

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addease COMMISSIONER FOR PATENTS PO Box 1430 Alexandria, Virginia 22313-1450 www.webjo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO	
10/582,143	03/27/2007	Martin Paul Moshal	06-408	8831	
90306 MCDONNELL BOEHNEN HULBERT & BERGHOFF LLP 300 S. WACKER DRIVE			EXAM	EXAMINER	
			MYHR, JUSTIN L		
32ND FLOOR CHICAGO, II			ART UNIT	PAPER NUMBER	
			3714		
			MAIL DATE	DELIVERY MODE	
			01/29/2010	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/582 143 MOSHAL, MARTIN PAUL Office Action Summary Examiner Art Unit JUSTIN MYHR 3714 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 07 June 2006. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-88 is/are pending in the application. 4a) Of the above claim(s) _____ is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-88 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on 07 June 2006 is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) Information Disclosure Statement(c) (FTO/SB/CS)

Paper No(s)/Mail Date See Continuation Sheet.

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application.

Continuation of Attachment(s) 3). Information Disclosure Statement(s) (PTO/SB/08), Paper No(s)/Mail Date :6/07/2006, 10/03/2006, and 3/31/2009.

Application/Control Number: 10/582,143 Page 2

Art Unit: 3714

DETAILED ACTION

Specification

 The abstract of the disclosure is objected to because abstract must be 150 words or less. Correction is required. See MPEP § 608.01(b).

- The abstract of the disclosure does not commence on a separate sheet in accordance with 37 CFR 1.52(b)(4). A new abstract of the disclosure is required and must be presented on a separate sheet, apart from any other text.
- The lengthy specification has not been checked to the extent necessary to
 determine the presence of all possible minor errors. Applicant's cooperation is
 requested in correcting any errors of which applicant may become aware in the
 specification.

Claim Objections

4. Claim 12 is objected to because of the following informalities: Item "claim1" should be recited as --claim 1--, so as to clarify the confusion. Appropriate correction is required.

Claim Rejections - 35 USC § 103

5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 3714

6. The factual inquiries set forth in *Graham* v. *John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

- 1. Determining the scope and contents of the prior art.
- 2. Ascertaining the differences between the prior art and the claims at issue.
- 3. Resolving the level of ordinary skill in the pertinent art.
- Considering objective evidence present in the application indicating obviousness or nonobviousness.
- Claims 1-15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hashimoto et al. (US Pub. No. 2002/0053024 A1 hereinafter referred to as Hashimoto) in view of Nguyen et al. (US Pub. No. 2002/0116615 A1 hereinafter referred to as Nguyen).

As per claim 1, Hashimoto teaches a processor module for a user station operable by a user, comprising: a processor capable of executing a software program (Fig. 14, item 103); a storage memory accessible by the processor (paragraph [0023] memory must be present to store software); an interface facility communicable with the processor and with at least one peripheral device (standard computer has multiple peripheral devices); a unique identification code associated with the processor module (paragraphs [0015] and [0023] public and secret key); and a security module cooperable with the processor, the security module being arranged to enable execution of the software program by the processor when the program is encrypted with the unique identification code associated with the processor module, and to disable execution of the software when the software program is encrypted with a code that is different from the unique identification code associated with the processor module (paragraphs [0015] and [0023] will not be able to decrypt program is encrypted with another key not

Art Unit: 3714

associated with the terminal therefore will not be able to run it). Hashimoto does not specifically teach that the software and the user machine are related to a gaming function. However, Nguyen teaches providing a secure system for the purpose of downloading a game program from a first machine to a second machine for the purpose of the second machine running the game (abstract and Fig. 14). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen, since Hashimoto is modifiable to be used for the gaming art since it is desired in the gaming art to provide a secure and easy manner of downloading and installing games on a gaming machine (Nguyen paragraph [0016]).

As per claim 2, Hashimoto does not specifically teach a processor in which the security module also disables execution of the software program when the software program is unencrypted. However, Hashimoto does teach insuring that illegal analysis and tampering of programs does not occur by use of software encryption (paragraphs [0007]-[0008]). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have modified Hashimoto to prevent software unencrypted from running since the purpose of Hashimoto is to have a processor which processes encrypted software in order to prevent illegal use and this purpose is not fulfilled if the software is not encrypted.

As per claim 3, Hashimoto teaches a processor in which the unique identification code is stored in a protected area of the storage memory (paragraphs [0087]-[0088]).

Art Unit: 3714

As per claim 4, Hashimoto does not specifically teach a processor in which the protected area of the storage memory is a read-only memory. However, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have made the memory read-only since overwriting of the key with a new key would negate the benefit of the described system of Hashimoto since the key is suppose to be unique to each processor (paragraph [0015]).

As per claim 5, Hashimoto teaches a processor in which the interface facility is an input/output circuit connected to the processor by means of an input/output bus (Fig. 1, items 103 and 105).

As per claim 6, Hashimoto teaches a processor in which the at least one peripheral device is any one of a display monitor, a magnetic card reader, a banknote validator, an array of pushbuttons, a coin acceptor, a ticket reader, a numeric keypad, a printer and a counter (well known that computers include a monitor).

