Determine Lmax, the largest interval to examine:

$$U = U_1 + U_2 + U_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 0,5 + 0,25 + 0,125 = 0,875$$

$$(T_1 - D_1) \cdot U_1 = (2-1) \cdot 0, 5 = 6,5$$

$$(T_2 - D_2) \cdot U_2 = (4-2) \cdot 0_1 25 = 0_1 5$$

$$L* = \frac{\sum (T; -D;)U;}{1 - U} = \frac{0.5 + 0.5 + 0.625}{1 - 0.875} = \frac{1.625}{0.125} = 13$$

Task	c;	D;	T;
て、	1	1	2
$ au_2$	1	2	4
τ_3	.1	3	8

Determine the control points:

$$K = \left\{ D_{i}^{k} \mid D_{i}^{k} = kT_{i} + D_{i}^{k} \mid D_{i}^{k} \leq L_{max}, 1 \leq i \leq n, k \geq 0 \right\}$$

$$K_{1} = \left\{ D_{i}^{k} \mid D_{1}^{k} = kT_{1} + D_{1}^{k}, D_{1}^{k} \leq 8, k = 0, 1, 2, 3 \right\} = \left\{ 1, 3, 5, 7 \right\}$$

$$K_{2} = \left\{ D_{2}^{k} \mid D_{2}^{k} = kT_{2} + D_{2}, D_{2}^{k} \leq 8, k = 0, 1 \right\} = \left\{ 2, 6 \right\}$$

$$K_{3} = \left\{ D_{3}^{k} \mid D_{3}^{k} = kT_{3} + D_{3}, D_{3}^{k} \leq 8, k = 0 \right\} = \left\{ 3 \right\}$$

Processor demand must be checked at the following control points:

we define a table and examine each control point

Task	ci	D;	T;
7,	1	1	2
τ_{z}	1	2	4
τ_3	.1	3	8

L	N1.C1	N_2 C_2	N3·C3	Cp (0,L)	Cp(0,L) < L	2
		$\left(\left\lfloor \frac{1-2}{4}\right\rfloor + 1\right) \cdot 1 = 0$			1		
2	$\left(\left\lfloor \frac{2-1}{2}\right\rfloor + 1\right)\cdot 1 = 1$	$\left(\left\lfloor \frac{2-2}{4}\right\rfloor + 1\right) \cdot 1 = 1$	$\left(\left\lfloor \frac{2-3}{8}\right\rfloor + 1\right) \cdot 1 = 0$	1+1+0=2	, OK!		
3	$\left(\left\lfloor\frac{3-1}{2}\right\rfloor+1\right)\cdot 1=2$	$\left(\left\lfloor \frac{3^{-2}}{4}\right\rfloor + 1\right) \cdot 1 = 1$	$\left(\left\lfloor \frac{8}{3-3}\right\rfloor + 1\right) \cdot 1 = 1$	2+1+1=4	Not (ik!	
				Ī	ask Ci	D;	T;
		. ה- ון .	1	_	C_i 1	1	2
		$N_{i}^{L} = \left \frac{L - D_{i}}{T_{i}} \right $	+ 1		τ_2 1	2	4
				1	t ₃ 1	3	8,

L	$N_1^L \cdot C_1$	$N_2^{L} \cdot C_2$	N3·C3	Cp (0,L)	Cp(0,L) < L?
1	$\left(\left\lfloor \frac{1-1}{2}\right\rfloor + 1\right) \cdot 1 = 1$	$\left(\left\lfloor \frac{1-2}{4}\right\rfloor + 1\right) \cdot 1 = 0$	$\left(\left[\frac{1-3}{8}\right]+1\right)-1=0$	1+0+0=1	ok!
2	$\left(\left\lfloor \frac{2-1}{2}\right\rfloor + 1\right)$, $1 = 1$	$\left(\left\lfloor \frac{2-2}{4}\right\rfloor + 1\right) \cdot 1 = 1$	$\left(\left\lfloor \frac{2-3}{8}\right\rfloor + 1\right) \cdot 1 = 0$	1+1+0=2	ok!
	N 1971 - 1971	$\left(\left\lfloor \frac{3-2}{4}\right\rfloor + 1\right) \cdot 1 = 1$		l .	
5	([5-1]+1)-1=3	$\left(\left\lceil \frac{A}{2-5}\right\rceil + 1\right) \cdot J = 1$	$\left(\left\lceil \frac{8}{2-3}\right\rceil + l\right) \cdot J = 1$	3+1+1=5	hay I No
6	$\left(\left\lfloor \frac{6-1}{2}\right\rfloor + 1\right) - 1 = 3$	$\left(\left\lfloor\frac{6-2}{4}\right\rfloor+1\right)\cdot 1=2$	$\left(\left\lceil \frac{8}{p-3}\right\rceil + 1\right) \cdot J = 1$	3+2+1=6	Misse Misse
7	1	$\left(\left\lfloor \frac{7-2}{4}\right)+1\right)\cdot 1=2$	$\left(\left\lfloor \frac{8}{4-3}\right\rfloor + 1\right) \cdot J = 1$	4+2+1=7	OK!
	floor truction				

As we saw in the beginning of the lecture the resulting schedule could look like this:

But, it could also look like this, as tasks to and to both have a deadline at t=3 (= they have the same EDF priority)

(onsequently, the analysis does not say which task win miss its deadline at t=3 (only that some task does)