

數列級數與數據分析

學測趨勢 「數列級數」注重數字規律的察覺與演算,「數據分析」則幫助我們掌握狀況並進行 推論。在素養的要求下,結合實際數據並引用圖表判讀,相信是考題的必然趨勢。

準備方向 數列級數以等差、等比及求和公式為主,數據分析的重點則是平均數、標準差、相關係數與迴歸直線。公式不只要熟背,更要多看常用,才能應付解題的需要。

年 度	101	102	103	104	105	106	107	108	109	110
學測命題數	1	2	2	2	1	2	1	2	2	2

一、等差、等比與級數求和

₹ 讀完可以先練習範例 1、2、3 🙀

- ① 等差數列與級數:首項 a_1 ,公差 d,為線型函數 y = ax + b 的離散情形,如右圖。
 - (1) 第 n 項 $a_n = a_1 + (n-1)d$ °
 - (2)前 n 項和 $S_n = \frac{a_1 + a_n}{2} \times n = \frac{2a_1 + (n-1)d}{2} \times n$ \circ
 - (3)若三數 $a \cdot b \cdot c$ 成等差,則2b = a + c,稱b為等差中項。
 - (4)等差數列共有n項,且n為奇數,則正中間項即為算術平均數,可乘上n得此n項的和。

- 例 A 等差數列 $\langle a_n \rangle$,若 $a_3 = 100$, $a_{10} = 79$,則首項為_____,第_____,第_____項開始為負,前 20 項之和為 。
- 例 B 某巨蛋球場 E 區共有 25 排座位,此區每一排都比其前一排多 2 個座位。小明坐在正中間那一排(即第 13 排),發現此排共有 64 個座位,則此球場 E 區共有個座位。
- **囫**C 公司有三種薪資方案如下,請問哪一種年薪算法對受薪者最有利?____

甲:起薪為年薪 1000 元,每年加薪 160 元

乙:起薪為半年薪 500 元,每半年加薪 40 元

丙:起薪為三個月薪 250 元,每三個月加薪 10 元

② 等比數列與級數:首項 a_1 , 公比為 r, 為指數函數 $y = a^x$ 的離散情形,如右圖。

(2)前 n 項和為 $S_n = \frac{a_1(r^n - 1)}{r - 1}$ \circ

- 例 A 等比數列 $\langle a_n \rangle = 1, 6, 36, 216, \cdots$,從第 項開始會超過 10^{10} 。($\log 2 \approx 0.3010$ $\log 3 \approx 0.4771$
- 例 B 等比級數 $\frac{1}{16} + \frac{1}{8} + \frac{1}{4} + \dots + 512$ 共有______項,其和為

→ 讀完可以先練習範例 7

- **3** 複利: 複利的本利和 = 本金 \times (1 + 期利率) 期數 , 隨期數成等比數列。
- $M \land$ 某人存入銀行 10000 元,言明年利率 4%,以半年複利計息,滿一年本利和為 O元,則 *Q* = ____。

- М В 阿宏有 6 萬元要存入銀行,按日依 複利計息,可分三天或四天存入, 則哪一個方案在第10天的本利和 是最少的?
 - (A) 甲
- (B)
- (C)丙

- $(D)\mathcal{T}$
- (E)戊

存入金額	第一天	第二天	第三天	第四天
甲方案	1萬元	2 萬元	3萬元	
乙方案	3 萬元	2 萬元	1萬元	
丙方案	2 萬元	2 萬元	2 萬元	
丁方案	1萬元	1萬元	2 萬元	2 萬元
戊方案	2 萬元	2 萬元	1萬元	1萬元

→ 讀完可以先練習範例 8

4 求和公式:(1) $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, 為等差級數。

(2)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(3)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2 \circ$$

(3)
$$1^3 + 2^3 + 3^3 + \dots + 24^3 =$$
 (2) $1^2 + 2^2 + 3^2 + \dots + 24^2 =$

 (3) $0^3 + 2^3 + 3^3 + \dots + 24^3 =$
 (2) $0^3 + 2^3 + 3^3 + \dots + 24^3 =$

- 例 B 利用公式 $1^3 + 2^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$,可計算出 $(11)^3 + (12)^3 + \dots + (20)^3$ 之值 為_____ ° (A) 41075 (B) 41095 (C) 41115 (D) 41135 (E) 41155
 - 5 給前 n 項和 S_n : 若已知前 n 項和 S_n ,可得一般項為 $\begin{cases} a_1 = S_1 \\ a_n = S_n S_{n-1} \\ n \ge 2 \end{cases}$ 。若前 n 項和為 $S_n = pn^2 + qn$,則可推知 $\langle a_n \rangle$ 為等差數列,且公差為 2p。
- 例 A 數列 $\langle a_n \rangle$ 的前 n 項和為 $S_n = 3n + 2$,則此數列的前五項為
- 例 B 若數列 $\langle a_n \rangle$ 的前 n 項和為 $S_n = 3n^2 + 2n$,則公差為_____,第 n 項的通式為 $a_n =$ 。
- 例 C 若數列 $\langle a_n \rangle$ 滿足 $2a_1 + 4a_2 + 8a_3 + \cdots + 2^n a_n = 3^n$,則 $a_5 =$

・ 讀完可以先練習範例 9、10 ★★★★★

- ⑥ 遞迴數列:給數列⟨an⟩的首項及前後項的關係式,稱為該數列的遞迴式,代入數字即可猜測數列的規則。常依題意採用累加法或累乘法來求一般項。
- - $(A) a_{n+1} = a_n + n$
- (B) $a_{n+1} = 3a_n$
- (C) $a_{n+1} = \frac{a_n}{n}$

- (D) $a_{n+1} = a_n + 5$
- (E) $a_{n+1} = 2a_n + 3$

例 B	每週同一時間點	記錄某植物的成長高度) 建續五差	週的數據為 a₁	$a_1 = 1$, $a_2 = 2$, $a_3 = 6$
	$a_4 = 15$, $a_5 = 31$ \circ	請問此成長高度數列流	滿足下列選耳	頁中哪一個式	子?

