Électronique Analogique Notes de cours ^a

Parcours : LAGE-EI 2019-2020

Semestre: 3

a. https ://github.com/a-mhamdi/ iset-bizerte/raw/master/elect-ana/tb-elect-ana.pdf

Abdelbacet Mhamdi

Dr.-Ing. en GE – Technologue en GE

Table des matières 3

Table des matières

1	Rappel	1
2	Mise en situation	4
3	AOp en régime linéaire	7
4	AOp en régime non linéaire	16
5	Générateur de fonctions	17
6	Filtre actif	25

1 Rappel 1

1 Rappel

Exercice

En appliquant les méthodes d'analyse des circuits électriques : lois de KIRCHHOFF, principe de superposition, théorème de THÉVENIN, théorème de NORTON et théorème de MILLMAN, déterminer la tension v aux bornes de la résistance R du montage suivant :

Lois de KIRCHHOFF

En appliquant les lois de Kirchhoff, on trouve le système d'équations suivant :

$$\begin{cases} e_1 - R_1 I_1 - RI &= 0 \\ e_2 - R_2 I_2 - RI &= 0 \\ I &= I_1 + I_2 \end{cases}$$
 (1)

Eq. (1) peut se réduire à la forme matricielle suivante :

$$\underbrace{\begin{pmatrix} e_1 \\ e_2 \\ 0 \end{pmatrix}}_{b} = \underbrace{\begin{pmatrix} R & R_1 & 0 \\ R & 0 & R_2 \\ 1 & -1 & -1 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} I \\ I_1 \\ I_2 \end{pmatrix}}_{X} \tag{2}$$

La méthode de Cramer conduit à :

$$I = \frac{\begin{vmatrix} e_1 & R_1 & 0 \\ e_2 & 0 & R_2 \\ 0 & -1 & -1 \end{vmatrix}}{\begin{vmatrix} R & R_1 & 0 \\ R & 0 & R_2 \\ 1 & -1 & -1 \end{vmatrix}}$$
(3)

On montre que l est égal à :

$$I = \frac{R_2 e_1 + R_1 e_2}{RR_1 + RR_2 + R_1 R_2} \tag{4}$$

La tension v est donnée par :

$$v = \frac{RR_2e_1 + RR_1e_2}{RR_1 + RR_2 + R_1R_2}$$

1 Rappel 2

Principe de superposition

La tension résultante, au quelle soumise la résistance R, est donnée par Eq. (5) :

$$v = v' + v''$$

$$v = \frac{RR_2e_1 + RR_1e_2}{RR_1 + RR_2 + R_1R_2}$$
(5)

Théorème de THEVENIN

$$\implies \begin{cases} e_{\mathsf{Th}} &=& \frac{R_2 e_1 + R_1 e_2}{R_1 + R_2} \\ \\ r_{\mathsf{Th}} &=& \frac{R_1 R_2}{R_1 + R_2} \end{cases}$$

$$v = e_{Th} \frac{R}{R + r_{Th}}$$

$$= \frac{R_2 e_1 + R_1 e_2}{R_1 + R_2} \frac{R}{R + \frac{R_1 R_2}{R_1 + R_2}}$$

La tension v aux bornes de la résistance R est donnée par :

$$v = \frac{RR_2e_1 + RR_1e_2}{RR_1 + RR_2 + R_1R_2}$$

A. Mhamdi

1 Rappel 3

Théorème de Norton

L'application directe de la loi d'Ohm conduit à

$$v = RJ_{N} \frac{r_{N}}{R + r_{N}}$$

$$= R \left(\frac{e_{1}}{R_{1}} + \frac{e_{2}}{R_{2}} \right) \frac{\frac{R_{1}R_{2}}{R_{1} + R_{2}}}{R + \frac{R_{1}R_{2}}{R_{1} + R_{2}}}$$
(6)

Soit encore :

$$v = \frac{RR_2e_1 + RR_1e_2}{RR_1 + RR_2 + R_1R_2}$$

Théorème de MILLMAN (

On montre que l'expression de la tension ν est donnée par Eq. (7) :

$$v = \frac{\frac{e_1}{R_1} + \frac{e_2}{R_2}}{\frac{1}{R} + \frac{1}{R_1} + \frac{1}{R_2}}$$

$$= \frac{\frac{e_1}{R_1} + \frac{e_2}{R_2}}{\frac{1}{R} + \frac{1}{R_1} + \frac{1}{R_2}} \frac{RR_1R_2}{RR_1R_2}$$
(7)

Soit finalement

2 Mise en situation 4

$$\left(v = \frac{RR_2e_1 + RR_1e_2}{RR_1 + RR_2 + R_1R_2} \right)$$

2 Mise en situation

Les amplificateurs opérationnels ont été conçus initialement pour le câblage des fonctions mathématiques (addition, soustraction, dérivation, intégration et d'autres) dans les calculateurs analogiques.

Nous étudions ici la famille μ A 741. C'est un amplificateur à usage courant. Il a beaucoup d'applications réelles, on en cite principalement :

- * adaptation d'impédance;
- * sommation, intégration, etc;
- * génération de fonctions;
- * filtrage actif.

Un amplificateur opérationnel est souvent représenté schématiquement par l'un des symboles ci-dessous

Il possède deux bornes dites inverseuse et non inverseuse. Elles sont désignées par v_- et v_+ . Une seule sortie v_s est disponible. Elle est donnée par la relation suivante :

$$v_{s}(t) = \mathcal{G}_{d}\left(v_{+}-v_{-}\right) + \mathcal{G}_{c}\left(\frac{v_{+}+v_{-}}{2}\right), \tag{8}$$

où \mathcal{G}_d et \mathcal{G}_c dénotent respectivement le gain différentiel et le gain en mode commun.

Les tensions d'alimentation peuvent être symétriques ou asymétriques. Elles seront souvent omises dans le reste de ce manuel.

La tension de sortie v_s ne dépasse pas les deux valeurs limites $\pm V_{cc}$.

Ce composant regroupe un amplificateur différentiel en entrée, suivi d'un adaptateur d'impédance. La sortie est amplifié grâce à un étage "push-pull" qui fonctionne en classe **B**.

