Optimisation Combinatoire

Chien-Chen Huang

26 septembre 2024

Table des matières

1	Ma	z-Flow (min-cut)	L
	1.1	Max-Flow	L

1 Max-Flow (min-cut)

1.1 Max-Flow

Définition 1.1 Soit G=(V,E) un graphe orienté, $c:E\to\mathbb{R}^+$ une fonction de capacité et $s,t\in V$ deux sommets terminaux, $f:E\to\mathbb{R}^+$ est un flot si :

- 1. $0 \le f(e) \le c(e), \forall e \in E$
- 2. $\sum_{e \in \delta^-(v)} f(e) = \sum_{e \in \delta^+(v)} f(e), \forall v \in V \setminus \{s,t\}$ (Conservation du Flot).

On va s'intéresser au problème suivant :

Max-Flow

Entrée: G=(V,E) un graphe orienté, $c:E\to\mathbb{R}^+$ une fonction de capacité et $s,t\in V$ deux

sommets terminaux

Sortie: Une fonction de flot f maximale, c'est à dire avec un volume maximal :

 $\sum_{e \in \delta^{+}(s)} f(e) - \sum_{e \in \delta^{-}(s)} f(e)$

Théorème 1.1 On rappelle qu'obtenir un flot maximal est équivalent à obtenir une coupe de poids minimal.

On définit pour cela le réseau résiduel d'une fonction de flot f:

1.1 Max-Flow 2

Définition 1.2 Étant donné un flot f, pour chaque arrête $e = (u, v) \in E$, on définit :

$$(u, v) \in F \text{ si } c(e) - f(e) > 0$$

 $(v, u) \in F \text{ si } f(e) > 0$

Dans le premier cas, on définit u(e) = c(e) - f(e). Dans le deuxième cas on définit u(e) = f(e).

Proposition 1.1 Si on pousse de u à v, i.e. si f((u,v)) > 0, alors (v,u) doit apparaître dans le réseau résiduel.

On propose alors l'algorithme de Ford-Fulkerson, se basant sur des chemins augmentants pour résoudre le problème :

Algorithme 1 Ford-Fulkerson

Tant que G(f) a un chemin de s à t noté p, on pousse le plus possible le long du chemin p.

Théorème 1.2 Si l'algorithme de Ford-Fulkerson termine, alors f est un flot maximal.

Démonstration. Soit $U \subseteq V$ l'ensemble des sommets atteignables depuis s dans G(f). On a par 1.1

$$\sum_{e \in \delta^{+}(s)} f(e) - \sum_{e \in \delta^{-}(s)} f(e) = \sum_{e \in \delta^{+}(U)} f(e) - \sum_{e \in \delta^{-}(U)} f(e)$$
$$= \sum_{e \in \delta^{+}(U)} c(e) = \text{cut size de U}$$

Toutefois la complexité de cet algorithme dépend de la valeur du flot maximum, et celui-ci ne termine même pas pour des réels.

On va chercher un algorithme dont la complexité n'en dépend pas (dit fortement polynomial), ce qui nous amène à la notion de pré-flot :

Définition 1.3 Soit G=(V,E) un graphe orienté, $c:E\to\mathbb{R}^+$ une fonction de capacité et $s,t\in V$ deux sommets terminaux, $f:E\to\mathbb{R}^+$ est un pré-flot si :

- 1. $0 \le f(e) \le c(e), \forall e \in E$
- 2. $\operatorname{exces}(v) = \sum_{e \in \delta^{-}(v)} f(e) \ge \sum_{e \in \delta^{+}(v)} f(e), \forall v \in V \setminus \{s, t\}.$

On va essayer de construire un algorithme dont le principe est cette fois ci d'avancer

Définition 1.4 • Un sommet $v \in V \setminus \{s, t\}$ est dite actif si exces(v) > 0.

- Un étiquetage des sommets $d: V \to \mathbb{N}$ est valide si $\forall (u,v) \in G(f)$ (pour f un pré-flot), on $a: d(u) \leq d(v) + 1$.
- Une arête $(u, v) \in G(f)$ est admissible si d(u) = d(v) + 1.

