

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu)
(Accredited by NAAC with "A" Grade, NBA (EEE,ECE &ME) & ISO9001:2008CertifiedInstitution)

QUESTIONBANK(DESCRIPTIVE)

Subject Name with Code: Introduction To Quantum Technologies and applications

Course & Branch: B. Tech & All Branches

Year & Semester: III-I Regulation: RG23

<u>UNIT - I</u>

S. No.	Question	[BT Level] [CO] [Marks]		
	2 Marks Questions (Short)			
1.	Define superposition in quantum mechanics	L1 CO2 2M		
2.	What is wave-particle duality?	L1 CO1 2M		
3.	Mention two key difference between classical and quantum mechanics.	L1 CO3 2M		
	What is meant by quantization of energy?	L2 CO2 2M		
5.	Define entanglement with a simple example.	L2 CO2 2M		
6.	List any two global quantum missions.	L1 CO2 2M		
7.	What is the significance of the Uncertainty Principle?	L2 CO2 2M		
8.	Give one scientific application of quantum technology?	L2 CO2 2M		
Descri	iptive Questions (Long)			
9.	Compare classical and quantum mechanics in terms of measurement,	L1 CO1 10M		
	determinism, and system behaviour.			
10.	Elaborate on the global quantum missions from different countries	L2 CO1 10M		
11.	Explain the principles of superposition and entanglement with conceptual examples	L2 CO2 10M		
12.	Describe the Uncertainty Principle and its implications in quantum measurement	L2 CO1 10M		
13.	Provide an overview of different quantum systems like electrons, photons,	L1 CO2 10M		
13.	and atoms.			
14.	Write a note on the nature of observation in quantum systems	L2 CO1 10M		
15.	Explain the concept of quantization using atomic energy levels.	L1CO1 10M		
16.	What are the major components of quantum technologies? Discuss computing, communication, and sensing.	L2CO1 10M		

UNIT - II

S. No.	Question	[BT Level] [CO][Marks]		
2 Mai	rks Questions (Short)			
1.	What is a qubit?	L1 CO2 2M		
2.	Mention any two physical implementations of qubits.	L1 CO2 2M		
3.	Define quantum coherence.	L1 CO2 2M		
4.	What is decoherence?	L1 CO2 2M		
5.	State two difference between classical bits and quantum bits.	L1 CO2 2M		
6.	Write mathematical notation of superposition in qubit	L2 CO2 2M		
7.	Define quantum non-locality.	L2 CO2 2M		
8.	Mention one philosophical implication of quantum randomness	L1 CO2 2M		
Descr	Descriptive Questions (Long)			
9.	Explain qubits using the concept of spin and polarization.	L2 CO2 10M		
10.	Compare classical bits with quantum bits in terms of information storage and processing	L2 CO2 10M		
11.	Discuss the theoretical importance of coherence and decoherence in quantum systems	L2 CO2 10M		
12.	Explain the concept of Hilbert spaces and quantum operators with intuitive meaning	L2 CO2 10M		

13.	Differentiate classical information from quantum information with suitable	L1 CO2 10M
	examples	
1.4	Compare different quantum systems: trapped ions, superconducting circuits, and	L2 CO2 10M
14.	photons	
15.	Discuss the impact of observation in quantum theory from a philosophical	L2 CO2 10M
	standpoint	

<u>UNIT - III</u>

S.No.	Question		[BT Level] [CO][Marks]
2 Mai	rks Questions (Short)		
1.	What is quantum decoherence?		L1 CO3 2M
2.	Mention one requirement for building a functional quantum computer.		L1 CO3 2M
3.	Define quantum error correction.		L1 CO3 2M
4.	What is meant by "fragility" of quantum systems?		L1 CO32M
5.	Name two quantum hardware platforms.		L1 CO3 2M
6.	What is scalability in quantum computing?		L2 CO3 2M
7.	Why is isolation important in quantum systems?		L2 CO3 2M
8.	What is the role of quantum software?		L1 CO3 2M
Descr	iptive Questions (Long)		
1.	Discuss the conceptual requirements to build a quantum computer.		2 CO3 10M
2.	Explain the challenges posed by decoherence and its flip types		2 CO3 10M
3.	Explain the challenges posed by noise in quantum computing.		2 CO3 10M
4.	Describe why maintaining entanglement is theoretically challenging.	L	2 CO3 10M
5.	Explain the importance of quantum error correction and the barriers to its implementation.	L	1 CO3 10M
6.	Compare different hardware platforms for quantum computing: trapped ions, superconducting circuits, and photonics.	L	2 CO3 10M
7.	Discuss the theoretical hurdles in building a scalable and stable quantum computer.	L	2 CO3 10M
8.	Evaluate the gap between vision and reality in quantum computing.	L	2 CO3 10M
9.	Discuss the conceptual design of quantum computers in terms of theory, fragility, and scalability.	L	1 CO3 10M

Unit-IV

S.No.	Question	[BT Level] [CO][Marks]	
2 Mar	ks Questions (Short)	<u>. </u>	
1.	What is Quantum Key Distribution (QKD)?	L1 CO4 2M	
2.	Define quantum parallelism.	L1 CO4 2M	
3.	What is a quantum gate?	L1 CO4 2M	
4.	Mention one challenge in quantum communication.	L1 CO42M	
5.	What is the quantum internet?	L1 CO4 2M	
6.	State one difference between classical and quantum information.	L1 CO4 2M	
7.	What is entanglement's role in quantum communication?	L2 CO4 2M	
8.	Name a real-world application of quantum computing	L1 CO4 2M	
Descr	Descriptive Questions (Long)		
9.	Compare quantum and classical information systems.	L1 CO4 10M	
10.	Describe the concept and working of Quantum Key Distribution (QKD).	L1 CO4 10M	
11.	Explain how entanglement supports secure quantum communication.	L2 CO 10M	

12.	Discuss the theoretical foundation of the quantum internet.	L2 CO4 10M
13.	Elaborate on quantum parallelism and how it differs from classical	L2 CO4 10M
13.	computation.	
14.	Compare classical and quantum logic gates.	L2 CO4 10M
15.	Discuss decoherence and error correction in the context of quantum	L2 CO4 10M
15.	communication.	
16.	Evaluate the theoretical and practical potential of quantum computing.	L2 CO4 10M
17.	Explain how quantum computing addresses real-world information processing	L1 CO4 10M
1/.	challenges.	LI CO4 IOM

Unit-V

S.No.	Question	[BT Level] [CO][Marks]			
2 Mai	2 Marks Questions (Short)				
1.	Mention one application of quantum technology in healthcare.	L1 CO5 2M			
2.	What is quantum sensing?	L1 CO5 2M			
3.	List any two companies working on quantum technologies.	L1 CO5 2M			
4.	Name one challenge in the adoption of quantum tech.	L1 CO5 2M			
5.	What is precision timing?	L1 CO5 2M			
6.	Define a quantum career role.	L1 CO5 2M			
7.	Mention one skill required for quantum tech roles.	L2 CO5 2M			
8.	What is standardization in quantum technologies	L1 CO5 2M			
Descr	iptive Questions (Long)	<u>.</u>			
9.	Discuss real-world applications of quantum technologies in healthcare and material science.	L1 CO5 10M			
10.	Explain the role of quantum computing in logistics and optimization.	L1 CO5 10M			
11.	Describe how quantum sensing and precision timing benefit industrial sectors.	L2 CO5 10M			
12.	Present case studies of companies like IBM, Google, Microsoft, and PsiQuantum in quantum development.	L2 CO5 10M			
13.	Discuss the ethical and societal implications of quantum technologies.	L2 CO5 10M			
14.	Explain the key challenges to adopting quantum technology, including skills and cost.	L2 CO5 10M			
15.	Describe emerging career opportunities in quantum technologies and necessary skills.	L2 CO5 10M			
16.	Evaluate India's preparedness and potential in the global quantum race.	L2 CO5 10M			
17.	Discuss the role of education and research in promoting quantum tech in India.	L1 CO5 10M			

Signature of Department Academic Committee Member 1:

Signature of Department Academic Committee Member 2:

Signature of Department Academic Committee Member 3: