

Omni-Link

Serial Protocol Description

This document contains the intellectual property of Home Automation, Inc. (HAI). HAI authorizes the use of this information for the sole purpose of developing software and systems to work with HAI's Serial Interface. The specifications in this document are subject to change without notice.

GENERAL

This document defines the Omni-Link communications protocol. This protocol allows an external device to communicate with a Home Automation, Inc. automation controller through an RS-232 or RS-485 serial interface. Omni-Link allows the external device to monitor the status of the HAI controller and to control its operation. The current status of the security system and of each security zone, control unit, temperature sensor, thermostat, and displayed text messages may be obtained. Commands may be sent to control security, units, temperature setpoints, and thermostat operation. Additionally, the controller display names may be uploaded from and downloaded to the HAI controller and the event log may be uploaded from the HAI controller.

ELECTRICAL INTERFACE

The external device connects to the HAI controller in one of the following manners:

a) Through the HAI Model 10A17-1 Serial Interface connected to an OmniLT, Omni, Omni II, Omni IIe, OmniPro, OmniPro II, Lumina, or Lumina Pro controller. This interface provides both an RS-232 interface and an RS-485 interface. Only one of these interfaces may be active at a time.

The RS-232 interface is provided through a standard DB-9M connector. The serial interface may be connected to a personal computer using a readily available "null modem" or data transfer cable.

The RS-485 interface is provided through a two-position terminal block.

b) Through the serial interface built onto the OmniLT, Omni II, Omni IIe, OmniPro II, Lumina, or Lumina Pro controller. The serial interface supports both RS-232 and RS-485 connections.

The RS-232 interface is provided through a modular connector on the controller. To access the RS-232 interface, use the HAI Model 21A05-2 Serial Cable Kit. Plug one end of the cable into the modular connector on the controller. Plug the other end into the Model 21A05-1 Serial Cable Adapter (modular to DB-9 RS-232), which connects the controller's serial port to the computer's DB-9 RS-232 port.

The RS-485 interface is provided through the same modular connector. To select RS-485, move the interface jumper (below the modular connector) from the "232" to the "485" position. Using a standard 4 position phone cable, use the Yellow and Green wires for communications.

The RS-232 interface is configured as DTE (data terminal equipment). This is the same configuration as provided on a typical personal computer.

The RS-485 interface may be connected to the external device up to 1000 feet away when using standard twisted pair cabling. Since the RS-485 interface is a half-duplex bus, the external device must be capable of turning its RS-485 driver on before transmitting to the controller and turning it off after it has completed its transmission to the controller.

Data is transmitted asynchronously using standard nonreturn-to-zero (NRZ) format (one start bit, eight data bits, and a single stop bit) at up to 9600 baud.

MESSAGE TIMING

The Omni-Link protocol is a master/slave protocol. The external device is the master. The HAI controller is the slave. The master initiates all communications. The slave can only communicate when requested by the master. All communication takes place half-duplex. That is, the master will first transmit to the slave, then the slave may reply to the master.

Data transfer between the external device and the HAI controller takes place though a series of message exchanges. The external device sends a message to the controller requesting the controller to take some action or to provide some information. The controller then replies with the requested information or an acknowledgement that it has performed the desired action.

When using the RS-485 interface, the master must turn on its RS-485 driver, send its message, then disable its RS-485 driver after the last character of the message has been transmitted. The master's driver must be turned off and the master must be ready to receive the slave's reply within 1 ms after the last character has been transmitted.

The master must allow at least 1 second for the slave to begin replying with its message. It must then allow at least 50 ms for each subsequent character to be sent. The master must wait at least 1 ms after receiving the last character from the slave before turning on its driver again to initiate a new message.

MESSAGE FORMAT

The Omni-Link protocol is a binary protocol. That is, one byte of data is sent as a single character whose hex value is 0x00 through 0xFF.

Messages in the Omni-Link protocol can use either the "addressable" format or the "non-addressable" format.

Any HAI controller that supports the Omni-Link protocol can use the non-addressable format. The non-addressable format allows only one master device and one HAI controller on the communication link.

Some HAI controllers support the addressable format in addition to the non-addressable format. These controllers can be used in the non-addressable mode as described in the preceding paragraph. They can also be used in the addressable mode, so that multiple HAI controllers can be multi-dropped on the same RS-485 communication link. In this mode, each controller is assigned an address that is unique to the communication link. Every controller on the shared communication link receives all messages transmitted by the master device. The controller ignores any message whose address value does not match it's own address.

The HAI controller will always recognize messages in the non-addressable format, even if it has been configured with an address for use with the addressable mode. Of course, messages in the non-addressable format should never be transmitted on a multi-dropped communication link, since all of the controllers will react to the message and the replies will collide.

The general format of a "non-addressable" message is as follows:

Field	Length	Comments
Start character	1 byte	Value is always 0x5A
Message length	1 byte	Value is the total number of bytes in the "message type" and "data" fields
Message type	1 byte	Value indicates the specific function of the message
Data	variable	Zero or more bytes, depending on the specific "message type"
CRC 1	1 byte	Least-significant-byte of 16-bit CRC
CRC 2	1 byte	Most-significant-byte of 16-bit CRC

The general format of an "addressable" message is as follows:

Field	Length	Comments
Start character	1 byte	Value is always 0x41
Address	1 byte	Must be within range of 0x01 to 0xFE, inclusive
Message length	1 byte	Value is the total number of bytes in the "message type" and "data" fields
Message type	1 byte	Value indicates the specific function of the message
Data	none	Zero or more bytes, depending on the specific "message type"
CRC 1	1 byte	Least-significant-byte of 16-bit CRC
CRC 2	1 byte	Most-significant-byte of 16-bit CRC

The CRC-16 error detection algorithm is used to provide a robust error detection capability in the Omni-Link protocol. The CRC1 and CRC2 error check bytes are the 16-bit CRC-16 polynomial remainder, sent least-significant-bit first. The CRC value is calculated using all bytes of the message, except the "start character" and the CRC fields. Sample routines to calculate the CRC-16 error check bytes are provided in Appendix A.

MESSAGE TYPES

Different message types are provided in the Omni-Link protocol to perform different actions. These message types can be divided into several groups:

- Acknowledgement messages
- Access control messages
- Status request messages
- Status report messages
- System event messages
- Command messages
- Name messages
- Event log messages
- Validate security code messages
- Status summary message
- Current temperature message
- Zone ready status message
- Keypad emergency message
- Memo message

Please note that in the following sections describing the various message types, only the "non-addressable" message format is shown. The corresponding message in the "addressable" format would have the following differences:

- Start character would be 0x41
- Address byte would be inserted immediately following start character
- CRC value would be different, since address byte must be included in CRC-16 calculation

ACKNOWLEDGEMENT MESSAGES

Acknowledgement messages are sent to acknowledge the receipt of another message. An ACKNOWLEDGE message is sent in response to another message to indicate that the message was received correctly and processed. A NEGATIVE ACKNOWLEDGE message is sent in response to another message to indicate that the message was received correctly, but was not processed due to an error in the message format or to an inability to successfully perform the requested action.

ACKNOWLEDGE

Start character	0x5A
Message length	0x01
Message type	0x05
Data	none
CRC 1	0xC1
CRC 2	0x93

NEGATIVE ACKNOWLEDGE

Start character	0x5A
Message length	0x01
Message type	0x06
Data	none
CRC 1	0x81
CRC 2	0x92

ACCESS CONTROL MESSAGES

Access control messages are used to insure that only authorized users may access the HAI controller through the Omni-Link interface. The external device must first "log in" using an approved security code before access is allowed to the HAI controller. It may then "log out" when the access has been completed. Once logged in, the external device has full access to the controller. Therefore, only the PC access code or a master code may be used to access the controller through Omni-Link.

The external device "logs in" by sending a LOGIN message containing an approved security code. The controller will reply with an ACKNOWLEDGE message if the login was successful. Prior to login, the controller will send NEGATIVE ACKNOWLEDGE messages in reply to all other messages.

The ACKNOWLEDGE message can be used to determine if the external device is currently logged in. The controller will reply to an ACKNOWLEDGE message with another ACKNOWLEDGE message if the external device is logged in. The controller will reply with a NEGATIVE ACKNOWLEDGE message if the external device is not logged in.

The controller will disallow any further login attempts for one hour if three consecutive unsuccessful login attempts are made. This prevents an intruder from randomly trying all possible security codes to gain access to the controller.

The external device "logs out" by sending a LOGOUT message. This allows the Omni-Link interface to be secured when the external device has completed access to the controller. The system will automatically log the external device out if:

- No messages are sent for three minutes
- Carrier detect is lost when using a modem
- The controller is reset

LOGIN

Start character	0x5A
Message length	0x05
Message type	0x20
Data 1	first digit of code
Data 2	second digit of code
Data 3	third digit of code
Data 4	fourth digit of code

CRC 1 varies CRC 2 varies

Each of the digits of the security code must be sent as the numeric value of the digit, 0x00 through 0x09.

LOGOUT

Start character	0x5A
Message length	0x01
Message type	0x21
Data	none
CRC 1	0xC1
CRC 2	0x88

STATUS REQUEST MESSAGES

Status request messages are sent by the external device to the HAI controller to request that the controller report certain status information. The following information can be requested:

- System information
- System status
- Zone status
- Unit status
- Auxiliary status
- Thermostat status
- Message Status

REQUEST SYSTEM INFORMATION

This message requests the HAI controller to report its model number, software version, and local phone number.

0x5A
0x01
0x11
none
0xC1
0x9C

Expected reply SYSTEM INFORMATION

REQUEST SYSTEM STATUS

This message requests the HAI controller to report its time, date, calculated time of sunrise and sunset, battery reading, current security mode for each area, and the status of each expansion enclosure. The status for each expansion enclosure includes the AC power status, battery status, communications status, and battery reading.

