Theoretische Physik 3 Elektrodynamik

Wintersemester 2021/2022

bei Professor Holger Stark von Kyano Levi

Inhaltsverzeichnis

1	Einle	eitung	1
	1.1	Geschichte]
	1.2	Inhalt]
	1.3	Grundlegende Konstanten der Elektrodynamik	2
	1.4	Grundlegende Formeln der Elektrodynamik	2
2	Elen	mente der Vektoranalysis	3
	2.1	Vektoranalysis	
		2.1.1 Gradient und Nabla-Operator	3
		2.1.2 Divergenz eines Vektorfeldes	3
		2.1.3 Rotation eines Vektorfeldes	4
		2.1.4 Fundamentalsatz der Vektoranalysis (Helmholtz-Theorem)	-
	2.2	Integration von Feldern	-
		2.2.1 Linienintegrale	
		2.2.2 Satz von Stokes	1
		2.2.3 Satz von Gauß	6
3	Elek	ktrostatik	7
•	3.1	Bemerkungen zur elektrischen Ladung	7
	3.2	Coulombsches Gesetz und elektrisches Feld	8
	J	3.2.1 Coulombsches Gesetz	8
	3.3	Feldgleichungen der Elektrostatik	Ć
	0.0	3.3.1 Grundlagen	Ć
		3.3.2 Feldgleichungen der Elektrostatik	í
			L(
			[]
			L 1
		9	12
			13
			LE
	3.4		LE
	3.5	Randwertprobleme der Elektrostatik	15
			LE
			16
			16
			16
	3.6		18
			Į
			20

In halts verzeichnis

4	Elek	ktrische Felder in Materie	23
	4.1	Mikroskopische Gleichungen der Elektrostatik und Mittelung	23
		4.1.1 Glättungsfunktion	23
	4.2	Makroskopische Gleichungen der Elektrostatik	24

1 Einleitung

1.1 Geschichte

- 1785 Charles Augustin de Coulomb: Entdeckung des Coulombsches Gesetzes.
- 1800 Alessandro Volta: Erfindung der erstern Batterie, die Voltasche Säule.
- 1820 Hans Christian Ørsted: Das Ørstedsche Gesetz beschreibt, dass elektrische Ströme ein Magnetfeld erzeugen.
- 1820-25 André-Marie Ampère: Entdeckung der Grundlagen der Magnetostatik durch Messungen.
- 1831 Michael Faraday: Beschreibung der magnetischen Induktion.
- 1852 Michael Faraday: Formulierung des Nahwirkungsstandpunktes (Beschreibung elektrischer Phänomene über Felder statt Kräfte).
- 1864 James Clerk Maxwell: Formulierung der Maxwell-Gleichungen als fundamentale Feldgleichungen des elektromagnetischen Feldes und Nutzung von elektrischen und magnetischen Hilfsfeldern für die physikalische Beschreibung in Materie sowie Äußerung der Vermutung, dass Licht eine elektromagnetische Welle ist.
- 1886 Heinrich Hertz: Nachweis elektromagnetischer Wellen und Postulierung eines Äthers als hypothetisches Ausbreitungsmedium.
- 1881 Michelson-Morley-Experiment: Konstanz der Lichtgeschwindigkeit unabhängig von Beobachter und Quelle ⇒ ein absolutes Bezugssystem Äther existiert nicht.
- 1905 Albert Einstein: spezielle Relativitätstheorie.

1.2 Inhalt

Der Inhalt dieser Vorlesung gliedert sich in folgende Abschnitte:

- Einleitung
- Elemente der Vektoranalysis
- Elektrostatik
- Elektrische Felder in Materie

1 Einleitung

- Magnetostatik
- Grundgleichungen der Elektrodynamik: Die Maxwellschen Gleichungen
- Spezielle Relativitätstheorie
- Ebene elektromagnetische Wellen
- Elektromagnetische Felder bei vorgegebenen Ladungen und Strömen

1.3 Grundlegende Konstanten der Elektrodynamik

Für Konstanten deren Wert per Definition festgelegt wurde, wird ein ≡-Zeichen verwendet.

Konstante	Wert
Vakuumlichtgeschwindigkeit	$c_0 \equiv 299792458\mathrm{ms^{-1}}$
Elektrische Feldkonstante	$\varepsilon_0 = 8,8541878128 \cdot 10^{-12}\mathrm{AsV^{-1}m^{-1}}$
Magnetische Feldkonstante	$\mu_0 = 1,25663706212\cdot 10^{-6}\mathrm{NA^{-2}}$

1.4 Grundlegende Formeln der Elektrodynamik

Maxwellsche Feldgleichungen

$$\nabla \cdot \mathbf{D} = \rho_f, \quad \nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{H} = \mathbf{j}_f + \frac{\partial \mathbf{D}}{\partial t}$$

Materialgleichungen

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}, \quad \mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$$

In linearen und isotropen Medien gilt

$$\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E}, \quad \mathbf{B} = \mu_0 \mu_r \mathbf{H}$$

Im Vakuum gilt

$$\mathbf{D} = \varepsilon_0 \mathbf{E}, \quad \mathbf{B} = \mu_0 \mathbf{H}$$

Relationen von Lichtgeschwindigkeit, Feldkonstanten und Brechungsindex:

$$c_0 = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$
$$n = \frac{c_0}{c}$$

In linearen, isotropen Medien gilt

$$n = \sqrt{\varepsilon_0 \mu_0}$$

Gradient

$$\nabla \frac{1}{r} = -\frac{\mathbf{r}}{r^3}$$

Elektrisches Potential und elektrisches Feld:

$$\mathbf{E} = -\nabla \phi, \quad \phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}'$$

2 Elemente der Vektoranalysis

2.1 Vektoranalysis

2.1.1 Gradient und Nabla-Operator

Der Gradient eines skalaren Feldes U ist definiert über das totale Differential:

$$dU = \operatorname{grad} U \cdot d\mathbf{r} = \nabla U \cdot d\mathbf{r}$$

Der Gradient steht senkrecht auf den Äquipotentiallinien. Für kartesische Koordinaten gilt

$$\nabla = \mathbf{e}_x \frac{\partial}{\partial x} + \mathbf{e}_y \frac{\partial}{\partial y} + \mathbf{e}_z \frac{\partial}{\partial z} = \sum_i \mathbf{e}_i \nabla_i,$$

während für krummlinige allgemein gilt, dass

$$\nabla = \sum_{i} \mathbf{e}_{i} \frac{1}{|\partial \mathbf{r}/\partial x_{i}|} \frac{\partial}{\partial x_{i}}.$$

2.1.2 Divergenz eines Vektorfeldes

Die Divergenz eines Vektorfeldes a wird beschrieben durch

$$\operatorname{div} \mathbf{a} (\mathbf{r}) = \nabla \cdot \mathbf{a} (\mathbf{r}).$$

Sie gibt die Quellenhaftigkeit von \mathbf{a} an. In kartesischen Koordinaten ist div $\mathbf{a} = \sum_i \nabla_i a_i$.

Abb. 2.1

Betrachte zum Verständnis ein kleines Volumen ΔV bei **r**. Die Normalen $\hat{\nu}$ zeigen überall nach außen. Der Fluss aus ΔV heraus ist

$$q(r) \Delta V$$
,

wobei $q(r) = \text{div } \mathbf{a}$. Wir können sagen, dass

$$q\left(\mathbf{r}\right) = \operatorname{div} \mathbf{a} = \begin{cases} > 0, & \text{Quelle von } \mathbf{a} \\ < 0, & \text{Senke von } \mathbf{a} \\ = 0, & \text{was reinfließt, fließt raus} \end{cases}.$$

2.1.3 Rotation eines Vektorfeldes

Die Rotation eines Vektorfeldes a ist definiert als

$$\operatorname{rot} \mathbf{a} (\mathbf{r}) = \nabla \times \mathbf{a} (\mathbf{r})$$

Abb. 2.2

und es wird auch als das Wirbelfeld von **a** bezeichnet. Wieder ist die Darstellung in kartesischen Koordinaten einfach: $(\operatorname{rot} \mathbf{a})_i = \varepsilon_{ijk} \partial_{x_j} a_k$.

Wir schauen uns ein kleines orientiertes Flächenelement Δf an. Dann ist die Verwirbelung/Zirkulation um Δf

$$\sum_{C} \mathbf{a} \cdot \hat{\mathbf{t}}_{C} \Delta r_{C} = \operatorname{rot} \mathbf{a} \cdot \Delta f$$

mit Tangentialvektor $\hat{\mathbf{t}}_C$ und Parallelkomponente $\mathbf{a} \cdot \hat{\mathbf{t}}_C$. Wir bezeichnen $\omega = \operatorname{rot} \mathbf{a}$ als lokale Wirbelstärke.

