Formatted

Appendix A2: Amended Abstract with Markings to Show Changes Made

ABSTRACT

New tolane and bis-tolane compounds:

Deleted: A new class of liquid crystal compounds is based on

Deleted: structures

$$R_{r_1}$$
 X_1
 X_2
 X_1
 X_2

(Structure IV)

$$R_{m} \longrightarrow X_{1} \longrightarrow X_{2} \longrightarrow X_{2$$

(Structure V)

in which X is F (fluoro), CN (cyano), OCF₃ (trifluoromethoxy), or NCS (isothiocyanate) at least one of the pairs Y₁ and Y₂, Z₁ and Z₂, and A₁ and A₂ are fluoro groups.

T₁ for the tolanes is a triple bond. For the bis-tolanes T₁ and T₂ are either both triple bonds or one of the two groups is a double bond.

 R_n or R_m may be an alkyl group, an alkenyl group, an alkoxy group, or an alkenoxy group, For the tolane compounds, R_n may be a;

Deleted: a polar group such as

Deleted: of sites

Deleted: for the bis-tolane derivatives,

Deleted: derivatives

Deleted: always

Deleted: derivatives,

Deleted: with and the other remains a triple bond

Deleted: having the general formula C_nH_{2n+1}

Deleted: having the general formula

Deleted: having the general formula C_nH_{2n-1}

Deleted: having the general formula OC_nH_{2n+1}

Deleted: the general formula -OC_nH_{2n-1}

Deleted: Additionally, f

Deleted: cyclohexyl substituent

Deleted:

Deleted: (Structure VI)

D	el	ei	te	d:	: 0	r a

dioxane substituent:

$$R_{\overline{X}}$$

(Structure VII)

in which R_x may be as R_u or R_m above,

These compounds exhibit useful nematic ranges and melting points. Also disclosed are eutectic mixtures including these compounds.

Deleted: is an alkyl group having the general formula general formula $C_x H_{2x+1}$, an alkenyl group having the general formula $C_x H_{2x+1}$, an alkoxy group having the general formula $OC_x H_{2x+1}$, or an alkenoxy group having the general formula $OC_x H_{2x-1}$