TCREC TECHNICAL REPORT 61-106

WIND TUNNEL TESTS AND FURTHER ANALYSIS OF THE FLOATING WING FUEL TANKS FOR HELICOPTER RANGE EXTENSION VOLUME 5

ANALYSIS OF STABILITY, CONTROL AND PERFORMANCE CHARACTERISTICS

Project 9X38-09-006

Contract DA 44-177-TC-550

August 1961

PROPERTY OF U.S. ARMY
TRANSPORTA AN ESELEM COMMAND
RESEARCH RELEABLE CENTER

prepared by :

B- 217 350

VERTOL DIVISION
THE BOEING COMPANY
Morton, Pennsylvania

DEC 1 2 1961

DISCLAIMER NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

ASTIA AVAILABILITY NOTICE

Qualified requestors may obtain copies of this report from

Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia

This report has been released to the Office of Technical Service, U. S. Department of Commerce, Washington 25, D.C., for sale to general public.

The publication of this report does not constitute approval by USATRECOM of the findings and conclusions contained herein. It is published only for the exchange and stimulation of ideas.

ABSTRACT

TREC 61-106

Vertol Division, The Boeing Company, Morton, Pa., WIND TUNNEL TESTS AND FURTHER ANALYSIS OF THE FLOATING WING FUEL TANKS FOR HELICOPTER RANGE EXTENSION, VOL. 5 - Analysis of Stability, Control and Performance Characteristics by H. Neeb, D. Lawrence, and R. Johnstone, August 1961. 186 pp, incl. illus., tables. Contract (DA44-177-TC-550) USA TRECOM Proj. (9X38-09-006)

Unclassified Report

This report describes an analytical investigation of the stability and performance of a Boeing-Vertol H-21 tandem rotor helicopter equipped with floating wing fuel cells as a means of ferry range extension. The stability of the total system was studied with the wing located forward and directly under the helicopter center-ofgravity (cg). Two methods of stabilizing the wing oscillations about the hinge were studied: (a) A skewed hinge line, introducing a change in angle of attack as a function of the flapping disturbance, and (b) a geared trailing edge flap, mechanically linked to deflect when the wing flaps. Satisfactory stability was obtained with the wing positioned directly beneath the helicopter cq, using an unskewed hinge line, and geared flaps. The forward wing location was found to be unsatisfactory from the standpoint of longitudinal stability for the light wing case. Flight simulator studies emphasize the need for additional lateral control to supplement that produced by the basic aircraft. It was found that full span, differential ailerons with deflections of 2½ degrees per inch of stick, provide satisfactory roll control and wing flapping angles. At a take-off weight of 25,900 lbs and with the wing in the aft position the ferry range is 1975 nautical miles.

Project 9X38-09-006 Contract DA44-177-TC-550 August 1961

WIND TUNNEL TESTS AND FURTHER ANALYSIS OF THE FLOATING WING FUEL TANKS FOR HELICOPTER RANGE EXTENSION

Volume 5

ANALYSIS OF STABILITY, CONTROL AND PERFORMANCE CHARACTERISTICS

R-255

Prepared by: Vertol Division, Boeing Morton, Pennsylvania

for
U.S.ARMY TRANSPORTATION RESEARCH COMMAND
FORT EUSTIS, VIRGINIA

ACKNOWLEDGEMENTS

This study was accomplished by the Aerodynamic Department of the Vertol Division of The Boeing Company. Notable contributions were made by the following personnel:

E. Diamond - Systems Analyst

R. Johnstone - Aerodynamicist

D. Lawrence - Aerodynamicist

H. Neeb - Aerodynamicist

HEADQUARTERS U. S. ARMY TRANSPORTATION RESEARCH COMMAND Fort Eustis, Virginia

FOREWORD

The U. S Army, through the facilities of the U. S. Army Transportation Research Command, Fort Eustis, Virginia, has conducted a research program to determine a method for increasing the range of helicopters of the light-cargo type to 2,000 miles or more. The system that held the most promise was one wherein floating-wing fuel tanks were attached to the helicopter's fuselage.

The report presented in the following pages is the fifth and last volume of the final report. This report contains the results of the analytical investigation of the stability, control, and performance characteristics of the floating wing fuel tank system. The conclusions presented in the report are concurred in by this Command.

A design and fabrication program is now under way as a follow-up to this research program.

FOR THE COMMANDER:

APPROVED BY:

ROBERT D. POWELL,

USATRECOM PROJECT ENGINEER

Assistant Adjutant

CONTENTS

	Page
List of Figures and Tables	v
List of Symbols	viii
Summary	1
Recommendations and Conclusions	3
Introduction	4
Longitudinal Analysis	8
Lateral-Directional Analysis	13
Flight Simulator Study	18
Performance Analysis	20
Bibliography	24
Appendix A - Longitudinal Analysis	25
Appendix B - Lateral-Directional Analysis	88
Appendix C - Performance Analysis	139
Appendix D - Analog Computer	173
Distribution List	183

LIST OF FIGURES AND TABLES

Figure		Page
1,2	Displacement Diagram for Longitudinal Equations	26
3	Differentially Geared Flap	27
4	Basic Helicopter Response to Longitudinal Step Input	76
5-14	System Analog Time Histories - Response to Vertical Gust	77
15	Geometry and Displacement Diagram, Lateral- Directional	89
16	Basic Helicopter Response to Lateral Step Input	124
17-26	System Analog Time Histories Response to Side Gust	125
27	l In. Lateral Step Response 5°/In. Aileron	135
28,29	Loci of the Roots of the Characteristic Equation	137
30 , 38	Wing Angle, Helicopter Water Line vs. Flap Deflection	140
39	Lift Coefficient vs. Angle of Attack	149
40	Horsepower vs. Flap Deflection	150
41	Horsepower vs. Flap Deflection	151
42	Horsepower vs. Flap Deflection	152
43	Fuel Flow vs. Brake Horsepower	153
44-47	Miles Per Pound of Fuel vs. Fuel Weight	154
48-49	Flight Schedule vs. Fuel Weight	158
50-51	Miles Per Pound of Fuel vs. Fuel Weight	160
52-53	Horsepower and RPM vs. Fuel Weight	162

LIST OF FIGURES AND TABLES (Continued)

Figure		Page
54	Longitudinal Cyclic Pitch vs. Fuel Weight	164
55,56	Collective Pitch vs. Fuel Weight	165
57,58	Longitudinal Range Extension Analog Computer Program	174
59,60	Lateral-Directional Range Extension Analog Computer Program	176
61	Range Extension Recording - Analog Schematic	178
62	Range Extension Schematic Block Diagram	179
63	Simulator Controls, Longitudinal Stick, Lateral Stick, Rudder Pedals	180
64	Simulator Instruments	181
65	Simulator Instruments (Cont'd)	182
Table		
1	Table of Configurations	63
2-12	Tables of Numerical Coefficients	64
13	Summary of Roots of Longitudinal Characteristic Equations	75
14	Table of Maximum Wing Deflections	87
15	Table of Configurations	111
16-26	Tables of Numerical Coefficients	112
27	Summary of Roots of Lateral Directional Characteristic Equations	123
28	Table of Maximum Wing Deflection	136
29-32	Tables of Specific Range as a Function of Cruise Speed and Aircraft Geometry	167

LIST OF FIGURES AND TABLES (Continued)

<u>Table</u>		<u>Page</u>
33	Summary of Range and Take-off Gross Weight for Various Configurations	171
34	Summary of Take-off Procedures and Results	172

LIST OF SYMBOLS

d.	Section Zero Lift Angle
BH	True Angular Wing Displacement
of,	Inboard Flap Deflection Angle
of,	Outboard Flap Deflection Angle
d_3	Included Angle between Chord Line and Hinge Line
0	Helicopter Pitch Angle Referenced to Horizontal X Axis
u,	Ratio of Pitching Moment Coefficient to Lift Coefficient Generated by Flap Deflection
P	Mass Density of Air
0,	Spanwise Static Weight Moment about the Chord Line Intersecting the Hinge Line at the Quarter Chord
0	Chordwise Static Weight Moment about the Quarter Chord Line
ϕ	Helicopter Roll Angle
y	Helicopter Yaw Angle
a	Wing Lift Curve Slope
a.c,	Wing Aerodynamic Center
R	Wing Aspect Ratio
ā	Geometric Mean Chord
c,	Increment in Profile Drag due to Geared Inboard Flap
$C_{\mathbf{z}}$	Increment in Profile Drag due to Geared Outboard Flap
C_{ρ_a}	Total Profile Drag Coefficient

Section Steady State Drag Coefficient

- Coa Rate of Change Section Drag due to Geared Flap
- Flap Chord
- 9/4 Wing Quarter Chord
- $\overline{\mathcal{C}}_{m{k}}$ Section Steady State Lift Coefficient
- Rate of Change of Pitching Moment Coefficient with Angle of Attack
- Coefficient of Pitching Moment about the Wing Aerodynamic Center
 - D Total Drag of One Wing
 - D. Section Drag
 - e Wing Hinge Offset Measured at Section Center-of-Gravity
 - Wing Incidence Angle Measured at Intersection of Chord Line and Fuselage Water Line
 - Mass Moment of Inertia about the Wing Chord Line which Intersects the Hinge Line
 - Mass Moment of Inertia Taken about the Wing Line of Aerodynamic Centers
 - I_3 Mass Product of Inertia Taken about the Same Axes as I_1 and I_2 were taken
 - Ta Mass Moment of Inertia about the Wing Hinge
 - Moment of Inertia about Unskewed Hinge + (First Moment about Same Axis)
 - \mathcal{I}_{X} Total Roll Moment of Inertia of Rigid System
 - I'M Helicopter Pitch Moment of Inertia
 - I Total Yaw Moment of Inertia of Rigid System

- K Induced Drag Factor Increment in Lift Due to Geared Inboard Flap K, Increment in Lift Due to Geared Outboard Flap K, Longitudinal Displacement of Wing Quarter Chord with Reference to Helicopter Center-of-Gravity Vertical Displacement of Wing Quarter Chord Beneath Helicopter Center-of-Gravity L Total Lift of One Wing Rolling Moment Derivative with Respect to Wing Flapping Angle Rolling Moment Derivative with Respect to Wing Flapping Velocity Lj Rolling Moment Derivative with Respect to Roll Rate Li Rolling Moment Derivative with Respect to Yaw Rate Rolling Moment Derivative with Respect to Lateral Lÿ Velocity Wing Section Lift Li Hinge Moment Derivative with Respect to Wing Flapping Angle Hinge Moment Derivative with Respect to Wing Flapping Velocity
 - Mo Hinge Moment Derivative with Respect to Roll Rate
 - M: Hinge Moment Derivative with Respect to Yaw Rate
 - Pitching Moment Derivative with Respect to Pitch Angle (Fuselage Rotor Contribution)
 - Min Pitching Moment Derivative with Respect to Pitch Rate (Fuselage Rotor Contribution)

- Pitching Moment Derivative with Respect to Vertical Velocity (Fuselage Rotor Contribution)
- Pitching Moment Derivative with Respect to
 Longitudinal Velocity (Fuselage Rotor Contribution)
- M_H Mass of Helicopter Only
- Ming Section Pitching Moment
- Mw Mass of One Wing
- Yawing Moment Derivative with Respect to Wing Flapping Angle
- Yawing Moment Derivative with Respect to Wing Flapping Velocity
- No Yawing Moment Derivative with Respect to Roll Rate
- Yawing Moment Derivative with Respect to Yaw Rate
- Ny Yawing Moment Derivative with Respect to Lateral Velocity
- Generalized Coordinate
- Virtual Work Terms Corresponding to the Generalized Coordinates
- S, Wing Area of Inboard Section
- 5 Wing Area of Outboard Section
- Total Kinetic Energy of System
- V Total Potential Energy of System
- Va Trim Forward Velocity
- Longitudinal Displacement Derivative with Respect to Pitch Angle (Fuselage-Rotor Contribution)

- Longitudinal Displacement Derivative with Respect to Pitch Rate (Fuselage-Rotor Contribution)
- Longitudinal Displacement Derivative with Respect to Longitudinal Velocity (Fuselage-Rotor Contribution)
- Longitudinal Displacement Derivative with Respect to Vertical Velocity (Fuselage-Rotor Contribution)
- Displacement of Center of Lift of Inboard Section from Intersection of Line of Aerodynamic Centers and Hinge Line
- Displacement of Center of Lift of Outboard Section from Intersection of Line of Aerodynamic Centers and Hinge Line
- Y Lateral Displacement Derivative with Respect to Lateral Velocity
- Chordwise Displacement of the Center of Lift of the Inboard Section from the Line of Aerodynamic Centers
- Chordwise Displacement of the Center of Lift of the Outboard Section from the Line of Aerodynamic Centers
- Vertical Displacement Derivative with Respect to Pitch Angle (Fuselage Rotor Contribution)
- Vertical Displacement Derivative with Respect to Pitch Rate (Fuselage Rotor Contribution)
- Vertical Displacement Derivative with Respect to Pitch Longitudinal Velocity (Fuselage Rotor Contribution)
- Vertical Displacement Derivative with Respect to Vertical Velocity (Fuselage Rotor Contribution)

SUMMARY

This report describes an analytical investigation of the stability and performance of a Boeing-Vertol H-21 tandem rotor helicopter equipped with floating wing fuel cells as a means of ferry range extension. The wings are hinged close to the root, and are in equilibrium under the steady-state aerodynamic and gravity forces, minimizing the root shear force and bending moments taken out at the attachment points.

The stability of the total system was studied with the wing located forward and directly under the helicopter center-of-gravity (cg). Two methods of stabilizing the wing oscillations about the hinge were studied: (a) a skewed hinge line, introducing a change in angle of attack as a function of the flapping disturbance, and (b) a geared trailing edge flap, mechanically linked to deflect when the wing flaps.

Satisfactor; stability was obtained with the wing positioned directly beneath the helicopter cg, using an unskewed hinge line, and geared flaps. The forward wing location was found to be unsatisfactory from the standpoint of longitudinal stability for the light wing case.

1

Performance studies indicate that the aft wing position, as determined by stability criteria, is detrimental to the range. In order to insure a 2000 mile ferry range with the wing in a position to satisfy the stability requirements, the wing incidence relative to the helicopter was allowed to vary throughout the flight. Further studies will be conducted to determine the best compromise from both stability and overall performance considerations.

Flight simulator studies emphasize the need for additional lateral control to supplement that produced by the basic aircraft. It was found that full span, differential ailerons with deflections of 2-1/2 degrees per inch of stick provide satisfactory roll control and wing flapping angles.

The present floating wing has an aspect ratio of 8 and a span of 72 feet. The constant chord wing uses an NACA 4418 section. The maximum take-off weight of the system is 25,900 pounds, of which 14,800 pounds is fuel carried in the wings. At this weight and with the wing in the aft position the ferry range is 1975 nautical miles (n.mi.).

SUMMARY (Continued)

A forward wing position would increase the air miles per gallon and permit an increase in the take-off weight to 27,100 pounds, with a resulting range of 2400 n. mi.

CONCLUSIONS AND RECOMMENDATIONS

The results of the present analysis indicate that the ferry range of a tandem rotor helicopter can be extended by the use of floating wing fuel cells. A configuration can be derived that has acceptable stability in cruising flight, at all weights.

Further work is necessary to refine the lateral-directional analysis to include the non-linear dihedral effect, and the work on both the lateral-directional and longitudinal stability should be extended to cover flight speeds below the cruise, down to minimum flying speed.

A conflict exists between wing position requirements for best stability on one hand, and optimum performance on the other. Longitudinal stability requires that the wing be situated near the cg and for maximum range it should be as far forward as possible to avoid rotor downwash. The existing analysis considers two wing positions — one in which the aerodynamic center is 14 feet ahead of the basic helicopter cg, the other in which the aerodynamic center is directly below the cg. It should be noted that the criterion of 2000 miles range was satisfied with the wing in the aft position only by allowing the wing incidence to vary throughout the flight. Further work will be done to optimize wing position, such that satisfactory longitudinal stability characteristics combined with minimum performance penalties may be achieved.

Flight simulator studies indicate that lateral control must be supplemented with full span differential ailerons having a gearing of 2-1/2 degrees per inch of lateral stick movement.

Performance calculations show that ferry range capabilities diminish as the wing is moved to the aft position. Maximum take-off weight, based on available take-off power, is decreased from 27,100 pounds to 25,900 pounds, and the range is reduced from 2400 n. mi. to 1975 n. mi.

INTRODUCTION

The normal mission range of the modern helicopter is 400 n.mi., or less, while ideally, to achieve full global mobility, ferry ranges of 2000n. mi. or more are desired. In providing this range, the basic problem is to increase the lift-drag ratio and/or the fuel weight: empty weight ratio, without resorting to extensive structural modifications to the basic helicopter. While many research programs are today exploring high performance rotor systems, which show promise of yielding high lift-drag ratios, present-day helicopters exhibit values on the order of 4:1.

The Army's ferry range problem is concerned with present-day helicopters, in which no large improvements in lift drag ratio may be expected, so the alternative is to consider means of increasing the effective fuel-weight ratio. This must be achieved without drastic modification to the structure, or undue increase in the drag. Supplementary internal fuel tanks do not increase the range sufficiently; there is a prohibitive performance penalty resulting from the much increased rotor disc loading, and considerable internal modification is necessary to install them.

To be acceptable, any range extension system must meet the following basic criteria:

- To be usable as a retro-fit item on existing helicopters, with a minimum increase in basic helicopter empty weight, it must entail the minimum of structural modification.
- 2. There must be no adverse effect on the stability of the aircraft at any weight.
- Adequate control must be available at all flight speeds and weights.
- 4. To justify the development of the system, it must yield ultimate ferry ranges of 2000 n. mi. or better.

The floating wing fuel cell has been proposed as the most promising method of carrying the additional fuel without incurring severe drag and weight penalties. The supplementary tankage is fitted to the helicopter in the form of a pair of floating wings that are free to move vertically about hinges placed close inboard. The equilibrium

INTRODUCTION (Continued)

condition for the wing in steady flight occurs when the static moments of lift and weight about the hinge are equal and opposite. In such a condition, the resultant vertical shear force at the hinge is very small, and the additional power required is a minimum, being just that necessary to overcome the wing drag and the wing-rotor interference drag. Thus the disc loading is not greatly increased, even though the weight of the system may be more than double that of a standard helicopter.

The problems to be dealt with in the design of the proposed range extension system can conveniently be discussed under the following four headings:

- 1. Overall system stability
- 2. Wing stability
- 3. Control
- 4. Performance

OVERALL SYSTEM STABILITY:

The overall stability must be at least as good as that of the basic aircraft at all weights and speeds. There is a large separation between the maximum and minimum flying weights, and most of the fuel is to be carried in the wings, in the interests of achieving the best lift/drag ratio. Consequently, the moments of inertia, both of the systems as a whole and of the wing about it's hinge, change markedly during the mission. Because of this wide variation in important system parameters it is difficult to achieve satisfactory stability in all flight regimes. The longitudinal stability is more sensitive to changes in weight, and to fore and aft location of the wing, and the final configuration will be a compromise between the requirements of range and longitudinal stability.

WING STABILITY:

The empty wing moment of inertia is approximately one seventh of the fully loaded value. The aerodynamic forces are thus much greater in relation to the inertia forces when the system is at the

INTRODUCTION (Continued)

minimum flying weight. The problem is to select suitable wing damping and aerodynamic stiffness so that wing deflections do not at any time exceed 15 degrees. Upward deflections are critical, from considerations of rotor clearance, but aside from this, the problems of designing the hinge and the associated connections increase as increasingly larger deflections are permitted. Two simple methods of stabilizing and controlling the floating wing are available:

1. Skewed Hinge

The hinge lies along some line skewed relative to the chord, in such a manner that as the wing floats up, the angle of attack is reduced, thus providing restoring moments. The disadvantave of this method is that the aerodynamic damping about the hinge is reduced as the stiffness increases, as shown below:

Effective flapping
radius = R

Effective flapping radius = $R \cos \delta_{a}$

2. Geared Trailing Edge Flaps

The flaps are mechanically linked to the wing to move as a function of wing flapping angle. By the use of differentially geared flaps (i.e. outboard flaps moving up, inboard down, as the wing flaps up) and the judicious selection of gear ratio, a wide range of aerodynamic

INTRODUCTION (Continued)

stiffness can be obtained, together with some degree of control over the resultant shear loads at the hinge. Further, there is no loss of damping about the wing hinge by this method.

CONTROL:

The rolling moment of inertia of a helicopter is usually low, but with the addition of large span wings, each holding 7000 pounds of fuel, it becomes large, and the roll control power suffers accordingly. To supplement it, it is proposed to use the flap panels as ailerons, in addition to their function of stabilizing the wing. By the use of differential collective pitch, the tandem rotor helicopter has more than adequate pitch control, and it is not anticipated that control of this mode will present any serious problems as a helicopter. The H-21 is deficient in yaw control sensitivity. Addition of the floating fuel wing will reduce control sensitivity by a factor of five. However, this is not expected to be a problem, as the floating wing system is not capable of hovering and very low speed flight, which is the regime where the H-21 yaw control deficiency is experienced.

PERFORMANCE:

The location of the wing is a compromise between the conflicting requirements of performance and stability. To obtain optimum range, the wing should be located as far forward as possible, to minimize interference drag and the rearward inclination of the lift vector produced by the rotor downwash field. For the same reason, to obtain shortest take-off distances, the wing should be located forward. Because of the much increased maximum weight, take-off will be power limited, and range suffers on two counts if the wing is not located at the optimum forward position. On the other hand, longitudinal stability requires that the wing be located at or near the basic helicopter cg.

