Training Neural Network Deep Learning (DSE316/616)

Vinod K Kurmi Assistant Professor, DSE

Indian Institute of Science Education and Research Bhopal

Aug 08, 2022

Disclaimer

- Much of the material and slides for this lecture were borrowed from
 - Bernhard Schölkopf's MLSS 2017 lecture,
 - Tommi Jaakkola's 6.867 class,
 - CMP784: Deep Learning Fall 2021 Erkut Erdem Hacettepe University
 - Fei-Fei Li, Andrej Karpathy and Justin Johnson's CS231n class
 - Hongsheng Li's ELEG5491 class

- Machine learning is 'Function Estimation' .
- Assumptions: y = f(x).
- Given: $D = \{(x_1^{train}, y_1), (x_2^{train}, y_2), ...(x_n^{train}, y_n)\}.$

- Machine learning is 'Function Estimation'.
- Assumptions: y = f(x).
- Given: $D = \{(x_1^{train}, y_1), (x_2^{train}, y_2), ...(x_n^{train}, y_n)\}.$

Not a function

A function

- Machine learning is 'Function Estimation'.
- Assumptions: y = f(x).
- Given: $D = \{(x_1^{train}, y_1), (x_2^{train}, y_2), ...(x_n^{train}, y_n)\}.$

Not a function

A function

 Example of Image classification problem and challenges i.e : viewpoint variation, illumination, occlusion etc.

Suppose: 3 training examples, 3 classes. With some W the scores are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	10.9

Multiclass SVM loss:

• Given an example $\{(x_i, y_i)\}$ where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$\mathcal{L}_i = \sum_{i
eq j} extit{max}(0, s_j - s_{y_i} + 1)$$

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_i$$

$$L = (2.9 + 0 + 10.9)/3$$

Previous Class: Recap of Perceptron

Neuron preactivations (or input activation)

$$a(x) = b + \sum_{i} w_{i} x_{i} = w^{T} X$$

Neuron output activation:

$$h(x) = g(a(x)) = g(b + \sum_{i} w_{i}x_{i})$$

where w are the weights (parameters) b is ht bias term $g(\cdot)$ is the activation function

Previous Class: Recap of Perceptron

Neuron preactivations (or input activation)

$$a(x) = b + \sum_{i} w_{i}x_{i} = w^{T}X$$

Neuron output activation:

$$h(x) = g(a(x)) = g(b + \sum_{i} w_{i}x_{i})$$

where w are the weights (parameters) b is ht bias term g(.) is the activation function

- Linear Activation Function
- Sigmoid
- Hyperbolic Tangent (tanh) Activation Function
- ReLu

Multi-Output Perceptron

- Linear Activation Function
- Sigmoid
- Hyperbolic Tangent (tanh) Activation Function
- ReLu

Multi-Output Perceptron

- Linear Activation Function
- Sigmoid
- Hyperbolic Tangent (tanh) Activation Function
- ReLu

Multi-Output Perceptron

- Linear Activation Function
- Sigmoid
- Hyperbolic Tangent (tanh) Activation Function
- ReLu

Multi-Output Perceptron

- Linear Activation Function
- Sigmoid
- Hyperbolic Tangent (tanh) Activation Function
- ReLu

Multi-Output Perceptron

Previous Class: Multi-Layer Perceptron (MLP)

- Consider a network with L hidden layers
 - layer pre-activation for k>1

$$a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}(x)$$

 hidden layer activation from 1 to L

$$h^{(k)}(x) = g(a^{(k)}(x))$$

 output layer activation (k=L+1)

$$h^{(L+1)}(x) = o(a^{(L+1)}(x)) = f(x)$$

$$(\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x})$$

- Temperature: -20 F
- Wind Speed: 45 mph

• Temperature: -20 F

• Wind Speed: 45 mph

Quantifying Loss

Quantifying Loss

Quantifying Loss

Total Loss

<u>Predicted</u>	<u>Actual</u>
[]
0.05	1
0.02	0
0.96	1
0.35	1
]]

$$J(\theta) = \frac{1}{N} \sum_{i} \ell(\underbrace{f(\mathbf{x}^{(i)}; \theta)}_{\text{Predicted}}, \underbrace{y^{(i)}}_{\text{Actual}})$$

