Lecture 16: Planar Homographies

Motivation: Points on Planar Surface

Review: Forward Projection

CSE486, Penn World to Camera Transformation

$$P_{C} = R (P_{W} - C)$$
$$= R P_{W} + T$$

Perspective Matrix Equation

$$x = f \frac{X}{Z}$$
$$y = f \frac{Y}{Z}$$

$$x = f \frac{X}{Z}$$

$$y = f \frac{Y}{Z}$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$p = M_{\text{int}} \cdot P_{\text{C}}$$

Film to Pixel Coords

2D affine transformation from film coords (x,y) to pixel coordinates (u,v):

$$\begin{pmatrix} u' \\ v' \\ w' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\mathbf{M}_{aff} \qquad \mathbf{M}_{proj}$$

$$u = M_{int} P_C = M_{aff} M_{proj} P_C$$

CSE486, Penn Sta Projection of Points on Planar Surface

Projection of Planar Points

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ r_{31} & r_{32} & t_z \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ r_{31} & r_{32} & t_z \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$

CSE486, Penn Stat Projection of Planar Points (cont)

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ r_{31} & r_{32} & t_z \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} fr_{11} & fr_{12} & ft_x \\ fr_{21} & fr_{22} & ft_y \\ r_{31} & r_{32} & t_z \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$
 Homography H (planar projective transformation)

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$
 Homography H (planar projective transformation)

Punchline: For planar surfaces, 3D to 2D perspective projection reduces to a 2D to 2D transformation.

Punchline2: This transformation is INVERTIBLE!

Special Case: Frontal Plane

What if the planar surface is perpendicular to the optic axis (Z axis of camera coord system)?

Then world rotation matrix simplies:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \\ 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Frontal Plane

So the homography for a frontal plane simplies:

Similarity Transformation!

Convert to Pixel Coords

Planar Projection Diagram

Here's where transformation groups get useful!

General Planar Projection

General Planar Projection

Frontal Plane Projection

Frontal Plane Projection

General Planar Projection

Summary: Planar Projection

Robert Collins Applying Homographies to Remove CSE486, Penn State Pplying Homographies to Remove Perspective Distortion

from Hartley & Zisserman

4 point correspondences suffice for the planar building facade

Homographies for Bird's-eye Views

from Hartley & Zisserman

Homographies for Mosaicing

from Hartley & Zisserman

Two Practical Issues

How to estimate the homography given four or more point correspondences (will derive L.S. solution now)

How to (un)warp image pixel values to produce a new picture (last class)

Estimating a Homography

Matrix Form:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Equations:

$$x' = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}}$$

$$y' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

Degrees of Freedom?

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

There are 9 numbers $h_{11},...,h_{33}$, so are there 9 DOF?

No. Note that we can multiply all h_{ij} by nonzero k without changing the equations:

$$x' = \frac{kh_{11}x + kh_{12}y + kh_{13}}{kh_{31}x + kh_{32}y + kh_{33}}$$

$$y' = \frac{kh_{21}x + kh_{22}y + kh_{23}}{kh_{31}x + kh_{32}y + kh_{33}}$$

$$y' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + kh_{32}y + kh_{33}}$$

$$y' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

Enforcing 8 DOF

One approach: Set $h_{33} = 1$.

$$x' = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + 1}$$
$$y' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + 1}$$

Second approach: Impose unit vector constraint

$$x' = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}}$$
$$y' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

Subject to the constraint: $h_{11}^2 + h_{12}^2 + h_{13}^2 + h_{21}^2 + h_{22}^2 + h_{23}^2 + h_{31}^2 + h_{32}^2 + h_{33}^2 = 1$

L.S. using Algebraic Distance

Setting
$$h_{33} = 1$$
 $x' = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + 1}$ $y' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + 1}$

Multiplying through by denominator

$$(h_{31}x + h_{32}y + 1)x' = h_{11}x + h_{12}y + h_{13}$$
$$(h_{31}x + h_{32}y + 1)y' = h_{21}x + h_{22}y + h_{23}$$