- (A) $a_{t+1} = 3a_t 1$, t = 1, 2, 3, 4
- (B) $a_t = t!$, t = 1, 2, 3, 4, 5
- (C) $a_{t+1} = a_t + t^2$, t = 1, 2, 3, 4
- (D) $a_t = 2^t 1$, t = 1, 2, 3, 4, 5
- (E) $a_{t+1} = ta_t + 1$, t = 1, 2, 3, 4

答對率 88% 104 學測

例 C 數列
$$\langle a_n \rangle$$
 滿足 $a_1 = \frac{1}{7}$,若 $n \ge 1$,則 $a_{n+1} = \frac{7}{2} a_n (1 - a_n)$,求 $a_{100} =$

- 數學歸納法的證明:關於正整數的式子或性質,具有遞推的特性時來使用。分 成下列兩個步驟,缺一不可:
 - (1)針對初始值(經常是1)檢驗原式成立。
 - (2)假設對 n = k 時成立,推導出 n = k + 1 時也成立。 則由數學歸納法原理,得證對所有正整數都成立。
- M A 下列關於自然數的數式,何者為真?
 - (A) $n \in N$, 則 $n^2 n + 41$ 必為質數

- (B) $n \in \mathbb{N}$, $\exists 1 \ 2^n \geq n^2$
- (C) $n \in \mathbb{N}$,則 $2 + 6 + 10 + \cdots + (4n 2) = 2n^2 + 2$ (D)以上皆非

.、一維數據的分析

長 讀完可以先練習範例 11、12

- 8 平均數:數值 $x_1 \setminus x_2 \setminus \cdots \setminus x_n$,有下列幾種平均數,為全體數據的代表性量值:
 - (1) 算術平均數:即 $\frac{x_1+x_2+\cdots+x_n}{n}$,習慣記為 μ 。
 - (2) 加權平均數:第k 個值 x_k 的權數為 p_k , 則加權平均數為

$$\mu_{\rm JN} = \frac{x_1p_1 + x_2p_2 + \cdots + x_np_n}{p_1 + p_2 + \cdots + p_n} \circ$$

- (3)幾何平均數:若 $x_1 \setminus x_2 \setminus \cdots \setminus x_n$ 均為正數,則幾何平均數為 $G = \sqrt[n]{x_1 \times x_2 \times \cdots \times x_n}$,適用於平均成長率的計算。
- 例 A 正數 a 與 b 的算術平均數為 37,幾何平均數為 24;正數 $c \times d \times e \times f$ 的算術平均 數為 13,幾何平均數為 3,求 $a \cdot b \cdot c \cdot d \cdot e \cdot f$ 的算術平均數為 ,幾何 平均數為。

例 B 有 5 個數	效值如下:2	21 \ 30 \	31 \ 40	52,	其權數依序	為 1、1	. 2 . 3 .	3,求加權
平均數為	4	0						

例C	如果二月的薪	水比一月成長	10% , \equiv	月的薪水比二	月衰退 10%	6,則三月	的薪水
	和一月的薪水	哪個比較多?_		(一月/三月/	/一樣多),	其平均月	成長率
	約為	$\%$ \circ $(\sqrt{0.99} \approx$	0.995)				

٠.	讀完可以先練習範例	13	
	BYONG STANDARD TODA		

- **9** 百分位數:n 個數值由小而大為數列 x_1, x_2, \dots, x_n ,其第 k 百分位數為數列的第 r個數 x_r , 或是 x_r 與下一項 x_{r+1} 的平均, 視 $n \times \frac{k}{100}$ 是否為整數而定:
 - (1)若 $n \times \frac{k}{100}$ 不是整數,則直接進位為r,第k百分位數即為 x_r 。
 - (2)若 $n \times \frac{k}{100}$ 為整數 r,則第 k 百分位數為 $\frac{x_r + x_{r+1}}{2}$ 。

特別地,「第1四分位數 Q_1 」即為第25百分位數,「第3四分位數 Q_3 」即為第 75 百分位數,「中位數 Me 或 Q_{2} 」即為第 50 百分位數。

- 例 A 由小而大的 16 個數值 1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,請問:
 - (1)第40百分位數為 (2)第3四分位數為
- - (3) 若第 k 百分位數為 13, 求 k 值最小為____, 最大為____。

⑩ 離差平方和:數值 x_1, x_2, \dots, x_n 的算術平均數為 μ ,稱數列 $x_1 - \mu, x_2 - \mu, \dots, x_n - \mu$ 為離差。將離差的各項平方相加為離差平方和。

- 例 Λ 五個數 $1 \times 2 \times 3 \times 4 \times 5$ 的離差平方和為 $S_{xx} = \circ$
- 例 B 若 $x_1 + x_2 + \cdots + x_6 = 12$, $x_1^2 + x_2^2 + \cdots + x_6^2 = 100$,則離差平方和為 $S_{xx} =$

① 變異數與標準差:變異數 $\sigma^2 = \frac{S_{xx}}{n}$,標準差 $\sigma = \sqrt{\frac{S_{xx}}{n}}$,即 $\sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2}{n}} = \sqrt{\frac{x_1^2 + x_2^2 + \dots + x_n^2 - n\mu^2}{n}}, \, \text{Aff} \, \text{$\equiv 2 ff}$

數據離散程度的統計量,標準差愈大表示數據愈分散。

- **例 A** 五個數值 2、4、6、8、10 的變異數為 ,標準差為 _____。
- 例 B 下列五組資料(每組各有 10 筆):

A: 1, 1, 1, 1, 1, 1, 10, 10, 10, 10 B: 1, 1, 1, 1, 1, 5, 5, 5, 5, 5

C: 4, 4, 4, 5, 5, 5, 5, 6, 6, 6D: 1, 1, 2, 2, 3, 3, 4, 4, 5, 5

E: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

試問哪一組資料的標準差最大? , 哪一組標準差最小?

- \square 資料的平移: 若一維數據的每個數字都加 k, 則:
 - (1) 均量如中位數、算術平均數也跟著加 k。
 - (2) 差量如全距、四分位距、標準差的值不變。
- 例 A $a \cdot b \cdot c \cdot d$ 的算術平均數為 4,標準差為 8,求 $a+3 \cdot b+3 \cdot c+3 \cdot d+3$ 的算 術平均數為 ,標準差為 。
- Ø B 某班數學老師算出學生學期成績後,鑑於學生平時都很用功,決定每人各加5分 (加分後沒人超出滿分),則加分前與加分後,成績統計數值絕對不會改變的有:
 - (A)算術平均數 (B)中位數 (C)標準差 (D)全距 (E)四分位距

- \square 資料的伸縮:若一維數據的每個數字都乘以 m ,則:
 - (1) 均量如中位數、算術平均數也成為 m 倍。
 - (2) 差量如全距、四分位距、標準差會成為|m| 倍,而變異數是變成 m^2 倍。
- 例 $a \cdot b \cdot c \cdot d$ 的算術平均數為 5,標準差為 8,求 $1-4a \cdot 1-4b \cdot 1-4c \cdot 1-4d$ 的算術平均數為 _____, 標準差為 ___。

例 B	根據一百	了多年來	医的氣象絲	己錄,	美國費城	年雨量	平均值	重為 41.0	英时,	標準差為	為 6.1
	英时。今	欲將山	上項統計資	資料的	單位由英	制換為	公制,	請問該	城市一	百多年來	年雨
	量的標準	差最接	接近下列的	勺哪一個	固選項?		(註:	1 英吋等	於 25.4	4 毫米。)
	(A) 0.240	毫米	(B) 1.61	毫米	(C) 6.10) 毫米	(D) 1	55 毫米	(E)	1041 毫差	*

