کاربرد ریاضیات – جلسه چهارم دستگاه معادلات خطی

دكتر ابوالقاسم امامزاده

- □ اصولاً در موارد کاربردی دستگاه های بزرگ پیش می آید.
- □ معمولا دستگاه های بزرگ با روش حذف گاوس قابل حل با
 دقت مورد نظر نیست (بعلت خطای گرد کردن)
- □ نمونه دستگاه های بزرگ را میتوان در سایت Matrix Market که از طرف تحقیقات بوئینگ تهیه شده است، مشاهده نمو د.
 - روشهای حل دستگاه
 - 🗖 روش ژاکوبی
 - 🗖 روش گاوس سایدل

قبل از ورود به روش ها چند نکته مقدماتی ۱. یک دستگاه به یکی از شکلهای زیر قابل ارائه است

يا
$$AX = B$$
 يا $\sum_{i=1}^{n} a_{ij}x_j = b_i$ $i = 1 \cdots n$

۲. تعریف غالب قطری

$$\sum_{\substack{j=1\\i\neq i}}^n |a_{ij}| < |a_{ii}|$$

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n}\\ \vdots & \ddots & \vdots\\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

$$i=1,\cdots,n$$
 برای همه i ها

روش ژاکوبی از مراحل زیر تشکیل میشود

1. Pivoting

جابجا کردن معادلات با هدف قراردادن بزرگترین قدر مطلق ضرایب در قطر

2. Test

آیا ماتریس ضرایب از مرحله قبل غالب قطری است یا خیر

3.
$$x_i = \frac{1}{a_{ii}} \left[b_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j \right]$$
 $i = 1, \dots, n$

4. انتخاب $x_i^{(0)}$ $i=1,\cdots,n$ اگر ان تست مرحله ۲ ماتریس ضرایب غالب قطری باشد $x_i^{(0)}$ $i=1,\cdots,n$ با هر حدس اولیه $x_i^{(0)}$ به جواب می رسد.

روش ژاکوبی از مراحل زیر تشکیل میشود

مرحله تكرار .5

$$x_{i}^{(k+1)} = \frac{1}{a_{ii}} \left[b_{i} - \sum_{\substack{j=1\\j\neq i}}^{n} a_{ij} x_{j}^{(k)} \right] \qquad i = 1, \dots, n \\ k = 0, 1, \dots$$

م برای همه i ها $i=1,\cdots,n$ ها $i=1,\cdots,n$ داده شده $i=1,\cdots,n$ داده فده $i=1,\cdots,n$

مثال

از روش ژاکوبی با
$$\varepsilon = 10^{-5}$$
 حل کنید.

$$\begin{cases} 4x + 37y + 8z = 2\\ 5x + 9y + 41z = 3\\ 31x + 11y + 3z = 1 \end{cases}$$

مثال

مرحله اول Pivoting معادلات را به شکل زیر جابجا میکنیم

$$\begin{cases} 31x + 11y + 3z = 1\\ 4x + 37y + 8z = 2\\ 5x + 9y + 41z = 3 \end{cases}$$

مرحله دوم: ماتریس ضرایب غالب قطری است. مرحله سوم

$$x = \frac{1}{31} [1 - 11y - 3z]$$

$$y = \frac{1}{37} [2 - 4x - 8z]$$

$$z = \frac{1}{41} [3 - 5x - 9y]$$

مثال

مرحله چهارم: انتخاب حدس اولیه مهم نیست. بهترین انتخاب صفر است. $y^{(0)}=0 \qquad \qquad z^{(0)}=0$

$$x^{(0)} = 0$$
 $y^{(0)} = 0$ $z^{(0)} = 0$

تكرار اول

$$x^{(1)} = \frac{1}{31}$$
 $y^{(1)} = \frac{2}{37}$ $z^{(1)} = \frac{3}{41}$

تكرار دوم

$$x^{(2)} = \frac{1}{31} \left[1 - 11 \left(\frac{2}{37} \right) - 3 \left(\frac{3}{41} \right) \right] \qquad \cdots$$
$$y^{(2)} = \frac{1}{37} \left[2 - 4 \left(\frac{1}{31} \right) - 8 \left(\frac{3}{41} \right) \right] \cdots$$
$$z^{(2)} = \frac{1}{41} \left[3 - 5 \left(\frac{1}{31} \right) - 9 \left(\frac{2}{37} \right) \right] \cdots$$

تکرارهای بعدی تا رسیدن به دقت مورد نظر یعنی 3 با استفاده از نرم افزار در تکرار دهم

 $x^{(10)} = 0.01228187$ $y^{(10)} = 0.03908291$ $z^{(10)} = 0.06309179$ ملاحظه میشود که با افزایش تکرار به پاسخ مسأله نزدیکتر میشویم.

- □ یک اشکال این روش از جدیدترین اطلاعات بدست آمده در همان تکرار استفاده نمیشود و این باعث کندی روش است.
 - □ در روش بعدی یعنی روش گاوس سایدل از جدیدترین اطلاعات بدست آمده در همان تکرار استفاده میشود و در نتیجه سرعت روش خیلی بالاتر است.

روش گاوس – سایدل

در این روش مراحل همان است که در روش ژاکوبی است باستثناء مرحله پنجم که تکرار است، فرمول تکرار بشکل زیر تصحیح میشود؛

5.
$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right]$$
 $i = 1, \dots, n$
 $k = 0, 1, \dots$

اكنون اين روش را براى مثال قبل بكار ميبريم.

مرحله پنجم: تكرار اول

$$x^{(1)} = \frac{1}{31} \qquad y^{(1)} = \frac{1}{37} \left[2 - 4 \left(\frac{1}{31} \right) \right] = \frac{58}{1147}$$
$$z^{(1)} = \frac{1}{41} \left[3 - 5 \left(\frac{1}{31} \right) - 9 \left(\frac{58}{1147} \right) \right] = \frac{2734}{47027}$$

به همین شکل تکرارهای بعدی با استفاده از نرم افزار و رسیدن به دقت مورد نظر

در تکرار ششم

$$x^{(6)} = 0.012284$$
 $y^{(6)} = 0.03908$ $z^{(6)} = 0.063093$