

TRABAJO PRACTICO N° 6: Vectores

Repaso de conceptos importantes

Definición: Un vector fijo \overrightarrow{AB} es un **segmento orientado** que va del punto A (**origen**) al punto B (extremo). Se caracterizan por poseer: MÓDULO, DIRECCIÓN Y SENTIDO

El módulo(o norma) del vector \overrightarrow{AB} es la longitud del segmento AB, se representa por \overrightarrow{AB} . El módulo de un vector es un número siempre ≥ 0

La dirección del vector es la dirección de la recta que contiene al vector o de cualquier recta paralela a ella.

Módulo de un vector a partir de sus componentes

En R²
$$\vec{u} = (u_1, u_2) \Rightarrow |\vec{u}| = \sqrt{u_1^2 + u_2^2}$$

En R²
$$\vec{u} = (u_1, u_2) \Rightarrow |\vec{u}| = \sqrt{u_1^2 + u_2^2}$$
 En R³ $\vec{u} = (u_1, u_2, u_3) \Rightarrow |\vec{u}| = \sqrt{u_1^2 + u_2^2 + u_3^2}$

Formas de representa r un vector : $\vec{v} = (v_1, v_2, v_3)$ terna de nº reales $\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$ forma cartesiana mediante los versores i, j, y, k.

Operaciones

Suma: se suman sus respectives real por un vector. $K \cdot \vec{u} = (Ku_1, Ku_2, Ku_3)$

Vectores:

Con

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2)$$

Producto de un número

$$K \cdot \vec{u} = (Ku, Ku, Ku, Ku)$$

$$K \in \mathfrak{R}$$

Producto Escalar de vectores: Geométricamente es un nº real que resulta al multiplicar el producto de sus módulos por el coseno del ángulo que forman. $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \alpha$

Si $\vec{u} = u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k}$ $\vec{v} = v_1 \vec{i} + v_3 \vec{k}$ entonces

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Producto Vectorial de los vectores u y v

 $\vec{u} \times \vec{v}$. Da como resultado un vector El módulo: $|u \times v| = |\mathbf{u}| \cdot |\mathbf{v}| \operatorname{sen} \varphi, \varphi \angle (u, v)$ La **dirección** de $u \times v$ es perpendicular a los vectores \boldsymbol{u} y \boldsymbol{v} , o sea, $\boldsymbol{u} \times \boldsymbol{v} \perp \boldsymbol{u}$, $\boldsymbol{u} \times \boldsymbol{v} \perp \boldsymbol{v}$ El **sentido** lo da la regla de la mano derecha Dados por sus componentes:

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Producto mixto de vectores: El número (u x v)· w se llama producto mixto de los vectores u, v, w.

$$(\vec{u} \times \vec{v}) \cdot \vec{w} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Interpretación geométrica: El producto mixto de u, v, w, es igual al volumen V del paralelepípedo construido sobre estos vectores como las aristas.

Ejercitación

Vectores en \Re^2

- Dadas las siguientes magnitudes, determinar cuáles son de carácter escalar y cuáles de carácter vectorial
- a) Peso b) calor c) velocidad d) densidad e) volumen f) energía g) fuerza
- 2. Represente gráficamente los siguientes vectores.

a)
$$\vec{u} = (-4, 4)$$

c)
$$\vec{w} = (3, -1)$$

a)
$$\vec{u} = (-4, 4)$$
 c) $\vec{w} = (3, -1)$ e) $\vec{s} = 5 \vec{i} + 6 \vec{j}$

b)
$$\vec{v} = (4, -4)$$

d)
$$\vec{r} = (1, -3)^{-1}$$

b)
$$\vec{v} = (4, -4)$$
 d) $\vec{r} = (1, -3)$ f) $\vec{t} = -7\vec{i} + 9\vec{j}$

- i) Calcular el módulo de los vectores
- ii) Encuentre el vector unitario en la dirección de los vectores dados .

