```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        import math
        import re
        import lmdiag
In [2]: data = pd.read csv('cars.csv')
        data.head(3)
Out[2]:
            speed dist
                    2
                   10
In [3]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 50 entries, 0 to 49
        Data columns (total 2 columns):
                 50 non-null int64
        speed
                 50 non-null int64
        dist
        dtypes: int64(2)
        memory usage: 928.0 bytes
        data.corr()
In [4]:
Out[4]:
                 speed
                           dist
         speed 1.000000 0.806895
```

dist 0.806895 1.000000

$$slope = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x}^2)}$$

$$y - intercept = \bar{y} - m\bar{x}$$

```
In [6]: Xbar = data['speed'].mean()
          Ybar = data['dist'].mean()
 In [7]: data['X-Xbar'] = data['speed'] - Xbar
          data['Y-Ybar'] = data['dist'] - Ybar
          data['(X-Xbar)(Y-Ybar)'] = data['X-Xbar']*data['Y-Ybar']
          data['(X-Xbar)sqr'] = data['X-Xbar']**2
 In [8]:
         data.head()
 Out[8]:
             speed dist X-Xbar Y-Ybar (X-Xbar)(Y-Ybar) (X-Xbar)sqr
                     2
          0
                          -11.4 -40.98
                                             467.172
                                                         129.96
                     10
                          -11.4
                               -32.98
                                             375.972
                                                         129.96
                     4
                           -8.4 -38.98
                                             327.432
                                                         70.56
                           -8.4 -20.98
                                             176.232
                                                         70.56
                     22
                     16
                           -7.4 -26.98
                                             199.652
                                                         54.76
 In [9]: slope nume = data['(X-Xbar)(Y-Ybar)'].sum()
          slope denom = data['(X-Xbar)sqr'].sum()
          slope = slope nume/slope denom
          slope
 Out[9]: 3.932408759124088
In [10]: y_intercept = Ybar - (slope*Xbar)
          y intercept
Out[10]: -17.57909489051096
```

Out[11]:

	speed	dist	X-Xbar	Y-Ybar	(X-Xbar)(Y-Ybar)	(X-Xbar)sqr	Y-pred
0	4	2	-11.4	-40.98	467.172	129.96	-1.849460
1	4	10	-11.4	-32.98	375.972	129.96	-1.849460
2	7	4	-8.4	-38.98	327.432	70.56	9.947766
3	7	22	-8.4	-20.98	176.232	70.56	9.947766
4	8	16	-7.4	-26.98	199.652	54.76	13.880175

```
In [12]: plt.scatter(data['speed'],data['dist'])
    plt.plot(data['speed'],data['Y-pred'],'r')
    plt.show()
```



```
In [13]: data['Y- Ypredsqr'] = (data['dist'] - data['Y-pred'])**2
```

```
In [14]: mse = data['Y- Ypredsqr'].mean()
    print(mse)
    rmse = math.sqrt(mse)
    print(rmse)
```

227.07042102189777 15.068855995791377

Model Building

0.0167

50.7

```
In [15]: import statsmodels.formula.api as smf
model = smf.ols(formula='dist~speed',data = data).fit()
print(model.summary())
```

OLS Regression Results

Dep. Variab	le:	(dist R-so	 quared:		0.651		
Model:			OLS Adj.	R-squared:		0.644		
Method:		Least Squa	ares F-st	catistic:		89.57 1.49e-12		
Date:	S	un, 09 Feb 2	2020 Prob	(F-statisti	.c):			
Time:		18:26	5:34 Log-	Log-Likelihood:				
No. Observa	tions:		50 AIC:	:		417.2		
Df Residual	s:		48 BIC:	•		421.0		
Df Model:			1					
Covariance Type:		nonrob	oust					
=======	coef	std err	t	P> t	[0.025	0.975]		
Intercept	-17.5791	6.758	-2.601	0.012	-31.168	-3.990		
speed	3.9324	0.416	9.464	0.000	3.097	4.768		
Omnibus:	=======	 . 8	======= .975 Durt	======== oin-Watson:	:=======	 1.676		
Prob(Omnibu	s):	0.011 Jarque-Bera (JB):						

