Číslo cvičení: 8 Jméno: Marek Bryša

UČO: 323771 Login: xbrysa1

1.

$$n^{40} + 1 = (n^8)^5 + 1 = x^5 + 1 = (x+1) \cdot (x^4 - x^3 + x^2 - x + 1)$$

- 2. $4a^3 + 27b^2 \mod p \neq 0 \iff$ elliptic curve can be used to form a group over F_p . $4 \cdot 1000 + 27 \cdot 25 \mod 17 = 0 \implies$ the e.c. does not form the group.
- 3. (a) $a_1 = 3^2 + 1 \mod 4577 = 10$, $b_1 = (3^2 + 1 \mod 4577)^2 + 1 \mod 4577 = 101$, gcd(10 101, 4577) = 1 $a_2 = 10^2 + 1 \mod 4577 = 101$, $b_1 = (101^2 + 1 \mod 4577)^2 + 1 \mod 4577 = 4402$, gcd(101 - 4402, 4577) = 23 $4577 = 23 \cdot 199$
 - (b) 2P = (80, 65) and we compute gcd(283, 143) = 1. 3P = (131, 102) and we compute gcd(64, 143) = 1. 4P = (14, 28) and we compute gcd(13, 143) = 13.
- 4. The elliptic curve is isomorphic to Z_5 . ∞ has the role of 0.

+	∞	(0,1)	(0,6)	(4,2)	(4,5)
∞	∞	(0,1)	(0,6)	(4,2)	(4,5)
(0,1)	(0,1)	(4,5)	∞	(0,6)	(4,2)
(0,6)	(0,6)	∞	(4,2)	(4,5)	(0,1)
(4,2)	(4,2)	(0,6)	(4,5)	(0,1)	∞
(4,5)	(4,5)	(4,2)	(0,1)	∞	(0,6)

5. $x^{11} - 1 = 0 \mod 2011 \iff x^{11} = 1 \mod 2011$. From Euler's theorem $a^{\varphi(n)} = 1 \mod n$ if a is coprime to n and here all are, since n is prime. $\varphi(2011) = 2010 = 2 \cdot 3 \cdot 5 \cdot 67$. In case of a prime exponent, the solution to the original equations other than x = 1 only exist for prime factors of 2010. 11 is not one of them so the solution does not exist.