Filière II: EDS rétrogrades et applications

Examen final : durée 3 heures

Mercredi 02 avril 2003

 $\{W_t\}_{t\geq 0}$ désigne un mouvement brownien standard à valeurs dans \mathbb{R}^d , défini sur un espace probabilisé complet $(\Omega, \mathcal{F}, \mathbb{P})$ et dont la filtration naturelle augmentée est notée $\{\mathcal{F}_t\}_{t\geq 0}$.

Soit $f: \mathbb{R}_+ \times \Omega \times \mathbb{R}^k \times \mathbb{R}^{k \times d} \longrightarrow \mathbb{R}^k$ une fonction aléatoire telle que $\{f(t, y, z)\}_{t \geq 0}$ est un processus progressivement mesurable pour tout $(y, z) \in \mathbb{R}^k \times \mathbb{R}^{k \times d}$. On note f(s) le processus f(s, 0, 0) et on suppose qu'il existe une constante $\lambda \geq 0$ telle que \mathbb{P} -p.s., pour tout $t \geq 0$,

$$\forall (u,v), (y,z) \in \mathbb{R}^k \times \mathbb{R}^{k \times d}, \qquad \left| f(t,u,v) - f(t,y,z) \right| \le \lambda \left(|u-y| + ||v-z|| \right). \tag{L}$$

Exercice 1. Soit $(y, z) \in \mathbb{R}^k \times \mathbb{R}^{k \times d}$ fixé. On suppose, en plus de l'hypothèse (L), que, \mathbb{P} -p.s., $s \longmapsto f(s, y, z)$ est continue en 0 et que

$$\mathbb{E}\left[\sup_{0 \le s \le 1} |f(s)|^2\right] < +\infty.$$

On note, pour $n \in \mathbb{N}^*$, (Y^n, Z^n) la solution de l'EDSr

$$Y_t^n = y + zW_{\frac{1}{n}} + \int_t^{\frac{1}{n}} f(s, Y_s^n, Z_s^n) \, ds - \int_t^{\frac{1}{n}} Z_s^n \, dW_s, \qquad 0 \le t \le \frac{1}{n}.$$

- 1. On définit, pour $0 \le s \le \frac{1}{n}$, $U_s^n = Y_s^n (y + zW_s)$, $V_s^n = Z_s^n z$.
 - (a) Quelle est l'EDSr satisfaite par (U^n, V^n) ?
 - (b) En déduire l'existence d'une constante C telle que

$$\mathbb{E}\left[\sup_{0 \le t \le \frac{1}{n}} |U_t^n|^2 + \int_0^{\frac{1}{n}} ||V_s^n||^2 \, ds\right] \le \frac{C}{n^2}.$$

2. Montrer que

$$\lim_{n \to +\infty} n \left(Y_0^n - y \right) = f(0, y, z).$$

On pourra remarquer que $n(Y_0^n - y) = n\mathbb{E}[U_0^n]$.

Exercice 2. On suppose que d=k=1. Soit $\xi=\exp\left\{\frac{W_1^2-|W_1|}{2}\right\}$. Soit (Y^k,Z^k) la solution de l'EDSr

$$Y_t^k = \min(\xi, k) + \int_t^1 Z_s^k ds - \int_t^1 Z_s^k dW_s, \quad 0 \le t \le 1.$$

- 1. Déterminer la limite de Y_0^k lorsque $k \to +\infty$.
- 2. À votre avis, peut-on résoudre, sous l'hypothèse (L), une EDSr dont la condition terminale est seulement intégrable?

