THE REAL PLANE CREMONA GROUP IS AN AMALGAMATED PRODUCT

SUSANNA ZIMMERMANN

ABSTRACT. We show that the real Cremona group of the plane is a non-trivial amalgam of two groups amalgamated along their intersection and give an alternative proof of its abelianisation.

1. Intoduction

The plane Cremona group is the group $\operatorname{Bir}_k(\mathbb{P}^2)$ of birational transformations of \mathbb{P}^2 defined over a field k. For algebraically closed fields k, the Noether-Castelnuovo theorem [5] shows that $\operatorname{Bir}_k(\mathbb{P}^2)$ is generated by $\operatorname{Aut}_k(\mathbb{P}^2)$ and the subgroup preserving the pencil of lines through [1:0:0]. It implies that the normal subgroup generated by $\operatorname{Aut}_k(\mathbb{P}^2)$ is equal to $\operatorname{Bir}_k(\mathbb{P}^2)$. Furthermore, [4, Appendix by Cornulier] shows that $\operatorname{Bir}_k(\mathbb{P}^2)$ is not isomorphic to a non-trivial amalgam of two groups. However, it is isomorphic to a non-trivial amalgam modulo one simple relation [1,10,7], and it is isomorphic to a generalised amalgamated product of three groups, amalgamated along all pairwise intersections [16]. For $k=\mathbb{R}$, the group $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ is generated by $\operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ and the two subgroups

$$\mathcal{J}_* = \{ f \in \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2) \mid f \text{ preserves the pencil of lines through } [1:0:0] \}$$

 $\mathcal{J}_{\circ} = \{ f \in \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2) \mid f \text{ preserves the pencil of conics through } p_1, \bar{p}_1, p_2, \bar{p}_2 \}$

where $p_1, p_2 \in \mathbb{P}^2$ are two fixed non-real points such that $p_1, \bar{p}_1, p_2, \bar{p}_2$ are not collinear [3, Theorem 1.1]. Over \mathbb{C} , the analogon of \mathcal{J}_{\circ} is conjugate to \mathcal{J}_{*} since a pencil of conics through four points in \mathbb{P}^2 in general position can be sent onto a pencil of lines through point.

We define $\mathcal{G}_{\circ} \subset \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ to be the subgroup generated by $\operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ and \mathcal{J}_{\circ} , and by $\mathcal{G}_{*} \subset \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ the subgroup generated by $\operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ and \mathcal{J}_{*} . Then $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ is generated by $\mathcal{G}_{*} \cup \mathcal{G}_{\circ}$, and the intersection $\mathcal{G}_{*} \cap \mathcal{G}_{\circ}$ contains the subgroup \mathcal{H} generated by $\operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ and the involution $[x:y:z] \mapsto [xz:yz:x^2+y^2]$, which is contained $\mathcal{J}_{\circ} \cap \mathcal{J}_{*}$.

Theorem 1.1. We have $\mathcal{G}_* \cap \mathcal{G}_\circ = \mathcal{H}$, it is a proper subgroup of \mathcal{G}_\circ and \mathcal{G}_* and $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2) \simeq \mathcal{G}_\circ \underset{\mathcal{U}}{\star} \mathcal{G}_*$.

Moreover, both \mathcal{G}_* and \mathcal{G}_{\circ} have uncountable index in $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$.

The action of $Bir_{\mathbb{R}}(\mathbb{P}^2)$ on the Bass-Serre tree associated to the amalgamated product yields the following:

²⁰¹⁰ Mathematics Subject Classification. 14E07; 20F05; 14P99.

During this work, the author was supported by the Swiss National Science Foundation, by Projet PEPS 2018 JC/JC and by ANR Project FIBALGA ANR-18-CE40-0003-01.

Corollary 1.2. The group $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ acts on a tree, and all its algebraic subgroups are conjugate to a subgroup of \mathcal{G}_* or of \mathcal{G}_{\circ} .

For the finite subgroups of odd order Corollary 1.2 can also be verified by checking their classification in [17].

An earlier version of this article used an explicit presentation of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ and of \mathcal{G}_{\circ} in terms of generators and generating relations, the first of which is proven in [18, Theorem 4.4], and the second was proven analogously in the earlier version of this article. The present version does not use either presentation. Instead, we look at the groupoid $\operatorname{Sar}_{\mathbb{R}}(\mathbb{P}^2)$ of birational maps between rational real Mori fibre spaces of dimension 2. It contains $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ as subgroupoid, is generated by Sarkisov links and and the elementary relations are a set of generating relations [11, Theorem 3.1], see also Theorem 2.5. This information is encoded in a square complex on which $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ acts [11, §2–3], see also § 2. The groups \mathcal{G}_{\circ} , \mathcal{G}_{*} and \mathcal{H} will turn out to be stabilisers of the union of elementary discs containing vertices marked with elements of \mathcal{G}_{\circ} , \mathcal{G}_{*} and $\mathcal{G}_{\circ} \cap \mathcal{G}_{*}$.

This allows us to provide a new proof of the abelianisation of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ given in [18]. Using the presentation of $\operatorname{Sar}_{\mathbb{R}}(\mathbb{P}^2)$ we can construct a surjective homomorphism of groupoids $\operatorname{Sar}_{\mathbb{R}}(\mathbb{P}^2) \longrightarrow \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$, whose restriction onto $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ is surjective as well and coincides with its abelianisation by construction. This will give an alternative proof of the following statement.

Theorem 1.3. [18, Theorem 1.1(1)&(3)] There is a surjective homomorphism of groups

$$\Phi \colon \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2) \longrightarrow \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$$

such that its restriction to \mathcal{J}_{\circ} is surjective and $\mathcal{G}_{*} \subset \ker(\Phi) = [\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^{2}), \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^{2})]$, where the right hand side is also equal to the normal subgroup generated by $\operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^{2})$.

ACKNOWLEDGEMENT: I would like thank Anne Lonjou for asking me whether the real plane Cremona group is isomorphic to a generalised amalgamated product of several groups, and the interesting discussions that followed. I would also like to thank Stéphane Lamy for discussions on the square complex, and Jérémy Blanc, Yves de Cornulier for helpful remarks, questions and discussions.

2. A SQUARE COMPLEX ASSOCIATED TO THE CREMONA GROUP

In this section we recall the square complex constructed in [11], whose vertices are marked rational surfaces, its edges of length two are Sarkisov links between them and discs relations between Sarkisov links.

By a surface S, we mean a smooth projective surface defined over \mathbb{R} , and by $S_{\mathbb{C}}$ the same surface but defined over \mathbb{C} . We define the Néron-Severi space $N^1(S_{\mathbb{C}})$ as the space of \mathbb{R} -divisors $N^1(S_{\mathbb{C}}):=\operatorname{Div}(S_{\mathbb{C}})\otimes\mathbb{R}/\equiv$. The action of the Galois group $\operatorname{Gal}(\mathbb{C}/\mathbb{R})$ on $N^1(S_{\mathbb{C}})$ factors through a finite group, and we denote by $N^1(S)$ the subspace of the $\operatorname{Gal}(\mathbb{C}/\mathbb{R})$ -invariant classes. Since we only consider \mathbb{R} -rational surfaces and $\mathbb{C}[S_{\mathbb{C}}]^*=\mathbb{C}^*$, $N^1(S)$ is also the space of classes of divisors defined over \mathbb{R} (see for instance [14, Lemma 6.3(iii)]). The dimension of $N^1(S_{\mathbb{C}})$ is the Picard rank of S and is denoted by $\rho(S)$. If not stated otherwise, all morphisms are defined over \mathbb{R} .

2.1. Rank r fibrations.

Definition 2.1. Let S be a smooth rational surface, and $r \geq 1$ an integer. We say that S is a rank r fibration if there exists a morphism $\pi \colon S \to B$, where B is a point or $B = \mathbb{P}^1$, with relative Picard number $\rho(S/B) = r$, and such that the anticanonical divisor $-K_S$ is π -ample.

The last condition means that for any curve C contracted to a point by π , we have $K_S \cdot C < 0$. Observe that the condition on the Picard number is that $\rho(S) = r$ if B is a point, and $\rho(S) = r + 1$ if $B = \mathbb{P}^1$. If S is a rank r fibration, we will write S/B if we want to emphasize the basis of the fibration, and S^r when we want to emphasize the rank.

An isomorphism between two fibrations S/B and S'/B' (necessarily of the same rank r) is an isomorphism $S \stackrel{\sim}{\to} S'$ such that there exists an isomorphism on the bases (necessarily uniquely defined) that makes the following diagram commute:

$$S \xrightarrow{\simeq} S'$$

$$\downarrow^{\pi'}$$

$$B \xrightarrow{\simeq} B'$$

Observe that the definition of a rank r fibration puts together several notions. If B is a point, then S is just a del Pezzo surface of Picard rank r (over the base field \mathbb{R}). If B is a curve, then S is just a conic bundle of relative Picard rank r: a general fiber is isomorphic to a smooth plane conic over \mathbb{R} , and over \mathbb{C} any singular fiber is the union of two (-1)-curves secant at one point. Remark also that being a rank 1 fibrations is equivalent to being a (smooth) rational Mori fibre space of dimension 2.

