- 1. 电路如图 1 所示,假设所有运算大器均是理想的,输入信号 v_i 的波形如图 2 所示,且当 t=0 时,电容的初始电压 $v_c=0$ 。
 - 1) 画出 v_{o1} , v_{o2} 和 v_o 的波形;
 - 2) 试分析电阻 R_x 的作用;
 - 3) 若 U_3 为实际运算放大器 $\mu A741$,求电阻 R_7 的阻值,说明其作用。

图 2

- 2. 放大电路如图所示。已知 MOSFET 的 $K_p=4mA/V^2$, $I_{DQ}=1mA$, $V_{TP}=-1.5V$, $V_{DS}=-9V$, 设通带内电容可视为交流短路。
 - 1) 求电阻 R_{g1} 、 R_{g2} 的阻值;
 - 2) 画出电路的小信号等效电路,要标出受控源的控制量和受控量;
 - 3) 求电路的交流电压增益 $A_v = v_o/v_i$;
 - 4) 求电路的输入电阻 R_i 和输出电阻 R_o ;
 - 5) 试求分别由电容 C_{b1} 、 C_{b2} 确定的下限频率 f_{L1} 和 f_{L2} 。

- 3. 电路如图所示,MOSFET 的参数为 $k_{n1}=k_{n2}=k_{n3}=k_{n5}=0.25mA/V^2$, $k_{n4}=0.01mA/V^2$, $\lambda_1=\lambda_2=\lambda_5=0$, $\lambda_3=\lambda_4=0.02V^{-1}$ (缺 V_{TN})。 1) 求 I_o 、 I_{ref} (缺 V_{TN} 的数据);

 - 求 A_{vd2} 、 A_{vc2} 和 K_{CMR2} , 求 v_o/v_{i1} ;
 - 求电路的输出电阻 R_o 。 3)

4. 电路如图所示

- 1) 利用瞬时极性法在图中标出瞬时极性并判断反馈组态;
- 2) 若 V_o 处接负载电阻 R_L 后接地,则该功率放大电路为 OTL、OCL、BTC 中的哪一种;
- 3) 若 $V_{cc}=12V$, $R_L=32k\Omega$,求负载获得的最大输出功率 P_{om} 。

- 5. 电路如图所示,假设运算放大器均是理想的。(电路数据不全)
 - 1) 利用瞬时极性法在图中标出瞬时极性并判断反馈组态;
 - 2) 求电路的 A_f 以及 A_{vsf} ;
 - 3) 若图中的输出电流 i_o 反向,判断 A_f 、 A_{vsf} 会怎样变化;
 - 4) 说明图中框内电路的作用。

- 6. 波形产生电路如图所示,假设运算放大器都是理想的。
 - 1) 为使电路满足起振的相位条件,标出 A₁ 的同相输入端和反相输入端;
 - 2) 试求 $F(s) = v_f(s)/v_{o1}(s)$, 并求正弦波 v_{o1} 的振荡频率
 - 3) 为使电路满足起振的幅度条件,求 R_f 应当满足的条件;
 - 4) 画出 v_{o1} 和 v_o 的传输特性曲线,标明关键参数的值;
 - 5) 定量的画出 v_{o1} 和 v_{o} 的波形图, v_{o1} 是峰值为 10V,初相位为 0 的正弦波, A_{2} 的 初始输入电压为-9V;
 - 6) 确定电阻 R_7 的作用。

- 7. 如图是输出电压为正的串联线性稳压电路已知稳压管 D_z 的稳定电压 $V_z=6.0V$,二极管的正向压降均为0.7V,且已知 U_2 的有效值为 25V 。
 - 1) 图中存在两处错误,请指出并在原图中改正;
 - 2) 求输出电压 v_o 的最大输出幅值;
 - 3) 当 R_p 滑片处在正中间时,请问框内电路可用哪种型号的集成稳压芯片代替?

