Task1:TITANIC SURVIVAL PREDICTION

- 1. Use the Titanic dataset to build a model that predicts whether a passenger on the Titanic survived or not. This is a classic beginner project with readily available data.
- 2. The dataset typically used for this project contains information about individual passengers, such as their age, gender, ticket class, fare, cabin, and whether or not they survived.

Data Collection:

In [1]: #import the required libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score

In [2]: # loading and reading the dataset
 titanic_data= pd.read_csv("tested.csv")
 titanic_data

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
									•••			
413	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	S
414	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С
415	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	S
416	1308	0	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	S
417	1309	0	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	С

418 rows × 12 columns

```
#information of columns
Survival 0 = No, 1 = Yes
```

pclass: A proxy for socio-economic status (SES)
1st = Upper, 2nd = Middle, 3rd = Lower

age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

sibsp: defines family relations in this way...
Sibling = brother, sister, stepbrother,
stepsister Spouse = husband, wife (mistresses and fiancés were ignored)

parch: defines family relations in this way...
1.Parent = mother, father
2.Child = daughter, son, stepdaughter, stepson
3.Some children travelled only with a nanny, therefore parch=0 for them.

embarked : Port of Embarkation
C = Cherbourg, Q = Queenstown, S = Southampton

In [3]: #Printing top 5 rows titanic data.head()

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

Types of features:

- Categorical =Sex , Embarked
- Continuous = Age, Fare
- Discrete = SibSp,Parch
- alphanumeric = Cabin

Data Preprocessing:

```
In [4]: # number of rows and columns
        titanic data.shape
Out[4]: (418, 12)
In [5]:
         # to get infomation about the data
         titanic data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 418 entries, 0 to 417
        Data columns (total 12 columns):
                          Non-Null Count Dtype
             Column
           PassengerId 418 non-null
                                          int64
            Survived
                         418 non-null
                                          int64
            Pclass
                         418 non-null
                                         int64
```

418 non-null Name object 418 non-null object 4 Sex float64 5 Age 332 non-null int64 SibSp 418 non-null 7 Parch 418 non-null int64 Ticket 418 non-null object Fare float64 417 non-null 10 Cabin 91 non-null object 11 Embarked 418 non-null

dtypes: float64(2), int64(5), object(5)

object

memory usage: 39.3+ KB

```
In [6]: # check missing values
        titanic data.isnull().sum()
Out[6]: PassengerId
                         0
        Survived
                         0
        Pclass
        Name
        Sex
        Age
                        86
        SibSp
        Parch
        Ticket
                         0
        Fare
                         1
        Cabin
                       327
        Embarked
                         0
        dtype: int64
In [7]: # droping the cabin column from the dataframe because majority of values are missing i.e. 327
        titanic data=titanic data.drop(columns='Cabin',axis=1)
In [8]: # calculating mean of Age column
        titanic data['Age'].fillna(titanic data['Age'].mean(), inplace=True)
        # calculating mean of Fare column
        titanic data['Fare'].fillna(titanic data['Fare'].mean(), inplace=True)
```

Exploratory Data Analysis:

In [10]: #statistical summary of the numerical columns in the DataFrame
 titanic_data.describe()

Out[10]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	418.000000	418.000000	418.000000	418.000000	418.000000
mean	1100.500000	0.363636	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.481622	0.841838	12.634534	0.896760	0.981429	55.840500
min	892.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	0.000000	1.000000	23.000000	0.000000	0.000000	7.895800
50%	1100.500000	0.000000	3.000000	30.272590	0.000000	0.000000	14.454200
75%	1204.750000	1.000000	3.000000	35.750000	1.000000	0.000000	31.500000
max	1309.000000	1.000000	3.000000	76.000000	8.000000	9.000000	512.329200

```
In [11]: #counts of unique values in Survived column
titanic_data['Survived'].value_counts()
```

Out[11]: 0 266 1 152

Name: Survived, dtype: int64

Data Visualization:

```
In [12]: sns.set()
```

```
In [13]:
    fig = plt.figure(figsize=(10, 7))
    column = 'Survived'
    plt.hist(
        titanic_data[column],
        bins=[-0.5, 0.5, 1.5],
        rwidth=0.5, align='mid',
        color='pink',
        edgecolor='black')
    plt.xlabel('Survived')
    plt.ylabel('Count')
    plt.title('Survival Histogram(0 = No, 1 = Yes)')
    plt.xticks([0, 1])
    plt.show()
```



```
In [14]: #same visualization only in pie chart
survival_percentage = titanic_data['Survived'].value_counts(normalize=True) * 100
colors = ["#FF1493", "#FFB6C1"]
sns.set_palette(sns.color_palette(colors))
plt.figure(figsize=(8, 8))
plt.pie(survival_percentage, labels=survival_percentage.index, autopct='%1.1f%%', startangle=90)
plt.xlabel('Survived')
plt.ylabel('Percentage')
plt.title('Survival Pie Chart (0 = No, 1 = Yes)')
plt.show()
```


