

2021 企業疊合數據競賽

團隊名稱:	
團隊成員:	下次會更好(團隊名稱)
	(隊長)簡辰穎
	(隊員)蔡睿芸

		消費者族群購物周期及商品預測
		熱門巧克力和餅乾口味變化預測
題目名稱:		創造出 AI 新時代股票投資的新方式
		快篩試劑需求量預估方式
		使用者訂閱行為預測
	\square	安全庫存預測
		疊合題目 1「提出一解決方案,運用 AI 與大
	數據	,改善或優化金融市場客戶需求之問題」
		疊合題目 2「提出一數據模型,預測消費市
	場變個	化及消費者食品口味趨勢 」
		疊合題目 3「提出一新的演算模型或商模機
	制,†	劦助我國的商圈及實體店家・掌握疫情逐漸復
	甦後的	的商業機會」

中華民國 110 年 10 月 03 日

※申請團隊保證申請文件所列資料及附件均屬實※ ※若有偽造不實者或侵權行為,申請團隊須負完全之法律責任※

一、參賽團隊基本資料

(團隊成員須與官網上報名隊伍相同·請於繳件時於系統確認·不符者主辦單位有權取消其領 獎資格)

參賽團隊介紹

隊伍:	名稱	下次會更好				
團隊:	介紹	持續進步,下次會更好				
Ν	角色	姓名	服務單位或就讀學校	專長與經歷		
1	隊長	簡辰穎	國立陽明交通大學	● 資訊管理與財務金融學系		
				● 參與蝦皮 2020 I'm the best coder 競		
				賽		
				● 參與路博邁 x 交大金融科技數據應用		
				黑客松		
				● 參與 2020 Shopee Code League		
2	隊員	蔡睿芸	國立台北教育大學	● 資訊科學系		
				● 曾參與蝦皮 2020 I'm the best coder		
				競賽		
				● 擁有 Microsoft AI-900 證照		
				● 參與 2020 Shopee Code League		

二、構想說明(頁數建議3~8頁)

(一) 提案摘要及目的

- 1. 出題企業遇到的痛點:
 - A. 大量資料,無法直接以視覺化的方式得出結論
 - B. 企業永遠無法知道客戶的消費需求為何·因此需要透過大量的數據分析來進行預測·以得到相對合理的結果
 - C. 若無法提前預知應該儲備多少貨物量,等到儲備量完全沒有時才進行貨物訂購,將會大幅 提升銷售成本
- 2. 解題構想的摘要
 - A. 由於我們所要預測的安全庫存量並未在資料中發現. 因此希望以非監督式學習的方式建構模型. 將具有相似特點的資料進行比對. 用以分析生產線所需準備的安全庫存量
 - B. 將資料分組,建立叢集模型
- 3. 產品或服務對企業或產業環境的幫助
 - A. 若能夠透國所提供的資料,正確預測出安全庫存量,不僅可以幫助企業提前備好所需的貨物,避免客戶需要購買的商品沒貨,還可以幫助他們管理與供應商之間的關係,供應商能夠再得知企業的貨物數量低於安全庫存量時,主動詢問企業是否需要供貨
 - B. 擁有自己的庫存能夠使廠商批量購買商品時,在價格談判方面也可以有優勢
 - C. 可涌過比對自己目前的庫存量與所預測的安全庫存量,來大大減少訂購與交貨之間的時間
- 4. 技術面的突破與創新
 - A. 運用機器學習的方式進行預測·取代過去透過直覺經驗的方式來決定供貨商的行銷方針
 - B. 針對貨物數量的重要性與產值的重要性進行重點分析,從而輔助協助企業達到合理配置庫存,相比過往純粹由人工進行觀察和分析,不只可以減少一些人為分析的錯誤,也能降低企業的人力成本

(二) 數據運用

- 企業數據採用:主辦方所提供的電子庫存採購分類資料集
- 我們選擇了使用 python 語言作資料整理·運用 pandas、numpy 等套件進行清理資料·並以 matplotlib 將資料可視化·便於接下來的分析
- 首先,我們先進行了缺失值檢查,檢查資料中是否存在缺失值
- 接著·由於資料數較少·不利於模型的訓練·因此我們通過 data engineering·利用現有資料 衍生出更多的資料以利於後續的模型訓練
- 最後,進行 feature selection,我們將資料中我們認為對於預測結果「最可能有直接關係」的特 徵選出,作為模型訓練的主要特徵來進行分組

(三) 提案應用與技術架構

提案應用:

- 我們預期透過給予資料中的訂購數量、數量重要性以及產值重要性三個主要特徵進行安全庫存量進行分析
- 將模型部署至雲端服務上,供企業或廠商使用
- 當客戶訂購的商品數量越多且其數量重要性、產值重要性皆為 A 時,我們可以猜想這項商品可能對於客戶而言需求量大且非常重要,所需的安全庫存量相對來說也會需要較多,以防沒有貨物供給給顧客,造成顧客損失等情形
- 我們整體的服務設計流程是希望能跟 SCM(供應鏈管理系統)一同應用,在透過我們的模型預測 出適合的安全庫存量以後,搭配供應鏈管理系統時時監測庫存量與安全庫存量,並即時向供應 商進貨

技術架構:

- 以向量化的特徵定義 n 維度座標,以便於接下來 K-Means Clustering 的視覺理解
- 由於選用非監督式學習,我們以 K-Means Clustering 為主要演算法,重複設立每個組別的 centroid,以找到最合適的 K value

- 由於欄位中的資料多為名稱而非類別,因此我們利用遮罩將部分類別的內容修正為數值,以便 於資料叢集的處理
- 由於我們目前的資料量過少,即使是經過 data engineering,訓練出的模型也極有可能發生過度擬合,使得模型的預測效果不合適於真實世界中的應用。有鑑於此,我們期望未來能夠找到更多相關 open data,以解決資料量不足的問題,並進一步讓模型預測能達到更好的效果

技術流程(參考):

(四)預期成果與效益

解決庫存量不足才進行補貨,造成成本增加的問題

- 預期以服務的形式部署到 linebot 展現成果·店家可以直接在 line 上看到由模型預測出的安全庫存量
- 若能夠進一步取得企業目前的庫存量資料,我們甚至也可以直接在 line 上取得各商品的現行庫存數據,並在模型預測出安全庫存量為多少時,當發現目前庫存量小於安全庫存量時,發送訊息提醒企業應該要進行進貨,避免庫存不足的問題
- 我們期望未來能更進一步的與其他的雲端服務並用,讓此模型的功能得到更深的推廣

