

Nature Engine Análisis y Diseño AOPOA

Miguel Angel Beltrán Rodríguez - miguel_beltran@javeriana.edu.co

Marvin Daniel Cely Báez - marvin.cely@javeriana.edu.co

Andrea Gutiérrez Ladino - gutierrezye@javeriana.edu.co

Daniel Mauricio Nieto González - d-nieto@javeriana.edu.co

Agenda

- 1. Contextualización
- 2. Mecanismo de reproducción
- 3. Casos de Uso
- 4. Objetivos del agente
- 5. Clases de objetivos
- 6. Habilidades del agente
- 7. Tareas del agente
- 8. Recursos externos
- 9. Roles del agente
- 10. Diagrama de Relaciones
- 11. Diagrama de Despliegue
- 12. Avance del mundo sintético

1. Contextualización

NATURE ENGINE

Simulador evolutivo plasmado en un Sistema Multiagentes, enfocado en el comportamiento de los individuos, con base en la genética.

Cada ser vido tendrá un **modelo BDI**, donde según su estado, este influenciará la cooperación y la competencia entre ellos.

(Modelo Agente - Grupo - Rol).

Se usarán algoritmos que representan de la manera más fidedigna los **mecanismos de genética**, reproducción y mutaciones

1. Contextualización

Evolución luego de generaciones. Variedad de atributos.

Mapa 2D interactivo donde se visualizan los agentes

Resúmenes gráficos y estadísticos de resultados

Principios, mecanismos reales de genética en el algoritmo

Selección natural. Presión del ambiente y de otros individuos.

NATURE ENGINE

Algoritmos de necesidades Cooperación entre agentes biológicas y de decisión BDI

de la misma especie

Agentes acuáticos, terrestres, carnívoros, vegetarianos

Características (Float) dadas por cadena genética (String) mediante un interpretador

Mutaciones, sobre el genoma. Positivas, negativas o neutras

2. Mecanismo de reproducción

3. Casos de Uso

3. Casos de Uso

4. Objetivos del agente

ld. Objetivo	Objetivo		
01	Preservar los genes		
01.1	Sobrevivir		
01.2	Reproducirse		
01.1.1	Alimentarse		
O1.1.2	Hidratarse		
01.1.1.1	Encontrar comida		
01.1.2.1	Encontrar fuentes de agua		
01.1.3	Evitar o eliminar amenazas		
01.1.2.2	Encontrar humedad ideal		
01.2.1	Encontrar pareja		

5. Clases de objetivos

Clase de objetivo	Descripción			
OBJ-TIPO1	Cooperar con otros agentes para cazar a otro agente			
OBJ-TIPO2	Defender a otros integrantes del grupo para aumentar su supervivencia. Reconocimiento del entorno para aumentar la eficiencia de búsqueda de			
OBJ-TIPO3	recursos y además para tener un mejor modelo del entorno.			
OBJ-TIPO4	Detectar amenazas y avisar al grupo para tomar decisiones que aumenten la integridad del grupo.			
OBJ-TIPO5	Preservar el grupo durante generaciones.			

Habilidad	Descripción		
H1	Comer alimento vegetal		
H2	Moverse		
Н3	Comer a otro agente		
H4	Cortejar a otro agente		
H5	Percibir agentes		
Н6	Percibir humedad		
H7	Percibir alimento		
Н8	Seguir a otro agente		
Н9	Evitar a otro agente		
H10	Atacar a un agente		
H11	Informar a un agente		
H12	Dar energía a otro agente		
H13	Identificar amenaza		
H14	Alertar a un agente		
H15	Reproducirse con otro agente		
H16	Tomar agua		

7. Tareas del agente

Nombre de tarea	ld. Objetivo	Clase de objetivo	Recursos involucrados	Habilidades necesarias
T1	01.1.1	OBJ-TIPO3, OBJ-TIPO1	Alimento, Agente	H1, H2, H3, H7, H5
T2	01.1.2	OBJ-TIPO3	Agua	H2, H6, H16
Т3	01.1.1.1	OBJ-TIPO3	Alimento, Agente	H1, H2, H3, H7, H5, H11
T4	01.1.2.1	OBJ-TIPO3	Agua	H2, H5, H6, H11, H16
Т5	O1.1.3	OBJ-TIPO2, OBJ-TIPO4	Energía	H2, H5, H8, H9, H10, H13
Т6	01.1.2.2	OBJ-TIPO3	Agua	H2, H5, H6, H11, H16
Т7	O1.2.1	OBJ-TIPO5	Agente	H2, H4, H5, H8, H11, H15

8. Recursos

Nombre	Descripción	Cardinalidad	Cantidad	Origen
Alimento	Alimento Vegetal	0*	Dependiente de la humedad, cantidad máxima de energía global.	Mapa sintético
Energía	Fuente básica para la supervivencia de un agente.		Dependiente de la cantidad de el número de plantas durante un momento de la ejecución	Alimento, Agente
Agua	Fuente básica para la supervivencia de un agente.		Dependiente de la humedad de cada casilla.	Mapa sintètico
Agente	Fuente adicional para adquirir energía.	0*	Dependiendo de la simulación de la selección natural	Mundo

9. Roles

11. Diagrama de Despliegue

12. Avance del mundo sintético

Información del mundo: FPS: 30 Número de agentes en el mundo: 1000 Tamaño del mundo: 720x720

Referencias

- → [1] Richards RA (2015) The species problem. The Species Problem 1–16. Cambridge University. doi: 10.1017/cbo9780511762222.001
- → [2] Gould SJ, Eldredge N (1977) Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115–151. doi: 10.1017/s0094837300005224
- → [3] Aureli F, Cords M, Schaik CPV (2002) Conflict resolution following aggression in gregarious animals: a predictive framework. Animal Behaviour 64:325–343. doi: 10.1006/anbe.2002.3071
- → [4]Jacques Ferber, «Les Systèmes multi-agents vers une intelligence collective», InterEditions, Paris, France, 1997

¡GRACIAS! ¿Dudas? ¿Preguntas?

Educación Continua

Continuas oportunidades para crecer