Les caractéristiques de l'amplificateur opérationnel μ A 741 de "Texas Instruments" par exemple sont accessibles à l'adresse suivante : https://pdf1.alldatasheet.com/datasheet-pdf/view/96584/TI/UA741.html

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

electrical characteristics at specified free-air temperature, $V_{\text{CC}\pm}$ = $\pm 15~\text{V}$ (unless otherwise noted)

PARAMETER		TEST	T. +	μ Α741C			μ Α741Ι, μ Α741Μ			UNIT	
	PARAMETER	CONDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
V _{IO} Input offset voltage		V _O = 0	25∘C		1	6		1	5	mV	
		VO = 0	Full range			7.5			6		
□ V _{IO(adj)}	Offset voltage adjust range	VO = 0	25∘C		±15			±15		mV	
lio	Input offset current	V _O = 0	25∘C		20	200		20	200	nA	
110	input onset current	VO = 0	Full range			300			500		
Iв	Input bias current	V _O = 0	25∘C		80	500		80	500	nA	
чВ	input bias current	10-0	Full range			800			1500		
V _{ICR}	Common-mode input		25∘C	±12	±13		±12	±13		V	
VICR	voltage range		Full range	±12			±12				
	Maximum peak output voltage swing	$R_L = 10 \text{ k}\Omega$	25∘C	±12	±14		±12	±14		· v	
V _{OM}		$R_L \ge 10 \text{ k}\Omega$	Full range	±12			±12				
VOIVI		$R_L = 2 k\Omega$	25∘C	±10	±13		±10	±13			
		$R_L \ge 2 k\Omega$	Full range	±10			±10				
AVE	Large-signal differential	$R_L \ge 2 k\Omega$	25∘C	20	200		50	200		V/mV	
AVD	voltage amplification	V _O = ±10 V	Full range	15			25			7 7/1117	
rį	Input resistance		25∘C	0.3	2		0.3	2		МΩ	
r _O	Output resistance	V _O = 0, See Note 5	25∘C		75			75		Ω	
Ci	Input capacitance		25∘C		1.4			1.4		рF	
CMRR	Common-mode rejection ratio	ion V _{IC} = V _{ICR} min	25∘C	70	90		70	90		dB	
Civil ti t			Full range	70			70				
kovo	Supply voltage sensitivity (V _{IO} / V _{CC})	V _{CC} = ±9 V to ±15 V	25∘C		30	150		30	150	μV/V	
ksvs		ACC = 79 A 10 712 A	Full range			150			150		
los	Short-circuit output current		25∘C		±25	±40		±25	±40	mA	
loo	Supply current	V _O = 0, No load	25∘C		1.7	2.8		1.7	2.8	mA	
Icc			Full range			3.3			3.3		
PD	Total power dissipation	$V_{\bigcirc} = 0$, No load	25∘C		50	85		50	85	mW	
. U	Total power dissipation	- 0, No load	Full range			100			100		

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for the μ A741C is 0°C to 70°C, the μ A741I is -40°C to 85°C, and the μ A741M is -55°C to 125°C.

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25 \circ C$

PARAMETER		TEST CONDITIONS		μ Α741C			μ Α741Ι, μ Α741Μ			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _r	Rise time	V _I = 20 mV,	R _L = 2 kΩ,		0.3			0.3		μS
	Overshoot factor	C _L = 100 pF,	See Figure 1		5%			5%		
SR	Slew rate at unity gain	V _I = 10 V, C _L = 100 pF,	R_L = 2 kΩ, See Figure 1		0.5			0.5		V/μs

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

OPEN-LOOP SIGNAL DIFFERENTIAL

TYPICAL CHARACTERISTICS

MAXIMUM PEAK OUTPUT VOLTAGE vs **FREQUENCY** ±20 V_{CC+} = 15 V V_{OM} – Maximum Peak Output Voltage – V ±18 $V_{CC} = -15 \text{ V}$ $R_L = 10 \text{ k}\Omega$ ±16 T_A = 25∘C ±14 ±12 ± 10 ±8 **±6** <u>+</u>4 **±2** 0 100 1k 10k 100k 1M f - Frequency - Hz

Figure 6

VOLTAGE AMPLIFICATION vs **SUPPLY VOLTAGE** 400 Vo = ±10 V $R_L = 2 k\Omega$ T_A = 25∘C A_{VD}- Open-Loop Signal Differential 200 Voltage Amplification – V/mV 100 40 20 10 2 0 4 6 8 10 12 14 16 18 20 V_{CC±} - Supply Voltage - V

Figure 7

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

vs **FREQUENCY** 110 V_{CC+} = 15 V 100 $V_{CC-} = -15 \text{ V}$ 90 A_{VD}- Open-Loop Signal Differential $V_0 = \pm 10 \text{ V}$ $R_L^- = 2 k\Omega$ Voltage Amplification – dB 80 TA = 25∘C 70 60 50 40 30 20 10 0 -10 10 100 10k 100k 1M 10M f - Frequency - Hz

En résumé, nous pouvons dresser la table suivante

Paramètre	Désignation	μ A 741
R _e	Résistance d'entrée	$2\mathrm{M}\Omega$
i _e	Courant d'entrée	$80\mathrm{nA}$
R_s	Résistance de sortie	75Ω
$\mathcal{G}_{\sf d}$	Gain en mode différentiel	200000
CMPR	Taux de réjection du mode commun	$90\mathrm{dB}$
SR	Slew-Rate (gain unitaire)	$0.5 extsf{V}/\mu extsf{sec}$
Gain-BP	Fréquence (gain unitaire)	1Mhz

Le modèle équivalent simplifié résultant de l'amplificateur différentiel est donné par ce circuit

Les tensions de saturation $\pm V_{sat}$ sont légèrement inférieures aux tensions d'alimentation $\pm V_{cc}$.

La contre-réaction de la sortie sur l'entrée inverseuse rend le gain en tension de l'AOp indépendant des caractéristiques de l'amplificateur. Ce dernier ne dépend que du gain de la boucle de rétroaction.

Un amplificateur idéal en régime linéaire est caractérisé par : $\begin{cases} v_+ &= v_-, \\ i_+ &= i_- &= 0. \end{cases}$

3 AOp en régime linéaire

Avant de se pencher sur l'analyse d'un circuit, il faut savoir appliquer correctement le théorème de Millman. L'application par exemple de ce théorème à la sortie d'un AOp ne donnera aucune information utile en général car le courant de sortie lui-même est inconnu à priori.

