

Description

These N-Channel enhancement mode power field effect transistors are using split gate trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 100V,12.6A, $R_{DS(on),max} = 9.8 \text{m}\Omega @V_{GS} = 10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 100V \\ R_{DS(on),max} @ V_{GS} {=} 10V & 9.8 m\Omega \\ I_D & 12.6 A \end{array}$

Pin Configuration

SOP-8

Schematic

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	100	V
Continuous drain current (T _A = 25°C)		12.6	Α
(T _A = 100°C)	I _D	8	Α
Pulsed drain current ¹⁾	I _{DM}	37.8	Α
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	Eas	3.2	mJ
Power Dissipation	P _D	3.1	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{eJC}	24	°C/W
Thermal Resistance Junction-to-Ambient	Reja	40	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VST10N098-S8	SOP-8	VST10N098-S8

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	100			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.2	1.7	2.5	V
Drain-source leakage current	I _{DSS}	V _{DS} =100 V, V _{GS} =0V			1	μΑ
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance		V _{GS} =10 V, I _D =11.5 A		7.4	9.8	mΩ
	R _{DS(on)}	V _{GS} =4.5 V, I _D =9.5 A		9.6	13	mΩ
Forward transconductance	g _{fs}	V _{DS} =5V , I _D =11.5A		46.5		S
Dynamic characteristics						
Input capacitance	C _{iss}	V 50VV 0V		2553		pF
Output capacitance	Coss	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V},$ $V_{DS} = 10 \text{ MHz}$		308		
Reverse transfer capacitance	Crss	F - IIVIDZ		13.5		
Turn-on delay time	t _{d(on)}			9.3		ns
Rise time	t _r	V _{DD} = 50V,V _{GS} =10V, I _D = 11.5A		4.2		
Turn-off delay time	t _{d(off)}	R _G =3Ω		35.8		
Fall time	t _f			6.2		
Gate charge characteristics						
Gate to source charge	Q _{gs}	V 50V L 44.5A		8.5		
Gate to drain charge	Q _{gd}	V_{DS} =50V, I_{D} =11.5A, V_{GS} = 10 V		3.8		nC
Gate charge total	Qg			38		
Drain-Source diode characteris	tics and Maxi	mum Ratings				
Continuous Source Current	Is				2.5	А
Pulsed Source Current ³⁾	Ism				7.5	Α
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =11.5A, T _J =25°C			1.2	V
Reverse recovery time	t _{rr}	I _F =11.5A,dI _F /dt=100 A/μs		28.5		ns
Reverse recovery charge	Qrr			123		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: $V_{DD} {=} 25 V,\, V_{GS} {=} 10 V,\, L {=} 0.1 mH,\, I_{AS} {=} 8 A,\, Starting\, T_J {=} 25\,^{\circ}\!\! C\,.$
- 3: Pulse Test: Pulse Width \leq 300 \upmu s, Duty Cycle \leq 2%.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 3. Capacitance Characteristics

Figure 5. Body-Diode Characteristics

Figure 2. Transfer Characteristics

Figure 4. Gate Charge Waveform

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature

Figure 8. V_{GS(th)}-Junction Temperature

Figure 9. On-Resistance vs. Gate-to-Source voltage

Figure 10: Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

