תרגילים שונים: תורת המשחקים

שאלה 1 מצאו את שווי המשקל נאש במשחק הבא:

שאלה 2 מצאו את שווי המשקל נאש במשחק הבא:

שאלה 3 מצאו את שווי המשקל נאש במשחק הבא:

שאלה 4 מצאו את שווי המשקל נאש במשחק הבא:

שאלה 1 שני יצרנים 1 ו- 2 מייצרים אותו מוצר ומתרחים על שוק הקונים הפוטנציאלים. היצרנים מחליטים

על הכמות שהם ייצרו, וההיצע הכולל קובע את מחיר המוצר, שהוא זהה לשני היצרנים. נסמן ב- q_1 וב- q_2 את מחיר הכמויות שמיצרים היצרנים 1 ו- 2 בהתאמה. אזי הכמות הכוללת של המוצרים בשוק הוא q_1+q_2 . נניח כי המחיר של יחידה שווה ל- $P=a-q_1-q_2$ כאשר q_1-q_2 פרמטר הביקוש. עלות הייצור של יחידה ליצרן השני אך אינה ידיעה משותפת בין שני היצרנים ושווה ל- q_1-q_2 . עלות הייצור של יחידה ליצרן השני ידוע ליצרן השני אך אינה שהעלות שווה ל- q_1-q_2 (עלות יצור נמוך) בהסתברות q_1-q_2 או q_1-q_2 (עלות יצור גבוהה) בהסתברות q_1-q_2 (עלות יצור גבוהה) בהסתברות q_1-q_2 (עלות יצור גבוהה) בהסתברות q_1-q_2 (עלות יצור גבוהה)

האם קיים שיווי משקל בייסיאני במשחק זה? אם כן, מה הוא?

שאלה 6 לכל אחד של המשחקים שני שחקנים סכום אפב הבאים. מצאו את הערך של המשחק והאסטרטגיות האופטימליות.

(N

I	L	R
T	-1	-4
В	-3	3

(1

I	L	R
T	5	8
B	5	1

()

I	L	R
T	5	4
В	2	3

(7

I	L	R
T	4	2
В	2	9

(1)

I	L	R
T	5	4
B	5	6

(1

I	L	R
T	7	7
B	3	10

שאלה 7 נתון המשחק הבא בצורה אסטרטגית.

I	L	R
T	1,0	-1, 1
В	0, 1	0,0

 $.\big[\frac{1}{2}(L),\frac{1}{2}(R)\big]$, $\big[\frac{1}{2}(T),\frac{1}{2}(B)\big]$ הוכיחו של היחיד היחיד משקל היחיד של המשחק הוא

שאלה 8 מצאו את כל ווקטורי האסטרטגיות הרציונליים במשחקים הבאים:

(N

I	L	R
T	9, 5	5,3
В	8,6	8,4

תורת המשחקים

(1

II I	a	b	c	d
T	6, 2	5, 3	7,6	2,8
В	8, 5	6,9	4,6	4,7

()

I	a	b	c	d
T	-1, -20	-7, -7	-1, 2	-5, 8
M	27, 20	13, -2	21, 2	13, -1
В	-5,20	-3, 5	7, -1	3, -4

(†

I	a	b	c	d
α	3, 7	0,13	4, 5	5,3
β	5, 3	4,8	4, 3	3, 7
γ	4,5	3, 7	4,5	5,3
δ	4, -1	2, 5	1, 2	3, 2

9 שאלה

מצאו את שיווי משקל במשחק הבאים:

(N

(2

()

שאלה 10 בכל אחד של המשחקים סכום אפס הבאים מצאו את הערך של המשחק והאסטרטגיות אופטימליות.

(N

II I	L	R
T	5	8
В	5	1

(2

II I	L	R
T	2	6
M	5	5
В	7	4

()

I	L	M	R
T	6	4	3
В	3	7	9

שאלה II שחקן העמודות) מצאו את לכל אחד של המשחקים הבאים (שחקן I הוא שחקן השורות ושחקן ושחקן לכל אחד של המשחקים הבאים הבאים השיווי משקל באסטרטגיות מעורבות.

