

Hi3861V100 / Hi3861LV100 开发板功耗

测试指南

文档版本 03

发布日期 2020-07-21

版权所有 © 上海海思技术有限公司2020。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

(HISILICON)、海思和其他海思商标均为海思技术有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

上海海思技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: https://www.hisilicon.com/cn/

客户服务邮箱: support@hisilicon.com

前言

概述

本文档详细介绍了Hi3861V100/Hi3861LV100功耗测试的操作与测试过程中需要注意的事项。

□说明

- Hi3861芯片功耗可参考Hi3861L的功耗,Hi3861芯片与Hi3861L芯片在静态功耗方面无明显区别(BUCK供电模式下),但仅Hi3861L支持外置RTC时钟。
- Hi3861有2种供电模式(BUCK供电模式、LDO供电模式),这两者在协议低功耗、常发、常收、深睡等模式下的功耗数据有差异。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3861	V100
Hi3861L	V100

读者对象

本文档主要适用于以下工程师:

- 单板硬件开发工程师
- 软件工程师
- 技术支持工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
▲ 危险	表示如不避免则将会导致死亡或严重伤害的具有高等级风险的危害。
▲ 警告	表示如不避免则可能导致死亡或严重伤害的具有中等级风险的危害。
<u></u> 注意	表示如不避免则可能导致轻微或中度伤害的具有低等级风险的危害。
须知	用于传递设备或环境安全警示信息。如不避免则可能会导致设备 损坏、数据丢失、设备性能降低或其它不可预知的结果。 "须知"不涉及人身伤害。
🖺 说明	对正文中重点信息的补充说明。 "说明"不是安全警示信息,不涉及人身、设备及环境伤害信 息。

修改记录

文档版 本	发布日期	修改说明
03	2020-07-2 1	在" 5.1.3 测试数据 "中更新 表 5- 1 。
02	2020-06-0 5	在" 6.3 测试数据 "中更新 表6-1 ,新增关于内置/外置32K晶体的须知说明。

文档版 本	发布日期	修改说明
01	2020-04-3	第一次正式版本发布。 在"前言"的概述中更新关于Hi3861芯片和Hi3861L芯片、Hi3861两种供电模式的功耗说明。 更新"1.1 环境准备"中测试仪器的描述。 在"1.2 硬件接线"的深睡、超深睡功耗测试硬件接线的步骤2、在常发、常收硬件接线的步骤2、步骤3中新增注意说明。 在"2.3 测试数据"中更新环境温度的描述;更新表2-1。 在"3.2 测试方法"的步骤3中删除关于J304和J305跳线帽的描述。 在"3.3 测试数据"中更新环境温度的描述;更新表3-1。 在"4.2 测试数据"中更新环境温度的描述;更新表4-1。 更新"5.1.2 测试方法"的步骤2。 更新"5.1.2 测试方法"的步骤2。 更新"5.1.3 测试数据"的表5-1。 更新"5.2.2 测试方法"的步骤2。 更新"5.2.3 测试数据"的表5-1。 更新"5.2.3 测试数据"的表5-2。 更新"6.1 测试命令"。 在"6.2 测试方法"中更新步骤3;新增关于测试协议低功耗的须知说明。 在"6.3 测试数据"中删除关于AP侧配置为beacon=100ms、DTIM=1的说明;更新测试环境的说明;更新表6-1。
00B06	2020-04-0	 更新"7注意事项"。 在"1.2 硬件接线"的"深睡、超深睡功耗测试硬件接线"、"Power_Off功耗测试硬件接线"、"常发、常收硬件接线"中将13号引脚改为14号引脚。 更新"2.2 测试方法"中步骤3的描述。 更新"4 Power Off测试指南"标题名称。 更新"6 系统低功耗配置与测试指南"标题名称。 更新"6.1 测试命令"的命令注释说明。 更新"6.2 测试方法"中步骤1的描述。 更新"6.3 测试数据"关于测试环境和AP侧配置的说明。

