QI)

Average warring Time!

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{j=i+1}^{N} = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{j=1}^{N} \frac{1}{J^{z-1}} \right] = \frac{1}{N} \sum_{i=1}^{N} \frac{N(N+1)}{2} - \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \frac{1}{2}$$

$$= \frac{N(N+1)}{2} - \frac{1}{2N} \left[\sum_{i=1}^{N} i^2 + \sum_{i=1}^{N} i \right]$$

$$= \frac{N(N+1)}{2} - \frac{1}{2N} \left[\frac{N(N+1)(2N+1)}{6} + \frac{N(N+1)}{2} \right]$$

$$= \frac{N(N+1)}{2} \left[\frac{1}{(6N)} - \frac{2N+1}{6N} - \frac{1}{2N} \right] = \frac{N(N+1)}{2} \left[\frac{6N-2N-1-3}{6N} \right]$$

$$= \frac{(N+1)4(N-1)}{12} = \frac{(N+1)(N-1)}{3} = \frac{N^2-1}{3}$$

Average waiting Time !

$$\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{i-1}j$$

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{(7-i)i}{2} = \frac{1}{2N} \sum_{i=1}^{N} (7^2-i)$$

$$= \frac{1}{2N} \left[\sum_{i=1}^{N} i^2 - \sum_{i=1}^{N} i \right]$$

$$= \frac{1}{2N} \left[\frac{N(N+1)(2N+1)}{6} - \frac{N(N+1)}{2} \right]$$

$$= \frac{N(N+1)}{2} \left[\frac{2N+1}{6N} - \frac{1}{2N} \right] = \frac{N(N+1)}{2} \cdot \frac{2(N-1)}{6N}$$

$$= \frac{(N+1)(N-1)}{6} = \left[\frac{N^2-1}{6}\right]$$

Average watting Time:

Process I waits for: N-1

Process 2 warrs for: N-2, N-1

Process 3 wars for: N-3, N-1, N-2

Process N-1 warro for: N-(N-1), N-1, N-2, ..., N-(N-1)+1

Process N warrs for: N-N , N-1, N-2, ..., N-N+2 , N-N+1

Based on this observation:

$$AWT = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{i} (N-j)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{j=1}^{i} N - \sum_{j=1}^{i} 1 \right] = \frac{1}{N} \sum_{i=1}^{N} \left[N_{i}^{T} - \frac{1}{2} (\frac{i+1}{2}) \right]$$

$$= \frac{1}{N} \left[N \sum_{i=1}^{N} i - \frac{1}{2} \left(\sum_{i=1}^{N} i^{2} + \sum_{i=1}^{N} i \right) \right]$$

$$= \frac{1}{N} \left[\frac{N^{2} (N+1)}{2} - \frac{1}{2} \left(\frac{N(N+1)(2N+1)}{6} + \frac{N(N+1)}{2} \right) \right]$$

$$= \frac{1}{N} \left[\frac{M(N+1)}{2} \left(N - \frac{2N+1}{6} - \frac{1}{2} \right) \right] = \frac{N+1}{2} \left[\frac{6N-2N-1-3}{6} \right]$$

$$= \frac{(N+1) 4(N-1)}{12} = \frac{(N+1)(N-1)}{3} = \frac{N^{2}-1}{3}$$

```
21602217
    Q2)
                             smoker 1 ( on tobocco )
                                             Non-smoking agent
                                                     ( oo tobocco, poper and match)
                                     Jmoker 3
               Smoker 2
                                          (or march)
                    ( oo paper)
(The code below is a pseudo-code)
     // Shared Variables
    Jemaphore table Empty = 1; // binary semaphore for Agent
    semaphore 51 = 0; //counting semaphore for smoker 1
    Jemaphore J2 = 0 7 //counting semaphore for Jmoker 2
   Jemaphore 33 = 0 ; //counting semaphore for Smoker 3
Non-smoking Agen't Code
 do f
       watt (table Empty);
       items = choose Two Random I tems (tobacco, paper, march);
       if (items one paper and match) {
           signal (31); // there are available resources for Smoker !
       } else if (items are tobacco and match) {
           signal (32)7 // there are available resources for Smoker 2
       felse t
            signal (33); // there are available resources for smoker 3
 } while (true);
Smoker I's code;
       wart (31) 7
                                                   3) is changed to 32
       Jignal (+able Empry);
       smoke ();
                                                   and 33.
 f while (true);
 =) signal on Si means that the frems on the table are retrieved by the
     ith smoker
=) wait on Ji means that the one set of items in ith smoker's stock
```

is used for smoking. If such a set does not exist, the smoker wants.