- ☑ 資料的標準化:一維數據 x_1, x_2, \cdots, x_n 的算術平均為 μ ,標準差為 σ ,若 $\sigma \neq 0$,則先同減 μ 再同除以 σ 得 $\frac{x_1 \mu}{\sigma}$, $\frac{x_2 \mu}{\sigma}$, \cdots , $\frac{x_n \mu}{\sigma}$, 稱為數值的標準化。可用來客觀比較不同類型的數據排名。標準化後的算術平均必為 0,標準差必為 1。
- **例 A** 資料 5,11,…,共 100 個數值,標準化之後 5 會變成 1,11 會變成 3,求這 100 個數值之和為。
- 例 B 若 x > 0,一維資料 x, x, -x, -x, y, y, y, y, y 為標準化數據,求 $x = y = _____$ 。

- ⑤ 圖表的判讀:由次數分配表、長條圖、折線圖等統計圖表,可判讀各均量、差量的大小,並可進一步求各統計量值。
- 例 A 某校高三甲、乙、丙三班各有50位同學 ,數學科模擬考成績的以下累積次數折線 圖如右(各組不含上限)。根據右圖中的 資料,請問:

- (2)哪一班的中位數最大? 班
- (3)哪一班的第80百分位數最大? 班

三、二維數據的分析

賣完可以先練習範例 15

- **16** 相關係數:n 筆數對資料 (x_1, y_1) , \cdots , (x_n, y_n) 記為 (X, Y),先求得 x_1, x_2, \cdots, x_n 的 算術平均為 μ_x ,標準差為 σ_x ,離差平方和為 S_{xx} ; y_1, y_2, \cdots, y_n 的算術平均為 μ_y ,標準差為 σ_y ,離差平方和為 S_{yy} ;X 與 Y 的離差乘積和為 $S_{xy} = (x_1 \mu_x)(y_1 \mu_y) + \cdots + (x_n \mu_x)(y_n \mu_y) = x_1y_1 + \cdots + x_ny_n n \cdot \mu_x \cdot \mu_y$
 - (1) X與 Y的相關係數為 $r = \frac{S_{xy}}{\sqrt{S_{xx}} \times \sqrt{S_{yy}}} = \frac{S_{xy}}{n \cdot \sigma_x \cdot \sigma_y}$ 。
 - (2)由「柯西不等式」可推得r的範圍為 $-1 \le r \le 1$,其相關程度以 ± 0.3 及 ± 0.7 為分界,如下圖:

- 例 B 數對 (x_1,y_1) 、 (x_2,y_2) 、…、 (x_{20},y_{20}) ,已知 x_1 、 x_2 、…、 x_{20} 的標準差為 12, y_1 、 y_2 、…、 y_{20} 的標準差為 5,且 $(x_1-\mu_x)(y_1-\mu_y)+\dots+(x_{20}-\mu_x)(y_{20}-\mu_y)=900$,其中 $\mu_x=\frac{x_1+\dots+x_{20}}{20}$, $\mu_y=\frac{y_1+\dots+y_{20}}{20}$,求 X 與 Y 的相關係數為_____。

- $oxdots \$ 迴歸直線:數對資料 $(x_1,y_1) \cdot (x_2,y_2) \cdot \cdots \cdot (x_n,y_n)$,符號說明如上述重點,則 用最小平方法可求得二維資料 (X,Y) 的<mark>迴歸式</mark>為 $y - \mu_y = m(x - \mu_x)$ (又稱為最佳 直線),其中 $m = \frac{S_{xy}}{S_{xy}} = r \cdot \frac{\sigma_y}{\sigma_x}$ 為其斜率。當X與Y呈高度相關時,適合利用迴歸 直線進行預測分析,稱為迴歸預測。
- 例 A 數對 (x_1,y_1) 、 (x_2,y_2) 、…、 (x_n,y_n) ,X的算術平均為 8,二維數據 (X,Y)的迴 歸直線為y = -2x + 25,求Y的算術平均為
- 例 В 數對 $(x_1, y_1) \cdot (x_2, y_2) \cdot \cdots \cdot (x_n, y_n)$,其 $x_1 \cdot x_2 \cdot \cdots \cdot x_n$ 的算術平均為 12,標準 差為 3; $y_1 \setminus y_2 \setminus \cdots \setminus y_n$ 的算術平均為 25, 標準差為 8; 若 X 與 Y 的相關係數為 -0.6,求最小平方法所求得的迴歸直線為
- 例 C 數對 $(x_1, y_1) \cdot (x_2, y_2) \cdot \cdots \cdot (x_{10}, y_{10}) \cdot x_1 + x_2 + \cdots + x_{10} = 60 \cdot y_1 + y_2 + \cdots + y_{10} = 90$ $x_1^2 + x_2^2 + \dots + x_{10}^2 = 460$, $x_1y_1 + x_2y_2 + \dots + x_{10}y_{10} = 690$, $\Re(x_1, y_1) \sim (x_{10}, y_{10})$,若 x = 8,請利用迴歸直線預測 y 值為 。 的迴歸直線為

計 讀完可以先練習範例 17 ★★★★

- (1) 若 $(x_1, y_1) \cdot (x_2, y_2) \cdot \cdots \cdot (x_n, y_n)$ 的 x_i 同加 $p \cdot y_i$ 同加 $q \cdot$ 其中 $p \cdot q$ 為定實 數,則相關係數不變,迴歸直線隨著平移。
- (2)若 (x_1,y_1) 、 (x_2,y_2) 、…、 (x_n,y_n) 的 x_i 同乘p, y_i 同乘q,其中p、q為定實 數,則相關係數不變或變號,即把r乘上 $\frac{pq}{|pq|}$,但是迴歸直線會隨著改變。
- (3)若二維數據 (x_1,y_1) 、 (x_2,y_2) 、…、 (x_n,y_n) 的相關係數為 r,則 X標準化且 Y標準化後,新數據的相關係數仍為r,且迴歸直線變成y = rx。
- 例 A 已知 (x_1,y_1) 、 (x_2,y_2) 、…、 (x_n,y_n) 的 X 與 Y 之相關係數為 0.8,求:
 - $(1)(x_1+5,y_1-2)(x_2+5,y_2-2)(x_n+5,y_n-2)$ 的相關係數為
 - $(2)(2x_1,3y_1)(2x_2,3y_2)\cdots(2x_n,3y_n)$ 的相關係數為
 - $(3)(2+x_1,3-y_1)(2+x_2,3-y_2)(2+x_n,3-y_n)$ 的相關係數為
- 例 В 二維數據 (X,Y) 的迴歸直線之斜率為 4,則 (2X+7,3Y-5) 表 x 值同乘 2 再同 加7,且y值同乘3再同減5,則迴歸直線的斜率變為。