0.885

3.893

Warnings:

Kurtosis:

Skew:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB):

Cond. No.

```
In [16]: data['model pred'] = model.predict(data['speed'])
          data.head()
Out[16]:
             speed dist X-Xbar Y-Ybar (X-Xbar)(Y-Ybar) (X-Xbar)sgr
                                                                    Y-pred Y- Ypredsgr model pred
           0
                      2
                                 -40.98
                                              467.172
                           -11.4
                                                           129.96
                                                                 -1.849460
                                                                            14.818341
                                                                                        -1.849460
                      10
                           -11.4
                                 -32.98
                                              375.972
                                                           129.96
                                                                 -1.849460
                                                                            140.409699
                                                                                        -1.849460
                      4
                            -8.4
                                 -38.98
                                              327.432
                                                           70.56
                                                                  9.947766
                                                                            35.375925
                                                                                         9.947766
                           -8.4
                     22
                                -20.98
                                              176.232
                                                           70.56
                                                                  9.947766
                                                                           145.256334
                                                                                         9.947766
                            -7.4 -26.98
                                              199.652
                                                           54.76 13.880175
                     16
                                                                             4.493657
                                                                                        13.880175
         math.sqrt(sum((model.resid)**2)/len(data))
In [17]:
Out[17]: 15.068855995791377
In [18]: from sklearn.metrics import mean squared error, mean absolute error
         mean squared error(data['dist'],data['model pred'])
In [19]:
Out[19]: 227.07042102189777
          mean_absolute_error(data['dist'],data['model_pred'])
In [20]:
Out[20]: 11.580119124087592
In [21]: # Method 2
          import statsmodels.api as sm
In [22]: X = data['speed']
          Y = data['dist']
```

```
In [23]: X = sm.add_constant(X)
    model1 = sm.OLS(Y,X).fit()
    print(model1.summary())
```

OLS Regression Results

dist	R-squared:	0.651						
OLS	Adj. R-squared:	0.644						
Least Squares	F-statistic:	89.57						
Sun, 09 Feb 2020	<pre>Prob (F-statistic):</pre>	1.49e-12						
18:26:34	Log-Likelihood:	-206.58						
50	AIC:	417.2						
48	BIC:	421.0						
1								
	OLS Least Squares Sun, 09 Feb 2020 18:26:34 50	OLS Adj. R-squared: Least Squares F-statistic: Sun, 09 Feb 2020 Prob (F-statistic): 18:26:34 Log-Likelihood: 50 AIC:						

Covariance Type: nonrobust

========	========	========	========	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
const speed	-17.5791 3.9324	6.758 0.416	-2.601 9.464	0.012 0.000	-31.168 3.097	-3.990 4.768
========	========	========	========	========	========	========
Omnibus:		8	.975 Durl	oin-Watson:		1.676
Prob(Omnib	us):	0	.011 Jaro	que-Bera (JE	3):	8.189
Skew:	•	0	.885 Prol) (JB):	•	0.0167
Kurtosis:		3	.893 Cond	d. No.		50.7
========	=======	========	=======		========	========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

C:\Users\admin\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:2389: FutureWarning: Method .ptp is deprecated and
will be removed in a future version. Use numpy.ptp instead.
 return ptp(axis=axis, out=out, **kwargs)

```
In [ ]:
```

Residual Analysis

```
In [25]: sns.distplot(model.resid)
   plt.savefig('dist.png')
   plt.show()
```


In [26]: plt.figure(figsize=(10,5))
lmdiag.plot(model)

Out[26]: <module 'matplotlib.pyplot' from 'C:\\Users\\admin\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>


```
In [27]: sm.graphics.qqplot(model.resid,line='s')
plt.savefig('qqplot.png')
plt.show()
```


