```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn as sk
import seaborn as sns

In []: def hypotesis_check(p_value):
    alpha=0.05
    # Decisión en función del p-valor y el nivel de significación
    if p_value < alpha:
        print("Rechazar la hipótesis nula: la muestra no parece seguir una distribución normal")
    else:
        print("No se puede rechazar la hipótesis nula: la muestra parece seguir una distribución normal")</pre>
```

```
In [ ]: data = pd.read_csv('bases Hycosi sofia.xlsx - Hoja3.csv')
    data.head()
```

Ou+	Γ	7	۰
out	L	J	۰

•		Edad	Volumen contraste	Posición uterina	Dia del ciclo	Permeabilidad tubaria	Patologia en cavidad	Tiempo esterilidad (meses)	Paridad	EVA	
	0	36	4	anteflexión	11	2	no	24.0	0	5	
	1	33	10	anteflexión	8	2	no	42.0	G1P1	1	
	2	36	5	anteflexión	7	2	no	24.0	0	2	
	3	34	10	anteflexión	7	2	no	11.0	0	5	
	4	32	10	anteflexión	8	2	si	36.0	0	3	

Es un dataframe de un estudio clinico en reproduccion humana, adonde se valora la performance en terminos de una escala de dolor (EVA) de una técnica diagnóstica de patologia intrauterina y tubarica por ecografía transvaginal, utilizando un medio de contraste ultrasonografico.

Las variables que tenemos son:

- Edad
- Volumen contraste: La cantidad de contraste instilado en centimetros cubicos.
- Posición uterina: Posicion del útero en la pelvis: Anteflexion (hacia adelante, mas comun), retroflexion (hacia atras, menos comun)
- Permeabilidad tubaria: Categorizacion, si las dos trompas demostraron pasaje de contraste, o si solo la derecha o la izquierda.
- Patología en cavidad: Si o no, no clasifica.
- Teimpo esterilidad (meses): Las que no tienen tiempo de esterilidad son madres solteras o parejas femeninas.
- Paridad: G son embarazos previos, P partos vaginals, C cesareas, A abortos, EE embarazos ectopicos.

```
In [ ]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 46 entries, 0 to 45
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Edad	46 non-null	int64
1	Volumen contraste	46 non-null	int64
2	Posición uterina	46 non-null	object
3	Dia del ciclo	46 non-null	int64
4	Permeabilidad tubaria	46 non-null	object
5	Patologia en cavidad	46 non-null	object
6	Tiempo esterilidad (meses)	40 non-null	float64
7	Paridad	46 non-null	object
8	EVA	46 non-null	int64
1.0	67 (64/4) (1.64/4) (/ . \	

dtypes: float64(1), int64(4), object(4)

memory usage: 3.4+ KB

In []: data.describe(include = 'all')

Out[]:

	Edad	Volumen contraste	Posición uterina	Dia del ciclo	Permeabilidad tubaria	Patologia en cavidad	Tiempo esterilidad (meses)	Paridad	EVA
count	46.000000	46.000000	46	46.000000	46	46	40.000000	46	46.000000
unique	NaN	NaN	3	NaN	4	2	NaN	5	NaN
top	NaN	NaN	anteflexión	NaN	2	no	NaN	0	NaN
freq	NaN	NaN	39	NaN	42	36	NaN	39	NaN
mean	33.326087	6.565217	NaN	8.869565	NaN	NaN	19.050000	NaN	2.065217
std	2.805188	2.696930	NaN	1.359881	NaN	NaN	10.015245	NaN	1.691839
min	26.000000	2.000000	NaN	7.000000	NaN	NaN	8.000000	NaN	0.000000
25%	32.000000	5.000000	NaN	8.000000	NaN	NaN	12.000000	NaN	1.000000
50%	33.000000	6.000000	NaN	9.000000	NaN	NaN	17.500000	NaN	2.000000
75%	35.750000	10.000000	NaN	10.000000	NaN	NaN	24.000000	NaN	3.000000
max	38.000000	10.000000	NaN	12.000000	NaN	NaN	60.000000	NaN	7.000000

In []: data.describe()

Out[]:

	Edad	Volumen contraste	Dia del ciclo	Tiempo esterilidad (meses)	EVA
count	46.000000	46.000000	46.000000	40.000000	46.000000
mean	33.326087	6.565217	8.869565	19.050000	2.065217
std	2.805188	2.696930	1.359881	10.015245	1.691839
min	26.000000	2.000000	7.000000	8.000000	0.000000
25%	32.000000	5.000000	8.000000	12.000000	1.000000
50%	33.000000	6.000000	9.000000	17.500000	2.000000
75%	35.750000	10.000000	10.000000	24.000000	3.000000
max	38.000000	10.000000	12.000000	60.000000	7.000000

Análisis univariante

Edad

- Tipo de variable: Cuantitativa discreta
- Dtype: Integer
- Distribución: Normal

