P4 OpenClassrooms

Construisez un modèle de scoring

Sommaire

3	 Contexte
4	 Jeux de données
5	 EDA
6-13	 Corrélation des variables avec Target
14	 Choix des variables après nettoyage
15	 Métriques
16-19	 Modélisation
20-21	 Résultats des modèles
22	 Optimisation
23-26	 Explicabilité
27	 Conclusion

Contexte

La société financière "**Pret à dépenser**" propose des crédits à la consommation pour des personnes ayant peu ou pas d'historique de prêt.

pour accorder un crédit à la consommation, l'entreprise souhaite mettre en oeuvre un **outil de "scoring crédit"** qui calcule la probabilité qu'un client le rembourse (0) ou non (1), puis classifie la demande: crédit accordé ou refusé.

0 = negatif = client stable

1 = positif = client à risque

Jeux de données

- Dans le fichier "application_train" nous avons tous les éléments utiles dont notre variable
 "Target" qui est la cible à prédire.
- 307511 lignes et 122 features
- Seulement celui-ci est déséquilibré dont seulement 8.78% représente les clients à risques. Il faudra rééquilibrer le jeux de données pour ne pas introduire un biais lors de l'entraînement de notre modèle.

TARGET 0 282686 1 24825 Name: count, dtype: int64

EDA

VALEURS MANQUANTES

- Il y a 122 colonnes
- 67 ont des valeurs manquantes
- Certaines ont jusqu'à 70% de valeurs manquantes

TYPES DE COLONNES

il y a 16 variables catégorielles, 41 sont des entiers et 65 sont des nombres flottants

Les variables numériques avec moins de 10 modalités seront classé comme qualitatives

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510

Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR

dtypes: float64(65), int64(41), object(16)

memory usage: 286.2+ MB

utilisation de la corrélation de Pearson

Top 10 des variables positivement et

négativement corrélées avec TARGET

```
Variables les plus positivement corrélées avec TARGET :
TARGET
                               1.000000
DAYS BIRTH
                               0.078239
REGION_RATING_CLIENT_W_CITY
                               0.060893
REGION RATING CLIENT
                               0.058899
DAYS_LAST_PHONE_CHANGE
                               0.055218
DAYS ID PUBLISH
                               0.051457
REG_CITY_NOT_WORK_CITY
                               0.050994
FLAG_EMP_PHONE
                               0.045982
REG CITY NOT LIVE CITY
                               0.044395
FLAG DOCUMENT 3
                               0.044346
Name: TARGET, dtype: float64
Variables les plus négativement corrélées avec TARGET :
ELEVATORS AVG
                             -0.034199
REGION_POPULATION_RELATIVE
                             -0.037227
AMT_GOODS_PRICE
                             -0.039645
FLOORSMAX_MODE
                             -0.043226
                             -0.043768
FLOORSMAX MEDI
FLOORSMAX_AVG
                             -0.044003
DAYS_EMPLOYED
                             -0.044932
EXT_SOURCE_1
                             -0.155317
EXT_SOURCE_2
                             -0.160472
EXT_SOURCE_3
                             -0.178919
Name: TARGET, dtvpe: float64
```


Variables catégorielles (object) 2

Variables qualitatives binaires (int à 2 modalités) 1

Variables qualitatives binaires (int à 2 modalités) 2

Variables quantitatives entières (2 modalités) -

- Variables quantitatives décimales

Visualisation de quelques variables par classe TARGET

TARGET

TARGET

Comparer la répartition de TARGET dans chaque catégorie

Choix des variables après nettoyage et encodage

Data set de départ

```
Nombre de lignes : 307511
Nombre de colonnes : 122
```

data set avec variables retenues

```
Nombre de lignes : 98859
Nombre de colonnes : 41
```

Top5 variables pour modélisation

```
features = ['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3', 'DAYS_BIRTH', 'AMT_INCOME_TOTAL']
```

