《多重网格法解 Poisson 方程》项目文档

张志心 3210106357 计科 2106

日期: Apr. 9. 2024

目录

1	用户	文档		3
	1.1	问题输	ì入格式与规约	3
		1.1.1	手动构造输入数据	3
		1.1.2	自动构造输入数据	6
		1.1.3	数据自检	6
	1.2	问题求	:解	6
		1.2.1	相关函数	6
		1.2.2	自动求解	6
2	设计	文档		7
	2.1	Multig	rid_BVP_Problem 类及其序列化方法	7
	2.2	Multig	rid_BVP_Solver 类	8
	2.3	templa	te <int dim=""> Regular_Multigrid_BVPsolver 类</int>	9
		2.3.1	限制算子	9
		2.3.2	插值算子	10
		2.3.3	V-Cycle	12
		2.3.4	FMG Cycle	12
		2.3.5	求解过程	13
	2.4	其他组	[件	13
		2.4.1	SparseMat 稀疏矩阵类	13
		2.4.2	带权 Jacobi 迭代	15
		2.4.3	function 类及字符串解析方法	16
3	样例	测试及	结果	16
	3.1	测试说	明	16
	3.2	测试样	例 1	17
		3.2.1	Dirichlet 边值条件	17
		3.2.2	Neumann 边值条件	17
		3.2.3	混合边值条件	17

	3.2.4	V-Cycle 和一阶算子的测试	17
	3.2.5	FMG-Cycle 和二阶算子的测试	18
	3.2.6	总结	18
3.3	测试样	例 2	19
	3.3.1	Dirichlet 边值条件	19
	3.3.2	Neumann 边值条件	19
	3.3.3	混合边值条件	19
	3.3.4	V-Cycle 和一阶算子的测试	19
3.4	测试样	例 3	20
	3.4.1	Dirichlet 边值条件	20
	3.4.2	Neumann 边值条件	20
	3.4.3	混合边值条件	20
3.5	测试样	例 4	20
	3.5.1	Dirichlet 边值条件	20
	3.5.2	Neumann 边值条件	21
	3.5.3	混合边值条件	21
	3.5.4	V-Cycle 和一阶算子的测试	21
	3.5.5	FMG 和二阶算子的测试	22
	3.5.6	分析与总结	22
参考文献	獃		22

该程序包为一维/二维正方形区域 Poisson 方程的求解器,采用多重网格法,支持 Dirichlet, Neumann,以及混合边值条件问题。

该程序的时间复杂度为O(n),其中n为网格的格点数。

该程序包进行了充分的测试,对于一维/二维 Poisson 方程形式的边值问题,达到了二阶的收敛阶。

1 用户文档

该部分介绍用户使用此程序包求解一维/二维 Poisson 方程的方法。

1.1 问题输入格式与规约

用户需使用 JSON 格式描述待求解问题 (二维 Poisson 方程),问题的数学形式为:

$$-\Delta u = f$$
, in Ω

对于一维问题, $\Omega = [x_l, x_r]$,对于二维问题, $\Omega = [x_l, x_r] \times [y_l, y_r](x_r - x_l = y_r - y_l)$ 。对于边值条件,有如下几种类型:

- 1. Dirichlet 边值条件: u = g, on $\partial \Omega$;
- 2. Nuemann 边值条件: $\mathbf{n} \cdot \nabla u = g$, on $\partial \Omega$;

3. mixed 边值条件:
$$\begin{cases} u = g_1 & \text{on } X_1 \\ \boldsymbol{n} \cdot \nabla u = g_2 & \text{on } X_2 \end{cases}, \left(X_1 \cap X_2 = \emptyset, X_1 \cup X_2 = \partial \Omega \right).$$

1.1.1 手动构造输入数据

JSON 具体格式如下:

- Dimension: 问题定义域的维数。
- Domain_Border: 问题定义域外边界,格式为 $[x_l, x_r]$ (一维) 或 $[x_l, x_r, y_l, y_r]$ (二维),若用户未定义,则默认为 [0,1] 或 $[0,1]^2$ 。对于二维情况,程序会检查输入外边界是否是一个合法的正方形。
- Domain_Type: 问题定义域的类型,包括 Regular, Irregular。
- Center: 若问题定义域是非规则类型,则需要提供内部挖去圆形的信息,圆心坐标格式为 $[x_c, y_c]$ 。
- R: 同上,圆形的半径为R,程序会检查圆形是否位于外边界正方形的内部。
- Grid_n: 用户自定义网格的大小,程序会检查 $2 \le Grid_n \le 248$,程序离散化的格点为 $(x_i, y_j) = (x_l + ih, y_l + jh), h = \frac{1}{Grid_n}, i, j = 0, 1, \dots, Grid_n$ 。
- BC_Type: Poisson 方程的边值条件的类型,包括 Dirichlet, Neumann, mixed。
- Cycle_Type: 迭代方法,包括 V-Cycle(V)和 FMG(FMG)。
- Accuracy: 迭代终止的残差条件。
- Interpolation_opt: 插值算子采用的方法,包括 linear 和 quadratic 两种。
- Restriction_opt: 限制算子采用的方法,包括 injection 和 full_weight 两种。
- Max_Iteration: 最大迭代次数。

- initial_guess: 迭代的初始猜测,是一个函数,默认为0。
- f: 描述 $-\Delta u = f$, in Ω , 用 C++ 数学表达式的格式给出,表达式解析的具体方法见 /include/function_generator/ExecCode2.hpp。
- g: 描述 Dirichlet 边值条件(u=g, on $\partial\Omega$)或 Neumann 边值条件($n\cdot\nabla u=g$, on $\partial\Omega$),注意混合 边值条件不使用该项来描述,输入为一个 JSON class,包含:
 - down: $y = y_l$ 上边值条件表达式;
 - left: $x = x_l$ 上边值条件表达式;
 - right: $x = x_r$ 上边值条件表达式;
 - $up: y = y_r$ 上边值条件表达式.