iii) Calcular: a)
$$-3\vec{u}$$

b)
$$2\vec{v} - \vec{r} + 4\vec{w}$$
, c) $|3\vec{s} - 4\vec{t}|$

c)
$$|3\vec{s} - 4\vec{t}|$$

- iv) Calcular el producto escalar de los vectores \vec{u} y \vec{v} .
- 3. Sabiendo que el ángulo que forman los vectores \vec{u} y \vec{v} es 60 ° y que el módulo del vector \vec{u} es igual a 2. Determinar el módulo de \vec{v} , para que:

a)
$$\vec{u} - \vec{v} \perp \vec{u}$$

b)
$$\vec{u} + \vec{v} \perp \vec{v}$$

- c) el ángulo que forman \vec{u} y $\vec{u} + \vec{v}$ sea 30°
- 4. Un bloque se arrastra hacia arriba por un plano inclinado 20° sobre la horizontal con una fuerza **F** que forma un ángulo de 30° con el plano. Determinar:
- a) El valor de $\bf F$ para que su componente, F_x , paralela al plano sea de 16 N.
- b) El valor de la componente $\mathbf{F}_{\mathbf{y}}$ perpendicular al plano.
- 5. Hallar el vector $\vec{u} \in \Re^2$ que tiene magnitud $\sqrt{5}$ y cuya primera componente sea el doble de la segunda.
- 6. Desde el punto A₀, sobre el eje x y distante 2 unidades del origen, se lleva una perpendicular al eje x, que corta a la primera bisectriz en el punto A₁. Desde A₁, se lleva otra perpendicular a la 1º bisectriz, que corta al eje "y", en el punto A2, y asi

sucesivamente, hasta completar ocho operaciones semejantes. Uniendo el origen O, con cada punto $A_0, A_1, A_2, ..., A_8$, se obtienen 9 vectores.

- a) Encontrar las componentes de cada uno de los vectores: $\vec{V}_1, \vec{V}_2, \vec{V}_3, ..., \vec{V}_9$.
- b) La resultante de los 9 vectores, calcular módulo, componentes y ángulo que forma la resultante con el eje x. ($\vec{R}=\vec{V_1}+\vec{V_2}+\vec{V_3}+...+\vec{V_9}$)

Vectores en \mathfrak{R}^3

- 7. Hallar x e y números reales para que los vectores \vec{u} y \vec{v} sean iguales, dado: \vec{u} =(x-2, x, y²) y \vec{v} =(-x², y, 3y-2)
- 8. Dados los vectores $\vec{u} = -3\vec{i} + 6\vec{j} \vec{k}$ y $\vec{v} = 5\vec{i} 6\vec{j} + 4\vec{k}$. Determinar:
 - a) $2\vec{v} 3\vec{u}$ b) $|2\vec{u} + 4\vec{v}|$
 - b) El producto escalar $\vec{u} \bullet \vec{v}$
 - c) La proyección del vector \vec{u} sobre \vec{v}
 - d) El ángulo entre \vec{u} y \vec{v}
- 9. Encontrar el valor de x para que los vectores \vec{u} =(2x, 3, x) y \vec{v} =(4x+2, -4x,x-1) sean perpendiculares.

- 10. Determinar el valor del parámetro k para que los vectores: $\vec{x}=k\vec{u}-2\vec{v}+3\vec{w}$; $\vec{v}=-\vec{u}+k\vec{v}+\vec{w}$ sean:
 - a) Ortogonales
- b) Paralelos
- 11. Calcula el ángulo que forman \vec{u} y \vec{v} sabiendo que $|\vec{u}| = 3$, $|\vec{v}| = 5$, $|\vec{u} + \vec{v}| = 7$
- 12. De los vectores \vec{u} y v sabemos que cumplen $\vec{u}+\vec{v}=\vec{a}$ y $2\vec{u}-3\vec{v}=\vec{b}$ siendo $\vec{a}=(2,-1,0)$ y $\vec{b}=(1,3,-1)$. Halla el ángulo que forman \vec{u} y \vec{v}
- 13. Dados los vectores \vec{u} y \vec{v} , se sabe que forman entre si un ángulo de 60°. Calcular $|\vec{u}|$ y $|\vec{v}|$ si se sabe que: $(\vec{u}-\vec{v})$ es perpendicular a \vec{u} ; y $|\vec{u}+\vec{v}|=\sqrt{7}$
- 14. Sean los vectores $\vec{w}=-3\vec{i}+\vec{j}-\vec{k}$; $\vec{u}=-\vec{i}+3\vec{j}-2\vec{k}$ y $\vec{v}=2\vec{i}-4\vec{j}-5\vec{k}$, calcular:
 - a) $\vec{w} \times \vec{v}$

- b) $\vec{u} \times (\vec{v} + \vec{w})$
- 15. a) Sean $\vec{u} = 2\vec{i} 3\vec{j}$, $\vec{v} = -3\vec{i} + \vec{k}$ y $\vec{w} = \vec{j} + \vec{k}$, mostrar que: $(\vec{u} \times \vec{v}) \times \vec{w} = (\vec{u} \bullet \vec{w})\vec{v} (\vec{v} \bullet \vec{w})\vec{u}$
 - b) Sean $\vec{v}=2$ $\vec{i}-\vec{j}+2\vec{k}$ y $\vec{w}=3\vec{i}+4\vec{j}-\vec{k}$, encontrar un vector $\vec{u}=u_1\vec{i}+u_2\vec{j}+u_3\vec{k}$, que cumpla con la condición:
 - i) $\vec{v} \times \vec{u} = \vec{w}$; ii) $\vec{u} \times \vec{w} = \vec{v}$
- 16.- Sean A (−3, 4, 0), B (3, 6, 3) y C (−1, 2, 1) los tres vértices de un triángulo. Se pide:
 - a) Calcular el coseno de cada uno de los tres ángulos del triángulo.
 - b) Calcular el área del triángulo.
- 17. Encontrar el vector v paralelo a \vec{u} =(1,0,-1) tal que el prisma formado por \vec{u} ; \vec{v} =(1,1,0) y \vec{w} =(2,0,3) tenga un volumen de 10 u³
- 18. Los vectores \vec{A} , \vec{B} , \vec{C} están ubicados como indica la figura y tienen módulo igual a 1.
 - a) Mostrar que: $(\vec{A} \times \vec{B}) \bullet \vec{C} = \frac{\sqrt{2}}{2}$

b) Verificar que los vectores tienen módulo 1

19. Se dan los vértices de una pirámide de base triangular mediante los cuatros vectores:

$$\vec{A} = (0,0,0)$$
; $\vec{B} = (5,0,0)$; $\vec{C} = (8,6,0)$; $\vec{D} = (2,5,7)$

Determinar:

- a) Los ángulos que las aristas que llegan al vértice D, tomados de dos en dos, forman entre sí.
- b) Área lateral total de la pirámide.
- c) Volumen del cuerpo.

20. Dados los puntos A (1, 0, 1); B (1, 1, 1) y C(1, 6, a), se pide:

Hallar si existen valores de a para los cuales A, B y C son tres vértices de un paralelogramo de área 3 y, en caso afirmativo, calcularlos.

21. Dados los vectores \vec{u} = (2, 1, 3), \vec{v} = (1, 2, 3), \vec{w} = (-1, -1, 0), hallar el producto mixto $[\vec{u}.(\vec{v}\,x\,\vec{w})]$ ¿Cuánto vale el volumen del paralelepípedo que tiene por aristas los vectores dados?

22. Halla el área del paralelogramo que forman los vectores \vec{a} = (7,-1,2) y

$$\vec{b}$$
= (1, 4,-2)

23. Sea el paralelepípedo determinado por $\vec{A}=(3, 2, 1), \vec{B}=(1, 1, 2)$ y

 $\vec{C} = (1, 3, 3)$. Hallar: a) Su volumen; b) El área determinada por \vec{A} y \vec{B}

- 24. Calcula el valor de m para que \vec{u} = (2, -3, 1), \vec{v} = (1, m, 3) y \vec{w} = (-4, 5, -1) sean coplanares.
- 25. Comprueba que el paralelogramo determinado por los vectores \vec{u} =(3,-2,1), \vec{v} =(4,3,-6) es rectángulo.

EJERCICIOS RESUELTOS: VECTORES

- 1.- Desde el punto A₀ del eje x distante 32 unidades del origen, se lleva una perpendicular a la primera bisectriz a la que corta en el punto A₁. Desde A₁, se lleva otra perpendicular a al eje "y", al que corta en el punto A₂, y así sucesivamente, hasta completar ocho operaciones semejantes. Uniendo el origen O, con cada punto A₀, A₁, A₂,..., A₈, se obtienen 9 vectores. Encontrar:
 - a) Las componentes de cada uno de los vectores: $\vec{V_1}, \vec{V_2}, \vec{V_3}, ..., \vec{V_9}$.
 - b) La resultante de los 9 vectores, calcular módulo, componentes y ángulo que forma la

resultante

con

el

eje

Х.

