#### **ESSEC**

## **Master in Finance**

# **Advanced Master in Financial Engineering (MSTF)**

#### FINM32227

# **Financial Risk Management**

# CLASS HANDOUTS SESSION 2

Peng Xu

FINM32227 1/25

# **Volatility, Correlations and Copulas**

# Outline

- Volatility
- Correlations and Copulas

FINM32227 2/25

- A variable's volatility σ is defined as the standard deviation of the return provided by the variable per unit of time when the return is expressed using continuous compounding
  - For option pricing, the unit of time is usually one year
  - o For risk management, the unit of time is usually one day
- In general,  $\sigma\sqrt{T}$  is equal to the standard deviation of

$$\ln \frac{S_T}{S_0}$$

where  $S_T$  is the value of the market variable at time T and  $S_0$  is its value today.

- $\circ$  If  $\sigma$  is per day, then T is measured in T days
- o If σ is per year, then T is measured in T years
- Normally days when markets are closed are ignored in volatility calculations, so the volatility per year is  $\sqrt{252}$  times the daily volatility, i.e.,  $\sigma_{year} = \sqrt{252}\sigma_{day}$
- Risk managers often focus on the variance rate, which is defined as the square of the volatility.

Note: The standard deviation of the return in time T increases with the square root of time, while the variance of this return increases linearly with time.

FINM32227 3/25

- Volatility cannot be observed directly, but we can
  - o imply volatilities from market prices, or
  - o estimate volatility from historical data
- Implied volatilities are used extensively by traders.
  - E.g., calculating implied volatility from the Black-Scholes option pricing formula.
  - The CBOE publishes indices of implied volatility.
     e.g., SPX VIX is an index of the implied volatility of 30-day options on the S&P 500 calculated form a wide range of calls and puts



FINM32227 4/25

- Estimating Volatility from Historical data:
  - $\circ$  The value of the variable (e.g., stock price) is usually observed at fixed interval of time (e.g., day, week, or month) Define the time interval as  $\tau$

Define m + 1 as the number of observations

Define  $S_i$  as the value of market variable at end of interval i (i = 0, 1, ..., m)

Define  $u_i = \ln \frac{S_i}{S_{i-1}}$ , which is the return during the ith interval

 $\circ$  The estimate s of the standard deviation of  $u_i$  is given by

$$s = \sqrt{\frac{1}{m-1}} \sum_{i=1}^{m} (u_i - \bar{u})^2$$

where  $\bar{u}$  is the sample mean of  $u_i$ 

o Since the standard deviation of  $u_i$  is  $\sigma\sqrt{\tau}$ ,

$$\hat{\sigma} = \frac{s}{\sqrt{\tau}}$$

The standard error of this estimate is approximately  $\frac{\widehat{\sigma}}{\sqrt{2m}}$ 

FINM32227 5/25

- In practice, the volatility of asset prices is not constant, so it is important to monitor it on a daily basis.
  - o Define  $\sigma_n$  as the volatility of a market variable on day n, as estimated at the end of day n-1
  - o One approach to estimating  $\sigma_n$  is to use the most recent m days' data, i.e.,

$$\sigma_n^2 = \frac{1}{m-1} \sum_{i=1}^m (u_{n-i} - \bar{u})^2$$

 $\circ$  For risk management purpose,  $u_i=\ln\frac{S_i}{S_{i-1}}$  is usually approximated by  $u_i=\frac{S_i}{S_{i-1}}-1=\frac{S_i-S_{i-1}}{S_{i-1}}$ ,  $\overline{u}$  is assumed to be 0, and m-1 is replaced by m. So the above formula is simplified to

$$\sigma_n^2 = \frac{1}{m} \sum_{i=1}^m u_{n-i}^2$$

 $\circ$  Since our objective is to estimate  $\sigma_n$ , it makes sense to give more weight to recent data, e.g.,

$$\sigma_n^2 = \sum_{i=1}^m \alpha_i u_{n-i}^2$$

where  $\alpha_i > \alpha_j$  when i < j, and  $\sum_{i=1}^m \alpha_i = 1$ 

FINM32227 6/25

 We can also extend the idea by assuming that there is a long-run average variance rate and it should be given some weight, i.e.,

$$\sigma_n^2 = \gamma V_L + \sum_{i=1}^m \alpha_i u_{n-i}^2$$

and  $\gamma + \sum_{i=1}^{m} \alpha_i = 1$ . This is known as ARCH(m) model.

