How hard is to untangle curves?

Sanghoon Kwak (Joint with Dr. Bei Wang) May 5th, 2021

Spring 2021 CS6170 Final Presentation

Motivation: To measure how hard it is to untangle curves

We would like to quantify the **robustness** of the self intersection points, and see if they satisfy stability conditions.

Motivation: How to detect the self intersection points?

In this case, $(\frac{1}{2}, \frac{1}{4}), (\frac{1}{4}, \frac{1}{2}) \in C^{-1}(\mathbb{D}).$

Given a plane curve $c: S^1 \to \mathbb{R}^2$, consider its diagonal map $C = (c,c): S^1 \times S^1 \to \mathbb{R}^2 \times \mathbb{R}^2$ and the set of diagonal points $\mathbb{D} = \{(x,x)|x \in \mathbb{R}^2\} \subset \mathbb{R}^2 \times \mathbb{R}^2$. Then the **self-intersection points** of c can be encoded as the **preimage** $C^{-1}(\mathbb{D})$.

Now we would like to focus on the robustness of this preimage $C^{-1}(\mathbb{D})!$

Table of Contents

Background

Result 1: Generalization to restricted well groups

Result 2: Application – Stability theorem for robustness of self-intersection of curves/knots

Future Directions

Background

Persistence vs Robustness

"How long it will survive?" VS "How much perturbation it will survive?"

	Persistence	Robustness
Object of Interest	Space	Preimage of Maps
Parameter	Level in Sublevel Filtration	Room for Perturbation
		0,0 - 8
	700	700
Illustration	1	0

Perturbations and Distance Functions

Definition

Given X a manifold and Y a Riemannian manifold, a map $h: X \to Y$ homotopic to f is a ρ -perturbation of $f: X \to Y$ if they differ by at most ρ with the sup norm: $\|h - f\|_{\infty} \le \rho$.

For a submanifold $A \subset Y$, denote by $f_A : X \to \mathbb{R}$ the distance function $f_A(x) := \inf_{a \in A} \|f(x) - a\|$.

Distance Lemma

These induced maps have the following stability under sup norm of original maps:

Lemma 1 (Distance Lemma)

Let $f_A, g_A : X \to \mathbb{R}$ be the distance functions induced by $f, g : X \to Y$ with the submanifold $A \subset Y$. Then

$$||f_A-g_A||_{\infty}\leq ||f-g||_{\infty}.$$

Induced Homomorphism

Suppose $||f - h||_{\infty} \le \rho$. If $h(x) \in A$, then $f_A(x) \le \rho$, so we have

$$h_A^{-1}(0) \subset f_A^{-1}([0,\rho]).$$

This inclusion induces a homomorphism between homology groups:

$$j_h: H_*(h_A^{-1}(0)) \longrightarrow H_*(f_A^{-1}([0,\rho])) =: F(\rho),$$

Finally, we denote by f(r,s) the inclusion-induced homomorphism $f(r,s):F(r)\longrightarrow F(s)$ for every $r\leq s$.

Well Group

Now we can define the well group of the growing preimage $f_A^{-1}([0,r])$ as follows:

Definition

The **well group** of $f_A^{-1}([0,r])$ is the largest subgroup $U(r) \subset F(r)$ contained in

$$\bigcap_{h:X\to Y}\mathrm{Im}j_h\subset F(r+\delta)$$

where h ranges over all $(r + \delta)$ -perturbations of f, and for sufficiently small $\delta > 0$.

Example of Well Group Computation

Issue: Not every perturbation of C = (c, c) has the same form

Recall that given a curve $c: S^1 \to \mathbb{R}^2$, we would like to study **the preimage of the diagonal map** $C = (c,c): S^1 \times S^1 \to \mathbb{R}^2 \times \mathbb{R}^2$. The definition of well group requires to consider **all** perturbations of C = (c,c), most of which is just a random map $F: S^1 \times S^1 \to \mathbb{R}^2 \times \mathbb{R}^2$, **not** of the form C' = (c',c') for some curve $C': S^1 \to \mathbb{R}^2$

Because we are untangling **curves** c instead of the digonal map C, this motivates us to should **restrict** our collection of perturbations to have a meaningful definition of well groups for c.