(N

I	L	R
T	1, 1	4,0
В	2, 10	3,5

(2

I	L	R
T	1, 2	2, 2
В	0,3	1, 1

()

I	L	M	R
T	1, 1	0,2	2,0
В	0,0	1,0	-1, 3

שאלה 12 נתון משחק שני שחקנים. הוכיחו: אם כל שחקן משחק אסטרטגיה שיווי משקל, התשלום לכל שחקון גדול או שווה לערך המקסמין שלו(ה).

פתרונות

- שאלה 1
- שאלה 2
- שאלה 3
- שאלה 4
- $.q_2:2$ כמות של יצרן $.q_1:1$ כמות של יצרן במות של יצרן יצרן שאלה 5

 $P = a - q_1 - q_2$ מחיר ליחדה אחת של המוצר:

. עלות ליחידה לשחקן $c_1=1:1$ והוא ידיעה משותפת

.1לשחקו 2ולא לשחקו ידוע והוא ידוע $c_2=c_2^L$ או $c_2=c_2^H$ ים לשחקו ליחידה עלות עלות ליחידה ידוע יכ $c_2=c_2^H$

 $c_1 - heta$ בהסתברות ברות וו $c_2 = c_2^H$ וו θ בהסתברות ברות ברות עבור שחקן

צורה בייסיאנית של המשחק:

- $.N = \{1, 2\} \bullet$
- $T_2 = \{c_2^H, c_2^L\}, T_1 = \{1\} \bullet$
- $p_I(t_2 = c_2^L | t_1 = 1) = p_I(t_2 = c_2^L) = \theta \bullet$
- $p_I(t_2 = c_2^H | t_1 = 1) = p_I(t_2 = c_2^H) = 1 \theta \bullet$
 - $A_2 = \{q_2^H, q_2^L\}$, $A_1 = \{q_1\}$ ullet
 - :1 פורנצית תשלום לשחקן

$$u_1(s_1(t_1), s_2(t_2), t_1 = 1)$$

:2 פורנצית תשלום לשחקן

$$u_2(s_1(t_1), s_2(t_2), t_2)$$

 $s_1(t=1) = q_1$, $s_2(t_2 = c_2^L) = q_2^L$, $s_2(t_2 = c_2^H) = q_2^H$.

$$s_2(t_2=c_2^H)=q_2^H$$
 - והסתברות $s_2(t_2=c_2^L)=q_2^L$ בהסתברות $s_2(t_2=c_2^L)=q_2^L$ בהסתברות $s_1(s_1(t_1),s_2(t_2),t_1=1)=u_1\left(q_1,q_2^H,q_2^L\right))=q_1\left(a-q_1-\theta q_2^L-(1-\theta)q_2^H-c_1\right)$ לשחקן 2, אם $c_2=c_2^L$ אם $c_2=c_2^L$

$$u_2\left(s_1(t_1),s_2(t_2=c_2^L),t_2=c_2^L\right)=u_2\left(q_1,q_2^L\right)=q_2^L\left(a-q_1-q_2^L-c_2^L\right)$$
 .
$$:c_2=c_2^H$$
 אם

$$\begin{aligned} u_2\left(s_1(t_1), s_2(t_2=c_2^H), t_2=c_2^H\right) &= u_2\left(q_1, q_2^H\right) = q_2^H\left(a - q_1 - q_2^H - c_2^H\right) \\ &. q_2^{H*} = \operatorname{argmax}_{q_2^H \in [0,\infty)} u_2\left(q_1^*, q_2^H\right) \end{aligned}.$$

$$(u_2)'_{q_2^H} = a - c_2^H - q_1^* - 2q_2^H \stackrel{!}{=} 0 \quad \Rightarrow \quad q_2^{H^*} = \frac{a - c_2^H - q_1^*}{2} .$$

$$(u_2)'_{q_2^L} = a - c_2^L - q_1^* - 2q_2^L \stackrel{!}{=} 0 \quad \Rightarrow \quad q_2^{L^*} = \frac{a - c_2^L - q_1^*}{2} .$$

$$(u_1)'_{q_1} = a - 2q_1 - \theta q_2^{L^*} - (1 - \theta)\theta q_2^{H^*} - c_1 \stackrel{!}{=} 0 \quad \Rightarrow \quad q_1^* = \frac{a - \theta q_2^{L^*} - (1 - \theta)q_2^{H^*} - c_1}{2} .$$

