bq20z40-R1/bq20z45-R1

Technical Reference

Literature Number: SLUU387A January 2010-Revised March 2011

Contents

1	Prefa	e	7
	1.1	Read This First	7
	1.2	Notational Conventions	7
2	Detai	d Description	9
	2.1	JEITA Temperature Ranges	9
	2.2	1st Level Protection Features	0
		2.2.1 Cell Overvoltage (COV) and Cell Undervoltage (CUV)	0
		2.2.2 Charge and Discharge Overcurrent	3
		2.2.3 Short-Circuit Protection	8
		2.2.4 Overtemperature Protection	9
		2.2.5 AFE Watchdog	0
	2.3	2nd Level Protection Features	
		2.3.1 2nd Level (Permanent) Failure Actions	.1
		2.3.2 Time-Limit-Based Protection	2
		2.3.3 Limit-Based Protection	4
		2.3.4 Clearing Permanent Failure	5
	2.4	Gas Gauging	
		2.4.1 Impedance Track Configuration	
		2.4.2 Gas Gauge Modes	
		2.4.3 Qmax	
	2.5	Charge Control	
		2.5.1 Charge Control SMBus Broadcasts	
		2.5.2 Cell Balancing	
		2.5.3 Charge-Inhibit Mode	
		2.5.4 Charge-Suspend Mode	
		2.5.5 Charging and Temperature Ranges	
		2.5.6 Precharge	
		2.5.7 Primary Charge Termination	
		2.5.8 Charging Faults	
		2.5.9 Discharge and Charge Alarms	
	2.6	Discharge-Inhibit Mode	
	2.7	Device Operating Mode	
		2.7.1 Normal Mode	
		2.7.2 Battery Pack Removed Mode/System Present Detection	
		2.7.3 Sleep Mode	
		2.7.4 Wake Function	
		2.7.5 Shutdown Mode	_
		2.7.6 Ship Mode	
	2.8	Security (Enables and Disables Features)	
	2.9	Calibration	_
		2.9.1 Coulomb-Counter Deadband	
	0.15	2.9.2 Autocalibration	
	2.10	Communications 4	
		2.10.1 SMBus On and Off States	
		2.10.2 Packet Error Checking	9

		2.10.3 bq20z40-R1/bq20z45-R1 Slave Address	49
		2.10.4 Broadcasts to Smart Charger and Smart Battery Host	50
Α	Stand	ord SBS Commands5	51
	A.1	ManufacturerAccess (0x00)	
		A.1.1 System Data	
		A.1.2 System Control	
		A.1.3 Extended SBS Commands	
	A.2	RemainingCapacityAlarm (0x01)	
	A.3	RemainingTimeAlarm (0x02)	
	A.4	BatteryMode (0x03)	
	A.5	AtRate (0x04)	
	A.6	AtRateTimeToFull (0x05)	
	A.7	AtRateTimeToEmpty (0x06)	
	A.8	AtRateOK (0x07)	
	A.9	Temperature (0x08)	
	A.10	Voltage (0x09)	
	A.11	Current (0x0a)	
	A.12	AverageCurrent (0x0b)	
	A.13	MaxError (0x0c)	
	A.14	RelativeStateOfCharge (0x0d)6	
	A.15	AbsoluteStateOfCharge (0x0e)6	
	A.16	RemainingCapacity (0x0f)	
	A.17	FullChargeCapacity (0x10)	
	A.18	RunTimeToEmpty (0x11) 6	
	A.19	AverageTimeToEmpty (0x12) 6	
	A.20	AverageTimeToFull (0x13)	
	A.21	ChargingCurrent (0x14)	
	A.22	ChargingVoltage (0x15)	
	A.23	BatteryStatus (0x16)	
	A.24	CycleCount (0x17)	
	A.25	DesignCapacity (0x18)6	
	A.26	DesignVoltage (0x19)	36
	A.27	SpecificationInfo (0x1a)6	37
	A.28	ManufactureDate (0x1b)6	37
	A.29	SerialNumber (0x1c)	38
	A.30	ManufacturerName (0x20)6	38
	A.31	DeviceName (0x21) 6	38
	A.32	DeviceChemistry (0x22)6	38
	A.33	ManufacturerData (0x23)6	39
	A.34	Authenticate (0x2f)6	39
	A.35	CellVoltage41 (0x3c0x3f)	7 0
	A.36	SBS Command Values	7 0
В	Exter	led SBS Commands	73
_	B.1	AFEData (0x45)	
	B.2	FETControl (0x46)	
	B.3	StateOfHealth (0x4f)	
	B.4	SafetyStatus (0x51)	
	B.5	PFStatus (0x53)	
	B.6	OperationStatus (0x54)	
	B.7	ChargingStatus (0x55)	
	B.8	ResetData (0x57)	
	B.9	WDResetData (0x58)	
	B.10	PackVoltage (0x5a)	
		U \ 7	-

www.ti.com

	B.11	AverageVoltage (0x5d)	
	B.12	TS1Temperature (0x5E)	 78
	B.13	TS2Temperature (0x5F)	 78
	B.14	UnSealKey (0x60)	
	B.15	FullAccessKey (0x61)	
	B.16	PFKey (0x62)	 79
	B.17	AuthenKey3 (0x63)	
	B.18	AuthenKey2 (0x64)	 79
	B.19	AuthenKey1 (0x65)	
	B.20	AuthenKey0 (0x66)	
	B.21	SafetyStatus2 (0x69)	 80
	B.22	PFStatus2 (0x6b)	
	B.23	ManufBlock14 (0x6c0x6f)	
	B.24	ManufacturerInfo (0x70)	
	B.25	SenseResistor (0x71)	
	B.26	TempRange (0x72)	
	B.27	LifetimeData (0x73)	 83
	B.28	DataFlashSubClassID (0x77)	
	B.29	DataFlashSubClassPage18 (0x780x7f)	
	B.30	Extended SBS Command Values	 84
С	Data I	Flash	 87
	C.1	Accessing Data Flash	
		C.1.1 Data Flash Interface	 87
		C.1.2 Reading a SubClass	 88
		C.1.3 Writing a SubClass	
		C.1.4 Example	
	C.2	1st Level Safety Class	
		C.2.1 Voltage (Subclass 0)	
		C.2.2 Current (Subclass 1)	
		C.2.3 Temperature (Subclass 2)	
	C.3	2nd Level Safety	
		C.3.1 Voltage (Subclass 16)	
		C.3.2 Current (Subclass 17)	
		C.3.3 Temperature (Subclass 18)	
		C.3.4 FET Verification (Subclass 19)	
		C.3.5 AFE Verification (Subclass 20)	
	C.4	Charge Control	 112
		C.4.1 Charge Temp Cfg (Subclass 32)	
		C.4.2 Pre-Charge Cfg (Subclass 33)	
		C.4.3 Pre-chg Current (Offset 4)	
		C.4.4 Charge Cfg (Subclass 34)	
		C.4.5 Termination Cfg. (Subclass 36)	
		C.4.6 Cell Balancing Cfg (Subclass 37)	
		C.4.7 Charging Faults (Subclass 38)	
	C.5	SBS Configuration	
		C.5.1 Data (Subclass 48)	
		C.5.2 Configuration (Subclass 49)	
	C.6	System Data	130
		C.6.1 Manufacturer Info (Subclass 58)	
		C.6.2 Lifetime Data (Subclass 59)	
		C.6.3 Lifetime Temp Samples (Subclass 60)	
	C.7	Configuration	
		C.7.1 Registers (Subclass 64)	

		C.7.2 AFE (Subclass 65)	14
	C.8	Power	14
		C.8.1 Power (Subclass 68)	14
	C.9	Gas Gauging	17
		C.9.1 IT Cfg (Offset 80)	17
		C.9.2 Current Thresholds (Offset 81)	50
		C.9.3 State (Offset 82)	51
	C.10	Ra Table	53
		C.10.1 R_a0 (Subclass 88)	54
		C.10.2 R_a1 (Subclass 89)	54
		C.10.3 R_a2 (Subclass 90)	55
		C.10.4 R_a3 (Subclass 91)	56
		C.10.5 R_a0x (Subclass 92)	57
		C.10.6 R_a1x (Subclass 93)	58
		C.10.7 R_a2x (Subclass 94)	59
		C.10.8 R_a3x (Subclass 95)	30
	C.11	PF Status	31
		C.11.1 Device Status Data (Subclass 96)	31
	C.12	Calibration	33
		C.12.1 Data (Subclass 104)	33
		C.12.2 Config (Subclass 105)	35
		C.12.3 Temp Model (Subclass 106)	37
		C.12.4 Current (Subclass 107)	36
	C.13	Data Flash Values	
0	Gloss	sary 17	'ç

Preface

Read This First 1.1

This manual discusses modules and peripherals of the bq20z40-R1/bq20z45-R1 and its used to build a complete battery pack gas gauge and protection solution.

Notational Conventions 1.2

The following notation is used when SBS commands and data flash values are mentioned within a text block:

- SBS commands are set in italic, e.g., Voltage
- SBS bits and flags are capitalized, set in italic and enclosed with square brackets, e.g., [COV]
- Data flash values are set in bold italic e.g., CUV Threshold
- All data flash bits and flags are capitalized, set in bold italic and enclosed with square brackets, e.g., [NR]

All SBS commands, data flash values and flags mentioned in a section are listed at the end of each section for reference.

The reference format for SBS commands is SBS:Command Name(Command No.)[Flag], or SBS:ManufacterAccess(0x00):Manufacturer Access Command(MA No.), for example:

SBS:Voltage(0x09), or SBS:ManufacterAccess(0x00):Seal Device(0x0020)

The reference format for data flash values is DF:Class Name:Subclass Name(Subclass ID):Value Name(Offset)[Flag], for example:

DF:1st Level Safety:Voltage(0):CUV Threshold(13), or

DF:Configuration:Registers(64):Operation A Cfg(0)[TEMP0].

8

Detailed Description

2.1 JEITA Temperature Ranges

The bq20z40-R1/bq20z45-R1 follows the JEITA guidelines which specify that charging voltage and charging current depend on the temperature. Temperature ranges are used for specifying the values for the charging voltage and the charging current.

There are three temperature ranges in which charging is allowed, and the ranges are defined as:

- T1 T2: Low charging temperature range (T1 ≤ Temperature < T2)
- T2 T3: Standard charging temperature range (T2 ≤ Temperature < T3)
- T3 T4: High charging temperature range (T3 ≤ Temperature < T4)

For added flexibility, the standard temperature range is divided into 2 sub-ranges: standard range 1 and standard range 2. An additional temperature value (T2a) is needed to specify these 2 ranges. These temperature ranges will be configurable in the gas gauge through the following data flash constants.

- JT1: Lower bound of low charging temperature range, in °C.
- **JT2:** Upper bound of low charging temperature range and lower bound of standard charging temperature range 1, in °C.
- **JT2a:** Upper bound of standard charging temperature range 1 and lower bound of standard charging temperature range 2, in °C
- JT3: Upper bound of standard charging temperature range 2 and lower bound of high charging temperature range, in °C.
- JT4: Upper bound of high charging temperature range, in °C.

Two additional temperature parameters are defined for discharging.

- OT1D and OT2D: The temperature at which discharge will be suspended.
- Hi Dsg Start Temp: If the temperature is above Hi Dsg Start Temp when starting discharge then
 discharge is not started.

The bq20z40 implements hysteresis for the temperature ranges above using the DF variable (*Temp Hys*). This variable specifies the number of degrees of hysteresis that should be used before switching charging temperature ranges.

The active temperature range is indicated using a set of flags. Since hysteresis is implemented for the temperature ranges, determining the active temperature range depends on the previous state, in addition to the actual temperature. These flags reside in a status register called *TempRange*.

Flag	JEITA Temperature Range	Charging Mode
TR1	Temp < JT1	Charge Suspend or Charge Inhibit
TR2 JT1 < Temp < JT2 Low Temp Charge		Low Temp Charge
TR2A	<i>JT2</i> < Temp < <i>JT2a</i>	Std Temp Charge 1
TR3	<i>JT2a</i> < Temp < <i>JT</i> 3	Std Temp Charge 2
TR4 JT3 < Temp < JT4 High Temp Charge or Charge Inhibit		High Temp Charge or Charge Inhibit
TR5 JT4 < Temp Charge Suspend or Charge Inhibit		Charge Suspend or Charge Inhibit

Table 2-1. Temperature Ranges in bg20z40-R1/bg20z45-R1

1st Level Protection Features www.ti.com

2.2 1st Level Protection Features

The bq20z40-R1/bq20z45-R1 supports a wide range of battery and system protection features that are configured or enabled via the integrated data flash.

2.2.1 Cell Overvoltage (COV) and Cell Undervoltage (CUV)

The bq20z40-R1/bq20z45-R1 can detect cell overvoltage/undervoltage and protect battery cells from damage from battery cell overvoltage/undervoltage. If the over/undervoltage remains over a period of 2 s, the bq20z40-R1/bq20z45-R1 goes into overvoltage/undervoltage condition and switches off the CHG/DSG FET. The bq20z40-R1/bq20z45-R1 recovers from a cell overvoltage condition if all the cell voltages drop below the cell overvoltage recovery threshold. The bq20z40-R1/bq20z45-R1 recovers from cell undervoltage condition if all the cell voltages rise above the cell undervoltage recovery threshold. An additional charge current detection requirement for cell undervoltage recovery can be enabled by setting the *CUV_RECOV-CHG* bit in the *Operation Cfg C* register to a 1.

Per JEITA guidelines, the cell overvoltage threshold changes depending on the temperature. A separate cell overvoltage threshold is specified for each operating temperature range.

Figure 2-1. COV and CUV

1st Level Protection Features www.ti.com

Table 2-2, COV and CUV

Condition:		COV Condition	Normal	CUV Condition
Flags:	BatteryStatus	[TCA]		[TDA], [FD]
	SafetyStatus	[COV]		[CUV]
OperationStatus				[XDSG]
FET:		CHG FET disabled, enabled during discharge	Normal	DSG FET disabled, enabled during charge
SBS Command:	ChargingCurrent	0	Charging algorithm	Charging algorithm
	ChargingVoltage	0	Charging algorithm	Charging algorithm

The bq20z40-R1/bq20z45-R1 indicates cell overvoltage condition by setting the [COV] flag in SafetyStatus if any CellVoltage4..1 reaches or surpasses the cell overvoltage limit (LT COV Threshold, ST COV Threshold, or HT COV Threshold, depending on the current temperature range) and stays above the threshold for period of 2 s.

In cell overvoltage condition charging is disabled and CHG FET and ZVCHG FET (if used) are turned off, ChargingCurrent and ChargingVoltage are set to zero, [TCA] flag in BatteryStatus and [COV] flag in SafetyStatus are set.

The bq20z40-R1/bq20z45-R1 recovers from a cell overvoltage condition if all *CellVoltages4..1* are equal to or lower than the appropriate COV Recovery limit (*LT COV Recovery*, *ST COV Recovery*, or *HT COV Recovery*). On recovery the [COV] and [TCA] flags are reset, and *ChargingCurrent* and *ChargingVoltage* are set back to appropriate values per the charging algorithm.

In a cell overvoltage condition, the CHG FET is turned on during discharging to prevent overheating of the CHG FET body diode.

The bq20z40-R1/bq20z45-R1 indicates cell undervoltage by setting the [CUV] flag in SafetyStatus if any CellVoltage4..1 reaches or drops below the CUV Threshold limit during discharging and stays below the threshold for a period of 2 s.

In a cell undervoltage condition, discharging is disabled and DSG FET is turned off, the [TDA] and [FD] flags in BatteryStatus and the [CUV] flag in SafetyStatus are set.

The bq20z40-R1/bq20z45-R1 recovers from cell undervoltage condition if all *CellVoltages4..1* are equal to or higher than *CUV Recovery* limit (and charge current detected if *CUV_RECOV_CHG* is set). On recovery, the *[CUV]* flag in *SafetyStatus* is reset, *[XDSG]* flag is reset, the *[TDA]* and *[FD]* flags are reset, and *ChargingCurrent* and *ChargingVoltage* are set back to appropriate values per the charging algorithm.

In cell undervoltage condition, the DSG FET is turned on during charging to prevent overheating of the DSG FET body diode.

- DF:1st Level Safety:Voltage(0): LT COV Threshold(0)
- DF:1st Level Safety:Voltage(0): ST COV Threshold(4)
- DF:1st Level Safety:Voltage(0): HT COV Threshold(8)
- DF:1st Level Safety:Voltage(0): LT COV Recovery(2)
- DF:1st Level Safety:Voltage(0): ST COV Recovery(6)
- DF:1st Level Safety:Voltage(0): HT COV Recovery(10)
- DF:1st Level Safety:Voltage(0):CUV Threshold(13)
- DF:1st Level Safety:Voltage(0):CUV Recovery(16)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[TCA],[TDA],[FD],[DSG]
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)

- SBS:CellVoltage1(0x3f)
- SBS:SafetyStatus(0x51)[CUV],[COV]
- SBS:OperationStatus(0x54)[XDSG]

2.2.2 Charge and Discharge Overcurrent

The bq20z40-R1/bq20z45-R1 has overcurrent protection for charge and discharge. This requires that the *Current* value to be greater than or equal to a programmed overcurrent threshold in either charge or discharge state for a period greater than 2 s.

Table 2-3. Charge and Discharge Overcurrent

Protection	OC Threshold	OC Time Limit	OC Recovery Threshold	SafetyStatus Flag
Tier-1 Charge	OC (1st Tier)Chg	2 s	200 mA	[OCC]
Tier-1 Discharge	OC (1st Tier) Dsg	2 s	–200 mA	[OCD]
Tier–2 Charge	OC (2nd Tier) Chg	0 s	200 mA	[OCC2]
Tier–2 Discharge	OC (2nd Tier) Dsg	0 s	–200 mA	[OCD2]
Tier–3 Discharge	AFE OC Dsg	AFE OC Dsg Time	5 mA for <i>Current Recovery Time</i>	[AOCD]

1st Level Protection Features www.ti.com

Figure 2-2. OC Protection

For overcurrent protection, the specific flag in *SafetyStatus* is set if the *Current* stays above the OC Threshold limit for at least 2 s.

After 2 s of excessive current detection during charging, the CHG FET is turned off and ZVCHG FET (if used) is turned off. When this occurs, the internal *Current_Fault* timer is started from 0, *ChargingCurrent* and *ChargingVoltage* are set to 0, [TCA] flag is set and [OCC] and/or [OCC2] flag is set.

However, when the bq20z40-R1/bq20z45-R1 has [OCC] or [OCC2] flag in SafetyStatus set, the CHG FET is turned on again during discharge (Current ≤ (-) **Dsg Current Threshold**). This prevents overheating of the CHG FET body diode during discharge. No other flags change state until full recovery is reached. This action is not affected by the setting of **[NR]** flag.

After 2 s of excessive current detection during discharging, the DSG FET is turned off and the ZVCHG FET (if used) is turned on. When this occurs the *Current_Fault* timer is started from 0, *ChargingCurrent* is set to *Pre-chg Current*, [XDSG] flag is set, [TDA] flag is set, and [OCD] and or [OCD2] flag is set.

When the AFE detects a discharge-overcurrent fault, the charge and discharge FETs are turned off. When the bq20z40-R1/bq20z45-R1 identifies the overcurrent condition, the *Current_Fault* timer is started from 0, *ITDAI* flag is set, *ChargingCurrent* is set to 0, and *IAOCDI* is set.

However, when the bq20z40-R1/bq20z45-R1 has either [OCD], [OCD2] or [AOCD] set, the DSG FET is turned on again during charging (Current ≥ Chg Current Threshold). This prevents overheating of the discharge-FET body diode during charge. No other flags change state until full recovery is reached. This action is not affected by the state of [NR] bit.

Protection	Condition	Flags		FET	Charging Current	Charging Voltage	
		SafetyStatus	BatteryStatus	OperationStatus			
Tier-1 Charge	OC Condition	[OCC]	[TCA]		CHG FET disabled, enabled during discharge	0	0
Tier-1 Discharge	OC Condition	[OCD]	[TDA]	[XDSG]	DSG FET disabled, enabled during charge	Pre-chg Current	charging algorithm
Tier-2 Charge	OC Condition	[OCC2]	[TCA]		CHG FET disabled, enabled during discharge	0	0
Tier-2 DIscharge	OC Condition	[OCD2]	[TDA]	[XDSG]	DSG FET disabled, enabled during charge	Pre-chg Current	charging algorithm
Tier-3 Discharge	OC Condition	[AOCD]	[TDA]	[XDSG]	CHG FET and DSG FET disabled	0	charging algorithm

Table 2-4. Overcurrent Conditions

The bq20z40-R1/bq20z45-R1 can individually configure each overcurrent-protection feature to recover via two different methods based on **[NR]** bit.

Standard Recovery, when [NR] = 0 and the overcurrent tier is not selected in **Non-Removable Cfg** register. When the pack is removed and reinserted the condition is cleared. Pack removal and reinsertion is detected by a low-to-high-to-low transition on the \overline{PRES} input. When the overcurrent tier is selected in **Non-Removable Cfg**, that particular feature uses the Non-Removable Battery Mode recovery.

Non-removable Battery Mode Recovery when [NR] = 1. The state of Non-Removable Cfg has no consequence. This recovery requires AverageCurrent to be \leq 5 mA, and for the Current_Fault timer \geq Current Recovery Time.

When a charging-fault recovery condition is detected, then the CHG FET is allowed to be turned on, if other safety and configuration states permit, [TCA] is reset, ChargingCurrent and ChargingVoltage are set to the appropriate value per the charging algorithm, and the appropriate SafetyStatus flag is reset.

When a discharging-fault recovery condition is detected, the DSG FET is allowed to be turned on if other safety and configuration states permit, [TDA] flag is reset, ChargingCurrent and ChargingVoltage are set to the appropriate value per the charging algorithm and the [XDSG] and the appropriate SafetyStatus flag is reset.

1st Level Protection Features www.ti.com

Figure 2-3. Overcurrent Protection Levels

Figure 2-4. AFE Discharge Overcurrent Protection

- DF:1st Level Safety:Current(1):OC(1st Tier) Chg(0)
- DF:1st Level Safety:Current(1):OC(1st Tier) Dsg(5)
- DF:1st Level Safety:Current(1):Current Recovery Time(16)
- DF:1st Level Safety:Current(1):AFE OC Dsg(17)
- DF:1st Level Safety:Current(1):AFE OC Dsg Time(18)
- DF:Charge Control:Pre-Charge Cfg(33):Pre-chg Current(4)
- DF:Configuration:Registers(64):Operation Cfg B(2)[NR]

1st Level Protection Features www.ti.com

- DF:Configuration:Registers(64):Non-Removable Cfg(8)
- SBS:Current(0x0a)
- SBS:AverageCurrent(0x0b)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[TCA],[TDA]
- SBS:SafetyStatus(0x51)[OCC],[OCC2],[OCD],[OCD2],[AOCD]
- SBS:OperationStatus(0x54)[XDSG]

2.2.3 Short-Circuit Protection

The bq20z40-R1/bq20z45-R1 short-circuit protection is controlled by the AFE, but is recovered by the gas gauge. This allows different recovery methods to accommodate various applications.

AFE charge short-circuit and discharge short-circuit protection are configured by the data flash **AFE SC Chg Cfg** and **AFE SC Dsg Cfg** registers, respectively.

When the AFE detects a short-circuit-in-charge or short-circuit-in-discharge fault, the charge and discharge FETs are turned off. The bq20z40-R1/bq20z45-R1 identifies the short-circuit condition (charge or discharge current direction) and the internal *Current_Fault* timer is started from 0, either [TCA] or [TDA] battery status is set, *ChargingCurrent* is set to 0, *ChargingVoltage* is set to 0 (only if in charge mode), and either [SCC] or [SCD] is set. If the short-circuit condition is in discharge, then [XDSG] flag is also set.

Each bq20z40-R1/bq20z45-R1 short-circuit protection feature can be individually configured to recover via two different methods, based on the setting of the **[NR]** bit.

Standard Recovery is where **[NR]** = 0 and the overcurrent tier is not selected in **Non-Removable Cfg**. When the pack is removed and re-inserted, the condition is cleared. Pack removal and re-insertion is detected by transition on the PRES input from low to high to low. When the overcurrent tier is selected in **Non-Removable Cfg**, that particular feature uses the Non-Removable Battery Mode recovery.

Non-Removable Battery Mode Recovery is where [NR] = 1. The state of Non-Removable Cfg has no consequence when the [NR] bit is set to 1. This recovery requires Average Current to be \leq the AFE SC Recovery threshold and for the internal Current_Fault timer to be \geq Current Recovery Time.

When the recovery condition for a charging fault is detected, the CHG FET is allowed to be turned on if other safety and configuration states permit. The ZVCHG FET also returns to previous state. When this occurs, [TCA] is reset, ChargingCurrent and ChargingVoltage are set to the appropriate values per the charging algorithm, and the appropriate SafetyStatus flag is reset.

When the recovery condition for a discharging fault is detected, the DSG FET is allowed to be turned on if other safety and configuration states permit. The ZVCHG FET also returns to its previous state. When this occurs, [TDA] is reset, ChargingCurrent and ChargingVoltage are set to the appropriate value per the charging algorithm, and [XDSG] and the appropriate SafetyStatus flags are reset.

Short Charging Charging Clear Condition Flags Set FET **Threshold** Circuit Current Voltage Charge AFE SC Chg Cfg [SCC] SafetyStatus, CHG FET disabled, 0 0 1 mA ITCA enabled during discharge [SCD] SafetyStatus. Discharge AFE SC Dsq Cfq DSG FET disabled. 0 per enabled during charge -1 mA [TDA], [XDSG] charging algorithm

Table 2-5. Short-Circuit Protection

- DF:1st Level Safety:Current(1):AFE SC Chg Cfg(21)
- DF:1st Level Safety:Current(1):AFE SC Dsg Cfg(22)
- DF:Configuration:Registers(64):Operation Cfg B(2)[NR]
- DF:Configuration:Registers(64):Non-Removable Cfg(8)
- SBS:AverageCurrent(0x0b)

- SBS:BatteryStatus(0x16)[TCA],[TDA]
- SBS:SafetyStatus(0x51)[SCC],[SCD]
- SBS:OperationStatus(0x54)[XDSG]

2.2.4 Overtemperature Protection

The bq20z40-R1/bq20z45-R1 has overtemperature protection for both charge and discharge conditions with separate thresholds and alarms for the 2 temperature sensors TS1 and TS2.

The bq20z40-R1/bq20z45-R1 sets the overtemperature charging [OT1C] flag in SafetyStatus if the pack temperature measured on TS1 reaches or surpasses the OT1 Chg Threshold during charging and stays above the limit for a time period of OT1 Chg Time. This function is disabled if OT1 Chg Time is set to zero. Similarly, the bq20z40-R1/bq20z45-R1 sets the overtemperature charging [OT2C] flag in SafetyStatus2 if the pack temperature measured on TS2 reaches or surpasses the OT2 Chg Threshold during charging and stays above the limit for a time period of OT2 Chg Time. This function is disabled if OT2 Chg Time is set to zero.

In an overtemperature charge condition, *ChargingVoltage* and *ChargingCurrent* are set to 0 and the *[OTA]* and *[TCA]* flags in BatteryStatus are set. If the [OTFET] bit is enabled the CHG FET and ZVCHG FET (if used) are turned off.

The bq20z40-R1/bq20z45-R1 recovers from an [OT1C] condition if TS1Temperature is equal to or below the OT1 Chg Recovery limit. The bq20z40-R1/bq20z45-R1 recovers from an [OTC2] condition if TS2Temperature is equal to or below the OT2 Chg Recovery limit. On recovery the [OT1C] flag in SafetyStatus (or [OTC2] flag in SafetyStatus2) is cleared, [OTA] and [TCA] flags are cleared, ChargingCurrent and ChargingVoltage are set back to their appropriate values per the charging algorithm, and the CHG FET returns to its previous state.

In an [OT1C] or [OT2C] condition, the CHG FET is turned on during discharging to prevent overheating of the CHG FET body diode.

The bq20z40-R1/bq20z45-R1 sets the overtemperature discharging [OT1D] flag in SafetyStatust if the pack temperature measured on TS1 reaches or surpasses the OT1 Dsg Threshold during discharging and stays above the limit for a time period of OT1 Dsg Time. This function is disabled if OT1 Dsg Time is set to zero. Similarly, the bq20z40-R1/bq20z45-R1 sets the overtemperature discharging [OT2D] flag in SafetyStatus2 if the pack temperature measured on TS2 reaches or surpasses the OT2 Dsg Threshold during discharging and stays above the limit for a time period of OT2 Dsg Time. This function is disabled if OT2 Dsg Time is set to zero.

In an overtemperature discharge condition, *ChargingCurrent* is set to 0 and the *[OTA]* and *[TDA]* flags in BatteryStatus are set. If the [OTFET] bit is enabled the CHG FET and ZVCHG FET (if used) are turned off and the *[XDSG]* flag in *OperationStatus* is set.

The bq20z40-R1/bq20z45-R1 recovers from an [OT1D] condition if TS1Temperature is equal to or below the OT1 Dsg Recovery limit. The bq20z40-R1/bq20z45-R1 recovers from an [OT2D] condition if TS2Temperature is equal to or below the OT2 Dsg Recovery limit. On recovery, [OT1D] flag in SafetyStatus (or [OT2D] flag in SafetyStatus2) is cleared, [TDA] and [OTA] flags are cleared, ChargingCurrent is set back to the appropriate value per the charging algorithm, [XDSG] flag is cleared, and the DSG FET is allowed to switch on again.

In an overtemperature discharging condition, the DSG FET is turned on during charging to prevent overheating of the DSG FET body diode

Overtemp Threshold **Time Limit Overtemp Condition** Recovery Threshold OT1 Chg Threshold, OT1 Chg Time, [OT1C] SafetyStatus Flag (or [OT2C] Charge OT2 Chg Threshold OT2 Chg Time SafetyStatus2 Flag) is set, [TCA] and OT1 Chg Recovery, [OTA] are set, ChargingCurrent = 0, OT2 Chg Recovery ChargingVoltage = 0, if[OTFET] is set then CHG FET is turned off Discharge OT1 Dsg Threshold, OT1 Dsg Time, [OT1D] SafetyStatus Flag (or [OT2D] OT2 Dsa Threshold OT2 Dsg Time SafetyStatus2 Flag) is set, [TDA] and OT1 Dsg Recovery, [OTA] are set, ChargingCurrent = 0, OT2 Dsg Recovery if[OTFET] is set then [XDSG] is set and DSG FET is turned off

Table 2-6. Overtemperature Protection

Related Variables:

- DF:1st Level Safety:Temperature(2):OT1 Chg Threshold(0)
- DF:1st Level Safety:Temperature(2):OT1 Chg Time(2)
- DF:1st Level Safety:Temperature(2):OT1 Chg Recovery(3)
- DF:1st Level Safety:Temperature(2):OT2 Chg Threshold(5)
- DF:1st Level Safety:Temperature(2):OT2 Chg Time(7)
- DF:1st Level Safety:Temperature(2):OT2 Chg Recovery(8)
- DF:1st Level Safety:Temperature(2):OT1 Dsg Threshold(10)
- DF:1st Level Safety:Temperature(2):OT1 Dsg Time(12)
- DF:1st Level Safety:Temperature(2):OT1 Dsg Recovery(13)
- DF:1st Level Safety:Temperature(2):OT2 Dsg Threshold(15)
- DF:1st Level Safety:Temperature(2):OT2 Dsg Time(17)
- DF:1st Level Safety:Temperature(2):OT2 Dsg Recovery(18)
- DF:Configuration:Registers(64):Operation Cfg B(2)[OTFET]
- SBS:TS1Temperature(0x5e)
- SBS:TS2Temperature(0x5f)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[TCA],[TDA]
- SBS:SafetyStatus(0x51)[OT1C],[OT1D]
- SBS:SafetyStatus2(0x69)[OT2C],[OT2D]
- SBS:OperationStatus(0x54)[XDSG]

2.2.5 AFE Watchdog

The AFE automatically turns off the CHG FET, DSG FET and ZVCHG FET (if used), if it does not receive the appropriate frequency on the WDI input from gas gauge. The gas gauge has no warning that this is about to happen, but it can report the occurrence once the bq20z40-R1/bq20z45-R1 is able to interrogate the AFE.

When the XALERT signal is triggered, the bq20z40-R1/bq20z45-R1 reads the STATUS register of the AFE. If [WDF] is set, the bq20z40-R1/bq20z45-R1 also sets [WDF] in SafetyStatus, and periodic verification of the AFE RAM is undertaken. If verification of the AFE RAM fails, then the FETs turn off. Verification of the AFE RAM continues once every second. If the periodic verification passes, then [WDF] in SafetyStatus is cleared and the FETs return to normal operation.

Related Variable:

SBS:SafetyStatus(0x51)[WDF]

2.3 2nd Level Protection Features

The bq20z40-R1/bq20z45-R1 provides features that can be used to indicate a more serious fault via the SAFE output. This output can be used to blow an in-line fuse to permanently disable the battery pack from charge or discharge activity.

If any PF threshold condition is met, and it continues over the PF time limit, then the bq20z40-R1/bq20z45-R1 goes into a permanent failure condition and the appropriate flag in *PFStatus* or *PFStatus*2 is set.

When any NEW cause of a permanent failure is set in *PFStatus* or *PFStatus*2, the NEW cause is added to *Saved PF Flags 1* or *Saved PF Flags 2* register. This allows *Saved PF Flags 1* and *Saved PF Flags 2* registers to show ALL permanent failure conditions that have occurred.

On the first occasion of a permanent failure indicated by *PFStatus* or *PFStatus*2 change from 0x00, the *PFStatus*2 and *PFStatus*2 values are stored in *Saved 1st PF Flag 1* and *Saved 1st PF Flag 2*.

Figure 2-5. 2nd Level Protection

2.3.1 2nd Level (Permanent) Failure Actions

When the *PFStatus* or *PFStatus*2 register changes from 0x00 to indicate a permanent failure, then the following actions are taken in sequence.

- CHG, DSG, and ZVCHG FETs are turned OFF.
- The [TCA] and [TDA] flags in BatteryStatus are set.
- Data flash write access is then disabled, but the data flash can still be read.
- ChargingCurrent and ChargingVoltage are set to 0.
- The appropriate bit in Saved PF Flags 1 or Saved PF Flags 2 is set.
- If the appropriate bit in *Permanent Fail Cfg* is set, the SAFE pin is driven and latched high. The [PF] flag in SafetyStatus is also set.

- DF:Configuration:Registers(64):Permanent Fail Cfg 1..2(6..8)
- DF:PF Status:Device Status Data(96):Saved PF Flags 1..2(0..2)
- DF:PF Status:Device Status Data(96):Saved 1st PF Flag 1..2(32..34)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[TCA],[TDA]
- SBS:SafetyStatus(0x51)[PF]

SBS:PFStatus(0x53)

2.3.2 Time-Limit-Based Protection

The bq20z40-R1/bq20z45-R1 reports a 2nd level permanent failure condition by setting the appropriate flag in the *PFStatus*2 register if the monitored value goes beyond the protection threshold for a period exceeding the PF time limit. See Table 2-7 for all protection thresholds and time limits.

- **Safety Overvoltage Protection** The bq20z40-R1/bq20z45-R1 monitors the individual cell voltages for extreme values.
- **Safety Undervoltage Protection** The bq20z40-R1/bq20z45-R1 monitors the individual cell voltages for extreme undervoltage values. Additionally, the bq20z40-R1/bq20z45-R1 can check cell voltages upon wakeup from shutdown mode while the charge and precharge FETs are turned off (to detect copper deposition).
- **Cell Imbalance Fault** Two methods of cell imbalance detection are implemented to provide CIM detection both while charging and at rest. Two safety CIM flags are used, one for each detection methods. CIM_A reflects faults detected using the active CIM detection and CIM_R reflects faults detected using the at rest CIM detection.

At Rest Detection

The at rest detection mechanism starts detection if all of following conditions are reached:

- Any (CellVoltage4..1) > Rest CIM Check Voltage
- |Current| ≤ Rest CIM Current for CIM Battery Rest Time
 The bq20z40-R1/bq20z45-R1 sets [CIM_R] in PFStatus and goes into permanent fail condition if the following condition is met and remains active for more than Rest CIM Time period:
- Max difference between any (CellVoltage4..1) > Rest CIM Fail Voltage
 Set Rest CIM Time to 0 to disable this CIM detection.

Active Detection

The active detection method during charging is activated when the following conditions are met:

- Any (CellVoltage4..1) > Active CIM Check Voltage
- Current ≥ Charge Detection Current
 The bq20z40-R1/bq20z45-R1 sets [CIM_A] in PFStatus2 if the following condition is met and remains active for more than Active CIM Time period:
- Max difference between any (CellVoltage4..1) > Active CIM Fail Voltage
 Set Active CIM Time to 0 to disable this CIM detection.
- **2nd Level Protection IC Input** The PFIN input of the bq20z40-R1/bq20z45-R1 can be used to determine the state of an external protection device such as the bq294xx. The bq20z40-R1/bq20z45-R1 watches for the PFIN pin being driven low by an external device.
- **Safety Overcurrent Protection** The bq20z40-R1/bq20z45-R1 monitors the current during charging and discharging. The overcurrent thresholds and time limits can be set independently for charging and discharging.
- **Safety Overtemperature Protection** The bq20z40-R1/bq20z45-R1 monitors the pack temperature during charging and discharging. The overtemperature thresholds and time limits can be set independently for charging and discharging. Additionally, the two temperature sensors (TS1 and TS2) have separate alarms, thresholds, and time limits.
- Charge and Zero-Volt Charge FET Fault Protection— The bq20z40-R1/bq20z45-R1 monitors if there is, at any time, an attempt to turn off the CHG FET or ZVCHG FET or if the CHG bit in the AFE OUTPUT register is set and the current still continues to flow.
- **Discharge FET Fault Protection** The bq20z40-R1/bq20z45-R1 monitors if there is, at any time, an attempt to turn off the DSG FET or if the DSG bit in the AFE OUTPUT register is set and the current still continues to flow.

Table 2-7. Time-Limit-Based 2nd Level Protection

Protection	Conditions	Monitored Value	PF Threshold	PF Time Limit	PFStatus Flag	Permanent Fail Cfg Flag
Safety overvoltage	_	Voltage	LT SOV Threshold, or ST SOV Threshold, or HT SOV Threshold	SOV Time	[SOV]	[XSOV]
Safety undervoltage	_	Voltage	SUV Threshold	SUV Time	[SUV]	[XSUV]
Cell imbalance fault (at rest)	Any (CellVoltage41) Rest CIM Check Voltage Current ≤ Rest CIM Current for CIM Battery Rest Time	Max difference Any CellVoltage41	Rest CIM Fail Voltage	Rest CIM Time	[CIM_R]	[CIM_R]
Cell imbalance fault (active)	Any (CellVoltage41) > Active CIM Check Voltage Current ≥ Charge Detection Current	Max difference Any CellVoltage41	Active CIM Fail Voltage	Active CIM Time	[CIM_A]	[XCIM_A]
2nd level protection IC input	_	PFIN pin	PFIN pin low	PFIN Detect Time	[PFIN]	[XPFIN]
Safety overcurrent charge	Current > 0	Current	SOC Chg	SOC Chg Time	[SOCC]	[XSOCC]
Safety overcurrent discharge	Current < 0	Current	SOC Dsg	SOC Dsg Time	[SOCD]	[XSOCD]
Safety	Current > 0	TS1Temperature	SOT1 Chg Threshold	SOT1 Chg Time	[SOT1C]	[XSOT1C]
overtemperature chg		TS2Temperature	SOT2 Chg Threshold	SOT2 Chg Time	[SOT2C]	[XSOT2C]
Safety	Current < 0	TS1Temperature	SOT1 Dsg Threshold	SOT1 Dsg Time	[SOT1D]	[XSOT1D]
overtemperature dsg		TS2Temperature	SOT2 Dsg Threshold	SOT2 Dsg Time	[SOT2D]	[XSOT2D]
Charge and zero-volt charge FET fault	(CHG FET or ZVCHG FET turn off attempt or CHG Flag in AFE OUTPUT register set) and Current > 0	Current	20 mA	FET Fail Time	[CFETF]	[XCFETF]
Discharge FET fault	(DSG FET turn off attempt or DSG Flag in AFE OUTPUT register set) and <i>Current</i> < 0	(–) Current	(–) 20 mA	FET Fail Time	[DFETF]	[XDFETF]

- DF:2nd Level Safety:Voltage(16): LT SOV Threshold(0)
- DF:2nd Level Safety:Voltage(16): ST SOV Threshold(2)
- DF:2nd Level Safety:Voltage(16): HT SOV Threshold(4)
- DF:2nd Level Safety:Voltage(16): SOV Time(6)
- DF:2nd Level Safety:Voltage(16):SUV Threshold(9)
- DF:2nd Level Safety:Voltage(16):SUV Time(11)
- DF:2nd Level Safety:Voltage(16):Rest CIM Current(12)
- DF:2nd Level Safety:Voltage(16):Rest CIM Fail Voltage(13)
- DF:2nd Level Safety:Voltage(16):Rest CIM Time(15)
- DF:2nd Level Safety:Voltage(16):CIM Battery Rest Time(16)
- DF:2nd Level Safety:Voltage(16): Rest CIM Check Voltage(18)
- DF:2nd Level Safety:Voltage(16):Active CIM Fail Voltage(20)
- DF:2nd Level Safety:Voltage(16):Active CIM Time(22)
- DF:2nd Level Safety:Voltage(16): Active CIM Check Voltage(23)
- DF:2nd Level Safety:Voltage(16):PFIN Detect Time(25)

- DF:2nd Level Safety:Current(17):SOC Chg(0)
- DF:2nd Level Safety:Current(17):SOC Chg Time(2)
- DF:2nd Level Safety:Current(17):SOC Dsg(3)
- DF:2nd Level Safety:Current(17):SOC Dsg Time(5)
- DF:2nd Level Safety:Temperature(18):SOT1 Chg Threshold(0)
- DF:2nd Level Safety:Temperature(18):SOT1 Chg Time(2)
- DF:2nd Level Safety:Temperature(18):SOT2 Chg Threshold(3)
- DF:2nd Level Safety:Temperature(18):SOT2 Chg Time(5)
- DF:2nd Level Safety:Temperature(18):SOT1 Dsg Threshold(6)
- DF:2nd Level Safety:Temperature(18):SOT1 Dsg Time(8)
- DF:2nd Level Safety:Temperature(18):SOT2 Dsg Threshold(9)
- DF:2nd Level Safety:Temperature(18):SOT2 Dsg Time(11)
- DF:2nd Level Safety:FET Verification(19):FET Fail Time(2)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1..2(6..8)
- DF:PF Status:Device Status Data(96):Saved Saved PF Flags 1..2(0..2)
- SBS:TS1Temperature(0x5e)
- SBS:TS2Temperature(0x5f)
- SBS:Voltage(0x09)
- SBS:Current(0x0a)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:PFStatus(0x53)

2.3.3 Limit-Based Protection

The bq20z40-R1/bq20z45-R1 reports a 2nd level permanent failure and sets the appropriate *PFStatus* flag if the internal error counter reaches the maximum error limit. The internal error counter is incremented by one if the error happens and reset to zero (0) for every good communication cycle.

AFE Communication Fault Protection— The gas gauge in the bq20z40-R1/bq20z45-R1 periodically validates its read and write communications with the AFE. If either a read or write verify fails, an internal AFE_Fail_Counter is incremented. If the AFE_Fail_Counter reaches AFE Fail Limit, the bq20z40-R1/bq20z45-R1 reports an [AFE_C] permanent failure. The internal AFE_Fail_Counter is reset to zero (0) for every good communication cycle. If the AFE Fail Limit is set to 0, this feature is disabled. An [AFE_C] fault can also be declared if, after a full reset, the initial gain and offset values read from the AFE cannot be verified. These values are A/D readings of the AFE VCELL output. The AFE offset values are verified by reading the values twice and confirming that the readings are within acceptable limits. The maximum difference between two readings is set to 20. The maximum number of read retries, if offset and gain value verification fails and an [AFE_C] fault is declared, is set in AFE Fail Limit.

Periodic AFE Verification— The gas gauge in the bq20z40-R1/bq20z45-R1 periodically (AFE Check Time) compares certain RAM content of the AFE with that of the data flash and the expected control-bit states. This function is disabled if AFE Check Time is set to 0. If an error is detected, the internal AFE_Fail_Counter is incremented. If the internal AFE_Fail_Counter reaches the AFE Fail Limit, the bq20z40-R1/bq20z45-R1 reports a permanent failure. AFE Check Time has to be greater than AFE Check Time for proper operations (unless this feature is disabled).

