This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

J. IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPT9)

PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C12N 15/10 // C12Q 1/68

(11) 国際公開番号

WO98/20122

(43) 国際公開日

1998年5月14日(14.05.98)

(21) 国際出願番号

PCT/JP97/03992

A1

(22) 国際出願日

1997年10月31日(31.10.97)

(30) 優先権データ

特願平8/291500

1996年11月1日(01.11.96)

(71) 出願人(米国を除くすべての指定国について) 理化学研究所(THE INSTITUTE OF PHYSICAL AND

CHEMICAL RESEARCH)[JP/JP]

〒351-01 埼玉県和光市広沢2番1号 Saitama, (IP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

林崎良英(HAYASHIZAKI, Yoshihide)[JP/JP]

〒305 茨城県つくば市高野台三丁目1-1

理化学研究所 ライフサイエンス筑波研究センター内

Ibaraki, (JP)

(74) 代理人

弁理士 塩澤寿夫、外(SHIOZAWA, Hisao et al.)

〒103 東京都中央区八重洲1丁目8番12号

藤和八重洲ーT目ビル7階 Tokyo,(JP)

(81) 指定国 CA, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(54) Title: METHOD FOR FORMING FULL-LENGTH cDNA LIBRARY

(54)発明の名称 完全長cDNAライブラリーの作成方法

(57) Abstract

A method for forming a cDNA library corresponding to the full-length mRNA which comprises the step of forming RNA-DNA complexes through reverse transcription of primers with the use of the mRNA as a template; the step of chemically binding a molecule serving as a tag to the diol structure located in the 5'Cap (Me Gpp N) site of the mRNA constituting the RNA-DNA complexes; and the step of separating the RNA-DNA complex having the DNA corresponding to the full-length mRNA from among the RNA-DNA complexes having the tagging molecule bonded thereto by taking advantage of the function of the tagging molecule. In this method, a full-length cDNA library is formed by efficiently labeling the 5'Cap site via a protein/enzyme reaction. Thus, a decrease in the efficiency of synthesizing the full-length cDNA due to the cleavage of the mRNA can be avoided and, consequently, the full-length cDNA can be synthesized at an elevated efficiency.

(57) 要約

mRNAの完全長に対応するcDNAのライブラリーを作成する方法であって、mRNAを 鋳型とし、プライマーより逆転写によりRNA-DNA 複合体を形成する工程、

RNA-DNA 複合体を形成しているmRNAの5' Cap (7MeG ppp N)サイトに存在するジオール構造に、タッグになる分子を化学結合させる工程、及びタッグ分子を結合したRNA-DNA 複合体の内、mRNAの完全長に対応するDNA を有するRNA-DNA 複合体を、タッグ分子の機能を利用して分離する工程、を含む完全長cDNAライブラリーの作成方法を開示する。この方法は、蛋白酵素反応より効率良く5' Cap サイトを標識する方法を利用する完全長cDNAライブラリーの作成方法であって、mRNAが切断されることによる完全長cDNAの合成効率の低下を回避できる、より高い効率で完全長cDNAを合成できる。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参奏権納)

SSTTTTTTUUUUVYZ マスチトタトトトウウ米ウヴュジ ボファージルルリクが国ズィーン がジーゴキクコニラン ドレス ゲース タイタ シーズン タイタ マーン クーク アージルルリクが国ズィーン グーゴ・ファー マーグ マーン グーク アージー アーブ

明細書

完全長cDNAライブラリーの作成方法

技術分野

本発明は、完全長cDNAライブラリー作成法に関する。更に詳しくは、mRNAの化学修飾を利用した、完全長cDNA精製法による完全長cDNAライブラリー作成法に関する。

背景技術

cDNA合成法は医学生物学分野の研究で必須の技術であり、遺伝子転写物の解析法として不可欠である。全てのDNA 遺伝情報は転写物を介して生理活性を示すが、それを解析する強力な手段がcDNAクローニングである。従来法におけるcDNA合成においては、oligo dTをプライマーとしてポリA サイトから合成されたcDNAライブラリーの中で最終的にクローンが単離される。ところが、殆どの場合、転写単位の全長が合成されていない為に転写単位の全構造が解析できないのが実状である。この為、通常のcDNAライブラリーでは、プライマー伸長法による5'上流領域の合成、またはランダム プライマーを用いたcDNA合成を用いて5'上流領域をウォーキング(walking) することが全長構造解明に必須のステップとなる。

しかるに、上記従来のcDNA合成法には次の問題がある。

- (1) ランダム プライマーを用いると転写物のかなりの領域をカバーするcDNAができる。しかし、それらは短い断片であり、ボリ Aから5 Cap サイトまで含んだクローンは単離できないことが多い。
- (2) oligo dTをプライマーとして用いたcDNAは全て3 端を含む。しかし、逆転写酵素が5 Cap サイトまで届かない場合は、5 上流をプライマー伸長法及び5 RACE等で再度単離解析せねばならない。
- (3) 既存の完全長cDNAを単離する方法は、前述の従来のいかなる方法もその効率が十分でない(100 μg mRNAから200 万組換え体ファージ)。そこで、実用的にはもっと効率の高い手法の開発が望まれる。

完全長cDNA合成法の従来の技術として、次のような方法が挙げられる。5 Cap

サイトの標識法として、酵母またはHela細胞のCap 結合蛋白を用いる方法(I. Edery et al., 'An Efficient Strategy To Isolate Full-Length cDNAs Based on an mRNA Cap Retention Procedure (CAPture)', MCB, 15, 3363-3371, 1995)、また5' Cap のない不完全cDNAをアルカリフォスファターゼによりリン酸を除去し、その後タバコモザイクウィルスの脱キャップ酵素を反応させ、完全長cDNAのみリン酸が露出することを利用した方法(K. Maruyama et al., 'Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides', Gene, 138, 171-174, 1995., S. Kato et al., 'Construction of a human full-length cDNA bank', Gene, 150, 243-250,

これらの従来法の完全長cDNA合成法の効率が十分でない理由として次の項目が 挙げられる。

- ①5 Cap サイトの認識が、アデノウィルスCap 結合蛋白やタバコモザイクウィルスの脱キャップ酵素の様に蛋白酵素の反応に依存している為、完全長cDNA(RNA)の選択の段階で高い効率が期待できない。
- ②逆転写酵素がcDNAの第1鎖を合成する際、5 Cap サイトまで合成鎖が伸長しない。
- ③第1鎖か合成された後の第2鎖合成のプライマー配列の付加、第2鎖の合成効率、2重鎖cDNAのクローニング効率及びクローニングのための宿主ベクター系の問題。

以上の様に多段階にわたるcDNA合成ライブラリー作成においては、①~③の各ステップがそれぞれ問題となる。

そこで本発明者は、

1995)、等々が挙げられる。

第1に、完全長cDNAの単離を目的とする従来のキャップ結合蛋白やタバコモザイクウィルスの脱キャップ酵素等の蛋白酵素反応より効率良く5' Cap サイトの標識が可能な新たな方法を提供すること、

第2に、この新たな5 Cap サイトの標識方法を用いた完全長cDNAライブラリーの作成方法を提供することを目的として、新たな完全長cDNAライブラリーの作成方法を提供を見出し、先に特許出願した〔特願平8-60459号〕。

この方法は、上記キャップ結合蛋白やタバコモザイクウィルスの脱キャップ酵素等の蛋白酵素反応より効率良く5 Cap サイトの標識ができ、その結果、完全長cDNAライブラリーの作成をより容易にするものであった。

ところが、本発明者がこの方法についてさらに検討した結果、ジオール構造を ジアルデヒド化する工程においてmRNAが切断されやすく、完全長cDNAの合成効率 を悪くしていることが判明した。

そこで、本発明の目的は、蛋白酵素反応より効率良く5 Cap サイトを標識する方法を利用する完全長cDNAライブラリーの作成方法であって、mRNAが切断されることによる完全長cDNAの合成効率の低下を回避できる、より高い効率で完全長cDNAを合成できる方法を提供することにある。

