

#### BITMAP

- Bitmap é um tipo de imagem bastante comum (mapa de bits).
- Isso quer dizer que o Bitmap é composto por **pixels**, um conjunto de pontos que possuem uma informação de cor.
- Os agrupamentos de pixel, por sua vez, fazem com que nossos olhos consigam identificar os elementos e a imagem como um todo. (reconstrução mental)
- Para medir a qualidade e resolução de uma imagem Bitmap existe uma métrica chamada DPI — Dots Per Inch (quantidade de pixels por polegada)
  - Quanto maior o DPI mais nítida a imagem,
  - Por exemplo, uma imagem a 500 DPI possui 500 pixels por polegada que compõem uma imagem mais nítida do que uma de 100 DPI.
- Uma das desvantagens do Bitmap é o **redimensionamento** da imagem.
  - Aumentar ou reduzir uma imagem Bitmap faz com que pixels sejam eliminados ou interpolados. Em ambos os casos há uma perda na qualidade da imagem.



## BITMAP X VETORIAL

- Por serem baseados em vetores, essa faz desenhos e gráficos geralmente mais leves (ocupam menos espaço de armazenamento) e não perdem qualidade ao serem ampliados, já que transformam por funções matemáticas adequadamente os elementos (quanto a escala e outras facilmente)
- Isso não ocorre com gráficos raster (bitmap) que perdem a qualidade
- Outra vantagem do desenho vetorial é a possibilidade de isolar objetos e zonas, tratando-as independentemente, facilitando animações e combinações geométricas para compor objetos



## FORMATOS DE IMAGEM DIGITAL

#### JPEG/JPG (Joint Photographic Experts Group)

- Características: Permite o uso de diversas técnicas de compressão, sendo que a maioria delas apresenta perdas, o que significa que a imagem original não será exatamente idêntica à imagem recuperada após a descompressão. A taxa de compressão pode ser determinada pelo usuário. Suporta cores com até 24 bits
- Aplicações: Armazenamento digital de fotografias. Apresentação de imagens na Internet.
- Vantagens: Oferece a maior taxa de compressão existente para imagens fotográficas. Ao lado do padrão GIF, constitui um dos padrões para arquivos de imagens apresentadas na Internet.
- Desvantagens: O padrão ainda está em desenvolvimento e existem algumas opções incompatíveis entre si.
   A compressão e descompressão por software é um tanto lenta.



# FORMATOS DE IMAGEM DIGITAL

#### **GIF** (Graphics Interchange Format)

- Características: Suporta cores de até 24 bits numa palheta de até
  256 cores em imagens de até 65536 por 65536 pixels. Utiliza
  compressão de dados pela técnica LZW (Lempel–Ziv–Welch).
   Permite o armazenamento de múltiplas imagens num mesmo arquivo,
  possibilitando animações. Suporta cores com até 24 bits
- Aplicações: Artes gráficas, editoração eletrônica, apresentação de imagens na Internet.
- Vantagens: É um formato excelente para troca de dados entre diferentes plataformas com boas taxas de compressão.
- Desvantagens: Não apresenta possibilidade de armazenamento de tabelas de tons de cinza nem de correção de cor. Também não possibilita representação dos dados nos modelos CMYK (cyan, magenta, yellow e key) e HSI (hue, saturation, intensity -- matiz, saturação, intensidade).

# FORMATOS DE IMAGEM DIGITAL

#### **PNG (Portable Nework Graphics)**

- Características: Possui uma variação de cores muito maior do que a do GIF. Também é possível deixar o fundo da imagem transparente (canal alpha). Seu algoritmo de compactação é mais eficiente, garantindo maior qualidade.
- Aplicações: estratégias digitais e até mesmo em arquivos gráficos, como logos e ilustrações.
- Vantagens: o bom equilíbrio entre peso e qualidade, de um lado, e o suporte a transparências, do outro.
- Desvantagens: se a imagem exige muita qualidade, pode ser melhor usar outro formato, e se ela precisa ser leve, pode ser melhor usar .jpg mesmo.

# FORMATOS DE IMAGEM DIGITAL

#### **TIFF (Tag Image File Format)**

- Características: Suporta cores com até 48 bits ou uma palheta de 65536 cores. Permite dados de transparência e opacidade. O tipo de compressão utilizado varia com a versão do formato (RLE, LZW, PackBits, Huffmann Modificada, Fac-símile Grupos 3 e 4 ou nenhuma)
- Aplicações: Artes gráficas, editoração eletrônica.
- Vantagens: É suportado por diversas plataformas de hardware, sendo especialmente útil para troca de dados entre plataformas diferentes. É um formato adequado para vários tipos de aplicação e é muito bem documentado. Apresenta boas taxas de compressão.
- Desvantagens: A versatilidade do TIFF promove algumas dificuldades, devidas às inúmeras possibilidades de criação de extensões do formato.

