Задания

16 марта 2021 г.

- 1. Пусть $F: \mathbf{C} \to \mathbf{D}$ некоторый функтор. Какие из следующих утверждений верны? Как изменится ответ, если предположить, что F эквивалентность категорий?
 - (a) Если $f: X \to Y$ мономорфизм в ${\bf C}$. то F(f) мономорфизм в ${\bf D}$.
 - (b) Если X (ко)предел диаграммы $D: \mathbf{J} \to \mathbf{C}$, то F(X) (ко)предел диграммы $F \circ D: \mathbf{J} \to \mathbf{D}$.
- 2. Пусть **Cat** категория малых категорий. Ее объекты это малые категории. Морфизмы в категории **Cat** это функторы между категориями.

Пусть **Graph** – категория графов. Ее объекты – графы, то есть пары (V,E), состоящие из множества вершин V и функции E, сопоставляющей каждой паре вершин $x,y\in V$ множество E(x,y) ребер из x в y.

Морфизм графов (V,E) и (U,D) состоит из функции $f:V\to U$ и функции $f:E(x,y)\to D(f(x),f(y))$ для всех $x,y\in V$. Композиция и тождественные морфизмы определены очевидным образом.

Определите забывающий функтор из **Cat** в **Graph**. Докажите, что этот функтор строгий.

- 3. В лекции определялся функтор $I:\mathbf{Mon} \to \mathbf{Grp}$ обратимых элементов моноида.
 - (a) Является ли I строгим? Докажите это. Рассмотрим два моноида: первый M_1 моноид из строк над конечным алфавитом с операцией конкатенации; второй M_2 $(\mathbb{Z},+).$

 $I(M_1)$ — тривиальный моноид; $I(M_2)=M_2$. Гомоморфизмы $f_1(s)=length(s), \ \ f_2(s)=2\cdot length(s)$ отобразятся в один и тот же (единственный) гомоморфизм f(x)=0. I не строгий.

(b) Является ли I полным? Докажите это.

Пусть $f:I(M_1)\to I(M_2)$. Построим ее прообраз:

$$f'(x) = \begin{cases} f(x), & x \in I(M_1) \\ f'(a_0) * \prod_i f'(b_i) * f'(a_i), & \exists a_i \in I(M_1), b_i \notin I(M_1) \\ & x = a_0 * b_1 * a_1 * b_2 * a_2 \dots \\ 1, & otherwise \end{cases}$$

Если $a, b \in I(M_1)$, то $a * b \in I(M_1) \Rightarrow f'(a * b) = f(a * b) = f(a) * f(b) = f(a)$

Если $a \notin I(M_1), b \in I(M_1)$, то f'(a*b) = f'(a)*f(b) = f'(a)*f'(b) Если $a \notin I(M_1), b \notin I(M_1)$ и $b = c*d, c \notin I(M_1), d \in I(M_1)$, то f'(a*b) = f'(a)*f'(b)f'(a * c * d) = f'(a * c) * f(d) = f(d)

4. Докажите, что если $F: \mathbf{C} \to \mathbf{C}$ – некоторый эндофунктор, то начальная F-алгебра X удовлетворяет уравнению $X \simeq F(X)$.

Пусть (X_0, α) — начальный объект. Тогда рассмотрим алгебру $(F(X_0), F(\alpha))$. Тогда существует кникальный f, для которого диаграмма ниже коммутирует.

$$F(X_0) \xrightarrow{\alpha} X_0$$

$$F(f) \downarrow \qquad \qquad f \downarrow$$

$$F(F(X_0)) \xrightarrow{F(\alpha)} F(X_0)$$

 $lpha\circ f:X_0 o X_0$ — морфизм в категории F-алгебр. Так как $(X_0,lpha)$ начальный, то $\alpha \circ f = id$.

Тогда из диаграммы получаем:

$$F(\alpha) \circ F(f) = F(\alpha \circ f) = F(id) = id = f \circ \alpha$$

То есть α — изо, а значит $X_0 \simeq F(X_0)$