



# CanSat 2023 Preliminary Design Review (PDR) Outline Version 1.0

Team 1032
Yes we CANSAT



#### **Presentation Outline**



| Page # | Presentation Section                                   | Presenter(s)                                                             |  |  |  |  |
|--------|--------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
| 5      | Systems Overview                                       | Savari Datta, Jordi Rey, Daniel Horton                                   |  |  |  |  |
| 20     | Sensor Subsystem Design Dyla                           |                                                                          |  |  |  |  |
| 30     | Descent Control Design                                 | Jovana Markovic, Melissa Gonzalez Grospe                                 |  |  |  |  |
| 40     | Mechanical Subsystem Design                            | Daniel Horton, Christian Roque, Savari Datta,<br>Melissa Gonzalez Grospe |  |  |  |  |
| 55     | Communication and Data Handling (CDH) Subsystem Design | Yashas Shivaram, Max Epste                                               |  |  |  |  |
| 65     | Electrical Power Subsystem (EPS) Design                | Paolo D'Alessandro                                                       |  |  |  |  |
| 70     | Flight Software (FSW) Design                           | Max Epstein                                                              |  |  |  |  |
| 80     | Ground Control System (GCS) Design                     | Dylan Falzone, Max Epstein                                               |  |  |  |  |
| 87     | CanSat Integration and Test                            | Jordi Rey, Yashas Shivaram                                               |  |  |  |  |
| 95     | Mission Operations & Analysis                          | Jordi Rey                                                                |  |  |  |  |
| 100    | Requirements Compliance                                | Savari Datta                                                             |  |  |  |  |
| 108    | Management                                             | Savari Datta                                                             |  |  |  |  |



Presenter: Savari Datta

#### **Team Organization**







#### **Acronyms**



| Acronym | Meaning                            |  |  |  |  |
|---------|------------------------------------|--|--|--|--|
| ABS     | Acrylonitrile Butadiene Styrene    |  |  |  |  |
| CD      | Drag Coefficient                   |  |  |  |  |
| CDH     | Communication and Data Handling    |  |  |  |  |
| CSV     | Comma-Separated Values             |  |  |  |  |
| DAC     | Digital-to-Analog Converter        |  |  |  |  |
| EPS     | Electrical Power Subsystem         |  |  |  |  |
| FSW     | Flight Software                    |  |  |  |  |
| GCS     | Ground Control System              |  |  |  |  |
| GPS     | Global Positioning System          |  |  |  |  |
| IDE     | Integrated Development Environment |  |  |  |  |
| LED     | Light-Emitting Diode               |  |  |  |  |
| MAE     | Mechanical & Aerospace Engineering |  |  |  |  |

| Acronym | Meaning                                           |  |
|---------|---------------------------------------------------|--|
| MQTT    | MQ Telemetry Transport                            |  |
| OTS     | Off-the-shelf                                     |  |
| PDR     | Preliminary Design Review                         |  |
| PID     | Proportional-Integral-Derivative                  |  |
| PWM     | Pulse-Width Modulation                            |  |
| RPM     | Revolutions per Minute                            |  |
| SMA     | Subminiature Version A                            |  |
| SPI     | Serial Peripheral Interface                       |  |
| SSDC    | Space Systems Design Club                         |  |
| STEM    | Science, Technology, Engineering, and Mathematics |  |
| UF      | University of Florida                             |  |





## **Systems Overview**

Savari Datta, Jordi Rey, Daniel Horton



#### **Mission Summary (1/2)**



#### **Main Objectives:**

Design a CanSat that shall consist of a container and a payload. The probe shall simulate the sequence of a planetary probe

- The CanSat shall be launched to an altitude ranging from 670 meters to 725 meters above the launch site and deployed near apogee (peak altitude).
- The CanSat must survive the forces incurred at launch and deployment.
- Once the CanSat is deployed from the rocket, the CanSat shall descend using a parachute at a rate of 15 m/s.
- At 500 meters, the CanSat shall deploy a probe that shall open a heat shield.
- The heat shield will be used as an aerobraking device with a descent rate of 20 meters/second or less.
- When the probe reaches 200 meters, the probe shall deploy a parachute and slow the descent rate to 5 meters/second.
- Once the probe has landed, it shall attempt to upright itself and raise a flag 500 mm above the base of the probe.
- The video camera shall be pointed towards the ground during descent.



#### **Mission Summary (2/2)**



#### **Bonus Objectives:**

A video camera shall be integrated into the container and point toward the probe. The camera shall record the event when the probe is released from the container. Video shall be in color with a minimum resolution of 640x480 pixels and a minimum of 30 frames per second.

Will not be attempting bonus objective

#### **External Objectives:**

- To promote STEM engagement at the university level
- To provide team members with valuable hands-on engineering project experience that includes designing, manufacturing and testing of an aerospace system
- To challenge students with unique projects that require critical thinking
- To inspire underclassmen to continue participating in the annual CanSat competition at UF



## **System Requirement Summary (1/6)**



| Requirement Number | Description                                                                                                                                                                                             |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1                  | Total mass of the CanSat (science payloads and container) shall be 700 grams +/- 10 grams.                                                                                                              |  |  |  |
| 2                  | CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.                                |  |  |  |
| 3                  | The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.                                                                         |  |  |  |
| 4                  | The container shall be a fluorescent color; pink, red or orange.                                                                                                                                        |  |  |  |
| 5                  | The container shall be solid and fully enclose the science probes. Small holes to allow access to turn on the science probes are allowed. The end of the container where the probe deploys may be open. |  |  |  |
| 6                  | The rocket airframe shall not be used to restrain any deployable parts of the CanSat.                                                                                                                   |  |  |  |
| 7                  | The rocket airframe shall not be used as part of the CanSat operations.                                                                                                                                 |  |  |  |
| 8                  | The container's parachute shall not be enclosed in the container structure. It shall be external and attached to the container so that it opens immediately when deployed from the rocket.              |  |  |  |
| 9                  | The Parachutes shall be fluorescent Pink or Orange                                                                                                                                                      |  |  |  |
| 10                 | The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5m/s.                                                                                                        |  |  |  |
| 11                 | 0 altitude reference shall be at the launch pad.                                                                                                                                                        |  |  |  |

Presenter: Savari Datta CanSat 2023 PDR: Team 1032 Yes we CANSAT



#### **System Requirement Summary (2/6)**



| Requirement Number | Description                                                                                                                                                                                             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12                 | All structures shall be built to survive 15 Gs of launch acceleration.                                                                                                                                  |
| 13                 | All structures shall be built to survive 30 Gs of shock                                                                                                                                                 |
| 14                 | All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high-performance adhesives.                                                           |
| 15                 | All mechanisms shall be capable of maintaining their configuration or states under all forces.                                                                                                          |
| 16                 | Mechanisms shall not use pyrotechnics or chemicals.                                                                                                                                                     |
| 17                 | Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting vegetation on fire.                                                  |
| 18                 | Both the container and payload shall be labeled with team contact information including email address.                                                                                                  |
| 19                 | Cost of the CanSat shall be under \$1000. Ground support and analysis tools are not included in the cost. Equipment from previous years should be included in this cost, based on current market value. |
| 20                 | XBEE radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBEE radios are also allowed.                                                                                       |
| 21                 | XBEE radios shall have their NETID/PANID set to their team number.                                                                                                                                      |
| 22                 | XBEE radios shall not use broadcast mode.                                                                                                                                                               |
| 23                 | The container and probe shall include an easily accessible power switch that can be accessed without disassembling the CanSat and science probes and in the stowed configuration.                       |

Presenter: Savari Datta CanSat 2023 PDR: Team 1032 Yes we CANSAT



## **System Requirement Summary (3/6)**



| Requirement Number | Description                                                                                                                                                                                                  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 24                 | The probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the CanSat and in the stowed state.                               |  |  |  |
| 25                 | An audio beacon is required for the probe. It shall be powered after landing.                                                                                                                                |  |  |  |
| 26                 | The audio beacon shall have a minimum sound pressure level of 92 dB, unobstructed.                                                                                                                           |  |  |  |
| 27                 | Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed. |  |  |  |
| 28                 | An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.                            |  |  |  |
| 29                 | Spring contacts shall not be used for making electrical connections to batteries. Shock forces can cause momentary disconnects.                                                                              |  |  |  |
| 30                 | The CanSat shall operate during the environmental tests laid out in Section 3.5.                                                                                                                             |  |  |  |
| 31                 | The CanSat shall operate for a minimum of two hours when integrated into the rocket.                                                                                                                         |  |  |  |
| 32                 | The probe shall be released from the container when the CanSat reaches 500 meters.                                                                                                                           |  |  |  |
| 33                 | The probe shall deploy a heat shield after leaving the container.                                                                                                                                            |  |  |  |
| 34                 | The heat shield shall be used as an aerobrake and limit the descent rate to 20 m/s or less.                                                                                                                  |  |  |  |
| 35                 | At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s +/- 1m/sec.                                                                                                           |  |  |  |

CanSat 2023 PDR: Team 1032 Yes we CANSAT Presenter: Savari Datta



## **System Requirement Summary (4/6)**



| Requirement Number | Description                                                                                                                                                                                                               |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 36                 | Once landed, the probe shall upright itself.                                                                                                                                                                              |  |  |  |  |
| 37                 | After uprighting, the probe shall deploy a flag 500 mm above the base of the probe when the probe is in the upright position.                                                                                             |  |  |  |  |
| 38                 | The probe shall transmit telemetry once per second.                                                                                                                                                                       |  |  |  |  |
| 39                 | The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked. |  |  |  |  |
| 40                 | The probe shall include a video camera pointing down to the ground.                                                                                                                                                       |  |  |  |  |
| 41                 | The video camera shall record the flight of the probe from release to landing.                                                                                                                                            |  |  |  |  |
| 42                 | The video camera shall record video in color and with a minimum resolution of 640x480.                                                                                                                                    |  |  |  |  |
| 44                 | The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets                      |  |  |  |  |
| 45                 | The probe shall maintain mission time throughout the whole mission even with processor resets or momentary power loss.                                                                                                    |  |  |  |  |
| 46                 | The probe shall have its time set to within one second UTC time prior to launch.                                                                                                                                          |  |  |  |  |
| 47                 | The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file.                                       |  |  |  |  |
| 48                 | In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the container altitude.                                                                |  |  |  |  |

Presenter: Savari Datta CanSat 2023 PDR: Team 1032 Yes we CANSAT



## **System Requirement Summary (5/6)**



| Requirement Number | Description                                                                                                                                                                                       |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 49                 | The container flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.                                                          |  |  |  |  |
| 50                 | The ground station shall command the CanSat to start calibrating the altitude to zero when the CanSat is on the launch pad prior to launch.                                                       |  |  |  |  |
| 51                 | The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.                                                                                |  |  |  |  |
| 52                 | Telemetry shall include mission time with 0.01 second or better resolution.                                                                                                                       |  |  |  |  |
| 53                 | Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.                                                           |  |  |  |  |
| 54                 | Each team shall develop their own ground station.                                                                                                                                                 |  |  |  |  |
| 55                 | All telemetry shall be displayed in real time during descent on the ground station.                                                                                                               |  |  |  |  |
| 56                 | All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.)                                                                                                         |  |  |  |  |
| 57                 | Teams shall plot each telemetry data field in real time during flight.                                                                                                                            |  |  |  |  |
| 58                 | The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBEE radio and a hand-held antenna.                                                        |  |  |  |  |
| 59                 | The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site |  |  |  |  |
| 60                 | The ground station software shall be able to command the container to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.                              |  |  |  |  |

