CSUS College of Engineering and Computer Science

Electrical & Electronic Engineering

ENGR 120 Probability and Random Signals

Final Exam (100 points, 120 min.)

Name: VIGOMAR KIM ALGADOR

Question 1 [25 points]

- (a) Answer the following questions (True or False).
 - (i) If A and B are both nonempty events of a sample space S and A and B are mutually exclusive, then A and B are dependent.

T/F TRUE

(ii) For the random variables X and Y = 3X+9, Var(Y) = 9 Var(X) + 9.

T/F TRUE

(iii) The Markov inequity bound only applies to nonnegative random variables.

T/F TRUE

(iv) The power spectral density of a WSS random process is defined as The Fourier transform of the auto-correlation function of the random process.

T/F TRUE

(v) The central limit theorem always holds true, regardless of the sample size

T/F FALSE

(b) Two 6-sided dice are rolled. What is the probability that their sum is at most 3?

P(3) =
$$\frac{n(E)}{n(s)}$$
 = $\frac{2}{36}$ = $\frac{1}{18}$ E = $\{(1,2),(2,1)\}$
 $S = \{(1,1),(1,2),(1,3),...,(6.6)\}$

(c) For the following experiment, S is the sample space and A, B, and C are events. $S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$. $A = \{s_2\}$. $B = \{s_3, s_5, s_5\}$. $C = \{s_2, s_3, s_6\}$. $D = \{s_1, s_2\}$.

Outcome	S ₁	S 2	S 3	S4	S 5	S 6
Probability	1/12	1/6	1/8	1/8	1/6	1/3

Sketch the Venn diagram of events and find the following probabilities.

- (i) Pr(A).
- (ii) $Pr(A^c \cap C)$.
- (iii) Which pair of events, A,B,C, and D, (if any) are mutually exclusive?

$$P(A^{c} \cap C) = P(S_{3}) + P(S_{6})^{=-1/8} + \frac{1}{3} = \frac{11}{24}$$

(A,B) and (B,D) are mutual exclusive.

Question 2 [25 points]

Consider the binary communication channel depicted below. Given that the a "1" is observed at the receiver, calculate the probability that a "1" was transmitted, i.e. $Pr(1_S | 1_R)$. Assume $Pr(0_S) = Pr(1_S) = 0.5$.

$$Pr(1_R) = Pr(0_S) \cdot 0.17 + Pr(1_S) \cdot 0.66$$

= (0.5)(0.17) + (0.5)(0.66)
= 0.415

$$Pr(1s | 1R) = \frac{Pr(1R|1s) \cdot Pr(1s)}{Pr(1R)} = \frac{(0.66)(0.5)}{0.415}$$
= 0.795

b) Consider the random variable Y = X + k, where k is a constant and X is a random variable that is always strictly larger than -10 and has an expected value of E(X) = -6. Choose a suitable value for the constant k and determine an upper bound for the probability Pr(Y > 8). Justify your choice for the constant k.

$$E[Y] = E[X+K+10]$$

$$= E[X]+E[K]+10$$

$$= -6+K+10$$

$$Pr(Y>8) \leq \frac{E[Y]}{8} = \frac{4+K}{8}$$

$$E[Y] = 0$$

$$Pr(Y>8) \leq 0$$

Question 3 [25 points]

a) The distribution (CDF) of a discrete random variable is shown in the figure below.

i) Find the probability Pr(X≤2).

$$P(x \le 2) = P(x=2) + P(x=0)$$

= 0.39551 + 0.2373 = 0.63281

ii) Calculate the variance of X, ie VAR[X].

$$E(x) = \sum x \cdot P(x) = O(0.2373) + 2(0.39551) + 4(0.26367)$$

+ $G(0.08789) + 8(0.01465) + IO(0.00098)$
= 2.50004

iii) Sketch the corresponding probability mass function PMF.

b) The PDF of a random variable X is given by:

$$f_X(x) = \begin{cases} 0.4 + kx, & 0 \le x \le 4 \\ 0 & \text{otherwise} \end{cases}$$

- i) Find the value k that makes f_X a valid PDF. ii) Find P(X>1/2).
- iii) Find the CDF, $F_X(x)$.

(i)
$$\int_0^4 (0.4 + kx) dx = 1 \longrightarrow \left[0.4x + \frac{kx^2}{2} \right]_0^4 = 1$$

1.6 + 8k = 1

(ii)
$$Pr[x > 1/2] = \int_{1/2}^{4} (0.4 - 0.075 \times) dx$$

= $[0.4x - 0.075x^2/2]_{1/2}^{4}$
= 0.8094

(iii) for
$$x<0$$
, $F_x(x)=0$
for $0 \le x \le 4$, $F_x(x)=\int_0^x (0.4-0.075x)dx$
= $0.4x-0.0375x^2$
for $x>4$, $F_x(x)=1$

Question 4 [25 points]

a) Let the joint density function $f_{X,Y}(x,y)$ be

$$f_{X,Y}(x,y) = \frac{xy}{9}$$
 ; $0 \le x \le 2$, $0 \le y \le 3$

Determine:

- i) The marginal PDFs $f_X(x)$ and $f_y(y)$.
- ii) The expected values of X and Y.
- iii) Are X and Y statistically independent?
- iv) Are X and Y uncorrelated? Justify your answer. Hint: There is an easier way to solve this question without working-out the double integral

(i)
$$f_X(x) = \int_0^3 (xy/q) dy = \left[\frac{xy^2}{18} \right]_0^3 = \frac{1}{2}x$$
 $0 \le x \le 2$
 $f_Y(y) = \int_0^3 (\frac{xy}{q}) dx = \left[\frac{x^2y}{18} \right]_0^2 = \frac{2y}{q}$ $0 \le y \le 3$

(ii)
$$E[x] = \int_0^2 x \cdot \frac{1}{2} x \, dx = \frac{1}{2} \int_0^2 x^2 dx = \frac{1}{2} \left[\frac{x^3}{3} \right]_0^2 = \frac{4}{3}$$

 $E[y] = \int_0^3 y \cdot \frac{2y}{9} \, dy = \frac{2}{9} \int_0^3 y^2 dy = \frac{2}{9} \left[\frac{y^3}{3} \right]_0^3 = 2$

(iii)
$$f(x,y) \stackrel{?}{=} f(x) \cdot f(y)$$

 $\frac{xy}{q} \stackrel{?}{=} \frac{x}{2} \cdot \frac{2y}{q} \longrightarrow \frac{xy}{q} = \frac{xy}{q}$

.. x and y are statistically independent

(iv)
$$COV[x,y] : E[xy] - E[x] E[y]$$

 $: O$
 $CORR[x,y] : \frac{COV[x,y]}{\sigma_x \sigma_y} = O$

∴ x and y are uncorrelated

b) Consider the random process

$$Y(t) = A$$
,

where $A \sim N(0,1)$ is a standard Gaussian random variable. Is this process WSS? Justify your answer.

$$E[Y(t)] = E[A] \qquad \text{mean} = O$$

$$= O \quad \text{constant mean} \qquad \text{variance} = 1$$

$$R_{Y}(t) = E[Y(t_{1}) Y(t_{2})]$$

$$= E[A^{2}]$$

$$= O_{A}^{2} \cdot \delta(t_{1} - t_{2})$$

$$= \delta(t_{1} - t_{2}) \quad \text{time different}$$

$$Y(t) \text{ is } WSS$$