```
In [ ]: sns.displot(data['Edad'], kde = True, color = 'green')
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x22b5bc85d48>


```
In [ ]: import scipy.stats as stats
    edad = data['Edad']
    stat, p = stats.shapiro(edad)
    print('Shapiro-Wilk:')
    print(f'Statistic : {stat:.4f}, p-value : {p:10f}')
    Shapiro-Wilk:
    Statistic : 0.9538, p-value : 0.065657

In [ ]: hypotesis_check(p)
    No se puede rechazar la hipótesis nula: la muestra parece seguir una distribución normal

In [ ]: sns.boxplot(edad, x=data['Edad'], color = 'green')

Out[ ]: <AxesSubplot:xlabel='Edad'>
```


Volumen contraste

- Tipo de variable: Cuantitativa continua
- Dtype: Integer
- Distribución: Anormal

```
In [ ]: contraste = data['Volumen contraste']
sns.displot(contraste, kde = True)
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x22b548507c8>


```
In [ ]: sns.boxplot(contraste, x=data['Volumen contraste'])
Out[ ]: <AxesSubplot:xlabel='Volumen contraste'>
```

```
3 4 5 6 7 8 9 10

Volumen contraste
```

Rechazar la hipótesis nula: la muestra no parece seguir una distribución normal

Posición uterina

- Tipo de variable: Cualitativa nominal
- Dtype: Object
- Distribucion: Anormal.

Dia del ciclo

- Tipo de variable: Cuantitativa discreta
- Dtype: Integer
- Distribución: Anormal

```
In [ ]: dia_ciclo = data['Dia del ciclo']
sns.distplot(dia_ciclo, kde = True, color = 'green')
```

 $C: \Users\Rafael \ Ortega\AppData\Roaming\Python\Python37\site-packages\ipykernel_launcher.py: 3: \ User \Users\Rafael \ Ortega\Rafael \ Ortega\R$

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

This is separate from the ipykernel package so we can avoid doing imports until Out[]: <AxesSubplot:xlabel='Dia del ciclo', ylabel='Density'>

In []: sns.boxplot(dia_ciclo, x=data['Dia del ciclo'], color = 'green')

Out[]: <AxesSubplot:xlabel='Dia del ciclo'>