Exercice 3. Le but de cet exercice est d'étudier l'existence et l'unicité des solutions d'une EDSr sur $[0, +\infty[$ c'est à dire d'une équation du type

$$-dY_t = f(t, Y_t, Z_t) dt - Z_t dW_t, \qquad t \ge 0.$$
(1)

Une solution de (1) est un couple de processus $(Y_t, Z_t)_{t\geq 0}$ progressivement mesurables tel que, pour tout $T\geq 0$,

$$Y_0 = Y_T + \int_0^T f(s, Y_s, Z_s) ds - \int_0^T Z_s dW_s.$$

On suppose l'hypothèse (L) satisfaite et qu'il existe une constante $\mu \in \mathbb{R}$ telle que, \mathbb{P} -p.s., pour tout $(t, z) \in \mathbb{R}_+ \times \mathbb{R}^{k \times d}$,

$$\forall u, y \in \mathbb{R}^k, \qquad (u - y) \cdot (f(t, u, z) - f(t, y, z)) \le \mu |u - y|^2.$$

On suppose de plus que, pour tout T > 0,

$$\mathbb{E}\left[\left(\int_0^T |f(s)| \, ds\right)^2\right] < +\infty.$$

Soit $a \in \mathbb{R}$. $S_c^{2,a}$ désigne l'ensemble des processus $\{Y_t\}_{t\geq 0}$ progressivement mesurables, continus, tels que

$$||Y||_a^2 := \mathbb{E}\left[\sup_{t>0} e^{2at} |Y_t|^2\right] < +\infty,$$

tandis que $\mathcal{M}^{2,a}$ désigne l'ensemble des (classes d'équivalence de) processus Z progressivement mesurables vérifiant

$$||Z||_a^2 := \mathbb{E}\left[\int_0^\infty e^{2as} ||Z_s||^2 ds\right] < +\infty ;$$

ce sont deux espaces de Banach pour les normes précédentes. Enfin, on note $\mathcal{B}^{2,a}$ l'espace de Banach $\mathcal{S}_c^{2,a} \times \mathcal{M}^{2,a}$ muni de la norme

$$||(Y,Z)||_a^2 = ||Y||_a^2 + ||Z||_a^2$$

On désigne, dans la suite, par (Y^n, Z^n) la solution sur [0, n] de l'EDSr

$$Y_t^n = \int_t^n f(s, Y_s^n, Z_s^n) ds - \int_t^n Z_s^n dW_s, \qquad 0 \le t \le n,$$

et on pose $Y_t^n = 0$, $Z_t^n = 0$ pour t > n.

1. Montrer, que si $0 < \varepsilon < 1$, pour tout $a \ge \mu + \lambda^2/(2\varepsilon)$,

$$\mathbb{E}\left[\sup_{t\in[0,n]}e^{2at}|Y_t^n|^2+\int_0^ne^{2as}\|Z_s^n\|^2\,ds\right]\leq C(\varepsilon)\,\mathbb{E}\left[\left(\int_0^ne^{as}|f(s)|\,ds\right)^2\right],$$

où $C(\varepsilon)$ dépend uniquement de ε .

2. On suppose qu'il existe un réel $\rho>\mu+\lambda^2/2$ tel que

$$\mathbb{E}\left[\left(\int_0^\infty e^{\rho s} |f(s)| \, ds\right)^2\right] < +\infty.$$

(a) Montrer que la suite (Y^n,Z^n) est de Cauchy dans $\mathcal{B}^{2,\rho}$. On pourra s'inspirer du calcul précédent.

- (b) En déduire l'existence d'un processus (Y, Z), élément de $\mathcal{B}^{2,\rho}$, solution de (1).
- (c) Montrer que (Y, Z) est l'unique solution de (1) dans $\mathcal{B}^{2,\rho}$.
- 3. On se place dans le cas scalaire soit k=1; pour simplifier, on prend aussi d=1.

On suppose à présent que $\mu < 0$ et $|f(s)| \le K$.

(a) On suppose dans un premier temps que f(s,y,z) = a(s)y + b(s)z + f(s), f vérifiant toujours les hypothèses précédentes i.e. a et b bornés par λ et $a(s) \leq \mu$. Montrer que pour tout n,

$$\forall t \ge 0, \qquad |Y_t^n| \le \frac{K}{|\mu|}.$$

Indic.: Pensez à Girsanov.

