Project 7 (Part 1 of Final): Regression and Correlation

Name: Millicent Cowart

The following data depicts the amount of forest burned in forest fires, measured in thousands of hectares, in the western U.S. and the number of significant rainfall days for that year for the last ten years. Let x be the number of rainfall days and y be the hectares burned (in thousands).

i	x_i	y_i
1	31	85
2	30	40
3	18	425
4	20	325
5	22	410
6	24	180
7	26	95
8	27	98
9	19	360
10	23	295

1. Consider the data above and do the following:

```
1 □ data fire;
2 input rainfall burned @@;
3 cards;
4 31 85 30 40 18 425 20 325 22 410
5 24 180 26 95 27 98 19 360 23 295
6 ;
7 run;
8 □ proc glm data=fire;
9 model burned=rainfall;
10 title "Millicent Cowart: Forest fire";
11 run;
```

• Create a scatter plot of the data. Do you think the slope will be positive or negative? The slope is negative.

• Determine whether the regression is significant. Include your SAS output, hypothesis, and conclusion.

			M	illicent Co	wart:	Fore	st fire			
				The GL	M Pro	cedure				
				Dependent '	Varial	ole: bui	rned			
Sour	ce		DF	Sum of Squ	uares	Mean	Square	F	Value	Pr > F
Mode	el		1	164771	.7556	1647	71.7556		42.44	0.0002
Error			8	31060	.3444	38	82.5431			
Corre	ected To	tal	9	195832	.1000					
		- Sq u	2.1.7.10	1275-1276-2770-2	7 (400000	MSE 31006	1111.000	Mea		
	Source	DI	F	Type I SS	Mean	Squar	e F Va	lue	Pr > I	F
	rainfal	1	1 1	64771.7556	164	771.755	6 42	.44	0.000	2
	Source	DF	F	Гуре III SS	Mean	Squar	e F Va	lue	Pr > I	F
	rainfal	1	1 1	64771.7556	164	771.755	6 42	.44	0.000	2
	Para	mete	er	Estimate	St	andard Erroi	The same of the sa	e l	Pr > t	
	Interd	ept	S	57.4333333	113.1	918375	8.4	6	<.0001	
	rainfa	all		-30.2555556	4.6	443173	-6.5	1 (0.0002	

 $H0:\beta_1 = 0$ $H1:\beta_1 \neq 0$

P-value: 0.0002

Conclusion: Reject the null hypothesis. The slope is not equal to zero, so rainfall is a significant predictor of burning.

 If the regression is significant, fit the linear regression and write an interpretation of the line. Include your SAS output and code.

$$\hat{y} = 957.433 - 30.256x$$

For every day increase of rainfall there is an expected decrease of 30.256 hectares burned.

- Determine what percentage of the variability in y is explained by the regression. Include your SAS output and code.
 - 84% of the variability in hectares burned is explained by the regression.
- Determine which correlation coefficient is appropriate. Justify your answer with SAS output and code.

13∃proc univariate normal;

14 var rainfall burned;

15 run;

Tests for Normality							
Test	St	atistic	p Value				
Shapiro-Wilk	W	0.888297	Pr < W	0.1622			
Kolmogorov-Smirnov	D	0.216915	Pr > D	>0.1500			
Cramer-von Mises	W-Sq	0.079292	Pr > W-Sq	0.1955			
Anderson-Darling	A-Sq	0.484885	Pr > A-Sq	0.1817			

H0: The data (forests burned) are normally distributed.

H1: The data (forests burned) is not normally distributed.

P-Value: 0.1622

Conclusion: Fail to reject the null hypothesis.

Tests for Normality							
Test	Sta	atistic	p Value				
Shapiro-Wilk	w	0.954649	Pr < W	0.7236			
Kolmogorov-Smirnov	D	0.114453	Pr > D	>0.1500			
Cramer-von Mises	W-Sq	0.023109	Pr > W-Sq	>0.2500			
Anderson-Darling	A-Sq	0.187252	Pr > A-Sq	>0.2500			

H0: The data (rainfall) is normally distributed.