Out[15]: <matplotlib.legend.Legend at 0x22078661610>

Survival based on age Survived Not survived No of passengers

Age

```
In [16]: fig = plt.figure(figsize =(10, 7))
plt.hist(
    x = [titanic_data[titanic_data['Survived']==1]['Fare'],
    titanic_data[titanic_data['Survived']==0]['Fare']],
    stacked=True,
    color = ['violet','pink'],
    label = ['Survived','Not survived'])
plt.title(' Survival based on fare')
plt.xlabel('Fare')
plt.ylabel('No of passengers')
plt.legend()
```

Out[16]: <matplotlib.legend.Legend at 0x22079092b10>

In [17]: #counts of unique values in the 'Sex' column
titanic_data['Sex'].value_counts()

Name: Sex, dtype: int64

```
In [18]:
    survived_counts = titanic_data[titanic_data['Survived'] == 1]['Sex'].value_counts()
    not_survived_counts = titanic_data[titanic_data['Survived'] == 0]['Sex'].value_counts()
    gender_counts = pd.DataFrame({'Survived': survived_counts, 'Not Survived': not_survived_counts})
    fig, ax = plt.subplots(figsize=(10, 6))
    gender_counts.sort_values(by='Survived', ascending=True).plot(kind='barh', stacked=True, color=['violet', 'pink'
    plt.title('Passengers based on Gender')
    plt.xlabel('No of passengers')
    plt.ylabel('Gender')
    plt.legend(title='Survival', bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.show()
```


encoding

Out[20]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	892	0	3	Kelly, Mr. James	0	34.5	0	0	330911	7.8292	2
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	1	47.0	1	0	363272	7.0000	0
2	894	0	2	Myles, Mr. Thomas Francis	0	62.0	0	0	240276	9.6875	2
3	895	0	3	Wirz, Mr. Albert	0	27.0	0	0	315154	8.6625	0
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	1	22.0	1	1	3101298	12.2875	0

Split the Data:

```
In [21]: #separating the features (X) and the target variable (Y) from dataset
X=titanic_data.drop(columns=['PassengerId','Name','Ticket','Survived'], axis=1)
Y=titanic_data['Survived']
```

```
print(X)
In [22]:
         print(Y)
              Pclass Sex
                                 Age SibSp Parch
                                                        Fare Embarked
                    3
                           34.50000
                                          0
                                                      7.8292
         0
                                                                     2
                        1 47.00000
                                                      7.0000
         1
                    3
                                                                     0
                        0 62.00000
                                                      9.6875
         2
                    2
                                          0
                                                                     2
         3
                    3
                        0 27.00000
                                                      8.6625
                                                                     0
         4
                    3
                        1 22.00000
                                          1
                                                     12.2875
                                                 1
                                                                     0
                                 . . .
                                                          . . .
                                        . . .
                                               . . .
                        0 30.27259
         413
                                                      8.0500
                   3
                                                                     0
         414
                        1 39.00000
                                                    108.9000
                   1
                                                                     1
         415
                        0 38.50000
                                                      7.2500
         416
                        0 30.27259
                                                      8.0500
                                          0
                                                                     0
                   3
                        0 30.27259
         417
                                                 1 22.3583
                                          1
                                                                     1
         [418 rows x 7 columns]
                 0
         1
                 1
         2
                 0
         3
                1
         413
                0
         414
                1
         415
         416
                 0
         417
         Name: Survived, Length: 418, dtype: int64
In [23]: #Spliting training and test data
         X train, X test, Y train, Y test=train test split(X,Y,test size=0.2,random state=2)
         print(X.shape,X train.shape,X test.shape)
```

(418, 7) (334, 7) (84, 7)

Evaluate the Model:

```
In [26]: training data accuracy=accuracy score(Y train, X train prediction)
         print('Accuracy score of training data :{:.2f}%'.format(training data accuracy*100 ))
         Accuracy score of training data :100.00%
In [27]: X test prediction=model.predict(X test)
         print(X test prediction)
         [0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 1\ 0\ 1
         10000110010100111001000000101111100
          0 1 1 0 1 0 0 0 0 0]
In [28]: testing data accuracy=accuracy score(Y test, X test prediction)
         print('Accuracy score of test data :{:.2f}%'.format(testing data accuracy*100 ))
         Accuracy score of test data :100.00%
In [ ]:
In [ ]:
```