Arquitetura de Computadores

PROF. ISAAC

Contador e Temporizador

Contador/temporizador – CT0 e CT1

A família 8051 disponibiliza dois contadores, denominados contador/temporizador 0 e contador/temporizador 1 (CT0 e CT1).

Eles são construídos com dois contadores binários independentes, de 16 bits.

Abaixo os 4 registradores:

Contador/temporizador – CT0 e CT1

Esses bytes TH0, TL0, TH1 e TL1, podem ser lidos ou escritos a qualquer momento. Tais contadores binários contam de forma ascendente e, a cada vez que ultrapassam seu limite, que é o valor 65.535, a flag de overflow é ativada.

O interessante é que essa flag, além de poder ser consultada a qualquer instante, também pode provocar interrupção.

Contador/temporizador – CT0 e CT1

CT0 e CT1 podem operar como contador ou temporizador.

- Para operar como temporizador ele utiliza o clock do Cristal.
- Para operar como contador ele utiliza os pinos T0 e T1.

Operando como TEMPORIZADOR

Operando como CONTADOR

Registrador: TMOD

Descrição dos bits do registrador TMOD.

Registrador: TMOD

M1	M0	Modo	Descrição
0	0	0	THi é CT de 8 bits e TLi é pré-escala de 5 bits.
0	1	1	THi e TLi formam CT de 16 bits.
1	0	2	TLi é CT de 8 bits e THi armazena valor de recarga.
1	1	3	TL0 é CT de 8 bits (usando TR0, #INT0 e TF0), TH0 é CT de 8 bits (usando TR1, #INT1 e TF1)
	•	,	TH1 e TL1 parado (pode operar em outros modos).

Registrador: TMOD

Bit	T/C	Nome	Descrição
7		GATE1	Modo de controle (0: software, 1: hardware)
6	T/C1	C/T1	Seleciona timer (0) ou counter (0)
5		Salação do mado do timor 1	
4		T1M0	Seleção de modo do timer 1
3	GATE	GATE0	Modo de controle (0: software, 1: hardware)
2	TICO	C/T0	Seleciona timer ou counter
1	1/00	TOM1	Calação do mado do timor O
0		Томо	Seleção de modo do timer 0

O bit GATE quando ativado permite que um sinal externo aplicado ao pino #INTi ligue ou desligue o contador.

Registrador: TCON (Timer Controller)

Registrador TCON, onde se especifica se as interrupções externas trabalharão por nível ou por flanco.

Registrador: TCON (Timer Controller)

Os quatro *bits* menos significativos do registrador de controle dos *timers*/contadores chamado de TCON gerenciam o funcionamento das interrupções externas.

bits	7	6	5	4	3	2	1	0
	TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

São 2 entradas de interrupção externas:

- ➤ interrupção 0 (P3.2/ INT0)
- ➤ interrupção 1 (P3.3/ INT1)

Registrador: TCON (Timer Controller)

bits	7	6	5	4	3	2	1	0
	TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

TR0 (TCON.4) e **TR1** (TCON.6)

É o *bit* de controle responsável por fazer o *timer*/contador contar ou parar a contagem (**run/stop**).

TF0 (TCON.5) e **TF1** (TCON.7)

É o bit que indica o estouro do timer/contador (overflow).

Ele é setado por *hardware* sempre que o *timer*/contador estoura (*overflow*).

Esse *flag* é resetado por *hardware* sempre que a sub-rotina de atendimento a essa fonte de interrupção é vetorizada e executada.

Exemplo com temporizador no Modo 2

Modo 2

Usando o Temporizador, gere pelo pino P1.0 uma onda quadrada de 2,5 kHz

Solução:

O período de uma onda quadrada de 2,5 kHz é de 400 µs, o que significa que o pino P1.0 deve, repetitivamente, ficar 200 µs em nível baixo e 200 µs em nível alto.

Solução:

Vamos programar o CTO para ativar o bit de ultrapassagem (*overflow*) TFO a cada 200 µs. Cada vez que TFO for igual a 1, invertemos o pino P1.0 e apagamos TFO para que se possa ativálo novamente no próximo *overflow*.

