Fall 2022 ECEN 758 Data Mining & Analysis Support Vector Machines

Material adapted from

SVM Linear Separable Case: Quadratic Programs

Which Separating Hyperplane to Use?

Maximizing the Margin

Support Vectors

Setting Up the Optimization Problem

The width of the margin is:

$$\frac{2|k|}{\|w\|}$$

So, the problem is:

$$\max \frac{2|k|}{\|w\|}$$
s.t. $(w \cdot x + b) \ge k$, $\forall x$ of class 1
 $(w \cdot x + b) \le -k$, $\forall x$ of class 2

Setting Up the Optimization Problem

There is a scale and unit for data so that k=1. Then problem becomes:

$$\max \frac{2}{\|w\|}$$
s.t. $(w \cdot x + b) \ge 1$, $\forall x$ of class 1
 $(w \cdot x + b) \le -1$, $\forall x$ of class 2

Setting Up the Optimization Problem

• If class 1 corresponds to 1 and class 2 corresponds to -1, we can rewrite

$$(w \cdot x_i + b) \ge 1$$
, $\forall x_i \text{ with } y_i = 1$
 $(w \cdot x_i + b) \le -1$, $\forall x_i \text{ with } y_i = -1$

as

$$y_i(w \cdot x_i + b) \ge 1, \ \forall x_i$$

• The problem becomes:

$$\max \frac{2}{\|w\|} \qquad \text{or} \qquad \frac{1}{2} \|w\|^2$$

$$s.t. \ y_i(w \cdot x_i + b) \ge 1, \ \forall x_i \qquad \qquad s.t. \ y_i(w \cdot x_i + b) \ge 1, \ \forall x_i$$

Linear, Hard-Margin SVM Formulation

• Find w,b that solves

$$\min \frac{1}{2} \|w\|^2$$
s.t. $y_i(w \cdot x_i + b) \ge 1, \ \forall x_i$

- Problem is convex so, there is a unique global minimum value (when feasible)
- There is also a unique minimizer, i.e. weight and b value that provides the minimum
- Non-solvable if the data is not linearly separable
- Quadratic Programming
 - Very efficient computationally with modern constraint optimization engines (handles thousands of constraints and training instances).

Assume that the points are linearly separable, that is, there exists a separating hyperplane that perfectly classifies each point.

The goal of SVMs is to choose the canonical hyperplane, h^* , that yields the maximum margin among all possible separating hyperplanes

$$h^* = \arg\max_{\mathbf{w},b} \left\{ \frac{1}{\|\mathbf{w}\|} \right\}$$

We can obtain an equivalent minimization formulation:

Objective Function:
$$\min_{\mathbf{w},b} \left\{ \frac{\|\mathbf{w}\|^2}{2} \right\}$$

Linear Constraints:
$$y_i$$
 ($\mathbf{w}^T \mathbf{x}_i + b$) ≥ 1 , $\forall \mathbf{x}_i \in \mathbf{D}$

We turn the constrained SVM optimization into an unconstrained one by introducing a Lagrange multiplier α_i for each constraint. The new objective function, called the *Lagrangian*, then becomes

min
$$L = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

L should be minimized with respect to **w** and b, and it should be maximized with respect to α_i .

Taking the derivative of L with respect to \mathbf{w} and b, and setting those to zero, we obtain

$$\frac{\partial}{\partial \mathbf{w}} L = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \mathbf{0} \quad \text{or} \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial}{\partial b} L = \sum_{i=1}^{n} \alpha_i y_i = 0$$

We can see that **w** can be expressed as a linear combination of the data points \mathbf{x}_i , with the signed Lagrange multipliers, $\alpha_i \mathbf{y}_i$, serving as the coefficients.

Further, the sum of the signed Lagrange multipliers, $\alpha_i y_i$, must be zero.

Chapter 21: Support Vector Machines

Incorporating
$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$
 and $\sum_{i=1}^{n} \alpha_i y_i = 0$ into the Lagrangian we obtain

the new *dual Lagrangian* objective function, which is specified purely in terms of the Lagrange multipliers:

Objective Function:
$$\max_{\alpha} L_{dual} = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

Linear Constraints:
$$\alpha_i \geq 0$$
, $\forall i \in \mathbf{D}$, and $\sum_{i=1}^n \alpha_i y_i = 0$

where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)^T$ is the vector comprising the Lagrange multipliers.

