

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA KONKURS CHEMICZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP WOJEWÓDZKI 2021/2022

Uczeń maksymalnie może zdobyć 40 punktów.

OGÓLNE UWAGI DOTYCZĄCE OCENIANIA:

- 1. Każdy poprawny sposób rozwiązania przez ucznia zadań powinien być uznawany za prawidłowy i oceniany maksymalną liczbą punktów.
- 2. Treść i zakres odpowiedzi ucznia powinny wynikać z polecenia i być poprawne pod względem merytorycznym i wyczerpujące.
- 3. Do zredagowania odpowiedzi uczeń używa poprawnej i powszechnie stosowanej terminologii naukowej. Nie punktuje się odpowiedzi niejednoznacznych.
- 4. Jeżeli w jakiejkolwiek części rozwiązania zadania uczeń przedstawia więcej niż jedną metodę i zawiera ona błąd, nie uznaje się wówczas rozwiązania zadania w tej części.
- 5. Za odpowiedzi w zadaniach przyznaje się wyłącznie punkty całkowite. Nie stosuje się punktów ułamkowych.
- 6. Jeśli w odpowiedzi do zadania znajdują się dwie odpowiedzi: poprawna i niepoprawna, to uczeń nie otrzymuje punktu za to zadanie.
- 7. Wykonywanie obliczeń na wielkościach fizycznych powinno odbywać się z zastosowaniem rachunku jednostek.

ODPOWIEDZI I ROZWIĄZANIA ZADAŃ

Zadania 1.- 5. (0-7)

1.	2.	3.1	3.2.	4.	5.1	5.2
A	C	В	D	A	В	A

Za każdą poprawną odpowiedź – 1 pkt

Zadanie 6. (0-2)

2,2-dimetylobutan

Za podanie poprawnego wzoru półstrukturalnego i poprawnej nazwy systematycznej -2 pkt Za podanie tylko poprawnego wzoru półstrukturalnego lub tylko poprawnej nazwy systematycznej -1 pkt

Za odpowiedź niespełniającą powyższych kryteriów – 0 pkt

Zadanie 7. (0-2)

9,4 dm³ CH₄

$$M(4CH_4 \cdot 23H_2O) = 478 \text{ g} \cdot \text{mol}^{-1}$$

Obliczenie masy metanu otrzymanego z 50 kg klatratu.

$$4CH_4 \cdot 23H_2O \rightarrow 4CH_4 + 23H_2O$$

50000 g klatratu —
$$x \in 6695$$
 g CH₄ $x \approx 6695$ g CH₄

Obliczenie objętości otrzymanego metanu.

16 g CH₄ — 22,4 dm³
$$y = 9373 \text{ dm}^3 \approx 9,4 \text{ m}^3 \text{ CH}_4$$

Za podanie poprawnego wyniku w oparciu o poprawną metodę, z poprawnym zaokrągleniem i z poprawną jednostką – 2 pkt

Za podanie błędnego wyniku z poprawną jednostką, będącego efektem błędu obliczeniowego, ale zastosowanie poprawnej metody lub niepoprawne zaokrąglenie wyniku – 1 pkt Za zastosowanie błędnej metody lub brak odpowiedzi – 0 pkt

Zadanie 8. (0-1)

Wzór ogólny borowodorów: B_nH_{n+4} Wzór borowodoru o 16 atomach boru: $B_{16}H_{20}$

Za podanie dwóch poprawnych wzorów (ogólny wzór szeregu homologicznego borowodorów i wzoru wskazanego borowodoru) – 1 pkt

Za odpowiedź nie spełniającą powyższych kryteriów lub jej brak – 0 pkt

Zadanie 9. (0-2)

C4H₁₀

Ogólne równanie reakcji spalania alkanu:

$$C_nH_{2n+2} + 0.5(3n+1)O_2 \rightarrow nCO_2 + (n+1)H_2O$$

Obliczenie wartości n i podanie wzoru sumarycznego alkanu.

$$\frac{V_{C_n H_{2n+2}}}{V_{O_2}} = \frac{2}{13} \qquad \frac{2}{3n+1} = \frac{2}{13} \qquad n = 4, \qquad C_4 H_{10}$$

Uwaga: Za poprawne należy uznać, jeżeli uczeń dokona sprawdzenia wszystkich kolejnych wzorów alkanów od metanu do butanu i wyciągnie poprawne wnioski.

