University of Southern California

Viterbi School of Engineering

EE599 – Special Topics: Software Design and Optimization for Electrical Engineers

Introduction to Algorithms

Reference: Online resources, research papers, Professor Mark Redekopp's EE355 Course Materials

Definition

An Algorithm is an effective procedure with well-defined set (i.e., a rigid sequence) of steps to process certain inputs, and calculate certain outputs

Example: Find Min

```
Set MINI to first number

For each number x in list L

If x <MINI => MINI = x
```

Implementation:

```
double MINI = x[0];

for(i=1;i<x[i];i++) {

if(x[i]< MINI) MINI =x[i];

}

printf("\n The MIN is %f \n", MINI);
```


Al-Kharizmi (780 - 850 AD)

Formal Definition

- For a computer, "algorithm" is defined as...
 - ... an ordered set of unambiguous, executable steps that defines a terminating process
- Explanation:
 - Ordered Steps: the steps of an algorithm have a particular order, not just any order
- Unambiguous: each step is completely clear as to what is to be done
- Executable: Each step can actually be performed
- Terminating Process: Algorithm will stop, eventually. (sometimes this requirement is relaxed)

Algorithm Representation

- An algorithm is not a program or programming language
- Just as a story may be represented as a book, movie, or spoken by a story-teller, an algorithm may be represented in many ways
 - Flow chart
 - Pseudocode (English-like syntax using primitives that most programming languages would have)
 - Aspecific program implementation in a given programming language

<u>Algorithms – SW or HW?</u>

- Algorithms are at the heart of computer systems, both in HW and SW
 - They are fundamental to Computer Science and Electrical Engineering

SW programs: implement cullections of Algorithms to perform tasks

How about HW components &

Benefits of Algorithms

Problem solving

- Algorithms help identifying the processes, key decision points and variables required for solving the corresponding problems
- They help dividing the tasks into more manageable smaller subtasks and convert a problem (that would normally have been impossible or difficult to resolve) into a series of much smaller and solvable
- They help classifying real life problems and using our knowledge to modify the existing algorithms or develop new ones to solve them
- Efficiency
 - Choosing the right algorithm can often lead to a dramatic increase in performance
- Clarity
- Question: Is the relation between algorithms and coding related to design or verification steps?

Algorithm Design

Correctness: Does the algorithm do what it is supposed to do?

Efficiency: Does the algorithm have a runtime complexity that is polynomially bounded? Is it as fast as possible?

Algorithm Checks

- Prove the algorithm is correct:
 - Again, keep it simple: briefly say why the algorithm works in general and then focus on the non-obvious parts
 - Assume you are trying to convince one of your classmates

- Analyze its efficiency:
 - Ensure that it runs in polynomial time
 - Then try to give the best possible, worst-case upper bound on how many steps it will take
 - Check how much memory it needs to avoid memory explosion

<u>Algorithm Description – How Detailed?</u>

- Keep it as simple as possible, but no simpler. Difficult algorithms require more detail than intuitively obvious ones. No need to "write assembly code": high-level statements that can obviously be implemented are fine
- Context vs detail level
- Examples:
 - If S is a set, we can generally assume we can iterate its elements, test if p is in S, etc. In some contexts we can assume calculating S1 ∩ S2 is obviously easy. In others, we have to spell out how to do this, E.g. suppose S is the set of primes)
- Knowing the level of detail to present is a bit of an art. The solved exercises in textbooks and online resources can help

Humans and Computers

- Humans understand algorithms differently than computers
- Humans easily tolerate ambiguity and abstract concepts using context to help
 - "Add a pinch of salt." How much is a pinch?
 - "Michael Jordan could soar like an eagle"
 - "It's a bull market"
 - Computers only execute well-defined instructions (no ambiguity) and operate on digital information which is definite and discrete (everything is exact and not "close to")

Exercise

- How to find a word in a dictionary
 - Describe an "efficient" method
 - Assumptions / Guidelines
 - Let target_word = word to lookup
 - N pages in the dictionary
 - Each page has the start and last word on that page listed at the top of the page
 - The user understands how to perform alphabetical ("lexicographic") comparison (e.g., "abc" is smaller than "acb" or "abcd")

