2022 级《线性代数 II》期末考试卷(B)

题 号	 	三	总分
得 分			

本题得分

一、填空题(1~10小题,每小题5分,共50分).

- 1. 行列式 $D = \begin{vmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 3 & 4 & 0 \\ -1 & 0 & 0 & -2 \end{vmatrix} = _______.$
- 2. 设A为三阶方阵,|A|=3,则 $|-2A^*|=-72$.
- 3. 设四阶方阵 A的秩为 2,则其伴随矩阵 A^* 的秩 $R(A^*) = 0$
- 4. 设 n 阶方阵A 满足 $A^2 + A 3E = O$, 则 $(A 2E)^{-1} = \frac{A + 3E}{3}$.
- 5. 矩阵方程 $X \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$ 的解 $X = \begin{pmatrix} -5 & 2 \\ -13 & 5 \end{pmatrix}$.
- 6. 设三阶方阵 A满足 |A+E|=|A+2E|=|A+3E|=0,则 |A+4E|=6
- 7. 已知 $\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 2 \\ 3-t \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$ 线性相关,则 $t = \underline{17}$.

8. 设四元非齐次线性方程组 Ax = b的系数矩阵A的秩为2, 已知它的三个解向量为

$$\alpha_{1} = \begin{pmatrix} 3 \\ 3 \\ 2 \\ 1 \end{pmatrix}, \alpha_{2} = \begin{pmatrix} 2 \\ 3 \\ 1 \\ 2 \end{pmatrix}, \alpha_{3} = \begin{pmatrix} 3 \\ 5 \\ 4 \\ 1 \end{pmatrix}, 则该方程组的通解为 $x = k_{1} \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} + k_{2} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 \\ 5 \\ 4 \\ 1 \end{pmatrix}$$$

- 9. 已知向量 $\alpha = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta = \begin{pmatrix} 1 \\ 0 \\ k \end{pmatrix}$,若矩阵 $\alpha \beta^{T}$ 相似于矩阵 $\begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $k = \underline{\qquad 2 \qquad }$.
- 10. 已知实二次型 $f(x_1,x_2,x_3)=(2-t)x_1^2+x_2^2+(t+3)x_3^2+2x_1x_2$ 是正定的,则t 的取值范围是 -3 < t < 1 .

本题 得分 二、解答题(11~13小题,每小题12分,共36分)

11. 讨论当参数 λ 为何值时,方程组 $\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 3 \end{cases}$ 无解? 有唯一解? $x_1 + x_2 + \lambda x_3 = \lambda - 1$

有无穷多个解?并在有无穷多个解时求出方程组的通解.

$$\widehat{\mathsf{M}}: \quad B = (A \vdots b) = \begin{pmatrix} \lambda & 1 & 1 & 0 \\ 1 & \lambda & 1 & 3 \\ 1 & 1 & \lambda & \lambda - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & \lambda & \lambda - 1 \\ 0 & \lambda - 1 & 1 - \lambda & 4 - \lambda \\ 0 & 0 & (1 - \lambda)(2 + \lambda) & (2 - \lambda)(2 + \lambda) \end{pmatrix} \cdots (4')$$

- (1) $\lambda \neq 1$ 且 $\lambda \neq -2$ 时,R(A) = R(B) = 3,方程组有唯一解;……(6)
- (2) $\lambda=1$ 时,R(A)=1, R(B)=2, 方程组无解;……(8)

(3)
$$\lambda = -2$$
时, $R(A) = R(B) = 2 < 3$,方程组有无穷多解, $B \rightarrow \begin{pmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

通解为:
$$x = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$$
, 其中 c 为任意常数(12')

12. 已知向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 \\ 2 \\ -6 \\ -4 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 0 \\ -2 \\ 7 \\ 6 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 3 \\ 7 \\ -9 \\ 1 \end{pmatrix}$$
,求该向量组的秩及一个

最大无关组,并将其余向量用该最大无关组线性表示.

$$R(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=3,\cdots(8')$$

$$\alpha_1,\alpha_2,\alpha_3$$
 为所求的一个极大无关组,……(10')

$$\alpha_4 = 3\alpha_1 + 2\alpha_2 \cdot \cdot \cdot \cdot (12')$$

13. 设
$$A = \begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 求正交阵 P 和对角阵 Λ ,使得 $P^{-1}AP = \Lambda$.

解:
$$|A-\lambda E|=(\lambda-1)^2(5-\lambda)$$

$$\therefore \lambda_1 = \lambda_2 = 1, \lambda_3 = 5, \dots (4')$$

当 $\lambda_1 == \lambda_2 = 1$ 时,解(A - E)x = O, 得基础解系 $\xi_1 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^T$, $\xi_2 = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^T$,

单位化得
$$p_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^T$$
 , $p_2 = (0, 0, 1)^T \cdots (8')$

当 $\lambda_3 = 5$ 时,解 (A - 5E)x = O , 得基础解系 $\xi_3 = \begin{pmatrix} -1 & 1 & 0 \end{pmatrix}^T$, 单位化得 $p_3 = \begin{pmatrix} -1 & 1 & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 0 \end{pmatrix}^T \cdots (0')$

则 P 为正交阵,且 $P^{-1}AP = \Lambda.....(12')$

本题 得分

三、证明题(第14题6分,第15题8分)

14. 设 α_1 , α_2 , α_3 线性无关,令 b_1 = α_1 , b_2 = α_1 +2 α_2 , b_3 = α_1 +2 α_2 +3 α_3 ,证明: b_1 , b_2 , b_3 线性无关.

证明: $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $R(\alpha_1, \alpha_2, \alpha_3)=3\cdots\cdots(1')$

$$\mathbb{X} \quad (b_{1}, b_{2}, b_{3}) = (\alpha_{1}, \alpha_{2}, \alpha_{3}) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}, \dots \dots (3')$$

$$\begin{vmatrix} 1 & 1 & 1 \end{vmatrix} \qquad (1 & 0 & 2)$$

曲
$$\begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{vmatrix} = 6 \neq 0$$
 可知 $\begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$ 可逆 $\cdots \cdots (4')$

故
$$R(b_1, b_2, b_3) = R(\alpha_1, \alpha_2, \alpha_3) = 3 \cdots (5)$$

因此 b_1, b_2, b_3 线性无关.....(6')

15. 设 $A \neq 2n+1$ 阶正交矩阵,证明: $|A^2 - E| = 0$.

证明: 由A正交可知 $A^TA = E$

两边取行列式可得 $|A|^2 = 1(2')$

$$|A^{2} - E| = |A - E||A + E| = |A - A^{T}A||A + A^{T}A| = |(E - A^{T})A||(E + A^{T})A|$$

$$= |A|^{2} |E - A||E + A| = |E - A^{2}| = (-1)^{2n+1} |A^{2} - E| = -|A^{2} - E|$$

$$\therefore |A^{2} - E| = 0 \cdot \cdot \cdot \cdot \cdot (8')$$

2