Intro to Physical Computing

aka How to make Daft Punk Helmets 101.

CC Lab (Fall 2016)

Git

git pull

More.....

http://rogerdudler.github.io/git-guide/

Terminal for PowerUser

Zsh?!

Oh-My-Zsh?!

Iterm!?

What's an "Arduino"?

Microcontroller
Input/Output machine

Made for rapid prototyping (without requiring custom boards design)

Open source Large community to support it

What's on the board?

The Brain - ATmega 328p chip

You can also pull it out. Careful! Don't bend the pins

Digital Pins

Analog Pins

Reset Button

USB Port

Power Jack

PRO-TIP: Buy one of these

Voltage Regulator

Vin, 5V, 3.3V, GND, Reset pins

Back of Arduino

Internal LED

YAY ELECTRONICS!

Ohms Law: V = IR

Wires = Pipes

Battery = Water Pump

Voltage (V) = water pressure

The force with which electrons are being pushed through the wire

Current (I) = how much water flow

The amount of electrons moving through the wire at any given moment

Resistance (Ohm or Ω) = Pinched pipe

The amount of electrons moving through the wire at any given moment

Resistors

LEDs

Arduino IDE

(Integrated Dev Environment)

Verify Button

Upload Button

New, Open, Save...

Serial Monitor

Tools > Board

Tools > Serial Port

File > Examples > Basics > Blink sketch

```
// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;
// the setup routine runs once when you press reset:
void setup() {
         <del>ializa tha digi</del>tal pin as an output.
 pinMode(led, OUTPUT);
// the loop routine runs over and over again forever:
void loop() {
  digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
  delay(1000);
                           // wait for a second
  digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
  delay(1000);
                           // wait for a second
```

File > Examples > Basics > Blink sketch

```
// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;
// the setup routine runs once when you press reset:
void setup() {
  // initialize the digital pin as an output.
  pinMode(led, OUTPUT);
// the loop routine runs over and over again forever:
void loon() {
  digitalWrite(led, HIGH);
                             // turn the LED on (HIGH is the voltage level)
 del av(1000).
                             // wait for a second
  digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
  delay(1000);
                             // wait for a second
```

Add some "debugging" code

```
void setup() {
  //start the serial connection from Arduino back to computer
  Serial.begin(9600);
  // initialize the digital pin as an output.
  pinMode(led, OUTPUT):
// the loop routine runs over and over again forever:
void loop() {
  digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
  Serial.println("LED is On");
  delay(1000);
                      // wait for a second
  digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
  Serial.println("LED is Off");
  delay(1000);
                            // wait for a second
```

Breadboarding

Breadboard Connections

Breadboard Rows

Breadboard Power/Ground "Rails"

Connecting an LED

Connecting an LED

Control blink via Pin 13

Manually blink using push button.


```
int led = 13;
int buttonPin = 2;
                                                  Read the button
int buttonState = 0;
                                                             with code
// the setup routine runs once when you press reset:
void setup() {
 // initialize the pinModes
 pinMode(led, OUTPUT);
 pinMode(buttonPin, INPUT);
// the loop routine runs over and over again forever:
void loop() {
 //read the button
 buttonState = digitalRead(buttonPin);
 //Perform different actions depending on the state of the button
 if(buttonState == HIGH){
   // wait for a second
   delay(1000);
 } else {
   digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
   delay(1000);
                       // wait for a second
```

Connecting a Button

Add a "pull-down" resistor

Pull-Up / Pull-Down Resistors

ensure that the signal will be a valid logic level if external devices are disconnected

HOMEWORK-github folder structure

~ -> week1 -> index.html

HOMEWORK

Update your code so the button triggers a state change

For example: the LED stays on when you push it and turns off when the button is pressed again

Try out different blink patterns

Documentation:

Upload your code to github with a link to the online video