Monash University FIT5097 Business Intelligence Modelling 2nd Semester 2020 Major Assignment Solutions

Name: Gayatri Aniruddha Student ID: 30945305

Question 1 – Linear Programming and variants

1a)

ANSWER:

Spreadsheet: See 1b

Variables:

 X_1 = Amount of Product 1 used

X₂ = Amount of Product 2 used

 X_3 = Amount of Product 3 used

 X_4 = Amount of Product 4 used

 X_5 = Amount of Product 5 used

Objective Function:

Here, we need to Maximise our Profit based on the quantity of products used MAX($510X_1 + 300X_2 + 510X_3 + 270X_4 + 810X_5$)

Constraints:

Non Negativity Constraints:

$$X_1, X_2, X_3, X_4, X_5 >= 0$$

Constraints as per Resource Availability:

$$2X_1 + 10X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$6X_1 + 3X_2 + 6X_3 + 3X_4 + 10X_5 = 3030$$

$$2X_1 + 3X_2 + 10X_3 + 6X_4 + 2X_5 = 5217$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

1b)

ANSWER:

Excel Spreadsheet Model for this problem:

Spreadsheet: See 1b

1c)
ANSWER:
Sensitivity Report generated from the solver as follows:

4	A B	С	D	E	F	G	Н
1	Microsoft	Excel 16.0 Sensitivity Report				'	
2	Workshee	et: [Aniruddha-30945305-2ndSer	n2020FI	T5097.xlsx]1b			
3	Report Cr	eated: 8/10/2020 1:23:03 PM					
4	450						
5							
6	Variable C	ells					
7			Final	Reduced	Objective	Allowable	Allowable
8	Cell	Name	Value	Cost	Coefficient	Increase	Decrease
9	\$C\$8	Units to mix Product 1	4	0	510	1.333333333	27.69230769
10	\$D\$8	Units to mix Product 2	83	0	300	22.5	38.14285714
11	\$E\$8	Units to mix Product 3	277	0	510	8.780487805	1.487603306
12	\$F\$8	Units to mix Product 4	365	0	270	48.39622642	5
13	\$G\$8	Units to mix Product 5	0	-48.33922261	810	48.33922261	1E+30
14	1.00						
15	Constraint	ts					
16	V-1		Final	Shadow	Constraint	Allowable	Allowable
17	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
18	\$H\$14	Resource 1 Amount of resource	2487	4.717314488	2487	105.3023256	3.39647E-12
19	\$H\$15	Resource 2 Amount of resource	3030	82.84452297	3030	2.98944E-13	20.00589102
20	\$H\$16	Resource 3 Amount of resource	5217	0.159010601	5217	33.54074074	9.09495E-13
21	\$H\$17	Resource 4 Amount of resource	3371	0	4000	1E+30	629
22	\$H\$18	Resource 5 Amount of resource	4999	0.636042403	4999	3.23213E-12	174.1538462
23	\$H\$19	Resource 6 Amount of resource	2769	0	2769	1E+30	5.31074E-13
~ .							

1d) ANSWER:

Spreadsheet: See 1d

From our Spreadsheet, after using the Solver and from the sensitivity report generated, we can clearly see that the

```
Optimal Production Plan:
```

```
X_1 = Amount of Product 1 used = 4 X_2 = Amount of Product 2 used = 83
```

 X_3 = Amount of Product 3 used = 277

 X_4 = Amount of Product 4 used = 365

 X_5 = Amount of Product 5 used = 0

Working:

```
Total Profit
```

```
= (Product 1 Amount)*(Product 1 Profit) +
(Product 2 Amount)*(Product 2 Profit) +
(Product 3 Amount)*(Product 3 Profit) +
(Product 4 Amount)*(Product 4 Profit) +
(Product 5 Amount)*(Product 5 Profit) +
= (4)*(510) + (83)*(300) + (277)*(510) + (365)*(270) + (0)*(810)
= $ 266,760
```

Associated Total Profit = \$266,760

1e)

ANSWER:

Spreadsheet: See 1e

In binding constraints, all resources are used up.

Here, we can also generate an answer report from the solver, in order to have a look at the binding constraints.

From the answer report generated named as:"1e Answer Report", we can see that:

The binding constraints are:

Amounts of the following resources used

Resource 1

Resource 2

Resource 3

Resource 5

Resource 6

1f)

ANSWER:

Spreadsheet: See 1c Sensitivity Report and 1f

Snapshot:

		Final	Shadow
Cell	Name	Value	Price
\$H\$14	Resource 1 Amount of resource	2487	4.717314488
\$H\$15	Resource 2 Amount of resource	3030	82.84452297
\$H\$16	Resource 3 Amount of resource	5217	0.15901060
\$H\$17	Resource 4 Amount of resource	3371	(
\$H\$18	Resource 5 Amount of resource	4999	0.636042403
\$H\$19	Resource 6 Amount of resource	2769	(

In order to solve this problem, we use the concept of "Shadow Prices"

The shadow price gives us the amount by which our objective function changes its value for an unit increase in the RHS value of our constraint. It is the amount of money that we would be willing to pay in order to acquire additional units of that resource.

Here, the shadow prices of the resources are as follows:

(Rounding off the prices to three decimal places)

Resource	Shadow Price	Additional Units
R1	4.717	-10
R2	82.844	+1
R3	0.159	-5
R4	0	+10
R5	0.636	+100
R6	0	-3

Thus,

10 units decrease in R1 --- decreases the Objective Function by 47.17 1 units increase in R2 --- increases the Objective Function by 82.844

5 units decrease in R3 --- decreases the Objective Function by 0.795

10 units increase in R4 --- HAS NO EFFECT on the Objective Function

100 units increase in R5 --- increases the Objective Function by 63.6

-3 units decrease in R6 --- HAS NO EFFECT on the Objective Function

Snapshot: 1f

al.	Α	В	С	D	E	F	G	Н		J	K	L	M	
1		, - , - , - , - , - , - , - , - , - , -		1 - 1 - 1	-		-						100	
2														
3														
4														
5									Maximize: H7					
6			Product 1	Product 2	Product 3	Product 4	Product 5	Total Profit	By changing: C8:G8					
7		Profit of the product	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00	\$266,759.03	Subject to: H14:H19 <= I14:I19 : Maximum Resource Ava				ilability	
0									C8:G8>=0 : Non-Negativity Constraint					
8		Units to mix	3.88172	83.37634	280.5269	358.1398	0		C8:G8>=0	: No	n-Negativity	Constraint		
9		Units to mix	3.88172	83.37634	280.5269	358.1398	0		C8:G8>=0	: No	n-Negativity	Constraint		
9		Units to mix	3.88172	83.37634	280.5269	358.1398	0		C8:G8>=0	: No	n-Negativity	Constraint		
9		Units to mix	3.88172	83.37634	280.5269	358.1398	0		C8:G8>=0	: No	n-Negativity	/ Constraint		
		Units to mix		83.37634 nt of Resour			0		C8:G8>=0	: No	n-Negativity	Constraint		
9 10 11 12		Units to mix Resources	Amour	nt of Resour	ce in the pr	oducts		Amount of resource	C8:G8>=0 Maximum Resource Available	: No	n-Negativity	Constraint		
9 10 11 12 13			Amour	nt of Resour	ce in the pr	oducts		Amount of resource	Maximum	: No	n-Negativity	Constraint		
9 10 11 12 13		Resources	Amour Product 1	nt of Resour	ce in the pr	oducts Product 4	Product 5		Maximum Resource Available	: No	n-Negativity	Constraint		
9 10 11		Resources Resource 1	Amour Product 1	Product 2	ce in the pr Product 3	oducts Product 4	Product 5	2477	Maximum Resource Available 2477	: No	n-Negativity	Constraint		
9 10 11 12 13 14		Resources Resource 1 Resource 2	Amour Product 1	Product 2	Product 3	oducts Product 4	Product 5 6 10	2477 3031	Maximum Resource Available 2477 3031	: No	n-Negativity	Constraint		
9 10 11 12 13 14 15 16		Resources Resource 1 Resource 2 Resource 3	Amour Product 1 2 6 2	Product 2	Product 3	Product 4	Product 5 6 10 2	2477 3031 5212	Maximum Resource Available 2477 3031 5212	: No	n-Negativity	r Constraint		

Objective Function:

Here, we need to Maximise our Profit based on the quantity of products used MAX($510X_1 + 300X_2 + 510X_3 + 270X_4 + 810X_5$)

Constraints:

Non Negativity Constraints:

$$X_1, X_2, X_3, X_4, X_5 >= 0$$

Constraints as per Resource Availability:

$$2X_1 + 10X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$6X_1 + 3X_2 + 6X_3 + 3X_4 + 10X_5 = 3030$$

$$2X_1 + 3X_2 + 10X_3 + 6X_4 + 2X_5 = 5217$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

Now, we cannot really make out if this has any increase or decrease on the objective function. Hence, we directly add and subtract the required number of resources from the overall total resources available column and solve the equation by applying the same set of constraints.

Thus, the maximum number of resources now available are as follows:

Resource 1:2477

Resource 2:3031

Resource 3:5212

Resource 4: 4010

Resource 5:5099

Resource 6: 2766

```
Now, from the solver,
Optimal Production Plan:
X_1 = Amount of Product 1 used = 3.882
X_2 = Amount of Product 2 used = 83.376
X_3 = Amount of Product 3 used = 280.527
X_4 = Amount of Product 4 used = 358.14
X_5 = Amount of Product 5 used = 0
Working:
Total Profit
= (Product 1 Amount)*(Product 1 Profit) +
 (Product 2 Amount)*(Product 2 Profit) +
 (Product 3 Amount)*(Product 3 Profit) +
 (Product 4 Amount)*(Product 4 Profit) +
 (Product 5 Amount)*(Product 5 Profit) +
= ()3.882*(510) + (83.376)*(300) + (280.527)*(510) + (358.14)*(270) + (0)*(810)
= $ 266, 759.03
```

Associated Total Profit = \$266, 759.03

Thus, the company would lose \$1,. Thus, the company should not accept the offer.

1g)

ANSWER:

Spreadsheet: See 1g, 1g_Sensitivity Report and 1g part ii

Snapshot:

1g:

4	A B	C	D	E	F	G	Н	I I	J
1									
2									
3									
4									
5									
6		Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	Total Profit	
7	Profit of the product	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00	\$155.00	\$266,760.00	
8	Units to mix	4	83	277	365	0	0		
9									
10									
1									
12		Amour	t of Resour	ce in the pro	oducts				77
13	Resources	Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	Amount of resource	Maximum Resource Available
14	Resource 1	2	10	2	3	6	0	2487	2487
15	Resource 2	6	3	6	3	10	2	3030	3030
6	Resource 3	2	3	10	6	2	0	5217	5217
17	Resource 4	7	6	5	4	3	4	3371	4000
	Resource 5	5	6	3	10	2	5	4999	4999
18		4.0	3	5	3	4	0	2769	2769
18 19	Resource 6	10	3						
	Resource 6	10	3						
19	Resource 6 Maximize: 17	10	3						
19 20 21	Maximize: 17 By changing: C		3			-			
9 20 21 22 23	Maximize: 17 By changing: C Subject to:	8:H8							
20	Maximize: 17 By changing: C Subject to:	8:H8 = J14:J19 : I	Resource Ava						

1g : Sensitivity Report

1g part ii

4	Α	В	С	D	E	F	G	Н	1	J
3										
4										
5										
6			Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	Total Profit	
7	Profit of the product Units to mix		\$510.00	\$300.00	\$510.00	\$270.00	\$810.00	\$155.00	\$266,746.13	
8		Units to mix	3.485277	83.17197	277.3157	364.5595	0	1		
9										
10										
11										
12			Amoun	t of Resour	e in the pro	ducts				
13		Resources	Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	Amount of resource	Maximum Resource Available
14		Resource 1	2	10	2	3	6	0	2487	2487
15		Resource 2	6	3	6	3	10	2	3030	3030
16		Resource 3	2	3	10	6	2	0	5217	5217
17		Resource 4	7	6	5	4	3	4	3372.244994	4000
18		Resource 5	5	6	3	10	2	5	4999	4999
19		Resource 6	10	3	5	3	4	0	2764.625442	2769
20										
21		Maximize: 17								
22		By changing: C	8:H8							
23		Subject to:				100000000000000000000000000000000000000				
24		114:119		source Availa						
25		C8:H8 >	: No oduct 6)	on - Negativit	y Constraint					
26		17 - 1 (roducing Fi	ouuct 8)						

Manual Calculations:

Now, a new product Product 6 is considered.

