Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection

with the rights afforded in the license agreement and for no other purpose.

 ${\bf Strategies:} \ {\bf none} \ {\bf selected}$

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 90.31

Figure 1: Outline of path 1

2.1.1 Shi epoxidation

Substrates:

1. 1,4-dioxa-spiro[4.5]dec-6-ene

Products:

1. C1C[C@@H]2OC2C2(C1)OCCO2

Typical conditions: sugar.based.catalyst.KHSO5.K2CO3.H2O.ACN.0C

Protections: none

Reference: 10.1055/s-0028-1083545 and 10.1021/ja972272g and

10.1021/ja003049d and 10.1021/jo972106r

Retrosynthesis ID: 7433

2.1.2 Ring-opening of epoxides or thiiranes with azides

Substrates:

- 1. hydrazoic acid
- $2. \ C1C[C@@H]2OC2C2(C1)OCCO2$

Products:

1. [N-]=[N+]=NC1[C@@H](O)CCCC12OCCO2

Typical conditions: NaN3.NH4Cl.MeOH.H2O.65 $\,\mathrm{C}$

Protections: none

Reference: 10.1021/jm400529f p. 4361, 4367 and 10.1021/ja003713q p. 1590,

1594

Retrosynthesis ID: 859

2.1.3 Hydrolysis of ketals

$$N = N + N$$
 $N = N + N$
 $N =$

Substrates:

1. [N-]=[N+]=NC1[C@@H](O)CCCC12OCCO2

Products:

1. [N-]=[N+]=NC1C(=O)CCC[C@@H]1O

Typical conditions: H2O.HCl

Protections: none

Reference: 10.1021/jo0159035 and 10.1021/jo00194a003 and

Retrosynthesis ID: 31013139

2.1.4 Dehydration of beta-ketoalcohols

Substrates:

1. [N-]=[N+]=NC1C(=O)CCC[C@@H]1O

Products:

1. 2-azidocyclohex-2-enone

Typical conditions: 1.MsCl.NEt3

Protections: none

Reference: 10.1021/ol301090v and 10.1021/ja00521a062 and

10.1002/ejoc.201201636 (SI)

Retrosynthesis ID: 20812

2.2 Path 2

Score: 100.08

Figure 2: Outline of path 2

2.2.1 Synthesis of ketals and acetals

Substrates:

1. 1,3-Propanedithiol - available at Sigma-Aldrich

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

 $1. \ \mathrm{C1}{=}\mathrm{CC2}(\mathrm{CCC1})\mathrm{SCCCS2}$

 $\textbf{Typical conditions:} \ pTsOH. to luene. heat$

Protections: none

Reference: 10.1039/P19880000817 AND 10.1016/j.tetlet.2012.07.052 AND 10.1039/C0CC00110D AND 10.1002/1521-3765(20010504)7:9<2007::AID-CHEM2007>3.0.CO;2-7

Retrosynthesis ID: 14599

2.2.2 Shi epoxidation

Substrates:

 $1. \ \mathrm{C1}{=}\mathrm{CC2}(\mathrm{CCC1})\mathrm{SCCCS2}$

Products:

 $1. \ C1CSC2(CCC[C@@H]3OC32)SC1 \\$

Typical conditions: sugar.based.catalyst.KHSO5.K2CO3.H2O.ACN.0C

Protections: none

Reference: 10.1055/s-0028-1083545 and 10.1021/ja972272g and

10.1021/ja003049d and 10.1021/jo972106r

Retrosynthesis ID: 7433

2.2.3 Ring-opening of epoxides or thiiranes with azides

Substrates:

- 1. hydrazoic acid
- 2. C1CSC2(CCC[C@@H]3OC32)SC1

Products:

1. [N-]=[N+]=NC1[C@@H](O)CCCC12SCCCS2

 $\textbf{Typical conditions:}\ \ NaN3.NH4Cl.MeOH.H2O.65\ C$

Protections: none

Reference: 10.1021/jm400529f p. 4361, 4367 and 10.1021/ja003713q p. 1590,

1594

2.2.4 Synthesis of ketones from dithianes

Substrates:

