## Drahtlose Netzwerke

## 1.1.1 Grundlagen

Wireless Host (Drahtloser Teilnehmer): Endystem auf dem die Applikation läuft (stationär oder mobile), z.B. Smartphone, PC

Wireless Link (Drahtlose Verbindung): Verbindet Teilnehmer direkt oder per Basisstation (Abdeckung, Datenrate)

Basisstation (Base Station): Überträgt Datenpakete zwischen drahtgebundenem zu drahtlosem Netzwerk,

meist mit drahtgebundenem Netzwerk verbunden (WLAN Access Point, UMTS Basisstation)

Drahtloses Infrastruktur Netzwerk: Netzwerkteilnehmer sind über Basisstation mit dem Netz verbunden

Drahtloses Ad-Hoc Netzwerk: Keine Infrastruktur (Basisstationen), Teilnehme bilden das Netz selbst.

Nachteile: passive Teilnehmer haben trotzdem Stromverbrauch, eigene Daten landen auf fremden Mobiltelefonen und höhere Latenz

Single-Hop: Genau ein wireless Link

Multi-Hop: Übertragung geht über mehrere wireless Links in Folge

| Übliche Datenraten   |             | Single Hop    |                                      | Multiple Hops                                                            |  |
|----------------------|-------------|---------------|--------------------------------------|--------------------------------------------------------------------------|--|
|                      |             |               | Host verbindet sich mit Basisstation | Host muss möglicherweise durc                                            |  |
| GSM (2G)             | 0.56  Mb/s  | Infrastruktur | (Wifi, zellulare Netzwerke)          | mehrere drahtlose Geräte um sich mit dem Internet zu verbinden: Mesh Net |  |
| UMTS (3G)            | 4  Mb/s     |               | ,                                    |                                                                          |  |
| LTE (4G) und 802.11b | 5 - 11 Mb/s |               | und diese dann mit dem Internet      |                                                                          |  |
|                      |             |               |                                      | Keine Basisstation und auch                                              |  |
| 802.11ag             | 54  Mb/s    |               | Keine Basisstation und auch          | keine Verbindung zu weiterem                                             |  |
| 802.11n              | ,           | ' Keine       |                                      |                                                                          |  |
|                      | 200  Mb/s   |               | keine Verbindung zu weiterem         |                                                                          |  |

Beispiele für Single und Multi-Hop

# Infrastruktur Internet (z.B. Bluetooth) Internet. Muss durch mehrere drahtlose Geräte: MANET, VANET

## Herausforderungen bei drahtloser Übertragung

- Teilnehmer zeitweise nicht erreichbar (Funkloch)
- IP-Adresse ändert sich
- ullet Höhere Anzahl an Übertragungsfehlern durch Inteferenz (Störung durch andere Teilnehmer) oder Dämpfung ullet Bessere Fehlerbehandlung
- Kurzer Paketverlust führt bei TCP zu angeblicher Netzüberlastung (obwohl nur kurzzeitige Störung)
- Medium kann abgehört werden
- ullet Mehrwege-Ausbreitung: Signale werden an unterschiedlichsten Oberflächen reflektiert o Am Empfänger sowohl konstruktive als auch destruktive Überlagerung möglich

## ⇒ Funkkanal ist zeit- und ortsvariant!

**Modulationsarten:** Frequenz-, Amplituden- & Phasenmodulation, Quadraturamplitudenmodulation (QAM)  $\Rightarrow$  Kombination von Amplituden- und Phasenmodulation (QAM-8: 3 Bit pro Symbol), QAM-1024: 10 Bit pro Symbol).

Höhere Modulationsarten bieten höhere Übertragungsrate sind aber fehleranfälliger. Bei größerem Signal-Rausch-Abstand

(SNR - Stärke des Nutzsignals bezogen auf Störung) kann höhere Modulation eingesetzt werden da Kanal anscheinend nicht so stark gestört ( $QAM-16=4Mbps,\ QAM-256=8Mbps$ )

Bit-Error-Rate (BER): Wahrscheinlichkeit, dass ein fehlerhaftes Bit übertragen wird.

**Hidden Terminal Problem:** Teilnehmer A, B & C. A und B hören sich, B und C hören sich aber A und C hören sich nicht  $\rightarrow$  Bei Übertragung  $A \rightarrow B$  und  $C \rightarrow B$  stören sie sich unbewusst gegenseitig.

TODO: BEHEBUNG / VERMINDERUNG DURCH?

