```
In [1]: # Importing essential libraries
   import numpy as np
   import pandas as pd
   import matplotlib .pyplot as plt
   %matplotlib inline
   import seaborn as sns
   from sklearn.linear_model import LinearRegression
   import warnings
   warnings.filterwarnings ("ignore")
```

In [2]: #importing dataset using pandas

concrete_df = pd.read_csv("Concrete Compressive Strength.csv")

In [3]: concrete_df

Out[3]:

		Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age (day)	streng
_	0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.9861
	1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.8873
	2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.2695
	3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.0527
	4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.2960
	1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28	44.2843
	1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28	31.1787
	1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28	23.6966
	1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28	32.7680
	1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28	32.4012

1030 rows × 9 columns

```
In [4]: # Separating dependent and independent variable.
X_raw = concrete_df.drop(columns=['strength '], axis=1)
Y = concrete_df['strength ']
```

```
In [5]: # Preparing the data to fit Linear regression
def Prepare_data(X):
    X.columns = ['X_1', 'X_2', 'X_3', 'X_4', 'X_5', 'X_6', 'X_7', 'X_8']
    X_0 = pd.DataFrame({'X_0' : [1]*1030})
    df = pd.concat([X_0,X],axis = 1, join = 'inner')
    arr=np.array(df)
    return df,arr
```

```
In [6]: df, X = Prepare_data(X_raw)
    print("________The prepared data is______
df
```

__The prepared data is______

Out[6]:

	X_0	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
0	1	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28
1	1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28
2	1	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270
3	1	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365
4	1	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360
1025	1	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28
1026	1	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28
1027	1	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28
1028	1	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28
1029	1	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28

1030 rows × 9 columns

_____The weight parameters are_____

```
Out[7]: array([-2.31637558e+01, 1.19785255e-01, 1.03847249e-01, 8.79430817e-02, -1.50297904e-01, 2.90686943e-01, 1.80301836e-02, 2.01544557e-02, 1.14225620e-01])
```

```
In [8]: # Function the Linear Regression
                             def linearRegression(beta):
                                                                                                                                                                                                __The fitted equation is__
                                           print ( "
                                           print (f''y_hat=\{b_hat[0]:.3f\}X_0+\{b_hat[1]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_2+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3
                              # Fitting the equation:
                              linearRegression(b_hat)
                              # predicting the dependent variable using the fitted equation
                              y_hat = X@b_hat
                              print("
                                                                                                                                                                                             __The Predicted Values are_
                              print(y_hat)
                                                                                                                                                       The fitted equation is_____
                              y_hat=-23.164X_0+0.120X_1+0.104X_2+0.088X_3+-0.150X_4+0.291X_5+0.018X_6+0.
                              020X_7+0.114X_8
                                                                                                                                                                      __The Predicted Values are_____
                              [53.4728591 53.74331185 56.81194746 ... 26.47099254 29.11564722
                                 31.89398622]
In [9]: #Error calculation:
                              def Errors(y_true, y_pred):
                                           e = y_true - y_pred
                                           mse = ((e^{**2}).sum())/X.shape[0]
                                           return mse
                             mse = Errors(Y,y_hat)
                              print("Mean squared error is: ", mse)
                              rmse = np.sqrt(mse)
                              print("Root mean squared error is: {}".format(rmse))
                              Mean squared error is: 107.21180273479736
```

Mean squared error is: 107.21180273479736 Root mean squared error is: 10.354313243030527

```
In [10]:
        # Function to create ANOVA Table
         def Anova(y_true,y_pred):
             # Total variation
             SSt = ((y_true-y_true.mean())**2).sum()
             degree_t = X.shape[0] - 1
             # Residual variation
             SSres= ((y_true - y_pred)**2).sum()
             degree_res = X.shape[0] - X.shape[1]
             MSres = SSres/degree_res
             # variation due to regression
             SSreg = SSt-SSres
             degree_reg = X.shape[1]-1
             MSreg= SSreg/degree_reg
             F = MSreg/MSres
             return degree_res,degree_reg, SSres,SSreg,MSres,MSreg, F
         degree_res, degree_reg, SSres,SSreg,MSres,MSreg, F = Anova(Y,y_hat)
```