Shrinking Wellness Lemma

The following lemma serves as a **foundation** for the definition of robustness.

Lemma 2 (Shrinking Wellness Lemma)

For each $0 \le r \le s$, we have

$$U(s) \subset f(r,s)(U(r)).$$

Sketch of Proof.

This follows from the observation that the set of ρ -perturbations of f gets larger as ρ is bigger, making $\bigcap_h \mathrm{Im} j_h$ smaller.

Terminal Critical Values

Hence, the only way the well group can change is by **lowering its** rank. Thus in our setting, there are only finitely many $u_1 < u_2 < \ldots < u_l$, called **terminal critical values** at which the rank of U(r) decreases. We extend this sequence by adding $u_0 = 0$ and $u_{l+1} = \infty$.

Denote by $U_i := U(u_i)$ and $F_i := F(u_i)$ for each i = 0, ..., l+1. We also write $f_{i,j} : F(i) \longrightarrow F(j)$ as the short hand for the inclusion induced homomorphism $f(u_i, u_j)$.

Zigzag Module – "Filtration for Well groups"

However, the well groups do not have a nice sublevel set filtrations with those $\{u_i\}$ as homology groups F(i)'s do. Instead, they form a **zigzag module**:

$$\ldots \xrightarrow{a_{i-1}} Q_{i-1} \xleftarrow{b_{i-1}} U_i \xrightarrow{a_i} Q_i \xleftarrow{b_i} U_{i+1} \xrightarrow{a_{i+1}} Q_{i+1} \xleftarrow{b_{i+1}} \ldots$$

In fact, having surjective a_i 's and injective b_j 's is equivalent to the fact that the birth only happens at U_0 from the general construction of zigzag module in [CS10].

From now on, to avoid the confusion with the birth and death in homology groups, we replace the terms birth/death in well group U_i with **get well/fall ill**.

Well Diagram

Since all classes get well at U_0 , we can define the **well diagram** Dgm(U) as just the multiset of singletons u_i with multiplicities μ_i , together with the infinitely many copies of 0. Hence, the diagram itself is a multiset of values on the extended real $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$.

Well diagram of previous example $f : \mathbb{R} \to \mathbb{R}$ with $A = \{a\}$.

Matching Lemma

Lemma 3 (Matching Lemma)

Let $0 \le u_1 \le u_2 \le \ldots \le u_M$ and $0 \le v_1 \le v_2 \le \ldots \le v_M$ be the terminal critical values(possibly padding 0's to match the number M of values) associated with the maps $f,g:X\to Y$ with the same submanifold $A\subset Y$. Then the **bottleneck distance** between $\operatorname{Dgm}(U)$ and $\operatorname{Dgm}(V)$ can be calculated as:

$$W_{\infty}(\mathsf{Dgm}(U), \mathsf{Dgm}(V)) = \max_{1 \le i \le M} |u_i - v_i|.$$

Sketch of Proof.

The proof relies on the purely combinatorial fact on the finitely many points on \mathbb{R} ; It uses the fact that if $a \leq b$ and $c \leq d$, then $|a-c|+|b-d| \leq |a-d|+|b-c|$.

Robustness

Finally, we can define the robustness of each class in U_0 as follows:

Definition

for each homology class α in U_0 , we can define the **robustness** $\varrho(\alpha)$ of α as the value u_i when α falls ill.

In other words, the robustness quantifies the stability of each homology class under perturbations of the map f. Observe that the robustness for well groups is a counterpart notion of the persistence for homology groups.

Bridge Lemma

Now we introduce the key lemma toward the stability of well diagrams. Note by Distance Lemma(Lemma 1), letting $\|f - g\|_{\infty} = \varepsilon$ gives $\|f_A - g_A\| \le \varepsilon$, so

$$g_{\Delta}^{-1}([0,r]) \subset f_{\Delta}^{-1}([0,r+arepsilon])$$

This induces the **bridge map** $\mathcal{B}_r: G(r) \longrightarrow F(r+\varepsilon)$, where G(r) is the homology group $H_*(g_A^{-1}([0,r]))$, which is dual to F(r). Denoting by $V(r) \subset G(r)$ the well group associated to g, we have

Lemma 4 (Bridge Lemma)

$$U(r+\varepsilon)\subset \mathcal{B}_r(V(r)).$$

Sketch of Proof.

This follows from the fact that $(r + \varepsilon + \delta)$ -perturbations of f include the $(r + \delta)$ -perturbations of g by Distance Lemma.

Stability Theorem

Theorem 5 (Stability Theorem for Well Diagrams)

Let U, V be the well modules of the functions f_A, g_A defined by admissible, homotopic mappings $f, g: X \to Y$, where $A \subset Y$ is a submanifold. Then

$$W_{\infty}(\mathsf{Dgm}(U),\mathsf{Dgm}(V)) \leq \|f-g\|_{\infty}.$$

Sketch of Proof.

The proof uses the following two Lemmas:

- Matching Lemma
- Bridge Lemma

Result 1: Generalization to restricted well groups

Restricted Well Group

Definition (Nested Collections of Perturbations)

Let $f: X \to Y$ and $A \subset Y$ be a submanifold. Let \mathcal{F}_{ρ} be a nonempty subcollection of the ρ -perturbations of f. We say the collection $\{\mathcal{F}_{\rho}\}_{\rho \geq 0}$ is said to be **nested** if it satisfies

$$\mathcal{F}_{\rho} \subset \mathcal{F}_{\rho'}$$
 for every $\rho \leq \rho'$.

Definition (Restricted Well Group)

For a nested collections $\{\mathcal{F}_{\rho}\}_{\rho\geq 0}$ of perturbations of f, the $\{\mathcal{F}_{\rho}\}$ -restricted well group of $f_{A}^{-1}([0,r])$ is defined to be the largest subgroup $\hat{U}(r)\subset F(r)$ such that contained in $\bigcap_{h\in\mathcal{F}_{r+\delta}}\mathrm{Im}j_h$, for a sufficiently small $\delta>0$.

Shrinking Wellness Lemma for RWG

Lemma 6 (Shrinking Wellness Lemma for restricted well groups)

For each $0 \le r \le s$, we have

$$\hat{U}(s) \subset f(r,s)(\hat{U}(r)).$$

Proof.

By the nested property of parameterized collection of perturbations, the set \mathcal{F}_{ρ} of restricted perturbations of f gets larger as ρ is bigger, making $\bigcap_{h \in \mathcal{F}_{\rho}} \mathrm{Im} j_h$ smaller.

Zigzag Modules and Robustness for RWG

We can construct zigzag modules for restricted well groups as before:

$$\dots \xrightarrow{\hat{a}_{i-1}} \hat{Q}_{i-1} \xleftarrow{\hat{b}_{i-1}} \hat{U}_i \xrightarrow{\hat{a}_i} \hat{Q}_i \xleftarrow{\hat{b}_i} \hat{U}_{i+1} \xrightarrow{\hat{a}_{i+1}} \hat{Q}_{i+1} \xleftarrow{\hat{b}_{i+1}} \dots$$

Thanks to the fact that Shrinking Wellness Lemma also holds for restricted well groups, \hat{a}_i 's are surjective, and \hat{b}_j 's are injective. **Thus, all classes get well at** \hat{U}_0 , and from this we can construct the well diagram for \hat{U} as the multiset of values u_i with multiplicities $\hat{\mu}$, denoting it as $\mathrm{Dgm}(\hat{U})$, together with infinitely many copies of 0. Similarly, for each homology class $[\alpha] \in \hat{U}(0)$, we define the **robustness** $\varrho(\alpha)$ of α to be the value u_i when α falls ill.

Toward Bridge Lemma

Since we will have different parameterized collections of perturbations for f and g, we need to ensure they are *compatible* each other to establish Bridge Lemma.

