

10/516929

DT0516929 PCT/PTO 03 DEC 2004
Attorney's Locket No. 2002DE115

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Express Mail Label Number ER 913328390 US

Date of Mailing: December 3, 2004

CERTIFICATION UNDER 37 CFR 1.10

I hereby certify that on the date indicated above this International application and the documents referred to as enclosed therein, of:

Inventor: Franz-Leo HEINRICHS

For: Side-Chain-Modified Copolymer Waxes

International Application No.: PCT/EP03/05671

International Filing Date: 30/05/2003 (30 May 2003)

Priority Filing Date: 05/08/2002 (08 June 2002)

is being deposited with the United States Postal Service as "Post Office to Addressee" Express Mail addressed to the Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-1450, Mail Stop:, in accordance with 37 CFR 1.10.

Vicki L. Sgro

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung

Aktenzeichen: 102 25 652.7
Anmeldetag: 08. Juni 2002
Anmelder/Inhaber: Clariant GmbH,
Frankfurt am Main/DE
Bezeichnung: Seitenkettenmodifizierte Copolymerwachse
IPC: C 08 F 8/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 20. März 2003
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Wallner

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

Beschreibung**5 Seitenkettenmodifizierte Copolymerwachse**

Die Erfindung betrifft seitenkettenmodifizierte Copolymerwachse aus langkettigen Olefinen, Acrylsäureestern, Acrylsäure und/oder Acrylsäureamiden, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung.

10 Copolymerne mit variierenden Anteilen an Ethylen und Acrylsäure sind weitverbreitet. Sie sind charakterisiert durch einen hohen linearen Kohlenwasserstoffanteil und der Säurefunktion aus der Acrylsäure. Neben Ethylen werden auch andere kurzkettige Olefine und Acrylsäureester eingesetzt. Da es sich bei diesen

15 Umsetzungsprodukten bevorzugt um kunststoffartige Polymere handelt, die einer nachträglichen chemischen Umsetzung nur noch bedingt zugänglich sind, werden bisher zur Modifizierung der Seitenketten die entsprechenden Acrylsäurederivate (beispielsweise Ester oder Amide) direkt eingesetzt.

20 So werden in der US-A-4,413,096 Copolymerne aus Ethylen und Acrylsäureestern aus 2,2,6,6,Tetramethylpiperidinol beschrieben, die durch ihre Funktionalität als Lichtschutzmittel eingesetzt werden können.

25 In der DE 41 39 601 A1 werden Copolymerne aus langkettigen Olefinen mit Acrylsäure und Acrylsäuremethylester beschrieben. Bedingt durch die Wahl der Olefine zeigen diese Produkte stark wachsartigen Charakter. Die Seitenkettenfunktionalität beschränkt sich auf Methyl oder Ethylester der Acrylsäure.

30 Gesucht wird nach Produkten, die wachsartigen Charakter haben, aber in ihren Seitenketten eine zusätzliche Funktionalität aufweisen. Solche Produkte lassen sich bekannterweise herstellen, in dem langkettige Olefine mit den entsprechend modifizierten Acrylsäurederivate copolymerisiert werden. Diese Verfahren sind aber mit einer Reihe von Nachteilen behaftet. So sind Acrylsäurederivate von

langkettigen Alkoholen, fluorierten Alkoholen oder Aminen sehr teuer und aufwendig in der Herstellung und Reinigung. Darüberhinaus verändern sich aminhaltige Derivate in Gegenwart von Peroxiden oder anderen radikalischen Startern der Polymerisationsreaktion, so dass die gewünschten Produkte nicht hergestellt werden können. Andere modifizierte Acrylsäurederivate lassen sich nur schwer oder gar nicht unverändert an das jeweilige Olefin anlagern.

Es ist daher Aufgabe der vorliegenden Erfindung, Copolymerwachse zur Verfügung zu stellen, die auf besonders einfache Art und Weise modifiziert werden können und die die Nachteile aus dem Stand der Technik vermeiden. Außerdem sollen bisher nicht oder nur sehr schwierig herzustellende Produkte leicht bzw. überhaupt zugänglich gemacht werden.