発明の開示

本発明は、mRNAの完全長に対応するcDNAのライブラリーを作成する方法であって、

mRNAを鋳型とし、プライマー (例えば、oligo dT等) より逆転写により RNA-DNA 複合体を形成する工程、

RNA-DNA 複合体を形成しているmRNAの5' Cap (7MeG ppp N)サイトに存在するジオール構造に、タッグになる分子を化学結合させる工程、及び

タッグ分子を結合したRNA-DNA 複合体の内、mRNAの完全長に対応するDNA を有する複合体を、タッグ分子の機能を利用して、分離する工程、

を含むことを特徴とする完全長cDNAライブラリーの作成方法に関する。

図面の簡単な説明

図1は、両端(5'Cap サイト、3'サイト)にジオール構造を有するmRNAの構造を示す。

図2は、mRNAの5 Cap サイトのジオール構造の酸化及びビオチンヒドラジドの付加反応を示すスキーム。

図3は、完全長cDNA合成法の各ステップ(前半)を示すスキーム。

図 4 は、完全長cDNA合成法の各ステップ(後半)を示すスキーム。

図5は、実施例2で得られた電気泳動後のオートラジオグラフを示す写真。

発明を実施するための形態

本発明の方法では、5' Cap サイトの認識を高め、完全長cDNA(RNA)の選択の段階の効率を高めるために、5' Cap サイトに特異的構造であるジオール構造を利用して5' Cap サイトの標識を化学合成法により行う(図1参照)。

即ち、本発明の方法では、mRNAを鋳型とし、oligo dTをプライマーとして逆転写によりRNA-DNA 複合体を形成し、RNA-DNA 複合体を形成しているmRNAの5' Cap (7MeG ppp N)サイトに存在するジオール構造に、タッグになる分子を化学結合させる。このタッグ分子は5' Cap サイトに化学的に結合しており、タッグ分子で標識されたmRNAを有するRNA-DNA 複合体から完全長cDNAライブラリーを作成する。

本発明の方法の特徴は、RNA-DNA 複合体を形成した後にmRNAをタッグ分子で標識することにある。RNA-DNA ハイブリッド構造は、mRNAをタッグ分子で標識するために必要なジオール構造のアルデヒド化の際に生じるmRNAの化学的切断を阻止でき、その結果、完全長cDNAの合成効率を高めることができる。

タック分子のmRNAの5 Cap サイトへの結合は、図2に示すように、例えば、5 Cap サイトのジオール構造を酸化剤、例えば、過ヨウ素酸ナトリウム(NaIO4)等で酸化開環してジアルデヒドとし、次いでヒドラジン末端を有するタック分子を前記ジアルデヒドと反応させることで行うことができる。また、本発明の方法においては、mRNAがRNA-DNA ハイブリッド構造により保護されていることから、ジオール構造の酸化開環を比較的強い酸化条件としてもmRNAの化学的酸化を伴うことなく行うことができるという利点がある。

上記ヒドラジン末端を有するタッグ分子としては、例えば、ヒドラジン末端を有するビオチン分子やアビジン分子を挙げることができる。また、タッグ分子として抗原や抗体等の反応特異性を有する分子を用いることもできる。タッグ分子として用いる特異標識物には特に制限はない。

第1のcDNA鎖の合成①から2本鎖完全長cDNAの合成⑦までの工程の一例 (タッグ分子: ビオチン) が図3~4に示されている。

①第1のcDNA鎖の合成(RNA-DNA 複合体の合成)

- (2)RNA-DNA 複合体のmRNAのジオール基のビオチン化
- ③リボヌクレアーゼ I (RNase I) 消化
- ④完全長cDNA複合体の捕獲(アビジンビーズ使用)
- (5)RNase H 消化 (アビジンビーズからの一本鎖cDNAの分離)
- ⑥ターミナル デオキシヌクレオチジル トランスフェラーゼによる G 末端の付加
 - ⑦オリゴCでプライマーした第2鎖(2本鎖完全長cDNA)の合成

本発明の方法では、mRNAを鋳型とし、プライマーを始点として逆転写により RNA-DNA 複合体を形成する。プライマーとしては、例えば、oligo dT等を用いる ことができる。また、oligo dT等のプライマーを用いた逆転写法によるRNA-DNA 複合体の形成は、常法により行うことができる。

つぎに、RNA-DNA 複合体にタッグ分子を結合して標識し、標識されたRNA-DNA 複合体の内、mRNAの完全長に対応するDNA を有する複合体を、タッグ分子の機能 を利用して、分離する。

具体的には、1本鎖RNA を切断するRNA 分解酵素でRNA-DNA 複合体を消化して、mRNAの完全長に対応しないDNA を有する複合体の1本鎖RNA 部を切断してこの複合体からタッグ分子を切除し、次いで、タッグ分子を有するmRNAの完全長に対応するDNA を有する複合体(5 Cap まで伸長した完全長cDNA)をタッグ分子の結合性を利用して分離する。

例えば、タッグ分子がビオチン分子である場合、RNA-DNA 複合体がタッグ分子として有するビオチン分子を、固相担体上に担持したアビジンと結合させて、mRNAの完全長に対応するDNA を有する複合体を分離することができる。また、タッグ分子がアビジン分子である場合、RNA-DNA 複合体がタッグ分子として有するアビジン分子を、固相担体上に担持したビオチンと結合させてmRNAの完全長に対応するDNA を有する複合体を分離することもできる。

即ち、本発明の1つの態様は、mRNAの完全長に対応するcDNAのライブラリーを 作成する方法であって、

mRNAを鋳型とし、oligo dT等のプライマーより逆転写によりRNA-DNA 複合体を 形成する工程、

RNA-DNA 複合体を形成しているmRNAの5 Cap (7MeG ppp N)サイトに存在するジオール構造に、ビオチン分子を結合させる工程、

ビオチン分子を結合したRNA-DNA 複合体を、1本鎖RNA を切断するRNA 分解酵素で消化して、mRNAの完全長に対応しないDNA を有する複合体の1本鎖RNA 部を切断することによりこの複合体からビオチン分子を切除する工程、及び

ビオチン分子が結合したmRNAの完全長に対応するDNA を有する複合体を、固相 担体上に担持したアビジンと結合させて分離する工程、

を含むことを特徴とする完全長cDNAライブラリーの作成方法である。

また、本発明の別の態様は、mRNAの完全長に対応するcDNAのライブラリーを作成する方法であって、

mRNAを鋳型とし、oligo dT等のプライマーより逆転写によりRNA-DNA 複合体を 形成する工程、

RNA-DNA 複合体を形成しているmRNAの5 Cap (7MeG ppp N)サイトに存在するジオール構造に、アビジン分子を結合させる工程、

アビジン分子を結合したRNA-DNA 複合体を、1本鎖RNA を切断するRNA 分解酵素で消化して、mRNAの完全長に対応しないDNA を有する複合体の1本鎖RNA 部を切断することによりこの複合体からアビジン分子を切除する工程、及び

アビジン分子が結合したmRNAの完全長に対応するDNA を有する複合体を、固相 担体上に担持したビオチンと結合させて分離する工程、

を含むことを特徴とする完全長cDNAライブラリーの作成方法である。

前記1本鎖RNA を切断するRNA 分解酵素としては、例えば、リボヌクレアーゼ I を挙げることができる。尚、RNA-DNA 複合体からmRNAの完全長に対応するDNA を有する複合体を選別する方法として、1本鎖RNA を切断するRNA 分解酵素を用 いる方法以外の方法を利用することもできる。複合体を選別する方法にも特に制 限はない。

さらに本発明の方法では、分離されたmRNAの完全長に対応するDNA を有する複合体から、cDNAを回収する。cDNAの回収は、例えば、分離されたmRNAの完全長に対応するDNA を有する複合体に、タバコモサイクウィルスアルカリホスファターゼを反応させることにより行うことができる。また、cDNAの回収は、分離された

mRNAの完全長に対応するDNA を有する複合体に、DNA-RNA ハイブリッドを切断するRNase を作用させることにより行うこともできる。DNA-RNA ハイブリッドを切断するRNase としては、例えば、RNase H を挙げることができる。

回収された第1のcDNA鎖を鋳型として、第2のcDNA鎖を合成し、得られた第2のcDNA鎖をクローニングすることにより、完全長cDNAライブラリーを得ることができる。第2のcDNA鎖の合成は、例えば、第1のcDNA鎖の3'端にRNA またはDNAのオリゴマーをライゲーションして得られたcDNA鎖を鋳型とし、かつライゲーションしたオリゴマーの相補鎖オリゴマーをプライマーとして行なうことができる。あるいは、第1のcDNA鎖の3'端にターミナルヌクレオチドトランスフェラーゼを用いてポリG、ポリC、ポリA、又はポリTを付加したcDNA鎖を鋳型とし、各々に相補的なオリゴC、オリゴG、オリゴT、又はオリゴAをプライマーとして、第2のcDNA鎖の合成を行うこともできる。