## Aufteilen eines Mediums:

- TDMA (Time Division Multiple Access)
  - 1. synchron: Jeder Teilnehmer hat festen Zeitslot, nur in diesem kann er senden
  - 2. asynchron: keine festen Zeitslot, jeder nutzt aktuellen Zeitslot wenn er Daten hat Absender wird in Header geschrieben

- FDMA (Frequency Division Multiple Access)
  - 1. Teilnehmer nutzen unterschiedliche Frequenzen
- CDMA (Code Division Multiple Access)
  - 1. Teilnehmer nutzen unterschiedliche Spreizcodes, Vorteil: Störungsunempfindlicher, Nachteil: Mehr Datenübertragung
  - 2. Zu übertragende Daten werden vom Sender mit Spreizcode multipliziert, Ergebnisbits  $\Leftrightarrow$  Chips
  - 3. Empfänger multipliziert empfangende Daten mit Spreizcode des Senders
  - 4. Teilnehmer senden zur gleichen Zeit im gleichen Band, Daten werden beim Empfänger durch bitweise Multiplikation mit Code zurückgewonnen
  - 5. Andere Teilnehmer wirken als zusätzliches Rauschen ( $\Rightarrow$  Umso mehr Teilnehmer umso geringerer SNR  $\Rightarrow$  Sendeleistung erhöhen)

#### CDMA - Beispiel zur Kodierung

Sender hat Spreizcode (1,1,1,-1,1,-1,-1,-1) und versendet Daten  $d_1=-1,d_0=1$ . Nach Multiplikation der Daten mit Spreizcode:  $Z_{1,m}=(-1,-1,-1,1,1,1,1), Z_{0,m}=(1,1,1,-1,1,-1,-1,-1)$ . Der Empfänger dekodiert folgendermaßen:  $\frac{\sum_{m=1}^{M}Z_{i,m}\cdot c_m}{M}$ . Dabei ist M Länge des Spreizcodes (in diesem Beispiel 8),  $c_m$  Spreizfaktor an der Stelle m,  $Z_{i,m}$  die gespreizten Daten, d.h:

$$d_1 = \frac{(-1)\cdot 1 + (-1)\cdot 1 + (-1)\cdot 1 + 1 \cdot (-1) + (-1)\cdot 1 + 1 \cdot (-1) + 1 \cdot (-1) + 1 \cdot (-1)}{M} = \frac{-8}{8} = -1$$

$$d_0 = \frac{1\cdot 1 + 1\cdot 1 + 1 \cdot 1 + (-1)\cdot (-1) + 1 \cdot 1 + (-1)\cdot (-1) + (-1)\cdot (-1) + (-1)\cdot (-1)}{M} = \frac{8}{8} = 1$$

Bei mehreren Sendern multipliziert der Empfänger das überlagerte Signal mit dem jeweiligen Spreizcode, da diese orthogonal zueinander sind, kommen die richtigen Daten des jeweiligen Senders wieder raus.

## 1.1.2 Wireless Local Area Networks

## Protokollstack:



802.11: '97, FHSS/DSSS, 1-2MBit/s, 2.4 GHz

**802.11b:** '99, DSSS, 1 - 11MBit/s, 2.4 GHz

**802.11n:** '09, OFDM/MIMO, 6 - 600MBit/s, 2.4 oder 5 GHz

802.11ac: '14, MU-MIMO, bis zu 6.93 GBit/s, 5 GHz

**802.11ay:** '19, 20 - 40 GBit/s, 60GHz

## Begriffe:

- Basic Service Set (BSS): Stationen die auf dem gleichen Übertragungskanal Daten austauschen
- Extended Service Set (ESS): Zusammenschluss mehrerer BSS zu Kommunikationsnetz, Roaming zwischen den BSS
- Service Service Set ID (SSID): Name des Netzwerkes
- Ad-Hoc Mode / Independent BSS (IBSS): Alle Stationen gleichberechtigt, kein Access Point
- Infrastructure BSS: Geräte kommunizieren über AP (=Übergang zu drahtgebundenem Netz)

# Kanäle:



- $\circ$  Bis zu 13 Kanäle mit je 5 MHz zwischen 2410 MHz 2483 MHz.
- Bei DSSS Kanalbreite = 22MHz, bei OFDM = 20 MHz / 40 MHz
   (ohne / mit Kanalbündelung). Störungsfreier Betrieb nur bei passendem
   Abstand (5 Kanäle bei DSSS).

Hierzu bitte auch das erste Übungsblatt vom Praktikum durchlesen!

