COMP319 Algorithms 1 Lecture 8 Heap

Instructor: Gil-Jin Jang

Max-Min Heapify

Heap Building

Heap Sort

Max heap and min heap Heapify operations Build heaps

HEAP

Review: Comparing Sorting Methods

- Insertion/selection/bubble sort
 - Advantages: using less extra memory
 - Disadvantages: $T(n) = T(n-1) + cn \rightarrow O(n^2)$
- Merge sort
 - Advantages: $T(n) = 2T(n/2) + cn \rightarrow O(n \lg n)$
 - Disadvantages: extra memory of O(n)
- Quicksort
 - $O(n \lg n)$ without extra memory
 - Disadvantages: in worst case, $O(n^2)$
- Heapsort
 - Combines advantages of the previous algorithms

Review: 이진 트리의 분류

- 포화 이진 트리(full binary tree)
- 완전 이진 트리(complete binary tree)
- 기타 이진 트리

Heaps as Binary Trees

- A *heap* can be seen as a complete binary tree:
 - What makes a binary tree complete?
 - Is the example below complete?

Heaps as Complete Binary Trees

- A heap can be seen as a complete binary tree:
 - Or as **NEARLY FULL** binary trees
 - Unfilled slots are represented as NULL pointers (filling dummy values in)

Heap Implementation as Arrays

- In practice, heaps (complete binary trees) are usually implemented as arrays:
 - The root node is A[1] (note: not A[0])
 - Node *i* is A[*i*]
 - The parent of node i is A[i/2]
 - o note: integer division, quotient only
 - The left child of node i is A[2i]
 - The right child of node i is A[2i + 1]

Parent(i) { return \[i/2 \]; }

right(i) { return 2*i + 1; }

Left(i) { return 2*i; }

The Heap Ordering Properties

min-heap:

- the value of each node is greater than or equal to the value of its parent, resulting in minimum-value at the root.
- 각 노드의 값은 자신의 children의 값보다 크지 않다

 $A[Parent(i)] \le A[i]$ for all nodes i > 1

max-heap:

- the value of each node is less than or equal to the value of its parent, resulting in maximum-value at the root.
- 각 노드의 값은 자신의 children의 값보다 작지 않다

 $A[Parent(i)] \ge A[i]$ for all nodes i > 1

Heap Height

- Definition of HEAP HEIGHT:
 - The height of a node in the tree = the number of edges on the longest downward path to a leaf
 - The height of a tree = the height of its root
- What is the height of an n-element heap?
 - Ceiling(log2(n)): a smallest integer greater than log2(n)
- Basic heap operations take at most time proportional to the height of the heap

Heap Operations: MaxHeapify()

- MaxHeapify(): to keep the max-heap property
 - Inputs: Array A (or binary tree), index i in array
 - Precondition (input): the binary trees rooted at LEFT(i) and RIGHT(i) are max-heaps
 - o Note: A[i] may be smaller than its children, A[i*2] and A[i*2+1] are larger than or equal to ALL OF THEIR CHILDREN
 - Postcondition (output): The subtree rooted at index i is a max-heap
 - A[i] is larger than or equal to ALL OF ITS CHILDREN
 - Action: let the value of the parent node FLOAT-DOWN so subtree at i satisfies the max-heap property

A = 16 4 10 14 7 9 3 2 8 1

A = 16 14 10 4 7 9 3 2 8 1

A = 16 14 10 4 7 9 3 2 8 1

A = 16 14 10 8 7 9 3 2 4 1

A = 16 14 10 8 7 9 3 2 4 1

A = 16 14 10 8 7 9 3 2 4 1

Heap Operations: MaxHeapify()

```
MaxHeapify (A,i)
                        i : index of a node that is out-of-heap
 l = LEFT(i)
                        → May occur when the value of node i changes
 r = RIGHT(i)
 if 1 <= heap size(A) and A[1] > A[i]
    then largest = 1
    else largest = i
 if r <= heap size(A) and A[r] > A[largest]
    then largest = r
 if largest != i
    then swap(A[i],A[largest])
         MaxHeapify(A, largest) // sub-root is changed
```

