Programming Syllabus For advance Level In CCS(CUET Computer Society)

Geometry

1. Computational Geometry

- a. Graham scan algorithm for convex Hull $O(n^*(\log(n)))$
- b. Online construction of 3-D convex Hull in O(n^2)
- c. Bentley ottmann algorithm to list all intersecting points of n line segments in O((n+i)*log(n))
 - http://softsurfer.com/Archive/algorithm_0108/algorithm_0108.htm
- d. Rotating Calipers Technique
 - http://cgm.cs.mcgill.ca/~orm/rotcal.html
 - Problem refer to Rotating calipers technique
- e. Line sweep/ Plane sweep algorithms
 - Area / Perimeter of Union of Rectangles.
 - Closet Pair of Points.
 - http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lineSweep
- f. Area of Union of Circles
- g. Delaunay Triangulation of n points in $O(n^* \log(n))$
- h. Voronoi Diagrams of n points in O(n* log(n)) using Fortunes algorithm
- i. points in a polygon problem
 - O(n) solution without preprocessing
 - O(logn) algorithm with O(n* log(n)) preprocessing for convex polygons
- j. Problems under this catagory-
 - BSHEEP, BLUX, CONDUIT, RUNAWAY, SHAMAN, TCUTTER, LITEPIPE, FSHEEP, FLBRKLIN, BAC, COMPASS, CIRCLES, SEGMENTS, RAIN2, KPPOLY, RECTANGL on SPOJ
 - CultureGrowth, PolygonCover on Topcoder

String Algorithm

- Dictionary of Basic Factors
 - O(n*log(n)) method of DBT construction using Radix sort
- Manachar's algorithm to find Length of palindromeic substring of a string centered at a position for each position in the string
 - Runtime \rightarrow O(n)
- Multi-dimentional pattern matching
- ➤ Problems on Strings [can be solved with a variety of techniques]
 - DISUBSTER, PLD, MSTRING, REPREATS, JEWELS, ARCHIVER, PROPXEY, LITELANG, EMOTICON, WORDS, AMCODES, TOPALIN, BEADS, SARRY, LCS, LCS2, SUBSTR on SPOJ
 - http://algorithmist.com/index.php/Category:String algorithms

Graph

- ➤ Euler Tour/Path
 - problems WORDS1 on SPOJ
- > Hamiltonian Cycle
- ➤ Kth Shortest Path
- Suggested reading for most of the topics in graph algorithm -
 - http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=graphsDataSt rucs1

Flow Networks/Matching

- a. Maximum flow using Ford Fulkerson Method
 - Suggested readinghttp://community.topcoder.com/tc?module=Static&d1=tutorials&d2=maxFlow
 - Problems TAXI, POTHOLE, TM QUEST4, MUDDY, EN STEAD, COCONUTS on SPOJ
- b. Maximum flow using Dinics Algorithm
 - problems PROFIT on SPOJ
- c. Minimum Cost Maximum Flow
 - Successive Shortest path algorithm
 - Cycle Cancelling algorithm
 - Suggested reading -http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCost

 Flow1
- d. Maximum Weighted Bipartite Matching (Kuhn Munkres algorithm/Hungarian algorithm)
 - problems GREED, SCITIES, TOURS on SPOJ
 - http://community.topcoder.com/stat?c=problem_statement&pm=8143
- e. Stoer wagner min-cut algorithm
- f. Hopcroft karp bipartite matching algorithm
 - problems- ANGLES on SPOJ
- g. Maximum matching in general graph (blossom shrinking)
- h. Suggested reading for Full catagory
 - Network flow- Algorithms and Applications by Ahuja

Dynamic Programming:

- ➤ Bitmask DP (Traveling salesman problem)
- Modular DP (DP with MOD value as a state)
- a. Suggested Reading Dynamic Programming(DP) as a tabulation method
 - Cormen chapter on DP

