TEMA 3: Regresión (primera parte)

Regresión no paramétrica. El modelo de regresión lineal

José R. Berrendero

Departamento de Matemáticas, Universidad Autónoma de Madrid

Temas a tratar

- Objetivo
- Regresión no paramétrica
- Regresión múltiple
 - Estimación e inferencia
 - Comparación entre modelos
 - El error de predicción
 - Bootstrap en regresión
- Regresión con datos de alta dimensión
 - Selección de variables
 - Reducción de la dimensión: componentes principales
 - Regularización: ridge, lasso

Objetivo

Estudiar la relación entre una **variable respuesta** Y y un vector de p variables regresoras $X = (X_1, \ldots, X_p)$.

- ullet Si p=1 regresión simple y si p>1 regresión múltiple
- Si *Y* también es un vector, *regresión* multivariante
- Si las variables regresoras son trayectorias de procesos estocásticos, regresión funcional

Una forma de resumir la relación entre X_1, \ldots, X_p e Y es a través de la **función de regresión**

$$m(X) = \mathrm{E}(Y|X), \quad m(x) = \mathrm{E}(Y|X=x)$$

Ya vimos que m(X) es la mejor predicción de Y a partir de X (en el sentido del error cuadrático medio).

El objetivo general es estimar m(x) a partir de n observaciones iid de entrenamiento $(x_1,y_1),\ldots,(x_n,y_n)$, donde $x_i=(x_{i,1},\ldots,x_{i,p})$.

Modelos de regresión

El modelo general que se suele asumir para los datos es el siguiente:

$$Y = m(X) + \epsilon$$

- $ullet \ \mathrm{E}(\epsilon|X)=0$ o, equivalentemente, $m(X)=\mathrm{E}(Y|X)$
- Homocedasticidad: $\operatorname{Var}(\epsilon|X) = \sigma^2$

Estas hipótesis implican $\mathrm{E}(\epsilon)=0$, $\mathrm{Var}(\epsilon)=\sigma^2$ y $\mathrm{E}(X\epsilon)=0$

Según las hipótesis adicionales que se asumen sobre m(x) hay muchos posibles modelos:

Modelo de regresión lineal

$$m(X)=m(X_1,\ldots,X_p)=eta_0+eta_1X_1+\cdots+eta_pX_p$$

• Modelos no paramétricos: suelen suponer condiciones de continuidad o suavidad (existencia de derivadas) de la función m(x).

Estimador de Nadaraya-Watson

El vector (X, Y) tiene densidad conjunta f(x, y) y la densidad marginal de X es g(x):

$$m(x) = \mathrm{E}(Y|X=x) = \int y f(y|x) dy = rac{\int y f(x,y) dy}{g(x)}$$

Idea: reemplazar las densidades que aparecen en la expresión anterior por sus estimadores del núcleo (con los mismos núcleos simétricos y parámetros de suavizado):

$$egin{align} \hat{g}(x) = & rac{1}{nh} \sum_{i=1}^n K\left(rac{x-X_i}{h}
ight), \ \hat{f}\left(x,y
ight) = & rac{1}{nh^2} \sum_{i=1}^n K\left(rac{x-X_i}{h}
ight) K\left(rac{y-Y_i}{h}
ight).
onumber \end{aligned}$$

El estimador es

$$\hat{m}(x) = rac{\sum_{i=1}^n K\left(rac{x-X_i}{h}
ight)Y_i}{\sum_{i=1}^n K\left(rac{x-X_i}{h}
ight)}$$

Estimador de Nadaraya-Watson

Interpretación como promedio ponderado localmente

Si definimos las ponderaciones

$$w_i(x) = rac{K\left(rac{x-X_i}{h}
ight)}{\sum_{i=1}^n K\left(rac{x-X_i}{h}
ight)}$$

entonces
$$\hat{m}(x) = \sum_{i=1}^n w_i(x) Y_i$$

El estimador es una media de las Y_i ponderadas localmente de manera que para estimar m(x) se promedian únicamente los valores Y_i tales que $X_i pprox x$

Cuestión: ¿A dónde converge $\hat{m}(x_i)$ cuando h o 0? ¿A dónde converge $\hat{m}(x)$ si $h o \infty$?