MaxHeapify() time complexity

- Aside from the recursive call, what is the running time of MaxHeapify()?
 - Each call to MaxHeapify takes some constant c steps, because root is compared with direct children of left and right subtrees
- How many times can MaxHeapify () recursively call itself?
 - MaxHeapify is recursively called "AT MOST" h times, where h is the height of the subtree starting at i
 - o Why is it not 2*h times? only one of left and right subtree is changed
- Worst-case running time of MaxHeapify() on a heap of size n?
 - for all inputs, "AT MOST" ch steps are needed
 - the worst case time complexity is $O(h) = O(\log n)$ where h is the subtree height with root i

Analyzing MaxHeapify(): Formal

- Fixing up relationships between i, l, and r takes $\Theta(1)$ time
- If the heap at i has n elements, how many elements can the subtrees at I or r have?
 - Draw it
 - Note: for a complete binary tree, #(leaf nodes) = #(non-leaf nodes)+1
- Answer: 2n/3 (worst case: bottom row 1/2 full)
 - If the left tree is selected, #(nodes in the left) = 2*#(nodes in the right)
- So time taken by **MaxHeapify()** is given by $T(n) \le T(2n/3) + \Theta(1)$

Analyzing MaxHeapify(): Formal

So we have

$$T(n) \leq T(2n/3) + \Theta(1)$$

By case 2 of the Master Theorem,

$$T(n) = O(\lg n)$$

Thus, MaxHeapify() takes logarithmic time

Heap Operations: BuildMaxHeap()

- Question: How efficiently can we build a heap?
- Idea:
 - FIRST create a binary tree (stick each element into a node of the tree) OR put all the elements in an array
 - THEN use MaxHeapify on non-leaf nodes
- We can build a heap in a bottom-up manner by running MaxHeapify () on successive subarrays

Heap Operations: BuildMaxHeap()

- Leaf nodes
 - Fact: for array of length n, all elements in range
 A[\[\] n/2 \] + 1 .. n] are heaps
 Why? a leaf node has no child
- BuildMaxHeap() in a bottomup manner:
 - Walk <u>BACKWARDS</u> through the array from n/2 to 1, calling <u>MaxHeapify()</u> on each node.
 - Order of processing guarantees that the children of node *i* are heaps when *i* is processed

BuildMaxHeap()

```
// given an unsorted array A
// make A a heap
BuildMaxHeap(A)
{
   heap_size(A) = length(A);
   for (i = length[A]/2|
       downto 1)
       MaxHeapify(A, i);
}
```


BuildMaxHeap() Example

- Appy BuildMaxHeap() to the binary tree below
 A = {2, 5, 10, 6, 12, 15, 1}

BuildMaxHeap() Example

BuildMaxHeap() Example

Work through example
 A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}

BuildMaxHeap Worst Case

- Show that the worst-case running time is O(n):
 - MaxHeapify() has a worst-case running time of O(log n), and there are at most n calls to MaxHeapify()
 - So, the worst-case time complexity is $O(n \log n)$ (*REALLY*?)
 - Not a correct asymptotic upper bound

BuildMaxHeap: Better Analysis

- the running time needed at each level of the tree
 - For a node at height h, the worst running time is (c*h)
 - There are at most $\lceil n/2^{h+1} \rceil$ nodes of height h in the tree

```
15 height = 2
12 10 height = 1
6 5 2 1 height = 0
```

- So, worst-case running time of all nodes at height h is c * h * $\lceil n/2^{h+1} \rceil$
- The height varies from <u>0 to log2(n)</u>