數

分

- 例 C 數對 (5,7)、(a,b)、(c,d)、(e,f) 的相關係數為 0.8,且 5,a,c,e 的算術平均數為 8,標準差為 4; 7,b,d,f 的算術平均數為 3,標準差為 6,請問:
 - (1)點(5,7)經標準化後成為
 - (2) y 對 x 的迴歸直線原本為 ,標準化後變成為
- **②** 散布圖:將數對 (x_1,y_1) 、 (x_2,y_2) 、…、 (x_n,y_n) 畫在 xy 平面上,觀察其分布狀況,可判定相關程度:
 - (1)**正相關**:點沿著朝右上的直線分布,為正相關,即大致上 y 隨 x 增加而增加。

(2) <mark>負相關</mark>:點沿著朝右下的直線分布,為負相關,即大致上 y 隨 x 增加而減少。

③<mark>零相關</mark>:看不出y值隨x值遞增或遞減,如圖形呈左右或上下對稱,為零相關。

 $M \land A$ 右圖表兩組數據 $x \lor y$ 的分布圖,其相關係數 r 最接近下列何值?

- 例 B 如右圖所示有 5 筆 (X,Y) 資料。試問:去掉哪一筆資料後,剩下來 4 筆資料的相關係數最大?
 - (A) A
- (B) B
- (C) C
- (D) D
- (E) *E*

 $M \subset A \setminus B \setminus C \setminus D$ 是四組資料的散布圖,如 右圖所示。利用最小平方法計算它們的 迴歸直線,發現有兩組資料的迴歸直線 相同,試問是哪兩組?

(A)
$$A \cdot B$$
 (B) $A \cdot C$

$$(C) A \cdot D$$

(D)
$$B \cdot C$$
 (E) $B \cdot D$

$$(E) B \cdot D$$

範例 1 觀察數字的規則 將自然數按下列規律排列,每一列比前一列多 第1列 1 一個數,如右表所示,試問第100列第3個數 第2列 2、3 第3列 4、5、6 是。 第4列 7、8、9、10 解 第 5 列 | 11、12、13、14、15 ♥ 關鍵想法

類題 1 如右圖所示是從事網路工作者經常用來解釋網路運作的 蛇形模型:數字1出現在第1列;數字2、3出現在第2 列;數字6、5、4(從左至右)出現在第3列;數字7、 8、9、10出現在第4列;依此類推。試問第99列,從 左至右算,第 67 個數字為

看各列的最後一項會比較容易看

出規律

類題 2 用單位長的不銹鋼條焊接如下圖系列的四面體鐵架,圖中的小圈圈「•」表示焊 接點,圖(一)有兩層共4個焊接點,圖(二)有三層共10個焊接點,圖(三)有四層共 20 個焊接點。試問依此規律,推算圖(五)有六層共 個焊接點。

設各項都是實數的等差數列 a_1, a_2, a_3, \cdots 之公差為正實數 α 。試選出正確的 選項。

- (A)若 $b_n = -a_n$,則 $b_1 > b_2 > b_3 > \cdots$
- (B)若 $c_n = a_n^2$,則 $c_1 < c_2 < c_3 < \cdots$
- (C)若 $d_n = a_n + a_{n+1}$, 則 d_1, d_2, d_3, \dots 是公差為 α 的等差數列
- (D)若 $e_n = a_n + n$, 則 e_1, e_2, e_3, \dots 是公差為 $\alpha + 1$ 的等差數列
- (E)若 f_n 為 a_1,a_2,\cdots,a_n 的算術平均數,則 f_1,f_2,f_3,\cdots 是公差為 α 的等差數列

<i>627</i>	

類題 3 阿宏伸出左手的 5 根手指頭,從大拇指開始,如右圖所示那 樣數數字 1,2,3,4,5,6,7,8,9,10,…,則數到 1000 時,他 會數在哪一個手指頭上?

(A)大拇指 (B)食指 (C)中指

(D)無名指 (E)小指

類題 4 設 $a_1 = 1$ 且 a_1, a_2, a_3, \dots 為等差數列。請選出正確的選項。

(A)若 $a_{100} > 0$,則 $a_{1000} > 0$

(B)若 $a_{100} < 0$,則 $a_{1000} < 0$

(C)若 $a_{1000} > 0$,則 $a_{100} > 0$

(D)若 $a_{1000} < 0$,則 $a_{100} < 0$

(E) $a_{1000} - a_{10} = 10 (a_{100} - a_1)$

全對率 32% 103 學測

範例3 等差級數求和

若一個等差數列前 5 項的和為 24,最後 5 項的和為 186,且所有項的和為 609,則 這個數列共有 項。

● 小小叮嚀

可以硬解聯立求出 $a_1 \setminus d$ 及n, 但是數字很醜

與 數

分

類題 5	一個 101 項的等	差數列 $a_1 \cdot a_2 \cdot a_3$	、…、a ₁₀₁ ,其和	為 0 ,且 a ₇₁ =	71,則下列
	選項哪些正確?				
	(A) $a_1 + a_{101} > 0$	(B) $a_2 + a_{101} < 0$	(C) $a_3 + a_{99} = 0$	(D) $a_{51} = 51$	(E) $a_1 < 0$

類題 6 若數列 $\langle a_n \rangle$ 為一等差數列且 $a_4 = 7$, $a_{10} = 5$,則下列哪些正確?

(A) $a_1 = 8$

(B) $a_{20} = \frac{5}{3}$

(C)自第24項開始為負

- (D)前 n 項總和最大時,n=24
- (E)若前 n 項和 $S_n = pn^2 + qn + r$,則 p < 0 且 r = 0

範例 4 等比數列

設 $T_1 \times T_2 \times T_3 \times \cdots$ 為一群多邊形,其作法如下: T_1 為邊長等於 1 之正三角形;以 T_n 每一邊中間三分 之一的線段為一邊,向外作正三角形,然後將該 三分之一線段抹去即為多邊形 T_{n+1} , n=1、2、… (如右圖)。請計算:(1) T,的面積為

 T_1

(2) T₆ 的周長為

鄮

■.再想一想 –

請同學推想 T_n 的面積及周長的 一般式

類題 7 設 $a_1 \, {}^{\backprime} \, a_2 \, {}^{\backprime} \, a_3 \, {}^{\backprime} \, \cdots \, {}^{\backprime} \, a_{11}$ 為等比數列且均為正數 , $a_{11} = \frac{1}{a_1}$, $a_4 = 4$,則 $a_3 = \underline{}$ 。

類題 8 在等比數列 $\langle a_n \rangle$ 中, $a_1 = 1$, $a_4 = 2 - \sqrt{5}$, $a_{n+2} = a_{n+1} + a_n$, $n \ge 1$,則 $\langle a_n \rangle$ 的公比

