

UNIDAD II: AUTOMATAS A PILA (AP)

ING. SANDRA RODRIGUEZ AVILA

CONTENIDO

- REPRESENTACION DE UN AP DIAGRAMA DE ESTADOS
- REPRESENTACION DE UN AP MATRIZ DE TRANSICION
- > EJEMPLOS AP
- > TRANSFORMACIÓN DE UNA GRAMÁTICA DE CONTEXTO LIBRE EN UN AP
- > EJEMPLOS GCL-AP

DEFINICION FORMAL DE UN AP:

AP = (Q, Te, Tp, δ , q0,Z0,F) **CONFIGURACION DE UN AP:**

 (q, w, α)

q es el estado actual, w es la cadena por leer y α es el contenido de la pila en ese instante

LENGUAJE RECONOCIDO POR UN AF:

$$L(AF) = \{t/t \in Te^*, (q1,t) \rightarrow (qi, \lambda), qi \in F\}$$

Ing. Sandra Rodríguez Avila - SISTEMAS

LENGUAJE RECONOCIDO POR UN AP:

- a) Cuando se llega a una configuración final $L(AP) = \{w/w \in \text{Te}^* \ y \ (q_0, w, Z_0) \rightarrow (qf, \lambda, \alpha)\}$
- b) Por vaciado de pila

$$L(AP) = \{ w/w \in \Sigma^* \ y \ (q_0, w, Z_0) \rightarrow (q', \lambda, \lambda) \}$$

REPRESENTACION DE UN AP DIAGRAMA DE ESTADOS

 Los nodos son los estados y las ramas están marcadas con los símbolos de entrada y contenidos de pila antes y después de la transición.

• Los estados finales, se marcan con un doble círculo, y el estado inicial también se señala con una flecha.

REPRESENTACION DE UN AP MATRIZ DE TRANSICION

• Los estados se ubican en las filas seguidos de los contenidos de pila antes de la transición y los símbolos de entrada en las columnas. En las entradas de la matriz se coloca el estado hacia el cual se transita y los contenidos de pila después de la transición.

 $\delta(qo, 0, Z) \rightarrow (q1,0Z)$

δ	0	1	λ
q_0,Z	q ₁ ,0Z	-	$\mathbf{q}_0,\!\lambda$
$q_1,0$	$q_{1},00$	$\mathbf{q}_{2},\!\lambda$	-
q ₂ ,0	-	$\mathbf{q}_2,\!\lambda$	-
q ₂ ,Z	-	-	$\mathbf{q}_0,\!\lambda$

Ing. Sandra Rodríguez Avila - SISTEMAS

6

Ejemplo 1

Construir un AP que reconozca el lenguaje (con vaciado de pila)

$$L = \{0^n 1^n / n \ge 0\}$$

Mecanismo de funcionamiento:

El AP va almacenando todos los 0 de la cinta en la pila, y cuando va encontrando los 1, va sacando los ceros de la pila. La cadena vacía también pertenece al lenguaje.

Solución: Se puede definir un AP, de la forma:

$$AP = (\{q0, q1, q2\}, \{0,1\}, \{Z,0\}, \delta, q0, Z, \{q0\})$$

Ejemplo 1

δ:

1.
$$\delta(q0, 0, Z) \rightarrow (q1, 0Z)$$

2.
$$\delta(q1, 0, 0) \rightarrow (q1, 00)$$

3.
$$\delta(q1, 1, 0) \rightarrow (q2,\lambda)$$

4.
$$\delta(q2, 1, 0) \rightarrow (q2,\lambda)$$

5.
$$\delta(q2,\lambda,Z) \rightarrow (q0,\lambda)$$

6.
$$\delta(q0,\lambda,Z) \rightarrow (q0,\lambda)$$

$$(0, 0, Z) \rightarrow (q1, 0Z)$$

$$(1, 0, 0) \rightarrow (q1, 00)$$

$$(1, 1, 0) \rightarrow (q2,\lambda)$$

$$(2, 1, 0) \rightarrow (q2,\lambda)$$

$$(2,\lambda,Z) \rightarrow (q0,\lambda)$$

$$(0,\lambda,Z) \rightarrow (q0,\lambda)$$

iz de transición δ del AP

_	δ	0	1	λ
	q_0,Z	$q_1,0Z$	-	q_0,λ
	$q_1,0$	$q_{1},00$	$\mathbf{q}_{2},\!\lambda$	-
	q ₂ ,0	-	$\mathbf{q}_2,\!\lambda$	-
Ī	q_2,Z	-	-	\mathbf{q}_0,λ

Ing. Sandra Rodríguez Avila - SISTEMAS

(

TRANSFORMACIÓN DE UNA GRAMÁTICA DE CONTEXTO LIBRE EN UN AP

Sea la gramática G=(N,T,P,S) y se desea obtener un $AP=(Q, Te, Tp, \delta, q0, Z_0, F)$

Solución: Se determinan los distintos elementos del AP=(Q, Te, Tp, δ , q0, Z₀, F) donde

$$Te = T$$

$$Tp = T U N$$

$$q0 = q$$

$$Z_0 = S$$

$$F = \{\emptyset\}$$

TRANSFORMACIÓN DE UNA GRAMÁTICA DE CONTEXTO LIBRE EN UN AP

δ:

- a) Símbolos terminales $\delta(q, t, t) \rightarrow (q, \lambda)$
- b) Reglas de producción

$$\delta(q, \lambda, S) \rightarrow (q, \alpha)$$

EJEMPLOS GCL - AP

Ejemplo 2

Sea la gramática G=(N, T, P, S) que representa el manejo de expresiones aritméticas, siendo N={E, T, F} donde E es la abreviatura de expresión, T la de término y F la de factor. $T=\{a,+,*,(,)\}$ donde a representa a los identificadores. El símbolo inicial S=E.

