Part III Algebraic Topology - Michelmas 2014

Based on lectures by Dr. Jacob Rasmussen Notes by Alex J. Best

October 30, 2014

Contents

1	Introduction	1
2	Homotopy	2
3	Homotopy groups	3

1 Introduction

These are lecture notes for the 2014 Part III Algebraic Topology course taught by Dr. Jacob Rasmussen.

The recommended books are:

- Algebraic Topology Allen Hatcher,
- Homology Theory James W. Vick,
- Differential Forms in Algebraic Topology Raoul Bott and Loring W. Tu.

2 Homotopy

Lecture 1

Definition. Maps $f_0, f_1: X \to Y$ are said to be *homotopic* if there is a continuous map $F: X \times I \to Y$ such that

$$F(x,0) = f_0(x)$$
 and $F(x,1) = f_1(x) \ \forall x \in X$.

We let $\operatorname{Map}(X,Y) = \{f : X \to Y \text{ continuous}\}$. Then letting $f_t(x) = F(x,t)$ in the above definition we see that f_t is a path from f_0 to f_1 in $\operatorname{Map}(X,Y)$.

Examples. 1. $X = Y = \mathbf{R}^n$, $f_0(\overline{x}) = \overline{0}$ and $f_1(\overline{x}) = \overline{x}$ are homotopic via $f_t(\overline{x}) = t\overline{x}$.

- 2. $S^1 = \{z \in \mathbf{C} : |z| = 1\}$ then
- 3. $S^n = {\overline{x} \in \mathbf{R}^n : |\overline{x}| = 1}$

Lemma. Homotopy is an equivalence relation on Map(X, Y).

Definition.

$$[X,Y] = \operatorname{Map}(X,Y)/\sim = \text{set of homotopy classes of maps } X \to Y.$$

Lemma. If $f_0 \sim f_1 \colon X \to Y$ and $g_0 \sim g_1 \colon Y \to Z$ then $g_0 \circ f_0 \sim g_1 \circ f_1$.

Corollary. For any space X the set $[X, \mathbf{R}^n]$ has one element.

Proof. Define
$$0_X : X \to \mathbf{R}^n$$
 by $0_X(x) = 0 \in \mathbf{R}^n$ for any $x \in X$.

Definition. X is contractible if 1_X is homotopic to a constant map.

Proposition. Y is contractible \iff [X,Y] has one element for any space X.

Proof. (\Rightarrow) as in corollary. (\Leftarrow) [X, Y] has one element so $1_Y \sim$ a constant map.

Given a space X how can we tell if X is contractible? If X is contractible then it must be path connected for one.

Proof. Contractible implies that $[S^0, X]$ has one element and so $f: S^0 \to X$ extends to D^1 , and therefore X is path connected.

Similarly if $[S^1, X]$ has more than one element then X is not contractible.

Definitions. We say X is simply connected if $[S^1, X]$ has only one element.

We say two space X and Y are homotopy equivalent if there exists $f: X \to Y$ and $g: Y \to X$ such that $g \circ f \sim 1_X$ and $f \circ g \sim 1_Y$.

Example. X is contractible if and only if $X \sim \{p\}$.

Proof. X contractible $\implies 1_X \sim c$, a constant map. Choose $f: X \to \{p\}$, f(x) = p and $g: \{p\} \to X$, g(p) = c. Then $g \circ f = c \sim 1$ and $f \circ g = 1_{\{p\}}$. Converse: exercise.

Exercise. If $X_0 \sim X_1$ and $Y_0 \sim Y_1$ then $[X_0, Y_0]$ and $[X_1, Y_1]$ are in bijection.

Given X and Y how can we determine if $X \sim Y$? How do we determine [X,Y]? For example is $S^n \sim S^m$.

3 Homotopy groups

Definitions. A map of pairs $f:(X,A)\to (Y,B)$ is a map $f:X\to Y$ with sets $A\subset X$ and $B\subset Y$ such that $f(A)\subset B$.

If we have maps of pairs $f_0, f_1: (X,A) \to (Y,B)$ then we write $f_0 \sim f_1$ if there exists $F: (X \times I, A \times I) \to (Y,B)$ such that $F(x,0) = f_0(x)$ and $F(x,1) = f_1(x)$.

If $* \in X$ then the n^{th} homology group

$$\pi_n(X,*) = [(D^n, S^{n-1}) \to (X, \{*\})].$$

We now note several properties of this definition:

- 1. $\pi_0(X,*) = \text{set of path components of } X.$
- 2. $\pi_1(X,*)$ is a group. $\pi_n(X,*)$ is an abelian group.
- 3. π_n is a functor