Allgemein gilt, dass Gradientenfelder wirbelfrei sind,

$$\mathbf{a} = \operatorname{grad} U \Leftrightarrow \operatorname{rot} \mathbf{a} = 0 \quad \text{bzw.} \quad \operatorname{rot} (\operatorname{grad} U) = 0$$

und Wirbelfelder quellenfrei sind,

$$\operatorname{div} \mathbf{B} = 0 \iff \mathbf{B} = \operatorname{rot} \mathbf{A} \quad \operatorname{bzw.} \quad \operatorname{div} (\operatorname{rot} \mathbf{A}) = 0.$$

Wir definieren ferner den Laplace-Operator als

$$\Delta \equiv \nabla^2 \equiv \nabla \cdot \nabla,$$

für den in kartesischen Koordinaten gilt:

$$\nabla^2 = \partial_x^2 + \partial_y^2 + \partial_z^2.$$

2.1.4 Fundamentalsatz der Vektoranalysis (Helmholtz-Theorem)

Das Helmholtz-Theorem besagt, dass Quellen und Wirbel ein Vektorfeld $\mathbf{a}(\mathbf{r})$ eindeutig bestimmen. Ein Vektorfeld kann also in ein Rotationsfeld und ein Wirbelfeld aufgeteilt werden:

$$\mathbf{a} = \underbrace{\mathbf{a}_t}_{\substack{\omega = \operatorname{rot} \mathbf{a} = \operatorname{rot} \mathbf{a}_t \\ \operatorname{div} \mathbf{a}_t = 0 \\ \operatorname{Wirbel!}}} + \underbrace{\mathbf{a}_l}_{\substack{\rho = \operatorname{div} \mathbf{a} = \operatorname{div} \mathbf{a}_l \\ \operatorname{rot} \mathbf{a}_l = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = \operatorname{div} \mathbf{a}_r = 0 \\ \operatorname{Randbedingungen}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0 \\ \text{div} \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0 \\ \text{div} \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0 \\ \text{div} \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0 \\ \text{div} \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0 \\ \text{div} \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0 \\ \text{div} \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0 \\ \text{div} \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0 \\ \text{div} \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0 \\ \text{div} \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0 \\ \text{div} \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0 \\ \text{div} \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r = 0}}} + \underbrace{\mathbf{a}_r}_{\substack{rot \mathbf{a}_r =$$

Eine zusätzliche, sowohl quellen- als auch wirbelfreie Komponente kann vorkommen, um Randbedingungen zu erfüllen oder einen konstanten Untergrund zu addieren.

Ebene Transversalwellen $(e^{i\mathbf{k}\cdot\mathbf{r}} \perp \mathbf{k})$ sind zum Beispiel quellenfrei, ebene Longitudinalwellen $(e^{i\mathbf{k}\cdot\mathbf{r}} \parallel \mathbf{k})$ sind dagegen wirbelfrei, denn

$$\operatorname{div}\left(e^{i\mathbf{k}\cdot\mathbf{r}}\right) = i\mathbf{k}\cdot e^{i\mathbf{k}\cdot\mathbf{r}}, \quad \operatorname{rot}\left(e^{i\mathbf{k}\cdot\mathbf{r}}\right) = i\mathbf{k}\times e^{i\mathbf{k}\cdot\mathbf{r}}.$$

2.2 Integration von Feldern

2.2.1 Linienintegrale

$$\int_{C} \mathbf{a} (\mathbf{r}) \cdot d\mathbf{r} = \int_{C} \mathbf{a} (\mathbf{r} (s)) \cdot \frac{d\mathbf{r}}{ds} ds$$

Abb. 2.3

Parameterdarstellung: $\mathbf{r} = \mathbf{r}(s) \to d\mathbf{r} = \frac{d\mathbf{r}}{ds}ds$ mit der Bogenlänge s.

Für rotationsfreie (Einschränkung, siehe Satz von Poincaré) Felder ist das Linienintegral zwischen zwei Punkten wegunabhängig:

$$\oint \mathbf{a} \cdot d\mathbf{r} = 0 \iff \mathbf{a}(\mathbf{r}) = \nabla \varphi \iff \operatorname{rot} \mathbf{a} = \mathbf{0}.$$

2.2.2 Satz von Stokes

$$\underbrace{\int_{F} \operatorname{rot} \mathbf{a} \cdot df}_{F \text{ luss von rot } \mathbf{a} \text{ durch} F} = \underbrace{\oint_{C = \partial F} \mathbf{a} \cdot d\mathbf{r}}_{Z \text{ irkulation von } \mathbf{a} \text{ entlang } C = \partial F$$

2 Elemente der Vektoranalysis

Abb. 2.4

Die Kurve C ist dabei stets so orientiert, dass sie der Rechte-Hand-Regel folgt. Von außen (die Seite, nach der der Normalenvektor d \mathbf{f} zeigt) betrachtet geht die Kurve gegen den Uhrzeigersinn.

2.2.3 Satz von Gauß

$$\underbrace{\int_{V} \operatorname{div} \mathbf{a} \cdot \operatorname{dV}}_{\text{Quellen von } \mathbf{a} \text{ in } V} = \underbrace{\int_{\partial V} \mathbf{a} \cdot \operatorname{d} f}_{\text{Fluss von } \mathbf{a} \text{ durch } \partial V \text{aus } V \text{ heraus}}$$

Aus den Satz von Gauß abgeleiteten Formen:

- $\mathbf{a} = g\mathbf{e}_i \to \int_V \frac{\partial}{\partial x_i} g dV = \int_{\partial V} g df_i$
- $g = a_j \to \int_V \operatorname{rot} \mathbf{a} dV = \int_{\partial V} d\mathbf{f} \times \mathbf{a}$
- Greensche Identitäten (diese finden ihre Anwendung in der Potentialtheorie, hierzu wird $\nabla^2 \varphi$ verwendet). $\mathbf{a}_1 = \varphi \nabla \psi, \mathbf{a}_2 = \psi \nabla \varphi$.
 - o 1. Identität: $\int \nabla \cdot \mathbf{a}_1 dV$

$$\int_{V} \left(\nabla \varphi \cdot \nabla \psi + \varphi \nabla^{2} \psi \right) dV = \int_{\partial V} \varphi \nabla \psi \cdot df$$

o 2. Identität: $\int (\nabla \cdot \mathbf{a}_1 - \nabla \cdot \mathbf{a}_2) \, dV$ (Greenscher Satz)

$$\int_{V} \left(\varphi \nabla^{2} \psi - \psi \nabla^{2} \varphi \right) dV = \int_{\partial V} \left(\varphi \nabla \psi - \psi \nabla \varphi \right) \cdot df$$

3 Elektrostatik

Die Elektrostatik behandelt elektrische Felder ruhender oder langsam bewegter elektrischer Ladungen. In den folgenden Kapiteln werden die Grundgesetze der Elektrostatik aus dem Coulomb-Gesetzabgeleitet.

3.1 Bemerkungen zur elektrischen Ladung

Es gibt zwei Arten von Ladungen: positive und negative Ladung. Die Ladung ist eine diskrete Größe und nimmt stets ein ganzzahliges Vielfaches der sogenannten Elementarladung e_0 an:

$$e_0 = 1,602176624 \cdot 10^{-19} \,\mathrm{C}$$

Diese wurde zuerst bei dem Millikan-Versuch bestimmt. So trägt zum Beispiel das Proton die Ladung $+e_0$ und das Elektron die Ladung $-e_0$. Quarks haben zwar Bruchteile der Elementarladung, treten aber nie frei, sondern nur in Kombinationen auf, die ein Vielfaches der Elementarladung bilden.

Es gilt strenge Ladungserhaltung:

In einem abgeschlossenen System bleibt die Summe aller Ladungen konstant.