AOp & théorème de MILLMAN

Potentiel v_a On peut appliquer directement le théorème de MILLMAN $\rightarrow v_a = \frac{\frac{1}{r_1} + \frac{1}{r}}{\frac{1}{r_1} + \frac{1}{r}}$

Potentiel v_s II faut tenir compte du courant de sortie i_s \rightarrow $v_s = \frac{\frac{v_a}{r} + \frac{v_b}{R_b} + i_s}{\frac{1}{r} + \frac{1}{R_b}}$

AOp idéal en régime linéaire $\longrightarrow \nu_+ = \nu_-$. La tension de sortie ν_s s'écrit alors :

$$v_s(t) = \frac{R_1 + R_2}{R_1} v_e(t) \tag{9}$$

Pour une tension d'alimentation symétrique de ± 10 volts, les courbes d'évolution de l'entrée v_e et de la sortie v_s sont affichées sur l'écran de l'oscilloscope ci-dessous 1

^{1.} La tension v_e (resp. v_s) est connectée au canal CHI (resp. CHII).

Déterminer les expressions des signaux v_e et v_s . En déduire le gain d'amplification qu'on note $g=rac{V_{s_{
m max}}}{V_{e_{
m max}}}$

AOp idéal en régime linéaire \longrightarrow $\nu_+ = \nu_-$. La tension de sortie ν_s s'écrit alors :

$$v_s(t) = -\frac{R_2}{R_1} v_e(t) \tag{10}$$

Pour une tension d'alimentation symétrique de ± 10 volts, les courbes d'évolution de l'entrée v_e et de la sortie v_s sont affichées sur l'écran de l'oscilloscope suivant 2

Déterminer les expressions des signaux v_e et v_s . En déduire le gain d'amplification qu'on note $g=\frac{V_{s_{max}}}{V_{e_{max}}}$.

$$\underbrace{ \begin{bmatrix} v_e(t) = V_{e_{\text{max}}} \sin \left(\frac{2\pi}{T} t + \varphi_0 \right) \end{bmatrix}}_{\text{ex}} \underbrace{ \begin{bmatrix} v_s(t) = -V_{s_{\text{max}}} \sin \left(\frac{2\pi}{T} t + \varphi_0 \right) \end{bmatrix}}_{\text{ex}} \text{ avec:} \begin{cases} V_{e_{\text{max}}} = 3 \text{ volts} \\ V_{s_{\text{max}}} = 6 \text{ volts} \\ T = 18 \text{ msec} \\ \varphi_0 \approx 1 \text{ rad} \end{cases}$$

Montage #3

Amplificateur sommateur inverseur

^{2.} La tension v_e (resp. v_s) est connectée au canal CHI (resp. CHII).

AOp idéal en régime linéaire $\longrightarrow \nu_+ = \nu_-$. La tension de sortie ν_s s'écrit alors :

$$v_s(t) = -R\left(\frac{1}{R_1}v_{e_1}(t) + \frac{1}{R_2}v_{e_2}(t)\right)$$
 (11)

Soit $v_{e_1}=1$ V. Pour une tension d'alimentation symétrique de ± 10 volts, les courbes d'évolution de l'entrée v_{e_2} et de la sortie v_s sont affichées sur l'écran de l'oscilloscope ci-dessous 3

^{3.} La tension v_{e_2} (resp. v_s) est connectée au canal CHI (resp. CHII).

Déterminer les expressions des signaux v_{e_2} et v_s . En déduire un jeu de résistances qui permet d'avoir la sortie v_s .

$$\underbrace{v_{e}(t) \ = \ V_{e_{2_{\max}}} \sin\left(\frac{2\pi}{T}t + \varphi_{0}\right)}_{\mathcal{S}_{x}} \underbrace{\left(v_{s}(t) \ = \ V_{offset} - V_{s_{\max}} \sin\left(\frac{2\pi}{T}t + \varphi_{0}\right)\right)}_{\mathcal{S}_{x}} \operatorname{avec}: \begin{cases} V_{e_{2_{\max}}} \ = \ 2 \operatorname{volts} \\ V_{offset} \ = \ -1 \operatorname{volt} \\ V_{s_{\max}} \ = \ 2 \operatorname{volts} \\ T \ = \ 2.1 \operatorname{msec} \\ \varphi_{0} \ = \ 0 \operatorname{rad} \end{cases}$$

Si $R_1 = R_2 = R$, la sortie v_s devient simplement

$$v_s(t) = -(v_{e_1} + v_{e_2})$$

AOp idéal en régime linéaire $\longrightarrow v_+ = v_-$. La tension de sortie v_s s'écrit alors :

$$v_{s}(t) = \frac{R_{1} + R}{R_{1}} \left(\frac{r}{r + R_{2}} v_{e_{2}}(t) - \frac{R}{R + R_{1}} v_{e_{1}}(t) \right)$$
(12)

Si on prend $r=R_1=R_2=R$, la sortie se simplifie à la forme suivante

$$v_s(t) = v_{e_2}(t) - v_{e_1}(t)$$
 (13)

Soit $\textit{v}_{\textit{e}_1} = 0.25$ V. Pour une tension d'alimentation symétrique de ± 10 volts, les courbes d'évolution de l'entrée $\textit{v}_{\textit{e}_2}$ et de la sortie v_s sont affichées sur l'écran de l'oscilloscope ci-dessous ⁴

^{4.} La tension v_{e_2} (resp. v_s) est connectée au canal CHI (resp. CHII).

