

ITESM Herramientas computacionales: el arte de la analítica Pedro Oscar Pérez Murueta Actividad Evaluable: Patrones con K-means

FECHA: 15/09/2021

In [2]: df1 = df.head(100)
df1

Out[2]:

	Rank												
			Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales	
	0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74	
	1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24	
	2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82	
	3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00	
	4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role- Playing	Nintendo	11.27	8.89	10.22	1.00	31.37	
	95	96	Crash Bandicoot 2: Cortex Strikes Back	PS	1997.0	Platform	Sony Computer Entertainment	3.78	2.17	1.31	0.31	7.58	
	96	97	Super Mario Bros. 2	NES	1988.0	Platform	Nintendo	5.39	1.18	0.70	0.19	7.46	
	97	98	Super Smash Bros. for Wii U and 3DS	3DS	2014.0	Fighting	Nintendo	3.24	1.35	2.42	0.43	7.45	
	98	99	Call of Duty: World at War	X360	2008.0	Shooter	Activision	4.79	1.90	0.00	0.69	7.37	
	99	100	Battlefield 3	X360	2011.0	Shooter	Electronic Arts	4.46	2.13	0.06	0.69	7.34	

100 rows × 11 columns

In [4]: df1.drop(columns=['Rank','Name','Platform','Genre','Publisher'],axis = 1)

Out[4]:

	Year	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	2006.0	41.49	29.02	3.77	8.46	82.74
1	1985.0	29.08	3.58	6.81	0.77	40.24
2	2008.0	15.85	12.88	3.79	3.31	35.82
3	2009.0	15.75	11.01	3.28	2.96	33.00
4	1996.0	11.27	8.89	10.22	1.00	31.37
95	1997.0	3.78	2.17	1.31	0.31	7.58
96	1988.0	5.39	1.18	0.70	0.19	7.46
97	2014.0	3.24	1.35	2.42	0.43	7.45
98	2008.0	4.79	1.90	0.00	0.69	7.37
99	2011.0	4.46	2.13	0.06	0.69	7.34

100 rows × 6 columns

```
Out[5]: array([[ 0.120457 , 5.89345638, 7.10180902, 0.84568881, 4.60425192, 6.89039134], [-2.57060365, 3.76983323, -0.17933832, 2.33709963, -0.35307237, 2.59149568], [ 0.37674849, 1.5058901 , 2.48240186, 0.85550072, 1.28432733, 2.14441053], [ 0.50489424, 1.4887779 , 1.94719174, 0.60529693, 1.05870139, 1.85916616], [-1.16100045, 0.72215166, 1.34042946, 4.01003085, -0.20480389, 1.69429087], [-2.05802067, 2.76363628, -0.5571337 , 1.06645686, -0.47555502, 1.58201383]])
```


ITESM Herramientas computacionales: el arte de la analítica Pedro Oscar Pérez Murueta Actividad Evaluable: Patrones con K-means

FECHA: 15/09/2021

```
In [6]: import numpy as np
                  X[np.isnan(X)] = 0
X
      Out[6]: array([[ 1.20457000e-01, 5.89345638e+00, 8.45688809e-01, 4.60425192e+00,
                                                                                   7.10180902e+00
                                                                                  6.89039134e+00],
                             [-2.57060365e+00,
                                                        3.76983323e+00,
                                                                                  -1.79338322e-01.
                            2.33709963e+00, -3.53072368e-01,

3.7674849e-01, 1.50589010e+00,

8.55500722e-01, 1.28432733e+00,

[5.04894235e-01, 1.48877790e+00,
                                                                                  2.59149568e+00],
2.48240186e+00,
                                                                                  2.14441053e+00],
1.94719174e+00,
                             6.05296933e-01,
[-1.16100045e+00,
                                                        1.05870139e+00,
7.22151657e-01,
                                                                                  1.85916616e+00],
1.34042946e+00,
                             4.01003085e+00, -2.04803891e-01,

[-2.05802067e+00, 2.76363628e+00,

1.06645686e+00, -4.75555023e-01,
                                                                                  1.69429087e+00],
                                                                                  -5.57133703e-01,
1.58201383e+00],
                             [ 1.20457000e-01, 2.18501498e+00,
                                                        7.40975069e-01,
1.02002265e+00,
                                                                                  1.43774039e+00,
1.55672621e+00],
                             [ 1.20457000e-01,
4.33588450e-01,
                                                        1.19444818e+00,
9.87790377e-01,
                                                                                  1.42915413e+00
                                                                                   1.45658723e+00],
                             [ 5.04894235e-01, 1.29027646e+00,
                                                                                  8.16667681e-01,
                                                        1.2902/040E+00,
6.07449502e-01,
3.40192108e+00,
                             1.30194278e+00,
[-2.69874939e+00,
                                                                                 1.41612703e+00],
-1.02365376e+00,
In [7]: clustering = KMeans(n_clusters = 3, random_state = 5)
clustering.fit(X)
Out[7]: KMeans(n_clusters=3, random_state=5)
In [8]: color_theme = np.array(['darkgray', 'lightsalmon', 'powderblue'])
             plt.subplot(1,2,1)
plt.scatter(x = df1.NA_Sales, y=df1.Global_Sales, c=color_theme[clustering.labels_])
             plt.title("Sales")
Out[8]: Text(0.5, 1.0, 'Sales')
               80
               70
               60
               50
               40
               30
               20
```