SECCIONES CÓNICAS -HIPÉRBOLA

Antes de convencer al intelecto, es imprescindible tocar y predisponer el corazón. BLAISE PASCAL

6.3. Secciones Cónicas

6.3.1. La Hipérbola

Una hipérbola es el conjunto H de todos los puntos en el plano tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos llamados focos es constante

$$|d(P;F_1\)\text{-}d(P;F_2)| {=} 2a$$

$$|d(P, F_1) - d(P, F_2)| = 2a$$

eje mayor: $\overline{V_1V_2} = 2a$

eje menor: $\overline{B_1B_2} = 2b$

Longitud del segmento focal: $\overline{F_1F_2} = 2c$

Relación entre a, b y c: $c^2 = a^2 + b^2$

Excentricidad: $e = \frac{c}{a}$

Lado recto: $LR = \frac{2b^2}{a}$

Distancia entre directrices: $\overline{DD'} = \frac{2a^2}{c}$

6.3.1.1. Ecuación de la Hipérbola

Elementos de la elipse:

HIPÉRBOLA CON EJE FOCAL PARA-LELO AL EJE X, CENTRO C(h; k)

$$\mathcal{H}: \quad \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Elementos:

Foco: $F(h \pm c, k)$

Vértice: $V(h \pm a,k)$

Extremos del eje conjugado: $B(h; k \pm b)$

Directriz: $L_d: x = h \pm \frac{a^2}{c}$ Asíntotas: $y - k = \pm \frac{b}{a}(x - h)$

Ecuación general:

$$Ax^2 - Cy^2 + Dx + Ey + F = 0$$

Ejemplo 49. Bosqueje la gráfica de la ecuación $x^{2} - 9y^{2} - 6x - 18y - 36 = 0$; y halle vértices, focos, rectas directrices y asintotas

Solución. :

HIPÉRBOLA CON EJE FOCAL PARA-LELO AL EJE Y, CENTRO C(h, k)

$$\mathcal{H}: \quad \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Elementos:

Foco: $F(h, k \pm c)$

Vértice: $V(h, k \pm a)$

Extremos del eje conjugado: $B(h \pm b; k)$

Directriz: $L_d: y = k \pm \frac{a^2}{c}$ Asíntotas: $y - k = \pm \frac{a}{b}(x - h)$

Ecuación general:

$$Ax^2 - Cy^2 + Dx + Ey + F = 0$$

Ejemplo 50. Bosqueje la gráfica de la ecuación $9x^2 - 4y^2 - 54x + 8y + 113 = 0$; y halle vértices, focos, rectas directrices y asintotas.

Solución.:

INTRODUCCIÓN A LA MATEMÁTICA PARA INGENIERÍA

Semana 12 Sesión 01

EJERCICIOS EXPLICATIVOS

1. Calcula la ecuación y todos los elementos de la hipérbola que tiene sus vértices en los puntos $V_1(1,4)$ y $V_2(-5,4)$ y la longitud de su eje conjugado es igual a 8 unidades.

Solución.:

2. Calcula la ecuación y todos los elementos de la hipérbola vertical cuyo eje transverso mide 16 unidades y su semi eje conjugado mide 6 unidades, y tiene su centro en el punto C(-1,7).

Solución.:

R:
$$\frac{(x+2)^2}{9} - \frac{(y-4)^2}{16} = 1$$

3. Los focos de la elipse $\frac{(x-1)^2}{8} + \frac{(y-4)^2}{14} = 1$, son los vértices de una hipérbola y a su vez los focos de esta última coinciden con los vértices de la elipse. Hallar la ecuación de la hipérbola.

Solución. :

R:
$$\frac{(y-7)^2}{36} - \frac{(x+1)^2}{64} = 1$$

4. El centro de una hipérbola es el foco de la cónica $\mathcal{P}: y^2 + 6y + 32x - 119 = 0$ y sus focos son los extremos del lado recto de \mathcal{P} . Hallar la ecuación de dicha hipérbola, si la pendiente de una de sus asíntotas es $\sqrt{\frac{5}{3}}$.

