SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

PROJEKT IZ BIOINFORMATIKE

Računanje najduljeg zajedničkog prefiksa temeljeno na BWT

Autori Zvonimir Jurelinac, Tomislav Živec, Tonko Čupić Voditelj doc.dr.sc Mirjana Domazet- Lošo

Sadržaj

1	Uvo	d		2	
		oritmi		3	
	2.1	Podat	kovne strukture	3	
		2.1.1	Sufiksno polje	3	
			Burrows- Wheelerova transformacija (BWT)		
		2.1.3	Stablo valića	5	
3	Primjer rada algoritma				
	3.1	Izgrac	lnja sufiksnog polja	5	

1 Uvod

Bioinformatika je grana znanosti koja usko povezuje biologiju i računarstvo, a ubrzano se razvijala zadnja dva desetljeća. Pojeftinjenje i sve veća dostupnost tehnologije sekvenciranja rezultirale su stvaranjem velikih skupova bioloških podataka. Često se kao zadatak u bioinformatici nameće analiza sekvence genoma. Pošto su te sekvence predugačke za uobičajenu pohranu i analizu, potrebno je koristiti posebna sufiksna polja i polja najdužeg zajedničkog prefiksa. Cilj projekta je bio implementirati algoritme 1 i 2 iz rada Beller et al. (2013), koristeći gotovu knjižnicu za izgradnju sufiksnog polja. Zatim je implementacija testirana sa našom implementacijom stabla valića i njegove funkcije rang. Rješenje je uspoređeno s rezultatima iz studetskog rada Mrčela et al. (2016). Kao ulazni niz koristili smo genom bakterije E. Coli

2 Algoritmi

U problemima analiza sekvenci vrlo često se javlja potreba za izračunom najduljeg zajedničkog prefiksa (LCP). U tu svrhu koriste sufiksni nizovi koji spremaju u listu spremaju sve moguće sufikse sekvence, od duljine 1 do najdulje. Iz sufiksnog niza dobiva se LCP polje u linearnom vremenu. Veliki resursni zahtjevi analize senkvenci DNK nameću zahtjeve za korištenjem podatkovnih struktura koje koriste manje memorijskog prostora. Iz te potrebe razvijeno je stablo valića niza transformiranog Burrows- Wheelerovom transformacijom (BWT). Metoda je sljedeća: sekvenca se prvo podliježe Burrows- Wheelerovoj transformaciji, potom se transformirana sekvenca sprema u stablo valića. Stablo valića podržava pretraživanje unatrag po originalnom nizu pa tako dobivamo tražene sufikse. Opisani algoritam ima složenost $O(n\log \sigma)$, gdje je σ veličina abecede.

2.1 Podatkovne strukture

2.1.1 Sufiksno polje

Sufiksno polje sadrži sve sufikse od teksta S. Zamijenila je u toj zadaći sufiksno stablo jer koristi manje memorije od sufiksnog stabla za istu zadaću. Sufiksno polje se pokazalo kao vrlo važan alat u raspoznavanju i analizi teksta, bioinformatici i drugim primjenama. Sufiksno polje SA od niza znakova S je cjelobrojno polje u intervalu od 1 do n koje određuje leksikografski poredak svih n sufiksa niza znakova S. Preciznije, sufiksno polje zadovoljava $S_{SA[1]} < S_{SA[2]} < ... < S_{SA[n]}$, gdje S_i označava i-ti sufiks niza znakova S, te sadrži znakove S[i..n].

2.1.2 Burrows- Wheelerova transformacija (BWT)

Burrows- Wheelerova transformacija pretvara niz znakova u sličan niz znakova BWT[1..n] sa istom abecedom. Koristi se za kompresiju podataka. Transformacija je reverzibilna bez dodatnih resursnih zahtjeva. Elemente transformiranog niza računamo formulom:

Tablica 1: Pridruživanje indeksa sufiksima niza S, počevši od najduljeg.

i	$S_{SA}[i]$
1	abrakadabra\$
2	brakadabra\$
3	rakadabra\$
4	akadabra\$
5	kadabra\$
6	adabra\$
7	dabra\$
8	abra\$
9	bra\$
10	ra\$
11	a\$
12	\$