Accesspoint sendet regelmäßig **Beacon Frames** mit SSID und MAC-Adresse. Wireless Stations scannen Kanäle nach diesen Frames, wählen verfügbaren AP (Einstellungen & Signalstärke) aus, führt Authentifizierung durch und erhält anschließend IP-Adresse per DHCP.

#### Passives Scannen

PC ist passiv, hört Kanal ab

APs senden Beacons

PC sendet Association Request an ausgewählten AP

AP sendet Association Response an PC

#### **Aktives Scannen**

PC sendet Probe Request

APs senden Probe Response

PC sendet Association Request an ausgewählten AP

AP sendet Association Response an PC

Keine Kollisionserkennung (Collision Detection (CD)) möglich  $\Rightarrow$  ACKs auf Schicht 2



- $\circ$  Sender wartet Zeitspanne DIFS (Distributed Coordination Function Interframe Spacing) während der Medium frei sein muss
- o Sender überträgt Daten (kein Collision Detection)
- $\circ$ Empfänger prüft CRC
- $\circ$  Empfänger sendet ACK falls CRC korrekt nach Wartezeit SIFS (Short Interframe Spacing) (SIFS < DIFS) um Senden eines normalen Frames dazwischen zu verhindern außerdem Umschalten von Empfangen auf Senden

## Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA):

- Sender lauscht (Carrier Sense) ob Medium frei (Dauer: 1 DIFS)
- Falls frei: random backoff im aktuellen Contention Window würfeln wenn mehrere Stationen gleiches DIFS abgewartet haben und es sonst zu Kollision käme. Nach Ablauf des random backoffs Daten übertragen
- Falls nicht frei: Warten bis Kanal frei, wenn Kanal länger als 1 DIFS frei, dann random backoff verringern & anschließend Daten senden
- Falls kein ACK erfolgt: Contention Window verdoppeln und Daten erneut senden
- Empfänger sendet ACK nach Ablauf eines SIFS bei korrekt erhaltenen Daten

Nachteile CSMA/CA: Senden dauert lange, Kollision wird nicht erkannt - ist sehr zeitaufwändig und sollte daher vermieden werden Besser eine Kollision bei kurzen Kontrollpaketen als bei langen Datenpaketen  $\Rightarrow$  RTS/CTS-Verfahren



WLAN Rahmenformat

(bridge)

# Ablauf:

- o Sender reserviert Kanal mit kurzem **Request-To-Send (RTS)**-Paket, Kollisionen möglich aber weniger schlimm da nur kleines Paket welches günstig erneut gesendet werden kann
- o Empfänger antwortet mit Clear-To-Send (CTS)
- $\circ$  Sender sendet Datenpaket
- ⇒ Andere Stationen empfangen RTS & CTS und berücksichtigen belegten Kanal
- $\Rightarrow$  Funktioniert auch bei  $Hidden\ Terminal\ da\ CTS\ empfangen\ wird$

|    | 2                | 2        | 6            | 6            | 6            | 2             | 6          | 0 - 2312    | 4      |  |
|----|------------------|----------|--------------|--------------|--------------|---------------|------------|-------------|--------|--|
|    | frame<br>control | duration | address<br>1 | address<br>2 | address<br>3 | seq<br>contro | address 4  | payload     | CRC    |  |
| F  | unktion          | ToDS     | Fi           | romDS        | Add. 1       | ı A           | Add. 2     | Add. 3      | Add. 4 |  |
| IB | SS               | 0        | 0            |              | destinat     | tion s        | source     | BSSID       | unused |  |
| To | AP               | 1        | 0            |              | BSSID        | s             | source     | destination | unused |  |
| Fr | om AP            | 0        | 1            |              | destinat     | tion E        | BSSID      | source      | Unused |  |
| W  | DS               | 1        | 1            |              | receive      | r tı          | ransmitter | destination | source |  |

- $\circ$  Max. 2313 Bytes an Nutzdaten
- o 3. Adresse erlaubt Umsetzung auf Ethernet-Rahmen
- WLAN-Reichweitenvergrößerung durch überlappende BSSs, IP-Adresse bleibt gleich da identisches Subnetz - nur AP ändert sich
- $\Rightarrow$ Switch ändert Port $\leftrightarrow$ IP-Zuordnung wenn sich Teilnehmer vom neuen AP meldet

Unterschied CSMA/CA $\leftrightarrow$ CSMA/CD: CSMA/CD bei Ethernet sendet JAM-Signal, CSMA/CA erkennt keine Kollision (versucht nur zu verhindern)

# 1.1.3 Personal Area Networks (PAN)

Drahtlos oder drahtgebundenes (Ad Hoc) Netzwerk von Kleingeräten, oft nur wenige Meter Reichweite.

