Authentisierung und Verschlüsselung [WIP] Sommersemester 2023

Alle Angaben ohne Gewähr. Keine Garantie auf Vollständigkeit oder Richtigkeit.

1	Einf	ührung 3
	1.1	Ziel von Kryptographischen Verfahren
	1.2	Informelle Definition von Signaturen
	1.3	Digitale Signaturen
		1.3.1 Definition
		1.3.2 Correctness
	1.4	Sicherheitsdefinitionen
		1.4.1 Angreifermodelle
		1.4.2 Angreiferziele
	1.5	EUF-CMA-Sicherheitsexperiment
		1.5.1 Visualisierung: EUF-CMA-Sicherheitsexperiment
		1.5.2 Definition: Vernachlässigbarkeit
		1.5.3 Definition: EUF-CMA
	1.6	EUF-naCMA-Sicherheitsexperiment
		1.6.1 Visualisierung: EUF-naCMA-Sicherheitsexperiment
		1.6.2 Definition: EUF-naCMA
	1.7	Einmalsignaturen
		1.7.1 Sicherheitsbegriffe für Einmalsignaturen
		1.7.2 Beziehungen zwischen Sicherheitsdefinitionen
	1.8	Perfekte Sicherheit
		1.8.1 Warum müssen wir uns auf PPT-Angreifer beschränken? 6
		1.8.2 Warum muss die Erfolgswahrscheinlichkeit des Angreifers nur vernachlässigbar sein? 6
	1.9	Erweiterung des Nachrichtenraumes
		1.9.1 Hashfunktionen
		1.9.2 Kollisionsresistenz
		1.9.3 Signatur mit unbeschränktem Nachrichtenraum (Hash-then-Sign) 6
2	q-m	al Signaturen 7
	2.1	Von EUF-naCMA-Sicherheit zu EUF-CMA-Sicherheit
		2.1.1 Transformation
	2.2	Mehrmal-Signaturverfahren aus Einmalsignaturverfahren
		2.2.1 Naiver Ansatz: q Schlüsselpaare
		2.2.2 Zwischenschritt: Hashfunktion verwenden
		2.2.3 Merkle-Bäume
	2.3	Komprimieren des geheimen Schlüssels
		2.3.1 Pseudozufallsfunktion
		2.3.2 Schlüsselgenerierung
3	Cha	mäleon-Signaturen 11
	3.1	Chamäleon-Hashfunktionen
		3.1.1 Definition
		3.1.2 Kollisionsresistenz
		3.1.3 DLog-Annahme
		3.1.4 Chamäleon-Hashfunktion basierend auf DLog
	3.2	Chamäleon-Signaturen
		3.2.1 Konstruktion

Authentisierung und Verschlüsselung [WIP] Sommersemester 2023

		3.2.2 Visualisierung: EUF	-CMA-Sicherheitse	kperiment			13		
	3.3	Transformation von Chama	ileon-Hashfunktion z	zu Einmalsigna	tur		14		
	3.4	EUF-CMA verstärken					14		
		3.4.1 Definition: sEUF-C	MA				14		
4	Pairi	Pairings und BLS-Signaturen 1							
	4.1	Pairings					15		
		•							
			lüsselaustausch						
		4.1.4 Joux 3-Parteien-Sc	hlüsselaustausch .				16		
	4.2	Boneh-Lynn-Shacham-Sign	aturen				16		
		4.2.1 Aggregierbarkeit					17		
		4.2.2 Batch-Verifikation					17		
	4.3	Computational-Diffie-Hellm	nan-Problem				18		
		4.3.1 CDH-Problem					18		
	4.4	Random-Oracle-Modell (R	MC				18		
		4.4.1 Das H-Orakel					18		
		4.4.2 Diskussion zum RC	OM				18		
5	Wat	ers-Signaturen					18		
	5.1	Programmierbare Hashfunk	ctionen				18		
		5.1.1 Definition					18		
			PHF						
		5.1.3 Waters Programmi	erbare Hashfunktion	1			19		
	5.2	Waters-Signaturen					20		
		5.2.2 Korrektheit					21		
		5.2.3 Eigenschaften					21		

1 Einführung

Sommersemester 2023

1.1 Ziel von Kryptographischen Verfahren

Kryptographische Verfahren sollen **Authentizität** (Dokument wurde von einer bestimmten Person signiert) und **Integrität** (Dokument wurde nicht verändert) sicherstellen.

1.2 Informelle Definition von Signaturen

- asymmetrische Verfahren
- Schlüsselpaar (pk, sk)
- Nachricht m wird mit sk signiert und erzeugt Signatur σ
- Mit pk kann überprüft werden, ob eine Signatur σ gültig für eine Nachricht m ist

1.3 Digitale Signaturen

1.3.1 Definition

Ein digitales Signaturverfahren für einen Nachrichtenraum \mathcal{M} ist ein Tupel $\Sigma = (Gen, Sign, Vfy)$ von probabilistischen Polyzeit (PPT) Algorithmen:

- $Gen(1^k) \rightarrow (pk, sk)$
- $Sign(sk, m) \rightarrow \sigma, m \in \mathcal{M}$
- $Vfy(pk, m, \sigma) \in \{0, 1\}$

1.3.2 Correctness

Correctness ("Das Verfahren funktioniert"): $\forall (pk, sk) \leftarrow Gen(1^k) \forall m \in \mathcal{M} : Vfy(pk, m, Sign(sk, m)) = 1$

1.4 Sicherheitsdefinitionen

Sicherheit besteht aus einem Angreifermodell (was kann der Angreifer tun, welche Angriffsmöglichkeiten stehen zur Verfügung) und einem Angreiferziel (was muss der Angreifer tun, um das Verfahren zu brechen).

1.4.1 Angreifermodelle

- 1. no-message attack (NMA)
 - Angreifer erhält nur pk
- 2. non-adaptive chosen-message attack (naCMA)
 - Angreifer wählt m_1, \ldots, m_q
 - Angreifer erhält **danach** pk und Signaturen $\sigma_1, \ldots, \sigma_q$
- 3. (adaptive) chosen-message attack (CMA)
 - Angreifer erhält *pk*
 - Angreifer wählt dann (adaptiv) m_1, \ldots, m_q und erhält Signaturen $\sigma_1, \ldots, \sigma_q$
 - Adaptiv: Angreifer darf Wahl von m_i abhängig von vorherigen σ_i (j < i) und pk machen

1.4.2 Angreiferziele

- 1. Universal Unforgeability (UUF)
 - Nachricht *m* wird zufällig gewählt
 - Angreifer muss *m* signieren

2. Existential Unforgeablility (EUF)

• Angreifer kann Nachricht *m* beliebig wählen und diese signieren

In den Sicherheitsdefinitionen werden Angreiferziel und Angreifermodell kombiniert, z.B.

- EUF-CMA
- EUF-naCMA

1.5 EUF-CMA-Sicherheitsexperiment

Bei Sicherheitsexperimenten spielt ein Angreifer \mathcal{A} gegen einen Challenger \mathcal{C} . \mathcal{A} gewinnt, falls er die Sicherheit des Verfahrens bricht.

 \mathcal{A} muss dabei mit einer nicht vernachlässigbaren Wahrscheinlichkeit eine gültige Signatur erzeugen können, ohne den Schlüssel sk zu kennen.

1.5.1 Visualisierung: EUF-CMA-Sicherheitsexperiment

 \mathcal{A} gewinnt, falls $Vfy(pk, m^*, \sigma^*) = 1$ und $m^* \notin \{m_1, \ldots, m_q\}$

1.5.2 Definition: Vernachlässigbarkeit

Eine Funktion $negl: \mathbb{N} \to [0, 1]$ ist vernachlässigbar, wenn

$$\forall c \in \mathbb{N} \exists k_0 \in \mathbb{N} \forall k \geq k_0 : negl(k) < \frac{1}{k^c}$$

1.5.3 Definition: EUF-CMA

Ein digitales Signaturverfahren $\Sigma = (Gen, Sign, Vfy)$ ist EUF-CMA-sicher, wenn für alle PPT \mathcal{A} gilt, dass

$$\begin{aligned} & \text{Pr}[\mathcal{A} \text{ gewinnt EUF-CMA-Experiment}] \\ & = \text{Pr}[\mathcal{A}^{\mathcal{C}_{\text{EUF-CMA}}}(pk) = (m^*, \sigma^*) : Vfy(pk, m^*, \sigma^*) = 1 \land m^* \notin \{m_1, \dots, m_q\}] \\ & \leq negl(k) \end{aligned}$$

für eine im Sicherheitsparameter k vernachlässigbare Funktion negl.

Sommersemester 2023

1.6 EUF-naCMA-Sicherheitsexperiment

1.6.1 Visualisierung: EUF-naCMA-Sicherheitsexperiment

- q = q(k) Nachrichten
- q Polynom

 \mathcal{A} gewinnt, falls $Vfy(pk, m^*, \sigma^*) = 1$ und $m^* \notin \{m_1, \dots, m_a\}$

1.6.2 Definition: EUF-naCMA

Ein digitales Signaturverfahren $\Sigma = (Gen, Sign, Vfy)$ ist EUF-naCMA-sicher, wenn für alle PPT $\mathcal A$ gilt, dass

$$\begin{split} & \text{Pr}[\mathcal{A} \text{ gewinnt EUF-naCMA-Experiment}] \\ & = \text{Pr}[\mathcal{A}^{\mathcal{C}_{\text{EUF-naCMA}}} = (m^*, \sigma^*) : Vfy(pk, m^*, \sigma^*) = 1 \land m^* \notin \{m_1, \dots, m_q\}] \\ & \leq negl(k) \end{split}$$

für eine im Sicherheitsparameter k vernachlässigbare Funktion negl.

1.7 Einmalsignaturen

- Ziel: Signaturen, die viele Nachrichten signieren können
- Vorstufe: Signaturen, die nur **eine** Nachricht **sicher** signieren können (**Einmalsignaturen**)
- für jeden public key sollte nur eine einzige Signatur ausgestellt werden, sonst evtl. unsicher

1.7.1 Sicherheitsbegriffe für Einmalsignaturen

Analog zum vorherigen Kapitel definieren wir **EUF-1-CMA** und **EUF-1-naCMA** für Einmalsignaturen.

1.7.2 Beziehungen zwischen Sicherheitsdefinitionen

Beweis im Skript.

1.8 Perfekte Sicherheit

In den Definitionen, z.B. bei EUF-CMA finden sich zwei Einschränkungen, die im folgenden erläutert werden:

1.8.1 Warum müssen wir uns auf PPT-Angreifer beschränken?

Durch Brute-Force könnte ein unbeschränkter Angreifer alle Signaturen durchprobieren und so valide Signaturen für beliebige Nachrichten finden, wodurch er beim Sicherheitsexperiment immer gewinnen würde.

1.8.2 Warum muss die Erfolgswahrscheinlichkeit des Angreifers nur vernachlässigbar sein?

Die Erfolgswahrscheinlichkeit kann nicht 0 sein, da der Angreifer durch zufälliges Raten eine gültige Signatur für eine beliebige Nachricht finden könnte, wodurch er das Sicherheitsexperiment gewinnt.

1.9 Erweiterung des Nachrichtenraumes

Wir konstruieren fast immer Signaturen mit "kleinem" Nachrichtenraum, z.B.

- $\mathbb{Z}_p = \{0, ..., p-1\}, p \text{ prim}$
- $\{0,1\}^{q(k)}$, q Polynom, k Sicherheitsparameter

Unser Ziel ist es jedoch, beliebige Nachrichten, z.B. {0,1}*, zu signieren.