Top10 variables pour modélisation

```
features_plus = [
   'EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3', 'DAYS_BIRTH',
   'DAYS_LAST_PHONE_CHANGE', 'DAYS_REGISTRATION', 'HAS_JOB',
   'OWN_CAR_AGE', 'CODE_GENDER_M', 'NAME_EDUCATION_TYPE_Lower secondary'
]
```

métrique

RECALL = pour détecter les clients à risque

<u>PRECISION</u> = pour détecter les client stable

$$ext{Recall} = rac{TP}{TP + FN}$$

$$\text{Precision} = \frac{TP}{TP + FP}$$

<u>ACCURACY</u> = mesure la proportions de prédictions correctes du modéle

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

<u>F1-SCORE</u> = Pour évaluer les modèle d'apprentissage automatique

Equilibre entre recall et precision

$$F1\text{-score} = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

<u>AUC</u> = Principalement utilisée pour évaluer les performances des modèles

de classification binaire

$$ext{AUC ROC} = \int_0^1 ext{TPR}(x) \, dx$$

Logistic regression sans / avec équilibrage

		precision	recall	f1-score	support
	0	0.93	1.00	0.96	20318
	1	0.00	0.00	0.00	1600
accur	acy			0.93	21918
macro	avg	0.46	0.50	0.48	21918
eighted	avg	0.86	0.93	0.89	21918

	precision	recall	f1-score	support
0	0.96	0.70	0.81	20318
1	0.15	0.67	0.24	1600
accuracy			0.69	21918
macro avg	0.56	0.68	0.53	21918
weighted avg	0.90	0.69	0.77	21918

	precision	recall	f1-score	support
0	0.93	0.98	0.95	20318
1	0.09	0.03	0.04	1600
accuracy			0.91	21918
macro avg	0.51	0.50	0.50	21918
weighted avg	0.87	0.91	0.89	21918
AUC ROC : 0.5	427			

Dummy sans / avec équilibrage

	precision	recall	f1-score	support
0	0.93	1.00	0.96	20318
1	0.00	0.00	0.00	1600
accuracy			0.93	21918
macro avg	0.46	0.50	0.48	21918
eighted avg	0.86	0.93	0.89	21918

[[18797 1	521]				
[1481 :	119]]				
	pr	recision	recall	f1-score	support
	0	0.93	0.93	0.93	20318
	1	0.07	0.07	0.07	1600
accura	cy			0.86	21918
macro a	vg .	0.50	0.50	0.50	21918
weighted a	vg	0.86	0.86	0.86	21918

[10163 101					
[813 7	87]]				
	pr	ecision	recall	f1-score	support
	0	0.93	0.50	0.65	20318
	1	0.07	0.49	0.13	1600
accurac	У			0.50	21918
macro av	g	0.50	0.50	0.39	21918
eighted av	g	0.86	0.50	0.61	21918

autres modèles

	precision	recall	f1-score	support
0	0.95	0.76	0.85	18281
1	0.14	0.47	0.22	1491
accuracy			0.74	19772
macro avg	0.54	0.62	0.53	19772
weighted avg	0.89	0.74	0.80	19772
AUC ROC : 0.6	919			

	precision	recall	f1-score	support	
0	0.95	0.76	0.85	18281	
1	0.16	0.54	0.24	1491	
асу			0.75	19772	
avg	0.56	0.65	0.55	19772	
avg	0.89	0.75	0.80	19772	
0.71	605804988382	59			
	1 acy avg avg	1 0.16 acy avg 0.56 avg 0.89	0 0.95 0.76 1 0.16 0.54 acy avg 0.56 0.65	0 0.95 0.76 0.85 1 0.16 0.54 0.24 acy 0.75 avg 0.56 0.65 0.55 avg 0.89 0.75 0.80	0 0.95 0.76 0.85 18281 1 0.16 0.54 0.24 1491 acy 0.75 19772 avg 0.56 0.65 0.55 19772 avg 0.89 0.75 0.80 19772

