Questão 1

Incorreto

Atingiu 0,00 de 2,00

Encontre todos os máximos locais, mínimos locais ou pontos de sela da função $f(x,y)=4xy-x^4-y^4$.

Escolha uma opção:

- lacksquare a. f(0,0), mínimo local; f(1,1)=2, ponto de sela, f(-1,-1)=2, ponto de sela.
- \bigcirc b. f(0,0), pontos de sela; f(1,1)=2, ponto de máximo, f(-1,-1)=2, máximos de máximo.
- ullet c. f(0,0), mínimo local; f(1,1)=2, ponto de sela, f(-1,-1)=2, máximos de máximo.
- ullet d. f(0,0), mínimo local; f(1,1)=2, ponto de máximo, f(-1,-1)=2, máximos de máximo.
- $\ \ \,$ e. $\ f(0,0)$, mínimo local; f(1,1)=2, ponto de sela, f(-1,-1)=2, máximos de mínimo. f x

Sua resposta está incorreta.

Solução: Primeiro calculamos a derivada da função em relação a x, depois em relação a y.

$$f_x(x,y) = 4y - 4x^3$$
e $f_y(x,y) = 4x - 4y^3$

Agora igualamos as derivadas a zero e resolvemos o sistema para encontrar o valor de $x \in y$.

$$4y - 4x^3 = 0$$

 $4x-4y^3=0$, assim descobrimos que pode assumir três valores x=0 com y=0, x=1 com y=1, x=-1 com y=-1.

A partir dai calculamos a segunda derivada em relação a x e depois em relação a y, e calculamos a derivada da função em relação a x.

$$f_{xx}(0,0) = 0$$
 $f_{yy}(0,0) = 0$ $f_{xy}(0,0) = 4$

Após descobrir esses valores, substituímos na equação $H=f_{xx}*f_{yy}-f_{xy}^2$, assim descobrimos que H=-16<0, sendo um ponto de sela.

$$f_{xx}(1,1) = -12 \ f_{yy}(1,1) = -12 \ f_{xy}(1,1) = 4$$

Após descobrir esses valores, substituímos na equação $H=f_{xx}*f_{yy}-f_{xy}^2$, assim descobrimos que H=128>0, e observando $f_{xx}<0$, sendo um ponto de máximo.

$$f_{xx}(-1,-1) = -12 \ f_{yy}(-1,-1) = -12 \ f_{xy}(-1,-1) = 4$$

Após descobrir esses valores, substituímos na equação $H=f_{xx}*f_{yy}-f_{xy}^2$, assim descobrimos que H=128>0, e observando $f_{xx}<0$, sendo um ponto de máximo.

A resposta correta é: f(0,0), pontos de sela; f(1,1)=2, ponto de máximo, f(-1,-1)=2, máximos de máximo.

Questão **2**

Incorreto

Atingiu 0,00 de 2,00

Encontre a equação do plano tangente a superfície $x^2-2xy+y^2-x+3y-z=-4$ no ponto $P_0=(2,-3,18)$.

Escolha uma opção:

$$\bigcirc$$
 a. $9x - 7y - z = 21$

• b.
$$9x + 7y + z = 21$$
 *

$$\circ$$
 c. $9x + 7y - z = 21$

$$\bigcirc$$
 d. $-9x+7y+z=21$

$$\circ$$
 e. $9x - 7y + z = 21$

Sua resposta está incorreta.

A resposta correta é: 9x-7y-z=21

Questão 3

Incorreto

Atingiu 0,00 de 2,00

Encontre a derivada da função f(x,y)=xy+yz+zx em $P_0=(2,-2,4)$ na direção de $u=3\mathbf{i}+6\mathbf{j}-2\mathbf{k}$.

Resposta: 24

A resposta correta é: 6,00

Questão **4**Correto

Atingiu 2,00 de 2,00

Encontre todos os máximos locais, mínimos locais ou pontos de sela da função $f(x,y)=x^3-y^3-2xy+6$.

Escolha uma opção:

$$^{\circ}$$
 a. $f(0,0)=-rac{16}{7}$, ponto de sela; $f\left(-rac{2}{3},rac{2}{3}
ight)=rac{170}{27}$, mínimo local

$$igcirc$$
 b. $f(0,0)=-rac{16}{7}$, ponto de sela; $f\left(-rac{2}{3},rac{2}{3}
ight)=rac{170}{27}$, ponto de sela

$$^{\circ}$$
 c. $f(0,0)=-rac{16}{7}$, ponto de mínimo; $f\left(-rac{2}{3},rac{2}{3}
ight)=rac{170}{27}$, máximo local

$$^{\bigcirc}$$
 d. $f(0,0)=-\frac{16}{7}$, ponto de mínimo; $f\left(-\frac{2}{3},\frac{2}{3}\right)=\frac{170}{27}$, mínimo local

$$^{\odot}$$
 e. $f(0,0)=-rac{16}{7}$, ponto de sela; $f\left(-rac{2}{3},rac{2}{3}
ight)=rac{170}{27}$, máximo local ullet

Sua resposta está correta.

Solução: Primeiro calculamos a derivada da função em relação a x, depois em relação a y.

$$f_x(x,y) = 3x^2 - 2y e f_y(x,y) = -3y^2 - 2x$$

Agora igualamos as derivadas a zero e resolvemos o sistema para encontrar o valor de $x \in y$.

$$3x^2 - 2y = 0$$

$$-3y^2-2x=0$$
, assim descobrimos que $x=0$ o que leva a $y=0$, ou $x=-\frac{2}{3}$ o que leva a $y=\frac{2}{3}$.

A partir dai calculamos a segunda derivada em relação a x e depois em relação a y, e calculamos a derivada da função em relação a x

No caso dos pontos críticos serem (0,0), então

$$f_{xx}(0,0) = 0$$
 $f_{yy}(0,0) = 0$ $f_{xy}(0,0) = -2$

Após descobrir esses valores, substituímos na equação $H=f_{xx}*f_{yy}-f_{xy}^2$, assim descobrimos que H=-4<0, sendo assim um ponto de sela.

No caso dos pontos críticos serem $\left(-\frac{2}{3},\frac{2}{3}\right)$, então

$$f_{xx}\left(-\frac{2}{3}, \frac{2}{3}\right) = -4 \ f_{yy}\left(-\frac{2}{3}, \frac{2}{3}\right) = -4 \ f_{xy}\left(-\frac{2}{3}, \frac{2}{3}\right) = -2$$

Após descobrir esses valores, substituímos na equação $H=f_{xx}*f_{yy}-f_{xy}^2$, assim descobrimos que H=12>0, e observando $f_{xx}<0$, então é um ponto de máximo.

A resposta correta é:
$$f(0,0)=-rac{16}{7}$$
, ponto de sela; $f\left(-rac{2}{3},rac{2}{3}
ight)=rac{170}{27}$, máximo local

Questão **5**

Incorreto

Atingiu 0,00 de 2,00

Encontre os valores máximo e mínimo de f(x,y,z)=x-2y+5z na esfera $x^2+y^2+z^2=30$.

$$lacksquare$$
 a. $f(2,-3,4)=28$ é o máximo, $f(-2,3,-4)=-28$ é o mínimo

$$^{\odot}$$
 b. $f(2,-2,1)=11$ é o máximo, $f(-2,2,-1)=-11$ é o mínimo $f x$

$$igcup$$
 c. $f(1,-2,5)=30$ é o máximo, $f(-1,2,-5)=-30$ é o mínimo

$$igcup$$
 d. $f(2,-2,5)=31$ é o máximo, $f(-2,2,-5)=-31$ é o mínimo

$$\circ$$
 e. $f(1,-1,1)=8$ é o máximo, $f(-1,1,-1)=-8$ é o mínimo

Sua resposta está incorreta.

Solução: Primeiro calculamos o gradiente das funções f(x,y,z)=x-2y+5z e $g(x,y,z)=x^2+y^2+z^2-30$

$$\nabla f = \mathbf{i} - 2\mathbf{j} + 5\mathbf{k} \in \nabla g = 2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$$

Após isso, utilizamos a fórmula $\nabla f = \lambda \nabla g$ para descobrir os valores de x e y

$$\mathbf{i} - 2\mathbf{j} + 5\mathbf{k} = \lambda(2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k})$$

Assim descobrimos que $x=\frac{1}{2\lambda}$, $y=-\frac{1}{\lambda}=-2x$ e $z=\frac{5}{2\lambda}=5x$

Substituindo esses valores na equação da esfera $x^2+(-2x)^2+(5x)^2=30$, descobrimos $x=\pm 1$. Se x=1, y=-2 e z=5, sendo assim f(1,-2,5)=30 o máximo. Mas se x=-1, \((y=2\\$ e z=-5, sendo assim f(-1,2,-5)=-30 o máximo.

Resposta: f(1,-2,5)=30 é o máximo, f(-1,2,-)=-30 é o mínimo

A resposta correta é:

$$f(1,-2,5) = 30$$
 é o máximo, $f(-1,2,-5) = -30$ é o mínimo