Appunti Comunicazioni Numeriche

Francesco Mignone

AA 2022 - 2023

Figure 1: touch me senpai

Contents

1	Intr	roduzione	7
2	Ric	hiamo Sui Numeri Complessi	8
	2.1	Struttura di un numero complesso	8
		2.1.1 Forma Cartesiana	8
		2.1.2 Forma Polare	8
		2.1.3 Complesso Coniugato	8
	2.2	Relazione Tra Forma Polare e Cartesiana	8
	2.3	Operazioni	9
	2.4	Funzioni Complesse a Variabile Reale	9
3	Intr	roduzione Ai Segnali	LO
	3.1	Classificazione di segnale in base alla continuità dei domini	10
4	Seg	nali Analogici	1 2
	4.1	Grandezze dei segnali Analogici	12
		4.1.1 Potenza istantanea	12
		4.1.2 Energia	12
		4.1.3 Potenza Media	12
			13
		4.1.5 Valore Medio	13
	4.2	Analisi energetiche su segnali comuni	13
		4.2.1 Costante	13
		4.2.2 Cosinusoide	14
		4.2.3 Gradino	16
		4.2.4 Rettangolo	16
		4.2.5 Esponenziale unilatera	17
		4.2.6 Esponenziale bilatera	19
			19
	4.3	Segnal Periodici	20
5	Tra	sformata Serie Di Fourier	22
	5.1	Segnale Periodico	22
	5.2	Trasformata Serie Di Fourier	22
			22
	5.3	Propietá della TSF	23
	5.4	Linearitá	23
	5.5	Simmetria Hermitiana	23
	5.6		23
			23
			24
			25

6	Tra	sforma	ta Continua Di Fourier	28									
	6.1 Segnali Aperiodici												
	6.2 Equazioni di Analisi e Sintesi												
		6.2.1	Equazione di Analisi	29									
		6.2.2	Equazione di Sintesi	29									
		6.2.3	TCF di una $Arect\left(\frac{t}{T}\right)$	30									
	6.3	Propie	etá	31									
		6.3.1	Simmetria hermitiana	32									
		6.3.2	Paritá	32									
		6.3.3	Disparitá	32									
	6.4	mi relativi alla TCF	32										
		6.4.1	Linearitá	32									
		6.4.2	Dualitá	33									
		6.4.3	Ritardo	34									
		6.4.4	Derivazione	35									
		6.4.5	Integrazione	36									
		6.4.6	Derivazione in Frequenza	38									
		6.4.7	Integrazione in Frequenza	39									
		6.4.8	Convoluzione	39									
		6.4.9	Prodotto	40									
		6.4.10		40									
	6.5	Modulazione di Ampiezza											
		6.5.1	Th. Modulazione con $\cos(2\pi f_0 t)$	43 44									
		6.5.2	Th. Modulazione con $\sin(2\pi f_0 t)$	45									
		6.5.3	Th. Modulazione con $\cos(2\pi f_0 t + \phi)$	45									
		6.5.4	Th. Modulazione con Esponenziale Complesso	46									
		6.5.5	Demodulazione	47									
		6.5.6	Radar	51									
	di Dirac	53											
		6.6.1	Propietá del Delta di Dirac	53									
		6.6.2	TCF della Delta di Dirac	54									
		6.6.3	TCF di segnali periodici	55									
	6.7	Relazi	one tra TSF e TCF	56									
		6.7.1	TCF di un segnale periodico generico	56									
		6.7.2	Relazione tra i coefficenti X_k e $X_{(f)}$	58									
		6.7.3	I^a formula di Poisson	60									
		6.7.4	Teorema dell'integrazione completo	61									
7			Ionodimensionali	63									
	7.1		etá dei Sistemi Lineari Tempo Invarianti (LTI)	63									
	7.2		etá dei Sistemi Lineari Stazionari (SLS)	64									
		7.2.1	Risposta in frequenza	65									
		7.2.2	Sistemi in cascata e in parallelo	65									
	7.3		sta di un sistema causale e risposta impulsiva	67									
		7.3.1	Stabilitá BIBO su $h_{(t)}$	68									
	7.4	Filtri	Ideali	68									

		7.4.1 7.4.2 7.4.3 7.4.4	Filtro Passa Basso di banda B - Low Pass Filter (LP) Filtro Passa Alto di banda B - High Pass Filter (HP) Filtro Passa Banda di banda B - Band Pass Filter (BP) . Filtro Elimina Banda di banda B - Band Stop Filter (BS)	68 72 74 77
		7.4.5	Filtri non distorcenti	79
	7.5	Th. di	Parseval	81
	7.6	Funzio	one di Correlazione - Segnali Aperiodici	82
	7.7	Funzio	one di Autocorrelazione	82
		7.7.1	Propietá Autocorrelazione	82
8	Tra	sforma	ta Discreta di Fourier	83
		8.0.1	Equazione di Analisi - TDF	83
		8.0.2	Equazione di Sintesi - ATDF	83
		8.0.3	Trasformata di $\delta_{[n]}$	83
		8.0.4	Relazione tra $TCF \in TDF$	84
	8.1		na del Campionamento - Nyquist Shannon	84
^	æ			00
9	9.1		la Probabilitá uzione	90 90
	9.1	9.1.1	Tipi di modelli matematici	91
	9.2		ra dei Set (insiemi)	92
	9.4	9.2.1	Operazioni booleane su set	92
		9.2.1 $9.2.2$	Operazioni algebriche su set	93
	9.3		li probabilistici	94
	9.5	9.3.1	Assiomi della probabilitá	94
		9.3.1	Probabilitá condizionata	95
		9.3.3	Regola di Bayes	95 95
		9.3.4	Indipendenza	95
		9.3.5	Legge della probabilitá totale	95
		9.3.6	Problemi esempio:	96
		9.3.7	Coefficiente binomiale	98
	9.4			100
	0.1	9.4.1		101
		9.4.2	Funzione Densitá di Probabilitá - Probability Density Func-	101
		0.1.2		101
		9.4.3	Funzione Probabilitá di massa - Probability Mass Func-	101
		0.1.0	tion (pmf)	102
		9.4.4	ν- /	103
		9.4.5	Funzione Densitá di Probabilitá Condizionata - Condi-	
		0.2.0	tional Probability Density Function	103
		9.4.6	v	104
		9.4.7	Valore medio delle Variabili Aleatorie - Mean Value of	-01
		J. 2	Random Variables (Expectation)	104
		9.4.8	Varianza - Variance	106
		9.4.9	Covarianza - Covariance	106
		9.4.10		107
		-		

		9.4.11	Funzione $Q_{(x)}$. 108
			Teorema del Limite Centrale - Central Limit Theorem .	
		9.4.13	Calcolo probabilitá di errore di un sistema	. 110
10	Pro	cessi S	tocastici	117
	-	Valore		
	10.2		orrelazione	
			Propietá della autocorrelazione R_x	
			Sigificato fisico dell'autocorrelazione $\ \ldots \ \ldots \ \ldots$	
	10.3		Stazionari in Senso Lato (SSL)	
			Trasmissione di un SSL in un sistema LTI-Filter $\ \ .$	
			Densitá di potenza spettrale	
	10.4		so Gaussiano	
			Rumore Bianco	
		10.4.2	Filtro passa basso ideale per rumore bianco	. 122
11			Comunicazione	124
	11.1		Amplitude Modulation - PAM	
			Mappatore	
			Modulatore	
			Densitá spettrale di potenza	
			Potenza	
			Potenza e Energia - caso IID	
			Schema completo di un sistema di comunicazione PAM	
			Rimozione dell'ISI	
			o a coseno rialzato	
	11.3		adattato	
			Progettazione dei filtri di ricezione e trasmissione	
	11.4		to decisore	
			Zone di decisione	
			Calcolo della SER per un sistema PAM M-ario	
			Efficenza spettrale ed efficenza energetica	
	44 -		Codifica GRAY nel sistema PAM	
	11.5	QAM	T	
			Inviluppo complessso	
			Trasmettitore - QAM	
			Densitá spettrale di potenza - QAM	
	11.0		Ricevitore - QAM	
			azione Amplitude Shift Keyring - ASK	
			azione Quadrature Amplitude Modulation - QAM	
	11.8		azione Phase Shift Keyring - PSK	
		11.8.1	Prestazioni di un sistema PSK	. 100

12		Codici	167
	12.1	uzione	
		Esempio codici a blocco: codici a ripetizione	
		Esempio codici a blocco: codici a controllo di paritá	
	100	Esempio codici a blocco: codice ISBN	
	12.2	a blocco	
		Introduzione ai codici lineari	
		Campi di Galois	
		Codici a blocco lineari su $GF(2)$	
		Propietá dei codici a blocco lineari	
		Distanza di Hamming	
		Codici a blocco in forma sistematica	
		Matrice di controllo di paritá	
	10.0	Propietá dei codici a blocco	
	12.3	di Hamming	
		Il codice $C_H(2)$	
	10.4	Il codice $\mathcal{C}_H(3)$	
	12.4	ffica per codici a blocco	
		Coset	
		Propietá dei coset	
		Algoritmo di decodifica	
		Decodifica mediante sindrome	
		Decodifica a sindrome: Codici di Hamming $m=3$	
	10.5	Esempio di decodifica	
	12.5	Ciclici	
		Rappresentazione algebrica di un codice ciclico	
		Polinomio generatore di un codice ciclico	
		Teorema fondamentale generatore di un codice ciclico	
		Matrice generatrice di un codice ciclico	
		Controllo di paritá per un codice ciclico	
		Metodo alternativo per il calcolo della sindrome	
		Decodifica a sindrome per codici ciclici	
	12.6	Convoluzionali	
	12.0	Codificatore codice convoluzionale	
		Generatori di un codice convoluzionale	
		Rappresentazione come macchina a stati	
		Diagramma di Stato	199
		Diagramma a traliccio	
		Distanza colonna	
		Distanza libera	
		Strategia di decodifica a massima verosomiglianza	
		Algoritmo di Viterbi	
	12.7	zioni sistemi codificati	
		a blocco	
		convoluzionali	201

13	Forr	nulario)													211
	13.1	Trigon	ometria	a												 211
		13.1.1	Formu	ıle di	add	izio	ne									 211
		13.1.2	Formu	ıle di	dup	lica	azic	ne								 211
		13.1.3	Formu	ıle di	bise	zio	ne									 212
	13.2	Segnal	i Notev	oli .												 212
	13.3	Grand	ezze Fi	siche												 213
	13.4	Varie .														 213
_		. 10 1														~-
Inc	dice .	Alfabe	tico													217

1 Introduzione

I seguenti appunti sono scritti seguendo le lezioni del corso di Comunicazioni Numeriche di Ingegneria Informatica dell'Univertistá di Pisa. Questi appunti non vanno a sostituire il materiale e le lezioni dei professori.

I testi consigliati per l'anno 2022-2023 sono:

S.Hawking Digital Communication System Wiley Leon Digital Analog Communication System Pearson

2 Richiamo Sui Numeri Complessi

2.1 Struttura di un numero complesso

2.1.1 Forma Cartesiana

$$z\in\mathbb{C}:z=a+jb$$
 Parte reale: $a=Re\{z\}$ Parte Immaginaria: $b=Img\{z\}$ j o i é la $\sqrt{-1}$

2.1.2 Forma Polare

$$z \in \mathbb{C}$$
: $z = \rho \ e^{j\theta} = \rho \cos(\theta) + j\rho \sin(\theta)$
Modulo: $\rho = |z|$
Fase: $\theta = \arg(z) \quad \theta \in [0, 2\pi)$

grafico forma polare-cartesiana

2.1.3 Complesso Coniugato

• Forma Cartesiana

$$z^* = a - jb$$

• Forma Polare

$$z^* = \rho \ e^{-j\theta}$$

2.2 Relazione Tra Forma Polare e Cartesiana

• Parte Reale e parte Immaginaria

$$a = \rho \cos(\theta)$$
 $b = \rho \sin(\theta)$

 \bullet Modulo

$$\rho = |z| = \sqrt{a^2 + b^2} = \sqrt{\rho^2 \cos^2(\theta) + \rho^2 \sin^2(\theta)}$$

• Fase

$$a > 0 \Rightarrow \theta = \arg(z) = \arctan\left(\frac{b}{a}\right)$$

$$a<0\Rightarrow\theta=\arg(z)=\pi+\arctan\left(\frac{b}{a}\right)$$

2.3 Operazioni

Dati: $z_1 = a_1 + jb_1 = \rho_1 \ e^{j\theta_1}, \ z_2 = a_2 + jb_2 = \rho_2 \ e^{j\theta_2}$

• Somma

$$z = z_1 + z_2 = (a_1 + a_2) + j(b_1 + b_2)$$

• Sottrazione

$$z = z_1 - z_2 = (a_1 - a_2) + j(b_1 - b_2)$$

• Moltiplicazione

$$z = z_1 z_2 = \rho_1 \rho_2 \ e^{j(\theta_1 + \theta_2)}$$

• Divisione

$$z = \frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} e^{j(\theta_1 - \theta_2)}$$

• Modulo

$$|z| = \sqrt{zz^*} = \sqrt{a^2 + b^2}$$

 $|z|^2 = zz^* = a^2 + b^2 = \rho^2$

2.4 Funzioni Complesse a Variabile Reale

$$z \in \mathbb{C}, \ t \in \mathbb{R} \to z_{(t)} = a_{(t)} + jb_{(t)} = \rho_{(t)}e^{j\theta_{(t)}}$$

• Integrale

$$\int_{a}^{b} z_{(t)} dt = \int_{a}^{b} a_{(t)} + jb_{(t)} dt = \int_{a}^{b} a_{(t)} dt + \int_{a}^{b} jb_{(t)} dt$$

• Derivata

$$\frac{d}{dt}z_{(t)} = \frac{d}{dt}a_{(t)} + jb_{(t)} = \frac{d}{dt}a_{(t)} + \frac{d}{dt}jb_{(t)}$$

3 Introduzione Ai Segnali

- Deterministici: Segnale rappresentabile con funzioni analitiche e noto $\forall t$, per ogni istante temporale si conosce il valore del segnale, spesso rappresentati con funzioni analitiche.
- Aleatori: Segnale rappresentabile tramite statistiche, ad esempio un rumore.

3.1 Classificazione di segnale in base alla continuità dei domini

- Dominio del tempo:
 - Segnale tempo continuo: $t \in \mathbb{R}$ assume con conitinuità tutti i valori contenuti all'interno di un intervallo
 - Segnale a tempo discreto: $t = \{nT\}n \in \mathbb{Z}\ T$ =periodo di campionamento, la variabile temoporale assume solo valori discreti

Figure 2: tempo continuo, tempo discreto: T = 0.3

- Dominio dell'ampiezza (spazio):
 - Segnale ad ampiezza continua: $x_{(t)}$ continua, la grandezza fisica del segnale assume con continuità tutti i valori all'interno di un intervallo
 - Segnale ad ampiezza discreta: $x_{(t)}$ discreta,
se restringo l'intervallo posso renderla continua, la grandezza fisica pu
ó assumere solo valori discreti

Figure 3: ampiezza continua, ampiezza discreta

Possiamo costruire una tabella per categorizzare le tipologie di segnali:

Segnale	Continuo	Discreto	t
Continua	Analogico	Sequenza/Digitale	
Discreta	Quantizzato	Binario	
$x_{(t)}$			

4 Segnali Analogici

4.1 Grandezze dei segnali Analogici

4.1.1 Potenza istantanea

$$P_x \triangleq |x_{(t)}|^2$$

Se $x_{(t)} \in \mathbb{R} \to P_x \triangleq x_{(t)}^2$

4.1.2 Energia

$$E_x \triangleq \int_{-\infty}^{\infty} P_x(t) dt = \int_{-\infty}^{\infty} |x_{(t)}|^2 dt$$

$$Energia : \begin{cases} Energia \ finita & (Segali \ fisici) \\ Energia \ infinita & (Segali \ ideali) \end{cases}$$

4.1.3 Potenza Media

Definiamo il **Segnale Troncato**:

$$x_{(t)} = X_{(t)} \triangleq \begin{cases} x_{(t)} & -\frac{T}{2} \le t \le \frac{T}{2} \\ 0 & altrove \end{cases}$$

 $T=Periodo\ di\ osservazione$

Figure 4: Segnale troncato

La potenza media é:

$$P_{x_T} \triangleq \frac{E_{x_T}}{T}$$

$$E_{x_T} = \int_{-\frac{T}{2}}^{\frac{T}{2}} |x_{(t)}|^2 dt$$

dalla quale possiamo ricavare se $T \rightarrow \infty \Rightarrow P_{x_T} = P_x$:

$$P_x \triangleq \lim_{T \to \infty} \frac{E_{x_T}}{T} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x_{(t)}|^2 dt$$

Possiamo ricavare delle propietá secondo energia e potenza:

- Se $x_{(t)}$ ha $E_x < \infty \Rightarrow P_x = 0$
- Se $x_{(t)}$ ha $P_x = k \neq 0 < \infty \Rightarrow E_x = \infty$

4.1.4 Valore Efficace

$$x_{eff} \triangleq \sqrt{P_x}$$

4.1.5 Valore Medio

$$x_{m} \triangleq \lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{\infty} x_{(t)_{T}} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{(t)} dt$$
$$x_{(t)_{T}} = Segnale \ troncato$$

4.2 Analisi energetiche su segnali comuni

4.2.1 Costante

$$x_{(t)} = A \ \forall t$$

Figure 5: Segnale costante

• Energia:

$$E_x = \int_{-\infty}^{\infty} P_x(t) dt = \int_{-\infty}^{\infty} |x_{(t)}|^2 dt = \int_{-\infty}^{\infty} A^2 dt = \infty$$

• Potenza Media:

$$P_x = \lim_{T \to \infty} \frac{E_{x_T}}{T} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x_{(t)}|^2 dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} A^2 dt = A^2$$

• Valore Efficace:

$$x_{eff} = \sqrt{P_x} = \sqrt{A^2} = |A|$$

• Valore Medio:

$$x_m = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{(t)} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} A dt = \lim_{T \to \infty} \frac{1}{T} AT = A$$

4.2.2 Cosinusoide

$$x_{(t)} = A\cos(2\pi f_0 t + \phi)$$

 $A = Ampiezza, \ f_0 = \frac{1}{T} = frequenza, \ \phi = fase$

Figure 6: Segnale cosinusoidale ($\phi = 0$)

• Energia:

$$E_x = \int_{-\infty}^{\infty} |x_{(t)}|^2 dt = \int_{-\infty}^{\infty} A^2 \cos^2(2\pi f_0 t + \phi) dt$$

Ricaviamo dalla (1) 13.1 il $\sin^2(\alpha)$ e lo sostituiamo (2.1) 13.1.2 $\cos(2\alpha)=\frac{1+\cos^2(\alpha)}{2}$

$$= A^{2} \int_{-\infty}^{\infty} \frac{1}{2} + \frac{\cos(4\pi f_{0}t + 2\phi)}{2} dt$$

$$= A^{2} \int_{-\infty}^{\infty} \frac{1}{2} dt + A^{2} \int_{-\infty}^{\infty} \frac{\cos(4\pi f_{0}t + 2\phi)}{2} dt$$

$$= \infty + \frac{A}{2} \frac{1}{4\pi f_{0}} \sin(4\pi f_{0}t) \Big|_{-\infty}^{\infty} = \infty$$

• Potenza Media:

$$P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x_{(t)}|^{2} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} A^{2} \cos^{2}(2\pi f_{0}t + \phi) dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \frac{A}{2} T + \lim_{T \to \infty} \frac{A}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(4\pi f_{0}t + 2\phi) dt$$

$$= \frac{A}{2} + \lim_{T \to \infty} \frac{A}{2} \frac{1}{4\pi f_{0}} \sin(4\pi f_{0}t + 2\phi) \Big|_{\frac{T}{2}}^{-\frac{T}{2}} = \frac{A^{2}}{2}$$

• Valore Efficace:

$$x_{eff} = \sqrt{P_x} = \sqrt{\frac{A^2}{2}} = \frac{|A^2|}{\sqrt{2}}$$

 $\bullet\,$ Valore Medio:

$$x_m = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{(t)} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(2\pi f_0 t + \phi) dt$$
$$= \lim_{T \to \infty} \frac{1}{T} \frac{A}{2} \frac{1}{2\pi f_0} \sin(2\pi f_0 t + \phi) \Big|_{\frac{T}{2}}^{-\frac{T}{2}} = 0$$

4.2.3 Gradino

$$U_{(t)} = x_{(t)} = \begin{cases} 1 & t > 0 \\ 0 & t \le 0 \end{cases}$$

Figure 7: Segnale gradino

• Energia:

$$E_x = \int_{-\infty}^{\infty} |x_{(t)}|^2 dt = \int_{-\infty}^{\infty} 1 dt = \infty$$

• Potenza Media:

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |U_{(t)}|^2 dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 dt = \lim_{T \to \infty} \frac{1}{T} \frac{T}{2} = \frac{1}{2}$$

• Valore Efficace:

$$x_{eff} = \sqrt{P_x} = \frac{1}{\sqrt{2}}$$

• Valore Medio:

$$x_m = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{(t)} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 dt = \lim_{T \to \infty} \frac{1}{T} \frac{T}{2} = \frac{1}{2}$$

4.2.4 Rettangolo

$$x_{(t)} = A \ rect\left(\frac{t}{T}\right) = \begin{cases} A & -\frac{t}{T} \le t \le \frac{t}{T} \\ 0 & Altrove \end{cases}$$

Figure 8: Segnale rettangolo

• Energia:

$$E_x = \int_{-\infty}^{\infty} |x_{(t)}|^2 \ dt = \int_{-\frac{T}{2}}^{\frac{T}{2}} A^2 \ rect^2 \left(\frac{t}{T}\right) \ dt = A^2 \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 \ dt = A^2 T$$

 $\bullet\,$ Potenza Media: $T < T_0$ se non fosse cosí avrei una costante

$$P_x = \lim_{T \to \infty} \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x_{(t)}|^2 dt = \lim_{T \to \infty} \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} A^2 rect^2 \left(\frac{t}{T}\right) dt$$
$$= \lim_{T \to \infty} \frac{1}{T_0} A^2 T = 0$$

• Valore Efficace:

$$x_{eff} = \sqrt{P_x} = 0$$

• Valore Medio:

$$x_{m} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{(t)} dt = \lim_{T \to \infty} \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} A \operatorname{rect}\left(\frac{t}{T}\right) dt$$
$$= \lim_{T \to \infty} \frac{1}{T_{0}} AT = 0$$

Figure 9

4.2.5 Esponenziale unilatera

$$x_{(t)} = e^{-t}U_{(t)}$$

Figure 10: Segnale esponenziale unilatera

• Energia:

$$E_x = \int_{-\infty}^{\infty} |x_{(t)}|^2 dt = \int_{0}^{\infty} e^{-2t} dt = \frac{1}{2} e^{-2t} \Big|_{0}^{\infty} = \frac{1}{2}$$

• Potenza Media:

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |e^{-t}U_{(t)}|^2 dt = \lim_{T \to \infty} \frac{1}{T} \int_0^{\frac{T}{2}} e^{-2t} dt$$
$$= \lim_{T \to \infty} \frac{1}{T} \left(-\frac{1}{2} \right) e^{-2t} \Big|_0^{\frac{T}{2}} = \lim_{T \to \infty} -\frac{1}{2T} e^{-2\frac{T}{2}} + \lim_{T \to \infty} \frac{1}{2T} = 0$$

• Valore Efficace:

$$x_{eff} = \sqrt{P_x} = 0$$

• Valore Medio:

$$x_{m} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{(t)} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-t} U_{(t)} dt = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{\frac{T}{2}} e^{-t} dt$$
$$= \lim_{T \to \infty} \frac{1}{T} (-1) e^{-t} \Big|_{0}^{\frac{T}{2}} = \lim_{T \to \infty} -\frac{1}{T} e^{-\frac{T}{2}} + \lim_{T \to \infty} \frac{1}{T} = 0$$

4.2.6 Esponenziale bilatera

$$x_{(t)} = e^{-|t|}$$

Figure 11: Segnale esponenziale bilatera

• Energia:

$$E_x = \int_{-\infty}^{\infty} |x_{(t)}|^2 dt = 2 \int_{0}^{\infty} e^{-2t} dt = 2 \left(-\frac{1}{2}\right) e^{-2t} \Big|_{0}^{\infty} = 1$$

• Potenza Media:

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |e^{-t}U_{(t)}|^2 dt = \lim_{T \to \infty} \frac{2}{T} \int_0^{\frac{T}{2}} e^{-2t} dt$$
$$= \lim_{T \to \infty} \frac{1}{T} e^{-2t} \Big|_0^{\frac{T}{2}} = \lim_{T \to \infty} -\frac{1}{T} e^{-2\frac{T}{2}} + \lim_{T \to \infty} \frac{1}{T} = 0$$

• Valore Efficace:

$$x_{eff} = \sqrt{P_x} = 0$$

• Valore Medio:

$$x_m = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{(t)} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-t} U_{(t)} dt = \lim_{T \to \infty} \frac{1}{T} 2 \int_{0}^{\frac{T}{2}} e^{-t} dt$$
$$= \lim_{T \to \infty} \frac{1}{T} (-2)e^{-t} \Big|_{0}^{\frac{T}{2}} = \lim_{T \to \infty} -\frac{2}{T} e^{-\frac{T}{2}} + \lim_{T \to \infty} \frac{2}{T} = 0$$

4.2.7 segno $sgn(x_{(t)})$

$$x_{(t)} = sgn(t) = \begin{cases} -1 & t < 0\\ 1 & t > 0 \end{cases}$$

Figure 12: Segnale sgn(x)

• Energia:

$$E_x = \int_{-\infty}^{\infty} |x_{(t)}|^2 dt = \int_{-\infty}^{\infty} sgn^2(t) dt = \int_{-\infty}^{\infty} 1 dt = \infty$$

• Potenza Media:

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x_{(t)}|^2 dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} sgn^2 t \ dt = \lim_{T \to \infty} \frac{1}{T} T = 1$$

• Valore Efficace:

$$x_{eff} = \sqrt{P_x} = 1$$

• Valore Medio:

$$x_{m} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{(t)} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} sgn(t) dt$$
$$= \lim_{T \to \infty} \frac{1}{T} \left[\int_{-\frac{T}{2}}^{0} 1 dt + \int_{0}^{\frac{T}{2}} 1 dt \right] = \lim_{T \to \infty} \frac{1}{T} \left(-\frac{T}{2} + \frac{T}{2} \right) = 0$$

4.3 Segnal Periodici

Un segnale é periodico se:

$$x_{(t)} = x_{(t-kT_0)}$$
 $k \in \mathbb{Z}, \ t_0 \in \mathbb{R}^+, \ T_0 = Periodo \ del \ segnale$

Figure 13: Segnale periodico

Si possono definiscono le seguenti grandezze:

• Energia di un segnale periodico

$$E_x = \int_{-\infty}^{\infty} |x_{(t)}|^2 dt = \sum_{k=-\infty}^{\infty} \int_{-\frac{T_0}{2} + kT_0}^{\frac{T_0}{2} + kT_0} |x_{(t)}|^2 dt = \sum_{k=-\infty}^{\infty} X$$
$$= \lim_{k \to \infty} kX = \infty$$

Tutti i segnal iperiodici hanno quindi $E_x = \infty$

• Potenza media di un segnale periodico

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x_{(t)}|^2 dt \Rightarrow T = kT_0 \Rightarrow \lim_{k \to \infty} \frac{1}{kT_0} \int_{-\frac{kT_0}{2}}^{\frac{kT_0}{2}} |x_{(t)}|^2 dt$$
$$= \lim_{k \to \infty} \frac{1}{kT_0} k \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x_{(t)}|^2 dt = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x_{(t)}|^2 dt$$

Posso calcolare la potenza di un singolo periodo:

$$P_x = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x_{(t)}|^2 dt$$

• Valore medio di un segnale periodico

$$x_m = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x_{(t)} dt$$

5 Trasformata Serie Di Fourier

5.1 Segnale Periodico

Si definisce segnale periodico un segnale tale che:

$$x_{(t)} = x_{(t-kT_0)}$$

$$T_0 = Periodo$$
 $f_0 \triangleq \frac{1}{T_0} = Frequenza$

5.2 Trasformata Serie Di Fourier

Ogni segnale periodico di periodo T_0 che soddifa le condizioni di Dirichlet e la sua $E_x < \infty(C.S.)$ puó essere scritto come la somma di infinite sinusoidi di frequenze multiple di $f_0 = \frac{1}{T_0}$

• Equazione di Sintesi - Antitrasformata(ATSF)

$$x_{(t)} = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k f_0 t}$$
 $X_k \in \mathbb{C}, \ f_0 = \frac{1}{T_0}$

Se lo sviluppassimo sarebbe composto da:

$$x_{(t)} = \dots + X_{-1}e^{j2\pi(-1)f_0t} + X_0 + X_1e^{j2\pi(1)f_0t} + \dots$$

 X_0 corrisponde al Valore medio 4.1.5 del segnale, inoltre le componenti X_k prendono il nome di armoniche alla frequenza f corrispondente

• Equazione di Analisi - Trasformata(TSF)

$$X_k = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x_{(t)} e^{-j2\pi k f_0 t} dt$$

La TSF gode della biunivocitá: $\forall x_{(t)} \exists ! X_k$:

$$x_{(t)} \overset{TSF}{\underset{ATSF}{\rightleftharpoons}} X_k$$

Segnale Analogico Periodico $\stackrel{TSF}{\underset{ATSF}{\rightleftharpoons}}$ Sequenza Complessa

5.2.1 Rappresentazione di X_k

Essendo X_k un numero complesso puó essere rappresentato in forma polare:

$$X_k = |X_k|e^{\angle X_k}$$

Si possono rappresentare il modulo (Ampiezza) e la fase tramite grafici che prendono il nome di spettri:

Figure 14: Spettro di un treno di rect

lo spettro di Ampiezza gode della **simmetria pari** rispetto alle ascisse quindi é **sempre positivo**, mentre lo spettro di fase della **simmetria dispari**.

- 5.3 Propietá della TSF
- 5.4 Linearitá
- 5.5 Simmetria Hermitiana
- 5.6 Calcolo dei coefficenti X_k per segnali noti
- **5.6.1** $A\cos(2\pi f_0 t)$

$$x_{(t)} = A\cos(2\pi f_0 t), \quad A > 0$$

$$\begin{split} ATSF[x_{(t)}] &= ATSF[A\cos(2\pi f_0 t)]\\ &= ATSF[\frac{A}{2}(e^{j2\pi k f_0 t} + e^{-j2\pi k f_0 t})] \end{split}$$

Utilizzando la composizione dei coefficenti X_k :

$$x_{(t)} = \ldots + X_{-1}e^{j2\pi(-1)f_0t} + X_0 + X_1e^{-j2\pi(1)f_0t} + \ldots$$

Abbiamo :

ooiamo :

$$X_{-1} = \frac{A}{2} \quad X_0 = 0 \quad X_1 = \frac{A}{2}$$

Possiamo tracciare lo spettro del segnale:

Figure 15: Spettro TSF del coseno A > 0

5.6.2
$$A\sin(2\pi f_0 t)$$

$$x_{(t)} = A\sin(2\pi f_0 t), \quad A > 0$$

$$\begin{split} ATSF[x_{(t)}] &= ATSF[A\sin(2\pi f_0 t)] \\ &= ATSF[\frac{A}{2}(e^{j2\pi k f_0 t} - e^{-j2\pi k f_0 t})] \end{split}$$

Utilizzando la composizione dei coefficenti X_k :

$$x_{(t)} = \ldots + X_{-1}e^{j2\pi(-1)f_0t} - X_0 + X_1e^{-j2\pi(1)f_0t} + \ldots$$

Abbiamo:

$$X_{-1} = -\frac{A}{2j} \quad X_0 = 0 \quad X_1 = \frac{A}{2j}$$

$$|X_k| = \begin{cases} |\frac{A}{2j}| = \frac{A}{2} & k = 1\\ |-\frac{A}{2j}| = \frac{A}{2} & k = -1\\ 0 & altrove \end{cases} \quad \angle X_k = \begin{cases} \angle \frac{A}{2j} = -\frac{\pi}{2} & k = 1\\ \angle |-\frac{A}{2j}| = \frac{\pi}{2} & k = -1\\ 0 & altrove \end{cases}$$

Possiamo tracciare lo spettro del segnale:

Figure 16: Spettro TSF del seno A > 0

5.6.3 Treno di rect

 $x_R = A \ rect\left(\frac{t}{T}\right) \to \text{Segnale periodico} \to x_{(t)} = \sum_{-\infty}^{\infty} x_R(t-nT_0)$ $T_0 = periodo, \ T = durata \to T < T_0$, se cosi non fosse avremmo una costante

Figure 17: Treno di $A rect \left(\frac{t}{T} \right)$

 \rightarrow Si nota come cambiare il periodi delle funzioni possiamo renderle da aperiodiche a periodiche e viceversa

$$\begin{split} ATSF[x_{(t)}] &= ATSF[\sum_{-\infty}^{\infty} x_R(t-nT_0)] \\ &= \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x_{(t)} e^{-j2\pi k f_0 t} dt = \frac{1}{T_0} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{(t)} e^{-j2\pi k f_0 t} dt \\ &= \frac{A}{T_0} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-j2\pi k f_0 t} dt = \frac{A}{T_0} \frac{1}{j2\pi k f_0} e^{-j2\pi k f_0 t} \Big|_{-\frac{T}{2}}^{\frac{T}{2}} \\ &= \frac{A}{T_0} \frac{e^{-j\pi k f_0 T} - e^{j\pi k f_0 T}}{j2\pi k f_0} = \frac{A}{T_0} \frac{e^{j\pi k f_0 T} - e^{-j\pi k f_0 T}}{-j2\pi k f_0} \\ &= \frac{AT}{T_0} \frac{e^{j\pi k f_0 T} - e^{-j\pi k f_0 T}}{-j2\pi k f_0 T} = Af_0 T sinc(kf_0 T) \end{split}$$

Tracciamo lo spettro per $f_0T < 1$:

Figure 18: Spettro TSF del treno di rect con $f_0T<1$

Si possono anche unire i due spettri per ottenere:

Figure 19: Spettro treno di $A \ rect \left(\frac{t}{T} \right)$

Ora appizza matlab e fa esempi di un segnale e uno di ricostruzione dello stesso(script di matlab presenti nel teams):

- Se un segnale varia molto rapidamente nel tempo ha componenti frequenziali più alte \rightarrow copre più spettro(espansione spettrale) $T_0 \downarrow$
- $\bullet\,$ Se un segnale varia molto lentamente copre le basse fraquenze $T_0 \uparrow$

Se non ho abbastanza passi K non posso campionare le alte frequenze e quindi non faccio ne un analisi completa del segnale né riesco a ricostruire perfettametne il segnale Inoltre in 0 dello spettro ho il Valor medio 4.1.5 del segnale

6 Trasformata Continua Di Fourier

6.1 Segnali Aperiodici

Nel caso di segnali come $x_{(t)}=rect\left(\frac{t}{T}\right)$ non posso usare la TSF posso peró scrivere:

$$x_{(t)} = \lim_{T_0 \to \infty} x_p(t), \ x_p(t) = \sum_{n=-\infty}^{\infty} x_{(t-nT_0)}$$

Passiamo da un analisi a frequenze discrete ad un analisi su tutto lo spettro delle frequenze

(a) Spettro di Ampiezza TSF

(b) Spettro di Ampiezza TCF

6.2 Equazioni di Analisi e Sintesi

Figure 20: Insiemi dei segnali per tcf

6.2.1 Equazione di Analisi

$$X_{(f)} = \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi f t} dt$$
 Equazione di analisi

6.2.2 Equazione di Sintesi

$$x_{(t)} = \int_{-\infty}^{\infty} X_{(f)} e^{j2\pi ft} df$$
 Equazione di sintesi

La TCF gode della biunivocitá

$$x_{(t)} \overset{TCF}{\underset{ATCF}{\leftrightharpoons}} X_{(f)} \quad X_{(f)} \in \mathbb{C}$$

Essendo $X_{(f)}$ un numero complesso pu
ó essere rappresentato in forma polare:

$$X_{(f)} = |X_{(f)}|e^{\angle X_{(f)}}$$

Si possono rappresentare il modulo (Ampiezza) e la fase tramite grafici che prendono il nome di spettri:

Figure 21: Spettro del segnale TCF

lo spettro di Ampiezza gode della **simmetria pari** rispetto alle ascisse quindi é **sempre positivo e continuo**, mentre lo spettro di fase della **simmetria dispari**, questa propietá é chiamata **Simmetria Hermitiana**

6.2.3 TCF di una $Arect(\frac{t}{T})$

$$x_{(t)} = A \ rect\left(\frac{t}{T}\right)$$

Figure 22: $A rect(\frac{t}{T})$

$$X_{(f)} = ?:$$

$$\begin{split} X_{(f)} &= \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi ft} dt = \int_{-\frac{T}{2}}^{\frac{T}{2}} A \ rect \left(\frac{t}{T}\right) e^{-j2\pi ft} dt \\ &= A \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-j2\pi ft} dt = -\frac{A}{j2\pi f} \left. e^{-j2\pi ft} \right|_{-\frac{T}{2}}^{\frac{T}{2}} = -\frac{A}{j2\pi f} \left(e^{-j\pi fT} - e^{j\pi fT} \right) \\ &= \frac{AT}{\pi f} \left(\frac{e^{j\pi fT} - e^{-j\pi fT}}{2j} \right) = \frac{AT \sin(\pi fT)}{\pi fT} = AT sinc(fT) = X_{(f)} \\ &A \ rect \left(\frac{t}{T} \right) \stackrel{TCF}{\rightleftharpoons} AT sinc(fT) \end{split}$$

La sinc si annulla in $\frac{k}{T}$, $k \in \mathbb{Z}$. Notiamo anche come la funzione di partenza sia reale e pari la TCF rispetti 6.3.2(si?):

(b) Spettro di Fase

6.3 Propietá

Come per la TSF vale che al variare del periodo della funzione T:

- Se $T \uparrow$ aumenta $\to f \downarrow$ diminuisce e si stringe lo spettro
- Se $T \downarrow$ diminuisce $\rightarrow f \uparrow$ aumenta e si allarga lo spettro

Inoltre come si puó evincere dal successivo Teorema della Dualitá 6.4.2:

- Una funzione limitata (finita) nel tempo ha uno spettro nella frequenza illimitato \rightarrow sono i segnali fisici
- Una funzione illimitata nel tempo ha uno spettro nella frequenza limitato (finito)

Da come vedremo piú avanti quindi effettuare troncamenti in frequenza comporta, per alcuni segnali, perdere componenti ad alte frequenze, la scelta dell'intervallo di troncamento é cruciale per la ricostruzione del segnale: se tronchiamo un segnale perdendo le frequenze alte perdiamo le sue variazioni rapide, ad esempio se tronchiamo una sinc(f) male potremmo non ottenere una buona rect(t) nel tempo.

6.3.1 Simmetria hermitiana

 $Ip: x_{(t)} \ reale$

 $Th: X_{(f)} hermitiana$

$$X_{(-f)} = X_{(f)}^* \rightarrow \begin{cases} |X_{(f)}| = |X_{(-f)}| & Simmetria\ Pari\\ \angle X_{(-f)} = -\angle X_{(f)} & Simmetria\ Dispari \end{cases}$$

Paritá 6.3.2

 $Ip: x_{(t)} \ reale \ e \ pari$

 $Th: X_{(f)} \ reale \ e \ pari$

6.3.3Disparitá

 $Ip: x_{(t)} \ reale \ e \ dispari$

 $Th: X_{(f)}$ immaginaria e dispari

Teoremi relativi alla TCF 6.4

6.4.1Linearitá

 $Ip: x_{(t)} = \alpha x_{1(t)} + \beta x_{2(t)}$ $Th: X_{(f)} = \alpha X_{1(f)} + \beta X_{2(f)}$

Dimostrazione:

$$\begin{split} X_{(f)} &= \int_{-\infty}^{\infty} (\alpha x_{1(t)} + \beta x_{2(t)}) e^{-j2\pi f t} dt \\ &= \alpha \int_{-\infty}^{\infty} x_{1(t)} e^{-j2\pi f t} dt + \beta \int_{-\infty}^{\infty} x_{2(t)} e^{-j2\pi f t} dt \\ &= \alpha X_{1(f)} + \beta X_{2(f)} \end{split}$$

Esempio:

$$\begin{split} x_{(t)} &= Arect\left(\frac{t}{2T}\right) + Brect\left(\frac{t}{T}\right) \\ X_{(f)} &= AX_{1(f)} + BX_{2(f)} = 2ATsinc(2Tf) + BTsinc(Tf) \\ X_{1(f)} &= \begin{cases} X_{1(f)} = Arect\left(\frac{t}{T'}\right) \stackrel{TCF}{\leftrightharpoons} T'sinc(T'f) \Rightarrow X_{1(f)} = 2Tsinc(2Tf) \\ T' &= 2T \end{cases} \end{split}$$

Figure 23: Segnale rettangolo

6.4.2 Dualitá

$$\begin{split} &Ip: x_{(t)} \mathop = \limits_{ATCF}^{TCF} X_{(f)} \\ &Th: X_{(t)} \mathop = \limits_{ATCF}^{TCF} x_{(-f)} \\ &\text{Dimostrazione:} \end{split}$$

$$X_{(f)} = \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi f t} dt = Sost. \begin{cases} t \to f \\ f \to t \end{cases} \Rightarrow X_{(t)} = \int_{-\infty}^{\infty} x_{(f)} e^{-j2\pi t f} df$$
$$= Sost. (f' = -f) \Rightarrow X_{(t)} = \int_{-\infty}^{\infty} x_{(-f')} e^{-j2\pi t (-f')} df'$$
$$= \int_{-\infty}^{\infty} x_{(-f')} e^{j2\pi t f'} df' = ACTF[x_{(-f)}] = c.v.d.$$

Esempio:

$$x_{(t)} = Asinc(Bt) \Rightarrow X_{(f)} = \int_{-\infty}^{\infty} Asinc(Bt)e^{-j2\pi ft}dt$$

Applico la dualitá:

$$Arect\left(\frac{t}{T}\right) \rightleftarrows ATsinc(Tf)$$

$$ATsinc(Tt) \rightleftarrows Arect\left(\frac{-f}{T}\right)$$

Se voglio una durata generica:

$$Sostituisco \ B = T$$

$$ABsinc(Bt) \rightleftarrows Arect \left(\frac{f}{B}\right)$$

$$\Downarrow$$

$$Asinc(Bt) \rightleftarrows \frac{A}{B}rect \left(\frac{f}{B}\right)$$

6.4.3 Ritardo

$$\begin{split} Ip: \begin{cases} x_{(t)} & \overset{TCF}{\rightleftharpoons} X_{(f)} \\ y_{(t)} &= x_{(t-to)} \end{cases} \\ Th: Y_{(f)} & \overset{TCF}{\rightleftharpoons} y_{(t)} = X_{(f)} e^{-j2\pi f t_0} \\ \text{Dimostrazione:} \end{cases} \end{split}$$

$$\begin{split} Y_{(f)} &= \int_{-\infty}^{\infty} y_{(t)} e^{-j2\pi f t} dt = \int_{-\infty}^{\infty} x_{(t-t_0)} e^{-j2\pi t f} dt \\ &= Sost. \; (t' = t - t_0) \Rightarrow Y_{(f)} = \int_{-\infty}^{\infty} x_{(t')} e^{-j2\pi f (t' + t_0)} dt' \\ &= \int_{-\infty}^{\infty} x_{(t')} e^{-j2\pi f t'} e^{-j2\pi f t_0} dt' = X_{(f)} e^{-j2\pi f t_0} \; c.v.d. \end{split}$$

Osservazione:

- Un ritardo nel tempo introduce una componente solo di fase che cresce lienarmente con la frequenza
- Un esponenziale nel tempo introduce un ritardo nel dominio della frequenza $x_{(t)}e^{-j2\pi f_0t} \rightarrowtail X_{(f-f_0)}$, vedi 6.5.4

Esempio:

$$x_{0(t)} = Arect\left(\frac{t}{T}\right) \rightarrow x_{(t)} = x_{0(t-t_0)} \quad t_0 = \frac{T}{2}$$

Figure 24: $x_{0(t)}, x_{(t)}$

$$X_{(f)} = X_{0(f)}e^{-j2\pi f\frac{T}{2}} = ATsinc(Tf)e^{-j\pi fT}$$

Figure 25: Spettro della rect con ritardo

Il LATEX sbaglia e aggiunge le spike nelle f positive, il grafico é dispari con andamento come per le f negative.

