- 1. An individual has one of three genotypes called A, B, and C, respectively, for a gene associated with disease X. The probability that an individual has genotype A is 0.5; the probability that an individual has genotype B is 0.4; and the probability that an individual has genotype C is 0.1. The probability that an individual with the A genotype is affected with disease X is 0.01. The probability that an individual with the B genotype is affected with disease X is 0.5. The probability that an individual with the C genotype is affected with disease X is 0.9.
 - a. What is the probability that an individual is affected with disease X? This part of the problem is worth 10 points.
 - b. Given that an individual has disease X, what is the probability that the individual is genotype B? This part is worth 40 points.

a.
$$P(AFFECTED) = P(AFFIA) P(A) + P(AFFIB) P(B) + P(AFFIC) P(C)$$

$$= (.01)(.5) + (.5)(.4) + (.9)(.1) =$$

$$= (0.005 + 0.20 + 0.09 = 0.295 = P(AFFECTED)$$

B.

COMPUTATIONAL ERROR (MINOR)

ACCEPT ANSWERS THAT ROUND OFF TO 3 DIGETS CORRECTLY. CORRECT OR NOT 10 PTS CORRECT OR NOT! 40 PTS.

- 1. An individual has one of three genotypes called *A*, *B*, and *C*, respectively, for a gene associated with disease *X*. The probability that an individual has genotype *A* is 0.6; the probability that an individual has genotype *B* is 0.3; and the probability that an individual has genotype *C* is 0.1. The probability that an individual with the *A* genotype is affected with disease *X* is 0.1. The probability that an individual with the *B* genotype is affected with disease *X* is 0.7. The probability that an individual with the *C* genotype is affected with disease *X* is 0.9.
 - a. What is the probability that an individual is affected with disease X? This part of the problem is worth 10 points.
 - b. Given that an individual has disease X, what is the probability that the individual is genotype C? This part is worth 40 points.

$$= 0.06 + .21 + .09 = 0.36$$

$$= 0.06 + .21 + .09 = 0.36$$

$$P(AFFECTED) = 0.36$$

$$= 0.06 + .21 + .09 = 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

$$= 0.36$$

-2 MINOR COMPUTATIONAL ERROR

ACCEPT ANSWERS THAT ROUND OFF TO 3 DIGETS CORRECTLY.

A CORRECT OR NOT 10 PTS

B CORRECT OR NOT 40 PTS

2. A research team took a random sample of 5 observations from the random variable Y, which had a normal distribution $N(\mu, \sigma^2)$. They observed $\bar{y}_5 = 44.2$, where \bar{y}_5 is the average of the 5 sampled observations and $s^2 = 138.9$ is the observed value of the unbiased estimate of σ^2 , based on the sample values (i.e., the divisor in the variance was n-1). Test the null hypothesis H_0 : E(Y) = 60 against H_1 : $E(Y) \neq 60$. Use levels of significance 0.10, 0.05, and 0.01. This problem is worth 40 points.

-20 ONE SIDED TEST.

-15 DE ERROR

a and a a

2. A research team took a sample of 4 observations from the random variable Y, which had a normal distribution $N(\mu, \sigma^2)$. They observed $\bar{y}_4 = 54.2$, where \bar{y}_4 is the average of the 4 sampled observations and $s^2 = 229.1$ is the observed value of the unbiased estimate of σ^2 , based on the sample values (i.e., the divisor in the variance was n-1). Find the 99% confidence interval for E(Y). This problem is worth 40 points.

