ACKNOWLEDGEMENT

I am deeply grateful to Mr. Rajan Poudel for his invaluable guidance and support, which were essential in the completion of this lab report. His expertise in probability and statistics significantly improved my understanding of the subject.

I also extend my thanks to Itahari Namuna College for providing the necessary resources and facilities for conducting the experiments and analyses presented in this report.

Special thanks go to my classmates and colleagues for their invaluable feedback and support throughout this project. Their insights and suggestions greatly enhanced the analyses and interpretations.

Lastly, I sincerely appreciate my family and friends for their unwavering support and encouragement during this study.

Thank you.

TABLE OF CONTENT

1.	Find the mean, median and mode of the given individual data	1
2.	Find quartile, decile and percentile of discrete series using SPSS	3
3.	Find range, variance and standard deviation of continuous data using SPSS	5
4.	Draw bar graph using spss	7
5.	Find coefficient of skewness and kurtosis of discrete data using SPSS	9
6.	Find Karl Pearson's correlation coefficient and Spearman's rank	
	correlation using SPSS	11
7.	Find regression equation of X on Y using SPSS	13
8.	Find mean, median and mode of discrete data using SPSS	15
9.	Find mean, median and mode of continuous data using SPSS	17
10.	To carry out two way analysis of variance (ANOVA) using SPSS	19

The following table gives the yearly income (000Rs) of the 10 computer programmers working in a software company.

Income (000Rs.) 1780, 1760, 1680, 1780, 1830, 1940, 1100, 1800, 1060, 1950.

Find the mean, median and mode of the given individual data.

1.1. Objective: To find mean, median and mode of individual series using SPSS.

1.2. Working Expression:

Mean: The mean, or arithmetic mean, is a widely utilized measure of central tendency. It is often regarded as the most effective measure due to its ability to meet most criteria of a good measure. Mathematically, the mean is calculated by summing all observations and then dividing by the total number of observations.

$$Mean (\bar{X}) = \frac{\sum X}{N}$$

Median: Median is a widely used as measure of center tendency. This measure is appropriate to calculate the average value of the given distribution having open ended classes, unequal class size, and for the qualitative data. Mathematically, median is the value which divided the given frequency distribution into two equal parts.

Median (M_d) = value of
$$(\frac{n+1}{2})^{th}$$
 item.

Mode: Mode is a commonly used measure of central tendency. This measure is suitable when we have to find the most common value, most usual value, most frequent value, most repeated value, ideal size, favorite number, etc. of given data. Mathematically, mode is a value which repeats maximum number of time in a frequency distribution.

Mode (M_o) = most repeated value

Statistics

N	Valid	10
	Missing	0
Mear	1	1668.00
Medi	an	1780.00
Mode		1780

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1060	1	10.0	10.0	10.0
	1100	1	10.0	10.0	20.0
	1680	1	10.0	10.0	30.0
	1760	1	10.0	10.0	40.0
	1780	2	20.0	20.0	60.0
	1800	1	10.0	10.0	70.0
	1830	1	10.0	10.0	80.0
	1940	1	10.0	10.0	90.0
	1950	1	10.0	10.0	100.0
	Total	10	100.0	100.0	

1.4. Conclusion:

The mean of the given distribution is 1668.

The median of the given distribution is 1780.

The mode of the given distribution is 1780.

From the data given below calculate the value of Q₁, Q₃, D₂, D₉, P₄₅ and P₅₇.

Quantity	10	15	20	25	30	35	40	45	50
No. of	8	12	36	25	28	18	9	12	6
Person									

2.1. Objective: To find quartile, decile and percentile of discrete series using SPSS.

2.2. Working Expression:

Quartiles: Quartiles are values that divide a given frequency distribution into four equal parts. There are three quartiles in a frequency distribution: the first quartile or lower quartile (Q1), the second quartile or median (Md), and the third quartile or upper quartile (Q3).

