

Master 1

NTR: Nouvelle Technologie Réseau « réseau sans fil »

Cédric Guéguen Maître de Conférences Université Rennes 1 / IRISA Responsable M2-Ingénérie des Réseaux

OBJECTIFS & CONTENU

- Etre initié aux nouveaux paradigmes réseaux sans fil:
 - Connaitre l'existants et ses points faibles
 - Maitriser les concepts de base du sans fil tel que les spécificité des transmissions sans fils, l'allocations opportunistes, etc.
- Maitriser les bases de réseau
 - modèle OSI
 - adressage IP et MAC
 - Routage (RIP, OSPF)
 - TCP vs UDP
- Essentiel pour toutes formations destinées à des métiers orienté GL comme réseau (M2-IR) ou sécurité (M2-SSI)

ORGANISATION DE L'UE

- Organisation théorique du cours
 - 16 h CM
 - 8 h TD
 - 24 h TP => projet développement « analyse de performances » 5G (choix du langage libre mais devra être justifié et assumé).
 - Routage opportuniste
 - Allocation de ressource (économie d'energie)
 - Allocation opportuniste spatial muti-antenne
 - => Rapport final + code + exposé (dernière séance)

PLAN

- « Scheduling » : allocation de ressource 5G => 4h
 - Spécificité des réseaux sans fil (contexte, notion d'équité, transmission…)
 - Importance de l'algorithme d'allocation de ressource (spécificité du sans fil, 5G)
- Types de réseaux sans fil
 - Wifi (le + connu et utilisé) => 2h
 - Zigbee (energie) => 2-4h
 - LTE, 4G, 5G (l'avenir) => 4h
 - Projet TP
- TCP VS UDP => 2h
- Adressage et routage

CONTEXTE SANS FIL: LES ENJEUX

- De plus en plus de mobiles mais ressources radio limitées
- → Maximiser le débit global du système (≠ du filaire)
- Qualité de Service au cœur des préoccupations
- → Différencier les services
- → Assurer une allocation équitable (distance & besoin)
- o Contexte économique, humain et écologique
- → Economiser l'énergie
- o Sécurité, zone de couverture, etc...

SPÉCIFICITÉ DES TRANSMISSION SANS FIL

Le signal subit plusieurs atténuations

⇒ le débit est différent pour chaque utilisateur

 Atténuation liée à la distance (path loss)

- Atténuation liée à la présence d'obstacle (shadowing)
- Atténuation liée aux multi-trajets (multi-path fading)

CORRELATION ENTRE DÉBIT MOYEN ET POSITION

CORRELATION ENTRE DÉBIT MOYEN ET POSITION

CANAUX SELECTIFS EN FRÉQUENCES (DÉBIT DIFFÉRENTS A UNE MEME DISTANCE DU POINT D'ACCÈS)

L'ÉQUITÉ...

Notion plus complexe qu'elle n'en a l'air...

oniveau 1 : garantir un même nombre d'UR

oniveau 2 : garantir un même débit

oniveau 3 : garantir un même degré de satisfaction

=> Differenciation de service!!!

QUELS QUE SOIENT LES TYPES DE RÉSEAUX...

- L'importance de l'algorithme d'allocation des ressources est crucial!
 - QoS/QoE
 - Débits
 - Sécurité
 - Zone de couverture
 - Energie...
 - •

LES ALGORITHMES D'ALLOCATION DES RESSOURCES

Actuellement :

- RA
- RR
- FQ
- WFQ
- MaxMinFair
- => inefficaces!

Allocation MaxMin-Fair

- Futurs : (voir prochains slides)
 - MaxSNR
 - PF
 - •

TYPE DE BANDE

- Bande monoporteuse
 - Simple mais souvent inefficace
- Bande multi-porteuses
 - => I'OFDM

CANAUX SELECTIFS EN FRÉQUENCES (DÉBIT DIFFÉRENTS A UNE MEME DISTANCE DU POINT D'ACCÈS)

L'ACCÈS OFDM

m_{k,n}: le nombre de bits susceptibles d'être transmis par le mobile k, sur l'unité de ressource n

ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING (OFDM)

• Avantages :

- permet de lutter contre les canaux sélectifs en fréquence
- Bonne gestion du multi-trajet
- Allocation dynamique des ressources

Inconvénients :

- Très sensible à la désynchronisation
- Facteur de crête

ALLOCATION OPPORTUNISTE: MAXSNR

• MaxSNR alloue l'unité de ressource n au mobile qui a le meilleur rapport signal à bruit (SNR), i.e. le meilleur $m_{k,n}$

⇒ Le débit global du système augmente considérablement

MAXIMISATION DU DÉBIT : PRIX À PAYER ?

Affaiblissement lié aux multi-trajets

puissance du bruit

Eloignement \Rightarrow $m_{k,n} \searrow \Rightarrow$ probabilité d'accéder à la ressource \searrow

MaxSNR: allocation inéquitable

ALLOCATION OPPORTUNISTE: PF

• PF alloue l'unité de ressource n au mobile qui a le meilleur rapport signal à bruit (SNR) par rapport a son SNR moyen, i.e. le meilleur $m_{k,n \text{ instantann\'e}}/m_{k,n \text{ moyen}}$

⇒ Plus équitable ???

CLASSEMENT DES ALGORITHMES D'ALLOCATION DE RESSOURCES

- Tenter de « noter » les performances de chaque scheduler vu jusqu'à présent dans un tableau.
 - Les différents ordonnanceurs sont notés dans chaque domaine de 0 à 3 (0 représente le plus faible niveau et 3 représente l'objectif maximum atteignable vers lequel il est souhaitable de tendre).
 - Critère de performance: maximisation du débit, équité, différenciation de service, simplicité d'implémentation.

CLASSEMENT DES ALGORITHMES D'ALLOCATION DE RESSOURCES

Ordonnanceurs	RR	RA	FQ	Max-Min Fair	WFQ	MaxSNR	PF
Débit	0	0	0	0	0	3	3
Equité	1	1	2	2	2.5	0	1
Différenciation de service	0	0	0	0	1	0	0
Simplicité	3	3	2	2	2	2	2

QUESTIONS...

- Que choisiriez vous comme ordonnanceurs sachant que tout les utilisateurs sont à une même distance du point d'accès :
 - Dans un réseau où tous les utilisateurs ont les même besoins ?
 - Dans un réseau où certains utilisateurs ont payé pour avoir la priorité ?
- Discuter de la pertinence de vos choix dans le cas ou tout les utilisateurs ne sont pas à la même distance du point d'accès
- Idem dans le cas ou on inclurait la mobilité

Enjeux des allocations de ressources dans les réseaux sans fil

PROBLÈMES POUVANT ÊTRE RÉSOLU PAR UNE BONNE ALLOCATION DE RESSOURCES

- Inéquité par rapport à la distance
- QoS/QoE et différenciation de service
- Minimisation de l'energie
- Extension de la zone de couverture
- Optimisation des performance réseau en fonction du type de bande disponible

PROBLÈMES POUVANT ÊTRE RÉSOLU PAR UNE BONNE ALLOCATION DE RESSOURCES

- Inéquité par rapport à la distance
- QoS/QoE et différensiation de service
- Minimisation de l'energie
- Extension de la zone de couverture
- Optimisation des performance réseau en fonction du type de bande disponible

MAXSNR ET MAXIMISATION DU DÉBIT : PRIX À PAYER ?

Affaiblissement lié aux multi-trajets

Densité spectrale de puissance du bruit

Eloignement \Rightarrow $m_{k,n} \searrow \Rightarrow$ probabilité d'accéder à la ressource \searrow

FAIR MAXSNR (FMAXSNR)

- MaxSNR équitable dans un seul cas
 - Tous les mobiles sont situés à une même distance du point d'accès (i.e. même $m_{k,n}$ moyen)
- o Idée pour être toujours équitable
 - Placer virtuellement tous les utilisateurs à une même distance du point d'accès
 - CF_k calculé de manière à ce que chaque mobile obtienne un même $F_{k,n}$ moyen

FMaxSNR: allocation équitable

FMaxSNR: gain en efficacité spectrale

OUTILS DE MESURE QOE: PACKET DELAY OUTAGE RATIO (PDOR)

Pourcentage de paquets (%)

Analyse de performance

tous mobiles

0.075

0.05

Valeur X de PDOR (%)

PROBLÈMES POUVANT ÊTRE RÉSOLU PAR UNE BONNE ALLOCATION DE RESSOURCES

- Inéquité par rapport à la distance
- QoS/QoE et différensiation de service
- Minimisation de l'energie
- Extension de la zone de couverture
- Optimisation des performance réseau en fonction du type de bande disponible

AVANTAGES ET LIMITE DU FMAXSNR ET CPF

Avantages:

- Débit → maximisation égale au MaxSNR et PF
- Équité \rightarrow gestion efficace de la mobilité intracellulaire

Limite:

Il faut différencier les services !!!