文档版 本	发布日期	修改说明
00B05	2020-03-2 5	• 在"1.1 环境准备"中新增环境温度的说明,同时删除其他章节中关于常温的描述。
		● 更新" 6.2 测试方法 "中步骤1关于beacon周期的说明; 删除关于测试3颗芯片取平均值的步骤说明。
		● 新增 " 6.3 测试数据 "小节。
		● 在" 7注意事项 "中新增关于睡眠时底电流出现尖峰电流、测试睡眠电流偏高、本文档测试均基于BUCK供电模式测试的注意说明。
00B04	2020-03-0	在"1.2 硬件接线"的"深睡、超深睡功耗测试硬件接线"、 "Power_Off功耗测试硬件接线"、"常发、常收硬件接 线"中将引脚"悬空"改为"与底板断开"。
00B03	2020-02-2 6	在"7注意事项"中新增关于低功耗测试的注意事项说明。
00B02	2020-02-1	更新"前言"的概述说明。
	2	● 更新" 1.1 环境准备 "的测试仪器和测试软件。
		● 更新"1.2 硬件接线"中深睡、超深睡功耗测试硬件接 线、Power_Off功耗测试硬件接线、常发、常收硬件接线 的接线步骤和连接图。
		● 更新" 2深睡功耗配置与测试指南 "的测试命令、测试方法、测试数据。
		● 更新"3 超深睡功耗配置与测试指南"的测试命令、测试方法、测试数据。
		● 更新"4 Power Off测试指南"的测试方法、测试数据。
		● 更新"5 芯片常发、常收功耗测试指南"的测试命令、测试方法、测试数据。
		● 新增"6 系统低功耗配置与测试指南 "的测试命令、测试 方法。
		● 删除"7注意事项"中测试超深睡相关的注意事项。
00B01	2020-01-1 5	第一次临时版本发布。

前言	
1 测试准备	1
	1
	1
2 深睡功耗配置与测学投表	5
	5
	5
3.3 测试数据	
4 Power Off 测试指南	8
4.1 测试方法	
4.2 测试数据	3
5 芯片常发、常收功耗测试指南	9
5.1.2 测试方法	
5.1.3 测试数据	
5.2 常收(RX)配置命令与测试指南	
5.2.1 配置命令	
5.2.2 测试方法	
5.2.3 测试结论	11
6 系统低功耗配置与测试指南	12
7 计辛声压	14

1 测试准备

- 1.1 环境准备
- 1.2 硬件接线

1.1 环境准备

- 测试仪器: 直流电源Keysight N6705C(精确到μA级别即可)1台、无线综测仪1台、路由器1台、Hi3861L_BUCK模组(带底板)1个、Hi3861_BUCK模组(带底板)1个、Hi3861_LDO模组(带底板)1个、计算机1台。
- 测试软件: HiBurn、串口调试工具
- 环境温度: 25℃

1.2 硬件接线

须知

测试过程中如果直流电源有电压反馈的话,记得反馈点与测试点之间距离要尽量短。一定要确保加到芯片端口的电压与电源设置的电压一致,否则会影响测试结果。

深睡、超深睡功耗测试硬件接线

深睡、超深睡硬件接线步骤(如图1-1所示):

步骤1 将模组上的1号~8号、10号、14号~15号引脚与底板断开(图中黑色虚线方框中的引脚)。建议用绝缘胶纸垫在模组与模组底板之间,保证彻底绝缘。

步骤2 将红色杜邦线焊接到1号引脚(3V3);将黑色杜邦线焊接到18号引脚(GND)。同时,在3V3和EN引脚之间接一个330K的电阻,以及在EN引脚接一个0.47μF的电容。通过直流电源给板子上电3.3V(用万用表测量引脚的电压,防止因为线损导致加到芯片端口电压已不是3.3V)。

注意: 将3V3、EN管脚与串口底板分开的目的是为了将3V3与串口底板的3V3分开供电,否则计算芯片功耗时,会将底板的功耗也算进去。将除串口外的GPIO断开的目的是防止IO与底板形成回路引起漏电。