Gelöst wird diese Aufgabe durch seitenkettenmodifizierte Copolymerwachse der eingangs genannten Art, dadurch gekennzeichnet, dass sie hergestellt werden aus wachsartigen Copolymeren von langkettigen α -Olefinen mit 18 bis 60 C-Atomen, Acrylsäuremethylester, Acrylsäure und/oder Acrylsäureamiden, deren Carboxylfunktionalität durch chemische Umsetzung mit nucleophilen Komponenten modifiziert wurde.

Bevorzugt handelt es sich bei den nucleophilen Komponenten um langkettige Alkohole, Perfluoralkylalkohole, kurzkettige Amine, langkettige Amine und/oder Aminoalkohole.

Bevorzugt handelt es sich bei den langkettigen Alkoholen um Talgfettalkohol, Kokosfettalkohol, Oxoalkoholen und/oder Guerbetalkohol.

Bevorzugt handelt es sich bei den Perfluoralkoholen um C₈-C₁₈-Perfluoralkylpropanol und Destillatschnitte dieser Alkohole.

Destillatschnitt: Die Destillation ist eine physikalische Trennmethode, bei welcher die unterschiedlichen Siedepunkte der Bestandteile (Komponenten) eines Gemisches zur Trennung ausgenutzt werden. In ihrer einfachsten Variante wird die aus dem Kühler herabtropfende Flüssigkeit in kleinen Anteilen nacheinander und getrennt

aufgefangen. Dieser Vorgang wird solange fortgesetzt, bis der grösste Teil des ursprünglichen Volumens destilliert ist. Danach untersucht man mit einer geeigneten Methode die Zusammensetzung der einzelnen Anteile (Fraktionen). Diese

Fraktionen werden auch als Destillationsschnitt (Destillatschnitt) bezeichnet. Die

5 Zusammensetzung dieser Fraktionen hängt von den Siedepunktsunterschieden der einzelnen Komponenten und den Destillationsbedingungen ab.

Bevorzugt handelt es sich bei den kurzkettigen Amine um Butylamin,

Dimethylaminopropylamin, Diethylaminoethanol, Tetramethylpiperidinol und/oder

10 Triacetondiamin.

Bevorzugt handelt es sich bei den langkettigen Aminen um Octylamin, Decylamin,

Dodecylamin, Talgfettamin, Cocosfettamin, Didecylamin und/oder Cyclohexylamin.

Unter langkettigen Verbindungen versteht man in der Technik üblicherweise solche

15 mit Alkylkettenlängen > C8 wie sie in Netzmitteln, Surfactants und Wachsen vorkommen. Es können sowohl lineare aliphatische als auch verzweigte aliphatische und cycloaliphatische Substanzen unter diesen Begriff fallen.

Bevorzugt handelt es sich bei den Alkanolaminen um Diethylaminoethanol, 2,2,6,6-

20 Tetramethylpiperidinol, N-Methyl-2,2,6,6-tetramethylpiperidinol, N-Acetyl-2,2,6,6-tetramethylpiperidinol und/oder 2,2,6,6-Tetramethylpiperidinol N-Oxid.

Die vorliegende Aufgabe wird auch gelöst durch ein Verfahren zur Herstellung von seitenkettenmodifizierten Copolymerwachsen, dadurch gekennzeichnet, dass man

25 zunächst langkettige Alpha-Olefine mit 18 bis 60 C-Atomen mit Acrylsäureestern, Acrylsäure und/oder Acrylsäureamiden zu langkettigen Copolymerwachsen umsetzt und diese anschließend mit nucleophilen Komponenten zu den seitenkettenmodifizierten Copolymerwachsen umsetzt.

