Molecular Modelling and Simulations

Shampa Raghunathan

Boltzmann distribution

 \triangleright Probability of system being at position x is

$$P(x) = \frac{1}{Q}e^{-\frac{E(x)}{k_BT}}$$

E(x) is the energy at position x; $k_B = \text{Boltzmann constant}$

► Find Q, the "partition function" function

$$Q = \sum e^{-\frac{E(x)}{k_B T}}$$

such that, the total probability is 1:

$$\sum P(x) = 1$$

Boltzmann distribution

Microscopic

$$E_1, P_1 \sim e^{-\beta E_1}$$

$$E_2$$
, $P_2 \sim e^{-\beta E_2}$

$$E_3$$
, $P_3 \sim e^{-\beta E_3}$

$$E_4$$
, $P_4 \sim e^{-\beta E_4}$

$$E_5, P_5 \sim e^{-\beta E_5}$$

Canonical and microcanonical ensembles compared

Microcanonical ensemble:

Equally probable microstates are permissible, for example, if, total E=9, then $\{2,4,3\}$ and $\{3,3,3\}$ would be allowable microstates (with equal probability) though $\{3,3,4\}$ not allowed

Canonical ensemble: All microstates would be possible, each one with value $\{n_1^j, n_2^j, n_3^j\}$, where j=1,6; however, probability of each microstate would not be identical.

Canonical ensemble

Systems with constraints (N, V, T) are referred to as being in the canonical ensemble, which is sometimes referred to as the NVT ensemble.

$$Q_{NVT} = \sum_{\alpha} e^{-\beta E_{\alpha}} \tag{1}$$

As, $\beta=1/k_BT$ now, the averages in the canonical ensemble takes the form,

$$\langle E \rangle = \frac{1}{Q_{NVT}} \sum_{\alpha} E_{\alpha} e^{-\frac{E_{\alpha}}{k_B T}}$$
 (2)

here, as an example average energy is shown.

Similarly, average kinetic energy is related to temperature

$$\langle K \rangle = \frac{3}{2}Nk_BT$$

Maxwell-Boltzmann distribution

From the canonical partition function—the velocity (v) distributions in an ideal gas in thermal equilibrium:

$$P(\mathbf{v}_x, \mathbf{v}_y, \mathbf{v}_z) = \left(\frac{m}{2\pi k_B T}\right)^{3/2} e^{-\frac{1}{2}\frac{m\mathbf{v}^2}{k_B T}}$$
(3)

Derivation

Integrating each component of the velocity of an atom, partition function becomes

$$Q_{NVT} = \int e^{-\frac{1}{2}\frac{m\mathbf{v}^2}{k_BT}} d\mathbf{v}_x = \sqrt{\frac{2\pi k_BT}{m}} \tag{4}$$

Solving as Gaussian integral of the form $\int e^{-ax^2} dx = \sqrt{\pi/a}$. For each atom we have three identical integrals multiplying each other, one for v_x , one for v_y , and one for v_z . Thus the contribution from each atom

becomes
$$\left(\sqrt{\frac{2\pi k_B T}{m}}\right)^3$$
.

Maxwell-Boltzmann distribution

- Computing properties
 - Fluctuations
 - Correlation functions

Properties from MD simulations

- Averages
 - Thermodynamic properties
 - Structural properties
- Dynamic quantities
 - Time correlation functions (and their FT's, related to spectroscopic properties)
 - Transport properties (diffusion...)

Analyzing simulation results

Directly visualization of results using molecular graphics. The results can (of course) be analyzed by visual inspection, however this is not often trivial!

VMD - Visual Molecular Dynamics (https://www.ks.uiuc.edu/Research/vmd/)

Averages

The average value of E

$$= \frac{1}{\tau_{max}} \sum_{\tau=1}^{\tau_{max}} E(\tau)$$

The variance of E is defined as.

$$\sigma_E^2 = \langle E^2 \rangle - \langle E \rangle^2$$

The variance of E gives a measure of the size of the fluctuations in its values around its average value.

