SỞ GIÁO DỰC VÀ ĐÀO TẠO HÀ NỘI

ĐÈ CHÍNH THỨC

KÌ THI CHỌN HỌC SINH GIỚI THÀNH PHÓ LỚP 12 THPT NĂM HỌC 2018-2019

Môn thi: TOÁN

Ngày thi: 14 tháng 9 năm 2018 Thời gian làm bài: 180 phút (Đề thi có 01 trang)

Bài I (4 điểm)

Cho hàm số $y = \frac{-x}{2x+1}$ có đồ thị là (C) và đường thẳng d có phương trình y = x + m, m là tham số. Tìm m để d cắt (C) tại hai điểm phân biệt A và B sao cho tổng các hệ số góc của các tiếp tuyến với (C) tại A và B là lớn nhất.

Bài II (5 điểm)

- 1) Giải phương trình $\cos x = 1 x^2$.
- 2) Giải hệ phương trình $\begin{cases} x^2 + 3y^2 + 2xy 6x 2y + 3 = 0 \\ x^2 y + 5 = 2x\sqrt{y + 3} \end{cases}$.

Bài III (3 điểm)

Cho dãy số (a_n) xác định bởi $a_1 = \frac{1}{2}$, $a_{n+1} = \frac{a_n^2}{a_n^2 - a_n + 1}$; n = 1, 2, ...

- 1) Chứng minh dãy số (a_n) là dãy số giảm.
- 2) Với mỗi số nguyên dương n, đặt $b_n = a_1 + a_2 + ... + a_n$. Tính $\lim_{n \to \infty} b_n$.

Bài IV (6 điểm)

- 1) Trong mặt phẳng tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn tâm I, có đường cao AH. Gọi E là hình chiếu của B lên tia AI, HE cắt AC tại P. Tìm tọa độ các đình của tam giác ABC biết H(6;-4); P(11;1) và M(10;-4) là trung điểm của BC.
- 2) Cho hình lập phương ABCD.A'B'C'D'. Một mặt phẳng (P) cắt các tia AB, AD, AA' AC' lần lượt tại M, N, P, Q.
- a) Chứng minh rằng $\frac{\sqrt{3}}{AQ} = \frac{1}{AM} + \frac{1}{AN} + \frac{1}{AP}$.
- b) Gọi H là hình chiếu của A lên (P). Chứng minh rằng $AQ < \sqrt{3}AH$.

Bài V (2 điểm)

Cho các số thực a,b,c không âm thỏa mãn $a^2+b^2+c^2=1$. Tìm giá trị lớn nhất của biểu thức P=a+b+c-4abc.

	Het
Cán bộ coi thi không giải thích gì thê	m.
Họ và tên thí sinh:	Số báo danh:
Chữ kí cán bộ coi thi số 1:	Chữ kí cán bộ coi thi số 2:

LỜI GIẢI ĐỀ THI CHỌN HỌC SINH GIỚI LỚP 12, THÀNH PHỐ HÀ NỘI NĂM HỌC 2018-2019

Câu 1: (4 điểm) Cho hàm số $y = \frac{-x}{2x+1}$ có đồ thị (C) và đường thẳng d có phương trình y = x+m, m là tham số. Tìm m để d cắt (C) tại hai điểm phân biệt A và B sao cho tổng hệ số góc của các tiếp tuyến với (C) tại A và B là lớn nhất.

Lời giải

Tập xác định
$$D = \mathbb{R} \setminus \left\{ -\frac{1}{2} \right\}$$
. Ta có đạo hàm $y' = \frac{-1}{\left(2x+1\right)^2}$.

Phương trình hoành độ giao điểm $\frac{-x}{2x+1} = x + m \Leftrightarrow g(x) = 2x^2 + 2(m+1)x + m = 0$.

Ta có
$$\begin{cases} \Delta' = m^2 + 2m + 1 - 2m = m^2 + 1 > 0, \forall m \\ g\left(-\frac{1}{2}\right) = -\frac{1}{2} \neq 0, \forall m \end{cases}$$
 nên đường thẳng d luôn cắt đồ thị C tại hai

điểm phân biệt A, B với mọi giá trị thực m.

