

Camada de Transporte

Serviços e protocolos de transporte

- provê comunicação lógica entre processos de aplicação executando em hospedeiros diferentes
- protocolos de transporte executam em sistemas terminais
- serviços das camadas de transporte X rede:
- camada de rede : dados transferidos entre sistemas
- camada de transporte: dados transferidos entre processos
 - depende de, estende serviços da camada de rede

Protocolos da camada de transporte

Serviços de transporte na Internet:

- entrega confiável, ordenada, ponto a ponto (TCP)
 - congestionamento
 - o controle de fluxo
 - estabelecimento de conexão (setup)
- entrega não confiável, ("melhor esforço"), não ordenada, ponto a ponto ou multiponto: UDP
- serviços não disponíveis:
 - o tempo-real
 - o garantias de banda
 - multiponto confiável

Serviço de Transporte vs Rede

- Camada de rede:
 - o Comunicação lógica entre hospedeiros

- Camada de transporte:
 - o comunicação lógica entre processos
 - o utiliza e aprimora os serviços oferecidos pela camada de rede

Serviços de Transporte da Internet

- TCP: Entrega unicast, sequencial e confiável
 - Estabelecimento de conexão
 - Controle de fluxo
 - Controle de congestionamento
- UDP: Entrega unicast ou multicast, não confiável (best-effort) e não seqüencial
- Não disponíveis:
 - Garantia de retardo
 - Garantia de banda
 - Multicast confiável

Papel da Camada de Transporte

- Responsável pela transferência fim-a-fim geral de dados de aplicação
- Encapsulamento de dados de aplicação para uso pela camada de Rede
- Habilita a comunicação de múltiplas aplicações na rede ao mesmo tempo em um único dispositivo
- Assegura que, se necessário, todos os dados sejam recebidos confiavelmente e em ordem pela aplicação correta.
- Emprega mecanismos de tratamento de erros

Separação de Múltiplas Comunicações

- Qualquer host pode ter múltiplas aplicações que se comunicam através da rede
- A camada de Transporte mantem esses fluxos separados
 - Por exemplo, o texto de uma mensagem instantânea não aparece em um e-mail

Segmentação dos Dados

A camada de aplicação envia um fluxo completo (tamanho grande)

Segmentação dos Dados

Reagrupamento dos Segmentos

Reagrupamento dos Segmentos

Controle de Fluxo

Entrega Confiável

Orientado a conexão

Suporte à Comunicação Confiável

- Relembre Principal função da camada de Transporte é gerenciar os dados da aplicação para as conversações entre os hosts
- Diferentes aplicações têm diferentes necessidades para seus dados
- Diferentes protocolos de Transporte têm sido desenvolvidos para satisfazer estas necessidades

Camada de Transporte

TCP e UDP

Camada de Transporte

TCP e UDP

TCP

UDP

TCP e UDP

Protocolos da camada de transporte mais comuns

User Datagram Protocol (UDP)

Datagrama UDP		
Bit (0)	Bit (15) Bit (16)	Bit (31)
Porta de Origem (16)	Porta de Destino (16)	
Comprimento (16)	Checksum (16)	
DADOS DA CAMADA DE APLICATIVOS (Tamanho varia)		

- Sem-conexão
- Entrega de melhor esforço (Best Effort)
- Baixo overhead

Exemplos de Aplicação

- Domain Name System (DNS)
- Jogos online
- Voice over IP (VoIP)
- Dynamic Host Configuration Protocol (DHCP)
- Trivial File Transfer Protocol (TFTP)

Transmission Control Protocol (TCP)

Segmento TCP			
Bit (0)	Bit (15)	Bit (16)	Bit (31)
Porta de Origem (16)		Porta de Destino (16)	
Número de Seqüência (32)			
Número de Reconhecimento (32)			
Comprimento do Cabeçalho (4) Reservado (6) Bi	ts de Código (6)	Janela (16)	
Checksum (16)		Urgente (16)	
Opções (0 ou 32, se houver)			
DADOS DA CAMADA DE APLICATIVOS (Tan	nanho varia)		

- Orientado a conexão
- Entrega confiável
- Checagem de erro
- Controle de Erro

Exemplos de Aplicações

- Hypertext Transfer Protocol (HTTP)
- File Transfer Protocol (FTP)
- Telnet
- Simple Message Transfer Protocol (SMTP)

Protocolos de Redes e de Computadores Camada de Transporte

Endereçamento de Porta

Identificação das Conversações

Segmento TCP

- TCP e UDP usam números de porta para passar a informação as camadas superiores
- Socket combinação do número de porta e do endereço IP
- Identifica exclusivamente um processo particular sendo executado em um dispositivo de host específico
- e.g. 207.134.65.2:80 referencia um socket HTTP

Identificação de Conversações

Dados para diferentes aplicações são direcionados à aplicação correta porque cada aplicação tem um número de porta único.

Tipos de Endereço de Porta

- IANA órgão de padrões responsável pela designação de vários padrões de endereçamento
- Designa números de porta

Tipos de Endereço de Porta

- Portas Conhecidas:
 - o Reservados para serviços e aplicações comuns

Faixa de Números de Portas	Grupo de Port	as
0 a 1023	Portas conhec	cidas (Contato)
1024 a 49151	Portas Registr	adas
49152 a 65535	Portas Privada	as e/ou Dinâmicas
20 – FTP Data	25 – SMTP	443 – HTTPS
21 – FTP Control	110 – POP3	69 – TFTP
23 – Telnet	194 – IRC	520 – RIP

Tipos de Endereço de Porta

Estácio

- Portas Registradas:
 - Aplicações e processos do usuário (opcional)

Faixa de Números de Portas	Grupo de Portas
0 a 1023	Portas conhecidas (Contato)
1024 a 49151	Portas Registradas
49152 a 65535	Portas Privadas e/ou Dinâmicas
1863 – MSN Messenger	1812 – RADIUS
8008 – Alternate HTTP	2000 – Cisco VoIP
8080 – Alternate HTTP	5004 — RTP
	5060 – SIP (VoIP)

Tipos de Endereço de Porta

- Portas Dinâmicas:
 - Atribuída dinamicamente a aplicações de cliente quando se inicia uma conexão

Faixa de Números de Portas	Grupo de Portas
0 a 1023	Portas conhecidas (Contato)
1024 a 49151	Portas Registradas
49152 a 65535	Portas Privadas e/ou Dinâmicas

Tipos de Endereço de Porta

- Utilização do TCP e do UDP :
 - Algumas aplicações podem usar tanto TCP como UDP
 - Por exemplo, o baixo overhead (sobrecarga) do UDP habilita ao DNS servir a muitas solicitações de clientes muito rapidamente
 - As vezes, no entanto, o envio da informação solicitada pode exigir a confiabilidade do TCP.
 Neste caso, o número 53 de porta conhecida é usado por ambos os protocolos com este serviço

Faixa de Números de Portas	Grupo de Portas
0 a 1023	Portas conhecidas (Contato)
1024 a 49151	Portas Registradas
49152 a 65535	Portas Privadas e/ou Dinâmicas

 As vezes é necessário conhecer quais conexões TCP ativas estão abertas e sendo executadas em um host de rede

Camada de Transporte

Comunicação TCP confiável

Transmission Control Protocol (TCP)

Bit (15)	Bit (16) Porta de Destino (16)	Bit (31)
	Porta de Destino (16)	
o (6)	Janela (16)	
	Urgente (16)	
)		
		Urgente (16)

- Orientado a conexão
- Entrega confiável
- Checagem de erro
- Controle de Erro

Exemplos de Aplicações

- Hypertext Transfer Protocol (HTTP)
- File Transfer Protocol (FTP)
- Telnet
- Simple Message Transfer Protocol (SMTP)

Tipos de Endereço de Porta

- A distinção principal entre o TCP e o UDP está na confiabilidade.
- TCP usa sessões orientadas à conexão
 - Antes de algum dado ser trocado, a camada de Transporte inicia um processo para criar uma conexão com o destino
 - o Esta conexão habilita o rastreamento de uma sessão
 - ■Números de sequência
 - Reconhecimento
 - Overhead do TCP Tráfego de rede gerado por confirmações e retransmissões
 - Confiabilidade é alcançada através de campos com funções específicas no segmento TCP

Tornando as Conversações Confiáveis

Tornando as Conversações Confiáveis

- Servidor responde com a página web
 - Configura a porta fonte para 80 e usa a porta de origem do cliente como a porta de destino

Processo TCP em Servidores

Note como as portas de origem e destino são usadas

Processo TCP em Servidores

- Como a camada de transporte separa os fluxos?
 - Socket (IP Address:Port)

Camada de Transporte

Estabelecimento e Encerramento de Conexão TCP

- Para uma conexão ser estabelecida, as duas estações finais devem sincronizar os números de sequencias iniciais (ISNs)
- O ISN é um valor sequencial inicial usado quando uma conexão TCP é estabelecida

- Números de sequencia são usados para rastrear a ordem dos segmentos e assegurar que não houve perda de segmentos na transmissão
- Os campos Flag são usados para identificar o tipo e segmento

- Estácio

Handshake Triplo do TCP

AULA 02

Término da Sessão TCP

Processo de quatro passos usando os campos Flag e número de sequência

Camada de Transporte

Reconhecimento e Janelamento TCP

Reagrupamento de Segmentos TCP

Lembre-se que a camada de transporte deve reagrupar os segmentos na ordem correta

Confirmação TCP com Janelamento

Confirmação TCP com Janelamento

 Com uma janela de tamanho 10, cada segmento carrega apenas 10 bytes de dados e deve aguardar pela confirmação de recebimento antes de outro segmento ser transmitido

- Tamanho da Janela:
 - Quantidade de dados que pode ser enviado antes que uma confirmação seja recebida
 - Determinado pelo campo no cabeçalho TCP

Retransmissão TCP

- Um serviço de host de destino usando TCP geralmente reconhece os dados apenas para bytes sequenciais contíguos
- Se estiver faltando um ou mais segmentos, apenas os dados nos segmentos que completam o fluxo serão confirmados

Protocolos de retransmissão Volta-N

Remetente:

- □ no. de seq. de k-bits no cabeçalho do pacote
- □ admite "janela" de até N pacotes consecutivos não reconhecidos

- ACK(n): reconhece todos pacotes, até e inclusive no. de seq n -"ACK cumulativo"
 - pode receber ACKs duplicados (veja receptor)
- □ temporizador para cada pacote em trânsito
- timeout(n): retransmite pacote n e todos os pacotes com no. de seg maiores na janela

Volta-N em ação

Retransmissão seletiva

- receptor reconhece individualmente todos os pacotes recebidos corretamente
 - armazena pacotes no buffer, conforme precisa, para posterior entrega em-ordem à camada superior
- □ remetente apenas re-envia pacotes para os quais ACK não recebido
 - o temporizador de remetente para cada pacote sem ACK
- janela do remetente
 - N nos. de seq consecutivos
 - outra vez limita nos. de seq de pacotes enviados, mas ainda não reconhecidos

Retransmissão seletiva: janelas de remetente, receptor

Retransmissão seletiva

remetente.

dados de cima:

se próx. no. de seq na janela, envia pacote

timeout(n):

- reenvia pacote n, reiniciar temporizador
- ACK(n) em [sendbase,sendbase +N]:
- marca pacote n "recebido"
- se n for menor pacote não reconhecido, avança base da janela ao próx. no. de seq não reconhecido

receptor

pacote n em

[rcvbase, rcvbase+N-1]

- envia ACK(n)
- □ fora de ordem: buffer
- em ordem: entrega (tb. entrega pacotes em ordem no buffer), avança janela p/ próxima pacote ainda não recebido

pacote n em

[rcvbase-N,rcvbase-1]

 \Box ACK(n)

senão:

