Building Your First Machine Learning Solution

GETTING OUR FEET READY TO RUN

Mohammed Osman
SENIOR SOFTWARE DEVELOPER

@cognitiveosman www.cognitiveosman.com

Overview

Machine Learning: What and why?
What is different about Machine Learning
Types of Machine Learning algorithms
Machine Learning workflow
Introducing real-world problem
Environment setup

What to Expect?

No Machine Learning or Python background is required

Important Machine Learning concepts

Hands-on based

Machine Learning

Machine learning is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead. (Wikipedia)

Machine Learning under Lens

Scientific Study

Algorithms and Statistics

Specific Task

No Explicit Instructions

Patterns and Inferences

Some Applications of Machine Learning

Why Machine Learning Is so Hot?

Data is the new oil

Traditional Programming vs. Machine Learning

Traditional Programming

We have Full Understanding of the domain

Solution rules are static

Does not require historical data

Straight forward and obvious

Machine Learning

We have Vague Understanding of the domain

Solution rules are dynamic

Does require historical data

Vague and tricky to understand

Machine Learning Algorithms Types

Supervised Learning Unsupervised Learning

Reinforcement Learning

Supervised Learning

Supervised Learning Algorithm

Historical Data

Machine Learning
Model

Forecasted
Sales/Customer profiles

Supervised Learning Types

Regression

Sales forecast: 13,666 \$

Classification

Customers classifications: High Profile, Medium and Normal

Unsupervised Learning

Unsupervised Learning Types

Clustering

Association

Reinforcement Learning

Learning Types in a Nutshell

	Supervised	Unsupervised	Reinforcement
Objective	Predict future values or categories	Organize data based on underlying structure	Adapt based on the rewards and state from the surrounding environment
Learning source	Output dataset	Input data patterns	Environment state and rewards

Learning Modes

Batch Learning

Online Learning

Machine Learning Pipeline

Problem definition

Data Sourcing

Data Preparation Data Segregation

Model Training

Model Evaluation

Model Deployment

Problem Definition

Deployment

Problem Definition

Five questions ML can answer

- Is this A or B? Will this customer buy or not?
- Is this weird?
- How much or How many? How many items well I see in the upcoming quarter?
- How is this organized? What are the different customer categories do I have?
- What should I do next?

Data Sourcing

Problem definition

Data Sourcing Data Preparation Data Segregation

Model Training

Model Evaluation

Model Deployment

Data Sourcing

Several data sources may exist

- **RESTful Endpoints**
- File integration
- SOAP Endpoints
- SQL Table
- Sensors with proprietary format

Data Preparation

H

Data Preparation

Several data preparation actions

- Dealing with missing data
- Dropping unnecessary attributes
- Detecting outliers
- Etc.

Data Segregation

Data Sourcing Data Preparation

Data Segregation

Model Training

Model Evaluation

Model Deployment

Data Segregation

Data is segregated to

- Training set
- Validation set

Model Training

Problem definition

Data Sourcing Data Preparation Data Segregation

Model Training

Model Evaluation

Model Deployment

Model Training

Machine Learning algorithm adjusts
Usually on-shelf recipe
May need trying several algorithms

Model Evaluation

Problem definition

Data Sourcing Data Preparation Data Segregation

Model Training

Model Evaluation

Model Deployment

Model Evaluation

Examining model performance using validation data

Different performance measures based on the algorithm type

Model Deployment

Problem definition

Data

Sourcing

Data Preparation Data Segregation

Model Training

Model Evaluation

Model Deployment

Model Deployment

Making model useful for business

Deployed Machine Learning model can take several formats

Model Monitoring

Problem definition

Data Sourcing Data Preparation Data Segregation

Model Training

Model Evaluation

Model Deployment

Model Monitoring

Making sure our model continues to do good

Problem Definition: Forest Fire Forecast

Х	▼ Y	¥	month 💌	day 💌	FFMC 💌	DMC 💌	DC 🔻	ISI 🔻	temp 💌	RH ▼	wind 💌	rain 💌	area 💌
	6	5	mar	mon	90.1	39.7	86.6	6.2	15.2	27	3.1	0	31.86
	8	6	aug	sun	90.2	99.6	631.2	6.3	16.2	59	3.1	0	32.07
	3	4	sep	fri	93.3	141.2	713.9	13.9	18.6	49	3.6	0	35.88
	4	3	mar	mon	87.6	52.2	103.8	5	11	46	5.8	0	36.85
	2	2	jul	fri	88.3	150.3	309.9	6.8	13.4	79	3.6	0	37.02
	7	4	sep	wed	90.1	82.9	735.7	6.2	15.4	57	4.5	0	37.71
	4	4	sep	sun	93.5	149.3	728.6	8.1	22.9	39	4.9	0	48.55
	7	5	oct	mon	91.7	48.5	696.1	11.1	16.1	44	4	0	49.37
	8	6	aug	sat	92.2	81.8	480.8	11.9	20.1	34	4.5	0	58.3
	4	6	sep	sun	93.5	149.3	728.6	8.1	28.3	26	3.1	0	64.1
	8	6	aug	sat	92.2	81.8	480.8	11.9	16.4	43	4	0	71.3
	4	4	sep	wed	92.9	133.3	699.6	9.2	26.4	21	4.5	0	88.49
	1	5	sep	sun	93.5	149.3	728.6	8.1	27.8	27	3.1	0	95.18
	6	4	sep	tue	91	129.5	692.6	7	18.7	43	2.7	0	103.39
	9	4	sep	tue	84.4	73.4	671.9	3.2	24.3	36	3.1	0	105.66
	_	_										_	

We will solve the forest fire forecast problem by using the supervised learning, in particular regression

Demo

Installing Python

Summary

Machine Learning is everywhere

How Machine Learning differs from regular programming

Different types of Machine Learning algorithms

Machine Learning pipeline

Preparing to applying hands-on using Python