1.9.1 Hashfunktionen

Eine kryptographische Hashfunktion $H = (Gen_H, Eval_H)$ ist ein Tupel aus zwei PPT-Algorithmen:

• $Gen_H(1^k)$ berechnet t, sodass t eine Funktion

$$H_t: \{0,1\}^* \to \mathcal{M}_t$$

spezifiziert

• $Eval_H(1^k, t, x)$ berechnet $H_t(x)$

1.9.2 Kollisionsresistenz

Eine Hashfunktion $H = (Gen_H, Eval_H)$ ist **kollisionsresistent**, falls für alle $t \leftarrow Gen_H(1^k)$ und für alle PPT A gilt, dass

$$\Pr[\mathcal{A}(1^k, t) = (x, x') : H_t(x) = H_t(x') \land x \neq x'] \leq negl(k)$$

für eine im Sicherheitsparameter k vernachlässigbare Funktion negl.

1.9.3 Signatur mit unbeschränktem Nachrichtenraum (Hash-then-Sign)

Wir wollen nun Signaturen mit unbeschränktem Nachrichtenraum konstruieren. Gegeben:

- $\Sigma' = (Gen', Sign', Vfy')$ mit Nachrichtenraum \mathcal{M}
- kollisionsresistente Hashfunktion $H: \{0,1\}^* \to \mathcal{M}$

Konstruiere $\Sigma = (Gen, Sign, Vfy)$ mit Nachrichtenraum $\{0, 1\}^*$:

- $Gen(1^k)$ berechnet $(pk, sk) \leftarrow Gen'(1^k)$
- Sign(sk, m) berechnet $\sigma \leftarrow Sign'(sk, H(m))$
- $Vfy(pk, m, \sigma)$ gibt $Vfy'(pk, H(m), \sigma)$ aus

2 q-mal Signaturen

2.1 Von EUF-naCMA-Sicherheit zu EUF-CMA-Sicherheit

Gegeben

- ullet ein EUF-naCMA-sicheres Signaturverfahren Σ' und
- ein EUF-1-naCMA-sicheres Einmalsignaturverfahren $\Sigma^{(1)}$

können wir mittels **Transformation** ein **EUF-CMA**-sicheres Signaturverfahren Σ konstruieren.

2.1.1 Transformation

Gegeben:

- EUF-naCMA-sicheres Signaturverfahren $\Sigma' = (Gen', Sign', Vfy')$
- EUF-1-naCMA-sicheres Signaturverfahren $\Sigma^{(1)} = (Gen^{(1)}, Sign^{(1)}, Vfy^{(1)})$

Konstruiere nun $\Sigma = (Gen, Sign, Vfy)$ wie folgt:

• *Gen*(1^k):

$$(pk, sk) := (pk', sk') \leftarrow Gen'(1^k)$$

• *Sign*(*sk*, *m*):

$$(pk^{(1)}, sk^{(1)}) \leftarrow Gen^{(1)}(1^k)$$

$$\sigma' \leftarrow Sign'(sk, pk^{(1)})$$

$$\sigma^{(1)} \leftarrow Sign^{(1)}(sk^{(1)}, m)$$

$$\sigma := (pk^{(1)}, \sigma^{(1)}, \sigma')$$

• $Vfy(pk, m, \sigma)$ gibt 1 aus, wenn

$$Vfy'(pk, pk^{(1)}, \sigma') = 1 \wedge Vfy^{(1)}(pk^{(1)}, m, \sigma^{(1)}) = 1$$

sonst 0

Es wird also für jede Signatur ein neues Einmalschlüsselpaar erzeugt.

2.2 Mehrmal-Signaturverfahren aus Einmalsignaturverfahren

Einmalsignaturverfahren sind effizient und einfach zu konstruieren, daher würden wir gerne eine Variation dieser verwenden, um mehrfach signieren zu können (q-mal-Signaturverfahren).

2.2.1 Naiver Ansatz: q Schlüsselpaare

Der naive Ansatz ist, q Schlüsselpaare zu verwenden und einen Zähler $st \in \{1, ..., q\}$ als Zustand zu verwenden, der auch im Secret Key und in der Signatur vorkommt:

• $Gen(1^k)$:

$$(pk_i, sk_i) \leftarrow Gen^{(1)}(1^k)$$
 für alle $i \in \{1, ..., q\}$
 $pk := (pk_1, ..., pk_q)$
 $sk := (sk_1, ..., sk_q, st = 1)$

• *Sign*(*sk*, *m*):

$$i := st$$

$$\sigma_i \leftarrow Sign^{(1)}(sk_i, m)$$

$$\sigma \leftarrow (\sigma_i, i)$$

$$st := st + 1$$

• $Vfy(pk, m, \sigma = (\sigma_i, i))$:

$$Vfy^{(1)}(pk_i, m, \sigma_i) \stackrel{?}{=} 1$$

Eigenschaften bezogen auf Signaturanzahl (q):

- $|pk| \in \Theta(q)$
- $|sk| \in \Theta(q)$
- $|\sigma| \in \Theta(1)$

2.2.2 Zwischenschritt: Hashfunktion verwenden

Ein weiterer möglicher Ansatz ist die verwendung einer Hashfunktion

- H Hashfunktion
- $Gen(1^k)$:

$$(pk_i, sk_i) \leftarrow Gen^{(1)}(1^k)$$
 für alle $i \in \{1, \dots, q\}$
 $pk := H(pk_1, \dots, pk_q)$
 $sk := (sk_1, \dots, sk_q, pk_1, \dots, pk_q, st = 1)$

• *Sign*(*sk*, *m*):

$$i := st$$

$$\sigma_i \leftarrow Sign^{(1)}(sk_i, m)$$

$$\sigma \leftarrow (\sigma_i, i, pk_1, \dots, pk_q)$$

$$st := st + 1$$

• $Vfy(pk, m, \sigma = (\sigma_i, i))$:

$$Vfy^{(1)}(pk_i, m, \sigma_i) \stackrel{?}{=} 1 \text{ und } H(pk_1, \dots, pk_q) \stackrel{?}{=} pk$$

Eigenschaften bezogen auf Signaturanzahl (q):

- $|pk| \in \Theta(1)$
- $|sk| \in \Theta(q)$
- $|\sigma| \in \Theta(q)$

2.2.3 Merkle-Bäume

Merkle-Bäume (auch Hash-Bäume genannt) sind (meist binäre) Bäume, bei denen die Blätter Hashwerte der Daten sind und jeder Knoten darüber aus Hashwerten seiner Kinder besteht:

Der Co-Pfad eines Knotens v in einem Binärbaum mit Wurzel r ist die Folge aller Knoten u_1, \ldots, u_n wobei u_i der Geschwisterknoten des i-ten Knotens auf dem Pfad von v zu r ist:

Der Co-Pfad wird nun in die Signatur hinzugefügt, wodurch der pk von pk_3 ausgehend (in diesem Beispiel) in Vfy berechnet werden kann.

• $Gen(1^k)$:

$$(pk_i, sk_i) \leftarrow Gen^{(1)}(1^k)$$
 für alle $i \in \{1, ..., q\}$
 $pk := Baum-Hash(pk_1, ..., pk_q)$
 $sk := (sk_1, ..., sk_q, pk_1, ..., pk_q, st = 1)$

• *Sign*(*sk*, *m*):

$$i := st$$

$$\sigma_i \leftarrow Sign^{(1)}(sk_i, m)$$

$$\sigma \leftarrow (\sigma_i, i, pk_i, \text{Co-Pfad})$$

$$st := st + 1$$

• $Vfy(pk, m, \sigma)$:

Berechne Wurzel h'

$$Vfy^{(1)}(pk_i, m, \sigma_i) \stackrel{?}{=} 1 \text{ und } h' \stackrel{?}{=} pk$$

Eigenschaften bezogen auf Signaturanzahl (q):

- $|pk| \in \Theta(1)$
- $|sk| \in \Theta(q)$
- $|\sigma| \in \Theta(\log q)$

Lemma:

Wenn $\Sigma^{(1)}$ EUF-1-naCMA-sicher ist und H kollisionsresistent, dann ist das obige Verfahren EUF-q-naCMA-sicher.

Wenn $\Sigma^{(1)}$ EUF-1-CMA-sicher ist und H kollisionsresistent, dann ist das obige Verfahren EUF-q-CMA-sicher.

2.3 Komprimieren des geheimen Schlüssels

Um den geheimen Schlüssel zu komprimieren, verwenden wir statt echtem Zufall *Pseudozufall* zur Generierung.

2.3.1 Pseudozufallsfunktion

Eine Pseudozufallsfunktion oder Pseudorandom function (**PRF**) ist eine Funktion, die ununterscheidbar von einer zufälligen Funktion ist. Sie erhält dafür zusätzlich einen $Seed\ s$ mit Länge k als Eingabe:

PRF:
$$\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^l$$
 $\uparrow \qquad \uparrow \qquad \uparrow$

Seed $s \qquad \alpha \qquad PRF(s,\alpha)$

2.3.2 Schlüsselgenerierung

Bisher wird unser Schlüssel durch einen probabilistischen Algorithmus erzeugt:

$$(pk_i, sk_i) \leftarrow Gen^{(1)}(1^k) \qquad \forall i \in \{1, \dots, q\}$$

Probabilistische Algorithmen können auch als **deterministische Algorithmen mit Zufall** r **als Eingabe** gesehen werden:

$$Gen^{(1)}(1^k)$$
 $\hat{=}$ $Gen^{(1)}_{det}(1^k, r)$

Authentisierung und Verschlüsselung [WIP] Sommersemester 2023

Damit ist die bishere Schlüsselberechnung äquivalent zu folgender:

$$(pk_i, sk_i) := Gen_{\text{det}}^{(1)}(1^k, r_i) \qquad \forall i \in \{1, \dots, q\}$$
 für echt zufällige r_i

Mit **echt zufälliger** Funktion *F* also:

$$(pk_i, sk_i) := Gen_{\text{det}}^{(1)}(1^k, F(i)) \qquad \forall i \in \{1, \dots, q\}$$

Mit einem zufälligen Seed s können wir den echten Zufall durch Pseudozufall ersetzen:

$$(pk_i, sk_i) := Gen_{\text{det}}^{(1)}(1^k, PRF(s, i)) \qquad \forall i \in \{1, \dots, q\} \qquad \text{für } s \stackrel{\$}{\leftarrow} \{0, 1\}^k$$

Dadurch müssen nur noch der Seed s und der Zähler st im Secret Key gespeichert werden, bei Bedarf können die Schlüsselpaare neu berechnet werden:

$$sk = (s, st)$$

Eigenschaften bezogen auf Signaturanzahl (q):

- $|pk| \in \Theta(1)$
- $|sk| \in \Theta(1)$
- $|\sigma| \in \Theta(\log q)$

3 Chamäleon-Signaturen

Motivation: Wir wollen Signaturen der Form, dass A die Signatur von B verifizieren kann, jedoch einen anderen C nicht davon überzeugen kann, dass die Signatur von B kam (Abstreitbarkeit genannt).

3.1 Chamäleon-Hashfunktionen

3.1.1 Definition

Eine Chamäleon-Hashfunktion CH besteht aus zwei PPT-Algorithmen (Gen_{ch} , $TrapColl_{ch}$):

- $Gen_{ch}(1^k)$ gibt (ch, τ) aus:
 - *ch* ist eine Funktion *ch* : $\mathcal{M} \times \mathcal{R} \to \mathcal{N}$
 - * M Nachrichtenraum
 - * R Zufallsraum
 - $* \mathcal{N}$ Zielraum
 - $-\tau$ ist eine **Trapdoor** (Falltür)
- $TrapColl_{ch}(\tau, m, r, m')$ für $(m, r, m') \in \mathcal{M} \times \mathcal{R} \times \mathcal{M}$ berechnet $r' \in \mathcal{R}$, sodass

$$ch(m,r) = ch(m',r')$$

Wer τ kennt, kann also Kollisionen berechnen.

