Online Estimation of Inertial Parameters Using a Recursive Total Least-Squares Approach

François Le Rall

Nomagic - Robotic Seminar

2019

Overview

- Definition of the problem
- 2 Estimation of the inertial parameters
 - Estimation method
 - Relevance of a recursive least-square algorithm
- Performance improvement
 - Estimation of the sensor offsets
 - Estimation of the error sensitivity
- Details of the Recursive Total Least-Squares Method

Definition of the problem

- F/T sensor Gamma measuring:
 - force ${}^{S}f$,
 - \bullet torque ${}^{\it S} au$,
 - in the sensor frame *S*.
- Payload grasped by the suction tool:
 - mass m.
 - center of mass ${}^{S}c$,
 - moment of inertia ^SI,
 - linear acceleration ^Sa,
 - angular acceleration ${}^{S}\alpha$,
 - angular velocity ${}^{S}\omega$,
 - gravity ^{S}g .

Definition of the problem

How to make a reliable online estimation of the weight of the item grasped?

Newton-Euler Approach

The motion of the body due to external forces is described by the two equations:

$${}^{S}f = m^{S}a - m^{S}g + {}^{S}\alpha \times m^{S}c + {}^{S}\omega \times ({}^{S}\omega \times m^{S}c)$$
 (1)

$${}^{S}\tau = {}^{S}I^{S}\alpha + {}^{S}\omega \times ({}^{S}I^{S}\omega) + m^{S}c \times {}^{S}a - m^{S}c \times {}^{S}g \qquad (2)$$

also in matrix form:

with
$$^S \varphi = (m, m^S c_x, m^S c_y, m^S c_z, ^S I_{xx}, ^S I_{xy}, ^S I_{yz}, ^S I_{yz}, ^S I_{yz}, ^S I_{zz})^T$$

Optimisation problem

During the motion of the payload, M $^{S}A_{ext}$ matrices are compiled at subsequent instants of time:

$${}^{S}A_{\Xi} = [{}^{S}A_{1}^{TS}A_{2}^{T}\dots {}^{S}A_{M}^{T}]^{T}$$

$$\tag{4}$$

$$\begin{pmatrix} s_f \\ s_\tau \end{pmatrix}_{\equiv} = \left[\begin{pmatrix} s_f \\ s_\tau \end{pmatrix}_1^T \begin{pmatrix} s_f \\ s_\tau \end{pmatrix}_2^T \dots \begin{pmatrix} s_f \\ s_\tau \end{pmatrix}_M^T \right]^T$$
 (5)

The optimization problem is the following, for every instant of time $(\Xi \text{ batch of size } M)$:

$$\begin{array}{ll} \underset{S_{\varphi_M}}{\text{minimize}} & \left\| \begin{pmatrix} s_f \\ s_\tau \end{pmatrix}_{\Xi} - {}^{S}A_{\Xi}{}^{S}\varphi_M \right\| \\ \text{subject to} & m_M \geq 0 \\ c_{zM} \geq 0 \end{array}$$

Comparison of different methods

- Recursive Least-Squares methods
 - Error model: $\binom{s_f}{s_\tau} = +e = {}^{s}A_{\Xi}{}^{s}\varphi$.
 - Errors in the data matrix ${}^{S}A_{\equiv}$ are not considered.
- Recursive Instrumental Variables Method
 - Yield unbiased estimates in the presence of correlated noise.
 - Errors in the data matrix ${}^{S}A_{\equiv}$ are not considered.
- Recursive Total Least-Squares (RTLS) Method
 - More appropriate error model: $\binom{s_f}{s_\tau} = e = (s_{\Xi} + E)^s \varphi$.
 - Require update of the Singular Value Decomposition (SVD) at each estimation cycle with a complexity $O(mn \min(n, m))$.

Recursive Total Least-Squares (RTLS) Method

Figure: In contrast with LS approach, TLS approach considers errors in both x- and y-directions.

Relevance of a recursive least-square algorithm

- The recursive least-squares methods seems to be relevant for online estimation of inertial parameters.
- The payload can be estimated at the end of the placement move to the item recognition position.
- The optimisation problem become:

→ Is it necessary to have online update of the inertial parameters?

My next steps

- Test a simplified version of the method:
 - Least-squares method only
 - Test on different items and differents trajectories
- Test of the recursive total methods:
 - Comparison of the running time of each method
- Setup performance improvement:
 - Estimation of the sensor offsets
 - ullet Estimation of the sensitivity of ${}^{\mathcal{S}} arphi$ to error
 - (wide open for suggestions)

Estimation of the sensor offsets

Strain gage force/torque sensors typically show offsets that would deteriorate the estimation.

- Currently, the sensor is reset every 20/25 iterations (it takes a couple of second),
- Directly estimating the sensor offsets.

The number of parameters to estimate increase from 10 to 16:

$${}^{S}\varphi_{ext} = [f_{O_x}, f_{O_y}, f_{O_z}, {}^{S}\varphi]^T$$
(6)

$${}^{S}A_{ext} = [\mathbb{I}_{6\times 6}{}^{S}A] \tag{7}$$

Drift effects can be neglected since the estimation duration is quite small ($\sim 3s$)

Estimation of the sensitivity of $^{S}\varphi$ to error

Considering the correlation matrix Υ consisting of M SA matrices 1 :

$$\Upsilon = {}^{S}A_{\Xi}^{TS}A_{\Xi} \tag{8}$$

The sensitivity of ${}^{S}\varphi$ to error can be shown to increase with the condition number $\kappa(\Upsilon)$.

¹The correlation matrix should be computed with the experimental joint angle setpoints.

²The condition number of a function measures how much the output value of the function can change for a small change in the input argument: $\lim_{\varepsilon \to 0} \sup_{\|\delta x\| < \varepsilon} \|\delta f\| / \|\delta x\|$ 4 D F 4 D F 4 D F 4 D F

Recursive Total Least-Squares (RTLS) Method

Basic steps:

- Calculate an initial SVD with a standard SVD algorithm for a small number of data matrix.
- ② Compile a new input matrix consisting of the current data matrix SA and force-torque vector $({}^Sf, {}^S\tau)^T$ and perform an SVD update incorporating the new data.
- ① Update estimate: If the deviation between the smallest singular values is less than ε , transform left singular vectors; compute TLS solution from the left singular vectors.
- **3** Continue with 2 or stop estimation.

References

- 2007 On-line rigid object recognition and pose estimation based on inertial parameters (D. Kubus, T. Kroger)
- 2008 On-Line Estimation of Inertial Parameters Using a Recursive Total Least-Squares Approach (D. Kubus, T. Kroger)
- 2014 Combining visual and inertial features for efficient grasping and bin-picking (D. Kubus, I. Weidauer)
- 2018 Real-Time Identification of Robot Payload using a Multirate Quaternion-based Kalman Filter and Recursive Total Least-Squares (S. Farsoni, C. Talignani Landi)