la)
$$k \cdot (0, + \frac{1}{2}) = k \cdot \frac{1}{2}$$
 (property ld)

 $k \cdot 0 + k \cdot \frac{1}{2} = k \cdot \frac{1}{2}$ (property 2c)

 $k \cdot 0 = 0$

b) Assume $k \neq 0$,

 $x = (\frac{1}{2} \cdot k) \cdot \frac{1}{2}$
 $x = \frac{1}{2} \cdot (k \cdot \frac{1}{2})$

Since $k \cdot \frac{1}{2} = 0$
 $x = \frac{1}{2} \cdot 0$ (property le)

 $x = \frac{1}{2} \cdot 0$ (property le)

 $-1 \cdot (\frac{1}{2} - \frac{1}{2}) = 0$ (property 2 and 2b)

 $-1 \cdot \frac{1}{2} = -\frac{1}{2}$

By property lb,

 $-\frac{1}{2} + \frac{1}{2} = 0$: $-\frac{1}{2} \cdot \frac{1}{2} = 0$

2) Let Hippo be
$$Q$$
.

$$V = \{Q\}$$

$$0 + 0 = 0$$
, $k \cdot 0 = 0$ for all $k \in \mathbb{R}$
Property la:
 $v_1 + v_2 = 0 + 0 = 0 \in V$

Property 16:

$$2 \times 2 \times 2 = 0$$

 $2 \times 2 \times 2 = 0$
 $2 \times 2 \times 2 = 0$
 $2 \times 2 \times 2 = 0$
 $2 \times 2 \times 2 = 0$
Property 1c:

Property le:

$$x_{2} + (-x_{2}) = 0 + -1.0 = 0 + 0 (k.0 = 0)$$

$$= 0 + 0 (k.0 = 0)$$

$$= 0 + 0 + 0 = 0$$

$$= 0 + 0 + 0 = 0$$

Property 2a:

Property 26:

$$k(y, +y) = k(0, +p) = k(0) = 0$$
 for $y, y \in Y$
Property 2c:

$$(k+1)_{x} = (k+1)_{x} = 0$$

 $k_{x} + 1_{x} = k_{x} + 1_{x} = 0$
 $k_{x} + 1_{x} = k_{x} + 1_{x} = 0$
 $k_{x} + 1_{x} = k_{x} + 1_{x} = 0$ for $x \in Y$

2) Property 2d

$$k(2x) = kQ = Q$$
 $(kl) x = (kl)Q = Q$
 $(kl) x = (kl)Q = Q$
 $k(2x) = (kl) x \text{ for } x \in Y$

Property 2e

 $(x = l(Q) = Q = x) \text{ for } x \in Y$
 $(x = l(Q) = Q = x) \text{ for } x \in Y$
 $(x + x) = (x, 0, 0) \in W$
 $(x + x) = (x, 0, 0) \in W$
 $(x + x) = (x, 0, 0) \in W$

for $(x, y) \in W$, $(x, y) \in W$
 $(x = k(x, 0, 0) = (kx, 0, 0) \in W$

$$k_{u} = k(u,0,0) = (ku,0,0) \in W$$

for $u \in W$, $u \in \mathbb{R}$

.: W is a subspace of V

3aii)
$$k_{x} = k(u,1,1) = (ku,k,k) \notin W$$
 or $0 \notin W$
 $\therefore W$ is not a subspace of V

bi) $W \neq \emptyset$ as $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in W$
 $x_{1} + x_{2} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix}$

$$= \begin{bmatrix} a + e & b + f \\ c + g & d + h \end{bmatrix} \in W \text{ for } u_{1}, x_{2} \in W$$

$$\therefore (a + e) + (d + h)$$

$$= (a + d) + (e + h)$$

$$= fr(x_{1}) + fr(x_{2})$$

$$= 0 + 0$$

$$= 0$$

$$k_{x} = k \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} k_{a} & k_{b} \\ k_{c} & k_{d} \end{bmatrix} \in W \text{ for } u \in W$$

$$\therefore k_{a} + k_{d} = k(a + d)$$

$$= k + r(x_{2})$$

$$= k 0$$

:. W is a subspace of V.