In [11]: A Table

4

ANOVA Table

Out[11]:

	DF	SS	MS	F
Regression	8	176744.871659	22093.108957	204.269137
Residual	1021	110428.156817	108.156863	204.269137
Total	1029	287173 028476	22201 265820	204 269137

```
# Testing Null hypothesis
In [12]:
         print("
         print(f"H0: b0=b1=.....bk-1=0 against \nH1: bi!=0 for i=0 to k-1")
         print("If F>F{alpha, k-1, n-k}, The H0 is rejested")
         print("
         import scipy.stats
         from scipy.stats import f
         alpha = 0.05
         q = 1 - alpha
         f = f.ppf(q, degree_reg, degree_res)
         print(f"The calcylated f value is: {f}" )
         print(f"The observed f value is {F}")
         if(abs(F)>f):
                 print("The null hypothesis H0 is rejected")
         else:
                 print("The null hypothesis H0 is accepted")
```

```
H0: b0=b1=.....bk-1=0 against
H1: bi!=0 for i=0 to k-1
If F>F{alpha, k-1, n-k}, The H0 is rejested
```

The calcylated f value is: 1.9474558084667661
The observed f value is 204.2691365659187
The null hypothesis H0 is rejected

```
In [13]: # Predict R^2 value and adjusted R^2 value:
R_sq = (SSreg/ (SSres+SSreg) ) * 100
AdjR_sq = (1- MSres/(MSres+MSreg)) * 100
print(f"The R square value is:{R_sq}")
print(f"Adjusted R square value is: {AdjR_sq}")
```

The R square value is:61.54647342657952 Adjusted R square value is: 99.51283470241574

```
In [14]: # Test on individual regression coefficient (Partial test or Marginat Test)
Corr = np.linalg.inv(X.T@X)
from scipy.stats import t
def Marginal_test(beta, C, MSres,X):
    n = X.shape[1]
    for i in range(n):
        T = beta[i]/np.sqrt(MSres*C[i][i])
        if(abs(T)>t.ppf(1-0.05, degree_res)):
            print(f"H0:b{i}=0 is rejected")
        else:
            print(f"H0:b{i}=0 is accepted")
Marginal_test(b_hat,Corr,MSres,X)
```

```
HØ:b0=0 is accepted H0:b1=0 is rejected H0:b2=0 is rejected H0:b3=0 is rejected H0:b5=0 is rejected H0:b6=0 is rejected H0:b7=0 is rejected H0:b8=0 is rejected
```

In [15]: # Plot the regression Line fitted by the function made plt.figure(figsize=[19 , 9]) plt.scatter(y_hat, Y) plt.plot([Y.min(), Y.max()], [Y.min(), Y.max()], color = 'green') plt.xlabel('predicted') plt.ylabel('orignal') plt.show()


```
In [16]:
        # trying the inbuilt regression functionn
         from sklearn.linear_model import LinearRegression
         from sklearn.metrics import mean_squared_error
         lr = LinearRegression()
         fit = lr.fit(X,Y)
         print( '.....
         y_predict = lr.predict(X)
         print( 'mean_ squred_error is ==',mean_squared_error(Y, y_predict))
         rms = np.sqrt(mean_squared_error(Y,y_predict))
         print( 'root mean squared error is == {}'.format(rms))
         print("
                                                         The predicted values
         y_predict
         mean_ squred_error is == 107.21180273479737
         root mean squared error is == 10.354313243030528
                                                     ____The predicted values are__
Out[16]: array([53.4728591 , 53.74331185, 56.81194746, ..., 26.47099254,
                29.11564722, 31.89398622])
In [17]: # Plot the regression Line fitted by the inbuilt libraries in python
         plt.figure(figsize=[19 , 9])
         plt.scatter( y_predict, Y)
         plt.plot([Y.min(), Y.max()], [Y.min(), Y.max()], color = 'green')
         plt.xlabel('predicted')
         plt.ylabel('orignal')
         plt.show()
```


Out[18]: <AxesSubplot:>


```
In [19]: # check for any duplicate values in the data
duplicates = concrete_df.duplicated()
    concrete_df[duplicates]
    duplicates.value_counts()
```

Out[19]: False 1005 True 25 dtype: int64

Out[20]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age (day)	streng
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.9861
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.8873
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.2695
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.0527
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.2960
1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28	44.2843
1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28	31.1787
1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28	23.6966
1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28	32.7680
1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28	32.4012

1005 rows × 9 columns

,

```
In [21]: fig, axes = plt.subplots(nrows=len(concrete_df.iloc[:,:-1].columns)//2, nco
axes = axes.flatten()

for i, column in enumerate(concrete_df.iloc[:,:-1].columns):
    sns.boxplot(concrete_df[column], ax=axes[i])
    axes[i].set_title(column, fontsize = 22)
    axes[i].tick_params(axis='x', labelsize=18)
    axes[i].set_xlabel(column, fontsize=22)

plt.tight_layout()
plt.show()
```


In []:

```
In [22]: def remove_outlier(col):
    col_sorted = sorted(col, reverse=True)
    Q1, Q3 = pd.Series(col_sorted).quantile([0.25, 0.75])
    IQR = Q3 - Q1
    lower_range = Q1 - (1.5 * IQR)
    upper_range = Q3 + (1.5 * IQR)
    return lower_range, upper_range

for i in concrete_df.columns:
    l_r, u_r = remove_outlier(concrete_df[i])
    concrete_df[i].loc[~concrete_df[i].between(l_r, u_r)] = pd.NA

concrete_df
```

Out[22]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age (day)	strenç
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	<n< th=""></n<>
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.8873
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	<na></na>	40.2695
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	<na></na>	41.052
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	<na></na>	44.2960
1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28	44.2843
1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28	31.1787
1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28	23.6966
1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28	32.7680
1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28	32.4012

1005 rows × 9 columns

4

In [23]: rows_with_nan = concrete_df[concrete_df.isna().any(axis=1)]
 rows_with_nan

Out[23]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age (day)	strenç
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	<n< th=""></n<>
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	<na></na>	40.2695
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	<na></na>	41.052
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	<na></na>	44.2960
6	380.0	95.0	0.0	228.0	0.0	932.0	594.0	<na></na>	43.6982
862	140.0	164.0	128.0	<na></na>	6.0	869.0	656.0	28	35.2253
873	237.0	92.0	71.0	<na></na>	6.0	853.0	695.0	28	28.6270
908	313.0	145.0	0.0	<na></na>	8.0	1000.0	822.0	28	44.5194
936	236.9	91.7	71.5	<na></na>	6.0	852.9	695.4	28	28.6298
1019	139.7	163.9	127.7	<na></na>	5.8	868.6	655.6	28	35.2253

94 rows × 9 columns

In [24]: concrete_df.dropna(inplace=True)
 concrete_df

Out[24]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age (day)	streng
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.8873
5	266.0	114.0	0.0	228.0	0.0	932.0	670.0	90	47.0298
7	380.0	95.0	0.0	228.0	0.0	932.0	594.0	28	36.447
8	266.0	114.0	0.0	228.0	0.0	932.0	670.0	28	45.8542
9	475.0	0.0	0.0	228.0	0.0	932.0	594.0	28	39.289
1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28	44.2843
1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28	31.1787
1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28	23.6966
1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28	32.7680
1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28	32.4012

911 rows × 9 columns

In [26]: X_raw

Out[26]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age (day)
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28
5	266.0	114.0	0.0	228.0	0.0	932.0	670.0	90
7	380.0	95.0	0.0	228.0	0.0	932.0	594.0	28
8	266.0	114.0	0.0	228.0	0.0	932.0	670.0	28
9	475.0	0.0	0.0	228.0	0.0	932.0	594.0	28
						•••		
1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28
1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28
1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28
1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28
1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28

