Uma abordagem de sistemas lineares a teoria de séries temporais estacionárias e não estacionárias

Apresentação de Trabalho de Conclusão de Curso

Gabriel Teixeira Lara Chaves

Curso de Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais

27 de junho de 2023

Contextualização

Conteúdo

- Contextualização
- 2 Definições
- Modelos Lineares
- 4 Análise Espectral
- 6 Aplicação

Definições

O que é uma série temporal?

Uma série temporal é um conjunto de observações realizadas sequencialmente no tempo, indexadas de acordo com o momento em que foram observadas. As observações representam a realização de um processo estocástico.

$$\mathbf{y}_{t=-\infty}^{\infty} = (\dots, y_{-1}, y_0, \overbrace{y_1, y_2, y_3, \dots, y_T}^{\text{Série Observada}}, y_{T+1}, y_{T+2} \dots)$$

O presente estudo aborda uma perspectiva de sistemas lineares para representar processos estocásticos a partir de séries temporais estacionarias.

Autocorrelação

A função de autocorrelação é uma medida de semelhança de uma série com suas amostras passadas, definida como a correlação entre um sinal e suas versões sucessivamente atrasadas. A figura 1 ilustra alguns exemplos de autocorrelações de sinais estacionários.

Figura: Visualização de autocorrelação de processes autoregressivos de diferentes ordens.

U F **m** G

Estacionariedade

Certas características de dados tabulares facilitam a inferência de propriedades da função geradora a partir de observações, como independência. Amostras de séries temporais são, de forma geral, dependentes.

Estacionariedade é uma estrutura de dependência que permite o uso da Lei dos Grandes Números, por exemplo, para estimar a distribuição subjacente.

Sua versão mais restrita assume que a distribuição da série ao longo do tempo é constante.

U F **m** G

Estacionariedade

A visualização de autocorrelações invariantes ao tempo de sinais não estacionários não fazem sentido porque sob essa condição a autocorrelação é uma função do tempo de atraso. A figura 2 ilustra uma autocorrelação típica de um sinal com tendência.

Figura: Autocorrelação de série com tendência.

Modelos Lineares

Modelo ARMA

O modelo ARMA é definido pela equação de recorrência 1, onde amostras da série são modeladas como uma combinação linear de amostras passadas da própria série e um sinal de ruído branco.

$$y_t = \varepsilon_t \frac{\phi(L)}{\theta(L)} \tag{1}$$

Um processo ARMA(2,1) é portanto dado pela seguinte equação de recorrência.

$$y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \varepsilon_t + \beta_1 \varepsilon_{t-1}$$

Teorema de Wold

Por expansão do fator polinomial $\frac{\phi(L)}{\theta(L)}$ concluímos que qualquer modelo ARMA pode ser representado como regressão em atrasos infinitamente longos de ruído branco. Eis o Teorema de Wold: qualquer sinal estacionário possui representação da forma dada pela equação 2.

$$y_t = \psi(L)\varepsilon_t = \sum_{0}^{\infty} \psi_m \varepsilon_t \tag{2}$$

Esta forma de modelos ARMA é denominada um modelo linear generalizado.

U F **m** G

Notamos imediatamente que qualquer sinal ARMA é, na verdade, o resultado da filtragem IIR de ruído branco.

Figura: Representação de série temporal como modelo linear generalizado

Essa compreensão do processo gerador de uma série temporal estacionária naturalmente define quase toda a teoria de séries temporais em função de ideias de sistemas lineares: estacionariedade, invertibilidade, raízes unitárias, etc...

Concluímos então que uma série temporal gerada por um processo AR(p) corresponde a um filtro IIR e uma gerada por um processo MA(q) a um filtro FIR.

Uma série é estacionária se seu polinômio autoregressivo possuir raízes, em L, fora do círculo unitário. É inversível se seu polinômio média móvel possuir raízes na mesma posição.

 $\acute{\text{E}}$ possível traçar paralelos entre conceitos de sistemas lineares e séries temporais sobre essa ótica.

Diagrama de Polos e Zeros em L de Processo ARMA(2, 1)

Séries Temporais	Processamento de Sinais
Estacionariedade	Estabilidade
Invertibilidade	Invertibilidade
Raíz Unitária	Estabilidade Marginal
AR	Filtro IIR
MA	Filtro FIR

Quais os limites dessa comunicação?

Figura: Filtro

Figura: Modelo

Análise Espectral

Espectro de modelo ARMA

Com a compreensão de modelos ARMA como o processamento linear de ruído branco o a expressão para o espectro desses sinais é direta:

$$S_{ARMA}(\omega) = \frac{\sigma^2 |1 + \sum_{k=1}^q b_k e^{-j\omega k}|^2}{2\pi |1 + \sum_{k=1}^p a_k e^{-j\omega k}|^2}$$
(3)

A presença de raízes unitárias é facilmente compreendida sob a visão discutida.

Figura: Sinal ARMA(2, 1) no domínio do tempo.

Figura: Diagrama de polos e zeros de ARMA(2, 1).

Figura: Diagrama de polos e zeros de ARMA(2, 1) diferenciado.

Figura: Sinal ARMA(2, 1) diferenciado visualizado no tempo.

Figura: Diagrama de polos e zeros de ARMA(2, 1) integrado.

Figura: Sinal ARMA(2, 1) integrado visualizado no tempo.

Aplicação