6.4.4 Derivazione

$$Ip: \begin{cases} x_{(t)} \overset{TCF}{\underset{ATCF}{\leftrightharpoons}} X_{(f)} \\ y_{(t)} = \frac{\mathrm{d}}{\mathrm{d}t} x_{(t)} \\ Th: Y_{(f)} = j2\pi f X_{(f)} \\ \mathrm{Dimostrazione:} \end{cases}$$

$$\begin{aligned} y_{(t)} &= \frac{\mathrm{d}}{\mathrm{d}t} X_{(t)} = \frac{\mathrm{d}}{\mathrm{d}t} ACTF[x_{(t)}] = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} X_{(f)} e^{j2\pi ft} df = \\ &= \int_{-\infty}^{\infty} X_{(f)} \frac{\mathrm{d}}{\mathrm{d}t} e^{j2\pi ft} df = \int_{-\infty}^{\infty} X_{(f)} j2\pi f e^{j2\pi ft} df \end{aligned}$$

Posso Scrivere $y_{(t)}$ come $ACTF[y_{(t)}]=\int_{-\infty}^{\infty}Y_{(f)}e^{j2\pi ft}df$, se quindi $Y_{(f)}=j2\pi fX_{(f)}$ l'ugaglianza é valida:

$$y_{(t)} = \int_{-\infty}^{\infty} Y_{(f)} e^{j2\pi ft} df$$

L'operazione di derivata nel dominio della frequenza si traduce in una semplice operazione algebrica, nel tempo avrei dovuto calcolare il rapporto incrementale. Per derivare un segnale posso quindi:

$$x_{(t)} \to TCF \to j2\pi f X_{(f)} \to ACTF \to y_{(t)}$$

6.4.5 Integrazione

$$Ip: \begin{cases} x_{(t)} \overset{TCF}{\underset{ATCF}{\rightleftharpoons}} X_{(f)} \ (1) \\ y_{(t)} = \int_{-\infty}^{t} x_{(\alpha)} d\alpha \ (2) \\ \int_{-\infty}^{\infty} x_{(t)} dt \ oppure \ X_{(f)} \big|_{f=0} = 0 \ oppure \ y(+\infty) = 0 \ (3) \end{cases}$$

$$Th: Y_{(f)} = \frac{X_{(f)}}{j^2 \pi f}$$
Dimostrazione:

$$y_{(t)} = \int_{-\infty}^{t} x_{(\alpha)} d\alpha \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} x_{(t)} = \frac{\mathrm{d}}{\mathrm{d}t} y_{(t)} \stackrel{Th.6.4.4}{\Rightarrow} X_{(f)} = j2\pi f Y_{(f)}$$
$$Y_{(f)} = \frac{X_{(f)}}{j2\pi f}$$

L'ipotesi 3 é conseguenza della divisione per f e che devo mantenere l'uguaglianza $X_{(f)}=j2\pi f Y_{(f)},$ si nota come nella dimostrazione usando il Th della Derivazione (6.4.4) quando f=0 la funzione nella frequenza deve essere $0,\ X_{(f)}=j2\pi f Y_{(f)}=0$

Esempio: TCF di una piramide

$$x_{(t)} = A\left(1 - \left(\frac{|t|}{T}\right)\right) rect\left(\frac{t}{2T}\right) \quad X_{(f)} = TCF[x_{(t)}] = ?$$

Figure 26: Funzione priamide

 $TCF[x_{(t)}]:$

 \bullet Utilizzando la classica TCF:

$$X_{(f)} = \int_{-\infty}^{\infty} A\left(1 - \left(\frac{|t|}{T}\right)\right) rect\left(\frac{t}{2T}\right) dt$$

• Utilizzando il Th dell'Integrazione 6.4.5:

$$y_{(t)} = \frac{\mathrm{d}}{\mathrm{d}t} x_{(t)} \implies x_{(t)} = \int_{-\infty}^{t} y_{(\alpha)} d\alpha \ 6.4.5(2)$$
$$\int_{-\infty}^{\infty} y_{(t)} dt \ 6.4.5(3)$$

Figure 27: Funzione priamide

$$\begin{split} y_{(t)} &= \frac{A}{T} rect \left(\frac{t - \left(-\frac{T}{2}\right)}{T}\right) - \frac{A}{T} rect \left(\frac{t - \frac{T}{2}}{T}\right) = Sono \ 2 \ rect \ con \ ritardo \\ &\Rightarrow y_{(t)} \rightleftharpoons Y_{(f)} \ 6.4.5(1) \Rightarrow X_{(f)} = \frac{Y_{(f)}}{j2\pi f} \begin{cases} x_{(t-t_0)} \rightleftharpoons X_{(f)} e^{-j2\pi ft_0} \\ rect \left(\frac{t}{T}\right) \rightleftharpoons T sinc(Tf) \end{cases} \\ Y_{(f)} &= \frac{A}{T} T sinc(Tf) e^{-j2\pi f\left(-\frac{T}{2}\right)} - \frac{A}{T} T sinc(Tf) e^{-j2\pi f\frac{T}{2}} \\ &= 2j A sinc(Tf) \frac{e^{j\pi fT} - e^{j\pi fT}}{2j} = 2j A sinc(Tf) \sin(\pi fT) \\ X_{(f)} &= \frac{Y_{(f)}}{j2\pi f} = \frac{2j A sinc(Tf) \sin(\pi fT)}{j2\pi f} = \frac{AT sinc(Tf) \sin(\pi fT)}{\pi fT} \\ &= AT sinc^2(fT) \end{split}$$

Abbiamo ottenuto la TCF del triangolo:

$$A\left(1-\left(\frac{|t|}{T}\right)\right)rect\left(\frac{t}{2T}\right) \rightleftharpoons ATsinc^2(fT)$$

per la dualita6.4.2 :

$$ABsinc^{2}(Bt) \rightleftharpoons A\left(1 - \left(\frac{|f|}{B}\right)\right)rect\left(\frac{f}{2B}\right)$$

I segni negativi spariscono per il valore assoluto e per la paritá della rect. Per verificare che i calcoli siano corretti posso colacolare la $X_{(f)}$ in 0 e vedo quanto é l'area del segnale:

$$T^2 sinc(Tf) \Big|_{0} = T^2 \int_{-\infty}^{\infty} Trect(\frac{t}{T}) = T$$

Osservazione: la funzione piramidale varia meno rapidamente nel tempo rispetto alla funzione rettangolare quindi lo spetto non occupa le alte frequenze, l'andamento é di $\frac{sinc^2}{x^2}$, é molto piú contenuto. La rect avendo un gradino varia molto rapidamente nel tempo e di conseguenza il suo spettro si estende a frequenze piú alte del segnale priamidale.

Figure 28: $\frac{sinc}{x}$, $\frac{sinc^2}{x^2}$

6.4.6 Derivazione in Frequenza

$$Ip: \begin{cases} x_{(t)} \overset{TCF}{\underset{ATCF}{\rightleftharpoons}} X_{(f)} \\ y_{(t)} = \frac{\mathrm{d}x_{(t)}}{\mathrm{d}t} \\ Th: Y_{(f)} = j2\pi f X_{(f)} \end{cases}$$

6.4.7 Integrazione in Frequenza

$$Ip: \begin{cases} x_{(t)} \overset{TCF}{\varprojlim} X_{(f)} \\ y_{(t)} = \frac{\mathrm{d}x_{(t)}}{\mathrm{d}t} \\ Th: Y_{(f)} = j2\pi f X_{(f)} \end{cases}$$

6.4.8 Convoluzione

$$z_{(t)} = x_{(t)} \otimes y_{(t)} \triangleq \int_{-\infty}^{\infty} x_{(\tau)} y_{(t-\tau)} d\tau$$

$$Ip: \begin{cases} x_{(t)} \overset{TCF}{\underset{ATCF}{\rightleftharpoons}} X_{(f)} \\ x_{(t)} \overset{TCF}{\underset{ATCF}{\rightleftharpoons}} X_{(f)} \\ z_{(t)} = x_{(t)} \otimes y_{(t)} \\ Th: Z_{(f)} = X_{(f)} Y_{(f)} \end{cases}$$

$$\begin{split} Z_{(f)} &= \int_{-\infty}^{\infty} z_{(t)} e^{-j2\pi f t} dt = \int_{-\infty_t}^{\infty} \int_{-\infty_\tau}^{\infty} x_{(\tau)} y_{(t-\tau)} e^{-j2\pi f t} dt \ d\tau \\ &= \int_{-\infty_t}^{\infty} x_{(\tau)} \int_{-\infty_\tau}^{\infty} y_{(t-\tau)} e^{-j2\pi f t} dt \ d\tau \overset{Th.6.4.3}{\Longrightarrow} \int_{-\infty}^{\infty} Y_{(f)} x_{(\tau)} e^{-j2\pi f \tau} d\tau \\ &= X_{(f)} Y_{(f)} \end{split}$$

Propietá della convoluzione:

• Commutativa:

$$z_{(t)} = x_{(t)} \otimes y_{(t)} = y_{(t)} \otimes x_{(t)}$$

Dimostrazione:

$$z_{(t)} = \int_{-\infty}^{\infty} x_{(\tau)} y_{(t-\tau)} d\tau \Rightarrow \tau = t - \tau' \Rightarrow \int_{-\infty}^{\infty} x_{(t-\tau')} y_{(\tau')} d\tau'$$
$$= \int_{-\infty}^{\infty} y_{(\tau')} x_{(t-\tau')} d\tau' = y_{(t)} \otimes x_{(t)}$$

• Associativa:

$$(x_{(t)} \otimes y_{(t)}) \otimes z_{(t)} = x_{(t)} \otimes (y_{(t)} \otimes z_{(t)})$$

• Distributiva:

$$x_{(t)} \otimes (y_{(t)} + z_{(t)}) = x_{(t)} \otimes y_{(t)} + x_{(t)} \otimes z_{(t)}$$

Dimostrazione:

$$z_{(t)} = \int_{-\infty}^{\infty} x_{(\tau)} (y_{(t-\tau)} + z_{(t-\tau)}) d\tau = \int_{-\infty}^{\infty} x_{(\tau)} y_{(t-\tau)} + x_{(\tau)} z_{(t-\tau)} d\tau$$
$$= \int_{-\infty}^{\infty} x_{(\tau)} y_{(t-\tau)} d\tau + \int_{-\infty}^{\infty} x_{(\tau)} z_{(t-\tau)} d\tau = x_{(t)} \otimes y_{(t)} + x_{(t)} \otimes z_{(t)}$$

Tutte le propietá sono valutate nel dominio del tempo ma valgono anche per il dominio della frequenza.

6.4.9 Prodotto

$$Ip: \begin{cases} x_{(t)} \overset{TCF}{\underset{ATCF}{\leftrightharpoons}} X_{(f)} \\ x_{(t)} \overset{TCF}{\underset{ATCF}{\leftrightharpoons}} X_{(f)} \\ z_{(t)} = x_{(t)} y_{(t)} \\ Th: Z_{(f)} = X_{(f)} \otimes Y_{(f)} \\ \text{Dimostrazione:} \end{cases}$$

$$\begin{split} Z_{(f)} &= \int_{-\infty}^{\infty} z_{(t)} e^{-j2\pi ft} dt = \int_{-\infty}^{\infty} x_{(t)} y_{(t)} e^{-j2\pi ft} dt \\ &= \int_{-\infty_t}^{\infty} \int_{-\infty_{\alpha}}^{\infty} X_{(\alpha)} e^{j2\pi \alpha t} d\alpha \ y_{(t)} e^{-j2\pi ft} dt = \int_{-\infty_{\alpha}}^{\infty} X_{(\alpha)} \int_{-\infty_t}^{\infty} y_{(t)} e^{-j2\pi (f-\alpha)t} dt \ d\alpha \\ &\stackrel{Th.6.4.3}{\Rightarrow} \int_{-\infty}^{\infty} X_{(\alpha)} Y_{(f-\alpha)} d\alpha = X_{(f)} \otimes Y_{(f)} \end{split}$$

$$Tempo$$
 $Frequenza$ $Convoluzione \iff Prodotto$ $Prodotto \iff Convoluzione$

6.4.10 Calcolo del prodotto di convoluzione

$$x_{(t)} \otimes y_{(t)} = \int_{-\infty}^{\infty} x_{(\tau)} y_{(t-\tau)} d\tau$$
 $y_{(-\tau)} e' y_{(\tau)} ruotato$

Facciamo un esempio con 2 rect:

$$x_{(t)} = y_{(t)} = rect\left(\frac{t}{T}\right)$$

Figure 29: Grafico per il calcolo del prodotto di convoluzione

All'aumentare di t $y_{(t-\alpha)}$ si sposta sull'asse delle ascisse, se:

- $t = -\frac{T}{2}$: si allineano le due rect e il valore dell'integrale inizia a aumentare.
- t = 0: si ha il valore massimo del prodotto tra le due funzioni (in questo caso A = 1), l'integrale vale T.
- $t=\frac{T}{2}$: le due rect sono disgiunte, nel raggiungere questa posizione il valore dell'integrale é diminuito fino a 0.

Traccamo l'andamento dell'integrale:

Figure 30: Integrale di convoluzione

Osservazioni:

- \bullet Il prodotto di convoluzione ha come durata la somma delle durate dei segnali $[-\frac{T}{2},\frac{T}{2}]\to [-T,T]$
- $\bullet\,$ In t=0é l'area il prodotto dei segnali

Esempio con rect di durata T e 2T:

Figure 31: Integrale di convoluzione di rect di durata diversa

Esemptio TCF di un triangolo:

Figure 32: Integrale di convoluzione

Dal Th. di Convoluzione 6.4.8 sappiamo che é il prodotto di convoluzione di 2 rect di durata uguale a T:

$$z_{(t)} = x_{(t)} \otimes y_{(t)} = rect\left(\frac{t}{T}\right) \otimes rect\left(\frac{t}{T}\right) \overset{Th.6.4.8}{\Rightarrow} Tsinc(fT) \cdot Tsinc(fT)$$
$$T^{2}sinc(fT)$$

6.5 Modulazione di Ampiezza

Figure 33: Esempio sistema di modulazione di ampiezza

L'oscillazione introdotta, $\cos(2\pi t)$, segue l'andamento di $x_{(t)}$ Nel dominio della frequenza:

Figure 34: Segnale nel dominio della frequenza modulato e non

Serve per spostare la frequenza (es. di trasmissione) del segnale in modo tale, ad esempio, da non sovrapporre due segnali che sono sulla stessa frequenza. Se il segnale non fosse modulato si dice in **banda base** (BB) se il segnale é modulato

si dice in **banda passante**(BP).

Figure 35: BB, BP

6.5.1 Th. Modulazione con $cos(2\pi f_0 t)$

$$Ip: \begin{cases} y_{(t)} = x_{(t)}\cos(2\pi f_0 t) \\ \overset{TCF}{\underset{ATCF}{\longleftarrow}} X_{(f)} \\ Th: Y_{(f)} = \frac{1}{2}X_{(f-f_0)} + \frac{1}{2}X_{(f+f_0)} \\ \text{Dimostrazione:} \end{cases}$$

$$\begin{split} Y_{(f)} &= \int_{-\infty}^{\infty} y_{(t)} e^{-j2\pi f t} dt = \int_{-\infty}^{\infty} x_{(t)} \cos(2\pi f_0 t) e^{-j2\pi f t} dt \\ &= \int_{-\infty}^{\infty} x_{(t)} \frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2} e^{-j2\pi f t} dt = \\ &= \frac{1}{2} \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi (f - f_0) t} dt + \frac{1}{2} \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi (f + f_0) t} dt \\ &= TCF[x_{(t)}] \bigg|_{f - f_0} + TCF[x_{(t)}] \bigg|_{f + f_0} = \frac{1}{2} X_{(f - f_0)} + \frac{1}{2} X_{(f + f_0)} \ c.v.d \end{split}$$

Esempio:

$$X_{(f)} = \frac{A}{B}rect\left(\frac{f}{B}\right)$$

$$Y_{(f)} = \frac{A}{2B}rect\left(\frac{f - f_0}{B}\right) + \frac{A}{2B}rect\left(\frac{f + f_0}{B}\right)$$

Figure 36: $X_{(f)}$, $Y_{(f)}$

6.5.2 Th. Modulazione con $\sin(2\pi f_0 t)$

$$\begin{split} Ip: \begin{cases} y_{(t)} &= x_{(t)} \sin(2\pi f_0 t) \\ x_{(t)} &\stackrel{TCF}{=} X_{(f)} \\ x_{(t)} &= \frac{1}{2j} X_{(f-f_0)} - \frac{1}{2j} X_{(f+f_0)} \\ \text{Dimostrazione:} \end{cases} \end{split}$$

$$\begin{split} Y_{(f)} &= \int_{-\infty}^{\infty} y_{(t)} e^{-j2\pi f t} dt = \int_{-\infty}^{\infty} x_{(t)} \sin(2\pi f_0 t) e^{-j2\pi f t} dt \\ &= \int_{-\infty}^{\infty} x_{(t)} \frac{e^{j2\pi f_0 t} - e^{-j2\pi f_0 t}}{2j} e^{-j2\pi f t} dt = \\ &= \frac{1}{2j} \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi (f - f_0) t} dt - \frac{1}{2j} \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi (f + f_0) t} dt \\ &= TCF[x_{(t)}] \bigg|_{f - f_0} - TCF[x_{(t)}] \bigg|_{f + f_0} = \frac{1}{2j} X_{(f - f_0)} - \frac{1}{2j} X_{(f + f_0)} \ c.v.d \end{split}$$

6.5.3 Th. Modulazione con $cos(2\pi f_0 t + \phi)$

$$Ip: \begin{cases} y_{(t)} = x_{(t)} \cos(2\pi f_0 t + \phi) \\ x_{(t)} & \xrightarrow{TCF} X_{(f)} \\ X_{(t)} & \xrightarrow{ATCF} X_{(f)} \end{cases}$$
$$Th: Y_{(f)} = \frac{e^{j\phi}}{2} X_{(f-f_0)} + \frac{e^{-j\phi}}{2} X_{(f+f_0)}$$

Dimostrazione:

$$Y_{(f)} = \int_{-\infty}^{\infty} y_{(t)} e^{-j2\pi f t} dt = \int_{-\infty}^{\infty} x_{(t)} \cos(2\pi f_0 t + \phi) e^{-j2\pi f t} dt$$

$$= \int_{-\infty}^{\infty} x_{(t)} \frac{e^{j(2\pi f_0 t + \phi)} + e^{-j(2\pi f_0 t + \phi)}}{2} e^{-j2\pi f t} dt =$$

$$= \frac{e^{j\phi}}{2} \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi (f - f_0)t} dt + \frac{e^{-j\phi}}{2} \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi (f + f_0)t} dt$$

$$= TCF[x_{(t)}] \Big|_{f - f_0} + TCF[x_{(t)}] \Big|_{f + f_0} = \frac{e^{j\phi}}{2} X_{(f - f_0)} + \frac{e^{-j\phi}}{2} X_{(f + f_0)} c.v.d$$

Esempio:

Figure 37: Modulazione generica di una $Arect\left(\frac{t}{T}\right)$ con $\cos\left(2\pi f_0 t + \frac{\pi}{3}\right)$

6.5.4 Th. Modulazione con Esponenziale Complesso

$$Ip: \begin{cases} y_{(t)} = x_{(t)}e^{j2\pi f_0 t} \\ x_{(t)} \overset{TCF}{\underset{ATCF}{\rightleftharpoons}} X_{(f)} \end{cases}$$

$$Th: Y_{(f)} = X_{(f-f_0)}$$

Dimostrazione:

$$Y_{(f)} = \int_{-\infty}^{\infty} y_{(t)} e^{-j2\pi f t} dt = \int_{-\infty}^{\infty} x_{(t)} e^{j2\pi f_0 t} e^{-j2\pi f t} dt$$
$$= \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi (f - f_0)t} dt = TCF[x_{(t)}] \Big|_{f - f_0} = X_{(f - f_0)}$$

Posso notare che:

- Ritardo: $\rightarrow x_{(t-t_0)} \rightleftharpoons X_{(f)}e^{(-j2\pi ft_0)}$
- Modulazione: $\rightarrow x_{(t)}e^{(j2\pi f_0t)} \rightleftharpoons X_{(f-f_0)}$

Procedimento per la sintesi di un segnale:

- Derivo il segnale
- Verifico le ipotesi del Th. dell'Integrazione 6.4.5
- calcolo la TCF della derivata
- Applico il Th. dell'integrazione per calcolare $X_{(f)}$

6.5.5 Demodulazione

Ci poniamo il problema di riportare il segnale modulato al segnale originale $(g_{(t)})$, dato:

 $x_{(t)} = g_{(t)}\cos(2\pi f_0 t)$

Demoduliamo il segnale con $2\cos(2\pi f_0 t)$:

$$y_{(t)} = x_{(t)} 2\cos(2\pi f_0 t) = g_{(t)} \cos^2(2\pi f_0 t)$$

$$= g_{(t)} \frac{1 + \cos(4\pi f_0 t)}{2} = \frac{g_{(t)}}{2} + \frac{g_{(t)} \cos(4\pi f_0 t)}{2}$$

$$TCF[y_{(t)}] \stackrel{Th.6.5.1}{\Rightarrow} \frac{2G_{(f)}}{2} + \frac{2G_{(f-2f_0)}}{2} + \frac{2G_{(f+2f_0)}}{2}$$

$$= G_{(f)} + G_{(f-2f_0)} + G_{(f+2f_0)}$$

$$(1)$$

Dall'ultima uguagliaza posso quindi usare un filtro in (BB) per rimuovere i segnali alle frequenze $\pm 2f_0$ e ricavare il mio segnale $G_{(f)}$.

Riporto un po di esempi di demodulazione di una o piú rect: Esempio di Demodulazione

Figure 38: Demodulazione di una sinc

Nel caso di piú segnali durante la demodulazione il segnale che voglio recuperare viene spostato in BB mentre gli altri segnali presenti sullo spettro vengono a loro volta modulati peró con un f_0 diverso rispetto al loro f_0' :

Figure 39: Demodulazione di due sinc

Potrei peró trovarmi in situazioni delle quali non posso recuperare il segnale

Figure 40: Demodulazione di due sinc non recuperabili

Come possiamo vedere nella regione della BB, il segnale é molto sporco, magari puó essere confuso con un cos e non una sinc. inoltre ora qui ho usato numeri interi per fare il plot quindi non si accavallano cosí male ma si accavallano solo in $\frac{1}{T}$ se usassi altri valori sarebbe ancora piú sporco il segnale.

Adesso proviamo a calcolare quanti segnali possiamo trasmettere in una banda:

Ho un segnale rettangolare che dura 5 minuti e una banda di $20MHz=20\cdot 10^6Hz$

$$f_{segnale} = \frac{1}{5 \cdot 60} = \frac{1}{300} Hz$$

$$n^{\circ} di \ segnali = \frac{20 \cdot 10^6}{f_{segnale}} = 20 \cdot 10^6 \cdot 300 = 6 \cdot 10^9$$

Figure 41: Spettro per la trasmissione

6.5.6 Radar

Figure 42: Spettro per la trasmissione

La sorgente emette un'onda continua e passivamente capta per le onde riflesse dagli oggetti. Il calcolo della distanza si basa sulla capacitá dei materiali di riflettere le onde, piú la frequenza dell'onda é alta piú i materiali riescono a riflettere. L'emettitore, in presenza di ostacolo, riceve il segnale riflesso (eco) e misura il ritardo dell'eco rispetto al segnale originale per poi calcolarne la distanza. Prendiamo un emettitore di onde rettangolari.

Figure 43: Spettro per la trasmissione

Indichiamo con τ il ritardo di ricezione dell'eco e la distanza che sempara il radar dall'oggetto d:

$$d = \frac{c\tau}{2}$$

Compare un fattore $\frac{1}{2}$ dovuto al segnale che percorre due volte la distanza tra l'emettitore e l'oggetto. Possiamo notare che l'eco ha ampiezza minore poiché dell'energia é stata assorbita dal materiale o una porzione del segnale originale ha oltrepassato il materiale stesso.

Analizziamo in frequenza cosa succede.

Volgiamo realizzare un radar a onda rettagolare che rileva a un massimo di 15 metri di distanza e a un minimo di 1,5 metri. Possiamo calcolare i valori di ritardo massimo e minimo:

$$\tau_{min} = \frac{2 \cdot 15}{3 \cdot 10^8} = 10^{-7} = 0.1 \mu s$$
$$\tau_{max} = \frac{2 \cdot 1.5}{3 \cdot 10^8} = 10^{-7} = 10 ns$$

Il radar funziona finché $T \ll \tau_{min}$, se avessi un $\tau_{min} > T$ non potrei distinguere il segnale inviato da quello ricevuto.

Figure 44: Limiti di ritardo del radar

Nel nostro caso potremmo scegliere un $T \simeq 1ns \simeq 10^{-9}$ per rispettare i limiti imposti dall'esercizio. Ma analizzando l'intervallo frequenziale della TCF della funzione rettangolo, una sinc(x), il nostro segnale ha componenti frequenziali significative nell'ordine dei GHz, $\frac{1}{T} = \frac{1}{10^{-9}} = 1 GHz$. I segnali nell'ordine dei GHz oltrepassano con facilità gli ostacoli, basti vedere le bande di funzionamento dei cellulari e il Wi-Fi. Si utilizzano segnali con l'ordine di cetinaia se non igliaia di Hz, possiamo vedere come la lunghezza d'onda del segnale giochi un ruolo fondamentale:

$$\lambda_0 = \frac{c}{f_0}$$

$$\lambda_0 = \begin{cases} f_0 = 3GHz \to \lambda_0 = 0.1m \\ f_0 = 30GHz \to \lambda_0 = 0.01m \\ f_0 = 300GHz \to \lambda_0 = 0.001m \\ f_0 = 3000GHz \to \lambda_0 = 0.0001m \end{cases}$$

6.6 Delta di Dirac

Si definisce Delta di Dirac $\delta_{(t)}=\frac{\mathrm{d}}{\mathrm{d}t}U_{(t)}$ con $U_{(t)}$ funzione gradino. Piú correttamente si definisce Delta di Dirac la funzione che se integrata restituisce il gradino unitario:

 $u_{(t)} = \int_{-\infty}^{\infty} \delta_{(t)} dt \to U_{(t)}$

Figure 45: Delta di Dirac

L'ampiezza della funzione é dovuta alla costante moltiplicativa, ma alla fin fine rimane sempre una funzione impulso.

6.6.1 Propietá del Delta di Dirac

- $\int_{-\infty}^{\infty} \delta_{(t)} dt = 1$
- Propietá Campionatrice: $Ip: x_{(t)} continua \ in \ t_0$

$$\int_{-\infty}^{\infty} x_{(t)} \delta_{(t-t_0)} dt = x_{(t_0)}$$

Figure 46: Propietá Campionatrice

- Paritá: $\delta_{(t)} = \delta_{(-t)}$
- $x_{(t)}\delta_{(t-t_0)}dt = x_{(t_0)}\delta_{(t-t_0)}$
- $x_{(t)} \otimes \delta_{(t)} = x_{(t)}$ Dimostrazione:

$$x_{(t)} \otimes \delta_{(t)} = \int_{-\infty}^{\infty} x_{(\tau)} \delta_{(t-\tau)} d\tau \stackrel{6.6.1}{\Rightarrow} \int_{-\infty}^{\infty} x_{(\tau)} \delta_{(\tau-t)} d\tau = x_{(t)}$$

• $x_{(t)} \otimes \delta_{(t-t_0)} = x_{(t-t_0)}$ Dimostrazione:

$$x_{(t)} \otimes \delta_{(t-t_0)} = \int_{-\infty}^{\infty} x_{(\tau)} \delta_{(t-t_0-\tau)} d\tau \stackrel{6.6.1}{\Rightarrow} \int_{-\infty}^{\infty} x_{(\tau)} \delta_{(\tau-(t-t_0))} d\tau = x_{(t-t_0)}$$

6.6.2 TCF della Delta di Dirac

$$x_{(t)} = A\delta_{(t)}$$

$$TCF[x_{(t)}] = \int_{-\infty}^{\infty} \delta_{(t)} e^{-j2\pi f t} dt \stackrel{6.6.1t_0=0}{\Rightarrow} e^{-j2\pi f t} \bigg|_{t=0} = A$$

$$A\delta_{(t)} \stackrel{TCF}{\underset{A\overrightarrow{TC}F}{\rightleftharpoons}} A$$

$$Per \ la \ dualita \ 6.4.2:$$

$$A \stackrel{TCF}{\underset{A\overrightarrow{TC}F}{\rightleftharpoons}} A\delta_{(-f)} = A\delta_{(f)}$$

Caso con ritardo:

$$A\delta_{(t-t_0)} \overset{TCF}{\underset{ATCF}{\rightleftharpoons}} Ae^{-j2\pi ft_0}$$

$$Per \ la \ dualita \ 6.4.2:$$

$$Ae^{-j2\pi f_0 t} \overset{TCF}{\underset{ATCF}{\rightleftharpoons}} A\delta_{(-f-f_0)} = A\delta_{(f} + f_0)$$

6.6.3 TCF di segnali periodici

Nel caso di segnali periodci, come $x_{(t)} = \cos(2\pi f_0 t)$, abbiamo definito la TSF, proviamo a calcolarne la TCF:

$$x_{(t)} = \cos(2\pi f_0 t) \underset{ATCF}{\overset{TCF}{\rightleftharpoons}} ?$$

$$X_{(f)} = TCF[\cos(2\pi f_0 t)] = TCF\left[\frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2}\right]$$

$$= TCF\left[\frac{e^{j2\pi f_0 t}}{2}\right] + TCF\left[\frac{e^{-j2\pi f_0 t}}{2}\right] \stackrel{6.6.2}{\Rightarrow} \frac{\delta_{(f-f_0)}}{2} + \frac{\delta_{(f+f_0)}}{2}$$

$$\cos(2\pi f_0 t) \xrightarrow{TCF}_{ATCF} \frac{\delta_{(f-f_0)}}{2} + \frac{\delta_{(f+f_0)}}{2}$$

Figure 47: TCF cos

Praticamente modulo una costante.

Osservazione: Non sono i coefficenti $X_{(k)}$, qui le delta sono funzioni nella TSF

sono numeri complessi.

Caso con $x_{(t)} = \sin(2\pi f_0 t)$

$$x_{(t)} = \sin(2\pi f_0 t) \stackrel{TCF}{\underset{ATCF}{\rightleftharpoons}} ?$$

$$\begin{split} X_{(f)} &= TCF[\sin(2\pi f_0 t)] = TCF[\frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2}] \\ &= TCF[\frac{e^{j2\pi f_0 t}}{2j}] - TCF[\frac{e^{-j2\pi f_0 t}}{2j}] \overset{6.6.2}{\Rightarrow} \frac{\delta_{(f-f_0)}}{2j} - \frac{\delta_{(f+f_0)}}{2j} \\ &\sin(2\pi f_0 t) \overset{TCF}{\underset{ATCF}{\rightleftharpoons}} \frac{\delta_{(f-f_0)}}{2j} - \frac{\delta_{(f+f_0)}}{2j} \end{split}$$

Figure 48: TCF sin

6.7 Relazione tra TSF e TCF

6.7.1 TCF di un segnale periodico generico

Dato un generico segnale $y_{(t)}$ posso sempre scriverlo come periodicizzazione di un segnale apreiodico $x_{(t)}$: $x_{(t)} \underset{ATCF}{\overset{TCF}{\rightleftharpoons}} X_{(f)}$

$$y_{(t)} = y_{(t-kT_0)} \Rightarrow \begin{cases} TSF[y_{(t)}] = \sum_{n=-\infty}^{+\infty} X_n e^{j2\pi n f_0 t} \\ TCF[y_{(t)}] = \sum_{n=-\infty}^{+\infty} X_n \delta_{(f-\frac{k}{T_0})} \end{cases}$$

La TCF diventa un campionamento con la Delta di Dirac 6.6.1

Figure 49: TCF segnale periodico generico

Applichiamolo al Th. della Modulazione 6.5.1:

$$y_{(t)} = x_{(t)} \cos(2\pi f_0 t) \stackrel{6.4.9}{\Rightarrow} X_{(f)} \otimes \left(\frac{\delta_{(f-f_0)}}{2} + \frac{\delta_{(f-f_0)}}{2}\right)$$

$$\stackrel{6.6.1}{\Rightarrow} \frac{1}{2} X_{(f-f_0)} + \frac{1}{2} X_{(f+f_0)}$$

Esercizio:

Figure 50: TCF rect meno triangolo

Deriviamo il segnale $y_{(t)}$:

Figure 51: Derivata di $y_{(t)}$

$$y_{(t)} = \delta_{(t-T)} - \delta_{(t+T)} - \frac{1}{T} rect\left(\frac{t - \left(-\frac{T_0}{2}\right)}{T}\right) + \frac{1}{T} rect\left(\frac{t - \frac{T_0}{2}}{T}\right)$$

Possiamo applicare il Th dell'integrazione 6.4.5 l'ipotesi (3): $y_{(\infty)} = 0$

$$\begin{split} TCF[y_{(t)}] &= e^{j2\pi fT} - e^{-j2\pi fT} - \frac{1}{T}Tsinc(fT)e^{j2\pi f\frac{T_0}{2}} + \frac{1}{T}Tsinc(fT)e^{-j2\pi f\frac{T_0}{2}} \\ &= \frac{2j}{2j} \left(e^{j2\pi fT} - e^{-j2\pi fT} - sinc(fT)e^{j2\pi f\frac{T_0}{2}} + sinc(fT)e^{-j2\pi f\frac{T_0}{2}} \right) \\ &= 2jsin(2\pi fT) - 2jsinc(fT)sin(\pi fT) \end{split}$$

$$\begin{split} X_{(f)} &= \frac{Y_{(f)}}{j2\pi f} = \frac{2jsin(2\pi fT) - 2jsinc(fT)sin(\pi fT)}{j2\pi f} \\ &= \frac{sin(2\pi fT)}{\pi f} - \frac{sinc(fT)sin(\pi fT)}{\pi f} = \frac{2T}{2T}\frac{sin(2\pi fT)}{\pi f} - \frac{T}{T}\frac{sinc(fT)sin(\pi fT)}{\pi f} \\ &= 2Tsinc(2fT) - Tsinc^2(fT) \end{split}$$

Si potrebbe fare sottraendo un triangolo a una rect?

6.7.2 Relazione tra i coefficenti X_k e $X_{(f)}$

$$y_{(t)} = y_{(t-kT_0)} \Rightarrow \text{Periodico in } T_0 = \sum_{n=-\infty}^{+\infty} x_{(t-nT_0)}$$

$x_{(t)}$ Segnale aperiodico

Figure 52: Segnale aperiodico, Segnale periodico

$$\begin{cases} x_{(t)} \overset{TCF}{\rightleftharpoons} X_{(f)} \\ y_{(t)} \overset{TSF}{\rightleftharpoons} \sum_{k=-\infty}^{+\infty} Y_k e^{j2\pi k f_0 t} \end{cases}$$
 Che relazione intercorre tra Y_k e $X_{(f)}$

$$\begin{split} Y_k &= \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} y_{(t)} e^{j2\pi k f_0 t} dt = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \sum_{n=-\infty}^{+\infty} x_{(t-nT_0)} e^{j2\pi k f_0 t} dt \\ &= \frac{1}{T_0} \sum_{n=-\infty}^{+\infty} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x_{(t-nT_0)} e^{j2\pi k f_0 t} dt \stackrel{t'=t-nT_0}{=} \frac{1}{T_0} \sum_{n=-\infty}^{+\infty} \int_{-\frac{T_0}{2}-nT_0}^{\frac{T_0}{2}-nT_0} x_{(t')} e^{j2\pi k f_0 (t'+nT_0)} dt' \\ &= \frac{1}{T_0} \sum_{n=-\infty}^{+\infty} \int_{-\frac{T_0}{2}-nT_0}^{\frac{T_0}{2}-nT_0} x_{(t')} e^{j2\pi k f_0 t'} e^{j2\pi n k f_0 T_0} dt' \\ &= \frac{1}{T_0} \sum_{n=-\infty}^{+\infty} \int_{-\frac{T_0}{2}-nT_0}^{\frac{T_0}{2}-nT_0} x_{(t')} e^{j2\pi k f_0 t'} dt' \to TCF \text{ con intervalli disgiunti e adiacenti in } k f_0 \end{split}$$

Figure 53: Intervalli adiacenti e disgiunti

$$Y_k = \frac{1}{T_0} \int_{-\infty}^{\infty} x_{(t')} e^{j2\pi k f_0 t'} dt' \Rightarrow Y_k = \frac{1}{T_0} X_{(kf_0)}$$

Sono campionamenti di $X_{(f)}$ a kf_0 .

6.7.3 I^a formula di Poisson

$$y_{(t)} \stackrel{TSF}{\rightleftharpoons} \sum_{k=-\infty}^{+\infty} \frac{1}{T_0} X_{(kf_0)} e^{j2\pi k f_0 t}$$

Evidenzia che:

 $Periodicizzazione nel tempo \Rightarrow Campionamento nella frequenza$

Figure 54: Grafico del campionamento

Esempio: $y_{(t)} = |\cos(2\pi f_0 t)| X_k =?$

Figure 55: $|\cos(2\pi f_0 t)|$

 $\textbf{\emph{y}}_{(t)} = |\cos(2\pi f_0 t)|$ non é altro che il segnale aperiodico $\textbf{\emph{x}}_{(t)} = \cos(2\pi f_0 t) \cdot rect\left(\frac{t}{\frac{T_0}{2}}\right)$ con periodo $\frac{T_0}{2}$:

$$\begin{cases} Y_k = \frac{2}{T_0} X_{(kf_0)} = \frac{2}{T_0} X_{(k\frac{2}{T_0})} \\ X_{(f)} = \frac{T_0}{2} sinc(f\frac{T_0}{2}) \otimes \left(\frac{\delta_{(f-f_0)}}{2} + \frac{\delta_{(f-f_0)}}{2}\right) \end{cases}$$

Per il calcolo di $X_{(f)}$ si applica il Th della Modulazione con $\cos 6.5.1$ e la propietá campionatrice della Delta di Dirac rispetto alla convoluzione 6.6.1.

$$\begin{split} X_{(f)} &= \frac{T_0}{4} sinc\left((f-f_0)\frac{T_0}{2}\right) + \frac{T_0}{4} sinc\left((f+f_0)\frac{T_0}{2}\right) \\ Y_k &= \frac{2}{T_0}\frac{T_0}{4} sinc\left((\frac{2k}{T_0}-f_0)\frac{T_0}{2}\right) + \frac{2}{T_0}\frac{T_0}{4} sinc\left((\frac{2k}{T_0}+f_0)\frac{T_0}{2}\right) \end{split}$$

6.7.4 Teorema dell'integrazione completo

$$\begin{split} Ip: \begin{cases} x_{(t)} & \overset{TCF}{\leftrightharpoons} X_{(f)} \\ y_{(t)} & = \int_{-\infty}^{t} x_{(\alpha)} d\alpha \\ Th: Y_{(f)} & = \frac{X_{(0)}}{2} \delta_{(f)} + \frac{X_{(f)}}{j2\pi f} \end{cases} \end{split}$$

Prende la nominazione di completo perché risolve il problema di mantenere l'uguaglianza $j2\pi fY_{(f)}=X_{(f)}$

Per la dimostrazione ci serve definire prima:

• $TCF ext{ di } \frac{1}{t}$

$$\frac{1}{t} \underset{ATSF}{\overset{TSF}{\rightleftharpoons}} sgn(f)$$

Per la Dualitá 6.4.2

$$sgn(t) \underset{ATSF}{\overset{TSF}{\rightleftharpoons}} \frac{1}{j\pi f}$$

• TCF del gradino $u_{(t)}$

$$u_{(t)} = \int_{-\infty}^{\infty} \delta_{(\alpha)} d\alpha$$
 $u_{(t)} \rightleftharpoons U_{(f)}$

Non posso applicare il Th
 dell'integrazione 6.4.5 $\begin{cases} y_{(+\infty)}=1\\ \int_{-\infty}^\infty u_{(t)}dt=1\\ X_{(f)}=1 \end{cases}$ la

terza ipotesi non é mai verificata. Scriviamo la funzione gradino in modo diverso:

$$u_{(t)} = \frac{1}{2} + \frac{1}{2} sgn(t)$$

Figure 56: $u_{(t)} = \frac{1}{2} + \frac{1}{2} sgn(t)$

$$\begin{split} U_{(f)} &= TCF[u_{(t)}] = \frac{1}{2}\delta_{(f)} + \frac{1}{2j\pi f} \\ &\frac{1}{2} + \frac{1}{2}sgn(t) \mathop{\Longrightarrow}_{ATSF}^{TSF} \frac{1}{2}\delta_{(f)} + \frac{1}{2j\pi f} \end{split}$$

Dimostrazione Th. Integrazione completo:

$$y_{(t)} = \int_{-\infty}^{t} x_{(\alpha)} d\alpha = \int_{-\infty}^{\infty} x_{(\alpha)} u_{(t-\alpha)} d\alpha$$

Figure 57: $y_{(t)} = \int_{-\infty}^{\infty} x_{(\alpha)} u_{(t-\alpha)} d\alpha, x_{(\alpha)} u_{(t-\alpha)}$

Utilizziamo il gradino per cambiare gli estremi dell'integrale e mantenere il valore di $x_{(t)}$ dopo t a 0. Ci siamo ricondotti all'integrale di convoluzione 6.4.8 nel tempo, quindi nella frequenza diventa un prodotto:

$$Y_{(f)} = X_{(f)}U_{(f)} = \frac{X_{(f)}}{2}\delta_{(f)} + \frac{X_{(f)}}{j2\pi f} = \frac{X_{(0)}}{2}\delta_{(f)} + \frac{X_{(f)}}{j2\pi f}$$

Se $X_{(0)}$ fosse 0 avrei il classico Th. dell'integrazione.

7 Sistemi Monodimensionali

Definiamo il Sistema Monodimensionale:

$$T[\] \qquad y_{(t)}$$

Il sistema applica la trasformazione $T[\]:y_{(t)}=T[x_{(t)}]$ in gemerale $y_{(t)}=T[x_{(\alpha)},t].$

7.1 Propietá dei Sistemi Lineari Tempo Invarianti (LTI)

• Linearitá:

$$x_{(t)} = ax_{1(t)} + bx_{2(t)} \stackrel{T[]}{\Rightarrow} y_{(t)} = aT[x_{1(t)}] + bT[x_{2(t)}]$$

Oppure separando la variabile del tempo:

$$x_{(t)} = ax_{1(t)} + bx_{2(t)} \stackrel{T[]}{\Rightarrow} y_{(t)} = aT[x_{1(\alpha)}, t] + bT[x_{2(\alpha)}, t]$$

É il principio di linearitá o sovrapposizione degli effetti visto a elettrotecnica.