Central Dogma of Computer Science

Difficulty is not necessarily proportional to size of the search space

int sumOfList(int A[], int n)	Cost Time require for line (Units)	Repeatation No. of Times Executed	Total Total Time required in worst case
{			
int sum = 0, i;	1	1	1
for(i = 0; i < n; i++)	1+1+1	1 + (n+1) + n	2n + 2
sum = sum + A[i];	2	n	2n
return sum;	1	1	1
}			
			4n + 4 Total Time required


```
void printFirstItem(const vector<int>& vectorOfItems)
{
   cout << vectorOfItems[0] << endl;
}</pre>
```

```
void printAllItems(const vector<int>& vectorOfItems)
{
  for(int item : vectorOfItems) {
    cout << item << endl;
  }
}</pre>
```

void printAllPossibleOrderedPairs(const vector<int>& vectorOfItems) for (int firstItem : vectorOfItems) { for (int secondItem : vectorOfItems) { cout << firstItem << ", " << secondItem << endl;</pre>

Example – Factoring

Find all factors of a natural number, n
 What is a factor?
 What is the range of possible factors?
 i ← 1
 while(i <= n) do
 if (remainder of n/i is zero) then
 List i as a factor of n
 i ← i+1

An improvement

Example – Ordered Search

- Searching an ordered list (array) for a specific value, k
- Sequential Search
 - Start at first item, check if it is equal to k, repeat for second, third, fourth item, etc.

```
i ← 0
while ( i < length(myList) ) do
  if (myList[i] equal to k) then stop
  else i ← i+1
if (i == length(myList) ) then k is not in myList
  else k is located at index i</pre>
```

```
nyList 2 3 4 6 9 10 13 15 19 index 0 1 2 3 4 5 6 7 8
```

Example – Search (cont.)

- Sequential search does not take advantage of the ordered nature of the list
 - Would work the same (equally well) on an ordered or unordered list
- Binary Search
 - Take advantage of ordered list by comparing k with middle element and based on the result, rule out all numbers greater or smaller, repeat with middle element of remaining list, etc.

Binary Search (cont.)

Binary Search

- Compare k with middle element of list and if not equal, rule out ½ of the list and repeat on the other half
- "Range" Implementations in most languages are [start, end)
 - Start is inclusive, end is non-inclusive (i.e. end will always point to 1 beyond true ending index to make arithmetic work out correctly)

```
start ← 0; end ← length(List);
while (start < end) do
i ← (end + start) / 2;
if ( k == List[i] ) then return i;
elseif ( k < List[i] ) then end ← i;
else start ← i+1;
return -1
```


Search (cont.)

Complexity of Sort Algorithms

Bubble Sort

- 2 Nested Loops
- Execute outer loop n-1 times
- For each outer loop iteration, inner loop runs i times.
- Time complexity is proportional to:

$$N-1 + N-2 + N-3 + ... + 1 = N^2/2 = O(N^2)$$

Merge Sort

O(NlogN)

Running Time

				>1025 years			
	п	$n \log_2 n$	n^2	n^3	1.5^{n}	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Asymptotic Upper Bounds

Example: A running time of $T(n) = n^2 + 4n + 2$ is usually too detailed. Rather, we're interested in how the runtime grows as the problem size grows

Question: Explain the abo

Asymptotic Lower Bounds

Tight Bounds

If we know that T(n) is Θ(f(n)) then f(n) is the "right" asymptotic running time: it will run faster than O(f(n)) on all instances and some instances might take that long

$$T(n) = \Theta(f(n)) \quad \text{if} \quad T(n) = O(f(n)) \quad \text{and} \quad T(n) = \Omega(f(n))$$

Asymptotic Limit

Theorem

If $\lim_{n\to\infty} \frac{T(n)}{g(n)}$ equals some c>0, then $T(n)=\Theta(\P(n))$.

There is an n_0 such that $c/2 \le T(n)/g(n) \le 2c$ for all $n \ge n_0$.

Therefore, $T(n) \leq 2cg(n)$ for $n \geq n_0 \Rightarrow T(n) = O(g(n))$.

