Classification of Endometrial cancer using Machine Learning

Robert Różański

Endometrial cancer

Type I (less aggressive):

- Endometroid adenocarcinoma

Type II (more aggressive):

- Serous cystadenocarcinoma
- Papillary serous adenocarcinoma
- Clear cell adenocarcinoma

Data

QIAseq Targeted DNA Panels

Digital DNA sequencing to confidently detect low-frequency variants

- Digital sequencing enabled by molecular barcodes to remove PCR duplicates
- Complete Sample to Insight solution streamlines the workflow
- Compatibility with low-quality DNA enables efficient sequencing of FFPE and cfDNA samples
- Minimal DNA input to preserve precious samples
- Optimized buffers and conditions to achieve high coverage of GC-rich regions

The QIAseq targeted DNA Panels have been developed as a complete Sample to Insight solution to enable digital DNA sequencing by utilizing molecular barcodes. Digital DNA sequencing is a unique approach to detect low-frequency variants with high confidence by overcoming the issues of PCR duplicates, false positives and library bias.

Data

Adenoma

Tubular Adenoma: BRAF, FBXW7, KRAS.

Tubulovillous Adenoma: BRAF, CTNNB1, KRAS, NRAS, PIK3CA (p110-alpha).

Villous Adenoma: BRAF, KRAS.

Other Adenoma-Related Genes: APC, DMD, SMAD4 (MADH4), STK11 (LKB1), TCF7L2.

Carcinoid-Endocrine Tumor APC, CTNNB1, TP53 (p53).

Carcinoma

Adenocarcinoma: ACVR1B, AKT1, APC, ATM, ATP6V0D2, AXIN2, BAX, BLM, BMPR1A (ALK3), BRAF, BRCA1, BRCA2, BUB1B, CASP8 (FLICE), CDC27, CDH1 (E-Cadherin), CDK4, CDKN2A (p16INK4a), CHEK2 (RAD53), CTNNA1, CTNNB1, DCC, DMD, EGFR (ERBB1), ENG (EVI-1), EP300, EPCAM, ERBB2 (HER-2, NEU), FBXW7, FGFR3, FLCN, FZD3, GALNT12, GPC6, GREM1, KIT (CD117), KRAS, MAP2K4 (MKK4, JNKK1), MAP7, MET, MIER3, MLH1, MLH3, MSH2, MSH3, MSH6, MUTYH, MY01B, NRAS, PALB2, PIK3CA (p110-alpha), PIK3R1 (p85-ALPHA), PMS1, PMS2, POLD1, POLE, PTEN, PTPN12, RET, RPS20, SLC9A9, SMAD2 (MADH2), SMAD4 (MADH4), SRC, STK11 (LKB1), TCERG1, TCF7L2, TGFBR2, TP53 (p53), WBSCR17.

Neuroendocrine: BRAF, KRAS.

Serrated Carcinoma: BRAF, PIK3CA (p110-alpha).

Squamous Cell Carcinoma: KRAS, TP53 (p53).

Other Carcinomas: BRCA2, CDKN2A (p16INK4a).

Training Data


```
"genomic dna change": "chr12:g.71567009 71567010insTATATAAGTATTACTGGTAGAAGATTCTAGACAGGGGT",
      "ssm id": "1f850024-4e34-512b-880d-734e133bd006",
101
102
      "mutation_subtype": "Small insertion"
103 },{
      "consequence": [
          "transcript": {
106
            "is canonical": false,
            "gene": {
              "symbol": "PDE12",
110
              "gene id": "ENSG00000174840"
111
            },
112
            "aa change": null,
113
            "annotation": {
114
              "vep_impact": "MODIFIER",
115
              "polyphen impact": "",
              "sift impact": ""
116
117
            "consequence type": "3 prime UTR variant"
118
119
120
        },
121
122
          "transcript": {
123
            "is canonical": true,
124
            "gene": {
125
              "symbol": "PDE12",
126
              "gene id": "ENSG00000174840"
            },
128
            "aa change": null,
129
            "annotation": {
              "vep impact": "MODIFIER",
130
131
              "polyphen impact": "",
132
              "sift impact": ""
133
            },
134
            "consequence type": "3 prime UTR variant"
135
136
137
138
      "genomic dna change": "chr3:g.57560088A>C",
139
      "ssm id": "c088a181-5490-5028-8d0f-01912288c38b",
      "mutation subtype": "Single base substitution"
141 }.{
142
      "consequence": [
```

