

Supported by the HRZZ project 7459 MSOC

Summary of the current solar calibration in the QA2 process and its problems/Single-Dish

Ivica Skokić

Hvar Observatory Faculty of Geodesy, University of Zagreb, Croatia

Miroslav Bárta

Czech ARC Node, Astronomical Institute Czech Academy of Sciences, Ondrejov, Czech Republic

ALMA Single Dish (SD) imaging

ALMA Single Dish (SD) imaging

- Total Power array
- 4 antennas, MELCO, PM01-04
- 12 m, direct drive, fast scanning
- Full-disk total power observations
- Complement interferometry data (large scale structures, background emission)
- Stand-alone science (e.g. Alissandrakis et al. 2017, Brajša et al. 2017, 2018, Selhorst et al. 2018)
- Solar commissioning campaigns 2014, 2015
- White et al. (2017) Solar Phys. 292, 88.

ALMA Single dish examples

Band 3 100 GHz (3 mm), beam size 58"

Band 6 239 GHz (1.2 mm), beam size 25"

Double-circle pattern

1=30

1000

500

average solar disk size

- sampling time 1 ms
- minor circle time 1.5 s
- sampling length: 20" (B3), 10" (B6)
- duration 280, 560 s

Current QA2 - SD Calibration - CASA

- QA2 = Quality Assurance, level 2
- ASDM import

- Optional flagging of bad data
- Generation of the Tsys cal table

```
gencal(vis=mso, caltable=mso+'.tsys', caltype='tsys')
```

Current QA2 - SD Calibration - CASA

SD calibration into Kelvins

Or the new way:

• Forward & Spillover efficiency correction (0.893 B3, 0.862 B6)

Current QA2 - SD imaging - CASA

SD imaging

Parameters

```
cell=['6.0arcsec'] imsize=400 radius='40pix' qs=7300 # Band 3
cell=['3.0arcsec'] imsize=800 radius='80pix' qs=5900 # Band 6
```

Rescaling the brightness temperature

```
res = imstat(sd_img, region=region)
expr = 'IM0*'+str(qs/res['mean'][0])
immath(imagename=sd_img, expr=expr, outfile=sd_img+'.rescl')
```

FITS export

```
exportfits(imagename=sd_img+'.rescl', fitsimage=sd_img+'.rescl.fits')
```

Current QA2 - Criteria

• Tsys < 2500 K

plotcal(caltable=mso+'.tsys', xaxis='freq', yaxis='tsys',subplot=221,
iteration='antenna', figfile=mso+'.tsys.plots/'+mso+'tsys.plots.png')

Current QA2 - Criteria

Scan pattern and image OK

Current QA2 - Standard scripts

- World-wide QA2 standards, updated per cycle (M. Bárta, CZ ARC):
 https://wikis.alma.cl (needs login, for data analysts)
- Calibration
 - · Semi-automated procedure for the entire SB processing
 - · Calibration template + simple script generator
- Imaging
 - · Script with auto-detection of observing band
 - · Auto adjustments based on detected band
- Next steps: fully automatic scripts for pipeline processing

SD Calibration - Dual load method

- S. White et al. (2017) Dual load method (IDL), better results
- M. Shimojo (ISSI, 2018) Dual load method (CASA)

SD Problems - Scan patterns visible

- S. White can be largely corrected using disk center scans
- See also CASA task sdgaincal

SD Problems - Scan patterns on limb

Timing or antenna position issue?

14:52:36 ALMA 239 GHz

19:12:58 ALMA 100 GHz

Alissandrakis et al. (2017) A&A 605, A78

SD Problems - Beam, side lobes, PSF

- How to measure it Iwai et al. (2017) Solar Phys 292:22
- K. Iwai warns: "the ALMA TP maps include the beam pattern of the TP antenna and the derived amount of limb brightening and centerto-limb variations are lower limit."

SD - Other problems and ideas

- Tb rescaling in the center → could be improved (D. Sudar)
- Combination TP + INT → currently feathering, better solutions?
 (T. Bastian report)
- Using center scanning data for other things (beam efficiency, estimation of noise from the atmosphere) (S. White, H. Hudson)
- More automatic scripts, better FITS keywords, solar coordinate systems (M. Bárta, I. Skokić, UiO)
- Differences in subbands/spw/polarizations
- Calibration precision → new beacon (S. White, R. Hills, H.Hudson), satellite at L1 (M. Bárta)
- Regional scanning, flares (one recorded in 2014)
- SD sub-arrays? (simultaneously observing in 2 bands)
- Other suggestions? Ideas?