步骤3 将板子接上天线(如果已切换到板载天线,则忽略此步骤)。

----结束

图 1-1 深睡、超深睡功耗测试硬件电路连接图

Power_Off 功耗测试硬件接线

Power Off 硬件连接步骤(如<mark>图1-2</mark>所示):

步骤1 将模组上的1号~8号、10号、14号~15号引脚与底板断开(图中黑色虚线方框中的引脚)。建议用绝缘胶纸垫在模组与模组底板之间,保证彻底绝缘。

步骤2 将红色杜邦线焊接到焊接到1号引脚(3V3),将黑色杜邦线焊接到18号引脚 (GND)。将2号引脚接地。通过直流电源给板子上电3.3V(用万用表测量引脚的电 压,防止因为线损导致加到芯片端口电压已不是3.3V)。

注意:将3V3、EN管脚与串口底板分开的目的是为了将3V3与串口底板的3V3分开供电,否则计算芯片功耗时,会将底板的功耗也算进去。将除串口外的GPIO断开的目的是防止IO与底板形成回路引起漏电。

步骤3 将板子接上天线(如果已切换到板载天线,则忽略此步骤)。

----结束

常发、常收硬件接线

常发、常收硬件连接步骤(如图1-3所示):

步骤1 将模组上的1号~8号、10号、14号~15号引脚与底板断开(图中黑色虚线方框中的引脚)。建议用绝缘胶纸垫在模组与模组底板之间,保证彻底绝缘。

步骤2 将红色杜邦线焊接到焊接到1号引脚(3V3);将黑色杜邦线焊接到18号引脚(GND)。同时,在3V3和EN引脚之间接一个330K的电阻,以及在EN引脚接一个0.47μF的电容。通过直流电源给板子上电3.3V(用万用表测量引脚的电压,防止因为线损导致加到芯片端口电压已不是3.3V)。

注意:将3V3、EN管脚与串口底板分开的目的是为了将3V3与串口底板的3V3分开供电,否则计算芯片功耗时,会将底板的功耗也算进去。将除串口外的GPIO断开的目的是防止IO与底板形成回路引起漏电。

