```
<110> Rosen et al.
<120> 28 Human Secreted Proteins
<130> PZ003P4
<140> Unassigned
<141> 2001-05-11
<150> 60/265,583
<151> 2001-02-02
<150> 09/152,060
<151> 1998-09-11
<150> PCT/US98/04858
<151> 1998-03-12
<150> 60/040,762
<151> 1997-03-14
<150> 60/040,710
<151> 1997-03-14
<150> 60/050,934
<151> 1997-05-30
<150> 60/048,100
<151> 1997-05-30
<150> 60/048,357
<151> 1997-05-30
<150> 60/048,189
<151> 1997-05-30
<150> 60/057,765
<151> 1997-09-05
<150> 60/048,970
<151> 1997-06-06
<150> 60/068,368
<151> 1997-12-19
<160> 118
<170> PatentIn Ver. 2.0
```

<210> 1 <211> 733 <212> DNA

<400> 1

<213> Homo sapiens

gggatccgga gcccaaatct	totgacaaaa	ctcacacatq	cccaccqtqc	ccagcacctg	. 60
aattcgaggg tgcaccgtca	atcttcctct	tececcaaa	acccaaqqac	accctcatga	120
totocoggac tootgaggto	acatacataa	taataaacat	aaqccacqaa	gaccctgagg	180
tcaagttcaa ctggtacgtg	gaegegtgg	aggtgcataa	toccaagaca	aaqccqcggg	240
aggagcagta caacagcacg	taccatataa	fragratect	caccatccta	caccaggact	300
ggctgaatgg caaggagtac	aactgcgagg	totocaacaa	accetecea	acccccatcq	360
agaaaaccat ctccaaagcc	aagegedagg	cccaagaacc	acaggtgtac	accetquece	420
cateceggga tgagetgace	aaagggcagc	tragretgae	ctacctaatc	aaaggcttct	480
atccaagcga catcgccgtg	aagaaccagg	gcaatgggca	accadadaac	aactacaaga	540
ccacgcctcc cgtgctggac	tagagagaga	cettetteet	ctacaccaac	cheaceataa	600
acaagagcag gtggcagcag	ceegaegget	tetestecte	cataatacat	gaggetetge	660
acaagagcag gragcagcag acaaccacta cacgcagaag	gggaacgccc	tatatagaa	taaatgagtg	cascaaccac	720
	agecteteee	egeeeeeggg	caaacgagcg	0500554-54	733
gactctagag gat		•			
			•		•
<210> 2					
·				•	
<211> 5					
<212> PRT				•	
<213> Homo sapiens		•			
<220>			• .		•
<221> Site					
<222> (3)	,				
<222> (3) <223> Xaa equals any (of the twent	tv naturally	v ocurring	L-amino acid	s
22237 Add Equals any	of the twen	cy macaza	,		
<400> 2		•		•	
Trp Ser Xaa Trp Ser	-		,		
1 5					i
± 3		•			
<210 × 3	•	_ =			
<210> 3					
<211> 86					
<211> 86 <212> DNA					
<211> 86		. -			
<211> 86 <212> DNA <213> Homo sapiens					
<211> 86 <212> DNA <213> Homo sapiens	aatctagatt	teccegaaat	gatttccccg	aaatgatttc	60
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga		tccccgaaat	gatttccccg	aaatgatttc	60 86
<211> 86 <212> DNA <213> Homo sapiens		tccccgaaat	gatttccccg	aaatgatttc	
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga		tccccgaaat	gatttccccg	aaatgatttc	
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga		tccccgaaat	gatttccccg	aaatgatttc	
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc		teccegaaat	gatttccccg	aaatgatttc	
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc		teccegaaat	gatttccccg	aaatgatttc	
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27		teccegaaat	gatttccccg	aaatgatttc	
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA		teccegaaat	gatttccccg	aaatgatttc	
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA		teccegaaat	gatttccccg	aaatgatttc	86
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens	aattag	tccccgaaat	gatttccccg	aaatgatttc	
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens <400> 4	aattag	teccegaaat	gatttccccg	aaatgatttc	86
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens <400> 4	aattag	tccccgaaat	gatttccccg	aaatgatttc	86
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens <400> 4 gcggcaagct ttttgcaaag <210> 5	aattag	tccccgaaat	gatttccccg	aaatgatttc	86
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens <400> 4 gcggcaagct ttttgcaaag <210> 5 <211> 271	aattag	tccccgaaat	gatttccccg	aaatgatttc	86
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens <400> 4 gcggcaagct ttttgcaaag <210> 5 <211> 271 <212> DNA	aattag	tccccgaaat	gatttccccg	aaatgatttc	86
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens <400> 4 gcggcaagct ttttgcaaag <210> 5 <211> 271	aattag	tccccgaaat	gatttccccg	aaatgatttc	86
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens <400> 4 gcggcaagct ttttgcaaag <210> 5 <211> 271 <212> DNA <213> Homo sapiens	aattag	tccccgaaat	gatttccccg	aaatgatttc	86
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens <400> 4 gcggcaagct ttttgcaaag <210> 5 <211> 271 <212> DNA <213> Homo sapiens <400> 5 <211> 271 <212> DNA <213> Homo sapiens	cctaggc				27
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens <400> 4 gcggcaagct ttttgcaaag <210> 5 <211> 271 <212> DNA <213> Homo sapiens <400> 5 ctcgagattt ccccgaaatc	aattag	: cgaaatgatt	tcccgaaat	gatttccccg	27
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens <400> 4 gcggcaagct ttttgcaaag <210> 5 <211> 271 <212> DNA <213> Homo sapiens <400> 5 cccgagatt ccccgaaatc <400> 5 ctcgagatt ccccgaaatc aaatatctgc catctcaatt	cctaggc tagatttccc	: cgaaatgatt : catagtcccg	tccccgaaat cccctaactc	gatttccccg cgcccatccc	27 - 60 120
<211> 86 <212> DNA <213> Homo sapiens <400> 3 gcgcctcgag atttccccga cccgaaatat ctgccatctc <210> 4 <211> 27 <212> DNA <213> Homo sapiens <400> 4 gcggcaagct ttttgcaaag <210> 5 <211> 271 <212> DNA <213> Homo sapiens <400> 5 ctcgagattt ccccgaaatc	cctaggc tagatttccc agtcagcaac	: cgaaatgatt : catagtcccg : tccgcccat	tccccgaaat cccctaactc ggctgactaa	gatttccccg cgcccatccc	27

The last two man man are an are and and the first that the last that the last that the last that the last the l

```
<220>
<221> SITE
<222> (839)
<223> n equals a,t,g, or c
<400> 11
ctatcagatg ctgggcctcc tcagccatag ccccctgctc ctaccccctg actggctctt
                                                                       120
gtgtcctcac ctctcaccct ctccttcctg ggaggccctg ggaggtgatc attgacaccc
                                                                       180
agccaagcag acagctgcgg gtgcccaagc ccttgctggg cctgcgcgtg aggagtccca
                                                                       240
ctgcttctaa aggaagtcct gggcaggagg tggctttggt ggttggttcc aaagttgaaa
atgcttgcag tttgacctta gaagaagtgg gaagaagaag gagctctaca gggtcagctt
                                                                       300
tgtttgattt gtccagtcta agaagtccca ttgccaaagc tttctgcagg agggtgaatg
                                                                       360
                                                                       420
ccgcagcttg gcagcccctg ggtttctctt ggaaatggtc agtttcccct caaagtaccc
aaagtageet tggettgagt ttttgteett geeteetttt tagagaagag ggeatttaga
                                                                       480
ctgcattttc ctggttaaag aaggttaaag caaatgttta ttgccttttc tagtgaacta
                                                                       540
                                                                       600
actogtagag atgttotoag caggaagaca gtottagcac tgtcacttag cagattgcac
ttaagtccct tgtgctggcc agatggcgtg gctggttgcc ttaatatgtc ccaggacccc
                                                                       660
tgacagggct gcctggcctc tccctcgtgc tcctcaagag cccagtccat acactgtgga
                                                                       720
tgtcattgct gtcgggttag gaagtcttgt cctagaacgc cctggctggt atgaccacag
                                                                       780
ttcatggcgg ctcttctcgc ttgggtcatg gtcatcttcc agcacctgct gtgctgggna
                                                                       840
aggecgagga tgggggecca geaetgteca ggeetgetgg ggeetggetg ggagteetgt
                                                                       900
gggcagcatg gaacatgcag ctgggcttcc tgtgaccagg caccctctgg cactgttgct
                                                                       960
tgccctgtgc cctggacctt ttcctgccct tctccttcct ctgctccctt ggggctaccc
                                                                      1020
                                                                      1080
cttggcccct cctggtctgt gcaaactccc tcagggagcc cccctgccct gtagctctcr
cttaacttcc taggggctgc tgagcccacc cagaggttgt tggagttcag cggggcagct
                                                                      1140
                                                                      1200
tgtctccctt gtcagcaggg gcgtaagggc tgggtttggc catacaaggt tggctacgcc
                                                                      1260
ctcaatccct gaccgttcca ggcactgagc tgggcaccca cggaaggaca tgctgtccag
actgtgatga ctgccagcac agggcatctc gggcttggct ggtctgcgag gccttgcccc
                                                                      1320
tgtggaactc tgggttcctg ttttctcagt cttttttgcg gctttgctgt ggttggcagc
                                                                      1380
tgccgtactc caggettgtg teggecacte agatgaggge tgtggtgega gecagtgeag
                                                                      1440
                                                                      1500
gagagetgeg ettgggattg tgeeetetee tgtgtetgte etceggaeet acceaggtet
                                                                      1560
ccaccatcag gaccctgtct ttgggtttag aagaccaagt atggggaaaa ccaggcacca
                                                                      1620
gcctctgcag caatgggtcc ctctagcctg tggacaccag ctgggggatc cagggtcagg
coccetecte tecceagett coetetgetg tgggttetgg getgteatgt etecaceaet
                                                                      1680
                                                                      1740
taaggatgtc tttacactga cttcaggata gatgctggga tgcctgggca tggccacatg
ttacatgtac agaactttgt ctacagcaca aattaagtta tataaacaca gtgactggta
                                                                      1800 -
                                                                      1860
tttaatgctg atctactata aggtattcta tatttatatg acttcagaga cgcgtatgta
                                                                      1920
ataaaggacg ccctccctcc agtgtccaca tccagttcac cccagagggt cgggcaggtt
gacatattta tttttgtcta ttctgtaggc ttccatgtcc agaatcctgc ttaaggtttt
                                                                      1980
                                                                      2040
2084
actcgagggg gggcccggta cccaattcgc ccctataaag agtc
<210> 12
<211> 1586
<212> DNA
<213> Homo sapiens
<400> 12
                                                                        60
aattcggcac caggagaagt ggagtttgga agttcagggg cacaggggca caggcccacg
actgcagcgg gatggaccag tactgcatcc tgggccgcat cggggagggc gcccamggca
                                                                       120
                                                                       180
tegtetteaa ggecaageae gtggagaetg gegagatagt tgeeeteaag aaggtggeee
                                                                       240
taaggcggtt ggaagacggc ttccctaacc aggccctgcg ggagattaag gctctgcagg
                                                                       300
aratggagga caatcagtat gtggtacaac tgaaggctgt gttcccacac ggtggaggct
                                                                       360
ttgtgctggc ctttgagttc atgctgtcgg atctggccga ggtggtgcgc catgcccaga
ggccactage ccaggcacag gtcaagaget acctgcagat gctgctcaag ggtgtcgcct
                                                                       420
                                                                       480
tetgecatge caacaacatt gtacateggg acetgaaace tgecaacetg eteateageg
cctcaggcca gctcaagata gcggactttg gcctggctcg agtcttttcc ccagacggca
                                                                       540
```

```
geogeoteta cacacaccag gtggccacca ggageteact gagetgeegg actacaacaa
                                                                        600
gateteettt aaggageagg tgeecatgee eetggaggak gtgetgeetg aegtetetee
                                                                        660
ccaggcattg gatctgctgg gtcaattcct tctctaccct cctcaccagc gcatcgcagc
                                                                        720
ttccaagget etectecate agtaettett cacagetece etgeetgeee atecatetga
                                                                        780
gctgccgatt cctcagcgtc tagggggacc tgcccccaag gcccatccag ggccccccca
                                                                        840
                                                                        900
catecatgae ttecaegtgg aceggeetet tgaggarteg etgttgaace cararetgat
teggecette atectggarg ggtgagaagt tggecetggt eeegtetgee tgeteeteag
                                                                        960
gaccactcag tecacetgtt cetetgecae etgeetgget teaceeteca aggeetecee
                                                                       1020
atggccacag tgggcccaca ccacaccctg ccccttagcc cttgcgaagg ttggtctcga
                                                                       1080
rgcagargtc atgttcccag ccaagagtat gagaacatcc agtcgagcag aggagattca
                                                                       1140
tggcctgtsc tcggtgagcc ttaccttctg tgtgcttcac atcactgagc actcatttag
                                                                       1200
                                                                       1260
aagtgaggga gacagaagtc tagscccagg gatggctcca gttggggatc cagcaggaga
                                                                       1320
ccctctgcac atgaggctgg tttmccaaca tctactccct caggatgagc gtgagccaga
agcagctgtg tatttaagga aacaagcgtt cctggaatta atttataaat ttaataaatc
                                                                       1380
ccaatataat cccagctagt gctttttcct tattataatt tgataaggtg attataaaag
                                                                       1440
atacatggaa ggaagtggaa ccagatgcag aagaggaaat gatggaagga cttatggtat
                                                                       1500
                                                                       1560
cagataccaa tatttaaaag tttgtataat aataaagagt atgattgtgg ttcaaggata
                                                                       1586
aaaaaaaaa aaaaaaaaa actcga
<210> 13
<211> 689
<212> DNA
<213> Homo sapiens
<400> 13
atggaageta agtttggeet getttgettt ttagteteea caccatggge agaactgetg
                                                                         60
tetttaetae tteateteae eeaagteeeg tteeeaggea geeagggeet gggtttgaat
                                                                         120
                                                                         180
aattgcaggg cagcetgcca tgatetttet caettactee teteccatte agcaatcaae
                                                                         240
cagactaagg agttttgatc cctagtgatt acagccctga agaaaattaa atctgaatta
                                                                         300
attttacatg gccttcgtga tctttctgct gttcttactt tttcgaatgt agttgggggg
tgggagggac aggttatggt atttaaagag aataaacatt ttgcacatac atgtattgta
                                                                         360
caacagtaag atcctctgtt aaaaccagct gtcctgttct ccatctccat ttcttcccat
                                                                         420
                                                                         480
getgtaacce caggetecae cagetgttee ceagtgatgt tacetagett ecetetaceg
                                                                         540
ttgtctactg accatttcca ctacatgcct ttcctacctt cccttcacaa ccaatcaagt
                                                                         600
gaatacttga ttattatctc ttccttactg tgctttatct tttttgtttg gattggttct
                                                                         660
aattaatgaa aataaaagtt totaaattta catttttata gggtattgta aataaaaaca
                                                                         689
aatgtatact taaaaaaaaa aaaaaaaaa
<210> 14
<211> 1348
 <212> DNA
 <213> Homo sapiens
<220>
 <221> SITE
 <222> (45)
<223> n equals a,t,g, or c
<400> 14
                                                                          60
acgaagacac cagaccctgt ggagcctgtg gtgaccaccg aaggncagtt cgggtgcagc
agggctcgag cccagaaaac tatcctctaa gaccagacgt gacaaggaga agcagagctg
                                                                         120
 taagagetgt ggtgagaeet teaaeteeat caecaagagg aggeateaet geaagetgtg
                                                                         180
                                                                         240
 tggggcggtc atctgtggga agtgctccga gttcaaggcc gagaacagcc ggcagagcct
gtctgcagag attgtttcct gacacagcca gtggcccctg agagcacaga gaagacaccc
                                                                         300
                                                                         360
 actgcagacc cccagcccag cctgctctgc ggccccctgc ggctgtyaga gagcggtgag
 acctggagcg aggtgtgggc cgccatcccc atgtcagatc cccaggtgct gcacctgcag
                                                                         420
```

•				•		
gkaggcagcc	aggacggcg	actaccccac	accatccctc	tccccagctg	caaactgagt	480
gtgccggacc	ctgaggagag	gctggactcg	qqqcatgtgt	ggaagctgca	gtgggccaag	540
cartectort	acctgagcgc	ctcctccgca	gagetgeage	agcagtggct	ggaaacccta	600
agactacta	cccatagaga	cacaacccaa	gacagcccgg	agaccctaca	gcttcaggtc	660 [.]
agtatogecg	cactactcca	taaactaaat:	ctcccactgc	cctqcacacc	accacattgg	720 -
cetatgggeg	tagtgeteeg	taatattaa	ggccccatga	agagggggt	ggacttgctt	780
acctgtgctg	ccccgggagg	cggcgccgga	ggccccacga	taaaaaaaa	gaaaytgagg	840
gagggtgggc	caacagccca	gagyttagga	catttggctt	atttaavta	adadcctddc	900
cccagagagg	ggcaaccayt	ggccaagggc	cacccagcaa	gccccggyca	catcatccat	960
ctccagcccc.	agcagtktgg	cccagagcag	gggccgaytg	ccaaagtaac	cattaccat	1020
atgggccgtg	tggtgatgct	ggcccggaag	gcagaaagag	geagearggg	cactgccagg	1080
gacagccaca	tcctgctggt	ctgcagcgtg	gtccaccccg	cccctgccca	geetgeetae	1140
accgtgtgag	ctgaatcgtg	acttgcttcc	cacctccttt	ctctgtcctc	teetgaggtt	1200
ctgcctgcag	ccccaggag	gtgggcctgc	cccatcctag	ctggactcat	ggttcctaaa	1260
taaccacgct	cagaagctct	gctaggactt	accccagcca	ctgagtggca	ggcgcatgag	
atttgtggct	gttcctgatg	ctagtggcac	acagtgctta	tctgcataaa	taaacactgg	1320
scaccaaaaa	aaaaaaaaa	aaaaaac	•		•	1348
*					•	
					• •	
<210> 15					-	
<211> 1123		÷	•	•		
<212> DNA		•				
<213> Homo	sapiens		•			.*
	<u>-</u> -					
<400> 15	•					÷
cacacccaac	ccctactact	ctgggcagac	gatgctgaag	atgctctcct	ttaagctgct	60
actactaacc	ataactctaa	gettetttga	aggagatgct	aagtttgggg	aaagaaacga	120
geegeeggee	acascasas.	gaagatacct	gaatgggaac	ccccqaaqc	gcctgaaaag	180
agggagcgga	gcaaggagga .	cccactaga	gctgctgagt	ggggagaga	tactatacaa	240
gagagacagg	aggacgacgc	catactacct	gcggagtgac	adcccddddc	tagggcgcct	300
tggettetae	cereggerge	ttaggaggag	cacagaatgt	gggaagttac	tggaggaaat	360
ggagaataag	atattttttg	ccaccaacaa	anacatatta	cactcacctq	agagagaagt	420
caaatgtgca	ctttgctctc	cacattetea	aagcctgttc	tattacasa	aattottta	480
cttggaaaga	gacctagtac	tteetetget	ctgcaaagac	acceptaaas	tttactttta	540
cacttgccga	ggccatattc	caggttteet	tcaaacaact	geggaegage	aartaara	600
ctatgcaaga	aaagatggtg	ggttgtgctt	tccagatttt	ccaayaaaac	aagtcagagg	660
accagcatct	aactacttgg	accagatgga	agaatatgac	aaagtggaag	agaccagcag	720
aaagcacaaa	cacaactgct	tctgtattca	ggaggttgtg	agtgggetge	ggeageeege	720
tggtgccctg	catagtgggg	atggctcgca	acgtctcttc	attetggaaa	aagaaggita	840
tgtgaagata	cttacccctg	aaggagaaat	tttcaaggag	ccttatttgg	acattcacaa	900
acttgttcaa	agtggaataa	aggttggctt	tttaaatttt	atttatttt	gtgetggeta	960
cgttaatttt	attttagtgt	taccttcctc	actgaaggta	tttctttgta	acaaaagaaa	
gaatcttgca	ggagaaaata	agggggcaac	ataagaaaca	ataattatgg	cacctgaatt	1020
aggacagtga	cattaaattt	ctgttatttg	ttaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1080
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaa		1123
•		7	•		,	
	•	·	•			
<210> 16		*			•	•
<211> 890		•				
<212> DNA		•		•		
<213> Homo	sapiens-		•			
1 7 = 9 1		• •	•			
<400> 16				v	,	-
ttttaattga	tototoaraa	aacttaagaa	aatcacaatt	tcagctaaca	gcaattgtgt	. 60
cccaaacatc	aagatactat	aacctcaaat	ggtgcagatc	cagaactqqq	ctggatgaca	120
tecetactet	accatatact	agagcattta	gaaggactg	gacctctttc	ccctcatcaa	180
aggaaagg	agtotttaco	tettetatt	gattataecc	aagggctaca	gtagctctga	240
aggaaacagc	agectetates	aacactaata	aatagetete	aaataacaqt	cctaagaact	300
aataacaaga	tananactt	tettetaate	cagettttc	tottoctgag	aaacagtgtg	360
cctaaagtcc	Lyayaactit	arttertara	cagacacaca	atattccaac	aggaaggagt	420
ttctaatggg	allcccaggc	ayttoctaca	cccacygigi	gegeeeage	agggaggagt	
						~

```
tatgggctgg gctgcctttt cccatgggtc ttcattccca atggaaagtt cactctgctt
                                                                         480
agtttggaat tatttttctt tcagttgttc tggaaccttt gctttttatt gatttataca
                                                                         540
                                                                         600
atacaattgg tgggagggtg gacttgggat gggagtggga aaagcatgta agagctcctt
ttgtgatggt ccatctaccc aaaagagatc tgctttagtg aacgatactc tttcattttt
                                                                         660
ctaaattaga tcaagttgtt attgatttta gatgacttgt atgcaaattt gaaaaacttt
                                                                         720
 tttttttaaa gctgattggg aactacaaac aatgaatgga atctactgac acagctaatt
                                                                         780
 ggaaaacaga tgtcttcttc tgtcctattg atgctggtgt ttaaaaaaca tcacttaaaa
                                                                         840
 aaaaagaata aatagttota aaagcaaaaa aaaaaaaaaa aaaaaaatto
                                                                         890
 <210> 17
 <211> 619
 <212> DNA
 <213> Homo sapiens
 <400> 17
 teaggeeeeg etgaeteege eeegeaaeae teteaetege eettegtgte eeateaggte
                                                                          60
 ccgctgactc cgccccgcaa tactctcact cgcccttygt gtcccatcag gtcccgctga
                                                                         120
 ctccgccccg caacactctc acttgccctt cgtgtcccat caggtcctgc tgactccatc
                                                                         180
 tecteagegt etecaacatg tecetteett gecaectett geetggatta etacageage
                                                                         240
 ttctaacgag tctccctgcc tttcagttct ccgcaccgct tcaagtgttc agtctggatg
                                                                         300
                                                                         360
 gtotgtoact cocagogoca aaactgotga oggottocot ttgcottoag gaogaagtoo
 gtgctgtctg acataactta taggaccttt tagccagcct gggcaacata gcaagaccct
                                                                         420
 gtctctacca gaaaatacaa aaatgagcca ggcatagtgg tgtgcacctg tagtcccagc
                                                                         480
 tacttgggag gctgaggtgg gaggatcacc tgagcccagg aagtcaaggc tgccagtgag
                                                                         540
                                                                         600
 ccatgatcac accactgcac tccagcctgg gccacagagt gagaccctgt ctcaaaaaaa
                                                                         619
 aaaaaaaaa aaaactcga
 <210> 18
 <211> 1768
 <212 > DNA
. <213> Homo sapiens
 <220>
 <221> SITE
 <222> (483)
 <223> n equals a,t,g, or c
                                                                           60
 gaagccagac agtgacctca aatgttgcct tggagtcccc tacagcccct cagcagaggg
 cagcacttga atgcttagct ccatcccata gttctctaca ttaacatgct gtctctaagg
                                                                          120
 gtggcccctc ctctcaggcg ttcagatggt gcgaacagca gagcaggcaa gggaaactgg
                                                                          180
 ggagatgggg atggaggagg aaggctgata tcctctgggg agcacatcac ctgaaggtgc
                                                                          240
 caaggaggaa ggctgagagg ggggmcaccc atttytggta cccaatttgg ttcttcagcc
                                                                          300
 caacttgcaa ggggttcctt ctggtcctcc catccactgc caccttccat tttgtccatc
                                                                          360
                                                                          420
  tcatgctggc cttggtggat gggatggctg tatctagaca aaatttttct aaaactccat
                                                                          480
 caaggetett atteaatace aegtteegag ttggeettte atettetttg agactggeee
  tgnctaacct ctaccatcaa tgagctcttg gcccttctgc ccttccctgt gtttctcact
                                                                          540
  ttccaaccta atccctggct cagggttatt gccagtggag actggtgagc tgggcctact
                                                                          600
                                                                          660
  ctcagctgcc tatcttctgc ctttcacttg catccaactc ctggggctgg gaccgtagta
                                                                          720
 gctgcggggg ggaagaaaca cagggtcggt gagcccagca tgtgcgttgg tttgaggggg
  cgggcggtgt gtgtgtgttc tggtgggagg gatctgagca agtgcaagcc tggctgacac
                                                                          780
  aggtgtgaag aggccatcct ggaacccagk tgagggcaag atgaaggctt ccaggcagaa
                                                                          840
  cagctgcaga gagtttggct atatgcatct gcagccccaa gagctcccac tgcaagacaa
                                                                          900
                                                                          960
  gtgttgggga agatgggagg ttgtgggtga ggcctctaaa ggtcctctcc caaactgacc
                                                                         1020
  aggctgatgt caacctaacc ccctcagggg cagggaacag gggagggctc cacaagcgtg
                                                                         1080
  tetggeatte ceacceacea tggaagaetg gatacgeace tggaaacaaa aggaetatgg
```

```
aagctgttca agatacattt gatcttcaga aaagcagaat ttggttcaac tgttgacaga
                                                                      1200
ggacacaaat acgttgttcc agagctcagc cttctcactc taaaagaaag atatttttct
                                                                      1260
atttattttc tacatctggc cagtggctct ggtgctagat gccactgtag ccagatctcc
aacagtgeet tggaccatgg acteatacte aactgagtaa gaaggggetg gtgecagteg
                                                                      1320
gggtggctga gctggtcctt aataggttgt ttcttggtct tgctttcttc atgccctccc
                                                                      1380
cactgotoot gocacottta gataagttto totagotaat tttgtggcca atgtaaaatt
                                                                      1440
                                                                      1500
cgtcatcaac ctaacaaaca caaccttctc agcagcattt ctcccctgtg atggaaataa
agtgtttagg gcagtgggag gagaaaattc yyccaggtga atggggaagg gtctgttcca
                                                                      1560
geeteteeet aeteeeatee cattteeace aactggggaa etgtgaetat etateteeee
                                                                      1620
                                                                     1680
cgacttctac cagggatgcc ttcagccaag gctgttctca ccagctgcct cagatgacaa
atgaggetaa tggacataat etacagtgte ettttteaet tgcacetttt ttataagaat
                                                                     .1740
                                                                      1768
atattgtaat actaaaaaat attaaatt
<210> 19
<211> 1699
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (871)
<223> n equals a,t,g, or c
<400> 19
                                                                        60
ctcgtgccga attcggcacg agcgaaaaga tggcggtctt ggcacctcta attgctctcg
                                                                       120
tgtattcggt gccgcgactt tcacgatggc tcgcccaacc ttactacctt ctgtcggccc
tgetetetge tgeetteeta etegtgagga aactgeegee getetgeeae ggtetgeeca
                                                                       180
                                                                       240
cccaacgcga agacggtaac ccgtgtgact ttgactggag agaagtggag atcctgatgt
                                                                       300
ttctcagtgc cattgtgatg atgaagaacc gcagatccat cactgtggag caacatatag
gcaacatttt catgittagt aaagiggcca acacaattci titciicege tiggatatic
                                                                       360
                                                                      . 420
gcatgggcct actttacatc acactctgca tagtgttcct gatgacgtgc aaaccccccc
tatatatggg ccctgagtat atcaagtact tcaatgataa aaccattgat gaggaactag
                                                                       480
                                                                       540
aacgggacaa gagggtcact tggattgtgg agttetttge caattggtet aatgaetgee
                                                                       600
aatcatttgc ccctatctat gctgacctct cccttaaata caactgtaca gggctaaatt
                                                                       660
ttgggaaggt ggatgttgga cgctatactg atgttagtac gcggtacaaa gtgagcacat
                                                                       720
cacccctcac caagcaactc cctaccctga tcctgttcca aggtggcaag gaggcaatgc
ggcggccaca gattgacaag aaaggacggg ctgtctcatg gaccttctct gaggagaatg
                                                                       780
                                                                       840
tgatccgaga atttaactta aatgagctat accagcgggc caagaaacta tcaaaggctg
gagacaatat ccctgaggag cagcctgtgg nttcaacccc caccacagtg tcagatgggg
                                                                       900
aaaacaagaa ggataaataa gatcctcact ttggcagtgc ttcctctcct gtcaattcca
                                                                       960
ggctctttcc ataaccacaa gcctgaggct gcagcctttt atttatgttt tccctttggc
                                                                      1020
tgtgactggg tggggcagca tgcagcttct gattttaaag aggcatctag ggaattgtca
                                                                      1080
ggcaccctac aggaaggcct gccatgctgt ggccaactgt ttcactggag caagaaagag
                                                                      1140
atctcatagg acggaggggg aaatggtttc cctccaagct tgggtyagtg tgttaactgc
                                                                      1200
ttatcagcta ttcagacatc tccatggttt ctccatgaaa ctctgtggtt tcatcattcc
                                                                      1260
                                                                      1320
ttcttagttg acctgcacag cttggttaga cctagattta accctaaggt aagatgctgg
ggtatagaac gctaagaatt ttcccccaag gactcttgct tccttaagcc cttctggctt
                                                                      1380
cgtttatggt cttcattaaa agtataagcc taactttgtc gctagtccta aggagaaacc
                                                                      1440
                                                                      1500
tttaaccaca aagtttttat cattgaagac aatattgaac aaccccctat tttgtgggga
                                                                      1560
 ttgagaaggg gtgaatagag gcttgagact ttcctttgtg tggtaggact tggaggagaa
                                                                      1620
 atoccotgga otttoactaa coototgaca tactoccoac accoagttga tggotttoog
                                                                      1680
 1699
```