 $(\vec{R} = \vec{V_1} + \vec{V_2} + \vec{V_3} + ... + \vec{V_9})$

- a) Las componentes de cada uno de los vectores son: $\vec{V_1}$ = (32, 0) , $\vec{V_2}$ = (16, 16) , $\vec{V_3}$ = (0, 16) , $\vec{V_4}$ = (-8, 8), $\vec{V_5}$ = (-8, 0), $\vec{V_6}$ = (-4, -4), $\vec{V_7}$ = (0, -4) , $\vec{V_8}$ = (2, -2) , $\vec{V_9}$ = (2, 0)
- b) $\vec{R} = (32, -30), |\vec{R}| = \sqrt{(32)^2 + (-30)^2} = 43,86$

$$tg.\varphi = \frac{y}{x} = \frac{-30}{32}$$
; $\varphi = arctg \ 0.9375$

2.- Dada la siguiente figura:

Calcular

a) Coordenadas de D para

que ABCD sea un

paralelogramo.

b) Área de este

paralelogramo.

a) Por ser la figura un paralelogramo, los vectores \overrightarrow{AD} y \overrightarrow{BC} son **equipolentes** (igual módulo, dirección y sentido). D(x, y, z)

$$(x-1, y-1, z) = (2+1, 2+1, 1) \Rightarrow x-1 = 3; x = 4 ; y-1 = 3; y = 4; z = 1$$

$$D(4, 4, 1)$$

b)
$$\overrightarrow{BC} = (3,3,1)$$
 $\overrightarrow{BA} = (2,2,1)$

$$A = |\overrightarrow{BC} \times \overrightarrow{BA}|$$

$$\overrightarrow{BC} \times \overrightarrow{BA} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 3 & 1 \\ 2 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} \vec{k} = \vec{i} - \vec{j}$$

$$A = \begin{vmatrix} \overrightarrow{BC} \times \overrightarrow{BA} \end{vmatrix} = \sqrt{1^2 + (-1)^2 + 0^2} = \sqrt{2} u^2$$

- 3.- Dados los puntos A (1, 0, 1), B (1, 1, 1) y C (1, 6, a), se pide:
- a) Encontrar para qué valores del parámetro a están alineados.
- **b)** Hallar si existen valores de *a* para los cuales A, B y C son tres vértices de un paralelogramo de área 3 y, en caso afirmativo, calcularlos.

Resolución

a) Si A, B y C están alineados, los vectores \overrightarrow{AB} y \overrightarrow{AC} , tienen la misma dirección, por lo que son paralelos y tienen sus componentes proporcionales.

$$\overrightarrow{AB} = (1-1, 1-0, 1-1) = (0, 1, 0)$$

$$\overrightarrow{AC} = (1-1, 6-0, a-1) = (0, 6, a-1)$$

$$(0, 6, a-1) = k(0,1,0)$$
 $a-1=0$ $a=1$

b) Hallar si existen valores de "a" para los cuales A, B y C son tres vértices de un paralelogramo de área 3 y, en caso afirmativo, calcularlos.

El módulo del **producto vectorial** de los vectores \overrightarrow{AB} y \overrightarrow{AC} es igual al **área del paralelogramo** construido sobre \overrightarrow{AB} y \overrightarrow{AC} .

$$(\overrightarrow{AB} \times \overrightarrow{AC}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 0 \\ 0 & 6 & a-1 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 6 & a-1 \end{vmatrix} \vec{i} - \begin{vmatrix} 0 & 0 \\ 0 & a-1 \end{vmatrix} \vec{j} + \begin{vmatrix} 0 & 1 \\ 0 & 6 \end{vmatrix} \vec{k} = (a-1)\vec{i}$$

$$A = \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = 3$$

$$3 = \sqrt{(a-1)^2 + 0^2 + 0^2}$$

$$9 = (a-1)^2$$

$$a-1=3$$
 $a=4$ $C(1,6,4)$

$$a-1=-3$$
 $a=-2$ $C(1,6,-2)$

- 4.- Sean A(-3, 4, 0), B(3, 6, 3) y C(-1, 2, 1) los tres vértices de un triángulo. Se pide:
- a) Calcular el coseno de cada uno de los tres ángulos del triángulo.
- b) Calcular el área del triángulo.

Resolucion

a) Calcular el coseno de cada uno de los tres ángulos del triángulo.

$$\overrightarrow{AB} = (3 + 3, 6 - 4, 3 - 0) = (6, 2, 3)$$

$$\overrightarrow{BA} = (-6, -2, -3)$$

$$\overrightarrow{AC} = (-1 + 3, 2 - 4, 1 - 0) = (2, -2, 1)$$
 $\overrightarrow{CA} = (-2, 2, -1)$

$$\overrightarrow{BC} = (-1 - 3, 2 - 6, 1 - 3) = (-4, -4, -2)$$
 $\overrightarrow{CB} = (4, 4, 2)$

$$\cos\left(\overline{AB}, \overline{AC}\right) = \frac{12 - 4 + 3}{\sqrt{36 + 4 + 9}\sqrt{4 + 4 + 1}} = \frac{11}{21}$$

$$\cos\left(\overline{\overrightarrow{BA}}, \overline{\overrightarrow{BC}}\right) = \frac{24 + 8 + 6}{\sqrt{36 + 4 + 9}\sqrt{16 + 16 + 4}} = \frac{38}{21}$$

$$\cos\left(\overline{\overrightarrow{CA}}, \overline{\overrightarrow{CB}}\right) = \frac{-8+8-2}{\sqrt{4+4+1}\sqrt{16+16+4}} = \frac{-1}{9}$$

b) Calcular el área del triángulo.

$$A = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 6 & 2 & 3 \\ 2 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ -2 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 6 & 3 \\ 2 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 6 & 2 \\ 2 & -2 \end{vmatrix} \vec{k} = -4\vec{i} - 16\vec{k}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \sqrt{16 + 256} = 4\sqrt{17}$$

5.- Dados los vectores $\vec{u} = 3\vec{i} - \vec{j} + \vec{k}$ y $\vec{v} = 2\vec{i} - 3\vec{j} + \vec{k}$, hallar el producto $\vec{u} \times \vec{v}$ y comprobar que este vector es ortogonal a \vec{u} y a \vec{v} . Hallar el vector $\vec{v} \times \vec{u}$ y compararlo con $\vec{u} \times \vec{v}$.

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & -1 & 1 \\ 2 & -3 & 1 \end{vmatrix} = \begin{vmatrix} -1 & 1 \\ -3 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 3 & -1 \\ 2 & -3 \end{vmatrix} \vec{k} = 2\vec{i} - \vec{j} - 7\vec{k}$$

$$(\vec{u} \times \vec{v}) \perp \vec{u} \qquad (\vec{u} \times \vec{v}) \cdot \vec{u} = 0$$

$$(2,-1,-7)\cdot(3,-1,1)=6+1-7=0$$

$$(\vec{u} \times \vec{v}) \perp \vec{v}$$
 $(\vec{u} \times \vec{v}) \cdot \vec{v} = 0$

$$(2,-1,-7)\cdot(2,-3,1)=4+3-7=0$$

$$\vec{\mathbf{v}} \times \vec{\mathbf{u}} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -3 & 1 \\ 3 & -1 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 1 \\ -1 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 2 & -3 \\ 3 & -1 \end{vmatrix} \vec{k} = -2\vec{i} + \vec{j} + 7\vec{k}$$

6.- Hallar un vector perpendicular a $\vec{u} = (2, 3, 4)$ y $\vec{v} = (-1, 3, -5)$, y que sea unitario.

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 3 & 4 \\ -1 & 3 & -5 \end{vmatrix} = \begin{vmatrix} 3 & 4 \\ 3 & -5 \end{vmatrix} \vec{i} - \begin{vmatrix} 2 & 4 \\ -1 & -5 \end{vmatrix} \vec{j} + \begin{vmatrix} 2 & 3 \\ -1 & 3 \end{vmatrix} \vec{k} = -27\vec{i} + 6\vec{j} + 9\vec{k}$$

$$|\vec{u} \times \vec{v}| = \sqrt{(-27)^2 + 6^2 + 9^2} = \sqrt{846}$$

$$\vec{w} = \left(\frac{-27}{\sqrt{846}}, \frac{6}{\sqrt{846}}, \frac{9}{\sqrt{846}}\right)$$

7.- Hallar dos vectores de módulo la unidad y ortogonales a (2, -2, 3) y (3, -3, 2).

$$\vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -2 & 3 \\ 3 & -3 & 2 \end{vmatrix} = \begin{vmatrix} -2 & 3 \\ -3 & 2 \end{vmatrix} \vec{i} - \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} \vec{j} + \begin{vmatrix} 2 & -2 \\ 3 & -3 \end{vmatrix} \vec{k} = 5\vec{i} + 5\vec{j}$$

$$|\overrightarrow{w}| = \sqrt{5^2 + 5^2 + 0} = 5\sqrt{2}$$

$$\vec{u} = \left(\frac{5}{5\sqrt{2}}, \frac{5}{5\sqrt{2}}, 0\right) = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$$

$$\vec{v} = \left(\frac{-5}{5\sqrt{2}}, \frac{-5}{5\sqrt{2}}, 0\right) = \left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0\right)$$