Data Flash Failure— The bq20z40-R1/bq20z45-R1 can detect if the data flash is not operating correctly. A permanent failure is reported when either: (I) After a full reset the instruction flash checksum does not verify; (ii) if any data flash write does not verify; or (iii) if any data flash erase does not verify.

www.ti.com Gas Gauging

Table 2-8. Error-Based 2nd Level Protection

Protection	Monitored Value	Fail Recovery	Max Error Limit (Set to 0 to Disable Protection)	PFStatus Flag	Permanent Fail Cfg Flag
AFE communication fault	Periodic communication with the AFE	Internal AFE_Fail_Counter is reset to zero (0) for every good communication cycle.	AFE Fail Limit	[AFE_C]	[XAFE_C]
Periodic AFE verification	Check RAM of the AFE with AFE Check Time period	Decrement of internal AFE_Fail_Counter by one per AFE Fail Recovery Time period	AFE Fail Limit	[AFE_P]	[XAFE_P]
Data flash failure	Data flash	_	False flash checksum after reset, data flash write not verified, data flash erase not verified	[DFF]	[XDFF]

Related Variables:

- DF:2nd Level Safety:FET Verification(19):FET Fail Time(2)
- DF:2nd Level Safety:AFE Verification(20):AFE Check Time(0)
- DF:2nd Level Safety:AFE Verification(20):AFE Fail Limit(1)
- DF:2nd Level Safety:AFE Verification(20):AFE Fail Recovery Time(2)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1..2(6..8)
- DF:PF Status:Device Status Data(96):Saved PF Flags 1..2(0..2)
- SBS:PFStatus(0x53)

2.3.4 Clearing Permanent Failure

A bq20z40-R1/bq20z45-R1 permanent failure can be cleared by sending two *ManufacturerAccess* commands in sequence: the first word of the *PFKey* followed by the second word of the *PFKey*. After sending these two commands in sequence, *PFStatus* flags are cleared. Refer to Permanent Fail Clear (*PFKey*) Manufacturer access for further details.

Related Variables:

- SBS:ManufacturerAccess(0x00)
- SBS:PFStatus(0x53)

2.4 Gas Gauging

The bq20z40-R1/bq20z45-R1 features Impedance TrackTM (IT) gauging algorithm and is capable of supporting a maximum battery pack capacity of 32 Ah. The bq20z40-R1/bq20z45-R1 measures individual cell voltages, pack voltage, temperature, and current using features of the AFE. The gas gauge determines battery state of charge by analyzing individual cell voltages when a time exceeding 35 minutes has passed since the last charge or discharge activity of the battery. The bq20z40-R1/bq20z45-R1 measures charge and discharge activity by monitoring the voltage across a small-value series sense resistor (10 m Ω typ.) between the cell stack negative terminal and the negative terminal of the battery pack. The battery state of charge is subsequently adjusted during load or charger application using the integrated charge passed through the battery.

2.4.1 Impedance Track Configuration

Load Mode— During normal operation, the battery-impedance profile compensation of the Impedance Track algorithm can provide more-accurate full-charge and remaining state-of-charge information if the typical load type is known. The two selectable options are constant current (**Load Mode** = 0) and constant power (**Load Mode** = 1).

Load Select— In order to compensate for the I × R drop near the end of discharge, the bq20z40-R1/bq20z45-R1 must be configured for whatever current (or power) will flow in the future. While it cannot be exactly known, the bq20z40-R1/bq20z45-R1 can use load history such as the average current of the present discharge to make a sufficiently accurate prediction. The bq20z40-R1/bq20z45-R1 can be configured to use several methods of this prediction by setting the

Gas Gauging www.ti.com

Load Select value. Because this estimate has only a second-order effect on remaining capacity accuracy, different measurement-based methods (methods 0 to 3, and method 7) result in only minor differences in accuracy. However, methods 4–6, where an estimate is arbitrarily assigned by the user, can result in significant error if a fixed estimate is far from the actual load. For highly variable loads, selection 7 will give the most conservative estimate and is preferable.

Constant Current (*Load Mode* = 0)

0 = Avg I Last Run

1 = Present average discharge current

2 = Current

3 = AverageCurrent (default)

4 = Design Capacity / 5

5 = AtRate (mA)

6 = User Rate-mA

7 = Max Avg I Last Run

Constant Power (Load Mode = 1)

Avg P Last Run

Present average discharge power

Current x Voltage

AverageCurrent x average Voltage

Design Energy / 5
AtRate (10 mW)
User Rate-mW

Max Avg P Last Run

Pulsed Load Compensation and Termination Voltage— In order to take into account pulsed loads while calculating remaining capacity until *Term Voltage* threshold is reached, the bq20z40-R1/bq20z45-R1 monitors not only average load but also short load spikes. The maximum voltage deviation during a load spike is continuously updated during discharge and stored in *Delta Voltage*.

Reserve Battery Capacity— The bq20z40-R1/bq20z45-R1 allows an amount of capacity to be reserved in either mAh (*Reserve Cap-mAh*, *Load Mode* = 0) or 10 mWh (*Reserve Cap-mWh*, *Load Mode* = 1) units between the point where the *RemainingCapacity* function reports zero capacity, and the absolute minimum pack voltage, *Term Voltage*. This enables a system to report zero energy, but still have enough reserve energy to perform a controlled shutdown, or to provide an extended sleep period for the host system.

Also, if the **[RESCAP]** bit is set to 0, the reserve capacity is compensated at a no-load condition. However, if **[RESCAP]** bit is set to 1, then the reserve capacity is compensated at the present discharge rate as selected by **Load Select**.

- DF:SBS Configuration:Data(48):Design Capacity(22)
- DF:SBS Configuration:Data(48):Design Energy(24)
- DF:Configuration:Operation Cfg B(2)[RESCAP]
- DF:Gas Gauging:IT Cfg(80):Load Select(0)
- DF:Gas Gauging:IT Cfg(80):Load Mode(1)
- DF:Gas Gauging:IT Cfg(80):Term Voltage(59)
- DF:Gas Gauging:IT Cfg(80):User Rate-mA(76)
- DF:Gas Gauging:IT Cfg(80):User Rate-mW(78)
- DF:Gas Gauging:IT Cfg(80):Reserve Cap-mAh(80)
- DF:Gas Gauging:IT Cfg(80):Reserve Cap-mWh(82)
- DF:Gas Gauging:State(82):Avg I Last Run(21)
- DF:Gas Gauging:State(82):Avg P Last Run(23)
- DF:Gas Gauging:State(82):Delta Voltage(25)
 DF:Gas Gauging:State(82): Max Avg I Last Run(31)
- DF:Gas Gauging:State(82):Max Avg P Last Run(33)
- SBS:BatteryMode(0x03)[CapM]
- SBS:Voltage(0x09)
- SBS:Current(0x0a)
- SBS:AverageCurrent(0x0b)
- SBS:OperationStatus(0x54)[LDMD]

www.ti.com Gas Gauging

2.4.2 Gas Gauge Modes

Resistance updates take place only in discharge mode, while OCV and Qmax updates only take place in relaxation mode. Entry and exit of each mode is controlled by data flash parameters in the subclass *Gas Gauging: Current Thresholds* section. In relaxation mode or discharge mode, the DSG flag in *BatteryStatus* is set.

In order to prevent abnormally fast resistance change, resistance change is limited to old value +- Ra Max Delta (mOhm). Recommended setting is 15% of 4 Ra grid point value, after optimized values of Ra are obtained from optimization cycle.

Gas Gauging www.ti.com

Figure 2-6. Gas Gauge Operating Modes

www.ti.com Gas Gauging

Charge mode is exited and relaxation mode is entered when *Current* goes below *Quit Current* for a period of *Chg Relax Time*. Discharge mode is entered when *Current* goes below *(-)Dsg Current Threshold*. Discharge mode is exited and relaxation mode is entered when *Current* goes above *(-)Quit Current* threshold for a period of *Dsg Relax Time*. Charge mode is entered when *Current* goes above *Chg Current Threshold*.

Figure 2-7. Gas Gauge Operating Mode Example

Related Variables:

- DF:Gas Gauging:Current Thresholds(81):Dsg Current Threshold(0)
- DF:Gas Gauging:Current Thresholds(81):Chg Current Threshold(2)
- DF:Gas Gauging:Current Thresholds(81):Quit Current(4)
- DF:Gas Gauging:Current Thresholds(81):Dsg Relax Time(6)
- DF:Gas Gauging:Current Thresholds(81):Chg Relax Time(7)
- SBS:Current(0x0a)
- SBS:BatteryStatus(0x16)[DSG]
- SBS:OperationStatus(0x54)[VOK],[R_DIS],[QEN]

2.4.3 Qmax

The total battery capacity is found by comparing states of charge before and after applying the load with the amount of charge passed. When an applications load is applied, the impedance of each cell is measured by comparing the open circuit voltage (OCV) obtained from a predefined function for present state of charge with the measured voltage under load.

Measurements of OCV and charge integration determine chemical state of charge and Chemical Capacity (*Qmax*).

Gas Gauging www.ti.com

The bq20z40-R1/bq20z45-R1 acquires and updates the battery-impedance profile during normal battery usage. It uses this profile, along with state-of-charge and the *Qmax* values, to determine *FullChargeCapacity* and *RelativeStateOfCharge* specifically for the present load and temperature. *FullChargeCapacity* reports a capacity or energy available from a fully charged battery reduced by *Reserve Cap-mAh* or *Reserve Cap-mWh* under the present load and present temperature until *Voltage* reaches the *Term Voltage*.

Related Variables:

- DF:Gas Gauging:IT Config(80):Term Voltage(59)
- SBS:Voltage(0x09)
- SBS:RelativeStateOfCharge(0x0d)
- SBS:FullChargeCapacity(0x10)

2.4.3.1 Qmax Initial Values

The initial **Qmax Pack**, **Qmax Cell 0**, **Qmax Cell 1**, **Qmax Cell 2**, and **Qmax Cell 3** values should be taken from the cell manufacturers' data sheet multiplied by the number of parallel cells, and are also used for the **DesignCapacity** function value in the **Design Capacity** data flash value.

See the *Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm in bq20zxx Product Family* application report (SLUA364B) for further details.

Related Variables:

- DF:SBS Configuration:Data(48):Design Capacity(22)
- DF:Gas Gauging:State(82):Qmax Cell 0(0)
- DF:Gas Gauging:State(82):Qmax Cell 1(2)
- DF:Gas Gauging:State(82):Qmax Cell 2(4)
- DF:Gas Gauging:State(82):Qmax Cell 3(6)
- DF:Gas Gauging:State(82):Qmax Pack(8)
- SBS:DesignCapacity(0x18)

2.4.3.2 Qmax Update Conditions

The bq20z40-R1/bq20z45-R1 updates the no-load full capacity (QMAX) when two open circuit voltage (OCV) readings are taken. These OCV readings are taken based on the setting of *[CHGOCV_DIS]* and when the battery is in a relaxed state before and after charge or discharge activity. A relaxed state is achieved if the battery voltage has a dV/dt of < 4 μ V/s. Typically it takes 2 hours in a charged state and 5 hours in a discharged state to ensure that the dV/dt condition is satisfied. If 5 hours, is exceeded, a reading is taken even if the dV/dt condition was not satisfied. A QMAX update is disqualified under the following conditions:

Temperature— If *Temperature* is outside of the range 10°C to 40°C.

Delta Capacity— If the capacity change between suitable battery rest periods is less than 37%.

Voltage— If CellVoltage4..1 is in the range of 3737 mV to 3800 mV for the default LION chemistry. (See the Support of Multiple Li-Ion Chemistries With Impedance Track Gas Gauges application note (SLUA372) for the voltage ranges of other chemistries.)

Offset Error— If offset error accumulated during time passed from previous OCV reading exceeds 1% of Design Capacity, update is disqualified. Offset error current is calculated as **CC Deadband** / sense resistor value.

- DF:Calibration:Current(107):CC Deadband(2)
- SBS:Temperature(0x08)
- SBS:RelativeStateOfCharge(0x0d)
- SBS:AbsoluteStateOfCharge(0x0e)
- SBS:DesignCapacity(0x18)

www.ti.com Charge Control

- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:OperationStatus(0x54)[VOK],[QEN]

2.4.3.3 Charger-Dependent Fully-Charged State

Due to variations in charging voltages and taper current, chemical state of charge at the end of charge is not always 100%. To account for the difference in state of charge achieved by different charges, the gas-gauge learns actual depth of discharge after charge termination and relaxation for more than 30 min. These values are stored in dataflash individually for each cell as follows:

- Cell 0 Chg DOD at EOC = 0
- Cell 1Chg DOD at EOC = 0
- Cell 2 Chg DOD at EOC = 0
- Cell 3 Chg DOD at EOC = 0

Units of DOD are in an internal format. To convert it to %, they should be divided by 163.84.

2.5 Charge Control

The bq20z40-R1/bq20z45-R1 can report to a smart charger the appropriate charging current needed for constant-current charging and the charging voltage needed for constant-voltage charging per the charging algorithm by using the *ChargingCurrent* and *ChargingVoltage* functions. The actual charging status of the bq20z40-R1/bq20z45-R1 is indicated with flags and can be read out with the *ChargingStatus* function.

Related Variables:

- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:ChargingStatus(0x55)

2.5.1 Charge Control SMBus Broadcasts

All broadcasts to a host or a smart charger are enabled by the **[BCAST]** bit. If the **[HPE]** bit is enabled, master-mode broadcasts to the host address are PEC enabled. If the **[CPE]** bit is enabled, master-mode broadcasts to the Smart-Charger address are PEC enabled. When broadcast is enabled, the following broadcasts are sent:

- Charging Voltage and Charging Current broadcasts are sent to the Smart-Charger device address (0x12) every 10 to 60 seconds.
- If any of the [OCA], [TCA], [OTA], [TDA], [RCA], [RTA] flags are set, the AlarmWarning broadcast is sent to the host device address (0x14) every 10 seconds. Broadcasts stop when all flags above have been cleared.
- If any of the [OCA], [TCA], [OTA] or [TDA] flags are set, the AlarmWarning broadcast is sent to Smart-Charger device address every 10 seconds. Broadcasts stop when all flags above have been cleared.

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg B(2)[CPE],[HPE],[BCAST]
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[OCA],[TCA],[OTA],[TDA],[RCA],[RTA]

2.5.2 Cell Balancing

The bq20z40-R1/bq20z45-R1 can determine the chemical state of charge of each cell using the

Charge Control www.ti.com

Impedance Track algorithm. The cell balancing algorithm used in the bq20z40-R1/bq20z45-R1 decreases the differences in imbalanced cells in a fully charged state gradually, which prevents fully charged cells from becoming overcharged causing excessive degradation. This increases overall pack energy by preventing premature charge termination. More information can be found in the *Cell Balancing Using the bq20zxx* application report (SLUA340B).

The algorithm determines the amount of charge needed to fully charge each cell. There is a bypass FET in parallel with each cell connected to the AFE. The FET is enabled for each cell with charge greater than the lowest charged cell to reduce charge current through those cells. Each FET is enabled for a precalculated time as calculated by the cell balancing algorithm. When any bypass FET is turned on, then the [CB] charging status flag is set, otherwise the [CB] flag is cleared.

Cell balancing is active after a Qmax update has occurred with the FC bit set and OCV taken. This state can be determined by the Update Status being set to 0x0E.

If *Min Cell Deviation* is set to 0, cell balancing is disabled and all bypass FETs stay OFF.

The bypass time needed for each cell is calculated as:

Min Cell Deviation = R / (duty_cycle × V_avg) × 3.6 s/mAh

Where:

R = internal bypass FET resistance of 500 Ω (typ.) + 2 series input filter resistors, R χ . For example: if input filter R χ value is 100 Ω , R = 500 + 2 × R χ = 700 Ω .

Using default values, the formula calculates the default value for *Min Cell Deviation*:

Min Cell Deviation = $(500 \Omega + (2 \times R\chi)) / (0.4 \times 3.6V) \times 3.6 \text{ s/mAh} = 1750 \text{ s/mAh},$

Related Variables:

- DF:Charge Control:Cell Balancing Cfg(37):Min Cell Deviation(0)
- SBS:ChargingStatus(0x55)[CB]

2.5.3 Charge-Inhibit Mode

If the bq20z40-R1/bq20z45-R1 is in discharge mode or relaxation mode ([DSG] = 1), the bq20z40-R1/bq20z45-R1 goes into charge-inhibit mode and sets the *ChargingCurrent* and *ChargingVoltage* values to 0 to inhibit charging if:

- Temperature < JT1 limit OR
- Temperature > JT3 limit

In charge-inhibit mode, the [XCHG] flag in ChargingStatus is set. If the [CHGIN] bit in Operation Cfg B is set, the CHG FET and ZVCHG FET (if used) are also turned off when the bq20z40-R1/bq20z45-R1 is in charge-inhibit mode.

The bq20z40-R1/bq20z45-R1 allows charging to resume when:

- Temperature ≥ JT1 + Temp Hys AND
- Temperature ≤ **JT3 Temp Hys**

The FETs also return to their previous states at that time. The [XCHG] flag is cleared when the foregoing conditions are met, when a charge fault condition is detected, or when the battery is removed if in removable mode (**[NR]** = 0).

www.ti.com Charge Control

Figure 2-8. Charge Inhibit

Charge Control www.ti.com

Related Variables:

- DF:Charge Control:Charge Temp Cfg(32):JT1(0)
- DF:Charge Control:Charge Temp Cfg(32):JT3(6)
- DF:Charge Control:Charge Temp Cfg(32):Temp Hys(10)
- DF:Configuration:Registers(64):Operation Cfg B(2)[CHGIN],[NR]
- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[DSG]
- SBS:ChargingStatus(0x55)[XCHG]

2.5.4 Charge-Suspend Mode

The bq20z40-R1/bq20z45-R1 suspends charging when:

- Temperature < JT1, OR
- Temperature > **JT4**

In charge-suspend mode, the [CHGSUSP] flag in ChargingStatus is set and ChargingCurrent is set to 0. The CHG FET and ZVCHG FET (if used) are also turned off if the [CHGSUSP] bit in the Operation Cfg B register is set.

The bq20z40-R1/bq20z45-R1 resumes charging if:

- Temperature ≥ JT1 + Temp Hys, AND
- Temperature ≤ JT3 Temp Hys.

On resuming, the bq20z40-R1/bq20z45-R1 clears the [CHGSUSP] status flag and sets ChargingCurrent according to the appropriate charging mode entered, and the CHG and ZVCHG FETs (if used) return to their previous state.

The bq20z40-R1/bq20z45-R1 also leaves the charge-suspend mode and clears the [CHGSUSP] flag when a protection condition is detected or when the battery is removed in removable battery mode (**[NR]** = 0).

www.ti.com Charge Control

Figure 2-9. Charge Suspend

Charge Control www.ti.com

Related Variables:

- DF:Charge Control:Charge Temp Cfg(32):JT1(0)
- DF:Charge Control:Charge Temp Cfg(32):JT3(6)
- DF:Charge Control:Charge Temp Cfg(32):JT4(8)
- DF:Charge Control:Charge Temp Cfg(32):Temp Hys(10)
- DF:Configuration:Registers(64):Operation Cfg B(2)[CHGSUSP],[NR]
- DF:Gas Gauging:Current Thresholds(81):Chg Current Threshold(2)
- SBS:Temperature(0x08)
- SBS:AverageCurrent(0x0b)
- SBS:ChargingCurrent(0x14)
- SBS:BatteryStatus(0x16)[DSG]
- SBS:ChargingStatus(0x55)[CHGSUSP]

2.5.5 Charging and Temperature Ranges

The bq20z40-R1/bq20z45-R1 requests different charging current and charging voltage for each of the temperature ranges defined in Section 2.1, through the *ChargingVoltage* and *ChargingCurrent* commands.

Additionally, the charging current can be set differently depending on the cell voltage. Three ranges of cell voltage are defined using two cell voltage thresholds: *Cell Voltage Threshold 1* and *Cell Voltage Threshold 1* and *Cell Voltage Threshold 2* (see Table 2-9). During charging, as cell voltage increases *ChargingCurrent* is set to the appropriate value when cell voltage crosses one of the cell voltage thresholds. However, if cell voltage decreases below the threshold *ChargingCurrent* is not set back to the previous value unless discharge or relax state is detected. This is done to avoid the situation where charging current being changed back and forth due to the voltage drop that results form changing the charging current value.

Table 2-9. Cell Voltage Ranges

Condition	Cell Voltage Range
max(CellVoltage41) < Cell Voltage Threshold 1	CVR1
Cell Voltage Threshold 1 < max(CellVoltage41) < Cell Voltage Threshold 2	CVR2
Cell Voltage Threshold 2 < max(CellVoltage41)	CVR3

The dependency of the *Charging Voltage* and *Charging Current* on temperature range and cell voltage range is summarized in Table 2-10 and illustrated in Figure 2-10 and Figure 2-11.

Table 2-10. Charging Voltage and Charging Current Dependency on Temperature Range and Cell Voltage Range

Temp Range	Cell Voltage	Charging Voltage	Charging Current
TR1	-	0	0
	CVR1		LT Chg Current 1
TR2	CVR2	LT Chg Voltage	LT Chg Current 2
	CVR3		LT Chg Current 3
	CVR1		ST1 Chg Current 1
TR2A	CVR2	ST1 Chg Voltage	ST1 Chg Current 2
	CVR3	=	ST1 Chg Current 3
	CVR1		ST2 Chg Current 1
TR3	CVR2	ST2 Chg Voltage	ST2 Chg Current 2
	CVR3		ST2 Chg Current 3
	CVR1		HT Chg Current 1
TR4	CVR2	HT Chg Voltage	HT Chg Current 2
	CVR3		HT Chg Current 3
TR5	_	0	0

www.ti.com Charge Control

Figure 2-10. Temp Ranges and Charge Voltage for JEITA With Enhancements for More Complex Charging Profiles

Charge Control www.ti.com

Figure 2-11. Temp Ranges and Charge Current for JEITA With Enhancements for More Complex Charging Profiles

2.5.5.1 Low Temperature Charging

The bq20z40-R1/bq20z45-R1 enters this mode when the *Temperature* function reports a temperature in the TR2 range (*JT1* < *Temperature* < *JT2*). In this mode [*LTCHG*] flag in *ChargingStatus* is set, the *ChargingVoltage* is set to *LT Chg Voltage*, and the *ChargingCurrent* is set to *LT Chg Current 1*, *LT Chg Current 2*, or *LT Chg Current 3* depending on the active cell voltage range. The charging current dataflash values for low temp charging should be set to low current values similar to precharge mode. The bq20z40-R1/bq20z45-R1 leaves this mode and clears the [*LTCHG*] flag if the *Temperature* goes below *JT1* or above *JT2* + *Temp Hys*.

2.5.5.2 Standard Temperature Charging 1

The bq20z40-R1/bq20z45-R1 enters this mode when the *Temperature* function reports a temperature in the TR2A range (*JT2* < *Temperature* < *JT2a*). In this mode the [*ST1CHG*] flag in *ChargingStatus* is set, *ChargingVoltage* is set to *ST1 Chg Voltage*, and the *ChargingCurrent* is set to *ST1 Chg Current*, *ST1 Chg Current* 3 depending on the active cell voltage range. The bq20z40-R1/bq20z45-R1 leaves this mode and clears the [*ST1CHG*] flag if the *Temperature* goes below *JT2* or above *JT2a*.

2.5.5.3 Standard Temperature Charging 2

The bq20z40-R1/bq20z45-R1 enters this mode when the *Temperature* function reports a temperature in

www.ti.com Charge Control

the TR3 range (*JT2a* < Temperature < *JT3*). In this mode the [ST2CHG] flag in ChargingStatus is set, ChargingVoltage is set to ST2 Chg Voltage, and the ChargingCurrent is set to ST2 Chg Current 1 or ST2 Chg Current 3 depending on the active cell voltage. The bq20z40-R1/bq20z45-R1 leaves this mode and clears the [ST2CHG] flag if the Temperature goes below *JT2a* – Temp Hys or above *JT3*.

2.5.5.4 High Temperature Charging

The bq20z40-R1/bq20z45-R1 enters this mode when the *Temperature* function reports a temperature in the TR4 range (*JT3* < *Temperature* < *JT4*). In this mode the [*HTCHG*] flag in *ChargingStatus* is set, ChargingVoltage is set to *HT Chg Voltage*, and the *ChargingCurrent* is set to *HT Chg Current* 1, *HT Chg Current* 2, or *HT Chg Current* 3 depending on the active cell voltage. The bq20z40-R1/bq20z45-R1 leaves this mode and clears the [*HTCHG*] flag if the *Temperature* goes below *JT3* – *Temp Hys* or above *JT4*.

Related Variables:

- DF:Charge Control:Charge Temp Cfg(32):JT1(0)
- DF:Charge Control:Charge Temp Cfg(32):JT2(2)
- DF:Charge Control:Charge Temp Cfg(32):JT2a(4)
- DF:Charge Control:Charge Temp Cfg(32):JT3(6)
- DF:Charge Control:Charge Temp Cfg(32):JT4(8)
- DF:Charge Control:Charge Temp Cfg(32):Temp Hys(10)
- DF:Charge Control:Charge Cfg(34):LT Chg Voltage(0)
- DF:Charge Control:Charge Cfg(34):LT Chg Current 1(2)
- DF:Charge Control:Charge Cfg(34):LT Chg Current 2(4)
- DF:Charge Control:Charge Cfg(34):LT Chg Current 3(6)
- DF:Charge Control:Charge Cfg(34):ST1 Chg Voltage(8)
- DF:Charge Control:Charge Cfg(34):ST1 Chg Current 1(10)
- DF:Charge Control:Charge Cfg(34):ST1 Chg Current 2(12)
- DF:Charge Control:Charge Cfg(34):ST1 Chg Current 3(14)
- DF:Charge Control:Charge Cfg(34):ST2 Chg Voltage(16)
- DF:Charge Control:Charge Cfg(34):ST2 Chg Current 1(18)
- DF:Charge Control:Charge Cfg(34):ST2 Chg Current 2(20)
- DF:Charge Control:Charge Cfg(34):ST2 Chg Current 3(22)
- DF:Charge Control:Charge Cfg(34):HT Chg Voltage(24)
- DF:Charge Control:Charge Cfg(34):HT Chg Current 1(26)
- DF:Charge Control:Charge Cfg(34):HT Chg Current 2(28)
- DF:Charge Control:Charge Cfg(34):HT Chg Current 3(30)
- DF:Charge Control:Charge Cfg(34):Cell Voltage Threshold 1(32)
- DF:Charge Control:Charge Cfg(34):Cell Voltage Threshold 2(34)
- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:ChargingStatus(0x55)[LTCHG] , [ST1CHG] , [ST2CHG], [HTCHG]

2.5.6 Precharge

The bq20z40-R1/bq20z45-R1 enters precharge mode during charging if any cell voltage goes below **Pre-chg Voltage Threshold** limit or if any of the SafetyStatus flags, [CUV], [OCD] or [OCD2], is set.

Depending on the setting of the **[ZVCHG1]** and **[ZVCHG0]** bits in **Operation Cfg A**, different FETs can be used in pre-charge mode.

Charge Control www.ti.com

Table 2-11. Precharge FET

ZVCHG1	ZVCHG0	FET USED
0	0	ZVCHG FET
0	1	CHG FET
1	0	GPOD Pin (on the AFE)
1	1	No Action

In precharge mode, the [PCHG] flag is set and the ChargingCurrent is set to **Pre-chg Current**. The ChargingVoltage is set to per the charging algorithm.

The bq20z40 and bq20z45 leaves precharge mode and clears the *[PCHG]* flag if all cell voltages reach or rise above *Pre-chg Recovery Voltage*. Precharge mode is also exited if charge suspend mode is entered, any charge fault condition is detected, or the pack is removed in removable mode.

Related Variables:

- DF:Charge Control:Pre-Charge Cfg(33):Pre-chg Voltage Threshold(0)
- DF:Charge Control:Pre-Charge Cfg(33):Pre-chg Recovery Voltage(2)
- DF:Charge Control:Pre-Charge Cfg(33):Pre-chg Current(4)
- DF:Configuration:Registers(64):Operation Cfg A(0)[ZVCHG1],[ZVCHG0]
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:SafetyStatus(0x51)[CUV],[OCD],[OCD2]
- SBS:ChargingStatus(0x55)[PCHG]

2.5.7 Primary Charge Termination

The bq20z40-R1/bq20z45-R1 determines charge termination if:

- Average Charge Current < Taper Current during two consecutive 40 s time periods, AND
- The accumulated change in capacity must be > 0.25 mAh per period during two consecutive 40 s time periods, AND
- Taper voltage condition is met. Taper voltage condition is either cell voltage-based or pack voltage-based depending on the bit [CELL_TAPER] in **Operation Cfg C**.
 - [CELL_TAPER] = 1: Max (CellVoltage4..1) + Taper Voltage ≥ ChargingVoltage / number of cells
 - [CELL_TAPER] = 0: Voltage + Taper Voltage ≥ ChargingVoltage

NOTE: To ensure proper charge termination, it is recommend that *Taper Current* be set to a value greater than *Quit Current*.

On primary charge termination, [TCA] flag set, MCHG flag set, [FC] flag set, and ChargingCurrent is set to 0.

The following parameters change the behavior of bq20z40-R1/bq20z45-R1 on charge termination:

Table 2-12. Primary Charge Termination

Parameter	Behavior on Primary Charge Termination
[CHGFET] set	CHG FET turned off
[CSYNC] set	RemainingCapacity = FullChargeCapacity
[RSOCL] set	If the [RSOCL] bit in Operation Cfg C is set then RelativeStateofCharge and RemainingCapacity are held at 99% until primary charge termination occurs. Only on entering primary charge termination is 100% displayed.
[RSOCL] clear	If the [RSOCL] bit in Operation Cfg C is cleared then RelativeStateofCharge and RemainingCapacity are not held at 99% until primary charge termination occurs. Fractions of % greater than 99% are rounded up to display 100%.

www.ti.com Charge Control

Related Variables:

- DF:Charge Control:Termination Cfg.(36):Taper Current(2)
- DF:Charge Control:Termination Cfg.(36):Taper Voltage(6)
- DF:Configuration:Registers(64):Operation Cfg B(2)[CHGFET],[CSYNC]
- DF:Configuration:Registers(64):Operation Cfg C(4)[RSOCL]
- DF:Gas Gauging:Current Thresholds(81):Quit Current(4)
- SBS:Voltage(0x09)
- SBS:Current(0x0a)
- SBS:RemainingCapacity(0x0f)
- SBS:FullChargeCapacity(0x10)
- SBS:ChargingCurrent(0x14)
- SBS:BatteryStatus(0x16)[TCA],[FC]
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:ChargingStatus(0x55)[MCHG]

2.5.8 Charging Faults

The bq20z40-R1/bq20z45-R1 can report charging faults in the ChargingStatus register.

On occurrence of a charging fault, the bg20z40-R1/bg20z45-R1:

- Sets the appropriate ChargingStatus flag.
- Sets ChargingCurrent = 0, ChargingVoltage = 0.
- Sets [TCA] flag in BatteryStatus.
- Sets [OCA] flag in BatteryStatus if it is an Overcharge fault.

On recovery, the bq20z40-R1/bq20z45-R1:

- · Resets the appropriate ChargingStatus flags.
- Sets ChargingCurrent and ChargingVoltage back to previous state according to charging algorithm.
- Resets [TCA] flag (and [OCA] flag, if it was set) in BatteryStatus.

Overcharge

The bq20z40-R1/bq20z45-R1 goes into overcharge mode if the battery pack is charged in excess of *FullChargeCapacity* by *Over Charge Capacity*.

The bq20z40-R1/bq20z45-R1 recovers if any of the following conditions are met:

- Pack removed and reinserted ([NR] = 0)
- Continuous amount of discharge over 2 mA and AverageCurrent < 0, when [NR] = 1
- RemainingCapacity ≤ FC Clear %

Table 2-13. Charging Faults

Charge Fault	Fault Condition	Recovery Condition	ChargingStatus Flag, Charge Fault Configuration Flag
Overcharge	Internal Accumulated Charge – FullChargeCapacity ≥ Over Charge Capacity	Pack removed and reinserted if [NR] = 0, OR continuous amount of discharge of 2 mA if [NR] = 1, OR <i>RemainingCapacity</i> ≤ FC Clear %	[0C]

Related Variables:

- DF:Charge Control:Termination Cfg.(36):FC Clear %(12)
- DF:Charge Control:Charging Faults(38):Over Charge Capacity(13)
- DF:Configuration:Registers(64):Operation Cfg B(2)[NR]
- SBS:Voltage(0x09)
- SBS:Current(0x0a)
- SBS:AverageCurrent(0x0b)

Charge Control www.ti.com

- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[TCA],[OCA]
- SBS:ChargingStatus(0x55)[OC]

www.ti.com Discharge-Inhibit Mode

2.5.9 Discharge and Charge Alarms

The bq20z40-R1/bq20z45-R1 enables [TDA], [FD], [TCA] and [FC] flags in BatteryStatus to be set or cleared on the following thresholds based on RelativeStateOfCharge. All thresholds can be disabled by setting them to -1. FC Clear % should not be disabled by setting to -1.

	Threshold	BatteryStatus Flag
	≤TDA Set % AND discharging	[TDA] is set.
	≥ TDA Clear % OR not discharging	[TDA] is cleared.
	≤FD Set %	[FD] is set.
RelativeStateOfCharge	≥FD Clear %	[FD] is cleared.
	≥ TCA Set % AND charging	[TCA] is set.
	≤TCA Clear % OR not discharging	[TCA] is cleared.
	≤FC Clear %	[FC] is cleared.

The [TDA] and [FD] flags in BatteryStatus can also be set or cleared based on Voltage. If the voltage settings are not used, then they should be set to extreme range values.

	Threshold	BatteryStatus Flag
Voltage	≤TDA Volt Threshold for a period of TDA Volt Time and discharging	[TDA] is set.
	≥TDA Clear Volt	[TDA] is cleared.

Related Variables:

- DF:Charge Control:Termination Cfg.(36):TCA Clear %(10)
- DF:Charge Control:Termination Cfg.(36):FC Clear %(12)
- DF:SBS Configuration:Configuration(49):TDA Set %(0)
- DF:SBS Configuration:Configuration(49):TDA Clear %(1)
- DF:SBS Configuration:Configuration(49):FD Set %(2)
- DF:SBS Configuration:Configuration(49):FD Clear %(3)
- DF:SBS Configuration:Configuration(49):TDA Set Volt Threshold(4)
- DF:SBS Configuration:Configuration(49):TDA Set Volt Time(6)
- DF:SBS Configuration:Configuration(49):TDA Clear Volt(7)
- SBS:Voltage(0x09)
- SBS:RelativeStateOfCharge(0x0d)

2.6 Discharge-Inhibit Mode

The bq20z40-R1/bq20z45-R1 prevents discharging if *Temperature* > *Hi Dsg Start Temp*. When this happens, the bq20z40-R1/bq20z45-R1 goes into discharge inhibit mode. In discharge inhibit mode, discharging is disabled, and [XDSG], [DSGIN] in *OperationStatus* and [TDA] in *BatteryStatus* are set. The bq20z40-R1/bq20z45-R1 returns to normal mode and allows discharging if *Temperature* becomes less than or equal *Hi Dsg Start Temp*.

Related Variables:

- DF:1st Level Safety:Temperature(2):Hi Dsg Start Temp(20)
- SBS:Temperature(0x08)
- SBS:BatteryStatus(0x16)[TDA]
- SBS:OperationStatus(0x54)[XDSG],[DCHGIN]

2.7 Device Operating Mode

The bq20z40-R1/bq20z45-R1 has several device power modes. During these modes, the bq20z40-R1/bq20z45-R1 modifies its operation to minimize power consumption from the battery.

Device Operating Mode www.ti.com

2.7.1 Normal Mode

During normal operation, the bq20z40-R1/bq20z45-R1 takes *Current*, *Voltage*, and *Temperature* measurements, performs calculations, updates SBS data, and makes protection and status decisions at 1-second intervals. Between these periods of activity, the bq20z40-R1/bq20z45-R1 is in a reduced-power state.

PRES is sampled once per second and if PRES is high, the *OperationStatus* [PRES] flag is cleared. If PRES is low, the *OperationStatus* [PRES] flag is set, indicating the system is present (the battery is inserted).

If the [NR] bit is set, the PRES input can be left floating, as it is not monitored.

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg B(2)[NR]
- SBS:OperationStatus(0x54)[PRES]

2.7.2 Battery Pack Removed Mode/System Present Detection

2.7.2.1 Battery Pack Removed

The bq20z40-R1/bq20z45-R1 detects the Battery Pack Removed mode if the **[NR]** bit is set to 0 AND the PRES input is high (**[PRES]** = 0).

On entry to the Battery Pack Removed mode, the [TCA] and [TDA] flags are set, ChargingCurrent and ChargingVoltage are set to 0, the CHG and DSG FETs are turned off, and the ZVCHG FET is turned off (if used).

Polling of the PRES pin continues at a rate of once every 1 s.

The bq20z40-R1/bq20z45-R1 exits the Battery Pack Removed state if the **[NR]** flag is set to 0 AND the PRES input is low ([PRES] = 1). When this occurs, the [TCA] and [TDA] flags are reset.

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg B(2)[NR]
- SBS:BatteryStatus(0x16)[TCA],[TDA]
- SBS:OperationStatus(0x54)[PRES]

2.7.2.2 System Present

PRES is sampled once per second, and if PRES is high, the *OperationStatus* [PRES] flag is cleared. If PRES is low, the *OperationStatus* [PRES] flag is set, indicating the system is present (the battery is inserted). If the [NR] bit is set, the PRES input is ignored and can be left floating.

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg B(2)[NR]
- SBS:OperationStatus(0x54)[PRES]

2.7.3 Sleep Mode

In Sleep mode, the bq20z40-R1/bq20z45-R1 measures Voltage and Temperature at 5 s intervals and *Current* at 20 s intervals. At each interval the bq20z40-R1/bq20z45-R1 performs calculations, updates SBS data, and makes protection and status decisions. Between these periods of activity, the bq20z40-R1/bq20z45-R1 is in a reduced-power state.

The bg20z40-R1/bg20z45-R1 enters Sleep mode when the following conditions exist:

- If the **[NR]** bit is set to 0, **[PRES]** must also be set to 0 for the bq20z40-R1/bq20z45-R1 to enter sleep. AND one of the following conditions:
- (|Current| ≤ Sleep Current) AND (SMBus is low for Bus Low Time) AND (the [SLEEP] bit is set) OR
- (|Current| ≤ Sleep Current) AND (ManufacturerAccess Sleep command is received) AND (the [SLEEP] bit is set).

www.ti.com Device Operating Mode

Entry to Sleep mode is blocked if any of the PFStatus flags is set.

On entry to sleep, if **[NR]** = 0, the CHG and DSG FETs are turned off, and the ZVCHG FET is turned off (if used), regardless of the **[NRCHG]** setting. If **[NR]** = 1, the CHG FET is turned off, and the ZVCHG FET is turned off (if used). However, if **[NRCHG]** is set, then the CHG FET remains on.

Also, on entry to Sleep mode, the autocalibration of the ADC begins. However, if *Temperature* \leq 5 °C or *Temperature* \geq 45 °C, autocalibration is not started on entry to sleep mode. The activation of autocalibration is not affected by the state of *[SLEEP]* or *Current*.

Additionally, if sleep mode is entered in response to *ManufacturerAccess* Sleep command, then the ADC autocalibration is not performed.

The bg20z40-R1/bg20z45-R1 exits Sleep mode when one or more of the following conditions exist:

- If the [NR] bit is set to 0 and [PRES] is set to 1.
- |Current| > Sleep Current
- SMBC or SMBD input transitions high
- Any current-related flag in SafetyStatus is set ([OCD], [OCD2], [OCC2], [OCC2], [PF], [AOCD], [SCC], [SCD])
- [OC] flag in ChargingStatus is set
- · Wake function enabled by setting Wake Current Reg and a voltage across SRP and SRN is detected

The bq20z40-R1/bq20z45-R1 exits Sleep mode if the absolute value of *Current* is greater than **Sleep Current**, OR the SMBC or SMBD input transitions high, OR any *OperationStatus*, *ChargingStatus*, or *SafetyStatus* flags change state.

In addition, if [NR] is cleared, the bq20z40-R1/bq20z45-R1 exits Sleep mode when [PRES] = 1.

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg A(0)[SLEEP]
- DF:Configuration:Registers(64):Operation Cfg B(2)[NR],[NRCHG]
- DF:Power:Power(68):Sleep Current(10)
- DF:Power:Power(68):Bus Low Time(12)
- DF:Power:Power(68):Wake Current Reg(19)
- SBS:ManufacturerAccess(0x00):Sleep(0x0011)
- SBS:Current(0x0a)
- SBS:SafetyStatus(0x51)
- SBS:OperationStatus(0x54)[PRES]

2.7.4 Wake Function

The bq20z40-R1/bq20z45-R1 can exit sleep mode, if enabled, by the presence of a voltage across SRP and SRN. The level of the current signal needed is programmed in *Wake Current Reg*.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Low Byte	RSVD	RSVD	RSVD	RSVD	RSVD	IWAKE	RSNS1	RSNS0

LEGEND: RSVD = Reserved and must be programmed to 0

Figure 2-12. Wake Current Reg

IWAKE— This bit sets the current threshold for the Wake function.

0 = 0.5 A (or if RSNS0 = RSNS1 = 0, then this function is disabled)

1 = 1 A (or if RSNS0 = RSNS1 = 0, then this function is disabled)

Device Operating Mode www.ti.com

Table 2-14. Wake Current Reg

RSNS1	RSNS0	Resistance
0	0	Disabled (default)
0	1	2.5 mΩ
1	0	5 mΩ
1	1	10 mΩ

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg A(0)[SLEEP]
- DF:Power:Power(68):Wake Current Reg(19)
- SBS:Current(0x0a)

2.7.5 Shutdown Mode

The bq20z40-R1/bq20z45-R1 enters Shutdown mode if the following conditions are met:

- [SHUTV] in Operation Cfg C is set to 0 AND Voltage ≤ Shutdown Voltage AND Current ≤ 0 for a period of 10 s
 OR
- [SHUTV] in Operation Cfg C is set to 1 AND Min(CellVoltage4..1) ≤ Cell Shutdown Voltage AND Current ≤ 0 for a period of 10 s
- (ManufacturerAccess shutdown command received AND Current = 0) AND PackVoltage < Charger Present threshold.

When the bq20z40-R1/bq20z45-R1 meets these conditions, the CHG, DSG, and ZVCHG FETs are turned off, and the AFE is commanded to shut down. In Shutdown mode, the bq20z40-R1/bq20z45-R1 is completely powered down because its supply is removed.

To exit Shutdown mode, the PACK voltage must be greater than its minimum operating voltage. When this occurs, the AFE returns power to the bq20z40-R1/bq20z45-R1, the [WAKE] flag is set, and the AFE is configured. The [WAKE] flag is cleared after approximately 1 s when all SBS parameters have been measured and updated.

Related Variables:

- DF:Power:Power(68):Shutdown Voltage(2)
- DF:Power:Power(68):Cell Shutdown Voltage(5)
- DF:Power:Power(68):Charger Present(8)
- DF:Configuration:Registers(64):Operation Cfg B(2)[NR]
- DF:Configuration:Registers(64):Operation Cfg C(4)[SHUTV]
- SBS:Voltage(0x09)
- SBS:Current(0x0a)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:OperationStatus(0x54)[PRES],[WAKE]
- SBS:PackVoltage(0x5a)

2.7.6 Ship Mode

While in sealed mode, the bq20z40-R1/bq20z45-R1 enters ship mode if *ManufacturerAccess* shutdown command (0x0010) is received 2 consecutive times AND *PackVoltage* < *Charger Present* threshold AND no safety conditions. The 2 MAC writes cannot have any other MAC commands following or between them. After the bq20z40-R1/bq20z45-R1 receives the 2 consecutive MAC (0x0010) commands, the CHG, DSG, and ZVCHG FETs are turned off after *Sealed Ship Delay* time period. After the passage of another *Sealed Ship Delay* period ship mode is entered (I. e . after a time period which 2 times *Sealed Ship Delay*) For example, if *Sealed Ship Delay* is set to 5 seconds, then 5 seconds after receiving the 2 MAC (0x0010) commands the FETs will turn off, and 10 seconds after receiving the 2 commands the bq20z40-R1/bq20z45-R1 will enter ship mode.

Related Variables:

- DF:Power:Power(68):Charger Present(8)
- DF:Power:Power(68):Sealed Ship Delay(20)
- SBS:PackVoltage(0x5a)

2.8 Security (Enables and Disables Features)

There are three levels of secured operation within the bq20z40-R1/bq20z45-R1. To switch between the levels, different operations are needed with different codes. The three levels are Sealed, Unsealed, and Full Access.