- b. Standard problems (you should really feel comfortable with these types)
- ■http://www.topcoder.com/stat?c=problem_statement&pm=8570&rd=12012&rm=26919 9&cr=7581406
 - http://www.topcoder.com/stat?c=problem_statement&pm=10765&rd=14183
- c. State space reduction
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=10902
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=3001
- ■http://www.topcoder.com/stat?c=problem_statement&pm=8605&rd=12012&rm=26919 9&cr=7581406
- d. Solving in the reverse easier characterizations looking from the end
 - ■http://www.spoj.pl/problems/MUSKET/
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=5908
- e. Counting/optimizing arrangements satisfying some specified properties
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=8306
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=7849
- f. Strategies and expected values
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=10765&rd=14183
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=10806
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=7828
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=7316
- g. DP on probability spaces
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=7422
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=2959
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=10335
- h. DP on trees
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=10800
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=10737
 - http://www.topcoder.com/stat?c=problem_solution&rm=266678&rd=10958&pm=8266

&cr=7581406

- i. Symmetric characterization of DP state
 - ■http://www.topcoder.com/stat?c=problem_statement&pm=8610
- j. A good collection of problems
 - http://codeforces.com/blog/entry/325
 - ■http://problemclassifier.appspot.com/index.jsp?search=dp&usr=

Greedy:

- \triangleright Maximum Sum 2D in O(n^3)
- ➤ Maximum Rectangle O(n^2)

Number Theory:

- a. Chinese remainder theorem
 - Suggested Reading

- 1.From Cormen
- 2. 1.6 from Number Theory by SY Yan
- Problems
- 1.Project Euler 271
- 2.http://www.topcoder.com/stat?c=problem_statement&pm=10551&rd=13903
- b. Logarithmic Exponentiation
 - Suggested Reading -

1.http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=primalityTesting

- c. Integer Factorization
 - Naive $O(\operatorname{sqrt}(n))$ method
 - Pollard Rho factorization
 - Suggested Reading
 - 1. 2.3 from Number Theory SY Yan
 - 2. 31.9 Cormen
 - Problems –
 - 1.http://www.topcoder.com/stat?c=problem_statement&pm=2986&rd=5862
 - 2.http://www.spoj.pl/problems/DIVSUM2/
 - 3.http://www.topcoder.com/stat?c=problem_statement&pm=4481&rd=6538
- d. Stirling numbers
- e. Wilson theorem
 - nCr % p in O(p) preprocess and O(log n) query
- f. Lucas Theoreml. Suggested Reading for Number Theory -
 - ■Number theory for computing by Song Y Yan [Simple book describing concepts in details]
 - ■Concepts are also superficially covered in Chapter 31 of Introduction to Algorithms by Cormen
 - http://www.codechef.com/wiki/tutorial-number-theory
 - ■http://www.algorithmist.com/index.php/Category:Number_Theorym.

Problems on Number Theory -

- ■http://www.algorithmist.com/index.php/Category:Number Theory
- ■http://problemclassifier.appspot.com/index.jsp?search=number&usr=9.

Math (Probability, Counting, Game Theory, Group Theory, Generating functions, Permutation Cycles, Linear Algebra)

- a. Probability:
 - ■Special discrete and continuous probability distributions
 - 1. Bernoulli, Binomial, Poisson, normal distribution
 - 2. Suggested Problem
 - a. http://acm.sgu.ru/problem.php?contest=0&problem=498
 - Suggested Readings
 - 1. Cormen appendix C (very basic)
 - 2. Topcoder probabilty tutorial

http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=probabilities

- 3. http://en.wikipedia.org/wiki/Random_variable
- 4. http://en.wikipedia.org/wiki/Expected_value
- 5. William Feller, An introduction to probability theory and its applications

b. Counting

- Special numbers
- 1.Suggested reading
 - Stirling, eurlerian, harmonic, bernoulli, fibonnacci numbers
 - a. http://en.wikipedia.org/wiki/Stirling number
 - b. http://en.wikipedia.org/wiki/Eulerian numbers
 - c. http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
 - d. http://en.wikipedia.org/wiki/Bernoulli number
 - e. http://en.wikipedia.org/wiki/Fibonnaci_numbersf.Concrete mathematics by

