CECS 451

Assignment 5

Total: 50 Points

General Instruction

- Submit **uncompressed** file(s) in the Assignment folder via Canvas (Not email)
- Use **Python 3**, any other programming language is not acceptable
- You can import modules in the **Python Standard Library** (please check the full list <u>here</u>)
- 1. Given the full joint distribution shown in Figure 1, calculate the following:
 - a. (2 points) *P*(*toothache*)
 - b. (3 points) **P**(Cavity)
 - c. (3 points) **P**(Toothache|cavity)

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 1.

- 2. Consider the Bayes net shown in Figure 2, calculate the following:
 - a. (5 points) $P(b, i, \neg m, g, j)$
 - b. (6 points) P(J|b, i, m)
 - c. (6 points) $P(J|\neg b, \neg i, m)$

Figure 2.

- 3. (25 points) Implement a program to estimate π using the Monte Carlo simulation method
 - a. The program should generate n random points of (x, y)

where
$$0 \le x < 1$$
 and $0 \le y < 1$ for $n \in \{10^3, 10^4, 10^5, 10^6\}$

- b. You can use math.pi to compute error rates
- c. Please follow this output format:

```
n = 10^3: pi = 3.096000 & error = 1.4513%
n = 10^4: pi = 3.136800 & error = 0.1526%
n = 10^5: pi = 3.145280 & error = 0.1174%
n = 10^6: pi = 3.140568 & error = 0.0326%
```

*Note that the estimated π and the error rates may be different (Fix precision using "0:.nf".format)

You can use the formula $error(\%) = |\frac{\pi - \pi'}{\pi}| \times 100$, where π' is the estimation

- d. For $n = 10^4$, draw a scatter plot as Figure 1, i.e., blue color for dots whose distances from the origin (0, 0) are less than 1, otherwise red color.
- e. Submit pi.ipynb

Example: