

Caner Erdem

Goal

- Spatial smoothing
- Markov random field
- Penalized least square criterion
- One dependent variable and one covariate

- Nonparametric regression
 - Nonlinear effects
 - Difficult to fit parametric models
 - Data-driven & flexible
 - Exploratory data analysis

Source: Fahrmeir et al., 2013

Source: Fahrmeir et al., 2013

Spatial smoothing

- Nonparm. method
- Continuous location variables: geographic coordinates
- Discrete spatial units: regions or grid
 - Sometimes overlap: human brain mapping
- Euclidean distance vs. neighborhood

- Markov random field
 - Relationship between regions: neighborhood
 - A graph G = (V, E)
 - $V = \{1, 2, ..., d\}$ associated with γ_s for s = 1, ..., d
 - Neighborhood of s is $N_s, r \in N_s \Leftrightarrow (s, r) \in E$
 - The property: $p(\gamma_S \mid \{\gamma_r\}_{r \in V \setminus S}) = p(\gamma_S \mid \{\gamma_r\}_{r \in N_S})$
 - Information transfer through local connections

- Penalized least square (PLS)
 - $s \sim r$ denotes region s and r are neighbors
 - Regression coeff. $f_{geo}(s) = \gamma_s$, s = 1, 2, ..., d
 - PLS criterion:
 - $\sum_{i=1}^{n} (y_i f_{geo}(s_i))^2 + \lambda \sum_{s=2}^{d} \sum_{r \in N(s), r < s} (\gamma_r \gamma_s)^2$
 - Penalty term discourages large deviations in regression coefficients of nearby regions

- Model and solution
 - Model: $y_i = f_{geo}(s_i) + \varepsilon_i$, $\varepsilon \sim N(0, \sigma^2)$
 - Model in matrix notation: $y = Z\gamma + \varepsilon$
 - Design mat. $Z[i, s] = \begin{cases} 1 & if \ y_i \ is \ in \ region \ s \\ 0 & otherwise. \end{cases}$
 - Penalty mat. $K[s,r] = \begin{cases} -1 & s \neq r, s \sim r, \\ 0 & s \neq r, s \nsim r, \\ |N(s)| & s = r. \end{cases}$
 - PLS estimate: $\hat{\gamma} = (Z'Z + \lambda K)^{-1}Z'y$

- Concerns about this method
 - Simplicity
 - PLS estimate $\hat{\gamma}$: all in one
 - i.e. spatial and non-spatial covariates
 - Simultaneous est.
 - Mixed models
 - Bayesian approaches
 - BayesX software?

Source: eBay, 2017

First steps

- state based potato yield (100kg/ha)
- only three states without official data
- gadm.org & regionalstatistik.de

Estimation of spatial effects

- Yield data for 230 out of 439 districts
- Estimation steps:
 - Penalty matrix K
 - Via neighborhood
 - Ruegen's neighbor
 - Nordvorpommern
 - Design matrix Z
 - Via yield data
 - PLS estimation

•
$$\hat{\gamma} = (Z'Z + \lambda K)^{-1}Z'y$$

Before		
	13057	13061
13057	5	0
13061	0	0
After		
	13057	13061
13057	6	-1
13061	-1	1

Results

- as $\lambda \uparrow$ smth \uparrow
- but, $as \lambda \uparrow \sigma_{\varepsilon}^2 \uparrow$

Assumptions

- ~ homoscedastic and linear residuals
- $\sigma_{\varepsilon|\lambda=1}^2 = 0.2673956$
- $\sigma_{\varepsilon|\lambda=3}^2 = 0.4040608$
- $\sigma_{\varepsilon|\lambda=5}^2 = 0.4691135$

res3

Assumptions contd.

~ normally distributed residuals

Reason

Solar potential? (no, probably other gainful products)

Thank you...

Caner Erdem

Sources

- Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. (2013). Regression: Models, Methods and Applications. Berlin Heidelberg: Springer-Verlag.
- Fleet, D., & Jepson, A. Markov Random Fields. Retrieved July 08, 2017, from http://www.cs.toronto.edu/~kyros/courses/2503/Handouts/mrf.pdf
- Wikipedia. Solar power in Germany. Retrieved July 12, 2017, from https://en.wikipedia.org/wiki/Solar_power_in_Germany
- eBay. 8 Reasons Why Playing in the Sand Is Good for Kids.
 Retrieved July 12, 2017, from http://www.ebay.com/gds/8-Reasons-Why-Playing-in-the-Sand-Is-Good-for-Kids-/1000000177634049/g.html