911 rows × 8 columns

In [27]: arr = np.array(X_raw)

_____The prepared data is_____

Out[28]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age (day)
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28
5	266.0	114.0	0.0	228.0	0.0	932.0	670.0	90
7	380.0	95.0	0.0	228.0	0.0	932.0	594.0	28
8	266.0	114.0	0.0	228.0	0.0	932.0	670.0	28
9	475.0	0.0	0.0	228.0	0.0	932.0	594.0	28
1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28
1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28
1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28
1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28
1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28

911 rows × 8 columns

```
In [29]: X_raw = X_raw.astype(float)
X = X_raw
X.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 911 entries, 1 to 1029
Data columns (total 8 columns):

Ducu	COTAMMIS (COCAT O CO	- a	
#	Column	Non-Null Count	Dtype
0	Cement	911 non-null	float64
1	Blast Furnace Slag	911 non-null	float64
2	Fly Ash	911 non-null	float64
3	Water	911 non-null	float64
4	Superplasticizer	911 non-null	float64
5	Coarse Aggregate	911 non-null	float64
6	Fine Aggregate	911 non-null	float64
7	Age (day)	911 non-null	float64

dtypes: float64(8)
memory usage: 64.1 KB

```
In [30]:
         # function to estimate parameters
         def Parameter_est( X ,y):
             Transpose = X.T
             mal = np.matmul(X.T,X)
             inv = np.linalg.inv(mal)
             b_hat = np.matmul(np.matmul(inv,X.T),y)
             return b_hat
         # Assign the estimated parameters to b_hat
         b_hat = Parameter_est( X ,Y)
         print("_
                                              The weight parameters are
         b_hat
                                              _The weight parameters are_
Out[30]: 0
              0.114994
         1
              0.090383
         2
              0.067183
         3
             -0.176913
         4
              0.266261
         5
              0.005134
         6
              0.010068
```

7 0.307632
dtype: object

```
In [31]: # Function the Linear Regression
                              def linearRegression(beta):
                                                                                                                                                                                ___The fitted equation is__
                                          print ( "
                                          print (f''y_hat=\{b_hat[0]:.3f\}X_1+\{b_hat[1]:.3f\}X_2+\{b_hat[2]:.3f\}X_3+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f\}X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+\{b_hat[2]:.3f]X_1+[b_hat[2]:.3f]X_1+[b_hat[2]:.3f]X_1+[b_hat[2]:.3f]X_1+[b_hat[2]:.3f]X_1+[b_hat[2]:.3f]X_1+[b_hat[2]:.3f]X_1+[b_hat[2]:.3f]X_1+[b_hat[2]:.3f]X_1+[b_hat[2]:.3f]X_1+[b_hat[2]:.3f]X_1+[b_hat[2]:.3
                              # Fitting the equation:
                              linearRegression(b_hat)
                              # predicting the dependent variable using the fitted equation
                              b_hat = b_hat.values
                              y_hat = X_raw_0b_hat
                              print("
                                                                                                                                                                              __The Predicted Values are__
                              print(y_hat)
                                                                                                                                             The fitted equation is_
                              y_hat=0.115X_1+0.090X_2+0.067X_3+-0.177X_4+0.266X_5+0.005X_6+0.010X_7+0.30
                              8X_8}
                                                                                                                                                         The Predicted Values are_____
                              1
                                                       54.938918
                              5
                                                             39.7736
                              7
                                                       31.327257
                              8
                                                       20.700388
                              9
                                                       33.665311
                                                             . . .
                              1025
                                                      39.747941
                              1026
                                                      33.914072
                              1027
                                                       25.553784
                              1028
                                                       28.750184
                                                       31.866135
                              1029
                              Length: 911, dtype: object
In [32]: #Error calculation:
                              def Errors(y_true, y_pred):
                                          e = y_true - y_pred
                                          mse = ((e^{**2}).sum())/X.shape[0]
                                          return mse
                              mse = Errors(Y,y_hat)
                              print("Mean squared error is: ", mse)
                              rmse = np.sqrt(mse)
                              print("Root mean squared error is: {}".format(rmse))
                              Mean squared error is: 60.91449792340837
                              Root mean squared error is: 7.804774046915668
```

localhost:8888/notebooks/RTSM_Project_Final.ipynb#