Total Loss

$$J(\theta) = \frac{1}{N} \sum_{i} \ell(\underbrace{f(\mathbf{x}^{(i)}; \theta)}_{\text{Predicted}}, \underbrace{y^{(i)}}_{\text{Actual}})$$

Binary Cross Entropy Loss

$$\mathcal{J}_{cross-entropy}(\theta) = \frac{1}{N} \sum_{i} y^{(i)} log(f(\mathbf{x}^{(i)}; \theta) + (1 - y^{(i)}) log(1 - f(\mathbf{x}^{(i)}; \theta))$$

- For classification problems with a softmax output layer.
- Maximize log-probability of the correct class given an input

Mean Square Error Loss

$$\mathcal{J}_{MSE}(\theta) = \frac{1}{N} \sum_{i} (f(\mathbf{x}^{(i)}; \theta) - y^{(i)})^{2}$$

Training

$$\mathcal{J}(\theta) = \frac{1}{N} \sum_{i} I(\underbrace{f(\mathbf{x}^{(i)}; \theta)}_{\text{Predicted}}, \underbrace{y^{(i)}}_{\text{Actual}})$$
$$\theta = W1, W2, W3...$$

- Learning is cast as optimization.
 - For classification problems, we would like to minimize classification error
 - Loss function can sometimes be viewed as a surrogate for what we want to optimize (e.g. upper bound)

Loss is a function of the model's parameters

Vinod K Kurmi (IISERB)

Stochastic Gradient Descent (SGD)

- Initialize θ randomly
- For N Epochs
 - For each training example (x, y):
 - Compute Loss Gradient: $\frac{\partial \mathcal{J}(\theta)}{\partial \theta}$
 - Update θ with update rule: $\theta = \theta \eta \frac{\partial \mathcal{J}(\theta)}{\partial \theta}$

Gradient Descent (SGD)

- Initialize θ randomly
- For N Epochs
 - For each training example (x, y):
 - Compute Loss Gradient: $\frac{\partial \mathcal{J}(\theta)}{\partial \theta}$
 - Update θ with update rule: $\theta = \theta \eta \frac{\partial \mathcal{J}(\theta)}{\partial \theta}$

- Initialize θ randomly
- For N EpochsFor each training batch

- More accurate estimation of gradient
 - Smoother convergence
 - Allows for larger learning rates
- Minibatches lead to fast training!
 - Can parallelize computation

- Initialize θ randomly
- For N Epochs
 - For each training batch $\{(x_0, y_0), (x_1, y_1), ...(x_B, y_B):$
 - Compute Loss Gradient: $\frac{\partial \mathcal{J}(\theta)}{\partial z(\theta)} = \frac{1}{2} \sum_{i} \frac{\partial \mathcal{J}(\theta)}{\partial z(\theta)}$
 - Update θ with update rule: $\theta = \theta n \frac{\partial \mathcal{J}(\theta)}{\partial \theta}$

- More accurate estimation of gradient
 - Smoother convergence
 - Allows for larger learning rates
- Minibatches lead to fast training!
 - Can parallelize computation

- Initialize θ randomly
- For N Epochs
 - For each training batch $\{(x_0, y_0), (x_1, y_1), ...(x_B, y_B):$
 - Compute Loss Gradient: $\frac{\partial \mathcal{J}(\theta)}{\partial \theta} = \frac{1}{B} \sum_{i} \frac{\partial \mathcal{J}_{i}(\theta)}{\partial \theta}$
 - Update θ with update rule: $\theta = \theta \eta \frac{\partial \mathcal{J}(\theta)}{\partial \theta}$

- More accurate estimation of gradient
 - Smoother convergence
 - Allows for larger learning rates
- Minibatches lead to fast training!
 - Can parallelize computation

- Initialize θ randomly
- For N Epochs
 - For each training batch $\{(x_0, y_0), (x_1, y_1), ...(x_B, y_B):$

Compute Loss

- Gradient: $\frac{\partial \mathcal{J}(\theta)}{\partial \theta} = \frac{1}{R} \sum_{i} \frac{\partial \mathcal{J}_{i}(\theta)}{\partial \theta}$ • Update θ with update

- More accurate estimation of gradient
 - Smoother convergence
 - Allows for larger learning rates
- Minibatches lead to fast training!
 - Can parallelize computation