LONGITUDINAL ANALYSIS

DERIVATION OF EQUATIONS:

The system being analyzed is one of a very complex nature. The maximum mass ratio of the flapping fuel wing to that of the helicopter is 1.44 to 1. This will give rise to important inertial coupling terms. The Lagrange Equation of Motion for generalized coordinates is a completely rigorous analysis which is well suited to the solution of this type of problem.

The Lagrange Equation yields all the mass and inertial terms (Ref. App. (A)) which must be equated to the external forces acting on the system. The forces include aerodynamic forces acting on the rotors, fuselage and the flapping wings. Those forces acting on the rotor and fuselage were obtained from existing helicopter stability analyses. The aerodynamic forces exerted on the wing were derived by the principal of virtual work (Ref. App. (A)).

Two different types of wing stabilization systems were investigated (i.e. $f_{\mathcal{J}}$ hinge and differentially geared trailing edge flaps). Each wing was considered to be composed of two separate spanwise sections, the section span corresponding to the differential flap span. The lift and drag were computed for each section so that changes in aerodynamic forces on the wing could be readily calculated for differential flap deflection. The lift distribution for the inboard section was assumed to be rectangular while that for the outboard section was assumed to be elliptic. The final equations shown in Appendix (A) are completely general and apply to both stability systems.

Assumptions:

- 1. Since the mass properties and aerodynamic characteristics of each wing are similar, then the flapping motions will be identical and one equation will describe the motion.
- 2. Small angle assumptions and linearization are applied only to the final set of equations.
- 3. Initial pitch angle (Θ_{H_0}) and wing flap angle (\mathcal{I}_{H_0}) are assumed to be small and are excluded from the analysis.

ANALYTIC SOLUTION OF EQUATIONS:

A very effective engineering tool is the root solution of the characteristic equation. The roots not only yield periods and time to double or half amplitudes but serve as a cross check for analog time histories.

Given a set of four linear simultaneous differential equations in four unknowns, the solution thereof is accomplished by arranging the coefficients of the variables into a fourth order determinant having quadratic elements. Expansion of the determinant yields a sixth order polynomial which is then solved for the roots.

In order to determine trends for several configurations, the roots of the corresponding characteristic equations can be presented on root locus plots (Ref. Appendix (B)), where horizontal lines indicate constant frequency and vertical lines indicate time to half or double amplitude. The roots may indicate four types of response:

- l. Complex roots where the sign of the real part is positive indicate a divergent oscillation (A \pm Bi).
- Complex roots where the sign of the real part is negative indicate a damped oscillation (-A + Bi).
- 3. A positive real root indicates a non-oscillatory divergence.
- 4. A negative real root indicates a non-oscillatory convergence.

RESULTS OF LONGITUDINAL ANALYSIS:

Throughout the longitudinal investigation, all cases were judged on the basis of the system response to a 30 ft/sec (fps) vertical gust, and the stability characteristics compared with those of the basic helicopter.

The results of the analysis indicate that to satisfy stability criteria, a zero d_3 hinged wing stabilized with differential trailing edge flaps set at a ± 2 deg/deg gearing ratio, must be

located directly beneath the basic helicopter cg. Cases 21 and 26 are the light and heavy wing cases corresponding to the above description.

With the wing located in this position, flap gearing ratios of ± 3 and ± 1 (Cases 25 and 27 - heavy wing, Cases 20 and 22 - light wing) were also investigated. Examination of the three light wing configurations shows all cases exhibit highly damped oscillations. The roots of the characteristic equations as well as analog time histories indicate minor variations in both period and damping. Similar responses exhibited are high frequency wing modes (avg. period = 1.5 sec) damped to half amplitude in .39 seconds, superimposed on a long period (23 sec) mode. This long period is common to both wing and pitch responses. Both angles are comparatively small.

In order to avoid wing-rotor interference, wing flap angles must be .25 radian or less; therefore, this criterion becomes critical with the light wing configuration. Intuitive reasoning suggests that in response to a 30 ft/sec vertical gust, the empty fuel wings will immediately flap up. This is found to be true by the following analytical study.

If the system is disturbed by a 30 ft/sec vertical gust, the vertical accelerations of the helicopter and the wing viewed separately may be calculated as follows:

$$(2a)_{hel} = .222 \text{ rad}$$

 $(2a)_{hel} = -33000 \text{ lb/rad}$
 $(2a)_{wing} = -46000 \text{ lb/rad}$

Therefore, the resulting forces will be:

 $Mass_{wings} = 497 \text{ slugs (heavy)}$ and 62 slugs (light)

Hel.Acc. =
$$\frac{7300}{344.7}$$
 = 2.12 ft/sec²

Wing Acc. (heavy) =
$$\frac{10200}{497}$$
 = 20.5 ft/sec²

Since both initial accelerations of the wing and helicopter are nearly equal, initial down wing flap angles should be small. However:

Wing Acc. (light) =
$$\frac{10200}{62}$$
 = 165 ft/sec²

With the high accelerations of the empty wing compared to those of the helicopter, it is probable that large initial wing flap angles will result.

Based on this wing-rotor interference criterion, the minimum gearing ratio is ± 2 deg/deg which shows an initial flapping excursion of .25 radians.

Examination of Cases 25, 26 and 27 shows, again, very little change in either period or damping between all three cases. Wing flap angles are small (less than .1 rad) and mildly divergent. Pitch angles are fairly large with 12 second periods and double amplitude in 6.4 seconds. Maximum amplitude after four seconds is .5 radian. However, sufficient control power is available to make the system flyable.

Both the so hinged wing and the differential trailing edge geared flap wing located in the forward position (wing a.c. 14 ft fwd of hel. cg.) were analyzed and found to be not feasible. Looking at the two configurations individually, the so hinged system exhibited static lateral instability. The longitudinal response of the hinge indicated dynamic instability with a 16.6 second period and doubled amplitude in 2.5 seconds.

The effect of increasing the spring stiffness (zero $\sqrt{3} \rightarrow 45^{\circ}$ $\sqrt{3}$) resulted in increasing the period and decreasing the time to double amplitude. Thus the configuration approaches that of a fixed wing aircraft with the wing located far forward of the cg. The disadvantage of the skewed hinge lies in the adverse effects on the wing root shear loads. For example, as the helicopter pitches nose

up in response to a vertical gust, the heavy wing initially flaps downward, thus increasing the angle of attack. This results in a net up shear load at the hinge which increases the nose up pitching moments and tends to pitch the aircraft more nose up.

The alternative wing stabilization system (differentially geared flaps) was investigated with the wing located in the same forward position.

The system response to a 30 fps gust indicates that a gearing ratio of 1 deg/deg yields an aerodynamic spring with sufficient stiffness to keep wing flapping excursions acceptably small. However, large pitching motions are also recorded. (See Figure 7)

With fully loaded fuel tanks, the system appeared to be acceptable both longitudinally and from a lateral-directional standpoint. For this configuration, the empty tanks case exhibited longitudinal static instability with .75 second to double amplitude.

Comparison of the incremental lift acting on the fuel wing with full and empty tanks shows that in response to a 30 fps gust, the increment in lift is 70% of the steady lift for the fully loaded wing and 500% of the steady lift for the empty wing. Therefore, initial wing flap angles and accelerations are quite large for the empty wing case. This effect, coupled with the fact that the pitch inertia of the system is reduced by a factor of 2, induces high pitch accelerations which destabilize the system.

In summary, longitudinal stability characteristics dictate that the fuel wing be hinged with zero σ_3 , directly beneath the helicopter cg using a flap gearing ratio of ± 2 deg/deg.

LATERAL-DIRECTIONAL ANALYSIS

DERIVATION OF EQUATIONS:

The application of Lagrange's Equations to the lateral-directional mode is prohibitively long and laborious, approximately four times as much work being required as compared with the longitudinal case. Consequently, a simpler and less time-consuming method, yielding acceptable accuracy, was used. The method is based on an initial assumption of small perturbations and the existence of the following four modes:

- 1. Roll of the system treated as a rigid body about the compound center-of-gravity.
- Rigid yaw of the system about the compound center-ofgravity.
- 3. Rigid lateral translation of the system.
- 4. Flapping of the wing about the hinge.

Linearized expressions, in terms of small disturbances in the roll, yaw, sideslip and flapping modes, which were derived, enabled the calculation of lift, drag and pitching moment to be made at a general spanwise wing station. The forces and moments, when integrated over the span, yield the conventional fixed wing lateral and directional aerodynamic stability derivatives, and, in addition, include the effect of the flapping freedom on the aircraft motion.

Assumptions:

To keep the equations of motion and the calculation of the stability derivatives from becoming too lengthy, the following assumptions were considered justified:

- 1. The motion is anti-symmetric about the aircraft plane of symmetry.
- 2. The initial flapping angle is zero.
- 3. The angle between the aircraft principal axis and the flight path is small.

The first two assumptions exclude the possibility of investigating the non-linear dihedral effect that occurs in a sideslip when the initial flapping angle is not zero. It is considered that this is potentially the most restrictive assumption in this analysis, and that in any refinement of the method, it should be eliminated.

The inertial terms, forming the left hand side of the final equations of motion form a symmetric matrix, from which the product of inertia terms are excluded by Assumption 3.

Fuselage, Tail and Rotor Contributions to Stability:

The basic helicopter contributions to the stability derivatives were obtained from:

- 1. Flight test and wind tunnel (for the fuselage and tail).
- Rigid rotor stability analysis.

Representation of Geared Flap:

The assumption was made that the geared flap contributes only to the aerodynamic spring stiffness and makes no contribution to aerodynamic damping. The effect of the flap can, therefore, be represented by:

- 1. A change in the effective lift curve slope.
- 2. An increment in the section drag coefficient, varying linearly with the wing flapping angle.
- 3. An increment in the section pitching moment coefficient, varying linearly with the wing flapping angle.

Displacement Equations:

A right-handed axis system is used, having the origin at the compound cg, with the X axis positive forward, the Y axis positive to the right and the Z axis positive down. Positive rotations are clockwise when looking in the positive directions. Positive wing flapping is right wing down, i.e., in the same sense as positive

roll. Since the motion is assumed to be anti-symmetric, only the right half of the helicopter plus wing need be considered.

RESULTS OF LATERAL-DIRECTIONAL ANALYSIS:

The time histories for Cases 12 and 1 (Figure 17-18), and others unpublished, indicate that the response in roll to a side gust becomes more divergent as \mathcal{S}_3 is increased. This is borne out by the lateral-directional stability roots in Table 27. For zero the unstable oscillation has a period of 12.2 seconds, and takes 6.3 seconds to double amplitude. When \mathcal{S}_3 is increased to 45°, the period is reduced to 10.5 seconds and the time to double amplitude is now only 2.4 seconds. This divergence is the basis of the choice of zero \mathcal{S}_3 , and as the loss of damping resulting from skewing the hinge is so large, (it varies as the cosine of \mathcal{S}_3), it was not considered fruitful to pursue this approach when the geared flap provides such a powerful aerodynamic spring.

The selection of fore-and-aft location is primarily dictated by the requirements of performance and longitudinal stability, since it is of relatively little importance to the lateral-directional stability -Cases 4 and 27 illustrate the effect of moving the wing aft at maximum weight, and Cases 18 and 22 show the effect for the empty wing cases. At neither weight is there any significant change in For the heavy wing (4 and 27, flap gearing +1), the the motion. only changes appear in the second and third roots (Table 27). slowly divergent second root in Case 4 becomes very lightly damped, i.e., essentially neutral stability. The very lightly damped long period oscillation corresponding to the third root becomes slowly divergent (27 seconds to double amplitude) and the period increases from 12.5 to 15.8 seconds. Examination of the analog traces for these cases shows that the effect of the changes in the roots is small.

At the light weight (Cases 18 and 22), the changes resulting from moving the wing aft are still less marked - only the third root shows any changes worth commenting on. The subsidence corresponding to this root becomes more rapid - taking 23 seconds to half amplitude, compared with 33.0 seconds with the wing in the forward position. One other point worth mentioning is that the initial swing of is approximately halved -2.0° for Case 22, compared with 3.4° for Case 18.

Selection of Flap Gearing:

The differentially geared flap is a powerful method of modifying the aerodynamic spring stiffness and resultant shear loads at the hinge, without sacrificing the damping. When the wing flaps up, the outboard section of the flap deflects up, providing the aerodynamic stiffness, while the inboard section deflects downwards, countering the downward shear loads generated by the upward deflected outboard flap. This increment in the net shear provides a stabilizing rolling moment on the helicopter. Expressed in another way, consider the helicopter in steady level flight, with the wings in the neutral position. Let a disturbance induce a rolling velocity to the right. Due to its own inertia the right wing cg will tend to stay in the same vertical location, which means that the wing relative to the helicopter will flap up. The outboard flap panel will deflect up, inducing a downward flapping hinge moment, and shear force increasing the rate of roll. The inboard flap panel will deflect downwards, inducing a shear force that reduces the rate of roll. It will at the same time slightly reduce the aerodynamic stiffness, but as it acts much closer to the wing hinge than the outboard section, it is much less powerful in influencing stiffness than in modifying the shear loads.

The gearing ratio chosen (defined as flap deflection per unit wing deflection) should be as low as possible consistent with acceptable stability, as the lift generated by flap deflection rapidly becomes non-linear. The flap is also required as a high-lift device at least in the early stages of a ferry flight, and the outboard panels at least will be required to serve as roll control.

The investigation into flap gearing ratio is covered in Cases 20, 21 and 22 (light wing) and 25, 26 and 27 (heavy). In all cases, the inboard and outboard sections move differentially, at gear ratios 1, 2 and 3. Examination of the roots and analog traces leads us to conclude that there is little to be gained by increasing the flap gearing ratio beyond ±1. Taking the light wing first, we note that as the flap gearing is increased from 1 to 3, the oscillatory part of the first root remains virtually constant, while the time to halve amplitude increases from 8.0 to 9.0 seconds. The only other root affected

is the other oscillatory root, representing a very fast highly damped mode. The period is reduced from 1.5 seconds to .7 second, and the time to halve amplitude goes from .32 to .27 seconds.

Similarly, with the heavy wing (25, 26 and 27), only the oscillatory roots are influenced by the gearing. The long period oscillation is mildly divergent, becoming more so as the gearing is increased $(21 \text{ seconds to double amplitude at the } \pm 3 \text{ gearing, } 29 \text{ seconds for } \pm 1)$ and the period remains virtually unchanged. The short period highly damped oscillation changes noticeably in period – going from 3.48 seconds to 1.93 seconds, and the time to halve amplitude remains nearly unchanged at 1.6 seconds.

In summary, the straight hinge was chosen because of the rapid divergence that a skewed hinge produced. The fore and aft position is relatively unimportant to the lateral-directional stability, and on the basis of cases 20-27, there is little to be gained by increasing the flap gearing ratio beyond ± 1 per unit wing deflection.

FLIGHT SIMULATOR STUDY

The investigation up to this point was concerned primarily with obtaining a wing-helicopter configuration that would satisfy stability criteria. Cases 21 and 26 fulfill this requirement. However, high roll inertia of the system reduces the lateral control sensitivity by a factor of fifty as compared to the basic helicopter; in order to bring roll control up to an acceptable level, additional means of control power in the form of ailerons are considered necessary. To aid in evaluating the control effectiveness, flight simulator studies were made to compare lateral-directional control of the basic helicopter with that of the wing-helicopter combination with and without aileron control.

The simulator used in this analysis consists of a mock-up of approximately one half of the YHC-lA cockpit area. Forward visibility through the windshield is approximately the same as it is in the YHC-lA aircraft. Adjustable control throw stops, friction, and force gradients are provided. Aircraft flight information is presented in two ways.

- 1. Voltmeters with modified instrument faces (airspeed, rate of climb, etc.) have been inserted in place of true aircraft instruments. These meters are arranged in their proper location on an instrument panel mockup.
- 2. A servo-driven color transparency is projected on a screen covering the pilots entire forward windshield field of vision. This image, which represents the horizon and ground orientation, moves in response to computer signals, and imparts roll, pitch and yawing motion information to the pilot.

The flight program was set up as follows:

The test pilot flew a simulated H-21 helicopter to familiarize himself with the simulator and to give himself a base case with which to compare the wing-helicopter combination. Except for the fact that the controls seemed a bit too sensitive to the pilot, simulator response compared favorably with actual helicopter characteristics. The original intent in evaluating the wing-helicopter combination was to fly the longitudinal case and lateral case separately and once the pilot familiarized himself with each mode,

FLIGHT SIMULATOR STUDY (Continued)

he would be presented with the coupled longitudinal lateral system. However, it was found that the longitudinal mode was very simple to fly but the slide presentation was very poor (jerky motion) such that when both modes were coupled, the system required too much concentration on the pilot's part to yield any useful information. Therefore, roll yaw characteristics and longitudinal characteristics were evaluated separately.

Test pilot comments indicate that the floating wing-helicopter system without aileron control is much more stable than the basic helicopter. However, as expected, roll control was noticeably more sluggish. Recovery from bank angles of 20 degrees or less was possible in both smooth and turbulent air $(\max \pm 10)$ fps gust peaks). Yaw control was adequate, but adverse roll effects due to pedal displacement were not noticeable. Two and one half $(2\frac{1}{2})$ degrees of aileron per inch of stick improved the roll control considerably. (This aileron gearing increases control power by 80%.)

Small-amplitude short-period oscillations were observed in both the $2\frac{1}{2}^{\circ}$ and 5° aileron cases. Only those of the 5° case had amplitudes large enough to be annoying to the pilot. Adequate directional control was available in both cases, although adverse roll effects were still present. Although the 5° case compares favorably with the basic helicopter with regard to roll response, the $2\frac{1}{2}^{\circ}$ case was considered to be an acceptable compromise since wing flap angles are small. It is also desirable to keep aileron deflections small, for the aileron is used simultaneously as a flap and as a wing stabilization system.

Lateral stick step response is shown in Figure 27 with 5° of aileron/in to show the effect of increased control power.

PERFORMANCE ANALYSIS

CRUISE:

The method of analysis used to calculate the range of the helicopterwing configuration involved the modification of longitudinal trim equations for the standard helicopter. This analysis, programmed on a digital computer, ineratively determines the longitudinal characteristics of several helicopter-wing configurations at various equilibrium conditions. The basic helicopter trim analysis was modified by accounting for the interference of the wing on the rear rotor and calculating an equivalent flat plate area based on the following items:

- 1. Induced drag of the wing determined by C_I;
- 2. Interference of front rotor on the wing in terms of a corrected induced angle;
- 3. Profile drag of the wing including the landing gear;
- 4. Profile drag of the flap.

By varying the profile drag of the flaps, which is related directly to flap deflection at different wing lifts, the helicopter water - line angle of attack was determined, as shown in Figures 30 through 38. (NOTE: All figures are located in Appendix C). The wing trim angle of attack was calculated by using Figure 39 (lift coefficient versus angle of attack). The difference between the helicopter waterline and wing angle represents the required wing incidence for a given flap deflection. Figures 40, 41 and 42 present power required and Figure 43 gives the fuel flow as a function of horsepower.

The following sample problem is presented in order to clarify the procedure used in the performance analysis:

Given:

wing incidence (ℓ_w) = 8.5° wing lift = 16,000 lb

forward speed = 80 knots

PERFORMANCE ANALYSIS (Continued)

Enter Figure 37 and find point where the delta angle between wing and waterline is 8.5° at minimum flap deflection.

Flap deflection (
$$d_{\mathbf{r}}$$
) = 15°

Wing angle of attack ($d_{\mathbf{w}}$) = 5.0°

Waterline angle of attack ($d_{\mathbf{w}L}$) = -3.5°

For a given flap deflection of 15° at 80 knots, Figure 42 yields horsepower required of 1240 hp and fuel flow for this sample is 950 lb/hr (Figure 43). The miles per pound of fuel is calculated by dividing the forward speed by the fuel flow which, for this case, is .0842 miles per pound.

TAKE-OFF:

There are two types of take-off procedures which were considered. The first method is to accelerate the system down the runway at a trim attitude associated with the take-off speed and when the take-off speed is reached, the system will break ground. The second method incorporates the procedure where the helicopter's attitude is such that the maximum accelerating force is in the horizontal direction. When the take-off speed is reached, the helicopter-wing configuration is rotated to the trim angle and the system takes off.

The "Hartman's Analysis" was used to calculate the break ground distance. The following equation was solved graphically and the distance required to break ground was obtained.

$$S = \frac{1}{2} \int_{0}^{\sqrt{a}} \frac{d(y)^{2}}{a}$$

The distances to climb to 50 ft is dependent upon the available excess power during climb. The distance to make a steady climb

PERFORMANCE ANALYSIS (Continued)

from ground to 50 ft is added directly to the ground run to obtain the total distance over a 50 ft obstacle.

RESULTS OF PERFORMANCE STUDY:

The all-out range was the primary area of investigation based on the new wing configuration. The take-off distances and control positions are also studied to insure that the wing fuel tank does not restrict the helicopter's operation throughout the entire flight.

The method used in calculating the miles per pound of fuel is described in the performance analysis section. Tables 29, 30 and 31 present for a variable wing incidence the flight characteristics for various wing lifts, forward speeds, and rpm's for the wing in the forward position. The criterion for choosing a given trim condition is maximum miles per pound of fuel. Figure 44 presents a ferry range of 2400 n.mi. using the forward positioned wing with a variable incidence. If a range of only 2000 n. mi. is desired, the aircraft could take-off at a wing weight of 12,100 pounds.

