$$\begin{array}{c} (x, \xi, \lambda) \\ \frac{k_{A,B} + \omega_{EO} d\omega_{P} + \omega_{P}}{S} \\ \frac{k_{A,B} + \omega_{P}}{$$

Зміст

1	Кла	Класи множин		
	1.1	Основні класи множин	3	
	1.2	Породжені класи множин	5	
	1.3	Борельові множини	7	
2	Міри			
	2.1	Основні функції множин	9	
	2.2	Означення міри	9	
	2.3	Про міру Жордана	1	
	2.4		.3	
	2.5		.5	
	2.6		6	
	2.7		.8	
	2.8	1	9	
3	Вимірні функції			
	3.1	Основні означення		
	3.2		22	
	3.3		23	
	3.4	1 10	25	
	3.5		26	
	3.6		27	
	3.7	1	28	
4	Тнте	еграл Лебега	1	
	4.1	Первинні означення		
	4.2	1	3	
	4.3		34	
	4.4	1/1	7	
	4.5	Порівняння інтеграла Рімана з інтегралом Лебега		
	4.6	Інтеграл з параметром		
	4.7	Заміна змінної		
	4.1			
5	Зар			
	5.1	Основні означення. Розклад Гана		
	5.2	Теорема Радона-Нікодима	:5	
			9	
	6.1	- V	19	
	6.2		60	
	6.3	Теорема Тонеллі та Фубіні	3	
7	1 1 P		6	
	7.1	Основні нерівності	6	
	7.2	Конструкція простору L_p	7	
	7.3		8	
	7.4		9	
	7.5		31	
	7.6		32	

Класи множин 1

1.1 Основні класи множин

Definition 1.1.1 Задано X – деяка множина та $\mathcal{K} \subset 2^X$ – клас підмножин. Непорожній клас \mathcal{K} називається **кільцем**, якщо

$$\forall A, B \in \mathcal{K} : A \cup B \in \mathcal{K}$$

 $\forall A, B \in \mathcal{K} : A \setminus B \in \mathcal{K}$

Proposition 1.1.2 Властивості кільця

Задано X та \mathcal{K} – кільце на цій множині. Тоді виконуються такі пункти:

- 1) $\emptyset \in \mathcal{K}$;

1)
$$\emptyset \in \mathcal{K}$$
;
2) $\forall A, B \in \mathcal{K} : A \cap B \in \mathcal{K}$;
3) $\forall A_k \in \mathcal{K}, k = \overline{1, n} : \bigcup_{k=1}^n A_k \in \mathcal{K}, \bigcap_{k=1}^n A_k \in \mathcal{K}$.

Покажемо виконання кожної властивості:

- 1) Оскільки \mathcal{K} непорожня, то існує елемент $A \in \mathcal{K}$. Зокрема $A \setminus A = \emptyset \in \mathcal{K}$;
- 2) $\forall A, B \in \mathcal{K} : A \cap B = A \setminus (A \setminus B)$. За умовою кільця, $A \setminus B \in \mathcal{K}$ та $A \in \mathcal{K}$, а тому $A \cap B \in \mathcal{K}$.
- 3) Перше випливає з означення кільця, а друге випливає з властивості 2).

Всі властивості доведені.

Definition 1.1.3 Задано X – деяка множина та $\mathcal{A} \subset 2^X$ – клас підмножин. Непорожній клас \mathcal{A} називається **алгеброю**, якщо

$$\mathcal{A}$$
 – кільце $X \in \mathcal{A}$

Definition 1.1.4 Задано X – деяка множина та \mathcal{P} – клас підмножин.

Непорожній клас \mathcal{P} назвемо **півкільцем**, якщо

$$\forall A, B \in \mathcal{P} : A \cap B \in \mathcal{P}$$

$$\forall A, B \in \mathcal{P} : A \setminus B = \bigsqcup_{i=1}^{n} C_i, \ C_i \in \mathcal{P}$$

Remark 1.1.5 $\emptyset \in \mathcal{P}$, тому що в силу непорожньості $A \in \mathcal{P}$, а тому за другою умовою, з одного

боку, $A\setminus A=\bigsqcup_{i=1}^n C_i$ при $C_i\in\mathcal{P};$ а з іншого боку, $A\setminus A=\emptyset.$ Тому рівність виконується лише при

Example 1.1.6 Розглянемо $\mathcal{P}_1 = \{(a,b] \mid a,b \in \mathbb{R}\}$ – клас підмножин \mathbb{R} . Воно утворює півкільце. Нехай $(a,b] \in \mathcal{P}_1$ та $(c,d] \in \mathcal{P}_1$. Тоді звідси $(a,b] \cap (c,d]$ кілька опцій:

- 1) $(a,b]\cap(c,d]=\emptyset\in\mathcal{P}_1,$ якщо ці напівінтервали не перетинаються;
- 2) $(a, b] \cap (c, d) = (c, b) \in \mathcal{P}_1$, якщо (не втрачаючи загальності) a < c < b < d;
- 3) $(a, b] \cap (c, d] = (c, d] \in \mathcal{P}_1$, якщо (не втрачаючи загальності) $(c, d] \subset (a, b]$.

Відповідно зліва направо: 1), 2), 3).

Далі розглянемо $(a, b] \setminus (c, d]$. Знову кілька опцій:

- 1) $(a,b] \setminus (c,d] = (a,b]$, якщо ці напівінтервали не перетинаються;
- 2) $(a, b] \setminus (c, d] = (a, c]$, якщо (не втрачаючи загальності) a < c < b < d;
- 3) $(a, b] \setminus (c, d] = (a, c] \sqcup (b, d]$, якщо (не втрачаючи загальності) $(c, d] \subset (a, b]$.

Усі вони розклалися не неперетинне об'єднання елементів з \mathcal{P}_1 .

Отже, \mathcal{P}_1 – дійсно утворює півкільце.

Theorem 1.1.7 Задані \mathcal{P}' та \mathcal{P}'' – два півкільця на відповідних множинах X_1, X_2 . Визначимо $\mathcal{P}' \times \mathcal{P}'' = \{A_1 \times A_2 \mid A_1 \in \mathcal{P}', A_2 \in \mathcal{P}''\}$. Тоді $\mathcal{P}' \times \mathcal{P}''$ буде півкільцем на множині $X_1 \times X_2$.

Нехай $A,B\in\mathcal{P}'\times\mathcal{P}''$, тобто $A=A_1\times A_2$ та $B=B_1\times B_2$, де $A_1,B_1\in\mathcal{P}'$ та $A_2,B_2\in\mathcal{P}''$.

 $A \cap B = (A_1 \times A_2) \cap (B_1 \times B_2) = (A_1 \cap B_1) \times (A_2 \cap B_2).$

Причому $A_1 \cap B_1 \in \mathcal{P}'$ та $A_2 \cap B_2 \in \mathcal{P}''$ за визначеннями півкілець. А за визначенням $\mathcal{P}' \times \mathcal{P}''$, звідси $A \cap B \in \mathcal{P}' \times \mathcal{P}''$.

 $A \setminus B = [(A_1 \setminus B_1) \times A_2] \sqcup [(A_1 \cap B_1) \times (A_2 \setminus B_2)]$ (вправа: довести рівність). Зауважимо, що $A_1 \setminus B_1 = \bigsqcup_{i=1}^n C_i$ та $A_2 \setminus B_2 = \bigsqcup_{k=1}^m D_k$, причому $C_i \in \mathcal{P}', D_k \in \mathcal{P}''$. Значить, рівність можна дописати:

$$A \setminus B = \bigsqcup_{i=1}^{n} (C_i \times A_2) \sqcup \bigsqcup_{k=1}^{m} ((A_1 \cap B_1) \times D_k).$$

 $A\setminus B=\bigsqcup_{i=1}^n(C_i imes A_2)\sqcup\bigsqcup_{k=1}^m((A_1\cap B_1) imes D_k).$ У нас записані елементи з $\mathcal{P}' imes \mathcal{P}''$, а сама множина $A\setminus B$ записалася як неперетинне об'єднання

Висновок: $\mathcal{P}' \times \mathcal{P}''$ задає півкільце на $X_1 \times X_2$.

Remark 1.1.8 Зрозуміло, що твердження працює для скінченного числа півкілець.

Example 1.1.9 Зокрема \mathcal{P}_1 – півкільце на \mathbb{R} . Визначимо нову множну $\mathcal{P}_d = \left\{\prod_{i=1}^a (a_i,b_i] \mid a_i,b_i \in \mathbb{R}\right\}$.

Тоді \mathcal{P}_d буде півкільцем множини \mathbb{R}^d , просто тому що $\mathcal{P}_d = \mathcal{P}_1 \times \cdots \times \mathcal{P}_d$

Remark 1.1.10 Будь-яке кільце \mathcal{K} – автоматично півкільце.

Адже перша умова виконана за властивістю 2) кільця. А також за означенням, $A \setminus B = A \setminus B$, де $A \setminus B \in \mathcal{K}$ – тобто цей елемент розписали не неперетинне об'єднання з одного елемента з даного класу.

Definition 1.1.11 Задано X – деяка множина та $\sigma \mathcal{K} \subset 2^X$ – клас підмножин. Непорожній клас $\sigma \mathcal{K}$ називається σ -кільцем, якщо

$$\forall A_n \in \sigma \mathcal{K}, n \ge 1 : \bigcup_{n=1}^{\infty} A_n \in \sigma \mathcal{K}$$

$$\forall A_n \in \sigma \mathcal{K} : A \setminus B \in \sigma \mathcal{K}$$

Proposition 1.1.12 Властивості σ -кільця

Задано X та $\sigma \mathcal{K} - \sigma$ -кільце на цій множині. Тоді виконуються такі пункти:

1)
$$\sigma \mathcal{K}$$
 – буде (просто) кільецм;
2) $\forall A_n \in \sigma \mathcal{K}, n \geq 1 : \bigcap_{n=1}^{\infty} A_n \in \sigma \mathcal{K}.$

Покажемо виконання кожної властивості:

1) Візьмемо $A,B\in\sigma\mathcal{K},$ тоді звідси $A\cup B=A\cup B\cup B\cup B\cup\cdots\in\sigma\mathcal{K}.$

2)
$$\forall A_n \in \sigma \mathcal{K}, n \geq 1 : \bigcap_{n=1}^{\infty} A_n = A_1 \setminus \bigcup_{n=2}^{\infty} (A_1 \setminus A_n) \in \sigma \mathcal{K}.$$

Всі властивості доведені.

Definition 1.1.13 Задано X – деяка множина та $\sigma \mathcal{A} \subset 2^X$ – клас підмножин. Непорожній клас σA називається σ -алгеброю, якщо

$$\sigma \mathcal{A} - \sigma$$
-кільце $X \in \sigma \mathcal{A}$

Definition 1.1.14 Задамо послідовність множин $\{A_n, n \ge 1\}$.

Вона буде називатися **зростаючою**, якщо $A_{n+1} \supset A_n$.

У такому випадку ми позначимо $\bigcup_{n=1}^{\infty}A_n\stackrel{\mathrm{def.}}{=}\lim_{n\to\infty}A_n.$ Вона буде називатися **спадною**, якщо $A_{n+1}\subset A_n.$

У такому випадку ми позначимо $\bigcap_{n=1}^{\infty} A_n \stackrel{\mathrm{def.}}{=} \lim_{n \to \infty} A_n.$

Обидві послідовності множин будемо називати монотонними.

Definition 1.1.15 Задано X – деяка множина та $\mathcal{M} \subset 2^X$ – клас підмножин. Непорожній клас m називається **монотонним**, якщо

$$\forall \{A_n \in \mathcal{M}, n \geq 1\}$$
 – монотонна : $\lim_{n \to \infty} A_n \in \mathcal{M}$

Theorem 1.1.16 Задано \mathcal{H} – кільце та монотонний клас множин X. Тоді \mathcal{H} – σ -кільце.

Нехай $A_n \in \mathcal{H}, n \geq 1$. Розглянемо послідовність множин $\{B_n, n \geq 1\}$, що задається таким чином: $B_1 = A_1, B_1 = A_1 \cup A_2, B_3 = A_1 \cup A_2 \cup A_3, \dots$

Зауважимо, що $\{B_n \stackrel{!}{\in} \mathcal{H}\}$ зростає, а в силу монотонності, звідси $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n \in \mathcal{P}.$

Ну й якщо $A, B \in \mathcal{H}$, то за означенням кільце, $A \setminus B \in \mathcal{H}$. Висновок: $\mathcal{H} - \sigma$ -кільце.

Породжені класи множин

Definition 1.2.1 Задано X – множина та \mathcal{H} – непорожня множина. **Кільцем, породженим класом** \mathcal{H} , називається така множина:

$$k(\mathcal{H}) \stackrel{\text{def.}}{=} \bigcap_{\substack{\mathcal{K}_{\alpha} \supset \mathcal{H} \\ \mathcal{K}_{\alpha} - \text{кільце}}} \mathcal{K}_{\alpha}$$

 σ -кільцем, породженим класом \mathcal{H} , називається така множина:

$$\sigma k(\mathcal{H}) \stackrel{\text{def.}}{=} \bigcap_{\substack{(\sigma \mathcal{K})_{\alpha} \supset \mathcal{H} \\ (\sigma \mathcal{K})_{\alpha} - \sigma\text{-кільце}}} (\sigma \mathcal{K})_{\alpha}$$

Алгеброю, породженим класом \mathcal{H} , називається така множина:

$$a(\mathcal{H}) \stackrel{\text{def.}}{=} \bigcap_{\substack{\mathcal{A}_{\alpha} \supset \mathcal{H} \\ \mathcal{A}_{\alpha} - \text{a.rre6pa}}} \mathcal{A}_{\alpha}$$

 σ -алгеброю, породженим класом \mathcal{H} , називається така множина:

$$\sigma a(\mathcal{H}) \stackrel{\mathrm{def.}}{=} \bigcap_{\substack{(\sigma \mathcal{A})_{\alpha} \supset \mathcal{H} \\ (\sigma \mathcal{A})_{\alpha} - \sigma\text{-алгебра}}} (\sigma \mathcal{A})_{\alpha}$$

Монотонним класом, породженим класом \mathcal{H} , називається така множина:

$$m(\mathcal{H}) \stackrel{\mathrm{def.}}{=} \bigcap_{\substack{\mathcal{M}_{\alpha} \supset \mathcal{H} \\ \mathcal{M}_{\alpha} \text{ - монотонний клас}}} \mathcal{M}_{\alpha}$$

Remark 1.2.2 Я зосереджуся лише на породжених кільцях. Нижче будуть зазначені властивості породжених кілець – аналогічно ті властивості переписуються для інших породжених класів.

Remark 1.2.3 Зауважимо, що $k(\mathcal{H}) \neq \emptyset$. Оскільки \mathcal{K}_{α} – кільця, то тоді $\emptyset \in \mathcal{K}_{\alpha}$ при всіх α , а тому $\emptyset \in k(\mathcal{H}).$

Proposition 1.2.4 Властивості породженого кільця

Задано X – множина та \mathcal{H} – непорожня множина. Тоді виконуються такі пункти:

- 1) $k(\mathcal{H})$ дійсно, кільце;
- 2) $k(\mathcal{H}) \supset \mathcal{H}$;
- 3) Нехай \mathcal{K} якесь кільце, де $\mathcal{K} \supset \mathcal{H}$. Тоді звідси $\mathcal{K} \supset k(\mathcal{H})$.

Proof.

Доведемо виконання всіх пунктів:

- 1) Нехай $A, B \in k(\mathcal{H})$, тобто звідси $A, B \in \mathcal{K}_{\alpha}$ при всіх α . Оскільки \mathcal{K}_{α} кільце при всіх α , то звідси $A \cup B \in \mathcal{K}_{\alpha}$ при всіх α . Тобто звідси $A \cup B \in k(\mathcal{H})$. Аналогічно доводимо, що $A \setminus B \in k(\mathcal{H})$.
- 2) це випливає з того, що всі $\mathcal{K}_{\alpha} \supset \mathcal{H}$, а далі перетнути треба по α .
- 3) Маємо $\mathcal{K}\supset\mathcal{H}$ якесь кільце. Тоді \mathcal{K} бере участь у перетинні всіх кілець в $k(\mathcal{H})$, просто за умовою такого кільця. Значить, $k(\mathcal{H}) =$

Всі властивості доведені.

Corollary 1.2.5 $k(\mathcal{H})$ – найменше кільце, що містить \mathcal{H} – непорожній клас підмножин X.

Theorem 1.2.6 Задано \mathcal{P} – півкільце. Тоді $k(\mathcal{P}) = \{A_1 \sqcup \cdots \sqcup A_k \mid A_n \in \mathcal{P}\}.$

Proof.

Для спрощення позначимо клас множин $\mathcal{L} = \{A_1 \sqcup \cdots \sqcup A_k \mid A_n \in \mathcal{P}\}$. Хочемо довести, що $k(\mathcal{P}) = \mathcal{L}$.

Дійсно, якщо $D \in \mathcal{D}$, то звідси $D = A_1 \sqcup \cdots \sqcup A_k$, де всі $A_n \in \mathcal{P}$. Але $\mathcal{P} \subset k(\mathcal{P})$, звідси, за означенням кільця, $D \in k(\mathcal{H})$.

 $\mathcal{L} \supset k(\mathcal{P}).$

Зрозуміло цілком, що $\mathcal{L} \supset \mathcal{P}$. Нам треба довести, що \mathcal{L} буде кільцем – і тоді звідси, за властивістю 3) породжених кілець, $\mathcal{L} \supset k(\mathcal{P})$.

Нехай
$$A,B\in\mathcal{L}$$
, тобто звідси $A=\bigsqcup_{i=1}^n C_i,\ B=\bigsqcup_{k=1}^m D_k$ та всі $C_i,D_k\in\mathcal{P}$. $A\sqcup B\in\mathcal{L}$ (це якщо $A\cap B=\emptyset$, а тому звідси кожний $C_i\cap D_k=\emptyset$). Дійсно, $A\sqcup B=C_1\sqcup\cdots\sqcup D_m$,

всі ці елементи з \mathcal{P} .

 $A\cap B\in\mathcal{L}$. Дійсно, $A\cap B=\bigsqcup_{\substack{1\leq i\leq n\\1\leq k\leq m}}(C_i\cap D_k)$, причому кожний $C_i\cap D_k\in\mathcal{P}$ за означенням півкільця.

$$A\setminus B\in\mathcal{L}$$
 (перша вимога кільця). Спочатку зауважимо, що $A\setminus B=\bigsqcup_{i=1}^n(C_i\setminus B)$, а далі кожний $C_i\setminus B=\bigcap_{k=1}^m(C_i\setminus D_k)$. Але оскільки $C_i,D_k\in\mathcal{P}$, то тоді $C_i\setminus D_k=\bigsqcup_{r=1}^{s_{ik}}G_r$ та кожний $G_r\in\mathcal{P}$. Звідси випливає $C_i\setminus D_k\in\mathcal{L}$, а тому далі $C_i\setminus B\in\mathcal{L}$ як перетин, а після $A\setminus B\in\mathcal{L}$ як диз'юнктивне

об'єднання.

 $A \cup B \in \mathcal{L}$ (друга вимога кільця). Дійсно, розпишемо $A \cup B = (A \setminus B) \sqcup (A \cap B) \sqcup (B \setminus A)$. Отже, нарешті довели, що \mathcal{L} утворює кільце, що завершує доведення.

Example 1.2.7 Зокрема
$$k(\mathcal{P}_1) = \left\{ \bigsqcup_{k=1}^n (a_k, b_k] \mid (a, k, b_k] \subset \mathbb{R} \right\}$$
. Аналогічно визначається $k(\mathcal{P}_d)$.

Theorem 1.2.8 Задано \mathcal{K} – кільце. Тоді $m(\mathcal{K}) = \sigma k(\mathcal{K})$.

Proof.

 $m(\mathcal{K}) \subset \sigma k(\mathcal{K}).$

Дійсно, $\sigma k(\mathcal{K}) \supset \mathcal{K}$, за властивістю породжених σ -кілець. Також $\sigma k(\mathcal{K})$ буде монотонним класом, тому що під $\lim_{n\to\infty} A_n, A_n \in \mathcal{K}$, ми маємо на увазі зліченне об'єдання або перетин, що допустимо. Звідси випливає, що $\sigma k(\mathcal{K}) \supset m(\mathcal{K})$.

 $m(\mathcal{K}) \supset \sigma k(\mathcal{K}).$

Маємо $m(\mathcal{K}) \supset \mathcal{K}$, за властивістю породжених монотонних класів. Нам треба довести, що $m(\mathcal{K})$ буде σ -кільцем – і тоді звідси $m(\mathcal{K}) \supset \sigma k(\mathcal{K})$. А щоб довести, що $m(\mathcal{K})$ буде σ -кільцем, достатньо за **Th. 1.1.16** довести, що $m(\mathcal{K})$ – просто кільце.

Нехай $A \in m(\mathcal{K})$. Розглянемо клас множин $\mathcal{L}(A) = \{B \subset X \mid A \cup B, A \setminus B, B \setminus A \in m(\mathcal{K})\}$. Покажемо, що це – монотонний клас.

Нехай $C_n \in \mathcal{L}(A)$, причому C_n зростає. Позначимо $\bigcup_{n=1}^{\infty} C_n = C$. Тоді

n=1 $A\cup C=\bigcup_{n=1}^{\infty}(A\cup C_n)$, причому $(A\cup C_n)\in m(\mathcal{K})$ (за визначенням $\mathcal{L}(A)$), а також $(A\cup C_n)$ монотонно зростає до $(A\cup C)$, звідси $A\cup C\in m(\mathcal{K})$. $A\setminus C=\bigcap_{n=1}^{\infty}(A\setminus C_n)$, причому $A\setminus C_n\in m(\mathcal{K})$ (за визначенням $\mathcal{L}(A)$), а також $(A\setminus C_n)$ монотонно спадає до $(A\setminus C)$, звідси $A\setminus C\in m(\mathcal{K})$. $C\setminus A=\bigcup_{n=1}^{\infty}(C_n\setminus A)$, причому $C_n\setminus A\in m(\mathcal{K})$ (за визначенням $\mathcal{L}(A)$), а також $(A\setminus C_n)$ монотонно

зростає до $(C \setminus A)$, звідси $C \setminus A \in m(\mathcal{K})$.

Із цих трьох випливає, що $C \in \mathcal{L}(A)$. Цілком аналогічно доводиться, що якщо $C_n \in \mathcal{L}(A)$ та C_n спадає, то $C = \bigcap^{\infty} C_n \in \mathcal{L}(A)$ (тут $A \in \mathcal{K}!$).

Нехай $A \in \mathcal{K}$. Оскільки \mathcal{K} – це кільце, то для кожної $B \in \mathcal{K}$ отримаємо $A \cup B, A \setminus B, B \setminus A \in \mathcal{K}$, а звідси $A \cup B$, $A \setminus B$, $B \setminus A \in m(\mathcal{K})$. Із цього випливає, що $B \in \mathcal{L}(A)$. Тобто із цього випливає, що для фіксованого $A \in \mathcal{K}$ маємо $\mathcal{K} \subset \mathcal{L}(A)$. Але оскільки $\mathcal{L}(A)$ – монотонний, то $m(\mathcal{K}) \subset \mathcal{L}(A)$. Отже, для фіксованого $A \in \mathcal{K}$ і для будь-якої множини $B \in m(\mathcal{K})$, маємо $B \in \mathcal{L}(A)$, тобто $A \cup B$, $A \setminus$

 $B, B \setminus A \in m(\mathcal{K})$. Але конкретно цей запис означає, що $A \in \mathcal{L}(B)$. Тобто $A \in \mathcal{K} \implies A \in \mathcal{L}(B)$, а тому звідси $\mathcal{K} \subset \mathcal{L}(B)$. Аналогічно отримаємо $m(\mathcal{K}) \subset \mathcal{L}(B)$ (тут $A \in m(\mathcal{K})!$ Важлива різниця!). Тепер нехай $A \in m(\mathcal{K})$, тоді $A \in \mathcal{L}(B)$. Це означає, що $A \cup B$, $A \setminus B \in m(\mathcal{K})$. Дана штука виконується для будь-яких $A, B \in m(\mathcal{K})$, що й доводить означення кільця.

1.3 Борельові множини

Definition 1.3.1 Задано (X, ρ) – метричний простір та \mathcal{G} – набір усіх відкритих підмножин X. **Борельовою** σ **-алгеброю** в X називається наступна σ -алгебра:

$$\mathcal{B}(X) \stackrel{\text{def.}}{=} \sigma a(\mathcal{G})$$

Тобто ми взяли клас відкритих підмножин в Y та породили σ -алгебру. Всі множини з $\mathcal{B}(X)$ називаються **борельовими**.

Remark 1.3.2 Переважно будемо користуватися стандартною метрикою, де це можливо.

Example 1.3.3 Розглянемо кілька прикладів борельових множин:

- 1) Якщо U відкрита, то U борельова.
- Дійсно, U відкрита, тобто $U \in \mathcal{G}$, але звідси $U \in \sigma a(\mathcal{G}) = \mathcal{B}(X)$ за властивістю породжених σ -
- 2) Якщо V замкнена, то U борельова.

Дійсно, V – замкнена, тому $X \setminus V$ – відкрита. Розпишемо $V = X \setminus (X \setminus V)$. У нас множина $X \setminus V$ уже борельова за 1). Також X – відкрита множина, а тому знову борельова. Значить, $X, X \setminus V \in$ $\sigma a(\mathcal{G}) \implies X \setminus (X \setminus V) = V \in \sigma a(\mathcal{G}) = \mathcal{B}(X)$ – борельова.

3. Одноточкова множина $\{x\}$ – борельова.

Дійсно, $\{x\}$ – замкнена множина, а тому за 2), уже борельова.

4. Скінченні, зліченні множини – всі вони борельові.

Усі ці множини отримуються через одноточкові множин, а далі 3).

Theorem 1.3.4 Для півкільця \mathcal{P}_d підмножин \mathbb{R}^d виконується $\sigma k(\mathcal{P}_d) = \sigma a(\mathcal{P}_d) = \mathcal{B}(\mathbb{R}^d)$.

 $\sigma k(\mathcal{P}_d) = \sigma a(\mathcal{P}_d).$

Дійсно, $\sigma a(\mathcal{P}_d) \supset \mathcal{P}_d$, але σ -алгебра уже ε σ -кільцем, тому звідси $\sigma a(\mathcal{P}_d) \supset \sigma k(\mathcal{P}_d)$. Далі $\sigma k(\mathcal{P}) \supset \mathcal{P}_d$, залишилося довести, що $\sigma k(\mathcal{P})$ утворює σ -алгебру – і тоді $\sigma k(\mathcal{P}_d) \supset \sigma a(\mathcal{P}_d)$.

Для цього зауважимо, що $\mathbb{R}^d = \bigcup_{n=1}^{\infty} (-n, n]^d$, де всі $(-n, n]^d \in k(\mathcal{P}_d)$, а тому звідси $\mathbb{R}^d \in k(\mathcal{P}_d)$.

$$\sigma a(\mathcal{P}_d) = \mathcal{B}(\mathbb{R}^d).$$

Спочатку покажемо, що $\mathcal{B}(\mathbb{R}^d) \supset \sigma a(\mathcal{P}_d)$. Щоб це довести, необіхдно довести, що $\mathcal{B}(\mathbb{R}^d) \supset \mathcal{P}_d$. А далі, зважаючи на той факт, що $\mathcal{B}(\mathbb{R}^d)$ утворює σ -алгебру, доведемо, що $\mathcal{B}(\mathbb{R}^d) \supset \sigma a(\mathcal{P}_d)$.

Нехай
$$A\in\mathcal{P}_d$$
, тобто $A=\prod_{i=1}^d(a_i,b_i]$. Зауважимо, що $(a_i,b_i]=\bigcap_{n=1}^\infty\left(a_i,b_i+rac{1}{n}
ight)$. Далі

$$A = \prod_{i=1}^{d} \bigcap_{n=1}^{\infty} \left(a_i, b_i + \frac{1}{n} \right) = \bigcap_{n=1}^{\infty} \prod_{i=1}^{d} \left(a_i, b_i + \frac{1}{n} \right).$$

Декартів добуток відкритих множин – відкрита, а кожна відкрита – уже борельова. А оскільки там σ -алгебра, то допускається зліченний перетин, звідси $A \in \mathcal{B}(\mathbb{R}^d)$. Отже, $\mathcal{B}(\mathbb{R}^d) \supset \mathcal{P}_d$.

Нарешті, покажемо, що $\mathcal{B}(\mathbb{R}^d) \subset \sigma a(\mathcal{P}_d)$. Щоб це довести, треба довести, що $\sigma a(\mathcal{P}_d) \supset \mathcal{G}$, де \mathcal{G} – всі відкриті підмножини \mathbb{R}^d . Після цього ми отримуємо $\sigma a(\mathcal{P}_d) \supset \sigma a(\mathcal{G}) = \mathcal{B}(\mathbb{R}^d)$.

Отже, нехай $U \in \mathcal{G}$, тобто нехай U – відкрита множина. Запишемо її таким чином:

$$U = \bigcup_{\substack{\prod_{i=1}^d (p_i, q_i] \subset U \\ p_i, q_i \in \mathbb{Q}}} \prod_{i=1}^d (p_i, q_i].$$

Якщо \vec{x} лежить в цьому об'єднанні, то тоді автоматично $\vec{x} \in U.$

Якщо $\vec{x} \in U$, то вона внутрішня, тож існує куля $B(\vec{x},\varepsilon) \subset U$. А там $\forall \vec{y} : \|\vec{x} - \vec{y}\| < \varepsilon$. Тобто звідси $|x_i - y_i| < \frac{\varepsilon}{\sqrt{d}} \implies y_i - \frac{\varepsilon}{\sqrt{d}} < x_i < y_i + \frac{\varepsilon}{\sqrt{d}}$. Між кожним з цих нерівностей можна знайти

раціональні числа $p_i,q_i\in\mathbb{Q}$, тоді звідси $p_i< x_i< q_i$. Звідси $\vec{x}\in\prod_{i=1}^d(p_i,q_i]$. Але також важливо

зауважити, що $\prod_{i=1}^d (p_i,q_i] \subset U.$ Отже, \vec{x} лежить в цьому об'єднанні.

Множина U записалась як зліченне об'єднання елементів з $\mathcal{P}_d \subset \sigma a(\mathcal{P}_d)$. Отже, звідси $U \in \sigma a(\mathcal{P}_d)$.

2 Міри

2.1 Основні функції множин

Definition 2.1.1 Задано X – деяка множина та $\mathcal{H} \subset 2^X$ – клас підмножин.

Функцією множин називатимемо відображення $f \colon \mathcal{H} \to (-\infty, +\infty]$. Ми будемо вважати надалі, що $-\infty$ неможливий.

Definition 2.1.2 Задано функцію множин f на $\mathcal{H} \subset 2^X$.

Функція множин f називається **невід'ємною**, якщо

$$\forall A \in \mathcal{H} : f(A) \ge 0$$

Функція множин f називається **адитивною**, якщо

$$\forall A_1,\ldots,A_k\in\mathcal{H},$$
 причому $\bigsqcup_{n=1}^kA_n\in\mathcal{H}:f\left(\bigsqcup_{n=1}^kA_n\right)=\sum_{n=1}^kf(A_n)$

Функція множин f називається σ -адитивною, якщо

$$\forall A_1,A_2,\dots\in\mathcal{H},$$
 причому $\bigsqcup_{n=1}^\infty A_n\in\mathcal{H}:f\left(\bigsqcup_{n=1}^\infty A_n\right)=\sum_{n=1}^\infty f(A_n)$

Функція множин f називається **напівадитивною**, якщо

$$\forall A_1,\ldots,A_k\in\mathcal{H},$$
причому $\bigcup_{n=1}^kA_n\in\mathcal{H}:f\left(\bigcup_{n=1}^kA_n\right)\leq\sum_{n=1}^kf(A_n)$

Функція множин f називається σ -напівадитивною, якщо

$$\forall A_1, A_2, \dots \in \mathcal{H}$$
, причому $\bigcup_{n=1}^{\infty} A_n \in \mathcal{H} : f\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} f(A_n)$

Функція множин f називається **скінченною**, якщо

$$\forall A \in \mathcal{H} : f(A) < +\infty$$

Функція множин f називається σ -скінченною, якщо

$$\exists A_1, A_2, \dots \in \mathcal{H} : \bigcup_{n=1}^{\infty} A_n = X, \ f(A_n) < +\infty$$

Функція множин f називається **монотонною**, якщо

$$\forall A, B \in \mathcal{H} : A \subset B \implies f(A) \leq f(B)$$

Remark 2.1.3 Домовленність: ми не будемо далі розглядати функції множин f, для яких $f \equiv +\infty$. Це означає, що в кожній функції множин f буде існувати множина $A \in \mathcal{H}$, для якої $f(A) < +\infty$.

Remark 2.1.4 Зрозуміло, що якщо функція множин скінченна, то вона автоматично σ -скінченна.

2.2 Означення міри

Definition 2.2.1 Задано \mathcal{P} – півкільце.

Мірою ми називатимемо функцію множин $\lambda \colon \mathcal{P} \to [0, +\infty]$, де

 λ – невід'ємною та σ -адитивна.

Proposition 2.2.2 Властивості мір

Задано λ – міра на півкільці \mathcal{P} . Тоді виконуються такі пункти:

1)
$$\lambda(\emptyset) = 0$$
;

- 2) λ адитивна;
- 3) λ монотонна;
- 4) $\lambda \sigma$ -напівадитивна;

5)
$$\forall A \in \mathcal{P}, \forall A_1, A_2, \dots \in \mathcal{P} : A \subset \bigcup_{n=1}^{\infty} A_n : \lambda(A) \leq \sum_{n=1}^{\infty} \lambda(A_n).$$

Доведемо виконання всіх пунктів:

- 1) Тут на допомогу приходить узгодження в підпункті вище. У нас існує $A \in \mathcal{P}$, для якої $\lambda(A) <$ $+\infty$. Розпишемо $A=A\sqcup\emptyset\sqcup\emptyset\sqcup\ldots$, причому $\emptyset\in\mathcal{P}$. Звідси, за σ -адитивністю, $\lambda(A)=\lambda(A)+\lambda(\emptyset)+$ $\lambda(\emptyset)+\dots$ Але оскільки $\lambda(A)<+\infty$, то ряд збіжний, а для рівності треба вимагати $\lambda(\emptyset)=0$.
- 2) Нехай $A_1,\ldots,A_k\in\mathcal{P},$ причому $\bigcup_{n=1}^kA_n\in\mathcal{P}.$ Тоді за σ -адитивністю міри та за властивістю 1),

$$\lambda\left(\bigsqcup_{n=1}^{\infty}A_n\right) = \lambda(A_1 \sqcup \cdots \sqcup A_n \sqcup \emptyset \sqcup \emptyset \sqcup \cdots) = \lambda(A_1) + \cdots + \lambda(A_n) + \lambda(\emptyset) + \cdots = \sum_{n=1}^{k}\lambda(A_n).$$

3) Нехай $A,B\in\mathcal{P}$ таким чином, що $A\subset B$. Тоді звідси $B=(B\setminus A)\sqcup A$. На півкільці $A\setminus B=\bigsqcup^n C_i$

при $C_i \in \mathcal{P}$. Отже, звідси $B = \bigsqcup_{i=1}^n C_i \sqcup A$, а за властивістю 2) та невід'ємності міри, маємо

$$\lambda(B) = \sum_{i=1}^{n} \lambda(C_i) + \lambda(A) \ge \lambda(A).$$

4) Нехай $A_1,A_2,\dots\in\mathcal{P},$ причому $\bigcup_{n=1}^\infty A_n\in\mathcal{P}.$ Ми розглянемо $B_1=A_1,\ B_2=A_2\setminus A_1,\ B_1=A_1$

 $A_3 \setminus (A_1 \cup A_2), \dots$ – перейшли до системи неперетинних множин. Зауважимо, що $\bigsqcup^\infty B_n = \bigcup^\infty A_n \in \mathcal{P}$ (але при цьому неправильно казати, що $B_n \in \mathcal{P}$, тому юзаємо σ -адитивність!). Всі $A_n \in k(\mathcal{P})$, а тому

звідси всі $B_n \in k(\mathcal{P})$, але тоді звідси $B_n = \bigsqcup_{i=1}^{i_n} C_{in}$ при $C_{in} \in \mathcal{P}$. Також зауважимо, що $A_n \setminus B_n \in k(\mathcal{P})$,

а тому звідси
$$A_n \setminus B_n = \bigsqcup_{j=1}^{j_n} D_{jn}$$
 при $D_{jn} \in \mathcal{P}.$

Разом уже маємо $\bigcup_{i=1}^{\infty} A_n = \bigsqcup_{i=1}^{\infty} \bigsqcup_{i=1}^{i_n} C_{in} \in \mathcal{P}$, причому всі $C_{in} \in \mathcal{P}$, тому скористаємось σ -адитивністю:

$$\lambda\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \sum_{i=1}^{i_n} \lambda(C_{in}).$$

Водночас $A_n = A_n \setminus B_n \sqcup B_n = \bigsqcup_{j=1}^{j_n} D_{jn} \sqcup \bigsqcup_{i=1}^{i_n} C_{in} \in \mathcal{P}$, причому всі $C_{in}, D_{jn} \in \mathcal{P}$ – дійсно неперетинні всі між собою. Тому можна скористатися σ -адитивністю:

всі між сооою. Тому можна скористатися
$$\sigma$$
-адитивністю:

 $\sum_{n=1}^{\infty} \lambda(A_n) = \sum_{n=1}^{\infty} \left(\sum_{i=1}^{j_n} \lambda(D_{jn}) + \sum_{i=1}^{i_n} \lambda(C_{in}) \right) \ge \sum_{n=1}^{\infty} \sum_{i=1}^{i_n} \lambda(C_{in}) = \lambda \left(\bigcup_{n=1}^{\infty} A_n \right).$

5) Нехай $A \in \mathcal{P}$, а також задано покриття $A \subset \bigcup_{n=1}^{\infty} A_n$, де $A_n \in \mathcal{P}$. Зауважимо, що $A = A \cap \bigcup_{n=1}^{\infty} A_n =$

 \bigcup $(A \cap A_n)$, де $A \in \mathcal{P}$, а також $A \cap A_n \in \mathcal{P}$ за означенням півкільця. Тоді за 4),

$$\lambda(A) = \lambda\left(\bigcup_{n=1}^{\infty} (A \cap A_n)\right) \le \sum_{n=1}^{\infty} \lambda(A \cap A_n) \le \sum_{n=1}^{\infty} \lambda(A_n).$$

 \mathcal{A} о речі, властивість 5) – це певне узагальнення властивості 4), тобто σ -напівадитивності.

Всі властивості доведені.

Remark 2.2.3 Якби λ була невід'ємною та просто адитивною, то властивості 1,3,4,5) також би виконувалися, тільки там скінченна кількість замість зліченної.

Corollary 2.2.4 Якщо λ задана на кільці \mathcal{K} , то $\forall A, B \in \mathcal{K} : A \subset B : \lambda(A \setminus B) - \lambda(A) - \lambda(B)$. Вказівка: $A \sqcup (B \setminus A) = B$, у цьому випадку $B \setminus A \in \mathcal{K}$, тому все легітимно.

Theorem 2.2.5 Неперервність міри знизу

Задано λ – міра уже на кільці \mathcal{K} . Нехай задана зростаюча послідовність $\{A_n \in \mathcal{K}, n \geq 1\}$, причому $\lim_{n\to\infty} A_n \in \mathcal{K}$. Тоді $\lambda\left(\lim_{n\to\infty} A_n\right) = \lim_{n\to\infty} \lambda(A_n)$.

Proof.

Розглянемо $B_1=A_1,\ B_2=A_2\setminus A_1,\ B_3=A_3\setminus A_2,\dots$ – система неперетинних множин в силу зростання $\{A_n\}$. Зауважимо, що всі $B_n\in\mathcal{K}$, а також $\bigsqcup_{n=1}^\infty B_n=\bigcup_{n=1}^\infty A_n\in\mathcal{K}$. Тоді

$$\lambda\left(\lim_{n\to\infty}A_n\right)=\lambda\left(\bigsqcup_{n=1}^\infty B_n\right)=\sum_{n=1}^\infty\lambda(B_n)=$$

$$=\lim_{j\to\infty}\sum_{n=1}^j\lambda(B_n)=\lim_{j\to\infty}(\lambda(A_1)+\lambda(A_2)-\lambda(A_1)+\lambda(A_3)-\lambda(A_2)+\cdots+\lambda(A_j)-\lambda(A_{j-1}))=\lim_{j\to\infty}\lambda(A_j).$$
 Мабуть, окремо зауважу, що в сумі я скористався наслідком вище.

Theorem 2.2.6 Неперервність міри зверху

Задано λ — міра уже на кільці \mathcal{K} . Нехай спадна зростаюча послідовність $\{A_n \in \mathcal{K}, n \geq 1\}$, причому $\lim_{n \to \infty} A_n \in \mathcal{K}$, а також $\lambda(A_1) < +\infty!$ Тоді $\lambda\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} \lambda(A_n)$.