• Stazionarietá:

$$y_{(t)} = T[x_{(t)}] \to y_{(t-t_0)} = T[x_{(t-t_0)}]$$

• Causalitá:

$$y_{(t)} = T[x_{(\alpha)}, \alpha \le t]$$

L'uscita all'istante t dipende dall'ingresso ad instanti precedenti o al piú uguali a t, si basa su valori precendenti a t non puó prevedere il futuro. Ne derivano 2 distinzioni di trasformazioni:

- Real Time: necessariamente causale (é nel presente)
- Virtual time: Causale o Non Causale (es. ho tutto un file al quale posso prevedere i bit o frame successivi per applicarne un postprocessing)
- \bullet Stabilitá BIBO: Se il segnale $x_{(t)}$ ha ampiezza limitata \to l'uscita ha ampiezza limitata:

$$|x_{(t)}| \le M \to |y_{(t)}| \le K$$

• Invertibilitá:

$$y_{(t)} = T[x_{(\alpha)}, t] \stackrel{\text{Se}\exists}{\Rightarrow} x_{(t)} = T^{-1}[y_{(\alpha)}, t]$$

- Memoria: Un sistema é:
 - Senza memoria: se $y_{(t)} = T[x_{(\alpha)}, \alpha = t]$
 - Con Memoria: $y_{(t)} = \int_{-\infty}^t x_{(\alpha)} d\alpha$ l'uscita all'istante t dipende anche da valori dell'ingresso ad istanti diversi da t. Nota bene é l'integrale di convoluzione di $x_{(t)} \otimes u_{(t)}$

7.2 Propietá dei Sistemi Lineari Stazionari (SLS)

Sono sistemi LTI che godono delle propietá di Linearitá 7.1 e di Stazionarietá 7.1:

$$T[]$$
 $y_{(t)}$

Troviamo la relazione tra ingresso e uscita:

$$y_{(t)} = T[x_{(\alpha)}, t] = T[x_{(t)}] = T[x_{(t)} \otimes \delta_{(t)}] = T[\int_{-\infty}^{\infty} x_{(\alpha)} \delta_{(t-\alpha)} d\alpha]$$

$$\stackrel{7.1}{\Rightarrow} \int_{-\infty}^{\infty} T[x_{(\alpha)} \delta_{(t-\alpha)}] d\alpha = \int_{-\infty}^{\infty} x_{(\alpha)} T[\delta_{(t-\alpha)}] d\alpha$$

$$\stackrel{7.1}{\Rightarrow} \int_{-\infty}^{\infty} T[x_{(\alpha)} \delta_{(t-\alpha)}] d\alpha = \int_{-\infty}^{\infty} x_{(\alpha)} T[\delta_{(t-\alpha)}] d\alpha$$

Definiamo la trasformata nota del $\delta_{(t)}$:

$$\begin{array}{c|c}
\delta_{(t)} & \hline
\end{array}$$

$$T[\] \qquad \begin{array}{c|c}
h_{(t)} \\
\end{array}$$

Sollecitando il sistema con una Delta di Dirac ho la sua risposta impulsiva. Nel caso dei sistemi SLS l'impulso in uscita caratterizza completamente il sistema. Nel nostro caso $T[\delta_{(t-\alpha)}]$ non é altro che una traslazione della $T[\delta_{(t)}]$ per la Stazionarietá 7.1:

$$y_{(t)} = \int_{-\infty}^{\infty} x_{(\alpha)} h_{(t-\alpha)} d\alpha = x_{(t)} \otimes h_{(t)}$$

La trasformata del sistema dipende solo dalla $h_{(t)}$ (risposta impulsiva del sistema). Passando al dominio della frequenza per la propietá della convoluzione 6.4.8:

$$Y_{(f)} = X_{(f)} \otimes H_{(f)}$$

Dove $H_{(f)}=TCF[h_{(t)}]=\int_{-\infty}^{\infty}h_{(t)}e^{-j2\pi ft}$ é la risposta in frequenza del sistema SLS. Esistono vari modi per calcolare $h_{(t)}$:

• Utilizzando un impulso di Dirac e le sue propietá, ma l'impulso di dirac é difficile da realizzare.

- \bullet Calcolo $H_{(f)}$ mandando in ingresso un segnale del quale sia nota la sua risposta e calcolo il rapporto uscita/ingresso $H_{(f)}=\frac{Y_{(f)}}{X_{(f)}}$
- Mandanndo in ingresso un esponenziale:

$$y_{(t)} = x_{(t)} \otimes h_{(t)}, \ x_{(t)} = e^{j2\pi f_0 t}$$

$$\begin{aligned} y_{(t)} &= \int_{-\infty}^{\infty} x_{(t-\alpha)} h_{(t)} d\alpha = \int_{-\infty}^{\infty} h_{(\alpha)} e^{j2\pi f_0(t-\alpha)} d\alpha \\ &= e^{j2\pi f_0 t} \int_{-\infty}^{\infty} h_{(\alpha)} e^{j2\pi f_0 \alpha} d\alpha = x_{(t)} H_{(f_0)} \\ &H_{(f_0)} &= \frac{y_{(t)}}{x_{(t)}} \end{aligned}$$

Posso calcolare la risposta in f_0 , posso variare la frequenza e calcolare $H_{(f)}=\left.\frac{y_{(t)}}{x_{(t)}}\right|_{x_{(t)}=e^{j2\pi ft}}$

7.2.1 Risposta in frequenza

La risposta in frequenza $H_{(f)} \in \mathbb{C}$:

$$H_{(f)} = |H_{(f)}|e^{j\angle H_{(f)}}$$

- $|H_{(f)}|$: Risposta in ampiezza
- $\angle H_{(f)}$: Risposta in fase

$$Y_{(f)} = X_{(f)}H_{(f)} = \begin{cases} |Y_{(f)}| &= |X_{(f)}||H_{(f)}|\\ \angle Y_{(f)} &= \angle X_{(f)} + \angle H_{(f)} \end{cases}$$

7.2.2 Sistemi in cascata e in parallelo

• Sistemi in cascata:

Figure 58: sistemi in cascata

$$\begin{array}{c|c}
x_{(t)} \\
\hline
 & h_{1(t)} \otimes h_{2(t)}
\end{array}$$

Figure 59: equivalente sistemi in cascata

$$y_{(t)} = x_{(t)} \otimes h_{1(t)}$$

$$z_{(t)} = y_{(t)} \otimes h_{2(t)} = [x_{(t)} \otimes h_{1(t)}] \otimes h_{2(t)} = x_{(t)} \otimes h_{1(t)} \otimes h_{2(t)}$$

$$z_{(t)} = x_{(t)} \otimes h_{(t)}$$

Risposta Impulsiva : $h_{(t)}=h_{1(t)}\otimes h_{2(t)}$ Risposta in Frequenza : $H_{(f)}=H_{1(f)}H_{2(f)}$

• Sistemi in parallelo:

Figure 60: sistemi in cascata

$$\begin{array}{c|c}
x_{(t)} \\
\hline
 h_{1(t)} + h_{2(t)}
\end{array}$$

Figure 61: equivalente sistemi in parallelo

$$y_{(t)} = y_{1(t)} \otimes y_{2(t)} = x_{(t)} \otimes h_{1(t)} + x_{(t)} \otimes h_{2(t)}$$
$$= x_{(t)} \otimes [h_{1(t)} + h_{2(t)}] = x_{(t)} \otimes h_{(t)}$$

Risposta Impulsiva : $h_{(t)} = h_{1(t)} + h_{2(t)}$

Risposta in Frequenza : $H_{(f)} = H_{1(f)} + H_{2(f)}$

7.3 Risposta di un sistema causale e risposta impulsiva

Figure 62: Risposta impulsiva di un sistema

$$h_{(t)} = h_{(t)} \cdot u_{(t)}$$

$$y_{(t)} = x_{(t)} \otimes h_{(t)} = \int_{-\infty}^{\infty} x_{(\alpha)} h_{(t-\alpha)} d\alpha = \int_{-\infty}^{\infty} x_{(\alpha)} h_{(t-\alpha)} u_{(t-\alpha)} d\alpha$$
$$= \int_{-\infty}^{t} x_{(\alpha)} h_{(t-\alpha)} d\alpha \tag{1}$$

giungiamo all'integrale che definisce la Causalitá 7.1: un sistema é causale se la sua risposta impulsiva é solo definita per t>0.

Figure 63: Uscita di un sisetma causale

Dal valore 3 in poi la risposta impulsiva rende il sistema causale.

7.3.1 Stabilitá BIBO su $h_{(t)}$

$$|y_{(t)}| = \left| \int_{-\infty}^{\infty} x_{(\alpha)} h_{(t-\alpha)} d\alpha \right| \le \int_{-\infty}^{\infty} |x_{(\alpha)}| |h_{(t-\alpha)}| d\alpha$$
$$\le M \left| \int_{-\infty}^{\infty} h_{(t-\alpha)} d\alpha \right| < K$$

Se l'ingresso y < M allora lo é anche l'uscita. Ne deriva la C.S(Condizione Sufficiente): Assoluta integrabilitá della $h_{(t)}$, se il sistema é bounded anche l'integrale deve esserlo. (To DO: cercare la condizione necessara sul libro)

7.4 Filtri Ideali

Banda di un segnale É la porzione di spettro calcolata sul semiasse positivo delle frequenze dove lo spettro é diverso da zero.

$$B = f \cdot H_{(f)} \neq 0, f > 0$$

7.4.1 Filtro Passa Basso di banda B - Low Pass Filter (LP)

Figure 64: Filtro passa basso ideale: Risposta in frequenza

Risposta in frequenza:

$$H_{LP(f)} \triangleq rect\left(\frac{f}{2B}\right)$$

Risposta impulsiva:

$$h_{LP(t)} \triangleq 2Bsinc(2Bt)$$

La risposta impulsiva non é causale, ma posso troncarla e spostarna nel semiasse positivo per renderlo tale, ma non é piú ideale:

Figure 65: Filtro passa basso causale: risposta impulsiva

Figure 66: Circuito filtro passa basso ideale

Cricuito Filtro Passa Basso:

$$\frac{V_{out}}{V_{in}} = H_{(f)} = \frac{1}{1 + j\frac{f}{f_T}}, \ f_T = \frac{1}{2\pi RC}$$

Possiamo rappresentare in sacala logaritmica il filtro: $\left|H_{(f)}\right|_{db}=10log\left(\frac{\left|H_{(f)}\right|^2}{\left|H_{(f_0)}\right|^2}\right)$. Prendiamo la frequenza di riferimento $f_0:H_{(f_0)}=1$

Figure 67: Filtro passa basso ideale in scala logaritmica

Otteniamo la Frequenza di taglio f_T all'ampiezza di -3db, in questo caso $f_T=10$, alla quale il filtro "taglia" o meglio riduce tutte le ampiezze in ingresso verso lo 0. (To DO: controllare sul libro la formula per il calcolo di Hf)

Figure 68: Filtro passa basso ideale fase

Osservazione:

- Al tendere di B a 0 il valore che il filtro fa passare é il valor medio del segnale, tanto da tendere a un filtro LP con spettro $\delta_{(t)}$, ma é difficilmente realizzabile.
- \bullet La banda di un filtro é quanto si estende da 0 $\to f^+$ fino a arrivare a B,[0,B]
- \bullet Se il filtro é un filtro BPla banda é l'ampiezza della banda che lascia passare $[f_0-B,f_0+B]=B$

7.4.2 Filtro Passa Alto di banda B - High Pass Filter (HP)

Figure 69: Filtro passa alto ideale: Risposta in frequenza

Risposta in frequenza:

$$H_{HP(f)} \triangleq 1 - rect\left(\frac{f}{2B}\right)$$

Risposta impulsiva:

$$h_{HP(t)} \triangleq \delta_{(t)} - 2Bsinc(2Bt)$$

Figure 70: Circuito filtro passa alto ideale

Cricuito Filtro Passa Alto:

$$H_{(f)} = \frac{fRC}{1 + fRC}$$

In scala logaritmica:

Figure 71: Filtro passa alto ideale in scala logaritmica

Figure 72: Filtro passa alto ideale fase

Si nota come avendo preso la f_T corrisponde a RC=10.

7.4.3 Filtro Passa Banda di banda B - Band Pass Filter (BP)

Figure 73: Filtro passa banda ideale: Risposta in frequenza

Risposta in frequenza:

$$H_{BP(f)} \triangleq H_{LP(f+f_0)} + H_{LP(f-f_0)} = rect\left(\frac{f-f_0}{2B}\right) + rect\left(\frac{f+f_0}{2B}\right)$$

Risposta impulsiva:

$$h_{BP(t)} \triangleq 2Bsinc(2Bt)\cos(2\pi f_0 t) = h_{LP(t)}\cos(2\pi f_0 t)$$

Figure 74: Filtro passa banda: risposta impulsiva

Figure 75: Circuito filtro passa banda ideale

Cricuito Filtro Passa Banda: In scala logaritmica:

Figure 76: Filtro passa banda ideale in scala logaritmica

Non riesco a fare un grafico con pendenza maggiore ma é per capire che le frequenze sotto il valore di -3db vengono ridotte drasticamente.

Figure 77: Filtro passa banda ideale fase

7.4.4 Filtro Elimina Banda di banda B - Band Stop Filter (BS)

Figure 78: Filtro elimina banda ideale

Risposta in frequenza:

$$H_{BS(f)} \triangleq 1 - \left(H_{BP(f+f_0)} + H_{BP(f-f_0)}\right) = 1 - \left[rect\left(\frac{f-f_0}{2B}\right) + rect\left(\frac{f+f_0}{2B}\right)\right]$$

Risposta impulsiva:

$$h_{BS(t)} \triangleq \delta_{(t)} - h_{BP(t)} = \delta_{(t)} - 2Bsinc(2Bt)\cos(2\pi f_0 t)$$

Figure 79: Circuito filtro elimina banda ideale

Cricuito Filtro Elimina Banda:

$$H_{(f)} =$$

In scala logaritmica:

Figure 80: Filtro elimina banda ideale in scala logaritmica

Figure 81: Filtro elimina banda ideale fase

Tutti i filtri possono essere ricavati dal filtro **Low-Pass** 7.4.1 o dal filtro **High-Pass** 7.4.2.

I filtri sono riconducibili a funzioni di trasferimento come quelle viste per il tracciamento di Bode nel corso di fondamenti di automatica.

Sono giusti i grafici di bode? ricontrollare soprattutto la fase

7.4.5 Filtri non distorcenti

Definiamo prima cos'é un sengale non distorto:

 $y_{(t)}$ é un segnale non distorto di x se: $y_{(t)} \triangleq kx_{(t-t_0)}$ $k \in \mathbb{R}^+$, cioé finché esso rimane una versione ritardata e/o amplificata del segnale $x_{(t)}$, in frequenza:

$$Y_{(f)} = kX_{(f)}e^{-j2\pi f t_0}$$

Analisi del filtro non distorcente: Come deve essere realizzato il filtro in modo tale da non distorcere il segnale?

$$y_{(t)} = x_{(t)} \otimes h_{(t)} = kx_{(t-t_0)}$$

Per non essere distorcente la risposta impulsiva del sistema deve essere $k\delta_{(t-t_0)}$ con risposta in frequenza: $H_{(f)}=ke^{-j2\pi ft_0}$

Figure 82: Spettro filtro non distorcente

Avere un tale filtro per tutti i segnali é molto restringente, ci basta che il nostro filtro sia non distorcente nella banda che ci interessa.

Figure 83: Spettro filtro non distorcente limitato alla banda B

Il filtro ci basta che sia qualcosa che si avvicini a una rect ad esempio un coseno rialzato 3

7.5 Th. di Parseval

$$E_x = \int_{-\infty}^{\infty} |x_{(t)}|^2 dt = \int_{-\infty}^{\infty} |X_{(f)}|^2 df = \int_{-\infty}^{\infty} S_{x(f)} df$$

 $S_{x(f)}=|X_{(f)}|^2$ é la densitá spettrale di energia del segnale, ci mostra come l'energia é distribuita nello spettro.

Dimostrazione:

$$\begin{split} E_x &= \int_{-\infty}^{\infty} |x_{(t)}|^2 dt = \int_{-\infty}^{\infty} x_{(t)} x_{(t)}^{\star} dt = \int_{-\infty}^{\infty} x_{(t)} \left[\int_{-\infty}^{\infty} X_{(f)} e^{j2\pi f t} df \right]^{\star} dt \\ &= \int_{-\infty}^{\infty} x_{(t)} \int_{-\infty}^{\infty} X_{(f)}^{\star} e^{-j2\pi f t} df dt = \int_{-\infty}^{\infty} X_{(f)}^{\star} \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi f t} dt df \\ &= \int_{-\infty}^{\infty} X_{(f)}^{\star} X_{(f)} df = \int_{-\infty}^{\infty} |X_{(f)}|^2 df \end{split}$$

Come capisco quanta % del segnale sto buttando?

Figure 84: Spettro $S_{x(f)}$

La parte verde é l'energia del segnale che perdiamo troncandolo con banda B

7.6 Funzione di Correlazione - Segnali Aperiodici

$$C_{xy} = R_{xy(\tau)} = \int_{-\infty}^{\infty} x_{(t)} y_{(t-\tau)}^{\star} dt$$

7.7 Funzione di Autocorrelazione

$$C_x = R_{x(\tau)} = \int_{-\infty}^{\infty} x_{(t)} x_{(t-\tau)}^{\star} dt$$

Misura la correlazione del segnale con se stesso.

7.7.1 Propietá Autocorrelazione

 $\bullet \ R_{x(0)} = E_x$

$$R_{x(0)} = \int_{-\infty}^{\infty} x_{(t)} x_{(t)}^{\star} dt = \int_{-\infty}^{\infty} |x_{(t)}|^2 dt = E_x$$

• Simmetria Hermitiana:

$$R_{x(-\tau)} = R_{x(\tau)}^{\star}$$

 \bullet TCF Autocorrelazione:

$$R_{x(\tau)} \overset{TCF}{\underset{ATCF}{\rightleftharpoons}} S_{x(f)}$$

Posso calcolare la densitá spettrale di energia dall'autocorrelazione.

8 Trasformata Discreta di Fourier

Si definisce Trasformata Discreta di Fourier:

$$x_{[nT]} \overset{TDF}{\underset{ATDF}{\rightleftharpoons}} \overline{X}_{(f)}$$

$$\overline{X}_{(f)} \in \mathbb{C} : \begin{cases} \left| \overline{X}_{(f)} \right| \\ \angle \overline{X}_{(f)} \end{cases}$$
 é una funzione periodica di periodo $\frac{1}{T}$

8.0.1 Equazione di Analisi - TDF

$$\overline{X}_{(f)} = \sum_{n=-\infty}^{\infty} x_{[nT]} e^{-j2\pi f nT}$$

8.0.2 Equazione di Sintesi - ATDF

$$x_{[nT]} = \frac{1}{2\pi} \int_{2\pi} \overline{X}_{(f)} e^{-j2\pi f nT} df$$

8.0.3 Trasformata di $\delta_{[n]}$

$$\sum_{n=-\infty}^{\infty} \delta_{(t-nT)} \overset{6.7.3}{=} \frac{1}{T} \sum_{k=-\infty}^{\infty} \Delta_{\left(\frac{k}{T}\right)} e^{-j2\pi \frac{k}{T}t} \overset{\Delta \text{ costante}}{=} \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{-j2\pi \frac{k}{T}t} \overset{\Delta \text{ total enter}}{=} \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{-j2\pi \frac{k}{T}t} \overset{\Delta \text{ costante}}{=} \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta_{(f-\frac{k}{T})}$$

Applicando il ritardo:

$$\sum_{n=-\infty}^{\infty} e^{-j2\pi(f-\nu)nT} = \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta_{((f-\nu)-\frac{k}{T})}$$

8.0.4 Relazione tra TCF e TDF

$$\begin{split} \overline{X}_{(f)} &= \sum_{n=-\infty}^{\infty} x_{[nT]} e^{-j2\pi f nT} = \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} X_{(\nu)} e^{-j2\pi \nu nT} d\nu e^{-j2\pi f nT} \\ &= \int_{-\infty}^{\infty} X_{(\nu)} \sum_{n=-\infty}^{\infty} e^{-j2\pi \nu nT} e^{-j2\pi f nT} d\nu \stackrel{8.0.3}{=} \int_{-\infty}^{\infty} X_{(\nu)} \sum_{n=-\infty}^{\infty} \frac{1}{T} \delta_{((f-\nu)-\frac{k}{T})} d\nu \\ &\stackrel{6.6.1:\text{paritá}}{=} \int_{-\infty}^{\infty} X_{(\nu)} \frac{1}{T} \sum_{n=-\infty}^{\infty} \delta_{(\nu-(f-\frac{k}{T}))} d\nu = \frac{1}{T} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} X_{(\nu)} \delta_{(\nu-(f-\frac{k}{T}))} d\nu \\ &\stackrel{6.6.1:\text{campionatrice}}{=} \frac{1}{T} \sum_{n=-\infty}^{\infty} X_{(f-\frac{k}{T})} \end{split}$$

quindi la TDF si ottiene periodicizzando la TCF con periodo $\frac{1}{T}$:

$$\overline{X}_{(f)} = \frac{1}{T} \sum_{n=-\infty}^{\infty} X_{(f-\frac{k}{T})}$$

Figure 85: $X_{(f)}, X_{(f-\frac{k}{T})}, \overline{X}_{(f)}$

8.1 Teorema del Campionamento - Nyquist Shannon

$$\begin{array}{c|c} x_{(t)} & \hline & x_{[nT]} \\ \hline & & D/A \end{array}$$

Figure 86: Esempio sistema campionamento e ricostruzione

- A/D: Campionatore, converte da analogico a discreto.
- A/D: interpolatore o filtro p, converte da discreto a analogico.

Il nostro obbiettivo é dimensionare T e l'interpolatore in modo tale da poter ricostruire il segnale \hat{x} : $\hat{x} = x$.

Dimensioniamo l'A/D: Riprendiamo la relazione tra TDF e TCF:

Figure 87: $X_{(f)}, X_{(f-\frac{k}{T})}, \overline{X}_{(f)} = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{(f-\frac{k}{T})}$

abbiamo trovato che la TDF non é altro che la periodicizzazione della TCF con periodo $\frac{1}{T}$: se $\frac{1}{T} \geq 2B$ il grafico $X_{(f-\frac{k}{T})}$ sono copie distinte non distorte e periodicizzate di $X_{(f)}$ da cui con un Filtro Passa-Basso 7.4.1 possiamo ricostruire il segnale. Se scegliessi $\frac{1}{T} < 2B$:

Figure 88: $X_{(f)}, X_{(f-\frac{k}{T})}, \overline{X}_{(f)} = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{(f-\frac{k}{T})}$

ho sovrepposizione delle copie di $X_{(f)}$ é il fenomeno di Aliasing: ho sovrapposizione di segnali che alterano il segnale originale. In entrambi i casi ci troviamo in condizione di un segnale a banda limitata, nel tempo rappresenta un segnale illimitato.

Dimensioniamo il D/A: Partiamo dalla relazione di \hat{x} :

$$\hat{x} = \sum_{n=-\infty}^{\infty} x_{[nT]} p_{(t-nT)}, \ p \text{ interpolatore}$$

Il segnale di uscita dal sistema dipende non solo dal periodo di campionamento $\frac{1}{T}$ ma anche dall'interpolatore che utilizziamo:

 $\bullet\,$ Interpolatore a mantenimento: mantiene il valore del segnale $x_{[nT]}$ per un periodo T

Figure 89: Interpolatore a mantenimento

Figure 90: $x_{(t)}, \hat{x} = \sum_{n=-\infty}^{\infty} x_{[nT]} p_{(t-nT)}$

 \bullet Interpolatore Lineare: incrementa linearmente il valore di \hat{x}

Figure 91: Interpolatore Lineare

Figure 92: $x_{(t)}$, $\hat{x} = \sum_{n=-\infty}^{\infty} x_{[nT]} p_{(t-nT)}$

Passiamo alla frequenza:

$$\hat{x} = \sum_{n = -\infty}^{\infty} x_{[nT]} p_{(t-nT)} \stackrel{TCF}{\rightleftharpoons} \hat{X}_{(f)} = \sum_{n = -\infty}^{\infty} x_{[nT]} P_{(f)} e^{-j2\pi f nT}$$

$$\hat{X}_{(f)} = P_{(f)} \sum_{n = -\infty}^{\infty} x_{[nT]} e^{-j2\pi f nT} = P_{(f)} \overline{X}_{(f)}$$

$$Se \ \hat{x} = x \ anche \ \hat{X}_{(f)} = X_{(f)}$$

$$\Downarrow 8.0.4$$

$$X_{(f)} \stackrel{!}{=} P_{(f)} \frac{1}{T} \sum_{k = -\infty}^{\infty} X_{(f - \frac{k}{T})}$$

dobbiamo dimensionare $P_{(f)}$ in modo tale da rendere vera $\hat{X}_{(f)} = X_{(f)}$

Figure 93: $X_{(f)}, X_{(f-\frac{k}{T})}, P_{(f)}$

Utilizziamo un filtro passa basso che abbia una durata in banda maggiore di 2B ma minore di $\frac{1}{2T}$ per lasciarci un pochino di margine e evitare di prendere la copia del segnale successivo/precedente $(2B < T_r \le \frac{1}{2T_s})$: prendiamo una durata $\frac{1}{2T_s} > 2B$

$$P_{(f)} = Trect\left(\frac{f}{2\frac{1}{2T}}\right) = Trect\left(fT\right) \overset{TCF}{\leftrightharpoons} p_{(t)} = \frac{T}{T}sinc\left(\frac{t}{T}\right)$$

Interpolatore a seno cardinale: Si utilizza un interpolatore a seno cardinale

Figure 94: Interpolatore a seno cardinale

Figure 95: $x_{(t)}, \hat{x} = \sum_{n=-\infty}^{\infty} x_{[nT]} p_{(t-nT)}$

l'interpolatore a seno cardinale non é causale: essendo delle sinc a ogni campionamento, non posso conoscere il peso delle sinc dei valori della sequenza successivi. Se opero non Real Time (Virtuale), invece ho infiniti campioni a cui posso attingere: Risolvo entrambi i problemi troncando la sinc e spostandola a dx, ma per troncarla sto moltiplicando una sinc per una rect nel tempo, passsando alla frequenza la funzione limitata nel tempo diventa illimitata in frequenza andando a influenzare anche le repliche successive.

Teorema del Campionamento: Dato un segnale analogico $x_{(t)}$ la cui banda di frequenze sia limitata e dato $c \in \mathbb{Z}$, il segnale $x_{(t)}$ puó essere univocamente ricostruito a partire dai suoi campioni $x_{[nT]}$ presi a frequenza (o periodo) $f_s = \frac{1}{T}$

se $f_s = \frac{1}{T} \ge 2B$ mediante:

$$x_{(t)} = \sum_{n = -\infty}^{\infty} x_{[nT]} sinc\left(\frac{t}{T} - n\right)$$

Criticitá:(perché la formula sopra é diversa da quelle di wikipedia? la sinc non dovrebbe dipendere da k?)

- Segnale a banda limitata
- Interpolatore dimensionato

Osservazioni: Se utilizzassi una filtro con durata $\frac{1}{T}>>2B$ prenderei tantissimi campioni che non servono per ricostruire meglio il segnale: degli esempi di matlab possiamo vedere che ci basta anche solo un periodo uguale a 2B. Esempio:

 $B=10KHz,\ 2B=20KHz,\ \mathrm{Durata\ filtro}=25KHz\ ho\ 5KHz$ di margine

Esempio: $f_s = \frac{1}{T} = 2B$, $p_{(t)} = sinc(2Bt)$

$$\hat{x}_{(t)} = \sum_{n=-\infty}^{\infty} x_{[nT]} sinc (2Bt_0 - n)$$

$$\hat{x}_{(t_0)} = \sum_{n=-\infty}^{\infty} x_{[nT]} sinc \left(2Bt_0 - n\right)$$

 $\hat{x}_{(t_0)}$ dipende dal contributo di tutte le sincanche dei valori successivi, per questo si pone il problema del filtro causale.

Figure 96: $x_{(t)}, \hat{x} = \sum_{n=-\infty}^{\infty} x_{[nT]} p_{(t-nT)}$

I passi in un sistema A/D/A sono:

- Passo dal tempo in frequenza: $x_{(t)} \stackrel{TCF}{\rightleftharpoons} X_{(f)}$.
- ullet Osservo la banda che occupa il segnale e scelgo B.
- Scelgo una frequenza (periodo) di campionamento f_s e calcolo $x_{[nT]}$.
- Calcolo \hat{x} con un interpolatore a seno cardinale, sinc

9 Teoria della Probabilitá

9.1 Introduzione

Perché abbiamo bisogno della teoria della probabilitá? Prendiamo un sistema di comunicazione:

Figure 97: Esempio sistema di comunicazione

Analizziamo la parte di trasmissione TX:

Figure 98: Esempio sistema di trasmettitore

- Convertitore Analogico/Digitale (A/D): Campiona con frequenza f_s e crea la sequenza $x_{[nT]}$.
- Quantizzatore (Q): Converte i valori della sequenza $x_{[nT]}$ in informazioni, bit. Ho sempre perdita di informazione a questo livello, per quanti livelli di quantizzazione io metta il quantizzatore introdurrá sempre un'approssimazione.
- Nei blocchi sotto elencati é dove entra in gioco la Teoria dei Codici, ci permettono di comprimere i dati e proteggerli dagli errori del canale:
 - Codici di Sorgente (CdS): Comprimono i bit in ingresso dal quantizzatore eliminando la ridondanza.
 - Codifica di Canale (CdC): Aggiunge ridondanza ai dati da trasmettere per proteggere i dati dagli errori del canale.
- Trasmettitore (TX):Si occupa di rendere il segnale trasmissibile sul canale di interesse e trasmettere il risultato $s_{(t)}$.

Analizziamo la parte di Ricezione RX:

Figure 99: Esempio sistema di ricevitore

• RIcevitore (RX): Si occupa della ricezione del segnale trasmesso $r_{(t)}$.

- La Teoria dei Codici si applica anche in ricezione per la decodifica:
 - Decodifica Canale (DC): .
 - Decodifica Sorgente(DS): .
- Convertitore Digitale/Analogico (D/A): Ricostruisce il segnale $\hat{x}_{(t)}$.

Analizziamo il canale di trasmissione:

Figure 100: Esempio sistema di canale con errore

Durante la trasmissione di $s_{(t)}$ viene introdotto dell'errore $n_{(t)}$. $n_{(t)}$ é un segnale completamente aleatorio di varia natura:

- Termico
- Interferenze
- Fading
- ..

di conseguenza $r_{(t)} = s_{(t)} + e_{(t)}$ diventa un segnale aleatorio.

I segnali che analizzo sono tutte quantitá aleatorie: ho bisogno della probabilitá per analizzare la tipologia di segnali, anche per la sorgente potrei averne bisogno se non sono nel caso di segnali deterministici.

9.1.1 Tipi di modelli matematici

Esistono vari tipi di modelli matematici:

- Deterministico: se esiste certezza e ne possiamo calcolare il valore a ogni istante del tempo (Es. sistemi lineari tempo invarianti)
- Probabilistico (Aleatorio): se non conosciamo la certezza con cui l'evento puó verificaris ma ne possiamo dare una valutazione probabilistica.

Introduciam oquind i

9.2 Algebra dei Set (insiemi)

Un set é una collezione di elementi che condividono un criterio oggettivo per decidere se appartengono al set o no. Prendiamo come set A e come elemento del set A x:

- Se l'elemento appartiene al set: $x \in A$, veceversa se non appartiene: $x \notin A$
- Se un set é vuoto: $A = \{\emptyset\} = \emptyset$
- Se x_1, \ldots, x_n sono elementi di A allora:

$$A = \{x_1, \dots, x_n\}$$

9.2.1 Operazioni booleane su set

- Unione $(A \cup B)$: l'unione di due set A e B é a sua volta un set composto dagli elementi che appartegono a A o B, o entrambi.
- Intersezione $(A \cap B)$: l'intersezione di due set A e B é a sua volta un set composto dagli elementi che appartegono a A e B.

Figure 101: Unione e Intersezione

- Disgiunzione: é una relazione tra due set A e B, essi sono disgiunti se tra loro non hanno elementi comuni $(A \cap B = \emptyset)$.
- Partizione ($A = A_1 \cup A_2 \cup A_3$): la partizione di un insieme A é una divisione dell'insieme stesso in subset disgiunti.

Figure 102: Disgiunzione e Partizione

• Complemento (A^c) : dati due set $A \in B : A \subset B$ il complemento del set A é il set contenente gli elementi di B non appartenenti ad A.

Figure 103: Complemento

9.2.2 Operazioni algebriche su set

ullet Idempotenza

$$(A^c)^c = A$$

• Propietá commutativa

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

• Propietá associativa

$$(A \cup B) \cup C = (A \cup C) \cup B$$
$$(A \cap B) \cap C = (A \cap C) \cap B$$

• Propietá distributiva

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

9.3 Modelli probabilistici

La descrizione di un esperimento con risultati incerti é chiamato modello probabilistico, la costruzione del modello richiede:

- Spazio dei campioni o set universale S: nel quale sono presenti tutti i possibili risultati dell'esperimento.
- \bullet Una classe di eventi A che sia un subset di S.
- Legge della Probabilitá: alla quale una quantitá non negativa P[A] viene assegnata ad A. P[A] viene detta probabilitá dell'evento A: rappresenta con quale occorrenza potrebbe verificarsi il risultato dell'esperimento A.

Figure 104: Modello Probabilistico

Un evento puó avere come risultato un singolo risultato o un subset di risultati di S.

9.3.1 Assiomi della probabilitá

1. Non Negativitá: la probabilitá di A é un numero non negativo:

$$0 \le P[A] \le 1, \ \forall \text{ evento A}$$

2. Additivitá: se A e B sono due eventi disgiunti, allora la probablitá dell'unione é:

$$P[A \cup B] = P[A] + P[B]$$

3. Normalizzazione: la probabilitá del set universale S é P[S] = 1

Si sviluppano alcune propietá della probabilitá:

- La probabilitá di un evento impossibile é zero. Dimostrazione:
- $P[A^c] = 1 P[A]$ Dimostrazione:
- \bullet Se un evento A é un subset di un evento B allora: $P[A] \leq P[B].$ Dimostrazione:
- Se due eventi A e B non sono disgiunti allora: $P[A \cup B] = P[A] + P[B] P[A \cap B]$ Dimostrazione:

9.3.2 Probabilitá condizionata

Prendiamo in esempio un esperimento che implica due eventi A e B: P[A|B] sia la probabilità che un evento A si verifichi dato il verificarsi dell'evento B, P[A|B] é detta probabilità condizionata di A dato B, assumendo $P[B] \neq 0$:

$$P[A|B] = \frac{P[A \cap B]}{P[B]}$$

9.3.3 Regola di Bayes

Supponiamo che si possano ricavare facilmente le probabilitá P[A|B], P[A] e P[B] e vogliamo trovare la probabilitá condizionata P[B|A]:

$$P[B|A] = \frac{P[A|B]P[B]}{P[A]}$$

9.3.4 Indipendenza

Supponiamo che l'occorrenza di un evento A non fornisca nessuna informazione sull'evento B, P[B|A] = 0. Dalla regola di Bayes abbiamo P[A|B] = P[A], i due eventi sono indipendenti e occorre che:

$$P[A \cap B] = P[A]P[B]$$

9.3.5 Legge della probabilitá totale

Supponiamo $\{A_n = 1, \dots N\}$ é un insieme di eventi disgiunti:

$$P[B] = \sum_{n=1}^{N} P[B \cap A_n]$$

9.3.6 Problemi esempio:

Radar Detection Problem: Nel problema del rilevamento vogliamo analizzare in particolere tre tipi di probabilitá:

- Probabilitá a priori P[A]: probabilitá che il bersaglio sia nell'area.
- Probabilitá di rivelazione P[B|A]: probabilitá che il radar riveli il bersaglio, quando effettivamente il bersaglio é presente nell'area.
- Probabilitá di falso allarme $P[B|A^c]$: probabilitá che il radar riveli il bersaglio, ma il bersaglio non é effettivamente presente nell'area.

Dati i dati delle relative probabilitá:

$$P[A] = 0.02$$
$$P[B|A] = 0.99$$
$$P[B|A^c] = 0.01$$

 A^c indica che il bersagli non é presente. Il problema richiede di calcolare la probabilitá condizionata P[A|B], la quale definisce la probabilitá che il bersaglio sia presente nell'area e il radar l'abbia rivelata. Soluzione:

$$\stackrel{9.3.3}{\Rightarrow} P[A|B] = \frac{P[A]P[B|A]}{P[B]}$$

Devo solo calcolare P[B]:

$$\overset{9.3.5}{\Rightarrow} P[B] = \sum_{n=1}^{2} P[B \cap A_n] = \sum_{n=1}^{2} P[B|A_n] P[A_n]$$

$$P[B] = P[B|A] P[A] + P[B|A^c] P[A^c]$$

$$= 0.99 \cdot 0.02 + 0.01 \cdot 0.098 = 0.0296 \approx 0.03$$

Ricordiamo che $P[A^c]=1-P[A]$, nel nostro caso il problema ri risolve facilmente applicando il Th della probabilità totale su due set disgiunti A e A^c . Possiamo quindi calcolare la probabilità condizionata:

$$P[A|B] = \frac{P[A]P[B|A]}{P[B]} = \frac{0.02 \cdot 0.99}{0.03} = 0.66$$

Communication Problem: In un sistema di comunicazione ho:

- 1 é trasmesso con probabilitá P[1]=0.3 e 0 con probabilitá P[0]=1-P[1]=0.7
- la probabilitá di errore é $P_e = 0.01$

Richiesta: assumendo che venga ricevuto 0, calcolare la probabilità che questo sia stato effettivamente trasmesso. Soluzione: Definiamo i set di interesse:

- $A = \{0 \text{ \'e stato trasmesso}\}, A^c = \{1 \text{ \'e stato trasmesso}\}$
- $B = \{0 \text{ \'e stato ricevuto}\}, B^c = \{1 \text{ \'e stato ricevuto}\}$

$$\stackrel{9.3.3}{\Rightarrow} P[A|B] = \frac{P[A]P[B|A]}{P[B]}$$

P[B|A] non é altro che il probabilità di corretta ricezione (P[c]), posso calcolarla dalla probabilità di errore:

$$P[e]=P[B^c|A]=P[B|A^c]=0.01, \text{ probabilitá di errore}$$

$$P[c]=P[B|A]=P[B^c|A^c]=1-P[e]=0.99, \text{ probabilitá di corretta ricezione}$$

Calcoliamo P[B]:

$$\stackrel{9.3.5}{\Rightarrow} P[B] = \sum_{n=1}^{2} P[B \cap A_n] = \sum_{n=1}^{2} P[B|A_n] P[A_n]$$

$$P[B] = P[B|A] P[A] + P[B|A^c] P[A^c]$$

$$= 0.99 \cdot 0.7 + 0.01 \cdot 0.3 = 0.696$$

Possiamo quindi calcolare la probabilitá condizionata:

$$P[A|B] = \frac{P[A]P[B|A]}{P[B]} = \frac{0.7 \cdot 0.99}{0.696} = 0.995$$

Esempio palline: Eventi: Pesco una pallina dall'urna pippo e la metto nell'urna pluto, infine pesco una pallina dall'urna pluto. Calcolare la probabilitá di pescare una pallina bianca dall'urna pluto (P[pesco 1 bianca da <math>pluto] = P[A]).

Definiamo per prima cosa i set del problema:

- $A = \{pescounapallinabiancadapluto\}$
- $\bullet \ B = \{pescounapallinabian cadapippo\}$

• $B^c = C = \{pescounapallinaneradapippo\}$

Calcoliamo P[A]:

$$\stackrel{9.3.5}{\Rightarrow} P[A] = \sum_{n=1}^{2} P[A \cap B_n] = \sum_{n=1}^{2} P[A|B_n]P[B_n]$$

$$P[A] = P[A|B]P[B] + P[A|C]P[C]$$

$$= \frac{3}{4} \frac{2}{3} + \frac{2}{4} \frac{1}{3} = \frac{2}{3}$$

- P[A|B]: pesco bianco da pluto avendo inserito una bianca da pippo
- P[A|C]: pesco bianco da pluto avendo inserito una nera da pippo

Aggiungiamo due palline da *pippo* in *pluto*: Cambia il Th della probabilitá totale:

- P[B]: pesco due bianche da $pippo = \frac{2}{3} \cdot \frac{1}{2}$
- P[A|B]: pesco due bianche da pluto avendo inserito due bianche da $pippo = \frac{4}{5}$
- P[C]: pesco una bianca e una nera da $pippo = \frac{2}{3} \cdot \frac{1}{2}$
- P[A|C]: pesco bianco da *pluto* avendo inserito una bianca e una nera da $pippo = \frac{3}{5}$
- P[D]: pesco due nere da pippo, é un evento impossibile P[D] = 0
- P[A|D]: pesco bianco da pluto avendo inserito due nere da pippo P[D] = 0
- P[E]: una nera e una bianca da $pippo = \frac{1}{3} \cdot 1$
- P[A|E]: pesco bianco da pluto avendo inserito una nera e una bianca da $pippo=\frac{3}{5}$

$$\stackrel{9.3.5}{\Rightarrow} P[A] = \sum_{n=1}^{4} P[A \cap B_n] = \sum_{n=1}^{4} P[A|B_n]P[B_n]$$

$$P[A] = P[A|B]P[B] + P[A|C]P[C] + P[A|D]P[D] + P[A|E]P[E]$$

$$= \frac{4}{5} \frac{1}{3} + \frac{3}{5} \frac{1}{3} + 0 + \frac{3}{5} \frac{1}{3} = \frac{10}{15}$$

9.3.7 Coefficiente binomiale

Il coefficiente binomiale $\binom{n}{k}$ é un numero intero non negativo che fornisce le combiazioni semplici di n elementi di classe k, definito da:

$$\binom{n}{k} = C(n;k) = \frac{n!}{k! \cdot n - k!}$$

Possiamo usarli per calcolare la probabilitá di errore su eventi ripetuti inunione con la distribuzione di bernulli 12.1.

Esempio su sistema di comunicazione binario: Prendiamo in esempio un trasmettitore di codice binario a ripetizione con $R=\frac{1}{3}\begin{cases}0=[000]\\1=[111]\end{cases}$. Calcolare la probabilitá di errore del sistema, P[E], sapendo che la probabilitá di errore sul bit é P[e]=0.01. Soluzione: Scelgo la mia regola di decisione per la decodifica dei bit, a maggioranza:

- $1 \rightarrow \mathrm{Se}$ ho la maggioranza di uno nel codice, nel nostro caso 2 su 3
- $0 \rightarrow \text{Se ho la maggioranza di zero nel codice, nel nostro caso 2 su 3}$

sbaglio il codice in trasmissione se ho sbagliato tre o due bit. Calcoliamo la probabilità del canale, $P[E] \stackrel{9.3-5}{=} P[E|0]P[0] + P[E|1]P[1]$:

• P[E|0]: Osserviamo tutti i casi possibili di trasmissione del codice di 0 = [000]

Messaggio	Errore
[000]	
[001]	
[010]	
[011]	E_1
[100]	
[101]	E_2
[110]	E_3
[111]	E_4

Applichiamo la legge della probabilitá totale (9.3.5):

$$P[E|0] = \sum_{n=1}^{4} P[E_n|0] = P[E_1|0] + P[E_2|0] + P[E_3|0] + P[E_4|0]$$

 $-P[E_1|0]=P[E_2|0]=P[E_3|0]=P[e]P[e]P[e], P[c]=1-P[e]$ corretta trasmissione, sono uguali poiché non ci interessa l'ordine con cui appare l'errore

$$-P[E_4|0] = P[e]P[e]P[e]$$

$$P[E|0] = 3P^{2}[e](1 - P[e]) + P^{3}[e] = 3P^{2}[e] - 3P^{3}[e] + P[e]$$
$$= 3P^{2}[e] - 2P^{3}[e] \cong 3P^{2}[e]$$

• P[E|1]: Usiamo la probabilitá di erore sul canale 12.1

$$P[E|1] = {3 \choose 3} P^{3}[e] + {3 \choose 2} P^{2}[e](1 - P[e]) \cong 3P^{2}[e]$$

Abbiamo quindi:

$$P[E] = P[E|0]P[0] + P[E|1]P[1] = 3P^{2}[e]P[0] + 3P^{2}[e]P[1] \cong 3P^{2}[e]$$

Caso $R = \frac{1}{5}$:

$$P[E] = \sum_{n=3}^{5} {5 \choose n} P^{n}[e] (1 - P[e])^{5-n}$$

$$= {5 \choose 3} P^{3}[e] (1 - P[e])^{2} + {5 \choose 4} P^{4}[e] (1 - P[e])^{1} + {5 \choose 5} P^{5}[e] (1 - P[e])^{0}$$

Esempio prove ripetute: Abbiamo 2 monete, una regolare (r) e una truccata (t) con le seguenti probabilitá:

$$\begin{cases} P_r[T] = \frac{1}{2} \\ P_r[C] = \frac{1}{2} \end{cases}, \begin{cases} P_t[T] = \frac{8}{10} \\ P_t[C] = \frac{2}{10} \end{cases}$$

Calcolare la probabilitá di aver scelto la moneta regolare se: scelgo a caso una monetina tra le due e la lancio 10 volte osservando che esce 5 volte croce e 5 volte testa. Soluzione: la probabilitá da calcolare é

$$P[A|B] =? \Rightarrow \begin{cases} A = \text{ho scelto la moneta regolare} \\ A^c = C = \text{scelgo la moneta truccata} \\ B = \text{esce 5 volte testa e 5 volte croce} \end{cases}$$

$$\stackrel{9.3.3}{\Rightarrow} P[A|B] = \frac{P[A]P[B|A]}{P[B]}, \ P[B|A] =? \ e \ P[B] =?$$

$$P[B] \stackrel{9.3.5}{=} P[B|A]P[A] + P[B|C]P[C]$$

$$P[B|A] = \binom{10}{5}P_r[T]^5P_r[C]^5 = \binom{10}{5}\left(\frac{1}{2}\right)^{10}$$

$$P[B|C] = \binom{10}{5}P_r[T]^5P_r[C]^5 = \binom{10}{5}\left(\frac{8}{10}\right)^5\left(\frac{2}{10}\right)^5$$

inserendo dentro bayes il risultato dovrebeb essere 0.9.

9.4 Variabili Aleatorie - Random Variables

Una variabile aleatoria X é una funzione il cui dominio é un insieme, di numeri reali, dello spazio degli esiti di un esperimento. ogni spazio degli esiti ha la sua probabilità associata.

Figure 105: Esperimento \rightarrow Intervallo \rightarrow Probabilitá dell'Intervallo

Una variabile aleatoria puó essere continua o discreta. Le variabil ialeatorie si indicano con le lettere maiuscole

9.4.1 Funzioni di Distribuzione - Distribution Functions

Considera la variabile aleatoria X e la probabilitá dell'evento $X \leq x$, per convenzione si indica con $P[X \leq x]$, che puó essere scritto come:

$$F_{X(x)} \triangleq P[X \le x] \ \forall x$$

La funzione $F_{X(x)}$ é chiamata la funzione distribuzione della variabile X, si puó notare che é funizone di x non di X.

Propietá:

- Limitata Boundeness: é limitata tra zero e uno, essendo una probabilitá.
- Monotona Monotonicity: la funzione é una funzione monotona non decrescente (puó rimanere costante) di x.

9.4.2 Funzione Densitá di Probabilitá - Probability Density Function (pdf)

La variabile aleatoria X é continua se la funzione distribuzione $F_{X(x)}$ é differenziabile:

$$f_{X(x)} = \frac{\mathrm{d}}{\mathrm{d}x} F_{X(x)} \ \forall x$$

 $f_{X(x)}$ é detta funzione di densitá di probabilitá (pdf).

Propietá:

- Non negativa
- Normalization: l'area totale della pdf é unitaria.

$$P[x_1 < X < x_2] = P[X \le x_2] - P[X \le x_1] = F_{X(x_2)} - F_{X(x_1)}$$
$$= \int_{x_1}^{x_2} f_{X(x)} dx$$

se non avessi un estremo:

$$-P[X \le x_2] = \int_{-\infty}^{x_2} -P[X \le x_1] = 1 - \int_{-\infty}^{x_1}$$

Esempio - Distribuzione Uniforme: Proviamo le propietá della funzione distribuzione $F_{X(x)}$ e la funzione densitá di probabilitá $f_{X(x)}$ per una variabile aleatoria continua:

$$f_{X(x)} = \begin{cases} 0 & x \le a \\ \frac{1}{b-a} & a < x \le b \\ 0 & x > b \end{cases}$$

Integrandola troviamo:

$$F_{X(x)} = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x \le b \\ 1 & x > b \end{cases}$$

Figure 106: Distribuzione Uniforme

9.4.3 Funzione Probabilitá di massa - Probability Mass Function (pmf)

Consideriamo il caso di una variabile aleatoria discreta X, la quale puó assumere un numero rinito o infinito di valori. La funzione distribuzione $F_{X(x)}$ si applica anche alle variabili discrete, ma non é differenziabile per come l'abbiamo definita. Definiamo la funzione probabilitá di massa $p_{X(x)}$:

$$p_{X(x)} \triangleq P[X = x]$$

é la probabilitá di un evento X=x, che consiste in tutti i possibili risultati di un esperimento i quali hanno un valore di X uguale a x.

Esempio di Bernulli Consideriamo l'esperimento probabilistico che assume uno di due valori:

- $\bullet\,$ il valore 1 con probabilitá p
- \bullet il valore 0 con probabilitá 1-p

Tale variabile aleatoria é chiamata variabile aleatoria di Bernulli:

9.4.4 - Multiple Random Variables

Consideriamo due variabili aleatorie X e Y:

• La funzione distribuzione $F_{X,Y(x,y)}$ é la probabilitá che X sia minore o uguae a un valore specifico x e che Y sia minore o uguale a un'altro valore specifico y:

$$F_{X,Y(x,y)} = P[X \le x, Y \le y]$$

• La funzione densitá di probabilitá $f_{X,Y(x,y)}$ contiene tutto quello che ci serve per fare una completa analisi della probabilitá di piú variabili aleatorie:

$$f_{X,Y(x,y)} = \frac{d^2 F_{X,Y(x,y)}}{dxdy}$$

9.4.5 Funzione Densitá di Probabilitá Condizionata - Conditional Probability Density Function

Supponendo che X e Y siano due variabili aleatorie continue con $f_{X,Y(x,y)}$, la funzione densitá di probabilitá condizionata di Y con X=x, é definita da:

$$f_{Y(y|x)} = \frac{f_{X,Y(x,y)}}{f_{X(x)}}$$

Supponendo che le due variabili siano indipendenti: allora $f_{Y(y|x)}$ si riduce alla densitá marginale $f_{Y(y)}$ e la funzione densitá di probabilitá diventa $f_{X(x)}f_{Y(y)}$, se cosí fosse le due variabili si dicono statisticamente indipendenti.

9.4.6 Somma di Variabili Aleatorie Indipendenti

Consideriamo due variabili aleatorie X e Y statisticamente indipendenti e continue con funzioni di densitá di probabilitá $f_{X(x)}$ e $f_{Y(y)}$ si definisce Z=X+Y la cui pdf $f_{Z(z)}$ é:

$$f_{Z(z)} = \int_{-\infty}^{\infty} f_{X(x)} f_{Y(z-y)} dx = f_{X(x)} \otimes f_{Y(y)}$$

La somma di due variabili aleatoria indipendeti e continue é la convoluzione delle funzioni di densitá di probabilitá. Dimostrazione: (To DO: sul libro)

Figure 107: Somma di Variabili Aleatorie

9.4.7 Valore medio delle Variabili Aleatorie - Mean Value of Random Variables (Expectation)

L'expectation o il valore medio di ua variabile aleatoria continua X é formalemnte definito da:

• Caso Continuo:

$$\mu_X = \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_{X(x)} dx$$

• Caso Discreto:

$$\mathbb{E}[X] = \sum_{x} x p_{X(x)}$$

é la media pesata delle variabili aleatorie, puó anche essere un valore che non gli appartiene.

Propietá

- Linearitá Linearity: $\mathbb{E}[Z] = \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$.
- Indipendenza Statistica Statistical Indipendence: $\mathbb{E}[Z] = \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ se X e Y sono statisticamente indipendenti. Dimostrazione:

$$\mathbb{E}[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y(x,y)} dx dy \stackrel{Indipendenza}{=} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X(x)} f_{Y(y)} dx dy$$
$$= E[X]E[Y]$$

• Teorema del valore medio dell'expectation:

$$\mathbb{E}[g_{(x)}] \stackrel{Y=g_{(x)}}{=} \mathbb{E}[Y] = \int_{-\infty}^{\infty} y f_{Y(y)} dy \triangleq \int_{-\infty}^{\infty} g_{(x)} f_{X(x)} dx$$

Esempi:

1. Calcolare il valore medio (μ_X) di:

$$\mu_X = \int_{-\infty}^{\infty} x f_{X(x)} dx = \int_a^b \frac{x}{b-a} dx = \left. \frac{x^2}{2(b-a)} \right|_a^b$$
$$= \frac{b^2 - a^2}{2(b-a)} = \frac{b+a}{2}$$

2. Calcoliamo il valore quadratico medio della distribuzione unitaria ($\mathbb{E}[x^2]$):

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f_{X(x)} dx = \int_a^b \frac{x^2}{b-a} dx = \left. \frac{x^3}{3(b-a)} \right|_a^b$$
$$= \frac{b^3 - a^3}{3(b-a)} = \frac{b^2 + ab + a^2}{3}$$

9.4.8 Varianza - Variance

La varianza σ_x^2 di una variabile aleatoria X é definita:

$$var[X] = \mathbb{E}[(X - \mu_X)^2] = \int_{-\infty}^{\infty} (X - \mu_X)^2 f_{X(x)} dx$$

$$var[X] = \sigma_x^2 \stackrel{9.4.7}{=} \mathbb{E}[X^2 - 2\mu_X X + \mu_X^2] = \mathbb{E}[X^2] - 2\mu_X \mathbb{E}[X] + \mu_X^2$$
$$= \mathbb{E}[X^2] - \mu_X^2$$

 $\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_{X(x)} dx$ mentre $\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f_{X(x)} dx$, l'expectation é il peso che diamo alla funzione $f_{X(x)}$. Misura la "randomicitá" di una variabile aleatoria, meno é randomica piú sono vicino al mio valor medio.

$$P[|X - \mu_X| \ge \mathcal{E}] \le \frac{\sigma_X^2}{\mathcal{E}^2}$$

Deviazione Standard: $\sigma_X = \sqrt[2]{\sigma_X^2}$ si dice Deviazione Standard

9.4.9 Covarianza - Covariance

Siano X e Y due variabili aleatorie, si definisce covarianza:

$$cov[XY] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
$$= \mathbb{E}[XY] - \mu_X \mu_Y$$

Il coefficiente di correlazione di X e Y é:

$$\rho_{(X,Y)} = \frac{cov[XY]}{\sigma_X \sigma_Y}$$

misura la somiglianza tra X e Y. Le due variabili si dicono:

- \bullet Incorrelate: se la cov[XY]=0, ció non implica l'indipendenza delle variabili.
- Ortogonali: se $\mathbb{E}[XY] = 0$

9.4.10 Distribuzione Gaussiana

Figure 108: Gaussiana

Una variabile aleatoria X é detta Gaussiana se la funzione distribuzione di probabilitá pdf, ha la forma:

$$f_{X(x)} = \frac{1}{\sqrt{2\pi}\sigma_X} e^{\left[-\frac{(x-\mu_X)^2}{2\sigma_X^2}\right]}$$

Propietá:

- Definita unicamente da valore medio di X e la varianza $\mathcal{N}(\mu_X, \sigma_X^2)$.
- La propietá di Gaussianitá é preservata dalle trasformazioni lineari. $X \sim \mathcal{N}(\mu_X, \sigma_X^2) : Y = \alpha X + \beta$, calcoliamo come variano valor medio e varianza:
 - Valor medio:

$$\mathbb{E}[Y] = \mu_Y = \mathbb{E}[\alpha X + \beta] \stackrel{9.4.7}{=} \alpha \mathbb{E}[X] + \beta$$

- Varianza:

$$\begin{split} \sigma_Y^2 &= \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 = \mathbb{E}[(\alpha X + \beta)^2] - (\alpha \mathbb{E}[X] + \beta)^2 \\ &= \mathbb{E}[\alpha^2 X^2 + \beta^2 + 2\alpha\beta X] - (\alpha^2 \mathbb{E}[X]^2 + \beta^2 + 2\alpha\beta \mathbb{E}[X]) \\ &= \alpha^2 \mathbb{E}[X^2] + \beta^2 + 2\alpha\beta \mathbb{E}[X] - \alpha^2 \mathbb{E}[X]^2 - \beta^2 - 2\alpha\beta \mathbb{E}[X] \\ &= \alpha^2 \mathbb{E}[X^2] - \alpha^2 \mathbb{E}[X]^2 = \alpha^2 (\mathbb{E}[X^2] - \mathbb{E}[X]^2) \\ &= \alpha^2 (\mathbb{E}[X^2] - \mu_X^2) = \alpha^2 \sigma_X^2 \end{split}$$

la costante β non influisce la varianza.

• La somma Z=X+Y di variabili aleatorie Gaussiane indipendenti é anche essa na variabile aleatoria Gaussiana, con:

$$- \mathbb{E}[Z] = \mathbb{E}[X] + \mathbb{E}[Y]$$
$$- var[Z] = var[X] + var[Y]$$

Distribuzione Gaussiana Standard Si dice forma Gaussiana Standard se: $\mathbb{E}[X] = 0$ e var[X] = 1, $\mathcal{N}(0, 1)$:

$$f_{X(x)} = \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{x^2}{2}\right)}$$

$$F_{X(x)} = P[X \le x] = \int_{-\infty}^{\infty} f_{X(x)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\left(-\frac{t^2}{2}dt\right)}$$

Figure 109: Distribuzione Gaussiana Standard

Osservazioni: la varianza permette di modificare la spanciatura della gaussiana, mentre il valor medio shifta sull'asse x la gaussiana.

Posso utilizzare la forma standard della gaussiana e le trasformazioni lineari per rappresentare qualsiasi altro tipo di gaussiana:

$$Y \sim \mathcal{N}(\mu_{\nu}, \sigma_{V}^{2}) \rightarrow Y = \sigma_{V}X + \mu_{\nu}$$

Calcoliamo μ_Y e σ_Y^2 :

- $\mathbb{E}[Y] = \mu_Y$
- $\sigma_V^2 = \sigma_V^2 \sigma_V^2$

9.4.11 Funzione $Q_{(x)}$

Per calacolare la funzione distribuzione di probabilitá $(F_{X(x)})$ non calcoliamo l'integrale della funzione distribuzione di probabilitá, ma utilizziamo la funzione $Q_{(x)}$ cosí definita:

$$Q_{(x)} = 1 - F_{X(x)} = P[X \ge x]$$

formalmente é cosi definita:

$$Q_{(x)} = 1 - F_{X(x)} = 1 - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\left(-\frac{t^2}{2}dt\right)} = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{\left(-\frac{t^2}{2}dt\right)}$$

é l'area sottesa dalla funzione di distribuzione Gaussiana da x all'infinito

Figure 110: $Q_{(x)}$

Propietá:

• $Q_{(x)} = 1 - Q_{(-x)}$

Figure 111: $Q_{(x)}, 1 - Q_{(-x)}$

- $Q_{(\infty)} = 0$
- $Q_{(-\infty)} = 1$
- $Q_{(0)} = \frac{1}{2}$

utilizziamo la tavola della funzione ${\cal Q}$

Figure 112: Grafico $Q_{(x)}$

9.4.12 Teorema del Limite Centrale - Central Limit Theorem

Siano X_1, \ldots, X_n una sequenza di variabili aleatorie indipendenti e identicamente distribuite con valore medio μ e varianza σ :

$$Y_n = \frac{1}{\sigma\sqrt{n}} \left(\sum_{i=1}^n X_i - n\mu \right)$$

al tendere di n all'infinito, Y_n converge alla variabile aleatoria Gaussiana standard:

$$F_{Y(y)} = P[Y \le y] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{\left(-\frac{x^2}{2}dx\right)}$$

9.4.13 Calcolo probabilitá di errore di un sistema

Dato un sistema binario di comunicazione $(S \in \{0,1\})$, dopo il campionamento ho: $Y = \sqrt{p}S + n$. p é la potenza e n é il rumore gaussiano $n \sim \mathcal{N}(0, \sigma_n^2)$. Voglio calcolarne la probabilitá di errore:

$$P_e \stackrel{9.3.5}{=} P_r(\hat{S} = 1|S = -1)P(S = -1) + P_r(\hat{S} = -1|S = 1)P(S = 1)$$

analizziamo il caso generico in cui P(S=1)=q, P(S=-1)=1-q, nel caso equiprobabile sarebbero $\frac{1}{2}$: dobbiamo calcolare $P_r(\hat{S}=1|S=-1)$ e $P_r(\hat{S}=-1|S=1)$

• $P_r(\hat{S} = 1|S = -1)$:

$$Y \bigg|_{S=-1} = -\sqrt{p} + n \sim \mathcal{N}(-\sqrt{p}, \sigma_Y = \sigma_n^2)$$

al rumore viene solo aggiunta una costante, quindi rimane tale e con distribuzione:

Figure 113: $P[Y \ge 0|S = -1]$

posso basare la decisione di errore se ricevo qualcosa di positivo quando il simbolo inviato é negativo, $P[Y \ge 0|S=-1]$.

Calcolo errore di un sistema: Posso generalizzare la mia soglia di decisione su di un valore λ

Figure 114: $P[Y \ge \lambda | S = -1]$

di conseguenza la probabilitá viene descritta come:

$$P_r[\hat{S}=1|S=-1]=P_r[Y>\lambda|S=-1]=P_r[-\sqrt{p}+n>\lambda]=P_r[n>\lambda+\sqrt{p}]$$

posso calcolare la $P_r[-\sqrt{p}+n>\lambda]$ oppure $P_r[n>\lambda+\sqrt{p}],$ calcoliamo

$$P_r[n > \lambda + \sqrt{p}]$$
:

$$\begin{split} Q_{(x)} &= \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt \\ &= \int_{\lambda + \sqrt{p}}^{\infty} f_{N(n)} dn \text{ senza sapere se \'e gaussiana o meno} \\ &\stackrel{\text{\'e Gaussiana}}{=} \int_{\lambda + \sqrt{p}}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{n}} e^{-\frac{n^{2}}{2\sigma_{n}^{2}}} dn \stackrel{t = \frac{n}{\sigma_{n}}}{=} \int_{\frac{\lambda + \sqrt{p}}{\sigma_{n}}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt \\ &= Q_{\left(\frac{\lambda + \sqrt{p}}{\sigma_{n}}\right)} = P_{r}[n > \lambda + \sqrt{p}] \end{split}$$

generalizzando la potenza del segnale ottengo l'errore:

$$Q_{\left(\frac{\lambda - \mu_Y}{\sigma_Y}\right)} = P_r[n > \lambda + \mu_Y]$$

- Calcoliamo $P_r(\hat{S}=-1|S=1)$ applicando la formula dell'errore sopra trovata:

$$S = 1 \Rightarrow Y = \sqrt{p} + n \sim \mathcal{N}(\sqrt{p}, \sigma_n^2)$$

calcolando la probabilitá:

$$P_r[\hat{S} = -1|S = 1] = 1 - P_r[\hat{S} = 1|S = -1] = 1 - Q_{\left(\frac{\lambda - \mu_Y}{\sigma_Y}\right)}$$

$$= 1 - Q_{\left(\frac{\lambda - \sqrt{p}}{\sigma_n}\right)}$$

sottraggo a 1 la probabilitá per la definizione della $Q_{(x)}$ é l'integrale della zona a dx e a me interessa l'area a sinistra:

Figure 115: $P[\hat{S} = -1|S = 1]$

La probabilitá totale di errore del sistema é:

$$P_{e} = Q_{\left(\frac{\lambda + \sqrt{p}}{\sigma_{n}}\right)} P[S = -1] + \left(1 - Q_{\left(\frac{\lambda - \sqrt{p}}{\sigma_{n}}\right)}\right) P[S = 1]$$

$$= Q_{\left(\frac{\lambda + \sqrt{p}}{\sigma_{n}}\right)} (1 - q) + \left(1 - Q_{\left(\frac{\lambda - \sqrt{p}}{\sigma_{n}}\right)}\right) q = g_{(\lambda)}$$

$$(1)$$

se volessi calcolare il λ ottimo derivo la funzione e la pongo uguale a zero: $\frac{\mathrm{d}}{\mathrm{d}\lambda}g_{(\lambda)}=0$

Caso con simboli equiprobabili: $q = \frac{1}{2}, \ \lambda = 0$

$$P_{e} = \frac{1}{2} Q_{\left(\frac{\sqrt{p}}{\sigma_{n}}\right)} + \frac{1}{2} \left(1 - Q_{\left(\frac{\sqrt{p}}{\sigma_{n}}\right)}\right)$$

$$\stackrel{Q_{x}=1-Q_{(-x)}}{=} Q_{\left(\frac{\sqrt{p}}{\sigma_{n}}\right)} = Q_{\left(\sqrt{SNR}\right)}$$

si definisce $SNR=Signal\ To\ Noise\ Ratio=\frac{\mu^2}{\sigma_n^2}$ é il rapporto tra potenza e varianza, in generale caloclo:

$$Z = \frac{Y}{\sqrt{p}} = S + \frac{n}{\sqrt{p}} \sim \mathcal{N}(\pm 1, \frac{\sigma_n^2}{p})$$

da cui calcolandone la probabilitá di errore:

$$P_e = Q_{\left(\frac{1}{\sigma_n}\right)} = Q_{\left(\sqrt{\frac{p}{\sigma_n^2}}\right)}$$

Esempio: Ho bisogno di una $P_e=10^{-3},$ quale rapporto SNR devo utilizzare?

$$Q_{\sqrt{SNR}} = 10^{-3}$$

Controllando la tabella della funzione $Q_{(x)}$:

$$\sqrt{SNR} = 3 \Rightarrow SNR = 9$$

Passando alla scala in decibel:

$$SNR \Big|_{db} = 10 \log_{10}(9) = 9.5db$$

Caso con rumore complesso: $Y = \sqrt{p}S + n$:

$$n \sim \mathcal{N}_c(0, \sigma_n^2) \to n = n_{Re} + jN_{Im}$$

 $n_{Re}, n_{Im} \sim \mathcal{N}_c(0, \frac{\sigma_n^2}{2})$

Verifichiamo che la varianza delle singole componenti reali e immaginarie sia giusta:

$$var[n] = \mathbb{E}[|n|^2] - \mu_n^2 = var[n_{Re}] + var[n_{Im}] = \frac{\sigma_n^2}{2} + \frac{\sigma_n^2}{2} = \sigma_n^2$$

il procedimento é uguale escludiamo la parte immaginaria del rumore e prendiamo solo quella reale (cambia solo il valore della varianza), poiché il simbolo ha solo parti reali:

$$Y \in \mathbb{C} \begin{cases} Re\{Y\} = Y_{Re} = \sqrt{p}S_{Re} + n_{Re} \\ Im\{Y\} = Y_{Im} = n_{Im} \end{cases}$$

e baso la mia decisione del simbolo ricevuto solo con la parte reale:

$$\hat{S} = \begin{cases} 1 & Re\{Y\} \ge \lambda \\ -1 & Re\{Y\} < \lambda \end{cases} = \begin{cases} 1 & Re\{Y\} \ge 0 \\ -1 & Re\{Y\} < 0 \end{cases}$$

calcoliamo la probabilitá di errore:

$$Z_r = \frac{Y_{Re}}{\sqrt{p}} = S + \frac{n}{\sqrt{p}} \sim \mathcal{N}(0, \sigma^2) : \ \sigma^2 = \frac{\sigma_n^2}{2p}$$

$$P_e = Q\left(\frac{1}{\sigma}\right) = Q\left(\sqrt{\frac{2p}{\sigma_n^2}}\right) = Q_{\sqrt{2SNR}}$$

se $P_e = 10^{-3}$:

$$SNR = 4, 5 \stackrel{db}{\Rightarrow} SNR_{db} = 6,53db$$

se
$$P_e = 10^{-5}$$
:

$$SNR = 8 \stackrel{db}{\Rightarrow} SNR_{db} = 9,03db$$

Nel caso del rumore complesso ho solo metá del distudbo dovuto ad esso poiché il simbolo non dipende dalla parte immaginaria.

Caso con rumore e simboli complessi: $Y = \sqrt{p}S + n \sim \mathcal{N}(0, \sigma_n^2)$:

$$Y \in \mathbb{C} \begin{cases} Re\{Y\} = Y_{Re} = \sqrt{p}S_{Re} + n_{Re} \\ Im\{Y\} = Y_{Im} = \sqrt{p}S_{Im} + n_{Im} \end{cases}$$

Figure 116: Simboli complessi

basiamo la decisione del simbolo ricevuto rispetto al quadrante in cui cade, la probabiltiá di errore del sistema P_e é costituita dalla probabiltiá di scegliere un quadrante del simbolo diverso da quello inviato:

$$P_e = \sum_{k=1}^{4} P_r[\hat{S} \neq S_k | S_k] P[S_k]$$

si noti come la probabilitá che il simbolo ricada in un quadrante diverso da quello inviato é identica per tutti i casi, quindi basta calcolarne solo una:

$$P_e = P_r[\hat{S} \neq S_1 | S = S_1] \sum_{k=1}^{4} P[S_k] = P_r[\hat{S} \neq S_1 | S = S_1]$$

la somma delle probabilitá di trasmissione dei simboli é 1, diventa praticamente la probabilitá di aver trasmesso un simbolo e quello lo faccio sempre. Calcoliamo $P_r[\hat{S} \neq S_1 | S = S_1]$:

$$P_r[\hat{S} \neq S_1 | S = S_1] \stackrel{P[corr.ricezione]}{=} 1 - P_r[\hat{S} = S_1 | S = S_1] = 1 - P_r[Y_{Re}, Y_{Im} \in I^o]$$

la parte reale e immaginaria sono tra loro indipendenti e gaussiane data la composizione del rumore n, posso calcolare:

$$P_r[Y_{Re}, Y_{Im} \in I^o] = P_r[Y_{Re} > 0]P_r[Y_{Im} > 0]$$

dall'esercizio sopra con rumore e simboli reali sappiamo che la probabilitá di corretta ricezione é $1-Q_{(\sqrt{2SNR})}$:

$$P_r[Y_{Re}, Y_{Im} \in I^o] = P_r[Y_{Re} > 0]P_r[Y_{Im} > 0] = \left(1 - Q_{(\sqrt{2SNR})}\right)^2$$

possiamo calcolare adesso la probabilitá del sistema:

$$\begin{split} P_e &= 1 - \left(1 - Q_{(\sqrt{2SNR})}\right)^2 = 1 - \left(1 - 2Q_{(\sqrt{2SNR})} + Q_{(\sqrt{2SNR})}^2\right)^2 \\ &= 2Q_{(\sqrt{2SNR})} - Q_{(\sqrt{2SNR})}^2 \simeq 2Q_{(\sqrt{2SNR})} \end{split}$$

il risultato é l'applicazione del secondo assioma in caso di eventi non disgiunti $(2)\colon$

$$\underbrace{P_e}_{P[A \cap B]} = \underbrace{2Q_{(\sqrt{2SNR})}}_{P[A] + P[B]} - \underbrace{Q_{(\sqrt{2SNR})}^2}_{-P[A \cup B]}$$

10 Processi Stocastici

I processi stocastici sono segnali continui ma aleatori: é un set di variabili aleatorie indicizzate nel tempo.

Propietá:

- Sono funzione del tempo.
- Sono funzioni aleatorie, non possiamo predire, prima di condurre l'esperimento, l'andamento del segnale ma possiamo analizzarne un andamento probabilistico tramite degli indici come: potenza media, funzioni di correlazione e spettro dell'energia

al campionamento t_k ho un set di variabili aleatorie. L'aletorietá puó essere derivante da uno o piú fattori, ad esempio in una funzione cosinusoidale $Acos(2\pi f_c t + \Theta)$ possono essere aleatorie ampiezza, frequenza e fase.

10.1 Valore medio

Consideriamo un processo stocastico reale $X_{(t)}$, il valore medio é l'expectation della variabile aleatoria ottenuta campionando il processo al tempo t:

$$\mu_{X(t)} = \mathbb{E}[X_{(t)}] = \int_{-\infty}^{\infty} x f_{X_{(t)}(t)} dt$$

ad ogni istante di tempo t ho una nuova variabile aleatoria per questo é funzione del tempo.

10.2 Autocorrelazione

Consideriamo un processo stocastico reale $X_{(t)}$ e due variabili aleatorie associate $X_{(t_1)}$ e $X_{(t_2)}$. L'autocorrelazione é l'expectation del prodotto delle due variabili aleatorie:

$$R_{XX(t_1,t_2)} = \mathbb{E}[X_{t_1}X_{t_2}] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_{X_{(t_1)},X_{(t_2)}(t_1,t_2)} dx_1 dx_2$$

10.2.1 Propietá della autocorrelazione R_x

- Paritá: $R_{X(\tau)} = R_{X(-\tau)}$
- $R_{X(0)} \ge \underbrace{\left|R_{X(\tau)}\right|}_{Val.\ Massimo}$: Cosa rappresenta?

$$R_{X(\tau)} = \mathbb{E}[X_{(t_1)}X_{(t_2)}] = \mathbb{E}[X_{(t)}X_{(t-\tau)}]\Big|_{\tau=0}$$

$$R_{X(0)} = \mathbb{E}[|X|^2] = \int_{-\infty}^{\infty} x^2 f_{X_{(t)}(t)} dx$$

coincide con la potenza del processo SSL.

10.2.2 Sigificato fisico dell'autocorrelazione

La funzione di autocorrelazione ci fornisce la possibilità di descrivere l'indipendenza di deu variabili aleatorie ottenute dal campionamento del processo stocastico $X_{(t)}$ a tempi divesti. Più il processo stocastico $X_{(t)}$ cambia nel tempo, più rapidamente la funzione di autocorrelazione scenderà dal suo massimo $R_{XX(0)}$

10.3 Sitemi Stazionari in Senso Lato (SSL)

Un processo stocastico $X_{(t)}$ si dice Stazionario in Senso Lato (SSL) se:

• Il valore medio del processo $X_{(t)}$ é costante $\forall t$:

$$\mu_{X(t)} = \mathbb{E}[X_{(t)}] \stackrel{SSL}{\Rightarrow} \mu_X$$

• La funzione di autocorrelazione del processo $X_{(t)}$ dipende solamente dalla differenza tra la differenza tra due tempi qualsiasi al quale il processo é campionato:

$$R_{XX(t_1,t_2)} = \mathbb{E}[X_{(t_1)}X_{(t_2)}] \stackrel{SSL}{\Rightarrow} R_{X(t_1-t_2)} = R_{X(\tau)}$$

Se il processo dipende solo da τ posso farne la TCF e analizzarne la densitá spettrale.

10.3.1 Trasmissione di un SSL in un sistema LTI-Filter

Supponiamo di avere un processo stocastico $X_{(t)}$ in ingresso ad un sistema LTI-Filter di risposta $h_{(t)}$, producendo un nuvo processo stocastico $Y_{(t)}$

$$X_{(t)}$$
 $LTI: h_{(t)}$ $Y_{(t)}$

l'uscita $Y_{(t)}$ si calcola con la convoluzione:

$$Y_{(t)} = X_{(t)} \otimes h_{(t)} = \int_{-\infty}^{\infty} X_{(\alpha)} h_{(t-\alpha)} d\alpha$$

Calcolaimone gli indici:

• Valore medio:

$$\mu_{Y} = \mathbb{E}[Y_{(t)}] = \mathbb{E}[X_{(t)} \otimes h_{(t)}] = \mathbb{E}\left[\int_{-\infty}^{\infty} X_{(\alpha)} h_{(t-\alpha)} d\alpha\right]$$

$$\stackrel{9.4.7}{=} \int_{-\infty}^{\infty} \mathbb{E}[X_{(\alpha)}] h_{(t-\alpha)} d\alpha = \int_{-\infty}^{\infty} \mu_{X_{(\alpha)}} h_{(t-\alpha)} d\alpha$$

$$= \mu_{X_{(t)}} \otimes h_{(t)}$$

• Autocorrelazione:

$$\begin{split} R_{YY(t_1,t_2)} &= \mathbb{E}[Y_{(t_1)}Y_{(t_2)}] = \mathbb{E}\left[\int_{-\infty}^{\infty} X_{(\alpha_1)}h_{(t-\alpha_1)}d\alpha_1 \int_{-\infty}^{\infty} X_{(\alpha_2)}h_{(t-\alpha_2)}d\alpha_2\right] \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{E}[X_{(\alpha_1)}X_{(\alpha_2)}]h_{(t-\alpha_1)}h_{(t-\alpha_2)}d\alpha_1d\alpha_2 \\ &\stackrel{C.Var.}{=} R_{X(t_1,t_2)} \otimes h_{(t_1)} \otimes h_{(t_2)} \end{split}$$

Supponiamo adesso che il processo $X_{(t)}$ sia SSL, verifchiamo se anche $Y_{(t)}$ é SSL:

Valore Medio:

$$\mu_{Y} = \mathbb{E}[Y_{(t)}] = \int_{-\infty}^{\infty} \mathbb{E}[X_{(\alpha)}] h_{(t-\alpha)} d\alpha = \int_{-\infty}^{\infty} \mu_{X_{(\alpha)}} h_{(t-\alpha)} d\alpha$$
$$= \mu_{X_{(\alpha)}} \int_{-\infty}^{\infty} h_{(t-\alpha)} d\alpha \stackrel{\beta = t - \alpha}{=} \mu_{X_{(\alpha)}} \int_{-\infty}^{\infty} h_{(\beta)} d\beta$$
$$= \mu_{X} H_{(0)}$$

si ${\cal H}_{(0)}$ é proprio il grande ritorno di una TCF, viene fuori perché se calcoliamo la TCF in 0

$$\int_{-\infty}^{\infty} h_{(\beta)} e^{-j2\pi f \beta} d\beta \bigg|_{f=0} = \int_{-\infty}^{\infty} h_{(\beta)} d\beta = H_{(0)}$$

il quale coincide con il valore medio.

Autocorrelazione:

$$R_{Y(t_1,t_2)} = R_{X(\tau)} \otimes h_{(\tau)} \otimes h_{(-\tau)}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_{(\tau_1)} h_{(\tau_2)} R_{XX(\tau+\tau_1-\tau_2)} d\tau_1 d\tau_2$$

10.3.2 Densitá di potenza spettrale

Supponiamo di voler caratterizzare l'output di $Y_{(t)}$ usando il dominio della frequenza:

$$\mathbb{E}[Y_{(t)}^2] = \int_{-\infty}^{\infty} \left| H_{(f)} \right|^2 S_{XX(f)} df$$

dove $S_{XX(f)}$ é la Densitá di potenza spettrale:

$$S_{XX(f)} = \int_{-\infty}^{\infty} R_{XX(\tau)} e^{-j2\pi f \tau} d\tau$$

ma perché menziona la potenza?

$$P_x = \mathbb{E}[X^2] = R_{X(0)} \stackrel{ATCF[S_{X(f)}]}{=} \int_{-\infty}^{\infty} S_{X(f)} e^{j2\pi f \tau} df \bigg|_{\tau=0}$$
$$= \int_{-\infty}^{\infty} S_{X(f)} df$$

trovo la relazione per l'uscita $Y_{(t)}$:

$$X_{(t)}$$
 $S_{X(t)}$
 $ITI: h_{(t)}$
 $S_{Y(t)}$

$$S_{Y(f)} = TCF[R_X] = TCF[R_{X(\tau)} \otimes h_{(\tau)} \otimes h_{(-\tau)}] \stackrel{6.4.8}{=} S_{X(f)}H_{(f)}H_{(-f)}$$

$$\stackrel{6.3.1}{=} S_{X(f)}H_{(f)}H_{(f)}^* = S_{X(f)}|H_{(f)}|^2$$

trovo che la denitá spettrale di potenza di $Y_{(t)}$ é la densitá spettrale di potenza di $X_{(t)}$ per il modulo quadro della risposta del filtro e la sua misura é in watt per hertz (W/Hz).

10.4 Processo Gaussiano

Un processo $Y_{(t)}$ é detto processo Gaussiano se la variabile aleatoria Y é una variabile aleatoria a distribuzione Gaussiana:

$$f_{Y(y)} = \frac{1}{\sqrt{2\pi}\sigma}e^{\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)}$$

Propietá:

- Il processo stocastico creato da un fenomeno fisico solitamente é possibile ricondurlo a un modella Gaussiano.
- L'uso di un modello Gaussiano per un fenomeno fisico é spesso confermato dagli esperimenti.
- Il teorema del limite centrale (9.4.12) fornisce una giustificazione matematica per la distribuzione Gaussiana.

10.4.1 Rumore Bianco

É una sorgente di rumore idealizzata in modo tale da rendere lo spettro di densitá di potenza costante $(\frac{N_0}{2})$, cioé indipendente dalla frequenza a cui operiamo. L'aggettivo "Bianco" deriva dall'ottica: un segnale di luce bianca contine in ugual maniera tutte le frequenze all'interno dello spettro visivo. Ne possiamo dare una definizione approssimativa:

Il rumore bianco, identificato da $W_{(t)}$ é un processo stazionario con densitá di potenza spettrale $S_{W(f)}$ con valore costante in tutto l'intervallo delle frequenze:

$$S_{WW(f)} = \frac{N_0}{2} \ \forall f$$

Propietá:

- Dato che $R_{W(\tau)}=0 \ \forall \tau \neq 0$ ne segue che due differenti campionamenti del rumore bianco sono completamente incorrelati tra loro
- Se il rumore bianco é Gaussiano allore due campioni sono statisticamente indipendenti.
- Finché la banda di un processo del rumore in ingresso al sistema é ampiamente maggiore della banda del sistema stesso, allora possiamo modellare il rumore come un processo a rumore bianco.

10.4.2 Filtro passa basso ideale per rumore bianco

Supponiamo di avere un ricevitore:

$$\begin{array}{c|c}
\hline
r_{(t)} & x_{(t)} \\
\hline
RX & LP_{(B)} \\
\hline
\end{array}$$

e un rumore additivo:

inviamo un segnale $s_{(t)}$ con banda B:

il ricevitore si occupa adesso del filtraggio con un filtro passa basso di banda $B(LP_{(B)})$, ritrovando il segnale originale ma con il rumore additivo:

Figure 117: $s_{(t)}, n_{(t)}, LP - filter$

in uscita dal filtro ho $x_{(t)}=s_{(t)}+n_{(t)}\otimes h_{(t)}$ con la densitá spettrale del rumore:

$$S_{W(f)} = S_{n(f)} |H_{(f)}|^2 = S_{n(f)}$$

Per ricostruire il segnale devo campionare con una $f_s=\frac{1}{T_s}=2B~(kT)$:

$$x_{[k]} = x_{(t=kT)} = s_{[k]} + w_{[k]}$$

Cosa succede al rumore? Nel dominio della frequenza lo spettro di rumore filtrato, $w_{[k]}$, é una somma di delta di dirac ho quindi $S_{w(f)} = rect\left(\frac{f}{2B}\right)$ trasformadola nel dominio del tempo, cio;e calcolando la sua autocorrelazione per $ATCF[S_{w(f)}] = R_{w(\tau)}$ ottengo $R_{w(\tau)} = 2B\tau sinc(2B\tau)$, campionandola conrispetto alla banda del filtro B in $\frac{k}{2B}$ la sinc é sempre 0 rendendo le variabili del rumore Gaussiano statisticamente indipendenti a valore medio nullo e varianza N_0B .

$$R_{w(\tau)}\Big|_{\tau=kT} = \mathbb{E}[w_{(t)}w_{(t-\tau)}]\Big|_{\tau=kT} \stackrel{T=\frac{1}{2B}}{=} 0$$

per questo il modello $Y=S+n \sim \mathcal{N}(0,\sigma^2)$ é giusto per approssimare il rumore. Calcoliamone il valor medio e varianza:

$$\begin{split} w_{(t)} \sim \mathcal{N}(0, \sigma_w^2) \\ \sigma_w^2 = \mathbb{E}[X^2] - \mu_w = \mathbb{E}[X^2] = R_{w(0)} = N_0 B \end{split}$$

Ne segue che piú la banda é elevata piú rumore entra nel sistema.

11 Sistemi di Comunicazione

Un sistema di comunicazione numerico puó essere approssimato a

Dove all'interno del sistema sono racchiusi il Trasmettitore (Tx), il canale di trasmissione (c) e il Ricevitore (Rx). il sistema prende in ingresso dei bit, o un segnale analogico opportunamente nuemrizzato, e li trasmette su di un canale numerico inviandoli ad un ricevitore. Analizziamo la parte di trasmissione:

Figure 118: Esempio sistema di trasmettitore

• CdC: Codifica di Canale, si occupa di aggiungere ridondanza ai bit in ingresso per proteggerli da eventuali errori del canale di trasmissione ho di conseguenza che k < n, puó essere preceduto da un eventuale codifica di sorgente.

$$\begin{array}{c|c}
 & \{b_n\} \\
\hline
 & k, R_b
\end{array}$$
Codifica di Canale
$$\begin{array}{c|c}
 & \{d_n\} \\
\hline
 & n, R_d
\end{array}$$

 $R_b=\frac{1}{T_b}$ é il Bit Rate a cui i bit sono generati in ingresso mentre, $R_d=\frac{1}{T_d}$ é il Bit Rate di uscita. Volendo trvare la relazione tra ingresso e uscita:

$$kT_b = nT_d \Rightarrow \frac{R_b}{R_d} = \frac{k}{n}$$

il quale é compreso tra $0 < \frac{R_b}{R_d} \le 1$ se cosí non fosse non introdurrei ridondanza, il rate in ingresso deve essere inferiore a quello di uscita o non potrei introdurre bit aggiuntivi.

• Map: Mappatore (M), trasforma una sequenza di bit di codice $\{d_n\}$ in una sequenza di simboli $\{a_i\}$ appartenenti ad un alfabeto A costituito da M diversi simboli, dove M é tipicamente una potenza del 2. Ponendo $M=2^q$ il mappatore associa un simbolo di modulazione a ciascun blocco di Q bit di canale.

$$\begin{array}{c|c} & \{d_n\} & \\ \hline & R_d & \end{array} \quad \begin{array}{c} \{a_i\} & \\ \hline & f_s & \end{array}$$

Ad esempio una mappa quaternaria:

$\{d_n\}$	$\{a_i\}$
00	-3
01	-1
10	1
11	3

il periodo T tra due simboli adiacenti viene detto "Intervallo di Segnalazione". Se $M=2^q$ allora:

$$T = qT_d = T_d log_2(M)$$

la velocitá di trasmissione dei simboli $f_s=\frac{1}{T}$ é legata al rate R_d da:

$$f_s = \frac{R_d}{Q} = \frac{R_d}{\log_2(M)}$$

devo caricare velocemente i simboli in ingresso al mappatore per poter completare la sequenza da mappare. Si nota anhe come all'aumentare della cardinalitá M la velocitá diminuisca, la sua misura é fatta in $BAUD=\frac{simboli}{sec}$

• Mod: Modulatore converte la sequenza dei simboli $\{a_i\}$ in un segnale analogico $s_{T(t)}$ in modo tale da poter essere trasmesso sul canale di comunicazione. Puó essere una modulazione BB o BP, in ogni caso la banda impiegata sará:

$$B_T \simeq \frac{1}{T}$$

volendolo esprimere in relazione ai vari bit rate:

$$B_T = \frac{1}{T} \stackrel{T = qT_d}{=} \frac{1}{qT_d} = \frac{1}{T_d log_2(M)} = \frac{R_b}{\frac{n}{k} log_2(M)}$$

osserviamo come aumentando la cardinalitá M della mappa riduco la banda, ció é molto utile per poter occupare uno spettro limitato ma ridurla troppo comporta un aumento dell'errore. Invece un rate del codice $\frac{n}{k}$ basso diminuisce le possibilitá di errore ma aumenta la banda occupata, si tendono a usare codici che abbiano un rate vicino all'1.

