Dicionários

Aula 12 Dicionários

Tabelas de dispersão

Programação II, 2018-2019

v1.4. 17-05-2018

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

DETI, Universidade de Aveiro

Sumário

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

1 Introdução

- 2 Funções de Dispersão
- 3 Factor de Carga
- 4 Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

Sumário

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

1 Introdução

- 2 Funções de Dispersão
- 3 Factor de Carga
- 4 Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

Introducão

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

```
• LinkedList
```

- addFirst(), addLast(), removeFirst(), first(), ...
- SortedList
 - insert(), remove(), first(),..
- Stack
 - push(), pop(), top(), ...
- Oueue
 - in(), out(), peek(), ..
- KeyValueList (implementa um dicionário
 - set(), get(), remove(), ...

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- LinkedList
 - addFirst(), addLast(), removeFirst(), first(), ...
- SortedList
 - insert(), remove(), first(), ...
- Stack
 - push(), pop(), top(), ...
- Queue
 - in(), out(), peek(), ...
- KeyValueList (implementa um dicionário)
 - set(), get(), remove(), ...

Colecções de dados: o que vimos até agora

 Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - Vectores
 - Espaço: O(n) (proporcional ao número de elementos
 - Tempo (acesso por índice): O(1) (constante
 - Tempo (procura por valor): O(n)
 - Tempo (inserção no fim): O(1)
 - Tempo (procura em vector ordenado): O(log n
 - Tempo (inserção por ordem): O(n)
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n)
 - Tempo (inserção): O(1)
 - 3 Dicionários
 - Eficiencia depende da implementação
 - No caso de implementação na forma de lista de pares chave-valor (aula anterior), a eficiência é similar à das listas
 - Vamos agora ver implementações eficientes do conceito de dicionário

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaco: O(n) (proporcional ao número de elementos)
 - Tempo (acesso por índice): O(1) (constante)
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): O(log n)
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n)
 - Tempo (inserção): O(1).
 - 3 Dicionários
 - Eficiência depende da implementação
 - No caso de implementação na forma de lista de pares chave-valor (aula anterior), a eficiência é similar à das listas
 - Vamos agora ver implementações eficientes do conceito de dicionário

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n)
 - Tempo (inserção no fim): O(1)
 - Tempo (procura em vector ordenado): O(log n)
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n)
 - Tempo (acesso, procura): O(n)
 - Tempo (inserção): O(1).
 - 3 Dicionários
 - Eficiência depende da implementação
 - No caso de implementação na forma de lista de pares chave-valor (aula anterior), a eficiência é similar à das listas
 - Vamos agora ver implementações eficientes do conceito de dicionário.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): O(log n)
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n)
 - Tempo (inserção): O(1).
 - 3 Dicionários
 - Eficiência depende da implementação
 - No caso de implementação na forma de lista de pares chave-valor (aula anterior), a eficiência é similar à das listas
 - Vamos agora ver implementações eficientes do conceito de dicionário

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1
 - Tempo (procura em vector ordenado): O(log n)
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n)
 - Tempo (inserção): O(1).
 - 3 Dicionários
 - Eficiência depende da implementação
 - No caso de implementação na forma de lista de pares chave-valor (aula anterior), a eficiência é similar à das listas
 - Vamos agora ver implementações eficientes do conceito de dicionário

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): O(log n)
 - Tempo (inserção por ordem): O(n)
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n)
 - Tempo (inserção): O(1).
 - 3 Dicionários
 - Eficiência depende da implementação
 - No caso de imprementação na forma de lista de pares chave-valor (aula anterior), a eficiência é similar à das listassas
 - Vamos agora ver implementações eficientes do conceito de dicionário

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): O(log n).
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n)
 - Tempo (acesso, procura): O(n)
 - Tempo (inserção): O(1)
 - 3 Dicionários
 - Eficiência depende da implementação
 - No caso de implementação na forma de lista de pares chave-valor (aula anterior), a eficiência é similar à das listas
 - Vamos agora ver implementações eficientes do conceito de dicionário

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): O(log n).
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n)
 - Tempo (inserção): O(1)
 - 3 Dicionários
 - Eficiência depende da implementação.
 - chave-valor (aula anterior), a eficiência é similar à das listas
 - Vamos agora ver implementações eficientes do conceito de dicionário.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

