INTEGRATION

Substitution

If an integrand has the form f(u(x))u'(x), then rewrite the entire integral in terms of u and its differential du = u'(x) dx:

$$\int f(u(x))u'(x) dx = \int f(u) du$$

Integration by Parts Formula

$$\int u(x)v'(x) dx = u(x)v(x) - \int u'(x)v(x) dx$$

TABLE OF INTEGRALS

Basic Forms

1.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1$$

$$2. \int \frac{du}{u} = \ln|u| + C$$

$$3. \int e^u du = e^u + C$$

$$4. \int a^u \, du = \frac{a^u}{\ln a} + C$$

$$5. \int \sin u \, du = -\cos u + C$$

$$6. \int \cos u \, du = \sin u + C$$

7.
$$\int \sec^2 u \, du = \tan u + C$$

$$8. \int \csc^2 u \, du = -\cot u + C$$

9.
$$\int \sec u \tan u \, du = \sec u + C$$

10.
$$\int \csc u \cot u \, du = -\csc u + C$$

11.
$$\int \tan u \, du = \ln|\sec u| + C$$

$$12. \int \cot u \, du = \ln|\sin u| + C$$

13.
$$\int \sec u \, du = \ln|\sec u + \tan u| + C$$

$$14. \int \csc u \, du = \ln|\csc u - \cot u| + C$$

15.
$$\int \frac{du}{\sqrt{a^2 + u^2}} = \sin^{-1} \frac{u}{a} + C$$

16.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$$

Exponential and Logarithmic Forms

17.
$$\int ue^{au} du = \frac{1}{a^2} (au - 1)e^{au} + C$$

18.
$$\int u^n e^{au} du = \frac{1}{a} u^n e^{au} - \frac{n}{a} \int u^{n-1} e^{au} du$$

19.
$$\int e^{au} \sin bu \, du = \frac{e^{au}}{a^2 + b^2} (a \sin bu - b \cos bu) + C$$

20.
$$\int e^{au} \cos bu \, du = \frac{e^{au}}{a^2 + b^2} (a \cos bu + b \sin bu) + C$$

$$21. \int \ln u \, du = u \ln u - u + C$$

23. $\int \frac{1}{u \ln u} du = \ln |\ln u| + C$

22. $\int u^n \ln u \, du = \frac{u^{n+1}}{(n+1)^2} [(n+1) \ln u - 1] + C$

$$23. \int \frac{1}{u \ln u} du = \ln |\ln u| + C$$

Hyperbolic Forms

$$24. \int \sinh u \, du = \cosh u + C$$

$$25. \int \cosh u \, du = \sinh u + C$$

$$26. \int \tanh u \, du = \ln \cosh u + C$$

$$27. \int \coth u \, du = \ln|\sinh u| + C$$

$$28. \int \operatorname{sech} u \, du = \tan^{-1} |\sinh u| + C$$

$$29. \int \operatorname{csch} u \, du = \ln \left| \tanh \frac{1}{2} u \right| + C$$

$$30. \int \operatorname{sech}^2 u \, du = \tanh u + C$$

31.
$$\int \operatorname{csch}^2 u \, du = -\coth u + C$$

32.
$$\int \operatorname{sech} u \tanh u \, du = -\operatorname{sech} u + C$$

33.
$$\int \operatorname{csch} u \operatorname{coth} u \, du = -\operatorname{csch} u + C$$

Trigonometric Forms

34.
$$\int \sin^2 u \, du = \frac{1}{2}u - \frac{1}{4}\sin 2u + C$$

35.
$$\int \cos^2 u \, du = \frac{1}{2}u + \frac{1}{4}\sin 2u + C$$

$$36. \int \tan^2 u \, du = \tan u - u + C$$

$$37. \int \cot^2 u \, du = -\cot u - u + C$$

38.
$$\int \sin^3 u \, du = -\frac{1}{3} (2 + \sin^2 u) \cos u + C$$

39.
$$\int \cos^3 u \, du = \frac{1}{3} (2 + \cos^2 u) \sin u + C$$

40.
$$\int \tan^3 u \, du = \frac{1}{2} \tan^2 u + \ln|\cos u| + C$$

41.
$$\int \cot^3 u \, du = -\frac{1}{2} \cot^2 u - \ln|\sin u| + C$$

42.
$$\int \sec^3 u \, du = \frac{1}{2} \sec u \tan u + \frac{1}{2} \ln|\sec u + \tan u| + C$$

43.
$$\int \csc^3 u \, du = -\frac{1}{n} \csc u \cot u + \frac{1}{n} \ln|\csc u - \cot u| + C$$

44.
$$\int \sin^n u \, du = -\frac{1}{n} \sin^{n-1} u \cos u + \frac{n-1}{n} \int \sin^{n-2} u \, du$$