A constant wing incidence is desirable from a design aspect. In studying the effect it might have on range, a wing incidence of 8.5° was selected from take-off considerations and was held constant throughout the regime. The same method of calculation and presentation was performed on the constant wing incidence with the wing in the forward position. Table 32 presents the various characteristics. Note that the flap deflection changes with rpm at constant wing incidence.

Figure 45 presents the all-out range of 2205 n. mi. for the constant wing incidence configuration. The take-off wing gross weight of 13,700 pounds is also shown for a range of 2000 n. mi.

Figures 46 and 47 show the range of the variable and constant wing incidence if an additional profile drag increment is arbitrarily added to the drag calculated with the wing in the forward position. The flight schedule for the all-out range mission for both variable and constant wing incidence is presented in Figures 48 and 49.

The location of the wing on the helicopter has an effect on the range. If the wing is moved to the most aft position, that is, under the rear door, the front rotor's induced angle effect on the wing is increased threefold and it's related effect on range is shown in

PERFORMANCE ANALYSIS (Continued)

Figures 50 and 51. The results yield an all-out range of 1975 n.mi. for a variable wing incidence and 1765 n.mi. for the constant wing incidence. The take-off wing gross weight is reduced to 14,800 pounds and 14,200 pounds respectively because of power limitations.

The new range as affected by wing position is computed by determining the power required for the drag increase. The optimum miles per pound for the aft wing position is calculated at the same forward speed as that of the forward wing position since the drag increase due to moving the wing to the most aft position is independent of the forward speed. The helicopter trim angles will not change appreciably. Because of power limits at 2300 engine rpm for the 9000 pound lift condition, the engine speed had to be increased to 2500 rpm for the aft wing position. The horsepowers presented in Figure 52 (variable wing incidence) and Figure 53 (constant wing incidence) show the comparison between the two configurations. The configuration with the wing in the most aft wing position reaches a power limit at wing gross weights less than maximum; hence, an additional range penalty must be paid because the helicopter-wing configuration cannot take off at a maximum gross weight of 16000 pounds. Table 33 presents the range for the various configurations and their associated maximum take-off gross weights.

The control parameters for the forward wing configuration were studied to insure that the control margins were adequate. The investigation analyzing the effect of moving the wing to the aft position indicated that the control positions will not change appreciabely from those calculated for the wing in the forward position. Figure 54 presents the required longitudinal cyclic pitch versus fuel weight for both variable and constant wing incidence. Collective pitch margin was sufficient for both configurations as shown in Figures 55 and 56.

The procedure of obtaining take-off distances was discussed in the "Method of Investigation" section. Table 34 presents a summary of take-off procedures and results.

BIBLIOGRAPHY

- 1. Hayden, J. and Eggert, W., "H-21B Phase IV Performance and Stability Tests" AFFTC-TR-57-4, March 1957.
- 2. "Feasibility Study of Helicopter Range Extension Using Floating Wing Fuel Tanks" - ASTIA No. AD-203262, September 1958.
- 3. Young, A.D., "The Aerodynamic Characteristic of Flaps", R&M 2622, February 1957.
- 4. Vertol Division Boeing Aerodynamic Investigation III-129
 "Longitudinal Equations of Motion and Stability Derivatives for a Tandem Helicopter."
- 5. Vertol Division Boeing Aerodynamic Investigation III-130 "Lateral-Directional Equations of Motion and Stability Derivatives."
- 6. Castles, Jr., W., Durham, Jr., H. and Kevorkian, J., "Normal Component of Induced Velocity for Entire Field of a Uniformly Loaded Lifting Rotor with Highly Swept Wake as Determined by Electro-Magnetic Analog" TN 4238.
- 7. Vertol Division Boeing Report DYMR-102, "Vertol Flight Simulator Report," December 1960.

APPENDIX A

DISPLACEMENT DIAGRAM FOR LONGITUDINAL EQUATIONS OF MOTION

FIG. 1

FIG. 2 SIGN CONVENTION

DIFFERENTIALLY GEARED FLAPS

FIG. 3

The Lagrange equations of motion for generalized coordinates is stated as follows:

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}}\right) - \frac{\partial T}{\partial \dot{q}} + \frac{\partial V}{\partial \dot{q}} = Q_{\dot{q}}$$

Where:

Total Kinetic Energy of the system

√ Total Potential Energy of the system

Generalized Coordinate

 \mathbb{Q}_q Virtual Work Terms

The four generalized coordinates of this system are:

Helicopter Pitch Angle

Wing Flapping Angle referred to the hinge

X Longitudinal displacement from a fixed earth reference point.

Vertical displacement from a fixed earth reference point.

In order to determine the total kinetic and potential energy of the system, it is necessary to obtain the displacement of all component parts with respect to some reference point. In this case all motion is referred to primary inertial earth fixed axes.

Starting with axes fixed to the right wing as shown below:

The total displacement vector is obtained by rotating and translating axes back to the fixed axis system as follows.

(3) Rotation through im

(4) Translation to Helicopter c.g.

30

(5) Rotation through ↔

(6) Translation through × & ₹

The final components of the displacement vector of any particle on the right wing are:

Appropriate substitution of the following variables yields the components of the displacement vector for the left wing.

$$\begin{aligned}
\beta_{H_R} &= -\beta_{H_L} \\
\delta_{3_R} &= -\delta_{3_L} \\
X_R &= X_L \\
Y_R &= -Y_L \\
Z_R &= Z_L
\end{aligned}$$

Calculating the kinetic and potential energy As follows -

$$T = \frac{1}{3} \int (\mathring{Z}^{2} + \mathring{Y}^{2} + \mathring{Z}^{2}) dM$$

$$V = \int (-Z) g dM$$

Applying the Lagrange equation yields the following four equations of motion

$$EQ(1) A_{1} \overset{\circ}{\Theta} + A_{2} \Theta + A_{3} \overset{\circ}{Z} + A_{4} \overset{\circ}{X} + A_{5} \overset{\circ}{\beta}_{H} + A_{6} \overset{\circ}{\beta}_{H} = Q_{\Theta}$$

$$EQ(2) B_{1} \overset{\circ}{\Theta} + B_{2} \Theta + B_{3} \overset{\circ}{Z} + B_{4} \overset{\circ}{X} + B_{5} \overset{\circ}{\beta}_{H} + B_{6} \overset{\circ}{\beta}_{H} = Q_{A}$$

$$EQ(3) C_{1} \overset{\circ}{\Theta} + C_{2} \overset{\circ}{X} + C_{3} \overset{\circ}{\beta}_{H} = Q_{X}$$

$$EQ(4) D_{1} \overset{\circ}{\Theta} + D_{2} \overset{\circ}{Z} + D_{3} \overset{\circ}{\beta}_{H} = Q_{2}$$

Where:

$$A_{1} = I_{y_{H}} + I_{1} S_{1}N^{2} a S_{3} Cos^{2} i_{W} + 2I_{2} (S_{1}N^{4} S_{3} + Cos^{4} S_{3})$$

$$+ 4I_{3} cos^{3} S_{3} S_{1}N S_{3} Cos^{2} i_{W} + 2M_{W} (J_{1}^{2} + J_{2}^{2})$$

$$- 4I_{3} S_{1}N^{3} S_{3} Cos S_{3} Cos^{2} i_{W} - 4 \sigma_{2} J_{2} S_{1}N i_{W}$$

$$+ I_{2} S_{1}N^{2} a S_{3} S_{1}N^{2} i_{W} + 2 \sigma_{1} J_{1} S_{1}N 2 S_{3} Cos i_{W}$$

$$+ 4 \sigma_{2} J_{1} cos^{2} S_{3} Cos c_{W}$$

$$A_{2} = 2g \left[J_{2} M_{W} - \sigma_{2} S_{1}N i_{W} \right]$$

$$A_{5} = 2 \left[I_{3} \cos \delta_{3} - I_{2} \sin \delta_{3} - \sigma_{1} l_{2} \cos \delta_{3} \sin \omega + \sigma_{2} l_{2} \sin \delta_{3} \sin \omega + \sigma_{1} l_{1} \cos \delta_{3} \cos \omega - \sigma_{2} l_{1} \sin \delta_{3} \cos \omega \right]$$

$$B_1 = 2 \left[I_3 \cos \delta_3 - I_2 \sin \delta_3 + \sigma_1 \cos \delta_3 \left(l_1 \cos \omega - l_2 \sin \omega \right) + \sigma_2 \sin \delta_3 \left(l_2 \sin \omega - l_1 \cos \omega \right) \right]$$

The inertial part of the equations of motion as presented must now be equated to the external forces acting on the system (Q_o). This is accomplished by:

- (1) Calculating rotor and fuselage derivatives.
- (2) Aerodynamic forces on the wing were derived by the principal of virtual work outlined as follows:

Where $W = \sum F SS + \sum M S P$

F ~ Constant Force

- &5 Virtual Linear Displacement
- M Constant Moment
- $\mathcal{S} \phi$ Virtual Angular Displacement

Virtual displacements are:

$$\delta s_z = \delta \beta_H \gamma_1 - \delta_X \sin \omega - \delta_z \cos \omega$$

$$+ \delta \Theta \left[\gamma_1 \sin \delta_3 + \chi_1 \cos \delta_3 - \lambda_2 \sin \omega + \lambda_1 \cos \omega \right]$$

An example of the wirtual work terms is shown below:

If the entire system is displaced S_2 then the virtual work (FSs) done is = $L\cos\Delta\alpha(S_2\cos\omega)$

and
$$\frac{\partial W}{\partial z} = L \cos s \propto Cosiw$$

The total virtual work is:

The following terms were derived in the same manner,

- EQ (1) Pitching moment equation
- EQ (a) Wing moment equation about the flapping hinge
- E_Q (3) X Force equation
- EQ (4) = Force equation

A, = [- (2, 600 in - 6, 6in in) \ [p(co, + \frac{a^2 46^2}{4 \text{R}})(s, + s_2) \] [2 \% (\langle (\langle (\langle b \rangle c_i + \frac{1}{2} \langle (\langle c_i \rangle c_i \rangle) \]

+[p(\are - a)][24, sind][(s, x, + s_x x) Sin 63 - (x, s, + x_2 s_2) 600 53 + (s, + s_2)(les Lin - 6, 60 in)]

+ [p(ado - 200at)][(s,+sz)(lz 1/2 Lz = - (1/6 600 z in) + (s, 1/+ 52 1/2)(1/6 to in Lin 53)

- (5,x, + 5, x,) (4, 60 2, 60 5)]} + [-7, 5, 53 + x, 60 53 - 2, 5, in in + 6, 60 2,]

[-pados,][210 (1260?in + 26, Sizin)] +[-s, 2pardo)][21, Sin in (1, Sin 53 - x, 600 53

+ le Lii is - le boois)] + [ps, (a + co, + atest)][le 16 fin 2in - 16.4, 60 2in + 16 16 60 in Liis

1, x, 600 in 600 55]{

「「いっているか + } - Yz Sii83 + xz 600 63 - ez Lii i + li 600 i u }{ - pavs Sz [2 Vo(lz 602 i u

+[p52(a+62+a262)][424 Linzin-1646002in + 16726012 Lins3-16x2602in 525]} +[-52(2pa240)][24 Liin (K. Lii 63 - X2 600 63 + (2 Liin - 4, 600 in)]

+ { pc 60=03 (mac (s,+se)}{ 2 % [42 602 in + 2 f, Lin 2 in]}

[1,260212] Az = [-{z 6ai_ - 4. Liiu]}{[p(\ar_{\pi} - a)(s, + s_{\pi})]['\sighta^{\sighta} \sighta^{\pi}] + [p(ax_{\pi} - \frac{2x_{\pi}}{\pi} \frac{2}{\pi} \sighta^{\pi})]} + [p(50 + ains) (5,+52)][- 10 Lis 2in]}

+[-x, Lis, +x, 60063 - 62 Liiin + 4, 600in]{[-s, (200206)][v. Lii 2in]

+[ps,(a+ co. + a 200 =)][10 260 2 in] + [-paros,][-12 Lin 2 in]}

+[- 1/4:53 + x2 60053 - 62 Sin in + 4. 600 in] {[-52 (2 parton)][1/2 Sin 2 in] +[psz(a+co+ arco)][vorto 2in]+[-panosz][-voz sin zin]} + { p = 60 = 63 Can (St+ St) } { - 42 Si zin }

A, = [- (2600in - 4, Livin] {[p(co, + a2402)(5,+52)][-16 Lizin]

+[p(\alpha\lambda - a)(s,+sz)][v, Si zin] + [p(ade - 200a2)[s,+sz][v, &co zin]}

+[-1, Sis + x1605, - le Siin + le 60 in] [[- pad s1][-16 Sizin]

+[-5,(2pa200)][1, Si 2: 2] +[ps,(a+ 3, + a2,2)][1, 6021)}

+[-12 Lisz + x260053 - 42 Liisz + 6.600 in]{[-pars 52][-16 Liizzin]

+ [-52(2pate)][65i2in] + [psz(a+co, + ateo2)][v6602in]}

+ { pc 60263 Cupe (5,+52)}{{266002in}}

 $A_{lo} = \left[-\{2600iu - 4.5iiiu\} \left\{ \left[\rho(c_{lo} + \frac{a^2 d^2}{1100}) \left(s_1 + s_2 \right) \right] \left[28600^2 iu \right] + \left[o(\frac{a^2}{100} - a) (s_1 + s_2) \right] \right] \left[28600^2 iu \right] + \left[o(\frac{a^2}{100} - a) (s_1 + s_2) \right]$

+[p(a36-2000+) (5,+52)][V, Sizin]} + [- K. Sis + x, 6005, - Ez Liin + E, 600 in]x

[[-padssi][2%622] +[-s,(2pa20)][2%cin2in]+[ps,(a+co+a20)]

[Vocizin] +[- 1254 + 126063 - 12 Livin + 4,600in][I-pace 52][21,600 in] +

$$A_{ii} = \left[-\ell_{1} \delta \omega i_{ii} - \ell_{i} \int_{ii} i_{ii} \int_{ii} \left[\rho(\frac{a^{2}}{\pi R} - a)(s, \gamma_{i} + s_{2} \gamma_{i})(-2\nu_{0} \sin i_{ii}) \right] + \left[\rho(\alpha \omega_{i} - \frac{2\omega_{0} a^{2}}{\pi A R}) \right] \right]$$

$$\left\{ s_{i} \gamma_{i} + s_{2} \gamma_{2} \right\} \left[-\nu_{0} \int_{ii} \int_{i$$

A12 = [-le 600 is - l. Ciil] [p(Co+ a200) X 5,+52)][Vo Ci Sz Si Zii]

+ [p(a2-a)(s,+s2)] - vo Liss Si 2in] + [plade - 220a2)(s,+s2)]-vo Liss + [pe (s,4 + s2(2)) - pat [s,K, + s2 K2] }

+[-x, Lis3 + x, 600 53 - 22 Linin + 2, 600 in] [[-passsi][v2 Linisz Si ziu]

x [-15 Lin 63 60 20,] + [(pags, K, + pTs, c)] +[-5,(2parae)][-1,2 Li 6, Li 20:2] +[p5,(a+40, + 020)]]

+[- x, Lis, + x, 60,63 - 62 Lin + d, 600 m]{[-pad. h.][1, Lis, Lis, Lizin]

+ [-52 (2paide)][-42 Lii Sz Li Zin] + [psz (a+ co + alde)][-42 Lii 63 60 Zin]

+ [pat 52 k2 + pT 52 C2] + {po 600 63 com (5,+52)}{ 1/2 Lin 63 Lin 22 cm} + { pe do 263 p. a 6 (5, 11, + 5218)}

$$B_{7} = \{Y_{i}\} \left\{ \left[-\{\alpha_{\alpha_{0}} s_{i} \right] \left[a \vee_{0} \left(\beta_{2} c_{0} s^{2} i_{0} + Y_{2} g_{1} s_{0} + a i_{0} \right) \right] + \left[- s_{i} \left(\frac{a \left(\alpha_{2}^{2} a_{0}^{2}}{\pi \pi^{2}} \right) \right) \left[a \vee_{0} s_{0} + a i_{0}^{2} \right] \right] - X_{i} c_{0} s_{0} s_{0} + A_{2} s_{i} v_{i} v_{i} - A_{i} c_{0} s_{0} v_{i} \right] + \left[P_{S_{i}} \left(\alpha_{1} + c_{p_{0}} + \frac{\alpha_{2}^{2} a_{0}^{2}}{\pi^{2}} \right) \right] \left[A_{2} \vee_{0} s_{0} v_{1} v_{0} v_{1} v_{0} v_{0}$$

+ {- Sinds} { PE cos 3 d3 Cmac. (S, +S2)} { 200 [2, cos 2; w + = 2, Sinzin]}

$$B_{8} = \{x_{i}\} \left\{ \left[-S_{i} \left(\frac{2\rho_{\alpha}^{2} \omega_{0}}{\pi^{-} m_{0}} \right) \right] \left[V_{o}^{2} S_{i} N_{2} \omega_{0} \right] + \left[PS_{i} \left(\alpha + c_{p_{0}} + \frac{\alpha^{2} \omega_{0}^{2}}{\pi^{-} m_{0}} \right) \right] \left[V_{o}^{2} c_{oS} \alpha_{0} \omega_{0} \right] \right] + \left[PQ_{a} \omega_{0} S_{i} \right] \left[V_{o}^{2} S_{i} N_{i} \alpha_{0} \omega_{0} \right] + \left[V_{2} \left(\frac{2\rho_{\alpha}^{2} \omega_{0}}{\pi^{-} m_{0}} \right) \right] \left[V_{o}^{2} C_{oS} \alpha_{0} \omega_{0} \omega_{0} \right] + \left[V_{2} \left\{ \left[-S_{2} \left(\frac{2\rho_{\alpha}^{2} \omega_{0}}{\pi^{-} m_{0}} \right) \right] \left[V_{o}^{2} S_{i} N_{i} \alpha_{0} \omega_{0} \right] + \left[PS_{2} \left(\alpha + c_{p_{0}} + \frac{\alpha^{2} \omega_{0}^{2}}{\pi^{-} m_{0}} \right) \right] \left[V_{o}^{2} C_{oS} \alpha_{0} \omega_{0} \omega_{0} \right] \right]$$

+[Pado Sz][Vozsmain]}

$$\mathbf{B_{0}} = \left\{ \gamma_{i} \right\} \left\{ \left[-R_{0} \ll_{0} S_{i} \right] \left[2 \sqrt_{0} C_{0} S_{i}^{2} \zeta_{i} \right] + \left[-S_{i} \left(\frac{2 \rho_{0} S_{i}^{2} S_{i}}{\pi m} \right) \right] \left[2 \sqrt_{0} S_{i} N^{2} \zeta_{i} \right] + \left[R_{0} S_{i} \left(\alpha + C_{0} S_{i} + \frac{\alpha \tilde{S}_{i} S_{i}}{\pi m} \right) \right] \right] \right\}$$

$$+ \left\{ \gamma_{2} \right\} \left\{ \left[-R_{0} \ll_{0} S_{i} \right] \left[2 \sqrt_{0} S_{i} S_{i} \right] + \left[-S_{2} \left(\frac{2 \rho_{0} S_{i}^{2} S_{i}}{\pi m} \right) \right] \left[2 \sqrt_{0} S_{i} N^{2} \zeta_{i} \right] + \left[R_{0} S_{i} \left(\alpha + C_{0} S_{i} + \frac{\alpha \tilde{S}_{i} S_{i}}{\pi m} \right) \right] \right] \right\}$$

+[Ps, (a+ co, + ===)][-Vo s, us, Cos = c,]+[PaEs, K, + PTs, C,] +{-sinds}} { [PE cos2d3 Cmac (S1+S2)][V2 SIN 63 SIN 2 Cm] + [PE cos 363 /4, a F (s, K, + S, K,)] } 51

· [240 SIN : w] [(5, X, + Sz Xz) SIN Jz - (X, S, + Xz Sz) (Cos Jz) + (5, + Sz) (22 SIN : w - J, Cos : z) G = {- cos cw} { [P (co. + 320) (s. + 52)] [200 (l2 cos 2 cw. + 1/2 l, S, w 2 cw)] + [P (22 - a)]

+ [P(ano - 340 a)][(S, + S,) 16(1/2 S, w 2in - 1, Gos 2in) + (S, 1, + S, 1/2)(Vo Gos in S, uois)

- (s.x, + Szxz) (vo Cosiw Cosus)]

·[(s, x, + s, x,)(s, w,s,) - (s, x, + s, x,)(cos s, + (s, + s,)(2, s, c, -2, cos c,)] - { Siw iw} { [-Pade (S, +S,)][2Vo(Az cos 2: w + Yz D, Sinz cw)] + [- 3Pazzz] [240 Sincw]

+ P[a+co+a2-62][(s,+5)(2265,222-162, Cosim + Vo x, Cosim Sinis - V. X, Cos (Cos 55)]

 $C_{1} = -\left\{\cos \frac{1}{4}\right\}\left[P\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right)\left(s_{1}+s_{2}\right)\right]\left[2\sqrt{s_{1}}\cos^{2}\left(\frac{1}{4}\right)+\left[P\left(\frac{1}{4}+\frac{1}{4}-1\right)\left(s_{1}+s_{2}\right)\right]\left[2\sqrt{s_{2}}\cos^{2}\left(\frac{1}{4}\right)+\left[P\left(\frac{1}{4}+\frac{1}{4}-1\right)\left(s_{1}+s_{2}\right)\right]\right]\right]$ -{sin in} {[-Pane (s, +s)][20, Gos 20,] +[-(2Pazzo)(s, -s))[20, Sin 2]] -{sin im} { [-Pado (s.+s.)][-Vo s.m. z in] + [- (2Pa220)(s. +s.)][Vo s.m. z in] +[P(4+coo+ ====)(5,+52)][V6 G5 2 [] +[P(ax, - 2x, a2)(s, +s2)][Vo S, n 2 cm]} 54