Estimador de Nadaraya-Watson

Interpretación como un estimador de mínimos cuadrados

El estimador de Nadaraya-Watson evaluado en x es el valor \hat{eta}_0 para el que se minimiza $\sum_{i=1}^n w_i(x) (Y_i - eta_0)^2$

Se ajusta una constante por mínimos cuadrados ponderados localmente.

Generalización: regresión localmente polinómica

$$\hat{m}(x)=\hat{eta}_0+\hat{eta}_1x+\hat{eta}_2x^2+\cdots+\hat{eta}_px^p$$
, donde $\hat{eta}_0,\ldots,\hat{eta}_p$ minimizan

$$\sum_{i=1}^n w_i(x) (Y_i - eta_0 - eta_1(x_i - x) - eta_2(x_i - x)^2 - eta_p(x_i - x)^p)$$

Loess (locally estimated scatterplot smoothing)

Estimador localmente lineal

kernSmooth::locpoly

```
# La curva de regresión verdadera
fun_reg <- function(x){</pre>
 x^2 * sin(x)
}
# Genera los datos
set.seed(100)
n <- 100
x <- seq(-pi, pi, length.out = n)</pre>
y \leftarrow fun_{reg}(x) + rnorm(length(x), sd = 1)
df <- data.frame(x, y)</pre>
# Ajuste localmente lineal
ajuste1 <- with(df, locpoly(x, y, degree = 1, bandwidth =
# Ajuste localmente cuadrático
ajuste2 <- with(df, locpoly(x, y, degree = 2, bandwidth =
# Representación gráfica
df %>%
  mutate(curva1 = ajuste1$y) %>%
  mutate(curva2 = ajuste2$y) %>%
  ggplot() +
  geom_point(aes(x, y)) +
  geom_line(aes(x, curva1), color="red", size = 1.1) +
  geom_line(aes(x, curva2), color = 'blue', size = 1.1) +
  plot_function(fun = 'fun_reg', linetype = 2) # curva
```

kernSmooth::locpoly

Observaciones

- Selección del parámetro de suavizado (dpill())
 propuesto por Ruppert, Sheather y Wand (1995)
- Usando ggplot2(), el comando geom_smooth usa loess
 - El nivel de suavizado se controla con span, la proporción de datos que se usan en el ajuste local.
 - $\circ \;\;$ Usa un núcleo de la forma $K(x)=(1-\leftert x
 ightert ^{3})^{3},$ si $\leftert x
 ightert \leq 1.$

En el siguiente ejemplo se compara Nadaraya-Watson con los ajustes de grado 1 y 2:

```
df <- data.frame(x, y)

ggplot(df, aes(x, y)) +
    geom_point() +
    geom_smooth(method = 'loess', se = FALSE, span = 0.25,
    geom_smooth(method = 'loess', se = FALSE, span = 0.25,
    geom_smooth(se = FALSE, span = 0.25, col = 'darkgreen')
    geom_function(fun = 'fun_reg', linetype = 2)</pre>
```

Ejemplo

El ECMI del estimador de Nadaraya-Watson

Aproximaciones al sesgo y la varianza del estimador de Nadaraya-Watson:

Término de varianza

$$\int ext{Var}[\hat{m}(x)]dx pprox rac{\sigma^2 \|K\|_2^2}{nh} \int rac{dx}{g(x)}, \quad nh \; ext{ grande}$$

Término de sesgo

$$\int (\mathrm{E}(\hat{m}(x)) - m(x))^2 dx pprox rac{h^4}{4} \sigma_K^4 \int \left(m''(x) + 2rac{m'(x)g'(x)}{g(x)}
ight)$$

- Si g(x) pprox 0, el valor $\hat{m}(x)$ es muy variable porque alrededor de x hay poca información
- El término 2m'(x)g'(x)/g(x) corresponde a un sesgo de diseño, depende de la distribución de X. Este término desaparece cuando se usa regresión localmente lineal.