- Initialize θ randomly
- For N Epochs
 - For each training batch $\{(x_0, y_0), (x_1, y_1), ...(x_B, y_B):$
 - Compute Loss Gradient: $\frac{\partial \mathcal{J}(\theta)}{\partial \theta} = \frac{1}{B} \sum_{i} \frac{\partial \mathcal{J}_{i}(\theta)}{\partial \theta}$
 - Update θ with update rule: $\theta = \theta \eta \frac{\partial \mathcal{J}(\theta)}{\partial \theta}$

- More accurate estimation of gradient
 - Smoother convergence
 - Allows for larger learning rates
- Minibatches lead to fast training!
 - Can parallelize computation

- Algorithm that performs updates after each example
 - initialize $\theta = \{ W^{(1)}, b^{(1)}...W^{(L+1)}, b^{(L+1)} \}$
 - for *N* iterations
 - for each training example $(x^{(i)}, y^{(i)})$ or batch $\Delta = \nabla_{\theta} \ell(f(x^{(i)}; \theta), y^{(i)})$
- To apply this algorithm to neural network training, we need
 - the loss function $\ell(f(x^{(i)};\theta),y^{(i)})$
 - ullet a procedure to compute the parameter gradients $abla_{ heta}\ell(f(x^{(t)}; heta),y^{(t)})$

- Algorithm that performs updates after each example
 - initialize $\theta = \{W^{(1)}, b^{(1)}...W^{(L+1)}, b^{(L+1)}\}$
 - for *N* iterations
 - for each training example $(x^{(i)}, y^{(i)})$ or batch $\Delta = \nabla_{\theta} \ell(f(x^{(i)}; \theta), y^{(i)})$
- To apply this algorithm to neural network training, we need
 - the loss function $\ell(f(x^{(j)};\theta),y^{(j)})$
 - ullet a procedure to compute the parameter gradients $abla_{ heta}\ell(f(x^{(t)}; heta),y^{(t)})$

Vinod K Kurmi (IISERB)

- Algorithm that performs updates after each example
 - initialize $\theta = \{ W^{(1)}, b^{(1)} ... W^{(L+1)}, b^{(L+1)} \}$
 - for N iterations
 - for each training example $(x^{(i)}, y^{(i)})$ or batch $\Delta = \nabla_{\theta} \ell(f(x^{(i)}; \theta), y^{(i)})$
- To apply this algorithm to neural network training, we need
 - the loss function $\ell(f(x^{(i)};\theta),y^{(i)})$
 - ullet a procedure to compute the parameter gradients $abla_{ heta}\ell(f(x^{(j)}; heta),y^{(j)})$

- Algorithm that performs updates after each example
 - initialize $\theta = \{ W^{(1)}, b^{(1)} ... W^{(L+1)}, b^{(L+1)} \}$
 - for N iterations
 - for each training example $(x^{(i)}, y^{(i)})$ or batch $\Delta = \nabla_{\theta} \ell(f(x^{(i)}; \theta), y^{(i)})$
- To apply this algorithm to neural network training, we need
 - a procedure to compute the parameter gradients $\nabla_{\theta} \ell(f(x^{(i)}; \theta), y^{(i)})$

Vinod K Kurmi (IISERB)

- Algorithm that performs updates after each example
 - initialize $\theta = \{ W^{(1)}, b^{(1)} ... W^{(L+1)}, b^{(L+1)} \}$
 - for N iterations
 - for each training example $(x^{(i)}, y^{(i)})$ or batch $\Delta = \nabla_{\theta} \ell(f(x^{(i)}; \theta), y^{(i)})$
- To apply this algorithm to neural network training, we need
 - the loss function $\ell(f(x^{(i)};\theta),y^{(i)})$
 - a procedure to compute the parameter gradients $\nabla_{\theta} \ell(f(x^{(i)}; \theta), y^{(i)})$

- Algorithm that performs updates after each example
 - initialize $\theta = \{ W^{(1)}, b^{(1)}...W^{(L+1)}, b^{(L+1)} \}$
 - for N iterations
 - for each training example $(x^{(i)}, y^{(i)})$ or batch $\Delta = \nabla_{\theta} \ell(f(x^{(i)}; \theta), y^{(i)})$
- To apply this algorithm to neural network training, we need
 - the loss function $\ell(f(x^{(i)};\theta),y^{(i)})$
 - a procedure to compute the parameter gradients $\nabla_{\theta} \ell(f(x^{(i)}; \theta), y^{(i)})$