Start character	0x5A
Message length	0x01
Message type	0x13
Data	none
CRC 1	0x40
CRC 2	0x5D

Expected reply SYSTEM STATUS

REQUEST ZONE STATUS

This message requests the HAI controller to report the status of a group of security zones. The status reported for each zone includes the current condition of the zone (secure, not ready, or trouble), the latched alarm status for the zone, whether the zone is armed, whether the zone has had any trouble, and the current analog loop reading for the zone. The status for a maximum of 93 zones may be requested at one time.

Start character	0x5A
Message length	0x03
Message type	0x15
Data 1	starting zone
Data 2	ending zone
CRC 1	varies
CRC 2	varies

Expected reply ZONE STATUS

REQUEST UNIT STATUS

This message requests the HAI controller to report the status of a group of units. The status reported for each unit includes the unit's current condition and any time remaining on a timed command. The status for a maximum of 62 units may be requested at one time.

If both the starting and ending unit numbers are less than 256, the request is sent using one byte for each unit number:

Start character	0x5A
Message length	0x03
Message type	0x17
Data 1	starting unit
Data 2	ending unit
CRC 1	varies

CRC 1 varies CRC 2 varies

Expected reply UNIT STATUS

If either of the unit numbers is 256 or greater, the request is sent using two bytes for each unit number:

Start character	0x5A
Message length	0x05
Message type	0x17

Data 1 starting unit (MSB)
Data 2 starting unit (LSB)
Data 3 ending unit (MSB)
Data 4 ending unit (LSB)

CRC 1 varies CRC 2 varies

Expected reply UNIT STATUS

REQUEST AUXILIARY STATUS

This message requests the HAI controller to report the status of a group of temperature sensors. The status reported for each temperature sensor includes: the output relay status for Programmable Energy Saver Modules (PESMs), the current temperature reading, and the low and high temperature setpoints. The status for a maximum of 46 temperature sensors may be requested at one time.

Start character	0x5A
Message length	0x03
Message type	0x19

Data 1 starting temperature sensor
Data 2 ending temperature sensor

CRC 1 varies CRC 2 varies

Expected reply AUXILIARY STATUS

REQUEST THERMOSTAT STATUS

This message requests the HAI controller to report the status of a group of thermostats. The status reported for each thermostat includes whether the thermostat is communicating with the controller, whether a freeze condition has been detected by the thermostat, the current temperature, the heat and cool setpoints, the system mode, the fan mode, and whether the thermostat has been placed in hold mode. The status for a maximum of 26 thermostats may be requested at one time.

 $\begin{array}{ll} \text{Start character} & 0x5A \\ \text{Message length} & 0x03 \\ \text{Message type} & 0x1E \end{array}$

Data 1 starting thermostat
Data 2 ending thermostat

CRC 1 varies CRC 2 varies

Expected reply THERMOSTAT STATUS

REQUEST MESSAGE STATUS

This message requests the HAI controller to report the status of displayed text messages. The status reported for each message includes which messages are currently being displayed and what displayed messages have not been acknowledged. The status reported also indicates if there is a memo message that has not yet been played.

Start character	0x5A
Message length	0x01
Message type	0x24
Data	none
CRC 1	0x01
CRC 2	0x8B

STATUS REPORT MESSAGES

Status report messages are sent in response to each of the status request messages. The following information is reported:

- System information
- System status
- Zone status
- Unit status
- Auxiliary status
- Thermostat status
- Message status

SYSTEM INFORMATION

This message is sent by the HAI controller in reply to a REQUEST SYSTEM INFORMATION message. The controller reports its model number, software version, and local phone number.

Start character	0x5A
Message length	0x1E
Message type	0x12
Data 1	model number
Data 2	major version
Data 3	minor version
Data 4	revision
Data 5-29	local phone number
CRC 1	varies
CRC 2	varies

The model number identifies the controller model, such as OmniLT, Omni, Omni II, OmniPro, or OmniPro II. The following model numbers are defined:

NUMBER	MODEL
9	HAI OmniLT
2	HAI Omni
15	HAI Omni II
30	HAI Omni IIe
4	HAI OmniPro
16	HAI OmniPro II
36	HAI Lumina
37	HAI Lumina Pro

The major version, minor version, and revision identify the controller software version. For example, if the software version is 1.4G, the major version would be 0x01, the minor version would be 0x04, and the revision would be 0x07. Revision 0x00 specifies no revision letter, revision 0x01 specifies revision A, and so on. If the revision is a 2's complement negative number, such as 0xFF, it specifies a prototype revision such as X1 or X2. Revision 0xFF specifies revision X1, revision 0xFE specifies revision X2, and so on.

The local phone number corresponds to the "MY PHONE NUMBER" setting in the controller. It is an ASCII text string up to 24 characters long, terminated with a trailing 0x00.

SYSTEM STATUS

This message is sent by the HAI controller in reply to a REQUEST SYSTEM STATUS message. The controller reports its time, date, calculated time of sunrise and sunset, battery reading, current security mode for each area, and the status of each expansion enclosure. The status for each expansion enclosure includes the AC power status, battery status, communications status, and battery reading.

The time/date valid flag is zero if the time and date have not been set in the controller. The daylight savings time flag is nonzero if daylight savings time is in effect. The day of the week is 1 for Monday through 7 for Sunday.

The security mode for an area is as follows:

0	Off
1	Day
2	Night
3	Away
4	Vacation
5	Day instant
6	Night delayed

For HAI OmniLT, the reply is as follows:

Start character	0x5A
Message length	0x10
Message type	0x14
Data 1	time/date valid flag
Data 2	year (0-99)
Data 3	month (1-12)
Data 4	day (1-31)
Data 5	day of week (1-7)
Data 6	hour (0-23)
Data 7	minute (0-59)
Data 8	second (0-59)
Data 9	daylight savings time flag
Data 10	calculated sunrise hour (0-23)
Data 11	calculated sunrise minute (0-59)
Data 12	calculated sunset hour (0-23)
Data 13	calculated sunset minute (0-59)
Data 14	battery reading
Data 15	security mode
CRC 1	varies
CRC 2	varies

For HAI Omni, HAI Omni II, and HAI Omni IIe, the reply is as follows:

Start character Message length Message type Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 15 Data 16 CRC 1	0x5A 0x11 0x14 time/date valid flag year (0-99) month (1-12) day (1-31) day of week (1-7) hour (0-23) minute (0-59) second (0-59) daylight savings time flag calculated sunrise hour (0-23) calculated sunrise minute (0-59) calculated sunset hour (0-23) calculated sunset minute (0-59) battery reading area 1 security mode area 2 security mode varies
CRC 2	varies

For HAI OmniPro, the reply is as follows:

Start character	0x5A
Message length	0x1F
Message type	0x14
Data 1	time/date valid flag
Data 2	year (0-99)
Data 3	month (1-12)
Data 4	day (1-31)
Data 5	day of week (1-7)
Data 6	hour (0-23)
Data 7	minute (0-59)
Data 8	second (0-59)
Data 9	daylight savings time flag
Data 10	calculated sunrise hour (0-23)
Data 11	calculated sunrise minute (0-59)
Data 12	calculated sunset hour (0-23)
Data 13	calculated sunset minute (0-59)
Data 14	battery reading
Data 15	area 1 security mode
Data 16	area 2 security mode
Data 17	area 3 security mode
Data 18	area 4 security mode
Data 19	area 5 security mode
Data 20	area 6 security mode
Data 21	area 7 security mode
Data 22	area 8 security mode
Data 23	expansion enclosure 1 status
Data 24	expansion enclosure 1 battery reading
Data 25	expansion enclosure 2 status
Data 26	expansion enclosure 2 battery reading
Data 27	expansion enclosure 3 status
Data 28	expansion enclosure 3 battery reading
Data 29	expansion enclosure 4 status
Data 30	expansion enclosure 4 battery reading
CRC 1	varies
CRC 2	varies

For HAI OmniPro II, the reply is as follows:

Start character	0x5A
Message length	0x3A 0x27
Message type	0x14
Data 1	time/date valid flag
Data 2	year (0-99)
Data 3	month (1-12)
Data 4	
Data 4 Data 5	day (1-31)
Data 6	day of week (1-7)
	hour (0-23)
Data 7 Data 8	minute (0-59)
Data 9	second (0-59)
	daylight savings time flag
Data 10	calculated sunrise hour (0-23)
Data 11	calculated sunrise minute (0-59)
Data 12	calculated sunset hour (0-23)
Data 13	calculated sunset minute (0-59)
Data 14	battery reading
Data 15	area 1 security mode
Data 16	area 2 security mode
Data 17	area 3 security mode
Data 18	area 4 security mode
Data 19	area 5 security mode
Data 20	area 6 security mode
Data 21	area 7 security mode
Data 22	area 8 security mode
Data 23	expansion enclosure 1 status
Data 24	expansion enclosure 1 battery reading
Data 25	expansion enclosure 2 status
Data 26	expansion enclosure 2 battery reading
Data 27	expansion enclosure 3 status
Data 28	expansion enclosure 3 battery reading
Data 29	expansion enclosure 4 status
Data 30	expansion enclosure 4 battery reading
Data 31	expansion enclosure 5 status
Data 32	expansion enclosure 5 battery reading
Data 33	expansion enclosure 6 status
Data 34	expansion enclosure 6 battery reading
Data 35	expansion enclosure 7 status
Data 36	expansion enclosure 7 battery reading
Data 37	expansion enclosure 8 status
Data 38	expansion enclosure 8 battery reading
CRC 1	varies
CRC 2	varies
cite 2	Varios

The bits in the expansion enclosure status bytes are shown below. The corresponding bit is set if the condition is true.

Bit 0	AC power off
Bit 1	Battery low
Bit 7	Communications failure

For Lumina and Lumina Pro, the mode is as follows:

1	Home
2	Sleep
3	Away
4	Vacation
5	Party
6	Special

For HAI Lumina, the reply is as follows:

Start character	0x5A
Message length	0x10
Message type	0x14
Data 1	time/date valid flag
Data 2	year (0-99)
Data 3	month (1-12)
Data 4	day (1-31)
Data 5	day of week (1-7)
Data 6	hour (0-23)
Data 7	minute (0-59)
Data 8	second (0-59)
Data 9	daylight savings time flag
Data 10	calculated sunrise hour (0-23)
Data 11	calculated sunrise minute (0-59)
Data 12	calculated sunset hour (0-23)
Data 13	calculated sunset minute (0-59)
Data 14	battery reading
Data 15	mode
CRC 1	varies

varies

0x5A

For HAI Lumina Pro, the reply is as follows:

CRC 2

Start character

Message length	0x20
Message type	0x14
Data 1	time/date valid flag
Data 2	year (0-99)
Data 3	month (1-12)
Data 4	day (1-31)
Data 5	day of week (1-7)
Data 6	hour (0-23)
Data 7	minute (0-59)
Data 8	second (0-59)
Data 9	daylight savings time flag
Data 10	calculated sunrise hour (0-23)
Data 11	calculated sunrise minute (0-59)
Data 12	calculated sunset hour (0-23)
Data 13	calculated sunset minute (0-59)
Data 14	battery reading
Data 15	mode

Data 16	expansion enclosure 1 status
Data 17	expansion enclosure 1 battery reading
Data 18	expansion enclosure 2 status
Data 19	expansion enclosure 2 battery reading
Data 20	expansion enclosure 3 status
Data 21	expansion enclosure 3 battery reading
Data 22	expansion enclosure 4 status
Data 23	expansion enclosure 4 battery reading
Data 24	expansion enclosure 5 status
Data 25	expansion enclosure 5 battery reading
Data 26	expansion enclosure 6 status
Data 27	expansion enclosure 6 battery reading
Data 28	expansion enclosure 7 status
Data 29	expansion enclosure 7 battery reading
Data 30	expansion enclosure 8 status
Data 31	expansion enclosure 8 battery reading
CRC 1	varies
CRC 2	varies

ZONE STATUS

This message is sent by the HAI controller in reply to a REQUEST ZONE STATUS message. The controller reports the status of a group of security zones. The status reported for each zone includes the current condition of the zone (secure, not ready, or trouble), the latched alarm status for the zone, whether the zone is armed, whether the zone has had any trouble, and the current analog loop reading for the zone.

Start character	0x5A
Message length	(2 * number of zones) + 1
Message type	0x16
Data 1	zone status for first zone
Data 2	analog loop reading for first zone
Data 3	zone status for second zone
Data 4	analog loop reading for second zone
Data n-1 Data n CRC 1 CRC 2	zone status for last zone analog loop reading for last zone varies varies

The zone status for a zone is packed into a single byte. Bits 0 and 1 indicate the current condition of the zone:

Bit 1 Bi	it 0	Current Condition
0 0		Secure
0 1		Not ready
1 0		Trouble

Bits 2 and 3 indicate the latched alarm status for the zone:

Bit 3	Bit 2	Latched Alarm Status
0	0	Secure
0	1	Tripped
1	0	Reset, but previously tripped

Bits 4 and 5 indicate the arming status for the zone:

Bit 5	Bit 4	Arming Status
0	0	Disarmed
0	1	Armed
1	0	Bypassed by user
1	1	Bypassed by system

Bit 6 is set if a trouble condition has occurred that has not been acknowledged by the user. The current condition of the zone will indicate whether the zone currently has a trouble condition. If the zone does not currently have a trouble condition, but bit 6 is set, it indicates that the zone has previously had a trouble condition that has not yet been acknowledged.

Status can be requested for the following zones in HAI OmniLT:

Zone 1-25	Security zone inputs
Zone 26	Freeze alarm
Zone 27	Fire emergency
Zone 28	Police emergency
Zone 29	Auxiliary emergency
Zone 30	Duress alarm
Zone 31	Battery low trouble
Zone 32	AC power failure trouble
Zone 33	Phone line dead trouble
Zone 34	Digital communicator trouble
Zone 35	Fire tamper trouble
Zone 36	Fuse trouble

Status can be requested for the following zones in HAI Omni:

Zone 1-32	Security zone inputs
Zone 33	Freeze alarm
Zone 34	Area 1 fire emergency
Zone 35	Area 2 fire emergency
Zone 36	Area 1 police emergency
Zone 37	Area 2 police emergency
Zone 38	Area 1 auxiliary emergency
Zone 39	Area 2 auxiliary emergency
Zone 40	Area 1 duress alarm
Zone 41	Area 2 duress alarm
Zone 42	Battery low trouble
Zone 43	AC power failure trouble
Zone 44	Phone line dead trouble
Zone 45	Digital communicator trouble

Status can be requested for the following zones in HAI Omni II and HAI Omni IIe:

Zone 1-48	Security zone inputs
Zone 49	Freeze alarm
Zone 50	Area 1 fire emergency
Zone 51	Area 2 fire emergency
Zone 52	Area 1 police emergency
Zone 53	Area 2 police emergency
Zone 54	Area 1 auxiliary emergency
Zone 55	Area 2 auxiliary emergency
Zone 56	Area 1 duress alarm
Zone 57	Area 2 duress alarm
Zone 58	Battery low trouble
Zone 59	AC power failure trouble
Zone 60	Phone line dead trouble
Zone 61	Digital communicator trouble
Zone 62	Fire tamper trouble
Zone 63	Fuse trouble

Status can be requested for the following zones in HAI OmniPro:

Zone 1-96	Security zone inputs
Zone 97	Freeze alarm
Zone 98	Area 1 fire emergency
Zone 99	Area 2 fire emergency
Zone 100	Area 3 fire emergency
Zone 101	Area 4 fire emergency
Zone 102	Area 5 fire emergency
Zone 103	Area 6 fire emergency
Zone 104	Area 7 fire emergency
Zone 105	Area 8 fire emergency
Zone 106	Area 1 police emergency
Zone 107	Area 2 police emergency
Zone 108	Area 3 police emergency
Zone 109	Area 4 police emergency
Zone 110	Area 5 police emergency
Zone 111	Area 6 police emergency
Zone 112	Area 7 police emergency
Zone 113	Area 8 police emergency
Zone 114	Area 1 auxiliary emergency
Zone 115	Area 2 auxiliary emergency
Zone 116	Area 3 auxiliary emergency
Zone 117	Area 4 auxiliary emergency
Zone 118	Area 5 auxiliary emergency
Zone 119	Area 6 auxiliary emergency
Zone 120	Area 7 auxiliary emergency
Zone 121	Area 8 auxiliary emergency
Zone 122	Area 1 duress alarm
Zone 123	Area 2 duress alarm
Zone 124	Area 3 duress alarm
Zone 125	Area 4 duress alarm
Zone 126	Area 5 duress alarm
Zone 127	Area 6 duress alarm
Zone 128	Area 7 duress alarm
Zone 129	Area 8 duress alarm

Zone 130	Battery low trouble
Zone 131	AC power failure trouble
Zone 132	Phone line dead trouble
Zone 133	Digital communicator trouble

Status can be requested for the following zones in HAI OmniPro II:

Zone 1-176	Security zone inputs
Zone 177	Freeze alarm
Zone 178	Area 1 fire emergency
Zone 179	Area 2 fire emergency
Zone 180	Area 3 fire emergency
Zone 181	Area 4 fire emergency
Zone 182	Area 5 fire emergency
Zone 183	Area 6 fire emergency
Zone 184	Area 7 fire emergency
Zone 185	Area 8 fire emergency
Zone 186	Area 1 police emergency
Zone 187	Area 2 police emergency
Zone 188	Area 3 police emergency
Zone 189	Area 4 police emergency
Zone 190	Area 5 police emergency
Zone 191	Area 6 police emergency
Zone 192	Area 7 police emergency
Zone 193	Area 8 police emergency
Zone 194	Area 1 auxiliary emergency
Zone 195	Area 2 auxiliary emergency
Zone 196	Area 3 auxiliary emergency
Zone 197	Area 4 auxiliary emergency
Zone 198	Area 5 auxiliary emergency
Zone 199	Area 6 auxiliary emergency
Zone 200	Area 7 auxiliary emergency
Zone 201	Area 8 auxiliary emergency
Zone 202	Area 1 duress alarm
Zone 203	Area 2 duress alarm
Zone 204	Area 3 duress alarm
Zone 205	Area 4 duress alarm
Zone 206	Area 5 duress alarm
Zone 227	Area 6 duress alarm
Zone 208	Area 7 duress alarm
Zone 209	Area 8 duress alarm
Zone 210	Battery low trouble
Zone 211	AC power failure trouble
Zone 212	Phone line dead trouble
Zone 213	Digital communicator trouble
Zone 214	Fire tamper trouble
Zone 215	Fuse trouble

Status can be requested for the following zones in HAI Lumina:

Zone 1-48	Zone inputs
Zone 49	Freeze alarm
Zone 50	Battery low trouble
Zone 51	AC power failure trouble
Zone 52	Phone line dead trouble
Zone 53	Digital communicator trouble
Zone 54	Fuse trouble

Status can be requested for the following zones in HAI Lumina Pro:

Zone 1-176	Zone inputs
Zone 177	Freeze alarm
Zone 178	Battery low trouble
Zone 179	AC power failure trouble
Zone 180	Phone line dead trouble
Zone 181	Digital communicator trouble
Zone 182	Fuse trouble

UNIT STATUS

This message is sent by the HAI controller in reply to a REQUEST UNIT STATUS message. The controller reports the status of a group of control units. The status reported for each unit includes the unit's current condition and any time remaining on a timed command.

Start character Message length Message type Data 1 Data 2 Data 3 Data 4 Data 5 Data 6	0x5A (3 * number of units) + 1 0x18 current condition of first unit high byte of time for first unit low byte of time for first unit current condition of second unit high byte of time for second unit low byte of time for second unit
Data n-2 Data n-1 Data n CRC 1 CRC 2	current condition of last unit high byte of time for last unit low byte of time for last unit varies varies

The current condition of the unit depends on the type of the unit.