Quartile(Q_i) = size of
$$\left[\frac{i(n+1)}{4}\right]^{th}$$
 item.

Deciles: Deciles are values that divide a given frequency distribution into ten equal parts. There are nine deciles, denoted as D1, D2, D3, ..., D9, where D1 < D2 < D3 < ... < D9.

Deciles(D_i) = size of
$$\left[\frac{i(n+1)}{10}\right]^{th}$$
 item.

Percentiles: Percentiles are values that divide a given frequency distribution into one hundred equal parts. There are ninety-nine percentiles, denoted as P1, P2, P3, ..., P99, where P1 < P2 < P3 < ... < P99.

Percentiles(P_i) = size of
$$\left[\frac{i(n+1)}{100}\right]^{th}$$
 item.

Statistics

q			

N	Valid	154
	Missing	0
Percentiles	20	20.00
	25	20.00
	45	25.00
	50	25.00
	57	30.00
	75	35.00
	90	45.00

quantity

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	10	8	5.2	5.2	5.2
	15	12	7.8	7.8	13.0
	20	36	23.4	23.4	36.4
	25	25	16.2	16.2	52.6
	30	28	18.2	18.2	70.8
	35	18	11.7	11.7	82.5
	40	9	5.8	5.8	88.3
	45	12	7.8	7.8	96.1
	50	6	3.9	3.9	100.0
	Total	154	100.0	100.0	

2.4. Conclusion:

The value of Q_1 of given distribution is 20.

The value of Q_3 of given distribution is 35.

The value of D₂ of given distribution is 20.

The value of D₉ of given distribution is 45.

The value of P₄₅ of given distribution is 25.

The value of P₅₇ of given distribution is 30.

From the data given below, calculate range, variance and standard deviation.

Marks	0-10	10-20	20-30	30-40	40-50
No. of Students	5	18	15	16	6

- **3.1.Objective:** To find range, variance and standard deviation of continuous data using SPSS.
- **3.2. Working Expression:** Range: It is a measure of dispersion defined as the difference between largest and smallest values in a given distribution.

$$Range = L - S$$

Variance: The variance of the values of a variable X is defined as the square of the standard deviation.

$$Var(X) = \sigma^2$$

Standard Deviation: It is the square root of mean of the squared deviations from the arithmetic mean.

$$(continuous\ series)\sigma = \sqrt{\frac{1}{N}\sum f(X-\bar{X})^2}$$

M

Statis	tics	
Valid		

N	Valid	60
	Missing	0
Std. [Deviation	11.49797
Varia	nce	132.203
Rang	je	40.00

M

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	5.00	5	8.3	8.3	8.3
	15.00	18	30.0	30.0	38.3
	25.00	15	25.0	25.0	63.3
	35.00	16	26.7	26.7	90.0
	45.00	6	10.0	10.0	100.0
	Total	60	100.0	100.0	

3.4. Conclusion:

The range of given distribution is 40.

The variance of given distribution is 132.203.

The standard deviation of given distribution is 11.498.

Draw a line graph using spss from the given below information.

Village	A	В	С	D	Е
Population	300	400	500	40	200

- **4.1. Objective:** To draw bar graph using spss.
- **4.2. Working Expression:** A bar graph is a chart that uses rectangular bars to depict data, with the height of each bar corresponding to the value of the data point it represents. Bar graphs are frequently employed to compare data across various categories. They are useful for representing categorical data, such as the number of individuals in different age groups, or ordinal data, like the education levels within a group. Additionally, bar graphs can illustrate continuous data, such as the average income of people in different cities.

4.3. Calculation:

→ Frequencies

[DataSetl]

Statistics

Population

Ν	Valid	1440
	Missing	0

Population

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	40.00	40	2.8	2.8	2.8
	200.00	200	13.9	13.9	16.7
	300.00	300	20.8	20.8	37.5
	400.00	400	27.8	27.8	65.3
	500.00	500	34.7	34.7	100.0
	Total	1440	100.0	100.0	

4.4. Conclusion:

We have successfully made the bar graph using spss.