+ [P (a+ Co+ 22) (s, + S2)][Vo Sin 3 in]

$$\zeta_{q} = -\left\{\cos i\omega\right\} \left\{ \left[P\left(\frac{a^{2}}{\pi^{2}} - a\right) S_{i} \right] \left[-2 \sqrt{2} \gamma_{i} S_{i} N_{i} i\omega_{i} \right] + \left[P\left(a \alpha_{i} - \frac{2 \omega_{i} a^{2}}{\pi^{2}} S_{i} \right) \left[-\sqrt{2} \gamma_{i} C_{i} i\omega_{i} \right] \right] \right\} \\
+ \left[P\left(\frac{a^{2}}{\pi^{2}} - a\right) S_{2} \left[-2 \sqrt{2} \gamma_{2} S_{i} N_{i} i\omega_{i} \right] + \left[P\left(a \alpha_{i} - \frac{2 \omega_{i} a^{2}}{\pi^{2}} S_{i} \right) \left[-\sqrt{2} \gamma_{2} C_{i} i\omega_{i} \right] \right\} \\
- \left\{ S_{i} N_{i} i\omega_{i} \right\} \left\{ \left[-S_{i} \left(\frac{2 P \alpha^{2} \omega_{i}}{\pi^{2}} \right) \right] \left[-2 \sqrt{2} \gamma_{i} S_{i} N_{i} i\omega_{i} \right] + \left[PS_{i} \left(a + C_{p_{i}} + \frac{a^{2} \omega_{i}}{\pi^{2}} \right) \right] \left[-\sqrt{2} \gamma_{i} S_{i} i\omega_{i} \right] \right\} \\
+ \left[-S_{2} \left(\frac{2 P \alpha^{2} \omega_{i}}{\pi^{2}} \right) \left[-2 \sqrt{2} \gamma_{i} \gamma_{2} S_{i} N_{i} i\omega_{i} \right] + \left[PS_{2} \left(a + C_{p_{i}} + \frac{a^{2} \omega_{i}}{\pi^{2}} \right) \right] \left[-\sqrt{2} \gamma_{i} S_{i} i\omega_{i} \right] \right\} \\
- \left\{ \cos i\omega_{i} \right\} \left\{ \left[P\left(c_{p_{i}} + \frac{a^{2} \omega_{i}^{2}}{\pi^{2}} \right) \left(S_{i} + S_{2} \right) \right] \left[\sqrt{2} S_{i} N_{i} S_{2} S_{i} N_{i} Z_{i} \omega_{i} \right] + \left[P\left(\frac{\alpha^{2}}{\pi^{2}} - a\right) \left(S_{i} + S_{2} \right) \right] \right\} \right\}$$

· [-Vo Sinds Sinzin] + [P (am - 2 do a) (Si + Sz)][-Vo Sincis Coszin]

+ PE(S,C,+S,C,) - Pat (S,K, +S, K,)}

$$\mathbf{D}_{4} = \left\{ s_{1} u \, c_{1} \right\} \left\{ \left[P \left(c_{0_{0}} + \frac{a^{2} d^{2}}{\pi^{2}} \right) \left(s_{1} + s_{2} \right) \right] \left[2 v_{0} \left(\ell_{1} \, c_{0} s^{2} c_{1} + \ell_{1} \, \ell_{1} \, s_{1} v \, a \, c_{1} \right) \right] + \left[P \left(\frac{a}{\pi^{2}} - a \right) \right]$$

$$= \left[2 v_{0} \, s_{1} u \, c_{1} \right] \left[\left(s_{1} + s_{2} \, \gamma_{1} \right) \left(s_{1} v \, \delta_{2} \right) - \left(x_{1} \, s_{1} + x_{2} \, s_{2} \right) \left(c_{0} s \, \delta_{2} \right) + \left(s_{1} + s_{2} \right) \left(\ell_{1} \, s_{2} \, c_{1} \right) \right]$$

$$+ \left[P \left(a_{1} \cdot - \frac{2 d_{2} \, a_{2}}{\pi^{2}} \right) \right] \left[\left(s_{1} + s_{2} \right) \left(\ell_{2} \, v_{2} \, s_{1} u \, a \, c_{1} u - V_{0} \, \ell_{1} \, c_{0} \, s_{2} \, c_{2} u \right) \right]$$

$$+ \left[P \left(a_{2} \cdot - \frac{2 d_{2} \, a_{2}}{\pi^{2}} \right) \right] \left[\left(s_{1} + s_{2} \right) \left(\ell_{2} \, v_{2} \, s_{1} u \, a \, c_{2} u - V_{0} \, \ell_{1} \, c_{0} \, s_{2} \, c_{2} u \right) \right]$$

$$+ \left[P \left(a_{2} \cdot - \frac{2 d_{2} \, a_{2}}{\pi^{2}} \right) \right] \left[\left(s_{1} + s_{2} \right) \left(\ell_{2} \, v_{2} \, s_{1} u \, a \, c_{2} u - V_{0} \, \ell_{1} \, c_{0} \, s_{2} \, c_{2} u \right) \right]$$

$$+ \left[\left(s_{1} \cdot y_{1} + s_{2} \, \gamma_{2} \right) \left(v_{0} \, c_{0} \, s_{1} \, u \, s_{1} u \, d_{2} \right) - \left(s_{1} \cdot x_{1} + s_{2} \, x_{2} \right) \left(v_{2} \, c_{2} \, c_{2} \, u \, a_{2} \right) \right]$$

$$- \left\{ c_{0} \, s_{1} \, c_{2} \, v_{2} \, \left(s_{1} + s_{2} \right) \right] \left[\left(s_{1} + s_{2} \right) \left(\ell_{2} \, c_{2} \, c_{2} \, u \, a_{2} \, v_{2} \right) \right] - \left(s_{1} \cdot x_{2} \, c_{2} \, u_{2} \, a_{2} \, a_{2} \right) \right]$$

$$- \left\{ c_{0} \, s_{1} \, c_{2} \, v_{2} \, v_{2} \, \left(s_{1} + s_{2} \, v_{2} \right) \left(v_{2} \, c_{2} \, c_{2} \, u_{2} \, a_{2} \,$$

[240 S. W. W.][(S, X, + S, X,)(S, W.S) - (S, X, + S, X,)(Cos f) + (S, + S,)][W. W.S. W.]. +P[a+co+ a= 1] (5,+52) (2, 40 Sinzin - Vol, Cosin + Voy, Cosin Sinz - Vox, Cosco (50 52)]

$$D_{3} = \left\{ S_{1,u} (\omega) \right\} \left\{ \left[P \left(\frac{a^{2}}{\pi^{2}} - a \right) S_{1} \right] \left[-2 V_{0} Y_{1} S_{1,u} (\omega) \right] + \left[P \left(a \alpha_{0} - \frac{2 \alpha_{0} a^{2}}{\pi^{2} R} \right) S_{1} \right] \left[-V_{0} Y_{1} C_{0} (\omega) \right] \right\}$$

$$+ \left[P \left(\frac{a^{2}}{\pi^{2}} - a \right) S_{2} \right] \left[-2 V_{0} Y_{2} S_{1,u} \right] + \left[P \left(a \alpha_{0} - \frac{2 \alpha_{0} a^{2}}{\pi^{2} R^{2}} \right) S_{2} \right] \left[-V_{0} Y_{2} C_{0} (\omega) \right] \right\}$$

$$- \left\{ cos(\omega) \right\} \left\{ \left[-S_{1} \left(\frac{a^{2} \alpha^{2} + a^{2}}{\pi^{2} R^{2}} \right) \right] \left[-2 V_{0} Y_{1} S_{1} u (\omega) \right] + \left[PS_{1} \left(a + C_{10} + \frac{a^{2} a^{2}}{\pi^{2} R^{2}} \right) \right] \left[-V_{0} Y_{1} C_{0} (\omega) \right] \right\}$$

· [- Ve ? 5 11 12. 5, 12 2 4] + [P (a 40 - 240 42) (5.452)][- Vo 3, 1255 Cos 2 6 2] Dq = { Sin in} { [P(co. + 200) (S, + S)][vo. Sin 5, Sin 2 cu] + [P(200 - a) (S, +5)] + [PE (S.C. + S.C.)] - [Pa T (S.K. + S. K.)]

+[-52(20-10)][-20, /25, win]+[PS, (a+co, + a=40)][-80, Cosin]

FINAL EQUATIONS OF MOTION

(i)
$$A_1 = A_1 - A_2 - A_3 - A_4 - M_{\Theta_1} = A_4 + A_4 + A_5 + A_5 + A_6 + A_{\Theta_2} = A_6 - A_6 + A_{\Theta_2} = A_6 + A_6 +$$

(2)
$$B_1 \stackrel{\circ}{=} + \left[B_2 - B_4 \right] \Theta + B_3 \stackrel{\circ}{=} + B_4 \stackrel{\circ}{\times} + B_5 \stackrel{\circ}{=} + \left[B_4 - B_{12} \right] \beta_4 - B_7 \stackrel{\circ}{=} - B_9 \stackrel{\circ}{=}$$

$$- B_{12} \stackrel{\circ}{\times} - B_{11} \stackrel{\circ}{=} = 0$$

62

- Cg Bt - Cg Bt = 0

0 - [D, + =x,] x - D, B. - D, B. (4) $D_{1} \stackrel{2}{\circ} + D_{2} \stackrel{2}{\circ} + D_{3} \stackrel{2}{\circ} + D_{3} \stackrel{2}{\circ} - [D_{4} + z_{0}] \stackrel{2}{\circ} - [D_{5} + z_{0}] \stackrel{2}{\circ} - [D_{5} + z_{0}] \stackrel{2}{\circ}$

TABLE 1

TABLE OF CONFIGURATIONS

CASE NO.	δ_{a}	WING POS.	INBD, FLAP GEARIUG	OUTBD. FLAP GEARING	FUEL TANKS
12	0	FWD	0	0	FULL
1	45	FWD	0	0	FULL
4	0	FWD	1	1	FULL
18	0	FWD	1	1	EMPTY
20	0	AFT	3	3	EMPTY
21	0	AFT	2	2	EMPTY
22	0	AFT	1	1	EMPTY
25	0	AFT	3	3	FULL
26	0	AFT	2	٤	FULL
27	0	AFT	1	1	FULL

OR CONFIGURATIONS USING GEARED

FLAP, INBOARD FLAP MOVES COUNTER

TO WING DEFLECTION; OUTBOARD

FLAP MOVES IN SAME SENSE AS

WING.

TABLES OF NUMERICAL COEFFICIENTS

TABLE 2

Input Sheet

1201	1219	1237	1255	1273	1291
A,	A ₃	A ₄	A ₅		
1202	1220	1238	1256	1274	1292
-A7 -Men	- Aq - M; H	-A.0 -M&,	- A,,		
1203				1275	1293
A2 - A8 - MON	0	0	A4 - A12		,
1204	1222	1240	1258	1276	1294
D,	\mathcal{D}_{q}	. 0	\mathcal{D}_3		
		1241	1259	1277	1295
- D4 - Z6H	-D6-22H	- D7 - Z*H	$-\mathcal{D}_{g}$		
	1224		1260	1278	1296
-Ds - Zon	0	0	$-\mathcal{D}_q$	110	
			1261	1279	1297
	0	C ₂	1262		
1208	1226	1244	1262	1280	1298
-C4-X9H	-C4 - X +	-C7 - XXH	- 68		
11200	1227	1245	1263	1281	1299
- Cs-X ₀₄	0	. 0	– C ₁		
11210	1228			1282	1300
\mathcal{B}_{i}	\mathcal{F}_3	Ba	$\mathcal{B}_{\mathcal{S}}$		
1211			1265	1283	1301
- B7	- Bq	- B ₁₈	- B,,	100/	1000
1212 + B ₂ - B ₈			l.	1284	1302
	1231	<i>O</i>	B6 - B12	1285	1303
1213	1231		1207	1285	1303
1017	1020	1050	1260	1206	1304
1214	1232	1250	1268	1286	1304
1015	1000	1051	1060	1007	1305
1215	1233	1251	1269	1287	1303
1216	1234	1252	1270	1288	1306
1210	1434	1272	1270	1200	1300
1217	1025	1253	1271	1280	1207
1217	1235	1433	12/1	1289	1307
1210	1026	1254	1272	1290	1308
1218	1236	1254	1272	1490	1300

TABLE 3

LONGITUDINAL CASE 12

1201	1219	1237	1255	1273	11291
	- 50 43		62400		
1202		1238	1256	1274	1292
			62010		+
1203		1239	1257	1275	1293
- 730 573	0	0	-12480	<u> </u>	
1204	1222	1240	1258	1276	1294
- 5083	750	0	- 5530		
1205		1241	1259	1277	1295
- 690	541	78	- 42 35	Ī	
1206		1242	1260	1278	1296
79444	٥	0	0		
1207		1243	1261	1279	1297
26 20	0	700	-347		
1208		1244	1262	1280	1298
- 426		44	364		1
1209		1245	1263	1281	1299
-9250	٥	0	0		
1210			1264	1282	1300
62400			112000		
1211				1283	1301
			69710		
1212			1266	1284	1302
- 584280		٥	0	<u> </u>	
1213	1231	1249	1267	1285	1303
1214	1232	1250	1268		1304
1214	1232	1230	1200	1286	1304
1215	1233	1251	1269	1287 /	1305
1216	1234	1252	1270	1288	1306
				1	
1217	1235	1253	1271	1289	1307
1218	1236	1254	1272	1290	1308

LONGITUDINAL CASE 1

TABLE 4

1201	1219	1237	1255	1273	1291
295218	- 5073	2650	45871		ì
1202		1238	1256	1274	1292
147833	-4092	- 908	43110		
1203	1221	1239	1257	1275	1293
-733600	0	0	469241	1	
1204	1222	1240	1258	1276	1294
- 5093	780	0	-3868		
1205		1241	1259	1277	1295
- 704	589	78	-3022		
1206		1242	1260	1278	1296
80100	0	0	- 33057		TT077180
1207		1243	1261	1279	1297
2450	٥		- 322		
1208		1244	1262	1280	1298
-935		44	450		
1209		1245	1263	1281	1299
-9300	0	0	2810		1
				<u> </u>	
1210			1264	1282	1300
45871	- 4675	- 324	68350		
45871 1211	- 4675 1229	- 324 1247	68350 1265	1282 1283	1300
45871 1211 27740	- 4675 1229 - 276 l	- 324 1247 - 735	68350 1265 33439	1283	1301
45871 1211 27740 1212	- 4635 1229 - 2961 1230	- 324 1247 - 735 1248	69350 1265 33439 1266		
45871 1211 27740 1212 -408858	- 4675 1229 - 2761 1230 O	- 324 1247 - 735 1248	68350 1265 33639 1266 279917	1283 1284	1301
45871 1211 27740 1212	- 4675 1229 - 2761 1230 O	- 324 1247 - 735 1248	69350 1265 33439 1266	1283 1284 1285	1301
45871 1211 27740 1212 -408858 1213	- 4675 1229 - 276 l 1230 O 1231	- 324 1247 - 735 1248 0	68350 1265 33439 1266 279917	1283 1284 1285	1301 1302 1303
45871 1211 27740 1212 -408858	- 4675 1229 - 276 l 1230 O 1231	- 324 1247 - 735 1248 0	68350 1265 33639 1266 279917	1283 1284 1285 0	1301
45871 1211 27740 1212 -408858 1213	- 4675 1229 - 276 1230 0 1231	- 324 1247 - 735 1248 0 1249	68350 1265 33439 1266 279917 1267	1283 1284 1285 O 1286	1301 1302 1303
45871 1211 27740 1212 -408858 1213	- 4675 1229 - 276 1230 0 1231	- 324 1247 - 735 1248 0	68350 1265 33439 1266 279917	1283 1284 1285 0	1301 1302 1303
45871 1211 27740 1212 -408858 1213 1214	- 4675 1229 - 276 1230 0 1231	- 324 1247 - 735 1248 0 1249	69350 1265 33439 1266 279917 1267	1283 1284 1285 0 1286 0	1301 1302 1303 1304
45871 1211 27740 1212 -408858 1213	- 4675 1229 - 276 1230 0 1231	- 324 1247 - 735 1248 0 1249	68350 1265 33439 1266 279917 1267	1283 1284 1285 O 1286	1301 1302 1303 1304 1305
45871 1211 27740 1212 -408858 1213 1214 1215	- 4675 1229 - 276 1230 0 1231 1232	- 324 1247 - 735 1248 0 1249 1250	69350 1265 33639 1266 279717 1267 1268	1283 1284 1285 0 1286 0 1287	1301 1302 1303 1304 1305
45871 1211 27740 1212 -408858 1213 1214	- 4675 1229 - 276 1230 0 1231 1232	- 324 1247 - 735 1248 0 1249	69350 1265 33439 1266 279917 1267	1283 1284 1285 0 1286 0	1301 1302 1303 1304 1305
45871 1211 27740 1212 -408858 1213 1214 1215	- 4675 1229 - 276 1230 0 1231 1232 1233	- 324 1247 - 735 1248 0 1249 1250 1251	68350 1265 33639 1266 279917 1267 1268 1270	1283 1284 1285 0 1286 1287 1288	1301 1302 1303 1304 1305 1306 0 1307
45871 1211 27740 1212 -408858 1213 1214 1215	- 4675 1229 - 276 1230 0 1231 1232 1233	- 324 1247 - 735 1248 0 1249 1250	69350 1265 33639 1266 279717 1267 1268	1283 1284 1285 0 1286 0 1287	1301 1302 1303 1304 1305 1306 0

TABLE 5
LONGITUDINAL CASE 4

1201	1219	1237	1255	1273	1291
	For	BLANKS SEC			
1202	1220	1238	1256	1274	1292
	Caso	5/2			
1203	1221	1239	1257	1275	1293
			-31076		
1204	1222	1240	1258	1276	1294
1205	1223	1241	1259	1277	1295
1206	1224	1242	1260	1278	1296
			215		
1207	1225	1243	1261	1279	1297
		_1	_		
1208	1226	1244	1262	1280	1298
1209	1227	1245	1263	1281	1299
			- 1337		
1210	1228	1246	1264	1282	1300
1211	1229	1247	1265	1283	1301
1212	1230	1248	1266	1284	1302
	<u> </u>		172 700		
1213	1231	1249	1267	1285	1303
1214	1232	1250	1268	1286	1304
				0	
1215	1233	1251	1269	1287	1305
1016	1234	1252	1270	1288	1306
1216	1254	1252	1270	1.200	0
1217	1235	1253	1271	1289	1307
1218	1236	1254	1272	1290	1308 /
·					

TABLE 6

LONGITUDINAL CASE 18

1201	1219	1237	11255	11273	1291
	- 72.		1 .		
1202		1238	1256	1274	1292
	1220	- 1215	/ .	1274	12,72
195700					1,000
1203		1239	1257	1275	1293
-74111.		Ç]	
1204		1240	1258	1276	1294
- 7 60	407	C	• • • •	1	
1205	1223	1241	1259	1277	1295
- 4115	616	15	-4716	ļ	ļ
1206	1224	1242	1260	1278	1296
1223	C	C-	2153		
1207	1225	1243	1261	1279	1297
377	0	961	- 60		
1208	1226	1244	1262	1280	1298
-77	-74	21	355		
1209	1227	1245	1263	1281	1299
- 10032	0	Ŏ	105	1	
1210	1228	1246	1264	1282	1300
7 40%	- 934	- 6 (16 27 4		
1211		1247	1265	1283	1301
38 147	1 3	- 1107	61:10		
	1230		1266	1284	1302
- 515439	0	٥	193700		Terror III
1213	1231	1249	1267	1285	1303
j	II				
1214	1232	1250	1268	1286	1304
				,-	
1215	1233	1251	1269	1287	1305
1216	1234	1252	1270	1288	1306
1			, -		(1
1217	1235	1 253	1271	1289	1307
1217	1233	12,7,3	14/1	1407	()
1,0,0	1026	105/	1070	1000	
1218	1236	1254	1272	1290	1308
			11		1

TABLE 7

LONGITUDINAL CASE 20

1201	1219	1237	11255	11273	11291
	143		-2357		
1202		1238	1256	1274	1292
151=13		-16	2103		
1203	1221	1239	1257	1275	1293
- 99214	0	O	14 5 13		
1204	1222	1240	1258	1276	1294
142	1. 7	C	- 768		_
1205		1241	1259	1277	1295
1797	10	71	- 1110		200.0
1206	1224	1242	1260	1278	1296
12016	1000	6	7311		
1207		1243	1261	1279	1297
37%		•	- (, 1262	1280	1298
1208 - 6:4			354	11200	1270
1209		1245	1263	1281	1299
- 9384	0	0	. 6		
1210			1264	1282	1300
- 2359	- 947	-6/	16.0		
1211	1229		1265	1283	1301
- 5736	to the second se	trace and the second se	61559		100
1212		1248	1266	1284	1302
- 562952			\$ 60 000		1000
1213	1231	1249	1267	1285	1303
1014	1022	1250	1268		1304
1214	1232	1250	1208	1286 O	1304
1215	1233	1251	1269	1287	1305
1217	1433	1231	1407	120/	2303
1216	1234	1252	1270	1288	1306
	-30				0
1217	1235	1253	1271	1289	1307
					0
1218	1236	1254	1272	1290	1308
					1