```
In [ ]: | stat, p = stats.shapiro(data['Dia del ciclo'])
        print('Shapiro-Wilk:')
        print(f'Statistic : {stat:.4f}, p-value : {p:10f}')
        Shapiro-Wilk:
        Statistic : 0.9107, p-value : 0.001830
In [ ]: |hypotesis_check(p)
        Rechazar la hipótesis nula: la muestra no parece seguir una distribución normal
        Permeabilidad tubaria
          • Tipo de variable: Categórica
          • Dtype: Object
          • Distribución: Anormal
In [ ]: data['Permeabilidad tubaria'].value_counts()
                                                    42
Out[ ]: 2
        Unilateral (derecha)
                                                     2
        Permeabilidad tubárica unilateral derecha.
                                                    1
        1(derecha)
        Name: Permeabilidad tubaria, dtype: int64
        Corrección de categorias en los valores.
        2 = permeabilidad bilateral, 1 = Permeabilidad unilateral, 0 = No permeablidad
In [ ]:
        mask = data['Permeabilidad tubaria'] != '2'
        data.loc[mask, 'Permeabilidad tubaria'] = '1'
In [ ]:|
        frec_perm = data['Permeabilidad tubaria'].value_counts()
        frec perm
Out[ ]: 2
            42
             4
        Name: Permeabilidad tubaria, dtype: int64
In [ ]:
        plt.bar(frec perm.index, frec perm.values, color=colores)
        plt.xlabel('Permeabilidad tubaria')
        plt.ylabel('Frecuencia')
        plt.title('Frecuencia de observaciones por categoría')
        for i, v in enumerate(frec_perm.values):
            plt.text(i, v, str(v), ha='center', va='bottom')
```

plt.show()

Frecuencia de observaciones por categoría

Patologia en cavidad

- Tipo de variable: Categórica nominal.
- Dtype: Object
- Distribución: Anormal

Tiempo esterilidad (meses)

- Tipo de variable: Cuantitativa discreta
- Dtype: Float
- Distribución: Anormal
- Missings: 6

```
In [ ]: data['Tiempo esterilidad (meses)'].dtypes
Out[ ]: dtype('float64')
In [ ]: data['Tiempo esterilidad (meses)'].isna().sum()
Out[ ]: 6
In [ ]: tiempo_esterilidad = data['Tiempo esterilidad (meses)'].dropna()
In [ ]: sns.displot(tiempo_esterilidad, kde = True, color = 'green')
Out[ ]: <seaborn.axisgrid.FacetGrid at 0x22b54979608>
```


Rechazar la hipótesis nula: la muestra no parece seguir una distribución normal

Paridad

- Tipo de Variable: Categorica nominal
- Dtype: Object
- Distribucion: Anormal

En esta variable hay que hacer feauture engineering, extrayendo la sigla de las letras y poniendola en nuevas columnas, y asignarle el numero acompañante como valor de la observacion correspondiente

```
In [ ]: |import re
       # Extrae las letras "G", "P" y "A" de la columna 'Paridad' utilizando expresiones
       regulares
       data['Letra_G'] = data['Paridad'].str.extract(r'(G\d+)')
       data['Letra_P'] = data['Paridad'].str.extract(r'(P\d+)')
       data['Letra_A'] = data['Paridad'].str.extract(r'(A\d+)')
       # Extrae los valores numéricos correspondientes
       data['Letra_G'] = data['Letra_G'].str.extract(r'(\d+)')
       data['Letra_P'] = data['Letra_P'].str.extract(r'(\d+)')
       data['Letra_A'] = data['Letra_A'].str.extract(r'(\d+)')
       # Convierte las columnas a tipo numérico
       data['Letra_G'] = pd.to_numeric(data['Letra_G'])
       data['Letra_P'] = pd.to_numeric(data['Letra_P'])
       data['Letra A'] = pd.to numeric(data['Letra A'])
       # Elimina la columna 'Paridad'
       data = data.drop('Paridad', axis=1)
       #Renombramos Las columnas letras:
       data = data.rename(columns={'Letra G': 'G', 'Letra P': 'P', 'Letra A': 'A'})
       data['G'].fillna(0, inplace=True)
       data['P'].fillna(0, inplace=True)
       data['A'].fillna(0, inplace=True)
       data['G'] = data['G'].astype(int)
       data['P'] = data['P'].astype(int)
       data['A'] = data['A'].astype(int)
       data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 46 entries, 0 to 45
       Data columns (total 11 columns):
        # Column
                                      Non-Null Count Dtype
        0
            Edad
                                     46 non-null
                                                     int64
            Volumen contraste
                                    46 non-null
46 non-null
                                                    int64
        1
           Posición uterina
                                                  int64
                                                    object
        3 Dia del cicio
4 Permeabilidad tubaria 46 non-nuli
2 22 Cavidad 46 non-null
        3 Dia del ciclo
                                                    object
                                                    object
        6 Tiempo esterilidad (meses) 40 non-null
                                                    float64
        7 EVA
                                      46 non-null
                                                   int64
        8 G
                                      46 non-null
                                                    int32
        9 P
                                      46 non-null
                                                    int32
                                      46 non-null
                                                    int32
       dtypes: float64(1), int32(3), int64(4), object(3)
       memory usage: 3.5+ KB
```

EVA

- Tipo de variable: Cuantitativa discreta
- Dtype: Integer
- Distribución: Anormal