Calculate coefficient of skewness and kurtosis from the marks of students given below.

Marks	59	61	63	65	67	69	71	73	75
No. of	0	2	8	20	40	20	8	2	0
Students									

- **5.1. Objective:** To find coefficient of skewness and kurtosis of discrete data using SPSS.
- **5.2. Working Expression:** Skewness: It gives us an idea about the asymmetry of the items about the measure of central tendency. If mean = median = mode, it is called symmetrical distribution while mean ≠ median ≠ mode, it is called a skewed distribution and can be positive or negative.

$$S_{KB} = \frac{Q3 + Q1 - 2Md}{Q3 - Q1}$$

Kurtosis: It is the measure of peaked ness or flatness of curve of given distribution.

Leptokurtic curve is more peaked than mesokurtic curve.(>0.263)

Mesokurtic curve is neither peaked nor flat.(0.263)

Platykurtic curve is more flat compared to mesokurtic curve.(<0.263)

$$K = \frac{p75 - p25}{2(P90 - p10)}$$

Statistics

marks		
Ν	Valid	100
	Missing	0
Skewne	.000	
Std. Err	or of Skewness	.241
Kurtosi	.234	
Std. Err	.478	

marks

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	61	2	2.0	2.0	2.0
	63	8	8.0	8.0	10.0
	65	20	20.0	20.0	30.0
	67	40	40.0	40.0	70.0
	69	20	20.0	20.0	90.0
	71	8	8.0	8.0	98.0
	73	2	2.0	2.0	100.0
	Total	100	100.0	100.0	

5.4. Conclusion:

The skewness of given distribution is 0(symmetrical).

The kurtosis of given distribution is 0.234(platykurtic).

Calculate Karl Pearson's correlation coefficient and Spearman's rank correlation between sales and repairs of computer as given below.

Sales	50	55	55	60	65	70	65	60
Repair	11	13	14	16	16	15	15	20

- **6.1.Objective:** To find Karl Pearson's correlation coefficient and Spearman's rank correlation using SPSS.
- **6.2. Working Expression:** Correlation: Two variables are said to be in correlation, if change in one variable is accompanied by change in another variable.

Karl Pearson's correlation coefficient: Let X and Y be two variables then, it is denoted by r which is defined as ratio of Covariance between X and Y to multiple of SD of X and SD of y.

$$r = \frac{n \sum XY - \sum X \sum Y}{\sqrt{n \sum X^2 - (\sum X)^2} \sqrt{n \sum Y^2 - (\sum Y)^2}}$$

Spearman's Rank Correlation: Spearman's rank correlation coefficient, often denoted by the symbol ρ (rho), is a non-parametric measure of the strength and direction of a monotonic relationship between two variables. Unlike Pearson's correlation, Spearman's rank correlation is based on the ranks of the data rather than the actual data values.

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

Correlations

		Sales	Repair
Sales	Pearson Correlation	1	.500
	Sig. (2-tailed)		.207
	N	8	8
Repair	Pearson Correlation	.500	1
	Sig. (2-tailed)	.207	
	N	8	8

NONPAR CORR

/VARIABLES=Sales Repair /PRINT=SPEARMAN TWOTAIL NOSIG /MISSING=PAIRWISE.

Nonparametric Correlations

Correlations

			Sales	Repair
Spearman's rho	Sales	Correlation Coefficient	1.000	.595
		Sig. (2-tailed)	22	.120
		N	8	8
	Repair	Correlation Coefficient	.595	1.000
		Sig. (2-tailed)	.120	
		N	8	8

6.4. Conclusion:

The Karl Pearson's Correlation Coefficient is 0.500(moderate positive).

The Spearman's Rank Correlation is 0.595(moderate positive).

Find the regression equation of X on Y from following data.