It generates a profit of \$155.

Resources Required:

- 2 of Resource 2 (Shadow Price = 82.844)
- 4 of Resource 4 (Shadow Price = 0)
- 5 of Resource 5 (Shadow Price = 0.636)

Let's see if it would be profitable to produce Product 6:

We will be using the concept of Reduced Cost,

It is the per-unit profit minus the per unit value of the resources it consumes.

Reduced Cost

- = Profit \sum (shadow price)*(units of resources required)
- = 155 [(2*82.844) + (4*0) + (5*0.636)]
- = -13.868 < \$0

Thus, we have a negative reduced cost.

Hence, This is not profitable!

Observations from the Solver:

Now, when we introduce a unit of Product 6, we see that the overall profit decreases to \$ 266,746.13. Thus, the profit decreases by an amount of -13.87!

The same value can be observed from that of the Solver calculations!

Hence, we do not expect Product 6 to be produced.

Product 6 has to be around \$ 13.868 more profitable for it to be produced.

1h)

ANSWER:

Spreadsheet: See 1h

Snapshot:

4	Α	В	С	D	E	F	G	н	I
1									
2									
3									
4									
5									
6			Product 1	Product 2	Product 3	Product 4	Product 5	Total Profit	
7		Profit of the product	\$512.00	\$301.00	\$511.00	\$269.00	\$811.00	\$266,763.00	
8		Units to mix	4	83	277	365	0		
9									
10									
11									
12			Amoun	t of Resour	ce in the pr	oducts			
13		Resources	Product 1	Product 2	Product 3	Product 4	Product 5	Amount of resource	Maximum Resource Available
14		Resource 1	2	10	2	3	6	2487	2487
15		Resource 2	6	3	6	3	10	3030	3030
16		Resource 3	2	3	10	6	2	5217	5217
17		Resource 4	7	6	5	4	3	3371	4000
18		Resource 5	5	6	3	10	2	4999	4999
19		Resource 6	10	3	5	3	4	2769	2769
20									
21		Maximize: H7	,						
22		By changing: Co	B:G8						
23		Subject to:	<= 14: 19	: Resource A	vailability.				
24		C8:G8>=			tivity Constra	aint			
25			<u> </u>		,	e de la companya de			

Here, we use the 100% Rule to determine whether the optimal solution changes or not as we have a linear programming problem.

The reduced cost of four variables is 0.

The reduced cost of one variable X5 = Units required for Product 5 is non-zero.

Hence, we calculate the r_i value:

$$rj = \frac{\Delta cj}{Ij}$$
, $\Delta cj >= 0$

$$rj = \frac{-\Delta cj}{Dj}, \ \Delta cj < 0$$

I_i = Allowable Increase for coefficient j

 \dot{D}_i = Allowable Decrease for coefficient j

The current situation remains optimal when the sum of $r_j \le 1$ If the sum of r_j values >1, the solution may still be optimal but it is not guaranteed.

Here, The sum of r_i values = 1.879 > 1

Now, based on these new values of coefficients,

The Optimal Function is

 $MAX(512X_1 + 301X_2 + 511X_3 + 269X_4 + 811X_5)$

Working:

Total Profit

= (Product 1 Amount)*(Product 1 Profit) +

(Product 2 Amount)*(Product 2 Profit) +

(Product 3 Amount)*(Product 3 Profit) +

(Product 4 Amount)*(Product 4 Profit) +

(Product 5 Amount)*(Product 5 Profit) +

= (4)*(512) + (83)*(301) + (277)*(511) + (365)*(269) + (0)*(811)

= \$ 266,763

From the Solver, we can see that

- The optimal amount to be produced for each of the products does not change.
- This is because we are evenly increasing and decreasing the profitability of the various products.
- The New Maximum Profit = \$ 266,763
- This optimal function value SLIGHTLY INCREASES BY 3 \$

1i)

ANSWER:

Spreadsheet: See 1i

4	Α	В	С	D	E	F	G	Н	l I
1									
2									
3									
4									
5									
6			Product 1	Product 2	Product 3	Product 4	Product 5	Total Profit	
7		Profit of the product	\$1,020.00	\$600.00	\$1,020.00	\$540.00	\$1,620.00	\$533,520.00	
8		Units to mix	4	83	277	365	0		
9									
10									
11									
12			Amour	t of Resour	ce in the pr	oducts			
13		Resources	Product 1	Product 2	Product 3	Product 4	Product 5	Amount of resource	Maximum Resource Available
14		Resource 1	2	10	2	3	6	2487	2487
15		Resource 2	6	3	6	3	10	3030	3030
16		Resource 3	2	3	10	6	2	5217	5217
17		Resource 4	7	6	5	4	3	3371	4000
18		Resource 5	5	6	3	10	2	4999	4999
19		Resource 6	10	3	5	3	4	2769	2769
20									
		Maximize: H7							
21									
3103111		By changing: C8	3:G8						
22		Subject to:		Resource Avai	ilahility				
22 23 24		Subject to:	<= 14: 19 : F	lesource Avai					
21 22 23 24 25 26		Subject to: H14:H19	<= 14: 19 : F						

Now, based on these new values of coefficients, The Optimal Function is

$$MAX(1020X_1 + 600X_2 + 1020X_3 + 540X_4 + 1620X_5)$$

Calculations:

Now, again from the 100% rule we can see that the sum of r_j values > 1 Here, it is :

$$\frac{510}{1.333} + \frac{300}{22.5} + \frac{510}{8.781} + \frac{270}{48.396} + \frac{810}{48.339} = 476.344 >>>1$$

Working:

Total Profit

```
= (Product 1 Amount)*(Product 1 Profit) +
(Product 2 Amount)*(Product 2 Profit) +
(Product 3 Amount)*(Product 3 Profit) +
(Product 4 Amount)*(Product 4 Profit) +
(Product 5 Amount)*(Product 5 Profit) +
= (4)*(1020) + (83)*(600) + (277)*(1020) + (365)*(540) + (0)*(1620)
= $ 533, 520
```

From the Solver, we can see that

- The optimal amount to be produced for each of the products does not change.
- Again, this is because we have uniformly increased the different profitability values of all the products used.
- The New Maximum Profit = \$533,520
- This optimal function value HAS DOUBLED!

1j)

ANSWER:

Spreadsheet: See 1j

4	Α	В	С	D	E	F	G	Н	1
1									
2									
3									
4									
5									
6			Product 1	Product 2	Product 3	Product 4	Product 5	Total Profit	
7		Profit of the product	\$255.00	\$150.00	\$255.00	\$135.00	\$405.00	\$133,380.00	
8		Units to mix	4	83	277	365	0		
9									
10									
11									
12			Amoun	t of Resour	ce in the pr	oducts	Y		
13		Resources	Product 1	Product 2	Product 3	Product 4	Product 5	Amount of resource	Maximum Resource Available
14		Resource 1	2	10	2	3	6	2487	2487
15		Resource 2	6	3	6	3	10	3030	3030
16		Resource 3	2	3	10	6	2	5217	5217
17		Resource 4	7	6	5	4	3	3371	4000
8		Resource 5	5	6	3	10	2	4999	4999
19		Resource 6	10	3	5	3	4	2769	2769
20									
21		Minimize: H7							
22		By changing: C8	:G8						
3		Subject to:	<= 14: 19 : R	A	lability.				
4		C8:G8>=			ty Constraint	e e			
25		00.00>=	. 14	on ivegativi	cy constraint				

Now, based on these new values of coefficients,

The Optimal Function is

$$MAX(255X_1 + 150X_2 + 255X_3 + 135X_4 + 405X_5)$$

Calculations:

Now, again from the 100% rule we can see that the sum of $r_{\rm j}$ values > 1

$$\frac{255}{1.333} + \frac{150}{22.5} + \frac{255}{8.781} + \frac{135}{48.396} + \frac{405}{48.339} = >>1$$

Working:

Total Profit

- = (Product 1 Amount)*(Product 1 Profit) +
 - (Product 2 Amount)*(Product 2 Profit) +
 - (Product 3 Amount)*(Product 3 Profit) +
 - (Product 4 Amount)*(Product 4 Profit) +
 - (Product 5 Amount)*(Product 5 Profit) +
- = (4)*(255) + (83)*(150) + (277)*(255) + (365)*(135) + (0)*(405)
- = \$ 133,380

From the Solver, we can see that

- The optimal amount to be produced for each of the products does not change.
- This is because we have uniformly decreased the profitability of the various products used.
- The New Maximum Profit = \$ 133,380

This optimal function value HAS DECREASED BY HALF!

1k)

ANSWER:

Spreadsheet: 1(k and I) Sensitivity Report

Snapshot:

Microsoft Excel 16.0 Sensitivity Report Worksheet: [Gayu_Copy.xlsx]1(k and I) Report Created: 16/10/2020 5:06:53 AM

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$8	Units to mix Product 1	9.684910086		0 510	1.176470588	375
\$D\$8	Units to mix Product 2	9.684910086		0 300	1.176470588	375
\$E\$8	Units to mix Product 3	271.3838937		0 510	24.19354839	0.397350993
\$F\$8	Units to mix Product 4	405.8944488		0 270	986.146789	2.857142857
\$G\$8	Units to mix Product 5	9.684910086	0	0 810	1.176470588	375

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$C\$8	Units to mix Product 1	9.684910086	-3.143080532	0	6.515151515	14.42025611
\$D\$8	Units to mix Product 2	9.684910086	34.03440188	0	6.323529412	16.96849315
\$H\$14	Resource 1 Amount of resource	1934.779515	0	2487	1E+30	552.2204848
\$H\$15	Resource 2 Amount of resource	3030	84.04222048	3030	34.37669377	151.0609756
\$H\$16	Resource 3 Amount of resource	5217	0.04691165	5217	242.8823529	776.6326531
\$H\$17	Resource 4 Amount of resource	3135.455825	0	4000	1E+30	864.5441751
\$H\$18	Resource 5 Amount of resource	4999	1.759186865	4999	469.8148148	2064.5
\$H\$19	Resource 6 Amount of resource	2739.246286	0	2769	1E+30	29.75371384

From the sensitivity report, we can see that after adding the new constraints, the values of "Allowable Increase" have decreased for most of the products. This clearly shows that the application of the new constraints decreases the feasible region.

Solver Analysis:

Here, we have added one more constraint in the Solver.

We have made sure that the amount of Product 1, Product 2 and Product 5 must be produced in equal amounts.