ignora

Retransmissão seletiva em ação

Controle de Fluxo TCP

Controle de Fluxo TCP

= 493D (correct)

```
Packet 1: source: 130.57.20.10 dest.:130.57.20.1
     TCP: ---- TCP header ----
           TCP: Source port
                                         = 1026
                                                                  Quantidade de dados que
           TCP: Destination port
                                         = 524
                                                                  pode ser enviado antes de
           TCP: Initial sequence number = 12952
           TCP: Next expected Seg number= 12953
                                                                  um reconhecimento
           TCP:
                                     1. = SYN
          TCP: Window
                                          = 8192
           TCP: Checksum
                                         = 1303 (correct)
           TCP: Packet 2: source: 130.57.20.1
                                                dest: 130.57.20.10
                 TCP: ---- TCP header ----
                                                   = 524
                      TCP: Source port
                      TCP: Destination port
                                                   = 1026
                      TCP: Initial sequence number = 2744080
                      TCP: Next expected Seg number= 2744081
                      TCP: Acknowledgment number
                                                   = 12953
                      TCP:
                                                1. = SYN
                      TCP: Window
                                                   = 32768
                      TCP: Checksu
                      TCP: Maximum Packet 3: source: 130.57.20.10 dest: 130.57.20.1
                                   TCP: ---- TCP header ----
                                         TCP: Source port
                                                                      = 1026
                                         TCP: Destination port
                                                                      = 524
O tamanho da janela inicial
                                         TCP: Sequence number
                                                                      -12953
                                         TCP: Next expected Seg number= 12953
é determinado durante o
                                         TCP: Acknowledgment number
                                                                      = 2744081
                                         TCD .
                                                                      - Acknowledgment
handshake triplo
                                         TCP: Window
                                                                      = 8760
```

TCP: Checksum

TCP: No TCP options

Protocolos de Redes e de Computadores Tamanho Dinâmico da Janela TCP

- Serviço TCP é Full-duplex:
 - Significa que dados podem trafegar em cada direção, simultaneamente
 - Tamanhos de janela, número de sequência e número de reconhecimento são independentes de cada fluxo de dados

- O host de recebimento envia o valor do tamanho de janela ao remetente para indicar o número de bytes que ele está preparado para receber como parte desta sessão
 - Se o destino precisar diminuir a velocidade da taxa de comunicação, ele pode enviar um valor de tamanho de janela pequeno para a origem como parte de uma confirmação
 - Se não há restrição (nem perda), o tamanho de janela continuará a aumentar

Tamanho da Janela Dinâmica

Camada de Transporte

UDP - Comunicação com Baixo Overhead

User Datagram Protocol (UDP)

Datagrama UDP					
Bit (0)	Bit (15)	Bit (16)	Bit (31)		
Porta de Origem (16)		Porta de Destino (16)			
Comprimento (16)		Checksum (16)			
DADOS DA CAMADA DE APLICATIVOS (Tamanho varia)					

- Sem-conexão
- Entrega de melhor esforço (Best Effort)

Sem Handshake triplo

Exemplos de Aplicações

- Domain Name System (DNS)
- Jogos online
- Voice over IP (VoIP)
- Dynamic Host Configuration Protocol (DHCP)
- Trivial File Transfer Protocol (TFTP)

User Datagram Protocol (UDP)

Datagrama UDP					
Bit (0)	Bit (15) Bit (16)	Bit (31)		
Porta de Origem (16)	Por	ta de Destino (16)			
Comprimento (16)	Che	ecksum (16)			
DADOS DA CAMADA DE APLICATIVOS (Tamanho varia)					

- Baixo Overhead:
 - Sem-Conexão:
- Sem estabelecimento de conexão, como o TCP
 - Não confiável ou entrega de "Melhor Esforço":
 - Sem detecção de erro
 - Sem controle de Fluxo
 - Sem controle de congestionamento
 - o Sem número de sequência para entrega ordenada
 - o Quando uma aplicação tem dado a enviar, ela simplesmente envia o dado

User Datagram Protocol (UDP)

- Quando múltiplos datagramas são enviados a um destino, eles podem tomar diferentes caminhos e chegar na ordem errada.
- O UDP não rastreia os números de sequência da forma que o TCP faz.
- O UDP não tem um modo para reordenar os datagramas na sua ordem de transmissão.
- UDP simplesmente reagrupa os dados na ordem que eles foram recebidos e os encaminha para a aplicação

Resumo: Número de Portas

Port Number	Application	Layer 4 Protocol	Description	
20	FTP	ТСР	File Transfer Protocol – Data	
21	FTP	ТСР	File Transfer Protocol – Control Commands	
23	TELNET	ТСР	Terminal connection	
25	SMTP	ТСР	Simple Mail Transfer Protocol - Email	
53	DNS	UDP	Domain Name System	
67,68	DHCP	UDP	Dynamic Host Configuration Protocol	
69	TFTP	UDP	Trivial File Transfer Protocol	
80	НТТР	ТСР	Hypertext Transfer Protocol	