3/31/2022

VERIFICATION PLAN

AHB Lite Protocol

Muhammad Zeeshan Khan 2021-Ph.D-EE-05

AHB-Lite Protocol:

AHB-Lite implements the features required for HIGH-performance, HIGH clock frequency systems including: • burst transfers • single-clock edge operation • non-tristate implementation • wide data bus configurations, 64, 128, 256, 512, and 1024 bits. The most common AHB-Lite slaves are internal memory devices, external memory interfaces, and HIGH bandwidth peripherals. Although LOW-bandwidth peripherals can be included as AHB-Lite slaves, they typically reside on the AMBA Advanced Peripheral Bus (APB) for system performance reasons. Bridging between this HIGHer level of bus and APB is done using a AHB-Lite slave, known as an APB bridge. Figure 1-1 shows a single master AHB-Lite system design with one AHB-Lite master and three AHB-Lite slaves. The bus interconnect logic consists of one address decoder and a slave-to-master multiplexor. The decoder monitors the address from the master so that the appropriate slave is selected and the multiplexor routes the corresponding slave output data back to the master.

Global Signals:

Name	Destination	Description
HCLK	Clock source	Clock source for all operations on the protocol. Input signals are sampled at rising edge and changes in output signals happen after the rising edge
HRESTn	Reset Controller	Asynchronous primary reset for all bus elements

Master Signals:

Name	Destination	Description
HADDR [31:0]	Slave and	Address bus of 32 bits
	Decoder	
HBURST [2:0]	Slave	Indicates the type of burst signal including wrapping and incrementing bursts
HSIZE [2:0]	Slave	Indicates the size of transfer from 8 bits to 1024 bits

Slave Signals:

Name	Destination	Description
HRDATA [31:0]	Multiplexor	Read data bus to transfer the data from a Slave's location to the Master via multiplexor
HREADYOUT	Multiplexor	Indicates transfer has finished on the bus and is used to extend the data phase
HRESP	Multiplexor	Provides additional information that the transfer was successful or failed

Decoder Signals:

Name	Destination	Description
HSELx	Slave	Indicates current transfer is for
Note: x is a unique identifier		intended for selected slave
for AHB lite slave		

Multiplexor Signals:

Name	Destination	Description	
HRDATA [31:0]	Master	Read data bus to rout to Master	
HREADY Master and Slave		Indicates completion of previous	
		transfer	
HRESP	Master	Transfer response	

Figure 1

Working Protocol

The master starts a transfer by driving the address and control signals. These signals provide information about the address, direction, width of the transfer, and indicate if the transfer forms part of a burst. Transfers can be of different types for instance single, incrementing bursts that do not wrap at address boundaries, wrapping bursts that wrap at particular address boundaries, etc. The write data bus moves data from the master to a slave, and the read data bus moves data from a slave to the master.

Every transfer consists of two phases:

- 1) Address phase: one address and control cycle
- 2) Data phase: one or more cycles for the data.

A slave cannot request that the address phase is extended and therefore all slaves must be capable of sampling the address during this time. However, a slave can request that the master extends the data phase by using **HREADY**. This signal when LOW, causes wait states to be inserted into the transfer and enables the slave to have extra time to provide or sample data. The slave uses a response signal to indicate the success or failure of a transfer.

Verification Plan

No.	Feature	Test Description	Ref.	Type	Result	Expected Outcome	Comments
1	Write Transfer from Master to Slave	An address B is driven onto the bus. The slave will sample the address B on the next rising clock edge. Afterward, the slave will drive the HREADY response. This response is sampled on the next rising edge of HCLK.	3.1	TR		Address phase should not be more than one cycle. The slave must only sample address when HREADY is high. The Data (B) must be written at the address B and a completed transfer is signalled i.e., HRESP should be low and HREADY should be high.	HWRITE is high, indicating a write transfer and the master broadcasts data on the write data bus, HWDATA [31:0].
2	Read Transfer from Slave to Master	An address B is driven onto the bus. The slave will sample the address B on the next rising clock edge. Afterward, the slave will drive the HREADY response. This response is sampled on the next rising edge of HCLK.	3.1	TR		The address phase should not be more than one cycle. The slave must only sample address on when HREADY is high. The Data (B) must be read from the address B and completed transfer is signaled i.e., HRESP should be low and HREADY should be high	HWRITE is low, a read transfer is performed and the slave must generate the data on the read data bus, HRDATA [31:0].
3	Random transfers	Random addresses A, B, C and D with zero wait states are driven onto the bus.	3.1	TR		Just like in test 1 and test 2 the slave must only sample the address A, B, C and D when HREADY is high and	Based on the type of transfer i.e., read transfer or write transfer HWRITE will be set low and high respectively.