- 1. Full Access or Unsealed to Sealed— The use of the Seal Device command instructs the bq20z40-R1/bq20z45-R1 to limit access to the SBS functions and data flash space and sets the [SS] flag. In sealed mode, standard SBS functions have access per the Smart Battery Data Specification, Appendix A. Extended SBS functions and data flash are not accessible. Once in sealed mode, the part can never permanently return to Unsealed or Full Access modes.
- 2. Sealed to Unsealed— Instructs the bq20z40-R1/bq20z45-R1 to extend access to the SBS and data flash space and clears the [SS] flag. In unsealed mode, all data, SBS, and DF have read/write access. Unsealing is a two-step command performed by writing the first word of the UnSealKey to ManufacturerAccess followed by the second word of UnSealKey to ManufacturerAccess. The unseal key can be read and changed via the extended SBS block command UnSealKey when in Full Access Mode. To return to the Sealed mode, either a hardware reset is needed, or the ManufacturerAccess seal device command is needed to transit from Full Access or Unsealed to Sealed.
- 3. Unsealed to Full Access— Instructs the bq20z40-R1/bq20z45-R1 to allow full access to all SBS commands and data flash. The bq20z40-R1/bq20z45-R1 is shipped from TI in this mode. The keys for Unsealed to Full Access can be read and changed via the extended SBS block command FullAccessKey when in Full Access mode. Changing from Unsealed to Full Access is performed by using the ManufacturerAccess command, by writing the first word of FullAccessKey to ManufacturerAccess followed by the second word of the FullAccessKey to ManufacturerAccess. The full access key can be read and changed via the extended SBS block command FullAccessKey when in Full Access Mode. In Full Access mode, the command to go to boot ROM can be sent.

Related Variables:

- SBS:ManufacturerAccess(0x00):Seal Device(0x0020)
- SBS:OperationStatus(0x54)[SS],[FAS]
- SBS:UnSealKey(0x60)
- SBS:FullAccessKey(0x61)

Figure 2-13. Security

www.ti.com Calibration

2.9 Calibration

2.9.1 Coulomb-Counter Deadband

The bq20z40-R1/bq20z45-R1 does not accumulate charge or discharge for gas gauging when the current input is below the deadband current threshold. The threshold is programmed in *CC Deadband* (coulomb-counter deadband) and should be set sufficiently high to prevent false signal detection with no charge or discharge flowing through the sense resistor.

Related Variable:

DF:Calibration:Current(107):CC Deadband(1)

2.9.2 Autocalibration

The bq20z40-R1/bq20z45-R1 provides an autocalibration feature to cancel the voltage offset error across SRP and SRN for maximum charge measurement accuracy. The bq20z40-R1/bq20z45-R1 performs autocalibration when the SMBus lines stay low continuously for a minimum of 5 s and *Temperature* is between 5 °C and 45 °C.

Related Variables:

- DF:Power:Power(68):Cal Inhibit Temp Low(13)
- DF:Power:Power(68):Cal Inhibit Temp High(15)
- SBS:Temperature(0x08)

2.10 Communications

The bq20z40-R1/bq20z45-R1 uses SMBus v1.1 with master mode and packet error checking (PEC) options per the SBS specification.

2.10.1 SMBus On and Off States

The bq20z40-R1/bq20z45-R1 detects an SMBus off state when SMBC and SMBD are logic-low for ≥2 seconds. Clearing this state requires either SMBC or SMBD to transition high. Within 1 ms, the communication bus is available.

2.10.2 Packet Error Checking

The bg20z40-R1/bg20z45-R1 can receive or transmit data with or without PEC.

In the write-word protocol, if the host does not support PEC, the last byte of data is followed by a stop condition. If the host does not support PEC, the **[HPE]** bit should be set to 0 (default).

In the write-word protocol, the bq20z40-R1/bq20z45-R1 receives the PEC after the last byte of data from the host. If the host does not support PEC, the last byte of data is followed by a stop condition. After receipt of the PEC, the bq20z40-R1/bq20z45-R1 compares the value to its calculation. If the PEC is correct, the bq20z40-R1/bq20z45-R1 responds with an ACKNOWLEDGE. If it is not correct, the bq20z40-R1/bq20z45-R1 responds with a NOT ACKNOWLEDGE and sets an error code. If the host supports PEC, the **[HPE]** bit should be set to 1.

In the read-word and block-read in master mode, the host generates an ACKNOWLEDGE after the last byte of data sent by the bq20z40-R1/bq20z45-R1. The bq20z40-R1/bq20z45-R1 then sends the PEC, and the host, acting as a master receiver, generates a NOT ACKNOWLEDGE and a stop condition.

Related Variable:

DF:Configuration:Registers(64):Operation Cfg B(2)[HPE]

2.10.3 bg20z40-R1/bg20z45-R1 Slave Address

The bq20z40-R1/bq20z45-R1 uses address 0x16 on the SMB for communication.

Communications www.ti.com

2.10.4 Broadcasts to Smart Charger and Smart Battery Host

The bq20z40-R1/bq20z45-R1 can broadcast messages to the smart battery charger and smart battery host. This can be enabled with the **[BCAST]** bit.

The PEC byte for alarm transmissions to the charger in master mode can be enabled with the [CPE] bit.

The PEC byte for alarm transmissions in master mode to the smart battery host and the PEC byte for receiving communications from all sources in slave mode can be enabled with the **[HPE]** bit.

Related Variable:

• DF:Configuration:Registers(64):Operation Cfg B(2)[CPE],[HPE],[BCAST]

Standard SBS Commands

The bq20z40-R1/bq20z45-R1 SBS command set meets the SBD v1.1 specification. All SBS values are updated in 1-second intervals.

A.1 ManufacturerAccess (0x00)

This read- or write-word function provides battery system-level data, access to test controls, and security features.

Table A-1. ManufacturerAccess

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x00	R/W	ManufacturerAccess	Hex	2	0x0000	0xffff	_	

A.1.1 System Data

The results of these commands must be read from ManufacturerAccess after a write with the command word to ManufacturerAccess.

A.1.1.1 Device Type (0x0001)

Returns the IC part number.

Table A-2. Device Type

Manufacturer Access	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x0001	R	Device Type	Hex	2	_	1	0x0400	_

A.1.1.2 Firmware Version (0x0002)

Returns the firmware version. The format is most-significant byte (MSB) = decimal integer, and the least-significant byte (LSB) = sub-decimal integer, e.g., 0x0120 = version 01.20.

Table A-3. Firmware Version

Manufacturer Access	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x0002	R	Firmware Version	Hex	2	_	_		_

A.1.1.3 Hardware Version (0x0003)

Returns the hardware version stored in a single byte of reserved data flash. e.g., 0x00a7 = version A7.

Table A-4. Hardware Version

Manufacturer Access	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x0003	R	Hardware Version	Hex	2		_	0x00a7	_

A.1.1.4 DF Checksum (0x0004)

This function is only available when the bq20z40-R1/bq20z45-R1 is in unsealed mode or full access mode, indicated by the [SS] and [FAS] flags. A write to this command forces the bq20z40-R1/bq20z45-R1 to generate a checksum of the full data flash (DF) array. The generated checksum is then returned within 45 ms.

NOTE: If another SMBus command is received while the checksum is being generated, the DF checksum is generated, but the response may be a time-out (<25 ms).

Table A-5. DF Checksum

Manufacturer Access	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit	
0x0004	R	DF Checksum	Hex	2	_	_	_	_	

A.1.1.5 Manufacturer Status (0x0006)

This function is available while the bg20z40-R1/bg20z45-R1 is in normal operation. This 16-bit word reports the battery status.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	FET1	FET0	PF1	PF0	STATE3	STATE2	STATE1	STATE0
Low Byte	0	0	0	0	1	0	1	0

LEGEND: All bits are read-only.

Figure A-1. Manufacturer Status

FET1, FET0— Indicates the state of the charge and discharge FETs

0.0 = Both charge and discharge FETs are on.

0.1 = CHG FET is off, DSG FET is on.

1,0 = Both charge and discharge FETs are off.

1,1 = CHG FET is on, DSG FET is off.

PF1, PF0— Indicates permanent failure cause when permanent failure is indicated by STATE3..STATE0

0,0 = Fuse is blown if enabled via DF:Configuration:Register(64):Permanent Fail Cfg 1..2(6..8)

0,1 = Cell imbalance failure

1,0 = Safety voltage failure

1,1 = FET failure

STATE3, **STATE2**, **STATE1**, **STATE0**— Indicates the battery state.

0,0,0,0 = Wake Up

0,0,0,1 = Normal Discharge

0,0,1,1 = Pre-Charge

0,1,0,1 = Charge

0,1,1,1 = Charge Termination

1,0,0,0 = Fault Charge Terminate

1.0.0.1 = Permanent Failure

1,0,1,0 = Overcurrent

1,0,1,1 = Overtemperature

1,1,0,0 = Battery Failure

1,1,0,1 = Sleep

1,1,1,0 = Discharge Prohibited

1,1,1,1 = Battery Removed

A.1.1.6 Chemistry ID (0x0008)

Returns the OCV table chemistry ID of the battery. The default table ID is 0x0100. For a list of OCV chemistry IDs, see the *Support of Multiple Li-Ion Chemistries With Impedance Track Gas Gauges* application note (SLUA372).

Table A-6. Chemistry ID

Mar	nufacturer Access	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
	0x0008	R	Chemistry ID	Hex	2	0x0000	0xffff	0x0100	_

A.1.2 System Control

The commands in this section cause the bq20z40-R1/bq20z45-R1 to take actions when written. No data is returned.

A.1.2.1 Shutdown (0x0010)

Instructs the bq20z40-R1/bq20z45-R1 to verify and enter shutdown mode (when the bq20z40-R1/bq20z45-R1 is in Unsealed or Full Access mode). Shutdown is not entered unless the PackVoltage < Charger Present and $Current \le 0$.

In sealed mode, if shutdown command (0x0010) is received 2 consecutive times, the bq20z40-R1/bq20z45-R1 enters ship mode. The 2 MAC writes cannot have any other MAC commands following or between them. For bq20z40-R1/bq20z45-R1 to enter ship mode, *PackVoltage* must be less than *Charger Present* threshold AND there are no safety conditions.

Related Variables:

- DF:Power:Power(68):Charger Present(8)
- SBS:Current(0x0a)
- SBS:OperationStatus(0x54)[SS],[FAS]
- SBS:PackVoltage(0x5a)

A.1.2.2 Sleep (0x0011)

Instructs the bq20z40-R1/bq20z45-R1 to verify and enter sleep mode if no other command is sent after the *Sleep* command. Any SMB transition wakes up the bq20z40-R1/bq20z45-R1. It takes about 1 minute before the device goes to sleep. This command is only available when the bq20z40-R1/bq20z45-R1 is in Unsealed or Full Access mode.

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg A(0)[SLEEP]
- SBS:OperationStatus(0x54)[SS],[FAS]

A.1.2.3 Seal Device (0x0020)

Instructs the bq20z40-R1/bq20z45-R1 to limit access to the extended SBS functions and data flash space, sets the [SS] flag, and clears the [FAS] flag.

This command is only available when the bq20z40-R1/bq20z45-R1 is in Unsealed or Full Access mode.

See Security, Section 2.8, for detailed information.

Related Variable:

SBS:OperationStatus(0x54)[SS],[FAS]

A.1.2.4 IT Enable (0x0021)

This command forces the bq20z40-R1/bq20z45-R1 to begin the Impedance Track algorithm, changes **Update Status**, and sets the [QEN] flag.

This command is only available when the bq20z40-R1/bq20z45-R1 is in Unsealed or Full Access mode.

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:OperationStatus(0x54)[VOK],[QEN],[SS],[FAS]

A.1.2.5 SAFE Activation (0x0030)

This command drives the SAFE pin high.

This command is only available when the bq20z40-R1/bq20z45-R1 is in Unsealed or Full Access mode.

Related Variable:

SBS:OperationStatus(0x54)[SS],[FAS]

A.1.2.6 SAFE Clear (0x0031)

This command sets the SAFE pin back to low.

This command is only available when the bq20z40-R1/bq20z45-R1 is in Unsealed or Full Access mode.

Related Variable:

SBS:OperationStatus(0x54)[SS],[FAS]

A.1.2.7 Calibration Mode (0x0040)

Places the bq20z40-R1/bq20z45-R1 into calibration mode. See the *Data Flash Programming and Calibrating the bq20zxx Family of Gas Gauges*, application report (SLUA379A) for further details.

This command is only available when the bq20z40-R1/bq20z45-R1 is in Unsealed or Full Access mode.

Related Variable:

SBS:OperationStatus(0x54)[SS],[FAS]

A.1.2.8 Reset (0x0041)

The bq20z40-R1/bq20z45-R1 undergoes a full reset. The bq20z40-R1/bq20z45-R1 holds the clock line down for a few milliseconds to complete the reset

This command is only available when the bq20z40-R1/bq20z45-R1 is in Unsealed or Full Access mode.

Related Variable:

SBS:OperationStatus(0x54)[SS],[FAS]

A.1.2.9 BootROM (0x0f00)

The bg20z40-R1/bg20z45-R1 goes into BootROM mode.

This command is only available when the bq20z40-R1/bq20z45-R1 is in Full Access mode.

Related Variable:

SBS:OperationStatus(0x54)[FAS]

A.1.2.10 Permanent Fail Clear(PFKev)

This two-step command must be written to ManufacturerAccess in following order: first word of the PFKey first, followed by the second word of the PFKey. If the command fails, 4 seconds must pass before the command can be reissued.

This command instructs the bg20z40-R1/bg20z45-R1 to clear the *PFStatus*, clear the *[PF]* flag, reset the SAFE pin, and unlock the data flash for writes.

This command is only available when the bq20z40-R1/bq20z45-R1 is in Unsealed or Full Access mode.

Related Variables:

- DF:PF Status:Device Status Data(96):Saved PF Flags 1..2(0..2)
- SBS:SafetyStatus(0x51)[PF]
- SBS:PFStatus(0x53)
- SBS:OperationStatus(0x54)[SS],[FAS]
- SBS:PFKey(0x62)

NOTE: The higher word must be immediately followed by the lower word. If the clear command fails, the command can only be repeated 4 seconds after the previous attempt. If communication other than the lower word occurs after the first word is sent, the Permanent Fail Clear command fails.

A.1.2.11 Unseal Device (UnsealKey)

Instructs the bg20z40-R1/bg20z45-R1 to enable access to the SBS functions and data flash space and clear the [SS] flag. This two-step command must be written to ManufacturerAccess in the following order: first word of the UnSealKey first, followed by the second word of the UnSealKey. If the command fails, 4 seconds must pass before the command can be reissued.

This command is only available when the bq20z40-R1/bq20z45-R1 is in Sealed mode.

See Security, Section 2.8, for detailed information.

Related Variables:

- SBS:OperationStatus(0x54)[SS]
- SBS:UnSealKey(0x60)

A.1.2.12 Full Access Device (FullAccessKey)

Instructs the bg20z40-R1/bg20z45-R1 to enable full access to all SBS functions and data flash space and set the [FAS] flag. This two-step command must be written to ManufacturerAccess in the following order: first word of the FullAccessKey first, followed by the second word of the FullAccessKey.

This command is only available when the bg20z40-R1/bg20z45-R1 is in Unsealed mode.

See Security, Section 2.8, for detailed information.

Related Variables:

- SBS:OperationStatus(0x54)[SS],[FAS]
- SBS:FullAccessKey(0x61)

A.1.3 Extended SBS Commands

Also available via *ManufacturerAccess* in the sealed mode are some of the extended SBS commands. The commands available are listed as follows.

The result of these commands must be read from *ManufacturerAccess* after a write to *ManufacturerAccess*.

0x0046 = SBS:FETControl(0x46) (Read only)

0x0051 = SBS:SafetyStatus(0x51)

0x0053 = SBS:PFStatus(0x53)

0x0054 = SBS:OperationStatus(0x54)

0x0055 = SBS:ChargingStatus(0x55)

0x0057 = SBS:ResetData(0x57)

0x0058 = SBS:WDResetData(0x58)

0x005a = SBS:PackVoltage(0x5a)

0x005d = SBS:AverageVoltage(0x5d)

0x0069 = SBS:SafetyStatus2(0x69)

0x006b = SBS:PFStatus2(0x6b)

0x006c = SBS:ManufBlock1(0x6c)

0x006d = SBS:ManufBlock2(0x6d)

0x006e = SBS:ManufBlock3(0x6e)

0x006f = SBS:ManufBlock4(0x6f)

0x0072 = SBS:TempRange(0x72)

A.2 RemainingCapacityAlarm (0x01)

This read- or write-word function sets or gets a low-capacity alarm threshold unsigned integer value with a range of 0 to 65,535 and units of either mAh (CapM = 0) or 10 mWh (CapM = 1). The default value for RemainingCapacityAlarm is stored in Rem Cap Alarm. If RemainingCapacityAlarm is set to 0, the alarm is disabled.

If RemainingCapacity < RemainingCapacityAlarm, the [RCA] flag is set and the bq20z40-R1/bq20z45-R1 sends an AlarmWarning message to the SMBUS host.

If RemainingCapacity ≥ RemainingCapacityAlarm and [DSG] is set, the [RCA] flag is cleared.

0 = Remaining capacity alarm is disabled

1..700 = Remaining capacity limit for [RCA] flag

Table A-7. RemainingCapacityAlarm

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x01	R/W	RemainingCapacityAlarm	Unsigned integer	2	0	700	300	mAh or 10 mWh

Related Variables:

- DF:SBS Configuration:Data(48):Rem Cap Alarm(0)
- SBS:BatteryMode(0x03)[CapM]
- SBS:RemainingCapacity(0x0f)
- SBS:BatteryStatus(0x16)[RCA],[DSG]

A.3 RemainingTimeAlarm (0x02)

This read- or write-word function sets or gets the *RemainingTimeAlarm* unsigned integer value in minutes with a range of 0 to 65,535. The default value of *RemainingTimeAlarm* is stored in *Rem Time Alarm*. If *RemainingTimeAlarm* = 0, this alarm is disabled.

If AverageTimeToEmpty < RemainingTimeAlarm, the [RTA] flag is set and the bq20z40-R1/bq20z45-R1 sends an AlarmWarning message to the SMBus host.

If AverageTimeToEmpty ≥ RemainingTimeAlarm, the [RTA] flag is reset.

0 = Remaining time alarm is disabled

1..30 = Remaining time limit for [RTA] flag

Table A-8. RemainingTimeAlarm

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x02	R/W	RemainingTimeAlarm	Unsigned integer	2	0	30	10	min

Related Variables:

- DF:SBS Configuration:Data(48):Rem Time Alarm(4)
- SBS:AverageTimeToEmpty(0x12)
- SBS:BatteryStatus(0x16)[RTA]

A.4 BatteryMode (0x03)

This read- or write-word function selects the various battery operational modes and reports the battery's capabilities and modes and flags minor conditions requiring attention.

	Bit /	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	CapM	ChgM	AM	RSVD	RSVD	RSVD	PB	CC
Low Byte	CF	RSVD	RSVD	RSVD	RSVD	RSVD	PBS	ICC

LEGEND: High byte is read/write, low byte is read-only; RSVD = Reserved and must be programmed to 0

Figure A-2. BatteryMode

CapM— Sets the units used for capacity information and internal calculation.

0 = Reports in mA or mAh (default)

1 = Reports in 10 mW or 10 mWh

The following functions are instantaneously updated after a [CapM] change:

SBS:RemainingCapacityAlarm(0x01)

SBS:AtRate(0x04)

SBS:RemainingCapacity(0x0f)

SBS:FullChargeCapacity(0x10)

SBS:DesignCapacity(0x18)

The following functions are recalculated within 1 second after a [CapM] change:

SBS:RemainingTimeAlarm(0x02)

SBS:AtRateTimeToEmpty(0x06)

SBS:AtRateOK(0x07)

SBS:RunTimeToEmpty(0x11)

SBS:AverageTimeToEmpty(0x12)

SBS:BatteryStatus(0x16)

AtRate (0x04) www.ti.com

ChgM— Enables or disables the bq20z40-R1/bq20z45-R1 transmission of *ChargingCurrent* and *ChargingVoltage* messages to the Smart Battery Charger.

- 0 = Enable ChargingVoltage and ChargingCurrent broadcasts to the Smart Battery Charger by setting the [BCAST] bit in Operation Cfg B when charging is desired.
- 1 = Disable ChargingVoltage and ChargingCurrent broadcasts to the Smart Battery Charger. (default)

Related Variables:

DF:Configuration:Registers(64):Operation Cfg B(2)[BCAST]

SBS:ChargingCurrent(0x14)

SBS:ChargingVoltage(0x15)

- AM— Enables or disables AlarmWarning broadcasts to the host and Smart Battery Charger
 - 0 = Enable *AlarmWarning* broadcast to host and Smart Battery Charger by setting the *[BCAST]* bit in *Operation Cfg B* (default). The bq20z40-R1/bq20z45-R1 sends the *AlarmWarning* messages to the SMBus Host and the Smart Battery Charger any time an alarm condition is detected.
 - 1 = Disable AlarmWarning broadcast to host and Smart BatteryCharger. The bq20z40-R1/bq20z45-R1 does not master the SMBus, and AlarmWarning messages are not sent to the SMBus Host and the Smart Battery Charger for a period of no more than 65 seconds and no less than 45 seconds. [AM] is automatically cleared by the bq20z40-R1/bq20z45-R1 60 seconds after being set to 1, independent of the [BCAST] bit.

Related Variable:

DF:Configuration:Registers(64):Operation Cfg B(2)[BCAST]

NOTE: The system, as a minimum, is required to poll the Smart Battery Charger every 10 seconds if the *[AM]* flag is set.

- **PB** Sets the role of the battery pack. This flag is not used by the bq20z40-R1/bq20z45-R1 and should be set to 0.
- **CC** Enable or disable internal charge controller. This flag is not used by bq20z40-R1/bq20z45-R1 and should be set to 0.
- **CF** This flag is set if *MaxError* > **CF MaxError** Limit
 - 0 = Battery OK
 - 1 = Condition cycle requested

Related Variables:

DF:SBS Configuration:Data(48):CF MaxError Limit(21)

SBS:MaxError(0x0c)

- **PBS** Primary battery support is not supported by bq20z40-R1/bq20z45-R1 and is fixed to 0.
- **ICC** This flag indicates whether the internal charge controller function is supported or not. This value is fixed to 1.

A.5 AtRate (0x04)

This read- or write-word function is the first half of a two-function call set used to set the AtRate value, which is used in calculations made by the AtRateTimeToFull, AtRateTimeToEmpty, and AtRateOK functions. The AtRate units are in either mA ([CapM] = 0) or 10 mW ([CapM] = 1).

AtRateTimeToFull (0x05) www.ti.com

When the AtRate value is positive, the AtRateTimeToFull function returns the predicted time to full charge at the AtRate value of charge. When the AtRate value is negative, the AtRateTimeToEmpty function returns the predicted operating time at the AtRate value of discharge. When the AtRate value is negative, the AtRateOK function returns a Boolean value that predicts the battery's ability to supply the AtRate value of additional discharge energy (current or power) for 10 seconds.

The default value for AtRate is zero.

Table A-9. AtRate

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x04	R/W	AtRate	Integer	2	-32,768	32,767	0	mA or 10 mW

Related Variables:

- SBS:AtRateTimeToFull(0x05)
- SBS:AtRateTimeToEmpty(0x06)
- SBS:AtRateOK(0x07)
- SBS:BatteryMode(0x03)[CapM]

A.6 AtRateTimeToFull (0x05)

This read-word function returns an unsigned integer value of the predicted remaining time to fully charge the battery using a CC-CV method at the AtRate value in minutes, with a range of 0 to 65,534. A value of 65,535 indicates that the *AtRate* = 0.

AtRateTimeToFull can report time based on constant current ([CapM] = 0) or constant power ([CapM] = 1), and updates within 1 second after the SMBus host sets the AtRate value. The bg20z40-R1/bg20z45-R1 automatically updates AtRateTimeToFull based on the AtRate function at 1-second intervals.

0..65,534 = predicted time to full charge, based on AtRate 65,535 = no charge or discharge (AtRate is 0)

Table A-10. AtRateTimeToFull

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x05	R	AtRateTimeToFull	Unsigned integer	2	0	65,535	_	min

Related Variables:

- SBS:AtRate(0x04)
- SBS:BatteryMode(0x03)[CapM]

A.7 AtRateTimeToEmpty (0x06)

This read-word function returns an unsigned integer value of the predicted remaining operating time in minutes with a range of 0 to 65,534, if the battery is discharged at the AtRate value. A value of 65,535 indicates that AtRate = 0.

AtRateTimeToEmpty can report time based on constant current ([LDMD] = 0), or constant power ([LDMD] = 1), and is updated within 1 second after the SMBus host sets the AtRate value. The bg20z40-R1/bg20z45-R1 updates AtRateTimeToEmpty at 1-second intervals.

0..65,534 = predicted remaining operating time, based on AtRate 65,535 = no charge or discharge (AtRate is 0)

AtRateOK (0x07) www.ti.com

Table A-11. AtRateTimeToEmpty

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x06	R	AtRateTimeToEmpty	Unsigned integer	2	0	65,535	_	min

Related Variables:

- SBS:AtRate(0x04)
- SBS:OperationStatus(0x54)[LDMD]

A.8 AtRateOK (0x07)

This read-word function returns a boolean value that indicates whether or not the battery can deliver the *AtRate* value of energy for 10 seconds.

The bq20z40-R1/bq20z45-R1 updates this value within 1 second after the SMBus host sets the *AtRate* function value. The bq20z40-R1/bq20z45-R1 updates *AtRateOK* at 1-second intervals.

If AtRate function returns ≥0, AtRateOK always returns TRUE.

0 = FALSE bq20z40-R1/bq20z45-R1 **cannot** deliver energy for 10 seconds, based on discharge rate indicated in *AtRate*

1..65,535 = TRUE bq20z40-R1/bq20z45-R1 deliver can energy for 10 seconds, based on discharge rate indicated in *AtRate*

Table A-12. AtRateOK

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x07	R	AtRateOK	Unsigned integer	2	0	65,535	_	min

Related Variable:

SBS:AtRate(0x04)

A.9 Temperature (0x08)

This read-word function returns an unsigned integer value of the temperature in units of 0.1 K, as measured by the bq20z40-R1/bq20z45-R1. It has a range of 0 to 6553.5 K.

The source of the measured temperature is configured by the **[TEMP1]**, **[TEMP0]** bits in the **Operation Cfg A** register.

Table A-13. Temperature

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x08	R	Temperature	Unsigned integer	2	0	65,535	_	0.1 K

Related Variable:

DF:Configuration:Register(64):Operation Cfg A(0)

A.10 Voltage (0x09)

This read-word function returns an unsigned integer value of the sum of the individual cell voltage measurements in mV, with a range of 0 to 20,000 mV.

Table A-14. Voltage

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x09	R	Voltage	Unsigned integer	2	0	20,000	_	mV

www.ti.com Current (0x0a)

A.11 Current (0x0a)

This read-word function returns an integer value of the measured current being supplied (or accepted) by the battery in mA, with a range of –32,768 to 32,767. A positive value indicates charge current and a negative value indicates discharge.

Any current value within *Deadband* is reported as 0 mA by the *Current* function.

Table A-15. Current

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x0a	R	Current	Integer	2	-32,768	32,767	_	mA

Related Variable:

DF:Calibration:Current(107):Deadband(1)

NOTE: The Current function is the average of four internal current measurements over a 1-second

period.

A.12 AverageCurrent (0x0b)

This read-word function returns an integer value that approximates a one-minute rolling average of the current being supplied (or accepted) through the battery terminals in mA, with a range of –32,768 to 32,767.

AverageCurrent is calculated by a rolling IIR filtered average of Current function data with a period of 14.5 s. During the time after a reset and before 14.5 s has elapsed, the reported AverageCurrent = Current function value.

Table A-16. AverageCurrent

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x0b	R	AverageCurrent	Integer	2	-32,768	32,767	1	mA

Related Variables:

- DF:Calibration:Current(107):Filter(0)
- SBS:Current(0x0a)

A.13 MaxError (0x0c)

This read-word function returns an unsigned integer value of the expected margin of error, in %, in the state-of-charge calculation, with a range of 1% to 100%.

Max error is incremented internally by 0.05% for every increment of *CylceCount* after the last QMAX update. *MaxError* is incremented in the display by 1% for each increment of *CycleCount*.

Event MaxError Setting

Full reset Set to 100%

QMAX and Ra table update Set to 1%

QMAX update Set to 3%

Ra table update Set to 5%

Table A-17. MaxError

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x0c	R	MaxError	Unsigned integer	1	0	100		%

Related Variable:

SBS:CycleCount(0x17)

A.14 RelativeStateOfCharge (0x0d)

This read-word function returns an unsigned integer value of the predicted remaining battery capacity expressed as a percentage of *FullChargeCapacity* with a range of 0 to 100%, with fractions of % rounded up.

If the **[RSOCL]** bit in **Operation Cfg C** is set, then **RelativeStateofCharge** and **RemainingCapacity** are held at 99% until primary charge termination occurs and only displays 100% on entering primary charge termination.

If the **[RSOCL]** bit in **Operation Cfg C** is cleared, then **RelativeStateofCharge** and **RemainingCapacity** are **not** held at 99% until primary charge termination occurs. Fractions of % greater than 99% are rounded up to display 100%.

Table A-18. RelativeStateOfCharge

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x0d	R	RelativeStateOfCharge	Unsigned integer	1	0	100	_	%

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg C(4)[RSOCL]
- SBS:FullChargeCapacity(0x10)

A.15 AbsoluteStateOfCharge (0x0e)

This read-word function returns an unsigned integer value of the predicted remaining battery capacity expressed in %, with a range of 0 to 100%, with any fractions of % rounded up. The following table shows the calculation used, depending on the setting of the *[CapM]* flag.

CapM AbsoluteStateOfCharge Calculation

- 0 = RemainingCapacity / Design Capacity
- 1 = RemainingCapacity / **Design Energy**

NOTE: AbsoluteStateOfCharge can return values > 100%.

Table A-19. AbsoluteStateOfCharge

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x0e	R	AbsoluteStateOfCharge	Unsigned integer	1	0	100+	_	%

Related Variables:

- DF:SBS Configuration:Data(48):Design Capacity(22)
- DF:SBS Configuration:Data(48):Design Energy(24)
- SBS:BatteryMode(0x03)[CapM]
- SBS:RemainingCapacity(0x0f)

A.16 RemainingCapacity (0x0f)

This read- or write-word function returns an unsigned integer value, with a range of 0 to 65,535, of the predicted charge or energy remaining in the battery. This value is expressed in either charge (mAh) or energy (10 mWh), depending on the setting of the [CapM] flag.

Table A-20. RemainingCapacity

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x0f	R/W	RemainingCapacity	Unsigned integer	2	0	65,535	_	mAh or 10 mWh

Related Variable:

SBS:BatteryMode(0x03)[CapM]

A.17 FullChargeCapacity (0x10)

This read-word function returns an unsigned integer value of the predicted pack capacity when it is fully charged. This value is expressed in either charge (mAh) or power (10 mWh) depending on setting of [CapM] flag. The maximum capacity is 32 Ah.

Table A-21. FullChargeCapacity

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x10	R	FullChargeCapacity	Unsigned integer	2	0	32,767	_	mAh or 10 mWh

Related Variable:

SBS:BatteryMode(0x03)[CapM]

A.18 RunTimeToEmpty (0x11)

This read-word function returns an unsigned integer value of the predicted remaining battery life at the present rate of discharge, in minutes, with a range of 0 to 65,534 minutes. A value of 65,535 indicates that the battery is not being discharged.

This value is calculated and updated based on current or power, depending on the setting of the [CapM] flag.

0..65,534 = Predicted remaining battery life, based on *Current*

65,535 = Battery is not being discharged

Table A-22. RunTimeToEmpty

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x11	R	RunTimeToEmpty	Unsigned integer	2	0	65,535		min

Related Variable:

SBS:BatteryMode(0x03)[CapM]

A.19 AverageTimeToEmpty (0x12)

This read-word function returns an unsigned integer value of the predicted remaining battery life, in minutes, based on *AverageCurrent*, with a range of 0 to 65,534. A value of 65,535 indicates that the battery is not being discharged.

This value is calculated based on current or power, depending on the setting of the [CapM] flag.

0..65,534 = Predicted remaining battery life, based on *AverageCurrent*

65,535 = Battery is not being discharged

Table A-23. AverageTimeToEmpty

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x12	R	AverageTimeToEmpty	Unsigned integer	2	0	65,535		min

Related Variables:

- SBS:BatteryMode(0x03)[CapM]
- SBS:AverageCurrent(0x0b)

A.20 AverageTimeToFull (0x13)

This read-word function returns an unsigned integer value of predicted remaining time until the battery reaches full charge, in minutes, based on *AverageCurrent*, with a range of 0 to 65,534. A value of 65,535 indicates that the battery is not being charged.

0..65,534 = Predicted remaining time until full charge

65,535 = Battery is not being charged

Table A-24. AverageTimeToFull

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x13	R	AverageTimeToFull	Unsigned integer	2	0	65,535	_	min

Related Variable:

SBS:AverageCurrent(0x0b)

A.21 ChargingCurrent (0x14)

This read-word function returns an unsigned integer value of the desired charging current, in mA, with a range of 0 to 65,534. A value of 65,535 indicates that a charger should operate as a voltage source outside its maximum regulated current range.

0..65,534 = Desired charging current in mA

65,535 = Charger should operate as voltage source outside its maximum regulated current range.

Table A-25. ChargingCurrent

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x14	R	ChargingCurrent	Unsigned integer	2	0	65,535	_	mA

A.22 ChargingVoltage (0x15)

This read-word function returns an unsigned integer value of the desired charging voltage, in mV, where the range is 0 to 65,534. A value of 65,535 indicates that the charger should operate as a current source outside its maximum regulated voltage range.

0..65,534 = Desired charging voltage in mV

65,535 = Charger should operate as current source outside its maximum regulated voltage range.

Table A-26. ChargingVoltage

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x15	R	ChargingVoltage	Unsigned integer	2	0	65,535	_	mV

www.ti.com BatteryStatus (0x16)

A.23 BatteryStatus (0x16)

This read-word function returns the status of the bq20z40-R1/bq20z45-R1-based battery.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	OCA	TCA	RSVD	OTA	TDA	RSVD	RCA	RTA
Low Byte	INIT	DSG	FC	FD	EC3	EC2	EC1	EC0

LEGEND: All values read-only; RSVD = Reserved

Figure A-3. BatteryStatus

OCA— 1 = Over Charged Alarm

TCA— 1 = Terminate Charge Alarm

OTA— 1 = Over Temperature Alarm

TDA— 1 = Terminate Discharge Alarm

RCA— Remaining Capacity Alarm

1 = Remaining Capacity Alarm is set

See: SBS:RemainingCapacityAlarm(0x01)

RTA— Remaining Time Alarm

1 = Remaining Time Alarm is set

See: SBS:RemainingTimeAlarm(0x02)

INIT— 1 = Initialization. The INIT flag is always set in normal operation.

DSG— Discharging

0 = bq20z40-R1/bq20z45-R1 is in charging mode

1 = bq20z40-R1/bq20z45-R1 is in discharging mode or relaxation mode, or valid charge termination has occurred.

See: Gas Gauging, Section C.9

FC— 1 = Fully Charged

FD— 1 = Fully Discharged

EC3, EC2, EC1, EC0— Error Code, returns status of processed SBS function

0,0,0,0 = OK bo	g20z40-R1/bg20z45-R1	1 processed the function code with no errors

detected.

0,0,0,1 = BUSY bq20z40-R1/bq20z45-R1 is unable to process the function code at this time.

0,0,1,0 = Reserved bq20z40-R1/bq20z45-R1 detected an attempt to read or write to a function

code reserved by this version of the specification, or

bq20z40-R1/bq20z45-R1 detected an attempt to access an unsupported

optional manufacturer function code.

0,0,1,1 = Unsupported bq20z40-R1/bq20z45-R1 does not support this function code as defined in

this version of the specification.

0,1,0,0 = AccessDenied bq20z40-R1/bq20z45-R1 detected an attempt to write to a read-only function

code.

0,1,0,1 = Over/Underflow bq20z40-R1/bq20z45-R1 detected a data overflow or underflow.

CycleCount (0x17) www.ti.com

0,1,1,0 = BadSize bq20z40-R1/bq20z45-R1 detected an attempt to write to a function code with

an incorrect data block.

0,1,1,1 = UnknownError bg20z40-R1/bg20z45-R1 detected an unidentifiable error.

A.24 CycleCount (0x17)

This read-word function returns, as an unsigned integer value, the number of cycles the battery has experienced, with a range of 0 to 65,535. The default value is stored in the data flash value *Cycle Count*, which is updated each time this variable is incremented. One cycle count is the accumulated discharge of *CC Threshold*.

When the bg20z40-R1/bg20z45-R1 is in unsealed or full-access mode, this block is R/W.

Table A-27. CycleCount

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x17	R/W	CycleCount	Unsigned integer	2	0	65,535	0	_

Related Variables:

- DF:SBS Configuration:Data(48)Cycle Count(16)
- DF:SBS Configuration:Data(48)CC Threshold(18)

A.25 DesignCapacity (0x18)

This read-word function returns, as an unsigned integer value, the theoretical or nominal capacity of a new pack, stored in **Design Capacity** or in **Design Energy**.

The *DesignCapacity* value is expressed in either current (mAh at a C/5 discharge rate) or power, (10 mWh at a P/5 discharge rate) depending on the setting of the *[CapM]* bit.

When the bq20z40-R1/bq20z45-R1 is in unsealed or full-access mode, this block is R/W.

Table A-28. DesignCapacity

SBS Cmd.	Mode	Name	СарМ	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x18	R/W	DesignConsoity	0	Unsigned integer	2	0	65,535	4400	mAh
UX16	K/VV	DesignCapacity	1	Unsigned integer	2	0	65,535	6336	10 mWh

Related Variables:

- DF:SBS Configuration:Data(48):Design Capacity(22)
- DF:SBS Configuration:Data(48):Design Energy(24)
- SBS:BatteryMode(0x03)[CapM]
- SBS:OperationStatus(0x54)[SS],[FAS]

A.26 DesignVoltage (0x19)

This read-word function returns an unsigned integer value of the theoretical voltage of a new pack, in mV, with a range of 0 to 65,535. The default value is stored in **Design Voltage**.

When the bq20z40-R1/bq20z45-R1 is in unsealed or full-access mode, this block is R/W.

Table A-29. DesignVoltage

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x19	R/W	DesignVoltage	Unsigned integer	2	7000	18,000	14,400	mV

www.ti.com SpecificationInfo (0x1a)

Related Variables:

- DF:SBS Configuration:Data(48):Design Voltage(8)
- SBS:OperationStatus(0x54)[SS],[FAS]

A.27 SpecificationInfo (0x1a)

This read-word function returns, as an unsigned integer value, the version number of the Smart Battery Specification the battery pack supports, as well as voltage- and current-scaling information.

Power-scaling is the product of the voltage-scaling times the current-scaling. The data is packed in the following fashion:

IPScale x 0x1000 + VScale x 0x0100 + SpecID H x 0x0010 + SpecID L

VScale (voltage scaling) and IPScale (current scaling) should always be set to zero. The default setting is stored in **Spec Info**.

When the bq20z40-R1/bq20z45-R1 is in unsealed or full-access mode, this block is R/W.

Table A-30. SpecificationInfo

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x1a	R/W	SpecificationInfo	Hex	2	0x0000	0xffff	0x0031	

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
IPScale (0) (multiplies current by 10 ^{IPScale})				VScale (0) (multiplies voltage by 10 ^{VScale})				SpecID_H (015)				SpecID_L (015)				

LEGEND: R/W = Read/write; R = Read-only; - n = value after reset

Figure A-4. SpecificationInfo

Related Variables:

- DF:SBS Configuration:Data(48):Spec Info(10)
- SBS:OperationStatus(0x54)[SS],[FAS]

A.28 ManufactureDate (0x1b)

This read-word function returns the date the pack was manufactured in a packed integer. The date is packed in the following fashion:

 $(Year - 1980) \times 512 + month \times 32 + day$

The default value for this function is stored in *Manuf Date*.

When the bq20z40-R1/bq20z45-R1 is in unsealed or full-access mode, this block is R/W.

Table A-31. ManufactureDate

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x1b	R/W	ManufacturerDate	Unsigned integer	2	0	65,535	0	_

Figure A-5. ManufacturerDate

SerialNumber (0x1c) www.ti.com

Related Variables:

- DF:SBS Configuration:Data(48):Manuf Date(12)
- SBS:OperationStatus(0x54)[SS],[FAS]

A.29 SerialNumber (0x1c)

This read-word function is used to return an unsigned integer serial number. The default value of this function is stored in **Ser. Num.**.

When the bq20z40-R1/bq20z45-R1 is in unsealed or full-access mode, this block is R/W.

Table A-32. SerialNumber

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x1c	R/W	SerialNumber	Hex	2	0x0000	0xffff	0x0001	

Related Variables:

- DF:SBS Configuration:Data(48):Ser. Num.(14)
- SBS:OperationStatus(0x54)[SS],[FAS]

A.30 ManufacturerName (0x20)

This read-block function returns a character string containing the battery manufacturer's name with a maximum length of 20 characters (20 data + length byte).

The default setting of this function is stored in data flash *Manuf Name*.

When the bq20z40-R1/bq20z45-R1 is in unsealed or full-access mode, this block is R/W.

Table A-33. ManufacturerName

	SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
-	0x20	R/W	ManufacturerName	String	20 + 1	_	_	Texas Instruments	_

Related Variables:

- DF:SBS Configuration:Data(48):Manuf Name(26)
- SBS:OperationStatus(0x54)[SS],[FAS]

A.31 DeviceName (0x21)

This read-block function returns a character string that contains the battery name with a maximum length of 20 characters (20 data + length byte).

The default setting of this function is stored in data flash **Device Name**.

When the bq20z40-R1/bq20z45-R1 is in unsealed or full-access mode, this block is R/W.

Table A-34. DeviceName

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x21	R/W	DeviceName	String	20 + 1	_	_	bq20z40	

Related Variables:

- DF:SBS Configuration:Data(48):Device Name(47)
- SBS:OperationStatus(0x54)[SS],[FAS]

A.32 DeviceChemistry (0x22)

This read-block function returns a character string that contains the battery chemistry with a maximum length of 4 characters (4 data + length byte).

www.ti.com ManufacturerData (0x23)

The default setting of this function is stored in data flash **Device Chemistry**, although it has no use for internal charge control or fuel gauging.

When the bq20z40-R1/bq20z45-R1 is in unsealed or full-access mode, this block is R/W.

Table A-35. DeviceChemistry

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x22	R/W	DeviceChemistry	String	4 + 1	_	_	LION	_

Related Variables:

- DF:SBS Configuration:Data(48):Device Chemistry(68)
- SBS:OperationStatus(0x54)[SS],[FAS]

A.33 ManufacturerData (0x23)

This read-block function returns several configuration data flash elements with an absolute maximum length of 14 data + 1 length byte (stored in ManufacturerData Length). The ManufacturerData elements shown in Table A-36 are stored in the ManufacturerData subclass.

When the bq20z40-R1/bq20z45-R1 is in Unsealed or full-access mode, this block is R/W.

Table A-36. ManufacturerData

Data	Byte	Name	Format			
Manufacturer Data	0	Pack Lot Code	Hex			
	1					
	2	PCB Lot Code				
	3					
	4	Firmware Version				
	5					
	6	Hardware Revision				
	7					
	8	Cell Revision				
	9					
bq20z40-R1/bq20z45-	10	Partial Reset Counter				
R1 Counter	11	Full Reset Counter				
	12	Watchdog Reset Counter				
	13	Check Sum				
	14	String Length Byte				

Related Variables:

- DF:System Data:Manufacturer Data(56):Pack Lot Code(0)
- DF:System Data:Manufacturer Data(56):PCB Lot Code(2)
- DF:System Data:Manufacturer Data(56):Firmware Version(4)
- DF:System Data:Manufacturer Data(56):Hardware Revision(6)
- DF:System Data:Manufacturer Data(56):Cell Revision(8)
- SBS:OperationStatus(0x54)[SS],[FAS]

A.34 Authenticate (0x2f)

This read- or write-block function allows the host to authenticate a bq20z40-R1/bq20z45-R1-based battery using an SHA-1 authentication transform with a length of 20 data bytes + 1 length byte. See the *Using SHA-1 in bq20zxx Family of Gas Gauges* application report (SLUA359) for detailed information.

