Aula 8 - Reconhecimento e Interpretação

Prof. Adilson Gonzaga

Elementos de Visão Computacional:

Visão Computacional Processamento de Baixo Nível Processamento de Nível Intermediário Processamento de Imagens

Processamento de Alto Nível

Elementos de Visão Computacional:

As linhas tracejadas mostram que a divisão não é rígida:

Ex: Limiarização - pode ser usada tanto para melhoramento da Imagem (pré-processamento) como para segmentação.

Padrões:

- ☐ Um Padrão é uma descrição quantitativa ou estrutural de um objeto ou alguma outra entidade de interesse em uma Imagem.
- Um Padrão é formado por um ou mais descritores.
 Os descritores são também chamados de características.
- o ato de gerar os descritores que caracterizam um objeto ou partes de uma imagem é chamado de

Extração de Características.

Uma Classe de Padrões é uma família de padrões que compartilham algumas propriedades comuns e são denotadas como w_1 , w_2 , w_3 , w_M onde M é o número de classes.

Arranjos de Padrões:

- Vetores (descrições quantitativas)
- Cadeias e Árvores (descrições estruturais)

Vetores de Características:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

 $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{bmatrix}$ x_i é o i-ésimo descritor n é o número de descritores ou características

Exemplo_1:

Descrever três tipos de flores: (Iris setosa, virginica e versicolor)

3 classes W_1, W_2, W_3

Características a serem utilizadas: (largura e comprimento de suas pétalas)

Uma vez que um conjunto de medidas tenha sido selecionado, um vetor de características torna-se a representação completa de cada amostra física.

$$x = \left| \begin{array}{c} x_1 \\ x_2 \end{array} \right|$$

Cada flor do conjunto de amostras de flores, é um ponto no espaço euclidiano bi-dimensional.

Seleção das Características:

- No exemplo anterior, as características "comprimento e largura" das pétalas permitiram separar bem apenas a classe das "Iris Setosa".
- A Seleção das Características que gerarão o Vetor de Características, possui uma influência profunda no desempenho de um sistema de Visão Computacional.

Exemplo_2:

Escolher as características para o Vetor de Características, visando classificar diversas formas ruidosas quase-circulares. (Peças com desgastes ou defeitos)

Uma solução seria utilizar a descrição por Assinatura:

A cada intervalo $\Delta\theta$ dado por $\theta_1, \theta_2, \dots \theta_n$

Gerar os Vetores de Características:

$$x_1 = r(\theta_1)$$

$$x_2 = r(\theta_2)$$

•

$$x_n = r(\theta_n)$$

Esses vetores tornam-se pontos no espaço n-dimensional, e as Classes de Padrões "nuvens" de n dimensões.

- Outra solução seria calcular os Momentos de cada peça e gerar o Vetor de Características com os m primeiros momentos.
- As Características a serem selecionadas podem gerar o Vetor de Características através de diversas técnicas como por exemplo:
 - Momentos
 - Número do Formato
 - Descritores Topológicos
 - outros....
- Geralmente a utilização de características geradas por diferentes metodologias, tornam o Reconhecimento facilitado.

Descrições Estruturais:

- Problemas de reconhecimento em que não apenas as medidas quantitativas sobre cada característica, mas também as relações espaciais entre as características determinam as classes, são geralmente melhor resolvidos por abordagens estruturais.
- Representações por **Cadeias** geram padrões cujas estruturas baseiam-se em conectividade de primitivas, usualmente associadas com a forma da fronteira.

Uma escada pode ser descrita como uma cadeia de símbolos:

$$w = \dots abababab\dots$$

Métodos de Decisão:

Funções de Decisão ou Funções Discriminantes.

Seja $x=(x_1,x_2,....x_n)^T$ um Vetor de Características n-dimensional e $w_1,w_2,....w_M$ M Classes de Padrões.

