Rank-65871 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_3^3 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431725481

General information

Number of lines	4
Number of points	21
Number of singular points	2
Number of Eckardt points	0
Number of double points	4
Number of single points	12
Number of points off lines	5
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{4}
Type of lines on points	$2^4, 1^{12}, 0^5$

Singular Points

The surface has 2 singular points:

$$0: P_{23} = \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1) 1: P_{27} = \mathbf{P}(1,1,0,1) = \mathbf{P}(1,1,0,1)$$

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \mathbf{Pl}(1,0,0,0,0,0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \mathbf{Pl}(1,0,0,1,0,0)_{10}$$

$$\ell_{2} = \begin{bmatrix} 1 & \omega^{2} & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{80} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{80} = \mathbf{Pl}(0,0,1,1,2,1)_{258}$$

$$\ell_{3} = \begin{bmatrix} 1 & \omega & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{59} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{59} = \mathbf{Pl}(0,0,1,1,3,1)_{318}$$

Rank of lines: (0, 84, 80, 59)

Rank of points on Klein quadric: (0, 10, 258, 318)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 4 Double points:

The double points on the surface are:

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_1$$

$$P_6 = (2, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_7 = (3, 1, 0, 0) = \ell_0 \cap \ell_3$$

 $P_{38} = (0, 0, 1, 1) = \ell_2 \cap \ell_3$

Single Points

The surface has 12 single points:

The single points on the surface are:

$$\begin{array}{l} 0: \ P_0 = (1,0,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_5 = (1,1,0,0) \ \text{lies on line} \ \ell_0 \\ 2: \ P_{23} = (1,0,0,1) \ \text{lies on line} \ \ell_1 \\ 3: \ P_{27} = (1,1,0,1) \ \text{lies on line} \ \ell_1 \\ 4: \ P_{31} = (1,2,0,1) \ \text{lies on line} \ \ell_1 \\ 5: \ P_{35} = (1,3,0,1) \ \text{lies on line} \ \ell_1 \\ 6: \ P_{43} = (2,1,1,1) \ \text{lies on line} \ \ell_2 \end{array}$$

7: $P_{44} = (3, 1, 1, 1)$ lies on line ℓ_3

8: $P_{46} = (1, 2, 1, 1)$ lies on line ℓ_3

9: $P_{48} = (3, 2, 1, 1)$ lies on line ℓ_2

10: $P_{50} = (1, 3, 1, 1)$ lies on line ℓ_2

11: $P_{51} = (2, 3, 1, 1)$ lies on line ℓ_3

The single points on the surface are:

Points on surface but on no line

The surface has 5 points not on any line:

The points on the surface but not on lines are:

$$0: P_{11} = (0, 1, 1, 0)$$
 $3: P_{53} = (0, 0, 2, 1)$ $1: P_{16} = (1, 2, 1, 0)$ $4: P_{69} = (0, 0, 3, 1)$ $2: P_{20} = (1, 3, 1, 0)$

Line Intersection Graph

$$\begin{array}{c|c} 0123 \\ \hline 0 & 0111 \\ 1 & 1000 \\ 2 & 1001 \\ 3 & 1010 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_1	P_6	P_7

Line 1 intersects

Line	ℓ_0
in point	P_1

Line 2 intersects

Line	ℓ_0	ℓ_3
in point	P_6	P_{38}

Line 3 intersects

Line	ℓ_0	ℓ_2
in point	P_7	P_{38}

The surface has 21 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$8: P_{23} = (1,0,0,1)$	16: $P_{48} = (3, 2, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$9: P_{27} = (1, 1, 0, 1)$	17: $P_{50} = (1, 3, 1, 1)$
$2: P_5 = (1, 1, 0, 0)$	$10: P_{31} = (1, 2, 0, 1)$	$18: P_{51} = (2, 3, 1, 1)$
$3: P_6 = (2, 1, 0, 0)$	$11: P_{35} = (1,3,0,1)$	19: $P_{53} = (0, 0, 2, 1)$
$4: P_7 = (3, 1, 0, 0)$	$12: P_{38} = (0,0,1,1)$	$20: P_{69} = (0, 0, 3, 1)$
$5: P_{11} = (0, 1, 1, 0)$	13: $P_{43} = (2, 1, 1, 1)$	
$6: P_{16} = (1, 2, 1, 0)$	$14: P_{44} = (3, 1, 1, 1)$	
$7: P_{20} = (1, 3, 1, 0)$	$15: P_{46} = (1, 2, 1, 1)$	