

2E102 - Source d'énergie électrique et capteurs

ER2 - 1 HEURE - le 17 novembre 2016

Sans document ni calculatrice

N° étudiant:

Prénom: Olivier

Nom: Dysrantare

Le principe de notation **associé à la partie QCM** consiste à attribuer 1 point à une réponse juste et à soustraire 0,5 point pour une réponse fausse. L'absence de réponse se traduit par zéro. Une seule réponse autorisée par question. Pour les questions ouvertes (QO, non QCM), une réponse fausse n'entraîne pas de points négatifs. Les QO sont sur 2 ou 3 points. Le tout est sur 30 points.

N°1: QCM (1 point)

Comparons deux capteurs de même type. Le capteur dont la bande-passante (BP) est [0 ; 10 kHz] est

□ plus lent que le capteur de BP [0 ; 100 Hz]

Xplus rapide que le capteur de BP [0 ; 100 Hz]

□ plus discret que le capteur de BP [0 ; 100 Hz]

□ plus sensible, dans sa BP, que le capteur de BP [0 ; 100 Hz]

N°2: QCM (6 points)/QO (3 points)

Soit A, B, C et D quatre types de capteurs résistifs de température dont les courbes R(T) sont présentées sur la figure 1.

Fig.1. Courbe R(T) pour quatre types de capteurs de température résistifs. NB : pour le capteur D, plusieurs modèles pour un seul type de capteur.

2a. Quelle affirmation est correcte ? (NB: supra. = supraconducteur.)

□ A est une CTP, B un supra., C une Pt100 et D une CTN ★A est une Pt100, B une CTP, C un supra. et D une CTN □ A est un supra., B une CTN, C une CTP et D une Pt100 □ A est une CTN, B une Pt100, C un supra. et D une CTP Prenons dans la suite de ce QCM n°2 le capteur A (figure 1, capteur A).

2b. Que vaut son TCR (Temperature Coefficient of Resistance ou Coefficient de Température de la Résistance) à 0°C ?

 $\Box \approx 7.10^{-3} ^{\circ} \text{C}^{-1}$

□ ≈ 7000°C⁻¹

¥≈ 3,5.10⁻³°C⁻¹

□ ≈ 3500°C⁻¹

2c. On mesure une résistance de 100 Ω avec une incertitude de $\pm 1\%$. La température vaut donc

□ 0°C ± 1°C

□ 0°C ± 6°C

MO°C + 3°C

□ 0°C ± 0,5°C

R(or) at)

 $\Delta T \approx \frac{10^3}{3.5} \times \frac{1}{160} = \frac{10}{3.5} \leftarrow$