Proof.

Позначимо $A=\bigcap_{n=1}^{\infty}A_n$ та розглянемо послідовність $\{C_n\in\mathcal{K}, n\geq 1\}$ як $C_n=A_1\setminus A_n.$ Тепер

послідовність зростає, при цьому $\bigcup_{n=1}^{\infty} C_n = A_1 \setminus A \in \mathcal{K}$. Тоді за неперервністю міри знизу,

$$\lambda(A_1\setminus A)=\lambda\left(\bigcup_{n=1}^\infty C_n\right)=\lim_{n\to\infty}\lambda\left(C_n\right)=\lim_{n\to\infty}\lambda(A_1\setminus A_n).$$
 Скорситавшись зауваженням вище, а також фактом, що $\lambda(A_1)<+\infty$, маємо
$$\lambda(A_1)-\lambda(A)=\lambda(A_1)-\lim_{n\to\infty}\lambda(A_n)\implies \lambda(A)=\lambda\left(\lim_{n\to\infty}A_n\right)=\lim_{n\to\infty}\lambda(A_n).$$

$$\lambda(A_1) - \lambda(A) = \lambda(A_1) - \lim_{n \to \infty} \lambda(A_n) \implies \lambda(A) = \lambda \left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} \lambda(A_n).$$

Example 2.2.7 Наведу приклад, де умова $\lambda(A_1) < +\infty$ є дуже важливою.

Розглянемо міру $\lambda(A) = \operatorname{card}(A \cap \mathbb{Z})$ на $2^{\mathbb{R}}$. Далі розглянемо спадну послідовність $\{[n, +\infty), n \geq 1\}$, причому в цьому випадку $\lambda([1,+\infty)) = \operatorname{card} \mathbb{N} = +\infty$. Тоді

$$\lambda\left(\lim_{n\to\infty}[n,+\infty)\right)=\lambda\left(\bigcap_{n=1}^\infty[n,+\infty)\right)=\lambda(\emptyset)=0.$$

$$\lim_{n\to\infty}\lambda([n,+\infty))=\lim_{n\to\infty}\operatorname{card}(\mathbb{N}\setminus\{1,2,\dots,n\})=+\infty.$$
 Отже,
$$\lambda\left(\lim_{n\to\infty}[n,+\infty)\right)\neq\lim_{n\to\infty}\lambda([n,+\infty))$$
 у даному випадку.

2.3 Про міру Жордана

Із курсу математичного аналізу відомо, що з себе представляє міра Жордана та клас вимірних множин \mathcal{K}_d . Даний контент можна подивитися в іншому пдф більш детально. Однак я зазначу, що міра Жордана m – ще не міра в сенсі означення, що було задано вище. Нам бракує лише σ -адитивності. Це питання розв'яжеться згодом.

Lemma 2.3.1 Нехай $A \in \mathcal{K}_d$. Тоді $\forall \varepsilon > 0 : \exists F_{\varepsilon}, U_{\varepsilon} \in \mathcal{K}_d$ – відповідно замкнена та відкрита множина: $\begin{cases} m(A) - m(F_{\varepsilon}) < \varepsilon \\ m(U_{\varepsilon}) - m(A) < \varepsilon \end{cases}$. Причому до всього цього $F_{\varepsilon} \subset A \subset U_{\varepsilon}$.

Тобто вимірну за Жорданом множину можна наблизити замкненим всередині множиною та відкритою зовні множиною.

I. Існування замкненої множини.

A – вимірна за Жорданом, тоді $m(A)=\sup_{n\geq 0}m(F_{(n)})$, тоді існує N, для якого $m(F_{(N)})>m(A)$ –

 ε . Покладемо $F_{\varepsilon}=F_{(N)}\subset A$. Тоді звідси миттєво $m(A)-m(F_{\varepsilon})<\varepsilon$. Ясно, що F_{ε} вимірна за Жорданом.

II. Існування відкритої множини.

Знову A вимірна за Жорданом, то $m(A) = \inf_{n \geq 0} m(F^{(n)})$, тоді існує \tilde{N} , для якого $m(F^{(\tilde{N})}) < m(A) + \frac{\varepsilon}{2}$.

У нас зараз $F^{(\tilde{N})} \supset A$, але поки що замкнена множина.

Згадаємо, що $F^{(\tilde{N})}$ складається зі скінченного об'єднання брусів вигляду $R = \prod_{i=1}^d \left[\frac{k_i}{2^{\tilde{N}}}, \frac{k_i+1}{2^{\tilde{N}}} \right]$.

Нехай $\delta>0$ та замінимо замкнені бруси R на відкриті бруси $R(\delta)=\prod_{i=1}^d \left(\frac{k_i}{2^{\tilde{N}}}-\delta,\frac{k_i+1}{2^{\tilde{N}}}+\delta\right).$

Зрозуміло, що $R(\delta)\supset R$, а тому звідси $F^{(\tilde{N})}(\delta)\supset F^{(\tilde{N})}$, де ось $F^{(\tilde{N})}(\delta)$ – об'єднання відкритих брусів. Оскільки m – монотонна міра, то $m(F^{(\tilde{N})})\leq m(F^{(\tilde{N})}(\delta))$. Звідси маємо наступне:

брусів. Оскільки
$$m$$
 — монотонна міра, то $m(F^{(\tilde{N})}) \leq m(F^{(\tilde{N})}(\delta))$. Звідси маємо наступне:
$$m(F^{(\tilde{N})}) \leq m(F^{(\tilde{N})}(\delta)) \stackrel{m \ - \ \text{напівадитивна}}{\leq} \sum m(R(\delta)) = \sum \prod_{i=1}^d \left(\frac{k_i+1}{2^{\tilde{N}}} + \delta - \left(\frac{k_i}{2^{\tilde{N}}} - \delta\right)\right) =$$

$$= \sum \left(\frac{1}{2^{\tilde{N}}} + 2\delta\right)^d \xrightarrow{\delta \to 0} \sum \left(\frac{1}{2^{\tilde{N}}}\right)^d = \sum \prod_{i=1}^d \left[\frac{k_i + 1}{2^{\tilde{N}}} - \frac{k_i}{2^{\tilde{N}}}\right] = \sum m(R) = m(F^{(\tilde{N})}).$$

Значить, звідси існує $\delta_1>0$, для якого $m(F^{(\tilde{N})}(\delta_1))-m(F^{(\tilde{N})})<rac{\varepsilon}{2}.$

Нарешті, покладемо $U_{\varepsilon}=F^{(\tilde{N})}(\delta_1)\supset F^{(\tilde{N})}\supset A$. Ясно, що це відкрита множина (як об'єднання відкритих) та вимірна за Жорданом. Тоді звідси

$$m(U_{\varepsilon})-m(A)=(m(U_{\varepsilon})-m(F^{(\tilde{N})}))+(m(F^{(\tilde{N})})-m(A))<\varepsilon.$$

Theorem 2.3.2 Міра Жордана m – міра (в сенсі означення вище) на кільці \mathcal{K}_d .

Proof.

Уже відомо, що m – невід'ємна функція множин, тому залишається σ -адитивність.

Нехай $A_n \in \mathcal{K}_d$ – неперетинні, причому $\bigsqcup_{n=1}^{\infty} A_n = A \in \mathcal{K}_d$. Ми хочемо довести $m(A) = \sum_{n=1}^{\infty} m(A_n)$.

Зауважимо, що $\bigsqcup_{n=1}^{j} A_n \subset A$, тоді за монотонністю та скінченною адитивністю міри Жордана,

$$\sum_{n=1}^j m(A_n) \leq m(A).$$
 Якщо спрямуємо $j \to \infty,$ то отримаємо $m(A) \geq \sum_{n=1}^\infty m(A_n).$

Далі застосуємо щойно доведену лему кілька разів. Нехай $\varepsilon > 0$. Для множини A оберемо замкнену вимірну за Жорданом множину $F_{\varepsilon} \subset A$, для якої $m(A) - m(F_{\varepsilon}) < \varepsilon$. Для кожної множини A_n оберемо відкриту вимірну за Жорданом множину $U_{\frac{\varepsilon}{2^n}} \supset A_n$, для якої $m(U_{\frac{\varepsilon}{2^n}}) - m(A) < \frac{\varepsilon}{2^n}$.

Зауважимо, що $\bigcup_{n=1}^{\infty}U_{\frac{\varepsilon}{2^n}}\supset\bigcup_{n=1}^{\infty}A_n=A\supset F_{\varepsilon}$, тобто для F_{ε} у нас є відкрите покриття $\left\{U_{\frac{\varepsilon}{2^n}},n\geq 1\right\}$. Оскільки F_{ε} замкнена та обмежена, то вона є компактом. Значить, за лемою Гейне-Бореля, ми

Оскільки F_{ε} замкнена та обмежена, то вона є компактом. Значить, за лемою Гейне-Бореля, миможемо відокремити скінченне підпокриття $\{U_1,\ldots,U_k\}$, тобто $\bigcup_{i=1}^k U_i\supset F_{\varepsilon}$. Таким чином,

$$m(F_{\varepsilon}) \leq \sum_{i=1}^{k} m(U_i) \leq \sum_{i=1}^{\infty} m(U_i) < \sum_{i=1}^{\infty} \left(m(A) + \frac{\varepsilon}{2^i} \right) = \sum_{i=1}^{\infty} m(A) + \varepsilon.$$

Отже, $m(A) < \varepsilon + m(F_{\varepsilon}) < \sum_{i=1}^{\infty} m(A) + 2\varepsilon$, а тому при $\varepsilon \to 0 + 0$ отримаємо $m(A) \le \sum_{i=1}^{\infty} m(A_n)$.

Corollary 2.3.3 Розглянемо півкільце $\mathcal{P}_d = \left\{\prod_{k=1}^d (a_k,b_k] \mid a_k,b_k \in \mathbb{R} \right\}$, а на ній функцію множин

$$\lambda_d\left(\prod_{k=1}^d (a_k,b_k]
ight)=\prod_{k=1}^d (b_k-a_k)$$
. Тоді λ_d задає міру на \mathcal{P}_d .

Дійсно, $\mathcal{P}_d \subset \mathcal{K}_d$, тому звідси $\lambda_d(A) = m(A)$.

2.4 Зовнішні міри

Definition 2.4.1 Задано X – деяка множина та λ^* – функція множин на 2^X . Функція множин λ^* : $[0, +\infty]$ називається **зовнішньою мірою**, якщо

$$\lambda^*(\emptyset) = 0$$

$$\forall A \subset X : \forall A_1, A_2, \dots \subset X : A \subset \bigcup_{n=1}^{\infty} A_n : \lambda^*(A) \leq \sum_{n=1}^{\infty} \lambda^*(A_n)$$

Друга умова – це узагальнення σ -напівадитивності.

Definition 2.4.2 Задано X – деяка множина та λ^* – функція множин на 2^X . Функція множин λ^* : $[0, +\infty]$ називається **зовнішньою мірою**, якщо

$$\lambda^*(\emptyset) = 0$$

 λ^* – монотонна та σ -напівадитивна

Proposition 2.4.3 Обидва означення еквівалентні.

Proof.

⇒ Дано: перше означення.

 $\overline{\text{Нехай}}\ A, B \subset X$ так, що $A \subset B$. Тоді з другої умови означення випливає, що $\lambda^*(A) \leq \lambda^*(B)$, якщо розписати $A \subset B \cup \emptyset \cup \emptyset \cup \ldots$

Нехай $A_1,A_2,\dots\subset X$, але тоді, формально кажучи, $\bigcup_{n=1}^\infty A_n\subset \bigcup_{n=1}^\infty A_n$. Тоді за другою умовою озна-

чення,
$$\lambda^* \left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \lambda^* (A_n).$$

⇐ Дано: друге означення.

Нехай $A_1,A_2,\dots\subset X$ та $A\subset X$ так, щоб $A\subset\bigcup_{n=1}^\infty A_n$. Наспраді кажучи, бажана нерівність дово-

диться аналогічним чином, як це було при доведенні властивості 5) міри. Але (конкретно в цьому випадку) є доведення дещо простіше.

Оскільки $A\subset\bigcup_{n=0}^\infty A_n$, то із другої умови та третьої умови означення випливає миттєво, що

$$\lambda^*(A) \le \lambda^* \left(\bigcup_{n=1}^{n=1} A_n \right) \le \sum_{n=1}^{\infty} \lambda^*(A_n).$$

Чому ми не могли так само простіше зробити в 5) властивості, залишаю як вправу.

Remark 2.4.4 Поняття "зовнішня міра"не пов'язана з тим, що це – міра, із властивістю зовнішньості. Це просто вже такий сталий термін.

Example 2.4.5 Розглянемо $\lambda^*(A) = \begin{cases} 0, & A = \emptyset \\ 1, & \text{інакше} \end{cases}$. Вона – зовнішня міра (неважко довести).

Водночас вона не є мірою, тому що, обравши $A, B \neq \emptyset$ – неперетинні, порушиться адитивність.

Remark 2.4.6 Зрозуміло, що λ^* також просто напівадитивна (у загальному сенсі теж).

Definition 2.4.7 Задано λ – міра на півкільці \mathcal{P} .

Зовнішньою мірою, породженою мірою λ , називається функція множин λ^* , яка визначається таким правилом:

$$\lambda^*(A) = \begin{cases} \inf_{\substack{A \subset \bigcup_{n=1}^{\infty} A_n \\ A_n \in \mathcal{P}}} \sum_{n=1}^{\infty} \lambda(A_n), & \text{якщо існує хоча 6 одне зліченне покриття множини } A елементами з \mathcal{P} \\ +\infty, & \text{інакше} \end{cases}$$

Proposition 2.4.8 Задано λ – міра на півкільці \mathcal{P} . Маємо λ^* – зовнішня міра, породжена мірою λ . Тоді λ^* – справді зовнішня міра (за означенням).

Зауважимо, що λ^* визначена на 2^X . Також зазначимо, що $\lambda^*(A) \geq 0$, просто тому що λ – міра, що є невід'ємною.

$$\lambda^*(\emptyset) = \emptyset.$$

Зауважимо, що
$$\emptyset \subset \bigcup_{n=1}^{\infty} \emptyset$$
. де $\emptyset \in \mathcal{P}$. Звідси випливає, що $\lambda^*(\emptyset) \leq \sum_{n=1}^{\infty} \lambda(\emptyset) = 0 \implies \lambda^*(\emptyset) = 0$.

Нехай тепер
$$A\subset X$$
, а також $A_1,A_2,\dots\subset X$, причому $A\subset\bigcup_{n=1}^\infty A_n$. Треба $\lambda^*(A)\leq\sum_{n=1}^\infty\lambda^*(A_n)$.

Нехай існує A_N , для якого не знайдеться покриття елементами з \mathcal{P} . Тоді $\lambda^*(A_N) = +\infty$, а тому $\lambda^*(A) \leq +\infty$ автоматично. Тому надалі припускається, що для всіх A_n є покриття.

Нехай
$$\varepsilon > 0$$
, тоді для A_n існує покриття $A_n \subset \bigcup_{k=1}^\infty B_{kn}$, для якого $\sum_{k=1}^\infty \lambda(B_{kn}) < \lambda^*(A_n) + \frac{\varepsilon}{2^n}$.

Зауважимо, що $A\subset \bigcup_{n=1}^\infty A_n\subset \bigcup_{n=1}^\infty \bigcup_{k=1}^\infty B_{kn},$ тобто є таке покриття. Тоді звідси

$$\lambda^*(A) \leq \sum_{n=1}^\infty \sum_{k=1}^\infty \lambda(B_{kn}) < \sum_{n=1}^\infty \left(\lambda^*(A_n) + \frac{\varepsilon}{2^n}\right) = \sum_{n=1}^\infty \lambda^*(A_n) + \varepsilon.$$
 Якщо далі $\varepsilon \to 0+0$, то отримаємо бажану оцінку:

$$\lambda^*(A) \le \sum_{n=1}^{\infty} \lambda^*(A_n).$$

Remark 2.4.9 В означенні породженої зовнішньої міри λ^* можна обмежитися наборами неперетинних множин із півкільця \mathcal{P} , об'єднання яких містить множину A. Тоді при цьому $\lambda^*(A)$ не зміниться.

Proof.

Справді, хочемо знайти $\lambda^*(A)$. Нехай $\left\{A\subset\bigcup_{n=1}^\infty A_n\mid A_n\in\mathcal{P}\right\}=\mathcal{C}$ – множина всіх можливих по-

криття A, а також $\left\{A\subset\bigsqcup_{n=1}^{\infty}A_{n}\mid A_{n}\in\mathcal{P}\right\}=\mathcal{C}_{\sqcup}$ – множина всіх покриття A неперетинним чином.

Зауважимо, що
$$\mathcal{C}_{\sqcup} \subset \mathcal{C}$$
. Звідси випливає, що $\inf_{\mathcal{C}_{\sqcup}} \sum_{n=1}^{\infty} \lambda(A_n) \geq \inf_{\mathcal{C}} \sum_{n=1}^{\infty} \lambda(A_n) = \lambda^*(A)$.

Із іншого боку, нехай $A \subset \bigcup_{n=1}^{\infty} A_n$, тоді запшемо $B_1 = A_1$, $B_2 = A_2 \setminus A_1$, $B_3 = A_3 \setminus (A_1 \cup A_2), \dots$ – система неперетинних множин. Аналогічно (як це було під час доведення властивості 4) міри)

отримаємо
$$B_n=\bigsqcup_{i=1}^{i_n}C_{in}$$
 при $C_{in}\in\mathcal{P}.$ Отримали $A\subset\bigsqcup_{n=1}^{\infty}\bigsqcup_{i=1}^{i_n}C_{in}.$ Звідси

$$\inf_{\mathcal{C} \sqcup} \sum_{n=1}^{\infty} \lambda(U_n) \le \sum_{n=1}^{\infty} \sum_{i=1}^{i_n} \lambda(C_{in}) \stackrel{?}{\le} \sum_{n=1}^{\infty} \lambda(A_n) = \lambda^*(A).$$

Нерівність отрималася наступним чином: у нас $A_n \supset B_n \bigsqcup_{n=1}^{\infty} C_{in}$, а тому звідси випливає, що

$$A_n=B_n=\sqcup (A_n\setminus B_n)=igsqcup_{i=1}^{i_n}C_{in}\sqcup igsqcup_{j=1}^{j_n}D_{jn}$$
при $D_{jn}\in \mathcal{P},$ але тоді

$$\lambda(A_n) = \sum_{i=1}^{i_n} \lambda(C_{in}) + \sum_{j=1}^{j_n} \lambda(D_{jn}) \ge \sum_{i=1}^{i_n} \lambda(C_{in}).$$

2.5 Вимірність за Каратеодорі

Definition 2.5.1 Задано λ^* – зовнішня міра.

Множина $A\subset X$ називається вимірною за Каратеодорі відносно λ^* , якщо

$$\forall E \subset X : \lambda^*(E) = \lambda^*(E \cap A) + \lambda^*(E \cap \tilde{A})$$

Позначення: S – клас усіх вимірних множин за Каратеодорі (відносно зовнішньої міри).

Remark 2.5.2 $\mathcal{S} \neq \emptyset$, тому що порожня множина \emptyset завжди вимірна за Каратеодорі, тобто $\emptyset \in \mathcal{S}$.

Remark 2.5.3 Означення вимірних множин за Каратеодорі можна дещо послабити ось так:

$$\forall E \subset X : \lambda^*(E) \ge \lambda^*(E \cap A) + \lambda^*(E \cap \tilde{A})$$

Дійсно, зауважимо, що $(E \cap A) \cup (E \cap \bar{A}) = E$, тобто мається покриття для множини E, а тому за напівадитивністю зовнішьої міри,

$$\lambda^*(E) \le \lambda^*(E \cap A) + \lambda^*(E \cap \bar{A}).$$

Theorem 2.5.4 Теорема Каратеодорі

Задано λ^* – зовнішня міра. Тоді S утворює σ -алгебру, а також $\lambda^*|_S$ буде мірою.

Доведення даної теореми будемо розбивати на три етапи.

I. S буде алгеброю.

Нехай $A, B \in \mathcal{S}$, тобто A, B – вимірні за Каратеодорі, а тому $\forall E \subset X$:

$$\lambda^*(E) = \lambda^*(E \cap A) + \lambda^*(E \cap \overline{A}) \qquad \lambda^*(E) = \lambda^*(E \cap B) + \lambda^*(E \cap \overline{B}).$$

Ми хочемо довести, що $\lambda^*(E) = \lambda^*(E \cap (A \cup B)) + \lambda^*(E \cap \overline{A \cup B})$, це й буде означати $A \cup B \in \mathcal{S}$.

$$\lambda^*(E) = \lambda^*(E \cap A) + \lambda^*(E \cap \overline{A}) \stackrel{B \in \mathcal{S}}{=} \lambda^*(E \cap A) + [\lambda^*(E \cap \overline{A} \cap B) + \lambda^*(E \cap \overline{A} \cap \overline{B})] = [\lambda^*(E \cap A) + \lambda^*(E \cap \overline{A} \cap B)] + \lambda^*(E \cap \overline{A} \cap B)] + \lambda^*(E \cap \overline{A} \cap B)$$

Хочеться показати, що ця дужка $[\lambda^*(E\cap A)+\lambda^*(E\cap\overline{A}\cap B)]=\lambda^*(E\cap(A\cup B))$. Дійсно, $\lambda^*(E\cap(A\cup B))$ $B))\stackrel{A\in\mathcal{S}}{=}\lambda^*(E\cap(A\cup B)\cap A)+\lambda^*(E\cap(A\cup B)\cap\overline{A})=\lambda^*(E\cap A)+\lambda^*(E\cap\overline{A}\cap B).$

Отже, $\lambda^*(E) = \lambda^*(E \cap (A \cup B)) + \lambda^*(E \cap \overline{A \cup B})$ виконано для всіх $E \subset X$. Довели $A \cup B \in \mathcal{S}$.

Із означення вимірності за Каратеодорі випливає, що $A \in \mathcal{S} \iff \overline{A} \in \mathcal{S}$. Оскільки $\emptyset \in \mathcal{S}$, то $X \in \mathcal{S}$. Нарешті, якщо $A, B \in \mathcal{S}$, то звідси $A \setminus B = A \cap \overline{B} = \overline{A \cup \overline{B}} \in \mathcal{S}$.

II. S буде σ -алгеброю.

Нехай $A_1,A_2,\dots\in\mathcal{S}$ – поки неперетинні множини. Хочемо довести, що $\bigsqcup_{i=1}^{\infty}A_n\in\mathcal{S}$, тобто $\forall E\subset X$:

$$\lambda^*(E) \ge \lambda^* \left(E \cap \bigsqcup_{n=1}^{\infty} A_n \right) + \lambda^* \left(E \cap \overline{\bigsqcup_{n=1}^{\infty} A_n} \right).$$

Спочатку доведемо рівність
$$\lambda^*\left(E\cap\bigsqcup_{n=1}^kA_n\right)=\sum_{n=1}^k\lambda^*(E\cap A_n)$$
 за МІ по числу $k\geq 1.$

База індукції: k = 1 – нема шо доводити.

Припущення індукції: нехай задана нерівність виконується для k-1.

Припущення індукції: нехай задана нерівність виконується для
$$k-1$$
.
Крок індукції: $\lambda^* \left(E \cap \bigsqcup_{n=1}^k A_n \right) \stackrel{A_k \in \mathcal{S}}{=} \lambda^* \left(E \cap \bigsqcup_{n=1}^k A_n \cap A_k \right) + \lambda^* \left(E \cap \bigsqcup_{n=1}^k A_n \cap \overline{A_k} \right) =$

$$= \lambda^* (E \cap A_k) + \lambda^* \left(E \cap \bigsqcup_{n=1}^{k-1} A_n \right) \stackrel{\text{припущення MI}}{=} \lambda^* (E \cap A_k) + \sum_{n=1}^{k-1} \lambda^* (A_n) = \sum_{n=1}^k \lambda^* (E \cap A_n).$$

МІ доведено. Тепер повернімось до бажаного.

Нам, за кроком I, уже відомо, що $\bigsqcup_{n=1}^k A_n \in \mathcal{S}$, тому звідси маємо:

$$\lambda^*(E) = \lambda^* \left(E \cap \bigsqcup_{n=1}^k A_n \right) + \lambda^* \left(E \cap \bigsqcup_{n=1}^k A_n \right) \ge \sum_{n=1}^k \lambda^*(E \cap A_n) + \lambda^* \left(E \cap \overline{\bigsqcup_{n=1}^\infty A_n} \right) \quad (!).$$

Остання нерівність отрималась за монотонністю, бо $E \cap \bigsqcup^n A_n \supset E \cap \bigsqcup^\infty A_n$. Нарешті, спрямуємо

 $k \to \infty$ – отримаємо:

$$\lambda^*(E) \ge \sum_{n=1}^{\infty} \lambda^*(E \cap A_n) + \lambda^* \left(E \cap \overline{\bigsqcup_{n=1}^{\infty} A_n} \right) \ge \lambda^* \left(E \cap \overline{\bigsqcup_{n=1}^{\infty} A_n} \right) + \lambda^* \left(E \cap \overline{\bigsqcup_{n=1}^{\infty} A_n} \right).$$

Остання нерівність випливає з σ -напівадитивності зовнішньої міри.

Власне, отримали \coprod $A_n \in \mathcal{S}$, це був лише випадок неперетинних множин.

Нехай $A_1,A_2,\dots\in\mathcal{S}$ – уже довільні. Розглянемо множини $B_1=A_1,\ B_2=A_2\setminus A_1,\ B_3=A_3\setminus (A_1\cup A_2),\dots$ – система неперетинних множин. Причому всі $B_1,B_2,\dots\in\mathcal{S},$ а звідси $\bigcup_{n=1}^\infty A_n=\bigcup_{n=1}^\infty B_n\in\mathcal{S}.$

III. $\lambda^*|_{\mathcal{S}}$ утворює міру.

Залишилося довести, що λ^* буде σ -адитивною на \mathcal{S} .

Нехай $A_1,A_2,\dots\in\mathcal{S}$ – неперетинні (уже автоматично $\bigsqcup_{n=1}^{\infty}A_n\in\mathcal{S}$). Скористаємося нерівністю (!)

при $k \to \infty,$ але замість E підставимо $E = \bigsqcup^{\infty} A_n$ – отримаємо наступне:

$$\lambda^* \left(\bigsqcup_{n=1}^{\infty} A_n \right) \ge \sum_{n=1}^{\infty} \lambda^* \left(\bigsqcup_{n=1}^{\infty} A_n \cap A_n \right) + \lambda^* \left(\bigsqcup_{n=1}^{\infty} A_n \cap \overline{\bigsqcup_{n=1}^{\infty} A_n} \right) = \sum_{n=1}^{\infty} \lambda^* (A_n).$$

Водночас, за σ -напівадитивністю зовнішьої міри, $\lambda^*\left(\bigsqcup_{n=1}^\infty A_n\right) \leq \sum_{n=1}^\infty \lambda^*(A_n)$. А тому звідси

$$\lambda^* \left(\bigsqcup_{n=1}^{\infty} A_n \right) = \sum_{n=1}^{\infty} \lambda^* (A_n).$$

Definition 2.5.5 Задано λ – міра на σ -алгебрі \mathcal{F} .

Міра λ називається **повною**, якщо

$$\forall A \in \mathcal{F} : \lambda(A) = 0 : \forall B \subset A : B \in \mathcal{F}$$

Із цього випливає, що $\lambda(B) = 0$.

Інколи ще говорять, що σ -алгебра \mathcal{F} повна відносно міри λ .

Example 2.5.6 Зокрема маємо $\mathcal{F} = \{\emptyset, X\}$, а міра λ на ній визначається як $\lambda(X) = \lambda(\emptyset) = 0$. У цьому випадку міра λ не буде повною, бо якщо $\{x\} \subset X$, то не випливає $\{x\} \notin \mathcal{F}$.

Corollary 2.5.7 Міра $\lambda^*|_{\mathcal{S}} \stackrel{\text{позн.}}{=} \lambda$ із теореми Каратеодорі – повна.

Proof.

Нехай $A \in \mathcal{S}$ так, щоб $\lambda^*(A) = 0$ та оберемо множину $B \subset A$. Доведемо, що $B \in \mathcal{S}$. Зауважимо, що $B \subset A$, $E \subset X$, звідси $E \cap B \subset A$, тому $\lambda^*(E \cap B) \leq \lambda^*(A) = 0 \implies \lambda^*(E \cap B) = 0$. $\lambda^*(E \cap B) + \lambda^*(E \setminus B) = \lambda^*(E \setminus B) \leq \lambda^*(E)$.

2.6 Продовження міри

Theorem 2.6.1 Задано λ – міра на півкільці \mathcal{P} та λ^* – зовнішня міра, породжена мірою λ . Тоді $\mathcal{P} \subset \mathcal{S}$, а також $\lambda^*|_{\mathcal{P}} \equiv \lambda$.

Proof.

 $\mathcal{P}\subset\mathcal{S}$.

Нехай $A \in \mathcal{P}$, нам треба довести, що $A \in \mathcal{S}$, інакше кажучи, $\lambda^*(E) \geq \lambda^*(E \cap A) + \lambda^*(E \cap \overline{A})$. Маємо $E \subset X$, якщо для нього не існує покриття, то $\lambda * (E) = +\infty$, тоді автоматично нерівність виконана. Тому залишилося розглянути $E \subset X$, для яких є покриття.

Нехай $\varepsilon > 0$, тоді існує покриття $E \subset \bigcup_{n=1}^{\infty} E_n$, де $E_n \in \mathcal{P}$, для яких $\sum_{n=1}^{\infty} \lambda(E_n) < \lambda^*(E) + \varepsilon$. Тобто

звідси $\lambda^*(E) > \sum_{n=1}^{\infty} \lambda(E_n) - \varepsilon$. Тепер розглянемо праву частину нерівності з Каратеодорі.

Зауважимо, що $E \cap A \subset \bigcup_{n=1}^{\infty} (E_n \cap A)$, а також $E \cap \overline{A} \subset \bigcup_{n=1}^{\infty} (E_n \cap \overline{A})$, причому $E_n \cap A \in \mathcal{P}$, водночас

$$E_n\cap\overline{A}=E\setminus A=igsqcup_{i=1}^{i_n}B_{in},$$
 тож $E\cap\overline{A}\subsetigsqcup_{n=1}^\inftyigsqcup_{i=1}^{i_n}B_{in},$ де $B_{in}\in\mathcal{P}.$ За визначенням зовнішьої міри,

$$\lambda^*(E \cap A) + \lambda^*(E \cap \overline{A}) \le \sum_{n=1}^{\infty} \lambda(E_n \cap A) + \sum_{n=1}^{\infty} \sum_{i=1}^{i_n} \lambda(B_{in}) = \sum_{n=1}^{\infty} \lambda(E_n).$$

Окремо варто пояснити, чому $\lambda(E_n\cap A)+\sum_{i=1}^{\iota_n}\lambda(B_{in})=\lambda(E_n)$. У нас $E_n\in\mathcal{P}$, але водночас $E_n=$

$$(E_n\cap A)\sqcup (E_n\cap \overline{A})=(E_n\cap A)\sqcup \bigsqcup_{i=1}^{i_n}B_{in}$$
, тут $E_n\cap A,B_{in}\in \mathcal{P}$, а тому можна застосовувати σ -адитивність міри.

Отже, $\lambda^*(E \cap A) + \lambda^*(E \cap \overline{A}) < \lambda^*(E) + \varepsilon$, а далі $\varepsilon \to 0 + 0$ – отримали бажану нерівність.

$$\lambda^*|_{\mathcal{P}} \equiv \lambda.$$

Нехай $A \in \mathcal{P}$, нам треба $\lambda^*(A) = \lambda(A)$.

Зауважимо, що $A \subset A \cup \emptyset \cup \emptyset \cup \ldots$, тому за зовнішьою мірою, $\lambda^*(A) \leq \lambda(A) + \lambda(\emptyset) + \lambda(\emptyset) + \cdots \Longrightarrow$ $\lambda^*(A) \leq \lambda(A)$.

Тепер беремо будь-яке покриття $A \subset \bigcup_{n=1}^{\infty} A_n, A_n \in \mathcal{P}$, які є. Зв властивістю 5) міри,

$$\lambda(A) \leq \sum_{n=1}^{\infty} \lambda(A_n)$$
 – виконано для кожного покриття. Тому звідси $\lambda(A) \geq \lambda^*(A)$.

Із двох нерівностей випливає, що $\lambda^*(A)=\lambda(A)$, для всіх $A\in\mathcal{P}.$

Схема продовження міри за Каратеодорі

- 1) Визначаємо міру λ на півкільці \mathcal{P} клас підмножин X;
- 2) На множині 2^X визначаємо зовнішю міру λ^* , що породжена λ ;
- 3) $\lambda^*|_{\mathcal{S}}$ буде мірою на σ -алгебрі (теорема Каратеодорі), причому $\mathcal{S}\supset\mathcal{P}$, а також $\lambda^*|_{\mathcal{P}}\equiv\lambda$. І ось ця міра $\lambda^*|_{\mathcal{S}}$ – шукане продовження міри λ . із \mathcal{P} на \mathcal{S} .

Деколи для зручності продовження також позначають за λ , але враховують визначення зовнішьюї міри, якщо множина не з півкільця.

Theorem 2.6.2 Єдиність продовження міри

Задано λ – міра на півкільця \mathcal{P} , нехай вона є σ -скінченною. Ми вже за схемою Каратеодорі можемо продовжити її до міри λ^* , яка визначена на σ -алгебрі \mathcal{S} .

Нехай λ – інше продовження міри λ з \mathcal{P} на \mathcal{S} . Тоді $\lambda \equiv \lambda^*$ на \mathcal{S} .

Proof.

Доведення розіб'ємо на дві частини.

I. Нехай λ – скінченна міра, при цьому $X \in \mathcal{P}$.

Нехай $A\in\mathcal{S},$ тоді точно існує хоча б одне покриття $A\subset\bigcup_{n=1}^\infty A_n$ при $A_n\in\mathcal{P}$ (можна взяти $A_1=X,$ покриття вже с). Тоді оділаст покриття вже ϵ). Тоді звідси, за властивістю 5) міри,

 $\tilde{\lambda}(A) \leq \sum_{n=1}^{\infty} \tilde{\lambda}(A_n) \stackrel{A_n \in \mathcal{P}}{=} \sum_{n=1}^{\infty} \lambda(A_n)$ – виконано для кожного покриття множини A. Тоді $\tilde{\lambda}(A) \leq \lambda^*(A)$.

Узявши $X\setminus A\in\mathcal{S}$, ми аналогічно отримаємо $\tilde{\lambda}(X\setminus A)\leq \lambda^*(X\setminus A)\implies \tilde{\lambda}(A)\geq \lambda^*(A).$ Але тут суттєво як раз таки, щоб $\lambda(X) = \tilde{\lambda}(X) = \lambda^*(X) < +\infty$. Отже, $\lambda(A) = \lambda^*(A)$ при кожному $A \in \mathcal{S}$.

II. $Hexaŭ \lambda - \sigma$ -скінченна міра.

За умовою, існують $X_n \in \mathcal{P}$, для яких $\bigcup_{n=0}^{\infty} X_n = X$, а також кожний $\lambda(X_n) < +\infty$. Далі ми розглянемо $Y_1 = X_1, \ Y_2 = X_1 \setminus X_2, \ Y_3 \stackrel{n=1}{=} X_3 \setminus (X_1 \cup X_2)$ – система неперетинних множин. Тоді $\bigsqcup_{n=1}Y_n=X$, але також звідси кожний $Y_n\in k(\mathcal{P})$, тому звідси $Y_n=\bigsqcup_{i=1}^{\imath_n}Z_{in}$, де $Z_{in}\in\mathcal{P}$.

Отримали $X=\bigsqcup_{n=1}^{\infty}\bigsqcup_{i=1}^{i_n}Z_{in}$, де $Z_{in}\in\mathcal{P}$. Причому зауважимо, що $\lambda(Z_{in})<+\infty$, просто тому що $Z_{in}\subset Y_n\subset X_n$ та $\lambda(X_n)<+\infty$. Тому ми прийшли до випадку I, що було описано вище. Тобто $\tilde{\lambda}(A\cap Z_{in})=\lambda^*(A\cap Z_{in})$ для всіх множин $A\in\mathcal{S}\cap Z_{in}$. Отже, $\forall A\in\mathcal{S}$:

$$\tilde{\lambda}(A) = \tilde{\lambda}(A \cap X) = \tilde{\lambda}\left(\bigsqcup_{n=1}^{\infty}\bigsqcup_{i=1}^{i_n}(A \cap Z_{in})\right) = \sum_{n=1}^{\infty}\sum_{i=1}^{i_n}\tilde{\lambda}(A \cap Z_{in}) = \sum_{n=1}^{\infty}\sum_{i=1}^{i_n}\lambda*(A \cap Z_{in}) \stackrel{\text{аналог}}{=} \lambda^*(A). \quad \blacksquare$$

Remark 2.6.3 Умова σ -скінченності є надзвичайно важливою для єдиності. Приклад ще не знайшов.

Theorem 2.6.4 Наближення міри її значеннями на кільці

Задано $\lambda - \sigma$ -скінченна міра на півкільці \mathcal{P} . Продовжимо її до σ -алгебри \mathcal{S} (єдиним чином). Тоді $\forall A \in \mathcal{S}, \lambda(A) < +\infty : \forall \varepsilon > 0 : \exists B \in k(\mathcal{P}) : \lambda(A \triangle B) < \varepsilon$.

Proof

Нехай $A\in\mathcal{S}$ так, щоб $\lambda(A)<+\infty$, а також нехай $\varepsilon>0$. Тоді в силу визначення зовнішньої міри $\exists A\subset\bigcup_{n=1}^\infty A_n,\ \text{щоб}\ \sum_{n=1}^\infty \lambda(A_n)<\lambda(A)+\varepsilon.\$ Покриття існує, бо $\lambda(A)<+\infty.$

Ряд зліва (що є невід'ємним) також збіжний, просто тому що $\sum_{n=1}^{\infty} \lambda(A_n) < +\infty$, тож за означення

існування ліміту,
$$\exists K \in \mathbb{N} : \forall k \geq K : \left| \sum_{n=k+1}^{\infty} \lambda(A_n) \right| < \varepsilon.$$

Покладемо $B = \bigcup_{n=0}^{K} A_n$, причому зауважимо, що $B \in k(\mathcal{P})$. Залишилося оцінити міру.

$$\lambda(A \setminus B) = \lambda \left(A \setminus \bigcup_{n=1}^{K} A_n \right) \le \lambda \left(\bigcup_{n=1}^{\infty} A_n \setminus \bigcup_{n=1}^{K} A_n \right) \le \lambda \left(\bigcup_{n=K+1}^{\infty} A_n \right) \le \sum_{n=K+1}^{\infty} \lambda(A_n) < \varepsilon.$$

$$\lambda(B \setminus A) = \lambda \left(\bigcup_{n=1}^{K} A_n \setminus A \right) \le \lambda \left(\bigcup_{n=1}^{\infty} A_n \setminus A \right) = \lambda \left(\bigcup_{n=1}^{\infty} A_n \right) - \lambda(A) \le \sum_{n=1}^{\infty} \lambda(A_n) - \lambda(A) < \varepsilon.$$

$$\lambda(B \triangle A) = \lambda(A \setminus B) + \lambda(B \setminus A) < 2\varepsilon.$$

2.7 Міра Лебега

Беремо універсальну множину \mathbb{R}^d . На неї задаємо півкільце $\mathcal{P}_d = \left\{\prod_{i=1}^d (a_i,b_i] \mid a_i,b_i \in \mathbb{R}\right\}$, а згодом на ній установимо міру λ таким чином: $\lambda \left(\prod_{i=1}^d (a_i,b_i]\right) = \prod_{i=1}^d (b_i-a_i)$. За схемою Каратеодорі,

продовжимо міру на σ -алгебру S_d .

Definition 2.7.1 Отримана міра на σ -алгебрі \mathcal{S}_d називається **мірою Лебега**. Позначатимемо за λ_d . Всі множини з \mathcal{S}_d називаються **вимірними за Лебегом**.

 ${f Remark}$ 2.7.2 Із цього випливає, що λ_d – міра Лебега – повна.

Proposition 2.7.3 Кожна борельова множина – вимірна за Лебегом.

Proof.

Тобто треба довести, що $\mathcal{B}(\mathbb{R}^d) \subset \mathcal{S}_d$.

Нам уже відомо, що $\mathcal{P}_d \subset \mathcal{S}_d$, за теоремою про продовежння міри до σ -алгебри. Але оскільки \mathcal{S}_d є σ -алгеброю, то тоді $\sigma a(\mathcal{P}_d) = \mathcal{B}(\mathbb{R}^d) \subset \mathcal{S}^d$.

Розглянемо деякі значення міри Лебега на \mathbb{R} .