As per claim 7, Hashimoto does not specifically teach a processor in which communication between the processor and the at least one peripheral device is encrypted. However, it is old and well known in the art at the time the invention was made to encrypt the communication between peripheral devices for security purposes.

As per claims 8 and 9, Hashimoto does not teach a processor in which the processor module includes a hardware random number generator. However, it is old and well known in the art at the time the invention was made to include hardware based random number generators in order to produce random outcomes.

Art Unit: 3714

As per claims 10 and 11, Hashimoto does not specifically teach a processor in which the storage memory includes a still further portion that is removable. However, it is well known in the art at the time the invention was made that computers include removable storage medium including USB devices, disks, and flash drives.

As per claim 12, Hashimoto teaches a processor in which the processor includes a network interface that provides access to a communication network (Fig. 1, items 103 and 105).

As per claim 13, Hashimoto teaches a processor in which the communication network is the Internet (paragraph [0052]).

As per claim 14, Hashimoto teaches a processor in which the processor module also includes a number of interface ports (well known feature in computers).

As per claim 15, Hashimoto does not specifically teach a processor in which the number of interface ports include any one or more of a serial communication port and a port conforming to the Universal Serial Bus standard. However, this is a well known feature in computers. Hence, it would have been obvious to one of ordinary skill in the art that Hashimoto could include USB ports as found in the average user computer.

 Claims 16-88 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hashimoto et al. (US Pub. No. 2002/0053024 A1 hereinafter referred to as Hashimoto) in view of Nguyen et al. (US Pub. No. 2002/0116615 A1 hereinafter referred to as Nguyen) and Reeder (US Pat. No. 6,141,652).

As per claim 16, Hashimoto teaches a method for configuring a processor module for a user station operable by a user, comprising the steps of: providing a Art Unit: 3714

software program executable by the processor module (abstract); obtaining a unique identification code associated with the processor module (paragraphs [0015] and [0023]); encrypting the software program remotely from the processor module as a function of the unique identification code (paragraph [0023]); transferring the encrypted software program to the processor module (paragraph [0023]); and decrypting the encrypted software program (paragraph [0023]). Hashimoto does not specifically teach the method for a player station operable by a player to play a game wherein decrypting the encrypted software program to obtain a decrypted identification code therefrom and enabling execution of the encrypted software program by the processor module when the decrypted identification code is the same as the unique identification code of the processor module and disabling execution of the encrypted software program by the processor module when the decrypted identification code is different from the unique identification code of the processor module. However, Nguyen teaches providing a secure system for the purpose of downloading a game program from a first machine to a second machine for the purpose of the second machine running the game (abstract and Fig. 14) and Reeder teaches the additional software downloading step of confirming the unique identifier encrypted into the software with another stored instance of the unique identifier in order to confirm a match with the machine only able to run the application when a confirmed match is received (Fig. 1 and col. 5, lines 35-47 and col. 6, lines 20-24 confirms that IDs match and col. 2, lines 28-31 teaches storing the unique identifier locally). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with

Art Unit: 3714

Nguyen and Reeder, since Hashimoto is modifiable to be used for the gaming art since it is desired in the gaming art to provide a secure and easy manner of downloading and installing games on a gaming machine (Nguyen paragraph [0016]). In addition, by including the step of matching the unique identifiers used in the encryption process, Hashimoto is modifiable to include an extra step to insure that the software will not run unless it is set to be specifically run by a machine with that identifier (Reeder col. 1, lines 58-62 teaches preventing illicit copies from running).

As per claim 17, Hashimoto does not specifically teach a method in which the security module also disables execution of the software program when the software program is unencrypted. However, Hashimoto does teach insuring that illegal analysis and tampering of programs does not occur by use of software encryption (paragraphs [0007]-[0008]). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have modified Hashimoto to prevent software unencrypted from running since the purpose of Hashimoto is to have a processor which processes encrypted software in order to prevent illegal use and this purpose is not fulfilled if the software is not encrypted.

As per claim 18, Hashimoto teaches a method in which the unique identification code is stored in a protected area of the storage memory associated with the processor module (paragraphs [0087]-[0088]).

As per claim 19, Hashimoto does not specifically teach a method in which execution of the encrypted software program is enabled for a predetermined period of time. However, Reeder does teach a method in which execution of the encrypted

Art Unit: 3714

software program is enabled for a predetermined period of time (col. 7, lines 16-30 renting software). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to include support for rentable software in which validation is sought after a set amount of time in order to allow a gaming machine to continue executing the game after confirming with the provider that the copy is still valid.

As per claim 20, Hashimoto does not specifically teach a method in which execution of the encrypted software program is re-enabled upon the occurrence of a predetermined event. However, Reeder does teach a method in which execution of the encrypted software program is re-enabled upon the occurrence of a predetermined event (col. 7, lines 16-30 renting software). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to include support for rentable software in which validation is sought after a set amount of time in order to allow a gaming machine to continue executing the game after confirming with the provider that the copy is still valid.