- 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): O(log n).
 - Tempo (inserção por ordem): O(n).
- 2 Listas Ligadas
 - Espaço: *O(n)*
 - Tempo (acesso, procura): O(n).
 - Tempo (inserção): O(1).
- 3 Dicionários
 - Eficiência depende da implementação.
 - chave-valor (aula anterior), a eficiência é similar à das listasses
 - Vamos agora ver implementações eficientes do conceito de dicionário

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

Colisões

Tabela de dispersão com encadeamento externo

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): O(log n).
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n).
 - Tempo (inserção): O(1).
 - 3 Dicionários
 - Eficiência depende da implementação
 - chave-valor (aula anterior), a eficiência é similar à das listasses
 - Vamos agora ver implementações eficientes do conceito de dicionário.

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): O(log n).
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n).
 - Tempo (inserção): O(1).
 - O Dicionários
 - Eficiência depende da implementação.
 - chave-valor (aula anterior), a eficiência é similar à das listas
 - Vamos agora ver implementações eficientes do conceito de dicionário.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): O(log n).
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n).
 - Tempo (inserção): O(1).
 - 3 Dicionários
 - Eficiência depende da implementação.
 - chave-valor (aula anterior), a eficiência é similar à das listas
 - Vamos agora ver implementações eficientes do conceito de dicionário.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Analisámos a sua eficiência em termos de espaço de memória e **tempo** de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): O(log n).
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaco: O(n).
 - Tempo (acesso, procura): O(n).
 - Tempo (inserção): O(1).
 - 3 Dicionários

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Colisões

Tabela de dispersão com encadeamento externo

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): $O(\log n)$.
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n).
 - Tempo (inserção): O(1).
 - 3 Dicionários
 - Eficiência depende da implementação.
 - No caso de implementação na forma de lista de pares chave-valor (aula anterior), a eficiência é similar à das listas
 - Vamos agora ver implementações eficientes do conceito de dicionário.

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): $O(\log n)$.
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n).
 - Tempo (inserção): O(1).
 - 3 Dicionários
 - Eficiência depende da implementação.
 - No caso de implementação na forma de lista de pares chave-valor (aula anterior), a eficiência é similar à das listas.
 - Vamos agora ver implementações eficientes do conceito de dicionário.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

- Analisámos a sua eficiência em termos de espaço de memória e tempo de execução.
 - 1 Vectores
 - Espaço: O(n) (proporcional ao número de elementos).
 - Tempo (acesso por índice): O(1) (constante).
 - Tempo (procura por valor): O(n).
 - Tempo (inserção no fim): O(1).
 - Tempo (procura em vector ordenado): O(log n).
 - Tempo (inserção por ordem): O(n).
 - 2 Listas Ligadas
 - Espaço: O(n).
 - Tempo (acesso, procura): O(n).
 - Tempo (inserção): O(1).
 - 3 Dicionários
 - Eficiência depende da implementação.
 - No caso de implementação na forma de lista de pares chave-valor (aula anterior), a eficiência é similar à das listas.
 - Vamos agora ver implementações eficientes do conceito de dicionário.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

- Uma empresa pretende aceder à informação de cada empregado usando como chave o respectivo Número de Identificação de Segurança Social (NISS).
 - · O NISS tem 11 dígitos.
 - A empresa só tem algumas centenas ou milhares de empregados.
 - Como garantir tempo de acesso O(1)?
- Implementação em lista de pares chave-valor.
 - Não suporta a complexidade pretendida.
- Poderiamos usar o NISS como indice num vector de empregados.
 - Teria que ser um vector com dimensão 10¹¹ e indices entre 0 e 99 999 999.
 - Só iriamos utilizar uma pequeníssima percentagem das entradas do vector!
 - Conclusão: para termos tempo O(1), teríamos de desperdiçar muito espaço de memória.

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

- Uma empresa pretende aceder à informação de cada empregado usando como chave o respectivo Número de Identificação de Segurança Social (NISS).
 - O NISS tem 11 dígitos.
 - A empresa só tem algumas centenas ou milhares de empregados.
 - Como garantir tempo de acesso O(1)?
- Implementação em lista de pares chave-valor.
 - Não suporta a complexidade pretendida.
- Poderíamos usar o NISS como índice num vector de empregados.
 - Teria que ser um vector com dimensão 10¹¹ e índices entre 0 e 99 999 999 999.
 - Só iríamos utilizar uma pequeníssima percentagem das entradas do vector!
 - Conclusão: para termos tempo O(1), teríamos de desperdiçar muito espaço de memória.

