Constance Douwes

DOCTEURE EN SCIENCES ET TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION

+33664779671 | constance.douwes@inria.fr | github.com/ConstanceDws | linkedin.com/in/constance-douwes

#Impact Environnemental #Apprentissage Profond #Traitement Du Signal Audio

EMPLOIS, FORMATION ET DIPLÔMES

Chercheuse post-doctorale

INRIA Nancy, Université de Lorraine, CNRS, LORIA UMR7503

Septembre 2023 - Mars 2025

- Encadrant: Romain Serizel
- Sujet : Analyse de l'empreinte énergétique des systèmes d'apprentissage profond.
 - Analyse des métriques existantes, comparaison et identification des biais potentiels.
 - Proposition de méthodes d'estimation et de normalisation énergétique.
 - Étude comparative des métriques et promotion de leur utilisation au sein de la communauté de la recherche.

Doctorat en informatique

IRCAM, Sorbonne Université, Ministère de la Culture, CNRS, STMS UMR9912

Octobre 2019 - Mars 2023

- Encadrants : Jean-Pierre Briot (directeur), Philippe Esling (co-directeur)
- Sujet : L'impact environnemental des modèles génératifs profond pour l'audio.
 - Étude de l'impact environnemental des modèles d'apprentissage profond spécialisés dans la synthèse audio.
 - Développement d'une méthodologie basée sur l'optimalité de Pareto pour évaluer les modèles en coûts/qualité.
 - Proposition de solutions pour réduire les coûts énergétiques liés à l'inférence des modèles.

Stage de Master 2

IRCAM, Sorbonne Université, Ministère de la Culture, CNRS, STMS UMR9912

Février - Septembre 2019

- Encadrant : Philippe Esling
- Sujet : Apprentissage variationnel hiérarchique pour la synthèse audio musicale.
 - Utilisation de l'inférence variationnelle pour créer des solutions légères de génération de formes d'onde.
 - Création d'un environnement de référence pour évaluer les performances des modèles proposés en comparaison avec les approches de l'état de l'art, en mettant l'accent sur l'efficacité des modèles.

Master 2 ATIAM

IRCAM, Sorbonne Université, Télécom Paris

2018-2019

Diplôme d'ingénieur

École Nationale Supérieure de l'Électronique et de ses Applications (ENSEA), Cergy

2015-2018

Classe préparatoire aux grandes écoles

Lycée Saint-Louis, Paris 6e 2013-2015

Baccalauréat

Lycée Saint-Charles, Athis-Mons 2013

PUBLICATIONS SCIENTIFIQUES __

Conférences internationales avec comité de lecture

- ICASSP, IEEE International Conference on Acoustics, Speech, and Signal Processing (Rang A / h-Index: 185)
 - Energy Consumption Trends in Sound Event Detection Systems

2025

Constance Douwes, Romain Serizel

Type de présentation : Conférence ou Poster

- Is quality enough? Integrating energy consumption in a large-scale evaluation of neural audio synthesis models

2023

Constance Douwes, Giovanni Bindi, Antoine Caillon, Philippe Esling and Jean-Pierre Briot

Type de présentation : Poster

• DAFx, International Conference on Digital Audio Effects

- Diet deep generative audio models with structured lottery 2020 Philippe Esling, Ninon Devis, Adrien Bitton, Antoine Caillon, Axel Chemla-Romeu-Santos, Constance Douwes Type de présentation : Poster

Workshops/ateliers internationaux avec comité de lecture

- DCASE, International workshop on Detection and Classification of Acoustic Scenes and Events (h-Index: 25)
 - From computation to consumption: exploring the compute-energy link for training and testing 2024 neural networks for SED systems

Constance Douwes, Romain Serizel

Type de présentation : Conférence

- DCASE 2024 Task 4: Sound Event Detection with Heterogeneous Data and Missing Labels 2024 Samuele Cornell, Janek Ebbers, Constance Douwes, Irene Martín-Morató, Manu Harju, Annamaria Mesaros, Romain Serizel Type de présentation : Poster MLSP, IEEE International Workshop on Machine Learning for Signal Processing (h-Index: 28) - Normalizing energy consumption for hardware-independent evaluation 2024 Constance Douwes, Romain Serizel Type de présentaiton : Conférence INTERVENTIONS ET EXPOSÉS INVITÉS **Démonstration** • DCASE, International workshop on Detection and Classification of Acoustic Scenes and Events 2023 - Monitoring environmental impact of DCASE systems: Why and how? Constance Douwes, Francesca Ronchini, Romain Serizel. Type de démonstration : Conférence https://dcase.community/workshop2023/tutorials • NIME, New Interfaces for Musical Expression - Tools and Perspectives for Interaction with Neural Audio Synthesis 2022 Antoine Caillon, Axel Chemla-Romeu-Santos, Nils Demerlé, Constance Douwes, Jean-Baptiste Dupuy, David Genova, Sarah Nabi, Hugo Scurto Type de démonstration : Conférence (en ligne) https://nime.pubpub.org/pub/bo41qut9/release/1 Séminaires invités

- Séminaire Multispeech à l'INRIA Nancy, LORIA

2024

Titre de la présentation : Monotring the energy footprint of deep learning systems : Case study of SED systems

- Séminaire Signal - Apprentissage de QARMA & I2M au LIS (en ligne)