As per claim 21, Hashimoto teaches a method that includes a step of jointly encrypting a plurality of different software programs remotely from the processor module as a function of the unique identification code, each one of the plurality of software programs being executable to produce a simulation of a different game (it is

Art Unit: 3714

clear that a user can purchase multiple software programs in Hashimoto and not just one).

As per claim 22, Hashimoto teaches a method in which the jointly encrypted plurality of software programs are transferred to the processor module (paragraph [0023]).

As per claim 23, Hashimoto does not specifically teach a method in which the igintly encrypted plurality of software programs are decrypted to obtain a decrypted identification code therefrom, and execution of any selected one of the jointly encrypted plurality of software- programs is enabled when the decrypted identification code is the same as the unique identification code of the processor module, and execution of all of the jointly encrypted plurality of software programs is disabled when the decrypted identification code is different from the unique identification code of the processor module. However, Reeder teaches the additional software downloading step of confirming the unique identifier encrypted into the software with another stored instance of the unique identifier in order to confirm a match with the machine only able to run the application when a confirmed match is received (Fig. 1 and col. 5, lines 35-47 and col. 6, lines 20-24 confirms that IDs match and col. 2, lines 28-31 teaches storing the unique identifier locally). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since it is clear that a user can purchase multiple software programs in Hashimoto and not just one. In addition, by including the step of matching the unique identifiers used in the encryption process, Hashimoto is modifiable to include

Art Unit: 3714

an extra step to insure that the software will not run unless it is set to be specifically run by a machine with that identifier (Reeder col. 1, lines 58-62 teaches preventing illicit copies from running).

As per claim 24. Hashimoto teaches a system for customization and distribution of software, comprising: a number of user stations, each user station being operable by a respective user to use a corresponding program, each user station being associated with a unique identification code (paragraphs [0015] and [0023]); a repository containing a number of different software programs, each software program being executable by at least one of the number of user stations (Fig. 1, items 101 and 102); a download server communicable with the repository (Fig. 1, item 102); a communication network enabling communication between the download server and each one of the number of user stations (Fig. 1, item 105); encryption means operable to encrypt, remotely from the number of user stations, a selectable one of the number of different software programs contained in the repository as a function of the unique identification code of a selectable one of the number of user stations, the download server being responsive to the encryption means to download the encrypted software program to the particular user station whose unique identification code was used for encryption (paragraphs [0015] and [0023]); and a security module associated with the particular user station, the security module being capable of decrypting the downloaded encrypted software program (paragraph [0023]). Hashimoto does not specifically teach the method for a player station operable by a player to play a game wherein decrypting the encrypted software program to obtain a decrypted identification code therefrom and enabling

Art Unit: 3714

execution of the encrypted software program by the processor module when the decrypted identification code is the same as the unique identification code of the processor module and disabling execution of the encrypted software program by the processor module when the decrypted identification code is different from the unique identification code of the processor module. However, Nguyen teaches providing a secure system for the purpose of downloading a game program from a first machine to a second machine for the purpose of the second machine running the game (abstract and Fig. 14) and Reeder teaches the additional software downloading step of confirming the unique identifier encrypted into the software with another stored instance of the unique identifier in order to confirm a match with the machine only able to run the application when a confirmed match is received (Fig. 1 and col. 5, lines 35-47 and col. 6, lines 20-24 confirms that IDs match and col. 2, lines 28-31 teaches storing the unique identifier locally). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to be used for the gaming art since it is desired in the gaming art to provide a secure and easy manner of downloading and installing games on a gaming machine (Nguyen paragraph [0016]). In addition, by including the step of matching the unique identifiers used in the encryption process, Hashimoto is modifiable to include an extra step to insure that the software will not run unless it is set to be specifically run by a machine with that identifier (Reeder col. 1, lines 58-62 teaches preventing illicit copies from running).

Art Unit: 3714

As per claim 25, Hashimoto does not specifically teach a system in which the security module also disables execution of the software program when the software program is unencrypted. However, Hashimoto does teach insuring that illegal analysis and tampering of programs does not occur by use of software encryption (paragraphs [0007]-[0008]). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have modified Hashimoto to prevent software unencrypted from running since the purpose of Hashimoto is to have a processor which processes encrypted software in order to prevent illegal use and this purpose is not fulfilled if the software is not encrypted.

As per claim 26, Hashimoto does not specifically teach a system in which execution of the encrypted software program is enabled for a predetermined period of time. However, Reeder does teach a method in which execution of the encrypted software program is enabled for a predetermined period of time (col. 7, lines 16-30 renting software). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to include support for rentable software in which validation is sought after a set amount of time in order to allow a gaming machine to continue executing the game after confirming with the provider that the copy is still valid.

As per claim 27, Hashimoto does not specifically teach a system in which execution of the encrypted software program is re-enabled upon the occurrence of a predetermined event. However, Reeder does teach a method in which execution of the

Art Unit: 3714

encrypted software program is re-enabled upon the occurrence of a predetermined event (col. 7, lines 16-30 renting software). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to include support for rentable software in which validation is sought after a set amount of time in order to allow a gaming machine to continue executing the game after confirming with the provider that the copy is still valid.

