考试科目名称 2020数据科学基础

考试方式: <u>闭卷</u> 考试时长: 120分钟 学号: _____ 姓名: ____

题号	_	=	三	四	五	六	七	总分
分数								

注意: 最终结果出现小数, 除特别要求外, 保留两位小数即可。

] 一、填空题(每题4分,共40分)

- 1. 设X在[2,4]上服从均匀分布,则E(2X+1)= .
- 2. $X \sim N(-3,1), Y \sim N(2,1),$ 且X和Y相互独立, 令 $Z = X 2Y + 7, 则<math>Z \sim$
- 3. 已知某产品某种属性近似服从正态分布 $N(\mu, \sigma^2)$, 随机取得9个样品: 6, 7, 5, 5, 4, 5, 4, 4, 5。则 μ 的置信水平0.95的置信区间为______.
- 4. $f(x) = \frac{1}{a} e^{-\frac{(x-\mu)}{\theta}}, x \ge \mu$, 给定样本 x_1, \dots, x_n , μ 的极大似然估计量_
- 5. 设 X_1, X_2, X_3, X_4 是来自正态总体N(0, 4)的样本,则当 $\alpha =$ 时,

$$Y = \alpha (X_1 + 2X_2)^2 + \alpha (X_3 - 2X_4)^2 \sim \chi^2(2)$$

- 7. 双总体检验中,已知两样本数据:X:10,8,12,16,5,9;Y:12,15,9,16.则秩和检 验的统计量值为____。
- 8. 设 X_1, X_2, X_3 是来自正态总体 $N(\mu, 1)$ 的样本,则当 $\alpha =$ ______时, $\frac{1}{2}X_1 + \frac{1}{2}X_2 + \alpha X_3$ 是总体均值μ无偏估计。
- 9. 已知一组数据"2, 5, 4, 3, 8, 7, 6", 则内距为
- 10. 对于一个给定任务, 所需人数x和天数y如下. 试将数据对 $y = a + \frac{b}{a}$ 进行拟合, 求最小二 乘估计 \hat{a} .

\boldsymbol{x}	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$
y	3	6	8	9

得分 二、计算题(7分)

设 $X \sim \pi(\lambda)$, 且 $P(X \le 1) = 4P(X = 2)$, 求P(X = 3).

得分 三、计算题(8分)

设 $X \sim \mathbb{E}(\theta)$,试通过切比雪夫不等式计算 $P\{|X-\theta| \geq 2\theta\}$ 上界.

得分 四、计算题(本题7分)

设某供电站给1200户供电,每户每天用电量 X_i 相互独立且 $X_i \sim U[0,12]$. 请利用中心极限定理计算该地区一天用电量超过7500的概率.

得分 五、计算题(本题8分)

 $f(x,y) = 1|y| \le x, 0 < x < 1$, 试求 $f_{X|Y}(x|y)$

得分 六、计算题(本题10分)

某地区青年的血压X服从 $\mathbb{N}(110,12^2),$ 试求: (1) $P\{100\leq X\leq 120\}$ (2) 试确定最小的x, 使 $P\{X\geq x\}\leq 0.05.$

得分 七、计算题(本题10分)

设X,Y是两个独立的随机变量, $X\sim \mathbb{U}[0,1],\,f_Y(y)=rac{1}{2}e^{-rac{y}{2}},y>0,\,$ 求 $P\{X^2\geq Y\}$

得分 八、阐述题(本题10分)

试阐述常用降维方法的优缺点和适用场景。

附表

标准正态分布表

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952