		The slave will sample the addresses A, B, C and D on rising clock edged of their address phase.			completion of transfer must be signaled by the slave i.e., HRESP should be low and HREADY should be high. Based on the basic transfer type i.e., write or read Data(B) , Data(B), Data(C) and Data(D) will be driven on the HWDATA [31:0] bus or HRDATA [31:0] bus respectively.	
4	Read or Write transfer with wait states	An address B is driven onto the bus. The slave will sample the address on the rising edge of the clock provided that HREADY is high. After sampling the address. Wait states are added in the data phase by keeping HREADY low for two cycles after we have sampled the address	3.1 5.1 5.1.2	A	During the wait state, the slave must provide transfer pending response i.e., HREADY and HRESP must be low before completion. Afterward, a successful complete transfer is signaled when HREADY is high and HRESP is low.	Adding wait states causes latency in the read or write transfer. The master can not cancel the transfer.
5	Multiple transfers extended	Three addresses A, B, and C are driven onto the bus. The addresses are sampled on rising clock edges during their address phases. Wait states are added using HREADY. Transfer to address B is one wait state. Transfer to address B is two wait states.	3.1	TR	Since the data phase of address, A is extended the address phase of B is extended by one cycle. The address phase of C is extended by three cycles.	When a transfer is extended it has side effects of extending the address phase of the next transfer.

				1		
6	Write followed by Read transfer	An address B is driven onto the bus twice. The slave will sample the address B on the first and second rising clock edge for write and read transfer respectively. Firstly, HWRITE is high, indicating a write transfer and the master broadcasts data on the write data bus, HWDATA [31:0]. Lastly, HWRITE is set low,	3.1	TR	Based on the specifications of the memory. Read transfer should produce the updated Data (B).	During the Write transfer the completed transfer is signaled i.e., HRESP should be low and HREADY should be high. During the Read transfer the completed transfer is signaled i.e., HRESP should be low and HREADY should be high.
		a read transfer is performed				
		and the slave must generate				
		the data on the read data bus,				
		HRDATA [31:0].				
7	Read followed by Write transfer	An address B is driven onto the bus twice. The slave will sample the address B on the first and second rising clock edge for read and write transfer respectively.	3.1	TR	Based on the specifications of the memory. Read transfer should produce the Data(B) which was stored before Write transfer.	During the Read transfer the completed transfer is signaled i.e., HRESP should be low and HREADY should be high.
		transfer respectively.			The Write transfer will update	During the Write transfer the
		Firstly, HWRITE is set low, a read transfer is performed and the slave must generate the data on the read data bus, HRDATA [31:0].			Data(B).	completed transfer is signaled i.e., HRESP should be low and HREADY should be high.
		Lastly, HWRITE is high, indicating a write transfer and the master broadcasts				

		data on the write data bus, HWDATA [31:0].				
8	Wrapping burst types: WRAP4 WRAP8 WRAP16	We have transfer size of 4-byte (32-bit) which is a word. In WRAP4, firstly address B+4, address B+8 and address B+12 is driven onto the bus which are sampled by the slave on the rising clock edges of their address phases. After the transfer at address B+12, we have reached the address boundary therefore next transfer is wrapped to address B. Similarly, we drive addresses on the bus for WRAP8 and WRAP16 to check if they wrap at the address boundaries.	3.5 3.5.3	A	In WRAP4 the burst is a fourbeat burst of word transfers; the addresses wrap at 16-byte boundary. In WRAP8 the burst is an eightbeat burst of word transfers; the addresses wrap at 32-byte boundary. In WRAP16 the burst is a sixteen-beat burst of word transfers; the addresses wrap at 64-byte boundary. For all the above scenarios the slave will provide a completed transfer signal.	Wrapping bursts wrap when they cross an address boundary. Address boundary = HBURST x HSIZE Note: Different combinations of read and write transfers can be used which were implicitly checked in previous tests.
9	Incrementing burst type:	We have transfer size of 4-byte (32-bit) which is a word.			In INCR4, the transfers are incremented by 4.	Incrementing bursts access sequential locations. The addresses of each transfer in
	• INCR4				In INCR8, the transfers are incremented by 8.	the burst are an increment of the previous address.
	INCR8INCR16	Firstly, address B +4, B+8 and B+12 is driven onto the bus which are sampled by the slave on the rising clock			In INCR16, the transfers are incremented by 16.	