As per claim 28, Hashimoto teaches a system that includes a step of jointly encrypting a plurality of different software programs remotely from the processor module as a function of the unique identification code, each one of the plurality of software programs being executable to produce a simulation of a different game (it is clear that a user can purchase multiple software programs in Hashimoto and not just one).

As per claim 29, Hashimoto teaches a system in which the download server is responsive to the encryption means to download the encrypted plurality of software programs are transferred to the processor module (paragraph [0023]).

As per claim 30, Hashimoto does not specifically teach a system in which the security module decrypts the jointly encrypted plurality of software programs are decrypted to obtain a decrypted identification code therefrom, and execution of any selected one of the jointly encrypted plurality of software- programs is enabled when the decrypted identification code is the same as the unique identification code of the processor module, and execution of all of the jointly encrypted plurality of software

Art Unit: 3714

programs is disabled when the decrypted identification code is different from the unique identification code of the processor module. However, Reeder teaches the additional software downloading step of confirming the unique identifier encrypted into the software with another stored instance of the unique identifier in order to confirm a match with the machine only able to run the application when a confirmed match is received (Fig. 1 and col. 5, lines 35-47 and col. 6, lines 20-24 confirms that IDs match and col. 2, lines 28-31 teaches storing the unique identifier locally). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since it is clear that a user can purchase multiple software programs in Hashimoto and not just one. In addition, by including the step of matching the unique identifiers used in the encryption process, Hashimoto is modifiable to include an extra step to insure that the software will not run unless it is set to be specifically run by a machine with that identifier (Reeder col. 1, lines 58-62 teaches preventing illicit copies from running).

As per claim 31, Hashimoto teaches a system in which each player station has an associated storage memory (paragraph [0023]).

As per claim 32, Hashimoto teaches a system in which the unique identification code is stored in a protected area of the storage memory (paragraphs [0087]-[0088]).

As per claim 33, Hashimoto does not specifically teach a system in which the protected area of the storage memory is a read-only memory. However, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have made the memory read-only since overwriting of the key with a new key would

Art Unit: 3714

negate the benefit of the described system of Hashimoto since the key is suppose to be unique to each processor (paragraph [0015]).

As per claim 34, Hashimoto teaches a system in which each player station includes a processor and a number of peripheral devices (Hashimoto teaches a computer which it is well knows includes a processor and a number of attached devices).

As per claim 35, Hashimoto teaches a system in which the at least one peripheral device is any one of a display monitor, a magnetic card reader, a banknote validator, an array of pushbuttons, a coin acceptor, a ticket reader, a numeric keypad, a printer and a counter (well known that computers include a monitor).

As per claim 36, Hashimoto does not specifically teach a system in which communication between the processor and the at least one peripheral device is encrypted. However, it is old and well known in the art at the time the invention was made to encrypt the communication between peripheral devices for security purposes.

As per claims 37 and 38, Hashimoto does not teach a system in which the processor module includes a hardware random number generator. However, it is old and well known in the art at the time the invention was made to include hardware based random number generators in order to produce random outcomes.

As per claims 39 and 40, Hashimoto does not specifically teach a system in which the storage memory includes a still further portion that is removable. However, it is well known in the art at the time the invention was made that computers include removable storage medium including USB devices, disks, and flash drives.

Art Unit: 3714

As per claim 41, Hashimoto teaches a system in which the communication network is the Internet (paragraph [0052]).

As per claim 42, Hashimoto teaches a processor in which the system module also includes a number of interface ports (well known feature in computers).

As per claim 43, Hashimoto does not specifically teach a system in which the number of interface ports include any one or more of a serial communication port and a port conforming to the Universal Serial Bus standard. However, this is a well known feature in computers. Hence, it would have been obvious to one of ordinary skill in the art that Hashimoto could include USB ports as found in the average user computer.

As per claim 44, Hashimoto teaches a method for the customization and distribution of software, comprising the steps of: providing a number of user stations, each user station being operable by a respective player for use, each user station being associated with a unique identification code (paragraphs [0015] and [0023]); providing a repository containing a number of different software programs, each software program being executable by at least one of the number of user stations (Fig. 1, items 101 and 102); encrypting, remotely from the number of player stations, a selected one of the number of different software programs contained in the repository as a function of the unique identification code of a selected one of the number of player stations; downloading the encrypted software program to the particular user station whose unique identification code was used for encryption (paragraphs [0015] and [0023]); decrypting the downloaded encrypted software program (paragraph [0023]). Hashimoto does not specifically teach the method for a player station operable by a player to play a

