Introduction:

Course Logistics and Complexity Review

Fatemeh Panahi
Department of Computer Science
University of Toronto
CSC263-Fall 2017
Lecture 1

Today

- About the Course
 - O Why CSC263?
 - O What CSC263 is about?
 - How to do well in CSC263?
- Logistics
- Review
 - Asymptotic notations (Lower bound, Upper bound, tight bound)
 - Algorithm complexity
 - Worst case, Best case, Average case

Why CSC263?

- To graduate.
- To be a good programmer.
- To land a job.
- To develop excellent software in your start-up.

Why CSC263?

The areas that data structures are applied extensively:

Compiler Design

Operating System

Database Management System

Graphics

Simulation

Artificial Intelligence

Background (Required)

- Theory of computation
 - Inductions
 - Recursive functions, Master Theorem
 - Asymptotic notations.
- Probability theory
 - Probabilities and counting
 - Random variables
 - Distribution
 - Expected value

Logistics -Textbook

 Introduction to Algorithms, Third Edition by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.

Recommended book:

Data Structures and Algorithms in C++ by Michael T. Goodrich, Roberto Tamassia, David M. Mount

Logistics – course page

- Course webpage: http://www.cs.toronto.edu/~fpanahi/2017-fall-csc263.html
- Course forum:
 https://piazza.com/utoronto.ca/summer2017/csc263/home

 All course materials and announcements will be posted in Piazza.
 We will be monitoring the course forum regularly to answer your questions.
- All assignment submissions will be done electronically, using the <u>Markus</u> system. Submission instruction will be provided in Piazza.

Logistics – Sections

This course is offered in two sections.

Section	LEC0101, LEC2003	LEC0201, LEC2000, LEC2201
Lectures	Wed 12:00-14:00 (BA 1190)	Wed 15:00-17:00 (EM 001)
Tutorials	Fri 10:00-11:00 (BA 1190)	Fri 13:00-14:00 (EM 001)
Office Hours: By appointment	Mon 09:00 - 10:30 (BA 3219)	Mon 10:30 - 12:00 (BA 3219)

- The first tutorial will be on 15 Sep. Friday.
- For TAs' contact info, see Piazza.

Logistics - Course Mark Composition

- Assignments: 40%
 - 4 Assignments 10% each.
 - Assignment 0: nothing but making a group of two people in Markus. Deadline: Sep 20
 - Assignment 1: The handout will be posted on Sep 16 in Piazza.
- Midterm Test: 20%, Oct 25, 12:00 13:00 (There is a small possibility of change)
 If you cannot make it send an email to the instructor along with your document of proof before Sep 18.
- Final Exam: 40%, time TBA in Exam Period
- Participation: 2% bonus point

Participation

- We encourage you to participate in the lectures, tutorials and also office hours when you have questions.
 - Actively engage in lectures and tutorials.
 - Answer the questions in Piazza.
 - Win the class contests.

Small Quizzes

 There will be small quizzes at the beginning of some lectures to review the materials.

You can win little prizes!

How to do well in CSC263?

- 1- Be interested! ©
- 2- Solve as many exercises from the text-book as you can.
- 3- Give us feedback for any improvement.

Quick Survey

Have you taken CSC263 or CSC265 before?

- Are you familiar with
 - Running time complexity of algorithms
 - Worst case, Average case, Best case
 - O Asymptotic notations?
 - \circ Big O, Big Ω , Θ
- Probability theory
 - Sample space
 - Expected value

Let's get started!

READING Assignments: Chapters 2, 3; Sections 4.5, 5.1, 5.2.

What CSC263 is about?

 Abstract Data Type (ADT): Set of objects together with set of operations on these objects.

Example: Stack

Objects: lists (or sequences)

Operations: PUSH(S, v), POP(S), ISEMPTY(S)

- ADT's important for specification.
- provide modularity and reuse since usage is independent of implementation

What CSC263 is about?

 Data Structure: implementation of an ADT, a way to represent objects, and algorithms for every operation.

Example: stack implementations.

a) Linked list (keep pointer to head).

ISEMPTY: test head == None.

PUSH: insert at front of list.

POP: remove front of list (if not empty)

b) Array with counter (size of stack).

ISEMPTY: test counter == 0.

PUSH: insert at index counter, increment counter.

POP: (if not empty) decrement counter, remove from index counter.

What CSC263 is about?

- Analysis:
 - Correctness of algorithms
 - Run time complexity analysis

Complexity: amount of resources required by an algorithm, measured as a function of input size.

