CODE No.: 19BT30404 SVEC-19

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech I Semester (SVEC-19) Regular Examinations February – 2021

SWITCHING THEORY AND LOGIC DESIGN

[Electronics and Communication Engineering, Electronics and Instrumentation Engineering]

Time: 3 hours			Max. Marks: 60								
		Answer One Question from each Unit All questions carry equal marks									
UNIT-I											
1.	a)	Express the function $F = A + \overline{B}C$ in canonical SOP and POS.	6 Marks	L2	CO1	PO1					
	b)	List the first 16 numbers in base 12; use the letters A and B to	6 Marks	L3	CO1	PO3					
	,	represent the last two digits. Convert the number (456) ₁₂ to base 8									
(OR)											
2.	a) b)	Generate even parity hamming code for the data word 10011010. i) Simplify the given Boolean expression $f = ABC + \overline{A} \overline{B} C + A\overline{B} + AB\overline{C} + \overline{A}\overline{B}\overline{C}.$	4 Marks 8 Marks	L4 L2	CO1 CO1	PO4 PO2					
		ii) Perform the subtraction using 10 th complements.									
		i) $(1000)_{10}$ - $(756)_{10}$ ii) $(10)_{10}$ - $(100)_{10}$.									
3.	a)	Implement the following function in multi-level NAND $F = ABC + ABC + ABD + ABD$.	6 Marks	L3	CO1	PO2					
	b)	Obtain the simplified expression in POS, implement with NOR	6 Marks	L4	CO1	PO4					
		gates $F(w,x,y,z) = \sum_{m} (1, 2, 4, 11, 12, 13) + \sum_{d} (0, 3, 6, 10).$									
1	۵)	(OR)	6 Mortes	1.2	CO1	DO2					
4.	a)	Determine essential prime implicates given Boolean expression using tabulation method $F = ACD + BCD + BCD + ACD$.	6 Marks	L3	CO1	PO2					
	b)	Simplify the expression in SOP	6 Marks	L4	CO1	PO4					
		$F(w,x,y,z) = \sum_{\mathbf{m}} (0, 3, 4, 5, 7) + \sum_{\mathbf{d}} (8, 9, 10, 11, 12, 13, 14, 15).$ UNIT-III									
5.	a)	Implementing the logic function using a multiplexer 2 ^{N-1} input line, where N is the number of variables in the function	6 Marks	L3	CO1	PO4					
		$F(A, B, C, D) = \sum_{m} (4, 5, 6, 7, 8, 13, 14, 15).$									
	b)	, , , , , , , , , , , , , , , , , , ,	6 Marks	L4	CO2	PO2					
6.	a)	OR) Design a BCD to Decimal Adder Combinational circuit.	6 Marks	L2	CO2	PO1					
0.	b)	Construct 5 to 32 decoder using one 2 to 4 decoder and four 3 to	6 Marks	L4	CO2	PO2					
	- /	8 decoders.									
7.	a)	Convert JK Flip Flop to T Flip Flop.	6 Marks	L3	CO2	PO3					
, .	b)	Design a Universal Shift Register and explain the operation with neat diagram.	6 Marks	L3	CO1	PO6					
		(OR)									
8.	a)	Design 3 Bit UP/Down Synchronous counter using T Flip Flop.	6 Marks	L3	CO2	PO6					
	b)	Design a 5 Bit Ring counter and explain the operation.	6 Marks	L3	CO2	PO6					

UNIT-V

9.	a)	A combinational circuit is defined by the function	6 Marks	L3	CO3	PO2
		$F_1(A, B, C) = \sum_m (3, 5, 6, 7)$ $F_2 = \sum_m (0, 2, 4, 7)$. Implement the				
		circuit with PLA having 3 inputs, 4 product terms and two				
		outputs.				
	b)	Realize a Logic function using F (A, B, C) = Σ_m (2, 4, 5, 6) using	6 Marks	L2	CO3	PO7
		Hazard Free logic gate network.				
		(OR)				
10	a)	Distinguish the following.	6 Marks	L1	CO4	PO2
		i) PROM. ii) PAL. iii) PLA.				
	b)	Implement the following function using PROM	6 Marks	L3	CO3	PO2
		$F_1(A, B, C) = \sum_m (0, 1, 2) F_2 = \sum_m (4, 5, 6, 7).$				

& & &