Computer Science & IT

Data Structure & Programming

Array

Lecture No. 03

Recap of Previous Lecture

Topic

Slide

Topics to be Covered

Topic

LTM-Row major order

Topic

Column major order

Topic

UTM (Homework)

Topic

Pridiagmal Matrix

Topic

BA = 100 Size = 4B

A square matrix is called lower triangular if all the entries above the main

diagonal are zero. Row major orcles

an	azi	aza	031	932	Q ₃₃	a41	a42	a43	Œ44
			112						
	^								

A[1][1]	0	0	0
A[2][1]	A[2][2]	0	0
A[3][1]	A[3][2]	A[3][3]	0
A[4][1]	A[4][2]	A[4][3]	A[4][4]

$$(4-1)=3$$

No of elements in 3 Rows 1+2+3 = 6

BA = 100 Size = 4B

A square matrix is called lower triangular if all the entries above the main

diagonal are zero. Row major orcles

a_{11}	a_{21}	aza	031	932	Q ₃₃	941	G42	<u>a43</u>	æ44
				77.7					

A[1][1]	0	0	0
A[2][1]	A[2][2]	0	0
A[3][1]	A[3][2]	A[3][3]	0
A[4][1]	A[4][2]	A[4][3]	A[4][4]

Column,

$$n \times n - A[1 \cdot n][1 \cdot n]$$
 the Address of A[i][j]

1. Before ith Row No of Rows arranged

(i-1)

No of elements in $1 - (i-1)$ Rows

 $1+2+3+\cdots+(i-1)=\underline{i(i-1)}$

No- of elements arranged

Lower bound 1

Address of ALITEST = BA+
$$\left[\frac{i(i-1)}{2} + (J-1)\right] \times Size$$

A LTM A [1..50] [1..50]

With BA = 1000 Size is 2B

Address of A [25] [10] is

BA +
$$\left(\frac{i(i-1)}{2} + (j-1)\right) \times S$$
 $1000 + \left(\frac{25 \times 24}{2} + 9\right) \times 2 = 1000 + 309 \times 2 + 1000 + 618$

Topic: Question

 $1000 + \left[\frac{50 \times 49}{2} + 49\right] \times 2$

Q A[1...100][1...100] is lower triangular matrix. Base address is 1000 and each element occupies 2-Bytes of space. What is the address of A[50][50] in row major order?

We gre at 50th row No. of Rows completed 49

$$1+2+3+\cdots 49 = \frac{49\times50}{2} = 49\times25$$

In 50th Row wase in 50th column. No of elements assunged is (50-1)=49 (50-1)=49

Topic: Answer

Before reaching 50th row, number of rows completed is 49

Total number of elements in 49 rows

$$1+2+3+....+49 = (49 \times 50)/2 = 1225$$

We are at 50th column, number of element completed is

Total number of element completed is 1225+49= 1274

Address of a[50][49] is = 1000+1274*2=3548

Topic: Question

Q A[1...100][1...100] is lower triangular matrix. Base address is 1000 and each element occupies 2 Bytes of space. What is the address of A[20][10] in row major order?

Topic: Answer

A[20][10]

Before reaching 20th row, number of rows completed is 19

Total number of elements in 19 rows

$$1+2+3+....+19 = (19\times20)/2=190$$

We are at 10th column, number of element completed is 9

Total number of element completed is 190+9 = 199

Address of a[20][10] is = 1000+199*2=1398

A square matrix is called lower triangular if all the entries above the main

diagonal are zero. Column major order

	\N		1		7			Y \	-)
Q11	Q21	G31	941	Q22	932	042	Q33	Q43	Q44 136	

A[1][1]	0	0	0
A[2][1]	A[2][2]	0	0
A[3][1]	A[3][2]	A[3][3]	0
A[4][1]	A[4][2]	A[4][3]	A[4][4]

4X4 LTM

$$= (j-1)$$

$$= \underbrace{(J-1)}_{1 \text{st}} \underbrace{1}_{\text{column}} - \underline{n} \underbrace{(n-0)}_{\text{t}}$$

$$(J-1)^{+h}$$
 Column - $n-(J-1-1)$
 $n-(J-2)$

$$n + n - 1 + n - 2 - 1 - 1 + n - (1 - 2)$$

$$N(J-1) - (J-1)(J-2)$$

$$n(n+1)$$

$$(J-2)(J-2+1)$$
 $=$
 $(J-2)(J-1)$
 $=$
 $=$

Combining both

$$BA+[n(j-1)-\frac{(j-1)(j-2)}{2}+(i-j)]\times Size$$

Pw

Q A LTM A[1.50][1.50] amonged Column major order (Non zero elements)
BA = Lovo Address of A [40][10]

Size -2B

$$\frac{1}{2}$$
 $\frac{1}{3}$ $\frac{1}$

$$BA + [n(j-1) - (j-1)(j-2) + (i-j)] \times Size$$

A [40] [10]

$$1000 + \left[50 \times 9 - \frac{9 \times 8}{2} + 30\right) \times 2$$

$$1000 + \left[50 \times 9 - \frac{9 \times 8}{2} + (25-10) \right] \times 2$$

$$1000 + \left[450-36+15 \right] \times 2 = 1000+429 \times 2$$

$$1000 + 858 = 1858$$

My be ISRO PW # Q Suppee a 2-D array is given 2 each Row consists of (4 elements,) crossanged in RMO. Lower Bound BA is 1 on 2 Size of element is (2B) An element A[i][j] stored in (1084) Address What is the value of it.

An LTM A [-4.0] [3...7] is stored in RMO

from Location 1000 (Non zero elements)

Size is 28 what is the Address of A [-3][4]

BA+
$$\left[\frac{i(i-1)}{2} + (j-1)\right] \times S$$

A [-4.0] [3.-7]

+5(+5(-2)(-2)

A[1].6] [1..5]

1004

HW	1	UTM	(upper	toinquier	ma loix)

a_{12}	a13
agz	922
0	Q83

1. Row majors 2. Column majors

2 mins Summary

Topic

LTM, RMO

Topic

LTM CMO

Topic

practice problem

Topic

Topic

THANK - YOU