Mínimos cuadrados penalizados

• Los estimadores son las funciones que minimizan $\phi(\lambda)$, para un valor $\lambda>0$, donde

$$\phi(\lambda):=\sum_{i=1}^n(Y_i-m(x_i))^2+\lambda\int_a^bm''(x)^2dx$$

- El primer término mide el ajuste a los datos, el segundo controla la suavidad del estimador
- ¿A qué se parece el resultado si $\lambda \to 0$? ¿Y si $\lambda \to \infty$?
- La solución del problema, un compromiso entre ajuste y suavidad, es un *spline*

Splines

Sea $a < x_1 < \cdots < x_n < b$ un conjunto de nodos. Un **spline cúbico** es una función continua tal que

- ullet Es un polinomio cúbico en cada intervalo (x_i,x_{i+1})
- Las primeras y las segundas derivadas en los nodos son continuas

Si además la función es lineal a la izquierda de x_1 y a la derecha de x_n se llama spline cúbico natural.

Proposición. La función que minimiza $\phi(\lambda)$ es un spline cúbico natural cuyos nodos corresponden a los puntos muestrales x_1, \ldots, x_n .

Implementación (smooth.spline)

```
splines <- smooth.spline(x, y, cv = TRUE)
df <- df %>%
  mutate(yfit = splines$y, xfit = splines$x)

ggplot(df) +
  geom_point(aes(x, y)) +
  geom_line(aes(xfit, yfit), color="red", size = 1.1) +
  geom_smooth(aes(x, y), se = FALSE, span = 0.25, col =
  geom_function(fun = 'fun_reg', linetype = 2)
```


El modelo de regresión lineal múltiple

El modelo de regresión más usual es el siguiente:

$$Y=eta_0+\sum_{j=1}^peta_jX_j+\epsilon$$

donde
$$\mathrm{E}(\epsilon|X_1,\ldots,X_p)=0$$
 y $\mathrm{Var}(\epsilon|X_1,\ldots,X_p)=\sigma^2.$

Para muchas inferencias (intervalos, contrastes, etc.) se asume que $\epsilon|(X_1,\ldots,X_p)$ tiene distribución normal.

Cada observación de la muestra de entrenamiento sigue el modelo

$$y_i = eta_0 + \sum_{j=1}^p eta_j x_{i,j} + \epsilon_i, \quad i = 1, \dots, n.$$

donde
$$\mathrm{E}(\epsilon_i|x_i)=0$$
 y $\mathrm{Var}(\epsilon_i|x_i)=\sigma^2$.

El modelo de regresión lineal múltiple

¿Cuáles de los siguientes conjuntos de datos verifican el modelo?

El modelo de regresión lineal múltiple

En forma matricial,

$$egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix} = egin{pmatrix} 1 & x_{1,1} & \dots & x_{1,p} \ 1 & x_{2,1} & \dots & x_{2,p} \ dots & dots & \ddots & dots \ 1 & x_{n,1} & \dots & x_{n,p} \end{pmatrix} egin{pmatrix} eta_0 \ eta_1 \ dots \ eta_p \end{pmatrix} + egin{pmatrix} \epsilon_1 \ \epsilon_2 \ dots \ eta_n \end{pmatrix}$$

De forma más compacta,

$$Y = Xeta + \epsilon, \;\; \epsilon | X \equiv \mathrm{N}_n(0, \sigma^2 \mathbb{I}_n) \Leftrightarrow Y | X \equiv \mathrm{N}_n(Xeta, \sigma^2 \mathbb{I}_n)$$

X es la matriz de diseño

Interpretación geométrica

Llamaremos $V=R(X)\subset \mathbb{R}^n$ al subespacio vectorial generado por las columnas de la matriz de diseño X

$$\mu \in V \Leftrightarrow ext{Existe } eta \in \mathbb{R}^{p+1} ext{ tal que } \mu = Xeta$$

El modelo de regresión equivale a $Y|X\equiv \mathrm{N}_n(\mu,\sigma^2\mathbb{I}_n)$, donde $\mu\in V$.