步骤3 将板子上的IPEX座子接到无线综测仪器。

注意:由于该步骤需要测试传导功率,因此不能采用板载天线,需采用外置天线的模式。

----结束

Hi3861V100 / Hi3861LV100 开发板功耗 测试指南

图 1-3 常发、常收硬件连接图

2 深睡功耗配置与测试指南

- 2.1 测试命令
- 2.2 测试方法
- 2.3 测试数据

2.1 测试命令

AT+SLP=2 AT+PS=1

2.2 测试方法

步骤1 根据图1-1进行连线,并将直流源电压设置为3.3V。

步骤2 在HiBurn软件下烧录软件。

步骤3 在串口调试助手软件下按照"2.1 测试命令"的顺序发送脚本指令,使芯片进入深睡模式。

步骤4 记录直流电源的电流值。

步骤5 重复**步骤1~步骤4**,测试3颗芯片,取平均值。

----结束

2.3 测试数据

在环境温度25℃下,采用"**2.1 测试命令**"的测试脚本,按照"**2.2 测试方法**"测试深睡的功耗如**表2-1**所示。

表 2-1 深睡测试结果

芯片类型	供电电压	平均电流
Hi3861L&Hi3861_BUCK	3.3V	45μΑ

芯片类型	供电电压	平均电流
Hi3861_LDO	3.3V	326.725μA

3 超深睡功耗配置与测试指南

- 3.1 测试命令
- 3.2 测试方法
- 3.3 测试数据

3.1 测试命令

AT+USLP=3

3.2 测试方法

步骤1 根据图1-1进行连线,并将直流源电压设置为3.3V。

步骤2 在HiBurn软件下烧录软件。

步骤3 在串口调试工具下按照"3.1 测试命令"的顺序发送AT指令,使芯片进入超深睡模式。

步骤4 记录直流电源的的电流值。

步骤5 重复步骤**步骤1~步骤4**,测试3颗芯片,取平均值。

----结束

3.3 测试数据

在环境温度25℃下,采用"**3.1 测试命令**"的测试脚本,按照"**3.2 测试方法**"测试超深睡的功耗如**表3-1**所示。

表 3-1 超深睡测试结果

芯片类型	供电电压	平均电流
Hi3861L&Hi3861_BUCK	3.3V	2.9731μΑ
Hi3861_LDO	3.3V	3.462μΑ

4 Power Off 测试指南

- 4.1 测试方法
- 4.2 测试数据

4.1 测试方法

步骤1 根据图1-2进行连线。

步骤2 将Power On管脚接地,使芯片进入Power Off状态,不需要发送配置脚本。将直流电源设置为3.3V输出。

步骤3 记录直流电源的电流值。

步骤4 重复步骤1~步骤3,取平均值。

----结束

4.2 测试数据

在环境温度25℃下,按照"4.1 测试方法"测试Power Off的功耗如表4-1所示。

表 4-1 Power Off 测试结果

芯片类型	供电电压	平均电流
Hi3861L&Hi3861_BUCK	3.3V	0.3671μΑ
Hi3861_LDO	3.3V	0.487μΑ

5 芯片常发、常收功耗测试指南

- 5.1 常发(TX)配置命令与测试指南
- 5.2 常收(RX)配置命令与测试指南

5.1 常发(TX)配置命令与测试指南

5.1.1 测试命令

□ 说明

详细内容请参见《Hi3861V100/Hi3861LV100 AT命令 使用指南》。

AT+STARTSTA AT+IFCFG=wlan0,down AT+ALTX=1,2,20,1,7 AT+IFCFG=wlan0,up

5.1.2 测试方法

步骤1 根据图1-3进行连线,通过USB转串口芯片将PC与芯片的UART连接,并将直流电压源的电压设置为3.3V。

步骤2 采用IPEX线扣上模组上的IPEX座子,芯片通过IPEX线与Wi-Fi综测仪的射频口连接。

步骤3 在PC机的串口工具中连接芯片UART口(本文测试使用的是IPOP),并按复位键初始化系统。

步骤4 依次发送"5.1.1 测试命令"中TX 配置指令,使芯片进入常发状态。

步骤5 记录直流电源的电流值。

----结束

5.1.3 测试数据

采用"5.1.2 测试方法"测试TX功耗如表5-1所示。

表 5-1 TX 功耗测试结果

TX功耒	TX功耗@3.3V_环境温度25℃									
芯片 类型	Bm_2 Mbps	1b_18d 20M_11 5 比: 97%	802.11 Bm_20 Mbps 占空比				802.11 Bm_20 CS7 占空比 87%	M_M	802.1 dBm_ (窄 _MCS 占空! 88%	带) 57
电流 单 位/ mA	高电平电流	整个周期电流	高电平电流	整个 周期 电流	高电平电流	整个 周期 电流	高电平电流	整个 周期 电流	高电平电流	整个 周期 电流
Hi38 61L	278 .32	274.44	269.7 8	247.2	305. 79	286. 54	324.9 9	293. 87	328 .06	281.1 4
Hi38 61 _BU CK	288 .57	284.02	279.0 3	256.5 2	304. 53	285. 95	338.2 2	304. 97	325 .93	290.9
Hi38 61 _LD O	325 .59	321.33	324.0 3	300.9 7	345. 44	317. 6	382.8 3	349. 5	355 .72	327.3 1

5.2 常收(RX)配置命令与测试指南

5.2.1 配置命令

山 说明

- 详细内容请参见《Hi3861V100/Hi3861LV100 AT命令 使用指南》。
- MAC地址非固定。

AT+MAC=00:E0:52:22:22:14 AT+STARTSTA AT+IFCFG=wlan0,down AT+ALRX=1,0,20,1 AT+IFCFG=wlan0,up AT+RXINFO /* 查看芯片接收到的包数 */