 L_{dual} is a convex quadratic programming problem (note the $\alpha_i \alpha_j$ terms), which admits a unique optimal solution.

Once we have obtained the α_i values for i = 1, ..., n, we can solve for the weight vector **w** and the bias b. Each of the Lagrange multipliers α_i satisfies the KKT conditions at the optimal solution:

$$\alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right) = 0$$

which gives rise to two cases:

- (1) $\alpha_i = 0$, or
- (2) $y_i(\mathbf{w}^T\mathbf{x}_i + b) 1 = 0$, which implies $y_i(\mathbf{w}^T\mathbf{x}_i + b) = 1$

This is a very important result because if $\alpha_i > 0$, then $y_i(\mathbf{w}^T\mathbf{x}_i + b) = 1$, and thus the point \mathbf{x}_i must be a support vector.

On the other hand, if $y_i(\mathbf{w}^T\mathbf{x}_i + b) > 1$, then $\alpha_i = 0$, that is, if a point is not a support vector, then $\alpha_i = 0$.

Linear and Separable Case: Weight Vector and Bias

Once we know α_i for all points, we can compute the weight vector **w** by taking the summation only for the support vectors:

$$\mathbf{w} = \sum_{i,\alpha_i > 0} \alpha_i y_i \mathbf{x}_i$$

Only the support vectors determine \mathbf{w} , since $\alpha_i = 0$ for other points. To compute the bias b, we first compute one solution b_i , per support vector, as follows:

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) = 1$$
, which implies $b_i = \frac{1}{y_i} - \mathbf{w}^T\mathbf{x}_i = y_i - \mathbf{w}^T\mathbf{x}_i$

The bias *b* is taken as the average value:

$$b = \operatorname{avg}_{\alpha_i > 0}\{b_i\}$$

SVM Classifier

Given the optimal hyperplane function $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$, for any new point \mathbf{z} , we predict its class as

$$\hat{y} = \operatorname{sign}(h(\mathbf{z})) = \operatorname{sign}(\mathbf{w}^T \mathbf{z} + b)$$

where the sign(\cdot) function returns +1 if its argument is positive, and -1 if its argument is negative.

Soft Margin SVM: Linear and Nonseparable Case

The assumption that the dataset be perfectly linearly separable is unrealistic. SVMs can handle non-separable points by introducing *slack variables* ξ_i as follows:

$$y_i(\mathbf{w}^T\mathbf{x}_i+b)\geq 1-\xi_i$$

where $\xi_i \geq 0$ is the slack variable for point \mathbf{x}_i , which indicates how much the point violates the separability condition, that is, the point may no longer be at least $1/\|\mathbf{w}\|$ away from the hyperplane.

The slack values indicate three types of points. If $\xi_i = 0$, then the corresponding point \mathbf{x}_i is at least $\frac{1}{\|\mathbf{w}\|}$ away from the hyperplane.

If $0 < \xi_i < 1$, then the point is within the margin and still correctly classified, that is, it is on the correct side of the hyperplane.

However, if $\xi_i \ge 1$ then the point is misclassified and appears on the wrong side of the hyperplane.

Soft Margin Hyperplane

Shaded points are the support vectors

SVM: Soft Margin or Linearly Non-separable Case

In the nonseparable case, also called the *soft margin* the SVM objective function is

Objective Function:
$$\min_{\mathbf{w},b,\xi_i} \left\{ \frac{\|\mathbf{w}\|^2}{2} + C \sum_{i=1}^n (\xi_i)^k \right\}$$

Linear Constraints: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \ \forall \mathbf{x}_i \in \mathbf{D}$
 $\xi_i \ge 0 \ \forall \mathbf{x}_i \in \mathbf{D}$

where C and k are constants that incorporate the cost of misclassification.

The term $\sum_{i=1}^{n} (\xi_i)^k$ gives the *loss*, that is, an estimate of the deviation from the separable case.

The scalar C is a *regularization constant* that controls the trade-off between maximizing the margin or minimizing the loss. For example, if $C \to 0$, then the loss component essentially disappears, and the objective defaults to maximizing the margin. On the other hand, if $C \to \infty$, then the margin ceases to have much effect, and the objective function tries to minimize the loss.

SVM: Soft Margin Loss Function

The constant k governs the form of the loss. When k = 1, called *hinge loss*, the goal is to minimize the sum of the slack variables, whereas when k = 2, called *quadratic loss*, the goal is to minimize the sum of the squared slack variables.