範例 5	等比級數求和	答對率 28%	105 學測
	為一等比數列。已知前十項的和為 $a_1 + a_2 + \cdots + a_{10} = 80$,和為 $a_1 + a_3 + a_5 + a_7 + a_9 = 120$,請選出首項 a_1 的正確範圍		
(A) $a_1 <$	80 (B) $80 \le a_1 < 90$ (C) $90 \le a_1 < 100$ (D) $100 \le a_1 < 1$	10 (E) 1	$10 \le a_1$
解			
新 <u></u>	芒白	$01^n \rightarrow 40$	旦

類題 9 若自然數 n 使 9^n 為 20 位數,則等比級數 $1+81+81^2+\cdots+81^n$ 之和是_____ 位數。($\log 2 \approx 0.301$, $\log 3 \approx 0.477$)

類題 10	一數列共 20 項,	奇數項和為24	,偶數項和為84,試問:	
	⑴若為等差數列	,則公差為	_ ②若為等比數列,則公比為	0

類題]]	假設實數 $a_1 imes a_2 imes a_3 imes a_4$ 是一個等差數 $b_n = 2^{a_n}$,則以下哪些選項是對的?	效列,且滿足 0 < a₁ <	< 2 及 a ₃ = 4	。若定義
	(A) $b_1 \cdot b_2 \cdot b_3 \cdot b_4$ 是一個等比數列 (D) $b_4 > 32$	(B) $b_1 < b_2$ (E) $b_2 \times b_4 = 256$	(C) $b_2 > 4$	
類題 12	設實數組成的數列 $\langle a_n \rangle$ 是公比為 -0.8 項為 10 的等差數列。已知 $a_9 > b_9$ 且 $a_9 > a_{10} < 0$ (B) $b_{10} > 0$ (C) $b_9 > 0$	1 ₁₀ > b ₁₀ 。請選出正確	E的選項。 $\underline{\qquad}$ (E) $a_8 > b_8$	
滿一款,	本備向銀行貸款3百萬元當做創業基金次還清貸款的本利和。銀行貸款一般以但給小華創業優惠改以單利計息還款。還款時可以比一般複利計息少繳	(複利(每年複利一 試問在此優惠下,	次) 計息還	104 學測
類題 13	張老闆急需用錢,打算借十萬元並在至 ,銀行提出四個方案如下: 甲:月利率為 2%,每個月複利一次 乙:月利率為 2%,每半個月複利一次 丙:第一個月利率為 1%,第二個月為 丁:第一個月利率為 3%,第二個月為 這四個京室以哪一個京室對碼老問見	、 , 2%,第三個月為 3 , 2%,第三個月為 1	%,每月複 ² %,每月複 ²	利計息

這四個方案以哪一個方案對張老闆最不利,即所還的本利和為最多?____

(A)甲方案

(B)乙方案

(C)丙方案

(D)丁方案

(E)四個方案的本利和都一樣

類型 14 王小姐想利用銀行的薪資帳戶定時定額扣款,以年繳的方式參加「大吉大利」 儲蓄方案,希望在 10 年後存滿 10 萬元,若每年複利一次且年利率為 4%,請 問她接下來這 10 年,每年年初會在帳戶固定提撥______元給銀行。(已知 (1.04)¹⁰ ≈ 1.48,整數以下四捨五入)

新GIQ	求和公式的應	Ħ
単にプリロ		н

在科技公司的尾牙晚會上,餐廳人員打算把酒杯一層一層往上堆疊,預計有 12 層,希望最上面的第一層有 3×5 個,第二層有 4×6 個,第三層有 5×7 個,依此類推。經過計算,餐廳應該提供 個酒杯。

解	
•	

r @ 4	r I v z I	ΙΛΠΤ	1523
	174	14/1	P## -

若項數少就暴力算,用求和公式 反而慢。但是千萬不可算錯,要 檢查、重算來確定答案

類題 15 (1) 試證明: $1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$ \circ

(2) 一個袋子內有 1 號球 2 顆、2 號球 3 顆、3 號球 4 顆、…、n 號球 (n+1) 顆,若此袋內球號之總和為 1938,則 n= 。

範例 9 遞迴關係式

設 $a_1 \setminus a_2 \setminus \cdots \setminus a_n \setminus \cdots$ 為一實數數列,且對所有的正整數 n 滿足 $a_{n+1} = \frac{n(n+1)}{2} - a_n$

- 。請問下列哪些選項是正確的?
- (A)如果 $a_1 = 1$,則 $a_2 = 1$
- (B)如果 a₁ 是整數,則此數列的每一項都是整數
- (C)如果 a₁ 是無理數,則此數列的每一項都是無理數
- (D) $a_2 \le a_4 \le \cdots \le a_{2n} \le \cdots$ (n 為正整數)

u_k 足可数,则 u_{k+2} 、 u_{k+4} 、 u_{k+2n} 、 可足可数 (n 為	II. 定数 /
	≐
「 ② 怎	 麼解決

類題 17 已知一數列 $\langle a_n \rangle$ 定義為 $a_1 = 1$, $a_{n+1} = \frac{3a_n - 1}{4a_n - 1}$, $n = 1 \cdot 2 \cdot 3 \cdot \cdots$ 。 求 $a_2 = 1$

- (A)若 $a_1a_2 > 0$,則 $a_2a_3 > 0$
- (B)若 $\langle a_n \rangle$ 成等差數列,則 $a_4 = a_3 + a_2$

前幾個選項是容易的,最後一個

選項要舉反例

- (C)若 $\langle a_n \rangle$ 成等差數列,則 $a_4 = 4a_1$ (D)若 $\langle a_n \rangle$ 成等比數列,則 $a_4 = a_3 + a_2$
- (E)若 $\langle a_n \rangle$ 成等比數列,則公比必為有理數

範例10 圖形的遞迴關係

用大小一樣的鋼珠排成正三角形、正方形與正五邊形陣列,排列的規律如下圖所示:

	正三角形陣列	正方形陣列	正五邊形陣列
每邊1個鋼珠	•	•	•
每邊2個鋼珠	Δ	П	\triangle
每邊3個鋼珠	\triangle	田	
每邊4個鋼珠	\triangle	副	

已知m個鋼珠恰好可以排成每邊m個鋼珠的正三角形陣列與正方形陣列各一個; 且知若用這 m 個鋼珠去排成每邊 n 個鋼珠的正五邊形陣列時,就會多出 9 個鋼珠

。 則 <i>n</i> =	,	m =	(
	-		

(É)	

●.再想一想

這一題很適合讓老師修改成為 新的題目。請同學想想可以怎 麼改?