נציב $c_1=1$ -ו $c_2^H=rac{5}{4}$, $c_2^L=rac{3}{4}$,a=2 נציב

$$q_1^* = \frac{1}{3} , \qquad q_2^{H^*} = \frac{5}{24}, \qquad q_2^{L^*} = \frac{11}{24} .$$

התשלומים הם:

$$u_1 \left(q_1^* = \frac{1}{3}, q_2^{H^*} = \frac{5}{24}, q_2^{L^*} = \frac{11}{24} \right) = \frac{1}{9} ,$$

$$u_2^H \left(q_1^* = \frac{1}{3}, q_2^{H^*} = \frac{5}{24}, q_2^{L^*} = \frac{11}{24} \right) = \left(\frac{5}{24} \right)^2 ,$$

$$u_2^L \left(q_1^* = \frac{1}{3}, q_2^{H^*} = \frac{5}{24}, q_2^{L^*} = \frac{11}{24} \right) = \left(\frac{11}{24} \right)^2 .$$

שאלה 6

 $m .v = -rac{5}{3}$ ערך של המשחק באסטרטגיות מעורבות:

 $\left[\frac{2}{3}(T), \frac{1}{3}(B)\right] : 1$ אסטרטגיות אופטימלית של אופטימלית

 $\left[\frac{7}{9}(L), \frac{2}{9}(R)\right]$:2 אסטרטגיות אופטימלית של אופטימלית

 ${f v}=5$:ערך של המשחק באסטרטגיות מעורבות

$$[x^*(T),(1-x^*)(B)|x^*\in\left[rac{4}{7},1
ight]]$$
 :1 אסטרטגיות אופטימלית של אחקן

L:2 אסטרטגיות אופטימלית של אחקן

$$\mathbf{v}=4$$
 :ערך של המשחק באסטרטגיות מעורבות

T:1 אסטרטגיות אופטימלית של אסטרטגיות

R:2 אסטרטגיות אופטימלית של

 $m .v = rac{32}{9}$ ערך של המשחק באסטרטגיות מעורבות:

 $.\left[\frac{7}{9}(T),\frac{2}{9}(B))\right]$:1 אסטרטגיות אופטימלית של אופטימלית אופטימלית א

 $\left.\left[rac{7}{9}(L),rac{2}{9}(R)
ight)
ight]$:2 אסטרטגיות אופטימלית של אחקן

 $\mathbf{v}=5$:ערך של המשחק באסטרטגיות מעורבות

 $.\big[x^*(T),(1-x^*)(B)|x^*\in[0,\frac{1}{2}]\big]$:1 אסטרטגיות אופטימלית של אופטימלית אומטימלית אופטימלית אופטימלימית אופטימלימית אופטימלית אופטימלימימלית אופטימלימימלית אופטימימלימימלית אופטימלית אופטימל

L:2 אסטרטגיות אופטימלית של אחקן

 $\mathbf{v}=7$ באסטרטגיות מעורבות:

T:1 אסטרטגיות אופטימלית של אחקן

 $. \left[y^*(L), (1-y^*)(R) | y^* \in \left[\frac{3}{7}, 1 \right] \right]$ אסטרטגיות אופטימלית של שחקן יום אסטרטגיות אופטימלית אופטימלית א

שאלה 7 פונקצית הועלת של שחקן 1:

$$U_1(x,y) = xy - x(1-y) = 2xy - x$$
.

$$U_2(x,y) = x(1-y) + (1-x)y = -2xy + x + y$$
.

