

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

C12Q 1/68, G01N 33/538

(11) International Publication Number:

WO 90/08840

A1

US

(43) International Publication Date:

9 August 1990 (09.08.90)

(21) International Application Number:

PCT/US90/00452

(22) International Filing Date:

26 January 1990 (26.01.90)

(30) Priority data:

306,954

3 February 1989 (03.02.89)

(74) Agent: TUCKER, J., Lanny; 343 State Street, Rochester, NY 14650 (US).

(81) Designated States: AT (European patent), BE (European

patent), CA, CH (European patent), DE (European pa-

patent), CA, CH (European patent), DE (European patent), PK (European patent), ES (European patent), FI, FR (European patent), GB (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent), SU, US.

(60) Parent Application or Grant

(63) Related by Continuation

Filed on

306,954 (CIP) 3 February 1989 (03.02.89)

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(71) Applicants (for all designated States except US): EASTMAN KODAK COMPANY [US/US]; 343 State Street, Rochester, NY 14650 (US). CETUS CORPORATION [US/US]; 1400 Fifty-Third Street, Emeryville, CA 94608 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): FINDLAY, John, Bruce wentors/Applicants (for US only): FINDLAY, John, Bruce [US/US]; 148 Crossroads Lane, Rochester, NY 14612 (US). MAYER, Janice, Marie [US/US]; 142 Parkwood Road, Rochester, NY 14615 (US). KING, Marlene, Marie [US/US]; 28 Gebhardt Road, Penfield, NY 14526 (US). OAKES, Fred, Terry [US/US]; 216 Stanton Lane, Rochester, NY 14617 (US). CHANG, Chu-an [US/US]; 936 Richmond Street, El Cerrito, CA 94530 (US). LEVENSON Corey Howard [US/US]: 311 Mandalay VENSON, Corey, Howard [US/US]; 311 Mandalay Road, Oakland, CA 94618 (US).

(54) Title: NUCLEIC ACID TEST ARTICLE AND ITS USE TO DETECT A PREDETERMINED NUCLEIC ACID

(57) Abstract

A nucleic acid test article can be used to detect a predetermined nucleic acid found in a specimen. The test article comprises a substrate having two opposing surfaces and a water-insoluble nucleic acid probe attached to at least one of the surfaces in a distinct zone thereof. The probe is composed of a water-insoluble particle to which is covalently attached an oligonucleotide which is complementary to a predetermined nucleic acid of interest. Substantially none of the probe is embedded within the surface of the substrate. Particularly useful test articles have a multiplicity of water-insoluble probes located in distinct zones on one of the substrate surfaces useful for the detection of a multiplicity of predetermined nucleic acids.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
ΑU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MR	Mauritania
BE	Belgium	GA	Gabon	MW	Malawi
BF	Burkina Fasso	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	HU	Hungary	NO	Norway
BJ	Benin	Π	Italy	RO	Romania
BR	Brazil	JР	Japan	SD	Sudan
CA	Canada	KP	Democratic People's Republic	SE	Sweden
CF	Central African Republic		of Korea	SN	Senegal
CG	Congo	KR	Republic of Korea	SU	Soviet Union
CH	Switzerland	Ц	Liechtenstein	TD	Chad
CM	Cameroon	LK	Sri Lanka	TG	Togo
DE	Germany, Federal Republic of	EU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		

-1-

NUCLEIC ACID TEST ARTICLE AND ITS USE TO DETECT
A PREDETERMINED NUCLEIC ACID

Reference to Related Applications

This application is a continuation—in—part of U.S. Serial No. 306,954 filed February 3, 1989, by John B. Findlay et al.

Field of the Invention

35

This invention relates to diagnostic procedures, and particularly diagnostic procedures for the detection of nucleic acids. It also relates to a test article useful in such procedures.

Background of the Invention

Nucleic acid hybridization is a well known procedure for investigating the identity of nucleic acids. Hybridization is based on complementary base pairing. When single-stranded nucleic acids are incubated in solution, complementary base sequences pair to form double-stranded hybrid molecules. These molecules can be separated when desired by denaturation.

Also known are nucleic acid probe assays which can be used to assay a specimen for the presence of a predetermined (also known as a target) nucleic acid for diagnosis of disease, genetic defects, genetic engineering or characterization, or for testing blood, food or other materials for contamination or other medical or research purposes [see, for example, US-A-4,358,535 (issued November 9, 1982 to Falkow et al), WO-A-88/01302 (published February 25, 1988) and references mentioned therein].

Among nucleic acid probe assays are what are known in the art as "sandwich" assays in which two probes are used to sandwich the nucleic acid of interest therebetween in a three-part hybridized product. Generally, one probe is a "capture" probe

which is immobilized or capable of becoming so on a solid surface, and the other probe is detectably labeled or capable of becoming so. Sandwich assays have the advantage that the predetermined nucleic acid need not be immobilized directly to a solid support, and offer the potential for higher specificity because two hybridization reactions are required for detection instead of one.

Most "capture" probes used in probe assays

are generally composed of a sequence of nucleotides
which form an oligonucleotide which is complementary
to at least one nucleic acid sequence of the
predetermined nucleic acid being detected. Various
methods are known for attaching oligonucleotides to

solid supports for affinity chromatography separation
of nucleic acids and for probe assays. Among the
considerable literature describing such methods are
WO-A-88/01302 (noted above), EP-A-0 235 726
(published September 9, 1987) and US-A-4,673,657

(issued June 16, 1987 to Christian).

A significant advance in the art is described in US-A-4,683,195 (issued July 28, 1987 to Mullis et al) and US-A-4,683,202 (issued July 28, 1987 to Mullis). Without going into extensive detail, these patents describe an amplification 25 process wherein primers are hybridized to nucleic acid templates in the presence of a polymerization agent (such as a polymerase) and four deoxyribonucleoside triphosphates, and extension 30 products are formed from the primers. These products are denatured and used as templates in a cycling reaction which amplifies the number and amount of predetermined nucleic acid to facilitate its subsequent detection. This amplification process can be carried out cyclically as many times as desired to 3.5 produce a larger quantity of detectable material from a small amount of predetermined nucleic acid.

-3-

Once the target sequence has been adequately amplified to detectable quantities, the mode of detection is not critical. Many techniques for detection are described in the art including the use of probes labeled with radioisotopes, biotin or enzymes (linked to the probe through a biotin—avidin linkage) or gel electrophoresis. Other probes are used for capturing the amplified product on a support.

US-A-4,727,019 (February 23, 1988 to Valkirs et al) describes analytical methods and apparatus in which nucleic acids can be detected using probes immobilized directly to a porous substrate (such as a membrane) in a localized region. Alternatively, the probe can be embedded within the porous matrix.

While directly attaching probes to such substrates or embedding them therein may provide accurate and sensitive assays where the predetermined nucleic acid is present in the test specimen in generally large concentrations, it has limitations where the

o concentrations are very low. As research proceeds in this field of art, the need to detect lower quantities (even a single molecule) is of greater importance. Thus, many conventional methods and apparatus for nucleic acid testing are deficient.