As the following examples make it clear, there are sometimes several choices for a structure of rank r fibration on a given surface, that may even correspond to distinct ranks.

Example 2.2. (1) \mathbb{P}^2 with the morphism $\mathbb{P}^2 \to \operatorname{pt}$, or the Hirzebruch surface \mathbb{F}_n with the morphism $\mathbb{F}_n \to \mathbb{P}^1$, are rank 1 fibrations.

- (2) \mathbb{F}_1 with the morphism $\mathbb{F}_1 \to \operatorname{pt}$ is a rank 2 fibration. Idem for $\mathbb{F}_0 \to \operatorname{pt}$. The blow-up $S^2 \to \mathbb{F}_n \to \mathbb{P}^1$ of a Hirzebruch surface in a real point or a pair of non-real conjugate point such that each of them is in a distinct fiber, is a rank 2 fibration over \mathbb{P}^1 .
- (3) The blow-up of two distinct real points on \mathbb{P}^2 , or of two points of \mathbb{F}_n not lying on the same fiber, gives examples of rank 3 fibrations, with morphisms to the point or to \mathbb{P}^1 respectively.
- (4) The quadric surface Q obtained by blowing up \mathbb{P}^2 in a pair of non-real conjugate points and then contracting the strict transform of the line passing through them is a del Pezzo surface of degree 8 of Picard rank $\rho(Q) = 1$, and so $Q \to \text{pt}$ is a rank 1 fibration.
- (5) The blow-up \mathcal{CB}_6 of a pair of non-real conjugate points on \mathcal{Q} is a del Pezzo surface of degree 6 of Picard rank $\rho(\mathcal{CB}_6) = 2$. It has a conic bundle structure $\mathcal{CB}_6 \longrightarrow \mathbb{P}^1$, and so \mathcal{CB}_6/pt is a rank 2 fibration while $\mathcal{CB}_6/\mathbb{P}^1$ is a rank 1 fibration.
- (6) The blow-up of a real point in \mathcal{CB}_6 yields a rank 2 fibration $\mathcal{CB}_5/\mathbb{P}^1$. Note that \mathcal{CB}_5 is the blow-up of \mathbb{P}^2 in two pairs of non-real conjugate points and the fibres of $\mathcal{CB}_5/\mathbb{P}^1$ are the strict transforms of conics passing through the two pairs.

We call marking on a rank r fibration S/B a choice of a birational map $\varphi \colon S \dashrightarrow \mathbb{P}^2$. We say that two marked fibrations $\varphi \colon S/B \dashrightarrow \mathbb{P}^2$ and $\varphi' \colon S'/B' \dashrightarrow \mathbb{P}^2$ are equivalent if $\varphi'^{-1} \circ \varphi \colon S/B \to S'/B'$ is an isomorphism of fibrations. We denote by $(S/B, \varphi)$ an equivalence class under this relation.

If S'/B' and S/B are marked fibrations of respective rank r' and r, we say that S'/B' factorizes through S/B if the birational map $S' \to S$ induced by the markings is a morphism, and moreover there exists a (uniquely defined) morphism $B \to B'$ such that the following diagram commutes:

In fact if B' = pt the last condition is empty, and if $B' \simeq \mathbb{P}^1$ it means that $S' \to S$ is a morphism of fibration over a common basis \mathbb{P}^1 . Note that $r' \geq r$.

2.2. **Square complex.** We define a 2-dimensional complex \mathcal{X} as follows. Vertices are equivalence classes of marked rank r fibrations, with $3 \geq r \geq 1$. We put an oriented edge from $(S'/B', \varphi')$ to $(S/B, \varphi)$ if S'/B' factorizes through S/B. If r' > r are the respective ranks of S'/B' and S/B, we say that the edge has type r', r. For each triplets of pairwise linked vertices $(S''^3/B'', \varphi''), (S'^2/B', \varphi'), (S^1/B, \varphi)$, we glue a triangle. In this way we obtain a 2-dimensional simplicial complex \mathcal{X} .

Lemma 2.3. [11, Lemma 2.3] For each edge of type 3,1 from S''/B'' to S/B, there exist exactly two triangles that admit this edge as a side.

In view of the lemma, by gluing all the pairs of triangles along edges of type 3,1, and keeping only edges of types 3,2 and 2,1, we obtain a square complex that we still denote \mathcal{X} . When drawing subcomplexes of \mathcal{X} we will often drop part of the information which is clear by context, about the markings, the equivalence classes and/or the fibration. For instance S/B must be understood as $(S/B,\varphi)$ for an implicit marking φ , and (\mathbb{P}^2,φ) as $(\mathbb{P}^2/\mathrm{pt},\varphi)$. The Cremona group $\mathrm{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ acts on \mathcal{X} by

$$f \cdot (S/B, \varphi) := (S/B, f \circ \varphi).$$

2.3. Sarkisov links and elementary relations. In this section we show that the complex \mathcal{X} encodes the notion of Sarkisov links (or *links* for short), and of elementary relation between them.

First we rephrase the usual notion of Sarkisov links between 2-dimensional Mori fiber spaces. Let $(S/B,\varphi), (S'/B',\varphi')$ be two marked rank 1 fibrations. We say that the induced birational map $S \dashrightarrow S'$ is a $Sarkisov \ link$ if there exists a marked rank 2 fibration S''/B'' that factorizes through both S/B and S'/B'. Equivalently, the vertices corresponding to S/B and S'/B' are at distance 2 in the complex \mathcal{X} , with middle vertex S''/B'':

This definition is in fact equivalent to the usual definition of a link of type I, II, III or IV from S/B to S'/B' (see [9, Definition 2.14] for the definition in arbitrary

dimension). Below we recall these definitions in the context of surfaces, in terms of commutative diagrams where each morphism has relative Picard number 1 (such a diagram corresponds to a "two rays game"), and we give some examples. Remark that these diagrams are not part of the complex \mathcal{X} : in each case, the corresponding subcomplex of \mathcal{X} is just a path of two edges, as described above.

• Type I: B is a point, $B' \simeq \mathbb{P}^1$, and $S' \to S$ is the blow-up of a real point or a pair of non-real conjugate points such that we have a diagram

Then we take S''/B'':=S'/pt. We also refer to the map $S \dashrightarrow S'$ as link of type I. Examples are given by the blow-up of a real point on $S'=\mathbb{F}_1 \longrightarrow \mathbb{P}^2=S$ or the blow-up of a pair of non-real conjugate points $S'=\mathcal{CB}_6 \longrightarrow \mathcal{Q}=S$. The fibration $\mathbb{F}_1/\mathbb{P}^1$ corresponds to the lines through the point, and the fibration $\mathcal{CB}_6/\mathbb{P}^1$ corresponds to a pencil of conics in \mathbb{P}^2 passing through two pairs of non-real conjugate points.

• Type II: B=B', and there exist two blow-ups $S''\to S$ and $S''\to S'$ that fit into a diagram of the form:

Then we take S''/B'' := S''/B. We also refer to the map $S \dashrightarrow S'$ as link of type II

An example is given by $S = \mathbb{P}^2$, S'' the blow-up of a pair of non-real conjugate points and $S' = \mathcal{Q}$. Other examples are the blow-up of a conic bundle in a real point, or in a pair of non-real conjugate points not contained in the same fibre, followed by the contraction of the strict transform of the fibre(s) containing it (them).

- Type III: symmetric situation of a link of type I. We refer to the map $S' \longrightarrow S$ as link of type III.
- Type IV: (S, φ) and (S', φ') are equal as marked surfaces, but the fibrations to B and B' are distinct. In this situation B and B' must be isomorphic to \mathbb{P}^1 , and we have a diagram

Then we take S''/B'' := S/pt.

For rational surfaces, a type IV link always corresponds to the two rulings on $\mathbb{F}_0 = \mathbb{P}^1 \times \mathbb{P}^1$, that is, $S/B = \mathbb{F}_0/\mathbb{P}^1$ is one of the rulings, $S'/B' = \mathbb{F}_0/\mathbb{P}^1$ the other one, and $S''/B'' = \mathbb{F}_0/\text{pt}$. See [8, Theorem 2.6 (iv)] for other examples in the context of non-rational surfaces.

A path of links is a finite sequence of marked rank 1 fibrations

$$(S_0/B_0,\varphi_0),\ldots,(S_n/B_n,\varphi_n),$$

such that for all $0 \le i \le n-1$, the induced map $g_i : S_i/B_i \longrightarrow S_{i+1}/B_{i+1}$ is a Sarkisov link.

Proposition 2.4. [11, Proposition 2.6] Let $(S'/B, \varphi)$ be a marked rank 3 fibration. Then there exist finitely many squares in \mathcal{X} with S' as a corner, and the union of these squares is a subcomplex of \mathcal{X} homeomorphic to a disk with center corresponding to S'.

In the situation of Proposition 2.4, by going around the boundary of the disc we obtain a path of Sarkisov links whose composition is the identity (or strictly speaking, an automorphism). We say that this path is an *elementary relation* between links, coming from S'^3/B . More generally, any composition of links that corresponds to a loop in the complex \mathcal{X} is called a *relation* between Sarkisov links.

