Assignment 5

Ran Liu 903515184 RLIU361@GATECH.EDU

Problem 1

question 1

Indices: i = 1, 2, ..., N and j = 1, 2, ..., N for different products. s = 1, 2, ..., M and t = 1, 2, ..., M for different inputs. k = 1, 2, ..., q for different linear constraints.

Variables: The definition of variables is put before the definition of data in order to clarify the definition of data. x_i is the amount of product i that is sold. y_s is the amount of inputs s that is purchased.

Data:

- $A_{i,j}$ and b_i together form the price of the products $P_x = b Ax$, where the *i*th entry of the vector $(P_x)_i = b_i - \sum_{i=1}^N A_{i,j} x_j$.
- $C_{s,t}$ and d_s together form the price of the inputs $P_y = d + Cy$, where the sth entry of the vector $(P_y)_s = d_s + \sum_{t=1}^M C_{s,t} y_t$.
- $E_{k,j}$, $F_{k,t}$, and g_k together form q linear constraints $Ex + Fy \leq g$, where for the kth constraint, $\sum_{j=1}^{N} E_{k,j} x_j + \sum_{t=1}^{M} F_{k,t} y_t \leq g_k$.

Objective: maximize $xP_x - yP_y$, which equals maximizing $\sum_{i=1}^{N} (x_i b_i - \sum_{j=1}^{N} A_{i,j} x_j x_i) \sum_{s=1}^{M} (y_s d_s + \sum_{t=1}^{M} C_{s,t} y_t y_s)$ Constraints: $\sum_{j=1}^{N} E_{k,j} x_j + \sum_{t=1}^{M} F_{k,t} y_t \leq g_k \text{ for every } k.$

question 2

Result as shown in Figure 1.

Figure 1

Problem 2

question 1

Indices: i = 1, 2, ..., m for different dimensions in space R^m . j = 1, 2, ..., n for different dimensions in space R^n .

Data: $A \in \mathbb{R}^{m \times n}$ is a matrix with $A_{i,j}$ as its entry at *i*th row and *j*th column. a_i^T is the *i*th row of the matrix A. $b \in \mathbb{R}^m$ is a vector with b_i as its *i*th entry.

Variables: x_j is the decision variable. y_i is the auxiliary variable that represent each reciprocals.

Objective: minimize $\sum_{i=1}^{m} y_i$

Constraints:

- $\|(2, a_i^T x b_i y_i)\|_2 \le a_i^T x b_i + y_i$ for every i. This is because $y_i \ge \frac{1}{a_i^T x b_i}$. Since $y_i \ge 0$ and $a_i^T x b_i \ge 0$, $y_i \ge \frac{1}{a_i^T x b_i}$ equals $\|(2, a_i^T x b_i y_i)\|_2 \le a_i^T x b_i + y_i$.
- $a_i^T x b_i \ge 0$ for every i, so that Ax > b.
- $a_i^T x b_i + y_i \ge 0$ for every i, this constraint may be redundant but is a must for Gurobi program.

Bounds: $y_i \ge 0$.

Note: Assume x_0 is the optimal solution, $\frac{1}{x_0}$ is the optimal solution for the original question.

question 2

Result as shown in Figure 2.

Note: Assume x_0 is the optimal solution, $\frac{1}{x_0}$ is the optimal solution for the original question.

Figure 2

Problem 3

question 1

Indices: i = 1, 2, ..., m for different dimensions in space R^m , and j = 1, 2, ..., n for different dimensions in space R^n .

Data: $M \in \mathbb{R}^{m \times n}$ is a matrix with $M_{i,j}$ as its entry at *i*th row and *j*th column. $b \in \mathbb{R}^m$ is a vector with b_i as its *i*th entry.

Variables: z_j is the decision variable. x_i is the auxiliary variable that represent the square of the *i*th entry of Mz - b.