Similarly, an analytical method is described in EP-A-0 200 381 (published November 5, 1986) which utilizes nucleic acids attached to polymeric particles which are embedded within a porous matrix. Moreover, several probes can be embedded in distinct regions of the matrix so that a multiplicity of nucleic acids can be detected simultaneously.

The desire to detect one or more nucleic acids simultaneously remains in the art. However, as noted above, there is also a need to detect increasingly lower concentrations of those acids. This requires high sensitivity by the probes and analytical procedures.

35

Summary of the Invention

The problems noted above are overcome with a nucleic acid test article comprising a substrate having at least first and second opposing surfaces, and having affixed in at least one distinct zone of at least one of the opposing surfaces, a water—insoluble nucleic acid probe,

the probe comprising an oligonucleotide complementary to a predetermined nucleic acid, which oligonucleotide is covalently attached to a water—insoluble particle, and substantially none of the probe being embedded within the opposing surface.

Moreover, a method for the detection of a predetermined nucleic acid comprises:

A. contacting a specimen suspected of containing a predetermined nucleic acid with the nucleic acid test article described above,

to form a hybridized product of predetermined nucleic acid and the water—insoluble probe,

- B. prior to, simultaneously with or subsequently to step A, contacting the specimen with a detectably labeled probe which is complementary to the predetermined nucleic acid to form an immobilized sandwich product of the predetermined nucleic acid hybridized with both the water-insoluble probe and labeled probe,
 - C. separating the immobilized sandwich product from nonimmobilized materials, and
 - D. detecting the immobilized sandwich product of as an indication of the amount of predetermined nucleic acid in the specimen.

More particularly, a method for the detection of a predetermined nucleic acid comprises:

A. amplifying a predetermined nucleic acid found in a specimen in the presence of complementary primers, deoxyribonucleotide triphosphates and a polymerization agent,

-5-

B. contacting the amplified predetermined nucleic acid with the nucleic acid test article described above,

to form an immobilized hybridized product of predetermined nucleic acid and the water-insoluble probe,

- C. separating the immobilized product from nonimmobilized materials, and
- D. detecting the immobilized product as an indication of the amount of predetermined nucleic acid in the specimen.

The present invention provides a means for achieving rapid and accurate detection of one or more nucleic acids in a specimen, such as a biological

15 specimen. It is particularly advantageous that the present invention allows highly sensitive assays where the targeted nucleic acid is present in extremely low concentrations. Moreover, the test article of this invention is easily prepared and has considerable manufacturing efficacies. Because the probes are composed of water—insoluble particles, they are easily deposited on a suitable substrate or incorporated into test devices for use later on. Thus, the use of probe solutions and accompanying disadvantages are avoided.

The advantages are achieved by using water—insoluble probes which are affixed to substrates in a specific location thereon. Moreover, the probes are not embedded within the substrate, as taught in the art, so that more surface area of the probe is exposed to the test specimen, and assay sensitivity is enhanced. An important advantage of this invention is that a multiplicity of predetermined nucleic acids can be detected simultaneously using a multiplicity of water—insoluble probes affixed to the

substrate in individual locations. In a preferred embodiment, the test article of this invention is incorporated within a self-contained test device which may contain all reagents for the assay. If some reagents are not preincorporated, the test device can be a container for the assay after reagent addition.

Brief Description of the Drawings

FIG. 1 is a top view of a test article of 10 this invention having a water-insoluble probe immobilized in a localized area of the substrate.

FIG. 2 is a cross-sectional view taken along line II-II of FIG. I.

FIG. 3 is a cross-sectional view similar to 15 FIG. II of a different test article embodiment of this invention, having a multiplicity of localized probes on a substrate.

FIG. 4 is a cross-sectional view of still another embodiment of this invention in which a 20 water-insoluble probe is localized on a membrane located at the bottom of a test well.

Detailed Description of the Invention

As used herein in referring to primers, probes or oligomer fragments to be detected or used in detection of a nucleic acid, the term "oligonucleotide" refers to a molecule comprised of two or more deoxyribonucleotides or ribonucleotides, and preferably more than three. The exact size is not critical but depends upon many factors including the ultimate use or function of the oligonucleotide. The oligonucleotide may be derived synthetically or by cloning.

The term "primer" refers to an oligonucleotide, whether naturally occurring or synthetically produced, which is capable of acting as

-7-

a point of initiation of synthesis when subjected to conditions in which synthesis of a primer extension product complementary to a nucleic acid strand is induced. Such conditions include the presence of nucleotides (such as the four standard deoxyribonucleotide triphosphates) and an agent for polymerization such as a DNA polymerase, and suitable temperature and pH.

In one embodiment, the primer contains a

double-stranded, labeled nucleic acid region adjacent
to a single-stranded region. The single-stranded
region contains a nucleic acid sequence which is
sufficiently complementary to the template strand to
hybridize therewith. The double-stranded region, or
tail, of the primer can be labeled with a detectable
moiety which is capable of producing a detectable
signal or which is useful in capturing or
immobilizing the extension product.

In other and preferred embodiments, the
primer is entirely single-stranded. Preferably, the
primer is a single-stranded
oligodeoxyribonucleotide. It must be sufficiently
long to prime the synthesis of extension products in
the presence of the polymerization agent, but its
exact size will vary depending upon the use
contemplated, the complexity of the target sequence,
reaction temperature and the source of the primer.
Generally, each primer used in this invention will
have from about 15 to about 50 nucleotides, and
preferably, it has from about 20 to about 30
nucleotides.

The primers used in the present invention are selected to be "substantially" complementary to the different strands of each specific sequence to be amplified. This means that they must be sufficiently complementary to hybridize with their respective strands to form the desired hybridized products.

-8-

Noncomplementary bases may be incorporated therein as long as they do not interfere with hybridization and formation of extension products. Preferably, the primers have exact complementarity to obtain the best results in amplification efficiency.

Primers useful herein can be obtained from a number of sources or prepared using known techniques and equipment, including for example, an ABI DNA Synthesizer (available from Applied Biosystems) or a SAM-I Synthesizer (available from Biosearch, Inc.) and known methods for their use. Naturally occurring primers isolated from biological sources are also useful (such as restriction endonuclease digests).

As used herein the term "probe" refers to an 15 oligonucleotide, naturally occurring or synthetically produced, which is not used as a primer, but which is designed to be substantially complementary to one or more sequences of a nucleic acid so as to form a hybridized product. Further, a probe is generally 20 designed for either "capture" or "detection" of the resulting hybridized product. Capture probes are those which are either attached to an insoluble material in some fashion or are capable of becoming attached at some time in the assay, such as by 25 absorption or complexation through specific binding ligands (for example, avidin-biotin complexes). Detection probes either have a detectable label incorporated therein, or have a moiety which is capable of reacting with a detectable moiety, for 30 example through an avidin-biotin complex. Other embodiments of capture and detection probes are known in the art.

The present invention is directed to the detection of one or more predetermined nucleic acids present in the same or different test specimens.

-9-

Such specimens can include cellular or viral material, hair, body fluids or other materials containing genetic, viral or bacterial DNA or RNA which can be detected. While the primary purpose of such detection would be diagnostic in nature, the invention could also be used to improve the efficiency of cloning DNA or messenger RNA, for tissue typing, or for obtaining large amounts of a desired nucleic acid from a mixture of nucleic acids resulting from chemical synthesis.