Art Unit: 3714

game wherein decrypting the encrypted software program to obtain a decrypted identification code therefrom and enabling execution of the encrypted software program by the processor module when the decrypted identification code is the same as the unique identification code of the processor module and disabling execution of the encrypted software program by the processor module when the decrypted identification code is different from the unique identification code of the processor module. However, Nauven teaches providing a secure system for the purpose of downloading a game program from a first machine to a second machine for the purpose of the second machine running the game (abstract and Fig. 14) and Reeder teaches the additional software downloading step of confirming the unique identifier encrypted into the software with another stored instance of the unique identifier in order to confirm a match with the machine only able to run the application when a confirmed match is received (Fig. 1 and col. 5, lines 35-47 and col. 6, lines 20-24 confirms that IDs match and col. 2, lines 28-31 teaches storing the unique identifier locally). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to be used for the gaming art since it is desired in the gaming art to provide a secure and easy manner of downloading and installing games on a gaming machine (Nguyen paragraph [0016]). In addition, by including the step of matching the unique identifiers used in the encryption process, Hashimoto is modifiable to include an extra step to insure that the software will not run unless it is set to be specifically run by a

Art Unit: 3714

machine with that identifier (Reeder col. 1, lines 58-62 teaches preventing illicit copies from running).

As per claim 45, Hashimoto does not specifically teach a method in which the security module also disables execution of the software program when the software program is unencrypted. However, Hashimoto does teach insuring that illegal analysis and tampering of programs does not occur by use of software encryption (paragraphs [0007]-[0008]). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have modified Hashimoto to prevent software unencrypted from running since the purpose of Hashimoto is to have a processor which processes encrypted software in order to prevent illegal use and this purpose is not fulfilled if the software is not encrypted.

As per claim 46, Hashimoto does not specifically teach a method in which execution of the encrypted software program is enabled for a predetermined period of time. However, Reeder does teach a method in which execution of the encrypted software program is enabled for a predetermined period of time (col. 7, lines 16-30 renting software). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to include support for rentable software in which validation is sought after a set amount of time in order to allow a gaming machine to continue executing the game after confirming with the provider that the copy is still valid.

Art Unit: 3714

As per claim 47, Hashimoto does not specifically teach a method in which execution of the encrypted software program is re-enabled upon the occurrence of a predetermined event. However, Reeder does teach a method in which execution of the encrypted software program is re-enabled upon the occurrence of a predetermined event (col. 7, lines 16-30 renting software). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to include support for rentable software in which validation is sought after a set amount of time in order to allow a gaming machine to continue executing the game after confirming with the provider that the copy is still valid.

As per claim 48, Hashimoto teaches a method that includes a step of jointly encrypting a plurality of different software programs remotely from the processor module as a function of the unique identification code, each one of the plurality of software programs being executable to produce a simulation of a different game (it is clear that a user can purchase multiple software programs in Hashimoto and not just one).

As per claim 49, Hashimoto teaches a method in which the jointly encrypted plurality of software programs are downloaded to the particular player station whose unique identification code was used for encryption (paragraph [0023]).

As per claim 50, Hashimoto does not specifically teach a method in which jointly encrypted plurality of software programs are decrypted to obtain a decrypted identification code therefrom, and execution of any selected one of the jointly encrypted

Art Unit: 3714

plurality of software- programs is enabled when the decrypted identification code is the same as the unique identification code of the processor module, and execution of all of the jointly encrypted plurality of software programs is disabled when the decrypted identification code is different from the unique identification code of the processor module. However, Reeder teaches the additional software downloading step of confirming the unique identifier encrypted into the software with another stored instance of the unique identifier in order to confirm a match with the machine only able to run the application when a confirmed match is received (Fig. 1 and col. 5, lines 35-47 and col. 6. lines 20-24 confirms that IDs match and col. 2. lines 28-31 teaches storing the unique identifier locally). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since it is clear that a user can purchase multiple software programs in Hashimoto and not just one. In addition, by including the step of matching the unique identifiers used in the encryption process, Hashimoto is modifiable to include an extra step to insure that the software will not run unless it is set to be specifically run by a machine with that identifier (Reeder col. 1, lines 58-62 teaches preventing illicit copies from running).

As per claim 51, Hashimoto teaches a method in which the unique identification code is stored in a protected area of the storage memory (paragraphs [0087]-[0088]).

As per claim 52, Hashimoto teaches a system for the distribution of software, comprising: a repository containing a number of different software programs (Fig. 1, items 101 and 102); a number of processor modules, each processor module being

Art Unit: 3714

identified by means of a unique identification code and being operable to execute any one of the number of different software programs contained in the repository (Fig. 1. item 103 and paragraphs [0015] and [0023]); encryption means operable to encrypt, remotely from the number of user stations, a selectable one of the number of different software programs contained in the repository as a function of the unique identification code of a selectable one of the number of user stations (paragraphs [0015] and [0023]); a download facility operable to download the encrypted particular software program to the particular processor module whose identification code was used for encryption (paragraph [0023]); and a security module associated with the particular user station. the security module being capable of decrypting the downloaded encrypted software program (paragraph [0023]). Hashimoto does not specifically teach the method for a player station operable by a player to play a game wherein decrypting the encrypted software program to obtain a decrypted identification code therefrom and enabling execution of the encrypted software program by the processor module when the decrypted identification code is the same as the unique identification code of the processor module and disabling execution of the encrypted software program by the processor module when the decrypted identification code is different from the unique identification code of the processor module. In addition, though Hashimoto teaches charging for the distributed software (paragraph [0107]) it does not specifically teach receiving means for receiving a request for a license to execute a desired combination of at least one software program contained in the repository on at least one of the number of processor modules, the license request containing at least one selectable

