Week 5: Approximation

October 11, 2021

- 1 Linear Approximation
- 2 Differential Approximation
- 3 L'Hospital's Rule
 - Quotient
 - Products
 - Differences
 - Powers

- 1 Linear Approximation
- 2 Differential Approximation
- 3 L'Hospital's Rule
 - Quotient
 - Products
 - Differences
 - Powers

Linear Approximation

Definition

We could use tangent line at x = a to predict f(x).

$$L(x) = f(x) \approx f(a) + f'(a)(x - a)$$

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$.

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$.

$$f'(x) = \frac{1}{2\sqrt{x+3}}$$

- So we have f(1) = 2 and $f'(1) = \frac{1}{4}$
- Putting into the linearization equation, we get

$$L(x) = f(1) + f'(1)(x - 1) = 2 + \frac{1}{4}(x - 1) = \frac{7}{4} + \frac{x}{4}$$

• Thus
$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$

• For
$$\sqrt{3.98}$$
, $\sqrt{3.98} \approx \frac{7}{4} + \frac{0.98}{4} = 1.995$

• For
$$\sqrt{4.05}$$
, $\sqrt{4.05} \approx \frac{7}{4} + \frac{1.05}{4} = 2.0125$

Use linear approximation to estimate $\sqrt{59}$ without a calculator.

Use linear approximation to estimate $\sqrt{59}$ without a calculator.

- Let $f(x) = \sqrt{x}$
- Let a = 64 since $\sqrt{64}$ is easy
- $f'(x) = \frac{1}{2\sqrt{x}}$
- So we have f(64) = 8 and $f'(64) = \frac{1}{16}$

• Putting into the linearization equation, we get
$$L(x) = f(64) + f'(64)(x - 64) = 8 + \frac{1}{16}(x - 64) = 4 + \frac{x}{16}$$

- Thus $\sqrt{x} \approx 4 + \frac{x}{16}$
- For $\sqrt{59}$, $\sqrt{59} \approx 4 + \frac{59}{16} = 7.6875$

Find the linear approximation of the function $f(x) = \sqrt{1-x}$ at a = 0. Then use it to approximate the numbers $\sqrt{0.9}$ and $\sqrt{0.99}$.

Find the linear approximation of the function $f(x) = \sqrt{1-x}$ at a = 0. Then use it to approximate the numbers $\sqrt{0.9}$ and $\sqrt{0.99}$.

$$f'(x) = -\frac{1}{2\sqrt{1-x}}$$

- So we have f(0) = 1 and $f'(0) = -\frac{1}{2}$
- Putting into the linearization equation, we get

$$L(x) = f(0) + f'(0)(x - 0) = 1 + -\frac{1}{2}(x - 0) = 1 - \frac{1}{2}x$$

• Thus
$$\sqrt{0.9} = \sqrt{1 - 0.1} \approx 1 - \frac{1}{2}(0.1) = 0.95$$

• Thus
$$\sqrt{0.99} = \sqrt{1 - 0.01} \approx 1 - \frac{1}{2}(0.01) = 0.995$$

- 1 Linear Approximation
- 2 Differential Approximation
- 3 L'Hospital's Rule
 - Quotient
 - Products
 - Differences
 - Powers

Differential Approximation

Definition

Given $\frac{dy}{dx}=f'(x)$, we know dy=f'(x)dx. On a given graph below, let $dx=\Delta x$. The corresponding change in y is $\Delta y=f(x+\Delta x)-f(x)$. The dy is the amount in which the tangent line rises, while Δy is the amount in which y=f(x) falls. Many times, dy can be used to approximate Δy .

Compare the values of Δy and dy if $y = f(x) = x^3 + x^2 - 2x + 1$ and x changes from 2 to 2.05

Compare the values of Δy and dy if $y = f(x) = x^3 + x^2 - 2x + 1$ and x changes from 2 to 2.05

•
$$f(2) = 2^3 + 2^2 - 2(2) + 1 = 9$$

•
$$f(2.05) = 2.05^3 + 2.05^2 - 2(2.05) + 1 = 9.717625$$

•
$$\Delta y = f(2.05) - f(2) = 0.717625$$

•
$$dy = f'(x)dx = (3x^2 + 2x - 2)dx$$

• Given
$$x = 2$$
 and $dx = 0.05$,
 $dy = (3(2)^2 + 2(2) - 2)0.05 = 0.7$

We can see that dy can be used to approximate Δy .

