RandomForestClassifier_v004

February 1, 2020

© Thomas Robert Holy 2019 Version 1.0 Visit me on GitHub: https://github.com/trh0ly Kaggle Link: https://www.kaggle.com/c/dda-p2/leaderboard

1 RandomForestClassifier

from sklearn.pipeline import Pipeline

from sklearn.metrics import auc

import matplotlib.pyplot as plt

from sklearn.svm import SVC

Werte von c betrachtet werden.

#-----

if c != None:

if c == None:

import datetime as dt

1.2 Hilfsfunktionen

#-----# Argumente:

from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import roc_curve, roc_auc_score

from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import PolynomialFeatures from sklearn.model_selection import GridSearchCV from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split

from IPython.core.display import display, HTML from scipy.spatial.distance import euclidean

1.2.1 Funktion zur Betrachtung der Konfusinsmatrix

from sklearn.metrics.pairwise import manhattan_distances

- y_true : Zum DataFrame X gehörige Werte der Zielgröße

[2]: # Definition einer Funktion, welche eine Konfusionsmatrix und einen Klassifikationsreport # zurückgibt. Die Konfusionsmatrix kann, wenn ein Wert für c gegeben ist, für beliebige

- X: DataFrame auf welchem die Prognose durchgefürt werden soll (ohne die Zielgröße)

---> Wenn None, dann wird die Konfusionsmatrix ohne die Einbeziehung von c bestimmt # ---> Wenn != None, dann wird die Konfusionsmatrix in Abhänqiqkeit von c bestimmt

- class_names: Bezeichnung für die Spalten des Dataframes (default=['0', '1'], mit 0 = negativ und 1 = positiv)

- model: Modell auf Basis dessen die Konfusionsmatrix berechnet werden soll

def get_confusion_matrix(X, y_true, model, class_names=['0', '1'], c=None):

Überführung in einen DataFrame für eine bessere Übersichtlichkeit

df_conf_mat = pd.DataFrame(conf_mat, index=df_index, columns=df_cols)

return df_conf_mat, classification_report(y_true, y_pred)

df_index = pd.MultiIndex.from_tuples([('Wahrer Wert', cn) for cn in class_names])

[3]: | # Definition einer Funktion, welche auf Basis eines gegeben Modells und zweier zusammengehöriger

df_cols = pd.MultiIndex.from_tuples([('Prognose des Modells', cn) for cn in class_names])

Vorgelagerte Berechnung falls ein Wert für c gegeben ist # und die Konfusionsmatrix für ein gegebenes c anpasst

pred_probability = model.predict_proba(X) pred_probability = pred_probability >= c y_pred = pred_probability[:, 1].astype(int)

Wenn kein Wert für c gegeben, dann führe Prognose

lediglich auf Basis des Modells durch

conf_mat = confusion_matrix(y_true, y_pred)

y_pred = model.predict(X)

#-----# Berechnet die Konfusionsmatrix

#-----

1.2.2 Funktion zur Betrachtung der ROC-Kurve

In .csv speichern, wenn save=True

#-----

if manu_name == False:

Standardnamen wählen, wenn manu_name == False

submission.to_csv('./predicted_values.csv', index=False)

Standardnamen mit timestamp kombinieren, wenn manu_name == True

if save == True:

0.0

1.1 Package Import

import pandas as pd

[1]: import numpy as np

if manu_name == True: import datetime now = datetime.datetime.now() name = now.strftime(' $^{\prime\prime}_{Y}$ - $^{\prime\prime}_{m}$ - $^{\prime\prime}_{d}$ T $^{\prime\prime}_{H}$ $^{\prime\prime}_{M}$ $^{\prime\prime}_{S}$ ') + ('- $^{\prime\prime}_{0}$ 2d' $^{\prime\prime}_{m}$ (now.microsecond / 10000)) submission.to_csv('./predicted_values_' + str(name) + '.csv', index=False) return submission.head(), submission.loc[submission['Fehlerhaft'] == 1] 1.2.4 Funktion zum Filtern von Quantilen [5]: | # Definition einer Funktion, welche einen gegeben DataFrame # um untere und obere Quantile beschneiden kann #-----# Argumente: # - orignal_df: DataFrame welcher bearbeitet werden soll # - quantile_low: Unteres Quantil bis zu welchem orignal_df beschnitten werden soll # - quantile_high: Oberes Quantil welchem orignal_df beschnitten werden soll # - colum_to_drop: Spalte des orignal_df, welche während des Vorgangs gedroppt werden soll def filter_my_df(orignal_df, quantile_low, quantile_high, colum_to_drop): # Spalte "colum_to_drop" aus dem Datensatz entfernen df_filtered = orignal_df.loc[:, orignal_df.columns != colum_to_drop] # Quantil-DataFrame erzeugen quant_df = df_filtered.quantile([quantile_low, quantile_high]) # Quantil-DataFrame auf orignal_df anweden df_filtered = df_filtered.apply(lambda x: x[(x>quant_df.loc[quantile_low,x.name]) & (x < quant_df.loc[quantile_high,x.name])],</pre> #----# Spalte "Fehlerhaft" dem gefiltertem DataFrame wieder anfügen df_filtered = pd.concat([orignal_df.loc[:,colum_to_drop], df_filtered], axis=1) # Aus Beschneidung resultierende NaN-Werte bereinigen df_filtered.dropna(inplace=True) return df_filtered 1.3 Datensatz einlesen (bereinigigen) und betrachten 1.3.1 Datensatz einlesen Г61: | #----# Datensatz einlesen data = pd.read_csv('train.csv', index_col=0) 1.3.2 Optionale Datensatzbereinigung [7]: """ # Datensatz unterteilen df_fehlerfrei = data.loc[data['Fehlerhaft'] == 0] df_fehlerhaft = data.loc[data['Fehlerhaft'] == 1] #-----# Fehlerfreie Stückgüter colum_to_drop = 'Fehlerhaft' orignal_df = df_fehlerfrei low = .0 # Unteres Quantil high = .99 # Oberes Quantil $df_fehlerfrei_filtered = filter_my_df(df_fehlerfrei, \ low, \ high, \ colum_to_drop)$ # Fehlerhafte Stückgüter colum_to_drop = 'Fehlerhaft' $orignal_df = df_fehlerhaft$ low = .018333 # Unteres Quantil high = 1. # Oberes Quantil $df_fehlerhaft_filtered = filter_my_df(df_fehlerhaft, low, high, colum_to_drop)$ #-----# Teil-DataFrames zusammenführen $data_filtered = pd.concat([df_fehlerhaft_filtered, df_fehlerfrei_filtered], sort=False)$ [7]: "\n#-----\n# Fehlerfreie Stückgüter\ncolum_to_drop = 'Fehlerhaft'\norignal_df = df_fehlerfrei\nlow = .0 # Unteres Quantil \nhigh = .99 # Oberes Quantil\ndf_fehlerfrei_filtered = filter_my_df(df_fehlerfrei, low, high, colum_to_drop)\n\n#----\n# Fehlerhafte .018333 # Unteres Quantil \nhigh = 1. # Oberes Quantil \ndf_fehlerhaft_filtered = filter_my_df(df_fehlerhaft, low, high, colum_to_drop)\n\n#-----\n# Teil-DataFrames zusammenführen\ndata_filtered = pd.concat([df_fehlerhaft_filtered, df_fehlerfrei_filtered], sort=False)\n" 1.3.3 Beschreibung der separierten Datensätze (Betrachtung Min-/ Maximum und Qunatile) [8]: """ $df_-fehlerfrei.describe()$ [8]: '\ndf_fehlerfrei.describe()\n' $df_{-}fehlerhaft.describe()$ [9]: '\ndf_fehlerhaft.describe()\n' [10]: data_new = data #_filtered data_new['Fehlerhaft'].value_counts() 20208 [10]: 0 284 Name: Fehlerhaft, dtype: int64 1.3.4 Betrachtung Korrelationsmatrix [11]: data_new = data #_filtered # Für schnellere Laufzeit und mehr Übersicht in den Plots: Stichprobe der Daten abbilden data_sample = data_new.sample(2000, random_state=28) # random_state sorgt für reproduzierbare Stichprobe, sodass die Stichprobe für uns alle identisch ist _ = pd.plotting.scatter_matrix(data_sample, c=data_sample['Fehlerhaft'], cmap='seismic', figsize=(16, 20)) 40 Sensor_1 0 -20 7.5 Sensor 2 2.5