– If we assume  $\gamma=0$ , and  $\alpha_{i+1}=\lambda\alpha_i$  where  $0<\lambda<1$ , then the formula is simplified to

$$\sigma_n^2 = \lambda \sigma_{n-1}^2 + (1 - \lambda) u_{n-1}^2$$

This is the exponentially weighted moving average (EWMA) model.

Example:

Suppose that  $\lambda=0.9$ , the volatility estimated for a market variable for day n-1 is 1% per day, and during day n-1 the market variable increased by 2%. What is your estimate of volatility for day n based on the EWMA model?

FINM32227 7/25

#### Attractions of EWMA:

Relatively little data needs to be stored.

We need only remember the current estimate of the variance rate and the most recent observation on the market variable

Tracks volatility changes.

 $\lambda$  governs how responsive the estimate of the daily volatility is to the most recent daily percentage change.

RiskMetrics uses  $\lambda = 0.94$  for daily volatility forecasting

If we add a long-run average variance rate,  $V_L$ , to the EWMA model, i.e.,

$$\sigma_n^2=\gamma V_L+\alpha u_{n-1}^2+\beta\sigma_{n-1}^2=\omega+\alpha u_{n-1}^2+\beta\sigma_{n-1}^2$$
 where  $\gamma+\alpha+\beta=1$  . This is **GARCH (1,1) model**.

o Example:

Suppose that a GARCH (1,1) model is estimated from daily data as  $\sigma_n^2 = 0.000002 + 0.13u_{n-1}^2 + 0.86\sigma_{n-1}^2$ . What does this imply for long-run average variance rate? Suppose that the estimate of the volatility on day n-1 is 1.6% per day, and on day n-1 the market variable decreased by 1%. What is the estimate of the volatility on day n?

FINM32227 8/25

o If we continually substitute for  $\sigma_{n-i}^2$ , we get:

$$\sigma_n^2 = (1 + \beta + \beta^2 + \cdots)\omega + \alpha(u_{n-1}^2 + \beta u_{n-2}^2 + \beta^2 u_{n-3}^2 + \cdots)$$

 $\beta$  is the "decay rate". Similar to  $\lambda$  in EWMA model, it defines the relative importance of the  $u_i$  in determining the current variance rate.

GARCH(1,1) model is the same as the EWMA model except that it also assigns some weight to the long-run average variance rate.

GARCH(1,1) can be used to forecast future volatility

$$\sigma_n^2 - V_L = \alpha (u_{n-1}^2 - V_L) + \beta (\sigma_{n-1}^2 - V_L)$$

On day n + t in the future, we have

$$\sigma_{n+t}^2 - V_L = \alpha (u_{n+t-1}^2 - V_L) + \beta (\sigma_{n+t-1}^2 - V_L)$$

then 
$$E(\sigma_{n+t}^2 - V_L) = (\alpha + \beta)E(\sigma_{n+t-1}^2 - V_L)$$

and 
$$E(\sigma_{n+t}^2 - V_L) = (\alpha + \beta)^t (\sigma_n^2 - V_L)$$

or 
$$E(\sigma_{n+t}^2) = V_L + (\alpha + \beta)^t (\sigma_n^2 - V_L)$$

Note: This equation forecasts volatility on day n+t based on the information available at the end of day n-1

FINM32227 9/25

When  $\alpha + \beta < 1$  and  $t \to \infty$ ,  $E(\sigma_{n+t}^2) \to V_L$ . This property is called *mean reversion*.

So for a stable GARCH (1,1) process, we require  $\alpha + \beta < 1$ . Otherwise the weight given to  $V_L$  is negative and the process is "mean fleeing" rather than "mean reverting".

#### Example:

Suppose  $\alpha + \beta = 0.9617$  and  $V_L = 0.0000442$ . Our estimate of the current variance rate per day is 0.00006. What is the expected variance rate in 10 days? How about 100 days?

 GARCH(1,1) can also be used to construct volatility term structure, which is the relationship between the volatility of options and their maturities

Define 
$$V(t)=E(\sigma_{n+t}^2)$$
, and let  $\alpha+\beta=e^{-a}$ , then 
$$V(t)=V_L+e^{-at}(V(0)-V_L)$$

Now assume t is continuous, then the average variance rate per day between today and time T is

$$\frac{1}{T} \int_0^T V(t)dt = V_L + \frac{1 - e^{-aT}}{aT} (V(0) - V_L)$$

FINM32227 10/25

If we define  $\sigma(T)$  as the volatility per annum and assume there are 252 days per year, then

$$\sigma(T)^{2} = 252 \left\{ V_{L} + \frac{1 - e^{-aT}}{aT} \left( \frac{\sigma(0)^{2}}{252} - V_{L} \right) \right\}$$

Note: T is measured in days

When the current variance rate per day  $V(0) = \frac{\sigma(0)^2}{252}$  is above the long-run average variance rate  $V_L$ , the GARCH(1,1) model estimates a downward-sloping volatility term structure, and vice versa.