即ち、単離された完全長第1鎖cDNAより第2鎖を合成する為に、ターミナルデオキシヌクレオチジルトランスフェラーゼによるホモポリマー法(homopolymer法)やRNA リガーゼによる1本鎖プライマーを、第1鎖cDNA3'端または5'Capを除去されたmRNAの5'鎖に付加しポリメラーゼで伸長方法等を用いることができ、第2鎖を合成する方法も特に制限はない。

本発明によれば、mRNAの5' Cap サイトを化学的に修飾を加えることにより、効率良く完全長cDNAを選択できる。この利点は、修飾が5' Cap サイトを認識する為の修飾が酵素反応に全く依存せず、mRNAの5' Cap サイト構造に特徴的なdiol残基を利用した化学反応に依存する為、バックグラウンドが低くなおかつ非常に高い効率を得るものである。

さらに本発明の方法によれば、mRNAの5' Cap サイトの化学的修飾をRNA-DNA 複合体を形成した後に行うことで、化学的に不安定なmRNAの5' Cap サイトの化学的修飾の際の分解を防止して、完全長cDNAの合成効率の低下を回避でき、より高い効率で完全長cDNAを合成できる。

また、本発明の方法では、完全長cDNAの回収を特異的選択性の高い RNase ONE 処理ビオチン-アビジン反応等を利用した固相化系で行うことができるため、量産的ロボティックスによるライブラリー生産をも可能にする。

実施例

以下、本発明を実施例によりさらに説明する。

実施例1

本実施例は図3~4にアウトラインを示す工程からなる。本法は次の7つの工程よりなる。

- ①第1のcDNA鎖の合成 (RNA-DNA 複合体の合成)
- ②RNA-DNA 複合体のmRNAのジオール基のビオチン化
- ③リボヌクレアーゼ I (RNase I) 消化
- ④完全長cDNA複合体の捕獲(アビジンビーズ使用)
- ⑤RNase H 消化(アビジンビーズからの分離)
- ⑥ターミナル デオキシヌクレオチジル 転写酵素による G末端の付加
- ⑦オリゴCでプライマした第2鎖合成

RNA 調製

脳0.5~1gの組織片を10m1の懸濁液でホモジェナイズし、pII4.0 の 2M 酢酸ナトリウム1m1 と、同量のフェノール/クロロホルム(体積比5:1)混液を加え抽出した。抽出後水層に同量のイソプロパノールを加えると、RNA が水相から分離沈澱した。この試料を氷の上で1時間インキュベーションした後、15分間4000rpmで冷却遠心機にかけ、沈澱物を回収した。この検体を70%エタノールで洗い、8m1の水に溶解後2m1の5MNaC1、1%CTAB(cetyltrimethylammonium bromide)、4M尿素、50mMTrisを含むpH7.0の水溶液16m1を加えることでRNA を沈澱させ、ポリサッカライドを除いた(CTAB 沈澱)。続いて室温で4000rpm、15分間遠心機にかけ、RNA を4m1の7MグアニジンーC1に溶解した。そして2倍量のエタノールを加えた後、氷上で1時間インキュベーションし、15分間4000rpm 遠心機にかけ、生じた沈澱物を70%エタノールで洗いRNA を回収した、これを再度水に溶解し、RNAの純度を00比260/280(シ1.8) と230/260(⟨0.45)を読むことによって計測した。

<u>第1鎖cDNAの調製</u>(図2ステップ①)

15μg のmRNAを使ってSuperscript II (Gibco BRL) 3000unit により、最終容量165 μ1 の反応液中で、5-メチル-dCTP、dATP、dTTP、dGTP各々0.54mM、50mM

Tris-HC1 (pH8.3)、75mM KC1、3mM MgCl₂、10mM DTT、52ng/ μ 1 BSA、 RNase インヒビター 5 unit の条件下で逆転写反応を行った。Xho I の認識配列を含むオリゴヌクレオチド3

(N: どの核酸塩基でも可、M: G、A、Cのいづれか) $12.6\mu1$ をプライマーとして用いた。この反応を始める際、反応液の1/4 を採取し、それに $1.5\mu1$ の $[\alpha]$ 32P] -dGTP (3000Ci/mmol、 10μ Ci/ $\mu1$ 、Amersham) を加えるこことにより、第 1 鎖cDNAの合成効率を測定した。RI標識した反応液の $0.5\mu1$ を DE-81 ペーパー上にスポットし、0.5Mリン酸ナトリウム緩衝液(pH7.0)で3回洗った前後のRI活性を測定し、計算した。その後、RI標識した反応液と非標識の反応液を混合し、0.5M EDTA $8\mu1$ 、10% SDS $2\mu1$ 、プロテイナーゼ (Proteinase) 10%

RNA ジオールのビオチン化(図2ステップ②)

RNA のジオール部位(Cap 構造のある5 末端と、ボリA 鎖のある3 末端のリボースの双方に存在)にビオチンを結合させるために、2段階の反応を行った。それらは、ジオール基の酸化とそれに続くビオチンヒドラジトと酸化RNA 体のカップリング反応である。

まず、逆転写反応で得られたRNA-第1鎖cDNA複合体 15 μ g を、6.6mM 酢酸ナトリウム緩衝液(pll4.5)と、酸化剤として過ヨウ素酸ナトリウムを用いて $50\,\mu$ 1 の反応液中で処理する。この酸化反応は遮光条件の元、氷上で45分間行う。続いて、5M塩化ナトリウム $11\,\mu$ 1 、10%SDS $0.5\,\mu$ 1 、そして同量のイソプロパノールを加え、60分間氷上に放置した後、4 ℃で15分間15000rpm遠心し沈澱させる。沈澱物は70%エタノールで洗い、RNase フリー水 $50\,\mu$ 1 に再溶解させる。その試料に1M酢酸ナトリウム(pH6.1)5 μ 1、10%SDS 5 μ 1、10mMビオチンヒドラジド(Sigma 社) $150\,\mu$ 1を加え、室温(22-26 ℃)で終夜反応させる。最後に、5M NaCl 5 μ 1、1M酢酸ナトリウム(pH6.1) $75\,\mu$ 1、および2.5倍量のエタノールを加え、1時間の氷上冷却後、100において15分間遠心し、ビオチン化した

RNA-DNA 複合体を再沈澱させる。沈澱物は70%エタノールで1回、更に80%エタノールで1回洗い、RNase フリー水 70μ 1 に溶解する。

RNase Iによる完全長cDNAの選択(図2ステップ③)

1 本鎖RNA を消化するRNase I で処理することにより、逆転写反応時に完全な cDNAの伸長が得られなかったmRNA、およびmRNAの3 末端に標識されたビオチン 残基を取り除いた。具体的には、ビオチン化反応で得られた試料70μ1 に10× RNase I バッファー (100mM Tris-HCl (pH7.5)、50mM EDTA 、2M NaOAc)10μ l 、RNase I (RNase One TM: Promega社) 200unit を加えて、37℃で15分間1 本鎖 RNA を消化した。

完全長cDNAの採取 (図2 ステップ④⑤)

アビジンコートしたマグネティックビーズにcDNAが非特異的吸着するのを防止 するため、100 μg の酵母tRNA (DNase I 処理したもの)を5mg (500 μl) の マグネティックビーズ (magnetic porous glass (MPG) particles coated with streptavidin (CPG, NJ)) に加え、1 時間氷上に放置した後、50mM EDTA、 2MNaClの溶液にて洗った。このヒーズを50mM EDTA 、2M NaCl の溶液500 μl 中 に懸濁し、RNase I 処理を施されたcDNAを加えた。室温にて30分間撹拌すること で、マグネティックビーズと完全長cDNAを結合させた。完全長cDNAを捕獲したビー ズを50mM EDTA 、2M NaCl の溶液で4 回、0.4 % SDS、50 μg/μl 酵母tRNAで1 回、10mM NaCl 、0.2mM EDTA、10mM Tris-HCl (pH7.5)、20% グリセロールで1 回、50 μg/μ1 酵母tRNA水溶液で1 回、RNase H バッファー(20mM Tris-HCl(pH7.5)、10mM MgCl₂、 20mM KCl 、0.1mM EDTA、0.1mM DTT)で1 回 洗浄した後、RNase H バッファー 100μl に懸濁し、RNase H 3 unitを加え、37℃ 下30分間加温した。その後、10% SDS 1 μ1 、0.5M EDTA 2 μ1 を加えて、10分間、 65℃に曝し、その上清を回収した。このようにして回収された1 本鎖完全長cDNA はフェノール/クロロホルムで抽出され、スピードバッグにて液量を100 μ1 以 下に减じてからG25/G100 Sephadex クロマトグラフィーに付した。RI活性を持っ た分画はシリコン処理したマイクロチューブに収集するとともに、グリコーゲン 2 μg を加え、エタノール沈澱にて得られた沈澱物を30μ1 の超純水に溶解した。

