Assignment 1.: student MRP example (10 points)

- 1. Evaluate State Value Evaluation (V(s) Compute the value of each state V(s)V(s) under the given environment, assuming a discount factor of $\gamma = 0.85$.
- 2. Action Value Evaluation (Q(s, a)) Calculate the action-value function Q(s,a)Q(s,a) for each state—action pair, with the same discount factor $\gamma = 0.85$.Conv ergence (Hint: use Bellman eq.)
- 3. Analysis Determine how many iterations of value iteration are required to reach the final (converged) value function.

Assignment 2.: Value iteration in random walk (10 points)

Q2.1. State Value Evaluation (V(s))

Consider a random walk environment with the following settings:

There are two terminal states with rewards 100 and 50, respectively.

All other states have zero rewards.

The policy is random: the probability of moving left or right is equal.

The discount factor is set to $\gamma = 1.0$

Q2.2. Action Value Evaluation (Q(s, a))

Compute the action-value function Q(s, a) for each state-action pair, with the same discount factor $\mathbf{y} = \mathbf{1.0}$.

State	1	2	3	4	5	6
Reward	100	0	0	0	0	50
	Terminal state					Terminal state