Syntax natürlicher Sprachen

Vorlesung 9: Parsing-Algorithmen

A. Wisiorek Folien: Martin Schmitt

Centrum für Informations- und Sprachverarbeitung, Ludwig-Maximilians-Universität München

20.12.2022

Arten von Parsing-Algorithmen

Top-Down

- Recursive Descent
 - https://www.nltk.org/book/ch08.html#recursive-descent-parsing
- LL (Left-to-right Leftmost (derivation))
- LL(k)
- L(*)
- Earley
 - https://www.nltk.org/book/ch08-extras.html#the-earley-algorithm

Bottom-Up

- Recursive Ascent
- GLR (Generalized Left-to-right Rightmost (derivation))
- Shift-Reduce
 - https://www.nltk.org/book/ch08.html#shift-reduce-parsing
- CYK

1. Top-Down-Parsing: Recursive Descent

- Top-Down-Parsing: Recursive Descent
- 2 Bottom-Up-Parsing: Shift Reduce
- Chart Parsing: Earley Algorithmus
- Parsing mit Merkmalstrukturer
 - Modifizierter Earley Parser
 - Komplexität

Recursive Descent Parser

Top-Down-Parsing (dt. Abwärtsparsen)

Parsing-Strategie, bei der man von der höchsten Ebene eines Syntaxbaums (Startsymbol der Grammatik) ausgeht und sich mithilfe der Ersetzungsregeln (Produktionsregeln) einer Grammatik bis zu den Terminalen (Lexemen) vorarbeitet.

Recursive Descent Parsing (dt. rekursiver Abstieg)

- Form von Top-Down-Parsing
- probiert jede anwendbare Regel aus
- benutzt Backtracking im Problemfall
- am intuitivsten "händisch" zu programmieren
- kann je nach Grammatik zu exponentieller Laufzeit führen (oder sogar zu unendlich langer Laufzeit)
- 2 Operationen: PREDICT (EXPAND) + SCAN (MATCH)

Recursive Descent Parser: Beispiel

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- A VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky

Initialisierung mit Startsymbol

- \bigcirc S \rightarrow NP VP
- ② NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- 4 VP \rightarrow V NP
- **⑤** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky
- 8 V \rightarrow kennt

Chomsky kennt das Buch

S

PREDICT (Ableitung)

- \bigcirc S \rightarrow NP VP
- ② NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- 4 VP \rightarrow V NP
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch

NP VP

PREDICT (zunächst jeweils 1. Regel für eine LHS)

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- 4 VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky

S NP VP DET N

PREDICT

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- A VP \rightarrow V NP
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

SCAN (Abgleich mit Satz)

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \blacksquare NP \rightarrow PROPN
- 4 VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch

Chomsky kennt das Buch (kein Match!)

Recursive Descent Parser: Backtracking

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

S NP VP

PREDICT

- \bigcirc S \rightarrow NP VP
- ② NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- A VP \rightarrow V NP
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

PREDICT + SCAN

- ② NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- 4 VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- **6** N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky

PREDICT

- \bigcirc S \rightarrow NP VP
- ② NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- 4 VP \rightarrow V NP
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

PREDICT+ SCAN

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- A VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- **6** N \rightarrow Buch
- PROPN → Chomsky

Chomsky <u>kennt</u> das Buch

PREDICT

- \bigcirc S \rightarrow NP VP
- ② NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- A VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky

PREDICT+ SCAN

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \triangle VP \rightarrow V NP
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

Chomsky kennt <u>das</u> Buch

PREDICT+ SCAN

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

Recursive Descent Parser: erfolgreicher Parse

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky
- \bigcirc V \rightarrow kennt

Recursive Descent Parsing: Anmerkungen

Probleme

- Es kann zu jeder Zeit für ein Nichtterminal viele verschiedene Ersetzungsregeln geben.
- Im schlimmsten Fall müssen alle diese Regeln ausprobiert werden (exponentieller Blow-up).
- Viele Teilstrukturen werden erzeugt, obwohl sie nie erfolgreich sein können.
 - → Bsp.: Eingabesatz enthält gar nicht die passenden Wörter.