## Example:

Use the estimates from the previous example to construct the volatility term structure.

FINM32227 11/25

When  $\sigma(0)$  changes by  $\Delta\sigma(0), \sigma(T)$  changes by approximately

$$\frac{1 - e^{-aT}}{aT} \frac{\sigma(0)}{\sigma(T)} \Delta \sigma(0)$$

Example:

Continue from the previous example. Suppose that there is an event that increases the volatility from 12.30% per year to 13.30 per year. Estimate by how much the event increases the volatilities used to price 30-day and 100-day options.

The more general GARCH(p,q):

$$\sigma_n^2 = \omega + \sum_{i=1}^p \alpha_i u_{n-i}^2 + \sum_{j=1}^q \beta_j \sigma_{n-j}^2$$

FINM32227 12/25

#### Estimating Models:

The parameters of both EWMA and GARCH(1,1) model can be estimated using historical data with maximum likelihood estimation (MLE) method.

#### Example:

Suppose the observations  $u_1, u_2, \cdots, u_m$  are normally distributed (conditional on the variance) with mean 0 and variance  $\sigma_i^2$ , where  $\sigma_i^2$  can be modeled by both EWMA and GARCH(1,1) model.

The likelihood of the observation is

$$\prod_{i=1}^{m} \left[ \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(\frac{-u_i^2}{2\sigma_i^2}\right) \right]$$

Using the MLE method, the best estimates of the parameters are the ones that maximize the likelihood of the observations.

This is equivalent to maximizing the logarithm of the likelihood:

$$\sum_{i=1}^{m} \left( -\ln\left(\sigma_i^2\right) - \frac{u_i^2}{\sigma_i^2} \right)$$

FINM32227 13/25

Choosing between EWMA and GARCH(1,1):

In practice, variance rates do tend to be pulled back to a longrun average level, which is known as *mean reversion*.

GARCH (1,1) is theoretically more appealing since it incorporates mean reversion.

If the parameter  $\omega$  is 0, the GARCH(1,1) reduces to EWMA. If the estimate of  $\omega$  is negative, then GARCH(1,1) is not stable and should switch to EWMA

We can also test whether GARCH model is working well in explaining data by looking at the autocorrelation structure of  $\frac{u_i^2}{\sigma_i^2}$ .

FINM32227 14/25

The correlation coefficient between two variables  $V_1$  and  $V_2$  is

$$\rho = \frac{COV(V_1, V_2)}{SD(V_1)SD(V_2)} = \frac{E(V_1, V_2) - E(V_1)E(V_2)}{SD(V_1)SD(V_2)}$$

- Two variables are statistically independent if knowledge about one of them does not affect the probability distribution for the other. I.e.,  $V_1$  and  $V_2$  are independent if  $f(V_2|V_1=x)=f(V_2)$ , where  $f(\cdot)$  denotes the probability density function.
- Independence is <u>Not</u> the same as zero correlation.
   Correlation coefficient only measures linear dependence between two variables.
- Suppose that  $X_i$  and  $Y_i$  are the values of two variables X and  $Y_i$  at the end of day i. The returns on the variables on day i are

$$x_i = \frac{X_i - X_{i-1}}{X_{i-1}}, \ y_i = \frac{Y_i - Y_{i-1}}{Y_{i-1}}.$$

The covariance rate between X and Y on day n is

$$cov_n = E(x_n y_n) - E(x_n)E(y_n)$$

Risk managers assume the expected daily returns are zero, so

$$cov_n = E(x_n y_n)$$

FINM32227 15/25

- Using equal weights for the last m observations on  $x_i$  and  $y_i$  gives the estimate

$$cov_n = \frac{1}{m} \sum_{i=1}^m x_{n-i} y_{n-i}$$

Similarly,

$$var_{x,n} = \frac{1}{m} \sum_{i=1}^{m} x_{n-i}^{2}$$
,  $var_{y,n} = \frac{1}{m} \sum_{i=1}^{m} y_{n-i}^{2}$ 

The correlation estimate on day n is  $\frac{cov_n}{var_{x,n}var_{y,n}}$ 

EWMA model for covariance

$$cov_n = \lambda cov_{n-1} + (1 - \lambda)x_{n-1}y_{n-1}$$

 GARCH model can also be used for updating covariance rate estimates and forecasting the future level of covariance rates.
 E.g., the GARCH(1,1) is

$$cov_n = \omega + \alpha x_{n-1} y_{n-1} + \beta cov_{n-1}$$

So the long-run average covariance rate is  $\omega/(1-\alpha-\beta)$ 

Once variance and covariance rates have been calculated for a set of N variables, an  $N \times N$  variance-covariance matrix,  $\Omega$ , can be constructed.