Knuth

- 2. Suggested problems
 - a. http://www.topcoder.com/stat?c=problem_statement&pm=1643
 - b. http://www.topcoder.com/stat?c=problem_statement&pm=8202&rd=11125
 - c. http://www.topcoder.com/stat?c=problem_statement&pm=8725
 - d. http://www.topcoder.com/stat?c=problem_statement&pm=2292&rd=10709
- ■Advanced counting techniques
 - Polya counting, burnsides lemma
- 1. Suggested reading
 - a. http://en.wikipedia.org/wiki/Burnside's_lemma
 - b. http://petr-mitrichev.blogspot.com/2008/11/burnsides-lemma.html
- 2. Suggested Problems
 - a. http://www.topcoder.com/stat?c=problem_statement&pm=9975
 - b. http://www.spoj.pl/problems/TRANSP/

- c. Game theory
 - ■Basic principles and Nim game
 - 1. Sprague grundy theorem, grundy numbers
 - 2. Suggested readings
 - a.http://en.wikipedia.org/wiki/Sprague%E2%80%93Grundy_theorem
 - b.http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=algorithmGames
 - c.http://www.ams.org/samplings/feature-column/fcarc-games1
 - d.http://www.codechef.com/wiki/tutorial-game-theory
 - 3. Suggested problems
 - a. http://www.topcoder.com/stat?c=problem_statement&pm=3491&rd=6517
 - b. http://www.topcoder.com/stat?c=problem_statement&pm=3491&rd=6517
 - Hackenbush
 - 1. Suggested readings
 - a. http://en.wikipedia.org/wiki/Hackenbush
 - b. http://www.ams.org/samplings/feature-column/fcarc-partizan1
 - 2. Suggested problems
 - a. http://www.cs.caltech.edu/ipsc/problems/g.html
 - b. http://www.spoj.pl/problems/PT07A/
- d. Linear Algebra
 - Matrix Operations
- 1.Matrix transformations [Transpose, Rotation of Matrix, Representing Linear transformations using matrix]
 - a. Suggested Reading
 - i. Linear Algebra By Kenneth Hoffman Section 3.1,3.2,3.4,3.7
 - b. Problems
 - i. http://www.topcoder.com/stat?c=problem_statement&pm=6877
 - ii. JPIX on Spoj
- 2.Determinant, Rank and Inverse of Matrix [Gaussean Elimination, Gauss Jordan Elimination]
 - a. Suggested Reading
 - i. Cormen
 - ii. Linear Algebra by Kenneth Chapter 1
 - b. Problems
 - i. http://www.topcoder.com/stat?c=problem_statement&pm=8174
 - ii. http://www.topcoder.com/stat?c=problem_statement&pm=6407&rd=9986
 - iii. http://www.topcoder.com/stat?c=problem_statement&pm=8587
 - iv. HIGH on Spoj

- 4. Solving system of linear equations
 - a. Suggested Reading
 - i. Cormen
 - ii. Linear Algebra by Kenneth Chapter 1
 - b.Problems -
 - i.http://www.topcoder.com/stat?c=problem_statement&pm=3942&rd=6520
- 5. Using matrix exponentiation to solve recurrences
 - a. Suggested Reading
 - i. http://www.topcoder.com/tc?module=Static&d1=features&d2=010408
 - b. Problems
 - i. REC, RABBIT1, PLHOP on spoj
- ii.http://www.topcoder.com/stat?c=problem_statement&pm=6386, http://www.topcoder.com/stat?c=problem_statement&pm=7262,

http://www.topcoder.com/stat?c=problem_statement&pm=6877

- 6. Eigen values and Eigen vectors
 - a. Problems

i.http://www.topcoder.com/stat?c=problem_statement&pm=2423&rd=4780

- e. Permutation cycles
 - Suggested Reading
 - 1. Art of Computer Programming by Knuth Vol. 3
 - Problems
 - 1. ShuffleMethod, Permutation and WordGame on topcoder.

