Pumping Lemma for Context-Free Languages

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

15 February 2024

Outline

- Pumping Lemma
- 2 Applications
- Closure Properties

Pumping Lemma for CFL's

Pumping Lemma

For every CFL L there is a constant $k \ge 0$ such that for any word z in L of length at least k, there are strings u, v, w, x, v such that

- $vx \neq \epsilon$,
- $|vwx| \leq k$, and
- for each $i \ge 0$, the string $uv^i wx^i y$ belongs to L.

Parse trees for CFG's

Derivations can be represented as parse trees:

CFG G₂

$$S \rightarrow aSb$$

$$S \rightarrow \epsilon$$
.

Example derivation:

$$S \Rightarrow aSb$$

$$\Rightarrow$$
 aaa $Sbbb$

$$\Rightarrow$$
 aaaabbbb.

Cutting and pasting in parse trees

Subtrees hanging at same non-terminal can be replaced for eachother.

Proof idea

A long string must have a deep parse tree, which in turn means a path with a repeated non-terminal.

Proof

- Let G be a CNF grammar for L.
- A complete binary tree with I levels has 2^{I-1} leaf nodes.
- A parse tree in G with I levels has a terminal string ("yield") of length at most 2^{I-2} .
- Hence a string of length 2^{l} or more, must have a parse tree of at least l+2 levels.
- Take $k = 2^n$ where n is the number of non-terminals in G.

Proof

- Consider parse tree in G of a string z of length at least $k = 2^n$.
- Consider longest path from root to leaf.
- Choose the first repeated non-terminal X starting from bottom of path.
- Path from upper X down to leaf is at most n + 2 levels. Also it must be the longest path in the subtree rooted at X. Hence length of vwx is at most 2ⁿ.
- Also $vx \neq \epsilon$, as G is a CNF grammar.

Proof

- Consider parse tree in G of a string z of length at least $k = 2^n$.
- Consider longest path from root to leaf.
- Choose the first repeated non-terminal X starting from bottom of path.
- Path from upper X down to leaf is at most n + 2 levels. Also it must be the longest path in the subtree rooted at X. Hence length of vwx is at most 2ⁿ.
- Also $vx \neq \epsilon$, as G is a CNF grammar.
- Each $uv^i wx^i y$ also belongs to L(G).

Applications¹

Argue that the following languages are not CFL's:

•
$$\{a^nb^nc^n \mid n \geq 0\}.$$

Applications

Argue that the following languages are not CFL's:

- $\{a^nb^nc^n \mid n \geq 0\}.$
- $\{ww \mid w \in \{a, b\}^*\}.$

	Closed?
Union	
Intersection	

All languages over A

	Closed?
Union Intersection Complementation	√ X

All languages over A

	Closed?
Union	
Intersection	Χ
Complementation	X