3.1.2 Kollisionsresistenz

Eine Chamäleon-Hashfunktion $CH = (Gen_{ch}, TrapColl_{ch})$ ist **kollisionsresistent**, falls für alle PPT \mathcal{A} gilt, dass

$$\Pr\begin{bmatrix} (ch,\tau) \leftarrow Gen_{ch}(1^k) \\ \mathcal{A}(1^k,ch) = (m,r,m',r') \\ \vdots \\ \wedge (m,r) \neq (m',r') \end{bmatrix} \leq negl(k)$$

für eine im Sicherheitsparameter k vernachlässigbare Funktion negl.

3.1.3 DLog-Annahme

Sommersemester 2023

Setting:

- Zyklische Gruppe $\mathbb{G} = \langle g \rangle$
- Endliche Ordnung $|\mathbb{G}| = p$, p prim
- (G kommutativ)
- \mathbb{G} abhängig vom Sicherheitsparameter k

Das **DLog-Problem** ist wie folgt definiert:

- Gegeben: Erzeuger g und $y \stackrel{\$}{\leftarrow} \mathbb{G}$
- Finde $x \in \mathbb{Z}_p$: $g^x = y$

Die **DLog-Annahme** ist folgende:

 \forall PPT \mathcal{A} gilt:

$$\Pr[\mathcal{A}(1^k, g, g^x) = x : \langle g \rangle = \mathbb{G} \text{ zufällig, } x \stackrel{\$}{\leftarrow} \mathbb{Z}_p] \leq negl(k)$$

für eine im Sicherheitsparameter k vernachlässigbare Funktion negl.

3.1.4 Chamäleon-Hashfunktion basierend auf DLog

Wir konstruieren nun eine Chamäleon-Hashfunktion basierend auf DLog mit einer Gruppe \mathbb{G} , $|\mathbb{G}| = p$ prim und g Erzeuger von \mathbb{G} :

- *ch* beschreibt Funktion:
 - $ch: \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{G}$ $ch(m, r) := q^m \cdot h^r$
- $Gen(1^k)$:
 - $\ x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
 - $h := q^{x}$
 - -ch := (g, h)
 - $-\tau := x$
- $TrapColl_{ch}(\tau, m, r, m')$: Berechnet r^* , sodass

$$m + x \cdot r \equiv m^* + x \cdot r^* \mod p$$

$$\Leftrightarrow r^* = \frac{m - m^*}{x} + r \mod p$$

Damit folgt

$$ch(m,r) = g^m \cdot h^r = g^{m+xr} = g^{m^*+xr^*} = g^{m^*} \cdot h^{r^*} = ch(m^*, r^*)$$

Chamäleon-Hashfunktion basierend auf dem RSA-Problem und Shamir's Trick weggelassen.

3.2 Chamäleon-Signaturen

3.2.1 Konstruktion

Gegeben sind

- $CH = (Gen_{ch}, TrapColl_{ch}), ch : \mathcal{M} \times \mathcal{R} \rightarrow \mathcal{N}$
- Signatur $\Sigma' = (Gen', Sign', Vfy')$

Konstruiere nun ein Chamäleon-Signaturverfahren $\Sigma = (Gen, Sign, Vfy)$:

• $Gen(1^k)$:

$$(pk', sk') \leftarrow Gen'(1^k)$$

 $pk := pk'$
 $sk := sk'$

• *Sign*(*sk*, *m*, *ch*) (*ch* ist die CH-Fkt. des **Empfängers**):

$$r \stackrel{\$}{\leftarrow} \mathcal{R}$$

 $y := ch(m, r)$
 $\sigma' := Sign'(sk, y)$
 $\sigma := (\sigma', r)$

• $Vfy(pk, m, \sigma, ch)$:

$$Vfy'(pk, ch(m, r), \sigma') \stackrel{?}{=} 1$$

3.2.2 Visualisierung: EUF-CMA-Sicherheitsexperiment

 \mathcal{A} gewinnt, falls $Vfy(pk, m^*, \sigma^*, ch) = 1$ und $m^* \notin \{m_1, \dots, m_q\}$

In dieser Variante wird ch vorgegeben, stärkere Sicherheit wird erreicht, wenn \mathcal{A} die Chamäleon-Hashfunktion selbst wählen darf (wie es ein echter Angreifer könnte). Beweis zur Sicherheit im Skript.

3.3 Transformation von Chamäleon-Hashfunktion zu Einmalsignatur

Jede CH kann zu einem Einmalsignaturverfahren transformiert werden.

Gegeben $CH = (Gen_{ch}, TrapColl_{ch})$, konstruiere $\Sigma = (Gen, Sign, Vfy)$:

• $Gen(1^k)$:

$$(ch, \tau) \leftarrow Gen_{ch}(1^k)$$

 $(\tilde{m}, \tilde{r}) \stackrel{\$}{\leftarrow} \mathcal{M} \times \mathcal{R}$
 $c := ch(\tilde{m}, \tilde{r})$
 $pk := (ch, c)$
 $sk := (\tau, \tilde{m}, \tilde{r})$

• *Sign(sk, m)*:

$$r := TrapColl_{ch}(\tau, \tilde{m}, \tilde{r}, m)$$

 $\sigma := r$

• $Vfy(pk, m, \sigma)$:

$$c \stackrel{?}{=} ch(m, \sigma)$$

 Σ ist EUF-1-naCMA-sicher, wenn CH kollisionsresistent ist.