Hypothesis Testing with Shapiro Wilk Test

- Null Hypothesis If pvalue > 0.05 then accept the model
- Alternate Hypothesis If pvalue < 0.05 then reject the model

```
In [28]: from scipy.stats import shapiro
shapiro(model.resid)
```

Out[28]: (0.9450905919075012, 0.02152460627257824)

From above Pvalue we are rejecting the Null Hypothesis

```
In [29]: sm.graphics.influence_plot(model)
    plt.show()
```



```
In [30]: influ = model.get_influence()
    cooks = influ.summary_frame()
    cooks.head()
```

Out[30]:

	dfb_Intercept	dfb_speed	cooks_d	standard_resid	hat_diag	dffits_internal	student_resid	dffits
0	0.094402	-0.086246	0.004592	0.266042	0.114861	0.095836	0.263450	0.094903
1	0.292425	-0.267160	0.043514	0.818933	0.114861	0.295005	0.816078	0.293977
2	-0.107498	0.093693	0.006202	-0.401346	0.071504	-0.111376	-0.397812	-0.110396
3	0.218976	-0.190855	0.025467	0.813266	0.071504	0.225687	0.810353	0.224879
4	0.034075	-0.029014	0.000645	0.142162	0.059971	0.035907	0.140703	0.035539

```
In [31]: sns.scatterplot(cooks.index,cooks.cooks_d,data=cooks)
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x21b05be9688>

In [32]: cooks[cooks['cooks_d']>0.08]

Out[32]:

	dfb_Intercept	dfb_speed	cooks_d	standard_resid	hat_diag	dffits_internal	student_resid	dffits
22	0.248506	-0.115581	0.085552	2.795166	0.021431	0.413647	3.022829	0.447338
48	-0.577473	0.769020	0.340396	2.919060	0.073985	0.825101	3.184993	0.900270

From above we can say that row no.s 22 and 48 are considered outliers. So remove those from data

```
In [33]: outliers = cooks[cooks['cooks_d']>0.08].index
    new_data = data.drop(labels=outliers)
    data.shape,new_data.shape
    new_data.head()
```

Out[33]:

	speed	dist	X-Xbar	Y-Ybar	(X-Xbar)(Y-Ybar)	(X-Xbar)sqr	Y-pred	Y- Ypredsqr	model_pred
0	4	2	-11.4	-40.98	467.172	129.96	-1.849460	14.818341	-1.849460
1	4	10	-11.4	-32.98	375.972	129.96	-1.849460	140.409699	-1.849460
2	7	4	-8.4	-38.98	327.432	70.56	9.947766	35.375925	9.947766
3	7	22	-8.4	-20.98	176.232	70.56	9.947766	145.256334	9.947766
4	8	16	-7.4	-26.98	199.652	54.76	13.880175	4.493657	13.880175

smf model

386.1

```
In [34]: new model = smf.ols(formula='dist~speed',data=new data).fit()
         print(new_model.summary())
                                     OLS Regression Results
```

Dep. Variable: dist R-squared: 0.702 Adj. R-squared: Model: OLS 0.695 Least Squares Method: F-statistic: 108.3

Sun, 09 Feb 2020 Prob (F-statistic): Date: 1.13e-13 18:26:37 Log-Likelihood: Time: -189.16 No. Observations: AIC: 382.3 48

BIC:

46 Df Model:

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept speed	-15.5336 3.6812	5.699 0.354	-2.726 10.405	0.009 0.000	-27.005 2.969	-4.062 4.393
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):		320 Jarque 479 Prob(J		:	1.907 1.837 0.399 50.2

Warnings:

Df Residuals:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [35]: new y pred = new model.predict(new data['speed'])
```

```
In [36]: new mse = mean squared error(new data['dist'], new y pred)
```

```
In [37]:
        math.sqrt(new_mse)
```

Out[37]: 12.453279858508711

```
In [38]: sns.distplot(new_model.resid)
   plt.savefig('finaldist.png')
   plt.show()
```


In [39]: shapiro(new_model.resid)

Out[39]: (0.9790715575218201, 0.5406291484832764)