= 0

$$\begin{bmatrix} 5 & 5 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \in \mathcal{W}$$

$$\begin{bmatrix} 5 & 5 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 2 \end{bmatrix} \notin W$$

$$\vdots \begin{vmatrix} 5 & 6 \\ 1 & 2 \end{vmatrix} = 4 \neq 0$$

... It is not a subspace of V.

3ci) Let
$$u(x) = -1$$
 for all $x \in \mathbb{R}$
 $u(x) \in \mathcal{W}$

$$(-1u)(x) = -u(x)$$

= -(-1)
= 14 W

is not a subspace of V.

ii) 0 & W, hence W is not a subspace of V.

iii)
$$W \neq \beta$$
 as $o(x) = 0$ for all $x \in \mathbb{R}$, $o(x) \in \mathbb{W}$
 $(f + g)(x) = f(x) + g(x)$
 $f(z) + g(z) = 0 + 0 = 0$
 $f(z) + g(z) = 0 + 0 = 0$

```
32:11)
      (kf)(x) = kf(x)
        (kf(2)) = kf(2)
               = k0
          : (kf)(n) e W
                                   o is a constant
(V) Let o(x)=0 for all xER, function and hence differentiable.
                                  differentiable.
       0 EW, .. DEW :: a0'(x) + b0(x)=0+0=0
      (f+g)(x) = f(x)+g(x) (f+g)'=f'+g'
                                   (f+g)'∈C'
   a(ftg)'(n) t b(ftg)(n)
 = af'(n) + ag'(n) + bf(n) + bg(x)
  = af'(x) + bf(x) + ag'(x) + bg(x)
    :. (f+g)(n) E W
       (kt)(x) = kt(x)
a(kf)'(n) + b(kf)(n)
                            .: (kt)(x) EW
= akf'(n) + bkf(n)
                           : Wis a subspace
= k (af(n) + bf(n))
= k(0)
```

3cv) Let g(n) = C for all $x \in \mathbb{R}, g \in W$ (2g)(x) = 2g(x) = 2C > C $\therefore W$ is not a subspace of Y

vi) Let o(n) = 0 for all $x \in \mathbb{R}$, $0 \in \mathbb{W}$. $w \neq 0$ as $o \in \mathbb{W}$.

For $f,g \in W$, there exists a C,D such that $f \in Wc$, $g \in W_D$ $|f(x)| \leq C, |g(x)| \leq D$

 $|(f+g)(x)| = |f(x)+g(x)| \le |f(x)|+|g(x)| \le c+0$ $\therefore f+g \in W_{c+0} \subseteq W$

Let feW, x eR, there exist a C such that feWc.

 $|f(x)| \leq C \quad \text{for all xeR}$ $|(\lambda f)(x)| = |\lambda f(x)| = |\lambda||f(x)| \leq |\lambda|C$ $\therefore \lambda f \in \mathcal{W}_{|x||C} \subseteq \mathcal{W}$

.: W is a subspace of V.

4a) Since Wand W both contain o, CEWNW ∴ UNW + Ø Let w, x ∈ WnW,

Since w, w & W and w, w & W, and w+ w & W, and w+ w & W, w+ w & W,

Let KER

Since well and weW, and knew, knew and knew, knew and knew,

.. WnW is a subspace of V.

46) Lef $W = \{(x,0) \text{ for all } x \in \mathbb{R}^3\}$ $W = \{(0,1) \text{ for all } y \in \mathbb{R}^3\}$ Both W and W are subspaces of $V \in \mathbb{R}^2$ $(1,0) \in W$, $W \in (0,1)$ $(1,0) + (0,1) = (1,1) \notin WUW$ $W \in \mathbb{R}^2$ Of $V \in \mathbb{R}^2$