Import neccessery libraries

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn import preprocessing
from sklearn.decomposition import PCA
import seaborn as sns
import scipy.cluster.hierarchy as sch
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import linkage
import warnings
warnings.filterwarnings('ignore')
```

Problem

Perform Principal component analysis and perform clustering using first 3 principal component scores (both heirarchial and k mean clustering(scree plot or elbow curve) and obtain optimum number of clusters and check whether we have obtained same number of clusters with the original data

Import data

```
In [2]: wine_data = pd.read_csv('wine.csv')
    wine_data
```

Out[2]:		Type	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proanthocyanins	Color	Hue	Dilution	Proline	
	0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065	
	1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050	
	2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185	

	Туре	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proanthocyanins	Color	Hue	Dilution	Proline
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735
•••														
173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	7.70	0.64	1.74	740
174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41	7.30	0.70	1.56	750
175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.20	0.59	1.56	835
176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.30	0.60	1.62	840
177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.20	0.61	1.60	560

Data understanding

```
In [3]:
        wine data.shape
        (178, 14)
Out[3]:
In [4]:
        wine data.isna().sum()
        Type
Out[4]:
        Alcohol
       Malic
       Ash
       Alcalinity
       Magnesium
       Phenols
       Flavanoids
       Nonflavanoids
        Proanthocyanins
        Color
        Hue
        Dilution
                           0
        Proline
        dtype: int64
```

In [5]:	win	e_data.	dtype	S											
0 1 []	Туре	<u>)</u>			int64										
Out[5]:	Alco			f	loat64										
	Mali	.C		f	loat64										
	Ash			f	loat64										
	Alca	linity		f	loat64										
	Magn	nesium			int64										
	Phen	nols		f	loat64										
		anoids			loat64										
		lavano			loat64										
		inthocya	anins		loat64										
	Colc	r			loat64										
	Hue				loat64										
		ition		f	loat64										
	Prol				int64										
	atyp	e: obje	ect												
In [6]:		1		1	1										
	Wln	e_data.	1100[:,1:											
Out[6]:		Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proanthocyanins	Color	Hue	Dilution	Proline	
	0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065	
	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050	
	2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185	
	-	4407	4.05	0.50	460	440	2.05	2.40	0.04	2.42	7.00	0.00	2.45	4.400	

	Alcohol	ivialic	ASII	Alcallility	Magnesium	FILEITOIS	riavailoius	Nominavamorus	Fibalitiocyalilis	COIOI	Hue	Dilution	FIOIIIE
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735
•••													•••
173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	7.70	0.64	1.74	740
174	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41	7.30	0.70	1.56	750
175	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.20	0.59	1.56	835
176	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.30	0.60	1.62	840
177	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.20	0.61	1.60	560

[7]:	wine_	_data.desc	cribe()										
[7]:		Туре	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proanthocyanins	Color	
	count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	1.
	mean	1.938202	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.058090	
	std	0.775035	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.318286	
	min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280000	
	25%	1.000000	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.220000	
	50%	2.000000	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.690000	
	75%	3.000000	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.200000	
	max	3.000000	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000000	

Finding correlation between the variables in the data

	Туре	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proanthocyanins	Color
Magnesium	-0.209179	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784	-0.256294	0.236441	0.199950
Phenols	-0.719163	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	-0.449935	0.612413	-0.055136
Flavanoids	-0.847498	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	-0.537900	0.652692	-0.172379
Nonflavanoids	0.489109	-0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	1.000000	-0.365845	0.139057
Proanthocyanins	-0.499130	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692	-0.365845	1.000000	-0.025250
Color	0.265668	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379	0.139057	-0.025250	1.000000 -
Hue	-0.617369	-0.071747	-0.561296	-0.074667	-0.273955	0.055398	0.433681	0.543479	-0.262640	0.295544	-0.521813
Dilution	-0.788230	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194	-0.503270	0.519067	-0.428815

There are some quite correlation between variables. For example the correlation between flavanoids and dilution is pretty high (78%). Thus we can remove that variable from our dataset. However this method is long and tedious. Hence we PCA method for Dimensionality Reduction

Dimensionality Reduction with PCA

```
In [10]: # normalizing the data
    wine_norm = StandardScaler().fit_transform(wine_data)

In [11]: pca = PCA(n_components=14)

In [12]: principal_components = pca.fit_transform(wine_norm)
```

```
In [18]:
    PC = range(1, pca.n_components_+1)
    plt.figure(figsize=(11,8))
    plt.bar(PC, pca.explained_variance_ratio_, color='red')
    plt.xlabel('Principal Components')
    plt.ylabel('Variance %')
    plt.title('Principal Components vs variance')
    plt.xticks(PC)
    plt.show()
```

10

11

12

Principal Components

As shown in the bar graph, the most of varianve is put in the first 2 components. Since there is not much variance present from 3rd component, lets just the first 2 componets in our analysis. The scatter plot given an indication that there may be 3 clusters present

Finding out the optimal number of clusters

```
In [37]:
    plt.figure(figsize=(12, 7))
    wcss = []
    for i in range(1, 15):
        kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
        kmeans.fit(wine_norm)
        wcss.append(kmeans.inertia_)
    plt.plot(range(1, 15), wcss)
    plt.title('The Elbow Method')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.show()
```


The scree plot levels off at k=3 and let's use it to determine the clusters

K-mean clustering