Resource: running time or memory (space), usually.

Why analyse complexity?

For comparison, e.g., choose between different implementations.

Input size

Input size is problem-dependent. Examples:

- For numbers, "size" = number of bits.
- For lists, "size" = number of elements.
- For graphs, "size" = number of vertices.

- measure must be roughly proportional to true bit-size (no. of bits required to fully encode input).
- In practice, allow ourselves to use $size([a_1, a_2, ..., a_n]) = n$, when it is really $size(a_1) + ... + size(a_n)$ proportional to n only if each a_i has constant size.

For a problem P with input size n there are two algorithms.

Algorithm A

Time complexity : $T_A(n)$

Algorithm B

Time complexity : $T_B(n)$

Which algorithm is better?

How do you compare two functions?

How do you compare two functions?

How do you compare two numbers?

Upper bound and lower bound for variables:

$$15 < x < 45$$
$$20 \le x \le 30$$

$$22 \le x \le 22$$

$$x \text{ is } 22$$

How would you compare two functions?

We want to define something similar for functions $<_f$, $>_f$, $=_f$, \le_f , \ge_f

$$100 x < f 10x^2$$

Upper bound and lower bound for functions:

$$x <_f f(x) <_f x^3$$

$$\log x \le_f f(x) \le_f x^2$$

$$x \log x \le_f f(x) \le_f x \log x$$

$$f(x) = x \log x$$

We only care about

- 1. Large values of x
- 2. Growth of functions

Asymptotic notations

```
f(n) \le f(n) or f(n) \in O(g(n))
\rightarrow \exists n_0, c_0 > 0 such that for n > n_0
                                                          0 \le f(n) \le c_0 g(n)
f(n) < f(n)  or f(n) \in o(g(n))
\rightarrow \forall c_0 > 0 \ \exists n_0 > 0 such that for n > n_0
                                                          0 \le f(n) < c_0 g(n)
f(n) \ge f g(n) or f(n) \in \Omega(g(n))
\rightarrow \exists n_0, c_0 > 0 such that for n > n_0 f(n) \ge c_0 g(n) \ge 0
f(n) > f(n) or f(n) \in \omega(g(n))
\rightarrow \forall c_0 > 0 \ \exists n_0 > 0 such that for n > n_0
                                                          f(n) > c_0 g(n) \ge 0
f(n) = {}_{f}g(n) \text{ or } f(n) \in \Theta(g(n))
\rightarrow \exists n_0, c_1, c_2 > 0 such that for n > n_0
                                                         0 \le c_1 g(n) \le f(n) \le c_2 g(n)
```

Asymptotic notations

Examples:

$$10 n^{2} + 3 \in O(n^{2}) \in O(n^{3}) \in O(n^{4})$$

$$10 n^{2} + 3 \in o(n^{3}) \in o(n^{4})$$

$$10 n^{2} + 3 \in \Omega(n^{2}) \in \Omega(n) \in \Omega(1)$$

$$10 n^{2} + 3 \in \omega(n) \in \omega(1)$$

$$10 n^{2} + 3 \in \Theta(n^{2})$$

$$40 n^{2} + 10 n \log 5n + 100\sqrt{n} \log n + 5n + 200 \in \Theta(n^{2})$$

Asymptotic notations

Order of growth of some common functions

$$O(1) < O(\log^* n) < O(\log n) < O(\sqrt{n}) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$$

$$\log^* n = \min \{ i \ge 0 : log^{(i)} n \le 1 \}$$

The iterated logarithm is a very slowly growing function:

$$\log^* 2 = 1$$

 $\log^* 4 = 2$
 $\log^* 16 = 3$
 $\log^* 65536 = 4$
 $\log^* (2^{65536}) = 5$

Asymptotic notations (Upper bound and Lower bound)

Let
$$T(n) = \pi n \lg n + 2^{12} n - \sqrt{n} \lg n$$

What is the best lower bound and upper bound to T(n) that you find in the options listed here.

$$\Omega(1)$$

$$\Omega(\lg n)$$

$$\Omega(\lg^2 n)$$

$$\Omega(\sqrt{n} \lg n)$$

$$\Omega(n)$$

$$\Omega(n\sqrt{n})$$

$$\Omega(n^2)$$

$$O(\lg n)$$

$$O(\lg^2 n)$$

$$O(\sqrt{n} \lg n)$$

$$O(n\sqrt{n})$$

$$O(n^2)$$

Example 1:

for
$$(i = 0; i < n; i + +)$$

m += i;