The present invention is advantageously carried out using a test article having a substrate to which is affixed in a suitable manner one or more capture probes. Each probe is water—insoluble because it is composed of a water—insoluble particle of some type having one or more molecules of an oligonucleotide covalently affixed thereto. This oligonucleotide is complementary to the nucleic acid of interest to a sufficient degree that they will form hybridized products in the course of the assay.

This test article is now discussed in more detail, but it is to be understood that further embodiments would be readily apparent to one skilled in the art.

The article substrate can be any porous or nonporous surface to which the probe can be readily affixed and which will allow ready access of solution containing the predetermined nucleic acid to the probe. There must be some type of bonding between probe and substrate in order to keep the probe in place during manufacturing and storage, and in some cases, during an assay. It is important, however, to the sensitivity desired in using the test article, whether the substrate is porous or nonporous, that the probe be predominantly on the outer surface (or

surfaces) of the substrate. This means that the probe is not embedded to a significant degree into the substrate. It is to be understood that in the course of manufacture of the article using porous substrates that some of the probe may become buried or embedded therein, but in the present invention, it is expected that less than 20 percent of the probe is so situated. In preferred embodiments, the substrate is a nonporous material, and the one or more probes are completely on one or more of its outer surfaces.

The substrate is more clearly defined as having a configuration (described below) which has at least two opposing outer surfaces. Such surfaces are generally parallel, but need not be completely parallel (for example the inside and outside surfaces

of a curved bottom of a test tube). Generally, the substrate is a flat sheet, membrane or film having nominal thickness and outer surfaces for retaining probe. A detailed description of one embodiment of a

20 test article is provided in copending U.S.S.N. 339,923 (filed April 17, 1989 by Schnipelsky et al).

Substrate materials useful herein include, but are not limited to, cellulosic materials, metals, polymers, ceramics, glasses or fabrics configured into any useful form including films.

- into any useful form including films, membranes, foils, papers (such as photographic or thermal print papers including raw stock papers that have not been treated, finished, sized or coated in any manner, or papers which have been treated, finished, sized or
- coated, for example with polymeric latices), cuvettes, test tubes, test slides or strips.

 Particularly useful substrates include polymeric films, polymeric or cellulosic microporous membranes, such as those manufactured by Pall Corp. (for example, Biodyne or Loprodyne membranes), or

-11-

polymeric latex-coated, or uncoated cellulosic papers. Most useful substrates are papers which are substantially non-porous and uncoated, such as thermal print papers.

Several embodiments of test articles are illustrated in the attached drawings. Looking at FIGS. 1 and 2, test article 10 is shown as a simple piece of polymeric film substrate 12 having upper and lower opposing surfaces 14 and 16. Water—insoluble nucleic acid probe 18 is immobilized in a deposit in the center of opposing surface 14 of substrate 12.

Another embodiment of a test article is shown in the cross-sectional view of FIG. 3. Test article 20 comprises porous substrate 22 having opposing upper and lower surfaces 24 and 26. Located in distinct regions of opposing surface 24 are water-insoluble probe deposits 28, 30 and 32, which can contain the same or different probes.

Still another embodiment is a test well of a disposable test device (described below) shown in cross-section in FIG. 4. Test well 40 has conical wall 42 and a porous membrane 46 at the bottom thereof. Membrane 46 has opposing upper and lower surfaces 48 and 50, and on opposing surface 48 is a water-insoluble probe deposit 52.

The probes can be affixed to the substrates using any suitable technique. Generally, the probe is deposited in a suitable manner and dried to form a coated region of probe on the substrate, and affixation is by physical means. Alternatively, the affixing can be provided through chemical reaction if desired using reactive groups on either or both substrate and probe, or reactive linking groups. Preferably, the probe is merely dried down in one or more distinct areas of the substrate (such as dots,

-12-

stripes or other patterns, each distinct area generally having a surface area of from about 1 to about 30 mm²). In some instances, the probes may be resuspended when contacted with fluids used in an assay.

The probes themselves are prepared using water-insoluble particles of regular or irregular shape. If spherical, they generally have an average diameter of from about 0.1 to about 10 $\mu m\,.$

- Preferably, the particles are spherical and have an average diameter of less than about 5 μmeters. The particles can be prepared from any suitable material to which oligonucleotides can be covalently attached, including, but not limited to, glasses, ceramics,
- metals, magnetizable materials, polymeric materials, sols, gels and other materials readily apparent to one skilled in the art.

Preferably, the particles are prepared from polymers having active groups for covalent 20 oligonucleotide attachment. Useful active groups include carboxy, amino, sulfhydryl, aldehyde, activated 2-substituted ethylsulfonyl, vinylsulfonyl, active halogen atoms, nitroaryl and others readily apparent to one skilled in the art. Particularly 25 useful particles are polymeric particles derived from one or more ethylenically unsaturated polymerizable monomers having one or more of the following reactive groups: carboxy, activated 2-substituted ethylsulfonyl, vinylsulfonyl or active halogens. 30 Further details about such particles, including useful monomers, methods of preparing them and attachment of oligonucleotides, are known in the art (for example, in EP-A-0 302 715, published

February 8, 1989).

-13-

Attachment of oligonucleotides to particles can be accomplished using standard procedures which will depend upon the type of particles (that is, the reactive groups) and what reactive group of the oligonucleotide is used (for example, reactive groups on the pyrimidine or purine base moieties, or part of a terminal nucleotide, either 5' or 3'). Various procedures are described, for example, in WO-A-88/01302 (noted above).

The coverage of oligonucleotide on the particles may be important in some assays for improved sensitivity. Generally, it is desired to attach as many molecules of the oligonucleotide on the particles as possible. Because the particles have a high surface area to volume ratio as compared to other substrates, the high density is advantageous. Preferably, the coverage is generally from about 100 to about 3000 pmoles of oligonucleotide per mg of particles.

As noted above, the water—insoluble probe is affixed in a distinct area of one or more surfaces of the substrate. Each area can be the same or different in size and shape. In a preferred embodiment where there are a multiplicity of distinct areas having the same or different probe, the areas are kept apart sufficiently that each area can be detected separately. In this embodiment, the various probes can be used for detecting different predetermined nucleic acids from the same or different specimens, or they can be used to detect the same nucleic acid but act as controls.

The present invention also encompasses a method for using the test article described herein to detect a predetermined nucleic acid. The general description of the method is provided above. In one

embodiment, the test article is used in a sandwich hybridization assay where a second probe is used to provide detection of the resulting three—part hybrid. This second probe is also complementary to the predetermined nucleic acid, and contains a moiety which provides detection in some manner (as discussed above). Preferably, the second probe is labeled with avidin, biotin, antibody, antigen, hapten, lectin, sugar (or another specific binding moiety), or other detectable moieties described below. Most preferably, the label is an enzyme, which when contacted with appropriate substrates or dye—forming reagents, will provide a detectable dye on the test article.