WEIGHTED FAIR OPPORTUNISTIC SCHEDULING

Allouer la ressource radio au meilleur moment physique et applicatif :

WFO_{k,n} =
$$(m_{k,n}) \times f(PDOR_k)$$

État du canal (débit possible/unité de ressource)

Urgence à être servi

$$f(x) = 1 + \beta x^{\alpha} \text{ avec}$$
:

α : paramètre de réactivité aux fluctuations de PDOR

β : paramètre de normalisation

Non régression?

Scénario 1 : Gestion de la mobilité intracellulaire

Mobiles:

- Même type de trafic pour tous
 - Même exigence en termes de débit
 - Même contrainte temporelle
- Positions différentes
 - Groupe 1 : proches du point d'accès
 - Groupe 2 : éloignés du point d'accès

GESTION DE LA MOBILITÉ

0,8 % de flux seulement subissent des retards excessifs

37

PAQUETS ARRIVÉS HORS DÉLAI (PDOR)

mobiles proches

mobiles éloignés

équité entre utilisateurs quelle que soit leur position

NIVEAU D'INSATISFACTION

Meilleure utilisation de la bande passante

DIVERSITÉ MULTI-UTILISATEUR

Conservation de la diversité multi-utilisateur

RETARD ET GIGUE

Retard moyen

Gigue

ET LA DIFFÉRENCIATION DE SERVICE ALORS ?

Avantages:

- Débit → maximisation égale au MaxSNR et PF
- Équité \rightarrow gestion efficace de la mobilité intracellulaire

Limite:

Il faut différencier les services !!!

Scénario 2 : différents débits requis

Mobiles:

- Même distance du point d'accès
- Mêmes contraintes temporelles
- o Exigences différentes en termes de débit
 - Groupe 1 : débit requis de 80 kbit/s
 - Groupe 2 : débit requis de 240 kbit/s

Scénario 2 : différents débits requis

SCÉNARIO 3 : DIFFÉRENTES CONTRAINTES TEMPORELLES

Mobiles:

- Même distance du point d'accès
- o Même exigence en termes de débit
- Contraintes temporelles différentes
 - Groupe 1 : contrainte de retard (T_k) de 250 ms
 - Groupe 2 : contrainte de retard (T_k) de 80 ms

Scénario 3 : différentes contraintes temporelles

PROBLÈMES POUVANT ÊTRE RÉSOLU PAR UNE BONNE ALLOCATION DE RESSOURCES

- Inéquité par rapport à la distance
- QoS/QoE et différensiation de service
- Minimisation de l'energie
- Extension de la zone de couverture
- Optimisation des performance réseau en fonction du type de bande disponible

Minimisation de la consommation energétique : idée de base

- → Concentrer les transmissions
- → Maximiser les temps de veilles

MINIMISATION DE LA CONSOMMATION ENERGÉTIQUE

Opportunistic Energy Aware Scheduler

(OEA)

OEA principle is to allocate a Resource Unit (RU) n to the mobile k which provides the best "Bit Transmission Profitability" ($BTP_{k,n}$ in bit/Watt) such as:

$$BTP_{k,n} = (m_{k,n}) / (ETC_{k,n})$$

Achievable throughput for mobile *k* on RU *n* Energy cost for mobile k to transmit on RU *n*

This provides the most profitable allocation in term of bit/Watt.

52

Distribution des URs

Conséquences sur "l'opportunicité"

Gain energénique

QUESTIONS

- Dans une allocation UR par UR, les ordonnenceurs suivant procurent-ils une allocation verticale ou horizontale ?
 - o RR
 - $\circ RA$
 - oPF
 - MaxSNR
 - CPF
 - •WFO

RÉPONSES

- Dans une allocation UR par UR, les ordonnenceurs suivant procurent-ils une allocation verticale ou horizontale ?
 - RR => ca dépend si on considère d'abord les fréquences puis les time slots ou l'inverse
 - RA => mixte
 - PF => horizontale
 - MaxSNR => horizontale
 - FmaxSNR => horizontale
 - •WFO => horizontale

PROBLÈMES POUVANT ÊTRE RÉSOLU PAR UNE BONNE ALLOCATION DE RESSOURCES

- Inéquité par rapport à la distance
- QoS/QoE et différensiation de service
- Minimisation de l'energie
- Extension de la zone de couverture
- Optimisation des performance réseau en fonction du type de bande disponible

EXTENSION DE LA ZONE DE COUVERTURE D'UN POINT D'ACCÈS

Le coût d'une coopération éventuelle d'un noeud peu être elevée en terme de:

- Bande passante, débit et QoS
- D'energie
- ⇒ Cela ne motive pas les noeud a coopérer!