aaaaaaaaa aaaaaaaag

```
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (701)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (728)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (733)
<223> n equals a,t,g, or c
<400> 20
aagtgagtta aggacgtact cgtcttggtg agagcgtgac tgctgagatt tgggagtctg
                                                                          60
                                                                         120
cgctaggccc gcttggagtt ctgagccgat ggaagagttc actcatgttt gcacccgcgg
                                                                         180
tgatgcgtgc ttttcgcaag aacaagactc tcggctatgg agtccccatg ttgttgctga
                                                                         240
ttgttggagg ttcttttggt cttcgtgagt tttctcaaat ccgatatgat gctgtgaaga
                                                                         300
gtaaaatgga tootgagott gaaaaaaaac tgaaagagaa taaaatatot ttagagtogg
                                                                         360
aatatgagaa aatcaaagac tccaagtttg atgactggaa gaatattcga ggacccaggc
                                                                         420
cttgggaaga tcctgacctc ctccaaggaa gaaatccaga aagccttaag actaagacaa
                                                                         480
cttgactctg ctgattcttt tttccttttt ttttttttta aataaaaata ctattaactg
gacttcctaa tatatacttc tatcaagtgg aaaggaaatt ccaggcccat ggaaacttgg
                                                                         540
atatgggtaa tttgatgaca aataatcttc actaaaggtc atgtacaggt ttttatactt
                                                                         600
cccagctatt ccatctgtgg atgaaagtaa caatgttggc cacgtatatt ttacacctcg
                                                                         660
                                                                         720
aaataaaaaa tgtgaatact gctccaaaaa aaaaaaaagt nggcgagctt tccctagggg
                                                                         736
ggtaattngc tgntgc
<210> 21
<211> 1688
<212> DNA
<213> Homo sapiens
<400> 21
                                                                          60
caaagaaggg attcatcttg cattggtgga gctgctgaaa aatttaacca agtaccctac
tgatagggac tccatatgga agtgcttgaa gtttctggga agtcggcatc caaccctggt
                                                                         120
getteeettg gtgecagage ttetgageae ceaeceattt tttgaeaeag etgaaceaga
                                                                         180
catggatgat ccagcttata ttgcagtttt ggtacttatt ttcaatgctg ctaaaacctg
                                                                         240
                                                                         300
tccaacaatg ccagcattgt tctcagatca caccttcagg cactatgcct acctccgaga
cagtetttet catettgtte etgeettgag gttaccaggt agaaaactgg tgtcatcage
                                                                         360
                                                                         420
 tgtttctccc agcatcatac ctcaagagga tccttcccag cagttcctgc agcagagcct
                                                                         480
 tgaaagagtg tatagtette agcacttgga eeeteaggga geeeaggage tgetggaatt
 caccatcagg gatctgcaaa gacttggaga acttcaatct gaattggcag gagtagctga
                                                                         540
                                                                         600
 tttctctgcc acctatcttc gctgtcaact acttctcatc aaggccttgc aggaaaagtt
                                                                         660
 gtggaatgta gctgccctt tgtatttgaa gcagagtgat ttggcctcag cagcagcgaa
                                                                         720
 acagattatg gaagagacct acaaaatgga attcatgtac agtggtgtgg agaataagca
 ggtggtgatt atacatcaca tgaggctgca ggccaaagct ttgcaactta tagtaacagc
                                                                         780
                                                                         840
 acgaactaca cgaggacttg accccttatt tgggatgtgt gaaaaatttt tacaggaagt
 agactttttt cagaggtatt tcatcgctga tttgccccac ttgcaggaca gctttgtgga
                                                                         900
                                                                         960
 caaacteett gaeettatge eeegaeteat gaeateeaaa eetgeagaag tggteaaaat
                                                                        1020
 tctacagacc atgctgcgac agagtgcctt tctgcatctc ccgcttccag agcagatcca
                                                                        1080
 caaagcetca gecaceatea tegagecage gggegagtte agacaaceet ttgeggttta
```

```
cctctgggtt ggtggttgcc ctgggatgtt gatgcaaccc tggagcatgt gcaggatcct
                                                                       1140
cagaacactg ttaaggtcca gggtcttata tccagatggc caggsttcag atgattcacc
                                                                       1200
                                                                       1260
ccaagectge agaetteegg aateetggee cagggeggea eeggeteate acteaggttt
                                                                       1320
atctctccca caccgcttgg acagaggcat gccaggtgga agtgaggctg ctgctggcct
acaactccag tgctcgcatt ccaaaatgcc cctggatgga gggtggtgag atgtcaccac
                                                                       1380
aggtggaaac cagcatcgag ggcaccattc ccttcagcaa gcctgtaaaa gtttatataa
                                                                       1440
                                                                       1500
tgcccaaacc tgcacggcgc taaggcaaaa acagtettee caaccgtgcc tagagggccc
ttettaggtg teagaatgag eeaageetga ageaetteae etggaattga tgtgtagget
                                                                       1560
                                                                       1620
taaggagtat gtgaccctta cagtctcatc tggtatcaaa cacaggataa attgtttctt
                                                                       1680
cattaaaaaa taaaaaacct tcaagtctac ttacccttct cctgtccaca ataaagttga
                                                                       1688
gaaaacac
<210> 22
<211> 2045
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (2040)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (2041)
<223> n equals a,t,g, or c
<400> 22
gagetetegg ggtategagg aggeaggeee gegggegeae gggegagegg geegggagee
                                                                          60
ggageggegg aggageegge ageageggeg eggegrgete eaggegagge ggtegaeget
                                                                         120
cctgaaaact tgcgcgcgcg ctcgcccact gcgcccggag cgatgaagat ggtcgcgccc
                                                                         180
tggacgcggt tctactccaa cagctgctgc ttgtgctgcc atgtccgcac cggcaccatc
                                                                         240
ctgctcggcg tctggtatct gatcatcaat gctgtggtac tgttgatttt attgagtgcc
                                                                         300
                                                                         360
ctggctgatc cggatcagta taacttttca agttctgaac tgggaggtga ctttgagttc
atggatgatg ccaacatgtg cattgccatt gcgatttctc ttctcatgat cctgatatgt
                                                                         420
                                                                         480
gctatggcta cttacggagc gtacaagcaa cgcgcagctg ggatcatccc attcttctgt
                                                                         540
taccagatct ttgactttgc cctgaacatg ttggttgcaa tcactgtgct tatttatcca
                                                                         600
aactccattc aggaatacat acggcaactg cctcctaatt ttccctacag agatgatgtc
atgtgcagtg aatcctacct gtttggtcct tattattctt ctgtttatta gcattatctt
                                                                         660
                                                                         720
 gacttttaag ggttacttga ttagctgtgt ttggaactgc taccgataca tcaatggtag
                                                                         780
 gaacteetet gatgteetgg tttatgttae cageaatgae aetaeggtge tgetaeeeee
gtatgatgat gccactgtga atggtgctgc caaggagcca ccgccacctt acgtgtctgc
                                                                         840
 ctaagccttc aagtgggcgg actgagggca gcagcttgac tttgcagaca tctgagcaat
                                                                         900
                                                                         960
 agttctgtta tttcactttt gccatgagcc tctctgagct tgtttgttgc tgaaatgcta
                                                                        1020
 ctttttaaaa tttagatgtt agattgaaaa ctgtagtttt caacatatgc tttgctrgaa
                                                                        1080
 cactgtgata gattaactgt agaattette etgtaegatt ggggatataa ygggetteae
                                                                        1140
 taaccttccc taggcattga aacttccccc aaatctgatg gacctagaag tctgcttttg
                                                                        1200
 tacctgctgg gccccaaagt tgggcatttt tctctctgtt ccctctcttt tgaaaatgta
                                                                        1260
 aaataaaacc aaaaatagac aactttttct tcagccattc cagcatagag aacaaaacct
                                                                        1320
 tatggaaaca ggaatgtcaa ttgtgtaatc attgttctaa ttaggtaaat agaagtcctt
                                                                        1380
 atgtatgtgt tacaagaatt tcccccacaa catcctttat gactgaagtt caatgacagt
 ttgtgtttgg tggtaaagga ttttctccat ggcctgaatt aagaccatta gaaagcacca
                                                                        1440
 ggccgtggga gcagtgacca tctgctgact gttcttgtgg atcttgtgtc cagggacatg
                                                                        1500
 gggtgacatg cctcgtatgt gttagagggt ggaatggatg tgtttggcgc tgcatgggat
                                                                        1560
 ctggtgcccc tcttctcctg gattcacatc cccacccagg gcccgctttt actaagtgtt
                                                                        1620
 ctgccctaga ttggttcaag gaggtcatcc aactgacttt atcaagtgga attgggatat
                                                                        1680
```

atttgatata cttctgccta acaacatgga aaagggtttt cttttccctg caagctacat

		•						
	catactactt	tgaacttcca	agtatotota	gtcacctttt	aaaatgtaaa	cattttcaga		1800
	cctactgctt	ttgccttcct	tatatacact	ttttacctta	actacctgaa	ttgcaagga		1860
•	aaaatgagga	regoderede	Lycatycycc		attacttcat	tattaaatat		1920
	tttttatata	ttcatatgtt	acaaagtcag	caacteteet	griggrical	tattgaatgt		
	gctgtaaatt	aagtygtttg	caattaaaac	aaggtttgcc	cacatccaaa	aaaaaaaaa		1980
	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaan		2040
	naaaa						•	2045
		•.				• •		
								•
	<210> 23							
	<211> 1101	•						
	<212> DNA	n	•			12		
	<213> Homo	sapiens						
	•							
	<400> 23		•					-
	ttatttacca	accgtcaata	ttcccqcqcc	tggacggtta	aatagctaaa	gctggcgcgg		60
	aactatcacc	tecaceteta	ctccccgacc	caaccataca	caacctcaaa	ctctggctgc		120
	ggccgccacc	gatgctgcct	acasttacco	ccacccccc	ctagaccctc	atggaggagt		180
	egggegegat	gatgetgeet	gegategeee	ccagccggcc	cegggeeee	atacataca		240
	atgaggtcgt	gttgccgygg	cgtctgccag	geeeeegage	Cogoogagee	ctgccctccc		300
	acttgggcct	gcacccagag	agggtgagct	acgtccttgg	ggccacaggg	cacaacttca		
	ccctccacct	gcggaagaac	agggacctgc	tgggytccgg	ctacacagag	acctatacġg	•	360
	ctaccaataa	ctccgaggtg	acqqaqcaqc	ctcgcgggca	ggaccactgc	ttytaccagg		420
	accacataga	ggggtacccg	gactcagccg	ccagcctcag	cacctqtqcc	ggcctcaggg		480
	atttattas	ggtggggtca	gacctgcacc	tgatcgagcc	cctggatgaa	aataacaaaa		540
	gittetteta	ggrggggrea	gaccegeace	agetestes	ascaaccaa	acctacada		600
	gcggacggca	cgccgtgtac	caggergage	accigcigca	gacggccggg	++c2ccc+c		660
	tcagcgacga	cagcctgggc	agcctcctgg	gaccccggac	ggcagccgcc	. cccaggeece		720
	ggcccgggga	ctctctgcca	tcccgagaga	cccgctacgt	ggagctgtat	grggrcgrgg		
	acaatgcaga	gttccagatg	ctggggagcg	aagcagccgt	gcgtcatcgg	gtgctggagg	*	780
	tggtgaatca	cqtqqacaaq	ctatatcaga	aactcaactt	ccgtgtggtc	ctggtgggcc	,	840
	tagagattta	gaatagtcag	gacaggttcc	acqtcaqccc	cgaccccagt	gtcacactgg		900
	agaacctcct	gacctggcar	gcacggcaac	ggacacggcg	gcacctgcat	gacaacgtac		960
	agaacccccc	gggtgtcgac	ttcamcaaa	ctactotooo	atttaccaga	gtgtccacca		1020
	ageteateae	gggtgttgat	antatassaa	200205333	200030000	atagacataa		1080
		cagctcaggg		aggaccacag	caagaacccc	3-333-3-33		1101
	cctgcaccat	ggcccatgag	a					
		•						
	<210> 24							
	<211> 1659		•			•		
	<212> DNA	•						
	<213> Homo	sapiens						
	<400> 24	/		· ·	•	*•		
	ccaaactaca	ggattcggca	cqaqqtqgga	gccaagaaga	aaggtttgct	cccgggtgga		60
	acagggatta	tectectect	ccccttaaga	gtcatgctca	agagagacac	tctggcaact		120
	tteetaacaa	agattcactt	ccctttdatt	tecagggga	ttcaaaacct	ccttttgcaa		180
		agattatta	agetatggaag	ctadagaga	accocatoot	gactatcgag		240
	atgtagagga	gcartcttt	agetacggag		tteetettet	gatttccaca		300
	gagggaggg	acctggacat	gatttcaggg	ggggagattt	ccgccccc	gatttccaga		360
	gcagagattc	atcacagttg	gacttcaggg	gtagggacat	acattetggg	gattttcggg		
	atagagaagg	accacctatg	gactataggg	gtggagatgg	tacttctatg	gattatagag		420
	gtagggaggc	acctcatatg	aactacagag	acagggatgc	tcacgctgtt	gacttcagag		480
	gtaggatgc	tectecatet	gacttcaggg	gccggggcac	ttatgattta	gattttagag	•	540.
	accadastaa	atcccatgca	gattttaggg	gaagggattt	atcagatttq	gattttaggg		600
	2003330033	atacattat	gatttagga	atagagatgt	atctgatttg	gactttagag		660
	ccayayaaca	gecegeee	Jaccicagga	acagagacge	aggtagtagt	gatctagact		720
	acaaagacgg	aacacaagta	gaccccagag	geegaggeed	aggiaciaci	gatctagact		780
	ttagggacag	ggatacgcca	cattcagatt	ccagaggtag	acaccgatct	aggactgatc		
	aggattttag	gggcagagag	atgggatctt	gtatggaatt	taaagatagg	gagatgcccc		840
	ctgtggatcc	aaatattttg	gattacattc	agccctctac	acaagataga	gaacattctg		900
	gtatgaatgt	gaacaggaga	gaagaatcca	cacatgacca	tacgatagaa	aggcctgctt.		960
	ttggcattca	gaagggagaa	tttgagcatt	cagaaacaag	agaaggagaa	acacaaggtg		1020
				•	•			

```
tagcctttga acatgagtct ccagcagact ttcagaacag ccaaagtcca gttcaagacc
                                                                       1080
aagataagtc acagctttct ggacgtgaag agcagagttc agatgctggt ctgtttaaag
                                                                       1140
aagaaggegg tetggaettt ettgggegge aagaeacega ttacagaage atggagtace
                                                                       1200
gtgatgtgga tcataggctg ccaggaagcc agatgtttgg ctatggccag agcaagtctt
ttccagaggg caaaactgcc cgagatgccc aacgggacct tcaggatcaa gattatagga
                                                                       1320
ccggcccaag tgaggagaaa cccagcaggc ttattcgatt aagtggggta cctgaagatg
                                                                       1380
ccacaaaaga agagattett aatgetttte ggaeteetga tggeatgeet gtaaagaatt
                                                                       1440
gcagttgaag gagtataaca caggttacga ctatggctat gtctgcgtgg agttttcact
                                                                       1500
cttggaagat gccatcggat gcatggaggc caaccaggct ggtgattagt aactaaagca
                                                                       1560
tatgctgtgg aacatccagc actgatgcca gattacctgt ccctaatact gagcagaagc
                                                                       1620
                                                                       1659
tggtgaatga aacaggagat ccctcagtca aaacaaaaa
<210> 25
<211> 1329
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (520)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1140)
<223> n equals a,t,g, or c
<400> 25
                                                                          60
tetgtteete teteetggaa gettgeagae eteeetteag aaccaateee aagaageeae
                                                                        120
ctatccggaa caacacaagg atgctgccgg actggaagag stccttgatc ctcatggctt
acatcatcat cttcctcact ggcctccctg ccaacctcct ggccctgcgg gcctttgtgg
                                                                        180
                                                                         240
ggcggatccg ccagccccag cctgcacctg tgcacatcct cctgctgagc ctgacgctgg
                                                                         300
cegacetect cetgetgetg etgetgeeet teaagateat egaggetgeg tegaaettee
                                                                         360
gctggtacct gcccaaggtc gtctgcgccc tcacgagttt tggsttctac agcagcatct
                                                                         420
actgcagcac gtggctcctg gcgggcatca gcatcgagcg ctacctggga gtggctttcc
                                                                         480
ccgtgcagta caagetetee cgccggcete tgtatggagt gattgcaget etggtggcet
                                                                         540
gggttatgtc ctttggtcac tgcaccatcg tgatcatcgn tcaatacttg aacacgactg
                                                                         600
agcaggtcag aagtggcaat gaaattacct gctacgagaa cttcaccgat aaccagttgg
acgtggtgct gcccgtgmgg stggagctgt gcctggtgct cttcttcats cccatggcag
                                                                         660
                                                                         720
tcaccatctt ctgctactgg cgttttgtgt ggatcatgct ctcccagccc cttgtggggg
                                                                         780
cccagaggcg gcgccgagcc gtggggctgg ctgtggtgac gctgctcaat ttcctggtgt
                                                                         840
gcttcggacc ttacaacgtg tcccacctgg tggggtatca ccagagaaaa agcccctggt
                                                                         900
ggcggtcaat agccgtgktg ttcagttcac tcaacgccag tctggacccc ctgctcttct
                                                                         960
atttctcttc ttcagtggtg cgcagggcat ttgggagagg gctgcaggtg ctgcggaatc
                                                                        1020
agggctcctc cctgttggga cgcagaggca aagacacagc agaggggaca aatgaggaca
                                                                        1080
ggggtgtggg tcaaggagaa gggatgccaa gttcggactt cactacagag tagcagtttc
                                                                        1140
cctggacctt cagaggtcgc ctgggttaca caggagctgg gaagcctggg agaggcggan
                                                                        1200
caggaagget cecatecaga tteagaaate ettagaeeea geeeaggaet gegaetttga
aaaaaatgcc tttcaccagc ttggtatccc ttcctgactg aattgtccta ctcaaaggag
                                                                        1260
                                                                        1320
cataagtcag agatgcacga agaagtagtt aggtatagaa gcacctgccg ggtgtggtgg
                                                                        1329
 ctcatgcct
```