O Reconhecimento de Padrões consiste em encontrar as M funções de decisão $d_1(x)$, $d_2(x)$, $d_M(x)$ tal que:

• Se o padrão x pertencer à classe w_i, então:

$$d_i(x) > d_j(x)$$
 $j = 1, 2, ..., M; j \neq i$

Ou seja:

$$x \in W_i$$
 se $d_i(x)$ é o maior valor

Fronteira de Decisão:

A Fronteira que separa duas classes w_i e w_j é dada pelos valores de x para os quais $d_i(x) = d_i(x)$, ou seja:

$$d_i(x) - d_j(x) = 0$$

Pode-se identificar a Fronteira de Decisão entre duas classes através da função:

$$d_{ij} = d_i(x) - d_j(x) = 0$$

Ou seja, se $d_{ij}(x) > 0$ o padrão pertence à classe w_i e se $d_{ij}(x) < 0$ o padrão pertence à classe w_j

Classificador de Distância Mínima:

Uma Classe de Padrões pode ser representada por um vetor protótipo (ou médio).

$$m_j = \frac{1}{N_j} \sum_{x \in w_j} x$$
 $j = 1, 2, ..., M$

Uma maneira de definir a pertinência de um Vetor de Características (x) desconhecido, é atribuí-lo à classe de seu protótipo mais próximo.

Distância euclidiana: $D_j(x) = ||x - m_j||$ j = 1, 2,M

Onde: $||a|| = (a^T a)^{1/2}$ é a norma euclidiana.

 $x \in w_i$ se $D_i(x)$ for a menor distância

Classificador de Distância Mínima:

Isso equivale a avaliar as funções:

$$d_j(x) = x^T m_j - \frac{1}{2} m_j^T m_j$$
 $j = 1, 2, ..., M$

e atribuir x à classe w_i se $d_i(x)$ for o maior valor.

A Fronteira de Decisão entre as classes w_i e w_j para o Classificador de Distância Mínima é:

$$d_{ij} = d_i(x) - d_j(x) = x^T (m_i - m_j) - \frac{1}{2} (m_i - m_j)^T (m_i - m_j) = 0$$

$$n = 2 ---- \text{ uma reta}$$

$$n = 3 ---- \text{ um plano}$$

$$n > 3 ---- \text{ hiperplano}$$

Exemplo:

Vetor desconhecido a ser classificado

$$m_1 = (4.3 , 1.3)^T$$

 $m_2 = (1.5 , 0.3)^T$

$$d_{j}(x) = x^{T} m_{j} - \frac{1}{2} m_{j}^{T} m_{j}$$
 $j = 1, 2, ..., M$

$$d_1(x) = x^T m_1 - \frac{1}{2} m_1^T m_1$$

$$(x_1 \quad x_2) \begin{pmatrix} 4.3 \\ 1.3 \end{pmatrix} - \frac{1}{2} (4.3 \quad 1.3) \begin{pmatrix} 4.3 \\ 1.3 \end{pmatrix} =$$

$$4.3x_1 + 1.3x_2 - \frac{1}{2} (4.3 \times 4.3 + 1.3 \times 1.3) =$$

$$4.3x_1+1.3x_2-10.09$$

$$d_2(x) = x^T m_2 - \frac{1}{2} m_2^T m_2$$

$$d_2(x) = 1.5x_1 + 0.3x_2 - 1.17$$

Equação da Fronteira:

$$d_{12}(x) = d_1(x) - d_2(x) =$$

$$2.8x_1 + 1.0x_2 - 8.9 = 0$$

Qualquer padrão desconhecido x pode ser classificado observando-se o sinal de d₁₂

$$d_{12}(x) < 0$$
 --- Classe w_2

$$d_{12}(x) > 0$$
 --- Classe w_1

Classificador Bayesiano:

Um problema envolvendo duas classes de padrões governadas por densidades gaussianas, com médias m_1 e m_2 e desvios padrão σ_1 e σ_2 respectivamente, pode ser resolvido usando-se as funções de decisão na forma:

$$d_{j}(x) = p(x/w_{j})P(w_{j}) =$$

$$\frac{1}{\sqrt{2\pi\sigma_{j}}} \exp\left[-\frac{(x-m_{j})^{2}}{2\sigma_{j}^{2}}\right]P(w_{j}) \quad j = 1,2$$

19

Outros Classificadores:

Classificadores por Redes Neurais Artificiais

Classificadores por Lógica Nebulosa ("Fuzzy Sets")

Cluster Analysis: (Análise de agrupamentos)

- É um método de Estatística Multivariada que identifica grupos em um grande número de objetos, baseado em suas características.
- •Similarmente à Análise Discriminante, cada objeto tem múltiplas características que podem ser expressas como um vetor **X** = (**x1**, **x2**,**xp**) com valores que variam de objeto para objeto.
- •O Objetivo principal da Análise de Agrupamentos é identificar objetos similares baseada em suas características.