TABLE 8

LONGITUDINAL CASE 21

1201	1219	1237	11255	1273	[129]
*					
1202	1220	1238	1256	1274	1292
1203	1221	1239	1257 4300	1275	1293
1204	1222	1240	1258	1276	1294
1205	1223	1241	1259	1277	1295
1206	1224	1242	1260 3.400	1278	1296
1207	1225	1243	1261	1279	1297
1208	1226	1244	1262	1280	1298
1209	1227	1245	1263 156	1281	1299
1210	1228	1246	1264	1282	1300
1211	1229	1247	1265	1283	1301
1212	1230	1248	1266 403000	1284	1302
1213	1231	1249	1267	1285	1303
1214	1232	1250	1268	1286	1304
1215	1233	1251	1269	1287	1305
1216	1234	1252	1270	1288	1306
1217	1235	1253	1271	1289	1307 G
1218	1236	1254	1272	1290	1308
# N11 151.	nks same a	a Cara 22			

* All blanks same as Case 22

TABLE 9

LONGITUDINAL CASE 22

1201	1219	1237	1255	1273	1291
79767	142	378	- 27:9		
1202		1238	1256	1274	1292
151313	- 821	216	2103		
1203	1221	1239	1257	1275	1293
-98274	. 0	<i>O</i>	2500		
1204		1240	1258	1276	1294
142	407	0	-464		
1205		1241	1259	1277	1295
1797	610	7.1	- 3916		
1206		1242	1260	1278	1296
82036	0		-600		
1207			1261 — ()	1279	1297
378	0	107	•	1000	1000
1208	1226 - 75	1244	1262	1280	1298
- 684	1227	1245	354 1263	1281	1299
1209 - 9384	0	0	-50	1201	1299
				1282	1300
1210 - 2359		246	1264 16200	1282	1300
1210	1228 - 467	- 4 /	1264 14200	1282	1300
1210	1228 - 4 (17) 1229	1 246 — 6 / 1 24 7	1264 14200		
1210 - 2359 1211 - 5736 1212	1228 - (()) 1229 - 4/50 1230	1246 - 6 1247 - 110 4 1248	1264 / しょっの 1265 らりつつる 1266		
1210 - 2359 1211 - 5736 1212 - 562952	1228 - (()) 1229 - 4/50 1230	1246 - 6 / 1247 - 110 4 1248	1264 16200 1265 67228 1266 245000	1283 1284	1301
1210 - 2359 1211 - 5736 1212	1228 - (()) 1229 - 4/50 1230	1246 - 6 / 1247 - 110 4 1248	1264 / しょっの 1265 らりつつる 1266	1283 1284 1285	1301
1210 - 2359 1211 - 5736 1212 - 562952 1213	1228 - (()) 1229 - 4/50 1230 0	1246 - 6 / 1247 - 1/0 4 1248 0	1264 16200 1265 67228 1266 245000 1267	1283 1284 1285	1301 1302 1303
1210 - 2359 1211 - 5736 1212 - 562952	1228 - '(') 1229 - 4/50 1230 0	1246 - 6 / 1247 - 1/0 4 1248 0	1264 16200 1265 67228 1266 245000	1283 1284 1285	1301
1210 - 2359 1211 - 5736 1212 - 562952 1213	1228 - (()) 1229 - 4/50 1230 0 1231	1246 - 6 / 1247 - 1/0 4 1248 0 1249	1264 16200 1265 67228 1266 245000 1267	1283 1284 1285 ()	1301 1302 1303
1210 - 2359 1211 - 5736 1212 - 562952 1213	1228 - (()) 1229 - 4/50 1230 0 1231	1246 - 6 / 1247 - 1/0 4 1248 0	1264 16200 1265 67228 1266 245000 1267	1283 1284 1285	1301 1302 1303
1210 - 2359 1211 - 5736 1212 - 562952 1213 1214	1228 - 4 () 1229 - 4 / 5 0 1230 0 1231	1246 - 6 / 1247 - 1/0 4 1248 0 1249 1250	1264 / () 200 1265 () () 200 1266 245 000 1267 1268	1283 1284 1285 () 1286	1301 1302 1303 1304
1210 - 2359 1211 - 5736 1212 - 562952 1213	1228 - 4 () 1229 - 4 / 5 0 1230 0 1231	1246 - 6 / 1247 - 1/0 4 1248 0 1249	1264 16200 1265 67228 1266 245000 1267	1283 1284 1285 ()	1301 1302 1303 1304 1305
1210 - 2359 1211 - 5736 1212 - 562952 1213 1214 1215	1228 - '(') 1229 - 1/50 1230 0 1231 1232	1246 - 6 / 1247 - 1/0 4 1248 0 1249 1250 1251	1264 16200 1265 67228 1266 245000 1267 1268 1269	1283 1284 1285 1286 0 1287	1301 1302 1303 1304 1305
1210 - 2359 1211 - 5736 1212 - 562952 1213 1214	1228 - '(') 1229 - 1/50 1230 0 1231 1232	1246 - 6 / 1247 - 1/0 4 1248 0 1249 1250	1264 / () 200 1265 () () 200 1266 245 000 1267 1268	1283 1284 1285 () 1286	1301 1302 1303 1304 1305
1210 - 2359 1211 - 5736 1212 - 562952 1213 1214 1215 1216	1228 - '(') 1229 / 1230 0 1231 1232 1233	1246 - 6 / 1247 - 1/0 4 1248 0 1249 1250 1251 1252	1264 16200 1265 67228 1266 245000 1267 1268 1269 1270	1283 1284 1285 1286 0 1287	1301 1302 1303 1304 1305
1210 - 2359 1211 - 5736 1212 - 562952 1213 1214 1215	1228 - 4 (7) 1229 - 4 / 5 0 1230 0 1231 1232 1233	1246 - 6 / 1247 - 1/0 4 1248 0 1249 1250 1251	1264 16200 1265 67228 1266 245000 1267 1268 1269	1283 1284 1285 1286 0 1287	1301 1302 1303 1304 1305

TABLE 10

LONGITUDINAL CASE 25

1201	1219	1237	1255	1273	1291
111324	177	1.15	-15015		
1202	1220	1238	1256	1274	1292
160-172	-1245	6.6.1	27 3		
1203	1221	1239	1257	1275	1293
-3345%	Ŏ		<i>i</i> 1		<u></u>
1204		1240	1258	1276	1294
997	780	(`;	-5525		
1205		1241	1259	1277	1295
1621	5% (1224	7 g	1260	1278	1296
1206	0			1270	1290
17464		^	1:11	11270	1207
2615	1225	1243 フミウ	1261	1279	1297
1208		1244	1262	1280	1298
-1011	-70	14			
1209	1227	1245	1263	1281	1299
-9360	Q	Ō	** · ,		
1210		1246	1264	1282	1300
-15015		7	,		
1211		1247	1265	1283	1301
		71.1	(1:25	100/	1000
1212 - 573750		1248	1266	1284	1302
1213			1267	1285	1303
				. "	
1214	1232	1250	1268	1286	1304
				١.	
1215	1233	1251	1269	1287	1305
3				1	
1216	1234	1252	1270	1288	1306
					O
1217	1235	1253	1271	1289	1307
					U
				<u> </u>	
1218	1236	1254	1272	1290	1308

TABLE 11
LONGITUDINAL CASE 26

1441	11010	8004	IS A F F	11757	TYANT
1201 *	1219	1237	1255	1273	1291
1202	1220	1238	1256	1274	1292
1203	1221	1239	1257 - 2000	1275	1293
1204	1222	1240	1258	1276	1294
1205	1223	1241	1259	1277	1295
1206	1224	1242	1260 3.400	1278	1296
1207	1225	1243	1261	1279	1297
1208	1226	1244	1262	1280	1298
1209	1227	1245	1263 /·S Ø	1281	1299
1210	1228	1246	1264	1282	1300
1211	1229	1247	1265	1283	1301
1212	1230	1248	1266 103000	1284	1302
1213	1231	1249	1267	1285	1303
1214	1232	1250	1268	1286	1304
1215	1233	1251	1269	1287	1305
1216	1234	1252	1270	1288	1306
1217	1235	1253	1271	1289	1307
1218	1236	1254	1272	1290	1308
331 21-22					

^{*} All blanks same as Case 25

TABLE 12

LONGITUDINAL CASE 27

9 1237 0 1238 1 1239 2 1240	1256 1257 - % 3 1258	1273 1274 1275	1292
1239	1257 - 火 ろ	1275	
	- 83		1293
1240			
		1276	1294
3 1241	1259	1277	1295
1242	1260 - 60	1278	1296
1243	1261	1279	1297
1244	1262	1280	1298
1245	1263 - S	△ 1281	1299
1246	1264	1282	1300
1247	1265	1283	1301
1248	1266	(1284	1302
1249	1267	1285	1303
1250	1268	1286	1304
1251	1269	1287	1305
1252	1270	1288	1306 Ø
1253	1271	1289	1307 Ø
1254	1272	1290	1308
	1242 1243 1244 1245 1246 1247 1248 1249 1250 1251	1242 1260 — (a) 1243 1261 1244 1262 1245 1263 — S 1246 1264 1247 1265 1248 1266 1249 1267 1250 1268 1251 1269 1252 1270	1242 1260 1278

^{*} All blanks same as Case 25

TABLE 13

SUMMARY OF ROOTS OF THE LONGITUDINAL CHARACTERISTIC EQUATIONS - SHOWING PERIODS AND TIME TO DOUBLE OR HALF AMPLITUDE

	Roots			
CASE	PERIODS TIME TO DOUBLE (+) OR HALF (-)			
				(-) AMPLITUDE
12	.186	0766		
	+ ·601i	±.06831	- · 413	-2.50
	10.45	92		
	3.73	9.05	1.68	.28
I	·274	- · 237	0633	- (-917
	± .379 ¿	± 1.390i		
	16.58	4.52		-
	2.53	2.92	10.95	.362
4	.180	258	0504	-2.490
	± . 603 i	± 1.7162		
	10.42	3.66		
	3.85	2.69	13.75	-28
	-1.587	- 4.755	+.0092	110
18	± 3.667 i	+ .927		
	1.71			-
	•44	146: 15	75·3	6.30
20	2997	1.798	0213	-3.0828
	土 2582 4	±5.887;		
	24.33	/.07		•
	2.35	• 39	32.39	.22
	2837	-1.785	-3.1314	0215
21	± · 2648i	± 4.8138 £		
~ .	23.73	1.305		
	2.44	•39	'22	32.39
	2567	-1.7506	- 3.254	- 10213
22	± · 2776 i	± 3.4293i		
4 , 5,	22.63	1.83		32.94
	2.700	. 39	.21	32.39
	1083	- · 341	-2.70	063
25	± · 516 i	± 3.161 ±		
	6.40	1·99 2·03	.26	10.05
				10.95
	108	-·340 + 2.64;	- 2.70	063
36	± ·515 i	± 2.64 i		
	6.42	2.38	.26	10.95
٦7	. 108	2.04	-2.70	10.43
	± · 5/3 i	-·339 ± 1·96 i		062
	12.25	3.21	•	
	6.42	2.04	.26	10.95
	7.7	207		10.73

BASIC HELICOPTER RESPONSE TO LONGITUDINAL STEP INPUT

FIGURE 4

LONGITUDINAL CASE 12

30 F.P.S. GUST

FIGURE 5

LONGITUDINAL CASE 1 30 F.P.S. GUST

FIGURE 6

1 SEC

LONGITUDINAL CASE 4

30 F.P.S. GUST

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

FIGURE 12

85

30 F.P.S. GUST

FIGURE 14

TABLE 14

TABLE OF MAXIMUM WING DEFLECTIONS
(LONGITUDINAL)

CASE	FIRST PEAK AMPLITUDE DEG	SECOND PEAK AMPLITUDE DEG.	
12	34.4	86.0	
	23.0		
4	3.1	4.3	
18	34		
20	8.6	2.3	
21	11.5	2.3	
22	16.1	Z. 9	
25	1. (1.7	
26	1.5	2-3	
27	3.4	۱٦ - ١٦	

APPENDIX B

GEOMETRY & DISPLACEMENT DIAGRAM LATERAL-DIRECTIONAL CASE

FIGURE 15

LATERAL-DIRECTIONAL MOTION

DISPLACEMENT RELATIONSHIPS

Consider the \forall & \exists displacements of a point at any spanwise location due to a small disturbance $a\phi$ about the roll axis.

For small disturbances, we can assume:

Sin
$$\phi = \phi$$

bos $\phi = 1$.

$$\delta y = -l_2 \phi.$$

Hence

$$\frac{\partial y}{\partial \phi} = y_{\phi} = -l_2$$

Simarily,

$$x_{\psi} = -(e+r')$$

and

$$y_{\phi} = -l_{2}$$

$$z_{\phi} = (e+r)$$

$$x_{\psi} = -(e+r)$$

$$y_{\psi} = l_{i}$$

$$\Theta_{\beta} = S_{in} \delta_{3}$$

$$x_{\beta} = 1600 \delta_{3} S_{in} \Theta_{0}$$

$$y_{\beta} = 2ERO$$

$$z_{\beta} = 1600 \delta_{3} 600 \Theta_{0}$$

- ⊖ = Angle between Ref. Chord and Ref. Axis
- Rate of Change of Incidence with B.

Expressing the differential displacements in a series.

$$dx = \frac{\partial x}{\partial \phi} d\phi + \frac{\partial x}{\partial \psi} d\psi + \frac{\partial x}{\partial \beta} d\beta_{H}$$

$$\equiv x_{\phi} d\phi + x_{\psi} d\psi + x_{\phi} d\beta_{H}$$

Differentiating with respect to time.

$$\Delta \dot{x} = x_{\phi} \dot{\phi} + x_{\psi} \dot{\psi} + x_{\rho} \dot{\beta}_{\mu}$$
and
$$\Delta \dot{z} = z_{\phi} \dot{\phi} + z_{\psi} \dot{\psi} + z_{\rho} \dot{\beta}_{\mu}$$
(2)

 $\times \phi$, $\times \psi$ etc. are all constants, being functions only of system geometry.

The above velocity increments are referred to the reference axis system. They must now be referred to a wind axis system in order to determine the total velocities normal and parallel to the free stream.

Resolving normal and parallel to the flight path:

$$h_{i} = -\Delta \mathcal{Z} \sin \Theta_{H} + \Delta \mathcal{Z} \cos \Theta_{H}$$

$$\Delta V = \Delta \mathcal{Z} \cdot \delta \cos \Theta_{H} + \Delta \mathcal{Z} \cdot \sin \Theta_{H}$$

$$V_{i} = V_{o} + \Delta V = V_{o} + x_{4} + \delta_{co} \theta_{H} + x_{p} \beta_{co} \theta_{H} + z_{p} \delta_{co} \theta_{H} + z_{p} \delta_{co} \theta_{H}$$

$$+ z_{p} \delta_{co} \rho_{H} + z_{p} \beta_{co} \delta_{co} \rho_{H} + z_{p} \beta_{co} \delta_{co} \theta_{H}$$

$$h_{i} = -x_{4} + \delta_{co} \theta_{H} - x_{p} \beta_{co} \delta_{co} \theta_{H} + z_{p} \beta_{co} \delta_{co} \theta_{H}$$

For convenience, we write:

$$V_{i} = V_{0} + C_{1} \phi + C_{2} \psi + C_{3} \beta$$

Where
$$C_{1} = (e+r) \sin \Theta_{H}$$

$$C_{2} = -(e+r) \cos \Theta_{H}$$

$$C_{3} = r \cos \delta_{3} \sin (\theta_{0} + \theta_{H})$$
and
$$\hat{h}_{i} = C_{4} \phi + C_{5} \psi + C_{6} \beta$$

where
$$C_{4} = (e+r) \cos \Theta_{H}$$

$$C_{5} = (e+r) \sin \Theta_{H}$$

$$C_{6} = r \cos \delta_{3} \sin (\theta_{0} + \theta_{H})$$

Squaring terms in Equ. (3), and dropping second order terms, we obtain:

$$V_{i}^{2} = V_{0}^{2} + 2V_{0}c_{1}\dot{\phi} + 2V_{0}c_{2}\dot{\phi} + 2V_{0}c_{3}\dot{\beta}$$
and $V_{i}\dot{h}_{i}^{2} = V_{0}c_{4}\dot{\phi} + V_{0}c_{5}\dot{\psi} + V_{0}c_{6}\dot{\beta}$

Aerodynamic Forces and Moments at a general spanwise station:

The steady state angle of attack at the general spanwise station is given by

For any disturbed motion, the angle of attack becomes:

$$\theta_{i} = \theta + \beta_{H}.Sin \delta_{3} - \omega_{0} + \frac{\mathring{L}_{i}}{V_{i}} \left(\theta \in \theta_{H} + \theta_{0}\right)$$

The section lift is given by:

$$L_{i} = \frac{1}{2} \rho V_{i}^{2} \alpha c \left\{ \theta + \beta \text{Lin} \delta_{3} + \frac{h_{i}}{V_{0}} - \alpha \delta \right\}$$

$$= k_{1} V_{i}^{2} \left\{ \theta + \beta \text{Lin} \delta_{3} - \alpha \delta \right\} + k_{1} V_{i} h_{i}$$
where
$$k_{1} = \frac{1}{2} \rho \alpha c.$$

Section drag is given by

$$D_i = \frac{1}{2} \rho V_i^2 c \stackrel{\leftarrow}{C_D} + \frac{\partial D_i}{\partial \beta_n} \delta \beta_n.$$

The drag coefficient C_D is based on the steady state lift, and the correction term $\frac{\partial D}{\partial \beta_n}$ takes account of

changes in drag arising from wing flapping disturbances, and is a function of S_3 and the flap gearing ratio. The drag coefficient is given by:

where \overline{C}_L = steady state lift coefficient we can write the drag in the form

where
$$k_3 = \rho c C_0$$

For convenience, we write the drag as

$$D_{i} = C_{7} + C_{8}\mathring{\Phi} + C_{9}\mathring{\Psi} + C_{0}\mathring{\beta} + C_{1}\beta \qquad \textcircled{3}$$
where $C_{7} = k_{3}V_{0}^{2} \qquad C_{4} = 2k_{3}V_{0}C_{2} \qquad C_{1} = \frac{\rho_{c}V_{0}^{2}}{2}C_{0}_{\beta}$

$$C_{8} = 2k_{3}V_{0}C_{1} \qquad C_{0} = 2k_{3}V_{0}C_{3}$$

The lift force can be expanded as follows

$$L_{i} = k_{1}V_{i}^{2}(\theta - \alpha_{0}) + k_{1}V_{i}^{2}(S_{ii}S_{3} - \frac{\partial\alpha_{0}}{\partial\beta})\beta + k_{1}V_{i}\hat{k}_{i}$$

$$= k_{1}V_{0}^{2}(\theta - \alpha_{0}) + 2k_{1}V_{0}G(\theta - \alpha_{0})\hat{\theta} + 2k_{1}V_{0}C_{2}(\theta - \alpha_{0})\hat{\psi}$$

$$+ 2k_{1}V_{0}C_{3}(\theta - \alpha_{0})\hat{\beta}_{H} + k_{1}V_{0}^{2}\beta(S_{ii}S_{3} - \frac{\partial\alpha_{0}}{\partial\beta})$$

$$+ k_{1}V_{0}C_{4}\hat{\theta} + k_{1}V_{0}C_{5}\hat{\psi} + k_{1}V_{0}C_{6}\hat{\beta}_{H}$$

$$= C_{12} + C_{13}\hat{\phi} + C_{14}\hat{\psi} + C_{15}\hat{\beta}_{H} + C_{16}\hat{\beta}_{H} \in \mathcal{O}$$

$$= C_{12} = k_{1}V_{0}^{2}(\theta - \alpha_{0})$$

$$= C_{13} = (2k_{1}V_{0}C_{1}[\theta - \alpha_{0}] + k_{1}V_{0}C_{4})$$

$$= (2k_{1}V_{0}C_{1}[\theta - \alpha_{0}] + k_{1}V_{0}C_{5})$$

$$= C_{45} = (2k_{1}V_{0}C_{3}[\theta - \alpha_{0}] + k_{1}V_{0}C_{5})$$

The pitching moment equation is:

$$M_{i} = \frac{1}{12} \int_{i}^{i} V_{i}^{2} c^{2} \left\{ C_{MAC} + \frac{\partial C_{MAC}}{\partial f_{i}} + C_{MA} \left(\theta + f_{i} \sin \delta_{3} - \frac{\partial v_{0}}{\partial f_{i}} + \frac{\partial v_{i}}{\partial v_{i}} \right) \right\}$$

$$= \frac{1}{12} \int_{i}^{i} V_{i}^{2} c^{2} \left(C_{MAC} + C_{MA} \left[\theta - c_{0} \right] \right)$$

$$+ \frac{1}{12} \int_{i}^{i} V_{i}^{2} c^{2} \left(\frac{\partial C_{MA}}{\partial r_{i}^{3}} + C_{MA} \left[\frac{\sin \delta_{3}}{\partial s} - \frac{\partial v_{0}}{\partial s} \right] \right)$$

$$+ \frac{1}{12} \int_{i}^{i} V_{i}^{2} \int_{i}^{i} c^{2} C_{MA}$$

$$= \frac{1}{12} \int_{i}^{i} V_{i}^{2} \int_{i}^{i} c^{2} C_{MA}$$

$$= \frac{1}{12} \int_{i}^{i} V_{i}^{2} \int_{i}^{i} c^{2} C_{MA}$$

$$+ C_{i}^{2} \int_{i}^{i} V_{i}^{2} \left(C_{MAC} + C_{MA} \left[\theta - c_{0} \right] \right) \int_{i}^{i} \Phi_{i}$$

$$+ C_{i}^{2} \int_{i}^{i} V_{i}^{2} \left(C_{MAC} + C_{MA} \left[\theta - c_{0} \right] \right) \int_{i}^{i} \Phi_{i}$$

$$+ C_{i}^{2} \int_{i}^{i} V_{i}^{2} \int_{i}^{i} C_{MA} \left(\frac{\partial v_{i}}{\partial f_{i}} + C_{MA} \left[\theta - c_{0} \right] \right) \int_{i}^{i} \Phi_{i}$$

$$+ \frac{1}{12} \int_{i}^{i} C_{i}^{2} \int_{i}^{i} C_{MA} \left(\frac{\partial v_{i}}{\partial f_{i}} + C_{MA} \left[\frac{\partial v_{i}}{\partial f_{i}} + C_{MA} \left[\frac{\partial v_{i}}{\partial f_{i}} + C_{MA} \left[\frac{\partial v_{i}}{\partial f_{i}} + C_{A} \left[\frac{\partial v_{i}}{\partial f_{i}} +$$

where
$$C_{18} = \frac{1}{2} c^2 V_0^2 \left(C_{MAC} + C_{MA} \left[A - K_0 \right] \right)$$

$$C_{19} = c^2 \rho V_0 \left(C_1 \left[C_{MAC} + C_{MA} \left\{ \Theta - K_0 \right\} \right] + C_{MAC} C_4 \right)$$

$$C_{20} = c^2 \rho V_0 \left(C_2 \left[C_{MAC} + C_{MA} \left\{ \Theta - K_0 \right\} \right] + C_{MAC} C_5 \right)$$

$$C_{21} = c^2 \rho V_0 \left(C_3 \left[C_{MAC} + C_{MA} \left\{ \Theta - K_0 \right\} \right] + C_{MAC} C_6 \right)$$

$$C_{22} = \frac{c^2 \rho V_0^2}{C_2} \left(\frac{\partial C_{MAC}}{\partial F_H} + C_{MA} \left[S_{ii} \delta_3 - \frac{\partial C_0}{\partial F_H} \right] \right)$$

Finally, resolving back to reference axes,

$$N_i = L_i \log \theta_H + D_i \sin \theta_H$$

$$P_i = D_i \log \theta_H - L_i \sin \theta_H$$

$$\begin{aligned} N_{L}^{2} &= C_{12} \log \theta_{H} & + C_{7} \sin \theta_{H} \\ &+ C_{13} \mathring{\phi} \log \theta_{H} & + C_{8} \mathring{\phi} \sin \theta_{H} & (+ C_{24} \mathring{\phi}) \\ &+ C_{14} \mathring{\psi} \log \theta_{H} & + C_{9} \mathring{\psi} \sin \theta_{H} & (+ C_{25} \mathring{\psi}) \\ &+ C_{15} \mathring{\beta}_{H} \log \theta_{H} & + C_{10} \mathring{\beta}_{H} \sin \theta_{H} & (+ C_{21} \mathring{\beta}_{H}) \\ &+ C_{16} \mathring{\beta}_{H} \log \theta_{H} & + C_{11} \mathring{\beta}_{H} \sin \theta_{H} & (+ C_{27} \mathring{\beta}_{H}) \end{aligned}$$

The total rolling moment due to N; is given by:

$$L = -\int_{0}^{e+R_{i}} N_{i} s ds - \int_{e+R_{i}}^{e+R_{i}} N_{i} s ds \qquad \textcircled{9}$$

where

e = distance of hinge line from fuselage
 centerline

R_i = spanwise location of break in flap, measured from hinge

R = span of wing outboard of hinge

5 = spanwise coordinate, measured from centerline.

The derivatives of L, with respect to ψ , ψ , β , and β are therefore given by

$$L_{\phi}^{\bullet} = -\int_{c_{24}}^{c_{4R_{1}}} sds - \int_{c_{4R_{1}}}^{c_{4R}} c_{24} sds \qquad (9) \omega$$

$$L_{\Psi}^{o} = -\int_{0}^{e+R_{1}} C_{25_{c}} sds - \int_{+R_{1}}^{e+R_{1}} C_{25_{0}} sds$$
 (b)

$$L_{\beta}^{\circ} = -\int_{c}^{c_{1}c_{1}} c_{2c_{0}} sds - \int_{c_{1}R_{1}}^{c_{2c_{0}}} c_{2c_{0}} sds \qquad (c)$$

$$L_{\beta} = -\int_{e}^{e+R_{i}} C_{27_{i}} sds - \int_{e+R_{i}}^{e+R} C_{27_{o}} sds$$
 (d)

Subscripts " ζ " and 'o "now denote the inboard and outboard values of the general term C_n

Similarly, the yawing moment derivatives are:

$$N_{\phi}^{a} = \int_{0}^{e+R_{1}} C_{29_{1}} sds + \int_{e+R_{1}}^{e+R_{1}} C_{29_{0}} sds$$
 (a)

$$N_{ij} = \int_{c_{30}}^{c_{4}} c_{30} sds + \int_{c_{4}R_{i}}^{c_{4}R_{i}} c_{30} sds \qquad (b)$$

$$N_{i} = \int_{e}^{e+R_{i}} C_{3i_{1}} sds + \int_{e+R_{i}}^{e+R_{i}} C_{3i_{0}} sds$$
 (c)

$$N_{p} = \int_{c}^{c+R_{1}} C_{32} sds + \int_{c+R_{1}}^{c+R} C_{32} sds \qquad (d)$$

The wing hinge moment can be written:

$$M = M_{1} \sin \delta_{3} - P_{1} \tau \log \delta_{3} \sin \theta_{0} - N_{1} \tau \log \delta_{3} \log \theta_{0}$$

$$= C_{34} + C_{35} \dot{\phi} + C_{36} \dot{\psi} + C_{37} \dot{\beta}_{H} + C_{38} \dot{\beta}_{H}$$

Where:

$$C_{35} = C_{19} \sin \delta_{3} - Y \cos \delta_{3} (C_{8} \sin \theta + C_{15} \cos \theta)$$

$$C_{36} = C_{20} \sin \delta_{3} - Y \cos \delta_{3} (C_{9} \sin \theta + C_{14} \cos \theta)$$

$$C_{37} = C_{21} \sin \delta_{3} - Y \cos \delta_{3} (C_{10} \sin \theta + C_{15} \cos \theta)$$

$$C_{38} = C_{22} \sin \delta_{3} - Y \cos \delta_{3} (C_{10} \sin \theta + C_{16} \cos \theta)$$

Then the hinge moment derivatives are:

$$M_{\phi}^{o} = \int_{0}^{R_{1}} C_{35a} dr + \int_{R_{1}}^{R} C_{35o} dr$$
 (1) (a)

$$M_{\star}^{*} = \int_{0}^{R_{1}} C_{36} dv + \int_{R_{1}}^{R} C_{36} dv$$
 (b)

$$M_{\beta}^{o} = \int_{0}^{R_{1}} C_{37a} dr + \int_{R_{1}}^{R} C_{37o} dr$$
 (c)

$$M_{\beta} = \int_{0}^{R_{1}} C_{38} dv + \int_{R_{1}}^{R} C_{38_{0}} dv$$
 (d)

Evaluation of the Integrals

The folling damping derivative is given by the expression:

$$L_{\phi}^{0} = -\int_{0}^{e+R_{I}} c_{2}\psi_{0} s ds - \int_{e+R_{I}}^{e+R_{I}} c_{2}\psi_{0} s ds$$

$$C_{2}\psi = C_{I3} \delta_{00} \theta_{H} + C_{8} \int_{e+R_{I}}^{e+R_{I}} \theta_{H}$$

$$= (2k_{I}V_{0} c_{I}[\theta-\alpha_{0}] + k_{I}V_{0} c_{U})\delta_{00}\theta_{H} + 2k_{3}V_{0}c_{I} \int_{e+R_{I}}^{e+R_{I}} \theta_{H}$$

$$C_{I} = (e+r) \int_{0}^{e+R_{I}} \theta_{H} \qquad k_{I} = \frac{1}{2} \rho_{0}c_{0}$$

$$C_{\psi} = (e+r) \int_{0}^{e+R_{I}} \theta_{H} \qquad k_{3} = \frac{1}{2} \rho_{0}c_{0}$$

Therefore, $C_{24} = (e+r)(2k_1 V_0 [\Theta-\alpha_0] Sin \theta_H + k_1 V_0 \delta \Theta \Theta_H) \delta \Theta_H^2$ $+ (e+r)(2k_1 V_0 Sin^2 \theta_H)$

Thus,
$$L_{\phi}^{\circ} = -C_{2+i}^{\circ} \int_{0}^{e+R_{i}} (e+r) s ds - C_{2+i}^{\circ} \int_{e+R_{i}}^{e+R_{i}} (e+r) s ds$$

from the definitions of e, r & s, given in Equ. (8), it can be seen that:

Hence:
$$\angle d = -C_{244}^{\prime} \int_{0}^{e+R_{1}} S^{2} dS - C_{240}^{\prime} \int_{e+R_{1}}^{e+R_{2}} S^{2} dS$$

in a similar manner,

$$L_{\psi}^{\circ} = -C_{25i}^{\prime} \int_{0}^{e+R_{i}} S^{2}dS - C_{25o}^{\prime} \int_{uR_{i}}^{uR} S^{2}dS$$

The flapping moment derivatives, L; & L, are handled as follows:

$$L_{\beta}^{\circ} = -\int_{e}^{e+R_{1}} C_{26} \cdot sds - \int_{e+R_{1}}^{e+R_{26}} C_{26} \cdot sds$$

(The lower limit in the first integral becomes 'e', as there is of course no meaning to the integral between 5.0 and the location of the hinge at station 5.0)

$$C_{26} = (2k, V_0 c_3[\theta \rightarrow \phi_0] + k, V_0 c_0) \theta = \theta + 2k_3 V_0 c_3 Sin \theta + c_3 = r \theta = \delta_3 Sin \theta$$

$$C_6 = r \theta = \delta_3 \theta = \theta$$

Substituting r = 5 - e, the expression for becomes:

$$L_{\beta}^{\circ} = -C_{26_{A}}^{\circ} \int_{e}^{e+R_{I}} s(s-e) ds - C_{26_{O}}^{\circ} \int_{e+R_{I}}^{e+R_{I}} s(s-e) ds$$

The Aerodynamic stiffness derivative is given by the expression:

$$L_{\beta} = -C_{27i} \int_{\epsilon}^{\epsilon+R_i} s \, ds - C_{27o} \int_{\epsilon+R_i}^{\epsilon+R} s \, ds$$
and $C_{27} = k_i V_o^2 \left[Shi S_3 - \frac{\partial \omega_o}{\partial \beta} \right] 600 \, \theta_W + \frac{\rho_c V_o^2}{2} \frac{\partial G}{\partial \beta} Shi \theta_W$

The term $\frac{\int d'}{ds}$ is the rate of change of section zero

lift angle with wing displacement, and is a function of the flap gearing. Likewise, the term accounts for

the variation of section drag coefficient with flap gearing.

The derivation of the yawing derivatives is exactly analogous to the foregoing, and without any further work, the formulae are written below:

$$N_{\phi}^{\circ} = C_{2q_{\perp}}^{\prime} \int_{0}^{e+R_{1}} s^{2} ds + C_{2q_{0}}^{\prime} \int_{e+R_{1}}^{e+R} s^{2} ds$$

$$N_{\psi}^{\circ} = C_{30_{\perp}}^{\prime} \int_{0}^{e+R_{1}} s^{2} ds + C_{30_{0}}^{\prime} \int_{e+R_{1}}^{e+R} s^{2} ds$$

$$N_{\beta}^{o} = C_{3l_{\lambda}}^{i} \int_{e}^{e+R_{l}} s(s-e) ds + C_{1l_{0}} \int_{e+R_{l}}^{e+R} s(s-e) ds$$

$$N_{\beta}^{o} = C_{3l_{\lambda}}^{i} \int_{e}^{e+R_{l}} s ds + C_{3l_{0}} \int_{e+R_{l}}^{e+R_{l}} s ds$$

$$C_{2q}^{i} = \frac{C_{2q}}{e+r}$$

$$C_{30}^{i} = \frac{C_{30}}{e+r}$$

Expanding the hinge moment derivatives, and again using primes to indicate those terms where the variables (r) and (e + r) have factored out

$$M_{\phi}^{\circ} = C_{19_{i}}^{\prime} \sin \delta_{3} \int_{0}^{R_{i}} (e+r) dr + C_{19_{0}}^{\prime} \sin \delta_{3} \int_{R_{i}}^{R} (e+r) dr \\
-C_{8_{i}}^{\prime} \cos \delta_{3} \sin \Theta_{i}^{\prime} r(e+r) dr - C_{8_{i}}^{\prime} \cos \delta_{3} \sin \Theta_{i}^{\prime} r(e+r) dr \\
-C_{13_{i}}^{\prime} \cos \delta_{3} \sin \Theta_{i}^{\prime} r(e+r) dr - C_{13_{0}}^{\prime} \cos \delta_{3} \cos \Theta_{i}^{\prime} r(e+r) dr \\
M_{\phi}^{\circ} = C_{20_{i}}^{\prime} \sin \delta_{3} \int_{0}^{R_{i}} (e+r) dr - C_{20_{0}}^{\prime} \sin \delta_{3} \int_{R_{i}}^{R_{i}} (e+r) dr \\
-C_{19_{i}}^{\prime} \sin \delta_{3} \sin \Theta_{i}^{\prime} r(e+r) dr - C_{19_{0}}^{\prime} \cos \delta_{3} \sin \Theta_{i}^{\prime} r(e+r) dr \\
-C_{19_{i}}^{\prime} \cos \delta_{3} \sin \Theta_{i}^{\prime} r(e+r) dr - C_{19_{0}}^{\prime} \cos \delta_{3} \sin \Theta_{i}^{\prime} r(e+r) dr$$

 $M_{\beta} = C_{21}^{'} \cdot \text{Sei} \, \delta_{3} \int_{Y}^{R_{1}} v \, dv + C_{31}^{'} \cdot \text{Sei} \, \delta_{3} \int_{R_{1}}^{R_{1}} v \, dv \\
-C_{10}^{'} \cdot \delta_{10} \delta_{3} \cdot \text{Sei} \, \delta_{5} \int_{Y^{2}}^{R_{1}} v \, dv - C_{10}^{'} \cdot \delta_{10} \delta_{3} \cdot \text{Sei} \, \delta_{5} \int_{R_{1}}^{R_{2}} v \, dv \\
-C_{10}^{'} \cdot \delta_{10} \delta_{3} \cdot \delta_{10} \, \delta_{5} \int_{Y^{2}}^{R_{1}} v \, dv - C_{10}^{'} \cdot \delta_{10} \delta_{3} \cdot \delta_{10} \, \delta_{5} \int_{R_{1}}^{R_{2}} v \, dv \\
-C_{11}^{'} \cdot \delta_{10} \delta_{5} \cdot \text{Sei} \, \delta_{5} \int_{Y^{2}}^{R_{1}} v \, dv - C_{10}^{'} \cdot \delta_{10} \delta_{3} \cdot \text{Sei} \, \delta_{5}^{'} \int_{R_{1}}^{R_{2}} v \, dv \\
-C_{11}^{'} \cdot \delta_{10} \delta_{5} \cdot \text{Sei} \, \delta_{5}^{'} \cdot v \, dv - C_{10}^{'} \cdot \delta_{10} \delta_{5}^{'} \cdot \delta_{10} \, \delta_{5}^{'} \cdot v \, dv \\
-C_{10}^{'} \cdot \delta_{10} \delta_{5} \cdot \delta_{10} \cdot \delta_{5}^{'} \cdot v \, dv - C_{10}^{'} \cdot \delta_{10} \delta_{5}^{'} \cdot \delta_{10} \, \delta_{5}^{'} \cdot v \, dv$

THE EQUATIONS OF MOTION

In their most general form, the Equations of Motion form the following matrix array:

		0	
•	}	٠, >-	8
<u> </u>	, , , , , , , , , , , , , , , , , , , 	- 	
[2]	N O	R	F
(× ×)	(4条) (4 系)	(행) (노릇) (+	(H.)
(two	SN (+)	(+ 2) •	(H+)
(24) (44) (4年)	(\$ ZZ	\$ NK	(F)
	·	+	
• +)-	·)	.>-	· v2_
(;)	. č	<u>ښځ</u>	. or
-4: UNL-	-7·1	•>- > kv	(14;
· → Vill-	るな	ンマ	۲ ۲
-W	. 4	(* 	
		+-	
[.	; 5 .	:>-	:@_
۲	 N	(1)	İ
(A) (法元)	(YX)	**/	(H)
(£ ±)	:≯/ ZN/	(₹.)	ŗ
JIN	(\$ NZ)	(₹)	Ĭ L

The inertia terms of the first matrix are symmetric about the diagonal indicated. Terms in parentheses are all zero. It will be noticed that the velocity and displacement terms do not form symmetric matrices.

The intertial matrix reduces to:

8-0	: >	8>-	802
H	In Tan Bo	0	If
0	0	立る	0
0	메	0	14
H M	0	0	버

where

= roll moment of inertia of total rigid system of total rigid system = yaw moment of inertia of total rigid system T = flapping wing moment of inertia about hinge T_ = (moment of inertia about an unskewed hinge = mass

plus mass moment about same axis times e) cos S, cos Oo

VELOCITY DERIVATIVES

slip velocity and wing flapping velocity. % $\dot{\psi}$ is the centrifugal force term due to forward velocity and rate of yaw. % $\dot{\dot{\gamma}}$ is the sideforce non-zero terms in the displacement matrix (320) are the sideforce due due to sideslip. No side-force-terms due to roll rate and wing-flapping velocity appear. The hinge moment derivative \triangle is formally excluded by the initial assumption of a zero initial wing deflection. The only moment derivatives with respect to rate of roll, rate of yaw, side-The first two rows of the second matrix are the rolling and yawing to roll displacement, $\% \phi$ and L, N and M derivatives due to all others are identically zero. The final equations of motion become:

$$I_{x} \stackrel{\circ}{\phi} + I_{w} \stackrel{\circ}{\beta_{x}} = L_{\dot{x}} \stackrel{\circ}{\phi} + L_{\dot{x}} \stackrel{\circ}{\psi} + L_{\dot{x}} \stackrel{\circ}$$

equations for theright-hand half of the system only, a step justified are for one wing - all others are half Terms in \mathscr{A}_{μ} and \mathscr{A}_{μ} are for one wing - all others are hal of normal values for a complete system, since we are writing the by the original assumption of anti-symmetry. and An

TABLE 15

TABLE OF CONFIGURATIONS

CASE NO.	$\delta_{\mathtt{s}}$	WING POS.	INBD. FLAP GEARIUG	OUTRD, FLAP GEARING	FUEL TANKS
12	0	FWD	0	0	FULL
	45	FWD	0	0	FULL
4	0	FWD		1	FULL
18	0	FWD	1	1	EMPTY
20	0	AFT	3	3	EMPTY
21	0	AFT	2	2	EMPTY
22	0	AFT	1	1	EMPTY
25	0	AFT	3	3	FULL
26	0	AFT	٤	٤	FULL
27	0	AFT	1	1	FULL

OR CONFIGURATIONS USING GEARED
FLAP, INBOARD FLAP MOVES COUNTER
TO WING DEFLECTION; OUTBOARD
FLAP MOVES IN SAME SENSE AS
WING.

TABLE 16
TABLES OF NUMERICAL COEFFICIENTS

1201	1219	1237	1255	1273	1291
Ix	0	0	I_{\sim}		
	1220	1238	1256	1274	1292
- L &	- Lip	- 69	-LB		
1203	1221	1239	1257	1275	1293
0	0	0	-LB		
1204	1222	1240	1258	1276	1294
0	Iz	٥	In Tan Oo	5-Web	
1205		1241	1259 - N Å	1277	1295
-N.	- NJ	- N9	- N B		
1206	t	1242	1260	1278	1296
0	0	0	- N B		
1207	1225	1243 . Mu	1261	1279	1297
1208		1244	1262	1280	1298
0		- 19	0	1200	1290
1209		1245	1263	1281	1299
-M, g	0	0	0		
11210		1246	1264	1282	1300
Iw	In Tan do	0	IB		
1211	1229	1247	1265	1283	1301
-M;	-M4	0	- MB		
1212	1230		1266	1284	1302
0	0	0	- M B	<u> </u>	
1713	1231	1249	1267	1285	1303
1214	1232	1250	1268	1286	1304
1016	1000	1051	1000	1007	1305
1215	1233	1251	1269	1287	1303
1216	1234	1252	1270	1288	1306
1210	1234		-2/0	1400	1300
1217	1235	1253	1271	1289	1307
1218	1236	1254	1272	1290	1308
-300	-300				
بيني بينيا					

TABLE 17

LATERAL-DIRECTIONAL CASE 12

1201	1219	1237	1255	1273	1291
118090	0	0	67100		
1202	1220	1238	1256	1274	1292
94830	- 63350	130.5	69400		1
1203	1221	1239	1257	1275	1293
0	0	0	0		
1204	1222	1240	1258	1276	1294
0	194100	0	4690		
1205	1223	1241	1259	1277	1295
- 4650	11546	-201	- 314		
1206	1224	1242	1260	1278	1296
0	0	0	0		
1207	1225	1243	1261	1279	1297
٥	0	1.0000	0		
1208	1226	1244	1262	1280	1298
0	135	.0581	0		
1209	1227	1245	1263	1281	1299
- 32.2	0	0	0		
1210	1228	1246	1264	1282	1300
67100	4690	0	50000		
1211		i 247	1265	1283	1301
65900	- 48114	0	53420		
1212	1230	1248	1266	1284	1302
0	1231	0 1249	1267	1005	11202
1213	1231	1249	1207	1285	1303
1214	1232	1250	1268	1286	1304
1214	1232	1230	1200	0	1304
1215	1233	1251	1269	1287	1305
1213	1255	1231	1209	1	1303
1216	1234	1252	1270	1288	1306
					0
1217	1235	1253	1271	1289	1307
					0
1218	1236	1254	1272	1290	1308
					(
			L		

TABLE 18

LATERAL-DIRECTIONAL CASE 1

		1255	1273	1291
0	0	47400		
220	1238	1256	1274	1292
-63350	133.5	49800		
221	1239	1257	1275	1293
0	0	332900	İ	
			1276	1294
			1277	1295
			1278	1296
			1279	1297
1			1280	1298
I		_	1001	1000
E.			1281	1299
			1202	1300
			1202	1300
			1283	1301
			1203	1301
- 4			1284	1302
		154390		
		1267	1285	1303
			0	
232	250	1268	1286	1304
ŀ			0	
233	251	1269	1287	1305
			1	
234 j	252	1270	1288	1306
				0
235	253	1271	1289	1307
				O
236	254	1272	1290	1308
				1
	220 - 63550 221 0 222 /94/00 223 //546 224 0 225 0 226 /35 227 0 228 33/0 229 - 35073 230 0 231	1238	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1238

TABLE 19

LATERAL-DIRECTIONAL CASE 4

1/8090 0 67100 1202 1220 1238 1256 1274 1292 94380 -63350 1239 1257 1275 1293 0 0 0 100800 1275 1293 0 0 100800 1276 1294 0 1222 1240 1258 1276 1294 1205 194100 0 4690 1277 1295 -4650 11546 -201 -314 1277 1295 1206 1224 1242 1260 1278 1296 0 0 -6490 1279 1297 0 0 1225 1243 1261 1279 1297 0 135 1244 1262 1280 1298 0 135 0581 0 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1206 1224 1242 1260 1278 1296 0 0 -6490 1278 1296 1207 1225 1243 1261 1279 1297 1208 1226 1244 1262 1280 1298 0 1355 0581 0 1280 1298	
0 0 0 -6490 1207 1225 1243 1261 1279 1297 1208 1226 1244 1262 1280 1298 0 135 0581 0 1280 1298	
1207 1225 1243 1261 1279 1297 1208 1226 1244 1262 1280 1298 0 135 0581 0 1280 1298	
O O I - 000 O 1208 1226 1244 1262 1280 1298 O I35 • 0581 O 0 0	
1208 1226 1244 1262 1280 1298 · 0581 0]
0 135 .0581 0	
1000 1000	
1209 1227 1245 1263 1281 1299	
-32.2 0 0	
1210 1228 1246 1264 1282 1300	
67100 4690 0 50000	
1211 1229 1247 1265 1283 1301	
65900 -48114 0 53420	
1212 1230 1248 1266 1284 1302	
0 0 0 101252	
1231 1249 1267 1285 1303	1
1214 1232 1250 1268 1286 1304	
1215 1233 1251 1269 1287 1305	
1216 1234 1252 1270 1288 1306	
0	
1217 1235 1253 1271 1289 1307	
C	,
1218 1236 1254 1272 1290 1308	,]
	1

TABLE 20

LATERAL-DIRECTIONAL CASE 18

1201	1219	1237	1255	1273	1291
15980	0	0	9605	ł	
1202	1220	1238	1256	1274	1292
92985	-1024	76	66100	1	
1203	1221	1239	1257	1275	1293
0	0	0	100800		
1204	1222	1240	1258	1276	1294
0	56283	0	- 134		11.10010
1205	1223	1241	1259	1277	1295
-1275	5660	-86	+ 25.9		
1206	1224	1242	1260	1278	1296
0	0	0	-6490		
1207	1225	1243	1261	1279	1297
٥	0	1.000			
1208	1226	1244	1262	1280	1298
٥		+ • 11 1	0		
1209	1227	1245	1263	1281	1299
- 32.2	0	0	0	1282	11300
1210 9605	1228	1246	7140	1282	1300
	1229	1247		1283	1201
1211 65900	-6204	0	1265 50900	1203	1301
1212	1230	1248	1266	1284	1302
0	0	0	101752		
1213	1231	1249	1267	1285	1303
				0	
1214	1232	1250	1268	1286	1304
				0	
1215	1233	1251	1269	1287	1305
		Í		1	
1216	1234	1252	1270	1288	1306
					0
1217	1235	1253	1271	1289	1307
	Ī				0
1218	1236	1254	1272	1290	1308
					/
بمينا فبرسيس مندخيين	<u> </u>		I		

TABLE 21
LATERAL-DIRECTIONAL CASE 20

1201	1219	1237	1255	1273	1291
15 180	0	0	9605		
1202	1220	1238	1256	1274	1292
92985	-7024	76	66100	İ	
1203	1221	1239	1257	1275	1293
0	0	0	303000		
1204	1222	1240	1258	1276	1294
0	52155	0	-134		
1205	1223	1241	1259	1277	1295
45	4892		25.9		
1206	1224	1242	1260	1278	1296
Ó	0	0	-19500		-Verge =
1207	1225	1243	1261	1279	1297
0	0	1.000	0		
1208	1226	1244	1262 O	1280	1298
٥	135	•111			1000
1209	1227	1245	1263	1281	1299
- 32.2	0	1246	1264	1282	1300
1210 %05	1228	0	7140	1202	1300
1211		1247	1265	1283	1301
65900	-6204	0	50900	1203	1.301
1212		1248		1284	1302
0	0	٥	+300000		
1213		1249		1285	1303
		!		0	
1214	1232	1250	1268	1286	1304
				0	
1215	1233	1251	1269	1287	1305
·				1	
1216	1234	1252	1270	1288	1306
					0
1217	1235	1253	1271	1289	1307
					0
1218	1236	1254	1272	1290	1308
					/ /
	<u> </u>	L	L	·	4

TABLE 22

LATERAL-DIRECTIONAL CASE 21

1201	11219	1237	11255	11273	11291
15980	0	O	9605		
1202	1220	1238	1256	1274	1292
92985	-7024	76	66100		
1203	1221	1239	1257	1275	1293
0	0	0			
1204	1222	1240	+202000 1258	1276	1294
O	52155	0	~134		
1205	1223	1241	1259	1277	1295
45	4892	-43	25.9	1	1
1206	1224	1242	1260	1278	1296
0	0	0	-13000		
1207	1225	1243	1261	1279	1297
0	0	1.000	0	ł	
1208	1226	1244	1262	1280	1298
0	135	.111	0		
1209	1227	1245	1263	1281	1299
- 32.2	0	٥	0		
1210	1228	1246	1264	1282	1300
9605	-134	٥	7140		
1211	1229	1247	1265	1283	1301
65900	-6204	٥	50900	1	_
1212	1230	1248	1266	1284	1302
0	0	0	200000		
1213	1231	1249	1267	1285	1303
				0	
1214	1232	1250	1268	1286	1304
				0	
1215	1233	1251	1269	1287	1305
	 				
1216	1234	1252	1270	1288	1306
					0
1217	1235	1253	1271	1289	1307
					0
1218	1236	1254	1272	1290	1308
	L	<u> </u>	L	<u> </u>	

TABLE 23

LATERAL-DIRECTIONAL CASE 22a

1201	1219	1237	1255	1273	1291
15980	0	0	9605		
1202	1220	1238	1256	1274	1292
92985	-7024	76	66100		
1203	1221	1239	1257	1275	1293
O	0	0	101000		
1204	1222	1240	1258	1276	1294
0	52155	0	-134		
1205		1241	1259	1277	1295
45	4892	- 43	25.9		
1206	1224	1242	1260	1278	1296
0	0	0	-6500		
1207	1225	1243	1261	1279	1297
0	0	1.000	0		
1208	1226	1244	1262	1280	1298
0	135	•111	0		
1209	1227	1245	1263	1281	1299
-32.2	0	0	٥		
1210		1246	1264	1282	1300
9605	-134	0	7140		
1211	1229	1247	1265	1283	1301
65900	-6204	0	50400		
1212	1230	1248	1266	1284	1302
0	0	0	100 000		
1213	1231	1249	1267	1285	1303
				0	
1214	1232	1250	1268	1286	1304
			ĺ	0	
1215	1233	1251	1269	1287	1305
				/	
1216	1234	1252	1270	1288	1306
					6
1217	1235	1253	1271	1289	1307
					0
1218	1236	1254	1272	1290	1308
·		L	<u> </u>	1	 ''

TABLE 24

LATERAL-DIRECTIONAL CASE 25

1201	1219	1237	1255	11273	1291
118090	0	0	67100		
1202	1220	1238	1256	1274	1292
94830	-63350	130.5	69400	_	
1203	1221	1239	1257	1275	1293
0	0	0	+303000		
1204	1222	1240	1258	1276	1294
0	174100	0	4690		
1205	1223	1241	1259	1277	1295
305	8756	-43	-314		
1206	1224	1242	1260	1278	1296
0	0	0	-19500		
1207	1225	1243	1261	1279	1297
0	0	1.000	0		
1208	1226	1244	1262	1280	1298
0	135	.0581	0		
1209	1227	1245	1263	1281	1299
-35.5	0	0	0		
1210 67100	1228	0	1264	1282	1300
	4690	i	50000		
1211 65 900	1229	1247	1265 53420	1283	1301
1212	- 48114 1230	1248	1266	1284	1302
0	0	0		11264	1302
1213	1231	1249	4-3 <i>00000</i> 1 267	1285	1303
12.13		[0	1303
1214	1232	1250	1268	1286	1304
	1			0	
1215	1233	1251	1269	1287	1305
				1	
1216	1234	1252	1270	1288	1306
					0
1217	1235	1253	1271	1289	1307
				-	0
1218	1236	1254	1272	1290	1308
					,
	<u> </u>	L		<u> </u>	<u> </u>

TABLE 25

LATERAL-DIRECTIONAL CASE 26

1201	1219	1237	1255	1273	1291
118090	0	0	67100		
1202	1220	1238	1256	1274	1292
94830	-63350	130.5	69400		
1203	1221	1239	1257	1275	1293
0	0	0	+202000	,	
1204	1222	1240	1258	1276	1294
0	194100	0	4690		
1205	1223	1241	1259	1277	1295
305	8756	- 43	-314		
1206	1224	1242	1260	1278	1296
•	0	0	-13000		
1207	1225	1243	1261	1279	1297
0	0	1.000	0		
1208	1226	1244	1262	1280	1298
0	135	.0581	0		
1209	1227	1245	1263	1281	1299
- 35.2	0	0	0		
1210	1228	1246	1264	1282	1300
67100	4690	0	50000		
1211	1229	1247	1265	1283	1301
65900	- 48114	0	53420		
1212	1230	1248	1266	1284	1302
0	0	0	+200000		
1213	1231	1249	1267	1285	1303
1214	1232	1250	1268	1286	1304
				0	
1215	1233	1251	1269	1287	1305
1216	1234	1252	1270	1288	1306
1217	1235	1253	1271	1289	1307
1218	1236	1254	1272	1290	1308

TABLE 26

LATERAL-DIRECTIONAL CASE 27

1201	1219	1237	1255	1273	1291
118090	0	0	67100	\	
1202	1220	1238	1256	1274	1292
94830	-63350	130.5	69400		
1203	1221	1239	1257	1275	1293
0	0	0	101000		
1204	1222	1240	1258	1276	1294
0	194100	0	4690		
1205	1223	1241	1259	1277	1295
305	8756	-43	-314		
1206	1224	1242	1260	1278	1296
٥	0	0	-6500		
1207	1225	1243	1261	1279	1297
0	0	1.000	0		
1208	1226	1244	1262	1280	1298
0	135	1820.	0	1 .	
1209	1227	1245	1263	1281	1299
-32.2	0	0	0		
1210	1228	1246	1264	1282	1300
67100	4690	0	50000		
1211	1229	1247	1265	1283	1301
65400	- 48114	0	53420		
1212	1230	1248	1266	1284	1302
•	0	0	+ 100,000		
1213	1231	1249	1267	1285	1303
-21-70				0	
1214	1232	1250 ·	1268	1286	1304
		9		0	
1215	1233	1251	1269	1287	1305
		·		(
1216	1234	1252	1270	1288	1306
					0
1217	1235	1253	1271	1289	1307
					0
1218	1236	1254	1272	1290	1308

SUMMARY OF ROOTS OF THE LATERAL-DIRECTIONAL CHARACTERISTIC EQUATIONS - SHOWING PERIODS AND TIME TO DOUBLE OR HALF AMP.

	roots						
CASE	PERIODS						
0,101	TIME TO DOUBLE (+) OR HALVE (-) AMP.						
12	6157	0438	·1099 ± ·5146i	-1.1102			
		-	12.21				
	1.13	15.82	6:31	.624			
	5639	-1000	12835	7010			
			± 159841	± 1.8831			
,			10.50	3.34			
	1.23	6.93	2.44	.99			
	7194	+ .0378	0091	4175			
4			± 50031	±1.8404 ¿			
7			12.56	3.45			
	.96	18.33	76.15	1.66			
	-5.243	0906	0210	-2.173			
18		± · 5630i		± 4.407			
, ,		11.16		1.43			
	132	7.65	33.0	,32			
	- '0170	-4.5195	0299	-2.544			
20	± .48421			± 8.608 i			
	12.98			•73			
	9.00	•153	23.18	•27			
2.	-·0795 ±·4846i	-4.6854	- 0298	-2.458 ± 6.760i			
21	12.96	-		• 93			
	8.72	·15	23.26	·28			
	0871	-5.2186	0296	-2.184			
22	± .4864i			± 4.280 c			
44	12.92		*****	1.47			
	7.16	·13	23.41	' 32			
	7313	0030	+.0333	4368			
25			± ·3882 ¿	± 3.24834			
		******	16.18	1.93			
	•95	231	20.81	1.93			
26	7322	- '0030	+.0309 ±.3903i	- · 433 9 ± 2 · 629 ¿			
20			16.10	2.39			
	.95	23/	22.43	1.60			
27	7353	00 30	+ 0239 ± 39754	4255 ± 1.8066			
			15.81	3.48			
	• +4	231	26.74	1.50			

BASIC HELICOPTER RESPONSE TO LATERAL STEP INPUT

FIGURE 16

LATERAL-DIRECTIONAL CASE 12 30 F.P.S.GUST

125

LATERAL-DIRECTIONAL

CASE 1
30 F.P.S. GUST

FIGURE 18

FIGURE 19

LATERAL-DIRECTIONAL CASE 18

30 F.P.S. GUST

FIGURE 20

CASE 20 30 F.P.S. GUST

FIGURE 21

CASE 21 30 F.P.S. GUST

FIGURE 22

LATERAL-DIRECTIONAL

CASE 22
30 F.P.S. GUST

FIGURE 23

LATERAL-DIRECTIONAL CASE 25 30 F.P.S. GUST

FIGURE 24

LATERAL-DIRECTIONAL CASE 26 30 F.P.S. GUST

LATERAL-DIRECTIONAL CASE 27 30 F.P.S. GUST

FIGURE 26

135

TABLE 28

TABLE OF MAXIMUM WING DEFLECTIONS

(LATERAL-DIRECTIONAL)

CASE	FIRST PEAK AMPLITUDE DEG.	SECOND PEAK AMPLITUDE DEG.
12	50.0	
1	29	100 plus.
4	6.9	2.9
18	3-4	2.0
20	• 64	• 4
21	1.4	٠٠
22	2.0	•75
25	2.1	2.5
26	2 · 5	2.0
27	5.40	4.60

LOCI OF THE ROOTS OF THE CHARACTERISTIC EQUATION

Note: 1. Only critical roots are shown

2. Only positive imaginary roots are

shown

7 - period (sec.)

← time to half amplitude

ta - time to double amplitude

APPENDIX C

												133															
				1	1	1		1															100				
							NG	<u></u>		. -	- EL	L,	10	2	*	*	0	4	FC	2	н	21					
						100	EL	1000	1100	100.53		1	1000	15555	1 1 1 1 1	5 - 37	130	1 11	10111	11011	11111	1.000	1100		11		
				T			1		15000	0	25500	10011	15550	10100	1::::	1.0						Π					111
									11 11	Ε,	4 1 1 1 1	1	11133	5.13.5	2 1 1 1 1	100						_			1		I
		H				1	-	-	17	1833	11111	11111	1::::	11:11	9	r	7.4	,,,,,	-			9.					
***		1	H		-	-	137			-	74	'n	4			1	***		-		1	1	-	Hill		H	i
					-	-	Pit.			+-		H	H		-	-	-			-	+						
		11111					11111		-	-		-		0113			OT	AL	- 1	*	٠,	+ E		2.7	0	M	11
		1111			-		1				-					-				-							
					L.,	L	L	1		L.:		100										ļ					
			_	U				:		1		1							2								
									5 1	l					111			t		W	NG	FU	EL		1.		
						11			1		H						1	1	Z	HE	LIC	OP'	TE	F	JEL		
			iii													1		O UE		255					2111		-
				7	1	-				-			1.0														
		- 1		7	4				-		. 2																gi.
				/	N-						1						****						***				****
	+			6	4	-			-				<	*****				ī	8111		-						-
	₹ ₩				V					-		-		`			-111					E.			2.07.51	1000	
	#	-/1		\leftarrow	4			111		-	-	11.	-		\rightarrow		-1					ON	1	200	20	MI	FE
		17.5			J.	.in									0.111		N	1	Z.A	No	øĒ						
	77		ιΚο	1			11	33	1.11				13	101	10		1	'								30	
100					V						100		1000	11.0		2											
21.				7					1								- i										
	é																i		Z								
	8																	_	I								
	8		1																								
	8	ð																	MAN				-				••••
	LES	ð										,							NA VA								
	LES	ð																	MANA								
	LES	ð																	MANNE								
	LES	b																	VVVVVV								
	LES	b																	VIVIVIVI								
	LES	b																	VIVIVIVI								
	LES	b										~				•	1		SUVVIVI	20							
	LES	b									1.4			2.	•	***			\$ 1777777								
	LES	b									31	V	***		•	227			\$ 1777777								
	LES	b						 			31		***		•	227			\$ 11111111	>							
	LES	b									31	V	***		•	227			\$ 17777777	2.0							
	LES	b									31	V	***		•	227			\$ 1777777	>							
	LES	b									31	V	***		•	227			3 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	20							

1

ł

100					1	1	T	1	1	1.		i -	T	1 -	II.	· 	T	Ţ	 	1.	T	-	Ţ	T	73	1		
		•		-:						ļ																		
						-	-						-												-		-	
			:::					RA	ΛK	E	EX	TE	WS	ION	S	TU	DY.	FI	R.	H	21.							
	-				-			HE	14	OF	TE	R	F Z	247	7///	F.F	UE	/	W	VG.	-	-	-	ļ	-	-	-	-
											.: £	OK	W	ARZ	þ1	WIN	G:	1			ļ							
	:						-	ļ		VA	RL	AB.	E	W	WG	1/1	KIL	E	VC.	‡			-	-	-		ļ	
			11:								. :		RA	M	E			ļ			:	ļ						
						ļ								MG							_	-		1::	-	ļ	ļ.,	
									: .	DA	PAG	F	EΛ	AL	Z.Y.	Ø,	50	# .7	1.0	2								
																						ļ				ļ	ļ.,	
										-														<u> </u>				
				an.										Ш												Ĭ.,		
			::::					::1							:::													
									::	1					. ::							:		ļ.,				
						17										: :												
				ic.		1	/			1010		1		ā														
				W				1					=		:													
		EL.			1				1								11			2						ur		
		EU		1	1					/						T		.) -			ברע	270		/ =		UE		
		7									1																	
		7		2	/	N													12						3			
		IN				1								/				3	••••		::::				-23			
		ğ			/	Y		: : :		13						/					17	: 1 T						
		773			1	1									+ + +		1	1	14									
		Y	C	<i>\</i>	1	1								1					N									10
		777			/	N													N									
					/		:		•									- T	V		11						- 1	
						7													N									
			0	4	1	1	u.	11 1		1 12				11,1	: .				N								223	-
					/	N											2		N			- • • •						
					/	4													N					•				
					/	١		: 0				• • • •	41.						N		• • • • •			• •		•		
			•	,	,			/^	20			80	20			120	in	74		160	20							
					4			40	יטג		UF		120	ادر ـ		- 1				riol.N	IU.							
				. : : :			1			-4	1		V.Z	[G	7.1		.p.	2										
	+++				•					• • •		 	ימון	E 4	6								2	• • • •			1	11
	:::										1	. 16	INU	· 4	J	+												
					::::		: : :				1	ļ	;		. !					.:.							- ;	
	+																				• • • • •					-i		
	:::												====	15	6					••(1					••••			
::::	:::			::::				:				1		13	0						!							

