CENG 384 - Signals and Systems for Computer Engineers Spring 2018-2019

Written Assignment 1

AYPEK, Ertugrul e2171270@ceng.metu.edu.tr

BADILLI, Mustafa e2171296@ceng.metu.edu.tr

June 6, 2019

1. (a) i.
$$3(x+yj) + 4 = 2j - (x-yj)$$
$$4x + 2yj = 2j - 4$$
$$Hence; x=-1, y=1 \text{ and } z = -1 + j$$
$$|z|^2 = x^2 + y^2 = 1 + 1 = 2$$

ii.

Figure 1: x vs y which shows z = -1 + j

(b)
$$64j = r^3(\cos(3\theta) + j.\sin(3\theta))$$
 $\cos(3\theta) = 0$ must hold for above equality to hold since real part of left-side is equal to zero. $\theta = \{\pi/6, \pi/2, 5\pi/6, 7\pi/6, 9\pi/6, 11\pi/6\}$

For
$$\theta = \pi/6$$
; $64j = r^3.j.1$, $r=4$
For $\theta = \pi/2$; $64j = r^3.j.1$, $r=-4$ which is impossible. So, θ can not be $\pi/2$
For $\theta = 5\pi/6$; $64j = r^3.j.1$, $r=4$

For
$$\theta=7\pi/6$$
; $64j=r^3$.j.-1, r=-4 which is impossible. So, θ can not be $7\pi/6$ For $\theta=9\pi/6$; $64j=r^3$.j.1, r=4

For $\theta = 11\pi/6$; $64j = r^3$.j.-1, r=-4 which is impossible. So, θ can not be $11\pi/6$

So, $z = 4 \cdot e^{j\pi/6} = 4(\cos(\pi/6) + j \cdot \sin(\pi/6)) \text{ or, }$ $z = 4 \cdot e^{5j\pi/6} = 4(\cos(5\pi/6) + j \cdot \sin(5\pi/6)) \text{ or, }$ $z = 4 \cdot e^{3j\pi/2} = 4(\cos(3\pi/2) + j \cdot \sin(3\pi/2))$

(c) Let us expand the fraction by (1-j): $z = \frac{(1-j)^2 \cdot (1+\sqrt{3}j)}{1-j^2} = \frac{(-2j) \cdot (1+\sqrt{3}j)}{2} = \sqrt{3}-j$

Let r denote the magnitude of z.

So,
$$r = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$$
 is the magnitude.

Let
$$\theta \in [0, 2\pi)$$
 be the angle of z.
So, $\tan(\theta) = \frac{-1}{\sqrt{3}}$,
 $\theta = \tan^{-1}(\frac{-1}{\sqrt{3}}) = \frac{11\pi}{6}$

(d)
$$z = -j(\cos(\pi/2) + j.\sin(\pi/2))$$

 $z = -j.\cos(\pi/2) + -j^2.\sin(\pi/2)$
 $z = \sin(\pi/2) - j.\cos(\pi/2) = 1$

So, for $z = r(\cos(\theta) + j.\sin(\theta))$,

 $1 = 1.(\cos(0) + j.\sin(0))$ holds for r=1, θ =0 where $\theta \in [0, 2\pi)$

Hence, $z=\cos(0) + j.\sin(0)$ in polar form.

2. Here, To derive y(t) we use x(t) doing time scaling by 2 (since t is divided by 2) and time shifting by 2 ($x(\frac{t}{2}+1)$, "+1" results in time shift but by amount of time scaling).

Figure 2: t vs. y(t)

3. (a) Below Figure 3 is the answer for this question

Figure 3: n vs. x[-n] + x[2n+1].

- (b) $x[-n] + x[2n+1] = 3\delta[n+7] 4\delta[n+4] + 2\delta[n+2] \delta[n+1] \delta[n] + 3\delta[n-3]$
- 4. (a) It is **periodic**. if we look at $3\cos[\frac{13\pi}{10}n]$ and $5\sin[\frac{7\pi}{3}n-\frac{2\pi}{3}]$, we will first see that to make $\frac{13\pi}{10}(n+N_0)$ multiple of 2π N should be at least 20. On the other hand, for $\frac{7\pi}{3}(n+N)$ to be multiple of 2π , N should be at least 6.If we get common least multiple of them, it is 60. Thus, Fundamental period is 60.
 - (b) **Not periodic** because we can't have an integer N_0 value such that the function will be periodic. That is, there is a value $\frac{2\pi}{3}$ but it can't be an integer because of π .
 - (c) **Periodic**. $2\cos(3\pi t \frac{2\pi}{5})$, here, time shifting doesn't affect the fundamental period. It should be $\frac{2\pi}{3\pi}$. Thus,it has a fundamental period of $\frac{2}{3}$.
 - (d) **Periodic**. We should look at T_0 value that makes exponential 1, to be periodic. This happens when we add $\frac{2\pi}{5}$ to t.As a result, the value (fundamental period) T_0 for the function is $\frac{2\pi}{5}$.
- 5. For x[n] to be even: x[n] = x[-n] must hold for each $n \in \mathbb{N}$. However, for n=1; $x[1]=-1\neq 0=x[-1]$ Hence given signal is not even.

