Hall's Theorem

Himanshu Prajapati

Indian Institute of Technology, Guwahati

April 25, 2024

April 25, 2024

Outline

- Bipartite Graph
- Matching
- Hall's Theorem
- Proof
- Corollary

Bipartite Graph

Definition

A graph is bipartite if its vertex set can be partitioned into two nonempty subsets X and Y such that each edge of G has one end in X and the other in Y. The pair (X, Y) is called a bipartition of the bipartite graph. The bipartite graph G with bipartition (X, Y) is denoted by G[X, Y].

Example

Figure: Example of Bipartite Graph

Matching

- A subset M of the edge set E of a loopless graph G is called independent if no two edges of M are adjacent in G.
- A matching in G is a set of independent edges.
- A set S of vertices of G is said to be saturated by a matching M of G or M-saturated if every vertex of S is incident to some edge of M. A vertex v of G is M-saturated if fv is M-saturated. v is M-unsaturated if it is not M-saturated.

Definition

Let G be a bipartite graph on the parts X and Y, and let S be a matching of G. If every vertex in X is covered by an edge of S, then we say that S is a perfect matching of X into Y.

For a graph G and a subset T of V(G), we let $N_G(T)$ denote the set of vertices of G that are adjacent to some vertex in T, that is,

$$N_G(T) := \{ v \in V(G) \mid vw \in E(G) \text{ for some } w \in T \}.$$

Observe that if G is bipartite on the parts A and B, then $N_G(T) \subseteq B$ for any $T \subseteq A$.

Hall's Theorem

Statement

For a bipartite graph G on the parts X and Y, the following conditions are equivalent.

- (a) There is a perfect matching of X into Y.
- (b) For each $T \subseteq X$, the inequality $|T| \le |N_G(T)|$ holds.

Proof

 $(a) \Rightarrow (b)$:

Let S be a perfect matching of X into Y. As S is a perfect matching, for every $x \in X$, there exists a unique $y_x \in Y$ such that $xy_x \in S$. Define the map $f: X \to Y$ by $f(x) = y_x$. Since S is a matching, the function f is injective. Therefore, for any $T \subseteq X$, we see that $|T| = |f(T)| \le |N_G(T)|$ because $f(T) \subseteq N_G(T)$.

Proof(continued)

(b) \Rightarrow (a):

Conversely, suppose that $|T| \leq |N_G(T)|$ for each $T \subseteq X$. We will prove that there exists a perfect matching of X into Y by induction on n := |X|. If n = 1, then the only vertex x in X must be adjacent to some vertex y in Y by condition (b), and, therefore, $\{xy\}$ is a perfect matching of X into Y. Now assume that every bipartite graph on the parts X_0 and Y_0 with $|X_0| < |X|$ and satisfying condition (b) has a perfect matching of X_0 into Y_0 . We split the rest of the proof into two cases.

Proof(continued)

Case 1: For every nonempty proper subset T of X (that is, $T \subset X$), the strict inequality $|T| < |N_G(T)|$ holds. Take $x \in X$ and $y \in NG(\{x\})$. Let G_0 be the bipartite graph we obtain by removing x and y (and the edges incident to them) from G. Now for every subset A of $X \setminus \{x\}$, we see that

$$|N_{G_0}(A)| \geq |N_G(A)| - 1 \geq |A|,$$

where the last inequality holds because A is a strict subset of X. By induction hypothesis, there exists a perfect matching S_0 in G_0 of $X \setminus \{x\}$ into $Y \setminus \{y\}$. It is clear now that $S_0 \cup \{xy\}$ is a perfect matching in G of X into Y.

Proof(continued)

Case 2: There exists a nonempty proper subset A of X such that $|A| = |N_G(A)|$. Let G_1 be the subgraph of G induced by the set of vertices $A \cup N_G(A)$, and let G_2 be the subgraph of G we obtain by removing $A \cup N_G(A)$ (and their incident edges) from G. It is clear that $G_1 = (A, N_G(A))$ and $G_2 = (X \setminus A, Y \setminus N_G(A))$ are bipartite graphs. Let us show that both G_1 and G_2 satisfy condition (b). To show that G_1 satisfies (b), take $T \subseteq A$. It follows by the way G_1 was constructed that $N_{G_1}(T) = N_{G_1}(T)$. As a result, $|N_{G_1}(T)| = |N_{G_1}(T)| \ge |T|$. Then G_1 satisfies condition (b). In order to argue that G_2 also satisfies condition (b), take $T_0 \subseteq X \setminus A$ and observe that $N_{G_2}(T_0 \cup A) = N_G(A) \cup N_{G_2}(T_0)$, where the union on the right-hand side is disjoint. Since $|N_{G_2}(T_0 \cup A)| > |T_0 \cup A|$ and $|N_G(A)| = |A|, |N_{G_2}(T_0)| =$ $|N_{G_2}(T_0 \cup A)| - |N_{G_1}(A)| \ge |T_0 \cup A| - |A| = (|T_0| + |A|) - |A| = |T_0|$ Therefore, G_2 also satisfies condition (b).

Proof(Continued)

Since |A| < |X| and $|X \setminus A| < |X|$, our induction hypothesis guarantees the existence of a perfect matching S_1 in G_1 of A into $N_G(A)$ and a perfect matching S_2 in G_2 of $X \setminus A$ into $Y \setminus N_G(A)$. Then it follows from the construction of G_1 and G_2 that $S_1 \cup S_2$ is a perfect matching in G of X into Y, which concludes the proof.

Corollary

Statement

A k(>1)-regular bipartite graph is 1-factorable

Proof

Let G be a k-regular bipartite graph with bipartition X and Y. Then, E(G) is the set of edges incident to the vertices of X and is also equal to the set of edges incident to the vertices of Y. Hence,

$$k|X| = |E(G)| = k|Y|$$
, and therefore $|X| = |Y|$.

Now, consider any subset $S \subseteq X$. By the definition of a bipartite graph, the neighborhood of S, denoted as N(S), is contained in Y, and N(N(S)) contains S.

Let E_1 and E_2 be the sets of edges of G incident to S and N(S), respectively. Then, $E_1 \cup E_2$ contains all the edges of G incident to vertices in S. We have $|E_1| = k|S|$ and $|E_2| = k|N(S)|$. Therefore, since $|E_1| + |E_2| = |E_1 \cup E_2| \le k|S|$, it follows that $k|N(S)| \le k|S|$. As k > 1, we can conclude that $|N(S)| \le |S|$.

Proof(Continued)

So, by Hall's theorem, G has a matching that saturates all the vertices of X, which means that G has a perfect matching M.

Deletion of the edges in M from G results in a (k-1)-regular bipartite graph.

Repeated application of this argument shows that G is 1-factorable.

References

R. Balakrishnan • K. Ranganathan Author.

A Textbook of Graph Theory.

Springer(Second Edition), 2012.

FELIX GOTTI.

Combinatorial analysis.

Department of Mathematics , Massachusetts Institute of Technology.

Thank You