For X-10 units, the possible conditions are:

0	Last commanded off
1	Last commanded on

17-25 Last commanded dim 1-9, respectively
33-41 Last commanded brighten 1-9, respectively
100-200 Last commanded level 0%-100%, respectively

For Lightolier Compose PLC units:

0	Off
1	On

2-13 Scene A-L, respectively

17-25 Last commanded dim 1-9, respectively
33-41 Last commanded brighten 1-9, respectively

For Advanced Lighting Control (ALC) relay modules:

0 Off 1 On

For Advanced Lighting Control (ALC) dimmer modules:

0 Off 1 On

100-200 Level 0%-100%, respectively

For Universal Powerline Bus (UPB) units:

0 Off 1 On

100-200 Level 0%-100%, respectively

For voltage outputs:

0 Off 1 On

For flags:

0 Off Non-zero On

For counters:

0-255 Counter value

The time remaining for the last command is specified in seconds.

AUXILIARY STATUS

This message is sent by the HAI controller in reply to a REQUEST AUXILIARY STATUS message. The controller reports the status of a group of temperature sensors. The status reported for each temperature sensor includes: the output relay status for Programmable Energy Saver Modules (PESMs), the current temperature reading, and the low and high temperature setpoints.

Start character	0x5A
Message length	(4 * number of temperature sensors) + 1
Message type	0x1A
Data 1	Relay status for first temperature sensor
Data 2	Current temperature for first temperature sensor
Data 3	Low/heat temperature setpoint for first temperature sensor
Data 4	High/cool temperature setpoint for first temperature sensor
Data 5	Relay status for second temperature sensor
Data 6	Current temperature for second temperature sensor
Data 7	Low/heat temperature setpoint for second temperature sensor
Data 8	High/cool temperature setpoint for second temperature sensor
Data n-3	Relay status for last temperature sensor
Data n-2	Current temperature for last temperature sensor
Data n-1	Low/heat temperature setpoint for last temperature sensor
Data n	High/cool temperature setpoint for last temperature sensor
CRC 1	varies
CRC 2	varies

The relay status is non-zero if the relay is energized. The temperatures are reported in the Omni temperature format (see Appendix B).

THERMOSTAT STATUS

This message is sent by the HAI controller in reply to a REQUEST THERMOSTAT STATUS message. The controller reports the status of a group of thermostats. The status reported for each thermostat includes whether the thermostat is communicating with the controller, whether a freeze condition has been detected by the thermostat, the current temperature, the heat and cool setpoints, the system mode, the fan mode, and whether the thermostat has been placed in hold mode.

Start character	0x5A
Message length	(7 * number of thermostats) + 1
Message type	0x1F
Data 1	Status byte for first thermostat
Data 2	Current temperature for first thermostat
Data 3	Heat setpoint for first thermostat
Data 4	Cool setpoint for first thermostat
Data 5	System mode for first thermostat
Data 6	Fan mode for first thermostat
Data 7	Hold status for first thermostat
Data 8	Status byte for second thermostat
Data 9	Current temperature for second thermostat
Data 10	Heat setpoint for second thermostat
Data 11	Cool setpoint for second thermostat
Data 12	System mode for second thermostat
Data 13	Fan mode for second thermostat
Data 14	Hold status for second thermostat

Data n-6	Status byte for last thermostat
Data n-5	Current temperature for last thermostat
Data n-4	Heat setpoint for last thermostat
Data n-3	Cool setpoint for last thermostat
Data n-2	System mode for last thermostat
Data n-1	Fan mode for last thermostat
Data n	Hold status for last thermostat
CRC 1	varies
CRC 2	varies

The bits in the thermostat status byte are shown below. The corresponding bit is set if the condition is true.

Bit 0	Communications	failure

Bit 1 Freeze alarm

The temperatures are reported in the Omni temperature format (see Appendix B).

The system mode is as follows:

0	Off
1	Heat
2	Cool
3	Auto
4	Emergency heat

The fan mode is as follows:

0	Auto
1	On

The hold status is non-zero if the thermostat is in hold mode.

MESSAGE STATUS

This message is sent by the HAI controller in reply to a REQUEST MESSAGE STATUS message. The controller reports the status of displayed text messages. The status reported for each message includes which messages are currently being displayed and what displayed messages have not been acknowledged. For OmniPro II, the status reported also indicates if there is a memo message that has not yet been played.

The status of each text message is indicated by two bits. The low order bit is set if the message is currently being displayed on the system console. The high order bit is set if the message has not been acknowledged. The statuses for four messages are packed into one Omni-Link message byte. The status of the lower numbered message is packed into the two high order bits, and the status for the higher numbered messages are packed into the lower order bits.

Four data bytes are used to report the status of the 16 messages in an OmniLT.

Start character	0x5A
Message length	0x06
Message type	0x25
Data 1	0x00
Data 2	status of messages 1-4
Data 3	status of messages 5-8
Data 4	status of messages 9-12
Data 5	status of messages 13-16
CRC 1	varies
CRC 2	varies

Sixteen data bytes are used to report the status of the 64 text messages in an Omni II, Omni IIe, and Lumina system.

0x5A
0x12
0x25
0x00
status of messages 1-4
status of messages 5-8
status of messages 9-12
status of message 57-60
status of messages 61-64
varies
varies

Thirty-two data bytes are used to report the status of the 128 text messages in an OmniPro, OmniPro II, and Lumina Pro system.

Start character Message length Message type Data 1 Data 2 Data 3	0x5A 0x22 0x25 0x00 (for OmniPro II, bit 0 is set if memo message not yet played) status of messages 1-4 status of messages 5-8
Data 4 Data 32	status of messages 9-12 status of message 121-124
Data 33 CRC 1	status of messages 125-128 varies
CRC 2	varies

SYSTEM EVENT MESSAGES

HAI controllers generate system events upon the occurrence of various changes in the controller (see Appendix C). These messages allow the external device to monitor changes in the HAI controller and to react to these changes. By periodically polling for system events the external device can quickly detect and operate on changes in the HAI controller.

The REQUEST SYSTEM EVENTS message requests the HAI controller to send a list of system events that have occurred since the controller last reported system events. The controller responds with a SYSTEM EVENTS message that reports each of the system events in the order of occurrence.

REQUEST SYSTEM EVENTS

Start character	0x5A
Message length	0x01
Message type	0x22
Data	none
CRC 1	0x81
CRC 2	0x89

Expected reply SYSTEM EVENTS

SYSTEM EVENTS

CRC 2

Start character	0x5A
Message length	(2 * number of system events) + 1
Message type	0x23
Data 1	High byte of oldest system event
Data 2	Low byte of oldest system event
Data 3	High byte of next oldest system event
Data 4	Low byte of next oldest system event
•••	
Data n-1	High byte of most recent event
Data n	Low byte of most recent event
CRC 1	varies

varies

COMMAND MESSAGE

The COMMAND message is used to send an immediate control command to the HAI controller. Commands are provided to control lights, appliances, temperatures, security, and messaging. Each command follows the same format: a single byte command, followed by a single byte parameter, and then a two byte secondary parameter. The command message is formatted as follows:

Start character	0x5A
Message length	0x05
Message type	0x0F
Data 1	Command
Data 2	Parameter 1
Data 3	High byte of parameter 2
Data 4	Low byte of parameter 2
CRC 1	varies
CRC 2	varies

Each of the commands is shown:

Expected reply

Command	Parameter 1 P1	Parameter 2 P2	Description
0	0	1-n	unit P2 off
0	1-99	1-n	unit P2 off for P1 seconds
0	101-199	1-n	unit P2 off for P1-100 minutes
0	201-218	1-n	unit P2 off for P1-200 hours
1	0	1-n	unit P2 on
1	1-99	1-n	unit P2 on for P1 seconds
1	101-199	1-n	unit P2 on for P1-100 minutes
1	201-218	1-n	unit P2 on for P1-200 hours
2		0-n	area P2 all off (0=all areas)
3		0-n	area P2 all on (0=all areas)
9	0-100	1-n	unit P2 lighting level to P1 percent
10		1-n	decrement counter P2
11		1-n	increment counter P2
12	0-255	1-n	set counter P2 to P1

ACKNOWLEDGE

Note: For ALC extended ramp commands, the unit is stored in the low 9 bits of P2. The level to ramp to (0-100%) is stored in the high 7 bits of P2. The rate specifies the full excursion (0% to 100% or 100% to 0%) ramp rate. Smaller excursions will reach the desired level in less time.

13 13 13	2-99 101-199 201-210	1-n 1-n 1-n	unit Lo9(P2) ramp to Hi7(P2) at P1 seconds unit Lo9(P2) ramp to Hi7(P2) at P1-100 minutes unit Lo9(P2) ramp to Hi7(P2) at P1-200 hours
14	0	1-n	Lightolier Compose unit P2 off
14	1	1-n	Lightolier Compose unit P2 on
14	2-13	1-n	Lightolier Compose unit P2 scene A-L, respectively

15		1-n	send request status message to UPB unit P2
16+s	0	1-n	unit P2 dim s steps (s=1-9)
16+s	1-99	1-n	unit P2 dim s steps (s=1-9) for P1 seconds
16+s	101-199	1-n	unit P2 dim s steps (s=1-9) for P1-100 minutes
16+s	201-218	1-n	unit P2 dim s steps (s=1-9) for P1-200 hours
32+s	0	1-n	unit P2 brighten s steps (s=1-9)
$32+_{S}$	1-99	1-n	unit P2 brighten s steps (s=1-9) for P1 sec
$32+_{S}$	101-199	1-n	unit P2 brighten s steps (s=1-9) for P1-100 minutes
32+s	201-218	1-n	unit P2 brighten s steps (s=1-9) for P1-200 hours
28		1-n	UPB link P2 off (deactivate)
29		1-n	UPB link P2 on (activate)
30		1-n	UPB link P2 set (store preset)
42		1-n	CentraLite Scene off
43		1-n	CentraLite Scene on
44	1-8	1-n	UPB unit P2 LED P1 off
45	1-8	1-n	UPB unit P2 LED P1 on
46		1-n	RadioRA Phantom Button off
47		1-n	RadioRA Phantom Button on
60		1-n	scene P2 off (Leviton Scene off command)
61		1-n	scene P2 on (Leviton Scene on command)
62		1-n	scene P2 set (Leviton Scene set command)

For security commands, the code specified must be the user code number rather than the actual four digit security code. That is, send a 0x05 as the code if user code 5 is being used.

48+m	1-n	0-n	arm area P2 in mode m with code P1 P2 = 0 means all areas m = security mode: 0 = disarm 1 = day mode
			2 = night mode 3 = away mode 4 = vacation mode
			5 = day instant mode 6 = night delayed mode
4	1-n	1-n	bypass zone P2 with code P1
5	1-n	1-n	restore zone P2 with code P1
6	1-n	0-n	restore all area P2 zones with code P1 P2 = 0 means all areas/zones

For Lumina mode commands, the code specified must be the user code number rather than the actual four digit code. That is, send a 0x05 as the code if user code 5 is being used.

48+m	1-n	1	set mode m with code P1
			m = mode:
			1 = home mode
			2 = sleep mode
			3 = away mode
			4 = vacation mode
			5 = party mode
			6 = special mode

The execute macro button command can be used to activate the user operable macro buttons as well as system event macros (see Appendix C).

7		1-n	execute macro button P2
8	0-3		set energy cost to P1 $0 = low$ $1 = mid$ $2 = high$ $3 = critical$
64	0	1-n	energy saver P2 off
64	1-99	1-n	energy saver P2 off for P1 seconds
64	101-199	1-n	energy saver P2 off for P1-100 minutes
64	201-218	1-n	energy saver P2 off for P1-200 hours
65	0	1-n	energy saver P2 on
65	1-99	1-n	energy saver P2 on for P1 seconds
65	101-199	1-n	energy saver P2 on for P1-100 minutes
65	201-218	1-n	energy saver P2 on for P1-200 hours

For commands 66-70, P2 may be set to zero to indicate "all thermostats" in those controllers that support this capability.

For the following two commands, temperatures are stored in the Omni temperature format (see Appendix B) where 0 = -40 degC and 255 = 87.5 degC. Thus, 44-180 corresponds to 0 to 122 degF or -18 to 50 degC.

66	44-180	0-n	set temp zone P2 low/heat setpoint to P1
67	44-180	0-n	set temp zone P2 high/cool setpoint to P1
68	0-3	0-n	set thermostat P2 system mode to P1 $0 = \text{off}$ $1 = \text{heat}$ $2 = \text{cool}$ $3 = \text{auto}$
69	0-1	0-n	set thermostat P2 fan mode to P1 0 = auto 1 = on

70	0/255	0-n	set thermostat P2 hold mode to P1 $0 = \text{off}$ $255 = \text{hold}$
80 81		1-n 1-n	show message P2 log message P2
82	0-n	0-n	clear message P2 (0=all) if clear all messages, P1 = area (0=all)
83 84	1-n	1-n 1-n	say message P2 phone number P1 and say message P2
85	1-n	1-n	send message P2 out serial port P1
112	0-3	0-n	set audio zone P2 (0=all zones) to P1 0 = off 1 = on 2 = mute off 3 = mute on
113	0-100	1-n	set audio zone P2 volume to P1 percent
114	1-n	1-n	set audio zone P2 to audio source P1
115	1-40	1-n	audio zone P2 select key P1 (see key codes)

Key Code	Russound Keys	NuVo Keys	Key Code	Russound Keys	NuVo Keys
1	Power	Power	21	One	Four
2	Source step	Source step	22	Two	Five
3	Volume up	Volume up	23	Three	Six
4	Volume down	Volume down	24	Four	Seven
5	Mute	Mute	25	Five	Eight
6	Play	Play	26	Six	Nine
7	Stop	Stop	27	Seven	Plus ten
8	Pause	Pause	28	Eight	Enter
9	Minus	Rewind	29	Nine	Hotkey zero
10	Plus	Forward	30	Plus ten	Hotkey one
11	Previous / Fast rewind	Fast rewind	31	Enter	Hotkey two
12	Next / Fast forward	Fast forward	32	Guide	Hotkey three
13	Record	Continuous	33	33 Exit H	
14	Channel up	Shuffle	34	Info	Hotkey five
15	Channel down	Group	35	Menu	Hotkey six
16	Last	Disc	36	Menu up	Hotkey seven
17	Sleep	Zero	37	Menu right	Hotkey eight
18	Favorite 1	One	38	Menu down	Hotkey nine
19	Favorite 2	Two	39 Menu left		
20	Zero	Three	40	Select	

NAME MESSAGES

Display names for zones, units, buttons, codes, areas, thermostats, and messages may be uploaded from and downloaded to the HAI controller through the Omni-Link protocol. Names for all items must be transferred as part of the same upload/download sequence. It is not possible to upload/download the name of a single item without uploading/downloading the names of all items.

To upload names from the HAI controller, first send an UPLOAD NAMES message to the HAI controller. The controller will then send a series of NAME DATA messages, followed by a single END OF DATA message. Each NAME DATA message contains the name of a single item. NAME DATA messages are only sent for those items that have a name entered for them. The external device must acknowledge receipt of each NAME DATA message by sending an ACKNOWLEDGE message after each NAME DATA message is received. This informs the HAI controller that the NAME DATA message was received correctly and that the controller may send the next NAME DATA message. If for some reason the NAME DATA message is not received, the external device should send a NEGATIVE ACKNOWLEDGE message to the controller. This instructs the controller to resend the NAME DATA message that was missed. Once all names have been sent, the controller will send an END OF DATA message rather than a NAME DATA message, indicating the end of the name data transfer. If no names have been entered in the controller, the controller will respond with an END OF DATA message rather than a NAME DATA message in reply to the UPLOAD NAMES message.

To download names to the HAI controller, first send a DOWNLOAD NAMES message to the HAI controller. This instructs the controller to clear the names of all items and to enter the download names sequence. The controller will reply with an ACKNOWLEDGE message. The external device should then send a series of NAME DATA messages, followed by a single END OF DATA message. Each NAME DATA message contains the name of a single item. NAME DATA messages should only be sent for those items that have a name entered for them. The controller will acknowledge receipt of each NAME DATA message by send an ACKNOWLEDGE message after each NAME DATA message is received. This informs the external device that the NAME DATA message was received correctly and that the external device may send the next NAME DATA message. If the ACKNOWLEDGE message is not received from the controller, the external device should resend the NAME DATA message that was missed. Once all names have been sent, the external device should send an END OF DATA message rather than a NAME DATA message, indicating the end of the name data transfer. The HAI controller will send an ACKNOWLEDGE message in reply to the END OF DATA message.

UPLOAD NAMES

Start character	0x5A
Message length	0x01
Message type	0x0C
Data	none
CRC 1	0x01
CRC 2	0x95

DOWNLOAD NAMES

0x5A
0x01
0x0A
none
0x81
0x97

END OF DATA

Start character	0x5A
Message length	0x01
Message type	0x03
Data	none
CRC 1	0x41
CRC 2	0x91

NAME DATA

For item numbers less than 256, the item number is sent as a single byte:

Start character	0x5A
Message length	(maximum name length, exclusive of terminating zero) + 4
Message type	0x0B
Data 1	item type
Data 2	item number
Data 3	first byte of name
Data n	last byte of name
CRC 1	varies
CRC 2	varies

For item numbers 256 or greater, the item number is sent as two bytes:

Start character Message length Message type Data 1 Data 2 Data 3	0x5A (maximum name length, exclusive of terminating zero) + 5 0x0B item type item number (MSB) item number (LSB)
Data 4	first byte of name
Data n	last byte of name
CRC 1	varies
CRC 2	varies

The NAME DATA message specifies the name for a single item. Each name consists of one or more printable ASCII characters, followed by a terminating zero. Zone and message names can be up to 15 characters long, exclusive of the terminating zero. All other names may be up to 12 characters long. Names are always transferred with a fixed number of data bytes for each name type. Thus, a zone name will always be sent as 16 bytes, no matter how long the name really is. The terminating zero indicates the actual end of the name. Data bytes following the terminating zero may be filled with any value.

The item type and item number specifies what is being named. The item type identifies whether the name is for a zone, unit, button, code, area, thermostat, or message. The item number identifies the specific zone, unit, button, code, area, thermostat, or message.

Listed below are the item type, maximum name length, and maximum number of each type of name:

NAME	ТҮРЕ	LENGTH	NUMBER (OmniLT)	NUMBER (Omni IIe)	NUMBER (OmniPro II)	NUMBER (Lumina)	NUMBER (Lumina Pro)
Zone	1	15	25	48	176	48	176
Unit	2	12	36	128	511	128	511
Button	3	12	16	64	128	64	128
Code	4	12	8	16	99	16	99
Area	5	12	0	2	8	1	1
Thermostat	6	12	2	4	64	4	64
Message	7	15	16	64	128	64	128

NAME	ТҮРЕ	LENGTH	NUMBER (Omni)	NUMBER (Omni II)	NUMBER (OmniPro)
Zone	1	15	32	48	96
Unit	2	12	64	128	255
Button	3	12	32	64	64
Code	4	12	16	16	99
Area	5	12	2	2	8
Thermostat	6	12	4	4	64
Message	7	15	0	64	128

EVENT LOG MESSAGES

The HAI controller maintains an event log that records a time stamped listing of significant controller events, such as when the security system is armed/disarmed, alarm activations, and trouble conditions. The event log can store a fixed number of events. OmniLT systems can store 50 events in the event log. Omni systems can store 100 events in the event log. Omni II, OmniPro, and OmniPro II systems can store 250 events in the event log. Once the event log is full, logging a new event will cause the oldest event to be lost.

The event log may be uploaded from the HAI controller through the Omni-Link protocol. To upload the event log, first send an UPLOAD EVENT LOG message to the HAI controller. The controller will then send a series of EVENT LOG DATA messages followed by a single END OF DATA message. Each EVENT LOG DATA message contains the data for a single event. The most recent event is sent first. The external device must acknowledge receipt of each EVENT LOG DATA message by sending an ACKNOWLEDGE message after each EVENT LOG DATA message is received. This informs the HAI controller that the EVENT LOG DATA message was received correctly and that the controller may send the next EVENT LOG DATA message. If for some reason the EVENT LOG DATA message is not received, the external device should send a NEGATIVE ACKNOWLEDGE message to the controller. This instructs the controller to resend the EVENT LOG DATA message that was missed. Once the complete event log has been sent, the controller will send an END OF DATA message rather than a EVENT LOG DATA message, indicating the end of the event log transfer. If no events have been logged yet, the controller will respond with an END OF DATA message rather than an EVENT LOG DATA message in reply to the UPLOAD EVENT LOG message.

UPLOAD EVENT LOG

Start character	0x5A
Message length	0x01
Message type	0x0D
Data	none
CRC 1	0xC0
CRC 2	0x55

EVENT LOG DATA

Start character	0x5A
Message length	0x0B
Message type	0x0E
Data 1	event number (1-n, with 1 being most recent)
Data 2	time/date valid
Data 3	month (1-12)
Data 4	day (1-31)
Data 5	hour (0-23)
Data 6	minute (0-59)
Data 7	event type
Data 8	parameter 1
Data 9	high byte of parameter 2
Data 10	low byte of parameter 2
CRC 1	varies
CRC 2	varies

The event number is a simple index that is incremented by 1 for each event log data message. Event 1 is the most recent event. The highest numbered event would be the oldest event.

The month, day, hour, and minute specify the time that the event occurred. The time/date valid flag is zero if the controller time was not set when the event occurred. In this case, the month, day, hour, and minute fields do not contain valid data and should not be used. The time/date valid flag is non-zero when the time has been properly set in the controller.

The event, parameter 1, and parameter 2 identify the specific event that has occurred. The possible events are shown in the table below. When a security code is specified, the value is the user code number rather than the actual four-digit security code.

In addition to the user codes, the following security codes can be reported:

Duress code
Keyswitch
Quick arm
PC Access
Programmed

OMNI FAMILY EVENT LOG EVENT TYPES

Event Type	Parameter 1 P1	Parameter 2 P2	Description
4	1-n	1-n	zone P2 bypassed with code P1
5	1-n	1-n	zone P2 restored with code P1
6	1-n	0-n	all area P2 zones restored with code P1
			P2 = 0 means all areas/zones
48+m	1-n	0-n	area P2 armed in mode m with code P1
			P2 = 0 means all areas
			m = security mode:
			0 = disarm
			1 = day mode
			2 = night mode
			3 = away mode
			4 = vacation mode
			5 = day instant mode
			6 = night delayed mode
128		1-n	zone P2 tripped
129		1-n	zone P2 trouble
130	1-n		remote phone access with code P1
131			remote phone lockout
132		1-n	zone P2 auto bypassed
133		1-n	zone P2 trouble cleared
134	1-n		PC access with code P1
135	1-n	1-n	alarm P1 activated in area P2
			1 = burglary
			2 = fire
			3 = gas
			4 = auxiliary
			5 = freeze
			6 = water
			7 = duress
			8 = temperature
136	1-n	1-n	alarm P1 reset in area P2
			1 = burglary
			2 = fire
			3 = gas
			4 = auxiliary
			5 = freeze
			6 = water
			7 = duress
			8 = temperature
137			system reset
138		1-n	message P2 logged

LUMINA FAMILY EVENT LOG EVENT TYPES

Event Type	Parameter 1 P1	Parameter 2 P2	Description
48+m	1-n	0-n	set mode m with code P1
			m = mode:
			1 = home mode
			2 = sleep mode
			3 = away mode
			4 = vacation mode
			5 = party mode
			6 = special mode
128		1-n	Zone P2 tripped
129		1-n	zone P2 trouble
130	1-n		remote phone access with code P1
131			remote phone lockout
133		1-n	zone P2 trouble cleared
134	1-n		PC access with code P1
135	1-n	1	alarm P1 activated
			5 = freeze
			6 = water
			8 = temperature
136	1-n	1	alarm P1 reset
			5 = freeze
			6 = water
			8 = temperature
137			system reset
138		1-n	message P2 logged

VALIDATE SECURITY CODE MESSAGES

These messages instruct the controller to confirm that the specified four-digit security code is valid in the specified area. The code is only valid if it matches a four-digit user code in the area, and that code is currently time-enabled. The controller will return the user code number and authority level for the code. The controller will also check to see if the duress code was specified. If so, it will return the duress code number (251) as the user code number and set the authority level to user.

REQUEST SECURITY CODE VALIDATION

Start character	0x5A
Message length	0x06
Message type	0x26

Data 1 area number (1-8)
Data 2 first digit of code
Data 3 second digit of code
Data 4 third digit of code
Data 5 fourth digit of code

CRC 1 varies CRC 2 varies

Each of the digits of the security code must be sent as the numeric value of the digit, 0x00 through 0x09.

SECURITY CODE VALIDATION

Start character	0x5A
Message length	0x03
Message type	0x27

Data 1 user code number (1-99, 251 for duress, 0 if invalid)

Data 2 authority level

CRC 1 varies CRC 2 varies

The authority level is as follows:

0	Invalid code
1	Master
2	Manager
3	User

STATUS SUMMARY MESSAGES (Requires Firmware Version 2.8 and later)

The status summary messages allow one to get an overall view of the status of an HAI controller.

REQUEST STATUS SUMMARY

Start character	0x5A
Message length	0x01
Message type	0x28
CRC 1	0x01
CRC 2	0x8E

STATUS SUMMARY

For OmniLT, the reply is as follows:

Start character	0x5A
Message length	0x0D
Message type	0x29
Data 1	time date valid flag
Data 2	year (0-99)
Data 3	month (1-12)
Data 4	day (1-31)
Data 5	day of week (1-7)
Data 6	hour (0-23)
Data 7	minute (0-59)
Data 8	outdoor temperature
Data 9	0x00
Data 10	area 1 security mode
Data 11	area 1 alarm status
Data 12	status of flags 29-36
CRC 1	varies
CRC 2	varies

For Omni II and Omni IIe, the reply is as follows:

Start character	0x5A
Message length	0x15
Message type	0x29
Data 1	time date valid flag
Data 2	year (0-99)
Data 3	month (1-12)
Data 4	day (1-31)
Data 5	day of week (1-7)
Data 6	hour (0-23)
Data 7	minute (0-59)
Data 8	outdoor temperature
Data 9	0x00
Data 10	area 1 security mode
Data 11	area 1 alarm status
Data 12	area 2 security mode
Data 13	area 2 alarm status
Data 14	status of flags 73-80
Data 15	status of flags 81-88
Data 16	status of flags 89-96
Data 17	status of flags 97-104
Data 18	status of flags 105-112
Data 19	status of flags 113-120
Data 20	status of flags 121-128
CRC 1	varies
CRC 2	varies

For OmniPro II, the reply is as follows:

C4 4 1 4	0.54
Start character	0x5A
Message length	0x29
Message type	0x29
Data 1	time date valid flag
Data 2	year (0-99)
Data 3	month (1-12)
Data 4	day (1-31)
Data 5	day of week (1-7)
Data 6	hour (0-23)
Data 7	minute (0-59)
Data 8	outdoor temperature
Data 9	memo message status (bit 0 set if memo message not played)
Data 10	area 1 security mode
Data 11	area 1 alarm status
Data 12	area 2 security mode
Data 13	area 2 alarm status
Data 14	area 3 security mode
Data 15	area 3 alarm status
Data 16	area 4 security mode
Data 17	area 4 alarm status
Data 18	area 5 security mode
Data 19	area 5 alarm status
Data 20	area 6 security mode
Data 21	area 6 alarm status
Data 22	area 7 security mode
Data 23	area 7 alarm status
Data 24	area 8 security mode
Data 25	area 8 alarm status
Data 26	status of flags 393-400
Data 27	status of flags 401-408
Data 28	status of flags 409-416
Data 29	status of flags 417-424
Data 30	status of flags 425-432
Data 31	status of flags 233-440
Data 32	status of flags 441-448
Data 33	status of flags 449-456
Data 34	status of flags 457-464
Data 35	status of flags 445-472
Data 36	status of flags 473-480
Data 37	status of flags 481-488
Data 38	status of flags 489-496
Data 39	status of flags 497-504
Data 40	status of flags 505-511
CRC 1	varies
CRC 2	varies
CRC 2	varios

The time/date valid flag is zero if the time and date have not been set in the controller. The day of the week is 1 for Monday through 7 for Sunday.

The outdoor temperature is reported in the Omni temperature format (see Appendix B).

The security mode for an area is as follows:

0	Off
1	Day
2	Night
3	Away
4	Vacation
5	Day instant 6 Night delayed

Bit 3 of the security mode byte will be set during the arming exit delay, resulting in the following additional security modes:

9	Arming day
10	Arming night
11	Arming away
12	Arming vacation
13	Arming day instant
14	Arming night delayed

The bits in the area alarm status bytes are shown below. The corresponding bit is set if the condition is true.

0	Burglary alarm
1	Fire alarm
2	Gas alarm
3	Auxiliary alarm
4	Freeze alarm
5	Water alarm
6	Duress alarm
7	Temperature alarm

Units 29-36 in OmniLT, units 73-128 in Omni II, and units 393-511 in OmniPro II are sometimes called software flags, since they do not correspond to any physical hardware outputs. The on/off statuses for eight of these flags are packed into one message byte. The status of the lower numbered flag is indicated by bit 7. Lower order bits indicate the statuses of the higher numbered flags. The bit corresponding to a flag is set if that flag is on.

For Lumina, the reply is as follows:

Start character	0x5A
Message length	0x13
Message type	0x29
Data 1	time date valid flag
Data 2	year (0-99)
Data 3	month (1-12)
Data 4	day (1-31)
Data 5	day of week (1-7)
Data 6	hour (0-23)
Data 7	minute (0-59)
Data 8	outdoor temperature
Data 9	0x00
Data 10	mode
Data 11	alarm status
Data 12	status of flags 73-80
Data 13	status of flags 81-88
Data 14	status of flags 89-96
Data 15	status of flags 97-104
Data 16	status of flags 105-112
Data 17	status of flags 113-120
Data 18	status of flags 121-128
CRC 1	varies

varies

For Lumina Pro, the reply is as follows:

CRC 2

Start character	0x5A
Message length	0x1B
Message type	0x29
Data 1	time date valid flag
Data 2	year (0-99)
Data 3	month (1-12)
Data 4	day (1-31)
Data 5	day of week (1-7)
Data 6	hour (0-23)
Data 7	minute (0-59)
Data 8	outdoor temperature
Data 9	memo message status (bit 0 set if memo message not played)
Data 10	mode
Data 11	alarm status
Data 12	status of flags 393-400
Data 13	status of flags 401-408
Data 14	status of flags 409-416
Data 15	status of flags 417-424
Data 16	status of flags 425-432
Data 17	status of flags 233-440
Data 18	status of flags 441-448
Data 19	status of flags 449-456
Data 20	status of flags 457-464

Data 21	status of flags 445-472
Data 22	status of flags 473-480
Data 23	status of flags 481-488
Data 24	status of flags 489-496
Data 25	status of flags 497-504
Data 26	status of flags 505-511
CRC 1	varies
CRC 2	varies

The time/date valid flag is zero if the time and date have not been set in the controller. The day of the week is 1 for Monday through 7 for Sunday.

The outdoor temperature is reported in the Omni temperature format (see Appendix B).

For Lumina and Lumina Pro, the mode is as follows:

1	Home
2	Sleep
3	Away
4	Vacation
5	Party
6	Special

Bit 3 of the security mode byte will be set during the mode change delay, resulting in the following additional security modes:

9	Setting home
10	Setting Sleep
11	Setting away
12	Setting vacation
13	Setting party
14	Setting special

The bits in the area alarm status bytes are shown below. The corresponding bit is set if the condition is true.

4	Freeze alarm
5	Water alarm
7	Temperature alarm

Units 73-128 in Lumina and units 393-511 in Lumina Pro are sometimes called software flags, since they do not correspond to any physical hardware outputs. The on/off statuses for eight of these flags are packed into one message byte. The status of the lower numbered flag is indicated by bit 7. Lower order bits indicate the statuses of the higher numbered flags. The bit corresponding to a flag is set if that flag is on.

CURRENT TEMPERATURE MESSAGES (Requires Firmware Version 2.8 and later)

These messages allow one to quickly get the current temperatures of a number of temperature sensors or thermostats. The controller will determine if the specified temperature zone is a temperature sensor or thermostat and report the current temperature reading of the device in the Omni temperature format (see Appendix B).

REQUEST CURRENT TEMPERATURE

Start character	0x5A
Message length	0x03
Message type	0x2A

Data 1 starting temperature zone
Data 2 ending temperature zone

CRC 1 varies CRC 2 varies

CURRENT TEMPERATURE

Start character 0x5A

Message length number of temperature zones + 1

Message type 0x2B

Data 1 current temperature of first temperature zone
Data 2 current temperature of second temperature zone

. . .

Data n current temperature of last temperature zone

CRC 1 varies CRC 2 varies

ZONE READY STATUS MESSAGES (Requires Firmware Version 2.8 and later)

These messages are used to report the secure/not ready status of the security zones. Any burglary or 24 hour zone that is not in the secure state will be reported as not ready. Auxiliary and temperature zones are always reported as secure.

The secure/not ready statuses for eight zones are packed into one message byte. The status of the lower numbered zone is indicated by bit 7. Lower order bits indicate the statuses of the higher numbered zones. The bit corresponding to a zone is set if that zone is not ready.

REQUEST ZONE READY STATUS

Start character	0x5A
Message length	0x01
Message type	0x2C
CRC 1	0x00
CRC 2	0x4D

ZONE READY STATUS

For OmniLT, the reply is as follows:

Start character	0x5A
Message length	0x05
Message type	0x2D

Data 1 status of zones 1-8
Data 2 status of zones 9-16
Data 3 status of zones 17-24
Data 4 status of zones 25

CRC 1 varies CRC 2 varies

For Omni II, Omni IIe, and Lumina, the reply is as follows:

Start character	0x5A
Message length	0x07
Message type	0x2D
D / 1	

Data 1 status of zones 1-8
Data 2 status of zones 9-16
Data 3 status of zones 17-24
Data 4 status of zones 25-32
Data 5 status of zones 33-40
Data 6 status of zones 41-48

CRC 1 varies CRC 2 varies

For OmniPro II and Lumina Pro, the reply is as follows:

Start character	0x5A
Message length	0x17
Message type	0x2D

Data 1 status of zones 1-8
Data 2 status of zones 9-16
Data 3 status of zones 17-24

...

Data 21 status of zones 161-168 Data 22 status of zones 169-176

CRC 1 varies CRC 2 varies

KEYPAD EMERGENCY MESSAGE (Requires Firmware Version 2.8 and later)

This message is used to activate a burglary, fire, or auxiliary keypad emergency alarm in an area on an OmniLT, Omni II, Omni IIe, or OmniPro II system.

ACTIVATE KEYPAD EMERGENCY

Start character 0x5A
Message length 0x03
Message type 0x2E
Data 1 area (1-8)

Data 2 emergency type (1=burglary, 2=fire, 3=auxiliary)

CRC 1 varies CRC 2 varies

Expected reply ACKNOWLEDGE

MEMO MESSAGES (Requires Firmware Version 2.8 and later)

These messages are used to play or record the voice memo message.

PLAY MEMO MESSAGE

Start character	0x5A
Message length	0x01
Message type	0x2F
CRC 1	0x40
CRC 2	0x4C

Expected reply ACKNOWLEDGE

RECORD MEMO MESSAGE

Start character	0x5A
Message length	0x01
Message type	0x30
CRC 1	0x01
CRC 2	0x84

Expected reply ACKNOWLEDGE

APPENDIX A - CRC-16 ERROR DETECTION ROUTINES

This first routine is written in Turbo Pascal. First initialize CRC to 0. Then, starting with the message length byte, call Update_CRC for each byte of the message passing the message byte in Data. The low byte of CRC will contain the low byte of the CRC-16 remainder and should be sent first. The high byte of CRC will contain the high byte of the CRC-16 remainder and should be sent last.

```
var
 CRC: Word;
procedure Update CRC(Data: Byte);
const
  Poly = $A001;
                        {CRC-16 polynomial}
  I: Integer;
 Flag: Boolean;
  CRC := CRC xor Data;
  for I := 1 to 8 do
 begin
    Flag := (CRC \text{ and } 1) \iff 0;
    CRC := CRC shr 1;
    if Flag then CRC := CRC xor Poly;
  end;
end {Update_CRC};
```

This next routine is written in Motorola MC68HC11 assembly language. First initialize CRC+0 and CRC+1 to 0. Then, starting with the message length byte, call UPDCRC for each byte of the message with the B accumulator containing the message byte. CRC+1 will contain the low byte of the CRC-16 remainder and should be sent first. CRC+0 will contain the high byte of the CRC-16 remainder and should be sent last.

```
POLY EOU
             $A001
                         CRC-16 polynomial
UPDCRC
      PSHB
                         save registers
      PSHA
      EORB CRC+1
LDAA #8
STAA CRC+1
LDAA CRC+0
                       add in new byte get shift count
                       use low byte of CRC for counter
                         get high byte of CRC
10$
      LSRA
                         shift CRC
      RORB
      BCC
            20$
                         branch if we didn't shift out a 1
      EORA #>POLY
                         add in CRC polynomial
      EORB #<POLY
20$
      DEC
            CRC+1
                         count the shift
      BNE
            10$
                         branch back if more to do
      STD
            CRC
                         save updated CRC
      PULA
                         restore registers
      PULB
      RTS
```

```
//----
void UpdateCRC(unsigned short int *CRC, unsigned char x)
 // This function uses the initial CRC value passed in the first
 // argument, then modifies it using the single character passed
 // as the second argument, according to a CRC-16 polynomial
 // calculation used for HAI communication protocol.
 // Arguments:
 // CRC -- pointer to starting CRC value // x -- new character to be processed
 // Returns:
 // The function does not return any values, but updates the variable
 // pointed to by CRC
 static int const Poly = 0xA001; // CRC-16 polynomial
 int i;
 bool flag;
 *CRC ^= x;
 for (i=0; i<8; i++)
   flag = ((*CRC \& 1) == 1);
   *CRC = (unsigned short int) (*CRC >> 1);
   if (flag)
     *CRC ^= Poly;
 return;
```

APPENDIX B - OMNI TEMPERATURE FORMAT

Temperatures in HAI controllers are specified in the Omni temperature format. This format allows a temperature span of -40.0 to +87.5 degC (-40.0 to +189.5 degF) to be specified with 0.5 degC resolution in a single byte. Each Omni temperature "degree" is 0.5 degC, with 0 corresponding to -40 degC (-40 degF) and 255 corresponding to +87.5 degC (+189.5 degF).

The following chart shows the relationship between Omni, Celsius, and Fahrenheit temperatures.

Omni	Deg. C	Deg. F	Omni	Deg. C	Deg. F	Omni	Deg. C	Deg. F
0	- 40.0	- 40.0	44	- 18.0	- 00.4	88	04.0	39.2
1	- 39.5	- 39.1	45	- 17.5	00.5	89	04.5	40.1
2	- 39.0	- 38.2	46	- 17.0	01.4	90	05.0	41.0
3	- 38.5	- 37.3	47	- 16.5	02.3	91	05.5	41.9
4	- 38.0	- 36.4	48	- 16.0	03.2	92	06.0	42.8
5	- 37.5	- 35.5	49	- 15.5	04.1	93	06.5	43.7
6	- 37.0	- 34.6	50	- 15.0	05.0	94	07.0	44.6
7	- 36.5	- 33.7	51	- 14.5	05.9	95	07.5	45.5
8	- 36.0	- 32.8	52	- 14.0	06.8	96	08.0	46.4
9	- 35.5	- 31.9	53	- 13.5	07.7	97	08.5	47.3
10	- 35.0	- 31.0	54	- 13.0	08.6	98	09.0	48.2
11	- 34.5	- 30.1	55	- 12.5	09.5	99	09.5	49.1
12	- 34.0	- 29.2	56	- 12.0	10.4	100	10.0	50.0
13	- 33.5	- 28.3	57	- 11.5	11.3	101	10.5	50.9
14	- 33.0	- 27.4	58	- 11.0	12.2	102	11.0	51.8
15	- 32.5	- 26.5	59	- 10.5	13.1	103	11.5	52.7
16	- 32.0	- 25.6	60	- 10.0	14.0	104	12.0	53.6
17	- 31.5	- 24.7	61	- 09.5	14.9	105	12.5	54.5
18	- 31.0	- 23.8	62	- 09.0	15.8	106	13.0	55.4
19	- 30.5	- 22.9	63	- 08.5	16.7	107	13.5	56.3
20	- 30.0	- 22.0	64	- 08.0	17.6	108	14.0	57.2
21	- 29.5	- 21.1	65	- 07.5	18.5	109	14.5	58.1
22	- 29.0	- 20.2	66	- 07.0	19.4	110	15.0	59.0
23	- 28.5	- 19.3	67	- 06.5	20.3	111	15.5	59.9
24	- 28.0	- 18.4	68	- 06.0	21.2	112	16.0	60.8
25	- 27.5	- 17.5	69	- 05.5	22.1	113	16.5	61.7
26	- 27.0	- 16.6	70	- 05.0	23.0	114	17.0	62.6
27	- 26.5	- 15.7	71	- 04.5	23.9	115	17.5	63.5
28	- 26.0	- 14.4	72	- 04.0	24.8	116	18.0	64.4
29	- 25.5	- 13.9	73	- 03.5	25.7	117	18.5	65.3
30	- 25.0	- 13.0	74	- 03.0	26.6	118	19.0	66.2
31	- 24.5	- 12.1	75	- 02.5	27.5	119	19.5	67.1
32	- 24.0	- 11.2	76	- 02.0	28.4	120	20.0	68.0
33	- 23.5	- 10.3	77	- 01.5	29.3	121	20.5	68.9
34	- 23.0	- 09.4	78	- 01.0	30.2	122	21.0	69.8
35	- 22.5	- 08.5	79	- 00.5	31.1	123	21.5	70.7
36	- 22.0	- 07.6	80	0	32.0	124	22.0	71.6
37	- 21.5	- 06.7	81	00.5	32.9	125	22.5	72.5
38	- 21.0	- 05.8	82	01.0	33.8	126	23.0	73.4
39	- 20.5	- 04.9	83	01.5	34.7	127	23.5	74.3
40	- 20.0	- 04.0	84	02.0	35.6	128	24.0	75.2
41	- 19.5	- 03.1	85	02.5	36.5	129	24.5	76.1
42	- 19.0	- 02.2	86	03.0	37.4	130	25.0	77.0
43	- 18.5	- 01.3	87	03.5	38.3	131	25.5	77.9

Omni	Deg. C	Deg. F	Omni	Deg. C	Deg. F	Omni	Deg. C	Deg. F
132	26.0	78.8	176	48.0	118.4	220	70.0	158.0
133	26.5	79.7	177	48.5	119.3	221	70.5	158.9
134	27.0	80.6	178	49.0	120.2	222	71.0	159.8
135	27.5	81.5	179	49.5	121.1	223	71.5	160.7
136	28.0	82.4	180	50.0	122.0	224	72.0	161.6
137	28.5	83.3	181	50.5	122.9	225	72.5	162.5
138	29.0	84.2	182	51.0	123.8	226	73.0	163.4
139	29.5	85.1	183	51.5	124.7	227	73.5	164.3
140	30.0	86.0	184	52.0	125.6	228	74.0	165.2
141	30.5	86.9	185	52.5	126.5	229	74.5	166.1
142	31.0	87.8	186	53.0	127.4	230	75.0	167.0
143	31.5	88.7	187	53.5	127.3	231	75.5	167.9
144	32.0	89.6	188	54.0	129.2	232	76.0	168.8
145	32.5	90.5	189	54.5	130.1	233	76.5	169.7
146	33.0	91.4	190	55.0	131.0	234	77.0	170.6
147	33.5	92.3	191	55.5	131.9	235	77.5	171.5
148	34.0	93.2	192	56.0	132.8	236	78.0	172.4
149	34.5	94.1	193	56.5	133.7	237	78.5	173.3
150	35.0	95.0	194	57.0	134.6	238	79.0	174.2
151	35.5	95.9	195	57.5	135.5	239	79.5	175.1
152	36.0	96.8	196	58.0	136.4	240	80.0	176.0
153	36.5	97.7	197	58.5	137.3	241	80.5	176.9
154	37.0	98.6	198	59.0	138.2	242	81.0	177.8
155	37.5	99.5	199	59.5	139.1	243	81.5	178.7
156	38.0	100.4	200	60.0	140.0	244	82.0	179.6
157	38.5	101.3	201	60.5	140.9	245	82.5	180.5
158	39.0	102.2	202	61.0	141.8	246	83.0	181.4
159	39.5	103.1	203	61.5	142.7	247	83.5	182.3
160	40.0	104.0	204	62.0	143.6	248	84.0	183.2
161	40.5	104.9	205	62.5	144.5	249	84.5	184.1
162	41.0	105.8	206	63.0	145.4	250	85.0	185.0
163	41.5	106.7	207	63.5	146.3	251	85.5	185.9
164	42.0	107.6	208	64.0	147.2	252	86.0	186.8
165	42.5	108.5	209	64.5	148.1	253	86.5	187.7
166	43.0	109.4	210	65.0	149.0	254	87.0	188.6
167	43.5	110.3	211	65.5	149.9	255	87.5	189.5
168	44.0	111.2	212	66.0	150.8			
169	44.5	112.1	213	66.5	151.7			
170	45.0	113.0	214	67.0	152.6			
171	45.5	113.9	215	67.5	153.5			
172	46.0	114.8	216	68.0	154.4			
173	46.5	115.7	217	68.5	155.3			
174	47.0	116.6	218	69.0	156.2			
175	47.5	117.5	219	69.5	157.1			

APPENDIX C - SYSTEM EVENTS

HAI controllers generate system events when changes occur in the controller. System events are generated when:

- A zone changes state
- A control unit changes state
- The security system is armed/disarmed
- The Lumina mode changes
- An alarm is activated
- X-10 / UPB / RadioRA signals are received
- Certain trouble conditions are detected
- The phone line changes state
- The cost of energy changes
- The user activates a macro button
- Pro-Link message received
- CentraLite switch is pressed

HAI controllers can be programmed to perform various actions in response to these events. Similarly, these system events can be monitored through the Omni-Link protocol to allow external controllers to react to these events.

Each system event is identified by a unique 16-bit event number. The encoding of these events is shown below. The encoding is shown in binary, with the most-significant bit to the left.

USER MACRO BUTTON	0000 0	0000	bbbb	bbbb	b = button number
PRO-LINK MESSAGE	0000	0001	Ommm	mmmm	m = message number
CENTRALITE SWITCH	0000	0001	1sss	SSSS	s = switch number
ALARM (OMNI FAMILY)	0000 C	0010	tttt	aaaa	<pre>t = alarm type 1 = burglary 2 = fire 3 = gas 4 = auxiliary 5 = freeze 6 = water 7 = duress 8 = temperature a = area</pre>
ALARM (LUMINA FAMILY)	0000 0	0010	tttt	0001	<pre>t = alarm type 5 = freeze 6 = water 8 = temperature</pre>
ZONE STATE CHANGE	0000 0	01sz	ZZZZ	ZZZZ	<pre>s = state 0 = off 1 = on z = zone number</pre>
UNIT STATE CHANGE	0000 1	10su	uuuu	uuuu	<pre>s = state 0 = off 1 = on u = unit number</pre>

COMPOSE CODE RECEIVED	0111 ssss hhhh uuuu	<pre>s = state 0 = off 1 = on 2-13 = scene A-L h = Compose house code 0-15 = A-P u = Compose unit number 0-15 = 1-16</pre>
X-10 CODE RECEIVED	0000 11sa hhhh uuuu	<pre>s = state 0 = off 1 = on a = all units flag 0 = one unit only 1 = all on/off h = X-10 house code 0-15 = A-P u = X-10 unit number 0-15 = 1-16</pre>
SECURITY ARMING	dmmm aaaa cccc cccc	<pre>d = exit delay flag 0 = end of delay 1 = start of delay must be 1 for off m = security mode 0 = off 1 = day 2 = night 3 = away 4 = vacation 5 = day instant 6 = night delayed a = area c = code</pre>
LUMINA MODE CHANGE	dmmm 0001 cccc cccc	<pre>d = mode change delay flag 0 = end of delay 1 = start of delay m = mode 1 = home 2 = sleep 3 = away 4 = vacation 5 = party 6 = special c = code</pre>
ALC / UPB / RadioRA SWITCH PRESS	1111 ssss uuuu uuuu	<pre>s = switch 0 = off 1 = on 2-11 = switch 1-10 u = unit number</pre>
UPB LINK	1111 11cc nnnn nnnn	<pre>c = link command 0 = off (deactivate) 1 = on (activate) 2 = set (store preset) 3 = fade stop n = link number</pre>
ALL ON/OFF	0000 0011 111s aaaa	<pre>s = state 0 = off 1 = on a = area</pre>

Copyright © 1999-2006 Home Automation, Inc. All Rights Reserved Page 49

PHONE LINE DEAD PHONE LINE RING PHONE LINE OFF HOOK PHONE LINE ON HOOK	0000 0000 0000 0000	0011 0011 0011 0011	0000 0000 0000 0000	0000 0001 0010 0011
AC POWER OFF AC POWER RESTORED	0000	0011 0011	0000	0100 0101
BATTERY LOW BATTERY OK	0000	0011 0011	0000	0110 0111
DCM TROUBLE DCM OK	0000	0011 0011	0000	1000 1001
ENERGY COST LOW ENERGY COST MID ENERGY COST HIGH ENERGY COST CRITICAL	0000 0000 0000	0011 0011 0011 0011	0000 0000 0000	1010 1011 1100 1101