GENERACIÓ D'HORARIS D'INSTITUT AMB OPERACIONS LÒGIQUES

Ismael El Habri Tutors: Dr. Josep Suy i Dr. Jordi Coll

Universitat de Girona

10 de setembre del 2019

Table of Contents

- Introducció
 - Marc de treball
 - Objectius
 - Metodologia
- 2 Implementació
 - Parser
 - Model
 - Restriccions
- Conclusions i Resultats
 - Resultats

Introducció

Confecció d'horaris, problema recurrent amb el que es troben els instituts ⇒ High School TimeTabling problem (HSTT)

- Alta combinatòria i complexitat, és un problema NP-Complet.
- Repartir events i recursos de manera viable i tenint en compte preferències del professorat.
- Diferents països, diferents necessitats ⇒ més complexitat!

Marc de treball

- Grup de recerca de Lògica i Programació
- API SMT desenvolupada pel Dr. Jordi Coll. API per a la codificació de problemes SAT, SMT o MaxSAT, actuant com a interfície per a diferents solvers. En aquest treball s'utilitzarà el Yices 2. També té implementades les diferents implementacions de múltiples restriccions globals.
- Com a punt de partida s'ha utilitzat el treball realitzat el 2015 per en Cristòfor Nogueira. Mentre ell ha utilitzat BitVectors i MaxSAT, en aquest treball s'utilitzarà SMT. Així s'han aconseguit uns resultats superiors pel que fa el temps d'execució.

Objectius

- Aprofundir sobre el tema.
 - Problema de generació d'horaris d'institut.
 - Problemes de satisfacció de restriccions(CSP).
 - Tècniques per resoldre problemes CSP com ara SAT i extensions.
- Crear un generador.

Metodologia

- Estudi del treball prèvi i estat de l'art
- Entregues periòdiques
- Prototipatge

Estudi de viabilitat

Table of Contents

- Introducció
 - Marc de treball
 - Objectius
 - Metodologia
- 2 Implementació
 - Parser
 - Model
 - Restriccions
- Conclusions i Resultats
 - Resultats

Implementació

Parser

Instància XHSTT \Rightarrow dades + restriccions

Model

- $Xt_{0,0}...Xt_{|Events|-1,|Times|-1}$
- $X_{S_{0,0}...}X_{S|Events|-1,|Times|-1}$
- $\bullet \hspace{0.1in} \textit{Xd}_{0,1,0}...\textit{Xd}_{|\textit{Events}|-1,\textit{event.duration},|\textit{Times}|-1}$

Clàusules de Channeling

Si un event comença a una hora determinada, llavors té una duració:

$$orall e \in 0...|Events| - 1 \ orall i \in 0...|Times| - 1$$
 $exactly_one(\neg Xs_{e,i} \lor \{ orall j \in 1...e.duration \ Xd_{e,j,i} \})$

• Si un event té lloc a t però no a t-1, és que comença:

$$\forall e \in 0... | \textit{Events}| - 1 \ \forall i \in 0... | \textit{Times}| - 1$$

 $\neg \textit{Xt}_{e,i} \lor \textit{Xt}_{i-1} \lor \textit{Xs}_{i}$

• Si un event comença amb duració d, llavors té lloc en d hores consecutives:

$$orall e \in 0... |\mathit{Events}| - 1 \ orall \mathit{din} 1...e. \mathit{duration} \ orall i \in 0... |\mathit{Times}| - 1 \ orall j \in i...i + d - 1 \
eg Xd_{e,d,i} \lor Xt_{e,j}$$

Assign Times Constraint

$$\forall e \in Events \ exactly_k(\{Xt_{e,0}...Xt_{e,|Times|-1}\}, e.duration)$$

