Low-energy effective description of pseudo-scalar mesons in SO(N)-like dark QCD

Presented by: Joachim Pomper

Co-author: Dr. Suchita Kulkarni

27.09.2023

ACHT 2023 – Schloss Retzhof

SIMPs - **Strongly** Interacting **Massive** Particles

[Hochberg et al: ArXiv: 1402.5143]

- Self-interactions resolve small scale structure formation problems.
- 3→2 cannibalization sets correct DM relic abundance.
- Dark photon Z' mediator maintains thermal equilibrium.

SIMPs from $SO(N_C)$ -like dark QCD

Strong dark sector:

- Non-abelian gauge group G_D
- N_F Dirac fermions in **real** representation $\mathcal R$.

Prototypical model:

$$(G_D = SO(N_C), \mathcal{R} = N_C, N_F = 2)$$

Original motivation:

$$Sp(4)$$
 + Antisymmetric fermions \cong $SO(5)$ + Vector fermions

 (N_C,N_F) below the conformal window.

SIMPs from $SO(N_C)$ -like dark QCD

Strong dark sector:

- Non-abelian gauge group G_D
- N_F Dirac fermions in **real** representation $\mathcal R$.

Prototypical model:

$$(G_D = SO(N_C), \mathcal{R} = N_C, N_F = 2)$$

Mediator sector: Dark photon Z'

- Gauge boson of abelian gauge-group $U(1)_D$.
- Abelian Higgs mechanism gives mass $m_{Z'}$ for Z'.
- Kinetic mixing with SM Hypercharge via $\frac{\epsilon}{2\cos(\theta_W)}Z'_{\mu\nu}B^{\mu\nu}$

Original motivation:

$$Sp(4)$$
 + Antisymmetric fermions \cong $SO(5)$ + Vector fermions

 (N_C,N_F) below the conformal window.

Symmetries and lightest stable particles

Breaking pattern

Symmetries and lightest stable particles

Breaking pattern

Pseudo-scalar particles

Symmetries and lightest stable particles

Breaking pattern

Pseudo-scalar particles

Light flavor singlets are not desirable since they may **decay in the presence of a mediator** to the SM!

Can η_D' be close in mass to the π_D ?

A large N_C argument analog to real world QCD:

$$\partial_{\mu} j^{\mu}_{\eta'_{D}} \propto \frac{T_{\mathcal{R}}}{C_{\mathcal{R}}} \tilde{F}^{\mu\nu} F_{\mu\nu} \xrightarrow{N_{C} \to \infty} 0$$

Can η_D' be close in mass to the π_D ?

A large N_C argument analog to real world QCD:

$$\partial_{\mu} j^{\mu}_{\eta'_D} \propto \frac{T_{\mathcal{R}}}{C_{\mathcal{R}}} \tilde{F}^{\mu\nu} F_{\mu\nu} \xrightarrow[N_C \to \infty]{} 0$$

Gives a sufficient criterion:

- Only satisfied for fermions in the fundamental or vector representation.
 - $\Rightarrow \eta_D'$ becomes light in large N_C limit.
- Not satisfied for example for higher tensor or adjoint representations.
 - $\Rightarrow \eta_D'$ expected to remain heavy.

Low energy effective Lagrangian

Chiral coset representative:

$$\Sigma = \exp\left(i\xi^a T_a\right)$$

$$\xi^{a} = \begin{cases} \eta'_{D}/f_{\eta'_{D}} & \text{if } a = 0\\ \pi_{D}/f_{\pi_{D}} & \text{else} \end{cases}$$

Low energy effective Lagrangian

$$\mathcal{L}_{IR} = \frac{f_{\pi}^{2}}{4} \operatorname{tr} \left\{ \partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma \right\} + \frac{f_{\pi}^{2} - f_{\eta_{D}^{\prime}}^{2}}{4} \operatorname{tr} \left\{ \Sigma \partial_{\mu} \Sigma^{\dagger} \right\} \operatorname{tr} \left\{ \Sigma^{\dagger} \partial^{\mu} \Sigma \right\}$$
$$+ \frac{m_{\pi}^{2} f_{\pi}^{2}}{4} \operatorname{tr} \left\{ \omega \Sigma^{\dagger} + \omega^{\dagger} \Sigma \right\} + \frac{\Delta m_{\eta_{D}^{\prime}}^{2} f_{\eta_{D}^{\prime}}^{2}}{4} \left(\ln \left(\det \left(\Sigma \right) \right) \right)^{2}$$