Za podanie poprawnego wzoru w oparciu o poprawną metodę – 2 pkt

Za podanie poprawnego, zbilansowanego, ogólnego równania spalania alkanu, bez podania poprawnego wzoru alkanu – 1 pkt

Za podanie poprawnego wzoru sumarycznego alkanu na podstawie błędnych obliczeń lub bez obliczeń – 0 pkt

Za brak odpowiedzi lub niepoprawny wzór $-0~\mathrm{pkt}$

Zadanie 10.1 (0-1)

$$\begin{bmatrix} CH_2 - CH - CH_2 - CH - CH_2 - CH \\ CH_3 & CH_3 & CH_3 \end{bmatrix}$$

lub

Za podanie poprawnego wzoru trzech merów polipropylenu – 1 pkt Za podanie niepoprawnego wzoru lub za brak odpowiedzi – 0 pkt

Zadanie 10.2. (0-2)

43000 merów

Metoda I:

Obliczenie średniej masy molowej polipropylenu.

$$3,00 \cdot 10^{-18} \text{ g} \cdot 6,02 \cdot 10^{23} \text{ mol}^{-1} = 1806000 \text{ g} \cdot \text{mol}^{-1}$$

Obliczenie liczby merów w jednej cząsteczce polipropylenu.

 $1806000 \text{ g} \cdot \text{mol}^{-1} : 42 \text{ g} \cdot \text{mol}^{-1} = 43000 \text{ merów}$

Metoda II:

Masa meru =
$$36u + 6u = 42u$$
 $42 u \cdot 1,66 \cdot 10^{-24} \text{ g} \cdot \text{u}^{-1} = 6,972 \cdot 10^{-23} \text{ g}$ $(3,00 \cdot 10^{-18} \text{ g}) : (6,972 \cdot 10^{-23} \text{ g}) = 43000 \text{ merów}$

Za poprawną metodę i poprawne obliczenie liczby merów_popw – 2 pkt

Za niepoprawne obliczenie liczby merów przez popełnienie błędu rachunkowego ale dobrą metodą – 1 pkt

Za niepoprawną metodę i niepoprawny wynik lub jego brak – 0 pkt

Zadanie 11.1. (0-1)

2-metyloprop-1-en

lub

2-metylopropen

Za podanie poprawnej nazwy – 1 pkt Za błędną nazwę lub jej brak – 0 pkt

Zadanie 11.2. (0-1)

Produkt główny reakcji alkenu X z chlorowodorem: A

Reakcja (z chlorowodorem) przebiega zgodnie z regułą Markownikowa

lub

Atom chloru przyłącza się do tego atomu węgla tworzącego wiązanie podwójne, przy którym jest mniej atomów wodoru.

Uwaga: Odpowiedź musi odnosić się do reguły Markownikowa (wystarczy nazwa reguły, lub jej treść)

Za wybranie poprawnego produktu oraz za poprawne uzasadnienie – 1 pkt

Za wybranie poprawnego produktu reakcji bez uzasadnienia – 0 pkt

Za błędne odpowiedzi lub ich brak – 0 pkt

Zadanie 12. (0-2)

$$n_{CO}: n_{CO_2} = 2:1$$

Metoda I:

Z równania pierwszego: 223,2 g PbO — 12 g C — 28 g CO

x g PbO — 1,8 g C — *y* g CO

x = 33,48 g PbO, y = 4,2 g CO

33,48 g PbO przereagowało z węglem, pozostało 44,64 g -33,48 g = 11,16 g PbO

Z równania drugiego: 223,2 g PbO — 28 g CO— 44 g CO₂

11,16 g PbO \longrightarrow z g CO \longrightarrow w g CO₂

 $z = 1.4 \text{ g CO}, \text{ w} = 2.2 \text{ g CO}_2$

Mieszanina poreakcyjna zawiera 4,2-1,4=2,8 g CO i 2,2 g CO₂.