45.
$$\int \cos^n u \, du = \frac{1}{n} \cos^{n-1} u \sin u + \frac{n-1}{n} \int \cos^{n-2} u \, du$$

46.
$$\int \tan^n u \, du = \frac{1}{n-1} \tan^{n-1} u - \int \tan^{n-2} u \, du$$

47.
$$\int \cot^n u \, du = \frac{-1}{n-1} \cot^{n-1} u - \int \cot^{n-2} u \, du$$

48.
$$\int \sec^n u \, du = \frac{1}{n-1} \tan u \sec^{n-2} u + \frac{n-2}{n-1} \int \sec^{n-2} u \, du$$

49.
$$\int \csc^n u \, du = \frac{-1}{n-1} \cot u \csc^{n-2} u + \frac{n-2}{n-1} \int \csc^{n-2} u \, du$$

50.
$$\int \sin au \sin bu \, du = \frac{\sin(a-b)u}{2(a-b)} - \frac{\sin(a+b)u}{2(a+b)} + C$$

51.
$$\int \cos au \cos bu \, du = \frac{\sin(a-b)u}{2(a-b)} + \frac{\sin(a+b)u}{2(a+b)} + C$$

52.
$$\int \sin au \cos bu \, du = -\frac{\cos(a-b)u}{2(a-b)} - \frac{\cos(a+b)u}{2(a+b)} + C$$

$$53. \int u \sin u \, du = \sin u - u \cos u + C$$

$$54. \int u \cos u \, du = \cos u + u \sin u + C$$

55.
$$\int u^n \sin u \, du = -u^n \cos u + n \int u^{n-1} \cos u \, du$$

$$\mathbf{56.} \int u^n \cos u \, du = u^n \sin u - n \int u^{n-1} \sin u \, du$$

57.
$$\int \sin^n u \cos^m u \, du$$

$$= -\frac{\sin^{n-1} u \cos^{m+1} u}{n+m} + \frac{n-1}{n+m} \int \sin^{n-2} u \cos^m u \, du$$

$$= \frac{\sin^{n+1} u \cos^{m-1} u}{n+m} + \frac{m-1}{n+m} \int \sin^n u \cos^{m-2} u \, du$$

Inverse Trigonometric Forms

58.
$$\int \sin^{-1} u \, du = u \sin^{-1} u + \sqrt{1 - u^2} + C$$

59.
$$\int \cos^{-1} u \, du = u \cos^{-1} u - \sqrt{1 - u^2} + C$$

60.
$$\int \tan^{-1} u \, du = u \tan^{-1} u - \frac{1}{2} \ln(1 + u^2) + C$$

61.
$$\int u \sin^{-1} u \, du = \frac{2u^2 - 1}{4} \sin^{-1} u + \frac{u\sqrt{1 - u^2}}{4} + C$$

62.
$$\int u \cos^{-1} u \, du = \frac{2u^2 - 1}{4} \cos^{-1} u - \frac{u\sqrt{1 - u^2}}{4} + C$$

63.
$$\int u \tan^{-1} u \, du = \frac{u^2 + 1}{2} \tan^{-1} u - \frac{u}{2} + C$$

64.
$$\int u^n \sin^{-1} u \, du = \frac{1}{n+1} \left[u^{n+1} \sin^{-1} u - \int \frac{u^{n+1} \, du}{\sqrt{1-u^2}} \right], \quad n \neq -1$$

65.
$$\int u^n \cos^{-1} u \, du = \frac{1}{n+1} \left[u^{n+1} \cos^{-1} u + \int \frac{u^{n+1} \, du}{\sqrt{1-u^2}} \right]. \quad n \neq -1$$

66.
$$\int u^n \tan^{-1} u \, du = \frac{1}{n+1} \left[u^{n+1} \tan^{-1} u - \int \frac{u^{n+1} \, du}{1+u^2} \right], \quad n \neq -1$$

Forms Involving $\sqrt{a^2 - u^2}$, a > 0

67.
$$\int \sqrt{a^2 - u^2} \, du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \sin^{-1} \frac{u}{a} + C$$

68.
$$\int u^2 \sqrt{a^2 - u^2} \, du = \frac{u}{8} (2u^2 - a^2) \sqrt{a^2 - u^2} + \frac{a^4}{8} \sin^{-1} \frac{u}{a} + C$$

69.
$$\int \frac{\sqrt{a^2 - u^2}}{u} du = \sqrt{a^2 - u^2} - a \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| + C$$

70.
$$\int \frac{\sqrt{a^2 - u^2}}{u^2} du = -\frac{1}{u} \sqrt{a^2 - u^2} - \sin^{-1} \frac{u}{a} + C$$

71.
$$\int \frac{u^2 du}{\sqrt{a^2 - u^2}} = -\frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \sin^{-1} \frac{u}{a} + C$$

