SML-Z14x/ZN4x Series

Data Sheet

■ Features

- High brightness
- 20/50mA guaranteed specifications
- PLCC2 package

■ Outline

■Size

3528 (1411) 3.5 × 2.8mm (t=1.9mm)

■ Dimensions

■ Recommended Solder Pattern

■ Specifications

			Absolute Maximum Ratings (Ta=25°C)					°C)	Electrical and Optical Characteristics (Ta=25°C)														
Part No.		Chip Structure	Chip Structure	Power	Forward	Peak Forward	Reverse		Storage Temp.	Forward \	/oltage V _F	Reverse	Current I _R			aveleng coordinate		Lumino	ous Inte	nsity I _V			
		Color	Color	Dissipation	Current	Current	Voltage			Тур.	I _F	Max.	V_R	Min.*2	Тур.	Max.*2	I _F	Min.	Тур.	I _F			
			P _D (mW)	I _F (mA)	I _{FP} (mA)	$V_R(V)$	T _{opr} (°C)	T _{stg} (°C)	(V)	(mA)	(µA)	(V)	(nm)	(nm)	(nm)	(mA)	(mcd)	(mcd)	(mA)				
SML-Z14VT(A)		Red											625	630	635		56	112					
SML-Z14UT(A)		Neu	168						1.9				615	620	625		112	224					
SML-Z14DT(A)		Orange											602	605	608		140	280					
SML-Z14YT(A)		Yellow								20			586	589	592	20	140	200	20				
SML-Z14MT(A)		Yellowish Green	175	175	175	175						2.0				568	571	574		45	90		
SML-Z14FT(A)		0										2.0				561.5	564	566.5		22.4	45]	
SML-Z14PT(A)	AIO-I-D	Green		70	00041	12						12	557	560	563		11.2	22.4					
SML-Z14V4T	AlGalnP	6-1	189					70	200*1	12	-40 ~ +100		2.0		40	12	-	630	-		140	280	
SML-Z14U4T		Red										-40 ~ +100			10		-	620	-		280	560	
SML-Z14D4T		Orange									-40 ~ +100					-	605	-		055	740	1	
SML-Z14Y4T		Yellow								50			587	590	593	50	355	710	710 50				
SML-Z14M4T		Yellowish Green		1	1	1											569	572	575		112	224	1
SML-Z14F4T									2.1				-	565	-		56	120	1				
SML-Z14P4T		Green											-	561	-		22.4	56					
SMLZ14EGT(A)		Green	120			_			3.4			-	519	528	536		710	1100	20				
SMLZ14BGT(A)		5.			4	5						5	464	470	476		140	280					
SMLZN4BGT(A)	InGaN	Blue	114	30	100* ¹				3.3	20	\vdash		464	470	476	20	140	300					
SMLZN4WBGUW(A) *3		White				_	-40 ~ +85				-	-	(x, y)	(0.30,	0.28)		1800	2400					

^{*1:1/10,1}kHz *2: Measurement tolerance: ±1nm、*3:Brightness for white color is noted with chromaticity coordinate(x,y).

Electrical Characteristics Curves

Reference

Fig.1 Forward Current

Fig.2 Luminous Intensity -Atmosphere Temperature RELATIVE LUMINOUS INTENSITY [a.u.] 1.6 I_F=20mA 1.4 1.2 1.0 8.0 SML-Z14VT(A) 0.6 SML-Z14UT(A) SML-Z14DT(A) SML-Z14YT(A) SML-Z14MT(A) 0.4 SML-Z14FT(A) SML-Z14PT(A) 0.2 -20 100 -40 0 20 40 60 80

ATMOSPHERE TEMPERATURE : Ta [°C]

Fig.3 Luminous Intensity - Forward Current

80 MAXIMUM FORWARD CURRENT: [mA] 60 40 SML-Z14VT(A) SML-Z14UT(A) 20 SML-Z14DT(A) SML-Z14YT(A) SML-Z14MT(A) SML-Z14FT(A) SML-Z14PT(A) -20 -40 0 20 40 60 80 100

Fig.4 Derating

AMBIENT TEMPERATURE : Ta [°C]