5.2.2 测试方法

步骤1 根据<mark>图1-3</mark>进行连线,通过USB转串口芯片将PC与芯片的UART连接,并将直流电压源的电压设置为3.3V。。

步骤2 在PC机的串口工具中连接芯片UART口,依次发送"5.1.1 测试命令"中RX 配置指令,使芯片进入常收状态。再在串口工具中通过发送"AT+RXINFO"指令来观察是否有接收到数据包,验证芯片是否已经进入常收状态。

步骤3 如果确认芯片已进入常收状态,记录直流电源的电流值。

步骤4 重复步骤1~步骤3,测试3颗芯片,取平均值。

----结束

5.2.3 测试结论

表 5-2 RX 功耗测试结果

测试芯片类型	供电电压	平均电流@20M带 宽	平均电流@5M带 宽
Hi3861L&Hi3861_ BUCK	3.3V	45.078mA	42.653mA
Hi3861_LDO	3.3V	95.265mA	84.3mA

6 系统低功耗配置与测试指南

- 6.1 测试命令
- 6.2 测试方法
- 6.3 测试数据

6.1 测试命令

```
AT+STARTSTA
AT+SCAN
AT+SCANRESULT
AT+CONN="router_ssid",,0 /* "ssid",bssid,auth_type,"passwd"(根据路由器属性更改)*/
                  /* DHCP获取IP地址 */
AT+DHCP=wlan0,1
               /* 确保已获取到IP地址之后再发送以下命令 */
AT+IFCFG
AT+SLP=2
               /* 配置系统休眠为深睡模式 */
AT+PS=1
               /* 打开Wi-Fi子系统低功耗,默认休眠时间跟随AP侧 */
AT+PS=1,300
                /* 配置预期休眠时间为300ms, DTIM=3 */
                /* 配置预期休眠时间为500ms, DTIM=5 */
AT+PS=1,500
AT+PS=1,1000
                /* 配置预期休眠时间为1000ms, DTIM=10 */
AT+PS=1,3000
                 /* 配置预期休眠时间为3000ms, DTIM=30 */
```

6.2 测试方法

步骤1 按照图1-1进行连线,并开启AP和设置beacon周期。

步骤2 在串口调试工具中连接UART口,依次发送"6.1 测试命令"的命令。

步骤3 打开直流电源分析仪中的电流曲线记录功能,获取输出端的电流曲线,根据不同模式,选择不同周期的平均功耗数据,记录系统低功耗的数据(例如:DTIM1记录100ms为周期的功耗数据)。

----结束

须知

在测试系统低功耗时,电流曲线采样周期越长,曲线失真越严重,电流曲线采样周期建议不大于0.2ms;同时通过电流曲线确认Beacon的持续时间为1ms,否则测试出的功耗可能偏大。

6.3 测试数据

山 说明

以下测试在环境温度25℃、STA打开RX接收AP侧Beacon总时长为1ms、测试电压3.6V、屏蔽环境下测试。

表 6-1 系统低功耗测试数据

测试芯片类型	DTIM=1	DTIM=3	DTIM=5	DTIM=10	DTIM=30
Hi3861L	0.975mA	0.363mA	0.244mA	0.149mA	0.089mA
Hi3861_BU CK	1.270mA	0.523mA	0.342mA	0.233mA	0.171mA
Hi3861_LD O	2.252mA	0.961mA	0.630mA	0.520mA	0.414mA

须知

由于Hi3861采用的是内置32K晶体,所以当在DTIM1测试Beacon=1ms之后,在持续增加为DTIM3、5、10、30的过程中,RX的长度会逐渐变长;而Hi3861L由于采用的是外置32K晶体,不会有此现象。

了 注意事项

- 直流源输出电线有一定的电压衰减,请在测试时务必确保加到芯片端口的电压与设置的电压相同,例如:可以通过仪器的电压补偿功能来补偿线损所带来的电压损耗,否则测试功耗可能偏大。
- 如果睡眠时底电流出现尖峰电流,可适当加大VBAT的滤波电容容值。
- 如果测试睡眠电流偏高,可能是受环境温度的影响。
- 本文未说明的测试均在环境温度25℃条件下测试。
- 以上测试基于除串口外,其他GPIO无负载的情况下测试。