2024

Titre de la présentation : The environmental impact of deep learning for audio

- Séminaire GdR ISIS Traitement du signal pour la musique à l'IRCAM, Paris

2023

Titre du poster : The environmental impact of deep learning for audio :

Monitoring and integrating energy consumption

- Séminaire AXA à l'IRCAM, Paris

2023

Titre de la présentation : On the environmental impact of deep learning for audio

- Séminaires des doctorants de la SIF (en ligne)

2021

Titre de la présentation : A multi-objective approach for sustainable deep learning

ENSEIGNEMENT ___

Formation	L1	L1	L2	M1	M2	Total Annuel
Lieu	SU	SU	SU	ENSEA	ENSEA	
Matière	Python	Language C	HTML	Option SM	SIA	
2023-2024				4h CM	2h CM	6h
2021-2022	2h TD, 20h TME	35h TME				57h
2020-2021	23h TME	39h TME				62h
2019-2020		39h TME	39h TD			78h
TOTAL	45h	113h	39h	4h	2h	203h

Cours magistral (CM)

à l'ENSEA, Cergy

• Niveau : M2 Signal et Intelligence Artificielle (SIA)

2024

Durée: 2h

Contenu : "L'impact environnemental de l'Intelligence Artificielle"

- Crise climatique et nouveaux enjeux environnementaux lié au numérique
- Impact environnemental de l'IA et Analyse de Cycle de Vie (ACV)
- Prise en main des calculateurs d'impacts tels que CodeCarbon et GreenAlgorithm
- Étude de l'efficacité énergétique des modèles de synthèse vocale en lien avec la performance

• Niveau : M1 Option signal musical

2024

Durée : 4h

Contenu : "Intelligence Artificielle et synthèse" sonore

- Introduction à l'IA générative pour l'audio accompagné d'exemples sonores
- Présentation des réseaux de neurones et modèles génératif
- Prise en main du modèle RAVE et du package associé sur le logiciel max/msp
- Ouverture sur l'impact environnemental de l'IA et étude de l'optimalité de Pareto des modèles de synthèse vocale

Chargée de TD/TME

à Sorbonne Université, Paris 5e

• Niveau : L1 Éléments de programmation 2 (Language C)

Durée: 113h 2019-2022

Contenu:

- Principes de fonctionnement des ordinateurs
- Tableaux, pointeurs et allocation
- Algorithmes avec les tableaux
- Arithmétique de pointeurs et chaînes de caractères
- Enregistrement (structures) et pointeurs
- Structure de données linéaires (liste, files d'attente)
- Structures arborescentes

• Niveau : L1 Éléments de programmation 1 (Python) 2019-2021

Durée: 45h **Contenu**:

- Programmation impérative avec une sémantique semi-formelle
- Spécification formelle (typage), tests pertinents, simulations et éléments de correction (invariants de boucles).
- Concepts d'algorithmique, sensibilisation à l'efficacité, et décomposition de problèmes.
- Structures de haut-niveau (ensembles, dictionnaires)
- compréhensions.

• Niveau : L2 Structure des architectures Client-serveur (HTML) 2019-2020

Durée: 39h **Contenu**:

- Évolution de HTML, production par PHP, notamment à l'aide de son interface aux désormais indispensables
- Expressions Rationnelles (RegExp).
- Protocoles textuels en général, notamment HTTP, et émergence du catalogue MIME et du méta-langage XML.
- Programmation événementielle avec l'utilitaire SAX.
- Feuilles de style en cascade (CSS).
- Étude du DOM et de JavaScript, permettant une interaction utilisateur en réponse à des événements clavier ou souris.
- Technologie AJAX, fonctionnement du serveur HTTP et des moteurs de recherche.

Supervision de stage

à l'INRIA Nancy, LORIA

Février 2024 - Septembre 2024

• Niveau : M2 TAL (Traitement Automatique des Langues)

Durée : 6 mois

Sujet : Étude comparative des algorithmes de séparation de source en termes de performance et de consommation

- Implémentation de différents modèles de séparation audio basés sur l'apprentissage profond
- Mesures de consommation réparties entre les phases d'apprentissage, de validation et d'évaluation
- Évaluation sur 5 différentes cartes graphiques
- Comparaison de l'efficacité énergétique relative des modèles étudiés

Supervision de projets

à l'IDMC, Institut des Sciences du Digital Management et Cognition, Nancy

2023 - 2024

• Niveau: M1 TAL (Traitement Automatique des Langues)

Durée: 2h/semaine sur 4 mois

Sujet : Étude comparative des algorithmes de séparation de source en termes de performance et de consommation

- Estimation de l'impact environnemental des modèles de traitement de la parole de pointe
- Calcul du coût environnemental de l'entrainement via des outils en ligne
- Mesure de la consommation énergétique de modèles pré-entraînés en phase de test
- Comparaison de l'impact environnemental avec les performances des modèles

à l'IRCAM, Paris 2021 - 2022

• Niveau : M2 ATIAM (Acoustique Traitement du Signal Appliqué à la Musique)

Durée: 2h/semaine sur 3 mois

Sujet : Compression et génération de musique

- Utilisation des propriétés psychoacoustiques des signaux audio pour optimiser la génération
- Implémentation des processus de traitement des données : MCDT et filtre psychoacoustique.
- Implémentation du modèle génératif GAN
- Calcul du coût le coût énergétique à l'entraînement à et l'inférence