■ Electrical Characteristics Curves

Reference

Fig.1 Forward Current
- Forward Voltages

Fig.2 Luminous Intensity -Atmosphere Temperature

ATMOSPHERE TEMPERATURE: Ta [°C]

Fig.3 Luminous Intensity - Forward Current

Fig.4 Derating

AMBIENT TEMPERATURE: Ta [°C]

■ Electrical Characteristics Curves

Reference

ATMOSPHERE TEMPERATURE: Ta [°C]

Fig. 3 Luminous Intensity - Forward Current

SML214EGT(A)
SML214BGT(A)
SMLZN4BGT(A)
SMLZN4WBGUW(A)

1.0

0.5

0 5 10 15 20 25 30

FORWARD CURRENT : I_F [mA]

AMBIENT TEMPERATURE: Ta [°C]

4/11

■ Viewing Angle

Reference

■ Rank Reference of Brightness*

*Measurement tolerance: ±10%

)															(Ta	=25°C, I _F	=20n
Rank	AM	AN	AP	AQ	AR	AS	AT	AU	ΑV	AW	AX	AY	ΑZ	BA	BB	BC	BD	BE
lv (mcd)	28~35.5	35.5~45	45~56	56~71	71~90	90~112	112~140	140~180	180~224	224~280	280~355	355~450	450~560	560~710	710~900	900~1120	1120~1400	1400~
ML-Z14VT(A)																		
ML-Z14UT(A)																0500 1	
																	=25°C, I _F	
Rank	AM	AN	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE
lv (mcd)	28~35.5	35.5~45	45~56	56~71	71~90	90~112	112~140	140~180	180~224	224~280	280~355	355~450	450~560	560~710	710~900	900~1120	1120~1400	1400~
ML-Z14V4T ML-Z14U4T	_						_		ı									┢
	<u> </u>																	
Drange(I			4.5	4.0	1 A D	4.0			417		A \/	437	. 7	- DA			=25°C, I _F	
Rank	AM	AN	AP	AQ	AR 71~90	AS	AT 112~140	AU	AV	AW	AX 280~355	AY	AZ 450~560	BA 560~710	BB 710~900	ВС	BD	В
Iv (mcd) ML-Z14DT(A	28~35.5	35.5~45	45~56	56~71	71~90	90~112	112~140	140~180	180~224	224~280	280~355	355~450	450~560	560~710	710~900	900~1120	1120~1400	1400~
WL-Z14D1(A	/						_									(та	=25°C, I _F	=501
Rank	AM	AN	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	ΑZ	BA	BB	BC	BD	В
lv (mcd)	28~35.5		45~56	56~71	71~90					224~280		355~450	450~560	560~710			1120~1400	+
ML-Z14D4T	1																	
	2																	
'ellow(Y)															(Ta	=25°C, I _F	=20
Rank	AM	AN	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	В
Iv (mcd)	28~35.5	35.5~45	45~56	56~71	71~90	90~112	112~140	140~180	180~224	224~280	280~355	355~450	450~560	560~710	710~900	900~1120	1120~1400	1400~
ML-Z14YT(A))															(Ta	=25°C, I _F	=50
Rank	AM	AN	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	В
lv (mcd)	28~35.5	35.5~45	45~56	56~71	71~90	90~112	112~140	140~180	180~224	224~280		355~450	450~560	560~710		900~1120	1120~1400	•
ML-Z14Y4T	1																	