#### Bluetooth

- o Mehrfachzugriff mit TDMA, Frequenzsprungverfahren (Kanalwechsel nach jedem Zeitslot ⇒ Robustheit gegen Störer)
- o Class 1: 100mW 100m Reichweite, o Class 2: 2.5mW 10m Reichweite, o Class 3: 1mW 1m Reichweite
- $\circ$ '<br/>99: Einführung, 732,2kbit/s $\circ$ '04: v2.0 mit bis 2.1Mbit/s<br/>  $\circ$ '16: v5.0 mit IoT Erweiterungen
- $\circ$  Ad Hoc Netzwerk (keine Infrastruktur nötig)  $\circ \le 8$  aktive &  $\le 255$  geparkte Geräte  $\circ$  Master gibt Zeit vor, gewährt Slaves, aktiviert geparkte

## Bluetooth Profile

Profil spezifiziert Anwendung von Bluetooth für bestimmten Zweck



- o AT Kommando: Kommando zur Modemsteuerung
- o Baseband: Basisband, Paketformate
- o **L2CAP:** Logical Link Control and Adaptation Protocl: Bietet verbindunsorientierte- und lose Dienste zwischen Baseband und höheren Schichten
- o MCAP: Multi-Channel Adaptation Protocol Stellt Kontrollkanal MCL und Datenkanäle MDL bereit
  - tellt Kontrollkanal MCL und Datenkanäle MDL bereit
- RFCOMM: Virtuelle, serielle Verbindungen, Emulation serieller Ports
   Geräte im HealthCare Bereich ursprünglich per RFCOMM angebunden
- ⇒'08 Verabschiedung von standardisiertem Health Device Profile
- ⇒'08 Verabschiedung von standardisiertem Health Device Projue
  Zwei Rollen: Source = Datenquelle, Sink = Empfänger (Smartphone)

Verbindungsauf- und abbau, Wiederaufbau abgebrochener Verbindungen

Sensoren (z.B. Pulsmesser, Thermometer) sollen lange Laufzeit ( $\Rightarrow$  geringer Stromverbrauch) aufweisen. Bluetooth 4.0 beinhaltet Bluetooth Smart (Low-Energy Profil auf Basis von einem Generic Attribute Profile (GATT)).

# ZigBee

- $\circ \ {\it Ziel:} \ {\it Drahtlose} \ {\it Übertragung} \ {\it bei} \ {\it geringem} \ {\it Stromverbrauch} \ ({\it geringe} \ {\it Datenraten:} \ 20 \ \ 250 {\it kbit/s}, \ {\it selten} \ {\it aktiv} \ ({\it low} \ {\it duty-cycle})).$
- $\circ$ Übertragen von Sensordaten, Heim- und Gebäude<br/>automatisierung
- $\circ$  **Endgerät:** Reduced Function Device RFD nur Teil des ZigBee Protokolls implementiert (geringere Kosten)
- o Router: Full Function Device FDD, kann Daten weiterleiten o Koordinator: Gibt zusätzliche Parameter vor, koordiniert das PAN

## 1.1.4 Zellulare Netzwerke

- $\circ \mathbf{1G:} \ \mathrm{Analog} \ (\mathrm{A/B/C\text{-}Netz}) \circ \mathbf{2G:} \ \mathrm{GSM} \ \mathrm{ab} \ '92, 2.5\mathrm{G} = \mathrm{GPRS}, 2.75\mathrm{G} = \mathrm{EDGE} \circ \mathbf{3G:} \ \mathrm{UMTS} \ \mathrm{ab} \ '03 \circ \mathbf{4G:} \ \mathrm{ab} \ '14 \ \mathrm{LTE} \circ \mathbf{5G} \ \mathrm{ab} \ '21, \ \mathrm{Latent} < 1\mathrm{ms}$
- $\circ \textbf{ Mobilfunkzelle:} \ Von \ Base \ Transceiver \ Station (BTS) \ abgedeckter \ Bereich \ \circ \ \textbf{Air-Interface:} \ Untere \ 2 \ Netzwerkschichten \ Mobile \ Station \ \Leftrightarrow BTS$

# Ressourcenzuteilung in der Zelle:

- o GSM: Kombination aus FDMA & TDMA, Spektrum wird in einzelne Frequenzkanäle, jeder Kanal wiederum in Zeitschlitze aufgeteilt
- $\circ$  UMTS: CDMA Verfahren Unterschiedlicher Code für unterschiedliche Nutzer