Gọi x_1 , x_2 là hoành độ của điểm A và B khi đó $\begin{cases} S = - \left(m + 1 \right) \\ P = \frac{m}{2} \end{cases}.$

Suy ra
$$K = -\left[\frac{1}{\left(2x_1 + 1\right)^2} + \frac{1}{\left(2x_2 + 1\right)^2}\right] = -\frac{4S^2 - 8P + 4S + 2}{\left(4P + 2S + 1\right)^2} = -\left(4m^2 + 2\right) \le -2$$
.

Vậy tổng hệ số góc lớn nhất của các tiếp tuyến với (C) tại A và B bằng -2 đạt được khi m=0.

Câu 2: (5 điểm)

a) Giải phương trình $\cos x = 1 - x^2$

Lời giải

Xét hàm số $f(x) = \cos x + x^2 - 1$ với $x \in \mathbb{R}$. Ta có $f'(x) = -\sin x + 2x$; $f''(x) = -\cos x + 2$. Vì $f''(x) > 0 \quad \forall x \in \mathbb{R} \Rightarrow f'(x)$ đồng biến trên \mathbb{R} . Mà f'(0) = 0 suy ra phương trình f'(x) = 0 có nghiệm duy nhất x = 0.

Bảng biến thiên:

х	$-\infty$		0		$+\infty$
f'(x)		_	0	+	
f(x)	+∞				+∞

Từ bảng biến thiên suy ra $f(x) = 0 \Leftrightarrow x = 0$.

Vậy phương trình đã cho có nghiệm là x = 0.

b) Giải hệ phương trình
$$\begin{cases} x^2 + 3y^2 + 2xy - 6x - 2y + 3 = 0 \\ x^2 - y + 5 = 2x\sqrt{y + 3} \end{cases}$$

Lời giải

Ta có:
$$x^2 + 3y^2 + 2xy - 6x - 2y + 3 = 0$$

$$\Leftrightarrow x^2 + 2(y-3)x + (y-3)^2 + 2y^2 + 4y - 6 = 0$$

$$\Rightarrow 2y^2 + 4y - 6 \le 0 \Leftrightarrow 1 \le y \le 3 (1).$$

Lại có:
$$x^2 - y + 5 = 2x\sqrt{y+3} \iff x^2 - 2x\sqrt{y+3} + y + 3 + 2(1-y) = 0$$

$$\Leftrightarrow \left(x - \sqrt{y+3}\right)^2 + 2(1-y) = 0 \Rightarrow 2(1-y) \le 0 \Leftrightarrow y \ge 1 \quad (2).$$

Từ (1) và (2)
$$\Rightarrow y = 1$$
.
Thay $y = 1$ vào hệ được $x = 2$.

Vậy hệ có nghiệm là $\begin{cases} x = 2 \\ y = 1 \end{cases}$

Câu 3: (3 điểm) Cho dãy số (a_n) xác định bởi $a_1 = \frac{1}{2}, a_{n+1} = \frac{a_n^2}{a_n^2 - a_n + 1}; n = 1, 2, ...$

- a) Chứng minh dãy số (a_n) là dãy số giảm.
- b) Với mỗi số nguyên dương n, đặt $b_n = a_1 + a_2 + ... + a_n$. Tính $\lim_{n \to +\infty} b_n$.

Lời giải

a) Xét hiệu
$$a_{n+1} - a_n = \frac{a_n^2}{a_n^2 - a_n + 1} - a_n = \frac{-a_n (a_n - 1)^2}{a_n^2 - a_n + 1}$$
.