Introduç

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Uma empresa pretende aceder à informação de cada empregado usando como chave o respectivo Número de Identificação de Segurança Social (NISS).
 - O NISS tem 11 dígitos.
 - A empresa só tem algumas centenas ou milhares de empregados.
 - Como garantir tempo de acesso O(1)?
- Implementação em lista de pares chave-valor.
 - Não suporta a complexidade pretendida.
- Poderíamos usar o NISS como índice num vector de empregados.
 - Teria que ser um vector com dimensão 10¹¹ e índices entre 0 e 99 999 999 999.
 - Só iríamos utilizar uma pequeníssima percentagem das entradas do vector!
 - Conclusão: para termos tempo O(1), teríamos de desperdiçar muito espaço de memória.

Introdug

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Uma empresa pretende aceder à informação de cada empregado usando como chave o respectivo Número de Identificação de Segurança Social (NISS).
 - O NISS tem 11 dígitos.
 - A empresa só tem algumas centenas ou milhares de empregados.
 - Como garantir tempo de acesso O(1)?
- Implementação em lista de pares chave-valor.
 - Não suporta a complexidade pretendida.
- Poderíamos usar o NISS como índice num vector de empregados.
 - Teria que ser um vector com dimensão 10¹¹ e índices entre 0 e 99 999 999 999.
 - Só iríamos utilizar uma pequeníssima percentagem das entradas do vector!
 - Conclusão: para termos tempo O(1), teríamos de desperdiçar muito espaço de memória.

Introdug

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Dicionários: como optimizar?

Lista de pares chave-valor

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Dicionários: como optimizar?

· Lista de pares chave-valor.

- Se cada nó passar a apontar para dois nós, em vez de apenas um, o tempo de acesso por chave pode reduzir-se de O(n) para O(log n).
- Neste caso, as listas transformam-se em árvores binárias (aula 13).

Vector

- O vector é dimensionado tendo em conta uma previsão do número médio ou máximo de pares chave-valor a armazenar
 - E não para o número total de chaves possíveis
 - No exemplo dado: o número de empregados é uma fracção ínfima de todos os inscritos na Segurança Social.

do vector

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

- · Lista de pares chave-valor.
 - Se cada nó passar a apontar para dois nós, em vez de apenas um, o tempo de acesso por chave pode reduzir-se de O(n) para O(log n).
 - Neste caso, as listas transformam-se em árvores binárias (aula 13).
- Vector
 - O vector é dimensionado tendo em conta uma previsão do número médio ou máximo de pares chave-valor a armazenar.
 - E n\u00e3o para o n\u00eamero total de chaves poss\u00edveis!
 - No exemplo dado: o número de empregados é uma fracção infima de todos os inscritos na Segurança Social.
 - do vector

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- Lista de pares chave-valor.
 - Se cada nó passar a apontar para dois nós, em vez de apenas um, o tempo de acesso por chave pode reduzir-se de O(n) para O(log n).
 - Neste caso, as listas transformam-se em árvores binárias (aula 13).
- Vector

O vector e dimensionado tendo em conta uma previsao do número médio ou máximo de pares chave-valor a armazenar.

- E n\u00e3o para o n\u00eamero total de chaves poss\u00eaveis
- No exemplo dado: o número de empregados é uma fracção ínfima de todos os inscritos na Segurança Social.
- do vector.

- · Lista de pares chave-valor.
 - Se cada nó passar a apontar para dois nós, em vez de apenas um, o tempo de acesso por chave pode reduzir-se de O(n) para O(log n).
 - Neste caso, as listas transformam-se em árvores binárias (aula 13).
- Vector.
 - O vector é dimensionado tendo em conta uma previsão do número médio ou máximo de pares chave-valor a armazenar.
 - E não para o número total de chaves possíveis
 - No exemplo dado: o número de empregados é uma fracção ínfima de todos os inscritos na Segurança Social.

do vector.

