Artificial Intelligence I 2023/2024 Week 5 Tutorial and Additional Exercises

Clustering

School of Computer Science

February 13, 2024

In this tutorial...

In this tutorial we will be covering

- Unsupervised Learning.
- Distance metrics.
- Clustering.
- Advanced theoretical exercises.

Supervised and unsupervised learning

- In supervised learning, each available instance has a label.
- An example of supervised learning is classification.
- In unsupervised learning, the instances do not have labels.
- In this tutorial, we will study *clustering*, which is an unsupervised learning algorithm.

Distance metrics revisited

- Recall that a distance metric is a way to quantify the similarity or dissimilarity between instances.
- In this week, we will study the Chebyshev distance.
- Given two vectors with *m* numerical variables

$$\mathbf{x}^{(1)} = (x_1^{(1)}, \dots, x_m^{(1)})$$
 and $\mathbf{x}^{(2)} = (x_1^{(2)}, \dots, x_m^{(2)})$

their Chebyshev distance is defined as

$$L^{\infty}(\mathbf{x}^{(1)},\mathbf{x}^{(2)}) = \max_{j} |x_{j}^{(1)} - x_{j}^{(2)}|.$$

• This is a limiting case of the Minkowski distance, when taking $p \to \infty$.

Exercise 1

• Consider the following vectors with 3 numerical variables.

$$\boldsymbol{x}^{(1)} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}, \boldsymbol{x}^{(2)} = \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix}, \boldsymbol{x}^{(3)} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \boldsymbol{x}^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

 Compute the Chebyshev distances between each pair of vectors.

Clustering

- *Clustering* is one of the most popular unsupervised learning algorithms.
- Given unlabeled instances, clustering aims at grouping together similar ones, producing clusters.
- It uses distance metrics to find similar distances and to assign instances to clusters.
- Its goal is to ensure high intra-cluster similarity and low inter-cluster similarity.
- We will next recall some basic definitions and formulas.

Centroid & Inertia

• Given a cluster C that consists of n vectors $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$, the *centroid* of C is another vector defined as

centroid(C) :=
$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)}$$
.

• The *inertia* of *C* is defined as

$$inertia(C) := \sum_{i=1}^{n} L^{2}(\mathbf{x}^{(i)}, centroid(C))^{2}$$

where $L^2(\cdot)^2$ is the squared Euclidean distance.

• The inertia measures how compact a cluster is.

Exercise 2

• Consider the following data set with 5 vectors and 3 variables:

Vectors	$x^{(1)}$	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$	$x^{(5)}$
Variable 1	1	2	-1	-3	2
Variable 2	1	4	4	-2	-2
Variable 3	0	3	1	-1	0

 Treat all vectors as one cluster, C, and compute the centroid and inertia of C.

Within Cluster Sum of Squares (WCSS)

- The centroid and inertia considered above are only defined for one cluster.
- If $C = \{C_1, \dots, C_k\}$ is a set of several clusters, the *WCSS* of C is defined as

$$WCSS(C) := \sum_{j=1}^{k} inertia(C_j).$$

 In a clustering algorithm, we find a set of clusters that has as small WCSS as possible.

Exercise 3

• Reconsider this data set with 5 vectors and 3 variables:

Vectors	$x^{(1)}$	x ⁽²⁾	$x^{(3)}$	$x^{(4)}$	x ⁽⁵⁾
Variable 1	1	2	-1	-3	2
Variable 2	1	4	4	-2	-2
Variable 3	0	3	1	-1	0

• Assume a set of two different clusters, $C = \{C_1, C_2\}$, where

$$C_1 = \{ \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)} \}$$
 and $C_2 = \{ \mathbf{x}^{(4)}, \mathbf{x}^{(5)} \}.$

• Compute the centroids and inertia of C_1 and C_2 . Then, compute the WCSS of \mathcal{C} . Also compute the squared Euclidean distance between the two centroids (do not use normalisation).

Up next...

Advanced Material

(OPTIONAL) Advanced Exercise 1

• Recall the formal definition of a distance metric.

Definition 1 (Distance metric)

A function $f: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *distance metric*, if and only if, for all vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$, the following hold:

- $f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x})$; and
- - Show that Chebyshev distance is a distance metric.

(OPTIONAL) Advanced Exercise 2

- Let $C = \{C_1, \dots, C_k\}$ be a set of clusters and, let
 - **1** n_i be the number of points in C_i , for all i = 1, ..., k;
 - ② \mathbf{c}_i be the centroid of cluster C_i , for all i = 1, ..., k; and
 - **3 c** is the centroid of all points as a single cluster.
- Also define the following:
 - **1** $TSS := \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} L^2(\mathbf{x}, \mathbf{c})^2;$
 - **2** $WCSS(C) := \sum_{i=1}^k \sum_{\mathbf{x} \in C_i} L^2(\mathbf{x}, \mathbf{c}_i)^2$; and
 - **3** $BCSS(C) := \sum_{i=1}^{k} n_i L^2(\mathbf{c}_i, \mathbf{c})^2$.
- Prove the following identity:

$$TSS = WCSS(C) + BCSS(C).$$

• Hint: Use the fact that, for all vectors \mathbf{x}, \mathbf{y} , we have $L^2(\mathbf{x}, \mathbf{y})^2 = (\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})$.

Any questions?

Until the next time...

Thank you for your attention!