Theorem 2.5. [11, Proposition 3.14, Proposition 3.15]

- (1) Any birational map between rank 1 fibrations is a composition of links, and in particular the complex \mathcal{X} is connected.
- (2) Any relation between links is a composition of elementary relations, and in particular \mathcal{X} is simply connected.

The first part of Theorem 2.51 can also be found in [8, Theorem 2.5]. In fact, a relative version can be extracted from the classification of links in [8, Theorem 2.6].

Proposition 2.6. Let S/\mathbb{P}^1 and S'/\mathbb{P}^1 be rank 1 fibrations. Any birational map $f \colon S \dashrightarrow S'$ over \mathbb{P}^1 is a composition of links of rank 1 fibrations over \mathbb{P}^1 , that is, a composition of Sarkisov links of type II over \mathbb{P}^1 . In particular:

- (1) Any element of \mathcal{J}_* is conjugate to a composition of automorphisms of some Hirzebruch surface and links of type II between them.
- (2) Any element of \mathcal{J}_{\circ} is conjugate to a composition automorphisms of \mathcal{CB}_{6} and links $\mathcal{CB}_{6} \dashrightarrow \mathcal{CB}_{6}$ of type II.
- 2.4. **Elementary discs.** We call the disc with center a rank 3 fibration from Proposition 2.4 an *elementary disc*. In this section, we classify them and therewith obtain an explicit list of elementary relations among rank 1 fibrations.

Lemma 2.7. Any edge of \mathcal{X} is contained in a square. In particular, \mathcal{X} is the union of elementary discs.

Proof. Let e be an edge of \mathcal{X} . If it is an edge between a rank 2 fibration and a rank 3 fibration, let e' be an edge from the rank 2 fibration to a rank 1 fibration. By [11, Lemma 2.3], there is a unique square in \mathcal{X} with e and e' among its edges. Suppose that e is the edge between a rank 1 fibration S/B and a rank 2 fibration S'/B'. If S' = S (and so $B = \mathbb{P}^1$, $B' = \operatorname{pt}$), then S is a del Pezzo surface with $\rho(S) = 2$ endowed with a conic bundle structre S/\mathbb{P}^1 . In particular, $S = \mathbb{F}_n$, $n \in \{0,1\}$ or $S = \mathcal{CB}_6$. Let $S'' \longrightarrow S$ be the blow-up of a general point. Then S'' is also a del Pezzo surface, and so S''/pt is a rank 3 fibration and the square

$$S/\text{pt} \longleftarrow S''/\text{pt}$$

$$\downarrow^{e} \qquad \qquad \downarrow$$

$$S/\mathbb{P}^{1} \longleftarrow S''/\mathbb{P}^{1}$$

contained in \mathcal{X} . Suppose that $S' \longrightarrow S$ is the blow-up of a real point or a pair of non-real conjugate points (and so B = B'). Note that if $B = \operatorname{pt}$, the surface S' is a del Pezzo surface of degree ≤ 6 . The blow-up $S'' \longrightarrow S'$ of a general point yields a rank 3 fibration S''/B which factorises through S/B. The two blow-ups commute and \mathcal{X} contains a square of the form

$$S'/B \longleftarrow S''/B$$

$$\downarrow^{e} \qquad \qquad \downarrow$$

$$S/B \longleftarrow \tilde{S}/B$$

It follows that \mathcal{X} is the union of squares. The claim now follows from Proposition 2.4.

In general, Lemma 2.7 is not true for an arbitrary perfect field k. Indeed, if k has an extension of degree 8, then a Bertini involution whose set of base-points is an orbit of 8 conjugate points is a link of type II

with S/pt a del Pezzo surface of degre 1, and whose corresponding two edges in \mathcal{X} are not contained in any square [11, Lemma 4.3].

In what follows, X_d is a del Pezzo surface of degree $d = (K_{X_d})^2$. A arrow marked by 1 is the blow-up of a real point and an arrow marked with 2 is the blow-up of a pair of non-real conjugate points.

Proposition 2.8. Any elementary disc in \mathcal{X} is one of the discs $\mathcal{D}_1, \ldots, \mathcal{D}_6$ in Figures 4-1, where the arrows are marked by 1 (or 2) if it is the blow-up of a real point (or a pair of non-real conjugate points).

Proof. Let \mathcal{D} be an elementary disc and let S/B be the rank 3 fibration that is its center, and let S'/B' be a rank 1 fibration through which the rank 3 fibration S/B factors.

(a) Suppose that $B=\operatorname{pt.}$ Then S is a del Pezzo surface with $\rho(S)=3$, and hence S'/pt is a del Pezzo surface is as well.

If $B' = \mathbb{P}^1$, then $S' \simeq \mathbb{F}_n$, $n \in \{0,1\}$ or $S' \simeq \mathcal{CB}_6$, and $S \longrightarrow S' \longrightarrow \mathbb{P}^1$ is a rank 2 fibration. Then $S \longrightarrow S'$ is the blow-up of one real point or one pair of non-real conjugate points. If $S' = \mathbb{F}_0$, then $\mathcal{D} = \mathcal{D}_5$. If $S' = \mathbb{F}_1$, then $\mathcal{D} = \mathcal{D}_1$ or $\mathcal{D} = \mathcal{D}_5$. If $S' = \mathcal{CB}_6$ then $\mathcal{D} = \mathcal{D}_3$ or $\mathcal{D} = \mathcal{D}_4$.

 $S' = \mathcal{CB}_6$ then $\mathcal{D} = \mathcal{D}_3$ or $\mathcal{D} = \mathcal{D}_4$. If $B' = \operatorname{pt}$, then $S' = \mathbb{P}^2$ or $S' = \mathcal{Q}$, and $\pi \colon S \longrightarrow S'$ is the blow-up of two points (two real points, two pairs of non-real conjugate points or a real point and a pair of non-real points) in general position. If $S' = \mathbb{P}^2$ then \mathcal{D} is one of the discs $\mathcal{D}_1, \mathcal{D}_3, \mathcal{D}_5$. Note that in the discs \mathcal{D}_1 and \mathcal{D}_3 we cover also the case where $S' = \mathcal{Q}$ and π blows up two points, at least one of which is a real point. If $S' = \mathcal{Q}$ and π blows up two pairs of non-real conjugate points, $\mathcal{D} = \mathcal{D}_4$.

(b) Suppose that $B = \mathbb{P}^1$. Then $B' = \mathbb{P}^1$, $S' = \mathbb{F}_n$ or $S' = \mathcal{CB}_6$ and $\pi \colon S \longrightarrow S'$ is a blow-up in two points (again two real points, two pairs of non-real conjugate points or a real point and a pair of non-real points). Furthermore, any rank 1

FIGURE 1. Disc \mathcal{D}_1 on the left, \mathcal{D}_2 on the right.

fibration in the elementary disc is of the form S''/\mathbb{P}^1 . If $S' = \mathcal{CB}_6$, then S has two singular fibres whose \mathbb{C} -components are conjugate, and hence all rank 1 fibrations in the elementary discs are isomorphic to \mathcal{CB}_6 . The hypothesis that $-K_S$ is π -ample implies that the \mathbb{C} -components of the points blown up by π are on pairwise distinct smooth fibres. Thus $\mathcal{D} = \mathcal{D}_2$ or $\mathcal{D} = \mathcal{D}_6$.

FIGURE 2. Disc \mathcal{D}_3 .

Figure 3. Disc \mathcal{D}_4 .

Lemma 2.9. Let $i, j \in \{1, ..., 6\}$ and $\mathcal{D}_i \neq \mathcal{D}_j$. If they intersect non-trivially, their intersection is a single vertex or is a boundary segment of the form $S/B \leftarrow S''/B'' \rightarrow S'/B'$, where S/B and S'/B' are rank 1 fibrations.

FIGURE 4. Disc \mathcal{D}_5 on the left, disc \mathcal{D}_6 on the right.

Proof. Suppose that $\mathcal{D}_i \cap \mathcal{D}_j$ is non-empty and does not consist of one vertex. Then it contains at least one edge e. If it is in the relative interior of \mathcal{D}_i , the center of \mathcal{D}_i is a vertex of e and hence $\mathcal{D}_i = \mathcal{D}_j$. Suppose that e is on the relative boundary of \mathcal{D}_i , i.e. is of the form $S''/B'' \longrightarrow S/B$ with vertices S''/B'' ad S/B a rank 2 and rank 1 fibration, respectively. Following the two-rays game, there is a unique edge $S''/B'' \longrightarrow S'/B'$ to another rank 1 fibration S'/B', which is hence contained in both \mathcal{D}_i and \mathcal{D}_j . If $\mathcal{D}_i \cap \mathcal{D}_j$ contains another edge in the relative boundary of \mathcal{D}_i , then the list of elementary discs $\mathcal{D}_1, \ldots, \mathcal{D}_6$ in Proposition 2.8 implies that $\mathcal{D}_i = \mathcal{D}_j$.

