CSEN 1003 Compiler, Spring Term 2019 Practice Assignment 8

Discussion: 31.03.19 - 03.04.19

Exercise 8-1

SLR and LALR Parsing

Show that the following grammar is LALR but not SLR.

Solution:

We first construct the LR(0) Automaton to construct the SLR parsing table. Augmented grammar:

$$\begin{array}{ccc} S' & \to & S \\ S & \to & A {\tt a} \mid {\tt b} A {\tt c} \mid {\tt dc} \mid {\tt bda} \\ A & \to & {\tt d} \end{array}$$

Rule numbering:

- $1. S \rightarrow Aa$
- $2. S \rightarrow bAc$
- $3. \ S \ \rightarrow \ \mathrm{dc}$
- $4. \ S \ \rightarrow \ \mathrm{bda}$
- $5. A \rightarrow d$

LR(0) Item sets:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$I_1:$ $S' \rightarrow S \cdot$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{lll} I_4\colon & & & \\ S & ightarrow & { m b}\cdot A{ m c} & & \\ S & ightarrow & { m b}\cdot { m d} & & \\ A & ightarrow & \cdot { m d} & & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccc} I_8 \colon & & & & & & & & & & & & & & & & & & $	$egin{array}{cccccccccccccccccccccccccccccccccccc$

SLR Parsing Table:

	Action						ОТО
State	a	b	С	d	\$	S	A
0		s4	s9			1	2
1					accept		
2	s3						
3					r1		
4 5				s7			5
5			s6				
6					r2		
7	s8,r5		r5				
8					r4		
9	r5		$_{\rm s10,r5}$				
10					r3		

The table above shows that the grammar is not SLR since there is a shift/reduce conflict in states I_7 and I_9 .

To construct the LALR automaton, we first construct the LR(1) automaton and combine the core equivalent states.

LR(1) Item sets:

$\begin{array}{cccc} I_0 \colon & & & \\ S' & \rightarrow & \cdot S, \$ & & \\ S & \rightarrow & \cdot Aa, \$ & & \\ S & \rightarrow & \cdot bAc, \$ & & \\ S & \rightarrow & \cdot dc, \$ & & \\ S & \rightarrow & \cdot bda, \$ & & \\ A & \rightarrow & \cdot d, a & & \end{array}$	$I_1:$ $S' \rightarrow S \cdot , \$$	I_2 : $S \rightarrow A \cdot a, \$$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} I_4\colon & & & \\ S & \to & \mathtt{b} \cdot A\mathtt{c}, \$ \\ S & \to & \mathtt{b} \cdot \mathtt{da}, \$ \\ A & \to & \cdot \mathtt{d}, c \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$I_7: \\ S \rightarrow \operatorname{bd} \cdot \operatorname{a}, \$ \\ A \rightarrow \operatorname{d} \cdot, c$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

LR(1) Automaton:

Since the LR(1) automaton has no core-equivalent states, then the LALR automaton is the same as the LR(1) automaton.

LR(1)/LALR Parsing Table:

			Acti	ion		GC	OTO
State	a	b	С	d	\$	S	A
0		s4	s9			1	2
1					accept		
2	s3						
3					r1		
4				s7			5
5			s6				
6					r2		
7	s8		r5				
8					r4		
9	r5		s10				
10					r3		

The grammar is LR(1)/LALR since the above table has no conflicts.

Exercise 8-2

LALR and LR(1) Parsing

Show that the following grammar is LR(1) but not LALR.

$$S \quad \rightarrow \quad A {\tt a} \mid {\tt b} A {\tt c} \mid B {\tt c} \mid {\tt b} B {\tt a}$$

$$A \quad \to \quad {\tt d}$$

$$B \quad \to \quad {\rm d}$$

Solution:

Augmented grammar:

$$S' \rightarrow S$$

$$S \quad o \quad A {f a} \mid {f b} A {f c} \mid B {f c} \mid {f b} B {f a}$$

$$A \rightarrow \dot{c}$$

$$B \rightarrow \mathrm{d}$$

Rule numbering:

$$1. S \rightarrow \widetilde{Aa}$$

$$2. \ S \ \rightarrow \ \mathrm{b}A\mathrm{c}$$

$$3. S \rightarrow Bc$$

$$4.~S~\to~{
m b}B{
m a}$$

$$5. \ A \ \rightarrow \ \mathbf{d}$$

$$6. \ B \ \rightarrow \ {\rm d}$$

LR(1) Item sets:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$I_1:$ $S' \rightarrow S \cdot , \$$	I_2 : $S \rightarrow A \cdot a, \$$ I_3 : $S \rightarrow Aa \cdot , \$$
$\begin{array}{cccc} I_4 \colon & & \\ S & \to & \mathtt{b} \cdot A\mathtt{c}, \$ \\ S & \to & \mathtt{b} \cdot B\mathtt{a}, \$ \\ A & \to & \cdot \mathtt{d}, c \\ B & \to & \cdot \mathtt{d}, a \end{array}$	$egin{array}{lll} I_5\colon & & & & \\ S & ightarrow & {\sf b}A\cdot{\sf c},\$ & & & \\ I_6\colon & & & & \\ S & ightarrow & {\sf b}A{\sf c}\cdot,\$ & & & \end{array}$	$\begin{array}{ccc} I_7 \colon & & \\ A & \to & \operatorname{d} \cdot, c \\ B & \to & \operatorname{d} \cdot, a \end{array}$
$ \begin{array}{ccc} I_8: \\ A & \to & d\cdot, a \\ B & \to & d\cdot, c \end{array} $	$egin{array}{cccc} I_9\colon & & & & \\ S & ightarrow & {\sf b}B\cdot{\sf a},\$ & & & \\ I_{10}\colon & & & & \\ S & ightarrow & {\sf b}B{\sf a}\cdot,\$ & & & \end{array}$	I_{11} : $S \rightarrow B \cdot c, \$$ I_{12} : $S \rightarrow Bc \cdot , \$$