Solución. :

R:
$$\frac{(y-4)^2}{6} - \frac{(x-1)^2}{8} = 1$$

R:
$$\frac{(y+3)^2}{160} - \frac{(x+4)^2}{96} = 1$$

INTRODUCCIÓN A LA MATEMÁTICA PARA LA INGENIERÍA

EJERCICIOS PROPUESTOS

1. De la ecuación de la hipérbola $\mathcal{H}: 16x^2-9y^2-64x+54y-161=0$, encuentra las coordenadas del centro, vértices, focos, la excentricidad y las ecuaciones de las asíntotas

Solución.:

2. Determina la ecuación de la hipérbola cuyos vértices son $V_1(5;5)$ $V_2(5;-1)$ y su excentricidad es e=2

Solución.:

R:
$$\frac{(x-2)^2}{9} - \frac{(y-3)^2}{16} = 1$$

3. Los focos de un hipérbola son los extremos del lado recto de la parábola $y^2 - 8x - 6y - 15 = 0$. Hallar la ecuación de la hipérbola sabiendo que triseca al lado recto de la parábola

Solución.:

R:
$$x^2 - 3y^2 - 10x + 12y + 40 = 0$$

4. Hallar la ecuación ordinaria de la hipérbola cuyos focos son los vértices de la elipse $\mathcal{E}: 16x^2 + 25y^2 - 100y - 96x - 156 =$ 0 y uno de sus extremos del eje conjugado es un punto de paso de la recta L: 2x - 5y + 14 = 0

Solución. :y

R:
$$\frac{9(y-3)^2}{16} - \frac{9(x+1)^2}{128} = 1$$
.

R:
$$\frac{(x-3)^2}{21} - \frac{(y-2)^2}{4} = 1$$

INTRODUCCIÓN A LA MATEMÁTICA PARA LA INGENIERÍA

TAREA DOMICILIARIA

- 1. Determine los vértices, los focos, extremos del eje normal, excentricidad y rectas asintotas $de 16x^2 - 9y^2 + 96x + 32y + 252 = 0.$
- 2. Encuentra la ecuación de la hipérbola vertical en su forma general, cuyas ecuaciones de las asíntotas x-2y+1=0, x+2y-3=0, y distancia entre los vértices 2.
- 3. Determine la ecuación de la hipérbola cuyos vértices son los puntos $V_1(3;1)$ y $V_2(3:-5)$ y una asíntota es L: 2x - y = 8
- 4. Halla la ecuación de la hipérbola si te dan los siguientes datos $F_1(1,6)$, $F_2(1,0)$, y excentricidad $e = \frac{3}{2}$
- 5. Halle la ecuación de la hipérbola cuyo eje conjugado mide 6, sus asintotas son las rectas $L_1: 2x-y-3=0; L_2: y=-2x-1$ y su eje focal es paralelo al eje Y
- 6. Hallar la ecuación ordinaria de la parábola \mathcal{P} cuyo foco se encuentra en el centro de la hipérbola \mathcal{H} : $13x^2 - 3y^2 + 26x + 12y + 40 = 0$ y cuyo vértice es el punto de intersección de las rectas L_1 : 3y - x - 3 = 0; L_2 : 3x + 2y - 13 = 0
- 7. Halle la ecuación de la hipérbola cuyas ecuaciones de sus asintotas son $L_1: x-2y-11=0;$ $L_2: x + 2y - 3 = 0$ y uno de sus focos es F(8; -2)

Respuestas

1:
$$\frac{(y-2)^2}{16} - \frac{(x+3)^2}{9} = 1$$

2:
$$\frac{(y-1)^2}{1} - \frac{(x-1)^2}{1} = 1$$

$$3: \frac{(y+2)^2}{9} - \frac{4(x-3)^2}{9} = 1$$

spuestas

1:
$$\frac{(y-2)^2}{16} - \frac{(x+3)^2}{9} = 1$$

2: $\frac{(y-1)^2}{1} - \frac{(x-1)^2}{4} = 1$

3: $\frac{(y+2)^2}{9} - \frac{4(x-3)^2}{9} = 1$

4: $5y^2 - 4x^2 + 8x - 30y + 21 = 0$

5: $\frac{(y-1)^2}{36} - \frac{(x+1)^2}{9} = 1$

6: $(y-2)^2 = -16(x-3)$

7: $\frac{5(x-7)^2}{4} - \frac{5(y+2)^2}{1} = 1$

5:
$$\frac{(y-1)^2}{2c} - \frac{(x+1)^2}{2c} = 1$$

6:
$$(y-2)^2 = -16(x-3)$$

7:
$$\frac{5(x-7)^2}{4} - \frac{5(y+2)^2}{1} = 1$$