f. Group Theory

- Bernside Lemma, Polias theorem
- 1. Suggested Reading
 - a. Hernstein's topics in algebra
 - b. http://petr-mitrichev.blogspot.com/2008/11/burnsides-lemma.html
- 2. Problems
 - a. TRANSP on spoj
 - b. http://www.topcoder.com/stat?c=problem_statement&pm=9975
- g. Generating functions
 - Suggested Reading
 - 1. Herbert Wilf's generating functionology
 - 2. Robert Sedgewick and Flajoulet's Combinatorial analysis

Data Structures.

- i. Basic
 - a. Hash Tables:
 - Problems
 - 1. https://www.spoj.pl/problems/HASHIT/
 - 2. https://www.spoj.pl/problems/CUCKOO/
 - Reading: CLRS: Chapter 11, Mark Allen Weies Chapter 5

ii. Advanced

- a. Interval trees / Segment Trees
 - **■**Problems
 - 1.https://www.spoj.pl/problems/ORDERS/
 - 2.https://www.spoj.pl/problems/FREQUENT/
 - Reading
- b. Fenwick (Binary Indexed) trees
 - ■Problems
 - 1.https://www.spoj.pl/problems/MATSUM/
 - Reading: http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=binaryIndexedTrees
- c. Disjoint data structures
 - ■Problems
 - 1.https://www.spoj.pl/problems/BLINNET/
 - 2.https://www.spoj.pl/problems/CHAIN/
 - ■Reading:
 - 1. http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=disjointDataStructure
 - 2. Mark Allen Weies Chapter 8
- d. Range minimum Query (RMQ)
 - Problems
 - 1.https://www.spoj.pl/problems/GSS1/
 - Readinghttp://www.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAnce stor
- e. Customized interval/segment trees (Augmented DS)
 - Problems
 - 1.https://www.spoj.pl/problems/GSS3/
 - 2.https://www.spoj.pl/problems/RRSCHED/
 - Reading: CLRS: Chapter 14 (augmented DS)
- f. AVL Trees
 - ■Problems1.https://www.spoj.pl/problems/ORDERS/
- g. BST & Variation
- h. Least Common Ancestor

- iii. Miscellaneous [if possible]
 - a. Splay Trees
 - b. B/B+ Trees
 - c. k-d Trees
 - d. Red-black Trees
 - e. Skip List
 - f. Binomial/Fibonacci heaps

iv. Exercices

- 1. https://www.spoj.pl/problems/LAZYPROG/ (Hint: Heaps)t
- 2. https://www.spoj.pl/problems/HELPR2D2/(Hint: Interval Trees)
- 3. https://www.spoj.pl/problems/SAM/(Hint: Heaps)
- 4. https://www.spoj.pl/problems/PRHYME/(Hint: Trie)
- 5. https://www.spoj.pl/problems/HEAPULM/(Hint: Interval Trees)
- 6. https://www.spoj.pl/problems/CORNET/(Hint: Disjoint)
- 7. https://www.spoj.pl/problems/EXPAND/
- 8. https://www.spoj.pl/problems/WPUZZLES/
- 9. https://www.spoj.pl/problems/LIS2/

Search Techniques/Bruteforce writing techniques/Randomized algorithms:

- a. Backtracking [Beginner].
 - ■problems-
 - 1. Sudoku Problem
 - 2. Tiling Problem.
 - 3. 15 puzzle.
- b. Dancing Links and Algorithm X given by Knuth [Advanced]
 - ■problems PRLGAME, SUDOKU, NQUEEN on SPOJ
 - Suggested reading -
 - 1. http://www-cs-faculty.stanford.edu/~uno/papers/dancing-color.ps.gzc.
- c. Hill Climbing [Advanced].
- d. Regular Iteration to reach a fixed point [Advanced].
 - ■Newton-Raphson method to find root of a mathematical function.
 - ■Iterations to solve linear non-homogeneous system of equations.
- e. Min-max algorithm