()

(7

(1)

(1

 $s_1^*(y) = \{x \in [0,1] | U_1(x,y) \ge U_1(z,y) \forall z \in [0,1] \}$.

 $.U_1(x,y) = x(2y-1)$

:x לכל y קבוע כפונקציה ליניארית של

x=1 -ב מקסימום ב- לפונקציה ש מקסימום ב- $y>rac{1}{2}$

.x=0ב- ב- מקסימום יש לפונקציה שלילי שלילי שלילי $\Leftarrow y<\frac{1}{2}$ אם אם

 $x \in [0,1]$ אם מקסימום שווה אפס לפונקציה אפס שווה אפס אבי
 $\neq y = \frac{1}{2}$ אם לכן לכן

$$s_1^*(y) = \begin{cases} 1 & y > \frac{1}{2} \\ 0 & y < \frac{1}{2} \\ [0,1] & y = \frac{1}{2} \end{cases}.$$

 $s_2^*(x) = \{ y \in [0,1] | U_2(x,y) \ge U_2(x,z) \forall z \in [0,1] \}$.

 $.U_2(x,y) = -2xy + x + y = y(-2x+1) + x$

y של ליניארית כפונקציה ליניארית לכל לכל לכל

y=1 ב- השיפוע היובי לפונקציה ש $=x<\frac{1}{2}$ אם השיפוע חיובי

.y=0ב- מקסימום שלילי לפונקציה שלילי שלילי השיפוע $\Leftarrow x>\frac{1}{2}$ אם א

 $.y \in [0,1]$ בכל מקסימום שו
ה לפונקציה אפס שווה אפס שווה אפס אב
 $\leftarrow x = \frac{1}{2}$ אם לכן לכן

$$s_2^*(x) = \begin{cases} 1 & x > \frac{1}{2} \\ 0 & x < \frac{1}{2} \\ [0, 1] & x = \frac{1}{2} \end{cases}.$$

תורת המשחקים

ו- $x^*=\frac{1}{2}\in s_1^*(y)$ שיווי משקל אם ורק אם $x^*\in s_2^*(x)$ ו- $x^*\in s_2^*(x)$ ורק אם ורק אם $x^*=\frac{1}{2}\in s_1^*(y)$ שיווי משקל אם ורק אם $x^*=(x^*=\frac{1}{2},y^*=\frac{1}{2})$ לכן $y^*=\frac{1}{2}\in s_2^*(x)$

שאלה 8

(N

TL :פתרון באסטרטגיות שולטות חזק

(1

.Bb :פתרון שולטות שולטרטגיות פתרון

()

I	a	b	c	d		I^{II}	a			
T	-1,20	-7, -7	-1, 2	-5, 8	$ \begin{array}{c} b \prec a \\ c \prec a \\ d \prec a \end{array} $	T	-1,20	$T \prec M$ $B \prec M$	I^{II}	a
M	27, 20	13, -2	21, 2	13, -1	\longrightarrow	M	27, 20	\longrightarrow	M	27, 20
B	-5,20	-3, 5	7, -1	3, -4		B	-5, 20			

Ma :פתרון באסטרטגיות שולטות חזק

(†

I	a	b	c	d		I	b		
α	3,7	0,13	4,5	5,3	$c \prec b$	α	0, 13		II
β	5, 3	4,8	4,3	3,7	$\xrightarrow{\begin{array}{c}c\prec b\\d\prec b\\a\prec b\end{array}}$	β	4,8	$\xrightarrow{\alpha \preceq \gamma}$	$I \qquad b$
γ	4,5	3,7	4,5	5, 3		γ	3,7		$\beta \ \boxed{4,8}$
δ	4, -1	2,5	1,2	3, 2		δ	2,5		

.eta b פתרון באסטרטגיות שולטות באסטרטגיות

שאלה 9

(N

:I קבוצות ידיעה של אחקן

$$x_0: (L, M, R) , \qquad x_4: (K, N) .$$

:I קבוצות אסטרטגיות של אסטרטגיות

$$S_I = (L/K, M/K, R/K, L/N, M/N, R/N) .$$

:II קבוצות ידיעה של

$$x_2x_3:(l,r).$$

:II קבוצות אסטרטגיות של אסטרטגיות

$$S_{II}=(l,r)$$
.