		edges of their address phases. After the transfer at address B+12, we have reached the address boundary. Since we are using incrementing burst type. Instead of wrapping around it will transfer to the next location which is B+16. Similarly, we drive addresses on the bus for INCR8, INCR 16 to check if they increment at the address boundaries.			For all the above scenarios the slave will provide a completed transfer signal.	
10	Incrementing burst type: INCR and undefined length burst	First burst is driven on the bus which consists of two halfword transfers at an address B. The second burst is read consisting of three word read transfers starting at address B			In first burst, the transfer address is incremented by two. In the second burst, the transfer address is incremented by four. For all the above scenarios the slave will provide a completed transfer signal.	
11	Protection signals HPROT [3:0]: • 4'b0000 • 4'b1111	An address B is driven on the bus. The timing of HPROT and address bus must be same. The must remain constant throughout the burst transfer.	3.7	A	The protection signal basically gives extra information which can be used to determine an exception for instance illegal instruction, illegal access and etc. For instance, Data (B) can't be accessed because only a	The test is dependent on master's ISA (Instruction Set Architecture) and design. Used by a module that wants to implement some level of protection.

		The protection signal HPROT [3:0] = 4'b0000 corresponds to non-cacheable, non-bufferable, unprivileged opcode fetch. The protection signal HPROT [3:0] = 4'b1111 corresponds to cacheable, bufferable, privileged data access.			privileged level can information. The response dependent how engineer implement	is entirely the design		
12	HRESETn	It is an active low signal. When HRESETn is asserted then HREADYOUT must be HIGH and HTRANS must IDLE	7.1.2	A	All the bus element and HRESETn is synchrounsly			
13	Cancellation of transfer	After a master started a transfer, master cannot cancel a transfer.		A	The transfer should once the master star			
14	Master Signal: IDLE HTRANS [1:0] =b00	An address A is driven onto the bus. An IDLE transfer is inserted to this address.	3.2	A	The transfer must be the slave. Slave provides OKAY response.	·	Master Signal: HTRANS [1:0] =b00	IDLE
15	Master Signal: BUSY HTRANS [1:0] =b01	Address A and B are driven onto the bus. When a BUSY transfer is inserted on address A then the address and control signals must reflect the next burst transfer i.e., address B. A sequential transfer is signaled for address B.	3.2	A	After the complete to from the slave for address B is sample sequential transfer.	r address A;	Master Signal: HTRANS [1:0] =b01	BUSY

16	Transfer type changes from IDLE to NONSEQ during waited states	Address A, B, C, and X are driven onto the bus. One IDLE transfer is inserted to address B and address C. The transfer type is changed to NONSEQ and initiates a transfer to address x. With HREADY low, the HTRANS is kept constant.	3.6.1	A	The slave will sample address A at the rising clock edge of the address phase. After successful transfer to address A the slave will ignore the IDLE transfers i.e., transfers associated with addresses B and C will be neglected. Then, address B will be sampled in its address phase. Transfer to address B will complete and slave will signal a complete transfer response.	Transfer type changes from IDLE to NONSEQ during waited states
17	Transfer type changes from BUSY to SEQ during waited states for a fixed-length burst	A sequential address A is driven onto the bus. Then a busy transfer is inserted and address B is driven on the bus. Wait states are added by keeping HREADY low. A sequential address C is driven on the bus. The transfer type changes from BUSY to SEQ. HTRANS is kept constant and slaves must keep HREADY low during this phase. Then HREADY is set high.	3.6.1	A	Transfer to address A completes when HREADY is set high. In the next cycle, the transfer to address B completes, and then in the next cycle the transfer to address C completes.	Transfer type changes from BUSY to SEQ during waited states for a fixed-length burst
18	Transfer type changes from	We have an undefined length burst. A sequential	3.6.1		The undefined length burst completes with HREADY high.	Transfer type changes from BUSY to NONSEQ during