 $1. \ [N-]=[N+]=NC1[C@@H](O)CCCC12SCCCS2$

Products:

1. [N-]=[N+]=NC1C(=O)CCC[C@@H]1O

 ${\bf Typical\ conditions:\ MeI. CaCO3}$

Protections: none

Reference: 10.1016/j.tet.2013.09.075 and 10.1021/j000007a015 and 10.1021/j00610412 and 10.1021/ol901024t and 10.1021/ol500553x and 10.1021/j00626459

Retrosynthesis ID: 31724

2.2.5 Dehydration of beta-ketoalcohols

Substrates:

1. [N-]=[N+]=NC1C(=O)CCC[C@@H]1O

Products:

1. 2-azidocyclohex-2-enone

Typical conditions: 1.MsCl.NEt3

Protections: none

Reference: 10.1021/ol301090v and 10.1021/ja00521a062 and

10.1002/ejoc.201201636 (SI)

Retrosynthesis ID: 20812

2.3 Path 3

Score: 107.89

Figure 3: Outline of path 3

2.3.1 Pinacol Coupling Reaction

Substrates:

- 1. Ethanal available at Sigma-Aldrich
- 2. 2-Cyclohexen-1-one available at Sigma-Aldrich

Products:

1. CC(O)C1(O)C=CCCC1

Typical conditions: Mg.NH4Cl.H2O or Mg.SmI2.TMSCl.THF.HMPA

Protections: none

Reference: 10.1021/jo982497p p. 3234, 3236 and 10.1021/ol0506258 p. 2366, SI

p. S12

Retrosynthesis ID: 10205

2.3.2 Sharpless asymmetric epoxidation

Substrates:

1. CC(O)C1(O)C=CCCC1

2. Luperox(r) TBH70X - available at Sigma-Aldrich

Products:

1. CC(O)C1(O)CCC[C@@H]2OC21

Typical conditions: D(-)diethyl tartrate

Protections: none

Reference: 10.1021/ja00538a077 and 10.1021/cr00093a001

Retrosynthesis ID: 10442

2.3.3 Ring-opening of epoxides or thiiranes with azides

Substrates:

1. hydrazoic acid

 $2. \ CC(O)C1(O)CCC[C@@H]2OC21$

Products:

1. CC(O)C1(O)CCC[C@H](O)C1N=[N+]=[N-]

Typical conditions: sodium azide or TMSN3

Protections: none

Reference: DOI: 10.1055/s-2007-965921 and 10.1021/j0034752y and

Retrosynthesis ID: 34714

2.3.4 Cleavage of 1,2-diols with NaIO4

Substrates:

1. CC(O)C1(O)CCC[C@H](O)C1N=[N+]=[N-]

Products:

1. [N-]=[N+]=NC1C(=O)CCC[C@@H]1O

Typical conditions: NaIO4.solvent

Protections: none

Reference: 10.1039/C50B00238A and 10.1002/chem.201301371 and

10.1021/ol052106a

2.3.5 Dehydration of beta-ketoalcohols

Substrates:

1. [N-]=[N+]=NC1C(=O)CCC[C@@H]1O

Products:

1. 2-azidocyclohex-2-enone

 $\textbf{Typical conditions:} \ 1.MsCl.NEt3$

Protections: none

Reference: 10.1021/ol301090v and 10.1021/ja00521a062 and

10.1002/ejoc.201201636 (SI)

Retrosynthesis ID: 20812

2.4 Path 4

Score: 115.31

Figure 4: Outline of path 4

2.4.1 Suzuki alkyl-alkyl coupling

Substrates:

1. (S)-2-Vinyloxirane - available at Sigma-Aldrich

2. 2-Bromo-N,N-dimethylacetamide - available at Sigma-Aldrich

Products:

1. CN(C)C(=O)CCC[C@H]1CO1

Typical conditions: 1.9BBN-H or pinB-Bpin.Cu 2.[Pd].ligand.base

Protections: none

Reference: 10.1021/ja074008l and 10.1021/ja011306o and 10.1002/1521-3773(20011217)40:24<4544::AID-ANIE4544>3.0.CO;2-N and <math>10.1021/ol300575d

Retrosynthesis ID: 8325

2.4.2 Reaction of amides with lithiated epoxides

Substrates:

1. CN(C)C(=O)CCC[C@H]1CO1

Products:

1. O=C1CCC[C@@H]2OC12

Typical conditions: 1. sBuLi.DBB.hexane.-90C 2. Bu3SnCl

Protections: none

Reference: DOI: 10.1021/ol048544j and 10.1021/ol0485013

Retrosynthesis ID: 1698

2.4.3 Ring-opening of epoxides or thiiranes with azides

$$+ N = N^{+} NH$$

$$+ N = N^{+} NH$$

$$2 + *$$

Substrates:

 $1. \ \mathrm{O}{=}\mathrm{C1}\mathrm{CCC}[\mathrm{C@@H}]\mathrm{2OC12}$

2. hydrazoic acid

Products:

1. [N-]=[N+]=NC1C(=O)CCC[C@@H]1O

 $\textbf{Typical conditions:}\ \ NaN3.NH4Cl.MeOH.H2O.65\ C$

Protections: none

Reference: 10.1021/jm400529f p. 4361, 4367 and 10.1021/ja003713q p. 1590,

1594

Retrosynthesis ID: 859

2.4.4 Dehydration of beta-ketoalcohols

Substrates:

1. [N-]=[N+]=NC1C(=O)CCC[C@@H]1O

Products:

1. 2-azidocyclohex-2-enone

 $\textbf{Typical conditions:} \ 1. MsCl. NEt 3$

Protections: none

Reference: 10.1021/ol301090v and 10.1021/ja00521a062 and

10.1002/ejoc.201201636 (SI)

Retrosynthesis ID: 20812

2.5 Path 5

Score: 115.31

Figure 5: Outline of path 5

2.5.1 Nitration of aliphatic olefins

Substrates:

- 1. HNO2
- $2. \ \ 3, \!\! 4\text{-Epoxy-1-cyclohexene} \quad \textit{available at Sigma-Aldrich}$

Products:

1. O=[N+]([O-])C1=CCCC2OC12

Typical conditions: Fe(NO2)3x9H2O.TEMPO.DCE.4A MS.80C

Protections: none

Reference: DOI: 10.1021/jo400598p

Retrosynthesis ID: 1623

2.5.2 Ring-opening of epoxides or thiiranes with azides

Substrates:

1. hydrazoic acid

2. O=[N+]([O-])C1=CCCC2OC12

Products:

1. [N-]=[N+]=NC1C([N+](=O)[O-])=CCCC1O

Typical conditions: NaN3.NH4Cl.MeOH.H2O.65 $\,\mathrm{C}$

Protections: none

Reference: 10.1021/jm400529f p. 4361, 4367 and 10.1021/ja003713q p. 1590,

1594

2.5.3 Synthesis of ketones from nitroalkenes

Substrates:

1.
$$[N-]=[N+]=NC1C([N+](=O)[O-])=CCCC1O$$

Products:

1. [N-]=[N+]=NC1C(=O)CCCC1O

 $\textbf{Typical} \qquad \textbf{conditions:} \qquad \qquad \textbf{RaNi.hypophosphite.EtOH.acetate.buffer} \qquad \textbf{or} \qquad \qquad \\$

 ${\rm Fe.HCl.MeOH}$

Protections: none

Reference: 10.1081/SCC-200051681 and 10.1055/s-1993-25981

Retrosynthesis ID: 34041

${\bf 2.5.4}\quad {\bf Dehydration\ of\ Beta\ Hydroxy\ Carbonyl\ Compounds}$

Substrates:

1.
$$[N-]=[N+]=NC1C(=O)CCCC1O$$

Products:

1. 2-azidocyclohex-2-enone

Typical conditions: TsOH

Protections: none

Reference: DOI:10.1002/anie.201204977 AND 10.1021/ol062777o