- Algorithm that performs updates after each example
 - initialize $\theta = \{ W^{(1)}, b^{(1)}...W^{(L+1)}, b^{(L+1)} \}$
 - for N iterations
 - for each training example $(x^{(i)}, y^{(i)})$ or batch $\Delta = \nabla_{\theta} \ell(f(x^{(i)}; \theta), y^{(i)})$
- To apply this algorithm to neural network training, we need
 - the loss function $\ell(f(x^{(i)};\theta),y^{(i)})$
 - a procedure to compute the parameter gradients $\nabla_{\theta} \ell(f(x^{(i)}; \theta), y^{(i)})$

- A family of parametric, non-linear and hierarchical representation learning functions
- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$ • x: input • θ_l : parameter of layer l• $a_L = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y)\in(X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

- A family of parametric, non-linear and hierarchical representation learning functions
- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y)\in(X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

- A family of parametric, non-linear and hierarchical representation learning functions
- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - *x*: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y)\in(X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

- A family of parametric, non-linear and hierarchical representation learning functions
- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y) \in (X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

- A family of parametric, non-linear and hierarchical representation learning functions
- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y) \in (X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

- A family of parametric, non-linear and hierarchical representation learning functions
- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y) \in (X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

- A neural network model is a series of hierarchically connected functions
- The hierarchy can be very, very complex

- A neural network model is a series of hierarchically connected functions
- The hierarchy can be very, very complex

- A neural network model is a series of hierarchically connected functions
- The hierarchy can be very, very complex

- A neural network model is a series of hierarchically connected functions
- The hierarchy can be very, very complex

Vinod K Kurmi (IISERB)

- A module is a building block for our network
- Each module is an object/function a = h(x; θ) that
 - Contains trainable parameters θ
 - Receives as an argument an input x
 - And returns an output a based on the activation function h(...)
- The activation function should be (at least) first order differentiable (almost) everywhere
- For easier/more efficient backpropagation
 - store module input
 - easy to get module output fas
 - easy to compute derivatives

- A module is a building block for our network
- Each module is an object/function a = h(x; θ) that
 - Contains trainable parameters θ
 - Receives as an argument an input x
 - And returns an output a based on the activation function h(...)
- The activation function should be (at least) first order differentiable (almost) everywhere
- For easier/more efficient backpropagatio
 - store module input
 - easy to get module output fast
 - easy to compute derivatives

- A module is a building block for our network
- Each module is an object/function a = h(x; θ) that
 - Contains trainable parameters θ
 - Receives as an argument an input >
 - And returns an output a based on the activation function h(...)
- The activation function should be (at least) first order differentiable (almost) everywhere
- For easier/more efficient backpropagatio
 - store module input
 - easy to get module output fas
 - easy to compute derivatives

- A module is a building block for our network
- Each module is an object/function a = h(x; θ) that
 - Contains trainable parameters θ
 - Receives as an argument an input x
 - And returns an output a based on the activation function h(...)
- The activation function should be (at least) first order differentiable (almost) everywhere
- For easier/more efficient backpropagatio
 - store module input
 - easy to get module output fast
 - easy to compute derivatives

- A module is a building block for our network
- Each module is an object/function a = h(x; θ) that
 - Contains trainable parameters θ
 - Receives as an argument an input x
 - And returns an output a based on the activation function h(...)
- The activation function should be (at least) first order differentiable (almost) everywhere
- For easier/more efficient backpropagation
 store module input
 - easy to get module output fast
 - easy to compute derivatives

- A module is a building block for our network
- Each module is an object/function a = h(x; θ) that
 - ullet Contains trainable parameters heta
 - Receives as an argument an input x
 - And returns an output a based on the activation function h(...)
- The activation function should be (at least) first order differentiable (almost) everywhere
- For easier/more efficient backpropagation
 store module input
 easy to get module output fast