1本鎖cDNAへのオリゴdG付加(図2ステップ⑥)

上記により回収された 1 本鎖cDNA30 μ1 は、最終容量50 μ1 の反応液中で、200 mMカコジル酸ナトリウム (pH6.9)、1mM MgCl₂、1mM CoCl₂、1mM 2-メルカプトエタノール、100 μM dGTPの条件のもと、ターミナルデオキシヌクレオチジルトランスフェラーゼ (TaKaRa社) 32 unit を用いて37℃で30分間のオリゴdG付加反応に付された。反応終了時にEDTAを50mMとなるように加え、一連のフェノールノクロロホルムによる抽出、エタノール沈澱を経て、31 μ1 の超純水に溶解した。第2鎖cDNA合成 (図2 ステップ(7))

第1鎖cDNAを鋳型にした第2鎖cDNAの合成は以下のように行った。最終容量60 μ 1 の反応系で、第2鎖低バッファー(200mM Tris-HC1(pH8.75)、100mM KC1、100mM (NH₄)₂SO₄、20mM MgSO₄、1% Triton X-100 、1mg/ μ 1BSA) 3μ 、第2鎖高バッファー(200mM Tris-HC1(pH9.2)、600mM KC1 、20mM MgCl₂) 3μ 1 、dCTP、dATP、dTTP、dGTP各々0.25mM、 β -NADH 6 μ 1 、オリゴdG付加された第1 鎖cDNA31 μ 1 、第2鎖プライマー・アダプター:

以上の方法により得られた二本鎖完全長cDNAから、 λ ZPAII (STRATAGENE)を用いてライブラリーを得た。クローニングの為のpackaging lysateは GIGAPAK Glod (STRATAGENE)を用いて常法により行った。その結果、 15μ g のmRNAより 2.5×10^7 ケの組み換え体ファージを得た。ランダムにピックアップ後、常法により、in vivo excison によりプラスミドクローンに変換し、ライブラリーの挿入cDNAの長さをアガロースゲル電気泳動で測定し、集計した。その結果を表1に示す。

表1の結果及び下記の表2の結果(特願平8-60459号の方法(前法)により得たライブラリーの評価結果、後述の比較例1)とを比較すると、本発明の

方法により得られたcDNAの平均鎖長が前法と比較して有意に増加しているばかりでなく、フラグメントサイズが5000を超える長鎖のクローン数が2倍以上に増加している。このことは、本発明の方法が、長鎖かつ完全長のcDNAを得るという観点から、前法より遙に優れていることを示すものである。

表1 挿入平均長:1810bp

フラグメントサイズ	クローン数	パーセント
挿000000000000000000000000000000000000	7 0 8 9 2 8 9 2 3 2 1 5 2 1 1 0 4 1 3 7 3 4 1 8 1 8 6 6	0. 8 9. 7 2 3. 6 1 1. 3 1. 3 1. 3 0. 6 0. 6 0. 6
台 計	1 0 4 4	100.0

表 2 挿入平均長: 1602bp

フラグメントサイズ	クローン数。	パーセント
挿の15000000000000000000000000000000000000	9 3 7 2 9 5 2 4 0 1 4 1 8 1 4 5 2 3 2 5 1 1 5 2 2 2	0. 8 0. 8 0. 8 1. 0 1. 0
合 計	987	100.0

比較例1

実施例1と同様にして得たmRNAを用い、特願平8-60459号の方法(前法)により得た二本鎖完全長cDNAのライブラリーについて、実施例1と同様の方法で挿入cDNAの長さをアガロースゲル電気泳動で測定し、集計した。その結果を上記表2に示す。尚、二本鎖完全長cDNAは以下の方法により調製した。

mRNA-cDNA 複合体の合成

 $10\,\mu$ g のmRNAを使ってSuperscript II (Gibco BRL)の2000unitにより、 $0.5\,\text{mM}$ 5-methyl-dCTP 、 $1\,\text{mM}$ dATP、 $1\,\text{mM}$ dTTP、 $1\,\text{mM}$ dGTPの存在化で、 $100\,\mu$ l バッファー ($50\,\text{mM}$ Tris-HCl, $75\,\text{mM}$ KCl, $3\,\text{mM}$ MgCl₂、 $10\,\text{mM}$ DTT) の中で逆転写反応を行なった。プライマーとして、 $5\,\mu$ g のオリゴヌクレオチド

上記反応後、即座にサンプルを氷上に移した。次いで4 μ 100.5M EDTA 、8 μ 105M NaCl 及び163 μ 1 $0H_2$ 0(最終容量が200 μ 1になるように)をサンプルに添加した。攪拌及び軽く遠心した後、混合物を1.5ml<math>0

移し、 $100~\mu 1$ のフェノール/トリス及び $100~\mu 1$ のクロロホルムを添加した。 攪拌し、2分間氷上で冷却した後、15,000rpm で3 分間遠心分離した。水相を除 去した後、新たなエッペンドルフ管に移した。次いで、 $100~\mu 1$ のクロロホルム を添加し、攪拌し、2分間氷上で冷却した後、15,000rpm で3 分間遠心分離した。 水相を除去した後、新たなエッペンドルフ管に移した。 $500~\mu 1$ の100%エタノー ルを添加し、攪拌し、少なくとも10分間氷上で冷却した。次いで少なくとも10分間16000rpmで遠心分離した。ついで、70% 及び80% エタノールで2 回洗浄した。 始どの放射性メクレオチドが除去されたことを、上澄液のガイガーカウンターに よる測定で確認した。得られたペレットを $47~\mu 1$ の水に懸濁した。

この反応を始める際、 $20\,\mu 1$ の反応液を採取し、それに $1\,\mu 1$ の[α - 32 P] $-dGTP(3000Ci/mmol、<math>10\,\mu Ci/\mu 1$ 、Amersham) を加えることにより、第 1 の cDNA 鎖の合成効率を測定した。RI標識した $20\,\mu 1$ の反応液中 $0.5\,\mu 1$ をDE-81 ペーパー上にスポットし、pH7.0 の0.5Mーリン酸ナトリウムで 3 回洗った前後の RI活性を測定し計算した。

RNA のジオール部位へのビオチンの結合

mRNA-cDNA 複合体のmRNAのジオール部位(1方はCAP 、他方はRNA の3'端)にビオチンを結合させる為に、2段階の反応を行った。即ち、ジオール基の酸化とそれに続くビオチンヒドラジド(Sigma社)と酸化RNA 体のカップリング反応である。

上記工程で得られた $47\mu1$ の水に懸濁したmRNA-cDNA 複合体(1.5m1 のエッペンドルフ管中)に、pH4.5 の66mM酢酸ナトリウム緩衝液3.3 $\mu1$ と酸化剤としての0.2M 過ヨウ素酸ナトリウム1.290 $\mu1$ を添加し、攪拌後、遮光条件の下、水の上で45分間酸化反応を行った。

続いて、 $11\mu1$ の5M塩化ナトリウム、0.5 $\mu1$ の10%SDS 、6 $\mu1$ のイソプロパノールを加え、氷上で30分間インキュベーションした後、 $10\sim20$ 分間遠心分離した。この間に10mMビオチンヒドラジン(10ng-1mm)水溶液(10mg/1mm) を調製した。

遠心分離で生成した沈澱物を80% エタノール200 μ 1 で洗い、水50 μ 1 に再溶解させた。その試料に μ 1 の1M酢酸ナトリウム5 μ 1 、10%SDS 5 μ 1 、更に

