Energy Forecasting using Multilinear Regression

Team 1:

Amulya Aankul

Nand Govind Modani

Saksham Agrawal

<u>Introduction</u>

The data we have is of the energy consumption of a school over the span of one year. Our objective is to predict the energy use in the city of Boston using this data along with several variables from the weather data. For prediction of power consumption, we have to use Multi-linear Regression along with several other techniques and evaluate its performance. The flow chart of our project is below:

Data wrangling and Data cleaning

The steps involved in data wrangling is summarized below:-

1) Filter the unwanted and repeated rows

The first step in data wrangling was to identify what rows and columns are actually useful for us in the analysis. We noticed that the power was divided into 3 categories: Power factor, kWh and kVARh. After going through the data and other information regarding the power usage we came to a conclusion that Power factor and kVARh must be ignored as it hardly adds to the total power. Moreover, we don't get charged for the Reactive power. This leaves us with rows where channel is MILDRED SCHOOL 1. Hence we filter out the rest of the channel values.

Account	Date	Channel	Units	0:05	0:10	Г
26908650026	1/1/2014	507115423 1 kWh	kWh	11.13	10.98	
26908650026	1/1/2014	507115423 1 Power Factor	Power Fac	0.998931	0.99877	(
26908650026	1/1/2014	507115423 2	kVARh	0	0	
26908650026	1/1/2014	507115423 3	kWh	0	0	
26908650026	1/1/2014	507115423 4	kVARh	1.03	1.09	
26908650026	1/1/2014	MILDRED SCHOOL 1	kWh	11.13	10.98	
26908650026	1/1/2014	MILDRED SCHOOL 2	kVARh	0	0	
26908650026	1/2/2014	507115423 1 kWh	kWh	10.17	10.14	
26908650026	1/2/2014	507115423 1 Power Factor	Power Fac	0.99562	0.994115	(
26908650026	1/2/2014	507115423 2	kVARh	0	0	
26908650026	1/2/2014	507115423 3	kWh	0	0	
26908650026	1/2/2014	507115423 4	kVARh	1.91	2.21	
26908650026	1/2/2014	MILDRED SCHOOL 1	kWh	10.17	10.14	
26908650026	1/2/2014	MILDRED SCHOOL 2	kVARh	0	0	
26908650026	1/3/2014	507115423 1 kWh	kWh	10.47	10.46	
26908650026	1/3/2014	507115423 1 Power Factor	Power Fac	0.994914	0.995233	(
25000550025	1/2/2014	E0711E432.3	IA/ADb	0	0	

2) Reshaping the structure from wide format to long format

Since we had to perform calculations on the columns, it was convenient to convert the column values into rows. This made aggregation much efficient and easier.

Account	Date	Channel	Units	variable	value
26908650026	1/1/2014	MILDRED SCHOOL 1	kWh	X0.05	11.130000
26908650026	1/2/2014	MILDRED SCHOOL 1	kWh	X0.05	10.170000
26908650026	1/3/2014	MILDRED SCHOOL 1	kWh	X0.05	10.469999
26908650026	1/4/2014	MILDRED SCHOOL 1	kWh	X0.05	9.990000
26908650026	1/5/2014	MILDRED SCHOOL 1	kWh	X0.05	18.100000
26908650026	1/6/2014	MILDRED SCHOOL 1	kWh	X0.05	9.960000
26908650026	1/7/2014	MILDRED SCHOOL 1	kWh	X0.05	9.540000
26908650026	1/8/2014	MILDRED SCHOOL 1	kWh	X0.05	9.830000
26908650026	1/9/2014	MILDRED SCHOOL 1	kWh	X0.05	9.940000
26908650026	1/10/2014	MILDRED SCHOOL 1	kWh	X0.05	10.160000
26908650026	1/11/2014	MILDRED SCHOOL 1	kWh	X0.05	10.160000
26908650026	1/12/2014	MILDRED SCHOOL 1	kWh	X0.05	10.460000
26908650026	1/13/2014	MILDRED SCHOOL 1	kWh	X0.05	10.599999
26908650026	1/14/2014	MILDRED SCHOOL 1	kWh	X0.05	10.400000
26908650026	1/15/2014	MILDRED SCHOOL 1	kWh	X0.05	9.990000
26908650026	1/16/2014	MILDRED SCHOOL 1	kWh	X0.05	10.059999
26908650026	1/17/2014	MILDRED SCHOOL 1	kWh	X0.05	10.130000
26908650026	1/18/2014	MILDRED SCHOOL 1	kWh	X0.05	10.160000
0000000000		HT: 5555 COURS! 4		va ar	

3) Aggregating to hourly values:

Account	Date	hour	kWh	month	day	year	Day of Week	Weekday	Peakhour
26908650026	01/01/2014	0	132.37	1	1	2014	3	1	0
26908650026	01/01/2014	1	132.72	1	1	2014	3	1	0
26908650026	01/01/2014	2	129.03	1	1	2014	3	1	0
26908650026	01/01/2014	3	125.76	1	1	2014	3	1	0
26908650026	01/01/2014	4	129.39	1	1	2014	3	1	0
26908650026	01/01/2014	5	132.51	1	1	2014	3	1	0
26908650026	01/01/2014	6	134.93	1	1	2014	3	1	0
26908650026	01/01/2014	7	122.81	1	1	2014	3	1	1
26908650026	01/01/2014	8	119.96	1	1	2014	3	1	1
26908650026	01/01/2014	9	123.16	1	1	2014	3	1	1
26908650026	01/01/2014	10	129.11	1	1	2014	3	1	1
26908650026	01/01/2014	11	125.83	1	1	2014	3	1	1
26908650026	01/01/2014	12	120.91	1	1	2014	3	1	1
26908650026	01/01/2014	13	125.20	1	1	2014	3	1	1
26908650026	01/01/2014	14	128.59	1	1	2014	3	1	1
26908650026	01/01/2014	15	143.17	1	1	2014	3	1	1

4) Merging the forecast data and aggregated power usage data

Weather data:

Date	hour	TemperatureF	Dew_PointF	Humidity	Sea_Level_PressureIn	VisibilityMPH	Wind_SpeedMPH	Conditions	WindDirDegrees
12/30/2013	22	37.0	36.0	95	NA	2.0	2.2	Mist	290
12/31/2013	1	37.0	36.0	92	NA	2.0	2.2	Mist	290
12/31/2013	2	32.0	32.0	100	30.18	-9999.0	4.6	0vercast	350
12/31/2013	2	33.8	32.0	93	30.18	-9999.0	3.5	0vercast	330
12/31/2013	3	35.6	33.8	93	30.21	3.1	3.5	0vercast	290
12/31/2013	3	37.4	35.6	93	30.21	3.1	1.2	Overcast	310
12/31/2013	4	41.0	36.0	77	NA	2.0	Calm	Mist	NA
12/31/2013	4	39.2	37.4	93	30.21	3.1	3.5	Overcast	340
12/31/2013	4	41.0	37.4	87	30.21	5.0	2.3	Overcast	310
12/31/2013	5	41.0	39.2	93	30.18	5.0	1.2	Overcast	290
12/31/2013	5	42.8	39.2	87	30.18	5.0	1.2	0vercast	0
12/31/2013	6	42.8	39.2	87	30.15	5.0	Calm	0vercast	0
12/31/2013	6	42.8	37.4	81	30.15	6.2	1.2	0vercast	0
12/31/2013	7	44.0	36.0	65	NA	6.0	Calm	Overcast	NA
12/31/2013	7	44.6	37.4	76	30.15	6.2	3.5	Overcast	140

Aggregated Data:

Account	Date	hour	kWh	month	day	year	Day of Week	Weekday	Peakhoui
26908650026	01/01/2014	0	132.37	1	1	2014	3	1	0
26908650026	01/01/2014	1	132.72	1	1	2014	3	1	0
26908650026	01/01/2014	2	129.03	1	1	2014	3	1	0
26908650026	01/01/2014	3	125.76	1	1	2014	3	1	0
26908650026	01/01/2014	4	129.39	1	1	2014	3	1	0
26908650026	01/01/2014	5	132.51	1	1	2014	3	1	0
26908650026	01/01/2014	6	134.93	1	1	2014	3	1	0
26908650026	01/01/2014	7	122.81	1	1	2014	3	1	1
26908650026	01/01/2014	8	119.96	1	1	2014	3	1	1
26908650026	01/01/2014	9	123.16	1	1	2014	3	1	1
26908650026	01/01/2014	10	129.11	1	1	2014	3	1	1
26908650026	01/01/2014	11	125.83	1	1	2014	3	1	1
26908650026	01/01/2014	12	120.91	1	1	2014	3	1	1
26908650026	01/01/2014	13	125.20	1	1	2014	3	1	1
26908650026	01/01/2014	14	128.59	1	1	2014	3	1	1

Merged Data on Date, Account and hour:

Α	В	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S
Date	hour	Account	kWh	month	day	year	Day of We	Weekday	Peakhour	Temperati	Dew_Poin	Humidity	Sea_Level	VisibilityM	Wind_Spe	Conditions	WindDirDegr	ees
1/1/2014	0	2.69E+10	132.37	1	1	2014	3	1	0	NA	NA	NA	NA	NA	NA	Mostly Clo	330	
1/1/2014	1	2.69E+10	132.72	1	1	2014	3	1	0	41	30	55	NA	NA	0	Mostly Clo	330	
1/1/2014	2	2.69E+10	129.03	1	1	2014	3	1	0	42.8	33.8	70	30.12	6.2	4.6	Mostly Clo	70	
1/1/2014	3	2.69E+10	125.76	1	1	2014	3	1	0	44.6	33.8	66	30.12	6.2	2.3	Mostly Clo	50	
1/1/2014	4	2.69E+10	129.39	1	1	2014	3	1	0	44.6	33.8	66	30.12	6.2	3.5	Mostly Clo	0	
1/1/2014	5	2.69E+10	132.51	1	1	2014	3	1	0	44.6	33.8	66	30.12	6.2	5.8	Overcast	360	
1/1/2014	6	2.69E+10	134.93	1	1	2014	3	1	0	46.4	33.8	62	30.09	6.2	5.8	Mostly Clo	10	
1/1/2014	7	2.69E+10	122.81	1	1	2014	3	1	1	46.4	32	57	30.09	6.2	3.5	Mostly Clo	0	
1/1/2014	8	2.69E+10	119.96	1	1	2014	3	1	1	46.4	33.8	62	30.12	6.2	4.6	Mostly Clo	110	
1/1/2014	9	2.69E+10	123.16	1	1	2014	3	1	1	44.6	33.8	66	30.12	6.2	2.3	Mostly Clo	140	
1/1/2014	10	2.69E+10	129.11	1	1	2014	3	1	1	42.8	33.8	70	30.12	6.2	4.6	Mostly Clo	80	
1/1/2014	11	2.69E+10	125.83	1	1	2014	3	1	1	41	32	70	30.12	6.2	6.9	Overcast	60	
1/1/2014	12	2.69E+10	120.91	1	1	2014	3	1	1	41	32	70	30.15	6.2	4.6	Overcast	60	
1/1/2014	13	2.69E+10	125.2	1	1	2014	3	1	1	42.8	30.2	61	30.15	6.2	4.6	Overcast	170	
1/1/2014	14	2.69E+10	128.59	1	1	2014	3	1	1	42.26667	30.17778	61.44444	30.14769	6.2	4.333333	Overcast	330	
1/1/2014	15	2.69E+10	143.17	1	1	2014	3	1	1	41.73333	30.15556	61.88889	30.14538	6.2	4.066667	Overcast	330	
1/1/2014	16	2.69E+10	140	1	1	2014	3	1	1	41.2	30.13333	62.33333	30.14308	6.2	3.8	Overcast	330	
1/1/2014	17	2.69E+10	138.64	1	1	2014	3	1	1	40.66667	30.11111	62.77778	30.14077	6.2	3.533333	Overcast	330	
1/1/2014	18	2.69E+10	143.2	1	1	2014	3	1	1	40.13333	30.08889	63.22222	30.13846	6.2	3.266667	Overcast	330	
4 /4 /204 4	10	2 005 140	147 13	4	4	2014	2	4	0	20.6	20.00007	C2 CCCC2	20 12615	C 2	2	0	220	

5) Removing the duplicate, outliers and NA values:

We identified the outliers from Boxplot method and removed NA values using the following logic:

- Missing values in numerical columns like TemperatureF, Dew_PointF, Humidity, Sea_Level_PressureIn, VisibilityMPH and Wind_SpeedMPH were handled by using prediction by Interpolation method.
- Missing values in Conditions column was handled by using Last observation carried forward (LOCF) method.
- Missing values in WindDirDegrees were simply filled up using random values as the values were random.