BT X L X BR L

Vont	$=E\left(\frac{1}{2}\right)$	- RCAP	= 6 2	0°C	Vohr= E(= -	$R_{c}+2R$	2R1)		
		OCCAP+ KI	/		1.61	7)	411		
Courant	débité		W 101 W 20		VOLT = 4(2	(12)=	12		
E	=40mA	Pour convertir les vari la température, un po $R_1 = 100 \ \Omega$. $R_{capteur}$ var	ont de Wheatstone e	st utilisé (figure	2). Pour toute la sui	ite, $E = 4 V$,	\		
20052 1/2 460 mA	. 0	2d. Tous les fils sont vaut la tension de sor	ici considérés comn	ne parfaits, c'est à 0°C ?	t-à-dire de résistance	nulle. Que			
	- Noh	□ 2 V	XOV		⊐1V	□ -2 V			
(2e. La tension E est combien de temps	appliquée grâce à une la batterie sera totalem	batterie de 4 V et de ient déchargée si la t	capacité 400 mA empérature rest	Ah initialement 100% se autour de 0°C ?	chargée. En			
7	environ 10 h	□ plus de 2 jours			□ environ 40 h				
	circuit (le générate capteur au reste (fi comme parfaits, c'é elles dépendent bie	pérature (toujours le ca ur de tension et les troi ls allant du capteur vers est-à-dire de résistance en sûr de la longueur de	s résistances R1). En l s les points L et M) n'o nulle). La valeur de ce fils et, par exemple,	conséquence, la est pas négligea es résistances de de la températu	résistance des deux J ble (les autres fils son liaison est de plus ma re.	t is reliant le t considérés al maîtrisée :			
	2f. Les deux fils de approximativemen	e liaison ont chacun u t la tension V _{out} de la fig	ne résistance R _F . Por gure 2 à 0°C ? (Rempl	acez dans la fig.	2 R _{capteur} par R _{capteur} +	Ω , que vaut Ω	2		
	□ -3 V	X −0,33 V	□ -1 V		□ -2 V	turis file ul			
	Là aussi, les trois f chacun une même	eurs dues aux fils de lia ils reliant le capteur au résistance R _F , les autre	ı reste du circuit (fils fils étant parfaits.	allant du capte	eur vers les points L,	L' et M) ont			
	Concluez pour des	= VĸL) de la figure 3 en températures de 0°C. prises environ entre –2	(NB : cette conclusion	on, en plus mod	lérée, est généralisat	ole pour des	*		
2pts	VOLT =	E (½ -	RC+Rg+Rg	(+R,)=	$\frac{E}{2}$ $\frac{R_1-}{R_C+3}$	RC 2Rg+R1			
1 pt	Conclusion :	04 V	nes-re s	Rg sk	ns influence		-10		
	E	R_1 K V_{OUT} R_1 R_1 R_1 R_2 R_3 R_4	E TRCAPTEUR	R ₁	R ₁ L R _{CAPTEUR}	il his les de constant les cons	10000000000000000000000000000000000000		
	Ì	Fig.2. Pont de Wheatst	one. Fig.3.	Pont de Wheats	stone, montage dit «	3 fils ».	, Alluen		
	N°3 : QCM (2 points) Soit un thermocouple dont le coefficient Seebeck, supposé constant, vaut 40 μ V/°C. La tension mesurée à ses								
	Soit un thermoco bornes vaut 0,8 m		Seebeck, supposé co	onstant, vaut 40) μV/°C. La tension n	nesuree a ses			
	3a. Quelle est la d matériaux compo température de r	ifférence de températu sant le thermocouple) éférence) ?	re (en valeur absolue et les deux bornes du	e) entre le point a thermocouple	de soudure (contact e (qui sont à la même t	entre les deux empérature :			
	X 20 K	□ 3,2°C	□ 0,05°C		□ 32°C				
	401	V (N°C	p. 2/4		1 en	· C = D	, en K		
	Sont	N 866	X1/40 = 20	200					

□ 0,56 V

	fl									
	3b. La tension est mesurée avec une incertitude de ±0,08 mV. Quelle est l'incertitude sur cette différence de température qui en résulte ?									
	□ ±3,2°C	□ ±10°C	□ ±4°C	$\lambda_{\pm 2^{\circ}C} = \pm \frac{80}{40}$	nV/00					
	N°4 : QCM (3 points)									
	Soit un capteur à effet Hall donnant la valeur du champ magnétique B à partir de la mesure de la tension V _{mes} . Rappelons que V _{mes} = R _H B/z où R _H est la constante de Hall, I le courant injecté (par un générateur de courant) dans le matériau et z l'épaisseur du matériau. Pour une valeur de I = 100 mA, la courbe donnant la tension mesurée V _{mes} en fonction du champ magnétique est présentée sur la figure 4.									
	4a. Quelle est la dimens	sion de Rн ? (Vous pouvez u	itiliser l'analyse dimen		V = m T					
	□ W-1	□ WT ⁻¹ m ⁻¹	Mm³C-1	□ mT ⁻¹ A ⁻¹	m 5					
div 14	4b. Dans la configuration rappelée en début d'exercice (générateur de courant I débitant dans le matériau de constante R _H et d'épaisseur z), l'utilisateur souhaite diminuer l'énergie électrique consommée d'un facteur 4 en faisant passer le courant de 100 mA à une autre valeur. Quelle est la conséquence sur la sensibilité du capteur? Elle va être									
EKI")	divisée par 2	□ multipliée par 4	□ inchangée	□ divisée par 4	9					
) S=R#I/2	4c. I = 100 mA. Le capteur a maintenant vieilli : la courbe de la figure 4 a une pente plus faible. Un utilisateur utilise malgré tout la courbe initiale (figure 4). Quel type d'erreur cela entraîne ? Une erreur									
ivic	X d'étalonnage	□ de rapidité	□ de finesse	□ de lecture	=) 1/10 =					
	4,5 volts	[volts]	0,15	$V_{\rm D}$	AT AT					
	2,5 volts 0,5 volt		0,1	ξ _Φ ,	$\frac{m}{A_{\mathcal{S}}} =$					
	-800 -400 Fig.4. Capteur à effet l	D 400 800 B [gauss] Hall: Vout(B)								
	pour I = 100 mA.	2000 000 00000000000000000000000000000	E 0 0 mW/cm²							
	E V _{mes}	RLOAD	-0.05 1.2 mW/cn -0.01 2mW/cm2	12						
Téthade 1		\Box	-0,15 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	do SCV	0,4 0,6 0,8					
Ds 6 3	Fig.6. Circuit avec pho	otodiode.	Fig.5.	Caractéristique de la photo	diode.					
ghad-t:	N°5 : QCM (3 points)				ID= E-VO					
-D2-00911	Soit une photodiode o	lont la caractéristique est a	lonnée sur la figure 5 p	our différents éclairements ϕ	r. RL					
or \$ -08"	1/64	rant, un schéma équivalent	t simplifié de la photod	liode est rant □ une résistance						
lance -	un court-circuit	□ un géné. de tension								
Quar. J.T.		rant, quelle relation lie le n	$ \Box I_D = -20[\text{cm}^2/\text{V}] $)r					
- COBY	$\Box I_D = -0.2[\text{cm}^2/\text{V}]\phi_r$	$\Box I_D = -2[cm^2/V]\phi_r$		$_{OAD} = 10 \text{ k}\Omega$. Pour $\phi_r = 0.8 \text{ m}$						
7,10	5c. La photodiode est	. piacee dans le circuit de la	IIb. O dvec L - I v ct No		ADDR RW					

