12. Seismic Migration

M. Ravasi ERSE 210 Seismology

Seismic Migration (or Imaging)

As the name implies, **migration** is the process of migrating/repositioning seismic events to the (horizontal) location at which a scattering or reflection has occurred.

Seismic Migration - history

^{*} This is a timeline of industry adoption (most theories have been developed some 20 years before the method becomes practical for real applications

Seismic Migration - history

^{*} This is a timeline of industry adoption (most theories have been developed some 20 years before the method becomes practical for real applications)

Seismic Migration - nomenclature

Migration algorithms can be divided into 4 classes:

Domain\Vertical axis	Time	Depth
Post-stack		
Pre-stack		

Seismic Migration - nomenclature

Migration algorithms can be divided into 4 classes:

After NMO& stacking, directly on ZO sections

Domain\Vertical axis	Time	Depth
Post-stack		
▶ Pre-stack		•••

Acts directly on data in CSG/CRG/COG

Seismic Migration - nomenclature

Migration algorithms can be divided into 4 classes:

A simple physical principle can be used to explain this drawing. Developed in '1600 in the context of **light wave propagation**

It explains how, given a wavefront at time t, the wavefront at time t+dt looks like – based on **constructive interference of secondary sources**

wavefront at time t

A simple physical principle can be used to explain this drawing. Developed in '1600 in the context of **light wave propagation**

It explains how, given a wavefront at time t, the wavefront at time t+dt looks like – based on **constructive interference of secondary sources**

A simple physical principle can be used to explain this drawing. Developed in '1600 in the context of **light wave propagation**

It explains how, given a wavefront at time t, the wavefront at time t+dt looks like – based on **constructive interference of secondary sources**

For a plane wave hitting on a wall with a small opening (aka a diffractor):

Plane wave → spherical wavear

Applying the same principle to seismic reflectors and diffractors:

Exploding reflector model

Post-stack time migration - reflectors

Reflectors are laterally migrated – change dips

Post-stack time migration - reflectors

Reflectors are laterally migrated – change dips

Post-stack time migration - diffractors

Diffractors collapse from a hyperbola to a point

Post-stack time migration - diffractors

Post-stack time migration - algorithm

Kirchhoff summation / hyperbola stacking

Post-stack depth migration - algorithm

Kirchhoff summation / 'hyperbola' stacking

Post-stack migration – algorithm 2

Let us at the modelling of one event from the S/R perspective:

Post-stack migration – algorithm 2

Kirchhoff (circle) spreading

Pre-stack migration – algorithm

Pre-stack Kirchhoff summation (repeated for all offset classes)

Stacking vs spreading

In summary:

Stacking → image-oriented approach (easier to implement, as each output is completely independent from the other, but requires getting back to the same data over and over again)

Spreading \rightarrow data-oriented approach (more efficient with modern, very large data as image is much smaller than data, so we can loop over traces in the data and just spread each sample; once a trace is used, we do not need it again)