 $n_{CO} = 2.8 : 28 \text{ g} \cdot \text{mol}^{-1} = 0.1 \text{ mol}$ $n_{CO_2} = 2.2 : 44 \text{ g} \cdot \text{mol}^{-1} = 0.05 \text{ mol}$

 n_{CO} : $n_{CO_2} = 0.1$: 0.05 = 2: 1

Metoda II:

 $n_{PbO} = 44,64 \text{ g} : 223,2 \text{ g} \cdot \text{mol}^{-1} = 0,2 \text{ mol}$

 $n_C = 1,80 \text{ g} : 12 \text{ g} \cdot \text{mol}^{-1} = 0,15 \text{ mol}$

x – liczba moli C w równaniu reakcji

 $\frac{1}{x} = \frac{0.2 \text{ mol}}{0.15 \text{ mol}}$ x = 0.75 mol, stad: PbO + 0.75 C \rightarrow Pb + 0.5 CO + 0.25 CO₂

 $n_{CO}: n_{CO_2} = 0.5: 0.25 = 2:1$

Za podanie poprawnego wyniku w oparciu o poprawną metodę – 2 pkt

Za podanie błędnego wyniku, będącego efektem błędu obliczeniowego, ale zastosowanie poprawnej metody – 1 pkt

Za zastosowanie błędnej metody lub brak odpowiedzi – 0 pkt

Zadanie 13. (0-1)

$$H_2N-CH_2-COOH + OH^- \rightarrow H_2N-CH_2-COO^- + H_2O$$

Za podanie poprawnego równania reakcji – 1 pkt

Za niepoprawne równanie lub jego brak – 0 pkt

Zadanie 14. (0-1)

$H_2N-CH_2-COOH + H_2N-CH_2-COOH \rightarrow H_2N-CH_2-CONH-CH_2-COOH + H_2OOH + H_2$

Za podanie poprawnego równania reakcji – 1 pkt Za niepoprawne równanie lub jego brak – 0 pkt

Zadanie 15. (0-1)

Metionina-Glicyna-Prolina-Walina-Alanina

Za podanie poprawnej sekwencji aminokwasów -1 pkt Za niepoprawną sekwencję aminokwasów lub jej brak -0 pkt

Zadanie 16.1. (0-1)

Morficeptyna zbudowana jest z trzech rodzajów aminokwasów.

lub

Cząsteczka morficeptyny zawiera dwa jednakowe aminokwasy.

Za poprawne sformułowanie wniosku – 1 pkt Za niepoprawny wniosek lub jego brak – 0 pkt

Zadanie 16.2. (0-2)

Plamka	A	В	C	
Współczynnik R _f	0,26 (0,24 - 0,28)	0,44 (0,42 - 0,46)	0,63 (0,61 - 0,66)	

prolina, tyrozyna, fenyloalanina

Za poprawne obliczenie współczynnika R_f oraz poprawną identyfikację aminokwasów – 2 pkt Za poprawne obliczenie współczynnika R_f lub za poprawną identyfikację aminokwasów – 1 pkt Za niepoprawne odpowiedzi lub ich brak – 0 pkt

Zadanie 17.1 (0-1)

Równanie pierwszego etapu dysocjacji: $H_2S \rightleftarrows H^+ + HS^-$ Równanie drugiego etapu dysocjacji: $HS^- \rightleftarrows H^+ + S^{2-}$

Uwaga: Za poprawny (akceptowalny) zapis uznajemy równania reakcji z jedną strzałką (→)

Za podanie dwóch poprawnych równań dysocjacji – 1 pkt Za odpowiedź nie spełniającą powyższego kryterium lub jej brak – 0 pkt

Zadanie 17.2. (0-1)

- 1. **P**
- 2. **F**
- 3. **P**

Za poprawną ocenę wszystkich trzech zdań – 1 pkt

Za odpowiedź nie spełniającą powyższego kryterium lub brak odpowiedzi – 0 pkt

Zadanie 17.3. (0-1)