## 2G Netzwerkarchitektur (GSM):



- o Base Station Controller (BSC): übernimmt Ressourcenzuweisung und Mobilitätsmanagement in einem Base Station Subsystem (BSS)
- $\circ$  Mobile Switching Center (MSC): Anrufauf- und Abbau, Verbindung ins Festnetz, Mobilitätsmanagement
- $\circ$  Gateway-MSC: Vermittlungsfunktionen, Verbindung zu anderen Netzen bzw. Festnetz
- o PSTN: Public Switched Telephone Network



- o Mit GPRS-Komponenten erstmals paketvermittelte Datendienste
- verwendet bereits bestehende BTS mit
- Packet Control Unit (PCU): Kommuniziert über den BSC mit Endgerät und auch mit der SGSN, überwacht und verwaltet Datenpakete, Ressourcenverteilung
- o Serving GPRS Support Node (SGSN): Übernimmt Vermittlung der Datenpakete und die Funktion des VLR
- o **Gateway GPRS Support Node (GGSN):** Ist der Router, der das Mobilfunknetz mit dem Internet verbindet und die IP-Adresse zur Verfügung stellt
- Home Location Register (HLR): Datenbank mit Informationen zum Nutzer, enthält Rufnummer und zuletzt bekannten Aufenthaltsort
- $\circ$  Visitor Location Register (VLR): Datenbank mit Informationen zu allen Nutzern, die sich im vom MSC bedienten Bereich befinden
- o Sprachdaten laufen über  $BTS \Leftrightarrow BSC \Leftrightarrow MSC \Leftrightarrow G-MSC \Leftrightarrow Festnetz$
- $\circ$  Paketdaten laufen über  $BTS \Leftrightarrow BSC \Leftrightarrow PCU \Leftrightarrow SGSN \Leftrightarrow GGSN \Leftrightarrow Internet$

#### Mobilitätsmanagement:



- $\circ$ Nutzer kann sich zwischen Zellen verschiedener  $\mathit{MSCs},$  auch von anderen Providern, bewegen
- o Mobilgerät prüft im eingeschalteten Zustand, ob sich aktuelle Location Area ändert
- $\Rightarrow$  sendet Location Update mit neuer Area  $\Rightarrow$  Home Location Register (HLR) wird aktualisiert
- $\circ$  Eingehender Anruf: Befragung von HLR nach aktuellem Ort des Angerufenen über dessen temporäre Roaming-Nummer, anschließend Verbindungsaufbau über das VLR des MSC  $\Rightarrow$  Falls gerade keine Verbindung besteht: Broadcast-Nachricht über alle Basisstationen
- des jeweiligen MSC (Paging), Mobile meldet sich ggf., damit genaue Basisstation bekannt

# GSM Handover (= MSC/Inter-BSC Handover)

Mobilgerät wechselt bei bestehender Verbindung von einer Basisstation zur anderen.

 $\textbf{Ursachen:} \ \text{Bewegung des Nutzers (st\"{a}rkeres \ Signal \ eines \ anderen \ BSS), \ aktuelle \ Zelle \ \ddot{u}berlastet$ 

## Ablauf Inter-BSC Handover:

- Altes BSS informiert MSC über anstehendes Handover
- MSC reserviert Ressourcen zu neuer BSS
- Neue BSS reserviert Zeitslot (TDMA)
- $\bullet\,$  Neue BSS signalisiert an MSC und alte BSS Bereitschaft zum Handover
- Alte BSS weist Mobilgerät an, Handover zu neuer BSS durchzuführen
- Mobilgerät aktiviert Kanal in neuer BSS
- Mobilgerät bestätigt Handover an MSC, diese leitete Daten um
- MSC weist alte BSS an, Ressourcen des Mobilgeräts freizugeben

## Arten von Handover:

- Intra BSC: Aktuelle und neue Zelle gehörten zum selben BSC
- Inter BSC: Aktuelle und neue Zelle gehören zu unterschiedlichen BSC aber gleichen MSC
- $\bullet$  Inter MSC: Aktuelle und neue Zelle gehören zu unterschiedlichen MSC
- $\bullet$   $Subsequent\ Inter\ MSC$ : Teilnehmer wechselt nach  $Inter\ MSC$  in Zelle eines dritten MSC
- Subsequent Handback: Teilnehmer wechselt nach Inter MSC zurück in Gebiet des ersten MSC