Due to the categorical values in the row, it was difficult to aggregate the duplicate key values, so we simply decided to consider the last value.

Date	hour	TemperatureF	Dew_PointF	Humidity	Sea_Level_PressureIn	VisibilityMPH	Wind_SpeedMPH	Conditions	WindDirDegrees
12/30/2013	22	37.0	36.0	95	NA	2.0	2.2	Mist	290
12/31/2013	1	37.0	36.0	92	NA	2.0	2.2	Mist	290
12/31/2013	2	32.0	32.0	100	30.18	-9999.0	4.6	0vercast	350
12/31/2013	2	33.8	32.0	93	30.18	-9999.0	3.5	0vercast	330
12/31/2013	3	35.6	33.8	93	30.21	3.1	3.5	0vercast	290
12/31/2013	3	37.4	35.6	93	30.21	3.1	1.2	0vercast	310

The clean data looks something like this, and is ready for modelling:

33	Mostly Clo	NA	NA	NA	NA	NA	NA	0	4	3	2014	1	4	132.37	2.69E+10	0	1/1/2014	
33	Mostly Clo		NA			NA 30	NA 41	0	1	3	2014	1	1	132.37	2.69E+10 2.69E+10		1/1/2014	+
	-		6.2		70	33.8	42.8	0	1	3	2014		1	132.72			1/1/2014	
7	Mostly Clo		6.2	30.12	66	33.8	44.6	0	1	3	2014	1	1	125.76	2.69E+10 2.69E+10			
5	Mostly Clo								1				1	129.39			1/1/2014	-
20	Mostly Clo		6.2	30.12	66	33.8	44.6	0	-	3	2014	1	_		2.69E+10			
36	Overcast		6.2	30.12	66	33.8	44.6	-	1	-	2014	1	1	132.51	2.69E+10		1/1/2014	
1	Mostly Clo		6.2	30.09	62	33.8	46.4	0	1	3	2014	1	1	134.93	2.69E+10		1/1/2014	3
	Mostly Clo		6.2	30.09	57	32	46.4	1	1	3	2014	1	1	122.81	2.69E+10		1/1/2014	
11	Mostly Clo		6.2	30.12	62	33.8	46.4	1	1	3	2014	1	1	119.96	2.69E+10	_	1/1/2014)
14	Mostly Clo		6.2	30.12	66	33.8	44.6	1	1	3	2014	1	1	123.16	2.69E+10		1/1/2014	1
3	Mostly Clc		6.2	30.12	70	33.8	42.8	1	1	3	2014	1	1	129.11	2.69E+10		1/1/2014	2
(Overcast		6.2	30.12	70	32	41	1	1	3	2014	1	1	125.83	2.69E+10		1/1/2014	
6	Overcast		6.2	30.15	70	32	41	1	1	3	2014	1	1	120.91	2.69E+10		1/1/2014	
17	Overcast		6.2	30.15	61	30.2	42.8	1	1	3	2014	1	1	125.2	2.69E+10		1/1/2014	
33		4.333333			61.44444		42.26667		1	3	2014	1	1	128.59	2.69E+10		1/1/2014	
33			6.2				41.73333		1	3	2014	1	1	143.17	2.69E+10		1/1/2014	7
33	Overcast		6.2			30.13333		1	1	3	2014	1	1	140	2.69E+10		1/1/2014	3
33			6.2		62.77778		40.66667		1	3	2014	1	1	138.64			1/1/2014)
33		3.266667					40.13333		1	3	2014	1	1	143.2	2.69E+10		1/1/2014)
33	Overcast		6.2				39.6	0	1	3	2014	1	1	147.12	2.69E+10		1/1/2014	1
33		2.733333			64.11111		39.06667	_	1	3	2014	1	1	147.83			1/1/2014	2
33		2.466667			64.55556		38.53333		1	3	2014	1	1	134.88	2.69E+10		1/1/2014	
34	Overcast		6.2	30.12923		30	38	0	1	3	2014	1	1	128.91	2.69E+10		1/1/2014	1
33	Overcast	1.466667	6.2	30.12692	63.66667	30	38.33333	0	1	3	2014	1	1	124.5	2.69E+10	23	1/1/2014	,
33		0.733333			62.33333		38.66667		1	4	2014	2	1	121.13	2.69E+10		1/2/2014	5
33	Overcast		6.2	30.12231	61	30	39	0	1	4	2014	2	1	125.78	2.69E+10	1	1/2/2014	'
33	Mostly Clo		6.2	30.12	87	33.8	37.4	0	1	4	2014	2	1	128.33	2.69E+10		1/2/2014	3
	Mostly Clo	0	6.2	30.15	81	33.8	39.2	0	1	4	2014	2	1	130.99	2.69E+10	3	1/2/2014	9