צורה אסטרטגית של המשחק:

I	l	r
L/K	0,0	0,0
M/K	2,1	6, 2
R/K	4,0	3,0
L/N	0,0	0,0
M/N	7,8	6, 2
R/N	4,0	3,0

:II ממצא את התשובה הטובה ביותר של שחקן לכל אסטרטגיה של נמצא נמצא

תורת המשחקים

I	l	r
L/K	0,0	0,0
M/K	2, 1	6 , 2
R/K	4,0	3,0
L/N	0,0	0,0
M/N	7 , 8	6 , 2
R/N	4,0	3,0

: I פחקן של אסטרטגיה לכל לכל לכל ביותר של ביותר ביותר התשובה הטובה נמצא את אחקן

I	l	r
L/K	0, 0	0, 0
M/K	2, 1	6, 2
R/K	4, 0	3, 0
L/N	0, 0	0, 0
M/N	7, 8	6 , 2
R/N	4, 0	3, 0

שיווי משקל נאש:

$$s^* = (M/N, l) , \qquad s^* = (M/K, r) .$$

(1

:I קבוצות ידיעה של קבוצות

$$x_0:(T,B).$$

תורת המשחקים

:I קבוצות אסטרטגיות של אחקן

$$S_I = (T, B)$$
.

:II קבוצות ידיעה של

$$x_1:(a,b), x_3:(d,e), x_4:(h,f).$$

:II קבוצות אסטרטגיות של אסטרטגיות

 $S_{II} = (a/d/h , a/d/f , a/e/h , a/e/f , b/d/h , b/d/f , b/e/h , b/e/f)$.

I	a/d/h	a/d/f	a/e/h	a/e/f
T	5, 9	5, 9	5, 9	5,9
B	$\frac{1}{3}(9,3) + \frac{2}{3}(0,6)$	$\frac{1}{3}(9,3) + \frac{2}{3}(12,6)$	$\frac{1}{3}(6,12) + \frac{2}{3}(0,6)$	$\frac{1}{3}(6,12) + \frac{2}{3}(12,6)$

I	b/d/h	b/d/f	b/e/h	b/e/f
T	7, 7	7, 7	7, 7	7,7
В	$\frac{1}{3}(9,3) + \frac{2}{3}(0,6)$	$\frac{1}{3}(9,3) + \frac{2}{3}(12,6)$	$\frac{1}{3}(6,12) + \frac{2}{3}(0,6)$	$\frac{1}{3}(6,12) + \frac{2}{3}(12,6)$

II	a/d/h	a/d/f	a/e/h	a/e/f	b/d/h	b/d/f	b/e/h	b/e/f
T	5,9	5,9	5,9	5,9	7, 7	7, 7	7,7	7,7
B	3, 5	11, 5	2,8	10,8	3, 5	11,5	2,8	10,8

:II ממצא את התשובה הטובה ביותר של שחקן לכל לכל אסטרטגיה של נמצא נמצא את

I	a/d/h	a/d/f	a/e/h	a/e/f	b/d/h	b/d/f	b/e/h	b/e/f
T	5 , 9	5,9	5 , 9	5,9	7, 7	7,7	7, 7	7,7
В	3, 5	11,5	2,8	10,8	3, 5	11,5	2,8	10,8

:I ממצא את התשובה הטובה ביותר של שחקן וול לכל אסטרטגיה של שחקן

I	a/d/h	a/d/f	a/e/h	a/e/f	b/d/h	b/d/f	b/e/h	b/e/f
T	5,9	5, 9	5,9	5, 9	7 , 7	7, 7	7 , 7	7,7
B	3, 5	11, 5	2,8	10, 8	3, 5	11, 5	2,8	10,8

שיווי משקל נאש:

$$s^* = (T, a/d/h)$$
, $s^* = (T, a/e/h)$, $s^* = (B, a/e/f)$, $s^* = (B, b/e/f)$.