Ajuste por mínimos cuadrados

• Estimadores de mínimos cuadrados: los coeficientes $\hat{\beta}_0, \dots, \hat{\beta}_p$ para los que se minimiza

$$\|Y-Xeta\|_2^2 = \sum_{i=1}^n [Y_i - (eta_0 + eta_1 x_{i,1} + \ldots + eta_p x_{i,p})]^2$$

- $\hat{Y} \equiv X \hat{\beta}$ es la **proyección ortogonal** de Y sobre V.
- Ecuaciones normales: el vector $e = Y \hat{Y} = Y X\hat{\beta}$ se denomina **vector de residuos**. Los residuos deben ser ortogonales a las columnas de X (una base de V):

$$X'(Y - \hat{Y}) = 0 \Leftrightarrow X'e = 0$$

 Expresión de los estimadores de mínimos cuadrados:

$$\hat{\beta} = (X'X)^{-1}X'Y$$

Ajuste por mínimos cuadrados

• El estimador de mínimos cuadrados es el estimador de máxima verosimilitud (EMV) de β :

$$L(eta,\sigma^2) = \left(rac{1}{\sqrt{2\pi}\sigma}
ight)^n \expiggl\{-rac{1}{2\sigma^2}\|Y-Xeta\|_2^2iggr\}$$

• El vector $\hat{\beta}$ tiene distribución normal (p+1)dimensional con vector de medias β y matriz de
covarianzas $\sigma^2(X'X)^{-1}$:

$$\hat{eta} \equiv \mathrm{N}_{p+1}(eta, \sigma^2(X'X)^{-1})$$

• El vector de valores ajustados es

$$\hat{Y}=X\hat{eta}=HY,~~H=X(X'X)^{-1}X'$$

A H se le llama $matriz\ sombrero$, y geométricamente es una matriz de proyección sobre V

• El vector de residuos es entonces

$$e = Y - \hat{Y} = (I - H)Y$$

Ajuste por mínimos cuadrados

• Para estimar la varianza σ^2 se usa la **varianza** residual

$$S_R^2 = rac{1}{n-p-1} \sum_{i=1}^n e_i^2$$

¿Por qué estos son los grados de libertad apropiados?

- Un resultado importante es que $(n-p-1)S_R^2/\sigma^2\equiv\chi_{n-p-1}^2$, lo que permite construir intervalos de confianza y contrastes para σ^2
- ullet Además, S_R^2 y \hat{eta} son independientes

Los resultados que acabamos de resumir son la base para obtener los intervalos y contrastes para los coeficientes del modelo

Descomposición de la variabilidad

- Suma de cuadrados total: $SCT = \sum_{i=1}^{n} (Y_i \bar{Y})^2$, mide la variabilidad total en la respuesta.
- Suma de cuadrados explicada: $SCE = \sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$, mide la parte de la variabilidad explicada por el modelo.
- Suma de cuadrados residual: $SCR = \sum_{i=1}^{n} e_i^2$, mide la parte de la variabilidad no explicada por el modelo.

Usando la ortogonalidad de los residuos con las variables regresoras

$$SCT = SCE + SCR$$

La variabilidad total de la respuesta se puede descomponer en una parte explicada por las variables regresoras y otra no explicada o residual

Descomposición de la variabilidad

• El **coeficiente de determinación** es una medida de la capacidad del modelo para explicar *Y*:

$$R^2 = rac{ ext{SCE}}{ ext{SCT}}$$

• Contraste de la regresión: Para contrastar $H_0: \beta_1 = \cdots = \beta_p = 0$ se usa

$$F = rac{ ext{SCE}/p}{ ext{SCR}/(n-p-1)}$$

Bajo H_0 , el estadístico F sigue una distribución $F_{p,n-p-1}$

Ajuste del modelo con R

• Datos fuel2001: consumo de combustible (y otras variables relacionadas) en EE.UU.

```
datos <- 'http://verso.mat.uam.es/~joser.berrendero/datos
load(url(datos))
head(fuel2001)</pre>
```

```
FuelC Income Miles
##
      Drivers
                                       MPC
                                                Pop
                                                    Tax
## AL 3559897 2382507 23471 94440 12737.00
                                            3451586 18.0
## AK 472211 235400 30064 13628 7639.16
                                             457728 8.0
## AZ 3550367 2428430 25578 55245 9411.55
                                            3907526 18.0
## AR 1961883 1358174 22257 98132 11268.40
                                            2072622 21.7
## CA 21623793 14691753 32275 168771
                                    8923.89 25599275 18.0
                                            3322455 22.0
## CO 3287922
              2048664 32949
                             85854
                                    9722.73
```

```
fuel2001 <- fuel2001 %>%
  mutate(Fuel = 1000 * FuelC/Pop) %>%
  mutate(Dlic = 1000 * Drivers/Pop) %>%
  mutate(logMiles = log(Miles))

# Diagramas de dispersión
library(GGally)
ggpairs(fuel2001) +
  theme(axis.text=element_blank())
```

