ST509 Computational Statistics

Lecture 1: Computer Arithmetic

Seung Jun Shin

Department of Statistics Korea University

E-mail: sjshin@korea.ac.kr

Computer Arithmetic I

- ▶ Computer cannot do arithmetic.
- ▶ Merely recognize two status: on (1) % off (0)
- ▶ Base for arithmetic is 2 or power of 2 such as 16.
- ▶ Any positive number z can be written as a base-B number using the set of digits $\{0, 1, \dots, B-1\}$.

$$z = a_k B^k + \dots + a_2 B^2 + a_1 B^1 + a_0 + a_{-1} B^{-1} + a_{-2} B^{-2} + \dots$$

$$\Rightarrow z = (\underbrace{a_k \cdots a_2 \ a_1 \ a_0}_{\text{integer}} \underbrace{a_{-1} \ a_{-2} \cdots}_{\text{radix fractional part}})_B$$

Computer Arithmetic II

- "Fixed Point" and "Floating Point" refer to the position of the radix point.
- ▶ Fixed point numbers are analogs to integers.
- ▶ Floating point representation takes the form of:
 - ► S: a sign
 - ► E: integer exponent
 - ▶ F: the fraction

written as

(S, E, F)

Computer Arithmetic III

▶ FPR can use finite number of digits only, and may have trouble to represent infinite expansions of numbers:

$$(.3750000...)$$
 or $(.3749999...)$

▶ Rounding vs Chopping: 6.02257×10^{23} can be represented as for d=4

$$(+, 24, .6023)$$
 vs $(+, 24, .6022)$

Computer Arithmetic IV

▶ FPR is not unique: 5 can be represented by

$$(+, 1, .5000)$$
 or $(+, 2, .0500)$ or $(+, 4, .0005)$

▶ Normalization is required.

Fixed Point Arithmetic

- ▶ Arithmetic of integers is simple.
- ▶ Three representation of integers:
 - Signed Integer: First digit for sign. (non-unique zero / symmetric rage)
 - ▶ One's complement: Complement each bit to change the sign (non-unique zero / symmetric rage)
 - ► Two's complement: Complement each bit and add one to change the sign (Unique zero / asymmetric range)
- ▶ Fixed is fast, but has a limited range. (32bit for R)

Floating Point Representations I

▶ The value represented by (S, E, F) is given by

$$(-1)^S \times \text{Base}^{E-\text{excess}} \times .F_{\text{base}}$$

▶ For a base of 2, we have

$$(-1)^S \times 2^{E-excess} \times 1.F$$

when normalized.

Floating Point Representations II

- ► For 32bit (a.k.a single precision):
 - ightharpoonup 1 bit for S, 8 bits for E, and 23 bits for F
 - ▶ E ranges from 0 to 255 and Excess = $2^7 1 = 127$, so that the rue exponent rage is -126 to 127.
 - (S, 255, 0) represents $+\infty$ for S = 0 and $-\infty$ for S = 1.
 - \triangleright (S, 255, F) for any F other than 0 represents NaN.
 - \triangleright (S, 0, F) represents denormalized value:

$$(-1)^S \times 2^{-126} \times 0.F$$

Floating Point Representations III

Figure: IEEE binary floating point representation (single precision)

Number	Conversion	Sign, Exponent	Fraction	Z Format
1	$1.0_{\text{two}} \times 2^{0}$	0 011 1111 1 000 0000	0000 0000 0000 0000	3F800000
1/16	$1.0_{\text{two}} \times 2^{-4}$	0 011 1101 1 000 0000	0000 0000 0000 0000	3D800000
Ó	$0.0_{\text{two}} \times 2^{-127}$	0 000 0000 0 000 0000	0000 0000 0000 0000	00000000
-15	$-1.111_{two} \times 2^3$	1 100 0001 0 111 0000	0000 0000 0000 0000	C1700000
1.2E - 38	$1.0_{\text{two}} \times 2^{-126}$	0 000 0000 1 000 0000	0000 0000 0000 0000	00800000
1.4E - 45	$1.0_{\text{two}} \times 2^{-149}$	0 000 0000 0 000 0000	0000 0000 0000 0001	0000001
3.4E + 38	$(2-2^{-23})\times 2^{127}$	0 111 1111 0 111 1111	1111 1111 1111 1111	7FEFFFFF
+∞		0 111 1111 1 111 1111	1111 1111 1111 1111	7FFFFFFF

Half precision	16-bit
-	
Single precision	32-bit
Double precision	64-bit
Quadruple precision	128-bit

Floating Point Representations IV

- ▶ 64bit (double precision): 1 bit for S, 11 bits for E, and 52 bits for F, with Excess = $2^{10} 1 = 1023$.
- ▶ Un the analysis of algorithm, "flops" floating point operations is used to measure the work.
- ▶ flop consists of a floating point multiply (or divide) and the usually accompanying addition, fetch, and store.

