High Performance Computing and Which Big Data?

Overview of Presentation

- Background
 - What we benchmark → Which big data
- Current Initiatives in Big Data Benchmarking
- Making Progress

Some Benchmarking History

- 1994-95: TPC-D
 - Transaction Processing Council (est. 1988)
 - TPC-C: Transaction processing benchmark
 - Measured transaction performance and checked ACID properties
 - tpmC and \$/tpmC
 - Jim Gray's role. A Measure of Transaction Processing Power,
 1985. Defined the Debit-Credit benchmark, which became TPC-A
 - TPC-D was the first attempt at a decision-support benchmark
 - Measured effectiveness of SQL optimizers
 - TPC-H: Follow-on to TPC-D. Currently popular (regularly "misused")
 - Uses same schema as originally defined by TPC-D

(My) Background

TPC-D

- I was involved in helping define the TPC-D benchmark and metric (geometric mean of response times of queries in the workload)
- December 1995: Led the team at IBM that published industry's first official TPC-D benchmark
 - Using IBM DB2 Parallel Edition (shared nothing)
 - On a 100GB database, 100-node IBM SP-1, 10TB total disk

Background..fast forward

- 2009: NSF CluE grant, IIS-0844530
 - NSF Cluster Exploratory program
 - Compared DB2 vs Hadoop ("Hadoop 2"...0.2) performance on LiDAR point cloud dataset
- 2012: WBDB, NSF IIS-1241838, OCI-1338373
 - Workshops on Big Data Benchmarking (Big Data Top 100 List)
 - Worked with the TPC Steering Committee and other industry participants to organize first WBDB workshop, May 2012, San Jose, CA.
 - 7th WBDB was held in December 2015, New Delhi, India

Where We Are

- Many applications where Big Data and High Performance Computing are becoming essential
 - Volume, velocity, complexity (deep learning)
- National Strategic Computing Initiative
 - Objective 2: "Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing."

NSCI: Presidential National Strategic Computing Initiative

Computational- and data-enabled science and engineering discovery

Computational and data fluency across all STEM disciplines

Infrastructure platform pilots, workflows: development and deployment

Fundamental research:

HPC platform

technologies,

architectures,

algorithms and

approaches

NSCI and Data Science: Two related national imperatives

High Performance Computing and Big Data Analytics

in support of science and engineering discovery and

Industry Initiatives in Benchmarking

About TPC

- Developing data-centric benchmark standards;
 disseminating objective, verifiable performance data
- Since 1988

TPC vs SPEC

- Specification-based vs Kit-based
- "End-to-end" vs Server-centric
- Independent review vs Peer review
- Full disclosure vs Summary disclosure

Initiatives in Benchmarking: Industry

What TPC measures

- Performance of the data Management, layer (and, implicitly, the hardware and other software layers)
- Based on applications requirements

Metrics

- Performance (tpmC, QppH)
- Price/performance (TCA+TCO)
 - TCA: Available within 6 months; within 2% of benchmark pricing
 - TCO: 24x7 support for hardware and software over 3 years
- TPC-Energy metric

Industry Benchmarks

TPCx-HS

- An outcome of the 1st WBDB
- TPC Express a quick way to develop, publish benchmark standards
- Formalization of Terasort
- HS A benchmark for Hadoop Systems
- Results published for 1, 3, 10, 30, 100TB
- Metric: sort throughput

[100 TB Results													
F	lank	Company	System	HSph	Price/HSph	Watts/KHSph	System Availability	Apache Hadoop Compatible Software	Operating System	Date Submitted	Nodes			
	1		Cisco UCS Integrated Infrastructure for Big Data	21.99	39,193.64 USD	NR	10/26/15		Red Hat Enterprise Linux Server 6.5	10/23/15	32			

Industry Benchmarks...

- TPCx-BigBench (BB)
 - Outcome from discussions at the 1st WBDB, 2012
 - BigBench: towards an industry standard benchmark for big data analytics, Ghazal, Rabl, Hu, Raab, Poess, Crolotte, and Jacobsen, ACM SIGMOD 2013
 - Analysis of workload on 500-node hadoop cluster
 - An Analysis of the BigBench Workload, Baru, Bhandarkar, Curino, Danisch, Frank, Gowda, Huang, Jacobsen, Kumar, Nambiar, Poess, Raab, Rabl, Ravi, Sachs, Yi and Youn, TPC-TC, VLDB 2014

3,000 TB Results												
Rank	Company	System	BBQpm	Price/BBQpm	Watts/BBQpm	System Availability	DBMS Software (Big Data Software Framework)	Operating System	Date Submitted	Cluster		
	Hewlett Packard	Hewlett Packard Enterprise ProLiant DL for Big Dat	337.26	1,102.94 USD	NR	05/19/16	Cloudera for Apache Hadoop (CDH) 5.6	Red Hat Enterprise Linux Server 6.7	03/31/16	Υ		
	Hewlett Packard	Hewlett Packard Enterprise ProLiant DL for Big Dat	265.93	1,212.46 USD	NR	05/19/16	Cloudera for Apache Hadoop (CDH) 5.6	Red Hat Enterprise Linux Server 6.7	03/24/16	Υ		