Déterminer les expressions des signaux v_{e_2} et v_s .

$$\underbrace{ \begin{bmatrix} v_{e}(t) = V_{e_{2_{\max}}} \sin \left(\frac{2\pi}{T} t + \varphi_0 \right) \end{bmatrix}}_{\text{Re}} \underbrace{ \begin{bmatrix} v_{s}(t) = V_{\text{offset}} + V_{s_{\max}} \sin \left(\frac{2\pi}{T} t + \varphi_0 \right) \end{bmatrix}}_{\text{Re}} \text{ avec:} \begin{cases} V_{e_{2_{\max}}} = 1.5 \text{ volts} \\ V_{\text{offset}} = -0.25 \text{ volts} \\ V_{s_{\max}} = 1.5 \text{ volts} \\ V_{s_{\max}} = 1.5 \text{ volts} \\ V_{s_{\max}} = 2.1 \text{ msec} \\ \varphi_0 = 0 \text{ rad} \end{cases}$$

$$\left(v_1 = e_1 + \frac{R_1}{r}(e_1 - e_2)\right)$$
 $\left(v_2 = e_2 - \frac{R_2}{r}(e_1 - e_2)\right)$

La relation $v^+ = v^-$ conduit à

$$v_s(t) = v_2 - v_1 \tag{14}$$

$$= e_2 - \frac{R_2}{r} (e_1 - e_2) - \left(e_1 + \frac{R_1}{r} (e_1 - e_2) \right)$$

$$= \underbrace{e_2 - \frac{R_2}{r}}_{v_2} (e_1 - e_2) - \underbrace{\left(e_1 + \frac{R_1}{r} (e_1 - e_2) \right)}_{v_1}$$
(15)

$$= \left(1 + \frac{R_1 + R_2}{r}\right)(e_2 - e_1) \tag{16}$$

On commence d'abord par exposer l'essentiel sur le condensateur plan.

 $V_A \bullet V_B \qquad C = \frac{\varepsilon S}{e} \quad \text{avec} \quad \begin{array}{c} \varepsilon & : \\ S & : \\ e & : \end{array} \quad \begin{array}{c} \text{Permittivit\'e di\'electrique} \\ \text{Surface d'une armature} \\ \text{Permittivit\'e di\'electrique} \\ \text{Permittivit\'e di\'electriqu$

Physiquement, un condensateur plan est la mise en parallèle de deux surfaces planes, appelées armatures séparées par un diélectrique. Quand il est soumis à une différence de potentiel (ddp) $v_c = u_{AB} = v_A - v_B$ positive non nulle, une charge positive que l'on note q_A apparaît au niveau de l'armature liée au potentiel v_A et une charge négative notée q_B apparaît au niveau de l'autre armature tel que $q_A = -q_B$. Si on change la valeur de la tension $v_c = v_A - v_B$, la quantité de charge $q_A = -q_B$ varie linéairement. On déduit expérimentalement la relation :

$$\frac{dq}{dv_c} = C.$$

La constante C désigne la capacité du condensateur. Elle se mesure en FARAD, abrégée en F. Le courant $i_c(t)$ parcourant le condensateur est la dérivée de la charge q, i.e. $i_c(t) = \frac{dq(t)}{dt}$, on montre alors que :

$$i_c(t) = C \frac{dv_c(t)}{dt}.$$

Revenons à présent sur le montage de l'amplificateur, on montre finalement que

$$v_{s}(t) = -\frac{1}{RC} \int v_{e}(\varsigma) d\varsigma \tag{17}$$

Il en résulte que

$$v_s(t) = -RC \frac{dv_e(t)}{dt}$$
 (18)

Exercice

 $Proposer \, une \, structure \, \grave{a} \, base \, d'amplificateurs \, pour \, r\'{e}aliser \, le \, correcteur \, PI \, suivant$

4 AOp en régime non linéaire

Un AOp idéal avec une réaction négative fonctionne en régime linéaire. Les deux potentiels ν_+ et ν_- sont alors égales. Si on l'utilise en boucle ouverte ou avec une réaction positive, il fonctionne en régime de saturation. Les potentiels des entrées peuvent être différents.

Il n'y a pas une contre-réaction. L'amplificateur fonctionne alors en régime de saturation. La sortie v_s prend uniquement les deux valeurs de saturation $\pm V_{sat}$.

$$v_{s}(t) = \begin{cases} -V_{\text{sat}} & \text{si } v_{-} > v_{+} \\ v_{e_{1}} > v_{e_{2}} \end{cases}$$

$$v_{e_{1}} > v_{e_{2}}$$

$$+V_{\text{sat}} & \text{si } v_{-} < v_{+} \end{cases}$$

$$v_{e_{1}} < v_{e_{2}}$$

$$v_{+} = \frac{\frac{v_{r}}{R_{1}} + \frac{v_{s}}{R_{2}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}}}$$
 $v_{-} = v_{e}$

La contre-réaction est positive, la sortie de l'amplificateur ne peut prendre que les deux valeurs limites de saturation $\pm V_{\text{sat}}$. L'expression du potentiel de la borne positive est

$$v_{+} = \frac{R_{2}v_{r} + R_{1}v_{s}}{R_{1} + R_{2}} \tag{19}$$

Soit $\alpha = \frac{R_1}{R_1 + R_2}$. Eq. (19) se transforme ainsi en

$$v_{+} = (1 - \alpha) v_{r} + \alpha v_{s}$$

ou encore

$$v_{+} = (1 - \alpha) v_{r} \pm \alpha V_{sat}$$

Si v_e est très négatif, le potentiel v_+ est supérieur à v_- . La sortie est à $+V_{\text{sat}}$. La valeur de v_+ est $(1-\alpha)v_r + \alpha V_{\text{sat}}$. Quand la tension d'entrée dépasse cette valeur, v_s passe à $-V_{\text{sat}}$ et v_+ devient égal à $(1-\alpha)v_r - \alpha V_{\text{sat}}$. Le circuit présente deux seuils de basculements.

5 Générateur de fonctions

Pour un circuit à base des éléments inductifs ou capacitifs et soumis à des entrées constantes, les courants et tensions mettent un certain temps pour s'établir. C'est le régime transitoire.

On considère dans la suite une mise en cascade d'une résistance R et d'une capacité C.

Ce circuit est le siège d'une excitation continue $v_e(t)$ d'amplitude E_{max} non nulle. On se propose d'étudier dans la suite l'effet de cette entrée sur la sortie c.-à-d. sur la tension capacitive que l'on note $v_c(t)$. On montre que le circuit est régit par l'équation différentielle.

$$RC\frac{dv_c(t)}{dt} + v_c(t) = v_e(t)$$
 (20)

Eq. 20 est dite équation différentielle de premier ordre à coefficients constants. Le produit RC a la dimension d'une seconde $([RC] = \sec)$. On peut, ainsi, poser $\tau = RC$. La tension v_c est la superposition de deux solutions : une dite homogène et l'autre dite particulière.

