Chapter Test

State whether the transformation mapping the black triangle to the red triangle is a reflection, a translation, a glide reflection, or a rotation.

1.

2.

3.

4.

5. If $f(x) = \frac{1}{2}x + 3$, find the image and preimage of 4.

Give the coordinates of the image of point P under the transformation specified.

6. R_1

8.
$$D_{O_{1}}$$

10.
$$\mathcal{R}_{0.90} \circ \mathcal{R}_{0.90}$$

12. $R_I \circ D_{Q_1-2}$

7. Ro. -90

9.
$$H_O \circ R_x$$

11.
$$D_{Q,\frac{1}{3}}$$

13.
$$R_1 \circ (R_y \circ R_y)$$

Give the inverse of each transformation.

14. H_o

15. R_x

16. $D_{0,-2}$

T is the translation mapping (4, 1) to (6, 2). Find the coordinates of the image of the origin under each mapping.

17. T

18. T^3

19. T^{-1}

Classify each statement as true or false.

- 20. All regular polygons have rotational symmetry.
- 21. 180° rotational symmetry is the same as point symmetry.
- 22. All regular n-gons have exactly n symmetry lines.
- **23.** A figure that has two intersecting lines of symmetry must have rotational symmetry.
- 24. a. Is a half-turn a transformation? Is it an isometry?
 - b. Name three properties that are invariant under a half-turn.
- 25. A line has slope 2. What is the slope of the image of the line under a:
 - **a.** reflection in the x-axis?
 - **b.** reflection in the line y = x?
 - **c.** dilation $D_{0,3}$?