On-Policy vs Off-Policy Algorithms

CMPT 729 G100

Jason Peng

Overview

- On-Policy vs Off-Policy
- On-Policy Algorithms
- Off-Policy Algorithms
- Trade-Offs

On-Policy vs Off-Policy

On-policy:

Model can be update using <u>only</u> data collected with the model

Off-policy:

Model can be updated using data collected from <u>other</u> sources

On-Policy

Policies from previous training iterations

RL Algorithms

$$\nabla_{\pi}J(\pi) = \mathbb{E}_{\underline{\tau \sim p(\tau|\pi)}} \left[R(\tau) \sum_{t=0}^{T-1} \nabla_{\pi} \mathrm{log}\pi(\mathbf{a}_t|\mathbf{s}_t) \right]$$
 Must be from current policy

ALGORITHM: REINFORCE

1: $\theta \leftarrow$ initialize policy parameters

- 2: while not done do
- 3: Sample trajectories $\{\tau^i\}$ from policy $\pi_{\theta}(\mathbf{a}|\mathbf{s})$
- 4: Estimate policy gradient

$$\nabla_{\theta} J(\pi_{\theta}) \approx \frac{1}{N} \sum_{i} R(\tau^{i}) \sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i})$$

- 5: Update policy $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\pi_{\theta})$
- 6: end while
- 7: return policy π_{θ}

Collect data with current policy

ALGORITHM: REINFORCE

- 1: $\theta \leftarrow \text{initialize policy parameters}$
- 2: while not done do
- 3: Sample trajectories $\{\tau^i\}$ from policy $\pi_{\theta}(\mathbf{a}|\mathbf{s})$
- 4: Estimate policy gradient

$$\nabla_{\theta} J(\pi_{\theta}) \approx \frac{1}{N} \sum_{i} R(\tau^{i}) \sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i})$$

- 5: Update policy $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\pi_{\theta})$
- 6: end while
- 7: return policy π_{θ}

ALGORITHM: REINFORCE

- 1: $\theta \leftarrow$ initialize policy parameters
- 2: while not done do
- 3: Sample trajectories $\{\tau^i\}$ from policy $\pi_{\theta}(\mathbf{a}|\mathbf{s})$
- 4: Estimate policy gradient $\nabla_{\theta} J(\pi_{\theta}) \approx \frac{1}{N} \sum_{i} R(\tau^{i}) \sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i})$
- 5: Update policy $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\pi_{\theta})$
- 6: end while

Perform just one grad update, then throw out data

7: return policy π_{θ}

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning [Williams 1992]

On-Policy (Policy Gradient)

$$\nabla_{\pi} J(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[\nabla_{\pi} \log \pi(\mathbf{a}|\mathbf{s}) \left(Q^{\pi}(\mathbf{s}, \mathbf{a}) - V^{\pi}(\mathbf{s}) \right) \right]$$
From current policy

On-Policy (Policy Gradient)

$$\nabla_{\pi}J(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[\nabla_{\pi} \log \pi(\mathbf{a}|\mathbf{s}) \left(Q^{\pi}(\mathbf{s}, \mathbf{a}) - V^{\pi}(\mathbf{s}) \right) \right]$$
 From current policy

• If data is not from π , PG methods can completely fail to learn anything

RL Algorithms

Behavioral Cloning

$$\min_{\pi} \mathbb{E}_{(\mathbf{o}, \mathbf{a}) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a} | \mathbf{o}) \right]$$

Off-Policy (Model-Based RL)

$$\underset{f}{\operatorname{arg max}} \ \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[\log f(\mathbf{s}' | \mathbf{s}, \mathbf{a}) \right]$$

• Dataset can come from anywhere, as long as it has sufficient coverage of states and actions.

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} \left[\left(\underbrace{\left(r + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}', \mathbf{a}') \right) - Q(\mathbf{s}, \mathbf{a}) \right)^2} \right]$$

Current Q-function

$$Q^{k+1} = \arg\min_{Q} \ \mathbb{E}_{\substack{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D} \\ \text{Does not depend on } Q^k!}} \left[\left(\left(r + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}', \mathbf{a}') \right) - Q(\mathbf{s}, \mathbf{a}) \right)^2 \right]$$

• The data distribution can be an arbitrary distribution

- Tabular Q-Learning
 - If dataset covers <u>all</u> states and actions, then Q-learning will converge to the optimal Q-function
 - Can learn from a completely <u>random</u> policy, as long as agent observes every state and action at least once

$$Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} \left[\left(\left(r + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}', \mathbf{a}') \right) - Q(\mathbf{s}, \mathbf{a}) \right)^2 \right]$$

Arbitrary Dataset

$$Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} \left[\left(\left(r + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}', \mathbf{a}') \right) - Q(\mathbf{s}, \mathbf{a}) \right)^2 \right]$$

- The data distribution can be an arbitrary distribution
- Tabular Q-Learning
 - If dataset covers all states and actions, then Q-learning will converge to the optimal Q-function
 - Can learn from a completely <u>random</u> policy, as long as agent observes every state and action at least once

$$Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} \left[\left(\left(r + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}', \mathbf{a}') \right) - Q(\mathbf{s}, \mathbf{a}) \right)^2 \right]$$

$$Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} \left[\left(\left(r + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}', \mathbf{a}') \right) - Q(\mathbf{s}, \mathbf{a}) \right)^2 \right]$$

$$Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} \left[\left(\left(r + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}', \mathbf{a}') \right) - Q(\mathbf{s}, \mathbf{a}) \right)^2 \right]$$

$$Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} \left[\left(\left(r + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}', \mathbf{a}') \right) - Q(\mathbf{s}, \mathbf{a}) \right)^2 \right]$$

$$Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} \left[\left(\left(r + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}', \mathbf{a}') \right) - Q(\mathbf{s}, \mathbf{a}) \right)^2 \right]$$