Art Unit: 3714

identification code-to-software program mapping and payment means for receiving a fee for the requested license. However, Nauven teaches providing a secure system for the purpose of downloading a game program from a first machine to a second machine for the purpose of the second machine running the game (abstract and Fig. 14) and obtaining a license on a gaming machine for a purchase piece of software (Figs. 6 and 7) and Reeder teaches the additional software downloading step of confirming the unique identifier encrypted into the software with another stored instance of the unique identifier in order to confirm a match with the machine only able to run the application when a confirmed match is received (Fig. 1 and col. 5. lines 35-47 and col. 6. lines 20-24 confirms that IDs match and col. 2, lines 28-31 teaches storing the unique identifier locally). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to be used for the gaming art since it is desired in the gaming art to provide a secure and easy manner of downloading and installing games on a gaming machine (Nguyen paragraph [0016]) and obtaining the needed license in order to operate the software on the gaming machine. In addition, by including the step of matching the unique identifiers used in the encryption process, Hashimoto is modifiable to include an extra step to insure that the software will not run unless it is set to be specifically run by a machine with that identifier (Reeder col. 1. lines 58-62 teaches preventing illicit copies from running).

As per claim 53, Hashimoto does not specifically teach a system in which the at least one selectable mapping is a one-to-one mapping. However, Nguyen does teach a

Art Unit: 3714

system in which the at least one selectable mapping is a one-to-one mapping (paragraph [0099]). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to allow the purchase of licenses which enable a single gaming machine to run the downloaded game thereby saving the operator time since they do not need to go through the hassle of purchasing the license separately.

As per claim 54, Hashimoto does not specifically teach a system in which the license request contains a plurality of different one-to-one mappings, each unique processor module identification code being contained in only one such mapping. However, Nguyen does teach a system in which the license request contains a plurality of different one-to-one mappings, each unique processor module identification code being contained in only one such mapping (Figs. 6-7 and paragraph [0099] able to purchase multiple licenses depending on need). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to allow the purchase of licenses which enable a single gaming machine to run the downloaded game thereby saving the operator time since they do not need to go through the hassle of purchasing the license separately.

As per claim 55, Hashimoto does not specifically teach a system in which the encryption means is responsive to payment of the fee to encrypt the particular software program contained in each one of the plurality of different one-to-one mappings as a

Art Unit: 3714

function of the identification code in that mapping. However, it would have been obvious to one of ordinary skill in the art that Hashimoto would require the software to be purchased first before allowing a user to download it since the key needed to decrypt the software is already present on the system.

As per claim 56, Hashimoto teaches a system in which the download facility downloads each encrypted software program to the particular processor module whose identification code was used for encryption (paragraph [0023]).

As per claim 57, Hashimoto does not specifically teach a system in which the at least one selectable mapping is a many-to-one mapping. However, Nguyen does teach a system in which the at least one selectable mapping is a many-to-one mapping (Figs. 6-7 and paragraph [0078] can purchase a license for multiple games and paragraph [0133] allows for multiple gaming machines per license). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to allow the purchase of licenses which enable a single gaming machine to run the downloaded game thereby saving the operator time since they do not need to go through the hassle of purchasing the license separately.

As per claim 58, Hashimoto does not specifically teach a system each unique processor module identification code being contained in only one such mapping.

However, Nguyen does teach a system in which the at least one selectable mapping is a many-to-one mapping (Figs. 6-7 and paragraph [0078] can purchase a license for multiple games and paragraph [0133] allows for multiple gaming machines per license)

Art Unit: 3714

and Hashimoto teaches encrypting the download using the gaming machines unique code in every download (paragraph [0023]). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to allow the purchase of licenses which enable a single gaming machine to run the downloaded game thereby saving the operator time since they do not need to go through the hassle of purchasing the license separately.

As per claim 59, Hashimoto does not specifically teach a system in which the encryption means is responsive to payment of the fee to encrypt the particular software program contained in each one of the different many-to-one mappings with each one of the plurality of identification codes in that mapping to obtain separate encrypted instances of the same software program. However, it would have been obvious to one of ordinary skill in the art that Hashimoto would require the software to be purchased first before allowing a user to download it since the key needed to decrypt the software is already present on the system.

As per claim 60, Hashimoto teaches a system in which the download facility downloads each encrypted software program to the particular processor module whose identification code was used for encryption (paragraph [0023]).

As per claim 61, Hashimoto does not specifically teach a system in which the security module also disables execution of the software program when the software program is unencrypted. However, Hashimoto does teach insuring that illegal analysis and tampering of programs does not occur by use of software encryption (paragraphs

Art Unit: 3714

[0007]-[0008]). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have modified Hashimoto to prevent software unencrypted from running since the purpose of Hashimoto is to have a processor which processes encrypted software in order to prevent illegal use and this purpose is not fulfilled if the software is not encrypted.