Analizziamo la parte del ricevitore:

Figure 119: Esempio sistema ricevitore

Il segnale ricevuto $r_{(t)}$ viene demodulato dal demodulatore numerico, il quale ha il compito di fornire una stima dei simboli $\{\hat{a}_i\}$ trasmessi. In seguito vengono demappati in modo da ottenere una stima di $\{\hat{d}_n\}$ dei bit di codice. Infine passano nel decodificatore di canale la quale uscita fornisce ua stima dei $\{\hat{b}_n\}$ bit di informazione.

I vantaggi di un sistema di comunicazione numerico rispetto ad uno analogico sono:

- Una maggiore resistenza al rumore, dovuta all'alfabeto dei simboli limitato, che consente di prendere decisioni affidabili.
- La possibilitá di utilizzare ripetizioni rigenerative anziché ripetizioni che amplificano semplicemente il segnale ricevuto, amplificando quindi sia il segnale utile che il rumore.
- La possibilitá di utilizzare codici a correzione d'errore inserendo ridondanza nella sequenza di bit informativi.

11.1 Phase Amplitude Modulation - PAM

É una tipologia di sistema di comunicazione in Banda Base, il cui segnale trasmesso $s_{T(t)}$ ha densitá spettrale di potenza centrata in 0. Il sistema PAM riceve in ingresso simboli di modulazione $\{a_i\}$ provenienti dal mappaggio dei bit $\{d_n\}$

11.1.1 Mappatore

Il mappatore ha come cardinalitá una potenza del 2, abbiamo PAM con mappatura: binaria, quaternaria o ottale

				$\{d_n\}$	$\{a_i\}$
				000	-7
		$\{d_n\}$	$ \{a_i\}$	001	-5
$\{d_n\}$	$\{a_i\}$	00	-3	010	-3
0	-1	01	-1	011	-1
1	+1	10	+1	100	+1
(a) Mappa	a Binaria	11	+3	101	+3
		(b) Mapp	a Quater-	110	+5 +7
		naria	·	111	+7
(c) Mappa Ottale					

Figure 120: Sistema PAM

11.1.2 Modulatore

Il segnale PAM é una serie di impulsi che si susseguono in successione con un intervallo $T=\frac{1}{f_s}$ e modulatori in ampiezza dei simboli $\{a_i\}$. Possiamo usare un qualsiasi impulso, che chiamiamo $g_{T(t)}$, basta che sia di durata finita:

se il segnale non fosse di durata finita T avrei sovrapposizione dei segnali (un po come nella TDF 8.1 se campiono male), il modulatore calcola ad ogni istante il segnale

$$s_{T(t)} = \sum_{i} a_{i} g_{T(t-iT)}$$

nello schema a blocchi si riduce a

Figure 121: Modulatore PAM

ne possiamo fare un esempio con una sequenza di simboli $\{a_i\}=\{+1,+3,-1,+1,-3\}$ e un impulso $g_{T(t)}$ del secondo tipo:

se invece utilizzassimo delle funzioni $g_{T(t)}$ rettangolari il segnale in uscita diventerebbe

dovendo analizzare il dominio frequnziale di $s_{T(t)}$ sarebbero tutte delle sinc in BB

11.1.3 Densitá spettrale di potenza

Volendo analizzare la banda del segnale in uscita al modulatore PAM potremmo pensare di utilizzare la $TCF\colon$

$$\begin{split} s_{T(t)} & \stackrel{TCF6.6.3}{\rightleftharpoons} S_{T(f)} \\ s_{T(t)} & = \sum_{i} a_{i} g_{T(t-iT)} \stackrel{TCF6.6.3}{\rightleftharpoons} \sum_{i} a_{i} G_{T(f)} e^{-j2\pi f i T} \end{split}$$

ma non posso analizzare con la TCF le variabili aleatorie a_i . Posso allora calcolare la Densitá spettrale di potenza (10.3.2). Ammettiamo che la sequenza di simboli di modulazione $\{a_i\}$ sia SSL 10.3. La sua media é

$$\mu_a = \eta_a = \mathbb{E}[a_i]$$

e la sua funzione di autocorrelazione

$$R_{a(m)} = \mathbb{E}[a_i a_{i+m}]$$

ho la densitá spettrale di potenza come

$$S_{s(f)} = \frac{1}{T} S_{a(f)} \left| G_{T(f)} \right|^2$$

$$S_{a(f)} = \sum_{m} R_{a(m)} e^{-j2\pi f mT}$$

la cui formula finale ricorda quella di un processo SSL $S_{Y(f)} = S_{X(f)} |H_{(f)}|^2$, in questo caso dipende dalla TCF del segnale $g_{T(t)}$ e dalla autocorrelazione dei simboli.

11.1.4 Potenza

Possiamo esprimere la potenza del segnale PAM come

$$P_s = \int_{-\infty}^{\infty} S_{s(f)} df = \frac{1}{T} \int_{-\infty}^{\infty} S_{a(f)} \left| G_{T(f)} \right|^2 df$$

se i simboli $\{a_i\}$ sono incorrelati ho:

$$R_{a(m)} = \begin{cases} \mathbb{E}\{a_i\} = \sigma_a^2 + \eta_a^2 & \text{se } m = 0\\ \mathbb{E}\{a_i\} \mathbb{E}\{a_{i+m}\} = \eta_a^2 & \text{se } m \neq 0 \end{cases}$$

semplificando la notazione della funzioe autocorrelazione diventa banalmente

$$R_{a(m)} = \eta_a^2 + \sigma_a^2 \delta_{(m)}$$

dalla quale possiamo ricavare la densitá spettrale di potenza dei simboli

$$S_{a(f)} = \sigma_a^2 + \eta_a^2 \sum_m e^{-j2\pi f mT} \stackrel{8.0.4}{=} \sigma_a^2 + \frac{\eta_a^2}{T} \sum_k \delta_{(f - \frac{k}{T})}$$

mentre la densitá spettrale di potenza del segnale

$$S_{s(f)} = \frac{1}{T} \left[\sigma_a^2 + \frac{\eta_a^2}{T} \sum_k \delta_{(f - \frac{k}{T})} \right] \left| G_{T(f)} \right|^2$$

$$= \frac{1}{T} \sigma_a^2 \left| G_{T(f)} \right|^2 + \frac{\eta_a^2}{T^2} \sum_k \delta_{(f - \frac{k}{T})} \left| G_{T(f)} \right|^2$$

$$\stackrel{6.6.1}{=} \frac{1}{T} \sigma_a^2 \left| G_{T(f)} \right|^2 + \frac{\eta_a^2}{T^2} \sum_k \left| G_{T(\frac{k}{T})} \right|^2$$

la potenza si calcola quindi con

$$P_s = \frac{\sigma_a^2}{T} E_{g_T} + \frac{\eta_a^2}{T^2} \sum_k \left| G_{T(\frac{k}{T})} \right|^2$$

dove E_{g_T} per il Teorema di Parseval (7.5):

$$E_{g_T} = \int_{-\infty}^{\infty} \left| G_{T(f)} \right|^2 df$$

Possiamo osservare come una parte della potenza dipenda da una parte continua, $\frac{\sigma_a^2}{T}E_{g_T}$, e una parte discreta composta da un pettine di Delta di Dirac, $\frac{\eta_a^2}{T^2}\sum_k \left|G_{T(\frac{k}{T})}\right|^2$. nel caso di simboli incorrelati $(\eta_a=0)$, e la parte continua dipende dal filtro con banda dimensionata rispetto a $\frac{1}{T}$, la banda del segnale trasmesso sará quindi $B_T\simeq\frac{1}{T}$. La densitá spettrale di potenza in caso $\eta_a=0$ diventa

$$S_{s(f)} = \frac{\sigma_a^2}{T} |G_{T(f)}|^2 = \frac{\mathbb{E}[a_i^2]}{T} |G_{T(f)}|^2 = \frac{R_{a(0)}}{T} |G_{T(f)}|^2$$

e di conseguenza la potenza

$$P_s = \frac{\sigma_a^2}{T} E_{g_T} = \frac{\mathbb{E}[a_i^2]}{T} E_{g_T} = \frac{R_{a(0)}}{T} E_{g_T}$$

11.1.5 Potenza e Energia - caso IID

Consideriamo adesso un sistema PAM con simboli indipendenti ed identicamente distribuiti (IID)

$$\eta_a = 0$$
 $\sigma_a^2 = \mathbb{E}[a_i^2] = \frac{M^2 - 1}{3}$

con M la cardinalitá del mappatore, risultano

• Densitá spettrale di potenza:

$$S_{s(f)} = \frac{M^2 - 1}{3T} \left| G_{T(f)} \right|^2$$

• Potenza:

$$P_s = \frac{M^2 - 1}{3T} E_{g_T}$$

 \bullet Energia media per simbolo: dato che l'energia é calcolata in un Δt posso ricavare l'energia del simbolo moltiplicando la potenza per T

$$E_S = P_s T = \frac{M^2 - 1}{3} E_{g_T}$$

 \bullet Energia media per bit: dato che l'energia é calcolata in un Δt posso ricavare l'energia del bit da trasmettere moltiplicando la potenza per T_d

$$E_d = P_s T_d = \frac{M^2 - 1}{3log_2(M)} E_{g_T}$$

11.1.6 Schema completo di un sistema di comunicazione PAM

Figure 122: Sistema PAM generico

i singoli componenti racchiudono

• $\{a_i\}$: sequenza di simboli di modulazione, generati con frequenza $f_s = \frac{1}{T}$ e appartenenti all'alfabeto

$$A = \{\pm 1, \pm 3, \dots, \pm (M-1), \}$$

 $\bullet \ g_{T(t)}$: impulso di trasmissione

- $c_{(t)}$: risposta impulsiva del canale
- $w_{(t)}$: rimore gaussiano bianco con densitá spettrale di potenza

$$S_{w(f)} = \frac{N_0}{2}$$

- $g_{T(t)}$: filtro di ricezione
- $\{\hat{a}_k\}$: stima dei simboli

Analizziamo come varia il segnale al passaggio dei vari stadi:

• Segnale trasmesso:

$$s_{T(t)} = \sum_{i} a_i g_{T(t-iT)}$$

• Segnale utile ricevuto:

$$s_{R(t)} = s_{T(t)} \otimes c_{(t)} = \sum_{i} a_i g_{TC(t-iT)}$$

con

$$g_{TC(t)} = g_{T(t)} \otimes c_{(t)}$$

• Segnale ricevuto:

$$r_{(t)} = s_{R(t)} + w_{(t)}$$

• Segnale in uscita dal filtro di ricezione:

$$x_{(t)} = r_{(t)} \otimes g_{R(t)} = \sum_{i} a_i g_{(t-iT)} + n_{(t)}$$

dove $g_{(t)}$ é la risposta impulsiva globale del sistema

$$g_{(t)} = g_{TC(t)} \otimes g_{R(t)} = g_{T(t)} \otimes c_{(t)} \otimes g_{R(t)}$$

e la componente del rumore

$$n_{(t)} = w_{(t)} \otimes g_{R(t)}$$

esso é un processo Gaussiano a media nulla e densitá spettrale di potenza

$$S_{n(f)} = \frac{N_0}{2} \left| G_{R(f)} \right|^2$$

• Componente ricevuta:

$$x_{[kT]} = \sum_{i} a_i g_{[(n-i)T]} + n_{[k]}$$

dove $n_{[k]}$ é una variabile aleatoria Gaussiana a media nulla e varianza

$$\sigma_n^2 = \frac{N_0}{2} \int_{-\infty}^{\infty} |G_{R(f)}|^2 df = \frac{N_0}{2} E_{g_R}$$

essendo E_{g_R} l'energia di $g_{R(t)}$, con il cambio d'indice k-i=m il campione in uscita dal filtro di ricezione assume la forma

$$x_{[kT]} = \sum_{m} a_{k-m} g_{[mT]} + n_{[k]}$$

isolando il termine relativo m=0

$$x_{[kT]} = a_K g_{(0)} + \sum_{m \neq 0} a_{k-m} g_{[mT]} + n_{[k]}$$

Il campione $x_{[kT]}$ viene utilizzato per prendere una decisione sul simbolo a_k il termine utile nella espressione di $x_{[kT]}$ é

$$a_K g_{(0)}$$

il secondo termine che appare é il c
ntributo di tutti i simboli di modulazione diversi da a_k e rappresenta un disturbo che si sov
rappone al termine utile. Il disturbo descritto prende il nome di
 Interferenza Intersimbolica (ISI)

$$ISI = \sum_{m \neq 0} a_{k-m} g_{[mT]}$$

Notiamo come noi possiamo operare su:

- $-g_T$ e g_R per agire in modo congiunto sull'interferenza intersimbolica con l'obbiettivo di renderla nulla
- g_R agisce sul rumore termico $S_{n(f)} = \frac{N_0}{2} \left| G_{R(f)} \right|^2$

Infine n_k é il contributo del rumore termico. Rispetto ai sistemi di comunicazione analogici nei sistemi di comunicazione numerici é presente un'altra forma di disturbo l'ISI, normalmente l'ISI ha ordini di grandezza molto superiori al rumore termico per cui bisogna eliminarlo.

11.1.7 Rimozione dell'ISI

Riprendendo l'equazione dell'ISI

$$ISI = \sum_{m \neq 0} a_{k-m} g_{[mT]}$$

si nota come il suo completo annullamento é possibile imponendo le condizioni di Nyquist nel dominio del tempo

$$g_{[mT]} = \begin{cases} 1 & per \ m = 0 \\ 0 & per \ m \neq 0 \end{cases}$$

ricordiamo che $g_{(t)}=g_{T(t)}\otimes c_{(t)}\otimes g_{R(t)},$ allora l'espressione delle componenti ricevute diventa

$$x_{[kT]} = a_k + n_{[k]}$$

costituita dal simbolo trasmesso a_k e dal rumore n_k . Un impulso che soddisfa tali condizioni si dice Impulso di Nyquist. Sono quindi condizioni sufficienti, per g(t), che sia nullo agli estremi dell'intervallo [-kT,kT] e che sia non nulla in t=0 allora soddisfano le codizioni di Nyquist

ma le condizioni ci dicono che anche un segnale che si annulla a intervalli di kT soddisfa le condizioni

ad esempio prendiamo $g_R = g_T = rect\left(\frac{t}{T}\right)$ e il canale $c_{(t)} = \delta_{(t)}$

Figure 123: $g_R = g_T, c_{(t)}$

se ne calcolo il prodotto di convoluzione

Figure 124: $g_{(t)}$

la quale $g_{(t)}$ soddisfa le condizioni di Nyquist.

$$G_{(f)} = \int_{-\infty}^{\infty} g_{(t)} e^{-j2\pi ft}$$

e la trasformata di $g_{[mT]}$

$$\overline{G_{(f)}} \stackrel{??}{\rightleftharpoons} \sum_{m} g_{[mT]} e^{-j2\pi fmT}$$

per le relazioni tra TCF e TDF (8.0.4)

$$\overline{G_{(f)}} \stackrel{??}{\rightleftharpoons} \frac{1}{T} \sum_{k} G_{(f - \frac{k}{T})}$$

se sono valide le condizioni di Nyquist

$$\begin{cases} g_{(0)} & m=0 \\ 0 \Rightarrow \overline{G_{(f)}} = g_{(0)} \end{cases}$$

ho solo il termine per m=0 e di conseguenza ho ISI nullo. Questo vuol dire che finché la somma delle ripetizioni della $G_{(f)}$ a intervalli di $\frac{1}{T}$ é uguale a una costante su tutto l'asse delel frequenze l'ISI é nullo. Un esempio con $G_{(f)}=triangoli,\ g_{(t)}=sinc^2$ con turata $\frac{1}{2T}$

Figure 125: $g_{(t)}$

ma non tutte le tipologie di triangoli ad esempio vanno bene, ad esempio se la durata fosse inferiore

Figure 126: $g_{(t)}$

Banda Minima di Nyquist: Le condizioni di Nyquist nel dominio della frequenza

$$\sum_{k=-\infty}^{\infty} G_{(f-\frac{k}{T})} = T$$

indicano che una condizione necessaria, ma non sufficiente, affinché un impulso $g_{(t)}$ sia di Nyquist é che la sua trasformata di Fourier $G_{(f)}$ abbia banda almeno pari a $\frac{1}{2T}$. Se cosí non fosse le ripetizioni della trasformata $G_{(f)}$ nel dominio della frequenza sarebbe nulla in $f=\frac{1}{2T}$ e non sarebbero piú soddisfatte le condizioni di Nyquist nel dominio della frequenza come ad esempio

Figure 127: $g_{(t)}$

la banda $B_N = \frac{1}{2T}$ é detta banda minima di Nyquist, é un condizione necessara ma non sufficiente, per l'eliminazione di ISI, poiché se gli impulsi sono di banda maggiore a B_N la somma delle ripetizioni di $G_{(f)}$ non é una costante

l'impulso quindi deve avere banda minima di Nyquist di solito viene identi-

ficato da una funzione con trasformata di Fourier rettangolare

$$G_{(f)} = g_{(0)}rect(fT)$$

e nel tempo

$$g_{(t)} = g_{(0)} \frac{1}{T} sinc\left(\frac{t}{T}\right)$$

**Dimensiona
ento di g_{(t)}** Riprendiamo il segnale in ricezione di un sistema PAM

$$x_{[k]} = \sum_{m} a_{k-m} g_{[mT]} + n_{[k]}$$

con

$$g_{(t)} = g_{T(t)} \otimes c_{(t)} \otimes g_{R(t)}$$

$$n_{[k]} = n_{(t=mT)} : S_{n(f)} = \frac{N_0}{2} \left| G_{R(f)} \right|^2$$

il decisore si basa sulla variabile a_k

$$x_{[k]} = a_k g_{(0)} + \sum_{m \neq 0} a_{k-m} g_{[mT]}$$

dove:

- $a_k g_{(0)}$ é la componente utile
- $\sum_{m \neq 0} a_{k-m} g_{[mT]}$ é l'ISI, il quale si annulla per le condizioni di Nyquist:
 - Nel tempo:

$$g_{(mT)} = \begin{cases} g_{(0)} & m = 0\\ 0 & m \neq 0 \end{cases}$$

 $-\,$ Nella Frequenza: faccio la TDF delle condizioni nel tempo

$$\overline{G_{(f)}} = g_{(0)} = \sum_{k} \frac{1}{T} G_{(f - \frac{k}{T})}$$

la quale é vera se la banda minima, B_{min} , di $G_{(f)}$ é $\frac{1}{2T}$. La funzione che soddisfa tali condizioni é una rect che nel dominio del tempo é una sinc

in realtá non uso la rect/sinc per realizzare il dimensionaemnto della $g_{(t)}$

- In frequenza la rect é discontinua, é difficile realizzare le 2 spike a $\pm \frac{1}{2T}$
- Nel dominio del tempo ho una *sinc* che é infinita, ed un eventuale errore di sincronizzazione (11.1.7) introduce ISI

Le ipotesi che abbiamo fatto fino ad ora implicano che il riceviore riesca a campionare a istanti di tempo T, ma il T é un parametro che sceglie il trasmettitore, di conseguenza i due dispositivi si devono sincronizzare e decidere un T. Il ricevitore comunque non riesce a campionare precisamente a T, per motivi di trasmissione o non si sincronizza perfettamente, avró un leggero delta di campionamento

$$T_c = T + \tau$$

se non campiono piú a T ma a T_c avró ISI. Per risolvere tali problemi si introduce l'impulso a coseno rialzato.

11.2 Impulso a coseno rialzato

Abbiamo visto come l'impulso rettangolare sia perfetto per soddisfare le Condizioni di Nyquist (11.1.7), in generale non viene realizzato tale impulso:

- Non é facilmente implementabile vista la discontinuitá che $G_{(f)}$ presenta in $f=\pm\frac{1}{2T}$
- Ha lobi molto pronunciati nel dominio del tempo rendendo il sistema molto sensibile a errori di Sincronizzazione 11.1.7

per rimediare a tali problemi si utilizzano gli impulsi a coseno rialzato o detti Raised Cosine Roll-off (RCR). Essi costituiscono una famiglia di impulsi caratterizzati da un paramentro $\alpha \in [0, 1]$ detto fattore di Roll-off. La trasformata

di Fourier si presenta cosí

$$G_{RCR} = \begin{cases} T & |f| \leq \frac{1-\alpha}{2T} \\ \frac{T}{2} \left[1 + \cos \left(\frac{\pi T}{\alpha} \left[|f| - \frac{1-\alpha}{2T} \right] \right) \right] & \frac{1-\alpha}{2T} < |f| \leq \frac{1+\alpha}{2T} \\ 0 & Altrove \end{cases}$$

una parte piatta di valore T che si estende fino alla frequenza $\pm \frac{1-alpha}{2T}$. Dopo la parte piatta segue una zona di Roll-off che si estende nell'intervallo $\frac{1-alpha}{2T} < f \le \pm \frac{1+alpha}{2T}$ fino a scendere a 0. A $f = \frac{1}{2T}$ il valore é sempre indipendente da α : $G_{RCR(f)} = \frac{T}{2}$, mentre al variare di α :

$$G_{RCR} = \begin{cases} \alpha = 0 & \text{\'e una rect } B_{\alpha=0} = \frac{1}{2T} \\ \alpha = 1 & \text{\'e un triangolo } B_{\alpha=1} = \frac{1}{T} \\ \alpha \neq \{0, 1\} & Altro \end{cases}$$

Figure 128: Funzione coseno rialzato: $G_{RCR(f)}$

all'aumentare di α la banda di nel dominio del tempo il coseno rialzato ha la forma

$$g_{RCR(t)} = sinc(\frac{t}{T}) \frac{cos(\alpha \pi \frac{t}{T})}{1 - \frac{2\alpha t^2}{T}}$$

Figure 129: Funzione coseno rialzato: $g_{RCR(t)}$

ricordando una sinc ma con lobi molto smorzati man mano che α tende a 1. Si sceglie il fattore di Roll-off tenendo conto sia della efficenza spettrale che migliora al decrescere di α , dal dominio del tempo bisogna invece tener conto della sensibilità all'ISI che diminuisce al crescere di α . Inoltre una propietà del coseno rialzato é

$$g_{RCR(0)} = \int_{-\infty}^{\infty} G_{RCR(f)} df = 1$$

11.3 Filtro adattato

Ci poniamo adesso il problema del dimensionamento di $g_{(t)}$ in forma estesa, cioé dimensionando i filtri $g_{T(t)}, g_{R(t)}$ nelle ipotesi che il canale sia $c_{(t)} = \delta_{(t)}$. Il nostro obbiettivo é ridurre al minimo, se non eliminare, sia l'ISI che il rumore, per ottenere ció si introduce il fitro adattato (Matched Filter). Il filtro risolve il seguente problema: preso un impulso $p_{(t)}$ di forma nota, immerso in rumore additivo bianco $w_{(t)}$ (anche non Gaussiano) con densitá spettrale di potenza $S_{w(f)} = \frac{N_0}{2}$. Il segnale é inviato in ingresso ad un sistema lineare e tempo invariante con risposta impulsiva $h_{(t)}$ e campionato ad un istante t_0 , ottenendo il campione $x_{(t_0)}$ come nel sistema di ricezione

Volgiamo quindi determinare $h_{(t)}$ in modo che sia massimo il rapporto seg-

nale/rumore (SNR) sul campione x_{t_0} . Abbiamo nel sistema

$$x_{(t)} = p_{(t)} \otimes h_{(t)} + w_{(t)} \otimes h_{(t)} = s_{(t)} \otimes n_{(t)}$$
$$x_{(t)} \Big|_{t=t_0} = s_{(t_0)} + n_{(t_0)}$$

esplicitando i valori

$$s_{(t_0)} = \int_{-\infty}^{\infty} h_{\tau} p_{(t_0 - \tau)} d\tau$$
$$n_{(t_0)} = \int_{-\infty}^{\infty} h_{\tau} w_{(t_0 - \tau)} d\tau$$

ricordiamo che n_0 é una variabile aleatoria e calcolando l'SNR:

$$\frac{S_u}{N_u} = \frac{s_{t_0}^2}{\mathbb{E}[n_{(t_0)}^2]}$$

dove

$$\mathbb{E}[n_{(t_0)}^2] = R_{n(0)} \stackrel{TCF}{=} S_{n(f)} = S_{w(f)} \left| H_{(f)} \right|^2 = \frac{N_0}{2} \left| H_{(f)} \right|^2$$

$$\stackrel{ATCF}{=} \int_{-\infty}^{\infty} S_{n(f)} df = \int_{-\infty}^{\infty} \frac{N_0}{2} \left| H_{(f)} \right|^2 df$$

essendo ${\cal H}_{(f)}$ la trasformata di fourier di $h_{(t)}$ e tenendo conto del teorema di Parseval ho

$$\mathbb{E}[n_{(t_0)}^2] = \frac{N_0}{2} \int_{-\infty}^{\infty} h_{(t)}^2 dt$$

invece calcolando $s^2_{(t_0)}$ lo dobbiamo scegliere $h_{(t)}$ per massimizzare l'SNR e ridurre al minimo l'errore

$$SNR = \frac{s_{t_0}^2}{\frac{N_0}{2} \int_{-\infty}^{\infty} h_{(t)}^2 dt} = \frac{\int_{-\infty}^{\infty} h_{\tau} p_{(t_0 - \tau)} d\tau}{\frac{N_0}{2} \int_{-\infty}^{\infty} h_{(t)}^2 dt}$$

$$\stackrel{Dsg.Swartz}{\leq} \frac{\int_{-\infty}^{\infty} h_{\tau} d\tau \int_{-\infty}^{\infty} p_{(t_0 - \tau)} d\tau}{\frac{N_0}{2} \int_{-\infty}^{\infty} h_{(t)}^2 dt} = \frac{2}{N_0} E_p$$

l'uguaglianza si ha se $h_{(t)}=kp_{(t_0-t)}$ con k numero reale non nullo, ecco perché si chiama filtro adattato, poiché si adatta all'impulso $p_{(t)}$ e massimizza il rapporto segnale rumore all'istante t_0 quando il rumore é bianco e la risposta impulsiva del filtro é

$$h_{(t)} = p_{(t_0-t)}$$

cio
é una versione del segnale $p_{(t)}$ ribaltata e traslata d
i t_0 come ad esempio

 Si puó ricavare la componente utile del segnale in uscita dal sistema

$$s_{(t_0)} = \int_{-\infty}^{\infty} p(t_0 - tdt) = E_p$$

e la risposta in frequenza del filtro adattato

$$H_{(f)} = TCF[p_{(t_0-t)}] = P_{(f)}^* e^{-j2\pi f t_0}$$

con $P(f) = TCF[p_{(t)}]$. Il modulo del filtro é

$$\left|H_{(f)}\right| = \left|P_{(f)}\right|$$

si osserva come nel domino della frequenza il filtro adattato amplifichi le zone frequenziali dove $|P_{(f)}|$ é maggiore (zona rapporto segnale rumore elevato) e attenui le zone frequenziali dove $|P_{(f)}|$ é minore (zone a basso rapporto segnale romore), si adatta al segnale.

11.3.1 Progettazione dei filtri di ricezione e trasmissione

Nella raltá il canale $c_{(t)}$ é un canale distorcente diverso quindi da $\delta_{(t)}$, il dimensionamento di $g_{T(t)}$ e $g_{R(t)}$. Tipicamente in pratica per il dimensionaemnto di $g_{T(t)}$ e $g_{R(t)}$ consiste nell'assumere il canale come $c_{(t)} = \delta_{(t)}$ in modo tale che quando il canale non é distorcente il segnale venga trasmesso correttamente mentre se il canale diventa distorcente si prendereanno delle precauzioni al ricevitore per mitigare tali distorsioni. Supponiamo quindi che il canale sia $c_{(t)} = \delta_{(t)}$ gli impulsi in ingresso al filtro di ricezione saranno del tipo

$$g_{TC(t)} = g_{T(t)} \otimes c_{(t)} = g_{T(t)}$$

e la risposta impulsiva globale del sistema PAM

$$g_{(t)} = g_{TC(t)} \otimes g_{R(t)} = g_{T(t)} \otimes g_{R(t)}$$

abbiamo 2 variabili, $g_{T(t)}$ e $g_{R(t)}$, e dobbiamo rispettare 2 condizioni (é un problema di ricerca dell'ottimo):

1. Annullamento dell'ISI: Dobbiamo fare in modo che $g_{(t)}$ sia un impulso che soddisfi le condizioni di Nyquist, tipicamente un impulso a coseno rialzato

$$G_{(f)} = G_{T(f)} \otimes G_{R(f)} = G_{RCR(f)}$$

2. Massimizzare il rapporto Segnale/Rumore sul campionatore in uscita dal filtro di ricezione: si deve fare in modo che il filtro in ricezione $g_{R(t)}$ sia adattato agli impulsi presenti al suo ingresso

$$g_{R(t)} = g_{T(-t)} \Rightarrow G_{R(f)} = G_{T(f)}^*$$

in caso il canale fosse $c_{(t)} \neq \delta_{(t)}$

$$G_{R(f)} = G_{T(f)}^* = [G_{T(f)}C_{(f)}]^*$$

unendo le due condizioni

$$G_{RCR(f)} = G_{T(f)}G_{T(f)}^* = |G_{T(f)}|^*$$

dato che la funzione coseno rial
zato é reale e non negativa posso esprimere la ${\cal G}_{T(f)}$ come

$$G_{T(f)} = \sqrt{G_{RCR(f)}} = G_{R(f)}$$

cioé le risposte in frequenza dei filtri in trasmissione e ricezione coincidono cone la radice quadrata della funzione coseno rialzato. I corrispondenti impulsi nel dominio del tempo $g_{T(t)}$ e $g_{R(t)}$ sono detti impulsi a radice di coseno rialzato e con l'acronimo RRCR (Root raised cosine Roll-off). Si puó notare come non siano impulsi di Nyquist ma la loro convoluzione invece si.

ha gli stessi punti di discesa e valori della funzione a coseno rialzato.

11.4 Circuito decisore

Siamo giunti al decisore del nostro sistema di comunicazione

$$\begin{array}{ccc}
x_{(t)} & \xrightarrow{x_{[k]}} & \widehat{a}_k \\
\hline
\end{array}$$

$$\begin{array}{ccc}
\hat{a}_k & \xrightarrow{\hat{a}_k} & \\
\end{array}$$

il decisore riceve al suo ingresso il campione $x_{[k]}$ e lo utilizza per prendere una decisioe sul simbolo trasmesso a_k usando il criterio di ottimalità.

Criterio MAP Il criterio che minimizza la probabilitá di errore sul simbolo a_k é detto criterio MAP (Maximum A-posterior Probability), secondo tale criterio il simbolo da scegliere all'interno dell'alfabeto $\mathcal{A} = \{a^{(1)}, a^{(2)}, \dots, a^{(M)}\}$ é quello che ha la massimo probabiltá a posteriori di essere stato trasmesso, cioé dopo aver osservato il campione $x_{[k]}$. Il criterio MAP sancisce quindi

$$P_r[a_k = a^{(i)}|x_{[k]}]$$

la probabilitá di aver trasmesso $\hat{a}_k = a^{(i)}$ nell'ipotesi di aver ricevuto $x_{[k]},$ questa sará

$$P_r[a_k = a^{(i)}|x_{[k]}] \le P_r[a_k = a^{(\ell)}|x_{[k]}] \ \forall i \ne \ell \in \{1, 2, \dots, M\}$$

é minore della probabilitá di scegliere un simbolo $a^{(\ell)}$ sbagliato. Voglio massimizzare la pr
babilitá di corretta ricezione

$$P_r[a_k = a^{(i)}|x_{[k]}] = \frac{f_x[x_{[k]}|a_k = a^{(i)}]P_r[a_k = a^{(i)}]}{f_x[x_{[k]}]}$$

dove $f_x[x_{[k]}]$ é la funzione densitá di probabilitá del campione $x_{[k]}$, é come la probabilitá di Bayes (9.3.3) ma con la densitá di probabilitá (fdp). Posso analizzare solo il numeratore poiché dipende dal simbolo trasmesso, definisco quindi

$$\gamma_{(a^{(i)},x_{[k]})} = f_x[x_{[k]}|a_k = a^{(i)}]P_r[a_k = a^{(i)}]$$

ho $\hat{a}_k = a^{(i)}$ se

$$\gamma_{(a^{(i)},x_{[k]})} > \gamma_{(a^{(\ell)},x_{[k]})}$$

se il numeratore della probabilità di corretta ricezione è maggiore di quello di sbagliata ricezione, analizzo i due nuemratori nelle ipotesi di

- ISI = 0
- $c_{(t)} = \delta_{(t)}$ oppure $c_{(t)} = A\delta_{(t-\tau)}$, non cambia tra i due il secondo tipo di canale campiona a $kT + \tau$ che é il segnale ritardato
- $g_{(t)} = g_{TxRCR(t)} \otimes g_{RxRCR(t)} + n_{[k]}$

Ho quindi

$$x_{[k]} \stackrel{ISI=0}{=} a_k g_{(0)} + n_{[k]} = a_k + (n_{[k]} \sim \mathcal{N}(0, \sigma_n^2))$$

dove

$$\sigma_n^2 = \int_{-\infty}^{\infty} S_{n(f)} df = \frac{N_0}{2} \int_{-\infty}^{\infty} |G_{R(f)}| df = \frac{N_0}{2}$$

e la funzione densitá di probabiltiá

$$f_x[x_{[k]}|a_k = a^{(i)}] = \frac{1}{\sqrt{2\pi}\sigma_n} e^{\left(-\frac{\left(x_{[k]} - a^{(i)}\right)^2}{2\sigma_n^2}\right)}$$
$$x_{[k]}|a_k = a^{(i)} \sim \mathcal{N}(a^{(i)}, \sigma_n^2)$$
$$f_x[x_{[k]}|a_k = a^{(i)}] = \Gamma_{(a^{(i)}, x_{[k]})}$$

massimizziamo adesso $\gamma_{(a^{(i)},x_{[k]})}$ con l'ipotesi che i simboli siano equiprobabili $P_r[a^{(i)}] = \frac{1}{M}$. Allora nache il termine $P_r[a_k = a^{(i)}]$ diventa trascurabile per la massimizzazione, ne rimane quindi solo da massimizzare

$$\Gamma_{(a^{(i)},x_{[k]})} > \Gamma_{(a^{(\ell)},x_{[k]})}$$

essendo funzioni monotone decrescenti posso farne il logaritmo naturale

$$\begin{split} \ln\left(\Gamma_{(a^{(i)},x_{[k]})}\right) &> \ln\left(\Gamma_{(a^{(\ell)},x_{[k]})}\right) \\ &\frac{-\left(x_{[k]}-a^{(i)}\right)^2}{2\sigma_n^2} - \ln\left(\sqrt{2\pi}\sigma_n\right) &> \frac{-\left(x_{[k]}-a^{(\ell)}\right)^2}{2\sigma_n^2} - \ln\left(\sqrt{2\pi}\sigma_n\right) \\ &\left(x_{[k]}-a^{(i)}\right)^2 &< \left(x_{[k]}-a^{(\ell)}\right)^2 \end{split}$$

il risultato trovato é la distanza euclidea del simbolo ricevuto minore della distanza euclidea da qualsiasi altro simbolo. Se questa disuguaglianza é vera, é il criterio chiamato a distanza minima euclidea o a massima verosomiglianza, valido solo se i simboli sono equiprobabili. Ho due criteri

$$MAP \overset{\text{Se equiprobabili}}{\Rightarrow} \text{Massima verosomiglianza}$$

nel caso MAP massimizzo la funzione $\gamma_{(a^{(i)},x_{[k]})}$, nel caso a massima verosomiglianza massimizzo la $\Gamma_{(a^{(i)},x_{[k]})}$ In caso di simboli non equiprobabili si arriva alla funzione

$$\Gamma_{(a^{(i)},x_{[k]})} = \left[x_{[k]} - a^{(i)}\right]^2 - 2\sigma^2 ln(P_i)$$

con P_i probabilitá a priori del simbolo $a^{(i)}$

11.4.1 Zone di decisione

Il criterio MAP suddivide l'asse reale in zone di decisione, ciascuna associata a un determinato simbolo dell'alfabeto \mathcal{A} . Indichiamo con $\mathcal{Z}^{(m)}$ la zona di decisione associata al simbolo $a^{(m)} \in \mathcal{A}$, essa é definita come

$$\mathcal{Z}^{(m)} = \left\{ x \in \mathbb{R} : \Gamma_{(a^{(m)}, x_{[k]})} < \Gamma_{(a^{(\ell)}, x_{[k]})}, a^{(\ell)} \in \mathcal{A} \lor a^{(\ell)} \neq a^{(m)} \right\}$$

per cui la decisione \hat{a}_k viene presa a favore del simbolo $a^{(i)}$ solo se $x_{[k]} \in \mathcal{Z}^{(i)}$. Il decisore altro non é che un comparatore di $x_{[k]}$ con delle soglie in modo da individuare la zona di decisione di $x_{[k]}$.

Esempio PAM $A = \{-1, +1\}$ Prendiamo in esempio una PAM con alfabeto $A = \{-1, +1\}$ e sia

$$p = P_r[a_k = -1] \ e \ 1 - p = P_r[a_k = +1]$$

scegliamo il decisore sulla base del criterio MAP e ipotizziamo di dover scegliere per il simbolo $\hat{a}_k = +1$ se

$$\Gamma_{(+1,x_{[k]})} < \Gamma_{(-1,x_{[k]})}$$

svolgendo i calcoli nel caso di simboli non equiprobabili

$$\begin{split} \left[x_{[k]}-1\right]^2 - 2\sigma^2 ln(1-p) < \left[x_{[k]}+1\right]^2 - 2\sigma^2 ln(p) \\ x_{[k]} > \frac{\sigma^2}{2} ln\left(\frac{p}{1-p}\right) = \lambda \end{split}$$

Figure 130: Zone di decisione PAM $\mathcal{A} = \{-1, +1\}$

l'asse é stato suddiviso in due zone di decisione e la soglia λ dipende da σ^2 e p. Possiamo anche analizza l'andamento di λ al variare di p fissato un valore di σ

come si vede nel caso di simboli equiprobabili $p=\frac12$ la soglia vale $\lambda=0$, mentre assume valori positivi se la probabilitá del simbolo $\hat a_k=-1$ é $p>\frac12$ ha

maggiore probabilitá a priori di essere trasmesso. Il decisore tende a privilegiare la decisione sul simbolo che ha maggiore probabilitá a priori di essere trasmesso, allargandone opportunemente la relativa zona di decisione.

Consideriamo il caso pratico in cui i simboli dall'alfabeto $\mathcal{A} = \{a^{(1)}, \dots, a^{(M)}\}$ siano equiprobabili

$$P_m = \frac{1}{M} \ m = 1, \dots, M$$

in questo caso il termine $-2\sigma^2 ln(P_m)$ non dipende da $a^{(m)}$ e diventa trascurabile per la decisione di a_k , il criterio di decisione si riduce alle distanze euclidee e il criterio a massima verosomiglianza, $\hat{a}_k = a^{(i)}$ se

$$\Gamma_{(a^i,x_{[k]})} < \Gamma_{(a^{(\ell)},x_{[k]})}$$

che diventano

$$(x_{[k]} - a^{(i)})^2 < (x_{[k]} - a^{(\ell)})^2$$

in caso di simboli equiprobabili possiamo notare che le soglie di decisione siano posizionate esattamente a metá tra i due simboli adiacenti dell'alfabeto, ad esempio in un sistema PAM quaternario

Figure 131: Zone di decisione 4-PAM $\mathcal{A} = \{-3, -1, +1, +3\}$

il simbolo deciso dall'alfabeto $\mathcal A$ sará pertanto quello che ha distanza euclidea minore rispetto al campione $x_{[k]}$ ricevuto. Il criterio a massima verosomiglianza quindi minimizza l'errore in caso di simboli equiprobabili e a discapito della conoscenza di σ e la probabilità dei simboli, possiamo anche utilizzarlo in caso di simboli non equiprobabili fornendoci una soluzione sub-ottima.

11.4.2 Calcolo della SER per un sistema PAM M-ario

Consideriamo un sistema PAM con alfabelt M-ario

$$A = \{\pm 1, \pm 3, \dots, \pm (M-1)\}$$

il sistema M-PAM ottiene $x_{[k]} = Aa_k + n_{[k]}$, vogliamo calcolare la probabilitá media di errore sul simbolo deciso ammettendo che i simboli siano equiprbabili, in assenza di ISI all'ingresso del ricevitore cosí fatto

supponiamo che i filtri in trasmissione e ricezione siano entrambi a radice di coseno rialzato. Il problema di questa approssimazione del sistema é che si suppone un canale di trasmissioene $\delta_{(t)}$ quando in realtá si approssima meglio con $A\delta_{(t-\tau)}$, dobbiamo quindi campionare a $kT+\tau$ e scalare per A, valori che saranno opportunamente ricevuti al momento della sincronizzazione, il sistema diventa

dove $z_{[k]} = \frac{x_{[k]}}{A} = a_k + \frac{n_{[k]}}{A}$ il rumore é quindi $\simeq \mathcal{N}(0, \frac{\sigma_n^2}{A^2})$, se calcoliamo la varianza nel caso della PAM con simboli indipendenti

$$\sigma_n^2 = \frac{\sigma_n^2}{A^2} = \frac{N_0}{2} \frac{M^2 - 1}{3E_s} = \frac{M^2 - 1}{6(\frac{E_s}{N_0})}$$

Se non scalassi per il fattore A le zone di decisione dovrebebro adattarsi al valore di A. Il decisore suddivide l'asse x in zone di decisione, come mostrato in figura 131, con le soglie poste esattamente a metá tra due simboli adiacenti nel caso di simboli equiprobabili

Figure 132: Zone di decisione M-PAM $\mathcal{A} = \{\pm 1, \pm 3, \dots, \pm (M-1)\}$

usando il teorema della probabilità totale possiamo esprimere la SER (Symbol Error Rate)

$$SER = \sum_{i=1}^{M} P[e|a^{(m)}]P_r[a_k = a^{(i)}]$$

dove

$$P[e|a^{(m)}] = P_r[\hat{a}_k \neq a_k|a_k = a^{(m)}]$$

nell'ipotesi di simboli equiprobabili

$$SER = \frac{1}{M} \sum_{m=1}^{M} P[e|a^{(m)}]$$

restan quidi da calcolare le M probabilitá condizionate $P[r|a^{(m)}]$ per $m=1,\ldots,M$. L'analisi dell'alfabeto \mathcal{A} e le zone di decisione si puó eveincere come i simboli nelle zone di decisioni esterne $(\pm (M-1))$ abbiano la stessa probabilitá, come anche i simboli interni $\{\pm 1,\ldots,\pm (M-3)\}$ abbiano tra di loro la stessa probabilitá. Ne segue che possiamo calcolare solo due probabilitá, ad esempio

$$P[e|a^{(m)}] = P[e|a_k = 1] \text{ se } a^{(m)\in\{\pm 1,\dots,\pm (M-3)\}}$$

$$P[e|a_k = -M+1] = P[e|a_k = M-1] \text{ se } a^{(m)\in\{\pm (M-1)\}}$$

da cui ricaviamo la SER finale del sistema

$$SER = \frac{M-2}{M}P[e|a_k = 1] + \frac{2}{M}P[e|a_k = M-1]$$

dove i coefficenti moltiplicativi sono quanti simboli hanno la relativa probabilitá, ricordiamoci che possiamo fare cosí solo perché la costellazione lo permette, magari in casi diversi potrei avere piú termini. Il nostro simbolo trasmesso é quindi caratterizzato da

$$z_{[k]} = a_{[k]} + \eta_{[k]}$$

con $\eta_{[k]} = \frac{n_{[k]}}{A} \sim \mathcal{N}(0, \frac{\sigma_n^2}{A^2}) \sim \mathcal{N}(0, \sigma_\eta^2)$, per un generico simbolo la sua probabilitá di errore é espressa come

$$P_{err} = Q_{\left(\frac{\lambda - a^{(m)}}{\sigma}\right)}$$

dove $\lambda-a^{(m)}$ indica la distanza dalla soglia. Calcoliamo le probabilitá di errore condizionale:

1. Calcolo di $P[e|a_k=1]$ Supponiamo sia stato inviato il simbolo $a_k=1$ il campione ricevuto é

$$z_{[k]} = 1 + \eta_{[k]}$$

notiamo come l'errore é presente quando il simbolo non é compreso all'interno dell'intervallo

$$P[e|a_k = 1] = P_r[z_{[k]} < 0 \cup z_{[k]} > 2] = P_r[1 + \eta_{[k]} < 0 \cup 1 + \eta_{[k]} > 2]$$
$$= P_r[\eta_{[k]} < -1 \cup \eta_{[k]} > 1]$$

potremmo calcolare l'integrale della distribuzione di probabilità ma utilizziamo la funzione Q, gli intervalli di errore esterni sono uguali quindi possiamo calacolare Q solo nel punto destro

$$P[e|a_k = 1] = 2Q\left(\frac{1}{\sigma_\eta}\right)$$

2. Calcolo di $P[e|a_k=M-1]$ Supponiamo di aver trasmessio il simbolo $a_k=M-1,$ il campione é caratterizzato da

$$z_{[k]} = M - 1 + \eta_{[k]}$$

ho errore quando il simbolo non rientra nella semiretta $[M-2,+\infty]$

$$P[e|a_k = M-1] = P_r[z_{[k]} < M-2] = P_r[M-1+\eta_{[k]} < M-2] = P_r[\eta_{[k]} < -1]$$

= $P_r[\eta_{[k]} > 1]$

dalla figura possiamo ricavare la probabilitá di errore

$$\begin{split} P[e|a_k = M-1] &= 1 - Q \bigg(\frac{\lambda - a^{(m)}}{\sigma_\eta}\bigg) = 1 - Q \bigg(-\frac{1}{\sigma_\eta}\bigg) \\ &= Q \bigg(\frac{1}{\sigma_\eta}\bigg) \end{split}$$

Sostituiendo i risultati ottenuti nella formula della SER

$$\begin{split} SER &= \frac{M-2}{M} 2Q \bigg(\frac{1}{\sigma_{\eta}}\bigg) + \frac{2}{M} Q \bigg(\frac{1}{\sigma_{\eta}}\bigg) \\ &= \frac{2(M-1)}{M} Q \bigg(\frac{1}{\sigma_{\eta}}\bigg) \end{split}$$

se la vogliamo esprimere in funzione del valore di $\sigma_{\eta}=\frac{\sigma_{n}^{2}}{A^{2}}=\frac{N_{0}}{2A^{2}}$

$$SER = \frac{2(M-1)}{M}Q\left(\sqrt{\frac{2A^2}{N_0}}\right)$$

Vogliamo adesso esprimere la SER in funzione dell'energia del segnale ricevuto, prendiamo il segnale ricevuto non filtrato

$$r_{(t)} = S_{R(t)} + w_{(t)} = \sum_{i} Aa_{i}g_{T(t-iT)} + w_{(t)}$$

la cui densitá spettrale di potenza é espressa come

$$S_{R(f)} = \frac{A}{T} S_{a(f)} \left| G_{T(f)} \right|^2$$

se i simboli sono independenti ed equiprobabili e sono nel caso di una PAM posso esprimere densitá spettrale di potenza dei simboli come

$$S_{a(f)} = \sum_{m} R_{a(m)} e^{-j2\pi f mT} = R_{a(0)}$$

= $E[a_m^2] = \frac{M^2 - 1}{3}$

allora $S_{R(f)}$ diventa

$$S_{R(f)} = \frac{A}{T} \frac{M^2 - 1}{3} \left| G_{T(f)} \right|^2$$

dalla quale possiamo calcolare l'energia dei simboli moltiplicando pet T o dei bit moltiplicando per T_d

$$E_{simboli} = \int_{-\infty}^{\infty} S_{R(f)} df \stackrel{\text{11.2}}{=} A^2 \frac{M^2 - 1}{3}$$

A puó essere quindi espresso in funzione dell'energia dei simboli

$$A^2 = \frac{3E_{simboli}}{M^2 - 1}$$

la SER espressa tramite l'energia del simbolo ricevuto é

$$SER = \frac{2(M-1)}{M}Q\left(\sqrt{\frac{6E_{simboli}}{(M^2-1)N_0}}\right)$$

nel caso di una PAM binaria

$$SER \stackrel{M=2}{=} Q \left(\sqrt{\frac{2E_{simboli}}{N_0}} \right)$$

11.4.3 Efficenza spettrale ed efficenza energetica

Abbiamo visto come l'impulso di trasmissione $g_{T(t)}$ impiegato in un sistema PAM sia tipicamente un impulso a Radice di Coseno RIalzato (3). Nel caso di simboli indipendenti ed equiprobabili, la densitá spettrale di potenza del segnale trasmesso é

 $S_{s(f)} = \frac{M^2 - 1}{3T} \left| G_{T(f)} \right|^2 = \frac{M^2 - 1}{3T} G_{RCR(f)}$

per cui la banda impiegata dal segnale PAM é

$$B_s = \frac{1+\alpha}{2T}$$

e dipende sia dal fattore di Roll-off, α , che dalla frequenza di segnalazione $f_s = \frac{1}{T}$

Efficenza Spettrale: l'efficenza spettrale del sistema PAM é definita da

$$\eta_{sp} = \frac{R_d}{B_T} \left[\frac{bit}{Hz} \right]$$

dove $R_d = \frac{log_2(M)}{T}$ é il bit-rate, ho quindi nel caso di impulsi RCR nella PAM

$$\eta_{sp} = \frac{2log_2(M)}{1+\alpha} \left[\frac{bit}{Hz} \right]$$

questo indica come l'efficenza spettrale del sistema aumenta al crescere della cardinalitá M dell'alfabeto.

Efficenza Energetica: Per valutare l'efficenza energetica del sistema occorre analizzare le curve della SER al variare del rapporto $\frac{E_{simboli}}{N_0}$.

Figure 133: Scala logaritmica SER

La SER é espressa in scala logaritmica ed il rapporto $\frac{E_{simboli}}{N_0}$ é espresso in db. Viene solitamente fissata una probabilità di errore obbiettivo stabilita in base all'applicazione, il rapporto $\frac{E_{simboli}}{N_0}$ richiesto per raggiungere la SER obbiettivo cresce al crescere della cardinalità M. Questo riduce come l'efficenza energetica del sistema diminuisca al crescere di M, entra più rumore. Concludiamo che la scelta dell'alfabeto \mathcal{A} é vincolata da due esigenze contrastanti: da un

lato sarebbe bene scegliere una carinalitá M elevata per aumentarne l'efficenza spettrale, dall'altro lato la scelta di un valore M elevato peggiora l'efficenza energetica del sistema.

Perdita Energetica: Si definisce perdica energetica di un sistema di comunicazione numerico A rispetto ad un sistema B l'aumento (in db) del rapporto $\frac{E_{simboli}}{N_0}$ necessario al sistema A per raggiungere la stessa SER del sistema B. Un esempio mostrato in figura evince la perdita del sistema 4-PAM rispetto al sistema 2-PAM.

Figure 134: differenza log 4PAM e 2PAM

Calcoliamo la perdita in modo analitico basta eguagliare le SER della 4-PAM e della 2-PAM ottenendo

$$\frac{3}{2}Q_{\left(\sqrt{\frac{4}{5}\left(\frac{E_s}{N_0}\right)_{M=4}}\right)} = Q_{\left(\sqrt{2\left(\frac{E_s}{N_0}\right)_{M=2}}\right)}$$

solitamente si tende a trascurare eventuali coefficenti moltiplicativi, potendo cosí confrontare direttamente l'argomento della funzione ${\cal Q}$

$$\frac{4}{5} \left(\frac{E_s}{N_0} \right)_{M=4} = 2 \left(\frac{E_s}{N_0} \right)_{M=2}$$

la perdita del sistema 4-PAM rispetto al sistema 2-PAM é in db

$$L\Big|_{db} = 10log_{10} \left(\frac{\left(\frac{E_s}{N_0}\right)_{M=4}}{\left(\frac{E_s}{N_0}\right)_{M=2}} \right) = 10log_{10} \left(\frac{5}{2}\right) \simeq 4db$$

cio
é comporta che la curva di SER per la 4-PAM é praticamente la stessa del sistema 2-PAM, salvo una traslazione di circa 4db verso destra.

Esempio sistema 4-PAM

11.4.4 Codifica GRAY nel sistema PAM

Abbiamo visto come la SER in un sistema PAM dipende dal rapporto $\frac{E_s}{N_0}$ e dalla cardinalitá M dell'alfabeto \mathcal{A} . Come sappiamo i simboli di modulazione $\{a_i\}$ in un sistema PAM sono il risultato della mappatura dei bit di codice $\{d_n\}$. Per l'utente finale sarebbe quindi piú utile conoscere al posto della SER la probabilitá di errore sui bit $\{d_n\}$, chiamata Bit Error Rate (BER)

$$BER = P_r[\hat{d}_n \neq d_n]$$

in generale il calcolo della BER in un sistema PAM é un valore difficilmente calcolabile poiché oltre a dipendere dal rapporto $\frac{E_s}{N_0}$ e da M, dipende anche dalla legge di mappatura. É peró possibile individuare facilmente un intervallo di valori entro quale siamo sicuri che si trovi la BER. Per individuare tale intervallo, supponiamo di utilizzare una trasmissione PAM usando un alfabeto M-ario e siano

 $N_s =$ Numero di simboli trasmessi $N_d =$ Numero di bit trasmessi $N_{se} =$ Numero di simboli ricevuti errati $N_{de} =$ Numero di bit ricevuti errati

Si tenga presente che ogni simbolo PAM é ottenuto mappando un blocco di $log_2(M)$ bit, ho quindi

$$N_d = N_s log_2(M)$$

inoltre ogni volta che un simbolo viene ricevuto con errore il numero dei corrispondenti bit sbagliati varia da 1 a $log_2(M)$. Si ha pertanto

$$N_{se} \leq N_{de} \leq N_{se}log_2(M)$$

dividendo i termini della precedente relazione per N_d si trova

$$\frac{N_{se}}{N_{s}log_{2}(M)} \leq \frac{N_{de}}{N_{d}} \leq \frac{N_{se}log_{2}(M)}{N_{s}log_{2}(M)}$$

e passando al limite per N_s e N_b tendendo all'infinito

$$\frac{SER}{log_2(M)} \le BER \le SER$$

da cui si vede che la BER non puó mai superare la SER. A seconda della legge di mappatura impiegata, la BER puó assumere valori piú vicini a $\frac{SER}{log_2(M)}$ o a SER. Vale la pena notare che la BER coinciderebbe con il valore $\frac{SER}{log_2(M)}$ solo se, ogni volta che un simbolo ricevuto contiene un errore, sol uno dei bit corrispondenti a quel simbolo é sbagliato. Questa osservazione é utile per individuare quale sia la mappa ottima. Infatti, tenendo conto che quando un simbolo é

ricevuto con errore molto probabilmente viene frainteso con un simbolo adiacente nell'alfabeto \mathcal{A} , la mappa ottima é quella che associa a simboli adiacenti di \mathcal{A} blocchi di $log_2(M)$ bit che differiscono per un solo bit. Una tale mappa é nota come "Mappa GRAY", ed é quella che minimizza la BER per un prefissato valore della SER. Se in un sistema PAM viene utilizzata la mappadi GRAY, la BER é espressa da

$$BER \simeq \frac{2(M-1)}{Mlog_2(M)}Q\left(\sqrt{\frac{6log_2(M)}{M^2-1}}\frac{E_d}{N_0}\right)$$

11.5 QAM

È un sistema di comunicazione in banda passante in cui il segnale trasmesso $s_{T(t)}$ ha densitá spettrale di potenza di tipo passa-banda, centrate su una frequenza f_0 detta frequenza portante.

11.5.1 Inviluppo complessso

l'inviluppo complesso del segnale trasmesso é

$$\tilde{s}_{(t)} = I_{(t)} + jQ_{(t)}$$

e il segnale trasmesso

$$s_{T(t)} = \mathbb{R}e\{\tilde{s}_{(t)}e^{j\omega_0 t}\}\$$

con $\omega_0=2\pi f_0$, $\tilde{s}_{(t)}\in\mathbb{C}$, $I_{(t)}\in\mathbb{R}$ detta parte in fase e $Q_{(t)}\in\mathbb{R}$ detta parte in quadratura del segnale $s_{T(t)}$ il quale puó quindi essere espresso come

$$s_{T(t)} = I_{(t)}\cos(\omega_0 t) + jQ_{(t)}\sin(\omega_0 t)$$

e le singole parti possono essere espresse come

$$I_{(t)} = \sum_{i} a_i g_{T(t-iT)}$$
$$Q_{(t)} = \sum_{i} b_i g_{T(t-iT)}$$

in cui $g_{T(t)}$ é l'impulso di trasmissione, T é l'intervallo di segnalazione, $\{a_i\}$ e $\{b_i\}$ sono i simboli di modulazione, ottenuti dal mappaggio di bit del codice $\{d_n\}$. La mappa ha cardinalitá M ed é di tipo bidimensionale, nel senso che ad ogni stringa di $log_2(M)$ bit di codice fa corrispondere una coppia (a_i,b_i) disponibili nell'alafabeto impiegato. M é il numero possibile di coppie (a_i,b_i) disponibili nell'alfabeto. Nel caso di mappe bidimensionali l'alfabeto é costituito da punti (a_i,b_i) nel iano cartesiano, ed é detto costellazione. Un esempio di costellazione quaternaria é mostrata nella figura seguente

Figure 135: Costellazione quaternaria

11.5.2 Trasmettitore - QAM

Il trasmettitore usa un modulatore I/Q come illustrato di seguito, dove $g_{T(t)}$ é un impulso a radice di coseno rialzato come quello impiegato in un sistema PAM.

Figure 136: Trasmettitore QAM

L'inviluppo complesso del segnale trasmesso é espresso da

$$\tilde{s}_{(t)} = I_{(t)} + jQ_{(t)} = \sum_{i} c_{i}g_{T(t-iT)}$$

avendo definito i simboli complessi come

$$c_i = a_i + jb_i$$

e si vede che $\tilde{s}_{(t)}$ é in pratica un segnale PAM con simboli complessi. L'equivalente in banda base del trasmettitore é

Figure 137: Equivalente in Banda Base

11.5.3 Densitá spettrale di potenza - QAM

Per il calcolo della densitá spettrale di potenza del segnale $s_{T(t)}$, si ricorda che essa é legata a quella dell'inviluppo complesso $\tilde{s}_{(t)}$ dalla relazione

$$S_{s(f)} = \frac{1}{4} \left[S_{\tilde{s}(f-f_0)} + S_{\tilde{s}(-f-f_0)} \right]$$

per cui é sufficiente calcolare la densitá spettrale di potenza $S_{\tilde{s}(f)}$. Ammettiamo che la sequenza dei simboli $\{c_i\}$ sia stazionaria in senso lato con valore medio

$$\eta_c = \mathbb{E}[c_i]$$

e funzione di autocorrelazione

$$R_{c(m)} = \mathbb{E}[c_{i+m}c_i^*]$$

la densitá spettrale di potenza di $\tilde{s}_{T(t)}$ é la trasformata di Fourier di $R_{\tilde{s}(f-f_0)}$ ed é espressa da

$$S_{\tilde{s}(f)} = \frac{1}{T} f_{c(f)} \left| G_{T(f)} \right|^2$$

dove

$$f_{c(f)} = \sum_{m} R_{c(m)} e^{-j2\pi f mT}$$

é la densitá spettrale di potenza dei simboli complessi $\{c_i\}$. La potenza di $s_{T(t)}$ é quindi esprimibile come

$$P_{s} = \frac{1}{2T} \int_{-\infty}^{\infty} f_{c(f)} \left| G_{T(f)} \right|^{2} df$$

Poiché $g_{T(t)}$ é un impulso tipicamente a radice di coseno rialzato, la banda di $\tilde{s}_{T(t)}$ é

$$B_{\tilde{s}} = \frac{1+\alpha}{2T}$$

la banda del segnale trasmesso $s_{T(t)}$

$$B_T = 2B_{\tilde{s}} = \frac{1+\alpha}{T}$$

e l'efficenza spettrale del sistema risulta

$$\eta_{sp} = \frac{R_d}{B_T} = \frac{log_2(M)}{1+\alpha}$$

avendo tenuto conto che $R_d=\frac{log_2(M)}{T}$. Si osservi come l'efficenza spettrale del sistema aumenti all'aumentare della cardinalitá M della costellazione.

11.5.4 Ricevitore - QAM

Supponiamo che il canale sia non distorcente ed aggiunga solo rumore termico. In tale ipotesi, il segnale ricevuto é espresso da

$$r_{(t)} = s_{T(t)} + w_{(t)}$$

con $w_{(t)}$ rumore Gaussiano bianco avente densitá spettrale di potenza $\frac{N_0}{2}$. Il ricevitore ha la struttura mostrata in figura seguente

Figure 138: Ricevitore QAM

Il segnale ricevuto viene inviato a un filtro passa-banda(7.4.3) con frequenza centrale f_0 e tale da non distorcere il segnale utile. Esso serve a selezionare il segnale utile e ad eleminare il rumore fuori banda. Dopo la demodulazione I/Q, il segnale passa attraverso il filtro di ricezione $g_{R(t)}$, tipicamente a radice di coseno rialzato, che sostituisce il passa-basso presente nel demodulatore di I/Q. I segnali $x_{c(t)}$ e $x_{s(t)}$ in uscita dal filtro di ricezione sono espressi da

$$x_{c(t)} = \sum_{i} a_{i}g_{(t-iT)} + n_{c(t)}$$
$$x_{s(t)} = \sum_{i} b_{i}g_{(t-iT)} + n_{s(t)}$$

dove $g_{(t)} = g_{(T(t))} \otimes g_{(R(t))}$ é un impulso a coseno rialzato, mentre $n_{c(t)}$ e $n_{s(t)}$ sono processi di rumore Gaussiano, a media nulla e a densitá spettrale di potenza

$$S_{n_c(f)} = S_{n_s(f)} = N_0 \left| G_{R(f)} \right|^2$$

Qualora il filtro passa-banda sia simmetrico intorno a f_0 i processi $n_{c(t)}$ e $n_{s(t)}$ sono anche incorrelati, e quindi indipendenti essendo congiuntamente Gaussiani. Dopo il campionatore abbimo i campioni $x_{c[k]}$ e $x_{s[k]}$ espressi da

$$x_{c[k]} = a_{[k]} + n_{c[k]}$$

 $x_{s[k]} = b_{[k]} + n_{s[k]}$

dove si é tenuto conto che $g_{(t)}$ sia un impulso di Nyquist. Le variabili aleatorie $n_{c[k]}$ e $n_{s[k]}$ sono Gaussiane, a media nulla con varianza

$$\sigma^2 = N_0 \int_{-\infty}^{\infty} |G_{R(f)}|^2 df = N_0 g_{RCR(0)} = N_0$$

l'equivalente in banda base del ricevitore é

Figure 139: Equivalente ricevitore in banda base

dove

$$\begin{split} \tilde{x}_{[k]} &= c_{[k]} + \tilde{n}_{[k]} \\ \tilde{n}_{[k]} &= n_{c[k]} + j n_{s[k]} \end{split}$$

11.6 Modulazione Amplitude Shift Keyring - ASK

In questo tipo di modulazione, i simboli b_i sono posti a zero, risolta quindi $Q_{(t)}=0$. Il segnale trasmesso risulta

$$s_{T(t)} = I_{(t)}\cos(\omega_0 t)$$

dove $I_{(t)}$ é un segnale PAM

$$I_{(t)} = \sum_{i} a_i g_{T(t-iT)}$$

con simboli $\{a_i\}$ appartenenti all'alfabeto M-ario $\mathcal{A} = \{\pm 1, \pm 3, \dots, \pm (M-1)\}$. Pertanto il segnale ASK non è altro che un segnale PAM traslato in frequenza mediante modulazione classica. Lo schema trasmettitore è riportato in figura

Figure 140: Trasmettitore ASK

e si vede che é composto solo dal ramo relativo a $I_{(t)}$. Nel caso di simboli indipendenti ed equiprobabili, la densitá spettrale di potenza dell'impulso complesso é

$$S_{\tilde{s}(f)} = \frac{M^2 - 1}{3T} \left| G_{T(f)} \right|^2$$

e l'energia media per simbolo trasmesso é

$$E_s = \frac{1}{2}T \int_{-\infty}^{\infty} S_{\tilde{s}(f)} df$$
$$= \frac{M^2 - 1}{6} E_{g_T}$$

essendo E_{g_T} l'energia di $g_{T(t)}$. Qualora $g_{T(t)}$ sia un impulso a radice di coseno rialzato, l'efficenza spettrale del sistema ASK é

$$\eta_{sp} = \frac{log_2(M)}{1+\alpha}$$

ed é la metá di quella del corrispondente segnale PAM trasmesso in banda base. Il ricevitore é costituito da un demodulatore seguito da un ricevitore per segnali PAM, secondo quanto riportato nella figura seguente

Figure 141: Ricevitore ASK

Ricordando che il guadagno di demodulazione é pari a 1, é facile capire che le prestazioni in termini di SER e BER per un sistema ASK M-ario coincidono

con quelle di un sistema PAM. In particolare continua a valere che aumentando la cardinalitá M dell'alfabeto si ha una diminuzione dell'efficenza energetica a favore di un aumento in quella spettrale, a paritá di M l'efficenza spettrale del sistema ASK é la metá di quella del corrispondente sistema PAM.

11.7 Modulazione Quadrature Amplitude Modulation - QAM

In questo tipo di modulazione, la cardinalitá M della costellazione é una potenza di 4, e i simboli $\{a_i\}$ e $\{b_i\}$ vengono generati da due mappe PAM a \sqrt{M} livelli che operano indipendentemente su bit diversi.

Figure 142: Modulatore QAM

come possiamo vedere in figura i bit $\{d_n\}$ entrano in un convertitore Serie/Parallelo (S/P) che divide il flusso in due sottoflussi distinti. Ciascun sottoflusso entra in un mappatore PAM a \sqrt{M} livelli con alfabeto $\mathcal{A} = \{\pm 1, \pm 3, \dots, \pm (\sqrt{M} - 1)\}$ da cui escono i simboli $\{a_i\}$ e $\{b_i\}$, che vengono poi usati per generare i segnali PAM $I_{(t)}$ e $Q_{(t)}$. Il segnale QAM equivale a una coppia di segnali PAM con simboli indipendenti trasmessi contemporaneamente sul canale mediante due oscillazioni in quadratura. Nel caso di mappe PAM bianrie si ha un segnale 4-QAM aventi seguente costellazione

Figure 143: Costellazione QAM

in cui a ciascun simbolo $c_i = a_i + jb_i$ é associata una coppia di bit. Se le mappe PAM sono quaternarie si ha un sistema 16-QAM in cui 4 bit vengono

mappati su di un simbolo complesso c_i , in tal caso la costellazione diventa la seguente

Figure 144: Costellazione 16-QAM

in caso di simboli indipendenti ed equiprobabili, la densitá spettrale di potenza dell'inviluppo complesso é

$$S_{\tilde{s}(f)} = \frac{C_2}{T} \left| G_{T(f)} \right|^2$$

dove

$$C_2 = \mathbb{E}[|c_i|^2] = \frac{2}{3}(M-1)$$

é la potenza media dei simboli trasmessi. Possiamo calcolare l'energia media per simbolo trasmesso

$$E_s = \frac{1}{2}T \int_{-\infty}^{\infty} S_{\tilde{s}(f)} df = \frac{M-1}{3} E_{g_T}$$

con E_{g_T} energia di $g_{T(t)}$. Qualora $g_{T(t)}$ sia un impulso a radice di coseno rialzato, l'efficenza spettrale del sistema QAM diventa

$$\eta_{sp} = \frac{log_2(M)}{1+\alpha}$$

ed é uguale a quella di ciascuno dei segnali PAM presenti sul ramo $I_{(t)}$ e sul ramo $Q_{(t)}$ del trasmettitore. Il ricevitore é costituito da un demodulatore I/Q seguito da due ricevitori per segnali PAM

Figure 145: Ricevitore QAM

Come possiamo vedere la decisione non é presa sul simbolo complesso c_k , ma sui simboli a_k e b_k in modo indipendente mediante un decisore PAM a \sqrt{M} livelli. Possiamo anche rappresentare il sistema nel suo equivalente in banda base nel caso sia presente un errore di fase ϕ durante la demodulazione I/Q

Figure 146: Equivalente in banda base ricevitore QAM

In tal caso, assumendo l'assenza di ISI, il campione in uscita dal filtro di ricezione $\acute{\rm e}$

formula

con le componenti

 x_c

 x_s

come si vede sul campione $x_{c[k]}$ é presente l'interferenza dovuta al simbolo b_k , mentre su $x_{x[k]}$ é presente l'interferenza dovuta al simbolo a_k . É quindi necessario effettuare una buona sincronizzazione, perché altrimenti sui campioni $x_{c[k]}$ e $x_{s[k]}$ avremo interferenza nonostante sia rispettata la condizione di Nyquist per l'annullamento dell'ISI. L'errore di fase ϕ ha l'effetto di ruotare il campione ricevuto $\tilde{x}_{[k]}$, con il rischio di portare $\tilde{x}_{[k]}$ fuori dalla zona di decisione relativa al simbolo trasmesso. In figura mostra le zone di decisione per una 4-QAM e 16-QAM

per quanto riguarda la costellazione 4-QAM, le zone di decisione sono i 4 quadranti del piano complesso, mentre la costellazione 16-QAM si ha una griglia di quadranti 4x4. La costellazione 16-QAM é piu sensibile all'errore di fase rispetto alla costellazione 4-QAM. Per portare un simbolo fuori dalla propria zona di decisione (in assenza di rumore) occorre una rotazione di 45° per un

sistema 4-QAM, mentre basta una rotazione di meno di 20° per un sistema 16-QAM.

Nell'ipotesi di assenza di ISI e di perfetto sincronismo, le prestazioni di un sistema QAM in termini di BER sono perfettamente analoghe a quelli di un sistema PAM a \sqrt{M} livelli che costituiscono il segnale QAM. In presenza di codifica di GRAY, la BER é espressa approsimativamente da

$$BER \simeq \frac{4(\sqrt{M}-1)}{\sqrt{M}log_2(M)}Q\left(\sqrt{\frac{3log_2(M)}{M-1}\frac{E_d}{N_0}}\right)$$

Possiamo pertanto concludere che il sistema QAM ha stessa efficenza energetica e stessa efficenza spettrale di due segnali PAM a \sqrt{M} livelli che siano trasmessi sul ramo $I_{(t)}$ e $Q_{(t)}$. Rispetto al sistema ASK, ha la stessa efficenza energetica, ma efficenza spettrale doppia in quanto il segnale QAM é costituito da due segnali ASK modulati con frequenze portanti in quadratura e trasmessi sulla stessa banda.

11.8 Modulazione Phase Shift Keyring - PSK

11.8.1 Prestazioni di un sistema PSK

12 Teoria Dei Codici

12.1 Introduzione

Ci concentriamo adesso sul trattamento dell'informazione per poterla trasmettere. I messaggi che trasmettiamo possono essere codificati per vari motivi:

- Compressione: Lossy: con perdita dell'informazione Lossless: minima perdita dell'informazione Comprimere l'informazione in elimenando ridondanza e salvando spazio di memoria e banda.
- Crittografia: per nascondere il messaggio ad utenti in ascolto sul canale che non siano il destinatario.
- Rivelazione o correzione di errore: vieen aggiunta ridondanza ad hoc per aumentare l'affidabilitá del messaggio trasmesso. Si utilizzano checksum o Reed-Solomon(RS)

Capacitá del canale La capacitá del canale C indica la massima quantitá d'informazione che puó essere trasmessain maniera affidabile su di un dato canale. La capacitá dipende dalla banda B del canale e dal rapporto segnale rumore (signal-to-noise ratio, SNR):

$$C = B \log(1 + SNR)$$

Canale Gaussiano Il canale Gaussiano puó essere modellato come Binary Symmetric Channel (BSC) con probabilitá di errore p. Assumiamo gli errori tra loro indipendenti $(p_{(a,b)} = p_{(a)} \cdot p_{(b)})$:

Figure 147: Sistema di trasmissione BSC

 $E_{(x)}$: Funzione di codifica

 $D_{(x)}$: Funzione di decodifica

 $E_{(m)}$: Bit dell'informazione codificati

 $y':E_{(m)}+e\to \text{Informazioni con errore del canale}$

 $m = D_{(y')}$: Informazione decodificata

Il canale é chiamato simmetrico perché ho la stessa probabilitá errore sulla trasmissione di uno dei due bit. Se X é il bit inviato e Y quello ricevuto allora il canale é caratterizzato dalle probabilitá:

$$P(Y = 0|X = 0) = 1 - p$$

$$P(Y=0|X=1) = p$$

$$P(Y=1|X=0) = p$$

$$P(Y = 1|X = 1) = 1 - p$$

Assumiamo che $0 \le p \le \frac{1}{2}$, se avessimo $p > \frac{1}{2}$ il ricevitore potrebbe scambiare l'informazione ricevuta (Quando riceve un 1 lo interpreta come 0 e viceversa) e ottenere un canale con probabilitá $1 - p \le \frac{1}{2}$.

Nel corso useremo delle simbologie diverse:

Figure 148: Sistema di trasmissione BSC

u: Informazione

x: Parole di Codice

e: Errore del Canale

 $y: x + e \rightarrow$ Informazioni con errore del canale

 $\stackrel{\wedge}{x}$: Informazione decodificata

Probabilitá di errore BSC La probabilitá, per una trasmissione BSC, di sbagliare t bit in una parola di n bit:

$$p_{(t,n)} = \binom{n}{t} p^t (1-p)^{(n-t)}$$

dove il coefficente binomiale:

$$\binom{n}{t} = \frac{n!}{t!(n-t)!}$$

indica tutte le possibili combinazioni di errori di t bit su n bit.

Tassonomia dei codici

- Codici lineari
 - Codici a blocco
 - Codici convoluzionali
- Definizione di un codice a blocco:

Rate del Codice :

$$R = \frac{k}{n}$$

La condizione é che n>k senon fosse cosí avrei perdita d'informazione, da k bit passo a n aggiungendo ridondanza e codificando i miei dati. Possiamo quindi stimare il valore tipico di R

$$R = \frac{k}{n} < 1$$

- Rivelazione di errore: Consiste nella capacità di scoprire la presenza di errori causati dal rumore o da altri fenomeni deterioranti durante una trasmissione di dati (es. tramite il bit di paritá).
- Correzione di errore: Consiste invece nell'ulteriore abilità di ricostruire i dati originali, eliminando gli errori occorsi durante la trasmissione. Vi sono due differenti schemi di base per la progettazione della codifica di canale e del protocollo per un sistema che corregge gli errori:
 - ??Automatic repeat-request (ARQ): Il mittente invia i dati ed anche un codice a rilevazione d'errore, che sarà utilizzato in ricezione per individuare gli eventuali errori, ed in tal caso chiedere la ritrasmissione dei dati corrotti. In molti casi la richiesta è implicita; il destinatario invia un acknowledgement (ACK) di corretta ricezione dei dati, ed il mittente re-invia solo quei dati per i quali non ha ricevuto, entro un prefissato tempo limite (timeout), il corrispondente ACK.

- ??Forward Error Correction (FEC): Il mittente codifica i dati con un codice a correzione d'errore (error correction code, ECC) ed invia il messaggio codificato. Il destinatario non invia mai alcun messaggio verso il mittente; esso decodifica ciò che riceve nella maniera più simile possibile a quella di un certo insieme prefissato di parole accettabili. Tali codici sono realizzati in modo tale che dovrebbe occorrere una quantità "irragionevole" di errori nei dati, affinché il destinatario decodifichi erroneamente, ottenendo finalmente dei dati diversi da quelli effettivamente inviatigli.

In generale un codice a blocco che ha rate $\frac{k}{n}$ mappa k bit su n bit usando 2^k parole di codice di dimensione n

12.1.1 Esempio codici a blocco: codici a ripetizione

É un esempio di codice a correzione d'errore: il funzionamento si basa sulal ripetizione dell'informazione piú volte. Il destinatario si accorge di un errore di trasmissione poiché il flusso di dati ricevuto non è la ripetizione di un singolo messaggio e, inoltre, il destinatario può recuperare il messaggio originale guardando il messaggio ricevuto nel flusso di dati che si verifica più spesso.

Nel caso di un codice binario di ripetizione, esistono due parole in codice tutte uno e tutti zeri - che hanno una lunghezza n. Pertanto, la distanza minima di Hamming (12.2.5) del codice è uguale alla sua lunghezza. Ciò conferisce al codice di ripetizione, con $R=\frac{1}{n}$,una capacità di rivelazione di errori pari a n-1 e correzione degli errori (cioè correggerà fino agli errori in qualsiasi parola del codice) di $\frac{n-1}{2}$ per n dispari(12.1). Esempio:

 $R = \frac{1}{3} \rightarrow \text{ha solo 2 parole di codice:}$

$$u = 0 \rightarrow x = [000]$$

$$u = 1 \rightarrow x = [111]$$

Il ricevitore effettua una decodifica a maggioranza: decide per il bit che comprare piú volte della parola ricevuta.

$$y = [000] \rightarrow \hat{x} = [000] \rightarrow \hat{u} = 0$$

$$y = [010] \rightarrow \hat{x} = [000] \rightarrow \hat{u} = 0$$

$$y = [101] \rightarrow \hat{x} = [111] \rightarrow \hat{u} = 1$$

Evento errore: l'evento errore per un codice a correzione di errore consiste nel non essere in grado di correggere tutti gli errori introdotti dal canale. Se la probabilità di errore sul bit $p_{e,b}$ é piccola, la probabilità di errore $p_{e,W}$ per il codice puó essere approssimata dal primo evento che determina la ricezione errata (nel caso dei codici a ripetizione a $R = \frac{1}{3}$ si verifichino 2 errori).

•
$$R = \frac{1}{3}$$

- Se
$$p_{e,b} = 0.1 \Rightarrow p_{e,W} \approx 2.7 \cdot 10^{-2}$$

- Se $p_{e,b} = 0.01 \Rightarrow p_{e,W} \approx 2.97 \cdot 10^{-4}$

- $R = \frac{1}{5}$
 - Se $p_{eh} = 0.1 \Rightarrow p_{eW} \approx 8.1 \cdot 10^{-3}$
 - Se $p_{e,b}=0.01 \Rightarrow p_{e,W}\approx 9.8 \cdot 10^{-6},$ Sviluppiamo i calcoli come esempio:

 $P_r\{\text{codice }R=rac{1}{5} \text{ non riesce a correggere gli errori introdotti dal canale}\}$:

$$\begin{split} P_r &= \sum_{t=3}^5 \binom{5}{t} p^t (1-p)^{5-t}, \ \ p = 10^{-2} \\ P_r &\{ \text{3 errori su 5} \} = \binom{5}{3} p^3 (1-p)^{5-3} = 10 \cdot 10^{-6} (0.99)^2 = 9.8 \cdot 10^{-6} \\ P_r &\{ \text{3 errori su 5} \} = \binom{5}{4} p^4 (1-p)^{5-4} = 5 \cdot 10^{-8} (0.99) = 5 \cdot 10^{-8} \\ P_r &\{ \text{3 errori su 5} \} = \binom{5}{5} p^5 (1-p)^{5-5} = 1 \cdot 10^{-10} = 10^{-10} \end{split}$$

12.1.2 Esempio codici a blocco: codici a controllo di paritá

Il bit di parità è un codice di controllo d'errore, utilizzato nei calcolatori per prevenire errori nella trasmissione o nella memorizzazione dei dati. Tale codice prevede l'aggiunta di un bit ridondante ai dati, calcolato a seconda che il numero di bit che valgono 1 sia pari o dispari. Ne esistono quindi 2 varitá: bit di paritá pari e bit di paritá dispari. Quando si usa il bit di paritá pari si aggiunge un bit con valore 1 se nella parola inviata il numero di occorrenze di "1" é dispari(portando il numero di occorrenze di "1" a una quantitá pari). Quando si usa il bit di paritá dispari si aggiunge un bit con valore 1 se nella parola inviata il numero di occorrenze di "1" é pari (portando il numero di occorrenze di "1" a una quantitá dispari).

Il codice ha $R = \frac{\hat{k}}{(k+1)}$: k bit informativi piú il bit di paritá.

Rilevazione dell'errore: La rilevazione d'errore deriva dalla discordanza del numero di occorrenze di "1", eseguendo lo XOR bit a bit, nel caso del bit di paritá pari, se il risultato é 0 non sono avvenuti errori, viceversa se ho un risultato uguale a 1 posso dire che cé stato uno o una quantitá dispari di errori nella trasmissione, questo lo rende solo un codice a rilevazione d'errore e non un codice a correzione d'errore.

Esempio: Trasmetto parole di 11bit con rate $R_b=10Mb/s$ e probabilitá di errore sul bit trasmesso $p_{e,b}=10^{-8}$: • Senza controllo di paritá é sufficiente che sia sbagliato anche un solo bit per sbagliare tutta la parola:

$$p_{e,W} = \sum_{j=1}^{11} {11 \choose j} p_{e,b}^j (1 - p_{e,b})^{11-j} = 11 p_{e,b} (1 - p_{e,b})^{10} \simeq 11 p_{e,b}$$

ed il rate di parole sbagliate al secondo é:

$$R_{e,W} = \frac{R_b}{11} \cdot p_{e,W} \simeq \frac{10^7}{11} \cdot 11 p_{e,b} = 0.1 \frac{w}{s}$$

• Aggiungendo un bit di paritá, la parola diventa di 12 bit e sbaglio quando faccio almeno 2 errori, il singolo errore viene corretto chiedendo nuovamente la trasmissione del dato:

$$p_{e,W} = \sum_{j=2}^{12} {12 \choose j} p_{e,b}^{j} (1 - p_{e,b})^{12-j} = 66 p_{e,b}^{2} (1 - p_{e,b})^{10} \simeq 66 p_{e,b}^{2}$$

ed il rate (frequenza) di parole sbagliate al secondo é:

$$R_{e,W} = \frac{R_b}{12} \cdot p_{e,W} \simeq \frac{10^7}{12} \cdot 66p_{e,b}^2 = 5.5 \cdot 10^{-9} \frac{w}{s}$$

possiamo anche calcolare il periodo $T_{e,W}=\frac{1}{R_{e,W}}=1.82\cdot 10^8 s$ che é una parola ogni sei anni circa.

12.1.3 Esempio codici a blocco: codice ISBN

Il codice International Standard Book Number (ISBN) é un codice a controllo di paritá per un alfabeto di simboli nonbinari. Ad ogni libro é assegnata una parola di codice di lunghezza n=10 cifre in base decimale. Le prime 9 cifre identificano il libro, la decima é quella di controllo di paritá cosí calcolata:

1. Si calcola la grandezza z = mod(S, 11) con

$$S = \sum_{j=1}^{9} (11 - j)x_{(j)}$$

2. La cifra di controllo di aritá é il complemento a 11 di z:

$$x_{(10)} = mod(11 - z, 11)$$

E solo per la cifra di controllo di paritá se $x_{(10)}=10$ si sostituisce con $x_{(10)}=X$

Quando un dispositivo legge il codice lo verifica come segue:

1. Moltiplica ogni cifra per il peso della posizione della stessa cifra e calcola mod(S',11) con

$$S' = \sum_{j=1}^{10} (11 - j) y_{(j)}$$

2. Assumendo che non ci siano errori su $x_{(10)} = |11 - z|_{11}$, si ha:

$$mod(S', 11) = mod \left(\sum_{j=1}^{9} (11 - j) y_{(j)} + mod(11 - z, 11), 11 \right)$$

$$= mod \left(\sum_{j=1}^{9} (11 - j) y_{(j)} + \left(11 - \sum_{j=1}^{9} (11 - j) x_{(j)} \right), 11 \right)$$

$$= mod \left(\sum_{j=1}^{9} (11 - j) (y_{(j)} - x_{(j)}), 11 \right)$$

$$(1)$$

Se non ci sono errori si ha y = x e quindi il mod(S', 11) = 0

Rivalazione degli errori: Il codice é in grado di rivelare tutti i singoli errori: sia $e_{(k)}$ l'errore in posizione $k,y_{(k)}=x_{(k)}+e_{(k)}$:

$$mod(S', 11) = mod((y_{(k)} - x_{(k)})(11 - k), 11) + mod(e_{(k)}(11 - k), 11) \neq 0$$

Il codice é in grado di rivelare tutti i casi in cui ci sia uno scambio di 2 cifre del codice. Siano k_1 e k_2 le 2 posizioni scambiate:

$$mod(S', 11) = mod ((y_{(k_1)} - x_{(k_1)})(11 - k_1) + (y_{(k_2)} - x_{(k_2)})(11 - k_2), 11)$$

$$= mod ((x_{(k_2)} - x_{(k_1)})(11 - k_1) + (x_{(k_1)} - x_{(k_2)})(11 - k_2), 11)$$

$$= mod ((x_{(k_2)} - x_{(k_1)})(k_2 - k_1), 11) \neq 0$$

Esempi:

• Senza errore:

$$\begin{split} ISBN &= 01 - 333 - 5485 - 7 \\ |S'|_{11} &= 0 \cdot 10 + 1 \cdot 9 + 3 \cdot 8 + 3 \cdot 7 + 3 \cdot 6 + 5 \cdot 5 + 4 \cdot 4 + 8 \cdot 3 + 5 \cdot 2 + 7 \cdot 1 \\ |S'|_{11} &= |154|_{11} = 0 \end{split}$$

Il codice é corretto

• Con errore: Scambio le cifre

$$\begin{split} ISBN &= 01 - 333 - 5458 - 7 \\ |S'|_{11} &= 0 \cdot 10 + 1 \cdot 9 + 3 \cdot 8 + 3 \cdot 7 + 3 \cdot 6 + 5 \cdot 5 + 4 \cdot 4 + 5 \cdot 3 + 8 \cdot 2 + 7 \cdot 1 \\ |S'|_{11} &= |151|_{11} = 8 \neq 0 \end{split}$$

Il codice non é corretto

12.2 Codici a blocco

12.2.1 Introduzione ai codici lineari

Campo: un campo é una struttura composta da un insieme non vuoto F e da due operazioni binarie interne: $\forall \alpha, \beta, \gamma \in F$:

• Somma (XOR):

_

$$\alpha + \beta = \theta, \theta \in F$$

- Associativa:

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

- Commutativa:

$$\alpha + \beta = \beta + \alpha$$

- Elemento Neutro:

$$0 \in F, \alpha + 0 = \alpha, \alpha - \alpha = 0$$

• Prodotto (AND):

_

$$\alpha \cdot \beta = \theta, \theta \in F$$

- Associativa:

$$(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

- Commutativa:

$$\alpha \cdot \beta = \beta \cdot \alpha$$

- Distributiva:

$$(\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma$$

- Elemento Neutro:

$$1 \in F, \alpha \cdot 1 = \alpha, \forall \alpha \neq 0 \rightarrow \alpha \cdot \alpha^{-1} = 0$$

12.2.2 Campi di Galois

Un campo finito, detto anche campo di Galois, é un campo con un numero finito q di elementi. Il numero di elementi di definisce la categoria del campo: GF(2) é il campo definito su $\{0,1\}$ con somma modulo 2 (XOR) e prodotto modulo 2 (AND). Definito lo spazio GF(2) si puó costruire lo spazio vettoriale $\mathcal{V}_n = GF(2)^2$, lo spazio di tutti i possibili 2^n vettori di n cifre binarie su cui valgono le operazioni definite per GF(2).