pO	ام	p2	d (offset)
19	8	В	10

a)
$$2^{d} = 2^{10} = [1KB]$$

$$\Rightarrow \text{A third level page table can index at most } 2^{p^2} = 2^8 \text{ entries}$$

$$10 \text{ (logical pages)}$$

$$\frac{340.2^{10}}{2^8} = 340.2^2 \text{ third level}$$

$$10 \text{ page tables}$$

$$10 \text{ needed}$$

 \Rightarrow A second level page table can index at most $2^{p!} = 2^{8}$ entries (third level page tables) $\frac{2 \cdot 2^{10}}{1 \cdot 1^{140} \cdot 2^{10}} = \frac{2 \cdot 2^{10}}{1 \cdot 1^{140}} = \frac{2 \cdot 2^{10}}{1 \cdot 1^{1$

$$\left[\frac{200.2^{10}}{28.286}\right] + \left[\frac{140.2^{10}}{28.286}\right] = \left[\frac{200}{64}\right] + \left[\frac{140}{64}\right] = 4+3 = 7 \text{ second level}$$
page tables
needed

 \Rightarrow A first level page table can index at most $2^{p0} = 2^{10}$ entries (second level page tables)

I first level page table suffices

Thus: 7 second level page tables are used
$$340.2^2 = 1360$$
 third level page tables are used

Q4)	For all parts, "x" indicates a page fault and "V	e (I
	indicates a hit.	

a)	Algorithm	; FIFO								
	Reference	Sering:	x x x 3,5,4	$\frac{1}{3}, \frac{3}{5}, \frac{6}{6}$, x x , 2,5,	√ x x x 2,3,4,2	× /	√ X ,2,7,	X √ 4,7,	3
	Frames:	3 K B X 2 K S	8 8 4 7 8 4	3						
		لسسا								

Number of Page Faults! 13

Number of Page Faults: 10

c) Algorithm: OPT

Reference String: 3,5,4,3,5,6,2,5,2,3,4,2,5,4,2,7,4,7,3

Frames:

0 8 43

1 5

1 mallest page number is removed in case of tie

2 A 8 7 7

Number of Page Faults: 8

Number of Page Faults: [11

e) Algorithm: Second - chance

Frames:

0 8 8883 FIFO list:
$$4^{\circ}-6^{\circ}-2$$
 $4^{\circ}-2^{\circ}-5$ $7^{\circ}-4^{\circ}-3$

1 8 2 4 7 $3^{\circ}-5^{\circ}-4$ $5^{\circ}-3^{\circ}-4$ $5^{\circ}-3^{\circ}-4$ $3^{\circ}-4^{\circ}-2^{\circ}$

Number of Page Faults: 13

f) Algorithm: LFU

Reference String: 3,5,4,3,5,6,2,5,2,3,4,2,5,4,2,7,4,7,3

Frames:	Page Number	Reference Count
	2	1111
0 2 2 7 3	3	1111
. 5	4	1111
11111111	5	1111
2 4 6242474	6	1
<u></u>	7	11

Number of Page Foults: 13

(smallest page number is) removed in case of tie

Q5)
a)
$$\binom{\text{Number of}}{\text{disk blocks}} = \frac{(\text{Disk Size})}{(\text{Block Size})} = \frac{32.68}{4.68} = \frac{2^{35}}{2^{12}} = 2^{23} \text{ disk blocks}$$

b) Bit vector associates I bit per disk block

$$\begin{pmatrix}
8it vector \\
3ize
\end{pmatrix} = 2^{23} birs = \frac{2^{28}}{2^{3}} bytes = \frac{2^{26}}{2^{16}} disk blocks = \begin{bmatrix}
2^8 = 256 & disk \\
blocks
\end{bmatrix}$$

c) I FCB is associated with each file (dn FCB is also associated with the root directory but it is disregarded for simpler calculations)

(Size of FCBs) = (Number of FCB) = (200 000) 2^8 Bytes = $\frac{(200 000) 2^8}{2^{12}4}$ blocks

d) Each file corresponds to 1 (root) directory entry

 $\begin{pmatrix}
5ize & of the \\
directory \\
information
\end{pmatrix} = \begin{pmatrix}
Number & of \\
directory & entries
\end{pmatrix} \cdot \begin{pmatrix}
Directory \\
Entry & 5ize
\end{pmatrix} = (200 & 000) \cdot 2^8 \\
= \frac{(200 & 000) \cdot 2^8}{12^8 + 4} & dish & blocks = \boxed{12 & 500 & disk & blocks}$