As per claim 62, Hashimoto teaches a system in which each processor module has an associated storage memory (paragraphs [0087]-[0088]).

As per claim 63, Hashimoto teaches a system in which the unique identification code is stored in a protected area of the storage memory (paragraphs [0087]-[0088]).

As per claim 64, Hashimoto does not specifically teach a system in which the protected area of the storage memory is a read-only memory. However, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have made the memory read-only since overwriting of the key with a new key would negate the benefit of the described system of Hashimoto since the key is suppose to be unique to each processor (paragraph [0015]).

As per claim 65, Hashimoto teaches a system in which the processor module is interfaceable to at least one peripheral device (well known that computers include a monitor).

As per claim 66, Hashimoto teaches a system in which the at least one peripheral device is any one of a display monitor, a magnetic card reader, a banknote validator, an array of pushbuttons, a coin acceptor, a ticket reader, a numeric keypad, a printer and a counter (well known that computers include a monitor).

Art Unit: 3714

As per claim 67, Hashimoto does not specifically teach a system in which communication between the processor and the at least one peripheral device is encrypted. However, it is old and well known in the art at the time the invention was made to encrypt the communication between peripheral devices for security purposes.

As per claims 68 and 69, Hashimoto does not teach a system in which the processor module includes a hardware random number generator. However, it is old and well known in the art at the time the invention was made to include hardware based random number generators in order to produce random outcomes.

As per claims 70 and 71, Hashimoto does not specifically teach a system in which the storage memory includes a still further portion that is removable. However, it is well known in the art at the time the invention was made that computers include removable storage medium including USB devices, disks, and flash drives.

As per claim 72, Hashimoto teaches a system in which the processor includes a network interface that provides access to a communication network (Fig. 1, items 103 and 105).

As per claim 73, Hashimoto teaches a system in which the communication network is the Internet (paragraph [0052]).

As per claim 74, Hashimoto teaches a system in which the processor module also includes a number of interface ports (well known feature in computers).

As per claim 75, Hashimoto does not specifically teach a system in which the number of interface ports include any one or more of a serial communication port and a port conforming to the Universal Serial Bus standard. However, this is a well known

Art Unit: 3714

feature in computers. Hence, it would have been obvious to one of ordinary skill in the art that Hashimoto could include USB ports as found in the average user computer.

As per claim 76, Hashimoto teaches a method for the distribution of software, comprising the steps of: providing a repository containing a number of different software programs, each software program being executable by at least one of the number of user stations (Fig. 1, items 101 and 102); a number of processor modules, each processor module being identified by means of a unique identification code and being operable to execute any one of the number of different software programs contained in the repository (Fig. 1, item 103 and paragraphs [0015] and [0023]); encrypting, remotely from the number of player stations, a selected one of the number of different software programs contained in the repository as a function of the unique identification code of a selected one of the number of player stations; downloading the encrypted software program to the particular user station whose unique identification code was used for encryption (paragraphs [0015] and [0023]); decrypting the downloaded encrypted software program (paragraph [0023]). Hashimoto does not specifically teach the method for a player station operable by a player to play a game wherein decrypting the encrypted software program to obtain a decrypted identification code therefrom and enabling execution of the encrypted software program by the processor module when the decrypted identification code is the same as the unique identification code of the processor module and disabling execution of the encrypted software program by the processor module when the decrypted identification code is different from the unique identification code of the processor module. In addition, though Hashimoto teaches

Art Unit: 3714

charging for the distributed software (paragraph [0107]) it does not specifically teach receiving means for receiving a request for a license to execute a desired combination of at least one software program contained in the repository on at least one of the number of processor modules, the license request containing at least one selectable identification code-to-software program mapping and payment means for receiving a fee for the requested license. However, Nguyen teaches providing a secure system for the purpose of downloading a game program from a first machine to a second machine for the purpose of the second machine running the game (abstract and Fig. 14) and obtaining a license on a gaming machine for a purchase piece of software (Figs. 6 and 7) and Reeder teaches the additional software downloading step of confirming the unique identifier encrypted into the software with another stored instance of the unique identifier in order to confirm a match with the machine only able to run the application when a confirmed match is received (Fig. 1 and col. 5, lines 35-47 and col. 6, lines 20-24 confirms that IDs match and col. 2, lines 28-31 teaches storing the unique identifier locally). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to be used for the gaming art since it is desired in the gaming art to provide a secure and easy manner of downloading and installing games on a gaming machine (Nguyen paragraph [0016]) and obtaining the needed license in order to operate the software on the gaming machine. In addition, by including the step of matching the unique identifiers used in the encryption process. Hashimoto is modifiable to include an extra step to insure that the software will not run

Art Unit: 3714

unless it is set to be specifically run by a machine with that identifier (Reeder col. 1, lines 58-62 teaches preventing illicit copies from running).