Definition (ε -compatibility)

Let $f,g:X\to Y$ and $A\subset Y$ be a submanifold. Let $\{\mathcal{F}_\rho\}_{\rho\geq 0}$ and $\{\mathcal{F}'_\rho\}_{\rho\geq 0}$ be parameterized collections of perturbations of f and g. Then $\{\mathcal{F}_\rho\}$ and $\{\mathcal{F}'_\rho\}$ are ε -compatible if

$$\mathcal{F}_{
ho}\subset\mathcal{F}_{
ho+arepsilon}',\quad ext{and}\quad \mathcal{F}_{
ho}'\subset\mathcal{F}_{
ho+arepsilon}$$

for every $\rho \geq 0$. We say two restricted well modules are ε -compatible if their associated nested parameterized collections of perturbations are ε -compatible.

Bridge Lemma for RWG

With this additional condition, Bridge Lemma holds for restricted well modules as well.

Lemma 7 (Bridge Lemma for Restricted Well Module)

For ε -compatible restricted well modules \hat{U} and \hat{V} , we have

$$\hat{U}(r+\varepsilon)\subset \mathcal{B}_r(\hat{V}(r)).$$

Proof.

The proof follows from the definition of ε -compatibility because for each $\delta>0$, we have $\mathcal{F}_{r+\varepsilon+\delta}\supset \mathcal{F}'_{r+\delta}$. Hence, the intersection of the images of restricted $(r+\varepsilon+\delta)$ -perturbations of f is contained in the intersection of the images of restricted $(r+\delta)$ -perturbations of g, concluding the proof by definition of restricted well groups.

24/35

Stability Theorem for RWG

We remark that the **Matching Lemma** still holds for restricted well modules, as the proof relied only on the combinatorial facts of the points on $\mathbb{R}_{\geq 0}$.

Theorem A (Stability Theorem for Well Diagrams for Restricted Well Modules)

Let \hat{U}, \hat{V} be the restricted well modules of the functions f_A, g_A defined by admissible, homotopic mappings $f, g: X \to Y$, where X, Y and $A \subset Y$ is a submanifold. Assume further \hat{U}, \hat{V} are $\|f - g\|_{\infty}$ -compatible. Then

$$W_{\infty}(\mathsf{Dgm}(\hat{U}), \mathsf{Dgm}(\hat{V})) \leq \|f - g\|_{\infty}$$

Result 2: Application – Stability theorem for robustness of self-intersection of curves/knots

Diagonal Perturbations

Now let us apply the aforementioned stability result (Theorem A) to the self-intersection points of curves/knots. To define the robustness of self intersection points, we construct our choice of parameterization for perturbations as follows:

Definition (Diagonal Perturbation)

Let $f: X \to Y$ be a map with $A \subset Y$ a submanifold. Consider a diagonal map $(f, f): X \times X \to Y \times Y$. For each $\rho \geq 0$, define \mathcal{F}_{ρ} as:

$$\mathcal{F}_{\rho} := \{ (g,g) : X \times X \to Y \times Y | \| \|f - g\|_{\infty} \le \rho \},$$

and call \mathcal{F}_{ρ} as the **diagonal** ρ -perturbation of (f, f).

Sanity Check for Diagonal Perturbations

Lemma 8 (Diagonal Perturbations ⇒ **Nested.)**

The parameterized collection of diagonal perturbations are **nested**.

Lemma 9 (Diagonal Perturbations ⇒ **Compatible.)**

Two parameterized collections of diagonal perturbations of f and g are $||f - g||_{\infty}$ -compatible.

Robustness of self-intersection points of curves

Definition

Let $c: S^1 \to \mathbb{R}^2$ be a curve, with possibly finitely many self-intersection points. Define the **robustness** $\varrho(c)$ **of the curve** c as the sum of the robustness of *restricted* well group classes corresponding to the self-intersecting points, i.e.,

$$\varrho(c) := \sum_{[\alpha] \in \hat{U}(0)} \varrho(\alpha),$$

where $U(0) \subset H_0(C^{-1}(\mathbb{D}))$ is the initial restricted well group associated to the map C with the subset $\mathbb{D} \subset \mathbb{R}^2 \times \mathbb{R}^2$.