Usaremos o modo 2, onde o contador deve ser preparado para sofrer a ultrapassagem após 200 contagens e, como a contagem é crescente, ele deve ser programado com o valor 256 - 200 = 56.

A contagem sempre começa em 56 e a ultrapassagem acontece após 200 contagens (255 + 1 que ocorre overflow).

Solução:

```
CONFIG:
```

MOV TMOD,#2

MOV TH0,#56

MOV TL0,#56

SETB TRO

ROT:

JNB TF0,\$

CLR TF0

CPL P1.0

SJMP ROT

;CT0 no modo 2

;valor para a recarga

;valor para a primeira contagem

;liga o CT0

;aguarda bit de ultrapassagem

;apaga bit de ultrapassagem

;complementa P1.0

;fecha o laço

M1 M0 Modo Descrição 0 0 THi é CT de 8 bits e TLi é pré-escala de 5 bits. 0 1 1 THi e TLi formam CT de 16 bits 1 0 2 TLi é CT de 8 bits e THi armazena valor de recarga. 1 1 3 TH0 é CT de 8 bits (usando TR0, #INT0 e TF0), TH1 e TL1 parado (pode operar em outros modos)

Solução:

CONFIG:

MOV TMOD,#2 ;CT0 no modo 2 MOV TH0,#56 ;valor para a recarga

MOV TL0,#56 ;valor para a primeira contagem

SETB TRO ;liga o CTO

ROT:

JNB TF0,\$;aguarda bit de ultrapassagem ;apaga bit de ultrapassagem

CPL P1.0 ;complementa P1.0

SJMP ROT ;fecha o laço

Solução:

M1	M0	Modo	Descrição
0	0	0	THi é CT de 8 bits e TLi é pré-escala de 5 bits.
0	1	1	THi e TLi formam CT de 16 bits
1	0	2	TLi é CT de 8 bits e THi armazena valor de recarga.
1	1	3	THO e CT de 8 bits (usando TR1, #INT1 e TF1) TH1 e TL1 parado (pode operar em outros modos).

Contador/Temporizador 1 TH1 TL1 TH0 TL0 16 bits

CONFIG:

MOV TMOD.#2 ;CT0 no modo 2 MOV TH0,#56 ;valor para a recarga MOV TL0,#56 ;valor para a primeira contagem SETB TR0 ;liga o CT0

ROT:

JNB TF0,\$;aguarda bit de ultrapassagem CLR TF0 ;apaga bit de ultrapassagem CPL P1.0 ;complementa P1.0 SJMP ROT ;fecha o laço

Solução:

CONFIG:

SJMP ROT

MOV TMOD,#2
MOV TH0,#56
WOV TL0.#56
SETB TR0
ROT:
JNB TF0,\$
CLR TF0
CPL P1.0
;CT0 no modo 2
;valor para a recarga
;valor para a primeira contagem
;liga o CT0
;aguarda bit de ultrapassagem
;apaga bit de ultrapassagem
;complementa P1.0

;fecha o laço

Solução:

Fica preso nesta linha enquanto TF0 for igual a zero.

```
CONFIG:
    MOV TMOD,#2
                              ;CT0 no modo 2
    MOV TH0,#56
                               ;valor para a recarga
    MOV TL0,#56
                               ;valor para a primeira contagem
    SETB TRO
                               ;liga o CT0
ROT:
                               ;aguarda bit de ultrapassagem (overflow)
    JNB TF0,$
     CLR TF0
                               ;apaga bit de ultrapassagem
                               ;complementa P1.0
    CPL P1.0
    SJMP ROT
                               ;fecha o laço
```

Solução:

CONFIG:

MOV TMOD,#2 ;CT0 no modo 2

MOV TH0,#56 ;valor para a recarga

MOV TL0,#56 ;valor para a primeira contagem

SETB TRO ;liga o CTO

ROT:

INR TFO \$	·aguarda hit de ultranassagem
CLR TF0	;apaga bit de ultrapassagem (overflow)
CPL P1.0	;complementa P1.0
SJMP ROT	; pula incondicionalmente para ROT

Solução:

```
CONFIG:
```

MOV TMOD,#2

MOV TH0,#56

MOV TL0,#56

SETB TRO

ROT:

JNB TF0,\$

CLR TF0

CPL P1.0

SJMP ROT

;CT0 no modo 2

;valor para a recarga

;valor para a primeira contagem

;liga o CT0

;aguarda bit de ultrapassagem

;apaga bit de ultrapassagem

;complementa P1.0

;pula incondicionalmente para ROT

Usando o Temporizador, gere pelo pino P1.0 a forma de onda apresentada:

Solução:

Usaremos o modo 2, onde o contador deve ser preparado para sofrer a ultrapassagem após 50 contagens, portanto ele deve ser programado com o valor 256 - 50 = 206 e setar P1.0

Depois contador deve ser preparado para sofrer a ultrapassagem após 250 contagens, então ele deve ser programado com o valor 256 - 250 = 6 para dar clear P1.0

Solução:

```
CONFIG:
 MOV TMOD,#2
                  ;CT0 no modo 2
 MOV TH0,#206
                   ;valor para a recarga
 MOV TL0,#206
                   ;valor para a primeira contagem
 SETB TRO
                   ;liga o CT0
                   ;inicia o primeiro período de 50 µs
 SETB P1.0
LB1:
 JNB TF0,$
                   ;aguarda bit de ultrapassagem
 MOV TL0,#6
                   ;valor para a primeira contagem
 CLR TF0
                   ;apaga bit de ultrapassagem
 CLR P1.0
                   faz P1.0 = 0
LB2:
 JNB TF0,$
                   ;aguarda bit de ultrapassagem
 CLR TF0
                   ;apaga bit de ultrapassagem
                   faz P1.0 = 1
 SETB P1.0
 SJMP LB1
                   ;volta para LB1:
```

Exemplo com temporizador no Modo 1

Modo 1

Usando o Temporizador, gere pelo pino P1.0 uma onda quadrada de 250 kHz

Solução:

O período de uma onda quadrada de 250 kHz é de 4000 µs, o que significa que o pino P1.0 deve, repetitivamente, ficar 2000 µs em nível baixo e 2000 µs em nível alto.

Solução:

Usaremos o modo 1, onde o contador deve ser preparado para sofrer a ultrapassagem após 2000 contagens, e como a contagem é crescente, ele deve ser programado com o valor 65536 - 2000 = 63536.

A contagem sempre começa em 63536 e a ultrapassagem acontece após 2000 contagens (65535 + 1 que ocorre overflow).

No entanto teremos que converter o valor 63536 para hexadecimal.

63536 é **F830** em hexadecimal.

Solução:

```
CONFIG:
    MOV TMOD,#1
                           ;CT0 no modo 1
    MOV TH0,#0F8h
                           ;valor para F830 - > MSB F8
    MOV TL0,#30h
                           ; valor para F830 -> LSB 30
    SETB TRO
                           ;liga o CT0
ROT:
    JNB TF0,$
                           ;aguarda bit de ultrapassagem
    MOV TH0,#0F8h
                           ;recarrega com valor para F830 - > MSB F8
                           ;recarrega com valor para F830 - > LSB 30
    MOV TL0,#30h
    CLR TF0
                           ;apaga bit de ultrapassagem
    CPL P1.0
                           complementa P1.0
    S.IMP ROT
                           ;fecha o laço
```

M1	M0	Modo	Descrição
0	0	0	THi é CT do 8 bite e TL i é pré escala de 5 bite
0	1	1	THi e TLi formam CT de 16 bits.
1	0	2	TLi é CT de 8 bits e THi armazena valor de recarga.
1	1	3	TL0 é CT de 8 bits (usando TR0, #INT0 e TF0), TH0 é CT de 8 bits (usando TR1, #INT1 e TF1) TH1 e TL1 parado (pode operar em outros modos)

Solução:

CONFIG.