On cherche dans ce paragraphe à déterminer l'expression analytique du signal de sortie $v_c(t)$, noté $v_h(t)$, sous l'effet de condition initiale non nulle c.-à-d. $v_c(t=t_0)=v_0$, en supposant que $v_e(t)=0$. Ainsi, Eq. 20 se transforme en :

$$\tau \frac{dv_h(t)}{dt} + v_h(t) = 0, \tag{21}$$

soit encore:

$$\frac{dv_h(t)}{v_h(t)} = -\frac{dt}{\tau}.$$
 (22)

Intégrons les deux membres de l'Eq. 22:

$$\int_{t_0}^{t} \frac{dv_h(\varsigma)}{v_h(\varsigma)} d\varsigma = -\int_{t_0}^{t} \frac{d\varsigma}{\tau} \implies \operatorname{Ln} \left| v_h(t) \right| - \operatorname{Ln} \left| v_h(t_0) \right| = -\frac{t - t_0}{\tau}. \tag{23}$$

Afin de se débarrasser de la fonction Ln, il suffit d'appliquer sa fonction réciproque, le résultat est donné par Eq. 24:

$$v_h(t) = v_h(t_0) e^{-\frac{t - t_0}{\tau}}.$$
 (24)

On considère la condition initiale suivante :

$$v_h(t=t_0) = v_0.$$

La solution qui décrit le comportement du condensateur du montage en régime libre, sans l'action de la source ν_e est donc :

$$v_h(t) = v_0 e^{-\frac{t - t_0}{\tau}}$$
 (25)

Solution particulière

Pour déterminer cette solution, on utilise la méthode de variation de la constante. La solution déjà trouvée dans Eq. 25 est de la forme

$$\mathcal{K}e^{-rac{t-t_0}{ au}}$$
.

On suppose ici que la constante ${\mathcal K}$ est variable au cours du temps

$$v_p(t) \,=\, \mathcal{K}(t) \mathrm{e}^{-\frac{t-t_0}{\tau}}.$$

La quantité $v_p(t)$ vérifie Eq. 20, cela implique que :

$$\tau \dot{v}_p(t) + v_p(t) = v_e(t) \tag{26}$$

Soit donc,

$$\tau \left(\dot{\mathcal{K}}(t) e^{-\frac{t-t_0}{\tau}} - \frac{1}{\tau} \mathcal{K}(t) e^{-\frac{t-t_0}{\tau}} \right) + \mathcal{K}(t) e^{-\frac{t-t_0}{\tau}} = \nu_{e}(t)$$
(27)

L'expression de la fonction $\mathcal{K}(t)$ est donnée par Eq. 28 :

$$\mathcal{K}(t) = \frac{1}{\tau} \int_{t_0}^t v_e(\varsigma) e^{\frac{\varsigma - t_0}{\tau}} d\varsigma$$
 (28)

Sachant que $v_e(t) = E_{\text{max}} \ \forall t \ge 0$, Eq. 28 devient :

$$\mathcal{K}(t) = \frac{E_{\text{max}}}{\tau} \int_{t_0}^{t} e^{\frac{\zeta - t_0}{\tau}} d\zeta$$
$$= E_{\text{max}} \left(e^{\frac{t - t_0}{\tau}} - 1 \right).$$

La solution particulière est donc :

$$v_p(t) = E_{\text{max}} \left(1 - e^{-\frac{t - t_0}{\tau}} \right)$$
 (29)

Solution générale

La solution la plus générale est donc la somme de deux solutions : Eq. 25 et Eq. 29, et est donnée par :

$$v_{c}(t) = v_{h}(t) + v_{p}(t)$$

$$= v_{0}e^{-\frac{t-t_{0}}{\tau}} + E_{\max}\left(1 - e^{-\frac{t-t_{0}}{\tau}}\right).$$
(30)

Cas de la charge

Considérons pour l'instant le cas simplifié, où $v_0=0$ et $t_0=0$. Eq. 30 devient comme suit :

$$v_c(t) = E_{\text{max}} \left(1 - e^{-\frac{t}{\tau}} \right).$$
 (31)

La tension capacitive atteint 63.7% de sa valeur finale au bout d'un temps égal à τ d'où l'appellation de τ par constante de temps, caractéristique du système.

Cas de la décharge

On considère l'expression de la tension de sortie $v_c(t)$ sous l'effet de sa condition initiale non nulle. On s'intéresse uniquement à la solution homogène. La tension capacitive est donc donnée comme suit :

$$v_c(t) = v_0 e^{-\frac{t - t_0}{\tau}}$$
 (32)

Considérons pour l'instant le cas simplifié, où ${\it v}_0 = {\it E}_{\rm max}$ et $t_0 = 0$. Eq. 32 se simplifie en :

$$v_c(t) = E_{\text{max}} e^{-\frac{t}{\tau}}$$
 (33)

La courbe de décharge est donnée par la figure suivante.

Charge & décharge

Si on applique à l'entrée du circuit RC un signal carré de période T suffisamment grande devant la constante τ , la courbe de charge et de décharge devient alors cyclique.

Le graphe d'évolution du courant $i_c(t)$ est donné par la courbe suivante.

Un multivibrateur astable produit un signal carré à sa sortie. Il ne nécessite aucune entrée externe.

On suppose que le retour positif emporte sur la contre-réaction négative. L'AOp fonctionne alors en régime de saturation.

$$v_s(t) = \left\{ egin{array}{ll} +V_{\mathsf{sat}} & \mathsf{si} & v_+ > v_- = v_c \ \\ -V_{\mathsf{sat}} & \mathsf{si} & v_+ < v_- = v_c \end{array}
ight.$$

Soient $\alpha = \frac{R_1}{R_1 + R_2}$ et $\tau = R_3$ C. Le problème se ramène à la formulation suivante

A. Mhamdi

 1^e cas: (C se charge à travers R_3)

$$si v_s = +V_{sat} \implies v_+ = +\alpha V_{sat} \implies v_c = v_{i_1} e^{-\frac{t-t_1}{\tau}} + V_{sat} \left(1 - e^{-\frac{t-t_1}{\tau}}\right)$$

 $2^{\mathbf{d}}$ cas: (C se décharge à travers R_3)

$$si v_s = -V_{sat} \implies v_+ = -\alpha V_{sat} \implies v_c = v_{i_2} e^{-\frac{t-t_2}{\tau}} - V_{sat} \left(1 - e^{-\frac{t-t_2}{\tau}}\right)$$

Exercice

- 1. Tracer, sur la même figure, les allures des signaux $v_c(t)$ et $v_s(t)$;
- 2. Déterminer les durées Δ_1 et Δ_2 . En déduire la valeur de la période T.