Gefahr der Endlosschleife

- Links-rekursive Produktionsregeln führen (bei naiver Ausführung) zu unendlicher Laufzeit!
- Beispiel: NP → NP PP

2. Bottom-Up-Parsing: Shift Reduce

- Top-Down-Parsing: Recursive Descent
- 2 Bottom-Up-Parsing: Shift Reduce
- Chart Parsing: Earley Algorithmus
- Parsing mit Merkmalstrukturen
 - Modifizierter Earley Parser
 - Komplexität

Shift Reduce Parsing

Bottom-Up-Parsing (dt. Aufwärtsparsen)

Parsing-Strategie, bei der man von den kleinsten vorgefundenen Einheiten (Token, Lexeme, Terminale) ausgeht und versucht, diese nach und nach zu größeren syntaktischen Strukturen zu verbinden, bis man beim Startsymbol der Grammatik angelangt ist.

Shift Reduce Parsing (dt. Verschieben – Zurückführen)

- Form von Bottom-Up-Parsing (datengeleitetes Parsing)
- gebraucht die Datenstruktur Stack (dt. Stapel)
- verschiebt Token auf den Stapel, um sie auf Grammatikregeln zurückzuführen
- 2 Operationen: SHIFT + REDUCE

Shift Reduce Parser: Beispiel

Grammatik

Stapel

Ableitungsbaum

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- A VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky

Initialisierung mit leerem Stack

Grammatik

Stapel

Ableitungsbaum

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch

SHIFT (Input auf Stack verschieben)

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- 4 VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

Chomsky

Chomsky

Chomsky <u>kennt</u> das Buch

REDUCE (Ersatz top-Stack-Items mit LHS von Regel, deren RHS diese matchen)

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- ② NP \rightarrow DET N
- \blacksquare NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \otimes V \rightarrow kennt

Grammatik

Stapel

Ableitungsbaum

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- 4 VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \otimes V \rightarrow kennt

SHIFT (kein REDUCE mehr möglich: keine Regel mit NP als RHS = right-hand-side)

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- ② NP \rightarrow DET N
- \blacksquare NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

REDUCE (Ergebnis auf Stack: NP-V; V = letztes Element = top-Stack-Item)

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- 4 VP \rightarrow V NP
- **6** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \otimes V \rightarrow kennt

SHIFT

Grammatik

Stapel

Ableitungsbaum

- ② NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- 4 VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \otimes V \rightarrow kennt

das

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \otimes V \rightarrow kennt

SHIFT

Grammatik

Stapel

Ableitungsbaum

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \otimes V \rightarrow kennt

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- ② NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das

- \otimes V \rightarrow kennt

Grammatik

Stapel

Ableitungsbaum

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \otimes V \rightarrow kennt

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- 4 VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky
- \otimes V \rightarrow kennt

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky
- \otimes V \rightarrow kennt

Shift Reduce Parser: erfolgreicher Parse

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

Chomsky kennt das Buch

Shift Reduce Parsing: Anmerkungen

Vorteile

- arbeitet abhängig von der Eingabe
- ist daher effizienter als ein Top-Down-Parser

Probleme

- erzeugt auch Teilstrukturen, die zu keinem Ergebnis führen
- benötigt also im Allgemeinen auch Backtracking
- → potentiell exponentielle Laufzeit

Top-Down vs. Bottom-Up

Top-Down

- startet die Analyse beim Startsymbol
- alterniert zwischen Regelanwendung (*Predict*) und Abgleich mit der Eingabe (*Scan*)
- geht besser mit POS Ambiguitäten um
- baut Strukturen öfter als benötigt
- verbringt viel Zeit mit unmöglichen Ableitungen

Bottom-Up

- startet die Analyse beim Beginn der Eingabe
- alterniert zwischen Einlesen der Eingabe (Shift) und "Rückwärtsanwendung" der Regeln (Reduce)
- muss alle lexikalische Ambiguitäten berücksichtigen
- baut benötigte Strukturen nur einmal
- verbringt viel Zeit mit unnötigen Strukturen

3. Chart Parsing: Earley Algorithmus

- Top-Down-Parsing: Recursive Descent
- Bottom-Up-Parsing: Shift Reduce
- Chart Parsing: Earley Algorithmus
- Parsing mit Merkmalstrukturer
 - Modifizierter Earley Parser
 - Komplexität

Earley Parser

Chart Parsing

- Dynamische Programmierung vermeidet doppelte Berechnungen.
- Zwischenergebnisse werden in Datenstruktur (Chart) gespeichert
- S. auch: https://www.nltk.org/book/ch08-extras.html#chart-parsing

Earley Parsing

- Top-Down-Parser (ohne Backtracking)
- Algorithmus kann eigentlich nur Grammatikalität entscheiden.
- $\,
 ightarrow\,$ Zur Baumerstellung müssen zusätzliche Verweise gespeichert werden.
 - Komplexität: $\mathcal{O}(n^3)$
 - funktioniert nur mit ε -freien Grammatiken!
 - 3 Operationen: PREDICT + SCAN + COMPLETE