12.2.3 Codici a blocco lineari su GF(2)

Sia $u = [u_1, \ldots, u_k]$ una generica parola di k cifre binarie. Il codice a blocco lineare $\mathcal{C}(k,n) \subset \mathcal{V}_n$ é l'insieme delle 2^k parole $x = [x_1, \ldots, x_n]$ di n cifre binarie ottenute con la trasformazione lineare:

$$x = uG$$

Dove G é la matrice generatrice del codice e ha dimensione $k \times n$ di cifre binarie con n > k poiché al massimo aggiungo informazioni per la trasmissione, per la correzione o rivelazione d'errore.

Siano $g_i, i = [1, ..., k]$, le righe di G, x é la combinazione lineare delle righe g_i :

$$x = \sum_{i=1}^{k} u_i g_i$$

Per avere 2^k parole di codice distinte é necessario che G abbia rango k: le righe di G devono essere linearmente indipendenti e costituiscono una base per il sottospazio vettoriale $\mathcal{C} \subset \mathcal{V}_n$.

12.2.4 Propietá dei codici a blocco lineari

Le propietá derivano maggiormente dalla pripietá di linearit; a dei codici:

- Ogni parola di codice é una combinazione lineare di righe della matrice generatrice.
- Il codice a blocchi é costituito da tutte le possibili combinazioni delle righe della matrice generatrice.
- La somma di due parle di codice é ancora una parola di codice.
- $\bullet\,$ La n-upla di tutti zeri é sempre una parola di codice.
- Se x é una parola di codice, anche -x é una parol di codice.

12.2.5 Distanza di Hamming

La distanza di Hamming tra due vettori, o stringhe, $d(x_1, x_2)$ di n elementi é il nuemro di posizioni in cui le due parole sono diverse tra loro. Esempi:

- La distanza di Hamming tra 10111101 e 1001001 è 2.
- La distanza di Hamming tra 2143896 e 2233796 è 3.

Peso di Hamming: Il peso di Hamming,w(x), di una stringa i lunghezza n é la sua distanza di Hamming dal vettore di n zeri, $x_0 \in \mathcal{V}_n$ é:

$$w(x_0) = d(x_0, 0_n)$$

Distanza minima: La distanza minima di un codice \mathcal{C} é la minima distanza di Hamming calcolata fra tutte le possibili parole che appartengono a \mathcal{C} .

$$d_{min}(\mathcal{C}) = \min_{x_1, x_2 \in \mathcal{C}} d(x_1, x_2)$$

Per i codici lineari vale che ciascuna parola di codice ha lo stesso insieme di distanze dalle altre parole di codice. La distanza minima di un codice si puó calcolare a partire da qualsiasi parola di codice. La distanza di Hamming é una metrica:

- •
- •
- •
- •

12.2.6 Codici a blocco in forma sistematica

Quando il codice é in forma sistematica la matrice generatrice del codice ha la seguente forma:

$$G = [I_k, P]$$

$$G \in k \times n, \ I \in k \times k, \ P \in k \times (n-k)$$

dove la matrice P é la matrice di paritá, il suo contenuto dipende da quale algoritmo di paritá viene scelto.

Esempio Codice a ripetizione: $R = \frac{1}{3}, k = 1, n = 3$

Bit i ingresso	Parola codificata
0	[000]
1	[111]

La matrice generatire del codice é G = [111], e la distanza minima $d_{min} = 3$

Esempio Codice a controllo di paritá: $R = \frac{7}{8}$, k = 7, n = 8, ogni 7 bit ne aggiunge uno di controllo di paritá, 1 se il numero di "1" é diapari, 0 se il numero di "1" é diapari.

La matrice generatirce del codice:

$$G = [I_7, 1_7]$$

La distanza minima é $d_{min} = 2$, se cambio uno dei 7 bit della parola cambio automaticamente il bit di paritá, quindi cambiare 1 bit in realtá ne cambia 2.

Il prodotto $u \cdot 1_7 = \sum_{i=1}^7 u_i$, puó essere scritto come una soma modulo 2, vale 0 se il numero di occorrenze di "1" é pari e 1 altrimenti. Non facciamo altro che calcolare il bit di paritá della parola u.

Definizione: Due codici lineari $C_1(k, n)$ e $C_2(k, n)$ in GF(2) sono equivalenti se uno é ottenuto dall'altro attraverso una permutazione delle posizioni del codice.

Teorema: Due matrici generatrici G_1 e G_1 in GF(2) generano due codici equivalenti se una puó essere ottenuta dall'altra da una sequenza di operazioni come:

- Permutazione delle righe.
- Combinazione lineare delle righe.
- Permutazione delle colonne.

Teorema: Qualsiasi codice lineare a blocchi é equivalente ad un codice in forma sistematica.

Propietá degli spazi:

• Dato il sottospazio $\mathcal{C} \subset \mathcal{V}_n$ di dimensione k, esiste un sottospazio ortogonale (null space) $\mathcal{C}^{\perp} \subset \mathcal{V}_n$ di dimensione n-k definito da una matrice $H \in (n-k) \times n$:

$$GH^T = 0_{n-k}$$

• La base di \mathcal{C}^{\perp} é costituita dalle n-k righe della matrice H, per cui ogni elemento $t \in \mathcal{C}^{\perp}$ puó essere rappresentato:

$$t = vH = \sum_{i=1}^{n-k} v_i h_i$$

• Per ogni $x \in \mathcal{C}$ e per ogni $t \in \mathcal{C}^{\perp}$ si ha:

$$xt^T = uGH^Tv^T = 0$$

12.2.7 Matrice di controllo di paritá

La matrice H é la matrice di controllo di paritá del codice. Per costruzione $\forall x \in \mathcal{C}$ vale:

$$xH^T = uGH^T = 0$$
$$H \in (n - k) \times n$$

La matrice H non é unica, ma se il codice é sistematico posso ricavarla in un'altra forma:

$$H = [P^{T}, I_{n-k}] = 0$$

 $H \in (n-k) \times n, \ I \in (n-k) \times (n-k), \ P^{T} \in (n-k) \times k$

Se fosse $\neq 0$ ció che é stato ricevuto non é una parola di codice.

Esempio codice a ripetizione e controllo di paritá: $R = \frac{1}{3}, \ k = 1, \ n = 3, \ n - k = 2$ ho la matrice a controllo di paritá:

$$H = [P^T, I_2] = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Per un codice con $R=\frac{7}{8},\ k=7,\ n=8,\ n-k=1$ la matrice a controllo di paritá:

$$H = [P^T, I_1] = 1_8^T$$

12.2.8 Propietá dei codici a blocco

Teorema: La distanza minima del codice a blocco C(k, n) si puó calcolare come il peso di Hamming minimo tra tutte le parole di codice:

$$\begin{aligned} d_{min}(\mathcal{C}) &= \min_{x_i, x_j \in \mathcal{C}} d_H(x_i, x_j) = \min_{x_i, x_j \in \mathcal{C}} d_H(x_i + x_j, x_j + x_j) \\ &= \min_{x_i, x_j \in \mathcal{C}} d_H(x_i + x_j, 0_{1,n}) \overset{[x_i + x_j \in \mathcal{C}]}{\Rightarrow} \min_{x_i \in \mathcal{C}} w(x_i) \end{aligned}$$

Capacitá di rivelare errori (Error Detection): Su un canale BSC senza memoria (??), la n - upla y a valle del decisore puó essere rappresentata:

$$y = x + e$$

Dove e é il vettore di errori introdotto dal canale, se il canale non introduce errori: $e=0_{1,n}$ Sia x la parola di codice trasmessa e y=x+e la corrispondente sequenza di n bit ricevuta. supponiamo che il canale introduca un numero di errori:w(e)>0, si dice:

- Errore Rivelabile: se y non é una parola di codice, $y \notin C(k, n)$
- Errore Non Rivelabile: se y é una parola di codice ma non quella trasmessa, $w(e) \ge d_{min}$

Teorema: Il codice C(k, n) é in grado di rivelare con certezza fino a $d_{min}-1$ errori.

- Se $d(x,y) < d_{min}$: y non puó essere una parola di codice, altrimenti vorrebbe dire cge esistono due parole di codice la cui distanza é minore di d_{min} .
- Se $d(x,y) = d_{min}$: esiste almeno una parola di codice $c \in C(k,n)$, $c \neq x$ tale che $d(x,c) = d_{min}$, se y = c l'errore non puó essere rivelato.

Strategia di decodifica a massima verosomiglianza: Sia y il vettore ricevuto a seguito della trasmissione su BSC, la strategia di decodifica a massima verosomiglianza (ML, maximum likelihood) consiste nel trovare il vettore \hat{x} che, tra tutte le 2^k possibili parole di codice x, massimizza la probabilità condizionata P(y|x):

$$\hat{x} = \arg\max_{x \in \mathcal{C}} P(y|x)$$

Poiché gli eventi di errore sono indipendenti da bit a bit, posso riscrivere la probabilitá condizionata come il prodotto delle probabilitá condizionate ottenute per ciascun bit trasmesso:

$$P(y|x) = \prod_{\ell=1}^{n} P(y_{\ell}|x_{\ell})$$

Lavorando in GF(2) la probabilitá $P(y_{\ell}|x_{\ell})$ puó assumere solo 2 valori:

$$P(y_{\ell}|x_{\ell}) = \begin{cases} 1 - p & \text{se } P(y_{\ell} = x_{\ell}|x_{\ell}) \\ p & \text{se } P(y_{\ell} \neq x_{\ell}|x_{\ell}) \end{cases}$$

Osservazione: La distanza di Hamming $d_H(x,y)$ misura il numero di posizione diverse tra x e y, quindi $n-d_H(x,y)$ minura il numero di posizioni uguali tra x e y.

La probabilitá P(y|x) si calcola:

$$P(y|x) = p^{d_H(x,y)} (1-p)^{n-d_H(x,y)} = (1-p)^n \left(\frac{p}{1-p}\right)^{d_H(x,y)}$$

Mi interessa scegliere un x che massimizza $\left(\frac{p}{1-p}\right)^{d_H(x,y)}$, é un valore <1:

- RICONTROLLA LEIZONE Se ho la $d_H(x,y)$ piccola ho la probabilitá minore di errore.
- Se ho la $d_H(x,y)$ alta ho la probabilitá di errore alta.

Decisione a massima verosomiglianza: La parola di codice decisa \hat{x} é quella che minimizza la distanza dalla parola y ricevuta:

$$\hat{x} = \arg \max_{x \in \mathcal{C}} P(y|x) = \arg \min_{x \in \mathcal{C}} d_H(y, x)$$

Scelgo x tale che mi dia la minima distanza ma RICONtROLLA LEIZONE

Ricevitore ML ottimo: Il ricevitore ML ottimo é il ricevitore a distanza minima, il ricevitore che associa alla sequenza di n bit ricevuta y, la parola di codice x che minimizza la $d_H(y,x)$.

Ricevitore ML error correction: Il ricevitore ML é in grado di correggere en successo tutti quegli errori e per cui la parola ricevuta y=x+e é comunque piú vicina alla parola trasmessa x che a qualsiasi altra parola del codice.

Per ogni vettore $v \in \mathcal{V}_n$ e un reggio r esiste una "sfera" di raggio r i cui elementi sono tutti quei vettori in \mathcal{V}_n che hanno distanza di Hamming da v minore o uguale a r

Se adottiamo un ricevitore ML, il numero massimo di errori che il codice C(k,n) é in grado di correggere é il massimo raggio t per cui le sfere centrate nelle parole di codice di C(k,n) sono tutte tra loro disgiunte.

Capacitá di correggere errori (Error Correction):

Teorema: Un codice lineare a blocco puó correggere fino a $t_{max} = \left\lfloor \frac{d_{min}-1}{2} \right\rfloor$ errori: $2t_{max}+1 \leq d_{min} \leq 2t_{max}+2$.

La condizione per cui le sfere di raggio t che circondano le parole di codice siano disgiunte é che $2t_{max} < d_{min} \Rightarrow t_{max} < \frac{d_{min}}{2}$. Altrimenti se fosse $2t_{max} \ge d_{min}$ ci sarebbero almeno die parole x_1 e x_2 la cui distanza $d_H(x_1, x_2) = d_{min} < 2t_{max}$ e le que sfere di raggio t avrebbero almeno un unto in comune.

Consideriamo il codice C(k,n) che ha una certa d_{min} e t_{max} tale che $2t_{max}+1 \leq d_{min}$. Sia $x \in C(k,n)$ la parola trasmessa, y=x+e la corrispondente sequenza di n bit ricevuta e $c \in C(k,n)$ un'altra generica parola di codice. Grazie alla disuguaglianza triangolare ho:

$$d_H(x,y) + d_H(c,y) \ge d_H(x,c) \Rightarrow d_H(c,y) \le d_H(x,c) - d_H(x,y)$$

per ipotesi ho anche:

$$d_H(x,c) \ge d_{min} \ge 2t_{max} + 1$$

Supponiamo che il canale introduca un certo numero di errori $t \le t_{max}$, cosí da avere $d_H(x,y) = t$:

$$d_H(c, y) \ge 2t_{max} + 1 - t > t_{max} \ge t = d_H(x, y)$$

12.3 Codici di Hamming

I codici di Hamming $C_H(m)$ sono definiti a partire da un parametro: $m \geq 2$

$$n = 2^m - 1, \ k = 2^m - m - 1 = n - m$$

Matrice di controllo di paritá: per definizione la matrice $H \in (n-k) \times n$, ma per i codici di Hamming la matrice H ha dimensione: $H \in m \times (2^m - 1)$.

Matrice di paritá: Per un codice di Hamming sistematico la matrice di parità $P \in k \times m$ viene costruita cosí che le colonne di $H = [P^T, I_{n-k}]$ siano tutte le possibili $2^m - 1$ combinazioni di m bit (esclusa la n - upla di tutti 0)

12.3.1 Il codice $C_H(2)$

Il codice a ripetizione $R=\frac{1}{3}$ con $m=2 \Rightarrow n=3, \ k=1$ ha come matrice di controllo di paritá H:

$$H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Che é la matrice corrispondente a un codice di Hamming $C_H(2)$, poiché rappresenta tutte le possibili combinazioni di 2 bit

12.3.2 Il codice $C_H(3)$

$$m = 3, \ n = 7, \ k = 4, \ R = \frac{4}{7}$$

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Posso ricavare la matrice generatrice G scrivendo la matrice H come se l'avessi ottenuta da una matrice $G \in k \times n$ di un codice sistematico (12.2.7):

$$H = [P^T, I_{n-k}] = \begin{bmatrix} 1 & 1 & 0 & 1 & | & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

La cui matrice generatrice con $I \in k \times k$ é:

$$G = [I_k, P] = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & | & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & | & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & | & 1 & 1 & 1 \end{bmatrix}$$

Possiamo vedere come la matrice di paritá faccia conrolli su combinazioni diverse di bit in ingresso p=uP:

$$p_1 = u_1 + u_2 + u_4$$

$$p_2 = u_1 + u_3 + u_4$$

$$p_3 = u_2 + u_3 + u_4$$

Il vettore di uscita dal codificatore sará quindi $x = uG = [u, p_1, p_2, p_3]$, tale matrice di paritá ci permette di aumentare la distanza di Hamming tra le parole

Distanza minima: La distanza minima di un qualsiasi codice di Hamming $\mathcal{C}_H(m)$ é $d_{min}(\mathcal{C}_H(m))=3$. Dimostrazione:

- 1. $d_{min} = \min_{x \in \mathcal{C}} w(x)$
- 2. $x \in \mathcal{C}$ se $xH^T = 0$ e le colonne di H sono tutte le possibili combinazioni dei bit m bit

Perché 3 é il numero minimo di colonne che mi permette di ottenere 0 (2), quindi $d_{min}(\mathcal{C}_H(m)) = 3$.

12.4 Decodifica per codici a blocco

Dato il vettore ricevuto:

$$y = x + e$$

Il decisore ottimo selezione la parola di codice \hat{x} :

$$\hat{x} = \arg \max_{x \in \mathcal{C}} P(y|x) = \arg \min_{x \in \mathcal{C}} d_H(y, x)$$

Per ottenere \hat{x} é necessario fare 2^k confronti tra il vettore ricevuto y e tutte le parole di codice C(k, n), la complessitá cresce esponenzialmente con k.

Un approccio alternativo é quello di osservare il vettore errore e la probabilitá condizionata:

$$y = x + e \Rightarrow x = y + e, \ e = y - x$$

 $P(x|y) = P(x + e|x) = P(e|y + e \in \mathcal{C})$

Posso ottenera la stima di x come:

$$\hat{x} = \arg\max_{x \in \mathcal{C}} P(y|x) = y + \arg\max_{e} P(e|y + e \in \mathcal{C})$$

Invece di stimare \hat{x} si stima il vettore \hat{e} piú probabile

$$\hat{e} = \arg\max_{e} P(e|y + e \in \mathcal{C}) = \arg\max_{e|y + e \in \mathcal{C}} p^{w(e)} (1 - p)^{n - w(e)}$$
$$= \arg\max_{e|y + e \in \mathcal{C}} \left(\frac{1 - p}{p}\right)^{-w(e)} = \arg\min_{e|y + e \in \mathcal{C}} w(e)$$

La decodifica sceglie tra tutti i possibili vettori errore e tali che $y + e \in \mathcal{C}$ quello che ha il peso di Hamming minimo, cioé il minimo numero di errori (Massima Verosomiglianza). Una volta stimato \hat{e} :

$$\hat{x} = y - \hat{e} = y + \hat{e} = x + (\hat{e} + e) = \begin{cases} x & \text{se } \hat{e} = e \\ x_1 \neq x & \text{se } \hat{e} \neq e \end{cases}$$

12.4.1 Coset

Sia C(k,n) un codice a blocco e sia $v \in \mathcal{V}_n$ un vettore di n cifre binarie, si definisce coset di C(k,n) individuato da v l'insieme:

$$C_v = C + v = \{x + v : x \in \mathcal{C}\}$$

12.4.2 Propietá dei coset

- 1. Qualsiasi vettore in \mathcal{V}_n appartiene a un coset di $\mathcal{C}(k,n)$
- 2. Ciascun coset contiene 2^k elementi
- 3. Due coset o sono coincidenti o hanno intersezione nulla
- 4. Ci sono 2^{n-k} coset distinti
- 5. Se v_1 e v_2 appartengono all ostesso coset, $v_1+v_2\in\mathcal{C}(k,n)$ é una parola di codice

Esemplo di coset: Sia $C(2,3) = \{000, 101, 010, 111\}$. I coset di C(2,3):

$$C + 000 = \{000, 101, 010, 111\} = C_0 \tag{1}$$

$$C + 001 = \{001, 100, 011, 110\} = C_1 \tag{2}$$

$$C + 010 = \{010, 111, 000, 101\} = C_0 \tag{3}$$

$$C + 011 = \{011, 110, 001, 100\} = C_1 \tag{4}$$

$$C + 100 = \{100, 001, 110, 011\} = C_1 \tag{5}$$

$$C + 101 = \{101, 000, 111, 010\} = C_0 \tag{6}$$

$$C + 110 = \{110, 011, 100, 001\} = C_1 \tag{7}$$

$$C + 111 = \{111, 010, 101, 000\} = C_0$$
 (8)

Il numero di coset é $2^{n-k} = 2^{3-2} = 2$.

Si possono applicare i coset per la decodifica: y = x + e dalla definizione di coset discende che i vettori e e y appartengono allo stesso coset \mathcal{C}_y e che i coset \mathcal{C}_e e \mathcal{C}_x sono coincidenti. Grazie alla propietá dei coset la somma di qualsiasi elemento di \mathcal{C}_y con y individua una parola di codice. Il vettore e va scelto fre gli elementi di \mathcal{C}_y , la regola di decisione diveta:

$$\hat{e} = \arg\max_{e} \ P(e|y+e \in \mathcal{C}) = \arg\max_{e \in \mathcal{C}_y} \ P(e) = \arg\max_{v \in \mathcal{C}_y} \ w(v)$$

Tra tutti i 2^k possibili vettori di C_y , il principio di massima verosomiglianza dice che devo scegliere quello di peso minimo.

12.4.3 Algoritmo di decodifica

- 1. Avendo ricevuto il vettore y si trova un coset di appartenenza \mathcal{C}_y .
- 2. Si identifica il coset leader, la parola di peso minimo del coset C_y , che é anche la parola di peso minimo del coset di C_e .
- 3. Il coset leader é la stima del vettore di errore \hat{e}

Esempio di decodifica utilizzando i coset: Sia $C(2,4) = \{0000, 1011, 0101, 1110\}$ con $d_{min} = 2$, ho i coset:

$$C + 0000 = \{0000, 1011, 0101, 1110\} \tag{1}$$

$$C + 0001 = \{0001, 1010, 0100, 1111\} \tag{2}$$

$$C + 0010 = \{0010, 1001, 0111, 1100\} \tag{3}$$

$$C + 1000 = \{1000, 0011, 1101, 0110\} \tag{4}$$

Il numero di coset é $2^{n-k} = 2^{4-2} = 4$. Il coset (2) non so quale coset leader scegliere hanno lo stesso peso di Hamming, ci troviamo in questo poiché la d_{min} é molto bassa e ho il 50% di possibilitá di sbagliare se il codice ricevuto capita in questo coset. Decodifichiamo:

- $y = [1101] \Rightarrow y \in (4)$, coset leader: $[1000] \hat{x} = y + 1000 = 0101$
- $y = [1111] \Rightarrow y \in (2)$, coset leader: $[0001] \lor [0100] \ \hat{x} = y + 0001 = 1110$

12.4.4 Decodifica mediante sindrome

Si definisce sindrome di y il vettore s ottenuto dal prodotto di y con la matrice di controllo di paritá:

$$s = yH^T = (x + e)H^T = xH^T + eH^T = eH^T$$

Propietá:

- Tutti i membri di uno stesso coset hanno la stessa sindrome
- $s \in 1 \times (n-k)$
- Le 2^{n-k} sindromi sono associate ai $2^n k$ diversi coset del codice C(k, n)
- Ciascuna sindrome é associata ai 2^k pattern di errore apparteenti allo stesso coset.

Procedura di decodifica:

- 1. Calcola la sindrome $s = yH^T$
- 2. Associa la sindrome al coset leader corrispondente $s \to e_{CL}(s)$
- 3. Corregge l'errore sommando il coset leader alla $n-upla\ y$

La parola \hat{x} é una parola di codice:

$$\hat{x}H^T = (y + e_{CL}(s))H^T = s + s = 0$$

e per costruzione la parola di codice \hat{x} minimizza la distanza di Hamming da y

12.4.5 Decodifica a sindrome: Codici di Hamming m=3

Il codice ha $d_{min}=3$ ed é in grado di correggere esattamente un errore: $t_{max}=\left\lfloor\frac{d_{min}-1}{2}\right\rfloor=1$. Si sceglie la matrice H in maniera che la tabella di decodifica associ alla sindrome il pattern di errore a peso 1 in cui il bit messo a 1 sia nella posizione corrispondente alla conversione della sindrome in decimale.

Sindrome	Coset Leader
[000]	[0000000]
[100]	[1000000]
[010]	[0100000]
[110]	[0010000]
[001]	[0001000]
[101]	[0000100]
[011]	[0000010]
[111]	[0000001]

⁽d) Codice non sistematico

Sindrome	Coset Leader
[000]	[0000000]
[100]	[0000100]
[010]	[0000010]
[110]	[1000000]
[001]	[0000001]
[101]	[0100000]
[011]	[0010000]
[111]	[0001000]

(e) Codice sistematico

12.4.6 Esempio di decodifica

Un codice lineare a blocchi ha la seguente matrice di controllo di parità:

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- 1. Determinare la matrice generatrice:
 - Ci accorgiamo che il codice é in forma sistematica: abbiamo la matrice identica

$$H = \begin{bmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

Allora la forma $H=[P^T,I_{n-k}]$, e la matrice paritá ha forma $G=[I_k,P]$:

$$G = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 1 & 0 \\ 0 & 1 & 0 & | & 0 & 1 & 1 \\ 0 & 0 & 1 & | & 1 & 0 & 1 \end{bmatrix}$$

- 2. Decodificare la parola y=[110110] ed identificare la parola di codice trasmessa:
 - Verifichiamo se é stato introdotto errore, calcoliamo la sindrome $s = yH^T$ e calcoliamone il prodotto in G(2):

$$yH^T = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$$

• Essendo il codice diverso da 0 é stato introdotto un errore, devo trovare la stima dell'errore: y = x + e sia una parola di codice. La sindrome identifica un coset e di conseguenza l'errore a esso associato. Ma mi accorgo che [011] (sindrome) corrisponde a una riga della matrice di controllo di paritá H, quindi posso solezionare la riga moltiplicandola per un vettore riga composto da zeri tranne un uno per la riga che voglio selezionare (questo avrá peso 1):

$$\hat{x} = y + \hat{e} = (y + \hat{e})H^{T} = yH^{T} + \hat{e}H^{T} = s + s = 0$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 0$$

• GLI ELEMENTI DI UN COSET HANNO TUTTI LA STESSA SIN-DROME. Abbiamo quindi

$$\hat{y} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\hat{e} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\hat{x} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$xH^T = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

• Abbiamo decodificato e siamo arrivati a una parola di codice. Evviva! UwU ti meriti un bacino.

Esempio con codici di Hamming:

12.5 Codici Ciclici

Shift Cicliclo: Dato il vettore $v = [v_0, \dots, v_{n-1}] \in \mathcal{V} = G(2)^n$ indichiamo con $v^{(i)}$ il vettore ottenuto da v applicando uno shift ciclico di i posizioni a destra:

$$v^{(i)} = [v_{n-i}, v_{n-i+1}, \dots, v_{n-1}, v_0, v_1, \dots, v_{n-i-1}]$$

12.5.1 Definizione di Codice Cicliclo

Un codice lineare C(k,n) si definisce ciclico se data una generica parola di codice $x \in C(k,n)$ ogni suo shift ciclico $x^{(i)} \in C(k,n)$. Sono codici a correzione d'errore che hanno propietá algebriche che rendono sia la rivelazione che la correzione di errore efficenti.

Esempi - Codici Ciclici:

- $C(2,3) = \{000, 110, 101, 011\}$
- $C(2,4) = \{0000, 1010, 0101, 1111\}$
- C(4,7):

Messaggio	Vettori di Codice	Polinomi di codice
[0000]	[0000000]	$0 = 0 \cdot g_{(D)}$
[1000]	[1101000]	$1 + D + D^3 = 1 \cdot g_{(D)}$
[0100]	[0110100]	$D + D^2 + D^4 = D \cdot g_{(D)}$
[1100]	[1011100]	$1 + D^2 + D^3 + D^4 = (1 + D) \cdot g_{(D)}$
[0010]	[0011010]	$D^2 + D^3 + D^5 = D^2 \cdot g_{(D)}$
[1010]	[1110010]	$1 + D + D^2 + D^5 = (1 + D^2) \cdot g_{(D)}$
[0110]	[0101110]	$D + D^3 + D^4 + D^5 = (D + D^2) \cdot g_{(D)}$
[1110]	[1000110]	$1 + D^4 + D^5 = (1 + D + D^2) \cdot g_{(D)}$
[0001]	[0001101]	$D^3 + D^4 + D^6 = D^3 \cdot g_{(D)}$
[1001]	[1100101]	$1 + D + D^4 + D^6 = (1 + D^3) \cdot g_{(D)}$
[0101]	[0111001]	$D + D^2 + D^3 + D^6 = (D + D^3) \cdot g_{(D)}$
[1101]	[1010001]	$1 + D^2 + D^6 = (1 + D + D^3) \cdot g_{(D)}$
[0011]	[0010111]	$D^2 + D^4 + D^5 + D^6 = (D^2 + D^3) \cdot g_{(D)}$
[1011]	[1111111]	$1 + D + D^2 + D^3 + D^4 + D^5 + D^6 = (1 + D^2 + D^3) \cdot g_{(D)}$
[1111]	[1001011]	$1 + D^3 + D^5 + D^6 = (1 + D + D^2 + D^3) \cdot g_{(D)}$

12.5.2 Rappresentazione algebrica di un codice ciclico

A ciascun vettore $v = [v_0, \dots, v_{n-1}] \in \mathcal{V}$ é possibile associare un polinomo definito in GF(2):

$$v_{(D)} = v_0 + v_1 D + \dots + v_{n-1} D^{n-1}$$

Definizione: se $x_{(D)} = x \in \mathcal{C}(k, n) \Rightarrow$ si dice che $x_{(D)}$ é in $\mathcal{C}(k, n)$

Propietá: Uno *shift ciclico* 12.5 di *i* posizioni del vettore v é equivalente a moltiplicare il polinomio $v_{(D)}$ per D^i modulo $(D^n - 1)$:

$$v^{(i)} \rightleftharpoons \mod \{D^i v_{(D)}, (D^n - 1)\}$$

il modulo tra polinomi é il resto della divisione tra polinomi, il grado quindi sará sempre minore o uguale a n. Fissando i=1 il polinomio diventa:

$$Dv_{(D)} = v_0 D + v_1 D^2 + \dots + v_{n-1} D^n$$

$$\stackrel{\pm v_{n-1}}{=} v_{n-1} + v_0 D + v_1 D^2 + \dots + \underbrace{v_{n-1} D^n - v_{n-1}}_{v_{n-1}(D^n - 1)}$$

$$= v_{n-1} + v_0 D + v_1 D^2 + \dots + v_{n-2} D^{n-1} + v_{n-1}(D^n - 1)$$

facendone il modulo:

$$\mod \{D^i v_{(D)}, (D^n - 1)\} = v_{n-1} + v_0 D + v_1 D^2 + \dots + v_{n-2} D^{n-1} \rightleftharpoons v^{(1)}$$

ho ottenuto il codice shiftato di una posizione, analogamente si puó dimostrare che:

$$D^{i}v_{(D)} = q_{(D)}(D^{n} - 1) + v_{n-i} + v_{0}D + v_{1}D^{2} + \dots + v_{n-i-1}D^{n-1}$$

quindi il modulo ci fornisce lo shift:

$$\mod \{D^i v_{(D)}, (D^n - 1)\} \rightleftarrows v^{(i)}$$

Teorema: Sia $g_{(D)} = g_0 + g_1 D + \cdots + g_r D^r$ il polinomio di grado minimo associato ad una parola di codice ciclico C(k, n) allora: $g_0 = 1$ e $g_{(D)}$ é unico. Dimostrazione:

Supponiamo per assurdo che $g_0 = 0$:

$$g_{(D)} = g_1 D + \dots + g_r D^r = D \left(g_1 + \dots + g_r D^{r-1} \right) = D g'_{(D)}$$

ma questo entra in contraddizione con le ipotesi: $\mathcal{C}(k,n)$ é ciclico e quindi $g'_(D)$ é in $\mathcal{C}(k,n)$ ma il grado di $g'_{(D)}$ é minore di r. Un ragionamento analogo simile si puó fare per $g_r=0$. Supponiamo che esistano due polinomi di grado minimo $g_{1(D)}$ e $g_{2(D)}$ in $\mathcal{C}(k,n)$ allora: $g_{3(D)}=g_{1(D)}g_{2(D)}$ é ancora in $\mathcal{C}(k,n)$ e per quanto visto il grado di $g_{3(D)}$ sarebbe minore di r e questo é impossibile.

12.5.3 Polinomio generatore di un codice ciclico

Il polinomio generatore di un codice ciclico C(k,n) é il polinomio

$$q_{(D)} = 1 + q_1 D + \cdots + D^r$$

non nullo e di grado minimo in C(k, n).

Esempi:

•

$$\mathcal{C}(2,3) = \{000,\underbrace{110}_{1+D},\underbrace{101}_{1+D^2},\underbrace{011}_{D+D^2}\} \rightarrow g_{(D)} = 1+D$$

•

$$\mathcal{C}(2,4) = \{0000,\underbrace{1010}_{1+D^2},\underbrace{0101}_{D+D^2},\underbrace{1111}_{1+D+D^2+D^3}\} \rightarrow g_{(D)} = 1 + D^2$$

• Il codice C(4,7) dalla tabella sopra costruita (12.5.1) scegliamo il polinomio generatore:

$$g_{(D)} = 1 + D + D^3$$

Teorema: Un polinomio $x_{(D)}$ é in $\mathcal{C}(k,n) \Leftrightarrow x_{(D)}$ é un multiplo di $g_{(D)}$. Dimostrazione: Ogni multiplo di $g_{(D)}$ é in $\mathcal{C}(k,n)$. Poiché $\mathcal{C}(k,n)$ é ciclico i polinomi $Dg_{(D)}, D_{(D)}^g, \ldots, D^{n-r-1}g_{(D)}$ sono in $\mathcal{C}(k,n)$ e lo é anche qualsiasi loro combinazione lineare:

$$x_D = u_{(D)}g_{(D)} = u_0g_{(D)} + u_1Dg_{(D)} + \dots + u_{n-r-1}D^{n-r-1}g_{(D)}$$

Ogni polinomio in C(k, n) puó essere espresso come multiplo di $g_{(D)}$. Per assurdo assumiamo che $x_{(D)}$ sia in C(k, n) ma non multiplo di $g_{(D)}$ allora:

$$x_{(D)} = a_{(D)}g_{(D)} + b_{(D)} \Rightarrow b_{(D)} = b_{(D)} - a_{(D)}g_{(D)}$$

poiché sia $x_{(D)}$ che $a_{(D)}g_{(D)}$ appartengono a $\mathcal{C}(k,n)$, per la linearitá del codice anche $b_{(D)}$ é in $\mathcal{C}(k,n)$ ma questo é impossibile perché $b_{(D)}$ essendo il resto della divisione tra $x_{(D)}$ e $g_{(D)}$ é di grado minore di $g_{(D)}$.

Corollario: l'insieme degli n-r polinomi

$$\{g_{(D)}, Dg_{(D)}, \dots, D^{n-r-1}g_{(D)}\}\$$

costituisce una base per C(k, n)

Corollario: Se il polinomio generatore $g_{(D)}$ del codice $\mathcal{C}(k,n)$ ha grado r allora il numero di parole del codice é 2^{n-r} e r=n-k. Dimostrazione: Tutte le possibili combinazioni in GF(2) degli n-r polinomi che costituiscono una base per $\mathcal{C}(k,n)$ sono 2^{n-r} e quindi le parole di codice sono $2^{n-r} \Rightarrow k=n-r$.

Corollario: Il grado del polinomio generatore $g_{(D)}$ del codice C(k, n) é uguale al numero di bit di controllo di paritá.

12.5.4 Teorema fondamentale generatore di un codice ciclico

Un polinomio $g_{(D)}$, il cui grado é n-k, é un generatore di un codice ciclico $\mathcal{C}(k,n) \Leftrightarrow g_{(D)}$ é un divisore di D^n-1 . Dimostrazione: Il polinomio $g_{(D)}$ é un generatore di $\mathcal{C}(k,n)$ allora $g_{(D)}$ é un divisore di D^n-1 , poiché $g_{(D)}$ é di grado n-k si ha che:

$$D^{k}g_{(D)} = (D^{n} - 1) + g_{(D)}^{(k)}$$
$$(D^{n} - 1) = D^{k}g_{(D)} - g_{(D)}^{(k)} = (D^{k} - a_{(D)})g_{(D)}$$

Se il polinomio $g_{(D)}$ di grado n-k é divosore di D^n-1 allora $g_{(D)}$ é generatore di un codice ciclico C(k,n). Qualsiasi polinomio nella forma:

$$x_{(D)} = u_0 g_{(D)} + u_1 D g_{(D)} + \dots + u_{k-1} D^{k-1} g_{(D)} = u_{(D)} g_{(D)}$$

ha grado pari o inferiore a n-1 ed é multiplo di $g_{(D)}$. Poiché $u_{(D)}$ puó assumere 2^k valori allora línsieme dei 2^k vettori forma un codice lineare $\mathcal{C}(k,n)$. Sia

$$v_{(D)} = v_0 + v_1 D + \dots + v_{n-1} D^{n-1} = a_{(D)} g_{(D)} \in \mathcal{C}(k, n)$$

allora:

$$Dv_{(D)} = v_0 D + v_1 D^2 + \dots + v_{n-1} D^n$$

= $v_{n-1}(D^n - 1) + (v_{n-1} + v_0 D + v_1 D^2 + \dots + v_{n-2} D^{n-1})$
= $v_{n-1}(D^n - 1) + v_{(D)}^{(1)}$

Poiché g(D) é divisore di D^n-1 per ipotesi e di $Dv_{(D)}=Da_{(D)}g_{(D)}$ anche $v_{(D)}^{(1)}$ é multiplo di g(D) allora $\mathcal{C}(k,n)$ é ciclico.

Esempi di divisione tra polinomi in GF(2) Ricordiamoci in GF(2) aggiungere o togliere é la stessa cosa il risulatto non varia

•
$$C(2,3) = \{000, 110, 101, 011\} \Rightarrow g_{(D)} = 1 + D$$

$$\frac{D^3 - 1}{1 + D} = D^2 + D + 1$$

$$\underbrace{\frac{x^3}{-x^3 - x^2}}_{-x^2} + 1 \frac{\left| x + 1 \right|}{x^2 - x + 1}$$

$$\underbrace{\frac{x^2 + x}{x + 1}}_{-x - 1}$$

•
$$C(2,4) = \{0000, 1010, 0101, 1111\} \Rightarrow g_{(D)} = 1 + D^2$$

$$\frac{D^4 - 1}{1 + D^2} = D^2 + 1$$

$$\frac{x^4 + 1 \left| \frac{x^2 + 1}{x^2 - 1} \right|}{-x^4 - x^2}$$

$$\frac{-x^2 + 1}{x^2 + 1}$$

• $C(2,4) \Rightarrow g_{(D)} = 1 + D + D^3$

$$\frac{D^7 - 1}{1 + D + D^3} = D^4 + D^2 + D + 1$$

$$x^7 + 1 | x^3 + x + 1 | x^3 + x + 1 | x^4 - x^2 - x + 1$$

$$- x^5 - x^4 + x^3 + x^2 - x^4 + x^3 + x^2 - x^4 + x^3 + x^2 + x + 1$$

$$- x^3 - x - 1$$

$$2x^2$$

• Il polinomio D^6-1 puó essere fattorizzato in molte maniere diverse. Ad ogni fattore corrisponde un polinomio generatore $g_{(D)}$ diverso e quindi un codice ciclico diverso.

$$D^6 - 1 = (1 + D^2)^2 (1 + D + D^2)^2 s$$

12.5.5 Matrice generatrice di un codice ciclico

Dato il codice ciclico $\mathcal{C}(k,n)$ con polinomio gen
ratore $g_{(D)}$ dal momento che l'insieme dei polinomi

$$\{g_{(D)}, Dg_{(D)}, \dots, D^{k-1}g_{(D)}\}\$$

costituisce una base per il codice, la matrice generatrice del codice é

$$G = \begin{bmatrix} g_0 & g_1 & \dots & g_{n-k} & 0 & \dots & 0 \\ 0 & g_0 & g_1 & \dots & g_{n-k} & \dots & 0 \\ \vdots & & & & & \vdots \\ 0 & \dots & 0 & g_{n-k} & \dots & g_1 & g_0 \end{bmatrix}$$

considerato che $g_0 = 1$ le righe possono essere sommate tra loro per ottenere la matrice generatrice del codice equivalente in forma sistematica $G = [I_k, P]$.

12.5.6 Controllo di paritá per un codice ciclico

Dato il codice cilclico C(k, n) con polinomio generatore $g_{(D)}$ esiste sempre un polinomio $h_{(D)} = h_0 + h_1 D + \cdots + h_{(k)} D^k$ tale che

$$h_{(D)} = \frac{(D^n - 1)}{g_{(D)}} \Rightarrow g_{(D)}h_{(D)} = D^n - 1$$

Sia $x_{(D)} = u_{(D)}g_{(D)} \in \mathcal{C}(k,n)$ allora:

$$v_{(D)} = x_{(D)}h_{(D)} = u_{(D)}g_{(D)}h_{(D)}$$

= $u_{(D)}(D^n - 1) = D^n u_{(D)} - u_{(D)}$

Poiché $u_{(D)}$ é un polinomio di grado massimo k-1 e $D^nu_{(D)}$ é di grado minimo n, sappiamo per certo che, se $x_{(D)}$ é in $\mathcal{C}(k,n)$, gli n-k coefficenti con indici $k,k+1,\ldots,n-1$ del polinomio $v_{(D)}$ devono essere 0.

Poiché é $v_{(D)}=x_{(D)}h_{(D)}$ il coefficente m-esimo del polinomio $v_{(D)}$ si ottiene come la somma di tutti i coefficenti che moltiplicano D^m

$$D^{m} = v_{m} = x_{0}h_{m} + x_{1}hm - 1 + \dots + x_{m}h_{0} = \sum_{j=0}^{n-1} x_{(j)}h_{(m-j)}$$

Abbiamo un set di n-k equazioni del tipo

$$v_m = \sum_{j=0}^{n-1} x_{(j)} h_{(m-j)} = 0 \ m = k, k+1, \dots, n-1$$

le equazioni possono essere riassunte nella forma matriciale

$$xH^T = 0_{n-k}$$

dove la matrice H di dimensioni $(n-k)\times n$ é la matrice controllo di paritá del codice ciclico $\mathcal{C}(k,n)$

$$H = \begin{bmatrix} h_k & h_{k-1} & \dots & h_0 & 0 & \dots & 0 \\ 0 & h_k & h_{k-1} & \dots & h_0 & \dots & 0 \\ \vdots & & & & & \vdots \\ 0 & \dots & 0 & h_k & h_{k-1} & \dots & h_0 \end{bmatrix}$$

il calcolo della sindrome puó essere effettuato mediante:

$$s = uH^T$$

Esempio calcolo di matrice generatrice e controllo di paritá Dato il codice ciclico C(k=4,n=7) con polinomio generatore $g_{(D)}=1+D+D^3$ con coefficenti

$$g_0 = 1, g_1 = 1, g_2 = 0, g_3 = 1,$$

la matrice generatrice é

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

in forma sistematica

$$G = [I_k, P] = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

calcoliamo la matrice di controllo paritá, il vettore

$$h_{(D)} = \frac{D^n - 1}{g_{(D)}} = 1 + D + D^2 + D^4$$

i coefficenti del polinomio sono

$$h_0 = 1$$
, $h_1 = 1$, $h_2 = 1$, $h_3 = 0$, $h_4 = 1$,

da cui la matrice di controllo di paritá

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

in forma sistematica

$$H = [P^T, I_{n-k}] = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

12.5.7 Metodo alternativo per il calcolo della sindrome

La sindrome associara alla matrice di controllo di paritá sistematica si puó calcolare usando un metodo alternativo. Al ricevitore si ha

$$y = x + e \Rightarrow y_{(D)} = x_{(D)} + e_{(D)}$$

la sindrome puó essere calcolata come il resto della divisione tra polinomi

$$\frac{y_{(D)}}{g_{(D)}} \Rightarrow y_{(D)} = a_{(D)}g_{(D)} + s_{(D)}$$

poiché il grado di $s_{(D)}$ é \it{minore} del grado di $g_{(D)},$ il grado massimo di $s_{(D)}$ é n-k-1

• Se $e_{(D)} = 0$ il canale non introduce errori ed é

$$s_{(D)} = mod\{x_{(D)}, g_{(D)}\} = mod\{u_{(D)}g_{(D)}, g_{(D)}\} = 0$$

• Se $e_{(D)} \neq 0$ la sindrome diventa

$$\begin{split} s_{(D)} &= mod\{x_{(D)} + e_{(D)}, g_{(D)}\} = mod\{x_{(D)}, g_{(D)}\} + mod\{e_{(D)}, g_{(D)}\} \\ &= mod\{e_{(D)}, g_{(D)}\} \stackrel{deg(e_{(D)}) < deg(g_{(D)})}{=} e_{(D)} \end{split}$$

 $s_{(D)}$ corrisponde alla sindrome ottenuta con la matrice di controllo paritá in forma sistematica.