#### Ablauf Inter-MSC Handover:



- $\circ$  Anker-MSC = erste MSC während eines Anrufs
- o Daten bzw. der Anruf wird zunächst an Anker-MSC geleitet
- $\circ$  Dann Weiterleitung zu aktueller MSC

# 3G Netzarchitektur:



- $\circ$  Mit UMTS '99 neues Air-Interface Universal Terrestrial Radio Access Network (UTRAN)
- o basierend auf Wideband-CDMA
- o Ab UMTS v4 Umstellung auf IP basierte Kommunikation (Sprache & Daten)

LTE & LTE Advanced (4G):

Umstellung auf Orthogonal Frequency Devision Multiplexing (OFDM): Übertragungstechnik mit flexibler Bandbreite zwischen 1.25 bis 20 MHz LTE-Endgerät muss Mehrantennenverfahren unterstützen (Multiple Input, Multiple Output MIMO), LTE-Netz rein paketbasiert (Sprache per VoIP)

# 1.1.5 Long Term Evolution (LTE, LTE-A)



- o LTE + 2 Releases: LTE Advanced 3 Gbit/s DL bzw. 1.5 Gbit/s UL, Bündelung bis zu 5 Carrier
- o LTE + 3/4 Releases: LTE Advanced Pro Bündelung von bis zu 32 Carriern, QAM-256,

LTE Narrow Band IoT,  ${\bf 5G}$  Standardisierung läuft

- o Packet Data Network Gateway: Internetschnittstelle
- $\circ$  Mobility Management Entity: Mobilitätsmanagement
- o Serving-Gateway: Weiterleitung von Nutzdaten ins Kernnetz
- $\circ$  Home Suscriber Service: entspricht HLR bei GSM
- o evolved Node-B (eNode-B): Basisstation

# $1.1.6 \, 5G$

Enhanced Mobile Broadband (eMBB): Hohe Datenraten, Massive Machine Type Communications (mMTC): IoT Anwendungen Ultra-Reliable and Low-Latency Communication (uRLLC): z.B. drahtlose Vernetzung in der Produktion 5G New Radio: Nutzung mehrerer Antennen (MIMO), mmWave-Bänder (24 - 30GHz), flexible und kürzere Slotzeiten (<1ms) Ziele: E2E Latenz < 1ms, 1000x höheres Datenvolumen, 10-100x mehr Geräte, 10-100x mehr typische Nutzerdatenraten Umsetzung: 5G Zellen mit LTE-Kernnetz (non-standalone), 2-3Gbit/s ⇒ 5G mit 5G-Kernnetz (standalone), mmWave Bänder

# 1.1.7 Zusammenfassung Drahtlose Netzwerke

 $Ersetzen \ der \ unteren \ 2 \ Schichten \ (Link- \ \& \ Physical-Layer) \ durch \ drahtlose \ Varianten \ \Rightarrow Auswirkungen \ auf \ obere \ Schichten \ minimal, \ aber:$ 

- $\Rightarrow \text{Fehlinterpretation von Paketverlusten auf drahtlosem Link von TCP führt zu Congestion Window Veringerrung} \Rightarrow \text{Datenrate sinkt}$
- $\Rightarrow$  Verzögerung durch Link-Layer Retransmission (Auswirkungen auf Echtzeitanwendungen), Drahtloser Link meist geringere Datenrate

## Security

# 1.2.1 Grundlagen

- o Vertraulichkeit: Nur Sender und rechtmäßige Empfänger sollen die Nachricht verstehen können
- o Integrität: Sicherstellen, dass Nachricht unverändert ist (ob durch Übertragungsfehler oder Angriff)
- o Authentifizierung: Sicherstellen, dass Kommunikationspartner derjenige ist, für den er sich ausgibt
- o Authorisierung: Nachweis von speziellen Rechten
- o Betriebssicherheit: Absicherung des Firmennetzes gegen Eingriffe von außen

# 1.2.2 Grundlagen der Kryptographie

#### Arten von Verschlüsselung

 $K_A$ : Schlüssel für Verschlüsselung,  $K_B$ : Schlüssel für Entschlüsselung, m: Klartext,  $K_A(m)$ : Ciphertext - Klartext verschlüsselt mit  $K_A$   $m = K_B(K_A(m))$ 

- $\bullet$  Symmetrisch:  $K_A$ identisch zu  $K_B,$  Verfahren z.B. AES
- Public Key: Paar unterschiedlicher Schlüssel:  $K_A = K_B^+$  und  $K_B^-$ , ein Schlüssel ist beiden bekannt (public key  $K_B^+$ ), der andere nur Empfänger (private key  $K_B^-$ ), Verfahren z.B. RSA