Procedures for attaching labels and preparing probes are well known in the art, for example, as described by Agrawal et al, Nucleic Acid Res., 14, pp. 6227-45 (1986). Useful labels include radioisotopes, electron-dense reagents, chromogens, fluorogens, phosphorescent moieties, dyed particles, ferritin and other magnetic particles, chemiluminescent moieties and enzymes. Useful enzymes include, glucose oxidase, peroxidase, uricase, alkaline phosphatase and others known in the art. Substrates and dye forming compositions for such enzymes are well known.

In a particularly preferred embodiment, the label is peroxidase, and at some point in the assay, hydrogen peroxide and suitable dye—forming compositions are added to provide a detectable dye. For example, useful dye—providing reagents include tetramethylbenzidine and derivatives thereof, and leuco dyes, such as triarylimidazole leuco dyes (as described in US-A-4,089,747, issued May 16, 1978 to Bruschi), or other compounds which react to provide a

-15-

dye in the presence of peroxidase and hydrogen peroxide. A particularly useful dye-providing compositions is described in the examples below.

Detection of the presence of the probe which is in the resulting hybridized product can be achieved using suitable and known detection equipment and procedures. Certain probes may be visible to the eye without the use of detection equipment. It is also useful for the method to be carried out in a suitable container (described below).

It is preferred that prior to hybridization of the predetermined nucleic acid with the probes as described above, the predetermined nucleic acid be amplified to increase the number of molecules vailable for detection.

Amplification, as described in more detail in US-A-4,683,202 (noted above), involves a chain reaction for producing, in exponential quantities relative to the number of reaction steps involved, at 20 least one predetermined nucleic acid. The product will be a discrete nucleic acid duplex with termini corresponding to the ends of the specific primers employed. Any source of nucleic acid, purified or not, can be utilized as the starting material 25 provided it contains or is suspected of containing the nucleic acid targeted for detection. A mixture of nucleic acids can be employed if desired. predetermined nucleic acid can be a fragment or the entire acid. Moreover, more than one nucleic acid 30 can be amplified simultaneously by using a specific set of primers and probes for each acid to be amplified.

The present invention is useful for detection of a nucleic acid having two complementary strands. Most nucleic acids of interest already are double-stranded, such as those found in DNA.

However, single-stranded nucleic acids, such as mRNA, can be similarly detected after it is converted to a double-stranded sequence using reverse transcriptase.

A specific nucleic acid to be reproduced is used as a template. If the acid contains two strands, it is necessary to separate the strands (called denaturation), either as a separate step or simultaneously with the formation of primer extension products. Denaturation can be accomplished using any suitable physical, chemical or enzymatic means as described in the art. Heating to a suitable temperature is a preferred means.

Once the separated strands are available for use, synthesis of additional nucleic acid strands can 15 be carried out using two or more primers (at least one of which is labeled as described above) in a buffered aqueous solution at a pH of from about 7 to about 9. Preferably, a molar excess of the two primers is added to the buffered solution, and 20 specific amounts are taught in the art. deoxyribonucleoside triphosphates dATP, dCTP, dGTP and dTTP are also added to the synthetic mixture in adequate amounts and the resulting solution is heated to about 90-100 °C for up to 10 minutes, and preferably from about 1 to about 4 minutes. After this heating, the solution is preferably cooled to room temperature, and an appropriate agent for inducing (or catalyzing) the formation of primer extension products is introduced. This inducing

agent is generally known in the art as a polymerization agent. Reaction to form these products is carried out under known conditions (generally from room temperature to that temperature at which polymerization no longer occurs).

-17-

In one embodiment, the primers used are unlabeled, and detection of amplified product is achieved using one or more radio-labeled deoxyribonucleotide triphosphates to form extension products.

The polymerization agent may be any reagent, or combination of reagents, which will function to accomplish the synthesis of primer extension products, including enzymes (for example, <u>E. coli DNA</u> 10 polymerase I, T4 DNA polymerase, Klenow polymerase, reverse transcriptase and others known in the art). Particularly useful enzymes are thermally stable enzymes, cloned or naturally occurring, such as those obtained from various Thermus bacterial species.

Other polymerization agents are described in US-A-4,683,202 (noted above).

Preferred thermal—stable enzymes are DNA polymerases isolated from from Thermus aquaticus or produced from a genome thereof, such as those 20 described in EP-A-0 258 017 (published March 2, 1988). Other useful enzymes are described by Rossi et al, Syst. Appl. Microbiol. 7(2-3), pp. 337-341, 1986. Many useful polymerases are commercially available. Generally, the synthesis of extension products will be initiated at the 3' end of each primer and proceed in the 5' to 3' direction along the template until synthesis is terminated. Some polymerization agents (for example, reverse transcriptase) may proceed in the 3' to 5' direction along the template.

The newly formed primer extension products comprising the newly synthesized strands and their respective primers form double-stranded molecules with the initial target strands which are used in the succeeding steps of the method. These strands are

-18-

then separated by denaturation to provide single-stranded molecules, onto which new nucleic acids are synthesized as described above. Additional reagents may be needed to keep the amplification procedure going, after which most of the extension products will consist of the predetermined nucleic acid hybridized to the two primers (that is, as complementary products).

The steps of strand separation and extension product synthesis can be repeated as often as needed to produce the desired quantity of the predetermined nucleic acid needed for detection. Generally, the sequence of steps is repeated at least once, and preferably at least 10 to 30 times.

At any point in the method of this invention after the generation of at least one primer extension product, that product can be hybridized with a probe, either a capture probe or a detectably labeled probe as described herein. This contact of probes and extension product can occur simultaneously or sequentially with other hybridization reactions in the assay.

It is also useful for the amplification method to be carried out in a suitable container.

The most crude container would be a test tube, flask or beaker, but more sophisticated containers have been fashioned in order to facilitate automated procedures. For example, a cuvette constructed to provide certain temperature characteristics during the practice of the method is described in U.S.S.N. 273,781 (filed November 21, 1987 by Burdick et al). A particularly useful container for performing the method and which incorporates the test article of this invention is described in U.S.S.N. 339,923 (noted above). Other useful containers could be suitably fashioned for automated or manual use of the method of this invention.

-19-

In order for the complementary product to be detected, it is important for the water—insoluble product to be separated from the nonimmobilized materials in the reaction medium. This can done by filtration, washing, centrifugation or other suitable separation techniques.

Particularly useful separation means are microporous filter membranes such as the polyamide membranes marketed by Pall Corp. (for example as LoprodyneTM or BiodyneTM membranes). They can be used uncoated or precoated with surfactants or other materials which facilitate the analytical procedures. In one embodiment, the membrane is incorporated into the cuvette wherein the detection method occurs. Generally, such membranes have average pore sizes such that substantially all of the probe remains on the surface thereof. Preferably, the pore size is from about 1 to about 10 μmeter.