H1: The data (rainfall) is not normally distributed.

P-value: 0.7236

Conclusion. Fail to reject the null hypothesis.

Since both variables are normally distributed, use Pearson's correlation coefficient.

• Calculate the correlation coefficient and determine whether the correlation is significant. Justify your answer with SAS output and code.

17∃proc corr data=fire fisher;

18 var rainfall burned;

19 run;

Pearson Correlation Coefficients, N = 10 Prob > r under H0: Rho=0					
	rainfall	burned			
rainfall	1.00000	-0.91727 0.0002			
burned	-0.91727 0.0002	1.00000			

The correlation coefficient is -0.91727 and it is significant.

Calculate the 95% confidence interval for the correlation coefficient.

	Pearson Correlation Statistics (Fisher's z Transformation)										
Variable	With Variable	N	Sample Correlation	Fisher's z	Bias Adjustment	Correlation Estimate	95% Confid	ence Limits	p Value for H0:Rho=0		
rainfall	burned	10	-0.91727	-1.57157	-0.05096	-0.90880	-0.978516	-0.652598	<.0001		

The 95% confidence interval for the correlation coefficient is (-0.9785, -0.6526).

2. Download the analysis1.csv file from eLearning and create a SAS data set.

We would like to determine if weight can be modeled from height, waist, and neck.

• Determine whether the regression is significant. Include your SAS output, hypothesis, and conclusion.

```
H0:\beta_1 = \beta_2 = \beta_3 = 0
```

H1: At least one is not equal to zero

```
1 libname in 'G:\My Drive\STA5990Data';
2
3 data one;
4 set analysis;
5 run;
6
7 proc glm data=one;
8 model weight=height waist neck;
9 title "Millicent Cowart: weight model";
10 run; quit;
```

Millicent Cowart: weight model The GLM Procedure Dependent Variable: weight DF Sum of Squares Mean Square F Value Source Pr > F 876186.691 292062.230 2797.91 <.0001 Model 3 104.386 Error 2643 275891.550 Corrected Total 2646 1152078.242

P-value: <0.0001

Conclusion: Reject the null hypothesis. The slope is not equal to zero, so height, waist, and neck are significant predictors of weight.

 If the regression is significant, fit the linear regression and write an interpretation of the line. Include your SAS output and code.

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	-99.71832382	3.69137500	-27.01	<.0001
height	0.37471647	0.02493110	15.03	<.0001
waist	0.96882163	0.01559179	62.14	<.0001
neck	0.77866746	0.07572779	10.28	<.0001

$$\hat{y} = -99.72 + 0.37x_h + 0.97x_\omega + 0.78x_n$$

For each increase in height, there is an expected 0.37 increase in weight. For each increase in waist, there is an expected 0.97 increase in weight. For each increase in neck, there is an expected 0.78 increase in weight.

 Determine what percentage of the variability in y is explained by the regression. Include your SAS output and code.

R-Square	Coeff Var	Root MSE	weight Mean
0.760527	11.19326	10.21693	91.27760

76% of the variability in weight is explained by the regression.

3. Download the lego.sample.csv file from eLearning and create a SAS data set.

We would like to determine whether price can be modeled from number of pieces and pages in the manual.

 Determine whether the regression is significant. Include your SAS output, hypothesis, and conclusion.

P-value: <0.001

Conclusion: Reject the null hypothesis. Pieces and pages are significant predictors of price.

 If the regression is significant, fit the linear regression and write an interpretation of the line. Include your SAS output and code.

$$\hat{y} = 11.66 + 0.049x_{pi} + 0.147x_{pa}$$

For each increase in piece, there is an expected 0.049 increase in price. For each increase in pages, there is an expected 0.147 increase in price.

Determine what percentage of the variability in y is explained by the regression. Include your SAS output and code.
 59% of the variability in price is explained by the regression.