Strain-space model for Sars-CoV-2

Peter C. Jentsch, PhD ^{1,4} Finlay Maguire, PhD ^{3,5} Samira Mubareka, MD, FRCPC ^{1,2}

¹Sunnybrook Research Institute, Toronto, Canada

²University of Toronto, Toronto, Canada

³Dalhousie University, Halifax, Canada

⁴Simon Fraser University, Burnaby, Canada

⁵Shared Hospital Laboratory, Toronto, Canada

June 13, 2022

- Dynamic model of Sars-CoV-2 evolution, representing antigenic diversity on a lattice (as in e.g. [?,?,?])
- Antigenically distinct variants of the virus are mapped to 2D grid, distance between variants corresponds to the proportional reduction in maximum serum viral titre [?,?]

Figure: Antigenic cartography of Sars-CoV-2, reproduced from [?], Fig. 2

Model parameters/variables

Symbol	Description
N	Size of variant grid
S_{ij}	Population susceptible to variant $(i, j) \in [0, N]^2$
I_{ij}	Population infected by variant $(i, j) \in [0, N]^2$
R_{ij}	Recovered/Immune to variant $(i, j) \in [0, N]^2$
σ_{ijkl}	Probability that exposure to variant (i, j) causes
	immunity
	to variant (k, l)
eta_{ij}	Transmission rate of variant (i, j)
$eta_{ij} \ eta$	Recovery rate of all strains
γ	Rate of immunity loss of all strains

Table: Table of symbols for Model 2

σ matrix

In practice, we assume σ_{ijkl} is just a 2-D gaussian distribution parameterized by the distance between (i, j) and (k, l).

Model Equations

$$\frac{S_{ij}}{dt} = -\sum_{kl} \beta_{kl} \sigma_{ijkl} S_{ij} I_{kl} + \gamma R_{ij} \tag{1}$$

$$\frac{I_{ij}(t)}{dt} = \beta_{ij} S_{ij} I_{ij} - \xi I_{ij} + M \left(-4I_{ij} + I_{i-1,j} + I_{i+1,j} + I_{i,j-1} + I_{i,j+1} \right)$$
(2)

$$\frac{R_{ij}(t)}{dt} = \xi I_{ij} - \gamma R_{ij} \tag{3}$$

Boundary conditions: $I_{0,j} = 0, I_{j,0} = 0, I_{N,j} = 0, I_{j,N} = 0$ Initial conditions computed from genomic data in GISAID To incorporate more realistic mutation rates, we can go to continuous strain-space and use nonlocal reaction-diffusion dynamics as in [?,?]

$$S_{t}(x, y, t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \beta(x', y') \sigma(x, y, x', y') S(x, y, t) I(x', y', t) dx' dy' + \gamma R_{ij} - \eta(t) v(x, y) S(x, y, t)$$

$$I_{t}(x, y, t) = \beta(x, y)S(x, y, t)I(x, y, t) - \xi I(x, y, t) + M \left(I_{x}(x, y, t) + I_{y}(x, y, t)\right)$$
(5)

$$R_t(x, y, t) = \xi I(x, y, t)I(x, y, t) - \gamma R(x, y, t) + \eta(t)v(x, y)S(x, y, t)$$
(6)

where β, σ, v have been generalized to their continuous counterparts. Given a dispersion kernel $K(x,y) \in L_2 : \mathbb{R}^2 \to \mathbb{R}$ this can be generalised to non-local diffusion as follows

$$I_{t}(x, y, t) = \beta(x, y)S(x, y, t)I(x, y, t) - \xi I(x, y, t) + M\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K(x - x', y - y')I(x', y', t)dx'dy'\right)$$
(7)

Developing an antigenic distance map

- We would like an approximate measure of antigenic distance for every sample genome
- Using all samples, we compute pairwise distances between each unique genome in some way that encodes antigenic response
- Many possible ways to do this

Developing an antigenic distance map

- We would like an approximate measure of antigenic distance for every sample genome
- Using all samples, we compute pairwise distances between each unique genome in some way that encodes antigenic response
- Many possible ways to do this, none of them seem to work very well
- Project to 2-d (hopefully) space with multidimensional scaling

Homoplasy in global tree

Figure: Number of recurrent (homoplasic) mutations per base by gene, (normalized by gene length)

Homoplasy in orf3a orf3a_scatter_2.png.png 10 / 1

Genome distance

Assume:

- a, b are SARS-CoV-2 genomes aligned with the reference
- a_i the *i*th nucleotide base in a

$$\chi(a_i, b_i) = \begin{cases} 1 & \text{if } a_i = b_i \\ 0 & \text{otherwise} \end{cases}$$

- h_i is a vector containing the number of homoplasic mutations at site i in the global tree
- $\mathfrak{B}(a)$ computes the polyclonal binding affinity of genome a as per [?]

One option for a distance measure is something like

$$d(a,b) = \frac{\mathfrak{B}(a) + \mathfrak{B}(b)}{2} + \sum_{i} \chi(a_i, b_i) h_i \tag{8}$$

That is, the average binding between two genomes plus the SNP distance weighted by the relative homoplasy of each mutation.