10mMビオチンヒドラジン水溶液150 μ1 を加えた。試料は氷上で1時間インキュベーションし、20分間遠心し、70% エタノールで2回洗った。最後に適当量の水に再懸濁し、次の工程の材料として用いた。

完全長cDNAのRNase 保護

どのような塩基の箇所でも 1 本鎖RNA を消化することが可能なRNase ONET™ (Promega社) で処理することにより、逆転写によって完全にcDNAが伸長されなかったmRNA、およびmRNAの3 末端に標識されたビオチン残基を取り除いた。具体的にはmRNA-cDNA 複合体の合成の際、RI標識された反応液20 μ 1 と非標識の80 μ 1 分を一緒にプールした後、40 μ 1 のRNase I バッファー、355 μ 1 の水、そして50unitのRNase I を使って試料を30分間30℃でインキュベーションした。

完全長cDNAの採取

アビジンコートしたマグネティックビーズへの非特異的吸着を防止する為、 2.5mg の酵母tRNA(DNase Iで前処理した)を加え、500 μ 1 に調製し1時間氷上でインキュベーションした。RNase I で処理したcDNAを上記の前処理されたビーズに加え、pH8.0 の0.25M-EDTA、0.5M-NaC1 を含むバッファー中、磁気を帯びたビーズが沈澱しないよう、15分間室温で時折振り混ぜながらインキュベーションした。その後ビーズを pH8.0 0.5M-EDTAで4回、0.4 %SDS で1回、その後、ヌクレアーゼフリーの水で3回洗浄した。試料を100 μ 1 のRNaseHバッファーの中で37℃で30分間2 unitのRNaseHで処理後、0.1%のSDS と共にビーズをインキュベーションすることによりビーズから完全長cDNAを分離した。不完全なRNaseH処理の為ビーズから離れないcDNAに関しては、更にpH9.0 、65℃で10分間 Tris-Formate バッファーの中でアルカリ加水分解を行うことにより回収できる。回収された完全長1本鎖cDNAはフェノール/クロロホルムで一度抽出され、 C25/G50 sephadexクロマトグラフィーに付された。RI活性を持ったフラクションは表面をシリコン処理したエッペンドルフチューブに集めて、試料を真空で引くことによって10 μ 1 にまで減じた。

1本鎖cDNAのoligo dG テイリング

上記により回収された1本鎖cDNAに oligo dG を付加する為、pH6.9 の200mM-NaCacodylate、1mM MgCl₂、1mM CoCl₂、1mM 2-メルカプトエタノール、

100 μ MdGTP の50 μ 1 バッファー下で37℃30分間32 μ 1 ボッファー下で37℃30分間32 μ 1 デオキショクレオチジル トランスフェラーゼ(Takara 社) を用い反応させた。EDTAを最終濃度が50 μ 1 になるように加え、フェノール/クロロホルムで抽出後、G25/G100クロマトグラフィーに付された。回収されたdGティリング cDNA は真空吸引によってサンプルチューブ内で30 μ 1 まで減じた。

第2鎖cDNA合成

実施例2

本実施例では、RNA-DNA ハイブリッド構造が、mRNAをタッグ分子で標識するために必要なジオール構造のアルデヒド化の際に生じるmRNAの化学的切断を阻止でき、その結果、完全長cDNAの合成効率を高めることができることを示すため、以下のレーン $1\sim4$ の4 種の異なる工程を経て得られたRNA-DNA 複合体を変性アガロース泳動後のオートラジオグラフの結果を図 5 に示す(尚、サイズマーカーは λ llind IIIである)。

図5に示す結果において、レーン 1と2 とを比較すると、レーン 1の方がレーン 2より長鎖のものが多く、予めcDNA合成により形成したRNA-DNA ハイブリッド構造によってmRNAの化学的切断が阻止されていることが分かる。さらに、レーン 3と4 とを比較すると、レーン 3の方がレーン 4より長鎖のものが多く、予め cDNA合成により形成したRNA-DNA ハイブリッド構造によってmRNAの化学的切断が阻止されていることが分かる。

[レーン 1] $10 \,\mu$ gmRNA 一①cDNA合成([$\alpha - 32\,P$] dGTPで標識)一②ビオチン化一③アビジンビーズで完全長のもののみ捕捉一変性アガロース泳動

〔レーン 2 〕 10 μ gmRNA →②ビオチン化→①cDNA合成([α-32P] dGTPで標

識)→③アビジンビーズで完全長のもののみ捕捉→変性アガロース泳動。

〔レーン 3 〕 5 μ gmRNA \rightarrow (①cDNA合成([α - 3 2 P] dGTPで標識) \rightarrow ②ビオチン化一変性アガロース泳動

[ν-ν4] 5 μ gmRNA →②ビオチン化→①cDNA合成([α-3²P] dGTPで標識)-変性アガロース泳動

具体的な方法及び条件を以下に示す。

(レーン1)

①第1鎖cDNA合成: [α-32P] dGTPで標識

[1]mRNA

 $10 \mu g$

プライマー

 $8.4 \mu g$

DW [1] と[2] を加えて最終100 μ1 となる量

[2]5×第一鎖バッファー (GIBCO BRL) 18.18 µ1

0.1N DTT

9.09 μ 1

10mM dNTP mix*

5. 91 μ 1

BSA $(2.5 \mu g/\mu g)$

 $2.27 \mu 1$

[α^{32} P] dGTP (10μ Ci/ μ 1)

 $1.0 \mu 1$

RNase インヒビター (25000U/m1)

0.91 μ 1

Superscript TMII RNase II-逆転写酵素

 $(200U/\mu 1)$ (GIBCO BRL)

10.0 μ 1

計

 $100 \mu 1$

*5-methyl-dCTP、dATP、dTTP、dGTP、各々10mMから成る。

[1] を65℃にて10分間、熱変性後、直ちに氷上に移動させた。

次いで、[1] と[2] をアニーリング温度35℃で1 分間インキュベートしてから、 混合する。反応後フェノール/クロロホルムによる抽出、エタノール沈澱を経て、 $47 \mu 1$ RNase フリーの水に溶解した。

- ② RNAジオールのビオチン化
- (a) ジオールの酸化

(1) 上記で得られたサンプル 47 μ1

1M NaOAc (pH4.5)

3.3 μ 1

0. 2M Na IO.

1. $29 \mu 1$

暗所、氷上にて45分間放置する。

(2)5M NaCl

 $11 \mu 1$

10%SDS

 $0.5 \mu 1$

イソプロパノール

61 µ1

を加え、30分間4 $^{\circ}$ Cにおいてインキュベートした後、 15000rpm 、15分間 (4 $^{\circ}$ C) の遠心にて得られた沈澱を70% エタノールにて 2 回リンスし、50 μ 1 RNase フリーの水に溶解した。

(b) ビオチン化

(1)1M NaOAc (pH6, 1)

 $5 \mu 1$

10%SDS

 $5 \mu 1$

 $150 \,\mu\,1$

10mM ビオチン ヒドラジド (Sigma)

を加え、室温にて終夜反応させた。

(2)1M NaOAc (pH6.1)

 $75 \mu 1$

5M NaCl

 $5\mu 1$

エタノール

 $750 \mu 1$

を加え、氷上にて1 時間放置後、15000rpm、15分間 (4 ℃) 遠心し、沈澱を70% エタノールにて2回リンスした。最終的に70 µ 1 RNase フリーの水に溶解した。

- ③ストレプトアビジンビーズを用いた完全長cDNAの捕獲
- (a) 完全長cDNAの選択

上記で得られたサンプル

 $70 \mu 1$

10×RNase I バッファー

 $10 \mu 1$

RNase One $^{TM}(Promega)$ (100/ μ 1) 20 μ 1

計

100 μ 1

37℃, 15 分間インキュベーションした。

- (b) ストレプトアビジンビーズによる完全長cDNAの捕獲
- (1) ストレプトアビジンビーズ (MPG)とビオチン化RNA-DNA の結合

ストレプトアビジン被覆磁性多孔質ガラス(Magnetic porous glass (MPG))

(CPG, NJ) (1mg/m1)

 $500 \mu 1$

ビオチン化RNA-第1鎖cDNA

 $100 \mu 1$

室温で30分間撹拌した。

- (2)MPGの洗浄
- [1]50mM EDTA、2M NaCl の溶液で4回
- [2]0.4% SDS、50 µg/µ1 酵母tRNAの溶液で1 回
- [3]10mM NaCl. O. 2mM EDTA, 10mM Tris-HCl(pH7.5),