e) (Free disk) =
$$\binom{Disk}{size}$$
 - $\binom{Binvector}{size}$ + $\binom{Size}{FCBs}$ + $\binom{Size}{directory}$ + $\binom{Size}{Files}$)
 $= \binom{Disk}{size}$ - $\binom{Binvector}{size}$ + $\binom{Size}{FCBs}$ + $\binom{Size}{directory}$ + $\binom{Size}{Files}$) $\binom{Averoge}{Files}$ (Averoge) $\approx \binom{Averoge}{files}$ (Averoge) $\approx \binom{Averoge}{files}$ (Averoge) $\approx 2^{3}$ - $\binom{25}{6}$ + $\binom{12}{500}$ + $\binom{12}{500}$ + $\binom{600}{500}$ disk $= 200000.3$ disk $= 200000.3$ disk $= 200000.3$ disk $= 2^{3}$ - $\binom{625}{500}$ 256 = $\binom{7}{763}$ 352 disk blocks $= 2^{3}$ - $\binom{625}{500}$ 256 = $\binom{7}{763}$ 352 disk blocks $= 2^{3}$ 6B $\approx \binom{29.5}{500}$ 6B

$$\begin{pmatrix}
\text{portion of} \\
\text{metadora in} \\
\text{the used disk}
\end{pmatrix} = \frac{\begin{pmatrix}
\text{Birvector} \\
\text{Jize}
\end{pmatrix} + \begin{pmatrix}
\text{Jize of the} \\
\text{directory} \\
\text{information}
\end{pmatrix}}{\begin{pmatrix}
\text{Used disk space}
\end{pmatrix}}$$

$$\frac{25 \ 256}{625 \ 256} \approx \frac{4.04\%}{4.04\%}$$
(port e)

a) FAT stores a pointer for each disk block

$$\begin{pmatrix}
FAT \\
STEE
\end{pmatrix} = \begin{pmatrix}
Number of \\
Disk Blocks
\end{pmatrix} \cdot \begin{pmatrix}
Entry \\
Size
\end{pmatrix} = \frac{6468}{4 \text{ KB}} \cdot 4 \text{ Byres} = \frac{2}{2^{16}} \text{ Bytes}$$

$$\begin{pmatrix}
Disk Size
\end{pmatrix} / (Block Size) = \frac{26}{2^{12}} \text{ disk} = \frac{2}{2^{14}} \text{ disk blocks}$$

b) An index block can map
$$\frac{(Block \, size)}{(Pointer \, size)} = \frac{4KB}{4 \, Bytes} = 2^{10}$$
 entries

Two-level index structure looks like:

Index blocks required for;

(i) File A of: (Number of inner index tables required) + (Number of outer index tables required)

(File Size)

(Block Size) (Number of Entries) + (Number of inner index tables)

(Block Size) (Number of Entries) + (Number of Entries)

$$= \frac{1 \text{ HB}}{4 \text{ HB} \cdot 2^{10}} + \frac{1}{2^{0}} = \frac{1}{2} \text{ index blocks}$$

Similarly:

(ii) File B of: $\frac{10 \text{ MB}}{4 \text{ MB} \cdot 2^{10}} + \frac{3}{2^{0}} = 3 + 1 = 4 \text{ index blocks}$

(iii) File C of: $\frac{125}{2^{0}} \cdot \frac{225}{2^{0}} + \frac{25}{2^{0}} = 25 + 1 = 26 \text{ index blocks}$

(iii) File C of: $\frac{125}{2^{0}} \cdot \frac{225}{2^{0}} + \frac{25}{2^{0}} = 25 + 1 = 26 \text{ index blocks}$

(iii) File C of: $\frac{125}{2^{0}} \cdot \frac{225}{2^{0}} + \frac{25}{2^{0}} = 25 + 1 = 26 \text{ index blocks}$

Three-level index structure looks like:

d) Hixed index structure looks like:

$$\begin{pmatrix}
\text{Maximum} \\
\text{File Size}
\end{pmatrix} = 10.4 \text{MB} + 2^{10}.4 \text{MB} + 2^{10}.2^{10}.4 \text{MB} + 2^{10}.2^{10}.4 \text{MB} \\
\text{File Size}
\end{pmatrix} = 10.4 \text{MB} + 2^{10}.4 \text{MB} + 2^{10}.2^{10}.4 \text{MB} + 2^{10}.2^{10}.4 \text{MB}$$

$$\frac{10.4 \text{MB}}{4.0 \text{MB}} + \frac{2}{4 \text{MB}} + \frac$$

Dish accesses required to occess a byte at;