如果上述各部分的边值条件的表达式相同,用户可以使用 all 来描述。

- mixed_g: 仅用于描述混合边值条件,若非混合边值条件,则不需要该项。输入格式为一个 JSON class (与g类似),每个方向的键值为一个二元组,即 {边值条件的类型,边值条件的表达式}。
- Need_Error: 表示是否需要进行解误差分析,为 boolean 类型 (true 或 false);
- answer: 若 Need_Error = true, 需要提供问题的真解, 输入格式同 f。

下面给出部分输入数据作为示例:

1. 一维 Dirichlet 边值条件:

```
"Accuracy" : 1.000000000000001e-10,
"BC_Type" : "Dirichlet",
"Cycle_Type" : "FMG",
"Dimension" : 1,
"Domain_Border" : [ 0.0, 1.0 ],
"Domain_Type" : "Regular",
"Grid_n" : 16,
"Interpolation_opt" : "linear",
"Max_Iteration" : 50,
"Need_Error" : true,
"Restriction_opt" : "full_weight",
"answer" : "exp(sin(x))",
"initial_guess" : "0",
"f" : "(\sin(x)-\cos(x)*\cos(x))*\exp(\sin(x))",
"g" : {
   "left" : "1",
   "right" : "exp(sin(1))"
},
"mixed_g" : null
```

2. 二维 Neumann 边值条件:

```
{
    "Accuracy" : 1e-10,
    "BC_Type" : "Neumann",
```

```
"Cycle_Type" : "FMG",
  "Dimension" : 2,
  "Domain_Border" : [ 0.0, 1.0, 0.0, 1.0 ],
  "Domain_Type" : "Regular",
  "Grid_n" : 32,
  "Interpolation_opt" : "quadratic",
  "Max_Iteration" : 50,
  "Need_Error" : true,
  "Restriction_opt" : "full_weight",
  "answer" : exp(sin(x)+y)",
  "f" : "-(1-\sin(x)+\cos(x)*\cos(x))*\exp(\sin(x)+y)",
  "g" : {
    "down" : "-exp(sin(x))",
     "left" : "-exp(y)",
     "right" : "cos(1)*exp(sin(1)+y)",
     "up" : "exp(sin(x)+1)"
  }
}
```

3. 二维混合边值条件:

```
"Accuracy" : 1e-10,
 "BC_Type" : "mixed",
 "Cycle_Type" : "FMG",
 "Dimension" : 2,
 "Domain_Border" : [ 0.0, 1.0, 0.0, 1.0 ],
 "Domain_Type" : "Regular",
 "Grid_n" : 32,
 "Interpolation_opt" : "linear",
 "Max_Iteration" : 50,
 "Need_Error" : true,
 "initial_guess" : "0",
 "Restriction_opt" : "injection",
 "answer" : "exp(sin(x)+y)",
  "f" : "-(1-\sin(x)+\cos(x)*\cos(x))*\exp(\sin(x)+y)",
 "mixed_g" : {
    "down" : [ "Dirichlet", "exp(sin(x)+y)" ],
     "left" : [ "Dirichlet", "exp(sin(x)+y)" ],
    "right" : [ "Neumann", "cos(1)*exp(sin(1)+y)" ],
     "up" : [ "Neumann", "exp(sin(x)+1)" ]
 }
}
```

1.1.2 自动构造输入数据

程序包提供了交互式输入数据,数据自检,并自动构造 JSON 文件的方法,方法如下:

```
make dataGen
./dataGen
```

1.1.3 数据自检

程序会输入数据进行严格的检查,当输入数据不合法时,程序会报出异常并终止,返回-1。用户也可以自己测试数据是否满足条件,具体方法如下:假设输入JSON数据的路径为std::string file,

```
Multigrid_BVP_Problem new_Problem;
deserialize_Json(new_Problem, file);
try {
    new_Problem._self_checked();
} catch (char const * e) {
    cerr << e << "\n";
    // do anything you can
}</pre>
```

该方法也用于用户自主创建问题实例,关于问题类的相关定义在2.1中说明。

1.2 问题求解

1.2.1 相关函数

程序调用 Multigrid_BVPsolver::solveProblem(std::string FILE, bool print)来求解问题,该函数是对求解流程的进一步封装。使用方法为:假设输入 JSON 数据的路径为 std::string file,

```
Square_BVPsolver solver;
solver.solveProblem(file, /*print*/ 0);
```

若 print = 1,则程序会在 stderr 中输出问题的描述和求解过程,若 print = 0,则程序只会输出最后的误差分析(若 Need_error = 1)。

用户也可以使用原始接口,具体如下:

```
Multigrid_BVPsolver::readProblem(const std::string file); // 读取数据并检查
Multigrid_BVPsolver::printProblem() const; // 输出问题描述
Multigrid_BVPsolver::solveProblem(bool print = 0); // 在readProblem之后调用,求解当前问题。
Multigrid_BVPsolver::solveProblem(const Multigrid_BVP_Problem &_prob); // 求解已有的问题
Multigrid_BVPsolver::Summary(); // 在solveProblem之后调用,输出当前问题和求解误差分析。
Multigrid_BVPsolver::saveResults(std::string file = "res.csv"); // 输出问题求解结果。
```