ellowist/	n Gre	en/G	reen(M,P,	F)											/T-	=25°C, I _F	-20
Rank	AG	AH	AJ	AK	AL	A B 4										(Ta	=23°C, I _F	-20
Iv (mcd)	9~11.2					AM	AN	AP	AQ	AR	AS	ΑT	AU	AV	AW	AX	AY	-20i
ML-Z14MT(A)		11.2~14	14~18	18~22.4		28~35.5	AN 35.5~45		AQ 56~71			AT 112~140	AU 140~180	AV 180~224	AW 224~280	AX	AY	Α
		11.2~14	14~18	18~22.4												AX	AY	Α
		11.2~14	14~18	18~22.4												AX	AY	Α
		11.2~14	14~18	18~22.4												AX 280~355	AY 355~450	A 450~
ML-Z14FT(A)					22.4~ 28	28~35.5	35.5~45	45~56	56~71	71~90	90~112	112~140	140~180	180~224	224~280	AX 280~355	AY 355~450 =25°C, I _F	A 450~
ML-Z14FT(A)	AG	AH	AJ	AK	22.4~ 28	28~35.5 AM	35.5~45	45~56 AP	56~71 AQ	71~90 AR	90~112 AS	112~140 AT	140~180	180~224	224~280 AW	AX 280~355 (Ta	AY 355~450 =25°C, I _F AY	A 450~ ==50 A
ML-Z14FT(A) Rank Iv (mcd)		AH			22.4~ 28	28~35.5	35.5~45	45~56	56~71	71~90	90~112	112~140	140~180	180~224	224~280 AW	AX 280~355 (Ta	AY 355~450 =25°C, I _F	A 450~ ==50 A
ML-Z14FT(A) Rank Iv (mcd) ML-Z14M4T	AG	АН	AJ	AK	22.4~ 28	28~35.5 AM	35.5~45	45~56 AP	56~71 AQ	71~90 AR	90~112 AS	112~140 AT	140~180	180~224	224~280 AW	AX 280~355 (Ta	AY 355~450 =25°C, I _F AY	A 450~ ==50 A
ML-Z14FT(A) Rank Iv (mcd) ML-Z14M4T ML-Z14P4T	AG	АН	AJ	AK	22.4~ 28	28~35.5 AM	35.5~45	45~56 AP	56~71 AQ	71~90 AR	90~112 AS	112~140 AT	140~180	180~224	224~280 AW	AX 280~355 (Ta	AY 355~450 =25°C, I _F AY	A 450~ ==50 A
Rank Iv (mcd) ML-Z14P4T ML-Z14P4T ML-Z14F4T	AG 9~11.2	АН	AJ	AK	22.4~ 28	28~35.5 AM	35.5~45	45~56 AP	56~71 AQ	71~90 AR	90~112 AS	112~140 AT	140~180	AV 180~224	AW 224~280	AX 280~355 (Ta AX 280~355	AY 355~450 =25°C, I _F AY	A 450°
Rank Iv (mcd) ML-Z14M4T ML-Z14P4T ML-Z14F4T MC-Z14F4T	AG 9~11.2	AH 11.2~14	AJ 14~18	AK 18~22.4	AL 22.4~ 28	AM 28~35.5	35.5~45 AN 35.5~45	45~56 AP 45~56	AQ 56~71	71~90 AR 71~90	90~112 AS 90~112	AT 112~140	AU 140~180	AV 180~224	AW 224~280 =25°C, I _F	AX 280~355 (Ta AX 280~355)	AY 355~450 =25°C, I _F AY	A 450~ ==50 A
Rank Iv (mcd) ML-Z14FT(A) ML-Z14M4T ML-Z14P4T ML-Z14F4T Green(E Rank	AG 9~11.2	AH 11.2~14	AJ 14~18	AK 18~22.4	AL 22.4~ 28	AM 28~35.5	AN 35.5~45	45~56 AP 45~56	AQ 56~71	71~90 AR 71~90	90~112 AS 90~112	AT 112~140	AU 140~180	AV 180~224 (Ta Y2	AW 224~280	AX 280~355 (Ta AX 280~355	AY 355~450 =25°C, I _F AY	A 450~ ==50 A
Rank Iv (mcd) ML-Z14M4T ML-Z14M4T ML-Z14P4T ML-Z14F4T Green(E Rank Iv (mcd)	AG 9~11.2	AH 11.2~14	AJ 14~18	AK 18~22.4	AL 22.4~ 28	AM 28~35.5	35.5~45 AN 35.5~45	45~56 AP 45~56	AQ 56~71	71~90 AR 71~90	90~112 AS 90~112	AT 112~140	AU 140~180	AV 180~224	AW 224~280 =25°C, I _F Z1	AX 280~355 (Ta AX 280~355	AY 355~450 =25°C, I _F AY	A 450~ ==50 A
Rank Iv (mcd) ML-Z14M4T ML-Z14M4T ML-Z14F4T ML-Z14F4T Creen(E Rank Iv (mcd) MLZ14EGT(A	AG 9~11.2	AH 11.2~14	AJ 14~18	AK 18~22.4	AL 22.4~ 28	AM 28~35.5	AN 35.5~45	45~56 AP 45~56	AQ 56~71	71~90 AR 71~90	90~112 AS 90~112	AT 112~140	AU 140~180	AV 180~224 (Ta Y2 1800~2200	AW 224~280 =25°C, I _F Z1 2200~2800	AX 280~355 (Ta AX 280~355	AY 355~450 =25°C, I _F AY	A 450~ ==50 A
ML-Z14FT(A) Rank Iv (mcd) ML-Z14M4T ML-Z14P4T ML-Z14F4T Green(E Rank Iv (mcd) MLZ14EGT(A Blue(B)	AG 9~11.2	AH 11.2~14 S2 110~140	AJ 14~18 T1 140~180	AK 18~22.4	22.4~ 28 AL 22.4~ 28	28~35.5 AM 28~35.5 U2 280~360	35.5~45 AN 35.5~45	45~56 AP 45~56	AQ 56~71 W1 560~710	71~90 AR 71~90 W2 710~900	90~112 AS 90~112 X1 900~1100	AT 112~140 X2 1100~1400	AU 140~180 140~180 Y1 1400~1800	AV 180~224 (Ta Y2 1800~2200 (Ta	AW 224~280 =25°C, I _F Z1 2200~2800	AX 280~355 (Ta AX 280~355 =20mA) Z2 2800~3600 =20mA)	AY 355~450 =25°C, I _F AY	A 450~ ==50 A
Rank Iv (mcd) ML-Z14FT(A) ML-Z14M4T ML-Z14P4T ML-Z14F4T ML-Z14F4T Green(E Rank Iv (mcd) MLZ14EGT(A Blue(B) Rank	AG 9~11.2	AH 11.2~14 S2 110~140	AJ 14~18 T1 140~180	AK 18~22.4 T2 180~220	AL 22.4~ 28	AM 28~35.5 U2 280~360	35.5~45 AN 35.5~45	45~56 AP 45~56	AQ 56~71	71~90 AR 71~90	AS 90~112 X1 900~1100	AT 112~140 X2 1100~1400 X2	AU 140~180	AV 180~224 (Ta Y2 1800~2200	AW 224~280 =25°C, I _F Z1 2200~2800	AX 280~355 (Ta AX 280~355	AY 355~450 =25°C, I _F AY	A 450~ ==50i A
Iv (mcd) ML-Z14M4T ML-Z14P4T ML-Z14F4T Green(E Rank Iv (mcd) MLZ14EGT(A	AG 9~11.2) S1 90~110)	AH 11.2~14 S2 110~140	AJ 14~18 T1 140~180	AK 18~22.4 T2 180~220	AL 22.4~ 28	AM 28~35.5 U2 280~360	35.5~45 AN 35.5~45	45~56 AP 45~56 V2 450~560	AQ 56~71 W1 560~710	71~90 AR 71~90 W2 710~900	AS 90~112 X1 900~1100	AT 112~140 X2 1100~1400 X2	AU 140~180 140~180 Y1 1400~1800	AV 180~224 (Ta Y2 1800~2200 (Ta Y2	224~280 AW 224~280 =25°C, I _F 21 =25°C, I _F Z1	AX 280~355 (Ta AX 280~355 = 20mA) Z2 2800~3600 = 20mA) Z2	AY 355~450 =25°C, I _F AY	A 450~ ==50 A
Rank Iv (mcd) ML-Z14FT(A) Rank Iv (mcd) ML-Z14M4T ML-Z14P4T ML-Z14F4T Green(E Rank Iv (mcd) MLZ14EGT(A) Rank Iv (mcd)	AG 9~11.2) S1 90~110 S1 90~110	AH 11.2~14 S2 110~140	AJ 14~18 T1 140~180	AK 18~22.4 T2 180~220	AL 22.4~ 28	AM 28~35.5 U2 280~360	35.5~45 AN 35.5~45	45~56 AP 45~56 V2 450~560	AQ 56~71 W1 560~710	71~90 AR 71~90 W2 710~900	AS 90~112 X1 900~1100	AT 112~140 X2 1100~1400 X2	AU 140~180 140~180 Y1 1400~1800	AV 180~224 (Ta Y2 1800~2200 (Ta Y2	224~280 AW 224~280 =25°C, I _F 21 =25°C, I _F Z1	AX 280~355 (Ta AX 280~355 = 20mA) Z2 2800~3600 = 20mA) Z2	AY 355~450 =25°C, I _F AY	A 450~ ==50 A