Rearrange

$$h_{11}x + h_{12}y + h_{13} - h_{31}xx' - h_{32}yx' = x'$$

 $h_{21}x + h_{22}y + h_{23} - h_{31}xy' - h_{32}yy' = y'$

points

CSE486, Penn State Algebraic Distance, h₃₃=1 (cont)

	2N x 8	8 x 1	2N x 1
Point 1	$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1x'_1 & -y_1x'_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1y'_1 & -y_1y'_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2x'_2 & -y_2x'_2 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2y'_2 & -y_2y'_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3x'_3 & -y_3x'_3 \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -x_3y'_3 & -y_3y'_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4x'_4 & -y_4x'_4 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4y'_4 & -y_4y'_4 \end{bmatrix}$	$\begin{bmatrix} h_{11} \\ h_{12} \end{bmatrix}$	$\begin{bmatrix} x'_1 \\ y'_1 \end{bmatrix}$
Point 2	$x_2 \ y_2 \ 1 \ 0 \ 0 \ 0 \ -x_2x_2' \ -y_2x_2' \ 0 \ 0 \ 0 \ x_2 \ y_2 \ 1 \ -x_2y_2' \ -y_2y_2'$	$\begin{vmatrix} h_{13} \\ h_{21} \end{vmatrix}$	$= \begin{vmatrix} x_2' \\ y_2' \end{vmatrix}$
Point 3	x_3 y_3 1 0 0 0 $-x_3x'_3$ $-y_3x'_3$ 0 0 0 x_3 y_3 1 $-x_3y'_3$ $-y_3y'_3$	$\begin{vmatrix} h_{22} \\ h_{23} \end{vmatrix}$	$\begin{bmatrix} x_3' \\ y_3' \end{bmatrix}$
Point 4	$\begin{bmatrix} x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4x'_4 & -y_4x'_4 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4y'_4 & -y_4y'_4 \end{bmatrix}$	$\begin{bmatrix} h_{31} \\ h_{32} \end{bmatrix}$	$\begin{bmatrix} x'_4 \\ y'_4 \end{bmatrix}$
dditional			•

CSE486, Penn State Algebraic Distance, h₃₃=1 (cont)

Matlab: $h = A \setminus b$

R.Hartley: "In Defense of the Eight Point Algorithm"

Observation: Linear estimation of projective transformation parameters from point correspondences often suffer from poor "conditioning" of the matrices involves. This means the solution is sensitive to noise in the points (even if there are no outliers).

To get better answers, precondition the matrices by performing a normalization of each point set by:

- translating center of mass to the origin
- scaling so that average distance of points from origin is sqrt(2).
- do this normalization to each point set independently

Hartley's PreConditioning

A More General Approach

What might be wrong with setting $h_{33} = 1$?

If h_{33} actually = 0, we can't get the right answer.

Algebraic Distance, ||h||=1

$$||\mathbf{h}|| = 1 \qquad x' = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}}$$
$$y' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

Multiplying through by denominator

$$(h_{31}x + h_{32}y + h_{33})x' = h_{11}x + h_{12}y + h_{13}$$

 $(h_{31}x + h_{32}y + h_{33})y' = h_{21}x + h_{22}y + h_{23}$

Rearrange

$$h_{11}x + h_{12}y + h_{13} - h_{31}xx' - h_{32}yx' - h_{33}x' = 0$$

$$h_{21}x + h_{22}y + h_{23} - h_{31}xy' - h_{32}yy' - h_{33}y' = 0$$

CSE486, Penn State Algebraic Distance, ||h||=1 (cont)

Robert Collins CSE486, Penn Sta

CSE486, Penn State Algebraic Distance, ||h||=1 (cont)

Let h be the column of U (unit eigenvector) associated with the smallest eigenvalue in D. (if only 4 points, that eigenvalue will be 0)