1.2.2 自动求解

该程序包提供了test.cpp用于直接求解用户问题,在根目录下编译求解程序:

make all

求解方法:

```
usage: ./test [-v|--verbose] <input JSON file>
```

其中-v或-verbose选项将会提供更多的求解信息(包括问题描述,求解过程,误差分析等),否则,将只提供求解的误差分析。

用户可以一次性求解一个或多个输入数据:

```
./test --verbose 1.json 2.json 3.json
```

2 设计文档

该部分说明此程序包的相关组件的逻辑结构。

2.1 Multigrid_BVP_Problem 类及其序列化方法

Multigrid_BVP_Problem 类用于描述本程序包用于解决的问题实例、初始化问题的各项参数、检查问题是否满足规约条件。

```
class Multigrid_BVP_Problem{
  public:
      std::string BC_Type; /* boundary condition : mixed, Dirichlet, Neumann*/
      std::string Domain_Type; /* regular(default) irregular*/
     vector<NUM> Domain_Border; /* [xl, xr, yl, yr] (default : [0,1]x[0,1])*/
     NUM xl, xr, yl, yr, h;
     void getDomain();
     int Grid_n; /* Grid_n x Grid_n */
     std::string f; /* - \Delta u (in Domain)*/
     func F;
     // calculate error
     bool Need_Error;
     std::string answer;
     func Answer:
     std::string initial_guess;
     func Initial_guess;
     // Boundary Condition
     // Dirichlet / Neumann
     map < std::string, std::string > g; /* left, right, up, down -> function*/
                                       /* O, 1,
                                                     2, 3*/
     vector<func> G;
      // mixed
```

```
map<std::string, pair<std::string, std::string>> mixed_g; /* left, right, up, down ->
        function*/
                                                               /* 0,   1,   2,   3 */
    vector<std::string> _bc_types;
    int Dimension;
    std::string Cycle_Type; // FMG or V
    std::string Restriction_opt; // full_weight, linear
    std::string Interpolation_opt; // lenear, quadratic
    int Max_Iteration;
    NUM Accuracy;
    Multigrid_BVP_Problem() :
        Domain_Border({0, 1, 0, 1}), Domain_Type("Regular"),
        Max_Iteration(20), Accuracy(1e-10), Need_Error(0) {}
    void _self_checked ();
    void print() const;
};
```

该类实例可以直接序列化为 JSON 文档,或由 JSON 文档里反序列化得到。此类用户自定义类的序列化方法在 /include/serialization/serialize_json.hpp 中实现。采用编译预处理方式展开该方法:

```
REGISTER_SERIALIZATION_JSON(BC_Type, Domain_Type, Domain_Border, Dimension,

Restriction_opt, Interpolation_opt, Cycle_Type, Grid_n,

f, g, mixed_g, Need_Error, answer, Max_Iteration, Accuracy);
```

序列化:

```
serialize_Json(const Multigrid_BVP_Problem& prob, std::string filename);
```

反序列化:

```
deserialize_Json(Multigrid_BVP_Problem& prob, std::string filename);
```

2.2 Multigrid_BVP_Solver 类

Multigrid_BVP_Solver类用于求解 Poisson 方程的边值问题,其中保存有一个 Multigrid_BVP_Problem prob 表示当前求解的问题,它可以调用两个类,class Regular_Multigrid_BVPsolver; class Irregular_Multigrid_BVPsolver;,为两种方程的求解器(均为模板类,模板参数为 int dim,表示求解问题的维数)。求解器类中均包含 void solve();和 void ErrorAnalysis();两个成员函数,用于求解问题实例和误差分析。最终求解结果将保存在 results 中。

```
class Multigrid_BVPsolver {
    Multigrid_BVP_Problem prob;
    RES<1> results1;
    RES<2> results2;
public:
```

```
void readProblem(const std::string file);
void printProblem() const;

void solveProblem(bool print = 0);

void solveProblem(const Multigrid_BVP_Problem &_prob);

void solveProblem(std::string File, bool print = 0);

void saveResults(std::string file = "res.csv") const;

NUM norm1, norm2, normi;

void Summary();
};
```

2.3 template<int dim> Regular_Multigrid_BVPsolver 类

2.3.1 限制算子

对于 n 和一个 $(n+1)^d$ 维的向量,计算其在粗网格上的值(为一个 $(n/2+1)^d$ 维向量)。 一维情况:

```
Vec<NUM> Regular_Multigrid_BVPsolver<1>::Restriction(const Vec<NUM>& x, const int N) {
    Vec<NUM> ret;

    ret.resize((N>>1)+1);
    if(prob.Restriction_opt == "injection") {
        for(int i = 0; i < ret.size; ++i) {
            ret[i] = x[i<<1];
        }
    } else { // prob.Restriction_opt == "full_weight"
        ret[0] = x[0]; ret[N>>1] = x[N];
        for(int i = 1; i < ret.size-1; ++i) {
            ret[i] = 0.25*(x[(i<<1)-1]+2*x[i<<1]+x[i<<1|1]);
        }
    }
    return ret;
}</pre>
```

二维情况:

```
Vec<NUM> Regular_Multigrid_BVPsolver<2>::Restriction(const Vec<NUM>& x, const int N) {
    Vec<NUM> ret;

ret.resize((N>>1)+1);
    if(prob.Restriction_opt == "injection") {
        for(int i = 0; i < ret.size; ++i) {
            ret[i] = x[i<<1];
        }
    } else { // prob.Restriction_opt == "full_weight"
        ret[0] = x[0]; ret[N>>1] = x[N];
        for(int i = 1; i < ret.size-1; ++i) {
            ret[i] = 0.25*(x[(i<<1)-1]+2*x[i<<1]+x[i<<1|1]);
    }
}</pre>
```

```
}
return ret;
}
```

2.3.2 插值算子

对于 n 和一个 $(n+1)^d$ 维的向量,计算其在细网格上的值(为一个 $(2n+1)^d$ 维向量)。

一维情况:

考虑二次插值的方法:对于网格上的点,直接取原先的值;对于其他节点,若其位于线段两侧,采用最近的三个粗网格上点进行插值,否则,采用最近的对称的四个点进行插值。

```
Vec<NUM> Regular_Multigrid_BVPsolver<1>::Interpolation(const Vec<NUM>& x, const int N) {
      Vec<NUM> ret;
      ret.resize(N<<1|1);
      if(prob.Interpolation_opt == "linear") {
          for(int i = 0; i < ret.size; ++i) {</pre>
              if(i\&1) ret[i] = 0.5*(x[i>>1] + x[(i>>1)+1]);
              else ret[i] = x[i>>1];
          }
      } else { // prob.Interpolation_opt == "quadratic"
          for(int i = 0; i < ret.size; ++i) {</pre>
              if(i&1) {
                  int j = i/2;
                  if(i == 1) ret[i] = (3*x[j]+6*x[j+1]-x[j+2])/8.0;
                  else if(i == (N << 1)-1) ret[i] = (3*x[j+1]+6*x[j]-x[j-1])/8.0;
                  else ret[i] = (-x[j-1]+9*x[j]+9*x[j+1]-x[j+2])/16.0;
              else ret[i] = x[i>>1];
          }
      }
      return ret;
}
```

二维情况:

对于网格上的点,直接取原先的值;对于网格线上但不在网格上的点,采用与一维二次插值相同的方法;对于不在网格线上的点,考虑它四周的四个节点,设其左上角为(I,J),考虑以下四组插值点:

- $\bullet \ (I,J+1), (I+1,J), (I+1,J+1), (I,J+2), (I+1,J+2); \\$
- (I, J), (I+1, J+1), (I, J+1), (I-1, J), (I-1, J+1);
- (I, J+1), (I+1, J), (I, J), (I, J-1), (I+1, J-1);
- (I, J), (I+1, J+1), (I+1, J), (I+2, J), (I+2, J+1).

对于每一组点,如果其在网格内,则对其进行一个插值,最后该点上的值是所有可以取到的插值组得到的值的平均值。

```
Vec<NUM> Regular_Multigrid_BVPsolver<2>::Interpolation(const Vec<NUM>& x, const int N) {
      Vec<NUM> ret;
      int N2 = N<<1;</pre>
     ret.resize((N2+1)*(N2+1));
     auto ID = [](int i, int j, int N) -> int {
          return j * (N+1) + i;
     }; // for 2d function
     if(prob.Interpolation_opt == "linear") {
         for(int i = 0; i <= N2; ++i)</pre>
         for(int j = 0; j <= N2; ++j) {</pre>
              int I = i>>1, J = j>>1;
              if((i\&1) \&\& (j\&1)) ret[ID(i, j, N2)] = 0.25 * (
                  x[ID(I, J, N)] + x[ID(I+1, J, N)] + x[ID(I+1, J+1, N)] + x[ID(I, J+1, N)]
              else if(i&1) ret[ID(i, j, N2)] = 0.5 * (x[ID(I, J, N)] + x[ID(I+1, J, N)]);
              else if(j&1) ret[ID(i, j, N2)] = 0.5 * (x[ID(I, J, N)] + x[ID(I, J+1, N)]);
              else ret[ID(i, j, N2)] = x[ID(I, J, N)];
          }
     } else { // prob.Interpolation_opt == "quadratic"
          for(int i = 0; i <= N2; ++i)</pre>
         for(int j = 0; j <= N2; ++j) {</pre>
              if((~i\&1)\&\&(~j\&1)) ret[ID(i, j, N2)] = x[ID(i>>1, j>>1, N)];
              else if(~i&1) {
                  int I = i>>1, J = j>>1;
                 if(j == 1) ret[ID(i, j, N2)] = (3*x[ID(I, J, N)]+6*x[ID(I, J+1, N)]-x[ID(I, J+1, N)]
                      , J+2, N)])/8.0;
                  else if(j == N2-1) ret[ID(i, j, N2)] = (3*x[ID(I, J+1, N)]+6*x[ID(I, J, N)]
                      ]-x[ID(I, J-1, N)])/8.0;
                  else ret[ID(i, j, N2)] = (-x[ID(I, J-1, N)]+9*x[ID(I, J, N)]+9*x[ID(I, J, N)]
                      +1, N)]-x[ID(I, J+2, N)])/16.0;
              } else if(~j&1) {
                  int I = i>>1, J = j>>1;
                  if(i == 1) ret[ID(i, j, N2)] = (3*x[ID(I, J, N)]+6*x[ID(I+1, J, N)]-x[ID(I
                      +2, J, N)])/8.0;
                  ]-x[ID(I-1, J, N)])/8.0;
                  else ret[ID(i, j, N2)] = (-x[ID(I-1, J, N)]+9*x[ID(I, J, N)]+9*x[ID(I+1, J, N)]
                      , N)]-x[ID(I+2, J, N)])/16.0;
              } else {
                 int I = i>>1, J = j>>1, cnt = 0, id = ID(i, j, N2);
                  if(J + 2 <= N) { cnt += 8;</pre>
                      ret[id] += (4*x[ID(I,J+1,N)]+4*x[ID(I+1,J,N)]+2*x[ID(I+1,J+1,N)]-x[ID(I+1,J+1,N)]
                          I,J+2,N)]-x[ID(I+1,J+2,N)]);
                  if(I - 1 >= 0) { cnt += 8;}
                      ret[id] += (4*x[ID(I,J,N)]+4*x[ID(I+1,J+1,N)]+2*x[ID(I,J+1,N)]-x[ID(I,J+1,N)]
                          -1,J,N)]-x[ID(I-1,J+1,N)]);
```