The value of the Optimal Function has slightly decreased.

Hence, ADDING this requirement, makes the FEASIBLE REGION SMALLER!

1I part 1)
ANSWER:

Spreadsheet: See 1(k and l)

We now add one more constraint in the Solver in order to ensure that equal amounts of Product 1, Product 2 and Product 5 are produced.

From the Solver, we can clearly see that, the optimal amount to be produced for each of the products are as follows:

Optimal Amount produced for Product 1 = 9.685

Optimal Amount produced for Product 2 = 9.685

Optimal Amount produced for Product 3 = 271.384

Optimal Amount produced for Product 4 = 405.894

Optimal Amount produced for Product 5 = 9.685

11 part 2) ANSWER:

Spreadsheet: See 1(k and l)

Z.	A B	С	D	E	F	G	Н	1	J	K	L	M	N			
1			10000				39//3									
2																
3																
4																
5								Maximize: H7								
6		Product	1 Product 2	Product 3	Product 4	Product 5	Total Profit	By changing: C8:G	By changing: C8:G8							
7	Profit of product	he \$510.0	\$300.00	\$510.00	\$270.00	\$810.00	\$263,686.84	Subject to: H14:H19 <= 14: 19 : Resource availability C8:G8>=0 : Non Negativity Constraint C8 = D8 : Product 1 Amount = Product 2 Amo								
8	Units to I	nix 9.6849	9.68491	271.3839	405.8944	9.68491										
9								D8 = G8		Product 2 An						
10									988	1						
11																
12		Amo	unt of Resou	rce in the pr	oducts											
13	Resour	es Product	1 Product 2	Product 3	Product 4	Product 5	Amount of resource	Maximum Resource Available								
14	Resource	1 2	10	2	3	6	1934.779515	2487								
15	Resource		3	6	3	10	3030	3030								
16	Resource		3	10	6	2	5217	5217								
17	Resource		6	5	4	3	3135.455825	4000								
18	Resource	5 5	6	3	10	2	4999	4999								
19	Resource	6 10	3	5	3	4	2739.246286	2769								

Calculations:

Total Profit

- = (Product 1 Amount)*(Product 1 Profit) +
 - (Product 2 Amount)*(Product 2 Profit) +
 - (Product 3 Amount)*(Product 3 Profit) +
 - (Product 4 Amount)*(Product 4 Profit) +
 - (Product 5 Amount)*(Product 5 Profit) +
- = (9.685)*(510) + (9.865)*(300) + (271.384)*(510) + (405.894)*(270) + (9.685)*(810)
- = \$ 263, 686. 84

Solver:

From the Solver, we can see that the **RESULTANT PROFIT** is \$263,658.84 Clearly, we can see that after adding constraints the profit decreases.

1m part 1)

ANSWER:

Spreadsheet: See 1m

_ A	В	C	D	E	F	G	H	1	J	K	L	M
1												
2												
3												
4												
5								Maximize: H7			-	
6		Product 1	Product 2	Product 3	Product 4	Product 5	Total Profit	By changing: C8:G8				
7	Profit of the product	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00	\$266,760.00	Subject to: H14:H19 <= I				
					No.			C8:G8>=0	: N	on - Negativ	vity Constrain	nt
8	Units to mix	4	83	277	365	0						
9	Units to mix	4	83	277	365	0		C8:G8 = integ		teger Const		
	Units to mix	4	83	277	365	0						
9	Units to mix	4	83	277	365	0						
9	Units to mix		83 nt of Resour			0						
9 10 11	Units to mix Resources	Amour	nt of Resour	ce in the pr	oducts		Amount of resource					
9 10 11 12		Amour	nt of Resour	ce in the pr	oducts		Amount of resource	C8:G8 = integ				
9 10 11 12	Resources	Amour Product 1	nt of Resour	ce in the pr	oducts Product 4	Product 5		C8:G8 = integ Maximum Resource Available				
9 10 11 12 13 14 15 16	Resources Resource 1	Amour Product 1	Product 2	ce in the pr	oducts Product 4	Product 5	2487	C8:G8 = integ Maximum Resource Available 2487				
9 10 11 12 13 14 15	Resources Resource 1 Resource 2	Amour Product 1	Product 2	ce in the pr Product 3	oducts Product 4	Product 5 6 10	2487 3030	Maximum Resource Available 2487 3030				
9 10 11 12 13 14 15 16	Resources Resource 1 Resource 2 Resource 3	Amour Product 1 2 6 2	Product 2	ce in the pr Product 3 2 6 10	oducts Product 4 3 3 6	Product 5 6 10 2	2487 3030 5217	Maximum Resource Available 2487 3030 5217				

Now, we add an additional constraint, that all the amounts of the various products have to be integer values.

From the solver, we can see that the:

Optimal Amount produced for Product 1 = 4

Optimal Amount produced for Product 2 = 83

Optimal Amount produced for Product 3 = 277

Optimal Amount produced for Product 4 = 365

Optimal Amount produced for Product 5 = 0

We can see that the optimal amounts produced for the products have not changed.

They are the same as the original amounts as the original LP also gave integer values.

1m part 2) ANSWER:

Spreadsheet: See 1m

of the	Product 1 \$510.00	Product 2 \$300.00	Product 3 \$510.00 277	Product 4 \$270.00 365	Froduct 5 \$810.00	Total Profit \$266,760.00	Maximize: H7 By changing: C8:G8 Subject to: H14:H19 <= 1 C8:G8>=0 C8:G8 = intege	: No	ssource Avail on - Negativi teger Constr	ity Constrain	nt
ict	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00		By changing: C8:G8 Subject to: H14:H19 <= 1/	: No	on - Negativi	ity Constrain	nt
ict	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00		By changing: C8:G8 Subject to: H14:H19 <= 1/	: No	on - Negativi	ity Constrain	nt
ict	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00		By changing: C8:G8 Subject to: H14:H19 <= 1/	: No	on - Negativi	ity Constrain	nt
ict	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00		By changing: C8:G8 Subject to: H14:H19 <= 1/	: No	on - Negativi	ity Constrain	nt
ict	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00		By changing: C8:G8 Subject to: H14:H19 <= 1/	: No	on - Negativi	ity Constrain	nt
ict						\$266,760.00	H14:H19 <= I14 C8:G8>=0	: No	on - Negativi	ity Constrain	nt
to mix	4	83	277	365	0				_		nt
							Co:Go - Intege	er : im	teger constr	aint	
	Amour	nt of Resour	rce in the pr	roducts							
ources	Product 1	Product 2	Product 3	Product 4	Product 5	Amount of resource	Maximum Resource Available				
rce 1	2	10	2	3	6	2487	2487				
rce 2	6	3	6	3	10	3030	3030				
rce 3	2	3	10	6	2	5217	5217				
	7	6	5	4	3	3371	4000				
rce 4	5	6	3	10	2	4999	4999				
rce 4		2	5	2	4	2769	2769				
rce	3	2 4 7 5 5	2 3 2 3 4 7 6 5 5 6	2 3 10 2 4 7 6 5 2 5 6 3	13 2 3 10 6 14 7 6 5 4 15 5 6 3 10	13 2 3 10 6 2 14 7 6 5 4 3 15 5 6 3 10 2	13 2 3 10 6 2 5217 14 7 6 5 4 3 3371 15 5 6 3 10 2 4999	13 2 3 10 6 2 5217 5217 14 7 6 5 4 3 3371 4000 15 5 6 3 10 2 4999 4999	13 2 3 10 6 2 5217 5217 14 7 6 5 4 3 3371 4000 15 5 6 3 10 2 4999 4999	13 2 3 10 6 2 5217 5217 14 7 6 5 4 3 3371 4000 15 5 6 3 10 2 4999 4999	13 2 3 10 6 2 5217 5217 14 7 6 5 4 3 3371 4000 15 5 6 3 10 2 4999 4999

Working:

Total Profit

= (Product 1 Amount)*(Product 1 Profit) +

(Product 2 Amount)*(Product 2 Profit) +

(Product 3 Amount)*(Product 3 Profit) +

(Product 4 Amount)*(Product 4 Profit) +

(Product 5 Amount)*(Product 5 Profit) +

= (4)*(510) + (83)*(300) + (277)*(510) + (365)*(270) + (0)*(810)

= \$ 266,760

From the Solver, we can see that the value of the objective function now is : \$266,760 We can see that the value of the objective function has not changed as the original optimal amounts of the products were also integer values.

1n)

Product	Product 1	Product 2	Product 3	Product 4	Product 5
Unit Profit	\$510	\$300	\$510	\$270	\$810
Fixed-cost (Start-up cost)	2000	4000	8000	16000	1000

1n part 1) ANSWER:

Spreadsheet: See 1n

Snapshot:

	apsnot.												
7	В	С	D	E	F	G	н	1	J	K	L	М	N
1													
2													
3													
4													
5													
6								Maximize: H13					
7		Product 1	Product 2	Product 3	Product 4	Product 5		By changing: C8:G9 Subject to:					
8	Units to mix (X)	0	164	423	0	0		H18:H23 <= I18				aint	
9	Binary Variables (Y)	0	1	1	0	0		C8:G9 >= 0		Negativity C			
10	Linking Constraints	0	-84.7	-82	0	0		C8:G8 = integer		ger Constrair ng Constrain			
11	Set Up Cost	2000	4000	8000	16000	1000	Total Profit	C9:G9 binary		y Constraint			
12	Profit of the product	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00	\$252,930.00	CS:CS Billary	. Dilla	y constraint			
13													
14													
15		Amour	t of Resour	ce in the pr	oducts								
	Resources					Product E	Amount of resource	Maximum					
16	Resources	1 Toutet I	1 Todact 2	Tiouucts	110ddct 4	1 Todact 5	Amount of resource	Resource Available					
17	Resource 1	2	10	2	3	6	2486	2487					
18	Resource 2	6	3	6	3	10	3030	3030					
19	Resource 3	2	3	10	6	2	4722	5217					
20	Resource 4	7	6	5	4	3	3099	4000					
21	Resource 5	5	6	3	10	2	2253	4999					
22	Resource 6	10	3	5	3	4	2607	2769					
	-												

Continuing our answer from 1b, we use two variables X_i and Y_i

Variables:

 X_1 = Amount of Product 1 used

 X_2 = Amount of Product 2 used

 X_3 = Amount of Product 3 used

 X_4 = Amount of Product 4 used

 X_5 = Amount of Product 5 used

Binary Variables:

Y_i = Variables for the fixed start up cost

= 1 If $X_i > 0$ i.e when when Product X_i is chosen; where i = 1, 2, 3, 4, 5

= 0 If X_i = 0 i.e when product Product X_i is NOT chosen

Objective Function:

Here, we need to Maximise our Profit based on the quantity of products used

$$\begin{aligned} \text{MAX} : 510\text{X}_1 + 300\text{X}_2 + 510\text{X}_3 + 270\text{X}_4 + 810\text{X}_5 - \\ 2000\text{Y}_1 - 4000\text{Y}_2 - 8000\text{ Y}_3 - 16000\text{Y}_4 - 1000\text{Y}_5 \end{aligned}$$

Constraints:

Non Negativity and Integer Constraints:

$$X_1, X_2, X_3, X_4, X_5 >= 0$$

 X_1, X_2, X_3, X_4, X_5 are Integers

Binary Constraints:

