4: Linear Models

John H Maindonald

April 3, 2018

Ideas and issues illustrated by the graphs in this vignette

The graphs shown here relate to issues that arise in the use of the linear model fitting function lm().

Note: The version of Figure 4.13 that is shown in Section 2 is for a random subset of 80 of the 158 rows of the dataset Electricity.

1 Code for Functions that Plot the Figures

```
fig4.1 <-
function (){
    size10 <- list(fontsize=list(text=8, points=6))
    print(round(cor(nihills), 2))
    splom(nihills, par.settings=size10)
}</pre>
```

```
fig4.2 <-
function ()
{
    size10 <- list(fontsize=list(text=10, points=6))
    lognihills <- log(nihills[,1:4])
    names(lognihills) <- c("ldist", "lclim", "ltim", "ltimf")
    print(round(cor(lognihills), 2))
    vnam <- paste("log(", names(nihills)[1:4], ")", sep="")
    splom(lognihills, pscales=0, varnames=vnam, par.settings=size10)
}</pre>
```

```
fig4.3 <-
function (obj=lognigrad.lm, mfrow=c(1,2))
{</pre>
```

```
fig4.6 <-
function (obj=lognigrad.lm2)
{
   objtxt <- deparse(substitute(obj))
   nocando <- "Cannot do graph,"
   if(!exists(objtxt))return(paste(nocando, "no obj =", objtxt))
   opar <- par(mfrow=c(1,4), mgp=c(2.25,.5,0), pty="s",</pre>
```

```
mar=c(3.6,3.6, 2.1, 0.6))
plot(obj, cex.lab=1.1, cex.caption=0.8)
par(opar)
}
```

```
fig4.7 <-
function (obj=lognigrad.lm)
    ## The following generates a matrix of 23 rows (observations)
    ## by 1000 sets of simulated responses
    simlogniY <- simulate(obj, nsim=1000)</pre>
    ## Extract the QR decomposition of the model matrix
    qr <- obj$qr
    ## For each column of simlogniY, calculate regression coefficients
    bmat <- qr.coef(qr, simlogniY)</pre>
    bDF <- as.data.frame(t(bmat))</pre>
    names(bDF) <- c("Intercept", "coef_logdist", "coef_lgradient")</pre>
    gph <- densityplot(~Intercept+coef_logdist+coef_lgradient, data=bDF,</pre>
                        outer=TRUE, scales="free", plot.points=NA,
                        panel=function(x, ...){
                            panel.densityplot(x, ...)
                            ci \leftarrow quantile(x, c(.025, .975))
                            panel.abline(v=ci, col="gray")
    gph
```

```
fig4.9 <-
function (plotit=TRUE)
{
    ## Panel A
    gph <- xyplot(tempDiff ~ vapPress, groups=CO2level,</pre>
```

```
data = DAAG::leaftemp,
                   ylab="", aspect=1,
                   cex.main=0.75,
                   par.settings=simpleTheme(pch=c(2,1,6), cex=0.85,
                                             lty=1:3))
    hat1 <- predict(lm(tempDiff ~ vapPress, data = leaftemp))</pre>
    hat2 <- predict(lm(tempDiff ~ vapPress + CO2level, data = leaftemp))
    hat3 <- predict(lm(tempDiff ~ vapPress * CO2level, data = leaftemp))
    hat123 <- data.frame(hat1=hat1, hat2=hat2, hat3=hat3)</pre>
    gph1 <- gph+latticeExtra::layer(panel.xyplot(x, hat1, type="1",</pre>
                                                    col.line=1, ...),
                       data=hat123)
    ## Panel B
    gph2 <- gph+latticeExtra::layer(panel.xyplot(x, hat2, type="l", ...),</pre>
                       data=hat123)
    ## Panel C
    gph3 <- gph+latticeExtra::layer(panel.xyplot(x, hat3, type="1", ...),</pre>
                       data=hat123)
    maintxt <- c(as.call(~ vapPress),</pre>
                  as.call(~ vapPress + CO2level),
                  as.call(~ vapPress*CO2level))
    gph1 <- update(gph1, main=deparse(maintxt[[1]]), ylab="tempDiff",</pre>
                    auto.key=list(text=c("low", "med", "high"),
                                  between=1, between.columns=2,
                                   columns=3))
    gph2 <- update(gph2, main=deparse(maintxt[[2]]),</pre>
                    auto.key=list(text=c("low", "med", "high"),
                                  between=1, between.columns=2,
                                   columns=3))
    gph3 <- update(gph3, main=deparse(maintxt[[3]]),</pre>
                    auto.key=list(text=c("low", "med", "high"),
                                   between=1, between.columns=2,
    if(plotit){
        print(gph1, position=c(0,0,.36,1))
        print(gph2, position=c(0.34,0,.68,1), newpage=FALSE)
        print(gph3, position=c(0.66,0,1,1), newpage=FALSE)
    invisible(list(gph1, gph2, gph3))
fig4.10 <-
function ()
```

```
fig4.12 <-
function (dset=meuse)
{
    dset$ffreq <- factor(dset$ffreq)
    dset$soil <- factor(dset$soil)
    meuse.lm <- lm(log(lead) ~ elev + dist + ffreq + soil, data=meuse)
    opar <- par(mfrow=c(1,4), mar=c(3.1,3.1,2.6,0.6))
    termplot(meuse.lm, partial=TRUE, smooth=panel.smooth)
    par(opar)
}</pre>
```

```
fig4.13 <-
function (data)
{</pre>
```

```
if(packageVersion('car') < '3.0.0'){
    spm(data, smooth=TRUE, reg.line=NA, cex.labels=1.5,
        col=adjustcolor(rep("black",3), alpha.f=0.4))} else
        spm(data, smooth=TRUE, regLine=FALSE, cex.labels=1.5,
        col=adjustcolor(rep("black",3), alpha.f=0.4))
}</pre>
```

```
fig4.15 <-
function (obj=elec.lm, mfrow=c(2,4))
{
    objtxt <- deparse(substitute(obj))
    nocando <- "Cannot do graph,"
    if(!exists(objtxt))return(paste(nocando, "no obj =", objtxt))
    opar <- par(mfrow=mfrow, mar=c(3.1,3.1,1.6,0.6), mgp=c(2,0.5,0))
    termplot(obj, partial=T, smooth=panel.smooth)
    par(opar)
}</pre>
```

```
fig4.17 <-
function (){
    set.seed(37)  # Use to reproduce graph that is shown
    bsnVaryNvar(m=100, nvar=3:50, nvmax=3)
}</pre>
```

