Équation d'une droite dans le plan

Une droite est un ensemble infini de points alignés. Nous pouvons la caractériser par une relation entre les coordonnées x et y de ses points.

Définition du vecteur directeur

Soit une droite passant par deux points distincts $A(x_A, y_A)$ et $B(x_B, y_B)$. Le vecteur directeur de cette droite est défini par :

$$ec{v}=(v_1,v_2)=(x_B-x_A,y_B-y_A)$$

Ce vecteur \vec{v} permet de décrire la direction de la droite.

Équation vectorielle de la droite

Tout point M(x,y) de la droite peut être écrit sous la forme :

$$\overrightarrow{AM} = \lambda ec{v}, \quad \lambda \in \mathbb{R}$$

En remplaçant $ec{v}=(v_1,v_2)$, nous obtenons :

$$(x-x_A,y-y_A)=\lambda(v_1,v_2)$$

Équations paramétriques de la droite

En écrivant les coordonnées séparément, nous obtenons un système :

$$\left\{egin{aligned} x = x_A + \lambda v_1 \ y = y_A + \lambda v_2 \end{aligned}, \quad \lambda \in \mathbb{R}
ight.$$

Ce sont les équations paramétriques de la droite.

Équation cartésienne de la droite

Pour éliminer λ , nous exprimons λ à partir de l'équation de x :

$$\lambda = rac{x - x_A}{v_1}$$

En remplaçant dans l'équation de y, nous obtenons :

$$y-y_A=rac{v_2}{v_1}(x-x_A)$$

Cette équation est appelée équation réduite de la droite, où $m=rac{v_2}{v_1}$ est la pente.

Définition de la pente

La pente m d'une droite mesure son inclinaison par rapport à l'axe des x.

$$m = rac{ ext{variation de } y}{ ext{variation de } x} = rac{v_2}{v_1}$$

- Si m>0, la droite monte de gauche à droite. - Si m<0, elle descend de gauche à droite. - Si $v_1=0$, la droite est verticale et ne peut être exprimée sous cette forme.

Exercices à réaliser sur feuille quadrillée

Exercice 1:

Déterminer le vecteur directeur \vec{v} de la droite passant par A(1,2) et B(4,5).

Exercice 2:

Écrire l'équation vectorielle de la droite passant par A(-2,3) et B(3,-1).

Exercice 3:

Trouver les équations paramétriques de la droite passant par A(0,1) et B(2,5).

Exercice 4:

Déterminer l'équation cartésienne de la droite passant par A(-3,4) et B(2,1).

Exercice 5:

Trouver l'équation d'une droite passant par P(2,3) avec un vecteur directeur $\vec{v}=(-1,4)$.

Exercice 6:

Une droite a pour équation $y=-\frac{2}{3}x+5$. Trouver son vecteur directeur.

Exercice 7:

Vérifier si le point C(5,6) appartient à la droite passant par A(1,2) et ayant pour vecteur directeur $\vec{v}=(2,3)$.