```
from sklearn.preprocessing import PolynomialFeatures
In [33]:
         from sklearn import linear_model
         poly = PolynomialFeatures ( degree=3, interaction_only=False , include_bias
         x = poly.fit_transform(X)
         poly clf = linear model.LinearRegression()
         poly_clf.fit (x, Y)
         print(poly_clf.score(x,Y))
         0.9127489832026829
In [34]:
        print( '.....
         y_predict = poly_clf.predict(x)
         print( 'mean_squared_error is ==' , mean_squared_error(Y,y_predict) )
         rms = np.sqrt(mean_squared_error(Y,y_predict))
         print( 'root mean squared error is == {} '.format(rms))
         mean squared error is == 21.901554707092167
         root mean squared error is == 4.679909690057295
In [35]: # Function to create ANOVA Table
         def Anova(y_true,y_pred):
             # Total variation
             SSt = ((y_true-y_true.mean())**2).sum()
             degree_t = X.shape[0] - 1
             # Residual variation
             SSres= ((y_true - y_pred)**2).sum()
             degree_res = X.shape[0] - X.shape[1]
             MSres = SSres/degree_res
             # variation due to regression
             SSreg = SSt-SSres
             degree_reg = X.shape[1]-1
             MSreg= SSreg/degree_reg
             F = MSreg/MSres
             return degree_res,degree_reg, SSres,SSreg,MSres,MSreg, F
         degree_res, degree_reg, SSres,SSreg,MSres,MSreg, F = Anova(Y,y_hat)
In [36]: # Creating ANOVA Table
         anova_dict = {'DF':[degree_reg, degree_res, degree_reg+degree_res], 'SS':[S]
         Anova_df = pd.DataFrame(anova_dict,index=["Regression","Residual","Total"])
         print("
                                                                 ANOVA Table
         Anova df
                                                           _ANOVA Table__
Out[36]:
```

	DF	SS	MS	F
Regression	7	173184.070842	24740.581549	402.585944
Residual	903	55493.107608	61.454161	402.585944
Total	910	228677 178451	24802 035710	402 585944

```
In [37]: # Predict R^2 value and adjusted R^2 value:
R_sq = (SSreg /(SSreg + SSres)) * 100
AdjR_sq = (1-MSres/(MSres+MSreg)) * 100
print(f"The R square value is: {R_sq}")
print(f"Adjusted R square value is: {AdjR_sq}")
```

The R square value is: 75.73299269117916 Adjusted R square value is: 99.75222130164006

```
In [38]: # Plot the regression Line fitted by the function made
    plt.figure(figsize=[19 , 9])
    plt.scatter( y_hat, Y, color='red')
    plt.plot([Y.min(), Y.max()], [Y.min(), Y.max()], color = 'green')
    plt.xlabel('predicted')
    plt.ylabel('orignal')
    plt.show()
```



