Instituto Tecnológico de Costa Rica Escuela de Matemática MA-1102 Cálculo Diferencial e Integral 20 de agosto de 2018 Tiempo: 3 horas 42 puntos

Examen de Suficiencia

II semestre 2018

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, deben aparecer todos los pasos que le permitieron obtener cada una de las respuestas. Trabaje en forma clara y ordenada, utilizando únicamente bolígrafo azul o negro para resolver la prueba, en un cuaderno de examen o en hojas debidamente grapadas. No son procedentes reclamos de preguntas resueltas con lápiz o que presenten algún tipo de alteración. Solo se permite el uso de calculadora científica no programable. Apague el celular.

1. [3 puntos] Dadas las premisas: $(\neg T \lor \neg R), \neg R \Rightarrow S \lor \neg S \land \neg P)$, concluya $\neg (T \lor P)$. Debe justificar cada paso con la regla de inferencia correspondiente.

Leyes de la lógica	Equivalencia
Implicación y disyunción (ID)	$P \Longrightarrow Q \equiv \neg P \lor Q$
Leyes de De Morgan (DM)	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
	$\neg (P \land Q) \equiv \neg P \lor \neg Q$
Contrapositiva	$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$

Regla de inferencia	Premisas	Conclusión
Modus Ponens (MP)	$P \Longrightarrow Q, P$	Q
Modus Tollens (MT)	$P \Longrightarrow Q, \neg Q$	$\neg P$
Silogismo disyuntivo (SD)	$P \lor Q, \neg P$	Q
Silogismo hipotético (SH)	$P \Longrightarrow Q, Q \Longrightarrow R$	$P \Longrightarrow R$
Adjunción (ADJ)	P,Q	$P \wedge Q$
Simplificación (SIMP)	$P \wedge Q$	P, Q
Adición (ADI)	P Q cualquier otra proposición	$P \lor Q$

- 2. [4 puntos] Calcule, si existe, el límite $\lim_{t\to 0} (t+e^{2t})^{\frac{1}{t}}$
- 3. [4 puntos] Calcule el siguiente límite sin utilizar la regla de L'Hôpital

$$\lim_{t \to 0} \frac{1 - \cos^4(t)}{t^2}$$

- 4. [4 puntos] Halle la primera derivada de la función $f(t) = \text{sen}^3(t^2) \ln \left(\frac{\sqrt{t^2 + 1}}{t^4 + 2} \right)$. No es necesario simplificar.
- 5. [4 puntos] Determine la ecuación de la recta tangente y de la recta normal a la curva $y = x^4 e^{1-x^2}$ en el punto (1,1).
- 6. [4 puntos] Encuentre las dimensiones del cilindro circular recto de volumen máximo que puede inscribirse en un hemisferio de radio 10 cm.
- 7. [4 puntos] Determine todas las asíntotas de la función $f(x) = \frac{x^2 + 2x + 2}{x^2 5x 14}$.
- 8. Calcule las siguientes integrales:
 - a) [4 puntos]

$$\int 3x^2 \ln(x^2 + 1) dx$$

b) [4 puntos]

$$\int \frac{x+2}{x(x+1)^2} dx$$

- 9. [4 puntos] Plantee (no calcule) las integrales que permiten calcular el área encerrada por las rectas y=5x y y=-x+6 y la parábola $y=x^2$.
- 10. [3 puntos] Determine si la integral $\int_{0}^{+\infty} e^{-2x} dx$ converge o diverge. En su respuesta debe utilizar la definición de integral impropia.