-2.57.5 Sensor -2.5Sensor_5 -15 10 Sensor_6 -10Sensor 7 -20 Sensor 8 -151.0 Fehlerhaft 0.6 0.4 0.2 10 Sensor_2 Sensor_4 Sensor_1 Sensor_3 Fehlerhaft Sensor_5 Sensor_6 Sensor_7 Sensor_8 1.3.5 Dateinsatz in Traings- und Validierungsteil splitten [12]: X = data_new.drop('Fehlerhaft', axis=1) y = data_new['Fehlerhaft'] X_train, X_validierung, y_train, y_validierung = train_test_split(X, y, test_size=0.2, random_state=2121) 1.4 Modell aufstellen [13]: # Definition einer Funktion, welche eine Gittersuche mit einem RandomForestClassifier durchführt # und nach einer 5-fach Kreuzvalidierung das beste Modell zurückgibt # Argumente: # - i: Fügt X^i der Featurematrix hinzu # - X: DataFrame auf welchem die Prognose durchgefürt werden soll (ohne die Zielgröße) # - y_true: Zum DataFrame X gehörige Werte der Zielgröße # - my_scaler: Zu verwendender Scaler; per default MinMaxScaler; weitere Scaler: RobustScaler, Standardscaler # - max_features: Anzahl der Features die einbezogen werden sollen (default=['auto']=sqrt(n_features)) # - n_estimators: Anzahl der "Bäume" im "Wald" # - jobs: Anzahl der Threads die für den Durchlauf zur Verfügung stehen # - gs_scoring: Scoring Verfahren im Rahmen der GridSearch # - folts: Komplexität der Kreuzvalidierung #----def rndfrst_1(i, X, y_true, my_scaler=MinMaxScaler, jobs=-3, gs_scoring='f1', folts=5, n_estimators=list(range(10, 200 + 1,10)), max_features=None): #-----# Pipeline erzeugen prediction_pipe = Pipeline([('scaler', my_scaler()), ('add_x_square', PolynomialFeatures(degree=i)), ('classifier' , RandomForestClassifier(n_jobs=jobs))]) #-----# Parameter Grid param_grid = [{'classifier' : [RandomForestClassifier()], 'classifier__n_estimators' : n_estimators, 'classifier__max_features' : [max_features], 'classifier__random_state': [2111]}] #---- ${\it\#\ Stratified KFold\ f\"{u}r\ unbalancierten\ Datensatz}$ scv = StratifiedKFold(n_splits=folts) #-----# Gittersuche grid_search = GridSearchCV(estimator=prediction_pipe, param_grid=param_grid, scoring=gs_scoring, cv=scv, verbose=True, n_jobs=jobs, iid=False) #_____ model = grid_search.fit(X,y_true) return model, grid_search.best_score_ 1.4.1 Modelaufruf und Scoring Modell 1 [14]: rndfrst_model, rndfrst_score = rndfrst_1(1, X_train, y_train, my_scaler=MinMaxScaler, jobs=-3, gs_scoring='f1', folts=5, n_estimators=list(range(10, 200 + 1,10)), →max_features=None) rndfrst_score Fitting 5 folds for each of 20 candidates, totalling 100 fits [Parallel(n_jobs=-3)]: Using backend LokyBackend with 10 concurrent workers. [Parallel(n_jobs=-3)]: Done 30 tasks | elapsed: 16.2s [Parallel(n_jobs=-3)]: Done 100 out of 100 | elapsed: 2.4min finished [14]: 0.8946162130675438 Modell 2 [15]: rndfrst_model2, rndfrst_score2 = rndfrst_1(1, X_train, y_train, my_scaler=StandardScaler, jobs=-3, gs_scoring='f1', folts=5, n_estimators=list(range(10, 200 + 1,10)), rndfrst_score2 Fitting 5 folds for each of 20 candidates, totalling 100 fits [Parallel(n_jobs=-3)]: Using backend LokyBackend with 10 concurrent workers. [Parallel(n_jobs=-3)]: Done 30 tasks | elapsed: 18.6s [Parallel(n_jobs=-3)]: Done 100 out of 100 | elapsed: 2.4min finished →max_features=None) rndfrst_score3 Fitting 5 folds for each of 20 candidates, totalling 100 fits [Parallel(n_jobs=-3)]: Using backend LokyBackend with 10 concurrent workers. [Parallel(n_jobs=-3)]: Done 30 tasks | elapsed: 10.3s [Parallel($n_jobs=-3$)]: Done 100 out of 100 | elapsed: 1.4min finished Scoring Model 1 / Modell 2 print(model.best_params_) model = rndfrst_model2 print(model.best_params_) model = rndfrst_model3 print(model.best_params_) {'classifier': RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=20, n_jobs=None, oob_score=False, random_state=2111, verbose=0, warm_start=False), 'classifier__max_features': None, 'classifier__n_estimators': 20, 'classifier__random_state': 2111} {'classifier': RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=20, n_jobs=None, oob_score=False, random_state=2111, verbose=0, warm_start=False), 'classifier__max_features': None, 'classifier__n_estimators': 20, 'classifier__random_state': 2111} {'classifier': RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=20, n_jobs=None, oob_score=False, random_state=2111, verbose=0, warm_start=False), 'classifier__max_features': None, 'classifier__n_estimators': 20, 'classifier__random_state': 2111} c = 0.35class_names = ['Stückgut fehlerfrei', 'Stückgut fehlerhaft'] confusion_matrix1, report1 = get_confusion_matrix(X_train, y_train, model, class_names, c) confusion_matrix1 Prognose des Modells