<210> 26

<211> 700

<212> DNA

<213> Homo sapiens

```
<220>
<221> SITE
<222> (81)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (659)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (692)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (700)
<223> n equals a,t,g, or c
<400> 26
ggcagagagc accatctgtc atggcggctg ggctgtttgg tttgagcgct cgccgtcttt
                                                                       60
tggcggcagc ggcgacgcga ngggctcccg gccgcccgcg tccgctggga atctagcttc
                                                                      120
                                                                      180
tccaggactg tggtcgccc gtccgctgtg gcggraaagc ggcccccaga accgaccaca
                                                                      240
ccgtggcaag aggacccaga acccgaggac gaaaacttgt atgagaagaa cccagactcc
                                                                      300
catggttatg acaaggaccc cgttttggac gtctggaaca tgcgacttgt cttcttcttt
                                                                      360
ggcgtctcca tcatcctggt ccttggcagc acctttgtgg cctatctgcc tgactacagg
                                                                      420
tgcacagggt gtccaagagc gtgggatggg atgaaagagt ggtcccgccg cgaagctgag
                                                                      480
aggettgtga aatacegaga ggeeaatgge etteecatea tggaateeaa etgettegae
                                                                      540
cccagcaaga tccagctgcc agaggatgag tgaccagttg ctaagtgggg ctcaagaagc
accgccttcc ccaccccctg cctgccattc tgacctcttc tcagagcacc taattaaagg
                                                                      600
                                                                      660
700
aaaaaaaaa aaaaaaaaa aaaaaaaaa anggggggn
<210> 27
<211> 832
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (821)
<223> n equals a,t,g, or c
<220>
 <221> SITE
 <222> (825)
 <223> n equals a,t,g, or c
 <400> 27 .
                                                                       60
ggcacgaget ccacteggtt tetetetttg caggageace ggcageacea gtgtgtgagg
ggagcaggca gcggtcctag ccagttcctt gatcctgcca gaccacccag cccctggcac
                                                                       120
 agagetgete cacaggeace atgaggatea tgetgetatt cacagecate etggeettea
                                                                       180
                                                                       240
 gectagetea gagetttggg getgtetgta aggagecaea ggaggaggtg gtteetggeg
 ggggccgcag caagagggat ccagatetet accagetget ccagagaete ttcaaaagee
                                                                       300
                                                                       360
 actcatctct ggagggattg ctcaaagccc tgagccaggc tagcacagat cctaaggaat
```

```
caacatctcc cgagaaacgt gacatgcatg acttctttgt gggacttatg ggcaagagga
                                                                      420
gegtecagee agaeteteet aeggatgtga atcaagagaa egteeceage tttggeatee
                                                                       480
                                                                       540
tcaagtatcc cccgagagca gaataggtac tccacttccg gactcctgga ctgcattagg
                                                                       600
aagacctett teeetgteee aatecccagg tgegeaeget eetgttaeee tttetettee
                                                                       660
ctgttcttgt aacattcttg tgctttgact ccttctccat cttttctacc tgaccctggt
gtggaaactg catagtgaat atccccaacc ccaatgggca ttgactgtag aataccctag
                                                                       720
agtteetgta gtgteetaca ttaaaaatat aatgtetete tetatteete aacaataaag
                                                                       780
                                                                       832
<210> 28
<211> 2361
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (2361)
<223> n equals a,t,g, or c.
<400> 28
ggcacgaggc tccctaagcg gttgtcaccg ctggagacgg ttgggagaac cgttgtggcg
                                                                       120
agegetacae gaggeaaaeg aetteteeet tetttgaaet ggaeeeegeg ageaeeagag
                                                                       180
tcggcgtaac tatcgcctga caggcattta aatcaaacgg tattgagatg gattgggtta
tgaaacataa tggtccaaat gacgctatga tgggacagta cgacttcgtg gactaccatt
                                                                       240
                                                                       300
tggttgcagc aaagaggaaa tagttcagtt ctttcaaggg ttggaaatcg tgccaatggg
                                                                       360
ataacattga cgatggacta ccaggggaga agcacagggg aggccttcgt gcagtttgct
tcaaaggaga tagcagaaaa tgctctgggg aaacacaagg aaagaatagg gcacaggtat
                                                                       420
                                                                       480
attgagatct tcagaagtag caggagtgaa atcaaaggat tttatgatcc accaagaaga
                                                                       540
ttgctgggac agcgaccggg accatatgat agaccaatag gaggaagagg gggttattat
                                                                       600
ggagctgggc gtggaagtat gtatgacaga atgcgacgag gaggtgatgg atatgatggt
ggttatggag gttttgatga ctatggtggc tataataatt acggctatgg gaatgatggc
                                                                       660
tttgatgaca gaatgagaga tggaagaggt atgggaggac atggctatgg tggagctggt
                                                                       720
gatgcaagtt caggttttca tggtggtcat ttcgtacata tgagagggtt gccttttcgt
                                                                       780
gcaactgaaa atgacattgc taatttcttc tcaccactaa atccaatacg agttcatatt
                                                                       840
gatattggag ctgatggcag agcacaggag aagcagatgt agagtttgtg acacatgaag
                                                                       900
atgcagtagc tgccatgtct aaagataaaa ataacatgca acatcgatat attgaactct
                                                                       960
                                                                      1020
tettgaatte taeteetgga ggeggetetg geatgggagg ttetggaatg ggaggetaeg
                                                                      1080
gaagagatgg aatggataat cagggaggct atggatcagt tggaagaatg ggaatgggga
                                                                      1140
acaattacag tggaggatat ggtactcctg atggtttggg tggttatggc cgtggtggtg
gaggcagtgg aggttactat gggcaaggcg gcatgagtgg aggtggatgg cgtgggatgt
                                                                      1200
                                                                      1260.
actgaaagca aaaacaccaa catacaagtc ttgacaacag catctggtct actagacttt
                                                                      1320
cttacagatt taatttcttt tgtattttaa gaactttata atgactgaag gaatgtgttt
                                                                      1380
tcaaaatatt atttggtaaa gcaacagatt gtgatgggaa aatgttttct gtaggtttat
                                                                      1440
ttgttgcata ctttgactta aaaataaatt tttatattca aaccactgat gttgatactt
                                                                      1500
tttatatact agttactcct aaagatgtgc tgccttcata agatttgggt tgatgtattt
tactattagt totacaagaa gtagtgtggt gtaattttag aggataatgg ttcacctctg
                                                                      1560
                                                                      1620
cgtaaactgc aagtcttaag cagacatctg gaatagagct tgacaaataa ttagtgtaac
                                                                      1680
tttttttttt agttcctcct ggacaacact gtaaatataa agcctaaaga tgaagtggct
                                                                      1740
tcaggagtat aaattcagct aattattct atattattat ttttcaaatg tcatttatca
                                                                      1800
ggcatagete tgaaacattg atgatetaag aggtattgat ttetgaatat teataattgt
gttacctggg tatgagagtg ttggaagctg aattctagcc ctagattttg gagtaaaacc
                                                                      1860
                                                                      1920
ccttcagcac ttgaccgaaa taccaaaaat gtctccaaaa aattgatagt tgcaggttat
                                                                       1980
cgcaagatgt cttagagtag ggttaaggtt ctcagtgaca caagaattca gtattaagta
                                                                       2040
cataggtatt tactatggag tataattctc acaattgtat tttcagtttt ctgcccaata
                                                                       2100
gagtttaaat aactgtataa atgatgactt taaaaaaatg taagcaacaa gtccatgtca
tagtcaataa aaacaatcct gcagttgggt tttgtatctg atccctgctt ggagttttag
                                                                       2160
tttaaagaat ctatatgtag caaggaaaag gtgcttttta attttaatcc ctttgatcaa
                                                                       2220
```

		′				
tatggctttt	ttccaaattq	gctaatggat	caaaatgaaa	cctqttqatq	tgaattcagt	2280
tattgaactt	attacttatt	tttgccagaa	atottattaa	taaatgtcaa	tgtgggagat	2340
aataaaaaaa			,-3	•	•	2361
aacaaaaaa	aaaaaaaaaaa	••		•		
<210> 29			•			
		•		•		
<211> 879						
<212> DNA					•	
<213> Homo	sapiens	•	•		,	
<400> 29			atastasccc	tecteactea	ctctgcagtg	60
ggaatctgca	ccatgccctg	ggttctgctc	cectegatet	ccaaccactt	gagagagag	120
tcagtggtcc	aggcagggct	gactcagccc		ccaaggaccc	agacagaco	180
gccacactca	cctgcaccgg	gaacaacaac	aatgttggcg	accaaggage	ageceggeeg	240
cagcagcacc	agggccaccc	tcccaaactc	etgteetaca	ggaataataa.	gaggettect	300
gggatctcag	agagattatc	tgcatccagg	tcaggagcca	catectecet	gaccattact	360
ggactccagc	ctgaggacga	ggctgactat	tactgcgcag	catatgadag	cageeeegea	420
gtttggatgţ	tcggcggagg	gaccaagctg	accgtcctag	gtcagcccaa	ggetgeeee	480
tcggtcactc	tgttcccacc	ctcctctgag	gagetteaag	ccaacaaggc	cacactggtg	
totctcataa	gtgacttcta	cccgggagcc	gtgacagtgg	cctggaaggc	agatagcagc	540
cccatcaaga	cagaagtaga	gaccaccaca	·ccctccaaac	agagcaacaa	caagtacgcg	600
accaacaact	acctgagcct	gacgcctgag	cagtggaagt	cccacagaag	ctacagetge	- 660
caggtcacgc	atgaaggag	caccqtqqag	aagacggtgg	cccctacaga	atgttcatag	720
gttcccaact	ctaaccccac	ccacgggagc	ctggagctgc	aggatcccag	gggaggggtc	780
tctctcccca	tcccaaqtca	tccagccctt	ctccctgcac	tcatgaaacc	ccaataaata	840
ttctcattqt	caatcagaaa	aaaaaaaaa	aaaaaaaa			879
				•		
		• • •				
<210> 30			•	•		
<211> 1732	•			•		
<212> DNA	•					
<213> Homo	sapiens				~	
	-					
<400> 30	-					,
attcqqaqqq	aaacqtgtat	tgtggtctca	agmmttgccc	cawattaacc	tgtgccttcc	60
cagtctctgt	tccagattcc	tgctgccggg	tatgcagagg	agatggagaa	ctgtcatggg	120
aacattctqa	tggtgatatc	ttccqqcaac	ctgccaacag	agaagcaaga	cattettace	180
accoctctca	ctatgatcct	ccaccaagcc	gacaggctgg	aggtctgtcc	cgctttcctg	240
gggccagaag	tcaccagaga	gctcttatgg	attcccagca	agcatcagga	accattgtgc	300
aaattgtcat	caataacaaa	cacaaqcatq	gacaagtgtg	tgtttccaat	ggaaagacct	360
atteteateg	caaatcctaa	cacccaaacc	tccgggcatt	tggcattgtg	gagtgtgtgc	420
tatgtacttg	taatgtcacc	aagcaagagt	gtaagaaaat	ccactgccc	aatcgatacc	480
cctgcaagta	tecteaaaaa	atagacggaa	aatgctgcaa	ggtgtgtcca	gaagaacttc	540
cacaccaaaa	ctttgacaat	aaaggctact	tctqcqqqqa	agaaacgatg	cctgtgtatg	600
agtetatatt	catogaggat	ggggagacaa	ccagaaaaat	agcactggag	actgagagac	660
cacctcaggt	agaggaggac	ggggagacta	ttcgaaaggg	cattetecae	cacttccata	. 720
ttgagaagat	ctccaacac	atatttaaaa	agetteetea	cttcaagcto	gtgaccagaa	780
ctgagaagat	ccccaagagg	atgttcacco	aaggagaagg	tcagatcago	cagatgtgtt	840
caaccctgag	ccagragaag	gagettgaag	atttactcaa	gattttatac	ctggagagat	900
caagtcgtgt	acycayaaca	gageregaag	cartattora	tagggtaaag	ctggagagat caagaaaact	
ctgaaaaggg	ccactgttag	gcaayacaya	acttaactgga	acagtgccct	caagaaaact	1020
caagctgcag	ctggactgca	ggettattet	guitaagida	tttactcctt	aaaactccaa	1080
actcaaatgc	agtcaattat	ccacgccatg	cacaycalda	attatacaca	tgtgtgtgtg	1140
tgtgtgtgtg	tgtgtgtgtg	tgtggtaaag	gggggaaggt	. greatgegge	taaggcaaag	1200
gtcccagagg	tggcagtgat	tccataatgt	ggagactagt	. aactagattt	taaggcaaag	
aggtgtttct	ccttctggat	gattcatccc	aaagccttcc	: cacceaggig	ttctctgaaa	1320
gcttagcctt	aagagaacac	gcagagagtt	tccctagata	t cacteetge	tccaggtgct	
gggacacacc	tttgcaaaat	. gctgtgggaa	gcaggagctg	gggagctgtg	g ttaagtcaaa a aagaggccaa	
			adadaatado	i acaragggta	a addaddccaa	T440

```
1500
gctgcctgta gttagtagag aagaatggat gtggttcttc ttgtgtattt atttgtatca
taaacacttg gaacaacaaa gaccataagc atcatttagc agttgtagcc attttctagt
                                                                    1560
taactcatgt aaacaagtaa gagtaacata acagtattac cctttcactg ttctcacagg
                                                                    1620
                                                                    1680
acatgtacct aattatggta cttatttatg tagtcactgt atttctggat ttttaaatta
                                                                    1732
<210> 31
<211> 3259
<212> DNA
<213> Homo sapiens
<400> 31
                                                                       60
tttgcagtac gggccggatt tcccgggtcg acccacgcgt ccgcggaggc tacgtgaaga
gaggcgcggc gtgactgagc tacggttctg gctgcgtcct agaggcatcc ggggcagtaa
                                                                      120
                                                                      180
aaccgctgcg atcgcggagg cggcggccag gccgagaggc aggccgggca ggggtgtcgg
acgcagggcg ctgggccggg tttcggcttc ggccacagct ttttttctca aggtgcaatg
                                                                      240
aaagcettee acaetttetg tgttgteett etggtgtttg ggagtgtete tgáagceaag
                                                                      300
tttgatgatt ttgaggatga ggaggacata gtagagtatg atgataatga cttcgctgaa
                                                                      360
                                                                      420
tttgaggatg tcatggaaga ctctgttact gaatctcctc aacgggtcat aatcactgaa
                                                                      480
gatgatgaag atgagaccac tgtggagttg gaagggcagg atgaaaacca agaaggagat
                                                                      540
tttgaagatg cagataccca ggagggagat actgagagtg aaccatatga tgatgaagaa
tttgaaggtt atgaagacaa accagatact tcttctagca aaaataaaga cccaataacg
                                                                      600
                                                                      660
attgttgatg ttcctgcaca cctccagaac agctgggaga gttattatct agaaattttg
                                                                      720
atggtgactg gtctgcttgc ttatatcatg aattacatca ttgggaagaa taaaaacagt
                                                                      780
840
gtgggggatg atggaactaa caaagaagcc acaagcacag gaaagttgaa ccaggagaat
                                                                      900
gagcacatct ataacctgtg gtgttctggt cgagtgtgct gtgagggcat gcttatccag
ctgaggttcc tcaagagaca agacttactg aatgtcctgg cccggatgat gaggccagtg
                                                                      960
                                                                     1020
agtgatcaag tgcaaataaa agtaaccatg aatgatgaag acatggatac ctacgtattt
gctgttggca cacggaaagc cttggtgcga ctacagaaag agatgcagga tttgagtgag
                                                                     1080
ttttgtagtg ataaacctaa gtctggagca aagtatggac tgccggactc tttggccatc
                                                                     1140
ctgtcagaga tgggagaagt cacagacgga atgatggata caaagatggt tcactttctt
                                                                     1200
                                                                     1260
acacactatg ctgacaagat tgaatctgtt catttttcag accagttctc tggtccaaaa
attatgcaag aggaaggtca gcctttaaag ctacctgaca ctaagaggac actgttgttt
                                                                     1320
acatttaatg tgcctggctc aggtaacact tacccaaagg atatggaggc actgctaccc
                                                                     1380
ctgatgaaca tggtgattta ttctattgat aaagccaaaa agttccgact caacagagaa
                                                                     1440
ggcaaacaaa aagcagataa gaaccgtgcc cgagtagaag agaacttctt gaaactgaca
                                                                     1500
catgtgcaaa gacaggaagc agcacagtct cggcgggagg agaaaaaaag agcagagaag
                                                                     1560
gagcgaatca tgaatgagga agatcctgag aaacagcgca ggctggagga ggctgcattg
                                                                     1620
                                                                     1680
aggcgtgagc aaaagaagtt ggaaaagaag caaatgaaaa tgaaacaaat caaagtgaaa
                                                                     1740
gcccatgtaa agccatccca gagatttgag ttctgatgcc acctgtaagc tctgaattca
caggaaacat gaaaaacgcc agtccatttc tcaaccttaa atttcagaca gtcttgggca
                                                                     1800
actgagaaat ccttatttca tcatctactc tgtttggggt ttgggtttta cagagattga
                                                                     1860
agatacctgg aaagggctct gtttccaaga atttttttt ccagataatc aaattatttt
                                                                     1920
gattatttta taaaaggaat gatctatgaa atctgtgtag gttttaaata ttttaaaaat
                                                                     1980 -
                                                                     2040
tataatacaa atcatcagtg cttttagtac ttcagtgttt aaagaaatac cgtgaaattt
ataggtagat aaccagattg ttgctttttg tttaaaccaa gcagttgaaa tggctataaa
                                                                     2100
gactgactct aaaccaagat tctgcaaata atgattggaa ttgcacaata aacattgctt
                                                                     2160
                                                                     2220
gatgttttct atttcaggga cccagaacat aatgtagtgt atgtttttag gtgggagatg
                                                                     2280
ctgataacaa aattaatagg aagtctgtag gcattaggat actgacatgt acatggaaaa
                                                                     2340
 ttctagggac aggagcatca ttttttcctt acctgatacc acgaaccagt gacaacgtga
 atgctgtatt ttaagtggtt gtatgtttat tttctggagt aacaaatgca tgaaaaatta
                                                                     2400
                                                                     2460
 atgetteace taggtaagat eattggtetg tgtgaaatea caaatgtttt tteettettg
                                                                     2520
 gttgctgcag cctggtggat gttcatggag aagctctgtt ctctatatta tggctgtgtg
                                                                     2580
 ccgttgcttc tccctctgct tttatctttt ccacagttga ggctgggtat gttctttcaa
 agaaatggcc atgaatatgt gtaagtatac ttttgaaaat gagctttcct aaactattga
                                                                      2640
```

gagttettte cacetettge ggaaccaaet ettggaggag aggeeeatgt atetgeaega

```
gcacttagct tgttcagatc tctgcatttt ataaatgctt cttaccaaga aagcattttt
                                                                       2760
aggtcattgc ttgtaccagg taatttttgc cggggatggg taagggttgg gttttctggt
                                                                       2820
                                                                       2880
gggagtgggg tggtgggtat tttttgttga tgctttagtg caggcctgtt ctgaggcaat
aacaagttgc tgtgaaaacg catgtgćtgc tgcctttgta actgccatgg aaacttttca
                                                                       2940
                                                                       3000
catgggtttt tctccaagtt aatacagaaa tatgtaaact gagagatgca aatgtaatat
ttttaacagt tcatgaagtt gttattaaaa taactaacat aaaacttaat tactttaata
                                                                       3060
ttatataatt atagtagtgg cottgtttta caaaccttta aattacattt tagaaatcaa
                                                                       3120
agttgatagt cttagttatc ttttgagtaa gaaaagcttt cctaaagtcc catacatttg
                                                                       3180
gaccatggca gctaattttg taacttaagc attcatatga actacctatg gacatctatt
                                                                        3240
                                                                        3259
aaagtgattg acaaaaaaa
<210> 32
<211> 454
<212> DNA
<213> Homo sapiens
<400> 32
ggcacgaggt cttgtctgcg aagagtttac gaggtttcac ccactccttc attcttgaac
                                                                          60
atgettttte tetgettatt accetecetg ttteeteetg ggetgeeaac aacacattat
                                                                         180
attacctcca totgcaacca gagotgctac caccactgtg cocgagootg aattttcata
                                                                         240
gttatattaa aaaaaatcaa ggtgctggga ttacaggcgt gagccaccgc gcccggctgt
                                                                         300
agecectgte tttatteete eeetgtetaa eeegteetea geatgaatge eagagttaee
tcttaaawta tgtcagggtg ctaggcacag tggctcatgc ctgtaatccc agctcttggg
                                                                         360
aaggcagagg caggaggaca amttgagccc aggagtttga gacctgcttg gggaatgtag
                                                                         420
                                                                         454
tgagaccttg ttctccacaa aaaggaaaaa aaaa
<210> 33.
<211> 230
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (26) -
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (219)
<223> n equals a,t,g, or c
<400> 33
gctgctatgg ctgaactttt attgancgtg ttgtctgtgc agagcgctgt gcacgaggtg
                                                                          60
gaagcaaacg agggaggaaa acaaagccac acccctgccc acagaggatg gaacagaagg
                                                                         120
                                                                         180
gccgctgagg tcaggaaggc aaggttgcca ctaggtgtta ctgtggggcc cagatgccgc
catgctgttc accettcaaa gggtggcatc tcagcccang cagtcctcct
                                                                         230
<210> 34
 <211> 753
 <212> DNA
<213> Homo sapiens
 <400> 34
                                                                          60
ggcacgagga aaggctggcc tctcttcaac atgggatctt ctggactttt gagcctcctg
gtgctattcg tcctcttagc gaatgtccag ggacctggtc tgactgattg gttatttccc
```

```
180
aggagatgtc ccaaaatcag agaagaatgt gaattccaag aaagggatgt gtgtacaaag
                                                                       240
gacagacaat gccaggacaa caagaagtgt tgtgtcttca gctgcggaaa aaaatgttta
                                                                       300
gatctcaaac aagatgtatg cgaaatgcca aaagaaactg gcccctgcct ggcttatttt
                                                                       360
cttcattggt ggtatgacaa gaaagataat acttgctcca tgtttgtcta tggtggctgc
cagggaaaca ataacaactt ccaatccaaa gccaactgcc tgaacacctg caagaataaa
                                                                       420
cgctttccct gattggataa ggatgcactg gaagaactgc cagaatgtgg ctcatgctct
                                                                       480
gagtactgtt cctgtacctg actgatgctc cagactggct tccagtttca ctctcagcat
                                                                       540
tecaagatet tagecettee cagaacagaa egettgeate taceteetet teeteeatet
                                                                       600
                                                                       660
ttggctcttt tgatgcacaa tatccatccg ttttgatttc atctttatgt cccctttatc
                                                                       720
tecaaettet agaaetecea gtttataeet gtgteaetet caattttte eagtaaagta
                                                                       753
cttgatgtag taaaaaaaaa aaaaaaaaaa aaa
<210> 35
<211> 1022
<212> DNA
<213> Homo sapiens
<400> 35
cgctcctgcc gccgggaccc tcgacctcct cagagcagcc ggctgccgcc ccgggaagat
                                                                        60
ggcgaggagg agccgccacc gcctcctcct gctgctgctg cgctacctgg tggtcgccct
                                                                       120
gggctatcat aaggcctatg ggttttctgc cccaaaagac caacaagtag tcacagcagt
                                                                       180
agwgtaccaa gaggctattt tagcctgcaa aaccccaaag aagactgttt sctccagatt
                                                                       240
agagtggaag aaactgggtc ggagtgtctc ctttgtctac tatcaacaga ctcttcaagg
                                                                       300
                                                                       360
tgattttaaa aatcgagctg agatgataga tttcaatatc cggatcaaaa atgtgacaag
aagtgatgeg gggaaatate gttgtgaagt tagtgeecca tetgageaag geeaaaacet
                                                                       420
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttccat catgtgaagt
                                                                       480
                                                                       540<sup>°</sup>
accetettet getetgagtg gaactgtggt agagetacga tgtcaagaca aagaagggaa
tecageteet gaatacaeat ggtttaagga tggcateegt ttgctagaaa ateceagaet
                                                                       600
                                                                       660
tggctcccaa agcaccaaca gctcatacac aatgaataca aaaactggaa ctctgcaatt
                                                                       720
taatactgtt tccaaactgg acactggaga atattcctgt gaagcccgca attctgttgg
atatogoagg tgtootggga aacgaatgca agtagatgat otcaacataa gtggcatcat
                                                                       780
840
tcagaggaaa ggctactttt caaaagaaac ctccttccag aagagtaatt cttcatctaa
                                                                       900
agccacgaca atgagtgaaa atgatttcaa gcacacaaaa tcctttataa tttaaagact
                                                                       960
ccactttaga gatacaccaa agccaccgtt gttacacaag ttattaaact attataaaac
                                                                      1020
                                                                      1022
<210> 36
<211> 3044
<212> DNA
 <213> Homo sapiens
<220>
<221> SITE
 <222> (2383)
 <223> n equals a,t,g, or c
 <400> 36
                                                                         60
ctctaagaac ctagtggatc cccccggcct gcaggaattc gggcacgagg ggagactgct
                                                                        120
gtggctaagg agggcgggaa gggccctctg tggggctgcc attttggctg ggacctaaat
                                                                        180
gcagtaaagg agcagctacg ggaatataga gagtggggct tccaggcaga gaagcctgca
                                                                        240
 gtgcaaaggt ctgcagacaa cgacctgggc gtcttcaagg gacacaagga atcatattgc
                                                                        300
 cagaacacat tgtacaggta gccaggtgtc ggtctccagc ctgagaactc tggctgttgt
 teettgtgte gteecatatt eetgeetgge etgegatgga eateageaag ggeeteeeag
                                                                        360
                                                                        420
 gcatgcaggg aggcctccac atatggatct ctgagaaccg gaagatggtg ccggtacccg
 agggggctta cgggaacttt ttcgaggaac actgctatgt catcctccac gtcccccaga
                                                                        480
```

gecegaaggy caegeagggg gegtecageg acetgeacta etgggteggg aageaggegg 540 gtgcggaagc gcagggcgct gcggaggcct tccagcagcg cctacaggac gagctggggg 600 gccagaccgt gctgcaccgc gaggcgcagg gccacgagtc cgactgcttc tgcagctact 660 720 teegeeeggg aateatetae aggaagggag geetageate tgaeeteaag eatgtggaga 780 ccaacttgtt caacatccag cgactgctgc acatcaaagg gaggaagcac gtgtctgcca ctgaggtgga gctctcctgg aacagcttta ataagggtga catcttcctg ctggacctag 840 gcaagatgat gattcagtgg aatgggccca agaccagcat ttctgagaag gctcgggggc 900 960 tggycttgac ctacagcctc cgggacaggg aacgtggtgg tggtcgtgca cagattggtg tggtggatga tgaggccaaa gccccggacc tcatgcagat catggaggct gtgctgggcc 1020 gcagggtggg cagmctgcgt gccgccacgc ccagcaagga tatcaaccag ctgcagaagg 1080 1140 ccaatgttcg cctgtaccat gtctatgaga agggcaaaga cctggtggtc ctggagttgg 1200 cgacccccc actgacccag gacctgctgc aggaggagga cttctacatc ctggaccagg 1260 gtggcttcaa gatctatgtg tggcagggac gcatgtctag cctccaggag agaaaggctg cetteageeg ggetgtggge tteateeagg ceaagggeta eeegaeetae accaaegtgg 1320 1380 aggtggtgaa cgacggcgcc gagtcggccg cgttcaagca gctcttccgg acttggtctg 1440 agaagcggcg caggaaccag aagctcggcg ggagggataa atcgattcat gtaaagctgg acgtgggcaa gctgcacacc cagcctaagt tagcggccca gctcaggatg gtggacgacg 1500 1560 gctctgggaa ggtggaggtg tggtgcatcc aggacttaca caggcagccc gtggacccca agegteatgg acagetgtgt gcaggeaact getacettgt getetacaca taccagagge 1620 1680 tgggccgtgt ccagtacatc ctgtacctat ggcagggcca ccaggccact gcggatgaga ttgaggccct gaacagcaac gctgaggaac tagatgtcat gtatggtggc gtcctagtac 1740 aggagcatgt gaccatgggc agcgagcccc cccacttcct cgccatcttc cagggccagc 1800 tggtgatett ccaggagaga getgggcace acggaaaggg gcagtcagca tecaccacaa 1860 ggcttttcca agtgcaaggc actgacagcc acaacaccag gaccatggag gtgccagccc 1920 gtgcctcatc cctcaactcc agtgacatct tcttgctggt cacagccagc gtctgctacc 1980 tetggtttgg gaagggetgt aatggtgate agegtgagat ggeaegggtg gtggteaetg 2040 tcatttccag gaagaatgag gaaacggtgc tggagggtca ggagcctccc cacttctggg 2100 aggecetggg aggeegggse ecetaceeca geaacaagag geteeetgag gaggteecca 2160 2220 gcttccagcc acgactgttt gagtgctcca gccacatggg ctgcctggtc ctcgcagaag 22**8**0 tggggttctt cagccaggag gacctggaca agtatgacat catgttactg gacacctggc aggagatett cetgtggett ggggaagetg caagtgagtg gaaggaggeg gtggeetggg 2340 2400 gccaggagta cctgaagact cacccagcag ggaggagccc ggncacaccc atcgtgctgg tcaagcaggg ccatgagcct cccaccttca ttggatggtt cttcacttgg gacccctaca 2460 2520 agtggactag ccacccatcc cacaaggaag tggtggatgg cagcccggca gcagcatcaa ccatctctga gataacagca gaagtcaaca acttccggct atccagatgg ccgggcaatg 2580 2640 gcagggcagg tgccgtggcc ctgcaggccc tcaagggctc ccaggacagc tcagagaatg atctggtgcg aagccccaag tcggctggca gcagaaccag cagctccgtc agcagcacca 2700. gcgccacgat caacgggggc ctgcgccggg aacaactgat gcaccaggct gttgaggacc 2760 2820 tgccagaggg cgtggaccct gcccgcaggg agttctatct ctcagactct gacttccaag atatetttgg gaaatecaag gaggaattet acageatgge caegtggagg cageggeagg 2880 agaaaaagca getgggette ttetgaaeee aageeetete gaetgeeeet ateeeetgga 2940 3000 ccccaacata cctacaatgc tggggaggcc ctgcttccac tcccctcaga ggcttttggt 3044 . catcctctgc gtgtcagtaa aagcaggcag cccataaaaa aaaa

```
<210> 37
<211> 541
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (420)
<223> n equals a,t,g, or c
<220>
<221> SITE
```