30 Bevorzugt handelt es sich bei den nucleophilen Komponenten, wie sie für das vorgenannte Verfahren eingesetzt werden können, um langkettige Alkohole wie Talgfettalkohol, Kokosfettalkohol, Oxoalkoholen und/oder Guerbetalkohol;

um Perfluoralkylalkohol wie C₈-C₁₈-Perfluoralkylpropanol und Destillatschnitte dieser Alkohole; um kurzkettige Amine wie Butylamin, Dimethylaminopropylamin, Diethylaminoethanol, Tetramethylpiperidinol und/oder Triacetondiamin; um langkettige Amine, wie Octylamin, Decylamin, Dodecylamin, Talgfettamin,

5 Cocosfettamin, Didecylamin und/oder Cyclohexylamin und/oder um Alkanolamine, Wie Diethylaminoethanol, 2,2,6,6-Tetramethyl-piperidinol, N-Methyl-2,2,6,6-tetramethylpiperidinol, N-Acetyl-2,2,6,6-tetramethyl-piperidinol und/oder 2,2,6,6-Tetramethylpiperidinol N-Oxid handelt.

10 Die Erfindung betrifft ebenfalls die Verwendung der erfindungsgemäßen seitenkettenmodifizierten Copolymerwachse in emulgierter Form für Beschichtungen und die Wasserabweisendauswirkung.

Die seitenkettenmodifizierten Copolymerwachse finden auch Verwendung in

15 mikronisierter Form als Mattierungsmittel, Slipmittel, Antikratzmittel und zur Verbesserung der Chemikalienbeständigkeit.

Sie finden ebenfalls Verwendung in Form von Gleitmitteln, Dispergiermittel bzw. Lichtschutzmittel als Verarbeitungshilfsmittel für Kunststoffe.

20 Der Begriff Carboxylfunktionalität wird wie folgt erläutert:
 Bei der Copolymerisation von Olefinen mit Acrylsäure und Acrylsäureestern entstehen Polymere, in denen Carbonsäure- und Esterfunktionen enthalten sind.
 Diese Funktionen werden üblicherweise als Carboxylfunktionen bezeichnet. In den
 25 Rohstoffen sind es die Funktionalität der Säure COOH und des Methylesters COOCH₃, die in den erfindungsgemäßen Umsetzungsprodukten zu COOR und CONR¹ R² verändert werden. Hierbei sind unter R Alkylgruppen zu verstehen die nicht CH₃ sind.

30 Die Erfindung wird durch die nachstehenden Beispiele erläutert. Es wurden die folgenden Bestimmungsmethoden angewandt:

- Tropfpunkt DIN 51801/", ASTM D 127
- Erweichungspunkt DIN EN 1427, ASTM E 28, ASTM D 36

-	Säurezahl	DIN 53402, ASTM 1386
-	Verseifungszahl	DIN 53401 ASTM 1387
-	Dichte	DIN 53479 ASTM D 1298, D 1505
-	Viskosität	DIN 51562 DIN 53018
5	- Hydroxylzahl	OHZ DGF M IV 6 (57)

Herstellbeispiele

Vergleichsbeispiel 1:

10 Copolymer aus C₃₀-α-Olefinen mit Acrylsäure/Acrylsäuremethylester

Ansatz:

C ₃₀ -α-Olefin	1 mol
Acrylsäure	0,3 mol
15 Acrylsäuremethylester	2,5 mol
di-tert.-Butylperoxid	5 Gew.-% auf Acrylsäuremethylester

Verfahren:

Das Olefin wird bei 100°C aufgeschmolzen, der Ansatz auf 150°C erhitzt, dann
 20 di-tert.-Butylester, Acrylsäuremethylester und Acrylsäure zudosiert und es wird
 5 Stunden nachgerührt. Die freien Monomere werden abdestilliert.

Säurezahl:	5
Viskositätszahl (cm ³ /g):	149
25 Tropfpunkt (°C):	76,5
Molekulargewicht:	ca. 3.000

Vergleichsbeispiel 2:

Copolymer aus C₂₀/C₂₂-α-Olefin mit Acrylsäuremethylester

30

Ansatz:

C ₂₀ /C ₂₂ -α-Olefin	1 mol
Acrylsäure	0,1 mol

Acrylsäuremethylester	1,5 mol
di-tert.-Butylperoxid	5 Gew.-% auf Acrylsäuremethylester

Verfahren:

5 Das Olefin wird bei 100°C aufgeschmolzen, der Ansatz auf 150°C erhitzt, dann di-tert.-Butylperoxid, Acrylsäuremethylester und Acrylsäure zudosiert und es wird 5 Stunden nachgerührt. Die freien Monomere werden abdestilliert.