3. Proof of the main theorems

3.1. The group $\mathcal{G}_* \cap \mathcal{G}_\circ$. We denote by $\mathcal{H} \subset \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ the subgroup generated by $\operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ and the quadratic involution $\sigma \colon [x:y:z] \mapsto [xz:yz:x^2+y^2]$. Equivalently, it is generated by $\operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ and the quadratic maps in $\mathcal{J}_\circ \cap \mathcal{J}_*$ [18, Lemma 3.2]. In particular, $\mathcal{H} \subseteq \mathcal{G}_\circ \cap \mathcal{G}_*$. We will prove equality in this section.

- **Remark 3.1.** (1) For any quadratic map $f \in \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ with one real base-point and a pair of non-real conjugate base-points there exist $\alpha, \beta \in \operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ such that $\alpha f \beta = \sigma$.
 - (2) The path along the boundary of an elementary disc \mathcal{D}_1 connecting its two vertices \mathbb{P}^1 /pt corresponds to a quadratic map with one real and two non-real conjugate base-points. It is thus contained in \mathcal{H} and hence also in $\mathcal{G}_0 \cap \mathcal{G}_*$.
 - (3) We can write $\sigma = \varphi_2 \circ \varphi_1$ where $\varphi_1 \colon \mathbb{P}^2 \dashrightarrow \mathcal{Q}$ and $\varphi_2 \colon \mathcal{Q} \dashrightarrow \mathbb{P}^2$ are two links of type II. It follows that any element of \mathcal{H} is a composition of links $\mathbb{P}^2 \dashrightarrow \mathcal{Q}$ and $\mathcal{Q} \dashrightarrow \mathbb{P}^2$ of type II.

Definition 3.2.

- (1) We call $\mathcal{X}_{\circ} \subset \mathcal{X}$ the union of the \mathcal{G}_{\circ} -orbits of all discs $\mathcal{D}_{1}, \ldots, \mathcal{D}_{4}$ containing a vertex $(\mathcal{Q}/\mathrm{pt}, \tau)$ or $(\mathcal{CB}_{6}/\mathbb{P}^{1}, \tau \circ \pi)$ with $\tau \colon \mathcal{Q} \dashrightarrow \mathbb{P}^{2}$ is a link of type II and $\pi \colon \mathcal{CB}_{6} \longrightarrow \mathcal{Q}$ a link of type III.
- (2) We call $\mathcal{X}_* \subset \mathcal{X}$ the union of \mathcal{G}_* -orbits of all discs $\mathcal{D}_1, \mathcal{D}_5, \mathcal{D}_6$ containing a vertex $(\mathbb{F}_n/\mathbb{P}^1, \pi_n)$ for some $n \geq 0$, with $\pi_1 \colon \mathbb{F}_1 \longrightarrow \mathbb{P}^2$ a link of type III and $\pi_n = \pi_1 \circ \varphi_n, n \neq 1$, where $\varphi_n \colon \mathbb{F}_n \dashrightarrow \mathbb{F}_1$ is a composition of Sarkisov links of type II between Hirzebruch surfaces.

As the type of elementary disc is invariant by the action of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$, any elementary disc contained in \mathcal{X}_{\circ} is one of type $\mathcal{D}_1, \ldots, \mathcal{D}_4$, and any elementary disc contained in \mathcal{X}_* is one of type $\mathcal{D}_1, \mathcal{D}_5$ or \mathcal{D}_6 .

Lemma 3.3.

- (1) The set of vertices (\mathbb{P}^2, g) of \mathcal{X}_{\circ} is the \mathcal{G}_{\circ} -orbit of $(\mathbb{P}^2, \mathrm{id})$.
- (2) The set of vertices (\mathbb{P}^2, g) of \mathcal{X}_* is the \mathcal{G}_* -orbit of $(\mathbb{P}^2, \mathrm{id})$.
- (3) We have

$$\mathcal{X} = \bigcup_{f \in \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)} f(\mathcal{X}_{\circ}) \cup \bigcup_{f \in \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)} f(\mathcal{X}_{*}).$$

- (4) The sets \mathcal{X}_{\circ} and \mathcal{X}_{*} are connected..
- (5) For any $f \in \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$, the set $\mathcal{X}_{\circ} \cap f(\mathcal{X}_*)$ is the union of all elementary discs \mathcal{D}_1 containing a vertex (\mathbb{P}^2, g) with $g \in \mathcal{G}_{\circ}$ and a vertex $(\mathbb{P}^2, f \circ g')$ with and $g' \in \mathcal{G}_*$.
- (6) The set $\mathcal{X}_{\circ} \cap \mathcal{X}_{*}$ is the union of all elementary discs \mathcal{D}_{1} containing a vertex (\mathbb{P}^{2}, g) with $g \in \mathcal{G}_{\circ} \cap \mathcal{G}_{*}$.
- Proof. (1) For any $g \in \mathcal{G}_{\circ}$ we have $(\mathbb{P}^2, g) = g(\mathbb{P}^2, \mathrm{id})$. Let $\tau \colon \mathcal{Q} \dashrightarrow \mathbb{P}^2$ be a link of type II. There is an elementary disc \mathcal{D}_1 containing $(\mathbb{P}^2, \mathrm{id})$ and (\mathcal{Q}, τ) . Then $g\mathcal{D}_1$ is an elementary disc containing (\mathbb{P}^2, g) and $(\mathcal{Q}, g \circ \tau)$, and it follows that $(\mathbb{P}^2, g) \in \mathcal{X}_{\circ}$. For the converse, if (\mathbb{P}^2, f) is contained in \mathcal{X}_{\circ} , it is the vertex of an elementary disc \mathcal{D}_i , $i \in \{1, 3\}$ contained \mathcal{X}_{\circ} . There is $g \in \mathcal{G}_{\circ}$ such that $\mathcal{D}_i = g\mathcal{D}_i'$ is the image by g of another elementary disc of type \mathcal{D}_i' containing a vertex (\mathcal{Q}, τ) where $\tau \colon \mathcal{Q} \dashrightarrow \mathbb{P}^2$ is a link of type II. We can choose the vertex (\mathcal{Q}, τ) inside \mathcal{D}_i' such that there are two consecutive edges connecting it to the vertex $(\mathbb{P}^2, g^{-1} \circ f) \in \mathcal{D}_i'$. The two edges correspond to a link $\tau' \colon \mathcal{Q} \dashrightarrow \mathbb{P}^2$ of type II. In particular, $\tau \circ \tau' = g^{-1} \circ f$. Since $\tau \circ \tau' \in \mathcal{G}_{\circ}$, it follows that $f \in \mathcal{G}_{\circ}$.
- (2) Is proven analogously to (1) with \mathbb{F}_1 instead of \mathcal{Q} and links $\pi_1 : \mathbb{F}_1 \longrightarrow \mathbb{P}^2$ of type I and their inverse instead of links $\tau : \mathcal{Q} \dashrightarrow \mathbb{P}^2$ of type II.
- (3) The complex \mathcal{X} is the union of elementary discs by Lemma 2.7, hence the orbit of \mathcal{X}_{\circ} and \mathcal{X}_{*} by $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^{2})$ covers \mathcal{X} .
- (4) Let $i \in \{*, \circ\}$. It suffices to check that for any vertex (\mathbb{P}^2, f) of \mathcal{X}_i there is a path in \mathcal{X}_i from (\mathbb{P}^2, f) to $(\mathbb{P}^2, \mathrm{id})$. (1)&(2) imply that $f \in \mathcal{G}_i$. We write $f = \alpha_n f_n \alpha_{n-1} \cdots f_1 \alpha_0$, where $\alpha_j \in \mathrm{Aut}_{\mathbb{R}}(\mathbb{P}^2)$, $f_j \in \mathcal{J}_i$. Proposition 2.6 implies that each f_j is conjugate by $\psi_i \colon \mathbb{P}^2 \dashrightarrow S_i$ to a composition of links of type II preserving the associated conic bundle S_i/\mathbb{P}^1 , where $\psi_* \colon \mathbb{P}^2 \dashrightarrow \mathbb{F}_1 = S_*$ is the blow-up of [1:0:0] and $\psi_o \colon \mathbb{P}^2 \dashrightarrow \mathcal{Q} \dashrightarrow \mathcal{CB}_6 = S_o$ the composition a link of type II and of type I blowing up [1:i:0], [0:1:i] and their conjugates. This yields a decomposition of f into links which corresponds to a path from $(\mathbb{P}^2, \mathrm{id})$ to (\mathbb{P}^2, f) along the boundary of elementary discs contained in \mathcal{X}_i .
- (5) Lemma 2.9 and Proposition 2.8 imply that the intersection $\mathcal{X}_{\circ} \cap f(\mathcal{X}_{*})$ consists of elementary discs of type \mathcal{D}_{1} . By (1)&(2) such a disc contains a vertex (\mathbb{P}^{2} , g) with $g \in \mathcal{G}_{\circ}$ and a vertex (\mathbb{P}^{2} , $f \circ g'$) with $g' \in \mathcal{G}_{*}$, and any elementary disc \mathcal{D}_{1} with this property is contained $\mathcal{X}_{*} \cap f(\mathcal{X}_{\circ})$.
- (6) By (5) for f = id, the set $\mathcal{X}_{\circ} \cap \mathcal{X}_{*}$ is the union of elementary discs \mathcal{D}_{1} containing a vertex (\mathbb{P}^{2}, g) with $g \in \mathcal{G}_{\circ}$ and a vertex (\mathbb{P}^{2}, g') with $g' \in \mathcal{G}_{*}$. Remark 3.1(2) implies that $g, g' \in \mathcal{G}_{*} \cap \mathcal{G}_{\circ}$.

