— 1 —

Suites numériques

I. Suites arithmétiques

1. Relation de récurrence et forme explicite

Définition 1

Une suite (u_n) est dite **arithmétique** s'il existe un nombre r tel que :

$$u_{n+1} = u_n + r$$

On appelle le nombre r la **raison** de la suite (u_n) .

Exemple :

On considère la suite arithmétique (u_n) définie par $\begin{cases} u_0 = 4 \\ u_{n+1} = u_n - 3 \end{cases}$

- **1.** Pour cette suite on a $u_1 = \ldots, u_2 = \ldots$ et $u_5 = \ldots$
- **2.** On peut réécrire $u_{n+1} = \dots$ et donc la raison de (u_n) est \dots

Propriété 1 : Forme explicite

Soit (u_n) une suite arithmétique de raison r dont on connaît le premier terme u_0 . Pour tout entier naturel n, on a : $u_n = u_0 + nr$

! Remarque :

• Si on ne connaît pas u_0 , mais u_p pour un certain entier p, alors pour $n \geq p$, on a :

$$u_n = (n-p)r$$

• Si l'évolution d'une grandeur peut être modélisée par une suite arithmétique, on parle de **croissance linéaire**.

Année 2024/2025 Page 1/6

Exemple	:
	•

1. On considère la suite arithmétique (u_n) définie par $\begin{cases} u_0 = 15 \\ u_{n+1} = u_n - 4 \end{cases}$

La raison de cette suite est \dots et donc pour tout entier naturel n, on a :

2. On considère la suite arithmétique (v_n) définie par $\begin{cases} v_1=7\\ v_{n+1}=v_n+3 \end{cases}$

La raison de cette suite est et donc pour tout entier $n \geq 1$, on a :

2. Sens de variation

Propriété 2

Soit (u_n) une suite arithmétique de raison r:

- Si r > 0, la suite est strictement croissante;
- Si r = 0, la suite est constante;
- Si r < 0, la suite est strictement décroissante.

<pre>Exemple :</pre>
Pour les deux suites définie précédemment, dire si elles sont croissantes ou décroissante.

3. Moyenne arithmétique

Définition 2

La moyenne arithmétique d'une liste de nombres est la somme des valeurs divisée par le nombre de valeurs.

// Exemple :

La moyenne arithmétique de 15 et -7 vaut

Année 2024/2025 Page 2/6

Terminale STMG	Chapitre 1
	±

D	•	111	0
Prop	pri	ete	3

Trois nombres x, y et z sont des termes consécutifs d'une suite arithmétique si et seulement si $y = \frac{x+z}{2}$.

Exemple :

On considère une suite arithmétique (u_n) dont on sait que $u_3 = 9$ et $u_5 = 23$.

Que vaut u_4 ?

Donc la raison de cette suite vaut

4. Somme de termes d'une suite arithmétique

Propriété 4

Soient (u_n) est une suite arithmétique, et $p \leq n$ deux entiers naturel. Alors :

$$\sum_{k=p}^{n} u_k = u_p + u_{p+1} + \dots + u_n = (n-p+1) \frac{u_p + u_n}{2}$$

En particulier : $\sum_{k=0}^{n} u_k = u_0 + u_1 + \dots + u_n = (n+1) \frac{u_0 + u_n}{2}$

! Remarque :

Une autre façon de voir cette formule est de dire que la somme vaut : $% \left(1\right) =\left(1\right) \left(1$

nombre de termes
$$\times \frac{\text{premier terme} + \text{dernier terme}}{2}$$

Exemple :

On considère la suite arithmétique (v_n) définie par $\begin{cases} u_0 = 3 \\ u_{n+1} = u_n + 7 \end{cases}$

Donner la valeur de $u_1 + u_2 + \cdots + u_{15}$.

.....

.....

Année 2024/2025 Page 3/6

II. Suites géométrique

1. Relation de récurrence et forme explicite

Définition 3

Une suite (u_n) est dite **géométrique** s'il existe un nombre q tel que :

$$u_{n+1} = q \times u_n$$

On appelle le nombre q la **raison** de la suite (u_n) .

Exemple :

On considère la suite géométrique (u_n) définie par $\begin{cases} u_0 = 3 \\ u_{n+1} = 5u_n \end{cases}$

- **1.** Pour cette suite on a $u_1 = \ldots$ et $u_2 = \ldots$
- **2.** Ici, la raison de (u_n) est

Propriété 5 : Forme explicite

Soit (u_n) une suite géométrique de raison q dont on connaît le premier terme u_0 . Pour tout entier naturel n, on a : $u_n = u_0 \times q^n$

🔥 Remarque :

• Si on ne connaît pas u_0 , mais u_p pour un certain entier p, alors pour $n \geq p$, on a:

$$u_n = u_p \times q^{n-p}$$

• Si l'évolution d'une grandeur peut être modélisée par une suite géométrique, on parle de croissance exponentielle.

Exemple :

1. On considère la suite géométrique (u_n) définie par $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{u_n}{3} \end{cases}$

La raison de cette suite est \dots et donc pour tout entier naturel n, on a :

2. On considère la suite géométrique (v_n) définie par $\begin{cases} v_1 = 7 \\ v_{n+1} = 5v_n \end{cases}$

La raison de cette suite est et donc pour tout entier naturel $n \geq 1$, on a :

Année 2024/2025 Page 4/6

2. Sens de variation

Propriété 6

Soit (u_n) une suite géométrique de raison q et de premier terme $u_0>0$:

- Si q > 1, la suite est strictement croissante;
- Si q = 1, la suite est constante;
- Si 0 < q < 1, la suite est strictement décroissante.

/ Exemple :
Pour les deux suites définie précédemment, dire si elles sont croissantes ou décroissantes
3. Moyenne géométrique
Définition 4
La moyenne géométrique de deux nombres a et b est \sqrt{ab}
Exemple:
La moyenne arithmétique de 4 et 9 vaut
Propriété 7
Trois nombres $x,\ y$ et z sont des termes consécutifs d'une suite géométrique si et seulement si $y=\sqrt{xz}$.
Exemple:
On considère une suite géométrique (u_n) dont on sait que $u_2 = 8$ et $u_4 = 72$.
Que vaut u_3 ?
Donc la raison de cette suite vaut

Année 2024/2025 Page 5/6

4. Somme de termes d'une suite géométrique

Propriété 8

Soient (u_n) est une suite géométrique de raison $q \neq 1$ et $p \leq n$ deux entiers naturel.

Alors:

$$\sum_{k=p}^{n} u_k = u_p + u_{p+1} + \dots + u_n = u_p \frac{1 - q^{n-p+1}}{1 - q}$$

En particulier :
$$\sum_{k=0}^{n} u_k = u_0 + u_1 + \dots + u_n = u_0 \frac{1 - q^{n+1}}{1 - q}$$

⚠ Remarque :

Une autre façon de voir cette formule est de dire que la somme vaut :

$$premier terme \times \frac{1 - raison^{nombre de termes}}{1 - raison}$$

On considère la suite géométrique
$$(u_n)$$
 définie par
$$\begin{cases} u_0=2\\ u_{n+1}=6u_n \end{cases}$$

Donner la valeur de $u_0 + u_2 + \cdots + u_6$.

 	 •	 •	 •	•	 	•		•	 	•			 	•	•		•	 •	•	•	 		•	 	•	•		•	•		•		 	•		 •	•		 •	
 				•	 				 				 				•				 			 									 		•			•		

Année 2024/2025 Page 6/6