(b) En utilisant une linéarisation du générateur, montrer la même majoration dans le cas général. On pourra définir

$$a(s) = \frac{f(s, Y_s^n, Z_s^n) - f(s, 0, Z_s^n)}{Y_s^n} \, \mathbf{1}_{Y_s^n \neq 0} + \mu \mathbf{1}_{Y_s^n = 0}, \quad b(s) = \frac{f(s, 0, Z_s^n) - f(s, 0, 0)}{Z_s^n} \, \mathbf{1}_{Z_s^n \neq 0}.$$

(c) En utilisant la même technique, montrer que la suite (Y^n) vérifie

$$\forall 0 \le t \le n, \qquad |Y_t^{n+p} - Y_t^n| \le \frac{K}{|\mu|} e^{\mu(n-t)}.$$

- (d) Montrer que la suite (Y^n) est de Cauchy dans $M^{2,\mu}$ puis, en utilisant la formule d'Itô, qu'il en va de même de la suite (Z_n) .
- (e) En déduire l'existence d'une solution $(Y,Z)\in \mathcal{M}^{2,\mu}$ de (1) vérifiant Y est un processus borné.
- (f) Montrer que (1) possède au plus une solution (Y,Z) telle que Y soit un processus borné et $Z\in \mathrm{M}^{2,\mu}$.

EDSr et applications : Correction de l'examen du 02 avril 2003.

Exercice 1. 1. (a) Un calcul élémentaire donne

$$U_t^n = \int_t^{\frac{1}{n}} g(s, U_s^n, V_s^n) \, ds - \int_t^{\frac{1}{n}} V_s^n \, dW_s, \qquad 0 \le t \le \frac{1}{n},$$

où $g(s, u, v) = f(s, u + y + zW_s, v + z)$.

(b) Les estimations à priori sur les EDSr donnent

$$\mathbb{E}\left[\sup_{0\leq s\leq \frac{1}{n}}|U_s^n|^2 + \int_0^{\frac{1}{n}}\|V_s^n\|^2 ds\right] \leq C_u e^{2(\lambda^2 + \lambda)\frac{1}{n}} \mathbb{E}\left[\left(\int_0^{\frac{1}{n}}|g(s,0,0)| ds\right)^2\right],$$

d'où l'on tire – C désignant une constante variant au cours des lignes –

$$\mathbb{E}\left[\sup_{0 \le s \le \frac{1}{n}} |U^n_s|^2 + \int_0^{\frac{1}{n}} \|V^n_s\|^2 \, ds\right] \le \frac{C}{n} \, \mathbb{E}\left[\int_0^{\frac{1}{n}} |g(s,0,0)|^2 \, ds\right].$$

On a d'autre part, pour tout $0 \le s \le \frac{1}{n}$, $|g(s,0,0)| \le |f(s)| + \lambda |y + zW_s| + \lambda ||z||$ et donc

$$\mathbb{E}\left[\sup_{0 \le s \le \frac{1}{n}} |U_s^n|^2 + \int_0^{\frac{1}{n}} \|V_s^n\|^2 ds\right] \le \frac{C}{n^2} \mathbb{E}\left[\sup_{0 \le s \le 1} |f(s)|^2 + |y + zW_s|^2 + \|z\|^2\right],$$

ce qui donne le résultat.

2. Comme U_0^n est déterministe, on a $n(Y_0^n - y) = n\mathbb{E}[U_0^n]$ et donc

$$n(Y_0^n - y) = n \mathbb{E}\left[\int_0^{\frac{1}{n}} g(s, U_s^n, V_s^n) ds\right] = n \mathbb{E}\left[\int_0^{\frac{1}{n}} f(s, U_s^n + y + zW_s, V_s^n + z) ds\right];$$

par suite, il vient

$$n(Y_0^n - y) = n \mathbb{E}\left[\int_0^{\frac{1}{n}} f(s, y, z) ds\right] + R_n,$$

avec

$$R_n = n \mathbb{E} \left[\int_0^{\frac{1}{n}} \left\{ f(s, U_s^n + y + zW_s, V_s^n + z) - f(s, y, z) \right\} ds \right].$$