Cluster Analysis: (Análise de agrupamentos)

• "Cluster analysis" agrupa objetos similares em grupos tal que os objetos dentro de um grupo são similares e objetos entre os diferentes grupos são significativamente diferentes em suas características.

• Diferentemente da Análise Discriminante onde o número de grupos e seus nomes são conhecidos previamente, na Análise de Agrupamentos o número de grupos e suas características são desconhecidas antes da análise.

Exemplo: Analisar o Agrupamento de cereais da Tabela de acordo com suas características nutricionais.

Brand	Calories (Cal/oz)	Protein (g)	Fat (g)	Na (mg)	Fiber (g)	Carbs (g)	Sugar (g)	K (mg)
Cheerios	110	6	2	290	2.0	17.0	1	105
Cocoa Puffs	110	1	1	180	0.0	12.0	13	55
Honey Nut	110	3	1	250	1.5	11.5	10	90
Cheerios	110	ō	Ţ	250	1.5	11.9	10	90
Kix	110	2	1	260	0.0	21.0	3	40
Lucky Charms	110	2	1	180	0.0	12.0	12	55
Oatmeal Raisin Crisp	130	3	2	170	1.5	13.5	10	120
Raisin Nut Bran	100	3	2	140	2.5	10.5	8	140
Total Corn Flakes	110	2	1	200	0.0	21.0	3	35
Total Raisin Bran	140	3	1	190	4.0	15.0	14	230
Trix	110	1	1	140	0.0	13.0	12	25
Wheaties Honey Gold	110	2	1	200	1.0	16.0	8	60
All-Bran	70	4	1	260	9.0	7.0	5	320
Apple Jacks	110	2	0	125	1.0	11.0	14	30
Corn Flakes	100	2	0	290	1.0	21.0	2	35
Corn Pops	110	1	0	90	1.0	13.0	12	20
Mueslix Crispy Blend	160	3	2	150	3.0	17.0	13	160
Nut & Honey Crun	ch 120	2	1	190	0.0	15.0	9	40
Nutri Grain Almond Raisin	140	3	2	220	3.0	21.0	7	130
Nutri Grain Wheat	90	3	0	170	3.0	18.0	2	90
Product 19	100	3	0	320	1.0	20.0	3	45
Raisin Bran	120	3	1	210	5.0	14.0	12	240
Rice Krispies	110	2	0	290	0.0	22.0	3	35
Special K	110	6	0	230	1.0	16.0	3	55
Life	100	4	2	150	2.0	12.0	6	95
Puffed Rice	50	1	0	0	0.0	13.0	0	15

O número de variáveis e quais serão selecionadas, afetarão o resultado final.

Conjunto de Dados típicos em Cluster Analysis:

Objects	Variables						
	1	2		p			
1	x_{11}	x_{12}	***	x_{1p}			
2 :	x_{21}	x ₂₂		x_{1p} x_{2p}			
N	x_{N1}	x_{N2}	***	x_{Np}			

Passo 1: Selecionar as Variáveis de Agrupamento e a Medida de Distância.

Passo 2: Selecionar o algoritmo de Agrupamento (Hierárquico ou não-hierárquico)

Passo 3: Realizar a Análise de Agrupamento.

Passo 4: Interpretar os Agrupamentos.

Medidas de Similaridade : Distâncias

Distância Euclidiana (DE):

$d_{ik} = \sqrt{\frac{1}{2}}$	$\sum_{j=1}^{\mathbf{p}} (x_{ij} - x_{kj})^2$
-------------------------------	---

Variables					
1	2		p		
x_{11}	x_{12}	***	$x_{\mathbf{l}p}$		
x_{21}	x_{22}	***	x_{2p}		
			x_{N_p}		
	x_{21} :	$\begin{array}{ccc} & & & & & & \\ x_{11} & & & & & \\ x_{21} & & & & & \\ \vdots & & & \vdots & & \vdots \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

 $d_{ik} \rightarrow DE$ entre o objeto i e o objeto k (Vetor i e Vetor k)

• A escala numérica das variáveis pode variar significativamente.