#### **EXERCÍCIO2:**

Considerando o artigo selecionado no Exercício 1 comente sobre o formato de imagem usada.

Considerando o mesmo problema/aplicação quais outros formatos de imagens poderia ser usado?

## COMPONENTES DE UM SISTEMA DE PROCESSAMENTO



SENSORES DE IMAGEM



HARDWARE PARA PI



SOFTWARE PARA PI



**ARMAZENAMENTO** 



**COMPUTADOR** 



HARDWARE DE VISUALIZAÇÃO



HARDWARE DE IMPRESSÃO



REDE



#### **Espectro visível**





#### Infra-vermelho





## AQUISIÇÃO DE IMAGENS

### AQUISIÇÃO DE IMAGENS

Raio gama





Raio X





#### ESPECTRO ELETROMAGNÉTICO



#### ESPECTRO ELETROMAGNÉTICO



#### LUZ

Luz é um tipo particular de radiação eletromagnética que pode ser percebida pelo olho humano.



#### LUZ

- Luz sem cor
  - Luz monocromática ou acromática
  - Único atributo da luz monocromática é sua intensidade
  - Intensidade/Nível de cinza
- Outras medidas básicas de luz cromática
  - Radiância (energia emitida)
  - Luminância (energia percebida)
  - Brilho: noção acromática de intensidade





### REPRESENTAÇÃO



Amostragem: consiste em discretizar o domínio da imagem nas direções x e y, gerando uma matriz de MxN amostras;



Quantização: consiste em escolher o número L de níveis de cinza (em imagens monocromáticas) permitidos para cada imagem, (L = 2k).



#### 2. FUNDAMENTOS DE IMAGENS DIGITAIS

PROF. DR. WEMERSON DELCIO PARREIRA

UNIVERSIDADE DO VALE DO ITAJAÍ

CCOMP-POLI

PARREIRA@UNIVALI.BR

## FUNDAMENTOS DAS IMAGENS DIGITAIS



#### MODELO DE IMAGEM

- Uma imagem monocromática pode ser descrita matematicamente por
- uma função f(x, y) da intensidade luminosa, sendo seu valor, em
- qualquer ponto de coordenadas espaciais (x, y)
   proporcional ao brilho (ou
- nível de cinza) da imagem naquele ponto.



### MODELO DE IMAGEM

A função f(x, y) representa o produto da interação entre a iluminância i(x, y) (que exprime a qualidade de luz que incide sobre o objeto) e as propriedades de reflectância ou de transmitância próprias do objeto, que podem ser representadas pela função r(x, y), cujo valor exprime a fração de luz que o objeto vai transmitir ou refletir ao ponto (x,y):



$$f(x, y) = i(x, y).r(x, y)$$
  
com  $0 < i(x, y) < \infty e 0 < r(x, y) < 1.$ 

## r(x,y) 0,93 neve 0,8 parede brando-fosca 0,65 aço inoxidável 0,01 veludo preto

# MODELO EM ESCALA DE CINZA

| i(x,y) |                                |
|--------|--------------------------------|
| 900    | dia ensolarado                 |
| 100    | dia nublado                    |
| 10     | iluminação média de escritório |
| 0,001  | noite clara de lua cheia       |

- Trataremos a intensidade de uma imagem monocromática f nas coordenadas (x, y) será denominada nível de cinza (L) da imagem naquele ponto.
- Assim, temos: Lmin ≤ L ≤ Lmax
- O intervalo [Lmin,Lmax] é denominado escala de cinza.
- Comumente deslocamos o intervalo anterior para valores inteiros no intervalo [0,W), com W uma potência inteira positiva de 2.
- Usaremos L = 0 para pixel preto e L =
   W 1 para pixel branco.

### **OBSERVAÇÕES**



Uma imagem que possua informações em intervalos ou bandas distintas de frequência é necessário uma função f(x, y) para cada banda.



Exemplo: Imagens coloridas paradrão RGB, que são formadas por informação de cores primarias aditivas, como o vermelho (R - red), verde (G - green) e azul (B - blue)



Para converter uma cena real em uma imagem digitalizada, duas etapas são imprescindíveis: a aquisição e a digitalização.

#### AQUISIÇÃO E DIGITALIZAÇÃO DE IMAGENS

#### Aquisição:

- Esta etapa se resume ao processo de transdução optoeltrônica, que é o processo de conversão de uma cena real tridimensional em uma imagem analógica.
- Ocorre uma redução da dimensionalidade 3-D para 2-D.
- O dispositivo de aquisição de imagens mais utilizado atualmente é a câmera CCD (Charge Coupled Device).
- Um dispositivo de carga acoplada
   (CCD) é um circuito integrado contendo uma matriz de capacitores ligados ou acoplados



#### AQUISIÇÃO

- Consiste de uma matriz de células semicondutoras fotossensíveis, que atuam como capacitores, armazenando a carga elétrica proporcional à energia luminosa incidente
- O sinal elétrico produzido é condicionado por circuitos eletrônicos especializados, produzindo à saída um analógico monocromático Sinal Composto de Vídeo (SCV)
- Para aquisição de imagens coloridas utilizando CCDs é necessário um conjunto de prismas e filtros de cor encarregados de decompor a imagem colorida em suas componentes R, G e B, cada qual capturada por um CCD independente.
- Os sinais eletricos correspodnentes a cada componente são combinados posteriormente conforme o padrão de cor utilizado.

## DIGITALIZAÇÃO

- Processo de discretização espacial e em amplitude do sinal analógico adquirido para processamento computacional
- Denominamos amostragem o processo de discretição espacial
- Quantização refere-se ao processo de discretização em amplitude

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \dots & f(0,N-1) \\ f(1,0) & f(1,1) & \dots & f(1,N-1) \\ \vdots & \vdots & \ddots & \vdots \\ f(M-1,0) & f(M-1,1) & \dots & f(M-1,N-1) \end{bmatrix}$$

- Maiores valores de M e N implicam em uma imagem de maior resolução
- A quantização faz com que cada um destes pixels assuma um valor inteiro em (0, 2<sup>n</sup> 1).
- Quanto maior o valor de n, maior o número de níveis de cinza presentes na imagem digitalizada.

### **OBSERVAÇÕES**

- Do ponto de vista eletrônico, a digitalização consiste em uma conversão analógico-digital na qual o número de amostras do sinal contínuo por unidade de tempo indica a taxa de amostragem e o número de bits do conversor AD utilizado determina o número de tons de cinza resultantes na imagem digitalizada.
- Na especificação do processo de digitalização deve-se decidir que valores M,N e n são adequados, do ponto de vista de qualidade de imagem e de quantidade de bytes necessários para armazená-la.

|       |         |         | n       |         |         |         |         |           |
|-------|---------|---------|---------|---------|---------|---------|---------|-----------|
| N     | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8         |
| 32    | 128     | 256     | 512     | 512     | 1.024   | 1.024   | 1.024   | 1.024     |
| 64    | 512     | 1.024   | 2.048   | 2.048   | 4.096   | 4.096   | 4.096   | 4.096     |
| 128   | 2.048   | 4.096   | 8.192   | 8.192   | 16.384  | 16.384  | 16.384  | 16.384    |
| 246   | 8.192   | 16.384  | 32.768  | 32.768  | 65.536  | 65.536  | 65.536  | 65.536    |
| 512   | 32.768  | 65.536  | 131.072 | 131.072 | 262.144 | 262.144 | 262.144 | 262.144   |
| 1.024 | 131.072 | 262.144 | 393.126 | 524.288 | 655.360 | 786.432 | 917.504 | 1.048.576 |

#### Efeito da redução dos níveis de cinza de uma imagem $442 \times 299$



- (a) 256 níveis de cinza
- (b) 128 níveis de cinza



- (c) 64 níveis de cinza
- (d) 32 níveis de cinza



- (e) 16 níveis de cinza
- (f) 8 níveis de cinza





- (a) 4 níveis de cinza
- (b) 2 níveis de cinza

## **OBSERVAÇÕES**

- Para obter uma imagem digital de qualidade semelhante a de uma imagem de televisão P&B, são necessários 512 × 512 pixels e 128 níveis de cinza
- Em geral, 64 níveis de cinza são considerados suficientes para o olho humano
- Apesar disto, a maioria dos sistemas de visão artificial utiliza imagens com 512 níveis de cinza
- Os processo de amostragem e quantização podem ser aprimorados usando técnicas adaptativas
- ightharpoonup O principal obstáculo para a implementação destas técnicas é a necessidade de identificação prévia das regiões presentes na imagem e das fronteiras entre elas.

#### **EXERCÍCIO3:**

Gere, usando a linguagem do seu interesse, as seguintes imagens (exibir os comandos usados na geração de cada uma delas) 256 × 256:



#### **EXERCÍCIO4:**

01

Implemente um algortimo para abrir uma imagem em formato tif

02

Verificar se a imagem está em Escala de cinza, caso contrário faça a conversão, use C= 0,29R+0,59G+0,11B

03

Converta a imagem para diferentes escalas 32, 16, 8 e 2

04

Compare os resultados as diferenças.