ε -Eliminierung

arepsilon-Regel

- Regel der Form $A \to \varepsilon$ (Nichtterminal A wird gelöscht)
- Im nltk-Format A -> (z. B. für optionale Elemente)

Eliminierungsalgorithmus

- **1** Wähle ein Nichtterminal A mit einer ε -Regel
- **2** Entferne die ε -Regel
- 3 Für jede Regel p mit A auf der rechten Seite: dupliziere die Regel für jede mögliche Kombination mit/ohne A $(2^{n^{Anzahl}} der Vorkommen von <math>A$ in p^{n} neue Regeln)
- 4 Falls es immer noch ε -Regeln gibt, gehe zurück zu Schritt 1.

ε -Eliminierung

Beispiel (Leeres Subjekt bei Imperativ)

```
1 S 	o NP 	VP
2 NP 	o \varepsilon
3 NP 	o DET 	N
4 VP 	o V
5 V 	o "schlaf" | "schläft"
6 DET 	o "der"
7 N 	o "Hund"
```

Zur Vermeidung von Übergenerierung fehlen noch entsprechende Bedingungen! (s. Hausaufgabe 8)

ε -Eliminierung

Beispiel (nach Eliminierung)

```
1 | S \rightarrow NP VP

2 | S \rightarrow VP

3 | NP \rightarrow DET N

4 | VP \rightarrow V

5 | V \rightarrow "schlaf" | "schläft"

6 | DET \rightarrow "der"

7 | N \rightarrow "Hund"
```

Zur Vermeidung von Übergenerierung fehlen noch entsprechende Bedingungen! (s. Hausaufgabe 8)

Earley Algorithmus I

Gegeben

Eingabesequenz $s = s_1, \dots, s_n$; Grammatik G = (T, N, P, S)

Datenstrukturen

- Position := Tokengrenze
 (z. B. zwischen s₁ und s₂ etc.)
- Zu jeder Pos. Menge Q von Zuständen
- Zustand := (X → α · β, i)
 bestehend aus
 - der aktuellen Produktionsregel $X \to \alpha \beta \in P$,
 - der aktuellen Position in dieser Regel (der Punkt ·),
 - der Ursprungsposition i in der Eingabe, an der das Abgleichen dieser Regel begann.

Earley Algorithmus II

Operationen

- P **Prediction** (dt. *Voraussage*) falls $(A \rightarrow \dots \rightarrow B \dots, j) \in Q_i$ mit $B \in N$, dann für jede Regel $B \rightarrow \alpha \in P$: setze $(B \rightarrow \cdot \alpha, i) \in Q_i$
- S Scanning (dt. Überprüfung) falls $(A \to \dots \to a \dots, j) \in Q_i$ mit $a \in T$ und $a = s_{i+1}$, dann setze $(A \to \dots \to a \to \dots, j) \in Q_{i+1}$
- Completion (dt. Vervollständigung) falls $(A \to \dots, j) \in Q_i$, dann für alle Zustände $(B \to \dots A \dots, k) \in Q_j$: setze $(B \to \dots A \dots, k) \in Q_i$

Earley Algorithmus III

PREDICT

wenn . vor Nichtterminal (N)

SCAN

wenn . vor Terminal (T)

COMPLETE

wenn . letzte Position

Earley Algorithmus IV

Algorithmus

- Initialisiere Q_0 mit dem Zustand $(S' \rightarrow \cdot S, 0)$ mit S' frisches nichtterminales Symbol
- 2 Führe je nach Situation eine der drei Operationen (P, S, C) aus, bis keine weiteren Zustände mehr hinzugefügt werden können.
- Wiederhole Schritt 2 bis keine neuen Zustände mehr hinzugefügt werden können.
- **4** Akzeptiere die Eingabesequenz s genau dann, wenn $(S' \to S \cdot, 0) \in Q_{|s|}$

⇒ Beispiel auf der nächsten Folie

Earley Parser: Beispiel (Initialisierung)

Grammatik:

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

Pos. Zustände

 Q_0

 $(\mathbf{S'} \rightarrow \cdot \, \mathbf{S}, 0)$

 Q_1

Grammatik:

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

Pos. Zustände

$$\begin{aligned} \mathsf{Q}_0 \\ & (\mathsf{S}' \to \cdot \, \mathsf{S}, 0) \\ & (\mathsf{S} \to \cdot \, \mathsf{NP} \, \mathsf{VP}, 0) \end{aligned}$$

