Selected Bluetooth Probe Data Applications

Jay Wasson & Jim Sturdevant,
Indiana Department of Transportation

Chris Day, Ross Haseman, Tom Brennan, Alex Hainen & Darcy Bullock
Purdue University School of Civil Engineering

References

Multimodal with vehicle, shuttle, and ped. modes

- Day, C.M., R.J. Haseman, H. Premachandra, T.M. Brennan, J.S. Wasson, J.R. Sturdevant, and D.M. Bullock, "Visualization and Assessment of <u>Arterial Progression</u> Quality Using High Resolution Signal Eyent Data and Measured Travel Time," Transportation Research Board Paper ID:10-0039, January 2010.
- Bullock, D.M., R.J. Haseman, J.S. Wasson, and R. Spitler, "Anonymous Bluetooth Probes for <u>Airport Security Line Service</u> Time Measurement: The Indianapolis Pilot Deployment," Transportation Research Board Paper ID:10-1438, January 2010.
- Haseman, R.J., J.S. Wasson, and D.M.Bullock, "Real Time Measurement of <u>Work Zone Travel Time Delay</u> and Evaluation Metrics," Transportation Research Board Paper ID:10-1442, January 2010.
- Wasson, J.S., J.R. Sturdevant, D.M. Bullock, "<u>Real-Time Travel Time Estimates Using MAC Address Matching</u>," Institute of Transportation Engineers Journal, ITE, Vol. 78, No. 6, pp. 20-23, June 2008.
- Airport device follows fliers' phones, USA Today, Page 1, March 23, 2010 http://www.usatoday.com/tech/wireless/2010-03-23-cellphones N.htm

- 1. Freeway Construction Work zones
- 2. Traffic Signal Timing
- 3. Origin Destination
- 4. Airport Security Wait Times (Pedestrian)

Performance Measure Concepts

- Travel Time is a important performance measure for both arterials and freeways
- Travel Time data can identify transportation links with performance challenges
- Travel Time data needs to be <u>complimented</u> by high quality operations oriented data for identifying corrective actions.
 - i.e. High resolution traffic signal controller data is needed to identify corrective actions

Concept

- Bluetooth: a wireless protocol utilizing short-range communications technology facilitating data transmission over short distances from fixed and/or mobile devices
- MAC Address: a 48 bit (>28 trillion) <u>unique</u> address assigned to a device by its manufacturer.

Hours of Operation Delay > 10 min

Table 2. Hours with delay > 10 minutes present and configuration of construction zone

Week	Time	Northbound			Hours of	Southbound		
Number	Period (2009)	Operation where delay >10 minutes		Lanes Open	travel time data	Operation where delay >10 minutes		Lanes Open
		hours	%			hours	%	
Week 1	May 4-10	24	16.2	1	148	20	13.5	1
Week 2	May 11-17	11	11.3	1	97	9	9.3	1
Week 3	May 18-24	3	3.8	1-2	78	20	25.6	1
Week 4	May 25-31	22	16.5	2-1	133	12	9.0	1
Week 5	June 1-7	14	8.3	1	168	15	8.9	1
Week 6	June 8-14	18	10.7	1	168	15	8.9	1
Week 7	June 15-21	25	16.8	1	149	14	9.4	1
Week 8	June 22-28	18	12.6	1	143	8	5.6	1
Week 9	June 29-July 5	29	17.2	1	168	10	6.0	1-2
Week 10	July 6-July 12	35	20.8	1	168	0	0	2
Week 11	July 13-July 19	33	19.6	1	168	0	0	2
Week 12	July 20-July 26	40	29.4	1	136	27	19.9	2-1

Outcome

 Lane closure policy was changed for 2010 to maintain two travel lanes from ~0600 to ~2000

Adapted from Jay Wasson, INDOT Time (minutes)

