Lecture 4: Nondeterminism

Michael Engling

Department of Computer Science Stevens Institute of Technology

CS 334 Automata and Computation Fall 2015

OUTLINE: Nondeterministic Finite Automata

Labyrinth vs. Maze

Nondeterminism

NFA 1

NFA 2

NFA 3

Concatenation

Labyrinth vs. Maze

Determinism

Nondeterminism

Labyrinth vs. Maze

Veriditas Labyrinth

Overlook Hotel Maze

Nondeterminism

Dead Ends

Potential of Nontermination

Complexity

The Essence of Nondeterminism

DFA for 0*1010*

It is easy to verify that this DFA recognizes $L_1 = 0*1010*$

NFA 1 recognizing 0*1010*

But could we not have simply stopped here?

It is even easier to verify that this NFA recognizes $L_1 = 0*1010*$

Is this not more elegant?

So we introduce some dead ends?

Do we truly lose anything? (Hint: What is \overline{L} ?)

DFA for Σ^*1

It is easy to verify that this DFA recognizes Σ^{*1}

All strings ending in 0 finish in state E_0 .

All strings ending in 1 finish in state E_1 (and are accepted).

What about that pesky empty string, ε ?

NFA for Σ^*1

It is even easier to verify that this NFA recognizes Σ^*1 It practically creates itself.

So we introduce choice.

Where does the string 0101101 finish?

Do we accept or not?

Nondeterminism in a nutshell.

Can we put these together somehow to create an NFA that recognizes $0(00)^* \cup \Sigma^*11$ more elegantly and expressively than the DFA we created last time?

An ε -edge may be traversed without "spending" an input symbol. Where does 001 terminate?

Definition of Computation with NFAs Regular Languages

We can formalize our notion of *computation* with an NFA much the way we did for the simpler DFAs:

If $M=(Q,\Sigma,\delta,q_0,F)$ is an NFA, and w is a string over Σ , then M accepts w if we can write it as $w=y_1y_2...y_n$ where $y_i\in\Sigma_{\varepsilon}\ \forall i\in\{0,1,...n\}$ and a sequence of states $r_0r_1...r_n$ exists in Q such that:

- 1. $r_0 = q_0$ (We start in the start state.),
- 2. $\delta(r_i, y_{i+1}) = r_{i+1} \ \ \forall i \in \{0, 1, ..., n-1\}$, and
- 3. $r_n \in F$ (We end in a final (accepting) state.)

Definition: A language is a called a regular language if some finite automaton recognizes it (DFA or NFA).

NFA Formally

Not surprisingly, our formal definition of an NFA looks much like that for a DFA:

Q is a finite set of states Σ is a finite alphabet $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ is our transition function $q_0 \in Q$ is the start state $F \subset Q$ is the set of final (accepting) states

The only change is in our transition function.

$$\Sigma_{\varepsilon} = \Sigma \cup \varepsilon$$
 (This permits ε -edges.)

And we map to the power set of Q. Instead of having each symbols map (deterministically) to a unique state, we allow it to map to a (possibly empty-dead end) set of states. That's nondeterminism.

Concatenation Constructively

Suppose we have two DFAs computing L_1 and L_2 , and we wish to compute the concatenation of these languages $L_1 \circ L_2$, that is, the set of all strings $w = w_1 w_2$ where $w1 \in L_1$ and $w_2 \in L_2$.

Constructing a DFA to do this, much like the construction we did for the union/intersection of two languages, would be an arduous task.

But constructing an NFA to recognize the concatenation is child's play:

Let the start state of our NFA be the start state of the DFA recognizing L_1 . Next, connect via ε -edges all the final states of this DFA to the start state of the DFA recognizing L_2 . Finally, let the final states of this DFA be the final states of our NFA. Such a construction proves that $L_1 \circ L_2$ is a regular language for

any regular languages L_1 and L_2 .

Concatenation $L_1 \circ L_2$ Formally

Given
$$A_1 = (Q_1, \Sigma, \delta_1, q_0^{A_1}, F_1)$$
 and $A_2 = (Q_2, \Sigma, \delta_2, q_0^{A_2}, F_2)$ We can form " $A_1 \circ A_2$ " recognizing $L_1 \circ L_2$:

$$egin{aligned} A_1\circ A_2 &= ext{(as a 5-tuple)} \ (Q=Q_1\cup Q_2, & \delta_1(q,a) & q\in Q_1 ext{ and } q
otin F_1 \ \Sigma=\Sigma_{arepsilon} & \delta_1(q,a) & q\in F_1 ext{ and } a
otin
otin S_1(q,a) & q\in F_1 ext{ and } a
otin S_2(q,a) & q\in F_1 ext{ and } a=arepsilon \ S_2(q,a) & q\in Q_2 \ F=F_2 \end{pmatrix}$$

(Here we assume the only ε -edges added are those that connect the final states of A_1 to the start state of A_2 .)

Thus $L_1 \circ L_2$ is a regular language.

$$P \stackrel{?}{=} NP$$

The most important unsolved problem in computer science is probably the $P \stackrel{?}{=} NP$ question.

Basically, it asks: If the solution to a problem can be *checked* in polynomial time, can the problem be *solved* in polynomial time?

The idea is expressed in 5 symbols:

You know what a question mark means.

You know what the equal sign is and means.

The two "P"s stands for 'polynomial'—you know what that means.

Care to guess what the N stands for?