20% グリセロールで1回

- [4]50 μg/μ1 酵母tRNA水溶液で1 回
- [5] RNase H バッファー (20mM Tris-HCl(pH7.5)、10mM MgCl₂、20mM KCl、0.1mM EDTA、0.1mM DTT) で1 回
- (3)RNase IIによる完全長cDNAの回収
- [1] RNase H バッファー

 $100 \mu 1$

RNase H

3unit

を洗浄したMPG に加え、37℃下30分間加温した。

[2]10% SDS

 $1 \mu 1$

0.5M EDTA

2 11 1

を加え、10分間、65℃し、上清を回収した。

(c) 上清をフェノール/クロロホルムによる抽出、エタノール沈澱にて精製した。

 $[\nu-\nu2]$

① RNAジオールのビオチン化

(a) ジオールの酸化

(1) mRNA (10 μ g)

 $47 \mu 1$

1M NaOAc (pH4.5)

3.3 μ 1

0. 2M NaIO₄

 $1.29 \mu 1$

暗所、氷上にて45分間放置する。

(2)5M NaCl

 $11 \mu 1$

10%SDS

 $0.5 \mu 1$

イソプロパノール

61 µ1

を加え、30分間4 $^{\circ}$ Cにおいてインキュベートした後、15000 $^{\circ}$ pm、15分間 (4 $^{\circ}$ C) の遠心にて得られた沈澱を70% エタノールにて $^{\circ}$ 2 回リンスし、 $^{\circ}$ 50 $^{\circ}$ 4 RNase フリーの水に溶解した。

(b) ビオチン化

(1)1M NaOAc (pH6.1)

 $5\mu 1$

10%SDS

 $5\mu 1$

10mM ビオチン ヒドラジド (Sigma)

 $150 \mu 1$

を加え、室温にて終夜反応させる。

(2)1M NaOAc (pH6.1)

 $75 \mu 1$

5M NaCl

 $5\mu 1$

エタノール

 $750 \,\mu\,1$

を加え、氷上にて1 時間放置後、15000rpm、15分間 (4 ℃) 遠心し、沈澱を70% エタノールにて2回リンスした。最終的にRNase フリーの水に溶解した。

②<u>第1鎖cDNA合成:[α- 32 P</u>] dGTPで標識

[1] ビオチン化mRNA

 $5 \mu g$

プライマー

 $8.4 \mu g$

DW [1] と[2] を加えて最終100 µ1 となる量

[2]5×第一鎖バッファー (GIBCO BRL) 18.18 μ1

PCT/JP97/03992

WO 98/20122

0. 1M DTT 9. 09 μ 1

10mM dNTP mix* 5. 91 μ 1

BSA $(2.5 \mu g/\mu g)$ 2. 27 μ 1

 $[\alpha - {}^{32}P] dGTP (10 \mu Ci / \mu 1)$ 1.0 $\mu 1$

RNase インヒビター (25000U/m1) 0.91 μ1

Superscript TMII RNase II-逆転写酵素

 $(200U/\mu 1)$ (GIBCO BRL).

10.0 μ 1

計

 $100 \mu 1$

*5-methy1-dCTP、dATP、dTTP、dGTP、各々10mMから成る。

[1] を65℃にて10分間、熱変性後、直ちに氷上に移動させた。

次いで、[1] と[2] をアニーリング温度35 $\mathbb C$ で1 分間インキュベートしてから、混合した。

③ストレプトアビジンビーズを用いた完全長cDNAの捕獲

(a) 完全長cDNAの選択

上記で得られたサンプル 100 μ1

 $10 \times \text{RNase I}$ / $10 \times \text{RNase I}$ / $10 \times \text{RNase I}$ / $10 \times \text{RNase I}$

RNase One TM (Promega) $(10U/\mu 1)$ $5\mu 1$

DW 345 μ 1

計

 $500 \mu 1$

30℃,30 分間インキュベーションした。

- (h) ストレプトアビジンビーズによる完全長cDNAの捕獲
- (1) ストレプトアビジンビーズ (MPG)とビオチン化RNA-DNA の結合

ストレプトアビジン被覆磁性多孔質ガラス(Magnetic porous glass (MPG))

(CPG, NJ) (1mg/m1)

 $500 \mu 1$

上記で得られたサンプル

 $500 \mu 1$

室温で30分間撹拌した。

- (2)MPGの洗浄
- [1]50mM EDTA、2M NaCl の溶液で4回
- [2]0.4% SDS、50 µg/µ1 酵母tRNAの溶液で1 回

[3]10mM NaCl, 0.2mM EDTA, 10mM Tris-HCl(pH7.5),

20% グリセロールで1回

[4]50 μg/μ1 酵母tRNA水溶液で1 回

[5] RNase H バッファー (20mM Tris-HCl(pH7.5)、10mM MgCl₂、20mM KCl、0.1mM EDTA、0.1mM DTT) で1 回

(3) RNase Hによる完全長cDNAの回収

[1]RNase H バッファー

 $100 \,\mu \,1$

RNase H

3unit

を洗浄したMPG に加え、37℃下30分間加温した。

[2]10% SDS

 $1 \mu 1$

0.5M EDTA

 $2\mu 1$

を加え、10分間、65℃し、上清を回収した。

(c) 上清をフェノール/クロロホルムによる抽出、エタノール沈澱にて精製した。

 $(\nu-\nu3)$

①<u>第1鎖cDNA合成:[α-32P] dGTPで標識</u>

[1] mRNA

 $5 \mu g$

プライマー

 $8.4 \mu g$

DW [1] と[2] を加えて最終100 μ1 となる量

[2]5×第一鎖バッファー (GIBCO BRL) 18.18 μ1

0. 1M DTT

9.09 μ 1

10mM dNTP mix*

5. 91 μ 1

BSA $(2.5 \mu g/\mu g)$

 $2.27 \mu 1$

[α -32P] dGTP (10 μ Ci/ μ 1)

1.0 μ 1

RNase インヒビター (25000U/m1)

0.91 μ 1

Superscript TMII RNase II-逆転写酵素

 $(200U/\mu 1)$ (GIBCO BRL)

10.0 μ 1

計

 $100 \,\mu\,1$

*5-methyl-dCTP、dATP、dTTP、dGTP、各々10mMから成る。

[1] を65℃にて10分間、熱変性後、直ちに氷上に移動させた。

次いで、[1] と[2] をアニーリング温度35℃で1 分間インキュベートしてから、 混合した。反応後フェノール/クロロホルムによる抽出、エタノール沈澱を経て、 47 µ 1RNase フリーの水に溶解した。

②RNA ジオールのビオチン化

(a) ジオールの酸化

(1) 上記で得られたサンプル 47 μ1

1N NaOAc (pH4.5)

3.3 μ 1

0.2M NaIO4

1. $29 \mu 1$

暗所、氷上にて45分間放置する。

(2)5M NaC1

 $11 \mu 1$

10%SDS

 $0.5 \mu 1$

イソプロパノール

 $61 \mu 1$

を加え、30分間4 ℃においてインキュベートした後、 15000rpm 、15分間 (4 ℃) の遠心にて得られた沈澱を70% エタノールにて 2 回リンスし、50 µ1 RNase フリーの水に溶解した。

(b) ビオチン化

(1)1M NaOAc (pH6. 1)

 $5\mu 1$

10%SDS

 $5\mu 1$

10mM ビオチン ヒドラジド (Sigma) 150 μ1

を加え、室温にて終夜反応させる。

(2)1M NaOAc (pH6.1)

 $75 \mu 1$

5M NaCl

 $5\mu 1$

エタノール

 $750 \mu 1$

を加え、氷上にて1 時間放置後、15000rpm、15分間 (4 °C) 遠心し、沈澱を70% エタノールにて 2 回リンスした。最終的に70 μ1 RNase フリーの水に溶解した。

③ストレプトアビジンビーズを用いた完全長cDNAの捕獲

(a) 完全長cDNAの選択

上記で得られたサンプル

 $70 \mu 1$

10×RNase I バッファー

 $10 \mu 1$

RNase One TM (Promega) $(10U/\mu 1)$ $20 \mu 1$

計

 $100 \mu 1$

37℃, 15 分間インキュベーションした。

- (b) ストレプトアビジンビーズによる完全長cDNAの捕獲
- (1) ストレプトアビジンビーズ (MPG)とビオチン化RNA-DNA の結合

ストレプトアビジン被覆磁性多孔質ガラス(Magnetic porous glass (MPG))