Table A-37. Authenticate

SBS Cmd	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x2f	R/W	Authenticate	String	20 + 1	_	_	_	_

A.35 CellVoltage4..1 (0x3c..0x3f)

These read-word functions return an unsigned value of the calculated individual cell voltages, in mV, with a range of 0 to 65,535. *CellVoltage1* corresponds to the bottommost series cell element, whereas *CellVoltage4* corresponds to the topmost series cell element.

Table A-38. CellVoltage4..1

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x3c	R	CellVoltage4	Unsigned	2	0	65,535	_	mV
0x3d		CellVoltage3	integer				_	
0x3e		CellVoltage2						
0x3f		CellVoltage1					_	

A.36 SBS Command Values

Table A-39. SBS COMMANDS

SBS Cmd	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x00	R/W	ManufacturerAccess	Hex	2	0x0000	0xffff	_	_
0x01	R/W	RemainingCapacityAlarm	Unsigned integer	2	0	65,535	300	mAh or 10 mWh
0x02	R/W	RemainingTimeAlarm	Unsigned integer	2	0	65,535	10	min
0x03	R/W	BatteryMode	Hex	2	0x0000	0xe383	_	_
0x04	R/W	AtRate	Integer	2	-32,768	32,767	_	mA or 10 mW
0x05	R	AtRateTimeToFull	Unsigned integer	2	0	65,534	_	min
0x06	R	AtRateTimeToEmpty	Unsigned integer	2	0	65,534	_	min
0x07	R	AtRateOK	Unsigned integer	2	0	65,535	_	_
80x0	R	Temperature	Unsigned integer	2	0	65,535	_	0.1 °K
0x09	R	Voltage	Unsigned integer	2	0	65,535	_	mV
0x0a	R	Current	Integer	2	-32,768	32,767	_	mA
0x0b	R	AverageCurrent	Integer	2	-32,768	32,767	_	mA
0x0c	R	MaxError	Unsigned integer	1	0	100	_	%
0x0d	R	RelativeStateOfCharge	Unsigned integer	1	0	100	_	%
0x0e	R	AbsoluteStateOfCharge	Unsigned integer	1	0	100+	_	%
0x0f	R/W	RemainingCapacity	Unsigned integer	2	0	65,535	_	mAh or 10 mWh
0x10	R	FullChargeCapacity	Unsigned integer	2	0	32,767	_	mAh or 10 mWh
0x11	R	RunTimeToEmpty	Unsigned integer	2	0	65,534		min

www.ti.com SBS Command Values

Table A-39. SBS COMMANDS (continued)

SBS Cmd	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x12	R	AverageTimeToEmpty	Unsigned integer	2	0	65,534	_	min
0x13	R	AverageTimeToFull	Unsigned integer	2	0	65,534	_	min
0x14	R	ChargingCurrent	Unsigned integer	2	0	65,534	_	mA
0x15	R	ChargingVoltage	Unsigned integer	2	0	65,534	_	mV
0x16	R	BatteryStatus	Hex	2	0x0000	0xdbff	_	_
0x17	R/W	CycleCount	Unsigned integer	2	0	65,535	_	_
0x18	R/W	DesignCapacity	Unsigned integer	2	0	65,535	4400	mAh or 10 mWh
0x19	R/W	DesignVoltage	Unsigned integer	2	0	65,535	14,400	mV
0x1a	R/W	SpecificationInfo	Hex	2	0x0000	0xffff	0x0031	_
0x1b	R/W	ManufactureDate	Unsigned integer	2	_	_	01-Jan-1980	_
0x1c	R/W	SerialNumber	Hex	2	0x0000	0xffff	0x0001	_
0x20	R/W	ManufacturerName	String	20 + 1	_	_	Texas Inst.	_
0x21	R/W	DeviceName	String	20 + 1	_	_	bq20z40- R1/bq20z45-R1	_
0x22	R/W	DeviceChemistry	String	4 + 1	_	_	LION	_
0x23	R/W	ManufacturerData	String	14 + 1	_	_	_	_
0x2f	R/W	Authenticate	String	20 + 1	_	_	_	_
0x3c	R	CellVoltage4	Unsigned integer	2	0	65,535	_	mV
0x3d	R	CellVoltage3	Unsigned integer	2	0	65,535	_	mV
0x3e	R	CellVoltage2	Unsigned integer	2	0	65,535	_	mV
0x3f	R	CellVoltage1	Unsigned integer	2	0	65,535	_	mV

Extended SBS Commands

The extended SBS commands are only available when the bq20z40-R1/bq20z45-R1 device is in unsealed or full access mode, unless otherwise noted.

Related Variables:

- SBS:ManufacturerAccess(0x00):Seal Access(0x0020)
- SBS:OperationStatus(0x54)[SS],[FAS]
- SBS:UnSealKey(0x60)
- SBS:FullAccessKey(0x61)

B.1 AFEData (0x45)

This read-block function returns a string of 11 data bytes + 1 length byte. The first 9 bytes are the AFE memory map followed by 2 bytes of the internal bq20z40-R1/bq20z45-R1 AFE_Fail_Counter.

Table B-1. AFEData

Data	Byte	Name	Format
AFE	0	AFE Status	Hex
	1	AFE Output	
	2	AFE State	
	3	AFE Function	
	4	AFE Cell Select	
	5	AFE OLV	
	6	AFE OLT	
	7	AFE SCC	
	8	AFE SCD	
bq20z40-	9	Internal AFE_Fail_Counter high byte	
R1/bq20z45- R1	10	Internal AFE_Fail_Counter low byte	
	11	String Length Byte	

Related Variables:

- DF:2nd Level Safety:AFE Verification(20):AFE Fail Limit(1)
- DF:PF Status:AFE Regs(97)

B.2 FETControl (0x46)

This read- or write-word function allows direct control of the FETs for test purposes.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FETControl	RSVD	RSVD	RSVD	OD	ZVCHG	CHG	DSG	RSVD

LEGEND: RSVD = Reserved and **must** be programmed to 0

Figure B-1. FETControl

StateOfHealth (0x4f) www.ti.com

OD— AFE GPOD pin control

0 = Disable GPOD pin (high-Z)

1 = Enable GPOD pin (open drain)

ZVCHG— Zero-volt (pre-charge) charge FET control

0 = Turn OFF pre-charge FET

1 = Turn ON pre-charge FET

CHG— Charge FET Control

0 = Turn OFF CHG FET. CHG FET does not turn off in discharge mode to protect the FET body diode.

1 = Turn ON CHG FET

DSG— Discharge FET Control

0 = Turn OFF DSG FET. DSG FET does not turn off in charge mode to protect the FET body diode.

1 = Turn ON DSG FET

B.3 StateOfHealth (0x4f)

This read word function returns the state of health of the battery in % as well as information about the cell deterioration. The calculation formula depends on the [CapM] flag.

CapM StateOfHealth

0 = FullChargeCapacity / Design Capacity

1 = FullChargeCapacity / Design Energy

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
High Byte	RSVD	RSVD	RSVD	RSVD	RSVD	CLL	DetF	DetW	
Low Byte	State of Health %								

LEGEND: All values read-only; RSVD = Reserved

Figure B-2. Operation Status

CLL— (Cell Life Limit) 1 = Capacity of the pack fallen below Cell Life Limit threshold

DetW— (Deterioration Warning) 1 = Capacity of the pack fallen below **Deterioration Warn Limit** threshold

DetF— (Deterioration Fault) 1 = Capacity of the pack fallen below **Deterioration Fault Limit** threshold

- DF:SBS Configuration:Data(48):Design Capacity(22)
- DF:SBS Configuration:Data(48):Design Energy(24)
- DF: SBS Configuration:Data(48):Deterioration Warn Limit(73)
- DF: SBS Configuration:Data(48):Deterioration Fault Limit(74)
- DF: SBS Configuration:Data(48):Cell Life Limit(75)
- SBS:FullChargeCapacity(0x10)
- SBS:BatteryMode(0x03)[CapM]

www.ti.com SafetyStatus (0x51)

B.4 SafetyStatus (0x51)

This read word function returns the status of the 1st level safety features.

See 1st Level Protection Features, Section 2.2, for further details.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	OT1D	OT1C	OCD	OCC	OCD2	OCC2	RSVD	RSVD
Low Byte	CUV	COV	PF	RSVD	WDF	AOCD	SCC	SCD

LEGEND: All values read-only; RSVD = Reserved

Figure B-3. SafetyStatus

OT1D— 1 = Discharge overtemperature on TS1 condition

OT1C— 1 = Charge overtemperature on TS1 condition

OCD— 1 = Discharge overcurrent condition

OCC— 1 = Charge overcurrent condition

OCD2— 1 = Discharge overcurrent condition 2

OCC2— 1 = Charge overcurrent condition 2

CUV— 1 = Cell undervoltage condition

COV— 1 = Cell overvoltage condition

PF— 1 = Permanent failure condition.

WDF— 1 = AFE watchdog condition

AOCD— 1 = AFE discharge overcurrent condition

SCC— 1 = Charge short-circuit condition

SCD— 1 = Discharge short-circuit condition

B.5 PFStatus (0x53)

The permanent failure status register indicates the source of the bq20z40-R1/bq20z45-R1 permanent-failure condition.

Any new permanent failure is added to **Saved PF Flags** register to show all permanent failures that have occurred.

See 2nd Level Protection Features, Section 2.3, for further details.

Related Variables:

- DF:Configuration:Registers(64):Permanent Fail Cfg 1..2(6..8)
- DF:PF Status:Device Status Data(96):Saved PF Flags 1..2(0..2)
- DF:PF Status:Device Status Data(96):Saved 1st PF Flag 1..2(32..34)
- SBS:PFStatus(0x6b)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	RSVD	RSVD	SUV	RSVD	SOCD	SOCC	AFE_P	AFE_C
Low Byte	DFF	DFETF	CFETF	CIM_R	SOT1D	SOT1C	SOV	PFIN

LEGEND: All values read-only; RSVD = Reserved

Figure B-4. PFStatus

OperationStatus (0x54) www.ti.com

SUV— 1 = Safety Undervoltage permanent failure

SOCD— 1 = Discharge Safety Overcurrent permanent failure

SOCC— 1 = Charge Safety-Overcurrent permanent failure

AFE_P— 1 = Periodic AFE Communications permanent failure

AFE_C— 1 = Permanent AFE Communications failure

DFF— 1 = Data Flash Fault permanent failure

DFETF— 1 = Discharge-FET-Failure permanent failure

CFETF— 1 = Charge-FET-Failure permanent failure

CIM_R— 1 = Cell-Imbalance (At Rest method) permanent failure

SOT1D— 1 = Discharge Safety Overtemperature on TS1 permanent failure

SOT1C— 1 = Charge Safety Overtemperature on TS1 permanent failure

SOV— 1 = Safety-Overvoltage permanent failure

PFIN— 1 = External Input Indication of permanent failure

B.6 OperationStatus (0x54)

This read-word function returns the current operation status of the bq20z40-R1/bq20z45-R1.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	PRES	FAS	SS	CSV	RSVD	LDMD	RSVD	RSVD
Low Byte	WAKE	DSG	XDSG	XDSGI	DSGIN	R_DIS	VOK	QEN

LEGEND: All values read-only; RSVD = Reserved

Figure B-5. OperationStatus

PRES— 1 = PRES is low, indicating that the system is present (battery inserted).

FAS— 0 = Full access security mode

SS— 1 = Sealed security mode

CSV— 1 = Data flash checksum value has been generated

LDMD— Load mode for Impedance Track modeling. 0 = constant current, 1 = constant power

WAKE— 1 = bq20z40-R1/bq20z45-R1 WAKE mode

DSG— Replica of the SBS:BatteryStatus(0x16)[DSG] flag.

XDSG— 1 = Discharge fault

XDSGI— 1 = Discharge disabled due to a current issue

DSGIN— 1 = Discharge inhibited due to a high temperature issue

R_DIS— 1 = Ra Table resistance updates are disabled

VOK— 1 = Voltages are OK for a QMAX update

QEN— 1 = QMAX updates are enabled

B.7 ChargingStatus (0x55)

This read-word function returns the current status of the charging functions.

www.ti.com ResetData (0x57)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	XCHG	CHSUSP	PCHG	MCHG	LTCHG	ST1CHG	ST2CHG	HTCHG
Low Byte	RSVD	СВ	RSVD	RSVD	RSVD	RSVD	ОС	RSVD

LEGEND: All values read-only

Figure B-6. ChargingStatus

XCHG— 1 = Charging disabled

CHGSUSP— 1 = Charging suspended

PCHG— 1 = Precharging

MCHG— 1 = Maintenance charging

LTCHG— 1 = Low temperature charging

ST1CHG— 1 = Standard temperature charging 1

ST2CHG— 1 = Standard temperature charging 2

HTCHG— High temperature charging

CB— 1 = Cell balancing in progress

OC— 1 = Overcharge fault

B.8 ResetData (0x57)

This read-word function returns the number of partial resets (low byte) and full resets (high byte) the device has experienced.

Table B-2. ResetData

SBS Cmd.	Mode	Name	Byte	Contents	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x57	R	ResetData	Low byte	Partial resets	Unsigned integer	1	0	255	_	_
			High byte	Full resets	Unsigned integer	1	0	255	_	_

B.9 WDResetData (0x58)

This read-word function returns the number of watchdog resets the device has experienced.

Table B-3. WDResetData

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x58	R	WDResetData	Unsigned integer	2	0	65,53 5		

B.10 PackVoltage (0x5a)

This read-word function returns an unsigned integer value representing the measured voltage from the AFE PACK signal, in mV, with a range of 0 to 65,535.

Table B-4. PackVoltage

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x5a	R	PackVoltage	Unsigned integer	2	0	65,535	_	mV

Average Voltage (0x5d) www.ti.com

B.11 AverageVoltage (0x5d)

This read-word function returns an unsigned integer value that approximates a one-minute rolling average of the sum of the cell voltages in mV, with a range of 0 to 65,535.

Table B-5. AverageVoltage

SBS Cmd	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x5d	R	AverageVoltage	Unsigned integer	2	0	65,535	_	mV

Related Variable:

SBS:Voltage(0x09)

B.12 TS1Temperature (0x5E)

This read-block function returns the TS1 temperature reading. In addition to being accessible in full-access and unsealed modes, this command is also accessible in sealed mode.

Table B-6. TS1Temperature

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x5E	R	TS1Temperatur e	Integer	2	-400	1200	_	0.1°C

B.13 TS2Temperature (0x5F)

This read-block function returns the TS2 temperature reading. In addition to being accessible in full-access and unsealed modes, this command is also accessible in sealed mode.

Table B-7. TS2Temperature

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x5F	R	TS2Temperatur	Integer	2	-400	1200		0.1°C
		е						

B.14 UnSealKey (0x60)

This read- or write-block command allows the user to change the unseal key for the sealed-to-unsealed security-state transition. This function is only available when the bq20z40-R1/bq20z45-R1 is in the Full Access mode, indicated by a cleared [FAS] flag.

The order of the bytes, when entered in *ManufacturerAccess*, is the reverse of what is written to or read from the part. For example, if the first and second words of the *UnSealKey* block read returns 0x1234 and 0x5678, then in *ManufacturerAccess*, 0x3412 and 0x7856 should be entered to unseal the part.

Table B-8. UnSealKey

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x60	R/W	UnSealKey	Hex	4	0x0000 0000	0xffff ffff		_

Related Variable:

SBS:OperationStatus(0x54)[FAS]

B.15 FullAccessKey (0x61)

This read- or write-block command allows the user to change the full-access security key for the unsealed-to-full access security-state transition. This function is only available when the bq20z40-R1/bq20z45-R1 is in the Full Access mode, indicated by a cleared [FAS] flag.

www.ti.com PFKey (0x62)

The order of the bytes, when entered in *ManufacturerAccess*, is the reverse of what is written to or read from the part. For example, if the first and second words of the *FullAccessKey* block-read return 0x1234 and 0x5678, then in *ManufacturerAccess*, 0x3412 and 0x7856 should be entered to put the part in full access mode.

Table B-9. FullAccessKey

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x61	R/W	FullAccessKey	Hex	4	0x0000 0000	0xffff ffff	_	_

Related Variable:

SBS:OperationStatus(0x54)[FAS]

B.16 PFKey (0x62)

This read- or write-block command allows the user to change the Permanent Failure Clear key. This function is only available when the bq20z40-R1/bq20z45-R1 is in the full-access mode, indicated by a cleared [FAS] flag.

The order of the bytes, when entered in *ManufacturerAccess*, is the reverse of what is written to or read from the part. For example, if the first and second words of the *PFKey* block-read return 0x1234 and 0x5678, then in *ManufacturerAccess*, 0x3412 and 0x7856 should be entered to clear a permanent failure.

Table B-10. PFKey

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x62	R/W	PFKey	Hex	4	0x0000 0000	0xffff ffff	_	_

Related Variable:

SBS:OperationStatus(0x54)[FAS]

B.17 AuthenKey3 (0x63)

This read- or write-block command stores byte 12–byte 15 of the 16-byte-long authentication key. This function is only available when the bq20z40-R1/bq20z45-R1 is in the full-access mode, indicated by a cleared [FAS] flag.

Table B-11. AuthenKey3

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x63	R/W	AuthenKey3	Hex	4	0x0000 0000	0xffff ffff	0x1032 5476	_

Related Variables:

- SBS:AuthenKey2(0x64)
- SBS:AuthenKey1(0x65)
- SBS:AuthenKey0(0x66)

B.18 AuthenKey2 (0x64)

This read- or write-block command stores byte 8-byte 11 of the 16-byte-long authentication key. This function is only available when the bq20z40-R1/bq20z45-R1 is in the full-access mode, indicated by a cleared [FAS] flag.

Table B-12. AuthenKey2

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x64	R/W	AuthenKey2	Hex	4	0x0000 0000	0xffff ffff	0x98ab dcfe	

AuthenKey1 (0x65) www.ti.com

Related Variables:

- SBS:AuthenKey3(0x63)
- SBS:AuthenKey1(0x65)
- SBS:AuthenKey0(0x66)

B.19 AuthenKey1 (0x65)

This read- or write-block command stores byte 4–byte 7 of the 16-byte-long authentication key. This function is only available when the bq20z40-R1/bq20z45-R1 is in the full-access mode, indicated by a cleared [FAS] flag.

Table B-13. AuthenKey1

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x65	R/W	AuthenKey1	Hex	4	0x0000 0000	0xffff ffff	0xdfce ab89	_

Related Variables:

- SBS:AuthenKey3(0x63)
- SBS:AuthenKey2(0x64)
- SBS:AuthenKey0(0x66)

B.20 AuthenKey0 (0x66)

This read- or write-block command stores byte 0-byte 3 of the 16-byte-long authentication key. This function is only available when the bq20z40-R1/bq20z45-R1 is in the full-access mode, indicated by a cleared [FAS] flag.

Table B-14. AuthenKey0

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x66	R/W	AuthenKey0	Hex	4	0x0000 0000	0xffff ffff	0x6745 2301	_

Related Variables:

- SBS:AuthenKey3(0x63)
- SBS:AuthenKey2(0x64)
- SBS:AuthenKey1(0x65)

B.21 SafetyStatus2 (0x69)

This read word function returns the status of the 1st level safety features.

See 1st Level Protection Features, Section 2.2, for further details.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	RSVD							
Low Byte	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	OT2D	OT2C

LEGEND: All values read-only. RSVD = Reserved

Figure B-7. SafetyStatus2

OT2D— 1 = Discharge overtemperature condition on TS2

OT2C— 1 = Charge overtemperature condition on TS2

Related Variables:

SBS:SafetyStatus(0x51)

www.ti.com PFStatus2 (0x6b)

B.22 PFStatus2 (0x6b)

The permanent failure status register indicates the source of the bq20z40-R1/bq20z45-R1 permanent failure condition.

Any new permanent failure is added to **Saved PF Flags 1** or **Saved PF Flags 2** register to show all permanent failures that have occurred.

See 2nd Level Protection Features, Section 2.3 for further details.

Related Variables:

- DF:Configuration:Registers(64):Permanent Fail Cfg 1..2(6..8)
- DF:PF Status:Device Status Data(96):Saved PF Flags 1..2(0..2)
- DF:PF Status:Device Status Data(96): Saved 1st PF Flag 1..2(32..34)
- SBS:PFStatus(0x53)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	RSVD							
Low Byte	RSVD	RSVD	RSVD	RSVD	RSVD	SOT2D	SOT2C	CIM_A

LEGEND: All values read-only. RSVD = Reserved

Figure B-8. PFStatus2

CIM_A— 1 = Cell-Imbalance (Active method) permanent failure

SOT2D— 1 = Discharge Safety Overtemperature on TS2 permanent failure

SOT2C— 1 = Charge Safety Overtemperature in TS2 permanent failure

B.23 ManufBlock1..4 (0x6c..0x6f)

These read/write commands are used to access four 20-byte locations *Manuf Block 1..4* that contain manufacturer data. These commands are available in sealed and unsealed modes. See the bq20z40-R1/bq20z45-R1 data sheets (SLUS801, SLUS800) for allowable number of write cycles.

Table B-15. ManufBlock1..4

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x6c	R/W	ManufBlock1	String	20	_	_	_	_
0x6d	R/W	ManufBlock2	String	20	_	_	_	_
0x6e	R/W	ManufBlock3	String	20	_	_	_	_
0x6f	R/W	ManufBlock4	String	20	_	_	_	_

Related Variables:

DF:System Data:Manufacturer Info(58):Manuf. Block 1..4(32..92)

ManufacturerInfo (0x70) www.ti.com

B.24 ManufacturerInfo (0x70)

This read/write block function returns the data stored in *Manuf. Info* where byte 0 is the MSB with a maximum length of 31 data + 1 length byte. This command is also accessible in Sealed mode. See the bq20z40-R1/bq20z45-R1 data sheets (<u>SLUS801</u>, <u>SLUS800</u>) for allowable number of write cycles.

Table B-16. ManfacturerInfo

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x70	R/W	ManufacturerInfo	String	31	_			1

Related Variables:

- DF:System Data:Manufacturer Info(58):Manuf. Info(0)
- SBS:OperationStatus(0x54)[SS],[FAS]

B.25 SenseResistor (0x71)

This read- or write-word command allows the user to change the sense resistor value used in $\mu\Omega$. The bq20z40-R1/bq20z45-R1 automatically updates the associated calibration data on receipt of a new sense resistor value.

Table B-17. SenseResistor

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x71	R/W	SenseResistor	Unsigned integer	2	0	65,535	10,000	μΩ

B.26 TempRange (0x72)

This read-word function returns the present temperature range in effect.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	RSVD							
Low Byte	RSVD	RSVD	TR5	TR4	TR3	TR2A	TR2	TR1

LEGEND: All values read-only. RSVD = Reserved

Figure B-9. TempRange

- TR1 1 = temperature range 1: Temperature < JT1
- TR2 1 = temperature range 2: JT1 < Temperature < JT2
- TR2A − 1 = temperature range 3: JT2 < Temperature < JT2a
- TR3 − 1 = temperature range 4: JT2a < Temperature < JT3
- TR4 1 = temperature range 5: JT3 < Temperature < JT4
- TR5 1 = temperature range 6: JT4 < Temperature

LifetimeData (0x73) www.ti.com

B.27 LifetimeData (0x73)

This read-block function returns first part of the lifetime data, including lifetime temperature samples.

Table B-18. LifetimeData Block Format

Byte	Data	Byte	Data
0	Lifetime Temp Max	16	Lifetime Max Chg Power
1		17	
2	Lifetime Min Temp	18	Lifetime Max Dsg Power
3		19	
4	Lifetime Max Cell Voltage	20	Lifetime Max Avg Dsg Current
5		21	
6	Lifetime Min Cell Voltage	22	Lifetime Max Avg Dsg Power
7		23	
8	Lifetime Max Pack Voltage	24	Lifetime Avg Temp
9		25	
10	Lifetime Min Pack Voltage	26	LT Temp Samples
11		27	
12	Lifetime Max Chg Current	28	
13		29	
14	Lifetime Max Dsg Current	30	_
15		31	

B.28 DataFlashSubClassID (0x77)

This write word function sets the bq20z40-R1/bq20z45-R1 data flash subclass, where data can be accessed by following the DataFlashSubClass1..8 commands.

See Accessing Data Flash, Section C.1, for further information.

A NACK is returned to this command if the value of the class is outside of the allowed range. The subclasses are defined in the data flash.

Table B-19. DataFlashSubClassID

SBS Cmd.	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x77	W	DataFlashSubClas sID	Hex	2	0x0000	0xffff	_	_

Related Variable:

SBS:DataFlashSubClassPage1..8(0x78..0x7f)

B.29 DataFlashSubClassPage1..8 (0x78..0x7f)

These commands are used to access the consecutive 32-byte pages of each subclass. DataFlashSubClassPage1 gets bytes 0 to 31 of the subclass, DataFlashSubClassPage2 gets bytes 32 to 63, and so on.

NOTE: Any DF location deemed reserved responds with a *NACK* unless the bq20z40-R1/bq20z45-R1 is in the correct security state to allow access.

Table B-20. DataFlashSubClass1..8

SBS Cmd.	Mode	Name	Format	Size in Bytes	Subclass Offset	Subclass Offset	Default Value	Unit
0x78	R/W	DataFlashSubClassPage1	Hex	32	0	31	_	-
0x79	R/W	DataFlashSubClassPage2	Hex	32	32	63	-	_

Table B-20. DataFlashSubClass1..8 (continued)

SBS Cmd.	Mode	Name	Format	Size in Bytes	Subclass Offset	Subclass Offset	Default Value	Unit
0x7a	R/W	DataFlashSubClassPage3	Hex	32	64	95	_	-
0x7b	R/W	DataFlashSubClassPage4	Hex	32	96	127	-	-
0x7c	R/W	DataFlashSubClassPage5	Hex	32	128	159	-	-
0x7d	R/W	DataFlashSubClassPage6	Hex	32	160	191	_	-
0x7e	R/W	DataFlashSubClassPage7	Hex	32	192	223	-	-
0x7f	R/W	DataFlashSubClassPage8	Hex	32	224	255	_	-

Related Variable:

• SBS:DataFlashSubClassID(0x77)

B.30 Extended SBS Command Values

Table B-21. EXTENDED SBS COMMANDS

SBS Cmd	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x45	R	AFEData	String	11+1	_	_	_	ASCII
0x46	R/W	FETControl	hex	2	0x00	0xff	_	<u> </u>
0x4f	R	StateOfHealth	hex	2	0x0000	0xffff	_	_
0x51	R	SafetyStatus	hex	2	0x0000	0xffff	_	_
0x53	R	PFStatus	hex	2	0x0000	0xffff	_	_
0x54	R	OperationStatus	hex	2	0x0000	0xffff	_	_
0x55	R	ChargingStatus	hex	2	0x0000	0xffff	_	_
0x57	R	ResetData	hex	2	0x0000	0xffff	_	_
0x58	R	WDResetData	unsigned int	2	0	65535	_	_
0x5a	R	PackVoltage	unsigned int	2	0	65535	_	mV
0x5d	R	AverageVoltage	unsigned int	2	0	65535	_	mV
0x5e	R	TS1Temperature	integer	2	-400	1200	_	0.1°C
0x5f	R	TS2Temperature	integer	2	-400	1200	_	0.1°C
0x60	R/W	UnSealKey	hex	4	0x00000000	0xfffffff	_	<u> </u>
0x61	R/W	FullAccessKey	hex	4	0x00000000	0xfffffff	_	_
0x62	R/W	PFKey	hex	4	0x00000000	0xfffffff	_	_
0x63	R/W	AuthenKey3	hex	4	0x00000000	0xfffffff	_	_
0x64	R/W	AuthenKey2	hex	4	0x00000000	0xfffffff	_	_
0x65	R/W	AuthenKey1	hex	4	0x0000000	0xfffffff	_	_
0x66	R/W	AuthenKey0	hex	4	0x00000000	0xfffffff	_	_
0x69	R	SafetyStatus2	hex	2	0x0000	0x000f	_	_
0x6b	R	PFStatus2	hex	2	0x0000	0x000f	_	_
0x6c	R/W	ManufBlock1	string	20	_	_	_	_
0x6d	R/W	ManufBlock2	string	20	_	_	_	_
0x6e	R/W	ManufBlock3	string	20	_	_	_	_
0x6f	R/W	ManufBlock4	string	20	_	_	_	_
0x70	R/W	ManufacturerInfo	String	31+1	_	_	_	_
0x71	R/W	SenseResistor	unsigned int	2	0	65535	_	μΩ
0x72	R	TempRange	hex	2	0x0000	0xffff		_
0x73	R	LifetimeData	String	32+1	_	_	_	1 —

Table B-21. EXTENDED SBS COMMANDS (continued)

SBS Cmd	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x77	R/W	DataFlashSubClassID	hex	2	0x0000	0xffff	_	_
0x78	R/W	DataFlashSubClassPage1	hex	32	_	_		_
0x79	R/W	DataFlashSubClassPage2	hex	32	_	_		_
0x7a	R/W	DataFlashSubClassPage3	hex	32	_	_		_
0x7b	R/W	DataFlashSubClassPage4	hex	32	_	_		_
0x7c	R/W	DataFlashSubClassPage5	hex	32	_	_		_
0x7d	R/W	DataFlashSubClassPage6	hex	32	_	_		_
0x7e	R/W	DataFlashSubClassPage7	hex	32	_	_	_	_
0x7f	R/W	DataFlashSubClassPage8	hex	32	_	_		_

Data Flash

CAUTION

Care should be taken when mass programming the data flash space using previous versions of data flash memory map files (such as *.gg files) to ensure all public locations are updated correctly.

Data flash can only be updated if *Voltage* ≥ *Flash Update OK Voltage* or *PackVoltage* ≥ *Charger Present*. Data flash reads and writes are verified according to the method detailed in *2nd Level Protection Features*, Section 2.3 of this technical reference.

Note: Data flash updates are disabled when the [PF] SafetyStatus flag is set.

C.1 Accessing Data Flash

In different security modes, the data flash access conditions change. See *ManufacturerAccess*, Section A.1, and *Security*, Section 2.8, for further details.

SECURITY MODE	NORMAL DATA FLASH ACCESS
BootROM	N/A
Full Access	R/W
Unsealed	R/W
Sealed	N/A

C.1.1 Data Flash Interface

The bq20z40-R1/bq20z45-R1 data flash is organized into subclasses where each data flash variable is assigned an offset within its numbered subclass. For example: the *Pre-chg Temp* threshold location is defined as:

- Class = Charge Control
- SubClass = Pre-Charge Cfg = 33
- Offset = 2

Note: Data flash commands are NACKed if the bq20z40-R1/bq20z45-R1 is in sealed mode ([SS] flag is set).

Each subclass can be addressed individually by using the *DataFlashSubClassID* command, and the data within each subclass is accessed by using the *DataFlashSubClassPage1..8* commands.

Reading and writing subclass data are block operations which are each 32 bytes long. Data can be written in shorter block sizes, however. The final block in one subclass can be shorter than 32 bytes, so care must be taken not to write over the subclass boundary. None of the values written are bounded by the bq20z40-R1/bq20z45-R1, and the values are not rejected by the gas gauge. Writing an incorrect value may result in hardware failure due to firmware program interpretation of the invalid data. The data written is persistent, so a power-on reset does not resolve the fault.

- SBS:DataFlashSubClassID(0x77)
- SBS:DataFlashSubClassPage1..8(0x78..0x7f)

Accessing Data Flash www.ti.com

C.1.2 Reading a SubClass

Information required:

- SubClassID
- Number of bytes in the subclass
- Variable Offset

Procedure:

- 1. Write the SubClassID to bq20z40-R1/bq20z45-R1 using DataFlashSubClassID command.
- Read a block of data using DataFlashSubClassPage1..8 command. A subclass can hold up to 256 bytes of data, but subclass data can only be read in 32-byte-long data blocks. The DataFlashSubClassPage1 command reads only the first 32 bytes in a subclass, the DataFlashSubClassPage2 command reads the second 32 bytes in a subclass, and so on. For example if the subclass has 40 bytes, DataFlashSubClassPage1 + DataFlashSubClassPage2 is needed to read the whole subclass.

C.1.3 Writing a SubClass

Information required:

- SubClassID
- Number of bytes in the subclass
- 32 bytes of initialized data to be written. Fewer than 32 bytes is acceptable if a subclass contains less than 32 bytes in the last block.

Procedure:

- 1. Write the SubClassID to bq20z40-R1/bq20z45-R1 using DataFlashSubClassID command.
- 2. Write a block of data using DataFlashSubClassPage1..8 command. A subclass can hold up to 256 bytes of data, but subclass data can only be write in 32 byte long data blocks. The DataFlashSubClassPage1 command writes only the first 32 bytes in a subclass, the DataFlashSubClassPage2 command writes the second 32 bytes in a subclass, and so on. For example, if the subclass has 40 bytes and data in offset 34 of the subclass must be changed, use DataFlashSubClassPage2 to write data from bytes 33–40 of the subclass.

C.1.4 Example

To write the value of *Term Voltage* to a value of 8.7 V the following sequence is used.

Read complete Gas Gauging-IT Config subclass (SubclassID = 80) into RAM:

- Write Subclass ID
 - SMB Slave Address (0x16)
 - SMB CMD 0x77 with 0x0050 as data (=80 decimal)
- Read Subclass (two blocks are needed, because it is over 32 bytes long)
 - SMBSlave Address (0x16)
 - SMB CMD 0x78 receiving 32 bytes of data
 - SMB CMD 0x79 receiving 32 bytes of data

Overwrite offset 45 of received data with 8.7 V:

Update offset 45 of second block with 0x21fc (=8700 decimal)

Write the complete subclass back to the bg20z40-R1/bg20z45-R1:

- Write Subclass ID
 - SMB Slave Address (0x16)
 - SMB CMD 0x77 with 0x0050 as data
- Write Subclass
 - SMB Slave Address (0x17)
 - SMB CMD 0x78 with 32 bytes of data
 - SMB CMD 0x79 with 32 bytes of data

www.ti.com 1st Level Safety Class

Alternatively, only the required block rather than the full subclass can be accessed.

Read required block of Gas Gauging-IT Config subclass (SubclassID = 80) into RAM:

- Write Subclass ID
 - SMB Slave Address (0x17)
 - SMB CMD 0x77 with 0x0050 as data (=80 decimal)
- · Read Subclass (second block is needed, because its offset is 45)
 - SMB Slave Address (0x16)
 - SMB CMD 0x79 receiving 32 bytes of data

Overwrite offset (45 - 32 = 13) of received data with 8.7 V:

• Update offset 45 with 0x21fc (=8700 decimal)

Write the updated block back to the bq20z40-R1/bq20z45-R1:

- Write Subclass ID
 - SMB Slave Address (0x17) SMB CMD 0x77 with 0x0050 as data
- Write Subclass
 - SMB Slave Address (0x17)
 - SMB CMD 0x79 with 32 bytes of data

C.2 1st Level Safety Class

C.2.1 Voltage (Subclass 0)

C.2.1.1 LT COV Threshold (Offset 0)

When the bq20z40-R1/bq20z45-R1 is operating in the low temperature range (see Section 2.1 "JEITA Temperature Ranges"), it sets the *[COV]* flag in *SafefyStatus* if any *CellVoltage4..1* is equal to or higher than the *LT COV Threshold* for a period of 2 s.

Table C-1. LT COV Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit	
0	Voltage	0	LT COV Threshold	Integer	2	3700	5000	4300	mV	

Related Variables:

- DF:1st Level Safety:Voltage(0):LT COV Recovery(2)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:SafetyStatus(0x51)[COV]
- SBS:TempRange(0x72)

C.2.1.2 LT COV Recovery (Offset 2)

When the bq20z40-R1/bq20z45-R1 is operating in the low temperature range it recovers from a cell overvoltage condition if all cell voltages are lower than the *LT COV Recovery* threshold level.

Table C-2. LT COV Recovery

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0	Voltage	2	LT COV Recovery	Integer	2	0	4400	4100	mV

1st Level Safety Class www.ti.com

Related Variables:

- DF:1st Level Safety:Voltage(0):LT COV Threshold(0)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:SafetyStatus(0x51)[COV]
- SBS:TempRange(0x72)

C.2.1.3 ST COV Threshold (Offset 4)

When the bq20z40-R1/bq20z45-R1 is operating in the standard temperature range 1 or 2 (see Section 2.1 "JEITA Temperature Ranges"), it sets the [COV] flag in SafefyStatus if any CellVoltage4..1 is equal to or higher than the **ST COV Threshold** for a period of 2 s.

Table C-3. ST COV Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0	Voltage	4	ST COV Threshold	Integer	2	3700	5000	4500	mV

Related Variables:

- DF:1st Level Safety:Voltage(0):ST COV Recovery(6)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:SafetyStatus(0x51)[COV]
- SBS:TempRange(0x72)

C.2.1.4 ST COV Recovery (Offset 6)

When the bq20z40-R1/bq20z45-R1 is operating in the standard temperature range 1 or 2, it recovers from a cell overvoltage condition if all cell voltages are lower than the *ST COV Recovery* threshold level.

Table C-4. ST COV Recovery

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0	Voltage	6	ST COV Recovery	Unsigned integer	2	0	4400	4300	mV

Related Variables:

- DF:1st Level Safety:Voltage(0):ST COV Threshold(4)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:SafetyStatus(0x51)[COV]
- SBS:TempRange(0x72)

C.2.1.5 HT COV Threshold (Offset 8)

When the bq20z40-R1/bq20z45-R1 is operating in the high temperature range (see Section 2.1 "JEITA Temperature Ranges"), it sets the [COV] flag in SafefyStatus if any CellVoltage4..1 is equal to or higher than the **HT COV Threshold** for a period of 2 s.

www.ti.com 1st Level Safety Class

Table C-5. HT COV Threshold

Subc	lass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
	0	Voltage	8	HT COV Threshold	Integer	2	3700	5000	4400	mV

Related Variables:

- DF:1st Level Safety:Voltage(0):HT COV Recovery(10)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:SafetyStatus(0x51)[COV]
- SBS:TempRange(0x72)

C.2.1.6 HT COV Recovery (Offset 10)

When the bq20z40-R1/bq20z45-R1 is operating in the high temperature range, it recovers from a cell overvoltage condition if all cell voltages are lower than the *HT COV Recovery* threshold level.

Table C-6. HT COV Recovery

Subcla	ss ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0		Voltage	10	HT COV Recovery	Integer	2	0	4400	4000	mV

Related Variables:

- DF:1st Level Safety:Voltage(0):HT COV Threshold(8)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:SafetyStatus(0x51)[COV]
- SBS:TempRange(0x72)

C.2.1.7 CUV Threshold (Offset 13)

The bq20z40-R1/bq20z45-R1 sets [CUV] SafetyStatus if any CellVoltage4..1 is equal to or lower than the **CUV Threshold** for a period of 2 s.

Table C-7. CUV Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0	Voltage	13	CUV Threshold	Unsigned integer	2	0	3500	2200	mV

- DF:1st Level Safety:Voltage(0):CUV Time(15)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)

1st Level Safety Class www.ti.com

C.2.1.8 CUV Recovery (Offset 16)

The bq20z40-R1/bq20z45-R1 recovers from a cell undervoltage condition if all *CellVoltage4..1* are higher than the *CUV Recovery* threshold (and a charge current is detected if the *CUV_RECOV_CHG* bit is set).

Table C-8. CUV Recovery

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0	Voltage	16	CUV Recovery	Unsigned integer	2	0	3600	3000	mV

- DF:1st Level Safety:Voltage(0):CUV Threshold(13)
- SBS:Charging Current(0x14)
- SBS:Charging Voltage(0x15)
- SBS:BatteryStatus(0x16)[TDA],[FD]
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:SafetyStatus(0x51)[CUV]
- SBS:OperationStatus(0x54)[XDSG]

www.ti.com 1st Level Safety Class

C.2.2 Current (Subclass 1)

C.2.2.1 OC (1st Tier) Chg (Offset 0)

The bq20z40-R1/bq20z45-R1 sets [OCC] SafetyStatus if charge Current is equal to or higher than the **OC** (1st Tier) Chg threshold for a period of 2 s.

Table C-9. OC (1st Tier) Chg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
1	Current	0	OC (1st Tier) Chg	Unsigned integer	2	0	20,000	6000	mA

Related Variables:

- SBS:Current(0x0a)
- SBS:SafetyStatus(0x51)[OCC]

C.2.2.2 OC (1st Tier) Dsg (Offset 5)

The bq20z40-R1/bq20z45-R1 sets [OCD] SafetyStatus if the discharge Current is equal to or higher than the **OC** (1st Tier) **Dsg** threshold for a period of 2 s.

Table C-10. OC (1st Tier) Dsg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
1	Current	5	OC (1st Tier) Dsg	Unsigned integer	2	0	20,000	6000	mA

Related Variables:

- SBS:Current(0x0a)
- SBS:SafetyStatus(0x51)[OCD]

C.2.2.3 Current Recovery Time (Offset 16)

Current Recovery Time sets the minimum time period where *AverageCurrent* must be below the overcurrent charge/discharge recovery threshold to recover from an overcurrent charge/discharge condition.

Table C-11. Current Recovery Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
1	Current	16	Current Recovery Time	Unsigned integer	1	0	240	8	S

Related Variables:

- DF:1st Level Safety:Current(1):OC Chg Recovery(3)
- DF:1st Level Safety:Current(1):OC Dsg Recovery(8)
- SBS:AverageCurrent(0x0b)

C.2.2.4 AFE OC Dsg (Offset 17)

The AFE OC Dsg threshold sets the OLV register of the AFE.

Table C-12. AFE OC Dsg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
1	Current	17	AFE OC Dsg	Hex	1	0x00	0xff	0x12	_

1st Level Safety Class www.ti.com

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Low Byte	RSVD	RSVD	RSVD	OLV4	OLV3	OLV2	OLV1	OLV0

LEGEND: RSVD = Reserved and must be programmed to 0

Figure C-1. OLV Register

OLV4, OLV3, OLV2, OLV1, OLV0— Sets the overload voltage threshold of the AFE

0x00-0x1f = sets the voltage threshold between 50 mV and 205 mV in 5-mV steps.

Related Variable:

DF:1st Level Safety:Current(1):AFE OC Dsg Time(18)

C.2.2.5 AFE OC Dsg Time (Offset 18)

The **AFE OC Discharge Time** is programmed into the OLT register of the AFE. If an overcurrent discharge condition is reported by the AFE, *ChargingCurrent* is set to 0, [TDA] in **BatteryStatus** is set, and [AOCD] in SafetyStatus is set.

Table C-13. AFE OC Time

Subclas ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
1	Current	18	AFE OC Dsg Time	Hex	1	0x00	0xff	0x0f	

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Low Byte	RSVD	RSVD	RSVD	RSVD	OLT3	OLT2	OLT1	OLT0

LEGEND: RSVD = Reserved and must be programmed to 0

Figure C-2. OLT Register

OLT3, OLT2, OLT1, OLT0— Sets the overload voltage delay of the AFE

0x00-0x0f = sets the overvoltage trip delay between 1 ms and 31 ms in 2-ms steps

Related Variables:

- DF:1st Level Safety:Current(1):AFE OC Dsg(17)
- SBS:ChargingCurrent(0x14)
- SBS:BatteryStatus(0x16)[TDA]
- SBS:SafetyStatus(0x51)[AOCD]

C.2.2.6 AFE SC Chg Cfg (Offset 21)

AFE SC Chg Cfg is programmed into the SCC register of the AFE. **AFE SC Chg Cfg** sets the short-circuit-in-charging voltage threshold and the short-circuit-in-charging delay of the AFE.

If the bq20z40-R1/bq20z45-R1 identifies a short-circuit-in-charging situation from the AFE, ChargingCurrent and ChargingVoltage are set to 0, [TCA] in BatteryStatus is set, and [SCC] in SafetyStatus is set.

Table C-14. AFE SC Chg Cfg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
1	Current	21	AFE SC Chg Cfg	Hex	1	0x00	0xff	0x77	_

www.ti.com 1st Level Safety Class

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Low Byte	SCCT3	SCCT2	SCCT1	SCCT0	SCCV3	SCCV2	SCCV1	SCCV0

Figure C-3. SCC Register

SCCT3, SCCT2, SCCT1, SCCT0— Sets the short-circuit delay in charging of the AFE

0x0–0xf = sets the short-circuit-in-charging delay between 0 μs and 915 μs in 61-μs steps

SCCV3, SCCV2, SCCV1, SCCV0— Sets the short-circuit voltage threshold in charging of the AFE

0x0-0xf = sets the short-circuit voltage threshold between 0.1 V and 0.475 V in 25-mV steps

Related Variables:

- DF:1st Level Safety:Current(1):AFE SC Recovery(23)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[TCA]
- SBS:SafetyStatus(0x51)[SCC]

C.2.2.7 AFE SC Dsg Cfg (Offset 22)

The **AFE SC Dsg Cfg** is programmed into the SCD register of the AFE. The **AFE SC Dsg Cfg** sets the short-circuit-in-discharging voltage threshold and the short-circuit-in-discharging delay of the AFE.

If the bq20z40-R1/bq20z45-R1 identifies a short-circuit-in-discharging situation from the AFE, ChargingCurrent and ChargingVoltage are set to 0, [TDA] in BatteryStatus is set, [SCD] in SafetyStatus is set, and [XDSG] in OperationStatus is set.

Table C-15. AFE SC Dsg Cfg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
1	Current	22	AFE SC Dsg Cfg	Hex	1	0x00	0xff	0x77	_

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Low Byte	SCDT3	SCDT2	SCDT1	SCDT0	SCDV3	SCDV2	SCDV1	SCDV0

Figure C-4. SCD Register

SCDT3, SCDT2, SCDT1, SCDT0— Sets the short-circuit delay in discharging of the AFE

0x0–0xf = sets the short-circuit-in-discharging delay between 0 μs and 915 μs in 61-μs steps

SCDV3, SCDV2, SCDV1, SCDV0— Sets the short-circuit voltage threshold in discharging of the AFE

0x0-0xf = sets the short-circuit voltage threshold between 0.1 V and 0.475 V in 25-mV steps

- DF:1st Level Safety:Current(1):AFE SC Recovery(23)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[TDA]
- SBS:SafetyStatus(0x51)[SCD]
- SBS:OperationStatus(0x54)[XDSG]

1st Level Safety Class www.ti.com

C.2.3 Temperature (Subclass 2)

C.2.3.1 OT1 Chg Threshold (Offset 0)

The bq20z40-R1/bq20z45-R1 goes into an overtemperature charge condition and sets the *[OT1C]* flag in *SafetyStatus* if the pack *TS1 Temperature* is equal to or higher than the *OT1 Chg threshold* for a period of *OT1 Chg Time* during charging.

Table C-16. Over Temp Chg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	0	OT1 Chg Threshold	Integer	2	0	255	55	°C

Related Variables:

- DF:1st Level Safety:Temperature(2):OT1 Chg Time(2)
- SBS:TS1Temperature(0x5e)
- SBS:SafetyStatus(0x51)[OT1C]

C.2.3.2 OT1 Chg Time (Offset 2)

The bq20z40-R1/bq20z45-R1 goes into an overtemperature charge condition and sets the [OT1C] flag in SafetyStatus if the pack TS1 Temperature is equal to or higher than the OT1 Chg threshold for a period of OT1 Chg Time during charging. This function is disabled if OT1 Chg Time is set to 0.

Table C-17. OT Chg Time

,	Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
	2	Temperature	2	OT1 Chg Time	Unsigned integer	1	0	240	2	S

Related Variables:

- DF:1st Level Safety:Temperature(2):OT1 Chg Threshold(0)
- SBS:TS1Temperature(0x5e)
- SBS:SafetyStatus(0x51)[OT1C]

C.2.3.3 OT1 Chg Recovery (Offset 3)

The bq20z40-R1/bq20z45-R1 recovers from an overtemperature charge condition on TS1 if *TS1Temperature* is equal to or lower than the *OT1 Chg Recovery* level.

Table C-18. OT Chg Recovery

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	3	OT1 Chg Recovery	Integer	2	0	255	50	°C

Related Variables:

- DF:1st Level Safety:Temperature(2):OT1 Chg Threshold(0)
- SBS:TS1Temperature(0x5e)
- SBS:SafetyStatus(0x51)[OT1C]

C.2.3.4 OT2 Chg Threshold (Offset 5)

The bq20z40-R1/bq20z45-R1 goes into an overtemperature charge condition and sets the [OT2C] flag in SafetyStatus2 if the pack TS2Temperature is equal to or higher than the OT2 Chg threshold for a period of OT2 Chg Time during charging.

www.ti.com 1st Level Safety Class

Table C-19. Over Temp Chg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	5	OT2 Chg Threshold	Integer	2	0	255	55	°C

Related Variables:

- DF:1st Level Safety:Temperature(2):OT2 Chg Time(7)
- SBS:TS2Temperature(0x5f)
- SBS:SafetyStatus2(0x69)[OT2C]

C.2.3.5 OT2 Chg Time (Offset 7)

The bq20z40-R1/bq20z45-R1 goes into an overtemperature charge condition and sets the [OT2C] flag in SafetyStatus2 if the pack TS2Temperature is equal to or higher than the OT2 Chg threshold for a period of OT2 Chg Time during charging. This function is disabled if OT2 Chg Time is set to 0.

Table C-20. OT Chg Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	7	OT2 Chg Time	Unsigned integer	1	0	240	2	s

Related Variables:

- DF:1st Level Safety:Temperature(2):OT2 Chg Threshold (5)
- SBS:TS2Temperature(0x5f)
- SBS:SafetyStatus2(0x69)[OT2C]

C.2.3.6 OT2 Chg Recovery (Offset 8)

The bq20z40-R1/bq20z45-R1 recovers from an overtemperature charge condition on TS2 if *TS2Temperature* is equal to or lower than the *OT2 Chg Recovery* level.

Table C-21. OT Chg Recovery

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	8	OT2 Chg Recovery	Integer	2	0	255	50	°C

Related Variables:

- DF:1st Level Safety:Temperature(2):OT2 Chg Threshold(5)
- SBS:TS2Temperature(0x5f)
- SBS:SafetyStatus2(0x69)[OT2C]

C.2.3.7 OT1 Dsg Threshold (Offset 10)

The bq20z40-R1/bq20z45-R1 goes into an overtemperature discharge condition and sets the [OT1D] flag in SafetyStatus if the pack TS1Temperature is equal to or higher than the **OT1 Dsg threshold** for a period of **OT1 Dsg Time** during discharging.

Table C-22. OT1 Dsg Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	10	OT1 Dsg Threshold	Integer	2	0	255	60	°C

1st Level Safety Class www.ti.com

Related Variables:

- DF:1st Level Safety:Temperature(2):OT1 Dsg Time(12)
- SBS:TS1Temperature(0x5e)
- SBS:SafetyStatus(0x51)[OT1D]

C.2.3.8 OT1 Dsg Time (Offset 12)

The bq20z40-R1/bq20z45-R1 goes into an overtemperature discharge condition and sets the [OT1D] flag in SafetyStatus if the pack TS1Temperature is equal to or higher than the **OT1 Dsg threshold** for a period of **OT1 Dsg Time** during discharging.

Table C-23. OT1 Dsg Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	12	OT1 Dsg Time	Unsigned integer	1	0	240	2	S

Related Variables:

- DF:1st Level Safety:Temperature(2):OT1 Dsg Threshold(10)
- SBS:TS1Temperature(0x5e)
- SBS:SafetyStatus(0x51)[OT1D]

C.2.3.9 OT1 Dsg Recovery (Offset 13)

The bq20z40-R1/bq20z45-R1 recovers from an overtemperature discharge condition on TS1 if *TS1Temperature* equal to or lower than the *OT1 Dsg Recovery*.

Table C-24. OT1 Dsg Recovery

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	13	OT1 Dsg Recovery	Integer	2	0	255	55	°C

Related Variables:

- DF:1st Level Safety:Temperature(2):OT1 Dsg Threshold(10)
- SBS:TS1Temperature(0x5e)
- SBS:SafetyStatus(0x51)[OT1D]

C.2.3.10 OT2 Dsg Threshold (Offset 15)

The bq20z40-R1/bq20z45-R1 goes into an overtemperature discharge condition and sets the [OT2D] flag in SafetyStatus2 if the pack TS2Temperature is equal to or higher than the OT2 Dsg threshold for a period of OT2 Dsg Time during discharging.

Table C-25. OT2 Dsg Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	15	OT2 Dsg Threshold	Integer	2	0	255	60	°C

- DF:1st Level Safety:Temperature(2):OT2 Dsg Time(17)
- SBS:TS2Temperature(0x5f)
- SBS:SafetyStatus2(0x69)[OT2D]

www.ti.com 2nd Level Safety

C.2.3.11 OT2 Dsg Time (Offset 17)

The bq20z40-R1/bq20z45-R1 goes into an overtemperature discharge condition and sets the [OT2D] flag in SafetyStatus2 if the pack TS2Temperature is equal to or higher than the OT2 Dsg threshold for a period of OT2 Dsg Time during discharging.

Table C-26. OT2 Dsg Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	17	OT2 Dsg Time	Unsigned integer	1	0	240	2	s

Related Variables:

- DF:1st Level Safety:Temperature(2):OT2 Dsg Threshold(15)
- SBS:TS2Temperature(0x5f)
- SBS:SafetyStatus2(0x69)[OT2D]

C.2.3.12 OT2 Dsg Recovery (Offset 18)

The bq20z40-R1/bq20z45-R1 recovers from an overtemperature discharge condition on TS2 if *TS2Temperature* equal to or lower than the *OT2 Dsg Recovery*.

Table C-27. OT2 Dsg Recovery

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	18	OT2 Dsg Recovery	Integer	2	0	255	55	°C

Related Variables:

- DF:1st Level Safety:Temperature(2):OT2 Dsg Threshold(15)
- SBS:TS2Temperature(0x5f)
- SBS:SafetyStatus2(0x69)[OT2D]

C.2.3.13 Hi Dsg Start Temp (Offset 20)

If *Temperature* is above *Hi Dsg Start Temp* when starting discharge then discharge is inhibited. [DSGIN] flag in *OperationStatus* is set to indicate this condition.

Table C-28. Hi Dsg Start Temp

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
2	Temperature	20	Hi Dsg Start Temp	Integer	2	0	120	60	°C

Related Variables:

- SBS:Temperature(0x08)
- SBS:OperationStatus(0x54)[DSGIN]

C.3 2nd Level Safety

C.3.1 Voltage (Subclass 16)

C.3.1.1 LT SOV Threshold (Offset 0)

When the bq20z40-R1/bq20z45-R1 is operating in the low temperature charging range ([TR2] = 1), it sets the [SOV] flag in PFStatus if any CellVoltage4..1 is equal to or higher than the LT SOV Threshold for a period of SOV Time

2nd Level Safety www.ti.com

Table C-29. LT SOV Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	0	LT SOV Threshold	Integer	2	0	20000	4400	mV

Related Variables:

- DF:2nd Level Safety:Voltage(16):SOV Time(6)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:PFStatus(0x53)[SOV]
- SBS:TempRange(0x72)[TR2]

C.3.1.2 ST SOV Threshold (Offset 2)

When the bq20z40-R1/bq20z45-R1 is operating in the standard temperature charging range 1 or 2([TR2A] = 1, or [TR3] = 1), it sets the [SOV] flag in PFStatus if any CellVoltage4..1 is equal to or higher than the **ST SOV Threshold** for a period of **SOV Time**.

Table C-30. ST SOV Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	2	ST SOV Threshold	Integer	2	0	20000	4600	mV

Related Variables:

- DF:2nd Level Safety:Voltage(16):SOV Time(6)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:PFStatus(0x53)[SOV]
- SBS:TempRange(0x72)[TR2A][TR3]

C.3.1.3 HT SOV Threshold (Offset 4)

When the bq20z40-R1/bq20z45-R1 is operating in the high temperature charging range ([TR4] = 1), it sets the [SOV] flag in PFStatus if any CellVoltage4..1 is equal to or higher than the **HT SOV Threshold** for a period of **SOV Time**.

Table C-31. HT SOV Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	4	HT SOV Threshold	Integer	2	0	20000	4500	mV

- DF:2nd Level Safety:Voltage(16):SOV Time(6)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:PFStatus(0x53)[SOV]
- SBS:TempRange(0x72)[TR4]

www.ti.com 2nd Level Safety

C.3.1.4 SOV Time (Offset 6)

The bq20z40-R1/bq20z45-R1 sets the [SOV] flag in PFStatus and goes into a safety overvoltage condition if any CellVoltage4..1 is equal to or higher than the appropriate SOV threshold (depending on temperature range) for a period of SOV Time. If the [XSOV] bit in Permanent Fail Cfg 1 is set, the SAFE pin is driven high. This function is disabled if SOV Time is set to 0.

Table C-32, SOV Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	6	SOV Time	Unsigned integer	1	0	240	0	s

Related Variables:

- DF:2nd Level Safety:Voltage(16):LT SOV Threshold(0)
- DF:2nd Level Safety:Voltage(16):ST SOV Threshold(2)
- DF:2nd Level Safety:Voltage(16):HT SOV Threshold(4)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XSOV]
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:PFStatus(0x53)[SOV]

C.3.1.5 PF SOV Fuse Blow Delay (Offset 7)

In case of a safety overvoltage permanent failure condition, the assertion of the SAFE output (to blow a fuse) can be delayed to allow the battery to discharge to a safe level before blowing the fuse. A PF timer is started once an SOV PF event occurs. The SAFE output will be driven high (thus blowing the fuse) once this timer reaches **PF SOV Fuse Blow Delay**, or as soon as all cell voltages goes below the COV Recovery threshold for the current temperature range, whichever comes first.

Table C-33. PF SOV Fuse Blow Delay

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	7	PF SOV Fuse Blow Delay	Unsigned integer	2	0	65,535	0	S

Related Variables:

- DF:1st Level Safety:Voltage(0):LT COV Recovery(2)
- DF:1st Level Safety:Voltage(0):ST COV Recovery(6)
- DF:1st Level Safety:Voltage(0):HT COV Recovery(10)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XSOV]
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:PFStatus(0x53)[SOV]

C.3.1.6 SUV Threshold (Offset 9)

The bq20z40-R1/bq20z45-R1 sets the [SUV] flag in PFStatus if any CellVoltage4..1 is less than the SUV Threshold for a period of SUV Time.

2nd Level Safety www.ti.com

Table C-34. SUV Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	9	SUV Threshold	Integer	2	0	20000	2000	mV

Related Variables:

- DF:2nd Level Safety:Voltage(16):SUV Time(11)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:PFStatus(0x53)[SUV]

C.3.1.7 SUV Time (Offset 11)

The bq20z40-R1/bq20z45-R1 sets the [SUV] flag in PFStatus if any CellVoltage4..1 is less than the **SUV Threshold** for a period of **SUV Time**. If the **[XSUV]** bit in **Permanent Fail Cfg 1** is set, the SAFE pin is driven high. This function is disabled if **SUV Time** is set to 0.

Table C-35. SUV Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	11	SUV Time	Unsigned integer	1	0	240	0	S

Related Variables:

- DF:2nd Level Safety:Voltage(16):SUV Threshold(9)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XSUV]
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:PFStatus(0x53)[SUV]

C.3.1.8 Rest CIM Current (Offset 12)

The battery pack *Current* must be below the *Rest CIM Current* limit for *CIM Battery Rest Time* before the bq20z40-R1/bq20z45-R1 starts detecting cell imbalance at rest.

Table C-36. Rest CIM Current

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	12	Rest CIM Current	Unsigned integer	1	0	200	5	mA

- DF:2nd Level Safety:Voltage(16):CIM Battery Rest Time(16)
- SBS:Current(0x0a)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)

www.ti.com 2nd Level Safety

C.3.1.9 Rest CIM Fail Voltage (Offset 13)

When the conditions for detecting cell imbalance at rest are satisfied, the bq20z40-R1/bq20z45-R1 sets the [CIM_R] flag in PFStatus if the bq20z40-R1/bq20z45-R1 measures a difference between any CellVoltage4..1 equal to or higher than the **Rest CIM Fail Voltage** threshold for a period of **Rest CIM Time**.

Table C-37. Rest CIM Fail Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	13	Rest CIM Fail Voltage	Integer	2	0	5000	1000	mV

Related Variables:

- DF:2nd Level Safety:Voltage(16):Rest CIM Time(15)
- SBS:Current(0x0a)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:PFStatus(0x53)[CIM R]

C.3.1.10 Rest CIM Time (Offset 15)

When the conditions for detecting cell imbalance at rest are satisfied, the bq20z40-R1/bq20z45-R1 sets the [CIM_R] flag in PFStatus if the bq20z40-R1/bq20z45-R1 measures a difference between any CellVoltage4..1 equal to or higher than the Rest CIM Fail Voltage threshold for a period of Rest CIM Time. If [XCIM_R] in Permanent Fail Cfg 1 is set, the SAFE pin is also driven high. If Rest CIM Time is set to 0, then cell imbalance detection at rest is disabled.

Table C-38. Rest CIM Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	15	Rest CIM Time	Unsigned integer	1	0	240	0	s

Related Variables:

- DF:2nd Level Safety:Voltage(16):Rest CIM Fail Voltage(13)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XCIM_R]
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:PFStatus(0x53)[CIM_R]

C.3.1.11 CIM Battery Rest Time (Offset 16)

The battery *Current* must be below the *Rest CIM Current* limit for at least the *CIM Battery Rest Time* period before the bq20z40-R1/bq20z45-R1 starts detecting a cell imbalance at rest. Cell imbalance detection at rest is disabled if *CIM Battery Rest Time* is set to 0.

Table C-39. CIM Battery Rest Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	16	CIM Battery Rest Time	Unsigned integer	2	0	65,535	1800	S

2nd Level Safety www.ti.com

Related Variables:

- DF:2nd Level Safety:Voltage(16):Rest CIM Current(10)
- SBS:Current(0x0a)

C.3.1.12 Rest CIM Check Voltage (Offset 18)

For cell imbalance detection at rest, the bq20z40-R1/bq20z45-R1 starts detection only if any of the cell voltages (CellVoltage4..1) exceeds **Rest CIM Check Voltage**.

Table C-40. Rest CIM Check Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	18	Rest CIM Check Voltage	Unsigned integer	2	0	65,535	3000	mV

Related Variables:

- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)

C.3.1.13 Active CIM Fail Voltage (Offset 20)

When the conditions for detecting cell imbalance while active are satisfied, the bq20z40-R1/bq20z45-R1 sets the [CIM_A] flag in PFStatus2 if the bq20z40-R1/bq20z45-R1 measures a difference between any CellVoltage4..1 equal to or higher than the **Active CIM Fail Voltage** threshold for a period of **Active CIM Time**.

Table C-41. Active CIM Fail Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	20	Active CIM Fail Voltage	Integer	2	0	5000	1000	mV

Related Variables:

- DF:2nd Level Safety:Voltage(16):Active CIM Time(22)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:PFStatus2(0x6b)[CIM_A]

C.3.1.14 Active CIM Time (Offset 22)

When the conditions for detecting cell imbalance are satisfied, the bq20z40-R1/bq20z45-R1 sets the [CIM_A]filag in PFStatus2 if the bq20z40-R1/bq20z45-R1 measures a difference between any CellVoltage4..1 equal to or higher than the Active CIM Fail Voltage threshold for a period of Active CIM Time. If [XCIM_A] flag in Permanent Fail Cfg 2 is set, the SAFE pin is also driven high. If Active CIM Time is set to 0, then cell imbalance active detection is disabled.

Table C-42. Active CIM Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	22	Active CIM Time	Unsigned integer	1	0	240	0	s

www.ti.com 2nd Level Safety

Related Variables:

- DF:2nd Level Safety:Voltage(16):Active CIM Fail Voltage(20)
- DF:Configuration:Registers(64):Permanent Fail Cfg 2(8)[XCIM_A]
- SBS:PFStatus2(0x6b)[CIM_A]

C.3.1.15 Active CIM Check Voltage (Offset 23)

For active cell imbalance detection, the bq20z40-R1/bq20z45-R1 starts detection only if any of the cell voltages (CellVoltage4..1) exceeds *Active CIM Check Voltage*.

Table C-43. Active CIM Check Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	23	Active CIM Check Voltage	Unsigned integer	2	0	32,768	3000	mV

Related Variables:

- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)

C.3.1.16 PFIN Detect Time (Offset 25)

If the PFIN pin is logic low for a period of **PFIN Detect Time**, then [PFIN] flag in PFStatus is set. If **[XPFIN]** in **Permanent Fail Cfg 1** is set, the SAFE pin is also driven high. This function is disabled if **PFIN Detect Time** is set to 0.

Table C-44. PFIN Detect Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	25	PFIN Detect Time	Unsigned integer	1	0	240	0	S

Related Variables:

- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XPFIN]
- SBS:PFStatus(0x53)[PFIN]

C.3.1.17 PF Min Fuse Blow Voltage (Offset 26)

In case of a safety permanent failure condition other than charge FET or discharge FET faults (CFETF or DFETF), the assertion of the SAFE output (to blow a fuse) is conditional on pack voltage being greater than **PF Min Fuse Blow Voltage**. The purpose of the feature is to ensure that there is sufficient battery power for a clean fuse blow.

Table C-45. PF Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
16	Voltage	26	PF Min Fuse Blow Voltage	Unsigned integer	2	0	20,000	8000	S

- DF:1st Level Safety:Voltage(0):LT COV Recovery(2)
- DF:1st Level Safety:Voltage(0):ST COV Recovery(6)
- DF:1st Level Safety:Voltage(0):HT COV Recovery(10)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XSOV]
- SBS:CellVoltage4(0x3c)

2nd Level Safety www.ti.com

- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:PFStatus(0x53)[SOV]

C.3.2 Current (Subclass 17)

C.3.2.1 SOC Chg (Offset 0)

The bq20z40-R1/bq20z45-R1 sets the [SOCC] in PFStatus if Current is equal to or higher than the **SOC Chg** threshold for a period of **SOC Chg Time**.

Table C-46. SOC Chg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
17	Current	0	SOC Chg	Integer	2	0	30,000	10,000	mA

Related Variables:

- DF:2nd Level Safety:Current(17):SOC Chg Time(2)
- SBS:Current(0x0a)
- SBS:PFStatus(0x53)[SOCC]

C.3.2.2 SOC Chg Time (Offset 2)

The bq20z40-R1/bq20z45-R1 sets the [SOCC] in PFStatus if Current is equal to or higher than the **SOC** Chg threshold for a period of **SOC** Chg Time. If [XSOCC] in Permanent Fail Cfg 1 is set, the SAFE pin is driven high. This function is disabled if **SOC** Chg Time is set to 0.

Table C-47. SOC Chg Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
17	Current	2	SOC Chg Time	Unsigned integer	1	0	240	0	s

Related Variables:

- DF:2nd Level Safety:Current(17):SOC Chg(0)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XSOCC]
- SBS:Current(0x0a)
- SBS:PFStatus(0x53)[SOCC]

C.3.2.3 SOC Dsg (Offset 3)

The bq20z40-R1/bq20z45-R1 sets [SOCD] flag in *PFStatus* if discharge *Current* is equal to or higher than the (-)SOC Dsg threshold for a period of SOCD Dsg Time.

Table C-48. SOC Dsg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
17	Current	3	SOC Dsg	Integer	2	0	30,000	10,000	mA

- DF:2nd Level Safety:Current(17):SOC Dsg Time(5)
- SBS:Current(0x0a)
- SBS:PFStatus(0x53)[SOCD]

www.ti.com 2nd Level Safety

C.3.2.4 SOC Dsg Time (Offset 5)

The bq20z40-R1/bq20z45-R1 sets [SOCD] flag in PFStatus if discharge Current is equal to or higher than the (-)SOC Dsg threshold for a period of SOCD Dsg Time. If the [XSOCD] bit in Permanent Fail Cfg 1 is set, the SAFE pin is driven high. This function is disabled if SOCD Dsg Time is set to 0.

Table C-49. SOC Dsg Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
17	Current	5	SOC Dsg Time	Unsigned integer	1	0	240	0	S

Related Variables:

- DF:2nd Level Safety:Current(17):SOC Dsg(3)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XSOCD]
- SBS:Current(0x0a)
- SBS:PFStatus(0x53)[SOCD]

C.3.3 Temperature (Subclass 18)

C.3.3.1 SOT1 Chg Threshold (Offset 0)

The bq20z40-R1/bq20z45-R1 sets [SOT1C] flag in *PFStatus* if TS1Temperature is equal to or higher than the **SOT1 Chg Threshold** during charging ([DSG] = 0) for a period of **SOT1 Chg Time**.

Table C-50. SOT1 Chg Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
18	Temperature	0	SOT1 Chg Threshold	Integer	2	0	255	65	0.1°C

Related Variables:

- DF:2nd Level Safety:Temperature(18):SOT1 Chg Time(2)
- SBS:BatteryStatus(0x16)[DSG]
- SBS:PFStatus(0x53)[SOT1C]
- SBS:TS1Temperature(0x5e)

C.3.3.2 SOT1 Chg Time (Offset 2)

The bq20z40-R1/bq20z45-R1 sets [SOT1C] flag in PFStatus if TS1Temperature is equal to or higher than the SOT1 Chg Threshold during charging ([DSG] = 0) for a period of SOT1 Chg Time. If [XSOT1C] in Permanent Fail Cfg 1 is set, the SAFE pin is driven high. This function is disabled if SOT1 Chg Time is set to 0.

Table C-51. SOT1 Chg Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
18	Temperature	2	SOT1 Chg Time	Unsigned integer	1	0	240	0	S

- DF:2nd Level Safety:Temperature(18):SOT1 Chg Threshold(0)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XSOT1C]
- SBS:BatteryStatus(0x16)[DSG]
- SBS:PFStatus(0x53)[SOT1C]
- SBS:TS1Temperature(0x5e)

2nd Level Safety www.ti.com

C.3.3.3 SOT2 Chg Threshold (Offset 3)

The bq20z40-R1/bq20z45-R1 sets [SOT2C] flag in *PFStatus2* if TS2Temperature is equal to or higher than the **SOT2Chg Threshold** during charging ([DSG] = 0) for a period of **SOT2 Chg Time**.

Table C-52. SOT2 Chg Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
18	Temperature	3	SOT2 Chg Threshold	Integer	2	0	255	65	ô

Related Variables:

- DF:2nd Level Safety:Temperature(18):SOT2 Chg Time(5)
- SBS:BatteryStatus(0x16)[DSG]
- SBS:TS2Temperature(0x5f)
- SBS:PFStatus2(0x6b)[SOT2C]

C.3.3.4 SOT2 Chg Time (Offset 5)

The bq20z40-R1/bq20z45-R1 sets [SOT2C] flag in PFStatus2 if TS2Temperature is equal to or higher than the SOT2 Chg Threshold during charging ([DSG] = 0) for a period of SOT2 Chg Time. If [XSOT2C] in Permanent Fail Cfg 2 is set, the SAFE pin is driven high. This function is disabled if SOT2 Chg Time is set to 0.

Table C-53. SOT2 Chg Time

	Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
ſ	18	Temperature	5	SOT2 Chg Time	Unsigned integer	1	0	240	0	s

Related Variables:

- DF:2nd Level Safety:Temperature(18):SOT2 Chg Threshold(3)
- DF:Configuration:Registers(64):Permanent Fail Cfg 2(8)[XSOT2C]
- SBS:BatteryStatus(0x16)[DSG]
- SBS:TS2Temperature(0x5f)
- SBS:PFStatus2(0x6b)[SOT2C]

C.3.3.5 SOT1 Dsg Threshold (Offset 6)

The bq20z40-R1/bq20z45-R1 sets the [SOT1D] flag in PFAlert if TS1 Temperature is equal to or higher than the **SOT1 Dsg Threshold** during discharging ([DSG] = 1) for a period of **SOT1 Dsg Time**.

Table C-54. SOT1 Dsg Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
18	Temperature	6	SOT1 Dsg Threshold	Integer	2	0	255	75	°C

- DF:2nd Level Safety:Temperature(18):SOT1 Dsg Time(8)
- SBS:BatteryStatus(0x16)[DSG]
- SBS:PFStatus(0x53)[SOT1D]
- SBS:TS1Temperature(0x5e)

www.ti.com 2nd Level Safety

C.3.3.6 SOT1 Dsg Time (Offset 8)

The bq20z40-R1/bq20z45-R1 sets the [SOT1D] flag in PFAlert if TS1 temperature is equal to or higher than the SOT1 Dsg Threshold during discharging ([DSG] = 1) for a period of SOT1 Dsg Time. If [XSOT1D] in Permanent Fail Cfg 1 is set, the SAFE pin is driven high. This function is disabled if SOT1 Dsg Time is set to 0.

Table C-55. SOT1 Dsg Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
18	Temperature	8	SOT1 Dsg Time	Unsigned integer	1	0	240	0	S

Related Variables:

- DF:2nd Level Safety:Temperature(18):SOT1 Dsg Threshold(6)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XSOT1D]
- SBS:BatteryStatus(0x16)[DSG]
- SBS:PFStatus(0x53)[SOT1D]
- SBS:TS1Temperature(0x5e)

C.3.3.7 SOT2 Dsg Threshold (Offset 9)

The bq20z40-R1/bq20z45-R1 sets the [SOT2D] flag in PFStatus2 if TS2Temperature is equal to or higher than the SOT2 Dsg Threshold during discharging ([DSG] = 1) for a period of SOT2 Dsg Time.

Table C-56. SOT2 Dsg Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
18	Temperature	9	SOT2 Dsg Threshold	Integer	2	0	255	75	°C

Related Variables:

- DF:2nd Level Safety:Temperature(18):SOT2 Dsg Time(11)
- SBS:BatteryStatus(0x16)[DSG]
- SBS:TS2Temperature(0x5f)
- SBS:PFStatus2(0x6b)[SOT2D]

C.3.3.8 SOT2 Dsg Time (Offset 11)

The bq20z40-R1/bq20z45-R1 sets the [SOT2D] flag in PFStatus2 if TS2Temperature is equal to or higher than the SOT2 Dsg Threshold during discharging ([DSG] = 1) for a period of SOT2 Dsg Time. If [XSOT2D] in Permanent Fail Cfg 2 is set, the SAFE pin is driven high. This function is disabled if SOT2 Dsg Time is set to 0.

Table C-57. SOT2 Dsg Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
18	Temperature	11	SOT2 Dsg Time	Unsigned integer	1	0	240	0	s

- DF:2nd Level Safety:Temperature(18):SOT2 Dsg Threshold(9)
- DF:Configuration:Registers(64):Permanent Fail Cfg 2(8)[XSOT2D]
- SBS:BatteryStatus(0x16)[DSG]
- SBS:TS2Temperature(0x5f)
- SBS:PFStatus2(0x6b)[SOT2D]

2nd Level Safety www.ti.com

C.3.4 FET Verification (Subclass 19)

C.3.4.1 FET Fail Time (Offset 2)

The bq20z40-R1/bq20z45-R1 sets [CFETF] in PFStatus if the it detects charge Current equal to or higher than 20 mA for a period of **FET Fail Time** when the CHG FET is supposed to be off. If **[XCFETF]** in **Permanent Fail Cfg 1** is set, the SAFE pin is driven high. This function is disabled if **FET Fail Time** is set to 0.

The bq20z40-R1/bq20z45-R1 sets [DFETF] in PFStatus if the bq20z40-R1/bq20z45-R1 detects discharge Current equal to or lower than the –20 mA for a period of FET Fail Time when the DSG FET is supposed to be off. If [XDFETF] in Permanent Fail Cfg is set, the SAFE pin is driven high. This function is disabled if FET Fail Time is set to 0.

Table C-58. FET Fail Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
19	AFE Verification	2	FET Fail Time	Unsigned integer	1	0	240	0	s

Related Variables:

- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XCFETF],[XDFETF]
- SBS:Current(0x0a)
- SBS:PFStatus(0x53)[CFETF],[DFETF]

C.3.5 AFE Verification (Subclass 20)

C.3.5.1 AFE Check Time (Offset 0)

The bq20z40-R1/bq20z45-R1 compares periodically, with a period of **AFE Check Time**, certain RAM content and expected control bit states of the AFE with the values stored in data flash. If an error is detected, the internal AFE fail counter is incremented. Set **AFE Check Time** to 0 to disable [AFE_P] faults.

Table C-59. AFE Check Time

Sı	ıbclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
	20	FET Verification	0	AFE Check Time	Unsigned integer	1	0	255	0	S

Related Variables:

- DF:2nd Level Safety:AFE Verification(20):AFE Fail Limit(1)
- DF:2nd Level Safety:AFE Verification(20):AFE Fail Recovery Time(2)
- SBS:SafetyStatus(0x51)[WDF]
- SBS:PFStatus(0x53)[AFE_P]

C.3.5.2 AFE Fail Limit (Offset 1)

If the internal AFE fail counter reaches **AFE Fail Limit**, the bq20z40-R1/bq20z45-R1 reports an [AFE_C] permanent failure, and if [XAFE_C] in **Permanent Fail Cfg 1** is set, the SAFE pin is driven high. This function is disabled if **AFE Fail Limit** is set to zero.

Table C-60. AFE Fail Limit

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
20	AFE Verification	1	AFE Fail Limit	Unsigned integer	1	0	255	0	_

www.ti.com 2nd Level Safety

Related Variables:

- DF:2nd Level Safety:AFE Verification(20):AFE Check Time(0)
- DF:2nd Level Safety:AFE Verification(20):AFE Fail Recovery Time(2)
- DF:Configuration:Registers(64):Permanent Fail Cfg 1(6)[XAFE_C]
- SBS:AFEData(0x45)
- SBS:PFStatus(0x53)[AFE_C]

C.3.5.3 AFE Fail Recovery Time (Offset 2)

The bq20z40-R1/bq20z45-R1 decrements the internal AFE fail counter by one each **AFE Fail Recovery Time** period to a minimum of zero.

Table C-61. AFE Fail Recovery Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit	
20	AFE Verification	2	AFE Fail Recovery Time	Unsigned integer	1	0	255	20	S	1

- DF:2nd Level Safety:AFE Verification(20):AFE Check Time(0)
- DF:2nd Level Safety:AFE Verification(20):AFE Fail Limit(1)

Charge Control www.ti.com

C.4 Charge Control

C.4.1 Charge Temp Cfg (Subclass 32)

C.4.1.1 JT1 (Offset 0)

JT1 is the lower bound of the low temperature charging range. If *Temperature* is below the **JT1** threshold, then [TR1] flag in *TempRange* is set and charging is inhibited from starting. If bq20z40-R1/bq20z45-R1 is in charge mode ([DSG] = 0), then charging is suspended, [CHGSUSP] flag in ChargingStatus is set, and ChargingCurrent and ChargingVoltage are set to 0.

Table C-62, JT1

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
32	Charge Temp Cfg	0	JT1	Integer	2	-40	120	0	°C

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[DSG]
- SBS:ChargingStatus(0x55)[CHGSUSP]
- SBS:TempRange(0x72)[TR1]

C.4.1.2 JT2 (Offset 2)

JT2 is the upper bound of the low temperature charging range and the lower bound of standard temperature charging range 1. If *Temperature* is between JT1 and JT2, then [TR2] flag in *TempRange* is set, Charging Voltage is set to LT Chg Voltage and ChargingCurrent is set to LT Chg Current 1, LT Chg Current 2, or LT Chg Current 3, depending on cell voltage (see Section 2.5.5).

Table C-63, JT2

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
32	Charge Temp Cfg	2	JT2	Integer	2	-40	120	12	0.1°C

Related Variables

- DF:Charge Control:Charge Temp Cfg(32):JT1(0)
- DF:Charge Control:Charge Cfg(34):LT Chg Voltage(0)
- DF:Charge Control:Charge Cfg(34):LT Chg Current1..3(2..6)
- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:TempRange(0x72)[TR2]

C.4.1.3 JT2a (Offset 4)

JT2a is the upper bound of the standard temperature charging range1 and the lower bound of standard temperature charging range 2. If Temperature is between JT2 and JT2a, then [TR2A] flag in TempRange is set, Charging Voltage is set to ST1 Chg Voltage and ChargingCurrent is set to ST1 Chg Current 1, ST1 Chg Current 2, or ST1 Chg Current 3, depending on cell voltage (see Section 2.5.5).

www.ti.com Charge Control

Table C-64, JT2a

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
32	Charge Temp Cfg	4	JT2a	Integer	2	-40	120	30	ပ္

Related Variables:

- DF:Charge Control:Charge Temp Cfg(32):JT2(2)
- DF:Charge Control:Charge Cfg(34):ST1 Chg Voltage(8)
- DF:Charge Control:Charge Cfg(34):ST1 Chg Current1..3(10..14)
- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:TempRange(0x72)[TR2A]

C.4.1.4 JT3 (Offset 6)

JT3 is the upper bound of the standard temperature charging range 2, and the lower bound of high temperature charging range. If *Temperature* is between JT2a and JT3, then [TR3] flag in *TempRange* is set, Charging Voltage is set to ST2 Chg Voltage and ChargingCurrent is set to ST2 Chg Current 1, ST2 Chg Current 2, or ST2 Chg Current 3, depending on cell voltage (see Section 2.5.5).

If Temperature is greater than JT3 and charging did not start ([DSG] = 1), then charging is inhibited from starting.

Table C-65. JT3

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
32	Charge Temp Cfg	6	JT3	Integer	2	-40	120	45	°C

Related Variables:

- DF:Charge Control:Charge Temp Cfg(32):JT2a(4)
- DF:Charge Control:Charge Cfg(34):ST2 Chg Voltage(16)
- DF:Charge Control:Charge Cfg(34):ST2 Chg Current1..3(18..22)
- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[DSG]
- SBS:TempRange(0x72)[TR3]

C.4.1.5 JT4 (Offset 8)

JT4 is the upper bound of the high temperature charging range. If Temperature is between JT3 and JT4, then [TR4] flag in TempRange is set, Charging Voltage is set to HT Chg Voltage and Charging Current is set to HT Chg Current 1, HT Chg Current 2, or HTChg Current 3, depending on cell voltage (see Section 2.5.5).

If *Temperature* is greater than **JT4** then [[TR5]] flag in *TempRange* is set. If bq20z40-R1/bq20z45-R1 is in charge mode ([DSG] = 0), then charging is suspended, [CHGSUSP] flag in ChargingStatus is set, and ChargingCurrent and ChargingVoltage are set to 0.

Table C-66. JT4

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
32	Charge Temp Cfg	8	JT4	Integer	2	-40	120	55	°C

Charge Control www.ti.com

Related Variables:

- DF:Charge Control:Charge Temp Cfg(32):JT3(6)
- DF:Charge Control:Charge Cfg(34):HT Chg Voltage(24)
- DF:Charge Control:Charge Cfg(34):HT Chg Current1..3(26..30)
- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:ChargingVoltage(0x15)
- SBS:BatteryStatus(0x16)[DSG]
- SBS:ChargingStatus(0x55)[CHGSUSP]
- SBS:TempRange(0x72)[TR4][TR5]

C.4.1.6 Temp Hys (Offset 10)

Temp Hys is used to make sure that transitions between temperature ranges are not affected by small transients on the temperature reading. For example, if the current temperature range is the standard temperature range 2 ([TR3] is set) and Temperature goes above **JT3** then the high temperature range is entered ([TR3] is cleared and [TR4] is set). Temperature has to fall below **JT3 - Temp Hys** for the bq20z40-R1/bq20z45-R1 to go back to the standard temperature range 2.

Table C-67. Temp Hys

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
32	Charge Temp Cfg	10	Temp Hys	Integer	2	0	10	1	ပ္

Related Variables:

- DF:Charge Control:Charge Temp Cfg(32):JT1(0)
- DF:Charge Control:Charge Temp Cfg(32):JT2(2)
- DF:Charge Control:Charge Temp Cfg(32):JT2a(4)
- DF:Charge Control:Charge Temp Cfg(32):JT3(6)
- DF:Charge Control:Charge Temp Cfg(32):JT4(8)
- SBS:Temperature(0x08)
- SBS:TempRange(0x72)

C.4.2 Pre-Charge Cfg (Subclass 33)

C.4.2.1 Pre-chg Voltage Threshold (Offset 0)

The bq20z40-R1/bq20z45-R1 enters pre-charge mode and sets the [PCHG] flag in ChargingStatus if any CellVoltage4..1 drops below the **Pre-chg Voltage Threshold**. In this mode, Charging Voltage is set to **LT Chg Voltage**, and Charging Current is set to **Pre-chg Current**.

Table C-68. Pre-chg Voltage Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit	
33	Pre-Charge Cfg	0	Pre-chg Voltage Threshold	Integer	2	0	20000	3000	mV	

- DF:Charge Control:Charge Cfg(34):LT Chg Voltage(0)
- DF:Charge Control:Pe-Charge Cfg(33):Pre-chg Current(4)
- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)

www.ti.com Charge Control

• SBS:ChargingStatus(0x55)[PCHG]

C.4.2.2 Pre-chg Recovery Voltage (Offset 2)

The bq20z40-R1/bq20z45-R1 leaves pre-charge mode and clears the [PCHG] flag in ChargingStatus if all CellVoltage4..1 are equal to or higher than the **Pre-chg Recovery Voltage** threshold.

Table C-69. Pre-chg Recovery Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
33	Pre-Charge Cfg	2	Pre-chg Recovery Voltage	Integer	2	0	20000	3100	mV

Related Variables:

- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)
- SBS:ChargingStatus(0x55)[PCHG]

C.4.3 Pre-chg Current (Offset 4)

The bq20z40-R1/bq20z45-R1 sets the *ChargingCurrent* to the *Pre-chg Current* value when in pre-charge mode.

Table C-70. Pre-chg Current

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
33	Pre-Charge Cfg	4	Pre-chg Current	Integer	2	0	2000	250	mA

Related Variables:

SBS:ChargingCurrent(0x14)

C.4.4 Charge Cfg (Subclass 34)

C.4.4.1 LT Chg Voltage (Offset 0)

The bq20z40-R1/bq20z45-R1 sets Charging Voltage to the LT Chg Voltage value when Temperature in is the low temperature charging range ([TR2] = 1).

Table C-71. LT Chg Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	0	LT Chg Voltage	Integer	2	0	20,000	12,000	mV

- SBS: Temperature(0x08)
- SBS: ChargingVoltage(0x15)
- SBS:TempRange(0x72)[TR2]

Charge Control www.ti.com

C.4.4.2 LT Chg Current 1 (Offset 2)

The bq20z40-R1/bq20z45-R1 sets *ChargingCurrent* to the *LT Chg Current 1* value when *Temperature* is in the low temperature charging range ([TR2] = 1) and max(CellVoltage4..1) is in the CVR1 range.

Table C-72. LT Chg Current 1

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	2	LT Chg Current 1	Integer	2	0	20,000	250	mA

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:TempRange(0x72)[TR2]

C.4.4.3 LT Chg Current 2 (Offset 4)

The bq20z40-R1/bq20z45-R1 sets *ChargingCurrent* to the *LT Chg Current 2* value when *Temperature* in the low temperature charging range ([TR2] = 1) and max(CellVoltage4..1) is in the CVR2 range.

Table C-73. LT Chg Current 2

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	4	LT Chg Current 2	Integer	2	0	20,000	250	mA

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:TempRange(0x72)[TR2]

C.4.4.4 LT Chg Current 3 (Offset 6)

The bq20z40-R1/bq20z45-R1 sets ChargingCurrent to the **LT Chg Current 3** value when Temperature in the low temperature charging range ([TR2] = 1) and max(CellVoltage4..1) is in the CVR3 range.

Table C-74. LT Chg Current 3

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	6	LT Chg Current 3	Integer	2	0	20,000	250	mA

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:TempRange(0x72)[TR2]

C.4.4.5 ST1 Chg Voltage (Offset 8)

The bq20z40-R1/bq20z45-R1 sets *ChargingVoltage* to the *ST1 Chg Voltage* value when *Temperature* is in the standard temperature charging range 1 (*[TR2A]* = 1).

Table C-75. ST1 Chg Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	8	ST1 Chg Voltage	Integer	2	0	20,000	16,800	mV

www.ti.com Charge Control

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingVoltage(0x15)
- SBS:TempRange(0x72)[TR2A]

C.4.4.6 ST1 Chg Current 1 (Offset 10)

The bq20z40-R1/bq20z45-R1 sets *ChargingCurrent* to the **ST1 Chg Current 1** value when *Temperature* is in the standard temperature charging range 1 ([TR2A] = 1) and max(CellVoltage4..1) is in the CVR1 range.

Table C-76. ST1 Chg Current 1

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	10	ST1 Chg Current 1	Integer	2	0	20,000	4,000	mA

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:TempRange(0x72)[TR2A]

C.4.4.7 ST1 Chg Current 2 (Offset 12)

The bq20z40-R1/bq20z45-R1 sets *ChargingCurrent* to the **ST1 Chg Current 2** value when *Temperature* is in the standard temperature charging range 1 ([TR2A] = 1) and max(CellVoltage4..1) is in the CVR2 range.

Table C-77. ST1 Chg Current 2

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	12	ST1 Chg Current 2	Integer	2	0	20,000	4,000	mA

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:TempRange(0x72)[TR2A]

C.4.4.8 ST1 Chg Current 3 (Offset 14)

The bq20z40-R1/bq20z45-R1 sets *ChargingCurrent* to the **ST1 Chg Current 3** value when *Temperature* is in the standard temperature charging range 1 ([TR2A] = 1) and max(CellVoltage4..1) is in the CVR3 range.