2.3.3 V-Cycle

V-cycles 的形式如下:

$$\mathbf{v}^h \leftarrow \mathrm{VC}(\mathbf{v}^h, \mathbf{f}^h, \mathbf{v}_1, \mathbf{v}_2),$$

- (V-1) 对 $A^h \mathbf{u}^h = \mathbf{f} \times \Omega^h$ 上松弛 ν_1 次;
- (V-2) 如果 Ω^h 是粗网格, 转 4, 否则:

$$f^{2h} \leftarrow I_h^{2h}(f^h - A^h v^h),$$

 $v^{2h} \leftarrow 0, v^{2h} \leftarrow VC^{2h}(v^{2h}, f^{2h}, v_1, v_2).$

- (V-3) 校正: $v^h \leftarrow v^h + I^h_{2h} v^{2h}$;
- (V-4) 对 $A^h u^h = f^h$ 松弛 v_2 次。

```
void VC(Vec<NUM> &vh, const Vec<NUM> &fh, const int nu1, const int nu2, const int N) {
  int id = calid[N];
  cal[id].GoIter(vh, fh, nu1);
  if(N > 2) {
     Vec<NUM> f2h = Restriction((fh - cal[id].A * vh), N);
     Vec<NUM> v2h(prob.Dimension==1?N/2+1:(N/2+1)*(N/2+1));
     VC(v2h, f2h, nu1, nu2, N/2);
     vh = vh + Interpolation(v2h, N/2);
}
cal[id].GoIter(vh, fh, nu2);
}
```

2.3.4 FMG Cycle

Full Multigrid V-Cycle 形式入下:

$$\mathbf{v}^h \leftarrow \mathtt{FMG}^h(\mathbf{f}^h, \nu_1, \nu_2),$$

(F-1) 若 Ω^h 是粗网格,设置 $\mathbf{v}^h \leftarrow 0$,转 3,否则

$$\mathbf{f}^{2h} \leftarrow I_h^{2h} \mathbf{f}^{2h},$$
$$\mathbf{v}^{2h} \leftarrow \mathbf{FMG}^{2h} (\mathbf{f}^{2h}, \nu_1, \nu_2);$$

- (F-2) 校正: $\mathbf{v}^h \leftarrow \mathbf{v}^h + I^h_{2h} \mathbf{v}^{2h}$;
- (F-3) 执行一个 V 循环使用初始值 $\mathbf{v}^h : \mathbf{v}^h \leftarrow \mathtt{VC}^h(\mathbf{v}^h, \mathbf{f}^h, \nu_1, \nu_2)$ 。

```
void FMG(Vec<NUM> &vh, const Vec<NUM> &fh, const int nu1, const int nu2, const int N) {
   int id = calid[N];
   if(N > 2) {
        Vec<NUM> f2h = Restriction(fh, N);
        Vec<NUM> v2h(prob.Dimension==1?N/2+1:(N/2+1)*(N/2+1));
        FMG(v2h, f2h, nu1, nu2, N/2);
        vh = Interpolation(v2h, N/2);
   }
   VC(vh, fh, nu1, nu2, N);
}
```

2.3.5 求解过程

首先根据 initial_guess 设置初始 u 的值,每次迭代,使用当前的残差进行求解,并把结果加入 u 中,若当前加入的向量的范数小于设置的值,则退出。最后的 b 就是当前的残差。

```
// 设置初始 Guess 向量 u
b = b - cal[0].A * u;

for(int iter = 0; iter < prob.Max_Iteration; ++iter) {
    Vec < NUM > v(len);
    if(prob.Cycle_Type == "V") {
        VC(v, b, 5, 5, n);
    } else {
        FMG(v, b, 5, 5, n);
    }
    u = u + v;
    b = b - cal[0].A * v;
    if(Norm2Vec(v) < prob.Accuracy) break;
}
```

2.4 其他组件

2.4.1 SparseMat 稀疏矩阵类

本项目中涉及到的矩阵 A 都是稀疏矩阵(即对于 $O(n^2)$ 级别的矩阵,非零项为 O(n) 个)。为了使矩阵乘向量的复杂度为 O(n),我们优化了矩阵的存储方式,使用 classSparseMat。见 (/include/linear .hpp)。具体的,我们使用 MatLine 来表示矩阵的一行,我们使用的 Hash 的方式,将一行中,列下标模

5 余数相同的列保存在一起(这样是为了方便矩阵的随机访问),在矩阵与向量的乘法中,直接依次取出矩阵中的非零元素与向量中的相应位置作乘法,并把其贡献加入结果向量中。

```
template < class Type >
class SparseMat {
    class MatLine { // 表示矩阵的一行
        int len;
        Type zero;
    public:
        vector<pair<int,Type>> a[5];
        MatLine(int _len = 0) : len(_len), zero(0) {}
        Type& operator [] (const int& pos);
        const Type& operator [] (const int& pos) const;
        void setv(int pos, Type v);
        Type v(int pos);
       Type indot(const Vec<Type>& b) const;
        MatLine operator * (const Type& x) const;
        MatLine operator - () const;
        MatLine operator / (const Type& x) const;
        friend ostream& operator << (ostream& o, const MatLine &line);</pre>
        operator Vec<Type>() const;
   };
    vector<MatLine> a;
public:
    int d, d2; // the dimension of column vector and row vector.
    typedef Vec<Type> VecT;
    typedef Mat<Type, Type> MatT;
    SparseMat() : d(0), d2(0), a(0) {}
    SparseMat(const int& _d) : d(_d), d2(_d), a(_d, _d) {}
    SparseMat(const int \& \_d, const int \& \_d2) : d(\_d), d2(\_d2), a(\_d, \_d2) \{ \}
    MatLine& operator[] (const int &x) { return a[x]; }
    const MatLine& operator[] (const int &x) const { return a[x]; }
    auto begin() const -> decltype(a.begin()) {
        return a.begin();
    auto begin() -> decltype(a.begin()) {
       return a.begin();
    auto end() const -> decltype(a.end()) {
        return a.end();
    auto end() -> decltype(a.end()) {
       return a.end();
    }
    VecT operator * (const VecT& y) const;
    SparseMat<Type> operator * (const Type &x) const ;
```

```
SparseMat<Type> operator - () const ;
  friend SparseMat<Type> operator * (const Type &x, const SparseMat<Type> &y);
  SparseMat<Type> operator / (const Type& x) const;
  operator MatT() const;
  void setv(int i, int j, Type v) { a[i].setv(j, v); }
  void v(int i, int j) { return a[i].v(j); }
};
```