## Arten von Angriffen

- Cipher-Text only: Angreifer hat nur Geheimtext, entweder alle möglichen Schlüssel ausprobieren (brute force) oder statistische Analyse
- Known-Plaintext: Angreifer kennt Klar- und zugehörigen Geheimtext, kann Rückschlüsse auf Schlüssel ziehen
- Chosen-Plaintext: Angreifer kann Geheimtext zu selbstgewählten Klartext bekommen, Verschlüsselungsalgorithmus ggf. ausnutzbar

## Einfache symmetrische Verschlüsselungen

- Cesar-Chiffre: Verschiebung des Alphabets als Schlüssel, Abbildung des Klartextes auf verschobenes Alphabet ergibt Ciphertext
- $\bullet$  Substitutions-Chiffre: Schlüssel ist eine Abbildungsvorschrift (Buchstabe b wird abgebildet auf b')
- Blockchiffre: Verarbeitung des Klartextes in k-Bit großen Blöcken (d.h. Abbildung eines k-Bit Blocks auf k-Bit Geheimtext)

```
z.B. k = 3:000 \Rightarrow 110,001 \Rightarrow 111,010 \Rightarrow 101,011 \Rightarrow 100,100 \Rightarrow 011,101 \Rightarrow 010,110 \Rightarrow 000,111 \Rightarrow 001
```

Der Schlüssel ist die Abbildungstabelle, Anzahl möglicher Abbildungen:  $(2^k)!$ , d.h. für k=3 gibt es 8!, also 40320, Abbildungsmöglichkeiten  $\Rightarrow$  Heutige Blockchiffren (*DES*, *3DES*, *AES*) verwenden Funktionen um Abbildungen zu erzeugen da bereits kleine k riesige Tabellen erzeugen

# Cipher Block Chaining

- $\bullet$  Identischer Klartext produziert identischen Geheimtext
  - $\Rightarrow$  Rückschlüsse auf Schlüssel möglich, daher bitweise XOR-Operation mit zufälligem Bitmuster auf Klartext
- Identischer Klartext erzeugt nun anderen Geheimtext, Empfänger benötigt zum Entschlüsseln das zufällige Bitmuster
- Um nicht doppelt so viele Daten (Geheimtext + Zufallsmuster) versenden zu müssen wird Cipher Block Chaining angewandt
  - $\Rightarrow$  Nur das erste zufällige Bitmuster (*Initialization Vector*  $\mathbf{VI}$ ) wird unverschlüsselt an Empfänger gesendet
  - $\Rightarrow$  Danach ist vorhergehender Geheimtext das zufällige Bitmuster für den nächsten Block Klartext
- Für c = Ausgegebener Geheimtext (Cipher) K = Schlüssel, m = Klartext ist der Verlauf dann wie folgt:
  - c(0) = Initialisierungsvektor

```
c(1) = K(m_1 \ XOR \ c(0))
c(2) = K(m_2 \ XOR \ c(1))
```

# Data Encryption Standard (DES):

56-Bit symmetrischer Schlüssel, Verarbeitung von 64-Bit Blöcken mit Cipher Block Chaining, per Brute Force knackbar, 3DES etwas sicherer

## Adanved Encryption Standard (AES):

Nachfolger von DES, 128/192 oder 256-Bit symmetrischer Schlüssel mit 128-Bit Blöcken, AES-256 kann nicht geknackt werden

# Public Key (asymmetrische) Verschlüsselung:

- ullet Öffentlicher Schlüssel  $K_B^+$  wird zur Verschlüsselung verwendet, Privater Schlüssel  $K_B^-$  zur Entschlüsselung
- Öffentlicher Schlüssel sowohl Empfänger als auch Sender bekannt, privater Schlüssel ist aber nur Empfänger bekannt
- Sender überträgt  $K_B^+(m)$ , Empfänger entschlüsselt mit  $K_B^-(K_B^+(m))$ , d.h. es muss gelten  $K_B^-(K_B^+(m)) = m$
- $\bullet\,$  Man darf nicht vom öffentlichen auf den privaten Schlüssel schließen können