Säurezahl:	15
10 Viskositätszahl (cm ³ /g):	180
Tropfpunkt (°C):	56,5
Molekulargewicht:	ca. 5.000

Vergleichsbeispiel 3:

15 Copolymer aus C₃₀-α-Olefin mit Acrylsäuremethylester

Ansatz:

C ₃₀ -α-Olefin	1 mol
Acrylsäuremethylester	1,5 mol
20 di-tert.-Butylperoxid	5 Gew.-% auf Acrylsäuremethylester

Verfahren:

Das Olefin wird bei 100°C aufgeschmolzen, der Ansatz auf 150°C erhitzt, dann di-tert.-Butylperoxid und Acrylsäuremethylester zudosiert und es wird 3 Stunden nachgerührt. Die freien Monomere werden abdestilliert.

Säurezahl:	1
Viskositätszahl (cm ³ /g):	101
Tropfpunkt (°C):	71,3
30 Molekulargewicht:	ca. 3.500

Vergleichsbeispiel 4:

Copolymer aus C₁₈-α-Olefin mit Acrylsäuremethylester

Ansatz:

C ₁₈ - α -Olefin	1 mol
Acrylsäuremethylester	2,5 mol
di-tert.-Butylperoxid	5 Gew.-% auf Acrylsäuremethylester

5

Verfahren:

Das Olefin wird bei 100°C aufgeschmolzen, der Ansatz auf 150°C erhitzt, dann di-tert.-Butylperoxid und Acrylsäuremethylester zudosiert und es wird 5 Stunden nachgerührt. Die freien Monomere werden abdestilliert.

10

Säurezahl:	1
Viskositätszahl (cm ³ /g):	385
Tropfpunkt (°C):	46,5
Molekulargewicht:	ca. 5.000
15 Schmelzviskosität (160 l):	2060 mPas

Erfindungsgemäße Beispiele:**Beispiel 1: Mit Talgfettalkoholseitenketten modifiziertes Copolymerwachs**

20 Copolymer gemäß Vergleichsbeispiel 3	1 mol,
Talgfettalkohol	0,5 mol,
Na-Methylat	0,3 Gew.-% auf Ansatz

Verfahren:

25 Das Copolymer wird bei 100°C aufgeschmolzen, mit dem Katalysator (Na-Methylat) und der Alkoholkomponente (Talgfettalkohol) versetzt und auf 180°C erhitzt. Bei dieser Temperatur wird 7 Stunden gerührt und freiwerdendes Methanol abdestilliert. Dann wird Vakuum angelegt, um Reste an Methanol und andere Alkohole abzudestillieren, es wird mit Phosphorsäure neutralisiert, auf 120°C abgekühlt und	
30 filtriert.	

Säurezahl:	10
Viskositätszahl (cm ³ /g):	80

Tropfpunkt (°C): 74,3

Das Produkt eignet sich als Gleitmittel für PVC mit heller Farbe und über den Austauschgrad einstellbare Polarität, sowie als Dispergierhilfsmittel für Pigmente

5

Beispiel 2:

Mit Perfluoralkylpropanol-(C₁₂-C₁₄)-seitenketten modifiziertes Copolymerwachs

Copolymer gemäß Vergleichsbeispiel 1 1 mol

10 C₁₂-C₁₄-Perfluoralkylpropanol 0,12 mol

Na-Methylat 0,3 Gew.-% auf Ansatz

Verfahren:

Das Copolymer wird bei 100°C aufgeschmolzen, mit dem Katalysator (Na-Methylat) und der Alkoholkomponente (C₁₂-C₁₄-Perfluoralkylpropanol) versetzt und auf 180°C erhitzt. Bei dieser Temperatur wird 7 Stunden gerührt und freiwerdendes Methanol abdestilliert. Dann wird Vakuum angelegt um Reste an Methanol und andere Alkohole abzudestillieren, es wird mit Phosphorsäure neutralisiert, auf 120°C abgekühlt und filtriert.

