Empowering Interdisciplinary Research with BERT-Based Models: An Approach Through SciBERT-CNN with Topic Modeling

266 Natural Language Processing, April 16, 2024

Darya Likhareva, Hamsini Sankaran, Siva Thiyagarajan

Outline

- Introduction
- Data
- Exploratory Data Analysis
- Primary model Architecture
- Key Model Results
- Discussion
- Conclusion

Team

Introduction

Problem:

Growing Volume of Academic Publications

Limitations of Current Models:

- Poor or inadequate classification of diverse and interdisciplinary research
- Improved classification methods are essential to ensure all research is recognized and utilized effectively

Our Approach:

 Multi-Label Text Classification with a SciBERT-CNN with Topic Modeling

Data

Explore Our Data: <u>orieg/elsevier-oa-cc-by · Datasets at Hugging Face</u>

Elsevier OA CC-BY Corpus Attributes
Title
Abstract
Subject Areas
Keywords
ASJC codes
Body Text
Author Highlights

Elsevier OA CC-BY Corpus Dataset Sizes and Structures					
Train Data (32072, 7)					
Validation Data (4009, 7)					
Test Data (4008, 7)					

Exploratory Data Analysis

Distributon of Subject Areas

Distribution Of Abstract

Distribution Of Number of Labels Per Sample

After Class Rebalancing

Baseline:

- BERT with Abstract with standard transformer architecture
- Baseline Weighted Average: 0.59
- Poor performance due to class imbalance and underrepresented labels

	precision	recall	f1-score	support	
AGRI	0.73	0.58	0.64	453	
ARTS	0.70	0.14	0.23	102	
BIOC	0.80	0.54	0.64	842	
BUSI	0.61	0.24	0.34	83	
CENG	0.69	0.11	0.19	177	
CHEM	0.60	0.21	0.31	234	
COMP	0.78	0.28	0.41	224	
DECI	1.00	0.00	0.00	37	
DENT	1.00	0.00	0.00	4	
EART	0.81	0.64	0.71	227	
ECON	0.89	0.23	0.37	107	
ENER	0.72	0.60	0.65	299	
ENGI	0.68	0.50	0.58	463	
ENVI	0.64	0.70	0.67	597	
HEAL	0.89	0.39	0.54	105	
IMMU	0.80	0.51	0.62	314	
MATE	0.78	0.55	0.65	340	
MATH	1.00	0.00	0.00	64	
MEDI	0.81	0.62	0.71	737	
MULT	0.99	0.65	0.79	386	
NEUR	0.76	0.87	0.81	383	
NURS	1.00	0.03	0.05	37	
PHAR	0.69	0.35	0.47	231	
PHYS	0.78	0.25	0.38	254	
PSYC	0.59	0.43	0.50	182	
SOCI	0.76	0.39	0.52	367	
VETE	0.71	0.70	0.70	76	7
micro avg	0.75	0.51	0.61	7325	
macro avg	0.79	0.39	0.46	7325	
eighted avg	0.76	0.51	0.59	7325	
samples avg	0.79	0.58	0.60	7325	

Model Experiments

Model	Embeddings	Feature Modifications	
BERT [Baseline]	BERT	abs only	
RoBERTa	RoBERTa	abs only	
Longformer	Longformer	abs only	
SciBERT	SciBERT	abs only	
SciBERT	SciBERT	abs + body_text	
SciBERT	SciBERT	abs + body_text, CLS embeddings	
SciBERT SciBERT		abs + body_text + title + keywords, CLS embeddings + CNN	
SciBERT SciBERT		abs + body_text + title + top 10 important words from body_text, Keybert	
SciBERT [Final Model] SciBERT		abs + body_text + title + top 10 important words from body_text, BERT topic model- ing	

Primary Model Architecture

Final Model

- Significant improvement in the performance of our SciBERT-CNN with BERT topic modeling.
- Fine-tuning implemented in the SciBERT-CNN model: CNN's convolutional and max-pooling layers, dropout strategy, dense layer, and classification layer with a sigmoid function
- SciBERT-CNN Weighted Average: 0.70

Label	Baseline F1-Score	Best Model			
		Precision	Recall	F1-Score	Support
AGRI	0.64	0.71	0.78	0.74	413
BIOC	0.34	0.69	0.69	0.69	653
CENG	0.19	0.41	0.68	0.51	189
CHEM	0.31	0.55	0.66	0.60	248
COMP	0.41	0.47	0.57	0.51	157
EART	0.71	0.57	0.93	0.71	217
ENER	0.65	0.64	0.63	0.64	235
ENGI	0.58	0.56	0.76	0.64	444
ENVI	0.67	0.67	0.60	0.63	512
IMMU	0.62	0.67	0.59	0.63	238
MATE	0.65	0.70	0.89	0.78	331
MEDI	0.71	0.82	0.71	0.76	851
MULT	0.79	0.98	0.68	0.80	467
NEUR	0.81	0.86	0.86	0.86	394
PHAR	0.47	0.51	0.75	0.61	219
PHYS	0.38	0.49	0.75	0.59	203
PSYC	0.50	0.46	0.81	0.58	120
SOCI	0.52	0.87	0.69	0.77	470
micro avg	0.61	0.67	0.72	0.69	6361
macro avg	0.46	0.65	0.72	0.67	6361
weighted avg	0.59	0.70	0.72	0.70	6361
samples avg	0.60	0.72	0.74	0.70	6361

ROC CURVE

Challenges, Conclusion & Future work

- Challenges: Data Augmentation, Compute Resources
- Tackled the challenging task of multi-label text classification
- Significant performance improvements by combining SciBERT-CNN with BERT topic modeling. By focusing on abstracts, body text segments, titles, and a selection of the top 10 words, we surpassed other BERT-based model benchmarks.
- Future efforts will explore data augmentation and the integration of domain-specific keywords to bolster underrepresented classes and refine overall label performance.

Thank you!

Questions? Comments? Concerns?

BASELINE MODEL (BERT) INFERENCE

Labels	Precision	Recall	F1-Score	Support
AGRI				
BIOC				
CENG				
CHEM				
COMP				
EART				
ENER				
ENGI				
ENVI				

IMMU		
IMMU		
MEDI		
MULT		
NEUR		
PHAR		
PHYS		
PSYC		
SOCI		

WORD CLOUD - COMMON WORDS IN SUBJECT AREAS

Weighted Average Inference Results

BASELINE - BERT

micro avg	0.67	0.72	0.69	6361
macro avg	0.65	0.72	0.67	6361
weighted avg	0.70	0.72	0.70	6361
samples avg	0.72	0.74	0.70	6361

FINE TUNED SciBERT-CNN

