Contrat Été 2023

CARNET DE BORD, UNIVERSITÉ MCGILL

RÉALISÉ DANS LE CADRE D'UN PROJET POUR

ISMER-UQAR

01/09/2023

Table des matières

1	Stratification $-$ <2023-09-11 $Mon>$	2
	1.1 Stratification reisonnable < 2002 00.11 Man	6

1 Stratification - < 2023-09-11 Mon >

À deux couches, on se souvient que le calcul des valeurs propres du rapport précédent nous amène à

$$\lambda_1 = 0 \qquad \lambda_2 = \frac{f_0^2}{g} \left(\frac{H_1 + H_2}{H_1 H_2} \right) = k_d^2. \tag{1.1}$$

Et le rayon de déformation de Rossby (\mathcal{L}_D) est relié à la vitesse des ondes baroclines par

$$L_D = \frac{c_{bc}}{f_0}. (1.2)$$

En substituant, on retrouve finalement

$$\Delta \rho = \left(\frac{H_1 + H_2}{H_1 H_2}\right) \rho_1 g c_{bc}^2. \tag{1.3}$$

Concrétement, l'équation 1.3 nous renseigne sur l'intégration la vitesse des ondes baroclines dans la stratification entre la première et la seconde couche.

1.1 Stratification raisonnable – <2023-09-11 Mon>

La stratification devrait – grosso modo – suivre une courbe exponentielle décroissante. Pour s'assurer que la vitesse des ondes baroclines soit toujours la même entre chaque couche, on utilise la règle

$$\rho_k = \rho_{k-1} + \frac{\rho_1}{g} \left(\frac{H_{k-1} + H_k}{H_{k-1} H_k} \right) \cdot c_{bc}^2 \tag{1.4}$$

Les résultats de la construction précédente se retrouvent dans le tableau 1

Table 1 – Épaisseurs et densités des différentes couches pour le test du modèle à 5 couches.

Nom	Symbole	Valeur	Unités
Densité de la première couche	ρ_1	1000.0	kg/m^3
Densité de la seconde couche	$ ho_2$	1005.3	${ m kg/m^3}$
Densité de la troisième couche	$ ho_3$	1007.3	${ m kg/m^3}$
Densité de la quatrième couche	ρ_4	1008.4	${ m kg/m^3}$
Densité de la dernière couche	$ ho_5$	1009.0	${ m kg/m^3}$
Épaisseur de la première couche	H_1	100	m
Épaisseur de la première couche	${ m H}_2$	300	\mathbf{m}
Épaisseur de la première couche	H_3	600	\mathbf{m}
Épaisseur de la première couche	${ m H_4}$	1000	\mathbf{m}
Épaisseur de la première couche	H_5	2000	m