Presenter: Savari Datta CanSat 2023 PDR: Team 1032 Yes we CANSAT 12



#### **System Requirement Summary (6/6)**



| Requirement Number | Description                                                                                                                                            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 61                 | When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the CanSat. |



## System Level CanSat Configuration Trade & Selection







## **System Level CanSat Configuration Trade & Selection**







#### **System Level Configuration Selection**



| Chosen Design: System 1         |                                                                                                                                                                                                        |  |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Configuration                   | Reasoning                                                                                                                                                                                              |  |  |  |
| 9-sided polygon Canister        | Simple to manufacture, light-weight design, composed only of ABS plastic plates, fiberglass eyebolt and aluminum supports fixed together using epoxy.                                                  |  |  |  |
| Hexagonal payload configuration | ABS plates with 6 spring-deployed arms for the aerobraking-heatshield, and aluminum rods supporting the plates. More compact design with fewer unique parts required, making it easier to manufacture. |  |  |  |
| Altimeter Chute Release         | Electronic chute release; does not require any other mechanical components on the payload to deploy the parachute when the desired altitude is reached.                                                |  |  |  |



Presenter: Jordi Rey

#### **Physical Layout**







3

Presenter: Jordi Rey

#### **System Concept of Operations**





- 1. Set up ground station
- 2. Power on CanSat
- 3. Place CanSat into rocket
- Rocket is launched
- At 670-725m the CanSat separates and parachute opens
- 6. At 400m a probe will be released from the CanSat, which will deploy an aerobraking heat shield, with a camera facing the ground at all times
- 7. At 200m the probe will deploy a parachute too reduce descent rate
- 8. Probe will land upright
- 9. Probe will deploy a flag 500mm above the base of the probe
- Recovery crew tracks and collects CanSat
- 11. FSW obtains and saves flight data & video recording to thumb drive



#### **Launch Vehicle Compatibility**



#### **Payload Clearance**

Sharp edges in this section will be sanded down



**NOTE**: The first two plates are the same size as the third plate (0.090 m)





## Sensor Subsystem Design

**Dylan Falzone** 



#### **Sensor Subsystem Overview**



| Sensor Type        | Model                 | Purpose                                                                                               | CanSat Location    |  |
|--------------------|-----------------------|-------------------------------------------------------------------------------------------------------|--------------------|--|
| GPS module         | Adafruit Ultimate     | Determine location coordinates (X,Y,Z) & exact time                                                   | Payload            |  |
| Pressure Sensor    | Adafruit BMP280       | Measure altitude of Container & Payload                                                               | Container, Payload |  |
| Rotational Sensor  | BNO055                | Measure gyro readings in degrees per second, angular acceleration, and magnetometer readings in gauss | Payload            |  |
| Temperature Sensor | BNO055                | Measure temperature readings                                                                          | Payload            |  |
| Camera             | Arducam Mini 2MP Plus | View and record Earth's terrain during descendent                                                     | Payload            |  |



Presenter: Dylan Falzone

# Payload Air Pressure Sensor Trade & Selection



| Sensors            | Current<br>(at 1Hz) (µA) | Temperature<br>Range (°C) | Interfaces | Resolution<br>(hPa) | Voltage<br>Usage (V) | Size (mm)<br>L x W x H | Weight (g) | Price (\$) |
|--------------------|--------------------------|---------------------------|------------|---------------------|----------------------|------------------------|------------|------------|
| Adafruit MPRLS     | 3.6                      | -40 to 85                 | I2C, SPI   | .30                 | 1.65 ~ 3.6           | 17.8 x 16.7 x<br>7.5   | 1.1        | 14.95      |
| Adafruit<br>BMP280 | 2.7                      | -40 to 85                 | I2C, SPI   | .0016               | 1.71 ~ 3.6           | 19.2 x 17.9<br>x 2.9   | 1.3        | 9.95       |
| MPL3115A2          | 8.5                      | -40 to 85                 | I2C        | .015                | 1.95~ 3.6            | 18 x 19 x 2            | 1.2        | 9.95       |

| Selection       | Reasoning for the selection                                                                                                                       |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Adafruit BMP280 | <ul><li>Lower current draw in comparison to other inspected sensors</li><li>Greater resolution in comparison to other inspected sensors</li></ul> |





Presenter: Dylan Falzone

# Payload GPS Sensor Trade & Selection



| Sensors                          | Update Rate<br>(Hz) | Operating Voltage<br>(V) | Current<br>(Tracking)<br>(mA) | Interfaces     | Size (mm)<br>L x W x H | Weight (g) | Price (\$) |
|----------------------------------|---------------------|--------------------------|-------------------------------|----------------|------------------------|------------|------------|
| Adafruit Ultimate<br>Breakout v3 | 10                  | 3.0 – 5.0                | 20                            | I2C, SPI, UART | 25.5 x 35 x 6.5        | 8.5        | 29.95      |
| uBlox NEO M8N                    | 10                  | 2.7 – 3.6                | 23                            | I2C, SPI, UART | 27.6 x 26.6 x 2.4      | 9.8        | 11.59      |
| Titan X1                         | 10                  | 3.0 – 4.3                | 25                            | I2C, SPI, UART | 12.5 x 12.5 6.5        | 4          | 69.84      |

| Selection         | Reasoning for the selection                                                                                                                                                                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adafruit Ultimate | <ul> <li>Lower current draw during tracking in comparison to other inspected sensors</li> <li>Previous experience with sensor and familiarity with Arduino</li> <li>Availability</li> </ul> |





# Payload Air Temperature Sensor Trade & Selection



| Sensors                             | Temperature Range (°C) | Interfaces  | Voltage<br>Usage (V) | Size (mm)<br>L x W x H | Weight (g) | Price (\$) |
|-------------------------------------|------------------------|-------------|----------------------|------------------------|------------|------------|
| HTU31 Temperature & Humidity Sensor | -40 to 125             | I2C         | 3.3 – 5.5            | 25.5 x 17.7 x 4.6      | 1.6        | 5.95       |
| BNO055                              | -40 to 85              | I2C or UART | 1.7 – 3.6            | 20 x 27 x 4            | 3          | 34.95      |
| Sensirion SHT31-D                   | -40 to 125             | I2C         | 2.4 – 5.5            | 12.7 x 18 x 2.6        | 0.8        | 13.95      |

| Selection | Reasoning for the selection                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------|
| BNO 055   | - Familiarity with sensor - Also meets our requirements for the payload's temperature sensor - Availability |



Presenter: Dylan Falzone CanSat 2023 PDR: Team 1032 Yes we CANSAT



Presenter: Dylan Falzone

# Payload Tilt Sensor Trade & Selection



| Sensors                             | Temperature Range (°C) | Interfaces  | Voltage<br>Usage (V) | Size (mm)<br>L x W x H | Weight (g) | Price (\$) |
|-------------------------------------|------------------------|-------------|----------------------|------------------------|------------|------------|
| HTU31 Temperature & Humidity Sensor | -40 to 125             | I2C         | 3.3 – 5.5            | 25.5 x 17.7 x 4.6      | 1.6        | 5.95       |
| BNO055                              | -40 to 85              | I2C or UART | 1.7 – 3.6            | 20 x 27 x 4            | 3          | 34.95      |
| Sensirion SHT31-D                   | -40 to 125             | I2C         | 2.4 – 5.5            | 12.7 x 18 x 2.6        | 0.8        | 13.95      |

| Selection | Reasoning for the selection                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------|
| BNO 055   | - Familiarity with sensor - Also meets our requirements for the payload's temperature sensor - Availability |





Presenter: Dylan Falzone

# Payload Battery Voltage Sensor Trade & Selection



| Sensors          | Resolution | Interfaces | Size (mm)<br>L x W x H | Weight (g) | Price (\$) |
|------------------|------------|------------|------------------------|------------|------------|
| Adafruit INA219  | 12 bit     | I2C        | 25.6 x 20.4 x 4.7      | 4.6        | 9.95       |
| Adafruit INA260  | 16 bit     | I2C        | 22.9 x 22.8 x 2.7      | 2          | 9.95       |
| Precision LM4040 | 12 bit     | I2C        | 16 x 12.5 x 2.5        | 0.7        | 7.50       |

| Selection       | Reasoning for the selection                                                                                                                     |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Adafruit INA260 | <ul><li>Greater resolution bit compared to other sensors</li><li>Previous experience and familiarity with sensor</li><li>Availability</li></ul> |





#### **Payload Camera Trade & Selection**



| Name                                   | Price (\$) | Weight (g) | Size (mm) | Operating<br>Voltage (V) | Current Draw<br>(mA) | Framerate (fp<br>s) |
|----------------------------------------|------------|------------|-----------|--------------------------|----------------------|---------------------|
| Miniature TTL<br>Serial JPEG<br>Camera | 34.95      | 3          | 20 x 28   | 3.3 - 5.0                | 75                   | 30                  |
| Arducam Mini<br>2MP Plus               | 25.99      | 20         | 24 x 34   | 3.3 - 5.0                | 20                   | 30                  |

| Selection                | Reasoning for the selection                                                                                                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Arducam Mini 2MP<br>Plus | <ul> <li>Compatibility with microprocessor</li> <li>Lower current draw in comparison to other inspected sensors</li> </ul> |



Presenter: Dylan Falzone CanSat 2023 PDR: Team 1032 Yes we CANSAT 27



#### **Audio Beacon Trade & Selection**



| Name        | Min Sound<br>Pressure (dB) | Weight (g) | Operating<br>Voltage (V) | Mini Current Draw<br>(mA) |
|-------------|----------------------------|------------|--------------------------|---------------------------|
| PS1240P02BT | 60                         | 1          | 3                        | 40                        |
| IE092505-1  | 80                         | 1          | 5                        | 30                        |

| Selection  | Reasoning for the selection                                        |
|------------|--------------------------------------------------------------------|
| IE092505-1 | - Compatibility with microprocessor - Meet sound level requirement |





#### **Bonus Camera Trade and Selection**



#### N/A

Presenter: Dylan Falzone





## **Descent Control Design**

Jovana Markovic, Melissa Gonzalez Grospe



#### **Descent Control Overview (1/3)**



#### **Container Descent Control System:**

**System:** Parachute

**System Components:** Hexagonal Parachute

Parachute Chords

Eyebolt

**System Overview:** The eyebolt is screwed into the can. The parachute is attached to the eyebolt using chords. The parachute sits atop the can prior to the can's ejection from the

rocket after which the parachute will deploy naturally



#### **Descent Control Overview (2/3)**



#### Payload Descent Control System:

**System:** Parachute

**System Components:** Hexagonal Parachute

Parachute Chords

Altimeter Chute Release

**System Overview:** The parachute is attached to a tie down ring which is screwed into the payload. The parachute will sit atop the payload held together by the device until the desired altitude is reached, after which the device will release, and the parachute will be allowed to deploy naturally



#### **Descent Control Overview (3/3)**



#### Aerobraking:

System: Hexagonal Prism Payload Shape

**System Components:** Hexagonal Plates

Extendable arms which serve to enlarge one of the plates

Spring system which releases the arms into place

Poles for vertical alignment

**System Overview:** The spring system will allow for the arm attachments to remain compressed while the payload is within the can. Following deployment from the can, the arms will extend and enlarge the surface area of the central hexagonal plate. The enlarged plate will create a truncated hexagonal pyramid which will increase drag.