The membranes can be used as a separate

20 substrate with suitable containers for carrying out
other steps of the assay. Preferably, however, it is
mounted as part of a disposable test device. Various
test devices are known in the art including those
described in US-A-3,825,410 (issued July 23, 1974 to

25 Bagshawe), US-A-3,888,629 (issued June 10, 1975 to
Bagshawe), US-A-3,970,429 (issued July 20, 1976 to
Updike) and US-A-4,446,232 (issued May 1, 1984 to
Liotta). Particularly useful devices are described
in U.S.S.N. 98,248 (filed September 18, 1987 by

30 Hinckley et al) and in U.S.S.N. 339,923 (noted
above). Useful disposable test devices containing
microporous membranes are marketed by Eastman Kodak

The method described herein can be used to provide the detection or characterization of

Company as Surecell TM test devices.

predetermined nucleic acids associated with infectious diseases, genetic disorders or cellular disorders such as cancers. It may also be used in forensic investigations and DNA tissue typing. 5 purposes of this invention, genetic diseases include specific deletions or mutations in genomic DNA from any organism, such as sickle cell anemia, cystic fibrosis, α -thalassemia, β -thalessemia and others readily apparent to one skilled in the art. Various infectious diseases can be diagnosed by the presence in a clinical sample of small quantities of specific DNA sequences characteristic of the organism, whether it be a yeast, bacterium or virus. Such bacteria which can be detected include, but are not limited 15 to, Streptococcus, Salmonella, Chlamydia, Gonorrhea, Shigella and Listeria. Viruses which are detectable include, but are not limited to, herpes, rubella, human papilloma virus, cytomegalovirus, Epstein barr virus, hepatitis and retroviruses such as HTLV-I and 20 HIV-I. The detection of B-globin DNA for the determination of sickle cell anemia can also be accomplished with this invention. Protozoan parasites, yeasts and molds are also detectable. Other detectable species would be readily apparent to 25 one skilled in the art. The invention is particularly useful for the detection of the presence of retroviruses, such as HIV-I, in test samples. such assays, a probe is used having an oligonucleotide complementary to a nucleic acid 30 sequence of HIV-I DNA, for example a sequence in the gag region.

The following examples are provided to illustrate, but not limit, the practice of the present invention. All percentages are by weight unless otherwise noted.

-21-

Examples 1 and 2 illustrate assays for HIV-I DNA using what is termed a "flow through" procedure whereby a water-insoluble probe is immobilized on a filter membrane in a disposable test device.

- 5 Hybridization with the HIV-I DNA target nucleic acid occurs to form a water-insoluble product, followed by washing water-soluble materials through the filter membrane. The water-insoluble product remaining on the membrane is detected on its surface.
- Example 3 illustrates as assay for HIV-I DNA and B-globin DNA using what is termed a "flow by" procedure whereby two water-insoluble probes are immobilized on a solid substrate having substantially no porosity. Hybridization of the probes with the HIV-I DNA and B-globin DNA target nucleic acids occurs to form water-insoluble products.

 Water-soluble materials are washed away over the substrate and the remaining water-insoluble hybrid products are then detected on the substrate surface.
- 20 Example 1: <u>Preparation of Nucleic Acid Test</u>
 Article and Its Use in Detection
 of HIV-I DNA Fragment

Materials:

A leuco dye solution was prepared containing 2-(4-hydroxy-3,5-dimethoxypheny1)-4,5-bis(4-methoxypheny1)imidazole as follows:

Solid leuco dye (to make a 0.1% solution) was dissolved in a solution of 20 weight % poly(vinylpyrrolidone) in sodium phosphate buffer (5 mmolar). This solution was then added to a solution containing hydrogen peroxide (10 mmolar), 4'-hydroxyacetanilide electron transfer agent (5 mmolar) and diethylenetriaminepentaacetic acid chelating agent (10 µmolar) in sodium phosphate buffer to produce a final concentration of 1% poly(vinylpyrrolidone) and 0.005% leuco dye.

Succinylated casein was prepared by reacting casein with an equal weight of succinic anhydride for four hours at 25°C, then purifying the product by dialysis.

- The predetermined DNA fragment detected in the example was a 180 nucleotide segment of the gag region (core protein) of the HIV-I genome cloned into a derivative of M13 vector and prepared using standard procedures.
- The primers used in the amplification of the predetermined DNA strands had the following nucleotide sequences using the standard abbreviations for adenine (A), guanine (G), thymine (T) and cytosine (C):
- 5'-X-TTTGGTCCTTGTCTTATGTCCAGAATGC-3' and
 5'-ATAATCCACCTATCCCAGTAGGAGAAAT-3'
 wherein X represents a biotintetraethylene glycol
 molecule, prepared and attached by procedures
 described in WO-A-89/02931, incorporated herein by
 reference.

DNA polymerase was isolated from Thermus aquaticus according to the procedures described in EP-A-0 258 017 (1 unit corresponds to 10 mmoles of dNTP incorporated into the primer extension product in 30 minutes at 37°C).

A streptavidin—horseradish peroxidase conjugate was obtained from Zymed Labs (San Francisco), and was diluted 1:8000 with a phosphate buffered saline solution containing casein (0.5%), 3—(N—morpholino)—propanesulfonic acid buffer (100 mmolar, pH 7.5) and preservative (0.01%). The final conjugate concentration was 156 ng/ml. The phosphate buffered saline solution contained sodium phosphate (25 mmolar, pH 7.3) and sodium chloride (75 mmolar).

-23-

Preparation of Probe:

A water-insoluble probe used in the example was prepared in the following manner.

Polymeric particles (2 µmeters) comprised from poly(styrene-co-acrylic acid)(97.5:2.5 molar ratio) using standard latex polymerization procedures, then stored as a suspension (0.45% solids) in glycine buffer (0.1 molar, pH 8.5).

An oligonucleotide complementary to the 10 predetermined HIV-I DNA target sequence was used to prepare the probe. It had the following sequence:

5'-X-ATCCTGGGATTAAATAAAATAGTAAGAATGT-3' wherein X represents an amino group attached to the probe through a polyethyleneglycol spacer, as described in WO 89/02932, incorporated herein by reference.

The suspension of polymeric particles was washed twice with 2-(N-morpholino)ethanesulfonic acid buffer (0.1 molar, pH 6). A sample of particles (30 20 µg) in 2-(N-morpholino)ethanesulfonic acid buffer (1 ml) was mixed with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.15 ml of 100 mg/ml in the same buffer) and the oligonucleotide (0.0288 ml of 57.3 OD/ml nanopure water, 1.65 OD units). The resulting mixture was rotated end-over-end at 20-25°C for 15 hours, centrifuged, and the particles were washed three times with nanopure water and resuspended therein (0.45% solids).

Three different concentrations of the 30 resulting water-insoluble probe were prepared:

Probe A: 334 picomoles probe/mg particles, Probe B: 835 picomoles probe/mg particles,

and

Probe C: 1670 picomoles probe/mg particles.

-24-

The water-insoluble probe described above (1 µl of 0.45% suspension) was deposited in a defined region (less than about 2 mm²) of each of several microporous membranes (BiodyneTM A nylon membranes coated with 1g/m² succinylated casein) located in test wells of SurecellTM disposable test devices (Eastman Kodak Co.). The probe suspension was allowed to dry for about 30 minutes at room temperature. The resulting test articles were then used in the assay described below.