FINM32227 16/25

#### II. Correlations and Copulas

A variance-covariance matrix,  $\Omega$ , is internally consistent if the positive semi-definite condition

$$w^T \mathbf{\Omega} w \geq 0$$

holds for all  $N \times 1$  vectors w.

To ensure that a positive-semidefinite matrix is produced, variance and covariance should be calculated consistently.

- Multivariate Normal Distribution:
  - $\circ$  Suppose  $V_1$  and  $V_2$  are bivariate normal. Conditional on  $V_1$ ,  $V_2$  is normal with mean

$$\mu_2 + \rho \sigma_2 \frac{V_1 - \mu_1}{\sigma_1}$$

and standard deviation

$$\sigma_2 \sqrt{1-\rho^2}$$

where  $\mu_1$  and  $\mu_2$  are unconditional mean of  $V_1$  and  $V_2$ ,  $\sigma_1$  and  $\sigma_2$  are their unconditional standard deviations, and  $\rho$  is the correlation coefficient between  $V_1$  and  $V_2$ .

FINM32227 17/25

 $\circ$  When there are N variables,  $V_i$  (i=1,2,...N), in a multivariate normal distribution there are N(N-1)/2 correlations

We can reduce the number of correlation parameters that have to be estimated to N with a one-factor model Suppose that  $U_1, U_2, \cdots, U_N$  have standard normal distribution. In a one-factor model,

$$U_i = a_i F + \sqrt{1 - a_i^2} Z_i$$

where F and  $Z_i$  have a standard normal distribution,  $Z_i$  are uncorrelated with each other and uncorrelated with F, and  $a_i$  is a constant between -1 and +1.

In this model, all the correlation between  $U_i$  and  $U_j$  arises from their dependence on the common factor F, and the correlation coefficient is  $a_i a_j$ .

The m-factor model is

$$U_i = a_{i1}F_1 + a_{i2}F_2 + \dots + a_{im}F_m + \sqrt{1 - a_{i1}^2 - a_{i2}^2 - \dots - a_{im}^2}Z_i$$

FINM32227 18/25

#### II. Correlations and Copulas

Gaussian Copula Models:

Creating a correlation structure for variables that are not normally distributed

- $\circ$  Suppose we wish to define a correlation structure between two variable  $V_1$  and  $V_2$  that do not have normal distributions
- $\circ$  We transform the variable  $V_1$  to a new variable  $U_1$  that has a standard normal distribution on a "percentile-to-percentile" basis.
- $\circ$  We transform the variable  $V_2$  to a new variable  $U_2$  that has a standard normal distribution on a "percentile-to-percentile" basis.
- o  $U_1$  and  $U_2$  are assumed to have a bivariate normal distribution with correlation  $\rho$
- $\circ$  The correlation structure between  $V_1$  and  $V_2$  is defined by that between  $U_1$  and  $U_2$

## Example:

FINM32227 19/25

#### II. Correlations and Copulas





 $V_1$ 

 $V_2$ 

| $V_1$ mapping to $U_1$ |            |                       |
|------------------------|------------|-----------------------|
| V <sub>1</sub>         | Percentile | <i>U</i> <sub>1</sub> |
| 0.2                    | 20         | -0.84                 |
| 0.4                    | 55         | 0.13                  |
| 0.6                    | 80         | 0.84                  |
| 0.8                    | 95         | 1.64                  |

| $V_2$ mapping to $U_2$ |            |                |
|------------------------|------------|----------------|
| <b>V</b> <sub>2</sub>  | Percentile | U <sub>2</sub> |
| 0.2                    | 8          | -1.41          |
| 0.4                    | 32         | -0.47          |
| 0.6                    | 68         | 0.47           |
| 0.8                    | 92         | 1.41           |

Assume correlation between  $U_1$  and  $U_2$  (copula correlation) is .5.