All Y_i must be binary, where i = 1,2,3,4,5

Linking Constraints:

$$X_1 \le M_1 Y_1 \text{ or } X_1 - M_1 Y_1 = 0$$

$$X_2 \le M_2 Y_2 \text{ or } X_2 - M_2 Y_2 = 0$$

$$X_3 \le M_3 Y_3 \text{ or } X_3 - M_3 Y_3 = 0$$

$$X_4 \le M_4 Y_4 \text{ or } X_4 - M_4 Y_4 = 0$$

$$X_5 \le M_5 Y_5 \text{ or } X_5 - M_5 Y_5 = 0$$

Here, M_i introduces an upper bound on X_i

Calculating M, values:-

$$M_1 = MIN(\frac{2487}{2}, \frac{3030}{6}, \frac{5217}{2}, \frac{4000}{7}, \frac{4999}{5}, \frac{2769}{10}) = 279.6$$

$$M_1 = MIN(\frac{2487}{10}, \frac{3030}{3}, \frac{5217}{3}, \frac{4000}{6}, \frac{4999}{6}, \frac{2769}{3}) = 248.7$$
 $M_3 = MIN(\frac{2487}{2}, \frac{3030}{6}, \frac{5217}{10}, \frac{4000}{6}, \frac{4999}{3}, \frac{2769}{5}) = 505$

$$M_3 = MIN(\frac{2487}{2}, \frac{3030}{6}, \frac{5217}{10}, \frac{4000}{5}, \frac{4999}{3}, \frac{2769}{5}) = 505$$

$$M_4 = MIN(\frac{2487}{3}, \frac{3030}{3}, \frac{5217}{6}, \frac{4000}{4}, \frac{4999}{10}, \frac{2769}{3}) = 499.9$$

$$M_5 = MIN(\frac{2487}{6}, \frac{3030}{10}, \frac{5217}{2}, \frac{4000}{3}, \frac{4999}{2}, \frac{2769}{4}) = 303$$

Constraints as per Resource Availability:

$$2X_1 + 10X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$6X_1 + 3X_2 + 6X_3 + 3X_4 + 10X_5 = 3030$$

$$2X_1 + 3X_2 + 10X_3 + 6X_4 + 2X_5 = 5217$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

From the solver, we can see that

From the solver, we can see that the:

Optimal Amount produced for Product 1 = 0

Optimal Amount produced for Product 2 = 164

Optimal Amount produced for Product 3 = 423

Optimal Amount produced for Product 4 = 0

Optimal Amount produced for Product 5 = 0

1n part 2) ANSWER:

Spreadsheet: See 1n

Working: Total Profit

= (Product 1 Amount)*(Product 1 Profit) +

(Product 2 Amount)*(Product 2 Profit) +

(Product 3 Amount)*(Product 3 Profit) +

(Product 4 Amount)*(Product 4 Profit) +

(Product 5 Amount)*(Product 5 Profit) +

= (0)*(510) + (164)*(300) + (423)*(510) + (0)*(270) + (0)*(810)

= \$ 252,930

Thus, we can see that adding more constraints has decreased the value of the profits produced.

From the Solver, we can see that the value of the objective function now is: \$252, 930

1o) Part i ANSWER:

Spreadsheet: See 10

Snapshot:

Α	В	C	D	E	F	G	Н	I	J	K	L	M	N
								Maximize: H	12		-		
								By changing: 0	8:G8, C9:G	9			
		Product 1	Product 2	Product 3	Product 4	Product 5		Subject to:	2 <= 117-12	2 · Resource	Availabilit	y Constraint	
	Units to mix (X)	177	116	0	0	162		D26 >=			value cons		
	Binary Variables (Y)	1	1	0	0	1		D27 <=			n Value con		
0	Linking Constraints	-99.9	-132.7	0	0	-141		C8:G9:			ativity Cons	traint	
1	Set Up Cost	2000	4000	8000	16000	1000	Total Profit	C10:G1		: Integer C : Linking C			
2	Profit of the product	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00	\$249,290.00	C9:G9		: Binary Co			
3								C9:G9	>=0	: Non - Ne	gativity Cor	straint	
4								-					
5		Amour	nt of Resour	ce in the pr	oducts								
6	Resources	Product 1	Product 2	Product 3	Product 4	Product 5	Amount of resource	Maximum Resource Available					
7	Resource 1	2	10	2	3	6	2486	2487					
8	Resource 2	6	3	6	3	10	3030	3030					
9	Resource 3	2	3	10	6	2	1026	5217					
.0	Resource 4	7	6	5	4	3	2421	4000					
1	Resource 5	5	6	3	10	2	1905	4999					
.2	Resource 6	10	3	5	3	4	2766	2769					
:3													
4													
.5	For X3 :												
	Minimum Value	225	0	1									
7	Maximum Value	325	0										

Objective Function:

Here, we need to Maximise our Profit based on the quantity of products used

$$\begin{aligned} \text{MAX}: & 510\text{X}_1 + 300\text{X}_2 + 510\text{X}_3 + 270\text{X}_4 + 810\text{X}_5 - \\ & 2000\text{Y}_1 - 4000\text{Y}_2 - 8000\text{ Y}_3 - 16000\text{Y}_4 - 1000\text{Y}_5 \end{aligned}$$

Constraints:

Non Negativity and Integer Constraints:

$$X_1, X_2, X_3, X_4, X_5 >= 0$$

$$X_1$$
, X_2 , X_3 , X_4 , X_5 are Integers

Binary Constraints:

All Y_i must be binary, where i = 1,2,3,4,5

Linking Constraints:

$$X_1 \le M_1 Y_1 \text{ or } X_1 - M_1 Y_1 = 0$$

$$X_2 \le M_2 Y_2 \text{ or } X_2 - M_2 Y_2 = 0$$

$$X_3 \le M_3 Y_3 \text{ or } X_3 - M_3 Y_3 = 0$$

$$X_4 \le M_4 Y_4 \text{ or } X_4 - M_4 Y_4 = 0$$

 $X_5 \le M_5 Y_5 \text{ or } X_5 - M_5 Y_5 = 0$

Here, M_i introduces an upper bound on X_i

Calculating M, values:-

$$\begin{aligned} &\mathsf{M}_1 = \mathsf{MIN}\big(\frac{2487}{2},\ \frac{3030}{6},\ \frac{5217}{2},\ \frac{4000}{7},\ \frac{4999}{5},\ \frac{2769}{10}\big) = 279.6 \\ &\mathsf{M}_2 = \mathsf{MIN}\big(\frac{2487}{10},\ \frac{3030}{3},\ \frac{5217}{3},\ \frac{4000}{6},\ \frac{4999}{6},\ \frac{2769}{3}\big) = 248.7 \\ &\mathsf{M}_3 = \mathsf{MIN}\big(\frac{2487}{2},\ \frac{3030}{6},\ \frac{5217}{10},\ \frac{4000}{5},\ \frac{4999}{3},\ \frac{2769}{5}\big) = 505 \\ &\mathsf{M}_4 = \mathsf{MIN}\big(\frac{2487}{3},\ \frac{3030}{3},\ \frac{5217}{6},\ \frac{4000}{4},\ \frac{4999}{10},\ \frac{2769}{3}\big) = 499.9 \end{aligned}$$

$$M_4 = MIN(\frac{2487}{3}, \frac{3030}{3}, \frac{3217}{6}, \frac{4000}{4}, \frac{4999}{10}, \frac{2769}{3}) = 499.9$$

 $M_5 = MIN(\frac{2487}{6}, \frac{3030}{10}, \frac{5217}{2}, \frac{4000}{3}, \frac{4999}{2}, \frac{2769}{4}) = 303$

Constraints as per Resource Availability:

$$2X_1 + 10X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$6X_1 + 3X_2 + 6X_3 + 3X_4 + 10X_5 = 3030$$

$$2X_1 + 3X_2 + 10X_3 + 6X_4 + 2X_5 = 5217$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

Working:

Here, we have an additional constraint.

It is given that the minimum amount of product 3 to be produced is 225.

And, the maximum amount of product 3 to be produced is 325.

In order to take into consideration these two conditions, we use the method of linking constraints and upper bounds.

Thus, I have mentioned the minimum and maximum values of X₃

Here, X_3 = Amount of Product 3 produced.

Constraint:

For X_3 :

Lower_Bound = 225

Upper Bound = 325

Minimum Value Constraint : X_3 - (225)(Y_3) >= 0 Maximum Value Constraint : X_3 - (325)(Y_3) <= 0

Solver Observations:

From the solver, we can see that

From the solver, we can see that the :

Optimal Amount produced for Product 1 = 177

Optimal Amount produced for Product 2 = 116

Optimal Amount produced for Product 3 = 0

Optimal Amount produced for Product 4 = 0

Optimal Amount produced for Product 5 = 162

1o) Part ii

ANSWER:

Spreadsheet: See 10

Snapshot:

$ \sqrt{} $	А	В	С	D	E	F	G	н	1	J	K	L	М	N	
2															
3															
4															_
5									Maximize: In By changing:						
6									Subject to:	ca.da, ca.d.	,				
7			Product 1	Product 2	Product 3	Product 4	Product 5			22 <= 17: 22	: Resource	Availability	Constraint		L
8		Units to mix (X)	177	116	0	0	162		D26 >:			n value cons			
9		Binary Variables (Y)	1	1	0	0	1		D27 <:			n Value con			
10		Linking Constraints	-99.9	-132.7	0	0	-141		C8:G9			ativity Cons	traint		
11		Set Up Cost	2000	4000	8000	16000	1000	Total Profit			: Integer C : Linking C				
12		Profit of the product	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00	\$249,290.00	C9:G9		: Binary Co				
13									C9:G9			gativity Con	straint		
14															_
15			Amour	nt of Resour	ce in the pr	oducts									
16		Resources	Product 1	Product 2	Product 3	Product 4	Product 5	Amount of resource	Maximum Resource Available						
17		Resource 1	2	10	2	3	6	2486	2487						
18		Resource 2	6	3	6	3	10	3030	3030						
19		Resource 3	2	3	10	6	2	1026	5217						
20		Resource 4	7	6	5	4	3	2421	4000						
21		Resource 5	5	6	3	10	2	1905	4999						
		Resource 6	10	3	5	3	4	2766	2769						
22															
22															
23		For X3 :													
23 24		For X3 : Minimum Value	225	0											

Working:

Total Profit

```
= (Product 1 Amount)*(Product 1 Profit) +
```

(Product 2 Amount)*(Product 2 Profit) +

(Product 3 Amount)*(Product 3 Profit) +

(Product 4 Amount)*(Product 4 Profit) +

(Product 5 Amount)*(Product 5 Profit) +

= (177)*(510) + (116)*(300) + (0)*(510) + (0)*(270) + (162)*(810)

= \$ 249,200

Again, we can see that adding more constraints such as the minimum and maximum values of a particular product has further decreased the value of the objective function, i.e the profit. These minimum and maximum values introduce bounds on the variables and affect their quantity produced.

