Elements of Statistics and Probability

STA 201

S M Rajib Hossain

MNS, BRAC University

Lecture-11

Joint Distribution:

In probability theory and statistics, the joint distribution of two or more random variables describes how the probabilities of these variables are related.

Joint probability mass function (joint pmf):

Let's consider two discreate random variables, X and Y. The joint probability mass function (joint pmf), denoted as p(x, y), gives the probability of both X = x and Y = y occurring simultaneously.

Properties of p(x, y)

i.
$$p(x, y) \ge 0$$

ii.
$$\sum_{x} \sum_{y} p(x, y) = 1$$

Example-1

x y	0	1	2	3	Total
0	4/23	2/23	1/23	1/23	8/23
1	2/23	1/23	2/23	1/23	6/23
2	0	1/23	7/23	1/23	9/23
Total	6/23	4/23	10/23	3/23	

$$p(0,0) = \frac{4}{23}$$
$$p(1,0) = \frac{2}{23}$$

$$p(1,0) = \frac{2}{23}$$

Marginal pmf:

$$p_x(x) = \sum_{y} p(x, y)$$

$$p_{y}(y) = \sum_{x} p(x, y)$$

Here,
$$p_x(0) = \frac{4}{23} + \frac{2}{23} + \frac{1}{23} + \frac{1}{23} = \frac{8}{23}$$

$$p_x(1) = \frac{2}{23} + \frac{1}{23} + \frac{2}{23} + \frac{1}{23} = \frac{6}{23}$$

$$p_x(2) = 0 + \frac{1}{23} + \frac{7}{23} + \frac{1}{23} = \frac{9}{23}$$

: Marginal pmf of X is

x	0	1	2
$p_x(x)$	8/23	6/23	9/23

Now,
$$p_y(0) = \frac{4}{23} + \frac{2}{23} + 0 = \frac{6}{23}$$

$$p_y(1) = \frac{2}{23} + \frac{1}{23} + \frac{1}{23} = \frac{4}{23}$$

$$p_y(2) = \frac{1}{23} + \frac{2}{23} + \frac{7}{23} = \frac{10}{23}$$

$$p_y(3) = \frac{1}{23} + \frac{1}{23} + \frac{1}{23} = \frac{3}{23}$$

∴ Marginal pmf of Y is

у	0	1	2	3
$p_y(y)$	6/23	4/23	10/23	3/23

Example-2

x y	1	2	5	7	Total
0	1/13	3/13	1/13	2/13	7/13
1	1/13	1/13	k	2/13	(4+13k)/13
Total	2/13	4/13	(1+13k)/13	4/13	

Determine

i. Find k

ii. Marginal pmf of Y

iii.
$$p(y = 5)$$

Solution:

i.
$$\sum p_{x}(x) = \frac{7}{13} + \frac{4+13k}{13} = 1$$

 $\therefore k = \frac{2}{13}$

Similarly,

$$\sum p_{y}(y) = \frac{2}{13} + \frac{4}{13} + \frac{1+13k}{13} + \frac{4}{13} = 1$$
$$\therefore k = \frac{2}{13}$$

ii. Using
$$k = \frac{2}{13}$$
 in the joint pmf table

у	1	2	5	7	Total
x					
0	1/13	3/13	1/13	2/13	7/13
1	1/13	1/13	2/13	2/13	6/13
Total	2/13	4/13	3/13	4/13	

: Marginal pmf of Y is

у	1	2	5	7
$p_y(y)$	2/13	4/13	3/13	4/13

iii.
$$p(y=5) = p_y(5) = \frac{1}{13} + \frac{2}{13} = \frac{3}{13}$$

Conditional pmf:

$$p_{x|y}(x|y) = \frac{p(x,y)}{p_y(y)}$$

Example

у	0	1	2	Total
x				
1	1/17	3/17	3/17	7/17
2	3/17	5/17	2/17	10/17
Total	4/17	8/17	5/17	

Determine

i.
$$p(x = 1)$$

ii.
$$p(y = 2)$$

iii.
$$p_{x|y}(1|2)$$

Conditional pmf of y given x equal to 1 iv.

i.
$$p(x = 1) = p_x(1) = \frac{1}{17} + \frac{3}{17} + \frac{3}{17} = \frac{7}{17}$$

ii. $p(y = 2) = p_y(2) = \frac{3}{17} + \frac{2}{17} = \frac{5}{17}$
iii. $p_{x|y}(1|2) = \frac{p(1,2)}{p_y(2)}$

ii.
$$p(y=2) = p_y(2) = \frac{3}{17} + \frac{2}{17} = \frac{5}{17}$$

iii.
$$p_{x|y}(1|2) = \frac{p(1,2)}{p_y(2)}$$

$$=\frac{\frac{3}{17}}{\frac{5}{17}}=\frac{3}{5}$$

iv.
$$p_{y|x}(0|1) = \frac{p(1,0)}{p_x(1)}$$

= $\frac{\frac{1}{17}}{\frac{7}{17}} = \frac{1}{7}$

$$\left[p_x(1) = \frac{7}{17} \ from \ i\right]$$

$$p_{y|x}(1|1) = \frac{p(1,1)}{p_x(1)}$$
$$= \frac{\frac{3}{17}}{\frac{7}{17}} = \frac{3}{7}$$

$$p_{y|x}(2|1) = \frac{p(1,2)}{p_x(1)}$$
$$= \frac{\frac{3}{17}}{\frac{7}{17}} = \frac{3}{7}$$

 \therefore The conditional pmf of y given x equal to 1

у	0	1	2
$p_{y x}(y 1)$	1/7	3/7	3/7

Joint probability distribution function (joint pdf):

Let's consider two continous random variables, *X* and *Y*.

f(x, y) is called joint pdf of X and Y if

i.
$$f(x,y) \ge 0$$

ii.
$$\int_{x} \int_{y} f(x, y) dy dx = 1$$

Example-1

$$f(x,y) = 6e^{-2x}e^{-3y}$$
 $x > 0, y > 0$

- i. Check whether f(x, y) is a joint pdf.
- ii. Calculate p(x < 1, y < 2)

i.
$$\int_0^\infty \int_0^\infty 6e^{-2x} e^{-3y} dy \, dx$$

$$= \int_0^\infty 6e^{-2x} \left[\frac{e^{-3y}}{-3} \right]_0^\infty dx$$

$$= \int_0^\infty -2e^{-2x} [0-1] dx$$

$$= \int_0^\infty 2e^{-2x} dx$$

$$= 2 \left[\frac{e^{-2x}}{-2} \right]_0^\infty$$

$$= -[0-1]$$

$$= 1$$
ii.
$$\int_0^1 \int_0^2 6e^{-2x} e^{-3y} dy \, dx$$

ii.
$$\int_0^1 \int_0^2 6e^{-2x} e^{-3y} dy dx$$
$$= \int_0^1 6e^{-2x} \left[\frac{e^{-3y}}{-3} \right]_0^2 dx$$
$$= \int_0^1 -2e^{-2x} [e^{-6} - 1] dx$$
$$= -2[e^{-6} - 1] \int_0^1 e^{-2x} dx$$
$$= -2[e^{-6} - 1] \left[\frac{e^{-2x}}{-2} \right]_0^1$$

$$= [e^{-6} - 1][e^{-2} - 1]$$
$$= 0.86$$

Marginal pdf:

Marginal pdf of X

$$f_x(x) = \int_{\mathcal{V}} f(x, y) dy$$

Marginal pdf of Y

$$f_{y}(y) = \int_{x} f(x, y) dx$$

iii.
$$f_{x}(x) = \int_{0}^{\infty} 6e^{-2x}e^{-3y}dy$$

$$= 6e^{-2x} \left[\frac{e^{-3y}}{-3}\right]_{0}^{\infty}$$

$$= -2e^{-2x}[0-1]$$

$$= 2e^{-2x}$$

$$\therefore f_{x}(x) = 2e^{-2x} \qquad x > 0$$

$$\therefore p(x < 3) = \int_{0}^{3} f_{x}(x)dx$$

$$= \int_{0}^{3} 2e^{-2x} dx$$

$$= 2\left[\frac{e^{-2y}}{-2}\right]_{0}^{3}$$

$$= -[e^{-6} - 1]$$

$$= [1 - e^{-6}]$$
$$= 0.99$$

Example-2

$$f(x, y) = x + y$$
 $0 < x < 1$, $0 < y < 1$

- i. Find the marginal pdf of X and Y
- ii. Calculate p(.3 < x < .7)
- iii. Calculate p(.5 < y < .9)

i.
$$f_x(x) = \int_0^1 (x+y) dy$$

 $= \int_0^1 x \, dy + \int_0^1 y \, dy$
 $= x[y]_0^1 + \left(\frac{y^2}{2}\right)_0^1$
 $= x + \frac{1}{2}$
 $\therefore f_x(x) = x + \frac{1}{2} \quad 0 < x < 1$

$$f_y(y) = \int_0^1 (x+y) dx$$

= $\int_0^1 x \, dx + \int_0^1 y \, dx$
= $\left(\frac{x^2}{2}\right)_0^1 + y[x]_0^1$
= $y + \frac{1}{2}$

$$\therefore f_y(y) = y + \frac{1}{2} \quad 0 < y < 1$$

ii.
$$p(.3 < x < .7) = \int_{.3}^{.7} f_x(x) dx$$

= $\int_{.3}^{.7} \left(x + \frac{1}{2} \right) dx$

iii.
$$p(.5 < y < .9) = \int_{.5}^{.9} f_y(y) dy$$

= $\int_{.5}^{.9} \left(y + \frac{1}{2}\right) dy$

Conditional pdf:

$$f_{y|x}(y|x) = \frac{f(x,y)}{f_x(x)}$$

$$f_{x|y}(x|y) = \frac{f(x,y)}{f_y(y)}$$

From example 2

i.
$$f_{y|x}(y|0.7)$$

ii.
$$p(.3 < y < .6|x = 0.7)$$

iii.
$$p(.2 < x < .4|y = 0.5)$$

i.
$$f_{y|x}(y|0.7) = \frac{f(0.7,y)}{f_x(0.7)}$$

$$f(x,y) = x + y$$
 0 < x < 1, 0 < y < 1

$$f(0.7, y) = 0.7 + y$$

$$f_x(x) = x + \frac{1}{2}$$
 $0 < x < 1$

$$\therefore f_{x}(0.7) = 0.7 + \frac{1}{2}$$

$$= 1.2$$

$$f_{y|x}(y|0.7) = \frac{0.7 + y}{1.2}$$

$$= \frac{1}{1.2}(0.7 + y) \qquad 0 < y < 1$$

ii.
$$p(.3 < y < .6|x = 0.7) = \int_{.3}^{.6} \frac{1}{1.2} (0.7 + y) dy$$

iii. HW

Check of Independence

For joint pmf X and Y are independent if

$$p(x, y) = p_x(x) \times p_y(y)$$
 for all x, y

For joint pdf X and Y are independent if

$$f_x(x) * f_y(y) = f(x, y)$$
 for all x, y

Examples will be practice in your class