① On suppose que la tension de sortie à l'origine du temps t=0. La borne non inverseuse est portée alors au potentiel $+\alpha V_{\text{sat}}$. À l'origine du temps, le condensateur initialement déchargé se met à se charger jusqu'à la valeur $+\alpha V_{\text{sat}}$. À ce stade, l'amplificateur voit sa borne inverseuse portée à un potentiel supérieur à la borne positive. La sortie v_s change d'état en conséquence. Le condensateur se décharge ainsi à travers la résistance R_3 jusqu'à atteindre $-\alpha V_{\text{sat}}$. La tension v_s bascule de nouveau vers $+V_{\text{sat}}$. Les courbes de la tension capacitive et de la tension de sortie sont présentées par la figure ci-dessous.

② Durant la charge du condensateur C, la tension à ses bornes s'écrit sous la forme suivante ⁵:

$$v_c(t) = -\alpha V_{\text{sat}} e^{-\frac{t}{\tau}} + V_{\text{sat}} \left(1 - e^{-\frac{t}{\tau}} \right)$$

On peut établir la relation

$$+\alpha V_{\text{sat}} = -\alpha V_{\text{sat}} e^{-\frac{\Delta_1}{\tau}} + V_{\text{sat}} \left(1 - e^{-\frac{\Delta_1}{\tau}}\right)$$

Soit encore

$$\alpha = -\alpha e^{-\frac{\Delta_1}{\tau}} + \left(1 - e^{-\frac{\Delta_1}{\tau}}\right)$$

$$1 - \alpha = e^{-\frac{\Delta_1}{\tau}} (1 + \alpha)$$

Il en résulte que

$$\boxed{ \Delta_1 \ = \ \tau \ln \left(\frac{1+\alpha}{1-\alpha} \right). }$$

De même, on démontre que

$$\Delta_2 = \tau \ln \left(\frac{1+\alpha}{1-\alpha} \right).$$

En effet, durant la décharge du condensateur, la tension v_c obéit à l'expression

$$v_c(t) = \alpha V_{\text{sat}} e^{-\frac{t}{\tau}} - V_{\text{sat}} \left(1 - e^{-\frac{t}{\tau}} \right)$$

Pour $t=\Delta_2$,

$$-\alpha V_{\text{sat}} = \alpha V_{\text{sat}} e^{-\frac{\Delta_2}{\tau}} - V_{\text{sat}} \left(1 - e^{-\frac{\Delta_2}{\tau}}\right)$$

Après simplification par V_{sat}, on obtient

$$-\alpha = \alpha e^{-\frac{\Delta_1}{\tau}} - \left(1 - e^{-\frac{\Delta_2}{\tau}}\right)$$

$$1 - \alpha = e^{-\frac{\Delta_2}{\tau}} (1 + \alpha)$$

D'où

$$\Delta_2 = \tau \ln \left(\frac{1+\alpha}{1-\alpha} \right)$$

La période d'oscillation de la sortie est égale la somme de Δ_1 et de Δ_2

$$T = \Delta_1 + \Delta_2$$

$$= 2 \tau \ln \left(\frac{1+\alpha}{1-\alpha} \right), \quad \text{avec} \quad \alpha = \frac{R_1}{R_1 + R_2}$$

$$= 2 \tau \ln \left(\frac{2R_1 + R_2}{R_2} \right)$$

$$= 2 \tau \ln \left(1 + 2 \frac{R_1}{R_2} \right)$$
(34)

^{5.} Moyennant un changement d'échelle

6 Filtre actif

Avant de se pencher sur la définition du filtrage actif, rappelons ici le montage de base d'un classique RC en régime harmonique. Étant donnée qu'il est régit par une équation différentielle linéaire. Ceci implique que si on attaque le montage par un signal sinusoïdal de pulsation ω , la sortie est également sinusoïdale de même pulsation ω mais l'amplitude et la phase d'origine de la sortie sont vus modifiés. Cette déformation a eu lieu à cause du comportement du circuit vis-à-vis de la fréquence d'entrée.

On adoptera dans la suite la notation complexe. On désigne par x(t) le signal temporel et par $X(j\omega)$ son équivalent polaire

$$X(t) = X_{\max} \sin(\omega t + \varphi_e) \Longrightarrow X(j\omega) = X_{\max} e^{j(\omega t + \varphi_e)}$$

Il faut noter qu'au niveau de cette transformée, i.e, exponentielle, on allège beaucoup le calcul compte tenu des propriétés de la fonction exponentielle. La caractérisation du circuit RC devient indépendante du couple (Entrée/ Sortie). La fonction exponentielle est une fonction particulièrement intéressante à cause de cette propriété de dérivation :

$$\frac{de^{u(t)}}{dt} = \frac{du(t)}{dt}e^{u(t)}$$
(35)

Dans la suite, on considère la fonction $u(t) = \jmath(\omega t + \phi)$. La fonction u représente la phase instantanée du signal considéré. Ainsi, Eq. (35) devient :

$$\frac{de^{u(t)}}{dt} = \jmath \omega e^{u(t)}.$$

La dérivée de $X(j\omega)$ devient donc : $\dot{X}(j\omega) = j\omega X(j\omega)$

Rappelons ici la relation courant-tension dans un condensateur de capacité C:

$$i_c(t) = C \frac{dv_c(t)}{dt}$$

Soit, en utilisant la notation complexe :

$$\underline{I}_{c}(\jmath\omega) = \jmath C\omega \underline{\mathcal{V}}_{c}(\jmath\omega),$$

ou encore:

$$\underline{\mathcal{V}}_{c}(j\omega) = \frac{1}{jC\omega}\underline{\mathcal{I}}_{c}(j\omega)$$

Le terme $\frac{1}{JC\omega}$, que l'on note Z_c , représente l'impédance complexe d'un condensateur. Son module, se mesurant en Ω , représente le rapport tension/ courant et son argument indique la valeur du déphasage entre la tension $v_c(t)$ et le courant $i_c(t)$.