consequence_cype . Incl on_variante

```
"genomic dna change": "chr12:g.71567009 71567010insTATATAAGTATTACTGGTAGAAGATTCTAGACAGGGGT",
      "ssm id": "1f850024-4e34-512b-880d-734e133bd006",
101
102
      "mutation subtype": "Small insertion"
103 },{
      "consequence": [
          "transcript": {
106
            "is canonical": false,
            "gene": {
              "symbol": "PDE12",
110
              "gene id": "ENSG00000174840"
111
            },
112
            "aa change": null,
113
            "annotation": {
114
              "vep_impact": "MODIFIER",
115
              "polyphen impact": "",
              "sift impact": ""
116
117
            "consequence type": "3 prime UTR variant"
118
119
120
        },
121
122
          "transcript": {
123
            "is canonical": true,
            "gene": {
"symbol": "PDE12",
126
              "gene id": "ENSG00000174840"
            },
128
            "aa change": null,
129
            "annotation": {
              "vep impact": "MODIFIER",
130
131
              "polyphen impact": "",
132
              "sift impact": ""
133
            },
134
            "consequence type": "3 prime UTR variant"
135
136
137
138
      "genomic dna change": "chr3:g.57560088A>C",
139
      "ssm id": "c088a181-5490-5028-8d0f-01912288c38b",
      "mutation subtype": "Single base substitution"
141 }.{
142
      "consequence": [
```

consequence_cype . Incom_vanitaire

```
consequence_cype . - Incom_vanitaire
      "genomic dna change": "chr12:g.71567009 71567010insTATATAAGTATTACTGGTAGAAGATTCTAGACAGGGGT",
      "ssm id": "1f850024-4e34-512b-880d-734e133bd006",
101
102
      "mutation subtype": "Small insertion"
103 },{
      "consequence": [
          "transcript": {
106
            "is canonical": false,
            "gene": {
              "symbol": "PDE12",
110
              "gene id": "ENSG00000174840"
111
            },
112
            "aa change": null,
113
            "annotation": {
114
              "vep_impact": "MODIFIER",
115
              "polyphen impact": "",
              "sift impact": ""
116
117
            "consequence type": "3 prime UTR variant"
118
119
120
        },
121
122
          "transcript": {
123
            "is canonical": true,
            "gene": {
"symbol": "PDE12",
126
              "gene id": "ENSG00000174840"
            },
128
            "aa change": null,
129
            "annotation": {
              "vep impact": "MODIFIER",
130
131
              "polyphen impact": "",
132
              "sift impact": ""
133
            },
134
            "consequence type": "3 prime UTR variant"
135
136
137
138
      "genomic dna change": "chr3:g.57560088A>C",
139
      "ssm id": "c088a181-5490-5028-8d0f-01912288c38b",
      "mutation subtype": "Single base substitution"
141 }.{
142
      "consequence": [
```

```
"genomic dna change": "chr12:g.71567009 71567010insTATATAAGTATTACTGGTAGAAGATTCTAGACAGGGGT",
      "ssm id": "1f850024-4e34-512b-880d-734e133bd006",
101
102
      "mutation subtype": "Small insertion"
103 },{
      "consequence": [
          "transcript": {
106
            "is canonical": false,
            "gene": {
              "symbol": "PDE12",
110
              "gene id": "ENSG00000174840"
111
            },
112
            "aa change": null,
113
            "annotation": {
114
              "vep_impact": "MODIFIER",
115
              "polyphen impact": "",
              "sift impact": ""
116
117
            "consequence type": "3 prime UTR variant"
118
119
120
        },
121
122
          "transcript": {
123
            "is canonical": true,
            "gene": {
"symbol": "PDE12",
126
              "gene id": "ENSG00000174840"
            },
128
            "aa change": null,
129
            "annotation": {
              "vep impact": "MODIFIER",
130
131
              "polyphen impact": "",
132
              "sift impact": ""
133
            },
134
            "consequence type": "3 prime UTR variant"
135
136
137
138
      "genomic dna change": "chr3:g.57560088A>C",
139
      "ssm id": "c088a181-5490-5028-8d0f-01912288c38b",
      "mutation subtype": "Single base substitution"
141 }.{
142
      "consequence": [
```

consequence_cype . - Incom_vanitaire

Feature Engineering

- gene
- VEP
- GO
- Signor

Feature engineering: genes and VEPs

genes

4							
case_id	type diagnosis	ACVR1B	AKT1	ALK3	APC	ATM	ATP6V0D2
8a0a58a0-5	2 Serous cysta	ŗ	0		0	0	0
4db38349-2			0		0 1	. 1	. 0
119b1761-a	 1 Endometrioio 	y (*)	<i>j</i> 1	4	0 1	. 1	. 1
435b57e7-5			. 1	4	0 1	. 1	. 1