```
In [39]: poly_clf.coef_
Out[39]: array([ 1.17601191e+06, -1.21797726e+02, -9.77272550e+01, -3.53238116e+02,
                -3.76676754e+02, 7.75298927e+02, -1.18724136e+02, -1.19179473e+02,
                 6.76041295e+01, 4.58569642e-02,
                                                   9.58166294e-02, 2.45367886e-01,
                 2.12243912e-01, -5.60072240e-01, 8.08168778e-02,
                                                                   1.11840962e-01,
                -2.67501692e-02, 3.75291857e-02, 2.29013507e-01, 1.98304855e-01,
                -3.92699353e-01, 3.46025865e-02, 1.13145075e-01, -1.88148393e-02,
                 2.29256936e-01,
                                 6.41643557e-01, -4.57355352e-02, 2.31437236e-01,
                 3.36810371e-01, -9.65166159e-02,
                                                  3.98257271e-01, -1.86652966e+00,
                 3.21019876e-01, 2.71458231e-01, -1.92018555e-01, -4.76295366e-01,
                -2.95132699e-01, -9.73777597e-01, 5.63309522e-01, 4.51403155e-02,
                 7.60088304e-02, -6.04224989e-02, 4.35843106e-02, -3.54123111e-02,
                 8.47042616e-03, -6.06689386e-06, -2.20257117e-05, -4.76340947e-05,
                -2.63211185e-05, 1.38001638e-04, -1.53867352e-05, -2.34148406e-05,
                 2.89179034e-06, -2.38577527e-05, -9.52081729e-05, -6.92818608e-05,
                 2.02832790e-04, -2.33398617e-05, -5.41903497e-05,
                                                                   7.61137495e-06,
                -7.55985889e-05, -1.91994847e-04, 1.47059216e-04, -7.83991712e-05,
                -1.23243121e-04, 3.86206262e-05, -7.56230220e-05, 6.23000777e-04,
                -7.63596192e-05, -1.11817041e-04, 3.69673001e-05, 1.42895591e-04,
                 1.13123415e-04, 3.26173368e-04, -3.76855626e-04, -1.38787925e-05,
                -3.44717012e-05, 9.40944118e-06, -2.42730306e-05, 1.26708725e-05,
                -1.86758801e-05, -4.97891804e-06, -4.65633877e-05, -1.95809431e-05,
                 1.57178620e-04, -4.83027976e-06, -2.69114663e-05, -3.52802014e-06,
                -7.93912150e-05, -1.84597292e-04, 6.19061213e-05, -5.91607219e-05,
                -1.27288785e-04, 2.64160414e-05, -1.14313346e-04, 2.62857960e-04,
                -3.53890651e-05, -1.23902927e-04, 3.98766328e-05, -2.99250314e-04,
                 1.05528209e-04, 2.23774686e-04, -2.23500602e-04, -1.78748905e-07,
                -2.47184991e-05, 6.14728402e-06, -2.84803363e-05, 8.87615050e-06,
                -2.67067742e-05, -4.75929813e-05, -2.07327890e-04, -1.49501786e-04,
                -6.97120622e-05, -1.14466730e-04,
                                                   3.70891174e-05, -2.51396756e-04,
                 4.58600950e-04, -2.05987207e-04, -3.45136754e-04, 9.02871623e-05,
                 2.56148746e-04, -1.17655684e-04, 9.06445894e-05, -2.76395054e-04,
                -3.75746659e-05, -1.13619411e-04, 3.06424205e-05, -7.19747602e-05,
                 4.61584203e-05, -2.17620055e-05, -9.22905995e-05, 1.12007898e-03,
                -2.14705143e-04, -1.38523167e-04, 1.02402436e-04, -2.17934930e-03,
                 1.68745775e-04,
                                 1.40963824e-03, -2.74291537e-04, -7.58363680e-05,
                -8.54061515e-05,
                                  9.10081018e-05, -5.93612645e-05, 5.62805167e-05,
                 5.38827762e-06,
                                 2.62793533e-05, -5.74879886e-05, 8.53082669e-04,
                -1.89034298e-08,
                                 3.27361420e-06, 3.03961629e-04, -2.07486199e-04,
                 2.02739725e-04, -2.17014698e-04, -2.99956218e-05, -5.14819789e-06,
                                  1.48009276e-05, -1.19784175e-05, 1.43270799e-05,
                -1.41634667e-05,
                -9.54203623e-06, -4.54050266e-06, 3.98634058e-06, -1.09147175e-05,
                 7.88327226e-05])
```

localhost:8888/notebooks/RTSM_Project_Final.ipynb#

In []: