

HDS 5230: High Performance Computing

Week 11 - Comparison of R/Python for XGBoost

Harika Pamulapati

Professor: Adam Doyle

1. First, using sampling with replacement, individual predictor variables' distributions were generated, drawing from the original data.

Method Used	Dataset Size	Testing-set predictive performance	Time taken for the model to be fit
XGBoost in Python via scikit-learn and 5-fold CV	100		
	1000		
	10000		
	100000		
	1000000		
	10000000		
XGBoost in R – direct use of xgboost() with simple cross-validation	100	0.85	0.007s
	1000	0.95	0.023s
	10000	0.971	0.2079s
	100000	0.985	1.614s
	1000000	0.988	14.978s
	10000000	0.995	206.598s
XGBoost in R – via caret, with 5-fold CV simple cross- validation	100	0.940	0.3369s
	1000	0.951	0.217s
	10000	0.9507	1.023s
	100000	0.95311	9.023s
	1000000	0.95474	89.654s
	10000000	0.9654	567.26s

2. Then, the outcome was computed (via prediction) using a logistic model that was fit on the original dataset.

My recommendation is to use the direct implementation of `xgboost()` with simple cross-validation rather than implementing it through `caret`. The direct implementation of `xgboost()` produces superior predictive results throughout all dataset sizes and delivers enhanced testing-set metrics particularly when dealing with large datasets. The model fitting process through direct

use of 'xgboost()' runs significantly faster than 'caret' while delivering better model quality which makes it an efficient solution for both speed and performance.

The built-in 5-fold cross-validation of 'caret' comes with a convenient interface but results in excessive computational overhead that produces lower model accuracy than direct usage. The direct application of 'xgboost()' becomes essential for large datasets because it provides better scalability and practicality when fitting models. The direct approach stands as the superior choice because it avoids the need for 'caret''s functionalities unless essential for hyperparameter tuning pipelines.