Rank Iv (mcd) WL-Z14F4T WL-Z14P4T WL-Z14F4T WL-Z14F4T Freen(E Rank Iv (mcd) WLZ14EGT(A Blue(B) Rank Iv (mcd) WLZ14BGT(A WLZ14BGT(A	AG 9~11.2) S1 90~110) S1 90~110	AH 11.2~14 S2 110~140	AJ 14~18 T1 140~180	AK 18~22.4 T2 180~220	AL 22.4~ 28	AM 28~35.5 U2 280~360	35.5~45 AN 35.5~45	45~56 AP 45~56 V2 450~560	AQ 56~71 W1 560~710	71~90 AR 71~90 W2 710~900	AS 90~112 X1 900~1100	AT 112~140 X2 1100~1400 X2	AU 140~180 140~180 Y1 1400~1800	AV 180~224 (Ta Y2 1800~2200 (Ta Y2	AW 224~280 =25°C, I _F Z1 2200~2800 =25°C, I _F Z1 2200~2800	AX 280~355 (Ta AX 280~355 =20mA) Z2 2800~3600 =20mA) Z2 2800~3600	AY 355~450 =25°C, I _F AY 355~450	A 450~
ML-Z14FT(A) Rank Iv (mcd) ML-Z14M4T ML-Z14P4T ML-Z14F4T Green(E Rank Iv (mcd) MLZ14EGT(A Blue(B) Rank Iv (mcd) MLZ14BGT(A MLZ14BGT(A	AG 9~11.2) S1 90~110) S1 90~110) B)	S2 110~140 S2 110~140	AJ 14~18 T1 140~180 T1 140~180	T2 180~220	AL 22.4~ 28	28~35.5 AM 28~35.5 U2 280~360	AN 35.5~45 V1 360~450 V1 360~450	AP 45~56 V2 450~560 V2 450~560	AQ 56~71 W1 560~710 W1 560~710	71~90 AR 71~90 W2 710~900	AS 90~112 X1 900~1100	AT 112~140 X2 1100~1400	AU 140~180 Y1 1400~1800 Y1 1400~1800	AV 180~224 (Ta Y2 1800~2200 (Ta S)	AW 224~280 =25°C, I _F Z1 2200~2800 =25°C, I _F (Ta	AX 280~355 (Ta AX 280~355 =20mA) Z2 2800~3600 =20mA) Z2 2800~3600	AY 355~450 =25°C, I _F AY 355~450	A 450~ ==500 A 450~
Rank Iv (mcd) WL-Z14F4T WL-Z14P4T WL-Z14F4T WL-Z14F4T Freen(E Rank Iv (mcd) WLZ14EGT(A Blue(B) Rank Iv (mcd) WLZ14BGT(A WLZ14BGT(A	AG 9~11.2) S1 90~110) S1 90~110) B) S1	S2 110~140 S2 110~140	AJ 14~18 T1 140~180 T1 140~180	T2 180~220 T2 180~220	AL 22.4~ 28	28~35.5 AM 28~35.5 U2 280~360 U2 280~360	AN 35.5~45 V1 360~450 V1	45~56 AP 45~56 V2 450~560	AQ 56~71 W1 560~710 W1 560~710	71~90 AR 71~90 W2 710~900 W2 710~900	AS 90~112 X1 900~1100 X1 X1 X1	AT 112~140 X2 1100~1400 X2 X2 X2	AU 140~180 Y1 1400~1800 Y1 1400~1800	AV 180~224 (Ta Y2 1800~2200 (Ta Y2 1800~2200	AW 224~280 =25°C, I _F Z1 2200~2800 =25°C, I _F Z1 27 Z1 27 Z1 Z1 Z1 Z1 Z1 Z1 Z1 Z1	AX 280~355 (Ta AX 280~355 =20mA) Z2 2800~3600 =25°C, I _F Z2	AY 355~450 =25°C, I _F AY 355~450	### ##################################

