```
Lemma 3.31 (Gôdels B- Funktion) Es gibt eine 

*-vekuvsive Fkt B(a,b,i) mit Jolgenden Eigenschaft: 

für jede endl. Folge Co.-. Cn., gibt es aund b s.d. 

B(a,b,i) = Ci Sür i=0,-,n-1 gilt.
                    Ben: Betrache die *- rekursive FK+
                                             \beta(a,b,i) = M2 = a \pmod{b(i+1)+1}

Seien c_{0,-1}, c_{n-1} gegeben. Wahle b \in \mathbb{Z} mit

n! \mid b \mid und \mid b > c_i \mid f.a. \mid i = 0,-, n-1.
                                         Beh : b. 1 + 1, _, b. n + 1 sind paarweise
                                                                             teilersvemd.
                                               Bew der Beh: Jei p prim mit plbit1
=> ptb. Ang. pl(bj+1) Jur ein j=i.
                                                        (mil 0 < i, j ≤ n)
                                             == p | b(j-i) == p | (j-i) \ \( \frac{1}{2} \) \ \( \left( \frac{1}{2} \) \) \( \left( \frac{1}{2} \) \( \left( \frac{1}{2} \) \( \left( \frac{1}{2} \) \) \( \left( \frac{1}{2} \) \( \left( \frac{1}{2} \) \) \( \left( \frac{1}{2} \) \) \( \left( \frac{1}{2} \) \( \left( \frac{1}{2} \) \) \( \left( \frac{1}{2}
                                                               a = c. (mod b.1+1)
                                                               a = C_{n-1} \pmod{b \cdot n + 1}
                                              ~ existiert nach dem chin. Restsatz.
                                             Wg. C: < b(i+1)+1 ist C: clip Kleinsk
                                               naturliche zahl, die zu a kongruent modulo
                                                  b (1+1) +1 1st.
Ben von Salz 3.29.
        Klar: Reserve X- rekursive TKI. sind rekursiv.
           * * - rekursive Tk1 sind ahg. unler prim. Rek. (R2),
                    dh Jûr g,h *- rek. und f gegeben clurch
f(\bar{x}, y+1) = h(\bar{x}, y, f(\bar{x}, y))
ist fauch *- rekursiv.
```

Niv betrachen die *-vek Relation $R(x,y,a,b) \leftarrow \{c_3(a,b,0) = g(\bar{x}) \land \forall i < y \\ \beta(a,b,i+1) = h(\bar{x},i,\beta,b,i)\}$ Es gilt $\forall \bar{x},y = 1a,b \in R(\bar{x},y,a,b) = h(\bar{x},i,\beta,b,i)$ $S(\bar{x},y) = \mu_S = 1a,b \leq S(\bar{x},y,a,b)$ *-vekuvsiv Dam ist $S(\bar{x},y) = \mu_S = 1a,b \leq S(\bar{x},y) = (R(\bar{x},y,a,b)) = (R(x$		l l															-				
$R(x,y,a,b) \leftarrow P(x,a,b,0) = g(x) \wedge V(x,y,a,b) + h(x,b,a,b,b)$ Es gill $\forall x,y = a,b \in R(x,y,a,b) = h(x,b,a,b,b)$ $S(x,y) = \mu s = a,b \in S(x,y,a,b)$ $V = \nu e h v s v = h s = h s v = h s$				¢	1					2.											