## **Container Descent Control Strategy Selection and Trade**



| Decent Control         |                     |            | Eyebolt Design |       |       | Tie Down Ring<br>Design |       |       |
|------------------------|---------------------|------------|----------------|-------|-------|-------------------------|-------|-------|
| Objective              | Weighting<br>Factor | Parameter  | Mag.           | Score | Value | Mag.                    | Score | Value |
| Mass                   | 0.30                | grams      | 10.1           | 9.4   | 2.8   | 15.6                    | 6.0   | 1.8   |
| Durability             | 0.10                | discussion | good           | 8.0   | 8.0   | okay                    | 6.0   | 0.6   |
| Stability              | 0.30                | discussion | great          | 10.0  | 3.0   | good                    | 8.0   | 2.4   |
| Size (Vertical Height) | 0.20                | mm         | 66.5           | 3.6   | 0.7   | 23.8                    | 10.0  | 2.0   |
| Simplicity             | 0.10                | # of parts | 2.0            | 10.0  | 1.0   | 4.0                     | 5.0   | 0.5   |
| Overall value          |                     |            |                | 8.3   |       |                         | 7.3   |       |

Justification: The Eye Bolt design was selected to attach the parachute to the can as it weighs less and requires fewer parts to be installed in comparison to the Tie Down Ring

Configuration A: Eyebolt

Presenter: Jovana Markovic



Configuration B: Tie Down Ring





# Payload Aerobraking Descent Control Strategy Selection and Trade



| Design                      | Description                                                                                                                                                                                  | Identified Issues                                                                                                    | Evaluation                                                                                               |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Umbrella<br>Mechanism       | Following deployment from the can, six rods will release naturally and extend at an angle in order to create an aerodynamic parabolic shape.                                                 | Manufacturing the rods to allow for easy movement proved to be difficult. Lack of storage space for electronics.     | Discarded                                                                                                |
| Spring<br>Loaded<br>Hexagon | Following deployment from the can, a spring system will allow for rods to extend on the top plate of the payload. The top plate will now be larger, which will create a cone shaped payload. | Design is heavier than preferred. The bottom of the payload is a hexagonal plate which may disturb the aerodynamics. | Selected, allows<br>for necessary<br>deceleration while<br>being cheaper and<br>easier to<br>manufacture |



Configuration A: Umbrella Mechanism

Presenter: Melissa Gonzalez Grospe



Configuration B: Spring Loaded Hexagon



# Payload Aerobraking Descent Stability Control Strategy Selection and Trade



| Method                                                                 | Description                                                                                                                                                                                                                                                | Identified Issues                                                                                                                                                                            | Evaluation                                                                                 |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Bottom Heavy<br>Payload Design                                         | Designing the payload in a manner in which most of the mechanisms are located towards the center bottom of the payload and distributing the contents of the payload such as the electronics toward the bottom would ensure that the payload lands upright. | Requires extensive testing. Adequate space for the configuration may be an issue. The payload contents may be more susceptible to damage from the shock of deployment in this configuration. | Selected,<br>simple design<br>and preliminary<br>testing has<br>already been<br>completed. |
| Spinning The spinning serves the gyroscopically stabilize the payload. |                                                                                                                                                                                                                                                            | Difficult to implement. The spinning could have a significant effect on the speed at which the payload is descending.                                                                        | Discarded,<br>impractical                                                                  |

36



# Payload Parachute Descent Control Strategy Selection and Trade



| Method              | Description                                                                                                                                                                                                                                  | Identified Issues                                                                                                                                                                    | Evaluation                                                                               |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Eyebolt             | Consists of a 6.6675 cm long shank which anchors the eye bolt to the payload and a ring at the top which allows for attaching the parachute. Would require an additional nut to hold the eye bolt in place.                                  | Vertical height exceeds allowable value. Would add considerable height to the payload design, possibly requiring modifications to the can design in order to accommodate the height. | Discarded                                                                                |
| Tie<br>Down<br>Ring | The tie down ring consists of a D shaped ring which is securely nestled within a base plate. The base plate is folded over and through the ring to secure it. The tie down ring is secured to the payload using an additional nut and screw. | Heavier than preferable. More complex manufacturing compared to eyebolt design. Requires more parts.                                                                                 | Selected, shorter<br>possible shank<br>length saves<br>space, shorter<br>overall height. |

Configuration A: Eyebolt



Configuration B: Tie Down Ring





### **Descent Rate Estimates (1/2)**



## **Decent Rate Estimates for the following Configurations**

| Configuration              | Device             | Desired Rate     | Decent Rate<br>Estimate | Method of Calculation  |
|----------------------------|--------------------|------------------|-------------------------|------------------------|
| CanSat with payload        | Parachute          | 15 ± 5 m/s       | 15.3 m/s                | Parachute calculations |
| Payload aerobraking        | Umbrella<br>Device | less than 20 m/s | 11.3 ± 3.1 m/s          | Drop Testing           |
| Payload parachute released | Parachute          | 5 ± 1 m/s        | 5.89 ± 1.1 m/s          | Drop Testing           |

### **Assumptions**

- ~2.7 m/s winds
- Total weight is 700 grams
- Payload weight is 300 grams
- 0.53m Hexagon Parachute for Payload



### **Descent Rate Estimates (2/2)**



### Testing Information

- 3D Printed Model of Container and Aerobraking device
- Brass weights were used to simulate the weight of the interior components (700 grams & 300 grams)
- Parachutes used were those selected from the Trade Study
- Prototype was abruptly thrown in an attempt to mimic shock forces incurred at apogee
- Each protype was tested 10 times and outliers were removed from each data set



### **Formulas Used**

$$\overline{v} = rac{\Delta x}{\Delta t}$$
  $\Delta x = v_0 t + rac{1}{2} a t^2$   $\sigma = \sqrt{rac{\sum (x_i - \mu)^2}{N}}$   $V_{ ext{terminal}}^2 = rac{2 M_{vehicle} \cdot g / 
ho}{\left(C_D \cdot S
ight)_0^{parachute} + \left(C_D \cdot S
ight)_{vehicle}^{vehicle}}$ 







$$D_{0} = \sqrt{\frac{4S_{0}}{\lambda}}$$

$$S_{v} = \lambda \frac{D_{v}^{2}}{4} \sqrt{1 + \tan^{2} \mu}$$

$$\lambda_{g} = \frac{S}{S}$$

$$V_{\text{terminal}}^{2} = \frac{2M_{\text{vehicle}} \cdot g/\rho}{\left(C_{D} \cdot S\right)_{0}^{\text{parachute}} + \left(C_{D} \cdot S\right)_{\text{ref}}^{\text{vehicle}}}$$

#### Formulas Retrieved from:

Section 3.5 Recovery Systems: Parachutes 101 - Utah State University. http://maenas.eng.usu.edu/MAE 6530 Web/New Course/launch design/Section7.5.pdf.

 $S_0 = \lambda \frac{D_c^2}{4} \sqrt{1 + \tan^2 \mu}$ 





# **Mechanical Subsystem Design**

Daniel Horton, Christian Roque, Savari Datta, Melissa Gonzalez Grospe



### **Mechanical Subsystem Overview**



#### Parachute Attachment -

Lightweight fiberglass eyebolt providing mechanical connection between parachute and can.

#### **Aluminum Supports -**

Aluminum bar stock fixed to the ABS platforms provides rigid support for the can shape.

### Payload Securement Ring -

Used to stop payload from sliding off linear actuator arm.

Flag Deployment – a container will house a clock spring that will be used in reverse to simulate a tape measure that pushes outwards rather than inwards, raising the flag

#### **ABS Platforms -**

Nine sided levels add structural support for mounting aluminum rods/supports on the sides, parachute attachment, and electronics.

#### **Linear Actuator -**

Holds the payload inside the container when deployed. Can be retracted to release payload at desired altitude.

#### **ABS Nonagon Ring -**

Bottom platform is an open nine-sided ring, providing structural support while still allowing the payload to drop through.



# **Container Mechanical Layout of Components Trade & Selection (1/2)**



#### **Configuration A**: Circular Container



| Design                | Description                                                                                            | Materials                                                                                         | Evaluation                                                               |
|-----------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Circular<br>Container | Circular shaped container with four levels held together by 2 aluminum rods and 16 corresponding nuts. | Eyebolt (1) – Fiberglass<br>Rod (2) - Aluminum<br>Nut (17) - Aluminum<br>Plates (4) - ABS Plastic | Discarded, not enough space for electrical components and payload to fit |



# Container Mechanical Layout of Components Trade & Selection (2/2)



#### **Configuration B**: Nonagon Container



| Design               | Description                                                                                  | Materials                                                                                             | Evaluation                                                                                                                               |
|----------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Nonagon<br>Container | Nonagon shaped container with three levels held together by 3 aluminum supports using epoxy. | Eyebolt (1) – Fiberglass<br>Supports (3) – Aluminum<br>Plates (3) - ABS Plastic<br>Nut (1) - Aluminum | Selected, more space on each plate, 3 supports make it structurally intact, less components makes it simpler and much lighter in weight. |

CanSat 2023 PDR: Team 1032 Yes we CANSAT 43



### Container Parachute Attachment Mechanism



The parachute for the container will be connected via a fiberglass routing eyebolt that is attached to the top of the

container using a nut. Parachute- folded and placed on top of can within the rocket



**Nut –** Tightly secures the Eyebolt to the container.



Presenter: Melissa Gonzalez Grospe

# Payload Mechanical Layout of Components Trade & Selection (1/2)





**NOTE**: Payload will be released at 500 meters

| Design                | Description                                                                                                                                                                                                                                                                                                                                                                 | Materials                                                                                                     | Evaluation |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------|
| Umbrella<br>Mechanism | Overall cylindrical shape when compacted (in can). When released from can, rods fully extend to create a widened parabolic shape for the bottom half of the payload. All plates are circular. Top 2 plates are used for the parachute attachment and flag deployment device. The rest of the plates that make up the structure of the payload are reserved for electronics. | Plates – Wood<br>Poles – ABS Plastic<br>Rods – Aluminum<br>Pins – ABS Plastic<br>Parachute Attachment – Steel | Discarded  |

45



Presenter: Melissa Gonzalez Grospe

# Payload Mechanical Layout of Components Trade & Selection (2/2)





| Design                      | Description                                                                                                                                                                                                                                                                                                                                          | Materials                                                                                                         | Evaluation                                                                          |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Spring<br>Loaded<br>Hexagon | Overall hexagonal prism shape when compacted (in can). When released from can, arms expand to create an upside down truncated hexagonal pyramid for the bottom half of the payload. All plates are hexagonal. Bottom 2 plates are reserved for electrical components. Top 2 plates are used for the parachute attachment and flag deployment device. | Plates – ABS Plastic Poles – Aluminum Arms – ABS Plastic Springs – Zinc Plated Steel Parachute Attachment – Steel | Selected, easier to<br>manufacture, lighter<br>in weight, structurally<br>practical |

46



# Payload Aerobraking Pre Deployment Configuration Trade & Selection



Configuration A: Umbrella Mechanism

Presenter: Melissa Gonzalez Grospe



Configuration B: Spring Loaded Mechanism



NOTE: Both designs will be compressed by the interior wall of the container during pre-deployment

| Configuration            | Advantages                                                         | Disadvantages                                                                                       | Evaluation                                 |
|--------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------|
| Umbrella<br>Mechanism    | Only uses one spring<br>More secure                                | Significantly heavier than configuration B Takes up large amount of space Difficult to manufacture  | Discarded                                  |
| Spring Loaded<br>Hexagon | Lightweight Occupies small section of the CanSat Uniform expansion | Large number of components required to hold it in place More friction along the walls of the CanSat | Selected,<br>easier to<br>keep in<br>place |