X	5	15	20	25	30
Y	50	60	80	110	130

- **7.1. Objective:** To find regression equation of X on Y using SPSS.
- **7.2. Working Expression:** Regression: It is a statistical tool used to determine how the variables are related and making estimate or prediction from that relationship. The unknown variable we are going to estimate is called dependent variable and the known variable is known as independent variable.

For regression equation of X on Y:

Equation be x = a + by

To estimate a and b using principle of least square by minimizing error sum of square:

$$\sum X = na + b \sum Y$$

$$\sum XY = a \sum Y + b \sum Y^2$$

Solving these two equations, get a and b and substitute in x = a + by

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.951 ^a	.905	.873	3,430

a. Predictors: (Constant), Y

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	334.712	1	334.712	28.456	.013 ^b
	Residual	35.288	3	11.763		
	Total	370.000	4			

a. Dependent Variable: X

b. Predictors: (Constant), Y

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-4.403	4.648		947	.413
	Υ	.272	.051	.951	5.334	.013

a. Dependent Variable: X

7.4. Conclusion:

The regression equation of X on Y is x = -4.403 + 0.272y.

From the following data of marks obtained by 60 students in an exam of C programming, Calculate mean, median and mode.

Marks	20	30	40	50	60	70
No. of Students	8	12	20	10	6	4

- **8.1. Objective:** To find mean, median and mode of discrete data using SPSS.
- **8.2. Working Expression:** Mean: Mean is a commonly used measure of central tendency. The arithmetic mean is considered as the best measure of central tendency because it satisfied the most of all requisites of good measure. Mathematically, mean is defined as the sum of all the observation divided by total number of observation.

$$Mean (\bar{X}) = \frac{\sum fX}{N}$$

Median: Median is a widely used as measure of center tendency. This measure is appropriate to calculate the average value of the given distribution having open ended classes, unequal class size, and for the qualitative data. Mathematically, median is the value which divided the given frequency distribution into two equal parts.

Median (M_d) = Value corresponding to the cf greater than or equal to the size of md,

Size of md =
$$\frac{N+1}{2}$$
 th term

Mode: Mode is a commonly used measure of central tendency. This measure is suitable when we have to find the most common value, most usual value, most frequent value, most repeated value, ideal size, favorite number, etc. of given data. Mathematically, mode is a value which repeats maximum number of time in a frequency distribution.

Mode (M_o) = most repeated value

Statistics

m	2	rk	0
111	а	IIV	3

N Mear	Valid	60		
interest	Missing	0		
Mear	1	41.00		
Median		40.00		
Mode		40		

marks

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	20	8	13.3	13.3	13.3
	30	12	20.0	20.0	33.3
	40	20	33.3	33.3	66.7
	50	10	16.7	16.7	83.3
	60	6	10.0	10.0	93.3
	70	4	6.7	6.7	100.0
	Total	60	100.0	100.0	

8.4. Conclusion:

The mean of given distribution is 41.

The median of given distribution is 40.

The mode of given distribution is 40.

From the following data represents waiting time of students in bus stand to be seated. Calculate mean, median and mode.

Waiting time	0-10	10-20	20-30	30-40	40-50	50-60
No. of Students	5	10	25	30	20	10

- **9.1. Objective:** To find mean, median and mode of continuous data using SPSS.
- **9.2. Working Expression:** Mean: Mean is a commonly used measure of central tendency. The arithmetic mean is considered as the best measure of central tendency because it satisfied the most of all requisites of good measure. Mathematically, mean is defined as the sum of all the observation divided by total number of observation.

Mean
$$(\bar{X}) = \frac{\sum fm}{N}$$

Median: Median is a widely used as measure of center tendency. This measure is appropriate to calculate the average value of the given distribution having open ended classes, unequal class size, and for the qualitative data. Mathematically, median is the value which divided the given frequency distribution into two equal parts.