<222> (486)

```
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (530)
<223> n equals a,t,g, or c
<400> 37
ttcaaggatt ataatatgct gagtaaactt ttggcactaa ggaagccagc tacaggccac
                                                                       120
gtaatgaaaa ctattcagaa aacagttcag caaatactac tatttgaata cagttcaaat
cgtatttata taaatactct gcctacatta tttaacccaa actggattat tcaccattct
                                                                       180
                                                                       240
ttgaagatgc cttgtgtttt ctgttatcta cttctgctcg tgcagtttac ttacaccttc
                                                                       300
accetttcaa atcetaacte ttettcaagg cetgattcag attttaactt tttaaagget
                                                                       360
atctgaatca ttcaagggag aagataccct ttctctcata aaaacactta gagcaaacta
                                                                       420
ccggtaccca attcgcccta tagtgagtcg tattacaatt cactgggccg tcgttttaca
                                                                       480
acgtentgae tgggaaaace etggegttae ecaaettaat egeettgean cacateecee
                                                                       540
                                                                       541
<210> 38
<211> 1752
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (356)
<223> n equals a,t,g, or c
<400> 38
gtoggoggog goggoggogg ttgaactgac toggagogag gagaccogag ogagoagaog
                                                                        60
cggccctggc gcccgccctg cgcactcacc atggcgatgc atttcatctt ctcagataca
                                                                       120
geggtgette tgtttgattt etggagtgte cacagteetg etggeatgge eettteggtg
                                                                       180
                                                                       240
ttggtgctcc tgcttctggc tgtactgtat gaaggcatca aggttggcaa agcaagctgc
                                                                       300
tcaaccaggt actggtgaac ctgccaacct ccatcagcca gcagaccatc gcagagacag
                                                                       360
acggggactc tgcaggctca gattcattcc ctgttggcag aacccaccac aggtgntatt
tgtgtcactt tggccagtct ctaatccatg tcatccaggt ggtcatcggc tacttcatca
                                                                       420
tgctggccgt aatgtcctac aacacctgga ttttccttgg tgtggtcttg ggctctgctg
                                                                       480
                                                                       540
tgggctacta cctagcttac ccacttctca gcacagctta gctggtgagg aacgtgcagg
cactgagget ggagggacat ggagccccct cttccagaca ctatacttcc aactgccctt
                                                                       600
tettetgatg getatteete cacettatte ecageecetg gaaactttga getgaageea
                                                                       660
gcacttgctc cctggagttc ggaagccatt gcagcaacct tccttctcag ccagcctaca
                                                                       720
tagggcccag gcatggtctt gtgtcttaag acagctgctg tgaccaaagg gagaatggag
                                                                        780
ataacagggg tggcagggtt actgagccca tgacaatgct tctctgtgac tcaaaccagg
                                                                        840
aatttccaaa gatttcaagc cagggagaag ggttcttggt gatgcagggc atggaacctg
                                                                        900
gacaccetca geteteetge tttgtgeett atetacagga geategeeca ttggaettee
                                                                        960
 tgacctette tgtetttgag ggacagagae caagetagat cetttttete acetttetge
                                                                       1020
 ctttggaaca catgaagatc atctcgtcta tggatcatgt tgacaaacta agtttttttt
                                                                       1080
 atttttccca ttgaactcct agttggcaat tttgcacatt catacaaaaa aatttttaat
                                                                       1140
 gaaatgattt cattgattca tgatggatgg cagaaactgc tgagacctat ttccctttct
                                                                       1200
 tggggagaga ataagtgaca gctgattaaa ggcagagaca caggactgct ttcaggctcc
                                                                       1260
                                                                       1320
 tggtttattc tctgatagac tgagctcctt ccaccagaag gcactgcctg caggaagaag
 awgatctgat ggccgtgggt gtctgggaag ctcttcgtgg cctcaatgcc ctcctttatc
                                                                       1380
 ctcatctttc ttctatgcag aacaaaaagc tgcatctaat aatgttcaat acttaatatt
                                                                       1440
                                                                       1500
 ctctatttat tacttactgc ttactcgtaa tgatctagtg gggaaacatg attcattcac
ttaaaatact gattaagcca tggcaggtac tgactgaaga tgcaatccaa ccaaagccat
                                                                       1560
 tacatttttt gagttagatg ggactstctg gatagttgaa cctcttcact ttataaaaaa
                                                                       1620
```

				(
			atacctcac a	gattagatg a	aaagatggt	1680
ggaaagagag aa	aatcactg c	tgtalacia a	acattttag t	aaatatata t	ttttaaata	1740
tgtaagcttt g		acaaacaaa L	acatticay t	.aaacacaca c	.cccaaaca ,	1752
aaaaaaagaa aa	3		•			1.3 2
	·			•		
212 22		•				
<210> 39					4	
<211> 1907 <212> DNA						
	niene					
<213> Homo sa	apiens					
<400> 39	•		•		•	
agttcagggg (cacaggggca	caggcccacg	actgcagcgg	gatggaccag	tactgcatcc	. 60
tgggccgcat	caaaasaaac	acccamagca	tcqtcttcaa	ggccaagcac	gtggagactg	120
gcgagatagt (tgccctcaag	aaggtggccc	taaggcggtt	ggaagacggc	ttccctaacc	180
aggccctgcg	gagattaag	actctacaga	aratggagga	caatcagtat	gtggtacaac	240
tgaaggctgt	gttcccacac	ggtggaggct	ttgtgctggc	ctttgagttc	atgctgtcgg	300
atctggccga	gataatacac	catqcccaga	ggccactagc	ccaggcacag	gtcaagagct	360
acctgcagat o	gctgctcaag	ggtgtcgcct	tctgccatgc	caacaacatt	gtacatcggg	420
acctgaaacc	tgccaacctg	ctcatcagcg	cctcaggcca	gctcaagata	gcggactttg	480
gcctggctcg	agtcttttcc	ccagacggca	gccgcctcta	cacacaccag	gtggccacca	540
ggageteact o	gagetgeegg	actacaacaa	gatctccttt	aaggagcagg	tgcccatgcc	600
cctggaggag (gtgctgcctg	acgtctctcc	ccaggcattg	gatctgctgg	gtcaattcct	660
tctctaccct	cctcaccagc	gcatcgcagc	ttccaaggct	ctcctccatc	agtacttctt	720
cacageteee	ctgcctgccc	atccatctga	gctgccgatt	cctcagcgtc	tagggggacc	7.80
tqccccaaq	gcccatccag	ggccccccca ·	catccatgac	ttccacgtgg.	accggcctct	840
tgaggagtcg	ctgttgaacc	cagagctgat	tcggcccttc	atcctggagg	ggtgagaagt	900
taaccctaat	cccqtctqcc	tgctcctcag	gaccactcag	tccacctgtt	cctctgccac	960
ctacctaact	tcaccctcca	aggcctcccc	atggccacag	tgggcccaca	ccacaccctg	1020
cccttagcc	cttqcqarqq	ttqqtctcqa	ggcagaggtc	atgttcccag	ccaagagtat	1080
gagaacatcc	agtcgagcag	aggagattca	tggcctgtgc	tcggtgagcc	ttaccttctg	1140
tatactacta	acqtacccat	caggacagtg	agytctgctg	ccagtcaagg	cctgcatatg	1200
cagaatgacg	atgcctgcct	tggtgctgct	tccccgagtg	ctgcctcctg	gtcaaggaga	1260
agtgcagaga	gtaaggtgtc	cttatgttgg	aaactcaagt	ggaaggaaga	tttggtttgg	1320
ttttattctc	agagccatta	aacactagtt	cagtatgtga	gatatagatt	ctaaaaacct	1380 1440
caggtggctc	tgccttatgt	ctgttcctcc	ttcatttctc	tcaagggaaa	tggctaaggt	1500
ggcattgtct	catggçtctç	gtttttgggg	tcatggggag	ggtagcacca.	ggcatagcca	1560
cttttgccct	gagggactcc	tgtgtgcttc	acatcactga	geacteattt	agaagtgagg	1620
gagacagaag	tctaggccca	gggatggctc	cagttgggga	cccagcagga	gaccccccgc	1680
acatgaggct	ggtttaccaa	catctactcc	ctcaggatga	gegegageea	toccastata	1740
tgtatttaag	gaaacaagcg	ttcctggaat	taatitataa	tasttatasa	agatagatag	1800
atcccagcta	gtgcttttc	cttattataa	ataataaaa	gattatgat	agatacatgg	1860
aaggaagtgg	aaccagatge	agaagaggaa	atgatggaag	gacttatggt	accagacacc	1907
aatatttaaa	agtttgtata	ataataaaya	grargarra	ggcccaa		
			•			
.210- 40				*	-	
<210> 40 <211> 2350		•		•		
<211> 2350 <212> DNA		•	•			
<213> Homo s	aniens			·		•
(213) 1101110 3	apiciis.		•			
<400> 40				-		
gaagaagagc	gacctgccct	aatggatgac	agaaagcaca	aaatttgtag	catgtatgac	60
aacttaaggg	ggaaattgcc	tggacaagag	aggcctagtg	atgaccactt	tgtacagatc	, 120
atgtgtatcc	qaaaaqqqaa	gagaatggtt	gcccgtattc	ttcctttcct	ctccacagag	180
caaqcaqctq	acattctcat	gacaacagcc	aggaacctcc	ctttccttat	caagaaggat	240
gcacaagatg	aggtgctgcc	atgcttactg	agtcccttct	ctctccttct	ctatcatctt	300
ccatcaqtqa	gtatcaccag	ccttttgcga	cataatgaac	ctacctcaaa	gtgcagctac.	360
accagcactc	tccaatcctc	acctcactgc	tgtgctccag	aacaagtttg	gcctgtcact	420

```
480
gstcctcatc ctcctgagcc gtggtgaaga cctacagagt tcagaccctg ctacagaatc
                                                                        540
aacacaaaat aatcagtgga cggaggtgat gttcatggca acacgagaac ttctgcggat
tocccaagea geoetggeea agecaatete tatacetaea aacetagtgt eeetetttte
                                                                        600
tcgctatgtt gaccggcaga aactgaactt gctggagasa aaactgcagc tagttcaggg
                                                                        660
gatacgataa aagateteea aatgtgteet gtaeeteett ttggetgeea eetgeaetge
                                                                        720
tgccatcacc aatggrgtgt ttttaatgag ggaaggaagg tagctttttc cccaaagcaa
                                                                        780
agkmttgtgg gatcgattcc tgtttacagg ggttgtctct ctaaatgtca gatatttccc
                                                                        840
cactgctcta tgaaatttgg ctgggtgata cttctgctgg tttctttacc ttctgtgtta
                                                                        900
                                                                        960
cagttctgca tgtcctactt ttactcagtt ctgttttgca tttwctttgc cctagagaca
caagtgtaat ctctcccttt atccctccac tactccacct cagagtagat tgtagcctgc
                                                                       1020
caaaggattc cttccctcat cctattgaag ttgttttttc attgccccat attaatatga
                                                                       1080
ctatagaaga gccaattaag tagaaatcaa gatatacaca cacacataga tacacacaca
                                                                       1140
cacaccccat acatgtattt atgtggtctt cagagggtcc ttaaagaatg.aattttagat.
                                                                       1200
tgaaaaatat ttagttgtct cattacctct tctaaacaca aaccagctga tgtattttaa
                                                                       1260
tctgtttctg ttctatcttg taattaattt ggtgggttct acttgtttta acataaataa
                                                                       1320
agagtatgca gcacgtttaa taaaatcaga actettaatt ggettatgee caggtetagg
                                                                       1380
ctgagaagtc ctttttcttc ttcccacctt tatttcctta gtttctgtcc accttaatcg
                                                                       1440
aaacaacaca tggttatgtc tttttcctgc tacaactaca gggtacttga gcctttcccc
                                                                       1500
tcaagtgcat tcgaagtcac ccaggatgat cctcactagt agcctgcttt ggcagtgtgg
                                                                       1560
ctttttgcac acttgccctg tcttcctgag actacttcag taagccatgc ttccttcttc
                                                                       1620
cccactttta tttggtgtca tgaatagaaa cttccaaatg taaccatgga agctaagttt
                                                                       1680
ggcctgcttt gctttttagt ctccacacca tgggcagaac tgctgtcttt actacttcat
                                                                        1740
ctcacccaag tcccgttccc aggcagccar gggcctgggt tttgaataat tgcaagggcc
                                                                       1800
agectgecat gatetttete aettaeteet eteceattea geaateaace agaetaagga
                                                                        1860
gttttgatcc ctagtgatta cagccctgaa gaaaattaaa tctgaattaa ttttacatgg
                                                                        1920
                                                                        1980
ccttcgtgat ctttctgctg ttcttacttt ttcgaatgta gttggggggt gggagggaca
                                                                        2040
ggttatggta tttaaagaga ataaacattt tgcacataca tgtattgtac aacagtaaga
                                                                        2100
tectetgtta aaaccagetg teetgttete catetecatt tetteecatg etgtaaccee
                                                                        2160
aggetecace agetgttece cagtgatgtt acetagette cetetacegt tgtetactga
ccatttccac tacatgcctt tcctaccttc ccttcacaac caatcaagtg aatacttgat
                                                                        2220
                                                                        2280
tattatetet teettaetgt getttatett ttttgtttgg attggtteta attaatgaaa
                                                                        2340
ataaaagttt ctaaatttac atttttatag ggtattgtaa ataaaaacaa attgtatact
                                                                        2350
taaaaaaaaa
```

```
<210> 41
<211> 1114
<212> DNA
<213> Homo sapiens
```

<400> 41

gggcagacga tgctgaagat gctctccttt aagctgctgc tgctggccgt ggctctgggc 60 120 ttctttgaag gagatgctaa gtttggggaa agaaacgaag ggagcggaca aggaggagaa 180 ggtgcctgaa tgggaacccc ccgaagcgcc tgaaaaggag agacaggagg atgatgtccc 240 agctggagct gctgagtggg ggagagatgc tgtgcggtgg cttctaccct cggctgtcct 300 gctgcctgcg gagtgacagc ccggggctag ggcgcctgga gaataagata ttttctgtta ccaacaacac agaatgtggg aagttactgg aggaaatcaa atgtgcactt tgctctccac 360 420 attotoaaag cotgitocao toacotgaga gagaagioti ggaaagagao otagiaotio 480 ctctgctctg caaagactat tgcaaagaat tcttttacac ttgccgaggc catattccag 540 gtttccttca aacaactgcg gatgagtttt gcttttacta tgcaagaaaa gatggtgggt 600 tgtgctttcc agattttcca agaaaacaag tcagaggacc agcatctaac tacttggacc 660 agatggaaga atatgacaaa gtggaagaga tcagcagaaa gcacaaacac aactgcttct 720 gtattcagga ggttgtgagt gggctgcggc agcccgttgg tgccctgcat agtggggatg 780 gctcgcaacg tctcttcatt ctggaaaaag aaggttatgt gaagatactt acccctgaag 840 gagaaatttt caaggagcct tatttggaca ttcacaaact tgttcaaagt ggaataaagg 900 ttggcttttt aaattttatt tatttttgtg ctggctacgt taattttatt ttagtgttac 960 cttcctcact gaaggtattt ctttgtaata aaagaaagaa tcttgcagga gaaaataagg gggcaacata agaaacaata attatggcac ctgaattagg acagtgacat taaakgttgg 1020

```
1080
1114
aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaa
<210> 42
<211> 1652
<212> DNA
<213> Homo sapiens
<220>
<221> SITE .
<222> (1640)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1644)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (1648).
<223> n equals a,t,g, or c
<400> 42
ttggcacctc taattgctct cgtgtattcg gtgccgcgac tttcacgatg gctcgcccaa
                                                                        60
                                                                       120
 cettactace ttetgtegge cetgetetet getgeettee tactegtgag gaaactgeeg
                                                                       180
 ccgctctgcc acggtctgcc cacccaacgc gaagacggta acccgtgtga ctttgactgg
                                                                       240
 agagaagtgg agateetgat gttteteagt gecattgtga tgatgaagaa eegeagatee
                                                                       300
 atcactgtgg agcaacatat aggcaacatt ttcatgttta gtaaagtggc caacacaatt
 cttttcttcc gcttggatat tcgcatgggc ctactttaca tcacactctg catagtgttc
                                                                       360
                                                                       420
 ctgatgacgt gcaaaccccc cctatatatg ggscctgagt atatcaagta cttcaatgat
                                                                       480
 aaaaccattg atgaggaact agaacgggac aagagggtca cttggattgt ggagttcttt
 gccaattggt ctaatgactg ccaatcattt gcccctatct atgctgacct ctcccttaaa
                                                                       540
                                                                       600
 tacaactgta cagggctaaa ttttgggaag gtggatgttg gacgctatac tgatgttagt
 acgeggtaca aagtgageae ateaceeete accaageaae teeetaceet gateetgtte
                                                                       660
 caaggtggca aggaggcaat gcggcggcca cagattgaca agaaaggacg ggctgtctca
                                                                       720
 tggaccttct ctgaggagaa tgtgatccga gaatttaact taaatgagct ataccagcgg
                                                                       780
                                                                       840
 gccaagaaac tatcaaaggc tggagacaat atccctgagg agcagcctgt ggcttcaacc
 cccaccacag tgtcagatgg ggaaaacaag aaggataaat aagatcctca ctttggcagt
                                                                       900
                                                                       960
 getteetete etgteaatte eaggetettt eeataaceae aageetgagg etgeageytt
                                                                       1020
 ttatttatgt tttccctttg gctgtgactg ggtggggcag catgcagctt ctgattttaa
                                                                       1080
 agaggcatct agggaattgt caggcaccct acaggaaggc ctgccatgct gtggccaact
                                                                       1140
 gtttcactgg agcaagaaag agatctcata ggacggaggg ggaaatggtt tccctccaag
                                                                       1200
 cttgggtyag tgtgttaact gcttatcagc tattcagaca tctccatggt ttctccatga
 aactotgtgg tttcatcatt cottottagt tgacotgcac agottggtta gacotagatt
                                                                       1260
taaccctaag gtaagatgct ggggtataga acgctaagaa ttttccccca aggactcttg
                                                                       1320
 cttccttaag cccttctggc ttcgtttatg gtcttcatta aaagtataag cctaactttg
                                                                       1380
 togotagtoo taaggagaaa ootttaacca caaagttttt atcattgaag acaatattga
                                                                       1440
 acaaccccct attttgtggg gattgagaag gggtgaatag aggcttgaga ctttcctttg
                                                                       1500
                                                                       1560
 tgtggtagga cttggaggag aaatcccctg gactttcact aaccctctga catactcccc
 acacccagtt gatggctttc cgtaataaaa agattgggat ttccttttga aaaaaaaaa
                                                                       1620
                                                                      1652
 aaaaaggggg ccgctctagn ggtnccangc tt
```

<210> 43
<211> 1473

<212> DNA

<213> Homo sapiens

		*		•		
<400> 43						
ggcacgagcc	gcggggctgt	cacctccgcc	tctgctcccc	gacccggcca	tgcgcggcct	60
caaactctaa	ctgctgggcg	cgatgatgct	gcctgcgatt	gcccccagcc	ggcccrgggc	120
cctcatqqaq	caqtatqaqq	tcgtgttgcc	gtggcgtctg	ccaggccccc	gagtccgccg	180
agetetgeee	tcccacttgg	gcctgcaccc	agagagggtg	agctacgtcc	ttggggccac	240
agggcacaac	ttcaccctcc	acctgcggaa	qaacaqqqac	ctgctgggct	ccggctacac.	300
agagacctat	acggctgcca	atggctccga	ggtgacggag	cagcctcgcg	ggcaggacca	360
ctacttctac	cagggccact	tagagggtac	cggactcagc	cgccagcctc	agcacctgtg	420
ccaacctcaa	gggtttcttc	caggtggggt	cagacctgca	cctgatcgag	cccctggatg	480
aaggtgggg	gggcggacgg	cacaccatat	accaggetga	gcacctgctg	cagacggccg	540
aaggeggega	ggtcagcgac	gacageetgg	acaacctcct	gggaccccgg	acggcagccg	600
tetterees	teggeeeggg	gactgtctgg	catcccgaga	gacccgctac	gtggagctgt	660
atataataat	ggacaatgca	gacttccaga	tactagagaa	cgaagcagcc	gtgcgtcatc	720
acgeggeege	ggacaacgca	cacatagaca	agctatatca	gaaactcaac	ttccgtgtgg	780
gggtgetgga	cctggagatt	tacgeggaea	aggedeacaget	ccacqtcaqc	cccgacccca	840
ceetggtggg	ggagaacctc	ctggaacagcc	aggacagge	acadacacaa	caacacctac	900
gtgtcacact	ggagaacctc	accepte	aggedegged	gactactgtg	gggtttgcca	960
atgacaacgt	acageteate	acgggtgtcg	accccaccgg	ccaccaccac	agcaagaacc	1020
gggtgtccgc	catgtgctcc	cacagereag	gggccgcgaa	caacetaaa	atggaccatg	1080
ccgtgggcgt	ggcctgcacc	atggeceatg	agacgggcca	aggeeggee	ctgcatcatg	1140
atgagaacgt	ccagggctgc	cgctgccagg	aaacgcttcg	aggeeggeeg	ccacacctac	1200
gcaaggccag	cattggctcc	cagtttcccc	aggatgttca	grgacrgcag	taaaataaa	1260
ctggagagct	ttttggagcg	gccgcagtcg	gtgtgcctcg	ceaacycccc	reacteres	1320
cacctggtgg	gcggccccgt	gtgtgggaac	ctgtttgtgg	agegraggga	gcagcgcgac	1380
tgcggccccc	ccgaggactg	ccggaaccgc	tgctgcaact	ctaccacctg	ccagctggct	1440
gaggggccc	agtgtgcgca	cggtacctgc	tgccaggagt	gcaaggtgaa	geeggeegge	1473
gagctgtgcc	gtcccaagaa	ggacatgtgt	gac			14/3
	•					
			· · · ·		d .	
<210> 44						
<211> 772		÷		•	,	
<212> DNA		-			•	
<213> Homo	sapiens		•	•	•	
<400> 44					caggeagegg	60
teggtttete	tctttgcagg	agcaccggca	geaccagigi	grgagggag	caggeagegg	120
tcctagccag	ttccttgatc	ctgccagacc	acceageeee	tggcacagag	aggtgagaga	180
ggcaccatga	ggatcatgct	gctattcaca	gccatcctgg	cetteageet	ageccagage	240
tttggggctg	tctgtaagga	gccacaggag	gaggtggttc	eeggeggggg	ctgtagtaag	300
agggatccag	atctctacca	gctgctccag	agactettea	aaagecaete	atctctggag	360
ggattgctça	aagccctgag	ccaggytagc	acagatecta	ayyaattaat	accidence	
aaacgtgaca	'tgcatgactt	ctttgtggga	yttatgggca	agaggagegt	ccagccagac	420
tctcctacgg	atgtgaatca	agagaacgtc	cccagctttg	geatecteaa	graceceeg	
agagcagaat	aggtactcca	cttccggact	cctggactgc	actaggaaga	cctctttccc	600
tgtcccaato	: cccaggtgcg	cacgctcctg	ttaccctttc	tetteetgt	tettgtaaca	660
ttcttatact	ttgactcctt	ctccatcttt	tctacctgac	cctggtgtgg	aaactgcata	720
gtgaatatco	: ccaaccccaa	tgggcattga	ctgtagaata	ccctagagtt	cctgtagtgt	772
cctacattaa	ı aaatataatg	tctctctcta	ttcctcaaca	aataaaggat	C C	112

```
<210> 45
<211> 403
```

