Technique des systèmes électriques, incl. bases technologiques

Dossier des expertes et experts

60	Minutes	16	Exercices	13	Pages	40	Points
----	---------	----	-----------	----	-------	----	--------

Moyens auxiliaires autorisés:

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (tablettes, smartphones, etc. ne sont pas autorisés)

Cotation – Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Le nombre de réponses demandé est déterminant.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.
- Toute erreur induite par une précédente erreur n'entraîne aucune déduction.

Barème

6	5,5	5	4,5	4	3,5	3	2,5	2	1,5	1
40,0-38,0	37,5-34,0	33,5-30,0	29,5-26,0	25,5-22,0	21,5-18,0	17,5-14,0	13,5-10,0	9,5-6,0	5,5-2,0	1,5-0,0

Délai d'attente:

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2023.

Créé par:

Groupe de travail PQ d'EIT.swiss pour la profession d'électricienne de montage CFC / électricien de montage CFC

Editeur:

CSFO, département procédures de qualification, Berne

1. Puissance et rendement N° d'objectif d'évaluation 3.3.2b

Un moteur électrique d'un rendement de 78 % absorbe 6 kW. Quelle est sa puissance perdue ?

$$P_{utile} = P_{abs} \cdot \eta = 6'000 \text{ W} \cdot 0,78 = 4'680 \text{ W} = 4,68 \text{ kW}$$

2

$$P_{perdue} = P_{abs} - P_{utile} = 6'000 \ W - 4'680 \ W = \underline{1'320 \ W = 1,32 \ kW}$$

1

Note pour les experts : Une solution directe est également possible.

2. Grandeurs fondamentales N° d'objectif d'évaluation 3.2.3b

2

Le fil de cuivre d'une bobine, dont la section est de 1,25 mm², peut avoir une densité de courant maximale de 4,4 $\frac{A}{mm^2}$

Calculer le courant maximal dans le fil.

Solution:

$$I = J \cdot A = 4, 4 \frac{A}{mm^2} \cdot 1,25 \text{ mm}^2 = \underline{5,5 \text{ A}}$$

3

1

3. Calcul de résistances N° d'objectif d'évaluation 3.2.3.b

a) Calculer la résistance équivalente.

$$R = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} = \frac{1}{\frac{1}{48\Omega} + \frac{1}{64\Omega} + \frac{1}{30\Omega}} = \frac{14,328 \Omega}{\frac{1}{48\Omega} + \frac{1}{64\Omega} + \frac{1}{30\Omega}}$$

b) Calculer le courant total I_{Total}.

$$I_{Tot} = \frac{U}{R} = \frac{30 V}{14.328 \Omega} = \frac{2,094 A}{1}$$

c) Calculer le courant I₁.

$$I_1 = \frac{U}{R_1} = \frac{30 \text{ V}}{48 \Omega} = \underline{0.625 \text{ A}}$$

1

2

4. Courant triphasé N° d'objectif d'évaluation 5.3.4.b

Trois résistances ohmiques de même valeur sont connectées à un réseau triphasé 3 x 400 V.

Calculer la puissance de ce circuit.

Solution:

$$P = \sqrt{3} \, \cdot \, U \, \cdot \, I = \sqrt{3} \, \cdot 400 \, \, V \, \cdot 12 \, A = \underline{\underline{8314 \, W}} = \underline{8,31 \, kW}$$

ou

$$P = U_{phase} \cdot I \cdot 3 = 230 V \cdot 12 A \cdot 3 = 8280 W = 8,28 kW$$

3

0,5

0,5

0,5

0,5

0,5

0,5

5. Organe de protection N° d'objectif d'évaluation 5.1.4.b

a) L'illustration montre un disjoncteur en coupe. Indiquer dans les rectangles ci-dessous les chiffres correspondants aux déclencheurs.

Déclencheur thermique

2

Déclencheur électromagnétique

1

b) Cocher les énoncés et les symboles au bon déclencheur.

	Déclencheur thermique	Déclencheur électromagnétique
Protection contre les courts-circuits		
Protection contre les surcharges		

4

0,5

0,5 0,5

0,5

0,5

0,5

6. Circuit : Grandeurs et appareils de mesures N° d'objectif d'évaluation 3.2.3.b

- a) Compléter le circuit ci-dessous avec les informations suivantes :
- le voltmètre avec V
- l'ampèremètre avec A
- le wattmètre avec W
- la résistance avec R

- b) Dessiner les grandeurs suivantes sur le circuit :
- la tension en **bleu** (la flèche et le symbole de la grandeur)
- le courant en **rouge** (la flèche et le symbole de la grandeur)

Note pour les experts : Les flèches de tension et de courant peuvent également être dessinées à un autre endroit du circuit.

c) Pour chaque affirmation ci-desous, indiquer si elle est juste ou fausse.

	juste	faux	
Pour mesurer une tension dans un circuit électrique, l'appareil de mesure doit avoir une grande résistance interne.	\boxtimes		0,5
Un dispositif à courant différentiel résiduel est installé pour protéger un circuit électrique contre un courant de surcharge.		\boxtimes	0,5

2

2

0,5

0,5

0,5

Grandeurs fondamentales : Puissance et courant N° d'objectif d'évaluation 7. 3.2.4.b

Sur un chantier, les appareils suivants sont connectés à un enrouleur 230 V :

- 2 projecteurs LED de 120 W chacun
- 1 marteau piqueur de 1,5 kW
- 1 malaxeur à mortier de 480 W
- 1 chargeur de téléphone portable de 500 mW
- a) Calculer la puissance totale de tous les appareils raccordés.