Table C-78. ST1 Chg Current 3

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	14	ST1 Chg Current 3	Integer	2	0	20,000	4,000	mA

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:TempRange(0x72)[TR2A]

Charge Control www.ti.com

C.4.4.9 ST2 Chg Voltage (Offset 16)

The bq20z40-R1/bq20z45-R1 sets *ChargingVoltage* to the **ST2 Chg Voltage** value when *Temperature* is in the standard temperature charging range 2 ([TR3] = 1).

Table C-79. ST2 Chg Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	16	ST2 Chg Voltage	Integer	2	0	20,000	16,800	mA

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingVoltage(0x15)
- SBS:TempRange(0x72)[TR3]

C.4.4.10 ST2 Chg Current 1 (Offset 18)

The bq20z40-R1/bq20z45-R1 sets *ChargingCurrent* to the **ST2 Chg Current 1** value when *Temperature* is in the standard temperature charging range 2 ([TR3] = 1) and max(CellVoltage4..1) is in the CVR1 range.

Table C-80. ST2 Chg Current 1

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	18	ST2 Chg Current 1	Integer	2	0	20,000	4,000	mA

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:TempRange(0x72)[TR3]

C.4.4.11 ST2 Chg Current 2 (Offset 20)

The bq20z40-R1/bq20z45-R1 sets *ChargingCurrent* to the **ST2 Chg Current 2** value when *Temperature* is in the standard temperature charging range 2 ([TR3] = 1) and max(CellVoltage4..1) is in the CVR2 range.

Table C-81. ST2 Chg Current 2

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	20	ST2 Chg Current 2	Integer	2	0	20,000	4,000	mA

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:TempRange(0x72)[TR3]

C.4.4.12 ST2 Chg Current 3 (Offset 22)

The bq20z40-R1/bq20z45-R1 sets *ChargingCurrent* to the **ST2 Chg Current 3** value when *Temperature* is in the standard temperature charging range 2 ([TR3] = 1) and max(CellVoltage4..1) is in the CVR3 range.

www.ti.com Charge Control

Table C-82. ST2 Chg Current 3

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	22	ST2 Chg Current 3	Integer	2	0	20,000	4,000	mA

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:TempRange(0x72)[TR3]

C.4.4.13 HT Chg Voltage (Offset 24)

The bq20z40-R1/bq20z45-R1 sets *ChargingVoltage* to the *HT Chg Voltage* value when *Temperature* is in the high temperature charging range ([TR4] = 1).

Table C-83. HT Chg Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	24	HT Chg Voltage	Integer	2	0	20,000	16,760	mV

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingVoltage(0x15)
- SBS:TempRange(0x72)[TR4]

C.4.4.14 HT Chg Current 1 (Offset 26)

The bq20z40-R1/bq20z45-R1 sets *ChargingCurrent* to the *HT Chg Current 1* value when *Temperature* is in the high temperature charging range ([TR4] = 1) and max(CellVoltage4..1) is in the CVR1 range.

Table C-84. HT Chg Current 1

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	26	HT Chg Current 1	Integer	2	0	20,000	3,800	mA

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:TempRange(0x72)[TR4]

C.4.4.15 HT Chg Current 2 (Offset 28)

The bq20z40-R1/bq20z45-R1 sets *ChargingCurrent* to the *HT Chg Current 2* value when *Temperature* is in the high temperature charging range ([TR4] = 1) and max(CellVoltage4..1) is in the CVR2 range.

Table C-85. HT Chg Current 2

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	28	HT Chg Current 2	Integer	2	0	20,000	3,800	mA

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)

Charge Control www.ti.com

SBS:TempRange(0x72)[TR4]

C.4.4.16 HT Chg Current 3 (Offset 30)

The bq20z40-R1/bq20z45-R1 sets ChargingCurrent to the **HT Chg Current 3** value when Temperature is in the high temperature charging range ([TR4] = 1) and max(CellVoltage4..1) is in the CVR3 range.

Table C-86. HT Chg Current 3

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	30	HT Chg Current 3	Integer	2	0	20,000	3,800	mA

Related Variables:

- SBS:Temperature(0x08)
- SBS:ChargingCurrent(0x14)
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:TempRange(0x72)[TR4]

C.4.4.17 Cell Voltage Threshold 1 (Offset 32)

The bq20z40-R1/bq20z45-R1 is in cell voltage range 1 (CVR1) when max(CellVoltage4..1) < Cell Voltage Threshold 1.

Table C-87. Cell Voltage Threshold 1

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	32	Cell Voltage Threshold 1	Integer	2	0	5,000	3,900	mV

Related Variables:

SBS:CellVoltage4..1(0x3c..0x3f)

C.4.4.18 Cell Voltage Threshold 2 (Offset 34)

The bq20z40-R1/bq20z45-R1 enters cell voltage range 2 (CVR2) when **Cell Voltage Threshold 1** < max(CellVoltage4..1) < **Cell Voltage Threshold 2**. The bq20z40-R1/bq20z45-R1 enters cell voltage range 3 (CVR3) when max(CellVoltage4..1) > **Cell Voltage Threshold 2**.

Table C-88. Cell Voltage Threshold 2

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	34	Cell Voltage Threshold 2	Integer	2	0	5,000	4,000	mV

Related Variables:

- DF:Charge Control:Charge Cfg(34):Cell Voltage Threshold 1(32)
- SBS:CellVoltage4..1(0x3c..0x3f)

C.4.4.19 Cell Voltage Thresh Hys (Offset 36)

Cell Voltage Thresh Hys is used to make sure that transitions between cell voltage ranges are not affected by small transients. For example, if the current cell voltage range is CVR2 and cell voltage goes above **Cell Voltage Threshold 2** then CVR3 is entered. Cell voltage has to fall below **Cell Voltage Threshold 2 – Cell Voltage Thresh Hys** for the bq20z40-R1/bq20z45-R1 to go back to CVR2 range.

www.ti.com Charge Control

Table C-89. Cell Voltage Thresh Hys

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
34	Charge Cfg	36	Cell Voltage Thresh Hys	Integer	2	0	1,000	10	mV

Related Variables:

- SBS:CellVoltage4..1(0x3c..0x3f)
- DF:Charge Control:Charge Cfg(34):Cell Voltage Threshold 1(32)
- DF:Charge Control:Charge Cfg(34):Cell Voltage Threshold 2(34)

C.4.5 Termination Cfg. (Subclass 36)

C.4.5.1 Taper Current (Offset 2)

For a valid primary charge termination, battery *Current* must fall below *Taper Current* for two consecutive 40 s time periods during charging.

Table C-90. Taper Current

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
36	Termination Cfg.	2	Taper Current	Integer	2	0	1000	250	mA

Related Variables:

SBS:Current(0x0a)

C.4.5.2 Taper Voltage (Offset 6)

For a valid primary charge termination, taper voltage condition needs to be met. Taper voltage condition is either cell voltage-based or pack voltage-based depending on the bit [CELL_TAPER] in **Operation Cfg C**.

- [CELL_TAPER] = 1: Max (CellVoltage4..1) + Taper Voltage ≥ ChargingVoltage / number of cells
- [CELL_TAPER] = 0: Voltage + **Taper Voltage** ≥ ChargingVoltage

Table C-91. Taper Voltage

Subcla: ID	s Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
36	Termination Cfg.	6	Taper Voltage	Integer	2	0	1000	75	mV

- DF:Configuration:Registers(64):Operation Cfg C(4)[CELL_TAPER]
- SBS:CellVoltage4..1(0x3c..0x3f)
- SBS:ChargingVoltage(0x15)

Charge Control www.ti.com

C.4.5.3 TCA Clear % (Offset 10)

When set between 0% and 100%, [TCA] in BatteryStatus is cleared if RelativeStateOfCharge is below **TCA Clear** %. Set **TCA Clear** % to -1 to disable this function.

Table C-92, TCA Clear %

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
36	Termination Cfg.	10	TCA Clear %	Integer	1	-1	100	95	%

Related Variables:

- SBS:RelativeStateOfCharge(0x0d)
- SBS:BatteryStatus(0x16)[TCA]

C.4.5.4 FC Clear % (Offset 12)

When set between 0% and 100%, *[FC]* in *BatteryStatus* is cleared if *RelativeStateOfCharge* reaches or falls below *FC Clear* %. Set *FC Clear* % to –1 to disable this function. It is recommended, however, not to set *FC Clear* % to –1.

Table C-93. FC Clear %

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
36	Termination Cfg.	12	FC Clear %	Integer	1	-1	100	98	%

Related Variables:

- SBS:RelativeStateOfCharge(0x0d)
- SBS:BatteryStatus(0x16)[FC]

C.4.6 Cell Balancing Cfg (Subclass 37)

C.4.6.1 Min Cell Deviation (Offset 0)

This value defines the conversion factor for calculating cell balancing time per cell, in units of balance time per mAh, before the bq20z40-R1/bq20z45-R1 starts balancing cell capacity during charging. If *Min Cell Deviation* is set to 0, cell balancing is disabled.

Table C-94. Min Cell Deviation

Subclas ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
37	Cell Balancing Cfg	0	Min Cell Deviation	Unsigned integer	2	0	65,535	1350	s/mAh

C.4.7 Charging Faults (Subclass 38)

C.4.7.1 Over Charge Capacity (Offset 13)

The bq20z40-R1/bq20z45-R1 goes into an overcharge fault and sets the [OC] flag in ChargingStatus if the internally counted remaining capacity exceeds FullChargeCapacity + Over Charge Capacity. The CHG FET and ZVCHG FET (if used) are turned off if the [OC] bit is set in Charge Fault Cfg.

Table C-95. Over Charge Capacity

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
38	Charging Faults	13	Over Charge Capacity	Integer	2	0	4000	300	mAh

www.ti.com Charge Control

Related Variables:

- DF:Charge Control:Charging Faults(38):Charge Fault Cfg(21)[OC]
- SBS:FullChargeCapacity(0x10)
- SBS:ChargingStatus(0x55)[OC]

C.4.7.2 Charge Fault Cfg (Offset 21)

This register sets the behavior of the charge, discharge, and zero-volt-charge FETs in fault conditions.

Table C-96. Charge Fault Cfg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
38	Charging Faults	21	Charge Fault Cfg	Hex	1	0x00	0xff	0x00	_

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Low Byte	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	OC	RSVD

LEGEND: RSVD = Reserved and must be programmed to 0

Figure C-5. Charge Fault Cfg Register

OC— If this bit is set, the CHG FET and ZVCHG FET (if used) are turned off when an overcharge fault occurs.

Related Variables:

DF:Charge Control:Charging Faults(38):Over Charge Capacity(13)

SBS Configuration www.ti.com

C.5 SBS Configuration

C.5.1 Data (Subclass 48)

C.5.1.1 Rem Cap Alarm (Offset 0)

When [CapM] in BatteryStatus is set to 0, the default value of RemainingCapacityAlarm is stored in **Rem** Cap Alarm and copied to the SBS value on bq20z40-R1/bq20z45-R1 initialization.

Table C-97. Rem Cap Alarm

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	0	Rem Cap Alarm	Integer	2	0	700	300	mAh

Related Variable:

SBS:RemainingCapacityAlarm(0x01)

C.5.1.2 Rem Energy Alarm (Offset 2)

When [CapM] in BatteryStatus is set to 1, the default value of RemainingCapacityAlarm is stored in **Rem** Energy Alarm and copied to the SBS value on bq20z40-R1/bq20z45-R1 initialization.

Table C-98. Rem Energy Alarm

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit	
48	Data	2	Rem Energy Alarm	Integer	2	0	1000	432	10 mWh	

Related Variable:

SBS:RemainingCapacityAlarm(0x01)

C.5.1.3 Rem Time Alarm (Offset 4)

The default value of *RemainingTimeAlarm* is stored in *Rem Time Alarm* and copied to the SBS value on bq20z40-R1/bq20z45-R1 initialization.

Table C-99. Rem Time Alarm

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	4	Rem Time Alarm	Unsigned integer	2	0	30	10	min

Related Variable:

• SBS:RemainingTimeAlarm(0x02)

C.5.1.4 Init Battery Mode (Offset 6)

The default value of *BatteryMode* is stored in *Init Battery Mode* and copied to the SBS value on bq20z40-R1/bq20z45-R1 initialization.

Table C-100. Init Battery Mode

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	6	Init Battery Mode	Hex	2	0	0xffff	0x0081	

www.ti.com SBS Configuration

Related Variable:

SBS:BatteryMode(0x03)

C.5.1.5 Design Voltage (Offset 8)

The default value of *DesignVoltage* is stored in *Design Voltage* and copied to the SBS value on bq20z40-R1/bq20z45-R1 initialization.

Table C-101. Design Voltage

Subclas ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	8	Design Voltage	Integer	2	7000	18,000	14,400	mV

Related Variable:

• SBS:DesignVoltage(0x19)

C.5.1.6 Spec Info (Offset 10)

The default value of *SpecificationInfo* is stored in *Spec Info* and copied to the SBS value on bq20z40-R1/bq20z45-R1 initialization.

Table C-102. Spec Info

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	10	Spec Info	Hex	2	0x0000	0xffff	0x0031	_

Related Variable:

SBS:SpecificationInfo(0x1a)

C.5.1.7 Manuf Date (Offset 12)

The default value of *ManufactureDate* is stored in *Manuf Date* and copied to the SBS value on bq20z40-R1/bq20z45-R1 initialization.

Table C-103. Manuf Date

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	12	Manuf Date	Unsigned integer	2	0	65,535	0	Day + Mo x 32 + (Yr – 1980) x 512

Related Variable:

SBS:ManufactureDate(0x1b)

C.5.1.8 Ser. Num. (Offset 14)

The default value of *SerialNumber* is stored in *Ser. Num.* and copied to the SBS value on bq20z40-R1/bq20z45-R1 initialization.

Table C-104. Ser. Num.

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	14	Ser. Num.	Hex	2	0x0000	0xffff	0x0001	_

SBS Configuration www.ti.com

Related Variable:

SBS:SerialNumber(0x1c)

C.5.1.9 Cycle Count (Offset 16)

The default value of *CycleCount* is stored in *Cycle Count* and copied to the SBS value on bq20z40-R1/bq20z45-R1 initialization. When the SBS value changes, *Cycle Count* is also updated.

Table C-105. Cycle Count

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	16	Cycle Count	Unsigned integer	2	0	65,535	0	Count

Related Variables:

- DF:SBS Configuration:Data(48):CC Threshold(18)
- SBS:CycleCount(0x17)

C.5.1.10 CC Threshold (Offset 18)

The Cycle Count function counts the accumulated discharge of the CC Threshold value as one cycle.

Table C-106. CC Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit	
48	Data	18	CC Threshold	Integer	2	100	32,767	4400	mAh	

Related Variables:

SBS:CycleCount(0x17)

C.5.1.11 CF Max Error Limit (Offset 21)

If the MaxError function value is greater than CF Max Error Limit, [CF] in BatteryMode is set.

Table C-107. CF Max Error Limit

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	21	CF Max Error Limit	Unsigned integer	1	0	100	100	%

Related Variables:

- SBS:BatteryMode(0x03)[CF]
- SBS:MaxError(0x0c)

C.5.1.12 Design Capacity (Offset 22)

If [CapM] in BatteryMode is set to 0, the DesignCapacity function reports Design Capacity.

Table C-108. Design Capacity

Subclas ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	22	Design Capacity	Unsigned integer	2	0	32,767	4400	mAh

www.ti.com SBS Configuration

Related Variables:

- SBS:BatteryMode(0x03)[CapM]
- SBS:DesignCapacity(0x18)

C.5.1.13 Design Energy (Offset 24)

If [CapM] in BatteryMode is set to 1, the DesignCapacity function reports Design Energy.

Table C-109. Design Energy

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	24	Design Energy	Unsigned integer	2	0	32,767	6336	cWh

Related Variables:

- SBS:BatteryMode(0x03)[CapM]
- SBS:DesignCapacity(0x18)

C.5.1.14 Manuf Name (Offset 26)

The *ManufacturerName* function returns a string stored in *Manuf Name*. The maximum text length is 20 characters.

Table C-110. Manuf Name

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	26	Manuf Name	String	20+1	_	_	Texas Instruments	_

Related Variable:

SBS:ManufacturerName(0x20)

C.5.1.15 Device Name (Offset 47)

The *DeviceName* function returns a string stored in *Device Name*. The maximum text length is 20 characters.

Table C-111. Device Name

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	47	Device Name	String	20+1	_	_	bq20z40	_

Related Variable:

SBS:DeviceName(0x21)

C.5.1.16 Device Chemistry (Offset 68)

The *DeviceChemistry* function returns a string stored in *Device Chemistry*. The maximum text length is 4 characters.

Table C-112. Device Chemistry

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	68	Device Chemistry	String	4+1	_	_	LION	_

SBS Configuration www.ti.com

Related Variable:

SBS:DeviceChemistry(0x22)

C.5.1.17 Deterioration Warn Limit (Offset 73)

If the battery capacity as indicated by the *StateofHealth* percentage falls below *Deterioration Warn Limit*, the bq20z40-R1/bq20z45-R1 sets the [DetW] flag in *StateOfHealth*.

Table C-113. Deterioration Warn Limit

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	73	Deterioration Warn Limit	Unsigned integer	1	0	100	50	%

Related Variable:

SBS:StateOfHealth(0x4f)

C.5.1.18 Deterioration Fault Limit (Offset 74)

If the battery capacity as indicated by the *StateofHealth* percentage falls below *Deterioration Fault Limit*, the bq20z40-R1/bq20z45-R1 sets the [DetF] flag in StateOfHealth.

Table C-114. Deterioration Fault Limit

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	74	Deterioration Fault Limit	Unsigned integer	1	0	100	30	%

Related Variable:

SBS:StateOfHealth(0x4f)

C.5.1.19 Cell Life Limit (Offset 75)

If the battery capacity as indicated by the *StateofHealth* percentage falls below *Cell Life Limit*, the bq20z40-R1/bq20z45-R1 sets the [CLL] flag in *StateOfHealth*.

Table C-115. Cell Life Limit

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
48	Data	75	Cell Life Limit	Unsigned integer	1	0	100	20	%

Related Variable:

SBS:StateOfHealth(0x4f)

C.5.2 Configuration (Subclass 49)

C.5.2.1 TDA Set % (Offset 0)

If set between 0% and 100%, the bq20z40-R1/bq20z45-R1 sets the [TDA] flag in BatteryStatus if the RelativeStateOfCharge reaches or falls below **TDA Set** %. Set to -1 to disable this function.

Table C-116. TDA Set %

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
49	Configuration	0	TDA Set %	Integer	1	-1	100	6	%

www.ti.com SBS Configuration

Related Variables:

- SBS:RelativeStateOfCharge(0x0d)
- SBS:BatteryStatus(0x16)[TDA]

C.5.2.2 TDA Clear % (Offset 1)

If set between 0% and 100% the bq20z40-R1/bq20z45-R1 clears the [TDA] flag in BatteryStatus if the RelativeStateOfCharge reaches or rises above **TDA Clear** %. Set to -1 to disable this function.

Table C-117, TDA Clear %

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
49	Configuration	1	TDA Clear %	Integer	1	-1	100	8	%

Related Variables:

- SBS:RelativeStateOfCharge(0x0d)
- SBS:BatteryStatus(0x16)[TDA]

C.5.2.3 FD Set % (Offset 2)

If set between 0% and 100%, the bq20z40-R1/bq20z45-R1 sets the [FD] flag in BatteryStatus if the RelativeStateOfCharge reaches or falls below **FD Set** %. Set to –1 to disable this function.

Table C-118. FD Set %

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
49	Configuration	2	FD Set %	Integer	1	-1	100	2	%

Related Variables:

- SBS:RelativeStateOfCharge(0x0d)
- SBS:BatteryStatus(0x16)[FD]

C.5.2.4 FD Clear % (Offset 3)

If set between 0% and 100%, the bq20z40-R1/bq20z45-R1 clears the *[FD]* flag in *BatteryStatus* if the *RelativeStateOfCharge* reaches or rises above *FD Clear* %. Set to –1 to disable this function.

Table C-119. FD Clear %

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
49	Configuration	3	FC Clear %	Integer	1	-1	100	5	%

Related Variables:

- SBS:RelativeStateOfCharge(0x0d)
- SBS:BatteryStatus(0x16)[FD]

C.5.2.5 TDA Set Volt Threshold (Offset 4)

The bq20z40-R1/bq20z45-R1 sets the [TDA] flag in BatteryStatus if Voltage is equal to or lower than **TDA Set Volt Threshold** for a period equal to or greater than **TDA Set Volt Time**.

Table C-120. TDA Set Volt Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
49	Configuration	4	TDA Set Volt Threshold	Integer	2	0	16,800	5000	mV

System Data www.ti.com

Related Variables:

- DF:SBS Configuration:Configuration(49):TDA Set Volt Time(6)
- SBS:Voltage(0x09)
- SBS:BatteryStatus(0x16)[TDA]

C.5.2.6 TDA Set Volt Time (Offset 6)

The bq20z40-R1/bq20z45-R1 sets the [TDA] flag in BatteryStatus if Voltage is equal to or lower than **TDA Set Volt Threshold** for a period equal to or greater than **TDA Set Volt Time**. Set to 0 to disable this feature.

Table C-121. TDA Set Volt Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
49	Configuration	6	TDA Set Volt Time	Unsigned integer	1	0	240	5	S

Related Variables:

- DF:SBS Configuration:Configuration(49):TDA Set Volt Threshold(4)
- SBS:Voltage(0x09)
- SBS:BatteryStatus(0x16)[TDA]

C.5.2.7 TDA Clear Volt (Offset 7)

The bq20z40-R1/bq20z45-R1 clears the [TDA] flag if Voltage is equal to or greater than **TDA Clear Volt**. **TDA Clear Volt** clears [TDA] only if [TDA] is set by **TDA Set Volt Threshold**. It does not clear [TDA] if [TDA] is set by **TDA Set** % or any other function.

Table C-122. TDA Clear Volt

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
49	Configuration	7	TDA Clear Volt	Integer	2	0	16,800	5500	mV

Related Variables:

- DF:SBS Configuration:Configuration(49):TDA Set Volt Threshold(4)
- DF:SBS Configuration:Configuration(49):TDA Set Volt Time(6)
- SBS:Voltage(0x09)
- SBS:BatteryStatus(0x16)[TDA]

C.6 System Data

C.6.1 Manufacturer Info (Subclass 58)

C.6.1.1 Manuf. Info 0 (Offset 0)

The *ManufacturerInfo* function returns the string stored in *Manuf. Info*. The maximum text length is 31 characters.

Table C-123. Manuf. Info

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
58	Manufacturer Info	32	Manuf. Info 0	String	32	_	_	012345678 9ABCDEF0 123456789 ABCDE	_

www.ti.com System Data

Related Variable:

SBS:ManufacturerInfo(0x70)

C.6.1.2 Manuf. Block 1..4 (Offset 32..95)

Four 20-byte DF locations are provided for manufacturer data that are accessible (read/write) in sealed and unsealed modes using the ext. SBS commands *ManufBlock1..4*. The table below shows *Manuf. Block 1*, the other 3 differ only by the offset.

Table C-124. Manuf. Block 1..4

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
58	Manufacturer Info	32	Manuf. Block 1	String	20	_	_	0123456789A	_
		53	Manuf. Block 2					BCDEF0123	
		74	Manuf. Block 3						
		95	Manuf. Block 4						

Related Variable:

SBS:ManufBlock1..4(0x6c..0x6f)

C.6.2 Lifetime Data (Subclass 59)

C.6.2.1 Lifetime Max Temp (Offset 0)

If the [QEN] flag in OperationStatus is set, the **Lifetime Max Temp** value is updated if one of the following conditions is met.

- Internal measurement temperature *Lifetime Max Temp* > 1°C.
- Internal measurement temperature > Lifetime Max Temp for a period > 60 seconds
- Internal measurement temperature > Lifetime Max Temp AND any other lifetime value is updated.

Table C-125. Lifetime Max Temp

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	0	Lifetime Min Temp	Integer	2	0	140	30	°C

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

C.6.2.2 Lifetime Min Temp (Offset 2)

If the [QEN] flag is set, Lifetime Min Temp is updated if one of the following conditions is met:

- Lifetime Min Temp internal measurement temperature > 1°C.
- Lifetime Min Temp > internal measurement temperature for a period > 60 seconds
- Lifetime Min Temp > internal measurement temperature AND any other lifetime value is updated.

Table C-126. Lifetime Min Temp

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	2	Lifetime Min Temp	Integer	2	-60	140	200	°C

System Data www.ti.com

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

C.6.2.3 Lifetime Max Cell Voltage (Offset 4)

If the [QEN] flag is set, Lifetime Max Cell Voltage is updated if one of the following conditions is met:

- Any internally measured cell voltage Lifetime Max Cell Voltage > 25 mV
- Any internally measured cell voltage > Lifetime Max Cell Voltage for a period > 60 seconds
- Any internally measured cell voltage > Lifetime Max Cell Voltage AND any other lifetime value is updated.

Table C-127. Lifetime Max Cell Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	4	Lifetime Max Cell Voltage	Integer	2	0	32,767	3500	mV

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

C.6.2.4 Lifetime Min Cell Voltage (Offset 6)

If the [QEN] flag is set, Lifetime Min Cell Voltage is updated if one of the following conditions is met:

- Lifetime Min Cell Voltage any internal measured cell voltage >25 mV
- Lifetime Min Cell Voltage > any internal measured cell voltage for a period > 60 seconds
- Lifetime Min Cell Voltage > any internal measured cell voltage AND any other lifetime value is updated.

Table C-128. Lifetime Min Cell Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	6	Lifetime Min Cell Voltage	Integer	2	0	32,767	3200	mV

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

C.6.2.5 Lifetime Max Pack Voltage (Offset 8)

If the [QEN] flag is set, Lifetime Max Pack Voltage is updated if one of the following conditions is met:

- Internal measured cell stack voltage Lifetime Max Pack Voltage > 100 mV
- Internal measured cell stack voltage > Lifetime Max Pack Voltage for a period > 60 seconds
- Internal measured cell stack voltage > Lifetime Max Pack Voltage AND any other lifetime value is updated.

www.ti.com System Data

Table C-129. Lifetime Max Pack Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	8	Lifetime Max Pack Voltage	Integer	2	0	32,767	14,000	mV

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

C.6.2.6 Lifetime Min Pack Voltage (Offset 10)

If the [QEN] flag is set, Lifetime Min Pack Voltage is updated if one of the following conditions is met:

- Lifetime Min Pack Voltage internal measured cell stack voltage > 100 mV
- Lifetime Min Pack Voltage > internal measured cell stack voltage for a period > 60 seconds
- Lifetime Min Pack Voltage > internal measured cell stack voltage AND any other lifetime value is updated.

Table C-130. Lifetime Min Pack Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	10	Lifetime Min Pack Voltage	Integer	2	0	32,767	12,800	mV

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

C.6.2.7 Lifetime Max Chg Current (Offset 12)

If the [QEN] flag is set, Lifetime Max Chg Current is updated if one of the following conditions is met:

- Internal charge current Lifetime Max Chg Current > 100 mA
- Internal charge current > Lifetime Max Chg Current for a period > 60 seconds
- Internal charge current > Lifetime Max Chg Current AND any other lifetime value is updated.

Table C-131. Lifetime Max Chg Current

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	12	Lifetime Max Chg Current	Integer	2	-32,767	32,767	1500	mA

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

C.6.2.8 Lifetime Max Dsg Current (Offset 14)

If the [QEN] flag is set, Lifetime Max Dsg Current is updated if one of the following conditions is met:

- Lifetime Max Dsg Current internal discharge current < -100 mA
- Lifetime Max Dsg Current < internal discharge current for a period > 60 seconds
- Lifetime Max Dsg Current < internal discharge current AND any other lifetime value is updated.

System Data www.ti.com

Table C-132. Lifetime Max Dsg Current

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	14	Lifetime Max Dsg Current	Integer	2	-32,767	32,767	-3000	mA

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

C.6.2.9 Lifetime Max Chg Power (Offset 16)

If the [QEN] flag is set, Lifetime Max Chg Power is updated if one of the following conditions is met:

- (Internal measured voltage x internal measured current) Lifetime Max Chg Power > 1000 mW
- (Internal measured voltage x internal measured current) > Lifetime Max Chg Power for a period > 60 seconds
- (Internal measured voltage x internal measured current) > Lifetime Max Chg Power AND any other lifetime value is updated.

Table C-133. Lifetime Max Dsg Current

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	16	Lifetime Max Chg Power	Integer	2	-32,767	32,767	1500	10 mW

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

C.6.2.10 Lifetime Max Dsg Power (Offset 18)

If the [QEN] flag is set, Lifetime Max Dsg Power is updated if one of the following conditions is met:

- Lifetime Max Dsg Power (internal measured voltage x internal measured current) > 1000 mW
- Lifetime Max Dsg Power > (internal measured voltage x internal measured current) for a period > 60 seconds
- Lifetime Max Dsg Power > (internal measured voltage x internal measured current) AND any other lifetime value is updated.

Table C-134. Lifetime Max Dsg Power

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	18	Lifetime Max Dsg Power	Integer	2	-32,767	32,767	-1500	10 mW

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

C.6.2.11 Life Max AvgDsg Cur (Offset 22)

If the [QEN] flag is set, Life Max AvgDsg Cur is updated if one of the following conditions us met:

Lifetime Max AvgDsg Cur – internally measured average discharge current > 100 mA

www.ti.com System Data

- Lifetime Max AvgDsg Cur > internally measured average discharge current > 60 seconds
- Lifetime Max AvgDsg Cur > internally measured average discharge current AND any other lifetime
 value is updated.

Table C-135. Life Max AvgDsg Cur

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	22	Life Max AvgDsg Cur	Integer	2	-32,767	32,767	-1000	mA

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

C.6.2.12 Life Max AvgDsg Pow (Offset 26)

If the [QEN] flag is set, Life Max AvgDsg Pow is updated if one of the following conditions is met:

- Life Max AvgDsg Pow averaged (internal measured voltage × internal measured current) > 1000 mW
- Life Max AvgDsg Pow > averaged (internal measured voltage x internal measured current) for a period > 60 seconds
- Life Max AvgDsg Pow > averaged (internal measured voltage x internal measured current) AND any
 other lifetime value is updated.

Table C-136. Life Max AvgDsg Pow

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	26	Life Max AvgDsg Pow	Integer	2	-32,767	32,767	-1500	10 mW

- DF:Gas Gauging:State(82):Update Status(12)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:OperationStatus(0x54)[QEN]

Configuration www.ti.com

C.6.2.13 Life Avg Temp (Offset 28)

If the [QEN] flag is set, *Life Avg Temp* takes samples of the *Temperature* function every 225 s, but only updates if any other lifetime value is updated.

Table C-137. Life Avg Temp

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
59	Lifetime Data	28	Lifetime Avg Temp	Integer	2	0	140	25	°C

Related Variables:

- DF:Gas Gauging:State(82):Update Status(12)
- DF:System Data:Lifetime Temp Samples(60):LT Temp Samples(0)
- SBS:ManufacturerAccess(0x00):IT Enable(0x0021)
- SBS:Temperature(0x08)
- SBS:OperationStatus(0x54)[QEN]

C.6.3 Lifetime Temp Samples (Subclass 60)

C.6.3.1 LT Temp Samples (Offset 0)

This variable indicates the number of temperature samples used for the *Lifetime Avg Temp* calculation. Multiply this value by 225 seconds to get the total time that the Impedance Track algorithm is active.

Table C-138. LT Temp Samples

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
60	Lifetime Temp Samples	0	LT Temp Samples	Integer	4	0	140,000,00	0	Count

Related Variable:

DF:System Data:Lifetime Data(59):Lifetime Avg Temp(28)

C.7 Configuration

C.7.1 Registers (Subclass 64)

C.7.1.1 Operation Cfg A (Offset 0)

This register enables, disables or configures various features of the bq20z40-R1/bq20z45-R1.

Table C-139. Operation Cfg A

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
64	Registers	0	Operation Cfg A	Hex	2	0x0000	0xff3f	0x0329	

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	CC1	CC0
Low Byte	RSVD	RSVD	SLEEP	TEMP1	TEMP0	RSVD	ZVCHG1	ZVCHG0

LEGEND: RSVD = Reserved and must be programmed to 0

Figure C-6. Operation Cfg A

www.ti.com Configuration

CC1, **CC0**— These bits configure the bq20z40-R1/bq20z45-R1 for the number of series cells in the battery stack.

0.0 = Reserved

0.1 = 2 cells

1,0 = 3 cells

1,1 = 4 cells (default)

SLEEP— Enables the bg20z40-R1/bg20z45-R1 to enter Sleep mode if the SMBus lines are low.

0 = The bq 20z40 - R1/bq 20z45 - R1 never enters Sleep mode.

1 = The bq20z40-R1/bq20z45-R1 enters Sleep mode under normal Sleep entry criteria (default).

Related Variable:

SBS:ManufacterAccess(0x00):Sleep(0x0011)

TEMP1, TEMP0— These bits configure the source of the *Temperature* function.

0,0 = Internal Temperature Sensor

0,1 = TS1 Input (default)

1,0 = TS2 Input

1,1 = Average of TS1 and TS2 Inputs

Related Variable:

SBS:Temperature(0x08)

ZVCHG1, **ZVCHG0**— These bits enable or disable the use of the ZVCHG or CHG FET in Zero-Volt/Precharge mode.

0,0 = ZVCHG

0,1 = CHG (default)

1,0 = GPOD pin (on the AFE)

1,1 = No Action

C.7.1.2 Operation Cfg B (Offset 2)

This register enables, disables, or configures various features of the bq20z40-R1/bq20z45-R1.

Table C-140. Operation Cfg B

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
64	Registers	2	Operation Cfg B	Hex	2	0x0000	0xffff	0x2440	_

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	RSVD	RSVD	RESCAP	NCSMB	NRCHG	CSYNC	CHGTERM	RSVD
Low Byte	CHGSUSP	OTFET	CHGFET	CHGIN	NR	CPE	HPE	BCAST

Figure C-7. Operation Cfg B

RESCAP— This bit configures the compensation model of the Impedance Track algorithm for reserve capacity calculation.

Configuration www.ti.com

- 0 = Light Load Compensation
- 1 = Average Load Compensation defined by *Load Select* (default)

Related Variables:

DF:Gas Gauging:IT Cfg(80):Load Select(0)

DF:Gas Gauging:IT Cfg(80):Reserve Cap-mAh(80)

DF:Gas Gauging:IT Cfg(80):Reserve Cap-mWh(82)

- **NCSMB** Disables extended SMBUS t_{TIMEOUT} feature. Use this bit with caution.
 - 0 = Normal SMBUS t_{TIMEOUT} (default)
 - 1 = Extended SMBUS t_{TIMEOUT}
- **NRCHG** Enables the CHG FET to remain on during sleep when the bq20z40-R1/bq20z45-R1 is in non-removable battery mode.
 - 0 = The CHG FET turns off in Sleep Mode if the [NR] bit is set (default).
 - 1 = The CHG FET remains on in Sleep Mode if the [NR] bit is set.

Related Variable:

DF:Configuration:Registers(64):Operation Cfg B(2)[NR]

- **CSYNC** Enables the bq20z40-R1/bq20z45-R1 to write *RemainingCapacity* equal to *FullChargeCapacity* when a valid charge termination is detected.
 - 0 = RemainingCapacity is not modified on valid primary charge termination.
 - 1 = RemainingCapacity is written to equal FullChargeCapacity on valid primary charge termination. (default)

Related Variables:

SBS:RemainingCapacity(0x0f)

SBS:FullChargeCapacity(0x10)

www.ti.com Configuration

- **CHGTERM** This bit enables or disables the [TCA] and [FC] flags in BatteryStatus to be cleared after charge termination is confirmed.
 - 0 = [TCA] and [FC] are not cleared by primary charge termination confirmation, but are cleared by other means. (default)
 - 1 = [TCA] and [FC] flags are cleared on valid primary charge termination. Note: This does not disable clearing the flags by **TCA Clear** % and **FC Clear** %.

Related Variables:

- DF:Charge Control:Termination Cfg(36):Taper Current(2)
- DF:Charge Control:Termination Cfg(36):TCA Clear %(10)
- DF:Charge Control:Termination Cfg(36):FC Clear %(12)
- SBS:Current(0x0a)
- SBS:BatteryStatus(0x16)[FC],[TCA]
- **CHGSUSP** This bit enables the bq20z40-R1/bq20z45-R1 to turn off the CHG FET (and ZVCHG FET) when in charge suspend mode.
 - 0 = No FETs change in Charge Suspend mode. (default)
 - 1 = CHG FET and ZVCHG FET (if used) turn off in Charge Suspend mode.
- OTFET— This bit enables or disables FET actions from reacting to an overtemperature fault.
 - 0 = There is NO FET action when an overtemperature condition is detected.
 - 1 = When the [OTC] flag is set, then the CHG FET is turned off, and when the [OTD] flag is set, then the DSG FET is turned off. (default)

Related Variable:

SBS:SafetyStatus(0x51)[OTC],[OTD]

- **CHGFET** This bit enables or disables the CHG FET from reacting to a valid charge termination.
 - 0 = CHG FET stays on at charge termination ([TCA] is set). (default)
 - 1 = CHG FET turns off at charge termination.

Related Variable:

SBS:BatteryStatus(0x16)[TCA]

- **CHGIN** This bit enables the CHG FET and ZVCHG FET (if used) to turn off when the bq20z40-R1/bq20z45-R1 is in charge-inhibit mode.
 - 0 = No FET change in charge-inhibit mode. (default)
 - 1 = CHG and ZVCHG FETs, if used, turn off in charge-inhibit mode.

Related Variable:

SBS:ChargingStatus(0x55)[XCHG]

- **NR** This bit configures the bq20z40-R1/bq20z45-R1 to be in removable or non-removable battery mode and determines the recovery method for current-based primary protection features.
 - 0 = Removable battery mode (default)
 - 1 = Non-removable battery mode.

Related Variable:

DF:Configuration:Registers(64): Non-Removable Cfg(8)

Configuration www.ti.com

- **CPE** This bit enables or disables PEC transmissions to the smart-battery charger for master-mode alarm messages.
 - 0 = No PEC byte on alarm warning to charger (default)
 - 1 = PEC byte on alarm warning to charger
- **HPE** This bit enables or disables PEC transmissions to the smart-battery host for master-mode alarm messages and prevents receiving communications from all sources in slave mode. If the host uses PEC, this bit should be set.
 - 0 = No PEC byte on alarm warning to host and receiving communications from all sources in slave mode (default)
 - 1 = PEC byte on alarm warning to host and receiving communications from all sources in slave mode. If host uses PEC, this bit should be set.
- **BCAST** This bit enables or disables SBS broadcasts to the smart-battery charger and host.
 - 0 = Broadcasts to host and charger disabled (default)
 - 1 = Broadcasts to host and charger enabled

C.7.1.3 Operation Cfg C (Offset 4)

This register enables, disables, or configures various features of the bq20z40-R1/bq20z45-R1.

Table C-141. Operation Cfg C

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit	
64	Registers	4	Operation Cfg C	Hex	2	0x0000	0xffff	0x0130		

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	CHGOCV_ DIS	CELL_TAP ER
Low Byte	RSVD	CUV_REC OV_CHG	OCV_WGH T	LOCK_0	SUV_MOD E	SHUTV	PRE_ZT_P F_En	RSOCL

LEGEND: RSVD = Reserved and **must** be programmed to 0

Figure C-8. Operation Cfg C

- **CHGOCV_DIS** CHGOCV_DIS prevents OCV reading from being taken when under the flat volt max and having come from charge. OCV readings are still taken if above flat volt max or if not coming from charge.
 - 0 = OCV reading is taken when under the flat volt max and having come from charge.
 - 1 = OCV reading is not taken when under the flat volt max and having come from charge.
- **CELL_TAPER** Taper voltage (used for primary charge termination) is either cell voltage-based or pack voltage-based depending on this bit.
 - 0 = Pack voltage-based tapper voltage.
 - 1 = Cell voltage-based tapper voltage.

www.ti.com Configuration

- **CUV RECOV CHG** Enable charge current detection as part of CUV recovery.
 - 0 = No charge current detection required for CUV recovery
 - 1 = Charge current detection required for CUV recovery
- OCV_WGHT— This bit enables evaluation of the accuracy of each state of charge reading from OCV during relaxation. Used to take into account both previous and new state of charge estimates weighed according to their respective accuracy. This results in improved accuracy and in reduction of RelativeStateofCharge jumps after relaxation.
 - 0 = Evaluation of the accuracy of each state of charge reading from OCV during relaxation is disabled.
 - 1 = Evaluation of the accuracy of each state of charge reading from OCV during relaxation is enabled.
- **LOCK_0—** This bit prevents *RemainingCapacity* and *RelativeStateofCharge* from increasing during relaxation after 0 value was reached during discharge and operates in mAh or mWh according to configuration of the BatteryMode to avoid possible oscillation when starting charge from fully discharged state
 - 0 = RemainingCapacity and RelativeStateofCharge are not prevented from increasing during relaxation after 0 value was reached during discharge.
 - 1 = RemainingCapacity and RelativeStateofCharge are prevented from increasing during relaxation after 0 value was reached during discharge.
- **SUV_MODE** This bit controls the operation of safety undervoltage PF mechanism.
 - 0 = If at any time any cell voltage goes below SUV Threshold then SUV PF mechanism starts.
 - 1 = Cell voltage is checked only upon wakeup from Shutdown mode. Upon wakeup, the charge and precharge FETs are turned off and the cell voltage is checked. If any cell voltage is below **SUV Threshold** then SUV mechanism starts.
- **SHUTV** This bit configures the voltage threshold used when entering Shutdown mode.
 - 0 = Shutdown occurs when *Voltage* ≤ *Shutdown Voltage* AND *Current* ≤ 0 for a period greater than 10 s.
 - 1 = Shutdown occurs when Min (*CellVoltage4..1*) ≤ *Cell Shutdown Voltage* and *Current* ≤ 0 for a period greater than 10 s.
- **PRE_ZT_PF_En** This bit enables or disables permanent failures from occurring before the Impedance Track algorithms enabled.
 - 0 = All PFs (except DFF) are prevented from occurring until the Impedance Track algorithm is enabled. Shutdown is also disabled. See the following note.
 - 1 = All PFs are allowed regardless of whether the Impedance Track algorithm has been enabled or not.
- **RSOCL** This bit determines the method in which *RelativeStateOfCharge* and *RemainingCapacity* are updated to 100% when charging is complete.

Configuration www.ti.com

- 0 = If the **[RSOCL]** bit in **Operation Cfg C** is cleared, then **RelativeStateofCharge** and **RemainingCapacity** are **not** held at 99% until primary charge termination occurs. Fractions of % greater than 99% are rounded up to display 100%.
- 1 = If the **[RSOCL]** bit in **Operation Cfg C** is set, then **RelativeStateofCharge** and **RemainingCapacity** are held at 99% until primary charge termination occurs and only display 100% on entering primary charge termination.

NOTE: PRE_ZT_PF_En—If this bit is set to 0, and a Permanent Failure does occur, *PFStatus* still reports that the failure has occurred. Also, if the FETs have been turned on, they turn off if a failure occurs. However, Data Flash write access is still granted and the Permanent Failure is NOT logged in the PF Status section of Data Flash. The *PFStatus* indicator clears and the FETs turn on once *ManufacturerAccess*(0x00) has received the *IT Enable* (0x0021) command or the *Reset* (0x0041) command, assuming the Permanent Failure condition no longer exists.

C.7.1.4 Permanent Fail Cfg 1 (Offset 6)

The **Permanent Fail Cfg 1** register enables or disables the use of the SAFE pin when the corresponding permanent fail error occurs. If the SAFE pin is driven high.

Table C-142. Permanent Fail Cfg 1

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
64	Registers	6	Permanent Fail Cfg 1	Hex	2	0x0000	0xffff	0x0000	_

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	RSVD	XPFVSHU T	XSUV	RSVD	XSOCD	XSOCC	XAFE_P	XAFE_C
Byte 0	XDFF	XDFETF	XCFETF	XCIM_R	XSOT1D	XSOT1C	XSOV	XPFIN

LEGEND: RSVD = Reserved and must be programmed to 0

Figure C-9. Permanent Fail Cfg 1

- **XPFVSHUT** If this bit is set AND any permanent failure happens AND the bq20z40-R1/bq20z45-R1 goes into shutdown, the SAFE pin is driven high.
- **XSUV** If this bit is set AND a safety undervoltage permanent failure occurs, the SAFE pin is driven high.
- **XSOCD** If this bit is set AND a discharge safety overcurrent permanent failure occurs, the SAFE pin is driven high.
- **XSOCC** If this bit is set AND a charge safety overcurrent failure occurs the SAFE pin is driven high.
- **XAFE_P** If this bit is set AND a periodic AFE-communications permanent failure occurs, the SAFE pin is driven high.
- **XAFE_C** If this bit is set AND an AFE-communications permanent failure occurs, the SAFE pin is driven high.
- **XDFF** If this bit is set AND a Data Flash Fault permanent failure occurs, the SAFE pin is driven high.
- **XDFETF** If this bit is set AND a DSG FET permanent failure occurs, the SAFE pin is driven high.
- **XCFETF** If this bit is set AND a CHG FET permanent failure occurs, the SAFE pin is driven high.
- **XCIM_R** If this bit is set AND a cell imbalance permanent failure occurs, the SAFE pin is driven high.

www.ti.com Configuration

- **XSOT1D** If this bit is set AND safety over temperature on TS1 during discharge failure occurs the SAFE pin is driven high.
- **XSOT1C** If this bit is set AND safety over temperature on TS1 during charge failure occurs the SAFE pin is driven high.
- **XSOV** If this bit is set AND a safety overvoltage permanent failure occurs, the SAFE pin is driven high.
- **XPFIN** If this bit is set AND an external input indication permanent failure occurs, the SAFE pin is driven high.

