第一章 集成运算放大器

序号_<u>55___</u>学号_<u>31902192</u>_ 姓名 **養俊兰__**_

一、填空题

1	对于一个理想运算放大器,其开环增益 A, (也称为差分增益)
	为 <u>无穷大</u> ,输入信号端口的输入阻抗为 <u>无穷大</u> ,输出信号端口的输
	出阻抗为。
2	依据从信号输入方式来分类,基本运算放大器可分为三种基本类型:
	即为 <u>反相</u> 放大器、 <u>同相</u> 放大器和 <u>差为</u> 放大器。
3	对于理想放大器具有如下特性:同相输入端与反相输入端的电位相
	等,这种特性称为 <u>虚短路</u> ;同相输入端和反相输入端的输入电流
	为零,这种特性称为 虚影路 。
4	集成运算放大器的电源供电通常有两种方式,一种是采用正负对称电
	源供电,如 $V_{cc} = -V_{EE}$,此时各信号端口的直流电位为
	种是采用单电源供电,如电源供电的电压为 V_{DD} ,此时各信号端口的直流电
	位为。
5	电压比较器的作用是对两个输入模拟电压信号进行比较。电压比较器
	电路可以分为三种基本类型,即 <u>单限</u> 比较器、 <u>身况滞</u> 比较器和 窗□
	比较器。

二、分析计算题

- 1、某运算放大器电路如图 1 所示,运算放大器为理想的,且电阻值 R 为已知,设输入信号为 ν_s 。试问:
- (1) 当输入信号 ν_s 仅接在端口 A 处,端口 B 接地,试求该放大器的电压增益 $G = \frac{\nu_o}{\nu_s}$,从 A 点看进去的输入阻抗 R_i ,输出阻抗 R_o 分别为多少? $G = \frac{V_o}{V_s} = -\frac{2oR}{R} = -2o$, $R_i = R$, $R_o = 0$
- (2) 当输入信号 v_s 仅接在端口 B 处,端口 A 接地,试求该放大器的电压增益 $G = \frac{v_o}{v_s}$,
- 从 B 点看进去的输入阻抗 R_i ,输出阻抗 R_o 分别为多少? $G = \frac{V_0}{V_S} = (I + \frac{\emptyset}{R}) (\frac{20R}{20R + R}) = 20$.
- $R_i = R + 20R = 21R$. $R_i = 0$ (3) 当输入信号 ν_s 跨接在端口 A、B 处时,且要求 ν_s 信号 A 端为正,B 端为负,试求

该放大器的电压增益 $G = \frac{v_o}{v_o}$,从 A、B 点看进去的输入阻抗 R_i ,输出阻抗 R_o 分别为多

少?
$$V_0 = \frac{20R}{R} (V_+ - V_-)$$

$$V_- - V_+ = V_5$$

$$V_0 = \frac{-20R}{R} V_5$$

$$G = \frac{V_0}{V_5} = -\frac{20R}{R} = -20$$

$$Ri = 2R$$

$$R_0 = 0$$

3、米勒积分器电路如图 3(a) 所示,且初始输入电压和输出电压均为 0,时间常数为 $\tau = RC = 1mS$ 。若输入的波形如图 3 (b) 所示,试画出输出的波形(要求坐标对齐并 标明数值)。

- 4、图 4 所示的电路为浮动负载(两个连接端都没接地的负载提供电压),这在电源电路 中有很好的应用性,假设运算放大器是理想的。
- (1) 当节点 A 输入峰峰值为 IV 的正弦波 v, 时, 试画出节点 B,

波形,并画出 v。的波形。

(1).
$$V_{g} = (1 + \frac{20 \times 10^{3}}{10 \times 10^{3}})V_{i} = 3V_{i}$$

$$V_{c} = -\frac{30 \times 10^{3}}{10 \times 10^{3}}V_{i} = -3V_{i}$$

(2)电压增益^ν。/ν, 为多少?

$$V_0 = V_8 - V_c = 6V_i$$

- (1)放大器的各信号端口的直流电位为多少?电容 C_1 、 C_2 、 C_3 的作用是什么?
- (2)交流放大倍数 $\frac{v_o}{v_i}$ 为多少、输入阻抗 R_i 为多大?

(1) 直现位为 R4 Vcc = 10 × 15 = 7.5 V

电客作用: 海查迪安皮流耦合隔直

$$V_{0}^{(2)} = G = (1 + \frac{R_{2}}{R_{1}}) = 6$$

$$R_{1} = R_{3} + R_{3} / |R_{4}| = |000 + \frac{|0 \times |0|}{|0 + |0|}$$

$$= |005| + R_{3}$$

6、在图 6 所示的电路中,比较器的输出电压的最大值为 $\pm 10V$ 。试画出个电路的电压 传输特性曲线 (b). $\frac{10}{20+10}$ V_1 $+ \frac{10}{10+10}$ V_2 = 0 (c). $\frac{10}{20+10}$ V_{01} $+ \frac{20}{10+10}$

7、某运算放大器电路如图 7 所示,假设运算放大器是理想的。试写出输出电压与输入

电压的关系表达式 (要有分析过程), 并写出 v_1 、 v_2 对应的输入阻抗 R_n 、 R_{i2} 。

8、图 8 为具有高输入阻抗的反相放大器,假设运算放大器是理想的。已知 $R_1=90K\Omega$,

三、设计题

- 1、仅利用反相放大器设计一个实现函数 $v_o = v_1 + 2v_2 4v_3$ 的电路,要求对应 v_1 信号的输入阻抗为 $20k\Omega$ 。试画出电路实现原理图,并确定个各个电阻的取值。
- 2、仅利用反相放大器将 $v_i = 5\sin \omega t$ (V)的正弦信号的直流电平从 0 转变为-2V,即 $v_o = -2 + 5\sin \omega t$ (V),要求画出电路实现原理图,并合理确定个各个电阻的取值。
- 1. $V_0 = V_1 + 2V_2 4V_3$

2. $V_0 = -2 + 5 \text{ sinwt} = -2 - (-5 \text{ sinwt})$