CanSat 2023 PDR: Team 1032 Yes we CANSAT 47



Presenter: Daniel Horton

# Payload Aerobraking Deployment Configuration Trade & Selection





Attach Heat Shield material (Mylar) here



| Configuration            | Method                                                                                                                                                                                                             | Identified Issues                                                                             | Evaluation                                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Umbrella Mechanism       | Upon release from can, the rods will extend fully, causing the implementation of the heat shield which acts as the aerobraking device. This creates an aerodynamic parabolic shape.                                | Entirely dependent on gravity, difficulty manufacturing the rods                              | Discarded                                                                                                     |
| Spring Loaded<br>Hexagon | Upon release from can, the spring loaded arms will be expanded, causing the implementation of the heat shield which acts as the aerobraking device. This creates an upside down truncated hexagonal pyramid shape. | Springs could go off inside the can, difficulty assembling the payload and inserting into can | Selected,<br>smaller size<br>makes it easier<br>to deploy. Also,<br>lightweight and<br>easy to<br>manufacture |



# Payload Parachute Deployment Configuration Trade & Selection



| Method                          | Description                                                                                                                                                                                                                                               | Identified Issues                                                                                                                                                                           | Evaluation                                        |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Three Ring<br>Release<br>System | A cable is passed through this series of loops. Once the payload reaches the desired altitude, the chord will be released in a linear motion using a linear actuator. Releasing the chord will allow the parachute to naturally deploy                    | Requires a complex mechanical system. Additional linear actuator will add weight to the system. Linear actuator must be able to resist the shock of deployment. Requires extensive testing. | Discarded                                         |
| Altimeter<br>Chute<br>Release   | The parachute will sit atop the payload and be held together by the device using a chord and hook which are attached to the device. Once the desired altitude is reached, the device will release, and the parachute will be allowed to deploy naturally. | Device would add considerable weight to the system. Device would need to be purchased from a third-party and thus add to the expenses.                                                      | Selected,<br>easier to<br>secure and<br>implement |

Configuration A: Three Ring Release System

Presenter: Daniel Horton



Configuration B: Altimeter Chute release



CanSat 2023 PDR: Team 1032 Yes we CANSAT 49



Presenter: Daniel Horton

# Payload Uprighting Configuration Trade & Selection



| Method                          | Benefits                                     | Identified Issues                                                                                              | Evaluation                                                                      |
|---------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Active<br>Uprighting<br>System  | Much better chance of payload being upright, | Additional subsystem to implement, which would add weight, complexity, and issues with room for all components | Discarded                                                                       |
| Passive<br>Uprighting<br>system | Would not require an additional subsystem    | Not a guarantee for the payload to land upright, requires extensive testing                                    | Selected,<br>easier to<br>manufacture,<br>less weight<br>added to the<br>system |



## **Container Mass Budget**



| Sensor                 | Quantity | Weight (g)     | Source                |
|------------------------|----------|----------------|-----------------------|
| Adafruit BMP280        | 1        | 1.3            | Actual from Datasheet |
| Arduino Nano           | 1        | 7              | Actual from Datasheet |
| 2032 Cell Batteries    | 2        | 6.2 (3.1 each) | Actual from Datasheet |
| Aluminum Supports      | 3        | 124.9          | Actual from Datasheet |
| Aluminum Nut           | 1        | 0.5            | Actual from Datasheet |
| Eyebolt                | 1        | 2.4            | Actual from Datasheet |
| Can Platforms          | 3        | 140.3          | Estimate              |
| JB Weld Plastic Bonder | 1        | 2              | Estimate              |
| Linear Actuator        | 1        | 15             | Actual from Datasheet |
| Linear Actuator Ring   | 1        | 0.2            | Actual from Datasheet |
| Plastic Coupling Nuts  | 4        | 0.4            | Actual from Datasheet |
| PCB Screws             | 4        | 0.1            | Actual from Datasheet |

Total Mass: 300.3g



Presenter: Savari Datta

## Payload Mass Budget (1/3)



| Sensor                 | Quantity | Weight (g)     | Source                |
|------------------------|----------|----------------|-----------------------|
| Adafruit BMP280        | 1        | 1.3            | Actual from Datasheet |
| BNO-055                | 1        | 3              | Actual from Datasheet |
| Adafruit Ultimate      | 1        | 8.5            | Actual from Datasheet |
| Raspberry Pi Pico      | 1        | 3              | Actual from Datasheet |
| ANT-900-RP-2-A         | 1        | 5              | Estimate              |
| Arducam Mini           | 1        | 20             | Actual from Datasheet |
| Mirco SD cards         | 1        | 1              | Actual from Datasheet |
| Micro SD Readers       | 1        | 3.4            | Actual from Datasheet |
| XBEE Pro 900 Mhz Radio | 1        | 5              | Actual from Datasheet |
| 2032 Cell Batteries    | 2        | 6.2 (3.1 each) | Actual from Datasheet |



## Payload Mass Budget (2/3)



| Sensor          | Quantity | Weight (g) | Source                |
|-----------------|----------|------------|-----------------------|
| Springs         | 6        | 0.3        | Actual from Datasheet |
| Heatshield Arms | 6        | 14.1       | Estimate              |
| Payload Rods    | 3        | 19.5       | Estimate              |
| Platforms       | 5        | 138.3      | Estimate              |
| Flag Release    | 1        | 6.84       | Estimate              |
| Steel Tape      | 1        | 1          | Estimate              |
| Super Lube      | 1        | 1          | Estimate              |
| Clock Spring    | 1        | 7.8        | Actual from Datasheet |
| Screw           | 1        | 0.7        | Actual from Datasheet |
| Nut             | 1        | 0.5        | Actual from Datasheet |
| Servo Motor     | 1        | 9          | Actual from Datasheet |



## Payload Mass Budget (3/3)



| Sensor       | Quantity | Weight (g) | Source                |
|--------------|----------|------------|-----------------------|
| Servo Motor  | 1        | 9          | Actual from Datasheet |
| Mylar Fabric | 1        | 112.1      | Estimate              |
| Parachute    | 1        | 28         | Estimate              |

Total Mass: 380.9 g

Presenter: Savari Datta





# Communication and Data Handling (CDH) Subsystem Design

Max Epstein, Yashas Shivaram



# Payload Command Data Handler (CDH) Overview



| Device Type        | Model                                       | Purpose                                                  |
|--------------------|---------------------------------------------|----------------------------------------------------------|
| Processor & Memory | Raspberry Pi Pico                           | Facilitate data storage, sensing, communication          |
| Real-Time Clock    | Adafruit Ultimate Breakout<br>v3 GPS Module | Keep track of times for data<br>& calculation purposes   |
| Antenna            | ANT-900-RP-2-A                              | Transmit/receive data from radio/processor configuration |
| Radio              | XBEE-PRO 900HP                              | Communicate between antennae & processors                |

CanSat 2023 PDR: Team 1032 Yes we CANSAT 56



# Payload Processor & Memory Trade & Selection



| Processor            | Boot<br>time(s) | Speed<br>(Mhz) | Memory<br>(KB) | Weight<br>(g) | Dimension (mm) | Voltage<br>Input (V) | Ports                                                                            |
|----------------------|-----------------|----------------|----------------|---------------|----------------|----------------------|----------------------------------------------------------------------------------|
| Arduino Nano         | 8 - 10          | 16             | 32             | 7             | 18 x 45        | 7 - 12               | Analog Input - 8<br>PWM Output - 6<br>I2C I/O - 1<br>SPI - 1<br>DAC Output - 0   |
| Raspberry pi<br>Pico | 0.5             | 125            | 264            | 3             | 51.3x21        | 1.8 – 5.5            | Analog Input - 4 PWM Output - 8 I2C I/O – 1 SPI – 1 DAC Output - 1               |
| Teensy 3.2           | 5               | 16             | 256            | 4.8           | 18 x 36        | 5                    | Analog Input - 25<br>PWM Output - 22<br>I2C I/O - 4<br>SPI - 3<br>DAC Output - 2 |

| Selection         | Reasoning for selection                                               |
|-------------------|-----------------------------------------------------------------------|
| Raspberry Pi Pico | - Compact size - Compatibility with camera/Familiarity - Availability |





# **Payload Real-Time Clock**



| Real-Time Clock<br>Keeper       | Tolerance Reset                                                | Interface       | Cost (\$) |
|---------------------------------|----------------------------------------------------------------|-----------------|-----------|
| Microchip MCP7940M-I/P          | Real-Time clock continues keeping time in the event of a reset | I2C             | 0.75      |
| Arduino Ultimate<br>Breakout v3 | Real-Time clock continues keeping time in the event of a reset | Internal to GPS | 0.00      |

| Selection                         | Reasoning for selection                                                                                                                                                      |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adafruit Ultimate GPS<br>Breakout | <ul> <li>Already part of the board</li> <li>GPS Module will have an independent<br/>battery backup</li> <li>No additional weight, size, or circuitry<br/>required</li> </ul> |





## **Payload Antenna Trade & Selection**



| Name                         | Frequency<br>Range (GHz) | Length of<br>Antenna (mm) | Gain (dBi) | Polarization      | Connection<br>Type | Weight (g) |
|------------------------------|--------------------------|---------------------------|------------|-------------------|--------------------|------------|
| ANT-900-RP-2-<br>A           | .880960                  | 115                       | 2.1        | (Linear) Vertical | SMA                | 11         |
| Taoglas<br>FXP290 915<br>MHz | .902928                  | 100                       | 1.5        | Linear            | U.FL               | 1.5        |

| Selection      | Reasoning for selection                                                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------|
| ANT-900-RP-2-A | <ul><li>In accepted frequency range</li><li>Compatible with selected radio</li><li>Relatively small size</li></ul> |



Presenter: Yashas Shivaram







Presenter: Yashas Shivaram

### **Payload Radio Configuration**



| Name                 | Frequency<br>Range (GHz) | Outside Range (km) | Antenna Type | Weight (g) | Cost (\$) |
|----------------------|--------------------------|--------------------|--------------|------------|-----------|
| XBEE-PRO<br>900HP    | .902928                  | 6.5                | RPSMSA       | 6.9        | 68        |
| XBee S2C<br>802.15.4 | 2.4                      | 1.2                | Wire         | 5          | 30        |

| Selection      | Reasoning for selection                                    |
|----------------|------------------------------------------------------------|
| XBEE-PRO 900HP | - Operates on accepted frequency - Excellent outside range |

#### **NETID/PANID - 1032**

#### **Transmission Control**

- Data will be continuously sent at 1 Hz during all stages of flight
- Transmission will be handled by FSW, starting on power on and ending once the container and payload have landed



### **Payload Telemetry Format**



- Transmitted Data will be saved to a .csv file on ground station.
- Data Transmitted:
- To GCS at 1 Hz packet transmission rate:

Payload sensor readings (Air pressure/temperature, mission time, GPS time, coordinates, power supply voltage, tilt, altitude, and various states)