```
In [ ]: eva = data['EVA']
sns.displot(eva, kde = True, color = 'green')
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x22b5cda8cc8>

Rechazar la hipótesis nula: la muestra no parece seguir una distribución normal

Análisis multivariante

Matriz de correlación

```
In [ ]: data.corr(method='pearson')
```

$\cap \cup + \mid$		
out		

	Edad	Volumen contraste	Dia del ciclo	Tiempo esterilidad (meses)	EVA	G	P	Α
Edad	1.000000	-0.124774	0.104604	0.043163	-0.070134	-0.150424	0.000690	-0.190223
Volumen contraste	-0.124774	1.000000	-0.070340	0.146042	0.337535	0.018727	0.175081	-0.069384
Dia del ciclo	0.104604	-0.070340	1.000000	-0.163861	0.158322	-0.019169	0.091075	-0.072582
Tiempo esterilidad (meses)	0.043163	0.146042	-0.163861	1.000000	-0.078897	0.105563	0.323619	-0.012018
EVA	-0.070134	0.337535	0.158322	-0.078897	1.000000	-0.080891	-0.115527	-0.040717
G	-0.150424	0.018727	-0.019169	0.105563	-0.080891	1.000000	0.652634	0.915398
P	0.000690	0.175081	0.091075	0.323619	-0.115527	0.652634	1.000000	0.292419
Α	-0.190223	-0.069384	-0.072582	-0.012018	-0.040717	0.915398	0.292419	1.000000

In []: data.corr(method='spearman')

Out[]:

	Edad	Volumen contraste	Dia del ciclo	Tiempo esterilidad (meses)	EVA	G	Р	Α
Edad	1.000000	-0.115416	0.079826	0.102190	-0.022021	-0.120106	0.000000	-0.222920
Volumen contraste	-0.115416	1.000000	-0.062783	-0.070087	0.303045	0.098069	0.154897	-0.045575
Dia del ciclo	0.079826	-0.062783	1.000000	0.023032	0.126991	-0.026298	0.095396	-0.086231
Tiempo esterilidad (meses)	0.102190	-0.070087	0.023032	1.000000	-0.160229	0.162875	0.310557	0.054319
EVA	-0.022021	0.303045	0.126991	-0.160229	1.000000	-0.056296	-0.129572	-0.014031
G	-0.120106	0.098069	-0.026298	0.162875	-0.056296	1.000000	0.632309	0.841302
P	0.000000	0.154897	0.095396	0.310557	-0.129572	0.632309	1.000000	0.208746
Α	-0.222920	-0.045575	-0.086231	0.054319	-0.014031	0.841302	0.208746	1.000000

In []: sns.pairplot(data)

In []: sns.heatmap(data.corr(), annot=True)

Out[]: <AxesSubplot:>

Planteo de hipótesis:

