

IEEE 802.11ac 技术分析及产品介绍

李晨光 08367 2013-01-14

密级: 内部公开

杭州华三通信技术有限公司

课程目标

- 学习完本课程,您应该能够:
- 掌握802.11ac与802.11n继承和差异
- 掌握802.11ac PHY、MAC层变化
- 了解H3C 802.11ac产品及特性

目录

- IEEE 802.11ac由来
- 802.11ac为什么比802.11n快
- 802.11ac PHY层
- 802.11ac MAC层
- H3C 802.11ac 产品WA4600

WLAN,奔驰的骏马

WLAN的存在价值在哪里? 没有价值的技术只能被淘汰

802.11ac的由来

IEEE IEEE IEEE **IEEE 802.11ac** 802.11 802.11a 802.11g 物理速率: Up to 物理速率: 6.93Gbps. 物理速率: 物理速率: 54Mbps 54Mbps First solution is < 2Mbps 应用场景: 应用场景: 应用场景: 1.8Gbps. Internet Web体验 Web体验 应用场景:高清video 1997 \ 1998 \ 1999 \ 2000 \ 2001 \ 2002 \ 2003 \ 2004 \ 2005 \ 2006 \ 2007 \ 2008 \ 2009 \ 2010 \ 2011 \ 2012 Year IEEE **IEEE 802.11n** 802.11b 物理速率: Up to 物理速率: 600Mbps. Most common is 11Mbps 应用场景: 300Mbps E-mail 应用场景: 标清video

802.11ac的由来

- IEEE 802.11ac(VHT, Very High Throughput)是 IEEE制定的新一代WLAN网络标准。通过物理层、MAC层一系列技术更新实现对1Gbps以上传输速率的支持。
- 802.11ac使用5GHz的频段。
- 802.11ac对802.11n(HT, High Throughput)是继承的关系。

802.11ac发送 速率到底有多 快?

■ 理想条件下,11ac的最大发送速率可以达到6.9Gbps

- 一般条件下:
- 80M带宽: 单个VHT STA的性能大于 500Mbps
- 多个VHT STA的性能要大于1Gbps

目录

- IEEE 802.11ac由来
- 802.11ac为什么比802.11n快
- 802.11ac PHY层
- 802.11ac MAC层
- H3C 802.11ac 产品WA4600

802.11n回顾

功能	11n必选项	11n可选项
传输方式	OFDM	
信道带宽	20MHz	40MHz
数据子载波/导频	52/4	108/6
OFDM符号单元时间	4μm(800nm保护间隔)	3.6µm(400nm保护间隔)
调制类型	BPSK、QPSK、16QAM、 64QAM	
编码速率	1/2、2/3、3/4、5/6	
MCS支持	0到7,0到15用于AP	8到76,16到76用于AP
空间流和MIMO	1,2用于AP	3或4
运行模式	Legacy/non-HT(802.11a/b/g) Mixed/HT-mixed(802.11a/b/g/n)	Greenfield/HT-Greenfield (802.11n only)

802.11ac的扩展

● 更宽的信道: 80MHz、160MHz、80+80MHz

● 更高阶的调制: 256QAM

● 更多的空间流和天线: Max NSS=8

● 多用户MIMO: SU-MIMO→MU-MIMO

功能	11ac必选项	11ac可选项
信道带宽	20MHz, 40MHz, 80MHz	160MHz, 80+80MHz
数据子载波/导频	52/4, 108/6, 234/8	468/16
调制类型	BPSK、QPSK、16QAM、 64QAM	256QAM
MCS支持	0 到 7	8 到 9
空间流和MIMO	1	2到8 多用户MIMO(MU-MIMO)
运行模式	VHT(Very High Throughput)	

802.11ac为什么比802.11n快

802.11ac VS 802.11n

PHY	Bandwidth (as Number of Data Subcarriers)		Number of Spatial Streams		Data Bits per Subcarrier		Time per OFDM Symbol		PHY Data Rate
11n or 11ac	56 (20 MHz)		1 to 4		Up to 5/6×log ₂ (64) = 5		3.6 µs (short guard interval)		(bps)
	108 (40 MHz)	×		×		÷	4 μs (long guard interval)	-	
11ac only	234 (80 MHz)		5 to 8		Up to 5/6×log₂(256) ≈				
	2×234 (160 MHz)				6.67				

- 我司WA3600系列产品的最高速率:
 - 108 * 3 * 5/6 * 6 /3.6µm=450M
- 我司WA4600系列产品的最高速率(80MHz、3streams):
 - 234 * 3 * 5/6 * 8 /3.6µm=1300M
- 802.11ac协议最高速率(160MHz、8streams):
 - 468 * 8 * 5/6 * 8 /3.6µm=6933M

(子载波数 NSS Rate 每子载波数据量 Short-GI)

802.11ac为什么比802.11n快

802.11ac相对于802.11n速率提升!

目录

- IEEE 802.11ac由来
- 802.11ac为什么比802.11n快
- 802.11ac PHY层
- 802.11ac MAC层
- H3C 802.11ac 产品WA4600

802.11ac PHY - 涉及范围

- 信道带宽
- 调制
- MCS新定义
- 空间流
- MU-MIMO

802.11ac PHY —信道带宽

802.11ac协议里面引入了两种新的带宽模式,即80MHz以及160MHz

- 80MHz带宽:由两个相邻的,无间隔的40M带宽组成(80)
- 160MHz带宽:两个连续的80MHz带宽组成(160),也可以由两个不连续的80MHz带宽组成(80+80)

Europe Channel Allocation

802.11ac PHY —信道带宽

15

US Channel Allocation

中国只支持5G Channel 149-165? 那怎么实现160MHz?

Answer:

2012年10月31日,中国开放了5150-5350MHz(Channel 36-64) 频段,加上5735-5835MHz(Channel 149-165)频段,可以提供3 个80MHz信道。

802.11ac PHY -信道带宽

在11ac中,准确描述一个设备的工作信道模式需要如下四个要素:

- ① 当前工作带宽
- ② 当前工作中心频率1
- ③ 当前工作中心频率2(仅限于80+80模式)
- ④ 当前的主信道

```
[WA4620i-ACN-hidecmd]dis ar5 1 radio
Basic information
  Radio status: hardware fine, unshut, enable, fixed channel
  wlanMode: 802.11ac 80MHZ
  Operation Mode: AP
  ChannelNum: 161
  ChannelCenterFreq: 155
```

*没有11n中的向上、向下绑定了,而是提供的中心频率。

802.11ac PHY -信道带宽

小问题:

其他条件相同时,带宽分别为160 MHz 和 80+80 MHz,设备能达到的吞吐量一致吗? >, <, =?

802.11ac PHY -空间流 NSS

802.11ac协议引进了8x8 MIMO的概念,最多支持8条空间流。

● 理论上相对于802.11n的2x2 MIMO,增加4倍速率。

正确认识**NSS=8**:

- 因为无线终端STA的天线数量往往是有限的,比如Phone/Pad, 大多一根天线; USB无线卡/部分PCIE无线网卡, 2根天线; 其他 高性能无线网卡3-4根天线。
- 所以,单纯增加AP侧的天线和支持的空间流数量,是没有意义 的。
- 802.11ac的NSS=8,需要配合802.11ac中的另一个重要改进技 术MU-MIMO组合在一起,才能真正发挥作用。

802.11ac PHY -MU-MIMO

19

MU-MIMO (Multi-User MIMO)

- 该特性是11ac协议提出的一个创新性的概念。
- 主要作用:同一时刻通过不同的stream,向不同的Station并发发送数据,通过在AP发射端对stream进行预处理,可以消除其它stream对某一Station的干扰,不同Station感知不到其它Station数据的干扰,都能够同时接收。该特性依赖于预先学习到的信道状况信息,精确进行发送调制。
- NSS=8终于有了用武之地,使得AP增加流数具有实际意义。

802.11ac PHY -MU-MIMO

20

802.11ac PHY –MU-MIMO

802.11ac的 MU-MIMO

- 依赖于Beam forming来预先学习信道状况。
- 802.11ac最多支持8条空间流,最多并发向4个Station发送数据,每个station最多发送4条空间流。
- 向不同的Station发送时,可以使用不同的流数,但必须使用相同的MCS。
- 80.11ac只支持DL-MU-MIMO,即AP往Station方向支持。

思考

AP下行可以同时给不同的Station发送数据,Station收到后同时回复ACK会不会冲突?

802.11ac PHY -MU-MIMO

确认机制(MAC层改进)

● 携带的报文中最多有一个Station是立即确认,其余通过BAR请求单独确认。

802.11ac PHY -MU-MIMO

发射分集

接收分集

分集 信号更稳定

MU-MIMO

→ 仅用于下行传输

- → 最多4个用户
- → 每用户最高4个流
- → 共最高8条空间流

多用户 提升系统效率

目录

- IEEE 802.11ac由来
- 802.11ac为什么比802.11n快
- 802.11ac PHY层
- 802.11ac MAC层
- H3C 802.11ac 产品WA4600

802.11ac MAC

Enhanced RTS/CTS:

- → 仅很简单,在每个20Mhz信道上都发RTS/CTS;
- → 发现辅信道的隐藏节点;

Enhanced A-MPDU/A-MSDU:

- → 可选支持A-MSDU长度最大到11454 Bytes;
- → 可选支持A-MPDU长度最大到1048575 Bytes;

VHT TXOP Powersave:

- → 在AP使用MU-MIMO发送信息时,如果Station发现自己不在对应的用户列表内,则可以在本TXOP内进入睡眠;
- → 更节能

目录

- IEEE 802.11ac由来
- 802.11ac为什么比802.11n快
- 802.11ac PHY层
- 802.11ac MAC层
- H3C 802.11ac 产品WA4600

H3C WA4600i采用了围棋的"黑白子"设计理念, 正面为珍珠白色,背面为黑色。 由于采用了高品质的PC+ABS材料,外表面很有质感。 背面的黑色则使正面的白色更显档次。

WA4600i采用的H3C第二代智能天线,由24个天线振子组成。可以组成1600万种不同的组合波瓣,较第一代设计增益更强。WA4600i的智能天还线针对802.11ac协议进行特殊设计,保证其5GHz覆盖能力超出业界水平50%,真正做到信号可用。

H3C采用高通最新的低功耗Peregrine芯片,并在节能方面做到精益求精。 这使得WA4600i的整机功耗保持在13W以下,这样的好处在于, WA4600i仅使用标准PoE就可以完成供电,最大限度降低用户的建网成本。

H3C 802.11ac产品

H3C WA4600系列产品特性简介

- 产品交付件: WA4620i-ACN、WA4620E-ACN
- 产品形态:同时支持FAT、FIT
- 产品特性: 3NSS、256-QAM、VHT80
- 产品支持最高物理速率: 11N—450Mbps、11AC—1300Mbps

WA4600产品特点

动态带宽选择

- 自动适配AP周围信道状况,动态调整发送带宽
- 能与现有的11a、11an设备和谐共存
- 如图所示,当11ac AP与现有11n AP共存情况下,支持动态带宽选择 11ac 的AP会动态调整工作带宽为40MHz,与11n的系统共存。如不支持,则会严重受11n系统拖累,性能极低;

WA4600产品特点

低功耗

- 支持POE供电 (802.3af)
- 节能、环保
- 交换机无需升级支持 POE+(802.3at) , 平滑升级 , 更 好地保护用户投资

5G频谱分析

- 丰富的干扰类型识别
- 图形化的显示界面
- 检测到干扰智能调整工作信道
- 方便进行网络环境分析、问题定位

2.4G/5G全覆盖

- 2.4G/5G同时工作
- 2.4G提供3x3 11n 450Mbps的网络覆盖
- 5G提供3x3 11ac 1.3Gbps的网络覆盖

双以太口上行

- 双以太口上行
- 确保有线口不是无线接入的瓶颈
- 支持POE供电和上行链路备份
- 支持链路聚合
- 支持负载分担

WA4600产品特点

继承原有H3C产品的丰富特性

- 多用户公平调度
- 混合接入公平
- 过滤干扰
- 频谱导航
- 组播增强
- 漫游导航
- 智能负载均衡
- 有线无线一体化管理

•

WA4600产品性能

性能数据

● 以下都是打开快转并开启固定速率的数据,性能比不打开情况下 会高15%左右。

	ch	ariot	iperf			
	UDP	TCP	UDP	TCP		
下行	700M	630M	790M	680M		
上行	720M	670M	800M	740M		

802.11ac 业界现状和发展路标

终端

- HTC、三星已经推出支持11ac功能的手机;
- 今年下半年、明年上半年支持2条流的平板会陆续推出;

AP

- 一些厂商宣称开发已出第一代11ac产品;
- 今年下半年到明年将有越来越多的厂商推出产品;

芯片

- 第一代芯片已经量产(3条流、80MHz带宽、256QAM)
- ▼ 下一代芯片预计2014年底推出(4条流、160MHz带宽、MU-MIMO等)

WA4600部署(80M模式)

80M模式——追求极限吞吐速率、5G电磁环境干净

WA4600部署(40M模式)

40M模式——追求最大接入容量,5G电磁环境一般

本章总结

- 802.11ac对11n的继承和差异做了介绍
- 详述802.11ac的PHY层、MAC层改进
- 简单介绍H3C第一代802.11ac产品WA4600

IToIP解决方案专家

杭州华三通信技术有限公司 www.h3c.com.cn