20

Säurezahl: 10

Viskositätszahl (cm³/g): 145

Tropfpunkt (°C): 70,3

Schmelzviskosität (100°C): 572 mPas

25

Das Produkt eignet sich zur Herstellung von Emulsionen mit wasserabweisender Wirkung, Autopolituren, Textilemulsionen sowie zur Herstellung von Mikronisaten mit ca. 10 Mikron Partikelgröße und zur Einstellung von Glanz und Rutschigkeit in wässrigen und lösemittelbasierenden Lacken.

30

Emulsionsrezept:

Versuchswachs gemäß Beispiel 3 5,0 g

®Licowax KSL 15,0 g

Wachsemulgator 4106	3,0 g
Olein	1,0 g
KOH	0,4 g
Wasser	75,6 g

5

Lackrezeptur:

K-PUR Lack	98,0 g
Wachs gemäß Beispiel 2 mikronisiert	2,0 g

10 **Glanzwert bei 60°C**

55 Einheiten gegenüber 140 ohne Zusatz = gute Mattierung

Gleitreibung bei 0,914 kg Belastung

0,16 g gegenüber 0,35 g ohne Zusatz = guter Scheuerschutz

15

Wasser und Alkoholbeständigkeit

kein Anlösen gegenüber erkennbarem Anlösen ohne Zusatz

= gute Wasser- und Alkoholfestigkeit

20 **Beispiel 3:**

Mit Triacetondiaminseitenketten modifiziertes Copolymerwachs

Copolymer gemäß Vergleichsbeispiel 1	1 mol
Triacetondiamin	0,25 mol
[®] Fascat 4102	0,2 Gew.-% auf Ansatz

Verfahren:Das Copolymer wird bei 100°C aufgeschmolzen, mit dem Katalysator ([®]Fascat 4102) und der Aminkomponente versetzt und auf 190°C erhitzt. Bei dieser

30 Temperatur wird 7 Stunden gerührt und freiwerdendes Methanol abdestilliert. Dann wird Vakuum angelegt um Reste an Methanol und Amin abzudestillieren, es wird auf 120°C abgekühlt und filtriert.

Säurezahl:	10
Viskositätszahl (cm ³ /g):	145
Tropfpunkt (°C):	70,3
Schmelzviskosität (100°C):	572 mPas

5

Anwendungsempfehlung:

Lichtschutzmittel für sehr dünne Polypropylenanwendungen, Bändchenware mit reduzierter Wasserhaftung.

10 Anwendungsprüfung

water carry over effect = wco (Mengenmäßige Bewertung der Wasseraufnahme bei der Herstellung, die Bewertung erfolgt nach einer Skalierungsmethode von 1-5)

*Mosten 58.412 Polypropylen + 0,15 Teile Hilfsmittel

15 *(tschechisches Polypropylen)

extrudiert zu Bändchen mit 100 micron Filmdicke

Extruder: 270°C, 92 rpm, 4 m/min

[®]Chimasorb 944 5 wco value

20 [®]Hostavin N 24 4 wco value

[®]Tinuvin 622 2 wco value

Versuchsprodukt gemäß Beispiel 3 0 wco value

Die Bewertung erfolgte auf einer Skale von 0-5, mit 0 = keine Wasseraufnahme
 25 und 1-5 steigende Wasseraufnahme, ab 3 wurde eine technische Nutzung als ausgeschlossen eingestuft.

Beispiel 4:

Mit Triacetondiamin seitenkettenmodifiziertes Copolymerwachs

30 Copolymer gemäß Vergleichsbeispiel 4 1 mol

Triacetondiamin 0,5 mol

[®]Fascat 4102 0,2 Gew.-% auf Ansatz

Verfahren:

Das Copolymer wird bei 100°C aufgeschmolzen, mit dem Katalysator (^Fascat 4102) und der Aminkomponente versetzt und auf 190°C erhitzt. Bei dieser

5 Temperatur wird 7 Stunden gerührt und freiwerdendes Methanol abdestilliert. Dann wird Vakuum angelegt um Reste an Methanol und Amin abzudestillieren und auf 150°C abgekühlt und filtriert.