()

:I קבוצות ידיעה של

$$x_1x_2:(T,B).$$

:I קבוצות אסטרטגיות של אחקן

$$S_I = (T, B)$$
.

:II קבוצות ידיעה של שחקן

$$x_3x_4:(a,b), x_5x_6:(c,d).$$

:II קבוצות אסטרטגיות של אסטרטגיות

$$S_{II} = (a/c , a/d , b/c , b/d)$$
.

I	a/c	a/d	b/c	b/d
T	$\frac{1}{2}(8,6) + \frac{1}{2}(8,0)$	$\frac{1}{2}(8,6) + \frac{1}{2}(0,6)$	$\frac{1}{2}(4,10) + \frac{1}{2}(8,0)$	$\frac{1}{2}(4,10) + \frac{1}{2}(0,6)$
В	$\frac{1}{2}(10,4) + \frac{1}{2}(8,4)$	$\frac{1}{2}(10,4) + \frac{1}{2}(4,2)$	$\frac{1}{2}(6,6) + \frac{1}{2}(8,4)$	$\frac{1}{2}(6,6) + \frac{1}{2}(4,2)$

I	a/c	a/d	b/c	b/d
T	(4,3)	(4, 6)	(6,5)	(2,8)
В	(9,6)	(7,3)	(7,5)	(5,4)

תורת המשחקים

:II ממצא את התשובה הטובה ביותר של שחקן לכל לכל הסטרטגיה של נמצא נמצא את

I	a/c	a/d	b/c	b/d
T	(4,3)	(4,6)	(6,5)	(2,8)
В	(9,6)	(9,3)	(9,5)	(5,4)

וותר של אסטרטגיה לכל אסטרטגיה של ביותר של ביותר של אחקן ווחק ממצא את נמצא את התשובה ביותר של ביותר של אחקן ווחק

I	a/c	a/d	b/c	b/d
T	(4,3)	(4,6)	(6,5)	(2, 8)
В	(9,6)	(9,3)	(9,5)	(5,4)

שיווי משקל נאש:

$$s^* = (B, a/c) .$$

<u>שאלה 10</u>

(N

I	L	R	
T	5	8	U(T,y) = -3y + 8
B	5	1	U(B,y) = 4y + 1
	U(x,L) = 5	U(x,R) = 7x + 1	

תורת המשחקים

תורת המשחקים

 $\mathbf{v} = 5.$ $\{x^*(T), (1 - x^*)(B) \mid x^* \in [\frac{4}{7}, 1]\}.$

ערך של המשחק: אסטרטגיה אופטימלית לשחקן I: אסטרטגיה אופטימלית לשחקן II:

(Þ

I	L	R	
T	2	6	U(T,y) = 6 - 4y
M	5	5	U(M,y) = 5
B	7	4	U(B,y) = 3y + 4
	$U(x,L) = 2x_1 + 5x_2 + 7x_3$	$U(x,R) = 6x_1 + 5x_2 + 4x_3$	

 $\{y^*(L), (1-y^*)(B)\,|\,y^*\in [\frac14,\frac13]\}.$:II אם אופטימליות אופטימלית לשלחקו או אז וווי $U(s_1^*,y)\geq 5\, \forall y\in [0,1]$ אז וווי משקל אסטרטגיה אופטימלית לשלחקו אז וווי $U(s_1^*,y)\geq 5\, \forall y\in [0,1]$ אז לכל לכל U(T,y)<5 לכן בהכרח U(T,y)<5 אם ההסתברות של U(T,y)<5 היא אפס.

$$\begin{split} \mathbf{v} &= 5. \\ s_1^* &= M. \\ \{y^*(L), (1-y^*)(R) \, | \, y^* \in \left[\frac{1}{4}, \frac{1}{3}\right] \}. \end{split}$$