Wzór sumaryczny soli: **NH4HS** Nazwa soli: **wodorosiarczek amonu**

Za podanie poprawnego wzoru i nazwy soli – 1 pkt

Za odpowiedź nie spełniającą powyższego kryterium lub brak odpowiedzi – 0 pkt

Zadanie 18.1 (0-1)

Za poprawne uzupełnienie całego schematu – 1 pkt

Za niepoprawne uzupełnienia lub ich brak – 0 pkt

Zadanie 18.2. (0-1)

Równanie reakcji IV: CH3COOH + CH3CH2OH → CH3COOCH2CH3 + H2O

Uwaga: uczeń nie musi podawać warunków prowadzenia reakcji ani wskazywać, że jest to reakcja odwracalna

Za poprawne równanie estryfikacji $-1~\mathrm{pkt}$

Za niepoprawne równanie lub jego brak – 0 pkt

Zadanie 19.1. (0-1)

Rozstrzygnięcie: uczeń nie otrzymał czystego osadu.

Uzasadnienie: uczeń do reakcji użył stałego wodorotlenku glinu (praktycznie nierozpuszczalnego w wodzie), który nie wszedł w reakcję z azotanem(V) miedzi(II).

Za podanie poprawnych odpowiedzi (rozstrzygnięcia i uzasadnienia) – 1 pkt Za podanie tylko poprawnego rozstrzygnięcia lub poprawnego uzasadnienia – 0 pkt Za błędna odpowiedzi lub ich brak – 0 pkt

Zadanie 19.2. (0-2)

$$Cu^{2+} + SO_4^{2-} + Ba^{2+} + 2OH^{-} \rightarrow Cu(OH)_2 \downarrow + BaSO_4 \downarrow$$

Rozstrzygnięcie: uczeń nie otrzymał czystego osadu wodorotlenku miedzi(II).

Uzasadnienie: obok osadu wodorotlenku miedzi(II) straca się też osad siarczanu(VI) baru.

lub

Uczeń otrzymał mieszaninę dwóch osadów

Za podanie poprawnych odpowiedzi (równania reakcji, rozstrzygnięcia i uzasadnienia) – 2 pkt Za podanie tylko poprawnego równania reakcji lub poprawnego rozstrzygnięcia i poprawnego uzasadnienia – 1 pkt

Za błędne odpowiedzi lub jej brak – 0 pkt

Zadanie 19.3. (0-1)

$$Cu(OH)_2 \rightarrow CuO + H_2O$$

Za podanie poprawnego równania reakcji – 1 pkt Za błędne równanie lub jego brak – 0 pkt

Zadanie 20. (0-1)

Probówka 1: etanol (C₂H₅OH)

Probówka 2: kwas octowy (CH₃COOH)

Probówka 3: glicerol (C₃H₅(OH)₃)

(lub wzory strukturalne, lub wzory półstrukturalne/grupowe)

Za poprawną identyfikację zawartości probówek i podanie nazw lub wzorów wszystkich substancji $-1~\mathrm{pkt}$

Za odpowiedź nie spełniającą powyższych kryteriów – 0 pkt

Zadanie 21.1. (0-1)

$C_6H_{12}O_6$

Za poprawną odpowiedź – 1 pkt Za odpowiedź niepoprawną lub brak odpowiedzi – 0 pkt

Zadanie 21.2 (0-1)

Wzór sumaryczny: Cu₂O Nazwa: tlenek miedzi(I)

Za poprawny wzór i nazwę związku – 1 pkt Za odpowiedź nie spełniającą powyższych kryteriów – 0 pkt

Zadanie 21.3 (0-1)

Cząsteczka badanego cukru zawiera więcej niż jedną grupę -OH

lub

Glukoza jest związkiem polihydroksylowym

lub

W cząsteczce glukozy występują minimum dwie grupy hydroksylowe (położone przy dwóch sąsiednich atomach węgla)

Za poprawne wyjaśnienie – 1 pkt Za błędną odpowiedź lub jej brak – 0 pkt