	Chang		June 06,	June 06, Predicted	July 25,	July 18, Actual*	
Intersection		MOE	Actual	After Offset Adjustment	Actual		
SR 37 & SR 32	Northbound	N _q	1755	1425	1472	1810	
		POG	59.6%	48.4%	54.9%	56.8%	
	Southbound	N_g	1702	1702	1544	1659	
		POG	41.2%	41.2%	42.4%	39.0%	
	Northbound	N_q	1628	2655	2741	2995*	
SR 37 & Pleasant		POG	40.1%	65.5%	76.0%	76.6%*	
St.	Southbound	N_g	3180	3674	3371	3471*	
		POG	52.9%	61.2%	62.7%	63.0%*	
	Northbound	N_q	3114	2961	2974	3507	
SR 37 & Town and		POG	79.5%	75.9%	81.0%	78.7%	
Country Blvd.	Southbound	N_{q}	3441	3056	2875	3007	
		POG	80.2%	71.1%	72.6%	73.0%	
	Northbound	N _q	1678	2917	2827	3438	
SR 37 &		POG	37.9%	65.6%	68.6%	69.8%	
Greenfield Ave.	Coulinboaria	N_q	2979	3215	3045	3221	
		POG	58.9%	63.3%	67.5%	68.2%	
	$P N_q$	19477	21605	20849	23108		
Arterial Network	N	34856	34856	31569	35072		
Arteriai Network		Overall POG	55.9%	62.0%	66.0%	65.9%	

Business Case: SR 37 Timing Improvements (Largest Cost Benefit/Reduction/Avoidance) **USER SAVINGS** • Travel time tests for SR37 Corridor have improved Northbound Travel ~ 1 Minute. Time by ~8,500 Cars per Day Are Effected by this benefit (NB). ~0.17 Cents per minute (\$10/hour) 0.5 saved for each driver in fuel costs and time value. ~1.0 Minutes are assumed saved on average for the intersection over 1-Year with improvements. User benefit = 0600 -2200 (8,500 veh) (8,500 Veh/Day * \$0.17/min * 1min/Veh * 2*52 Days/Year)= **\$150,000/year** for a 1.6 mile stretch of roadway is realized.

10122

Three Objectives

- 1. Determine the extent to which each of the three detour routes are utilized.
- 2. Observe the impact to major industries and establishments in the area.
 - 10115/10121 (Plant Entrance congestion)
- 3. Look at local origin-destination paths as a result of the closure.
 - 10114/10115 (No congestion on unofficial)

Systems are Always Changing

- At least initially, AIT's will likely be reducing capacity at some airports.
- Last year, <u>769.6</u> million travelers boarded planes in the U.S. or planes bound for the U.S., according to new data from the Bureau of Transportation Statistics. That's down 5.3% from 812.3 million passengers in 2008 and down 8.2% from the record <u>838.2</u> million air travelers in the U.S. market in 2007.

http://www.usatoday.com/travel/flights/2010-03-29-airline-passengers-revenue-decline N.htm

Estimated Cost to Collect 26 Days of Data at IND Using Manual Methods

- 40 hours labor/day
 - 20 hrs 4am to midnight
 - 1 to hand out cards
 - 1 to collect cards
 - No breaks
- Assume \$25/hr
- \$1000/day
- \$26,000 in labor plus data reduction time

References

Multimodal with vehicle, shuttle, and ped. modes

- Day, C.M., R.J. Haseman, H. Premachandra, T.M. Brennan, J.S. Wasson, J.R. Sturdevant, and D.M. Bullock, "Visualization and Assessment of <u>Arterial Progression</u> Quality Using High Resolution Signal Event Data and Measured Travel Time," Transportation Research Soard Paper ID:10-0039, January 2010.
- Bullock, D.M., R.J. Haseman, J.S. Wasson, and R. Spitler, "Anonymous Bluetooth Probes for <u>Airport Security Line Service</u> Time Measurement: The Indianapolis Pilot Deployment," Transportation Research Board Paper ID:10-1438, January 2010.
- Haseman, R.J., J.S. Wasson, and D.M.Bullock, "Real Time Measurement of <u>Work Zone Travel Time Delay</u> and Evaluation Metrics," Transportation Research Board Paper ID:10-1442, January 2010.
- Wasson, J.S., J.R. Sturdevant, D.M. Bullock, "<u>Real-Time Travel Time Estimates Using MAC Address Matching</u>," Institute of Transportation Engineers Journal, ITE, Vol. 78, No. 6, pp. 20-23, June 2008.
- Airport device follows fliers' phones, USA Today, Page 1, March 23, 2010 http://www.usatoday.com/tech/wireless/2010-03-23-cellphones N.htm

Selected Bluetooth Probe Data Applications

Jay Wasson & Jim Sturdevant, Indiana Department of Transportation

Chris Day, Ross Haseman, Tom Brennan, Alex Hainen & Darcy Bullock

Purdue University School of Civil Engineering