Ajuste del modelo con R

Ajuste del modelo con R

```
##
## Call:
## lm(formula = Fuel ~ Tax + Dlic + Income + logMiles, data = fuel?
## Residuals:
      Min
##
                   Median
                                      Max
               1Q
                               3Q
## -163.145 -33.039
                   5.895
                           31.989 183.499
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 154.192845 194.906161 0.791 0.432938
             ## Tax
## Dlic
                       0.128513
                                 3.672 0.000626 ***
              0.471871
## Income
             26.755176 9.337374 2.865 0.006259 **
## logMiles
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 64.89 on 46 degrees of freedom
## Multiple R-squared: 0.5105, Adjusted R-squared: 0.4679
## F-statistic: 11.99 on 4 and 46 DF, p-value: 9.331e-07
```

Ajuste del modelo con R

```
nuevo.dato <- data.frame(18, 1031, 23471, 11)
names(nuevo.dato) <- names(fuel2001)[c(7, 9, 3, 10)]
nuevo.dato

## Tax Dlic Income logMiles
## 1 18 1031 23471 11

predict(reg, nuevo.dato, interval='confidence')

## fit lwr upr
## 1 714.8929 674.1173 755.6686

predict(reg, nuevo.dato, interval='prediction')

## fit lwr upr
## 1 714.8929 578.0571 851.7288</pre>
```

Modelo reducido y modelo completo

- Un modelo complejo se ajusta mejor a los datos disponibles pero ello no significa que proporcione mejores predicciones
- Un modelo sencillo evita el sobreajuste pero puede introducir sesgos
- Objetivo: comparar dos modelos lineales tales que uno es una simplificación del otro contrastando $H_0: A\beta = 0$, donde A es una matriz $k \times (p+1)$ con $\mathrm{rango}(A) = k < p+1$.
- ullet Por ejemplo, en el modelo $Y_i=eta_0+eta_1x_{i1}+eta_2x_{i2}+eta_3x_{i3}+\epsilon_i$, queremos contrastar

$$H_0: eta_1=eta_2; eta_0=0 \Leftrightarrow Aeta=0$$

donde

$$A=\left(egin{array}{cccc} 1&0&0&0\ 0&1&-1&0 \end{array}
ight)$$

El **modelo reducido** (M0) es el que resulta de imponer las restricciones de H_0

Interpretación geométrica

El modelo reducido equivale a $\mu \in V_0 \subset V$, donde V_0 es un supespacio de V de dimensión p+1-k

La idea básica

- ullet SCR_0 es la variabilidad no explicada (residual) bajo el modelo reducido
- SCR es la variabilidad no explicada (residual) bajo el modelo completo
- Siempre se cumple ${
 m SCR}_0 > {
 m SCR}$ (¿por qué?) Se rechaza H_0 si

$$\frac{\mathrm{SCR}_0 - \mathrm{SCR}}{\mathrm{SCR}}$$

es suficientemente grande (si complicar el modelo merece la pena)

• Bajo $H_0:A\beta=0$, se verifica

$$rac{(ext{SCR}_0 - ext{SCR})/k}{ ext{SCR}/(n-p-1)} \equiv F_{k,n-p-1}$$

La región crítica del contraste para un nivel lpha es

$$R = \left\{rac{(ext{SCR}_0 - ext{SCR})/k}{ ext{SCR}/(n-p-1)} > F_{k,n-p-1;lpha}
ight\}$$

Comparación con R

Se ajustan ambos modelos:

```
# Modelo completo
reg <- lm(Fuel ~ Tax + Dlic + Income + logMiles,</pre>
          data=fuel2001)
# Modelo reducido
reg0 <- lm(Fuel ~ logMiles, data=fuel2001)</pre>
anova(reg0)
## Analysis of Variance Table
##
## Response: Fuel
            Df Sum Sq Mean Sq F value
                                         Pr(>F)
## logMiles 1 70478
                        70478 10.619 0.002038 **
## Residuals 49 325216
                         6637
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Comparación con R

Se comparan las sumas de cuadrados residuales usando el comando anova