D'après l'hypothèse de Lipschitz, on a, à l'aide de l'inégalité de Hölder,

$$|R_{n}| \leq n\lambda \mathbb{E} \left[\int_{0}^{\frac{1}{n}} \left(|U_{s}^{n} + y + zW_{s}| + ||V_{s}^{n}|| \right) ds \right]$$

$$\leq \mathbb{E} \left[\sup_{0 \leq s \leq \frac{1}{n}} |U_{s}^{n} + y + zW_{s}| \right] + \sqrt{n} \mathbb{E} \left[\int_{0}^{\frac{1}{n}} ||V_{s}^{n}||^{2} ds \right]^{\frac{1}{2}}.$$

La continuité des trajectoires browniennes et l'estimation précédente montrent que R_n tend vers 0 lorsque $n \to +\infty$.

Pour finir, notons que, comme, \mathbb{P} -p.s., $s \longrightarrow f(s, y, z)$ est continue en 0, on a

$$\mathbb{P}$$
-p.s., $n \int_0^{\frac{1}{n}} f(s, y, z) ds \longrightarrow f(0, y, z) ;$

De plus, la majoration

$$\sup_{n \in \mathbb{N}^*} \left| n \int_0^{\frac{1}{n}} f(s, y, z) \, ds \right| \le \sup_{0 \le s \le 1} |f(s)| + \lambda |y| + \lambda ||z||$$

permet d'appliquer le théorème de convergence dominée et de conclure.

Exercice 2. 1. Soit $\xi = \exp\left\{\frac{W_1^2 - |W_1|}{2}\right\}$. L'EDSr que l'on cherche à résoudre est linéaire; la formule explicite donne

$$Y_t^k = \mathbb{E}^* \left(\min(\xi, k) \mid \mathcal{F}_t \right), \qquad d\mathbb{P}^* = e^{W_1 - \frac{1}{2}} d\mathbb{P}.$$

En particulier, pour $t=0, Y_0^k=\mathbb{E}^*[\min(\xi,k)]$. Par convergence monotone, $\lim_{k\to+\infty}Y_0^k=\mathbb{E}^*[\xi]$. On a de plus

$$\mathbb{E}^*[\xi] = \mathbb{E}\left[e^{\frac{W_1^2 - |W_1|}{2}}e^{W_1 - \frac{1}{2}}\right] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{|x|}{2}}e^{x - \frac{1}{2}} dx = +\infty.$$

2. ξ n'est pas intégrable par rapport à \mathbb{P}^* mais l'est par rapport à \mathbb{P} . Donc on ne peut pas résoudre une EDSr à croissance linéaire en z pour tout ξ intégrable.

Exercice 3. 1. Oublions l'exposant n pour alléger l'écriture. Puisque $Y_n = 0$, on a, pour tout réel a,

$$e^{2at}|Y_t|^2 + \int_t^n e^{2as} ||Z_s||^2 ds = \int_t^n e^{2as} (2Y_s \cdot f(s, Y_s, Z_s) - 2a|Y_s|^2) ds - 2\int_t^n e^{2as} Y_s Z_s dW_s ;$$

Or, les hypothèses sur f conduisent à l'inégalité,

$$2y \cdot f(s,y,z) \leq 2\mu |y|^2 + 2\lambda |y| \, \|z\| + 2|y| |f(s)| \leq |y|^2 \big(2\mu + \lambda^2/\varepsilon \big) + \varepsilon \|z\|^2 + 2|y| |f(s)|.$$

Si donc $2a \ge 2\mu + \lambda^2/\varepsilon$, on a, pour tout $0 \le t \le n$,

$$e^{2at}|Y_t|^2 + (1-\varepsilon)\int_t^n e^{2as}||Z_s||^2 ds \le 2\int_0^n e^{2as}|Y_s||f(s)| ds - 2\int_t^n e^{2as}Y_sZ_s dW_s.$$

