Class 07: Machine Learning 1

Kai Zhao(PID: A17599942)

Clustering

we will start today's lab with clustering methods, in particular so-called K-means. The main function for this in R is kmeans()

Let's try it on some made up data where we know that what the answer should be.

```
x <- rnorm(10000, mean=3)
hist(x)</pre>
```

Histogram of x

60 points

```
tmp <- c(rnorm(30, mean=3), rnorm(30, mean=-3))</pre>
  x <- cbind(x=tmp, y=rev(tmp))</pre>
  X
             X
 [1,] 2.789181 -3.246384
 [2,] 1.785632 -3.664413
 [3,] 4.990367 -2.262505
 [4,] 4.004477 -2.675746
 [5,] 2.220653 -2.385723
 [6,] 2.820759 -3.189301
 [7,] 1.768562 -1.531468
 [8,] 3.499662 -4.836351
 [9,] 4.577516 -3.541133
[10,] 3.276770 -1.883271
[11,] 2.615736 -2.793107
[12,] 2.183321 -2.122602
[13,] 5.818104 -1.512527
[14,] 4.225951 -4.592156
[15,] 2.746062 -3.534720
[16,] 3.781665 -3.148096
[17,] 3.408777 -2.320842
[18,] 3.624595 -2.746581
[19,] 1.130785 -2.267443
[20,] 3.505646 -4.329642
[21,] 1.854807 -3.827730
[22,] 4.408753 -1.158637
[23,] 3.940465 -2.591902
[24,] 4.282357 -2.524787
[25,] 4.490019 -3.639081
[26,] 2.712705 -3.960268
[27,] 3.794480 -3.933003
[28,] 1.588639 -4.498693
[29,] 2.555489 -5.383949
[30,] 3.158643 -3.852315
[31,] -3.852315 3.158643
[32,] -5.383949 2.555489
[33,] -4.498693 1.588639
[34,] -3.933003 3.794480
[35,] -3.960268 2.712705
[36,] -3.639081 4.490019
```

[37,] -2.524787 4.282357

```
[38,] -2.591902
                 3.940465
[39,] -1.158637
                 4.408753
[40,] -3.827730
                 1.854807
[41,] -4.329642
                 3.505646
[42,] -2.267443
                 1.130785
[43,] -2.746581
                 3.624595
[44,] -2.320842
                 3.408777
[45,] -3.148096
                 3.781665
[46,] -3.534720
                 2.746062
[47,] -4.592156
                 4.225951
[48,] -1.512527
                 5.818104
[49,] -2.122602
                 2.183321
[50,] -2.793107
                 2.615736
[51,] -1.883271
                 3.276770
[52,] -3.541133
                 4.577516
[53,] -4.836351
                 3.499662
[54,] -1.531468
                 1.768562
[55,] -3.189301
                 2.820759
[56,] -2.385723
                 2.220653
[57,] -2.675746
                 4.004477
[58,] -2.262505
                 4.990367
[59,] -3.664413
                 1.785632
[60,] -3.246384
                 2.789181
```

We can pass this to the base R plot() function for a quick

```
plot(x)
```



```
k <- kmeans(x, centers=2, nstart=20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

x y 1 3.252019 -3.131813 2 -3.131813 3.252019

Clustering vector:

Within cluster sum of squares by cluster:

[1] 67.90501 67.90501 (between_SS / total_SS = 90.0 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"

Q1. How many points are in each cluster

k\$size

[1] 30 30

Q2. Cluster membership?

k\$cluster

Q3. Cluster centers?

k\$centers

x y 1 3.252019 -3.131813 2 -3.131813 3.252019

Q4 Plot my clustering results

plot(x, col= k\$cluster, pch=16)

Q5 Cluster the data again with kmean() into 4 groups and plot the results.

```
k4 <- kmeans(x, center=4, nstart=20)
plot(x, col=k4$cluster, pch=16)</pre>
```


K-means is very popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitation in that you need to tell it how many groups(k, or centers) you want.

hierarchical clustering

The main function in base R is called hclust(). You have to pass it in a "distance matrix" not just your input data.

You can generate a distance matrix with the dist() function.

```
hc <- hclust(dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(hc)

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To find the clusters (cluster membership vector) from a hclust() result we can "cut" the tree at a certain height taht we like. For this we use the cutree() function.

```
plot(hc)
abline(h=8,col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

```
grps <- cutree(hc, h=8)

table(grps)

grps
1 2
30 30

Q6 Plot our hclust results.

plot(x, col=grps, pch=16)</pre>
```


Principal Component Analysis

PCA of UK food data

Read data showing the consumption in grams(per person, per week) of 17 different types of food-stuff measured and averaged in the four countries of the United Kingdom.

Let's see how PCA can help us but first we can try conventional analysis.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	Х	England	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033

8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	${ t Soft_drinks}$	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

I need to fix that first column...

barplot(as.matrix(x), col=cols, beside=T)

pairs(x, col=rainbow(17), pch=16, cex=2)

Principal Component Analysis (PCA)

PCA can help us make sense of these types of datasets. Ket's see how it works.

The main function in "base" R is called $\mathtt{prcomp}()$. In this case we want to first take the transpose $\mathtt{t}()$ of our input \mathtt{x} so the columns are the food types and the countries are the rows.

head(t(x))

	Cheese	Carcass_	meat	Other	_meat	Fish	Fats_	and	oils	Sugars
England	105		245		685	147			193	156
Wales	103		227		803	160			235	175
Scotland	103		242		750	122			184	147
${\tt N.Ireland}$	66		267		586	93			209	139
	Fresh_p	potatoes	Fresl	n_Veg	Other	_Veg	Proce	ssec	l_potat	toes
England		720)	253		488				198
Wales		874	Ŀ	265		570				203
Scotland		566	;	171		418				220

N.Ireland	103	3 143	355		187	
	Processed_Veg	Fresh_fruit	Cereals	Beverages	Soft_drinks	
England	360	1102	1472	57	1374	
Wales	365	1137	1582	73	1256	
Scotland	337	957	1462	53	1572	
N.Ireland	334	674	1494	47	1506	
	Alcoholic_drin	ks Confection	nery			
England	;	375	54			
Wales	4	475	64			
Scotland	4	458	62			
N.Ireland		135	41			

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

pca\$x

```
      PC1
      PC2
      PC3
      PC4

      England
      -144.99315
      -2.532999
      105.768945
      -4.894696e-14

      Wales
      -240.52915
      -224.646925
      -56.475555
      5.700024e-13

      Scotland
      -91.86934
      286.081786
      -44.415495
      -7.460785e-13

      N.Ireland
      477.39164
      -58.901862
      -4.877895
      2.321303e-13
```

```
plot( pca$x[,1], pca$x[,2], col=c("orange", "red", "blue", "darkgreen"), pch=16)
```


The "loadings' tell us how much the original variables (in our case the food) contribute to the new variables i.e. the PCs.

head(pca\$rotation)

```
PC2
                        PC1
                                                 PC3
                                                               PC4
Cheese
               -0.056955380
                              0.01601285
                                          0.02394295 -0.694538519
Carcass_meat
                0.047927628
                             0.01391582
                                          0.06367111
                                                       0.489884628
Other_meat
               -0.258916658 -0.01533114 -0.55384854
                                                      0.279023718
Fish
               -0.084414983 -0.05075495
                                          0.03906481 -0.008483145
Fats_and_oils
               -0.005193623 -0.09538866 -0.12522257
                                                       0.076097502
Sugars
               -0.037620983 -0.04302170 -0.03605745
                                                      0.034101334
```

```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```


Stop at Q9