ABSTRACT

Enhanced Cable Modern Termination System (CMTS) functionality, including
programmable digital domain modulators and demodulators for dynamic channel
assignment, is incorporated into Fiber Nodes (FNs) or mini Fiber Nodes (mFNs),
yielding enhanced Fiber Nodes (eFNs). These eFns distribute CMTS functionality deep
into Hybrid-Fiber-Coax Networks (HFCN) rather than centralizing the CMTS functions
within a single location. Moving the cable modem terminations closer to the subscribers
shortens the analog RF paths required to support cable modems. Communication of both
subscriber data and CMTS control data is performed over Ethernet-compatible packet
networks between the field-based CMTSs and an upstream facility (e.g., the Head End),
which includes an Internet gateway. Packet data for multiple subscriber cable modems is
easily compressed and merged over common network paths, reducing cabling plant
complexity and increasing bandwidth utilization. This approach dramatically reduces
the infrastructure cost per cable modem. Distributing CMTS functionality among
multiple eFNs also reduces demands on already stretched resources at the Head End for
space, power, and HVAC. For HFCN channels containing signals with modulation or
encoding schemes that are unknown or best processed upstream, the invention also
provides for tunneling their spectrum over the same packet network as used for the cable
modem data. The channels to be tunneled are isolated using digital receivers, translated
to baseband, their data framed, merged with cable modem subscriber data, and
transmitted over the packet network. Upstream, the framed channel data is parsed and
the original channel spectrum reconstructed to permit information recovery.