^{*}Please note that the brightness of some products may fall between ranks (half rank).

■ Chromaticity Diagram

			(T	a = :	25℃	、If=	20m	A)	
	D		E	=	F	=	G		
У	Χ	У	Χ	У	Х	У	Х	У	
0.259	0.291	0.268	0.296	0.259	0.291	0.268	0.305	0.272	
0.268	0.285	0.279	0.291	0.268	0.285	0.279	0.301	0.283	
0.252	0.273	0.261	0.301	0.283	0.296	0.296	0.310	0.297	
0.244	0.280	0.252	0.305	0.272	0.301	0.283	0.313	0.284	
ł	J		K		L		М		
У	Χ	У	Χ	У	Х	У	Χ	У	
0.283	0.310	0.297	0.307	0.312	0.320	0.313	0.319	0.330	
0.296	0.320	0.313	0.319	0.330	0.329	0.328	0.329	0.345	
0.312	0.321	0.296	0.320	0.313	0.329	0.308	0.329	0.328	
0.297	0.313	0.284	0.310	0.297	0.321	0.296	0.320	0.313	
	y 0.259 0.268 0.252 0.244 y 0.283 0.296 0.312	y X 0.259 0.291 0.268 0.285 0.252 0.273 0.244 0.280 y X 0.283 0.310 0.296 0.320 0.312 0.321	y X y 0.259 0.291 0.268 0.268 0.285 0.279 0.252 0.273 0.261 0.244 0.280 0.252 y X y 0.283 0.310 0.297 0.296 0.320 0.313 0.312 0.321 0.296	y x y x 0.259 0.291 0.268 0.296 0.268 0.292 0.291 0.261 0.301 0.252 0.273 0.261 0.301 0.305 0.244 0.280 0.252 0.305 y x y x 0.283 0.310 0.297 0.307 0.294 0.320 0.313 0.319 0.312 0.321 0.326 0.320	y x y x y 0.259 0.291 0.268 0.292 0.259 0.268 0.279 0.211 0.268 0.252 0.261 0.301 0.283 0.244 0.280 0.252 0.305 0.272 y x y x y 0.283 0.312 0.312 0.312 0.312 0.284 0.312 0.312 0.313 0.319 0.330 0.312 0.321 0.326 0.320 0.313 0.312 0.313	y x y x y x y x y x	Y X Y X Y X Y X Y X Y	Y X Y X Y X Y X 0.259 0.291 0.268 0.296 0.259 0.291 0.268 0.305 0.268 0.285 0.279 0.291 0.268 0.285 0.279 0.301 0.252 0.273 0.261 0.301 0.283 0.296 0.296 0.310 0.244 0.280 0.252 0.305 0.272 0.301 0.283 0.313 Y X Y X Y X Y X Y X Y X Y X X Y 0.283 0.310 0.297 0.307 0.312 0.320 0.313 0.319 0.294 0.320 0.313 0.319 0.320 0.328 0.328 0.329 0.312 0.321 0.326 0.320 0.313 0.329 0.308 0.329	

Measurement tolerance: ±0.01

■ Packing Specification

SCM Chip LED

ROHM LED products are being shipped with desiccant (silica gel) included in moisture-proof bags. Pasting the moisture sensitive label on the outer surface of the moisture-proof bags or enclosing the humidity indication card inside the bag is available upon request. Please contact the nearest sales office or distributer if necessary.

1.5x1.0 t=0.2mm 3.5x2.8 t=0.6mm

01 3.0x1.5 t=2.2mm

White

Phototransistors Red/Green/Blue be a representative part name.

is needed.

General products are free of ranks.

