Derivatives of Eigenvalues

Feng Ling September, 2016

Let's assume we work in a vector space with a non-degenerate symmetric bilinear pairing $\langle \cdot, \cdot \rangle$, and a differential operator d satisfying the usual Leinbiz's rule. We will use A to denote linear operator/matrix in a basis $A = (a_{ij})$ and \mathbf{w} for a vector $w = (w_i)$.

Assuming L is not defect at the considered eigenvalue (multiplicity = 1), we have two equations $L\mathbf{v} = \lambda\mathbf{v}$ and $\mathbf{u}^{\dagger}L = \lambda\mathbf{u}^{\dagger}$, where λ is the eigenvalue, \mathbf{v} is the (right) eigenvector, and \mathbf{u} the left eigenvector. (Note that a left eigenvector of a matrix A is a (right) eigenvector of the adjoint A^{\dagger} .)

Now differentiate the first (right) eigenvector equation gives us

$$d(\lambda \mathbf{v}) = d(\mathsf{L}\mathbf{v})$$
$$d\lambda \mathbf{v} + \lambda d\mathbf{v} = d\mathsf{L}\mathbf{v} + \mathsf{L}d\mathbf{v}$$

Pair the above with the left eigenvectors yields

$$\langle \mathbf{u}, d\lambda \mathbf{v} \rangle + \langle \mathbf{u}, \lambda d\mathbf{v} \rangle = \langle \mathbf{u}, dL\mathbf{v} \rangle + \langle \mathbf{u}, Ld\mathbf{v} \rangle$$

$$d\lambda \langle \mathbf{u}, \mathbf{v} \rangle + \langle \lambda \mathbf{u}, d\mathbf{v} \rangle = \langle \mathbf{u}, dL\mathbf{v} \rangle + \langle \mathbf{u}, Ld\mathbf{v} \rangle$$

$$d\lambda \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, dL\mathbf{v} \rangle + \langle L^{\dagger}\mathbf{u} - \lambda \mathbf{u}, d\mathbf{v} \rangle$$

$$d\lambda = \frac{\langle \mathbf{u}, dL\mathbf{v} \rangle}{\langle \mathbf{u}, \mathbf{v} \rangle}$$

Now if the operator L is self-adjoint (e.g. symmetric if we are over \mathbb{R}), we then have $\mathbf{u} = \mathbf{v}$, thus

$$d\lambda = \frac{\langle \mathbf{v}, d \mathbf{L} \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} = \langle \mathbf{v}, d \mathbf{L} \mathbf{v} \rangle$$

Or in another notation, we have $d\lambda = \mathbf{v}^{\dagger} d\mathbf{L} \mathbf{v}$.

Same principles apply for the generalized eigenvalue problem. If we again have left eigenvector \mathbf{u} and (right) eigenvector \mathbf{v} such that $(\mathsf{L} - \lambda \mathsf{M})\mathbf{v} = \mathbf{u}^\dagger(\mathsf{L} - \lambda \mathsf{M}) = 0$, we can derive

$$d(\mathsf{L} - \lambda \mathsf{M})\mathbf{v} = 0$$

$$(d\mathsf{L} - d\lambda \mathsf{M} - \lambda d\mathsf{M})\mathbf{v} + (\mathsf{L} - \lambda d\mathsf{M})d\mathbf{v} = 0$$

Pairing with **u** returns

$$\mathbf{u}^{\dagger}(d\mathbf{L} - d\lambda \mathbf{M} - \lambda d\mathbf{M})\mathbf{v} + \mathbf{u}^{\dagger}(\mathbf{L} - \lambda d\mathbf{M})d\mathbf{v} = 0$$

$$\mathbf{u}^{\dagger}(d\mathbf{L} - d\lambda \mathbf{M} - \lambda d\mathbf{M})\mathbf{v} = 0$$

$$\mathbf{u}^{\dagger}d\mathbf{L}\mathbf{v} - \mathbf{u}^{\dagger}\lambda d\mathbf{M}\mathbf{v} = \mathbf{u}^{\dagger}d\lambda \mathbf{M}\mathbf{v}$$

$$d\lambda \mathbf{u}^{\dagger}\mathbf{M}\mathbf{v} = \mathbf{u}^{\dagger}d\mathbf{L}\mathbf{v} - \lambda \mathbf{u}^{\dagger}d\mathbf{M}\mathbf{v}$$

$$d\lambda = \frac{\mathbf{u}^{\dagger}d\mathbf{L}\mathbf{v} - \lambda \mathbf{u}^{\dagger}d\mathbf{M}\mathbf{v}}{\mathbf{u}^{\dagger}\mathbf{M}\mathbf{v}}$$

Now if we assume both L and M to be self-adjoint, we will again have $\mathbf{u} = \mathbf{v}$. Then normalizing \mathbf{v} such that $\langle \mathbf{v}, \mathsf{M}\mathbf{v} \rangle = 1$ gives $d\lambda = \mathbf{v}^\dagger d \mathsf{L} \mathbf{v} - \lambda \mathbf{v}^\dagger d \mathsf{M} \mathbf{v}$.