```
anova(reg0, reg)
```

```
## Analysis of Variance Table
##
## Model 1: Fuel ~ logMiles
## Model 2: Fuel ~ Tax + Dlic + Income + logMiles
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1     49 325216
## 2     46 193700 3     131516 10.411 2.402e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

$$F = \frac{\frac{\text{SCR}_0 - \text{SCR}}{k}}{\frac{\text{SCR}}{n - p - 1}} = \frac{\frac{325216 - 193700}{3}}{\frac{193700}{46}} = 10.411$$

El contraste $H_0: \beta_1 = \cdots = \beta_p = 0$ es un caso particular de comparación entre un modelo reducido y un modelo completo

Error de predicción

Modelo verdadero

Error de predicción

Datos de entrenamiento

Error de predicción

Modelo ajustado (posiblemente falso)

Error de predicción

Datos de test

Error de predicción

Datos de test

Error de predicción

El mejor modelo que podríamos ajustar (inobservable)

Modelo verdadero

- Muestra de entrenamiento (puntos azules) $Y=(Y_1,\ldots,Y_n)'$
- ullet Muestra de test (puntos rojos) $ilde{Y}=(ilde{Y}_1,\ldots, ilde{Y}_n)'$

Hipótesis

- ullet Vectores Y e $ilde{Y}$ son i.i.d.
- Media: $\mathrm{E}(Y)=\mathrm{E}(\tilde{Y})=\mu=(\mu_1,\ldots,\mu_n)'$ (puntos negros)
- ullet Matriz de covarianzas: $\mathrm{Var}(Y) = \mathrm{Var}(ilde{Y}) = \Sigma$
- No se supone que exista ningún tipo de relación entre X e Y
- ullet La estructura de covarianzas de Y es totalmente general

Modelo ajustado

- Matriz de diseño fija $n \times p$, X
- p < n yrango(X) = p
- Se ajusta el modelo de regresión lineal:

$$Y=Xeta+arepsilon \Leftrightarrow Y=\mu+arepsilon, \;\;\; \mu\in V=\{Xeta:\,eta\in\mathbb{R}^p\}$$

- Mínimos cuadrados: $\hat{eta} = (X'X)^{-1}X'Y$ (recta azul).
- Notación: $ilde{eta} = (X'X)^{-1}X' ilde{Y}$ (recta roja)
- Modelo lineal ideal: $eta^* = (X'X)^{-1}X'\mu$ (recta negra)

$$\mathrm{E}(\hat{eta}) = \mathrm{E}(ilde{eta}) = eta^*$$
 $\mathrm{Var}(\hat{eta}) = \mathrm{Var}(ilde{eta}) = (X'X)^{-1}X'\Sigma X(X'X)^{-1}$

Errores de predicción esperados

$$ext{Training} = \mathrm{E}\left[\sum_{i=1}^n (Y_i - x_i'\hat{eta})^2
ight] = \mathrm{E}(\|Y - X\hat{eta}\|^2)$$

$$ext{Test} = ext{E}\left[\sum_{i=1}^n (ilde{Y_i} - x_i'\hat{eta})^2
ight] = ext{E}(\| ilde{Y} - X\hat{eta}\|^2)$$

Objetivo

Estudiar el nivel de optimismo, la diferencia entre *Training* y *Test*:

Test = Training + Optimismo

Interpretación geométrica

$$Test = Training + 2E(||C||^2)$$

Optimismo

Queremos calcular

$$\mathrm{E}(\|C\|^2) = \mathrm{E}[(\hat{eta} - eta^*)'X'X(\hat{eta} - eta^*)]$$

• El valor esperado de una forma cuadrática: sea Z un vector aleatorio de media μ y matriz de covarianzas V, y sea A una matriz simétrica. Entonces,

$$E(Z'AZ) = \mu'A\mu + traza(VA)$$

• Aplicando este resultado:

$$\mathrm{E}[(\hat{eta} - eta^*)' X' X (\hat{eta} - eta^*)] = \mathrm{traza}(\Sigma H)$$

$$ext{Test} = ext{Training} + 2 \operatorname{traza}(\Sigma H) = ext{Training} + 2 \sum_{i=1}^n G_i$$

