## Travaux dirigés de Machine Learning

## Cycle pluridisciplinaire d'études supérieures Université Paris sciences et lettres

## Joon Kwon

## vendredi 14 avril 2023

HG.

On se place dans un cadre de régression avec  $\mathscr{Z}=\mathbb{R}^d$  et  $\mathscr{Y}=\mathbb{R}$ , et la perte quadratique :

$$\forall y, y' \in \mathbb{R}, \quad \ell(y, y') = \frac{1}{2}(y - y')^2.$$

Pour  $w \in \mathbb{R}^d$ , on note  $h_w$  le prédicteur défini par :

$$\forall x \in \mathbb{R}^d$$
,  $h_w(x) = \langle w, x \rangle$ .

On considère la classe de prédicteurs  $\mathscr{F}=\{h_w\}_{w\in\mathbb{R}^d}$ . Soit  $n\geqslant 1$  un entier et  $S=(x_i,y_i)_{i\in[n]}\in\mathscr{S}(\mathscr{X},\mathscr{Y})$  un échantillon d'apprentissage. Pour  $i\in[n]$ , on note  $x_{ij}$   $(1\leqslant j\leqslant d)$  les composantes de  $x_i$ . On pose :

$$\mathbf{A} = \sum_{i=1}^n x_i x_i^{ op}$$
 et  $b = \sum_{i=1}^n y_i x_i$ ,

où  $x_i^\top$  désigne la transposée de  $x_i,$  ce dernier étant vu comme un vecteur colonne.

1) Donner une expression simple des coefficients de la matrice A.

On s'intéresse à la minimisation du risque empirique avec régularisation  $\ell_2$  et un paramètre de régularisation  $\lambda>0$ : elle donne le prédicteur  $h_{\hat w}$  où  $\hat w$  est défini par :

$$\hat{w} = \underset{w \in \mathbb{R}^d}{\arg\min} F(w),$$

et où  $\mathbf{F}:\mathbb{R}^d \to \mathbb{R}$  est la fonction définie par

$$\forall w \in \mathbb{R}^d, \quad F(w) = \frac{1}{n} \sum_{i=1}^n \frac{1}{2} (y_i - h_w(x_i))^2 + \frac{\lambda}{2} \|w\|_2^2.$$

- 2) Donner une expression du gradient de F faisant intervenir A et b.
- 3) En déduire une équation matricielle vérifiée par  $\hat{w}$ .
- 4) Montrer que les valeurs propres de A sont positives.
- 5) Montrer que la matrice  $\mathbf{A} + \lambda n \mathbf{I}_d$  (où  $\mathbf{I}_d$  désigne la matrice identité) est inversible.
- 6) En déduire une expression matricielle pour  $\hat{w}$ .

