2 March 2012 -- Computer Architectures -- part 2/2

Surname, Name, Matricola

.....

Question 1

Considering the MIPS64 architecture presented in the following:

- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- FP multiplier unit: pipelined 8 stages
- FP arithmetic unit: pipelined 4 stages
- FP divider unit: not pipelined unit that requires 10 clock cycles
- branch delay slot: 1 clock cycle, and the branch delay slot is not enable
- forwarding is enabled
- it is possible to complete instruction EXE stage in an out-of-order fashion.
- o and using the following code fragment, show the timing of the presented loop-based program and compute how many cycles does this program take to execute?

	.data				
V1:	.double "100 value				
V4:	.double "100 value				
V5:	.double "100 zeros				
 V7:	.double "100 zeros				
	.text				
main:	daddui r1,r0,0				
	daddui r2,r0,100				
loop:	1.d f1,v1(r1)				
	1.d f2,v2(r1)				
	div.d f5,f1,f2				
	s.d f5,v5(r1)				
	1.d f3,v3(r1)				
	mul.d f6,f2,f3				
	1.d f4,v4(r1)				
	div.d f7,f6,f4				
	add.d f7,f7,f3				
	s.d f6,v6(r1)				
	s.d f7,v7(r1)				
	daddi r2,r2,-1				
	daddui r1,r1,8				
	bnez r2,loop				
	Halt				

comments	Clock cycles		
	,		
r1← pointer	5		
r2 <= 100	1		
f1 <= v1[i]	1		
$f2 \le v2[i]$	1		
$f5 \leftarrow v1[i]/v2[i]$	11		
v5[i] ← f5	1		
f3 <= v3[i]	1		
$f6 \leftarrow v2[i]*v3[i]$	9		
$f4 \le v4[i]$	0		
$f7 \leftarrow v6[i]/v4[i]$	10		
$f7 \leftarrow v6[i]/v4[i]+v3[i]$	4		
v6[i] ← f6	0		
v7[i] ← f7	1		
r2 ← r2 - 1	1		
r1 ← r1 + 8	1		
	1 + 1		
	4406		

Total

2 March 2012 -- Computer Architectures -- part 2/2

Surname, Name, Matricola

.....

Ouestion 2

Considering the same loop-based program, and assuming the following processor architecture for a superscalar MIPS64 processor implemented with multiple-issue and speculation:

- issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 8 stages
 - v. 1 FP divider unit, which is not pipelined: 10 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 4 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).
- o Complete the table reported below showing the processor behavior for the 2 initial iterations.

0

# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	l.d f1,v1(r1)	1	2m	3	4	5
1	I.d f2,v2(r1)	1	3m	4	5	6
1	div.d f5,f1,f2	2	6d		16	17
1	s.d f5,v5(r1)	2	4m			17
1	l.d f3,v3(r1)	3	5m	6	7	18
1	mul.d f6,f2,f3	3	8x		16	18
1	I.d f4,v4(r1)	4	6m	7	8	19
1	div.d f7,f6,f4	4	26d		36	37
1	add.d f7,f7,f3	5	37f		41	42
1	s.d f6,v6(r1)	5	7m			42
1	s.d f7,v7(r1)	6	8m			43
1	daddi r2,r2,-1	6	7i		8	43
1	daddui r1,r1,8	7	8i		9	44
1	bnez r2,loop	8	9j			44
2	l.d f1,v1(r1)	9	10m	11	12	45
2	l.d f2,v2(r1)	9	11m	12	13	45
2	div.d f5,f1,f2	10	16d		26	46
2	s.d f5,v5(r1)	10	12m			46
2	I.d f3,v3(r1)	11	13m	14	15	47
2	mul.d f6,f2,f3	11	16x		24	47
2	l.d f4,v4(r1)	12	14m	15	16	48
2	div.d f7,f6,f4	12	36d		46	48
2	add.d f7,f7,f3	13	47f		51	52
2	s.d f6,v6(r1)	13	25m			52
2	s.d f7,v7(r1)	14	26m			53
2	daddi r2,r2,-1	14	15i		16	53
2	daddui r1,r1,8	15	16i		17	54
2	bnez r2,loop	15	17j			54