72.
$$\int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| + C$$

73.
$$\int \frac{du}{u^2 \sqrt{a^2 - u^2}} = -\frac{1}{a^2 u} \sqrt{a^2 - u^2} + C$$

74.
$$\int (a^2 - u^2)^{3/2} du = -\frac{u}{8} (2u^2 - 5a^2) \sqrt{a^2 - u^2} + \frac{3a^4}{8} \sin^{-1} \frac{u}{a} + C$$

75.
$$\int \frac{du}{(a^2 - u^2)^{3/2}} = \frac{u}{a^2 \sqrt{a^2 - u^2}} + C$$

Forms Involving $\sqrt{u^2 - a^2}$, a > 0

76.
$$\int \sqrt{u^2 - a^2} \, du = \frac{u}{2} \sqrt{u^2 - a^2} - \frac{a^2}{2} \ln|u + \sqrt{u^2 - a^2}| + C$$

77.
$$\int u^2 \sqrt{u^2 - a^2} \, du$$
$$= \frac{u}{8} (2u^2 - a^2) \sqrt{u^2 - a^2} - \frac{a^4}{8} \ln|u + \sqrt{u^2 - a^2}| + C$$

78.
$$\int \frac{\sqrt{u^2 - a^2}}{u} du = \sqrt{u^2 - a^2} - a \cos^{-1} \frac{a}{|u|} + C$$

79.
$$\int \frac{\sqrt{u^2 - a^2}}{u} du = -\frac{\sqrt{u^2 - a^2}}{u} + \ln\left|u + \sqrt{u^2 - a^2}\right| + C$$

80.
$$\int \frac{du}{\sqrt{u^2 - a^2}} = \ln \left| u + \sqrt{u^2 - a^2} \right| + C$$

81.
$$\int \frac{u^2 du}{\sqrt{u^2 - a^2}} = \frac{u}{2} \sqrt{u^2 - a^2} + \frac{a^2}{2} \ln \left| u + \sqrt{u^2 - a^2} \right| + C$$

82.
$$\int \frac{du}{u^2 \sqrt{u^2 - a^2}} = \frac{\sqrt{u^2 - a^2}}{a^2 u} + C$$

83.
$$\int \frac{du}{(u^2 - a^2)^{3/2}} = -\frac{u}{a^2 \sqrt{u^2 - a^2}} + C$$

Forms Involving $\sqrt{a^2 + u^2}$, a > 0

84.
$$\int \sqrt{a^2 + u^2} \, du = \frac{u}{2} \sqrt{a^2 + u^2} + \frac{a^2}{2} \ln(u + \sqrt{a^2 + u^2}) + C$$

85.
$$\int u^2 \sqrt{a^2 + u^2} \, du$$
$$= \frac{u}{8} (a^2 + 2u^2) \sqrt{a^2 + u^2} - \frac{a^4}{8} \ln(u + \sqrt{a^2 + u^2}) + C$$

86.
$$\int \frac{\sqrt{a^2 + u^2}}{u} du = \sqrt{a^2 + u^2} - a \ln \left| \frac{a + \sqrt{a^2 + u^2}}{u} \right| + C$$

87.
$$\int \frac{\sqrt{a^2 + u^2}}{u^2} du = -\frac{\sqrt{a^2 + u^2}}{u} + \ln(u + \sqrt{a^2 + u^2}) + C$$

88.
$$\int \frac{du}{\sqrt{a^2 + u^2}} = \ln(u + \sqrt{a^2 + u^2}) + C$$

89.
$$\int \frac{u^2 du}{\sqrt{a^2 + u^2}} = \frac{u}{2} \sqrt{a^2 + u^2} - \frac{a^2}{2} \ln(u + \sqrt{a^2 + u^2}) + C$$

90.
$$\int \frac{du}{u\sqrt{a^2 + u^2}} = -\frac{1}{a} \ln \left| \frac{\sqrt{a^2 + u^2} + a}{u} \right| + C$$

91.
$$\int \frac{du}{u^2 \sqrt{a^2 + u^2}} = -\frac{\sqrt{a^2 + u^2}}{a^2 u} + C$$

92.
$$\int \frac{du}{(a^2 + u^2)^{3/2}} = \frac{u}{a^2 \sqrt{a^2 + u^2}} + C$$

Forms Involving a + bu

93.
$$\int \frac{u \, du}{a + bu} = \frac{1}{b^2} (a + bu - a \ln|a + bu|) + C$$

94.
$$\int \frac{u^2 du}{a + bu} = \frac{1}{2b^3} [(a + bu)^2 - 4a(a + bu) + 2a^2 \ln|a + bu|] + C$$

95.
$$\int \frac{du}{u(a+bu)} = \frac{1}{a} \ln \left| \frac{u}{a+bu} \right| + C$$