Compare the values of Δy and dy if $y = f(x) = x^3 + x^2 - 2x + 1$ and x changes from 2 to 2.01

Compare the values of Δy and dy if $y = f(x) = x^3 + x^2 - 2x + 1$ and x changes from 2 to 2.01

•
$$f(2) = 2^3 + 2^2 - 2(2) + 1 = 9$$

•
$$f(2.01) = 2.01^3 + 2.01^2 - 2(2.01) + 1 = 9.140701$$

•
$$\Delta y = f(2.01) - f(2) = 0.140701$$

•
$$dy = f'(x)dx = (3x^2 + 2x - 2)dx$$

• Given
$$x = 2$$
 and $dx = 0.01$,
 $dy = (3(2)^2 + 2(2) - 2)0.01 = 0.14$

We can see that dy is closer to Δy as dx gets smaller. For more complicated functions, it may not be possible to compute Δy thus such approximation is useful.

- 1 Linear Approximation
- 2 Differential Approximation
- 3 L'Hospital's Rule
 - Quotient
 - Products
 - Differences
 - Powers

Indeterminant Forms

The limits of the form $\frac{\infty}{\infty}$ (also called 'indeterminate forms') that we studied so far can be calculated using algebraic trick. What about the following limits?

$$\lim_{x\to\infty}\frac{e^x}{x}$$

$$\lim_{x\to\infty}\frac{\ln x}{x}$$

One way to solve this problem is to use the derivative.

Figure 1: If we zoom in toward the point (a,0), the graphs would start to look almost linear. If the graph is actually linear, their ratio would be $\frac{m_1(x-a)}{m_2(x-a)} = \frac{m_1}{m_2} \text{ which is the ratio of their derivatives. Thus}$ $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$

L'Hôpital's rule

Suppose that f and g are differentiable functions, $a \in \mathbb{R}$, and $g'(x) \neq 0$, except possibly at a. Suppose also that either one of the two following conditions hold:

- $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$;
- $f(x) \to \pm \infty$ and $g(x) \to \pm \infty$ as $x \to a$.

lf

$$\lim_{x \to a} \frac{f'(x)}{g'(x)}$$

exists or is $\pm \infty$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Remarks.

- (i) The theorem also holds for limits at infinity or one-sided limits, That is, as $x \to \infty$ or $x \to -\infty$, or $x \to a^+$ or as $x \to a^-$.
- (ii) When using L'Hospital's Rule, we do not use the quotient rule. We differentiate the numerator and the denominator separately.
- (iii) Be sure to verify that the hypotheses in L'Hospital's rule are satisfied before applying it!
- (iv) The rule can be applied multiple times.
- (v) Can convert the rule for indeterminate form in products, differences, or powers.

Solve
$$\lim_{x\to 1} \frac{\ln x}{x-1}$$

This is an indeterminate form of type $\frac{0}{0}$

Solve
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$

This is an indeterminate form of type $\frac{0}{0}$

$$\bullet \lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} (x - 1)}$$

$$\lim_{x \to 1} \frac{\overline{x}}{1}$$

$$\lim_{x \to 1} \frac{1}{x} = 1$$

Solve
$$\lim_{x \to \infty} \frac{e^x}{x^2}$$

This is an indeterminate form of type $\frac{\infty}{\infty}$

Solve
$$\lim_{x \to \infty} \frac{e^x}{x^2}$$

This is an indeterminate form of type $\frac{\infty}{\infty}$

•
$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to 1} \frac{\frac{d}{dx}e^x}{\frac{d}{dx}x^2} = \lim_{x \to \infty} \frac{e^x}{2x}$$

We still get indeterminate form of $\frac{\infty}{\infty}$. Apply the rule again!

•
$$\lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{e^x}{2} = \infty$$

Solve
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$

This is an indeterminate form of type $\frac{\infty}{\infty}$

Solve
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$

This is an indeterminate form of type $\frac{\infty}{\infty}$

$$\bullet \lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}}$$

We still get indeterminate form of $\frac{0}{0}$. Let's just simplify it and not apply the rule.

pply the rule.

•
$$\lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0$$

Indeterminate forms with products. Suppose $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$, then what is $\lim_{x\to a} f(x)g(x)$? This is called an indeterminate form of type $0\cdot\infty$. We apply L'Hospital's rule after first writing $fg=\frac{f}{1/g}$ or $fg=\frac{g}{1/f}$.

