Analysis

Contents

1	Sets	3	
	1.1	Subsets	
	1.2	Relations	
	1.3	Orders And Equivalences	
	1.4	Functions	

1 Sets

Definition: A set is a collection of objects, called the elements or members of the set.

We write $x \in X$ if x is an element of the set X and $x \notin X$ if x is not an element of X.

Two sets X = Y if $x \in X$ iff $x \in Y$ (where "iff" and \iff means "if and only if").

The empty set is denoted by \emptyset , that is the set without any elements. X is nonempty if it has at least one element.

We can define sets by listing its elements: $X = \{a, b, c, d\}$.

We can have infinite sets, for example:

• The rational numbers: $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$

1.1 Subsets

A is a subset of a set X or A is included in X, written $A \subseteq X$, if every element of A belongs to X. A is a proper subset of X, written as $A \subset X$, when $A \subseteq X$, but $A \neq X$.

Definition: The power set P(X) of a set X is the set of all subsets of X. **Example:** $X = \{1, 2, 3\}$, then

$$P(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

The power set P(X) of a set X with |X| = n elements has $|P(X)| = 2^n$ elements because, in defining a subset, we have two independent choices for each element. Thus, the notation $2^X = P(X)$ is also in use.

The Cartesian product AxB of sets A,B is the set whose members all possible ordered pairs (a,b) with $a \in A, b \in B$, thus $A \times B = \{(a,b) : a \in A, b \in B\}$ and $|A \times B| = |A||B|$.

1.2 Relations

Any subset of the Cartesian product of two sets X, Y defines a (binary) relation $R \subseteq X \times Y$ between these two sets. Given $(x, y) \in R$ we may denote this inclusion simply as xRy.

Notation: \forall means 'for all', \exists means 'exists'.

- A binary relation R is univalent if $\forall x \in X, \forall y \in Y, \forall z \in Y$, we have $((x,y) \in R \text{ and } (x,z) \in R) \Rightarrow y = z$.
- A binary relation R is total if $\forall x \in X, \exists y \in Y \text{ we have } (x, y) \in R$.

Definition: A partially defined function is a univalent binary relation, and a function is a univalent and total binary relation. Thus a function $f: X \to Y$ is defined by a univalent and total $xRy \iff y = f(x)$.

The set of all functions from X to Y is commonly denoted as $Y^X = \prod_{x \in X} Y$.

1.3 Orders And Equivalences

Definition: An order \leq on a set X is a binary relation on X: s.t. for every $x, y, z \in X$:

- $x \le x$ (reflexivity)
- $If x \leq y$ and $y \leq x$ then x = y (antisymmetry)
- $If x \leq y$ and $y \leq z$ then $x \leq z$ (transitivity)

An order is linear or total if $\forall x,y \in X$ either $x \leq y$ or $y \leq x$. If \leq is an order, then we define a strict order by x < y if $x \leq y$ and $x \neq y$. If for a relation in 2. instead of antisymmetry we have symmetry: 2. If $x \sim y$ then $y \sim x$ then \sim is called an equivalence relation.

1.4 Functions

Definition: Per definition a function $f: X \to Y$ is a univalent and total relation, that is for every $x \in X$ there is a unique $y = f(x) \in Y$. Do(f) = X is called the domain of f, and $Ran(f) = y \in Y : \exists x \in X, y = f(x) \subseteq Y$ is called the range of f. Also $f(A) = y \in Y : \exists x \in A, y = f(x)$ for some $A \subseteq X$.

The identity function $id_X: X \to X$ on a set X is the function that maps every element of X to itself, that is $id_X(x) = x$ for all $x \in X$.

The characteristic or indicator function $\chi_A: X \to \{0,1\}$ of $A \subseteq X$ is defined

as
$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$
.

The graph of a function $f: X \to Y$ is defined as $G_f = \{(x,y) \in X \times Y : y = f(x)\}.$

1.4.1 Properties of a Function

A function $f: X \to Y$ is

- injective (one-to-one) if it maps distinct elements to distinct elements, that is $x_1, x_2 \in X$ and $x_1 \neq x_2$ implies that $f(x_1) \neq f(x_2)$.
- surjective (onto) if its range Ran(f) = Y, that is for every $y \in Y$ there exists an $x \in X$, s.t. y = f(x).

If a function is both injective and surjective then its bijective.

We define the composition $f \circ g(z) = f(g(z))$ of functions $f: Y \to X$ and $g: Z \to Y$. Note that we need the inclusion $Ran(g) \subseteq Do(f)$. \circ is associative. A bijective function $f: X \to Y$ has an inverse $f^{-1}: Y \to X$ defined by $f^{-1}(y) = x$ if and only if f(x) = y that is $f \circ f^{-1} = id_Y$ and $f^{-1} \circ f = id_X$. If $f: X \to Y$ is merely injective than still $f: X \to Ran(f)$ is bijective, thus invertible on its range with inverse $f^{-1}: Ran(f) \to X$.

1.4.2 Groups, Monoids, Fields

Definition: Given a function $f: X \times X \to X$ we may denote f(x,y) = x * y and consider this as a binary operation on X. For example addition of integers is such an operation. Then we say that * is/has

- Associative, if x * (y * z) = (x * y) * z
- Commutative, if x * y = y * x
- • Neutral element, if there exists $e \in X$ (a neutral element), s.t. x*e = e*x = x
- Inverse elements, if for all $x \in X$ there exists $x' \in X$ called an inverse of x, s.t. x * x' = x' * x = e where e is a neutral element.

Definition: (X, *) is called a

- Semigroup, if * is associative,
- Monoid, if (X, *) is a semigroup and has a neutral element,
- Group, if (X, *) is a monoid and every element $x \in X$ has an inverse.

Theorem: In a group (X, *) the neutral element $e \in X$ and inverse x' for any fixed $x \in X$ are unique.