obtain:

- (a) a 'six',
- (b) a multiple of 3?

If two events, A and B, are mutually exclusive,

$$p(A \text{ or } B) = p(A) + p(B)$$

where
$$p(A) = \text{probability of } A$$

and
$$p(B) = \text{probability of B}$$

A bag contains 6 red balls, 8 yellow balls and 4 green balls. One ball is taken at random from the bag.

What is the probability that the ball is:

(a) yellow,

(b) green,

(c) yellow or green?

General Addition Law

$$p(A \text{ or } B) = p(A) + p(B) - p(A \text{ and } B)$$

One of the numbers 1 to 10, is selected at random.

Let: A be the set of even numbers and B be the set of numbers greater than 5.

- (a) p (an even number) = p(A) =
- (b) p(greater than 5) = p(B)
- (c) p (even and greater than 5) = p(A and B)
- (d) p (even or greater than 5) = p(A) + p(B) - p(A and B)=

The following statements are misconceptions. Explain why.

- 1. I've spun an *unbiased* coin 3 times and got 3 heads. It is more likely to be tails than heads if I spin it again.
- 2. Aytown Rovers play Betown United. Aytown can win, lose or draw, so the probability that Aytown will win is $\frac{1}{3}$.
- 3. There are 3 red beads and 5 blue beads in a bag. I pick a bead at random. The probability that it is red is $\frac{3}{5}$.
- 4. It is harder to throw a six than a three with a dice.

- 5. It is not worth buying a National Lottery card with numbers 1, 2, 3, 4, 5, 6, on it as this is less likely to occur than other combinations.
- 6. My Grandad smoked 20 cigarettes a day for 60 years and lived to be 90, so smoking can't be bad for you.
- 7. I have thrown an unbiased dice 12 times and not yet got a six. The probability of getting a 6 on my next throw is more than $\frac{1}{6}$.
- 8. I spin two coins. The probability of getting heads and tails is $\frac{1}{3}$ because I can get Heads and Heads, Heads and Tails or Tails and Tails.