	BUSY to NONSEQ during waited states for an undefined length burst	address A is driven onto the bus. Then a busy transfer is inserted to address B and is driven onto the bus. Wait states are added by keeping HREADY low.		The burst is terminated due to the NONSEQ transfer type. Then the transfer of address C is signaled completed by the slave.	waited states for an undefined length burst
		Then a nonsequential address C is driven onto the bus. The transfer type changes from BUSY to NONSEQ.		In the next cycle, the transfer to address B completes, and then in the next cycle the transfer to address C completes.	
		HTRANS is kept constant and slaves must keep HREADY low during this phase . Then HREADY is set high.			
19	Address change during wait state with IDLE transfer	A single burst is initiated to address A and is driven onto the bus. Then another address Y is initiated onto the bus. An IDLE transfer is inserted to this address	3.6.2	During the address phases of address A and address B the slave samples the addresses at the rising edge of the clock cycle. The slave will signal a completed transfer after the transfer to address A	Address change during wait state with IDLE transfer
		The slave inserts a wait state by keeping HREADY low. Then another address Z is initiated onto the bus. An		The IDLE transfers are ignored by the slave between addresses A and B.	

		IDLE transfer is inserted to			Then, the slave will signal a			
		this address.			completer transfer after the			
					transfer to address B.			
		Then, a NOSEQ transfer is						
		inserted to another address						
		B, and is driven onto the						
		bus. The transfer type						
		changes to NONSEQ.						
		Until HREADY goes HIGH,						
		no more address changes are						
		permitted.						
20	Address change	Two sequential addresses A	3.6.2		The addresses are sampled at the	Address	change	during
	during awaited	and B are driven onto the			rising edge of the clock cycle in	awaited	transfer	after an
	transfer after an	bus.			their address phases.	ERROR		
	ERROR							
		The address phase of			During the first cycle of the data			
		address A is one cycle			phase of address A, the slave			
		whereas the address phase			provides an OKAY response.			
		of address B is extended to						
		two cycles			During the first cycle of the data			
					phase of address B, the slave			
		Then an address C is inserted with IDE transfer			provides an OKAY response.			
		and driven onto the bus. As			Since the address phase was			
		a result, the transfer type is			extended therefor in the next			
		changed to IDLE.			cycle slave will generate an			
		changed to IDEE.			ERROR response.			
					Littor response.			
					During this cycle, the transfer			
					type changed successfully.			
					is promised successions.			
					In the next cycle, the slave			
					responds with an OKAY signal.			

21	Transfer type changes from IDLE to NONSEQ during waited states	Address A, B, C, and X are driven onto the bus. One IDLE transfer is inserted to address B and address C. The transfer type is changed to NONSEQ and initiates a transfer to address x. With HREADY low, the HTRANS is kept constant.	3.6.1	A	The slave will sample address A at the rising clock edge of the address phase. After successful transfer to address A the slave will ignore the IDLE transfers i.e., transfers associated with addresses B and C will be neglected. Then, address B will be sampled in its address phase. Transfer to address B will complete and slave will signal a complete transfer response.	Transfer type changes from IDLE to NONSEQ during waited states
22	Transfer type changes from BUSY to SEQ during waited states for a fixed-length burst	A sequential address A is driven onto the bus. Then a busy transfer is inserted and address B is driven on the bus. Wait states are added by keeping HREADY low. A sequential address C is driven on the bus. The transfer type changes from BUSY to SEQ. HTRANS is kept constant and slaves must keep HREADY low during this phase. Then HREADY is set high.	3.6.1	A	Transfer to address A completes when HREADY is set high. In the next cycle, the transfer to address B completes, and then in the next cycle the transfer to address C completes.	Transfer type changes from BUSY to SEQ during waited states for a fixed-length burst
23	Transfer type changes from	We have an undefined length burst. A sequential	3.6.1		The undefined length burst completes with HREADY high.	Transfer type changes from BUSY to NONSEQ during