Méthods 2 Circit 8'86: E = -RLID D.3/4 - VD => ID = (-E-VD)/RL Intercedia dvoite de harge/carac de la gliode >> VD2-0,55V => Vmes = E+VD21-0,55V = 0,45V

X0,44 V

□ 0,20 V

N°6: QO (3 points)

Exprimez les variations relatives de la résistance R d'un fil de longueur ℓ, de surface de section S et composé par un matériau de résistivité ρ en fonction des variations relatives de ρ , ℓ et S. Rappel : R = $\rho\ell/S$. (Pas de justification.) Quel type de capteur a son principe de fonctionnement fondé sur ce lien ?

DP/P + DR/R - 55/5

Nom d'un capteur utilisant cette relation: Jange de contrainte

N°7: QCM (1 point)

Soit un accéléromètre capacitif.

Après une brève étude, le concepteur montre que pour améliorer sa sensibilité il faut augmenter la masse du capteur. Cela se fera au détriment de

□ sa fidélité

x sa finesse

□ sa linéarité

□ rien

N°8: QCM (2 points)

Soit le schéma de la figure 7.

8a. Quelle est l'expression de V_{KM}, la tension entre le point K et la masse ?

 $K = (R_1 - R_{capteur})/(R_1 + R_{capteur})$ $\square 2ER_1/(R_1 + R_{capteur})$

☐ 2ER_{capteur}/(R₁ + R_{capteur})

□ E/R_{capteur} - E/R₁

V_{KM} varie de −0,5 à +0,5 V et est maintenant la tension d'entrée d'un amplificateur non inverseur de gain G et de tension de saturation ±10 V.

8b. Quel est le gain maximum pour ne pas saturer l'AOP?

Fig.7. Circuit de 8a.

□ 2

5

¥ 20

□ 0,05

N°9: QCM (2 points)/QO (4 points)

Soit une pompe à chaleur domestique alimentée par EDF (tension efficace = 230 V, f = 50 Hz). Son schéma équivalent est une résistance R en parallèle avec une inductance L. Son facteur de puissance cos φ égale 0,6 (et donc $\sin \varphi = 0.8$). On mesure une intensité efficace en entrée (et en sortie !) de la pompe de 5 A.

9a. Quelles sont respectivement les puissances active et réactive de cette pompe à chaleur ?

□ 345 W et 460 VAR

X 690 W et 920 VAR

□ 460 W et 345 VAR

□ 1150 W et 1150 VAR

9b. Le disjoncteur différentiel relatif à cette pompe, sachant qu'on se donne une marge de sécurité d'environ 20%, doit être un disjoncteur

□ 3 A (efficace)

6 A (efficace)

□ 210 V (efficace)

□ 290 V (efficace)

EDF fait bien sûr payer la puissance active mais aussi, à un prix moindre, la puissance réactive. Pour diminuer le plus possible la puissance réactive (et donc la facture), on ajoute en parallèle à la pompe un condensateur de

9c. Idéalement, quelle est l'expression de C en fonction (ou pas) de R, L, f ? (Justifiez brièvement.)

TI gh done I + j(w=0 = 1)

9d. Que valent alors les puissances active et réactive de ce dispositif ? (Pas de justification.)

(Attention: P= Wag Iag cos4 = Wag Iag x 1 mais Iag)

(65 P # 1