Säurezahl: 18

Viskositätszahl (cm³/g): 136

10 **Tropfpunkt (°C):** 120°C

Alkalizahl: 67,8

Schmelzviskosität (170°C): 572 mPas

Anwendungsempfehlung:

15 Verarbeitungshilfsmittel für Polyolefine und Pigmentdispergierung mit Lichtschutzwirkung.

Anwendungsprüfung:

0,1 mm Filme gepresst aus PP mit 0,15 % Wirksubstanz oder

20 **Wirksubstanzequivalenten**

Wirksubstanz	Zeit bis zur Zersetzung in Stunden
®Hostavin N20	2100
®Hostavin N30	2000
®Cimasorb 944	2000
®Tinuvin 770	1400
Versuchsprodukt gemäß Beispiel 4	2100

Beispiel 5:

25 Mit 2,2,6,6-Tetramethylpiperidinol seitenkettenmodifiziertes Copolymerwachs

Copolymer gemäß Vergleichsbeispiel 1 1 mol

2,2,6,6 Tetramethylpiperidinol	0,6 mol
®Fascat 4102	0,2 Gew.-% auf Ansatz

Verfahren:

5 Das Copolymer wird bei 100°C aufgeschmolzen, mit dem Katalysator und der Aminkomponente versetzt und auf 190°C erhitzt. Bei dieser Temperatur wird 7 Stunden gerührt und freiwerdendes Methanol abdestilliert. Dann wird Vakuum angelegt um Reste an Methanol und Amin abzudestillieren, es wird auf 150°C abgekühlt und filtriert.

10

Säurezahl:	8
Viskositätszahl (cm ³ /g):	136
Tropfpunkt (°C):	68
Alkalizahl:	21
15 Schmelzviskosität (170°C):	76 mPas

Das Produkt findet Verwendung als Verarbeitungshilfsmittel in Polypropylen mit Lichtschutzwirkung.

20 Beispiel 6:

Mit Triacetondiamin seitenkettenmodifiziertes Copolymerwachs

Copolymer gemäß Vergleichsbeispiel 1	1 mol
Triacetondiamin	0,6 mol,
25 ®Fascat 4102	0,2 Gew.-% auf Ansatz

Das Copolymer wird bei 100°C aufgeschmolzen, mit dem Katalysator und der Aminkomponente versetzt und auf 190°C erhitzt. Bei dieser Temperatur wird 7 Stunden gerührt und freiwerdendes Methanol abdestilliert. Dann wird Vakuum angelegt um Reste an Methanol und Amin abzudestillieren, es wird auf 150°C abgekühlt und filtriert.

Säurezahl:	16
Viskositätszahl (cm ³ /g):	82
Tropfpunkt (°C):	113
Alkalizahl:	67,8
5 Schmelzviskosität (170°C):	572 mPas

Beispiel 7:

Mit Diethylaminopropylamin seitenkettenmodifiziertes Copolymerwachs

10	Copolymer gemäß Vergleichsbeispiel 4	1 mol
	Diethylaminopropylamin	0,6 mol
	®Fascat 4102	0,2 Gew.-% auf Ansatz

Das Copolymer wird bei 100°C aufgeschmolzen, mit dem Katalysator und der
 15 Aminkomponente versetzt und auf 190°C erhitzt. Bei dieser Temperatur wird
 7 Stunden gerührt und freiwerdendes Methanol abdestilliert. Dann wird Vakuum
 angelegt um Reste an Methanol und Amin abzudestillieren, es wird auf 150°C
 abgekühlt und filtriert.

20	Säurezahl:	5
	Viskositätszahl (cm ³ /g):	82
	Tropfpunkt (°C):	118
	Alkalizahl:	74
	Schmelzviskosität (170°C):	572 mPas

25 Anwendungsempfehlung:
 Kationisch emulgierbares Wachs für wasserfeste Beschichtungen, Autopolituren,
 Fußböden, Pflanzenschutz

30	Rezeptur:	
	Versuchswachs gemäß Beispiel 7	22,5 g
	Wachsemulgator	2,25 g
	Essigsäure	1,5 g

Wasser	73,75 g
--------	---------

Beispiel 8:

Mit Octylamin Seitenkettenmodifiziertes Copolymerwachs

5

Copolymer gemäß Vergleichsbeispiel 1	1 mol
Octylamin	0,6 mol
®Fascat 4102	0,2 Gew.-% auf Ansatz

10 Das Copolymer wird bei 100°C aufgeschmolzen, mit dem Katalysator und der Aminkomponente versetzt und auf 190°C erhitzt. Bei dieser Temperatur wird 7 Stunden gerührt und freiwerdendes Methanol abdestilliert. Dann wird Vakuum angelegt um Reste an Methanol und Amin abzudestillieren, es wird auf 150°C abgekühlt und filtriert.

15

Säurezahl:	16
Viskositätszahl (cm ³ /g):	45
Tropfpunkt (°C):	95
Alkalizahl:	3
20 Schmelzviskosität (170°C):	360 mPas

Dispergierhilfsmittel in technischen Thermoplasten

Zusammenfassung der erfindungsgemäßen Beispiele:

25

Nach dem Stand der Technik verfügbare Copolymerne basieren im wesentlichen auf Umsetzungen von Ethylen oder langkettenigen Olefinen mit Acrylsäure oder Acrylsäureestern. Im Falle des Ethylens handelt es sich um Kunststoffe, die nicht weiter modifiziert werden können, im Falle der langkettenigen Olefine handelt es sich 30 um wachsartige Verbindungen. Spezielle Funktionalität wird nach dem Stand der Technik durch Einbau entsprechender Acrylsäurederivate, z.B. Stearylacrylat, 2,2,6,6-Tetramethylpiperidinyacrylat, Perfluoralkyl-acrylat, N-Octylacrylamid etc. erreicht.

Wirtschaftlicher und leichter in der Funktionalität zu steuern ist die chemische Modifizierung von wachsartigen Copolymeren aus langkettigen Olefinen und Acrylsäureverbindungen gemäß der vorliegenden Erfindung. Hier kann die Acrylsäureverbindung durch geeignete Reaktionsführung mit den gewünschten 5 funktionellen Komponenten umgesetzt werden. Es können so wachsartige Polymere (Copolymerwachse) für vielfältige Anwendungszwecke hergestellt werden.

Patentansprüche:

2002DE115

- 1) Seitenkettenmodifizierte Copolymerwachse aus langkettigen Olefinen, Acrylsäureestern und Acrylsäure und/oder Acrylsäureamiden, dadurch gekennzeichnet, dass sie hergestellt werden aus wachsartigen Copolymeren von langkettigen α -Olefinen mit 18 bis 60 C-Atomen, Acrylsäuremethylester, Acrylsäure und/oder Acrylsäureamiden, deren Carboxylfunktionalität durch chemische Umsetzung mit nucleophilen Komponenten modifiziert wurde.
- 5 10 2) Seitenkettenmodifizierte Copolymerwachse nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei den nucleophilen Komponenten um langkettig Alkohole, Perfluoralkylalkohole, kurzkettige Amine, langkettige Amine und/oder Aminoalkohole handelt.
- 15 3) Seitenkettenmodifizierte Copolymerwachse nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei den langkettigen Alkoholen um Talgfettalkohol, Kokosfettalkohol, Oxoalkoholen, und/oder Guerbetalkohol handelt.
- 4) Seitenkettenmodifizierte Copolymerwachse nach Anspruch 1 oder 2, dadurch 20 gekennzeichnet, dass es sich bei den Perfluoralkylalkoholen um C₈-C₁₈-Perfluoralkylpropanol und Destillatschnitte dieser Alkohole handelt.
- 5) Seitenkettenmodifizierte Copolymerwachse nach Anspruch 1 oder 2, dadurch 25 gekennzeichnet, dass es sich bei den kurzkettigen Aminen um Verbindungen wie Butylamin, Dimethylaminopropylamin, Diethylaminoethanol, Tetramethylpiperidinol und/oder Triacetondiamin handelt.
- 6) Seitenkettenmodifizierte Copolymerwachse nach Anspruch 1 oder 2, dadurch 30 gekennzeichnet, dass es sich bei den langkettigen Aminen um Verbindungen wie Octylamin, Decylamin, Dodecylamin, Talgfettamin, Cocosfettamin, Didecylamin und/oder Cyclohexylamin handelt.