Solution:

$$\begin{aligned} P_{Tot} &= (2 \cdot P_{LED}) + P_{marteau} + P_{malaxeur} + P_{chargeur} = (2 \cdot 120 \text{ W}) + 1500 \text{ W} + 480 \text{ W} + 0,5 \text{ W} \\ &= 2220,5 \text{ W} \end{aligned}$$

b) Quel courant ces appareils consomment-ils lorsqu'ils sont raccordés ensemble?

Solution:

$$I = \frac{P_{Tot.}}{U} = \frac{2220, 5 \text{ W}}{230 \text{ V}} = \underline{9,65 \text{ A}}$$

Procédés thermiques N° d'objectif d'évaluation 3.2.4.b

Indiquer les noms des changements d'état ou le changement d'apparence dans les flèches.

0,5

3

1

1

1

9. Grandeurs alternatives sinusoïdales N° d'objectif d'évaluation 5.3.1b

a) Quelle est la fréquence de la tension alternative représentée ci-dessous ?

Solution:

$$T = \frac{t \cdot 2}{3} = \frac{0,06 \text{ s} \cdot 2}{3} = \underline{0,04 \text{ s}}$$

$$f = \frac{1}{T} = \frac{1}{0,04s} = \underline{\frac{25 \text{ Hz}}{}}$$

b)

	f diminue	f ne change pas	f augmente
Comment varie la fréquence lorsque la période devient plus petite ?			

10. Sources lumineuses et types de luminaires N° d'objectif d'évaluation 5.2.2b

Pour chaque affirmation ci-dessous, cocher oui ou non.

Affirmations	OUI	NON
Lampe LED Retrofit	\boxtimes	
Lampe fluorescente		\boxtimes
Nécessite un équipement supplémentaire pour fonctionner (Ballast, transformateur, etc.)		\boxtimes

0,5

3

0,5

0,5

0,5

0,5

0,5

2

				17/1
,	7.	4		
1	1	/		

Affirmations	OUI	NON
Ampoule halogène		\boxtimes
Lampe fluocompacte	\boxtimes	
Nécessite un équipement supplémentaire pour fonctionner (Ballast, transformateur, etc.)	\boxtimes	

11. Energie N° d'objectif d'évaluation 3.2.4b

En remplaçant, dans un ménage, toutes les ampoules à incandescence par des ampoules LED, l'énergie consommée varie selon les chiffres ci-dessous.

Energie consommée annuellement avec les ampoules à incandescence : 876 kWh. Energie consommée annuellement avec les ampoules LED : 97,5 kWh.

Quelles sont les économies annuelles en CHF si le prix du kWh est de 15 centimes. $(T_{kWh}=0.15 \text{ CHF} / \text{kWh})$?

$$\Delta W = W_{Inc} - W_{LED} = 876 \ kWh - 97,5 \ kWh = 778,5 \ kWh$$

1

$$Co\hat{\mathbf{u}}t = \Delta W \cdot Ta = 778, 5 \ kWh \cdot 0, 15 \frac{CHF}{kWh} = \underline{\underline{116,78 \ CHF}}$$

Note pour les experts :

Le prix peut être arrondi à 5 centimes.

2

1

1

3

1

12. Procédés thermiques N° d'objectif d'évaluation 3.3.4b

Il existe trois types de transfert de chaleur.

Dans le tableau ci-dessous cocher les réponses correctes.

Affirmations sur les procédés thermiques	Conduction	Convection	Rayonnement
Un radiateur infrarouge émet de la chaleur par			
Le transfert de la chaleur entre la plaque chauffante et la casserole s'effectue principalement par			

13. Triangle des puissances N° d'objectif d'évaluation 5.3.3b

Un moteur consomme 4 kW de puissance active et 6 kVA de puissance apparente.

a) Compléter le triangle des puissances avec leurs noms, leurs symboles et leurs unités.

Note pour les experts : Nom correct des puissances avec les symboles 0,5 pt. Unités correctes 0,5 pt)

b) Calculer la puissance réactive.

$$Q = \sqrt{S^2 - P^2} = \sqrt{(6 \text{ kVA})^2 - (4 \text{ kW})^2} = \underline{4.47 \text{ kvar}}$$

Note pour les experts :

Formule correcte avec les bonnes unités de mesure 1 pt., Résultat 1 pt.

Points par page:

2

2

1

1

14. Transformateur monophasé N° d'objectif d'évaluation 5.1.6b

Pour ce transformateur monophasé, calculer :

a) La tension au primaire U₁.

$$U_1 = \frac{U_2 \cdot N_1}{N_2} = \frac{12 \, V \cdot 3220}{168} = \underline{230 \, V}$$

b) Le rapport de transformation n.

$$n = \frac{N_1}{N_2} = \frac{3220}{168} = \underline{\frac{19,2}{168}}$$

2

1

15. Machine électrique N° d'objectif d'évaluation 5.2.4b

Un moteur triphasé à cage d'écureuil porte la plaquette signalétique suivante.

- a) Nommer les bornes sur le bornier du moteur (U1, U2, etc.)
- b) Dessiner les ponts de bornes nécessaires selon la plaque signalétique.

3

1

1

16. Chute de tension N° d'objectif d'évaluation 3.2.4b

Calculer:

a) La résistance de la ligne.

$$R_{l} = \frac{\rho \cdot 2L}{A} = \frac{0.0175 \Omega mm^{2} \cdot 2.30 m}{m \cdot 1.5 mm^{2}} = \underline{0.7 \Omega}$$

b) La chute de tension en ligne (ΔU).

$$\Delta U = R_l \cdot I = 0,7 \Omega \cdot 9,86 A = \underline{6,9 V}$$

c) La tension à la prise (U₂).

$$U_2 = U_1 - U_d = 230V - 6,9 V = 223,1 V$$