[15]: 0.8966538306224028 [16]: rndfrst_model3, rndfrst_score3 = rndfrst_1(1, X_train, y_train, my_scaler=RobustScaler, jobs=-3, gs_scoring='f1', folts=5, n_estimators=list(range(10, 200 + 1,10)), [16]: 0.8966538306224028 [17]: model = rndfrst_model [18]: model = rndfrst_model [18]: Stückgut fehlerfrei Stückgut fehlerhaft Wahrer Wert Stückgut fehlerfrei 16163 Stückgut fehlerhaft 225 0 [19]: roc_curve_func(X_train, y_train, model) ROC-Kurve 1.0 0.8 True Positive Rate 0.6 0.4 0.2 ROC-Kurve (AUC = 0.99999) 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate [20]: print(report1) precision recall f1-score support 1.00 1.00 16168 1.00 0.98 1.00 0.99 225 accuracy 1.00 16393 macro avg 0.99 1.00 0.99 16393 weighted avg 1.00 1.00 1.00 16393

Scoring auf Validerungsdatensatz [21]: model = rndfrst_model c = 0.35class_names = ['Stückgut fehlerfrei', 'Stückgut fehlerhaft'] confusion_matrix2, report2 = get_confusion_matrix(X_validierung, y_validierung, model, class_names, c) confusion_matrix2 [21]: Prognose des Modells Stückgut fehlerfrei Stückgut fehlerhaft Wahrer Wert Stückgut fehlerfrei 4032 Stückgut fehlerhaft 14 45 [22]: roc_curve_func(X_validierung, y_validierung, model) ROC-Kurve 1.0 0.8 True Positive Rate 0.6 0.4 0.2 ROC-Kurve (AUC = 0.91304)

0.0 0.2 0.4 0.6 0.8 False Positive Rate [23]: print(report2) recall f1-score support precision 0 1.00 1.00 1.00 4040 0.85 0.76 0.80 59

1

0.99

0.90

0.99

accuracy

macro avg

weighted avg

1.5 Submit

c = 0.35

HHHH

[25]: """

[26]:

model = rndfrst_model

confusion_matrix3

c)\nconfusion_matrix3\n"

1.5.2 Submit der Prognose

 $submission_fehlerhaft$

[26]: '\nsubmission_fehlerhaft\n

manu_name=True)\nsubmission_head\n'

 $submission_head$

[24]: """

0.92

0.99

0.88

0.99

class_names = ['Stückgut fehlerfrei', 'Stückgut fehlerhaft']

'Stückgut fehlerhaft']\nconfusion_matrix3, report3 =

1.5.1 Kontrolle Modellwahl (Modell 1 oder 2) anhand der Konfusionsmatrix

[24]: "\nmodel = rndfrst_model\nc = 0.35\n\nclass_names = ['Stückgut fehlerfrei',

get_confusion_matrix(X_validierung, y_validierung, model, class_names,

[25]: '\nsubmission_head, submission_fehlerhaft = submit(model, c, save=True,

1.5.3 Ausgabe DataFrame mit als defekt klassifizierten Stückgütern im Testdatensatz

 $submission_head, \ submission_fehlerhaft = submit(model, \ c, \ save=True, \ manu_name=True)$

4099

4099

4099

 $confusion_matrix3$, $report3 = get_confusion_matrix(X_validierung, y_validierung, model, class_names, c)$