Hinge Loss: Assuming k = 1, the SVM dual Lagrangian is given as

$$\max_{\alpha} L_{dual} = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

The only difference from the separable case is that $0 \le \alpha_i \le C$.

Quadratic Loss: Assuming k = 2, the dual objective is:

$$\max_{\alpha} L_{dual} = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \left(\mathbf{x}_i^T \mathbf{x}_j + \frac{1}{2C} \delta_{ij} \right)$$

where δ is the *Kronecker delta* function, defined as $\delta_{ij} = 1$ if and only if i = j.

Non-Linearly Separable Data

Introduce slack variables ξ_i

Allow some instances to fall within the margin, but penalize them

Disadvantages of Linear Decision Surfaces

Advantages of Non-Linear Surfaces

Linear Classifiers in High-Dimensional Spaces

Mapping Data to a High-Dimensional Space

• Find function $\Phi(x)$ to map to a different space, then SVM formulation becomes:

$$\min \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i \qquad s.t. \ y_i(w \cdot \Phi(x) + b) \ge 1 - \xi_i, \forall x_i \\ \xi_i \ge 0$$

- Data appear as $\Phi(x)$, weights w are now weights in the new space
- Explicit mapping expensive if $\Phi(x)$ is very high dimensional
- Solving the problem without explicitly mapping the data is desirable

The Dual of the SVM Formulation

Original SVM formulation

- o *n* inequality constraints
- o *n positivity constraints*
- \circ *n* number of ξ variables

The (Wolfe) dual of this problem

- o one equality constraint
- o *n* positivity constraints
- \circ *n* number of α variables (Lagrange multipliers)
- Objective function more complicated
- NOTICE: Data only appear as $\Phi(x_i) \cdot \Phi(x_j)$

$$\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i$$
s.t. $y_i(w \cdot \Phi(x) + b) \ge 1 - \xi_i, \forall x_i$

 $\xi_i \geq 0$

$$\min_{a_i} \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j (\Phi(x_i) \cdot \Phi(x_j)) - \sum_i \alpha_i$$

$$s.t. \ C \ge \alpha_i \ge 0, \forall x_i$$

$$\sum_i \alpha_i y_i = 0$$

The Kernel Trick

- $\Phi(x_i) \cdot \Phi(x_i)$: means, map data into new space, then take the inner product of the new vectors
- We can find a function such that: $K(x_i \cdot x_j) = \Phi(x_i) \cdot \Phi(x_j)$, i.e., the image of the inner product of the data is the inner product of the images of the data
- Then, we do not need to explicitly map the data into the high-dimensional space to solve the optimization problem (for training)
- How do we classify without explicitly mapping the new instances?

$$sgn(wx + b) = sgn(\sum_{i} \alpha_{i} y_{i} K(x_{i}, x) + b)$$
where b solves $\alpha_{j}(y_{j} \sum_{i} \alpha_{i} y_{i} K(x_{i}, x_{j}) + b - 1) = 0$,
for any j with $\alpha_{j} \neq 0$

Examples of Kernels

 Assume we measure two quantities, e.g. expression level of genes TrkC and SonicHedghog (SH) and we use the mapping:

$$\Phi : \langle x_{TrkC}, x_{SH} \rangle \rightarrow \{x_{TrkC}^2, x_{SH}^2, \sqrt{2}x_{TrkC}x_{SH}, x_{TrkC}, x_{SH}, 1\}$$

• Consider the function:

$$K(x \cdot z) = (x \cdot z + 1)^2$$

• We can verify that:

$$\Phi(x) \cdot \Phi(z) = x_{TrkC}^2 z_{TrkC}^2 + x_{SH}^2 z_{SH}^2 + 2x_{TrkC} x_{SH} z_{TrkC} z_{SH} + x_{TrkC} z_{TrkC} + x_{SH} z_{SH} + 1 = (x_{TrkC} z_{TrkC} + x_{SH} z_{SH} + 1)^2 = (x \cdot z + 1)^2 = K(x \cdot z)$$

