Foundations of Computer Systems Design Lab (CS2310)

Lab 6: Multipliers

1st October 2024

In this lab, we will learn how to implement multiplier using carry save adders and wallace tree techniques in Verilog.

Note: You are free to use any style of coding (not just structural) for this assignment.

1 Carry Save Multiplier (60 - Points)

Design a 4x4-bit unsigned carry save multiplier. The following figure represents carry save multiplication:

Figure 1: Carry Save Multiplication

Write Verilog code that implements an unsigned multiplier using the carry save adder. The name of the file with the multiplier should be " $carry_save.v$ ". The module signature should be:

module carry_save(input [3:0] op1,op2, output [7:0] res);

2 Wallace Tree Multiplier (40 - Points)

Write Verilog code that implements a 4x4-bit unsigned wallace tree multiplier. The name of the file with the multiplier should be "wallace_tree.v".

The module signature should be: module wallace_tree(input [3:0] op1,op2, output [7:0] res);

- Use minimal number of carry-save adders and half-adders.
- Use a carry look-ahead adder for the last stage addition.

Hint: Draw out the design to get a better sense of the implementation

3 Bonus question

Write Verilog code that implements a 6x6-bit unsigned wallace tree multiplier. The name of the file with the multiplier should be "wallace_tree_6.v".

The module signature should be: module wallace_tree_6(input [5:0] op1,op2, output [7:0] res);

******* Take home bonus question *******

Implement a generalized unsigned multiplier to handle any operand size. The name of the file with the multiplier should be "bonus.v".

The module signature should be: module N_bit_mul #(parameter N) (input[N-1:0] op1,op2, output[2*N-1:0] res);

- To evaluate your design use the file "test_bonus.sh" provided along with "tb_bonus.v".
- Run "chmod +x test_bonus.sh" on the terminal to make the file executable
- Now you may run "test_bonus.sh testbench_file.v" to evaluate your design further for different sizes of the input

NOTE: This bonus question has more weightage than other bonus question (including the ones from the previous labs)