定义 D, -L, -U 为 A 的对角, 下三角, 上三角部分 (A = D - L - U)。定义:

$$\begin{cases} T_J = D^{-1}(L+U), \\ c = D^{-1}\boldsymbol{b}. \end{cases}$$

带权 Jacobi 迭代为如下形式的不动点迭代:

$$x_* = T_j x^{(k)} + c,$$

 $x^{k+1} = (1 - \omega) x^{(k)} + \omega x_* = [(1 - \omega)I + \omega T_J] x^{(k)} + c.$

这里都取 $\omega = \frac{2}{3}$ 。我们使用 Jacobi_Iteration::GoIter(vec<NUM>&x, const Vec<NUM>&b, int iter = 1)表示从x开始,对于方程 Ax = b,迭代 iter 次。因为问题中对于每种网格的 A 矩阵总是固定的,但是右端项总是不相同,因此考虑将 b 作为参数输入,而把 A 作为类的成员。

```
class Jacobi_Iteration {
    SparseMat < NUM > T, nD;
    Vec<NUM> c;
    NUM w;
    int n;
public:
    SparseMat < NUM > A;
    Jacobi_Iteration(const SparseMat<NUM>&_A, const int& _n, const NUM& _w = 2.0/3.0) :
                      A(_A), w(_w), n(_n), T(_A), nD(_n+1) {
                         for(int i = 0; i <= n; ++i) {</pre>
                             T[i][i] = 0;
                             nD[i][i] = 1.0 / _A[i][i];
                             T[i] = T[i] * nD[i][i];
                         }
    void GoIter(Vec<NUM> &x, const Vec<NUM>& b, int iter = 1) {
        c = nD * b;
        Vec<NUM> y;
        for(int i = 0; i < iter; ++i) {</pre>
            y = T * x + c;
            x = w * y + (1-w) * x;
        }
    }
};
```

2.4.3 function 类及字符串解析方法

求解问题中需要用到的 2 元函数为 /include/function.hpp 中的 Function2D 类的派生类,因为涉及到从 JSON 文档中读取函数的表达式,项目调用了 /include/function_generator/ExecCode2.hpp 中的 FromString 类,该类用于对一个字符串建立表达式树,并在之后求解的时候可以快速根据表达式树进行求值。对于多元函数,可以调用 FromString <double, double>::cal2(const map < string, double>& pars) 进行求值。

```
class func2D : Function2D < double > double > {
   FromString < double > getvalue;
public:
   func2D (const std::string &_str) : getvalue(_str) {}
   func2D () : getvalue() {}
   void set(const std::string &_str) { getvalue = FromString < double > (_str); }
   double operator() (const double &x, const double &y) const {
        double xx = x, yy = y;
        return getvalue.cal2({{"x", xx}, {"y", yy}});
   }
};
```

3 样例测试及结果

该部分说明此程序包在样例测试中的求解表现。

3.1 测试说明

本程序包对于四个 Poisson 方程(三个一维方程,一个二维方程)关于不同的边值条件提供了若干测试数据,测试数据位于目录 /data 下。

在根目录下编译并求解所有样例:

```
make all # compile
make run
```

该指令将会编译/test.cpp, 并且调用 test 按照字典序依次运行所有的样例(/data下的所有 JSON 文件),并且保存样例的误差分析结果至/res/test_analysis.txt。测试输出(离散网格点值的求解结果)将会以表格的形式保存至/res/<Input File Name>.csv。

对测试输出进行绘图:

```
make plot
```

该指令将会对保存在 /res/ 目录下的所有 csv 输出文件进行绘图,并且将结果保存在 /res/ 下,命名与原文件相同,类型为 png。

所有测试共花费 1 min 左右,程序包提供了一份测试结果的备份,位于 /res_bac 目录,另有一份所有样例的误差报告 terminal.out,便于用户直接查看。

因报告篇幅有限,下只展示部分测试结果的收敛性分析。

3.2 测试样例 1

测试样例为 data/1a-*.json,求解结果见 terminal.out。该部分指定 Accuracy 为 1e-8。问题:

$$u(x) = \exp(\sin(x)), \Omega = [0, 1]$$

3.2.1 Dirichlet 边值条件

$$\begin{cases} -\Delta u = \exp(\sin(x))(\sin(x) - \cos^2(x)), \text{ in } \Omega \\ u = \exp(\sin(x)), \text{ on } \partial\Omega \end{cases}$$

3.2.2 Neumann 边值条件

$$\begin{cases} -\Delta u = \exp(\sin(x))(\sin(x) - \cos^2(x)), \text{ in } \Omega \\ \frac{\partial u}{\partial n} = -1, x = 0 \\ \frac{\partial u}{\partial n} = \exp(\sin(1))\cos(1), x = 1 \end{cases}$$

