Big O Notation

Marcus A. Zimmermann

MAZ immer mann 26@gmail.com

 $June\ 6,\ 2018$

BIG O NOTATION

FAMILY OF BACHMANN-LANDAU NOTATIONS

Name	Notation
Big O(micron)	$\mathcal O$ or O
Big Omega	Ω
Big Theta	Θ
Small O(micron)	o
Small Omega	ω
On the order of	\sim

FORMAL DEFINITIONS

T(N) = O(f(N)) if there are positive constants c and n_0 such that $T(N) \leq cf(N)$ when $N \geq n_0$

 $T(N) = \Omega(g(N))$ if there are positive constants c and n_0 such that $T(N) \geq cg(N)$ when $N \geq n_0$

 $T(N) = \Theta(h(N))$ if and only if T(N) = O(h(N)) and $T(N) = \Omega(h(N))$

$$T(N) = o(p(N))$$
 if $T(N) = O(p(N))$ and $T(N) \neq \Theta(p(N))$

EXAMPLE

If $f(n) = 4n^2 + 16b + 2$, is $f(n) = O(n^n)$? Yes. There should exist positive constants c and n_0 such that $f(n) \le cf(n)$ when $n \ge n_0$ (ex: consider c = 5 and $n_0 = 2$).