ערך של המשחק: אסטרטגיה אופטימלית לשחקן
$$I$$
: אסטרטגיה אופטימלית לשחקן II :

()

I	L	M	R	
T	6	4	3	$3 + (3y_1 + y_2)$
В	3	7	9	$9 - (6y_1 + 2y_2)$
	3 + 3x	7-3x	9 - 6x	

 $[\frac{2}{3}(T), \frac{1}{3}(B)]$.v = 5

:I האסטרטגיה אופטימליות של שחקן ערך של המשחק:

II נשאר למצוא האסטרטגיה האופטימלית של

$$\max \left\{ 3 + (3y_1 + y_2), 9 - (3y_1 + y_2) \right\} \quad \Leftrightarrow \quad 3y_1 + y_2 = 2 \quad \Leftrightarrow \quad y_2 = 2 - 3y_1 \ .$$

 $0 \le y_2 \le 1 \quad \Rightarrow \quad 0 \le 2 - 3y_1 \le 1 \quad \Rightarrow \quad -2 \le -3y_1 \le -1 \quad \Rightarrow \quad 1 \le 3y_1 \le 2 \quad \Rightarrow \quad \frac{1}{3} \le y_1 \le \frac{2}{3} \ .$

תורת המשחקים

 $\left\{y_1(L),y_2(M),(1-y_1-y_2)(R)
ight]\left|rac{1}{3}\leq y_1\leq rac{2}{3},y_2=2-3y_1
ight\}$. :II לכן הקבוצת אסטרטגיות אופטימליות של שחקן

שאלה 11

- אט שיווי משקל באסטרטגיות מעורבות. איו שיווי משקל היחיד של המשחק הוא אורבות באסטרטגיות באסטרטגיות מעורבות. איו שיווי משקל היחיד א
 - ב) שיווי משקל:

$$s_1^* = T$$
, $s_2^* = \{y(L), (1-y)(R) \mid y \in [0,1]\}$.

.0 נשים לב כי M נשלטת חלש על ידי L לכן בשיווי משקל שחקן ווו משחק אסטרטגיה L בהסתברות M

R לבין M אדיש בין I אדיש בין לבין לבין H אדיש בין אדיש בין M לבין אדישות, בשיווי משקל

$$u_1(T, y^*) = u_1(B, y^*) \quad \Rightarrow \quad 2(1 - y^*) = y^* - (1 - y^*) \quad \Rightarrow \quad 2 - 2y^* = y^* - 1 + y^* \quad \Rightarrow \quad 4y^* = 3 \quad \Rightarrow \quad y^* = \frac{3}{4}$$

$$u_2(x^*, M) = u_2(x^*, R) \quad \Rightarrow \quad 2x^* = 3(1 - x^*) \quad \Rightarrow \quad 5x^* = 3 \quad \Rightarrow \quad x^* = \frac{3}{5}.$$

לכן השיווי משקל הוא

שאלה σ_1 יהי 1 ותהי שחקן σ_1 יהי יהי במקסמין של המשחק. יהי שיווי משקל של שיווי משקל של $s=(s_1^*,s_2^*)$ יהי יהי שיווי משקל של שחקן σ_2 ותהי במקסמין של שחקן שלו. מכיוון ש- σ_2 ממקסמין של שחקן ביותר שיווי משקל של שחקן σ_2 אחקן שלו היא תשובה טובה ביותר ל- σ_2 לכן

$$u_1(s_1^*, s_2^*) \ge u_1(\sigma_1, s_2^*)$$

בנוסף בהכרח אסטרטגיה σ_1 -ש בהכרח

$$u_1(s_1^*, s_2^*) \ge u_1(\sigma_1, s_2^*) \ge \underline{\mathbf{v}}_1$$
.

באותה מידה עבור שחקן II נקבל

$$u_2(s_1^*, s_2^*) \ge u_2(s_2^*, \sigma_2) \ge \underline{\mathbf{v}}_2$$
.

בגלל שח