	XGBoost	- SMOTE	
			- 12000
0 -	12769	5512	- 10000
True label			- 8000
True			- 6000
1 -	620	871	- 4000
			- 2000
	0 Predicte	i	
	Predicte	ed label	

		precision	recall	fl-score	support
	0	0.95	0.70	0.81	18281
	1	0.14	0.58	0.22	1491
accura	су			0.69	19772
macro av	vg	0.55	0.64	0.51	19772
weighted av	VE	0.89	0.69	0.76	19772

AUC ROC: 0.6979976975431349

Modèles plus avancés

Modèles avec top 5 features

Modèle	M. équilibrage	AUC ROC	Accuracy	Recall	Précision	F1-score
Logistic Regression	Balanced	0,7489	0,69	0,68	0,56	0,53
Logistic Regression	Smote	0,5427	0,91	0,50	0,51	0,50
Dummy	Stratified	0,4998	0,86	0,50	0,50	0,50
Dummy	Smote	0,4960	0,50	0,50	0,50	0,39
RFC	Balanced	0,7031	0,92	0,51	0,66	0,49
RFC	Smote	0,6919	0,74	0,62	0,54	0,53
XGBoost	Balanced	0,7160	0,75	0,65	0,56	0,55
XGBoost	Smote	0,6979	0,69	0,64	0,55	0,51
LightGBM	Balanced	0,7473	0,72	0,68	0,56	0,54
LightGBM	Smote	0,7161	0,68	0,66	0,55	0,51
CatBoost	Balanced	0,7466	0,68	0,68	0,55	0
CatBoost	Smote	0,7146	0,68	0,65	0,55	0,51

Modèles avec top 10 features

Modèle	M. équilibrage	AUC ROC	Accuracy	Recall	Précision	F1-score
Logistic Regression	Balanced	0,7494	0,69	0,68	0,56	0,52
Logistic Regression	Smote	0,7295	0,71	0,67	0,56	0,53
Dummy	Stratified	0,4973	0,86	0,50	0,50	0,50
Dummy	Smote	0,4990	0,50	0,50	0,50	0,39
RFC	Balanced	0,7158	0,92	0,50	0,73	0,49
RFC	Smote	0,6830	0,81	0,58	0,54	0,55
XGBoost	Balanced	0,7106	0,76	0,65	0,56	0,55
XGBoost	Smote	0,6923	0,82	0,61	0,56	0,56
LightGBM	Balanced	0,7436	0,72	0,68	0,56	0,54
LightGBM	Smote	0,7028	0,82	0,61	0,55	0,56
CatBoost	Balanced	0,7429	0,69	0,68	0,56	0,53
CatBoost	Smote	0,6988	0,83	0,60	0,55	0,56

Optimisation

 Q Corrélations avec la cible (TARGET)

 AGE_YEARS
 -0.061470

 IS_YOUNG
 0.048316

 PHONE_CHANGED_RECENTLY
 0.023710

 ANNUITY_INCOME_RATIO
 0.018104

 CREDIT_INCOME_RATIO
 -0.010299

 HAS_JOB
 NaN

 Name: TARGET, dtype: float64

Explication globale

Explication locale

Cas positive

Explication locale

cas négative

Explication locale

```
Individu 0: f(x) = 1.395 \rightarrow Probabilité = 80.139\%
Individu 1: f(x) = -0.258 \rightarrow Probabilité = 43.586\%
Individu 2: f(x) = -0.498 \rightarrow Probabilité = 37.801\%
Individu 3: f(x) = -0.004 \rightarrow Probabilité = 49.900\%
Individu 4: f(x) = -1.135 \rightarrow Probabilité = 24.324\%
```

Client à risque

Incertain

Client stable

Conclusion

- . Le modèle est loin d'être parfait mais avec les données en notre possession il est difficile de mieux faire.
- . Le modèle permet de détecter environ 67 à 81 % des clients à risque mais rate encore 281 a 492 clients à risque ce qui peux être critique en contexte opérationnel (exemple: crédit, assurance).
- . Pour améliorer notre modèle il faudra collecter ou enrichir les données avec de nouvelles features.
- . Ce que l'on comprend déjà sont les variables qui influencent le plus les décisions et on peut justifier individuellement pourquoi un client est considéré à risque ou non.