No Exemplo:

Brand	Calories (Cal/oz)	Protein (g)	Fat (g)	Na (mg)	Fiber (g)	Carbs (g)	Sugar (g)	K (mg)
Cheerios	110	6	2	290	2.0	17.0	1	105
Cocoa Puffs	110	1	1	180	0.0	12.0	13	55
Honey Nut	110	3	1	250	1.5	11.5	10	90
Cheerios								

Distância Euclidiana Normalizada: (Distância de Pearson)

- Se não se deseja que dados com maiores valores dominem o resultado, deve-se normalizar a escala.
- Cada dado x_{ij} deve ser normalizado para z_{ij} : $z_{ij} = \frac{x_{ij} x_{.j}}{s_{.j}}$

Onde:
$$\overline{x}_j = \frac{\sum_{k=1}^N x_{kj}}{N}$$
 É a Média de cada característica

$$s_j = \sqrt{\frac{\sum_{k=1}^{N} (x_{kj} - \overline{x}_{,j})^2}{N-1}}$$
 É o Desvio Padrão das características

Logo, a Distância Euclidiana Normalizada (Distância de Pearson) entre cada Vetor (*i* e *k*) será:

$$d_{ik} = \sqrt{\sum_{j=1}^{p} (z_{ij} - z_{kj})^2}$$

Matriz de Distâncias:

As Distâncias entre cada objeto, ou melhor, entre todos os Vetores de toda a população de Vetores de Características, podem ser colocadas em uma Matriz de Distância para a análise.

$$\mathbf{D} = \begin{bmatrix} 0 & d_{12} & d_{13} & \cdots & d_{1N} \\ d_{21} & 0 & d_{23} & \cdots & d_{2N} \\ d_{31} & d_{32} & 0 & \cdots & d_{3N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ d_{N1} & d_{N2} & d_{N3} & \cdots & 0 \end{bmatrix}$$

Distância Manhattan ou Distância City Block:

$$d_{ik} = \sum_{j=1}^{p} |x_{ij} - x_{kj}|$$

Distância Manhattan ou Distância City Block Normalizada:

$$d_{ik} = \sum_{j=1}^{p} |z_{ij} - z_{kj}|$$

Diferença entre a Distância Manhattan e a Distância Euclidiana:

Diferença entre Agrupamentos e Método de Ligação:

• Em "Cluster Analysis" é desejável que as distâncias entre os Vetores(objetos) dentro de um "cluster" (grupo) sejam pequenas e que as distâncias entre diferentes "clusters" sejam grandes.

- A Distância entre os grupos depende da relação definida entre eles.
- Esta relação é chamada de Método de Ligação ("Linkage Method")

Método de Ligação Simples.

$$d_{(R)(S)} = \min\{d_{rs} | r \in R, s \in S\}$$

• A distância entre dois grupos ("clusters") é definida como a Distância entre os Vizinhos mais Próximos.

Exemplo:

Cluster 1 (Objetos 1,2,3)

Cluster 2 (Objetos 4,5,6)

 A Distância entre os dois grupos (1 e 2) será:

$$\begin{split} d_{(1)(2)} &= \min\{d_{14}, d_{15}, d_{16}, d_{24}, d_{25}, d_{26}, d_{34}, d_{35}, d_{36}\} \\ &= \min\{10, 8, 6, 6, 9, 5, 13, 11, 8\} = 5 = d_{26} \end{split}$$

Método de Ligação Completa:

$$d_{(R)(S)} = \max\{d_{rs} | r \in R, s \in S\}$$

• A distância entre dois grupos ("clusters") é definida como a Distância entre os Vizinhos mais Distantes.

Exemplo:

Cluster 1 (Objetos 1,2,3)

Cluster 2 (Objetos 4,5,6)

 A Distância entre os dois grupos (1 e 2) será:

$$\begin{split} d_{(1)(2)} &= \max\{d_{14}, d_{15}, d_{16}, d_{24}, d_{25}, d_{26}, d_{34}, d_{35}, d_{36}\} \\ &= \max\{10, 8, 6, 6, 9, 5, 13, 11, 8\} = 13 = d_{34} \end{split}$$

Método de Ligação Média:

$$d_{(R)(S)} = \frac{\sum_{r} \sum_{s} d_{rs}}{n_R n_S}$$

• A distância entre dois grupos ("clusters") é definida como a A Média de todas as distâncias entre os dois grupos.

