

Sistemas Operacionais

Gestão de tarefas - escalonamento de tarefas

Prof. Carlos Maziero

DInf UFPR, Curitiba PR

Julho de 2020

Conteúdo

- 1 Conceitos básicos
- 2 Escalonamentos FCFS e RR
- 3 Escalonamentos SJF e SRTF
- 4 Escalonamento por prioridades
- 5 Definição e prioridades
- 6 Escalonadores em sistemas reais

Tipos de tarefas

Em relação ao comportamento temporal:

De tempo real : exigem tempos de resposta precisos.

Interativas: respondem rapidamente a eventos externos.

Em lote : não têm requisitos temporais explícitos.

Em relação ao uso de CPU:

CPU-bound: tarefas que usam intensivamente a CPU.

IO-bound: tarefas que realizam mais entrada/saída.

Escalonamento de tarefas

Escalonamento de CPU

Definir a **ordem de execução** das tarefas prontas.

Responsabilidade do escalonador de CPU.

Acionado pelo despachante durante as trocas de contexto.

Critérios de escalonamento

Métricas para avaliar diferentes escalonadores:

Tempo de vida (t_t) : tempo entre a criação de uma tarefa e seu encerramento. Turnaround

Tempo de espera (t_w) : tempo perdido pela tarefa na fila de prontas.

Tempo de resposta (t_r) : tempo entre a chegada de um evento ao sistema e a resposta a ele.

Justiça: distribuição adequada do processador entre as tarefas prontas.

Modos de escalonamento

Escalonamento cooperativo

A tarefa só perde o processador ao terminar, solicitar uma entrada/saída ou liberar explicitamente a CPU (syscall sched_yield).

Dica: o sistema só funciona se as tarefas cooperarem entre si.

Escalonamento preemptivo

A cada interrupção, exceção ou chamada de sistema, o escalonador reavalia a fila de prontas e pode "preemptar" a tarefa em execução.

Algoritmos de escalonamento

Tarefas a escalonar:

Tarefa	<i>t</i> ₁	<i>t</i> ₂	<i>t</i> ₃	<i>t</i> ₄	<i>t</i> ₅
Ingresso (s)	0	0	1	3	5
Duração (s)	5	2	4	1	2
Prioridade	2	3	1	4	5

Métricas a considerar:

- Tempo médio de execução (T_t) das tarefas Tempo média de vida
- Tempo médio de espera (T_w) das tarefas

Escalonamento FCFS

FCFS: First Come, First Served

Escalonamento FCFS

$$T_{t} = \frac{t_{t}(t_{1}) + \dots + t_{t}(t_{5})}{5} = \frac{5 + 7 + (11 - 1) + (12 - 3) + (14 - 5)}{5}$$

$$= \frac{5 + 7 + 10 + 9 + 9}{5} = \frac{40}{5} = 8,0s$$

$$T_{w} = \frac{t_{w}(t_{1}) + \dots + t_{w}(t_{5})}{5} = \frac{0 + 5 + (7 - 1) + (11 - 3) + (12 - 5)}{5}$$

$$= \frac{0 + 5 + 6 + 8 + 7}{5} = \frac{26}{5} = 5, 2s$$

Escalonamento RR

RR: Round-Robin (ou revezamento)

Usa preempção por tempo (no exemplo, $t_q = 2$)

Escalonamento RR

Escalonamento RR

$$T_{\text{m_vida}} = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{14 + 4 + 12 + 6 + 6}{5} = \frac{42}{5} = 8, 4s$$

$$T_{W} = \frac{t_{W}(t_{1}) + \dots + t_{W}(t_{5})}{5} = \frac{9 + 2 + 8 + 5 + 4}{5} = \frac{28}{5} = 5, 6s$$
Tm espera

Escalonamento SJF

SJF: Shortest Job First

Escalonamento SJF

$$T_{\text{m_vida}} = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{14 + 2 + 5 + 4 + 4}{5} = \frac{29}{5} = 5,8s$$

$$T_{W} = \frac{t_{W}(t_{1}) + \dots + t_{W}(t_{5})}{5} = \frac{9 + 0 + 1 + 3 + 2}{5} = \frac{15}{5} = 3,0s$$
Tm espera

Problema: como prever a duração de uma tarefa?

Pode ser usado em conjunto com Round-Robin.

Escalonamento SRTF

SRTF: Shortest Remaining Time First

Escalonamento SRTF

$$T_{\text{m_vida}} = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{14 + 2 + 6 + 1 + 4}{5} = \frac{27}{5} = 5, 4s$$

$$T_{W} = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{9 + 0 + 2 + 0 + 2}{5} = \frac{13}{5} = 2,6s$$
Tm espera

Escalonamento PRIOc

PRIOc: por prioridades, cooperativo

Prioridades: t_1 : 2 t_2 : 3 t_3 : 1 t_4 : 4 t_5 : 5

Escalonamento PRIOc

$$T_{\text{m}} = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{7 + 2 + 13 + 7 + 4}{5} = \frac{33}{5} = 6,6s$$
Tm vida

$$T_{W} = \frac{t_{W}(t_{1}) + \dots + t_{W}(t_{5})}{5} = \frac{2 + 0 + 9 + 6 + 2}{5} = \frac{19}{5} = 3,8s$$

Tm espera

Escalonamento PRIOp

PRIOp: por prioridades, preemptivo

Prioridades: t_1 : 2 t_2 : 3 t_3 : 1 t_4 : 4 t_5 : 5

Escalonamento PRIOp

$$T_{\text{m_vida}} = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{10 + 2 + 13 + 1 + 2}{5} = \frac{28}{5} = 5,6s$$

$$T_{w} = \frac{t_{w}(t_{1}) + \dots + t_{w}(t_{5})}{5} = \frac{5 + 0 + 9 + 0 + 0}{5} = \frac{14}{5} = 2,8s$$
Tm_espera

Prioridades dinâmicas

Problema das prioridades estáticas:

- Tarefas de baixa prioridade têm pouco acesso à CPU.
- Se houverem muitas tarefas, podem ficar paradas.
- Fenômeno chamado "inanição" (starvation).

Solução: uso de prioridades dinâmicas

- Aumentar aos poucos a prioridade das tarefas paradas.
- Ao executar, a tarefa volta à sua prioridade original.
- Algoritmo de "envelhecimento" (aging).

Escalonamento PRIOd

PRIOd: por prioridades, preemptivo e dinâmico

Prioridades: t_1 : 2 t_2 : 3 t_3 : 1 t_4 : 4 t_5 : 5

Escalonamento PRIOd

$$T_{\text{m_vida}} = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{11 + 2 + 13 + 1 + 2}{5} = \frac{29}{5} = 5,8s$$

$$T_{W} = \frac{t_{W}(t_{1}) + \dots + t_{W}(t_{5})}{5} = \frac{6 + 0 + 9 + 0 + 0}{5} = \frac{15}{5} = 3,0s$$

$$T_{M} = Spera$$

Quadro comparativo

Algoritmo	FCFS	RR	SJF	SRTF	PRIOc	PRIOp	PRIOd
Tempo médio T_t	8,0	8,4	5,8	5,4	6,6	5,6	5,8
Tempo médio T_w	5,2	5,6	3,0	2,6	3,8	2,8	3,0
Trocas de contexto	4	7	4	5	4	6	6
Tempo total	14	14	14	14	14	14	14