Dlog-Einmalsignatur aus DLog-CH-Funktion weggelassen.

3.4 EUF-CMA verstärken

Statt wie bisher in EUF-CMA $m^* \notin \{m_1, \dots, m_q\}$ zu fordern, könnten wir auch fordern, dann nur das Paar (m^*, σ^*) frisch sein muss, die Nachricht aber nicht unbedingt.

3.4.1 Definition: sEUF-CMA

Ein digitales Signaturverfahren $\Sigma = (Gen, Sign, Vfy)$ ist sEUF-CMA-sicher, wenn für alle PPT \mathcal{A} gilt, dass

$$\Pr\left[\mathcal{A}^{\mathcal{C}_{\text{SEUF-CMA}}}(pk) = (m^*, \sigma^*) : \frac{Vfy(pk, m^*, \sigma^*) = 1 \quad \land}{(m^*, \sigma^*) \notin \{(m_1, \sigma_1), \dots, (m_q, \sigma_q)\}}\right] \leq negl(k)$$

für eine im Sicherheitsparameter k vernachlässigbare Funktion negl.

Mit einem EUF-CMA-sicheren Signaturverfahren und einer CH-Funktion kann ein sEUF-CMA-sicheres Signaturverfahren konstruiert werden. *Details im Skript*.

4 Pairings und BLS-Signaturen

4.1 Pairings

4.1.1 Definition

Seien \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T zyklische Gruppen mit Ordnung p prim. Ein Pairing ist eine bilineare Abbildung

$$\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

mit den Eigenschaften

• Bilinearität: $\forall g_1, g_1' \in \mathbb{G}_1, g_2, g_2' \in \mathbb{G}_2$:

$$e(g_1 \cdot g'_1, g_2) = e(g_1, g_2) \cdot e(g'_1, g_2)$$

 $e(g_1, g_2 \cdot g'_2) = e(g_1, g_2) \cdot e(g_1, g'_2)$

$$\Rightarrow e(g_1^a, g_2) = e(g_1, g_2)^a = e(g_1, g_2^a)$$

• Nicht-Ausgeartetheit (non-degenerate): Für Erzeuger $g_1 \in \mathbb{G}_1$, $g_2 \in \mathbb{G}_2$ gilt:

$$e(g_1, g_2)$$
 ist Erzeuger von \mathbb{G}_T $(\stackrel{|\mathbb{G}_T| \text{ prim}}{\longleftrightarrow} e(g_1, g_2) \neq 1)$

• Effiziente Berechenbarkeit

 \mathbb{G}_1 , \mathbb{G}_2 sind in der Regel **elliptische Kurven**.

4.1.2 Typen von Pairing

1. $\mathbb{G}_1 = \mathbb{G}_2$, symmetrisches Pairing

$$e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$$

2. $\mathbb{G}_1 \neq \mathbb{G}_2$, asymmetrisches Pairing und es existiert ein effizienter, nicht-trivialer Homomorphismus

$$\psi:\mathbb{G}_1 \to \mathbb{G}_2$$

3. $\mathbb{G}_1 \neq \mathbb{G}_2$, asymmetrisches Pairing und es existiert kein effizienter, nicht-trivialer Homomorphismus

$$\psi:\mathbb{G}_1 o\mathbb{G}_2$$

4.1.3 Diffie-Hellman-Schlüsselaustausch

Diffie-Hellman ist ein Protokoll, mit dem **zwei** Parteien einen gemeinsamen geheimen Schlüssel aushandeln können. Setting: Zyklische Gruppe $\mathbb{G} = \langle g \rangle$ mit Ordnung p

Ablauf:

- 1. A und B wählen ein zufälliges Element aus \mathbb{Z}_p
- 2. A und B senden dem Gegenüber g^a bzw. g^b
- 3. Beide können sich nun den gemeinsamen Schlüssel $k=g^{ab}$ berechnen

4.1.4 Joux 3-Parteien-Schlüsselaustausch

Joux' Verfahren [Joux, 2006] ist ähnlich zu Diffie-Hellman, erlaubt aber einen Schlüsselaustausch zwischen 3 Parteien.

$$k = e(g^b, g^c)^a = e(g, g)^{abc}$$

$$k = e(g^a, g^c)^b = e(g, g)^{abc}$$

$$k = e(g^a, g^b)^c = e(g, g)^{abc}$$

Ablauf:

- 1. A, B und C wählen ein zufälliges Element aus \mathbb{Z}_p
- 2. Alle Teilnehmer senden sich gegenseitig ihre Werte g^a , g^b bzw. g^c
- 3. Alle Teilnehmer können sich nun den gemeinsamen Schlüssel $k=e(g,g)^{abc}$ berechnen

4.2 Boneh-Lynn-Shacham-Signaturen

BLS ist ein Pairing-basiertes Signaturverfahren mit kurzen Signaturen. Gegeben:

- \mathbb{G} , \mathbb{G}_T Gruppen, $|\mathbb{G}| = |\mathbb{G}_T| = p$ prim, $\langle g \rangle = \mathbb{G}$
- \bullet Symmetrisches Pairing $\mathbb{G}\times\mathbb{G}\to\mathbb{G}_{\mathcal{T}}$
- Hashfunktion $H: \{0,1\}^* \to \mathbb{G}$

Konstruktion:

• $Gen(1^k)$:

$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$$
$$pk := (g, g^x)$$
$$sk := x$$

• *Sign*(*sk*, *m*):

$$\sigma := H(m)^{\times} \in \mathbb{G}$$

• $Vfy(pk, m, \sigma)$:

$$e(H(m), g^{x}) \stackrel{?}{=} e(\sigma, g)$$

Sommersemester 2023

Correctness: $e(H(m), q^x) = e(H(m), q)^x = e(H(m)^x, q) = e(\sigma, q)$

BLS-Signaturen sind EUF-CMA-sicher unter der CDH-Annahme im Random-Oracle-Modell.