R(x,y, a,b) $\leftarrow P$ (β (a,b,0) = $g(\bar{x}) \wedge V(\bar{y})$ β (a,b,i+4) = $h(\bar{x},i,\beta(a,b,i))$] Es gill $\forall \bar{x},y$ $\exists a,b \in R(\bar{x},y,a,b)$ $na(h 3 30)$ Also is 1 S(\bar{x},y) = μ s $\exists a,b \leq s$ $R(\bar{x},y,a,b)$ *-vekuvsiv Dann is 1 I(\bar{x},y) = μ 2 $\exists a,b \leq S(\bar{x},y)$ ($R(\bar{x},y,a,b) \wedge 2 = \beta(a,b,y)$) ehen $\exists a \in S$ *-vekuvsiv $\exists a \in S(\bar{x},y)$ ($R(\bar{x},y,a,b) \wedge 2 = \beta(a,b,y)$) ehen $\exists a \in S$ *-vekuvsiv $\exists a \in S(\bar{x},y)$					17				3 4										j-dri	}	
R(x,y, a,b) \leftarrow (β (a,b,0) = $g(\bar{x}) \wedge V(\bar{y})$ β (a,b,1+1) = $h(\bar{x},i,\beta(a,b,i))$ Es $g(i) \forall \bar{x}, y = 3a,b \in R(\bar{x},y,a,b)$ β (\bar{x}, y) = β (\bar{x}, y					y.														1	11	
R(x,y,a,b) \leftarrow [β (a,b,0) = $g(\bar{x}) \wedge V(\leq y)$ β (a,b,1+1) = $h(\bar{x},i,\beta(a,b,i))$] If $g(H) \vee \bar{x}, y = A_0 b \in R(\bar{x},y,a,b)$ $hach = 3.30$ S(\bar{x}, y) = μ s $A_0 = A_0 + $	- Y				11.	j.r								0	×	1/	AI	E		٧	
$ (x,y,a,b) \leftarrow (\beta(a,b,0) = g(\bar{x}) \land V(\bar{y}) + \beta(a,b,1+1) = h(\bar{x} i,\beta(a,b,i))] $ $ g(\bar{x}) \lor \bar{x}, y = \bar{a}, b \in R(\bar{x},y,a,b) \land a(h=3.30) $ $ s(\bar{x},y) = \mu s = \bar{a}, b \in s \in R(\bar{x},y,a,b) \land 2 = \beta(a,b,y) \land 3 = \beta(a,$	7	1			4		(H a	1		1		h		1	01	5	R	h	
$(y, a, b) \leftarrow (\beta(a,b,0) = g(\bar{x}) \wedge V(\{y) - \beta(a,b,1)\} = h(\bar{x},b,b,0)]$ $(y, a, b) \leftarrow (\beta(a,b,0) = g(\bar{x}) \wedge V(\{y) - \beta(a,b,1)\} = h(\bar{x},b,b,0)]$ $(x,y) = h = 1a,b \leq s R(\bar{x},y,a,b)$ $(x,y) = h(\bar{x},b,b,b)$ $(x,y) = h(\bar{x},b,b)$ $(x,y) =$							1			ļ ļ		1 7		en	YY X.	SI	J	gí	(X	6.	
(a,b) == (3(a,b,0) = g(x) \ V(<y)< td=""><td></td><td></td><td></td><td></td><td></td><td>N</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td>V)</td><td>χ̈́,</td><td>1</td><td>11</td><td>Ч</td><td>Υô</td><td></td></y)<>						N								10	V)	χ̈́,	1	11	Ч	Υô	
$(a,b) \leftarrow (a,b,0) = g(x) \land V(x) $ $(a,b,1+1) = h(x,i,\beta(a,b,i))$ $($		11			Ť									1/) V .	Y	1		. ((