	BUSY to	address A is driven onto the			waited states for an
	NONSEQ during	bus. Then a busy transfer is		The burst is terminated due to	undefined length burst
	waited states for an	inserted to address B and is			undermed length burst
				the NONSEQ transfer type.	
	undefined length	driven onto the bus.			
	burst			Then the transfer of address C is	
		Wait states are added by		signaled completed by the slave.	
		keeping HREADY low.			
				In the next cycle, the transfer to	
		Then a nonsequential		address B completes, and then in	
		address C is driven onto the		the next cycle the transfer to	
		bus. The transfer type		address C completes.	
		changes from BUSY to		1	
		NONSEQ.			
		1.01.024.			
		HTRANS is kept constant			
		and slaves must keep			
		HREADY low during this			
		•			
		phase			
		·			
		Then HREADY is set high.			
24	Address change	A single burst is initiated to	3.6.2	During the address phases of	Address change during wait
	during wait state	address A and is driven onto		address A and address B the	state with IDLE transfer
	with IDLE transfer	the bus.		slave samples the addresses at	
				the rising edge of the clock	
		Then another address Y is		cycle.	
		initiated onto the bus. An			
		IDLE transfer is inserted to		The slave will signal a	
		this address		completed transfer after the	
				transfer to address A	
		The slave inserts a wait state		dunision to address 11	
		by keeping HREADY low.		The IDLE transfers are ignored	
		by keeping fixead 1 low.			
		TI 4 11 7.		by the slave between addresses	
		Then another address Z is		A and B.	
		initiated onto the bus. An			

		IDLE transfer is inserted to			Then, the slave will signal a			
		this address.			completer transfer after the			
					transfer to address B.			
		Then, a NOSEQ transfer is						
		inserted to another address						
		B, and is driven onto the						
		bus. The transfer type						
		changes to NONSEQ.						
		Until HREADY goes HIGH,						
		no more address changes are						
		permitted.						
25	Address change	Two sequential addresses A	3.6.2		The addresses are sampled at the	Address	change	
	during awaited	and B are driven onto the			rising edge of the clock cycle in	awaited	transfer	after an
	transfer after an	bus.			their address phases.	ERROR		
	ERROR							
		The address phase of			During the first cycle of the data			
		address A is one cycle			phase of address A, the slave			
		whereas the address phase			provides an OKAY response.			
		of address B is extended to						
		two cycles			During the first cycle of the data			
					phase of address B, the slave			
		Then an address C is			provides an OKAY response.			
		inserted with IDE transfer						
		and driven onto the bus. As			Since the address phase was			
		a result, the transfer type is			extended therefor in the next			
		changed to IDLE.			cycle slave will generate an			
					ERROR response.			
					During this cycle, the transfer			
					type changed successfully.			
					In the next cycle, the slave			
					responds with an OKAY signal.			

26	Slave response: Transfer done	The transfer is completed successfully.	5.1.1	A	Slave must give HREADY HIGH and HRESP OKAY
27	Slave response: Transfer pending	Transfer is pending	5.1.2	A	Slave must give HREADY LOW and HRESP OKAY
28	Slave response: transfer failed	The transfer is not completed successfully	5.1.3	A	HRESP must be HIGH. Two cycle response is required for an error condition.
29	HREADYOUT	When HIGH the transfer has finish on the bus		A	
30	HREADY	If the transfer is extended then the master must hold the valid data until the transfer completes		A	

Explanation of Different Fields

No. The serial number of the test.

Feature The feature which the current test is verifying in full or partially. The feature is usually on the abstraction level of a user.

Test Description A detailed description of the test case is performed. You can be as verbose as you want.

Ref. Reference to the section in the related standard document. The section number, as well as page numbers, should be

described here.

Type Type of the test. Whether the test is an assertion (A) or a transaction (T) type.

Result Pass (P) or Fail (F).

Comments ?