Tablica 2: Sufiksi su poredani leksikografski, a njihovi indeksi čine sufiksno polje SA.

i	SA[i]	$S_{SA}[i]$	BWT[i]
1	12	\$	a
2	11	a\$	r
3	8	abra\$	d
4	1	abrakadabras\$	\$
5	6	adabra\$	k
6	4	akadabra\$	r
7	9	bra\$	a
8	2	brakadabra\$	a
9	7	dabra\$	a
10	5	kadabra\$	a
11	10	ra\$	b
12	3	rakadabra\$	b

Tablica 3: Pridruživanje indeksa sufiksima niza S

i	$S_{SA}[i]$
1	mississippi\$
2	ississippi\$
3	ssissippi\$
4	sissippi\$
5	issippi\$
6	ssippi\$
7	sippi\$
8	ippi\$
9	ppi\$
10	pi\$
11	i\$
12	\$

2.1.3 Stablo valića

Stablo valića je struktura podataka koja rekurzivno particionira tok u 2 dijela sve dok su u svakom dijelu preostali homogeni podatci. Ime stabla je analogno valnoj transformaciji signala koji rekurzivno dekompresira signal prema frenkvencijama komponenti.

Stablo valića može efikasno raditi upite rank i select nad nizovima proizvoljnih abeceda. To nam omogućuje pretraživanje unatrag u vremenskoj složenosti od $O(\log \sigma)$ po koraku. Prvo definiramo uzlazno poredanu abecedu η kao niz znakova veličine σ . Zatim definiramo interval [1..r] kao podinterval abecede, r <= σ Za interval [1..r], niz znakova BWT[1..r] dobijemo tako da iz transformiranog niza znakova od S uklonimo sve znakove iz B-W transformacije koji ne pripadaju segmentu abecede [1..r]

3 Primjer rada algoritma

U nastavku dokumenta dan je primjer rada algoritma na stringu S = mississippi.

3.1 Izgradnja sufiksnog polja

- 1. Na kraj ulaznog niza dodaje se znak \$ te je sada S = mississippi\$. U daljnjem tekstu vrijedi pretpostavka da je znak \$ abecedno manji od svih ostalih znakova od kojih je S izrađen.
- 2. Svakom sufiksu niza S pridružuju se indeksi od 1 do *n*, počevši od najduljeg. Ovo je prikazano u **tablici 3**.
- 3. Sufiksno polje *SA* dobivamo soritiranjem dobivenih sufiksa leksikografski od najmanjeg prema najvećem. Ovo je prikazano u **tablici 4**.

Tablica 4: Sufiksi su poredani leksikografski, a njihovi indeksi čine sufiksno polje SA.

i	SA[i]	$S_{SA}[i]$
1	12	\$
2	11	i\$
3	8	ippi\$
4	5	issippi\$
5	2	ississippi\$
6	1	misssissippi\$
7	10	pi\$
8	9	ppi\$
9	7	sippi\$
10	4	sissippi\$
11	6	ssippi\$
12	3	ssissippi\$

Dobiveno je sufiksno polje SA = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]

4. Izračunava se Burrows-Wheelerova transformacija BWT[1..n] za dobiveno sufiksno polje SA prema formuli navedenoj u 2.1.2 .

Npr. BWT[4]=S[SA[4]-1]=S[5-1]=S[4]=s.

Rezultat je prikazan u tablici **tablice 5**.

- 5. Iz dobivene Burrows-Wheelerove transformacije gradi se stablo valića opisanom u 2.1.3. Prvo se stvara sortirana abeceda ulaznog niza koja je u ovom slučaju veličine 5 znakova ($\Sigma[1..5]$ =\$imps). Korijen stabla čini bit vektor dobiven kodiranjem niza Burrows-Wheelerove transformacije dobivene u prethodnom koraku. Abeceda se potom dijeli na pola te dobivamo dva podniza, ovom slučaju: $\Sigma[1..2]$ =\$i i $\Sigma[3..5]$ =mps. Znakovi prve polovice u svakoj skupini kodiraju se vrijednošću 0, a ostali 1. Postupak se ponavlja sve dok se u čvoru ne nalaze samo jednaki znakovi koji čine listove stabla. Potpuno izgrađeno stablo za dani primjer prikazano je na slici 1.
- 6. Pomoću Algoritama 1 i 2 iz rada Beller et al. (2013) gradi se polje najdužih zajedničkih prefiksa (LCP) u nekoliko koraka:
 - (a) Inicijalizacija LCP polja i reda Q. Vrijednosti polja LCP se postavljaju na nevažeću (**NULL**) vrijednost, osim LCP[1] i LCP[n+1] koji se postavljaju na -1. U red Q stavljamo strukturu koja sadrži početni interval I = [i..j] = [1..12] i broj l = 0:

(b) Izračunavanje c ω -intervala za interval dobiven uzimanjem elementa iz reda Q (FIFO) unutar funkcije *getIntervals* iz Algoritma 1 Beller et al. (2013).

Tablica 5: Burrows-Wheelerova tranformacija

i	SA[i]	S _{SA} [i]	BWT[i]
1	12	\$	i
2	11	i\$	p
3	8	ippi\$	S
4	5	issippi\$	S
5	2	ississippi\$	m
6	1	misssissippi\$	\$
7	10	pi\$	p
8	9	ppi\$	i
9	7	sippi\$	S
10	4	sissippi\$	S
11	6	ssippi\$	i
12	3	ssissippi\$	i

Slika 1: Stablo valića za dani primjer

c - znak

C[c] - zbroj rangova svih elemenata leksikografski sortirane abecede koji su manji od c

- *i* početak intervala
- *j* kraj intervala
- Funkcija rang(a,k) vraća broj pojavljivanja znaka a do k-tog indeksa u polju.
- Znakovi abecede iz intervala I se sortiraju od najmanjeg prema najvećem. Ima onoliko cω-intervala koliko je i jedinstvenih znakova. Kako je abeceda za dani primjer $\Sigma[1..5] = \$imps$, traži se 5 cω-intervala.
- -C = [0, 1, 5, 6, 8]
- Indeks početka intervala dobiva se po formuli rang(c,i-1)+C[c]+1 Indeks kraja intervala dobiva se po formuli C[c]+rang(c,j).
- U intervalu *I* se nalaze svi znakovi abecede (\$,i,m,p,s). Za svaki od znakova računa se njegov interval prema formuli navedenoj iznad.

- Povratna vrijednost *getIntervals*, prema tome, je lista c ω -intervala: [[1..1],[2..5],[6..6]
- Za svaki od dobivenih intervala [*lb* .. *rb*] se potom provjerava vrijednost LCP[*rb*+1]. Ako je vrijednost tog polja **NULL** u red stavljamo strukturu [<[*lb*..*rb*],*l*+1>], a na index *rb*+1 vrijednost *l*. Navedeni postupak se ponavlja sve dok u redu ima elemenata, a prva dva koraka prikazana su u nastavku.

1. LCP =
$$[-1, \perp, -1]$$

Q = $[<[1..1],0>]$

$$[lb ... rb] = [1..1], l = 0$$

 $LCP[rb+1]=LCP[2]=\bot -> u red Q stavljamo strukturu [<[lb..rb],l+1>]$
 $= [<[1..1],1>], a LCP[rb+1]=LCP[2]=0.$

2. LCP =
$$[-1,0,\bot,\bot,\bot,\bot,\bot,\bot,\bot,\bot,\bot,\bot,\bot,\bot,-1]$$

Q = $[<[2..5],0>,<[1..1],1>]$

$$[lb ... rb] = [2..5], l = 0$$

LCP[$rb+1$]=LCP[6]= \bot -> u red Q stavljamo strukturu [$<$ [$lb..rb$], $l+1>$] = [$<$ [$2..5$], $1>$], a LCP[$rb+1$]=LCP[6]= 0 .

3. LCP =
$$[-1,0,\bot,\bot,\bot,0,\bot,\bot,\bot,\bot,\bot,\bot,\bot,\bot,-1]$$

Q = $[<[6..6],0>,<[2..5],1>_{8}<[1..1],1>]$

$$[lb \dots rb] = [6..6], l = 0$$
 (...)

(c) Vrijednost LCP polja koju dobijemo kao rezultat izvršavanja algoritma je: LCP = [-1,0,1,1,4,0,0,1,0,2,1,3,-1].