Lemma 3.4. We have the following stabilisers under the action of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ on \mathcal{X} :

- (1) $\operatorname{Stab}(\mathcal{X}_{\circ}) = \mathcal{G}_{\circ}$,
- (2) $\operatorname{Stab}(\mathcal{X}_*) = \mathcal{G}_*,$

(3) Stab($\mathcal{X}_{\circ} \cap \mathcal{X}_{*}$) = $\mathcal{G}_{*} \cap \mathcal{G}_{\circ}$.

Proof. (1)&(2) Let $i \in \{\circ, *\}$. As \mathcal{X}_i is the \mathcal{G}_i -orbit of certain elementary discs, we have $\mathcal{G}_i \subset \operatorname{Stab}(\mathcal{X}_i)$. Let $f \in \operatorname{Stab}(\mathcal{X}_i)$ and $(\mathbb{P}^2, g) \in \mathcal{X}_i$. Then $(\mathbb{P}^2, f \circ g) \in \mathcal{X}_i$, thus $f \circ g \in \mathcal{G}_i$ by Lemma 3.3(1), and so $f \in \mathcal{G}_i$.

(3) The inclusion $\mathcal{G}_{\circ} \cap \mathcal{G}_{*} \subset \operatorname{Stab}(\mathcal{X}_{\circ} \cap \mathcal{X}_{*})$ follows from (1)&(2). Let $f \in \operatorname{Stab}(\mathcal{X}_{\circ} \cap \mathcal{X}_{*})$ and $(\mathbb{P}^{2}, g) \in \mathcal{X}_{\circ} \cap \mathcal{X}_{*}$. Then $(\mathbb{P}^{2}, g \circ f) \in \mathcal{X}_{\circ} \cap \mathcal{X}_{*}$. By Lemma 3.3(6), we have $g, g \circ f \in \mathcal{G}_{*} \cap \mathcal{G}_{\circ}$, and so $f \in \mathcal{G}_{\circ} \cap \mathcal{G}_{*}$.

Lemma 3.5. Let $f \in \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$. Then the following hold:

- (1) Let $i \in \{\circ, *\}$. If \mathcal{X}_i and $f(\mathcal{X}_i)$ intersect, then they are equal.
- (2) $\mathcal{X}_* \cap \mathcal{X}_\circ$ is connected.
- (3) $\operatorname{Stab}(\mathcal{X}_{\circ} \cap \mathcal{X}_{*}) = \mathcal{G}_{\circ} \cap \mathcal{G}_{*} = \mathcal{H}.$

Proof. (1) Suppose that $\mathcal{X}_i \cap f(\mathcal{X}_i)$ is non-empty. As the type of elementary disc is invariant by the action of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$, the set $\mathcal{X}_i \cap f(\mathcal{X}_i)$ contains a vertex (\mathbb{P}^2, h) for some $h \in \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$. By Lemma 3.3(1)&(2) we have $h \in \mathcal{G}_i$ and there exists $g \in \mathcal{G}_i$ such that $h = f \circ g$. It follows that $f \in \mathcal{G}_i$. As $\mathcal{G}_i \subset \operatorname{Stab}(\mathcal{X}_i)$, we have $f(\mathcal{X}_i) = \mathcal{X}_i$.

(2)&(3) Let $g \in \mathcal{G}_* \cap \mathcal{G}_\circ$ and write $g = g_1 \circ \cdots \circ g_n = f_1 \circ \cdots \circ f_m$ for some $g_i \in \operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2) \cup \mathcal{J}_*$ and $f_i \in \operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2) \cup \mathcal{J}_\circ$. Then the relation

$$g_n^{-1} \circ \cdots \circ g_1^{-1} \circ f_1 \circ \cdots \circ f_m = id$$

induces a loop γ in \mathcal{X} starting at $(\mathbb{P}^2, \mathrm{id})$ and passing through (\mathbb{P}^2, g_n^{-1}) , $(\mathbb{P}^2, g_n^{-1} \circ g_{n-1}^{-1}), \ldots, (\mathbb{P}^2, g_n^{-1} \circ \cdots \circ g_1^{-1}) = (\mathbb{P}^2, g^{-1}), (\mathbb{P}^2, g^{-1} \circ f_1), \ldots, (\mathbb{P}^2, g^{-1} \circ f_1 \circ \cdots \circ f_{m-1}), (\mathbb{P}^2, g^{-1} f) = (\mathbb{P}^2, \mathrm{id})$. We can suppose that $\gamma(\frac{1}{2}) = (\mathbb{P}^2, g^{-1})$. Since \mathcal{X}_* and \mathcal{X}_\circ are connected by Lemma 3.3(4) and \mathcal{X} is simply connected by Proposition 2.5(2), we can assume that γ that $\gamma([0,\frac{1}{2}]) \subset \mathcal{X}_*$ and $\gamma([\frac{1}{2},1]) \subset g^{-1}(\mathcal{X}_\circ) = \mathcal{X}_\circ$ (Lemma 3.4(1)). The loop γ is the boundary of a disc D in \mathcal{X} , and by Proposition 2.5(2) the disc D is a finite union of elementary discs. In particular, $\gamma([0,\frac{1}{2}]) \subset \mathcal{X}_*$ passes through elementary discs contained in \mathcal{X}_* and $\gamma([\frac{1}{2},1]) \subset \mathcal{X}_\circ$ passes through elementary discs contained in \mathcal{X}_\circ . The complex \mathcal{X} is covered by its subcomplexes $f(\mathcal{X}_i)$, $i \in \{*, \circ\}$ by Lemma 3.3(3), hence so is the disc D. It follows that D contains a finite connected union U of elementary discs, all contained in the union of sets of the form $f(\mathcal{X}_\circ) \cap f'(\mathcal{X}_*)$, $f, f' \in \mathrm{Bir}_{\mathbb{R}}(\mathbb{P}^2)$, and which contains $(\mathbb{P}^2, \mathrm{id})$ and (\mathbb{P}^2, g^{-1}) . Lemma 3.3(5) implies that U is covered by elementary discs of type \mathcal{D}_1 . The path from $(\mathbb{P}^2, \mathrm{id})$ to (\mathbb{P}^2, g^{-1}) along the boundary of these discs induces a decomposition of g^{-1} into elements of \mathcal{H} (Remark 3.1(2)). This yields $\mathcal{G}_* \cap \mathcal{G}_* \subset \mathcal{H}$. Now (3) follows from Lemma 3.4(3). This and Lemma 3.3(6) imply (2).

3.2. The index of the subgroup \mathcal{G}_{\circ} and the properness of \mathcal{H} in \mathcal{G}_{*} . We now prove that \mathcal{G}_{*} is not contained in \mathcal{G}_{\circ} by showing that quadratic maps having three real base-points in \mathbb{P}^{2} are in $\mathcal{G}_{*} \setminus \mathcal{G}_{\circ}$, and as consequence that the set $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^{2})/\mathcal{G}_{\circ}$ is uncountable.

Recall that any quadratic map $f \in \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ with three real base-points in \mathbb{P}^2 is contained in \mathcal{G}_* , as there exist $\alpha, \beta \in \operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ such that $\alpha f \beta$ is given by

$$\alpha f \beta \colon [x:y:z] \mapsto [yz:xz:xy]$$

and so $\alpha f \beta \in \mathcal{J}_*$.

Lemma 3.6. The group \mathcal{G}_{\circ} does not contain any quadratic map with three real base-points in \mathbb{P}^2 . In particular, $\mathcal{H} \subsetneq \mathcal{G}_*$.