Median (M_d) = L +
$$\frac{\frac{N}{2} - cf}{f}$$
 * h

Mode: Mode is a commonly used measure of central tendency. This measure is suitable when we have to find the most common value, most usual value, most frequent value, most repeated value, ideal size, favorite number, etc. of given data. Mathematically, mode is a value which repeats maximum number of time in a frequency distribution.

Mode (M_o) = L +
$$\frac{f_1-f_0}{2f_1-f_0-f_2}$$
 * h

If mode is ill defined, mode = 3 Median - 2 Mean

Statistics

TimeM

Valid	100
Missing	0
	33.0000
n	35.0000
	35.00
	Missing

TimeM

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	5.00	5	5.0	5.0	5.0
	15.00	10	10.0	10.0	15.0
	25.00	25	25.0	25.0	40.0
	35.00	30	30.0	30.0	70.0
	45.00	20	20.0	20.0	90.0
	55.00	10	10.0	10.0	100.0
	Total	100	100.0	100.0	

9.4. Conclusion:

The mean of given distribution is 33.

The median of given distribution is 35.

The mode of given distribution is 35.

EXPERIMENT NO. 10:

An experiment was conducted to determine the effects of different dates of planting and different methods of planting on the yield of sugarcane. Does the method of planting affect mean yield and date of planting affect mean yield?

		Date of Planting							
Method of		Oct	Nov	Feb	Mar				
Planting	I	7	4	5	2				
	II	10	5	5	3				
	III	8	4	5	2				

- **10.1. Objective:** To carry out two way analysis of variance (ANOVA) using SPSS.
- **10.2. Working Expression:** ANOVA is the systematic process for achieving the variation. It is used for test of significance.

Types of ANOVA:

- One-way ANOVA
- Two-way ANOVA
- Multi-way ANOVA

The total variation present in any set of numerical data is classified according to two factors is called two-way classification.

Setting Of Hypothesis:

$$H_{0R}$$
: $\mu_{I.} = \mu_{II.} = \mu_{III.}$

 H_{1R} : At least one μ_i is different, I = I, II, III

$$H_{0C}$$
: $\mu_{.1} = \mu_{.2} = \mu_{.3}$

 H_{1C} : At least one $\mu_{.j}$ is different, $j=1(Oct),\,2(Nov),\,3(Feb),\,4(Mar)$

LEVEL OF SIGNIFICANCE:

$$\alpha = 5\%$$

TEST STATISTICS:

$$F_R = \frac{MSR}{MSE}$$
 $F_C = \frac{MSC}{MSE}$

Where,

MSR = SSR/m-1

MSC = SSC/n-1

MSE = SSE/(m-1)(n-1)

10.3. Calculation:

Tests of Between-Subjects Effects

Dependent Variable: Value

Source	Type II Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	59.500ª	5	11.900	28.560	.000	.960
Intercept	300.000	1	300.000	720.000	.000	.992
DateC	56.000	3	18.667	44.800	.000	.957
MethodR	3.500	2	1.750	4.200	.072	.583
Error	2.500	6	.417			
Total	362.000	12				
Corrected Total	62.000	11				

a. R Squared = .960 (Adjusted R Squared = .926)

Critical Value:

Degree of freedom (Row) = $\{m-1, (m-1)(n-1)\} = (2,6)$

Degree of freedom (Column) = $\{n-1,(m-1)(n-1)\} = (3,6)$

 $F_{0.05(2,6)} = 5.14$

 $F_{0.05(3.6)} = 4.76$

Decision:

 $F_R = 4.200 < F_{0.05 (2,6)} = 5.14$, accept H_{0R} at 5% level of significance.

 $F_C = 44.800 > F_{0.05 (3,6)} = 4.76$, reject H_{0C} at 5% level of significance.

10.4. Conclusion:

Methods of planting do not affect the mean yield of sugarcane but dates of planting affect the mean yields of sugarcane.