STATISTICAL INFERENCE

ETHAN LEVIEN

CONTENTS

1. STATISTICAL INFERENCE AND MAXIMUM LIKELIHOOD

Let's imagine we do in fact conduct a survey of n=20 students and find k=17 students respond YES to the question "do you identify as a male?" Can we make this a little more precise? Remember, any time we draw a conclusion we need a model. What is a model for the number of students who respond yes to the survey. Assuming that the samples are independent, we can treat y_i as a Bernoulli distribution. Then, the a number of people, k, who responded saying they are republicans follows a Binomial distribution,

(1)
$$Y \sim \text{Binomial}(n, q)$$

where n is the number of students in our survey and q is a parameter. Recall that the probability distribution for the binomial distribution is

(2)
$$p(Y|q) = \binom{n}{Y} q^{Y} (1-q)^{n-Y}$$

In statistics, we sometimes call this the **likelihood**. More generally, the likelihood is defined as the probability we say a data set as a function of the parameters.

1.1. **MLE, bias and consistency.** Equation (??) tells us how likely it is to observe k YES among n people surveyed. Then, it seems reasonable that this number should not be very small, since that would mean our survey results are an anomaly. More generally, the larger $\mathbb{P}(Y|q)$ is the more likelihood our results are. This suggests one a way to estimate determine q: We can take as our estimate \hat{q} the value which makes $\mathbb{P}(Y|q)$ largest. In other words, we are finding the value of q which makes the data the most likely, and we will call this the **maximum likelihood estimate**.

You can do this using calculus (if you know how, I suggest you give it a try) to determine that the value of q which makes (??) largest is

$$\hat{q}_{\text{MLE}} = \frac{Y}{n}$$

MLEs are very useful, but as we learn later on, they are only one of many ways to estimate a parameter in our model. Any number \hat{q} which we use to approximate the parameter q is an **estimator**.

There must be some properties we would like the estimator to have. At a minimum, it should be in some way informed by the data (we wouldn't want to set $\hat{q}=1/2$ based solely on our intuition). The more data we have (e.g. the larger n) the closer we expect \hat{q} to be to the true value. To make this precise, we define an estimator \hat{q} to be **consistent** if \hat{q} converges to q as n grows. But what does converges mean when we are dealing with random variables? We can understand this through simulations:

Example 1. Plot \hat{q}_{MLE} as a function of n for n = 10, 20, 50, 100, 1000, 5000, 10000.

Solution:

> k_range = [5,10,20,50,100,1000,5000,10000]
> plt.plot(k_range,[np.random.binomial(k,0.3)/k + 1/k for k in k_range],"+")
> plt.plot(k_range,[np.random.binomial(k,0.3)/k + 1/k for k in k_range],"+")
> plt.plot(k_range,[np.random.binomial(k,0.3)/k + 1/k for k in k_range],"+")

Date: April 2022.

2 ETHAN LEVIEN

To better understand the notation of consistence, let's consider two rather silly ways to estimate q. Let \hat{q}_1 and \hat{q}_2 be two other estimators of q defined by

$$\hat{q}_1 = \frac{k}{n} + \frac{1}{n}$$

$$\hat{q}_2 = y_i$$

Exercise 1. Are these consistent or not? Generate simulations to support your result.

Solution:

```
> k_range = [5,10,20,50,100,1000,5000,10000]
> plt.plot(k_range,[np.random.choice([0,1],p = [1-0.3,0.3]) for k in k_range],"+")
> plt.plot(k_range,[np.random.choice([0,1],p = [1-0.3,0.3]) for k in k_range],"+")
> plt.plot(k_range,[np.random.choice([0,1],p = [1-0.3,0.3]) for k in k_range],"+")
> plt.plot(k_range,[np.random.binomial(k,0.3)/k + 1/k for k in k_range],"o")
> plt.plot(k_range,[np.random.binomial(k,0.3)/k + 1/k for k in k_range],"o")
> plt.plot(k_range,[np.random.binomial(k,0.3)/k + 1/k for k in k_range],"o")
```

This exercise demonstrates that consistency is not the only property we look for in an estimator, since \hat{q}_1 seems inferior to \hat{q}_{MLE} . To this end, we say that an estimator is biased if an estimator is, on average, equal to the value of q used to generate the data. In other words, if we run many simulations, or take many different samples from a population and compute the estimator, then we should get the true value of q.

Exercise 2. Determine whether \hat{q}_1 and \hat{q}_2 are biased using simulations.

1.2. **Standard errors.** At this point, you understand that \hat{q}_{MLE} , like all estimators, depends on the data we collect. If we had collected different data, e.g. surveyed a different class, we would get a different \hat{q}_{MLE} . How much will \hat{q}_{MLE} vary between samples? In classical statistics, we measure accuracy using the standard error, denoted $\text{se}(\hat{q})$. Roughly speaking, if we performed many experiments and measured \hat{q} , the measurements will typically differ by $\text{se}(\hat{q})$.

(6)
$$\operatorname{se}(\hat{q}) = \sqrt{\frac{\hat{q}(1-\hat{q})}{n}}$$

Example 2. Run simulations to determine test this formula.

2. Inference for a Normal distribution

Suppose have y_1, \ldots, y_n from a variable which follows a Normal distribution, that is

(7)
$$y_i \sim \text{Normal}(\mu, \sigma)$$

What is our best estimate of μ and σ ?

from a Normal distribution with mean and variance μ and $\sigma,$ the MLE estimators are

$$\hat{\mu}_{\text{MLE}} = \frac{1}{n} \sum y_i$$

and

(9)
$$\hat{\sigma}_{\text{MLE}} = \sqrt{\frac{1}{n-1} \sum (y_i - \hat{\mu})^2}$$

Exercise 3. Show with simulations that these are consistent and unbaised.

3. Hypothesis testing

In statistics, we often infer parameters, such as q, not because we are interested in specific values, but rather because we would like to use them to make a decision. For example, whether a candidate drug is worth moving to the next step in clinical trials. Or perhaps whether there is gender bias in a given class or field. This problem is often framed in terms of **hypothesis testing**, in which we assign a probability to a particular hypothesis or its converse. In the context of a Bernoulli random variable, we might want to decide whether we can rule out $q = q_0 < 1/2$ – that is, the samples being fair – given our data. One way to access this is with a p-value. There many ways to define a p-value, but lets focus on the case where we are interested in understanding whether a drug has an effect. We have a control

group whose response is y_c who is not treated and a treatment group y_t . We then look at the difference $Y=y_c-y_t$. Now uppose that the drug has no effect, then the mean of this should be zero, so testing o see if a drug had an effect essentially amounts to testing if the mean of Y is not zero – this is our null hypothesis.

For this problem, p-value is the chance that the actual value

Exercise 4. Estimate the *p*-value using Monte Carlo simulations.

We can understand the p-value using the Normal approximation to

Exercise 5. Plot the p-value as a function n.