Eine Ladung auf einem infinitesimalen Raum wird als Punktladung bezeichnet. In der Elektrostatik und der Elektrodynamik wird häufig mit der Ladungsdichte ρ gerechnet. Für eine einzige Punktladung q (zum Beispiel ein Proton oder Elektron) am Ort \mathbf{r}_0 gilt für die Ladungsdichteverteilung

$$\rho\left(\mathbf{r}\right) = q\delta\left(\mathbf{r} - \mathbf{r}_0\right).$$

Daraus lässt sich die Ladungsdichte für viele Punktladungen q_i an Orten \mathbf{r}_i verallgemeinern:

$$\rho\left(\mathbf{r}\right) = \sum_{i} q_{i} \delta\left(\mathbf{r} - \mathbf{r}_{i}\right)$$

Im Grenzwert für kleinste Abstände kann man schließlich auch mit kontinuierlichen Ladungsdichten rechnen:

 $\rho\left(\mathbf{r}\right) = \frac{\mathrm{d}Q}{\mathrm{d}V}$

Die gesamte Ladung in einem Volumen V ist also

$$Q = \int_{V} d^{3} \mathbf{r} \rho \left(\mathbf{r} \right).$$

3.2 Coulombsches Gesetz und elektrisches Feld

Im Alltag machen wir die Erfahrung, dass sich gleichnamige (also zum Beispiel zwei positive) Ladungen abstoßen, während zwischen ungleichnamigen Ladungen eine anziehende Kraft wirkt. Diese Kraft ist ein Vektor im Sinne der Newtonschen Mechanik und unterliegt also dem Superpositionsprinzip.

3.2.1 Coulombsches Gesetz

Die Kraft, die eine Ladung q_2 am Ort \mathbf{r}_2 auf eine Ladung q_1 am Ort \mathbf{r}_1 ausübt (siehe Abb. 3.1), berechnet sich durch

$$\mathbf{F}_1 = kq_1q_2 \frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|^3} = -\mathbf{F}_2.$$
 (3.1)

Dieser Zusammenhang ist als Coulombsches Gesetz bekannt und wurde experimentell gefunden. Die Proportionalitätskonstante k ist dabei

$$k = \frac{1}{4\pi\varepsilon_0}.$$

Abb. 3.1: Die Kraft auf zwei Punktladungen q_1 und q_2 an Orten \mathbf{r}_1 und \mathbf{r}_2 wird durch das Coulombsche Gesetz beschrieben und ist invers proportional zum Qudrat des Abstands $|\mathbf{r}_1 - \mathbf{r}_2|$.

mit Dielektrizitätskonstante $\varepsilon_0=8,854\,187\,812\,8\cdot 10^{-12}\,\mathrm{F\,m^{-1}}$. Das Coulombsche Gesetz hat die gleiche Form wie das Newtonsche Gravitationsgesetz, aber hier kann die Kraft auch abstoßend wirken, weil die Ladung anders als die Masse negativ sein kann. Genauso wie beim Gravitationsgesetz ist die Kraft antiproportional zum Quadrat des Abstands der Ladungen.

Mithilfe des Coulombschen Gesetzes können wir nach dem Superpositionsprinzip die Kraft auf eine Testladung q_0 am Ort \mathbf{r}_0 durch mehrere Ladungen q_i bestimmen:

$$\mathbf{F} = \frac{q_0}{4\pi\varepsilon_0} \sum_{i} q_i \frac{\mathbf{r}_0 - \mathbf{r}_i}{|\mathbf{r}_0 - \mathbf{r}_i|^3}$$
(3.2)

Dieser Ansatz ist der Fernwirkungsstandpunkt (die Kraft wirkt über die Ferne hinweg). Seit Veröffentlichung der Relativitätstheorie ist aber bekannt, dass sich nichts schneller als mit Vakuumlichtgeschwindigkeit bewegen kann – also auch keine Kraftwirkung.

8

 $^{^1}$ Es ist möglich, dass die Proportionalität nicht exakt $\mathbf{F} \propto r^{-2}$ ist, aber es ist durch Experimente bestätigt worden, dass für einen Ansatz $F \propto r^{-2-\varepsilon}$ zumindest $\varepsilon < 3 \cdot 10^{-16}$ ist und für einen Ansatz $F \propto e^{-\frac{r}{\xi}} r^{-2}$ (siehe sogenanntes Yukawa-Potential) wenigstens $\xi > 1 \cdot 10^8 \, \mathrm{m}.$

Daher führt man den sogenannten Nahwirkungsstandpunkt ein, bei dem man man ein elektrisches Feld \mathbf{E} betrachtet, das durch Ladungen q_i erzeugt wird (\mathbf{E} zeigt weg von positiven Ladungen und hin zu den negativen):

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i} q_i \frac{\mathbf{r}_0 - \mathbf{r}_i}{|\mathbf{r}_0 - \mathbf{r}_i|^3}, \quad \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} d^3 \mathbf{r}'$$
(3.3)

Damit ergibt sich die folgende Kraft auf eine Testladung q_0 :

$$\mathbf{F} = q_0 \mathbf{E} \left(\mathbf{r}_0 \right) \tag{3.4}$$

3.3 Feldgleichungen der Elektrostatik

3.3.1 Grundlagen

Wir definieren zunächst das elektrostatische Potential:

$$\mathbf{E} = -\nabla \phi, \quad \phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}'$$
(3.5)

Weil \mathbf{E} ein Potentialfeld ist, ist rot $\mathbf{E} = 0$. Das elektrostatische Feld ist also wirbelfrei.

Zum Beispiel ist das Potential einer Punktladung $\rho(\mathbf{r}) = q\delta(\mathbf{r} - \mathbf{r}_0)$ nach obiger Formel²:

$$\phi\left(\mathbf{r}\right) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_0|}$$

Die Quellen des elektrischen Feldes werden durch die Divergenz von E beschrieben,

$$\operatorname{div} \mathbf{E} = -\nabla^{2} \phi = -\frac{1}{4\pi\varepsilon_{0}} \int \rho\left(\mathbf{r}'\right) \underbrace{\nabla^{2} \frac{1}{|\mathbf{r} - \mathbf{r}'|}}_{\stackrel{!}{=} -4\pi\delta(\mathbf{r} - \mathbf{r}')} d^{3} r' = \frac{1}{\varepsilon_{0}} \rho\left(\mathbf{r}\right).$$

3.3.2 Feldgleichungen der Elektrostatik

Die soeben gefundenen Zusammenhänge werden als Feldgleichungen der Elektrostatik bezeichnet:

$$div \mathbf{E} = \frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
(3.6)

$$\cot \mathbf{E} = 0 \tag{3.7}$$

Die erste Gleichung wird als Gaußsches Gesetz bezeichnet und beschreibt die elektrische Ladung als Quelle des elektrischen Feldes. Die zweite beschreibt die Wirbelfreiheit des elektrostatischen Feldes.

$$\nabla \frac{1}{|\mathbf{r} - \mathbf{r}'|} = -\frac{1}{|\mathbf{r} - \mathbf{r}'|^2} \nabla \left| \mathbf{r} - \mathbf{r}' \right| \stackrel{\nabla r = \frac{\mathbf{r}}{r} = \hat{\mathbf{r}}}{=} -\frac{\mathbf{r} - \mathbf{r}'}{\left| \mathbf{r} - \mathbf{r}' \right|^3}$$

² Hinweis: Es gilt

Mit $\mathbf{D} = \varepsilon_0 \mathbf{E}$ im Vakuum kann man das Gaußsche Gesetz auch umformulieren zu

$$\operatorname{div} \mathbf{D} = \rho(\mathbf{r}). \tag{3.8}$$

Zu beiden Feldgleichungen gibt es integrale Formulierungen:

$$\int_{V} d^{3}\mathbf{r} \operatorname{div} \mathbf{E} = \int_{\partial V} \mathbf{E} \cdot d\mathbf{f} = \frac{1}{\varepsilon_{0}} \int d^{3}\mathbf{r} \rho \left(\mathbf{r} \right) \Rightarrow \left| \int_{\partial V} \mathbf{E} \cdot d\mathbf{f} = \frac{1}{\varepsilon_{0}} Q \right|$$

Der Fluss aus einem Volumen V heraus ist proportional zu der Gesamtladung. Die elektrische Ladungsdichte ist die Quelle des elektrischen Feldes.

Betrachte als Beispiel eine Punktladung, die das Feld $\mathbf{E} = \frac{1}{4\pi\varepsilon_0}q\frac{\mathbf{r}-\mathbf{r}_0}{|\mathbf{r}-\mathbf{r}_0|^3} = \frac{1}{4\pi\varepsilon_0}q\frac{\hat{\mathbf{R}}}{R^2}$ erzeugt:

$$\int_{\partial V_K} \mathbf{E} \cdot d\mathbf{f} = \frac{q}{4\pi\varepsilon_0} \int_{\partial V_K} \frac{\hat{\mathbf{R}}}{R^2} \cdot \hat{\mathbf{R}} R^2 d\Omega = \frac{q}{4\pi\varepsilon_0} \int_{\partial V_K} d\Omega = \frac{q}{\varepsilon_0}$$

Für die andere Feldgleichung betrachten wir das Arbeitsintegral, also die von einer Punktladung q verrichtete Arbeit gegen die elektrische Kraft $\mathbf{F}_{\mathrm{el}} = q\mathbf{E}$.

$$W = -q \int_{C} \mathbf{E} \cdot d\mathbf{r} = q \int_{C} \nabla \phi \cdot d\mathbf{r} = q \int_{C} d\phi = q \left[\phi(2) - \phi(1) \right]$$

Insbesondere gilt

$$\oint \mathbf{E} \cdot d\mathbf{r} = 0 \tag{3.9}$$

Die Feldlinien des elektrostatischen Feldes sind nicht geschlossen, es gibt keine Zirkulation in der Elektrostatik, rot $\mathbf{E} = 0$.