For x[n] to be odd: x[n] = -x[-n] must hold for each $n \in \mathbb{N}$. However, for n=1; $x[1]=-1\neq 0=-x[-1]$ Hence given signal is not odd.

Then, let us find even and odd decompositions of given signal:

$$\begin{split} Ev\{x[n]\} &= \frac{1}{2}x[n] + \frac{1}{2}x[-n] \\ Ev\{x[n]\} &= \frac{3}{2}\delta[n+7] - 2\delta[n+4] + \delta[n+2] + \frac{-1}{2}\delta[n+1] + \frac{-1}{2}\delta[n-1] + \delta[n-2] - 2\delta[n-4] + \frac{3}{2}\delta[n-7] \\ Odd\{x[n]\} &= \frac{1}{2}x[n] - \frac{1}{2}x[-n] \\ Odd\{x[n]\} &= \frac{-3}{2}\delta[n+7] + 2\delta[n+4] - \delta[n+2] + \frac{1}{2}\delta[n+1] + \frac{-1}{2}\delta[n-1] + \delta[n-2] - 2\delta[n-4] + \frac{3}{2}\delta[n-7] \end{split}$$

Figure 4: n vs. $Ev\{x[n]\}$ showing even decomposition of x[n].

Figure 5: n vs. $Odd\{x[n]\}$ showing odd decomposition of x[n].

- 6. (a) **memory**: Yes, e.g y(1)=x(-1), which implies memory. **stability**: Yes, it can be bounded for certain bounded inputs. **causality**: No, e.g y(4)=x(5), that is output from future input. **linearity**: Yes, it holds both scalarity and superposition;

 a.x(2t-3) will be equal to a.y(t) (scalarity)

 y(t) = a.x₁(2t-3) + b.x₂(2t 3) (superposition) **invertibility**: Yes, different outputs for different inputs. (one-to-one) **time invariance**: No, x(2t-3-t₀) will not be equal to y(t-t₀) = x(2(t-t₀)-3).
 - (b) **memory**: No, just depends on current value of t. **stability**: No, because e.g for x(t)=1, y=t that means not bounded for bounded input. **causality**: Yes, it can include up to and current value of t. **linearity**: Yes, it has scalarity and superposition principle.

```
a.tx(t) will be equal to a.y(t) (scalarity)
y(t) = a.tx<sub>1</sub>(t) + b.tx<sub>2</sub>(t) (superposition)
invertibility: Yes, different outputs for different inputs (one-to-one)
time – invariance: No, tx(t-t<sub>0</sub>) \neq y(t-t<sub>0</sub>) = (t-t<sub>0</sub>)x(t-t<sub>0</sub>)
```

(c) memory: Yes, y[1]=x[-1], that is, it needs memory.
stability:Yes, it can be bounded for bounded inputs.
causality: No, y[4]=x[5] meaning that it needs output of a future input.
linearity: Yes, it has scalarity and superposition principle.
a.x[2n-3] will be equal to a.y[n] (scalarity)
y[n] = a.x₁[2n-3] + b.x₂[2n - 3] (superposition)
invertibility: Yes, different outputs for different inputs. (one-to-one)
time - invariance: No, x[2n-3-n₀] will not be equal to y[n-n₀] = x[2(n-n₀)-3].

(d) **memory**: Yes, it needs memory because it is sum of previous values of current value. **stability**: No, it will be infinite, which cannot be bounded **causality**: Yes, independent from outputs of future inputs. **linearity**: Yes, it holds superposition and scalarity features. $a\sum_{k=1}^{\infty}x[n-k]$ will be equal to ay[n] (scalarity) $y[n] = a\sum_{k=1}^{\infty}x_1[n-k] + b\sum_{k=1}^{\infty}x_2[n-k]$ (superposition) **invertibility**: Yes, the inverse function will be w[n]=y[n]-y[n-1] **time** – **invariance**: Yes, $\sum_{k=1}^{\infty}x[(n-n_0)-k] = y[n-n_0]$