3. A research team took a random sample of 3 observations from a normally distributed random variable Y and observed that $\bar{y}_3 = 148.6$ and $s_Y^2 = 327.4$, where \bar{y}_3 was the average of the 3 observations sampled from Y and s_Y^2 was the unbiased estimate of var(Y) (i.e., the divisor in the variance was n-1). A second research team took a random sample of 2 observations from a normally distributed random variable X and observed that $\bar{x}_2 = 89.1$ and $s_X^2 = 402.8$, where \bar{x}_2 was the average of the two observations sampled from X and s_X^2 was the unbiased estimate of var(X) (i.e., the divisor in the variance was n-1). Find the 99% confidence interval for E(X) - E(Y). This problem is worth 50 points.

$$\begin{aligned}
\mathbf{DF} &= 342 - 2 \\
\mathbf{DF} &= 3 \\
\mathbf{DE} \left(\mathbf{\overline{Y}}_{2} - \mathbf{\overline{y}}_{3} \right) = \mathbf{\overline{352.53}}. \\
&= \mathbf{\overline{352.53}} \left(\frac{1}{3} + \frac{1}{2} \right) \\
&= \mathbf{\overline{352.53}} \left(\frac{$$

3. A research team took a random sample of 6 observations from a normally distributed random variable Y and observed that $\bar{y}_6 = 148.6$ and $s_Y^2 = 227.4$, where \bar{y}_6 was the average of the 6 observations sampled from Y and s_Y^2 was the unbiased estimate of var(Y) (i.e., the divisor in the variance was n-1). A second research team took a random sample of 4 observations from a normally distributed random variable X and observed that $\bar{x}_4 = 128.0$ and $s_X^2 = 302.7$, where \bar{x}_4 was the average of 4 observations sampled from X and s_X^2 was the unbiased estimate of var(X) (i.e., the divisor in the variance was n-1). Test the null hypothesis H_0 : E(X) = E(Y) against the alternative H_1 : $E(X) \neq E(Y)$ at the 0.10, 0.05, and 0.01 levels of significance using the pooled variance t-test. This problem is worth 50 points.

$$S_{p}^{2} = \frac{5(227.4) + 3(302.7)}{8} = \frac{2045.1}{8} = \frac{255.64}{8}$$

$$= \frac{1486 - 1280 - 0}{\sqrt{255.64}(\frac{1}{6} + \frac{1}{4})} = \frac{20.6}{106.52} = \frac{20.6}{10.32}$$

$$= 1.996$$

$$= 1.996$$

$$= 1.96$$

$$= 1.96$$

$$= 1.96$$

$$= 1.96$$

$$= 3355 \text{ A}$$

REJECT HO; E(X) = E(Y) VS H; E(X) FELY) AT D=.10; ACCEPT AT D=.05 AND D=.01.

+15 CORRECT Sp.

-35 USE NORMAL VALUES, NOT T.

-35 NO DECISION OR INCONSTS TENT DECISION.

-35 NO (In + In) IN STANDARD ERROR.

-35 NO (In + In) IN STANDARD ERROR.

ACCEPT UNEQUAL VARIANCE TEST.

- 4. In a clinical trial, 2J patients suffering from an illness will be randomly assigned to one of two groups so that J will receive an experimental treatment and J will receive the best available treatment. The random variable X is the response of a patient to the experimental medicine, and the random variable B is the response of a patient to the best currently available treatment. Under the null hypothesis, both X and B are normally distributed with $\sigma_X = \sigma_B = 300$. The null hypothesis to be tested is that H_0 : E(X) - E(B) = 0 against the alternative hypothesis H_1 : E(X) - E(B) > 0 at the 0.025 level of significance.
 - a. What is the number J in each group that would have to be taken so that the probability of a Type II error for the test of the null hypothesis specified in the common section is 0.05 when E(X) - E(B) = 400 and $\sigma_X = 400$ and $\sigma_B = 300$. This part is worth 45 points.
 - b. What is the total number of subjects for this clinical trial? This part is worth 5 points.

b. What is the total number of subjects for this clinical trial? This part is worth 5 points.