3.3.3 Potentialgleichung

Aus dem Gaußschen Gesetz können wir die folgende Poisson-Gleichung ableiten, die für $\rho=0$ zu einer Laplace-Gleichung wird:

$$\nabla^2 \phi = -\frac{1}{\varepsilon_0} \rho \tag{3.10}$$

Zur Lösung einer linearen Differentialgleichung können wir die Methode der Greenschen Funktion verwenden. Dabei drücken wir die Lösung allgemein als Faltung der Ladungsdichte mit einer sogenannten Greenschen Funktion aus,

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') \rho(\mathbf{r}') d^3 \mathbf{r}'.$$
 (3.11)

Durch Vergleich mit der Bestimmungsgleichung des elektrischen Potentials können wir die Greensche Funktion für diese Differentialgleichung ablesen:

$$G\left(\mathbf{r} - \mathbf{r}'\right) = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\mathbf{r} - \mathbf{r}'|}$$
(3.12)

Insbesondere gilt für eine Punktladung $\rho(\mathbf{r}) = \delta(\mathbf{r} - \mathbf{r}_0)$, dass $\phi(\mathbf{r}) = G(\mathbf{r} - \mathbf{r}_0)$ und damit, dass

$$\nabla^2 \frac{1}{|\mathbf{r} - \mathbf{r}_0|} = -4\pi\delta \left(\mathbf{r} - \mathbf{r}_0\right).$$

Abb. 3.2: Äquipotentiallinien und elektrische Feldlinien von zwei ungleichnamigen Ladungen.

3.3.4 Feldlinien

Als Äquipotentiallinien bzw. -flächen werden die Linien/Flächen gleichen Potentials, $\phi = \text{const}$ bezeichnet. Die Feldlinien stehen senkrecht auf den Äquipotentialflächen, weil $\mathbf{E}(\mathbf{r}) = -\nabla \phi$. In Abb. 3.2 sind die Äquipotentiallinien und die Feldlinien einer positiven und einer negativen Ladung dargestellt.

3.3.5 Elektrostatische Energie

Die potentielle Energie einer Ladung q am Ort \mathbf{r} im Feld $\mathbf{E} = -\nabla \phi$ ist definiert über einen Referenzpunkt $\phi_1 = 0$, der zum Beispiel im Unendlichen liegt (aber je nach Anwendung auch an anderen Punkten liegen kann):

$$U\left(\mathbf{r}\right) = q\phi\left(\mathbf{r}\right) \tag{3.13}$$

Zum Beispiel ist die potentielle Energie von zwei Punktladungen

$$U = q_1 \phi_2 = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{|\mathbf{r}_1 - \mathbf{r}_2|}.$$

Die elektrostatische Energie U von N Punktladungen im eigenen Feld kann dann in zwei Schritten bestimmt werden.

• Bestimme die Energie von q_i im Feld von q_j (j = 1, ..., i - 1):

$$U_i(\mathbf{r}_i) = q_i \sum_{j=1}^{i-1} \phi_j = \frac{q_i}{4\pi\varepsilon_0} \sum_{j=1}^{i-1} \frac{q_j}{|\mathbf{r}_i - \mathbf{r}_j|}$$

• Bringe N Ladungen sukzessive an ihren Ort:

$$U = \sum_{i=2}^{N} U_i \left(\mathbf{r}_i \right) = \frac{1}{4\pi\varepsilon_0} \sum_{i=2}^{N} \sum_{j=1}^{i-1} \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|} = \frac{1}{8\pi\varepsilon_0} \sum_{i \neq j}^{N} \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Für eine kontinuierliche Ladungsverteilung ergibt sich

$$U = \frac{1}{8\pi\varepsilon_0} \int d^3\mathbf{r} d^3\mathbf{r}' \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{2} \int d^3\mathbf{r} \rho(\mathbf{r}) \phi(\mathbf{r})$$

Bemerkungen:

• Den zusätzlichen Faktor von $\frac{1}{2}$ erhält man, weil $\phi(\mathbf{r})$ von $\rho(\mathbf{r})$ selbst erzeugt wird und die gegenseitige Wirkung von je zwei Ladungen die gleiche ist.

• Für beschränkte ρ ist $\mathbf{r} \to \mathbf{r}'$ wohl definiert, da $\mathrm{d}^3 r = r^2 \mathrm{d} r \mathrm{d} \Omega$.

Es ist auch möglich, die Energie durch das Feld $\mathbf{E}(\mathbf{r})$ auszudrücken:

$$U = \frac{\varepsilon_0}{2} \int d^3 \mathbf{r} \phi \nabla^2 \phi \stackrel{\text{partielle Int.}}{=} \frac{\varepsilon_0}{2} \int d^3 \mathbf{r} \nabla \phi \cdot \nabla \phi = \frac{\varepsilon_0}{2} \int d^3 \mathbf{r} |\mathbf{E}|^2$$

Damit lässt sich die Energiedichte in der Elektrostatik folglich schreiben als

$$u(\mathbf{r}) = \frac{\varepsilon_0}{2} |\mathbf{E}(\mathbf{r})|^2 = \frac{1}{2} \mathbf{E} \cdot \mathbf{D}.$$

3.3.6 Homogen geladene Kugel

Abb. 3.3: Links: Äquipotentiallinien und elektrische Feldlinien einer homogen geladenen Kugel mit Radius R. Rechts: Die Ladungsdichte ist konstant ρ_0 innerhalb (r < R) und gleich 0 außerhalb der Kugel.

Auf der homogen geladenen Kugel V_r ist die Ladungsdichte $\rho(\mathbf{r})$ innerhalb der Kugel konstant ρ_0 und außerhalb der Kugel gleich 0 (siehe Abb. 3.3). Das Problem ist kugelsymmetrisch und hängt nur von der Radialrichtung ab.

Abb. 3.4: Links: Elektrisches Feld einer homogen geladenen Kugel. Das Feld steigt im Inneren linear an und fällt im Äußeren mit r^{-2} ab. Rechts: Das Potential fällt im Äußeren genauso ab wie das Potential einer Punktladung.

Feld und Potential können zum Beispiel über das Gaußsche Gesetz berechnet werden:

$$\int_{V_r} d^3 r' \frac{\rho(r)}{\varepsilon_0} = \int_{V_r} d^3 r' \operatorname{div} \mathbf{E} = \int_{\partial V_r} \mathbf{E} \cdot d\mathbf{f} \Rightarrow 4\pi r^2 E(r) = \frac{1}{\varepsilon_0} \int_0^r dr' r'^2 \rho(r')$$

$$\Rightarrow E(r) = \frac{Q}{4\pi\varepsilon_0} \begin{cases} \frac{r}{R^2}, & r < R \\ \frac{1}{r^2}, & r \ge R \end{cases} \xrightarrow{\text{Integration}} \phi(r) = \frac{Q}{4\pi\varepsilon_0} \begin{cases} \frac{1}{R} \left(\frac{3}{2} - \frac{r^2}{2R^2} \right), & r < R \\ \frac{1}{r}, & r \ge R \end{cases}$$

Beide Größen sind in Abb. 3.4 dargestellt. Bemerkenswert ist, dass für $r \geq R$ das elektrische Feld $\mathbf{E}(\mathbf{r}) = E(r) \cdot \mathbf{e}_r$ gerade dem Feld einer Punktladung Q im Mittelpunkt der Kugel entspricht.

Es soll nun die Energiedichte $u(\mathbf{r})$ für die homogen geladene Kugel berechnet werden:

$$u\left(\mathbf{r}\right) = \frac{\varepsilon_0}{2} \left|\mathbf{E}\right|^2 = \frac{Q^2}{32\pi^2 \varepsilon_0} \begin{cases} \frac{r^2}{R^6}, & r < R\\ \frac{1}{r^4}, & r \ge R \end{cases}$$

Daraus ergibt sich die elektrostatische Energie ("Selbstenergie" einer homogen geladenen Kugel)

$$U = 4\pi \int_0^\infty dr u(r) r^2 = \frac{1}{4\pi\varepsilon_0} \frac{3}{5} \frac{Q^2}{R}.$$

Diese Rechnung lässt über die Ruheenergie eines Elektrons eine Abschätzung für den Elektronenradius zu (sogenannter klassischer Elektronenradius):

$$U \stackrel{!}{=} m_e c^2 \approx 0.5 \,\text{MeV} \Rightarrow R_e = 1.7 \cdot 10^{-15} \,\text{m}$$

Allerdings liegt die Compton-Wellenlänge $\lambda_e = \frac{h}{m_e c} = 2 \cdot 10^{-12} \,\mathrm{m}$ schon weit über diesem Radius, sodass Quanteneffekte hier nicht vernachlässigbar sind.

3.3.7 Extremalprinzip und Kapazitäten

In der Elektrostatik sind Leiter stets Äquipotentialflächen, d.h. $\phi = \text{const}$ und daher $\mathbf{E} = -\nabla \phi = \mathbf{0}$ entlang des Leiters. Sonst würde ein Strom fließen, weil sich die freien Elektronen im Leiter aufgrund des nicht-verschwindenden Feldes bewegen würden.

Abb. 3.5: Konfiguration von elektrischen Leitern L_i mit Ladungen Q_i und Potentialen ϕ_i .

Betrachte den Fall von n Leitern mit Volumina L_i , einer Ladung Q_i und den Potentialen ϕ_i , wie schematisch in Abb. 3.5 gezeigt.

Es soll untersucht werden, wie aus der Ladungsverteilung die Potentiale und das elektrische Feld bestimmt werden können.

Theorem von Thomson:

Die Ladungsdichten $\rho_{i}\left(\mathbf{r}\right)$ in Leitern i stellen sich so ein, dass die Gesamtenergie minimal wird.

Beweis:

$$U = \frac{1}{8\pi\varepsilon_0} \sum_{ij} \int_{L_i} d^3 \mathbf{r}_i \int_{L_j} d^3 \mathbf{r}_j \frac{\rho_i(\mathbf{r}_i) \rho_j(\mathbf{r}_j)}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Minimierung unter der Nebenbedingung $\int_{L_i} d^3 \mathbf{r} \rho_i(\mathbf{r}) = Q_i$ führt auf

$$\frac{\partial}{\partial \rho_k(\mathbf{r})} \left(U - \sum_i \phi_i \int_{L_i} d^3 \mathbf{r}_i \rho_i(\mathbf{r}) \right) = 0$$

wobei in Voraussicht die Lagrange-Parameter als ϕ_i bezeichnet werden, weil sich mit

$$\partial_{\rho_k(\mathbf{r})} \sum_i \int \rho_i(\mathbf{r}) f_i(\mathbf{r}) d^3 r = f_k(\mathbf{r})$$

ergibt, dass

$$\phi_{k} = \frac{1}{4\pi\varepsilon_{0}} \sum_{j} \int_{L_{j}} d^{3}\mathbf{r}_{j} \frac{\rho_{j}(\mathbf{r}_{j})}{|\mathbf{r}_{k} - \mathbf{r}_{j}|}, \quad \mathbf{r}_{k} \in L_{k}$$

was gerade der Bestimmungsgleichung für das Potential ϕ_k als Potential von L_k entspricht. Da das Vorgehen der Minimierung der Gesamtenergie auf das richtige Potential führt, ist das Theorem bestätigt.

Kapazitäten

Die Potentiale ϕ_i lassen sich linear über die Ladungen Q_i zerlegen,

$$\phi_i = \sum_j p_{ij} Q_j,$$

weil einerseits gilt, dass $\nabla^2 \phi = -\rho/\varepsilon_0$ und andererseits ϕ linear in ρ ist. Dieser Zusammenhang lässt sich invertieren,

$$Q_i = \sum_j C_{ij} \phi_j,$$

wobei dann die Vorfaktoren C_{ij} als Kapazitäten mit der Einheit $[C_{ij}] = 1 \,\mathrm{C}\,\mathrm{V}^{-1} = 1 \,\mathrm{F}$ definiert werden. Aus dem Ausdruck für die elektrostatische Energie

$$U = \frac{1}{2} \sum_{i} \underbrace{\int_{L_{i}} d^{3} \mathbf{r}_{i} \rho_{i} (\mathbf{r}_{i}) \phi_{i}}_{Q_{i} = \sum_{j} C_{ij} \phi_{j}} = \frac{1}{2} \sum_{ij} \phi_{i} C_{ij} \phi_{j}$$

folgt die Symmetrie $C_{ij} = C_{ji}$.

So gilt zum Beispiel für einen Plattenkondensator allgemein

$$C = \frac{Q}{V}, \quad U = \frac{1}{2}CV^2 = \frac{1}{2}QV$$

für einen Plattenkondensator mit parallelen Platten der Fläche A und Abstand d

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d},$$

für einen Zylinderkondensator der Länge L und mit Radien $r_1 < r_2$

$$C = 2\pi\varepsilon_0\varepsilon_r \frac{L}{\ln\frac{r_2}{r_1}}$$

und schließlich für einen Kugelkondensator mit Radien $r_1 < r_2$

$$C = 4\pi\varepsilon_0\varepsilon_r \left(\frac{1}{r_1} - \frac{1}{r_2}\right)^{-1} = 4\pi\varepsilon_0\varepsilon_r \frac{r_1r_2}{d}.$$

Abb. 3.6 bildet diese drei einfachen Kondensatorgeometrien ab.

Abb. 3.6: Schematische Darstellung eines Plattenkondensators mit parallelen, ebenen Platten (Links), eines Zylinderkondensators (Mitte) und eines Kugelkondensators (Rechts). Auf den Platten ist das Potential jeweils ϕ_1 und ϕ_2 .

3.3.8 Maxwellscher Spannungstensor

3.4 Randbedingungen des elektrischen Feldes auf Grenzflächen

. . .

3.5 Randwertprobleme der Elektrostatik

Meist sind bei der Lösung von elektrostatischen Problemen der Poisson-Gleichung

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}$$

in einem Volumen V noch die Randbedingungen auf ∂V zu berücksichtigen.

3.5.1 Eindeutigkeit der Lösung

Allgemein sind drei verschiedene Arten von Randbedingungen möglich.

3 Elektrostatik

- 1. Dirichlet-Randbedingung: Das Potential ist auf dem Rand vorgegeben, $\phi|_{\partial V}$.
- 2. Neumann-Bedingung: Die Normalenableitung der Lösung wird auf dem Rand vorgegeben, $\mathbf{n} \cdot \nabla \phi|_{\partial V} = \frac{\partial \phi}{\partial n}\Big|_{\partial V}$
- 3. Cauchy-Bedingung: a(1) + b(2) ist vorgegeben.

Zum Beispiel kommt die Dirichlet-Randbedingung bei Oberflächen von Leitern vor, von denen wir ja bereits wissen, dass dort das Potential konstant gleich 0 ist.

Für Dirichlet- und Neumann-Randbedingungen ist die Lösung der Poisson-Gleichung eindeutig.

Der Beweis ist einfach, denn seien ϕ_1 und ϕ_2 zwei unterschiedliche Lösungen, dann erfüllt $\phi_d = \phi_1 - \phi_2$ die Gleichung $\nabla^2 \phi_2 = 0$ mit der Randbedingung

$$\begin{cases} \phi_d|_{\partial V} &= 0\\ \frac{\partial \phi_d}{\partial n}\Big|_{\partial V} &= 0 \end{cases},$$

da $\phi_{1,2}$ die gleichen Randbedingungen erfüllen. Mit der zweiten Greenschen Identität folgt

$$\int_{V} \left(\varphi \nabla^{2} \psi + \nabla \varphi \cdot \nabla \psi \right) dV = \int_{\partial V} \varphi \nabla \psi \cdot d\mathbf{f}.$$

Setze nun $\varphi = \psi = \phi_d$:

$$\int_{V} (\nabla \phi_d)^2 \, \mathrm{d}V = 0$$

Da nun aber der Integrand stets positiv ist, folgt $\nabla \phi_d = 0$ und also ohne Beschränkung der Allgemeinheit $\phi_d = \text{const} = 0$.

3.5.2 Methode der Greenschen Funktion

3.5.3 Aussagen zur Potentialtheorie

3.5.4 Lösungen zur Laplace-Gleichung in Kugelkoordinaten

Die Laplace-Gleichung ist eine zentrale Gleichung in der Physik. In der Elektrostatik gilt sie zum Beispiel im ladungsfreien Raum, aber sie spielt auch für viele andere Modelle eine große Rolle. In kartesischen Koordinaten nimmt die Gleichung die Form

$$\nabla^2 \phi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \phi = 0$$

an. Die Lösung lässt sich in Eigenfunktionen des Laplace-Operators zerlegen. Diese sind zum Beispiel für den kartesischen Fall ebene Wellen.

Für kugelsymmetrische Problem bietet es sich an in Kugelkoordinaten zu rechnen. In Kugelkoordinaten lässt sich der Laplace-Operator in Radial- und Winkelanteil zerlegen:

$$\nabla^2 \phi = \nabla_r^2 \phi + \frac{1}{r^2} \nabla_{\varphi,\vartheta}^2 \phi$$

$$= \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \phi + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} \sin \varphi \frac{\partial}{\partial \vartheta} \phi - \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2} \phi$$

Zur Lösung wird ein Produktansatz gemacht,

$$\phi\left(r,\varphi,\vartheta\right) = R\left(r\right)Y\left(\varphi,\vartheta\right).$$

Eingesetzt in die Laplace-Gleichung ergibt sich

$$Y\nabla_r^2 R + \frac{R}{r^2}\nabla_{\varphi,\vartheta}^2 Y = 0 \iff \frac{r^2}{R}\nabla_r^2 R = -\frac{1}{Y}\nabla_{\varphi,\vartheta}^2 Y = \text{const}$$

und hieraus erhält man separat die radialen Eigenfunktionen

$$R(r) = \alpha r^{l} + \beta r^{-(l+1)}$$

und die bereits aus der Quantenmechanik bekannten Kugelflächenfunktionen $Y_{lm}\left(\varphi,\vartheta\right)$ für den Winkelanteil nach der Eigenwertgleichung

$$\nabla_{\varphi,\vartheta}^2 Y_{lm} = -l\left(l+1\right) Y_{lm}.$$

Die Gesamtlösung setzt sich dann zusammen aus dem Radial- und Winkelanteil:

$$\phi\left(r,\varphi,\vartheta\right) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \underbrace{\left(\alpha_{lm}r^{l} + \beta_{lm}r^{-(l+1)}\right)}_{\text{Radialanteil}} \underbrace{Y_{lm}\left(\varphi,\vartheta\right)}_{\text{Winkelanteil}}$$

Für zylindersymmetrische Probleme ist die φ -Abhängigkeit aufgehoben und es brauchen nur Funktionen mit m=0 betrachtet zu werden.

Für die Kugelflächenfunktionen von zwei Vektoren $\mathbf{r}_1 = (r_1, \varphi_1, \vartheta_1)$ und $\mathbf{r}_2 = (r_2, \varphi_2, \vartheta_2)$ gilt das folgende Additionstheorem:

$$\sum_{m=-l}^{l} Y_{lm}\left(\varphi_{1}, \vartheta_{1}\right) Y_{lm}^{*}\left(\varphi_{2}, \vartheta_{2}\right) = \frac{2l+1}{4\pi} P_{l}\left(\cos \angle\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)\right)$$

Die Greensche Funktion kann mit diesem Additionstheorem nach den Kugelflächenfunktionen entwickelt werden

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{\sqrt{r^2 + r'^2 - 2rr'\cos\vartheta}} = \sum_{l} \frac{r_{<}^l}{r_{>}^{l+1}} P_l\left(\cos\vartheta\right), \quad r_{>} = \max\left(r, r'\right), \quad r_{<} = \min\left(r, r'\right)$$

Abb. 3.7: Für Probleme mit komplexen Geometrien kann mithilfe einer konformen Abbildung z die Lösung aus der Lösung für den kugelsymmetrischen Fall abgeleitet werden.

Obwohl die Wahl der Kugelkoordinaten nur für wenige Probleme sinnvoll ist, kann die Lösung für das kugelförmige Problem durch konforme Abbildungen auf komplexere Geometrien angewandt werden (Abb. 3.7).

3.6 Multipolentwicklung

Bei der Multipolentwicklung klassifiziert man bestimmte Ladungsverteilungen nach sogenannten Momenten (Dipolmoment, Quadrupolmoment, ...). Zum Beispiel beschreibt das Dipolmoment zwei räumlich voneinander getrennte Ladungen unterschiedlichen Vorzeichens. Auch ein nach außen insgesamt elektrisch neutraler Körper kann ein Dipolmoment aufweisen, nämlich wenn die Schwerpunkte von der positiven und negativen Ladung nicht zusammenfallen. Ein prominentes mikroskopisches Beispiel ist das Wassermolekül (Abb. 3.8), bei dem das Sauerstoffatom eine bedeutend größere Elektronegativität besitzt als die Wasserstoffatome und dadurch eine Ladungsverschiebung der gebundenen Elektronen zum Sauerstoffatom hin bewirkt. Dadurch besitzt dieses lokal eine Ladung von $-0.8\,\mathrm{eV}$, während die Wasserstoffatome eine Ladung von je $0.4\,\mathrm{eV}$ tragen.

Das Dipolmoment **p** ist ein Vektor und per Definition von der negativen Ladung zur positiven gerichtet. Die Einheit des Dipolmoments ist 1 Debye = $3.34 \cdot 10^{-30}$ C m.

Abb. 3.8: Das Wassermolekül ist ein Dipol, bei dem das Sauerstoffatom eine negative Partialladung trägt, während die Wasserstoffatome aufgrund ihrer geringeren Elektronegativität entsprechend positiv geladen sind.

Für die Multipolentwicklung wird das Potential

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3 \mathbf{r}' \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

nach den sogenannten Momenten der Ladungsverteilung entwickelt. Führe dazu zunächst eine Taylorentwicklung für den Ausdruck $1/|\mathbf{r} - \mathbf{r}'|$ um \mathbf{r} durch ($|\mathbf{r}| = r$, Einsteinsche Summenkonvention):

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{r} - x_i' \partial_i \frac{1}{r} + \frac{1}{2} x_i' x_j' \partial_i \partial_j \frac{1}{r} + \dots + \frac{(-1)^n}{n!} x_{i_1}' \dots x_{i_n}' \partial_{i_1} \dots \partial_{i_n} \frac{1}{r}$$

Damit lässt sich das Potential nähern als

$$\phi(\mathbf{r}) \approx \frac{1}{4\pi\varepsilon_{0}} \left(\int d^{3}\mathbf{r}' \frac{\rho(\mathbf{r})}{r} - \int d^{3}\mathbf{r}' \rho(\mathbf{r}) x'_{i} \partial_{i} \frac{1}{r} + \frac{1}{2} \int d^{3}\mathbf{r}' \rho(\mathbf{r}) x'_{i} x'_{j} \partial_{i} \partial_{j} \frac{1}{r} + \dots \right)$$

$$+ \frac{(-1)^{n}}{n!} \int d^{3}\mathbf{r}' \rho(\mathbf{r}) x'_{i_{1}} \dots x'_{i_{n}} \partial_{i_{1}} \dots \partial_{i_{n}} \frac{1}{r} \right)$$

$$= \frac{1}{4\pi\varepsilon_{0}} \left(\frac{1}{r} \underbrace{\int d^{3}\mathbf{r}' \rho(\mathbf{r}) - \partial_{i} \frac{1}{r} \underbrace{\int d^{3}\mathbf{r}' \rho(\mathbf{r}) x'_{i}}_{p_{i}} + \frac{1}{6} \partial_{i} \partial_{j} \frac{1}{r} \underbrace{\int d^{3}\mathbf{r}' \rho(\mathbf{r}) \left(3x'_{i} x'_{j} - r'^{2} \delta_{ij}\right)}_{Q_{ij}} + \dots \right)$$

$$+ \partial_{i_{1}} \dots \partial_{i_{n}} \frac{1}{r} \underbrace{\frac{(-1)^{n}}{n!} \int d^{3}\mathbf{r}' \rho(\mathbf{r}) x'_{i_{1}} \dots x'_{i_{n}}}_{M_{i_{1} \dots i_{n}}} \right)$$

$$= \frac{1}{4\pi\varepsilon_{0}} \left(\frac{q}{r} - p_{i} \partial_{i} \frac{1}{r} + \frac{1}{6} Q_{ij} \partial_{i} \partial_{j} \frac{1}{r} + \dots + M_{i_{1} \dots i_{n}} \partial_{i_{1}} \dots \partial_{i_{n}} \frac{1}{r} \right).$$

Dabei identifizieren wir das Dipolmoment als Tensor erster Stufe

$$p_i = \int d^3 \mathbf{r}' \rho(\mathbf{r}) x_i',$$

das Quadrupolmoment als Tensor zweiter Stufe

$$Q_{ij} = \int d^{3}\mathbf{r}' \left(3x'_{i}x'_{j} - r'^{2}\delta_{ij}\right) \rho\left(\mathbf{r}\right),\,$$

bei dem standardmäßig noch der Term $-r'^2\delta_{ij}$ hinzugefügt wird, welcher aber nicht zu $\phi(\mathbf{r})$ beiträgt, weil

$$\delta_{ij}\partial_i\partial_j\frac{1}{r} = \sum_i \partial_i^2\frac{1}{r} = \nabla^2\frac{1}{r} = 0$$

und schließlich das n-te Multipolmoment

$$M_{i_1...i_n} \propto \int \mathrm{d}^3 \mathbf{r}' \rho(\mathbf{r}) \, x'_{i_1} \dots x'_{i_n}.$$

Mit den Identitäten

$$\partial_i \frac{1}{r} = -\frac{1}{r^2} \partial_i r = -\frac{x_i}{r^3}, \quad \partial_i \partial_j \frac{1}{r} = \frac{3x_i x_j}{r^5} - \frac{\delta_{ij}}{r^3},$$

(wobei der Term δ_{ij}/r^3 irrelevant ist wegen $\delta_{ij}Q_{ij}=Q_{ii}=0$) erhält man dann für das Potential

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r} + \frac{\mathbf{p} \cdot \mathbf{r}}{r^3} + \frac{1}{2} Q_{ij} \frac{x_i x_j}{r^5} + \dots \right).$$

3.6.1 Diskussion der Multipolmomente

1. Monopol (Potential/Feld einer Punktladung $\rho_m = q\delta(\mathbf{r})$)

$$\phi_{\mathrm{m}}\left(\mathbf{r}\right) = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r} \to \mathbf{E}(\mathbf{r}) = \frac{q}{4\pi\varepsilon_{0}} \frac{\mathbf{r}}{r^{3}}$$

2. Dipol:

$$\phi_{d} = -\frac{1}{4\pi\varepsilon_{0}} \mathbf{p} \cdot \nabla \frac{1}{r} = \frac{1}{4\pi\varepsilon_{0}} \frac{\mathbf{p} \cdot \mathbf{r}}{r^{3}} \propto \frac{1}{r^{2}}$$

$$E_{i} = \frac{1}{4\pi\varepsilon_{0}} p_{j} \nabla_{i} \nabla_{j} \frac{1}{r} = \frac{1}{4\pi\varepsilon_{0}} \frac{p_{j}}{r^{3}} \left(\frac{3x_{i}x_{j}}{r^{2}} - \delta_{ij} \right) \propto \frac{1}{r^{3}}$$

Wir sehen, dass das Feld eines Dipols mit r^{-3} abnimmt, während dasjenige eines Monopols nur mit r^{-2} abfällt. Die Felder der einzelnen Ladungen heben sich im Fernfeld zum Teil auf.

Die Ladungsdichte eines elementaren Dipols ist

$$\rho_{\mathrm{d}}\left(\mathbf{r}\right) = q\left(\delta\left(\mathbf{r} - \frac{\mathbf{d}}{2}\right) - \delta\left(\mathbf{r} + \frac{\mathbf{d}}{2}\right)\right),$$

woraus sich ein Dipolmoment von

$$\mathbf{p} = q\mathbf{d} \parallel \mathbf{d}$$

ergibt.

Man kann auch einen sogenannten Punktdipol betrachten – ein idealisiertes Objekt, bei dem der Abstand \mathbf{d} gegen 0 geht:

$$\mathbf{p} = \lim_{\substack{d \to 0 \\ ad < \infty}} q\mathbf{d}, \quad \rho_{\mathrm{d}}\left(\mathbf{r}\right) = -\mathbf{p} \cdot \nabla \delta\left(\mathbf{r}\right), \quad \phi_{\mathrm{d}} = -\frac{1}{4\pi\varepsilon_{0}}\mathbf{p} \cdot \nabla \frac{1}{r}$$

3 Elektrostatik

3. Quadrupol:

$$\begin{split} \phi_{\mathbf{Q}} &= \frac{1}{4\pi\varepsilon_0} \frac{1}{6} Q_{kl} \nabla_k \nabla_l \frac{1}{r} = \frac{1}{4\pi\varepsilon_0} \frac{1}{2} Q_{kl} \frac{x_k x_l}{r^5} \propto \frac{1}{r^3} \\ E_i &= -\frac{1}{4\pi\varepsilon_0} \frac{1}{6} Q_{kl} \nabla_i \nabla_k \nabla_l \frac{1}{r} = \frac{1}{4\pi\varepsilon_0} \frac{Q_{kl}}{2} \frac{5x_i x_k x_l - r^2 \left(\delta_{kl} x_i + \delta_{il} x_k + \delta_{ik} x_l\right)}{r^7} \end{split}$$

Abb. 3.9: Elementare Quadrupole können in zwei verschiedenen Konfigurationen auftreten.

Es gibt zwei elementare Quadrupole (mit $\mathbf{p} = 0$), die in Abb. 3.9 zu sehen sind.

Wird der Bezugspunkt/Aufpunkt verschoben, so ändern sich im Allgemeinen die Multipolmomente, aber das erste Moment, das bei der Multipolentwicklung einer Ladungsverteilung ungleich 0 ist, bleibt unverändert.

Das niedrigste, nicht-verschwindende Multipolmoment in der Entwicklung ist unabhängig vom Bezugspunkt.

Man kann auch sphärische Multipolmomente mithilfe von Kugelflächenfunktionen ausdrücken.

3.6.2 Energie von Multipolen im äußeren Feld

Die Energie von Multipolen in einem externen Potential $\phi_e(\mathbf{r})$ kann aus der bereits bekannten Formel für die Energie einer beliebigen Ladungsverteilung $\rho(\mathbf{r})$ abgeleitet werden,

$$U = \int_{V} d^{3}\mathbf{r}\rho(\mathbf{r}) \phi_{e}(\mathbf{r}).$$

Wir nehmen an, dass die Änderung von ϕ_e in V nur klein ist und erhalten durch eine Taylor-Entwicklung

$$U = \int d^{3}\mathbf{r}\rho\left(\mathbf{r}\right) \left[\phi_{e}\left(0\right) + \mathbf{r}\nabla\phi_{e}\left(0\right) + \frac{1}{2}x_{i}x_{j}\nabla_{i}\nabla_{j}\phi_{e}\left(0\right) + \ldots\right]$$
$$= q\phi\left(0\right) - \mathbf{p}\cdot E_{e}\left(0\right) - \frac{1}{6}Q_{ij}\nabla_{j}E_{e}^{(i)}\left(0\right) + \ldots$$

Die Energie der Multipole ist also durch die n-fache Ableitung des Potentials $\nabla^n \phi$ bestimmt. Diese Rechnung erlaubt wegen der Taylor-Entwicklung eine beliebige Wahl des Bezugspunkts.

Als typisches Beispiel soll die Wechselwirkung zweier Dipole betrachtet werden. Die potentielle Energie kann berechnet werden, indem der Dipol \mathbf{p}_2 wie oben beschrieben in das Feld des Dipols \mathbf{p}_1 gesetzt wird (oder umgekehrt):

$$U_{\mathrm{DD}} = -\mathbf{p}_{2} \cdot \mathbf{E}_{1} \left(\mathbf{r} \right) = -\frac{1}{4\pi\varepsilon_{0}} \frac{1}{r^{3}} \left(\frac{3 \left(\mathbf{r} \cdot \mathbf{p}_{1} \right) \left(\mathbf{r} \cdot \mathbf{p}_{2} \right)}{r^{2}} - \mathbf{p}_{1} \cdot \mathbf{p}_{2} \right)$$

Abb. 3.10: Links: Schematische Darstellung zweier Dipole \mathbf{p}_1 , \mathbf{p}_2 mit Abstand \mathbf{r} . Weitere Abbildungen: Spezielle Anordnungen zweier Dipole, für die die Energie extremal wird.

Diese wird minimal für $\mathbf{p}_1 \parallel \mathbf{p}_2 \parallel \mathbf{r}$ und maximal für $\mathbf{p}_1 \parallel \mathbf{p}_2 \perp \mathbf{r}$. Diese Konfigurationen sind in Abb. 3.10 zusammengestellt. Für antiparallele \mathbf{p}_1 und \mathbf{p}_2 und $\mathbf{p}_1, \mathbf{p}_2 \perp \mathbf{r}$ wird außerdem ein lokales Minimum erreicht. Aus diesem Grund bilden Dipolmoleküle auch häufig Molekülketten.

Zuletzt sollen noch Drehmomente auf Multipole diskutiert werden.

$$\mathbf{M} = \int d^{3}\mathbf{r}\mathbf{r} \times \underbrace{\rho\left(\mathbf{r}\right)\mathbf{E}_{e}\left(\mathbf{r}\right)}_{\text{Kraftdichte}} \Rightarrow M_{i} = \int d^{3}\mathbf{r}\varepsilon_{ijk}x_{j}\rho\left(\mathbf{r}\right) \underbrace{\underbrace{E_{e}^{(k)}\left(\mathbf{r}\right)}_{\approx E_{e}^{(k)}\left(0\right) + x_{l}\nabla_{l}E_{e}^{(k)}\left(0\right)}_{\approx E_{e}^{(k)}\left(0\right) + x_{l}\nabla_{l}E_{e}^{(k)}\left(0\right)}$$

$$\Rightarrow M_{i} = (\mathbf{p} \times \mathbf{E}_{e})_{i} + \frac{1}{3}\varepsilon_{ijk}Q_{jl}\nabla_{l}E_{e}^{(k)}$$

Insbesondere dreht das Drehmoment \mathbf{M} einen Dipol parallel zu \mathbf{E} , da $\mathbf{M}=0$ für $\mathbf{p}\parallel\mathbf{E}_e$ und

$$U = -\mathbf{p} \cdot \mathbf{E}_e = -pE_e \cos \vartheta \Rightarrow M = -\frac{\partial U}{\partial \vartheta} = -pE_e \sin \vartheta = -|\mathbf{p} \times \mathbf{E}_e|.$$

4 Elektrische Felder in Materie

In diesem Kapitel werden die makroskopischen Gleichungen der Elektrostatik in Materie beschrieben und erläutert.

4.1 Mikroskopische Gleichungen der Elektrostatik und Mittelung

Bis jetzt haben wir nur freie Ladungen betrachtet. Die Ladungsdichte $\rho(\mathbf{r})$ erzeugt ein elektrisches Feld $\mathbf{E}(\mathbf{r})$. In Materie sind zusätzlich auch gebundene Ladungen vorhanden, die mit dem Feld wechselwirken. Das können (nach außen hin elektrisch neutrale) Atome, geladenen Ionen, permanente Dipole (oder Multipole) sein (z.B. $\mathrm{H}_2\mathrm{O}$), sowie Dipole sein, die durch ein äußeres elektrisches Feld induziert werden.

Um diese Wechselwirkung zu beschreiben, wird eine Mittelung der mikroskopischen Gleichungen

$$\operatorname{div} \mathbf{e} = \frac{1}{\varepsilon_0} \rho(\mathbf{r}), \quad \operatorname{rot} \mathbf{e} = 0$$

durchgeführt. Wir haben bisher einzelne Ladungen durch δ -Funktionen in der Ladungsdichte beschrieben. Dadurch kommt es zu starken räumlichen Ladungsschwankungen. Für eine makroskopische Betrachtung in Größenordnungen von Nanometern wenden wir eine räumliche Mittelung bzw. Glättungsfunktion auf die Ladungsdichteverteilung an.

4.1.1 Glättungsfunktion

Um eine stark variierende Funktion $F(\mathbf{r},t)$ zu mitteln, wird sie mit einer sogenannten Glättungsfunktion f gefaltet. Dabei kann es sich z.B. um eine Gauß-Funktion handeln:

$$F\left(\mathbf{r},t\right) \xrightarrow{\text{Mittelung}} \langle F\left(\mathbf{r},t\right) \rangle = \int f\left(\left|\mathbf{r}-\mathbf{r}'\right|\right) F\left(\mathbf{r}',t\right) d^{3}\mathbf{r}'$$

Für eine Punktladung $F(\mathbf{r}) = F_0 \delta(\mathbf{r} - \mathbf{r}_0)$ ist dann zum Beispiel $\langle F \rangle = F_0 f(\mathbf{r} - \mathbf{r}_0)$.

Für die Mittelung gelten die folgenden Eigenschaften:

1. Die Mittelung der konstanten Funktion F = 1 ist genau dann konstant 1, wenn die Glättungsfunktion über den gesamten Raum auf 1 normiert ist,

$$\langle 1 \rangle = 1 \iff \int d^3 \mathbf{r} f = 1.$$

2. $\partial_i \langle F \rangle = \langle \partial_i F \rangle$.

4.2 Makroskopische Gleichungen der Elektrostatik

Mithilfe der Glättung kann man das makroskopische E-Feld als

$$\mathbf{E}(\mathbf{r},t) = \langle \mathbf{e}(\mathbf{r},t) \rangle$$

schreiben. Für die Ladungsdichte erhält man

$$\langle \rho(\mathbf{r}) \rangle = \langle \rho_f(\mathbf{r}) + \rho_b(\mathbf{r}) \rangle = \langle \rho_f(\mathbf{r}) \rangle + \langle \rho_b(\mathbf{r}) \rangle \equiv \rho_F + \rho_B.$$

Die gebundenen Ladungen werden als Summe der Ladungsdichten einzelner Moleküle geschrieben:

$$\rho_b(\mathbf{r}) = \sum_n \rho_n(\mathbf{r}), \rho_n(\mathbf{r}) = \sum_i q_i \delta(\mathbf{r} - \mathbf{r}_i) = \sum_i q_i \delta(\mathbf{r} - (\mathbf{r}_n + \mathbf{r}_{ni}))$$

mit neuen Bezugspunkten \mathbf{r}_n für die einzelnen Moleküle. Für die Mittelung wird dann eine Taylor-Entwicklung um diese neuen Bezugspunkte \mathbf{r}_n durchgeführt:

$$\langle \rho_n (\mathbf{r}) \rangle = \sum_i q_i f (\mathbf{r} - (\mathbf{r}_n + \mathbf{r}_{ni}))$$

$$= \sum_i q_i \left[f (\mathbf{r} - \mathbf{r}_n) - \mathbf{r}_{ni} \cdot \nabla f (\mathbf{r} - \mathbf{r}_n) + \frac{1}{2} (\mathbf{r}_{ni})_k (\mathbf{r}_{ni})_l \nabla_k \nabla_l f (\mathbf{r} - \mathbf{r}_n) + \dots \right]$$

Daraus können die molekularen Dipolmomente bestimmt werden:

$$q_n = \sum_i q_i$$
 (Molekulare Ladung)
$$\mathbf{p}_n = \sum_i q_i \mathbf{r}_{ni}$$
 (Molekulares Dipolmoment)
$$(\mathbf{Q}_n)_{kl} = 3 \sum_i q_i (\mathbf{r}_{ni})_k (\mathbf{r}_{ni})_l$$
 (Molekulares Quadrupolmoment)

(vgl. Multipolmomente einer kontinuierlichen Ladungsverteilung, aber hier jetzt diskret). Insgesamt ergibt sich eine Verschmierung punktförmiger molekularer Multipole:

$$\langle \rho_n (\mathbf{r}) \rangle = q_n f (\mathbf{r} - \mathbf{r}_n) - \mathbf{p}_n \cdot \nabla f (\mathbf{r} - \mathbf{r}_n) + \frac{1}{6} (\mathbf{Q}_n)_{kl} \nabla_k \nabla_l f (\mathbf{r} - \mathbf{r}_n)$$
$$= \langle q_n \delta (\mathbf{r} - \mathbf{r}_n) \rangle - \nabla \cdot \langle p_n \delta (\mathbf{r} - \mathbf{r}_n) \rangle + \frac{1}{6} \nabla_k \nabla_l \langle (\mathbf{Q}_n)_{kl} \delta (\mathbf{r} - \mathbf{r}_n) \rangle$$

und für die gemittelte gebundene Ladungsdichte:

$$\langle \rho_b(\mathbf{r}) \rangle = \rho_m(\mathbf{r}) - \nabla \cdot \mathbf{P}(\mathbf{r}) + \nabla_k \nabla_l Q_{kl} + \dots$$

mit der makroskopischen Ladungsdichte (Monopoldichte)

$$\rho_{\rm m}\left(\mathbf{r}\right) = \left\langle \sum_{n} q_{n} \delta\left(\mathbf{r} - \mathbf{r}_{n}\right) \right\rangle,$$

der Polarisation (Dipolmomentdichte)

$$\mathbf{P}\left(\mathbf{r}\right) = \left\langle \sum_{n} \mathbf{p}_{n} \delta\left(\mathbf{r} - \mathbf{r}_{n}\right) \right
angle$$

und so weiter.