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

```
<222> (15)
<223> n equals a,t,g, or c
<400> 45
                                                                          60
aattcggcac gagcntggaa tgggaggcta cggaagagat ggaatggata atcagggagg
ctatggwtca kttggaagaw tgggaatggg gaacaattac agtggaggat atggtactcc
                                                                         120
 tgatggtttg ggtggttatg gccgtggtgg tggaggcagt ggaggttact atgggcaagg
                                                                         180
                                                                         240
cggcatgagt ggaggtggat ggcgtgggat gtactgaaag caaaaacacc aacatacaag.
                                                                         300
 tottgacaac agcatotggt ctactagact ttottacaga tttaatttot tttgtatttt
                                                                         360
 aagaacttta taatgactga aggaatgtgt tttcaaaata ttatttggta aagcaacaga
                                                                         403
 ttgtgatggg gaaaaaaaaa aaaaaaagaa ttcaaaaagc ttc
<210> 46
<211> 928
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (78):
<223> n équals a,t,g, or c
<220>
<221> SITE
<222> (148)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (163)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (532)
<223> n equals a,t,g, or c
<400> 46
 cctctcgcta attaacccaa ttggccaaaa gggggatgtt gcctgcaang ccaattaaat
                                                                           60
 ttgggtaaac ccccaggntt ttccccaagt ccacgacgtt gtaaaaaacg acggcccaat
                                                                          120 ~
 tgaaattgtw aaaaacsaac ycactaanag ggccaawtgg gtnacsgggc cccccccga
                                                                          180
                                                                          240
 rttttttttt tttttttt ctgrttgwca atgagratat ttattgaggg tttattgagt
                                                                          300
 gcagggagaa gggctkgatg mcttgggrtg ggaggagaga cccctcccct gggatcctgc
                                                                          360
 ageteyagke tecegtgggt gggggtkagr gttgrgaace tatgaacatt etgtagggge
                                                                          420
 cactgtette tecaeggtge tecetteatg egtgaeetgg cagetgtage ttetgtggga
 cttccactgc tcrggcgtca ggctcaggta gctgctggcc gcgtacttgt tgttgctytg
                                                                          480
                                                                          540
 tttggagggt ktggtggtct ccactcccgc cttgacgggg ctgcyatctg cnttccaggc
                                                                          600
 cactgtcacr gctcccgggt agaagtcact katsagacac acyagtgtgg ccttgttggc
                                                                          660
 ttgragctcc tcagaggagg gcgggaacag agtgacmgwg gggkyrgcct tgggctgacc
                                                                          720
 taggacggtg accttggtcc cagttccgaa gacmccatga ttaccactgc tgtctgttga
 gtaacagtag tagtcagccg catcetecae etgggeeeca etgatagtea aggtggeeae
                                                                          780
 tgtccctgar ctggagccar agaatctcts agggatccgg agggtcgttt gttgtcctca
                                                                          840
```

```
tagatgacca ggcacagggg cctggcctga cttctgktgg taccaatawa catatttctt
                                                                        900
                                                                        928
cggcaatgca tctccaggag caggtgat
<210> 47
<211> 885
<212> DNA .
<213> Homo sapiens
<400> 47
ggcacgaggg aatotgcacc atgccctggg ttctgctcct cctgaccctc ctcactcact
                                                                         60
 ctgcagtgtc agtggtccag gcagggctga ctcagccccc ctcggtgtcc aaggacttga
                                                                        120
 gacagaccgc cacactcacc tgcaccggga acaacaacaa tgttggcgac caaggagcag
                                                                        180
                                                                        240
 cttggctgca gcagcaccag ggccaccctc ccaaactcct gtcctacagg aataataacc
                                                                        300
 ggccctcagg gatctcagag agattatctg catccaggtc aggagccaca tcctccctga
                                                                        360
 ccattactgg actccagcct gaggacgagg ctgactatta ctgcgcagca tatgacagca
                                                                        420
 gcctcgcagt ttggatgttc ggcggaggga ccaagctgac cgtcctaggt cagcccaagg
                                                                        480
 ctgccccctc ggtcactctg ttcccaccct cctctgagga gcttcaagcc aacaaggcca
 cactggtgtg teteataagt gaettetace egggageegt gaeagtggee tggaaggeag
                                                                        540
 atagcagece egteaaggeg ggagtggaga ecaceaeace etecaaacaa agcaacaaca
                                                                        600
 agtacgegge cageagetae etgageetga egeetgagea gtggaagtee eacaaaaget
                                                                        660
 acagetgeca ggteaegeat gaagggagea eegtggagaa gacagtggee eetacagaat
                                                                        720
 gttcataggt totcatocot caccoccac cacgggagac tagagotgca ggatoccagg
                                                                        780
                                                                        840
 ggaggggtet etecteceae eccaaggeat caagecette teeetgeaet caataaacee
                                                                        885
<210> 48
<211> 2315
<212> DNA
<213> Homo sapiens
<220>
<221> SITE
<222> (2264)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (2312)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (2315)
<223> n equals a,t,g, or c
<400> 48
                                                                          60
 tttttttttt tttgattttt caaaattaac ttttttatta atttaaaaat ccagaaatac
 agtgactaca taaataagta ccataattag gtacatgtcc tgtgagaaca gtgaaagggt
                                                                         120
 aatactgtta tgttactctt acttgtttac atgagttaac tagaaaatgg ctacaactgc
                                                                         180
 taaatgatgc ttatggtctt tgttgttcca agtgtttatg atacaaataa atacacaaga
                                                                         240
                                                                         300
 agaaccacat ccattettet etactaacta caggeagett ggeetettta ecetatgtee
                                                                         360
 tattctctac acaacaccaa acactggagg gtttctactt tgacttaaca cagctcccca
                                                                         420
 geteetgett eccaeageat tttgcaaagg tgtgteecag caeetggagg caggagtata
                                                                         480
 tctagggaaa ctctctgcgt gttctcttaa ggctaagctt tcagagaaca cctgggtggg
 aaggctttgg gatgaatcat ccagaaggag aaacacctct ttgccttagg atctagttac
                                                                         540.
 tagtotocao attatggaat cactgocaco totgggaogg agggagoago ogcataacao
                                                                         600
```

```
660
atgctgtgca tggcgtgaat aattgactgc atttgagttt ggagttttag ggcactgttg
                                                                      720
acttaagcaa aataagcctg cagtccagct gcagcttgag ttttcttgct ttaccctatc
                                                                      780
                                                                      840
caatactgtc tgtcttgcct aacagtggcc cttttcagat ctctccaggt acaaaacctt
gactaaatct tcaagctctg ttctgcatac acgacttgaa cacatctggc tgatctgagc
                                                                      900
ttctccttcg gtgaagatct tccactggct cagggttgtt ctggtcacca gcttgaagtg
                                                                      960
aggaagetee teaaacatee tettggagat etteteaata tggaagtget ggagaatgee
                                                                     1020
ctttcgaata gtccaaacgt ggacctctac ctgaggtggt ctctcagtct ccagtgctat
                                                                     1080
ttttctggtt gtctccccat cctccatgaa tacagactca tacacaggca tcgtttcttc
                                                                     1140
cccgcagaag tagcctttat tgtcaaagct ttggcctgga agttcttctg gacacacctt
                                                                     1200
gcagcatttt ccgtctattt tttgaggata cttgcagggg tatcgattgg ggcagtggat
                                                                     1260
tttcttacac tcttgcttgg tgacattaca agtacatagc acacactcca caatgccaaa
                                                                     1320
tgcccggagg tttgggtgcc aggactcgcc atgagaatag gtctttccat tggaaacaca
                                                                     1380
cacttgtcca tgcttgtgtt tgttattgat gacaatttgc acaatggttc ctgatgcttg
                                                                     1440
                                                                     1500
ctgggaatcc ataagagctc cccggtgact tctggcccca ggaaagcggg acagacctcc
agcctgtcgg cttggtggag gatcatagtg agagcggtgg taagaatgtc ttgcttctct
                                                                     1560
gttggcaggt tgccggaaga tatcaccatc agaatgttcc catgacagtt ctccatctcc
                                                                     1620
tctgcatacc cggcagcagg aatctggaac agagactggg aaggcacagg ttaatttggg
                                                                     1680
gcaagtettg agaccacaat acaegtttee eteegaacag etgeaetggg tgcattgatt
                                                                     1740
gggttgccga ttctgaaaga gcccttcagc tacgaacagc tctccatgtt ggtaagttgt
                                                                     1800
cccattgtac tcgcaagact tgctggtcac cttattgttc actgggggta aggagtcttc
                                                                     1860
tgggcagcga gggcagcaca gatgaggaat atgcacagga gaaaggcaat gaacatttgg
                                                                     1920
                                                                     1980
acatctgact cggctgcaaa gcacattccc attctctgag cagatgcagt tcacgcagta
aaccaaccca taaggttcca ggtaaggatg ccatctctca cccactctgt acttcttgtc
                                                                     2040
ttgaaacatg caatatgtct ctgaatgttt tacttgctct gtttkgcctc cttctagcaa
                                                                     2100
                                                                     2160
aagaaagete gtgeegaatt eetgeageee ggggggatee actagtteta gageggeege
                                                                     2220
caccgcggtg ggagctccag cttttggttc cctttagtga ggggttaatt tcgagcttgg
                                                                     2280
cggtaatcat gggtcatagc ttgtttcctg gtgttgaaat tggntatccc gctcacaaat
                                                                     2315
tccacaacaa caatacgagc cggaagcata angtn
```

```
<210> 49
<211> 3175
<212> DNA
<213> Homo sapiens
```

<400> 49

60 ttttttttgt caatcacttt aatagatgtc cataggtagt tcatatgaat gcttaagtta 120 caaaattagc tgccatggtc caaatgtatg ggactttagg aaagcttttc ttactcaaaa 180 gataactaag actatcaact ttgatttcta aaatgtaatt taaaggtttg taaaacaagg 240 300 aacttcatga actgttaaaa atattacatt tgcatctctc agtttacata tttctgtatt 360 aacttggaga aaaacccatg tgaaaagttt ccatgcagtt acaaaggcag cagcacatgc 420 tgttttcaca gcaacttgtt attgcctcag aacaggcctg cactaaagca tcaacaaaaa 480 atacccacca ccccactccc accagaaaac ccaaccctta cccatccccg gcaaaaatta cctggtacaa gcaatgacct aaaaatgctt tcttggtaag aagcatttat aaaatgcaga 540 gatctgaaca agctaagtgc tcgtgcagat acatgggcct ctcctccaag-agttggttcc 600 gcaagaggtg gaaagaactc tcaatagttt aggaaagctc attttcaaaa gtatacttac 660 acatattcat ggccatttct ttgaaagaac atacccagcc tcaactgtgg aaaagataaa 720 agcagaggga gaagcaacgg cacacagcca taatatagag aacagagctt ctccatgaac 780 840 atccaccagg ctgcagcaac caagaaggaa aaaacatttg tgatttcaca cagaccaatg atcttaccta ggtgaagcat taatttttca tgcatttgtt actcaagaaa ataaacatac 900 960 aaccacttaa aatacagcat tcacgttgtc actggttcgt ggtatcaggt aaggaaaaaa 1020 tgatgeteet gteectagaa ttttecatgt acatgteagt atectaatge etacagaett 1080 cctattaatt ttgttatcag catctcccac ctaaaaacat acactacatt atgttctggg 1140 tccctgaaat agaaaacatc aagcaatgtt tattgtgcaa ttccaatcat tatttgcaga

atcttggttt agagtcagtc tttatagcca tttcaactgc ttggtttaaa caaaaagcaa caatctggtt atctacctat aaatttcayg gtatttcttt aaacactgaa gtactaaaag

1200

.780

783

cactgatgat ttgtattata atttttaaaa tatttaaaac ctacacagat ttcatagatc

```
atteetttta taaaataate aaaataattt gattatetgg aaaaaaaaat tettgaaaca
                                                                        1380
 gagccctttc caggtatctt caatctctgt aaaaccccaa accccaaaca gagtagatga
                                                                        1440
                                                                        1500
 tgaaataagg attteteagt tgeecaagae tgtetgaaat ttaaggttga gaaatggaet
                                                                        1560
 ggcgtttttc atgtttcctg tgaattcaga gcttacaggt ggcatcagaa ctcaaatctc
 tgggatgget ttacatgget tteactttga tttgttteat ttteatttge ttetttteea
                                                                        1620
 acttettttk eteaegeete aatgeageet eeteeageet gegetgttte teaggatett
                                                                        1680
 ceteatteat gattegetee ttetetgete tttttttete etecegeega gaetgtgetg
                                                                        1740
 cttcctgtct ttgcacatgt gtcagtttca agaagttctc ttctactcgg gcacggttct
                                                                        1800
 tatctgcttt ttgtttgcct tctctgttga gtcggaactt tttggcttta tcaatagaat
                                                                        1860
                                                                        1920
 aaatcaccat gttcatcagg ggtagcagtg cctccatatc ctttgggtaa gtgttacctg
                                                                        1980
 agccaggcac attaaatgta aacaacagtg tcctcttagt gtcaggtagc tttaaaggct
                                                                        2040
 gaccttcctc ttgcataatt tttggaccag agaactggtc tgaaaaatga acagattcaa
 tettgtcage atagtgtgta agaaagtgaa ceatetttgt atecateatt eegtetgtga
                                                                        2100
                                                                        2160
 cttctcccat ctctgacagg atggccaaag agtccggcag tccatacttt gctccagact
                                                                        2220
 taggtttatc actacaaaac tcactcaaat cctgcatctc tttctgtagt cgcaccaagg
                                                                        2280
 ctttccgtgt gccaacagca aatacgtagg tatccatgtc ttcatcattc atggttactt
                                                                         2340
 ttatttgcac ttgatcacte actggcctca tcatccgggc caggacattc agtaagtctt
                                                                         2400
 gtctcttgag gaacctcagc tggataagca tgccctcaca gcacactcga ccagaacacc
 acaggttata gatgtgctca ttctcctggt tcaactttcc tgtgcttgtg gcttctttgt
                                                                         2460
                                                                         2520
 tagttccatc atcccccact aaagtaaagt tgctctccaa aagctcccta tgagtgttaa
 accaggeetg tgeaaggega etgtttttat tetteecaat gatgtaatte atgatataag
                                                                         2580
                                                                         2640
 caagcagacc agtcaccatc aaaatttcta gataataact ctcccagctg ttctggaggt
                                                                         2700
 gtgcaggaac atcaacaatc gttattgggt ctttattttt gctagaagaa gtatctggtt
 tgtcttcata accttcaaat tcttcatcat catatggttc actctcagta tctccctcct
                                                                         2760
                                                                         2820
 gggtatetge atetteaaaa teteettett ggtttteate etgeeettee aacteeacag
                                                                         2880
 tggtctcatc ttcatcatct tcagtgatta tgacccgttg aggagattca gtaacagagt
                                                                         2940
 cttccatgac atcctcaaat tcagcgaagt cattatcatc atactctact atgtcctcct
                                                                         3000
 catecteaaa ateateaaac ttggetteag agacaeteee aaacaeeaga aggacaacae
 agaaagtgtg gaaggctttc attgcacctt gagaaaaaaa gctgtggccg aagccgaaac
                                                                         3060
                                                                         3120
 ceggeceage gecetgegte egacacecet geceggeetg eteteggeet ggeegeegee
                                                                         3175
 teegegateg cageggtttt aetgeeeegg atgeetetag gaegeageea gaace
<210> 50
<211> 783
 <212> DNA
 <213> Homo sapiens
 <400> 50
 ggcacgcgga aaggctggcc tctcttcamc atgggmtctt ctggactttt gagcctcctg
                                                                           60
 gtgctattcg tectettage gaatgteeag ggacetggte tgaetgattg gttattteee
                                                                          120
                                                                          180
  aggagatgtc ccaaaatcag agaagaatgt gaattccaag aaagggatgt gtgtacaaag
                                                                          240
 gacagacaat gccaggacaa caagaagtgt tgtgtcttca gctgcggaaa aaaatgttta
  gatctcaaac aagatgtatg cgaaatgcca aaagaaactg gcccctgcct ggcttatttt
                                                                          300
 cttcattggt ggtatgacaa gaaagataat acttgctcca tgtttgtcta tggtggctgc
                                                                          360
  caggggaaac aataacaact tccaatccaa agccaactgc ctgaacacct gcaagaataa
                                                                          420
                                                                          480
  acgetttece tgattggata aggatgeact ggaagaactg ceagaatgtg geteatgete
                                                                          540
  tgagtactgt tcctgtacct gactgatgct ccagactggc ttccagtttc actctcagca
                                                                          600
  ttccaagate ttagecette ecagaacaga acgettgeat etaceteete tteeteeate
                                                                          660
  tttggctctt ttgatgcaca atatccatcc gttttgattt catctttatg tcccctttat
 ctccaacttc tagaactccc agtttatacc tgtgtcactc tcaatttttt ccagtaaagt
                                                                          720
```

acttgatgtw gaaaaaaaaa aaaaaaaaaa aaaaccggca cgaggggggg cccggtaccc

```
<212> DNA
<213> Homo sapiens
<220>
<221> ŠITE
<222> (60)
<223> n equals a,t,g, or c
<220>
<221> SITE
<222> (2388)
<223> n equals a,t,g, or c
<400> 51
 ctctaagaac ctagtggatc cccccggcct gcaggaattc gggcacggag gggagacttn
                                                                         120
 ctgtggctaa gggagggcgg gaagggccct ctgtggggct gccattttgg ctgggaccta
                                                                         180
 aatgcagtaa aggagcagct acgggaatat agagagtggg gcttccaggc agagaagcct
                                                                         240
 gcagtgcaaa ggtctgcaga caacgacctg ggcgtcttca agggacacaa ggaatcatat
                                                                         300
 tgccagaaca cattgtacag gtagccaggt gtcggtctcc agcctgagaa ctctggctgt
 tgttccttgt gtcgtcccat attcctgcct ggcctgcgat ggacatcagc aagggcctcc
                                                                         360
                                                                         420
 caggcatgca gggaggcctc cacatatgga tctctgagaa ccggaagatg gtgccggtac
 ccgagggggc ttacgggaac tttttcgagg aacactgcta tgtcatcctc cacgtccccc
                                                                         480
                                                                         540
 agagcccgaa ggycacgcag ggggcgtcca gcgacctgca ctactgggtc gggaagcagg
                                                                         600
 cgggtgcgga agcgcagggc gctgcggagg ccttccagca gcgcctacag gacgagctgg
                                                                         660
 ggggccagac cgtgctgcac cgcgaggcgc agggccacga gtccgactgc ttctgcagct
                                                                         720
 acttccgccc gggaatcatc tacaggaagg gaggcctagc atctgacctc aagcatgtgg
 agaccaactt gttcaacatc cagcgactgc tgcacatcaa agggaggaag cacgtgtctg
                                                                         780
 ccactgaggt ggagctctcc tggaacagct ttaataaggg tgacatcttc ctgctggacc
                                                                         840
                                                                         900
 taggcaagat gatgattcag tggaatgggc ccaagaccag catttctgag aaggctcggg
 ggctggyctt gacctacagc ctccgggaca gggaacgtgg tggtggtcgt gcacagattg
                                                                         960
 gtgtggtgga tgatgaggcc aaagccccgg acctcatgca gatcatggag gctgtgctgg
                                                                        1020
                                                                        1080
 gccgcagggt gggcagmctg cgtgycgcca cgcccagcaa ggatatcaac cagctgcaga
                                                                        1140
 aggccaatgt tcgcctgtac catgtctatg agaagggcaa agacctggtg gtcctggagt
 tggcgacccc ćccactgacc caggacctgc tgcaggagga ggacttctac atcctggacc
                                                                        1200
 agggtggctt caagatctat gtgtggcagg gacgcatgtc tagcctccag gagagaaagg
                                                                        1260
 ctgccttcag ccgggctgtg ggcttcatcc aggccaaggg ctacccgacc tacaccaacg
                                                                        1320
 tggaggtggt gaacgacggc gccgagtcgg ccgcgttcaa gcagctcttc cggacttggt
                                                                         1380
 ctgagaagcg gcgcaggaac cagaagmtcg gcgggaggga taaatcgatt catgtaaagc
                                                                         1440
 tggacgtggg caagctgcac acccagccta agttagcggc ccagctcagg atggtggacg
                                                                         1500
 acggctctgg gaaggtggag gtgtggtgca tccaggactt acacaggcag cccgtggacc
                                                                         1560
 ccaagcgtca tggacagctg tgtgcaggca actgctacct tgtgctctac acataccaga
                                                                         1620
                                                                         1680
 ggctgggccg tgtccagtac atcctgtacc tatggcaggg ccaccaggcc actgcggatg
                                                                         1740
 agattgaggc cctgaacagc aacgctgagg aactagatgt catgtatggt ggcgtcctag
 tacaggagca tgtgaccatg ggcagcgagc cccccactt cctcgccatc ttccagggcc
                                                                         1800
 agctggtgat cttccaggag agagctgggc accacggaaa ggggcagtca gcatccacca
                                                                         1860
                                                                         1920
 caaggetttt ccaagtgeaa ggeactgaea geeacaaeae caggaecatg gaggtgeeag
                                                                         1980
 cccgtgcctc atccctcaac tccagtgaca tcttcttgct ggtcacagcc agcgtctgct
 acctctggtt tgggaaaggg ctgtaatggt gatcagcgtg agatggcacg ggtggtggtc
                                                                         2040
                                                                         2100
 actgtcattt ccaggaagaa tgaggaaacg gtgctggagg gtcaggagcc tccccacttc
                                                                         2160
 tgggaggccc tgggaggccg gggcccccta ccccagcaac aagaggctcc ctgaggaggt
                                                                         2220
 ccccagette cagecacgae tgtttgagtg etccagecae atgggetgee tggteetege
                                                                         2280
 agaagtgggg ttcttcagcc aggaggacct ggacaagtat gacatcatgt tactggacac
 ctggcaggag atcttcctgt ggcttgggga agctgcaagt gagtggaagg aggcggtggc
                                                                         2340
                                                                         2400
 ctggggccag gagtacctga agactcaccc agcagggagg agcccggnca cacccatcgt
                                                                         2460
 gctggtcaag cagggscatg agcctcccac cttcattgga tggttcttca cttgggaccc
                                                                         2520
 ctacaagtgg actagccacc catcccacaa ggaagtggtg gatggcagcc cggcagcagc
                                                                         2580
 atcaaccatc tetgagataa cagcagaagt caacaactte eggetateea gatggeeggg
 caatggcagg gcaggtgccg tggccctgca ggccctcaag ggctcccagg acagctcaga
                                                                         2640
```

```
gaatgatytg gtgcgaagcc ccaagtcggc tggcagcaga accagcagct ccgtcagcag
caccagegee aegateaaeg ggggeetgeg eegggaaeaa etgatgeaee aggetgttga
                                                                        2760
ggacctgcca gagggcgtgg accetgcccg cagggagtte tatetetcag actetgaett
                                                                        2820
                                                                        2880
ccaagatatc tttgggaaat ccaaggagga attctacagc atggccacgt ggaggcagcg
gcaggagaaa aagcagctgg gcttcttctg aacccaagcc ctctcgactg cccctatccc
                                                                        2940
ctggacccca acatacctac aatgctgggg aggccctgct tccactcccc tcagaggctt
                                                                        3000
                                                                        3030
ttggtcatcc tctgcgtgtc agtaaaagca
<210> 52
<211> 61
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (58)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 52
Met Glu His Ala Ala Gly Leu Pro Val Thr Arg His Pro Leu Ala Leu
                                      10
Leu Leu Ala Leu Cys Pro Gly Pro Phe Pro Ala Leu Leu Pro Leu
             20 -
Leu Pro Trp Gly Tyr Pro Leu Ala Pro Pro Gly Leu Cys Lys Leu Pro
                             40
Gln Gly Ala Pro Leu Pro Cys Ser Ser Kaa Leu Thr Ser
<210> 53
<211> 243
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (15)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (190)
<223> Xaa equals any of the naturally occurring L-amino acids.
<400> 53
Met Asp Gln Tyr Cys Ile Leu Gly Arg Ile Gly Glu Gly Ala Xaa Gly
Ile Val Phe Lys Ala Lys His Val Glu Thr Gly Glu Ile Val Ala Leu
                                  25
Lýs Lys Val Ala Leu Arg Arg Leu Glu Asp Gly Phe Pro Asn Gln Ala
```