Even from the Solver, we can see that the value of the objective function now is: \$249,200

1p part 1: ANSWER:

Spreadsheet: See 1p

4	A B	С	D	E	F	G	Н		1	J	K	L	M	N	0
5									Maximize: H						
5									By changing: Subject to:	C8:G8, C9:0	39				
7		Product 1	Product 2	Product 3	Product 4	Product 5				22 <= 17:12	22 : Resource	e Availabilit	v Constraint	t	
8	Units to mix (X)	177	116	0	0	162			D26 >=			n value cons			
9	Binary Variables (Y)	1	1	0	0	1			D27 <=			m Value con			
10	Linking Constraints	-99.9	-132.7	0	0	-141			C8:G9			ativity Cons	straint		
11	Set Up Cost	2000	4000	8000	16000	1000	Total Profit			= integer 10 <= 0	: Integer C : Linking C				
12	Profit of the produc	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00	\$249,290.00		C9:G9		: Binary Co				
13									C9:G9			gativity Cor			
14			_						C29 = 0	0	: X3 Shoul	d be a multi	iple of 50		
15		Amour	nt of Resou	rce in the pr	oducts										
	Resources	Product 1	Product 2	Product 3	Product A	Product 5	Amount of resource		laximum						
16	Resources	Floudet	r loudet 2	Fibuucts	riouuct 4	Fioudets	Amount of resource	Resou	rce Available						
17	Resource 1	2	10	2	3	6	2486		2487						
18	Resource 2	6	3	6	3	10	3030		3030						
19	Resource 3	2	3	10	6	2	1026		5217						
20	Resource 4	7	6	5	4	3	2421		4000						
21	Resource 5	5	6	3	10	2	1905		4999						
22	Resource 6	10	3	5	3	4	2766		2769						
23															
24															
25	For X3 :														
6	Minimum Value	300	0												
17	Maximum Value	450	0												
28															
29	X3_Multiple_of_50	0													

Objective Function:

Here, we need to Maximise our Profit based on the quantity of products used

$$\begin{aligned} \text{MAX} : 510\text{X}_1 + 300\text{X}_2 + 510\text{X}_3 + 270\text{X}_4 + 810\text{X}_5 - \\ 2000\text{Y}_1 - 4000\text{Y}_2 - 8000\text{ Y}_3 - 16000\text{Y}_4 - 1000\text{Y}_5 \end{aligned}$$

Constraints:

Non Negativity and Integer Constraints:

$$X_1, X_2, X_3, X_4, X_5 >= 0$$

$$X_1$$
, X_2 , X_3 , X_4 , X_5 are Integers

Binary Constraints:

All Y_i must be binary, where i = 1,2,3,4,5

Linking Constraints:

$$X_1 \le M_1 Y_1 \text{ or } X_1 - M_1 Y_1 = 0$$

$$X_2 \le M_2 Y_2$$
 or $X_2 - M_2 Y_2 = 0$

$$X_3 \le M_3 Y_3 \text{ or } X_3 - M_3 Y_3 = 0$$

$$X_4 \le M_4 Y_4 \text{ or } X_4 - M_4 Y_4 = 0$$

$$X_5 \le M_5 Y_5 \text{ or } X_5 - M_5 Y_5 = 0$$

Here, M_i introduces an upper bound on X_i

Calculating M, values:-

$$M_1 = MIN(\frac{2487}{2}, \frac{3030}{6}, \frac{5217}{2}, \frac{4000}{7}, \frac{4999}{5}, \frac{2769}{10}) = 279.6$$

$$M_1 = MIN(\frac{2}{2}, \frac{6}{6}, \frac{2}{2}, \frac{7}{7}, \frac{5}{5}, \frac{10}{10}) - 279.0$$
 $M_2 = MIN(\frac{2487}{10}, \frac{3030}{3}, \frac{5217}{3}, \frac{4000}{6}, \frac{4999}{6}, \frac{2769}{3}) = 248.7$
 $M_3 = MIN(\frac{2487}{2}, \frac{3030}{6}, \frac{5217}{10}, \frac{4000}{5}, \frac{4999}{3}, \frac{2769}{5}) = 505$
 $M_4 = MIN(\frac{2487}{3}, \frac{3030}{3}, \frac{5217}{6}, \frac{4000}{4}, \frac{4999}{10}, \frac{2769}{3}) = 499.9$

$$M_{\bullet} = MIN(\frac{2487}{3030}, \frac{3030}{5217}, \frac{4000}{4999}, \frac{4999}{2769}, \frac{2769}{505}) = 505$$

$$M_{\star} = MIN(\frac{2487}{3030}, \frac{3030}{5217}, \frac{4000}{4999}, \frac{4999}{2769}) = 499.5$$

$$M_5 = MIN(\frac{2487}{6}, \frac{3030}{10}, \frac{5217}{2}, \frac{4000}{3}, \frac{4999}{2}, \frac{2769}{4}) = 303$$

Constraints as per Resource Availability:

$$2X_1 + 10X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$6X_1 + 3X_2 + 6X_3 + 3X_4 + 10X_5 = 3030$$

$$2X_1 + 3X_2 + 10X_3 + 6X_4 + 2X_5 = 5217$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

Working:

Here, we have an additional constraint.

Here, the minimum value of Product 3 produced is 300 and The maximum value of Product 3 produced is 450.

In order to take into consideration these two conditions, we use the method of linking constraints and upper bounds.

Thus, I have mentioned the minimum and maximum values of X_3 Here, X_3 = Amount of Product 3 produced.

Additional Constraint:

For X_3 :

Lower_Bound = 300

Upper Bound = 450

Minimum Value Constraint : X_3 - (300)(Y_3) >= 0 Maximum Value Constraint : X_3 - (450)(Y_3) <= 0

Also

We also want the amount of product 3 produced to be a multiple of 50 as well.

Thus, this additional constraint has been mentioned as a separate row.

 $MOD(X_3, 50) = 0$

Where, MOD gives us the remainder of X_3 and 50.

From the solver, we can see that

From the solver, we can see that the:

Optimal Amount produced for Product 1 = 177

Optimal Amount produced for Product 2 = 116

Optimal Amount produced for Product 3 = 0

Optimal Amount produced for Product 4 = 0

Optimal Amount produced for Product 5 = 162

1p part 2: ANSWER:

Spreadsheet: See 1p

4	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0
5			Product 1	Product 2	Product 3	Product 4	Product 5		Maximize: By changing: Subject to:	C8:G8, C9:	39 22 : Resource	. O. silahilia	Constrain		
3		Units to mix (X)	177	116	0	0	162		D26 >			n value con			
9		Binary Variables (Y)	1	1	0	0	1		D27 <	= 0	: Maximur	n Value cor	straint		
0		Linking Constraints	-99.9	-132.7	0	0	-141		C8:G9			ativity Con	straint		
11		Set Up Cost	2000	4000	8000	16000	1000	Total Profit		3 = integer i10 <= 0	: Integer C : Linking C				
12		Profit of the product	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00	\$249,290.00		binary	: Binary C				
13									C9:G9			gativity Co	nstraint		
14									C29 =	0	: X3 Shoul	d be a mult	iple of 50		
15			Amour	nt of Resour	ce in the pr	oducts									
16		Resources	Product 1	Product 2	Product 3	Product 4	Product 5	Amount of resource	laximum rce Available						
17		Resource 1	2	10	2	3	6	2486	2487						
18		Resource 2	6	3	6	3	10	3030	3030						
19		Resource 3	2	3	10	6	2	1026	5217						
20		Resource 4	7	6	5	4	3	2421	4000						
21		Resource 5	5	6	3	10	2	1905	4999						
22		Resource 6	10	3	5	3	4	2766	2769						
23															
24															
25		For X3 :													
26		Minimum Value	300	0											
27		Maximum Value	450	0											
28															
29		X3_Multiple_of_50	0												

Working:

Total Profit

= (Product 1 Amount)*(Product 1 Profit) +

(Product 2 Amount)*(Product 2 Profit) +

(Product 3 Amount)*(Product 3 Profit) +

(Product 4 Amount)*(Product 4 Profit) +

(Product 5 Amount)*(Product 5 Profit) +

= (177)*(510) + (116)*(300) + (0)*(510) + (0)*(270) + (162)*(810)

= \$ 249,200

Clearly, adding more and more constraints decreases the feasible region of the solution and this further decreased the value of the objective function.

Even from the Solver, we can see that the value of the objective function now is: \$249,200

1q) part 1 ANSWER:

Spreadsheet: See 1q

Snapshot:

Objective Function:

Here, we need to Maximise our Profit based on the quantity of products used

 $\begin{aligned} \text{MAX}: & 510\text{X}_1 + 300\text{X}_2 + 510\text{X}_3 + 270\text{X}_4 + 810\text{X}_5 - \\ & 2000\text{Y}_1 - 4000\text{Y}_2 - 8000\text{ Y}_3 - 16000\text{Y}_4 - 1000\text{Y}_5 \end{aligned}$

Constraints:

Non Negativity and Integer Constraints:

 $X_1, X_2, X_3, X_4, X_5 >= 0$ X_1, X_2, X_3, X_4, X_5 are Integers

Binary Constraints:

All Y_i must be binary, where i = 1,2,3,4,5

Linking Constraints: (For only 1, 3 and 5)

 $X_1 \le M_1 Y_1 \text{ or } X_1 - M_1 Y_1 = 0$

$$X_3 \le M_3 Y_3 \text{ or } X_3 - M_3 Y_3 = 0$$

 $X_5 \le M_5 Y_5 \text{ or } X_5 - M_5 Y_5 = 0$

Here, M_i introduces an upper bound on X_i

Calculating M, values:-

$$M_1 = MIN(\frac{2487}{2}, \frac{3030}{6}, \frac{5217}{2}, \frac{4000}{7}, \frac{4999}{5}, \frac{2769}{10}) = 279.6$$

$$M_3 = MIN(\frac{2487}{2}, \frac{3030}{6}, \frac{5217}{10}, \frac{4000}{5}, \frac{4999}{3}, \frac{2769}{5}) = 505$$

$$M_5 = MIN(\frac{2487}{6}, \frac{3030}{10}, \frac{5217}{2}, \frac{4000}{3}, \frac{4999}{2}, \frac{2769}{4}) = 303$$

Constraints as per Resource Availability:

$$2X_1 + 10X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$6X_1 + 3X_2 + 6X_3 + 3X_4 + 10X_5 = 3030$$

$$2X_1 + 3X_2 + 10X_3 + 6X_4 + 2X_5 = 5217$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$2X_1 + 10 X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

Additional Constraints:

If X_2 is produced, it should be one of these quantities : [102, 103, 105, 107, 111] If X_4 is produced, it should be one of these quantities : [320, 330, 350, 370, 410] Thus.

Here, we will be changing only Y_1 , Y_3 and Y_5

The remaining Y₂ and Y₄ will be subjected to the above constraints.