- A module is a building block for our network
- Each module is an object/function a = h(x; θ) that
 - Contains trainable parameters θ
 - Receives as an argument an input x
 - And returns an output a based on the activation function h(...)
- The activation function should be (at least) first order differentiable (almost) everywhere
- For easier/more efficient backpropagation
 - store module input
 - easy to get module output fas
 - easy to compute derivatives

- A module is a building block for our network
- Each module is an object/function a = h(x; θ) that
 - Contains trainable parameters θ
 - Receives as an argument an input x
 - And returns an output a based on the activation function h(...)
- The activation function should be (at least) first order differentiable (almost) everywhere
- For easier/more efficient backpropagation
 - store module input
 - easy to get module output fas
 - easy to compute derivatives

- A module is a building block for our network
- Each module is an object/function a = h(x; θ) that
 - Contains trainable parameters θ
 - Receives as an argument an input x
 - And returns an output a based on the activation function h(...)
- The activation function should be (at least) first order differentiable (almost) everywhere
- For easier/more efficient backpropagation
 - store module input
 - easy to get module output fast
 - easy to compute derivatives

- A module is a building block for our network
- Each module is an object/function a = h(x; θ) that
 - Contains trainable parameters θ
 - Receives as an argument an input x
 - And returns an output a based on the activation function h(...)
- The activation function should be (at least) first order differentiable (almost) everywhere
- For easier/more efficient backpropagation
 - store module input
 - easy to get module output fast
 - easy to compute derivatives

- A neural network is a composition of modules (building blocks)
- Any architecture works
- If the architecture is a feedforward cascade, no special care
- If acyclic, there is right order of computing the forward computations
- If there are loops, these form **recurrent** connections (revisited later

Vinod K Kurmi (IISERB)

- A neural network is a composition of modules (building blocks)
- Any architecture works
- If the architecture is a feedforward cascade, no special care
- If acyclic, there is right order of computing the forward computations
- If there are loops, these form **recurrent** connections (revisited later

- A neural network is a composition of modules (building blocks)
- Any architecture works
- If the architecture is a feedforward cascade, no special care
- If acyclic, there is right order of computing the forward computations
- If there are loops, these form recurrent connections (revisited later

Vinod K Kurmi (IISERB)

- A neural network is a composition of modules (building blocks)
- Any architecture works
- If the architecture is a feedforward cascade, no special care
- If acyclic, there is right order of computing the forward computations
- If there are loops, these form **recurrent** connections (revisited later

Vinod K Kurmi (IISERB)

Anything goes or do special constraints exist?

- A neural network is a composition of modules (building blocks)
- Any architecture works
- If the architecture is a feedforward cascade, no special care
- If acyclic, there is right order of computing the forward computations
- If there are loops, these form recurrent connections (revisited later

- Simply compute the activation of each module in the network a_l = h_l(x_l; θ_l) were x_l = a_{l-1}
 - We need to know the precise function behind each module h_i(...)
 - Recursive operations
 - One module's output is another's input
 - Steps
 - Visit modules one by one starting from the data input
 - Some modules might have several input from multiple modules
 - Compute modules activations with the right order
 - Make sure all the inputs computed at the right time

- Simply compute the activation of each module in the network $a_l = h_l(x_l; \theta_l)$ were $x_l = a_{l-1}$
 - We need to know the precise function behind each module h_I(...)
 - Recursive operations
 - One module's output is another's input
 - Steps
 - Visit modules one by one starting from the data input
 - Some modules might have several input from multiple modules
 - Compute modules activations with the right order
 - Make sure all the inputs computed at the right time

- Simply compute the activation of each module in the network $a_l = h_l(x_l; \theta_l)$ were $x_l = a_{l-1}$
 - We need to know the precise function behind each module h_I(...)
 - Recursive operations
 - One module's output is another's input
 - Steps
 - Visit modules one by one starting from the data input
 - Some modules might have several input from multiple modules
 - Compute modules activations with the right order
 - Make sure all the inputs computed at the right time

- Simply compute the activation of each module in the network $a_l = h_l(x_l; \theta_l)$ were $x_l = a_{l-1}$
 - We need to know the precise function behind each module h_I(...)
 - Recursive operations
 - One module's output is another's input
 - Steps
 - Visit modules one by one starting from the data input
 - Some modules might have several input from multiple modules
 - Compute modules activations with the right order
 - Make sure all the inputs computed at the right time