Leu Arg Glu Ile Lys Ala Leu Gln Glu Met Glu Asp Asn Gln Tyr Val 50 55 60

Val Gln Leu Lys Ala Val Phe Pro His Gly Gly Gly Phe Val Leu Ala 65 70 75 80

Phe Glu Phe Met Leu Ser Asp Leu Ala Glu Val Val Arg His Ala Gln 85 90 95

Arg Pro Leu Ala Gln Ala Gln Val Lys Ser Tyr Leu Gln Met Leu Leu 100 105 110

Lys Gly Val Ala Phe Cys His Ala Asn Asn Ile Val His Arg Asp Leu 115 120 125

Lys Pro Ala Asn Leu Leu Ile Ser Ala Ser Gly Gln Leu Lys Ile Ala 130 . 135 140

Asp Phe Gly Leu Ala Arg Val Phe Ser Pro Asp Gly Ser Arg Leu Tyr 145 150 155 160

Thr His Gln Val Ala Thr Arg Ser Ser Leu Ser Cys Arg Thr Thr Thr 165 170 175

Arg Ser Pro Leu Arg Ser Arg Cys Pro Cys Pro Trp Arg Xaa Cys Cys
180 185 190

Leu Thr Ser Leu Pro Arg His Trp Ile Cys Trp Val Asn Ser Phe Ser 195 200 205

Thr Leu Leu Thr Ser Ala Ser Gln Leu Pro Arg Leu Ser Ser Ile Ser 210 215 220

Thr Ser Ser Gln Leu Pro Cys Leu Pro Ile His Leu Ser Cys Arg Phe 225 230 235 240

Leu Ser Val

<210> 54

<211> 65

<212> PRT

<213> Homo sapiens

<400> 54

Met Glu Ala Lys Phe Gly Leu Leu Cys Phe Leu Val Ser Thr Pro Trp

1 5 10 15

Ala Glu Leu Leu Ser Leu Leu Leu His Leu Thr Gln Val Pro Phe Pro 20 25 30

Gly Ser Gln Gly Leu Gly Leu Asn Asn Cys Arg Ala Ala Cys His Asp 35 40 45

Leu Ser His Leu Leu Leu Ser His Ser Ala Ile Asn Gln Thr Lys Glu
50 55 60

```
Phe
 65
<210> 55
<211> 37
<212> PRT
<213> Homo sapiens
<400> 55
Met Leu Ala Arg Lys Ala Glu Arg Gly Ser Met Gly Thr Ala Arg Asp
Ser His Ile Leu Leu Val Cys Ser Val Val His Pro Ala Ser Ala Gln
             20
Pro Val Tyr Thr Val
         35
<210> 56
<211> 317
<212> PRT
<213> Homo sapiens
<400> 56
Met Leu Ser Phe Lys Leu Leu Leu Leu Ala Val Ala Leu Gly Phe Phe
Glu Gly Asp Ala Lys Phe Gly Glu Arg Asn Glu Gly Ser Gly Ala Arg
             20
                                 25
Arg Arg Arg Cys Leu Asn Gly Asn Pro Pro Lys Arg Leu Lys Arg Arg
                             40
Asp Arg Arg Met Met Ser Gln Leu Glu Leu Leu Ser Gly Gly Glu Met
Leu Cys Gly Gly Phe Tyr Pro Arg Leu Ser Cys Cys Leu Arg Ser Asp
Ser Pro Gly Leu Gly Arg Leu Glu Asn Lys Ile Phe Ser Val Thr Asn
                 85
Asn Thr Glu Cys Gly Lys Leu Leu Glu Glu Ile Lys Cys Ala Leu Cys
                                105 .
            100
 Ser Pro His Ser Gln Ser Leu Phe His Ser Pro Glu Arg Glu Val Leu
                , 120
         115
 Glu Arg Asp Leu Val Leu Pro Leu Leu Cys Lys Asp Tyr Cys Lys Glu
             Phe Phe Tyr Thr Cys Arg Gly His Ile Pro Gly Phe Leu Gln Thr Thr
                    150
                                        155
 Ala Asp Glu Phe Cys Phe Tyr Tyr Ala Arg Lys Asp Gly Gly Leu Cys
```

. 165

Phe Pro Asp Phe Pro Arg Lys Gln Val Arg Gly Pro Ala Ser Asn Tyr 185 180 Leu Asp Gln Met Glu Glu Tyr Asp Lys Val Glu Glu Ile Ser Arg Lys 205 200 His Lys His Asn Cys Phe Cys Ile Gln Glu Val Val Ser Gly Leu Arg 210 Gln Pro Val Gly Ala Leu His Ser Gly Asp Gly Ser Gln Arg Leu Phe 235 Ile Leu Glu Lys Glu Gly Tyr Val Lys Ile Leu Thr Pro Glu Gly Glu 245 Ile Phe Lys Glu Pro Tyr Leu Asp Ile His Lys Leu Val Gln Ser Gly Ile Lys Val Gly Phe Leu Asn Phe Ile Tyr Phe Cys Ala Gly Tyr Val 27.5 Asn Phe Ile Leu Val Leu Pro Ser Ser Leu Lys Val Phe Leu Cys Asn 295 Lys Arg Lys Asn Leu Ala Gly Glu Asn Lys Gly Ala Thr 310 305 <210> 57 <211> 41 <212> PRT <213> Homo sapiens <400> 57 Met Ser Trp Gly Ile Trp Lys Gly Leu Asp Leu Phe Pro Leu Ile Lys 10 Gly Asn Ser Ser Leu Cys Leu Phe Leu Leu Val Val Pro Lys Gly Tyr Ser Ser Ser Glu Ile Thr Arg Ala Leu <210> 58 <211> 57 <212> PRT <213> Homo sapiens Met Ser Leu Pro Cys His Leu Leu Pro Gly Leu Leu Gln Gln Leu Leu 10 Thr Ser Leu Pro Ala Phe Gln Phe Ser Ala Pro Leu Gln Val Phe Ser 25 20

Leu Asp Gly Leu Ser Leu Pro Ala Pro Lys Leu Leu Thr Ala Ser Leu

```
Cys Leu Gln Asp Glu Val Arg Ala Val
50 55
```

<210> 59

<211> 52

<212> PRT

<213> Homo sapiens

<400> 59

Met Ser Ser Trp Pro Phe Cys Pro Ser Leu Cys Phe Ser Leu Ser Asn
1 5 10 15

Leu Ile Pro Gly Ser Gly Leu Leu Pro Val Glu Thr Gly Glu Leu Gly
20 25 30

Leu Leu Ser Ala Ala Tyr Leu Leu Pro Phe Thr Cys Ile Gln Leu Leu 35 40 45

Gly Leu Gly Pro 50

<210> 60

<211> 296

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (281)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 60

Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg 1 5 10 15

Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu 20 25 30

Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly
35 40 45

Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg 50 55 60

Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn 65 70 75 80

Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe 85 90 95

Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met 100 105 110

Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys

		113					120								
Pro	Pro 130	Leu	Tyr	Met	Gly	Pro 135	Gļu	Tyr	Ile	Lys	Tyr 140	Phe	Asn	Asp	Lys
Thr 145	Ile	Asp	Glu	Glu	Leu 150	Glu	Arg	Asp	Lys	Arg 155	Val	Thr	Trp	Ile	Val 160
Glu	Phe	Phe	Ala	Asn 165	Trp	Ser	Asn	Asp	Cys 170	Gln	Ser	Phe	Ala	Pro 175	Ile
Tyr	Ala	Asp	Leu 180		Leu	Lys	Tyr	Asn 185	Cys	Thr	Gly	Leu	Asn 190	Phe	Gly
Lys	Val	Asp 195	Val	Gly	Arg	Tyr	Thr 200	Asp	Val	Ser	Thr	Arg 205	Tyr	Lyś	Val
Şer	Thr 210	Ser	Pro	Leu	Thr	Lys 215	Gln	Leu	Pro	Thr	Leu 220	Ile	Leu	Phe	Gln
Gly 225	Gly	Lys	Glu	Ala	Met 230	Arg	Arg	Pro	Gln	11e 235	Asp	Lys	Lys	Gly	Arg 240
Ala	Val	Ser	Trp	Thr 245	Phe	Ser	Glu	Glu	Asn 250	Val	Ile	Arg	Glu	Phe 255	Asn
Leu	Asn	Gľu	Leu 260		Gln	Arg	Àla	Lys 265	Lys	Leu	Ser	Lys	Ala 270	Gly	Asp
Asn	Ile	Pro 275		Glu	Gln	Pro	Val 280	Xaa	Ser	Thr	Pro	Thr 285	Thr	Val	Ser
Asp	Gly 290		Asn	Lys	Lys	Asp 295	Lys								-
<21 <21	0 > 6 1 > 1 2 > P	00	, sani	ens					ž					. 1	

THE STATE OF THE S

| - - .

<400> 61 Met Arg Ala Phe Arg Lys Asn Lys Thr Leu Gly Tyr Gly Val Pro Met

Leu Leu Leu Ile Val Gly Gly Ser Phe Gly Leu Arg Glu Phe Ser Gln 25 20

Ile Arg Tyr Asp Ala Val Lys Ser Lys Met Âsp Pro Glu Leu Glu Lys 40 35

Lys Leu Lys Glu Asn Lys Ile Ser Leu Glu Ser Glu Tyr Glu Lys Ile

Lys Asp Ser Lys Phe Asp Asp Trp Lys Asn Ile Arg Gly Pro Arg Pro

Trp Glu Asp Pro Asp Leu Leu Gln Gly Arg Asn Pro Glu Ser Leu Lys.

95

```
Thr Lys Thr Thr 100
```

<210> 62

<211> 47

<212> PRT

<213> Homo sapiens

<400> 62

Met Ile Gln Leu Ile Leu Gln Phe Trp Tyr Leu Phe Ser Met Leu Leu

1 5 10 15

Lys Pro Val Gln Gln Cys Gln His Cys Ser Gln Ile Thr Pro Ser Gly
20 25 30

Thr Met Pro Thr Ser Glu Thr Val Phe Leu Ile Leu Phe Leu Pro
35 40 45

<210> 63 <211> 162

<212> PRT

<213> Homo sapiens

<400> 63

Met Lys Met Val Ala Pro Trp Thr Arg Phe Tyr Ser Asn Ser Cys Cys
10 15

Leu Cys Cys His Val Arg Thr Gly Thr Ile Leu Leu Gly Val Trp Tyr
20 25 30

Leu Ile Ile Asn Ala Val Val Leu Leu Ile Leu Leu Ser Ala Leu Ala 35 40 45

Asp Pro Asp Gln Tyr Asn Phe Ser Ser Glu Leu Gly Gly Asp Phe
50 55 60

Glu Phe Met Asp Asp Ala Asn Met Cys Ile Ala Ile Ala Ile Ser Leu 65 70 75 80

Leu Met Ile Leu Ile Cys Ala Met Ala Thr Tyr Gly Ala Tyr Lys Gln 85 90 95

Arg Ala Ala Gly Ile Ile Pro Phe Phe Cys Tyr Gln Ile Phe Asp Phe 100 105 110

Ala Leu Asn Met Leu Val Ala Ile Thr Val Leu Ile Tyr Pro Asn Ser 115 120 125

Ile Gln Glu Tyr Ile Arg Gln Leu Pro Pro Asn Phe Pro Tyr Arg Asp 130 135 140

Asp Val Met Cys Ser Glu Ser Tyr Leu Phe Gly Pro Tyr Tyr Ser Ser 145 150 155 160

Val Tyr

```
<210> 64
<211> 335
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (35)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (297)
<223> Xaa equals any of the naturally occurring L-amino acids
Met Arg Gly Leu Gly Leu Trp Leu Leu Gly Ala Met Met Leu Pro Ala
Ile Ala Pro Ser Arg Pro Trp Ala Leu Met Glu Gln Tyr Glu Val Val
Leu Pro Xaa Arg Leu Pro Gly Pro Arg Val Arg Arg Ala Leu Pro Ser
His Leu Gly Leu His Pro Glu Arg Val Ser Tyr Val Leu Gly Ala Thr
     50
Gly His Asn Phe Thr Leu His Leu Arg Lys Asn Arg Asp Leu Leu Gly
Ser Gly Tyr Thr Glu Thr Tyr Thr Ala Ala Asn Gly Ser Glu Val Thr
                                     90
Glu Gln Pro Arg Gly Gln Asp His Cys Phe Tyr Gln Gly His Val Glu
                                105
Gly Tyr Pro Asp Ser Ala Ala Ser Leu Ser Thr Cys Ala Gly Leu Arg
Gly Phe Phe Gln Val Gly Ser Asp Leu His Leu Ile Glu Pro Leu Asp
                                            140
Glu Gly Gly Gly Gly Arg His Ala Val Tyr Gln Ala Glu His Leu
                                     155
                    150
145
Leu Gln Thr Ala Gly Thr Cys Gly Val Ser Asp Asp Ser Leu Gly Ser
                                     170
              . 165
Leu Leu Gly Pro Arg Thr Ala Ala Val Phe Arg Pro Arg Pro Gly Asp
            180
Ser Leu Pro Ser Arg Glu Thr Arg Tyr Val Glu Leu Tyr Val Val Val
                             200
                                                 205
        195
```

Asp Asn Ala Glu Phe Gln Met Leu Gly Ser Glu Ala Ala Val Arg His 215 Arg Val Leu Glu Val Val Asn His Val Asp Lys Leu Tyr Gln Lys Leu 230 Asn Phe Arg Val Val Leu Val Gly Leu Glu Ile Trp Asn Ser Gln Asp Arg Phe His Val Ser Pro Asp Pro Ser Val Thr Leu Glu Asn Leu Leu 265 Thr Trp Gln Ala Arg Gln Arg Thr Arg Arg His Leu His Asp Asn Val 280 Gln Leu Ile Thr Gly Val Asp Phe Xaa Gly Thr Thr Val Gly Phe Ala Arg Val Ser Thr Met Cys Ser His Ser Ser Gly Ala Val Asn Gln Asp 305 His Ser Lys Asn Pro Val Gly Val Ala Cys Thr Met Ala His Glu <210> 65 <211> 356 <212> PRT <213> Homo sapiens <400> 65 Met Asp Tyr Arg Gly Gly Asp Gly Thr Ser Met Asp Tyr Arg Gly Arg Glu Ala Pro His Met Asn Tyr Arg Asp Arg Asp Ala His Ala Val Asp 20 Phe Arg Gly Arg Asp Ala Pro Pro Ser Asp Phe Arg Gly Arg Gly Thr 40 Tyr Asp Leu Asp Phe Arg Gly Arg Asp Gly Ser His Ala Asp Phe Arg 55 50. Gly Arg Asp Leu Ser Asp Leu Asp Phe Arg Ala Arg Glu Gln Ser Arg Ser Asp Phe Arg Asn Arg Asp Val Ser Asp Leu Asp Phe Arg Asp Lys Asp Gly Thr Gln Val Asp Phe Arg Gly Arg Gly Ser Gly Thr Thr Asp 105 Leu Asp Phe Arg Asp Arg Asp Thr Pro His Ser Asp Phe Arg Gly Arg . 120 115

His Arg Ser Arg Thr Asp Gln Asp Phe Arg Gly Arg Glu Met Gly Ser

135

<400> 66

Cys Met Glu Phe Lys Asp Arg Glu Met Pro Pro Val Asp Pro Asn Ile Leu Asp Tyr Ile Gln Pro Ser Thr Gln Asp Arg Glu His Ser Gly Met 170 Asn Val Asn Arg Arg Glu Glu Ser Thr His Asp His Thr Ile Glu Arg Pro Ala Phe Gly Ile Gln Lys Gly Glu Phe Glu His Ser Glu Thr Arg 200 Glu Gly Glu Thr Gln Gly Val Ala Phe Glu His Glu Ser Pro Ala Asp 215 210 Phe Gln Asn Ser Gln Ser Pro Val Gln Asp Gln Asp Lys Ser Gln Leu 235 230 Ser Gly Arg Glu Glu Gln Ser Ser Asp Ala Gly Leu Phe Lys Glu Glu 245 Gly Gly Leu Asp Phe Leu Gly Arg Gln Asp Thr Asp Tyr Arg Ser Met 265 260 . Glu Tyr Arg Asp Val Asp His Arg Leu Pro Gly Ser Gln Met Phe Gly 280. 275 Tyr Gly Gln Ser Lys Ser Phe Pro Glu Gly Lys Thr Ala Arg Asp Ala 295 Gln Arg Asp Leu Gln Asp Gln Asp Tyr Arg Thr Gly Pro Ser Glu Glu 310 305 Lys Pro Ser Arg Leu Ile Arg Leu Ser Gly Val Pro Glu Asp Ala Thr 330 325 Lys Glu Glu Ile Leu Asn Ala Phe Arg Thr Pro Asp Gly Met Pro Val 340 Lys Asn Cys Ser 355 <210> 66 <211> 125 <212> PRT <213> Homo sapiens <220> <221> SITE <2222 (55) <223> Xaa equals any of the naturally occurring L-amino acids

Met Leu Ser Gln Pro Leu Val Gly Ala Gln Arg Arg Arg Ala Val

Gly Leu Ala Val Val Thr Leu Leu Asn Phe Leu Val Cys Phe Gly Pro 25 Tyr Asn Val Ser His Leu Val Gly Tyr His Gln Arg Lys Ser Pro Trp Trp Arg Ser Ile Ala Val Xaa Phe Ser Ser Leu Asn Ala Ser Leu Asp Pro Leu Leu Phe Tyr Phe Ser Ser Ser Val Val Arg Arg Ala Phe Gly Arg Gly Leu Gln Val Leu Arg Asn Gln Gly Ser Ser Leu Leu Gly Arg Arg Gly Lys Asp Thr Ala Glu Gly Thr Asn Glu Asp Arg Gly Val Gly 100 Gln Gly Glu Gly Met Pro Ser Ser Asp Phe Thr Thr Glu 120 <210> 67 <211> 77. <212> PRT <213> Homo sapiens <400> 67 Met Arg Leu Val Phe Phe Gly Val Ser Ile Ile Leu Val Leu Gly 10 Ser Thr Phe Val Ala Tyr Leu Pro Asp Tyr Arg Cys Thr Gly Cys Pro 20 Arg Ala Trp Asp Gly Met Lys Glu Trp Ser Arg Arg Glu Ala Glu Arg 40 Leu Val Lys Tyr Arg Glu Ala Asn Gly Leu Pro Ile Met Glu Ser Asn 55 Cys Phe Asp Pro Ser Lys Ile Gln Leu Pro Glu Asp Glu <210> 68 <211> 121 <212> PRT <213> Homo sapiens <400> 68 Met Arg Ile Met Leu Leu Phe Thr Ala Ile Leu Ala Phe Ser Leu Ala 10

Gln Ser Phe Gly Ala Val Cys Lys Glu Pro Gln Glu Glu Val Val Pro 20 25 30

Gly Gly Gly Arg Ser Lys Arg Asp Pro Asp Leu Tyr Gln Leu Leu Gln

Arg Leu Phe Lys Ser His Ser Ser Leu Glu Gly Leu Leu Lys Ala Leu Ser Gln Ala Ser Thr Asp Pro Lys Glu Ser Thr Ser Pro Glu Lys Arg . 70 Asp Met His Asp Phe Phe Val Gly Leu Met Gly Lys Arg Ser Val Gln Pro Asp Ser Pro Thr Asp Val Asn Gln Glu Asn Val Pro Ser Phe Gly 100 105 Ile Leu Lys Tyr Pro Pro Arg Ala Glu 115 <210> 69 <211> 26 <212> PRT <213> Homo sapiens <400> 69 Met Val Val Met Glu Val Leu Met Thr Met Val Ala Ile Ile Ile Thr 10 Ala Met Gly Met Met Ala Leu Met Thr Glu 20 <210> 70 <211> 235 <212> PRT <213> Homo sapiens <400> 70 Met Pro Trp Val Leu Leu Leu Thr Leu Leu Thr His Ser Ala Val 10 Ser Val Val Gln Ala Gly Leu Thr Gln Pro Pro Ser Val Ser Lys Asp 20 Leu Arg Gln Thr Ala Thr Leu Thr Cys Thr Gly Asn Asn Asn Val Gly Asp Gln Gly Ala Ala Trp Leu Gln Gln His Gln Gly His Pro Pro 50 Lys Leu Leu Ser Tyr Arg Asn Asn Asn Arg Pro Ser Gly Ile Ser Glu Arg Leu Ser Ala Ser Arg Ser Gly Ala Thr Ser Ser Leu Thr Ile Thr Gly Leu Gln Pro Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Tyr Asp 100

Ser Ser Leu Ala Val Trp Met Phe Gly Gly Gly Thr Lys Leu Thr Val

In the last to the first test to the section of the

	•		115					120					125		•	-
	Leu	Gly 130	Gln	Pro	Lys	Ala	Ala 135	Pro	Ser	Val	Thr	Leu 140	Phe	Pro	Pro	Ser
	Ser 145	Glu	Glu	Leu	Gln	Ala 150	Asn	Lys	Ala	Thr	Leu 155	Val	Cys	Leu	Ile	Ser 160
	Asp	Phe	Tyr	Pro	Gly 165	Ala	Val	Thr	Val	Ala 170	Trp	Lys	Ala	Asp	Ser 175	Ser
	Pro	Val	Lys	Ala 180	Gly	Val	Glu	Thr	Thr 185	Thr	Pro	Ser	Lys	Gln 190	Ser	Asn
	Asn	Lys	Tyr 195	Ala	Ala	Ser	Ser	Tyr 200	Leu	Ser	Leu	Thr	Pro 205	Glu	Gln	Trp
	Lys	Ser 210	His	Arg	Ser	Tyr	Ser 215	Cys	Gln	Val	Thr	His 220	Glu	Gly	Ser	Thr
	Val 225	Glu	Lys	Thr	Val	Ala 230	Pro	Thr	Glu	CAa	Ser 235	•				
	<211 <212	0> 7: L> 2: 2> P! B> Ho	17 RT	sapie	ens										.*	
	<400 Met 1)> 7 Asp	1 Ser	Gln	Gln 5	Ala	Ser	Gly	Thr	Ile 10	Val	Gln	Ile	Val ´	Ile 15	Asn
	Asn	Lys	His	Lys 20	His	Gly	Gln	Val	Cys 25	Val	Ser	Asn	Gly	Lys 30	Thr	Tyr
	Ser	His	Gly 35	Glu	Ser	Trp	His	Pro 40	Asn	Leu	Arg	Ala	Phe 45	Gly	Ile	Val
	Glu	Cys 50	Val	Leu	Cys	Thr	Cys 55	Asn	Val	Thr	Lys	Gln 60	Glu	Cys	Lys	Lys
	Ile 65	His	Cys	Pro	.Asn	Arg 70		Pro	Cys	Lys	Tyr 75	· Pro	Gln	Lys	Ile	Asp 80
	Gly	Lys	Cys	Cys	Lys 85	Val	Cys	Pro	Glu	Glu 90		Pro	Gly	Gln	Ser 95	Phe
٠.	Asp	Asn	Lys	Gly 100		Phe	Cys	Gly	Glu 105		Thr	Met	Pro	Val	Tyr	Glu
	Ser	Val	Phe 115		Glu	Asp	Gly	Glu 120		Thr	Arg	Lys	1le 125		Leu	Glu
	Thr	Glu 130		Pro	Pro	Gĺn	Val		. Val	His	Val	Trp		Ile	Arg	Lys

Gly Ile Leu Gln His Phe His Ile Glu Lys Ile Ser Lys Arg Met Phe

1	L 4 5					150					155		-			160
C	3lu	Glu	Leu	Pro	His 165	Phe	Lys	Leu	Val	Thr 170	Arg	Thr	Thr	Leu	Ser 175	Gln
7	rp	Lys	Ile	Phe 180	Thr	Glu	Gly	Glu	Ala 185	Gln	Ile	Ser	Gln	Met 190	Cys	Ser
5	Ser	Arg	Val 195	CAa	Arg	Thr	Glu	Leu 200	Glu	Asp	Leu	Val	Lys 205	Val	Leu	Tyr
]	Leu	Glu 210	Arg	Ser	Glu	Lys	Gly 215	His	Cys		٠.	•				•
	<211 <212)> 72 L> 49 2> PF 3> Ho	92 RT	sapie	ens								·.		• · · · · · · · · · · · · · · · · · · ·	
	<400 Met 1)> 72 Lys	? Ala	Phe	His	Thr	Phe	Cys	Val	Val	Leu	Leu	Val	Phe	Gly 15	Ser
	Val	Ser	Glu	Ala 20	rys	Phe	Asp	Asp	Phe 25		Asp	Glu	Glu	Asp 30	Ile	Val
	Glu	Tyr	Asp 35	Asp	Asn	Asp	Phe	Ala 40	Glu	Phe	Glu	Asp	Val 45	Met	Glu	Asp
	Ser	Val 50	Thr	Glu	Ser	, Pro	Gln 55	Arg	Val	Ile	Ile	Thr 60	Glu	Asp	Asp	Glu
	Asp 65	Glu	Thr	Thr	Val	Glu 70	Leu	Glu	Gly	Gln	Asp 75	Glu	Asn	Gln	Glu	Gly 80
	Asp	Phe	Glu	Asp	Ala 85		Thr	Gln	Ğlu	Gly 90	Asp	Thr	Glu	Ser	Glu 95	Pro
	Tyr	Asp	Asp	Glu 100		Phe	Glu	Gly	Туг 105	Glu	Asp	Lys	Pro	Asp 110	Thr	Ser :
	Ser	Ser	Lys 115		Lys	Asp	Pro	Ile 120	Thr	Ile	Val	Asp	Val 125	Pro	Ala	His
	Leu	Gln 130	Asn	Ser	Trp	Glu	Ser 135		Tyr	Leu	Glu	Ile 140	`Leu	Met	Val	Thr
	Gly 145		Leu ; -	Āla	туг		Met	Asn	Tyr	İle	Ile 155	Gly	Lys	Asn	Lys	Asn 160
	Ser	Arg	Leu	Ala	Gln 165	ı Ala	Trp	Phe	. Asn	Thr 170	His	Arg	Glu	. Leu	Leu 175	Glu
	Ser	Asn		Thr 180		ı Val	Gly	Asp	Asp 185		Thr	Asn	Lys	Glu 190	Ala	Thr
	Ser	Thr	Gly	/ Lys	Leu	ı Asın	Gln	Glu	ı Asn	Glu	His	Ile	туг	Asn	Lev	Trp

		195					200			٠		205			
Cys	Ser 210	Gly	Arg	Val	Cys	Cys 215	Glu	Gly	Met	Leu	Ile 220	Gln	Leu	Arg	Phe
Leu 225	Lys	Arg	Gln	Asp	Leu 230	Leu	Asn	Val	Leu	Ala 235	Arg	Met	Met	Arg	Pro 240
Val	Ser	Àsp	Gln	Val 245	Gln	Ile	Lys	Val	Thr 250	Met	Asn	Asp	Glu	Asp 255	Met
Asp	Thr	Tyr	Val 260	Phe	Ala	Val	Gly	Thr 265		Lys	Ala	Leu	Val 270	Ārģ	Leu
Ġln	Lys	Glu 275	Met	Gln	Asp	Leu	Ser 280	Glu	Phe	Cys	Ser	Asp 285	Lys	Pro	Lys
Ser	Gly 290	Ala	rys	Tyr	Gly	Leu 295	Pro	Asp	Ser	Leu	Ala 300	Ile	Leu	Ser	Glu
Met 305	Gly	Glu	Val	Thr	Asp 310	Gly	Met	Met	Asp	Thr 315	Lys	Met	Val	His	Phe 320
Leu	Thr	His	Tyr	Ala 325	Asp	Lys	Ile	Glu	330	Val	His	Phe	Ser	Asp 335	Glr
Phe	Ser	Gly	Pro 340	Lys	Ile	Met	Gln	Glu 345	Glu	Gly	Gln	Pro	Leu 350	Lys	Lev
Pro	Asp	Thr 355	Lys	Arg	Thr	Leu	Leu 360		Thr	Phe	Asn	Val 365	Pro	Gly	Sei
Gly	Asn 370	Thr	Tyr	Pro	Lys	Asp 375	Met	Glu	Ala	Leu	Leu 380	Pro	Leu	Met	Ası
Met 385		Ile	Tyr	Ser	Ile 390		Lys	Ala	Lys	Lys 395		Arg	Leu	Asn	Arg
Glu	Gly	Lys	Gln	Lys 405		Asp	Lys	Asn	Arg 410		Arg	Val	Glu	Glu 415	Ası
Phe	Leu	Lys	Leu 420		His	Val	Gln	Arg 425	Gln	Glu	Ala	Ala	Gln 430	Ser	Arg
Arg	Glu	Glu 435		Lys	Arg	Alá	. Glu 440		Glu	Arg	Ile	Met 445	Asn	Glu	Gli
Asp	Pro 450		Lys	Gln	. Arg	Arg 455	Leu	Glu	Glú	Ala	Ala 460	Leu	Arg	Arg	Glı
Gln 465		ŗ	Leu	Glu	Lys 470	Lys	Gln	Met	Lys	Met 475	Lys		Ile	. Lys	Va 48
Lys	Ala	His	Val	Lys 485		Ser	Gln	Arg	Phe 490		Phe	:			

```
<211> 36
<212> PRT
<213> Homo sapiens .
<400> 73
Met Leu Phe Leu Cys Leu Leu Pro Ser Leu Phe Pro Pro Gly Leu Pro
Thr Thr His Tyr Ile Thr Ser Ile Cys Asn Gln Ser Cys Tyr His His
                                 25
Cys Ala Arg Ala
         35
<210> 74
<211> 74
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (7)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (71)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 74
Met Ala Glu Leu Leu Xaa Val Leu Ser Val Gln Ser Ala Val His
                                      10
Glu Val Glu Ala Asn Glu Gly Gly Lys Gln Ser His Thr Pro Ala His
Arg Gly Trp Asn Arg Arg Ala Ala Glu Val Arg Lys Ala Arg Leu Pro
                              40
          35
Leu Gly Val Thr Val Gly Pro Arg Cys Arg His Ala Val His Pro Ser
                         55
 Lys Gly Gly Ile Ser Ala Xaa Ala Val Leu
 <210> 75
 <211> 133
 <212> PRT
<213> Homo sapiens
 <400> 75
 Met Gly Ser Ser Gly Leu Leu Ser Leu Leu Val Leu Phe Val Leu Leu
                                      10
   1
 Ala Asn Val Gln Gly Pro Gly Leu Thr Asp Trp Leu Phe Pro Arg Arg
                              . 25
```

ij

Ш

· [Jī

III.