Split Events Constraint

$$\forall e \in Events \ at_most_k(\{Xs_{e,0}...Xs_{e,|Times|-1}\}, MaximumAmount)$$
 $\forall e \in Events \ at_least_k(\{Xs_{e,0}...Xs_{e,|Times|-1}\}, MinimumAmount)$
 $\forall e \in Events \ \forall d \notin MinimumDuration...MaximumDuration \land d \in 1...e.duration$
 $\forall t \in 0...|Times|-1 \ \neg Xd_{e,d,t}$

Distribute Split Constraint

$$\forall e \in \textit{Events at_most_k}(\{Xd_{e,d,0}....Xd_{e,d,|\textit{Times}|-1}\}, \textit{max}) \qquad \textit{si max} < \frac{e.\textit{duration}}{d}$$

$$\forall e \in \textit{Events at_most_k}(\{Xd_{e,d,0}....Xd_{e,d,|\textit{Times}|-1}\}, \textit{min}) \qquad \textit{si min} > 0$$

Prefer Times Constraint

$$\forall e \in Events \ \forall t \in Times \land t \notin Ta$$

$$(\neg Xd_{e,d,t})$$

Spread Events Constraint

$$\forall e \in \textit{Events} \ \forall g \in \textit{Tg}$$
 $at_most_k(\{Xs_{e,t}|t \leftarrow g\}, max)$ $\forall e \in \textit{Events} \ \forall g \in \textit{Tg}$ $at_least_k(\{Xs_{e,t}|t \leftarrow g\}, max)$

Avoid Clashes Constraint

$$\forall r \in Resources \ \forall t \in Times$$

$$at_most_one(\{Xt_{e,t}|e \leftarrow E_r\})$$

Avoid Unavailable Times Constraint

$$\forall r \in Resources \ \forall t \in T \ \forall e \in E_r \ (\neg Xt_{e,t})$$

 Limit Idle Times Constraint Per a cada recurs r es fan les clàusules següents:

$$\forall g \in Tg \ \forall t \in g \ \forall e \in E_r$$

$$(\neg Idle_i \lor \neg Xt_{e,t}) \qquad si \ (B_t \neq \emptyset)$$

$$\forall g \in Tg \ \forall t \in g \qquad \qquad (\neg Idle_t \lor \{\forall b \in B_t \ \forall e \in E_r \ Xt_{e,b}\}) \qquad s$$

$$\forall g \in Tg \ \forall t \in g \qquad \qquad (\neg Idle_t \lor \{\forall a \in A_t \ \forall e \in E_r \ Xt_{e,a}\}) \qquad s$$

$$\forall g \in Tg \ \forall t \in g \ \forall b \in B_t \ \forall a \in A_t \qquad s$$

 $\forall e1 \in E_r \ \forall e_2 \in E_r \ \forall e_3 \in E_r$ $(Xt_{e_1,t} \vee \neg Xt_{e_2,b} \vee Xt_{e_3,a} \vee Idle_t)$ si $(B_t \neq \emptyset$

Un cop definides i lligades les variables auxiliars l'únic que queda és, per cada recurs, imposar les restriccions de cardinalitat:

 $\forall r \in Resources$

Cluster Busy Times Constraint
 Per a cada recurs r es fan les clàusules següents:

$$orall g \in Tg$$
 $(
eg Busy_g \lor (\forall e \in E_r \ \forall t \in g \quad Xt_{e,t}))$ $\forall g \in Tg \ \forall t \in g \ \forall e \in E_r$ $(
eg Xt_{e,t} \lor Bsuy_g)$

Un cop definides i lligades les variables auxiliars l'únic que queda és, per cada recurs, imposar les restriccions de cardinalitat:

$$\forall r \in Resources$$

$$at_most_k(\{Busy_g | g \leftarrow Tg\}, max)$$

$$at_least_k(\{Busy_g | g \leftarrow Tg\}, min)$$

Table of Contents

- Introducció
 - Marc de treball
 - Objectius
 - Metodologia
- 2 Implementació
 - Parser
 - Model
 - Restriccions
- Conclusions i Resultats
 - Resultats