 Q_1

Grammatik:

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

Pos. Zustände

$$Q_0$$
 $(\mathsf{S}' o \cdot \mathsf{S}, 0)$ $(\mathsf{S} o \cdot \mathsf{NP} \, \mathsf{VP}, 0)$ $(\mathsf{NP} o \cdot \mathsf{DET} \, \mathsf{N}, 0)$

 Q_1

Q₀: PREDICT (jeweils alle Möglichkeiten für eine LHS)

Grammatik:

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

Pos. Zustände

$$Q_0$$
 $(\mathsf{S}' o \cdot \mathsf{S}, 0)$
 $(\mathsf{S} o \cdot \mathsf{NP} \, \mathsf{VP}, 0)$
 $(\mathsf{NP} o \cdot \mathsf{DET} \, \mathsf{N}, 0)$
 $(\mathsf{NP} o \cdot \mathsf{PROPN}, 0)$

 Q_1

Grammatik:

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **⑤** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

Pos. Zustände

$$\begin{array}{c} \textbf{Q}_0 \\ (\textbf{S}' \rightarrow \cdot \textbf{S}, 0) \\ (\textbf{S} \rightarrow \cdot \textbf{NP VP}, 0) \\ (\textbf{NP} \rightarrow \cdot \textbf{DET N}, 0) \\ (\textbf{NP} \rightarrow \cdot \textbf{PROPN}, 0) \\ (\textbf{DET} \rightarrow \cdot \textbf{das}, 0) \end{array}$$

 Q_1

Grammatik:

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

Pos. Zustände

$$\begin{array}{c} Q_0 \\ (\mathsf{S}' \to \cdot \, \mathsf{S}, 0) \\ (\mathsf{S} \to \cdot \, \mathsf{NP} \, \mathsf{VP}, 0) \\ (\mathsf{NP} \to \cdot \, \mathsf{DET} \, \mathsf{N}, 0) \\ (\mathsf{NP} \to \cdot \, \mathsf{PROPN}, 0) \\ (\mathsf{DET} \to \cdot \, \mathsf{das}, 0) \\ (\mathsf{PROPN} \to \cdot \, \mathsf{Chomsky}, 0) \end{array}$$

 Q_1

SCAN

Grammatik:

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP → PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- PROPN → Chomsky

Pos. Zustände

$$Q_0 \qquad (\mathsf{S}' \to \cdot \, \mathsf{S}, 0) \\ (\mathsf{S} \to \cdot \, \mathsf{NP} \, \mathsf{VP}, 0) \\ (\mathsf{NP} \to \cdot \, \mathsf{DET} \, \mathsf{N}, 0) \\ (\mathsf{NP} \to \cdot \, \mathsf{PROPN}, 0) \\ (\mathsf{DET} \to \cdot \, \mathsf{das}, 0) \\ (\mathsf{PROPN} \to \cdot \, \mathsf{Chomsky}, 0)$$

 Q_1

Grammatik:

- (4) $VP \rightarrow V NP$
- (8) $V \rightarrow kennt$

Q_0 :

$$(S' \rightarrow \cdot S, 0)$$

$$(\mathsf{S} \to \cdot \, \mathsf{NP} \, \mathsf{VP}, 0)$$

$$(NP \rightarrow \cdot DET N, 0)$$

$$(NP \rightarrow PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

 $(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 0)$

Pos. Zustände

 Q_1

 $(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$

 Q_2

Q₁: COMPLETION

Grammatik:

- (4) $VP \rightarrow V NP$
- (8) $V \rightarrow kennt$

Q_0 :

$$(S' \rightarrow \cdot S, 0)$$

$$(S \rightarrow \cdot NP VP, 0)$$

$$(NP \rightarrow \cdot DET N, 0)$$

$$(NP \rightarrow \cdot PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

 $(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 0)$

Pos. Zustände

 Q_1

 $(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$

 $(NP \rightarrow PROPN \cdot, 0)$

 Q_2

Q_1 : COMPLETION

Grammatik:

- (4) $VP \rightarrow V NP$
- (8) $V \rightarrow kennt$

Q_0 :

$$(S' \rightarrow \cdot S, 0)$$

$$(S \rightarrow \cdot NP VP, 0)$$

$$(NP \rightarrow \cdot DET N, 0)$$

$$(NP \rightarrow \cdot PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

 $(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 0)$

Pos. Zustände

 Q_1

 $(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

 Q_2

Grammatik:

- (4) $VP \rightarrow V NP$
- (8) $V \rightarrow kennt$

Q_0 :

$$(S' \rightarrow \cdot S, 0)$$

$$(\mathsf{S} \to \cdot \mathsf{NP}\,\mathsf{VP}, 0)$$

$$(NP \rightarrow \cdot DET N, 0)$$

$$(NP \rightarrow \cdot PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

 $(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 0)$

Pos. Zustände

$$Q_1$$

 $(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

 Q_2

Grammatik:

- (4) $VP \rightarrow V NP$
- (8) $V \rightarrow kennt$

Q_0 :

$$(S' \rightarrow \cdot S, 0)$$

$$(\mathsf{S} \to \cdot \mathsf{NP}\,\mathsf{VP},0)$$

$$(\mathsf{NP} \to \cdot \mathsf{DET}\,\mathsf{N}, 0)$$

$$(NP \rightarrow \cdot PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

 $(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 0)$

Pos. Zustände

$$\begin{array}{c} {\bf Q}_1 \\ & ({\bf PROPN} \rightarrow {\bf Chomsky} \, \cdot , 0) \end{array}$$

$$(\mathsf{NP} \to \mathsf{PROPN} \cdot, 0)$$
$$(\mathsf{S} \to \mathsf{NP} \cdot \mathsf{VP}, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{kennt}, 1)$$

 Q_2

SCAN

Grammatik:

- (4) $VP \rightarrow V NP$
- (8) $V \rightarrow kennt$

Q_0 :

$$(S' \rightarrow \cdot S, 0)$$

$$(S \rightarrow \cdot NP VP, 0)$$

$$(NP \rightarrow \cdot DET N, 0)$$

$$(NP \rightarrow \cdot PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

 $(\mathsf{PROPN} \to \mathsf{Chomsky}, 0)$

Pos. Zustände

 Q_1

 $(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$

$$(\mathsf{NP} \to \mathsf{PROPN} \cdot, 0)$$

$$(\mathsf{S} \to \mathsf{NP} \, \cdot \, \mathsf{VP}, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{ kennt}, 1)$$

 Q_2

 $(V \rightarrow kennt \cdot, 1)$

Grammatik:

- (2) NP \rightarrow DET N
- (3) NP \rightarrow PROPN
- (5) DET \rightarrow das
- (7) $PROPN \rightarrow Chomsky$

Q_1 :

 $(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$

 $(\mathsf{NP} \to \mathsf{PROPN} \cdot, 0)$

 $(S \rightarrow NP \cdot VP, 0)$

 $(VP \rightarrow V NP, 1)$

 $(V \rightarrow \cdot \text{ kennt}, 1)$

Pos. Zustände

 Q_2

 $(\mathsf{V} \to \mathsf{kennt} \cdot, 1)$

 Q_3

Q₂: COMPLETION

Grammatik:

- (2) NP \rightarrow DET N
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{ kennt}, 1)$$

Pos. Zustände

$$\begin{array}{c} \mathsf{Q}_2 \\ & (\mathsf{V} \to \mathsf{kennt} \cdot, 1) \\ & (\mathsf{VP} \to \mathsf{V} \, \cdot \, \mathsf{NP}, 1) \end{array}$$

 Q_3

Grammatik:

- (2) $NP \rightarrow DET N$
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

 $(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{kennt}, 1)$$

Pos. Zustände

$$egin{aligned} Q_2 & & & (\mathsf{V}
ightarrow \mathsf{kennt} \cdot, 1) \ & & & (\mathsf{VP}
ightarrow \mathsf{V} \, \cdot \, \mathsf{NP}, 1) \ & & & & (\mathsf{NP}
ightarrow \cdot \mathsf{DET} \, \mathsf{N}, 2) \end{aligned}$$

o Chomsky 1 kennt 2 das 3 Buch 4

 Q_3

Grammatik:

- (2) $NP \rightarrow DET N$
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

 $(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{ kennt}, 1)$$

Pos. Zustände

 Q_3

Grammatik:

- (2) $NP \rightarrow DET N$
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{ kennt}, 1)$$

Pos. Zustände

$$\begin{array}{c} \textit{Q}_2 \\ & (\textit{V} \rightarrow \textit{kennt} \cdot, 1) \\ & (\textit{VP} \rightarrow \textit{V} \cdot \textit{NP}, 1) \\ & (\textit{NP} \rightarrow \cdot \textit{DET} \, \textit{N}, 2) \\ & (\textit{NP} \rightarrow \cdot \textit{PROPN}, 2) \\ & (\textit{DET} \rightarrow \cdot \textit{das}, 2) \end{array}$$