- 1. ¿A más edad de las pacientes se necesita más necesidad de contraste?
- 2. ¿A mayor tiempo de de esterilidad más mL de contraste para ver la permeabilidad?
- 3. ¿Más contraste en pacientes con patología uterina?
- 4. ¿Más contraste en úteros en retroflexión comparado con aneteflexion?
- 5. ¿Se necesita más cantidad de contraste según que etapa del ciclo? (creo que se podría hacer dos gruos entre el día 7-9 y del día 10-12)
- 6. ¿Mayor dolor según momento del ciclo? (Realizar dos grupos entre el día 7-9 y del día 10-12)
- 7. ¿La edad media en las obstrucciones unilaterales fue mayor estadísticamente significativo que en el grupo de permeabilidad bilateral?
- 8. ¿Menor dolor percibido (EVA) en pacientes que han gestado (contando aborto y embarazos normales) comparado con aquellas nuligestas?
- 9. ¿Los valores EVA son mayores cuanto mayor es el volumende contraste utilizado?

1. ¿Se necesita más contraste cuanto mayor es la edad de la paciente?

Volumen contraste: Cuantitativa continua

Edad: Cuantitativa discreta

Test de correlacion: Spearman

- H0: No hay correlació entre cantidad de contraste y edad de la paciente
- H1: Existe correlación entre cantidad de contraste y edad de la paciente.

```
In [ ]: sns.regplot(data = data, x = data['Edad'], y = data['Volumen contraste'])
```

Out[]: <AxesSubplot:xlabel='Edad', ylabel='Volumen contraste'>

Hipótesis 1: No se rechaza la hipotesis nula

2. ¿A mayor tiempo de de esterilidad más cantidad de contraste?

Volumen contraste: Cuantitativa continua

Tiempo esterilidad (meses): Cuantitativa discreta

Test de correlación: Spearman

- H0: No hay correlación entre cantidad de contraste y meses de esterilidad.
- H1: Existe correlación entre cantidad de contraste y meses de esterilidad.

```
In [ ]: sns.regplot(data = data, x = data['Tiempo esterilidad (meses)'], y = data['Volumen contraste'])
```

```
Out[ ]: <AxesSubplot:xlabel='Tiempo esterilidad (meses)', ylabel='Volumen contraste'>
```



```
In [ ]: tiempo_volumen = data.loc[:, ['Tiempo esterilidad (meses)', 'Volumen contraste']]
       tiempo_volumen.dropna(inplace=True)
       tiempo_volumen.info()
       <class 'pandas.core.frame.DataFrame'>
       Int64Index: 40 entries, 0 to 43
       Data columns (total 2 columns):
           Column
                                      Non-Null Count Dtype
                                      -----
        0
           Tiempo esterilidad (meses) 40 non-null
                                                     float64
           Volumen contraste
                                      40 non-null
                                                     int64
       dtypes: float64(1), int64(1)
       memory usage: 960.0 bytes
In [ ]: | stat, p = stats.spearmanr(tiempo_volumen['Tiempo esterilidad (meses)'],
       tiempo volumen['Volumen contraste'])
       print('Spearman:')
       print(f'Statistic : {stat:.4f}, p-value : {p:10f}')
```

Statistic : -0.0701, p-value : 0.667382

```
In []: print('Hipótesis 2:')
   if p < 0.05:
        print('Se rechaza la hipotesis nula')
   else:
        print('No se rechaza la hipotesis nula')</pre>
```

Hipótesis 2: No se rechaza la hipotesis nula

3. ¿Se utiliza más contraste en pacientes con patología uterina?

Volumen contraste: Cuantitativa continua.

Patología en cavidad: Categórica nominal.

Prueba U de Mann-Whitney. Compara la mediana de dos grupos.