96.
$$\int \frac{du}{u^2(a+bu)} = -\frac{1}{au} + \frac{b}{a^2} \ln \left| \frac{a+bu}{u} \right| + C$$

97.
$$\int \frac{u \, du}{(a+bu)^2} = \frac{a}{b^2(a+bu)} + \frac{1}{b^2} \ln|a+bu| + C$$

98.
$$\int \frac{du}{u(a+bu)^2} = \frac{1}{a(a+bu)} - \frac{1}{a^2} \ln \left| \frac{a+bu}{u} \right| + C$$

99.
$$\int \frac{u^2 du}{(a+bu)^2} = \frac{1}{b^3} \left(a + bu - \frac{a^2}{a+bu} - 2a \ln|a+bu| \right) + C$$

100.
$$\int u\sqrt{a+bu} \, du = \frac{2}{15b^2} (3bu - 2a)(a+bu)^{3/2} + C$$

101.
$$\int u^n \sqrt{a + bu} \, du$$

$$= \frac{2}{b(2n+3)} \left[u^n (a + bu)^{3/2} - na \int u^{n-1} \sqrt{a + bu} \, du \right]$$

102.
$$\int \frac{u \, du}{\sqrt{a + bu}} = \frac{2}{3b^2} (bu - 2a) \sqrt{a + bu} + C$$

103.
$$\int \frac{u^n du}{\sqrt{a+bu}} = \frac{2u^n \sqrt{a+bu}}{b(2n+1)} - \frac{2na}{b(2n+1)} \int \frac{u^{n-1} du}{\sqrt{a+bu}}$$

104.
$$\int \frac{du}{u\sqrt{a+bu}} = \frac{1}{\sqrt{a}} \ln \left| \frac{\sqrt{a+bu} - \sqrt{a}}{\sqrt{a+bu} + \sqrt{a}} \right| + C, \quad \text{if } a > 0$$

$$= \frac{2}{\sqrt{-a}} \tan^{-1} \sqrt{\frac{a+bu}{-a}} + C, \quad \text{if } a < 0$$

105.
$$\int \frac{du}{u^n \sqrt{a + bu}} = -\frac{\sqrt{a + bu}}{a(n - 1)u^{n - 1}} - \frac{b(2n - 3)}{2a(n - 1)} \int \frac{du}{u^{n - 1} \sqrt{a + bu}}$$

106.
$$\int \frac{\sqrt{a+bu}}{u} du = 2\sqrt{a+bu} + a \int \frac{du}{u\sqrt{a+bu}}$$

107.
$$\int \frac{\sqrt{a+bu}}{u^2} du = -\frac{\sqrt{a+bu}}{u} + \frac{b}{2} \int \frac{du}{u\sqrt{a+bu}}$$

Forms Involving $\sqrt{2au - u^2}$, a > 0

108.
$$\int \sqrt{2au - u^2} \, du = \frac{u - a}{2} \sqrt{2au - u^2} + \frac{a^2}{2} \cos^{-1} \left(\frac{a - u}{a} \right) + C$$

109.
$$\int u\sqrt{2au - u^2} \, du$$

$$= \frac{2u^2 - au - 3a^2}{6} \sqrt{2au - u^2} + \frac{a^3}{2} \cos^{-1}\left(\frac{a - u}{a}\right) + C$$

110.
$$\int \frac{du}{\sqrt{2au - u^2}} = \cos^{-1}\left(\frac{a - u}{a}\right) + C$$

111.
$$\int \frac{du}{u\sqrt{2au - u^2}} = -\frac{\sqrt{2au - u^2}}{au} + C$$

ESSENTIAL THEOREMS

Intermediate Value Theorem

If f(x) is continuous on a closed interval [a, b] and $f(a) \neq f(b)$, then for every value M between f(a) and f(b), there exists at least one value $c \in (a, b)$ such that f(c) = M.

Mean Value Theorem

If f(x) is continuous on a closed interval [a, b] and differentiable on (a, b), then there exists at least one value $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Extreme Values on a Closed Interval

If f(x) is continuous on a closed interval [a, b], then f(x) attains both a minimum and a maximum value on [a, b]. Furthermore, if $c \in [a, b]$ and f(c) is an extreme value (min or max), then c is either a critical point of f(x) in (a, b) or one of the endpoints a or b.

The Fundamental Theorem of Calculus, Part I

Assume that f(x) is continuous on [a, b] and let F(x) be an antiderivative of f(x) on [a, b]. Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Fundamental Theorem of Calculus, Part II

Assume that f(x) is a continuous function on [a, b]. Then the area function $A(x) = \int_a^x f(t) dt$ is an antiderivative of f(x), that is,

$$A'(x) = f(x)$$
 or equivalently $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$

Furthermore, A(x) satisfies the initial condition A(a) = 0.