Embedded Communication Networks

Arnab Sarkar

Advanced Technology Development Centre IIT Kharagpur

Dynamic Redundancy

- Previous variations of NMR need considerable hardware to instantaneously mask errors
- Temporary erroneous results may be acceptable if system can detect such errors and reconfigure itself by replacing the faulty module by a fault-free spare
- A dynamic redundant structure:

Dynamic Redundancy

- If all spare modules are active (powered) and they have the same failure rate
 - □ Reliability similar to a basic parallel system:
 - $R_{dvnamic}(t) = R_{dru}(t) [1 (1-R(t))^{N+1}]$
 - □ R_{dru}(t) reliability of the Detection and Reconfiguration Unit

Hybrid Redundancy

- An NMR system masks permanent and intermittent failures but its reliability drops below that of a single module for very long mission times
- Hybrid redundancy overcomes this by adding spare modules to replace active modules once they become faulty

A hybrid system consists of a core of N processors (NMR), and M

spares

- Output of primaries compared with voter to identify a faulty primary
- In case of a fault, reconfiguration unit replaces faulty primary with a spare

Hybrid Redundancy

- The reliability of a hybrid system with an TMR core and M spares:
 - \Box R_{hybrid}(t) = R_{voter}(t) R_{reconf}(t) (1-mR(t) [1-R(t)]^{m-1}- [1-R(t)]^m)
 - m=M+3 is the total number of modules
 - R_{voter}(t) and R_{reconf}(t) are the reliability of voter and comparison and reconfiguration circuitry
 - Assuming that any fault in voter or comparison and reconfiguration circuit will cause a system fault
- In practice, not all faults in these circuits will be fatal: the reliability will be higher
- More accurate R_{hybrid}(t) require:
 - Detailed analysis of voter and comparison & reconfiguration circuits and the ways they can fail

Duplex Systems

- Both processors execute the same task
 - If outputs are in agreement result is assumed to be correct
 - If results are different we can not identify the failed processor
 - □ A higher-level software has to decide how failure is to be handled
- This can be done using one of several methods

м

Duplex Systems

- Acceptance Test a range check of each processor's output
 - □ Example the pressure in a boiler must be in some known range
- We use semantic information of the task to predict which values of output indicate an error
- How should the acceptance range be picked?
- Sensitivity the probability that the test will recognize an erroneous output as such
- Specificity the probability that the test will identify a correct output as such
 - Narrow range high sensitivity but low specificity
 - □ Wide range low sensitivity but high specificity

Duplex Systems

- Hardware Testing: Both processors are subjected to some test
 - The processor which fails the test is identified as faulty
 - Real-life tests are never perfect
 - □ Test Coverage same as test sensitivity the probability that the test can identify a faulty processor as such
 - Test Transparency the complement of the test coverage the probability that the test passes a faulty processor as good
- Forward Recovery: Use a third processor to repeat the computation carried out by the duplex
 - If only one of the three processors is faulty, then the one that disagrees is the faulty one

- Lifetime of duplex the time until both processors fail
 - □ C Coverage Factor the probability that a faulty processor will be correctly diagnosed, identified and disconnected
- Rduplex(t) the reliability of the duplex system:
 - $\square R_{duplex}(t) = R_{comp}(t) [R^2(t)+2CR(t)(1-R(t))]$
 - R_{comp}(t) –reliability of comparator

Fault-Tolerant Networks

- Multiple paths connecting the source to the destination of a message
- Spare nodes that can be switched in to replace failed units
- Fault-tolerant topologies
 - □ Extra-Stage Multi-Stage Networks
 - □ Interstitial Mesh
 - □ Redundant Crossbar
 - □ Hypercube
 - □ Point-to-Point Networks

Multi-Stage Network

- Non-fault-tolerant multi-stage network (butterfly network) typically built out of 2x2 switches - two inputs and two outputs
- Switch has four settings -
 - S Straight top input line connected to top output and bottom input line to bottom output
 - C Cross top input line connected to the bottom output and bottom input line to top output
 - □ UB Upper Broadcast top input line connected to both output lines
 - □ LB Lower Broadcast bottom input line connected to both output lines