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- · Lista de pares chave-valor.
 - Se cada nó passar a apontar para dois nós, em vez de apenas um, o tempo de acesso por chave pode reduzir-se de O(n) para O(log n).
 - Neste caso, as listas transformam-se em árvores binárias (aula 13).
- Vector.
 - O vector é dimensionado tendo em conta uma previsão do número médio ou máximo de pares chave-valor a armazenar.
 - E não para o número total de chaves possíveis!
 - No exemplo dado: o número de empregados é uma fracção ínfima de todos os inscritos na Segurança Social.

do vector.

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

 Para cada chave a inserir ou procurar, calcula-se o índice correspondente no vector.

Dicionários: implementação usando vector

Objectivo: desempenho com o melhor dos "dois mundos":

- Tempo de acesso / procura por chave: O(1), como nos vectores.
- Tempo de inserção: O(1), como nas listas não ordenadas
- Espaço: O(n), onde n é o número de pares armazenados.
- Para cada chave a inserir ou procurar, calcula-se o índice correspondente no vector.
 - O mapeamento das chaves para índices válidos do vector é feita pela chamada função de dispersão (hash function).
 - A função de dispersão é deterministica: dada a mesma chave, devolve sempre o mesmo índice.
 - Várias chaves podem ser mapeadas no mesmo índice.
 - Mas convém que as chaves figuem bem distribuídas (dispersas) pelos índices do vector.
 - Dicionários implementados em vector com função de dispersão são conhecidos como tabelas de dispersão (hash tables).

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

Dicionários: implementação usando vector

- Objectivo: desempenho com o melhor dos "dois mundos":
 - Tempo de acesso / procura por chave: O(1), como nos vectores.
 - Tempo de inserção: O(1), como nas listas não ordenadas
 - Espaço: O(n), onde n é o número de pares armazenados
- Para cada chave a inserir ou procurar, calcula-se o índice correspondente no vector.
 - O mapeamento das chaves para índices válidos do vector é feita pela chamada função de dispersão (hash function).
 - A função de dispersão e deterministica: dada a mesma chave, devolve sempre o mesmo índice.
 - Várias chaves podem ser mapeadas no mesmo índice
 - Mas convém que as chaves figuem bem distribuídas (dispersas) pelos índices do vector.
 - Dicionários implementados em vector com função de dispersão são conhecidos como tabelas de dispersão (hash tables).

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Dicionários: implementação usando vector

- Objectivo: desempenho com o melhor dos "dois mundos":
 - Tempo de acesso / procura por chave: O(1), como nos vectores.
 - Tempo de inserção: O(1), como nas listas não ordenadas.
 - Espaço: O(n), onde n é o número de pares armazenados.
- Para cada chave a inserir ou procurar, calcula-se o índice correspondente no vector.
 - O mapeamento das chaves para indices validos do vector e feita pela chamada função de dispersão (hash function).
 - A função de dispersão e deterministica: dada a mesma chave, devolve sempre o mesmo índice.
 - Várias chaves podem ser mapeadas no mesmo índice
 - Mas convém que as chaves figuem bem distribuídas (dispersas) pelos índices do vector.
 - Dicionarios implementados em vector com tunção de dispersão são conhecidos como tabelas de dispersão (hash tables).

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Objectivo: desempenho com o melhor dos "dois mundos":
 - Tempo de acesso / procura por chave: O(1), como nos vectores.
 - Tempo de inserção: O(1), como nas listas não ordenadas.
 - Espaço: O(n), onde n é o número de pares armazenados.
- Para cada chave a inserir ou procurar, calcula-se o índice correspondente no vector.
 - O mapeamento das chaves para índices válidos do vector é feita pela chamada função de dispersão (hash function).
 - A função de dispersão e deterministica: dada a mesma chave, devolve sempre o mesmo índice.
 - Várias chaves podem ser mapeadas no mesmo índice
 - Mas convém que as chaves fiquem bem distribuídas (dispersas) pelos índices do vector.
 - Dicionarios implementados em vector com tunção de dispersão são conhecidos como tabelas de dispersão (hash tables).