LR(1) Automaton:

LR(1) Parsing Table:

			Acti	on		(GOT	О
State	a	b	С	d	\$	S	A	B
0		s4		s8		1	2	11
1					accept			
2 3	s3							
					r1			
4 5				s7			5	9
			s6					
6					r2			
7	r6		r5					
8	r5		r6					
9	s10							
10					r4			
11			s12					
12					r3			

Since the above table has no conflicts, the grammar is LR(1).

To construct the LALR automaton we combine the core equivalent states I_7 and I_8 in the LR(1) automaton.

LALR Item sets:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$I_1:$ $S' \rightarrow S\cdot, \$$	I_2 : $S \rightarrow A \cdot a, \$$ I_3 : $S \rightarrow Aa \cdot , \$$
$\begin{array}{cccc} I_4 \colon & & \\ S & \to & \mathtt{b} \cdot A\mathtt{c}, \$ \\ S & \to & \mathtt{b} \cdot B\mathtt{a}, \$ \\ A & \to & \cdot \mathtt{d}, c \\ B & \to & \cdot \mathtt{d}, a \end{array}$	I_5 : $S \rightarrow bA \cdot c, \$$ I_6 : $S \rightarrow bAc \cdot , \$$	I_{78} : $A \rightarrow d\cdot, a/c$ $B \rightarrow d\cdot, a/c$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccc} I_{10}\colon & & & \\ S & ightarrow & bBa\cdot,\$ & & & \end{array}$	I_{11} : $S \rightarrow B \cdot c, \$$ I_{12} : $S \rightarrow Bc \cdot, \$$

LALR Parsing Table:

			Actio	n		(GOT	О
State	a	b	С	d	\$	S	A	B
0		s4		s78		1	2	11
1					accept			
2	s3							
3					r1			
4				s78			5	9
5			s6					
6					r2			
78	r5,r6		r5,r6					
9	s10							
10					r4			
11			s12					
12					r3			

The above grammar is not LALR as the parsing table contains reduce/reduce conflicts in state I_{78} .

Exercise 8-3

Canonical LR(1) Parsing

Consider the following grammar:

$$\begin{array}{ccc} S & \to & X \mathtt{a} \\ X & \to & \mathtt{a} \mid \mathtt{a} X \mathtt{b} \end{array}$$

a) Compute the canonical LR(1) item sets and construct the DFA of the augmented grammar.

Solution:

Augmented grammar:

$$\begin{array}{ccc} S' & \to & S \\ S & \to & X \mathbf{a} \\ X & \to & \mathbf{a} \mid \mathbf{a} X \mathbf{b} \end{array}$$

LR(1) Item sets:

$egin{array}{cccccccccccccccccccccccccccccccccccc$	$I_1:$ $S' \rightarrow S\cdot, \$$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{ll} I_5\colon & & & \\ X & ightarrow & \mathtt{a} X \cdot \mathtt{b}, \mathtt{a} & & & \end{array}$
I_6 : $X o aX$ b·, a	$egin{array}{lll} I_7\colon & & & & \\ X & ightarrow & \mathbf{a}\cdot \mathbf{,b} & & \\ X & ightarrow & \mathbf{a}\cdot X\mathbf{b},\mathbf{b} & & \\ X & ightarrow & \cdot \mathbf{a}X\mathbf{b},\mathbf{b} & & \\ X & ightarrow & \cdot \mathbf{a},\mathbf{b} & & \end{array}$	$egin{array}{ll} I_8\colon & & & & \\ X & ightarrow & \mathtt{a} X \cdot \mathtt{b}, \mathtt{b} & & & \\ I_9\colon & & & & & \\ X & ightarrow & \mathtt{a} X \mathtt{b} \cdot, \mathtt{b} & & & & \end{array}$

LR(1) Automaton:

b) Construct the canonical LR(1) parsing table.

Solution:

Rule numbering:

- $1. \ S \ \rightarrow \ X {\tt a}$
- $2. \ X \quad \rightarrow \quad {\rm a}$
- $3. \ X \quad \to \quad {\rm a} X {\rm b}$

Parsing table:

		Action					
State	a	b	\$	S	X		
0	s4			1	2		
1			accept				
2 3	s3						
			r1				
4	s7,r2				5		
5		s6					
6	r3						
7	s7	r2			8		
8		s9					
9		r3					

Note: The table above shows that the grammar is not LR(1) since there is a shift/reduce conflict in state I_4 .

c) Use the parsing table to simulate canonical LR(1) parsing on the string: aaba

Solution:

Stack	Input	Action
0	aaba\$	shift
04	aba\$	shift
047	ba\$	$\mathrm{reduce}\; X \to \mathtt{a}$
045	ba\$	shift
0456	a\$	$\operatorname{reduce} X \to \mathtt{a} X\mathtt{b}$
02	a\$	shift
023	\$	reduce $S \to X$ a
01	\$	accept