b) $\Rightarrow p = \{ \beta(a,b,0) = g(\bar{x}) \land V \{ y \} \} $ $\beta(a,b,141) = h(\bar{x},i,\beta(a,b,i)) \}$ $\forall \bar{x},y = 1a,b \in R(\bar{x},y,a,b) $ $\Rightarrow A = 1a,b \in S = R(\bar{x},y,a,b) $ $\Rightarrow A = 1a,b \in S(\bar{x},y) = R(\bar{x},y,a,b) = R(\bar{x},y,a,b) $ $\Rightarrow A = 1a,b \in S(\bar{x},y) = R(\bar{x},y,a,b) = R(\bar{x},$		0		X						1				5	16)		١	3,	hI	
$ \begin{array}{lll} & \Rightarrow & (\beta(a,b,0) = g(\bar{x}) \land V(\bar{y}) \\ & \beta(a,b,i+1) = h(\bar{x},i,\beta(a,b,i)) \\ & (y = 1a,b \in S, R(\bar{x},y,a,b)) \\ $			i i			1						1		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V.	÷		∀ ∑	b)	er	
$(β(a,b,0) = g(\bar{x}) \land V(\bar{y})$ $(β(a,b,y+1) = h(\bar{x},i,β(a,b,i))]$ $(g(a,b,y+1) = h(\bar{x},i,β(a,b,i))$ $(g(a,b,y+1) = h($														¥-)	M		ζ, γ)	1	
$b = (β(a,b,0) = g(\bar{x}) \land V(\leq V) - β(a,b,i+1) = h(\bar{x},i,β(a,b,i))]$ $\exists a,b \in S \in R(\bar{x},y,a,b)$ $\exists a,b \leq S \in R(\bar{x},y,a,b)$		1												1	7	2	1 8		4	di	
$ \begin{array}{l} (\beta(a,b,0) = g(\bar{x}) \wedge V(\bar{y}) \\ \beta(a,b,1+1) = h(\bar{x},i,\beta(a,b,i)) \\ a,b \in S(\bar{x},y,a,b) \\ n(s) \\ b \in S(\bar{x},y) \\ (Vrsiv) \end{array} $	Л	112				7				1				61	IIk G	710	18	3	-n	9	
$ \begin{array}{lll} [3(a,b,0) = g(\bar{x}) \wedge \forall i < y \\ \beta(a,b,i+1) = h(\bar{x},i,\beta(a,b,i))] \\ b & R(\bar{x},y,a,b) & na(h = 3.30) \\ b \leq s & R(\bar{x},y,a,b) \\ is \leq s(\bar{x},y) & (R(\bar{x},y,a,b) \wedge 2 = \beta(a,b,y)) \\ rsiv & $					3.4	. !								(V	h	9		a,		4	
$p(a,b,0) = g(\bar{x}) \wedge V(\leq y)$ $p(a,b,1+1) = h(\bar{x},i,\beta(a,b,i))$ $p(\bar{x},y,a,b) = h(\bar{x},i,\beta(a,b,i))$	•					1 6			14					18	4	b	1.	b	B	4 -	
$a,b,0) = g(\bar{x}) \wedge V(\leq y)$ $\beta(a,b,1+1) = h(\bar{x},i,\beta(a,b,i))$ $S(\bar{x},y,a,b)$ $S(\bar{x},y) = \beta(a,b,y)$ $S(\bar{x},y) = \beta(a,b,y)$ $S(\bar{x},y) = \beta(a,b,y)$	11	17	1		1	52.3			1.					ĺ٧	3 †	٤ ()	1	ſ.	(;	V	
$(x_1, 0) = g(\bar{x}) \land V(\leq y)$ $(x_1, 0, 1+1) = h(\bar{x}, 1, \beta(a, b, 1))$ (x_1, y_1, a_1, b_2) (x_1, y_2, a_2, b_3) (x_1, y_2, a_2, b_3) (x_2, y_2, a_2, b_3) (x_1, y_2, a_2, b_3) (x_2, y_2, a_2, b_3) (x_2, y_2, a_2, b_3) (x_1, y_2, a_2, b_3) $(x_2, y_2, a_3, b_$	J.								7.1		1				6(S		20	۱, ۲	3 k	
0) = $g(\bar{x}) \wedge V(\langle y \rangle + h(\bar{x}) +$		1,1			1		,)/ 3		. X			χ, <u>γ</u>),		