GMOR relation: $m_{\pi}^2 = \frac{m_q \langle \overline{q}q \rangle}{2 f_{-}^2}$

Decay constants: $f_{\eta_D'} \xrightarrow[N_C \to \infty]{} f_{\pi}$

$$\eta_D'$$
 - mass:
$$m_{\eta_D'}^2 = m_\pi^2 + \frac{f_{\eta_D'}^2}{f_\pi^2} \Delta m_{\eta_D'}^2$$

$$\Delta m_{\eta_D'}^2 \xrightarrow[N_C \to \infty]{} 0$$

Low energy effective Lagrangian

$$\mathcal{L}_{IR} = \frac{f_{\pi}^{2}}{4} \operatorname{tr} \left\{ \partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma \right\} + \frac{f_{\pi}^{2} - f_{\eta_{D}^{\prime}}^{2}}{4} \operatorname{tr} \left\{ \Sigma \partial_{\mu} \Sigma^{\dagger} \right\} \operatorname{tr} \left\{ \Sigma^{\dagger} \partial^{\mu} \Sigma \right\}$$

$$+ \frac{m_{\pi}^{2} f_{\pi}^{2}}{4} \operatorname{tr} \left\{ \omega \Sigma^{\dagger} + \omega^{\dagger} \Sigma \right\} + \frac{\Delta m_{\eta_{D}^{\prime}}^{2} f_{\eta_{D}^{\prime}}^{2}}{4} \left(\ln \left(\det \left(\Sigma \right) \right) \right)^{2}$$

Contact terms:

$$\eta'_{D} \qquad \pi_{D} \\
\pi_{D} \qquad \pi_{D} \\
\eta'_{D} \qquad \pi_{D} \\
\eta'_{D} \qquad \pi_{D}$$

GMOR relation: $m_{\pi}^2 = \frac{m_q \langle \overline{q}q \rangle}{2f^2}$

Decay constants: $f_{\eta_D'} \xrightarrow[N_C o \infty]{} f_{\pi}$

$$\eta_D'$$
 - mass:
$$m_{\eta_D'}^2 = m_\pi^2 + \frac{f_{\eta_D'}^2}{f_\pi^2} \Delta m_{\eta_D'}^2 \ \Delta m_{\eta_D'}^2 \xrightarrow[N_C o \infty]{} 0$$

[Wess, Zumino: 1971, Physics Letters B]

[Witten: 1983, Nuclear Physics B] [Chu, Ho, Zumino: 1996, Nuclear Physics B]

Wess-Zumino-Witten term:

$$S_{\text{WZW}} = \frac{\Gamma_{\text{WZW}}}{48\pi^2 f_{\pi}} \int_{S^4} d^4 x \int_0^1 d\tau \operatorname{tr} \left\{ \xi \left(\Sigma [\tau \xi]^{-1} d\Sigma [\tau \xi] \right)^4 \right\}$$
$$\approx \frac{\Gamma_{\text{WZW}}}{15\pi^2 f_{\pi}^5} \int_{S^4} \operatorname{tr} \left\{ \pi_D d\pi_D \wedge d\pi_D \wedge d\pi_D \wedge d\pi_D \right\}$$

Non-standard form due to coset geometry:

$$\pi_4(SU(4)/SO(4)) \neq 0$$

Anomaly-matching:

$$\Gamma_{WZW} = \dim \mathcal{R}$$

Five point vertex between π_D :

No participation of η_D' in 3 \rightarrow 2 DM freeze-out.

$U(1)_D$ charge assignments

Charge assignment: $\mathcal Q$

Consistency:

No gauge anomalies

Pion stability:

- Maintain non-abelian global symmetry
- No anomalous π_D decays occur

Charge assignment Q is physically unique!

Double covering map $SO(4) \cong SU(2)_I \times SU(2)_C \longrightarrow SU(2)_I \times U(1)_C$ $SU(2)_I \times U(1)_C$ explicit breaking by coupling to dark photon Z' of SU(2) factor

Charge assignment: $\mathcal Q$

Consistency:

No gauge anomalies

Pion stability:

- Maintain non-abelian global symmetry
- No anomalous π_D decays occur

Charge assignment Q is physically unique!

$U(1)_D$ charge assignments

Double covering map

Charge assignment: $\mathcal Q$

Consistency:

No gauge anomalies

Pion stability:

- Maintain non-abelian global symmetry
- No anomalous π_D decays occur

Charge assignment Q is physically unique!