7) Seitenkettenmodifizierte Copolymerwachse nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei den Alkanolaminen um Diethylaminoethanol, 2,2,6,6-Tetramethylpiperidinol, N-Methyl-2,2,6,6-tetramethylpiperidinol, N-Acetyl-2,2,6,6-tetramethylpiperidinol und/oder 2,2,6,6-Tetramethylpiperidinol N-Oxid handelt.

8) Verfahren zur Herstellung von seitenkettenmodifizierten Copolymerwachsen nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man zunächst langkettige α -Olefine mit 18 bis 60 C-Atomen mit Acrylsäureestern, 10 Acrylsäure und/oder Acrylsäureamiden zu langkettigen Copolymerwachsen umsetzt und diese anschließend mit nucleophilen Komponenten zu den seitenkettenmodifizierten Copolymerwachsen umsetzt.

9) Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass es sich bei den 15 nucleophilen Komponenten um langkettige Alkohole, wie Talgfettalkohol, Kokosfettalkohol, Oxoalkoholen und/oder Guerbetalkohol; um Perfluoralkylalkohol wie C₈-C₁₈-Perfluoralkylpropanol und Destillatschnitte dieser Alkohole; um kurzkettige Amine wie Butylamin, Dimethylaminopropylamin, Diethylaminoethanol, Tetramethylpiperidinol und/oder Triacetondiamin; um langkettige Amine wie 20 Octylamin, Decylamin, Dodecylamin, Talgfettamin, Cocosfettamin, Didecylamin und/oder Cyclohexylamin und/oder um Alkanolamine, wie Diethylaminoethanol, 2,2,6,6-Tetramethylpiperidinol, N-Methyl-2,2,6,6-tetramethylpiperidinol, N-Acetyl-2,2,6,6-tetramethylpiperidinol und/oder 2,2,6,6-Tetramethylpiperidinol N-Oxid handelt.

25

10) Verwendung von seitenkettenmodifizierten Polymerwachsen nach mindestens einem der Ansprüche 1 bis 7 in emulgierter Form für Beschichtungen und Wasserabweisendausrüstung.

30 11) Verwendung von seitenkettenmodifizierten Polymerwachsen nach mindestens einem der Ansprüche 1 bis 7 in mikronisierter Form als Mattierungsmittel, Slipmittel, Antikratzmittel und zur Verbesserung der Chemikalienbeständigkeit.

12) Verwendung von seitenkettenmodifizierten Polymerwachsen nach mindestens einem der Ansprüche 1 bis 7 als Verarbeitungshilfsmittel für Kunststoffe in Form von Gleitmitteln, Dispergiermitteln und/oder Lichtschutzmitteln.

Zusammenfassung

2002DE115

Seitenkettenmodifizierte Copolymerwachse aus langkettigen Olefinen und
Acrylsäurederivaten

5 Die Erfindung betrifft Seitenkettenmodifizierte Copolymerwachse aus langkettigen Olefinen, Acrylsäureestern und Acrylsäure und/oder Acrylsäureamiden, dadurch gekennzeichnet, dass sie hergestellt werden aus wachsartigen Copolymeren von langkettigen α -Olefinen mit 18 bis 60 C-Atomen, Acrylsäuremethylester, Acrylsäure
10 und/oder Acrylsäureamiden, deren Carboxylfunktionalität durch chemische Umsetzung mit nucleophilen Komponenten modifiziert wurde.

Die Erfindung betrifft ebenfalls ein Verfahren zur Herstellung solcher Copolymerwachse und deren Verwendung.

15

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.