

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Final Exam (Fall 2022)

CSE 2233/CSI 233: Theory of Computation/Theory of Computing

Total Marks: 40

Duration: 2 Hours

Answer all questions. Figures in the right-hand margin indicates full marks.

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

1. Consider the following Context-free grammars (CFG) and answer according to it:

 3×2

a)	$S \rightarrow AS \mid BAC$	With the help of <i>Top-Down Parse Trees</i> ,
	$A \rightarrow A1 \mid 0A1 \mid 0B1 \mid B$	find-out if the grammar is Ambiguous or
	B → 0B 0 €	not for the string 00011111
	C → 1 €	
b)	$E \rightarrow E+E \mid E-E \mid (E) \mid V$	With the help of Leftmost derivation,
	$V \rightarrow p \mid q \mid r \mid X$	find-out if the grammar is Ambiguous or
	$X \rightarrow X*X \mid X\%X \mid Y$	not for the string p +(0*1%0)- r
	$Y \rightarrow 0 \mid 1$	

2. Find a *CFG that generates* the following languages.

 2×3

- a) $L = \{ x^{2n} \# y^{3m} \mid n,m \ge 1 \}$, Here $\sum = \{x,y,\#\}$
- **b)** L = { w is considered of $\{0,1\}$ | w is of even length & w starts and ends with different symbol }
- c) $L = \{ a^i b^j c^k \mid \text{where } i \neq j \text{ and } k \geq 1 \}$
- 3. Convert the following CFG's into equivalent *Chomsky Normal Form (CNF)* [Show all the Steps]
 - a) $S \rightarrow aSBcD \mid BC$

 $A \rightarrow AbCd \mid a$

 $B \rightarrow CBA \mid \in$

 $C \rightarrow c \mid \in$

 $D \rightarrow d$

b)
$$S \rightarrow xP \mid yQ \mid y \mid RRz$$

 $P \rightarrow Qxx \mid xyR \mid \in$
 $Q \rightarrow yPPy \mid xy \mid zR$
 $R \rightarrow x \mid y \mid PR \mid \in$

4. Draw *Push Down Automata (PDA)* for the following Languages

5 x 2

5 x 2

a)
$$L = \{a^p b^q c^r | Where p - q = r \text{ and } p, q, r > 0\}$$

- b) $L = \{x^m \# y^n z^w \mid Where \ m = 2n \ or \ w = 2m \ and \ m, n, w > 0\}$
- 5. Draw *Turing Machine* for the following Language and Show the *Tape Traversal* for the Given input.
 - a) $L = \{a^l b^m c^n d^k \mid \text{ where } k = (m+n)*l \text{ and } l, m, n, k>=1\} \mid \text{Input String: aabccdddddd}$
 - b) $L = \{W#W \mid W \in \{0, 1\} | \text{Input String: } 010\#010 \}$