Knowledge Representation and Reasoining

- Intro Lab -

Naive Bayes Classification

Naive Baye Classification - the definition

The Naive Bayes (NB) prediction algorithm is a **non-parametric probabilistic classifier**, based on the application of **Bayes' Theorem** with a strong (naive) **assumption** on the **independence of features**.

Key aspects:

- Knowledge in a NB algorithm is represented as probabilities.
- The probabilities capture only the relationship between the target class and each individual feature (attributes in the data)
- Non-parametric → there are no parameters to train; we care about estimating the probabilities
 of the dependence of a feature (attribute) on the target class using all available data

The Naive Bayes (NB) algorithm is **probabilistic classifier**.

Class: shape type

Example:

• Features (attributes) of the data: number of straight line segments, color, permiter length

Bayes Theorem

In classification:

- Hypotheses → which class?
- Evidence → features of the data sample

Knowledge representation assumption:

- independence of features (naive)
- Conditional dependence of each feature on the class

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Knowledge representation assumption:

- independence of features (naive)
- Conditional dependence of each feature on the class

The algorithmic approach for the case of discrete events, i.e. **estimating probabilities by counting – frequency of apparition (class)** and **co-apparation (feature – class)**

$$P(C=c) = \frac{\text{\# samples in class c}}{\text{\# total number of samples}}$$

$$Laplace smoothing$$

$$P(X_i = x_i | C = c) = \frac{\text{\# apparitions of feature } x_i \text{ in samples of class } c + \alpha}{\text{\# total number of values of feature } X_i \text{ in class } c + \text{\# num unique values of feature } X_i \cdot \alpha$$

$$C_{NB} = arg \max_{c \in C} [p(C=c) \cdot \prod_{i}^{N} P(X_{i} = x_{i} | C = c)]$$

The algorithmic approach for the case of discrete events, i.e. **estimating probabilities by counting – frequency of apparition (class)** and **co-apparation (feature – class)**

$$C_{NB} = arg \max_{c \in C} [p(C=c) \cdot \prod_{i}^{N} P(X_{i} = x_{i} | C = c)]$$

Product of probabilities becomes numerically unstable when multiplying lots of them => apply log()

$$C_{NB} = arg \max_{c \in C} [\log(p(c=c)) + \sum_{i}^{N} \log(P(X_i = x_i | C = c))]$$

Naive Baye Classification – the task

Apply Naive Bayes Classification to the **Nursery** dataset.

Features

parents: usual, pretentious, great_pret

has_nurs: proper, less_proper, improper, critical, very_crit

form: complete, completed, incomplete, foster

children: 1, 2, 3, more

housing: convenient, less_conv, critical

finance: convenient, inconv

social: nonprob, slightly_prob, problematic

health: recommended, priority, not_recom

Class values

not_recom, recommend, very_recom, priority, spec_prior

- Split data into 80% train, 20% test using scikit-learn train_test_split() method. Use a seed for the random number generator.
- Compute:
 - General Accuracy
 - Precision, Recall, F1 score table for each class value
 - Print a confusion matrix