3.2.3 混合边值条件

$$\begin{cases} -\Delta u = \exp(\sin(x))(\sin(x) - \cos^2(x)), \text{ in } \Omega \\ \frac{\partial u}{\partial n} = -1, x = 0 \\ u = \exp(\sin(1)), x = 1 \end{cases}$$

3.2.4 V-Cycle 和一阶算子的测试

一维 Dirichlet 边界条件,V-Cycle,linear 插值,injection 限制:

网格大小	残差	误差	运行时间 (ms)	收敛阶
32	1.00e-10	4.94e-05	0.247	-
64	2.00e-10	1.24e-05	0.347	1.99
128	1.00e-09	3.09e-06	0.551	2.00
256	3.80e-09	7.73e-07	0.910	2.00
512	1.54e-08	1.93e-07	1.472	2.00

一维 Neumann 边界条件, V-Cycle, linear 插值, injection 限制:

网格大小	残差	误差	运行时间 (ms)	收敛阶
32	2.22e-03	4.08e-04	0.542	-
64	6.91e-04	1.02e-04	0.752	2.00

128	2.15e-04	2.54e-05	1.078	2.00
256	6.66e-05	6.35e-06	1.725	2.00
512	1.59e-05	1.59e-06	2.911	2.00

一维 Mixed 边界条件, V-Cycle, linear 插值, injection 限制:

网格大小	残差	误差	运行时间 (ms)	收敛阶
32	1.26e-08	1.63e-04	0.441	-
64	7.80e-09	4.34e-05	0.634	1.91
128	1.80e-08	1.12e-05	0.885	1.95
256	3.88e-08	2.84e-06	1.413	1.98
512	2.04e-08	7.16e-07	2.536	1.99

3.2.5 FMG-Cycle 和二阶算子的测试

一维 Neumann 边界条件, FMG, quadratic 插值, Full-weight 限制:

网格大小	残差	误差	运行时间 (ms)	收敛阶
32	2.25e-03	4.07e-04	1.115	=
64	7.06e-04	1.02e-04	1.799	2.00
128	2.20e-04	2.54e-05	2.606	2.00
256	6.86e-05	6.34e-06	4.124	2.00
512	2.13e-05	1.58e-07	6.643	2.00

3.2.6 总结

多重网格算法具有二阶的收敛阶。且在 Dirichlet 和 Mixed 边界条件下均可使残差降到 10^{-10} ; 在 Neumann 边界条件下残差收敛到定值,即最小二乘问题 $\min \|Au - f\|$ 的解的残差。

在一维问题中,网格较粗的情况下,FMG-Cycle 和高阶算子的收敛速度优势并不显著。又因为 V-Cycle 和低阶算子的计算量明显小于高阶算子,所以第一小节的测试结果明显优于第二小节。

在最细的网格上,将 Accuracy 逐渐降至 1^{-16} ,设置最大迭代次数为 100 (足够大)。执行命令:

./test data/1a-DFqf-512.json data/1a-DFqf-512-2.json data/1a-DFqf-512-3.json data/1a-DFqf-512-4.json data/1a-DFqf-512-5.json

得到结果如下:

网格大小	Accuracy	残差	误差	运行时间 (ms)
512	1e-8	3e-10	1.932e-7	4.255
512	1e-10	3e-10	1.932e-7	3.791
512	1e-12	<1e-10	1.932e-7	3.771

512	1e-14	<1e-10	1.932e-7	3.279
512	1e-16	<1e-10	1.932e-7	3.643

可以发现,虽然残差仍然在下降,但是误差保持不变,这是因为,当 n=512 时,由于 $h^2=\frac{1}{262144}\approx 4e-6$,此时误差主要来自于截断误差,所以减小对残差的限制无法进一步减少总体误差。

3.3 测试样例 2

测试样例为 data/1b-*.json, 求解结果见 terminal.out。该部分指定 Accuracy 为 1e-12。 问题:

$$u(x) = \ln(1 + x^2), \Omega = [0, 1]$$

3.3.1 Dirichlet 边值条件

$$\begin{cases} -\Delta u = -2(1-x^2)/(1+x^2)^2, \text{ in } \Omega \\ u = \log(1+x^2), \text{ on } \partial \Omega \end{cases}$$

3.3.2 Neumann 边值条件

$$\begin{cases} -\Delta u = -2(1 - x^2)/(1 + x^2)^2, \text{ in } \Omega \\ \frac{\partial u}{\partial n} = 0, x = 0 \\ \frac{\partial u}{\partial n} = 1, x = 1 \end{cases}$$

3.3.3 混合边值条件

$$\begin{cases} -\Delta u = -2(1-x^2)/(1+x^2)^2, \text{ in } \Omega \\ \frac{\partial u}{\partial n} = 0, x = 0 \\ u = \ln(2), x = 1 \end{cases}$$

3.3.4 V-Cycle 和一阶算子的测试

一维 Mixed 边界条件, V-Cycle, linear 插值, injection 限制:

网格大小	残差	误差	运行时间 (ms)	收敛阶
32	<1e-10	7.57e-05	1.115	-
64	<1e-10	2.95e-05	1.799	1.36
128	<1e-10	8.76e-06	2.606	1.75
256	<1e-10	2.37e-06	4.124	1.89

512	<1e-10	6.14e-07	6.643	1.95
512	<1e-10	6.14e-07	6.643	1.95

3.4 测试样例 3

测试样例为 data/1c-*.json, 求解结果见 terminal.out。该部分指定 Accuracy 为 1e-12。问题:

$$u(x)=\sin^2(x), \Omega=[0,1]$$

3.4.1 Dirichlet 边值条件

$$\begin{cases} -\Delta u = -2\cos(2x), \text{ in } \Omega \\ u = \sin^2(x), \text{ on } \partial\Omega \end{cases}$$