Exemplo:

Cluster 1 (Objetos 1,2,3)

Cluster 2 (Objetos 4,5,6)

 A Distância entre os dois grupos (1 e 2) será:

$$\begin{split} d_{(1)(2)} &= \frac{d_{14} + d_{15} + d_{16} + d_{24} + d_{25} + d_{26} + d_{34} + d_{35} + d_{36}}{3 \times 3} \\ &= \frac{10 + 8 + 6 + 6 + 9 + 5 + 13 + 11 + 8}{9} = 8.44 \end{split}$$

Método de Ligação Centróide:

- A distância entre dois grupos ("clusters") é definida como a A distância entre os Centros Gravitacionais de cada grupo.
 - Sejam os grupos: R
 com n_R objetos e S com
 n_S objetos:
- A coordenada do Centro de Gravidade de cada Grupo será:

$$\overline{\mathbf{x}}_R = \frac{\sum_r \mathbf{x}_r}{n_R} = \begin{bmatrix} \overline{\mathbf{x}}_{r1} \\ \overline{\mathbf{x}}_{r2} \\ \vdots \\ \overline{\mathbf{x}}_{rp} \end{bmatrix} \qquad \overline{\mathbf{x}}_S = \frac{\sum_s \mathbf{x}_s}{n_S} = \begin{bmatrix} \overline{\mathbf{x}}_{s1} \\ \overline{\mathbf{x}}_{s2} \\ \vdots \\ \overline{\mathbf{x}}_{sp} \end{bmatrix}$$

• Logo, a Distância Euclidiana entre os dois grupos será:

$$d_{(R)(S)} = \sqrt{(\overline{\mathbf{x}}_{r1} - \overline{\mathbf{x}}_{s1})^2 + \dots + (\overline{\mathbf{x}}_{rp} - \overline{\mathbf{x}}_{sp})^2}$$

Similaridade:

• Similaridade é a diferença entre dois objetos (vetores) ou entre dois Grupos de Objetos ("clusters").

• Quanto maior é a Similaridade menor é a distância entre eles.

• Dados dois objetos x_r e x_s , a Similaridade é dada por s_{rs} e obedece às seguintes condições:

1.
$$0 \le s_{rs} \le 1$$

2.
$$s_{rs} = 1$$
 if and only if $\mathbf{x}_r = \mathbf{x}_s$

3.
$$s_{rs} = s_{sr}$$

Similaridade:

• A medida de Similaridade pode ser dada por:

$$s_{rs} = 1 - \frac{d_{rs}}{d_{max}}$$

Onde, d_{max} é a Máxima Distância na Matriz de Distâncias D.

 Uma outra maneira de medir a Similaridade é através da Correlação de Momentos do Produto de Pearson

$$q_{rs} = \frac{\sum_{j=1}^{p} (x_{rj} - \overline{x}_{r.})(x_{sj} - \overline{x}_{s.})}{\left[\sum_{j=1}^{p} (x_{rj} - \overline{x}_{r.})^{2} \sum_{j=1}^{p} (x_{sj} - \overline{x}_{s.})^{2}\right]}$$

Agrupamento Hierárquico

• Agrupamento Hierárquico (Hierarchical clustering) é uma maneira de investigar o agrupamento dos dados, simultâneamente em várias escalas, através da geração de uma Árvore de Grupos (Cluster Tree).

• A Árvore de Grupos não é apenas um simples conjunto de grupos, mas uma Hierarquia em multi-nível onde grupos em um nível são unidos a grupos em um próximo nível mais alto.

• Isto permite decidir qual nível ou escala de agrupamento é mais apropriada para cada aplicação.

Agrupamento Hierárquico

- O número de Agrupamentos ("clusters") e quais são eles é desconhecido.
- Usa a Matriz de Distâncias para construir um gráfico de Árvore de Grupo chamado de Dendrograma.

• Algoritmo:

- 1. Considerar inicialmente todos os elementos (Vetores/Objetos) individuais como um cluster formado por ele mesmo.
- 2. Combinar em um cluster dois objetos com a menor distância.
- 3. Computar as distâncias entre os objetos e o novo cluster formado.
- 4. Repetir o processo até que o número de clusters seja reduzido a 1.
- 5. Decidir o número de grupos para solucionar o problema.