Le calcul habituel donne

$$\mathbb{E}\left[\sup_{s\in[0,n]} e^{2as} |Y_s|^2 + \int_0^n e^{2as} ||Z_s||^2 \, ds\right] \le 2C(\varepsilon) \, \mathbb{E}\left[\int_0^n e^{2as} |Y_s| \, |f(s)| \, ds\right]$$

et on conclut en notant que

$$2C(\varepsilon) \int_0^n e^{2as} |Y_s| |f(s)| ds \le \frac{1}{2} \sup_{s \in [0,n]} e^{2as} |Y_s|^2 + 2C(\varepsilon)^2 \left(\int_0^T e^{as} |f(s)| ds \right)^2.$$

2. (a) Remarquons dans un premier temps que, pour tout $T \ge n$, (Y^n, Z^n) est solution de l'EDSr sur [0, T],

$$Y_t^n = \int_t^T f(s, Y_s^n, Z_s^n) \mathbf{1}_{s \le n} \, ds - \int_t^T Z_s^n \, dW_s.$$

On déduit de cette remarque, notant $U = Y^{n+i} - Y^n$ et $V = Z^{n+i} - Z^n$, que (U, V) est solution de l'EDSr sur [0, n+i],

$$U_{t} = \int_{t}^{n+i} F(s, U_{s}, V_{s}) ds - \int_{t}^{n+i} V_{s} dW_{s},$$

où la fonction F est définie par

$$F(s, u, v) = f(s, u + Y_s^n, v + Z_s^n) - f(s, Y_s^n, Z_s^n) \mathbf{1}_{s \le n}.$$

Comme $\rho > \mu + \lambda^2/2$, il existe $0 < \varepsilon < 1$ tel que $\rho > \mu + \lambda^2/(2\varepsilon)$. On obtient alors, via la question précédente

$$\begin{split} \mathbb{E}\left[\sup_{s\in[0,n+i]}e^{2\rho s}|U_s|^2 + \int_0^{n+i}e^{2\rho s}\|V_s\|^2\,ds\right] \\ &\leq C(\varepsilon)\,\mathbb{E}\left[\left(\int_0^{n+i}e^{\rho s}|F(s,0,0)|\,ds\right)^2\right] = C(\varepsilon)\,\mathbb{E}\left[\left(\int_n^{n+i}e^{\rho s}|f(s)|\,ds\right)^2\right]. \end{split}$$

Il suffit alors de noter que $U_t=0,\,V_t=0$ si $t\geq n+i$ pour obtenir

$$\left\| \left(Y^{n+i}, Z^{n+i} \right) - \left(Y^n, Z^n \right) \right\|_{\rho}^2 \le C(\varepsilon) \, \mathbb{E} \left[\left(\int_n^{+\infty} e^{\rho s} |f(s)| \, ds \right)^2 \right] \; ;$$

ceci montre que la suite (Y^n, Z^n) est de Cauchy dans $\mathcal{B}^{2,\rho}$.

(b) Comme $\mathcal{B}^{2,\rho}$ est un espace de Banach, appelons (Y,Z) la limite de la suite (Y^n,Z^n) . Fixons un réel T>0. Pour $n\geq T$, on a

$$Y_0^n = Y_T^n + \int_0^T f(s, Y_s^n, Z_s^n) ds - \int_0^T Z_s^n dW_s.$$

La convergence dans $\mathcal{B}^{2,\rho}$ implique que

$$\mathbb{E}\left[\sup_{s\in[0,T]}|Y_s^n - Y_s|^2 + \int_0^T ||Z_s^n - Z_s||^2 ds\right]$$

tend vers 0 si $n \to +\infty$. Ceci permet de passer facilement à la limite dans l'équation précédente puisque le générateur est Lipschitz.