• H0: No hay correlación entre cantidad de contraste y la presencia de patología uterina.

```
• H1: Existe correlación entre cantidad de contraste y la presencia de patología uterina.
In [ ]: contraste_patologia = data.loc[:, ['Patologia en cavidad', 'Volumen contraste']]
        group_patologia = contraste_patologia.loc[data['Patologia en cavidad'] ==
        'si']['Volumen contraste']
        group_no_patologia = contraste_patologia.loc[data['Patologia en cavidad'] ==
        'no']['Volumen contraste']
In [ ]: |print(group_patologia.value_counts())
        print(group_no_patologia.value_counts())
       10
             6
             3
        Name: Volumen contraste, dtype: int64
             12
       10
             9
             5
       6
             4
        2
        3
              1
       Name: Volumen contraste, dtype: int64
In [ ]: U, p = stats.mannwhitneyu(group_patologia, group_no_patologia)
        print('Mann-Whitney:')
        print(f'Statistic : {U:.4f}, p-value : {p:10f}')
        Mann-Whitney:
        Statistic : 249.5000, p-value : 0.056459
In [ ]: | print('Hipótesis 3:')
        if p < 0.05:
            print('Se rechaza la hipotesis nula')
        else:
            print('No se rechaza la hipotesis nula')
        Hipótesis 3:
```

Hipótesis 3: No se rechaza la hipotesis nula

4.¿Se utiliza más contraste en úteros en retroflexión comparado con anteflexión?

Volumen contraste: Cuantitativa continua.

Posisión uterina: Categórica nominal.

Prueba U de Mann-Whitney. Compara la mediana de dos grupos.

- H0: No hay diferencia en la mediana de la cantidad de contraste según la posición uterina.
- H1: Existe diferencia en la mediana de la cantidad de contraste según la posición uterina.

No se rechaza la hipótesis nula

5.¿Se necesita más cantidad de contraste según que etapa del ciclo?

Volumen contraste: Cuantitativa continua.

Dia del ciclo: Cuantitativa discreta.

Test de correlacion: Spearman

- H0: No hay correlació entre cantidad de contraste y dia del ciclo.
- H1: Existe correlación entre cantidad de contraste y dia del ciclo.

```
In [ ]: sns.regplot(data = data, x = data['Dia del ciclo'], y = data['Volumen contraste'],
color = 'green')
```

```
Out[]: <AxesSubplot:xlabel='Dia del ciclo', ylabel='Volumen contraste'>
```



```
In [ ]: stat,p = stats.spearmanr(data['Dia del ciclo'], data['Volumen contraste'])
    print('Spearman:')
    print(f'Statistic : {stat:.4f}, p-value : {p:10f}')

    Spearman:
    Statistic : -0.0628, p-value : 0.678505

In [ ]: print('Hipótesis 5:')
    if p < 0.05:
        print('Se rechaza la hipotesis nula')
    else:
        print('No se rechaza la hipotesis nula')</pre>
```

Hipótesis 5: No se rechaza la hipotesis nula

6. ¿Es mayor el dolor segun el dia del ciclo?

EVA: Cuantitativa discreta.

Dia del ciclo: Cuantitativa discreta.

Test de correlacion: Spearman

- H0: No hay correlació entre el score EVA y dia del ciclo.
- H1: Existe correlación entre cel score EVA y dia del ciclo.

```
In [ ]: sns.regplot(data = data, x = data['EVA'], y = data['Dia del ciclo'])
Out[ ]: <AxesSubplot:xlabel='EVA', ylabel='Dia del ciclo'>
```



```
In [ ]: stat,p = stats.spearmanr(data['EVA'], data['Dia del ciclo'])
    print('Spearman:')
    print(f'Statistic : {stat:.4f}, p-value : {p:2f}')

    Spearman:
    Statistic : 0.1270, p-value : 0.400344

In [ ]: print('Hipótesis 6:')
    if p < 0.05:
        print('Se rechaza la hipotesis nula')
    else:
        print('No se rechaza la hipotesis nula')</pre>
```

Hipótesis 6: No se rechaza la hipotesis nula

7. ¿La edad media en las obstrucciones unilaterales fue diferente que en el grupo de permeabilidad bilateral?

Edad: Cuantitativa discreta.

Permeabilidad tubaria: Cualitativa nominal.

Prueba U de Mann-Whitney. Compara la mediana de dos grupos.

