체비셰프 부등식

정의

- 마코프 부등식
- 1. $A = \{x : u(x) \ge c\}$ 일 때, pdf f(x)에서
- 1) $E[u(x)] = \int_{-\infty}^{\infty} u(x)f(x) dx = \int_{A} u(x)f(x)dx + \int_{A^c} u(x)f(x)dx$,가 성립된다.
- (1) 이 때,
- $\int_{-\infty}^{\infty} u(x)f(x) dx > \int_{A} u(x)f(x)dx$
- u(x) = c로 놓아도, $x \in A$ 라면 $u(x) \ge c$ 이므로 $\int_{-\infty}^{\infty} u(x) f(x) dx > c \int_{A} f(x) dx$ 이다.
- (2) 이를 다시 정리하면
- $E[u(x)] \ge cP(x \in A) = cP(x \ge c)$ 이므로
- $-\frac{E[u(x)]}{c} \ge P(x \ge c) \ O|\Box + .$

정의

- 체비셰프 부등식
- 1. 마코프 부등식의 특수한 경우로, 평균과 분산의 관계를 다룬다.
- 2. 마코프 부등식 $\frac{E[u(x)]}{c} \ge P(x \ge c)$ 에서
- 1) $u(x) = (x \mu)^2$, $c = (k\sigma)^2$ 이라고 한다면
- 2) $P((x \mu)^2 \ge (k\sigma)^2) \le \frac{E[(x \mu)^2]}{(k\sigma)^2}$ 이다. (마코프 부등식의 응용)
- 3) $E[(x \mu)^2] = \sigma^2$ 이므로, 식을 다시 고치면 $P((x \mu) \ge k\sigma) \le \frac{1}{k^2}$
- 3. 체비셰프 부등식을 활용하면 확률변수 X의 평균이 있을 때, X가 K표준편차보다 작거나 클 확률의 상한을 나타낼 수 있다.

정의

- 젠센 부등식
- 1. 함수 Ø가 2차 미분 가능한 함수라고 가정하자.
- 1) $\mu = E(X)$ 에 대하여 Ø를 2차까지 테일러 전개하면

$$(1)\emptyset(x) = \emptyset(\mu) + \emptyset'(\mu)(x-\mu) + \frac{1}{2}\emptyset''(a)(x-\mu)^2$$

- (2) 이 때, $\frac{1}{2}$ Ø"(a)(x $-\mu$)²는 음이 아니므로, 이 항을 제거하면
- $\emptyset(x) > \emptyset(\mu) + \emptyset'(\mu)(x-\mu)$ 이다.
- 2) 양변에 기댓값을 취하면
- $(1) E[\emptyset(x)] > E[\emptyset(\mu) + \emptyset'(\mu)(X-\mu)]$
- (2) $E[\emptyset(x)] > E[\emptyset(\mu)] \rightarrow E[\emptyset(x)] > \emptyset[E(X)]$

예제

•
$$X \supseteq |pdf7| f(x)$$
 $\frac{1}{2\sqrt{3}}$ $-h < x < h$ 0 $else$

- 1) 이 X의 기댓값 $E(x) = \mu = 0$, $E(x)^2 = 1$ 일 때
- 2) 이 X가 $\frac{3}{2}$ 표준편차보다 클 확률은

(1)
$$P(E(x - 0) < \frac{3}{2} \cdot 1) \le \frac{1}{(\frac{3}{2})^2} = \frac{4}{9} \approx 0.444$$

3) 이 때, 이 구간의 실제 확률을 구하면

(1)
$$\int_{-\frac{3}{2}}^{\frac{3}{2}} \frac{1}{2\sqrt{3}} dx = \frac{1}{2\sqrt{3}} \left[x \right]_{-\frac{3}{2}}^{\frac{3}{2}} = 1 - \frac{\sqrt{3}}{2} \approx 0.134$$