 Comportamento do tempo em uma cidade Norte-americana no mês de Fevereiro entre os anos de 1982 e 1990

Year	x ₁ , Mean temp.	x ₂ , Max. temp.	x ₃ , Min. temp.	x ₄ , Soil temp. (@ 10 cm)	x ₅ , Monthly rainfall (mm)	x ₆ , Max. rain in a day	x ₇ , Days with snow
1982	4.2	13.3	-5.3	4.0	23	6	0
1983	1.0	7.8	-5.3	3.0	34	11	8
1984	2.9	11.4	-5.1	3.2	65	17	0
1985	1.6	10.2	-6.0	2.9	7	2	5
1986	-1.1	2.7	-9.0	1.5	22	5	24
1987	3.3	13.4	-7.3	2.7	46	15	2
1988	4.5	13.0	-2.9	3.7	89	22	4
1989	5.7	13.5	-2.7	5.2	92	16	0
1990	6.6	14.9	-0.6	5.5	131	29	0

Passo 0 : Cálculo da Matriz de Distâncias

0.00 2.44 1.90 1.86 5.32 1.82 2.702.982.44 0.00 1.92 1.49 3.312.161.92 0.00 2.45 4.98 1.25 1.57 3.78 1.48 2.45 0.00 3.75 1.86 2.193.64 4.01 5.84 $\mathbf{D} = \begin{bmatrix} 5.32 \end{bmatrix}$ 3.31 4.98 $3.75 \quad 0.00$ 4.73 5.90 6.71 8.13 2.16 1.25 $2.19 ext{ } 4.73$ 0.00 2.40 3.10 4.59 $2.98 ext{ } 1.57$ 3.64 5.90 2.40 0.00 1.57 2.423.10 1.573.69 2.364.01 - 6.710.00 2.055.23 3.78 5.83 8.13 4.59 2.42

9 Vetores de Características ou Objetos

Distância Euclidiana Normalizada

Passo 1 : Encontrar a menor distância e criar um novo cluster.

$$\mathbf{D} = \begin{bmatrix} 0.00 & 2.44 & 1.90 & 1.86 & 5.32 & 1.82 & 2.70 & 2.56 & 4.48 \\ 2.44 & 0.00 & 1.92 & 1.49 & 3.31 & 2.16 & 2.98 & 3.69 & 5.23 \\ 1.90 & 1.92 & 0.00 & 2.45 & 4.98 & 1.25 & 1.57 & 2.36 & 3.78 \\ 1.86 & 1.48 & 2.45 & 0.00 & 3.75 & 2.19 & 3.64 & 4.01 & 5.84 \\ 5.32 & 3.31 & 4.98 & 3.75 & 0.00 & 4.73 & 5.90 & 6.71 & 8.13 \\ 1.82 & 2.16 & 1.25 & 2.19 & 4.73 & 0.00 & 2.40 & 3.10 & 4.59 \\ 2.70 & 2.98 & 1.57 & 3.64 & 5.90 & 2.40 & 0.00 & 1.57 & 2.42 \\ 2.56 & 3.69 & 2.36 & 4.01 & 6.71 & 3.10 & 1.57 & 0.00 & 2.05 \\ 4.48 & 5.23 & 3.78 & 5.83 & 8.13 & 4.59 & 2.42 & 2.05 & 0.00 \end{bmatrix}$$

- Menor distância → entre o objeto(Vetor) 3 e o 6
- Combinar o objeto 3 e o 6 em um único cluster.

Passo 2 : Atualizar as distâncias.

$$\begin{split} d_{1,(3,6)} &= \min(d_{13}, d_{16}) = \min(1.90, 1.82) = 1.82 \\ d_{2,(3,6)} &= \min(d_{23}, d_{26}) = \min(1.92, 2.16) = 1.92 \\ d_{4,(3,6)} &= \min(d_{43}, d_{46}) = \min(2.45, 2.19) = 2.19 \\ d_{5,(3,6)} &= \min(d_{53}, d_{56}) = \min(4.98, 4.73) = 4.73 \\ d_{7,(3,6)} &= \min(d_{73}, d_{76}) = \min(1.57, 2.40) = 1.57 \\ d_{8,(3,6)} &= \min(d_{83}, d_{86}) = \min(2.36, 3.10) = 2.36 \\ d_{9,(3,6)} &= \min(d_{93}, d_{96}) = \min(3.78, 4.59) = 3.78 \end{split}$$

 Foi utilizado o Método de Ligação Simples.

Passo 3: Repetir os Passos 1 e 2 estabelecendo um Dendrograma.

