(2010 年度後期 担当:佐藤)

□ 斉次連立方程式

- 斉次連立方程式

斉次連立方程式とは定数項(0次の項)が0の1次連立方程式;

$$A\vec{x} = \vec{0} \tag{4.1}$$

- 斉次連立方程式は必ず解 $\vec{x} = \vec{0}$ を持つ. これを自明解という.
- \bullet $\vec{0}$ でない解を非自明解という.

斉次連立方程式の解の性質 一

- \vec{v} が (4.1) の解ならば、任意の実数 k に対して $k\vec{v}$ も (4.1) の解である.
- \vec{v} , \vec{u} が (4.1) の解ならば, $\vec{v} + \vec{u}$ も (4.1) の解である.

以上のことから、非自明な解が存在するとき、解は一般に

$$k_1\vec{v}_1 + k_2\vec{v}_2 + \dots + k_l\vec{v}_l$$
 (k_1, \dots, k_l は実数)

と表される。

問題 4.9. 次の連立方程式の解を求めなさい.

(1)
$$\begin{cases} 3x - 4z = 0 \\ 2x + 3y - z = 0 \\ -x - 2y + z = 0 \end{cases}$$
(2)
$$\begin{cases} 2x + 3y + 4z = 0 \\ x + 2y + 3z = 0 \\ x + y + z = 0 \end{cases}$$
(3)
$$\begin{cases} x + 2y + z = 0 \\ 2x + 3y + 2z = 0 \\ -x + 2y - z = 0 \end{cases}$$
(4)
$$\begin{cases} -2y + z = 0 \\ -2x + 3y - z = 0 \\ 3x + y + z = 0 \end{cases}$$

問題 4.10. 次の連立方程式が非自明解を持つための実数 k の条件を求めなさい。

(1)
$$\begin{cases} -2y + z = 0 \\ -2x + 3y - z = 0 \\ 3x + ky + z = 0 \end{cases}$$
 (2)
$$\begin{cases} 3x - 4z = 0 \\ 2x + 3y - z = 0 \\ -x - 2y + kz = 0 \end{cases}$$