BLG311E - FORMAL LANGUAGES AND AUTOMATA

2017 SPRING

RECITEMENT 6 (MIDTERM 2 SOLUTIONS)

Q1) (30 p.)

- (a) (15 p.) Build a PDA for the language L which contains words $\{w \in \{a,b\}^* \mid \#a = 2 \times \#b\}$ (The number of a's is twice the number of b's.). Draw the finite automaton that shows the state-transition relation of the PDA.
- (b) (15 p.) Build the grammar of the language in (a).

Solution:

push c to be able a, c/ac to check if the stack a, a/aa is empty $\begin{array}{c} A, \Lambda/c \\ \hline \\ A, \Lambda/b \end{array}$ $\begin{array}{c} A, A/c \\ \hline \\ A, A/b \end{array}$ $\begin{array}{c} A, A/c \\ \hline \\ A, A/b \end{array}$ $\begin{array}{c} A, A/A \\ \hline \\ A, C/bc \\ \hline \\ A, b/bb \end{array}$

(b)
$$< S > := < S > < S > | aa < S > b | ab < S > a | ba < S > a | $b < S > aa | a < S > ab | a < S > ba | \Lambda$ (Type-2)$$

Q2) (30 p.) Prove that the following expression cannot be represented by a Type-3 grammar.

$$a^nb^+a^n$$

Solution:

We can use pumping lemma to prove that the given expression is not regular therefore cannot be represented by a Type-3 grammar.

$$L = a^n b^+ a^n$$

Assumptions:

- Suppose that there exists a finite automaton M having k states and accepting L.
- Choose $x = a^k b^m a^k$, m > 0 so $x \in L$ and $|x| \ge k$.

By pumping lemma:

- x = uvw, |v| > 0 and $|uv| \le k$.
- For all possible splits that satisfy these rules: $v = a^l$ where $1 \le l \le k$.
- Lemma states that for a regular language all uv^iw , $i \ge 0$ must belong to the language.
- Consider any string uv^iw where $i \neq 1$.
- $(i = 0) uw = a^{k-l}b^ma^k \rightarrow$ The string does not belong to L since $k l \neq k$.
- $(i > 1) uv^i w = a^{k+(i-1)l} b^m a^k \rightarrow$ The string does not belong to L since $k + (i-1)l \neq k$.
- This is a contradiction so L is not regular.

Q3) (40 p.) Consider the following automaton.

- (a) (5 p.) Heuristically state the simplest regular expression that this NFA recognizes.
- **(b)** (15 p.) Systematically build an equivalent DFA to this NFA and draw its state-transition diagram.
- (c) (5 p.) Build the simplest grammar recognized by the DFA in item (b).
- (d) (15 p.) Systematically build the regular expression recognized by the DFA in item (b).

Solution:

(a)
$$(abb)^*(ab \vee aba)$$

(b)
$$s_0 = q_0$$

 $\delta'(s_0, a) = \delta(q_0, a) = q_1 \rightarrow s_1$
 $\delta'(s_0, b) = \delta(q_0, b) = \emptyset$
 $\delta'(s_1, a) = \delta(q_1, a) = \emptyset$
 $\delta'(s_1, b) = \delta(q_1, b) = \{q_2, q_3\} \rightarrow s_2$
 $\delta'(s_2, a) = \delta(\{q_2, q_3\}, a) = q_3 \rightarrow s_3$
 $\delta'(s_2, b) = \delta(\{q_2, q_3\}, b) = q_0 \rightarrow s_0$
 $\delta'(s_3, a) = \delta(q_3, a) = \emptyset$
 $\delta'(s_3, b) = \delta(q_3, b) = \emptyset$
 $\delta'(\phi, a) = \delta'(\phi, b) = \emptyset \rightarrow s_4$

- (c) $\langle s_0 \rangle ::= a \langle s_1 \rangle$ $\langle s_1 \rangle ::= b \langle s_2 \rangle \mid b$ (s_4 and s_3 are not included in grammar as s_4 is a death state $\langle s_2 \rangle ::= b \langle s_0 \rangle \mid a$ and transitions from s_3 are only to this dead state s_4 .)
- (d) Theorem: $x = xa \ v \ b \ \land \land \notin A \Rightarrow x = ba^*$ Similarly: $x = ax \ v \ b \ \Rightarrow x = a^*b$

$$L = s_0 = as_1$$

$$s_1 = bs_2 \vee b$$

$$s_2 = bs_0 \vee a$$

Place s_0 in the expression of s_2 : $s_2 = bs_0 \lor a = bas_1 \lor a$

Place s_2 in the expression of s_1 : $s_1 = bs_2 \lor b = b(bas_1 \lor a) \lor b = bbas_1 \lor ba \lor b$

Using the theorem above: $s_1 = (bba)^*(ba \lor b)$

Place s_1 in the expression of s_0 : $s_0 = as_1 = a(bba)^*(ba \vee b) = L$