SESSION 2008

COMPOSITION DE MATHÉMATIQUES

Sujet: INSEE administrateur

DURÉE: 4 heures

L'énoncé comporte 6 pages. L'épreuve est constituée de deux problèmes indépendants.

L'usage de la calculatrice est autorisé

Problème 1 : analyse et algèbre

Dans tout le problème, n désigne un entier supérieur ou égal à 2. On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées de taille n à coefficients réels. Pour toute matrice carrée M, on note $\operatorname{Sp}(M)$ l'ensemble des valeurs propres de M. Pour toute matrice X, on note tX la transposée de X.

On rappelle les formules suivantes :

$$\sin a \sin b = \frac{1}{2} \left[\cos \left(a - b \right) - \cos \left(a + b \right) \right].$$

$$\sin p + \sin q = 2 \sin \left(\frac{p+q}{2} \right) \cos \left(\frac{p-q}{2} \right).$$

Préliminaire

Pour tout entier m dans \mathbb{Z} , on pose $\alpha = \frac{m}{2(n+1)}$ et $C(m) = \sum_{k=1}^{n} \cos(2k\pi\alpha)$

- 1. Montrer que si α n'est pas dans $\mathbb Z$ alors : si m est impair on a C(m)=0 et si m est pair on a C(m)=-1.
- 2. Que vaut C(m) si α est un élément de \mathbb{Z} ?

Partie 1

1. On note I_n la matrice identité de $\mathcal{M}_n(\mathbb{R})$ et on considère la matrice U de $\mathcal{M}_n(\mathbb{R})$ définie par son terme général $u_{p,q}$, où pour tout couple d'entiers (p,q) tel que $1 \leq p \leq n$, $1 \leq q \leq n$, on a :

$$u_{p,q} = \sin \frac{pq\pi}{n+1}.$$

Montrer que $U^2 = \frac{n+1}{2}I_n$. En déduire que la matrice U est inversible et donner l'expression de U^{-1} en fonction de U.

- 2. On considère la matrice A_n de $\mathcal{M}_n(\mathbb{R})$ dont le terme général a_{ij} est donné par : pour tout couple d'entiers $(i,j), 1 \leq i \leq n, \ 1 \leq j \leq n, \ \begin{cases} a_{ij} = 1 \text{ si } |i-j| = 1 \\ a_{ij} = 0 \text{ sinon} \end{cases}$
 - (a) Déterminer $Sp(A_2)$ et $Sp(A_3)$ ainsi que les sous-espaces propres associés aux valeurs propres trouvées.
 - (b) On note X_q la $q^{\text{ème}}$ colonne de la matrice U. Montrer que, pour tout entier q de [1, n], le vecteur colonne X_q est vecteur propre de la matrice A_n associé à la valeur propre $2\cos\frac{q\pi}{n+1}$.
 - (c) En déduire que A_n est diagonalisable et donner une matrice P inversible et une matrice D diagonale telle que $A_n = PDP^{-1}$.

Partie 2

On considère la matrice T de $\mathcal{M}_n(\mathbb{R})$ dont le terme général $t_{p,q}$ est donné par : pour tout couple d'entiers $(p,q), 1 \leqslant p \leqslant n, 1 \leqslant q \leqslant n, t_{p,q} = \sin\left(\frac{p(2q-1)\pi}{2n+1}\right)$.

On considère également la matrice B_n de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont ceux de A_n , sauf $b_{n,n}$ qui vaut 1.

- 1. On note Y_q la $q^{\text{ème}}$ colonne de T. Montrer que Y_q est vecteur propre de B_n et préciser la valeur propre attachée.
- 2. Montrer que B_n est diagonalisable et exhiber une matrice Q inversible et une matrice diagonale Δ telles que : $B_n = Q\Delta Q^{-1}$.

Partie 3

On appelle Φ l'application qui à toute matrice M de $\mathcal{M}_n(\mathbb{R})$ associe $\Phi(M) = A_n M - M B_n$.

- 1. Montrer que Φ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Pour tout i dans $[\![1,n]\!]$ et pour tout j dans $[\![1,n]\!]$, on pose $M_{i,j}=X_i\ ^tY_j.$
 - (a) Quel est le format de la matrice $M_{i,j}$?
 - (b) Vérifier que $M_{i,j}$ n'est pas la matrice nulle.
 - (c) Montrer que, pour tout i dans [1, n] et tout j dans [1, n], $M_{i,j}$ est vecteur propre de Φ .
- 3. (a) Utiliser l'expression de U^2 pour déterminer, pour tout k et tout i de $[\![1,n]\!]$, tX_k X_i .
 - (b) En déduire que la famille formée des n^2 matrices $M_{i,j}$ est libre.
- 4. Déduire de ce qui précède que Φ est diagonalisable et préciser ses valeurs propres.

Partie 4

On considère l'application u de $[0, \frac{\pi}{2}]$ dans $\mathbb R$ définie par $: \left\{ \begin{array}{l} u(t) = \frac{1}{t} - \cot(t) \text{ si } 0 < t \leqslant \frac{\pi}{2} \\ u(0) = 0 \end{array} \right.$

- 1. Montrer que u est une fonction continue sur $[0, \frac{\pi}{2}]$.
- 2. Montrer que u est de classe C^1 sur $[0, \frac{\pi}{2}]$.
- 3. Etudier les variations de u.

Partie 5

Pour tout entier k de [1, n], on considère l'application s_k définie, pour tout réel t, par : $s_k(t) = \sin(kt)$. On note \mathcal{E} le sous-espace vectoriel de $C^{\infty}(\mathbb{R}, \mathbb{R})$ engendré par (s_1, s_2, \ldots, s_n) .

- 1. Calculer, pour tout couple d'entiers (k,j) appartenant à $[1,n]^2$, la valeur de $\int_0^{\pi} s_j(t) s_k(t) dt$.
- 2. Montrer que (s_1, s_2, \ldots, s_n) est une base de \mathcal{E} .
- 3. Soit f une fonction de \mathcal{E} dont la décomposition sur la base (s_1, s_2, \dots, s_n) est $f = \sum_{k=1}^n a_k s_k$.

Montrer que
$$\int_0^{\pi} f^2(t)dt = \frac{\pi}{2} \sum_{k=1}^{n} a_k^2$$
.

- 4. On se propose dans cette question de trouver les coordonnées d'un élément f de \mathcal{E} dans la base (s_1, s_2, \ldots, s_n) .
 - On considère donc un élément f de \mathcal{E} qui s'écrit $f = \sum_{k=1}^{n} a_k s_k$.
 - On pose $\theta = \frac{\pi}{n+1}$
 - (a) Calculer le produit $U\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$
 - (b) En déduire que : $\forall k \in [[1, n]], \ a_k = \frac{2}{n+1} \sum_{p=1}^n f(p\theta) \sin(kp\theta).$
- 5. On se donne un n-uplet (b_1, \ldots, b_n) de \mathbb{R}^n . Montrer qu'il existe une unique fonction f de \mathcal{E} vérifiant : $\forall k \in [\![1,n]\!], \ f(k\theta) = b_k$.
- 6. On considère le cas particulier où tous les b_k sont égaux à 1. On note alors φ_n l'unique fonction de \mathcal{E} vérifiant : $\forall k \in [\![1,n]\!], \ \varphi_n(k\theta) = 1$.
 - On considère alors la décomposition de φ_n sur la base (s_1, s_2, \ldots, s_n) de \mathcal{E} donnée par :

$$\varphi_n = \sum_{k=1}^n \alpha_{k,n} s_k.$$

- (a) Montrer que si k est pair, alors $\alpha_{k,n} = 0$ et, si k est impair, alors $\alpha_{k,n} = \frac{4}{k\pi} \frac{2\theta}{\pi}u(\frac{k\theta}{2})$
- (b) Montrer que pour tout entier k impair, élément de [1,n], on $a:0 \le \frac{4}{k\pi} \alpha_{k,n} \le \frac{4}{(n+1)\pi}$.
- (c) Pour tout k de [1, n], déterminer $\beta_k = \lim_{n \to \infty} \alpha_{k,n}$.
- (d) Soit ψ_n la fonction de \mathcal{E} définie par $\psi_n = \sum_{k=1}^n \beta_k s_k$.

Montrer que
$$\lim_{n\to+\infty} \int_0^{\pi} (\varphi_n(t) - \psi_n(t))^2 dt = 0.$$

- (e) Déterminer $\lim_{n\to+\infty} \int_0^{\pi} (1-\psi_n(t))^2 dt$ (On rappelle que $\sum_{t=1}^{+\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{8}$).
- (f) En déduire $\lim_{n \to +\infty} \int_0^{\pi} (1 \varphi_n(t))^2 dt$

Problème 2 : probabilités

Les variables aléatoires considérées dans ce problème sont, soit des variables aléatoires discrètes, soit des variables aléatoires à densité.