- Simply compute the activation of each module in the network $a_l = h_l(x_l; \theta_l)$ were $x_l = a_{l-1}$
 - We need to know the precise function behind each module h_I(...)
 - Recursive operations
 - One module's output is another's input
 - Steps
 - Visit modules one by one starting from the data input
 - Some modules might have several inputs from multiple modules
 - Compute modules activations with the right order
 - Make sure all the inputs computed at the right time

- Simply compute the activation of each module in the network $a_l = h_l(x_l; \theta_l)$ were $x_l = a_{l-1}$
 - We need to know the precise function behind each module h_I(...)
 - Recursive operations
 - One module's output is another's input
 - Steps
 - Visit modules one by one starting from the data input
 - Some modules might have several input from multiple modules
 - Compute modules activations with the right order
 - Make sure all the inputs computed at the right time

- Simply compute the activation of each module in the network $a_l = h_l(x_l; \theta_l)$ were $x_l = a_{l-1}$
 - We need to know the precise function behind each module h_I(...)
 - Recursive operations
 - One module's output is another's input
 - Steps
 - Visit modules one by one starting from the data input
 - Some modules might have several inputs from multiple modules
 - Compute modules activations with the right order
 - Make sure all the inputs computed at the right time

- Simply compute the activation of each module in the network $a_l = h_l(x_l; \theta_l)$ were $x_l = a_{l-1}$
 - We need to know the precise function behind each module h_I(...)
 - Recursive operations
 - One module's output is another's input
 - Steps
 - Visit modules one by one starting from the data input
 - Some modules might have several inputs from multiple modules
 - Compute modules activations with the right order
 - Make sure all the inputs computed at the right time

- Simply compute the activation of each module in the network $a_l = h_l(x_l; \theta_l)$ were $x_l = a_{l-1}$
 - We need to know the precise function behind each module h_I(...)
 - Recursive operations
 - One module's output is another's input
 - Steps
 - Visit modules one by one starting from the data input
 - Some modules might have several inputs from multiple modules
 - Compute modules activations with the right order
 - Make sure all the inputs computed at the right time

- Simply compute the gradients of each module for our data
 - We need to know the gradient formulation of each module $\partial h_I(x_I; \theta_I)$ w.r.t. their inputs x_I and parameters θ_I
- We need the forward computations first
 - Their result is the sum of losses for our input data
- Then take the reverse network (reverse connections) and traverse it backwards
- Instead of using the activation functions we use their gradients
- The whole process can be described very neatly and concisely with the backpropagation algorithm

- Simply compute the gradients of each module for our data
 - We need to know the gradient formulation of each module ∂h_l(x_l; θ_l) w.r.t. their inputs x_l and parameters θ_l
- We need the forward computations first
 Their result is the sum of losses for our input data
- Then take the reverse network (reverse connections) and traverse it backwards
- Instead of using the activation functions, we use their gradients
- The whole process can be described very neatly and concisely with the backpropagation algorithm

DSE316/616(Lec-3)

- Simply compute the gradients of each module for our data
 - We need to know the gradient formulation of each module $\partial h_l(x_l; \theta_l)$ w.r.t. their inputs x_l and parameters θ_l
- We need the forward computations first
 - Their result is the sum of losses for our input data
- Then take the reverse network (reverse connections) and traverse it backwards
- Instead of using the activation functions we use their gradients
- The whole process can be described very neatly and concisely with the backpropagation algorithm

- Simply compute the gradients of each module for our data
 - We need to know the gradient formulation of each module $\partial h_l(x_l; \theta_l)$ w.r.t. their inputs x_l and parameters θ_l
- We need the forward computations first
 - Their result is the sum of losses for our input data
- Then take the reverse network (reverse connections) and traverse it backwards
- Instead of using the activation functions, we use their gradients
- The whole process can be described very neatly and concisely with the backpropagation algorithm

- Simply compute the gradients of each module for our data
 - We need to know the gradient formulation of each module $\partial h_l(x_l; \theta_l)$ w.r.t. their inputs x_l and parameters θ_l
- We need the forward computations first
 - Their result is the sum of losses for our input data
- Then take the reverse network (reverse connections) and traverse it backwards
- Instead of using the activation functions we use their gradients
- The whole process can be described very neatly and concisely with the backpropagation algorithm