VEP 1

4							
case_id	type diagnosis	('ACVR1B', 'HIGH')	('ACVR1B', 'LOW')	('ACVR1B', 'MODERATE') (('ACVR1B', 'MODIFIER')	('AKT1', 'HIGH')	('AKT1', 'LOW')
8a0a58a0-5	2 Serous cysta	0	0	0	0	0	0
4db38349-2	1 Endometrioie	<i>y</i> 0′	0	1	1	. 0	0
119b1761-a	 1 Endometrioio 	, O	0	0	0	0	/ O
435b57e7-5	1 Endometrioie	A O	0	0	1	. 0	C

VEP 2

1							
case_id	type diagnosis	('ACVR1B', 'MODIFIER')	('ACVR1B', 'VEP_SCORE')	('AKT1', 'MODIFIER')	('AKT1', 'VEP_SCORE')	('ALK3', 'MODIFIER')	('ALK3', 'VEP_SCORE')
8a0a58a0-5	2 Serous cysta	· O	0	C	0	0	0
4db38349-2	1 Endometrioio	1	. 2		0	0	0
119b1761-a	1 Endometrioie	· 0	0	1	1 2	2 0	0
435b57e7-5	1 Endometrioio	1	. 0	1	. 2	2 0	0

VEP 3

case_id	type diagnosis	ACVR1B	AKT1	ALK3	APC	ATM	ATP6V0D2
8a0a58a0-5	2 Serous cysta	0	0	C	(0	C
4db38349-2			0	C) 3	3	C
119b1761-ə		0	2	C) 2	2 3	3
435b57e7-5		0	2	C) 2	2	2

Feature engineering: Gene Ontology

Feature engineering: Gene Ontology

nb. of genes / GO term

information gain

Alterovitz et al., "GO PaD: The Gene Ontology partition database"

Feature engineering: Gene Ontology

4								
case_id	GO:	GO:0006355	GO:0006468	GO:0006508	GO:0006511	GO:0006886	GO:0006915	GO:0006954
8a0a58a0-5	0	2	. 4	0	0	0	0	0
4db38349-2	0	10	16	3	0	0	14	0
119b1761- <i>a</i>	0	4	14	2	0	0	11	2
435b57e7-5	0	6	17	3	3	0	20	4

Feature engineering: Cancer Models

Feature engineering: Cancer Models

case_id	type diagnosis	Core Binding Factor comp	1-phosphatidyl-1D-myo-ino	2-oxoglutarate(2-)	AEP complex	AKT	AP1
8a0a58a0-5	2 Serous cysta	0	2	0	C	2	0
4db38349-2	1 Endometrioio	0	5	0	C	4	0
119b1761-a	1 Endometrioio	0	7	0	0	5	0
435b57e7-5	1 Endometrioio	0	5	0	0	5	0

Feature engineering: summary

Supplementary Table 2. Feature sets developed in this study.

	1.6.		
Name of the feature set		Number of features in	Set description
		each set	
	Gene	71	Binary: presence or absence of mutations in genes
VEP 1		281	one-hot encoded VEP scores
VEP 2		142	one-hot encoded VEP scores without MODIFIER
VEP 3		71	ordinal VEP encoding (0-3)
VEP 4		71	binary VEP encoding, only MODERATE and HIGH
VEP 5		71	binary VEP encoding, only HIGH
GO	Gene	3-281	Mutations or VEP scores assigned to Gene Ontology biological process terms. First, the terms were stratified using information
(3-13)	VEP 3	3-281	gain producing 10 sets of terms (GO 3-13), each set containing terms of similar level of generality. Then, for each GO term set,
	VEP 4	3-281	values from feature sets gene and vep_3-5 were mapped to corresponding GO terms and their values summed. For brevity, the
	VEP 5	3-281	feature sets based on Gene Ontology were not described separately. Because the number of GO terms differs between the levels, the
			number of features also differs (roughly, there are fewer general terms then the more specific ones).
SIGNOR	Gene	65	Mutations and VEP scores assigned to objects in a tumour signal transduction model. First, a number of tumour-related signaling
	VEP 3	65	models from SIGNOR was merged forming a network with 205 nodes and 777 edges representing causal relationships important in
	VEP 4	65	oncogenesis. Next, for each node, a set of all predecessor nodes was found. Next, each predecessor was assigned a value copied
	VEP 5	65	from feature sets gene and vep_3-5. Finally, all nodes were assigned a value by summing up values of all predecessors. Features that had zero values across all cases were dropped.
SIGNOR enriched	Gene/VEP	113	As SIGNOR, but genes that were missing from the network were added to the feature sets, with values identical as in the original feature sets.

Finetuning

Best Feature Set