#### How is the data formatted?

```
-Payload-to-GCS:
```

```
-<TEAM_ID>,< MISSION_TIME>, <PACKET_COUNT>, <MODE>, <STATE>, <ALTITUDE>,<HS_DEPLOYED>,<PC_DEPLOYED>,<MAST_RASIED> <TEMP>, <VOLTAGE>, <PRESSURE>,< GPS_TIME>, <GPS_ALTITUDE>, <GPS_LATITUDE>, <GPS_LONGITUDE>, <GPS_SATS>, <TILT_X>,<TILT_Y>, <CMD_ECHO>
```

- Example:
- <1063>, <13:35:59>, <25>, <F>, <LAUNCH\_WAIT>,<N>,<N>,<N>,<25.3>,<8.3>,<230>,<13:35:35>,<25>,<150.0258>,<168.6765>,<58>,<5.02>,<3.05><CXON>



Presenter: Max Epstein

# **Payload Telemetry Format**



62

| Telemetry Field               | Purpose                                                  | Relayed From: |
|-------------------------------|----------------------------------------------------------|---------------|
| <team_id></team_id>           | Team ID number (1063)                                    |               |
| <mission_time></mission_time> | UTC time from RST=0 in 1st software state (hh:mm:ss)     |               |
| <packet_count></packet_count> | # of packets transmitted across all devices              | -             |
| <mode></mode>                 | 'F' = Flight (default) mode, 'S' = Simulation mode       |               |
| <state></state>               | Software State (STARTUP, DESCENT, etc.)                  | _<br>Payload  |
| <altitude></altitude>         | Altitude in meters relative to ground level (+/- 0.1 m)  |               |
| <hs_deploayed></hs_deploayed> | 'P' if the probe has been deployed, 'N' if not           |               |
| <pc_deploayed></pc_deploayed> | 'C' if the probe parachute has been deployed, 'N' if not |               |
| <mast_raised></mast_raised>   | 'M' if the flag has been raised, 'N' if not              |               |
| <temp></temp>                 | The temperature in degrees Celsius (+/- 0.1C)            |               |



Presenter: Max Epstein

## **Payload Telemetry Format**



63

| Telemetry Field                 | Purpose                                                               | Relayed From: |
|---------------------------------|-----------------------------------------------------------------------|---------------|
| <pressure></pressure>           | The air pressure in kPa (+/- 0.1 kPa)                                 |               |
| <voltage></voltage>             | Voltage reading of Container power bus (+/- 0.1 V)                    |               |
| <gps_time></gps_time>           | UTC time generated from GPS (hh:mm:ss) (+/- 1 sec)                    | -             |
| <gps_latitude></gps_latitude>   | GPS latitude coordinate in decimal degrees (+/- 0.0001 degrees North) |               |
| <gps_longitude></gps_longitude> | GPS longitude coordinate in decimal degrees (+/- 0.0001 degrees West) | Payload       |
| <gps_altitude></gps_altitude>   | GPS altitude coordinate in decimal degrees (+/- 0.1 m from sea level) |               |
| <gps_sats></gps_sats>           | # of satellites being tracked by GPS                                  |               |
| <tilt_x></tilt_x>               | The angle of the payload in the x direction in degrees (+/- 0.01)     |               |
| <tilt_y></tilt_y>               | The angle of the payload in the y direction in degrees (+/- 0.01)     |               |
| <cmd_echo></cmd_echo>           | The last command received and processed by the payload                |               |



## **Payload Command Formats**



| CX - Container Telemetry On/Off Command         |                                                                   |  |  |
|-------------------------------------------------|-------------------------------------------------------------------|--|--|
| CMD, <team_id>, CX, <on_off></on_off></team_id> |                                                                   |  |  |
| CMD & CX                                        | Static Text                                                       |  |  |
| <team_id></team_id>                             | Assigned Team Identification                                      |  |  |
| <on_off></on_off>                               | ON-activates Container transmissions OFF- turns off transmissions |  |  |
|                                                 |                                                                   |  |  |

Presenter: Max Epstein

| SIM - Simulation Mode Control Command        |                                                                                                          |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| CMD, <team_id>, SIM, <mode></mode></team_id> |                                                                                                          |  |
| CMD & SIM                                    | Static Text                                                                                              |  |
| <team_id></team_id>                          | Assigned Team<br>Identification                                                                          |  |
| <mode></mode>                                | 'ENABLE' to enable - 'ACTIVATE' to activate- 'DISABLE' both disables and deactivates -> simulation mode. |  |
| Example: CMD,1032,SIM,ACTIVATE               |                                                                                                          |  |

| ST - Set Time                                       |                                 |  |  |
|-----------------------------------------------------|---------------------------------|--|--|
| CMD, <team_id>, ST, <utc_time></utc_time></team_id> |                                 |  |  |
| CMD & ST                                            | Static Text                     |  |  |
| <team_id></team_id>                                 | Assigned Team Identification    |  |  |
| <utc_time></utc_time>                               | UTC time in the format hh:mm:ss |  |  |
| <b>Example:</b> CMD,1032,ST,13:35:59                |                                 |  |  |

| SIMP - Simulated Pressure Data                        |                                                                                          |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| CMD, <team_id>, SIMP, <pressure></pressure></team_id> |                                                                                          |  |
| CMD & SIMP Static Text                                |                                                                                          |  |
| <team_id></team_id>                                   | Assigned Team Identification                                                             |  |
| <pressure></pressure>                                 | simulated atmospheric pressure data in units of pascals with a resolution of one Pascal. |  |

**Example:** CMD,1032,SIMP,101325





# Electrical Power Subsystem (EPS) Design

Paolo D'Alessandro



### **EPS Overview**







### **Payload Electrical Block Diagram**





Presenter: Paolo D'Alessandro

CanSat 2023 PDR: Team 1032 Yes we CANSAT



## **Payload Power Trade & Selection**



| Туре                              | Battery | Voltage | Capacity | Weight | Qty.<br>Needed | Total<br>Voltage | Total<br>Weight |
|-----------------------------------|---------|---------|----------|--------|----------------|------------------|-----------------|
| Alkaline<br>Industrial<br>Battery | 9V      | 9V      | 3.6mAh   | 46g    | 1              | 9V               | 46g             |
| Lithium<br>LiCB                   | CR2032  | 3.3V    | 236mAh   | 3.1g   | 2              | 6.6V             | 6.2g            |

| Selection           | Reason for Selection                                |  |
|---------------------|-----------------------------------------------------|--|
| Lithium LiCB CR2032 | - Smaller weight and easily scalable for more power |  |

### **Battery Configuration**

Two CR2032 in series to provide ~6V





## **Payload Power Budget**



| Component                              | Voltage (V) | Power per Unit (W) | Duty Cycle (%) | Power<br>Consumption (Wh) | Source    |
|----------------------------------------|-------------|--------------------|----------------|---------------------------|-----------|
| Raspberry Pi Pico<br>(Microcontroller) | 9V          | .1406              | 100            | 0.1406                    | Datasheet |
| Adafruit Ultimate<br>Breakout (GPS)    | 5V          | .1                 | 100            | .1                        | Datasheet |
| BMP280<br>(Air Temperature/Pressure)   | 5V          | 0.00025            | 100            | 0.000025                  | Datasheet |
| IE092505-1<br>(Sound Alert)            | 5V          | .03                | 100            | 50m                       | Datasheet |
| Xbee Pro 900 HP<br>(Radio Module)      | 5V          | .0.95              | 100            | .95                       | Datasheet |
| LED Light<br>(Lighting Alert)          | 2.2V        | 0.044              | 100            | 0.044                     | Datasheet |
| BNO 055<br>(Temp/Rotational Sensor)    | 1.7-3.6V    | 0.0123             | 100            | 0.00155                   | Datasheet |





# Flight Software (FSW) Design

**Max Epstein** 



## FSW Overview (1/2)



#### **Flowchart**

Presenter: Max Epstein





Presenter: Max Epstein

## FSW Overview (2/2)



| Programming Languages    | Python                                                                                                                                                                                                                                                                                                               |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Development Environments | Visual Studio Code                                                                                                                                                                                                                                                                                                   |
| FSW Tasks                | <ul> <li>Boot up and collect sensor data in the correct units required by CanSat.</li> <li>Communicate telemetry from the payload and container to the GCS to store data.</li> <li>Keep track of altitude and release the payload and parachute when needed.</li> <li>Trigger audio beacon after landing.</li> </ul> |
| Payload FSW              | <ul> <li>Payload communication</li> <li>In charge of collecting data with sensors</li> <li>Contains temperature sensor, pressure sensor, rotational sensor, camera</li> </ul>                                                                                                                                        |



# Payload FSW State Diagram (1/3)







# Payload FSW State Diagram (2/3)







# Payload FSW State Diagram (3/3)







## Payload FSW State Diagram



#### **FSW** Recovery from Reset

#### What is used to recover:

- Mission Time
- GPS Time
- Software State
- Altitude

Presenter: Max Epstein

#### Causes that call for reset:

- Power loss (power supply)
- Physical damage
- Processor failure



#### **Simulation Mode Software**



- Sensor changes
  - All air pressure sensors disabled
- Simulation mode commands
  - <MODE> switches from 'F' (Flight) to 'S' (Simulation)
- How is simulated sensor data substituted with real data?
  - External data from text file fed into certain fields instead of air pressure sensor readings
    - <ALTITUDE>, <PRESSURE>
  - All other sensor readings & telemetry remain the same



## **Software Development Plan (1/2)**



#### **Prototyping and Prototyping Environments**

- Environment in Visual Studio Code and Arduino IDE
- Modular code parts

#### **Development Team**

- Max Epstein
- Dylan Falzone
- Yashas Shiyaram
- Paolo D'Alessandro

#### **Test Methodology**

- Simulation mode with varying datasets.
- Freefall sensor testing



# **Software Development Plan (2/2)**



| Subsystem             | Development Sequence                                                                                                                                                                                                     |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensors               | <ul> <li>i. Sensor trade and selection compare and select the best</li> <li>ii. Program each individual sensor in Arduino</li> <li>iii. Integrate and conglomerate all programs, make sure it still functions</li> </ul> |
| Xbee Radio            | <ul> <li>i. Configure and test point to point communication for the radio (controller and GCS port)</li> <li>ii. Integrate sensors with Xbee for data transmission</li> </ul>                                            |
| Flight Control        | i. Program feedback system with servos connected to flight mechanisms                                                                                                                                                    |
| Release<br>Mechanisms | i. Program release mechanisms such as linear actuators                                                                                                                                                                   |
| Software State        | i. Use the data from sensors to change the states                                                                                                                                                                        |
| Audio Beacon          | i. Program locator audio beacon                                                                                                                                                                                          |
| Integration           | i. Integrate all software subsystem and ensure 1Hz data transmission from payload. Also, to make sure the software states match up with what is occurring.                                                               |





# **Ground Control System (GCS) Design**

Dylan Falzone, Max Epstein



# **GCS Overview**







Presenter: Dylan Falzone

# **GCS Design**





| Specifications         |                          |  |  |  |  |  |  |
|------------------------|--------------------------|--|--|--|--|--|--|
| Laptop Battery         | 4 Hours                  |  |  |  |  |  |  |
| Overheating Mitigation | Umbrella & Laptop Cooler |  |  |  |  |  |  |
| Auto update Mitigation | Disable Auto-Update      |  |  |  |  |  |  |



## **GCS Antenna Trade & Selection**



| Name                                 | Frequency<br>Range (GHz) | Length of<br>Antenna (mm) | Gain (dBi) | Polarization         | Connectio<br>n Type | Weight (g) | Cost (\$) |
|--------------------------------------|--------------------------|---------------------------|------------|----------------------|---------------------|------------|-----------|
| Right-Angle<br>Mini GSM              | .85-2.1                  | 57                        | 2          | (Linear)<br>Vertical | Right<br>Angle SMA  | 8          | 4.95      |
| TL-Dipole<br>Swivel<br>Antenna       | 2.4                      | 200                       | 5          | (Linear)<br>Vertical | RP-SMA              | 30         | 8.95      |
| 900 MHz 14<br>dBi Al Yagi<br>Antenna | .90928                   | 1422                      | 14         | Linear               | N-Female            | 680        | 72.32     |

| Selection    | Reasoning for selection                                                                                                                                                 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yagi Antenna | <ul> <li>Gain strength immensely stronger than the other antennas</li> <li>Larger antenna</li> <li>Ideal frequency range</li> <li>Handheld, easy to maneuver</li> </ul> |





Presenter: Dylan Falzone CanSat 2023 PDR: Team 1032 Yes we CANSAT



## GCS Software (1/3)



#### **Software Packages:**

- Python 3.9.7 Computational environment of choice
- XCTU XBee Program Software
- XBEE Python Library real time access to XBEE via USB interface
- Matplotlib Python Library real time plotting and data manipulation
- PySimpleGUI Python Library visual design layout and manipulation
- Pandas Python Library real time data collection and .csv file status

#### **Command Software and Interface:**

- Commands can be sent from the Ground Control Station to the CanSat via command.
- The GCS uses the XBEE Python Library to access the XBEE receiver through the USB interface.

