

MBA em Artificial Intelligence & Machine Learning

Introdução a Inteligência Artificial

Prof . Vinicius Soares vinicius@mais.ai

CONTEÚDO DA DISCIPLINA

- A.I. e a 4ª Revolução Industrial
- Definições
- Revolução das Interfaces
- Cenários Utópicos
- Estudos de Caso de Sucesso
- Ferramentas de A.I.
- Ética no Desenvolvimento de A.I.
- Cenários Distópicos
- Riscos / Desafios / Caminhos

- Taxonomia de Falhas
- Al Fails: Estudos de Caso de Fracasso
- A.I. para negócios
- Conceito de aprendizagem
- Aprendizagem Supervisionada
- Aprendizagem não Supervisionada
- Aprendizagem por Reforço
- Áreas / subáreas da A.I.
- Intenção & Entidade
- Assistentes pessoais

AI PARA NEGÓCIOS

MCKINSEY GLOBAL INSTITUTE ARTIFICIAL INTELLIGENCE: THE NEXT DIGITAL FRONTIER?

MGI Al adoption and use survey sample overview

% of respondents (n = 3,073)

Geography		Company size		Sector			
Sweden	5	>10,000	7	Other	12		
South Korea	9	5,000-10,000	6				
				Energy and resources Travel and tourism	3 4		
China	10	1,000-5,000	15	Automotive and assembly	4		
				Transportation and logistics	4		
Germany	10	500 4 000	40	Telecommunications	5		
		500–1,000	10	Consumer packaged goods	5		
Japan	10	250 500	40	Education	5		
		250–500	10	Media and entertainment	5		
Italy	11	50–250	11	Financial services	5		
		30–230	- ''	Health-care systems and services	7		
Canada	11	10–50	14	Construction	8		
France	11	10 00		Retail	8		
United States	11	<10	27	High tech	10		
United Kingdom	12	-10	-	Professional services	14		

Investment in AI is growing at a high rate, but adoption in 2017 remains low

External investment in Al-focused companies by technology category, 2016¹ \$ billion

¹ Estimates consist of annual VC investment in Al-focused companies, PE investment in Al-related companies, and M&A by corporations. Includes only disclosed data available in databases, and assumes that all registered deals were completed within the year of transaction.

SOURCE: Capital IQ; Pitchbook; Dealogic; McKinsey Global Institute analysis

How companies are adopting Al

Al adoption is greatest in sectors that are already strong digital adopters

Six characteristics of early Al adopters

Digitally mature Larger businesses

Adopt Al in core activities

Adopt multiple technologies

Focus on growth over savings

C-level support for Al

	A			Assets Usage					Labor				
	Overall Al index	MGI Digitization Index ¹	Depth of Al technologies	Al spend	Supporting digital assets	Product development	Operations	Supply chain and distribution	Customer experience	Financial and general management	Workforce management	Exposure to Al in workforce	Al resources per worker
High tech and telecommunications													
Automotive and assembly													
Financial services													
Resources and utilities													
Media and entertainment													
Consumer packaged goods													
Transportation and logistics													
Retail													
Education													
Professional services													
Health care													
Building materials and construction													
Travel and tourism													

Relatively high

^{1.} The MGI Digitization Index is GDP weighted average of Europe and United States. See Appendix B for full list of metrics and explanation of methodology.

Metric			Description				
Assets	Depth of Al tec	hnologies	Average number of AI technologies adopted at scale or in core part of business per company				
	Al spend		Average Al spend as share of total annual investment ¹				
	Supporting dig	ital assets	Percentage of firms using cloud and big data				
Usage	Product development	An entirely new product or service	Percentage of firms in sector using Al for entirely new product or service				
		Research and development	Percentage of firms in sector using Al in R&D				
	Operations		Percentage of firms in sector using Al in operations				
	Supply chain and distribution	Supply chain management	Percentage of firms in sector using AI in supply chain management				
		Distribution	Percentage of firms in sector using AI in distribution				
	Customer	Customer services	Percentage of firms in sector using AI in customer services				
	experience	Sales and marketing	Percentage of firms in sector using AI in sales and marketing				
	Financial and general	Executive management	Percentage of firms in sector using AI in executive management				
	management	Financial and risk management	Percentage of firms in sector using AI in financial and risk management				
	Workforce management	Management of operational staff	Percentage of firms in sector using AI in operational staff management				
		HR	Percentage of firms in sector using AI in HR				
Labor	Exposure to Al	in workforce	Percentage of workforce in firms adopting AI at scale or in core part of business				
	Al resources per worker		Average Al spend per employee (€ thousand)				

Sectors leading in Al adoption today also intend to grow their investment the most

Future AI demand trajectory¹

Average estimated % change in Al spending, next 3 years, weighted by firm size2

Current Al adoption

% of firms adopting one or more AI technology at scale or in a core part of their business, weighted by firm size²

SOURCE: McKinsey Global Institute Al adoption and use survey; McKinsey Global Institute analysis

¹ Based on the midpoint of the range selected by the survey respondent.

² Results are weighted by firm size. See Appendix B for an explanation of the weighting methodology.

"Se você automatizar um processo ruim, só vai fazer a coisa errada mais rapidamente."

SOURCE: The age of analytics: Competing in a data-driven world, McKinsey Global Institute, December 2016; McKinsey Global Institute analysis

Al adopters with a proactive strategy have significantly higher profit margins

- Al adopters with proactive strategy1
- Partial Al adopters or experimenters
- Non-adopters

Self-reported current profit margin² Difference from industry average (unweighted) (percentage points)

Four areas across the value chain where Al can create value PROJECT: Smarter R&D and forecasting PRODUCE: Optimized production and maintenance PROMOTE: Targeted sales and marketing PROVIDE: Enhanced user experience

	Project	Produce	Promote	Provide	
	Accurate demand forecasting, smart sourcing, and enlightened R&D	Higher productivity and minimized maintenance and repairs	Products and services at the right price, with the right message, to the right targets	Enriched, tailored, and convenient user experience	
Retail	 1–2% EBIT¹ improvement using machine learning to anticipate fruit and vegetable sales 20% stock reduction using deep learning to predict e-commerce purchases 2 million fewer product returns per year 	30% reduction of stocking time using autonomous vehicles in warehouses	 50% improvement of assortment efficiency 4–6% sales increase using geospatial modeling to improve micromarket attractiveness 30% online sales increase by using dynamic pricing and personalization 		
Electric utilities	Objective to cut 10% in national electricity usage by using deep learning to predict power demand and supply	 20% energy production increase using machine learning and smart sensors to optimize assets' yield 10–20% EBIT improvement by using machine learning to enhance predictive maintenance, automate fault prediction, and increase capital productivity 		\$10-\$30 savings on monthly bills by using machine learning to automatically switch electricity supply deals	

	Project	Produce	Promote	Provide
	Accurate demand forecasting, smart sourcing, and enlightened R&D	Higher productivity and minimized maintenance and repairs	Products and services at the right price, with the right message, to the right targets	Enriched, tailored, and convenient user experience
Manufac- turing	 10% yield improvement for integrated-circuit products using Al to improve R&D process 39% IT staff reduction by using Al to fully automate procurement processes 	 30% increase of material delivery time using machine learning to determine timing of goods' transfer 3–5% production yield improvement 	13% EBIT improvement by using machine learning to predict sources of servicing revenues and optimize sales efforts	 12% fuel savings for manufacturers' customers, airlines, by using machine learning to optimize flight routes
Health care	 \$300 billion possible savings in the United States using machine learning tools for population health forecasting £3.3 billion possible savings in the United Kingdom using Al to provide preventive care and reduce nonelective hospital admissions 	 30–50% productivity improvement for nurses supported by Al tools Up to 2% GDP savings for operational efficiencies in developed countries 	5–9% health expenditure reduction by using machine learning to tailor treatments and keep patients engaged	 \$2 trillion—\$10 trillion savings globally by tailoring drugs and treatments 0.2–1.3 additional years of average life expectancy
Education		 Virtual teaching assistants can answer 40% of students' routine questions 	 1% increase in enrollment by using a virtual assistant to follow up with applicants 	 85% match with human grading, using machine learning and predictive modelling

SOURCE: McKinsey Global Institute analysis

E OS EMPREGOS?

Automation potential based on demonstrated technology of occupation titles in the United States (cumulative)1

¹ We define automation potential according to the work activities that can be automated by adapting currently demonstrated technology.

SOURCE: US Bureau of Labor Statistics; A future that works: Automation, employment and productivity, McKinsey Global Institute, January 2017; McKinsey Global Institute analysis

CONCEITOS DE APRENDIZAGEM

TIPOS DE APRENDIZAGEM

SUPERVISIONADO Com histórico

Classificação, Regressão

NÃO - SUPERVISIONADO Sem histórico

Agrupamento, Associação, Sumarização

POR REFORÇO

Interação com o ambiente

Aplicações

Machine Learning Use Cases

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Banking

Predict credit worthiness of credit card holders: Build a machine learning model to look for delinquency attributes by providing it with data on delinquent and non-delinquent customers Segment customers by behavioral characteristics: Survey prospects and customers to develop multiple segments using clustering Create a 'next best offer' model for the call center group: Build a predictive model that learns over time as users accept or reject offers made by the sales staff

