N. Arrennepabers.c.

CAMBRIDGE INTERNATIONAL EXAMINATIONS

NOVEMBER 2002

INTERNATIONAL GCSE

MARK SCHEME MAXIMUM MARK: 80 SYLLABUS/COMPONENT: 0606/2 ADDITIONAL MATHEMATICS (Paper 2)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE Examinations – November 2002	0606	2

1 [4]	Inverse = $\begin{pmatrix} 6 & -3 \\ -7 & 4 \end{pmatrix}$ $\times \frac{1}{3}$	B1 B1
	$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 6 & -3 \\ -7 & 4 \end{pmatrix} \begin{pmatrix} -7 \\ -16 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$	M1 A1
2 [4]	$2^{6} + 6 \times 2^{5} \times x + \frac{6 \times 5}{1 \times 2} \times 2^{4} \times x^{2}$ $= 64 + 192x + 240x^{2}$	B2, 1, 0 (-least incorrect or missing term
	Replace x by $x - x^2$ \Rightarrow coefficient of $x^2 = -192 + 240 = 48$	M1 A1 C.s.c.
3 [5]	(i) Either $\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}} \times \frac{1+\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}$ or $\frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$	M1
	Simplify ⇒ 2 + √3	A1
	(ii) $\frac{1}{p} = \frac{1}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = \frac{2 - \sqrt{3}}{4 - 3}$	M1 A1 ✓
	$p - \frac{1}{p} = 2 + \sqrt{3} - \left(2 - \sqrt{3}\right) = 2\sqrt{3}$	A1
	Or $p - \frac{1}{p} = 2 + \sqrt{3} - \frac{1}{2 + \sqrt{3}} = \frac{6 + 4\sqrt{3}}{2 + \sqrt{3}}$	B1 ✓
	Multiply by $\frac{2-\sqrt{3}}{2-\sqrt{3}}$ $\Rightarrow 2\sqrt{3}$	M1 A1
4 [6]	Solving inequalities: A $x < 3.5$ B $x^2 - x - 2 = 0 \Rightarrow (x - 2)(x + 1) = 0 \Rightarrow x = -1, 2$ $x^2 - x - 2 > 0 \Rightarrow x < -1, x > 2$	B1 M1 A1
	Required values -5 < x < -1 2 < x < 3.5	A1 M1 A1

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE Examinations – November 2002	0606	2

5 [6]	(a) Either ${}_{5}C_{3} = \frac{5 \times 4 \times 3}{1 \times 2 \times 3}$ or ${}_{4}C_{2} = \frac{4 \times 3}{1 \times 2}$	B1
	Product = 10 × 6 = 60	M1 A1
	(b) Either, ending in 1 (or 3) \Rightarrow 2 × 5 × 4 or, ending in 5 (or 7) \Rightarrow 3 × 5 × 4	B1
	Adding all 4 cases ⇒ 40 + 40 + 60 + 60 = 200	M1 A1
6 [6]	(i) $f(x) = -(x-1)(x-2)(x-k)$	M1 A1
	$f(3) = -2 \times 1 \times (3 - k) = 8 \qquad \Rightarrow \qquad k = 7$	M1 A1
	(ii) $f(-3) = -(-4)(-5)(-10) = 200$	M1 A1
7 [6]	(i) $\frac{d}{dx}(x \sin x) = \sin x + x \cos x$	M1 A1
	(ii) $\int x \cos x dx = x \sin x - \int \sin x dx$	M1
	$\int \sin x dx = -\cos x$	DM1
	$x \sin x + \cos x \qquad \qquad \frac{\pi}{2} - 1 \approx 0.571$	Al Aleso,
8 [6]	(i) $\int_{1}^{\infty} \left[\to -\infty \text{ as } x \to 0; \text{ thro' } (1,0); \to \infty \text{ as } x \to \infty \right]$	B2,1,0
	(ii) Take logs lnx2+lnex-2 = lnl	m
	=> 2(ax +x-2 = 0.	AI
	Make $\ln x$ the subject $\Rightarrow \ln x = -\frac{1}{2}(x-2) \Rightarrow \text{ line is } y = 1 - \frac{x}{2}$	M1. A1
9 [7]	(a) Correct combination of indices	M1
	Either $(a^{2/3} - a^{1/3}b^{2/3} + b^{4/3}) \times a^{1/3} = a - a^{2/3}b^{2/3} + a^{1/3}b^{4/3}$	
	Or $(a^{2/3} - a^{1/3}b^{2/3} + b^{4/3}) \times b^{2/3} = a^{2/3}b^{2/3} - a^{1/3}b^{4/3} + b^2$	A1
	$Sum = a + b^2$	A1
	(b) $2^{2x+2} = 4 \times 2^{2x}$ $5^{x-1} = 5^x \div 5$ $8^x = 2^{3x}$ \vdots $10^x = 4/5$	B2,1,0 (-1 each becomest, or missing term) M1 A1
	· 10 = 4/5	IVITAT

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE Examinations – November 2002	0606	2

40 (0)	A (2) AD = 1/2 = 0.14 = 0/0 + 1/0	54 114 4
10 [9]	(i) $AP = b/3 - a$ $OM = a/2 + b/2$	B1 M1 A1
	(ii) $OQ = \lambda (a/2 + b/2)$	B1√
	O B (iii) OQ = OA + μ AP = \mathbf{a} + μ (b/3 - \mathbf{a})	M1 A1√
	(iv) Comparing coefficients $\lambda/2 = 1 - \mu$ and $\lambda/2 = \mu/3$	M1
	Solving $\lambda = \frac{1}{2}$ $\mu = \frac{3}{4}$	M1 A1
11 [11]	(i) $v = \int (\frac{3t}{2} - 6) dt = \frac{3t^2}{4} - 6t$ (+c)	M1 A1
	$[v]_{t=0} = 20 \implies c = 20$ $[v]_{t=4} = 12 - 24 + 20 = 8$	A1 A1
·	(ii) $\int (\frac{3t^2}{4} - 6t + 20) dt = \frac{t^3}{4} - 3t^2 + 20t$	M1 A1√
	$AB = \begin{bmatrix} 1_0^4 = 16 - 48 + 80 = 48 \end{bmatrix}$	A1
	(iii) $v_B = 8$, $v_C = 20$ \implies $t_{BC} = (20 - 8) / 2 = 6$	M1 A1 √
	(iv) curve	B1
	straight line	B1 , ↑
	4 (10)	
12 [10]	$A = \pi r^2 + \pi r I \qquad \Rightarrow \qquad I = (120 - \pi r^2) / \pi r$	B 1m1
Either	$V = \frac{1}{2}\pi r^2 \left(\frac{e^{\kappa pressure}}{for t}\right) = 60r - \frac{1}{2}\pi r^3 \tag{AG}$	M1 A1
	$dV/dr = 60 - 3\pi r^2/2 = 0 \text{ when } r^2 = 40/\pi l \approx 3.57$	B1 M1 A1
	Stationary value of V ≈ 143 (142.73)	A1
	$d^2V/dr^2 = -3\pi r < 0 \text{ for } r > 0 \implies \text{maximum} [\text{ or any valid method }]$	M1 A1
Or	(i) $dy/dx = x^2 \times 1/x + 2x \ln x$	M1 A1
	At Q, $y=0 \Rightarrow \ln x=0 \Rightarrow x=1$ $[dy/dx]_{x=1} = 1$ c,s.o.	B1 A1
	(ii) At P, dy/dx = 0 \Rightarrow x(1 + 2 ln x) = 0 \Rightarrow ln x = -1/2	M1 A1
	$\Rightarrow x = e^{-x} = 1/\sqrt{e} \ (\approx 0.6065) $ (AG)	A1
	(iii) $d^2y/dx^2 = d(x + 2x \ln x)/dx = 1 + 2 \ln x + (2x \times 1/x)$	M1 A!
	$= 3 + 2 \ln x$	
	$[d^2y/dx^2]_{x=\frac{1}{2}} = 3 + 2(-\frac{1}{2}) = 2 \cos \varphi$	A1