An Influence Model Approach to Failure Cascade Prediction in Large Scale Power Systems

Xinyu Wu, Dan Wu, Eytan Modiano

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology

Outline

- Motivation
- Influence Model
- Hybrid Learning Framework
- Performance Evaluation
- Conclusion and Future Directions

Motivation

Large power blackouts

San Diego Power Blackout on Sept. 8, 2011^[1]

A 500 kV line tripped off by a mistake. Wrongly cut off 2 generators in Mexico. Finally separated into three islands which collapsed afterwards.

Manhatten City Blackout on Jul. 13, 2019^[2]
A transformer fired at West 64th Street and West End Avenue

- Starting from extrinsic effects (weather, man-made error, etc.) on few nodes or links.
- After some point, the blackout propagates broadly within minutes.
- The failure of a component may affect another remote component.

Motivation

Failure Cascade in Power System

Motivation

Question: Given the initially failed components, can we predict the cascade process?

- How many components will fail?
- Which component will fail?
- If it will fail, when will it fail once initial failure occurs?

- ...

To solve the problem

- a model is needed to capture such cascade process
- historical cascade records may help us to refine the model.

Related Works

DC and AC calculation^{[3][4]}

- heavy calculation burden (solving linear equations iteratively, load shedding, etc.)
- not applicable to broad cascade analysis in large system (exp: 3000~ nodes, all possible M-3 initial contingencies)
- hard to analyze the cascade properties

Influence Model^{[5][6]}

- proposed to capture underlying correlation among network components, including remote ones ^[5]
- applied to power system to capture cascade process and predict failure size based on historical records ^[6]

Contributions

We applied influence model to model failure cascade.

- proposed a **hybrid learning framework** that can efficiently train the influence model for very large systems.
- applied the influence model to a few large scale power systems to predict their failure cascade sequences, whose performance is thoroughly evaluated at **different levels of granularity**.
- the influence model can predict the cascade sequence two orders of magnitude faster than simulation based on power flow calculation, with small compromise in accuracy

Influence Model

Failure of node-1 induces failure of node-5.

We can estimate a 2-by-2 influence matrix A_{15} for the pair of node-1 and node-5.

Influence Model

Node 3 may cause the failure of Node 5 as well.

The state of Node 5 depends on both Node 1 and Node 3. (A_{15}, A_{35})

The total influence on Node 5 should be a weighted combination of A_{15} , A_{35} (maybe involving other nodes)

The weights: d_{15} , d_{35}

If only Node 1 and 3 will influence Node 5, then we have

$$d_{15} + d_{35} = 1$$
, $d_{25} = d_{45} = d_{55} = 0$

$$A_{15} = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$$

In our setting we consider the **link** failure cascade

Given a system with N buses and M transmission links.

The state of link i at time t: $s_i[t] \in \{0,1\}$ 1 normal; 0 failed

Each pair of link (i, j) induces an influence matrix A_{ij}

$$\mathbf{A}_{ij} \in [0,1]^{2 \times 2}$$
 and $\mathbf{A}_{ij}(1,1) + \mathbf{A}_{ij}(1,2) = 1$
 $\mathbf{A}_{ij}(2,1) + \mathbf{A}_{ij}(2,2) = 1$

Hence for A_{ij} only 2 independent components exist

- only consider $\mathbf{A}_{ij}(1,1)$ and $\mathbf{A}_{ij}(2,1)$ for each link pair (i,j)

$$\mathbf{A}_{ij} \in [0,1]^{2 \times 2}$$

Build pairwise influence matrices: $\mathbf{A}^{11}, \mathbf{A}^{01} \in [0,1]^{M \times M}$

where
$$\mathbf{A}_{ji}^{11} = \mathbf{A}_{ji}(1,1) = \mathbf{P}(s_i[t+1] = 1 \mid s_j[t] = 1)$$

 $\mathbf{A}_{ji}^{01} = \mathbf{A}_{ji}(2,1) = \mathbf{P}(s_i[t+1] = 1 \mid s_j[t] = 0)$

Weight of the pairwise influence

$$d_{ij} \geq 0 \qquad \sum_{i=1}^{M} d_{ij} = 1$$

Therefore we have the following iteration

$$\widetilde{s}_{i}[t+1] = \sum_{j=1}^{M} d_{ij} (\mathbf{A}_{ji}^{11} \mathbf{s}_{j}[t] + \mathbf{A}_{ji}^{01} (1 - \mathbf{s}_{j}[t]))$$
 an estimated value of $\mathbf{s}_{i}[t+1]$

$$\widetilde{s}_{i}[t+1] = \sum_{j=1}^{M} d_{ij} (\mathbf{A}_{ji}^{11} \mathbf{s}_{j}[t] + \mathbf{A}_{ji}^{01} (1 - \mathbf{s}_{j}[t]))$$

 $\tilde{s}_{i}[t+1]$ can be viewed as probability that node i takes '1' at t+1

Hence an intuitive way to predict $s_i[t+1]$

$$\hat{s}_{i}[t+1] = \begin{cases} 1, & \text{w.p.} & \tilde{s}_{i}[t+1] \\ 0, & \text{w.p.} \ 1 - \tilde{s}_{i}[t+1] \end{cases}$$

However in our prediction

- given an initial failure, the cascade process should be deterministic under fixed power injection
- we need to predict the whole process rather than only 1 generation.

We use the **threshold**-based prediction mechanism

$$\hat{\mathbf{s}}_{i}[t+1] = \begin{cases} 1, & \widetilde{\mathbf{s}}_{i}[t+1] \geq \varepsilon_{i} \\ 0, & \widetilde{\mathbf{s}}_{i}[t+1] < \varepsilon_{i} \end{cases}$$

Hence the iteration process is

$$\widetilde{s}_{i}[t+1] = \sum_{k=1}^{M} d_{ik} \left(\mathbf{A}_{ji}^{11} \mathbf{s}_{j}[t] + \mathbf{A}_{ji}^{01} (1 - \mathbf{s}_{j}[t]) \right)$$

$$\hat{s}_{i}[t+1] = \begin{cases} 1, & \widetilde{s}_{i}[t+1] \ge \varepsilon_{i} \\ 0, & \widetilde{s}_{i}[t+1] < \varepsilon_{i} \end{cases}$$

$$t \leftarrow t+1$$

Given K historical sequences $\{s^k[t]\}_{t=0}^{T_k}, k=1,2,...,K$

We need to learn $\{A^{11}, A^{01}, d, \varepsilon\}$

1. Learning Pairwise Influence Matrices $\{A^{11}, A^{01}\}$

Monte-Carlo based method

Example: 2 training cascade sequences and 2 links

$$s^{1} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}, \quad s^{2} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}_{21}^{11} = \mathbf{P}(s_{1}[t+1] = 1 | s_{2}[t] = 1) = \frac{\mathbf{P}(s_{1}[t+1] = 1, s_{2}[t] = 1)}{\mathbf{P}(s_{2}[t] = 1)} = \frac{2 + 2}{2 + 3} = \frac{4}{5}$$

$$s^{1} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}_{21}^{01} = \mathbf{P}(s_{1}[t+1] = 1 | s_{2}[t] = 0) = \frac{\mathbf{P}(s_{1}[t+1] = 1, s_{2}[t] = 0)}{\mathbf{P}(s_{2}[t] = 0)} = \frac{2 + 0}{3 + 0} = \frac{2}{3}$$

2. Learning weights d

Convex quadratic programming

$$\min_{d} \frac{1}{K} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} \sum_{i=1}^{M} \left(s_{i}^{k} [t+1] - \widetilde{s}_{i}^{k} [t+1] \right)^{2}$$
s.t.
$$\widetilde{s}_{i}^{k} [t+1] = \sum_{j=1}^{M} d_{ij} \left(\mathbf{A}_{ji}^{11} s_{j}^{k} [t] + \mathbf{A}_{ji}^{01} (1 - s_{j}^{k} [t]) \right)$$

$$d_{ij} \ge 0 \qquad \sum_{k=1}^{M} d_{ik} = 1$$

Note that this problem can be solved in parallel for each $i \in \{1, 2, ..., M\}$

3. Threshold
$$\mathcal{E}$$

$$s_{i}[t+1] = \begin{cases} 1, & \widetilde{s}_{i}[t+1] \geq \varepsilon_{i} \\ 0, & \widetilde{s}_{i}[t+1] < \varepsilon_{i} \end{cases}$$

The most naive way is to set $\varepsilon_i = 0.5$, $i \in \{1, 2, ..., M\}$

But in real case, this may cause prediction error

Observation:

- Threshold for each link varies
- Estimating thresholds adaptively based on different initial contingencies increases accuracy

$$s_{i}[t+1] = \begin{cases} 1, & \widetilde{s}_{i}[t+1] \ge \varepsilon_{i} \\ 0, & \widetilde{s}_{i}[t+1] < \varepsilon_{i} \end{cases}$$

Example: one cascade sequence with 3 links

Link 1	0	0	0	0	0	0	No Way to
$\widetilde{s}_{i}[t]$	0	0.45	0.36	0.29	0.28	0.26	Estimate!
Link 2	1	1	1	1	0	0	(0.00.00.00.00.00.00.00.00.00.00.00.00.0
$\widetilde{s}_{2}[t]$	1	0.78	0.71	0.67	0.63	0.62	(0.67+0.63)/2=0.65
Link 3	1	1	1	1	1	1	0.8*0.76=0.608
$\widetilde{s}_{3}[t]$	1	0.91	0.85	0.80	0.77	0.76	0.8 0.76=0.608
001	0	1	2	3	4	5	t

For the k-th sequence, we can estimate a threshold for each link i $\hat{\mathcal{E}}^k$.

Idea:

- Forming the threshold pool of each link from all sample sequences
- To estimate the threshold values for each link under a new initial contingency, we use the threshold values of the training cascade sequence with initial state closest to the new one.

$$\mathbf{k}^* = \arg\min_{\mathbf{k} \in \{1, 2, \dots, K\}} \left\| \mathbf{s}^{\text{new}}[0] - \mathbf{s}^{\mathbf{k}}[0] \right\|_{1} \qquad \varepsilon^{\text{new}} = \varepsilon^{\mathbf{k}^*}$$

Dataset:

TABLE I: Default Cascade Sample Information

System	1354-Bus	2383-Bus	3012-Bus
#Generators	260	327	297
#Links	1710	2886	3566
#Eff. Links	762	2088	2083
Eff. Rate	44.6%	72.4%	58.4%
Avg. Fail Size	179	598	263
Max Fail Size	314	862	792
Min Fail Size	2	110	11

- consider M-2 initial contingencies
- training set size: at most 50,000
- training set accounts for very small

portion
$$\frac{50,000}{\binom{1710}{2}} = 3.4\%$$

Generate synthetic cascade sequence

- DC simulation with load shedding
- Fixing the power injection values

Metrics:

- **l**_{size}: Avg. Failure size error rate
- **l**_f: Avg. Final state error rate
- **l**_t: Avg. Failure time error

Failure Size

Final State

Failure Time

Higher Evaluation Granularity

We consider 3 different values of loading:

- default loading & 1.5 times & 2 times

l_{size} (3012-node system)

 $\mathbf{l_f}$ (3012-node system)

 \mathbf{l}_{t} (3012-node system)

Prediction time cost:

- compare time cost of our prediction and simulation by DC power flow calculation
- a | b | c, where 'a' is the time cost of the DC simulation, 'b' is that of our prediction, 'c' is b/a, the gain.

TABLE II: Prediction Time Cost on 1,000 Samples

	Low Load	Medium Load	High Load
1354-bus	808 21.3 38	1930 19.8 97	1740 19.6 89
2383-bus	2597 43.3 60	3490 37.8 92	3603 34.7 104
3012-bus	3891 59.4 66	8020 58.9 136	5864 46.9 125

Conclusion and Future Directions

Conclusion:

- Proposed a hybrid learning framework over influence model to predict cascade sequences
- Evaluated in 3-layer granularity and time cost

Future Directions:

- Applying this method to AC cases
- Showing its applicability under fluctuating power injections
- Using the learned influence model to identify critical components and initial contingencies