Objective: minimize $\sum_{i=1}^{m} x_i x_i$

Constraints: $x_i \geq (\sum_{j=1}^n M_{i,j} z_j - b_i)(\sum_{j=1}^n M_{i,j} z_j - b_i)$ for every i.

Bounds: $x_i \geq 0$.

Note: Assume x_0 is the optimal solution, $x_0^{1/4}$ is the optimal solution for the original question.

question 2

Result as shown in Figure 3.

Note: Assume x_0 is the optimal solution, $x_0^{1/4}$ is the optimal solution for the original question.

Figure 3

Problem 4

question 1

The KKT conditions for Q

- $\bullet \ \vec{c} E^T \vec{\mu} + A^T \vec{\lambda} = 0$
- $\vec{d} E\vec{x} \le 0$
- $\bullet \ \ A\vec{x} \vec{b} = 0$

- $\vec{\mu} > \vec{0}$
- $\bullet \ \vec{\mu}^T(\vec{d} E\vec{x}) = 0$

The KKT conditions for Q_{ρ}

- $\bullet \ \vec{c} + \rho A^T (A\vec{x} \vec{b}) E^T \vec{\mu} = 0$
- $\vec{d} E\vec{x} < 0$
- $\vec{\mu} > \vec{0}$
- $\bullet \ \vec{\mu}^T(\vec{d} E\vec{x}) = 0$

The conditions that a Q_{ρ} KKT point can be used to generate a Q KKT point Combine the KKT conditions of Q, we can get the KKT point would satisfy the equation $\vec{x^T}\vec{c} - \vec{d^T}\vec{\mu} + \vec{b^T}\vec{\lambda} = 0$. Similarly, the KKT conditions of Q_{ρ} can be combined, and we can get the KKT point of Q_{ρ} would satisfy the equation $\vec{x^T}\vec{c} + \rho\vec{x^T}A^T(A\vec{x} - b) - \vec{d^T}\vec{\mu} = 0$.

When a Q_{ρ} KKT point can be used to generate a Q KKT point, the KKT point $\vec{x_{\rho}}$ that satisfy the equation $\vec{x_{\rho}}\vec{c} + \rho\vec{x_{\rho}}\vec{A}^T(A\vec{x_{\rho}} - \vec{b}) = \vec{d^T}\vec{\mu}$ would also satisfy $\vec{x_{\rho}}\vec{c} + \vec{b^T}\vec{\lambda} = \vec{d^T}\vec{\mu}$. From the KKT conditions, we can see that $A\vec{x_{\rho}} - b = 0$ must be satisfied to be a Q KKT point candidate. Thus, $\vec{b^T}\vec{\lambda} = 0$ and thus $\vec{\lambda} = 0$.

Conclusion: when $A\vec{x_{\rho}} - b = 0$, a Q_{ρ} KKT point can be used to generate a Q KKT point and at that time, $\vec{\lambda} = 0$ should be satisfied for that Q KKT point.

question 2

Result as shown in Figure 4.

Figure 4

question 3

Result as shown in Figure 5 and 6.

Observation: when the value of ρ increases, the distance/difference between z and z_{ρ} decreases to zero as well as the value of the norm of $Az_{\rho} - b$ decreases to zero. This result supports the conclusion in question (a), where the conclusion says that when $Az_{\rho} - b = 0$,

 z_{ρ} is a KKT point of Q as well. It also indicates that in Gurobi (or any other computer programs), the optimal solution is not exactly the theoretical solution but a reasonable approximation. When ρ is comparably small, the product of ρ and $Az_{\rho} - b$ would be comparably small and close to zero so that there still remains a noticeable $Az_{\rho} - b$ value. However, when ρ is comparably big, $Az_{\rho} - b$ would need to be closer to zero so that the product of ρ and $Az_{\rho} - b$ could be comparably small. Hence, the raw value of $Az_{\rho} - b$ would be close to zero.

Figure 5

Figure 6