Code:

```
setwd("C:/Users/amuly/Desktop/Fall 2016/ADS/Assignment 2")
#Reading CSV into dataframe

df1 <- read.csv("rawData1.csv")

df2 <- read.csv("rawData2.csv")

#Filtering the unwanted values
 df_tb1 <- df %>% tbl_df %>% filter (Channel == 'MILDRED SCHOOL 1')

#Reshaping the structure for calculations
 mdata <- melt(as.data.frame(df_tb1), id=c("Account","Date","Channel","Units")) %>% tbl_df

#Removing "X" character for calculations
 mdata$timeInterval = gsub("X","",mdata$variable)

#Dropping the variable column
 mdata$variable <- NULL

#Labelling the hour
 mdata$hour <- cut(as.numeric(mdata$timeInterval), seq(0,24,1),right=TRUE,label=seq(0,23,1))</pre>
```

```
#Finding the sum per hour
aggregatedData <- mdata %>% group_by(Account, Date, hour) %>% summarise(kWh = sum(value))
View(aggregatedData)
#Splitting the Date field and converting it into Data frame
a <- strsplit(as.character(aggregatedData$Date), "/")</pre>
mat <- matrix(unlist(a), ncol=3, byrow=TRUE)</pre>
df <- as.data.frame(mat)</pre>
#Setting the values of month, day, year and Day of the week
aggregatedData$month = df$V1
aggregatedData$day = df$V2
aggregatedData$year = df$V3
aggregated Data \\ "Day of Week" = wday (as. Date (aggregated Data \\ Date, '%m/%d/%Y')) - 1
#Function to calculate the Peakhour
Peakhour <- function(x){
  if(x>7 && x<=19)</pre>
   return(1)
  else
   return(0)
```

```
#Applying the value to the function
aggregatedData$Peakhour <- sapply(as.numeric(aggregatedData$hour), Peakhour)

char_date <- as.character(aggregatedData$Date)
aggregatedData$Date <- format(strptime(char_date,"%m/%d/%Y"),"%m/%d/%Y")

#View the data as a table
#View(aggregatedData)

#Get distinct Date

distinctDate <- distinct(aggregatedData)

#Get latest and earliest date
a = distinctDate[order(as.Date(distinctDate$Date, format="%m/%d/%Y"),] %>% select(Date)
startDate = format(as.Date(head(a$Date,1), format="%m/%d/%Y"),"%Y-%m-%d")
endDate = format(as.Date(tail(a$Date,1), format="%m/%d/%Y"),"%Y-%m-%d")
endDate <- as.Date(endDate) +1
startDate <- as.Date(startDate) -1</pre>
```

```
#Creating a dummy DataFrame
d3 <- getWeatherForDate("BOS", start_date=startDate,</pre>
                          end_date = endDate,
                          opt_detailed = TRUE,
                          opt_all_columns = TRUE)
#Change to EST timezone
d3$Time <- as.character(d3$Time)
d3$Time <- as.POSIXct(d3$Time,tz="CET")</pre>
attributes(d3$Time)$tzone <- "America/New_York"</pre>
#Get Date
d3\$Date <- format(as.Date(substr(d3\$Time,1,10),format = "\%Y-\%m-\%d"),"\%m/\%d/\%Y")
#Get hour
d3$hour <- as.numeric(substr(d3$Time,12,13))</pre>
#Select Required Column
weatherData <- select(d3,Date,hour,TemperatureF,Dew_PointF,Humidity,Sea_Level_PressureIn,</pre>
                        VisibilityMPH,Wind_SpeedMPH,Conditions,WindDirDegrees)
View(weatherData)
#Group Data
groupedWData = sqldf("SELECT * FROM weatherData GROUP BY Date,hour")
#View(groupedWData)
#Left outer Join
processedOp <- merge(aggregatedData, groupedWData, by=c("Date","hour"),all.x = TRUE)</pre>
#View()
#a <- merge(aggregatedData, groupedWData, by=c("Date", "hour"), all.x = TRUE)
#write.csv(a,file="unclean_output_data.csv")
#Convert
processedOp$wind_SpeedMPH[processedOp$wind_SpeedMPH=="Calm"] <- 0</pre>
#Convert character column to numeric
processedOp$Wind_SpeedMPH <- as.double(processedOp$Wind_SpeedMPH)</pre>
#unique(processedOp$Wind_SpeedMPH)
#Remove the empty & N/A
processedOp$Conditions[processedOp$Conditions==""] <- NA</pre>
processedOp$Humidity[processedOp$Humidity=="N/A"] <- NA</pre>
processedOp$Humidity <- as.integer(processedOp$Humidity)</pre>
```

```
#Remove the outliers using Boxplot
processedOp$TemperatureF[processedOp$TemperatureF %in% boxplot.stats(processedOp$TemperatureF)$out] <- NA
processedop$TemperatureF[processedop$TemperatureF]$out] <- NA
processedop$Dew_PointF[processedop$Dew_PointF]$out] <- NA
processedop$Humidity[processedOp$Humidity %in% boxplot.stats(processedOp$Humidity)$out] <- NA
processedOp$Sea_Level_PressureIn[processedOp$Sea_Level_PressureIn %in% boxplot.stats(processedOp$Sea_Level_PressureIn[processedOp$Sea_Level_PressureIn %in% boxplot.stats(processedOp$Sea_Level_PressureIn %in% boxplot.stat
processedOp$VisibilityMPH[processedOp$VisibilityMPH %in% boxplot.stats(processedOp$VisibilityMPH)$out] <-
processedop$wind_SpeedMPH[processedOp$wind_SpeedMPH %in% boxplot.stats(processedOp$wind_SpeedMPH)$out] <-
#Replacing NA values with linear interpolation
processed \\ \bar{op} \\ \texttt{TemperatureF} <- \text{ na.approx(processedOp} \\ \texttt{TemperatureF, na.rm} = \\ \texttt{FALSE)} \\
processedOp$Dew_PointF <- na.approx(processedOp$Dew_PointF,na.rm = FALSE)
processedOp$Humidity <- na.approx(processedOp$Humidity,na.rm = FALSE)</pre>
processedOp$Sea_Level_PressureIn <- na.approx(processedOp$Sea_Level_PressureIn,na.rm = FALSE)
processedOp$VisibilityMPH <- na.approx(processedOp$VisibilityMPH,na.rm = FALSE)
processedOp$wind_SpeedMPH <- na.approx(processedOp$wind_SpeedMPH,na.rm = FALSE)</pre>
#Replacing NA values randomly
processedOp$WindDirDegrees[is.na(processedOp$WindDirDegrees)]<- sample(1:36,1)*10
#Replacing NA with last known non null value
processedOp$Conditions <- na.locf(processedOp$Conditions,fromLast = TRUE,na.rm = FALSE)</pre>
#View(processedOp)
write.csv(processedOp,file="final_sample_format.csv",row.names=FALSE)
```