Here, I have assigned a binary value to each of the quantities of X_2 and X_4 produced. Since my solver took a lot of time to run (more than 45 minutes), I paused it and saved the following scenario:

From the solver, we can see that

From the solver, we can see that the :

Optimal Amount produced for Product 1 = 37.7

Optimal Amount produced for Product 2 = 111

Optimal Amount produced for Product 3 = 411.8

Optimal Amount produced for Product 4 = 0

Optimal Amount produced for Product 5 = 0

1q) part 2

ANSWER:

Spreadsheet: See 1q

Snapshot:

A A	В	С	D	Е	F	G	Н	1	j	K	L	M	N	0	P
1															
2								Maximize H23					1		
3		Product 1	Product 2	Product 3	Product 4	Product 5		By changing: C4:G- Subject to:	4, C5:G5						
4	Units to mix (X)	37.7	111	411.8	0	0			P14:P19: Res	ource Availal	bility Constra	int			
5	Binary Variables (Y)	0.13615	1	0.815446	0	0		C4:G4 >= 0	: Non	-Negativity (onstraint				
6								C4:G4 = int D8:D10 <=		ger Constrair	it it for Product	1 2 and E			
7	Products (1, 3 and 5)	M Value	Linking Constraint					C5,E5, G5 = C14 <=1	binary : Bina : Proc	ary Constrain duct 2 Constr	it aint	1,5 and 5			
8	Product 1	276.9	1.14E-13					C19 <=1 C14 = D5		duct 4 Constr					
9	Product 3	505	0					C19 = F5		ount of 4 Pro					
10	Product 5	303	0										_		
11															
12	Product 2 : Quantities	102	103	105	107	111			Amou	nt of Reso	urce in the	products			
13	Binary Variable	0	0	0	0	1		Resources	Product 1	Product 2	Product 3	Product 4	Product 5	Amount of resource	Maximum Resource Available
14	Total Binary (<=1)	1						Resource 1	2	10	2	3	6	2009	2487
15	Units to Mix (X2)	111						Resource 2	6	3	6	3	10	3030	3030
16								Resource 3	2	3	10	6	2	4526.4	5217
17	Product 4 : Quantities	320	330	350	370	410		Resource 4	7	6	5	4	3	2988.9	4000
18	Binary Variable	0	0	0	0	0		Resource 5	5	6	3	10	2	2089.9	4999
19	Total Binary (<=1)	0						Resource 6	10	3	5	3	4	2769	2769
20	Units to Mix (X4)	0													
21															
22	Set Up Cost	2000	4000	8000	16000	1000	Total Profit	t							
	Profit of the product	\$510.00	\$300.00	\$510.00	\$270.00	4	251749.14								

Working:

Total Profit

= (Product 1 Amount)*(Product 1 Profit) +

(Product 2 Amount)*(Product 2 Profit) +

(Product 3 Amount)*(Product 3 Profit) +

(Product 4 Amount)*(Product 4 Profit) +

(Product 5 Amount)*(Product 5 Profit) +

 $= (37.7)^*(510) + (111)^*(300) + (411.8)^*(510) + (0)^*(270) + (0)^*(810)$

= \$ 251, 749

Clearly, adding more and more constraints decreases the feasible region of the solution and this further decreased the value of the objective function.

Even from the Solver, we can see that the value of the objective function now is: \$251, 749

1r) part 1 ANSWER:

Spreadsheet: See 1r

∠ A	В	C	D	E	F	G	H I	J	K	L	M	N	0	P
1							Maximise: 023 By changing: C4:G5					1		
2							Subject to:	4:P19 : Resource A	and the Course					
3			Product 2				D22 >= 0	: Minimum val	ue constraint	dint				
4	Units to mix (X)	0	0	479	12	12	D23 <= 0 C4:G5 >= 0	: Maximum Va : Non-Negativi	ity Constraint					
5	Binary Variables (Y)	0	0	1	1	1	C4:G4 = integer D8:D12 <= 0	: Integer Const : Linking Const						
6							C5:G5 binary	: Binary Constr : Non - Negation	raint					
7	Product	M Value	Linking Constraint				C5:G5 >=0 C4 = D4 C5 = D5 F4 = G4	: Non - Negatin : X1 Amount = : Y1 = Y2 : X4 Amount =	X2 Amount					
8	Product 1	276.9	0	(<=0)			F5 = G5	: Y4 = Y5	XS Amount					
9	Product 2	248.7	0	(<=0)			E5 = G5 C19 <=1	: Y3 = Y5 : If Product 3 is	s produced, Prod	fuct 1 is not prod	uced			
10	Product 3	505	-26	(<=0)			C20 <=1			luct 2 is not prod				
11								_				_		
12								Amou	nt of Reso	urce in the	products			
13							Resources	Product 1	Product 2	Product 3	Product 4	Product 5	Amount of resource	Maximum Resource Availab
14							Resource 1	2	10	2	3	6	1066	2487
15	X1 = X2						Resource 2	6	3	6	3	10	3030	3030
16	Y1 = Y2						Resource 3	2	3	10	6	2	4886	5217
17	X4 = X5						Resource 4	7	6	5	4	3	2479	4000
18	Y4 = Y5						Resource 5	5	6	3	10	2	1581	4999
19	Y1 + Y3 <= 1	1	(<=1)				Resource 6	10	3	5	3	4	2479	2769
20	Y2 + Y3 <= 1	0	(<=1)											
21	Y3 = Y5													
	X5 : Lower Bound	10	2	(>=0)			Set Up Cost	2000	4000	8000	16000	1000	Total Profit	
22	A5 : Lower Bound													

From the solver, we can see that

From the solver, we can see that the:

Optimal Amount produced for Product 1 = 0

Optimal Amount produced for Product 2 = 0

Optimal Amount produced for Product 3 = 479

Optimal Amount produced for Product 4 = 12

Optimal Amount produced for Product 5 = 12

1r) part 2 **ANSWER:**

Spreadsheet: See 1r

Snapshot:

					1 2 0										
_ A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р
1								Maximise: 023 By changing: C4:G5							
2								Subject to: 014:019 <= P14:6	010 - 0 1-						
3			Product 2					D22 >= 0	: Minimum vale	ue constraint	anne				
4	Units to mix (X)	0	0	479	12	12		D23 <= 0 C4:G5 >= 0	: Maximum Val : Non-Negativi	ty Constraint					
5	Binary Variables (Y)	0	0	1	1	1		C4:G4 = integer D8:D12 <= 0	: Integer Const : Linking Const						
6								C5:G5 binary C5:G5 >=0	: Binary Constr : Non - Negativ	aint					
7	Product	M Value	Linking Constraint					C4 = D4 C5 = D5	: X1 Amount = : Y1 = Y2	X2 Amount					
8	Product 1	276.9	0	(<=0)				F4 = G4 F5 = G5	: X4 Amount = : Y4 = Y5	XS Amount					
9	Product 2	248.7	0	(<=0)				E5 = G5 C19 <=1	: Y3 = Y5	produced, Prod	out 1 is not prod	wood			
10	Product 3	505	-26	(<=0)				C20 <=1	: If Product 3 is	produced, Prod	uct 2 is not prod	uced			
11									_	_			_		
12									Amour	nt of Resou	urce in the	products			
13								Resources	Product 1	Product 2	Product 3	Product 4	Product 5	Amount of resource	Maximum Resource Availab
14								Resource 1	2	10	2	3	6	1066	2487
15	X1 = X2							Resource 2	6	3	6	3	10	3030	3030
16	Y1 = Y2							Resource 3	2	3	10	6	2	4886	5217
17	X4 = X5							Resource 4	7	6	5	4	3	2479	4000
18	Y4 = Y5							Resource 5	5	6	3	10	2	1581	4999
19	Y1 + Y3 <= 1	1	(<=1)					Resource 6	10	3	5	3	4	2479	2769
20	Y2 + Y3 <= 1	0	(<=1)												
21	Y3 = Y5														
22	X5 : Lower Bound	10	2	(>=0)				Set Up Cost	2000	4000	8000	16000	1000	Total Profit	
23	X5 : Upper Bound	100	-88	(<=0)				Product Profit	\$510.00	\$300.00	\$510.00	\$270.00	\$810.00	\$232,250.00	
24															

Method:

Non Negativity and Integer Constraints:

$$X_1, X_2, X_3, X_4, X_5 >= 0$$

$$X_1$$
, X_2 , X_3 , X_4 , X_5 are Integers

Binary Constraints:

All Y, must be binary, where i = 1,2,3,4,5

Linking Constraints: (Only for Product 1, Product 2 and Product 3)

$$X_1 \le M_1 Y_1 \text{ or } X_1 - M_1 Y_1 = 0$$

$$X_2 \le M_2 Y_2$$
 or $X_2 - M_2 Y_2 = 0$

$$X_3 \le M_3 Y_3 \text{ or } X_3 - M_3 Y_3 = 0$$

Here, M_i introduces an upper bound on X_i

Calculating M, values:-

$$M_1 = MIN(\frac{2487}{2}, \frac{3030}{6}, \frac{5217}{2}, \frac{4000}{7}, \frac{4999}{5}, \frac{2769}{10}) = 279.6$$

$$\begin{aligned} &\mathsf{M}_1 = \mathsf{MIN}(\frac{2487}{2}, \, \frac{3030}{6}, \, \frac{5217}{2}, \, \frac{4000}{7}, \, \frac{4999}{5}, \frac{2769}{10}) = 279.6 \\ &\mathsf{M}_2 = \mathsf{MIN}(\frac{2487}{10}, \, \frac{3030}{3}, \, \frac{5217}{3}, \, \frac{4000}{6}, \, \frac{4999}{6}, \frac{2769}{3}) = 248.7 \end{aligned}$$

$$M_3 = MIN(\frac{2487}{2}, \frac{3030}{6}, \frac{5217}{10}, \frac{4000}{5}, \frac{4999}{3}, \frac{2769}{5}) = 505$$

Constraints as per Resource Availability:

$$2X_1 + 10X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$$

$$6X_1 + 3X_2 + 6X_3 + 3X_4 + 10X_5 = 3030$$

$$2X_1 + 3X_2 + 10X_3 + 6X_4 + 2X_5 = 5217$$

 $2X_1 + 10X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$
 $2X_1 + 10X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$
 $2X_1 + 10X_2 + 2X_3 + 3X_4 + 6X_5 = 2487$

Additional Constraints:

Along with Non-Negativity, Integer, Binary, Resource and Linking constraints, we have the following constraints as well.

Here, in the question we have the following additional constraints.

Amount of Product 1 = Amount of Product 2

 $X_1 = X_2$ Implies $Y_1 = Y_2$

Amount of Product 4 = Amount of Product 5

 $X_4 = X_5$ Implies $Y_4 = Y_5$

If Product 3 is produced, Product 1 and Product 2 are not produced.

$$Y_3 + Y_1 \le 1$$

 $Y_3 + Y_2 \le 1$

Also, If Product 3 is produced,

Product 5 is also produced with:

Lower Bound = 10

Upper Bound = 100

For X_5 :

Lower Bound = 10

Upper Bound = 100

Minimum Value Constraint : X_3 - (10)(Y_3) >= 0 Maximum Value Constraint : X_3 - (100)(Y_3) <= 0

Working:

```
Total Profit
```

```
= (Product 1 Amount)*(Product 1 Profit) +
```

(Product 2 Amount)*(Product 2 Profit) +

(Product 3 Amount)*(Product 3 Profit) +

(Product 4 Amount)*(Product 4 Profit) +

(Product 5 Amount)*(Product 5 Profit) +

= (0)*(510) + (0)*(300) + (0)*(479) + (12)*(270) + (12)*(810)

= \$ 232, 250

2a)

ANSWER:

Here:

Every Node represents a location

Supply Nodes: 1, 2 **Demand Nodes:** 7, 8

Transshipment Nodes: 3, 4, 5, 6

Variables:

 X_{ii}, X_{ik}, X_{kl}

 X_{ij} : Amount shipped from location i to location j X_{jk} : Amount shipped from location j to location k X_{kl} : Amount shipped from location k to location I

Thus, our variables are:

 $X_{13}, X_{14},$

 $X_{23}, X_{24},$

 $X_{35}, X_{36},$

X₄₅, X₄₆,

X₅₇, X₅₈,

X₆₇, X₆₈

Objective Function:

Here, we want to minimize the overall shipping (transshipment) cost The total shipping cost is the sum of shipping cost of product through every node Hence, the function is:

Minimize(

 $50X_{13} + 80 X_{14}$

 $70X_{23} + 40X_{24}$

 $70X_{35} + 50 X_{36}$

 $40X_{45} + 80X_{46}$

80X₅₇ + 40 X₅₈,

 $60X_{67} + 70X_{68}$

Where the:

Unit cost to ship the product from Node 1 to Node 3:50

Unit cost to ship the product from Node 1 to Node 4:80

Unit cost to ship the product from Node 2 to Node 3:70

Unit cost to ship the product from Node 2 to Node 4:40

Unit cost to ship the product from Node 3 to Node 5:70

Unit cost to ship the product from Node 3 to Node 6:50

Unit cost to ship the product from Node 4 to Node 5:40

Unit cost to ship the product from Node 4 to Node 6:80

Unit cost to ship the product from Node 5 to Node 7:80

Unit cost to ship the product from Node 5 to Node 8:40

Unit cost to ship the product from Node 6 to Node 7:60 Unit cost to ship the product from Node 6 to Node 8:70

2b)

ANSWER:

Number of variables: 12

The variables correspond to the amount of shipment from a given node to another.

