Breaking the Curse of Dimensionality (Locally) to Accelerate Conditional Gradients

Jelena Diakonikolas ¹, Alejandro Carderera ², Sebastian Pokutta ^{3, 4}

¹UC Berkeley, ²Georgia Institute of Technology, ³Zuse Institute Berlin, ⁴Technische Universität Berlin

December 14th, 2019

$$\min_{x \in \mathcal{X}} f(x)$$

Goal is L-smooth μ -strongly convex optimization over polytope \mathcal{X} .

$$\min_{x \in \mathcal{X}} f(x)$$

Main ingredients:

First-order (FO) oracle. Given $x \in \mathcal{X}$ and a differentiable convex function $f : \mathbb{R}^n \to \mathbb{R}$, return:

$$\nabla f(x) \in \mathbb{R}^n \text{ and } f(x) \in \mathbb{R}$$

Linear optimization (LO) oracle. Given $v \in \mathbb{R}^n$, return:

$$\underset{x \in \mathcal{X}}{\operatorname{argmin}} \langle v, x \rangle$$

Goal is L-smooth μ -strongly convex optimization over polytope \mathcal{X} .

$$\min_{x \in \mathcal{X}} f(x)$$

Main ingredients:

First-order (FO) oracle. Given $x \in \mathcal{X}$ and a differentiable convex function $f : \mathbb{R}^n \to \mathbb{R}$, return:

$$\nabla f(x) \in \mathbb{R}^n$$
 and $f(x) \in \mathbb{R}$

Linear optimization (LO) oracle. Given $v \in \mathbb{R}^n$, return:

$$\underset{x \in \mathcal{X}}{\operatorname{argmin}} \langle v, x \rangle$$

Focus on *Conditional Gradients/Frank-Wolfe* algorithm [FW56; Pol74] and its variants such as the *Away-step Conditional Gradients/Frank-Wolfe* (AFW) algorithm [Wol70; GM86].

Conditional Gradients

000

Away-step Conditional Gradients (AFW)

Choose direction that guarantees more progress:

Figure: Away-step CG (AFW)

1. Frank-Wolfe direction:

$$\underset{y \in \mathcal{X}}{\operatorname{argmin}} \langle \nabla f(x), y \rangle - x.$$

2. Away-step direction:

$$x - \operatorname*{argmax}_{y \in \mathcal{S}} \langle \nabla f(x), y \rangle$$
,

where S is the active set of x.

Conditional Gradients

Convergence rate for L-smooth μ -strongly convex f

Theorem (Convergence rate of AFW)

[LJ15] Suppose that f is L-smooth μ -strongly convex over a polytope \mathcal{X} , the number of steps T required to reach an ϵ -optimal solution to the minimization problem satisfies,

$$\mathcal{T} = \mathcal{O}\left(\frac{L}{\mu}\left(\frac{D}{\delta}\right)^2\log\frac{1}{\epsilon}\right),$$

where D and δ are the diameter and pyramidal width of \mathcal{X} .

CG Global Acceleration

However, we know that optimal methods for this class of functions achieve an ϵ solution in $T = \mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)$ first-order calls [NY83; Nes83].

Can CG achieve these convergence rates **globally**?

CG Global Acceleration

However, we know that optimal methods for this class of functions achieve an ϵ solution in $T=\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)$ first-order calls [NY83; Nes83].

Can CG achieve these convergence rates globally?

Dimension independent global acceleration is not possible [Jag13; Lan13].

Objectives:

• Dimension independent global acceleration.

Objectives:

- Dimension independent global acceleration.
- Dimension independent local acceleration.

Locally Accelerated Conditional Gradients (LaCG)

What do we mean by local acceleration?

After a constant number of iterations that does not depend on ϵ , accelerate the convergence.

Let S_t denote the CG active set at iteration t.

What we know:

 $\exists r > 0 \text{ s.t. if } ||x^* - x_K|| \le r \Rightarrow x^* \in \text{conv}(\mathcal{S}_K).$

Naive Idea: Run an accelerated first-order method (AGD) on $conv(S_K)$.

We would want the following:

We would want the following:

Problem: The value of r is not known, we don't know when to switch from AFW to AGD.

We would want the following:

Problem: The value of r is not known, we don't know when to switch from AFW to AGD.

Challenge: Create algorithm that accelerates without knowledge of r.

• Every H iterations restart AGD and run it over conv (S_t) .

- Every H iterations restart AGD and run it over conv (S_t) .
- Have AGD and AFW compete for progress at each iteration between restarts.