Also, $T(n) \ge \frac{c}{2}g(n)$ for $n \ge n_0 \Rightarrow T(n) = \Omega(g(n))$.

Runtime Calculation

$$T(n) = \alpha T(n/p) + f(n)$$

Master Theorem

T (n) = a T (n/b) + f(n)

$$0 \ge 1 \cdot b > 1$$
 $0 \ge 1 \cdot b > 1$
 $0 \le 1 \cdot b >$

$$T(n) = 2T(n) + \theta(n)$$

$$Q = 2 \cdot b = 2$$

$$f(n) = \theta(n)$$

$$y^{10}y^{10} = x$$

$$\Rightarrow CASC 2 \Rightarrow T(n) = \theta(n \log n)$$

$$T(n) = T(n/2) + C$$

$$Q=1,b=2$$

$$\frac{1}{2}(N) = \frac{3}{2}$$

$$T(n) = T(2n/3) + 1$$
 $\alpha = 1$
 $b = 3/2$
 $n^{100}b^{\alpha} = n^{1093}b^{2} = n^{2} = 1$
 $\Rightarrow case z \Rightarrow T(n) = \theta(109n)$
 $A: How about T(n) = T(n/3) + 2$

Polynomial Time

Ic, >0, c2>0 such that $T(n) < C(n) \forall n$ Strotonos

Linear Time

- Linear time usually means you look at each element a constant number of times
- Example 1: Finding the maximum element in a list:

```
max = a[1]
for i = 2 to n:
if a[i] > max then
set max = a[i]
```

- This does a constant amount of work per element in array a
- Example 2: Merging sorted lists

How about adding them to one list and softing
them!

Si = 5 constant work per

(Shahin Nazarian, All rights reserved)

Merging (cont.)

Example 2: Merging sorted lists

$$S_{1} = \{n_{3}n+2, n+4, \dots, 3n-2\}$$

$$S_{2} = \{1, 3, 5, \dots, 2n-1\}$$

$$Compare n to 1, 3, 5, --, n/2-1, n/2+1$$

$$L_{7} O(n) = compalison per input$$

$$L_{7} O(n^{2})$$

O(n log n)

- O(n log n) time common because of sorting (often the slowest step in an algorithm)
- Example: Merge sort (based on divided and conquer concept)

Where does the $O(n \log n)$ come from?

$$T(n) = 2T(n/2) + n$$

O Which two o (kisyi) have the shortest distance? 0(5)

 $O(n^3)$

• Example:

• Given n sets S1, S2, ..., Sn that are subsets of {1, ..., n}, is there some pair of sets that is disjoint?

O(n^k)

A given graph of n nodes, find whether an independent set of size K

Question: How many Knode Sets are there?

Exponential Time

- What if we didn't limit ourselves to independent sets of size k, and instead want to find the largest independent set?
- Brute force algorithms search through all possibilities
- How many subsets of nodes are there in an n-node graph? 2ⁿ
- What's the runtime of the brute force search for a largest independent set? O(n²2ⁿ)

Sublinear Time

- Sublinear time means we don't even look at every input
- Since it takes n time just to read the input, we have to work in a model where we count how many queries to the data we make
- Sublinear usually means we don't have too look at every element
- Example: Binary search

Space Complexity

- The total space taken by the algorithm with respect to the input size
- Auxiliary vs input
- Auxiliary space is the extra space or temporary space used by an algorithm
- Important note regarding interviews
 - Example:

```
int square(int a)
{
return a*a;
}
```

Space vs Time Tradeoff

- There can be a tradeoff between time and space complexities
 - As an engineer we have to decide which we should optimize for
- Example: Lookup table vs analytical forumulae to calculate the salary of employees as a function of their education level, # years of experience, and employee level

Question: Which one is faster? Which one is more memory efficient?

Algorithms vs Heuristics

Algorithms

- Well defined steps
- Optimal solution

Heuristics

- Less predictable
- Optimality not guaranteed
- More popular in daily life
- Examples:
 - Educated guess
 - Draw a picture to understand the problem
 - If a solution cannot be found, work backward, i.e., assume you have a solution and try to derive properties from it