```
In [40]:
         for i in range(1, 15):
             kmeans = KMeans(n clusters = i, init = 'k-means++', random_state = 42)
             kmeans.fit(PCA components.iloc[:,:3])
             wcss.append(kmeans.inertia)
In [41]:
         k model = KMeans(n clusters=3)
         k model.fit(PCA components.iloc[:,:2])
         KMeans(n clusters=3)
Out[41]:
In [43]:
         labels = k_model.predict(PCA_components.iloc[:,:2])
In [44]:
         plt.scatter(PCA components[0], PCA components[1], c=labels)
         plt.show()
          3
          2
          0
         ^{-1}
         -2
         -3
                        -2
```

```
In [46]:
     k new data=pd.DataFrame(principal components[:,0:2])
     model_k = KMeans(n clusters=3)
     model k.fit(k new data)
     KMeans(n clusters=3)
Out[46]:
In [47]:
     model k.labels
     Out[47]:
         2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2,
         2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
         1, 1])
In [49]:
     model data = pd.Series(model k.labels )
     wine data['cluster']=model data
In [50]:
     k new data.head()
Out[50]:
          0
               1
     0 -3.522934 -1.453098
     1 -2.528858 0.330019
     2 -2.785029 -1.036936
     3 -3.922588 -2.768210
     4 -1.407511 -0.867773
In [51]:
     wine data.groupby(wine data.cluster).mean()
```

Out[51]:		Type	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proanthocyanins	Color	Hue	Dilı
	cluster													
	0	1.048387	13.676774	1.997903	2.466290	17.462903	107.967742	2.847581	3.003226	0.292097	1.922097	5.453548	1.065484	3.16
	1	2.979592	13.151633	3.344490	2.434694	21.438776	99.020408	1.678163	0.797959	0.450816	1.163061	7.343265	0.685918	1.69
	2	2.000000	12.264478	1.912239	2.224328	19.953731	92.656716	2.235075	2.028507	0.361343	1.597313	3.020896	1.056060	2.77

Hierarchical clustering

```
In [53]: model_2 = AgglomerativeClustering(n_clusters=3, affinity='euclidean', linkage='ward')
h_clusters = model_2.fit(PCA_components.iloc[:,:2])

In [54]: label_2 = model_2.labels_

In [55]: x = PCA_components.iloc[:,:1]
    y = PCA_components.iloc[:,1:2]

In [58]: plt.figure(figsize=(12, 9))
    plt.scatter(x, y, c=label_2)
    plt.show()
```


In [60]:
 h_new_data_2=pd.DataFrame(principal_components[:,0:2])
 h_new_data_2.head()

```
Out[60]: 0 1

O -3.522934 -1.453098

1 -2.528858 0.330019
```

```
)
```

- **2** -2.785029 -1.036936
- **3** -3.922588 -2.768210

Hierarchical Clustering Dendrogram

```
In [61]: hcf = linkage(h_new_data_2,method="complete",metric="euclidean")
In [65]: plt.figure(figsize=(15, 9));plt.title('Hierarchical Clustering Dendrogram');plt.xlabel('Index');plt.ylabel('Distance sch.dendrogram( hcf, leaf_rotation=0., leaf_font_size=10.,)
    plt.show()
```

Hierarchical Clustering Dendrogram


```
1, 1, 1, 1, 1, 3, 3, 0, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3,
                  3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 0, 1, 1, 3, 1, 1, 1, 1, 1, 4, 4,
                  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2,
                  4, 2, 2, 4, 2, 2, 4, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2,
In [68]:
           cluster label = pd.Series(h complete.labels )
In [72]:
           wine data['cluster']=cluster label
In [74]:
           wine data.head()
             Type Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids Nonflavanoids Proanthocyanins Color Hue Dilution Proline cluster
Out[74]:
                                                                                                                                             0
                     14.23
                            1.71 2.43
                                           15.6
                                                       127
                                                               2.80
                                                                          3.06
                                                                                        0.28
                                                                                                       2.29
                                                                                                              5.64 1.04
                                                                                                                           3.92
                                                                                                                                   1065
                     13.20
                            1.78 2.14
                                           11.2
                                                       100
                                                               2.65
                                                                          2.76
                                                                                        0.26
                                                                                                       1.28
                                                                                                             4.38 1.05
                                                                                                                           3.40
                                                                                                                                   1050
                                                                                                                                             0
                                                                                                              5.68 1.03
                     13.16
                            2.36 2.67
                                           18.6
                                                       101
                                                               2.80
                                                                          3.24
                                                                                        0.30
                                                                                                       2.81
                                                                                                                                   1185
                                                                                                                                             0
                                                                                                                           3.17
                     14.37
                            1.95 2.50
                                           16.8
                                                       113
                                                               3.85
                                                                          3.49
                                                                                        0.24
                                                                                                       2.18
                                                                                                             7.80 0.86
                                                                                                                           3.45
                                                                                                                                   1480
                                                                                                                                             0
                     13.24
                            2.59 2.87
                                           21.0
                                                       118
                                                               2.80
                                                                          2.69
                                                                                        0.39
                                                                                                       1.82
                                                                                                             4.32 1.04
                                                                                                                                    735
                                                                                                                                             0
                                                                                                                           2.93
```

Using PCA we reduced the variables to only 2 from 13 and use clustering classification, we can safely assume that there exists 3 cluster in the wine data sets

```
In [ ]:
```