# 章节 01 - 03 基本概念

LATEX Definitions are here.

#### 始对象与终对象

范畴由对象及其间箭头构成。本文重点分析**余积闭范畴**  $\mathcal{C}$  。首先给出如下定义:

- 0 为**始对象**当且仅当对任意  $\mathcal{C}$  中对象 c 都有且仅有唯一的箭头  $:c_i$ : 0  $\stackrel{c}{\rightarrow}$  c;
- 1 为**终对象**当且仅当对任意  $\mathcal{C}$  中对象 c 都有且仅有唯一的箭头 :c!: c  $\overset{c}{\rightarrow}$  1;

#### (i) Note

其他范畴中始终对象不一定存在。

范畴 C 中我们假设其含 0 和 1 分别作为始对象和终对象,那么由上述信息可知

- 形如  $0 \xrightarrow{c} 0$  的箭头 只有一个, 即 :0id;
- 形如  $1 \stackrel{c}{\rightarrow} 1$  的箭头只有一个,即: $_{:1}id$ ;

### 元素与全局元素

对任意对象 a,  $a_1$ ,  $a_2$ , etc , b,  $b_1$ ,  $b_2$ , etc 以及任意映射  $\phi$  , 我们进行如下的规定 :

- $\phi$  为 b 的元素当且仅当  $\phi$ : a  $\overset{c}{\rightarrow}$  b;
- $\phi$  为 a 的**全局元素**当且仅当  $\phi: \mathbf{1} \overset{\mathcal{C}}{\to}$  a ;
- $\phi$  不存在可通过  $\phi: \mathbf{b} \overset{\mathcal{C}}{ o} \mathbf{0}$  得出 。

#### (i) Note

其他范畴中刚才的断言未必成立。

### 箭头构成的集合

这里再给一个定义:

- $\bullet \quad \mathsf{a} \overset{\mathcal{C}}{\to} \mathsf{b} =$ 所有从 a 射向 b 的箭头构成的集。

上述断言仅对于**局部小范畴**成立 , 在其他范畴里 a  $\stackrel{\mathcal{C}}{\to}$  b 未必构成集 。

## 箭头的复合运算

范畴 
$$\mathcal{C}$$
 中特定的箭头可以进行复合运算:
$$\overset{\mathcal{C}}{\circ} : (\mathsf{a}_2 \overset{\mathcal{C}}{\rightarrow} \mathsf{a}_1) \times (\mathsf{a}_1 \overset{\mathcal{C}}{\rightarrow} \mathsf{b}_1) \overset{\mathcal{S}et}{\longrightarrow} (\mathsf{a}_2 \overset{\mathcal{C}}{\rightarrow} \mathsf{b}_1)$$

$$\overset{\mathcal{C}}{\circ} : ( f_1 \qquad . \qquad \phi_1 \quad ) \longmapsto f_1 \circ \phi_1$$

若我们还知道箭头  $f_1$  ,  $\phi_1$  ,  $g_1$  分别属于  $\mathbf{a}_2\overset{\mathcal{C}}{ o}$   $\mathbf{a}_1$  ,  $\mathbf{a}_1\overset{\mathcal{C}}{ o}$   $\mathbf{b}_1$  ,  $\mathbf{b}_1\overset{\mathcal{C}}{ o}$   $\mathbf{b}_2$  那么便有

 $\bullet \quad (f_1 \overset{\mathcal{C}}{\circ} \phi_1) \overset{\mathcal{C}}{\circ} g_1 = f_1 \overset{\mathcal{C}}{\circ} (\phi_1 \overset{\mathcal{C}}{\circ} g_1)$ 说明箭头复合运算具有结合律。

另外固定住一侧实参便获可得新的函数:

 $\begin{array}{ccc} \bullet & (f_1 \overset{\mathcal{C}}{\circ} \_) : (\mathsf{a}_1 \overset{\mathcal{C}}{\rightarrow} \_) \xrightarrow{\mathcal{C} \rightarrow \mathcal{S}et} (\mathsf{a}_2 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\rightarrow}} \_) \\ & (f_1 \overset{\mathcal{C}}{\circ} \_) : & \phi_1 & \longmapsto & f_1 \overset{\mathcal{C}}{\circ} \phi_1 \end{array}$ 称作前复合。下图有助于形象理解:



称作后复合;下图有助于形象理解:



根据上面的定义便不难得出下述结论

- $\bullet \quad (f_1 \overset{\mathcal{C}}{\circ} \_)^{\mathcal{C} \to \mathcal{S}et} (\_ \overset{\mathcal{C}}{\circ} g_1) = (\_ \overset{\mathcal{C}}{\circ} g_1)^{\mathcal{C} \to \mathcal{S}et} (f_1 \overset{\mathcal{C}}{\circ} \_)$ 复合运算具有结合律,即后面会提到的自然性;
- $\bullet \quad \left( \begin{smallmatrix} \mathcal{C} \\ \circ \\ \phi_1 \end{smallmatrix} \right)^{\mathcal{C} \longrightarrow \mathcal{S}et} \left( \begin{smallmatrix} \mathcal{C} \\ \circ \\ \end{smallmatrix} \right) = \left( \begin{smallmatrix} \mathcal{C} \\ \circ \\ \end{smallmatrix} \right) \left( \phi_1 \stackrel{\mathcal{C}}{\circ} g_1 \right) )$ 前复合与复合运算的关系
- $\bullet \quad (\phi_1 \overset{\mathcal{C}}{\circ} \_)^{\mathcal{C} \to \mathcal{S}et} (f_1 \overset{\mathcal{C}}{\circ} \_) = ((f_1 \overset{\mathcal{C}}{\circ} \phi_1) \overset{\mathcal{C}}{\circ} \_)$

# 箭头对实参的应用

范畴论里函数的应用亦可视作复合。 假如  $a_1$  为  $a_1$  的全局元素则可规定

$$\bullet \quad a_1\phi_1=a_1 \overset{\mathcal{C}}{\circ} \phi_1$$

## 恒等箭头

范畴  $\mathcal{C}$  内的每个对象都有恒等映射:

• 
$$a_1 id : a_1 \xrightarrow{\mathcal{C}} a_1$$
  
 $a_1 id : a_1 \mapsto a_1$ 

如此我们便可以得出下述重要等式:

• 
$$\operatorname{anid} \circ \phi_1 = \phi_1$$

$$= \phi_1 \circ \operatorname{baid}$$

此外还可以得知

- $(a_1 id \overset{\mathcal{C}}{\circ} \_) : (a_1 \overset{\mathcal{C}}{\rightarrow} \_) \xrightarrow{\mathcal{C} \rightarrow \mathcal{S}et} (a_1 \overset{\mathcal{C}}{\rightarrow} \_)$ 为恒等自然变换,可以记作是  $(a_1 \overset{\mathcal{C}}{\rightarrow} \_)id$ ;
- $\begin{pmatrix} c \\ \circ :_{b_1} id \end{pmatrix} : \begin{pmatrix} c \\ & b_1 \end{pmatrix} \xrightarrow{c \to \mathcal{S}et} \begin{pmatrix} c \\ & b_1 \end{pmatrix}$ 为恒等自然变换,可以记作是  $\begin{pmatrix} c \\ - & b_1 \end{pmatrix}$ id;

### 单态

在范畴论里我们也可以定义单态:

•  $\phi_1$  为**单态**当且仅当对任意  $\mathsf{a}_2$  若有  $f_1, f_1': \mathsf{a}_2 \overset{c}{\to} \mathsf{a}_1$  满足  $f_1 \overset{c}{\circ} \phi_1 = f_1' \overset{c}{\circ} \phi_1$  则有  $f_1 = f_1'$  。详情见下图:



结合终对象的性质我们不难得知

•  $a_1$  为单态 —— 由 ! 的唯一性可得知 。

### 满态

在范畴论里我们也可以定义满态;

•  $\phi_1$  为**满态**当且仅当对任意  $\mathsf{b}_2$  若有  $g_1,g_1':\mathsf{b}_1\overset{c}{\to}\mathsf{b}_2$  满足  $\phi_1\overset{c}{\circ}g_1=\phi_1\overset{c}{\circ}g_1'$  则有  $g_1=g_1'$  。详情见下图:



#### 同构

在范畴论里我们也可以定义同构:

•  $\phi_1$  为**同构**当且仅当存在  $\psi_1: \mathsf{b}_1 \overset{\mathcal{C}}{
ightarrow} \mathsf{a}_1$  使  $\phi_1 \overset{\mathcal{C}}{\circ} \psi_1 = {}_{\mathsf{:a}_1}\mathrm{id}$  且  $\psi_1 \overset{\mathcal{C}}{\circ} \phi_1 = {}_{\mathsf{:b}_1}\mathrm{id}$  。

结合始终对象的性质便不难得知

• 
$$:_0! = :_1$$
 为同构 —— 这是因为  $0 \overset{\mathcal{C}}{\rightarrow} 0 = \{:_0\mathrm{id}\}$  ,  $1 \overset{\mathcal{C}}{\rightarrow} 1 = \{:_1\mathrm{id}\}$ 

# 同构与自然性

下图即为自然性对应的形象解释 。 后面会将自然性进行进一步推广 。



若提供自然变换  $\beta$  满足自然性 —— 即对任意  $\mathcal{C}$  中对象  $\mathbf{x}_1$ ,  $\mathbf{x}_2$  及任意  $\mathcal{C}$  中映射  $f_1: \mathbf{x}_2 \xrightarrow{\mathcal{C}} \mathbf{x}_1$  都会有  $(f_1 \xrightarrow{\mathcal{C}} \mathbf{b}_1) \overset{Set}{\circ} \mathbf{x}_2 \overset{\beta}{=} \mathbf{x}_1 \overset{\beta}{\circ} \overset{Set}{\circ} (f_1 \xrightarrow{\mathcal{C}} \mathbf{b}_2)$  (即下图自西向南走向操作结果同自北向东):



#### 那么我们便会有下述结论:

•  $\mathbf{b_1} \cong \mathbf{b_2}$  当且仅当对任意  $\mathcal C$  中对象  $\mathbf{x}$   $\mathbf{x}^{\beta}$  都是同构 。此时称  $\beta$  为**自然同构** 。

若提供自然变换  $\alpha$  满足自然性 —— 即对任意  $\mathcal{C}$  中对象  $\mathbf{x}_1$  ,  $\mathbf{x}_2$  以任意  $\mathcal{C}$  中映射  $g_1: \mathbf{x}_1 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\leftarrow}} \mathbf{x}_2$  都会有  $(\mathbf{a}_1 \overset{\mathcal{C}}{\rightarrow} g_1) \overset{\mathcal{S}et}{\circ} \mathbf{x}_2 \overset{\mathcal{S}et}{=} \mathbf{x}_1 \overset{\mathcal{C}}{\circ} (\mathbf{a}_2 \overset{\mathcal{C}}{\rightarrow} g_1)$  (即下图自西向南走向操作结果同自北向东):



#### 那么我们便会有下述结论:

•  $\mathbf{a}_1\cong\mathbf{a}_2$  当且仅当对任意  $\mathcal C$  中对象  $\mathbf{x}^\alpha$  都是同构 。此时称  $\alpha$  为**自然同构** 。

#### 上一页的第一条定理若用交换图表示则应为



⇒ 易证, ← 用到了米田技巧(考虑特殊情况)



为了方便就用 (etc) 表示  $_{:b_1}id(b_1^{\beta})$  。 由上图可知  $f_1(x_2^{\beta}) = f_1 \circ (etc)$ ,故  $x_2^{\beta} = x_2 \rightarrow (etc)$ ;而  $x_2^{\beta} = x_2 \rightarrow (etc) = x_2^{(-\circ(etc))}$ 是同构,从而知 ((etc)  $\circ$  \_) 是同构,(etc) :  $b_1 \stackrel{c}{\rightarrow} b_2$  也是 。

高亮部分省去了部分推理过程,具体在米田嵌入处会详细介绍。

#### 上一页的第二条定理若用交换图表示则应为



⇒ 易证, ← 用到了米田技巧(考虑特殊情况)



为了方便就用 (etc) 表示  $_{\mathsf{:a_1}}\mathrm{id}(\mathsf{a_1^\alpha})$  。 由上图可知  $g_1(\mathsf{x_2}^\alpha) = (\mathrm{etc}) \circ g_1$  ,故  $\mathsf{x_2}^\alpha = (\mathrm{etc}) \xrightarrow{c} \mathsf{x_2}$  ; 而  $\mathsf{x_2}^\alpha = (\mathrm{etc}) \xrightarrow{c} \mathsf{x_2} = \mathsf{x_2}^{((\mathrm{etc})^c)}$ 是同构,从而知  $(_{-}^{\circ}(\mathrm{etc}))$ 是同构,(etc): $\mathsf{a_1} \xrightarrow{c} \mathsf{a_2}$  也是 。

高亮部分省去了部分推理过程, 具体在米田嵌入处会详细介绍。