We claim:

5

10

15

- 1. A targeting construct comprising:
 - (a) a first polynucleotide sequence homologous to a DEZ receptor gene;
 - (b) a second polynucleotide sequence homologous to the DEZ receptor gene; and
 - (c) a selectable marker.
- 2. The targeting construct of claim 1, wherein the targeting construct further comprises a screening marker.
- 3. A method of producing a targeting construct, the method comprising:
 - (a) providing a first polyrucleotide sequence homologous to a DEZ receptor gene;
 - (b) providing a second polynucleotide sequence homologous to the DEZ receptor gene;
 - (c) providing a selectable marker; and
 - (d) inserting the first sequence, second sequence, and selectable marker into a vector, to produce the targeting construct.
- 4. A method of producing a targeting construct, the method comprising:
 - (a) providing a polynucleotide comprising a first sequence homologous to a first region of a DEZ receptor gene and a second sequence homologous to a second region of a DEZ receptor gene; and
- 20 (b) inserting a positive selection marker between the first and second sequences to form the targeting construct.
 - 5. A cell comprising a disruption in a DEZ receptor gene.
 - 6. The cell of claim 5, wherein the cell is a murine cell.
 - 7. The cell of claim 6, wherein the murine cell is an embryonic stem cell.
- 25 8. A non-human transgenic at imal comprising a disruption in a DEZ receptor gene.
 - 9. A cell derived from the non-human transgenic animal of claim 8.
 - 10. A method of producing a transgenic mouse comprising a disruption in a DEZ receptor gene, the method comprising:
 - (a) introducing the targeting construct of claim 1 into a cell;
- 30 (b) introducing the cell into a blastocyst;

-

5

10

15

20

25

- (c) implanting the resulting blastocyst into a pseudopregnant mouse, wherein said pseudopregnant mouse gives birth to a chimeric mouse; and
- (d) breeding the chimeric mouse to produce the transgenic mouse.
- 11. A method of identifying an agent that modulates the expression of a DEZ receptor, the method comprising:
 - (a) providing a non-human transgenic animal comprising a disruption in a DEZ receptor gene;
 - (b) administering an agent to the non-human transgenic animal; and
 - (c) determining whether the expression of DEZ receptor in the non-human transgenic animal is modulated.
- 12. A method of identifying an agent that modulates the function of a DEZ receptor, the method comprising:
 - (a) providing a non-human transgenic animal comprising a disruption in a DEZ receptor gene;
 - (b) administering an agent to the non-human transgenic animal; and
 - (c) determining whether the function of the disrupted DEZ receptor gene in the non-human transgenic animal is modulated.
- 13. A method of identifying an agent that modulates the expression of DEZ receptor, the method comprising:
 - (a) providing a cell comprising a disruption in a DEZ receptor gene;
 - (b) contacting the cell with an agent; and
 - (c) determining whether expression of the DEZ receptor is modulated.
- 14. A method of identifying an agent that modulates the function of a DEZ receptor gene, the method comprising:
- (a) providing a cell comprising a disruption in a DEZ receptor gene;
 - (b) contacting the cell with an agent; and
 - (c) determining whether the function of the DEZ receptor gene is modulated.
- 15. The method of claim 13 or claim 14, wherein the cell is derived from the non-human transgenic animal of claim 8.

- 16. An agent identified by the method of claim 11, claim 12, claim 13, or claim 14.
- 17. A transgenic mouse comprising a homozygou's disruption in a gene comprising SEQ ID NO:1, or a homolog thereof.
- 18. The transgenic mouse of claim 17, wherein the transgenic mouse exhibits decreased agility or coordination relative to a wild-type control mouse.
- 19. The transgenic mouse of plaim 18, wherein the decreased agility or coordination is characterized by decreased latency in an accelerating rotarod test.
- 20. Phenotypic data associated with the transgenic mouse of claim 17, wherein the phenotypic data is in a database

10

5