On obtient alors l'algorithme suivant, proposé originellement par Andrew Goldberg en 1989 :

On va donc prouver la correction de cet algorithme. Pour cela, on se base sur les deux lemmes suivants :

Lemme 1.1 Si v est actif, alors v a un chemin orienté vers s dans G(f).

Démonstration. Soit $X \subseteq V$ l'ensemble des sommets ayant un chemin vers s dans G(f). Par l'absurde, il existe $w \in V \setminus X$ actif. On a alors :

$$0 < \sum_{v \in V \setminus X} \left(\sum_{e \in \delta^-(v)} f(e) - \sum_{e \in \delta^+(v)} f(e) \right) = \sum_{e \in \delta^-(v \setminus X)} f(e) - \sum_{e \in \delta^+(V \setminus X)} f(e)$$

1.1 Max-Flow

Algorithme 2 Push-Relabel

Initialisation: On pose $\forall e \in \delta^+(s), f(e) = c(e), \text{ sinon } f(e) = 0.$ On pose $d(s) = n, d(v) = 0 \forall v \neq s.$

Boucle Tant qu'il existe un sommet actif v, on effectue deux actions :

Push S'il existe $(u, v) \in G(f)$ admissible, on pousse $\min(\text{exces}(u), u(e))$ selon l'arête (u, v).

Relabel On pose $d(u) = \min_{v \mid (u,v) \in G(f)} d(v) + 1$

Or, $\sum_{e \in \delta^-(v \setminus x)} f(e) = 0$, d'où le résultat.

Lemme 1.2 Étant donné un chemin P de u à v, alors, $|P| \ge d(u) - d(v)$, si d est valide.

Démonstration. Si $P = v_0 v_1 \cdots v_x$, puisque d est valide : $d(v_i) \le d(v_{i+1}) + 1$ pour tout i. D'où, $d(v_0) \le d(v_x) + x$. D'où le résultat.

On obtient un corollaire très utile :

Corollaire 1.1 Pour tout $n, d(u) \leq 2n - 1$.

Démonstration. Si u est actif et d(u) = 2n, tout chemin de u à s est de longueur au moins n, ce qui est impossible puisque |V| = n.

Théorème 1.3 — Correction de Push-Relabel Quand l'algorithme 2 s'arrête, on obtient un max-flow.

Démonstration. Il n'y a jamais de chemin de s à t dans G(f) par 1.2. Par ailleurs, il n'y a pas de sommet actif à l'arrêt de l'algorithme, ce qui signifie qu'on a bien un véritable flot. La preuve de correction de 1 s'applique donc.

Théorème 1.4 — Complexité de Push-Relabel L'algorithme 2 s'arrête en temps $\mathcal{O}(V^2E)$.

Démonstration. On a toujours 3 opérations :

- Le Relabel qui prend un temps $\mathcal{O}(V^2)$ (au plus $(n-2) \times (2n-1)$ opérations).
- Le Push Saturant (push qui permet à f((u,v)) d'atteindre c((u,v))). Celui-ci va supprimer l'arête (u,v) de G(f). Pour que l'arc soit réinséré dans G(f) pour un autre push saturant, v doit d'abord être réétiqueté. Ensuite, après un push sur (v,u), u doit être réétiqueté. Au cours du processus, d(u) augmente d'au moins 2 Il y a donc $\mathcal{O}(V)$ push saturants sur (u,v) et donc $\mathcal{O}(VE)$ push saturants au total.
- Le Push Non-Saturant qu'on effectue un nombre $\mathcal{O}(V^2E)$ de fois. En effet, borner le nombre de push non-saturants peut se faire à partir d'un argument de potentiel. On utilise la fonction de potentiel $\Phi = \sum_{v \text{ actif}} d(v)$. Il est clair que $\Phi = 0$ à l'initialisation et reste toujours positive durant l'exécution. Par ailleurs, un push non-saturant diminue Φ d'au moins 1. De plus, le relabel et le push augmentent Φ d'au plus 1 et d'au plus (2V-1) respectivement. On a donc : $\Phi \leq (2V-1)(V-2) + (2V-1)(2VE)$. On a donc : $\Phi \leq \mathcal{O}(V^2E)$.