Healthcare

Predict patient readmission rates: Build a regression model by providing data on the patients' treatment regime and readmissions to show variables that best correlate with readmissions Categorize MRI data by normal or abnormal images: Use deep learning techniques to build a model that learns different features of images to recognize different patterns Allocate scarce medical resources to handle different types of ER cases: Build a Markov Decision Process that learns treatment strategies for each type of ER case

Analyze products customers buy together: Build a supervised learning model to identify frequent item sets and association rules from transactional data

Recommend products to customers based on past purchases: Build a collaborative filtering model based on past purchases by "customers like them" Reduce excess stock with dynamic pricing: Build a dynamic pricing model that adjusts the price based on customer response to offers

APRENDIZAGEM SUPERVISIONADA

Aprendizagem Supervisionada

Aplicações

Fluxo da Aprendizagem Supervisionada

Predict credit worthiness of credit card holders: Build a machine learning model to look for delinquency attributes by providing it with data on delinquent and non-delinquent customers

APRENDIZAGEM NÃO-SUPERVISIONADA

Aprendizagem não Supervisionada

Aplicações

TYPES OF CUSTOMER SEGMENTS

NPV PER CUSTOMER

- VALUE CONVENIENCE IN DELIVERY, ORDERING
- HIGH INCOME
- LONG RELATIONSHIP, LARGE REFERRALS

CONVENIENCE SEEKERS

- BRAND BUYERS, NOT PRICE SENSITIVE
- HIGHEST INCOME. MORE OFTEN MALE
- EXPENSIVE TO ACQUIRE, BUT BUY MOST INITIALLY AND REFER MORE

CASUAL BUYERS

- NOT CONCERNED WITH PERISHABLES OR DELIVERY TIME WINDOWS
- SMALL SPENDING GROWTH

RELATIONSHIP SEEKERS

- INFLUENCED BY RETAILER BRAND, SUGGESTIONS, AND PROMOTIONS
- LOW INCOME
- SMALL SPENDING GROWTH/REFERRAL

- PRICE IS PRIMARY AND PERISHABLES ARE NOT IMPORTANT
- LOW INCOME
- SMALL PURCHASES

Fluxo da Aprendizagem Não Supervisionada

Segment customers by behavioral characteristics: Survey prospects and customers to develop multiple segments using clustering

APRENDIZAGEM POR REFORÇO

Aprendizagem por Reforço

Aplicações

Fluxo da Aprendizagem por Reforço

Model Feedback Loop

Create a 'next best offer' model for the call center group: Build a predictive model that learns over time as users accept or reject offers made by the sales staff

Fluxo de Trabalho

Reinforcement Learning

Resumo - Fluxos de Trabalho

ALGORITMOS

Tipos de Algoritmos

Regressão: Previsão de valores

Se quisermos prever números antes que eles ocorram, os métodos de regressão são adequados. A regressão linear é um dos métodos de regressão e é um dos mais populares em aprendizado de máquina.

Classificação: Previsão de Categorias

Se houver a necessidade de classificar objetos ou categorias com base em suas classificações e atributos históricos, serão usados métodos de classificação, como árvores de decisão (DT também pode ser Regressão).

Clusterização: Agrupamento em categorias desconhecidas

Se não tivermos idéia sobre os dados e quisermos dividí-los em subgrupos para entender seu comportamento coletivo, a clusterização é um dos métodos de referência.

ALGORITMOS DE CLASSIFICAÇÃO

Se o valor da predição tende a ser uma categoria como sim/não, positivo/negativo etc, ele se caracteriza como um problema de classificação em Machine Learning.

Exemplo: Dada uma frase, prever se é um review negativo ou positivo.

Fonte: Flávio A. Rezende Calado

TOMATO SORTING

https://www.youtube.com/watch?v=Lz88nsWL4kw

UBER – ATENÇÃO NA ESTRADA

https://www.youtube.com/watch?v=iMOD9TYRtr8

CLASSIFICAÇÃO COM ÁRVORE DE DECISÃO

Eficiência Computacional

- Modelo de classificação in-memory
 - Pouco acesso a base de dados
 - Baixo custo computacional

Compreensão e transparência

 Muito utilizados por bancos pela extrema transparência na decisão baseada em regras.

Qualidade dos dados

 São capazes de lidar com bases de dados com erros e valores faltantes.

Error Rates

 Apresentam taxas de erros relativamente altas, mas não tão altas quanto a regressão linear.