Averages

If the data are divided into n_b bins of equal length τ_b then average quantities are given by

$$\langle E \rangle = \frac{1}{n_b} \sum_{i=1}^{n_b} \langle E_i \rangle$$

where, the bin averages are

$$\langle E_i \rangle = \frac{1}{\tau_b} \sum_{\tau=\tau_0}^{\tau_0 + \tau_b} E(\tau)$$

In equilibrium all thermodynamic quantities fluctuate around an average value

$$\sigma_F^2 = <(F - < F >)^2 > = < F^2 > - < F >^2 = <(\delta F)^2 >$$

From thermodynamics, the derivative of E with respect to T at constant volume is defined heat capacity in the canonical ensemble

$$C_V = \left(\frac{\partial E}{\partial T}\right)_{N,V}$$

Further writing in terms of fluctuations of energy

$$C_V = \frac{1}{k_D T^2} (\langle E^2 \rangle - \langle E \rangle^2)$$

Correlation functions

Correlations between two quantities A and B can be given by

$$C_{AB} = \frac{\langle (A - \langle A \rangle) \rangle \langle (B - \langle B \rangle) \rangle}{\sigma_A \sigma_B}$$

where, the standard deviations are $\sigma_A = \sqrt{<(A-< A>)>^2}$. The correlation function C_{AB} is normalized, such that, if the values of A and B are perfectly correlated, then $C_{AB}=1$. If A and B are independent and not correlated at all, then $C_{AB}=0$.

Spatial correlations: Structural properties

The radial distribution function (RDF) gives a measure of the local structure. It corresponds to the local concentration of particles in a (thin) spherical shell at the distance r around a central particle, relative to a uniform distribution of particles.

$$N(r) = \int_0^r \rho g(r) 4\pi r^2 dr$$

g(r) is the pair correlation function.

• The integral of g(r) allows to determine the number of neighbors around a central atom.

Radial distribution function, RDF

$$g_{AB}(r) = \frac{N_{AB}(r, \Delta r)}{\rho_B V_S(r, \Delta r)}$$

 $N_{AB}(r,\Delta r)$ is the average number of B sites found in a shell, Δr thick, at distance r from the A sites, V_S is the volume of the shell, and ρ_B is the average number density of B sites in the system.

Time correlations

Correlations between one time t and another time $t^{'}$, lets say between A(t) and $B(t^{'})$ is called a time correlation function

$$C_{AB}(t) = \frac{\langle (A(t) - \langle A \rangle) \rangle \langle (B(0) - \langle B \rangle) \rangle}{\sigma_A \sigma_B}$$

separated by the time interval t, and averaged over the whole trajectory.

An autocorrelation function describes a correlation between the value of a quantity at one time and its value at another, *i.e.*,

$$C_{AA}(t) = \frac{\langle (A(t) - \langle A \rangle) \rangle \langle (A(0) - \langle A \rangle) \rangle}{\sigma_A^2}$$

Time correlations: Dynamical properties

The velocity autocorrelation function (the correlation of the velocity with itself), which is defined as

$$C_{vv}(t) = \frac{\langle \mathbf{v}(t).\mathbf{v}(0)\rangle}{\langle \mathbf{v}^2\rangle}$$

The above equation is averaged over all atoms; replacing $<\mathbf{v}^2>=3k_BT/m$

$$C_{\rm vv}(t) = \frac{m}{3k_BT} < \mathbf{v}(t).\mathbf{v}(0)) >$$

▶ An important property of the time autocorrelation function $C_{\rm AA}(t)$ is that by taking its Fourier Transform, $F\{C_{\rm AA}(t)\}\omega$, one gets a spectral decomposition of all the frequencies that contribute to the motion.

 $\begin{tabular}{ll} {\bf Diffusion \ constant} \ D \ \mbox{is related to the velocity autocorrelation} \\ \mbox{function by} \\ \end{tabular}$

$$D = \lim_{t \to \infty} \frac{k_B T}{m} \int_0^t C_{vv}(t') dt' = \lim_{t \to \infty} \frac{1}{3} \int_0^t \langle \mathbf{v}(t'). \mathbf{v}(0) \rangle dt'$$

D can also be computed from the mean square displacement (MSD) of all atoms using the Einstein relation

$$D = \lim_{t \to \infty} \frac{1}{6t} < |r(t) - r(0)|^2 >, \tag{5}$$

where r(t) is the position of the particle at time t, and averaged over all N particles