1. Оберемо одноточкову множину $\{x\}$, що є борельовою, тому звідси $\lambda_1(\{x\}) = 0$. Справді,

$$\lambda_1(\lbrace x \rbrace) = \lim_{n \to \infty} \lambda_1\left(\left(x - \frac{1}{n}, x\right]\right) = \lim_{n \to \infty} \left(x - x - \frac{1}{n}\right) = 0.$$

2. Як наслідок, міра будь-якої скінченної або зліченної множини – нулева. Зокрема $\lambda_1(\mathbb{Q})=0.$

3. Розглянемо $[a,b], \ (a,b), \ [a,b).$ Тоді їхні міри збігаються з мірою $\lambda_1((a,b]) = b-a.$

4. Також маємо
$$\lambda_1(\mathbb{R})=+\infty$$
. Дійсно,
$$\lambda_1(\mathbb{R})=\lim_{n\to\infty}\lambda_1((-n,n])=\lim_{n\to\infty}2n=+\infty.$$

Theorem 2.7.4 Узагальнення вимірності

Задано A – вимірна за Жорданом. Тоді A – вимірна за Лебегом, при цьому $m(A) = \lambda_d(A)$. TODO: записати доведення

2.8 Регулярність мір

TODO: додати

Чому міри визначаються переважно на спеціальних класах множин

За умовою, що виконується так звана *аксіома вибору*, ми зараз побудуємо особливу підмножину $E \subset \mathbb{R}$, яка НЕ є вимірною за Лебегом. Це так звана **множина Віталі**.

На множині [0,1] визначимо відношення еквівалентності таким чином:

$$x \sim y \iff x - y \in \mathbb{Q}$$

Побудуємо множину E ось так: із кожного класу еквівалентності оберемо лише одну точку. Зауважимо, що всі $q+E, q\in\mathbb{Q}$ – неперетинні. Дійсно, припустимо, що деякі дві множини q_1+E, q_2+E перетинаються, тобто знайдеться спільна точка x, для якої $x=q_1+y_1, \ x=q_2+y_2$. Звідси випливає, що $q_1-q_2=y_2-y_1\in\mathbb{Q}$, тобто елементи y_1,y_2 лежать в одному класі еквівалентності. При цьому $y_1,y_2\in E$, але ми домовлялися обирати лише одну точку з кожного класу еквівалентності. Тепер нехай $y\in[0,1]$. Оскільки E має одну точку з кожного класу еквівалентності, то існує $x\in E$, для якого $x\sim y\implies y-x\in\mathbb{Q}$. Позначимо q=y-x, тоді звідси $y=q+x\in q+E$. Причому знайдене $q\in\mathbb{Q}\cap[-1,1]$.

Розглянемо множину $A=\bigsqcup_{q\in\mathbb{Q}\cap[-1,1]}(q+E).$ Ми щойно довели, що кожна точка $y\in[0,1]$ потрапляє в

одну з множин формату q+E. Значить, $[0,1]\subset A$. Із іншого боку, цілком зрозуміло, що $A\subset [-1,2]$, просто тому що елементи з E знаходяться на проміжку [0,1] і плюс раціональне з [-1,1]. Отже, $[0,1]\subset A\subset [-1,2]$.

!Тепер найважливіше: припустимо, що E – вимірна за Лебегом. Тоді множини q+E також вимірні за Лебегом як множини зі зсувом. Отже, звідси

$$\lambda(A) = \lambda \left(\bigsqcup_{q \in \mathbb{Q} \cap [-1,1]} (q+E)\right) = \sum_{q \in \mathbb{Q} \cap [-1,1]} \lambda(q+E).$$
 У числового ряда ($\mathbb{Q} \cap [-1,1]$ – зліченна множина) всі доданки однакові. Якщо $\lambda(E) = 0$, то тоді

У числового ряда ($\mathbb{Q} \cap [-1,1]$ – зліченна множина) всі доданки однакові. Якщо $\lambda(E)=0$, то тоді $\lambda(A)=0$. У протилежному випадку $\lambda(A)=+\infty$. Із іншого боку, міра Лебега – монотонна теж, тож звідси $\lambda([0,1]) \leq \lambda(A) \leq \lambda([-1,2])$, тобто отримали $1 \leq \lambda(A) \leq 3$. Отримали суперечність!

Мораль цього всього така: ми не зможемо побудувати таку функцію множин $\lambda \colon 2^{\mathbb{R}} \to (-\infty, +\infty]$, яка буде невід'ємною, σ -адитивною та інваріантною відносно зсуву множини. Значить, треба визнати, що $2^{\mathbb{R}}$ необхідно звужувати поступово до класів множин, які були визначені на самому початку.

3 Вимірні функції

3.1 Основні означення

Definition 3.1.1 Вимірним простором називають пару (X, \mathcal{F}) , де X – універсальна множина та $\mathcal{F} - \sigma$ -алгебра. Всі множини з σ -алгебри будемо називати **вимірними**.

Вимірним простором з мірою називають трійку $(X, \mathcal{F}, \lambda)$, тут λ – міра на \mathcal{F} .

Definition 3.1.2 Задано відображення $f: X \to Y$, а також два вимірних простори $(X, \mathcal{F}_X), (Y, \mathcal{F}_Y)$. Відображення f називається $(\mathcal{F}_X, \mathcal{F}_Y)$ -вимірною, якщо

$$\forall B \in \mathcal{F}_Y : f^{-1}(B) \in \mathcal{F}_X$$

Якщо позначити $f^{-1}(\mathcal{F}_Y)\stackrel{\mathrm{def.}}{=} \big\{B\in\mathcal{F}_Y: f^{-1}(B)\in\mathcal{F}_X\big\},$ то означення перепишеться так:

$$f^{-1}(\mathcal{F}_Y) \subset \mathcal{F}_X$$

Theorem 3.1.3 Задано відображення $f: X \to Y$, а також два вимірних простори $(X, \mathcal{F}_X), (Y, \mathcal{F}_Y)$. Нехай \mathcal{H} – клас множин Y, що задовольняє таким умовам:

1.
$$\forall B \in \mathcal{H} : f^{-1}(B) \in \mathcal{F}_X;$$

2.
$$\sigma a(\mathcal{H}) \supset \mathcal{F}_Y$$
.

Тоді відображення f буде $(\mathcal{F}_X, \mathcal{F}_Y)$ -вимірною.

Тобто теорема каже, що не обов'язково перевіряти на всій σ -алгебрі \mathcal{F}_Y , щоб було означення вимірності. Достатньо взяти якісь множини та переконатися в них.

Proof.

Розглянемо множину $\mathcal{L} = \{B \subset Y : f^{-1}(B) \in \mathcal{F}_X\}$. Зрозуміло, що $\mathcal{L} \supset \mathcal{H}$ за умовою. Якщо доведемо, що $\mathcal L$ утворює σ -алгебру, то тоді $\mathcal L\supset \sigma a(\mathcal H)\supset \mathcal F_Y.$ І тоді звідси випливатиме, що $\forall B \in \mathcal{F}_Y : B \in \mathcal{L} \implies f^{-1}(B) \in \mathcal{F}_X$, що свідчить про виконання означення $(\mathcal{F}_X, \mathcal{F}_Y)$ -вимірності.

Отже, нехай $B_n \in \mathcal{L}, n \geq 1$. Із цього випливає, що $f^{-1}(B_n) \in \mathcal{F}_X$, а звідси випливає, що $\bigcup_{n=1}^{\infty} f^{-1}(B_n) =$

$$f\left(\bigcup_{n=1}^{\infty}B_{n}\right)\in\mathcal{F}_{X}$$
. А це означає, що $\bigcup_{n=1}^{\infty}B_{n}\in\mathcal{L}$

 $f\left(igcup_{n=1}^{\infty}B_{n}
ight)\in\mathcal{F}_{X}$. А це означає, що $igcup_{n=1}^{\infty}B_{n}\in\mathcal{L}$. Якщо $B_{1},B_{2}\in\mathcal{L}$, то тоді $f^{-1}(B_{1}),f^{-1}(B_{2})\in\mathcal{F}_{X}$, а звідси $f^{-1}(B_{1})\setminus f^{-1}(B_{2})=f^{-1}(B_{1}\setminus B_{2})\in\mathcal{F}_{X}$, а тому це означає, що $B_1 \setminus B_2 \in \mathcal{L}$.

Нарешті, $f^{-1}(Y) = X$, тому звідси $Y \in \mathcal{L}$.

Отже, ми довели, що \mathcal{L} утворює σ -алгебру.

Definition 3.1.4 Задано (X, \mathcal{F}) – вимірний простір.

Функція $f: X \to \mathbb{R}$ називається \mathcal{F} -вимірною, якщо

$$f$$
 буде $(\mathcal{F}, \mathcal{B}(\mathbb{R}))$ -вимірною

Конкретно в цьому випадку $(X, \mathcal{F}_X) = (X, \mathcal{F})$ та також $(Y, \mathcal{F}_Y) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Corollary 3.1.5 Задано (X, \mathcal{F}) – вимірний простір

Функція
$$f\colon X\to\mathbb{R}$$
 буде \mathcal{F} -вимірною $\iff \forall a\in\mathbb{R}: egin{align*} f^{-1}((a,+\infty))\in\mathcal{F} \\ f^{-1}([a,+\infty))\in\mathcal{F} \\ f^{-1}((-\infty,a))\in\mathcal{F} \\ f^{-1}((-\infty,a])\in\mathcal{F} \\ \end{cases}$

Proof.

 \Rightarrow Дано: $f \in \mathcal{F}$ -вимірною, тоді автоматично, за означенням, $(a, +\infty), [a, +\infty), (-\infty, a), (-\infty, a]$ вони вже борельові, а тому виконується права частина.

 \sqsubseteq Дано: $\forall a \in \mathbb{R} : f^{-1}([a, +\infty)) \in \mathcal{F}.$

Розглянемо клас множин $\mathcal{H} = \{[a, +\infty) \mid a \in \mathbb{R}\}$, уже відомо, що $\forall B \in \mathcal{H} : f^{-1}(B) \in \mathcal{F}$. Залишалася інша умова: $\sigma a(\mathcal{H}) \supset \mathcal{B}(\mathbb{R})$.

Нехай $(a,b] \in \mathcal{P}_1$, звідси випливає, що $(a,b] = (a,+\infty) \setminus (b,+\infty)$, але водночас кожний $(x,+\infty) =$

$$\bigcap_{n=1}^{\infty} \left[x + \frac{1}{n}, +\infty \right) \in \sigma a(\mathcal{H}), \text{ тож звідси } (a,b] \in \sigma a(\mathcal{H}), \text{ тож } \sigma a(\mathcal{H}) \supset \mathcal{P}_1, \text{ але тоді звідси } \sigma a(\mathcal{H}) \supset \sigma a(\mathcal{P}_1) = \mathcal{B}(\mathbb{R}).$$

Для інших пунктів десь аналогічно, а десь навіть простіше.

Отже, за теоремою вище, довели, що f буде \mathcal{F} -вимірною.

Надалі користуватимемося позначенням: $f^{-1}((a,+\infty)) \stackrel{\text{def.}}{=} \{f>a\}$. Решта позначень аналогічні.

Definition 3.1.6 Задано (X, ρ) – метричний простір.

Функція $f: X \to \mathbb{R}$ називається **борельовою**, якщо

$$f$$
 буде $(\mathcal{B}(X),\mathcal{B}(\mathbb{R}))$ -вимірною

Definition 3.1.7 Функція $f \colon A \to \mathbb{R}$, де $A \in \mathcal{S}_d$, називається вимірною за Лебегом, якщо

$$f$$
 буде $(S_d \cap A)$ -вимірною

Під класом $\mathcal{S}_d \cap A$ мається на увазі всі множини з σ -алгебри \mathcal{S}_d перетнути з A.

Це такий особливий клас функцій, для яких визначені міри Лебега $\lambda_d(f^{-1}(B))$ при $B \in \mathcal{B}(\mathbb{R})$, адже, за означенням, $f^{-1}(B)$ має бути вимірною за Лебегом на множині A.

Example 3.1.8 Будь-яка борельова функція $f: \mathbb{R}^d \to \mathbb{R}$ буде вимірною за Лебегом.

3.2 Дії з вимірними функціями

Proposition 3.2.1 Задані $f: X \to Y$, $g: Y \to Z$ – два відображення та (X, \mathcal{F}_X) , (Y, \mathcal{F}_Y) , (Z, \mathcal{F}_Z) – два вимірних простори. Відомо, що $f \in (\mathcal{F}_X, \mathcal{F}_Y)$ -вимірною та $g \in (\mathcal{F}_Y, \mathcal{F}_Z)$ -вимірною. Тода $g \circ f$ буде $(\mathcal{F}_X, \mathcal{F}_Z)$ -вимірною.

Proof.

Нехай $B \in \mathcal{F}_Z$. Зауважимо, що $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$. За умовою твердження, $g^{-1}(B) \in \mathcal{F}_Y$ в силу вимірності g, але тоді $f^{-1}(g^{-1}(B)) \in \mathcal{F}_X$ в силу вимірності f.

Corollary 3.2.2 Задано (X, \mathcal{F}_X) – вимірний простір та функції $f_k \colon X \to \mathbb{R}$ – всі \mathcal{F}_X -вимірні. Маємо функцію $g \colon \mathbb{R}^d \to \mathbb{R}$ – борельова. Тоді $h(x) = g(f_1(x), \dots, f_d(x))$ буде \mathcal{F}_X -вимірною.

Proof.

Розглянемо відображення $\vec{f}: X \to \mathbb{R}^d$ та мається уже $g: \mathbb{R}^d \to \mathbb{R}$, тоді наша функція $h = g \circ \vec{f}$. Залишилося довести, що \vec{f} буде $(\mathcal{F}_X, \mathcal{B}(\mathbb{R}^d))$ -вимірною. Тоді вже за твердженням вище, ми отримаємо h, що буде \mathcal{F}_X -вимірною.

Нехай \mathcal{P}_d – наш клас множин, уже відомо, що $\sigma a(\mathcal{P}_d) \supset \mathcal{B}(\mathbb{R}^d)$ (насправді, навіть рівні). Залишилося показати, що $\forall B \in \mathcal{P}_d : \vec{f}^{-1}(B) \in \mathcal{F}_X$.

Значить, нехай $B \in \mathcal{P}_d$, тобто $B = \prod_{i=1}^a (a_i, b_i]$, а тепер розглянемо його прообраз.

$$\vec{f}^{-1}(B) = \left\{x \in X \mid \vec{f}(x) \in B\right\} = \left\{x \in X \mid f_1(x) \in (a_1,b_1], \dots, f_d(x) \in (a_d,b_d]\right\} = f_1^{-1}((a_1,b_1]) \cap \dots \cap f_d^{-1}((a_d,b_d])$$
. Але оскільки кожна $f_i \in \mathcal{F}_X$ -вимірною, то звідси всі ці прообрази $f_i^{-1}((a_i,b_i]) \in \mathcal{F}_X$. Але тоді звідси $\vec{f}^{-1}(B) \in \mathcal{F}_X$.

Theorem 3.2.3 Задані $f_1, f_2 \colon X \to \mathbb{R} - \varepsilon$ \mathcal{F} -вимірними, ткож нехай $c \in \mathbb{R}$. Тоді такі функції, як-от: $f_1 + f_2, \ cf_1, \ f_1 \cdot f_2, \ |f_1|, \ \max\{f_1, f_2\}, \ \min\{f_1, f_2\}, \ \frac{f_1}{f_2}\mathbbm{1}_{\{f_2 \neq 0\}} -$ всі вони будуть \mathcal{F} -вимірними також.

Proof.

Окрім останньої функції, всі вони випливають з наслідка вище. Покажу не першому прикладі. Маємо $f_1, f_2 \colon X \to \mathbb{R}$, що \mathcal{F} -вимірні за умовою. Розглянемо відображення $g \colon \mathbb{R}^2 \to \mathbb{R}$ таким чином: $g(y_1, y_2) = y_1 + y_2$. Зрозуміло, що це – неперервна, а тому буде борельовою. Таким чином, $g(f_1(x), f_2(x)) = f_1(x) + f_2(x)$ буде \mathcal{F} -вимірною.

Зараз окремо розглянемо функцію $f = \frac{f_1}{f_2} \mathbbm{1}_{\{f_2 \neq 0\}}$. Оберемо $a \in \mathbb{R}$ та дослідимо $\{f < a\}$.

Запишемо її таким чином: $\{f < a\} = \{f < a, f_2 < 0\} \cup \{f < a, f_2 = 0\} \cup \{f < a, f_2 > 0\}.$ Зауважимо, що $\{f < a, f_2 < 0\} = \{f_1 - af_2 > 0, f_2 < 0\}$. Зокрема оскільки $f_1, f_2 - \mathcal{F}$ -вимірні, то тоді звідси $f_1 - af_2$ також \mathcal{F} -вимірні, то звідси, за наслідком, $\{f < a, f_2 < 0\} \in \mathcal{F}$. Так само доводиться $\{f < a, f_2 > 0\} = \{f_1 - af_2 < 0, f_2 > 0\} \in \mathcal{F}$.

Остання множина $\{f < a, f_2 = 0\} = \{0 < a\} = \begin{bmatrix} \emptyset \\ X \end{bmatrix} \in \mathcal{F}.$

Corollary 3.2.4 За умовою, що $f_1, f_2 \in \mathcal{F}$ -вимірними, $\{f_1 < f_2\}, \{f_1 > f_2\}, \{f_1 = f_2\} \in \mathcal{F}$. Вказівка: розглянути $f = f_2 - f_1$.

Theorem 3.2.5 Задані функції $f_n : X \to \mathbb{R}, n \ge 1$ – всі є \mathcal{F} -вимірними. Тоді $\inf_{n \ge 1} f_n(x), \sup_{n \ge 1} f_n(x), \lim_{n \to \infty} f_n(x), \lim_{n \to \infty} f_n(x)$ – всі вони будуть \mathcal{F} -вимірними. Додатково, $\lim_{n \to \infty} f_n(x)$ буде \mathcal{F} -вимірною за умовою, що ліміт існує $\forall x \in X$.

Proof.
$$g^{(1)}(x) \stackrel{\text{def.}}{=} \inf_{n \ge 1} f_n(x).$$

$$\forall a \in \mathbb{R} : \{g^{(1)} \ge a\} = \{x \in X \mid g^{(1)}(x) \ge a\} = \{x \in X \mid f_n(x) \ge a, n \ge 1\} = \bigcap_{n=1}^{\infty} \{f_n \ge a\} \in \mathcal{F}.$$

$$g^{(2)}(x) \stackrel{\text{def.}}{=} \sup_{n \ge 1} f_n(x).$$

$$\forall a \in \mathbb{R} : \{g^{(2)} \le a\} = \{x \in X \mid g^{(2)}(x) \le a\} = \{x \in X \mid f_n(x) \le a, n \ge 1\} = \bigcap_{n=1}^{\infty} \{f_n \le a\} \in \mathcal{F}.$$

$$g^{(3)}(x) = \underline{\lim}_{n \to \infty} f_n(x)$$

 $g^{(3)}(x)=\varinjlim_{n o\infty}f_n(x).$ Насправді, зауважимо, що $\varinjlim_{n o\infty}f_n(x)=\inf_{n\ge 1}\sup_{k\ge n}f_k(x)$. Далі користаємося першими двома щойно

$$g^{(4)}(x) = \lim_{n \to \infty} f_n(x).$$

Аналогічно варто зауважити, що $\overline{\lim}_{n\to\infty} f_n(x) = \sup_{n>1} \inf_{k\geq n} f_k(x)$.

$$g^{(5)}(x) = \lim_{n \to \infty} f_n(x).$$

Якщо границя існує, то звідси $\lim_{n\to\infty} f_n(x) = \underline{\lim}_{n\to\infty} f_n(x) = \overline{\lim}_{n\to\infty} f_n(x)$. А далі користуємось щойно доведеним.

Corollary 3.2.6 За умовою, що $f_n \in \mathcal{F}$ -вимірними, $\{x \in X \mid \exists \lim_{n \to \infty} f_n(x)\} \in \mathcal{F}$.

3.3 Наближення вимірних функцій

Definition 3.3.1 Функція $p: X \to \mathbb{R}$ називається **простою**, якщо вона приймає скінченне число

Нехай маємо $p(x)=a_1,\ x\in A_1,\ldots,p(x)=a_n,\ x\in A_n.$ Причому $\bigsqcup_{i=1}^\infty A_n=X.$ Тоді ми можемо просту функцію переписати в іншому вигляді:

$$p(x) = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k}(x)$$

Зрозуміло, що якщо довільна функція приймає вигляд формули вище, то вона – проста.

Lemma 3.3.2 Задано $p\colon X\to \mathbb{R}$ – проста функція, у нашому випадку $p(x)=\sum_{k=0}^{\infty}a_k\mathbbm{1}_{A_k}(x).$

 $p - \mathcal{F}$ -вимірна функція $\iff \forall k = \overline{1, n} : A_k \in \mathcal{F}$.

Theorem 3.3.3 Задано функцію $f \colon X \to \overline{\mathbb{R}} - \varepsilon \mathcal{F}$ -вимірною, причому $f \ge 0$. Тоді існує послідовність простих функцій $\{p_n\colon X\to\mathbb{R}, n\geq 1\}$ – причому зростаюча, всі невід'ємні та \mathcal{F} -вимірні – для якої $\lim_{n \to \infty} p_n(x) = f(x)$ при всіх $x \in X$.

Ми задамо наступні прості функції ось таким чином:

$$p_1(x) = \begin{cases} 1, & f(x) > 1\\ \frac{k}{2}, & f(x) \in \left(\frac{k}{2}, \frac{k+1}{2}\right], \text{ тут } k = \overline{0, 1}. \end{cases}$$
$$p_2(x) = \begin{cases} 2, & f(x) > 2\\ \frac{k}{2^2}, & f(x) \in \left(\frac{k}{2^2}, \frac{k+1}{2^2}\right], \text{ тут } k = \overline{0, 7}. \end{cases}$$

Тобто для p_1 ділимо по OY відрізок [0,1] на $\frac{1}{2}$; для p_2 ділимо по OY відрізок [0,2] на $\frac{1}{4}$. . . З'ясуємо, чому це справді прості функції. Тому що можна це записати ось так:

$$p_1(x) = 1 \cdot \mathbb{1}_{\{f(x) > 1\}}(x) + \sum_{k=0}^{2^1} \frac{k}{2} \mathbb{1}_{\{f(x) \in \left(\frac{k}{2}, \frac{k+1}{2}\right]\}}(x).$$

$$p_2(x) = 2 \cdot \mathbb{1}_{\{f(x) > 2\}}(x) + \sum_{k=0}^{7} \frac{k}{2^2} \mathbb{1}_{\left\{f(x) \in \left(\frac{k}{2^2}, \frac{k+1}{2^2}\right]\right\}}(x).$$

Тут скінченні значення та всі множини на індикаторах неперетинні.

Всі вони будуть невід'ємними – це цілком зрозуміло. Всі вони також будуть вимірними, тому що f є \mathcal{F} -вимірною; а це означає, що $\{f>1\}\in\mathcal{F}$ та $\left\{f\in\left(\frac{k}{2^n},\frac{k+1}{2^n}\right]\right\}=\left\{f>\frac{k}{2^n}\right\}\cap\left\{f\leq\frac{k+1}{2^n}\right\}\in\mathcal{F}.$ Найскладніше довести монотонне зростання. Покажу, що $p_2\leq p_3$, для інших аналогічно.

Якщо x беремо такі, що f(x)>2, тоді у функції p_3 маємо $p_3(x)=\frac{k}{2^3}$, але $k>2\cdot 2^3$; або $p_3(x)=3$ при f(x)>3. Водночає маємо $p_2(x)=2$ у двух випадках. Тоді $p_2\leq p_3$, зважаючи два випадки. Якщо x беремо такі, що $f(x)\leq 2$, тоді розглядається один $f(x)\in\left(\frac{k}{2^2},\frac{k+1}{2^2}\right]$. Запишемо так:

$$\left(\frac{k}{2^2},\frac{k+1}{2^2}\right]=\left(\frac{2k}{2^3},\frac{2k+1}{2^3}\right]\cup\left(\frac{2k+1}{2^3},\frac{2k+2}{2^3}\right]$$
. Із всього цього випливає, що $p_2(x)=\frac{k}{2^2}$, а також $p_3(x)=\frac{2k}{2^3}$ або $p_3(x)=\frac{2k+1}{2^3}$. У двох випадках маємо $p_2\leq p_3$. Нарешті, доведемо, що $\lim_{n\to\infty}p_n(x)=f(x)$. Заздалегідь зауважимо, що $p_n\leq f$ за побудовою.

Нехай спочатку $x\in X$ такий, що $f(x)=+\infty$. Тоді в цій точці $\{p_n(x),n\geq 1\}$ не є обмеженою та в силу зростання p_n матимемо $\lim_{n\to\infty}=+\infty=f(x)$. Точніше кажучи, $\{p_n(x)=n,n\geq 1\}$. Нехай тепер $x\in X$ такий, що $f(x)<+\infty$. Тоді зауважимо, що має існувати номер n, для якого f(x)< n, а значить, $f(x)\in\left(\frac{k}{2^n},\frac{k+1}{2^n}\right]$. Через нерівність це можна записати як $\frac{k}{2^n}\leq f(x)\leq 1$ $\frac{k+1}{2^n} \Longrightarrow p_n(x) \le f(x) \le p_n(x) + \frac{1}{2^n}$. Для нашого випадку $f(x) - \frac{1}{2^n} \le p_n(x) \le f(x)$. Спрямовуючи $n \to \infty$, отримаємо бажане.

Для довільної функції $f\colon X\to\mathbb{R}$ надалі користуватимемося такими позначеннями:

$$f_+(x) \stackrel{\mathrm{def.}}{=} f(x) \mathbbm{1}_{\{f \geq 0\}}(x) \stackrel{\mathrm{a6o}}{=} \max\{f(x), 0\}.$$

$$f_{-}(x) \stackrel{\text{def.}}{=} -f(x) \mathbb{1}_{\{f < 0\}}(x) \stackrel{\text{a6o}}{=} -\min\{f(x), 0\}.$$

Якщо функція f буде \mathcal{F} -вимірними, то всі ці функції f_+, f_- будуть також \mathcal{F} -вимірними. Також зауважимо, що f_+, f_- – обидва невід'ємні функції, а також

$$f(x) = f_{+}(x) - f_{-}(x).$$

$$|f(x)| = f_{+}(x) + f_{-}(x).$$

$$|f(x)| = f_{+}(x) + f_{-}(x).$$

Corollary 3.3.4 Задано функцію $f\colon X\to \bar{\mathbb{R}}$ – є \mathcal{F} -вимірною. Тоді існує послідовність простих функцій $\{p_n\colon X\to\mathbb{R}, n\geq 1\}$ – всі \mathcal{F} -вимірні – для якої $\lim_{n\to\infty}p_n(x)=f(x)$ при всіх $x\in X$. Причому $|p_n| \leq |f|$.

Proof.

Розпишемо функцію $f(x) = f_{+}(x) - f_{-}(x)$. Обидві функції є невід'ємними та \mathcal{F} -вимірними, тому за попередньою теоремою, існують відповідно $\{p_n\}, \{q_n\}$ — невід'ємні, $\mathcal F$ -вимірні та монотонно зростаючі послідовності простих функцій, для яких $p_n \to f_+, \ q_n \to f_-.$

Розглянемо послідовність $\{p_n(x)-q_n(x), n\geq 1\}$. Тоді $p_n-q_n\to f_+-f_-=f$. Нарешті, $|p_n-q_n|\leq |p_n|+|q_n|\leq f_++f_-=|f|$.

Remark 3.3.5 Якщо функція $f: X \to \mathbb{R}$ буде додатково обмеженою, то тоді вищеутворена послідовність функції $\{p_n, n \ge 1\}$ буде рівномірно прямувати до f при $n \to \infty$.

Спочатку покажемо при $f \geq 0$. Оскільки f – обмежена, то тоді $\exists M \in \mathbb{R} : 0 \leq f(x) \leq M$. Тоді для всіх n > M матимемо $0 \leq f(x) < n$, тож звідси $\forall x \in X : p_n(x) \leq f(x) \leq p_n(x) - \frac{1}{2^n}$. Внаслідок чого

отримаємо наступне: $\sup_{x \in X} |f(x) - p_n(x)| \leq \frac{1}{2^n} \to 0$ при $n \to \infty$. Висновок: $p_n \overset{\text{Z}}{\to} f$ на множині X при $n \to \infty$.

Для довільної функції f ми маємо, що $\forall x \in X : |f(x)| \leq M$, а тому звідси $0 \leq f_+(x) + f_-(x) \leq M$, тобто звідси $0 \leq f_+ \leq M$ та $0 \leq f_- \leq M$ — обидва обмежені. Далі кожина буде рівномірною границею. Сума рівномірної границі — все одно рівномірна.

3.4 Еквівалентні функції

Definition 3.4.1 Задано $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою та функції $f, g \colon X \to \bar{\mathbb{R}}$. Вони називаються **еквівалентними відносно міри** λ , якщо

$$\exists N \subset X : \lambda(N) = 0 : \forall x \in X \setminus N : f(x) = g(x)$$

Позначення: $f \sim g \pmod{\lambda}$ або $f = g \pmod{\lambda}$.

Remark 3.4.2 У випадку, коли $f, g \in \mathcal{F}$ -вимірними, то завжди існує множина $N = \{x \mid f(x) \neq g(x)\}$, для якої $\lambda(N) = 0$. (TODO: обміркувати)

Example 3.4.3 Зокрема розглянемо функцію Діріхлє $\mathfrak{D}(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Відносно міри Лебега на \mathbb{R} отримаємо $\mathfrak{D} \sim 0 \pmod{\lambda_1}$. Треба просто покласти в цьому випадку $N = \mathbb{Q}$, для якої $\lambda(N) = 0$.

Theorem 3.4.4 Задано $(X, \mathcal{F}, \lambda)$ – вимірний простір із мірою та функції $f, g: X \to \overline{\mathbb{R}}$. Відомо, що $f \in \mathcal{F}$ -вимірною, також $f \sim g \pmod{\lambda}$, і головне λ – повна міра. Тоді g також \mathcal{F} -вимірна.

Proof.

По-перше, за умовою, існує $N \subset X$, для якої $\lambda(N)$ та f(x) = g(x) при $x \in X \setminus N$.

Нехай $B \in \mathcal{B}(\bar{\mathbb{R}})$, тоді нам треба розглянути $g^{-1}(B)$.

 $g^{-1}(B) = \{x \in X \mid g(x) \in B\} = \{x \in X \mid g(x) \in B, g(x) \neq f(x)\} \cup \{x \in X \mid g(x) \in B, g(x) = f(x)\}.$

Кожну з двох множин розглянемо окремо.

 $\{x \in X \mid g(x) \in B, g(x) \neq f(x)\} \subset \{x \in X \mid g(x) \neq f(x)\} \subset N$. Оскільки $\lambda(N) = 0$ та λ – повна міра, то звідси $\{x \in X \mid g(x) \in B, g(x) \neq f(x)\} \in \mathcal{F}$.

 $\{x \in X \mid g(x) \in B, g(x) = f(x)\} = \{x \in X \mid f(x) \in B, g(x) = f(x)\} = g(x) = g($

 $= \{x \in X \mid f(x) \in B\} \setminus \{x \in X \mid f(x) \in B, f(x) \neq g(x)\} = f^{-1}(B) \setminus \{x \in X \mid f(x) \in B, f(x) \neq g(x)\}.$ Щодо останньої множини, аналогічно через повноту міри $\{x \in X \mid f(x) \in B, f(x) \neq g(x)\} \in \mathcal{F}.$

Щодо останньої множини, аналогічно через повноту міри $\{x \in X \mid f(x) \in B, f(x) \neq g(x)\}$ Також в силу \mathcal{F} -вимірності f, маємо $f^{-1}(B) \in \mathcal{F}$.

Сумуючи це все, отримали $g^{-1}(B) \in \mathcal{F}$.

Definition 3.4.5 Задані $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою та функції $f, f_n \colon X \to \bar{\mathbb{R}}$ та $n \ge 1$. Функції f_n збігається до f майже скрізь відносно міри λ , якщо

$$\exists N \subset X : \lambda(N) = 0 : \forall x \in X \setminus N : \lim_{n \to \infty} f_n(x) = f(x)$$

Позначення: $f_n \to f \pmod{\lambda}$.

Example 3.4.6 Маємо функції $f_n(x) = \sin^n x$ при $x \in \mathbb{R}$. Відносно міри Лебега на \mathbb{R} маємо $f_n \to 0$ (mod λ_1). Просто покладемо $N = \left\{\frac{\pi}{2} + \pi n \mid n \in \mathbb{Z}\right\}$

Theorem 3.4.7 Єдиність збіжності майже скрізь

Задані $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою та відомо, що $f_n \to f \pmod{\lambda}$, $f_n \to g \pmod{\lambda}$. Тоді $f \sim g \pmod{\lambda}$.

Маємо множини N_1, N_2 , для яких $\lambda(N_1) = \lambda(N_2) = 0$, а також $\forall x \in X \setminus N_1 : f_n \to f$ та $\forall x \in X \setminus N_2 :$ $f_n o g$ при $n o \infty$. Далі розглянемо множину $N = N_1 \cup N_2$. Тоді звідси випливає, що $\lambda(N) = 0$, а також $f_n \to f, f_n \to g$ одночасно. У силу єдиності границі, f = g при $x \in X \setminus N$. Отже, $f \sim g$ $\pmod{\lambda}$.

Theorem 3.4.8 Задані $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою та відомо, що $f_n \to f \pmod{\lambda}$, а також $f \sim g \pmod{\lambda}$. Тоді $f_n \to g \pmod{\lambda}$.

Приблизно такі самі кроки доведення, що в попередній теоремі.

Theorem 3.4.9 Задані $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою та відомо, що $f_n \to f \pmod{\lambda}$, всі f_n ϵ \mathcal{F} -вимірними і головне λ – повна міра. Тоді f буде \mathcal{F} -вимірною.

Маємо $f_n \to f \pmod{\lambda}$, тобто $\exists N \subset X : \lambda(N) = 0$ та $f_n \to f$ для всіх $x \in X \setminus N$. Розглянемо функції $\tilde{f}_n(x) = f_n(x) \mathbb{1}_{X \setminus N}(x)$ та $\tilde{f}(x) = f(x) \mathbb{1}_{X \setminus N}(x)$. Зауважимо, що $f_n \sim \tilde{f}_n \to \tilde{f} \sim f$. Раз всі f_n є \mathcal{F} -вимірними, то тоді кожний \tilde{f}_n є \mathcal{F} -вимірним в силу повноти λ . Але тоді \tilde{f} є також \mathcal{F} -вимірною як границя. Нарешті, f буде \mathcal{F} -вимірною в силу повноти λ .

3.5 Теорема Єгорова

Theorem 3.5.1 Задано $(X, \mathcal{F}, \lambda)$ – вимірний простір із мірою, причому $\lambda(X) < +\infty$. Задані функції $f_n,f\colon X o\mathbb{R}$ – всі вони \mathcal{F} -вимірні, причому $f_n o f\pmod{\lambda}$. Тоді $orallarepsilon>0:\exists A_arepsilon\in\mathcal{F}:\lambda(A_arepsilon)<$ $\varepsilon, f_n \xrightarrow{\rightarrow} f$ на $X \setminus A_{\varepsilon}$ при $n \to \infty$.

Proof.

Маємо $f_n \to f \pmod{\lambda}$, тобто звідси $\exists N : \lambda(N) = 0 : \forall x \in X \setminus N : f_n \to f$. А це означає наступне: $\forall x \in X \setminus N : \forall \varepsilon > 0 : \exists k \ge 1 : \forall n \ge k : |f_n(x) - f(x)| < \varepsilon.$

Мовою множин це все можна записати таким чином:

$$X\setminus N\subset \bigcup_{k=1}^\infty\bigcap_{n=k}^\infty\{x:|f_n(x)-f(x)|<\varepsilon\}.$$
 $N\supset \bigcap_{k=1}^\infty\bigcup_{n=k}^\infty\{x:|f_n(x)-f(x)|\geq\varepsilon\}.$ Зауважимо, що права множина буде вимірною на $\mathcal F$ в силу того, що f_n,f є $\mathcal F$ -вимірними. Оскільки

$$\lambda(N)=0$$
, то звідси $\lambda\left(\bigcap_{k=1}^{\infty}\bigcup_{n=k}^{\infty}\{x:|f_n(x)-f(x)|\geq\varepsilon\}\right)=0$. Але також варто зауважити, що по-

слідовність множин $\left\{\bigcup_{n=k}^{\infty}\{x:|f_n(x)-f(x)|\geq\varepsilon\},k\geq1\right\}$ буде спадати. Оскільки $\lambda(X)<+\infty$, тоді

$$\lambda\left(\bigcap_{k=1}^{\infty}\bigcup_{n=k}^{\infty}\left\{x:|f_n(x)-f(x)|\geq\varepsilon\right\}\right)=\lim_{k\to\infty}\lambda\left(\bigcup_{n=k}^{\infty}\left\{x:|f_n(x)-f(x)|\geq\varepsilon\right\}\right)=0.$$

Тобто звідси для чисел $\frac{\delta}{2^j}$ маємо $\exists k_j \geq 1: \lambda \left(\bigcup_{n=k}^{\infty} \left\{x: |f_n(x) - f(x)| \geq \frac{1}{j}\right\}\right) < \frac{\delta}{2^j}$ для всіх $j \geq 1.$

Нарешті, покладемо множину $A_\delta = \bigcup_{i=1}^\infty \bigcup_{n=k}^\infty \left\{ x: |f_n(x) - f(x)| \geq \frac{1}{j} \right\}$. Оцінимо його міру.

$$\lambda(A_{\delta}) \leq \sum_{j=1}^{\infty} \lambda \left(\bigcup_{n=k_{j}}^{\infty} \left\{ x : |f_{n}(x) - f(x)| \geq \frac{1}{j} \right\} \right) < \sum_{j=1}^{\infty} \frac{\delta}{2^{j}} = \delta.$$

Далі $X\setminus A_\delta=\bigcap_{i=1}^\infty\bigcap_{n=k}^\infty\left\{x:|f_n(x)-f(x)|<rac{1}{j}
ight\}$. Це означає наступне:

$$\forall j \ge 1 : \exists k_j : \forall n \ge k_j : \forall x \in X \setminus A_{\delta} : |f_n(x) - f(x)| < \frac{1}{i}.$$

Це означає, що $\forall n \geq k_j: \sup_{x \in X \setminus A_\delta} |f_n(x) - f(x)| \leq \frac{1}{j} \to 0$ при $j \to \infty$. І це в точності означає, що $f_{n \to} f$ на $X \setminus A_{\varepsilon}$ при $n \to \infty$

3.6 Збіжність за мірою

Definition 3.6.1 Задані $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою та функції $f, f_n \colon X \to \mathbb{R}$ та $n \ge 1$ – всі вони \mathcal{F} -вимірні.

Функція f_n збігається до f за мірою λ , якщо

$$\forall \varepsilon > 0 : \lim_{n \to \infty} \lambda \{ x \in X : |f_n(x) - f(x)| \ge \varepsilon \} = 0$$

Позначення: $f_n \stackrel{\lambda}{\to} f$.

Theorem 3.6.2 Єдиність збіжності за мірою

Задано $(X, \mathcal{F}, \lambda)$ – вимірний простір та відомо, що $f_n \xrightarrow{\lambda} f, f_n \xrightarrow{\lambda} g$. Тоді $f \sim g \pmod{\lambda}$.

Proof.

За умовою, маємо $\forall \varepsilon > 0$:

$$\lim_{x \to \infty} \lambda \{x \in X : |f_n(x) - f(x)| \ge \varepsilon\} = 0 \qquad \lim_{x \to \infty} \lambda \{x \in X : |f_n(x) - g(x)| \ge \varepsilon\} = 0.$$

За умовою, маємо
$$\forall \varepsilon > 0$$
:
$$\lim_{n \to \infty} \lambda \{x \in X : |f_n(x) - f(x)| \ge \varepsilon\} = 0 \qquad \lim_{n \to \infty} \lambda \{x \in X : |f_n(x) - g(x)| \ge \varepsilon\} = 0.$$
 Зауважимо, що $\{x \in X : |f(x) - g(x)| \ge \varepsilon\} \subset \left\{x \in X : |f(x) - f_n(x)| \ge \frac{\varepsilon}{2}\right\} \cup \left\{x \in X : |g(x) - f_n(x)| \ge \frac{\varepsilon}{2}\right\}.$

Звідси при $n \to \infty$ отримаємо наступне:

Звідси при
$$n \to \infty$$
 отримаємо наступне:
$$\lambda\{x \in X: |f(x) - g(x)| \ge \varepsilon\} \le \lambda\left\{x \in X: |f_n(x) - f(x)| \ge \frac{\varepsilon}{2}\right\} + \lambda\left\{x \in X: |f_n(x) - g(x)| \ge \frac{\varepsilon}{2}\right\} \to 0.$$
 Отже, $\forall \varepsilon > 0: \lambda\{x \in X: |f(x) - g(x)| \ge \varepsilon\} = 0.$

Зокрема при $\varepsilon=\frac{1}{k}$ маємо $\lambda\left\{x\in X:|f(x)-g(x)|\geq \frac{1}{k}\right\}=0,$ це дозволить сказати наступне:

$$\lambda\{x \in X : f(x) \neq g(x)\} = \lambda\left(\bigcup_{k=1}^{\infty} \{x \in X : |f(x) - g(x)| \ge \frac{1}{k}\}\right) = 0$$

$$= \lim_{k \to \infty} \lambda \left\{ x \in X : |f(x) - g(x)| \ge \frac{1}{k} \right\} = 0.$$

Значить, знайшли множину $N=\{x\in X: f(x)\neq g(x)\}$, для якої $\forall x\in X\setminus N: f(x)=g(x)$, при цьому $\lambda(N)=0$. За означенням, $f\sim g\pmod{\lambda}$.

Theorem 3.6.3 Задані $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою та відомо, що $f_n \stackrel{\lambda}{\to} f$, а також $f \sim g$ $(\text{mod }\lambda)$. Тоді $f_n \stackrel{\lambda}{\to} g$.

Вправа: довести.

Remark 3.6.4 У нас вже є два види збіжності: майже скрізь відносно міри та за мірою. Але $f_n \to f \pmod{\lambda} \implies f_n \stackrel{\lambda}{\to} f.$

$$f_n \stackrel{\lambda}{\to} f \implies f_n \to f \pmod{\lambda}$$

 $f_n \stackrel{\lambda}{\to} f \implies f_n \to f \pmod{\lambda}$. Нижче будуть відповідні приклади, які покажуть, що прямого зв'язку, взагалі-то кажучи, нема.

Example 3.6.5 Розглянемо
$$f_n(x) = \mathbbm{1}_{[n,n+1]}(x)$$
, а також нехай λ_1 – міра Лебега на \mathbb{R} . $f_n(x) = \mathbbm{1}_{[n,n+1]}(x) \to 0 = f \pmod{\lambda_1}$ (насправді, тут збіжність всюди, не просто майже скрізь)

$$f_n(x)=\mathbb{1}_{[n,n+1]}(x) \stackrel{\lambda_1}{
ightarrow} 0=f,$$
 оскільки $\lambda_1\{x\in\mathbb{R}:|f_n(x)-0|\geq 1\}=\lambda_1\{x\in[n,n+1]\}=1
ightarrow 0.$

Example 3.6.6 Розглянемо знову λ_1 – міра Лебега на \mathbb{R} , але вже такі функції:

$$f_1(x) = \mathbb{1}_{[0,1]}(x)$$

$$f_2(x) = \mathbb{1}_{[0, \frac{1}{2}]}(x)$$
 $f_3(x) = \mathbb{1}_{[\frac{1}{2}, \frac{1}{2}]}(x)$

$$\begin{array}{ll} f_2(x) = \mathbbm{1}_{[0,\frac{1}{2}]}(x) & f_3(x) = \mathbbm{1}_{[\frac{1}{2},1]}(x) \\ f_4(x) = \mathbbm{1}_{[0,\frac{1}{4}]}(x) & f_5(x) = \mathbbm{1}_{[\frac{1}{4},\frac{1}{2}]}(x) & f_6(x) = \mathbbm{1}_{[\frac{1}{2},\frac{3}{4}]}(x) & f_7(x) = \mathbbm{1}_{[\frac{3}{4},1]}(x) \end{array}$$

У нас на кожному рівні відрізок [0,1] ділиться на $\frac{1}{2^n}$ частин.

 $f_n(x) \stackrel{\lambda_1}{\to} 0$, тому що $\forall 0 < \varepsilon \le 1$ маємо таку послідовність:

$$\lambda_1\{x \in [0,1] : |f_1(x)| \ge \varepsilon\} = 1$$

$$\lambda_1\{x\in[0,1]:|f_2(x)|\geq\varepsilon\}=\frac{1}{2}$$

$$\lambda_1 \{ x \in [0,1] : |f_3(x)| \ge \varepsilon \} = \frac{1}{2}$$

$$\lambda_1 \{ x \in [0,1] : |f_4(x)| \ge \varepsilon \} = \frac{1}{4}$$

$$\lambda_1 \{ x \in [0,1] : |f_5(x)| \ge \varepsilon \} = \frac{1}{4}$$
$$\lambda_1 \{ x \in [0,1] : |f_6(x)| \ge \varepsilon \} = \frac{1}{4}$$
$$\lambda_1 \{ x \in [0,1] : |f_7(x)| \ge \varepsilon \} = \frac{1}{4}$$

:

Тобто мається $\left\{1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots\right\}$, яка повільно, але прямує до нуля. Тож $\lambda_1\{x \in [0,1]: |f_n(x)| \geq \varepsilon\} \to 0$.

При $\varepsilon > 1$ зрозуміло, що $\lambda_1\{x \in [0,1] : |f_n(x)| \ge \varepsilon\} = 0 \to 0.$

 $f_n(x) \not\to 0 \pmod{\lambda_1}$. Ми доведемо, що взагалі $f_n(x) \not\to 0$ при $n \to \infty$.

Нехай $x\in[0,1]$, тоді можна відокремити підпослідовність функцій в т. x, щоб була стаціонарна послідовність $\{1,1,\dots\}$, яка не є збіжною до нуля. Просто тому що $x\in[0,1]\implies x\in\left[0,\frac{1}{2}\right]$ або $x\in\left[\frac{1}{2},1\right]\implies x\in\left[0,\frac{1}{4}\right]$ або $x\in\left[\frac{1}{4},\frac{1}{2}\right]$ або $x\in\left[\frac{1}{2},\frac{3}{4}\right]$ або $x\in\left[\frac{3}{4},1\right]\implies\dots$

3.7 Основні твердження, що позв'язують обидві збіжності. Фундаментальність за мірою

Theorem 3.7.1 Теорема Лебега про зв'язок між збіжностями

Задано $(X, \mathcal{F}, \lambda)$ – вимірний простір із мірою, причому $\lambda(X) < +\infty$. Задані функції $f_n, f \colon X \to \mathbb{R}$ – всі вони \mathcal{F} -вимірні, причому $f_n \to f \pmod{\lambda}$. Тоді $f_n \overset{\lambda}{\to} f$.

Proof.

Маємо $f_n \to f \pmod{\lambda}$, тобто звідси $\exists N: \lambda(N) = 0: \forall x \in X \setminus N: f_n \to f$. А це означає наступне: $\forall x \in X \setminus N: \forall \varepsilon > 0: \exists k \geq 1: \forall n \geq k: |f_n(x) - f(x)| < \varepsilon$.

Мовою множин це все можна записати таким чином:

$$X \setminus N \subset \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} \{x : |f_n(x) - f(x)| < \varepsilon\}.$$

$$N \supset \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} \{x : |f_n(x) - f(x)| \ge \varepsilon\}.$$

Зауважимо, що права множина буде вимірною на $\mathcal F$ в силу того, що f_n, f є $\mathcal F$ -вимірними. Оскільки $\lambda(N)=0$, то звідси $\lambda\left(\bigcap_{k=1}^\infty\bigcup_{n=k}^\infty\{x:|f_n(x)-f(x)|\geq\varepsilon\}\right)=0$. Але також варто зауважити, що послідовність множин $\left\{\bigcup_{n=k}^\infty\{x:|f_n(x)-f(x)|\geq\varepsilon\},k\geq1\right\}$ буде спадати. Оскільки $\lambda(X)<+\infty$, тоді

$$\lambda \left(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} \left\{ x : |f_n(x) - f(x)| \ge \varepsilon \right\} \right) = \lim_{k \to \infty} \lambda \left(\bigcup_{n=k}^{\infty} \left\{ x : |f_n(x) - f(x)| \ge \varepsilon \right\} \right) = 0.$$
 (*)

Це означає, що $\lim_{k\to\infty}\lambda\{x:|f_k(x)-f(x)|\geq\varepsilon\}\leq\lim_{k\to\infty}\lambda\left(\bigcup_{n=k}^\infty\{x:|f_n(x)-f(x)|\geq\varepsilon\}\right)=0.$

Це в точності $f_k \stackrel{\lambda}{\to} f$.

Remark 3.7.2 Якщо подивитися уважно, тут початок доведення повністю збігається з початком доведенням теореми Єгорова до моменту (*). Тому тут треба лише акцентувати увагу на останні міркування.

Definition 3.7.3 Задані $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою та функції $f_n \colon X \to \mathbb{R}$ та $n \ge 1$ – всі вони \mathcal{F} -вимірні.

Послідовність f_n називається фундаментальною за мірою λ , якщо

$$\forall \varepsilon > 0 \forall \delta > 0 : \exists N \in \mathbb{N} : \forall n, m \geq N : \lambda \{x \in X : |f_m(x) - f_n(x)| \geq \varepsilon \} < \delta$$

Можна по-інашкому це записати:

$$\forall \varepsilon > 0 : \lambda \{x \in X : |f_m(x) - f_n(x)| \ge \varepsilon\} \to 0, \ m, n \to \infty$$

Proposition 3.7.4 Задані $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою та послідовність f_n , що збіжна за мірою λ . Тоді f_n – фундаментальна за мірою λ .

Маємо
$$f_n \xrightarrow{\lambda} f$$
, тобто $\forall \delta > 0 : \exists N \in \mathbb{N} : \forall m, m \geq N : \lambda \{x \in X : |f_n(x) - f(x)| \geq \varepsilon\} < \delta \qquad \lambda \{x \in X : |f_m(x) - f(x)| \geq \varepsilon\} < \delta.$

Аналогічним чином можна зауважити наступне:

$$\{x\in X: |f_n(x)-f_m(x)|\geq \varepsilon\}\subset \Big\{x\in X: |f_n(x)-f(x)|\geq \frac{\varepsilon}{2}\Big\}\cup \Big\{x\in X: |f_m(x)-f(x)|\geq \frac{\varepsilon}{2}\Big\}.$$
 Звідси легко випливає, що $\lambda\{x\in X: |f_n(x)-f_m(x)|\geq \varepsilon\}<\delta.$

Theorem 3.7.5 Задані $(X, \mathcal{F}, \lambda)$ — вимірний простір з мірою та послідовність f_n , що фундаментальна за мірою λ . Тоді існує \mathcal{F} -вимірна функція f та підпослідовність f_{n_k} , для яких $f_{n_k} \to f \pmod{\lambda}, k \to \infty$ $f_{n_k} \stackrel{\lambda}{\to} f, k \to \infty.$

Proof.

I. Спочатку знайдемо підпослідовність $\{f_{n_k}\}$, яка нам буде необіхдною.

Маємо f_n — фундаментальна, тобто $\forall \delta > 0: \forall \varepsilon > 0: \exists N: \forall n, m \geq N: \lambda \{x: |f_n - f_m| \geq \varepsilon\} < \delta.$ Зокрема оберемо $\varepsilon = \delta = \frac{1}{2^k}$, тоді звідси $\exists N_k: \lambda \left\{x: |f_{N_k} - f_{N_{k+1}}| \geq \frac{1}{2^k}\right\} < \frac{1}{2^k}$, ми будемо брати N_k так, щоб вона строго зростала. Фундаментальну послідовність $\{f_{N_k}, k \geq 1\}$ з умовою $\exists N_k: \lambda \in \mathbb{R}$

 $\lambda \left\{ x : |f_{N_k} - f_{N_{k+1}}| \ge \frac{1}{2^k} \right\} < \frac{1}{2^k}$ ми знайшли.

II. Далі знайдемо функцію, яка буде необхідною.

Розглянемо множину $M=\bigcap_{j=1}^\infty\bigcup_{k=j}^\infty\left\{x:|f_{N_{k+1}}-f_{N_k}|\geq \frac{1}{2^k}\right\}$. Зауважимо, що $\lambda(M)=0$, оскільки

$$\lambda(M) \le \lambda \left(\bigcup_{k=j}^{\infty} \left\{ x : |f_{N_{k+1}} - f_{N_k}| \ge \frac{1}{2^k} \right\} \right) \le \sum_{k=j}^{\infty} \lambda \left\{ x : |f_{N_{k+1}} - f_{N_k}| \ge \frac{1}{2^k} \right\} < \sum_{k=j}^{\infty} \frac{1}{2^k} = \frac{1}{2^{j-1}} \to 0.$$

$$X \setminus M = \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} \left\{ x : |f_{N_{k+1}} - f_{N_k}| < \frac{1}{2^k} \right\}.$$

Зараз доведемо, що для кожної $x \in X \setminus N$ послідовність $\{f_{N_k}(x), k \geq 1\}$ буде фундаментальною. Оберемо $k,l\geq j,$ тоді звідси маємо:

$$\begin{split} |f_{N_k}(x) - f_{N_l}(x)| &\leq |f_{N_k}(x) - f_{N_{k+1}}(x)| + |f_{N_{k+1}}(x) - f_{N_{k+2}}(x)| + \dots + |f_{N_{l-1}}(x) - f_{N_l}(x)| < \\ &< \frac{1}{2^k} + \frac{1}{2^{k+1}} + \dots + \frac{1}{2^{l-1}} \leq \frac{1}{2^k} + \frac{1}{2^{k+1}} + \dots = \frac{1}{2^{k-1}} \to 0 \text{ при } k, l \to \infty. \end{split}$$
 Значить, $\{f_{N_k}(x), k \geq 1\}$ буде збіжною при кожному $x \in X \setminus M$. Далі просто зафіксуємо функцію

 $f(x) = \begin{cases} \lim_{k \to \infty} f_{N_k}(x), & x \in X \setminus M \\ 0, & \text{інакше} \end{cases} = \lim_{k \to \infty} (f_{N_k}(x) \cdot \mathbb{1}_{X \setminus M}(x)).$ Це – та сама шукана \mathcal{F} -вимірна

функція, як добуток першої вимірної (як границя) та другої вимірної.

III. Для цієї функції доведемо всі збіжності.

Зрозуміло, що $f_{N_k} \to f \pmod{\lambda}$, за побудуовою f та $\lambda(M) = 0$.

Зафіксуємо $\varepsilon, \delta > 0$. Оберемо такі $j \geq 1$, щоб $\frac{1}{2^{j-1}} < \min\{\varepsilon, \delta\}$. Розглянемо тепер ось таку множину

$$ilde{M}=igcup_{k=j}^{\infty}\Big\{x:|f_{N_{k+1}}-f_{N_k}|\geq rac{1}{2^k}\Big\}.$$
 Оскільки $M\subset ilde{M},$ то звідси $X\setminus M\supset X\setminus ilde{M},$ а тому зокрема

 $\forall x\in X\setminus \tilde{M}:\exists\lim_{k\to\infty}f_{N_k}(x)=f(x).$ Зауважимо, що виконується наступне:

$$|f_{N_k}(x) - f(x)| = \lim_{l \to \infty} |f_{N_k}(x) - f_{N_l}(x)| \stackrel{\text{див. II}}{\leq} \lim_{l \to \infty} \frac{1}{2^{k-1}} = \frac{1}{2^{k-1}} < \varepsilon.$$

Значить, $\forall x \in X \setminus \tilde{M}: |f_{N_k}(x) - f(x)| < \varepsilon$. Мовою множин це означає, що

 $X \setminus M \subset \{x : |f_{N_k}(x) - f(x)| < \varepsilon\}.$

 $\tilde{M} \supset \{x : |f_{N_k}(x) - f(x)| \ge \varepsilon\}.$

Але тоді
$$\lambda\{x:|f_{N_k}(x)-f(x)|\geq \varepsilon\}\leq \lambda(\tilde{M})=\lambda\left(\bigcup_{k=j}^{\infty}\left\{x:|f_{N_{k+1}}-f_{N_k}|\geq \frac{1}{2^k}\right\}\right)\stackrel{\text{див. II}}{<}\frac{1}{2^{j-1}}<\delta.$$
 Висновок: $f_{N_k}\stackrel{\lambda}{\to} f.$

Corollary 3.7.6 Теорема Ріса

Задані $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою та послідовність $f_n \stackrel{\lambda}{\to} f$. Тоді існує підпослідовність f_{n_k} , для якої $f_{n_k} \to f \pmod{\lambda}$.

Proof.

Збіжна за мірою означає фундаментальність за мірою. За теоремою вище, існує підпослідовність f_{n_k} , для якої $f_{n_k} \to g \pmod{\lambda}$.

Зрозуміло, що $f_n \stackrel{\lambda}{\to} f \implies f_{n_k} \stackrel{\lambda}{\to} f$. Також за теоремою вище, $f_{n_k} \stackrel{\lambda}{\to} g$. А за єдиністю, $f \sim g \pmod{\lambda}$, але це тоді означає, що $f_{n_k} \to f \pmod{\lambda}$.

Corollary 3.7.7 Послідовність f_n фундаментальна за мірою $\lambda \iff f_n$ збіжна за мірою λ .

Proof.

⇐ Уже було.

 \Longrightarrow Дано: f_n – фундаментальна за мірою λ . Тоді за теоремою вище, існує підпослідовність $f_{n_k} \stackrel{\lambda}{\to} f$. Нехай $\varepsilon > 0$, тоді за аналогічними міркуваннями (ми вже цю оцінку не раз показували): $\lambda \{x \in X: |f_n(x) - f(x)| \geq \varepsilon\} \leq \lambda \left\{x \in X: |f_n(x) - f_{n_k}(x)| \geq \frac{\varepsilon}{2}\right\} + \lambda \left\{x \in X: |f_{n_k}(x) - f(x)| \geq \frac{\varepsilon}{2}\right\}.$ Якщо $n \to \infty$, то автоматично $n_k \to \infty$, а в цьому випадку $\lambda \{x \in X: |f_n(x) - f(x)| \geq \varepsilon\} \to 0, n \to \infty$. Отже, $f_n \stackrel{\lambda}{\to} f$.

Theorem 3.7.8 Теорема Лузіна

Задано $A=\prod_{k=1}^n [a_k,b_k]$ та λ – міра Лебега. Маємо функцію $f\colon A\to\mathbb{R}$ – вимірна за Лебегом. Тоді $\forall \varepsilon>0:\exists g\colon A\to\mathbb{R}, g\in C(A):\lambda\{x\in A:f(x)\neq g(x)\}<\varepsilon.$ Без доведення.

Інтеграл Лебега 4

Надалі всюди я буду мати $(X, \mathcal{F}, \lambda)$ – вимірний простір із мірою, якщо ніде додатково це не буде вказано.

4.1 Первинні означення

Definition 4.1.1 Задано $p: X \to \mathbb{R}$ – проста, невід'ємна та \mathcal{F} -вимірна функція, тобто p(x) = $\sum_{k=1}^n a_k \mathbbm{1}_{A_k}(x)$ при $\bigsqcup_{k=1}^n A_k = X$. Також нехай задано $A \in \mathcal{F}$. Інтегралом Лебега від простої, невід'ємної функції p на множині A називають число:

$$\int_{A} p \, d\lambda = \sum_{k=1}^{n} a_k \lambda (A_k \cap A)$$

Якщо міра буде нескінченність, то ми кладемо $a\cdot +\infty = +\infty$ при $a\neq 0,$ а також $0\cdot +\infty = 0.$

Бувають ще позначають як $\int_{-1}^{1} p(x) d\lambda(x)$ або навіть $\int_{-1}^{1} p(x) \lambda(dx)$.

Remark 4.1.2 Нам треба переконатися, що інтеграл Лебега не залежить від представлення простої функції. Тому що, наприклад, я можу записати $p(x) = 2\mathbb{1}_{[0,1]}(x) + 4\mathbb{1}_{(1,2]}(x)$, але можу записати як $p(x) = 2\mathbb{1}_{[0,0.5)} + 2\mathbb{1}_{[0.5,1)} + 4\mathbb{1}_{(1,2]}(x)$ – одна й та сама проста функція, але представлення різне.

Розглянемо два представлення простої, невід'ємної \mathcal{F} -вимірної функц

$$p(x) = \sum_{k=1}^n a_k \mathbb{1}_{A_k}(x) \qquad p(x) = \sum_{i=1}^j b_i \mathbb{1}_{B_i}(x) \qquad \qquad \bigsqcup_{k=1}^n A_k = \bigsqcup_{i=1}^j B_i = X.$$
 Для множини A зауважимо, що виконується рівність:

$$A = \bigsqcup_{k=1}^n (A_k \cap A)$$
 $A = \bigsqcup_{i=1}^j (B_i \cap A).$ Далі для кожного представлення розпишемо інтеграл Лебега:

$$\int_{A} p \, d\lambda = \sum_{k=1}^{n} a_k \lambda(A_k \cap A) = \sum_{k=1}^{n} \sum_{i=1}^{j} a_k \lambda(A_k \cap B_i \cap A)$$
$$\int_{A} p \, d\lambda = \sum_{i=1}^{j} b_i \lambda(B_i \cap A) = \sum_{i=1}^{j} \sum_{k=1}^{n} b_i \lambda(A_k \cap B_i \cap A)$$

 $\int_A p\,d\lambda = \sum_{i=1}^j b_i \lambda(B_i\cap A) = \sum_{i=1}^j \sum_{k=1}^n b_i \lambda(A_k\cap B_i\cap A)$ Якщо $A_k\cap B_i=\emptyset$, то тоді в цьому випадку $\lambda(A_k\cap B_i\cap A)=0$. Тому надалі розглядаються випадки $A_k\cap B_i\neq\emptyset$. У цьому випадку беремо $x\in A_k\cap B_i$, звідси маємо $p(x)=a_k=b_i$. Помножимо обидві частини на $\lambda(A_k \cap B_i \cap A)$ – отримаємо $a_k \lambda(A_k \cap B_i \cap A) = b_i \lambda(A_k \cap B_i \cap A)$, а далі просумуємо по k, i — отримаємо рівність двох інтегралів.

Proposition 4.1.3 Властивості інтеграла Лебега від простої невід'ємної функції Справедливі такі пункти:

- 1) Нехай p_1, p_2 прості невід'ємні \mathcal{F} -вимірні функції, $p_1 \leq p_2$. Також $A \in \mathcal{F}$. Тоді $\int_A p_1 d\lambda \leq \int_A p_2 d\lambda$;
- 2) Нехай $A, B \in \mathcal{F}, A \cap B = \emptyset$. Також p проста невід'ємна \mathcal{F} -вимірна функція. Тоді $\int_{A \cup B} p \, d\lambda = \int_{A} p \, d\lambda + \int_{B} p \, d\lambda;$
- 3) Нехай $A,B\in\mathcal{F},A\subset B.$ Також p проста невід'ємна \mathcal{F} -вимірна функція. Тоді $\int_A p\,d\lambda\leq\int_{\mathcal{D}} p\,d\lambda;$

Proof.

Доведемо виконання кожної властивості:

1) Маємо прості функції $p_1(x) = \sum_{k=1}^n a_k \mathbbm{1}_{A_k}(x), \ p_2(x) = \sum_{i=1}^j b_i \mathbbm{1}_{B_i}(x),$ причому $\bigsqcup_{k=1}^n A_k = \bigsqcup_{i=1}^j B_i = X.$ Аналогічними міркуваннями, що в зауваженні вище, розпишемо інтеграли Лебега:

31

$$\int_{A} p_1 d\lambda = \sum_{k=1}^{n} \sum_{i=1}^{j} a_k \lambda (A_k \cap B_i \cap A);$$
$$\int_{A} p_2 d\lambda = \sum_{k=1}^{n} \sum_{i=1}^{j} b_i \lambda (A_k \cap B_i \cap A).$$

Аналогічно розглянемо лише випадки $A_k \cap B_i \neq \emptyset$. Беремо $x \in A_k \cap B_i$, звідси $p_1(x) = a_k \le b_i = p_2(x)$, просто тому що $p_1 \leq p_2$. Далі множимо на міру $\lambda(A_k \cap B_i \cap A)$ та сумуємо по k, i – отримали бажану нерівність.

2) Випливає з того, що λ – адитивна функція множин.

3) Зауважимо, що якщо
$$A\subset B$$
, то звідси $B=A\sqcup (B\setminus A)$. За властивістю 2), маємо
$$\int_B p\,d\lambda = \int_A p\,d\lambda + \int_{B\setminus A} p\,d\lambda \geq \int_A p\,d\lambda.$$

Definition 4.1.4 Задано $f\colon X\to \bar{\mathbb{R}}$ – невід'ємна та $\mathcal F$ функція. Також нехай задано $A\in \mathcal F.$ Інтегралом Лебега від невід'ємної функції f на множині A називають число

$$\int_{A} f \, d\lambda = \sup_{p \in K(f)} \int_{A} p \, d\lambda$$

Множина $K(p) = \{p \colon X \to \mathbb{R} - \text{прості невід'ємні та } \mathcal{F}$ -вимірні : $p \le f\}$.

Remark 4.1.5 $K(f) \neq \emptyset$, тому що принаймні нульова функція $0 \in K(f)$.

Remark 4.1.6 Перше означення узгоджується з другим означенням, якщо в другому означенні взяти p – невід'ємну \mathcal{F} -вимірну функцію, але вже просту.

Proof.

За другим означенням інтеграла Лебега, маємо наступне:

За другим означенням інтеграла Лебега, маємо наступне:
$$\int_{A} p \, d\lambda = \sup_{q \in K(p)} \int_{A} q \, d\lambda \geq \int_{A} p \, d\lambda \text{ (нерівність за означенням супремума, причому } p \in K(p)).$$

Тепер оберемо $q \in K(p)$, тут q — проста невід'ємна \mathcal{F} -вимірна функція з умовою $q \leq p$. Тоді за властивістю 1) просто інтеграла Лебега, $\int_A q \, d\lambda \leq \int_A p \, d\lambda$. Але оскільки це виконано для всіх

$$q\in K(p),$$
 то зокрема для $\sup_{q\in K(p)}\int_A q\,d\lambda=\int_A p\,d\lambda\leq \int_A p\,d\lambda.$

Разом отримали рівність
$$\int_A p \, d\lambda \leq \int_A p \, d\lambda.$$

Definition 4.1.7 Задано $f: X \to \mathbb{R}$ – \mathcal{F} -вимірна функція. Також нехай задано $A \in \mathcal{F}$. Інтегралом Лебега від функції f на множині A називають число

$$\int_{A} f \, d\lambda = \int_{A} f_{+} \, d\lambda - \int_{A} f_{-} \, d\lambda,$$

якщо хоча б один з інтегралів скінченний.

У цьому випадку $f = f_+ - f_-$, причому f_+, f_- – невід'ємні функції.

Функція f називається інтегрованою за Лебегом на множині A, якщо кожний обидва інтеграли в правій частині - скінченні.

Позначення: $f \in L(A, \lambda)$.

Remark 4.1.8 Друге означення узгоджується з третім означенням, якщо в третьому означенні взяти $f - \mathcal{F}$ -вимірну функцію, але вже невід'ємну.

Дійсно, коли f — невід'ємна, то звідси $f_+=f$, а також $f_-=0$. Тож звідси $\int_A f \, d\lambda = \int_A f_+ \, d\lambda - \int_A f_- \, d\lambda = \int_A f \, d\lambda.$

Example 4.1.9 Розглянемо
$$f(x) = \operatorname{sgn} x = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \end{cases}$$
. Тоді f_+, f_- прості невід'ємні функції, $1, \quad x > 0$

де $f_+=f_-=1$, а за означенням, $\int_{\mathbb{R}}f_+\,d\lambda_1=\int_{\mathbb{R}}f_-\,d\lambda_1=+\infty$, де λ_1 – міра Лебега. Ці дві функції не є інтегровними. При цьому $\int_{\mathbb{R}} f \, d\lambda_1$ не визначений.

4.2 Наближення значення інтеграла інтегралами від простих функцій

Theorem 4.2.1 Задано $f: X \to \mathbb{R}$ – невід'ємна \mathcal{F} -вимірна функція. За теоремою, існує послідовність $\{p_n, n \geq 1\}$ так, що $\lim_{n \to \infty} p_n(x) = f(x)$, причому p_n – прості невід'ємні та \mathcal{F} -вимірні та $p_n \leq f$.

Тоді
$$\int_A f \, d\lambda = \lim_{n \to \infty} \int_A p_n \, d\lambda.$$

Для доведення даної теореми сформулюємо одну лему:

Lemma 4.2.2 Задані $p, p_n \colon X \to \mathbb{R}$ – прості невід'ємні та \mathcal{F} -вимірні функції, причому

$$1) p_n \le p_{n+1}$$

2)
$$\lim_{n\to\infty} p_n \ge p$$
.

Тоді
$$\lim_{n \to \infty} \int_A p_n \, d\lambda \ge \int_A p \, d\lambda.$$

Ргоот. Маємо функцію
$$p(x)=\sum_{i=1}^j a_i\mathbbm{1}_{A_i}(x)$$
, де $A_i\in\mathcal{F}$, причому $\bigsqcup_{i=1}^j A_i=X$. Нехай $\varepsilon>0$ та розглянемо множини $B_n=\{x\in A: p_n\geq (1-\varepsilon)p\}$. Зауважимо, що: B_n зростає за умовою 1);

$$\bigcup_{n=0}^{\infty} B_n = A \text{ за умовою 2}.$$

n=1 Тож звідси випливатиме наступне:

$$\int_A p_n \, d\lambda \geq \int_{B_n} p_n \, d\lambda \geq \int_{B_n} (1-\varepsilon) p \, d\lambda = \sum_{i=1}^j (1-\varepsilon) a_i \lambda (A_i \cap B_n).$$
 За неперервністю міри знизу, $\lambda (A_i \cap B_n) \to \lambda (A_i \cap A)$ при $n \to \infty$, звідси

$$\lim_{n \to \infty} \int_{A} p_n \, d\lambda \ge (1 - \varepsilon) \sum_{i=1}^{j} a_i \lambda(A_i \cap A) = (1 - \varepsilon) \int_{A} p \, d\lambda.$$

Записана границя ліворуч існує, як границя неспадної послідовності. А далі, $\varepsilon \to 0$ — отримали бажану нерівність $\lim_{n \to \infty} \int_{A} p_n \, d\lambda \geq \int_{A} p \, d\lambda$.

Тепер ми готові до доведення основної теореми.

Proof.

Границя праворуч існує як границя неспадної послідовності.

Оскільки $p_n \leq f$, то $p_n \in K(f)$ і з другого означення інтеграла Лебега,

$$\int_A f \, d\lambda = \sup_{p \in K(f)} \int_A p \, d\lambda \geq \int_A p_n \, d\lambda \implies \int_A f \, d\lambda \geq \lim_{n \to \infty} \int_A p_n \, d\lambda.$$
 Із іншого боку, для кожної $p \in K(f)$ маємо

$$p(x) \le f(x) = \lim_{n \to \infty} p_n(x) \stackrel{\text{\tiny JEMA}}{\Longrightarrow} \int_A p \, d\lambda \le \lim_{n \to \infty} \int_A p_n \, d\lambda \implies \int_A f \, d\lambda \le \lim_{n \to \infty} \int_A p_n \, d\lambda.$$

Основні властивості та твердження

Theorem 4.3.1 Задано $f\colon X\to \bar{\mathbb{R}}$ – невід'ємна та \mathcal{F} -вимірна функція. Тоді функція множин $\mu(A)=$ $\int f d\lambda$ задає міру на \mathcal{F} .

Proof.

Функція множин μ уже невід'ємна, оскільки $\mu(A) = \int_A f \, d\lambda = \sup_{p \in K(f)} \int_A p \, d\lambda \geq 0$. Залишилося довести σ -адитивність інтеграла. Нехай $A_n \in \mathcal{F}$, всі неперетинні. Уже автоматично ∞

 $A_n = A \in \mathcal{F}$. Ми розглянемо кілька випадків:

 $^{n=1}$ I. Випадок функції $\mathbb{1}_B$, де множина $B\in\mathcal{F}$.

$$\mu(A) = \int_A \mathbbm{1}_B \, d\lambda = \lambda(A \cap B) = \lambda \left(\bigsqcup_{n=1}^\infty (A_n \cap B) \right) = \sum_{n=1}^\infty \lambda(A_n \cap B) = \sum_{n=1}^\infty \int_{A_n} \mathbbm{1}_B \, d\lambda = \sum_{n=1}^\infty \mu(A_n).$$

II. Випадок функції p – проста невід'ємна та ${\mathcal F}$ -вимірна.

Тобто маємо $p=\sum_{i=1}^J b_i\mathbbm{1}_{B_i}$ при $B_i\in\mathcal{F},\ \bigsqcup_{i=1}^J B_i=X.$ Із кроку І, вже відомо, що

 $\mu_i(A) = \int_{\mathbb{R}} \mathbbm{1}_{B_i} \, d\lambda$ задає міру. Зауважимо, що тоді звідси

$$\mu(A) = \int_A p \, d\lambda = \sum_{i=1}^j b_i \lambda(A \cap B_i) = \sum_{i=1}^j b_i \int_A \mathbb{1}_{B_i} \, d\lambda = b_i \mu_i(A).$$

Лінійна комбінація мір при невід'ємних коефіцієнтах залишається мірою (неважко показати).

III. Випадок функції f – невід'ємна та \mathcal{F} -вимірна.

Тоді існує послідовність простих невід'ємних та \mathcal{F} -вимірних функції $\{p_k\}$, для яких $p_k \to f$. Звідси

маємо
$$\int_B f \, d\lambda = \lim_{k \to \infty} \int_B p_k \, d\lambda$$
 для кожної $B \in \mathcal{F}$. Ми хочемо довести, що $\int_A f \, d\lambda = \sum_{n=1}^\infty \int_{A_n} f \, d\lambda$.

Спрямувавши
$$k \to \infty$$
, а згодом спрямувавши $q \to \infty$, отримаємо наступне:

$$\int_{A} f \, d\lambda \ge \sum_{n=1}^{\infty} \int_{A_n} f \, d\lambda.$$

Із іншого боку, для кожного $p \in K(f)$ маємо $\int_A p \, d\lambda \stackrel{\text{крок II}}{=} \sum_{n=1}^\infty \int_{A_n} p \, d\lambda \leq \sum_{n=1}^\infty \int_{A_n} f \, d\lambda.$

Оскільки це виконується для всіх $p \in K(f)$, то звідси отримаємо

$$\int_{A} f \, d\lambda \le \sum_{n=1}^{\infty} \int_{A_n} f \, d\lambda.$$

Нарешті, довели
$$\mu(A) = \int_A f \, d\lambda = \sum_{n=1}^\infty \int_{A_n} f \, d\lambda = \sum_{n=1}^\infty \mu(A_n).$$

Proposition 4.3.2 Властивості інтеграла Лебега

Всюди будуть розглядатися функції $f,g\colon X\to \bar{\mathbb{R}}$, що \mathcal{F} -вимірні, а також множини $A,B\in \mathcal{F}$. Виконуються наступні властивості:

1) Нехай
$$N\in\mathcal{F}$$
 така, що $\lambda(N)=0.$ Тоді $\int_A f\,d\lambda=0.$

2)
$$\int_X f \cdot 1_A d\lambda = \int_A f d\lambda$$
 (за умовою, що бодай один з цих інтегралів інсує)

3)
$$\int_A cf \, d\lambda = c \int_A f \, d\lambda$$
 при $c \in \mathbb{R}$) (за умовою, що $\int_A f \, d\lambda$ існує)

4) Нехай
$$f \leq g$$
. Тоді $\int_A f \, d\lambda \leq \int_A g \, d\lambda$ (за умовою, що обидва інтеграли існують)

5) Нехай
$$f$$
 – невід'ємна та $A\subset B.$ Тоді $\int_A f\,d\lambda \leq \int_B f\,d\lambda$

- 6) Нехай $A \subset B$ та при цьому існує $\int_{\mathbb{R}} f \, d\lambda$. Тоді існуватиме й $\int_{\mathbb{R}} f \, d\lambda$. Причому якщо $f \in L(B,\lambda)$,
- 7) Припустимо $\int_{Y} f_{-} d\lambda < +\infty$. Тоді $\nu(A) = \int_{A} f d\lambda$ буде σ -адитивною на \mathcal{F} (спойлер: дана функція
- 8) $f \in L(A,\lambda) \iff |f| \in L(A,\lambda)$, причому справедлива нерівність $\left| \int_A f \, d\lambda \right| \leq \int_A |f| \, d\lambda$.
- 9) Нехай $f \sim g \pmod{\lambda}$. Тоді $\int_A f \, d\lambda = \int_A g \, d\lambda$ (за умовою, що хоча б один з цих інтегралів існує)
- 10) Нехай $f \in L(A, \lambda)$. Тоді $|f| < +\infty \pmod{\lambda}$ на множині A
- 11) Нехай f невід'ємна та $\int_{-1}^{1} f \, d\lambda = 0$. Тоді $f = 0 \pmod{\lambda}$ на множині A.
- 12) Нехай $\int_A f \, d\lambda = 0$ для всіх $A \in \mathcal{F}$. Тоді $f \equiv 0 \pmod{\lambda}$ на X.

Покажемо виконання кожної властивості:

- 1) Розглянемо кілька випадків:
- I. p проста невід'ємна та \mathcal{F} -вимірна, тоді $\int_{\mathcal{N}} p \, d\lambda = \sum^{n} a_k \lambda(A_k \cap N) = 0$, тому що $\lambda(A_k \cap N) = 0$.
- II. f невід'ємна та \mathcal{F} -вимірна, тоді $\int_{\mathcal{N}} f \, d\lambda = \lim_{n \to \infty} \int_{\mathcal{N}} p_n \, d\lambda \stackrel{\text{крок I}}{=} 0.$
- III. f довільна \mathcal{F} -вимірна, тоді $\int_{\mathcal{N}} f \, d\lambda = \int_{\mathcal{N}} f_+ \, d\lambda \int_{\mathcal{N}} f_- \, d\lambda \stackrel{\text{крок II}}{=} 0.$
- 2) Розглянемо кілька випадків:
- I. p проста невід'ємна та \mathcal{F} -вимірна, тобто $p(x)\sum_{k=1}^n a_k \mathbbm{1}_{A_k}(x)$. Звідси $p(x)\mathbbm{1}_A(x)=\sum_{k=1}^n a_k \mathbbm{1}_{A_k\cap A}(x)$
- теж проста, а значить, $\int_X p \cdot \mathbbm{1} \, d\lambda = \sum_{k=1}^n a_k \lambda(X \cap (A \cap A_k)) = \sum_{k=1}^n a_k \lambda(A \cap A_k) = \int_A p \, d\lambda.$
- II. f невід'ємна та $\mathcal F$ -вимірна, тоді відомо, що $p_n \to f$ за теоремою. Але при цьому $p_n \mathbb{1}_A$ також
- III. f невід ємна та \mathcal{F} -вимірна, тоді відомо, що p_n f за теоролюю. Так дря деле f димонотонно зростає та $p_n \mathbbm{1}_A \to f$. Значить, $\int_X f \cdot \mathbbm{1}_A \, d\lambda = \lim_{r \to \infty} \int_X p_r \mathbbm{1}_A \, d\lambda \stackrel{\text{крок I}}{=} \lim_{r \to \infty} \int_A p_r \, d\lambda = \int_A f \, d\lambda.$ ІІІ. f довільна \mathcal{F} -вимірна, тобто $f = f_+ f_-$. Але тоді $f \mathbbm{1}_A = (f \mathbbm{1}_A)_+ (f \mathbbm{1}_A)_- = f_+ \mathbbm{1}_A f_- \mathbbm{1}_A.$ Значить, $\int_X f \cdot \mathbbm{1}_A \, d\lambda = \int_X (f \mathbbm{1}_A)_+ \, d\lambda \int_X (f \mathbbm{1}_A)_- \, d\lambda \stackrel{\text{крок II}}{=} \int_A f_+ \, d\lambda \int_A f_- \, d\lambda = \int_A f \, d\lambda.$
- 3) Спочатку розглянемо сценарій $c \ge 0$. Знову кілька випадків:
- I. p проста невід'ємна та \mathcal{F} -вимірна, тобто $p(x)\sum_{k=1}^{n}a_{k}\mathbb{1}_{A_{k}}(x)$. Звідси $cp(x)=\sum_{k=1}^{n}(ca_{k})\mathbb{1}_{A_{k}}(x)$ теж

проста, а значить,
$$\int_A cp \, d\lambda = \sum_{k=1}^n (ca_k) \lambda(A \cap A_k) = c \int_A p \, d\lambda.$$

- II. f невід'ємна та \mathcal{F} -вимірна, тоді відомо, що $p_n \to f$ за теоремою. Але при цьому cp_n також монотонно зростає та $cp_n \to f$. Значить, $\int_A cf \, d\lambda = \lim_{n \to \infty} \int_A cp_n \, d\lambda \stackrel{\mathrm{кpok}}{=} \mathrm{I} \lim_{n \to \infty} c \int_A p_n \, d\lambda = c \int_A f \, d\lambda$. III. f довільна \mathcal{F} -вимірна, тобто $f = f_+ f_-$. Але тоді $cf = (cf)_+ (cf)_- = cf_+ cf_-$. Значить, $\int_A cf \, d\lambda = \int_A (cf)_+ \, d\lambda \int_A (cf)_- \, d\lambda \stackrel{\mathrm{кpok}}{=} \mathrm{II} \, c \int_A f_+ \, d\lambda c \int_A f_- \, d\lambda = c \int_A f \, d\lambda$.

$$\int_{A} cf \, d\lambda = \int_{A} (cf)_{+} \, d\lambda - \int_{A} (cf)_{-} \, d\lambda \stackrel{\text{rook II}}{=} c \int_{A} f_{+} \, d\lambda - c \int_{A} f_{-} \, d\lambda = c \int_{A} f \, d\lambda$$

$$\int_{A} df \, d\lambda = d \int_{A} f \, d\lambda = -c \int_{A} f \, d\lambda.$$

із іншого боку,
$$df = (-c)f = (-cf) = (-cf)_+ - (-cf)_- = cf_- - cf_+$$
. Тох

Також розглянемо
$$c<0$$
. Позначимо число $d=-c>0$, тоді вже виконується $\int_A df \, d\lambda = d \int_A f \, d\lambda = -c \int_A f \, d\lambda$. Із іншого боку, $df=(-c)f=(-cf)=(-cf)_+-(-cf)_-=cf_--cf_+$. Тож $\int_A df \, d\lambda = \int_A cf_- \, d\lambda - \int_A cf_+ \, d\lambda = -\int_A cf_+ \, d\lambda + \int_A cf_- \, d\lambda = -\int_A cf \, d\lambda$.

Маючи два рівності, отримаємо звідси $\int_{\Lambda} cf \, d\lambda = c \int_{\Lambda} f_{,\lambda}$.

4) Спочатку розглянемо випадки, коли
$$f \leq g$$
 та f,g — невід'ємні. Зауважимо, що $K(f) \subset K(g)$, але тоді звідси $\int_A f \, d\lambda = \sup_{p \in K(f)} \int_A p \, d\lambda \leq \sup_{p \in K(g)} \int_A p \, d\lambda = \int_A g \, d\lambda$. Тепер f,g — довільні, тобто $f = f_+ - f_-$ та $g = g_+ - g_-$. Звідси $\int_A f \, d\lambda = \int_A f_+ \, d\lambda - \int_A f_- \, d\lambda \leq \int_A g_+ \, d\lambda - \int_A g_- \, d\lambda = \int_A g \, d\lambda$.

- 5) Випливає з властивості інтеграла Лебега від простої функції.
- 6) Випливає з властивості 5) інтегралу Лебега.
- 7) Із умови випливає, що $\int_X f \, d\lambda$ існує. А за властивістю 6), всі $\int_A f \, d\lambda$ існують при $A \subset X$. Властивість σ -адитивності довести неважко.

8) Спочатку варто зауважити, що
$$\int_A |f| \, d\lambda = \int_A f_+ \, d\lambda + \int_A f_- \, d\lambda.$$
 Дійсно,
$$\int_A |f| \, d\lambda = \int_{A \cap \{f \geq 0\}} |f| \, d\lambda + \int_{A \cap \{f < 0\}} |f| \, d\lambda = \int_A |f| \mathbbm{1}_{\{f \geq 0\}} \, d\lambda + \int_A |f| \mathbbm{1}_{\{f < 0\}} \, d\lambda = \int_A f_+ \, d\lambda + \int_A f_- \, d\lambda.$$
 Із цієї рівності легко вилпиває $f \in L(A,\lambda) \iff |f| \in L(A,\lambda).$ Нарешті,
$$\left| \int_A f \, d\lambda \right| = \left| \int_A f_+ \, d\lambda - \int_A f_- \, d\lambda \right| \leq \left| \int_A f_+ \, d\lambda \right| + \left| \int_A f_- \, d\lambda \right| = \int_A f_+ \, d\lambda + \int_A f_- \, d\lambda = \int_A |f| \, d\lambda.$$

9) Маємо
$$N$$
 — множина, що $\lambda(N)=0$ та $f(x)=g(x)$ для $x\in A\setminus N$. Тоді
$$\int_A f_+\,d\lambda=\int_{A\setminus N} f_+\,d\lambda+\int_N f_+\,d\lambda=\int_{A\setminus N} f_+\,d\lambda=\int_{A\setminus N} g_+\,d\lambda=\int_{A\setminus N} g_+\,d\lambda=\int_A g_+\,d\lambda.$$
 Аналогічним чином
$$\int_A f_-\,d\lambda=\int_A g_-\,d\lambda.$$

10) !Припустимо, що міра $\lambda\{x\in A: |f(x)|=+\infty\}=\varepsilon>0$. Це ми взяли заперечення від умови $|f|<+\infty\pmod{\lambda}$ на A. Тоді звідси при фіксованому $n\geq 1$ маємо

$$\int_A |f|\,d\lambda \geq \int_{A\cap\{|f|\geq n\}} |f|\,d\lambda > \int_{A\cap|f|\geq n} n\,d\lambda = n\lambda(A\cap\{|f|\geq n\}) \geq n\varepsilon.$$
 Якщо $n\to\infty$, то звідси отримаємо $|f|\notin L(A,\lambda) \implies f\notin L(A,\lambda)$. Суперечність!

11) Ми хочемо довести, що $\lambda \{x \in A : f \neq 0\} = 0$. Для цього

$$0 = \int_A f \, d\lambda \ge \int_{A \cap \left\{ f \ge \frac{1}{n} \right\}} f \, d\lambda \ge \int_{A \cap \left\{ f \ge \frac{1}{n} \right\}} \frac{1}{n} \, d\lambda = \frac{1}{n} \lambda \left(A \cap \left\{ f \ge \frac{1}{n} \right\} \right).$$
 Тобто $\lambda \left(A \cap \left\{ f \ge \frac{1}{n} \right\} \right) = 0.$

Але зауважимо, що $\{x\in A: f\neq 0\}=A\cap \{x: f\neq 0\}=A\cap \bigcup_{n=1}^{\infty}\left\{x: f\geq \frac{1}{n}\right\}$. Оскільки множина зростає, то за неперервністю міри знизу, доведемо $\lambda\{x\in A: f\neq 0\}=0$.

12) Використаємо попередню властивість 11). Маємо наступне:

$$\begin{split} &\int_X f_+ \, d\lambda = \int_X f \, \mathbb{1}_{\{f \geq 0\}} \, d\lambda = \int_{\{f \geq 0\}} f \, d\lambda = 0 \implies f_+ = 0 \pmod{\lambda}. \\ &\int_X f_- \, d\lambda = \int_X (-f) \, \mathbb{1}_{\{f < 0\}} \, d\lambda = \int_{\{f < 0\}} (-f) \, d\lambda = -\int_{\{f < 0\}} f \, d\lambda = 0 \implies f_- = 0 \pmod{\lambda}. \\ &\text{Разом неважко розписати, що } f = f_+ - f_- = 0 \pmod{\lambda}. \end{split}$$

Всі властивості доведені.

Theorem 4.3.3 Задані функції $f,g\colon X\to \bar{\mathbb{R}}$ – \mathcal{F} -вимірні функції, а також $A\in \mathcal{F}$. Припустимо, що $f,g\in L(A,\lambda)$, то звідси $f+g\in L(A,\lambda)$, причому $\int_A (f+g)\,d\lambda = \int_A f\,d\lambda + \int_A g\,d\lambda.$

 ${f Remark}$ 4.3.4 У доведенні буде зауваження, що для f,g – невід'ємних, рівність завжди виконана.

Розглянемо кілька випадків:

I. p, q – обидва прості невід'ємні та \mathcal{F} -вимірні функції.

Тобто
$$p(x) = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k}(x)$$
 та $q(x) = \sum_{i=1}^{j} b_i \mathbb{1}_{B_i}(x)$. Тоді вже показувалося (ТОДО: десь вставити),

що p+q – проста, але також $p(x)+q(x)=\sum_{k=1}^n\sum_{i=1}^J(a_k+b_i)\mathbbm{1}_{A_k\cap B_i}(x)$. Звідси випливає наступне:

$$\int_{A} p + q \, d\lambda = \sum_{k=1}^{n} \sum_{i=1}^{j} (a_{k} + b_{i}) \lambda (A_{k} \cap B_{i} \cap A) = \sum_{k=1}^{n} \sum_{i=1}^{j} a_{k} \lambda (A_{k} \cap B_{i} \cap A) + \sum_{i=1}^{j} \sum_{k=1}^{n} b_{i} \lambda (A_{k} \cap B_{i} \cap A)$$

$$= \sum_{k=1}^{n} a_{k} \lambda (A_{k} \cap A) + \sum_{i=1}^{j} b_{i} \lambda (B_{i} \cap A) = \int_{A} p \, d\lambda + \int_{A} q \, d\lambda.$$

II. f, g – обидва невід'ємні та \mathcal{F} -вимірні функції.

Тоді існують послідовності простих невід'ємних та \mathcal{F} -вимірних функцій $\{p_n\}, \{q_n\},$ для яких $p_n \to$

$$f,q_n \to g$$
. Тоді зрозуміло, що $p_n + q_n \to f + g$ (така послідовність теж монотонно зростає).
$$\int_A f + g \, d\lambda = \lim_{n \to \infty} \int_A p_n + q_n \, d\lambda \stackrel{\text{крок I}}{=} \lim_{n \to \infty} \int_A p_n \, d\lambda + \lim_{n \to \infty} \int_A q_n \, d\lambda = \int_A f \, d\lambda + \int_A g \, d\lambda.$$

III. f, g – довільні \mathcal{F} -вимірні функції.

Нехай для початку $f,g\in L(A,\lambda)$. Тож звідси отримаємо таку оціночку:

Пехай для початку
$$f,g\in L(A,\lambda)$$
. Тож звідси отримаємо таку ощіночку.
$$\int_A |f+g|\,d\lambda \le \int_A |f|+|g|\,d\lambda \stackrel{\text{крок II}}{=} \int_A |f|\,d\lambda + \int_A |g|\,d\lambda < +\infty, \text{ за нашим нехай.}$$
 Отже, $|f+g|\in L(A,\lambda) \iff f+g\in L(A,\lambda)$.

Залишилося довести рівність. Спочатку розглянемо випадок $f \geq 0, g < 0$. Розіб'ємо множину A на

$$A_{+} = \{x \in A \mid f(x) + g(x) \ge 0\} \qquad A_{-} = \{x \in A \mid f(x) + g(x) < 0\}.$$

На множині
$$A_+$$
 уже відомо, що $\int_{A_+} f + g \, d\lambda = \int_{A_+} f \, d\lambda + \int_{A_+} g \, d\lambda$ (крок II).

об'єднання таких множин: $A=A_+\sqcup A_-$. $A_+=\{x\in A\mid f(x)+g(x)\geq 0\}$ $A_-=\{x\in A\mid f(x)+g(x)< 0\}$. На множині A_+ уже відомо, що $\int_{A_+}f+g\,d\lambda=\int_{A_+}f\,d\lambda+\int_{A_+}g\,d\lambda$ (крок II). На множині A_- зауважимо, що -g=-(f+g)+f, причому -(f+g),f — обидва невід'ємні. Тоді за крокм II, $\int_{A_-}-g\,d\lambda=\int_{A_-}-(f+g)+f\,d\lambda=\int_{A_-}-(f+g)\,d\lambda+\int_{A_-}f\,d\lambda$. За властивостями вище,

отримаємо рівність
$$\int_{A_{-}} f + g \, d\lambda = \int_{A_{-}} f \, d\lambda + \int_{A_{-}} g \, d\lambda.$$

Два рівності ми додамо, а далі, користуючись адитивністю інтеграла, отримаємо:
$$\int_A f + g \, d\lambda = \int_A f \, d\lambda + \int_A g \, d\lambda$$
 для випадку $f \geq 0, g < 0$.

Тепер розглянемо повністю загальний випадок функцій f,g. Розіб'ємо множину A на об'єднання таки множин: $A = A_1 \sqcup A_2 \sqcup A_3 \sqcup A_4$.

$$A_1 = \{x \in A \mid f(x) \ge 0, g(x) \ge 0\}$$

$$A_2 = \{x \in A \mid f(x) \ge 0, g(x) \le 0\}$$

$$A_3 = \{x \in A \mid f(x) < 0, g(x) \ge 0\}.$$

$$A_4 = \{x \in A \mid f(x) < 0, g(x) < 0\}.$$

$$A_2 = \{x \in A \mid f(x) > 0, g(x) < 0\}$$
 $A_4 = \{x \in A \mid f(x) < 0, g(x) < 0\}$

На множині A_1,A_2,A_3 лінійність уже виконується. Для A_4 треба зауважити, що -f,-g – невід'ємні, а там аналогічною процедурою можна отримати лінійність. Залишилось чотири рівності пододавати

та скористатися адитивністю інтеграла – отримаємо рівність:
$$\int_A f + g \, d\lambda = \int_A f \, d\lambda + \int_A g \, d\lambda$$
.

4.4 Граничні теореми

Theorem 4.4.1 Інтегрування невід'ємної монотонної послідовності

Задано $f_n\colon X o ar{\mathbb{R}}$ – всі невід'ємні \mathcal{F} -вимірні, причому дана послідовність монотонно зростає. Тоді $\int_{A} \lim_{n \to \infty} f_n \, d\lambda = \lim_{n \to \infty} \int_{A} f_n \, d\lambda.$

Proof.

Позначимо $f(x) = \lim_{n \to \infty} f_n(x)$ — вона визначена на $\bar{\mathbb{R}}$ в силу монотонного зростання $\{f_n\}$. Всі f_n невід'ємні за умовою, тож існують послідовності простих невід'ємних та \mathcal{F} -вимірних функцій $\{p_{nq}\}$, для яких $p_{nq} \to f_n, \ q \to \infty$.

Розглянемо послідовність $\{\tilde{p}_j\}$, що задається як $\tilde{p}_j(x)=\max_{\substack{1\leq n\leq j\\1\leq q\leq j}}p_{nq}(x)$. Всі ці функції: прості, бо

кожні необхідні нам p_{nq} приймають скінченне значення; невід'ємні — тут зрозуміло; \mathcal{F} -вимірна як

максимум \mathcal{F} -вимірних. Ми хочемо довести, що $\tilde{p}_j \to f, \ j \to \infty$. По-перше, $\tilde{p}_j \geq p_{nj}$, як максимум. Спрямуємо спочатку $j \to \infty$, потім $n \to \infty$ – буде $\lim_{j \to \infty} \tilde{p}_j \geq f$.

По-друге, для кожного $n \leq j$ та кожного $q \leq j$ маємо $p_{nq} \leq f_n \leq f_j$. Оскільки це для кожних n,q виконано, то тим паче $\tilde{p}_j \leq f_j$. При $j \to \infty$ отримаємо $\lim_{j \to \infty} \tilde{p}_j \leq f$.

Отже, дійсно $\tilde{p}_j \to f, j \to \infty$. Більше того, справедлива така оцінка:

$$ilde{p}_j \leq f_j \leq f \implies \int_A ilde{p}_j \, d\lambda \leq \int_A f_j \, d\lambda \leq \int_A f \, d\lambda.$$
 При $j \to \infty$ буде $\int_A ilde{p}_j \, d\lambda \to \int_A f \, d\lambda$. За теоремою про двох поліцаїв, $\int_A f \, d\lambda = \lim_{j \to \infty} \int_A f_j \, d\lambda$.

Corollary 4.4.2 Інтегрування невід'ємного функціонального ряду

Задано
$$f_n \colon X \to \bar{\mathbb{R}}$$
 – всі невід'ємні \mathcal{F} -вимірні. Тоді $\int_A \sum_{n=1}^\infty f_n \, d\lambda = \sum_{n=1}^\infty \int_A f_n \, d\lambda$.

Вказівка: скористатися теоремою вище, розглянувши послідовність $g_k = \sum f_n.$

Theorem 4.4.3 Теорема Бепо Леві (інтегрування довільної монотонної послідовності) Задано $f_n\colon X\to \mathbb{R}$, причому $f_n\in L(A,\lambda)$, дана послідовність монотонно зростає. При цьому $\sup_{n\geq 1}\int_A f_n\,d\lambda<+\infty$. Тоді $\int_A \lim_{n\to\infty} f_n\,d\lambda=\lim_{n\to\infty}\int_A f_n\,d\lambda$.

$$\sup_{n\geq 1} \int_A f_n \, d\lambda < +\infty. \text{ Тоді } \int_A \lim_{n\to\infty} f_n \, d\lambda = \lim_{n\to\infty} \int_A f_n \, d\lambda$$

Позначимо $f(x) = \lim_{n \to \infty} f_n(x)$ — вона визначеня на $\bar{\mathbb{R}}$ в силу монотонного зростання $\{f_n\}$.

Розглянемо функції $g_n = f_1 - f_n$. Зауважимо, що всі невід'ємні, а також це монотонна послідовність. Причому $g = f_1 - f$, де в нас $g = \lim_{n \to \infty} g_n$. Зокрема оскільки $f_1, f_n \in L(A, \lambda)$, то сюди включаються

умови, що
$$f_1, f_n \in \mathcal{F}$$
-вимірними. Тоді за попередньою теоремою, $\int_A g \, d\lambda = \lim_{n \to \infty} \int_A g_n \, d\lambda$.

$$\int_{A} f_1 - f \, d\lambda = \lim_{n \to \infty} \int_{A} f_1 - f_n \, d\lambda = \int_{A} f_1 \, d\lambda - \lim_{n \to \infty} \int_{A} f_n \, d\lambda.$$

 $\int_{A} f_{1} - f \, d\lambda = \lim_{n \to \infty} \int_{A} f_{1} - f_{n} \, d\lambda = \int_{A} f_{1} \, d\lambda - \lim_{n \to \infty} \int_{A} f_{n} \, d\lambda.$ Праворуч ми розписали, просто тому що $f_{n} \in L(A,\lambda)$. А ось ліворуч ми це так не можемо. Нам треба довести, що $f_{1} - f \in L(A,\lambda)$, $f \in L(A,\lambda)$. І тоді там вже можна розписати.

Маємо
$$\int_A g_n d\lambda$$
 — послідовність таких інтегралів — зростає. Але оскільки $\sup_{n\geq 1} \int_A f_n d\lambda < +\infty$, то

звідси $\sup_{n\geq 1}\int_A g_n\,d\lambda \leq \sup_{n\geq 1}\int_A f_n\,d\lambda - \int_A f_1\,d\lambda < +\infty.$ Звідси $\int_A g\,d\lambda = \lim_{n\to\infty}\int_A^- g_n\,d\lambda < +\infty.$ А це в

точності
$$g = f - f_1 \in L(A, \lambda)$$
. Після цього $f \in L(A, \lambda)$.
$$\int_A f_1 - \int_A f \, d\lambda = \int_A f_1 \, d\lambda - \lim_{n \to \infty} \int_A f_n \, d\lambda \implies \int_A f \, d\lambda = \lim_{n \to \infty} \int_A f_n \, d\lambda.$$

Theorem 4.4.4 Теорема Фату

Задано
$$f_n \colon X \to \bar{\mathbb{R}}$$
 – всі неві'ємні \mathcal{F} -вимірні. Тоді $\int_A \underline{\lim}_{n \to \infty} f_n \, d\lambda \leq \underline{\lim}_{n \to \infty} \int_A f_n \, d\lambda$.

Proof.

Маємо функцію $f = \underline{\lim}_{n \to \infty} f_n = \lim_{n \to \infty} \inf_{k \ge n} f_k$. Позначимо $g_n = \inf_{k \ge n} f_k$. Зауважимо, що g_n – невід'ємні та \mathcal{F} -вимірні (як інфімум вимірних), причому послідовність зростає. Значить, за теоремою про

$$\int_A f \, d\lambda = \lim_{n \to \infty} \int_A g_n \, d\lambda = \lim_{n \to \infty} \int_A \inf_{k \ge n} f_k = \underline{\lim}_{n \to \infty} \int_A \inf_{k \ge n} f_k \le \underline{\lim}_{n \to \infty} \int_A f_n \, d\lambda.$$

Theorem 4.4.5 Теорема Лебега

Задано $f_n \colon X \to \overline{\mathbb{R}}$ – всі \mathcal{F} -вимірні, причому $f_n \to f \pmod{\lambda}$. Нехай існує функція $g \in L(A, \lambda)$, для якої $|f_n| \leq g \pmod{\lambda}$ – мажоруюча функція. Тоді $f \in L(A,\lambda)$, причому $\int_A f \, d\lambda = \lim_{n \to \infty} \int_A f_n \, d\lambda$.

Зауважимо, що оскільки $|f_n| \leq g \pmod{\lambda}$ та $f_n \to f \pmod{\lambda}$, то звідси $|f| \leq g \pmod{\lambda}$. Оскільки мажоранта $g \in L(A, \lambda)$, то звідси $f \in L(A, \lambda)$.

Із той самої нерівності $|f_n| \leq g \pmod{\lambda}$ та умови $g \in L(A,\lambda)$ випливає $f_n \in L(A,\lambda)$.

Оскільки $|f| \leq g$, то звідси $-g \leq f \leq g$, тобто $g+f \geq 0$ та $g-f \geq 0$ – і це все $\pmod{\lambda}$. Застосуємо теорему Фату для цих двох функцій в двох нерівностях.

$$\int_A g + f \, d\lambda = \int_A \varliminf (g + f_n) \, d\lambda \le \varliminf \int_A g + f_n \, d\lambda = \int_A g \, d\lambda + \varliminf \int_{n \to \infty} \int_A f_n \, d\lambda.$$

$$g, f \in L(A, \lambda) \implies g + f \in L(A, \lambda), \text{ тому юзаємо лінійність. Звідси } \int_A f \, d\lambda \le \varliminf \int_{n \to \infty} \int_A f_n \, d\lambda.$$

$$\int_A g - f \, d\lambda = \int_A \varliminf (g - f_n) \, d\lambda \le \varliminf \int_{n \to \infty} \int_A g - f_n \, d\lambda = \int_A g \, d\lambda - \varlimsup \int_{n \to \infty} \int_A f_n \, d\lambda.$$
Знору можна застводувати згіра гічнійність – отрумосмо $\int_A f \, d\lambda \ge \varlimsup \int_A f_n \, d\lambda.$

Знову можна застосувати зліва лінійність – отримаємо $\int_A f d\lambda \ge \overline{\lim}_{n\to\infty} \int_A f_n d\lambda$.

Ці нерівності дають зробити висновок, що $\int_A f d\lambda = \lim_{n \to \infty} \int_A f_n d\lambda$.

Corollary 4.4.6 Теорема Лебега (другий варіант)

Задано $f_n \colon X \to \overline{\mathbb{R}}$ – всі \mathcal{F} -вимірні, причому $f_n \stackrel{\lambda}{\to} f \pmod{\lambda}$. Нехай існує функція $g \in L(A, \lambda)$, для якої $|f_n| \leq g \pmod{\lambda}$ – мажоруюча функція. Тоді $f \in L(A,\lambda)$, причому $\int_A f \, d\lambda = \lim_{n \to \infty} \int_A f_n \, d\lambda$. Тобто ми замінили умову збіжності майже скрізь на збіжність за ма

Proof.

За теоремою Pica, можна підібрати підпослідовність, щоб $f_{n_k} \to f \pmod{\lambda}$. Якщо $|f_n| \leq g \pmod{\lambda}$, то тоді зрозуміло, що $|f_{n_k}| \leq g \pmod{\lambda}$, звідси отримаємо аналогічним чином $f \in L(A, \lambda)$. Незважаючи на заміни в умовах, все одно $f_n \in L(A, \lambda)$.

Нащо це додатково перевіряти. Для того, щоб можна було коректно записати доведення існування границі від супротивного. $f, f_n \in L(A, \lambda)$, а значить, вони можуть бути в інтегралі.

!Припустимо, що $\int_A f_n \, d\lambda \not\to \int_A f \, d\lambda$ (зауваження вище дозволяє нам таке записати). Тобто звідси

існує якийсь $\varepsilon^* > 0$, де для кожного k існує $n_k \ge k$, щоб $\left| \int_{\mathbb{R}^n} f_{n_k} d\lambda - \int_{\mathbb{R}^n} f d\lambda \right| \ge \varepsilon^*$.

Для підпослідовності f_{n_k} все одно $f_{n_k} \xrightarrow{\lambda} f$, але знову ж за теоремою Ріса, $f_{n_{k_m}} \to f \pmod{\lambda}$ для деякої підпідпослідовності. Але за теоремою Лебега (для першого випадку), $\int_{\Lambda} f_{n_{k_m}} d\lambda \to \int_{\Lambda} f d\lambda$ - суперечність!

Remark 4.4.7 Зараз буде кілька зауважень, демонстрація якого буде на наступного прикладі:

- 1) умова монотонності в **Th. 4.4.1** суттєва;
- 2) нерівність в теоремі Фату може бути строгою;
- 3) умова існування мажоранти в теоремі Лебега суттєва.

Example 4.4.8 Маємо $f_n = \mathbbm{1}_{[n,n+1]}$ та міру Лебега λ_1 . Ми вже знаємо, що $f_n \to 0 \pmod{\lambda_1}$.

При цьому
$$\int_{\mathbb{R}} f_n \, d\lambda_1 = \lambda_1([n,n+1]) = 1$$
, а також $\int_{\mathbb{R}} 0 \, d\lambda_1 = 0$.

Тобто звідси $\int_{\mathbb{R}} \lim_{n \to \infty} f_n \, d\lambda_1 \neq \lim_{n \to \infty} \int_{\mathbb{R}} f_n \, d\lambda_1$. Всі невід'ємні та вимірни, але зрозуміло, що послідовність не монотонна.

Також
$$\int_{\mathbb{R}} \underline{\lim}_{n \to \infty} f_n d\lambda_1 = 0 < 1 = \underline{\lim}_{n \to \infty} \int_{\mathbb{R}} f_n d\lambda_1$$

Також $\int_{\mathbb{R}} \underline{\lim}_{n \to \infty} f_n d\lambda_1 = 0 < 1 = \underline{\lim}_{n \to \infty} \int_{\mathbb{R}} f_n d\lambda_1$. Також задовольняє всім умовам Лебега, але лише мажоранта відсутня. Якби мажоранта $g \in L(A, \lambda)$ існувала, при яких $\mathbb{1}_{[n,n+1]} \leq g \pmod{\lambda_1}$, то ми би отримали $g \geq 1 \pmod{\lambda_1}$. Але тоді звідси маємо

$$\int_{\mathbb{R}} g \, d\lambda \geq \int_{\mathbb{R}} 1 \, d\lambda_1 = +\infty$$
 – суперечить умові.

Порівняння інтеграла Рімана з інтегралом Лебега

Theorem 4.5.1 Задано функцію $f \in \mathcal{R}([a,b])$. Тоді $f \in L([a,b],\lambda_1)$, де λ_1 – міра Лебега, при цьому $\int_{a}^{b} f(x) dx = \int_{[a,b]} f d\lambda_{1}.$

Proof.

Оскільки $f \in \mathcal{R}([a,b])$, то вона обмежена деякою константою. Дана константа буде мажорантою g. Нехай τ_n – розбиття відрізка [a,b] так, щоб відрізок поділився на підвідрізки довжин $\frac{b-a}{2^n}$. Зауважимо, що $|\tau_n| \to 0$ при $n \to \infty$. Розглянемо наступні функціональні послідовності:

жимо, що
$$|\tau_n| \to 0$$
 при $n \to \infty$. Розглянемо наступні функціональні послідовності:
$$\overline{f}_n(x) = f(a) \mathbb{1}_{\{a\}}(x) + \sum_{k=1}^{2^n} M_k \mathbb{1}_{(x_{k-1},x_k]}(x) \qquad \underline{f}_n(x) = f(a) \mathbb{1}_{\{a\}}(x) + \sum_{k=1}^{2^n} m_k \mathbb{1}_{(x_{k-1},x_k]}(x).$$
 У цьому випадку маємо $M_k = \sup_{x \in (x_{k-1},x_k]} f(x), \ m_k = \inf_{x \in (x_{k-1},x_k]} f(x).$

Зауважимо, що всі ці функції $\overline{f}_n,\underline{f}_n$ вимірні за Лебегом в силу вимірності всіх індикаторів, бо $\{a\}, (x_{k-1}, x_k]$ вимірні за Лебегом. Ще помітимо, що \overline{f}_n спадає та \underline{f}_n зростає, але обидва обмежені в силу нерівності $\underline{f}_n \leq f \leq \overline{f}_n$. Тоді існують $\overline{f} = \lim_{n \to \infty} \overline{f}_n$ та $\underline{f} = \lim_{n \to \infty} \underline{f}_n$. Значить, виконана нерівності $\underline{f}_n \leq f \leq \overline{f}_n$. ність $\underline{f} \leq f \leq \overline{f}$, причому $\underline{f}, \overline{f}$ також вимірні за Лебегом. Значить, всі $\overline{f}, \underline{f} \in L([a,b], \lambda_1)$ за теоремою Лебега, бо вони за модулем обмежені мажорантою.

$$\int_{[a,b]} \overline{f} \, d\lambda_1 = \lim_{n \to \infty} \int_{[a,b]} \overline{f}_n \, d\lambda_1 = \lim_{n \to \infty} \sum_{k=1}^{2^n} M_k \Delta x_k = \int_a^b f(x) \, dx.$$
$$\int_{[a,b]} \underline{f} \, d\lambda_1 = \lim_{n \to \infty} \int_{[a,b]} \underline{f}_n \, d\lambda_1 = \lim_{n \to \infty} \sum_{k=1}^{2^n} m_k \Delta x_k = \int_a^b f(x) \, dx.$$

Отже, $\int_{[a,b]} \overline{f} - \underline{f} \, d\lambda = 0 \implies \overline{f} = \underline{f} \pmod{\lambda_1}$. Отримаємо тоді $\underline{f} \leq f \leq \underline{f} \pmod{\lambda_1}$. Оскільки \underline{f} вимірна за Лебегом, а міра Лебега — повна, то тоді f — вимірна за Лебегом. Вона також обмежена мажорантою, тож $f \in L([a,b],\lambda_1)$. Щодо інтегралу:

$$\int_{[a,b]} f \, d\lambda = \int_{[a,b]} \underline{f} \, d\lambda = \int_a^b f(x) \, dx.$$

Theorem 4.5.2 Задано функцію
$$f \in \mathcal{R}([a,A])$$
 для всіх $A>a$.
1) нехай $\int_a^{+\infty} f(x)\,dx$ абсолютно збіжний. Тоді $f\in L([a,+\infty),\lambda_1)$ та $\int_a^{+\infty} f(x)\,dx=\int_{[a,+\infty)} f\,d\lambda_1;$

2) нехай $\int^{+\infty} f(x)\,dx$ не абсолютно збіжний. Тоді $f\notin L([a,+\infty),\lambda_1).$ Всюди λ_1 – це міра Лебега.

Proof.

1) Розглянемо випадок $\int_{a}^{+\infty} f(x) dx$ – абсолютно збіжний, тоді звідси $\int_{a}^{+\infty} |f(x)| dx < +\infty$.

Оскільки $f\in\mathcal{R}([a,A]),$ то звідси $f\in L([a,A],\lambda_1),$ при цьому $\int_a^a f(x)\,dx=\int_{[a,A]}f\,d\lambda_1.$

Зауважимо, що $f_n=f\cdot \mathbb{1}_{[a,a+n]} \to f$ при $n\to\infty$, причому $|f_n|$ монотонна послідовність. Отже,

$$\int_{[a,+\infty)} |f| d\lambda = \lim_{n \to \infty} \int_{[a,+\infty)} |f| \mathbb{1}_{[a,a+n]} d\lambda_1 = \lim_{n \to \infty} \int_{[a,a+n]} |f| d\lambda =$$

$$= \lim_{n \to \infty} \int_a^{a+n} |f(x)| dx = \int_a^{+\infty} |f(x)| dx < +\infty \implies f \in L([a,+\infty), \lambda_1).$$

Для коректності треба пересвідчитися, що f вимірна за Лебегом. Маємо $B \in \mathcal{B}(\mathbb{R})$, а тому звідси $f^{-1}(B) = \{x \in [a, +\infty) : f(x) \in B\} = \bigcup_{n=1}^{\infty} \{x \in [a, a+n] : f(x) \in B\} \in \mathcal{S}_1$. Останні множини вимірні за Лебегом, бо $f \in \mathcal{R}([a, a+n])$.

$$\int_{[a,+\infty)} f \, d\lambda = \lim_{n \to \infty} \int_{[a,+\infty)} f \mathbb{1}_{[a,a+n]} \, d\lambda_1 = \lim_{n \to \infty} \int_{[a,a+n]} f \, d\lambda = \lim_{n \to \infty} \int_a^{a+n} f(x) \, dx = \int_a^{+\infty} f(x) \, dx.$$
 Даний ланцюг рівностей працює в силу теореми Лебега, де в якості мажоранти вступає $|f|$.

2) Розглянемо випадок
$$\int_a^{+\infty} f(x) \, dx$$
 — не абсолютно збіжний, тоді $\int_a^{+\infty} |f(x)| \, dx = +\infty$. За міркуваннями вище, отримаємо $\int_{[a+\infty)} |f| \, d\lambda = +\infty$, а це означає $f \notin L([a,+\infty),\lambda_1)$.

Example 4.5.3 Обчислити
$$\lim_{n\to\infty}\int_0^{+\infty}e^{-x}\sin^nx\,dx.$$

Стандартними інструментами математичного аналізу це можна зробити, але мега важко.

Маємо функцію $f(x) = e^{-x} \sin^n x \, dx$ – зрозмуіло, що вона інтегровна. Також неважко переконатися,

що
$$\int_0^{+\infty} f(x) \, dx$$
 збіжна абсолютно. Тоді працює щойно отримана теорема, зокрема

$$\int_0^{+\infty} e^{-x} \sin^n x \, dx = \int_{[0,+\infty)} e^{-x} \sin^n x \, d\lambda_1(x).$$

Зауважимо, що $e^{-x}\sin^n x \to 0, n \to \infty \pmod{\lambda_1}$, а також вона обмежена мажорантою $e^{-x} \in L([0,+\infty),\lambda_1)$. Тоді за теоремою Лебега, отримаємо:

$$\lim_{n \to \infty} \int_0^{+\infty} e^{-x} \sin^n x \, dx = \lim_{n \to \infty} \int_{[0, +\infty)} e^{-x} \sin^n x \, d\lambda_1(x) = \int_{[0, +\infty)} 0 \, d\lambda_1 = 0.$$

ТОДО: додати інтеграл Рімана-Стілт'єса.

Інтеграл з параметром

Definition 4.6.1 Задано $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою та функцію $f: X \times T \to \mathbb{R}$. Інтегралом з параметром назвемо наступну функцію:

$$I(t) = \int_{X} f(x, t) \, d\lambda(x)$$

Вона визначена в цих точках $t \in T$, де функція f стає \mathcal{F} -вимірною.

Theorem 4.6.2 Про неперервність

Задано $f: X \times T \to \mathbb{R}$, причому T – метричний простір. Нехай для кожного $x \in X$ відомо $f(x,\cdot) \in$ C(T), а також для кожного $t \in T$ відомо, що $f(\cdot,t) \in \mathcal{F}$ -вимірною. Нарешті, нехай існує мажоранта $g \in L(X, \lambda)$ (не залежить від t), для якої $|f(x, t)| \leq g(x)$. Тоді $I \in C(T)$.

Proof.

Нехай $\{t_n\}\subset T$ задається так, щоб $t_n\to t_0, n\to\infty$. Хочемо довести, що $I(t_n)\to I(t_0)$. Оскільки $f(\cdot,t_n)$ всі \mathcal{F} -вимірні, причому $f(\cdot,t_n) \to f(\cdot,t_0)$ за неперервністю, а також $|f(x,t_n)| \le g(x)$, то за теоремою Лебега, ми маємо, що I(t) визначена для $t_0 \in T$, тому що $f(\cdot,t) \in L(X,\lambda)$. Більш того, $I(t_0) = \int_{\mathcal{X}} f(x, t_0) d\lambda(x) = \lim_{n \to \infty} \int_{\mathcal{X}} f(x, t_n) d\lambda(x) = \lim_{n \to \infty} I(t_n).$

Theorem 4.6.3 Про диференціювання

Задано $f\colon X\times T\to \mathbb{R}$, причому T – відкрита підмножина \mathbb{R} . Нехай для кожного $t\in T$ відомо, що $f(\cdot,t)\in L(X,\lambda)$. Також $\dfrac{\partial f}{\partial t}$ визначена на $X\times T$. Нарешті, нехай існує мажоранта $g\in L(X,\lambda)$ (яка не залежить від t), для якої $\left| \frac{\partial f}{\partial t}(x,t) \right| \leq g(x).$

Тоді I – диференційована на множині T, причому $I'(t) = \int_{\mathcal{X}} \frac{\partial f}{\partial t}(x,t) \, d\lambda(x)$.

Нехай
$$\{t_n\}\subset T$$
 задається так, щоб $t_n\to t_0, n\to\infty$. Маємо
$$\lim_{n\to\infty}\frac{I(t_n)-I(t_0)}{t_n-t_0}=\lim_{n\to\infty}\frac{1}{t_n-t_0}\left(\int_X f(x,t_n)\,d\lambda(x)-\int_X f(x,t_0)\,d\lambda(x)\right)\stackrel{f(\cdot,t)\in L(X,\lambda)}{=}\lim_{n\to\infty}\int_X\frac{f(x,t_n)-f(x,t_0)}{t-t_0}$$
 [\equiv] За теоремою Лагранжа, $\left|\frac{f(x,t_n)-f(x,t_0)}{t-t_0}\right|=\left|\frac{\partial f}{\partial t}(x,t_n^*)\right|\leq g(x)$ при проміжному $t_n^*\in G$. Можна

застосувати теорему Лебега
$$= \int_X \lim_{n \to \infty} \frac{f(x, t_n) - f(x, t_0)}{t - t_0} \, d\lambda(x) = \int_X \frac{\partial f}{\partial t}(x, t_0) \, d\lambda(x).$$

Таким чином, I диференційована в будь-якій точці $t_0 \in G$ та $I'(t_0) = \int_{\mathbb{T}} \frac{\partial f}{\partial t}(x, t_0) \, d\lambda(x)$.

4.7 Заміна змінної

Нехай задані $(X, \mathcal{F}, \lambda)$ та $(X', \mathcal{F}', \lambda')$ – два вимірних простори з мірами. Причому друга міра визначається таким чином:

$$\lambda'(A) = \lambda(T^{-1}A),$$

де $T: X \to X'$ відображення $(\mathcal{F}, \mathcal{F}')$ -вимірне.

Lemma 4.7.1 λ' дійсно задає міру.

Випливає з властивостей прообраза.

Theorem 4.7.2 Задано функцію $f\colon X'\to \bar{\mathbb{R}}$ – \mathcal{F}' -вимірна. Тоді $\int_{Y}f(Tx)\,d\lambda(x)=\int_{Y'}f(x')\,d\lambda'(x').$ Якщо існує хоча б один з цих інтегралів, то існує інший та вони рівні.

Перед цим треба зауважити, що $f \circ T \colon X \to \bar{\mathbb{R}}$ буде \mathcal{F} -вимірною як композиція двох вимірних, тому інтеграл брати можна.

Ми розглянемо кілька випадків:

I. Випадок функції $\mathbb{1}_A$, де множина $A \in \mathcal{F}$

1. Випадок функції
$$\mathbb{I}_A$$
, де множина $A \in \mathcal{F}$. Зауважимо, що $\mathbb{I}_A(Tx) = \begin{cases} 1, & Tx \in A \\ 0, & Tx \notin A \end{cases} = \begin{cases} 1, & x \in T^{-1}A \\ 0, & x \notin T^{-1}A \end{cases} = \mathbb{I}_{T^{-1}A}(x)$. Значить, отримаємо
$$\int_X \mathbb{I}_A(Tx) \, d\lambda(x) = \int_X \mathbb{I}_{T^{-1}A}(x) \, d\lambda(x) = \lambda(T^{-1}(A)) = \lambda'(A) = \int_{X'} \mathbb{I}_A(x') \, d\lambda'(x').$$

II. Випадок функції p – проста невід'ємна та \mathcal{F}' -вимірна.

Тобто маємо
$$p(x') = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k}(x').$$

$$\int_X p(Tx) \, d\lambda(x) \stackrel{\mathrm{kpok}}{=} {}^{\mathrm{I}} \sum_{k=1}^n a_k \lambda(T^{-1}A_k) = \sum_{k=1}^n a_k \lambda'(A_k) = \int_{X'} p(x') \, d\lambda'(x').$$

III. Випадок функції f – невід'ємна та \mathcal{F}' -вимірна.

Тоді є послідовність $\{p_n\}$ — прості невід'ємні та \mathcal{F}' -вимірна, зростаюча, для якої $p_n(x') \to f(x')$. Раз збіжність виконується для кожнних точок $x' \in X'$, то й для $Tx \in X'$ виконано $p_n(Tx) \to f(Tx)$ при всіх $x \in X$. У нас $p_n(Tx)$ все одно буде простою невід'ємною та \mathcal{F}' -вимірною, а також зростаючою.

$$\int_X f(Tx) \, d\lambda(x) = \lim_{n \to \infty} \int_X p_n(Tx) \, d\lambda(x) \stackrel{\text{крок II}}{=} \lim_{n \to \infty} \int_{X'} p_n(x') \, d\lambda(x') = \int_{X'} f(x') \, d\lambda'(x').$$

IV. Випадок функції f – довільної \mathcal{F}' -вимірної.

Маємо
$$f(x') = f_+(x') - f_-(x')$$
. Тоді звідси $f(Tx) = f_+(Tx) - f_-(Tx)$, але тоді
$$\int_X f(Tx) \, d\lambda(x) = \int_X f_+(Tx) \, d\lambda(x) - \int_X f_-(Tx) \, d\lambda(x) \stackrel{\text{крок III}}{=} \int_{X'} f_+(x') \, d\lambda'(x') - \int_{X'} f_-(x') \, d\lambda'(x) = \int_{X'} f(x') \, d\lambda'(x).$$

5 Заряди

5.1 Основні означення. Розклад Гана

Definition 5.1.1 Задано $\mathcal{F} - \sigma$ -алгебра.

Зарядом ми називатимемо функцію множин $\nu \colon \mathcal{F} \to (-\infty, +\infty]$, де

$$\nu$$
 — σ -адитивна

Proposition 5.1.2 Властивості зарядів

Задано ν – заряд на σ -алгебрі \mathcal{F} . Тоді виконуються такі пункти:

- 1) $\nu(\emptyset) = 0;$
- 2) ν адитивна;
- 3) Нехай $A, B \in \mathcal{F}$ так, щоб $A \subset B$ та $\nu(B) < +\infty$. Тоді $\nu(A) < +\infty$.

Proof.

Доведемо виконання всіх пунктів:

- 1) За узгодженістю (див. розділ про міри) існує множина $A \in \mathcal{F}$, для якої $\nu(A) < +\infty$. Звідси, за σ -адитивністю, $\nu(A) = \nu(A) + \nu(\emptyset) + \nu(\emptyset) + \dots$ Оскільки $\nu(A) < +\infty$, то ряд збіжний, а для рівності треба вимагати $\nu(\emptyset) = 0$.
- 2) Нехай $A_1,\ldots,A_k\in\mathcal{F}$ всі неперетинні. Тоді

$$\nu\left(\bigsqcup_{n=1}^k A_k\right) = \nu(A_1) + \dots + \nu(A_k) + \nu(\emptyset) + \nu(\emptyset) + \dots = \sum_{n=1}^k \nu(A_k).$$

3) За умовою, звідси $B=A\sqcup (B\setminus A)$, але тоді $\nu(B)=\nu(A)+\nu(B\setminus A)<+\infty$. Отже, звідси випливає, що $\nu(A) < +\infty$ (неважко від супротивного показати).

Всі властивості доведені.

Definition 5.1.3 Задано ν – заряд на \mathcal{F} .

Множина $B \in \mathcal{F}$ називається **додатною** (відосно заряду ν), якщо

$$\forall A \in \mathcal{F} : A \subset B : \nu(A) \ge 0$$

Множина $B \in \mathcal{F}$ називається **від'ємною** (відосно заряду ν), якщо

$$\forall A \in \mathcal{F} : A \subset B : \nu(A) < 0$$

Remark 5.1.4 ∅ є одночасно додатною та від'ємною множиною. Із цього випливає, що набір додатних множин та набір від'ємних множин – непорожні.

Theorem 5.1.5 Розклад Гана

Задано ν – заряд на \mathcal{F} . Тоді існують множини $X_+, X_- \in \mathcal{F}$ – відповідно додатна та від'ємна множини, для яких $X_{+} \sqcup X_{-} = X$.

Proof.

I. Існування множини X_{-}

Розглянемо значення $\alpha = \inf_{A \text{ - Bid'emha}} \nu(A)$. Із цього можна відокремити послідовність $\{A_n, n \geq 1\}$,

для яких $\nu(A_n) \to \alpha$. Покладемо $X_- = \bigcup_{i=1}^\infty A_i$ та доведемо, що вона – також від'ємна.

Перейдемо до неперетинних множин, задавши $B_1=A_1,\ B_2=A_2\setminus A_1,\ B_3=A_3\setminus (A_1\cup A_2),\dots$

Зауважимо, що
$$X_{-} = \bigsqcup_{n=1}^{\infty} B_n$$

Зауважимо, що $X_-=\bigsqcup_{n=1}^\infty B_n$. Нехай $B\subset X_-$, тобто звідси $B=\bigsqcup_{n=1}^\infty (B_n\cap B)$. Тобто $\nu(B)=\sum_{n=1}^\infty \nu(B_n\cap B)$. У нас $B_n\subset A_n$, ну а тому $B_n\cap B\subset B_n\subset A_n$. Оскільки A_n від'ємна, то тоді $\nu(B\cap B_n)\leq 0$. Власне,

тоді загалом $\nu(B) < 0$.

Цікаве зауваження: ми щойно довели, що зліченне об'єднання від'ємних множин – від'ємна.

Ми окремао ще доведемо, що $\nu(X_{-}) = \alpha$ – знадобиться для другої частини. Оскільки X_{-} уже від'ємна множина, то $\nu(X_{-}) \geq \alpha$, за інфімумом.

$$\nu(X_{-}) = \sum_{n=1}^{\infty} \nu(B_n) = \lim_{k \to \infty} \sum_{n=1}^{k} \nu(B_n) = \lim_{k \to \infty} \nu\left(A_1 \cup \dots \cup A_k\right) \le \lim_{k \to \infty} \nu(A_k) = \alpha.$$

Окреме пояснення останньої нерівності, тобто $\nu(A_1 \cup \cdots \cup A_k) \leq \nu(A_k)$.

Зауважимо, що $A_1 \cup \cdots \cup A_k$ – від'ємна, як скінченне об'єднання від'ємних, а тому для множини $A_1 \cup \cdots \cup A_k \setminus A_k \subset A_1 \cup \cdots \cup A_k$ маємо $\nu(A_1 \cup \cdots \cup A_k \setminus A_k) \leq 0$. Додавши $\nu(A_k)$ з двох сторін, отримаємо $\nu(A_1 \cup \cdots \cup A_k) \leq \nu(A_k)$.

II. Існування множини X_+

Існує спокуса покласти множину $X_{+} = X \setminus X_{-}$. Залишилося довести, що вона буде додатною.

!Припустимо, що це не так, тобто існує множина $C \in \mathcal{F}$ така, щоб $C \subset X_+$, але $\nu(C) < 0$.

Якби C була від'ємною, то розглянемо множину $X'_- = C \sqcup X_-$ та зауважимо, що $\nu(X'_-) = \nu(C) + \alpha < C$ α . Водночає множина $\nu(X'_{-}) \geq \alpha$ в силу того, що C, X_{-} обидва від'ємні. Тобто неможливо.

Тому C не може бути від'ємною, а тому існує множина $C_1 \in \mathcal{F}, C_1 \subset C$, для якої $\nu(C_1) > 0$. Причому звідси ми можемо підібрати $k_1 \in \mathbb{N}$ – найменше можливе, щоб $\nu(C_1) > \frac{1}{k_1}$.

Розглянемо тепер множину $C \setminus C_1$. Зауважимо, що $\nu(C \setminus C_1) = \nu(C) - \nu(C_1) < 0$. Якби вона була від'ємною, то аналогічними міркуваннями, що з C, ми б прийшли до суперечності.

Значить $C\setminus C_1$ не може бути від'ємною, а тому існує множина $C_2\in\mathcal{F},C_2\subset C\setminus C_1$, для якої $\nu(C_2)>0.$ Знову візьмемо найменше можливе $k_2\in\mathbb{N},$ щоб $\nu(C_2)>\frac{1}{k_2}.$

Розглянемо тепер множину $C \setminus (C_1 \cup C_2)$. Зауважимо, що $\nu(C \setminus (C_1 \cup C_2)) = \nu(C) - \nu(C_1) - \nu(C_2) < 0$. Аналогічно дана множина не є від'ємною, а тому існує $C_3 \in \mathcal{F}, C_3 \subset C \setminus (C_1 \cup C_2)$, для якої $\nu(C_3) > 0$. Знову візьмемо найменше можливе $k_3 \in \mathbb{N}$, щоб $\nu(C_3) > \frac{1}{k_3}$

Цей процес будемо продовжувати нескінченне число разів. Маємо $D=C\setminus\bigcup_{n=1}^{\infty}C_{n}$. Зауважимо,

що $\nu(D) = \nu(C) - \sum_{n=0}^{\infty} \nu(C_n) < 0$. Множина D не може бути від'ємною, тому що, знову ж таки,

припустивши D – від'ємна та розглянувши множину $X'_- = D \sqcup X_-$, ми отримаємо $\nu(X'_-) < \alpha$ з одного боку та $\nu(X'_{-}) \geq \alpha$ з іншого. Це неможливо.

Значить, D не може бути від'ємною, тож існує $D_1 \in \mathcal{F}, D_1 \subset D$, для якого $\nu(D_1) > 0$. Обереться таке найменше $l \in \mathbb{N}$, для якого $\nu(D_1) > \frac{1}{l}$.

Але зауважимо щодо $\bigcup_{n=1}^\infty C_n \subset C$. Оскільки $\nu(C) < 0 < +\infty$, то звідси $\nu\left(\bigsqcup_{n=1}^\infty C_n\right) = \sum_{n=1}^\infty \nu(C_n) < \infty$

 $+\infty$, тобто ряд збіжний. Звідси $\nu(C_n)\to 0$ при $n\to\infty$. Оскільки $\nu(C_n)>\frac{1}{k_n}$, то тоді $k_n\to\infty$.

Так ось, $\nu(D_1) > \frac{1}{l} > \frac{1}{k_N}$, тому що при $k_n \to \infty$ отримаємо, що знайдеться N, для якого $k_n > l$.

Отримана нерівність неможлива, тому що на кроці N ми взяли множину $C_N\subset C\setminus\bigcup C_m$, для

якої $\nu(C_N) > \frac{1}{k_N}$, при цьому k_N – найменше можливе. Але замість C_N нам треба було брати

 $D_1\subset D=C\setminus\bigcup_{m=1}^{N-1}C_m\subset C\setminus\bigcup_{m=1}^{N-1}C_m$ – і було би $\nu(D_1)>\frac{1}{l}$. Це теж неможливо. Тобто ми з'ясували, що D ϵ ані від'ємною, ані невід'ємною. Суперечність!

Remark 5.1.6 Зауважимо, що розклад Гана, взагалі-то кажучи, не єдиний.

Example 5.1.7 Зокрема маємо $\nu(A) = \sum_{k=1}^n a_k \mathbbm{1}_A(x_k)$ на 2^X . Тут $x_k \in X$ та $a_k \in \mathbb{R} \cup \{+\infty\}$. Оскільки це заряд, то звідси є розклад Гана, але тут може бути кілька розкладів:

$$X=X_{-}^{1}\sqcup X_{+}^{1}$$
, де $X_{+}^{1}=\{x_{k}\in X\mid a_{k}>0\}$ та $X_{-}^{1}=X\setminus X_{+}^{1}$. $X=X_{-}^{2}\sqcup X_{+}^{2}$, де $X_{+}^{2}=X\setminus X_{-}^{2}$ та $X_{-}^{2}=\{x_{k}\in X\mid a_{k}<0\}$.

Theorem 5.1.8 Розклад Жордана

Задано ν – заряд на \mathcal{F} . Ми вже знаємо, що $X=X_+\sqcup X_-$.

Тоді $\nu = \nu_+ - \nu_-$, причому $\nu_+(A) = \nu(A \cap X_+)$ та $\nu_-(A) = -\nu(A \cap X_-)$. У цьому випадку ν_+ – міра та ν_{-} – скінченна міра, обидва визначені на \mathcal{F} .

Якщо ν – $(\sigma$ -)скінченна міра, то ν_+ також буде $(\sigma$ -)скінченною.

 ν_+ – міра, тому що для будь-якої множини $A \in \mathcal{F}$ маємо $A \cap X_+ \subset X_+$, а за означенням додатної множини, $\nu_+(A) = \nu(A \cap X_+) \ge 0$; дана міра зрозуміло, що σ -адитивна, бо заряд ν є таким.

 u_{-} – міра, доводиться аналогічно. Але вона скінченна, оскільки $-\infty < \nu(A \cap X_{-}) \le 0$ за тим, які значення приймає функція множин.

Тепер доведемо розклад заряду. Маємо наступне:

$$\nu(A) = \nu(A \cap X) = \nu((A \cap X_+) \sqcup (A \cap X_-)) = \nu(A \cap X_+) + \nu(A \cap X_-) = \nu_+(A) - \nu_-(A).$$

Із цієї рівності з того, що ν буде (σ) -скінченною, легко випливає, що ν_+ також (σ) -скінченна.

Theorem 5.1.9 Розклад Жордана буде єдиним, незважаючи на неєдиний розклад Гана.

Proof.

Маємо два розклади Гана $X=X_+^1\sqcup X_-^1$ та $X=X_+^2\sqcup X_-^2$. Маємо два розклади Жордана:

 $\nu(A) = \nu_+^1(A) - \nu_-^1(A)$ $\nu(A) = \nu_+^2(A) - \nu_-^2(A).$

Зараз доведемо, що $\nu_+^1(A) = \nu_+^2(A)$. Дійсно,

$$\nu_{+}^{1}(A) = \nu(A \cap X_{+}^{1}) = \nu(A \cap X_{+}^{1} \cap X) = \nu((A \cap X_{+}^{1} \cap X_{+}^{2}) \sqcup (A \cap X_{+}^{1} \cap X_{-}^{2})) = \nu(A \cap X_{+}^{1} \cap X_{-}^{2}) = \nu(A \cap X_{+}^{2} \cap X_{-}^{2}) = \nu($$

 $u_+(A) = \nu(A \cap X_+) = \nu(A \cap X_+ \cap X_-) = \nu(A \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap X_+) = \nu(A \cap X_+ \cap X_+ \cap X_+ \cap X_+ \cap$

 $u_+^2(A) = \nu(A \cap X_+^1 \cap X_+^2)$ – доводиться аналогічним чином. Звідси випливає $\nu_+^1(A) = \nu_+^2(A)$. Як наслідок, $\nu_-^1(A) = \nu_-^2(A)$ в силу розклада Жордана.

Definition 5.1.10 Задано ν – заряд на \mathcal{F} .

Повною варіацією заряду ν називається міра:

$$|\nu| = \nu_+ + \nu_-$$

Те, що вона міра, випливає з рокзладу Жордана. Також у силу єдиності, означенняк коректне.

Example 5.1.11 Маємо функцію $f: X \to \bar{\mathbb{R}}$, для якої визначено $\int_{Y} f \, d\lambda$, причому $\int_{Y} f_{-} \, d\lambda < +\infty$.

Ми вже знаємо, що функція множин $\nu(A) = \int_{\mathbb{R}^{d}} f \, d\lambda$ буде σ -адитивною. Також

$$\nu(A) \ge -\int_A f_- d\lambda \ge -\int_X f_- d\lambda > -\infty.$$

 $u(A) \ge -\int_A f_- \, d\lambda \ge -\int_X f_- \, d\lambda > -\infty.$ Отже, наша функція множин ν — заряд. Маємо розбиття $X = \{x: f(x) \ge 0\} \sqcup \{x: f(x) < 0\}$ — розклад Гана. Розглянемо тепер розклад Жордана:

$$\nu_+(A) = \nu(A \cap X_+) = \int_{A \cap X_+} f \, d\lambda = \int_A f \mathbb{1}_{f \ge 0} \, d\lambda = \int_A f_+ \, d\lambda.$$

$$\nu_{-}(A) = -\nu(A \cap X_{-}) = -\int_{A \cap X_{-}} f \, d\lambda = \int_{A} (-f) \mathbb{1}_{f < 0} \, d\lambda = \int_{A} f_{-} \, d\lambda.$$

 $u(A) = \nu_{+}(A) - \nu_{-}(A)$ – тут в точності записано третє означення інтеграла Лебега.

$$|\nu|(A) = \nu_{+}(A) + \nu_{-}(A) = \int_{A} f_{+} d\lambda + \int_{A} f_{-} d\lambda = \int_{A} |f| d\lambda.$$

Теорема Радона-Нікодима

Маємо всюди (X, \mathcal{F}) – вимірний простір. Всі міри та заряди будуть задані тут.

Definition 5.2.1 Заряд ν називається абсолютно неперервним відносно міри λ , якщо

$$\forall A \in \mathcal{F} : \lambda(A) = 0 \implies \nu(A) = 0$$

Позначення: $\nu \ll \lambda$.

Example 5.2.2 Для міри λ та заряду $\nu(A) = \int_{\mathbb{R}^n} f \, d\lambda$ виконується $\nu \ll \lambda$.

Proposition 5.2.3 Еквівалентні означення абсолютної неперервності

Задано ν – заряд із розкладом $\nu = \nu_+ - \nu_-$, а також λ – міра. Тоді

$$\nu \ll \lambda \iff \begin{cases} \nu_+ \ll \lambda \\ \nu_- \ll \lambda \end{cases} \iff |\nu| \ll \lambda.$$

Proof.

Дано: $\nu \ll \lambda$. Хочемо довести, що $\begin{cases} \nu_+ \ll \lambda \\ \nu_- \ll \lambda \end{cases}$

Нехай $A \in \mathcal{F}$ так, що $\lambda(A) = 0$. Розглянемо $\nu_+(A) = \nu(A \cap X_+)$. Оскільки $A \cap X_+ \subset A$, то звідси $\lambda(A\cap X_+)=0,$ а за умовою дано, $\nu(A\cap X_+)=0=\nu_+(A).$ А це доводить те, що $\nu_+\ll\lambda.$ Аналогічно доводиться $\nu_{-} \ll \lambda$.

Дано:
$$\begin{cases} \nu_+ \ll \lambda \\ \nu_- \ll \lambda \end{cases} .$$
 Хочемо довести, що $|\nu| \ll \lambda.$

Дано: $\begin{cases} \nu_{+} \ll \lambda \\ \nu_{-} \ll \lambda \end{cases}$. Хочемо довести, що $|\nu| \ll \lambda$. Нехай $A \in \mathcal{F}$ так, що $\lambda(A) = 0$. За дано, $\nu_{+}(A) = \nu_{-}(A) = 0$, тож $|\nu|(A) = \nu_{+}(A) + \nu_{-}(A) = 0$. Отже, $|\nu| \ll \lambda$.

Дано: $|\nu| \ll \lambda$. Хочемо довести, що $\nu \ll \lambda$.

Нехай $A \in \mathcal{F}$ так, що $\lambda(A) = 0$. Маємо тоді $|\nu|(A) = \nu_+(A) + \nu_-(A) = 0$, але оскільки ν_+, ν_- обивда міри, то звідси єдина можливість для рівності – це $\nu_+(A) = \nu_-(A) = 0$. Значить, $\nu(A) = 0$, а тому $\nu \ll \lambda$.

Theorem 5.2.4 Теорема Радона-Нікодими

Задано ν, λ – заряд та міра, обидва σ -скінченні, причому $\nu \ll \lambda$. Тоді існує \mathcal{F} -вимірна функція $f\colon X o\mathbb{R}$, для якої $\nu(A)=\int_A f\,d\lambda$. Дана функція буде єдина з точністю до еквівалентності $\pmod{\lambda}$.

Proof.

I. Bunadok, коли ν , λ – обидва міри, які є скінченними.

Розглянемо множину $G=\left\{g\colon X o\mathbb{R}\mid g$ – невід'ємні, \mathcal{F} -вимірні : $\forall A\in\mathcal{F}:\int_A g\,d\lambda\leq \nu(A)\right\}$. Дана

множина непорожня, бо
$$0 \in G$$
. Також доведемо, що $g_1, g_2 \in G \stackrel{(*)}{\Longrightarrow} \max\{g_1, g_2\} \in G$.
$$\int_A \max\{g_1, g_2\} \, d\lambda = \int_{A \cap \{g_1 > g_2\}} g_1 \, d\lambda + \int_{A \cap \{g_1 \le g_2\}} g_2 \, d\lambda \le \nu(A \cap \{g_1 > g_2\}) + \nu(A \cap \{g_1 \le g_2\}) = \nu(A).$$

Оберемо $\alpha = \sup_{g \in G} \int_X g \, d\lambda$. Тобто ми просто беремо найбільше з всіх можливих інтегралів (очевидно, що треба брати інтеграл по X). Зауважимо, що $\alpha < +\infty$ в силу скінченності ν . Відокремимо послідовність $\{g_n, n \geq 1\}$ так, щоб $\int_X g_n \, d\lambda \to \alpha$.

Розглянемо послідовність $\{f_n, n \geq 1\}$, що визначена як $f_n = \max\{g_1, \dots, g_n\}$. Всі вони \mathcal{F} -вимірні та невід'ємні – це зрозуміло. Також дана послідовність зростає монотонно, а тому існує $f = \lim_{n \to \infty} f_n$ –

це наша шукана функція. Причому
$$\int_A f \, d\lambda = \lim_{n \to \infty} \int_A f_n \, d\lambda$$
.

Всі
$$f_n \in G$$
 за (*), тобто $\int_A f_n d\lambda \leq \nu(A)$. При $n \to \infty$ отримаємо $\int_A f d\lambda \leq \nu(A)$, тобто $f \in G$. Автоматично це означає, що $\int_X f d\lambda \leq \alpha$, як супремум. Із іншого боку, $f \geq f_n \geq g_n \implies \int_X f d\lambda \geq \alpha$

$$\int_X f_n \, d\lambda \ge \int_X g_n \, d\lambda.$$
 Узявши $n \to \infty$, отримаємо $\int_X f \, d\lambda \ge \alpha.$

Таким чином, отримали $\nu(A)-\int_A f\,d\lambda\geq 0$, а також $\int_X f\,d\lambda=\alpha$ (це буде пізніше заюзано).

Позначимо $\varphi(A) = \nu(A) - \int_A f \, d\lambda$ – це буде мірою, через невід'ємність (вище) та через зрозумілим чином σ -адитивність. Нам треба переконатися, що $\varphi(A)=0$ для всіх $A\in\mathcal{F}.$

!Припустимо, що існує множина A^* , для якої $\varphi(A^*) > 0$. Із цього випливатиме $\lambda(A^*) > 0$ в силу умови $\nu \ll \lambda$. Тоді існує таке $\beta > 0$, щоб $\varphi(A^*) - \beta \lambda^*(A) > 0$. (від супротивного можна довести). Розглянемо тепер $\varphi - \beta \lambda$ – це буде заряд на σ -алгебрі $\mathcal{F} \cap A^*$. Тоді ми можемо розкласти за Ганом $A^* = A_+^* \sqcup A_-^*$. Оскільки $(\varphi - \beta \lambda)(A^*) > 0$, то звідси $(\varphi - \beta \lambda)(A_+^*) > 0$. А звідси отримаємо

У силу додатності множини A_+^* , маємо для кожного $C \subset A_+^*$ нерівність $(\varphi - \beta \lambda)(C) \geq 0$, а звідси випливає нерівність $\beta\lambda(C)+\int_C f\,d\lambda \leq \nu(C).$ Нарешті, розглянемо функцію $h=f+\beta\mathbbm{1}_{A_+^*}.$ Спочатку покажемо, що $h\in G.$

$$\begin{split} & \int_{A} h \, d\lambda = \int_{(A \cap A_{+}^{*}) \sqcup (A \setminus A_{+}^{*})} h \, d\lambda = \int_{A \cap A_{+}^{*}} f + \beta \mathbb{1}_{A_{+}^{*}} \, d\lambda + \int_{A \setminus A_{+}^{*}} f \, d\lambda \leq \\ & \leq \int_{A \cap A_{+}^{*}} f \, d\lambda + \beta \lambda (A \cap A_{+}^{*}) + \nu (A \setminus A_{+}^{*}) \leq \nu (A \cap A_{+}^{*}) + \nu (A \setminus A_{+}^{*}) = \nu (A). \end{split}$$

Отже, $\int_{\mathcal{X}} h \, d\lambda \leq \alpha$ за супремумою Із іншого боку, зауважимо наступне:

$$\int_X h \, d\lambda = \int_X f + \beta \mathbb{1}_{A_+^*} \, d\lambda = \int_X f \, d\lambda + \beta \lambda (A_+^*) = \alpha + \beta \lambda (A_+^*) > \alpha.$$
 Суперечність!

Припущення про те, що $\exists A^* \in \mathcal{F} : \varphi(A^*) = 0$ невірне. Отже, $\nu(A) = \int_{\scriptscriptstyle A} f \, d\lambda$ для всіх $A \in \mathcal{F}$.

До речі, $\int_X f \, d\lambda \le \nu(X) < +\infty$, тобто звідси $|f| < +\infty \pmod{\lambda}$. Ми замінимо еквівалентним чином на функцію f, де $|f| < +\infty$ повністю всюди. Тоді вона повертає лише \mathbb{R} .

Припустимо, що існують дві функції $f, \tilde{f},$ для яких $\nu(A) = \int_A f \, d\lambda$ та $\nu(A) = \int_A \tilde{f} \, d\lambda$. Звідси випливає, що $\int_Y f - \tilde{f} \, d\lambda = 0$, а тому $f - \tilde{f} = 0 \pmod{\lambda} \implies f = \tilde{f} \pmod{\lambda}$. Отже, функція має бути

II. Випадок, коли
$$\nu,\lambda$$
 – обидва міри, які є σ -скінченними. Маємо $X=\bigcup_{i=1}^\infty X_i,\ \nu(X_i)<+\infty$ $X=\bigcup_{j=1}^\infty Y_j,\ \lambda(Y_j)<+\infty.$

i=1 На множинах $X_i\cap Y_j$ обидва міри ν,λ будуть скінченними. Набір всіх цих множин $X_i\cap Y_j$ – злі-

на множинах $X_i \cap Y_j$ обидва міри ν, λ будуть скінченними. Пабір всіх цих множин $X_i \cap Y_j = 3$ леченна, тож запишемо його як упорядковану послідовність $\{Z_n, n \geq 1\}$. Перейдемо до неперетинних множин, $V_1 = Z_1, \ V_2 = Z_2 \setminus Z_1, \ V_3 = Z_3 \setminus (Z_1 \cup Z_2), \dots$ Тоді звідси ясно, що $X = \bigsqcup_{n=1}^{\infty} V_n$. На $V_n \cap \mathcal{F}$ зауважимо, що λ, ν скінченні, причому все одно $\nu \ll \lambda$. Значить,

можна застосувати крок І., тобто для кожного $n\geq 1$ знайдеться функція $f_n\colon V_n\to\mathbb{R}$, для якої $\nu(B) = \int_{\mathcal{D}} f_n \, d\lambda$ для всіх $B \subset V_n, B \in \mathcal{F}$.

Візьмемо функцію
$$f\colon X\to\mathbb{R}$$
, яка на кожній V_n дорівнює відповідній f_n . Значить,
$$\nu(A)=\sum_{n=1}^\infty \nu(A\cap V_n)=\sum_{n=1}^\infty \int_{A\cap V_n} f_n\,d\lambda\stackrel{f_n=f_{\text{ Ha }}V_n}{=} \sum_{n=1}^\infty \int_{A\cap V_n} f\,d\lambda=\int_A f\,d\lambda$$
 для кожної $A\in\mathcal{F}$.

Всі функції f_n єдині з точністю до еквівалетності, тоді звідси f також єдина з точністю до еквівалетності.

III. Bunadok, коли ν – заряд σ -скінченний та λ – міра σ -скінченна.

Маємо $X = X_+ \sqcup X_-$ – розклад Гана заряду ν , беремо розклад Жордана $\nu(A) = \nu_+(A) - \nu_-(A)$. Оскільки $\nu \ll \lambda$, то звідси $\nu_+, \nu_- \ll \lambda$. Обидві міри ν_+, ν_- є σ -скінченними, а тому можна застосу-

$$u_+(B) = \int_{B} f_+ \, d\lambda$$
 на $X_+ \cap \mathcal{F}, \qquad \nu_-(C) = \int_{C} f_- \, d\lambda$ на $X_- \cap \mathcal{F}.$

Осклівки
$$\nu \ll \lambda$$
, то звідси $\nu_+, \nu_- \ll \lambda$. Обидії міри $\nu_+, \nu_- \in \delta$ -скінченними, а тому можна застосувати крок II, тобто існуються функції $f_+\colon X_+ \to \mathbb{R}$ та $f_-\colon X_- \to \mathbb{R}$, для яких $\nu_+(B) = \int_B f_+ \, d\lambda$ на $X_+ \cap \mathcal{F}$, $\nu_-(C) = \int_C f_- \, d\lambda$ на $X_- \cap \mathcal{F}$. Покладемо $f\colon X \to \mathbb{R}$ так, щоб $f = f_+$ на X_+ та $f = -f_-$ на X_- . Значить, для всіх $A \in \mathcal{F}$ $\nu(A) = \nu(A \cap X_+) + \nu(A \cap X_-) = \int_{A \cap X_+} f_+ \, d\lambda - \int_{A \cap X_-} f_- \, d\lambda = \int_{A \cap X_+} f \, d\lambda + \int_{A \cap X_-} f \, d\lambda = \int_A f \, d\lambda$. Зрозуміло, що f єдина з точністю до еквівалетності, бо f_+, f_- у себе єдині.

 ${\bf Remark}$ 5.2.5 Функція fіз теореми Радона-Нікодими називається щільністю або похідною заряду ν за мірою λ . Позначення: $f = \frac{d\nu}{d\lambda}$.

ТОДО: доповнити якісь там ще теми

6 Добуток просторів

6.1Множини та функції

Задані $(X_1, \mathcal{F}_1), (X_2, \mathcal{F}_2)$ – два вимірних простори. Позначимо $X = X_1 \times X_2$.

Definition 6.1.1 Вимірним прямокутником на X назвемо такий клас множин:

$$\mathcal{F}_1 \times \mathcal{F}_2 = \{ A_1 \times A_2 \mid A_1 \in \mathcal{F}_1, \ A_2 \in \mathcal{F}_2 \}$$

Remark 6.1.2 Хоча $\mathcal{F}_1, \mathcal{F}_2$ є σ -алгебрами, але $\mathcal{F}_1 \times \mathcal{F}_2$ утвроює лише півкільце за **Th. 1.1.7**.

Definition 6.1.3 Добутком σ **-алгебр** $\mathcal{F}_1, \mathcal{F}_2$ називають клас множин

$$\mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma a(\mathcal{F}_1 \times \mathcal{F}_2)$$

Theorem 6.1.4 $\mathcal{B}(\mathbb{R}^{m+n}) = \mathcal{B}(\mathbb{R}^m) \otimes \mathcal{B}(\mathbb{R}^n)$.

Proof.

 $\mathcal{B}(\mathbb{R}^{m+n}) \subset \mathcal{B}(\mathbb{R}^m) \otimes \mathcal{B}(\mathbb{R}^n).$

$$\mathcal{B}(\mathbb{R}^{m+n}) \subset \mathcal{B}(\mathbb{R}^m) \otimes \mathcal{B}(\mathbb{R}^n).$$
Оберемо $\prod_{i=1}^{m+n} (a_i,b_i] \in \mathcal{P}_{m+n}$, тоді звідси зауважимо $\prod_{i=1}^{m+n} (a_i,b_i] = \prod_{i=1}^{m} (a_i,b_i] \times \prod_{i=m+1}^{m+n} (a_i,b_i].$

Отже, ми довели, що $\mathcal{P}_{m+n} \subset \mathcal{B}(\mathbb{R}^m) \times \mathcal{B}(\mathbb{R}^n) \subset \sigma a(\mathcal{B}(\mathbb{R}^m) \times \mathcal{B}(\mathbb{R}^n)) = \mathcal{B}(\mathbb{R}^m) \otimes \mathcal{B}(\mathbb{R}^n)$ Оскільки найправіше утворює σ -алгебру, то звідси $\sigma a(\mathcal{P}_{m+n}) = \mathcal{B}(\mathbb{R}^{m+n}) \subset \mathcal{B}(\mathbb{R}^m) \otimes \mathcal{B}(\mathbb{R}^n)$.

$$\mathcal{B}(\mathbb{R}^{m+n}) \supset \mathcal{B}(\mathbb{R}^m) \otimes \mathcal{B}(\mathbb{R}^n)$$

Зафіксуємо
$$\prod_{i=1}^m (a_i,b_i] \in \mathcal{B}(\mathbb{R}^m)$$
. Розглянемо клас $\mathcal{H}_1 = \left\{ B \in \mathcal{B}(\mathbb{R}^n) \mid \prod_{i=1}^m (a_i,b_i] \times B \in \mathcal{B}(\mathbb{R}^{m+n}) \right\}$.

Цілком неважко буде довести, що \mathcal{H}_1 утвроює σ -алгебру. Також зауважимо, що $\mathcal{H}_1 \supset \mathcal{P}_n$. Таким чином, отримаємо $\mathcal{H}_1 \supset \mathcal{B}(\mathbb{R}^n)$.

Зафіксуємо $B \in \mathcal{B}(\mathbb{R}^n)$. Розглянемо клас $\mathcal{H}_2 = \{A \in \mathcal{B}(\mathbb{R}^m) \mid A \times B \in \mathcal{B}(\mathbb{R}^{m+n})\}$. Аналогічно неважко довести, що \mathcal{H}_2 утворює σ -алгебру, а також $\mathcal{H}_2 \supset \mathcal{P}_m$ (це ще випливає з $\mathcal{H}_1 \supset \mathcal{B}(\mathbb{R}^n)$). Таким чином, отримаємо $\mathcal{H}_2 \supset \mathcal{B}(\mathbb{R}^m)$.

Отже, $\forall B \in \mathcal{B}(\mathbb{R}^n)$ маємо $\forall A \in \mathcal{B}(\mathbb{R}^m) : A \times B \in \mathcal{B}(\mathbb{R}^{m+n})$. Це можна переписати ось так: $\forall A \times B \in \mathcal{B}(\mathbb{R}^m) \times \mathcal{B}(\mathbb{R}^n) : A \times B \in \mathcal{B}(\mathbb{R}^{m+n}).$

Це означає $\mathcal{B}(\mathbb{R}^m) \times \mathcal{B}(\mathbb{R}^n) \subset \mathcal{B}(\mathbb{R}^{m+n})$. Але оскільки $\mathcal{B}(\mathbb{R}^{m+n})$ утворює σ -алгебру, то звідси $\sigma a(\mathcal{B}(\mathbb{R}^m) \times \mathcal{B}(\mathbb{R}^n)) = \mathcal{B}(\mathbb{R}^m) \otimes \mathcal{B}(\mathbb{R}^n) \subset \mathcal{B}(\mathbb{R}^{m+n}).$

Definition 6.1.5 Нехай задано множину $E \subset X$ та $x_1 \in X_1, x_2 \in X_2$. x_1 -перерізом множини E називається множина

$$E_{x_1} = \{x_2 \in X_2 : (x_1, x_2) \in E\}$$

 x_2 -перерізом множини E називається множина

$$E_{x_2} = \{x_1 \in X_1 : (x_1, x_2) \in E\}$$

Example 6.1.6 Нехай E – вимірний прямокутник, тобто $E \in \mathcal{F}_1 \times \mathcal{F}_2$, тобто $E = E_1 \times E_1$, при цьому $E_1 \in \mathcal{F}_1$, $E_2 \in \mathcal{F}_2$. Тоді ми отримаємо $E_{x_1} = \begin{cases} E_2, & x_1 \in E_1 \\ \emptyset, & x_1 \notin E_1 \end{cases}$ та аналогічно $E_{x_2} = \begin{cases} E_1, & x_2 \in E_2 \\ \emptyset, & x_2 \notin E_2 \end{cases}$. Дійсно, $E_{x_1} = \{x_2 \in X_2 : (x_1, x_2) \in E_1 \times E_2\}$. Якщо $x_1 \in E_1$, то тоді тут $E_{x_1} = E_2$. Якщо $x_1 \notin E_1$, то тоді тут $E_{x_1} = E_2$. Якщо $x_1 \notin E_1$, то тоді тут $E_{x_2} = E_2$.

то тоді який б $x_2 \in E_2$ не взяли, уже $(x_1, x_2) \notin E_1 \times E_2$, а тому $E_{x_1} = \emptyset$. Зазначимо, що в цьому випадку $E_{x_1} \in \mathcal{F}_2$ та $E_{x_2} \in \mathcal{F}_1$ завжди.

Lemma 6.1.7 Нехай $E \in \mathcal{F}_1 \otimes \mathcal{F}_2$. Тоді для кожного $x_1 \in X_1$ та $x_2 \in X_2$ маємо $E_{x_1} \in \mathcal{F}_2$, $E_{x_2} \in \mathcal{F}_1$.

Proof.

Ми доведемо, що для для кожного $x_1 \in X_1$ матимемо $E_{x_1} \in \mathcal{F}_2$, бо друге аналогічно.

Розглянемо клас $\mathcal{H} = \{ E \in \mathcal{F}_1 \otimes \mathcal{F}_2 \mid \forall x_1 \in X_1 : E_{x_1} \in \mathcal{F}_2 \}.$

Ми вже знаємо (за попереднім прикладом), що $\mathcal{H} \supset \mathcal{F}_1 \times \mathcal{F}_2$. Зауважимо, що \mathcal{H} утвроює σ -алгебру,

це окремо ми скоро обговоримо. Після цього ми отримаємо $\mathcal{H} \supset \mathcal{F}_1 \otimes \mathcal{F}_2$, що доводить нашу лему. Нехай $E^{(n)}\in\mathcal{H}$, тобто $E_{x_1}^{(n)}\in\mathcal{F}_2$ при всіх $n\geq 1$. Зауважимо, що виконується така рівність:

$$\bigcup_{n=1}^\infty E_{x_1}^{(n)} = \left(\bigcup_{n=1}^\infty E^{(n)}\right)_{x_1}$$
 . Прокоментую рівність окремо.

Нехай $x_2 \in \bigcup E_{x_1}^{(n)}$, тобто звідси $x_2 \in E_{x_1}^{(N)}$ при деякому $N \ge 1$, а тому $(x_1, x_2) \in E^{(N)}$. Значить,

$$(x_1,x_2)\in \bigcup_{n=1}^{\infty}E^{(n)},$$
 а це означає, що $x_2\in \left(\bigcup_{n=1}^{\infty}E^{(n)}
ight)_{x_1}$. Із того, що $x_2\in \left(\bigcup_{n=1}^{\infty}E^{(n)}
ight)_{x_1}$ аналогічним

чином випливає $x_2 \in \bigcup_{n=1}^{\infty} E_{x_1}^{(n)}$.

Отже, із цих рівностей випливає, що $\left(\bigcup_{n=1}^{\infty}E^{(n)}\right)_{x}\in\mathcal{F}_{2}$, а тому звідси отримаємо $\bigcup_{n=1}^{\infty}E^{(n)}\in\mathcal{H}.$

Нехай $E^{(1)}, E^{(2)} \in \mathcal{H}$, тобто $E^{(1)}_{x_1}, E^{(2)}_{x_1} \in \mathcal{F}_2$. Зауважимо, що виконується така рівність: $E^{(1)}_{x_1} \setminus E^{(2)}_{x_1} = E^{(1)}_{x_1} \setminus E^{(2)}_{x_2}$ $(E^{(1)} \setminus E^{(2)})_{x_1}$ Прокоментую рівність окремо.

Нехай $x_2 \in E_{x_2}^{(1)} \setminus E_{x_1}^{(2)}$, тобто $x_2 \in E_{x_1}^{(1)}$ та $x_2 \notin E_{x_1}^{(2)}$. Звідси $(x_1, x_2) \in E^{(1)}$ та $(x_1, x_2) \notin E^{(2)}$, а далі $(x_1, x_2) \in E^{(1)} \setminus E^{(2)}$. Отримали $x_2 \in (E^{(1)} \setminus E^{(2)})_{x_1}$. Із того, що $x_2 \in (E^{(1)} \setminus E^{(2)})_{x_1}$, аналогічним

чином випливає $x_2 \in E_{x_2}^{(1)} \setminus E_{x_1}^{(2)}$. Отже, із цих рівностей випливає, що $(E^{(1)} \setminus E^{(2)})_{x_1} \in \mathcal{F}_2$, а тому звідси отримаємо $E^{(1)} \setminus E^{(2)} \in \mathcal{H}$. Нарешті, $X \in \mathcal{H}$, тому що $X_{x_1} = X_2 \in \mathcal{F}_2$.

Далі роглянемо функції $f: X = X_1 \times X_2 \to \bar{\mathbb{R}}$. Позначимо через $f_{x_1}(x_2)$ функцію $f(x_1, x_2)$, де аргумент x_1 вважається фіксованим. Аналогічно позначимо $f_{x_2}(x_1)$.