Rappelons encore l'équation différentielle régissant le circuit RC:

$$\tau \frac{dv_c(t)}{dt} + v_c(t) = v_e(t)$$

On considère la notation complexe :

$$au_{
m C}\omega \underline{\mathcal{V}}_{
m c}({
m j}\omega) + \underline{\mathcal{V}}_{
m c}({
m j}\omega) \ = \ \underline{\mathcal{V}}_{
m e}({
m j}\omega)$$

Soit encore:

$$\frac{\underline{\mathcal{V}}_{\mathcal{C}}(\jmath\omega)}{\underline{\mathcal{V}}_{\mathcal{E}}(\jmath\omega)} = \frac{1}{1 + \jmath\tau C\omega}$$

La fonction $\mathcal{H}(j\omega) = \frac{1}{1+j\tau C\omega}$ caractérise le transfert harmonique du circuit RC:

- lacksquare Le module $ig|\mathcal{H}(\jmath\omega)ig|$ est égal à $rac{
 u_{c_{\max}}}{
 u_{e_{\max}}}$;
- L'argument $/\mathcal{H}(\jmath\omega)$ renseigne sur le déphasage : $\varphi_{c}-\varphi_{e}$.

$$\left|\mathcal{H}(j\omega)\right| = \frac{1}{\sqrt{1+(\tau\omega)^2}}$$
 (36)

► En basse fréquence : $\tau \omega << 1$ c.-à-d. $\omega << \frac{1}{\tau}$

$$|\mathcal{H}(j\omega)| = 1$$

► En haute fréquence : $\tau\omega$ >> 1 c.-à-d. ω >> $\frac{1}{\tau}$

$$|\mathcal{H}(j\omega)| = 0$$

► Si: $\tau \omega = 1$ c.-à-d. $\omega = \frac{1}{\tau}$

$$|\mathcal{H}(\jmath\omega)| = \frac{1}{\sqrt{2}}$$

L'allure du graphe d'évolution de ce gain en tension sur une échelle logarithmique pour l'axe des abscisses est indiquée par la figure suivante.

Il faut noter qu'une échelle linéaire n'est pas adéquate pour représenter l'évolution du terme $|H(j\omega)|$.

ω (rad/sec)

D'après cette courbe, le condensateur se comporte comme un circuit ouvert en basses fréquences. Si on monte progressivement en fréquence, la capacité semble exécuter une sorte d'opération de purification ou encore *filtrage* jusqu'à une valeur correspondante à un gain en tension pratiquement nul en très hautes fréquences.

La conclusion à tirer est donc que le circuit RC, sujet à un signal périodique de pulsation ω , se comporte comme un filtre passe bas. Il laisse passer les composantes de fréquence inférieure à la constante ω_c (pulsation de coupure) et annuler toutes les autres composantes dont la pulsation est supérieure à ω_c .

Il est intéressant également d'introduire la notion du gain en décibels. Cette dernière notion est souvent utilisée mais parfois mal connue. On se propose dans ce qui suit, de donner un aperçu sur la définition de ce gain.

Le "Bell" (B) est une unité de mesure de transfert de puissance. Elle a été introduite par les laboratoires **BELL** après les années 1920. Ce gain a tiré son nom de l'ingénieur Alexandre Graham Bell (1847 - 1922) qui a inventé le téléphone. Le "Bell" est égale au rapport logarithmique décimal de deux puissances. Le "DÉCIBELL", quant à lui, le sous multiple du "Bell" ($1B = 10 \, dB$) est largement utilisé dans les domaines de la physique, de l'électronique et de l'acoustique.

En considérant deux puissances P_e et P_s , nous pouvons déterminer le gain G, exprimé en "DÉCIBELL", tel que :

$$\mathcal{G}_{|dB} = 10log_{10} \frac{\mathcal{P}_s}{\mathcal{P}_e}. \tag{37}$$

Sachant que le carré du module de la fonction $\mathcal{H}(\jmath\omega)$ représente un transfert d'énergie entre l'entrée et la sortie du filtre, nous pouvons écrire :

$$\mathcal{G}_{|dB} = 20 \log_{10} \left| \mathcal{H}(j\omega) \right|$$

$$= 20 \log_{10} \left(\frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^2}} \right)$$

$$= -10 \log_{10} \left(1 + \left(\frac{\omega}{\omega_c}\right)^2 \right)$$
(38)

Pour pouvoir tracer la réponse en fréquence de façon plus nette, on peut considérer la méthode simplifiée, inventée par l'ingénieur américain Hendrick Wade Bode 7 (1905). Il s'agit ici de tracer le module $\mathcal{G}_{\mid dB}$ en fonction du logarithme de la pulsation c.-à-d. ω .

▶ En basse fréquence : $\omega << \omega_c$

$$G_{|dB} = 0$$

► En haute fréquence : $\tau\omega$ >> 1 c.-à-d. ω >> ω_c

$$\mathcal{G}_{|dB} = -20 \log_{10} \left(\frac{\omega}{\omega_c} \right)$$

ightharpoonup Si: $au\omega = 1$ c.-à-d. $\omega = \frac{1}{ au}$

$$\mathcal{G}_{|dB} = 20 \log_{10} \left(\frac{1}{\sqrt{2}} \right) = -3 dB$$

- ${\bf 6.\ http://en.wikipedia.org/wiki/Alexander_Graham_Bell}\\$
- ${\it 7. } http://en.wikipedia.org/wiki/Hendrik_Wade_Bode$

Les diagrammes de Bode se trace sur un papier dit "semi-log", où l'axe vertical est linéaire et l'axe horizontal est logarithmique. L'allure du graphe d'évolution de ce gain en tension est indiqué sur le graphique suivant. Ce graphe possède une branche asymptotique au voisinage des hautes fréquences de pente $-20\,dB$ par décade c.-à-d. que chaque transition d'une pulsation ω à une pulsation multiple de valeur $10\,\omega$, il y aura une atténuation de $20\,dB$ au niveau de la puissance perçue à la sortie du circuit.