(c) Passons à l'unicité. Supposons que (Y, Z) et (Y', Z') soient deux solutions dans $\mathcal{B}^{2,\rho}$. Soit $\varepsilon \in]0,1[$ tel que $\rho > \mu + \lambda^2/(2\varepsilon)$. Fixons δ tel que $\rho > \delta > \mu + \lambda^2/(2\varepsilon)$. Un calcul similaire à celui de la première question donne, notant U = Y - Y' et V = Z - Z'.

$$\left\| (U, V) \right\|_{\delta}^{2} \leq C(\varepsilon) \mathbb{E} \left[e^{2\delta T} |U_{T}|^{2} \right] \leq e^{2(\delta - \rho)T} C(\varepsilon) \mathbb{E} \left[\sup_{s \geq 0} e^{2\rho s} |U_{s}|^{2} \right].$$

Passant à la limite lorsque $T \to +\infty$, on obtient U = 0 et V = 0.

3. (a) Posons $B_t = W_t - \int_0^t b(s) \, ds$. Comme b est borné, d'après le théorème de Girsanov, B est un un mouvement Brownien sur [0, n] par rapport à la mesure \mathbb{P}^* de densité par rapport à \mathbb{P}

$$\exp\left\{ \int_0^n b(s) \, dW_s - \frac{1}{2} \int_0^n b(s)^2 \, ds \right\}.$$

 \mathbb{P} et \mathbb{P}^* sont équivalentes sur \mathcal{F}_n .

De plus, l'EDS
r dont Y^n est solution se réécrit

$$Y_t^n = \int_t^n \left(a(s)Y_s^n + f(s) \right) ds - \int_t^n Z_s^n dB_s.$$

Il vient alors – cf formule sur les EDSr linéaires –

$$Y_t^n = \mathbb{E}^* \left(\int_t^n e^{\int_t^s a(r) dr} f(s) ds \mid \mathcal{F}_t \right).$$

Comme $a(s) \leq \mu$ et $|f(s)| \leq K$ p.s. $-\mathbb{P}$ ou \mathbb{P}^* – c'est pareil sur \mathcal{F}_n – on obtient

$$|Y_t^n| \le K \int_t^n e^{\mu(s-t)} ds = \frac{K}{|\mu|} \left(1 - e^{\mu(n-t)} \right) \le \frac{K}{|\mu|}.$$

(b) Avec ces notations on a

$$f(s, Y_s^n, Z_s^n) = a(s)Y_s^n + b(s)Z_s^n + f(s).$$

Il ne faut pas perdre de vue que a et b dépendent de Y^n et Z^n . Toutefois comme a et b sont bornés par λ et $a \leq \mu$, on obtient le résultat via la question précédente.

(c) On fait à nouveau une linéarisation comme suit : notons $U = Y^{n+i} - Y^n$ et $V = Z^{n+i} - Z^n$. On a alors cf. 2. (a)

$$U_t = \int_t^{n+i} F(s, U_s, V_s) ds - \int_t^{n+i} V_s dW_s$$

où F est donnée par

$$F(s,U_s,V_s) = f(s,U_s + Y_s^n, V_s + Z_s^n) - f(s,Y_s^n, Z_s^n) + f(s)\mathbf{1}_{s>n} = a(s)U_s + b(s)V_s + f(s)\mathbf{1}_{s>n},$$

en posant

$$a(s) = \frac{f(s, U_s + Y_s^n, V_s + Z_s^n) - f(s, Y_s^n, V_s + Z_s^n)}{U_s} \mathbf{1}_{U_s \neq 0} + \mu \mathbf{1}_{U_s = 0}$$

et

$$b(s) = \frac{f(s, Y_s^n, V_s + Z_s^n) - f(s, Y_s^n, Z_s^n)}{V_s} \mathbf{1}_{V_s \neq 0}.$$

Reprenant le calcul de la question 3. (a), on obtient

$$U_t = \mathbb{E}^* \left(\int_t^{n+i} e^{\int_t^s a(r) dr} f(s) \mathbf{1}_{s>n} ds \mid \mathcal{F}_t \right)$$

et pour $n \ge t$, comme $a \le \mu$ et $|f(s)| \le K$,

$$|U_t| \le K \int_n^{n+i} e^{\mu(s-t)} ds = \frac{K}{|\mu|} e^{\mu(n-t)} \left(1 - e^{\mu i}\right) \le \frac{K}{|\mu|} e^{\mu(n-t)}.$$