#### **Telemetry Data Recording:**

- Telemetry will be saved in a .csv file without manipulation after being read via USB interface.
- .csv data will be analyzed in python and presented via GUI and saved in file.

#### **CSV File Generation:**

• .csv file will be generated in GCS Python software for payload and data will be continuously added to the created file as it arrives in packets to GCS.



# GCS Software (2/3)







# GCS Software (3/3)



| 4  | Α       | В        | С  | D   | E        | F          | G | Н |         |               | K  |          | М   | N   | 0  | Р   | 0  | R      | S       | Т т     | U          |
|----|---------|----------|----|-----|----------|------------|---|---|---------|---------------|----|----------|-----|-----|----|-----|----|--------|---------|---------|------------|
| 1  | TEAM ID |          |    |     | STATE    | ALTITUDE I |   |   | MAST RA | ,<br>TEMPERΔ1 |    | GPS TIME |     |     |    |     |    | TILT Y | CMD ECH | T+ Time | Accelerati |
| 2  |         | 13:18:34 |    | l F | LAUNCH   |            |   | N | N       | 12            | 35 | _        | 10  | 12  | _  | 12  | 4  |        | CXON    | 0       |            |
| 3  |         | 13:18:35 |    | 2 F | LAUNCH   |            |   | N | N       | 9             |    | 13:18:35 | 79  | 9   |    | 9   | 60 |        | CXON    | 1       |            |
| 4  | 1032    |          |    | 3 F | LAUNCH   |            |   | N | N       | 30            | 75 |          | 12  | 30  |    | 30  | 68 |        | 3 CXON  | 2       |            |
| 5  |         | 13:18:37 |    | F   | LAUNCH   |            |   | N | N       | 50            | 49 |          | 79  | 50  |    | 50  | 44 |        | LCXON   | 3       |            |
| 6  | 1032    | 13:18:38 | 5  | 5 F | LAUNCH ' | 14         | N | N | N       | 4             | 73 | 13:18:38 | 100 | 4   | 12 | 4   | 2  | 14     | 1 CXON  | 4       | 91         |
| 7  | 1032    | 13:18:39 | 6  | 5 F | LAUNCH   | 51         | N | N | N       | 77            | 40 | 13:18:39 | 91  | 77  | 63 | 77  | 14 | 5      | LCXON   | 5       | 45         |
| 8  | 1032    | 13:18:40 | 7  | 7 F | LAUNCH_  | 40 1       | N | N | N       | 25            | 65 | 13:18:40 | 44  | 25  | 20 | 25  | 58 | 41     | CXON    | 6       | 28         |
| 9  | 1032    | 13:18:41 | 8  | B F | LAUNCH_  | 63 1       | N | N | N       | 26            | 75 | 13:18:41 | 59  | 26  | 71 | 26  | 19 | 6      | CXON    | 7       | 20         |
| 10 | 1032    | 13:18:42 | 9  | F   | LAUNCH_  | 31         | N | N | N       | 92            | 58 | 13:18:42 | 25  | 92  | 49 | 92  | 17 | 3:     | CXON    | 8       | 77         |
| 11 | 1032    | 13:18:43 | 10 | F   | LAUNCH_  | 40         | N | N | N       | 93            | 4  | 13:18:43 | 44  | 93  | 83 | 93  | 82 | 40     | CXON    | 9       | 56         |
| 12 | 1032    | 13:18:44 | 11 | F   | LAUNCH_  | 19         | N | N | N       | 48            | 7  | 13:18:44 | 37  | 48  | 12 | 48  | 30 | 19     | CXON    | 10      | 63         |
| 13 | 1032    | 13:18:45 | 12 | F   | LAUNCH_  | 10         | N | N | N       | 100           | 35 | 13:18:45 | 19  | 100 | 34 | 100 | 51 | 10     | CXON    | 11      | . 50       |
| 14 | 1032    | 13:18:46 | 13 | F   | LAUNCH_  | 16         | N | N | N       | 20            | 67 | 13:18:46 | 40  | 20  | 90 | 20  | 58 | 10     | CXON    | 12      | 100        |
| 15 | 1032    | 13:18:47 | 14 | F   | LAUNCH_  | 88         | N | N | N       | 83            | 34 | 13:18:47 | 33  | 83  | 33 | 83  | 70 | 8      | 3 CXON  | 13      | 67         |
| 16 | 1032    | 13:18:48 | 15 | F   | LAUNCH_  | 90 1       | N | N | N       | 88            | 55 | 13:18:48 | 24  | 88  | 57 | 88  | 17 | 90     | CXON    | 14      | 25         |
| 17 | 1032    | 13:18:49 | 16 | 5 F | LAUNCH_  | 58 1       | N | N | N       | 21            | 60 | 13:18:49 | 52  | 21  | 10 | 21  | 10 | 5      | CXON    | 15      | 20         |
| 18 | 1032    | 13:18:50 | 17 | 7 F | LAUNCH_  | 18         | N | N | N       | 57            | 69 | 13:18:50 | 72  | 57  | 94 | 57  | 64 | 18     | CXON    | 16      | 16         |
| 19 | 1032    |          | 18 | B F | LAUNCH_  | 89 1       | N | N | N       | 89            | 43 | 13:18:51 | 21  | 89  |    | 89  | 43 |        | CXON    | 17      |            |
| 20 |         | 13:18:52 | 19 | ) F | LAUNCH_  | 53         | N | N | N       | 63            | 87 |          | 99  | 63  | 32 | 63  | 88 |        | CXON    | 18      | 27         |
| 21 |         |          |    | ) F | LAUNCH_  |            |   | N | N       | 8             | 94 |          | 58  | 8   |    | 8   | 64 |        | 3 CXON  | 19      |            |
| 22 |         | 13:18:54 |    | l F | LAUNCH_  |            |   | N | N       | 81            | 77 | 13:18:54 | 14  | 81  |    | 81  | 34 |        | CXON    | 20      |            |
| 23 |         | 13:18:55 |    | 2 F | LAUNCH_  |            |   | N | N       | 14            | 71 |          | 71  | 14  |    | 14  | 97 |        | 7 CXON  | 21      |            |
| 24 |         | 13:18:56 |    | 3 F | LAUNCH_  |            |   | N | N       | 28            |    | 13:18:56 | 54  | 28  |    | 28  | 61 |        | CXON    | 22      |            |
| 25 |         | 13:18:57 |    | F   | LAUNCH_  |            |   | N | N       | 60            |    | 13:18:57 | 17  | 60  |    | 60  | 20 |        | CXON    | 23      |            |
| 26 |         | 13:18:58 |    | 5 F | LAUNCH_  |            |   | N | N       | 87            |    | 13:18:58 | 31  | 87  |    | 87  | 47 |        | CXON    | 24      |            |
| 27 |         | 13:18:59 |    | 5 F | LAUNCH_  |            |   | N | N       | 75            |    | 13:18:59 | 44  | 75  |    | 75  | 61 |        | CXON    | 25      |            |
| 28 | 1032    | 13:19:00 | 27 | 7 F | LAUNCH_  | 2          | N | N | N       | 10            | 43 | 13:19:00 | 92  | 10  | 14 | 10  | 83 |        | 2 CXON  | 26      | 69         |





# **CanSat Integration and Test**

Jordi Rey, Yashas Shivaram



Presenter: Yashas Shivaram

# **CanSat Integration and Test Overview**







Presenter: Yashas Shivaram

# **Subsystem Level Testing Plan (1/2)**



| Subsystem Level Testing |                                                                                                                                                                                                       |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Sensors                 | <ul> <li>Pressure sensor tests</li> <li>Temperature sensor tests</li> <li>GPS location &amp; time tests</li> <li>Rotational Sensors tests</li> <li>Camera recording and saving video tests</li> </ul> |  |  |  |  |
| CDH                     | - Processor clock speed tests - EEPROM storage size tests - EEPROM read/write speed tests                                                                                                             |  |  |  |  |
| EPS                     | - Battery voltage readings<br>- Impedance tests on each component<br>- Battery power output & tolerance tests                                                                                         |  |  |  |  |
| Radio<br>Communications | - XBEE radio receiver/sender tests - Antenna signal quality tests - Packet receival and transmission tests                                                                                            |  |  |  |  |



# **Subsystem Level Testing Plan (2/2)**



| Subsystem Level Testing |                                                                                                                                                                                                                                                                                          |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| FSW                     | <ul> <li>- Data live graph generation tests</li> <li>- Simulation mode tests</li> <li>- CSV data saving &amp; handling</li> <li>- Software states testing</li> </ul>                                                                                                                     |  |  |  |  |
| Mechanical              | <ul> <li>Container &amp; probe structural tests</li> <li>Probe deployment tests</li> <li>Probe upright testing</li> <li>Avionics bay structural integrity tests</li> <li>Parachute deployment release tests</li> <li>Probe stability control tests</li> <li>Flag raising test</li> </ul> |  |  |  |  |
| Descent Control         | <ul> <li>Parachute Drogue tests</li> <li>Parachute reefing tests</li> <li>Parachute deployment tests</li> <li>Aerobraking device testing</li> </ul>                                                                                                                                      |  |  |  |  |



# **Integrated Level Functional Test Plan**



91

| Testing Plan   |                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Decent Testing | - PID Controller payload descent rate tests                                                                                                                                                                                                                        |  |  |  |  |  |
| Communications | - Telemetry transmission and retrieval tests - Communication between GCS and Payload                                                                                                                                                                               |  |  |  |  |  |
| Mechanisms     | <ul> <li>Payload release mechanism tests</li> <li>Payload stability control tests</li> <li>Aerobrake release mechanism tests</li> <li>Flag deployment mechanism tests</li> <li>Payload parachute release mechanism tests</li> </ul>                                |  |  |  |  |  |
| Deployment     | <ul> <li>Payload deployment tests are various altitudes</li> <li>Payload parachute deployments tests at various altitudes</li> <li>Aerobrake deployments tests are various altitudes</li> <li>Linear actuator integration with altitude sensor readings</li> </ul> |  |  |  |  |  |



Presenter: Jordi Rey

## **Environmental Test Plan (1/2)**







### **Environmental Test Plan (2/2)**



#### **Drop Test**

• Plan: Secure the CanSat to testing rig with non-stretch cord, release the CanSat from 61 cm and allow it to freefall, inspect CanSat and payloads for damage, if there was no damage then run a functional test.