Lemma 6.1.8 Нехай функція $f\colon X\to \bar{\mathbb{R}}$ є $\mathcal{F}_1\otimes\mathcal{F}_2$ -вимірною. Тоді для кожного $x_1\in X_1$ маємо, що $f_{x_1} \in \mathcal{F}_2$ -вимірною; для кожного $x_2 \in X_2$ маємо, що $f_{x_2} \in \mathcal{F}_1$ -вимірною.

Ми доведемо, що для кожного $x_1 \in X_1$ маємо \mathcal{F}_2 -вимірність f_{x_1} , бо друге аналогічно.

$$f_{x_1}^{-1}(B) = \{x_2 \in X_2 \mid f_{x_1}(x_2) \in B\} = \{x_2 \in X_2 \mid (x_1, x_2) \in f^{-1}(B)\} = (f^{-1}(B))_{x_1}$$

Нехай $B \in \mathcal{B}(\bar{\mathbb{R}})$, розглянемо прообраз даного відображення: $f_{x_1}^{-1}(B) = \{x_2 \in X_2 \mid f_{x_1}(x_2) \in B\} = \{x_2 \in X_2 \mid (x_1, x_2) \in f^{-1}(B)\} = (f^{-1}(B))_{x_1}$. Оскільки $f \in \mathcal{F}_1 \times \mathcal{F}_2$ -вимірною, то звідси для множини $B \in \mathcal{B}(\bar{\mathbb{R}})$ матимемо $f^{-1}(B) \in \mathcal{F}_1 \otimes \mathcal{F}_2$. Але за щойно доведеною лемою, для кожного $x_1 \in X_1$ отримаємо $(f^{-1}(B))_{x_1} \in \mathcal{F}_2$.

Добуток мір

Задані $(X_1, \mathcal{F}_1, \mu_1), (X_2, \mathcal{F}_2, \mu_2)$ – два вимірних простори з мірами. Позначимо $X = X_1 \times X_2$. Попередньо визначимо функцію множин на півкільці $\mathcal{F}_1 \times \mathcal{F}_2$:

$$\mu(E_1 \times E_2) = \mu_1(E_1)\mu_2(E_2)$$

Lemma 6.2.1 μ задає міру на $\mathcal{F}_1 \times \mathcal{F}_2$.

 μ вже буде невід'ємною, просто тому що μ_1, μ_2 – міри, а там $\mu_1 \geq 0, \mu_2 \geq 0$. Значить, і $\mu = \mu_1 \mu_2 \geq 0$.

Нехай $E^{(n)} \in \mathcal{F}_1 \times \mathcal{F}_2$ – неперетинні множини, причому $E = \bigsqcup_{n=1}^{\infty} E^{(n)} \in \mathcal{F}_1 \times \mathcal{F}_2$. Отже, ми взагалі

маємо $E^{(n)}=E_1^{(n)}\times E_2^{(n)}$, причому $E_1^{(n)}\in\mathcal{F}_1,\ E_2^{(n)}\in\mathcal{F}_2$, а також $E=E_1\times E_2$. Зауважимо, що справедливе наступне:

 $\mathbb{1}_{E_1 \times E_2}(x_1, x_2) = \mathbb{1}_{E_1}(x_1)\mathbb{1}_{E_2}(x_2).$

Дійсно, нехай $(x_1,x_2)\in E_1\times E_2$, тоді звідси $\mathbbm{1}_{E_1\times E_2}(x_1,x_2)=1$. Із іншого боку, $(x_1,x_2)\in E_1\times E_2\implies$ $x_1 \in E_1, x_2 \in E_2$, a tomy $\mathbb{1}_{E_1}(x_1)\mathbb{1}_{E_2}(x_2) = 1$.

Тепер нехай $(x_1,x_2) \notin E_1 \times E_2$, тоді звідси $\mathbbm{1}_{E_1 \times E_2}(x_1,x_2) = 0$. Із іншого боку, $(x_1,x_2) \notin E_1 \times E_2$ означає три опції: або $x_1 \in E_1, x_2 \notin E_2$, або $x_1 \notin E_1, x_2 \in E_2$, або $x_1 \notin E_1, x_2 \notin E_2$. У всіх трьох випадках маємо $\mathbb{1}_{E_1}(x_1)\mathbb{1}_{E_2}(x_2)=0.$

Також зауважимо, що для неперетинних множин E_n маємо $\mathbb{1}_{\bigsqcup_{n=1}^{\infty} E_n}(x) = \sum_{n=1}^{\infty} \mathbb{1}_{E_n}(x)$.

Разом отримаємо таку рівність

$$\mathbbm{1}_{E_1}\mathbbm{1}_{E_2}=\mathbbm{1}_E=\sum_{n=1}^\infty\mathbbm{1}_{E^{(n)}}=\sum_{n=1}^\infty\mathbbm{1}_{E^{(n)}_1}\mathbbm{1}_{E^{(n)}_2}.$$
 Проінтегруємо рівності по X_1 відносно μ_1 . Це можливо робити в силу вимірності функцій:

$$\int_{X_1} \mathbbm{1}_{E_1} \mathbbm{1}_{E_2} \, d\mu_1 = \int_{X_1} \sum_{n=1}^\infty \mathbbm{1}_{E_1^{(n)}} \mathbbm{1}_{E_2^{(n)}} \, d\mu_1.$$
 Знаючи, що для невід'ємних функціях ряд та інтеграл можна поміняти місцями, отримаємо:

$$\mathbb{1}_{E_2}\mu_1(E_1) = \sum_{n=1}^{\infty} \mathbb{1}_{E_2}^{(n)} \mu_1(E_1^{(n)}).$$

Проінтегруємо рівності по X_2 відносно μ_2 (аналогічним чином це можливо). Такими самимим міркуваннями отримаємо рівність:

$$\mu_2(E_2)\mu_1(E_1) = \sum_{n=1}^{\infty} \mu_1(E_1^{(n)})\mu_2(E_2^{(n)}).$$

Але за визначенням функції множини на $\mathcal{F}_1 \times \mathcal{F}_2$, маємо $\mu(E) = \mu\left(\bigsqcup_{n=1}^\infty E^{(n)}\right) = \sum_{n=1}^\infty \mu(E^{(n)}).$ Отже, довели невід'ємність та σ -адитивність, тож μ – дійсно міра на ${\cal F}$

Отже, маємо μ – легітимна міра на півкільці $\mathcal{F}_1 \times \mathcal{F}_2$. Далі продовжимо її за схемою Каратеодорі – отримаємо міру на σ -алгебрі, яку я позначу за $\mathcal{F}_1 \bar{\otimes} \mathcal{F}_2$.

Нам відомо, що множина вимірних за Каратеодорі містить півкільце, тобто $\mathcal{F}_1 \bar{\otimes} \mathcal{F}_2 \supset \mathcal{F}_1 \times \mathcal{F}_2$. Але оскільки ми маємо σ -алгебру, то тоді звідси $\mathcal{F}_1ar{\otimes}\mathcal{F}_2\supset\mathcal{F}_1\otimes\mathcal{F}_2.$

Definition 6.2.2 Добутком мір μ_1, μ_2 називатимемо продожвення міри μ , яка визначена на $\mathcal{F}_1 \times$ \mathcal{F}_2 як $\mu(E) = \mu(E_1)\mu(E_2)$, за схемою Каратеодорі. Позначення: $\mu_1 \times \mu_2$.

Theorem 6.2.3 Для мір Лебега виконується рівність $\lambda_m \times \lambda_n = \lambda_{m+n}$.

Proof.

ТОДО: розібрати.

Lemma 6.2.4 Задано μ_1, μ_2 – обидва σ -скінченні та повні міри відповідно на $\mathcal{F}_1, \mathcal{F}_2$. Нехай $E \in$ $\mathcal{F} = \mathcal{F}_1 \bar{\otimes} \mathcal{F}_2$. Тоді:

- 1) $E_{x_1} \in \mathcal{F}_2 \pmod{\mu_1}$;
- 2) $f(x_1) = \mu_2(E_{x_1})$ буде \mathcal{F}_1 -вимірною;

3)
$$\int_{Y_1} \mu_2(E_{x_1}) d\mu_1(x_1) = \mu(E)$$

1. Випадок, коли μ_1, μ_2 обидва скінченні міри.

Розглянемо клас \mathcal{H} – набір всіх множин $E \in \mathcal{F}$, для яких виконуються пункти 1),2),3). Ми хочемо довести, що $\mathcal{H} \supset \mathcal{F}$. Для цього розіб'ємо на кілька етапів.

I.
$$\mathcal{H} \supset \mathcal{F}_1 \times \mathcal{F}_2$$
.

Нехай $E \in \mathcal{F}_1 \times \mathcal{F}_2$, тоді, згадавши **Ех. 6.1.6**, маємо $E_{x_1} = \begin{cases} E_2, & x_1 \in E_1 \\ \emptyset, & x_1 \notin E_1 \end{cases}$, але в будь-якому ви-

падку
$$E_{x_1} \in \mathcal{F}_2$$
 – пункт 1 є.
$$\mu_2(E_{x_1}) = \begin{cases} \mu_2(E_2), & x_1 \in E_1 \\ 0, & x_1 \notin E_1 \end{cases} = \mu_2(E_2) \cdot \mathbbm{1}_{E_1}(x_1).$$
 Така функція від x_1 буде \mathcal{F}_1 -вимірною, оскільки $E_1 \in \mathcal{F}_1$, а тому індикатор вимірна — пункт 2 є.
$$\int_{X_1} \mu_2(E_{x_1}) \, d\mu_1(x_1) = \mu_2(E_2) \int_{X_1} \mathbbm{1}_{E_1}(x_1) \, d\mu_1(x_1) = \mu_2(E_2) \mu_1(E_1) = \mu(E)$$
 — пункт 3 є. Разом ми отримали, що множина $E \in \mathcal{H}$.

$$\int_{X_1} \mu_2(E_{x_1}) \, d\mu_1(x_1) = \mu_2(E_2) \int_{X_1} \mathbb{1}_{E_1}(x_1) \, d\mu_1(x_1) = \mu_2(E_2) \mu_1(E_1) = \mu(E) - \text{пункт 3 } \varepsilon$$

II.
$$\mathcal{H} \supset k(\mathcal{F}_1 \times \mathcal{F}_2)$$
.

Нехай $E \in k(\mathcal{F}_1 \times \mathcal{F}_2)$. Оскільки $\mathcal{F}_1 \times \mathcal{F}_2$ – це півкільце, то згадаємо **Th. 1.2.6**, тоді $E = \bigsqcup E^{(k)}$,

причому $E^{(k)} \in \mathcal{F}_1 \times \mathcal{F}_2$. Ми вже доводили, що $E_{x_1} = \left(\bigsqcup_{k=1}^n E^{(k)}\right) = \bigsqcup_{k=1}^n E^{(k)}_{x_1}$. За кроком I, всі

 $E_{x_1}^{(k)} \in \mathcal{F}_2$, а тому звідси $E_{x_1} \in \mathcal{F}_2$ – пункт 1 є.

 $\mu_2(E_{x_1}) = \sum_{k=1}^n \mu_2\left(E_{x_1}^{(k)}\right)$, але в силу крока I, всі $\mu_2\left(E_{x_1}^{(k)}\right)$ є \mathcal{F}_1 -вимірними, тому $\mu_2(E_{x_1})$ також \mathcal{F}_1 -вимірна як сума — пункт 2 є.

$$\int_{X_1} \mu_2(E_{x_1}) \, d\mu_1(x_1) = \sum_{k=1}^n \int_{X_1} \mu_2\left(E_{x_1}^{(k)}\right) \, d\mu_1(x_1) \stackrel{\text{крок I}}{=} \sum_{k=1}^n \mu\left(E^{(k)}\right) = \mu(E) - \text{пункт 3 } \varepsilon.$$

III. \mathcal{H} — монотонний клас.

Нехай $E^{(n)} \in \mathcal{H}$, причому вони зростають та $E = \bigcup_{n=1}^{\infty} E^{(n)}$. Хочемо $E \in \mathcal{H}$.

Маємо
$$E_{x_1} = \left(\bigcup_{n=1}^{\infty} E^{(n)}\right)_{x_1} = \bigcup_{n=1}^{\infty} E^{(n)}_{x_1} \in \mathcal{F}_2$$
, просто тому що $E^{(n)}_{x_1} \in \mathcal{F}_2$ – пункт 1 є.

Маємо $E_{x_1} = \left(\bigcup_{n=1}^{\infty} E^{(n)}\right)_{x_1} = \bigcup_{n=1}^{\infty} E_{x_1}^{(n)} \in \mathcal{F}_2$, просто тому що $E_{x_1}^{(n)} \in \mathcal{F}_2$ – пункт 1 є. $\mu_2(E_{x_1}) = \lim_{n \to \infty} \mu_2\left(E_{x_1}^{(n)}\right)$ за неперервністю міри знизу. Оскільки $\mu_2\left(E_{x_1}^{(n)}\right)$ є \mathcal{F}_1 -вимірною, то $\mu_2(E_{x_1})$ також \mathcal{F}_1 -вимірна як границя – пункт 2 є. $\int_{X_1} \mu_2(E_{x_1}) \, d\mu_1(x_1) = \lim_{n \to \infty} \int_{X_1} \mu_2\left(E_{x_1}^{(n)}\right) = \lim_{n \to \infty} \mu(E^{(n)}) = \mu(E)$. Перша рівність виконана, оскіль-

$$\int_{X_1} \mu_2(E_{x_1}) \, d\mu_1(x_1) = \lim_{n \to \infty} \int_{X_1} \mu_2\left(E_{x_1}^{(n)}\right) = \lim_{n \to \infty} \mu(E^{(n)}) = \mu(E).$$
 Перша рівність виконана, оскільки $\mu_2\left(E_{x_1}^{(n)}\right)$ формує невід'ємну монотонну послідовність (бо в нас $E_{x_1}^{(n)}$ зростає як множина), а

далі Тр. 4.4.1. Остання рівність виконана в силу неперервності міри знизу – пукнт 3 є. Власне, довели $E \in \mathcal{H}$.

Аналогічно якщо $E^{(n)} \in \mathcal{H}$, причому вони тепер спадають та $E = \bigcup_{n=0}^{\infty} E^{(n)}$, то звідси $E \in \mathcal{H}$. Єдине там використовується неперервність міри зверху, але міри в нас скінченні, тому все нормально.

IV. $\mathcal{H} \supset \sigma k(\mathcal{F}_1 \times \mathcal{F}_2)$.

Дійсно, оскільки $\mathcal{H}\supset k(\mathcal{F}_1 imes\mathcal{F}_2)$ за кроком II, а також \mathcal{H} – монотонний клас за кроком III, то звідси $\mathcal{H} \supset mk(\mathcal{F}_1 \times \mathcal{F}_2)$. За **Th. 1.2.8**, маємо $\mathcal{H} \supset \sigma k(k(\mathcal{F}_1 \times \mathcal{F}_2)) = \sigma k(\mathcal{F}_1 \times \mathcal{F}_2)$. Думаю, останню рівність пояснювати не варто, тут зрозуміло.

$V. \mathcal{H} \supset \mathcal{F}_1 \bar{\otimes} \mathcal{F}_2$ (останній крок).

Спочатку доведемо, що для кожного $E \in \mathcal{F}$ ми можемо підібрати таку множину $A \in \sigma k(\mathcal{F}_1 \times \mathcal{F}_2)$, для якої $E \subset A$, а також $\mu(A \setminus E) = 0$.

Власне, нехай
$$E \in \mathcal{F}$$
, тоді тут $\mu(E) = \inf_{\substack{E \subset \bigcup_{n=1}^{\infty} E^{(n)} \\ E^{(n)} \in \mathcal{F}_1 \times \mathcal{F}_2}} \sum_{n=1}^{\infty} \mu\left(E^{(n)}\right)$. Для кожного $k \geq 1$ ми можемо

підібрати
$$E \subset \bigcup_{n=1}^{\infty} E^{(nk)}$$
, для яких $\sum_{n=1}^{\infty} \mu\left(E^{(nk)}\right) < \mu(E) + \frac{1}{k}$.

Оберемо множину $A=\bigcap_{k=1}^{\infty}\bigcup_{n=1}^{\infty}E^{(nk)},$ причому в цьому випадку дійсно $A\in\sigma k(\mathcal{F}_1\times\mathcal{F}_2).$ Також зрозуміло, що $E\subset A$, якщо перетнути всі вкладення вище по k. Нарешті,

$$\mu\left(A\setminus E\right) = \mu(A) - \mu(E) \le \sum_{n=1}^{\infty} \mu\left(E^{(nk)}\right) - \mu(E) < \frac{1}{k}.$$

При $k \to \infty$ отримаємо бажану рівність $\mu(A \setminus E) = 0$.

Нехай тепер $E \in \mathcal{F}$, але поки обмежимось $\mu(E) = 0$. Ми вже знаємо, що є множина $A \in \sigma k(\mathcal{F}_1 \times \mathcal{F}_2)$, для якої $A\supset E$ (ясно, що й $A_{x_1}\supset E_{x_1}$) та $\mu(A\setminus E)=0$. Але в наших кондиціях $\mu(A)=0$. У нас є бонус в тому, що $A \in \mathcal{H}$ за кроком IV, а тому виконуються пункти 1),2),3) з леми. Зокрема $0=\mu(A)=\int_{X_1}\mu_2(A_{x_1})\,d\mu_1(x_1)$. Звідси випливає, що $\mu_2(A_{x_1})=0\pmod{\mu_1}$. Тоді, маючи $A_{x_1}\in\mathcal{F}_2$, умову $E_{x_1} \subset A_{x_1}$ та умову, що μ_1 повна міра, отримаємо $E_{x_1} \in \mathcal{F}_2 \pmod{\mu_1}$ – пункт 1 є. Більше того, за тим же вкладенням, $\mu(E_{x_1}) = 0 \pmod{\mu_1}$. Зрозуміло, що $0 \in \mathcal{F}_1$ -вимірною, а в силу повноти μ_1 , отримаємо, що $\mu(E_{x_1})$ також \mathcal{F}_1 -вимірна — пункт 2 є. $\int_{X_*} \mu_2\left(E_{x_1}\right) \, d\mu_1(x_1) = 0 = \mu(E) - \text{пункт 3 є.}$

Нарешті, нехай $E \in \mathcal{F}$ (без додаткових обмежень). Ми вже знаємо, що є множина $A \in \sigma k(\mathcal{F}_1 \times \mathcal{F}_2)$, для якої $A \supset E$ та $\mu(A \setminus E) = 0$. Ми зведемо до попереднього кейсу.

Зауважимо, що $E=A\setminus (A\setminus E)$. Але тоді зрозуміло, що $E_{x_1}=A_{x_1}\setminus (A\setminus E)_{x_1}$. Ми уже маємо $A_{x_1}\in \mathcal{F}_2$, але також $(A\setminus E)x_1\in \mathcal{F}_2\pmod{\mu_1}$, просто тому що $\mu(A\setminus E)=0$. Разом отримаємо $E\in \mathcal{F}_2\pmod{\mu_1}$ – пункт 1 є.

 $\mu_2\left(E_{x_1}\right) = \mu_2\left(A_{x_1}\right) - \mu_2\left(A \setminus E\right)_{x_1}$). Праворуч \mathcal{F}_1 -вимірна, тоді ліворуч буде теж \mathcal{F}_1 -вимірність в силу того, що μ_1 – повна міра – пункт 2 є.

$$\int_{X_1} \mu_2\left(E_{x_1}\right) \, d\mu_1(x_1) = \int_{X_1} \mu_2\left(A_{x_1}\right) \, d\mu_1(x_1) - \int_{X_1} \mu_2\left((A \setminus E)_{x_1}\right) \, d\mu_1(x_1) = \mu(A) - \mu(A \setminus E) = \mu(E) - \mu(E) - \mu(E) - \mu(E) = \mu(E) - \mu(E) - \mu(E) - \mu(E) - \mu(E) = \mu(E) - \mu(E)$$

Тим самим ми (нарешті) завершили крок IV та довели лему для першого випадку.

2. Випадок, коли μ_1, μ_2 обидва σ -скінченні міри.

Значить, за умовою, є множини $X_1^{(n)} \in \mathcal{F}_1$, для яких $\bigcup_{n=1}^{\infty} X_1^{(n)} = X_1$ та $\mu_1\left(X_1^{(n)}\right) < +\infty$; є множини

$$X_2^{(n)} \in \mathcal{F}_2$$
, для яких $\bigcup_{n=1}^{\infty} X_2^{(n)} = X_2$ та $\mu_2\left(X_2^{(n)}\right) < +\infty$.

Перейдемо до множин
$$Y_1^{(n)}=\bigcup_{k=1}^n X_1^{(n)}$$
 та $Y_2^{(n)}=\bigcup_{k=1}^n X_2^{(n)}$. Слід зазначити, що на $Y_1^{(n)}\cap \mathcal{F}_1$ та

 $Y_2^{(n)} \cap \mathcal{F}_2$ міри μ_1, μ_2 є скінченними – ми звели до першого випадку, а для нього лема виконана. Нехай $E \in \mathcal{F}$. Зауважимо, що $Y^{(n)} \cap E$ зростає до E. На множині $Y^{(n)} \cap E$ виконані вже 1),2),3).

$$E_{x_1} = \bigcup_{n=1}^{\infty} (Y^{(n)} \cap E)_{x_1} \in \mathcal{F}_2 \pmod{\mu_1}$$
 – пункт 1 є.

 $\mu_2(E_{x_1}) = \lim_{n \to \infty} \mu_2\left(\left(Y^{(n)} \cap E\right)_{x_1}\right)$ за неперервністю міри знизу. Також $\mu_2\left(\left(Y^{(n)} \cap E\right)_{x_1}\right)$ уже \mathcal{F}_1 -вимірна, а тому звідси $\mu_2(E_{x_1})$ також \mathcal{F}_1 -вимірна як границя – пункт 2 є.

$$\int_{Y_1^{(n)}} \mu_2 \left(\left(Y^{(n)} \cap E \right)_{x_1} \right) d\mu_1(x_1) = \mu \left(Y^{(n)} \cap E \right) - \text{це мені вже відомо. Але перепишемо так:}$$

$$\int_{X_1} \mu_2 \left(\left(Y^{(n)} \cap E \right)_{x_1} \right) \mathbb{1}_{Y_1^{(n)}}(x_1) d\mu_1(x_1) = \mu \left(Y^{(n)} \cap E \right).$$
 Спрямувавши $n \to \infty$, отримаємо
$$\int_{X_1} \mu_2(E_{x_1}) d\mu_1(x_1) = \mu(E).$$

Права частина — неперервність міри знизу. Ліва частина через **Th. 4.4.1**, бо в нас послідовність $\mu_2\left(\left(Y^{(n)}\cap E\right)_{x_1}\right)\mathbb{1}_{Y^{(n)}}$ є всі \mathcal{F}_1 -вимірними, а також зростає до $\mu_2(E_{x_1})$ — крок 3 є.

6.3 Теорема Тонеллі та Фубіні

Задані $(X_1, \mathcal{F}_1, \mu_1), \ (X_2, \mathcal{F}_2, \mu_2)$ – два вимірних простори з мірами. Позначимо $X = X_1 \times X_2$.

Theorem 6.3.1 Теорема Тонеллі

Нехай μ_1, μ_2 – міри, що повні та σ -скінченні. Задано функцію $f: X \to \mathbb{R}$ – невід'ємна та $\mathcal{F} = \mathcal{F}_1 \bar{\otimes} \mathcal{F}_2$ -вимірна. Відомо, що:

1) f_{x_1} буде \mathcal{F}_2 -вимірною (mod μ_1);

2)
$$g(x_1) = \int_{X_2} f_{x_1}(x_2) d\mu_2(x_2)$$
 буде \mathcal{F}_1 -вимірною;

3)
$$\int_X f d\mu = \int_{X_1} d\mu_1(x_1) \int_{X_2} f_{x_1}(x_2) d\mu_2(x_2).$$

Remark 6.3.2 Функція $g(x_1)$, можливо, не є визначеною на множині міри нуль в силу того, що перша умова працює майже скрізь відносно μ_1 , але в силу повноти міри ми можемо взяти еквівалентну їй функцію, де визначено все, яка не впливає ніяк на вимірність.

Proof.

I. Випадок функції $\mathbb{1}_B$, де множина $B \in \mathcal{F}$.

Але оскільки $B \in \mathcal{F}$, то вже автоматично виконуються щойно доведена лема.

Зафіксуємо точку $x_1 \in X_1$, тоді звідси отримаємо переріз функції:

Отримана фукція
$$\mathcal{F}_2$$
-вимірна (mod μ_1), тому що $B_{x_1} \in \mathcal{F}_2$ (mod μ_1) (п. 1 леми) – пункт 1 є.

$$\int_{X_2} (\mathbb{1}_B)_{x_1}(x_2) \, d\mu_2(x_2) = \int_{X_2} \mathbb{1}_{B_{x_1}}(x_2) \, d\mu_2(x_2) = \mu_2(B_{x_1})$$

$$J_{X_2}$$
 Цей інтеграл буде \mathcal{F}_1 -вимірною, бо $\mu_2(B_{x_1})$ буде \mathcal{F}_1 -вимірною (п. 2 леми) — пункт 2 є.
$$\int_X \mathbbm{1}_B \, d\mu = \mu(B) \stackrel{\text{п. 3-меми}}{=} \int_{X_1} \mu_2(B_{x_1}) \, d\mu_1(x_1) = \int_{X_1} \int_{X_2} (\mathbbm{1}_B)_{x_1}(x_2) \, d\mu_2(x_2) \, d\mu_1(x_1)$$
— пункт 3 є.

II. Випадок функції p – проста невід'ємна та \mathcal{F} -вимірна.

Тобто мається $p(x) = \sum_{k=1}^{n} a_k \mathbb{1}_{A^{(k)}}(x)$, причому всі $A^{(k)} \in \mathcal{F}$. Зафіксуємо $x_1 \in X_1$, тоді

$$p_{x_1}(x_2) = p(x_1, x_2) = \sum_{k=1}^{n} a_k (\mathbb{1}_{A^{(k)}})_{x_1} (x_2).$$

Ми вже знаємо, що кожний індикатор, за кроком I, буде \mathcal{F}_2 -вимірною $\pmod{\mu_1}$, а тому звідси сама p_{x_1} також \mathcal{F}_2 -вимірна (mod μ_1) – пункт 1 є.

$$\int_{X_2} p_{x_1}(x_2) \, d\mu_2(x_2) = \sum_{k=1}^n a_k \int_{X_2} \left(\mathbbm{1}_{A^{(k)}}\right)_{x_1}(x_2) \, d\mu_2(x_2).$$
 Даний інтеграл буде \mathcal{F}_1 -вимірною як сума \mathcal{F}_1 -вимірних з крока І – пункт $2 \in \mathbb{R}$

$$\int_{X} p \, d\mu = \sum_{k=1}^{n} a_{k} \mu \left(A^{(k)} \right) \stackrel{\text{крок I}}{=} \sum_{k=1}^{n} a_{k} \int_{X_{1}} d\mu_{1}(x_{1}) \int_{X_{2}} \left(\mathbb{1}_{A^{(k)}} \right)_{x_{1}}(x_{2}) \, d\mu_{2}(x_{2}) = 0$$

$$= \int_{X_1} d\mu_1(x_1) \int_{X_2} \sum_{k=1}^n a_k \left(\mathbbm{1}_{A^{(k)}}\right)_{x_1}(x_2) \, d\mu_2(x_2) = \int_{X_1} d\mu_1(x_1) \int_{X_2} p_{x_1}(x_2) \, d\mu_2(x_2) - \text{пункт 3 } \varepsilon.$$

III. Випадок функції f — невід'ємна та \mathcal{F} -вимірна. Маємо послідовність $\{p_n\}$ — прості невід'ємні та \mathcal{F} -вимірні, де $p_n \to f$. $f_{x_1} = \lim_{n \to \infty} (p_n)_{x_1}$ при фіксованому $x_1 \in X_1$. За кроком II, всі $(p_n)_{x_1}$ будуть \mathcal{F}_2 -вимірною $\pmod{\mu_1}$, а тому й f буде \mathcal{F}_2 -вимірною $\pmod{\mu_1}$ як ліміт – пункт 1 ϵ .

$$\int_{X_2} f_{x_1}(x_2) \, d\mu_2(x_2) = \lim_{n \to \infty} \int_{X_2} (p_n)_{x_1}(x_2) \, d\mu_2(x_2) - \mathcal{F}_1$$
-вимірна як границя за кроком ІІ - пункт 2 є.

$$\int_{X_2} f_{x_1}(x_2) \, d\mu_2(x_2) = \lim_{n \to \infty} \int_{X_2} (p_n)_{x_1}(x_2) \, d\mu_2(x_2) - \mathcal{F}_1$$
-вимірна як границя за кроком ІІ - пункт 2 є.
$$\int_X f \, d\mu = \lim_{n \to \infty} \int_X p_n \, d\lambda \stackrel{\text{крок II}}{=} \lim_{n \to \infty} \int_{X_1} d\mu_1(x_1) \int_{X_2} (p_n)_{x_1}(x_2) \, d\mu_2(x_2) = \int_{X_1} d\mu_1(x_1) \int_{X_2} (p_n)_{x_1}(x_2) \, d\mu_2(x_2).$$
 Остання рівність виконана спочатку за **Th. 4.4.1**, а далі за **Th. 4.2.1** – пункт 3 є.

Theorem 6.3.3 Теорема Фубіні

Нехай μ_1, μ_2 — міри, що повні та σ -скінченні. Задано функцію $f: X \to \bar{\mathbb{R}}$, причому $f \in L(X, \mu)$. Відомо, що:

1)
$$f_{x_1} \in L(X_2, \mu_2) \pmod{\mu_1}$$
;

2)
$$g(x_1) = \int_{X_2} f_{x_1}(x_2) d\mu_2(x_2) \in L(X_1, \mu_1);$$

3)
$$\int_X f d\mu = \int_{X_1} d\mu_1(x_1) \int_{X_2} f_{x_1}(x_2) d\mu_2(x_2).$$

I. Випадок функції f – невід'ємна.

Уже виконується для неї теорема Тонеллі, але ще нічого невідомо про інтегрованіть, що в Фубіні.

$$\int_X f \, d\mu = \int_{X_1} d\mu_1(x_1) \int_{X_2} f_{x_1}(x_2) \, d\mu_2(x_2)$$
 за Тонеллі. Але оскільки $f \in L(X, \lambda)$, то звідси маємо
$$\int_{X_2} f_{x_1}(x_2) \, d\mu_2(x_2) < +\infty \pmod{\mu_1},$$
 а це в точності $f_{x_1}(x_2) \in L(X_2, \mu_2) \pmod{\mu_1}$ – пункт 1 є.

Також $g(x_1) \in L(X_1, \mu_1)$ за щойно отриманим – пункт 2 ϵ .

Пункт 3 випливає з теореми Тонеллі, який ми вже розписували тут.

II. Випадок функції f – довільної.

Маємо $f(x) = f_{+}(x) - f_{-}(x)$, кожна з яких невід'ємна, а тому працює крок І.

При фіксованому x_1 маємо $f_{x_1}(x_2)=(f_+)_{x_1}(x_2)-(f_-)_{x_1}(x_2)$. Ця рівність автоматично доводить пункти 1), 2). Щодо 3),

$$\begin{split} &\int_{X} f \, d\mu = \int_{X} f_{+} \, d\mu - \int_{X} f_{-} \, d\mu \overset{\text{RPOK I}}{=} \\ &= \int_{X_{1}} d\mu_{1}(x_{1}) \int_{X_{2}} (f_{+})_{x_{1}}(x_{2}) \, d\mu_{2}(x_{2}) - \int_{X_{1}} d\mu_{1}(x_{1}) \int_{X_{2}} (f_{-})_{x_{1}}(x_{2}) \, d\mu_{2}(x_{2}) = \\ &= \int_{X_{1}} d\mu_{1}(x_{1}) \left(\int_{X_{2}} (f_{+})_{x_{1}}(x_{2}) \, d\mu_{2}(x_{2}) - \int_{X_{2}} (f_{-})_{x_{1}}(x_{2}) \, d\mu_{2}(x_{2}) \right) = \int_{X_{1}} d\mu_{1}(x_{1}) \int_{X_{2}} f_{x_{1}}(x_{2}) \, d\mu_{2}(x_{2}). \end{split}$$

7 Простір L_p

7.1Основні нерівності

Lemma 7.1.1 Нерівність Юнга

Задані числа p,q>1, причому $\frac{1}{p}+\frac{1}{q}=1$. Тода для всіх $a,b\geq 0$ виконується нерівність $ab\leq \frac{a^p}{p}+\frac{b^q}{q}$.

Proof.

Якщо a=0 або b=0, то нерівність цілком зрозуміла. Тому надалі a,b>0. Розглянемо функцію $f(a)=ab-\frac{a^p}{p}-\frac{b^q}{q}$ та дослідимо її. Обчислимо похідну $f'(a) = b - a^{p-1}.$

Зауважимо, що в точці
$$a=b^{\frac{1}{p-1}}$$
 досягається найменше значення. Тож
$$\min_{a>0} f(a)=f\left(b^{\frac{1}{p-1}}\right)=b^{\frac{1}{p-1}}b-\frac{b^{\frac{p}{p-1}}}{p}-\frac{b^q}{q}=b^q-\frac{b^q}{p}-\frac{b^q}{q}=b^q\left(1-\frac{1}{p}-\frac{1}{q}\right)=0.$$
 Таким чином, $\forall a>0: f(a)\geq 0$, звідси випливає нерівніть $ab\leq \frac{a^p}{p}+\frac{b^q}{q}$.

Theorem 7.1.2 Нерівність Гьольдера

Задано (X,\mathcal{F},λ) – вимірний простір, функції $f,g\colon X\to \bar{\mathbb{R}}$ – \mathcal{F} -вимірні та p,q>1 такі, що $\frac{1}{p}+\frac{1}{q}=1.$

Тоді
$$\int_X |fg|\,d\lambda \leq \left(\int_X |f|^p\,d\lambda\right)^{\frac{1}{p}} \left(\int_X |f|^q\,d\lambda\right)^{\frac{1}{q}}$$

Proof.

Припустимо, що $\left(\int_{Y}|f|^{p}d\lambda\right)^{\frac{1}{p}}=0$, тоді звідси $|f|=0\pmod{\lambda}$. У такому разі нерівність спрацьовує. Аналогічно все буде при $\left(\int_X |g|^q\,d\lambda\right)^{\frac{1}{q}}=0.$

Припустимо, що $\left(\int_X |f|^p d\lambda\right)^{\frac{1}{p}} = +\infty$. Тоді права частина нерівності буде точно $+\infty$ (бо випадок, коли один із інтегралів нуль, був розглянутий). Отже, нерівність автоматом виконана. Аналогічно все буде при $\left(\int_{Y} |g|^{q} d\lambda\right)^{\frac{1}{q}} = +\infty.$

Тепер ми можемо зробити еквівалентні перетворення. Щоб довести Гьольдера, ми доведемо, що

$$\frac{\displaystyle\int_X |f||g|\,d\lambda}{\displaystyle\left(\int_X |f|^p\,d\lambda\right)^{\frac{1}{p}} \left(\int_X |g|^q\,d\lambda\right)^{\frac{1}{q}}} \leq 1 \ (\text{по суті, ми праву частині нерівності поділили}). Оскільки інте-$$

го ми їх внесемо всередину інтеграла чисельника як множними.

$$\int_X \frac{|f|}{\left(\int_X |f|^p \, d\lambda\right)^{\frac{1}{p}}} \frac{|g|}{\left(\int_X |g|^q \, d\lambda\right)^{\frac{1}{q}}} \, d\lambda \leq 1.$$
 Проте ця нерівність дійсно буде виконаною. Дійсно

$$\frac{|f|}{\left(\int_{X}|f|^{p}\,d\lambda\right)^{\frac{1}{p}}}\frac{|g|}{\left(\int_{X}|g|^{q}\,d\lambda\right)^{\frac{1}{q}}}\overset{\text{нер-ть Юнга}}{\leq}\frac{\left(\frac{|f|}{\left(\int_{X}|f|^{p}\,d\lambda\right)^{\frac{1}{p}}}\right)^{p}}{p}+\frac{\left(\frac{|g|}{\left(\int_{X}|g|^{q}\,d\lambda\right)^{\frac{1}{q}}}\right)^{q}}{q}=\frac{1}{p}\frac{|f|^{p}}{\int_{Y}|f|^{p}\,d\lambda}+\frac{1}{q}\frac{|g|^{q}}{\int_{Y}|g|^{q}\,d\lambda}$$

Тепер проінтегруємо обидві частини:

$$\int_X \frac{|f|}{\left(\int_X |f|^p \, d\lambda\right)^{\frac{1}{p}}} \frac{|g|}{\left(\int_X |g|^q \, d\lambda\right)^{\frac{1}{q}}} \, d\lambda \le \frac{1}{p} + \frac{1}{q} = 1.$$

Theorem 7.1.3 Нерівність Мінковського Задано $(X, \mathcal{F}, \lambda)$ — вимірний простір, функції $f, g \colon X \to \mathbb{R}$ — \mathcal{F} -вимірні та $p \ge 1$. Тоді $\left(\int_X |f+g|^p \, d\lambda\right)^{\frac{1}{p}} \le \left(\int_X |f|^p \, d\lambda\right)^{\frac{1}{p}} + \left(\int_X |g|^p \, d\lambda\right)^{\frac{1}{p}}.$

$$\left(\int_X |f+g|^p \, d\lambda\right)^{\frac{1}{p}} \leq \left(\int_X |f|^p \, d\lambda\right)^{\frac{1}{p}} + \left(\int_X |g|^p \, d\lambda\right)^{\frac{1}{p}}.$$

Розглянемо випадок p=1. Тоді нерівність випливає з нерівності трикутника $|f+g| \leq |f| + |g|$. Тепер випадок p > 1, тоді оберемо q > 1, щоб була рівність $\frac{1}{n} + \frac{1}{q} = 1$.

Припустимо, що $\left(\int_{\mathbb{T}} |f+g|^p d\lambda\right)^{\frac{1}{p}} = 0$. Тоді нерівність автоматично виконана.

Припустимо, що $\left(\int_Y |f+g|^p d\lambda\right)^{\frac{\bar{p}}{p}} = +\infty$. Скориставшись нерівністю Єнсена для функції x^p ,

p>1, отримаємо $\left(\frac{|f+g|}{2}\right)^p \leq \left(\frac{|f|+|g|}{2}\right)^p$ нер-ть Єнсена $\frac{|f|^p+|g|^p}{2}$. Після інтегрування всіх частин

нерівностей, отримаємо, що хоча б один доданок у правій нерівності має бути $+\infty$. Тож нерівність

Для всіх інших випадків буде інше доведення.

$$\int_{X} |f+g|^{p} d\lambda = \int_{X} |f+g||f+g|^{p-1} d\lambda \leq \int_{X} |f||f+g|^{p-1} d\lambda + \int_{X} |g||f+g|^{p-1} d\lambda \xrightarrow{\text{нер-ть Гьольдера}} \leq \left(\int_{X} |f|^{p} d\lambda \right)^{\frac{1}{p}} \left(\int_{X} |f+g|^{(p-1)q} d\lambda \right)^{\frac{1}{q}} + \left(\int_{X} |g|^{p} d\lambda \right)^{\frac{1}{p}} \left(\int_{X} |f+g|^{(p-1)q} d\lambda \right)^{\frac{1}{q}}.$$

Зауважимо, що (p-1)q=p, зважаючи на рівність $\frac{1}{p}+\frac{1}{q}=1$. Далі поділимо обидві частини

нерівності на $\left(\int_{Y}|f+g|^{p}\,d\lambda\right)^{\frac{1}{q}}$ (саме через це я на початку розбивав на випадки). Отримаємо

$$\left(\int_X |f+g|^p d\lambda\right)^{\frac{1}{1-\frac{1}{q}}} = \left(\int_X |f+g|^p d\lambda\right)^{\frac{1}{p}} \le \left(\int_X |f|^p d\lambda\right)^{\frac{1}{p}} + \left(\int_X |g|^p d\lambda\right)^{\frac{1}{p}}.$$

Lemma 7.1.4 Нерівність Чебишова

Задано (X, \mathbb{F}, λ) – вимірний простір та функція $f \colon X \to \mathbb{R}$ – \mathcal{F} -вимірна. Тоді $\forall \varepsilon > 0$:

$$\lambda\left(\left\{x\in X:|f(x)|\geq\varepsilon\right\}\right)\leq\frac{1}{\varepsilon}\int_{X}|f|\,d\lambda.$$

$$\int_X |f| \, d\lambda \ge \int_{\{|f| \ge \varepsilon\}} |f| \, d\lambda \ge \int_{\{|f| \ge \varepsilon\}} \varepsilon \, d\lambda = \varepsilon \lambda \{x \in X : |f(x)| \ge \varepsilon\}.$$

Конструкція простору L_n

Задано $(X, \mathcal{F}, \lambda)$ – вимірний простір та число $1 \le p < \infty$. Розглянемо множину

$$ilde{L}_p(X,\lambda) = \{f \colon X o ar{\mathbb{R}} \mid f - \mathcal{F} - ext{вимірна}, |f|^p \in L(X,\lambda)\}$$

Установимо на даній множині відношення еквівалентності:

$$f \sim g \iff f = g \pmod{\lambda}$$

Отримаємо нове означення:

Definition 7.2.1 Простором $L_p = L_p(X, \lambda)$ при $1 \le p < \infty$ називають множину класів еквівалентності, що отримана з $\tilde{L}_p(X,\lambda)$ за допомогою встановленого відношення еквівалентності.

У класі еквівалентності лежать майже одні й ті самі функції. Такі функції завжди мають (якби мовити) дуже схожі властивості з точки зору теорії міри. Значить, ці функції можна вважати однаковими. Тому, поступаючись формальністю, ми будемо говорити, що L_p – це просто набір

Proposition 7.2.2 $(L_p,\|\cdot\|_p)$, де число $1 \le p < +\infty$ – дійсний нормований простір, причому норма

$$||f||_p = \left(\int_X |f|^p \, d\lambda\right)^{\frac{1}{p}}$$

Remark 7.2.3 Зазначимо, що L_p – векторний простір над $\mathbb R$. Дійсно, маємо $f,g\in L_p$, тоді звідси $\|f\|_p,\|g\|_p<+\infty$. Значить, за нерівністю Мінковського, $\|f+g\|_p<+\infty$, тож $f+g\in L_p$. Зрозуміло також, що $\|\alpha f\|_p < +\infty, \alpha \in \mathbb{R}$, тож $\alpha f \in L_p$.

Нам треба просто перевірити властивості норми.

1) $||f||_p \ge 0$ – зрозуміло, бо під інтегралом стоїть невід'ємна функція $|f|^p$. Далі зауважимо, що при $||f||_p = 0$ маємо $f = 0 \pmod{\lambda}$, тож f = 0 як елемент L_p .

2)
$$\|\alpha f\|_p = \left(\int_X |\alpha f|^p d\lambda\right)^{\frac{1}{p}} = |\alpha| \left(\int_X |f|^p d\lambda\right)^{\frac{1}{p}} = |\alpha| \|f\|_p.$$

3) $||f+g||_p \le ||f||_p + ||g||_p$ – це просто нерівність Мінковського в більш компактному вигляді.

Отже, у нас дійсно встановлений нормований простір.

Proposition 7.2.4 Установлений вище нормований простір $(L_p, \|\cdot\|_p)$ – банахів.

Proof.

Інакше кажучи, нам треба довести повноту. Нехай $\{f_n, n \geq 1\} \subset L_p$ — фундаментальна послідовність, тобто $||f_n - f_m||_p \to 0$. За нерівністю Чебишова, маємо таку оцінку:

$$\lambda\left(\left\{x \in X : |f_n(x) - f_m(x)|^p \ge \varepsilon\right\}\right) \le \frac{1}{\varepsilon} \int_X |f_n - f_m|^p \, d\lambda = \frac{1}{\varepsilon} \|f_n - f_m\|_p^p \to 0.$$

$$\lambda\left(\left\{x \in X : |f_n(x) - f_m(x)| \ge \varepsilon^{\frac{1}{p}}\right\}\right) \le \frac{1}{\varepsilon^{\frac{1}{p}}} \|f_n - f_m\|_p^p \to 0.$$

Отже, $\{f_n\}$ – фундаментальна послідовність за мірою. Значить, за **Th. 3.7.5**, існує підпослідовність $\{f_{n_k}\}$, для якої $f_{n_k} \to f \pmod{\lambda}$, де функція $f \in \mathcal{F}$ -вимірною. Наша мета буде довести, що $||f_n - f||_p \to 0$ при $n \to \infty$, тобто послідовність $\{f_n\} \subset L_p$ буде збігатися за нормою до функції f,

причому треба окремо показати, що $f \in L_p$. Нехай $\varepsilon > 0$. Із фундаментальності $\{f_{n_k}\}$ відносно норми, $\exists k_0 : \forall k, l \geq k_0 : \|f_{n_k} - f_{n_l}\|_p < \varepsilon \iff$ $\iff \int_{Y} |f_{n_k} - f_{n_l}|^p d\lambda < \varepsilon^p$. За лемою Фату, отримаємо наступне при $k \ge k_0$:

$$\int_X |f_{n_k} - f| \, d\lambda = \int_X \lim_{l \to \infty} |f_{n_k} - f_{n_l}|^p \, d\lambda \leq \underline{\lim}_{l \to \infty} \int_X |f_{n_k} - f_{n_l}|^p \, d\lambda \leq \varepsilon^p < +\infty.$$
 Отже, звідси $f_{n_k} - f \in L_p$. Оскільки L_p – векторний простір, то звідси $f \in L_p$.

Поки розписували нерівності, отримали $\int_{Y} |f_{n_k} - f|^p d\lambda \le \varepsilon^p \iff \|f_{n_k} - f\|_p \le \varepsilon$, причому $\forall k \ge k_0$.

Отже, $||f_{n_k} - f||_p \to 0, k \to \infty$. Оскільки $\{f_n\}$ – фундаментальна та $\{f_{n_k}\}$ – збіжна до f, то $\{f_n\}$ – теж збіжна до f.

Ми довели, що $(L_p, \|\cdot\|_p)$ – справді банахів.

Щільні підмножини L_p 7.3

Theorem 7.3.1 Множина простих функцій – щільна підмножина простору L_p .

Тобто для всіх $f \in L_p$ та $\varepsilon > 0$ існує проста функція $q \in L_p$, для якої $||f - q||_p < \varepsilon$.

Proof.

I. Випадок f > 0.

Тоді існують прості невід'ємні та вимірні функції $\{q_n\}$ так, що монотонним чином $q_n \to f$.

$$0 \le f - q_n \le f \implies |f - q_n|^p \le |f|^p \qquad \lim_{n \to \infty} |f(x) - q_n(x)|^p = 0$$

 $0 \le f - q_n \le f \implies |f - q_n|^p \le |f|^p \qquad \lim_{n \to \infty} |f(x) - q_n(x)|^p = 0.$ За теоремою Лебега про мажоровану збіжність, взявши мажоранту $|f|^p \in L(X, \lambda)$, отримаємо, що $\int_X |f-q_n|^p \, d\lambda \to 0 \iff \|f-q_n\|_p \to 0, n \to \infty.$ Серед цих q_n знайдеться функція q, для якої $\|f-q\|_p < \varepsilon.$

II. Випадок f – довільна.

Тоді $f = f_+ - f_-$, де кожна з функцій в доданку – невід'ємна. Значить, за кроком I, існують прості функції $q_+,q_-\in L_p$, для яких $\|f_+-q_+\|_p<\frac{\varepsilon}{2},\quad \|f_--q_-\|<\frac{\varepsilon}{2}.$ Оберемо функцію $q=q_+-q_-$, яка теж проста, причому $q\in L_p$. Тоді $\|f-q\|_p=\|(f_+-q_+)-(f_--q_-)\|\leq \|f_+-q_+\|_p+\|f_--q_-\|_p<\varepsilon.$

$$|f-q|_p = \|(f_+ - q_+) - (f_- - q_-)\| \le \|f_+ - q_+\|_p + \|f_- - q_-\|_p < \varepsilon.$$

Theorem 7.3.2 Припустимо, що λ на \mathcal{F} була отримана за схемою за Каратеодорі з півкільця \mathcal{P} , причому $\lambda - \sigma$ -скінченна на \mathcal{P} . Тоді для всіх $f \in L_p$ та $\varepsilon > 0$ існує проста функція $q \in L_p$, для якої $||f - q||_p < \varepsilon.$

От тільки для простої функції $q(x) = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k}(x)$ уже буде $A_k \in \mathcal{P}$ (у порівнянні з попереднім).

$$\int_X |f|^p d\lambda < +\infty \iff \int_X \mathbb{1}_C^p d\lambda = \lambda(C) < +\infty.$$

теоремою про наближення міри її значеннями на кільці, знайдеться $B \in k(\mathcal{P})$, для якої

$$\lambda(C \triangle B) < \varepsilon^p$$
, де $B = \bigsqcup_{k=1}^n A_k, A_k \in \mathcal{P}$.

Покладемо $q(x)=\mathbbm{1}_B(x)=\sum^n\mathbbm{1}_{A_k}(x)$. Це – проста функція потрібного вигляду. Тоді

$$||f - q||_p = \left(\int_X |\mathbb{1}_C - \mathbb{1}_B|^p \, d\lambda\right)^{\frac{1}{p}} = \left(\int_X |\mathbb{1}_{C \triangle B}|^p \, d\lambda\right)^{\frac{1}{p}} = \lambda^{\frac{1}{p}}(C \triangle B) < \varepsilon.$$

II. Випадок $f \in L_p$ – проста (не обов'язково невід'ємна), тобто $f = \sum_{i=1}^{J} c_j \mathbb{1}_{C_j}, C_j \in \mathcal{F}, c_i \neq 0.$

$$\int_X |f|^p d\lambda = \sum_{i=1}^j |c_i|^p \lambda(C_i) < +\infty \stackrel{c_i \neq 0}{\Longrightarrow} \lambda(C_i) < +\infty \iff \mathbb{1}_{C_i} \in L_p.$$

 $\int_X |f|^p \, d\lambda = \sum_{i=1} |c_i|^r \wedge (\bigtriangledown_i) < . \ \ \, .$ Тоді за кроком I, візьмемо прості функції q_i потрібного вигляду, для яких $\|\mathbb{1}_{C_i} - q_i\|_p < \frac{\varepsilon}{\sum_j |c_i|}$.

Покладемо $q=\sum^{j}c_{i}q_{i}$ та зауважимо, що q має необіхдний вигляд. Тоді

$$||f - q||_p \le \sum_{i=1}^{j} |c_i|| ||\mathbb{1}_{C_i} - q_i||_p < \varepsilon.$$

III. Випадок $f \in L_p$ – довільна.

За попередньою теоремою, знайдеться проста функція $f_0 \in L_p$, для якої $\|f-f_0\|_p < \frac{\varepsilon}{2}$. Далі, за кроком II, для простої функції $f_0 \in L_p$ існує проста функція q потрібного вигляду, для якої $||f_0-q||_p<\frac{\varepsilon}{2}$. Ну тоді ясно, що $||f-q||_p<\varepsilon$.

Нарешті, розглянемо тепер частинний випадок $L_p(\mathbb{R}^d, \lambda_d)$, тобто в нас $X = \mathbb{R}^d$, $\mathcal{F} = \mathcal{S}_d$, $\lambda = \lambda_d$ міра Лебега.

Corollary 7.3.3 Простір $L_p(\mathbb{R}^d, \lambda_d)$ – сепарабельний при всіх $1 \leq p < +\infty$.

Розглянемо зліченне півкільце множин $\tilde{\mathcal{P}}_d = \left\{ \prod_{k=1}^d (a_k, b_k] \mid a_k, b_k \in \mathbb{Q} \right\}$. Розглянемо M – набір фун-

кцій вигляду $\sum_{i=1}^J r_i \mathbbm{1}_{C_i}, r_i \in \mathbb{Q}, C_i \in \tilde{\mathcal{P}}_d, j \geq 1$. Можна зазначити, що M – зліченна множина. Ми доведемо, що M буде щільною в L_n .

Функціями з M можна як завгодно близько за нормою $\|\cdot\|_p$ наближати функції вигляду $\sum_i c_i \mathbbm{1}_{C_i}, c_i \in$

 $\mathbb{R}, C_i \in \tilde{\mathcal{P}}_d$, а дані функції, у свою чергу, наближають функції типу $\sum_{i=1}^J c_i \mathbbm{1}_{D_i}, c_i \in \mathbb{R}, D_i \in \mathcal{P}_d$.

Із попередньої теореми, маємо, що набір функцій такого вигляду — щільна підмножина L_p

Істотно обмежені функції

Definition 7.4.1 Задано $(X, \mathcal{F}, \lambda)$ – вимірний простір та $f: X \to \mathbb{R}$ – \mathcal{F} -вимірна. Функція f називається **істотно обмеженою**, якщо

$$\exists c > 0 : |f(x)| \le c \pmod{\lambda}$$

Інакше кажучи, $\lambda \{x \in X : |\lambda(x)| > c\} = 0.$

Definition 7.4.2 Істотною верхьною гранню називають найменше число, що обмежує істотно

$$\operatorname{ess\,sup}_{X} |f| = \inf\{c > 0 : \lambda \{x \in X : |f(x)| > c\} = 0\}$$

Дану штуку можна переписати в іншому вигляді: ess sup $|f| = \inf_{\lambda(N)=0} \sup_{x \in X \setminus N} |f(x)|$.

Позначення: $L_{\infty}(X,\lambda)$ – множина всіх істотно обмежених функцій. Тобто

$$ilde{L}_{\infty}(X,\lambda)=\{f\colon X o \mathbb{R}\mid f$$
 – \mathcal{F} – вимірна, $\operatorname*{ess\,sup}_{X}|f|<\infty\}$

Аналогічним чином ми профакторизуємо даний простір на основі відношення еквівалентності, що було задано в просторі \tilde{L}_p . Отримаємо простір $L_{\infty} = L_{\infty}(X,\lambda)$ – множина класів еквівалентностей.

Proposition 7.4.3 $(L_{\infty}, \|\cdot\|_{\infty})$ – дійсний нормований простір, причому норма задається ось так: $||f||_{\infty} = \operatorname{ess\,sup}_{Y} |f|.$

Proof.

Нам треба просто перевірити властивості норми.

1) $\|f\|_{\infty} \ge 0$ – зрозуміло, бо ми проходимося по додатним константам c, які істотно обмежують. Також $\|f\|_{\infty}=0\iff \forall \varepsilon>0:\exists c_{\varepsilon}>0:c_{\varepsilon}<\varepsilon.$ Зокрема зафіксуємо $\varepsilon=\frac{1}{k},$ тоді існують $c_{k}<\frac{1}{k},$ які обмежують істотно функцію f. Тобто $\exists N_k: \lambda(N_k) = 0: \forall x \in X \setminus N_k: |f(x)| \leq c_k < \frac{1}{k}$. Оберемо множину $N=\bigcup_{k>1}N_k$, яка також є множиною міри нуль, тоді $\forall x\in X\setminus N: |f(x)|<\frac{1}{k}.$ При $k\to\infty$ отримаємо $f = 0 \pmod{\lambda}$.

$$2) \ \|\alpha f\|_{\infty} = \operatorname{ess\,sup} |\alpha f| = \inf \left\{ c > 0 : \lambda \left\{ x : |\alpha f(x)| > c \right\} = 0 \right\} = \inf \left\{ |\alpha| \frac{c}{|\alpha|} > 0 : \lambda \left\{ x : |f(x)| > \frac{c}{|\alpha|} \right\} \right\} \\ = |\alpha| \inf \left\{ \frac{c}{|\alpha|} > 0 : \lambda \left\{ x : |f(x)| > \frac{c}{|\alpha|} \right\} \right\} = |\alpha| \operatorname{ess\,sup} |f| = |\alpha| \|f\|_{\infty}.$$

3) Мабуть, доведу це надзвичайно детально.

Розглянемо множину $A = \{c > 0 : \lambda \{x \in X : |f(x) + g(x)| > c\} = 0\}$ та дві множини $B_1 = \{c > 0 : x \in X : |f(x) + g(x)| > c\}$ $\lambda\{x\in X:|f(x)|>c\}=0\}$ та $B_2=\{c>0:\lambda\{x\in X:|g(x)|>c\}=0\}.$ Із математичного аналізу ми вже знаємо, що з себе представляє множина B_1+B_2 . Ми хочемо довести, що $A\supset B_1+B_2$ – і таким чином, $\inf A \leq \inf(B_1 + B_2) = \inf B_1 + \inf B_2$ – а це наша бажана нерівність $\|f + g\|_{\infty} \leq \|f\|_{\infty} + \|g\|_{\infty}$. Нехай $c \in B_1 + B_2$, тобто $c = c_1 + c_2$, причому $c_1 \in B_1, c_2 \in B_2$. Тобто $\lambda \{x \in X : |f(x)| > c_1\} = 0$, $\lambda\{x\in X:|g(x)|>c_2\}=0.$ Ми хочемо довести, що $\lambda\{x\in X:|f(x)+g(x)|>c\}=0.$ Зауважимо, що справджується $\{x \in X : |f+g| > c_1 + c_2\} \subset \{x \in X : |f| > c_1\} \cup \{x \in X : |g| > c_2\},$ тому звідси випливає, що

 $\lambda\{x \in X : |f(x) + g(x)| > c_1 + c_2\} \le \lambda\{x \in X : |f(x)| > c_1\} + \lambda\{x \in X : |g(x)| > c_2\} = 0.$

Таким чином, ми довели, що $c \in A$ – а це завершує доведення третьої властивості норми.

Отже, у нас дійсно встановлений нормований простір.

Proposition 7.4.4 Установлений вище нормований простір $(L_{\infty}, \|\cdot\|_{\infty})$ – банахів.

Proof.

Нехай $\{f_n, n \geq 1\} \subset L_{\infty}$ – фундаментальна послідовність. Позначимо кілька множин:

$$A_n = \{ x \in X : |f_n(x)| > ||f_n||_{\infty} \};$$

$$A_n = \{x \in X : |f_n(x)| > ||f_n||_{\infty} \};$$

$$A_{nm} = \{x \in X : |f_n(x)| - f_m(x)| > ||f_n - f_m||_{\infty} \};$$

$$A = \bigcup_{n=1}^{\infty} A_n \cup \bigcup_{n=1}^{\infty} A_{mn}.$$

Зауважимо, що $\lambda(A_n)=0$ та $\lambda(A_{nm})=0$ в силу істотно обмежених функцій f_n . Звідси $\lambda(A)=0$.

Якщо
$$x \in X \setminus \bigcup_{n,m=1}^{\infty} A_{nm}$$
, то тоді $|f_n(x) - f_m(x)| \le ||x_n - x_m||_{\infty} \to 0$, тобто тоді $\{f_n(x), n \ge 1\}$

– фундаментальна як числова послідовність, тож $\exists \lim_{n \to \infty} f_n(x) = f(x)$. Якщо $x \in \bigcup_{n=1}^{\infty} A_{mn}$, то

покладемо f(x) = 0.

Хочемо довести, що знайдена f – границя для послідовності $\{f_n, n \geq 1\} \subset L_{\infty}$.

Спочатку доведемо, що $f \in L_{\infty}$. Оскільки $\{f_n\}$ – фундаментальна, то вона обмежена, тож $\exists c>0$:

$$\forall n \geq 1: \|f_n\|_{\infty} \leq c$$
. Якщо $x \in X \setminus \bigcup_{n=1}^{\infty} A_n$, то тоді $|f_n(x)| \leq \|f_n\|_{\infty} \leq c$. Таким чином, для кожного $x \in X \setminus A$ маємо, що $|f(x)| \leq c$. Отже, ми довели, що $f \in L_{\infty}(X, \lambda)$. Залишилося показати $f_n \to f$. За фундаментальністю $\{f_n\}$, маємо, що $\forall \varepsilon > 0: \exists N: \forall n, m \geq N: \|f_n(x)\|_{\infty} \leq c$. Залишилося показати $f_n \to f$. За фундаментальністю $\{f_n\}$, маємо, що $\forall \varepsilon > 0: \exists N: \forall n, m \geq N: \|f_n(x)\|_{\infty} \leq c$. Стромуную $f_n(x)$

 $\|f_n-f_m\|_{\infty}<\varepsilon$. Значить, $\forall x\in X\setminus A: |f_n(x)-f_m(x)|<\varepsilon$. Спрямуємо $m\to\infty$ – отримаємо $\forall x\in X\setminus A: |f_n(x)-f(x)|<\varepsilon$. Тож звідси отримаємо $\|f_n-f\|_{\infty}<2\varepsilon$. Отже, $f_n\to f$.

Proposition 7.4.5 Задано $(X, \mathcal{F}, \lambda)$ – вимірний простір, де λ – скінченна. Тоді $\forall p \geq 1 : L_{\infty} \subset L_{p}$. При цьому $\forall f \in L_{\infty} : \|f\|_{\infty} = \lim_{p \to \infty} \|f\|_{p}$.

Proof.

 $L_{\infty} \subset L_p$.

Нехай $f\in L_\infty$, тобто це істотно обмежена функція, тобто $\exists c>0: \forall x\in X\setminus N: |f(x)|\leq c$ при $\lambda(N)=0$. Отже, звідси $\int_X |f|^p d\lambda = \int_{X\setminus N} |f|^p d\lambda \le \int_{X\setminus N} c^p d\lambda = c^p \lambda(X\setminus N) < \infty$. Значить, $f\in L_p$.

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p.$$
 (ТОРО: доробити)

Простір, що спряжений до L_p , 1 .

Theorem 7.5.1 Нехай 1 та <math>p' > 1, причому $\frac{1}{p} + \frac{1}{p'} = 1$. Також задано $(X, \lambda, \mathcal{F})$ – вимірний простір, де λ – σ -скінченна міра. Простір $(L_p)'\cong L_{p'}$ ізометричним чином. Ізоморфізм $l\colon (L_p)'\to L_{p'}$ задається наступним чином:

$$l(x) = \int_{X} h(q)x(q) d\lambda(q).$$

Proof.

Нехай $h \in L_{p'}$. Визначимо функціонал $l(x) = \int_X h(q)x(q) d\lambda(q)$. Цілком зрозуміло, що це лінійний. $|l(x)| = \left| \int_{\mathbf{v}} h(q) x(q) \, d\lambda(q) \right| \overset{\text{нер-ть } \Gamma_{\text{ьольдера}}}{\leq} \|h\|_{p'} \|x\|_p - \text{довели обмеженість, при цьому } \|l\| \leq \|h\|_{p'}.$

$$(L_p)' \subset L_{p'}$$
.

I. Випадок, коли міра λ є скінченною.

Нехай $l \in (L_p)'$, тобто лінійний та обмежений функціонал. Якщо A – вимірна множина, то $\mathbb{1}_A \in L_p$, а тому звідси $l(\mathbb{1}_A)$ буде визначеним. Таким чином, ми можемо задати функцію множин $\omega \colon \mathcal{F} \to \mathbb{R}$ ось так: $\omega(A) = l(\mathbb{1}_A)$.

Покажемо, що ω – заряд. Нехай $A_k \in \mathcal{F}, k \geq 1$, всі неперетинні. По-перше, $\mathbb{1}_{\bigsqcup_{k=1}^\infty A_k} = \sum_{k=1}^\infty \mathbb{1}_{A_k}$;

по-друге, даний ряд збіжний в нормі L_p . Отже, можна отрмиати наступний ланцюг:

$$\omega\left(\bigsqcup_{k=1}^{\infty}A_{k}\right)=l(\mathbb{1}_{\bigsqcup_{k=1}^{\infty}A_{k}})=l\left(\sum_{k=1}^{\infty}\mathbb{1}_{A_{k}}\right)=\sum_{k=1}^{\infty}l(\mathbb{1}_{A_{k}})=\sum_{k=1}^{\infty}\omega(A_{k}).$$

$$\omega(\emptyset)=l(\mathbb{1}_{\emptyset})=l(0)=0.$$

Також $\omega \ll \lambda$. Дійсно, нехай $\lambda(A)=0$, тоді звідси $\mathbb{1}_A=0 \pmod{\lambda}$, а це означає, що $\mathbb{1}_A$ – нульовий елемент в L_p , тож звідси $\omega(A) = 0$.

Отже, за теоремою Радона-Нікодими, існує $h \in L_1$, для якої $\omega(A) = \int_A h(q) \, d\lambda(q)$.

Ми хочемо довести, що $h \in L_{p'}$. Але для початку доведемо, що рівність $l(x) = \int_{Y} h(q)x(q) \, d\lambda(q)$

виконується для всіх функції із L_p , які є обмеженими.

I. Випадок індикатора.

$$l(\mathbb{1}_A) = \int_A h(q) \, d\lambda(q) = \int_X h(q) \, \mathbb{1}_A(q) \, d\lambda(q).$$

Автоматично виконується, оскільки це – лінійна комбінація індикаторів.

III. Випадок довільних (обмежених) вимірних функцій.

Для цього існує послідовність простих вимірних функцій $(p_n(q))_{n=1}^{\infty}$, яка збігається до x(q). За теоремою Лебега про інтегрування за мажорантою, в рівності $l(x_n) = \int_{\mathcal{X}} h(q) x_n(q) \, d\lambda(q)$ можна

 $y_n(q) = |h_n(q)|^{p'-1} e^{-i \arg h(q)}$. Кожна з цих обмежена, вимірна, а також

$$||y_n||_p = \left(\int_X |h_n(q)|^{(p'-1)p} \, d\lambda(q)\right)^{\frac{1}{p}} = \left(\int_X |h_n(q)|^{p'} \, d\lambda(q)\right)^{\frac{1}{p}}.$$

$$l(y_n) = \int_X h(q) y_n(q) \, d\lambda(q) = \int_X h(q) |h_n(q)|^{p'-1} e^{-i \arg h(q)} \, d\lambda(q) = \int_X |h_n(q)|^{p'} \, d\lambda(q).$$
 Оскільки $|l(y_n)| \leq \|l\| \|y_n\|_p$ в силу обмеженості, то ці дві рівності разом дають

$$\int_{X} |h_{n}(q)|^{p'} d\lambda(q) \leq ||l|| \left(\int_{X} |h_{n}(q)|^{p'} d\lambda(q) \right)^{\frac{1}{p}}.$$
$$\left(\int_{X} |h_{n}(q)|^{p'} d\mu(q) \right)^{\frac{1}{p'}} \leq ||l||.$$

Оскільки в кожній точці $|h_n(q)|^{p'}$ збігається до $|h(q)|^{p'}$, то за лемою Фату, отримаємо $\int_X |h(q)|^{p'} d\lambda(q) \le \|l\|^{p'}$. Отже, $h \in L_{p'}$.

Отже, лінійний неперервний функціонал $l(x) = \int_X h(q)x(q)\,d\lambda(q)$ лише на щільном підмножині L_p обмежених функцій. Ми можемо функціонал продовжити неперервно на всю L_p

II. Bunadok, коли $\lambda \in \sigma$ -скінченною.

Отже, маємо $\exists X_n \in \mathcal{F}: \bigcup_{n=1}^\infty X_n = X$, а також $\lambda(X_n) < +\infty$. Вчерговий раз перейдемо до системи

неперетинних множин $Y_n = X_n \setminus (X_1 \cup \cdots \cup X_{n-1})$, де мається $\coprod_{n=1}^{\infty} Y_n = X$, а також $\lambda(Y_n) < +\infty$.

Нехай тепер $l \in (L_p(X))'$, тоді цілком зрозмуіло, що $\forall n \geq 1: l \in (L_p(Y_n))'$. Тоді за щойно доведеним, існує функція $h_n \in L_{p'}(Y_n), \forall n \geq 1$, а також функціонал $l(x) = \int_Y h_n(q)x(q) d\lambda(q)$, така рівність

виконується при всіх $x\in L_p(Y_n)$. Покладемо функцію $h(q)=h_n(q)\mathbbm{1}_{Y_n}(q)$ та доведемо, що $h\in L_{p'}(X)$. Справді,

$$\int_X |h(q)|^{p'} d\lambda(q) = \int_X |h_n(q)|^{p'} \mathbb{1}_{Y_n}(q) d\lambda(q) = \int_{Y_n} |h_n(q)|^{p'} d\lambda(q) < +\infty.$$

Також функціонал $l(x)=\int_X h(q)x(q)\,d\lambda(q)$ уже для всіх $x\in L_p(X)$. Нарешті, завдяки ланцюгу рівностей вище, ми можемо зауважити, що $||h||_{n'}^X = ||h||_{n'}^{Y_n} \le ||l||$

Простір, що спряжений до L_1 та L_{∞}

Theorem 7.6.1 Задано $(X, \lambda, \mathcal{F})$ – вимірний простір, де λ – σ -скінченна міра. Простір $(L_1)' \cong L_{\infty}$ ізометричним чином. Ізоморфізм $l\colon (L_1)' \to L_\infty$ задається наступним чином:

$$l(x) = \int_{X} h(q)x(q) d\lambda(q).$$

Proof.

 $L_{\infty} \subset (L_1)'$.

Нехай $h \in L_{\infty}$. Функціонал $l(x) = \int_X h(q)x(q)\,d\lambda(q)$ (який теж лінійний) визначений коректно. Справді, якщо взяти довільну функцію $x \in L_1$, то тоді отримаємо наступне: $\int_X |h(q)x(q)|\,d\lambda(q) \leq \operatorname{ess\,sup}|h| \int_X |x(q)|\,d\lambda(q) = \|h\|_{\infty} \|x\|_1 < +\infty.$ Тобто інтеграл повертає дійсне число — функціонал нормальний. Більш того, l — обмежений, бо $|l(x)| = \left|\int_X h(q)x(q)\,d\lambda(q)\right| \leq \int_X |h(q)||x(q)|\,d\lambda(q) \leq \|h\|_{\infty} \|x\|_1.$ Отже, отримали $l \in (L_1)'$. Більш того, $\|l\| \leq \|h\|_{\infty}.$

$$\int_{X} |h(q)x(q)| d\lambda(q) \le \operatorname{ess\,sup}_{X} |h| \int_{X} |x(q)| d\lambda(q) = ||h||_{\infty} ||x||_{1} < +\infty.$$

$$|l(x)| = \left| \int_X h(q)x(q) \, d\lambda(q) \right| \le \int_X |h(q)||x(q)| \, d\lambda(q) \le ||h||_{\infty} ||x||_1.$$

$$(L_1)' \subset L_{\infty}$$
.

I. Bunadok, коли міра $\lambda \in cкінченною$.

Неха $l \in (L_1)'$, але тоді абсолютно (!) аналогічними міркуваннями можемо отримати, що функціонал $l(x) = \int h(q)x(q) d\lambda(q)$ для вимірних та обмежених функцій x. У нас зараз $h \in L_1$. Хочемо довести, що $h \in L_{\infty}$.

Навіть більше, ми доведемо, що $\|h\|_{\infty}=\mathop{\mathrm{ess\,sup}}_X |h| \leq \|l\|$. Для цього треба довести, що $\|l\|$ – константа, що обмежує функцію h істотним чином.

Позначимо множину $A=\{q\in X:|h(q)|>\|l\|\}$ та припустимо, що $\lambda(A)=\varepsilon>0$. Оскільки функціонал l обмежений, то звідси для функції $\mathbbm{1}_A\cdot\overline{\mathrm{sgn}(h)}$ маємо $|l(\mathbb{1}_A \overline{\operatorname{sgn}(h)})| \le ||l|| ||\mathbb{1}_A \overline{\operatorname{sgn}(h)})||_1 = ||l||\lambda(A).$

Із іншого боку, розглянемо, чому дорівнює модуль даного функціонала.

$$|l(\mathbb{1}_A\overline{\operatorname{sgn}(h)})|=\int_X h(q)\mathbb{1}_A(q)\overline{\operatorname{sgn}(h)}(q)\,d\lambda(q)=\int_A |h(q)|\,d\lambda(q)>\int_A \|l\|\,d\lambda(q)=\|l\|\lambda(A).$$
 Дві нерівності суперечать один одному, якщо $\lambda(A)=\varepsilon>0.$ Отже, звідси необхідно $\lambda(A)=0.$

Трошки про все те саме тільки в комплексному випадку

Нехай $(X, \mathcal{F}, \lambda)$ – вимірний простір з мірою (це дійсна міра). Ми тепер будемо розглядати функції $f: X \to \mathbb{C}$. Оскільки f(x) повертає комплексне число, то тоді f(x) = u(x) + iv(x), де в цьому випадку $u(x) = \operatorname{Re} f(x), \ v(x) = \operatorname{Im} f(x),$ обидві функції $u, v \colon X \to \mathbb{R}$.

Definition. Комплекснозначна функція f називається \mathcal{F} -вимірною, якщо

$$f - (\mathcal{F}, \mathcal{B}(\mathbb{C}))$$
-вимірна

Proposition. $f - \mathcal{F}$ -вимірна (в комплексному сенсі) $\iff u, v - \mathcal{F}$ -вимірні (в дійсному сенсі).

Proof.

 \implies Дано: f – \mathcal{F} -вимірна. Зокрема для кожного $a \in \mathbb{R}$ та для множини $A = \{z \in \mathbb{C} : \operatorname{Re} z < a\}$ (пе відкрита множина, тому борельова) прообраз $f^{-1}(A) \in \mathcal{F}$. Із іншого боку, розпишемо прообраз

$$f^{-1}(A) = \{x \in X : f(x) \in A\} = \{x \in X : \operatorname{Re} f(x) < a\} = \{x \in X : u(x) < a\} = u^{-1}((-\infty, a)).$$
 Отже, ми довели: $\forall a \in \mathbb{R} : u^{-1}((-\infty, a)) \in \mathcal{F}$, тобто $u - \mathcal{F}$ -вимірна.

Аналогічно доведемо, що $v-\mathcal{F}$ -вимірна, тільки для кожного $a\in\mathbb{R}$ треба розглянути множину $B = \{z \in \mathbb{C} : \operatorname{Im} z < a\}$ (теж відкрита, тож теж борельова).

 \models Дано: u,v – обидва \mathcal{F} -вимірні. Тут треба скористатися таким фактом, що $\mathbb C$ можна сприймати $\overline{\mathsf{gk}} \mathbb{R}^2$, як схожі топологічні простори. Тоді нам треба довести, що f тіпа $(\mathcal{F}, \mathcal{B}(\mathbb{R}^2))$ -вимірна. Ми знаємо, що $\mathcal{B}(\mathbb{R}^2) = \sigma a(\mathcal{P}_2)$, тому мені достатньо буде розглянути довільну множину $A \in \mathcal{P}_2$. Тобто $A = (a_1, b_1] \times (a_2, b_2]$. Значить,

 $f^{-1}(A) = \{x \in X : f(x) \in A\} = \{x \in X : u(x) \in (a_1, b_1], v(x) \in (a_2, b_2]\} = u^{-1}((a_1, b_1]) \cap v^{-1}((a_2, b_2]).$ Звідси отримали $f^{-1}(A) \in \mathcal{F}$ (до речі, ми вже таке робили, проте зайвий раз можна повторити). Отже, f – також \mathcal{F} -вимірна.

Corollary. $f - \mathcal{F}$ -вимірна (в комплексному сенсі). Тоді $|f| - \mathcal{F}$ -вимірна (в дійсному сенсі).

Маємо f – \mathcal{F} -вимірна, тож звідси u, v – \mathcal{F} -вимірні. Звідси $u^2 + v^2 - \mathcal{F}$ -вимірна та, оскільки $g(x) = \sqrt{x}$ – борельова, то $\sqrt{u^2 + v^2} = |f| - \mathcal{F}$ -вимірна.

Definition. Інтеграл Лебега для комплекснозначної функції визначатиметься таким чином:

$$\int_{A} f \, d\lambda = \int_{A} u \, dv + i \int_{A} v \, d\lambda,$$

де $A \in \mathcal{F}$. Все це працює за умовою, що два інтеграли праворуч існують.

Розглянемо буквально ту саму множину, що було раніше:

$$\tilde{L}_p(X,\lambda) = \{f \colon X \to \mathbb{C} \mid f - \mathcal{F}$$
-вимірна, $|f|^p \in L(X,\lambda)\}$

Цього разу $|f|^p \in L(X,\lambda)$ – інтегрована за Лебегом як дійсна функція. На ній знову задамо відношення еквівалентності

$$f \sim g \iff f = g \pmod{\lambda}$$

Знову отримаємо простір $L_p=L_p(X,\lambda)$ при $1\leq p<\infty$ – множина класів еквівалентності. Аналогічним чином, ми будемо вважати, що L_p – то є просто набір функцій.

Remark. $f \in L_p^{\mathbb{C}} \iff |f| \in L_p^{\mathbb{R}}.$ Ця еквівалентність працюватиме лише за умовою, що f буде \mathcal{F} -вимірною.

Proposition. Нехай $(X, \mathcal{F}, \lambda)$ – вимірний простір та f = u + iv. $f \in L_p^{\mathbb{C}} \iff u, v \in L_p^{\mathbb{R}}.$

Proof.

Перед доведенням зауважимо, що справедлива така нерівність: $\max\{|u|,|v|\} \le |f| \le |u| + |v|$.

 \Longrightarrow Дано: $f \in L_p^{\mathbb{C}}$, тоді вона автоматично \mathcal{F} -вимірна, звідси u, v теж автоматично \mathcal{F} -вимірні. Ліва

нерівність каже нам про те, що
$$\int_X |u|^p\,d\lambda \le \int_X |f|^p\,d\lambda < +\infty, \qquad \int_X |v|^p\,d\lambda \le \int_X |f|^p\,d\lambda < +\infty.$$
 Значить, звідси $u,v\in L_p^\mathbb{R}.$

 \sqsubseteq Дано: $u,v\in L_p^{\mathbb{R}}$, тоді вони автоматично \mathcal{F} -вимірні, звідси f теж автоматично \mathcal{F} -вимірна. Згадаємо, що функція $x^p,p\geq 1, x\geq 0$ — опукла. Тож за нерівністю Єнсена, а також за правою нерівністю вище, отримаємо:

вище, отримаємо:
$$|f|^p \leq (|u|+|v|)^p = 2^p \cdot \left(\frac{|u|+|v|}{2}\right)^p \stackrel{\text{нер-ть } Єнсена}{\leq} 2^p \cdot \frac{|u|^p+|v|^p}{2}.$$
 Нарешті, $\int_X |f|^p \, d\lambda \leq 2^{p-1} \left(\int_X |u|^p \, d\lambda + \int_X |v|^p \, d\lambda\right) < +\infty.$ Значить, звідси $f \in L_p^{\mathbb{C}}$.

Proposition. Покладемо $||f||_p = \left(\int_X |f|^p d\lambda\right)^{\frac{1}{p}}$ – буквально те саме. Тоді це – теж норма для комплексного L_p .

Remark. Знову варто пересвідчитися, що $L_p^{\mathbb{C}}$ – векторний простір над \mathbb{R} (да, саме над \mathbb{R}). Проте це випливає безспосередньо з того факту, що $L_p^{\mathbb{R}}$ – векторний простір над \mathbb{R} та з твердження вище.

Proof.

1), 2) цілком аналогічно доводиться.

3)
$$||f + g||_p^{\mathbb{C}} = |||f + g|||_p^{\mathbb{R}} \stackrel{3) \text{ is } L_p^{\mathbb{R}}}{\leq} |||f|||_p^{\mathbb{R}} + |||g|||_p^{\mathbb{R}} = ||f||_p^{\mathbb{C}} + ||g||_p^{\mathbb{C}}.$$

Proposition. Маємо послідовність $\{f_n\} \subset L_p^{\mathbb{C}}$, маємо розклад $f_n = u_n + iv_n$ та f = u + iv. $f_n \to f$ в $L_p^{\mathbb{C}} \iff u_n \to v, v_n \to v$ в $L_p^{\mathbb{R}}$. Тут все це відбувається при $n \to \infty$.

Proof.

$$\Rightarrow$$
 Дано: $f_n \to f$, тобто звідси $||f_n - f||_p^{\mathbb{C}} \to 0$. $||u_n - u||_p^{\mathbb{R}} = ||u_n - u||_p^{\mathbb{R}} \le ||f_n - f||_p^{\mathbb{C}} \to 0$. $||v_n - v||_p^{\mathbb{R}} = ||v_n - v||_p^{\mathbb{R}} \le ||f_n - f||_p^{\mathbb{C}} \to 0$. Отже, дійсно $u_n \to u, v_n \to v$ в просторі $L_p^{\mathbb{R}}$.

Proposition. Установлений вище комплексний нормований простір $(L_p, \|\cdot\|_p)$ – банахів.

Proof.

Дійсно, нехай $\{f_n\} \subset L_p^{\mathbb{C}}$ — фундаментальна, маємо $f_n = u_n + iv_n$. Аналогічно можна довести, що $\|u_n - u_m\|_p \to 0$ та $\|v_n - v_m\|_p \to 0$ при $m, n \to \infty$. Звідси випливає, що $\{u_n\}, \{v_n\} \subset L_p^{\mathbb{R}}$ — фундаментальні. Проте оскільки $L_p^{\mathbb{R}}$ — банахів, то звідси $\{u_n\}, \{v_n\}$ — збіжні, внаслідок чого $\{f_n\}$ буле також збіжним.

Proposition. Якщо $L_p^{\mathbb{R}}$ – сепарабельний, то тоді $L_p^{\mathbb{C}}$ – сепарабельний. $TODO:\ donucamu.$

Список використаних джерел

- 1. В. М. Радченко, плейліст "Теорія міри та інтеграли. Лекції" *клік*
- 3. А. Я. Дороговцев, книга "Элементы общей теории меры и интеграла" *клік*