Sicherheitsbeweis für BLS weggelassen.

4.2.1 Aggregierbarkeit

BLS-Signaturen können **aggregiert** werden, d.h. zur Verifikation von $(m_1, \sigma_1), \ldots, (m_n, \sigma_n)$ müssen nicht alle Signaturen σ_1,\ldots,σ_n mitgeschickt werden, sondern es kann eine aggregierte Signatur σ_{Aqq} berechnet werden. Die Gültigkeit kann dann mit $Vfy(pk_1,\ldots,pk_n,m_1,\ldots,m_n,\sigma_{Agg})\stackrel{?}{=} 1$ überprüft werden.

Dabei gilt außerdem, dass die aggregierte Signatur genau so lang ist, wie eine einzelne Signatur, also $|\sigma_{Agg}|$ $|\sigma|$. Zudem bieten sie einen Effizienzgewinn, da für *n* Signaturen statt 2*n* nur noch n+1 Pairingauswertungen erforderlich sind.

Aggregation:

- Signaturen haben die Form $H(m_i)^{x_i}$
- Aggregierer berechnet

$$\sigma_{\mathsf{Agg}} = \prod_{i=1}^n \sigma_i$$

Aggregation ist öffentlich, es wird kein geheimer Schlüssel benötigt

• Verifikation:

$$e(\sigma_{\mathsf{Agg}},g) \stackrel{?}{=} \prod_{i=1}^n e(H(m_i),g^{\mathsf{x}_i})$$

Correctness:

$$e(\sigma_{Agg}, g) = e(\sigma_{1}, g) \cdot ... \cdot e(\sigma_{n}, g)$$

$$= e(H(m_{1})^{x_{1}}, g) \cdot ... \cdot e(H(m_{n})^{x_{n}}, g)$$

$$= e(H(m_{1}), g^{x_{1}}) \cdot ... \cdot e(H(m_{n}), g^{x_{n}})$$

$$= \prod_{i=1}^{n} e(H(m_{i}), g^{x_{i}})$$

4.2.2 **Batch-Verifikation**

Ein ähnliches Problem tritt bei der Verifikation auf, bisher verifizieren wir Nachrichten immer einzeln über $Vfy(pk_i, m_i, \sigma_i) \stackrel{?}{=} 1.$

Optimaler wäre ein Verfahren, mit dem wir $(m_1, \sigma_1), \ldots, (m_n, \sigma_n)$ auf einmal verifizieren können, die Lösung dafür ist die Batch-Verifikation:

- Gegeben: $\sigma_1, \ldots, \sigma_n$ Signaturen für m_1, \ldots, m_n Nachrichten
- $h = \prod_{i=1}^n H(m_i)$ $\sigma = \prod_{i=1}^n \sigma_i$
- Prüfe, ob $e(\sigma, g) \stackrel{?}{=} e(h, q^x)$

Sommersemester 2023

4.3 Computational-Diffie-Hellman-Problem

4.3.1 CDH-Problem

Sei g ein zufälliger Erzeuger und $x, y \stackrel{\$}{\leftarrow} \mathbb{Z}_p$.

CDH-Problem: Gegeben (g, g^x, g^y) , berechne g^{xy}

4.3.2 CDH-Annahme

 \forall PPT \mathcal{A} gilt:

$$\Pr[\mathcal{A}(1^k, g, g^x, g^y) = g^{xy} : g \text{ mit } \langle g \rangle = \mathbb{G} \text{ zuf\"{a}llig}, x, y \overset{\$}{\leftarrow} \mathbb{Z}_p] \leq negl(k)$$

für eine im Sicherheitsparameter k vernachlässigbare Funktion negl.

4.4 Random-Oracle-Modell (ROM)

Wir betrachten eine idealisierte Hashfunktion $H: \mathcal{D} \to \mathcal{R}$, bei der die Ausgaben H(m) **gleichverteilt zufällig** sind für jede Eingabe m. H wird als Orakel modelliert, das von allen Teilnehmern benutzt wird und die Hashwerte ausgibt.

4.4.1 Das H-Orakel

Das **H-Orakel** besitzt intern einen *Key-Value-Store* T. Falls es eine Hash-Anfrage für Nachricht m erhält, schaut es in T nach, ob T[m] bereits existiert. Wenn ja, wird T[m] zurückgegeben, ansonsten wählt das Orakel $y \stackrel{\$}{\leftarrow} \mathcal{R}$, setzt T[m] := y und gibt y zurück.

4.4.2 Diskussion zum ROM

- Es existiert kein ROM in der realen Welt
- Manche kryptographischen Probleme sind **nur** im ROM lösbar
- Lösungen im ROM sind oft effizienter und einfacher zu konstruieren als im Standardmodell
- Für viele Konstruktionen im ROM sind keine realen Angriffe bekannt

5 Waters-Signaturen

5.1 Programmierbare Hashfunktionen

5.1.1 Definition

Es sei $H_{\kappa}:\{0,1\}^{\ell}\to\mathbb{G}$ eine Hashfunktion und \mathbb{G} eine zyklische, endliche Gruppe mit g,h Erzeuger.