BuildMaxHeap: Better Analysis

Sum this over all the nodes in the tree:

$$T(n) = \sum_{h=0}^{tree\ height} ch[n/2^{h+1}] \le \sum_{h=0}^{\lfloor \log_2 n \rfloor} ch[n/(2 \cdot 2^h)]$$

$$\le \frac{cn}{2} \sum_{h=0}^{\infty} \frac{h}{2^h}$$

$$= \frac{cn}{2} \left(\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \frac{5}{32} + \dots \right) \le \frac{cc_2}{2} n$$

- Proof: https://courses.washington.edu/css343/zander/NotesProbs/heapcomplexity
 https://math.stackexchange.com/questions/1755708/summation-of-an-expression-sum-h-0-ln-n-frach2h
- So, the worst case time complexity in O(n)

MaxHeap을 이용한 오름차순 정렬 ASCENDING HEAP SORT

Heapsort

- 주어진 배열을 힙으로 만든 다음, 차례로 하나씩 힙에서 제거함으로써 정렬한다
- Given BuildHeap(), an in-place sorting algorithm is easily constructed:
 - Maximum element is at A[1]
 - Discard by swapping with element at A[n]
 - o Decrement heap_size[A]
 - A[n] now contains correct value
 - Restore heap property at A[1] by calling Heapify()
 - Repeat, always swapping A[1] for A[heap_size(A)]

Heapsort, Ascending

Heapsort, Ascending

Heapsort, Ascending

```
HeapsortAscending (A)
/* 오름차순 정렬 */
    BuildMaxHeap(A); /* 최대힙 만들기 */
    for (i = length(A) downto 2)
         Swap(A[1], A[i]); /* 최대값교환 */
         heap size (A) -= 1;
         MaxHeapify(A, 1);
```

MinHeap을 이용한 내림차순 정렬 DESCENDING HEAP SORT

Heapsort, Descending

Heapsort, Descending

Heapsort, Descending

```
HeapsortDescending (A)
/* 내림차순 정렬 */
    BuildMinHeap(A); /* 최소힙 만들기 */
    for (i = length(A) downto 2)
         Swap(A[1], A[i]); /* 최소값교환 */
         heap size (A) -= 1;
         MinHeapify(A, 1);
```

Analyzing Heapsort

- The initial call to BuildHeap() takes O(n) time
- Each of the n 1 calls to Heapify() takes O(lg n)
 time
- Thus the total time taken by HeapSort()
 - $= O(n) + (n 1) O(\lg n)$
 - $= O(n) + O(n \lg n)$
 - $= O(n \lg n)$
 - 최악의 경우에도 O(n lg n) 시간 소요!

효율성 비교

	Worst Case	Average Case
Selection Sort	n^2	n^2
Bubble Sort	n^2	n^2
Insertion Sort	n^2	n^2
Mergesort (*O(n) extra space)	nlogn	nlogn
Quicksort	n^2	nlogn
Heapsort	nlogn	nlogn

Heapsort is an efficient algorithm, but in practice Quicksort usually wins

Heap을 이용한 우선순위 큐 PRIORITY QUEUES BY HEAPS

Priority Queues

- The heap data structure is useful in implementing priority queues
 - A data structure for maintaining a set S of elements, each associated with <u>key</u>
 - Supports the operations Insert(), Maximum(), and ExtractMax()
 - What might a priority queue be useful for?

Priority Queue Operations

- Insert(S, x) inserts the element x into set S
- Maximum(S) returns the element of S with the maximum key
- ExtractMax(S) removes and returns the element of S
 with the maximum key

• How could we implement these operations using a heap?

Implementing Priority Queues

Implementing Priority Queues

```
HeapInsert(A, key)  // what is the running time?
{
    heap_size[A] ++;
    i = heap_size[A];
    while (i > 1 AND A[Parent(i)] < key) {
        A[i] = A[Parent(i)];
        i = Parent(i);
    }
    A[i] = key;
        // No Heapify()?
}</pre>
```

Next topics:

Binary search tree (BST)

END OF LECTURE 8