· E

III La

1

14

```
Cys Pro Lys Ile Arg Glu Glu Cys Glu Phe Gln Glu Arg Asp Val Cys
Thr Lys Asp Arg Gln Cys Gln Asp Asn Lys Lys Cys Cys Val Phe Ser
Cys Gly Lys Lys Cys Leu Asp Leu Lys Gln Asp Val Cys Glu Met Pro
Lys Glu Thr Gly Pro Cys Leu Ala Tyr Phe Leu His Trp Trp Tyr Asp
Lys Lys Asp Asn Thr Cys Ser Met Phe Val Tyr Gly Gly Cys Gln Gly
            100
Asn Asn Asn Asn Phe Gln Ser Lys Ala Asn Cys Leu Asn Thr Cys Lys
                           . 120
        115
Asn Lys Arg Phe Pro
 130
<210> 76
<211> 298
<212> PRT
<213> Homo sapiens
<220'>
<221> SITE
<222> (42)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (58)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 76
Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
Lys Asp Gln Gln Val Val Thr Ala Val Xaa Tyr Gln Glu Ala Ile Leu
                              40
Ala Cys Lys Thr Pro Lys Lys Thr Val Xaa Ser Arg Leu Glu Trp Lys
Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln
                                          7.5
```

Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile

Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser

Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser 135 140 Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly 150 Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu-165 Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met 185 Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp 200 Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg 215 Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu 250 Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser 265 260 Phe Gln Lys Ser Asn Ser Ser Ser Lys Ala Thr Thr Met Ser Glu Asn 280 Asp Phe Lys His Thr Lys Ser Phe Ile Ile 295

<210> 77 <211> 856 <212> PRT <213> Homo sapiens <220>

·D IJ

IJ

IJ

M

IM

Ŀ

<221> SITE <222> (52) <223> Xaa equals any of the naturally occurring L-amino acids <220> <221> SITE <222> (190) <223> Xaa equals any of the naturally occurring L-amino acids <220> <221> SITE <222> (233)

<223> Xaa equals any of the naturally occurring L-amino acids

```
<220>
<221> SITE
<222> (595)
<223> Xaa equals any of the naturally occurring L-amino acids
<220> .
<221> SITE
<222> (683)
<223> Xaa equals any of the naturally occurring L-amino acids
Met Asp Ile Ser Lys Gly Leu Pro Gly Met Gln Gly Gly Leu His Ile
Trp Ile Ser Glu Asn Arg Lys Met Val Pro Val Pro Glu Gly Ala Tyr
Gly Asn Phe Phe Glu Glu His Cys Tyr Val Ile Leu His Val Pro Gln
Ser Pro Lys Xaa Thr Gln Gly Ala Ser Ser Asp Leu His Tyr Trp Val
Gly Lys Gln Ala Gly Ala Glu Ala Gln Gly Ala Ala Glu Ala Phe Gln
Gln Arg Leu Gln Asp Glu Leu Gly Gly Gln Thr Val Leu His Arg Glu
                 85
Ala Gln Gly His Glu Ser Asp Cys Phe Cys Ser Tyr Phe Arg Pro Gly
Ile Ile Tyr Arg Lys Gly Gly Leu Ala Ser Asp Leu Lys His Val Glu
       . 115
Thr Asn Leu Phe Asn Ile Gln Arg Leu Leu His Ile Lys Gly Arg Lys
                        135
His Val Ser Ala Thr Glu Val Glu Leu Ser Trp Asn Ser Phe Asn Lys
                    150
Gly Asp Ile Phe Leu Leu Asp Leu Gly Lys Met Met Ile Gln Trp Asn
                                     170
Gly Pro Lys Thr Ser Ile Ser Glu Lys Ala Arg Gly Leu Xaa Leu Thr
            180
Tyr Ser Leu Arg Asp Arg Glu Arg Gly Gly Arg Ala Gln Ile Gly
                             200
Val Val Asp Asp Glu Ala Lys Ala Pro Asp Leu Met Gln Ile Met Glu
                         215
    210
Ala Val Leu Gly Arg Arg Val Gly Xaa Leu Arg Ala Ala Thr Pro Ser
                                         235
 Lys Asp Ile Asn Gln Leu Gln Lys Ala Asn Val Arg Leu Tyr His Val
```

I'M and any ten and the tra I'M

He Hall the He wall had

Tyr	Glu	Lys	Gly 260	Lys	Asp	Leu	Val	Val 265	Leu	Glu	Leu	Ala	Thr 270	Pro	Pro
Leu	Thr	Gln 275	Asp	Leu	Leu	Gln	Glu 280	Glu	Asp	Phe	Tyr	Ile 285	Leu	Asp.	Gln
Gly	Gly 290		Lys	Ile	Tyr	Val 295	Trp	Gln	Gly.	Arg	Met 300	Ser	Ser	Leu	Gln
Glu 305	Arg	Lys	Ala	Ala	Phe 310	Ser	Arg	Ala	Val	Gly 315	Phe	Ile	Gln	Ala	Lys 320
Gly	Tyr	Pro	Thr	Tyr 325	Thr	Asn	Val	Glu	Val 330	Val	Asn	Asp	Gly	Ala 335	Glu
		·	340				Phe	345					350		
		355		<i>:</i>		,	Arg 360			-		365			
	370		•			375	Gln				. 380				
385					390		Lys			395					400
			•	405			Pro		410					415	
			420			:	Tyr	425			•		430		
		435					Gln 440		•			445		•	
	450					455					460				
465					470		Val	-		475	i	• .			480
		-		485			Gln		490) 				495	
		•	500)	-		Ser	505		•		•	510	ļ	
		. 515	5 .				520)			-	525	•		
	530			•	•	535					540)			
Sér 545		. Суз	з Туг	. Lev	Trp		e Gly	Lys	s Gly	7 Cys 559	s Ası	ı Gly	/ Asr	Glr	Arg 560

Glu Met Ala Arg Val Val Val Thr Val Ile Ser Arg Lys Asn Glu Glu 570 Thr Val Leu Glu Gly Gln Glu Pro Pro His Phe Trp Glu Ala Leu Gly 585 Gly Arg Xaa Pro Tyr Pro Ser Asn Lys Arg Leu Pro Glu Glu Val Pro 595 Ser Phe Gln Pro Arg Leu Phe Glu Cys Ser Ser His Met Gly Cys Leu Val Leu Ala Glu Val Gly Phe Phe Ser Gln Glu Asp Leu Asp Lys Tyr 635 630 Asp Ile Met Leu Leu Asp Thr Trp Gln Glu Ile Phe Leu Trp Leu Gly 650 Glu Ala Ala Ser Glu Trp Lys Glu Ala Val Ala Trp Gly Gln Glu Tyr 660 Leu Lys Thr His Pro Ala Gly Arg Ser Pro Xaa Thr Pro Ile Val Leu 680 Val Lys Gln Gly His Glu Pro Pro Thr Phe Ile Gly Trp Phe Phe Thr 695 690 Trp Asp Pro Tyr Lys Trp Thr Ser His Pro Ser His Lys Glu Val Val 715 710 Asp Gly Ser Pro Ala Ala Ala Ser Thr Ile Ser Glu Ile Thr Ala Glu 725 Val Asn Asn Phe Arg Leu Ser Arg Trp Pro Gly Asn Gly Arg Ala Gly Ala Val Ala Leu Gln Ala Leu Lys Gly Ser Gln Asp Ser Ser Glu Asn 760 755 Asp Leu Val Arg Ser Pro Lys Ser Ala Gly Ser Arg Thr Ser Ser Ser 780 • 775 Val Ser Ser Thr Ser Ala Thr Ile Asn Gly Gly Leu Arg Arg Glu Gln 790 Leu Met His Gln Ala Val Glu Asp Leu Pro Glu Gly Val Asp Pro Ala 810 805 Arg Arg Glu Phe Tyr Leu Ser Asp Ser Asp Phe Gln Asp Ile Phe Gly 825 820 أأده فالعارب ويتواديه Lys Ser Lys Glu Glu Phe Tyr Ser Met Ala Thr Trp Arg Gln Arg Gln Glu Lys Lys Gln Leu Gly Phe Phe

```
<210> 78
       <211> 39
       <212> PRT
       <213> Homo sapiens
       <400> 78
       Met Pro Cys Val Phe Cys Tyr Leu Leu Leu Val Gln Phe Thr Tyr
       Thr Phe Thr Leu Ser Asn Pro Asn Ser Ser Ser Arg Pro Asp Ser Asp
                                       25
       Phe Asn Phe Leu Lys Ala Ile
               35
       <210> 79
       <211> 30
ŧΩ
       <212> PRT
       <213> Homo sapiens
Ш
       <400> 79
ΙŢ
       Met Ala Leu Ser Val Leu Val Leu Leu Leu Leu Ala Val Leu Tyr Glu
                       . 5
       Gly Ile Lys Val Gly Lys Ala Ser Cys Ser Thr Arg Tyr Trp
13.
                                        25
       <210> 80
        <211> 45
        <212> PRT
        <213> Homo sapiens
       Met Pro Ala Leu Val Leu Pro Arg Val Leu Pro Pro Gly Gln Gly
                                           10
       Glu Val Gln Arg Val Arg Cys Pro Tyr Val Gly Asn Ser Ser Gly Arg
        Lys Ile Trp Phe Gly Phe Ile Leu Arg Ala Ile Lys His
                                 . 40
        <210> 81
        <211> 39
        <212> PRT
        <213> Homo sapiens
        <4.00> 81
        Met Glu Ala Lys Phe Gly Leu Leu Cys Phe Leu Val Ser Thr Pro Trp
                                       . 10
        Ala Glu Leu Leu Ser Leu Leu Leu His Leu Thr Gln Val Pro Phe Pro
```

25

20

m

Ū

IĀ -

Gly Ser Gln Gly Pro Gly Phe

35

<210> 82 <211> 36 <212> PRT <213> Homo sapiens <400> 82 Met Leu Ser Phe Lys Leu Leu Leu Leu Ala Val Ala Leu Gly Phe Phe Glu Gly Asp Ala Lys Phe Gly Glu Arg Asn Glu Gly Ser Gly Gln Gly 25 Gly Glu Gly Ala 35 <210> 83 <211> 293 <212> PRT <213> Homo sapiens <400> 83 Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg Leu Ser Arg 10 Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu Ser Ala Ala 20 Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg Glu Val Glu 50 Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys Pro Pro Leu 115 Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys Thr Ile Asp 140 135 Glu Glu Leu Glu Arg Asp Lys Arg Val Thr Trp Ile Val Glu Phe Phe 155 150

Ala Asn Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile Tyr Ala Asp

165

- 170

Leu Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly Lys Val Asp 180 185 190

Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val Ser Thr Ser 195 200 205

Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln Gly Gly Lys 210 215 220

Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg Ala Val Ser 225 235 240

Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe Asn Leu Asn Glu 245 250 255

Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp Asn Ile Pro 260 265 270

Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val Ser Asp Gly Glu 275 280 285

Asn Lys Lys Asp Lys 290

<210> 84

<211> 143

<212> PRT

<213> Homo sapiens

<400> 84

Met Arg Gly Leu Gly Leu Trp Leu Leu Gly Ala Met Met Leu Pro Ala 1 5 10 15

Ile Ala Pro Ser Arg Pro Trp Ala Leu Met Glu Gln Tyr Glu Val Val 20 25 30

Leu Pro Trp Arg Leu Pro Gly Pro Arg Val Arg Arg Ala Leu Pro Ser

His Leu Gly Leu His Pro Glu Arg Val Ser Tyr Val Leu Gly Ala Thr

Gly His Asn Phe Thr Leu His Leu Arg Lys Asn Arg Asp Leu Leu Gly 65 70 75 80

Ser Gly Tyr Thr Glu Thr Tyr Thr Ala Ala Asn Gly Ser Glu Val Thr 85 90 95

Glu Gln Pro Arg Gly Gln Asp His Cys Phe Tyr Gln Gly His Leu Glu 100 105 110

Gly Thr Gly Leu Ser Arg Gln Pro Gln His Leu Cys Arg Pro Gln Gly
115 120 125

Phe Leu Pro Gly Gly Val Arg Pro Ala Pro Asp Arg Ala Pro Gly
130 135 140

<210> 87 <211> 4

```
<210> 85
 <211> 121
 <212> PRT
<213> Homo sapiens
 <220>
<221> SITE
 <222> (67)
 <223> Xaa equals any of the naturally occurring L-amino acids
 <220>
 <221> SITE
 <222> (89)
 <223> Xaa equals any of the naturally occurring L-amino acids
 Met Arg Ile Met Leu Leu Phe Thr Ala Ile Leu Ala Phe Ser Leu Ala
                                      10
 Gln Ser Phe Gly Ala Val Cys Lys Glu Pro Gln Glu Glu Val Val Pro
              20
 Gly Gly Gly Arg Ser Lys Arg Asp Pro Asp Leu Tyr Gln Leu Leu Gln
 Arg Leu Phe Lys Ser His Ser Ser Leu Glu Gly Leu Leu Lys Ala Leu
                          55
      50
 Ser Gln Xaa Ser Thr Asp Pro Lys Glu Ser Thr Ser Pro Glu Lys Arg
                      70
 Asp Met His Asp Phe Phe Val Gly Xaa Met Gly Lys Arg Ser Val Gln
 Pro Asp Ser Pro Thr Asp Val Asn Gln Glu Asn Val Pro Ser Phe Gly
                            105
             100 .
 Ile Leu Lys Tyr Pro Pro Arg Ala Glu
         115,
 <210> 86
 <211> 25
 <212> PRT
  <213> Homo sapiens
  <400> 86.
 Met Val Leu Leu Met Val Trp Val Val Met Ala Val Val Glu Ala
                  · 5
                                      10
 Val Glu Val Thr Met Gly Lys Ala Ala
               20
```

<212> PRT <213> Homo sapiens <400> 87 Ser Leu His Ala 1 <210> 88 <211> 235 <212> PRT <213> Homo sapiens <400> 88 Met Pro Trp Val Leu Leu Leu Thr Leu Leu Thr His Ser Ala Val Ser Val Val Gln Ala Gly Leu Thr Gln Pro Pro Ser Val Ser Lys Asp - 20 Leu Arg Gln Thr Ala Thr Leu Thr Cys Thr Gly Asn Asn Asn Val 40 Gly Asp Gln Gly Ala Ala Trp Leu Gln Gln His Gln Gly His Pro Pro 50 Lys Leu Leu Ser Tyr Arg Asn Asn Asn Arg Pro Ser Gly Ile Ser Glu Arg Leu Ser Ala Ser Arg Ser Gly Ala Thr Ser Ser Leu Thr Ile Thr Gly Leu Gln Pro Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Tyr Asp 105 Ser Ser Leu Ala Val Trp Met Phe Gly Gly Gly Thr Lys Leu Thr Val 115 Leu Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser 150 145 Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser 170 . 165 Pro Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn 180 Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Lys Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr 215 210 Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser

230.

```
<210> 89
<211> 87
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (11)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (86)
<223> Xaa equals any of the naturally occurring L-amino acids
Met Ser Leu Asn Val Leu Leu Ala Leu Phe Xaa Leu Leu Leu Ala Lys
Glu Ser Ser Cys Arg Ile Pro Ala Ala Arg Gly Asp Pro Leu Val Leu
             20
Glu Arg Pro Pro Pro Arg Trp Glu Leu Gln Leu Leu Val Pro Phe Ser
                           40
Glu Gly Leu Ile Ser Ser Leu Ala Val Ile Met Gly His Ser Leu Phe
Pro Gly Val Glu Ile Gly Tyr Pro Ala His Lys Phe His Asn Asn Asn
                     70
Thr Ser Arg Lys His Xaa Val
                 85
<210> 90
<211> 106
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (22)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 90
Met Ala Leu His Gly Phe His Phe Asp Leu Phe His Phe His Leu Leu
                                      10
Leu Phe Gln Leu Leu Xaa Leu Thr Pro Gln Cys Ser Leu Leu Gln Pro
Ala Leu Phe Leu Arg Ile Phe Leu Ile His Asp Ser Leu Leu Cys
```

Ser Phe Phe Leu Leu Pro Pro Arg Leu Cys Cys Phe Leu Ser Leu His

Met Cys Gln Phe Gln Glu Val Leu Phe Tyr Ser Gly Thr Val Leu Ile 65 70 75 80

Cys Phe Leu Phe Ala Phe Ser Val Glu Ser Glu Leu Phe Gly Phe Ile 85 90 95

Asn Arg Ile Asn His His Val His Gln Gly
100 105

<210> 91

<211> 59

<212> PRT

<213> Homo sapiens

<400> 91

Ī

E. ...

Ιħ

M

 Met Tyr Ala Lys Cys Gln Lys Lys Leu Ala Pro Ala Trp Leu Ile Phe 1 5 10 15

Phe Ile Gly Gly Met Thr Arg Lys Ile Ile Leu Ala Pro Cys Leu Ser 20 25 30

Met Val Ala Ala Arg Gly Asn Asn Asn Phe Gln Ser Lys Ala Asn 35 40 45

Cys Leu Asn Thr Cys Lys Asn Lys Arg Phe Pro 50 55

<210> 92

<211> 32

<212> PRT

<213> Homo sapiens

<400> 92

Met Glu Val Pro Ala Arg Ala Ser Ser Leu Asn Ser Ser Asp Ile Phe

1 5 10 15

Leu Leu Val Thr Ala Ser Val Cys Tyr Leu Trp Phe Gly Lys Gly Leu 20 25 30

<210> 93

<211> 178

<212> PRT

<213> Homo sapiens

<400> 93

Phe Ser Val Thr Asn Asn Thr Glu Cys Gly Lys Leu Leu Glu Glu Ile

1 5 10 15

Lys Cys Ala Leu Cys Ser Pro His Ser Gln Ser Leu Phe His Ser Pro 20 25 30

Glu Arg Glu Val Leu Glu Arg Asp Leu Val Leu Pro Leu Leu Cys Lys Asp Tyr Cys Lys Glu Phe Phe Tyr Thr Cys Arg Gly His Ile Pro Gly 5.5 Phe Leu Gln Thr Thr Ala Asp Glu Phe Cys Phe Tyr Tyr Ala Arg Lys Asp Gly Gly Leu Cys Phe Pro Asp Phe Pro Arg Lys Gln Val Arg Gly . 90 Pro Ala Ser Asn Tyr Leu Asp Gln Met Glu Glu Tyr Asp Lys Val Glu 105 Glu Ile Ser Arg Lys His Lys His Asn Cys Phe Cys Ile Gln Glu Val 120 125 Val Ser Gly Leu Arg Gln Pro Val Gly Ala Leu His Ser Gly Asp Gly Ser Gln Arg Leu Phe Ile Leu Glu Lys Glu Gly Tyr Val Lys Ile Leu 155 Thr Pro Glu Gly Glu Ile Phe Lys Glu Pro Tyr Leu Asp Ile His Lys Leu Val <210> 94 <211> 216 <212>- PRT <213> Homo sapiens <400> 94 Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg Glu Val Glu Ile Leu Met 10 Phe Leu Ser Ala Ile Val Met Met Lys Asn Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys Pro Pro Leu Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys Thr Ile Asp Glu Glu Leu 90

Glu Arg Asp Lys Arg Val Thr Trp Ile Val Glu Phe Phe Ala Asn Trp

100

105

1.10

Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile Tyr Ala Asp Leu Ser Leu .115 Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly Lys Val Asp Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val Ser Thr Ser Pro Leu Thr 145 Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln Gly Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg Ala Val Ser Trp Thr Phe 180 185 Ser Glu Glu Asn Val Ile Arg Glu Phe Asn Leu Asn Glu Leu Tyr Gln 195 Arg Ala Lys Lys Leu Ser Lys Ala 215 210 <210> 95 <211> 196 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (141) <223> Xaa equals any of the naturally occurring L-amino acids <400> 95 Gln Leu Ile Val Thr Ala Arg Thr Thr Arg Gly Leu Asp Pro Leu Phe Gly Met Cys Glu Lys Phe Leu Gln Glu Val Asp Phe Phe Gln Arg Tyr 20 Phe Ile Ala Asp Leu Pro His Leu Gln Asp Ser Phe Val Asp Lys Leu 40 Leu Asp Leu Met Pro Arg Leu Met Thr Ser Lys Pro Ala Glu Val Val 50 Lys Ile Leu Gln Thr Met Leu Arg Gln Ser Ala Phe Leu His Leu Pro Leu Pro Glu Gln Ile His Lys Ala Ser Ala Thr Ile Ile Glu Pro Ala 85 . . . Gly Glu Phe Arg Gln Pro Phe Ala Val Tyr Leu Trp Val Gly Gly Cys 105 100.