Related Variables:

- SBS:PFStatus (0x53)
- SBS:PFStatus2 (0x6b)

C.7.1.5 Permanent Fail Cfg 2 (Offset 8)

The **Permanent Fail Cfg 2** register enables or disables the use of the SAFE pin when the corresponding permanent fail error occurs. If the SAFE pin is driven high.

Table C-143. Permanent Fail Cfg 2

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
64	Registers	8	Permanent Fail Cfg 2	Hex	2	0x0000	0xffff	0x0000	_

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
Byte 0	RSVD	RSVD	RSVD	RSVD	RSVD	SXOT2D	XSOT2C	XCIM_A

LEGEND: RSVD = Reserved and must be programmed to 0

Figure C-10. Permanent Fail Cfg 2

- **XSOT2D** If this bit is set AND safety over temperature on TS2 during discharge failure occurs the SAFE pin is driven high.
- **XSOT2C** If this bit is set AND safety over temperature on TS2 during charge failure occurs the SAFE pin is driven high.
- **XCIM_A** If this bit is set AND a cell imbalance while active permanent failure occurs, the SAFE pin is driven high.

C.7.1.6 Non-Removable Cfg (Offset 8)

If the bq20z40-R1/bq20z45-R1 is in removable battery mode (**[NR]** = 0), these bits set the recovery method from 1st-level safety errors. If the corresponding bit is set, this gives an additional recovery option for the particular fault. If **[NR]** is set to 1, this register has no effect.

Table C-144. Non Removable Cfg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
64	Registers	10	Non-Removable Cfg	Hex	2	0x0000	0xffff	0x0000	_

Related Variable:

DF:Configuration:Registers(64):Operation Cfg B(2)[NR]

Power www.ti.com

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	RSVD	RSVD	OCD	OCC	RSVD	RSVD	RSVD	RSVD
Low Byte	RSVD	RSVD	RSVD	RSVD	RSVD	AOCD	ASCC	ASCD

LEGEND: RSVD = Reserved and **must** be programmed to 0

Figure C-11. Non-Removable Cfg

OCD— Overcurrent in Discharge

OCC— Overcurrent in Charge

AOCD— AFE Overcurrent in Discharge

ASCC Short Circuit in Charge

ASCD— Short Circuit in Discharge

C.7.2 AFE (Subclass 65)

C.7.2.1 AFE.State_CTL (Offset 1)

The AFE.State_CTL register implements the STATE_CONTROL register of the AFE.

Table C-145. AFE.State_CTL

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
65	AFE	1	AFE.State_CTL	Hex	1	0x00	0xff	0x00	_

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Low Byte	RSVD	RSVD	RSVD	RSNS	RSVD	RSVD	RSVD	RSVD

LEGEND: RSVD = Reserved and must be programmed to 0, except for bits 3:0 which should not be altered

Figure C-12. AFE.State_CTL

RSNS— If this bit is set to 1, then the AFE OC Dsg, AFE SC Chg Cfg, and AFE SC Dsg Cfg voltage thresholds are divided by 2, which is suitable for a low sense resistor value. Note: Do not alter bits 3:0.

C.8 Power

C.8.1 Power (Subclass 68)

C.8.1.1 Flash Update OK Voltage (Offset 0)

This value sets the minimum allowed battery pack voltage for a flash update. If the battery pack voltage is below this threshold, no flash update is made.

Table C-146. Flash Update OK Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
68	Power	0	Flash Update OK Voltage	Integer	2	6000	20,000	7500	mV

www.ti.com

Related Variables:

- DF:Power:Power(68):Charger Present(8)
- SBS:Voltage(0x09)

C.8.1.2 Shutdown Voltage (Offset 2)

The bq20z40-R1/bq20z45-R1 goes into shutdown mode if battery pack *Voltage* is equal to or less than *Shutdown Voltage* for a period of 10 s and has been out of shutdown mode for at least 10 s.

Table C-147. Shutdown Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
68	Power	2	Shutdown Voltage	Integer	2	5000	20,000	7000	mV

Related Variables:

SBS:Voltage(0x09)

C.8.1.3 Cell Shutdown Voltage (Offset 5)

The bq20z40-R1/bq20z45-R1 goes into shutdown mode if Min (*CellVoltage4..1*) is equal to or less than *Cell Shutdown Voltage* for a period of 10s and has been out of shutdown mode for at least 10 s.

Table C-148. Cell Shutdown Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
68	Power	5	Cell Shutdown Voltage	Integer	2	0	5000	1750	mV

Related Variables:

- SBS:CellVoltage4(0x3c)
- SBS:CellVoltage3(0x3d)
- SBS:CellVoltage2(0x3e)
- SBS:CellVoltage1(0x3f)

C.8.1.4 Charger Present (Offset 8)

The bq20z40-R1/bq20z45-R1 detects a charger when the voltage at the PACK pin of the AFE is above the *Charger Present* threshold. If a charger is detected, it overrides *Flash Update OK Voltage* and the flash can be updated.

Table C-149. Charger Present

Subclas	SID Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
68	Power	8	Charger Present	Integer	2	0	23,000	3000	mV

Related Variables:

- DF:Power:Power(68):Flash Update OK Voltage(0)
- SBS:PackVoltage(0x5a)

C.8.1.5 Sleep Current (Offset 10)

The bq20z40-R1/bq20z45-R1 is allowed to go into sleep mode if the charge or discharge current is below **Sleep Current**. Sleep mode can be enabled with the **[SLEEP]** bit. If the absolute value of **Current** is above **Sleep Current**, the bq20z40-R1/bq20z45-R1 returns to normal mode.

Power

Power www.ti.com

Table C-150. Sleep Current

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
68	Power	10	Sleep Current	Integer	2	0	100	10	mA

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg A(0)[SLEEP]
- SBS:ManufacturerAccess(0x00):Sleep(0x0011)
- SBS:Current(0x0a)

C.8.1.6 Wake Current Reg (Offset 19)

Wake Current Reg configures the current threshold required to wake the bq20z40-R1/bq20z45-R1 from sleep mode by detecting voltage across SRP and SRN.

Table C-151. Wake Current Reg

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
68	Power	19	Wake Current Reg	Hex	1	0x00	0xff	0x00	_

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Low Byte	RSVD	RSVD	RSVD	RSVD	RSVD	IWAKE	RSNS1	RSNS0

LEGEND: RSVD = Reserved and must be programmed to 0

Figure C-13. Wake Current Reg

IWAKE— This bit sets the current threshold for the Wake function.

0 = 0.5 A (or if RSNS0 = RSNS1 = 0, then this function is disabled)

1 = 1 A (or if RSNS0 = RSNS1 = 0, then this function is disabled)

Table C-152. Wake Current Reg

RSNS1	RSNS0	Resistance
0	0	Disabled (default)
0	1	2.5 mΩ
1	0	5 mΩ
1	1	10 mΩ

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg A(0)[SLEEP]
- SBS:Current(0x0a)

C.8.1.7 Sealed Ship Delay (Offset 20)

After the bq20z40-R1/bq20z45-R1 receives the 2 consecutive MAC (0x0010) commands in sealed mode, the CHG, DSG, and ZVCHG FETs are turned off after **Sealed Ship Delay** time period. After the passage of another **Sealed Ship Delay** period the bq20z40-R1/bq20z45-R1 enters ship mode (I. e . 2 times **Sealed Ship Delay** after the 2 commands.

Table C-153. Sealed Ship Delay

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
68	Power	20	Sealed Ship Delay	Unsigned Integer	1	0	255	5	S

www.ti.com Gas Gauging

Related Variables:

- DF:Power:Power(68):Flash Update OK Voltage(0)
- SBS:PackVoltage(0x5a)

C.9 Gas Gauging

C.9.1 IT Cfg (Offset 80)

C.9.1.1 Load Select (Offset 0)

This value defines the load compensation model used by the Impedance Track algorithm for the *RemainingCapacity* calculation.

Constant Current ($Load\ Mode = 0$) Constant Power ($Load\ Mode = 1$)

0 = Avg I Last Run Avg P Last Run

1 = Present average discharge current Present average discharge power

2 = Current x Voltage

3 = AverageCurrent (default) AverageCurrent x average Voltage

4 = **Design Capacity** / 5
5 = AtRate (mA)
6 = **User Rate-mA Design Energy** / 5

AtRate (10 mW) **User Rate-10mW**

7 = Max Avg I Last Run Max Avg P Last Run

Table C-154. Load Select

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
80	IT Cfg	0	Load Select	Unsigned integer	1	0	255	7	_

Related Variables:

- DF:SBS Configuration:Data(48):Design Capacity(22)
- DF:SBS Configuration:Data(48):Design Energy(24)
- DF:Gas Gauging:IT Cfg(80):Load Mode(1)
- DF:Gas Gauging:IT Cfg(80):User Rate-mA(76)
- DF:Gas Gauging:IT Cfg(80):User Rate-mW(78)
- DF:Gas Gauging:State(82):Avg I Last Run(21)
- DF:Gas Gauging:State(82):Avg P Last Run(23)
- DF:Gas Gauging:State(82):Max Avg I Last Run(31)
- DF:Gas Gauging:State(82):Max Avg P Last Run(33)
- SBS.BatteryMode(0x03)[CapM]
- SBS:AtRate(0x04)
- SBS:Voltage(0x09)
- SBS:Current(0x0a)
- SBS:AverageCurrent(0x0b)
- SBS:RemainingCapacity(0x0f)

C.9.1.2 Load Mode (Offset 1)

This value defines the load mode used by the Impedance Track algorithm for the *RemainingCapacity* calculation.

Gas Gauging www.ti.com

0 = Constant Current (default)

1 = Constant Power

Table C-155, Load Mode

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
80	IT Cfg	1	Load Mode	Unsigned integer	1	0	255	0	_

Related Variables:

- DF:Gas Gauging:IT Cfg(80):Load Select(0)
- SBS:RemainingCapacity(0x0f)

C.9.1.3 Term Voltage (Offset 60)

This value is the absolute minimum pack voltage used by the Impedance Track algorithm for a capacity calculation and should also be set to the absolute minimum pack voltage used by the application. The reserve capacity function also reserves charge where zero *RemainingCapacity* is reported and the *Term Voltage* is reached.

Table C-156. Term Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
80	IT Cfg	60	Term Voltage	Integer	2	-32,768	32,767	12,000	mV

Related Variables:

- DF:Gas Gauging:IT Cfg(80):Reserve Cap-mAh(80)
- DF:Gas Gauging:IT Cfg(80):Reserve Cap-mWh(82)
- SBS:Voltage(0x09)
- SBS:RemainingCapacity(0x0f)

C.9.1.4 User Rate-mA (Offset 77)

This value specifies the discharge rate used by the Impedance Track algorithm for the *RemainingCapacity* calculation, if selected by *Load Select*.

Table C-157. User Rate-mA

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
80	IT Cfg	77	User Rate-mA	Integer	2	-9000	0	0	mA

Related Variables:

- DF:Gas Gauging:IT Cfg(80):Load Select(0)
- DF:Gas Gauging:IT Cfg(80):Load Mode(1)
- SBS:RemainingCapacity(0x0f)

C.9.1.5 User Rate-mW (Offset 79)

This value specifies the discharge rate in 10 mW used by the Impedance Track algorithm for the *RemainingCapacity* calculation, if selected by *Load Select*.

Table C-158. User Rate-mW

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
80	IT Cfg	79	User Rate-mW	Integer	2	-32768	0	0	10 mW

www.ti.com Gas Gauging

Related Variables:

- DF:Gas Gauging:IT Cfg(80):Load Select(0)
- DF:Gas Gauging:IT Cfg(80):Load Mode(1)
- SBS:RemainingCapacity(0x0f)

C.9.1.6 Reserve Cap-mAh (Offset 81)

This value reserves an amount of charge, in mAh if [CapM] = 0, for the system to react if the RemainingCapacity reports zero energy remaining in the battery. The Reserve Cap-mAh reserves an amount of charge between when the final Term Voltage is reached and the RemainingCapacity reports zero energy. The FullChargeCapacity function reports the internal full charge capacity – Reserve Cap-mAh.

Table C-159. Reserve Cap-mAh

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
80	IT Cfg	81	Reserve Cap-mAh	Integer	2	0	9000	0	mAh

Related Variables:

- DF:Gas Gauging:IT Cfg(80):Load Mode(1)
- DF:Gas Gauging:IT Cfg(80):Term Voltage(59)
- DF:Configuration:Registers(64):Operation Cfg B(2)[RESCAP]
- SBS:BatteryMode(0x03):[CapM]
- SBS:RemainingCapacity(0x0f)
- SBS:FullChargeCapacity(0x10)

C.9.1.7 Reserve Cap-mWh (Offset 83)

This value reserves an amount of charge in, 10 mWh if [CapM] = 1, for the system to react if the RemainingCapacity reports zero energy remaining in the battery. The Reserve Cap-mWh reserves an amount of charge between when the final Term Voltage is reached and the RemainingCapacity reports zero energy. The FullChargeCapacity function reports the internal full charge capacity – Reserve Cap-mWh.

Table C-160. Reserve Cap-mAh

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
80	IT Cfg	83	Reserve Cap-mWh	Integer	2	0	14,000	0	10 mWh

Related Variables:

- DF:Gas Gauging:IT Cfg(80):Load Mode(1)
- DF:Gas Gauging:IT Cfg(80):Term Voltage(59)
- DF:Configuration:Registers(64):Operation Cfg B(2)[RESCAP]
- SBS:BatteryMode(0x03):[CapM]
- SBS:RemainingCapacity(0x0f)
- SBS:FullChargeCapacity(0x10)

C.9.1.8 Ra Max Delta (Offset 88)

In order to prevent abnormally fast resistance change, resistance change is limited to old value $\pm Ra~Max$ **Delta** (m Ω). Recommended setting is 15% of 4 Ra grid point value, after optimized values of Ra are obtained from optimization cycle.

Gas Gauging www.ti.com

Table C-161. Ra Max Delta

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
80	IT Cfg	88	Ra Max Delta	Integer	2	0	32,000	44	mΩ

Related Variables:

- DF:Gas Gauging:IT Cfg(80):Load Mode(1)
- SBS:RemainingCapacity(0x0f)
- SBS:FullChargeCapacity(0x10)

C.9.2 Current Thresholds (Offset 81)

C.9.2.1 Dsg Current Threshold (Offset 0)

The bq20z40-R1/bq20z45-R1 enters discharge mode from relaxation mode or charge mode if *Current < (–)Dsg Current Threshold*.

Table C-162. Dsg Current Threshold

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
81	Current Thresholds	0	Dsg Current Threshold	Integer	2	0	2000	100	mA

Related Variables:

- SBS:Current(0x0a)
- SBS:BatteryStatus(0x16)[DSG]

C.9.2.2 Chg Current Threshold (Offset 2)

The bq20z40-R1/bq20z45-R1 enters charge mode from relaxation mode or discharge mode if *Current* > *Chg Current Threshold*.

Table C-163. Chg Current Threshold

Subc	lass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
	81	Current Thresholds	2	Chg Current Threshold	Integer	2	0	2000	50	mA

Related Variables:

- SBS:Current(0x0a)
- SBS:BatteryStatus(0x16)[DSG]

C.9.2.3 Quit Current (Offset 4)

The bq20z40-R1/bq20z45-R1 enters relaxation mode from charge mode if *Current* goes below *Quit Current* for a period of 6 s. The bq20z40-R1/bq20z45-R1 enters relaxation mode from discharge mode if *Current* goes above *(-)Quit Current* for a period of 1 s.

Table C-164. Quit Current

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
81	Current Thresholds	4	Quit Current	Integer	2	0	1000	10	mA

www.ti.com Gas Gauging

Related Variables:

- SBS:Current(0x0a)
- SBS:BatteryStatus(0x16)[DSG]

C.9.3 State (Offset 82)

C.9.3.1 Qmax Cell 0..3 (Offset 0..6)

These values define the maximum chemical capacity for each cell used for the capacity calculation. The value should be taken directly from the battery cell datasheet.

Table C-165. Qmax Cell 0..3

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
82	State	0	Qmax Cell 0	Integer	2	0	32,767	4400	mAh
		2	Qmax Cell 1		2	0	32,767	4400	mAh
		4	Qmax Cell 2		2	0	32,767	4400	mAh
		6	Qmax Cell 3		2	0	32,767	4400	mAh

Related Variables:

- DF:Gas Gauging:State(82):Qmax Pack(8)
- SBS:OperationStatus(0x54)[QEN]

C.9.3.2 Qmax Pack (Offset 8)

This value defines the maximum chemical capacity of the battery pack. It usually is set to the smallest value of *Qmax Cell 0* .. 3.

Table C-166. Qmax Pack

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
82	State	8	Qmax Pack	Integer	2	0	32,767	4400	mAh

Related Variables:

- DF:Gas Gauging:State(82):Qmax Cell 0(0)
- DF:Gas Gauging:State(82):Qmax Cell 1(2)
- DF:Gas Gauging:State(82):Qmax Cell 2(4)
- DF:Gas Gauging:State(82):Qmax Cell 3(6)
- SBS:OperationStatus(0x54)[QEN]

C.9.3.3 Update Status (Offset 12)

This value indicates the internal status of Impedance Track algorithm and lifetime data updating. It is not recommended to change this value. Use *ManufacturerAccess* to enable or disable the Impedance Track algorithm and lifetime data updating.

- 0x00 = Impedance Track algorithm and lifetime data updating is disabled (default).
- 0x02 = QMAX and Ra table have been updated.
- 0x04 = Impedance Track algorithm and lifetime data updating is enabled.
- 0x05 = Ra table updated and Impedance Track algorithm and lifetime data updating are enabled.
- 0x06 = QMAX and Ra table have been updated and Impedance Track algorithm and lifetime data updating is enabled.
- 0x0E = QMAX has been updated with FC set and qualified OCV in discharge and charge.

Gas Gauging www.ti.com

Table C-167. Update Status

	Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
ſ	82	State	12	Update Status	Hex	1	0x00	0x0E	0x00	-

Related Variable:

SBS:ManufacturerAccess(0x00):IT Enable(0x0021)

C.9.3.4 Cell 0..3 Chg DOD at EOC (Offset 13..19)

This value is the calculated depth of discharge (DOD) for cell 0..3 at the end of charging. It is used for QMax calculations..

Table C-168. Cell 0..3 Chg DOD at EOC

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
82	State	13	Cell 0 Chg DOD at EOC	Integer	2	0	16,384	0	100% / 16,384
		15	Cell 1 Chg DOD at EOC						
		17	Cell 2 Chg DOD at EOC						
		19	Cell 3 Chg DOD at EOC						

Related Variables:

- DF:Gas Gauging:State(82):Qmax Pack(8)
- SBS:OperationStatus(0x54)[QEN]

C.9.3.5 Avg I Last Run (Offset 21)

The bq20z40-R1/bq20z45-R1 calculates and stores the average discharge current from the last discharge cycle in this value. This value is used by the Impedance Track algorithm for the *RemainingCapacity* calculation. It is not recommended to change this value.

Table C-169. Avg I Last Run

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
82	State	21	Avg I Last Run	Integer	2	-32,768	32,767	-2000	mA

Related Variables:

- DF:Gas Gauging:IT Cfg(80):Load Select(0)
- DF:Gas Gauging:IT Cfg(80):Load Mode(1)
- SBS:RemainingCapacity(0x0f)

C.9.3.6 Avg P Last Run (Offset 23)

The bq20z40-R1/bq20z45-R1 calculates and stores the average discharge power from the last discharge cycle in this value. This value is used by the Impedance Track algorithm for the *RemainingCapacity* calculation. It is not recommended to change this value.

Table C-170. Avg P Last Run

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
82	State	23	Avg P Last Run	Integer	2	-32,768	32,767	-3022	10 mW

www.ti.com Ra Table

Related Variables:

- DF:Gas Gauging:IT Cfg(80):Load Select(0)
- DF:Gas Gauging:IT Cfg(80):Load Mode(1)
- SBS:RemainingCapacity(0x0f)

C.9.3.7 Delta Voltage (Offset 25)

The bq20z40-R1/bq20z45-R1 stores the maximum difference of *Voltage* during short load spikes and normal loads so the Impedance Track algorithm can calculate the *RemainingCapacity* for pulsed loads. It is not recommended to change this value.

Table C-171. Delta Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
82	State	25	Delta Voltage	Integer	2	-32,768	32,767	0	mV

Related Variables:

- SBS:Voltage(0x09)
- SBS:RemainingCapacity(0x0f)

C.9.3.8 Max Avg I Last Run (Offset 31)

This value is the maximum of the *AverageCurrent* values from the last discharge cycle. It is used by the Impedance Track algorithm as an initial value for rate compensation if Load Select 7 is selected, and Load Mode 0 (current) is selected.

Table C-172. Max Avg I Last Run

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
82	State	31	Max Avg I Last Run	Integer	2	-32,768	32,767	-2000	mA

Related Variables:

- DF:Gas Gauging:IT Cfg(80):Load Select(0)
- DF:Gas Gauging:IT Cfg(80):Load Mode(1)
- SBS:RemainingCapacity(0x0f)

C.9.3.9 Max Avg P Last Run (Offset 33)

This value is the maximum average power from the last discharge cycle. it is used by the Impedance Track algorithm as an initial value for rate compensation if Load Select 7 is selected, and Load Mode 1 (power) is selected.

Table C-173. Max Avg P Last Run

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
82	State	33	Max Avg P Last Run	Integer	2	-32,768	32,767	-3022	10 mW

Related Variables:

- DF:Gas Gauging:IT Cfg(80):Load Select(0)
- DF:Gas Gauging:IT Cfg(80):Load Mode(1)
- SBS:RemainingCapacity(0x0f)

C.10 Ra Table

This table stores battery resistance values normalized to 25 °C temperature.

Ra Table www.ti.com

C.10.1 R_a0 (Subclass 88)

C.10.1.1 Cell0 R_a flag (Offset 0)

This value indicates the validity of the cell impedance table for cell 0. It is recommended not to change this value.

High Byte		Low Byte	e
0x00	Cell impedance and QMAX updated	0x00	Table not used and QMAX updated
0x05	Relaxation mode and QMAX update in progress	0x55	Table being used
0x55	Discharge mode and cell impedance updated	0xff	Table never used, no QMAX or cell impedance update
0xff	Cell impedance never updated		

Table C-174. Cell0 R_a flag

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
88	R_a0	0	Cell0 R_a flag	Hex	2	0x0000	0x0000	0xff55	_

Related Variable:

DF:Ra Table:R_a0(88):Cell0 R_a 0..14(2..30)

C.10.1.2 Cello R_a 0..14 (Offset 2..30)

The bq20z40-R1/bq20z45-R1 stores and updates the impedance profile for cell 0 in this table.

Table C-175. Cell0 R_a

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit			
88	R_a0	2	Cell0 R_a 0	Integer	2	38	38	38	2 ⁻¹⁰ Ω			
		4	Cell0 R_a 1			41	41					
		6	Cell0 R_a 2			43	43					
		8	Cell0 R_a 3		44	44	44	•				
		10	Cell0 R_a 4			42	42	42				
		12	Cell0 R_a 5			42	42	42				
		14	Cell0 R_a 6				45	45	45	•		
		16 Cell0 R_a 7 48	48	48	•							
		18	Cell0 R_a 8			49	49	49				
		20	Cell0 R_a 9			52	52	52				
		22	Cell0 R_a 10	2		56	56	56	•			
		24	Cell0 R_a 11						64	64	64	
		26	Cell0 R_a 12			74	74	74				
		28	Cell0 R_a 13			128	128	128				
		30	Cell0 R_a 14			378	378	378				

Related Variable:

DF:Ra Table:R_a0(88):Cell0 R_a flag(0)

C.10.2 R_a1 (Subclass 89)

C.10.2.1 Cell1 R_a flag (Offset 0)

This value indicates the validity of the cell impedance table for cell 1. It is recommended not to change this value.

www.ti.com Ra Table

High Byte		Low Byte	e
0x00	Cell impedance and QMAX updated	0x00	Table not used and QMAX updated
0x05	Relaxation mode and QMAX update in progress	0x55	Table being used
0x55	Discharge mode and cell impedance updated	0xff	Table never used, no QMAX or cell impedance update
0xff	Cell impedance never updated		

Table C-176. Cell1 R_a flag

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
89	R_a1	0	Cell1 R_a flag	Hex	2	0x0000	0xffff	0xff55	_

Related Variable:

DF:Ra Table:R_a1(89):Cell1 R_a 0..14(2..30)

C.10.2.2 Cell1 R_a 0..14 (Offset 2..30)

The bq20z40-R1/bq20z45-R1 stores and updates the impedance profile for cell 1 in this table.

Table C-177. Cell1 R_a

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
89	R_a1	2	Cell1 R_a 0	Integer	2	38	38	38	2 ⁻¹⁰ Ω
		4	Cell1 R_a 1			41	41	Value	1
		6	Cell1 R_a 2			43	43		
		8	Cell1 R_a 3	ell1 R_a 4 ell1 R_a 5		44	44 4	44	•
		10	Cell1 R_a 4			42	42	42	•
		12	Cell1 R_a 5			42	42	42	
		14	Cell1 R_a 6				45	45	45
		16	Cell1 R_a 7			48	48	3 48	
		18	Cell1 R_a 8	49	49	49	49		
		20	Cell1 R_a 9			52	52	52	
		22	Cell1 R_a 10			56	56	56	
		24	Cell1 R_a 11			64	64	64	
		26	Cell1 R_a 12			74	74	74	
		28	Cell1 R_a 13	13		128	128	128	
		30	Cell1 R_a 14			378	378	378	•

Related Variable:

• DF:Ra Table:R_a1(89):Cell1 R_a flag(0)

C.10.3 R_a2 (Subclass 90)

C.10.3.1 Cell2 R_a flag (Offset 0)

This value indicates the validity of the cell impedance table for cell 2. It is recommended not to change this value.

High Byte		Low Byte	e
0x00	Tell impedance and QMAX updated	0x00	Table not used and QMAX updated
0x05	Relaxation mode and QMAX update in progress	0x55	Table being used

Ra Table www.ti.com

Ox55 Discharge mode and cell impedance Oxff Table never used, no QMAX or cell impedance update

0xff Cell impedance never updated

Table C-178. Cell2 R_a flag

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
90	R_a2	0	Cell2 R_a flag	Hex	2	0x0000	0xffff	0xff55	_

Related Variable:

DF:Ra Table:R_a2(90):Cell2 R_a 0..14(2..30)

C.10.3.2 Cell2 R_a 0..14 (Offset 2..30)

The bq20z40-R1/bq20z45-R1 stores and updates the impedance profile for cell 2 in this table.

Table C-179. Cell2 R_a

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
90	R_a2	2	Cell2 R_a 0	Integer	2	38	38	38	2 ⁻¹⁰ Ω
		4	Cell2 R_a 1		41	41	41		
		6	Cell2 R_a 2		43	43	43		
		8	Cell2 R_a 3		44	44	44		
		10	Cell2 R_a 4			42	42	42	
		12	Cell2 R_a 5			42	42	42	
		14	Cell2 R_a 6			45	45	45	
		16	Cell2 R_a 7			48	48	48	
		18	Cell2 R_a 8			49	49	49	
		20	Cell2 R_a 9			52	52	52	
		22	Cell2 R_a 10			56	56	56	
		24	Cell2 R_a 11			64	64	64	
		26	Cell2 R_a 12			74	74	74	
		28	Cell2 R_a 13			128	128	128	
		30	Cell2 R_a 14			378	378	378	

Related Variable:

DF:Ra Table:R_a2(90):Cell2 R_a flag(0)

C.10.4 R_a3 (Subclass 91)

C.10.4.1 Cell3 R_a flag (Offset 0)

This value indicates the validity of the cell impedance table for cell 3. It is recommended not to change this value.

High Byte		Low Byte)
0x00	Cell impedance and QMAX updated	0x00	Table not used and QMAX updated
0x05	Relaxation mode and QMAX update in progress	0x55	Table being used
0x55	Discharge mode and cell impedance updated	0xff	Table never used, no QMAX or cell impedance update
0xff	Cell impedance never updated		

www.ti.com Ra Table

Table C-180. Cell3 R_a flag

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
91	R_a3	0	Cell3 R_a flag	Hex	2	0x0000	0xffff	0xff55	_

Related Variable:

DF:Ra Table:R_a3(91):Cell3 R_a 0..14(2..30)

C.10.4.2 Cell3 R_a 0..14 (Offset 2..30)

The bq20z40-R1/bq20z45-R1 stores and updates the impedance profile for cell 3 in this table.

Table C-181. Cell3 R_a

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
91	R_a3	2	Cell3 R_a 0	Integer	2	38	38	38	2 ⁻¹⁰ Ω
		4	Cell3 R_a 1			41	41	41	
		6 Cell3 R_a 2			43	43	43		
		8	Cell3 R_a 3		44	44	44		
		10	Cell3 R_a 4			42	42	42	
		12	Cell3 R_a 5			42	42	42	
		14	Cell3 R_a 6			45	45	45	
		16	Cell3 R_a 7			48	48	48	
		18	Cell3 R_a 8			49	49	49	
		20	Cell3 R_a 9			52	52	52	
		22	Cell3 R_a 10			56	56	56	
		24	Cell3 R_a 11	2		64	64	64	
		26	Cell3 R_a 12			74	74	74	
		28	Cell3 R_a 13			128	128	128	
		30 Cell3 R_a 14			378	378	378		

Related Variable:

• DF:Ra Table:R_a3(91):Cell3 R_a flag(0)

C.10.5 R_a0x (Subclass 92)

C.10.5.1 xCell0 R_a flag (Offset 0)

This value indicates the validity of the cell impedance table for cell 0. It is recommended not to change this value.

High Byte		Low Byte	e
0x00	Cell impedance and QMAX updated	0x00	Table not used and QMAX updated
0x05	Relaxation mode and QMAX update in progress	0x55	Table being used
0x55	Discharge mode and cell impedance updated	0xff	Table never used, no QMAX or cell impedance update
0xff	Cell impedance never updated		

Table C-182. xCell0 R_a flag

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
92	R_a0x	0	xCell0 R_a flag	Hex	2	0xffff	0xffff	0xffff	

Ra Table www.ti.com

Related Variable:

• DF:Ra Table:R_a0x(92):xCell0 R_a 0..14(2..30)

C.10.5.2 xCell0 R_a 0..14 (Offset 2..30)

The bq20z40-R1/bq20z45-R1 stores and updates the impedance profile for cell 0 in this table.

Table C-183. xCell0 R_a

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
92	R_a0x	2	xCell0 R_a 0	Integer	2	38	38	38	2 ⁻¹⁰ Ω
		4	xCell0 R_a 1			41	41	41	
		6	xCell0 R_a 2		43	43	43		
		8	xCell0 R_a 3		44	44	44		
		10	xCell0 R_a 4			42	42	42	
		12	xCell0 R_a 5			42	42	42	
		14	xCell0 R_a 6			45	45	45	
		16	xCell0 R_a 7			48	48	48	
		18	xCell0 R_a 8			49	49	49	
		20	xCell0 R_a 9			52	52	52	
		22	xCell0 R_a 10			56	56	56	
		24	xCell0 R_a 11			64	64	64	
		26	xCell0 R_a 12			74	74	74	
		28	xCell0 R_a 13			128	128	128	
		30	xCell0 R_a 14			378	378	378	

Related Variable:

DF:Ra Table:R_a0x(92):xCell0 R_a flag(0)

C.10.6 R_a1x (Subclass 93)

C.10.6.1 xCell1 R_a flag (Offset 0)

This value indicates the validity of the cell impedance table for cell 1. It is recommended not to change this value.

High Byte		Low Byte)
0x00	Cell impedance and QMAX updated	0x00	Table not used and QMAX updated
0x05	Relaxation mode and QMAX update in progress	0x55	Table being used
0x55	Discharge mode and cell impedance updated	0xff	Table never used, no QMAX or cell impedance update
0xff	Cell impedance never updated		

Table C-184. xCell1 R_a flag

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
93	R_a1x	0	xCell1 R_a flag	Hex	2	0xffff	0xffff	0xffff	_

Related Variable:

DF:Ra Table:R_a1x(93):xCell1 R_a 0..14(2..30)

C.10.6.2 xCell1 R_a 0..14 (Offset 2..30)

The bq20z40-R1/bq20z45-R1 stores and updates the impedance profile for cell 1 in this table.

www.ti.com Ra Table

Table C-185. xCell1 R_a

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
93	R_a1x	2	xCell1 R_a 0	Integer	2	38	38	38	2 ⁻¹⁰ Ω
		4	xCell1 R_a 1			41	41	41	
		6	_	43	43	43			
		8	xCell1 R_a 3		44	44	44	ı	
		10	xCell1 R_a 4			42	42	42	
		12	xCell1 R_a 5			42	42	42	
		14	xCell1 R_a 6			45	45	45	
		16	xCell1 R_a 7			48	48	48	
		18	xCell1 R_a 8			49	49	49	
		20	xCell1 R_a 9			52	52	52	
		22	xCell1 R_a 10			56	56	56	
		24	xCell1 R_a 11			64	64	64	
		26	xCell1 R_a 12			74	74	74	
		28	xCell1 R_a 13			128	128	128	1
		30	xCell1 R_a 14			378	378	378	

Related Variable:

DF:Ra Table:R_a1x(93):xCell1 R_a flag(0)

C.10.7 R_a2x (Subclass 94)

C.10.7.1 xCell2 R_a flag (Offset 0)

This value indicates the validity of the cell impedance table for cell 2. It is recommended not to change this value.

High Byte		Low Byte	e
0x00	Cell impedance and QMAX updated	0x00	Table not used and QMAX updated
0x05	Relaxation mode and QMAX update in progress	0x55	Table being used
0x55	Discharge mode and cell impedance updated	0xff	Table never used, no QMAX or cell impedance update
0xff	Cell impedance never updated		

Table C-186. xCell2 R_a flag

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
94	R_a2x	0	xCell2 R_a flag	Hex	2	0xffff	0xffff	0xffff	

Related Variable:

DF:Ra Table:R_a2x(94):xCell2 R_a 0..14(2..30)

C.10.7.2 xCell2 R_a 0..14 (Offset 2..30)

The bq20z40-R1/bq20z45-R1 stores and updates the impedance profile for cell 2 in this table.

Ra Table www.ti.com

Table C-187. xCell2 R_a

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
94	R_a2x	2	xCell2 R_a 0	Integer	2	38	38	38	2 ⁻¹⁰ Ω
		4	xCell2 R_a 1	a 2 a 3 a 4 a 5	41	41	41		
		6	xCell2 R_a 2		43	43	43	Ì	
		8	xCell2 R_a 3			44	44	44	
		10	xCell2 R_a 4			42	42	42	
		12	xCell2 R_a 5			42	42	42	
		14	xCell2 R_a 6			45	45	45	
		16	xCell2 R_a 7			48	48	48	
		18	xCell2 R_a 8			49	49	49	
		20	xCell2 R_a 9			52	52	52	
		22	xCell2 R_a 10			56	56	56	
		24	xCell2 R_a 11			64	64	64	
		26	xCell2 R_a 12			74	74	74	
		28	xCell2 R_a 13			128	128	128	
		30	xCell2 R_a 14			378	378	378	

Related Variable:

DF:Ra Table:R_a2x(94):xCell2 R_a flag(0)

C.10.8 R_a3x (Subclass 95)

C.10.8.1 xCell3 R_a flag (Offset 0)

This value indicates the validity of the cell impedance table for cell 3. It is recommended not to change this value.

High Byte		Low Byte)
0x00	Cell impedance and QMAX updated	0x00	Table not used and QMAX updated
0x05	Relaxation mode and QMAX update in progress	0x55	Table being used
0x55	Discharge mode and cell impedance updated	0xff	Table never used, no QMAX or cell impedance update
0xff	Cell impedance never updated		

Table C-188. xCell3 R_a flag

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
95	R_a3x	0	xCell3 R_a flag	Hex	2	0xffff	0xffff	0xffff	_

Related Variable:

DF:Ra Table:R_a3x(95):xCell3 R_a 0..14(2..30)

C.10.8.2 xCell3 R_a 0..14 (Offset 2..30)

The bq20z40-R1/bq20z45-R1 stores and updates the impedance profile for cell 3 in this table.

www.ti.com PF Status

Table C-189. xCell3 R_a

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
95	R_a3x	2	xCell3 R_a 0	Integer	2	38	38	38	2 ⁻¹⁰ Ω
		4	xCell3 R_a 1			41	41	41	
		6	xCell3 R_a 2		43	43	43		
		8	xCell3 R_a 3		44	44	44		
		10	xCell3 R_a 4			42	42	42	
		12	xCell3 R_a 5			42	42	42	
		14	xCell3 R_a 6			45	45	45	
		16	xCell3 R_a 7			48	48	48	
		18	xCell3 R_a 8			49	49	49	
		20	xCell3 R_a 9			52	52	52	
		22	xCell3 R_a 10			56	56	56	
		24	xCell3 R_a 11			64	64	64	
		26	xCell3 R_a 12			74	74	74	
		28	xCell3 R_a 13			128	128	128	
	30 xCell3 R_a 14			378	378	378			

Related Variable:

DF:Ra Table:R_a3x(95):xCell3 R_a flag(0)

C.11 PF Status

C.11.1 Device Status Data (Subclass 96)

C.11.1.1 Saved PF Flags 1..2(Offset 0..2)

The flags in the **Saved PF Flags 1..2** register indicate the reason that the bq20z40-R1/bq20z45-R1 has entered permanent failure. If the failure flag in **Saved PF Flags 1..2** matches the bit in **Permanent Fail Cfg 1..2**, the SAFE pin is driven high. The SAFE pin can be used to blow an optional fuse in a severe failure condition to prevent more damage to the system.

All permanent failure flags in the failure sequence are stored in **Saved PF Flags 1..2**. Only the first permanent failure flag in a failure sequence is stored in **Saved 1st PF Flag 1..2** to indicate the cause of the permanent failure.

Table C-190. Saved PF Flags 1..2

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
96	Device Status Data	0	Saved PF Flags 1	Hex	2	0x0000	0xffff	0x0000	_
96	Device Status Data	2	Saved PF Flags 2	Hex	2	0x0000	0xffff	0x0000	_

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	RSVD	PFVSHUT	SUV	RSVD	SOCD	SOCC	AFE_P	ACE_C
Byte 0	DFF	DFETF	CFETF	CIM_R	SOT1D	SOT1C	SOV	PFIN

LEGEND: All values read-only

Figure C-14. Saved PF Flags 1

PFVSHUT— 1 = Another permanent failure has occurred AND the device went into shutdown after that event

SUV— 1 = Safety Undervoltage permanent failure

SOCD— 1 = Safety Overcurrent in Discharge permanent failure

SOCC— 1 = Safety Overcurrent in Charge permanent failure

PF Status www.ti.com

AFE_P— 1 = Periodic AFE-Communications permanent failure

AFE_C— 1 = AFE-Communications permanent failure

DFF— 1 = Data Flash Fault permanent failure

DFETF— 1 = Discharge FET permanent failure

CFETF— 1 = Charge FET permanent failure

CIM— 1 = Cell-Imbalance permanent failure

SOTD— 1 = Discharge Safety Overtemperature permanent failure

SOTC— 1 = Charge Safety Overtemperature permanent failure

SOV— 1 = Safety Overvoltage permanent failure

PFIN— 1 = External PFIN Input Indication of a permanent failure

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	RSVD							
Byte 0	RSVD	RSVD	RSVD	RSVD	RSVD	SOT2D	SOT2C	CIM_A

LEGEND: All values read-only

Figure C-15. Saved PF Flags 2

SOT2D— 1 = Safety over temperature on TS2 during discharge failure

SOT2C— 1 = Safety over temperature on TS2 during charge failure

CIM A— 1 = Cell imbalance while active permanent failure

Related Variables:

- DF:Configuration:Registers(64):Permanent Fail Cfg 1..2(6..8)
- DF:PF Status:Device Status Data(96):Saved 1st PF Flag 1..2(32..34)
- SBS:PFStatus(0x53)
- SBS:PFStatus2(0x6b)

C.11.1.2 Saved 1st PF Flag 1..2 (Offset 32..34)

On the first occurrence of a permanent failure, when *PFStatus* or *PFStatus2* changes from 0x0000, the *PFStatus* and *PFStatus2* flags are captured and stored in this value. Only the first permanent failure flag in a failure sequence is stored in *Saved 1st PF Flag 1..2*, to indicate the cause of the permanent failure. All permanent failure flags in the failure sequence are stored in *Saved PF Flags* 1..2. The format of *Saved 1st PF Flag 1..2* is the same as that of *Saved PF Flags*.

Table C-191. Saved 1st PF Flag 1..2

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
96	Device Status Data	32	Saved 1st PF Flag 1	Hex	2	0x0000	0xffff	0x0000	_
96	Device Status Data	34	Saved 1st PF Flag 2	Hex	2	0x0000	0xffff	0x0000	_

Related Variables:

- DF:PF Status:Device Status Data(96):Saved PF Flags 1..2(0..2)
- SBS:PFStatus(0x53)
- SBS:PFStatus2(0x6b)

www.ti.com Calibration

C.12 Calibration

C.12.1 Data (Subclass 104)

C.12.1.1 CC Gain (Offset 0)

CC Gain sets the mA current scale factor for the coulomb counter. Use calibration routines to set this value.

Table C-192. CC Gain

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
104	Data	0	CC Gain	Floating point	4	0.1	4	0.9419	_

Related Variable:

SBS:Current(0x0a)

C.12.1.2 CC Delta (Offset 4)

CC Delta sets the mAh capacity scale factor for the coulomb counter. Use calibration routines to set this value.

Table C-193, CC Delta

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
104	Data	4	CC Delta	Floating point	4	29,826	1,193,046	280,932.6	_

Related Variables:

- SBS:RemainingCapacity(0x0f)
- SBS:FullChargeCapacity(0x10)

C.12.1.3 Ref Voltage (Offset 8)

This register value stores the AFE reference voltage in units of 50 µV.

Table C-194. Ref Voltage

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
104	Data	8	Ref Voltage	Integer	2	0	32,767	24,500	

C.12.1.4 AFE Pack Gain (Offset 12)

This register value stores the scale factor for the voltage at the PACK pin.

Table C-195. AFE Pack Gain

Subclas	ID Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
104	Data	12	AFE Pack Gain	Integer	2	0	32,767	22,050	_

C.12.1.5 CC Offset (Offset 14)

This register value stores the coulomb counter offset compensation. It is set by automatic calibration of the bq20z40-R1/bq20z45-R1. It is not recommended to change this value.

Calibration www.ti.com

Table C-196, CC Offset

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
104	Data	14	CC Offset	Integer	2	-32,768	32,767	-1667	-

C.12.1.6 Board Offset (Offset 16)

This register value stores the compensation for the PCB-dependent coulomb-counter offset. It is recommended to use characterization data of the actual PCB to set this value.

Table C-197. Board Offset

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
104	Data	16	Board Offset	Integer	2	-32,768	32,767	0	_

Related Variable:

Calibration:Data(104):CC Offset(14)

C.12.1.7 Int Temp Offset (Offset 18)

This register value stores the internal temperature sensor offset compensation. Use calibration routines to set this value.

Table C-198. Int Temp Offset

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
104	Data	18	Int Temp Offset	Integer	1	-128	127	0	1

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg A(0)[TEMP1], [TEMP0]
- SBS:Temperature(0x08)

C.12.1.8 Ext1 Temp Offset (Offset 19)

This register value stores the temperature sensor offset compensation for external temperature sensor 1, connected at the TS1 pin of the bg20z40-R1/bg20z45-R1. Use calibration routines to set this value.

Table C-199. Ext1 Temp Offset

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
104	Data	19	Ext1 Temp Offset	Integer	1	-128	127	0	

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg A(0)[TEMP1], [TEMP0]
- SBS:Temperature(0x08)

C.12.1.9 Ext2 Temp Offset (Offset 20)

This register value stores the temperature sensor offset compensation for external temperature sensor 2, connected at the TS2 pin of the bq20z40-R1/bq20z45-R1. Use calibration routines to set this value.

Table C-200. Ext2 Temp Offset

Sub	class ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
	104	Data	20	Ext2 Temp Offset	Integer	1	-128	127	0	

www.ti.com

Related Variables:

- DF:Configuration:Registers(64):Operation Cfg A(0)[TEMP1], [TEMP0]
- SBS:Temperature(0x08)

C.12.2 Config (Subclass 105)

C.12.2.1 CC Current (Offset 0)

This value sets the current used for the CC calibration when in calibration mode.

Table C-201, CC Current

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
105	Config	0	CC Current	Integer	2	0	32,767	3000	-

Related Variable:

SBS:Current(0x0a)

C.12.2.2 Voltage Signal (Offset 2)

This value sets the voltage used for calibration when in calibration mode.

Table C-202. Voltage Signal

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit	
105	Config	2	Voltage Signal	Integer	2	0	32,767	16,800	_	1

Related Variable:

SBS:Voltage(0x09)

C.12.2.3 Temp Signal (Offset 4)

This value sets the temperature used for the temperature calibration in calibration mode

Table C-203. Temp Signal

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
105	Config	4	Temp Signal	Integer	2	0	32,767	2980	_

Related Variable:

SBS:Temperature(0x08)

C.12.2.4 CC Offset Time (Offset 6)

This value sets the time used for the CC Offset calibration in calibration mode. More time means more accuracy. The legitimate values for this constant are integer multiples of 250. Numbers less than 250 cause a CC offset calibration error. Numbers greater than 250 are rounded down to the nearest multiple of 250.

Table C-204. CC Offset Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
105	Config	6	CC Offset Time	Unsigned integer	2	0	65,535	250	_

Calibration

Calibration www.ti.com

Related Variable:

Calibration:Data(104):CC Offset(14)

C.12.2.5 ADC Offset Time (Offset 8)

This constant defines the time for the ADC Offset calibration in calibration mode. More time means more accuracy. The legitimate values for this constant are integer multiples of 32. Numbers less than 32 cause an ADC offset calibration error. Numbers greater than 32 are rounded down to the nearest multiple of 32.

Table C-205. ADC Offset Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
105	Config	8	ADC Offset Time	Unsigned integer	2	0	65,535	32	_

C.12.2.6 CC Gain Time (Offset 10)

This constant defines the time for the CC gain calibration in calibration mode. More time means more accuracy. The legitimate values for this constant are integer multiples of 250. Numbers less than 250 cause a CC gain calibration error. Numbers greater than 250 are rounded down to the nearest multiple of 250.

Table C-206, CC Gain Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
105	Config	10	CC Gain Time	Unsigned integer	2	0	65,535	250	

Related Variable:

Calibration:Data(104):CC Gain(0)

C.12.2.7 Voltage Time (Offset 12)

This constant defines the time for the voltage calibration in calibration mode. More time means more accuracy. The legitimate values for this constant are integer multiples of 1984. Numbers less than 1984 cause a voltage calibration error. Numbers greater than 1984 are rounded down to the nearest multiple of 1984.

Table C-207. Voltage Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
105	Config	12	Voltage Time	Unsigned integer	2	0	65,535	1984	_

Related Variable:

SBS:Voltage(0x09)

C.12.2.8 Temperature Time (Offset 14)

This constant defines the time for the temperature calibration in calibration mode. More time means more accuracy. The legitimate values for this constant are integer multiples of 32. Numbers less than 32 cause a temperature calibration error. Numbers greater than 32 are rounded down to the nearest multiple of 32.

Table C-208. Temperature Time

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
105	Config	14	Temperature Time	Unsigned integer	2	0	65,535	32	1

www.ti.com Calibration

Related Variables:

- Calibration:Data(104):Int Temp Offset(18)
- Calibration:Data(104):Ext1 Temp Offset(19)
- Calibration:Data(104):Ext2 Temp Offset(20)
- SBS:Temperature(0x08)

C.12.2.9 Cal Mode Timeout (Offset 17)

The bq20z40-R1/bq20z45-R1 exits calibration mode automatically after a *Cal Mode Timeout* period.

Table C-209. Cal Mode Timeout

Subclass II	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
105	Config	17	Cal Mode Timeout	Unsigned integer	2	0	65,535	38,400	

Related Variable:

SBS:ManufacturerAccess(0x00):Calibration Mode(0x0040)

C.12.3 Temp Model (Subclass 106)

C.12.3.1 Ext Coef 1..4, Ext Min AD, Ext Max Temp (Offset 0..10)

These values characterize the external thermistor connected to the TS1 pin or the TS2 pin of the bq20z40-R1/bq20z45-R1. The default values characterize the Semitec 103AT NTC thermistor. Do not modify these values without consulting TI.

Table C-210. Ext Coef 1..4, Ext Min AD, Ext Max Temp

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
106	Temp Model	0	Ext Coef 1	Integer	2	-32,768	32,767	-28,285	_
		2	Ext Coef 2					20,848	
		4	Ext Coef 3					-7537	
		6	Ext Coef 4					4012	
		8	Ext Min AD					0	
		10	Ext Max Temp					4012	

C.12.3.2 Int Coef 1..4, Int Min AD, Int Max Temp (Offset 12..22)

These values characterize the internal thermistor of the bq20z40-R1/bq20z45-R1. Do not modify these values without consulting TI.

Table C-211. Int Coef 1..4, Int Min AD, Int Max Temp

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
106	Temp Model	12	Int Coef 1	Integer	2	-32,768	32,767	0	_
		14	Int Coef 2					0	
		16	Int Coef 3					-11,136	
		18	Int Coef 4					5754	
		20	Int Min AD					0	
		22	Int Max Temp					5754	

Data Flash Values www.ti.com

C.12.4 Current (Subclass 107)

C.12.4.1 Filter (Offset 0)

Filter defines the filter constant used in the *AverageCurrent* calculation:

AverageCurrent new = $a \times AverageCurrent$ old + $(1 - a) \times Current$ with:

 $a = \langle Filter \rangle / 256$; the time constant = 1 s/ln(1/a) (default 14.5 s)

Table C-212. Filter

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
107	Current	0	Filter	Unsigned integer	1	0	255	239	_

Related Variables:

- SBS:Current(0x0a)
- SBS:AverageCurrent(0x0b)

C.12.4.2 Deadband (Offset 1)

Any current within ± **Deadband** is reported as 0 mA by the *Current* function.

Table C-213. Deadband

Subclass ID	Subclass Name	Offset	Offset Name		Size in Bytes	Min Value	Max Value	Default Value	Unit
107	Current	1	Deadband	Unsigned integer	1	0	255	3	_

Related Variable:

SBS:Current(0x0a)

C.12.4.3 CC Deadband (Offset 2)

This constant defines the deadband voltage for the measured voltage between the SR1 and SR2 pins used for capacity accumulation in units of 294 nV. Any voltages within ±*CC Deadband* do not contribute to capacity accumulation.

Table C-214, CC Deadband

Subclass ID	Subclass Name	Offset	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit	
107	Current	2	CC Deadband	Unsigned integer	1	0	255	34	_	

Related Variable:

SBS:RemainingCapacity(0x0f)

C.13 Data Flash Values

Table C-215, DATA FLASH VALUES

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min Value	Max Value	Default Value	Units (EVSW Units)*
1st Level Safety	0	Voltage	0	LT COV Threshold	12	3700	5000	4300	mV
1st Level Safety	0	Voltage	2	LT COV Recovery	12	0	4400	4100	mV

www.ti.com Data Flash Values

Class	Subclass	Subclass	Offset	Name	Data	Min	Max	Default	Units
O.u.oo	ID		000.	1	Туре	Value	Value	Value	(EVSW Units)*
1st Level Safety	0	Voltage	4	ST COV Threshold	12	3700	5000	4500	mV
1st Level Safety	0	Voltage	6	ST COV Recovery	12	0	4400	4300	mV
1st Level Safety	0	Voltage	8	HT COV Threshold	12	3700	5000	4200	mV
1st Level Safety	0	Voltage	10	HT COV Recovery	12	0	4400	4000	mV
1st Level Safety	0	Voltage	13	CUV Threshold	I2	0	3500	2200	mV
1st Level Safety	0	Voltage	16	CUV Recovery	I2	0	3600	3000	mV
1st Level Safety	1	Current	0	OC (1st Tier) Chg	I2	0	20000	6000	mA
1st Level Safety	1	Current	5	OC (1st Tier) Dsg	12	0	20000	6000	mA
1st Level Safety	1	Current	16	Current Recovery Time	U1	0	240	8	s
1st Level Safety	1	Current	17	AFE OC Dsg	H1	0x0	0xff	0x12	_
1st Level Safety	1	Current	18	AFE OC Dsg Time	H1	0x0	0xff	0xf	_
1st Level Safety	1	Current	21	AFE SC Chg Cfg	H1	0x0	0xff	0x77	_
1st Level Safety	1	Current	22	AFE SC Dsg Cfg	H1	0x0	0xff	0x77	_
1st Level Safety	2	Temperature	0	OT1 Chg Threshold	12	0	255	55	°C
1st Level Safety	2	Temperature	2	OT1 Chg Time	U1	0	240	2	s
1st Level Safety	2	Temperature	3	OT1 Chg Recovery	12	0	255	50	°C
1st Level Safety	2	Temperature	5	OT2 Chg Threshold	12	0	255	55	°C
1st Level Safety	2	Temperature	7	OT2 Chg Time	U1	0	240	2	s
1st Level Safety	2	Temperature	8	OT2 Chg Recovery	12	0	255	50	°C
1st Level Safety	2	Temperature	10	OT1 Dsg Threshold	12	0	255	60	°C
1st Level Safety	2	Temperature	12	OT1 Dsg Time	U1	0	240	2	s
1st Level Safety	2	Temperature	13	OT1 Dsg Recovery	12	0	255	55	°C
1st Level Safety	2	Temperature	15	OT2 Dsg Threshold	12	0	255	60	°C
1st Level Safety	2	Temperature	17	OT2 Dsg Time	U1	0	240	2	s
1st Level Safety	2	Temperature	18	OT2 Dsg Recovery	12	0	255	55	°C
1st Level Safety	2	Temperature	20	Hi Dsg Start Temp	I2	0	120	60	°C
2nd Level Safety	16	Voltage	0	LT SOV Threshold	I2	0	20000	4400	mV
2nd Level Safety	16	Voltage	2	ST SOV Threshold	I2	0	20000	4600	mV
2nd Level Safety	16	Voltage	4	HT SOV Threshold	I2	0	20000	4500	mV
2nd Level Safety	16	Voltage	6	SOV Time	U1	0	240	0	s

Data Flash Values www.ti.com

							-		
Class	Subclass ID	Subclass	Offset	Name	Data Type	Min Value	Max Value	Default Value	Units (EVSW Units)*
2nd Level Safety	16	Voltage	7	PF SOV Fuse Blow Delay	U2	0	65535	0	s
2nd Level Safety	16	Voltage	9	SUV Threshold	12	0	20000	2000	mV
2nd Level Safety	16	Voltage	11	SUV Time	U1	0	240	0	s
2nd Level Safety	16	Voltage	12	Rest CIM Current	U1	0	200	5	mA
2nd Level Safety	16	Voltage	13	Rest CIM Fail Voltage	I2	0	5000	1000	mV
2nd Level Safety	16	Voltage	15	Rest CIM Time	U1	0	240	0	s
2nd Level Safety	16	Voltage	16	CIM Battery Rest Time	U2	0	65535	1800	s
2nd Level Safety	16	Voltage	18	Rest CIM Check Voltage	U2	0	65535	3000	mV
2nd Level Safety	16	Voltage	20	Active CIM Fail Voltage	12	0	5000	1000	mV
2nd Level Safety	16	Voltage	22	Active CIM Time	U1	0	240	0	s
2nd Level Safety	16	Voltage	23	Active CIM Check Voltage	I2	0	32768	3000	mV
2nd Level Safety	16	Voltage	25	PFIN Detect Time	U1	0	240	0	s
2nd Level Safety	16	Voltage	26	PF Min Fuse Blow Voltage	12	0	20000	8000	mV
2nd Level Safety	17	Current	0	SOC Chg	I2	0	30000	10000	mA
2nd Level Safety	17	Current	2	SOC Chg Time	U1	0	240	0	s
2nd Level Safety	17	Current	3	SOC Dsg	12	0	30000	10000	mA
2nd Level Safety	17	Current	5	SOC Dsg Time	U1	0	240	0	s
2nd Level Safety	18	Temperature	0	SOT1 Chg Threshold	I2	0	255	65	°C
2nd Level Safety	18	Temperature	2	SOT1 Chg Time	U1	0	240	0	s
2nd Level Safety	18	Temperature	3	SOT2 Chg Threshold	12	0	255	65	°C
-	18	Temperature	5	SOT2 Chg Time	U1	0	240	0	s
2nd Level Safety	18	Temperature	6	SOT1 Dsg Threshold	12	0	255	75	°C
2nd Level Safety	18	Temperature	8	SOT1 Dsg Time	U1	0	240	0	s
2nd Level Safety	18	Temperature	9	SOT2 Dsg Threshold	12	0	255	75	°C
2nd Level Safety	18	Temperature	11	SOT2 Dsg Time	U1	0	240	0	s
2nd Level Safety	19	FET Verification	2	FET Fail Time	U1	0	240	0	s
2nd Level Safety	20	AFE Verification	0	AFE Check Time	U1	0	255	0	s
2nd Level Safety	20	AFE Verification	1	AFE Fail Limit	U1	0	255	0	_
2nd Level Safety	20	AFE Verification	2	AFE Fail Recovery Time	U1	0	255	20	s
Charge	32	Charge Temp Cfg	0	JT1	12	-40	120	0	°C

www.ti.com Data Flash Values

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min Value	Max Value	Default Value	Units (EVSW Units)*
Charge Control	32	Charge Temp Cfg	2	JT2	12	-40	120	12	°C
Charge Control	32	Charge Temp Cfg	4	JT2a	12	-40	120	30	°C
Charge Control	32	Charge Temp Cfg	6	JT3	12	-40	120	45	°C
Charge Control	32	Charge Temp Cfg	8	JT4	12	-40	120	55	°C
Charge Control	32	Charge Temp Cfg	10	Temp Hys	I2	0	10	1	°C
Charge Control	33	Pre-Charge Cfg	0	Pre-chg Voltage Threshold	I2	0	20000	3000	mV
Charge Control	33	Pre-Charge Cfg	2	Pre-chg Recovery Voltage	12	0	20000	3100	mV
Charge Control	33	Pre-Charge Cfg	4	Pre-chg Current	12	0	2000	250	mA
Charge Control	34	Charge Cfg	0	LT Chg Voltage	I2	0	20000	12000	mV
Charge Control	34	Charge Cfg	2	LT Chg Current1	12	0	20000	250	mA
Charge Control	34	Charge Cfg	4	LT Chg Current2	12	0	20000	250	mA
Charge Control	34	Charge Cfg	6	LT Chg Current3	12	0	20000	250	mA
Charge Control	34	Charge Cfg	8	ST1 Chg Voltage	12	0	20000	16800	mV
Charge Control	34	Charge Cfg	10	ST1 Chg Current1	12	0	20000	4000	mA
Charge Control	34	Charge Cfg	12	ST1 Chg Current2	12	0	20000	4000	mA
Charge Control	34	Charge Cfg	14	ST1 Chg Current3	12	0	20000	4000	mA
Charge Control	34	Charge Cfg	16	ST2 Chg Voltage	12	0	20000	16800	mV
Charge Control	34	Charge Cfg	18	ST2 Chg Current1	12	0	20000	4000	mA
Charge Control	34	Charge Cfg	20	ST2 Chg Current2	12	0	20000	4000	mA
Charge Control	34	Charge Cfg	22	ST2 Chg Current3	12	0	20000	4000	mA
Charge Control	34	Charge Cfg	24	HT Chg Voltage	12	0	20000	16760	mV
Charge Control	34	Charge Cfg	26	HT Chg Current1	12	0	20000	3800	mA
Charge Control	34	Charge Cfg	28	HT Chg Current2	12	0	20000	3800	mA
Charge Control	34	Charge Cfg	30	HT Chg Current3	12	0	20000	3800	mA
Charge Control	34	Charge Cfg	32	Cell Voltage Threshold1	12	0	5000	3900	mV
Charge Control	34	Charge Cfg	34	Cell Voltage Threshold2	12	0	5000	4000	mV
Charge Control	34	Charge Cfg	36	Cell Voltage Thresh Hys	12	0	1000	10	mV
Charge Control	36	Termination Cfg.	2	Taper Current	12	0	1000	250	mA
Charge Control	36	Termination Cfg.	6	Taper Voltage	12	0	1000	75	mV
Charge Control	36	Termination Cfg.	10	TCA Clear %	I1	-1	100	95	%

Data Flash Values www.ti.com

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min Value	Max Value	Default Value	Units (EVSW Units)*
Charge Control	36	Termination Cfg.	12	FC Clear %	I1	-1	100	98	%
Charge Control	37	Cell Balancing Cfg	0	Min Cell Deviation	U2	0	65535	1350	s/mAh
Charge Control	38	Charging Faults	13	Over Charge Capacity	12	0	4000	300	mAh
Charge Control	38	Charging Faults	21	Charge Fault Cfg	H1	0x0	0xffff	0x0	
SBS Configuration	48	Data	0	Rem Cap Alarm	12	0	700	300	mAh
SBS Configuration	48	Data	2	Rem Energy Alarm	12	0	1000	432	mWh
SBS Configuration	48	Data	4	Rem Time Alarm	U2	0	30	10	min
SBS Configuration	48	Data	6	Init Battery Mode	H2	0x0	0xffff	0x81	_
SBS Configuration	48	Data	8	Design Voltage	12	7000	18000	14400	mV
SBS Configuration	48	Data	10	Spec Info	H2	0x0	0xffff	0x31	_
SBS Configuration	48	Data	12	Manuf Date	U2	0	65535	0	Day + Mo*32 + (Yr -1980)*256 (date)
SBS Configuration	48	Data	14	Ser. Num.	H2	0x0000	0xffff	0x1	_
SBS Configuration	48	Data	16	Cycle Count	U2	0	65535	0	_
SBS Configuration	48	Data	18	CC Threshold	12	100	32767	4400	mAh
SBS Configuration	48	Data	21	CF MaxError Limit	U1	0	100	100	%
SBS Configuration	48	Data	22	Design Capacity	12	0	32767	4400	mAh
SBS Configuration	48	Data	24	Design Energy	12	0	32767	6336	10mWh (mWh)
SBS Configuration	48	Data	26	Manuf Name	S21	х	х	Texas Instruments	_
SBS Configuration	48	Data	47	Device Name	S21	х	х	bq20z40	_
SBS Configuration	48	Data	68	Device Chemistry	S5	х	х	LION	_
SBS Configuration	48	Data	73	Deterioration Warn Limit	U1	0	100	50	%
SBS Configuration	48	Data	74	Deterioration Fault Limit	U1	0	100	30	%
SBS Configuration	48	Data	75	Cell Life Limit	U1	0	100	20	%
SBS Configuration	49	Configuration	0	TDA Set %	I1	-1	100	6	%
SBS Configuration	49	Configuration	1	TDA Clear %	I1	-1	100	8	%
SBS Configuration	49	Configuration	2	FD Set %	I1	-1	100	2	%
SBS Configuration	49	Configuration	3	FD Clear %	I1	-1	100	5	%
SBS Configuration	49	Configuration	4	TDA Set Volt Threshold	12	0	16800	5000	mV
SBS Configuration	49	Configuration	6	TDA Set Volt Time	U1	0	240	5	s

www.ti.com Data Flash Values

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min Value	Max Value	Default Value	Units (EVSW Units)*
SBS Configuration	49	Configuration	7	TDA Clear Volt	12	0	16800	5500	mV
System Data	58	Manufacturer Info	0	Manuf. Info 0	S32	x	X	0123456789 ABCDEF012 3456789ABC DE	_
System Data	58	Manufacturer Info	32	Manuf. Block 1	S20	х	x	0123456789 ABCDEF012	_
System Data	58	Manufacturer Info	53	Manuf. Block 2	S20	х	х	0123456789 ABCDEF012	_
System Data	58	Manufacturer Info	74	Manuf. Block 3	S20	x	x	0123456789 ABCDEF012	_
System Data	58	Manufacturer Info	95	Manuf. Block 4	S20	x	x	0123456789 ABCDEF012	_
System Data	59	Lifetime Data	0	Lifetime Max Temp	12	0	140	30	°C
System Data	59	Lifetime Data	2	Lifetime Min Temp	12	-60	140	200	°C
System Data	59	Lifetime Data	4	Lifetime Max Cell Voltage	12	0	32767	3500	mV
System Data	59	Lifetime Data	6	Lifetime Min Cell Voltage	12	0	32767	3200	mV
System Data	59	Lifetime Data	8	Lifetime Max Pack Voltage	12	0	32767	14000	mV
System Data	59	Lifetime Data	10	Lifetime Min Pack Voltage	12	0	32767	12800	mV
System Data	59	Lifetime Data	12	Lifetime Max Chg Current	12	-32767	32767	1500	mA
System Data	59	Lifetime Data	14	Lifetime Max Dsg Current	12	-32767	32767	-3000	mA
System Data	59	Lifetime Data	16	Lifetime Max Chg Power	12	-32767	32767	1500	10mW (mW)
System Data	59	Lifetime Data	18	Lifetime Max Dsg Power	12	-32767	32767	-1500	10mW (mW)
System Data	59	Lifetime Data	22	Life Max AvgDsg Cur	12	-32767	32767	-1000	mA
System Data	59	Lifetime Data	26	Life Max AvgDsg Pow	12	-32767	32767	-1500	10mW
System Data	59	Lifetime Data	28	Life Avg Temp	12	0	140	25	°C
System Data	60	Lifetime Temp Samples	0	LT Temp Samples	14	0	1400000 00	0	_
Configuration	64	Registers	0	Operation Cfg A	H2	0x0	0xffff	0x329	_
Configuration	64	Registers	2	Operation Cfg B	H2	0x0	0xffff	0x2440	_
Configuration	64	Registers	4	Operation Cfg C	H2	0x0	0xffff	0x130	_
Configuration	64	Registers	6	Permanent Fail Cfg	H2	0x0	0xffff	0x0	_
Configuration	64	Registers	8	Permanent Fail Cfg 2	H2	0x0	0xffff	0x0	_
Configuration		Registers	10	Non-Removable Cfg	H2	0x0	0xffff	0x0	_
Configuration		AFE	1	AFE.State_CTL	H1	0x0	0xff	0x0	_
Power	68	Power	0	Flash Update OK Voltage	12	6000	20000	7500	mV
Power	68	Power	2	Shutdown Voltage	12	5000	20000	7000	mV
Power	68	Power	5	Cell Shutdown Voltage	12	0	5000	1750	mV
Power	68	Power	8	Charger Present	12	0	23000	3000	mV
Power	68	Power	10	Sleep Current	12	0	100	10	mA
Power	68	Power	19	Wake Current Reg	H1	0x0	0xff	0x0	
Power	68	Power	20	Sealed Ship Delay	U1	0	255	5	s
Gas Gauging	80	IT Cfg	0	Load Select	U1	0	255	7	_
Gas Gauging	80	IT Cfg	1	Load Mode	U1	0	255	0	
Gas Gauging Gas Gauging		IT Cfg	60	Term Voltage	12	-32768	32767	12000	mV
	80	_	77	User Rate-mA	12	-9000	0	0	mA
Gas Gauging Gas Gauging	80	IT Cfg IT Cfg	79	User Rate-mW	12	-9000 -32768	0	0	10mW (mW)
Gas Gauging	80	IT Cfg	81	Reserve Cap-mAh	12	0	9000	0	mAh
Gas Gauging		IT Cfg	83	Reserve Cap-mWh	12	0	14000	0	10mWh

Data Flash Values www.ti.com

		i abie (C-215.	DATA FLASH VALU)E5 (C	ontinued	1)		
Class	Subclass ID	Subclass	Offset	Name	Data Type	Min Value	Max Value	Default Value	Units (EVSW Units)*
Gas Gauging	80	IT Cfg	88	Ra Max Delta	12	0	32000	44	mOhms
Gas Gauging	81	Current Thresholds	0	Dsg Current Threshold	12	0	2000	100	mA
Gas Gauging	81	Current Thresholds	2	Chg Current Threshold	12	0	2000	50	mA
Gas Gauging	81	Current Thresholds	4	Quit Current	12	0	1000	10	mA
Gas Gauging	82	State	0	Qmax Cell 0	12	0	32767	4400	mAh
Gas Gauging	82	State	2	Qmax Cell 1	12	0	32767	4400	mAh
Gas Gauging	82	State	4	Qmax Cell 2	12	0	32767	4400	mAh
Gas Gauging	82	State	6	Qmax Cell 3	12	0	32767	4400	mAh
Gas Gauging	82	State	8	Qmax Pack	12	0	32767	4400	mAh
Gas Gauging	82	State	12	Update Status	H1	0x0	0xe	0x0	_
Gas Gauging	82	State	13	Cell 0 Chg dod at EoC	12	0	16384	0	_
Gas Gauging	82	State	15	Cell 1 Chg dod at EoC	12	0	16384	0	_
Gas Gauging	82	State	17	Cell 2 Chg dod at EoC	12	0	16384	0	_
Gas Gauging	82	State	19	Cell 3 Chg dod at EoC	12	0	16384	0	_
Gas Gauging	82	State	21	Avg I Last Run	12	-32768	32767	-2000	mA
Gas Gauging	82	State	23	Avg P Last Run	12	-32768	32767	-3022	10mW
Gas Gauging	82	State	25	Delta Voltage	12	-32768	32767	0	mV
Gas Gauging	82	State	31	Max Avg I Last Run	12	-32767	32767	-2000	mA
Gas Gauging	82	State	33	Max Avg P Last Run	12	-32767	32767	-3022	10mW
Ra Table	88	R_a0	0	Cell0 R_a flag	H2	0x0	0x0	0xff55	_
Ra Table	88	R_a0	2	Cell0 R_a 0	12	38	38	38	2^–10Ω
Ra Table	88	R_a0	4	Cell0 R_a 1	12	41	41	41	2^-10Ω
Ra Table	88	R_a0	6	Cell0 R_a 2	12	43	43	43	2^-10Ω
Ra Table	88	R_a0	8	Cell0 R_a 3	12	44	44	44	2^-10Ω
Ra Table	88	R_a0	10	Cell0 R_a 4	12	42	42	42	2^–10Ω
Ra Table	88	R_a0	12	Cell0 R_a 5	12	42	42	42	2^–10Ω
Ra Table	88	R_a0	14	Cell0 R_a 6	12	45	45	45	2^-10Ω
Ra Table	88	R_a0	16	Cell0 R_a 7	12	48	48	48	2^-10Ω
Ra Table	88	R_a0	18	Cell0 R_a 8	12	49	49	49	2^-10Ω
Ra Table	88	R_a0	20	Cell0 R_a 9	12	52	52	52	2^-10Ω
Ra Table	88	R_a0	22	Cell0 R_a 10	12	56	56	56	2^-10Ω
Ra Table	88	R_a0	24	Cell0 R_a 11	12	64	64	64	2^-10Ω
Ra Table	88	R_a0	26	Cell0 R_a 12	12	74	74	74	2^-10Ω
Ra Table	88	R_a0	28	Cell0 R_a 13	12	128	128	128	2^-10Ω
Ra Table	88	R_a0	30	Cell0 R_a 14	12	378	378	378	2^–10Ω
Ra Table	89	R_a1	0	Cell1 R_a flag	H2	0x0	0x0	0xff55	_
Ra Table	89	R_a1	2	Cell1 R_a 0	12	38	38	38	2^–10Ω
Ra Table	89	R_a1	4	Cell1 R_a 1	12	41	41	41	2^–10Ω
Ra Table	89	R_a1	6	Cell1 R_a 2	12	43	43	43	2^–10Ω
Ra Table	89	R_a1	8	Cell1 R_a 3	12	44	44	44	2^–10Ω
Ra Table	89	R_a1	10	Cell1 R_a 4	12	42	42	42	2^-10Ω
Ra Table	89	R_a1	12	Cell1 R_a 5	12	42	42	42	2^-10Ω
Ra Table	89	R_a1	14	Cell1 R_a 6	12	45	45	45	2^-10Ω
Ra Table	89	R_a1	16	Cell1 R_a 7	12	48	48	48	2^-10Ω
Ra Table	89	R_a1	18	Cell1 R_a 8	12	49	49	49	2^-10Ω
Ra Table	89	R_a1	20	Cell1 R_a 9	12	52	52	52	2^-10Ω
Ra Table	89	R_a1	22	Cell1 R_a 10	12	56	56	56	2^-10Ω
Ra Table	89	R_a1	24	Cell1 R_a 11	12	64	64	64	2^-10Ω
Ra Table	89	R_a1	26	Cell1 R_a 12	12	74	74	74	2^-10Ω
Ra Table	89	R_a1	28	Cell1 R_a 13	12	128	128	128	2^-10Ω

www.ti.com Data Flash Values

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min Value	Max Value	Default Value	Units (EVSW Units)*
Ra Table	89	R_a1	30	Cell1 R_a 14	12	378	378	378	2^-10Ω
Ra Table	90	R_a2	0	Cell2 R_a flag	H2	0x0	0x0	0xff55	_
Ra Table	90	R_a2	2	Cell2 R_a 0	12	38	38	38	2^-10Ω
Ra Table	90	R_a2	4	Cell2 R_a 1	12	41	41	41	2^-10Ω
Ra Table	90	R_a2	6	Cell2 R_a 2	12	43	43	43	2^-10Ω
Ra Table	90	R_a2	8	Cell2 R_a 3	12	44	44	44	2^-10Ω
Ra Table	90	R_a2	10	Cell2 R_a 4	12	42	42	42	2^-10Ω
Ra Table	90	R_a2	12	Cell2 R_a 5	12	42	42	42	2^-10Ω
Ra Table	90	R_a2	14	Cell2 R_a 6	12	45	45	45	2^-10Ω
Ra Table	90	R_a2	16	Cell2 R_a 7	12	48	48	48	2^-10Ω
Ra Table	90	R_a2	18	Cell2 R_a 8	12	49	49	49	2^-10Ω
Ra Table	90	R_a2	20	Cell2 R_a 9	12	52	52	52	2^-10Ω
Ra Table	90	R_a2	22	Cell2 R_a 10	12	56	56	56	2^-10Ω
Ra Table	90	R_a2	24	Cell2 R_a 11	12	64	64	64	2^-10Ω
Ra Table	90	R_a2	26	Cell2 R_a 12	12	74	74	74	2^-10Ω
Ra Table	90	R_a2	28	Cell2 R_a 13	12	128	128	128	2^-10Ω
Ra Table	90	R_a2	30	Cell2 R_a 14	12	378	378	378	2^-10Ω
Ra Table	91	R_a3	0	Cell3 R_a flag	H2	0x0	0x0	0xff55	_
Ra Table	91	R_a3	2	Cell3 R_a 0	12	38	38	38	2^-10Ω
Ra Table	91	R_a3	4	Cell3 R_a 1	12	41	41	41	2^-10Ω
Ra Table	91	R_a3	6	Cell3 R_a 2	12	43	43	43	2^-10Ω
Ra Table	91	R_a3	8	Cell3 R_a 3	12	44	44	44	2^-10Ω
Ra Table	91	R_a3	10	Cell3 R_a 4	12	42	42	42	2^-10Ω
Ra Table	91	R_a3	12	Cell3 R_a 5	12	42	42	42	2^-10Ω
Ra Table	91	R_a3	14	Cell3 R_a 6	12	45	45	45	2^-10Ω
Ra Table	91	R_a3	16	Cell3 R_a 7	12	48	48	48	2^-10Ω
Ra Table	91	R_a3	18	Cell3 R_a 8	12	49	49	49	2^-10Ω
Ra Table	91	R_a3	20	Cell3 R_a 9	12	52	52	52	2^-10Ω
Ra Table	91	R_a3	22	Cell3 R_a 10	12	56	56	56	2^-10Ω
Ra Table	91	R_a3	24	Cell3 R_a 11	12	64	64	64	2^-10Ω
Ra Table	91	R_a3	26	Cell3 R_a 12	12	74	74	74	2^-10Ω
Ra Table	91	R_a3	28	Cell3 R_a 13	12	128	128	128	2^-10Ω
Ra Table	91	R_a3	30	Cell3 R_a 14	12	378	378	378	2^-10Ω
Ra Table	92	R_a0x	0	xCell0 R_a flag	H2	Oxffff	0xffff	Oxffff	_
Ra Table	92	R_a0x	2	xCell0 R_a 0	12	38	38	38	2^-10Ω
Ra Table	92	R_a0x	4	xCell0 R_a 1	12	41	41	41	2^-10Ω
Ra Table	92	R_a0x	6	xCell0 R_a 2	12	43	43	43	2^-10Ω
Ra Table	92	R a0x	8	xCell0 R_a 3	12	44	44	44	2^-10Ω
Ra Table	92	R a0x	10	xCell0 R_a 4	12	42	42	42	2^-10Ω
Ra Table	92	R_a0x	12	xCell0 R_a 5	12	42	42	42	2^-10Ω
Ra Table	92	R_a0x	14	xCell0 R_a 6	12	45	45	45	2^-10Ω
Ra Table	92	R_a0x	16	xCell0 R_a 7	12	48	48	48	2^-10Ω
Ra Table	92	R_a0x	18	xCell0 R_a 8	12	49	49	49	2^-10Ω
Ra Table	92	R_a0x	20	xCell0 R_a 9	12	52	52	52	2^-10Ω
Ra Table	92	R_a0x	22	xCell0 R_a 10	12	56	56	56	2^-10Ω
Ra Table	92	R_a0x	24	xCell0 R_a 11	12	64	64	64	2^-10Ω
Ra Table	92	R_a0x	26	xCell0 R_a 11	12	74	74	74	2'-10Ω
Ra Table	92		28	xCell0 R_a 12 xCell0 R_a 13	12	128	128	128	2'-10Ω
		R_a0x							
Ra Table	92	R_a0x	30	xCell0 R_a 14	12	378	378	378	2^–10Ω

Data Flash Values www.ti.com

		Table	C-215.	DATA FLASH VALU	JES (CC	ontinued)		
Class	Subclass ID	Subclass	Offset	Name	Data Type	Min Value	Max Value	Default Value	Units (EVSW Units)*
Ra Table	93	R_a1x	2	xCell1 R_a 0	12	38	38	38	2^-10Ω
Ra Table	93	R_a1x	4	xCell1 R_a 1	12	41	41	41	2^-10Ω
Ra Table	93	R_a1x	6	xCell1 R_a 2	12	43	43	43	2^-10Ω
Ra Table	93	R_a1x	8	xCell1 R_a 3	12	44	44	44	2^-10Ω
Ra Table	93	R_a1x	10	xCell1 R_a 4	12	42	42	42	2^-10Ω
Ra Table	93	R_a1x	12	xCell1 R_a 5	12	42	42	42	2^-10Ω
Ra Table	93	R_a1x	14	xCell1 R_a 6	12	45	45	45	2^-10Ω
Ra Table	93	R_a1x	16	xCell1 R_a 7	12	48	48	48	2^-10Ω
Ra Table	93	R_a1x	18	xCell1 R_a 8	12	49	49	49	2^-10Ω
Ra Table	93	R_a1x	20	xCell1 R_a 9	12	52	52	52	2^-10Ω
Ra Table	93	R_a1x	22	xCell1 R_a 10	12	56	56	56	2^-10Ω
Ra Table	93	R_a1x	24	xCell1 R_a 11	12	64	64	64	2^-10Ω
Ra Table	93	R_a1x	26	xCell1 R_a 12	12	74	74	74	2^-10Ω
Ra Table	93	R_a1x	28	xCell1 R_a 13	12	128	128	128	2^-10Ω
Ra Table	93	R_a1x	30	xCell1 R_a 14	12	378	378	378	2^-10Ω
Ra Table	94	R_a2x	0	xCell2 R_a flag	H2	0xffff	0xffff	0xffff	_
Ra Table	94	R_a2x	2	xCell2 R_a 0	12	38	38	38	2^-10Ω
Ra Table	94	R_a2x	4	xCell2 R_a 1	12	41	41	41	2^-10Ω
Ra Table	94	R_a2x	6	xCell2 R_a 2	12	43	43	43	2^-10Ω
Ra Table	94	R_a2x	8	xCell2 R_a 3	12	44	44	44	2^-10Ω
Ra Table	94	R_a2x	10	xCell2 R_a 4	12	42	42	42	2^-10Ω
Ra Table	94	R_a2x	12	xCell2 R_a 5	12	42	42	42	2^-10Ω
Ra Table	94	R_a2x	14	xCell2 R_a 6	12	45	45	45	2^-10Ω
Ra Table	94	R_a2x	16	xCell2 R_a 7	12	48	48	48	2^-10Ω
Ra Table	94	R_a2x	18	xCell2 R_a 8	12	49	49	49	2^-10Ω
Ra Table	94	R_a2x	20	xCell2 R_a 9	12	52	52	52	2^-10Ω
Ra Table	94	R_a2x	22	xCell2 R_a 10	12	56	56	56	2^-10Ω
Ra Table	94	R_a2x	24	xCell2 R_a 11	12	64	64	64	2^-10Ω
Ra Table	94	R_a2x	26	xCell2 R_a 12	12	74	74	74	2^-10Ω
Ra Table	94	R_a2x	28	xCell2 R_a 13	12	128	128	128	2^-10Ω
Ra Table	94	R_a2x	30	xCell2 R_a 14	12	378	378	378	2^-10Ω
Ra Table	95	R_a3x	0	xCell3 R_a flag	H2	0xffff	0xffff	0xffff	_
Ra Table	95	R_a3x	2	xCell3 R_a 0	12	38	38	38	2^-10Ω
Ra Table	95	R_a3x	4	xCell3 R_a 1	12	41	41	41	2^-10Ω
Ra Table	95	R_a3x	6	xCell3 R_a 2	12	43	43	43	2^-10Ω
Ra Table	95	R_a3x	8	xCell3 R_a 3	12	44	44	44	2^-10Ω
Ra Table	95	R_a3x	10	xCell3 R_a 4	12	42	42	42	2^–10Ω
Ra Table	95	R_a3x	12	xCell3 R_a 5	12	42	42	42	2^-10Ω
Ra Table	95	R_a3x	14	xCell3 R_a 6	12	45	45	45	2^-10Ω
Ra Table	95	R_a3x	16	xCell3 R_a 7	12	48	48	48	2^-10Ω
Ra Table	95	R_a3x	18	xCell3 R_a 8	12	49	49	49	2^–10Ω
Ra Table	95	R_a3x	20	xCell3 R_a 9	12	52	52	52	2^-10Ω
Ra Table	95	R_a3x	22	xCell3 R_a 10	12	56	56	56	2^–10Ω
Ra Table	95	R_a3x	24	xCell3 R_a 11	12	64	64	64	2^-10Ω
Ra Table	95	R_a3x	26	xCell3 R_a 12	12	74	74	74	2^–10Ω
Ra Table	95	R_a3x	28	xCell3 R_a 13	12	128	128	128	2^–10Ω
Ra Table	95	R_a3x	30	xCell3 R_a 14	12	378	378	378	2^-10Ω
PF Status	96	Device Status Data	0	Saved PF Flags 1	H2	0x0	0xffff	0x0	_
PF Status	96	Device Status Data	2	Saved PF Flags 2	H2	0x0	0xffff	0x0	_
PF Status	96	Device Status Data	32	Saved 1st PF Flags 1	H2	0x0	0xffff	0x0	_

www.ti.com Data Flash Values

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min Value	Max Value	Default Value	Units (EVSW Units)*
PF Status	96	Device Status Data	34	Saved 1st PF Flags 2	H2	0x0	0xffff	0x0	_
Calibration	104	Data	0	CC Gain	F4	1.00E-01	4.00E+0 0	0.9419	_
Calibration	104	Data	4	CC Delta	F4	2.9826E+ 04	1.19304 6E+06	280932.625	_
Calibration	104	Data	8	Ref Voltage	12	0	32767	24500	_
Calibration	104	Data	12	AFE Pack Gain	12	0	32767	22050	_
Calibration	104	Data	14	CC Offset	12	-32768	32767	-1667	_
Calibration	104	Data	16	Board Offset	12	-32767	32767	0	_
Calibration	104	Data	18	Int Temp Offset	I1	-128	127	0	_
Calibration	104	Data	19	Ext1 Temp Offset	l1	-128	127	0	_
Calibration	104	Data	20	Ext2 Temp Offset	l1	-128	127	0	_
Calibration	105	Config	0	CC Current	12	0	32767	3000	_
Calibration	105	Config	2	Voltage Signal	12	0	32767	16800	_
Calibration	105	Config	4	Temp Signal	12	0	32767	2980	_
Calibration	105	Config	6	CC Offset Time	U2	0	65535	250	_
Calibration	105	Config	8	ADC Offset Time	U2	0	65535	32	_
Calibration	105	Config	10	CC Gain Time	U2	0	65535	250	_
Calibration	105	Config	12	Voltage Time	U2	0	65535	1984	_
Calibration	105	Config	14	Temperature Time	U2	0	65535	32	_
Calibration	105	Config	17	Cal Mode Timeout	U2	0	65535	38400	_
Calibration	106	Temp Model	0	Ext Coef 1	12	-32768	32767	-28285	_
Calibration	106	Temp Model	2	Ext Coef 2	12	-32768	32767	20848	_
Calibration	106	Temp Model	4	Ext Coef 3	12	-32768	32767	-7537	_
Calibration	106	Temp Model	6	Ext Coef 4	12	-32768	32767	4012	_
Calibration	106	Temp Model	8	Ext Min AD	12	-32768	32767	0	_
Calibration	106	Temp Model	10	Ext Max Temp	12	-32768	32767	4012	_
Calibration	106	Temp Model	12	Int Coef 1	12	-32768	32767	0	_
Calibration	106	Temp Model	14	Int Coef 2	12	-32768	32767	0	_
Calibration	106	Temp Model	16	Int Coef 3	12	-32768	32767	-11136	_
Calibration	106	Temp Model	18	Int Coef 4	12	-32768	32767	5754	_
Calibration	106	Temp Model	20	Int Min AD	12	-32768	32767	0	_
Calibration	106	Temp Model	22	Int Max Temp	12	-32768	32767	5754	_
Calibration	107	Current	0	Filter	U1	0	255	239	_
Calibration	107	Current	1	Deadband	U1	0	255	3	
Calibration	107	Current	2	CC Deadband	U1	0	255	34	_

^{*} Units in parentheses indicate the units shown in bqEvaluation Software (if they are different from the native units). For information on the units for the calibration class please refer to the *Data Flash Programming and Calibrating the bq20zxx Family of Gas Gauges*, application report (SLUA379A)

Glossary

ADC Analog to Digital Converter

AFE Analog Front End

bit A single bit in a SBS command or data flash value which can be changed by the

user

CC Coulomb Counter

CHG FET charge FET, connected to the CHG pin of the bq20z40-R1/bq20z45-R1; used to

enable or disable charging

COV Cell overvoltage

CPU Central Processing Unit

CUV Cell undervoltage

DF Data flash

DOD Depth of Discharge

DSG Flag set by the bq20z40-R1/bq20z45-R1 to indicate charge (DSG= 0) or

discharge (DSG=1)

DSG FET Discharge FET, connected to the DSG pin of the bq20z40-R1/bq20z45-R1; used

to enable or disable discharging

FAS Full Access Security

FC Fully Charged
FD Fully Discharged

flag A single bit in an SBS command or data flash value which is set by the

bg20z40-R1/bg20z45-R1 and indicates a status change

IC Integrated Circuit
LED Light Emitting Diode

Li-Ion Lithium-Ion

NR Non-removableµ

OC Overcurrent

OCA Overcharge alarm
OCV Open-circuit voltage

OTC Overtemperature charging
OTD Overtemperature discharging

PCHG Pre-Charge

PEC Packet Error Checking

PF Permanent Fail
PRES System Present Flag

Qmax Maximum Chemical Capacity
RCA Remaining Capacity Alarm
RSOC Relative State of Charge
SBS Smart Battery System
SCC Short Circuit Charge

Appendix D www.ti.com

SCD	Short Circuit Discharge
SMBus	System Management Bus
SOC	Safety overcurrent
SOT	Safety overtemperature
SS	Sealed mode flag
TCA	Terminate Charge Alarm
TDA	Terminate Discharge Alarm
ZVCHG FET	Pre-charge FET, connected to the ZVCHG pin; depending on the configuration it is used for pre-charging/zero-volt charging
XDSG	Discharge Fault flag

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated