MATHF412-Méthodes variationnelles et équations aux dérivées partielles

Titulaire: Denis Bonheure

Rappels sur les espaces de Sobolev

Exercice 1 Soient N > 1, $B(0; 1) \subset \mathbb{R}^N$ et

$$u(x) = \log\left(\log\left(1 + \frac{1}{|x|}\right)\right).$$

Montrer que $u \in W^{1,N}(B(0;1))$. En déduire que l'injection $W^{1,N}(B(0;1)) \hookrightarrow C(B(0;1))$ n'est pas continue.

Exercice 2 Soit $I \subset \mathbb{R}$ un intervalle borné. Montrer que l'injection $W^{1,p}(I) \hookrightarrow C(\overline{I})$ est compacte pour tout 1 . Dans le cas où <math>p = 1, montrer que l'injection $W^{1,1}(I) \hookrightarrow C(\overline{I})$ est continue mais elle n'est pas compacte. En déduire que $W^{1,\infty}$ peut être identifié avec l'espace de fonctions Lipschitziennes et que $W^{N,1}(I) \hookrightarrow C(\overline{I})$ est continue pour tout N.

Indice: Pour la première partie, utiliser le théorème d'Ascoli-Arzelà et pour la deuxième partie, trouver une suite qui est bornée dans $W^{1,1}(I)$ mais qui ne possède aucune sous-suite convergente dans $C(\overline{I})$.

Exercice 3 Montrer que l'inégalité de Poincaré peut être fausse dans les domaines qui ne sont bornés.

Indice: Soit $\varphi \in C_c^{\infty}(\mathbb{R}^N)$, $\varphi \equiv 1$ dans B(0;1), $\varphi \equiv 0$ dans $\mathbb{R}^N \setminus B(0;2)$ et $0 \leq \varphi \leq 1$, et considérer la suite $\varphi_k(x) = \varphi(\frac{x}{k})$.

Exercice 4 Montrer que l'injection $W^{1,p}(\mathbb{R}^N) \hookrightarrow L^p(\mathbb{R}^N)$ n'est pas compacte.

Indice: Soit $u \in C_c^1(\mathbb{R}^N)$ avec $supp\ u \subset B(0;1)$ et $||u||_{W^{1,p}} = 1$, et considérer la suite $u_k(x) = u(x-k)$.

Exercice 5 Montrer que l'injection $W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$ n'est jamais compacte même sur un domaine borné.

Remarque: Nous notons $p^* = \frac{2N}{N-2}$ si $N \ge 3$, et $p^* = \infty$ si N = 1, 2.