Compatibilidade de dados

 Árvores de decisão podem manipular dados com atributos numéricos ou nominais.

Impacto do número de atributos

 Estes algoritmos tendem a producir resultados errados se fatores complexos ou intangíveis estiverem presentes, como no caso de segmentação de clientes, por exemplo.

ALGORITMOS DE REGRESSÃO

Regressão

Se o valor a ser previsto tende a ser contínuo ele se caracteriza como um problema de Regressão em Machine Learning.

Exemplo: Em função da região, tamanho do terreno etc, prever o custo de um terreno.

Regressão Linear

- Método mais tradicional
- Utilizado em aplicações práticas

REGRESSÃO LOGÍSTICA

Capacidade para classificação:

- Prevê um valor contínuo.
- Não adequado para classificação

Taxa de erro

 Mais fraco que outros algoritmos no aspecto redução da taxa de erro

Compatibilidade de dados

Depende de dados contínuos (numéricos)

Qualidade dos dados

- Cada valor faltante prejudica a otimização
- Outliers podem corromper significativamente a saída

Complexidade Computacional

 Comparado a árvores de decisão e clusterização, não é custosa computacionalmente.

Compreensão e transparência

 Facilmente compreensível através de notação matemática

REGRESSÃO

Fonte: Flávio A. Rezende Calado

Regressão

Feature x

ALGORITMOS DE CLUSTERIZAÇÃO

Clusterização

Agrupamento de um conjunto de pontos em um determinado número de clusters.

Exemplo: Dados os números 3, 4, 8 e 9, e uma quantidade de clusters igual a 2, o algoritmo deve dividir em dois clusters (3, 4) e (8, 9).

CLUSTERIZAÇÃO

Agrupamento em segmentos com características similares.

Aprendizagem não supervisionada, busca padrões na própria estrutura dos dados sob análise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Agglomerative Hierarchical Clustering

Capacidade de manipulação de dados

 Compatível com a maioria dos tipos de dados e ignora dados faltantes.

Qualidade dos dados

Funciona bem com dados contínuos ou fatoriais

Compreensibilidade e Transparência

 Requer explicações no nível da implementação, não compreensíveis diretamente por leigos.

Eficiência Computacional

 São algoritmos custosos computacionalmente, pois requerem frequentes consulta à base de dados.

Taxa de erros

 Semelhante aos classificadores bayesianos (baixa)

Impacto do número de atributos

 Capazes de manipular múltiplos atributos e interações complexas.

Clusterização

Fonte: Flávio A. Rezende Calado

Feature x1

Aplicações

ALGORITMOS PRONTOS E APIS

Ferramentas Python

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, random forest. ... — Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms**: SVR, ridge regression, Lasso, ...

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation,

Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,
mean-shift, ... — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased

efficiency

Algorithms: PCA, feature selection, non-negative matrix factorization. — Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter

tuning

Modules: grid search, cross validation, metrics. — Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms.

Modules: preprocessing, feature extraction.

- Examples

- Conversation
- Translation
- Classifier
- NLU
- Personality Insights
- Speech to text / Text to speech
- Tone Analyser
- Visual Recognition
- Voice Agent (labs)
- Data Kits (labs)
- IBM Cloud

IBM

MICROSOFT

- NLP/NLU
- Text Analytics (sentimentos e assuntos)
- Azure
- Bot Framework

https://dev.botframework.com/

- Infra Cloud TPUs
- Tensor Flow
- AutoML
- Job Search and Discovery
- DialogFlow
- Video Analysis
- Image Analysis
- Speech Recognition
- Text Analysis
- Translation

GOOGLE

AMAZON

- Lex ASR NLU
- Polly TTS
- Rekognition Imagem
- Infra

FACEBOOK

- Detectron
- AR/VR
- Data Science
- NLP / Speech
- Caffe2
- Faiss
- Torch

OPEN SOURCE

- Open Cog
- Open AI
- Open CV

TRABALHO

ESCOLHA UM PROBLEMA RELEVANTE

Trabalho Final – Pontos Importantes

- Introdução e Problemática;
- Motivação e Objetivo;
- Possível Ferramental e (ou) Técnicas;
- Considerações e Potencial.

Avaliação:

- Aderência aos pontos;
- Participação de todos os alunos;
- Originalidade, "fit" para com o perfil do curso/alunos e "doability".

Perspectiva 1

Perspectiva 2

Perspectiva 3

NLP

NLU

STT

TTS

Tradução

Visão Computacional

1.: Análise de Tom

2.: Análise de Tom para Engajamento

1.: Personalidade PT-BR

2.: Personalidade EN

Copyright © 2018 Prof. Vinicius Soares

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).