Independent of current model, but the characteristics of the data still matters.

$$Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} \left[\left(\left(r + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}', \mathbf{a}') \right) - Q(\mathbf{s}, \mathbf{a}) \right)^2 \right]$$

- The data distribution can be an arbitrary distribution
- Q-Learning + function approximation
 - Not guaranteed to converge to the optimal Q-function
 - Can learn an effective policy from arbitrary dataset with sufficient coverage

ALGORITHM: Q-Learning

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$

Keep data from previous iterations for better coverage

- 6: Calculate target values for each sample i: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}'_i, \mathbf{a}')$
- 7: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_{i}, \mathbf{a}_{i}, \mathbf{r}_{i}, \mathbf{s}'_{i}) \sim \mathcal{D}} \left[(y_{i} - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \right]$
- 8: end for
- 9: return Q^n

$$\hat{J}(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[\hat{Q}^{\pi}(\mathbf{s}, \mathbf{a}) \right]$$

$$\hat{J}(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[\hat{Q}^{\pi}(\mathbf{s}, \mathbf{a}) \right]$$

$$\nabla_{\pi} \hat{J}(\pi) \approx \nabla_{\pi} J(\pi)$$

$$\hat{J}(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[\hat{Q}^{\pi}(\mathbf{s}, \mathbf{a}) \right]$$

$$\hat{J}(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[\hat{Q}^{\pi}(\mathbf{s}, \mathbf{a}) \right]$$

$$\hat{J}(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\mu}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[Q^{\mu}(\mathbf{s}, \mathbf{a}) \right]$$

 $\mu(\mathbf{a}|\mathbf{s})$: behavior policy

$$\hat{J}(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\mu}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[Q^{\mu}(\mathbf{s}, \mathbf{a}) \right]$$

$$\hat{J}(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\mu}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[Q^{\mu}(\mathbf{s}, \mathbf{a}) \right]$$

 π picks action for one step

$$\hat{J}(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\mu}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[Q^{\mu}(\mathbf{s}, \mathbf{a}) \right]$$

 π picks action for one step, and then μ takes over

 π Is trying to put the agent in a state \mathbf{S}' that μ will be the most effective in.

$$\hat{J}(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\mu}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[Q^{\mu}(\mathbf{s}, \mathbf{a}) \right]$$

- If $\mu(\mathbf{a}|\mathbf{s}) = \pi^*(\mathbf{a}|\mathbf{s})$, then $\pi \to \pi^*$
- If $\mu(\mathbf{a}|\mathbf{s}) \neq \pi^*(\mathbf{a}|\mathbf{s})$, then algorithm will still learn *some* policy, but it might not be optimal
- Will not work for a completely random behavior policy, even if it covers all states and actions

ALGORITHM: SAC

- 1: $Q^0 \leftarrow$ initialize Q-function
- 2: $\pi^0 \leftarrow \text{initialize policy}$
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 4: **for** iteration k = 0, ..., n 1 **do**
- 5: Sample trajectory τ according to $\pi^k(\mathbf{a}|\mathbf{s})$
- 6: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$
- 7: Calculate target values for each sample i:

$$y_i = r_i + \gamma \mathbb{E}_{\mathbf{a}' \sim \pi^k(\mathbf{a}'|\mathbf{s}'_i)} \left[Q^k(\mathbf{s}'_i, \mathbf{a}') \right]$$

8: Update Q-function:

$$Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{r}_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

9: Update policy:

$$\pi^{k+1} = \arg \max_{\pi} \mathbb{E}_{\mathbf{s}_i \sim \mathcal{D}} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s}_i)} \left[Q^{k+1}(\mathbf{s}_i, \mathbf{a}) \right]$$

10: end for

11: return π^n

 π improves every iteration, and gets closer to π^*

On-Policy vs Off-Policy

Trade-Offs

On-Policy

- Sample inefficient
- Fast wall-clock time
- Typically better asymptotic performance
- ✓ More stable and easy to tune
- Exploration limited by action distribution

Off-Policy

- ✓ Sample efficient
- Slow wall-lock time
- Typically worse asymptotic performance
- More unstable and hard to tune
- ✓ Flexible exploration

On-Policy Exploration

Exploration: what actions can the policy take?

$$\nabla_{\pi} J(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[\nabla_{\pi} \log \pi(\mathbf{a}|\mathbf{s}) \left(Q^{\pi}(\mathbf{s}, \mathbf{a}) - V^{\pi}(\mathbf{s}) \right) \right]$$

On-Policy Exploration

Exploration: what actions can the policy take?

$$\nabla_{\pi} J(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\pi}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[\underline{\nabla_{\pi} \log \pi(\mathbf{a}|\mathbf{s})} \left(Q^{\pi}(\mathbf{s}, \mathbf{a}) - V^{\pi}(\mathbf{s}) \right) \right]$$

Policy Gradient:

- Action distribution must have a differentiable log-likelihood
- Limited to simple action distributions with easy to compute loglikelihoods

Off-Policy Exploration

Exploration: what actions can the policy take?

$$\hat{J}(\pi) = \mathbb{E}_{\mathbf{s} \sim d_{\mu}(\mathbf{s})} \mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[Q^{\mu}(\mathbf{s}, \mathbf{a}) \right]$$

SAC:

- ullet Do not need to differentiate behavior policy μ
- Can collect data using any action distribution as long as it has good coverage of actions
- E.g. temporally correlated actions, epsilon-greedy, multi-modal distributions, mixture models, etc.

Summary

- On-Policy vs Off-Policy
- On-Policy Algorithms
- Off-Policy Algorithms
- Trade-Offs