一份简短的 Beamer 模板 – 深色主题 (Darkblue)

RankFan¹² Gauss^{1 2}

¹WISE Xiamen University (Xiamen)

2 经济知识综合 (公众号)

2021年10月14日

Outline

Background

Literature Review

Data

Methodology and Variables

Regression Results

附录

What's this Beamer about?

- Specific statistical methods for many research problems
- Github hyperlinks: click here:Beamer-of-XMU-WISERCLUB & WISE
 - ► How to learn (or create) new methods
 - ▶ Inference: Using facts you know to learn about facts you don't know
- If you want to learn more details about LATEX, you can click How to install and use LATEX
- My WeChat GongZhongHao Have you realized how to build a personal blog site?

What's this course about?

- Specific statistical methods for many research problems
- Hyperlinks (click here)
 - ► How to learn (or create) new methods
 - ▶ Inference: Using facts you know to learn about facts you don't know
- How to write a publishable scholarly paper
- All the practical tools of research theory, applications, simulation, programming, word processing, plumbing, whatever is useful
- → Outline and class materials:

- ► The syllabus gives topics, not a weekly plan.
- ▶ We will go as fast as possible subject to everyone following along
- We cover different amounts of material each week

Alerts

- First level alert
- Second level alert
- Third level alert
- Fourth level alert
- Fifth level alert

Systematic Components: Examples

- $E(Y_i) \equiv \mu_i = X_i \beta = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$
- $\Pr(Y_i = 1) \equiv \pi_i = \frac{1}{1 + e^{-x_i\beta}}$
- $V(Y_i) \equiv \sigma_i^2 = e^{x_i\beta}$
- Interpretation:

WISE

- ► Each is a class of functional forms
- \blacktriangleright Set β and it picks out one member of the class
- \triangleright β in each is an "effect parameter" vector, with different meaning

Recall:

Recall:

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B) \frac{\Pr(B)}{\Pr(B)}$$

Recall:

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B) \Pr(B)$$

$$\mathsf{NegBin}(y|\phi,\sigma^2) = \int_0^\infty \mathsf{Poisson}(y|\lambda) \times \mathsf{gamma}(\lambda|\phi,\sigma^2) d\lambda$$

Recall:

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B)\Pr(B)$$

$$\begin{split} \mathsf{NegBin}(y|\phi,\sigma^2) &= \int_0^\infty \mathsf{Poisson}(y|\lambda) \times \mathsf{gamma}(\lambda|\phi,\sigma^2) d\lambda \\ &= \int_0^\infty \P(y,\lambda|\phi,\sigma^2) d\lambda \end{split}$$

Recall:

WISE

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B)\Pr(B)$$

one two three

$$\begin{split} \mathsf{NegBin}(y|\phi,\sigma^2) &= \int_0^\infty \mathsf{Poisson}(y|\lambda) \times \mathsf{gamma}(\lambda|\phi,\sigma^2) d\lambda \\ &= \int_0^\infty \P(y,\lambda|\phi,\sigma^2) d\lambda \\ &= \frac{\Gamma\left(\frac{\phi}{\sigma^2-1} + y_i\right)}{y_i!\Gamma\left(\frac{\phi}{\sigma^2-1}\right)} \left(\frac{\sigma^2-1}{\sigma^2}\right)^{y_i} \left(\sigma^2\right)^{\frac{-\phi}{\sigma^2-1}} \end{split}$$

RankFan & Gauss Beamer of WISE Version-2 2021 年 10 月 14 日 7 / 23

8 / 23

2 columns

- SVM
- GMM
- EM

数据与 tabular 环境

Category of your contents	Different types of each Category	other type of your data			
	Different types of each Category	other type of your data			
	1-				
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$ θ^{-1} kg	3.5 × 10 ⁵ ; 5.43 (9.30%)			
	0.0056 + 0.0097, 0.0021 + 4.0056	3.5×10^5 ; 5.43 (9.30%)			
	0.0056 ± 0.0097, 0.0021 ± 4.0056	3.5 × 10 ⁵ ; 5.43 (9.30%)			
	0.0056 + 0.0097, 0.0021 + 4.0056	$3.5 \times 10^5 : 5.43 (9.30\%)$			
	0.0056 ± 0.0097, 0.0021 ± 4.0056	3.5 × 10 ⁵ ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	$3.5 \times 10^5 : 5.43 (9.30\%)$			
Type of date (numbers)	0.0056 ± 0.0097, 0.0021 ± 4.0056	$3.5 \times 10^5 : 5.43 (9.30\%)$			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	$3.5 \times 10^5 : 5.43 (9.30\%)$			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5 × 10 ⁵ ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	$3.5 \times 10^5 : 5.43 (9.30\%)$			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
Mathematical formulas	$\frac{\mu^2}{\pi - 2\theta} \times \sqrt[3]{\ \nu_i - \hat{\phi}\ } + \lim_{s \to \infty} \int_0^{+\infty} f(s)e^{sst}ds$	$f(x) \in C^{1}[0, +\infty], f(x^{n}) _{2} \leq \lambda$			
	$\frac{\mu^2}{\pi - 2\theta} \times \sqrt[3]{\ \nu_i - \hat{\phi}\ } + \lim_{s \to \infty} \int_0^{+\infty} f(s)e^{ssi}ds$	$f(x)\in C^1[0,+\infty],\ f(x^n)\ _2\leqslant \lambda$			
	$\frac{\mu^2}{\pi - 2\theta} \times \sqrt[3]{\ \nu_i - \hat{\phi}\ } + \lim_{s \to \infty} \int_0^{+\infty} f(s)e^{ssi}ds$	$f(x) \in C^{1}[0, +\infty], f(x^{n}) _{2} \leq \lambda$			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
anguage description	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
rojection data	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
,	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			

tabel 1: Contents of different types of tables.

Word2Vec

topic 1			topic 2		topic 3			topic 4			
1	科技	0.9995	2	板块	mm	3	科技	mm	4	3500	mm
1	板块	0.9994	2	锂电池	mm	3	新能源	mm	4	反弹	mm
1	调整	0.9994	2	a 股	mm	3	in	机构	4	指数	
1	资金	0.9994	2	芯片	mm	3	in	板块	4	清仓	
1	业绩	0.9994	2	散户	mm	3	in	半导体	4	券商	mm
1	公司	0.9994	2	震荡	mm	3	in	中国	4	科技	mm
1	股价	0.9994	2	早盘	mm	3	in	芯片	4	in	mm
1	股市	0.9994	2	inches	mm	3	in	mm	4	in	mm
1	大跌	0.9994	2	inches	mm	3	in	mm	4	in	mm
1	基金	0.9994	2	inches	mm	3	in	mm	4	in	mm

tabel 2: Word2Vec of texts

11 / 23

Structural Features

Levels of Structure

- usual LATEX \section, \subsection commands
- 'frame' environments provide slides
- 'block' environments divide slides into logical sections
- 'columns' environments divide slides vertically (example later)
- overlays (à la prosper) change content of slides dynamically

例 (Overlay Alerts)

On the first overlay, this text is highlighted (or alerted).

On the second, this text is.

11 / 23

Structural Features

Levels of Structure

- usual LATEX \section, \subsection commands
- 'frame' environments provide slides
- 'block' environments divide slides into logical sections
- 'columns' environments divide slides vertically (example later)
- overlays (à la prosper) change content of slides dynamically

例 (Overlay Alerts)

On the first overlay, this text is highlighted (or alerted).

On the second, this text is.

4

8

Algoritmos 代码 1

```
Algorithm 1: Algorithm Example
 input : x: float, y: float
 output: r: float
1 while True do
     r = x + y;
     if r >= 30 then
         "O valor de r é maior ou igual a 10.":
         break:
     else
         "O valor de r =", r;
     end
9 end
```


Reviewing DeepWalk algorithm

Algorithm 2: Reviewing random walk + skip gram

Run SGNS on \mathcal{D} with b negative sampless.

Code blocks

```
# Say hello in Python
def hello(name):
    return("Hello" + " " + name)
```


Code blocks

```
# Say hello in Python
def hello(name):
return("Hello" + " " + name)
```

```
/* Say hello in C */
#include <stdio.h>
int main()
{
    char name[256];
    fgets(name, sizeof(name), stdin);
    printf("Hello %s", name);
    return(0);
}
```

Theorems and Proofs

The proof uses reductio ad absurdum.

定理

There is no largest prime number.

证明.

1 Suppose p were the largest prime number.

4 But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Theorems and Proofs

The proof uses reductio ad absurdum.

定理

There is no largest prime number.

证明.

- 1 Suppose *p* were the largest prime number.
- ② Let q be the product of the first p numbers.
- **4** But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Theorems and Proofs

The proof uses reductio ad absurdum.

定理

There is no largest prime number.

证明.

- **1** Suppose *p* were the largest prime number.
- 2 Let q be the product of the first p numbers.
- 3 Then q+1 is not divisible by any of them.
- **4** But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Blocks

Normal block

A set consists of elements.

Alert block

2 = 2.

Example block

The set $\{1, 2, 3, 5\}$ has four elements.

17 / 23

Data

WISE

Methodology and Variables

Regression Results

WISE

Details

21 / 23

Example: Mnist

WISE

```
1 ### Using the Sklearn interface ###
2 from keras datasets import mnist
3 from catboost import CatBoostClassifier.Pool
  from sklearn.model selection import GridSearchCV
  from sklearn.metrics import accuracy score
  import numpy as np
   (X,y),(X_test,y_test) = mnist.load_data()
  # (60000.28.28)
  print('x shape:'.X.shape)
10 # 60000
  print('v shape:',v.shape)
12 \mid X = X.reshape(X.shape[0],-1)/255
  X test = X test.reshape(X test.shape[0].-1)/255
14
  param test = {'iterations':np.arange(10,51,20), 'learning rate':[0.1.0.2],
16
           'depth':np.arange(4.9.2)}
  cat = CatBoostClassifier(eval metric="AUC".one hot max size=31.l2 leaf reg= 9.silent=False)
  grid search = GridSearchCV(estimator=cat.param grid=param test.cv=2.verbose=2.n jobs=-1)
  grid search.fit(X.v)
21 # grid_search.cv_results_ # Search for detailed results
  grid search, best params
  grid_search.best_score
  cat = grid search.best estimator # Best model
  v pred = cat.predict(X test)
  accuracy = accuracy_score(y_pred,y_test)
  print("The test set accuracy rate is:%.2f%%"%(accuracy*100.0))
```


参考文献 I

Hosono K and Miyakawa D and Uchino T, et al.

Natural disasters damage to banks and firm investment, 2016.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.592.8648&rep=rep1&type=pdf

Thanks!