Note $C^{-1}(\mathbb{D})$ represents the self-intersecting points of c, together with infinitely many diagonal points in $S^1 \times S^1$.

Robustness of self-intersection points of knots

By replacing the 2d-curve c with the 3d-knot K, we can similarly define the robustness of self-intersection points for knots:

Definition

Let $K: S^1 \to \mathbb{R}^3$ be a knot, with possibly finitely many self-intersection points. Define the **robustness** $\varrho(K)$ **of the knot** K as the sum of the robustness of *restricted* well group classes corresponding to the self-intersecting points, i.e.,

$$\varrho(K) := \sum_{[\alpha] \in \hat{U}(0)} \varrho(\alpha),$$

where $\hat{U}(0) \subset H_0(\mathbb{K}^{-1}(\mathbb{D}))$ is the initial restricted well group associated to the map K with the subset $\mathbb{D} \subset \mathbb{R}^3 \times \mathbb{R}^3$.

Stability Result for Robustness of Self-Intersection points

Combining:

- Theorem A Stability of restricted well diagrams
- Lemma 8,9 Diagonal perturbations yield restricted well groups

Now the stability for the robustness of curves and knots follows.

Theorem B (Stability Results for Robustness of Selfintersection Points of Curves and Knots)

Denote by $I(X) < \infty$ the number of self-intersections of a curve(or knot) X. Then for two curves(or knots) X_1 and X_2 with possibly finitely many self- intersection points, the following inequality holds:

$$|\varrho(X_1) - \varrho(X_2)| \le 2 \max(I(X_1), I(X_2)) \|X_1 - X_2\|_{\infty}.$$

Future Directions

Minimum Homotopy Area

Definition

Given C_1 , C_2 two curves based at p_0 , we define the **minimum** homotopy area $\sigma(C_1, C_2)$ as the infimum of the homotopy area over all piecewise differentiable based homotopies between C_1 and C_2 :

$$\sigma(C_1, C_2) = \inf_{H} \operatorname{Area}(H).$$

Conjecture 1: Relation to Minimum Homotopy Area

Conjecture 1

Let $C:[0,1]\to\mathbb{R}^2$ be a piecewisely smooth curve, possibly with finitely many self-intersections. Then we have the following approximation:

$$\inf_{C'\simeq C}\sigma(C,C')=K\varrho(C)^2+B$$

where C' ranges over the piecewise smooth $simple(i.e.\ without\ self-intersection)$ curves homotopic to C, and $K,B\geq 0$ are constants.

Though there is a polynomial-time algorithm for calculating minimum homotopy area of two "generic" curves [FKW17], there has not been the stability results for minimum homotopy area between two curves.

Conjecture 2: Compatibility between robustness of curves and that of knots

On the other hand, we conjecture the robustness $\varrho(K)$ of a 3d-knot goes well with its *projectivized approximation*. Namely,

Conjecture 2

The robustness of knots is well approximated by its projectivized approximation. That is, given a 3d knot K, and $\varepsilon > 0$, there exists $\delta > 0$ such that for every δ -dense sampling $\mathcal V$ of unit vectors in the unit ball S^2 , we have

$$\left|\sum_{v\in\mathcal{V}}\varrho(\pi_v(K))A_v-\varrho(K)\right|<\varepsilon,$$

where
$$A_v := \inf_{\substack{w \neq v \\ w \in \mathcal{V}}} \|v - w\|^2$$
.

Illustration of Conjecture 2

References

[CS10] Gunnar Carlsson and Vin de Silva (2010)

Zigzag persistence

Found. Comput. Math. 10, no. 4, 367405. MR 2657946

FKW17] Brittany Terese Fasy, Selcuk Karakoc, and Carola Wenk (2017)

On minimum area homotopies of normal curves in the plane

arXiv preprint arXiv:1707.02251

[A10]Amit Patel (2010)

Reeb spaces and the robustness of preimages

Duke University

Any Questions?