(CPG, NJ) (1 mg/m1)

 $500 \mu 1$

ビオチン化RNA-第1鎖cDNA

 $100 \mu 1$

室温で30分間撹拌した。

- (2)MPGの洗浄
- [1]50mM EDTA、2M NaCl の溶液で4回
- [2]0.4% SDS、50 µg/µl 酵母tRNAの溶液で1回
- [3]10mM NaCl, 0.2mM EDTA, 10mM Tris-HCl(pH7.5),

20% グリセロールで1 回

- [4]50 μg/μ1 酵母tRNA水溶液で1 回
- [5] RNase H バッファー (20mM Tris-HCl(pH7.5)、10mM MgCl₂、20mM KCl、0.1mM EDTA、0.1mM DTT) で1 回
- (3)RNase Hによる完全長cDNAの回収

[1] RNase H バッファー

100 μ 1

RNase II

3unit

を冼浄したMPG に加え、37℃下30分間加温した。

[2]10% SDS

 $1 \mu 1$

O. 5M EDTA

 $2\mu 1$

を加え、10分間、65℃し、上清を回収した。

(c) 上清をフェノール/クロロホルムによる抽出、エタノール沈澱にて精製した。

 $(\nu - \nu 4)$

①RNA ジオールのビオチン化

(a) ジオールの酸化

(1)mRNA (5 μ g)

 $47 \mu 1$

1M NaOAc (pH4.5)

3.3 μ 1

0.2M NaIO.

1. 29 μ 1

暗所、氷上にて45分間放置する。

(2)5N NaCl

 $11 \mu 1$

10%SDS

 $0.5 \mu 1$

イソプロパノール

 $61 \mu 1$

を加え、30分間4 $^{\circ}$ においてインキュベートした後、15000 $^{\circ}$ rpm、15分間(4 $^{\circ}$ C)の遠心にて得られた沈澱を70% エタノールにて 2 回リンスし、50 $^{\mu}$ 1 RNase フリーの水に溶解した。

(b) ビオチン化

[1]1M NaOAc (pH6.1)

 $5\mu 1$

10%SDS

 $5\mu 1$

10mM ビオチン ヒドラジド (Sigma) 150 μ1

を加え、室温にて終夜反応させる。

[2]1M NaOAc (pll6.1)

 $75\,\mu\,1$

5M NaCl

 $5 \mu 1$

エタノール

 $750 \mu 1$

を加え、氷上にて1 時間放置後、15000rpm、15分間 (4 ℃) 遠心し、沈澱を70% エタノールにて 2 回リンスした。最終的にRNase フリーの水に溶解した。

②第1鎖cDNA合成: [α-32P] dGTPで標識

[1] ビオチン化mRNA

5 μg

プライマー

 $8.4 \mu g$

DW [1] と[2] を加えて最終100 μ1 となる量

[2]5×第一鎖バッファー (GIBCO BRL) 18.18 μ1

O. 1M DTT

9.09 μ 1

10mM dNTP mix*

5. 91 *μ* 1

BSA $(2.5 \mu g/\mu g)$

 $2.27 \mu 1$

[α -32P] dGTP ($10 \mu \text{Ci}/\mu 1$)

1. $0 \mu 1$

RNase インヒビター (25000U/ml)

0. $91 \mu 1$

Superscript TMII RNase H-逆転写酵素

 $(200U/\mu 1)$ (GIBCO BRL)

10.0 μ 1

計

 $100 \mu 1$

*5-methyl-dCTP、dATP、dTTP、dCTP、各々10mMから成る。

[1] を65℃にて10分間、熱変性後、直ちに氷上に移動させた。

次いで、[1] と[2] をアニーリング温度35℃で1 分間インキュベートしてから、 混合した。

③ストレプトアビジンビーズを用いた完全長cDNAの捕獲

(a) 完全長cDNAの選択

上記で得られたサンプル

 $100 \mu 1$

10×RNase I バッファー

 $50 \mu 1$

RNase One $^{\text{TM}}$ (Promega) (10U/ μ 1) 5 μ 1

DW

 $345 \mu 1$

計

 $500 \,\mu\,1$

30℃,30 分間インキュベーションした。

- (b) ストレプトアビジンビーズによる完全長cDNAの捕獲
- (1) ストレプトアビジンビーズ (MPG)とビオチン化RNA-DNA の結合 ストレプトアビジン被覆磁性多孔質ガラス(Magnetic porous glass (MPG))

(CPG, NJ) (1mg/m1)

 $500 \mu 1$

上記で得られたサンプル

 $500 \mu 1$

室温で30分間撹拌した。

- (2)MPGの洗浄
- [1]50mM EDTA、2M NaCl の溶液で4 回
- [2]0.4% SDS、50 µg/µ1 酵母tRNAの溶液で1 回
 - [3]10mM NaCl, 0.2mM EDTA, 10mM Tris-HCl(pH7.5),

20% グリセロールで1回

[4]50 µg/µ1 酵母tRNA水溶液で1 回

[5] RNase H $\mbox{\em MyCl}_{\mbox{\em z}}$ (20mM Tris-HCl(pH7.5), 10mM MgCl $_{\mbox{\em z}}$,

20mM KC1、0.1mM EDTA、0.1mM DTT) で1 回

(3)RNase IIによる完全長cDNAの回収

[1]RNase H バッファー

 $100 \mu 1$

RNase H

3unit

を洗浄したMPG に加え、37℃下30分間加温した。

[2]10% SDS

 $1 \mu 1$

0.5M EDTA

 $2 \mu 1$

を加え、10分間、65℃し、上清を回収。

(c) 上清をフェノール/クロロホルムによる抽出、エタノール沈澱にて精製した。

請求の範囲

1. mRNAの完全長に対応するcDNAのライブラリーを作成する方法であって、mRNAを鋳型とし、プライマーより逆転写によりRNA-DNA 複合体を形成する工程、RNA-DNA 複合体を形成しているmRNAの5' Cap (7MeG ppp N)サイトに存在するジオール構造に、タッグになる分子を化学結合させる工程、及び

タッグ分子を結合したRNA-DNA 複合体の内、mRNAの完全長に対応するDNA を有するRNA-DNA 複合体を、タッグ分子の機能を利用して分離する工程、

を含むことを特徴とする完全長cDNAライブラリーの作成方法。

- 2. プライマーがoligo dTである請求項1に記載の方法。
- 3. mRNAの5' Cap サイトに存在するジオール構造を過ョウ素酸ナトリウムで酸化開環してジアルデヒドとし、次いでヒドラジン末端を有するタッグ分子を前記ジアルデヒドと反応させることでタッグ分子を結合させたmRNAを調製する請求項1または2に記載の方法。
- 4. ヒドラジン末端を有するタッグ分子が、ヒドラジン末端を有するビオチン 分子(ビオチンヒドラザイド)またはヒドラジン末端を有するアビジン分子(ア ビジンヒドラザイド)である請求項3記載の方法。
- 5. 1本鎖RNA を切断するRNA 分解酵素でタッグ分子を結合したRNA-DNA 複合体を消化して、mRNAの完全長に対応しないDNA を有する複合体の1本鎖RNA 部を切断してこの複合体からタッグ分子を切除し、次いで、タッグ分子を有するmRNAの完全長に対応するDNA を有する複合体を分離する請求項1記載の方法。
- 6. タッグ分子がmRNAの5' Cap サイトに存在するジオール構造と結合可能な官能基を有するビオチン分子であり、固相担体上に担持したアビジンと、RNA-DNA複合体がタッグ分子として有するビオチン分子との結合性を利用して、mRNAの完全長に対応するDNAを有する複合体を分離する請求項1または2に記載の方法。
- 7. タッグ分子がmRNAの5' Cap サイトに存在するジオール構造と結合可能な官能基を有するアビジン分子であり、固相担体上に担持したビオチンと、RNA-DNA複合体がタッグ分子として有するアビジン分子との結合性を利用して、mRNAの完全長に対応するDNAを有する複合体を分離する請求項1または2に記載の方法。
 - 8. mRNAの完全長に対応するcDNAのライブラリーを作成する方法であって、

mRNAを鋳型とし、プライマーより逆転写によりRNA-DNA 複合体を形成する工程、RNA-DNA 複合体を形成しているmRNAの5 Cap (7MeG ppp N)サイトに存在するジオール構造に、ビオチン分子を結合させる工程、