#### RSA Algorithmus:

- o Text wird als Bitmuster angesehen, die Verschlüsselung ergibt wieder ein Bitmuster den Geheimtext
- o RSA nutzt modulare Arithmetik und die Tatsache, dass Teilerbestimmung einer gegebenen Zahl sehr rechenaufwändig sind
- $\circ$  Verschlüsselung mit public key ist allerdings auch sehr rechenaufwändig, da z.B.  $m^e$  berechnet wird (e = öffentlicher Schlüssel)
- $\circ$  Symmetrische Verschlüsselung wesentlich schneller  $\Rightarrow$  Asymmetrische Verschlüsselung zum Aufbau einer sicheren Verbindung
  - ightarrow danach mit einem zweiten Schlüssel symmetrische Verschlüsselungen austauschen
  - $\rightarrow$  Teilnehmer A & B verwenden RSA um symmetrischen Schlüssel  $K_S$  auszutauschen, danach symmetrische Verschlüsselung (AES) mit  $K_S$

#### Integrität einer Nachricht sicherstellen

 $\circ$  Berechnen einer Prüfsumme (Hash) über Nachricht + gemeinsames Geheimnis (ansonsten könnte Angreifer die Nachricht verändern und dann erneut eine gültige Prüfsumme über die veränderte Nachricht berechnen), Empfänger berechnet Hash selbst und überprüft ihn mit übertragenem Hash

#### Kryptographische Hashfunktionen

- $\circ$  Berechnung eines Strings H(m) fester Größe aus Nachricht m, vom Rechenaufwand her nicht möglich, Kollision zu erzeugen, so dass H(x) = H(y)
- $\circ$  MD5 mit 128-Bit Hash (unsicher)  $\circ$  SHA-1 mit 160-Bit Hash (inzwischen auch kritisch)  $\circ$  SHA-2 mit 224/256/384/512-Bit Hash (empfohlen)

# Message Authentication Code (MAC)

- $\circ$  Gemeinsames Geheimnis besteht aus Authentication Code s und Nachricht m, Sender hängt H(m+s) (=MAC) an Nachricht m an
- o Übertragung von Nachricht + MAC an Empfänger, dieser berechnet ebenfalls Hash aus m+s und prüft, ob gesendeter MAC passt

#### Digitale Signaturen

- $\circ$  Unterschrift als Bestätigung der Urheberschaft eines Dokuments, MAC mit shared key s ungeeignet, da s sowohl Unterzeichner als auch Prüfer bekannt sein muss  $\Rightarrow$  Prüfer kann Unterschrift fälschen
- o Lösung:

Berechne H(m), m := zu unterschreibende Nachricht

Unterzeichner nutzt private key zur Berechnung von  $K_B^-(H(m))$ , wird zusammen mit m versendet Prüfer prüft ob  $H(m) = K_B^+(K_B^-(H(m)))$  (entschlüsseln mit öffentlichem Schlüssel), falls ja: Unterschrift gültig

#### Zertifizierung von öffentlichen Schlüsseln

- $\circ \text{ Angreifer kann behaupten, dass dessen public key gleich dem vom Unterzeichner ist} \Rightarrow \ddot{\text{O}} \text{ffentlicher Schlüssel muss Person zugeordnet werden}$
- o Certification Authority (CA) prüft Identität (z.B. Personalausweis) erstellt Zertifikat, dass public key zur Person gehört (Angabe der Domain) und unterschreibt das Zertifikat per digitale Signatur
- $\circ$  Unterzeichner sendet eigenen public key und Zertifikat an Empfänger, dieser prüft mit öffentlichem **CA**-Schlüssel, ob Zertifikat gültig (d.h. public key richtig) ist

# Authentifizierungsprotokoll mit Shared Secret

o Kommunikationsteilnehmer prüft, ob ein anderer derjenige ist, für den er sich ausgibt

IP-Adresse kann gefälscht sein oder Angreifer führt Playback-Angriff durch (Kommunikation aufzeichnen & wieder abspielen)

 $L\"{o}sungen: \textit{shared secret} \ oder \ Verwendung \ einer \ nur \ einmal \ verwendeten, \ zuf\"{a}lligen \ Zahl \ (\textit{Nonce}) \ die \ mit \ symmetrischem \ Schl\"{u}ssel \ verschl\"{u}sselt \ wird$ 

- Sender sendet eigenen Namen an Empfänger
- ullet Empfänger sendet Nonce R zurück
- $\bullet$  Sender sendet mit eigenem privaten Schlüssel verschlüsseltes R
- Empfänger fordert publick key an
- Sender sendet public key (ggf. mit Zertifikat einer CA) an Empfänger
- Empfänger prüft ob  $K_A^+(K_A^-(R)) = R$

## 1.2.3 Secure Sockets Layer (SSL)