) = $g(\bar{x}) \wedge V(\langle y \rangle + h(\bar{x}, i, \beta(a, b, i))]$ $g(a, b, i+1) = h(\bar{x}, i, \beta(a, b, i))]$		16	<i>‡</i>			,					1		de	1	\/ \/	{ (/,	0	R	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.1	7.	17.			1					ı.Z)	χι		2,)	ela	
$g(\bar{x}) \wedge V(\bar{y})$ $\beta(a,b,1+1) = h(\bar{x},i,\beta(a,b,i))$ $\lambda(a,b) \wedge \lambda(a,b,y)$ $\lambda(a,b) \wedge \lambda(a,b,y)$ $\lambda(a,b) \wedge \lambda(a,b,y)$ $\lambda(a,b,i,y)$ $\lambda(a,b,$									þ	1		l de			(y,	H	b		831	
$(\bar{x}) \wedge V(\leq y)$ $\beta(a,b,1+1) = h(\bar{x},i,\beta(a,b,i))$ $(\bar{x},y,a,b) \wedge 2 = \beta(a,b,y)$ \mathbb{Z}		į 1	М						1 1	1	6				R	9)	9	0	
) $\wedge V(\leq y)$ $\beta(a,b,i+1) = h(\bar{x},i,\beta(a,b,i))$ $A(x,i,\beta(a,b,i))$ $A(x,i,\beta(a,b,i))$ $A(x,i,\beta(a,b,i))$ $A(x,i,\beta(a,b,i))$ $A(x,i,\beta(a,b,i))$ $A(x,i,\beta(a,b,i))$ $A(x,i,\beta(a,b,i))$			1	1	7		7			. 3				1	(x	, b	130	1	(X	n	
$(a,b) \wedge 2 = (3(a,b,y))$		Ą	7	1			1				1			14	,\I),)	10	19) ,		
$(a,b) \wedge 2 = (3(a,b,y))$)	11						11 7 	7 15 74.	ř				-	1		1	C	٨		
2) \(\lambda 2 = \beta(\frac{1}{3}(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})\)	, 1	E.									1	***		×.[!	5.1			h	Va		
	1	i de					1.1						9 6		0) (1		
$\Lambda = 3(3, b, y)$			1 1						E						1	1,		3.	y		
2 = β(a,b,y)) Z			7												٨			3	h		
= \(\beta \)			1)												2			0	i.		
3(2, b, y))			12												=		1	\	<i>u</i>)		
		(çi												J	B				•	3.5	
														Ç4	(2			_/\	h		
														U	h			(A	(V		
														V	V				i		
														1))			1	0		
(i, d.())(0	(
	-(-(\					ሳ ^ህ	h	7	
			18				+											, (<i> </i> //	;))		
					1														7		

\$3.6 Gödelnummern von Formeln	
Jei 1= 121, 2010 eine endt Jpr	
Wiv ordnen den zeichen, die in	
Gödelnummern zu (d.h. inj	Abb. Hichen - M)
Ziel y L-7m1 no "4" Godelnumi	W6 h
4 ° 4 7 · 4 L- Tm1., + 43	181 N. 9.
	r a
2uorcinung: (= 1 = <0,0>	ry = <1,0>
"A" = <0,17	$^{1}V_{4}^{7} = \langle 2, 0 \rangle$
r ₇ ? = <0,2>	
(1 = < 0, 3 >	rv;7 = <111,0>
Γ) 1 = < 0, 4 >	Jor 10 My.
= <0,5>	
$(\lambda_1) = \langle 0, 6 \rangle$	
$(\lambda)^{7} = \langle 0, 5+n \rangle$	
sei nun & = J. J. eine Zeichei	nveihe aus den obigen
symbolen selze (\$) = < (7.7.	rym's.