- Every H iterations restart AGD and run it over conv (S_t) .
- Have AGD and AFW compete for progress at each iteration between restarts.
- Space out restarts so that you only loose a factor of 2 in the AGD convergence rate.

What we will obtain:

Locally Accelerated Conditional Gradients (LaCG)

Algorithm 1 Locally Accelerated Conditional Gradients

```
1: Initialize C_0 = S_0, x_0 = x_0^{AFW} = x_0^{AGD}, H = \mathcal{O}\left(\sqrt{\frac{L}{u}}\log\frac{L}{u}\right)
 2: for t = 1 to T do
 3: X_{t+1}^{AFW}, S_{t+1} \leftarrow AFW(X_t^{AFW}, S_t)
                                                                                                        ▷ AFW step
         if Vertex has been added to S since restart then
              if t = Hn for some n \in \mathbb{N} then
 5.
               x_{t+1}^{AGD} \leftarrow \operatorname{argmin}_{x \in \{x_{t}^{AFW}, x_{t}^{AGD}\}} f(x)
                                                                                                    ▶ Restart AGD
 6:
               C_{t+1} \leftarrow \mathsf{Update} based on previous line.
 7:
              else
 8:
               x_{t+1}^{AGD} \leftarrow AGD(x_t^{AGD}, C_t)
                                                                        ▶ Run AGD decoupled from AFW
 g.
               C_{t+1} \leftarrow C_t
10:
              end if
11.
12:
         else
          x_{t+1}^{AGD} \leftarrow AGD(x_t, C_t)
                                                                            13:
          C_{t+1} \leftarrow \operatorname{conv}(S_{t+1})
14:
         end if
15:
      x_{t+1} \leftarrow \operatorname{argmin}_{x \in \{x_{t+1}^{AFW}, x_{t+1}^{AGD}, x_t\}} f(x)
                                                                                                  ▶ Monotonicity
17: end for
```

Analysis relies on the Approximate Duality Gap technique [DO19] and the AGD algorithm used is a *Modified* $\mu AGD+$ algorithm [CDO18; DCP19].

Locally Accelerated Conditional Gradients

000000000000

Theorem (Convergence rate of $\mu AGD+.$)

Let f be L-smooth and μ -strongly convex and let $\{C_i\}_{i=0}^t$ be a sequence of convex subsets of \mathcal{X} such that $\mathcal{C}_i \subseteq \mathcal{C}_{i-1}$ for all i and $x^* \in \bigcap_{i=0}^t C_i$, then the $\mu AGD+$ achieves an ϵ -optimal solution in a number of iterations T that satisfies:

$$\mathcal{T} = \mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon}
ight)$$

Convergence rate of LaCG

Theorem (Convergence rate of LaCG)

Let f be L-smooth and μ -strongly convex and let r be the critical radius. The number of steps T required to reach an ϵ -optimal solution to the minimization problem satisfies:

$$t = \min \left\{ \mathcal{O}\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right), K + \mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right) \right\},$$

where
$$K = \frac{8L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \left(\frac{2(f(x_0) - f^*)}{\mu r^2}\right)$$
.

Theorem (Convergence rate of LaCG)

Let f be L-smooth and μ -strongly convex and let r be the critical radius. The number of steps T required to reach an ϵ -optimal solution to the minimization problem satisfies:

$$t = \min \left\{ \mathcal{O}\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right), K + \mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right) \right\},$$

where
$$K = \frac{8L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \left(\frac{2(f(x_0) - f^*)}{\mu r^2} \right)$$
.

Despite the faster convergence rate after the burn-in phase, how does LaCG perform with respect to other projection-free algorithms?

Simplex in \mathbb{R}^{1500} with $L/\mu=1000$

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time

When close enough to x^* (after burn-in phase), there is a significant speedup in the convergence rate.

Birkhoff polytope in $\mathbb{R}^{400\times400}$ with $L/\mu=100$

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time

(ran14x18-disj-8)

10⁻¹ 0 1000 2000 3000 4000 t[s]

Locally Accelerated Conditional Gradients

000000000000

 10^{3}

 10^{1}

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time

Thank you for your attention.

References I

[FW56]	Marguerite Frank and Philip Wolfe. "An algorithm for
	quadratic programming". In: Naval research logistics
	quarterly 3.1-2 (1956), pp. 95–110.