Từ cách xác định dãy số ta có $a_n > 0 \forall n \text{ và } a_n^2 - a_n + 1 > 0 \Rightarrow a_{n+1} - a_n < 0 \forall n \in N^*$ Vậy (a_n) là dãy số giảm.

b) Ta có
$$a_{n+1} = \frac{a_n^2 - a_n + 1 + a_n - 1}{a_n^2 - a_n + 1} = 1 + \frac{a_n - 1}{a_n^2 - a_n + 1}$$

$$\Rightarrow a_{n+1} - 1 = \frac{a_n - 1}{a_n^2 - a_n + 1} \Rightarrow \frac{1}{a_{n+1} - 1} = \frac{a_n^2 - a_n + 1}{a_n - 1} = a_n + \frac{1}{a_n - 1}$$

$$\Rightarrow a_n = \frac{1}{a_{n+1} - 1} - \frac{1}{a_n - 1}$$

Suy ra
$$b_n = a_1 + a_2 + ... + a_n = \frac{1}{a_{n+1} - 1} - \frac{1}{a_1 - 1} = \frac{1}{a_{n+1} - 1} + 2(1)$$

Lại có: Dãy số (a_n) là dãy số giảm, bị chặn dưới bởi 0 nên có giới hạn, giả sử

$$\lim_{n \to +\infty} a_n = a \Rightarrow \lim_{n \to +\infty} a_{n+1} = a \Rightarrow a = \frac{a^2}{a^2 - a + 1} \Rightarrow a = 0 \text{ hay } \lim_{n \to +\infty} a_n = 0 \text{ (2)}$$

Từ (1) và (2) ta có $\lim_{n\to+\infty} b_n = 1$.

Câu 4: (6 điểm)

1) Trong mặt phẳng tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn tâm I, đường cao AH. Gọi E là hình chiếu của B trên AI, HE cắt AC tại P. Gọi M là trung điểm của BC. Biết $H\left(6;-4\right)$; $P\left(11;1\right)$ và $M\left(10;-4\right)$.

Lời giải

Hình 1

Hình 2

H không trùng M nên tam giác ABC không cân.

Vẽ đường kính AF của đường tròn (I).

Ta có $\widehat{AHB} = \widehat{AEB} = 90^{\circ}$ nên bốn điểm A, E, H, B cùng thuộc một đường tròn.

Từ đó ta có $\widehat{ABH} = \widehat{HEF} = \widehat{AFC}$ (với hình 1) hoặc $\widehat{ABH} = \widehat{AEH} = \widehat{AFC}$ (với hình 2). nên HP//CF, lại có $AC \perp CF$ suy ra $HP \perp AC$.

Ta có $\overrightarrow{HP}(5;5)$

Do vậy đường thẳng AC qua P(11; 1) có vtpt là $\overrightarrow{n}(1;1)$ có phương trình x+y-12=0 Đường thẳng BC qua H(6;-4) và M(10;-4) có phương trình y=-4.

C là giao điểm của AC và BC, tọa độ điểm C là nghiệm của hệ phương trình

$$\begin{cases} x + y - 12 = 0 \\ y = -4 \end{cases} \Leftrightarrow \begin{cases} x = 16 \\ y = -4 \end{cases}$$

Vậy C(16;-4) và do M(10;-4) là trung điểm của BC nên B(4;-4).

Đường thẳng AH vuông góc với BC và qua H(6;-4) có phương trình x=6.

A là giao điểm của AH và AC nên tọa độ là nghiệm của hệ $\begin{cases} x + y - 12 = 0 \\ x = 6 \end{cases} \Leftrightarrow \begin{cases} x = 6 \\ y = 6 \end{cases}$

Vậy
$$A(6;6); B(4;-4); C(16;-4).$$

2)

a) Theo quy tắc hình hộp ta có:

$$\overrightarrow{AC'} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'} \Rightarrow \frac{AC'}{AQ} \overrightarrow{AQ} = \frac{AB}{AM} \overrightarrow{AM} + \frac{AD}{AN} \overrightarrow{AN} + \frac{AA'}{AP} \overrightarrow{AP}.$$