Proof. Let $f \in \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ be a quadratic map with three real base-points p_1, p_2, p_3 in \mathbb{P}^2 and suppose that $f \in \mathcal{G}_{\circ}$. Then $f \in \mathcal{G}_{\circ} \cap \mathcal{G}_* = \mathcal{H}$ by Lemma 3.5(3) and there is a decomposition $f = \psi_r \cdots \psi_1$ into links $\psi_i \colon \mathbb{P}^2 \dashrightarrow \mathcal{Q}$ and $\psi_j \colon \mathcal{Q} \dashrightarrow \mathbb{P}^2$ of type II (Remark 3.1(3)). On the other hand, there is a decomposition of $f = \varphi_4 \cdots \varphi_1$ as follows: The link $\varphi_1 \colon \mathbb{P}^2 \dashrightarrow \mathbb{F}_1$ is the blow-up of p_1 of $f, \varphi_2 \colon \mathbb{F}_1 \dashrightarrow \mathbb{F}_0$ is the link of type II blowing up of p_2 and contracting the line strict transform of the line through p_1, p_2 , and $\varphi_3 \colon \mathbb{F}_0 \dashrightarrow \mathbb{F}_1$ is a link of type II blowing up p_3 and contracting the strict transform of the line through p_1, p_3 , and $\varphi_4 \colon \mathbb{F}_1 \longrightarrow \mathbb{P}^2$ is a link of type III contracting the strict transform of the line through p_2, p_3 . This corresponds to a path along the boundary of the two discs \mathcal{D}_5 and \mathcal{D}_5' with respective center (X_7, φ) and $(X_7, \varphi' \circ f^{-1})$, where $\varphi \colon X_7 \longrightarrow \mathbb{P}^2$ is the blow-up of the points p_1, p_2 and $\varphi' \colon X_7 \longrightarrow \mathbb{P}^2$ is the blow-up of the two base-points of f^{-1} which are the images of the lines through p_2, p_3 and p_1, p_3 . The relation

$$id = \psi_1^{-1} \cdots \psi_r^{-1} \varphi_4 \cdots \varphi_1$$

corresponds to a loop γ in \mathcal{X} which is the border of a disc $D \subset \mathcal{X}$ that is a finite union of elementary discs (Theorem 2.5). We can assume that $\gamma(\frac{1}{2}) = (\mathbb{P}^2, f^{-1})$ and that $\gamma([0,\frac{1}{2}]) \subset \mathcal{X}_{\circ} \cap \mathcal{X}_{*}$. It is therefore covered by elementary discs of the form \mathcal{D}_1 (Lemma 3.3(6)). Furthermore, $\gamma([\frac{1}{2},1]) \subset \mathcal{D}_5 \cup \mathcal{D}_5' \subset \mathcal{X}_*$ by construction of γ . The discs \mathcal{D}_5 and \mathcal{D}_5' intersect only elementary discs of type \mathcal{D}_1 (they do so in a vertex \mathbb{P}^2/pt or in exactly two connected edges corresponding to a link of type I) and elementary discs type \mathcal{D}_6 , which in turn only intersect other discs of type \mathcal{D}_6 or discs of type \mathcal{D}_5 . It follows that there is a connected union $V \subset D$ of discs of type \mathcal{D}_1 that contains $(\mathbb{P}^2, \mathrm{id})$ and (\mathbb{P}^2, f^{-1}) such that the subset of \tilde{D} bounded by V and $\gamma([\frac{1}{2},1])$ is only covered by discs of type \mathcal{D}_1 , \mathcal{D}_5 and \mathcal{D}_6 . We can then assume that $\gamma([0,\frac{1}{2}]) \subset V$ and that the set \tilde{D} is homeomorphic to a disc. As discs of type \mathcal{D}_6 only intersect other discs \mathcal{D}_6 or discs of type \mathcal{D}_5 , it follows that there is a connected union $\tilde{V} \subset \tilde{D}$ of discs \mathcal{D}_5 containing (\mathbb{P}^2 , id) and (\mathbb{P}^2 , f^{-1}) intersecting the discs of type \mathcal{D}_1 in V along their boundary. We obtain a path along boundaries of discs of type \mathcal{D}_1 of links of type I and type III from $(\mathbb{P}^2, \mathrm{id})$ to (\mathbb{P}^2, f^{-1}) . This is impossible as f^{-1} has not such decomposition. It follows that $f \notin \mathcal{G}_{\circ}$. The rest of the claim follows from the fact that $\mathcal{H} = \mathcal{G}_* \cap \mathcal{G}_\circ$ (Lemma 3.5(3)).

Lemma 3.7. The group \mathcal{G}_{\circ} has uncountable index in $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$.

Proof. Denote by $\sigma: [x:y:z] \mapsto [yz:xz:xy]$ the standard quadratic involution of \mathbb{P}^2 , and define the group

$$A := \{ [x:y:z] \mapsto [x+az:y+bz:z] \mid a,b \in \mathbb{R} \} \subset \operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$$

Consider the map between sets

$$\psi \colon A \longrightarrow \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)/\mathcal{G}_{\circ}, \quad \alpha \mapsto (\alpha \circ \sigma)\mathcal{G}_{\circ}$$

We now prove that it is injective, which will yield the claim. First, note that $\sigma \circ \alpha \circ \sigma$ is of degree ≤ 2 for all $\alpha \in A$ since $\sigma \circ \alpha$ and σ have two common base-points, namely [1:0:0] and [0:0:1]. Then $\sigma \circ \alpha \circ \sigma \in \operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ if and only if σ and $\sigma \circ \alpha$ have three common base-points. This is the case if and only if $\alpha = \operatorname{Id}$, as $\alpha \in A$. Moreover, if $\sigma \circ \alpha \circ \sigma$ is of degree 2, it has three real base-points.

Now, let $\beta, \gamma \in A$ such that $(\beta \circ \sigma)\mathcal{G}_{\circ} = (\gamma \circ \sigma)\mathcal{G}_{\circ}$. Then $\sigma \circ (\beta^{-1} \circ \gamma) \circ \sigma \in \mathcal{G}_{\circ}$. It follows from Lemma 3.6 and the above that $\sigma \circ \beta^{-1} \circ \gamma \circ \sigma \in \operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^{2})$, which is the case if and only if $\beta^{-1} \circ \gamma = \operatorname{id}$. Thus the map φ is injective.

3.3. The index of the subgroup \mathcal{G}_{\circ} and a quotient of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$. We recall the construction of a surjective homomorphism

$$\psi \colon \mathcal{J}_{\circ} \longrightarrow \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$$

given in $[18, \S 3.2.1, \S 3.2.2]$.

Definition–Lemma 3.8 ([18, §3.2.1, §3.2.2]). Any element $f \in \mathcal{J}_{\circ}$ is conjugate to a birational map $\hat{f}: \mathcal{CB}_{6}/\mathbb{P}^{1} \longrightarrow \mathcal{CB}_{6}/\mathbb{P}^{1}$ preserving the conic bundle structure. Such a map \hat{f} has a decomposition $\hat{f} = \varphi_{s} \cdots \varphi_{1}$ into links $\mathcal{CB}_{6} \longrightarrow \mathcal{CB}_{6}$ of type II (Proposition 2.6), and such a link does not blow up any point on a singular fibre of $\mathcal{CB}_{6}/\mathbb{P}^{1}$. For $j = 1, \ldots, s$, let C_{j} be a (real or non-real) fibre of $\mathcal{CB}_{6}/\mathbb{P}^{1}$ contracted by φ_{j} and $[a_{j} + ib_{j} : 1] \in \mathbb{P}^{1}$ its image by the projection onto \mathbb{P}^{1} . We define $v_{j} = 1 - \frac{|a_{j}|}{a_{j}^{2} + b_{j}^{2}} \in (0, 1]$ if $a_{j} + b_{j} \notin \mathbb{R}$, and $v_{j} = 0$ otherwise. Then

$$\psi \colon \mathcal{J}_{\circ} \longrightarrow \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}, \quad f \mapsto \sum_{j=1}^{s} e_{v_{j}}$$

is a surjective homomorphism of groups whose kernel contains all elements of \mathcal{J}_{\circ} of degree ≤ 4 .

Remark 3.9. A standard quintic transformation $f \in \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ is a transformation of degree 5 having three pairs of non-real conjugate base-points in \mathbb{P}^2 , and no three of the six base-points are collinear (see [3, Example] or [13, §1] for equivalent definitions). In particular, the six points are not on one conic, and f sends the pencil of conics through two of the pairs of base-points of f onto a pencil of conics through two pairs of base-points of f^{-1} . As two non-collinear pairs of non-real conjugate points can be sent by an automorphism of \mathbb{P}^2 onto any other two non-collinear pairs of non-real conjugate points, there are $\alpha, \beta \in \operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ such that $g := \alpha \circ f \circ \beta \in \mathcal{J}_{\circ}$. In particular, $f \in \mathcal{G}_{\circ}$. Moreover, it is conjugate to a link of type II of the conic bundle $\mathcal{CB}_6/\mathbb{P}^1$. Moreover, the image $\psi(g)$ of g under the homomorphism $\psi \colon \mathcal{J}_{\circ} \longrightarrow \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$ from Definition-Lemma 3.8 is a generator of a $\mathbb{Z}/2\mathbb{Z}$.

We denote by $\operatorname{Sar}_{\mathbb{R}}(\mathbb{P}^2)$ the set of birational transformations between rank 1 fibrations. It is a groupoid and contains $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ as subgroupoid.

Remark 3.10. By Theorem 2.5, the groupoid $\operatorname{Sar}_{\mathbb{R}}(\mathbb{P}^2)$ is generated by links and any relation in $\operatorname{Sar}_{\mathbb{R}}(\mathbb{P}^2)$ is a product of conjugates of elementary relations.

Proposition 3.11 (cf. [18, Proposition 5.3]). The homomorphism $\psi \colon \mathcal{J}_{\circ} \to \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$ lift to a surjective homomorphism

$$\Psi \colon \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2) \longrightarrow \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$$

whose kernel contains \mathcal{G}_* .