The Probability that  $V_1$  and  $V_2$  are both less than 0.2 is the probability that  $U_1 < -0.84$  and  $U_2 < -1.41$ 

When copula correlation is 0.5, this is M(-0.84, -1.41, 0.5) = 0.043, where M is the cumulative distribution function for the bivariate normal distribution

FINM32227 20/25

- $\circ$  The key property of a copula model is that it preserves the marginal distribution of  $V_1$  and  $V_2$  while defining a correlation structure between them.
- Instead of a bivariate normal distribution for U<sub>1</sub> and U<sub>2</sub> we can assume any other joint distribution
   One possibility is the bivariate Student t distribution, which has a higher tail correlation than the bivariate normal distribution.
- o Copulas can be used to define a correlation structure between  $V_1, V_2,...V_n$

E.g., multivariate Gaussian copula:

- We transform each variable  $V_i$  to a new variable  $U_i$  that has a standard normal distribution on a "percentile-to-percentile" basis.
- The U's are assumed to have a multivariate normal distribution

In a factor copula model the correlation structure between the U's is generated by assuming one or more factors.

FINM32227 21/25

#### II. Correlations and Copulas

- Application of the one-factor Gaussian copula to loan portfolio:
   Vasicek's model
  - $\circ$  Define  $T_i$  as the time when company i default
  - o Define  $PD_i$  as the probability that company i will default by time T:

$$PD_i = Prob(T_i < T)$$

 $\circ$  We map the time when company i default,  $T_i$ , to a new variable  $U_i$  and assume

$$U_i = a_i F + \sqrt{1 - a_i^2} Z_i$$

where F and the  $Z_i$  have independent standard normal distributions

The mappings imply

$$Prob(U_i < U) = Prob(T_i < T)$$

when

$$U = N^{-1}[PD_i]$$

o From the one-factor model,

FINM32227 22/25

$$Prob(U_i < U|F) = Prob\left(Z_i < \frac{U - a_i F}{\sqrt{1 - a_i^2}} \middle| F\right) = N\left[\frac{U - a_i F}{\sqrt{1 - a_i^2}}\right]$$

$$Prob(T_i < T|F) = N \left[ \frac{N^{-1}[PD_i] - a_i F}{\sqrt{1 - a_i^2}} \right]$$

Assuming  $PD_i$  and  $a_i$  are the same for all i, i.e.,  $PD_i = PD$  and  $a_i = \sqrt{\rho}$ 

$$Prob(T_i < T|F) = N \left[ \frac{N^{-1}[PD] - \sqrt{\rho}F}{\sqrt{1 - \rho}} \right]$$

This is the default rate conditional on *F*.

As *F* decreases, the default rate increases.

The probability of  $F < N^{-1}(Y)$  is Y, so there is probability Y that the default rate will be greater than

$$N\left[\frac{N^{-1}[PD] - \sqrt{\rho}N^{-1}(Y)}{\sqrt{1-\rho}}\right]$$

Or there is probability X = 1 - Y that the default rate will be less than

FINM32227 23/25

$$N\left[\frac{N^{-1}[PD] + \sqrt{\rho}N^{-1}(X)}{\sqrt{1-\rho}}\right]$$

This is WCDR(T,X), the worst-case default rate for time horizon T and a confidence level X.

The VaR for this time horizon and confidence limit is

$$VaR(T, X) = L \times (1 - R) \times WCDR(T, X)$$

where *L* is the dollar size of the loan portfolio and *R* is recovery rate

#### Example:

Suppose that a bank has a total of \$100 million of retail exposures. The one-year probability of default averages 2% and the recovery rate averages 60%. The copula correlation parameter is estimated as 0.1. What is the VaR with one year horizon and 99.9% confidence level?

FINM32227 24/25

#### o Estimating *PD* and $\rho$ :

The MLE method can be used to estimate PD and  $\rho$  from historical data on default rates.

Define DR as the default rate and G(DR) is the cumulative probability distribution function for DR, we have

$$DR = N \left[ \frac{N^{-1}[PD] + \sqrt{\rho} N^{-1}(G(DR))}{\sqrt{1 - \rho}} \right]$$

This implies:

$$G(DR) = N\left(\frac{\sqrt{1-\rho}N^{-1}(DR) - N^{-1}[PD]}{\sqrt{\rho}}\right)$$

Differentiating this, the probability density function for the default rate is

$$g(DR) = \sqrt{\frac{1-\rho}{\rho}} exp \left\{ \frac{1}{2} \left[ \left( N^{-1}(DR) \right)^2 - \left( \frac{\sqrt{1-\rho}N^{-1}(DR) - N^{-1}[PD]}{\sqrt{\rho}} \right)^2 \right] \right\}$$

MLE: Use Solver in Excel to search for the values of PD and  $\rho$  that maximize of the log likelihood of the observations.

FINM32227 25/25