

NucE 497: Reactor Fuel Performance

Lecture 2: Purpose of the fuel

January 11, 2017

Michael R Tonks

Mechanical and Nuclear Engineering

Today we will discuss the purpose of fuel, fissile and fissionable materials, and common fuels

- Module 1: Fuel basics
 - Purpose of the fuel and types of fuel
 - Fission, heat generation, fission products
 - Fuel geometry and the role of cladding
 - Fuel fabrication
- Module 2: Heat transport
- Module 3: Mechanical behavior
- Module 4: Materials issues in the fuel
- Module 5: Materials issues in the cladding
- Module 6: Accidents, used fuel, and fuel cycle

Quiz question: What is the primary purpose of the reactor fuel in a nuclear reactor?

- Maintain a stable fission reaction
- Avoid melting
- Heat the coolant
- To glow

The purpose of the fuel is to generate heat, through fission, and transport it to the coolant

Only certain materials can be used as nuclear fuel

- A fissionable nuclide is capable of undergoing fission (even with a low probability) after capturing a high energy neutron
- A fissile nuclide is capable of sustaining a nuclear fission chain reaction with neutrons of any energy

• The **fissile rule** states that for a heavy element with $90 \le Z \le 100$, its isotopes with $2 \times Z - N = 43 \pm 2$ are fissile (with some exceptions)

Let's try out the fissile rule

- The heavy elements with $90 \le Z \le 100$
 - Thorium (Th), Protactinium (Pa), Uranium (U), Neptunium (Np), Plutonium (Pu), Americium (Am), Curium (Cm), Berkelium (Bk), Californium (Cf), Einstenium (Es) and Fermium (Fm)
- First, we will apply the fissile rule to U $(2 \times Z N = 43 \pm 2)$
 - $N = 2Z (43 \pm 2)$
 - N = 2 × 92 [41, 42, 43, 44, 45] = [143, 142, 141, 140, 139] neutrons
 - So, U-231 through U-235 should be fissile

NucE 497

Now you try out the fissile rule on Pu

$$2 \times Z - N = 43 \pm 2$$

- $N = 2 \times Z (43 \pm 2)$
- $N = 2 \times 94 (43 \pm 2)$
- N = 143, 144, 145, 146, and 147
- Fissile Pu isotopes are Pu-237 through Pu-241

Quiz question: Which are fissile nuclides?

- U-238
- U-235
- Th-232
- U-233
- Pu-238
- Pu-239
- Pu-241

There are only four fissile nuclides that are practical for nuclear fuel

- U-235
 - Naturally occurs in uranium in small amounts (0.7%). Can be enriched
- Pu-239
 - Bred from U-238 by neutron capture

•
$$^{238}\text{U} + n \xrightarrow{\gamma} ^{239}\text{U} \xrightarrow{\beta} ^{239}\text{Np} \xrightarrow{\beta} ^{239}\text{Pu}$$

- Pu-241
 - Bred from Pu-240 (which comes from Pu-239) by neutron capture

•
$$^{240}\text{U} + n \rightarrow ^{241}\text{Pu}$$

- U-233
 - Bred from Th-232 by neutron capture

There are two viable fuel materials, uranium and thorium

- Thorium has never been used in a commercial reactor
- Several possible thorium reactors are being considered in other countries

NucE 497

Reactor fuel has been made from various forms of uranium

- Metal
- Oxide
- Carbide
- Nitride
- Silicide

Oxide fuel microstructure

Pure uranium metal is not a viable fuel due to

dimensional changes

- Pure uranium has three phases
 - α -phase is orthorhombic
 - β-phase is tetragonal
 - Y-phase is BCC (body centered cubic)

- During thermal cycling, pure uranium elongates in one direction
- Phase changes between the α and β phases causes fracture and void formation

1300 cycles between 50 and 500

3000 cycles between 50 and 500

Alloyed metallic uranium is a viable fuel for thermal and fast reactors

- Alloying elements stabilize the γ phase at low temperature.
- Common alloys are
 - U-10%Mo U-15%Mo
 - U-10%Zr U-15%Zr
 - U-Pu-Zr
- Neutron absorption by Mo and Zr necessitate enrichment or fast neutrons
- Advantages
 - High fuel density
 - High thermal conductivity
 - Passive safety (due to high thermal expansion)
- Disadvantages
 - Low melting temperature
 - High swelling
 - Intermixes with Zr cladding

Uranium oxide is the most common fuel type, and is used in thermal and fast reactors

- The actual form is UO₂
- Advantages
 - High melting temperature
 - Chemical and structural stability
 - Compatibility with Zr-alloy cladding materials
 - Corrosion resistant in reactor water
- Disadvantages
 - Lower density of fissile atoms relative to other fuel materials
 - Low thermal conductivity
 - Higher stored thermal energy than other fuel materials

Uranium carbide has some benefits and has been used in TRISO fuel particles

- Can appear as UC, U₂C₃, or UC₂
- Advantages
 - High thermal conductivity
 - High fuel density
 - Thermally stable
 - High melting temperature
- Disadvantages
 - Rapidly corrodes in water
 - Reacts with some cladding

Uranium nitride also has some benefits and is being considered as new fuel in LWRs

- Can appear as UN, U₂N₃, or UN₂
- Advantages
 - High thermal conductivity
 - High fuel density
 - Thermally stable
 - High melting temperature
- Disadvantages
 - Corrodes in water
 - Reacts with some cladding

Uranium silicide is also being considered due to its better interactions with water

- Can U₃Si, U₃Si₂, USi, U₃Si₅, or USi₃
- Advantages
 - High thermal conductivity
 - Higher fuel density
 - Thermally stable
- Disadvantages
 - Has moderate corrosion resistance
 - Reacts with some cladding
 - Has a lower melting temperature

FIGURE 2 URANIUM SILICON EQUILIBRIUM DIAGRAM

What are possible reasons for why we primarily use UO₂ for reactor fuel?

Property	Metal	UO ₂	UC	UN	U₃Si₂
A. Chemical					
Corrosion resistance in water	Very poor	Excellent	Very poor	Poor	Moderate
Compatibility with clad materials	Reacts with normal clad	Excellent	Variable	Variable	Variable
Thermal stability	Phase change at 665 and 770 °C	Good	Good in reducing atmosphere	Good, decomposes at 2600 °C	Good
B. Physical					
Uranium (metal) density (g/cm³)	19.04	9.65	12.97	13.52	11.31
Melting point (°C)	1132	2865	2850	2860	1665
Thermal conductivity (W/cmK)	0.38 at 430 °C	0.03 at 1000°C	0.25 at 100 – 700°C	0.2 at 750°C	0.23 at 773°C

Summary

- The purpose of reactor fuel is to generate heat from fission
- Fissile nuclides are capable of sustaining a nuclear fission chain reaction with neutrons of any energy
 - U-233
 - U-235
 - Pu-239
 - Pu-241
- Uranium is primarily used for fuel, but is used in various forms:
 - Metal
 - Oxide
 - Carbide
 - Nitride
 - Silicide