There are three	ee states of matter: _	, ar	nd
Physical Properties	Solid	Liquid	Gases
Shape	Haveshape	the shape of the containers	the shape o
Volume	Have volume	Have volume	on the volume of the container
Density	density	density	density
Compressibility	be compressed	be compressed	be compressed
Using the Partic	ulate Nature of Mat		Nature of Matter. Diecular model of matter
Using the Partic Brownian me	ulate Nature of Mate otion provides evide y of Matter) e up of	ter as a Model	

Date: _____

Chapter 7

Model of Matter – The Particulate Nature of Matter

Models of States of Matter (Particulate Model of Matter) 3

Characteristics	Solids	Liquids	Gases
Model			
Diagram			
Forces between particles	forces of attraction	of attraction (weaker as compared to solids)	Very or forces of attraction
Movement/ Motion	about	Able to	Move in all and at
Arrangement	packed and arranged	Not as closely packed as solids and arranged	Very and arranged

- Guidelines of drawing particles:
 1. 2-D side view of the substance

 - 2. Not necessary to show the vibration of the particles
 - 3. Size of particles should be roughly the same
 - 4. Half-drawn particles are not accepted.
- Using the particulate model of matter to $\underline{\textit{explain}}$ the difference in the physical properties of the 3 different states of matter.

1. Density

Density	is	defined	as	the	amount	of	 per

Substances in the solid state have a *higher density* than the liquid and gaseous state.

Why?

For Example:

<u> </u>	10.				
	solid	liquid	gas		
Mass/g	6	4	2		
Volume/cm ³	2	2	2		
Density/g/cm ³					

- 1. Given that the boxes are of the same size. Hence, the three states have the same equal volume.
- 2. Solid state contains the most number of particles (has the highest mass).
- 3. Therefore, solids have the ______.

2. Compressibility

Solids and liquids are incompressible unlike gases.

Why?

For example:

- 1. Particles in solid and liquid are closely packed.
- 2. Particles in gas are very far apart from one another.
- 3. Thus solids and liquids cannot be _____.

4 Changes in states of matter

How to predict changes in states of matter?

Example: Temperature line for H₂O:

Temperature line (in general):

Worked example

Try-it-out (1)

Given the melting and boiling points of three substances. Complete the table by writing the state of each substance at room temperature and pressure (r.t.p = 25 °C, 101.3 kPa).

Substance Melting point (°C)		Boiling point (°C)	State at r.t.p	
Α	-24	10	Gas	
В	-120	348		
С	50	121		

Try drawing the temperature line in the space provided.

Try-it-out (2)

Given are melting and boiling points of three substances. Complete the table by writing the state of each substance at room temperature and pressure (r.t.p = 25 °C, 101.3 kPa).

Substance	Melting point (°C)	Boiling point (°C)	State at r.t.p
D	30	112	
E	-90	2	
F	-8	77	

Try drawing the temperature line in the space provided.

5 Using Particulate model of matter to *explain*: Changes in states of matter

Stage	Description				
	When solid is <i>heated</i> , particles heat energy and				
AB	at its Heat				
	absorbed causes				
	At of solid (change of state), heat energy				
D.C	is used to the strong forces of attraction between the particles.				
ВС	Temperature remains until the solid melts completely into				
	a liquid at point C.				
	When the liquid is <i>heated</i> , particles heat energy and				
CD	more vigorously. Heat absorbed causes				
	temperature to rise.				
	At of liquid (change of state), heat energy				
DE	is used to the strong forces of attraction				
DE	between the particles. Temperature remains until the liquid boils				
	completely into gas at point E.				
EF	When the gas is further heated, particles gain heat energy and				
	·				

b) Cooling a gas

Stage	Description
АВ	When the gas is <i>cooled</i> , particles heat energy and move freely in all directions at Heat energy released causes temperature to fall.
вс	At point (change of state), heat energy is due to stronger forces of attraction between particles. Temperature remains until the gas condenses completely into liquid at point C.
CD	When the liquid is, particles heat energy and more slowly. Thermal energy released causes temperature to fall.
DE	At point (change of state), heat energy is due to stronger forces of attraction between the particles. The stronger forces of attraction cause the particles to to their Temperature remains until liquid freezes completely into solid at point E.
EF	When the solid is further cooled, particles heat energy and vibrate about their fixed positions. Thermal every released causes temperature to fall.

6 Using Particulate model of matter to explain: Expansion and Contraction

When heated

- ✓ Particles start to move faster
- ✓ Particles start to move further apart

•	Matter expands when it is						
	⇒ When	heated,	particles	will	therm	al energy,	vibrate
		vigo	rously and	move .	apart fro	m one anoth	er.

When cooled

the same.

- ✓ Particles start to move slower
- ✓ Particles start to move closer together

•	Matter contracts when it is	
	· •	will thermal energy, vibrate
	vigorousiy and move	·
	When heated or cooled, ON	LY of matter changes
	- Only the	between particles when heated and
	decrease when cooled.	
	 Mass of matter is 	as size and number of particles remain

•	Examples of expansion a	nd contraction:	
	a)cracking of concrete.	are placed in betwe	en slabs of concrete to prevent
	b)	is a permanent mecl	nanical fastener.
	Metal rivet is heated and expands .	The other end of the rivet is capped.	When the rivet cools, it contracts and tightens the two metal plates together.

7 Matter vs Particles

It is **placed through** 2 metal plates.

	Matter	Particles		
Colour	Yes	No		
Change in Temperature	Can be felt	No; but is depicted by the of particles.		
Change in Size	Can be compressed or expanded	No; but is depicted by the between the particles.		

Challenge yourself!

Characteristics of Particles	Solid	Liquid	Gas
Forces of attraction			
Movement			
Distance apart			
Arrangement			

8 Diffusion

A few drops of food dye is added to a beaker of water.

The dye spread throughout the beaker without stirring. Why?

Initially the top of the cup has a _____ concentration of food dye. The food dye then moves downwards, to an area with _____ concentration of food dye.

•	Diffusion is the		movement	of	molecules	from	а	region	of	
	concentration to	a regio	n of		concer	ntration	١,	down a	a c	oncentration

Diffusion can occur between:

- a) Solids
- b) Liquids
- c) Gases

The	molecules	will	continue	moving	from	а	higher	concentration	to	а	lower
conce	entration till			is reacl	hed (i.	e. r	molecule	es are uniformly	dis	trib	outed).

Essential Takeaways

- 1. The Particulate Model of Matter is a simplified representation of matter composition.
- 2. Particulate Model of Matter is constructed to explain phenomena e.g. Melting & Boiling.
- 3. Particulate Model of Matter can be used to make prediction about matter and its behaviour.

Key Terms

Very small discrete particles	Movement / arrangement / distance of particles					
Density and compressibility	Forces of attraction					
Change of state	Melting point / boiling point					
Vibrations about a fixed position	Slide past one another					
Diffusion	higher concentration					
lower concentration	net movement					