Las reglas de producción son las siguientes:

$$E \rightarrow E + T \mid T$$
 $T \rightarrow T^*F \mid F$ $F \rightarrow (E) \mid a$

$$T \rightarrow T^*F \mid F$$

$$F \rightarrow (E) \mid a$$

Construir un AP que reconozca el mismo lenguaje generado por la gramática G.

EJEMPLOS GCL - AP

Ejemplo 2

Solución: AP=(Q, Te, Tp, δ , q0, Z₀, F) donde

Te =
$$T = \{a, +, *, (,)\}$$

$$Tp = T U N = \{a,+, *, (,),E,T,F\}$$

$$q0 = q$$

$$Z_0 = S = E$$
 $F = {\emptyset}$

$$F = \{\emptyset\}$$

EJEMPLOS GCL - AP

δ:

- 1. $\delta(q, a, a) \rightarrow (q, \lambda)$
- 2. $\delta(q,+,+)\rightarrow(q,\lambda)$
- 3. $\delta(q, *, *) \rightarrow (q, \lambda)$
- 4. $\delta(q, (, () \rightarrow (q, \lambda))$
- 5. $\delta(q,),) \rightarrow (q, \lambda)$

b) Reglas de producción

- 6. $\delta(q,\lambda,E) \rightarrow (q,T)$
- 7. $\delta(q,\lambda,E) \rightarrow (q,E+T)$
- 8. $\delta(q,\lambda,T) \rightarrow (q,F)$
- 9. $\delta(q,\lambda,T) \rightarrow (q,T*F)$
- 10. $\delta(q,\lambda,F) \rightarrow (q,(E))$
- 11. $\delta(q,\lambda,F) \rightarrow (q,a)$

Ejemplo 3

Construir un AP con vaciado de pila capaz de reconocer el lenguaje: L={tct^r / siendo t=(a+b)⁺} donde Te={a, b, c} y t^r es la inversa de t.

• Mecanismo de funcionamiento: ir apilando la tira t hasta que aparezca el símbolo c y entonces se va comparando símbolo a símbolo el de entrada con el superior (o izquierda) de la pila, llegándose a vaciar la pila y la tira de entrada si es una sentencia de L.

Ing. Sandra Rodríguez Avila - SISTEMAS

Ejemplo 3

Solución: Se determinan los distintos elementos del AP=(Q, Te, Tp, δ , q0, Z, F) donde

$$Q = \{q0,q1,q2,q3\}$$

$$Tp = \{a, b, Z\}$$

$$q0 = q0$$

$$Z_0 = Z$$

$$F = \{q3\}$$

Ejemplo 3

δ:

1.
$$\delta(qo, a, Z) \rightarrow (q1, aZ)$$

2.
$$\delta(qo, b, Z) \rightarrow (q1,bZ)$$

3.
$$\delta(q1,a,\alpha) \rightarrow (q1,a\alpha)$$
 $\alpha = \text{contenido} + \text{a la izq. (a \'o b)}$

4.
$$\delta(q1,b,\alpha) \rightarrow (q1,b\alpha)$$

5.
$$\delta(q1,c,\alpha) \rightarrow (q2,\alpha)$$

6.
$$\delta(q2,a,a) \rightarrow (q3,\lambda)$$

7.
$$\delta(q2,b,b) \rightarrow (q3,\lambda)$$

8.
$$\delta(q3,a,a) \rightarrow (q3,\lambda)$$

9.
$$\delta(q3,b,b) \rightarrow (q3,\lambda)$$

10.
$$\delta(q3, \lambda, Z) \rightarrow (q3, \lambda)$$

Ejemplo 3

Reconocer aca

(qo, aca, Z)
$$\to$$
(1) (q1, ca, aZ) \to (5) (q2, a, aZ) \to (6) (q3, λ , Z) \to (10) (q3, λ , λ)

Si se reconoce la tira aca.

CONCLUSIONES

- Los AP se pueden representar a través de diagramas de estados y/o matrices que representan a la función de transición δ .
- Los AP reconocen lenguajes definidos por la Gramática del tipo 2, realizando un conjunto de movimientos hasta llegar a una configuración final y/o al vaciado de pila
- Se puede realizar la transformación entre GCL y AP que reconocen lenguajes definidos por dichas gramáticas.

BIBLIOGRAFIA

- ALFONSECA Enrique, ALFONSECA Manuel y MORIYON Roberto. Teoría de Autómatas y Lenguajes Formales. 2007. Madrid. Editorial Mc Graw Hill.
- http://dehesa.unex.es/bitstream/10662/2367/1/978-84-691-6345-0.pdf
- http://di002.edv.uniovi.es/~cueva/publicaciones/libros/3

6 LGA.pdf

RECURSOS GRAFICOS • Pexels

- Pixabay
- Icon-Icons