類題 19 用大小相同的圓點,一邊排 n 個圓點的正 六邊形,共需圓點 a_n 個,如右圖。(例: 當 n = 3 , 得 $a_3 = 19$)

(1)觀察 a_{n+1} 與 a_n ,列出 a_{n+1} 與 a_n 的關係為 n=1 n=2

(2) 求 $a_{10} =$ 。

類題 20	(1)平面上 n 條材	目異直線最多可	把平面分割成 a _n	個區域,請問數	
	關係式為何的	?			
	(2)平面上 4 條相	目異直線把平面分)割成 k 個區域,	則 k 值可為下列	哪些選項?
	(A) 4	(B) 6	(C) 8	(D) 10	(E) 12

範例11 算術平均數

在某項才藝競賽中,為了避免評審個人主觀影響參賽者成績太大,主辦單位規定: 先將 15 位評審給同一位參賽者的成績求得算術平均數,再將與平均數相差超過 15 分的評審成績剔除後重新計算平均值做為此參賽者的比賽成績。現在有一位參賽者 所獲 15 位評審的平均成績為 76 分,其中有三位評審給的成績 92、45、55 應剔除 ,則這個參賽者的比賽成績為 分。

類題 21 某校想要瞭解全校同學是否知道 中央政府五院院長的姓名,出了 一份考卷。該卷共有五個單選題

題	號		<u></u>	三	四	五
答業	寸率	80%	70%	60%	50%	40%

,滿分 100 分,每題答對得 20 分,答錯得零分,不倒扣。閱卷完畢後,校方 公布每題的答對率如上。請問此次測驗全體受測同學的平均分數是:_____

(A) 70 分

(B) 65 分

(C) 60 分

(D) 55 分

類題 22 某校一、二、三年級各派學生參加注音比賽,高一派 x 人,高二派 y 人,高三派 x 12 人,各年級的平均成績為:高一 60 分,高二 65 分,高三 74 分。若合併高一與高二,則平均變成 63 分,若合併高一、高二、高三,則平均變成 69 分,請問 x = ,y = 。

範例 12 成長率的計算

某貨品為避免因成本變動而造成售價波動太過劇烈,當週售價相對於前一 週售價的漲跌幅定為當週成本相對於前一週成本的漲跌幅的一半。例如下 表中第二週成本上漲 100%, 所以第二週售價上漲 50%。依此定價方式以

及下表的資訊,試選出正確的選項。

【註:成本漲跌幅 = 當週成本 - 前週成本 , 售價漲跌幅 = 當週售價 - 前週售價]

	第一週	第二週	第三週	第四週
成 本	50	100	50	90
售價	120	180	x	у

- (A) 120 = x < y < 180
- (B) 120 < x < y < 180
- (C) x < 120 < y < 180

- (D) 120 = x < 180 < y
- (E) 120 < x < 180 < y

- 類題 23 某公司的員工張三和李四在去年的月薪固定且相同。自今年一月起,公司決定 以該月的業績高低來決定月底發放的薪資。張三因表現優異,一、二、三月每 月加薪 10%,四、五、六月表現不佳,每月減薪 10%。李四一、二、三月表 現不佳,每月減薪10%,四、五、六月表現優異,每月加薪10%。請問下列 選項哪些為真?
 - (A)張三 6 個月來所領的總薪資高於李四 (B)張三六月份所領的薪資高於李四
- - (C)張三六月份所領的薪資和李四相同
- (D)張三六月份所領的月薪和去年相等
- (E)李四六月份所領的月薪比去年低
- 類題 24 公司老闆看完一月份的帳目後,設立接下來五個月的獲利目標,希望每月的平 均獲利成長率為4%,結果二月、三月、四月、五月的獲利成長率均只有3% ,請利用下表求出六月份的獲利成長率應達到 %,才能達成老闆當初設 立的目標。(四捨五入至小數點後第一位)

n	2	3	4	5
$(1.03)^n$	1.0609	1.0927	1.1255	1.1593
$(1.04)^n$	1.0816	1.1249	1.1699	1.2167

級 數 與 數

分

範例 13 中位數與百分位數

右圖為某班 50 名學生參加數學科學科能力測驗成績的以下累積相對次數折線圖(以 15 級分制表示)。圖上各點的數字代表測驗成績在該級分以下(包含該級分)之學生人數占全班人數的百分比。請問這 50 個成績的:

- (1)眾數為 級分。
- (2)中位數(即第50百分位數)為 級分。
- (3)此班的前標(第75百分位數)與後標(第25百分位數)的差距為 級分。

Œ	

類題 25 九十一學年度指定科目考 試約有 5 萬 4 千名考生報 考「數學甲」,考生得分

考「數學甲」,考生得分 情形(由低至高)如右表 ,第一列為得分範圍(均

0~10	$10 \sim 20$	$20 \sim 30$	$30 \sim 40$	$40 \sim 50$
10.45	8.18	11.85	14.96	16.0
$50 \sim 60$	$60 \sim 70$	$70 \sim 80$	$80 \sim 90$	90 ~ 100
15.28	10.81	7.06	3.84	1.57

含下限不含上限),第二列為得分在該區間之人數占全體考生之百分比。試問下 列有關該次考試考生得分之敘述有哪些是正確的?

- (A)全體考生得分之中位數在 40 分(含)與 50 分(不含)之間
- (B)全體考生得分(由低至高)之第一四分位數在20分(含)與30分(不含)之間
- (C)全體考生得分(由低至高)之第三四分位數在50分(含)與60分(不含)之間
- (D)不到三成的考生得分少於 30 分
- (E)如果將得分≥60分看成及格,則有四成以上的考生成績及格

類題 26 某班某科成績製表如下,其中 70 分的人數被塗汙看不清楚,因此不知該組有幾人。請問:中位數 Me 共有 種不同的值,最大值為 ,最小值為 。

成	績	10	20	30	40	50	60	70	80	90	100
人	數	0	0	2	3	4	7	**	8	6	4

範例 14 標準差的計算

設某校高一第一次段考數學成績不太理想,多數同學成績偏低;考慮到可能是同學們適應不良所致,數學老師決定將每人的原始成績取平方根後再乘以 10 作為正式紀錄的成績。今隨機抽選 100 位同學,發現調整後的成績其平均為 65 分,標準差為 15 分;試問這 100 位同學未調整前的成績之平均 M 介於哪兩個連續正整數之間?

(A) $40 \le M < 41$	(B) $41 \le M < 42$	(C) $42 \le M < 43$	(D) $43 \le M < 44$	(E) $44 \le M < 45$

(
	_

- ── 考情分析 -

這是 94 學測題,只有 8% 的答對率! 不少人都以為 $\sqrt{M} \times 10 = 65$,誤選到(C) 去了!