Observando-se o Dendrograma pode-se decidir que 4 clusters solucionam o problema, ou seja, cortando-se o gráfico na distância
 1.818 tem-se os clusters: (2 e 4) (1,3, 6, 7 e 8) (9) (5)

	Number of	Similarity	Distance	Clus	ters	New	Number of obs. in
Step	clusters	level	level	join		cluster	new cluster
1	8	84.67	1.246	3	6	3	2
2	7	81.71	1.486	2	4	2	2
3	6	80.70	1.569	7	8	7	2
4	5	80.64	1.573	3	7	3	4
5	4	77.63	1.818	1	3	1	5
6	3	77.12	1.860	1	2	1	7
7	2	74.83	2.046	1	9	1	8
8	1	59.28	3.309	1	5	1	9

 Utilizando a Similaridade ao invés da Distância, pode-se agrupar os vetores através do índice de similaridade entre eles.

							Number
	Number of	Similarity	Distance	Clus	ters	New	of obs. in
Step	clusters	level	level	join	ed	cluster	new cluster
1	8	84.67	1.246	3	6	3	2
2	7	81.71	1.486	2	4	2	2
3	6	80.70	1.569	7	8	7	2
4	5	80.64	1.573	3	7	3	4
5	4	77.63	1.818	1	3	1	5
6	3	77.12	1.860	1	2	1	7
7	2	74.83	2.046	1	9	1	8
8	1	59.28	3.309	1	5	1	9

Interpretação dos resultados: 75% de similaridade (3 grupos)

Year	x_1 , Mean temp.	x ₂ , Max. temp.	x ₃ , Min. temp.	x ₄ , Soil temp. (@ 10 cm)	x_5 , Monthly rainfall (mm)	x_6 , Max. rain in a day	x ₇ , Days with snow
1982	4.2	13.3	-5.3	4.0	23	6	0
1983	1.0	7.8	-5.3	3.0	34	11	8
1984	2.9	11.4	-5.1	3.2	65	17	0
1985	1.6	10.2	-6.0	2.9	7	2	5
1986	-1.1	2.7	-9.0	1.5	22	5	24
1987	3.3	13.4	-7.3	2.7	46	15	2
1988	4.5	13.0	-2.9	3.7	89	22	4
1989	5.7	13.5	-2.7	5.2	92	16	0
1990	6.6	14.9	-0.6	5.5	131	29	0

- Cluster 1: (2,4,1,3,6,7,8)
 (1982,1983,1984,1985,1987, 1988,1989) → Fevereiro
 típico (não muito frio, não muito quente, neve e chuva na média)
- Cluster 2: (5) (1986) → Fevereiro frio e com neve
- Cluster 3: (9) (1990) → Fevereiro quente e chuvoso

Agrupamento Não-Hierárquico.

 No método de Agrupamento Não-hierárquico o analista deve primeiramente especificar o número de "clusters" desejados.

Método K-Means (K-Médias)

- Passo 1: Especificar inicialmente k sementes cada uma delas como um cluster. Calcular seus centróides.
- Passo 2: Calcular a distância de cada objeto (Vetor) para o centróide de cada cluster. Atribuir o objeto ao cluster mais próximo. Re-atribuir se necessário.
- Passo 3: Recalcular o centróide baseado nas re-atribuições e repetir o
 Passo 2. Parar se nenhum objeto puder ser re-atribuído a um cluster.

Agrupamento Não-Hierárquico.

- Algumas dificuldades com o K-Means.
- 1. A composição dos grupos é muito sensível às sementes iniciais. Para diferentes sementes pode-se ter diferentes tipos de clusters. Não há garantia que convirja para uma solução ótima.
- 2. Algumas vezes é difícil escolher um bom número de grupos antes de analisar os dados.
 - Pode-se combinar os métodos hierárquicos e não-hierárquicos para identificar as sementes e o número de grupos. Os resultados podem então ser usados no agrupamento não-hierárquico para refinar a solução.

- Valores Unidimensionais
- V = {3,1,2,0,2,10,12,9,8,11}
- · Inicio:
 - -M1 = 1
 - M2 = 3
- Iteração
 - 1ª Iteração
 - G1 = {1,2,0,2}
 - G2 = {3,10,12,9,8,11}
 - M1 = 1.25
 - M2 = 8.8
 - 2ª Iteração
 - G1 ={3, 1, 2, 0, 2}
 - G2 = {10, 12, 9, 8, 11}
 - M1 = 1.6
 - M2 = 10

• K = 2

1a. iteração

3

- Distâncias entre cada objeto e as Médias (M1 e M2)
- Matriz de Distâncias

$$M1 = (1+2+0+2)/4 = \frac{5}{4} = 1.25$$

$$M2 = (3+10+12+9+8+11)/6 = \frac{53}{6} = 8.8$$

10

11

2a iteração	M1=1.25	(1.75	0.25	0.75	1.25	0.75	8.75	10.75	7.75	6.75	9.75
2a. iteração	M2=8.8	5.8	7.8	6.8	8.8	6.8	1.2	3.2	0.2	0.8	2.2