Solve $\lim_{x\to 0^+} x \ln x$ This is an indeterminate form of type $0^+*-\infty$

◆□▶◆□▶◆□▶◆□▶ ■ 990

Solve $\lim_{x\to 0^+} x \ln x$

This is an indeterminate form of type $0^+ * -\infty$

•
$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{x^2}} = \lim_{x \to 0^+} (-x) = 0$$

Solve $\lim_{x\to\infty} \sqrt{x}e^{\frac{-x}{2}}$ This is an indeterminate form of type $\infty*0$

Solve
$$\lim_{x\to\infty} \sqrt{x}e^{\frac{-x}{2}}$$

Solve $\lim_{x\to\infty} \sqrt{x}e^{\frac{-x}{2}}$ This is an indeterminate form of type $\infty*0$

$$\bullet \lim_{x \to \infty} \sqrt{x} e^{\frac{-x}{2}} = \lim_{x \to \infty} \frac{\sqrt{x}}{e^{\frac{x}{2}}} = \lim_{x \to \infty} \frac{\frac{1}{2} x^{\frac{-1}{2}}}{\frac{1}{2} e^{\frac{x}{2}}} = \lim_{x \to \infty} \frac{1}{\sqrt{x} e^{\frac{x}{2}}} = 0$$

Indeterminate forms with differences. Now consider what happens if $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = \infty$, and we are looking at $\lim_{x\to a} [f(x)-g(x)]$. This is an indeterminate form of type $\infty-\infty$. We examine these by **converting them into a quotient** and using L'Hospital's rule.

Solve
$$\lim_{x\to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x-1}\right)$$
 This is an indeterminate form of type $\infty-\infty$

Solve
$$\lim_{x\to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x-1}\right)$$

This is an indeterminate form of type $\infty-\infty$

First we can make common denominator:

$$\bullet \lim_{x \to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) = \lim_{x \to 1^+} \frac{x - 1 - \ln x}{(x - 1) \ln x}$$

We will get the form $\frac{0}{0}$, so let's apply the rule!

$$\oint_{x\to 1^+} \frac{x-1-\ln x}{(x-1)\ln x} = \lim_{x\to 1^+} \frac{1-\frac{1}{x}}{(x-1)\frac{1}{x}+\ln x} = \lim_{x\to 1^+} \frac{x-1}{x-1+x\ln x}$$

We will still get the form $\frac{0}{0}$, so apply the rule again!

Solve
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$

This is an indeterminate form of type $\infty - \infty$

Solve
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$

This is an indeterminate form of type $\infty-\infty$

First we can make common denominator:

•
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \left(\frac{x \ln x - (x-1)}{(x-1) \ln x} \right)$$

We will get the form $\frac{0}{0}$, so let's apply the rule!

$$\bullet \lim_{x \to 1} \left(\frac{x \ln x - (x - 1)}{(x - 1) \ln x} \right) = \lim_{x \to 1} \left(\frac{x \left(\frac{1}{x} \right) + \ln x - 1}{(x - 1) \left(\frac{1}{x} \right) + \ln x} \right) = \lim_{x \to 1} \left(\frac{\ln x}{1 - \frac{1}{x} + \ln x} \right)$$

We will still get the form $\frac{0}{0}$, so apply the rule again!

Indetermininate forms with powers.

Some limits involving powers are difficult to calculate because the variable is in both the base and the index. By taking the **natural logarithm**, i.e., In, the power is transformed into a product, and the problem becomes manageable.

Solve
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$$
 This is an indeterminate form of type 1^∞

Solve
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$$

This is an indeterminate form of type 1^∞

First we can apply In both sides:

- $\ln y = \ln(1 + \frac{1}{x})^x$
- $\ln y = x \ln(1 + \frac{1}{x})$

We will get the form $\infty * 0$, so let's first make it into quotient.

$$\bullet \lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\ln(1 + \frac{1}{x})}{\frac{1}{x}}$$

Then apply the rule:

$$\oint \lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\frac{1}{1 + \frac{1}{x}} \left(-\frac{1}{x^2} \right)}{\frac{-1}{x^2}} = \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}} = 1$$

$$\bullet \lim_{x \to \infty} \ln y = 1$$

$$\bullet \lim_{x \to \infty} y = \lim_{x \to \infty} e^{\ln y} = \lim_{x \to \infty} e^{1} = e$$

Solve $\lim_{x\to\infty}x^{e^{-x}}$ This is an indeterminate form of type ∞^0

Solve
$$\lim_{n \to \infty} x^{e^{-x}}$$

This is an indeterminate form of type ∞^0

First we can apply In both sides:

$$y = x^{e^{-x}}$$

•
$$\ln y = e^{-x} \ln x$$

We will get the form $0 * \infty$, so let's first make it into quotient.

$$\bullet \lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\ln x}{e^x}$$

Then apply the rule:

$$\bullet \lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\ln x}{e^x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{e^x} = \lim_{x \to \infty} \frac{1}{xe^x} = 0$$

$$\bullet \lim_{x\to\infty} \ln y = 0$$

$$\bullet \lim_{x \to \infty} y = \lim_{x \to \infty} e^{\ln y} = e^0 = 1$$