類題 27 某生第一次月考六科的平均成績(算術平均)為 80 分,若已知其中五科的成績 為 68、80、80、80、86,則其成績的標準差為 分。

類題 28 9 個數值 1、1、1、1、1、1、1、1、1、x,其中 x 為正整數,若這 9 個數的標準 差比 10 大,則 x 最小為。

範例 15 相關係數的計算

調查某國家某一年 5 個地區的香煙與肺癌之相關性,所得到的數據為 (x_i, y_i) , i=1、2、3、4、5,其中變數 X 表示每人每年香煙消費量(單位:十包), Y 表示每十萬人死於肺癌的人數。若已計算出下列數值: $x_1+x_2+x_3+x_4+x_5=135$, $x_1^2+x_2^2+x_3^2+x_4^2+x_5^2=3661$, $x_1y_1+x_2y_2+x_3y_3+x_4y_4+x_5y_5=2842$, $y_1+y_2+y_3+y_4+y_5=105$, $y_1^2+y_2^2+y_3^2+y_4^2+y_5^2=2209$,則 X 與 Y 的相關係數 r=

類題 29 十位考生之國文與數學成績列表如下,今已算出國文成績之標準差為 8.9(取至小數點第一位),數學成績之標準差為 7.5(取至小數點第一位),則此十位 考生兩科成績之相關係數最接近:

考	生編號	1	2	3	4	5	6	7	8	9	10
或	文	89	65	76	69	82	57	66	72	78	66
數	學	75	57	65	65	83	63	58	62	63	69

- (A) 0.85
- (B) 0.25
- (C) 0.66
- (D) 0.78
- (E) 0.85

座	號	1	2	3	4	5
段考	平均	90	81	84	72	78
學測約	级分	14	12	10	11	8

範例 16 迴歸直線的計算

從班上抽選5位同學,調查段考的國文 及英文成績如右表,請利用英文對國文 的迴歸直線,預測段考國文考 100 分的 同學,其英文得分會在下列哪一個範圍

	甲	Z	丙	丁	戊	合 計
國文	62	78	87	85	88	400
英文	75	80	83	86	81	405

內?

$(A) 80 \sim 8$	85 分	(B) $85 \sim 90$	分 (($C)$ 90 \sim	95 分	(D) 95 \sim	100分	(E)超過 100	分
-----------------	------	------------------	------	----------------	------	-----------------	------	-----------	---

解)

- ❖ 概念強化	
----------	--

順便算出這一題的相關係數 為 ,要高度相關才

適合做迴歸預測

類題 31 已知二維數據 (x_1,y_1) 、 (x_2,y_2) 、…、 (x_n,y_n) 之 y 對 x 的迴歸直線為 y = 3x - 25,則下列各選項的推論哪些為真?

- (A)若 X 的算術平均比 10 大,則 Y 的算術平均也比 10 大
- (B)若 Y 的算術平均比 15 小,則 X 的算術平均也比 15 小
- (C) X 與 Y 的相關性必為正相關
- (D) X 的標準差必小於 Y 的標準差
- (E) X 的標準差與 Y 的標準差之比值愈大,則相關係數會愈大

類題 32 已知以下各選項資料的迴歸直線(最適合直線)皆相同且皆為負相關,請選出 相關係數最小的選項。

(A)

(B) 10 ν

(C)

(D)

(E)

答對率 30% 102 學測

範例 17 資料平移伸縮求相關係數及迴歸直線

英國某實驗研究一金屬圓柱(原高70.5英时)在不同負重下對柱高的影響,其實 驗結果如下: (0,70.5)、(2,69.4)、(4,68.4)、(6,67.2)、(8,66.3)、(10,65.5)(12,64.4),其中測量單位分別為英噸和英吋。將此筆資料的相關係數記為r, 以最小平方法決定的直線斜率記為m。現為提供臺灣廠商資料,將單位轉換為公噸 (1 英噸等於 1.016 公噸) 及公分(1 英吋等於 2.54 公分),若單位換算後該資料 的相關係數記為 R,以最小平方法決定的直線斜率記為 M。下列關係有哪些是正確 的?

/ - \				
(A)				\sim
(A)	10	m	`	11

(B)
$$r > 0$$

(C)
$$r = R$$

(D)
$$m = M$$

m

幕概念強化-

1. : 二維數據(*X*, *Y*) 的相關係數為 r, 迴歸直 線為v = ax + b,則r必與 a 同號

2. :單位換算前後的 相關係數不會改變

3. :單位換算前後的 迴歸直線不會改變

類題 33 某校高三共有 300 位學生,數學科第一次段考、第二次段考成績分別以 X、Y 表示,且每位學生的成績用0至100評分。若這兩次段考數學科成績的相關係 數為 0.016, 試問下列哪些選項是正確的?

- (A) X 與 Y 的相關情形可以用散布圖表示
- (B)這兩次段考的數學成績適合用直線 X = a + bY 表示 X 與 Y 的相關情形 ($a \times b$ 為常數, $b \neq 0$)
- (C) X + 5 與 Y + 5 的相關係數仍為 0.016
- (D) 10X 與 10Y 的相關係數仍為 0.016

(E)若 $X' = \frac{X - \mu_x}{\sigma_x} \cdot Y' = \frac{Y - \mu_y}{\sigma_y}$,其中 $\mu_x \cdot \mu_y$ 分別為 $X \cdot Y$ 的平均數, $\sigma_x \cdot \sigma_y$ 分別 為 $X \times Y$ 的標準差,則 X' 與 Y' 的相關係數仍為 0.016

類題 34 平面上直角 $\triangle ABC$, AB 與 x 軸平行, BC 與 y 軸平行, 如 右圖所示,關於 $A \setminus B \setminus C$ 三點之 $x \setminus y$ 坐標的相關係數, 下列選項哪些為真?

(A)為零相關

- (B)為正相關
- (C)可求出相關係數確定值 (D)無法求出相關係數確定值
- (E)可求出相關係數為有理數

單選題

- 1. 一等比數列 $\langle a_n \rangle$,其中 $a_1 + a_2 = 8$, $a_4 + a_5 = 64$,則 $a_1 + a_3 + a_5 + a_7 + a_9$ 之和 最接近下列哪一個數?
 - (A) 907

(B) 908

(C) 909

(D) 910

- (E) 911
- 2. 王老師參加政府的儲金計畫,每月由其薪資轉存一萬元至其帳戶,銀行按月 複利計算,年利率為6%,王老師兩年期滿後去對帳,對帳時他的帳戶應有 多少錢?
 - (A) $10000 \times (1.005)^{24} \times 24$
- (B) $10000 \times (1.005)^{12} \times 24$

(C) $10050 \times \frac{(1.005)^{24} - 1}{1.005 - 1}$

- (D) $24000 + 500 \times (24 + 23 + \dots + 1)$
- (E) $24000 \times (\frac{1+0.005 \times 24}{2})$
- 3. 四個正數 $a \times b \times c \times d$ 的算術平均數為 μ , 標準差為 σ 。請問下列何者錯誤?
 - (A)五個數 $a \cdot b \cdot c \cdot d \cdot \frac{a+b+c+d}{4}$ 的算術平均數為 μ
 - (B)五個數 $a \cdot b \cdot c \cdot d \cdot \frac{a+b+c+d}{4}$ 的標準差為 σ
 - (C)八個數 $a \times a \times b \times b \times c \times c \times d \times d$ 的算術平均數為 μ
 - (D)八個數 $a \times a \times b \times b \times c \times c \times d \times d$ 的標準差為 σ
 - (E)四個數 $\frac{a-\mu}{\sigma}$ 、 $\frac{b-\mu}{\sigma}$ 、 $\frac{c-\mu}{\sigma}$ 、 $\frac{d-\mu}{\sigma}$ 的標準差為 1
- 4. 下表是 108 年學測數學科的「級分人數百分比累計表」,請問均標(第50百 分位數)為幾級分?

級分	人數	百分比	累計人數	累計 百分比	級分	人數	百分比	累計人數	累計 百分比
15	7,782	5.82	133,693	100.00	7	8,929	6.68	55,047	41.17
14	8,846	6.62	125,911	94.18	6	10,210	7.64	46,118	34.50
13	8,937	6.68	117,065	87.56	5	10,508	7.86	35,908	26.86
12	10,403	7.78	108,128	80.88	4	9,559	7.15	25,400	19.00
11	10,927	8.17	97,725	73.10	3	9,799	7.33	15,841	11.85
10	9,332	6.98	86,798	64.92	2	5,095	3.81	6,042	4.52
9	11,577	8.66	77,466	57.94	1	906	0.68	947	0.71
8	10,842	8.11	65,889	49.28	0	41	0.03	41	0.03

(A) 6級分

(B) 7級分

(C) 8 級分

(D) 9 級分

(E) 10 級分

列

多選題

- 5. 兩個變數 (X,Y) 的 n 筆資料, $\mu_{X} = 60$, $\mu_{Y} = 70$,相關係數為 0.9,且 Y 對 X的迴歸直線通過(70,75),則下列選項哪些正確?
 - (A) Y 對 X 的迴歸直線必通過(60,70)
 - (B) n 筆資料為正相關
 - (C) Y 對 X 的迴歸直線斜率為 0.9
 - (D)若加進兩筆資料(2,41)、(-10,35),則相關係數必大於0.9
 - (E)若某筆資料的x 值為80,則其y 值必為80
- 6. 已知 S_n 為等差數列 $\langle a_n \rangle$ 的前 n 項之和,且 $S_8 > S_9 > S_7$,則下列選項哪些是正 確的?
 - (A)公差為負數
- (B) $a_7 < a_8 < a_9$
- (C) $S_{16} < 0$

(D) $S_{17} < 0$

- (E)數列 $\langle S_n \rangle$ 中的最大項為 S_8
- 7. $(1+x)^{11} = a_0 + a_1x + a_2x^2 + \dots + a_9x^9 + a_{10}x^{10} + a_{11}x^{11}$,若 a_0, a_1, \dots, a_{11} 的算術 平均數為 μ ,中位數為Me,則下列選項哪些正確?
 - (A) $a_0 = 55$
- (B) $\mu > 170$
- (C) μ < 170

- (D) Me 為 5 的倍數 (E) Me 為 11 的倍數
- 8. 下列敘述哪些正確?
 - (A)數列 $\langle a_n \rangle$ 若 $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, 則 $a_4 = 4$
 - $(B)\langle b_n \rangle$ 為等差數列,若 $b_{13}b_{14} < 0$ 則 $b_{14}b_{15} > 0$
 - $(C)\langle c_n\rangle$ 為等差數列,且 $c_1=1$,若 $c_{10}<0$,則 $c_{20}<0$
 - (D)數列 $\langle d_n \rangle$ 且 $d_1 = 1$,若 $d_n + d_{n-1} = 5$, $n \ge 2$,則 $d_{19} + d_{20} = 5$
 - (E)數列 $\langle e_n \rangle$ 滿足 $e_1 = 1$,且 $e_n = -2e_{n-1}$, $n \geq 2$,則 $e_{20} < 0$

三填充題

- 9. 將一等差數列按右列規律排列,每一列比前一列多一 個數,則第20列的第5個數為。
- 10. 某班 35 位學生,數學考試成績不佳,平均分數 40 分 ,標準差 5 分, 老師決定用線型函數 y = ax + b 方式加 分(其中x為原始分數,y為加分後分數,a>0),加 分後全班平均分數 60 分,標準差 6 分,若某生原始分 數 50 分,則加分後成績為 分。
- 11. 如右圖,等腰直角三角形中, $\angle C = 90^{\circ}$, BC = 1, 在 $\triangle ABC$ 的內部作一個最大正方形 S_1 ,在 $\triangle ADE$ 的內部再 作一個最大正方形 S_2 ,依此規則,前 5 個正方形的面積 總和為

第1列:1

第2列:4 7

第3列:10 13 16

第4列:19 22 25 28

第5列:31 34 37 40 43

代表每個高一學生平均每週花在研讀數學以外科目的時間。今Y代表每個高一學生 數學的月考成績,設 $X \times Y$ 的相關係數為 0.8, 若 $X \times W$ 的相關係數為 r_1 , $Y \times W$ 的 相關係數為 r_2 ,則 $r_1 + r_2 =$ ____ \circ

四素養導向試題

13. 根據調查,每三個成年人中就有一個人有高血壓,近年國際衛生組織對大量不同年 齡層的人進行血壓調查,得出隨年齡變化收縮壓的正常值變化情況如下表:

年齡 x (歲)	28	32	38	42	48	52	58	62	$\mu_{x} = 45$
收縮壓 y (mmHg)	114	118	122	127	129	135	140	147	$\mu_{y} = 129$

其中, $(x_1 - \mu_x)^2 + (x_2 - \mu_x)^2 + (x_3 - \mu_x)^2 + \dots + (x_8 - \mu_x)^2 = 1032$ $(x_1 - \mu_x)(y_1 - \mu_y) + (x_2 - \mu_x)(y_2 - \mu_y) + \dots + (x_8 - \mu_x)(y_8 - \mu_y) = 944$ 試求下列問題:

(1) 根據表中的數據求 v 對於 x 的迴歸直線斜率為何?(準確到小數點後第 2 位,第 3 位以下四捨五入)

(A) 0.90

- (B) 0.91

- (C) 0.92 (D) -0.91 (E) -0.92
- (2)若迴歸直線方程式為 y = a + bx, 則 a 之值為 。
- (3) 若規定一個人的收縮壓為標準值的 0.9 ~ 1.06 倍,為血壓正常人群。收縮壓為標 準值的 $1.06 \sim 1.12$ 倍,為輕度高血壓人群。收縮壓為標準值的 $1.12 \sim 1.20$ 倍, 為中度高血壓人群。收縮壓為標準值的 1.20 倍以上,為重度高血壓人群。請問一 位收縮壓為 180 mmHg 的 70 歲的老人,屬於哪一類人群?