Valores Bi-dimensionais

Objeto	Atributo_1(X): Índice de Peso	Atributo_2(Y): pH
Produto_A	1	1
Produto_B	2	1
Produto_C	4	3
Produto_D	5	4

Vetores de Características (X Y)

$$A = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 2 & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 4 & 3 \end{pmatrix}$$

$$D = \begin{pmatrix} 5 & 4 \end{pmatrix}$$

• Centróides Iniciais:

$$C_1 = (1 \ 1)$$

$$C_2 = (2\ 1)$$

• D⁰ = Matriz de Distâncias na iteração 0.

Coluna → Objeto Linha → Distância ao centróide

$$D^0 = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 1 & 0 & 2.83 & 4.24 \end{bmatrix}$$

$$C_1 = (1,1)$$
 grupo_1

2.83 4.24
$$C_2 = (2,1)$$
 grupo 2

Iteração 0.

• Distâncias Euclidianas

$$\begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} X$$

$$D(A,C_1) = \sqrt{(1-1)^2 + (1-1)^2} = 0$$

$$D(B,C_1) = \sqrt{(2-1)^2 + (1-1)^2} = 1$$

$$D(C,C_1) = \sqrt{(4-1)^2 + (3-1)^2} = \sqrt{9+4} = \sqrt{13} = 3.61$$

$$D(D,C_1) = \sqrt{(5-1)^2 + (4-1)^2} = \sqrt{16+9} = \sqrt{25} = 5$$

$$D(A, C_2) = \sqrt{(1-2)^2 + (1-1)^2} = 1$$

$$D(B, C_2) = \sqrt{(2-2)^2 + (1-1)^2} = 0$$

$$D(C, C_2) = \sqrt{(4-2)^2 + (3-1)^2} = \sqrt{4+4} = \sqrt{8} = 2.83$$

$$D(D, C_2) = \sqrt{(5-2)^2 + (4-1)^2} = \sqrt{9+9} = \sqrt{18} = 4.24$$

• G⁰ = Matriz de Grupos na iteração 0.

$$D^0 = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 1 & 0 & 2.83 & 4.24 \end{bmatrix}$$

$$G^{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$Grupo_1 = (A)$$

 $Grupo_2 = (B C D)$

• Observando-se a Matriz de Distâncias D⁰, atribui-se o valor 1 na Matriz de Grupos G⁰ à posição de menor distância de cada objeto.

- Iteração 1.
- Novos Centróides

$$C_1 = (1,1)$$

$$C_2 = \left(\frac{2+4+5}{3}, \frac{1+3+4}{3}\right) = \left(\frac{11}{3}, \frac{8}{3}\right) = (3.67 \ 2.67)$$

Iteração 1.

$$D^{1} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 3.14 & 2.36 & 0.47 & 1.89 \end{bmatrix}$$

A B C D
$$\begin{bmatrix}
1 & 2 & 4 & 5
\end{bmatrix} X$$

$$\begin{bmatrix} 1 & 2 & 1 & 3 & 4 \end{bmatrix} Y$$

$$G^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$Grupo_1 = (A B)$$

$$Grupo_2 = (C D)$$

$$C1 = (1,1)$$
 $grupo_1$ $C2 = (3.67, 2.67)$ $grupo_2$

Novos Centróides

$$C_1 = \left(\frac{1+2}{2}, \frac{1+1}{2}\right) = (1.5 \ 1)$$

$$C_2 = \left(\frac{4+5}{2}, \frac{3+4}{2}\right) = (4.5 \ 3.5)$$

Iteração 2.

$$D^{2} = \begin{bmatrix} 0.5 & 0.5 & 3.2 & 4.61 \\ 4.3 & 3.54 & 0.71 & 0.71 \end{bmatrix}$$

$$A \quad B \quad C \quad D$$

$$\begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} X$$

$$G^{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$C_1 = (1.5 \ 1)$$

$$C_2 = (4.5 \ 3.5)$$

• Como $G^2 = G^1$ os objetos não mais se moverão entre os grupos, logo a partição que agrupa os Produtos Similares é:

$$Grupo_1 = (A B)$$

$$Grupo_2 = (C D)$$