Example 2:

for
$$(i = 0; i < n; i + +)$$

for $(j = 0; j < n; j + +)$
sum[i] += entry[i][j];

Example 3:

```
for (i = 0; i < n; i + +)
for (j = 0; j < i; j + +)
m += j;
```

Example 4:

```
i = 1;
while (i < n) {
tot += i;
i = i * 2;
}
```

Example 5:

```
i = n;
while (i > 0) {
    tot += i;
    i = i / 2;
}
```

Example 6:

```
for (i = 0; i < n; i + +)

for (j = 0; j < n; j + +)

for (k = 0; k < n; k + +)

sum [i][j] + = entry [i][j][k];
```

Example 7:

for
$$(i = 0; i < n; i + +)$$

for $(j=0; j < \sqrt{n}; j++)$
 $m += j;$

Example 8:

for
$$(i = 0; i < n; i + +)$$

for $(j = 0; j < \sqrt{995}; j + +)$
 $m += j;$

Example 9:

```
for (i = 0; i < n; i + +)
  m += j;
  m += j;
  m += j;
  ...
  m += j; // 31 times
```

Complexity Review - Example

```
Example: Input A, A.length = n
   i = NIL
2:
    for j = 0 to n - 1 do
             if A[j] = v then
3:
4:
                    i = j
5:
                    return i
7:
      return i
```

Running time, Space complexity

- Best Case: Minimum complexity over the sample space
- Average Case: Expected value over the sample space by considering the probability distribution over inputs
- Worst case: Maximum complexity over the sample space

What was sample space?!

Probability Review

- Outcome: a possible result of an experiment (Algorithm). (Rolling 2 dies and getting 1,1)
- Event: a set of one or more outcomes. (Rolling 2 dies and getting only even numbers)
- Sample Space S is a set of elementary events. (Sample space for rolling 2 dies)

Complexity Review – Sample Space

- Any problem has some input.
- Sample space for a problem is the set all possible inputs that effects on the behavior of the algorithm.

Complexity Review

```
Example: Input A, A.length = n

1: i = NIL
2: for j = 0 to n - 1 do
3: if A[j] = v then
4: i = j
5: return i
```

- Sample space: infinitely many inputs!
- behavior of the algorithm determined by only one factor: position of v inside A.

```
v occurs at position 0 in A,
v occurs at position 1 in A
v occurs at position n - 1 in A,
v does not occur in A.
```

So pick "representative" inputs (one for each execution time), $S = \{ (A, n) : A = [0, 1, 2, ..., n-1] \}$

$$S_n = \{ (A, v) : A = [0, 1, 2, ..., n - 1]$$

 $and v = 0, 1, 2, ..., n \}.$

Running time

- For algorithm A, t(x) represents number of "steps" executed by A on input x with size n.
- Best-case running time $T(n) = \min \{t(x) : x \text{ is an input of size } n\}$
- Worst-case running time $T(n) = \max\{t(x) : x \text{ is an input of size } n\}$ (Mostly useless!)

```
Example: Input A

1: i = NIL

2: \mathbf{for} \ j = 0 \ \mathbf{to} \ n - 1 \ \mathbf{do}

3: \mathbf{if} \ A[j] = v \ \mathbf{then}

4: i = j

5: \mathbf{return} \ i
```

```
Best-Case: O(1), \Omega(1), \Theta(1)
Worst Case: O(n), \Omega(n), \Theta(n)
```

Average-Case running time

 Average Case: Expected value over the sample space by considering the probability distribution over inputs.

 t_n be a random variable that denotes the number of comparisons executed (Line #3)

$$E(t_n) = \sum_{(A,v)\in S_n} t_n(A,v) \times P[(A,v)]$$

$$Pr[(A, n)] = p,$$
 $v \text{ not in } A \text{ as special}$ $Pr[(A, v)] = (1 - p)/n$ other cases equally likely

Average-Case running time

Let $t_n(A, v)$ be the number of execution of line 3 for input A, v.

$$t_n(A, v) = \begin{cases} v+1 & if \ 0 \le v \le n-1 \\ n & if \ v = n \end{cases}$$

$$E(t_n) = \sum_{(A,v)\in S_n}^n t_n(A,v) \times P[(A,v)] = n \times p + \sum_{v=0}^{n-1} (v+1) \times (1-p)/n$$

$$= np + \frac{1-p}{n} \sum_{v=1}^{n} v = np + (1-p)(n+1)/2 = (n+1+np-p)/2$$

Average case: O(n), $\Omega(n)$, $\Theta(n)$

Questions?