MOV TMOD,#1 ;CT0 no modo 1

MOV TH0,#0F8h ;valor para F830 - > MSB F8

MOV TL0,#30h ; valor para F830 - SLSB 30

SETB TRO ;liga o CTO

ROT:

JNB TF0,\$;aguarda bit de ultrapassagem

MOV TH0,#0F8h ;recarrega com valor para F830 - > MSB F8

MOV TL0,#30h ;recarrega com valor para F830 - > LSB 30

CLR TF0 ;apaga bit de ultrapassagem

CPL P1.0 ;complementa P1.0

SJMP ROT ;fecha o laço

Solução:

M1	M0	Modo	Descrição
0	0	0	THi é CT de 8 bits e TL i é pré-escala de 5 bits
0	1	1	THi e TLi formam CT de 16 bits.
1	0	2	TLi e CT de 8 bits e THi armazena valor de recarga.
1	1	3	TL0 é CT de 8 bits (usando TR0, #INT0 e TF0), TH0 é CT de 8 bits (usando TR1, #INT1 e TF1) TH1 e TL1 parado (pode operar em outros modos).

CONFIG:

MOV TMOD,#1	;CT0 no modo 1
MOV TH0,#0F8h	;valor para F830 - > MSB F8
MOV TL0,#30h	;valor para F830 - > LSB 30
SETB TR0	;liga o CT0

ROT:

JNB TF0,\$;aguarda bit de ultrapassagem
MOV TH0,#0F8h	;recarrega com valor para F830 - > MSB F8
MOV TL0,#30h	;recarrega com valor para F830 - > LSB 30
CLR TF0	;apaga bit de ultrapassagem
CPL P1.0	;complementa P1.0
S.IMP ROT	:fecha o laco

M1	M0	Modo	Descrição
0	0	0	THi é CT de 8 bits e TL i é pré-escala de 5 bits
0	1	1	THi e TLi formam CT de 16 bits.
1	0	2	TLi e CT de 8 bits e THi armazena valor de recarga.
1	1	3	TL0 é CT de 8 bits (usando TR0, #INT0 e TF0), TH0 é CT de 8 bits (usando TR1, #INT1 e TF1) TH1 e TL1 parado (pode operar em outros modos).

Solução:

No modo 1 não tem recarga automática, portanto você terá que realizar a recarga no TH0 e TL0 após ocorrer o overflow.

CONFIG:

MOV TMOD,#1 ;CT0 no modo 1

MOV TH0,#0F8h ; valor para F830 -> MSB F8

MOV TL0,#30h ; valor para F830 - > LSB 30

SETB TRO ;liga o CTO

ROT:

JNB TF0,\$;aguarda bit de ultrapassagem

MOV TH0,#0F8h ;recarrega com valor para F830 - > MSB F8

MOV TL0,#30h ;recarrega com valor para F830 - > LSB 30

CLR TF0 ;apaga bit de ultrapassagem

CPL P1.0 ;complementa P1.0

SJMP ROT ;fecha o laço

Solução:

```
CONFIG:
    MOV TMOD,#1
                           ;CT0 no modo 1
    MOV TH0,#0F8h
                           ;valor para F830 - > MSB F8
    MOV TL0,#30h
                           ; valor para F830 -> LSB 30
    SETB TRO
                           ;liga o CT0
ROT:
    JNB TF0,$
                           ;aguarda bit de ultrapassagem
    MOV TH0,#0F8h
                           ;recarrega com valor para F830 - > MSB F8
                           ;recarrega com valor para F830 - > LSB 30
    MOV TL0,#30h
    CLR TF0
                           ;apaga bit de ultrapassagem
    CPL P1.0
                           complementa P1.0
    S.IMP ROT
                           ;fecha o laço
```

Bibliografia

ZELENOVSKY, R.; MENDONÇA, A. Microcontroladores Programação e Projeto com a Família 8051. MZ Editora, RJ, 2005.

Gimenez, Salvador P. Microcontroladores 8051 - Teoria e Prática, Editora Érica, 2010.