Eine Programmierbare Hashfunktion (PHF) ist ein Tupel von 4 (P)PT-Algorithmen

- $Gen(g) \rightarrow \kappa$ (Schlüsselerzeugung)
- $Eval(\kappa, m) \to H_{\kappa}(m)$ (deterministische Auswertung)
- $TrapGen(g, h) \rightarrow (\kappa, \tau)$ (Schlüsselerzeugung mit Trapdoor)
- $TrapEval(\tau, m) \rightarrow (a, b)$ mit $h^a g^b = H_{\kappa}(m)$ (deterministisch)

Intuition: Trapdoor liefert uns "Zerlegung" (a, b) von $H_{\kappa}(m)$, sodass $h^a g^b = H_{\kappa}(m)$

5.1.2 Anforderungen an PHF

- κ ist für Gen und TrapGen gleichverteilt, d.h. es ist unmöglich unterscheiden, mit welchem Algorithmus es erstellt wurde
- (v, w, γ) -Wohlverteilung: Seien $v, w \in \mathbb{N}, \gamma \in [0, 1]$. Für alle
 - Erzeuger g, h von \mathbb{G}
 - $-m_1^*,\ldots,m_v^* \in \{0,1\}^\ell$
 - $-m_1, \ldots, m_w \in \{0, 1\}^{\ell}$ (alle m_i^* und m_j paarweise verschieden)

gilt

$$\Pr\begin{bmatrix} a_i^* = 0 & \forall i = 1, \dots, v & \land \\ a_j^* = 0 & \forall j = 1, \dots, w & \end{bmatrix} \ge \gamma$$

wobei

$$(\kappa, \tau) \leftarrow TrapGen(g, h)$$

 $(a_i^*, b_i^*) := TrapEval(\tau, m_i^*) \quad \forall i = 1, ..., v$
 $(a_j, b_j) := TrapEval(\tau, m_j) \quad \forall j = 1, ..., w$

Eine (v, w, γ) -wohlverteilte PHF heißt auch (v, w, γ) -PHF.

5.1.3 Waters Programmierbare Hashfunktion

• *Gen(g)*:

$$(u_0,\ldots,u_\ell) \stackrel{\$}{\leftarrow} \mathbb{G}$$

$$\kappa = (u_0,\ldots,u_\ell)$$

• $Eval(\kappa, m = m_1 \dots m_\ell)$:

$$H_{\kappa}(m) = u_0 \prod_{i=1}^{\ell} u_i^{m_i}$$

 $(m_i \in \{0, 1\} \text{ ist das } i\text{-te Bit von } m)$

Intuition: $H_{\kappa}(m)$ ist das Produkt von u_0 und aller u_i mit $m_i = 1$

TrapGen(g, h):

$$\hat{a}_{i} \stackrel{\$}{\leftarrow} \{-1, 0, 1\} \in \mathbb{Z}_{p}$$

$$\hat{b}_{i} \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}$$

$$u_{i} := h^{\hat{a}_{i}} g^{\hat{b}_{i}} \qquad \forall i \in \{0, \dots, \ell\}$$

$$\kappa := (u_{0}, \dots, u_{\ell})$$

$$\tau := (\hat{a}_{0}, \dots, \hat{a}_{\ell}, \hat{b}_{0}, \dots, \hat{b}_{\ell})$$

• $TrapEval(\tau, m = m_1 \dots m_\ell)$: Berechne

$$a = \hat{a_0} + \sum_{i=1}^{\ell} m_i \hat{a_i}$$
 und $b = \hat{b_0} + \sum_{i=1}^{\ell} m_i \hat{b_i}$

Dann gilt

$$egin{aligned} h^{a}g^{b} &= h^{\hat{a_{0}}}\prod_{i=1}^{\ell}h^{\hat{a_{i}}m_{i}}\cdot g^{\hat{b_{0}}}\prod_{i=1}^{\ell}g^{\hat{b_{i}}m_{i}} \\ &= (h^{\hat{a_{0}}}g^{\hat{b_{0}}})\cdot\prod_{i=1}^{\ell}(h^{\hat{a_{i}}m_{i}}g^{\hat{b_{i}}m_{i}}) \\ &= (h^{\hat{a_{0}}}g^{\hat{b_{0}}})\cdot\prod_{i=1}^{\ell}(h^{\hat{a_{i}}}g^{\hat{b_{i}}})^{m_{i}} \\ &= u_{0}\cdot\prod_{i=1}^{\ell}u_{i}^{m_{i}} \\ &= H_{\kappa}(m) \end{aligned}$$

5.2 Waters-Signaturen

5.2.1 Konstruktion

• $Gen(1^k)$:

$$g^{\alpha} \stackrel{\$}{\leftarrow} \mathbb{G}$$

$$\kappa \leftarrow Gen_{\mathsf{PHF}}(g)$$

$$sk := g^{\alpha}$$

$$pk := (q, \kappa, e(q, q^{\alpha}))$$

(Wir müssen α nicht kennen, da g Erzeuger ist)

• *Sign*(*sk*, *m*):

$$r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$$

$$\sigma_1 := g^r$$

$$\sigma_2 := g^{\alpha} \cdot H_{\kappa}(m)^r$$

$$\sigma := (\sigma_1, \sigma_2) \in \mathbb{G}^2$$

• $Vfy(pk, m, \sigma)$:

$$e(g, \sigma_2) \stackrel{?}{=} e(g, g^{\alpha}) * e(\sigma_1, H_{\kappa}(m))$$

5.2.2 Korrektheit

$$e(g, \sigma_2) = e(g, g^{\alpha} \cdot H_{\kappa}(m)^r)$$

$$= e(g, g^{\alpha}) \cdot e(g, H_{\kappa}(m)^r)$$

$$= e(g, g^{\alpha}) \cdot e(g^r, H_{\kappa}(m))$$

$$= e(g, g^{\alpha}) \cdot e(\sigma_1, H_{\kappa}(m))$$

5.2.3 Eigenschaften

- EUF-CMA-sicher unter der CDH-Annahme im Standardmodell
- Gen, Sign, Vfy sind effiziente Algorithmen
- Kleine Signaturen (zwei Gruppenelemente)
- ullet Public Key enthält $\kappa := (u_0, \ldots, u_\ell)$ (mit ℓ Länge der Nachricht), dadurch **sehr groß**
- Bisher ist die $(1, q, \gamma)$ -PHF von Walters die einzig bekannte $(1, q, \gamma)$ -PHF

Authentisierung und Verschlüsselung [WIP]

Literatur

[Joux, 2006] Joux, A. (2006). A one round protocol for tripartite diffie—hellman. volume 17, pages 385–393.