

Some languages are *not* regular

When is a language is regular? if we are able to construct one of the following: DFA or NFA or E -NFA or regular expression

When is it not?

If we can show that no FA can be built for a language

How to prove languages are **not** regular?

What if we cannot come up with any FA?

- A) Can it be language that is not regular?
- B) Or is it that we tried wrong approaches?

How do we *decisively* prove that a language is not regular?

"The hardest thing of all is to find a black cat in a dark room, especially if there is no cat!" -Confucius

Example of a non-regular language

Let L = {w | w is of the form 0^n1^n , for all $n \ge 0$ }

- Hypothesis: L is not regular
- Intuitive rationale: How do you keep track of a running count in an FA?
- A more formal rationale:
 - By contradition, if L is regular then there should exist a DFA for L.
 - Let k = number of states in that DFA.
 - ➤ Consider the special word $w = 0^{k}1^{k}$ => $w \in L$
 - DFA is in some state p_i, after consuming the first i symbols in w

Rationale...

- Let {p₀,p₁,... p_k} be the sequence of states that the DFA should have visited after consuming the first k symbols in w which is 0^k
- But there are only k states in the DFA!
- > ==> at least one state should repeat somewhere along the path (by L + Principle)
- \rightarrow ==> Let the repeating state be $p_i=p_J$ for i < j
- > ==> We can fool the DFA by inputing $0^{(k-(j-i))}1^k$ and still get it to accept (note: k-(j-i) is at most k-1).
- ==> DFA accepts strings w/ unequal number of 0s and 1s, implying that the DFA is wrong!

The Pumping Lemma for Regular Languages

A technique that is used to show that a given language is not regular

Pumping Lemma for Regular Languages

Let L be a regular language

Then <u>there exists</u> some constant N such that <u>for</u> <u>every</u> string $w \in L$ s.t. $|w| \ge N$, <u>there exists</u> a way to break w into three parts, w = xyz, such that:

- 1. $y \neq \varepsilon$
- 2. |xy|≤N
- 5. For all $k \ge 0$, all strings of the form $xy^kz \in L$

This clause should hold for <u>all</u> regular languages.

Definition: *N* is called the "Pumping Lemma Constant"