

INCREASING J

Isaías Siliceo

LMG energy spectrum

= Previous result: J=100, N=170

- γx AC: -3.829756785624518
 - Best result of sigma.
- Similar values of γx for greater values of J.

```
J = 100 , N = 170, γxAC =-3.829756785624518
J = 200 , N = 340, γxAC =-3.839379290111011
J = 500 , N = 850, γxAC =-3.845152792802908
J = 800 , N = 1358, γxAC =-3.814806117496742
```

 \circ J = 1000, N = 1698, $\gamma xAC = -3.821599960629344$

= J=200, N=340

Linear fits of σ vs. ΔE_i

= J=500, N=850

Wolfram Mathematica:

- Matrix, Eigenvalues & Eigenstates per γx: 15-16 min.
- 70 iterations: ~ 18 hrs per each pair
- 8 pairs of states: ~ 6 days

Output: Eigenvalues, Eigenvectors, γx Intervals

Fortran 90:

- Wehrl Entropy per state: > 20 min. (J=200)
- 16 states: > 5 hrs (J=200)

Output: γx / Energy_i / Wehrl Entropy

= J= 800 & J=1000

ΔE_i vs (Emean – ESQPT)

$\log(\Delta E_N) = m(E_{\text{mean}} - ESQPT) + b$ $\implies \Delta E_N = Ae^{m(E_{\text{mean}} - ESQPT)}$				
	J	m	b	Α
0	100	-59.8086	-3.36192	0.034669
1	200	-117.4300	-4.36494	0.012715
2	500	-289.7390	-5.52707	0.003978
3	800	-471.5930	-5.94770	0.002612
4	1000	-590.1920	-6.15626	0.002120