Please contact sales if rank appointment

■ Precaution (Surface Mount Device)

1. Storage

If the product is heated during the reflow under the condition of hygroscopic state, it may vaporize and expand which will influence the performance of the product. Therefore, the package is waterproof. Please use the product following the conditions:

Using Conditions

Classification	Temperature	Humidity	Expiration Date	Remark
①Before using	5~30℃	30~70%RH	Within 1 year from Receiving	Storage with waterproof package
②After opening package	5~30℃	Below 70%RH	Within 72h	Please storing in the airtight container with our desiccant (silica gel)

Baking

Bake the product in case of below:

- 1)The expiration date is passed.
- ②The color of indicator (silica gel) turned from blue to colorless or from green to pink. (Even if the product is within the expiration date.)

Baking Conditions

Tempera	ture Time		Humidity			
60±3°	C	40~48h Below 20%RH				
Remark	·Reel and so please	ducts in reel. embossed tape try not to apply end bake once.	are easy to be deformed when baking, stress on it.			

2. Application Methods

2 – 1. Precaution for Drive System and Off Mode

Design the circuit without the electric load exceeding the ABSOLUTE MAXIMUM RATING that applies on the products. If drive by constant voltage, it may cause current deviation of the LED and result in deviation of luminous intensity, so we recommend to drive by constant current. (Deviation of VF Value will cause deviation of current in LED.) Furthermore, for off mode, please do not apply voltage neither forward nor reverse. Especially, for the products with the Aq-paste used in the die bonding, there's high possibility to cause electro migration and result in function failure.

2 - 2. Derating

The Derating Characteristics are based on the lifetime of luminous intensity and assumption of degradation & color change of sealing resin or reflector. About its reliability, please evaluate its using conditions and environment and use it after confirmed there is no problem.

2 – 3. Operation Life Span

There's possibility for intensity of light drop according to working conditions and environments (applied current, surrounding temperature and humidity, corrosive gases), please call our Sales staffs for inquiries about the concerned application below.

- 1) Longtime intensity of light life
- 20n mode all the time

2 – 4. Applied Stress on Product

The top of the LED is very soft, which the silicon resin is used as sealing resin.

Therefore, please pay attention to the overstress on it which may influence its reliability.

 $\underline{2-5}$. Usage The Product is LED. We are not responsible for the usage as the diode such as Protection Chip, Rectifier, Switching and so on.

3. Others

3 – 1. Surrounding Gas

Notice that if it is stored under the condition of acid gas (chlorine gas, sulfured gas) or alkali gas (ammonia), it may result in low soldering ability (caused by the change in quality of the plating surface) or optical characteristics changes (light intensity, chrominance) and change in quality of cause die bonding (Ag-paste) materials. All of the above will function failure of the products.

Therefore, please pay attention to the storage environment for mounted product (concern the generated gas of the surrounding parts of the products and the atmospheric environment).

3 – 2. Electrostatic Damage

The product is part of semiconductor and electrostatic sensitive, there's high possibility to be damaged by the electrostatic discharge. Please take appropriate measures to avoid the static electricity from human body and earthing of production equipment. Especially, InGaN type LEDs have lower resistance value of electrostatic discharge and it is recommended to introduce the ESD protection circuit. The resistance values of electrostatic discharge (actual values) vary with products, therefore, please call our Sales staffs for inquiries.

3 – 3. Electromagnetic Wave

Applications with strong electromagnetic wave such as, IH cooker, will influence the reliability of LED, therefore please evaluate before using it.

4. Mounting

4 - 1. Soldering

- •No resin hardening agent such as filler is used in the sealing resin of the product. Therefore, resin expansion and moisture absorption at humidity will cause heat stress during soldering process and finally has bad influence on the product's reliability.
- •The product is not guaranteed for flow soldering.
- •Do not expose the product in the environment of high temperature (over 100° C) or rapid temperature shift (within 3° C/sec. of temperature gradient) during the flow soldering of surrounding parts. In case of carrying out flow soldering of surrounding parts without recommended conditions, please contact us for inquiries.
- •Please set appropriate reflow temperature based on our product usage conditions and specification.
- •The max for reflowing is 2 times, please finish the second reflow soldering and flow soldering with other parts within the usage limitation after open the moisture proof package.
- •Compare with N2 reflow, during air reflow, because of the heat and surrounding conditions, it may cause the discoloration of the resin.
- •For our product that has no solder resist, because of its solder amount and soldering conditions, one of its specific characteristics is that solder will penetrate into LED. Thus, there's high possibility that will influence its reliability. Therefore, please be informed, concerning it before using it.