As per claim 77, Hashimoto does not specifically teach a method in which the at least one selectable mapping is a one-to-one mapping. However, Nguyen does teach a system in which the at least one selectable mapping is a one-to-one mapping (paragraph [0099]). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to allow the purchase of licenses which enable a single gaming machine to run the downloaded game thereby saving the operator time since they do not need to go through the hassle of purchasing the license separately.

As per claim 78, Hashimoto does not specifically teach a method in which the license request contains a plurality of different one-to-one mappings, each unique processor module identification code being contained in only one such mapping. However, Nguyen does teach a system in which the license request contains a plurality of different one-to-one mappings, each unique processor module identification code being contained in only one such mapping (Figs. 6-7 and paragraph [0099] able to purchase multiple licenses depending on need). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to allow the purchase of licenses which enable a single gaming machine to run the

Art Unit: 3714

downloaded game thereby saving the operator time since they do not need to go through the hassle of purchasing the license separately.

As per claim 79, Hashimoto does not specifically teach a method in which the encryption means is responsive to payment of the fee to encrypt the particular software program contained in each one of the plurality of different one-to-one mappings as a function of the identification code in that mapping. However, it would have been obvious to one of ordinary skill in the art that Hashimoto would require the software to be purchased first before allowing a user to download it since the key needed to decrypt the software is already present on the system.

As per claim 80, Hashimoto teaches a method in which each encrypted software program is downloaded to the particular processor module whose identification code war, used for encryption (paragraph [0023]).

As per claim 81, Hashimoto does not specifically teach a method in which the at least one selectable mapping is a many-to-one mapping. However, Nguyen does teach a system in which the at least one selectable mapping is a many-to-one mapping (Figs. 6-7 and paragraph [0078] can purchase a license for multiple games and paragraph [0133] allows for multiple gaming machines per license). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to allow the purchase of licenses which enable a single gaming machine to run the downloaded game thereby saving the operator time since they do not need to go through the hassle of purchasing the license separately.

Art Unit: 3714

As per claim 82, Hashimoto does not specifically teach a method each unique processor module identification code being contained in only one such mapping. However, Nguyen does teach a system in which the at least one selectable mapping is a many-to-one mapping (Figs. 6-7 and paragraph [0078] can purchase a license for multiple games and paragraph [0133] allows for multiple gaming machines per license) and Hashimoto teaches encrypting the download using the gaming machines unique code in every download (paragraph [0023]). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have combined the teachings of Hashimoto with Nguyen and Reeder, since Hashimoto is modifiable to allow the purchase of licenses which enable a single gaming machine to run the downloaded game thereby saving the operator time since they do not need to go through the hassle of purchasing the license separately.

As per claim 83, Hashimoto does not specifically teach a method in which the encryption means is responsive to payment of the fee to encrypt the particular software program contained in each one of the different many-to-one mappings with each one of the plurality of identification codes in that mapping to obtain separate encrypted instances of the same software program. However, it would have been obvious to one of ordinary skill in the art that Hashimoto would require the software to be purchased first before allowing a user to download it since the key needed to decrypt the software is already present on the system.

Art Unit: 3714

As per claim 84, Hashimoto teaches a method in which each encrypted instance of a software program is downloaded to the particular processor module whose identification code was used for encryption in that instance (paragraph [0023]).

As per claim 85, Hashimoto does not specifically teach a method in which execution of the software program is disabled when the software program is unencrypted. However, Hashimoto does teach insuring that illegal analysis and tampering of programs does not occur by use of software encryption (paragraphs [0007]-[0008]). Hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have modified Hashimoto to prevent software unencrypted from running since the purpose of Hashimoto is to have a processor which processes encrypted software in order to prevent illegal use and this purpose is not fulfilled if the software is not encrypted.

As per claim 86, Hashimoto teaches a method in which the unique identification code is stored in a protected area of the storage memory (paragraphs [0087]-[0088]).

As per claim 87, Hashimoto teaches a method in which the processor module is interfaceable to at least one peripheral device (well known that computers include a monitor).

As per claim 88, Hashimoto does not specifically teach a method in which communication between the processor and the at least one peripheral device is encrypted. However, it is old and well known in the art at the time the invention was made to encrypt the communication between peripheral devices for security purposes.

Application/Control Number: 10/582,143 Page 35

Art Unit: 3714

Conclusion

The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

Christiano (US Pat. No. 5,671,412) teaches a license management system for software applications.

Comerford et al. (US Pat. No. 5,109,413) teaches a rights-to-execute software system in which rights to execute include time or number of runs.

10. Any inquiry concerning this communication or earlier communications from the examiner should be directed to JUSTIN MYHR whose telephone number is (571)270-7847. The examiner can normally be reached on Monday-Thursday 7:30 a.m. - 5:00 p.m., EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Dmitry Suhol can be reached on (571)272-4430. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 10/582,143 Page 36

Art Unit: 3714

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/JUSTIN MYHR/ Examiner, Art Unit 3714 1/20/2010

> /Ronald Laneau/ Primary Examiner, Art Unit 3714