- Simply compute the gradients of each module for our data
 - We need to know the gradient formulation of each module $\partial h_l(x_l; \theta_l)$ w.r.t. their inputs x_l and parameters θ_l
- We need the forward computations first
 - Their result is the sum of losses for our input data
- Then take the reverse network (reverse connections) and traverse it backwards
- Instead of using the activation functions, we use their gradients
- The whole process can be described very neatly and concisely with the backpropagation algorithm

- Simply compute the gradients of each module for our data
 - We need to know the gradient formulation of each module $\partial h_l(x_l; \theta_l)$ w.r.t. their inputs x_l and parameters θ_l
- We need the forward computations first
 - Their result is the sum of losses for our input data
- Then take the reverse network (reverse connections) and traverse it backwards
- Instead of using the activation functions, we use their gradients
- The whole process can be described very neatly and concisely with the backpropagation algorithm

- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y) \in (X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

$$\theta^{(t+1)=\theta^t-\eta_t\frac{\partial \mathcal{L}}{\partial \theta_t}}$$

- we need the gradients $\frac{\partial \mathcal{L}}{\partial \theta_I}$; I = 1, 2, ... L
- How to compute the gradients for such a complicated function enclosing other functions, like $a_l(...)$

- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y)\in(X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

$$\theta^{(t+1)=\theta^t-\eta_t\frac{\partial \mathcal{L}}{\partial \theta_t}}$$

- we need the gradients $\frac{\partial \mathcal{L}}{\partial \theta_l}$; l=1,2,...L
- How to compute the gradients for such a complicated function enclosing other functions, like $a_l(...)$

- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y)\in(X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

$$\theta^{(t+1)=\theta^t-\eta_t\frac{\partial \mathcal{L}}{\partial \theta_t}}$$

- we need the gradients $\frac{\partial \mathcal{L}}{\partial \theta_I}$; I = 1, 2, ... L
- How to compute the gradients for such a complicated function enclosing other functions, like $a_l(...)$

- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y) \in (X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

$$\theta^{(t+1)=\theta^t-\eta_t\frac{\partial \mathcal{L}}{\partial \theta_t}}$$

- we need the gradients $\frac{\partial \mathcal{L}}{\partial \theta_l}$; l=1,2,...L
- How to compute the gradients for such a complicated function enclosing other functions, like $a_l(...)$

- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y) \in (X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

$$\theta^{(t+1)=\theta^t-\eta_t\frac{\partial \mathcal{L}}{\partial \theta_t}}$$

- we need the gradients $\frac{\partial \mathcal{L}}{\partial \theta_l}$; l=1,2,...L
- How to compute the gradients for such a complicated function enclosing other functions, like $a_l(...)$

- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y) \in (X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

$$\theta^{(t+1)=\theta^t-\eta_t\frac{\partial \mathcal{L}}{\partial \theta_t}}$$

- we need the gradients $\frac{\partial \mathcal{L}}{\partial \theta_I}$; I = 1, 2, ... L
- How to compute the gradients for such a complicated function enclosing other functions, like $a_l(...)$

- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y) \in (X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

$$\theta^{(t+1)=\theta^t-\eta_t\frac{\partial \mathcal{L}}{\partial \theta_t}}$$

- we need the gradients $\frac{\partial \mathcal{L}}{\partial \theta_l}$; l=1,2,...L
- How to compute the gradients for such a complicated function enclosing other functions, like $a_l(...)$

- $a_L(x; \theta_1, ..., \theta_L) = h_L(h_{L-1}(...h_1(x; \theta_1), \theta_{L-1}); \theta_L)$
 - x: input
 - θ_I : parameter of layer I
 - $a_l = h_l(x; \theta_l)$: (non)-linear function
- Given training corpus X, Y find optimal parameters

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y) \in (X,Y)} \ell(y, a_L(x; \theta_1, ..., \theta_L))$$

$$\theta^{(t+1)=\theta^t-\eta_t\frac{\partial \mathcal{L}}{\partial \theta_t}}$$

- we need the gradients $\frac{\partial \mathcal{L}}{\partial \theta_l}$; l=1,2,...L
- How to compute the gradients for such a complicated function enclosing other functions, like $a_l(...)$

backpropagation examples and optimizers

Next Class..