#### **Thermal Test**

 Plan: Place the CanSat in an insulating cooler with a hair dryer, use a remote thermometer to monitor temperature, turn on the CanSat, turn off the heat source once internal temperatures reach 60C and turn on heat sources when temperature reaches 55C. Main this for 2 hours. With heat source off, visually inspect and functionally test CanSat to verify operational integrity survived thermal exposure.

#### Vibration Test

 Plan: Attach the CanSat to a random orbital sander and power it up to full speed, wait 5 seconds after the sander is at full speed then power it off, repeat the process 5 more times. Remove CanSat from fixture and visually inspect and functionally test CanSat to verify operation integrity. Verify accelerometer data is still being collected.

#### Fit Check

• Plan: Construct a prototype of the rocket cylinder wall, place the container with the payloads properly stowed inside of the prototype and check for proper fit as well as the ability to securely deploy.

#### Vacuum Test

 Plan: Construct a vacuum chamber using a bucket and a vacuum cleaner. Suspend fully configured and powered CanSat within the vacuum chamber and turn on the vacuum. Monitor telemetry and stop the vacuum once peak altitude has been reached. Let air enter vacuum chamber slowly and monitor operation of CanSat. Collect and save telemetry. Save telemetry for judge reviewal.



#### **Simulation Test Plan**



# How simulation works

- After configuration, once the SIM ENABLE and SIM ACTIVATE commands are ran, simulation mode will run.
- The ground station will transmit pressure data from a csv file at 1Hz intervals to the payload.
- The flight software will determine altitude using radio linked values instead of live sensor data.
- The flight software will detect the launch and release payload and parachute at respective altitudes.
- Lastly, the mast will be raised and the audio beacon will begin once landing is detected

# What parts are tested

Presenter: Jordi Rey

- The configuration and echoing of commands.
- The calculation of altitude with fed data from the CSV.
- The deployment of payload parachute, mast raise, and trigger of audio beacon.
- Payload video is saved and pointing in the correct direction.





# **Mission Operations & Analysis**

Jordi Rey



# Overview of Mission Sequence of Events (1/2)



#### **Flowchart**

Presenter: Jordi Rey





# Overview of Mission Sequence of Events (2/2)



### Roles & Responsibilities

- Mission Control Officer Savari Datta
- Ground Station Crew Christian Roque, Max Epstein, and Yashas Shivaram
- Recovery Crew Jordi Rey and Daniel Horton
- CanSat Crew Paolo D'Alessandro, Jovana Markovic, Melissa Gonzalez Grospe, Dylan Falzone, Savari Datta, Jordi Rey

### **Antenna Construction & Ground System Setup**

- Handheld ground station antenna will be mounted to wood to be easily handled and aimed before competition date
- Ground system will be setup by Ground Station Crew, this includes the adapters necessary for the ground station antenna and XBEE radio



# Mission Operations Manual Development Plan



#### **Mission Operations Manual Outline:**

#### **CGS Configuration:**

 Indicates the status of the GCS, antennas, and flight software for final pre-flight checks.

#### CanSat Preparation and Assembly:

 Indicates the assembly of the CanSat, damage inspection, and assembly of components

#### **CanSat-Rocket Integration:**

 Indicates a final checklist and procedure for rocket clearances and assembly inspections.

#### **Launch Preparation:**

Provided by CanSat competition.

#### **Launch Procedure:**

Provided by CanSat competition.

#### **Removal Procedure:**

Provided by CanSat competition.



## **CanSat Location and Recovery**



# Recovery Crew will be responsible for container and payload recovery

- Container & Parachute will be a bright pink color making them easier to identify and locate.
- Most recently logged position on GPS will be used to more accurately locate the payload
- Contact information and return address labels will be on both the container and the payload





# Requirements Compliance

Savari Datta



## **Requirements Compliance Overview**



- Yes we CANSAT's project complies with the requirements of the CanSat 2023 mission
- The requirement compliance was measure using three conditions which are detailed below: Full Compliance, Partial Compliance, and No Compliance.

| Full Compliance    | The CanSat project complies 50/61 mission requirements                                                                                                                                                                                                              |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Partial Compliance | There are 8 requirements partially satisfied by our CanSat. This means that the requirement is technically met but will require further analysis and testing for finalization. The mass will meet requirements after the addition of the "No Compliance" components |
| No Compliance      | There are 3 requirements our current build does not comply to.  Modifications are currently being planned out to add access to the switch and wrap everything so it is secure                                                                                       |



# **Requirements Compliance**



| Req<br># | Description                                                                                                                                                                                             | Comply / No<br>Comply / Partial | X-Ref Slide(s)<br>Demonstrating<br>Compliance | Team comments or notes            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|-----------------------------------|
| 1        | Total mass of the CanSat (science payloads and container) shall be 700 grams +/- 10 grams.                                                                                                              | Partial                         | 17                                            | Additional Components to be added |
| 2        | CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.                                | Comply                          | 17                                            |                                   |
| 3        | The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.                                                                         | Comply                          | 19                                            | Sides will be sanded              |
| 4        | The container shall be a fluorescent color; pink, red or orange.                                                                                                                                        | Comply                          | 44, 99                                        |                                   |
| 5        | The container shall be solid and fully enclose the science probes. Small holes to allow access to turn on the science probes are allowed. The end of the container where the probe deploys may be open. | No comply                       |                                               | To be added                       |
| 6        | The rocket airframe shall not be used to restrain any deployable parts of the CanSat.                                                                                                                   | Comply                          | 41                                            |                                   |
| 7        | The rocket airframe shall not be used as part of the CanSat operations.                                                                                                                                 | Comply                          | 41                                            |                                   |
| 8        | The container's parachute shall not be enclosed in the container structure. It shall be external and attached to the container so that it opens immediately when deployed from the rocket.              | Comply                          | 44                                            |                                   |
| 9        | The Parachutes shall be fluorescent Pink or Orange                                                                                                                                                      | Comply                          | 99                                            |                                   |
| 10       | The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5m/s.                                                                                                        | Comply                          | 38                                            |                                   |

Presenter: Savari Datta CanSat 2023 PDR: Team 1032 Yes we CANSAT 102



# **Requirements Compliance**



| Req# | Description                                                                                                                                                                                             | Comply / No<br>Comply / Partial | X-Ref Slide(s)<br>Demonstrating<br>Compliance | Team comments or notes |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|------------------------|
| 11   | 0 altitude reference shall be at the launch pad.                                                                                                                                                        | Comply                          | 85                                            |                        |
| 12   | All structures shall be built to survive 15 Gs of launch acceleration.                                                                                                                                  | Comply                          | 39                                            | Needs Testing          |
| 13   | All structures shall be built to survive 30 Gs of shock                                                                                                                                                 | Comply                          | 39                                            | Needs Testing          |
| 14   | All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high-performance adhesives.                                                           | Comply                          | 41-46                                         |                        |
| 15   | All mechanisms shall be capable of maintaining their configuration or states under all forces.                                                                                                          | No Comply                       | 39                                            | Needs Testing          |
| 16   | Mechanisms shall not use pyrotechnics or chemicals.                                                                                                                                                     | Comply                          | 41                                            |                        |
| 17   | Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting vegetation on fire.                                                  | Comply                          | 41                                            |                        |
| 18   | Both the container and payload shall be labeled with team contact information including email address.                                                                                                  | Comply                          | 99                                            |                        |
| 19   | Cost of the CanSat shall be under \$1000. Ground support and analysis tools are not included in the cost. Equipment from previous years should be included in this cost, based on current market value. | Comply                          | 51-55                                         |                        |
| 20   | XBEE radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBEE radios are also allowed.                                                                                       | Comply                          | 60                                            |                        |
| 21   | XBEE radios shall have their NETID/PANID set to their team number.                                                                                                                                      | Comply                          | 60                                            |                        |



# **Requirements Compliance**



| Req<br># | Description                                                                                                                                                                                                  | Comply / No<br>Comply / Partial | X-Ref Slide(s)<br>Demonstrating<br>Compliance | Team comments or notes |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|------------------------|
| 22       | XBEE radios shall not use broadcast mode.                                                                                                                                                                    | Comply                          | 60                                            |                        |
| 23       | The container and probe shall include an easily accessible power switch that can be accessed without disassembling the CanSat and science probes and in the stowed configuration.                            | Partial                         | 67,68                                         |                        |
| 24       | The probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the CanSat and in the stowed state.                               | Comply                          | 67                                            |                        |
| 25       | An audio beacon is required for the probe. It shall be powered after landing.                                                                                                                                | Comply                          | 67, 75                                        |                        |
| 26       | The audio beacon shall have a minimum sound pressure level of 92 dB, unobstructed.                                                                                                                           | Partial                         | 28                                            | Mid-implementation     |
| 27       | Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed. | Comply                          | 68                                            |                        |
| 28       | An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.                            | Partial                         | 17                                            | Mid-implementation     |
| 29       | Spring contacts shall not be used for making electrical connections to batteries. Shock forces can cause momentary disconnects.                                                                              | Comply                          | 81-89                                         |                        |
| 30       | The Cansat shall operate during the environmental tests laid out in Section 3.5.                                                                                                                             | Comply                          | 93                                            |                        |
| 31       | The Cansat shall operate for a minimum of two hours when integrated into the rocket.                                                                                                                         | Comply                          | 58                                            |                        |
| 32       | The probe shall be released from the container when the CanSat reaches 500 meters.                                                                                                                           | Comply                          | 45                                            |                        |



# **Requirements Compliance**



105

| Req<br># | Description                                                                                                                                                                                                               | Comply / No<br>Comply / Partial | X-Ref Slide(s)<br>Demonstrating<br>Compliance | Team comments or notes |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|------------------------|
| 33       | The probe shall deploy a heat shield after leaving the container.                                                                                                                                                         | Comply                          | 47-48                                         |                        |
| 34       | The heat shield shall be used as an aerobrake and limit the descent rate to 20 m/s or less.                                                                                                                               | Comply                          | 31, 35-34                                     |                        |
| 35       | At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s +/- 1m/sec.                                                                                                                        | Comply                          | 49, 38                                        |                        |
| 36       | Once landed, the probe shall upright itself.                                                                                                                                                                              | Partial                         | 50                                            | No active uprighting   |
| 37       | After uprighting, the probe shall deploy a flag 500 mm above the base of the probe when the probe is in the upright position.                                                                                             | Comply                          | 41                                            |                        |
| 38       | The probe shall transmit telemetry once per second.                                                                                                                                                                       | Comply                          | 60, 75, 92                                    |                        |
| 39       | The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked. | Comply                          | 61                                            |                        |
| 40       | The probe shall include a video camera pointing down to the ground.                                                                                                                                                       | Comply                          | 28                                            |                        |
| 41       | The video camera shall record the flight of the probe from release to landing.                                                                                                                                            | Comply                          | 28                                            |                        |
| 42       | The video camera shall record video in color and with a minimum resolution of 640x480.                                                                                                                                    | Comply                          | 28                                            |                        |
| 44       | The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets                      | Comply                          | 61                                            |                        |
| 45       | The probe shall maintain mission time throughout the whole mission even with processor resets or momentary power loss.                                                                                                    | Comply                          | 61                                            |                        |