These are the following variables:

 X_{ij}, X_{jk}, X_{kl}

X_{ii}: Amount shipped from location i to location j

 $\dot{X_{ik}}$: Amount shipped from location j to location k

 X_{kl} : Amount shipped from location k to location I

Thus, our variables are:

X₁₃, X₁₄,

 $X_{23}, X_{24},$

 $X_{35}^{25}, X_{36}^{24},$

X₄₅, X₄₆,

X₅₇, X₅₈,

X₆₇, X₆₈

2c) ANSWER:

Spreadsheet: See 2c

Snapshot:

4	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N
1														
2														
3														
4														
5		Ship	From	To	Unit Cost		Nodes	Net Flow	Supply/Demand				y = Demand	
6		75	1	3	\$50.00		1	-75	-75	/	Inflow -	Outflow :	Supply or I	Demand
7		0	1	4	\$80.00		2	-75	-75	/				
8		0	2	3	\$70.00		3	0	0					
9		75	2	4	\$40.00		4	0	0					
10		0	3	5	\$70.00		5	0	0					
11		75	3	6	\$50.00		6	0	0					
12		75	4	5	\$40.00		7	80	80					
13		0	4	6	\$80.00		8	70	70					
14		5	5	7	\$80.00									
15		70	5	8	\$40.00									
16		75	6	7	\$60.00									
17		0	6	8	\$70.00									
18		Total Tran	sportation	Cost	\$21,200.00									
19														
20		8			0									
21		Minimize:												
2		By changin												
23		Subject to:		ing the El	ow Constraints									
24		B6:B17>=0			Constraint									
25		55,52,72		-Batterity (- Constitution									
26		-					125							

Formulation of LP:

From the question, every Node represents a location.

The Objective Function would be subjected to the following constraints:

Constraints:

Amount out of Node 1 : $X_{13} + X_{14} = 75$ Amount out of Node 2 : $X_{23} + X_{24} = 75$

Amount into Node 7 : $X_{57} + X_{67} = 80$ Amount into Node 8 : $X_{67} + X_{68} = 70$

Non-Negativity of the Variables: $X_{ij} >= 0$ for all i and j

From the spreadsheet,

We can see that clearly, the

Total Supply = 75 + 75 = 150

Total Demand = 80 + 70 = 150

Thus, Supply = Demand

Hence, the at every node : Inflow - Outflow = Supply or Demand

The solution is:

 $X_{13} = 75$

 $X_{24} = 75$

 $X_{36} = 75$

 $X_{45} = 75$

 $X_{57} = 5$

 $X_{58} = 70$

 $X_{67} = 75$

The above are the edges with a non-zero flow.

Number = e_{2c} = 7

Here, the minimum cost = \$21,200

Hence, the value of the Objective Function = \$21,200

2d) ANSWER:

Spreadsheet: See 2d

_ A	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	P	Q	R
1																	
2																	
														-	Sinco Sun	oly = Demar	nd.
5		_	_				_									= Supply or	
		From	То		Upper Bound	Ship	e2c	Lnking Constraint		Nodes		Supply/Demand	/	milow	outilon	- supply of	Demai
6		1	3	\$50.00	150	0	0	0		1	-75	-75	/				
7		1	4	\$80.00	150	75	1	-75		2	-75	-75					
8		2	3	\$70.00	150	0	0	0		3	0	0					
9		2	4	\$40.00	150	75	1	-75		4	0	0					
		3	5	\$70.00	150	0	0	0		5	0	0					
11		3	6	\$50.00	150	0	0	0		6	0	0					
12		4	5	\$40.00	150	150	1	0		7	80	80					
13		4	6	\$80.00	150	0	0	0		8	70	70					
14		5	7	\$80.00	150	80	1	-70									
15		5	8	\$40.00	150	70	1	-80									
16		6	7	\$60.00	150	0	0	0									
17		6	8	\$70.00	150	0	0	0									
18		Total Trans	portation	\$24,200.00													
18																	
20																	
21					Total Used	5		Here, Upper Bound =	150	-	_			-			
22 23 24 25 26 27 28 29					e2c	7		Minimize: E18									
23					e2c - 1	5		By changing: G6:H17									
24								Subject to:									
25								L6:L13 = M6:M13 : In H6:H17 = binary : Bir			iow						
6								G6:G17 = integer : Int									
7									eger Const								
28											ow <= e2c-1 =	· 6					
9								16:117 <= 0 : Lir	king Const	raint							
20																	

Here, the number of edges with non-zero flow = $e_{\rm 2c}$ = 7 Implies, $e_{\rm 2c}$ - 1 = 6

Here, the Upper Bound is taken as 150

Now, from the solver it is clear that the number of edges with a non-zero flow is = 5 Amount of flow along each of the edges giving the minimum cost:

Value of the objective function = \$24,200

Edges with a non-zero flow =

Node 1- Node 4

Node 2- Node 4

Node 4- Node 5

Node 5- Node 7

Node 5- Node 8

2e)

ANSWER:

Spreadsheet: See 2e

Here, we have introduced a very large penalty for every edge with a non-zero flow.

The penalty value for every edge = \$100,000

From the solver, we can see that the total number of edges used = 5 Hence, the total cost along each edge = 5*100,000 = \$500,000 Total Transportation Cost = \$24,200

Thus, overall total cost:

- = Transportation Cost + Cost of transporting along every edge
- = \$524,200

Thus, the smallest number of edges that can have a non-zero flow for such an above solution - 5

2f)

ANSWER:

Spreadsheet: See 2f

1 A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0
1														
														\rightarrow
												Supply = De		
	Ship	From	То	Unit Cost	Upper Bound		Nodes	Net Flow	Supply/Demand		Inflow - Ou	tflow = Supp	ly or Dem	and
	75	1	3	\$50.00	75		1	-75	-75	/				
	0	1	4	\$80.00	75		2	-75	-75					
10	0	2	3	\$70.00	75		3	0	0					
	75	2	4	\$40.00	75		4	0	0					
)	0	3	5	\$70.00	150		5	0	0					
1	75	3	6	\$50.00	150		6	0	0					
2	30	4	5	\$40.00	30		7	80	80					
3	40	4	9	\$0.00	120		8	70	70					
4	40	9	5	\$60.00	120		9	0	0					
5	5	4	6	\$80.00	150									
5	0	5	7	\$80.00	80									
7	70	5	8	\$40.00	70									
В	80	6	7	\$60.00	80									
9	0	6	8	\$70.00	70									
0	Total Tran	sportation	Cost	\$22,100.00										
1														
2														
3					Minimize: E20 By changing: B6:B	10								
l l					Subject to:	119								
5					l6:H13 = J6:J13									
5							ativity Cons	traints						
							onstraints	an Danmala						
3				l l	36:B19 <=F6:F19	: To Mana	ige the Upp	er Bounds						

Here, we use an intermediate node, (let's name it Node 9) from Node 4 to Node 5 Since, it is given that the Unit Cost of maintaining this edge is:

Upto 30 units i.e **Upper Bound = 30** Cost = \$40/unit

Upto (150 - 30 = 120) i.e **Upper Bound = 120** Cost = \$60/unit

Thus, our new model looks like the one below:

Now, from the solver, we can see that, we have added the above constraints in the excel.

Thus, the new solution to this problem is given as follows:

We can see that clearly, the Total Supply = 75 + 75 = 150 Total Demand = 80 + 70 = 150 Thus, Supply = Demand

Hence, the at every node: Inflow - Outflow = Supply or Demand

The solution is:

 $X_{13} = 75$

 $X_{24} = 75$

 $X_{36} = 75$

 $X_{45} = 30$

 $X_{49} = 30$

 $X_{95} = 40$

 $X_{46} = 5$

 $X_{57} = 5$

 $X_{58} = 70$

 $X_{67} = 80$

Total Minimum Transportation Cost = \$22,100

2g)

ANSWER:

Spreadsheet: 2g

Snapshot:

Α	В	С	D	E	F	G	Н	I	J	K	L	M	N
												ply = Deman	
		_								/	Inflow - Outflow	v = Supply or	Dema
	Ship	From	То		Upper Bound		Nodes		Supply/Demand	/			
	75	1	3	\$50.00	75		1	-75	-75				
	0	1	4	\$80.00	75		2	-75	-75				
	0	2	3	\$70.00	75		3	0	0				
	75	2	4	\$40.00	75		4	0	0				
	15	3	5	\$70.00 \$50.00	150		6	0	0				
	60			-	150				0				
	30	4	5	\$40.00	30		7	80	80				
	25	4	9	\$0.00	25		8	70	70				
	0	4	10	\$0.00	95		9	0	0				
	25	9	5	\$60.00	25		10	0	0				
	0	10	5	\$110.00	95								
	20	4	6	\$80.00	150								
	0	5	7	\$80.00	80								
	70	5	8	\$40.00	70								
	80	6	7	\$60.00	80								
	0	6	8	\$70.00	70								
	Total Trans	sportation	Cost	\$22,700.00									
	Minimize:	F22											
	By changing												
	Subject to:	5. DO.DZI											
	I6:H15 = J6	:J15 : In o	rder to ha	ve a balanced f	low								
	B6:B21>=0			y Constraints									
	B6:B21 = in												
	B6:B21 <=F	5:F21 : To N	lanage the	Upper Bound	s								

Here, we use two intermediate nodes, (let's name it Node 9 and Node 10) from Node 4 to Node 5

Since, it is given that the Unit Cost of maintaining this edge is:

Upto 30 units : Cost = \$40/unit Upto 55 units : Cost = \$60/unit Further : Cost = \$110/unit

Thus, our new model looks like the one below:

2h)

ANSWER:

Spreadsheet: See 2h

4	Α	В	C	D	E	F	G	Н	1
1									
2									
3									
4									
5		Select Route?	From	То	Distance		Nodes	Net Flow	Supply/Demand
6		0	1	3	50		1	0	0
7		0	1	4	80		2	-1	-1
8		0	2	3	70		3	0	0
9		1	2	4	40		4	0	0
10		0	3	5	70		5	0	0
11		0	3	6	50		6	0	0
12		1	4	5	40		7	0	0
13		0	4	6	80		8	1	1
14		0	5	7	80				
15		1	5	8	40				
16		0	6	7	60		Minimize:	E10	
17		0	6	8	70		By changing		
18								H6:H13=I6:I	13
19				Total	120			17 >= 0	
20									

Here, from the figure and solver we can see that

The shortest path from node 2 to node 8 is : 2 --- 4 --- 5 --- 8

Length of the path : 40 + 40 + 40 = 120

2i part 1) ANSWER:

Spreadsheet: See 2i part 1

Snapshot:

4	Α	В	C	D	E	F	G	Н	1	J
1										
2							-			
3										
4							2200.0			
5		Select Route?	From	То	Distance		Nodes	Net Flow	Supply/Demand	
6		0	1	3	50		1	0	0	
7		0	1	4	80		2	-1	-1	
8		0	2	3	70		3	0	0	
9		1	2	4	40		4	0	0	
10		0	3	5	70		5	0	0	
11		0	3	6	50		6	0	0	
12		1	4	5	40		7	0	0	
13		0	4	6	80		8	1	1	
14		0	5	7	80					
15		1	5	8	40					
16		0	6	7	60					
17		0	6	8	70		Minimize:	E19		
18							By changi	ng: B6:B17		
19				Total	120		Subject to	:		
20							H6:H13=I6 B6:B17 >=	0:I13 : Net Fl	ow = Supply/Demand	
21							A CONTRACTOR OF THE PARTY OF TH	Passing throu	legativity Constraint	
22							222-2(1	assing tinou	Bir iroue o j	
22										

We need to go through Node 5 in order to traverse from Node 2 to Node 8 Here, the path to go from Node 2 to Node 8 would remain the same as the above shortest path obtained from 2h

Solver:

Here, in the solver we need to add one additional constraint.