- H0: No hay diferencia en la mediana de la edad segun el tipo de permeabilidad tubaria.
- H1: Hay diferencia en la mediana de la edad segun el tipo de permeabilidad tubaria.

Statistic : 90.5000, p-value : 0.813345

```
In [ ]: print('Hipótesis 7:')
    if p < 0.05:
        print('Se rechaza la hipotesis nula')
    else:
        print('No se rechaza la hipotesis nula')</pre>
```

Hipótesis 7: No se rechaza la hipotesis nula

8. ¿EL dolor percibido (EVA) es diferente en las mujeres que tuvieron gestaciones previas con respecto a nuligestas

G: Cuantitativa discreta

EVA: Cuantitativa discreta

Test de correlacion: Spearman

- H0: No hay correlació entre el antecedente de gestaciones previas y el dolor referido por la paciente
- H1: Existe correlación entre el antecedente de gestaciones previas y el dolor referido por la paciente.

```
In [ ]: sns.regplot(data = data, x = data['EVA'], y = data['G'])
```

```
Out[ ]: <AxesSubplot:xlabel='EVA', ylabel='G'>
```



```
In [ ]: stat, p = stats.spearmanr(data['EVA'], data['G'])
    print('Spearman:')
    print(f'Statistic : {stat:.4f}, p-value : {p:3f}')
```

Statistic : -0.0563, p-value : 0.710185

```
In []: print('Hipótesis 8:')
   if p < 0.05:
       print('Se rechaza la hipotesis nula')
   else:
       print('No se rechaza la hipotesis nula')</pre>
```

Hipótesis 8: No se rechaza la hipotesis nula

9. ¿Los valores EVA son mayores cuanto mayor es el volumen de contraste utilizado?

Volumen contraste: Cuantitativa continua

EVA: Cuantitativa discreta

Test de correlacion: Spearman

- H0: No hay correlació entre cantidad de contraste y el dolor referido por la paciente
- H1: Existe correlación entre cantidad de contraste y el dolor referido por la paciente.

```
In [ ]: sns.regplot(data = data, x = data['EVA'], y = data['Volumen contraste'])
```

Out[]: <AxesSubplot:xlabel='EVA', ylabel='Volumen contraste'>


```
In [ ]: stats.spearmanr(data['EVA'], data['Volumen contraste'])
    print('Spearman:')
    print(f'Statistic : {stat:.4f}, p-value : {p:10f}')
    Spearman:
```

Statistic : 0.8926, p-value : 0.000487

Leve. 0 a 2Moderado: 3 a 6Severo: 7 a 10

Prueba estadistica entre una variable categorica (EVA) y una variable continua discreta.

Prueba de Kruskal-Wallis

```
In [ ]: limite_leve = 4
    limite_moderado = 7
    limite_severo = 10

labels = ['Leve', 'Moderado', 'Severo']

data['Categoría_EVA'] = pd.cut(data['EVA'], bins=[0, limite_leve, limite_moderado, limite_severo], labels=labels)

In [ ]: leve = data.loc[data['Categoría_EVA'] == 'Leve']['Volumen contraste']
    moderado = data.loc[data['Categoría_EVA'] == 'Moderado']['Volumen contraste']
    severo = data.loc[data['Categoría_EVA'] == 'Severo']['Volumen contraste']

In [ ]: sns.displot(leve, kde = True, color = 'green')
    sns.displot(moderado, kde = True, color = 'green')
```



```
In [ ]: stat, p = stats.kruskal(leve, moderado)

print('Kruskal:')
print(f'Statistic : {stat:.4f}, p-value : {p:10f}')
```

Kruskal:

Statistic : 2.2576, p-value : 0.132962

```
In [ ]: print('Hipotesis 9.b')
   if p < 0.05:
        print('Se rechaza la hipotesis nula')
   else:
        print('No se rechaza la hipotesis nula')</pre>
```

Hipotesis 9.b No se rechaza la hipotesis nula