4 - 2. Automatic Mounting

4-2-1. Silicon Resin Sealing Product

The sealing resin of LED is very soft, so please select adsorption nozzle that would not apply stress directly on the sealing section.

4-2-2. Mini Package (Smaller than 1608 size)

•Vibration may result in low mounting rate since it will cause the static electricity of product and adhere to top cover tape. Therefore, the magnet should be set on parts feeder cassette of the mounter to control the product stabilization. In addition, it is recommended to set ionizer to prevent electrostatic charge.

4 – 3. Mounting Location

The stress like bending stress of circuit board dividing after mounting, may cause LED package crack or damage of LED internal junction, therefore, please concern the mounting direction and position to avoid bending or screwing with great stress of the circuit board.

Stress strength according to he mounting position: A>B>C>D

4-4. Mechanical Stress after Mounting

The mechanical stress may damage the LED after Circuit Mounting, so please pay attention to the touch on product.

4 – 5. Soldering Pattern for Recommendation

We recommend the soldering pattern that shows on the right. It will be different according to mounting situation of circuit board, therefore, please concern before designing.

4 – 6. Reflow Profile

For reflow profile, please refer to the conditions below:(%)

■ Meaning of marks. Conditions

— 1 learning 0	of fridiks, conditions	
Mark	Meanings	Conditions
Ts _{max}	Maximum of pre-heating temperature	180℃
Ts _{min}	Minimum of pre-heating temperature	140℃
t _s	Time from Tsmin to Tsmax	Over 60sec.
T_L	Reference temperature	230~250℃
t_L	Retention time for TL	Within 40sec.
T _P	Peak temperature	250℃(Max)
t _P	Time for peak temperature	Within 10sec.
$\Delta T_R/\Delta t$	Temperature rising rate	Under 3℃/sec.
$\Delta T_D/\Delta t$	Temperature decreasing rate	Over -3℃/sec.

*Above conditions are for reference. Therefore, evaluate by customer's own circuit boards and reflow furnaces before using, because stress from circuit boards and temperature variations of reflow furnaces vary by customer's own conditions.

4 – 7. Attention Points in Soldering Operation

This product was developed as a surface mount LED especially suitable for reflow soldering. So reflow soldering is recommended. In case of implementing manual soldering, please take care of following points.

1SOLDER USED

Sn-Cu, Sn-Ag-Cu, Sn-Ag-Bi-Cu

2HAND SOLDERING CONDITION

LED products do not contain reinforcement material such as a glass fillers.

So thermal stress by soldering greatly influence its reliability.

Please keep following points for manual soldering.

	ITEM	RECOMMENDED CONDITION
a)	Heating method	LED. (Fig-1)
b)		Please handle after the part temp. goes down to room temp.

4 – 8. Cleaning after Soldering

Please follow the conditions below if the cleaning is necessary after soldering.

Solvent	We recommend to use alcohols solvent such as, isopropyl alcohols
Temperature	Under 30°C within 3 minutes
Ultrasonic Cleaning	15W/Below 1 liter (capacity of tank)
Drying	Under 100℃ within 3 minutes

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative : transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 9) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor:

<u>SML-Z14YTT86A</u> <u>SML-Z14PTT86A</u> <u>SML-Z14DTT86A</u> <u>SML-Z14UTT86A</u> <u>SML-Z14VTT86A</u> <u>SML-Z14MTT86A</u> <u>SML-Z14D4TT86</u> <u>SML-Z14F4TT86</u> <u>SML-Z14M4TT86</u> <u>SML-Z14P4TT86</u> <u>SML-Z14U4TT86</u> <u>SML-Z14V4TT86</u> <u>SML-Z14V4TT86</u> <u>SML-Z14V4TT86</u> <u>SMLZ14WBGDW1</u> <u>SMLZ14WBGDW1</u> <u>SMLZ14WBGDW1</u> <u>SMLZ14WBGDW1</u> <u>SMLZ14FTT86A</u> <u>SML-Z14Y4TT86BABB</u> <u>SMLZN4BGTT86A</u>