On rappelle les deux définitions suivantes :

Si $(X_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et X une variable aléatoire définie sur le même espace, alors :

 \bullet On dit que la suite (X_n) converge en probabilité vers la variable X si et seulement si :

$$\forall \varepsilon > 0, \lim_{n \to +\infty} \mathbb{P}(|X_n - X| \ge \varepsilon) = 0$$
, ce que l'on note : $X_n \stackrel{P}{\to} X$

• On dit que la suite (X_n) converge en loi vers la variable X si et seulement si, en notant F_n la fonction de répartition de X_n et F celle de X, en tout point x de \mathbb{R} où F est continue, on a :

$$\lim_{n \to +\infty} F_n(x) = F(x), \text{ ce que l'on note } X_n \xrightarrow{\mathcal{L}} X$$

On admet de plus le résultat suivant : si la suite (X_n) converge en probabilité vers la variable X, alors elle converge en loi vers X.

Le but de ce problème est de définir de nouveaux types de convergence et d'étudier les différentes relations entre ceux-ci.

Préliminaire : les inégalités de Markov

On considère une suite (X_n) de variables aléatoires et une variable aléatoire X, toutes définies sur le même espace $(\Omega, \mathcal{A}, \mathbb{P})$. Montrer que :

1. Si X admet une espérance mathématique, alors :

$$\forall \varepsilon > 0, \ \mathbb{P}(|X| \geqslant \varepsilon) \leqslant \frac{\mathbb{E}(|X|)}{\varepsilon}.$$

- 2. Si X admet un moment d'ordre 2, alors : $\forall \varepsilon > 0$, $\mathbb{P}(|X| \geqslant \varepsilon) \leqslant \frac{\mathbb{E}(X^2)}{\varepsilon^2}$.
- 3. Montrer, plus généralement, que si X admet un moment d'ordre p, où $p \in \mathbb{N}^*$, alors : $\forall \varepsilon > 0, \ \mathbb{P}(|X| \geqslant \varepsilon) \leqslant \frac{\mathbb{E}(|X|^p)}{\varepsilon^p}$.

Partie 1 : convergence en moyenne

On considère toujours une suite (X_n) de variables aléatoires et une variable aléatoire X toutes définies sur le même espace $(\Omega, \mathcal{A}, \mathbb{P})$.

On suppose dans cette partie que les variables X_n et la variable X admettent une espérance.

On dit que la suite (X_n) converge en moyenne vers la variable X si et seulement si $\lim_{n\to+\infty} \mathbb{E}(|X_n-X|)=0$ et on note $X_n \xrightarrow{M} X$.

1. Montrer que, si Y est une variable aléatoire admettant une espérance, alors |Y| admet une espérance et $|\mathbb{E}(Y)| \leq \mathbb{E}(|Y|)$.

- 2. En déduire que si $X_n \xrightarrow{M} X$, alors $\lim_{n \to \infty} \mathbb{E}(X_n) = \mathbb{E}(X)$.
- 3. En utilisant la relation $|x+y| \leq |x| + |y|$, établir que $||a| |b|| \leq |a-b|$. Montrer alors que si $X_n \xrightarrow{M} X$, alors $\lim_{n \to +\infty} \mathbb{E}(|X_n|) = \mathbb{E}(|X|)$.
- 4. Montrer, en utilisant l'une des inégalités de Markov, que si $X_n \xrightarrow{M} X$, alors la suite (X_n) converge en probabilité vers X.

Partie 2 : convergence en moyenne quadratique

On considère encore et toujours une suite (X_n) de variables aléatoires et une variable aléatoire X toutes définies sur le même espace $(\Omega, \mathcal{A}, \mathbb{P})$.

On suppose dans cette partie que les variables X_n et la variable X admettent un moment d'ordre 2. On dit que la suite (X_n) converge en moyenne quadratique vers la variable X si et seulement si $\lim_{n\to+\infty} \mathbb{E}((X_n-X)^2)=0$ et on note $X_n \xrightarrow{MQ} X$.

- 1. Montrer que $\mathbb{E}(|X X_n|) \leqslant \sqrt{\mathbb{E}((X X_n)^2)}$.
- 2. En déduire que si $X_n \xrightarrow{MQ} X$ alors $X_n \xrightarrow{M} X$.
- 3. Montrer que, si $\lim_{n\to+\infty} \mathbb{E}(X_n) = \mu$ et $\lim_{n\to+\infty} \operatorname{Var}(X_n) = 0$, alors $X_n \xrightarrow{MQ} \mu$.

On vient donc, entre autres choses, de montrer :

$$X_n \overset{MQ}{\to} X \Rightarrow X_n \overset{M}{\to} X \Rightarrow X_n \overset{P}{\to} X \Rightarrow X_n \overset{\mathcal{L}}{\to} X$$

Partie 3 : étude d'un exemple

- 1. On pose, pour tout réel x de [0,1], $I_n(x)=\int_0^x \frac{(-\ln u)^n}{n!}du.$
 - (a) Montrer que l'intégrale $I_n(x)$ est convergente.
 - (b) Montrer que : $\forall x \in [0, 1], \ I_n(x) = x \sum_{k=0}^n \frac{(-\ln x)^k}{k!}$
- 2. On considère une variable aléatoire X_0 qui suit la loi uniforme sur [0,1] et on construit la suite de fonctions (f_n) définie par : f_0 est une densité de la variable X_0 et, pour tout n de \mathbb{N}^* :

$$\begin{cases} f_n(x) = \int_x^1 \frac{f_{n-1}(u)}{u} du \text{ si } x \in]0, 1[\\ f_n(x) = 0 \text{ si } x \notin]0, 1[\end{cases}$$

- (a) Déterminer f_1, f_2 et f_3 .
- (b) Déterminer explicitement f_n .
- (c) Vérifier que pour tout n de $\mathbb{N},$ f_n est une densité d'une variable aléatoire, notée X_n .
- (d) Déterminer, en fonction de I_n , la fonction de répartition F_n de X_n .
- 3. Montrer que la suite (X_n) converge en loi vers une variable aléatoire X dont on déterminera la loi.

- 4. (a) Montrer que, pour tout n de \mathbb{N} et pour tout k de \mathbb{N}^* , X_n admet un moment d'ordre k, noté $\mathbb{E}(X_n^k)$ et le calculer .
 - (b) Etudier la convergence en moyenne quadratique de la suite (X_n) et vérifier que le cas particulier qui vient d'être étudié ici est bien en accord avec le résultat obtenu à la question 3 de la deuxième partie.

Partie 4 : convergence complète

Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires définies sur un espace probabilisé (Ω, \mathcal{A}, P) et X une variable aléatoire définie sur ce même espace.

On dit que la suite (X_n) converge complètement vers la variable aléatoire X si, pour tout ε strictement positif, la série de terme général $\mathbb{P}(|X_n - X| \ge \varepsilon)$ converge. On note alors : $X_n \xrightarrow{C} X$.

- 1. (a) Justifier que $X_n \xrightarrow{C} X \Longrightarrow X_n \xrightarrow{P} X$.
 - (b) La réciproque est-elle vraie?
- 2. On suppose dans cette question que, pour tout entier naturel n non nul, X_n suit la loi de Poisson de paramètre $\frac{1}{n^2}$.
 - (a) Montrer que : $\forall \varepsilon > 0, \ \mathbb{P}(X_n \geqslant \varepsilon) \leqslant \mathbb{P}(X_n > 0)$
 - (b) Donner l'expression de $\mathbb{P}(X_n > 0)$ en fonction de n.
 - (c) Donner la nature de la série de terme général $\mathbb{P}(X_n \geqslant \varepsilon)$. Que peut-on en déduire?
- 3. On considère une suite de variables $(X_n)_{n\geqslant 1}$, mutuellement indépendantes, et suivant toutes la loi normale centrée réduite.

Pour tout entier naturel n non nul, on pose $S_n = \sum_{k=1}^n X_k$. On admet que S_n suit la loi normale de paramètres 0 et n.

Pour tout réel a strictement positif, on pose :

$$I(a) = \int_{a}^{+\infty} \frac{a^{2}}{t^{2}} e^{-\frac{t^{2}}{2}} dt, \ J(a) = \int_{a}^{+\infty} e^{-\frac{t^{2}}{2}} dt, \ K(a) = \int_{a}^{+\infty} \frac{t}{a} e^{-\frac{t^{2}}{2}} dt.$$

- (a) i. Montrer que les intégrales I(a), J(a), K(a) convergent, et que $I(a) \leqslant J(a) \leqslant K(a)$.
 - ii. Calculer K(a) et montrer que $I(a) = ae^{-\frac{a^2}{2}} a^2J(a)$.
 - iii. En déduire que $\frac{a}{a^2+1}e^{-\frac{a^2}{2}} \leqslant J(a) \leqslant \frac{1}{a}e^{-\frac{a^2}{2}}$.
- (b) Soit ε un réel strictement positif.
 - i. Vérifier que $\mathbb{P}\left(|\frac{S_n}{n}|\geqslant \varepsilon\right)=\sqrt{\frac{2}{\pi}}J(\varepsilon\sqrt{n}).$
 - ii. Montrer que $\mathbb{P}\left(\left|\frac{S_n}{n}\right|\geqslant \varepsilon\right)\underset{+\infty}{\sim}\frac{1}{\varepsilon}\sqrt{\frac{2}{n\pi}}e^{-n\frac{\varepsilon^2}{2}}.$
 - iii. En déduire que la suite $\left(\frac{S_n}{n}\right)_{n\geqslant 1}$ converge complètement vers la variable certaine égale à 0.