Problem B. Sequential Nim

Time limit 1000 ms **Mem limit** 262144 kB

There are n piles of stones, where the i-th pile has a_i stones. Two people play a game, where they take alternating turns removing stones.

In a move, a player may remove a positive number of stones from the **first non-empty pile** (the pile with the minimal index, that has at least one stone). The first player who cannot make a move (because all piles are empty) loses the game. If both players play optimally, determine the winner of the game.

Input

The first line contains a single integer t ($1 \le t \le 1000$) — the number of test cases. Next 2t lines contain descriptions of test cases.

The first line of each test case contains a single integer n ($1 \le n \le 10^5$) — the number of piles.

The second line of each test case contains n integers a_1, \ldots, a_n ($1 \le a_i \le 10^9$) — a_i is equal to the number of stones in the i-th pile.

It is guaranteed that the sum of n for all test cases does not exceed 10^5 .

Output

For each test case, if the player who makes the first move will win, output "First". Otherwise, output "Second".

Sample 1

Input Outp	ut
------------	----

SCC211-Aula10 Nov 26, 2022

Input	Output
7	First
3	Second
2 5 4	Second
8	First
1 1 1 1 1 1 1 1	First
6	Second
1 2 3 4 5 6	First
6	
1 1 2 1 2 2	
1	
100000000	
5	
1 2 2 1 1	
3	
1 1 1	

Note

In the first test case, the first player will win the game. His winning strategy is:

- 1. The first player should take the stones from the first pile. He will take 1 stone. The numbers of stones in piles will be [1, 5, 4].
- 2. The second player should take the stones from the first pile. He will take 1 stone because he can't take any other number of stones. The numbers of stones in piles will be [0, 5, 4].
- 3. The first player should take the stones from the second pile because the first pile is empty. He will take 4 stones. The numbers of stones in piles will be [0, 1, 4].
- 4. The second player should take the stones from the second pile because the first pile is empty. He will take 1 stone because he can't take any other number of stones. The numbers of stones in piles will be [0,0,4].
- 5. The first player should take the stones from the third pile because the first and second piles are empty. He will take 4 stones. The numbers of stones in piles will be [0, 0, 0].
- 6. The second player will lose the game because all piles will be empty.