Pro Gly Met Leu Met Gln Pro Trp Ser Met Cys Arg Ile Leu Arg Thr 115 120 125 Leu Leu Arg Ser Arg Val Leu Tyr Pro Asp Gly Gln Xaa Ser Asp Asp 130 135 140

Ser Pro Gln Ala Cys Arg Leu Pro Glu Ser Trp Pro Arg Ala Ala Pro 145 150 155 160

Ala His His Ser Gly Leu Ser Leu Pro His Arg Leu Asp Arg Gly Met
165 170 175

Pro Gly Gly Ser Glu Ala Ala Ala Gly Leu Gln Leu Gln Cys Ser His 180 185 190

Ser Lys Met Pro 195

<210> 96

<211> 255

<212> PRT

<213> Homo sapiens

<400> 96 ·

Ile His Leu Ala Leu Val Glu Leu Leu Lys Asn Leu Thr Lys Tyr Pro 1 5 10 15

Thr Asp Arg Asp Ser Ile Trp Lys Cys Leu Lys Phe Leu Gly Ser Arg 20 25 30

His Pro Thr Leu Val Leu Pro Leu Val Pro Glu Leu Leu Ser Thr His
35 40 45

Pro Phe Phe Asp Thr Ala Glu Pro Asp Met Asp Asp Pro Ala Tyr Ile 50 55 60

Ala Val Leu Val Leu Ile Phe Asn Ala Ala Lys Thr Cys Pro Thr Met 65 70 75 80

Pro Ala Leu Phe Ser Asp His Thr Phe Arg His Tyr Ala Tyr Léu Arg 85 90 95

Asp Ser Leu Ser His Leu Val Pro Ala Leu Arg Leu Pro Gly Arg Lys

Leu Val Ser Ser Ala Val Ser Pro Ser Ile Ile Pro Gln Glu Asp Pro 115 120 125

Ser Gln Gln Phe Leu Gln Gln Ser Leu Glu Arg Val Tyr Ser Leu Gln 130 135 140

His Leu Asp Pro Gln Gly Ala Gln Glu Leu Leu Glu Phe Thr Ile Arg 145 150 155 160

Asp Leu Gln Arg Leu Gly Glu Leu Gln Ser Glu Leu Ala Gly Val Ala 165 170 175

Asp Phe Ser Ala Thr Tyr Leu Arg Cys Gln Leu Leu Leu Ile Lys Ala 180 185 190 Leu Gln Glu Lys Leu Trp Asn Val Ala Ala Pro Leu Tyr Leu Lys Gln 195 200 205

Ser Asp Leu Ala Ser Ala Ala Ala Lys Gln Ile Met Glu Glu Thr Tyr 210 215 220

Lys Met Glu Phe Met Tyr Ser Gly Val Glu Asn Lys Gln Val Val Ile 225 230 235 240

Ile His His Met Arg Leu Gln Ala Lys Ala Leu Gln Leu Ile Val 245 250 255

<210> 97

<211> 137

<212> PRT

<213> Homo sapiens

<400> 97

Arg Phe Tyr Ser Asn Ser Cys Cys Leu Cys Cys His Val Arg Thr Gly
1 5 10 15

Thr Ile Leu Leu Gly Val Trp Tyr Leu Ile Ile Asn Ala Val Val Leu 20 25 30

Leu Ile Leu Leu Ser Ala Leu Ala Asp Pro Asp Gln Tyr Asn Phe Ser 35 40 45

Ser Ser Glu Leu Gly Gly Asp Phe Glu Phe Met Asp Asp Ala Asn Met
50 55 60

Cys Ile Ala Ile Ala Ile Ser Leu Leu Met Ile Leu Ile Cys Ala Met 65 70 75 80

Ala Thr Tyr Gly Ala Tyr Lys Gln Arg Ala Ala Gly Ile Ile Pro Phe 85 90 95

Phe Cys Tyr Gln Ile Phe Asp Phe Ala Leu Asn Met Leu Val Ala Ile 100 105 110

Thr Val Leu Ile Tyr Pro Asn Ser Ile Gln Glu Tyr Ile Arg Gln Leu 115 120 125

Pro Pro Asn Phe Pro Tyr Arg Asp Asp 130 135

<210> 98

<211> 87

<212> PRT

<213> Homo sapiens

<400> 98

Phe Pro Thr Glu Met Met Ser Cys Ala Val Asn Pro Thr Cys Leu Val

1 5 10 15

Leu Ile Ile Leu Leu Phe Ile Ser Ile Ile Leu Thr Phe Lys Gly Tyr
20 25 30

Leu Ile Ser Cys Val Trp Asn Cys Tyr Arg Tyr Ile Asn Gly Arg Asn Ser Ser Asp Val Leu Val Tyr Val Thr Ser Asn Asp Thr Thr Val Leu Leu Pro Pro Tyr Asp Asp Ala Thr Val Asn Gly Ala Ala Lys Glu Pro 70 Pro Pro Pro Tyr Val Ser Ala <210> 99 <211> 97 <212> PRT <213> Homo sapiens <400> 99 Ile Ala Pro Ser Arg Pro Trp Ala Leu Met Glu Gln Tyr Glu Val Val Leu Pro Trp Arg Leu Pro Gly Pro Arg Val Arg Arg Ala Leu Pro Ser 20 His Leu Gly Leu His Pro Glu Arg Val Ser Tyr Val Leu Gly Ala Thr 40 Gly His Asn Phe Thr Leu His Leu Arg Lys Asn Arg Asp Leu Leu Gly Ser Gly Tyr Thr Glu Thr Tyr Thr Ala Ala Asn Gly Ser Glu Val Thr Glu Gln Pro Arg Gly Gln Asp His Cys Phe Tyr Gln Gly His Leu Glu Gly . <210> 100 <211> 240 <212> PRT <213> Homo sapiens

Till the	3	
÷		
i	ij	
Ē	Ā	
ä	Ų	
	ī	
Ę	Ā	
į	Ī	
=		
	=	
į	П	
Ē	=	
	÷	
ż	==	

	50					55					60				
Gly 65	Pro	Arg	Thr	Ala	Ala 70	Val	Phe	Arg	Pro	Arg 75	Pro	Gly	Asp	Ser	Leu 80
Pro	Ser	Arg	Glu	Thr 85	Arg	Tyr	Val	Glu	Leu 90	Tyr	Val	Val	Val	Asp 95	Asn
Ala	Glu	Phe	Gln 100	Met	Leu	Gly	Ser	Glu 105	Ala	Ala	Val	Arg	His 110	Arg	Val
Leu	Glu	Val 115	Val	Asn	His	Val	Asp 120		Leu	Tyr	Gln	Lys 125	Leu	Asn	Phe
Arg	Val 130	Val	Leu	Val	Gly	Leu 135	Glu	Ile	Trp	Asn	Ser 140	Gln	Asp	Arg	Phe
His 145	Уal	Ser	Pro	Asp	Pro 150	Ser	Val	Thr	Leu	Glu 155	Asn	Leu	Leu	Thr	Trp 160
Gln	Ala	Arg	Gln	Arg 165	Thr	Arg	Arg	His	Leu 170	His	Asp	Asn	Val	Gln 175	Leu
Ile	Thr	Gly	Val 180	Asp	Phe	Thr	Gly	Thr 185	Thr	Val	Gly	Phe	Ala 190	Arg	Val
Ser	Ala	Met 195	Cys	Ser	His	Ser	Ser 200	Gly	Ala	Val	Asn	Gln 205	Asp	His	Ser
Lys	Asn 210	Pro	Val	Gly	.Val	Ala 215		Thr	Met	Ala	His 220	Glu	Met	Gly	His
Asn 225	Leu	Gly	Met	Asp	His 230		Glu	Asn	Val	Gln 235	Gly	Cys	Arg	Cys	Gln 240

<210> 101 <211> 118 <212> PRT <213> Homo sapiens

Phe Pro Arg Met Phe Ser Asp Cys Ser Gln Ala Tyr Leu Glu Ser Phe 20 25 30

Leu Glu Arg Pro Gln Ser Val Cys Leu Ala Asn Ala Pro Asp Leu Ser

His Leu Val Gly Gly Pro Val Cys Gly Asn Leu Phe Val Glu Arg Gly 50 55 60

Glu Gln Cys Asp Cys Gly Pro Pro Glu Asp Cys Arg Asn Arg Cys Cys

Asn Ser Thr Thr Cys Gln Leu Ala Glu Gly Ala Gln Cys Ala His Gly

Thr Cys Cys Gln Glu Cys Lys Val Lys Pro Ala Gly Glu Leu Cys Arg 105 100

Pro Lys Lys Asp Met Cys

<210> 102

<211> 471

<212> PRT

<213> Homo sapiens

<400> 102

Ħ

In Ш m

I ١Ū

IN

14 Gly Ser Gln Glu Glu Arg Phe Ala Pro Gly Trp Asn Arg Asp Tyr Pro

Pro Pro Pro Leu Lys Ser His Ala Gln Glu Arg His Ser Gly Asn Phe

Pro Gly Arg Asp Ser Leu Pro Phe Asp Phe Gln Gly His Ser Gly Pro

Pro Phe Ala Asn Val Glu Glu His Ser Phe Ser Tyr Gly Ala Arg Asp 60

Gly Pro His Gly Asp Tyr Arg Gly Gly Glu Gly Pro Gly His Asp Phe

Arg Gly Gly Asp Phe Ser Ser Ser Asp Phe Gln Ser Arg Asp Ser Ser 90 -

Gln Leu Asp Phe Arg Gly Arg Asp Ile His Ser Gly Asp Phe Arg Asp 105

Arg Glu Gly Pro Pro Met Asp Tyr Arg Gly Gly Asp Gly Thr Ser Met 125 120

Asp Tyr Arg Gly Arg Glu Ala Pro His Met Asn Tyr Arg Asp Arg Asp 135

Ala His Ala Val Asp Phe Arg Gly Arg Asp Ala Pro Pro Ser Asp Phe 155 .150

Arg Gly Arg Gly Thr Tyr Asp Leu Asp Phe Arg Gly Arg Asp Gly Ser 170

His Ala Asp Phe Arg Gly Arg Asp Leu Ser Asp Leu Asp Phe Arg Ala

Arg Glu Gln Ser Arg Ser Asp Phe Arg Asn Arg Asp Val Ser Asp Leu 200

Asp Phe Arg Asp Lys Asp Gly Thr Gln Val Asp Phe Arg Gly Arg Gly

Ser 225	Gly	Thr	Thr		Leu 230	Asp	Phe	Arg	Asp	Arg 235	Asp	Thr	Pro	His	Ser 240
Åsp	Phe	Arg	Gly	Arg 245	His	Arg	Ser	Arg	Thr 250	Asp	Gln	Asp	Phe	Arg 255	Gly
Arg	Glu	Met	Gly 260	Ser	Cys	Met	Glu	Phe 265	Lys	Asp	Arg	Glu	Met 270	Pro	Pro
Val	Asp	Pro 275	Asn	Ile	Leu	Asp	Tyr 280	Ile	Gln	Pro	Ser	Thr 285	Gln	Asp	Arg
Glu	His 290	Ser	Gly	Met	Asn	Val 295	Asn	Arg	Arg	Glu	Glu 300	Ser	Thr	His	Asp
His 305	Thr	Ile	Glu	Arg	Pro 310	Ala	Phe	Gly	Ile	Gln 315	Lys	Gly	Glu	Phe	Glu 320
His	Ser	Glu	Thr	Arg 325	Glu	Gly	Glu	Thr	Gln 330	Gly	Val	Ala	Phe	Glu 335	His
Glu	Ser	Pro	Ala 340	Asp	Phe	Gln	Asn	Ser 345		Ser	Pro	Val	Gln 350	Asp	Gln
Asp	Lys	Ser 355	Gln	Leu	Ser	Gly	Arg 360	Glu	Glu	Gln	Ser	Ser 365	Asp	Ala	Gly
Leu	Phe 370	Lys	Glu	Glu	Gly	Gly 375	Leu	Asp	Phe		Gly 380	Arg	Gln	Asp	Thr
Asp 385	Tyr	Arg	Ser	Met	Glu 390	Tyr	Arg	Asp	Val	Asp 395	His	Arg	Leu	Pro	Gly 400
Ser	Gln	Met	Phe	Gly 405		Gly	Gln	Ser	Lys 410	Ser	Phe	Pro	Glu	Gly 415	Lys
Th:	c Ala	Arg	Asp 420		Gln	Arg	Asp	Leu 425		Asp	Gln	Asp ,	Tyr 430	Arg	Thr
Gly	y Pro	Ser 435		Glu	Lys	Pro	Ser 440		Leu	Ile	Arg	Leu 445	Ser	Gly	Val
Pro	o Glu 450		Ala	Thr	Lys	Glu 455		Ile	Leu	Asn	Ala 460	Phe	Arg	Thr	Pro
As _]	o Gly 5	Met	Pro	Val	Lys 470		L				•				•
									•						

<210> 103

<211> 125

<212> PRT

<213> Homo sapiens

<400> 103

Gly Leu Gln Asp Ser Ala Arg Gly Gly Ser Gln Glu Glu Arg Phe Ala

Pro Gly Trp Asn Arg Asp Tyr Pro Pro Pro Pro Leu Lys Ser His Ala

Gln Glu Arg His Ser Gly Asn Phe Pro Gly Arg Asp Ser Leu Pro Phe

15

	•	
-	Asp Phe Gln Gly His Ser Gly Pro Pro Phe Ala Asn Val Glu Glu 50 55 60	His
•	Ser Phe Ser Tyr Gly Ala Arg Asp Gly Pro His Gly Asp Tyr Arg 65 70 75	Gly 80
	Gly Glu Gly Pro Gly His Asp Phe Arg Gly Gly Asp Phe Ser Ser 85 90 95	Ser
	Asp Phe Gln Ser Arg Asp Ser Ser Gln Leu Asp Phe Arg Gly Arg 100 105 110	Asp
5 5 7 1	Ile His Ser Gly Asp Phe Arg Asp Arg Glu Gly Pro Pro 115 120 125	
IJ		
	<210> 104	
	<211> 330	
:I	<212> PRT	
i.	<213> Homo sapiens	
3		
T -	<220>	
<u></u>	<221> SITE	
<u>.</u>	<222> (7)	1 ~
	<223> Xaa equals any of the naturally occurring L-amino acid	ıs.
å	222	
	<220> <221> SITE	•
	<222> (147)	
	<223> Xaa equals any of the naturally occurring L-amino acid	is
	<220>	
	<221> SITE	
	<222> (181)	_
	<223> Xaa equals any of the naturally occurring L-amino acid	is
	<220>	•
	<221> SITE	
	<222> (190) <223> Xaa equals any of the naturally occurring L-amino acid	as
	22235 Rad Equals any Of the Indulating Country	
	<220>	
	<221> SITE	
	<222> (260)	
	<223> Xaa equals any of the naturally occurring L-amino acid	ls

Met Leu Pro Asp Trp Lys Xaa Ser Leu Ile Leu Met Ala Tyr Ile Ile

1

<400> 104

- Ile Phe Leu Thr Gly Leu Pro Ala Asn Leu Leu Ala Leu Arg Ala Phe 20 25 30
- Val Gly Arg Ile Arg Gln Pro Gln Pro Ala Pro Val His Ile Leu Leu
 35 40 45
- Leu Ser Leu Thr Leu Ala Asp Leu Leu Leu Leu Leu Leu Pro Phe
 50 60
- Lys Ile Ile Glu Ala Ala Ser Asn Phe Arg Trp Tyr Leu Pro Lys Val 65 70 75 80
- Val Cys Ala Leu Thr Ser Phe Gly Phe Tyr Ser Ser Ile Tyr Cys Ser 85 90 95
- Thr Trp Leu Leu Ala Gly Ile Ser Ile Glu Arg Tyr Leu Gly Val Ala 100 105 110
- Phe Pro Val Gln Tyr Lys Leu Ser Arg Arg Pro Leu Tyr Gly Val Ile 115 120 125
- Ala Ala Leu Val Ala Trp Val Met Ser Phe Gly His Cys Thr Ile Val 130 135 140
- Ile Ile Xaa Gln Tyr Leu Asn Thr Thr Glu Gln Val Arg Ser Gly Asn 145 150 155 160
- Glu Ile Thr Cys Tyr Glu Asn Phe Thr Asp Asn Gln Leu Asp Val Val 165 170 175
- Leu Pro Val Arg Xaa Glu Leu Cys Leu Val Leu Phe Phe Xaa Pro Met 180 185 190
- Ala Val Thr Ile Phe Cys Tyr Trp Arg Phe Val Trp Ile Met Leu Ser 195 200 205
- Gln Pro Leu Val Gly Ala Gln Arg Arg Arg Arg Ala Val Gly Leu Ala 210 215 220
- Val Val Thr Leu Leu Asn Phe Leu Val Cys Phe Gly Pro Tyr Asn Val 225 230 235 240
- Ser His Leu Val Gly Tyr His Gln Arg Lys Ser Pro Trp Trp Arg Ser 245 250 255
- Ile Ala Val Xaa Phe Ser Ser Leu Asn Ala Ser Leu Asp Pro Leu Leu 260 265 270
- Phe Tyr Phe Ser Ser Ser Val Val Arg Arg Ala Phe Gly Arg Gly Leu
 275 280 285
- Gln Val Leu Arg Asn Gln Gly Ser Ser Leu Leu Gly Arg Arg Gly Lys 290 295 300
- Asp Thr Ala Glu Gly Thr Asn Glu Asp Arg Gly Val Gly Gln Gly Glu 305 310 315
- Gly Met Pro Ser Ser Asp Phe Thr Thr Glu

325

330

```
Val
```

ij I

· iu

M

Ī÷ 1-1

```
<210> 105
<211> 17
<212> PRT
<213 > Homo sapiens
<400> 105
Cys Ser Thr Trp Leu Leu Ala Gly Ile Ser Ile Glu Arg Tyr Leu Gly
               5
<210> 106
<211> 94
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (7)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (41)
<223> Xaa equals any of the naturally occurring L-amino acids
<220>
<221> SITE
<222> (50)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 106
Cys Thr Ile Val Ile Ile Xaa Gln Tyr Leu Asn Thr Thr Glu Gln Val
                                   10
    5
Arg Ser Gly Asn Glu Ile Thr Cys Tyr Glu Asn Phe Thr Asp Asn Gln
                                25
Leu Asp Val Val Leu Pro Val Arg Xaa Glu Leu Cys Leu Val Leu Phe
                       40
         35
Phe Xaa Pro Met Ala Val Thr Ile Phe Cys Tyr Trp Arg Phe Val Trp
                        55
Ile Met Leu Ser Gln Pro Leu Val Gly Ala Gln Arg Arg Arg Ala
               70
Val Gly Leu Ala Val Val Thr Leu Leu Asn Phe Leu Val Cys
```

90

<210> 107 <211> 143 85

```
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (25)
<223> Xaa equals any of the naturally occurring L-amino acids
<400> 107
Gly Leu Pro Ala Ala Arg Val Arg Trp Glu Ser Ser Phe Ser Arg Thr
Val Val Ala Pro Ser Ala Val Ala Xaa Lys Arg Pro Pro Glu Pro Thr
Thr Pro Trp Gln Glu Asp Pro Glu Pro Glu Asp Glu Asn Leu Tyr Glu
Lys Asn Pro Asp Ser His Gly Tyr Asp Lys Asp Pro Val Leu Asp Val
Trp Asn Met Arg Leu Val Phe Phe Gly Val Ser Ile Ile Leu Val
                    70
Leu Gly Ser Thr Phe Val Ala Tyr Leu Pro Asp Tyr Arg Cys Thr Gly
                                    90
Cys Pro Arg Ala Trp Asp Gly Met Lys Glu Trp Ser Arg Arg Glu Ala
                                                    110
Glu Arg Leu Val Lys Tyr Arg Glu Ala Asn Gly Leu Pro Ile Met Glu
                        120
Ser Asn Cys Phe Asp Pro Ser Lys Ile Gln Leu Pro Glu Asp Glu
                                            140
 <210> 108
 <211> 36
 <212> PRT
 <213> Homo sapiens
 <400> 108
 Pro Glu Lys Arg Asp Met His Asp Phe Phe Val Gly Leu Met Gly Lys
 Arg Ser Val Gln Pro Asp Ser Pro Thr Asp Val Asn Gln Glu Asn Val
                                 25
 Pro Ser Phe Gly
```

<210> 109

<211> 15

<212> PRT

<213> Homo sapiens

```
<400> 109
Lys Arg Asp Met His Asp Phe Phe Val Gly Leu Met Gly Lys Arg
<210> 110
<211>.10
<212> PRT
<213> Homo sapiens
<400> 110
Asp Met His Asp Phe Phe Val Gly Leu Met
<210> 111
<211> 16
<212> PRT
<213> Homo sapiens
<400> 111
Glu Trp Glu Ala Thr Glu Glu Met Glu Trp Ile Ile Arg Glu Ala Met
                                     10
<210> 112
<211> 35
<212> PRT
<213> Homo sapiens
<400> 112
Trp Glu Trp Gly Thr Ile Thr Val Glu Asp Met Val Leu Leu Met Val
Trp Val Val Met Ala Val Val Val Glu Ala Val Glu Val Thr Met Gly
Lys Ala Ala
    <210> 113
 <211> 18
 <212> PRT
 <213> Homo sapiens
Gly Met Gly Gly Tyr Gly Arg Asp Gly Met Asp Asn Gln Gly Gly Tyr
                                                          15
                                     10
                   5
 Gly Ser .
```

<210> 114

```
<211> 43
```

<213> Homo sapiens

<400> 114

Gly Met Gly Asn Asn Tyr Ser Gly Gly Tyr Gly Thr Pro Asp Gly Leu

1 5 10 15

Gly Gly Tyr Gly Arg Gly Gly Gly Gly Ser Gly Gly Tyr Tyr Gly Gln
20 25 30

Gly Gly Met Ser Gly Gly Gly Trp Arg Gly Met 35 40

<210> 115

<211> 43

<212> PRT

<213> Homo sapiens

<400> 115

Gly Met Gly Asn Asn Tyr Ser Gly Gly Tyr Gly Thr Pro Asp Gly Leu 1 5 10 15

Gly Gly Tyr Gly Arg Gly Gly Gly Gly Ser Gly Gly Tyr Tyr Gly Gln
20 25 30

Gly Gly Met Ser Gly Gly Gly Trp Arg Gly Met

<210> 116

<211> 223

<212> PRT

<213> Homo sapiens

<400> 116

Trp Asp Ser Thr Thr Ser Trp Thr Thr Ile Trp Leu Gln Gln Arg Gly

1 5 10 15

Asn Ser Ser Val Leu Ser Arg Val Gly Asn Arg Ala Asn Gly Ile Thr 20 25 30

Leu Thr Met Asp Tyr Gln Gly Arg Ser Thr Gly Glu Ala Phe Val Gln
35 40 45

Phe Ala Ser Lys Glu Ile Ala Glu Asn Ala Leu Gly Lys His Lys Glu 50 60

Arg Ile Gly His Arg Tyr Ile Glu Ile Phe Arg Ser Ser Arg Ser Glu
65 70 75 80

Ile Lys Gly Phe Tyr Asp Pro Pro Arg Arg Leu Leu Gly Gln Arg Pro 85 90 95

Gly Pro Tyr Asp Arg Pro Ile Gly Gly Arg Gly Gly Tyr Tyr Gly Ala 100 105 110

<212> PRT

Gly Arg Gly Ser Met Tyr Asp Arg Met Arg Arg Gly Gly Asp Gly Tyr 115 120 125

Asp Gly Gly Tyr Gly Gly Phe Asp Asp Tyr Gly Gly Tyr Asn Asn Tyr 135 Gly Tyr Gly Asn Asp Gly Phe Asp Asp Arg Met Arg Asp Gly Arg Gly Met Gly Gly His Gly Tyr Gly Gly Ala Gly Asp Ala Ser Ser Gly Phe His Gly Gly His Phe Val His Met Arg Gly Leu Pro Phe Arg Ala Thr 185 Glu Asn Asp Ile Ala Asn Phe Phe Ser Pro Leu Asn Pro Ile Arg Val 205 195 His Ile Asp Ile Gly Ala Asp Gly Arg Ala Gln Glu Lys Gln Met 215 <210> 117 <211> 26 <212> PRT <213> Homo sapiens <400> 117 Phe Thr His Ser Phe Ile Leu Glu His Ala Phe Ser Leu Leu Ile Thr Leu Pro Val Ser Ser Trp Ala Ala Asn Asn 20 <210> 118 <211> 384 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (20) <223> Xaa equals any of the naturally occurring L-amino acids <220>

<220>

<221> SITE

<221> SITE <222> (63)

<222> (66)

<223> Xaa equals any of the naturally occurring L-amino acids

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (187)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 118

Met Met Ile Gln Trp Asn Gly Pro Lys Thr Ser Ile Ser Glu Lys Ala 1 5 10 15

Arg Gly Leu Xaa Leu Thr Tyr Ser Leu Arg Asp Arg Glu Arg Gly Gly

Gly Arg Ala Gln Ile Gly Val Val Asp Asp Glu Ala Lys Ala Pro Asp 35 40 45

Leu Met Gln Ile Met Glu Ala Val Leu Gly Arg Arg Val Gly Xaa Leu 50 55 60

Arg Xaa Ala Thr Pro Ser Lys Asp Ile Asn Gln Leu Gln Lys Ala Asn 65 70 75 80

Val Arg Leu Tyr His Val Tyr Glu Lys Gly Lys Asp Leu Val Val Leu 85 90 95

Glu Leu Ala Thr Pro Pro Leu Thr Gln Asp Leu Leu Gln Glu Glu Asp 100 105 110

Phe Tyr Ile Leu Asp Gln Gly Gly Phe Lys Ile Tyr Val Trp Gln Gly
115 120 125

Arg Met Ser Ser Leu Gln Glu Arg Lys Ala Ala Phe Ser Arg Ala Val 130 135 140

Gly Phe Ile Gln Ala Lys Gly Tyr Pro Thr Tyr Thr Asn Val Glu Val 145 150 155 160

Val Asn Asp Gly Ala Glu Ser Ala Ala Phe Lys Gln Leu Phe Arg Thr 165 170 175

Trp Ser Glu Lys Arg Arg Arg Asn Gln Lys Xaa Gly Gly Arg Asp Lys
180 185 190

Ser Ile His Val Lys Leu Asp Val Gly Lys Leu His Thr Gln Pro Lys 195 200 205

Leu Ala Ala Gln Leu Arg Met Val Asp Asp Gly Ser Gly Lys Val Glu 210 215 220

Val Trp Cys Ile Gln Asp Leu His Arg Gln Pro Val Asp Pro Lys Arg 225 230 235 240

His Gly Gln Leu Cys Ala Gly Asn Cys Tyr Leu Val Leu Tyr Thr Tyr 245. 250 255

Gln Arg Leu Gly Arg Val Gln Tyr Ile Leu Tyr Leu Trp Gln Gly His 260 265 270

Gln Ala Thr Ala Asp Glu Ile Glu Ala Leu Asn Ser Asn Ala Glu Glu 275 280 285

Leu Asp Val Met Tyr Gly Gly Val Leu Val Gln Glu His Val Thr Met

295 290

Gly Ser Glu Pro Pro His Phe Leu Ala Ile Phe Gln Gly Gln Leu Val 315 310

Ile Phe Gln Glu Arg Ala Gly His His Gly Lys Gly Gln Ser Ala Ser 325

Thr Thr Arg Leu Phe Gln Val Gln Gly Thr Asp Ser His Asn Thr Arg 340 345

Thr Met Glu Val Pro Ala Arg Ala Ser Ser Leu Asn Ser Ser Asp Ile 355 360

Phe Leu Leu Val Thr Ala Ser Val Cys Tyr Leu Trp Phe Gly Lys Gly 375 370

In the last the last and the tent that the last
1= 1=