If it's necessary for the path to go through Node 5, then we set the corresponding path Binary Variable to 1.

Even from the solver, we get the same answer as that of 2h.

Hence,

Shortest Path: 2 --- 4 --- 5 --- 8

Length of the path : 40 + 40 + 40 = 120

2i part 2) ANSWER:

Spreadsheet : See 2i part ii

Snapshot:

4	A B	С	D	E	F	G	Н	1	J
1									
2									
3									
4									
5	Select Route?	From	То	Distance		Nodes	Net Flow	Supply/Demand	
6	0	1	3	50		1	0	0	
7	0	1	4	80		2	-1	-1	
8	0	2	3	70		3	0	0	
9	1	2	4	40		4	0	0	
10	0	3	5	70		5	0	0	
11	0	3	6	50		6	0	0	
12	0	4	5	40		7	0	0	
13	1	4	6	80		8	1	1	
14	0	5	7	80					
15	0	5	8	40	_				
16	0	6	7	60		mize: E19			
17	1	6	8	70		hanging: B6	:B17		
18						ect to:	Total Supple	y = Supply/Demand	
19			Total	190				ivity Constraint	
20							through No		
21						19389		\$60A	

Now, we need to go through Node 6.

Clearly, it will not be one of the shortest paths obtained.

Solver:

Here, in the solver we need to add one additional constraint.

If it's necessary for the path to go through Node 5, then we set the corresponding path Binary Variable to 1.

Hence,

Now, Path: 2 --- 4 --- 6 --- 8

Length of the path : 40 + 80 + 70 = 190

2j)

ANSWER:

Given:

Start Node: A Destination Node: D Intermediate Nodes: B, D

To Find:

Designing an linear programming problem

Method:

Now, it is given that we can go from A --- B --- C --- D and We can go from A --- C --- B --- D

Thus, we can visualise the above problem as follows:

Formation of LP:

Variables:

X_{ii} = Amounts shipped from Node i to Node j

Here, we have defined the following variables:

 X_{AB} = Amount shipped from Node A to Node B

 X_{AC} = Amount shipped from Node A to Node C

X_{BC} = Amount shipped from Node B to Node C

 X_{CB} = Amount shipped from Node C to Node B

 X_{RD} = Amount shipped from Node B to Node D

X_{CD} = Amount shipped from Node C to Node D

 C_{ij} = Cost of transportation from Node i to Node j Here.

C_{AB} = Cost of transportation from Node A to Node B

 C_{AC} = Cost of transportation from Node A to Node c

C_{BC} = Cost of transportation from Node B to Node C

C_{CB} = Cost of transportation from Node C to Node B

 C_{BD} = Cost of transportation from Node B to Node D

 C_{CD} = Cost of transportation from Node C to Node D

$$Y_i = 1 \text{ if } X_i >= 0, \text{ else } Y_i = 0$$

Y - indicates whether a particular path has been used or not

Constraints:

Non-Negativity Constraints:

$$X_{AB}$$
 , X_{AC} , X_{BC} , X_{CB} , X_{BD} , $X_{CD} >= 0$

Also, since we can either follow Route: A --- B --- C --- D or A --- C --- B --- D,

There can be a flow from either B --- C or from B --- C at a given time!

Hence, the following constraint

If
$$X_{BC} > 0$$
, $X_{CB} = 0$

or

If
$$X_{CB} > 0$$
, $X_{BC} = 0$

Assumption:

The transportation cost from B to C is same as the cost from C to B Implies, C_{BC} = C_{CB}

Let S: Total Supply supplied by Node A

And D: Total Demand of Node D

Thus, at every node:

Total Inflow - Outflow = Supply/Demand

Amount out of Node A : $(X_{AB} + X_{AC}) = S$

Amount through Node B : $(X_{AB} + X_{CB}) - (X_{BC} + X_{BD}) = 0$ Amount through Node C : $(X_{AC} + X_{BC}) - (X_{CB} + X_{CD}) = 0$

Amount into Node D : $(X_{RD} + X_{CD}) = D$

Objective Function:

Here, we want to minimize the total transportation cost.

Hence, function:

MIN($X_{AB}C_{AB}$ +

X_{AB} C_{AB} + X_{CB} C_{CB} + X_{CB} C_{CB} + X_{BD} C_{BD} + X_{CD} C_{CD})

Solver Representation:

We can denote the above problem in solver as follows:

4	Α	В	С	D	E	F	G	Н	1	J
1										
2										
3										
4										
5		Ship	From	To	Unit Cost		Nodes	Net Flow	Supply/Demand	
6		0	Α	В	C(AB)		Α	0	(-S)	
7		0	Α	C	C(AC)		В	0	0	
8		0	В	C	C(BC)		C	0	0	
9		0	С	В	C(BC)		D	0	D	
10		0	В	D	C(BD)					
11		0	С	D	C(CD)	Minimize	- F42			
12							ging: B6:B11			
13	·	Total Trans	sportation (Cost	SUM(E6:E11)	Subject t				
14									v Constraints	
15						B6:B11>	=0 : Non-	Negativity C	onstraint	
16										
17										

Question 3 - Economic Order Quantity

Given:

Deterministic Annual Demand (A) = 1000 Ordering Cost (k) = \$21 Holding Cost (h) = 25%

Purchase Cost:

When the quantity ordered is between 0 and 794:

- Here, there is no discount offered
- c1 = \$4

When the quantity ordered is between 795 and 1099:

- Here, discount = 5%
- c2 = \$3.80

When the quantity ordered is between 1100 and 1859:

- Here, discount = 8%
- c3 = \$3.60

When the quantity ordered is between 1860 or more:

- Here, discount = 15%
- c4 = \$3.40

To Find:

- 1. Optimal Order Quantity
- 2. Optimal Total Cost

Solution:

)N	apsnot:				
1	I A	В	С	D	E
3					
4					
5	Annual Demand(A)	1000		Lowest Optimal Cost = \$3588.94	
6	Ordering Cost (k)	\$21			
7	Holding Cost (h)	25%		Corresponding Optimal Quantity = 1860)
8					
9	Case 1 : No Discount			Purchase Cost (Ac1)	\$4,000
10	Order Quantity (Between 0 and 794)			Ordering Cost (Ak/Q1*)	\$102.47
11	Purchase Cost (c1)	\$4		Holding Cost (Q1*c1h/2)	\$102.47
12	Optimal Order Quantity (Q1*)	204.939		Total Cost (Ac1 + Ak/Q1* + Q1*ch/2)	\$4,204.94
13					
14	Case 2 : 5% Discount	1 10 to 10 t		Purchase Cost (Ac2)	\$3,800
15	Order Quantity (Between 795 and 1099)			Ordering Cost (Ak/Q2*)	\$99.87
16	Purchase Cost (c2 - after discount)	\$3.80		Holding Cost (Q2*c2h/2)	\$99.87
17	Optimal Order Quantity (Q2*)	210.263		Total Cost (Ac2 + Ak/Q1* + Q1*c2h/2)	\$3,999.75
18					
19	Case 3:8% Discount			Purchase Cost (Ac3)	\$3,680
20	Order Quantity (Between 1100 and 1859)			Ordering Cost (Ak/Q3*)	\$98.29
21	Purchase Cost (c3 - after discount)	\$3.68		Holding Cost (Q3*c3h/2)	\$98.29
22	Optimal Order Quantity (Q3*)	213.6637		Total Cost (Ac3 + Ak/Q3* + Q1*c3h/2)	\$3,876.57
23					
24	Case 4: 15% Discount			Purchase Cost (Ac4)	\$3,400
25	Order Quantity (1860 or more)	2 50		Ordering Cost (Ak/Q4*)	\$94
26	Purchase Cost (c4 - after discount)	\$3.40		Holding Cost (Q4*c4h/2)	\$94.47
27	Optimal Order Quantity (Q4*)	222.2876		Total Cost (Ac4 + Ak/Q4* + Q4*c4h/2)	\$3,588.94
4				The state of the s	

Step 1:

We first calculate the smallest feasible Q* under each pricing structure Then, we choose the Q* that results in the smallest annual total cost

Calculating the Q* under each pricing structure:

Case 1: c1 = \$4 (Here, there is no discount offered)

Q1* =
$$\sqrt{\frac{2Ak}{c1h}}$$
 = $\sqrt{\frac{2(1000)21}{(4)(0.25)}}$ = 204.94

Case 2: c2 = \$3.80 (Here, discount = 5%)

Q2* =
$$\sqrt{\frac{2Ak}{c2h}}$$
 = $\sqrt{\frac{2(1000)21}{(3.80)(0.25)}}$ = 210.26

The most economical, feasible quantity for c2 is 795

Case 3: c3 = \$3.68(Here, discount = 8%)
Q3* =
$$\sqrt{\frac{2Ak}{c3h}}$$
 = $\sqrt{\frac{2(1000)21}{(3.60)(0.25)}}$ = 213.6637

The most economical, feasible quantity for c3 is 1100 Extra = 1100 - 1000 = 100

Case 4: c4 = \$3.40(Here, discount = 15%)

Q4* =
$$\sqrt{\frac{2Ak}{c4h}}$$
 = $\sqrt{\frac{2(1000)21}{(3.40)(0.25)}}$ = 222.29

The most economical, feasible quantity for c3 is 1860 Extra = 1860 - 1000 = 860

Total Cost Comparison:

Total Cost (TCi)

= Aci +
$$\frac{Ak}{Q^*}$$
 + $\frac{Q^*cih}{2}$

$$\begin{array}{lll} TC1 = (1000)(4) + \frac{1000(21)}{204.94} + \frac{(204.94)(4)(0.25)}{2} & = \$4204.93 \\ TC2 = (1000)(3.80) + \frac{1000(21)}{210.26} + \frac{(210.26)(3.80)(0.25)}{2} & = \$3999.75 \\ TC3 = (1000)(3.68) + \frac{1000(21)}{216.02} + \frac{(216.02)(3.68)(0.25)}{2} & = \$3876.57 \\ TC4 = (1000)(3.40) + \frac{1000(21)}{222.29} + \frac{(222.29)(3.40)(0.25)}{2} & = \$3588.94 \\ \end{array}$$

Answer:

It is given that there is no limit on the number of goods that can be held in an inventory, we don't have to scrap out any items!

Clearly, from the above calculations, we can see that the lowest total cost would be for Case 4, where the cost is \$3588.94

And the corresponding optimal quantity is around 1860