Mà M, N, P, Q đồng phẳng nên $\frac{AC'}{AQ} = \frac{AB}{AM} + \frac{AD}{AN} + \frac{AA'}{AP} \Rightarrow \frac{\sqrt{3}}{AQ} = \frac{1}{AM} + \frac{1}{AN} + \frac{1}{AP}$. (Vì AC' là đường chéo hình lập phương ABCDA'B'C'D' nên $AB = AD = AA' = \frac{1}{\sqrt{3}}AC'$).

b) Dễ dàng chứng minh kết quả quen thuộc của tứ diện vuông là: $\frac{1}{AH^2} = \frac{1}{AM^2} + \frac{1}{AN^2} + \frac{1}{AP^2}.$

Mà
$$\frac{1}{AM^2} + \frac{1}{AN^2} + \frac{1}{AP^2} < \left(\frac{1}{AM} + \frac{1}{AN} + \frac{1}{AP}\right)^2$$

$$\Rightarrow \frac{1}{AH} < \frac{1}{AM} + \frac{1}{AN} + \frac{1}{AP} = \frac{\sqrt{3}}{AQ} \Rightarrow AQ < \sqrt{3}AH$$

Câu 5: (2 điểm) Cho a,b,c là các số thực không âm thỏa mãn $a^2 + b^2 + c^2 = 1$. Tìm giá trị lớn nhất của

biểu thức P = a + b + c - 4abc.

Lời giải

Không mất tính tổng quát giả sử $a \ge b \ge c$ thì từ $1 = a^2 + b^2 + c^2 \Rightarrow 1 \le 3a^2 \Rightarrow a^2 \ge \frac{1}{3}$.

Mặt khác:
$$2bc \le b^2 + c^2 = 1 - a^2 \Rightarrow 0 \le 2bc \le 1 - \frac{1}{3} = \frac{2}{3} \Rightarrow 0 \le bc \le \frac{1}{3}$$
.

Ta có:

$$P^{2} = \left[a(1-4bc)+(b+c).1\right]^{2} \le \left[a^{2}+(b+c)^{2}\right]\left[(1-4bc)^{2}+1\right] = (1+2bc)\left[(1-4bc)^{2}+1\right]$$

Dấu bằng xảy ra khi $\frac{a}{1-bc} = b + c(*)$

Đặt
$$t = bc \Rightarrow 0 \le t \le \frac{1}{3}$$
, suy ra được $P^2 \le (1 + 2t)(16t^2 - 8t + 2) = 32t^3 - 4t + 2$

Xét hàm số
$$f(t) = 32t^3 - 4t + 2$$
, $t \in \left[0; \frac{1}{3}\right]$; $f'(t) = 96t^2 - 4 = 0 \Leftrightarrow \begin{bmatrix} t = \frac{\sqrt{6}}{12} \\ t = \frac{-\sqrt{6}}{12}(l) \end{bmatrix}$.

$$f(0) = 2, f(\frac{1}{3}) = \frac{50}{27}, f(\frac{\sqrt{6}}{12}) \approx 1,4556.$$

Suy ra GTLN
$$f(t) = 2$$
 khi $t = 0 \Rightarrow \begin{bmatrix} b = 0 \\ c = 0 \end{bmatrix} \stackrel{(*)}{\Longrightarrow} \begin{bmatrix} a = c = \frac{1}{\sqrt{2}} \\ a = b = \frac{1}{\sqrt{2}} \end{bmatrix}$.

Kết luận: max $P=\sqrt{2}$, đạt được khi $\begin{cases} a=b=\frac{1}{\sqrt{2}} \ , \ \text{hoặc các hoán vị của nó.} \\ c=0 \end{cases}$

Tập thể thầy cô trên Nhóm Toán VD -VDC giải bài:

- 1. Thầy Binh Nguyen
- 2. Thầy Khải Nguyễn
- 3. Cô Trang Nguyễn Thị Thu
- 4. 1. Thầy Lê Thanh Bình -2. Thầy Huỳnh Đức Vũ
- 5. Thầy Trần Minh Ngọc

Tổng hợp: Thầy Lê Tài Thắng