# **Requirements Compliance**



| Req<br># | Description                                                                                                                                                                         | Comply / No<br>Comply / Partial | X-Ref Slide(s)<br>Demonstrating<br>Compliance | Team comments or notes |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|------------------------|
| 46       | The probe shall have its time set to within one second UTC time prior to launch.                                                                                                    | Comply                          | 64                                            |                        |
| 47       | The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file. | No Comply                       |                                               | To be added            |
| 48       | In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the container altitude.                          | No Comply                       |                                               | To be added            |
| 49       | The container flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.                                            | Comply                          | 63, 65, 94                                    |                        |
| 50       | The ground station shall command the CanSat to start calibrating the altitude to zero when the CanSat is on the launch pad prior to launch.                                         | Comply                          | 64                                            |                        |
| 51       | The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.                                                                  | Comply                          | 86                                            |                        |
| 52       | Telemetry shall include mission time with 0.01 second or better resolution.                                                                                                         | Comply                          | 61                                            |                        |
| 53       | Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.                                             | Comply                          | 73                                            |                        |
| 54       | Each team shall develop their own ground station.                                                                                                                                   | Comply                          | 81                                            |                        |
| 55       | All telemetry shall be displayed in real time during descent on the ground station.                                                                                                 | Comply                          | 85                                            |                        |
| 56       | All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.)                                                                                           | Comply                          | 85                                            |                        |



# **Requirements Compliance**



| Req<br># | Description                                                                                                                                                                                       | Comply / No<br>Comply / Partial | X-Ref Slide(s)<br>Demonstrating<br>Compliance | Team comments or notes |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|------------------------|
| 57       | Teams shall plot each telemetry data field in real time during flight.                                                                                                                            | Comply                          | 85                                            |                        |
| 58       | The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBEE radio and a hand-held antenna.                                                        | Comply                          | 81                                            |                        |
| 59       | The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site | Comply                          | 81                                            |                        |
| 60       | The ground station software shall be able to command the container to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.                              | Comply                          | 84, 94                                        |                        |
| 61       | When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the cansat.                                            | Comply                          | 84, 94                                        |                        |





# Management

**Savari Datta** 



# **CanSat Budget – Hardware (1/2)**



| Component                     | Quantity | Unit Price (\$) | Total Price (\$) | Value Type |
|-------------------------------|----------|-----------------|------------------|------------|
| Adafruit BMP280               | 2        | 9.95            | 19.90            | Actual     |
| BNO-055                       | 1        | 34.95           | 34.95            | Actual     |
| Adafruit Ultimate             | 1        | 29.95           | 29.95            | Actual     |
| Raspberry Pi Pico             | 1        | 4.50            | 4.50             | Actual     |
| ANT-900-RP-2-A                | 1        | 3.99            | 3.99             | Actual     |
| Arducam Mini                  | 1        | 25.99           | 25.99            | Actual     |
| Mirco SD cards                | 1        | 4.20            | 4.20             | Actual     |
| Micro SD Readers              | 1        | 8.00            | 8.00             | Actual     |
| XBEE Pro 900 Mhz Radio        | 1        | 68.25           | 68.25            | Actual     |
| 2032 Cell Batteries           | 4        | 1.20            | 4.80             | Actual     |
| Arduino Nano                  | 1        | 20.70           | 20.70            | Actual     |
| ABS Filament 1.75mm ABS, 1 kg | 1        | 22.99           | 22.99            | Actual     |
| Springs                       | 6        | 2.32            | 13.92            | Actual     |
| Tie Down Ring                 | 1        | 1.24            | 1.24             | Actual     |



# CanSat Budget – Hardware (2/2)



| Component                 | Quantity | Unit Price (\$) | Total Price (\$) | Value Type |
|---------------------------|----------|-----------------|------------------|------------|
| Linear Actuator           | 1        | 65.00           | 65.00            | Actual     |
| Servo Motor               | 1        | 8.84            | 8.84             | Actual     |
| 1/4-20 Hex Nut            | 2        | 9.81            | 9.81             | Actual     |
| Steel Tape                | 1        | 14.99           | 14.99            | Actual     |
| Super Lube                | 1        | 7.39            | 7.39             | Actual     |
| Clock Spring              | 1        | 8.38            | 8.38             | Actual     |
| JB Weld Plastic Bonder    | 1        | 15.74           | 15.74            | Actual     |
| Fiberglass Eyebolt        | 1        | 5.66            | 5.66             | Actual     |
| Aluminum Poles            | 1        | 5.00            | 5.00             | Estimate   |
| ¼ -20 Screw               | 1        | 13.84           | 13.84            | Actual     |
| Mylar Reflective Material | 1        | 26.00           | 26.00            | Actual     |
| Aluminum Strip            | 1        | 6.93            | 6.93             | Actual     |
| Parachutes                | 2        | 17.95           | 35.90            | Actual     |
| Plastic Coupling Nuts     | 4        | 5.55            | 22.20            | Actual     |
| PCB Screws                | 4        | 1.25            | 5.00             | Actual     |



# CanSat Budget – Other Costs (1/2)



| Component                                      | Quantity | Unit Price (\$) | Total Price (\$) | Value Type                 |
|------------------------------------------------|----------|-----------------|------------------|----------------------------|
| Ground Station                                 | -        | -               | -                | -                          |
| Xbee USB Shield                                | 1        | 26.00           | 26.00            | Actual                     |
| 900 MHz 14 dBi Al<br>Yagi Antenna              | 1        | 72.32           | 72.32            | Actual                     |
| 900 MHz XBEE Radio                             | 1        | 68.25           | 68.25            | Actual                     |
| Laptop                                         | 1        | 1               | 0                | Provided by<br>Team Member |
| Prototyping                                    | 1        | 1               | 150.00           | Estimate                   |
| Test Supplies                                  | 1        | 1               | 150.00           | Estimate                   |
| Test Facilities/<br>Manufacturing<br>Equipment | 1        | 1               | 0                | Covered<br>by University   |



# CanSat Budget – Other Costs (2/2)



| Source of Income: | Funds Provided (\$): |
|-------------------|----------------------|
| UF MAE Department | 4000.00              |

| Hardware Costs:     | \$514.06  |
|---------------------|-----------|
| Other Costs:        | \$466.57  |
| Competition Fees:   | \$200.00  |
| <b>Total Costs:</b> | \$1180.63 |

A total cost of \$1057.09 for the testing and building of our CanSat as well as CanSat related fees leaves us with a total of \$2819.37 for travel, housing, and food expense. This is expected to be more than sufficient for our 10 members.



### **Program Schedule Overview**



- The schedule below is a broad overlook of the 2022-2023 completion schedule for our team
- The key below defines symbols for the more detailed schedule



#### **KEY**





## **Detailed Program Schedule (1/2)**







# **Detailed Program Schedule (2/2)**



|    |                                                               |            |              |              |                                 |                                    |              |   |           |            |         |          |                   |            | ı  |
|----|---------------------------------------------------------------|------------|--------------|--------------|---------------------------------|------------------------------------|--------------|---|-----------|------------|---------|----------|-------------------|------------|----|
|    | Fask Name ▼                                                   | Duration ▼ | Start        | Finish 🔻     | Subteam •                       | mber 2022<br>7   12   17   22   27 | January 2023 |   | uary 2023 | March 2023 | 17   22 | April 20 | 023<br>6   11   1 | 6   21   : | 26 |
| 18 | △ PDR Assembly                                                | 40 days    | Fri 12/9/22  | Wed 2/1/23   | All                             |                                    |              |   |           | -   .      |         |          | -     .           | :          |    |
| 19 | Finals Prep                                                   | 6 days     | Fri 12/9/22  | Fri 12/16/22 | All                             | 1                                  |              |   |           |            |         |          |                   |            |    |
| 20 | Winter Break                                                  |            | Sat 12/17/22 | Mon 1/9/23   | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 21 | Assign slides and start formatting                            | 7 days     | Tue 1/10/23  | Wed 1/18/23  | All                             | -                                  |              |   |           |            |         |          |                   |            |    |
| 22 | Fill in Tables and Slides                                     | 15 days    | Wed 1/11/23  | Tue 1/31/23  | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 23 | PDR Due                                                       | 1 day      | Wed 2/1/23   | Wed 2/1/23   | All                             |                                    |              | 1 |           |            |         |          |                   |            |    |
| 24 | PDR Presentation                                              | 1 day      | Tue 2/7/23   | Tue 2/7/23   | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 25 |                                                               | 21 days    | Wed 2/8/23   | Wed 3/8/23   | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 26 | Review Requirements for CDR and mission                       | 1 day      | Wed 2/8/23   | Wed 2/8/23   | All                             |                                    |              |   | 1         |            |         |          |                   |            |    |
| 27 | Begin Manufacturing of<br>Finalized Subsystems                | 21 days    | Wed 2/8/23   | Wed 3/8/23   | Payload and Container           |                                    |              |   |           |            |         |          |                   |            |    |
| 28 | Test Flight Software and<br>Avionics                          | 11 days    | Wed 2/8/23   | Wed 2/22/23  | Avionics and Flight<br>Software |                                    |              |   |           |            |         |          |                   |            |    |
| 29 | Conduct the integration of<br>subsystems                      | 11 days    | Wed 2/22/23  | Wed 3/8/23   | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 30 | Competition Selection Results                                 | 1 day?     | Fri 3/10/23  | Fri 3/10/23  | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 31 | ■ CDR Document Completion                                     | 18 days?   | Sat 3/11/23  | Sat 4/1/23   | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 32 | Spring Break                                                  | 7 days?    | Sat 3/11/23  | Sat 3/18/23  | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 33 | Document Final Design and<br>Analysis for all Subteams        | 2 days     | Tue 3/21/23  | Wed 3/22/23  | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 34 | Fill in Slides and Verify<br>Completion                       | 5 days     | Wed 3/22/23  | Tue 3/28/23  | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 35 | Format and Make final<br>Adjustments                          | 4 days     | Tue 3/28/23  | Fri 3/31/23  | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 36 | CDR due                                                       | 1 day      | Sat 4/1/23   | Sat 4/1/23   | Management                      |                                    |              |   |           |            |         | İ        |                   |            |    |
| 37 | <b>△</b> Testing                                              | 16 days?   | Tue 4/4/23   | Tue 4/25/23  | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 38 | Verify Sytem Integration<br>meets Competition<br>Requirements | 6 days?    | Tue 4/4/23   | Tue 4/11/23  | All                             |                                    |              |   |           |            |         |          |                   |            |    |
| 19 | Conduct Tests on full system                                  | 11 days    | Tue 4/11/23  | Tue 4/25/23  | All                             |                                    |              |   |           |            |         |          |                   |            |    |



#### **Conclusions**



#### **Major Accomplishments**

- All electronics have been purchased and ordered
- Parachute testing has been conducted
- Payload subsystem has run preliminary testing
- Majority of telemetry components programmed
- Avionics communication and data handling in progress
- Significant funding secured

#### **Major Unfinished Work**

- Prototype of CanSat
- Telemetry communication tests between payload, container, and Ground Station
- Manufactured container and payload
- Definitive plan to enclose container and payload

#### **Justification for Next Stage**

- Major goals for each subsystem outlined and in progress
- Testing on descent has started
- Full team engaged and dedicated to success