Q.
$$\sqrt{J} > 13al\sqrt{\sigma_0^2 + \sigma_0^2} + 13al\sqrt{\sigma_0^2 + \sigma_0^2}$$
 $\sqrt{J} > 1.960\sqrt{380^2 + 360^2} + 1.645\sqrt{360^2 + 460^2}$
 $\sqrt{J} > 1.960(424.26) + 1.645(500)$
 $\sqrt{J} > 1.960(424.26) + 1.645(500)$
 $\sqrt{J} > 1.960$
 $\sqrt{$

B- CONSISTENT OR NOT

- 4. In a clinical trial, 2J patients suffering from an illness will be randomly assigned to one of two groups so that J will receive an experimental treatment and J will receive the best available treatment. The random variable X is the response of a patient to the experimental medicine, and the random variable B is the response of a patient to the best currently available treatment. Under the null hypothesis, both X and B are normally distributed with $\sigma_X = \sigma_B = 400$. The null hypothesis to be tested is that H_0 : E(X) – E(B) = 0 against the alternative hypothesis $H_1: E(X) - E(B) > 0$ at the 0.005 level of significance.
 - a. What is the number J in each group that would have to be taken so that the probability of a Type II error for the test of the null hypothesis specified in the common section is 0.01 when E(X) - E(B) = 200 and $\sigma_X = 500$ and $\sigma_B = 600$ 400. This part is worth 45 points.

b. What is the total number of subjects for this clinical trial? This part is worth 5

b. What is the total number of subjects for this clinical trial? This part is worth 5 points.

a.
$$\sqrt{3} > 2.576\sqrt{(100)^3 + (100)^3} + 2.326\sqrt{(500)^2 + (100)^3}$$
 $\sqrt{3} > 200$
 $\sqrt{3} >$

5. A research team took a random sample of 4 observations from a normally distributed random variable Y and observed that $\bar{y}_4 = 831.2$ and $s_Y^2 = 5,263.2$, where \bar{y}_4 was the average of the 4 observations sampled from Y and s_Y^2 was the unbiased estimate of var(Y). A second research team took a random sample of 5 observations from a normally distributed random variable X and observed that $\bar{x}_5 = 248.9$ and $s_X^2 = 3154.4$, where \bar{x}_5 was the average of the 5 observations sampled from X and s_X^2 was the unbiased estimate of var(X). Find the 95% confidence interval for $\frac{var(X)}{var(Y)}$. This problem is worth 50 points.

TABLE 8 Percentage points of the *F* distribution (df₂ between 1 and 6)

df_2	α	$\mathbf{df_1}$									
		1	2	3	4	5	6	7	8	9	10
1	.25	5.83	7.50	8.20	8.58	8.82	8.98	9.10	9.19	9.26	9.32
	.10	39.86	49.50	53.59	55.83	57.24	58.20	58.91	59.44	59.86	60.19
	.05	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9
	.025	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6
	.01	4052.2	4999.5	5403.3	5624.6	5763.7	5859.0	5928.4	5981.0	6022.5	6055.8
2	.25	2.57	3.00	3.15	3.23	3.28	3.31	3.34	3.35	3.37	3.38
	.10	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39
	.05	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40
	.025	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40
	.01	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40
	.005	198.5	199.0	199.2	199.2	199.3	199.3	199.4	199.4	199.4	199.4
	.001	998.5	999.0	999.2	999.2	999.3	999.3	999.4	999.4	999.4	999.4
3	.25	2.02	2.28	2.36	2.39	2.41	2.42	2.43	2.44	2.44	2.44
	.10	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24	5.23
	.05	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79
	.025	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42
	.01	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23
	.005	55.55	49.80	47.47	46.19	45.39	44.84	44.43	44.13	43.88	43.69
	.001	167.0	148.5	141.1	137.1	134.6	132.8	131.6	130.6	129.9	129.2
4	.25	1.81	2.00	2.05	2.06	2.07	2.08	2.08	2.08	2.08	2.08
	.10	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94	3.92
	.05	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96
	.025	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84
	.01	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55
	.005	31.33	26.28	24.26	23.15	22.46	21.97	21.62	21.35	21.14	20.97
	.001	74.14	61.25	56.18	53.44	51.71	50.53	49.66	49.00	48.47	48.05
5	.25	1.69	1.85	1.88	1.89	1.89	1.89	1.89	1.89	1.89	1.89
	.10	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30
	.05	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74
	.025	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62
	.01	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05
	.005	22.78	18.31	16.53	15.56	14.94	14.51	14.20	13.96	13.77	13.62
	.001	47.18	37.12	33.20	31.09	29.75	28.83	28.16	27.65	27.24	26.92
6	.25	1.62	1.76	1.78	1.79	1.79	1.78	1.78	1.78	1.77	1.77
	.10	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96	2.94
	.05	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06
	.025	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46
	.01	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87
	.005	18.63	14.54	12.92	12.03	11.46	11.07	10.79	10.57	10.39	10.25
	.001	35.51	27.00	23.70	21.92	20.80	20.03	19.46	19.03	18.69	18.41