Other Benchmarking Efforts

Industry and academia

- HiBench, Yan Li, Intel
- Yahoo Cloud Serving Benchmark, Brian Cooper, Yahoo!
- Berkeley Big Data Benchmark, Pavlo et al., AMPLab
- BigDataBench, Jianfeng Zhan, Chinese Academy of Sciences

NIST

NIST Public Working Group on Big Data

- Use Cases and Requirements. 2013. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-3.pdf
- Big Data Use Cases and Requirements, Fox and Chang, 1st Big Data Interoperability Framework Workshop: Building Robust Big Data Ecosystem ISO/IEC JTC 1 Study Group on Big Data March 18 -21, 2014. San Diego Supercomputer Center, San Diego. http://grids.ucs.indiana.edu/ptliupages/publications/

http://grids.ucs.indiana.edu/ptliupages/publications/ NISTUseCase.pdf

Characterizing Applications

- Based on analysis of the 51 different use cases from the NIST study
 - Towards a
 Comprehensive Set of
 Big Data Benchmarks,
 Fox, Jha, Qiu,
 Ekanayake, Luckow

Other Related Activities

- BPOE: Big data benchmarking, performance optimization, and emerging hardware
 - BPOE-1 in Oct 2013; BPOE-7 in April 2016
- Tutorial on Big Data Benchmarking
 - Baru & Rabl, IEEE Big Data Conference, 2014
- EMBRACE: Toward a New Community-Driven Workshop to Advance the Science of Benchmarking
 - BoF at SC 2015
 - NSF project, "EMBRACE: Evolvable Methods for Benchmarking Realism through Application and Community Engagement" Bader, Riedy, Vuduc ACI-1535058

More Related Activities

Panels at SC, VLDB

Organized by NITRD High-End Computing and Big Data Groups

At SC 2015

- Supercomputing and Big Data: From Collision to Convergence
- Panelists: David Bader (GaTech), Ian Foster (Chicago), Bruce Hendrickson (Sandia), Randy Bryant (OSTP), George Biros (U.Texas), Andrew W. Moore (CMU)

At VLDB 2015

- Exascale and Big Data
- Panelists: Peter Baumann (Jacobs University), Paul Brown (SciDB), Michael Carey (UC Irvine), Guy Lohman, (IBM Almaden), Arie Shoshani (LBL)

Things that TPC has difficulty with

Benchmarking of processing pipelines

- Extrapolating, interpolating benchmark numbers
- Dealing with the range of Big Data data types and cases

From the NSF Big Data PI Meeting

- Meeting held on April 20-21, 2016, Arlington, VA
- A part of the report out from the Big Data Systems breakout group

Reporters: Magda Balazinska (UW) & Kunle Olukotun (Stanford) http://workshops.cs.georgetown.edu/BDPI-2016/ http://workshops.cs.georgetown.edu/BDPI-2016/notes.htm

Strategic Priorities & Investments That Will Advance Innovation

- Making complex analytics fast
 - Interactive analytics
 - Innovation in architectures
 - Across-the-stack innovations
 - Benchmarks: data sets, analytics, etc.
 - In-memory analytics
 - Complex analytics
 - Mobile devices or even IoT devices
 - Federated analytics
 - HPC + dataflow systems

Making Progress

 Adapting Big Data software stacks for HPC is probably more fruitful than other way around – viz., adapting HPC software to handle Big Data needs

Because

- HPC: well-established software ecosystem, highly sensitive to performance, established codebases
- Big Data: Rapidly evolving and emerging software ecosystem, evolving applications needs, price/ performance is more relevant

What to measure for HPCBD?

TPC

Data management software (+ underlying sw/hw)

SPEC

Server-level performance

Top500

- Compute performance
- HPCBD: Focus on performance of the HPCBD software stack (+ implicitly the hardware)
- But there could be multiple stacks
 - Not 100's, or 10's, but perhaps >5, <10 ?
 - E.g. stream processing; genomic processing; geospatial data processing; deep learning with image data; ...

E.g., Berkeley BDAS

https://amplab.cs.berkeley.edu/software/

Ideas for next steps

- Can we enumerate a <u>few</u> stacks, based on functionality?
 - Do we need reference datasets for each stack?
- Could we run a workshop to identify stacks and how stack-based benchmarking would work
 - Can we develop "reference stacks"...how should that be done?
 - Streaming data processing will be big...
- Can we use performance with given datasets using reference stacks as basis for selecting future BDHPC systems
 - And, the basis for which stacks should be well supported on such machines

Thanks!