COVERAGE EXTENSION BASED ON INCENTIVE SCHEDULER FOR MOBILE RELAYING NODES IN WIRELESS NETWORKS

- Encourager via le scheduling les utilisateur qui accepte de relayer des information
- La priorité d'un mobile k est déterminée par la valeur du paramètre CEI tel que :

SIMULATION RESULTS

Délai moyen mesuré en fonction de différents taux de coopération.

- Scheduler classiques: plus on coopère, moins on a de ressource pour ces propre communications
- CEI scheduler: Plus on coopère, plus on est récompensé!

SIMULATION RESULTS

Les mobiles restent libre de coopérer ou non mais sont récompensé s'il le font puisqu'ils contribuent activement au bon fonctionnement du réseau

PROBLÈMES POUVANT ÊTRE RÉSOLU PAR UNE BONNE ALLOCATION DE RESSOURCES

- Inéquité par rapport à la distance
- QoS/QoE et différensiation de service
- Minimisation de l'energie
- Extension de la zone de couverture
- Optimisation des performance réseau en fonction du type de bande disponible

DIVERSITÉ FRÉQUENTIELLE

DIVERSITÉ FRÉQUENTIELLE

- Diversité fréquentielle
 - Faible (=1): 1 groupe de 128 porteuses (de 1 time slot)
 - + Facile a géré et peu d'overhead du à la signalisation
 - Faible efficacité spectrale
 - Elevée (=128) : 128 groupes de 1 porteuse (de 1 time slot)
 - + Plus d'UR à allouer donc meilleur granularité (moins de gâchis, allocation plus fine)
 - + Meilleure efficacité spectrale pour les ordonnanceurs opportuniste
 - Overhead bien plus elevé (128 fois plus de signalisation)

LA FORCE...

Diversité fréquentielle \nearrow \Rightarrow Efficacité spectrale \nearrow

Diversité fréquentielle VS Efficacité spectrale

LE COTÉ OBCUR DE LA FORCE...

Diversité fréquentielle ∕ ⇒ Efficacité spectrale ∕

Diversité fréquentielle \nearrow \Rightarrow overhead \nearrow

Diversité fréquentielle VS overhead

LE COTÉ OBCUR DE LA FORCE...

Diversité fréquentielle ∕ ⇒ Efficacité spectrale ∕

Diversité fréquentielle \nearrow \Rightarrow overhead \nearrow

Résultats ???

DIVERSITÉ FRÉQUENTIELLE ET BANDE PASSANTE RÉSIDUELLE

DIVERSITÉ FRÉQUENTIELLE ET NIVEAU DE SATISFACTION

BILAN

Dans les réseaux sans fil:

- Négliger l'importance des conditions radio est une erreur
- le choix de l'algorithme d'allocation de ressource est primordiale!!!
 - o Pour le débit
 - Pour la QoS et la QoE
 - Et tous les autres critères de performance...

QUESTIONS

D'une manière générale, les allocations de ressources opportunistes actuelles consistent à allouer la sous-porteuse n, pour un intervalle de temps fixé, à l'utilisateur j avec :

$$j = argmax_k \left(\frac{m_{k,n}^{\alpha}}{M_{k,n}^{\beta}}\right), k = 1,..., K,$$

le paramètre α permet d'avoir une allocation plus ou moins opportuniste et β permet d'apporter plus ou moins d'équité.

Quel algorithme obtient-on si:

$$\alpha = 0$$
 et $\beta = 0$?

$$\alpha = 1$$
 et $\beta = 0$?

$$\alpha = 1$$
 et $\beta = 1$?

Pour ce dernier, quels sont à votre avis, les forces et faiblesses de cette solution.

QUESTIONS...

- Que choisiriez vous comme ordonnanceurs sachant que tout les utilisateurs sont à une même distance du point d'accès :
 - Dans un réseau où tous les utilisateurs ont les même besoins ?
 - Dans un réseau où certains utilisateurs ont payé pour avoir la priorité ?
- Discuter de la pertinence de vos choix dans le cas ou tout les utilisateurs ne sont pas à la même distance du point d'accès
- Idem dans le cas ou on inclurait la mobilité