 Q_3

Grammatik:

- (2) $NP \rightarrow DET N$
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN → Chomsky

Q_1 :

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{ kennt}, 1)$$

Pos. Zustände

$$\begin{array}{c} \textbf{Q}_2 \\ & (\textbf{V} \rightarrow \textbf{kennt} \cdot, 1) \\ & (\textbf{VP} \rightarrow \textbf{V} \cdot \textbf{NP}, 1) \\ & (\textbf{NP} \rightarrow \cdot \textbf{DET} \, \textbf{N}, 2) \\ & (\textbf{NP} \rightarrow \cdot \textbf{PROPN}, 2) \\ & (\textbf{DET} \rightarrow \cdot \textbf{das}, 2) \\ & (\textbf{PROPN} \rightarrow \cdot \textbf{Chomsky}, 2) \end{array}$$

 Q_3

SCAN

Grammatik:

- (2) NP \rightarrow DET N
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{ kennt}, 1)$$

Pos. Zustände

$$\begin{array}{c} \textit{Q}_2 \\ & (\textit{V} \rightarrow \textit{kennt} \cdot, 1) \\ & (\textit{VP} \rightarrow \textit{V} \cdot \textit{NP}, 1) \\ & (\textit{NP} \rightarrow \cdot \textit{DET} \, \textit{N}, 2) \\ & (\textit{NP} \rightarrow \cdot \textit{PROPN}, 2) \\ & (\textit{DET} \rightarrow \cdot \textit{das}, 2) \\ & (\textit{PROPN} \rightarrow \cdot \textit{Chomsky}, 2) \end{array}$$

$$\begin{array}{c} \textbf{\textit{Q}}_3 \\ & (\text{DET} \rightarrow \text{das} \cdot, 2) \end{array}$$

Grammatik:

(6) $N \rightarrow Buch$

 Q_0 :

$$(\mathbf{S'} \rightarrow \cdot \, \mathbf{S}, 0)$$

 Q_1 :

$$(\mathsf{S} \to \mathsf{NP} \, \cdot \, \mathsf{VP}, 0)$$

$$(\mathsf{VP} \to \cdot \, \mathsf{V} \, \mathsf{NP}, 1)$$

 Q_2 :

$$(VP \rightarrow V \cdot NP, 1)$$

$$(\mathsf{NP} \to \cdot \mathsf{DET}\,\mathsf{N}, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$Q_3$$

 $(\mathsf{DET} \to \mathsf{das} \cdot, 2)$

 Q_4

Q₃: COMPLETE

Grammatik:

(6)
$$N \rightarrow Buch$$

 Q_0 :

$$(\mathsf{S'} \to \cdot \, \mathsf{S}, 0)$$

 Q_1 :

$$(\mathsf{S} \to \mathsf{NP} \, \cdot \, \mathsf{VP}, 0)$$

$$(VP \rightarrow V NP, 1)$$

 Q_2 :

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

 Q_4

Grammatik:

(6)
$$N \rightarrow Buch$$

 Q_0 :

$$(\mathsf{S}' \to \cdot \, \mathsf{S}, 0)$$

 Q_1 :

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

 Q_2 :

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$\begin{aligned} \text{Q}_3 \\ & (\text{DET} \rightarrow \text{das} \cdot, 2) \\ & (\text{NP} \rightarrow \text{DET} \cdot \text{N}, 2) \\ & (\text{N} \rightarrow \cdot \text{Buch}, 3) \end{aligned}$$

 Q_4

SCAN

Grammatik:

(6)
$$N \rightarrow Buch$$

Q₀:

$$(\mathsf{S}' \to \cdot \, \mathsf{S}, 0)$$

 Q_1 :

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

 Q_2 :

$$(VP \rightarrow V \cdot NP, 1)$$

$$(\mathsf{NP} \to \cdot \mathsf{DET}\,\mathsf{N}, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$Q_3$$

$$(\mathsf{DET} \to \mathsf{das} \cdot, 2)$$

$$(\mathsf{NP} \to \mathsf{DET} \, \cdot \, \mathsf{N}, 2)$$

$$(N \rightarrow \cdot Buch, 3)$$

$$Q_4$$

$$(\mathsf{N} \to \mathsf{Buch} \, \cdot, 3)$$

Grammatik:

(6)
$$N \rightarrow Buch$$

 Q_0 :

$$(\mathsf{S}' \to \cdot \, \mathsf{S}, 0)$$

 Q_1 :

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

 Q_2 :

$$(VP \rightarrow V \cdot NP, 1)$$

$$(\mathsf{NP} \to \cdot \mathsf{DET}\,\mathsf{N}, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$\begin{array}{c} \textbf{Q}_3 \\ & (\mathsf{DET} \to \mathsf{das}\,\cdot, 2) \\ & (\mathsf{NP} \to \mathsf{DET}\,\cdot\,\mathsf{N}, 2) \\ & (\mathsf{N} \to \cdot\,\mathsf{Buch}, 3) \end{array}$$

$$\begin{array}{c} \textit{Q}_4 \\ & (\textit{N} \rightarrow \textit{Buch} \cdot, 3) \\ & (\textit{NP} \rightarrow \textit{DET} \, \textit{N} \cdot, 2) \end{array}$$

Grammatik:

(6)
$$N \rightarrow Buch$$

 Q_0 :

$$(\mathsf{S}' \to \cdot \, \mathsf{S}, 0)$$

 Q_1 :

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

 Q_2 :

$$(\mathsf{VP} \to \mathsf{V} \cdot \mathsf{NP}, 1)$$

$$(\mathsf{NP} \to \cdot \mathsf{DET}\,\mathsf{N}, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$\begin{array}{c} \textit{Q}_3 \\ & (\mathsf{DET} \to \mathsf{das} \cdot, 2) \\ & (\mathsf{NP} \to \mathsf{DET} \, \cdot \, \mathsf{N}, 2) \\ & (\mathsf{N} \to \cdot \, \mathsf{Buch}, 3) \end{array}$$

$$\begin{aligned} \text{Q}_4 \\ & (\text{N} \rightarrow \text{Buch} \cdot, 3) \\ & (\text{NP} \rightarrow \text{DET N} \cdot, 2) \\ & (\text{VP} \rightarrow \text{V NP} \cdot, 1) \end{aligned}$$

Grammatik:

(6)
$$N \rightarrow Buch$$

$$Q_0$$
:

$$(S' \rightarrow \cdot S, 0)$$

 Q_1 :

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

 Q_2 :

$$(VP \rightarrow V \cdot NP, 1)$$

$$(\mathsf{NP} \to \cdot \mathsf{DET}\,\mathsf{N}, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$\begin{array}{c} \textit{Q}_3 \\ & (\mathsf{DET} \to \mathsf{das}\,\cdot, 2) \\ & (\mathsf{NP} \to \mathsf{DET}\,\cdot\,\mathsf{N}, 2) \\ & (\mathsf{N} \to \cdot\,\mathsf{Buch}, 3) \end{array}$$

$$\begin{array}{c} \textbf{Q}_4 \\ & (\textbf{N} \rightarrow \textbf{Buch} \cdot, 3) \\ & (\textbf{NP} \rightarrow \textbf{DET} \, \textbf{N} \cdot, 2) \\ & (\textbf{VP} \rightarrow \textbf{V} \, \textbf{NP} \cdot, 1) \\ & (\textbf{S} \rightarrow \textbf{NP} \, \textbf{VP} \cdot, 0) \end{array}$$

Grammatik:

(6)
$$N \rightarrow Buch$$

 Q_0 :

$$(\mathsf{S}' \to \cdot \, \mathsf{S}, 0)$$

 Q_1 :

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

 Q_2 :

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$\begin{array}{c} \textit{Q}_3 \\ (\mathsf{DET} \to \mathsf{das}\,\cdot, 2) \\ (\mathsf{NP} \to \mathsf{DET}\,\cdot\,\mathsf{N}, 2) \\ (\mathsf{N} \to \cdot\,\mathsf{Buch}, 3) \end{array}$$

$$\begin{array}{c} \textbf{Q}_4 \\ (\textbf{N} \rightarrow \textbf{Buch} \cdot, 3) \\ (\textbf{NP} \rightarrow \textbf{DET} \, \textbf{N} \cdot, 2) \\ (\textbf{VP} \rightarrow \textbf{V} \, \textbf{NP} \cdot, 1) \\ (\textbf{S} \rightarrow \textbf{NP} \, \textbf{VP} \cdot, 0) \\ (\textbf{S}' \rightarrow \textbf{S} \cdot, 0) \end{array}$$

Earley Parser: erfolgreicher Parse

Grammatik:

 $(S' \rightarrow \cdot S, 0)$

(6)
$$N \rightarrow Buch$$

$$Q_0$$
:

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

 Q_2 :

$$(VP \rightarrow V \cdot NP, 1)$$

$$(\mathsf{NP} \to \cdot \mathsf{DET}\,\mathsf{N}, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$\begin{array}{c} \textit{Q}_{3} \\ & (\mathsf{DET} \to \mathsf{das}\,\cdot, 2) \\ & (\mathsf{NP} \to \mathsf{DET}\,\cdot\,\mathsf{N}, 2) \\ & (\mathsf{N} \to \cdot\,\mathsf{Buch}, 3) \end{array}$$

$$Q_4 \qquad (\mathsf{N} \to \mathsf{Buch} \cdot, 3) \\ (\mathsf{NP} \to \mathsf{DET} \, \mathsf{N} \cdot, 2) \\ (\mathsf{VP} \to \mathsf{V} \, \mathsf{NP} \cdot, 1) \\ (\mathsf{S} \to \mathsf{NP} \, \mathsf{VP} \cdot, 0) \\ (\mathsf{S}' \to \mathsf{S} \cdot, 0) \checkmark$$

Earley Parser: Zusammenfassung

Top-Down-Parsing mit Extras

- ullet Zwischenergebnisse werden in Datenstruktur (Chart) gespeichert (o Chart-Parsing, Dynamische Programmierung)
- Zustände werden mit Positionen in der Eingabesequenz abgeglichen (Elemente des Bottom-Up-Parsings)
- → Komplizierter als Recursive Descent und Shift Reduce
- → Dafür wesentlich schneller

Komplexität

- Laufzeit in $\mathcal{O}(n^3)$ im schlimmsten Fall
- Für unambige Grammatiken sogar $\mathcal{O}(n^2)$
- Für bestimmte Typen von Grammatiken (LR) sogar $\mathcal{O}(n)$
- Funktioniert am besten mit links-rekursiven Regeln

4. Parsing mit Merkmalstrukturen

- Top-Down-Parsing: Recursive Descent
- 2 Bottom-Up-Parsing: Shift Reduce
- Chart Parsing: Earley Algorithmus
- Parsing mit Merkmalstrukturen
 - Modifizierter Earley Parser
 - Komplexität

4.1. Modifizierter Earley Parser

- Top-Down-Parsing: Recursive Descent
- Bottom-Up-Parsing: Shift Reduce
- Chart Parsing: Earley Algorithmus
- Parsing mit Merkmalstrukturen
 - Modifizierter Earley Parser
 - Komplexität

Earley Algorithmus mit Merkmalen

1. Möglichkeit

- Parsen wie bisher und am Ende versuchen, zu unifizieren
- Unschön: Zahl von möglichen Analysen wird nicht so früh wie möglich beschränkt
- ightarrow Optimierungspotential

2. Möglichkeit

- Merkmalstruktur zu jedem Earley-Zustand hinzufügen
- Complete-Operation unifiziert die Merkmalstrukturen der beiden Zustände
- Predict-Operation fügt neuen Zustand nur hinzu, wenn er von keinem vorhandenen subsumiert wird
- Nicht-destruktive Unifikation einsetzen! (Kopien machen!)

4.2. Komplexität

- Top-Down-Parsing: Recursive Descent
- 2 Bottom-Up-Parsing: Shift Reduce
- Chart Parsing: Earley Algorithmus
- Parsing mit Merkmalstrukturen
 - Modifizierter Earley Parser
 - Komplexität

Merkmalbasiertes Parsing: Komplexität

Unterschied gegenüber ursprünglichem Earley Parser

- Zustandsmenge nach Zuständen durchsuchen, deren Merkmalstrukturen mit gegebener Merkmalstruktur unifizieren
- Häufiges Kopieren von Merkmalstrukturen (nicht-destruktive Unifikation)

Komplexität

- im Allgemeinen ist Unifikationsparsen "relativ teuer"
- NP-vollständig in manchen Versionen
- mit sehr umfangreichen Constraints sogar Turing-vollständig (!)
- Zahlreiche Varianten existieren
 - Quasi-destruktive Unifikation (Hideto Tomabechi)
 - Tractable HPSG (Gerald Penn)

Rückblick auf heutige Themen

- Top-Down-Parsing: Recursive Descent
- 2 Bottom-Up-Parsing: Shift Reduce
- 3 Chart Parsing: Earley Algorithmus
- Parsing mit Merkmalstrukturen
 - Modifizierter Earley Parser
 - Komplexität