Multi-Linear Regression

WORKFLOW

INITIAL FEATURES	TYPE
hour	Categorical
Account	Constant
kWh	Output
month	Categorical
day	Categorical
year	Constant
Day.of.Week	Categorical
Weekday	Categorical
Peakhour	Categorical
TemperatureF	Numerical
Dew_PointF	Numerical
Humidity	Numerical
Sea_Level_PressureIn	Numerical
VisibilityMPH	Numerical
Wind_SpeedMPH	Numerical
Conditions	Categorical
WindDirDegrees	Numerical

Feature Transformation of Categorical Variables

Since we have high number of levels in some categorical variables, so we have to transform them to feed it to a regression model, as it can cause over fitting.

Hour & Peak hour

Currently, hour has 24 levels of categories in it. So feeding all of them or even some of them increases the no. of variables. The box plot below shows that power consumption in between 7am to 7pm is distinctly high as compared to that of 7pm to 7am, i.e. power consumption in

Peak Hour can be easily separated from non-peak hour.

So we dropped the "hour" column and using the information from "Peak Hour" column.

Month

"Month" has 12 levels of categories which again are high in itself to feed into any regression model. Keeping in mind that this data is of a "School" and after looking at the pattern of below plot, as similar to that of "hour", we can reduce the categories of "month" to three, viz.

month 1 – month 4 - Spring

month 5 – month 8 - Summer

month 9 – month 12 - Fall

Day & Day.of.Week & Weekday

Pattern of "Day.of.Week" vs kWh clearly shows difference in levels for "Day.of.Week 0" and "Day.of.Week 6" i.e. Weekday or not. Hence, it is wise to reduce the levels of "Day.of.Week" from 7 to 2 and directly use "Weekday".

Pattern of "Day" shows high randomness in relation to "kWh", this is due to the fact that any "day" out of 31 levels can be a "WeekDay" for a "Month". So instead of introducing 31 levels or even a subset of "day" categories, we can use "WeekDay" as it is more reflective of power consumption.

Conditions

Feature engineering for "Conditions" is the trickiest part as there are no fixed levels of categories. Originally, amount of missing data in "Conditions" was around 36% and around 21 categories in "Conditions" are occupying only 10% of rows. So, only 3-5 categories are present that can help in creating a prediction model. To handle this, we decided to take into account only those categories of "Conditions" which occupy more than 15% of rows and renaming all other categories as "Other". This way we can handle any new "Conditions" value. In below screenshot, we can see the same calculation and its result in the right most column.

```
    abcd$cond <- as.character(abcd$cond)</li>
    abcd$cond_Category <- ifelse (abcd$percent < 0.15,'other', abcd$cond)</li>
    abcd
```

	cond	Freq	percent	cond_Category
L	Blowing Sand	9	0.0010291595	other
2	Clear	1950	0.2229845626	Clear
3	Drizzle	5	0.0005717553	other
ŀ	Fog	23	0.0026300743	other
5	Heavy Fog	59	0.0067467124	other
5	Heavy Rain	2	0.0002287021	other
7	Heavy Snow	4	0.0004574042	other
3	Heavy Thunderstorms and Rain	3	0.0003430532	other
)	Light Drizzle	27	0.0030874786	other
LØ	Light Freezing Fog	8	0.0009148085	other
1	Light Rain	445	0.0508862207	other
12	Light Snow	26	0.0029731275	other
l3	Light Thunderstorm	3	0.0003430532	other
4	Light Thunderstorms and Rain			other
١5	Mist	23	0.0026300743	other
۱6	Mostly Cloudy	2113	0.2416237850	Mostly Cloudy
١7	Overcast	685	0.0783304746	other
18	Partly Cloudy	1632	0.1866209262	Partly Cloudy
١9	Rain	104	0.0118925100	other
20	Rain Showers	1	0.0001143511	other
21	Scattered Clouds	1583	0.1810177244	Scattered Clouds
22	Snow	14	0.0016009148	other
23	Thunderstorm	13	0.0014865638	other
24	Thunderstorms and Rain		0.0009148085	other
25	Unknown	4	0.0004574042	other

Feature Transformation of Numerical Variables

Although, we have only 7 numerical variables but we can reduce them to make a better fitting and generalized predictive model.

Temperature & Humidity

Once we fed, all numerical variables and above transformed categorical variables in Lin. Regression Model, we saw that co-efficient of "TemperatureF" is very low and hence isn't creating much of an impact. But after seeing the relation in a scatter plot, we transformed "TemperatureF" to "SQRT(TempeatureF)" and found a much better co-efficient.

Same Pattern was found in "Humidity", so we performed the same transformation: "Humidity" to "SQRT(Humidity)"

```
fit.train <- lm(kWh~ Weekday+Peakhour+TemperatureF+Humidity,data=train)
 128
 129
      summary(fit.train)
 130
131:1 (Top Level) $
Console ~/Documents/ADS/Assignment 2(1)/
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                       7.64776 1.744
(Intercept)
            13.33665
                                        0.0812 .
                       1.85762 37.534 < 2e-16 ***
Weekday
            69.72410
Peakhour
           126.57074
                       1.78371 70.959 < 2e-16 ***
TemperatureF
             1.87565
                       0.07528 24.916 < 2e-16 ***
            Humidity
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 67.8 on 6553 degrees of freedom
Multiple R-squared: 0.5978,
                             Adjusted R-squared: 0.5976
```

Model Summary **Before Transformation** in Temperature & Humidity

```
131 fit.train <- lm(kWh~ Weekday+Peakhour+sqrt(TemperatureF)+sqrt(Humidity),data=train)
  132 summary(fit.train)
  133
134:1 (Top Level) $
Console ~/Documents/ADS/Assignment 2(1)/ A
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 -21.5920 14.0988 -1.531
                                               0.126
Weekday
                  69.6549 1.8671 37.307 <2e-16 ***
                            1.7941 70.383 <2e-16 ***
Peakhour
                126.2728
sqrt(TemperatureF) 24.8391
                            1.0840 22.914 <2e-16 ***
                             0.9898 -9.389 <Ze-16 ***
sqrt(Humidity)
                  -9.2932
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 68.14 on 6553 degrees of freedom
Multiple R-squared: 0.5937, Adjusted R-squared: 0.5934
```

Model Summary **After Transformation** in Temperature & Humidity

FEATURE SELECTION

First step, to choose Features is to see if we have highly co-related variables.

After calculating correlation matrix for the features, we found that "TemperatureF" is highly correlated to "DewPointF". So, this way we ruled out "DewPointF" from the model and selected "TemperatureF"

```
> correlat <- cor(xdf,method = "pearson",use="pairwise.complete.obs")
> highlyCorrelated <- findCorrelation(correlat, cutoff=0.5,verbose = TRUE,names=TRUE)
Compare row 3 and column 4 with corr 0.851
   Means: 0.22 vs 0.095 so flagging column 3
All correlations <= 0.5
> highlyCorrelated
[1] "df.TemperatureF"
```

Feeding all variables to see the model by far and try to remove variables with high p-value. So further we can see in below model that "Conditions", "WinDirDegrees' and "Wind SpeedMPH" can be dropped from the model.

```
Call:
lm(formula = kWh ~ Sea_Level_PressureIn + Conditions + Peakhour +
    month + Weekday + Wind_SpeedMPH + WindDirDegrees + sqrt(TemperatureF) +
    sqrt(Humidity), data = train)
Residuals:
                           3Q
    Min
            10 Median
                                  Max
-262.41 -45.56 -4.72 35.66 319.13
Coefficients:
                                       Estimate Std. Error t value Pr(>|t|)
                                      1.104e+03 1.976e+02
(Intercept)
                                                           5.586 2.42e-08 ***
                                     -3.682e+01 6.403e+00 -5.751 9.25e-09 ***
Sea_Level_PressureIn
ConditionsClear
                                     -2.379e+01 3.929e+01 -0.605
                                                                   0.5449
ConditionsScattered Clouds
                                     -2.791e+01 3.928e+01 -0.711
                                                                    0.4774
ConditionsSnow
                                     6.492e+00 4.678e+01
                                                            0.139 0.8896
ConditionsThunderstorm
                                     1.032e+01 4.470e+01
                                                            0.231
                                                                    0.8173
                                     -9.446e+01 4.799e+01 -1.968
ConditionsThunderstorms and Rain
                                                                    0.0491 *
ConditionsUnknown
                                      2.075e+01 5.190e+01 0.400 0.6894
Peakhour
                                      1.232e+02 1.839e+00 67.020 < 2e-16 ***
month
                                     -1.075e+00 2.685e-01 -4.004 6.29e-05 ***
Weekday
                                      7.120e+01 1.871e+00 38.053 < 2e-16 ***
                                      6.242e-01 3.139e-01 1.989 0.0468 *
Wind_SpeedMPH
WindDirDegrees
                                      1.771e-03 7.927e-03
                                                            0.223 0.8232
                                      2.619e+01 1.219e+00 21.479 < 2e-16 ***
sqrt(TemperatureF)
                                     -9.401e+00 1.132e+00 -8.306 < 2e-16 ***
sqrt(Humidity)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 67.75 on 6525 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.5957,
                              Adjusted R-squared: 0.5938
F-statistic: 310.1 on 31 and 6525 DF, p-value: < 2.2e-16
```

Next Step, to create best implementation of regression, from by far deduced model. We are using **exhaustive feature selection** method to further improve the model. Below diagram shows the selectivity of each variable.

```
111
       regfit.full=regsubsets (kWh~ month+Weekday+Peakhour+sqrt(Humidity)+sqrt(TemperatureF)+
 112
                                Sea_Level_PressureIn,data=df_test ,nvmax=7,method = "exhaustive")
       reg.summary.exhaust =summary (regfit.full)
 113
112:48 (Top Level) $
                                                                                       R Script $
                                                                                          \neg
Console ~/Documents/ADS/Assignment 2(1)/ A
1 subsets of each size up to 7
Selection Algorithm: exhaustive
        monthSpring monthSummer Weekday Peakhour sqrt(Humidity) sqrt(TemperatureF)
  (1)""
                                       **
1
  (1)""
2
3
  (1)
  (1)
5
  (1)
  (1)"*"
6
  (1)
        Sea_Level_PressureIn
1
  (1)
2
  (1)
3
  (1)
4
  (1)
        . .
5
  (1)
        . .
6
  (1)
  (1)
```

Now let's look at the RSS plot to figure out the no. of variables majorly impacting the prediction. Below graph tells us that 3 variables are enough in our model to predict the value.

MODEL

After performing feature engineering, we came to conclusion that 4 variables are enough in our model and the selected model is

kWh ~ Weekday + Peakhour+ sqrt(TemperatureF) + sqrt(Humidity)

Following is the Performance evaluation of our model:

Adjusted R-sq = 59.34 %

RMSE = 66.66879

```
Call:
lm(formula = kWh ~ Weekday + Peakhour + sqrt(TemperatureF) +
   sqrt(Humidity), data = train)
Residuals:
   Min
            1Q Median
                           30
                                  Max
-260.15 -44.71 -4.13 35.07 322.45
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 -21.5920
                             14.0988 -1.531
                                               0.126
                             1.8671 37.307 <2e-16 ***
Weekday
                  69.6549
                             1.7941 70.383 <2e-16 ***
Peakhour
                 126.2728
                             1.0840 22.914 <2e-16 ***
sqrt(TemperatureF) 24.8391
sart(Humidity)
                 -9.2932
                              0.9898 -9.389 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 68.14 on 6553 degrees of freedom
Multiple R-squared: 0.5937, Adjusted R-squared: 0.5934
F-statistic: 2394 on 4 and 6553 DF, p-value: < 2.2e-16
```

```
> pred = predict(fit.train, test)
```

> accuracy(pred, test\$kWh)

ME RMSE MAE MPE MAPE
Test set 1.83165 66.66879 50.24955 -9.512408 32.54569

REGULARIZATION

We got no improvement in RMSE after applying regularization.

Ridge Regression

We can see that RMSE got deteriorated after applying Ridge Regularization.

RMSE = 125.4789

```
137
 138 - ######Ridge Regression########
 139 x.tr <- model.matrix(kWh ~ month+Weekday+Peakhour+sqrt(Humidity)+sqrt(TemperatureF)
 140
                            +Sea_Level_PressureIn, data = train)[,-1]
 141 y.tr <- train$kWh
 142
 143 x.val <-model.matrix(kWh ~ month+Weekday+Peakhour+sqrt(Humidity)
 144
                            +sqrt(TemperatureF)+Sea_Level_PressureIn, data = test)[,-1]
 145 y.val <- test$kWh
 146
 147 set.seed(10)
 148 rr.cv <- cv.glmnet(x.tr, y.tr, alpha = 0)
 149
      plot(rr.cv)
 150 rr.fit <- glmnet(x.tr, y.tr, alpha = 0)
 151 rr.bestlam <- rr.cv$lambda.min
 152 rr.goodlam <- rr.cv$lambda.1se
 153
 154 rr.fit <- glmnet(x.tr, y.tr, alpha = 0)
 155 plot(rr.fit, xvar = "lambda", label = TRUE)
 156
 157 rr.pred <- predict(rr.fit, s = rr.bestlam, newx = x.val)
 158 sqrt(mean((rr.pred - y.val)^2))
 159
144:22 ## Ridge Regression $
Console ~/Documents/ADS/Assignment 2(1)/ A
> sqrt(mean((rr.pred - y.val)^2))
[1] 125.4789
```

LASSO Regression

We can see that RMSE got deteriorated after applying LASSO Regularization.

RMSE = 128.3062

```
162 set.seed(10)
 163 las.cv <- cv.glmnet(x.tr, y.tr, alpha = 1)</pre>
 164
      plot(las.cv)
 165
      las.bestlam <- las.cv$lambda.min
      las.goodlam <- las.cv$lambda.1se
 166
 167
 168
      # predict validation set using best lambda and calculate RMSE
 169
      las.fit <- glmnet(x.tr, y.tr, alpha = 1)</pre>
 170
      plot(las.fit, xvar = "lambda", label = TRUE)
 171
 172
      las.pred <- predict(las.fit, s = las.bestlam, newx = x.val)</pre>
 173
      sqrt(mean((las.pred - y.val)^2))
 174
 175:29 @ LASSO $
Console ~/Documents/ADS/Assignment 2(1)/ A
> sqrt(mean((las.pred - y.val)^2))
[1] 128.3062
```

<u>Forecast</u>

Step 1: Get data from Forcastdata.csv and store it in a data frame

Step 2: Select the variables required for the model from Part 2

Step 3 : Get the derived variable as done in part 1

Step 4: Run Linear Regression

Step 5: Get the predicted value and write it into csv file

Input file:-

1		Time	TimeEDT	Temperati	Dew_Poin	Humidity	Sea_Level	VisibilityM	Wind	Dire Wind_Spec	Gust_Spee P	recipitati Events	Conditions W	indDirD∈ Da	ateUTC
2	1	10/1/2016 0:05	12:05 AM	57.9	57	97	30.35	10	NE	15	-	0 Rain	Light Rain	50	10/1/2016 4:05
3	2	10/1/2016 0:29	12:29 AM	57.9	57	97	30.34	10	NE	15	-	0	Overcast	50	10/1/2016 4:29
4	3	10/1/2016 0:54	12:54 AM	57.9	57	97	30.34	6	NE	18.4	-	0 Rain	Light Rain	50	10/1/2016 4:54
5	4	10/1/2016 1:16	1:16 AM	57.9	57	97	30.34	2.5	NE	19.6	-	0.01 Rain	Rain	50	10/1/2016 5:16
6	5	10/1/2016 1:23	1:23 AM	57.9	57	97	30.34	3	NE	18.4	-	0.02 Rain	Light Rain	50	10/1/2016 5:23
7	6	10/1/2016 1:54	1:54 AM	57.9	57	97	30.33	2.5	NE	16.1	-	0.08 Rain	Heavy Rair	50	10/1/2016 5:54
8	7	10/1/2016 2:03	2:03 AM	57.9	57	97	30.33	4	ENE	18.4	-	0.01 Rain	Light Rain	60	10/1/2016 6:03
9	8	10/1/2016 2:10	2:10 AM	57.9	57	97	30.33	4	NE	17.3	-	0.02 Rain	Light Rain	50	10/1/2016 6:10
10	9	10/1/2016 2:43	2:43 AM	57.9	57	97	30.32	6	NE	17.3	24.2	0.04 Rain	Light Rain	50	10/1/2016 6:43
11	10	10/1/2016 2:54	2:54 AM	57.9	57	97	30.31	5	NE	16.1	-	0.04 Rain	Light Rain	50	10/1/2016 6:54
12	11	10/1/2016 3:21	3:21 AM	57	57	100	30.31	3	NE	19.6	-	0.01 Rain	Light Rain	50	10/1/2016 7:21
13	12	10/1/2016 3:54	3:54 AM	57	57	100	30.3	4	NE	18.4	27.6	0.02 Rain	Light Rain	50	10/1/2016 7:54
14	13	10/1/2016 4:16	4:16 AM	57	57	100	30.3	6	NE	18.4	-	0.01 Rain	Light Rain	50	10/1/2016 8:16
15	14	10/1/2016 4:54	4:54 AM	57	57	100	30.3	2.5	NE	15	-	0.02 Rain	Light Rain	50	10/1/2016 8:54
16	15	10/1/2016 5:19	5:19 AM	57	57	100	30.3	4	NE	17.3	-	0.07 Rain	Light Rain	50	10/1/2016 9:19
17	16	10/1/2016 5:54	5:54 AM	57	57	100	30.31	2.5	NE	18.4	24.2	0.09 Rain	Light Rain	50	10/1/2016 9:54
18	17	10/1/2016 6:17	6:17 AM	57	57	100	30.31	3	NE	16.1	-	0.02 Rain	Light Rain	40	10/1/2016 10:17
19	18	10/1/2016 6:30	6:30 AM	57	57	100	30.31	2.5	NE	13.8	23	0.04 Rain	Light Rain	40	10/1/2016 10:30
20	19	10/1/2016 6:39	6:39 AM	57	57	100	30.31	3	NE	17.3	-	0.05 Rain	Light Rain	40	10/1/2016 10:39
21	20	10/1/2016 6:54	6:54 AM	57	57	100	30.3	4	NE	15	24.2	0.05 Rain	Light Rain	40	10/1/2016 10:54
22	21	10/1/2016 7:47	7:47 AM	55.9	55.9	100	30.31	2	NE	13.8	-	0.12 Rain	Heavy Rair	40	10/1/2016 11:47
23	22	10/1/2016 7:54	7:54 AM	55.9	55.9	100	30.31	2.5	NE	12.7	-	0.15 Rain	Heavy Rair	40	10/1/2016 11:54
24	23	10/1/2016 8:04	8:04 AM	55.9	55.9	100	30.31	4	NNE	16.1	-	0.02 Rain	Light Rain	30	10/1/2016 12:04

Code:-

```
library(ISLR)
library(forecast)

#Read the csv file
forecastData <- read.csv("forecastData.csv")
|

#Select the variables from the feature selection by Part 2
selectedData <- data.frame(forecastData$Time,forecastData$TemperatureF,forecastData$Humidity)

#Derive the required variables as shown in part 1
selectedData$Date <- format(as.Date(substr(selectedData$forecastData.Time,1,10),format = "%Y-%m-%d"),"%m/%d/%Y'
selectedData$Date <- as.numeric(substr(selectedData$forecastData.Time,12,13))
selectedData$Day of Week" = wday(as.Date(x = selectedData$forecastDate.'%m/%d/%Y')) - 1
selectedData$Weekday <- ifelse(selectedData$"Day of Week" == 0,0,ifelse(selectedData$"Day of Week" == 6,0,1))

Peakhour <- function(x){
    if(x>7 && x<=19)
        return(1)
    else
        return(0)
}
selectedData$Peakhour <- sapply(as.numeric(selectedData$hour), Peakhour)</pre>
```

```
#Change the name of the variables
dffinal $Date <- dffinal $selected Data. Date dffinal $hour <- dffinal $selected Data. hour
dffinal$weekday <- dffinal$selectedData.weekday
dffinal$Peakhour <- dffinal$selectedData.Peakhour
dffinal$TemperatureF <- dffinal$selectedData.forecastData.TemperatureF
dffinal $Humidity <- dffinal $selectedData. forecastData. Humidity
#Drop the variables
dffinal$selectedData.Peakhour <- NULL
dffinal$selectedData.Date <- NULL
dffinal$selectedData.hour <- NULL</pre>
dffinal$selectedData.Weekday <- NULL
dffinal$selectedData.forecastData.TemperatureF <- NULL
dffinal$selectedData.forecastData.Humidity <- NULL
\# Group the rows to remove duplicates (Selects the last row) groupedWData = sqldf("SELECT * FROM dffinal GROUP BY Date,hour")
#Read data from school
completeData <- read.csv("final_sample_format.csv")</pre>
#Convert hour as factors for model to identify
groupedWData$hour <- factor(groupedWData$hour)</pre>
completeData$hour <- factor(completeData$hour)</pre>
#Run linear Regression with the selected variables in part 2
lm.fit=lm(kWh~ (Weekday + Peakhour + sqrt(TemperatureF) + sqrt(Humidity)), data=completeData)
#Get the predicted kWh
predicted.kwh = predict(lm.fit, groupedwData)
#Add the predicted value to the dataframe
predictedDf <- data.frame(groupedwData,predicted.kwh)</pre>
write.csv(predictedDf,file="forecastOutput.csv",row.names=FALSE)
```

Output:-

#Add all variables to a dataframe

1	Date	hour	Weekday	Peakhour	Temperatu	Humidity	predicted.k	wh
2	10/1/2016	0	0	0	57.9	97	75.70129	
3	10/1/2016	1	0	0	57.9	97	75.70129	
4	10/1/2016	2	0	0	57.9	97	75.70129	
5	10/1/2016	3	0	0	57	100	72.92837	
6	10/1/2016	4	0	0	57	100	72.92837	
7	10/1/2016	5	0	0	57	100	72.92837	
8	10/1/2016	6	0	0	57	100	72.92837	
9	10/1/2016	7	0	0	55.9	100	71.10697	
10	10/1/2016	8	0	1	55.9	100	196.2013	
11	10/1/2016	9	0	1	55.9	100	196.2013	
12	10/1/2016	10	0	1	57	100	198.0227	
13	10/1/2016	11	0	1	57.9	97	200.7956	
14	10/1/2016	12	0	1	57.9	100	199.4999	
15	10/1/2016	13	0	1	57.9	100	199.4999	
16	10/1/2016	14	0	1	57	100	198.0227	
17	10/1/2016	15	0	1	55.9	100	196.2013	
18	10/1/2016	16	0	1	55	100	194.6977	
19	10/1/2016	17	0	1	55	100	194.6977	
20	10/1/2016	18	0	1	55.9	97	197.497	
21	10/1/2016	19	0	1	55.9	100	196.2013	
22	10/1/2016	20	0	0	55	96	71.33542	
23	10/1/2016	21	0	0	55	93	72.65828	
24	10/1/2016	22	0	0	55	100	69.60336	
25	10/1/2016	23	0	0	55	100	69.60336	
26	10/2/2016	0	0	0	55	100	69.60336	