Calcul de l'argument de $\mathcal{H}(J\omega)$

$$\frac{/\mathcal{H}(j\omega)}{2} = \sqrt{\frac{1}{1+j\frac{\omega}{\omega_c}}}$$

$$= -\sqrt{1+j\frac{\omega}{\omega_c}}$$

$$= -atan\left(\frac{\Im\left(1+j\frac{\omega}{\omega_c}\right)}{\Re\left(1+j\frac{\omega}{\omega_c}\right)}\right)$$

$$= -atan\left(\frac{\omega}{1}\right)$$

$$= -atan\left(\frac{\omega}{\omega_c}\right)$$

► En basse fréquence : $\omega \ll \omega_c$

$$/\mathcal{H}(\jmath\omega) = 0$$

► En haute fréquence : $\omega \gg \omega_c$

$$/\mathcal{H}(\jmath\omega) = -90 \text{ (deg)}$$

ightharpoonup Si: $\omega = \omega_c$

$$/\mathcal{H}(\jmath\omega) = -45 \text{ (deg)}$$

Le déphasage $\Delta \varphi = \varphi_c - \varphi_e$ possède deux branches horizontales en basse fréquence et en haute fréquence, la première est de direction 0 deg, c.-à-d. que le circuit considéré n'introduit aucun déphasage entre l'entrée et la sortie. La deuxième est de direction -90 deg, ce qui permet de dire que les signaux d'entrée et de sortie sont en quadrature de phase. Le signal de sortie est en retard de phase par rapport au signal d'entrée.

Il résulte d'après ce qui précède que le circuit *RC* est un filtre passe-bas. Il laisse passer les signaux de faible fréquences et atténue les autres signaux dont la pulsation est supérieure à la pulsation de coupure ω_c qui est égale à $\frac{1}{\pi}$.

Exemple d'un filtre actif

Un filtre actif est une forme de circuit analogique mettant en œuvre un filtre électronique utilisant des composants actifs, généralement un amplificateur.

Outre la possibilité de contrôler le gain d'amplification, la présence d'un amplificateur préserve les propriétés du filtre. Elle permet de maintenir les caractéristiques du circuit indépendamment de la charge.

Exercice

1. Démontrer que la fonction de transfert harmonique s'écrit comme suit

$$\mathcal{H}(j\omega) = \frac{\underline{\mathcal{V}}_{s}(j\omega)}{\underline{\mathcal{V}}_{e}(j\omega)}$$

$$= \frac{R_{2}}{R_{1} + R_{2}} \frac{R + R'}{R} \frac{1 + j \frac{RR'C}{R + R'}\omega}{1 + jR'C\omega}$$
(39)

2. Soit $R'=10 \times R$. Mettre l'expression de $\mathcal H$ comme indiquée par Eq. (40). Identifier ainsi K et au.

$$\mathcal{H}(j\omega) = K \frac{1 + \frac{1}{11} j\tau\omega}{1 + j\tau\omega}.$$
 (40)

3. On pose $R_1=R_2=2.2\,\mathrm{k}\Omega$, $R=10\,\mathrm{k}\Omega$, $R'=100\,\mathrm{k}\Omega$ et $C=10\,\mu$ F. Esquisser les diagrammes de Bode (Gain et phase). Nous rappelons les expressions suivantes :

$$\mathcal{G}_{\big|_{\mathsf{dB}}} \; = \; 20 \mathsf{log}_{10} \left\{ \big| \mathcal{H}(\jmath \omega) \big| \right\} \qquad \mathsf{et} \qquad \underline{/\mathcal{H}(\jmath \omega)} \; = \; \mathsf{atan} \left(\frac{1}{11} \tau \omega \right) - \mathsf{atan} \left(\tau \omega \right)$$

① AOp idéal en régime linéaire \longrightarrow $\nu_+ = \nu_-$.

$$\begin{array}{rcl} \nu_{+} & = & \nu_{-} \\ \frac{R_{2}}{R_{1} + R_{2}} \underline{\mathcal{V}}_{e} & = & \frac{R}{R + R'/\!/Z_{c}} \underline{\mathcal{V}}_{s} \end{array}$$

A. Mhamdi

Le quotient $\mathcal{H}(\jmath\omega)$ s'écrit

$$\mathcal{H}(j\omega) = \frac{R_2}{R_1 + R_2} \frac{R + \frac{R'Z_c}{R' + Z_c}}{R}$$

$$= \frac{R_2}{R_1 + R_2} \frac{R + \frac{R'}{1 + jR'C\omega}}{R}$$

$$\mathcal{H}(j\omega) = \frac{R_2}{R_1 + R_2} \frac{R + R'}{R} \frac{1 + j\frac{RR'C}{R + R'}\omega}{1 + jR'C\omega}$$

② Dans le cas où $\mathbf{R'}=10\times\mathbf{R}$, la fonction $\mathcal H$ se transforme en

$$\mathcal{H}(j\omega) = 11 \frac{R_2}{R_1 + R_2} \frac{1 + j \frac{1}{11} R' C \omega}{1 + j R' C \omega}$$
$$= K \frac{1 + j \frac{1}{11} \tau \omega}{1 + j \tau \omega},$$

avec

$$K = 11 \frac{R_2}{R_1 + R_2} \quad \text{et} \quad \tau = R'C$$

③ En mettant à jour les termes K et τ , on obtient

Les diagrammes de Bode sont illustrés par les graphiques suivants

Références 32

Références

[AB19] ABRAHAM, HENRI et BLOCH, EUGÈNE. "Mesure en valeur absolue des périodes des oscillations électriques de haute fréquence". Dans : Journal de Physique Théorique et Appliquée 9.1 (1919), pp. 211-222. DOI : 10 . 1051 / jphystap : 019190090021100.

[Cla13] G. B. CLAYTON. Operational Amplifiers. Butterworth-Heinemann, 2013.

[Lan75] D. E. LANCASTER. Active-Filter Cookbook. Macmillan Pub Co, 1975.

[Mah17] K. Maher. Electronique: Vol1 Amplificateur Opérationnel et Applications (PU Polytec Rom). PU Polytechniqu, 2017.

[Ras10] M. H. RASHID. Microelectronic Circuits: Analysis & Design. CL Engineering, 2010.