Polynomial and Gaussian Kernels

$$K(x \cdot z) = (x \cdot z + 1)^p$$

- is called the polynomial kernel of degree p.
- For *p*=2, if we measure 7,000 genes using the kernel once means calculating a summation product with 7,000 terms then taking the square of this number
- Mapping explicitly to the high-dimensional space means calculating approximately 49,000,000 = 7,000**2 new features for both training instances, then taking the inner product of that (another 49,000,000 terms to sum)
- In general, using the Kernel trick provides huge computational savings over explicit mapping!
- Another commonly used Kernel is the Gaussian (maps to a dimensional space with number of dimensions equal to the number of training cases):

$$K(x \cdot z) = \exp(-\|x - z\|/2\sigma^2)$$

The Mercer Condition

- Is there a mapping $\Phi(x)$ for any symmetric function K(x,z)? No
- The SVM dual formulation requires calculation $K(x_i, x_j)$ for each pair of training instances. The array $G_{ij} = K(x_i, x_j)$ is called the Gram matrix
- There is a feature space $\Phi(x)$ when the Kernel is such that G is always semi-positive definite (Mercer condition)

Variable Selection with SVMs

Recursive Feature Elimination

- Train a linear SVM
- Remove the variables with the lowest weights (those variables affect classification the least), e.g., remove the lowest 50% of variables
- o Retrain the SVM with remaining variables and repeat until classification is reduced
- Very successful
- Other formulations exist where minimizing the number of variables is folded into the optimization problem
- Similar algorithm exist for non-linear SVMs
- Some of the best and most efficient variable selection methods

Multiclass Classification & SVMs

Multiclass classification

Introduction

- Combining binary classifiers
 - o One-vs-all
 - All-vs-all

- Training a single classifier
 - Multiclass SVM

What is multiclass classification?

- An input can belong to one of K classes
- Training data: Input associated with class label (a number from 1 to K)
- Prediction: Given a new input, predict the class label

Each input belongs to exactly one class. Not more, not less.

- Otherwise, the problem is not multiclass classification
- If an input can be assigned multiple labels (think tags for emails rather than folders), it is called *multi-label classification*

Example applications: Images

Input: hand-written character; Output: which character?

A A A A A A A A A

all map to the letter A

- Input: a photograph of an object; Output: which of a set of categories of objects is it?
 - □ Eg: the Caltech 256 dataset

Car tire

Car tire

Duck

laptop

Example applications: Language

• Input: a news article; Output: which section of the newspaper should it belong to?

Input: an email; Output: which folder should an email be placed into?

• *Input*: an audio command given to a car; *Output*: which of a set of actions should be executed?

Binary to multiclass

- Can we use a binary classifier to construct a multiclass classifier?
 - Decompose the prediction into multiple binary decisions
- How to decompose?
 - o One-vs-all
 - All-vs-all
 - Error correcting codes

General setting

- Input $x \in \mathbb{R}^n$
 - The inputs are represented by their feature vectors
- Output $y \in \{1, 2, \dots, K\}$
 - These classes represent domain-specific labels
- Learning: Given a dataset D = {<x_i, y_i>}
 - Need to specify a learning algorithm that takes uses D to construct a function that can predict y given x
 - Goal: find a predictor that does well on the training data and has low generalization error
- Prediction/Inference: Given an example x and the learned function (often also called the model)
 - Using the learned function, compute the class label for x

1. One-vs-all classification

Assumption: Each class individually separable from all the others

• Learning: Given a dataset D = {<x_i, y_i>},

Note: $\mathbf{x}_{i} \in R^{n}$, $\mathbf{y}_{i} \in \{1, 2, \dots, K\}$

- Decompose into K binary classification tasks
- o For class k, construct a binary classification task as:
 - □ Positive examples: Elements of D with label k
 - □ Negative examples: All other elements of D
- \circ Train K binary classifiers $\mathbf{w}_1, \mathbf{w}_2, \cdots \mathbf{w}_K$ using any learning algorithm we have seen
- Prediction: "Winner Takes All"

argmax_i w_i^Tx

Visualizing One-vs-all

One-vs-all may not always work

Black points are not separable with a single binary classifier

The decomposition will not work for these cases!

w_{blue}^Tx > 0 for blue inputs

w_{red}^Tx > 0 for red inputs

w_{green}^Tx > 0 for green inputs

???