3.4.2 Neumann 边值条件

$$\begin{cases}
-\Delta u = -2\cos(2x), \text{ in } \Omega \\
\frac{\partial u}{\partial n} = 0, x = 0 \\
\frac{\partial u}{\partial n} = \sin(2), x = 1
\end{cases}$$

3.4.3 混合边值条件

$$\begin{cases} -\Delta u = \exp(\sin(x))(\sin(x) - \cos^2(x)), \text{ in } \Omega \\ \frac{\partial u}{\partial n} = 0, x = 0 \\ u = \sin^2(1), x = 1 \end{cases}$$

3.5 测试样例 4

测试样例为 data/2-*.json, 求解结果见 terminal.out。该部分指定 Accuracy 为 le-12。

$$u(x, y) = \exp(y + \sin x), \Omega = [0, 1]^2$$

3.5.1 Dirichlet 边值条件

$$\begin{cases} -\Delta u = -(1 - \sin x + \cos^2 x) \exp(\sin x + y), & \text{in } \Omega \\ u = \exp(\sin x + y), & \text{on } \partial \Omega \end{cases}$$

3.5.2 Neumann 边值条件

$$\begin{cases}
-\Delta u = -(1 - \sin x + \cos^2 x) \exp(\sin x + y), & \text{in } \Omega \\
\frac{\partial u}{\partial n} = -\exp(\sin x), & y = 0 \\
\frac{\partial u}{\partial n} = -\exp(y), & x = 0 \\
\frac{\partial u}{\partial n} = \cos 1 \cdot \exp(\sin 1 + y), & x = 1 \\
\frac{\partial u}{\partial n} = \exp(\sin x + 1), & y = 1
\end{cases}$$

3.5.3 混合边值条件

$$\begin{cases}
-\Delta u = -(1 - \sin x + \cos^2 x) \exp(\sin x + y), & \text{in } \Omega \\
u = \exp(\sin x + y), & y = 0 \\
u = \exp(\sin x + y), & x = 0 \\
\frac{\partial u}{\partial n} = \cos 1 \cdot \exp(\sin 1 + y), & x = 1 \\
\frac{\partial u}{\partial n} = \exp(\sin x + 1), & y = 1
\end{cases}$$

3.5.4 V-Cycle 和一阶算子的测试

二维 Dirichlet 边界条件, V-Cycle, linear 插值, injection 限制:

网格大小	残差	误差	运行时间 (ms)	收敛阶	运行时间收敛阶
32	<1e-10	3.45e-05	3.753	-	-
64	<1e-10	8.62e-06	15.811	2.00	2.07
128	<1e-10	2.16e-06	71.655	2.00	2.18
256	<1e-10	5.39e-07	303.294	2.00	2.08
512	<1e-10	1.35e-07	1289.425	2.00	2.09

二维 Neumann 边界条件,V-Cycle, linear 插值, injection 限制:

网格大小	残差	误差	运行时间 (ms)	收敛阶	运行时间收敛阶
32	2.89e-03	8.56e-04	5.557	-	-
64	9.71e-04	2.16e-04	18.187	1.99	1.71
128	3.49e-04	5.42e-05	105.937	1.99	2.54
256	1.95e-04	1.37e-05	471.695	1.98	2.15
512	2.86e-03	3.75e-06	1818.714	1.87	1.94

二维 Mixed 边界条件, V-Cycle, linear 插值, injection 限制:

网格大小	残差	误差	运行时间 (ms)	收敛阶	运行时间收敛阶
32	7.81e-07	1.06e-03	4.795	-	-
64	4.38e-06	2.63e-03	17.392	2.01	1.86
128	1.95e-05	6.58e-05	69.162	2.00	1.99
256	7.36e-05	1.70e-05	336.728	1.95	2.28
512	2.47e-04	5.52e-06	1598.827	1.62	2.24

3.5.5 FMG 和二阶算子的测试

测试函数 $u(x,y) = \exp(\sin(x) + y)$,二维 Mixed 边界条件,FMG,linear 插值,injection 限制。

网格大小	残差	误差	运行时间 (ms)	收敛阶	运行时间收敛阶
32	<1e-10	1.06e-03	5.499	-	-
64	<1e-10	2.63e-03	17.582	2.01	1.67
128	<1e-10	6.54e-05	84.448	2.01	2.26
256	<1e-10	1.63e-05	342.296	2.00	2.03
512	<1e-10	4.07e-06	1420.509	2.00	2.05

测试函数 $u(x,y) = \exp(\sin(x) + y)$,二维 Mixed 边界条件,FMG,quadratic 插值,Full-weight 限制。

网格大小	残差	误差	运行时间 (ms)	收敛阶	运行时间收敛阶
32	<1e-10	1.06e-03	5.341	-	-
64	<1e-10	2.63e-03	18.999	2.01	1.83
128	<1e-10	6.54e-05	65.258	2.01	1.78
256	<1e-10	1.63e-05	314.449	2.00	2.27
512	<1e-10	4.07e-06	1865.895	2.00	2.57

3.5.6 分析与总结

多重网格在二维问题中仍具有二阶的收敛阶,且时间复杂度基本上和网格格点数量线性相关。

二维问题中,FMG-Cycle 相比 V-Cycle 的优势可以体现:二维的 Neumann 和 mixed 边界条件下,n=128,256,512 时,V-Cycle 在循环 20 次后残差没有收敛,导致计算出的解收敛阶偏低,明显小于二阶。而 换成 FMG-Cycle 后,同样迭代 20 次,残差收敛至 10^{-10} 以下,解的收敛阶达到了二阶。

参考文献

[1] 张庆海. "Notes on Numerical Analysis and Numerical Methods for Differential Equations". In: (2024).