Assay Procedure:

To a buffer solution containing tris(hydroxymethyl)aminomethane buffer (10 mmolar, pH 8), potassium chloride (50 mmolar), magnesium chloride (10 mmolar) and gelatin (10 μg) were added the primers described above (100 pmoles of each), dNTPs (1.5 mmolar of each), the polymerase described above (7.5 units) and human placenta DNA (Sigma, 1 μg). In addition, the DNA target (10⁻¹⁶ molar) described above was added, and the total volume was 100 μl.

A control (100 μ 1) was prepared containing human placenta DNA (10 μ g/ml) containing the ß-globin gene as target, and the appropriate primers, specific for ß-globin DNA which are known in the art, one primer being biotinylated.

Each solution described above was placed into a polypropylene microcentrifuge tube, primer extension products were formed, and amplification promoted using 30 consecutive thermal cycles as follows:

70°C rising to 95°C 1 minute
95°C 0.5 minute (denature)
95°C 1owering to 55°C 1.25 minutes
35 55°C 0.5 minute (hybridize)
55°C rising to 70°C 0.75 minute
70°C 1 minute (extend)

After amplification through the 30 thermal cycles, 5 μl aliquots of each mixture were added to a solution (95 μl) containing tris(hydroxymethyl)aminomethane buffer (10 mmolar, pH 8), potassium chloride (50 mmolar), magnesium chloride (10 mmolar) and gelatin (1 μg/10 ml solution), heat denatured (5 minutes at 95°C), then added to the test wells of the Surecell test devices described above (about 95 μl of each solution in each well).

Tape was placed over each well to seal them, and the devices were incubated at 42°C for 5 minutes to hybridize the amplified HIV-I DNA fragment to the water-insoluble probe immobilized in the test wells.

The tape was then removed off each test well, followed by washing with a buffered solution (250 μ1) containing phosphate buffer (10 mmolar, pH 7.4), sodium chloride (150 mmolar),

ethylenediaminetetraacetic acid (1 mmolar) and sodium 20 decyl sulfate (1%) at 55°C.

The peroxidase conjugate described above (50 µl, 7.8 ng) was added to each test well, and the devices were incubated at room temperature for 2 minutes. A second wash (250 µl) was carried out using the buffered solution noted above. The leuco dye solution (100 µl) was added to each test well followed by another incubation at room temperature for 2 minutes. The resulting dye-forming reaction was stopped by the addition of sodium azide (100 µl of 0.1%), and the resulting dye was observed on the membranes.

The results were graded visually on a scale of 0 to 5, with zero being no density and 5 being the highest density. The results in the following table are the average of two separate readings for each probe concentration.

35

No signal was observed in the test devices to which the control solution was added. Background values were obtained from density readings on the membrane areas where there was an absence of 5 water-insoluble probe.

TABLE

	Probe Test	Dye Density		
		Test Sample	Background	
10	Probe A	3.65	0.25	
	Probe B	3.5	0	
	Probe C	3.35	. 0	

Examples 2: <u>HIV-I DNA Detection</u>

This example demonstrates the detection of HIV-I DNA using a microporous filtration membrane as the substrate on which probes are immobilized.

Materials and Methods:

Polymeric particles comprising

- 20 poly[styrene-co-m & p-(2-chloroethy1sulfony1methy1)-styrene] (95.5:4.5 molar ratio, 2.2 μm average size) were prepared by the methods described in U.S.S.N. 081,206 (filed August 3, 1987 by Sutton et al), incorporated herein by reference.
- Casein was attached to these particles in the following manner: A solution of casein (Sigma Chemical, 4.94 ml of 2.57 mg/ml in 0.05 molar borate buffer, pH 8.5), thimerosal (0.01%) and the noted suspension of polymeric particles (17.7 ml in borate
- 30 buffer, 0.0637 g/ml) was rotated end-over-end for 16 hours at room temperature. The mixture was then centrifuged and the buffer solution was discarded. The resulting pellet was resuspended in glycine buffer (0.1 molar, 50 ml, pH 8.5) and thimerosal
- 35 (0.01%). This mixture was centrifuged, and the resulting pellet was resuspended in glycine buffer (250 ml) to 0.45% solids.

A sample of the particle suspension (50 ml) containing 2.54 g of particles was washed three times with borate buffer (10 ml, 0.05 molar, pH 8.5), mixed with succinic anhydride (Sigma Chemical, 0.762 ml) in a solution of dimethyl sulfoxide (10 mg/ml) and allowed to react for four hours at room temperature. The mixture was centrifuged and the solution discarded. The resulting pellet was washed three time with glycine buffer (50 ml, 0.01 molar, pH 8.5), and resuspended in glycine buffer to 0.45% solids.

A suspension of the particles (15 m1, 0.0045g/ml) in glycine buffer was centrifuged, and the pellet resuspended in 2-(N-morpholino)ethanesulfonic acid buffer (0.1 molar, pH 6). This procedure was 15 repreated twice and the resulting pellet was mixed with 1-(3-dimethylaminopropy1)-3-ethylcarbodiimide hydrochloride (0.338 ml of a solution of 100 mg/ml in the same buffer) and the oligonucleotide (0.654 $\mu 1$ of a solution of 5.73 OD/ml of buffer) having the sequence noted below. This suspension was rotated end-over-end for sixteen hours at room temperature and centrifuged, and the pellet was resuspended in nanopure water (15 ml). This centrifuging procedure was repeated three times, and the resulting pellet 25 was suspended in water to provide a 0.45% solid suspendion of water-insoluble probe.

The oligonucleotide had the sequence (using standard abbreviations for the bases):

5'-ATCCTGGGATTAAATAAAATAGTAAGAATGT-3'

30 Assay:

The assay for HIV-I DNA was carried out according to the procedure described in Example 1. The water-insoluble probes was deposited in a defined region of a microporous membrane and allowed to dry as noted in that Example.

The amount of dye formed on the membrane in the assay was visually graded on a scale of from 0 to 5 (zero being no density and 5 being the highest density). The background value was obtained from a density reading on the membrane area where no water—insoluble probe was present. The dye density reading for the assay was determined to be about 4.8 while the background density was about 0.5.

Example 3: <u>Determination of HIV-I DNA</u>

10 and B-Globin DNA

This example demonstrates as assay for HIV-I DNA and B-globin DNA using a substantially nonporous, uncoated paper as the substrate on which two water-insoluble probes are immobilized.

15 <u>Materials</u>:

Eppendorf tubes and a heater were obtained from Eppendorf Corporation.

EktamateTM thermal print paper (noncoated) was obtained from Eastman Kodak Company and used as the substantially nonporous, uncoated paper substrate.

The HIV-I primers were the same as those described in Example 1 above.

The ß-globin DNA primers had the following sequences:

25 5'-X-ACACAACTGTGTTCACTAGC-3' and 5'-CAACTTCATCCACGTTCACC-3'

wherein X is a biotin molecule prepared and attached as described above in Example 1 for the HIV-I primers.

The ß-globin DNA probe had the following

30 sequence:

5'-X-CTCAAACAGACACCATGGTGCACCTGACTC-3' wherein X is the same as described for the HIV-I DNA probe.

The probes and primers were prepared using standard phosphoramidite chemistry, purified by high pressure liquid chromatography and characterized by standard sequencing procedures.

-29-

A water-insoluble probe for HIV-I DNA was prepared as described in Example 1 above using particles composed of poly(styrene-co-acrylic acid)(95:5 molar ratio, 2 μ m). The probe (2 μ l of a 0.45% suspension) was deposited on a defined region (2 mm diameter spot) of Ektamate TM thermal print paper (about 19 x 8 mm in size), and allowed to dry at room temperature. The β -globin probe DNA was similarly prepared and deposited in a separate region (2 mm diameter) of the same paper substrate.

The paper substrate was then affixed to one side of a plastic material (a laminate of a polyester with either polyethylene or polypropylene). The other side of the plastic material was sealed with heat onto the first side to form an enclosed pouch. This pouch contained an inlet pipette tip for injecting fluids into the pouch for eventual contact with the probe therein, and an outlet means to allow

forced into the pouch to be in contact the probe before exiting the pouch.

10

15

30

A reaction mixture (100 μl total volume) for polymerase chain reaction comprised:

fluids to exit the pouch. Fluid reagents were then

tris(hydroxymethyl)aminomethane buffer (10 25 mmolar, pH 8.3),

potassium chloride (50 mmolar), magnesium chloride (10 mmolar), dNTPs (1.5 mmolar of each), primers (1 µmolar), gelatin (0.01%), and

DNA polymerase isolated from <u>Thermus</u> aquaticus (7.5 units).

The HIV-I DNA target nucleic acid was M13/HIV (a 180 base pair segment of HIV-I cloned into M13 DNA phage) or HUT cell line DNA (a cell line that

-30-

contains a single integrated copy of the HIV-I genome). The ß-globin target nucleic acid was human placental DNA which is assumed to contain two copies of the ß-globin gene per cell.

5 Assay:

A solution of both HIV-I and β-globin targets (10 μl, about 10⁻¹⁶ molar each) and the polymerase chain reaction mixture (100 μl) were added to Eppendorf tubes in an Eppendorf heating unit and subjected to polymerase chain reaction for 30-33 cycles using the protocol: incubation at 95°C for 30 seconds (denaturation), incubation at 55°C for 30 seconds (hybridization) and incubation at 70°C for 1 minute(polymerization).

15 A portion (10 μ 1) of the solution containing amplified target nucleic acids was then diluted with a buffer solution (130 μ 1) comprising tris(hydroxymethyl)aminomethane buffer (10 mmolar, pH 8.3), potassium chloride (50 mmolar), magnesium 20 chloride (10 mmolar) and gelatin (0.01%). resulting solution was then heated in an Eppendorf tube at 95°C for 5 minutes to denature the double stranded target nucleic acids. The heated solution was transferred to a pipette and injected into the pouch described above in a manner to insure even coverage of the thermal paper surface having the immobilized probes. The pouch was then incubated at 42°C for 5 minutes to anneal the corresponding probes to the respective single stranded HIV-I and Ω -globin 30 nucleic acid targets. The fluid was removed from the pouch by either forcing the liquid out with air

A wash solution was injected into the pouch twice. This solution comprised: 250 µl of a buffer solution comprising sodium dihydrogen phosphate (10 mmolar, pH 7.4), sodium chloride (150 mmolar) and

pressure or drawing off the fluid using a syringe.

-31-

ethylenediaminetetraacetic acid (1 mmolar), and decyl sulfate (1%), and had been preheated to 55°C. The fluid was removed after the second wash, and the streptavidin-horseradish peroxidase conjugate of

- 5 Example 1 (200 μ 1) was then injected into the pouch which was then incubated at room temperature for two minutes. The fluid was then removed and the leuco dye solution noted above (200 μ 1) was injected into the pouch followed by another incubation at room
- temperature for 1-2 minutes. Finally, the fluid was removed. A solution of sodium azide (200 μ l of 0.1% solution) was injected into the pouch to stop the reaction and the dye present on the thermal paper was visually graded on a scale from 0 to 5 with 5
- representing the highest dye density. Background readings were taken from regions of the paper having no immobilized probe. The dye density reading for the HIV-I DNA and B-globin DNA targets were 3.8 and 4.2, respectively, while the background reading was 0.5.

The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

We claim:

A nucleic acid test article comprising a substrate having at least first and second opposing surfaces, and having affixed in at least one distinct
 zone of at least one of said opposing surface, a water—insoluble nucleic acid probe,

said probe comprising an oligonucleotide complementary to a predetermined nucleic acid, which oligonucleotide is covalently attached to a 10 water—insoluble particle, and substantially none of said probe being embedded within said opposing surface.

- 2. The test article of claim 1 wherein said substrate is a porous membrane having an average pore size such that substantially all of said probe remains on the surface thereof.
 - 3. The test article of claim 1 wherein said substrate is a substantially nonporous, noncoated paper.
- 20 4. The test article of claim 1 wherein said substrate is a polymeric film.
 - 5. The test article of claim 1 having a multiplicity of water-insoluble probes, each probe affixed in a distinct zone on said opposing surface,
- 25 and each probe comprising an oligonucleotide complementary to a distinct predetermined nucleic acid.
 - 6. The test article of claim 1 disposed in a self-contained test device.
- 7. The test article of claim 1 wherein said water—insoluble particle is a polymeric particle having a diameter of from about 0.1 to about 10 μmeters.
- 8. The test article of claim 1 wherein said immobilized probe comprises an oligonucleotide complementary to HIV-I DNA.

-33-

9. The test article of claim 1 wherein each of said distinct zones comprises an area of from about 1 to about 30 mm^2 .

10. A test article comprising a microporous 5 membrane having affixed in at least one distinct zone of one surface of said membrane, a water-insoluble nucleic acid probe,

said probe comprising an oligonucleotide complementary to HIV-I DNA, which oligonucleotide is covalently attached to polymeric particles having an average diameter of from about 0.1 to about 10 µmeters, substantially none of said prove being embedded within said membrane surface.

- 11. The test article of claim 10 wherein 15 said probe is affixed to said membrane surface in more than one distinct zone thereof.
 - 12. The test article of claim 10 wherein said membrane has been precoated with succinylated casein.
- 20 13. The test article of claim 10 wherein said probe oligonucleotide is complementary to a nucleotide segment of the gag region of HIV-I genome.
 - 14. A method for the detection of a predetermined nucleic acid, said method comprising:
- A. contacting a specimen suspected of containing a predetermined nucleic acid with a nucleic acid test article comprising a substrate having at least first and second opposing surfaces, and having affixed in at least one distinct zone of
- 30 at least one of said opposing surface, a water-insoluble nucleic acid probe,

said probe comprising an oligonucleotide complementary to a first nucleic acid sequence of said predetermined nucleic acid, which

35 oligonucleotide is covalently attached to a

water-insoluble particle, and substantially none of said probe being embedded within said opposing surface,

to form a hybridized product of predetermined nucleic acid and said water—insoluble probe,

- B. prior to, simultaneously with or subsequently to step A, contacting said specimen with a detectably labeled probe which is complementary to of said predetermined nucleic acid to form an immobilized sandwich product of said predetermined
- 10 immobilized sandwich product of said predetermined nucleic acid hybridized with both said water-insoluble probe and labeled probe,
 - C. separating said immobilized sandwich product from nonimmobilized materials, and
- D. detecting said immobilized sandwich product as an indication of the amount of predetermined nucleic acid in said specimen.
- 15. The method of claim 14 for the detection of a multiplicity of predetermined nucleic 20 acids wherein said test article comprises a multiplicity of water—insoluble probes, each probe affixed in a distinct zone on said opposing surface, and each probe comprising an oligonucleotide complementary to a distinct predetermined nucleic acid.
 - 16. The method of claim 14 wherein said water-insoluble probe comprises an oligonucleotide complementary to HIV-I DNA.
- 17. The method of claim 14 wherein each of 30 said distinct zones on said test article has an area of from about 1 to about 30 mm^2 .
 - 18. A method for the detection of a predetermined nucleic acid, said method comprising:
- A. amplifying a predetermined nucleic acid 35 found in a specimen in the presence of complementary primers, deoxyribonucleotide triphosphates and a polymerization agent,

-35-

B. contacting said amplified predetermined nucleic acid with a nucleic acid test article comprising a substrate having at least first and second opposing surfaces, and having affixed in at least one distinct zone of at least one of said opposing surface, a water—insoluble nucleic acid probe,

said probe comprising an oligonucleotide complementary to said predetermined nucleic acid, 10 which oligonucleotide is covalently attached to a water—insoluble particle, and substantially none of said probe being embedded within said opposing surface,

to form an immobilized hybridized product of predetermined nucleic acid and said water-insoluble probe,

- C. separating said immobilized product from nonimmobilized materials, and
- D. detecting said immobilized product as an indication of the amount of predetermined nucleic acid in said specimen.
 - 19. The method of claim 18 wherein at least one of said primers used in step A is detectably labeled.
- 25 20. The method of claim 18 wherein said immobilized product is detected using a second probe which is detectably labeled.
 - 21. The method of claim 18 carried out in a self-contained test device.
- 30 22. The method of claim 18 wherein said substrate is a microporous filtration membrane.
 - 23. The method of claim 18 wherein said substrate is a substantially nonporous, noncoated paper.

- 24. The method of claim 18 wherein said water-insoluble particle is a polymeric particle having a diameter of less than about 5 µmeters.
- 25. A method for the detection of HIV-I 5 DNA, said method comprising:
 - A. amplifying HIV-I DNA found in a biological specimen in the presence of complementary primers, deoxyribonucleotide triphosphates and a polymerase derived from Thermus aquaticus,
- B. contacting said amplified HIV-I DNA with a nucleic acid test article comprising a microporous membrane having affixed in at least one distinct zone of one surface of said membrane, a water-insoluble nucleic acid probe,
- said probe comprising an oligonucleotide complementary to HIV-I DNA, which oligonucleotide is covalently attached to polymeric particles having an average diameter of from about 0.1 to about 5 µmeters, substantially none of said prove being embedded within said membrane surface.

to form an immobilized hybridized product of HIV-I DNA and said water-insoluble probe,

- C. separating said immobilized product from nonimmobilized materials, and
- D. detecting said immobilized product as an indication of the amount of HIV-I DNA in said specimen.
- 26. The method of claim 25 wherein at least one primer is biotinylated, and detection of said immobilized product is accomplished by contacting it with a conjugate of avidin and an enzyme.
- 27. The method of claim 26 wherein said conjugate comprises peroxidase, and contact of said conjugate and product is followed by contact of the product with a leuco dye composition which provides a dye in the presence of hydrogen peroxide and peroxidase.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 90/00452

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶				
	g to International Patent Classification (IPC) or to both N C 12 Q 1/68, G 01 N 33/538	lational Classification and IPC		
II FIFLD	S SEARCHED			
	Minimum Docume	ntation Searched ⁷		
Classificati	ion System (Classification Symbols		
IPC5				
11 00				
		r than Minimum Documentation s are included in Fields Searched ⁸		
III. DOCU	MENTS CONSIDERED TO BE RELEVANT9			
Category *	Citation of Document, ¹¹ with indication, where app	propriate, of the relevant passages ¹²	Relevant to Claim No.13	
A	EP, A2, 0265244 (AMOCO CORPORAT 27 April 1988, see the whole document	ION)	1-27	
Α	WO, A1, 8810313 (E.I. DU PONT D COMPANY) 29 December 1988, see the whole document	E NEMOURS AND	1-27	
A	EP, A2, 0228075 (MOLECULAR DIAG 8 July 1987, see the whole document	NOSTICS, INC.)	1-27	
"A" doc con "E" ear fill "L" doc whi cits "O" doc oth "P" doc late	Actual Completion of the International Search	"Y" document of particular relevance cannot be considered novel or convolve an inventive step "Y" document of particular relevance cannot be considered to involve document is combined with one ments, such combination being in the art.	ee, the claimed invention cannot be considered to ee, the claimed invention an inventive step when the or more other such docuobvious to a person skilled patent family	
Internation	al Searching Authority	Signature of Authorized Officer		
, mo, nanon	EUROPEAN PATENT OFFICE		. Pez	

tegory	Citation of Document, with Indication, where appropriate, of the relevant passages	Relevant to Claim No
	EP, A1, 0219842 (ALLIED CORPORATION) 29 April 1987, see the whole document	1-27
	EP, A1, 0200381 (HYBRITECH INCORPORATED) 5 November 1986, see the whole document	1-27
		
	EP, A1, 0063810 (CIBA-GEIGY AG) 3 November 1982, see the whole document	1-27
	GB, A, 2156074 (ORION-YHTYMA OY) 2 October 1985, see the whole document	1-27
		-
	·	
	·	
		-
	/ISA/210 (extra sheet) (January 1985)	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.PCT/US 90/00452

SA

34553

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. 07/05/90 The members are as contained in the European Patent Office EDP file on The European Patent office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP-A2- 0265244	27/04/88	AU-D- JP-A- ZA-A-	8009787 63188399 8707772	28/04/88 03/08/88 20/04/88	
 WO-A1- 8810313	29/12/88	AU-D- EP-A-	2084988 0296557	19/01/89 28/12/88	
 EP-A2- 0228075	08/07/87	JP-A-	62228300	07/10/87	
EP-A1- 0219842	29/04/87	JP-A-	62143700	26/06/87	
EP-A1- 0200381	05/11/86	JP-A-	61292059	22/12/86	
EP-A1- 0063810	03/11/82	AU-B- AU-D- CA-A- GB-A-B- JP-A-	560790 8306982 1200761 2099578 58009070	16/04/87 04/11/82 18/02/86 08/12/82 19/01/83	
GB-A- 2156074	02/10/85	AU-B- AU-D- BE-A- CA-A- CH-A-B- DE-A- FR-A- JP-A- LU-A- NL-A- SE-A- US-A-	577568 3842285 901671 1248895 671778 3505287 2559783 60188100 85768 8500424 8500733 1523053 4731325	29/09/88 22/08/85 29/05/85 17/01/89 29/09/89 05/09/85 23/08/85 25/09/85 24/07/85 16/09/85 18/08/85 15/11/89	

For more details about this annex : see Official Journal of the European patent Office, No. 12/82