2 Show the Figures

```
pkgs <- c("DAAG","sp","splines","car","leaps","sp","quantreg")
z <- sapply(pkgs, require, character.only=TRUE, warn.conflicts=FALSE)
if(any(!z)){
  notAvail <- paste(names(z)[!z], collapse=", ")
  print(paste("The following packages should be installed:", notAvail))
}

if(!exists("Electricity")){
  msg <- "Cannot locate 'Electricity' or 'Ecdat::Electricity'"
  if(require("Ecdat")) Electricity <- Ecdat::Electricity else
    print(msg)
if(require("sp")){
  data("meuse", package="sp", envir=environment())
  } else print("Package 'sp' is not available")
}</pre>
```

```
dist climb time timef
dist 1.00 0.91 0.97 0.95
climb 0.91 1.00 0.97 0.96
time 0.97 0.97 1.00 1.00
timef 0.95 0.96 1.00 1.00
```


Scatter Plot Matrix

```
fig4.2()

ldist lclim ltim ltimf

ldist 1.00 0.78 0.95 0.93

lclim 0.78 1.00 0.92 0.92

ltim 0.95 0.92 1.00 0.99

ltimf 0.93 0.92 0.99 1.00
```


Scatter Plot Matrix

fig4.3()

fig4.4()

fig4.5()

fig4.6()

fig4.7()

if (require("DAAG")) fig4.8()

if (require("DAAG")) fig4.9()

```
~vapPress
                              ~vapPress + CO2level
                                                         ~vapPress * CO2level
   low △
           med o
                     \text{high } \nabla
                                      med ○ high ▽
                              low △
                                                         low △ med o high ▽
   3
                              3
tempDiff
   2
                              2
                              0
   0
                                   1.5
                                        2.0
                                              2.5
                                                              1.5
                                                                   2.0
                                                                         2.5
        1.5
              2.0
                   2.5
                                      vapPress
                                                                 vapPress
           vapPress
```

```
if(require("sp")) {
  data("meuse.riv", package="sp", envir = environment())
  data("meuse", package="sp", envir = environment())
  } else
  print("Cannot find package 'sp' or required data, cannot do graph")
```

```
if(exists("meuse")){
  meuse <- as.data.frame(meuse)
  fig4.11()
} else print("Cannot find object 'meuse', hence cannot do graph")</pre>
```



```
if(exists("meuse")){
  meuse <- as.data.frame(meuse)
  fig4.12()
} else print("Cannot find object 'meuse', hence cannot do graph")</pre>
```



```
if(!exists("Electricity")) print("Cannot locate dataset 'Electricity'") else {
   nsamp80 <- sample(nrow(Electricity),80)
   fig4.13(data=Electricity[nsamp80, ])
   mtext(side=3,line=2, paste("4.13: Shows 80 randomly sampled rows"), adj=0)
}</pre>
```

4.13: Shows 80 randomly sampled rows


```
if(exists("Electricity")){
elec.lm <- lm(log(cost) ~ log(q)+pl+sl+pk+sk+pf+sf, data=Electricity)
elec2xx.lm <- lm(log(cost) ~ log(q) * (pl + sl) + pf, data = Electricity)
}</pre>
```

```
if(exists("Electricity"))fig4.14() else
    print("Cannot locate dataset 'Electricity'; graph unavailable")
```


if(exists("Electricity"))fig4.15() else
 print("Cannot locate dataset 'Electricity'; graph unavailable")

if(exists("Electricity"))fig4.16() else
 print("Cannot locate dataset 'Electricity'; graph unavailable")

if(require(DAAG)) fig4.17()

