ASSIGNMENT 04 Due date: Thursday, 11 September 2025

1. Consider the partial differential eQNLiVnFOR YEAR MODULE

$$yu - 2\nabla^2 u = 12$$
, $0 < x < 4$, $0 < y < 3$

with boundary conditions

$$x = 0$$
 and $x = 4$: $u = 60$
 $y = 0$ and $y = 3$: $\frac{\partial u}{\partial y} = 5$.

- (a) Taking h = 1, sketch the region and the grid points. Use symmetry to minimize the number of unknowns u_i that have to be calculated and indicate the u_i in the sketch.
- (b) Use the 5-point difference formula for the Laplace operator to derive a system of equations for the u_i . (10)
- 2. We have a plate of 12×15 cm and the temperatures on the edges are held as shown in the sketch below. Take $\Delta x = \Delta y = 3$ cm and use the **S.O.R. method** (successive overrelaxation method) to find the temperatures at all the grid points. First calculate the optimal value of ω and then use this value in the algorithm. Start with all grid values equal to the arithmetic average of the given boundary values.

3. Solve the problem in question 2 by using the **A.D.I method** (alternating-direction-implicit method) without overrelaxation. (15)