ビオチン分子を結合したRNA-DNA 複合体を、1本鎖RNA を切断するRNA 分解酵素で消化して、mRNAの完全長に対応しないDNA を有する複合体の1本鎖RNA 部を切断することによりこの複合体からビオチン分子を切除する工程、及び

ビオチン分子が結合したmRNAの完全長に対応するDNA を有する複合体を、固相 担体上に担持したアビジンと結合させて分離する工程、

を含むことを特徴とする完全長cDNAライブラリーの作成方法。

9. mRNAの完全長に対応するcDNAのライブラリーを作成する方法であって、mRNAを鋳型とし、プライマーより逆転写によりRNA-DNA 複合体を形成する工程、RNA-DNA 複合体を形成しているmRNAの5 Cap (7MeG ppp N)サイトに存在するジオール構造に、アビジン分子を結合させる工程、

アビジン分子を結合したRNA-DNA 複合体を、1本鎖RNA を切断するRNA 分解酵素で消化して、mRNAの完全長に対応しないDNA を有する複合体の1本鎖RNA 部を切断することによりこの複合体からアビジン分子を切除する工程、及び

アビジン分子が結合したmRNAの完全長に対応するDNA を有する複合体を、固相 担体上に担持したビオチンと結合させて分離する工程、

を含むことを特徴とする完全長cDNAライブラリーの作成方法。

- 10. プライマーがoligo dTである請求項8または9に記載の方法。
- 1 1. 1本鎖RNA を切断するRNA 分解酵素がリボヌクレアーゼ I である請求項 5 、 $8 \sim 1$ 0 のいずれか I 項に記載の方法。
- 12. 分離されたmRNAの完全長に対応するDNA を有する複合体から、1本鎖完全長cDNAを回収する請求項1~11のいずれか1項に記載の方法。
- 13. 分離されたmRNAの完全長に対応するDNA を有する複合体に、タバコモザイクウィルスアルカリホスファターゼを反応させることによりCap サイトよりタック分子を切り離すことにより、1本鎖完全長cDNAを回収する請求項12記載の方法。
- 14. 1本鎖完全長cDNAの回収を、分離されたmRNAの完全長に対応するDNA を

有する複合体に、DNA-RNA ハイブリッドのRNA 鎖を切断する為、RNase を作用させることにより行う請求項12記載の方法。

- 15. DNA-RNA ハイブリッドのRNA 鎖を切断するRNase がRNase H である請求 項14記載の方法。
- 16. 回収された第1の1本鎖完全長cDNA鎖を鋳型として、第2のcDNA鎖を合成し、得られた第2のcDNA鎖を合成後、完全長二重鎖cDNAをクローニングする請求項1~15のいずれか1項に記載の方法。
- 17. 第1のcDNA鎖の3'端にRNA またはDNA のオリゴマーをライゲーションして得られたcDNA鎖を鋳型とし、かつライゲーションしたオリゴマーの相補鎖オリゴマーをプライマーとして、第2のcDNA鎖の合成を行なう請求項16記載の方法。
- 18. 3 端に鋳型なしにポリG、ポリG、ポリG、ポリG、ポリG、ポリG、ポリG、ポリG、ポリG、ポリG、ポリG、ポリG、スはポリG を付加したG を
 たのG を
 がつ各々に相補的なオリゴG 、オリゴG 、カリゴG 、カリガG 、カリガG
- 19. 3端に鋳型なしにポリG、ポリC、ポリA、又はポリTを合成できる酵素がターミナルヌクレオチドトランスフェラーゼである請求項18記載の方法。

図 1

図 5

INTERNATIONAL SEARCH REPORT

Japanese Patent Office

International application No.

PCT/JP97/03992

A. CL	ASSIFICATION OF SUBJECT MATTER	· · · · · · · · · · · · · · · · · · ·	
Int	. C16 C12N15/10 // C12Q1/68	}	
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIE	LDS SEARCHED		
Minimum d	ocumentation searched (classification system followed	by classification symbols)	
Int	. C1 ⁶ C12N15/10, C12Q1/68		
Documenta	ion searched other than minimum documentation to th	e extent that such documents are included in t	he fields searched
Electronic d	ata base consulted during the international search (nam	ne of data base and, where practicable, search	terms used)
BIO	SIS (DIALOG), WPI (DIALOG)	• • • •	
C. DOCL	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where		Relevant to claim No.
. A	"Program and Abstracts of Meeting of the Japanese So Biology" (1995), p. 170 (9 Y. Hayashizaki et al.	ociety of Molecular	1 - 19
PA	JP, 9-248187, A (Rikagaku September 22, 1997 (22. 09	Kenkyusho), 9. 97)(Family: none)	1 - 19
A	Mol. Cell. Biol. (1995) Vop. 3363-3371, I. Edery et Strategy To Isolate Full-I an mRNA Cap Retention Proc	al., "An Efficient Length CDNAs Based on	1 - 19
A	Gene (1995) Vol. 138, p. 1 et al. "Oligo-capping: a sreplace the cap structure with oligoribonucleotides"	simple method to	1 - 19
A	Gene (1995) Vol. 150, p. 2 Construction of a human f	43-250, S. Kato et al., ull-length cDNA bank"	1 - 19
Furthe	documents are listed in the continuation of Box C	. See patent family annex.	
Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention			
cited to establish the publication date of another citation or other			
O" document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the			
P" document published prior to the international filing date but later than the priority date claimed comment filing date but later than the priority date claimed comment member of the same patent family			
Date of the actual completion of the international search Date of mailing of the international search report			
	ary 20, 1998 (20. 01. 98)		<u>-</u>
January 27, 1998 (20. 01. 98) January 27, 1998 (27. 01. 98)			
	·····	I Authorized office.	

国際調查報告

	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	国際は解析の 「〇1/ 」「3・	7 11 0 0 0 0 2
	Aする分野の分類(国際特許分類(IPC)) ' Cl2N 15/10 //Cl2Q 1/68	•	
	fった分野 分小限資料(国際特許分類(IPC)) * CI2N I5/IO, CI2Q I/68		
最小限資料以外	トの資料で調査を行った分野に含まれるもの		
	Hした電子データベース(データベースの名称、 5 (DIALOG), WPI (DIALOG)	調査に使用した用語)	-
C. 関連する引用文献のカテゴリー*	らと認められる文献 引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	関連する 請求の範囲の番号
А	「第18回日本分子生物学会年プロp.170 (see S4A-5,6),Y.Hayaahiza	グラム・講演要旨集」(1995),	1-19
РА	JP,9−248187,A(RIKAG (22.09.97)(ファミリーなし)	AKU KENKYUSYO)22.9月.1997	1 – 1 9
A	Mol.Cell.Biol.(1995)Vol.15,No.6,p "An Efficient Stra-tegy To Isolat n an mRNA Cap Rete-ntion Procedur	e Full-Length cDNAs Based o	1 – 1 9
A	Gene(1995)Vol.138,p.171-174,K.Mar a simple method to replace the ca	uyama et al. Oligo-capping: p structure of eukaryotic	1 – 1 9
x C欄の続き	たにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」先行文献ではあるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に含及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「A」特に関連のある文献であって、当該文献のみで多の新規性又は進歩性がないと考えられるもの「Y」特に関連のある文献であって、当該文献と他の「文献(理由を付す) 「A」口頭による開示、使用、展示等に含及する文献 「B」同一パテントファミリー文献		発明の原理又は理 当該文献のみで発明 さられるもの 当該文献と他の1以 自明である組合せに	
国際調査を完	了した日 20.01.98	国際調査報告の発送日	;,)3
· 日本[の名称及びあて先 国特許庁 (ISA/JP) 郵便番号100	特許庁審査官(権限のある職員) 育藤 真由美 年 電話番号 03-3581-1101	4B 9637
東京 東京	郡千代田区霞が関三丁目4番3号 ニュー	電話番号 03-3581-1101	714/K 3442

C(続き).	関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
	mRNA with oligoribonucleotides"	mistro we will as in a		
A	Gene(1995) Vol. 150, p. 243-250, S. Kato et al., "Construction of a human full-length cDNA bank"	1-19		
		·		
		·		