Source: Computed by M. Longnecker using the R function $qf(1-\alpha,df_1,df_2)$. Additional values can be obtained using the same R function.

5. A research team took a random sample of 7 observations from a normally distributed random variable Y and observed that $\bar{y}_7 = 2,431.2$ and $s_Y^2 = 3,263.2$, where \bar{y}_7 was the average of the 7 observations sampled from Y and s_Y^2 was the unbiased estimate of var(Y). A second research team took a random sample of 6 observations from a normally distributed random variable X and observed that $\bar{x}_6 = 248.9$ and $s_X^2 = 4,315.4$, where \bar{x}_6 was the average of the 6 observations sampled from X and s_X^2 was the unbiased estimate of var(X). Find the 99% confidence interval for $\frac{var(X)}{var(Y)}$. This problem is worth 50 points.

SINCE VAR(X) IS TARGET OF CT.

TS N F (6,5)

F. 005, 5,6 = 11.40.

$$\frac{3}{2}$$
 = $\frac{4315.4}{3213.2}$ = 1.32

 $\frac{3}{2}$ = $\frac{4315.4}{3213.2}$ = 1.32

 $\frac{1}{11.46}$ (1.32) TO 14.51(1.32);

THIS IS. O.115 TO 19.2. FOR THE 299. CT FOR VAR(X)/VAR(Y)

-50 TWO SAMPLE TEST.

-15 EACH DE ERPOR EXCEPT REVERSAL.

-20 REVERSAL OF DES.

- 6. The random variable Z has expected value E(Z) = 0, var(Z) = 1, $E(Z^3) = 0$, and $E(Z^4) = 3$. Let Z_1 and Z_2 be a random sample of size 2 from Z. Let $T = Z_1^2 + Z_2^2$.
 - a. Find E(T). This part is worth 10 points.
 - b. Find var(T). This part is worth 50 points.

End of the Examination

Q,
$$E(Z^2) = VAR(Z) + [E(Z)]^2 = 1 + 0 = 1$$
.

 $E(T) = E(Z_1^2 + Z_2^2) = E(Z_1^2) + E(Z_2^2) = 1 + 1 = 2$.

 $E(T) = 2 = 10 \text{ pts} \text{ correct or Not.}$
 $VAR(Z^2) = E\{E(Z^2)Z^2 + E(Z^2)Z^2\}$
 $= E\{Z^4 - 2[E(Z^2)]Z^2 + [E(Z^2)]Z^2\}$
 $= E\{Z^4\} - (E(Z^2))^2 = E(Z^4) - [E(Z^2)]Z^2$
 $= 10 \text{ points each correct step}$
 $VAR(T) = VAR(Z_1^2 + Z_2^2)$
 $= VAR(Z_1^2) + VAR(Z_2^2) + 2 \text{ cov}(Z_1^2, Z_2^2)$
 $= 2 + 2 - 2 \cdot 0 = 4$

Stace $Cov(Z_1^2, Z_2^2) = 0$
 $VAR(T) = 4$

ALSO T=Z1+Z2 IS A CHT-SQUARE DIST WETH 2 DF. HENCE E(T)=DF OFT = 2. AND VAR(T)=2×(DFOFT)=2×2=4.