L'algorithme prend donc un temps $\mathcal{O}(V^2E)$.

Pour essayer d'améliorer l'algorithme on propose la version suivante : Il est clair que l'algorithme reste correcte,

Algorithme 3 Push-Relabel +

Boucle : On choisit le sommet actif v avec la plus haute étiquette, on effectue deux actions :

Push S'il existe $(u, v) \in G(f)$ admissible, on pousse min (exces(u), u(e)) selon l'arête (u, v).

Relabel On pose $d(u) = \min_{v \mid (u,v) \in G(f)} d(v) + 1$

toute fois, on change la complexité pour de V^2E à V^3 . On peut même encore a méliorer la complexité pour obtenir $\mathcal{O}(V^2\sqrt{E})$, et même $\mathcal{O}(V^{1+o(1)}\log(E))$ 1.1 Max-Flow 4

Algorithme 4 Edmonds-Karp

Pour cet algorithme, on applique Ford-Fulkerson en choisissant le plus court des chemins de s à t.

Théorème 1.5 — Complexité d'Edmonds-Karp L'algorithme de Edmonds-Karp prend un temps $\mathcal{O}(VE^2)$.

Dans la suite, on note f_0, f_1, \cdots les flots obtenus de sorte que f_{i+1} est obtenu du plus court chemin P_i dans $G(f_i)$. **Lemme 1.3** $\forall i$:

- $|P_i| \leq |P_{i+1}|$
- Si P_i et P_{i+1} utilisent deux arcs opposés (i.e. (u, v) et (v, u)), alors $|P_i| + 2 \le |P_{i+1}|$.

Démonstration. On pose $H = P_i \cup P_{i+1}$ où les arcs opposés sont supprimés. On ajoute alors 2 arcs supplémentaires de t à s. Comme alors H est eulérien, il existe deux chemins disjoints q_1, q_2 de s à t dans H. Notons que toutes les arêtes de H (sauf les arêtes de t à s) sont dans $G(f_i)$. On a de plus $|P_i| \le q_1, q_2$ d'où

$$2|P_i| \le |q_1| + |q_2| \le |H| \le |P_i| + |P_{i+1}| - 2$$

Lemme 1.4 Soit l < k tel que P_l et P_k utilisent des arcs opposés. Alors, $|P_l| + 2 \le |P_k|$.

Démonstration. La preuve précédente peut être aisément adaptée : On peut supposer que pour l < i < k, P_i n'a pas d'arcs opposés avec P_k , sinon le résultat se déduit par récurrence par le lemme précédent. On pose $H = P_l \cup P_k$ où les arcs opposés sont supprimés. On ajoute alors 2 arcs supplémentaires de t à s. Comme alors H est eulérien, il existe deux chemins disjoints q_1, q_2 de s à t dans H. Notons que toutes les arêtes de H (sauf les arêtes de t à s) sont dans $G(f_l)$. On a de plus $|P_l| \le q_1, q_2$ d'où

$$2|P_l| < |q_1| + |q_2| < |H| < |P_l| + |P_k| - 2$$

Lemme 1.5 Un arc dans G(f) peut être une arête bottleneck (c'est à dire une arête avec le moins de capacité) au plus $\mathcal{O}(n)$ fois.

Démonstration. Pour qu'une arête e soit bottleneck une nouvelle fois, il faut que la longueur du nouveau plus court chemin ait augmenté au moins de 2.

de la Complexité d'Edmonds-Karp. Chaque arête peut être utilisée au plus $\mathcal{O}(n)$, il y a donc au plus nm itérations, et les itérations se font en temps $\mathcal{O}(m)$, ce qui est le résultat.