\square Chapter: *n Lives Inside N* — The Real Connection Between *n*, *N*, and f_s

Act 1 — The Big Block of Samples

Imagine you've just captured ${\bf N}$ digital samples from your IQ data stream.

This block is exactly what the FFT will chew on.

- N = total number of samples in the block.
- n = which sample we're talking about inside that block.

So if N=1024:

- n=0 ightarrow first sample in the block
- $n=512 \rightarrow \text{middle sample}$
- $n=1023 \rightarrow \text{last sample}$

Act 2 — n Has No Meaning Without N

In the DFT formula:

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-jrac{2\pi}{N}nk}$$

- The **upper limit** N-1 tells us how many values n can take.
- n exists only from 0 up to N-1 because this N defines the FFT's "analysis window."
- If you change N, you change the range of n.
- This means **n's life span is tied to N** it's part of N's definition.

1 Act 3 — Where f_s Comes In

Outside the math world, your SDR is sampling at f_s samples/sec.

- ullet Each **gap** between two n positions in the block is $\Delta t=1/f_s$ seconds.
- The **time stamp** for a given n in the block is:

$$t_n=rac{n}{f_s}$$

• f_s does **not** decide how many samples are in the block (that's N), but it **does** decide how far apart those N samples are in real time.

The FFT uses **N** and f_s together to set your frequency resolution:

$$\Delta f = rac{f_s}{N}$$

- Bigger N o smaller Δf (better frequency resolution)
- Smaller N o larger Δf (coarser frequency resolution)

Here's the key chain:

- 1. Choose $N \rightarrow$ defines how many n's you have (0 to N-1)
- 2. n indexes the samples in that N-block
- 3. f_s tells you how those n's map to actual time
- 4. Together, N and f_s give you your FFT frequency spacing

P Brain Hook

Think of N as a row of seats in a theater, and n as seat numbers:

- If the theater has N=8 seats, seat numbers go from n=0 to n=7.
- ullet If you build a bigger theater (N=16), you now have seat numbers n=0 to n=15.
- The **distance** between seats is set by f_s in time (seconds apart).

Recap Table

Symbol	Meaning	Tied To
N	Number of samples in FFT block	Your processing choice
n	Position of a sample in the block	Always 0 to N-1
f_s	Samples per second	Hardware/sample rate
Δt	Time between samples = $1/f_s$	From f_s
Δf	Frequency bin width = f_s/N	From f_s & N

Now the link is **explicit**:

- n lives inside N it is meaningless without knowing N.
- ullet N is the "container," n is the "slot number" in that container.
- ullet f_s turns those slot numbers into real-world time and frequency.