Lemma: 3.32 Die Solgenden Meng fsogar p.v., aber das benötig 1. TERML = 15t7 t L-Ter 2. FMLL = 1507 \$ L-Fr	ien sind vekursiv
fsogar p.v., aner das henólig	en wir nicht in dieser VL]
1 TERML = 1 Tt7 t L-TeV	m 3
2 FML, = 1 r 67 0 L-Fr	n(}
Bew. Möglichkeit 1: Churchische	These
20 heide Mengen offensich	Hich intuitiv berechenbar
Mõolichkeil 2: Explizid	per prim Rek
Möglichkeil 2: Explizit, Wir Higen nur 1. exp	11211 (2. å hn lich).
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

```
Evinnerung (1.1) Für L-Terme drill genau einer der
      Solgenden divei Tõlle ein:
        (a) t ist eine Variable
        (b) t ist eine konstank
        (c) t= st...t. mit je L n-slell. Fkl zeichen
                  und to, In L-Terme
             Hierbei sind f und to,, to eind bestimms
zum Beweis:
   Wir zeigen per prim Rex. Die zweislellige Rel.
      \tau(x,n) = I(x,n) : x = it^{-1} - Term, Ig(it^{-1}) \le n^{2}
       13) p.v.
  (haraklevistische FK). Sür n=1
      * KONL = 4 \cdot \lambda^3 : \lambda \in L konst. symboly ist p.v. da endt.

VARL = 5 \times E / N : \frac{3}{3} : (x : x = < i, 0 > 3) ist p.v.
                  rda <.,.>: // 2 - // pr. und (X), pr
                    und (x), < x 10v x + 0 gil+7
       * T(X,1) = KONL U VARL
      (Odstrada paradeno)
  FOV nanta per prim Rek.
  Bedrachk Juv menv fun(x,m) = f(fs,m): je 1 m-sien.
no p.v., da L endl.
                                             FKI.Jymb. 3
                              Jalls Xc(x,n) = 1 Oder Ig(x) = n+1
 Nun gilt
                               und ] m < n, ] 1 < 1, < ... < im = n mi)
           7 2 (X, n+1)
                               X τ (< x1, x1, x, n)=1 Λ. MORGON
                                   sonst.
                           ALSO
          X & TERML == 3 m < 1g(x): x & t(x,m)
```

	Lemma 3.33: Die Solgenden Mengen sind rekursiv
	(Jogar prim rek.)
	(x) 1 ('t', n) + isi 1-1erm, v, kommi in t
	nicht vor 3
	1("t", n): t is 1 L-Term, v, kommt in t vor 3
	(2.) {([4], n): 4 ist 1-7ml, v, kommi in 4 vor }
	und genauso sūr: "v, kommi in y nicht vor"
	"v, kommt mind 1x svei vor"
	"Kommi nichi svei vor"
	"nomm) mind 1x gebunden vor "
	" Kommt nicht vor "
	(3.) 1 ry 7 : 4 ist L-Aussage 3.
	Ben Wahlweise (hurchische These ocler per Hand.
	24 (1.): Zeige Var = {(x,n): x & VARL x * + "v."}
	$= \{(\chi, \eta): \exists i < \chi $
	$x \neq \langle n, 0 \rangle $ is $p \cdot r$
-1(
	Evinnerung: x Variable, s.t. L-Terme. \$\phi\$ L-Fm1.
	€ x ~ existe alle vorkommen von x durch s
	\$ ~ ersetze alle sveien Vorkommen von x durch s.
	Lemma 3.34: Es gibt rek. (sogar prim rek.) Fkt. Subst _T
	und Substr 1N3 - 1N, s.d. 1.a. ne IN gilt
	Wenn t.s 1-Terme, & L-Fml, dann
24	$dvbst_{\tau}(n, s^{\tau}, t^{\tau}) = t + \frac{s}{v}$
	Subst = (n, 5, 76, 7) = 10 5, 7
	Jubst_ (n, 's', 't') = 't $\frac{s}{\sqrt{n}}$ Jubst_ (n, 's', '\phi') = '\phi $\frac{s}{\sqrt{n}}$? Bew (hurchsche These oder mühselig per Hand \mathbb{Z})
	OCTA CHARLING THE OCCUPANT OCC