One-vs-all classification: Summary

Easy to learn

Use any binary classifier learning algorithm

Problems

- No theoretical justification
- Calibration issues
 - □ We are comparing scores produced by K classifiers trained independently. No reason for the scores to be in the same numerical range!
- Might not always work
 - □ Yet, works fairly well in many cases, especially if the underlying binary classifiers are tuned, regularized

2. All-vs-all classification

Sometimes called one-vs-one

- Assumption: Every pair of classes is separable
- Learning: Given a dataset D = {<x_i, y_i>},

Note: $\mathbf{x}_{i} \in \mathbb{R}^{n}$, $\mathbf{y}_{i} \in \{1, 2, \dots, K\}$

- For every pair of labels (j, k), create a binary classifier with:
 - □ Positive examples: All examples with label j
 - □ Negative examples: All examples with label k

o Train
$$\binom{K}{2} = \frac{K(K-1)}{2}$$
 classifiers in all

- Prediction: More complex, each label get K-1 votes
 - How to combine the votes? Many methods
 - □ Majority: Pick the label with maximum votes
 - Organize a tournament between the labels

All-vs-all classification

Every pair of labels is linearly separable here

When a pair of labels is considered, all others are ignored

Problems

- 1. $O(K^2)$ weight vectors to train and store
- 2. Size of training set for a pair of labels could be very small, leading to overfitting
- 3. Prediction is often ad-hoc and might be unstable

 Eg: What if two classes get the same number of votes? For a tournament, what is the sequence in which the labels compete?

Summary: One-vs-All vs. All vs. All

- Assume m examples, k class labels.
 - For simplicity, say, m/k in each.
- One vs. All:
 - \circ classifier f_i : m/k (+) and (k-1)m/k (-)
 - o Decision:
 - Evaluate k linear classifiers and do Winner Takes All (WTA):
- All vs. All:
 - Classifier f_{ij}: m/k (+) and m/k (-)
 - More expressivity, but less examples to learn from.
 - o Decision:
 - Evaluate k² linear classifiers; decision sometimes unstable.
- What type of learning methods would prefer All vs. All (efficiency-wise)?

(Think about Dual/Primal)

Recall: Margin for binary classifiers

• The margin of a hyperplane for a dataset is the distance between the hyperplane and the data point nearest to it.

Multiclass margin

Defined as the score difference between the highest scoring label and the second one

Multiclass SVM (Intuition)

Recall: Binary SVM

- Maximize margin
- Equivalently,

Minimize norm of weights such that the closest points to the hyperplane have a score §1

Multiclass SVM

- Each label has a different weight vector (like one-vs-all)
- Maximize multiclass margin
- Equivalently,

Minimize total norm of the weights such that the true label is scored at least 1 more than the second best one

Multiclass SVM in the separable case

Multiclass SVM: General case

Multiclass SVM: General case

Size of the weights. Effectively, regularizer Total slack. Effectively, don't allow too many examples to violate the margin constraint

$$\min_{\mathbf{w}_{1},\mathbf{w}_{2},\cdots,\mathbf{w}_{K},\xi} \quad \frac{1}{2} \sum_{k} \mathbf{w}_{k}^{T} \mathbf{w}_{k} + C \sum_{(\mathbf{x}_{i},\mathbf{y}_{i}) \in D} \xi_{i}$$
s.t.
$$\mathbf{w}_{\mathbf{y}_{i}}^{T} \mathbf{x} - \mathbf{w}_{k}^{T} \mathbf{x} \geq 1 - \xi_{i}, \qquad \forall (\mathbf{x}_{i},\mathbf{y}_{i}) \in D,$$

$$k \in \{1, 2, \cdots, K\}, k \neq \mathbf{y}_{i},$$

$$\xi_{i} \geq 0, \qquad \forall i.$$

The score for the true label is higher than the score for any other label by $1 - w_i$

Slack variables. Not all examples need to satisfy the margin constraint.

Slack variables can only be positive

Multiclass SVM

- Generalizes binary SVM algorithm
 - o If we have only two classes, this reduces to the binary (up to scale)
- Comes with similar generalization guarantees as the binary SVM

- Can be trained using different optimization methods
 - Stochastic sub-gradient descent can be generalized
 - □ Try as exercise

MultiClass SVMs

One-versus-all

- Train n binary classifiers, one for each class against all other classes.
- Predicted class is the class of the most confident classifier

One-versus-one

- \circ Train n(n-1)/2 classifiers, each discriminating between a pair of classes
- Several strategies for selecting the final classification based on the output of the binary SVMs

• Truly MultiClass SVMs

Generalize the SVM formulation to multiple categories