라즈베리파이를 이용한 스마트센서 제어 실습1

한백전자 기술연구소

학습5

라즈베리파이를 이용한 스마트센서 제어 실습1

- WiringPi
- GPIO Pi Map
- LED 제어 실습하기

1. WiringPi

• Raspberry Pi의 GPIO를 제어하기 위해서 C, C++, C#, Python, Perl, Ruby, Java 등 다양한 언어들이 사용된다. 이 언어들 중에서 C 언어를 사용하여 GPIO 제어 시 wiringPi 라이브러리를 사용한다면 GPIO를 쉽게 제어할 수 있다. wiringPi에 구현된 함수는 Arduino에서 사용하는 함수와 대부분이 동일하게 되어 있어서 Arduino를 사용해본 사용자라면 친숙할 것이다.

Wiring Pi

GPIO Interface library for the Raspberry Pi

1. GPIO Pi Map

• 라즈베리 파이에 설치되어 있는 WiringPi는 실제 라즈베리파이의 핀 맵과는 번호가 다르다. 이를 확인하기 위해서는 라즈베리 파이에서 "gpio readall" 을 입력하면 된다.

всм	wPi	Name						H Mode	Name	wPi	ВСМ
	 	3.3v	 		1 1	† 2		 	5v	 	T
2	8	SDA.1	IN	1	3	4	j i		57	İ	i
3	9	SCL.1	IN	1	5	6	İ		0v		ĺ
4	7	GPI0. 7	IN	1	7	8	1	ALT0	TxD	15	14
		0v			9	10	1	ALT0	RxD	16	15
17	0	GPIO. 0	IN	0	11	12	0	IN	GPI0. 1	1	18
27	2	GPIO. 2	IN	0	13	14			0v		
22	3	GPIO. 3	IN	0	15	16	0	IN	GPI0. 4	4	23
		3.3v			17	18	0	IN	GPI0. 5	5	24
10	12	MOSI	IN	0	19	20			0v		l
9	13	MISO	IN	0	21	22	0	IN	GPIO. 6	6	25
11	14	SCLK	IN	0	23	24	1	IN	CE0	10	8
		0v			25	26	1	IN	CE1	11	7
0	30	SDA.0	IN	1	27	28	1	IN	SCL.0	31	1
5	21	GPI0.21	IN	1	29	30			0v	l	
6	22	GPI0.22	IN	1	31	32	0	IN	GPI0.26	26	12
13	23	GPI0.23	IN	0	33	34			0v		ļ
19	24	GPI0.24	IN	0	35	36	0	IN	GPI0.27	27	16
26	25	GPI0.25	IN	0	37	38	0	IN	GPI0.28	28	20
		0v			39	40	0	IN	GPI0.29	29	21
всм	wPi	Name	Mode	٧	Phys	ical	V	Mode	Name	wPi	I BCM

라즈베리파이와 LED 모듈 연결 방법

1. LED 핀 연결

• 두 모듈을 연결하기 위해서는 케이블로 그림과 같이 J4커넥터 와 J15커넥터를 케이블을 통해 연결해야 한다. 라즈베리파이의 4,5,6핀을 각각 RED, GREEN, BLUE 에 각각 연결한다.

라즈베리파이 핀 번호	Wiring Pi 핀 번호	핀 정보	LED 모듈 핀 번호		
4	7	GPIO	LED_RED		
5	21	GPIO	LED_GREEN		
6	22	GPIO	LED_BLUE		

1.LED 제어 프로그램 작성

main.c

```
#include <stdio.h>
#include <stdlib.h>
#include <wiringPi.h>
#include <unistd.h>
#include <time.h>
#define LED_RED 7
#define LED_GREEN 21
#define LED BLUE 22
int main(void){
            if(wiringPiSetup () == -1)
                        return 1;
            pinMode(LED RED,OUTPUT);
            pinMode(LED_GREEN,OUTPUT);
            pinMode(LED BLUE,OUTPUT);
```

```
digitalWrite(LED_RED,0);
            digitalWrite(LED_GREEN,0);
            digitalWrite(LED_BLUE,0);
            printf("3 Color LED Control
                                               Start !!
                                                           ₩n");
            for(i=0;i<20;i++){}
                         printf("Red LED On !! ₩n");
                         digitalWrite(LED_RED,1);
                         usleep(500000);
            printf("Red LED Off !! ₩nGreen LED On !!\n");
                         digitalWrite(LED_RED,0);
```



```
digitalWrite(LED_GREEN,1);
                         usleep(500000);
printf("Green LED Off !! ₩nBlue LED On !!\n");
                          digitalWrite(LED_GREEN,0);
                          digitalWrite(LED_BLUE,1);
                         usleep(500000);
            printf("Blue LED Off !! ₩n");
                          digitalWrite(LED_BLUE,0);
            return 0;
```


- 1. 프로그램 컴파일 (in Raspberry Pi)
- 작성 한 소스코드를 실행 가능하도록 컴파일 한다.

```
pi@raspberrypi:~/led $ make
cc -02 -c -o main.o main.c
cc -o main main.o -lwiringPi
pi@raspberrypi:~/led $ ls
main main.c main.o Makefile
```

2. 프로그램 실행 (in Raspberry Pi)

• 프로그램 컴파일이 완료 되면 "./main" 명령을 통해 프로그램을 실행하고 LED 모듈을 확인하면 RED, GREEN, BLUE 순서대로 LED를 각각 0.5 초간 켜고 끄는 동작을 확인할 수 있다.

```
pi@raspberrypi:~/led $ sudo ./main
3 Color LED Control Start !!
Red LED On !!
Red LED Off !!
Green LED On !!
Green LED Off !!
Blue LED On !!
```