

planetmath.org

Math for the people, by the people.

proof of Cramer's rule

Canonical name ProofOfCramersRule
Date of creation 2013-03-22 13:03:24
Last modified on 2013-03-22 13:03:24

Owner rmilson (146) Last modified by rmilson (146)

Numerical id 11

Author rmilson (146)

Entry type Proof Classification msc 15A15 Since $det(A) \neq 0$, by properties of the determinant we know that A is invertible.

We claim that this implies that the equation Ax = b has a unique solution. Note that $A^{-1}b$ is a solution since $A(A^{-1}b) = (AA^{-1})b = b$, so we know that a solution exists.

Let s be an arbitrary solution to the equation, so As = b. But then $s = (A^{-1}A)s = A^{-1}(As) = A^{-1}b$, so we see that $A^{-1}b$ is the only solution.

For each integer i, $1 \le i \le n$, let a_i denote the ith column of A, let e_i denote the ith column of the identity matrix I_n , and let X_i denote the matrix obtained from I_n by replacing column i with the column vector x.

We know that for any matrices A, B that the kth column of the product AB is simply the product of A and the kth column of B. Also observe that $Ae_k = a_k$ for $k = 1, \ldots, n$. Thus, by multiplication, we have:

$$AX_{i} = A(e_{1}, \dots, e_{i-1}, x, e_{i+1}, \dots, e_{n})$$

$$= (Ae_{1}, \dots, Ae_{i-1}, Ax, Ae_{i+1}, \dots, Ae_{n})$$

$$= (a_{1}, \dots, a_{i-1}, b, a_{i+1}, \dots, a_{n})$$

$$= M_{i}$$

Since X_i is I_n with column i replaced with x, computing the determinant of X_i with cofactor expansion gives:

$$\det(X_i) = (-1)^{(i+i)} x_i \det(I_{n-1}) = 1 \cdot x_i \cdot 1 = x_i$$

Thus by the multiplicative property of the determinant,

$$\det(M_i) = \det(AX_i) = \det(A)\det(X_i) = \det(A)x_i$$

and so $x_i = \frac{\det(M_i)}{\det(A)}$ as required.