Devoir sur table nº 1

Exercice 1. Soit $n \in \mathbb{N}^*$ et les parties A_n, B_n du groupe symétrique S_n :

$$A_n = \{ \sigma \in S_n \mid \varepsilon(\sigma) = 1 \}, \qquad B_n = \{ \sigma \in S_n \mid \varepsilon(\sigma) = -1 \}.$$

- 1. Démontrer, pour chacune des parties A_n , B_n , qu'il s'agit d'un sous-groupe de S_n , ou bien que ce n'est pas un sous-groupe de S_n .
- 2. Montrer que l'application $\sigma \mapsto (12) \sigma$ est une bijection de A_n sur B_n . En déduire les cardinaux des ensembles A_n et B_n .
- 3. Montrer que tout élément de S_n est le produit de transpositions de la forme (1i). [Indication. On pourra calculer (1i)(1j)(1i).]
- 4. Montrer que tout élément de A_n est le produit de 3-cycles de la forme (1ij).

Exercice 2. Pour tout $a \in \mathbb{R}$, soit f_a l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est :

$$M_a = \begin{pmatrix} 2 & 9 & 4 \\ 8 & a & 8 \\ 5 & -9 & 3 \end{pmatrix}.$$

- 1. Déterminer les valeurs propres de f_a .
- 2. Déterminer l'ensemble des réels a tels que f_a est diagonalisable. (Justifier soigneusement la réponse. La détermination d'une base de diagonalisation de f_a , lorsqu'elle existe, n'est pas demandée.)
- 3. On note $g = f_{-1}$ et $B = M_{-1}$. Diagonaliser la matrice B, si cela est possible.

Exercice 3. On considère la matrice :

$$A = \begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & -1\\ -1 & 3 & 1 \end{pmatrix}.$$

- 1. Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $A \lambda I_3$ est nilpotente.
- 2. Calculer A^n avec $n \ge 0$ entier.