Relational Model

Introduction

- Relational model introduced by Codd in 1970.
- It uses the concept of mathematical relation concept of set theory and predicate logic
- It represents the database as a collection of relations.

Relational Model Concepts

- Relation or table
- Attribute or field or column name
- Tuples or record
- Schema
- Instance
- Domains
- Keys
- **Degree:** The total number of attributes which in the relation is called the degree of the relation.
- Cardinality: Total number of rows present in the Table.

Student Relation

NAME	ROLL NO	PHONE_NO	ADDRESS	AGE
Ram	14795	7305758992	Noida	24
Shyam	12839	9026288936	Delhi	35
Laxman	33289	8583287182	Gurugram	20
Mahesh	27857	7086819134	Ghaziabad	27
Ganesh	17282	9028293988	Delhi	40

- NAME, ROLL_NO, PHONE_NO, ADDRESS, and AGE are the attributes.
- The instance of schema STUDENT has 5 tuples.
- t3 = <Laxman, 33289, 8583287182, Gurugram, 20> is the third tuple in the student table
- ROLL_NO is primary key in the table
- Degree = 5 (No of Columns)
- Cardinality = 5 (No of Rows)

Domain

- It contains a set of permitted atomic values for an attribute in the table.
- We specify domain of attribute while creating a table.
- E.g.,
 - Month of an year can accept all the month name or numbering from 01 to 12.
 - Domain of date can accept of possible dates.

Keys

- An attribute or set of attributes which can identify the row (tuple or record)
 in the relation uniquely.
- It is used to access the stored data quickly and smoothly
- It is used to create relationship between different tables.

Types of Keys:

- Primary Key
- Candidate Key
- Alternate Key
- Super Key
- Composite Key
- Foreign Key
- Unique Key

Primary Key (PK)

- It is unique and can not have NULL value
- It is chosen by designer to maintain uniqueness at row level.
- In the Employee table, EID or SSN can be a PK.
- EID is preferable because SSN is PII value and secure.

Employee EID Name SSN DeptId DOB

Candidate Key (CK)

- All the columns that qualifies for uniqueness of each row.
- It is also called as minimal super keys.
- In the Employee table, EID are SSN are CK.
- We pick one of the CKs as PK.

Employee EID Name SSN DeptId DOB

Alternate Key

- Candidate column other than primary column is called Alternate key.
- In the Employee table, SSN is alternate key.

Employee

EID

Name

SSN

DeptId

Super Key

• If we add any other column with candidate key, then it becomes super key.

• One or more attributes are taken collectively to identify all other attributes

Employee

uniquely.

• In the Employee table, EID+Name, SSN+DeptId are super keys.

EID

Name

SSN

DeptId

Composite Key

- If a table does not have CKs, then we select two or more columns to uniquely identify each row in a table.
- In the Employee table, Name+DOB can be used as a composite primary key

Employee

EID

Name

SSN

DeptId

Foreign Key (FK)

- It is an attribute or set of attributes that references to PK of same table or another table.
- DeptId is FK in Employee Table.

Unique Key

- It is same as the PK, but the difference is with the existence of NULL value.
- It allows one value as NULL value.

Employee

EID

Name

SSN

DeptId

Relational Model Constraints

- Relational constraints are the restrictions imposed on the database contents and operations.
- They ensure the correctness of data in the database.

Constraint Types:

- Domain Constraints
- Key Constraints
- Entity Integrity Constraints
- Referential Integrity Constraints

Domain Constraints:

- Domain constraint defines the domain or set of values for an attribute.
- It specifies that the value taken by the attribute must be the atomic value from its domain.

 STU_ID Name
 Name
- In the Student table, value 'A' is not allowed since only integer values can be taken by the age attribute.

STU_ID	Name	Age
S001	Akshay	20
S002	Abhishek	21
S003	Shashank	20
S004	Rahul	A

Key Constraints:

- All the values of primary key must be unique.
- This student relation does not satisfy the key constraint as here all the values of primary key are not unique.

STU_ID	Name	Age	
S001	Akshay	20	
S001	Abhishek 21		
S003	Shashank	20	
S004	Rahul	21	

Entity Integrity Constraints:

- It specifies that no attribute of primary key must contain a null value in any relation.
- This is because the presence of null value in the primary key violates the uniqueness property.
- This student relation does not satisfy the entity integrity constraint as here the primary key contains a NULL value.

STU_ID	Name	Age
S001	Akshay	20
S002	Abhishek	21
S003	Shashank	20
	Rahul	21

Referential Integrity Constraints:

- This constraint is enforced when an FK references the PK of a relation.
- It specifies that all the values taken by the FK must either be available in the relation of the PK or be null.
- We can not insert a record into a referencing relation if the corresponding record does not exist in the referenced relation.
- We can not delete or update a record of the referenced relation if the corresponding record exists in the referencing relation.

Referential Integrity Constraints:

- It is specified between two tables.
- If an FK in Table 1 refers to the PK of Table 2, then every value of the FK in Table 1 must be null or be available in Table 2.

(Table 1)

Guess under which A is not allowed??

ID	NAME	SEMENSTER	AGE
1000	Tom	1 st	17
1001	Johnson	2 nd	24
1002	Leonardo	5 th	21
1003	Kate	3 rd	19
1004	Morgan	8 th	A

Not allowed. Because AGE is an integer attribute

Guess under which constraint A is not allowed??

ID	NAME	SEMENSTER	AGE
1000	Tom	1 st	17
1001	Johnson	2 nd	24
1002	Leonardo	5 th	21
1003	Kate	3 rd	19
1004	Morgan	8 th	Α

Not allowed. Because AGE is an integer attribute

References

- https://www.javatpoint.com/dbms-integrity-constraints
- https://www.guru99.com/relational-data-model-dbms.html
- https://www.gatevidyalay.com/constraints-in-dbms-types-of-constraints-in-dbms/
- https://beginnersbook.com/2015/04/rdbms-concepts/