Dos casos particulares

Variables independientes y homocedásticas

• Las hipótesis más habituales:

$$\Sigma = \sigma^2 \mathbb{I}_n \Rightarrow ext{traza}(\Sigma H) = \sigma^2 ext{traza}(H) = \sigma^2 p$$

$$Test = Training + 2p\sigma^2$$

Dos casos particulares

Variables independientes pero heterocedásticas

•
$$\Sigma = \mathrm{diag}\{\sigma_1^2,\ldots,\sigma_n^2\}$$

$$\Sigma = ext{diag}\{\sigma_1^2, \dots, \sigma_n^2\} \Rightarrow ext{traza}(\Sigma H) = \sum_{i=1}^n \sigma_i^2 h_{ii},$$

donde h_{ii} es el *leverage* de la observación i, el correspondiente elemento de la diagonal de H

$$ext{Test} = ext{Training} + 2 \sum_{i=1}^n \sigma_i^2 h_{ii}$$

Bootstrap en regresión

- Regresión simple, diseño fijo
- La varianza de la pendiente de la recta de mínimos cuadrados es

$$\operatorname{Var}(\hat{eta}_1) = \sigma^2 / \sum_{i=1}^n (x_i - ar{x})^2$$

- Supongamos que no conocemos o no sabemos deducir la fórmula anterior. El objetivo es aproximar $Var(\hat{\beta}_1)$ mediante simulación.
- El método bootstrap también da una aproximación a la distribución de $\hat{\beta}_1$ en el caso en que no se cumple la hipótesis de normalidad

Ejemplo: generación de datos

```
# Parámetros
beta0 <- 0
beta1 <- 1
sigma <- 4
# Muestra original de (x, y)
set.seed(100)
x \leftarrow seq(-20, 20, 0.2)
n <- length(x)</pre>
epsilon <- rexp(n, rate = 1/sigma)
y <- beta0 + beta1*x + epsilon
summary(lm(y~x))
# Desviación típica verdadera
dt_beta1 <- sigma / sqrt(sum((x-mean(x))^2))</pre>
dt beta1
# Representación gráfica
ggplot(data.frame(x, y), aes(x, y)) +
  geom_point() +
  geom_smooth(method = lm)
```

Ejemplo: generación de datos

```
##
## Call:
## lm(formula = y \sim x)
## Residuals:
     Min
            1Q Median
                          3Q
                                Max
## -3.846 -2.329 -1.083 1.192 12.780
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.53993
                         0.23729 14.92 <2e-16 ***
                         0.02045
                                   47.18 <2e-16 ***
## x
               0.96474
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.364 on 199 degrees of freedom
## Multiple R-squared: 0.9179, Adjusted R-squared: 0.9175
## F-statistic: 2226 on 1 and 199 DF, p-value: < 2.2e-16
## [1] 0.02431263
```

Ejemplo: generación de datos

Ejemplo: simulación

```
# Aproximación por simulación
R <- 1000

beta1_sim <- NULL
for (i in 1:R){
   epsilon_sim <- rexp(n, rate = 1/sigma)
   y_sim <- beta0 + beta1*x + epsilon_sim
   beta1_sim[i] <- coefficients(lm(y_sim ~ x))[2]
}
sd(beta1_sim)</pre>
```

[1] 0.02497163

Ejemplo: simulación

```
ggplot(data.frame(beta1 = beta1_sim)) +
  geom_histogram(aes(x = beta1), fill = 'lightblue', col
```


Ejemplo: bootstrap

- Como no conocemos los parámetros usamos los valores estimados con la muestra original
- ullet Como no sabemos cuál es la distribución de los errores, generaramos los valores de Y usando la distribución empírica de los residuos

```
# Aproximación por bootstrap
R <- 1000

# Parámetros estimados
reg <- lm(y~x)
beta0_hat <- coefficients(reg)[1]
beta1_hat <- coefficients(reg)[2]
residuos <- residuals(reg)

beta1_boot <- NULL
for (i in 1:R){
   epsilon_boot <- sample(residuos, n, rep = TRUE)
   y_boot <- beta0_hat + beta1_hat*x + epsilon_boot
   beta1_boot[i] <- coefficients(lm(y_boot ~ x))[2]
}
sd(beta1_boot)</pre>
```

[1] 0.01964217

Ejemplo: bootstrap

```
ggplot(data.frame(beta1 = beta1_boot)) +
  geom_histogram(aes(x = beta1), fill = 'lightblue', col
```

