Primer parcial de Matemática Discreta 2. 2 de Mayo de 2009

Número de Examen	Cédula	Nombre y Apellido

Ejercicio 1.

a) Hallar todos los $x \in y \in \mathbb{Z}$ tales que 26x + 11y = 1.

Usando el AEE llegamos a la ecuación $3 \cdot 26 - 7 \cdot 11 = 1$ (obs. de aqui se concluye que $3 \cdot 26 \equiv 1$ (mód 11) y que $11 \cdot (-7) \equiv 1$ (mód 11)). Por teorema visto en clase todas las soluciones vienen dadas por:

$$\begin{cases} x = 3 - 11t \\ y = -7 + 26t \end{cases}$$

con $t \in \mathbb{Z}$.

b) Se tiene las siguientes afirmaciones para $x \in \mathbb{Z}$:

i)
$$x \equiv 133^{196} \pmod{26}$$

ii) El dígito menos significativo en base 11 es 6.

Se pide hallar todos los valores de x que verifican las condiciones i) y ii). ¿Hay alguno de los valores que sea múltiplo de 22?

Primero observamos que $133^{196} \equiv 3^{196} = (3^{12})^{16} \cdot 3^4 \equiv 3^4 \equiv 3 \pmod{26}$ (se usó que $3^{12} \equiv 1 \pmod{26}$) que es consecuencia de Fermat-Euler). El sistema a resolver nos queda:

$$\begin{cases} x \equiv 3 \pmod{26} \\ y \equiv 6 \pmod{11} \end{cases}$$

asi que por el Teorema del resto chino, una solución viene dada por $A=3\cdot 11\cdot (-7)+6\cdot 26\cdot 3=-231+468=237$ por lo tanto $x\equiv 237\pmod{286}$.

Observar que $x \equiv 6 \pmod{11}$ implica que x no puede ser múltiplo de 11, por lo tanto ningún x que verifique i) y ii) puede ser múltiplo de 22.

Ejercicio 2.

- a) Sea (G, \cdot) un grupo.
 - i) Definir el orden de un elemento de G.
 - ii) Probar que el orden de $g \in G$ es igual al orden del subgrupo generado por g (es decir que $o(g) = |\langle g \rangle|$).

Demostración vista en Teórico.

- b) Sea $H = \{ f : \mathbb{R} \to \mathbb{R} : f \text{ biyectiva} \}.$
 - i) Probar que (H, \circ) es un grupo (la operación \circ es la composición). Observar que composición de funciones biyectivas continua siendo una función biyectiva, que la función identidad definida por e(x) = x para todo $x \in \mathbb{R}$ es el elemento neutro y que como las funciones de H son biyectivas, son también invertibles (por lo tanto todo elemento de H tiene inverso). Para chequear la asociativa tomemos $x \in \mathbb{R}$, tenemos que $(f \circ g) \circ h(x) = f \circ g(h(x)) = f(g(h(x)))$ y que $f \circ (g \circ h)(x) = f(g \circ h(x)) = f(g(h(x)))$. Como vale para todo $x \in \mathbb{R}$ se tiene que $(f \circ g) \circ h = f \circ (g \circ h)$.
 - ii) Sean $h, g: \mathbb{R} \to \mathbb{R}$ definidas por $h(x) = x^3 + 1$ y g(x) = -x. Hallar o(g) y o(h) (donde o(f) denota el orden de f en el grupo H). Probaremos por inducción que $gr(h^n) = 3^n$ para todo $n \in \mathbb{Z}^+$, donde $h^n = h \circ h \circ h \circ \dots \circ h$ es la composición de h consigo misma n veces. Para n = 1 es cierto (gr(h) = 3), si se verifica para n entonces $h^{n+1}(x) = h(h^n(x)) = h^{n^3} + 1$ luego $gr(h^{n+1}) = 3gr(h^n) = 3 \cdot 3^n = 3^{n+1}$. Como gr(e) = 1 se deduce que no existe ningún $n \in \mathbb{Z}^+$ tal que $h^n = e$ y por lo tanto h tiene orden infinito. Por otra parte g(g(x)) = g(-x) = x por lo tanto $g^2 = e$ y su orden es 2.

Ejercicio 3.

- a) Definir pseudoprimo (o número) de Carmichael.
- b) (Teorema de Korselt) Demostrar que si para todo factor primo p|n se tiene que p^2 no divide a n y p-1 divide a n-1 entonces n es un número de Carmichael. Visto en teórico.
- c) Decidir si cada una de las siguientes afirmaciones son verdaderas o falsas (justificar):
 - i) $5^{560} \equiv 1 \pmod{561}$.
 - ii) $11^{560} \equiv 1 \pmod{561}$

Como $561 = 3 \cdot 11 \cdot 17$ y 2, 10 y 16 son divisores de 560 resulta que 561 es de Carmichael, por lo tanto $5^{561} \equiv 5 \pmod{561}$ dividiendo entre 5 de ambos lados (obs que 5 y 561 son coprimos) tenemos que $5^{560} \equiv 1 \pmod{561}$ por lo tanto la primera es verdadera.

Por otra parte si $11^{560} \equiv 1 \pmod{561}$ entonces $11^{560} \equiv 1 \pmod{11}$ por lo que 11^{560} no sería múltiplo de 11 lo cual es falso.