Reinforcement Learning

Assignment 1

Setu Gupta (2018190)

Q1.) epsilon = 1/n is a sequence of epsilon which satisfies Eq 2.7 of SB. Here n is the number of current timestep.

Mean of 10 arms were picked from normal distribution with mean = 0, variance = 1. Variance of each arm was 1. Training was done using epsilon-greedy. Experiment was averaged over 2000 iterations each running for 1000 steps.

The following plots are for each arm numbered from 0 to 9 inclusive. They show the average absolute error of each arm across 2000 experiments each running for 1000 steps (same as before).

Q2.) epsilon = 1/n is a sequence of epsilon which satisfies Eq 2.7 of SB. Here n is the number of current timestep.

Mean of 10 arms were picked from normal distribution with mean = 0, variance = 1. Variance of each arm was 4. Training was done using epsilon-greedy. Experiment was averaged over 2000 iterations each running for 1000 steps.

The following plots are for each arm numbered from 0 to 9 inclusive. They show the average absolute error of each arm across 2000 experiments each running for 1000 steps (same as before).

Q5.) The following plots are for non stationary problems as described in Ex 2.5 of SB

Q6.) Average performance of UCB action selection on the 10-armed testbed. The results are for c = 1,2,4 and epsilon = 0.1 for epsilon greedy.

Q7.)

Theory questions follow...

Sem-5

Mon Soon 2020

HW 1 Setu Gupta (2018190

&-3 In the long run the best forforming strategy is the one which has

P(E) = P(Choosing the optimal arm as steb > ∞)
highert. This strongly will give highest cumulative seward in long own.

a) &=0 (Purely greedy)
This con possibly give P(E) but there is a high possibily
that we get stuck at some suboptimal choice of arm.

p(E) =
$$1 - E + E = 1 + E (1 - 1)$$

Here 1 - 1 is Caston = 1 - 1 = 0.1 - 1 = -0.9

: hower & performs better :: 0.01

$$P(E|E=0.01) = 1-(0.01 \times 0.9)$$

=1-0.009
=0.99)

(20-28) 2 + 20 = 20. (20 (.) E=1/n

 $P(E) = \lim_{n \to \infty} 1 - 0.9(\frac{1}{n}) = 1$

.. This strategy always picks the best arm as n-300. (GD-A) / + , D = +, D :

.. The best performing strategy arrong 4 aptions is &=1/n.

everbands of our final for mission is represent at 1

* = A col got - got to total in the

Cap -087 to + 08 = 1+18

+874-17 + -A 10 =

[1-8/2-1] + LAP 1-8] (1-1) + AP -1-1

7-12 (-1) + 1-2 (-1) + 1-2 (-1) + 12 (-1) = -2 (-1) + 12 (-1) + 12 (-1) + 12 (-1) = -2 (-1) + 12 (-1) + 12 (-1) = -2 (-1) = -2 (-1) + 12 (-1) = -2

18.6-11 + 18 TO-1 + 1--

a) Sample mean i.e.
$$\beta = 1/n$$
.

$$\therefore g_{n+1} = g_n + \frac{1}{n} [R_n - g_n] + a \quad (omitting working)$$

$$g_{n+1}(a) \quad for$$

$$clority)$$

Consider Q2 i.e. n=1

$$g_2 = Q_1 + \frac{1}{1} [R_1 - Q_1]$$

$$= Q_1 + R_1 - Q_1$$

$$= R_1$$

... After the oction is chosen at least once, the dependence on B, goes away.

$$g_{n+1} = g_n + d [R_n - g_n]$$

$$= d_n R_n + (1-d) g_n$$

$$= d_n R_n + (1-d) [d_{n-1} R_{n-1} + (1-d) g_{n-2}]$$

$$= d_n R_n + (1-d) d_{n-1} R_{n-1} + (1-d)^2 g_{n-1}$$

$$= d_n R_n + (1-d) d_{n-1} R_{n-1} + (1-d)^2 d_{n-2} R_{n-2}$$

$$= d_n R_n + (1-d) d_{n-1} R_{n-1} + (1-d)^2 d_{n-2} R_{n-2}$$

.... +
$$(1-\alpha)^{n-1} \alpha_1 R_1 + (1-\alpha)^{n-1} Q_1$$

$$= dn \sum_{i=0}^{n-1} (1-\alpha)^{i} dn_{-i} R_{n-i} + (1-\alpha)^{n} g_{i}$$

: Dependent on B,

(iii) I propase two way of dealing w/ dependence on Q,

$$|A| = |A| = |A| + |A| = |A| + |A| = |A| = |A|$$

$$= |A| + |A| + |A| = |A|$$

$$= |A| + |A| + |A| = |A|$$

Drawbock: No regard to history

Full each arm one by one to obtain

Ro(a) +a

Set $Q_1(a) = R_0(a) + a$

This way we don't need to decide the values.

Drawbook: Does not follow Constant of strategy for first

$$(8-6)$$
 At = org max $\left[8_{t}(a) + c \int \frac{lnt}{N_{t}(a)}\right]$

Note that initially
$$8_t(a) = \lambda$$
 (constant). If a Also $N_t(a) = 0$ is a

-- For the first step the value

$$\mathbf{S}(a) \triangleq \left[\mathbf{8}_{t}(a) + c \sqrt{\frac{\ln t}{N_{t}(a)}} \right] \rightarrow \infty$$

$$\mathbf{N}_{t}(a) = \mathbf{N}_{t}(a)$$

.: First oction is choosen at random. Suppose we Choose oction i st. 1 \(i \) [#1]

$$\Rightarrow$$
 $\mathcal{S}_{2}(i)$ be comes finite as $N_{2}(i)=1$

.. We will not choose it this time.

By the same logic we con say that for first 10 steps we choose every ortion once in an arbitrary order.

Now lets look @ 11th step.

$$C\sqrt{\frac{\ln \Omega}{N_{+}(a)}} = C\sqrt{\frac{\ln \Omega}{\Delta}}$$

... This choice will purely be influenced by 84(a) + a.

Now ocross 2000 runs, The probability of Q11 (20) being higher for tarty optimal action at is higher

:. (a) 11th step since $P[Q_{11}(a^*) > Q_{11}(a)]$ $\forall a \in A, a \neq a^*]$

is high, we pick at which explains the spike.

@ 12th step $S_{12}(a^*) = \left[g_{12}(a^*) + c \sqrt{\frac{\ln(12)}{2}} \right]$

Note that the foctor c [11(12) & a is lowest

for at as $N_{\pm}(a^{\pm}) = 2$ where as $N_{\pm}(a)$ that at is 1, it is 1/2 times less for a^{\pm} .

Mour this low value may be overpowered by $g_{12}(a^{*})$ but if c is less, this is tentegre unlikely. Hence we get a dip.

This is also the reason that the spike is more pronounced for higher c as higher the c, more will a That our power $\mathcal{B}_{t}(0)$.

Also note that it is most pronounced @ 11th step as

at later steps, values of S(a) + (a) stort to Converge. X to a control to the of well and (a), 8 < (4), 10 9 ones det 411 (a). with welfard distribut to their any doct is (a) (a) = (a) (a) = (a) + (a) (b) + (a) (b) Tour is a the color of the tour 130 # 0 # (a) 11 com c = (b) # a * 0. m) *0 m so wind st a on 4. 1 to be the continue of the or all the continue of the 1 to 100 mm instruction of some most out oil in all commenced by supply the supply of books morely. (1) 28 40 wind runn (9) 4 3 1 100 co gets to be second from the text that they end