MoskaliovYV 01112024-161136

Задан двухполюсник на рисунке 1, причём R1 = 89.56 Om.

Рисунок 1 – Двухполюсник

Найти полуокружность (см. рисунок 2), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 2 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=0.81\text{-}0.24\mathrm{i}$.

Рисунок 3 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.547	155.7	4.597	67.2	0.063	55.9	0.261	-46.7
1.6	0.557	145.3	3.754	59.4	0.074	54.7	0.253	-50.7
1.9	0.575	136.6	3.146	52.1	0.087	52.6	0.245	-56.1
2.2	0.596	128.6	2.704	45.0	0.098	50.2	0.237	-62.5
2.5	0.617	120.7	2.370	38.5	0.109	47.5	0.229	-69.6
2.8	0.639	113.9	2.096	31.5	0.119	44.6	0.222	-77.5
3.1	0.660	107.7	1.882	25.7	0.129	41.9	0.215	-86.1
3.4	0.682	101.9	1.698	19.7	0.138	39.1	0.212	-95.3
3.7	0.702	96.7	1.544	14.1	0.147	36.3	0.211	-105.1

и частоты $f_{\scriptscriptstyle \rm H}=1.3$ ГГц, $f_{\scriptscriptstyle \rm B}=3.4$ ГГц.

Найти обратные потери по входу на $f_{\scriptscriptstyle \rm H}$.

- 1) 2.6 дБ
- 2) 5.2 дБ
- 3) 1.7 дБ
- 4) 3.3 дБ

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.557	164.3	5.587	74.3	0.050	58.2	0.270	-42.2
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.6	0.768	82.9	1.110	-3.3	0.173	29.1	0.237	-135.2

Найти точку (см. рисунок 4), соответствующую s_{11} на частоте 4 $\Gamma\Gamma$ ц.

Рисунок 4 — Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
4.4	0.492	169.9	6.393	57.0	0.063	50.9	0.240	-105.1
4.5	0.494	168.7	6.240	55.8	0.064	50.7	0.237	-106.3
4.6	0.496	167.6	6.102	54.9	0.065	50.4	0.235	-107.4
4.7	0.497	166.6	5.965	53.9	0.066	50.2	0.232	-108.5
4.8	0.499	165.6	5.831	52.8	0.067	49.9	0.229	-109.7
4.9	0.501	164.5	5.698	51.7	0.068	49.6	0.227	-110.9
5.0	0.503	163.5	5.568	50.6	0.070	49.4	0.224	-112.1
5.1	0.501	162.6	5.457	49.8	0.071	49.2	0.223	-112.6
5.2	0.500	161.8	5.348	48.9	0.073	49.1	0.221	-113.1
5.3	0.499	160.9	5.240	48.0	0.074	49.0	0.219	-113.6
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1

и частоты $f_{\scriptscriptstyle \rm H}=4.6~\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=5.4~\Gamma\Gamma$ ц. **Найти** модуль s_{21} в д ${\rm B}$ на частоте $f_{\scriptscriptstyle \rm H}$.

- 1) 15.7 дБ
- 2) -23.7 дБ
- 3) -6.1 дБ
- 4) -12.6 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.4	0.470	-159.6	11.766	80.7	0.039	51.5	0.301	-79.9
2.5	0.470	-161.8	11.306	79.3	0.040	51.6	0.294	-81.7
2.6	0.471	-164.0	10.854	77.7	0.041	51.7	0.288	-83.6
2.7	0.472	-166.0	10.453	76.4	0.042	51.8	0.282	-85.3
2.8	0.473	-168.0	10.058	75.0	0.043	51.9	0.278	-87.1
2.9	0.474	-169.7	9.714	73.8	0.045	51.9	0.274	-88.7
3.0	0.476	-171.3	9.374	72.5	0.046	51.9	0.271	-90.3
3.1	0.476	-172.8	9.096	71.5	0.047	51.9	0.268	-91.4
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
3.3	0.477	-175.9	8.549	69.3	0.049	52.0	0.263	-93.8
3.4	0.478	-177.4	8.281	68.1	0.050	52.1	0.261	-95.0

и частоты $f_{\mbox{\tiny H}}=2.7$ ГГц, $f_{\mbox{\tiny B}}=3.3$ ГГц.

Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

- 1) 1.7 дБ
- 2) 1 дБ
- 3) 3.1 дБ
- 4) 0.9 дБ