\$ pro-

RAWGE EXTENSION STUDY FOR 4-21 A DATING FUEL WING CONSTANT WING INCIDENCE DRAG PENALTY & Co. +D2 WING FUEL: HELIOPPIER FUEL 4000 8000 12000 16000 FIGURE 47 157

PAUSE EXTENSION STUDY FOR 4-21 HELIOPPER FLOATING FUEL WINE AFT WINK つうていますとす ところか 打ちらうりょうのは 十年 年 現中心に見 TOTAL RANGE - 1745 MILES WING FUE HELICOPTER TUEL 102/<u>80</u> 4000 eoba .. 12000 16000 FUELL WENGLAT-LBS FIGURE 51 161

RANGE EXTENSION STUDY FOR H-21 HELICOPTER FLOATING FUEL WING

NACA 4418, R = 6, FULL SPAN SLOTTED FLAPS, S. 550PT. S.L. STD

LIFT = 2000 POUNDS

VARIABLE WING INCIDENCE

FORWARD WING

	•			FORWA	FORWARD WING	07			•	
FORWARD FLAP	FLAP	HORSE	HORSEPOWER	MES/POU	MES/POUND OF FUEL	WING ANGLE	WATER LINE ANGLE	ER LINE ANGLE	WINE	¥
SPEED	DEFLECTION 2300RP 2500RP 2300RP 2500RPM	2500RP	2500 RPM	2300 RPM	2500 RPM	OF ATTACK	2300RPM	2300 RPM 2500 RPM R300RPM 2500 RPM	ESOOKEM	2,500 KMM
TOKNOTS	ò	750	800	.2030	.1650	-2.0°	3.0	3.5	-50.	-5.5-
	ŝ	755	805	,2000	1625	-5.2°	2.7	3.2°	-62-	-8.4
	150	780	830	./820	.1555	-/0.0°	2.2.	2.0	-12.2	- 12.8
BOKNOTS	ô	810	860	076/	.1630	- 20°	1.6°	, o	.3.6	. 80
	Š	810	960	0261.	./630	5.0	, 6 ,	2.8.	-6.6°	- 7.8
	15.	845	068	.1800	0151.	-9.2.	9.0	, 0	-9.6	-11.0
90 KN073	Ö	945	980	./590	.1430	- 2.5	-1.2	0.2	٠ / . ج	- 7.7
	۶,	950	980	.1580	./430	- 5.8	-1.30	0.7.0	-4.50	-5.9
	15.	1020	1055	.1390	1250	- 10.8•	-2.3	-0.8	-8.5	-/0.01

TABLE 29

TABLE 30

RANGE EXTENSION STUDY FOR H-21 HELICOPTER FLOATING FUEL WING

NACA 4418, R.B. FULL SPAN SLOTTED FLAPS, S-550 PT. SL STA

LIFT - 9000 FOUNDS

VARIABLE WING INCIDENCE

				FORWA	FORWARD WING	8 2				
FORWARD	FLAP	HOASE	HOASEPOWER	MES/POL	MES/POUND OF FUEL	WINE ANOLE	WATER LINE	WATER LINE	DWM	
SPEED	DEFLECTION 2300 RPM 2500 RPM 2300 RPM E500 RPM	2300 RPM	2500RPM	2300 RPM	ESOORPM	OF ATTACK	2300 RPM	2300 RPM ZSDORPM 2300 RPM 2500 RPM	2300 Rem	ZEDORAM
20 KNOTS	• 0	885	930	.1430	1220	° 0	م	۱. ج	7.5.	6.5
	ŝ	885	930	./430	.1205	ŗ,	ŗ.	1.5°	4.5	3.5
	15°	895	940	./400	.1185	0	, a	.07	-02.	-7.0
80 KNOTS	ô	935	975	1450	./270	5°	9.	ø	5.6	4.2.
	5°	940	985	.1450	.1250	રૈ	9	ø	2.6	, 2,
	/5°	970	0/0/	. /360	.1195	- 2.7°	-1.2.	0	-1.5	-2.7
90 KNOTS	ò	1055	0011	1320	0711.	, N	-2.2	-1.2.	5.2.	4.2.
	5.	0201	1105	7890	.1170	0	-4.4	-1.2°	2.4	1.2.
	,8,	01//	1145	. 1230	0///	ا ج	-3.4	-2.2	-1.6	-2.8

RANGE EXTENSION STUDY FOR HALL HELLCO

NACA 4418, ATB, FULL SAN SLOTTED FLAPS, S-SEDPTS, S.L. STB

LIFT - 6000 Pounds

VARIABLE WING INCIDENCE

•				FORWA	FORWARD WING					
FORMARD	FLAP	HORSE	HORSEPOWER	MILES/POUND OFFICE	NO OFFICE	WING ANGLE	ANGLE OF AT	ATTAC	WATER LINE WAS	•
SPECO	DEFLECTION 2500RM 2500 RPM 2300RPM 2500RPM	Z300RPM	2500 RPM	2300RM	2500RPM	OF ATTACK	RESOURAN	2500fm	2300 RAM 2500KM 6300 Km C400 RPM	BORPH
TO KNOTE	6		1210		Ø Ø .	•9/		-3.5		19.5
	15.		1225		.0765	•01		-3.5		13.5
OQ Kuon	ŝ		1220		2060	, 0/		-3.2		13.2
	15.		1240		.0842	٩		-3.5		6.9
90 KNOTS	۶.		1340		00800	ş		-5.0-		10.0
	15.		1365		980	ໍ້ນ		-5.5	,	75

TABLE 31

RANGE EXTENSION STUDY FOR H-21 HELICOPTER FLOATING FUEL WING

NACA 4418, R.B. FULL SPAN SLOTTED FLAPS, S. 550PT. S.L. STE.

CONSTANT WING INCIDENCE - 8.5.

FORWARD, WING

FORWARD	DEFLECTION	TION	HORSE	POWER	MACS/POU	UD OF FUEL	ANGLE	OF ATTACK	ANGLE	HORSEROWER MILES/POIND OF FUEL ANGLE OF ATTACK ANGLE OF ATTACK	N/M
SPEED	2300RM	2300 RM 2500 RPM 2500 RPM 2500 RPM 2500 RPM 2500 RPM 2500 RPM 2500 RPM 2500 RPM 2500 RPM 2500 RPM INCIDENCE	ESOORPM	RSDORPM	2500RPM	2 SDORPH	2 300 RPM	RSOORPM	2300RPM	ESTOREM	INCIDENC
20 Kupts	\$ 9	-34•	825	905	LIFT = 2000 POUNDS	30 Pour	800	10.3°	.04	۲.	8.5
BOKEDTS	4:5	-882-	980	970	/480	1280	, 4,	89	-0.3	0. 10.	6.5
90KN073	-0/-	-22°	1025	1085	./390	0611:	9.0	6.9	12.7		6.5
2	;	ç	q			NO POCK	8	9	;		1
200		≀	8	3	004	1450	o N	000	9	*	8.5
BOKNOTS	, S,	٠,٧٠	950	1005	1420	.1200	•6%	9.5.	-0.8	•	B.5
90 KM078	\$, L	107.5	1105	1290	0711.	6.19	, 13	-2.4	- 1.6	6.5
80 KNOTS		.21		1 04 si	LIFT - 16000 POUNDS	OO POUNDS	0	5.0		-3.5	6

TABLE 32

RANGE EXTENSION STUDY FOR HI-21 HELICOPTER FLOATING FUEL WING

RANGE AND TAKE OFF GROSS WEIGHT FOR VARIOUS CONFIGURATIONS

CONFIGURATION	RANGE (MILES)	MAX. TAKE OFF WING GROSS WEIGHT (FOUNDS)
FORWARD WING		
VARIABLE INCIDENCE	2400	16,000
Variable Incidence	2000	12,100
VARIABLE THODEHOR WITH DRAW PENALTY ADDED & Co. + or	1640	14,800
COUSTANTINCIDENCE	2205	16,000
CONSTANTINGIDENCE	7000	13,700
CONSTANT INCIDENCE WITH DRAW PENALTY ADDED & C. ++.02	1620	13,800
AFT WING		
VARIABLEILCIDELER	1975	14,800
CONSTANT INCIDENCE	1840	14,200
	TABLE 33	

TABLE 34

SUMMARY OF TAKE-OFF PROCEDURES AND RESULTS MORNARD ALO ART WING POSITION 408

PROCEDURE TO SPEED TAITING ATTITUDE DISTANCE	TENM ATTITUDE	TRIM ATTITUDE	TENM ATTITUDE				DISTAL	2	FORWAR	FORWARD WING	AFT VILE	1146
20 m , m	20 m , m	20 m , m	20 m , m	1	1	1	8	BREAK GROUD	OVER SO	1:0. wind	OVER 30	T.O. WILL
KIE DEG DEG DEG DEG DEG	589 586 586 58C	DEC DEC DEC	280 280	280	††	05.0	Ц	-	4.0	3.5		
70 10 13.5 15 10 13.5 15	13.5 15 10 13.5	15 10 13.5	0. 18.	13.51		15		0389.	7630.	16000	0040	002+1
50 -12 8.5 15 5 8.5 15	5.5 5 8.5	15 5 8.5	5 8.5	8.5		Ř.		1550	3335	16000	0a1£	14200
70 -9 13.5 15	19.61 19.61	P. C. P. P. C. P. C. P. P. C. P. P. C. P. P. C. P. P. C. P. P. C. P. P. C. P. P. C. P. P. C. P.	o i	ņ		ñ		612)	47/2	16000	3230	14200

APPENDIX D

RANGE EXTENSION RECORDING

Analog Schematic

FIGURE 61

FIGURE 62

RANGE EXTENSION

Simulator Controls

Longitudinal Stick

\$ 3.9 W FULL THROW

FIGURE 63

SIMULATOR INSTRUMENTS RANGE EXTENSION PROGRAM

MAGNETIC COMPASS + 30', - 3300 , ± 10 VOLTS , 3 /VOLT

RATE OF CLIMB INDICATOR ~ 2

METER # 3000 FPM = # 10 VOLTS, OR 300 FPM/

FIGURE 64

SIMULATOR INSTRUMENTS Cont'd

Airspeed Indicator

ABRT.
$$+\frac{\dot{x}}{\dot{x}}$$
 UNITS 10 FPS = 5.92 KTS

VOLT

Meter 20 KTS

Volt

4.0 VOLTS.

Turn and Slip

$$AL = \frac{1}{9} \ddot{Y} + \frac{U_0}{9} \ddot{\Psi} \qquad g'S$$

Program Variables - Y/100 , + \$\vec{y} , AND 104/RPS

$$\ddot{Y}/100 \left[10^{2} \left(\frac{1}{9} \right) 7.33 \right] = \ddot{Y}/100 \left(22.8 \right)$$

 $\dot{\psi} \left[u_{0/9} \left(10 \right) .733 \right] = 30.8 \dot{\psi}$

182

DISTRIBUTION LIST

Wind Tunnel Tests and Further Analysis of the Floating Wing Fuel Tanks for Helicopter Range Extension

Chief U. S. Army R&D Liaison Group (9851 DU) ATTN: USATRECOM LO APO 757 New York, New York	(1)
President United States Army Aviation Board ATTN: ATBG-DG Fort Rucker, Alabama	(1)
Chief of Research and Development ATTN: Air Mobility Division Department of the Army Washington 25, D. C.	(1)
Chief of Transportation ATTN: TCDRD ATTN: TCAFO-R Department of the Army Washington 25, D. C.	(1) (1)
Commanding General U. S. Army Transportation Materiel Command ATTN: TCMAC-APU P. O. Box 209, Main Office St. Louis 66, Missouri	(1)
Commanding Officer U. S. Army Transportation Research Command ATTN: Executive for Programs ATTN: Research Reference Center ATTN: Aviation Directorate ATTN: Military Liaison & Advisory Office ATTN: Deputy Commander for Aviation ATTN: Long Range Technical Forecast Office Fort Eustis, Virginia	(1) (4) (4) (4) (1)
Commanding Officer U. S. Army Transportation Research Command Liaison Office ATTN: MCLATS Wright-Patterson Air Force Base, Ohio 183	(1)

Chief, Bureau of Naval Weapons Department of the Navy ATTN: RAAE-34 Washington 25, D. C.	(1)
Headquarters U. S. Army Aviation Test Office ATTN: FTZAT Edwards Air Force Base, California	(1)
Commanding Officer and Director David Taylor Model Basin Aerodynamics Laboratory Library Washington 7, D. C.	(1)
National Aeronautics and Space Administration ATTN: Mr. Bertram A. Mulcahy Assistant Director for Technical Information 1520 H Street, N. W.	(1)
Washington 25, D. C. National Aviation Facilities Experimental Center ATTN: Library Atlantic City, New Jersey	(1)
Librarian Langley Research Center National Aeronautics & Space Administration Langley Field, Virginia	(1)
Ames Research Center National Aeronautics and Space Agency ATTN: Library Moffett Field, California	(1)
U. S. Army Standardization Group, U.K. Box 65, U. S. Navy 100 FPO New York, New York	(1)
Office of the Senior Standardization Representative U. S. Army Standardization Group, Canada c/o Director of Equipment Policy Canadian Army Headquarters Ottawa, Canada	(1)
Canadian Army Liaison Officer Liaison Group, Room 203 U. S. Army Transportation School Fort Eustis, Virginia	(3)

British Joint Services Mission (Army Staff) ATTN: Lt. Col. R. J. Wade, RE DAQMG (Mov & Tn) 3100 Massachusetts Avenue, N. W. Washington 8, D. C.	(3)
Commander Armed Services Technical Information Agency ATTN: TIPCR Arlington Hall Station Arlington 12, Virginia	(10)
Cornell Aeronautical Laboratory, Inc. ATTN: Mr. Richard White 4455 Genesee Street Buffalo 21, New York	(1)
Sikorsky Aircraft Division of United Aircraft Corporation ATTN: John Rabbott Stratford, Connecticut	(1)
Hiller Aircraft Corporation ATTN: Library Palo Alto, California	(1)
Doman Helicopters, Incorporated Danbury Municipal Airport P. O. Box 603 Danbury, Connecticut	(1)
Bell Helicopter Company Division of Bell Aerospace Corporation ATTN: Robert Lynn P. O. Box 482 Fort Worth 1, Texas	(1)
Hughes Tool Company Aircraft Division ATTN: Library Culver City, California	(1)
Kaman Aircraft Corporation ATTN: Library Bloomfield, Connecticut	(1)
Kellett Aircraft Corporation ATTN: Library P. O. Box 35 Willow Grove, Pennsylvania	(1)

McDonnell Aircraft Corporation ATTN: Library St. Louis, Missouri	(1)
Georgia Institute of Technology ATTN: Library Atlanta, Georgia	(1)
Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, Massachusetts	(1)
Mississippi State College Attn: Library State College, Mississippi	(1)
University of Wichita ATTN: Library Wichita 14, Kansas	(1)

TREC 61-106	UNCLASSIFIED	THEC 61-106	UNCLASSIFIED
Vertol Division, The Boeing Company, Morton,	1. Analysis of Stability	Analysis of Stability Vertol Division, The Boeing Company, Morton,	1. Analysis of Stability
DE., WIND TUNNEL TESTS AND FURTHER ANALISAS	Control and Per-	OF THE FLOATING WING FIFT TANKS FOR HELT-	Control and Per-
COPTER RANGE EXTENSION, VOL. 5 - Analysis of	cteristics -	COPTER RANGE EXTENSION, VOL. 5 - Analysis of	cteristics -
Stability, Control and Performance Chara-	Wind Tunnel Study		Wind Tunnel Study
cteristics by H. Neeb, D. Lawrence, and R. Johnstone. August 1961.		Interistics by H. Neeb, D. Lawrence, and R. Johnstone, August 1961.	
186 pp, incl. illus., tables	I. Neeb, H.	186 pp, incl. illus., tables	
Contract (DA44-177-TC-550)		Contract (DA44-177- TC-550)	_
USA TRECOM Proj. (9X38-U9-U0b)	III. Johnstone, R.	USA IRECOM Proj. (9X38-09-006)	1000
This report describes an analytical investi-		This report describes an analytical investi-	
gation of the stability and performance of a		gation of the stability and performance of a	III. Johnstone, R.
Boeing-Vertol H-21 tandem rotor helicopter		Boeing-Vertol H-21 tandem rotor helicopter	
equipped with itoating wing that cairs as a		equipped with incating wing due; cells as a means of ferry range extension. The stability	-
of the total system was studied with the		of the total system was studied with the	
wing located forward and directly under the	-1	wing tocated forward and directly under the	
helicopter center-of-gravity (cg). Two		helicopter center-of-gravity (cg). Two	_
methods of stabilizing the wing oscillations	UNCLASSIFIED	methods of stabilizing the wing oscillations	UNCLASSIFIED
about the hinge were studied: (a) a skewed	UNCLASSIFIED	about the ninge were studied: (a) a skewed	UNCLASSIFIED
hinge line, introducing a change in angle of		ninge line, introducing a change in angle of	
attack as a function of the Happing distur-		december as a function of the Liapping distur-	•
machanically linked to deflect when the wind		mechanically linked to deflect when the wing	
flans. Satisfactory stability was obtained		flaps. Satisfactory stability was optained	
with the wing positioned directly beneath		with the wing positioned directly beneath	
the helicopter og, using an unskewed hinge		the helicopter cg, using an unskewed hinge	-
line, and geared flaps. The forward wing		line, and geared flaps. The forward wing	
the standboint of longitudinal stability for		the standpoint of longitudinal stability for	
the light wing case. Flight simulator studie		the light wing case. Flight simulator studies	-
emphasize the need for additional lateral		emphasize the need for additional lateral	
control to supplement that produced by the		control to supplement that produced by the	
differential allerons with deflections of 24		differential allerons with deflections of 2k	•
degrees per inch of stick, provide satis-	•	1 8	
factory roll control and wing flapping		factory roll control and wing flapping	
angles. At a take-off weight of 25,900 lbs	2.	angles. At a take-off weight of 25,900 lbs	
ferry range is 1975 nautical miles.	UNCLASSIFIED	ferry range is 1975 nautical miles.	UNCLASSIFIED
	1 1 1	+	

Vertol Division. The Bosing Company, Morton,			
	1 Analysis of Stability	Analysis of Stability Vertol Division The Rosing Company Morton	I Amalyerie of Stahilith
		_	5
OF THE PLOATING WING PURI. TANKS POR HELI-	formance Chara-	OF THE PLOATING WING FUEL TANKS FOR HELL-	formance Chara-
COPTER RANGE EXTENSION. VOL. 5 - Analysis of	cteristics -	COPTER RANGE EXTENSION. VOL. 5 - Analysis of	Cteristics -
Chability Control and Berformance Chara-	Wind Tunnel Study		Thirty Louding Print
oteristics by H Mash. D. Lavrence, and R.		oteristics by H. Neeb. D. Laurence, and B.	Anna taimer and
Tohursons Browner 1961		.Tobretone Birmet 1961	
John ingl illing tables	Heen	186 no incl. illus tables	
too bb' tuer: Times' carres		The state of the s	
Contract (DA44-177-TC-550)	II. Lawrence, D.	Contract (DA44-1//- TC-550)	
USA TRECOM Proj. (9X38-09-006)	III. Johnstone, R.	USA TRECOM Proj. (9X38-09-006)	
Unclassified Report		Unclassified Report	
This report describes an analytical investi-		_	
gation of the stability and performance of a		15	III. Johnstone, R.
Boeing-Vertol H-21 tandem rotor helicopter		Boeing-Vertol H-21 tandem rotor helicopter	
equipped with floating wing fuel cells as a		equipped with floating wing fuel cells as a	
means of ferry range extension. The stability		means of ferry range extension. The stability	
of the total system was studied with the		of the total system was studied with the	
and report to direct to trader the		wine course forward and disposely under the	
wing tocaced torward and directly miner die	1	the light to the same and directly under the	
nelicopter center-or-gravity (cg). 1wo		mericopee center-or-gravity (cg). Iwo	
methods of stabilizing the wing oscillations	UNCLASSIFIED	methods of stabilizing the wing oscillations	UNCLASSIFIED
+ 1 1 2 1 1 1 1 1 1 1 1 1 1 1	.		
about the hinge were studied: (a) a skewed	UNCLASSIFIED	about the hinge were studied: (a) a skewed	UNCLASSIFIED
hinge line, introducing a change in angle of		hinge line, introducing a change in angle of	
attack as a function of the flapping distur-		lattack as a function of the flapping distur-	
bance, and (b) a geared trailing edge flap,		bance, and (b) a geared trailing edge flap,	
, mechanically linked to deflect when the wing		mechanically linked to deflect when the wing	
flaps. Satisfactory stability was obtained		flaps. Satisfactory stability was obtained	
with the wing positioned directly beneath	0.4	with the wing positioned directly beneath	
the helicopter og, using an unskewed hinge		the helicopter cg, using an unskewed hinge	
line, and geared flaps. The forward wing		line, and geared flaps. The forward wing	
location was found to be unsatisfactory from		Mocation was found to be unsatisfactory from	
the standpoint of longitudinal stability for		the standpoint of longitudinal stability for	
the light wing case. Flight simulator studies		the light wing case. Flight simulator studies	
emphasize the need for additional lateral		emphasize the need for additional lateral	
control to supplement that produced by the		control to supplement that produced by the	
basic aircraft. It was found that full span,		Dasic aircraft. It was found that full span,	
differential allerons with deflections of 24		differential aileroms with deflections of 2%	
degrees per inch of stick, provide satis-	•	degrees per inch of stick, provide satis-	
factory roll control and wing flapping		factory roll control and wing flapping	
angles. At a take-off weight of 25,900 lbs	-	angles. At a take-off weight of 25,900 lbs	87
and with the wing in the aft position the		and with the wing in the aft position the	
ferry range is 1975 nautical miles.	UNCLASSIFIED	ferry range is 1975 nautical miles.	UNCLASSIFIED
The state of the s		The state of the s	

٠

i

-