Butterfly Network

- k-stage network (k≥3)
 - □ 2^k inputs and 2^k outputs
 - k stages of 2^{k-1} switches
 each
 - Connections follow a recursive pattern from input to output
 - □ Input stage top output line of each switchbox connected to the input lines of a 2^{k-1} x 2^{k-1} butterfly, and the bottom output line of each switchbox connected to the input lines of another 2^{k-1} x 2^{k-1} butterfly

Butterfly Network - Details

- A switchbox in stage i has lines numbered 2ⁱ apart
- Output line j of every stage goes into input line j of the following stage (j=0,...,2^{k-1})

Numbers in any box other than at the output stage are both of the

same (even or odd) parity

 Butterfly is not fault-tolerant: there is only one path from any given input to a specific output

- If a switchbox in stage i fails 2^{k-i} inputs will no longer be connected to 2ⁱ⁺¹ outputs
- The system can still operate but in a degraded mode

Extra-Stage Networks - Fault Tolerant

- Extra stage duplicating stage 0 at the input
- Bypass multiplexors around switchboxes at the input and output stages a failed switch can be bypassed by routing around it
- Examples:
 - Stage-0 switchbox carrying lines 2,3 fails - duplicated by the extra stage - failed box is bypassed by the multiplexor
 - Switchbox in stage-2 carrying lines 0,4 fails extra stage is set so that input line 0 is switched to output line 1 and input line 4 to output line 5 by passing the failed switchbox

The network becomes tolerant to one switchbox failure

Measures of Resilience

- Quantify the resilience of a network or its degradation in the presence of node and link failures
- Graph-theoretic Measures
 - Node and Link Connectivity
 - Minimum number of nodes (links) that must be removed from the graph in order to disconnect it.
 - □ When a node is removed, all incident links are removed as well.
 - □ Higher the connectivity, more resilient the network is to faults.

Diameter Stability

 Distance between a source and a destination node in a network is defined as the smallest number of links that must be traversed in order to forward a message from the source to the destination

Measures of Resilience

- Graph-theoretic Measures
 - Diameter Stability
 - Diameter of a network is the longest distance between any two nodes.
 - Diameter stability focuses on how rapidly the diameter increases as nodes fail
 - □ **Deterministic Measure** (**Persistence**): smallest number of nodes that must fail in order for the diameter to increase
 - Persistence of a cycle graph is 1: failure of just one node causes a cycle of n nodes to become a path of n − 1 nodes, and the diameter jumps from floor(n/2) to n-2
 - □ **Probabilistic Measure**: The vector DS = $(p_{d+1}, p_{d+2}, ...)$, where p_{d+i} is the probability that the diameter of the network increases from d to d+i as a result of faults that occur according to some given probability distribution.
 - p_∞ probability of diameter becoming infinite (disconnected graph)

.

Measures of Resilience

- Computer Networks Measures
 - Reliability, R(t)
 - □ Probability that all the nodes are operational and can communicate with each other over the entire time interval [0, t]
 - Path Reliability of a source-destination pair:
 - probability that an operational path has existed for a source destination pair during the entire interval [0, t]
 - Bandwidth (Meaning depends on context)
 - □ Eg: Maximum rate at which messages can flow in a network
 - It may be interesting to know the expected bandwidth varies, for given failure and repair rates
 - Connectability Q(t)
 - □ Expected number at time *t* of source—destination pairs which are still connected in the presence of a failure process.
 - A more dynamic measure compared to connectivity

Analysis of the Butterfly Network

- k-stage butterfly interconnection network that connects $N = 2^k$ processors to $N = 2^k$ memory units in a shared memory architecture
- Bandwidth
 - Expected number of access requests from the processors that reach the memory modules
 - Assumptions
 - p_r : Probability of a processor requesting for memory in any cycle
 - Such requests are directed to any memory module with equal probability 1/N
 - Probability that a processor requests for a particular memory module: p_r / N
 - Each request by a processor is independent of previous requests
 - The processor generates a new independent request even if the previous request was not satisfied
 - Due to butterfly structure and uniformity assumption, all N outputs of a stage (say i), will carry memory requests with same probability $p_r^{(i)}$
 - □ We calculate $p_r^{(i)}$ stage by stage, starting at the inputs (processors) where, i = k-1, and working our way to the outputs (memories) where, i = 0