12.5.8 Decodifica a sindrome per codici ciclici

Esistono due metodi possibili per effettuare la decodifica dei codici ciclici:

- Utilizzando l'approccio classico dei codici a blocco: la sindrome $s_{(D)}$ mappa un polinomio di grado n-1 su uno di grad n-k-1. Una volta calcolata la sindrome, si identifica un coset ed il pattern di errore dal coset leader. É svantaggioso la complessitá di associare tutti i vettori in \mathcal{V} ad uno specifico coset
- Posso sfruttare le propietá dei codici ciclici per derivare un metodo alternativo

Teorema: Dato il codice ciclico C(k,n) con polinomio generatore $g_{(D)}$ e distanza minima d_{min} , sia $s_{(D)}$ la sindrome associata al vettore ricevuto y, se

$$w_{(s_{(D)})} \leq \left \lfloor \frac{d_{min} - 1}{2} \right \rfloor \Rightarrow \hat{e}_{(D)} = s_{(D)}$$

Dimostrazione: Per costruzione $s_{(D)}$ e $y_{(D)}$ sono nello stesso coset $C_y = C_s = \{C + s_{(D)}\}$ poiché si ha

$$w_{(s)} \le \left\lfloor \frac{d_{min} - 1}{2} \right\rfloor \Rightarrow s_{(D)} \rightleftharpoons [s, 0 \dots, 0]$$

é il coset leader e quindi la stima dell'errore. In altre parole poiché $s_{(D)}=mod\{e_{(D)},g_{(D)}\}$, se il grado di $deg(e_{(D)})< n-k \Rightarrow s_{(D)}=e_{(D)}$

Esempio decodifica di codici ciclici Sia x = [0110100] una parola del codice ciclico C(4,7) con polinomio generatore $g_{(D)} = 1 + D + D^3$. Sia e = [0100000] l'errore introdotto dal canale. Il vettore ricevuto é

$$y = x + e = [0010100] \rightleftharpoons y_{(D)} = D^2 + D^4$$

da cui calcoliamo la sindrome

$$s_{(D)} = mod\{y_{(D)}, g_{(D)}\} = D$$

ho quindi

$$w_{(s_{(D)})} = 1 \Rightarrow s_{(D)} = e_{(D)} = \hat{e} = [0100000]$$

Sia ora e = [0000010] l'errore introdotto dal canale. il vettore ricevuto é

$$y = x + e = [0110110] \rightleftharpoons y_{(D)} = D + D^2 + D^4 + D^5$$

da cui calcoliamo la sindrome

$$s_{(D)} = mod\{y_{(D)}, g_{(D)}\} = D^2 + D + 1$$

ho quindi

$$w_{(s_{(D)})} = 3 \Rightarrow s_{(D)} \neq \hat{e}_{(D)}$$

per trovare l'errore bisogna trovare un'altro metodo.

Teorema: Dato il codice ciclico C(k, n) sia $s_{(D)}$ la sindrome del vettore ricevuto y allora la sindrome $s_{1(D)}$ della parola $y^{(1)}$ ottenuta dallo shift ciclico di y di una posizione si calcola:

$$s_{1(D)} = mod \left\{ y_{(D)}^{(1)}, g_{(D)} \right\} = Ds_{(D)} - s_{n-k-1}g_{(D)}$$

Dimostrazione: Poiché vale la relazione $y_{(D)}=u_{(D)}g_{(D)}+s_{(D)}$ la relazione relativa a $y_{(D)}^{(1)}$ é

$$\begin{aligned} Dy_{(D)} &= Du_{(D)}g_{(D)} + Ds_{(D)} \\ &= (Du_{(D)}g_{(D)} + s_{n-k-1})g_{(D)} + Ds_{(D)} - s_{n-k-1}g_{(D)} \end{aligned}$$

poiché il grado massimo di $Ds_{(D)} - s_{n-k-1}g_{(D)}$ é n-k-1 allora $s_{1(D)} = Ds_{(D)} - s_{n-k-1}g_{(D)}$ é il resto della divisione di $Dy_{(D)}$ per $g_{(D)}$ ed é quindi la sindrome di $y_{(D)}^{(1)}$.

Esempio decodifica a sindrome di codici ciclici Sia x = [0110100] una parola del codice ciclico $\mathcal{C}(4,7)$ con polinomio generatore $g_{(D)} = 1 + D + D^3$ ed e = [0000010] l'errore introdotto dal canale. Il vettore ricevuto é

$$y = x + e = [0110110] \rightleftharpoons y_{(D)} = D + D^2 + D^4 + D^5$$

da cui calcoliamo la sindrome

$$s_{(D)} = mod\{y_{(D)}, g_{(D)}\} = D^2 + D + 1$$

Lo shift ciclico di y:

$$y^{(1)} = [001011] \rightleftharpoons y^{(1)}_{(D)} = D^2 + D^3 + D^5 + D^6$$

$$s_{1(D)} = mod \left\{ y_{(D)}^{(1)}, g_{(D)} \right\} = D^2 + 1$$
$$= D(D^2 + D + 1) - D^3 + D + 1$$

Lo shift ciclico di $y^{(1)}$:

$$y^{(2)} = [100101] \rightleftharpoons y_{(D)}^{(2)} = 1 + D^3 + D^4 + D^6$$

$$s_{2(D)} = mod \left\{ y_{(D)}^{(2)}, g_{(D)} \right\} = 1 = D^2 + 1$$
$$= D(D^2 + D + 1) - D^3 + D + 1$$

OK MA COME ABBIAMO DECODIFICATO QUINDI?

Definizione: Dato un vettore v di n componenti, una sequenza ciclica di zeri di lunghezza ℓ é una successione di ℓ zeri consecutivi in senso ciclico.

Esempi:

- n = 7, $\ell = 3$, v = [1000101]
- n = 7, $\ell = 4$, v = [0010100]
- n = 15, $\ell = 9$, v = [000000110001000]

Teorema: Dato il codice ciclico C(k,n), con polinomio generatore $g_{(D)}$ e distanza minima d_{min} , tale che tutti i pattern di errore correggibili abbiano sequenza ciclica di almeno k zeri, ricevuto il vettore y=x+e con $w_{(e)} \leq \left\lfloor \frac{d_{min}-1}{2} \right\rfloor$, l'algoritmo di decodifica a massima verosomiglianza ;e composto dai seguenti passi:

- Calcolo iterativamente le sindromi $s_{i(D)}$ per tutti gli shift ciclici di $y_{(D)}$ e computo $w_{s_{i(D)}}$
- $\bullet \text{ trovo } m$ per cui $w_{s_{m(D)}} \leq \left\lfloor \frac{d_{min}-1}{2} \right\rfloor$
- stimo $\hat{e}_{(D)} = mod \left\{ D^{n-m} s_{m(D)}, D^{n-1} \right\}$

Dimostrazione:

• Esistenza di m: Poiché $w_{(e)} \leq \left\lfloor \frac{d_{min}-1}{2} \right\rfloor$ e tutti i pattern di errore correggibili hanno una sequenza ci ciclica di almeno k zeri, esiste uno shift ciclico di m posizioni di y tale che tutti gli 1 di e siano compresi nelle prime n-k posiioni di

$$y^m \Rightarrow s_{m(D)} = e_{(D)}^{(m)}$$

• Stima dell'errore

$$D^{m}(y_{(D)} + D^{n-m}s_{m(D)}) =$$

$$= D^{m}y_{(D)} + D^{n}s_{m(D)} = y_{(D)}^{(m)} + D^{n}s_{m(D)}$$

$$= u_{(D)}g_{(D)} + s_{m(D)} + D^{n}s_{m(D)} = u_{(D)}g_{(D)} + (D^{n} - 1)s_{m(D)}$$

$$= (u_{(D)} + h_{(D)}s_{m(D)})g_{(D)}$$

12.6 Codici Convoluzionali

Rispetto ai codici visti fino ad ora i codici convoluzionali sono in generale in forma non sistematica. In un codice convoluzionale viene trasmesso solo il bit di paritá. Ad ogni tempo di bit il codificatore combina i bit all'interno di una finestra mobile di lunghezza L, chiamata constraint length del codice, per generare gli n bit in uscita. Il processo di codifica puó essere interpretato come una convoluzione in GF(2) ed il codificatore di un codice convoluzionale (n, k, L) si puó rappresentare come n filtri lineari in GF(2) in parallelo.

12.6.1 Codificatore codice convoluzionale

Un codificatore convoluzionale é costituito da uno shift register e da sommatori:

- Ad ogni periodo di clock (definito dall'intero i) nel codificatore entrano k (tipicamente 1) cifre binarie rappresentate dal vettore $u^i = [u_1^i, u_2^i, \dots, u_k^i]$ ed escono n bit raccolti nel vettore di uscita $x^i = [x_1^i, x_2^i, \dots, x_n^i]$
- All'interno del codificatore $u^{(i)}$ é combinato con i precedenti L-1 vettori di ingresso $u^{(i-1)}, u^{(i-2)}, \ldots, u^{(i-L+1)}$ per formare l'uscita $x^{(i)}$

Figure 149: Esempio codificatore

La principale differenza rispetto ai codici a blocco é costituita dal fatto che l'uscita attuale non dipende solo dalla parola attuale ma anche dalla storia passata contenuta nelle L-1 parole precedenti. La storia é composta da L-1 parole perché rimuoviamo quella in ingresso, il numero L di parole che contribuiscono all'uscita attuale é la constraint length del codice. Il numero complessivo di celle di memoria del codificatore é $kL-1:(L-1)\times k$ per memorizzare la memoria del sistema piú k-1 per memorizzare i bit della parola attuale.

12.6.2 Generatori di un codice convoluzionale

I generatori definiscono completamente un codice convoluzionale, cosí come la matrice generatrice o il polinomio generatore definiscono definiscono i codici a blocco e i codici ciclici. Per i codici convoluzionali

- A ciascuna delle n uscite corrisponde generatore e a ciascun generatore corrisponde un sommatore in GF(2).
- Ciascun generatore ha *kL* elementi uno per ciascun ingresso che contribuisce all'uscita del codificatore.

• Quando un elemento é 1 significa che il corrispondente ingresso é connesso al sommatore altrimenti se é 0 non cé connessione.

I vettori generatori rapresentano la risposta impulsiva degli n filtri lineari in GF(2). Assumendo che k=1 il generatore per il bit m-esimo é $g_m=[g_m^{(0)},g_m^{(1)},\ldots,g_m^{(L-1)}]$ e l'm-esimo bit di uscita $x_m^{(i)}$ si ottiene con

$$x_m^{(i)} = \sum_{\ell=0}^{L-1} g_m^{(\ell)} u^{(i-\ell)}$$

l'uscita m-esima é la convoluzione discreta in GF(2) tra i vettori $[u^{(i)},u^{(i-1)},\dots,u^{(i-L+1)}]$ e g_m da cui il nome di codice convoluzionale.

Figure 150: Immagini generatori slide

Esempio generatore:

Esempio generatore - Diagramma a Blocchi: Consideriamo il codice con k=1 e $R=\frac{1}{2}$ con generatori $g_1=[1,1,1]=7_8$ e $g_2=[1,0,1]=5_8$. La constraint length é L=3. Le due uscite sono

$$\begin{split} x_1^{(i)} &= u_1^{(i)} + u_1^{(i-1)} + u_1^{(i-2)} \\ x_2^{(i)} &= u_1^{(i)} + u_1^{(i-2)} \end{split}$$

il diagramma a blocchi del codificatore é

Figure 151: Codificatore a blocchi

12.6.3 Rappresentazione come macchina a stati

Ad ogni istante di segnalazione l'uscita dal codificatore convoluzionale dipende dall'ingresso attuale e dalla memoria. Le ultime k(L-1) celle dello shift register memorizzano la storia passata del codificatore che é riassunta nel vettore di stato

$$\sigma = \left(u^{(i-1)}, u^{(i-2), \dots, u^{(i-L+1)}}\right)$$

Figure 152: Status register

Il codificatore puó presentarsi come una macchina a stati finiti la cui evoluzione nel tempo é descritta da equazioni di stato

$$\begin{split} x^{(i)} &= \delta \left(u^{(i)}, \sigma^{(i)} \right) \\ \sigma^{(i+1)} &= \lambda \left(u^{(i)}, \sigma^{(i)} \right) \end{split}$$

La prima é detta equazione di uscita, la seconda equazione é detta equazione di transizione di stato. Il numero di stati complessivo é $2^{k(L-1)}$ con celle di memoria pari a k(L-1). Il funzionamento del codificatore si puó esprimere come un diagramma di stato nel quale sono indicate le transizioni da uno stato all'atro sotto effetto dei diversi ingressi.

12.6.4 Diagramma di Stato

Consideriamo il codice con k=1 e $R=\frac{1}{2}$ con generatori $g_1=[1,1,1]=7_8$ e $g_2=[1,0,1]=5_8$. La constraint length é L=3. Il numero di stati é pari a $2^{3-1}=4$ ed il relativo diagramma di stato

Figure 153: Diagramma di stato

Il diagramma di stato non ha un indicatore temporale. Introducendo un indicatore temporale il diagramma di stato si trasforma nel diagramma a traliccio, su cui é possibile seguire l'evoluzione degli stati e delle uscite del codificatore in seguito ad una determinata sequenza di vettori di ingresso. Partendo da un qualsiasi stato si puó raggiungere qualsiasi altro stato del traliccio in un numero massimo di L-1 passi

metti le cose che sono nella slide dopo l'esempio e gli apppunti

12.6.5 Diagramma a traliccio

Il diagramam a traliccio per il codice con k=1 e $R=\frac{1}{2}$ con generatori $g_1=[1,1,1]=7_8$ e $g_2=[1,0,1]=5_8$ é

Figure 154: Diagramma a traliccio

Il diagramma a traliccio permette di osservare l'evoluzione del codificatore in risposta ad una determinata sequenza di ingresso. Per esempio per il codice con k=1 e generatori $g_1=7_8$ e $g_2=5_8$ se $\sigma^{(0)}=00$ e in ingresso si ha la sequenza $u^{(0)}=0, u^{(1)}=1, u^{(2)}=1, u^{(3)}=1$ il percorso sul traliccio sará

Figure 155: Percorso con ingresso $u^{(0)} = 0, u^{(1)} = 1, u^{(2)} = 1, u^{(3)} = 1$

12.6.6 Distanza colonna

Sia dato un codice convoluzionale $\mathcal{C}(n,k,L)$. Consideriamo $\mathcal{X}_{\mathcal{C}}(\ell,\sigma)$, l'insieme di tutte le possibili sequenze che originano dallo stato σ e hanno lunghezza pari a ℓn , ottenute cioé dopo ℓ passi sul traliccio. La distanza colonna del codice \mathcal{C} al passo ℓ é la minima distanza di Hamming fra due sequenze x e x' in $\mathcal{X}_{\mathcal{C}}(\ell,\sigma)$ che siano differenti nei primi n bit, in corrispondenza quindi della prima parola di uscita del codificatore

$$d_{c(\ell)} = \min_{\substack{x, x' \in \mathcal{X}_C(\ell, \sigma) \\ x^{(1)} \neq x'^{(1)}}} d(x, x')$$

come nel caso del calcolo della $d_{min(\mathcal{C})}$ dei codici a blocco lineari, non fa nessuna differenza la particolare sequenza di riferimento e quindi il calcolo della $d_{c(\ell)}$ si sceglie lo stato σ in modo che una delle due sequenze sia il vettore di tutti zeri

12.6.7 Distanza libera

La distanza libera di un codice convoluzionale C, d_{free} é il limite della distanza colonna per ℓ che tende all'infinito

$$d_{free} = \lim_{r \to \infty} d_{c(\ell)}$$

In pratica la distanza libera coincide con la distanza colonna quando i due percorsi sul traliccio a massima distanza confluiscono. La distanza libera, come la d_{min} nei codici a blocco, é una misura della bontá del codice: tanto maggiore é la distanza libera tanto piú é difficile confondere due sequenze che originano dallo stesso stato.

12.6.8 Strategia di decodifica a massima verosomiglianza

Si consideri una trasmissione su N intervalli di segnalazione. La trasmissione é codificata con il codice convoluzionale $\mathcal{X}_{\mathcal{C}}(\ell,\sigma)$, che ad ogni segnalazione associa k bit di informazione a n bit codificati. Sia y la sequenza ricevuta di lunghezza nN bit, la strategia di decodifica a massima verosomiglianza consiste nel trovare la sequenza \hat{x} che, fra tutte le 2^{kN} possibili sequenze di tentativo \tilde{x} , massimizza la probabilità condizionata $P[y|\tilde{x}]$

$$\hat{x} = arg \ \max_{\tilde{x}} P[y|\tilde{x}]$$

Poiché gli eventi di errore sono indipendenti da bit a bit é conveniente riscrivere la probabilitá condizionata come il prodotto delle probabilitá condizionata ottenute per ciascuna parola di codice trasmessa

$$P[y|\tilde{x}] = \prod_{\ell=1}^{N} P\left[y^{(\ell)}|\tilde{x}\right] = \prod_{\ell=1}^{N} P\left[y^{(\ell)}|\tilde{x}^{(\ell)}\right]$$

Assumiamo che la probabilitá di ricevere un bit errato sia p

Figure 156: Sistema BSC

la probabilitá condizionata $P\left[y^{(\ell)}|\tilde{x}^{(\ell)}\right]$ si ottiene a partire dal calcolo della distanza di Hamming $\lambda_{\tilde{x}}^{(\ell)} = d_H(y^{(\ell)}, \tilde{x}^{(\ell)})$, infatti per ogni bit diverso tra le due parole di assume che ci sia stato errore e quindi

$$P\left[y^{(\ell)}|\tilde{x}^{(\ell)}\right] = p^{\lambda_{\tilde{x}}^{(\ell)}} (1-p)^{n-\lambda_{\tilde{x}}^{(\ell)}} = (1-p)^n \left(\frac{p}{1-p}\right)^{\lambda_{\tilde{x}}^{(\ell)}}$$

Poiché la funzione logaritmo é crescente la sequenza di tentativi che massimizza $P[y|\tilde{x}]$ che massimizza anche $log\left(\lambda_{\tilde{x}}^{(\ell)}\right)$. Sostituendo la funzione 12.6.8 in quella appena calcolata e prendendone il logaritmo

$$\log\left(P\left[y^{(\ell)}|\tilde{x}^{(\ell)}\right]\right) = nN\log\left((1-p)^n\right) + \log\left(\frac{p}{1-p}\right)\sum_{\ell=1}^N \lambda_{\tilde{x}}^{(\ell)}$$

trascurando i termini ininfluenti e considerando che é lecito assumere $log\left(\frac{p}{1-p}\right)<0$ si ottiene la regola di decisione

$$\hat{x} = arg \ \max_{\tilde{x}} P[y|\tilde{x}] = arg \ \min_{\tilde{x}} \sum_{\ell=1}^{N} \lambda_{\tilde{x}}^{(\ell)}$$

La strategia a massima verosomiglianza consiste nello scegliere la sequenza \hat{x} che minimizza la distanza di Hamming dalla sequenza ricevuta

$$d_H(y, \hat{x}) = \sum_{\ell=1}^{N} \lambda_{\tilde{x}}^{(\ell)}$$

osserviamo che la trasmissione dura N intervalli di segnalazione, in cui ogni volta vengono inviati al codificatore k bit, il numero di sequenza da considerare é 2^{kN} . !! La complessitá della decodifica cresce esponenzialmente con k e N.

12.6.9 Algoritmo di Viterbi

Consideriamo il codice C(n, k, L) e assumiamo che si effettui uan trasmissione di N parole di codice ciascuna composta da n bit e che lo stato iniziale $\sigma^{(0)}$ e quello finale sia $\sigma^{(N)}$ del codificatore siano conosciuti anche al ricevitore. Data

la sequenza ricevuta y di nN bit, l'obbiettivo del decodificatore é individuare sul traliccio il percorso \hat{x} piú breve (a minima distanza di Hamming) che partendo da $\sigma^{(0)}$ arrivi a $\sigma^{(N)}$. La sequenza \hat{x} deve minimizzare la metrica

$$d_H(y,\hat{x}) = \wedge (y,\hat{x}) = \sum_{\ell=1}^N \lambda_{\tilde{x}}^{(\ell)}$$

l'algoritmodi Viterbi permette di trovare il percorso piú breve su di un traliccio a bassa complessitá. Definiamo:

- Metrica di Ramo: $\sigma_j \to \sigma_k$ al passo ℓ , a distanza di Hamming $\lambda^{(\ell)} = d_H(y^{(\ell)}, \tilde{x}_{\sigma_j \to \sigma_k})$. La metrica é calcolata come distanza tra la sequenza ricevuta al passo ℓ e l'uscita corrispondente alla transizione sul traliccio dallo stato σ_j e lo stato σ_k .
- Metrica Cumulata: al passo f allo stato σ_k , la grandezza $\wedge_{x(\sigma_k)}^{(f)}$ ottenuta sommando tutte le f metriche di ramo calcolate su gli f rami sul traliccio di un percorso x che si fermi allo stato σ_k al passo f.

L'algoritmo di viterbi si basa sulla seguente intuizione:

- Supponiamo che due diversi percorsi x_1 e x_2 confluiscano al passo f nello stesso nodo σ_k sul traliccio e siano $\wedge_{x_1(\sigma_k)}^{(f)} < \wedge_{x_2(\sigma_k)}^{(f)}$ le metriche cumulate dei due percorsi calcolate al passo f.
- Supponiamo che al passo successivo f+1, i percorsi x_1 e x_2 seguano lo stesso ramo sul traliccio, ad esempio $\sigma_k \to \sigma_q$, in questo caso la metrica di ramo é la stessa per i due percorsi $\lambda_{(\sigma_k,\sigma_q)}^{(f+1)}$.
- Per le nuove metriche sará ancora $\wedge_{x_1(\sigma_q)}^{(f+1)} < \wedge_{x_2(\sigma_q)}^{(f+1)}$ infatti si ha

$$\begin{split} \wedge_{x_1(\sigma_q)}^{(f+1)} &= \wedge_{x_1(\sigma_k)}^{(f)} + \lambda_{(\sigma_k,\sigma_q)}^{(f+1)} < \wedge_{x_2(\sigma_k)}^{(f)} + \lambda_{(\sigma_k,\sigma_q)}^{(f+1)} \\ &= \wedge_{x_2(\sigma_q)}^{(f+1)} \end{split}$$

Generlizzando questa intuizione possiamo dire che:

- 1. In un traliccio arrivto alla sua piena espansione ad ogni nuovo istante di segnalazione arrivano 2^k percorsi a ciascun nodo.
- 2. I valori delle metriche di ramo in uscita da un nodo sono uguali per tutti i percorsi che arrivano a quel nodo.
- 3. A paritá di percorso futuro, il percorso in ingresso al nodo con la metrica cumulata minore continuerá ad avere metrica cumulata piú bassa di tutti gli altri
- 4. Ai fini della minimizzazione della metrica cumulata complessiva ad ogni nodo si possono scartare i 2^{k-1} percorsi con la metrica cumulata piú alta e conservare quello con la metrica cumulata minima
- 5. l'unico percorso rimasto viene definito sopravvissuto

Esempio applicativo Consideriamo il codice convoluzionale con rate $R=\frac{1}{2}$ constraint length L=3 e generatori $g_1=7_8$ e $g_2=5_8$. Assumiamo che la sequenza di N=6 bit informativi sia u=[0,1,0,0,0,0] a cui corrisponde la sequenza codificata x=[00,11,10,11,00,00] e supponiamo che la sequenza ricevura sia y=[00,11,10,11,00,00] in cui ho il secondo bit della seconda parola di codice errato. In un sistema reale, $N\gg 6, N=6$ é solo a scopo illustrativo. Le metriche di ramo sono indicate in rosso e quelle cumulate in nero. la trasmissione inizia nello stato $\sigma^{(0)}=[0,0]$ e dopo N=6 segnalazioni torna nello stato $\sigma^{(N)}=[0,0]$.

Figure 157: Passi di Viterbi

Figure 158: Passi di Viterbi

Figure 159: Passi di Viterbi

Figure 160: Passi di Viterbi

Figure 161: Passi di Viterbi

Figure 162: Passi di Viterbi

Figure 163: Passi di Viterbi

Figure 164: Passi di Viterbi

Figure 165: Passi di Viterbi

Figure 166: Passi di Viterbi

Figure 167: Passi di Viterbi

La trasmissione inizia nello stato [0,0] e dopo N=6 segnalazioni torna nello stato [0,0] Una volta identificato il percorso a distanza minima sul traliccio, identificare la sequenza \hat{u} informativa é semplice: é sufficiente associare ad ogni transizione sul traliccio la sequenza di bit in ingresso corrispondente. Nel nostro caso di ha $\hat{u}=[0,1,0,0,0,0]$, ció vuol dire che il decodificatore ha corretto l'errore introdotto dal canale.

Considerazioni A partire del momento in cui il traliccio ha raggiunto il suo pieno sviluppo, ad ogni passo l'algoritmo deve:

- 1. Calcolare le metriche di ramo per tutte le transizioni possibili
- 2. Calcolare per ogni nodo le metriche cumulate dai percorsi in ingresso
- 3. Per ogni nodo trovare il percorso sopravvissuto assoiato alla metrica cumulata minima

La complessitá dell'algoritmo di Viterbi cresce linearmente con la lunghezza della sequenza da decodificare e non esponenzialmente, come avviene con la ricerca esaustiva.

Figure 168: considerazione Passi di Viterbi

Osservando il traliccio al passo ℓ , si trova che andando a ritroso di D passi, i sopravvissuti tendono a fondersi in un unico percorso. Poiché si é visto empiricamente che D é una quantitá fissa dell'ordine di kL possiamo trarre le seguenti conclusioni:

- Il decodificatore di Viterbi non deve necessariamente attendere di essere arrivato alla fine della segnalazione per produrre decisioni ma é sufficiente introdurre un ritardo di decodifica pari a D e poi prendere decisioni di decodifica ad ogni nuovo istante di segnalazione
- 2. La parte comune dei sopravvissuti (quella su cui sono giá state prese le decisioni) non ha bisogno di essere memorizzata. É sufficiente memorizzare i sopravvissuti nell'ultimo tratto da $\ell-D$ a ℓ , questo riduce enormemente l'esigenza di memoria dell'algoritmo

12.7 Prestazioni sistemi codificati

12.8 Codici a blocco

Calcolo della probabilitá di errore sulle parole di codice Un codice a blocco C(k,n) con $d_{min} = 2t + 1$ é in grado di correggere fino a t errori. Una parola ricevuta y = x + e é errata quando il canale introduce un numero di errori maggiore di t. La probabilitá di errore si calcola

$$P_w(e) = P_r[w_{(e)} > t] = \sum_{j=t+1}^n \binom{n}{j} p^j (1-p)^{n-j}$$

 $P_w(e)$ puó essere limitato inferiormente dalla probabilitá dell'evento piu probabile: aver commesso t+1 errori

$$P_w(e) \simeq \binom{n}{t+1} p^{t+1} (1-p)^{n-(t+1)}$$

mentre la $P_w(e)$ si riesce a calcolare con precisione, nel caso del calcolo della probabiltiá di errore su bit codificato si deve per forza ricorrere ad approssimazioni. Il numero di bit errati in \hat{x} dopo la decodifica dipende dal vettore di errore e e da come agisce la decodifica a sindrome, che in presenza di un numero di errori maggiore di t aggiunge altri errori a quelli introdotti dal canale. La decodifica a sindrome restituisce sempre una parola di codice, quindi ogni volta che al ricevitore c'é un errore nella decodifica i bit errati sono almeno d_{min} negli n trasmessi. in questo caso la $P_b(e)$ si approssima a

$$P_b(e) \simeq \frac{d_{min}}{n} P_w(e) \simeq \frac{d_{min}}{n} \binom{n}{t+1} p^{t+1} (1-p)^{n-(t+1)}$$

Confronto delle prestazioni su sistemi codificati e non codificati La ridondanza introdotta dal codice comporta una maggiore spesa energetica, infatti si utilizzano n bit codificati per trasmettere k bit di informazione. Il budget energetico di k bit viene distribuito su n bit

$$kE_b = nE_{b,c} \Rightarrow E_{b,c} = \frac{k}{n}E_b$$

la probabilitá di errore sul bit per una BPSK non codificata é

$$p_b^{(BPSK)}(e) = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

nel caso codificato bisogna considerare che la probabilitá di err
rore p dipende dal valore di SNR dei bit codificati

$$\frac{E_{b,c}}{N_0} = \frac{k}{n} \frac{E_b}{N_0}$$

la probabilitá $P_b(e)$ del codice va calcolata

$$p = Q \left(\sqrt{\frac{2E_{b,c}}{N_0}} \right) = Q \left(\sqrt{2\frac{k}{n} \frac{E_{b,c}}{N_0}} \right)$$

In figura viene rappresentato il confronto delle prestazioni su canale Gaussiano di un sistema BPSK senza codifica con le prestazioni di un sistema codificato con codice di Hamming con m=3 e m=4.

Figure 169: Confronto dei sistemi

12.9 Codici convoluzionali

Generatori per codici convoluzionali La bontá di un codice convoluzionale dipende dalla sua d_{free} . La d_{free} dipende dai codici generatori, dal rate $R=\frac{k}{n}$ e dalla constraint length L. Tipicamente i codici convoluzionali hanno k=1 per limitare la complessitá di codificatore e decodificatore. Fissato R e L i generatori ottimi sono quelli che massimizzano la d_{free} e possono essere trovati tramite una ricerca esaustiva fra tutte le possibili $\left(2^L\right)^n=2^{nL}$ combinazioni.

Generatori ottimi per $R=\frac{1}{2}$ Generatori ottimi (in ottale) per codici convoluzionali a rate $R=\frac{1}{2}$ al variare della constraint length L e d_{free} corrispondente.

Constraint length	Generatori ottimi		Distanza libera	
\overline{L}	g_1	g_2	d_{free}	
3	7	5	5	
4	17	15	6	
5	35	23	7	
6	75	53	8	
7	171	133	10	
8	371	247	10	
9	763	561	12	
10	1537	1131	12	

Puncturing per codici convoluzionali In teoria non c'é flessibilitá nella scelta del rate dei codici convoluzionali che assume sempre valori del ripo $R=\frac{1}{n}$. In realtá la tecnica chiamata Puncturing permette di costruire con codici con rate maggiori partendo da un codice a rate $R=\frac{1}{n}$. Il puncturing consiste nel cancellare alcuni bit all'uscita del codificatore. I bit vengono cancellati secondo un pattern preciso, espresso da una $puncturing\ table$, condiviso con il ricevitore, che quindi conosce esattamente la posizione dei bit cancellati.

Il trasmettitore e il ricevitore si accordano sui bit codificati da omettere attraverso la puncturing table, che contiene n righe (una per bit in uscita) e M colonne. La matrice contiene un certo numero P di 1 e un numero P-nM di

0. Dopo il puncturing il rate del codice diventa

$$R' = \frac{1}{n} \frac{nM}{P} = \frac{M}{P}$$

Esempio: $n=2, M=2, P=3, R=\frac{1}{3}$

Figure 170: Esempio rate

Tabella di puncturing per il codice convoluzionale a rate $R=\frac{1}{2},\,L=7$ al variare della constraint length del rate $R=\frac{M}{P}$ in uscita e d_{free} corrispondente. Il puncturing ottimo é stato trovato con una ricerca esaustiva su tutti i possibili pattern

Rate $\frac{M}{P}$	Puncturing matrix	d_{free}
$\frac{1}{2}$	1 1	10
$\frac{2}{3}$	$\begin{bmatrix} \bar{1}\bar{1} \\ 10 \end{bmatrix}$	6
$\frac{3}{4}$	$\begin{bmatrix} 101 \\ 110 \end{bmatrix}$	5
$\frac{5}{6}$	$\begin{bmatrix} \overline{1}010\overline{1} \\ 11010 \end{bmatrix}$	4
$\frac{7}{8}$	$\begin{bmatrix} 100010\overline{1} \\ 1111010 \end{bmatrix}$	3

Bound per le prestazioni dei codici convoluzionali Ad alti rapporti segnale/rumore si trova la seguente approssimazione: BPSK codificata con decodifica hard

$$P_e^{(b)} \simeq Q \left(\sqrt{2 \frac{E_b}{N_0} \frac{R'}{2}} \right)$$

13 Formulario

13.1 Trigonometria

$$1. \sin^2(\alpha) + \cos^2(\alpha) = 1$$

2.
$$\cos(\alpha) = \pm \frac{1}{\sqrt{1 + \tan^2(\alpha)}}$$

3.
$$\sin(\alpha) = \pm \frac{\tan(\alpha)}{\sqrt{1+\tan^2(\alpha)}}$$

4. $sinc(\alpha) \triangleq \frac{\sin(\pi\alpha)}{\pi\alpha}$ É un $sin(\alpha)$ smorzato secondo $\frac{1}{x}$ che si annulla in $k\pi$: $k \in \mathbb{Z}$

Figure 171: grafico $sinc(\alpha)$

13.1.1 Formule di addizione

1.
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

2.
$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \sin(\beta)\cos(\alpha)$$

3.
$$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$$

13.1.2 Formule di duplicazione

1.
$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

2.
$$\cos(2\alpha)$$

$$\begin{cases} \cos^2(\alpha) - \sin^2(\alpha) \\ 2\cos^2(\alpha) - 1 \\ 1 - 2\sin^2(\alpha) \end{cases}$$

3.
$$\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$$

13.1.3 Formule di bisezione

1.
$$\sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos(\alpha)}{2}}$$

$$2. \cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos(\alpha)}{2}}$$

3.
$$\tan\left(\frac{\alpha}{2}\right) \begin{cases} \sqrt{\frac{1-\cos(\alpha)}{1+\cos(\alpha)}} \\ \frac{1-\cos(\alpha)}{\sin(\alpha)} \\ \frac{\sin(\alpha)}{1+\cos(\alpha)} \end{cases}$$

Segnali Notevoli 13.2

1.
$$x_R \triangleq A \ rect\left(\frac{t}{T}\right)$$
 $T = durata$

Figure 172: Rappresentazione di $A \ rect \left(\frac{t}{T} \right)$

2.
$$sinc(\alpha) \triangleq \frac{\sin(\pi\alpha)}{\pi\alpha}$$

2. $sinc(\alpha) \triangleq \frac{\sin(\pi\alpha)}{\pi\alpha}$ É un $\sin(\alpha)$ smorzato secondo $\frac{1}{x}$ che si annulla in $k\pi : k \in \mathbb{Z}$

Figure 173: grafico $sinc(\alpha)$

La banda di una sinc é l'intervallo in cui si annulla $[-\frac{1}{T}, \frac{1}{T}]$, es: se banda = $1\ se\ T=1$

Figure 174: banda

3. Filtro a Coseno Rialzato

$$H_{(f)} = \begin{cases} T & |f| \leq \frac{1-\beta}{2T} \\ \frac{T}{2} \left[1 + \cos \left(\frac{\pi T}{\beta} \left[|f| - \frac{1-\beta}{2T} \right] \right) \right], \frac{1-\beta}{2T} & <|f| \leq \frac{1+\beta}{2T} \\ 0 & altrove \end{cases}$$

$$0 \leq \beta \leq 1$$

$$h_{(t)} = \begin{cases} \frac{\pi}{4} sinc\left(\frac{1}{2\beta}\right) & t = \pm \frac{T}{2\beta} \\ sinc\left(\frac{t}{T}\right) \frac{cos\left(\frac{\pi\beta t}{T}\right)}{1 - \left(\frac{2\beta t}{T}\right)^2} & altrove \end{cases}$$

4.

13.3 Grandezze Fisiche

• Hertz

Varie 13.4

• Calcolo della TCF su MATLAB: $X_{(f)} = \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi f t} dt$

$$X_{(f)} = \int_{-\infty}^{\infty} x_{(t)} e^{-j2\pi f t} dt$$

MATLAB calcola un'approssimazione dell'integrale della TCF con un periodo T:

Figure 175: Campionamento MATLAB

$$X_{(f)} \cong T \sum_n x_{(nT)} e^{-j2\pi f nT}$$

Ma nella f é una variabile continua, quindi a sua volta bisogna variare f:

$$X_{(fk)} = X_{(k\Delta f)} = \sum_n x_{(nT)} e^{-j2\pi\Delta f nT} T$$

e la condizione sul Δf é che $\Delta f << BB.$

Figure 176: Δf

Si pu
ó utilizzare anche la $FFT={\it Fast}$ Fourier Transform

• Scala Logarimica: $x|_{db} = 10log_{10}(x)$

X	db
2	3
4	6
8	9
10	10
1	0
100	20
200	23
50	17

$Possiamo\ calcolare:$

$$-\left.100\right|_{db}=10log_{10}(100)=10log_{10}(10\cdot 10)=10log_{10}(10)+10log_{10}(10)=20db$$

$$-200\big|_{db} = 10log_{10}(100 \cdot 2) = 10log_{10}(100) + 10log_{10}(2) = 23db$$

$$-50|_{db} = 10log_{10}(10 \cdot 5) = 10log_{10}(10) + 10log_{10}(5) = 17db$$

Table 1: Values of Q(x) for $0 \le x \le 9$

	Table 1: Values of $Q(x)$ for $0 \le x \le 9$						
x	Q(x)	x	Q(x)	x	Q(x)	x	Q(x)
0.00	0.5	2.30	0.010724	4.55	2.6823×10^{-6}	6.80	5.231×10^{-12}
0.05	0.48006	2.35	0.0093867	4.60	2.1125×10^{-6}	6.85	3.6925×10^{-12}
0.10	0.46017	2.40	0.0081975	4.65	1.6597×10^{-6}	6.90	2.6001×10^{-12}
0.15	0.44038	2.45	0.0071428	4.70	1.3008×10^{-6}	6.95	1.8264×10^{-12}
0.20	0.42074	2.50	0.0062097	4.75	1.0171×10^{-6}	7.00	1.2798×10^{-12}
0.25	0.40129	2.55	0.0053861	4.80	7.9333×10^{-7}	7.05	8.9459×10^{-13}
0.30	0.38209	2.60	0.0046612	4.85	6.1731×10^{-7}	7.10	6.2378×10^{-13}
0.35	0.36317	2.65	0.0040246	4.90	4.7918×10^{-7}	7.15	4.3389×10^{-13}
0.40	0.34458	2.70	0.003467	4.95	3.7107×10^{-7}	7.20	3.0106×10^{-13}
0.45	0.32636	2.75	0.0029798	5.00	2.8665×10^{-7}	7.25	2.0839×10^{-13}
0.50	0.30854	2.80	0.0025551	5.05	2.2091×10^{-7}	7.30	1.4388×10^{-13}
0.55	0.29116	2.85	0.002186	5.10	1.6983×10^{-7}	7.35	9.9103×10^{-14}
0.60	0.27425	2.90	0.0018658	5.15	1.3024×10^{-7}	7.40	6.8092×10^{-14}
0.65	0.25785	2.95	0.0015889	5.20	9.9644×10^{-8}	7.45	4.667×10^{-14}
0.70	0.24196	3.00	0.0013499	5.25	7.605×10^{-8}	7.50	3.1909×10^{-14}
0.75	0.22663	3.05	0.0011442	5.30	5.7901×10^{-8}	7.55	2.1763×10^{-14}
0.80	0.21186	3.10	0.0009676	5.35	4.3977×10^{-8}	7.60	1.4807×10^{-14}
0.85	0.19766	3.15	0.00081635	5.40	3.332×10^{-8}	7.65	1.0049×10^{-14}
0.90	0.18406	3.20	0.00068714	5.45	2.5185×10^{-8}	7.70	6.8033×10^{-15}
0.95	0.17106	3.25	0.00057703	5.50	1.899×10^{-8}	7.75	$4.5946{\times}10^{-15}$
1.00	0.15866	3.30	0.00048342	5.55	1.4283×10^{-8}	7.80	3.0954×10^{-15}
1.05	0.14686	3.35	0.00040406	5.60	1.0718×10^{-8}	7.85	$2.0802{\times}10^{-15}$
1.10	0.13567	3.40	0.00033693	5.65	8.0224×10^{-9}	7.90	1.3945×10^{-15}
1.15	0.12507	3.45	0.00028029	5.70	5.9904×10^{-9}	7.95	$9.3256{\times}10^{-16}$
1.20	0.11507	3.50	0.00023263	5.75	4.4622×10^{-9}	8.00	6.221×10^{-16}
1.25	0.10565	3.55	0.00019262	5.80	3.3157×10^{-9}	8.05	$4.1397{\times}10^{-16}$
1.30	0.0968	3.60	0.00015911	5.85	2.4579×10^{-9}	8.10	2.748×10^{-16}
1.35	0.088508	3.65	0.00013112	5.90	1.8175×10^{-9}	8.15	1.8196×10^{-16}
1.40	0.080757	3.70	0.0001078	5.95	1.3407×10^{-9}	8.20	$1.2019{\times}10^{-16}$
1.45	0.073529	3.75	8.8417×10^{-5}	6.00	9.8659×10^{-10}	8.25	7.9197×10^{-17}
1.50	0.066807	3.80	7.2348×10^{-5}	6.05	7.2423×10^{-10}	8.30	5.2056×10^{-17}
1.55	0.060571	3.85	5.9059×10^{-5}	6.10	5.3034×10^{-10}	8.35	3.4131×10^{-17}
1.60	0.054799	3.90	4.8096×10^{-5}	6.15	3.8741×10^{-10}	8.40	2.2324×10^{-17}
1.65	0.049471	3.95	3.9076×10^{-5}	6.20	2.8232×10^{-10}	8.45	1.4565×10^{-17}
1.70	0.044565	4.00	3.1671×10^{-5}	6.25	2.0523×10^{-10}	8.50	$9.4795{\times}10^{-18}$
1.75	0.040059	4.05	2.5609×10^{-5}	6.30	1.4882×10^{-10}	8.55	6.1544×10^{-18}
1.80	0.03593	4.10	2.0658×10^{-5}	6.35	1.0766×10^{-10}	8.60	3.9858×10^{-18}
1.85	0.032157	4.15	1.6624×10^{-5}	6.40	7.7688×10^{-11}	8.65	2.575×10^{-18}
1.90	0.028717	4.20	1.3346×10^{-5}	6.45	5.5925×10^{-11}	8.70	1.6594×10^{-18}
1.95	0.025588	4.25	1.0689×10^{-5}	6.50	4.016×10^{-11}	8.75	1.0668×10^{-18}
2.00	0.02275	4.30	8.5399×10^{-6}	6.55	2.8769×10^{-11}	8.80	6.8408×10 ⁻¹⁹
2.05	0.02213	4.35	6.8069×10^{-6}	6.60	2.0558×10^{-11}	8.85	4.376×10^{-19}
2.10	0.020182	4.40	5.4125×10^{-6}	6.65	1.4655×10^{-11}	8.90	2.7923×10^{-19}
2.15	0.017704	4.45	4.2935×10^{-6}	6.70	1.0421×10^{-11}	8.95	1.7774×10^{-19}
2.20	0.013778	4.50	3.3977×10^{-6}	6.75	7.3923×10^{-12}	9.00	1.1286×10^{-19}
2.25	0.013903	4.00	0.0311 × 10	0.70	1.0020 × 10	9.00	1.1200 / 10
2.20	0.012224						

Indice Alfabetico

Assoluta integrabilitá $h_{(t)}$, 68

Canale Gaussiano, 167 Capacitá del canale, 167 Coefficiente di Correlazione, 106 Correzione di errore, 169

Decisione a massima verosomiglianza, 179 Distanza di Hamming, 175 Distanza minima, 176

Efficenza Energetica, 154 Efficenza Spettrale, 154 Errore Gaussiano, 112 Errore Non Rivelabile, 178 Errore Rivelabile, 178 Expectation, 104

Frequenza di taglio, 70

Matrice di controllo di paritá, 178

Peso di Hamming, 175

Probabilitá di errore BSC, 169 Propietá Campionatrice del Delta di Dirac, 53

Rate del Codice, 169 Ricevitore ML error correction, 180 Ricevitore ML ottimo, 180 Risposta Impulsiva, 64 Rivelazione di errore, 169

Segnale Troncato, 12 Sequenza ciclica, 196 Statisticamente Indipendenti, 103

TCF di segnali periodici, 55
TCF di un cos, 55
TCF di un segnale periodico
generico, 56
TCF di un sin, 56
Teorema dell'integrazione
completo, 61

Valore quadratico medio, 106