Remaining flavor symmetry

Anomalous η'_D decay

Gauged WZW term introduces anomalous vertices:

$$\pi_D, \eta'_D \dots \subset Z'$$

$$\propto \begin{cases} \operatorname{tr} \left\{ \pi_D \mathcal{Q}^2 \right\} = 0 \\ \operatorname{tr} \left\{ \eta'_D \mathcal{Q}^2 \right\} \neq 0 \end{cases}$$

Allows for decay of η_D' to SM :

$$Z' \stackrel{f}{\underbrace{f}}$$
 $Z' \stackrel{f}{\underbrace{f}}$

Freeze-out timeline

Match pion abundance with DM relic density today: $f_{\pi_D} = f_{\pi_D}(m_{\pi_D})$

Match pion abundance with DM relic density today: $f_{\pi_D} = f_{\pi_D}(m_{\pi_D})$

Estimates of η_D' lifetime

On the timescale of freeze-out η_D' is long lived.

Effects of light η_D' on the relic density estimate

Relic abundance is slightly over estimated:

- η_D' is relatively long lived.
- Down-scattering $2\eta_D' o 2\pi_D^0$.

Lower values of f_{π_D} possible.

Over estimation effects vanish quickly with increasing $\Delta m^2_{\eta'_D}$.

• Dark OCD with real representations is a viable dark n

- Dark QCD with real representations is a viable dark matter model for "large" values of N_{C} .
- Considering down-scattering in the cosmic evolution has effects on the model.
- For large N_C the η_D' might become light.
 - η_D' is stable and leads to over estimation of DM relic density.
 - The inclusion of η_D' improves the model.
 - Minor quantitive / no qualitative changes of the original SIMP model.

Ready for your questions

The axial anomaly and discrete symmetries

General form of Axial Anomaly

$$\mathcal{A}_{\text{Axial}}[\epsilon, A] = -2i T_{\mathcal{R}} \operatorname{tr}\{\epsilon\} \mathcal{Q}_{\text{Topo}}[A]$$

Quantum chiral transformmations

$$U(4) \ni U = \exp(-\epsilon) \longrightarrow D\psi D\psi \stackrel{U}{\mapsto} e^{-i\mathcal{A}[\epsilon,A]} D\psi D\psi$$

$$Z_{2T_{\mathcal{R}}} \ltimes SU(4) \longrightarrow \det(U) = \exp\left(-i\frac{\pi k}{T_{\mathcal{R}}}\right) \Leftrightarrow \exp(-i\mathcal{A}[\epsilon,A]) = 1$$

$$k \in \{0,...,2T_{\mathcal{R}}-1\}$$

Dynkin Index $T_{\mathcal{R}}$

SU(N) - Fund.	SO(N) - Vec.	Sp(2N) - Fund	Sp(2N) - AT2T
$T_R = 1/2$	$T_R = 1$	$T_R = 1/2$	$T_R = N-1$

't Hooft large N considerations of η_D'

Idea: Compare for example SO(N)-vector theories for N very large.

Technicality: Define 't Hooft coupling λ

$$\lambda := C_{adi}(N) g^2 \qquad \lambda(\mu_{UV}) = \text{fixed}$$

- \rightarrow Running of λ is independent of N up to 1/N corrections.
- \rightarrow A controlable perturbative scale 1/N is introduced into the theory.

Axial anomaly in the chiral limit:

$$\partial_{\mu}J^{\mu}_{\eta'_{D}} = - \left(\frac{T(R)}{C_{
m adj}} \right) \frac{\lambda N_{F}}{32\pi^{2}} \epsilon^{\mu
u
ho\sigma} G^{\alpha}_{\mu
u}G_{
ho\sigma} \beta$$

Gives potential large N suppression

$$\frac{T(R)}{C_{\text{adj}}} \xrightarrow[N \to \infty]{!} 0$$
 must hold for the anomaly to vanish in large N limit

Example:

SU(N)-Fund.

$$\lambda := N g^2$$

$$g^2 \xrightarrow[N \to \infty]{} 0$$

$$\frac{T(R)}{C_{\text{adj}}} = \frac{1}{2N}$$

4th Homotopy group of SU(4)/SO(4)

Fibration:

$$SO(4) \rightarrow SU(4) \rightarrow SU(4)/SO(4)$$

Long exact sequence:

$$\pi_4(SU(4)) \xrightarrow{h_1} \pi_4(SU(4)/SO(4)) \xrightarrow{h_2} \pi_3(SO(4)) \xrightarrow{h_3} \pi_3(SU(4))$$
 $0 \xrightarrow{h_1} ? \qquad \xrightarrow{h_2} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{h_3} \mathbb{Z}$

- $Ker(h_2) = Img(h_1) = 0 \rightarrow h_2$ is injective
- $\pi_4(SU(4)/SO(4)) \cong Img(h_2) = Ker(h_3)$
- $Ker(h_3) \neq 0$

 $\pi_4(SU(4)/SO(4))$ cannot be trivial