Proof. It suffices to construct a homomorphism of groupoids

$$\Psi \colon \operatorname{Sar}_{\mathbb{R}}(\mathbb{P}^2) \longrightarrow \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$$

whose restriction to its subgroup \mathcal{J}_{\circ} is exactly $\psi \colon \mathcal{J}_{\circ} \longrightarrow \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$ and whose kernel contains \mathcal{G}_{*} .

Let $\varphi \colon \mathcal{CB}_6/\mathbb{P}^1 \dashrightarrow \mathcal{CB}_6/\mathbb{P}^1$ be a link of type II blowing up a pair of non-real conjugate points. Let $\tau_1 \colon \mathbb{P}^2 \dashrightarrow \mathcal{Q}$ be a link of type II blowing up [1:i:0], [1:-i:0], and $\tau_2: \mathcal{Q} \longrightarrow \mathcal{CB}_6$ the link of type I blowing up $\tau_1([0:1:i]), \tau_1([0:1:-i])$. Then $f := \tau_1^{-1} \circ \tau_2^{-1} \circ \varphi \circ \tau_2 \circ \tau_1 \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ is a standard quintic transformation contained in \mathcal{J}_{\circ} and we define we define $\Psi(\varphi) := \psi(f)$. For any other link φ we define $\Psi(\varphi) := 0$. Note that by Definition-Lemma 3.8 and Remark 3.9, we have $\Psi(f) = \psi(f)$ for any $f \in \mathcal{J}_{\circ}$. By Remark 3.10 it remains to check that any relation in $\operatorname{Sar}_{\mathbb{R}}(\mathbb{P}^2)$ is sent onto zero by Ψ . Any relation in $\operatorname{Sar}_{\mathbb{R}}(\mathbb{P}^2)$ is the composition of conjugates of elementary relations. Let $\varphi_r \circ \cdots \circ \varphi_1$ be an elementary relation. We can assume that one of the φ_i is a link of type II of $\mathcal{CB}_6/\mathbb{P}^1$, as otherwise the relation is sent onto zero by definition of Ψ . The elementary relation corresponds to an elementary disc \mathcal{D} in \mathcal{X} (Theorem 2.5(2)) and φ_i corresponds to a segment on the boundary of the elementary disc. The list of elementary discs in Proposition 2.8 yields that \mathcal{D} is one of \mathcal{D}_2 , \mathcal{D}_3 or \mathcal{D}_4 . The boundary of each such disc is conjugate via τ_1 or $\tau_1\tau_2$ to a relation inside the group \mathcal{J}_{\circ} , so its image by ψ is zero (as ψ is a homomorphism of groups). Thus its image by Ψ is zero. Note that \mathcal{G}_* is contained in $\ker(\Psi)$ by definition of Ψ .

The proof of Proposition 3.11 uses the principal idea of the construction of the quotients constructed in [2]; instead of working with a presentation of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ in terms of generators and generating relations, we pass to such a presentation of the groupoid of birational transformations between rational rank 1 fibrations (rational Mori fibre spaces) and construct a homomorphism from this groupoid to $\bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$. In [2] one has then to prove in a second step that it is surjective. Here, this is not necessary, as we know that by construction its restriction to \mathcal{J}_{\circ} is surjective. The proof of Proposition 3.11 given in [18, Proposition 5.2] uses a presentation of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ in terms of generators and relations. The proof given here is independent from it.

For a perfect field with an extension of degree 8 (for instance $k = \mathbb{Q}$), there is a surjective homomorphism $\operatorname{Bir}_k(\mathbb{P}^2) \to *_I \mathbb{Z}/2\mathbb{Z}$ with $|I| \geq |k|$ [11]. It is induced by the free product structure $\operatorname{Bir}_k(\mathbb{P}^2) \simeq G * (*_I \mathbb{Z}/2\mathbb{Z})$, where the factors $\mathbb{Z}/2\mathbb{Z}$ are generated by Bertini involutions whose set of base-points consist of one orbit of eight conjugate points and G is generated by the other generators given in [6] and $\operatorname{Aut}_k(\mathbb{P}^2)$. The free product structure is proven by constructing a quotient of $\mathcal X$ on which $\operatorname{Bir}_k(\mathbb{P}^2)$ acts and by showing that it is its Bass-Serre tree. So at its heart, also the construction of the homomorphism from $\operatorname{Bir}_k(\mathbb{P}^2) \to *_I \mathbb{Z}/2\mathbb{Z}$ uses the presentation of $\operatorname{Sar}_k(\mathbb{P}^2)$ in terms of generators and generating relations.

Corollary 3.12. The group \mathcal{G}_* does not contain any standard quintic transformations (in particular, $\mathcal{H} \subseteq \mathcal{G}_{\circ}$) and the index of \mathcal{G}_* in $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ is uncountable.

Proof. Let $\Psi \colon \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2) \longrightarrow \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$ be the surjective homomorphism from Proposition 3.11 and $f \in \mathcal{G}_{\circ}$ a standard quintic transformation. It is conjugate to a standard quintic transformation in \mathcal{J}_{\circ} (Remark 3.9), so $\Psi(f) = \psi(f) \neq 0$ by Proposition 3.11 and Lemma 3.8. Therefore $f \notin \ker \Psi$, while $\mathcal{G}_{*} \subset \ker \Psi$. It follows that $\mathcal{G}_{*} \cap \mathcal{G}_{\circ}$ is a proper subgroups of \mathcal{G}_{\circ} . Moreover, Ψ induces a surjective between map $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^{2})/\mathcal{G}_{*} \longrightarrow \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$ and hence the quotient $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^{2})/\mathcal{G}_{*}$ is uncountable.

3.4. **Proof of the main results.** We finally assemble the proofs of Theorem 1.1, Corollary 1.2 and Theorem 1.3.

Proof of Theorem 1.1. The group $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ is generated by \mathcal{G}_* and \mathcal{G}_\circ . Let $f_n \circ \cdots \circ f_1 = \operatorname{id}_{\mathbb{P}^2}$ be a relation in $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ with $f_i \in \mathcal{G}_* \cup \mathcal{G}_\circ$. By Theorem 2.5(1) for each $i = 1, \ldots, r$ there are links $\varphi_{i1}, \ldots, \varphi_{ir_i}$ such that $f_i = \varphi_{ir_i} \circ \cdots \circ \varphi_{i1}$. Then

$$\varphi_{nr_n} \circ \cdots \circ \varphi_{n1} \circ \cdots \circ \varphi_{1r_1} \circ \cdots \circ \varphi_{11} = \mathrm{id}_{\mathbb{P}^2}$$

is a relation inside the groupoid $\operatorname{Sar}_{\mathbb{R}}(\mathbb{P}^2)$ and is thus a composition of conjugates of elementary relations (Remark 3.10), and each elementary relation corresponds to a loop around the boundary of an elementary disc (Theorem 2.5). Elementary discs are classified in Proposition 2.8. The boundary of discs \mathcal{D}_1 , \mathcal{D}_3 and \mathcal{D}_5 respectively corresponds to a relation in $\mathcal{G}_{\circ} \cap \mathcal{G}_{*}$, in \mathcal{G}_{\circ} and in \mathcal{G}_{*} , respectively. We attach to the boundary of a disc \mathcal{D}_2 a segment e of the form $\mathcal{Q}/\operatorname{pt} \leftarrow X_7/\operatorname{pt} \to \mathbb{P}^2/\operatorname{pt}$. To the boundary of a disc \mathcal{D}_4 we attach first the segment $\mathcal{CB}_6/\mathbb{P}^1 \leftarrow \mathcal{CB}_6/\operatorname{pt} \to \mathcal{Q}/\operatorname{pt}$ and at that one the segment e. This yields that the elementary relation associate to the disc is conjugate to a relation in \mathcal{G}_{\circ} . To the boundary of a disc \mathcal{D}_6 we attach the segment corresponding to a composition of links of type II (or an isomorphism if n=1) and a link of type III $\mathbb{F}_n \dashrightarrow \mathbb{F}_1 \longrightarrow \mathbb{P}^2$. Then the elementary relation associated to \mathcal{D}_6 is conjugate to a relation in \mathcal{G}_{*} .

It follows that the relation $f_n \circ \cdots \circ f_1 = \mathrm{id}$ is conjugate to a composition of conjugates of relations in \mathcal{G}_* or \mathcal{G}_\circ or $\mathcal{G}_\circ \cap \mathcal{G}_*$. This implies that

$$\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2) = \mathcal{G}_* \underset{\mathcal{G}_* \cap \mathcal{G}_{\circ}}{*} \mathcal{G}_{\circ}.$$

Moreover, we have $\mathcal{G}_* \cap \mathcal{G}_\circ = \mathcal{H}$ by Lemma 3.5(3), and it is a proper subgroup of \mathcal{G}_* and \mathcal{G}_\circ by Lemma 3.6 and Corollary 3.12. So the amamlgamated structure on $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ is nontrivial. Finally, the index of \mathcal{G}_* is uncountable by Lemma 3.7 and the index of \mathcal{G}_\circ is uncountable by Corollary 3.12.

