

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

3 de Abril de 2023

La gráfica de una función nos ayuda a representar el dominio y recorrido de la función en el eje x y eje y, como se ve en la figura

EJEMPLO 1

- Trace la gráfica de la función $f(x) = \sqrt{4 x^2}$.
- Encuentre el dominio y recorrido a partir de la gráfica.

Solución La gráfica de f son los pares ordenados (x, y) tales que

$$y = f(x) \Longleftrightarrow y = \sqrt{4 - x^2} \Longleftrightarrow x^2 + y^2 = 4$$
, $y \geqslant 0$.

Lo cual corresponde a la parte superior de una circunferencia de centro en (0,0) y radio 2.

Algunas funciones y sus gráficas

• Funciones lineales o afines. f(x) = mx + b

2 Funciones potencia. $f(x) = x^n$

Algunas funciones y sus gráficas

3 Funciones raíz. $f(x) = \sqrt[n]{x}$

• Funciones recíprocas. $f(x) = \frac{1}{x^n}$

$$f(x) = \frac{1}{x^2}$$

EJEMPLO 2 Trace la gráfica de la función

$$f(x) = \begin{cases} x^2 & \text{si } x \leqslant 1, \\ \\ 2x + 1 & \text{si } x > 1. \end{cases}$$

EJEMPLO 3 Trace la gráfica de la función valor absoluto f(x) = |x|.

Solución Recuerde que

$$|x| = \begin{cases} x & \text{si } x \geqslant 0, \\ -x & \text{si } x < 0. \end{cases}$$

Observe que la gráfica de f coincide con la recta y = x a la derecha del eje y y coincide con la recta y = -x a la izquierda del eje y.

EJEMPLO 4 Definimos la función parte entera $[\cdot]: \mathbb{R} \to \mathbb{Z}$ definida por

$$[x] = n \Longleftrightarrow n \leqslant x < n+1 \qquad \forall n \in \mathbb{Z}.$$

cuya gráfica se presenta a continuación

