Seat No.

King Mongkut's University of Technology Thonburi Midterm Exam of Second Semester, Academic Year 2017

COURSE CPE 113 Algorithms and Data Structures CPE 131 Programming with Data Structures Tuesday, March 6, 2018	Computer Engineering 4th Yr. Automation Engineering 1st Yr. 13.00-16.00 h.
	key +3/3/2018.
 Instructions This examination contains 9 questions, The answers must be written in the examination room. Use your consideration and explain it if questions. 	mination paper. er documents can be taken into the
Name-Lastname	Student ID #
examination, to ask for permission Students must not take the examination an Students will be punished if they violate any	to the proctor upon their completion of the on to leave the examination room. In the answers out of the examination room. Examination rules. The highest punishment is aissal.
	Exam created by
	Nuttoment Faumoles
	(Asst. Prof. Dr. Nuttanart Facundes)
This examination has been approved by the	e committee of Computer Engineering Department
	(Assoc. Fof Dr. Natasha Dajdumrong

International Undergraduate Program Chairperson Date....2.8..FEB..2018......

Name	ID#

Total points: 25 points (25% of grading)

1. What would be the content of queue Q1 after the following code is executed and the following data are entered? (3 points)

```
1 Q1 = createQueue
2 S1 = createStack
3 loop (not end of file)
1 read number
2 if (number not 0)
1 pushStack (S1, number)
3 else
1 popStack (S1, x)
2 popStack (S1, x)
3 loop (not empty S1)
1 popStack (S1, x)
2 enqueue (Q1, x)
4 end loop
4 end if
4 end loop
```

The data are: 5, 7, 12, 4, 0, 4, 6, 8, 67, 34, 23, 5, 0, 44, 33, 22, 6, 0

Name	ID#

2. (3 points)

Tracking the value of these variables:

(Note: be thoughtful about the meanings of *)

int
$$a = 3$$
, $b = 4$, $c = 5$;

	a	b	c	pa	pb	pc
a = b * c;						
a * = c;						
b = * pa;						
pc = pa;						
*pb = b * c						
c = (*pa) * (*pc);						
*pc = a * (*pb);						

3. (8 points)

4.

Select from the following choices to fill in the blanks below:

Α	Fibonacci Number	G	Larger instances of the same problem
В	Factorial of a number	Н	AB*CD/+
С	Dynamic	ı	ABCD+/*
D	Smaller instances of the same problem	J	Loop
Е	Queue	К	Stack
F	Compile time	L	Base case

3.1	Recursion is a method in which the solution of a problem depends on
3.2	A problem that can be solved using recursion is
3.3	Recursion is similar to
3.4	In recursion, the condition for which the function will stop calling itself i
3.5	The postfix form of A*B+C/D is
3.6	A linear list of elements in which deletion can be done from one end and insertion can take place only at the other end is known as a
3.7	Linked list is considered as an example of type of memory allocation
3.8	data structure is needed to convert infix notation to postfix notation.

Name	ID#

5. Given that *data* variable is the array of structures of employee and the *data_count* variable is the number of item in array

Write down the C code for calculating the total salary for male employees (3 points)

```
double sumSalaryOfMaleEmployees (EMPLOYEE data[50], int data_count) {
   int i=0; double sum=0.0;

   return sum;
}
```

Name	ID#

6. (4 points)

Given the structure of linked-list node, head variable and main function as below.

```
typedef struct _node
{
    int value;
    struct _node * next;
} Node;

Node head;

int main() {
    ...
    printAll(head);
    return 0;
}
```

6.1) Write the *printAll()* function for displaying every value stored in the linked-list using **loop**.

6.2) Write the printAll() function (same purpose as in the previous question) using recursion.

Name	ID#

7. (1 point)

In the linked_list.c file, there are 4 linked-list operations which are

- append: insert the data as the last node of the list
- insertAt: insert the data as the node of the list at the given position
- delete: delete one node that contains the given value
- deleteAt: delete one node at the given position.

If the stack is implemented based on this linked_list.c file and stack's pop operation is done by calling deleteAt(0). Which of these code blocks is the most appropriate one?

Α	<pre>void push (int data) { append(data); }</pre>	В	<pre>void push (int data) { insertAt(data, 0); }</pre>
С	<pre>double top (int data) { return delete(data); }</pre>	D	<pre>double top (int data) { return delete(0); }</pre>

1	nsw	er		

8. (1 point)

To complete the postfix evaluation function below, you are required to insert the code for (1).

```
float evaluatePostfix(char * postfix) {
    float result = 0.0;
    char * token = strtok(postfix, " ");
    while(token != NULL) {
        if(isOperand(token)) {
            float operand = atof(token);
            pushFloat (operand);
        else {
            float num1 = popFloat();
            float num2 = popFloat();
            float result = 0.0;
            char op = token[0];
                    (1)
            pushFloat(result);
        token = strtok(NULL, " ");
    result = popFloat();
    return result;
```

Some of the codes below could make the postfix evaluation correct. What is it?

Α	if(op == '+')	В	if(op == '+')
	result = num1 + num2;		result = num1 + num2;
	else if(op == '-')		else if(op == '-')
	result = num1 + num2;		result = num1 - num2;
	else if(op == '*')		else if(op == '*')
	result = num1 * num2;		result = num2 * num1;
	else if(op == '/')		else if(op == '/')
	result = num1 / num2;		result = num2 / num1;
С	if(op == '+')	D	if(op == '+')
1	result = num2 + num1;		result = num2 + num1;
	else if(op == '-')		else
	result = num2 - num1;		result = num2 - num1;
	else if(op == '*')		else if(op == '*')
	result = $num1 * num2;$		result = num2 * num1;
	else if(op == '/')		else if(op == '/')
	result = num1 / num2;	1	result = num2 / num1;

Answer _____

	Name	112π
١.	Bonus points (up to 2 points)	
	Write down one reading summary that your remember, or	
	Is there any challenge(s) that you did in labs? Write down one challenge that you did.	