Living with Floating Point Inaccuracies I

- ▶ Some numbers, say z, cannot be written exactly on a computed and a floating point approximation of it fl(z) is used.
- ▶ Relative error:

$$|fl(z) - z|/|z|$$
, for $z \neq 0$

Living with Floating Point Inaccuracies II

ightharpoonup Machine unit U satisfies

$$|fl(z) - z| \le U|z|$$
 for all z

where

$$U = \begin{cases} 0.5B^{1-d} & \text{for rounding} \\ B^{1-d} & \text{for chopping} \end{cases}$$

Living with Floating Point Inaccuracies III

- ▶ Floating point arithmetic does not obey the laws of algebra.
- ▶ Assuming B = 10 and d = 4, let

$$a = 4 = (+, 1, .4000)$$

$$b = 5003 = (+, 4, .5003)$$

$$c = 5000 = (+, 4, .5000)$$

then

$$(a+b) + c \neq a + (b+c)$$

and

$$(2b - 2c) - 2a \neq 2b - (2c + 2a)$$

▶ The latter is known as (catastrophic) Cancellation.

Living with Floating Point Inaccuracies IV

- ▶ Range: about $\pm 10^{\pm 300}$
- ightharpoonup Overflow ightharpoonup crash / underflow ightharpoonup 0
- ▶ Exact number: integer to 2^{52} or divided by power of 2 (ex i/1024).
- ▶ Accuracy: fl(x + y) is not usually the same as x + y. Testing x == y is risky. Then how?
- ► Cancellation:

$$fl(\pi) - fl(22/7) = .314159 \times 10^{1} - .314286 \times 10^{1}$$

= -.127?? × 10⁻³

Living with Floating Point Inaccuracies V

For $(y_1, y_2, y_3, y_4, y_5) = (356, 357, 358, 359, 360),$

$$\sum_{i=1}^{5} (y_i - \bar{y})^2 = \sum_{i=1}^{5} y_i^2 - 5\bar{y}^2 < 0$$

when d = 4 and B = 10.

▶ Improvement can be made by

$$\sum_{i=1}^{5} (y_i - \bar{y})^2 = \sum_{y=2}^{5} (y_i - y_1)^2 + 5(y_1 - \bar{y})^2.$$

Living with Floating Point Inaccuracies VI

- ▶ Logistic Distribution, $1 F(t) = 1 (1 + e^{-t})^{-1}$.
- Computing 1 F(6) = .002472623:
 - 1. $(1+e^{-6}) = (+,1,.1002)$ gives $(1+e^{-6})^{-1} = (+,0,.9980)$; then (+,1,.0000) - (+,0,9980) = (+,-2,.2000).
 - 2. $1 F(6) = e^{-6}/(1 + e^{-6});$ then (+, -2, .2479)/(+, 1, .1002) = (+, -2, .2474)

Living with Floating Point Inaccuracies VII

▶ Binomial probability:

$$f(k \mid n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

- Overflow: n = 180, k = 90, and. p = 0.01.
- ▶ Underflow: n = 150, k = 141, and. p = 0.005.

Usage

```
dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)
```

Figure: dbinom function in R

Conditioned Problems and Stable Algorithm I

▶ Numerical Algorithm:

$$\mathtt{output} = f(\mathtt{input})$$

▶ Condition of a problem:

$$\frac{\mid f(\text{input} + \delta) - \text{output} \mid}{\text{output}} = \text{condition} \frac{|\delta|}{\text{input}}$$

 \blacktriangleright The condition number C is approximated by

$$C = \left| \frac{xf'(x)}{f(x)} \right|$$

Conditioned Problems and Stable Algorithm II

► Finding a smaller root of

$$z^2 - x_1 z + x_2 = 0$$

where $x_1, x_2 > 0$ with $x_2 \approx 0$.

▶ Let z_1 the larger and z_2 be smaller one, then

$$z_2(x_1, x_2) = \left(x_1 - \sqrt{x_1^2 - 4x_2}\right)/2$$

Condition number C with x_1 fixed is

$$C = \left| \frac{z_1}{z_1 - z_2} \right| \approx 1$$

when z_1 is large and z_2 is very small.

Finding a smaller root $z_2 (= 0.0047533)$ with d = 4.

$$az^2 + bz + c = z^2 - 8.42z + 0.04 = 0.$$

 $b^2 - 4ac = 70.74, \sqrt{70.74} = 8.411, (8.420 - 8.411) = 0.0045$

Conditioned Problems and Stable Algorithm III

▶ Inverse form:

$$a + bu + cu^2 = 1 - 8.42u + 0.04u^2 = 0$$

where u = 1/z.

▶ The larger root u_1 is

$$\frac{2c}{b + \sqrt{b^2 - 4ac}}$$

 $2 \times 0.004000/(8.420 + 8.411) = 0.4753.$