(d) Conservant les mêmes notations, on a

$$\begin{split} \int_0^{+\infty} e^{2\mu s} |U_s|^2 \, ds &= \int_0^n e^{2\mu s} |U_s|^2 \, ds + \int_n^{n+i} e^{2\mu s} |Y_s^{n+i}|^2 \, ds \\ &\leq \frac{K^2}{\mu^2} \int_0^n e^{2\mu s} e^{2\mu (n-s)} \, ds + \frac{K^2}{\mu^2} \int_n^{n+i} e^{2\mu s} \, ds \\ &= \frac{K^2}{\mu^2} e^{2\mu n} \left(n + \frac{K}{2|\mu|} \left(1 - e^{\mu i} \right) \right) \; ; \end{split}$$

l'inégalité demeure valable si on prend l'espérance ce qui montre que Y^n est de Cauchy dans $\mathcal{M}^{2,\mu}$. Pour la suite Z^n , la formule d'Itô donne

$$|U(0)|^2 + \int_0^{n+i} e^{2\mu s} ||V_s||^2 ds = \int_0^{n+i} e^{2\mu s} \left(2U_s F(s, U_s, V_s) - 2\mu |U_s|^2 \right) ds - 2 \int_0^{n+i} e^{2\mu s} U_s V_s dW_s.$$

Or, on a

$$2U_s F(s, U_s, V_s) \le 2\mu |U_s|^2 + 2\lambda^2 |U_s|^2 + \frac{1}{2} ||V_s||^2 + 2|U_s| |f(s)| \mathbf{1}_{s>n},$$

et par suite, comme U et f(s) sont bornés, on a

$$\frac{1}{2} \mathbb{E} \left[\int_0^{n+i} e^{2\mu s} \|V_s\|^2 \, ds \right] \le 2\lambda^2 \mathbb{E} \left[\int_0^{n+i} e^{2\mu s} |U_s|^2 \, ds \right] + \frac{2K^2}{\mu^2} e^{2\mu n},$$

ce qui donne le résultat.

(e) Le passage à la limite est immédiat car on a, pour tout T > 0,

$$\sup_{s\in[0,T]}|Y_t-Y_t^n|\longrightarrow 0$$

presque sûrement et dans tous les espaces L^p avec p réel puisque « les Y » sont bornés. De plus,

$$\mathbb{E}\left[\int_0^T \|Z_s - Z_s^n\|^2 \, ds\right] \longrightarrow 0.$$

(f) Étudions à présent l'unicité des solutions. Posons U=Y-Y' et V=Z-Z'. Fixons $t\geq 0$. On a, pour tout $n\geq t$,

$$U_t = U_n + \int_t^n \left(a(s)U_s + b(s)V_s \right) ds - \int_t^n V_s dW_s$$

où les processus a et b sont définis par

$$a(s) = \frac{f(s, Y_s, Z_s) - f(s, Y_s', Z_s)}{U_s} \mathbf{1}_{U_s \neq 0} + \mu \mathbf{1}_{U_s = 0},$$

$$b(s) = \frac{f(s, Y_s', Z_s) - f(s, Y_s', Z_s')}{V_s} \mathbf{1}_{V_s \neq 0}.$$

On a alors en utilisant la transformation de Girsanov sur [0, n], comme $a \leq \mu$ et U est borné disons par M,

$$|U_t| \le \mathbb{E}^* \left(e^{\int_t^n a(s) \, ds} |U_n| \mid \mathcal{F}_t \right) \le M e^{\mu(n-t)}.$$

Passant à la limite lorsque $n \to +\infty$, on obtient $U_t = 0$.

À présent la formule d'Itô appliquée à $|U_t|^2$ donne, puisque $U \equiv 0$, pour tout T > 0,

$$\int_0^T \|V_s\|^2 \, ds = 0,$$

ce qui conclut quand à l'unicité des solutions.