Analysis of the Butterfly Network

Probability of an output of the input stage carrying memory request

$$p_r^{(k-1)} = \frac{p_r}{2} + \frac{p_r}{2} - \left(\frac{p_r}{2}\right)^2 = p_r - \frac{p_r^2}{4}$$

☐ The requests carried by the two input lines to a switchbox are statistically independent, since the two routes they traverse are disjoint

Analysis of the Butterfly Network

Probability of an output of the input stage carrying memory request

$$p_r^{(k-1)} = \frac{p_r}{2} + \frac{p_r}{2} - \left(\frac{p_r}{2}\right)^2 = p_r - \frac{p_r^2}{4}$$

- The requests carried by the two input lines to a switchbox are statistically independent, since the two routes they traverse are disjoint
- Probability of an output of the (i-1)th stage carrying memory request

$$p_r^{(i-1)} = p_r^{(i)} - \frac{(p_r^{(i)})^2}{4}$$

 Bandwidth of the network is the expected number of requests that make it to the memory end

$$\square \quad \mathsf{BW} = Np_r^{(0)}$$

Butterfly Network with Faults

- Probability of a link being faulty: q_i
 - \square Probability of the link being fault-free: $p_i = 1 q_i$
- probability of switchbox failure incorporated into incident links
 - ☐ Thus, only links can fail (Assumption)
- Prob. that a request at the input of stage (i 1) will propagate from one of the corresponding inputs in stage i: $p_i \times p_r^{(i)}/2$.
 - Probability that a request at the input line at stage (i-1) will propagate from any input in stage i: $p_r^{(i-1)} = p_\ell \; p_r^{(i)} (p_\ell \; p_r^{(i)})^2/4$
- Thus, probability of the expected number of access requests from the processors that reach the memory modules in the presence of possible link failures, can be determined by recursively determining $p_r^{(0)}$: $BW = Np_r^{(0)}$

- **Connectability**: Expected number of connected processor-memory pairs in a k-stage, $2^k \times 2^k$ network
- There are *k*+1 links and *k* switchboxes that need to be traversed in a *k*-stage network

٧

Connectability

- Connectability: Expected number of connected processor-memory pairs in a k-stage, $2^k \times 2^k$ network
- There are *k*+1 links and *k* switchboxes that need to be traversed in a *k*-stage network
- Probability that a switchbox fails: q_s [$p_s = 1 q_s$]
- Probability of all links and switchboxes in a path being simultaneously fault-free: $p_l^{k+1} \times p_s^k$
- 2^{2k} input–output pairs
 - Expected number of pairs that are connected:

• Q =
$$2^{2k} \times p_l^{k+1} \times p_s^{k}$$

Accessibility (A_c)

- A processor (memory) is accessible if it is fault-free and is connected to at least one fault-free memory (processor)
- Probability that at least one fault-free path exists from a switchbox in stage i to the output: $\Phi(i)$

м

Accessibility (A_c)

- A processor (memory) is accessible if it is fault-free and is connected to at least one fault-free memory (processor)
- Probability that at least one fault-free path exists from a switchbox in stage i to the output: $\Phi(i)$
- Probability that at least one line out of a switchbox at the output stage is functional: $\Phi(0) = 1 q_i^2$
- Consider $\Phi(i)$ [i > 0]
 - □ A connection to the output end exists through the top link of stage-i if and only if that link is functional and the stage-(i-1) switchbox that it leads to is connected to the output end. Probability of this: $p_i \Phi(i-1)$
 - □ Therefore, $\Phi(i) = 1 (1 p_i \Phi(i-1))^2$
- Probability that a processor can connect to the output: $p_i \Phi(k-1)$
- Since, there are 2^K processors: $A_c = 2^K p_l \Phi(k-1)$