- [Pol74] Boris Teodorovich Polyak. "Minimization methods in the presence of constraints". In: Itogi Nauki i Tekhniki. Seriya" Matematicheskii Analiz" 12 (1974), pp. 147–197.
- [Wol70] Philip Wolfe. "Convergence theory in nonlinear programming". In: Integer and nonlinear programming (1970), pp. 1–36.
- [GM86] Jacques Guélat and Patrice Marcotte. "Some comments on Wolfe's 'away step". In: Mathematical Programming 35.1 (1986), pp. 110–119.

References II

- [LJ15] Simon Lacoste-Julien and Martin Jaggi. "On the Global Linear Convergence of Frank-Wolfe Optimization Variants". In: Advances in Neural Information Processing Systems 28. 2015, pp. 496–504.
- [NY83] Arkadii Semenovich Nemirovsky and David Borisovich Yudin. "Problem complexity and method efficiency in optimization". In: Wiley-Interscience Series in Discrete Mathematics 15 (1983).
- [Nes83] Y Nesterov. "A method of solving a convex programming problem with convergence rate $O(\frac{1}{k^2})$ ". In: Soviet Math. Dokl. Vol. 27. 1983.
- [Jag13] Martin Jaggi. "Revisiting Frank-Wolfe: Projection-free sparse convex optimization.". In: *ICML* (1). 2013, pp. 427–435.

References III

- [Lan13] G Lan. "The complexity of large-scale convex programming under a linear optimization oracle". In: Technical report, Department of Industrial and Systems Engineering, University of Florida. (2013).
- [DO19] Jelena Diakonikolas and Lorenzo Orecchia. "The approximate duality gap technique: A unified theory of first-order methods". In: SIAM Journal on Optimization 29.1 (2019), pp. 660–689.
- [CDO18] Michael B Cohen, Jelena Diakonikolas, and Lorenzo Orecchia. "On acceleration with noise-corrupted gradients". In: 35nd International Conference on Machine Learning, ICML 2018 (2018).
- [DCP19] Jelena Diakonikolas, Alejandro Carderera, and Sebastian Pokutta. "Locally Accelerated Conditional Gradients". In: arXiv preprint arXiv:1906.07867 (2019).

References IV

- [LZ16] Guanghui Lan and Yi Zhou. "Conditional gradient sliding for convex optimization". In: SIAM Journal on Optimization 26.2 (2016), pp. 1379–1409.
- [LMH15] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. "A universal catalyst for first-order optimization". In: Advances in neural information processing systems. 2015, pp. 3384–3392.

Lower bound on number of iterations.

Can CG achieve these convergence rates **globally**?

Example ([Lan13; Jag13] $f(x) = ||x||^2$ over unit simplex in \mathbb{R}^n .)

We know the optimal solution is given by $x^* = 1/n$. CG can incorporate at most one vertex in each iteration, if we start from a vertex x_0 , in iteration t < n we have that:

$$f(x_t) - f(x^*) \ge \frac{1}{t} - \frac{1}{n}$$
.

$$T = \Omega\left(\frac{1}{r}\log\frac{1}{\epsilon}\right),$$

where $r \leq 2 \frac{\log 2t}{2t}$.

Considering iterations such that $t \leq \lfloor n/2 \rfloor$ and rearranging into a linear convergence contraction we have:

$$T = \Omega\left(\frac{1}{r}\log\frac{1}{\epsilon}\right),$$

where $r \leq 2 \frac{\log 2t}{2t}$.

Convergence rate of the CG variants for this problem instance: $r = \frac{1}{4t}$.

At best a global logarithmic improvement in the convergence rate, therefore global acceleration in Nesterov's sense is not possible.

Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov's Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [LZ16].

Conditional Gradient Sliding (CGS): Run Nesterov's

Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [LZ16].

Catalyst Augmented AFW: Run Accelerated Proximal Method and solve proximal problems with a linearly convergent CG [LMH15].

Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov's Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [LZ16].

Catalyst Augmented AFW: Run Accelerated Proximal Method and solve proximal problems with a linearly convergent CG [LMH15].

Complexity for L-smooth μ -strongly convex f.

Algorithm	LO Calls	FO Calls
CGS	$\mathcal{O}\left(\frac{LD^2}{\epsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)$
Catalyst	$\mathcal{O}\left(\sqrt{rac{L-\mu}{\mu}}\left(rac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{rac{L-\mu}{\mu}}\left(rac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$

10⁴

Additional Examples

Congestion Balancing in Traffic Networks

10³
10²
10¹
10⁰
10-1
0 500 1000 1500
t[s]

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time