Statistics 206

Homework 4

Due: October 23, 2019, In Class

- 1. Confirm the formula for inverting a 2×2 matrix.
- 2. **Projection matrices**. Show the following are projection matrices, i.e., being symmetric and idempotent. Which linear subspace each of these matrices projects to? What are the ranks of these matrices? Here \mathbf{H} is the hat matrix from a simple linear regression model with n cases (where the X values are not all equal).
 - (a) $\mathbf{I}_n \mathbf{H}$
 - (b) $\mathbf{I}_n \frac{1}{n} \mathbf{J}_n$
 - (c) $\mathbf{H} \frac{1}{n} \mathbf{J}_n$
- 3. Under the simple linear regression model, using matrix algebra, show that:
 - (a) The residuals vector \mathbf{e} is uncorrelated with the fitted values vector $\hat{\mathbf{Y}}$ and the LS estimator $\hat{\boldsymbol{\beta}}$.
 - (b) With Normality assumption on the error terms, SSE is independent with SSR and the LS estimator $\hat{\boldsymbol{\beta}}$. (*Hint:* If **Z** is a multivariate Normal random vector, then $A\mathbf{Z}$ and $B\mathbf{Z}$ are jointly normally distributed.)
- 4. Derive E(SSTO) and E(SSR) under the simple linear regression model using matrix algebra.
- 5. (Optional Problem.) Under the simple linear regression model with Normal errors, derive the sampling distributions for SSR and SSTO when $\beta_1 = 0$.
- 6. For each of the following regression models, answer whether it can be expressed as a general linear regression model or not. If so, indicate which transformations and/or new variables need to be introduced.
 - (a) $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 \log X_{i2} + \beta_3 X_{i1}^2 + \epsilon_i$.
 - (b) $Y_i = \epsilon_i \exp(\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2}^2)$. $(\epsilon_i > 0)$
 - (c) $Y_i = \beta_0 \exp(\beta_1 X_{i1}) + \epsilon_i$.
 - (d) $Y_i = \{1 + \exp(\beta_0 + \beta_1 X_{i1} + \epsilon_i)\}^{-1}$.
- 7. Answer the following questions with regard to the general linear regression model and provide a brief explanation.

1

(a) What is the maximum number of X variables that can be included in a general linear regression model used to fit a data set with 10 cases?

- (b) With 4 predictors, how many X variables are there in the interaction model with all main effects and all interaction terms (2nd order, 3rd order, etc.)?
- (c) Are the residuals uncorrelated? Do they have constant variance? How about the fitted values?