# Pick up @jadeciss

Date: 25.10.2022 23:31

Driver's name: Тстс

Customer name: Ьсьс

Car model: gger

Plate number: ger

Car odometer: gre

Petrol level %: 30%

Any problems with the car: No

Pickup address: t4t



#### ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ

#### Основные понятия и формулы

Величина заряда на обкладках конденсатора в процессе свободных незатухающих колебаний определяется по формуле:

 $q = q_m \cos(\omega_0 t + \varphi_0),$ 

где  $q_m$  – амплитудное значение заряда;

 $\phi_0$  — начальная фаза;

О<sub>0</sub> – угловая частота колебаний.

Формула Томсона:

 $T_0 = 2\pi\sqrt{LC}$ 

где L – индуктивность контура, C - ёмкость конденсатора.

Частота собственных колебаний контура:

$$v_0 = \frac{1}{T_0} = \frac{1}{2\pi\sqrt{LC}}$$

Закон изменения разности потенциалов между обкладками конденсатора:

 $U_C = U_m \cos(\omega_0 t + \varphi_0),$ 

где  $U_m = q_m/C$  — амплитуда разности потенциалов.

Закон изменения тока:

 $i = \dot{q} = -\omega_0 q_m \sin(\omega_0 t + \phi_0) = I_m \cos(\omega_0 t + \phi_0 + \pi/2),$ 

где  $I = \omega_0 q_m$  — амплитуда тока.

Закон изменения ЭДС самоиндукции:

$$\varepsilon_{z} = -L\dot{i} = -L\omega_{0}^{2}q_{m}\cos(\omega_{0}t + \varphi_{0}) = \varepsilon_{sm}\cos(\omega_{0}t + \varphi_{0} - \pi),$$

где  $\varepsilon_{sm} = L\omega_0^2 q_m$  – амплитуда ЭДС – самоиндукции.

Закон изменения энергии электрического поля:

$$W_{E} = \frac{g^{2}}{2C} = \left(\frac{q_{m}^{2}}{2C}\right)\cos^{2}(\omega_{0}t + \varphi_{0}) = W_{Em}\cos^{2}(\omega_{0}t + \varphi_{0}),$$

где  $W_{Em} = q_m^2/2C$  – амплитуда энергии электрического поля.

Закон изменения энергии магнитного поля:

$$W_{B} = \frac{Li^{2}}{2} = \left(\frac{L\omega_{0}^{2}q_{m}^{2}}{2}\right)\sin^{2}(\omega_{0}t + \varphi_{0}) = W_{Bm}\sin^{2}(\omega_{0}t + \varphi_{0}),$$

где  $W_{\mathcal{B}m} = L\omega_0^2\,q_m^2/2$  — амплитуда энергии магнитного поля. и  $1/LC = \omega_0^2$ ,



### ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ

## Основные понятия и формулы

Величина заряда на обкладках конденсатора в процессе свободных незатухающих колебаний определяется по формуле:

$$q = q_m \cos(\omega_0 t + \varphi_0),$$

где  $q_{\it m}$  – амплитудное значение заряда;

ф<sub>0</sub> – начальная фаза;

О<sub>0</sub> – угловая частота колебаний.

Формула Томсона:

$$T_0 = 2\pi \sqrt{LC}$$

где L – индуктивность контура, C - ёмкость конденсатора.

Частота собственных колебаний контура:

$$v_0 = \frac{1}{T_0} = \frac{1}{2\pi\sqrt{LC}}.$$

Закон изменения разности потенциалов между обкладками конденсатора:

$$U_C = U_m \cos(\omega_0 t + \varphi_0),$$

где  $U_m = q_m/C$  — амплитуда разности потенциалов.

Закон изменения тока:

$$i = \dot{q} = -\omega_0 q_m \sin(\omega_0 t + \phi_0) = I_m \cos(\omega_0 t + \phi_0 + \pi/2),$$

где 
$$I = \omega_0 q_m$$
 — амплитуда тока.

Закон изменения ЭДС самоиндукции:

$$\varepsilon_s = -L\dot{i} = -L\omega_0^2 q_m \cos(\omega_0 t + \varphi_0) = \varepsilon_{sm} \cos(\omega_0 t + \varphi_0 - \pi),$$

где 
$$\varepsilon_{sm} = L\omega_0^2 q_m$$
 – амплитуда ЭДС – самоиндукции.

Закон изменения энергии электрического поля:

$$W_{E} = \frac{q^{2}}{2C} = \left(\frac{q_{m}^{2}}{2C}\right)\cos^{2}\left(\omega_{0}t + \varphi_{0}\right) = W_{Em}\cos^{2}\left(\omega_{0}t + \varphi_{0}\right),$$

где  $W_{\it Em} = q_m^2/2C$  – амплитуда энергии электрического поля.

Закон изменения энергии магнитного поля:

$$W_{\mathcal{B}} = \frac{Li^2}{2} = \left(\frac{L\omega_0^2 q_m^2}{2}\right) \sin^2(\omega_0 t + \varphi_0) = W_{\mathcal{B}m} \sin^2(\omega_0 t + \varphi_0),$$

где  $W_{{\it Bm}} = L \omega_0^2 \, q_m^2 / 2$  — амплитуда энергии магнитного поля.

и 
$$1/LC = \omega_0^2$$
,



