Fine tune a LLM: how much memory do I need?

RTX 4090 24 GB

tuning a 2B model

Original model

2B (FP16) = 2*16/8 = 4GB

Gradient

Same size with the model

Optimizer

Two tensors: mean + variance

Activation

Something else

Model architecture, batch size, sequence length etc, ~1.5x model size

Understand temperature in LLM

```
response = openai.ChatCompletion.create( \begin{array}{c} \text{model='gpt-4o',} \\ \text{temperature=0.7,} \\ \text{max\_tokens=30,} \\ \text{messages=[{ & 'role': 'user', 'content': question } } \end{array}\}], \\ P(x_i) = \frac{\exp(z_i/T)}{\sum_{j=1}^N \exp(z_j/T)} \end{array}
```


Softmax with Temperature Hinton et al "Distilling the Knowledge in a Neural Network" 2015 https://arxiv.org/abs/1503.02531

Understand top_p in LLM

```
response = openai.ChatCompletion.create(  \begin{array}{c} \text{model='gpt-4o'}, \\ \text{max\_tokens=30}, \\ \textbf{top\_p=0.8}, \\ \text{messages=[} \{ \\ \text{'role': 'user', 'content': question} \} ], \\ ) \\ \\ \sum_{x \in V^{(p)}} P(x|x_{1:i-1}) \geq p \end{array}
```


More flexible than top K to the shape of the probability distribution, across different contexts.

Understand Boltzmann distribution and neural networks

What computer scientists see

What physicists see

interpret neural network input as probabilities instead of numbers

Probability of class i given input x in a neural network

$$P(\text{class } i|\mathbf{x}) = \text{softmax}(z_i) = \frac{e^{z_i}}{\sum_{j} e^{z_j}}$$

logits (pre-softmax activations)

Probability of a certain state

$$P(\mathbf{s}) = \frac{1}{Z} \exp\left(-\frac{E(\mathbf{s}; \boldsymbol{\theta})}{T}\right)$$

Partition function (normalization)

Temperature parameter

Energy of the state

Optimization and generalization can make statistical sense.

Understand prompting

Prompting introduces a task-specific bias to the model's output distribution by its activation patterns, effectively aligning the target task with the LLM's pre-trained task manifold.

Understand tool using

LLMs translate language tasks into tool actions by computing P(tool|context) through attention-based alignment between task requirements and tool capabilities.

$$P(\text{action}|\text{state}) = \int P(\text{action}|\text{intention})P(\text{intention}|\text{state})dI$$
 Connect state observation to action selection
$$P(\text{tool}|\text{context}) = \text{softmax}(\frac{h_{\text{tool}}^{\text{ctx}}W_{\text{out}}}{\tau}) - \text{Temperature control}$$
 Context-aware tool selection
$$\alpha_{\text{tool}} = \text{softmax}(\frac{h_{\text{context}}W_Q(h_{\text{tool}}W_K)^T}{\sqrt{d_k}})$$
 Attention of tools
$$h_{\text{context}} = \text{LayerNorm}([h_{\text{task}}; h_{\text{tools}}])$$
 Hidden states of context

Understand chain-of-thoughts (CoT)

Chain-of-thought (CoT) emerges from attention mechanism building up a working memory of key-value pairs from each reasoning step, while hidden states evolve by attending to this memory to compute next steps, creating a computational cycle where each step can query and build upon previous computations.

Attention-based Memory Access

$$c_t = \operatorname{softmax} \left(\frac{h_t W^Q(M_t^K)^T}{\sqrt{d}} \right) M_t^V$$

$$h_t = f(\operatorname{attention}(h_{t-1}, [h_1, ..., h_{t-1}]))$$

$$M_t = [K_t, V_t] = [(h_1 W^K, h_1 W^V), (h_2 W^K, h_2 W^V), ..., (h_t W^K, h_t W^V)]$$

Understand LoRA ranks

$$d_{ ext{head}} = k$$

$$B \in \mathbb{R}^{r imes k}$$

$$\Delta W = AB$$
 LoRA fine tune weight update

Nuclear Norm (sum all singular values) $\min(d,k)$ $|\Delta W|* = \sum_{i=1}^{r} \sigma_i$ spread limit or "rank" (power of LoRA fine-tune) $\leq r$ $|\Delta W|F = \sqrt{\sum_{i=1}^{\min(d,k)} \sigma_i^2}$ Frobenius Norm as sqrt(sum of squared singular values) $\sum_{i=1}^{r} \sigma_i \leq \sqrt{r} \sqrt{\sum_{i=1}^{r} \sigma_i^2}$ Cauchy-Schwarz Interpretation

Rank = 4

Simpler, more concentrated updates

Better preservation of base model knowledge

Low risk of overfitting

more complex, distributed changes

More expressive power and complex adaptations

High risk of overfitting

https://www.linkedin.com/in/liuhongliang/

Understand LLM inference time

Total time

Number of layers ×

32 layers in Llama 8B

Position embeddings

$$T_{pos} = \mathcal{O}(s \cdot d)$$

Self-attention

$$T_{attn} = \mathcal{O}(s \cdot d \cdot h)$$

Feed-forward network

$$T_{ffn} = \mathcal{O}(s \cdot d \cdot 4d)$$

Layer norm

$$T_{ln} = \mathcal{O}(s \cdot d)$$

+

Final layer norm

$$T_{ln} = \mathcal{O}(s \cdot d)$$

Output projection

$$T_{proj} = \mathcal{O}(s \cdot d \cdot v)$$

Example: Llama 8B (FP32) on T4 GPU 512 tokens input 100 tokens output

S =sequence length (e.g 512)

d = hidden dimension (4096)

h = number of attention heads (32)

v = vocabulary size (e.g 32k)

Understand speculative decoding

Speculative decoding uses a small model to quickly guess multiple next tokens that a large model can verify in parallel, replacing sequential token generation with batch processing when predictions are correct.