Theorem 1.3. The homomorphism $\Psi \colon \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2) \to \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$ from Proposition 3.11 coincides with the one given in [18, Proposition 5.3] since its restriction to \mathcal{J}_{\circ} is the surjective homomorphism $\psi \colon \mathcal{J}_{\circ} \to \bigoplus_{(0,1]} \mathbb{Z}/2\mathbb{Z}$ and its kernel contains \mathcal{G}_{*} by construction, hence it also contains $\operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ and \mathcal{J}_{*} . The kernel of Ψ is computed in [18, §6] by using [18, §2–3] and is equal to $[\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2), \operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)]$ and to the normal subgroup generated by $\operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$.

Proof of Corollary 1.2. By Theorem 1.1, the group $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ acts on the Bass-Serre tree T of the amalgamated product $\mathcal{G}_* *_{\mathcal{G}_* \cap \mathcal{G}_\circ} \mathcal{G}_\circ$. Then every element of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ of finite order has a fixed point on T. It follows that very finite subgroup of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ has a fixed point on T [15, §I.6.5, Corollary 3], and is in particular conjugate to a subgroup of \mathcal{G}_* or of \mathcal{G}_\circ . For infinite algebraic subgroups of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$, it suffices to check the claim for the maximal algebraic subgroups of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$. By [12, Theorem 1.1], the infinite maximal algebraic subgroups of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ are conjugate to the group $\operatorname{Aut}_{\mathbb{R}}(X)$ of real automorphisms of a real rational surface X from the following list:

- (1) $X = \mathbb{P}^2$,
- (2) X = Q,
- (3) $X = \mathbb{F}_n, n = 0, n \ge 2,$
- (4) X is a del Pezzo surface of degree 6 with a birational morphism $X \longrightarrow \mathbb{F}_0$ blowing-up a pair of non-real conjugate points.

- (5) X is a del Pezzo surface of degree 6 with a birational morphism $X \longrightarrow \mathbb{F}_0$ blowing-up two real points on \mathbb{F}_0 ,
- (6) There is a birational morphism $X/\mathbb{P}^1 \longrightarrow \mathcal{CB}_6/\mathbb{P}^1$ of conic bundles blowing up $n \geq 1$ pairs of non-real conjugate points on non-real fibres on the pair of non-real conjugate disjoint (-1)-curves of \mathcal{CB}_6 (the exceptional divisors of the link $\mathcal{CB}_6 \longrightarrow \mathcal{Q}$ of type III),
- (7) There is a birational morphism $X \longrightarrow \mathbb{F}_n$ of conic bundles blowing up $2n \ge 4$ points on the zero section of self-intersection n.
- (1)&(2)&(3) We have $\operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2) \subset \mathcal{H} = \mathcal{G}_* \cap \mathcal{G}_{\circ}$. The group $\operatorname{Aut}_{\mathbb{R}}(\mathcal{Q})$ is conjugate to a subgroup of \mathcal{G}_{\circ} via a link $f \colon \mathcal{Q} \dashrightarrow \mathbb{P}^2$ of type II, and $\operatorname{Aut}_{\mathbb{R}}(\mathbb{F}_n)$ is conjugate to a subgroup of \mathcal{G}_* via a (possibly empty) composition of links of type II and one link of type III $\mathbb{F}_n \dashrightarrow \mathbb{F}_1 \longrightarrow \mathbb{F}_1 \longrightarrow \mathbb{P}^2$.
- (4) The surface X contains exactly three pairs of non-real conjugate disjoint (-1)-curves. The group $\operatorname{Aut}_{\mathbb{R}}(X)$ is generated by the lift of a subgroup of $\operatorname{Aut}_{\mathbb{R}}(\mathbb{F}_0)$ and two elements, each of which descends via the contraction $X \longrightarrow \mathbb{F}_0$ of one pair of (-1)-curves to birational maps of \mathbb{F}_0 preserving one of the two fibrations $\mathbb{F}_0/\mathbb{P}^1$ [12, Proposition 3.5(2)&(3)]. It follows that $\operatorname{Aut}_{\mathbb{R}}(X)$ is conjugate to a subgroup of G_* .
- (5) The surface X contains exactly six real (-1)-curves. Via the blow-down $\eta\colon X\to\mathbb{P}^2$ of three disjoint ones, the group $\operatorname{Aut}_{\mathbb{R}}(X)$ is conjugate to a subgroup of $\operatorname{Bir}_{\mathbb{R}}(\mathbb{P}^2)$ generated by the of $\operatorname{Aut}_{\mathbb{R}}(\mathbb{P}^2)$ preserving the images of the (-1)-curves and by $[x:y:z] \mapsto [yz:xz:xy]$ [12, Proposition 3.6(2)&(3)]. So, $\eta\operatorname{Aut}_{\mathbb{R}}(X)\eta^{-1}\subset\mathcal{G}_*$.
- (6) The group $\operatorname{Aut}_{\mathbb{R}}(X)$ is generated by the lift of a subgroup of $\operatorname{Aut}_{\mathbb{R}}(Q)$ by $X \longrightarrow \mathcal{CB}_6 \longrightarrow \mathcal{Q}$ and by elements descending via $X \longrightarrow \mathcal{CB}_6$ to birational maps of \mathcal{CB}_6 preserving the conic bundle structure [12, Propositio 4.5(1)&(2)]. It follows that $\operatorname{Aut}_{\mathbb{R}}(X)$ is conjugate to a subgroup of \mathcal{G}_0 .
- (7) The group $\operatorname{Aut}_{\mathbb{R}}(X)$ is generated by the lift of a subgroups of $\operatorname{Aut}_{\mathbb{R}}(\mathbb{F}_n)$ by $X \longrightarrow \mathbb{F}_n$ and by elements descending via $X \longrightarrow \mathbb{F}_n$ to birational maps of \mathbb{F}_n preserving the conic bundle structure [12, Proposition 4.8(1)&(2)]. It follows that $\operatorname{Aut}_{\mathbb{R}}(X)$ is conjugate to a subgroup of \mathcal{G}_* .

References

- J. Blanc. Simple relations in the Cremona group. Proc. Amer. Math. Soc., 140(5):1495–1500, 2012.
- [2] J. Blanc, S. Lamy, and S. Zimmermann. Quotients of higher dimensional cremona groups. 01 2019. 14
- [3] J. Blanc and F. Mangolte. Cremona groups of real surfaces. In Automorphisms in birational and affine geometry, volume 79 of Springer Proc. Math. Stat., pages 35–58. Springer, Cham, 2014. 1, 13
- [4] S. Cantat and S. Lamy. Normal subgroups in the Cremona group. Acta Math., 210(1):31–94, 2013. With an appendix by Yves de Cornulier. 1
- [5] G. Castelnuovo. Le trasformazioni generatrici del gruppo cremoniano nel piano. Atti della R. Accad. delle Scienze di Torino, (36):861–874, 1901.
- [6] V. Iskovskikh. Generators in the two-dimensional Cremona group over a nonclosed field. Translation of the 1991 paper from Trudy Mat. Inst. Steklov. pages 173–188. 1991. 14
- [7] V. A. Iskovskikh. Proof of a theorem on relations in the two-dimensional Cremona group. Uspekhi Mat. Nauk, 40(5(245)):255-256, 1985. 1
- [8] V. A. Iskovskikh. Factorization of birational mappings of rational surfaces from the point of view of Mori theory. Uspekhi Mat. Nauk, 51(4(310)):3-72, 1996.
- [9] A.-S. Kaloghiros. Relations in the Sarkisov program. Compos. Math., 149(10):1685-1709, 2013. 4

- [10] S. Lamy. Groupes de transformations birationnelles de surfaces. Mémoire d'habilitation à diriger des recherches, Université Claude Bernarde Lyon 1, 2010. 1
- [11] S. Lamy and S. Zimmermann. Signature morphisms from the cremona group over a non-closed field. 07 2017. 2, 4, 6, 7, 14
- [12] M. Robayo and S. Zimmermann. Infinite algebraic subgroups of the real cremona group. Osaka J. of Math, 55(4):681-712, 2018. 15, 16
- [13] F. Ronga and T. Vust. Birational diffeomorphisms of the real projective plane. Comment. Math. Helv., 80(3):517–540, 2005. 13
- [14] J.-J. Sansuc. Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. Reine Angew. Math., 327:12–80, 1981. 2
- [15] J.-P. Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation. 15
- [16] D. Wright. Two-dimensional Cremona groups acting on simplicial complexes. Trans. Amer. Math. Soc., 331(1):281–300, 1992. 1
- [17] E. Yasinsky. Subgroups of odd order in the real plane Cremona group. J. Algebra, 461:87–120, 2016. 2
- [18] S. Zimmermann. The abelianisation of the real Cremona group. arXiv:1510.08705, 2015. 2, 9, 13, 14, 15

Susanna Zimmermann, Laboratoire angevin de recherche en mathématiques (LAREMA), CNRS, Université d'Angers, 49045 Angers Cedex 1, France

 $E\text{-}mail\ address: \verb"susanna.zimmermann@univ-angers.fr"$