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Objectivo: desempenho com o melhor dos "dois mundos":
 - Tempo de acesso / procura por chave: O(1), como nos vectores.
 - Tempo de inserção: O(1), como nas listas não ordenadas.
 - Espaço: O(n), onde n é o número de pares armazenados.
- Para cada chave a inserir ou procurar, calcula-se o índice correspondente no vector.
 - O mapeamento das chaves para indices válidos do vector e feita pela chamada função de dispersão (hash function).
 - A função de dispersão é determinística: dada a mesma chave, devolve sempre o mesmo índice.
 - Várias chaves podem ser mapeadas no mesmo índice
 - Mas convém que as chaves fiquem bem distribuídas (dispersas) pelos índices do vector.
 - Dicionários implementados em vector com função de dispersão são conhecidos como tabelas de dispersão (hash tables).

Introduc

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

- Objectivo: desempenho com o melhor dos "dois mundos":
 - Tempo de acesso / procura por chave: O(1), como nos vectores.
 - Tempo de inserção: O(1), como nas listas não ordenadas.
 - Espaço: O(n), onde n é o número de pares armazenados.
- Para cada chave a inserir ou procurar, calcula-se o índice correspondente no vector.
 - O mapeamento das chaves para índices válidos do vector é feita pela chamada função de dispersão (hash function).
 - A função de dispersão é determinística: dada a mesma chave, devolve sempre o mesmo índice.
 - Várias chaves podem ser mapeadas no mesmo índice
 - Mas convém que as chaves fiquem bem distribuídas (dispersas) pelos índices do vector.
 - Dicionários implementados em vector com função de dispersão são conhecidos como tabelas de dispersão (hash tables).

Introduç

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

- Objectivo: desempenho com o melhor dos "dois mundos":
 - Tempo de acesso / procura por chave: O(1), como nos vectores.
 - Tempo de inserção: O(1), como nas listas não ordenadas.
 - Espaço: O(n), onde n é o número de pares armazenados.
- Para cada chave a inserir ou procurar, calcula-se o índice correspondente no vector.
 - O mapeamento das chaves para índices válidos do vector é feita pela chamada função de dispersão (hash function).
 - A função de dispersão é determinística: dada a mesma chave, devolve sempre o mesmo índice.
 - Várias chaves podem ser mapeadas no mesmo índice
 - Mas convém que as chaves fiquem bem distribuídas (dispersas) pelos índices do vector.
 - Dicionários implementados em vector com função de dispersão são conhecidos como tabelas de dispersão (hash tables).

Introduç

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

- Objectivo: desempenho com o melhor dos "dois mundos":
 - Tempo de acesso / procura por chave: O(1), como nos vectores.
 - Tempo de inserção: O(1), como nas listas não ordenadas.
 - Espaço: O(n), onde n é o número de pares armazenados.
- Para cada chave a inserir ou procurar, calcula-se o índice correspondente no vector.
 - O mapeamento das chaves para índices válidos do vector é feita pela chamada função de dispersão (hash function).
 - A função de dispersão é determinística: dada a mesma chave, devolve sempre o mesmo índice.
 - Várias chaves podem ser mapeadas no mesmo índice.
 - Mas convém que as chaves fiquem bem distribuídas (dispersas) pelos índices do vector.
 - Dicionários implementados em vector com função de dispersão são conhecidos como tabelas de dispersão (hash tables).

Introdug

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

- Objectivo: desempenho com o melhor dos "dois mundos":
 - Tempo de acesso / procura por chave: O(1), como nos vectores.
 - Tempo de inserção: O(1), como nas listas não ordenadas.
 - Espaço: O(n), onde n é o número de pares armazenados.
- Para cada chave a inserir ou procurar, calcula-se o índice correspondente no vector.
 - O mapeamento das chaves para índices válidos do vector é feita pela chamada função de dispersão (hash function).
 - A função de dispersão é determinística: dada a mesma chave, devolve sempre o mesmo índice.
 - Várias chaves podem ser mapeadas no mesmo índice.
 - Mas convém que as chaves fiquem bem distribuídas (dispersas) pelos índices do vector.
 - Dicionários implementados em vector com função de dispersão são conhecidos como tabelas de dispersão (hash tables).

Introdug

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

- Objectivo: desempenho com o melhor dos "dois mundos":
 - Tempo de acesso / procura por chave: O(1), como nos vectores.
 - Tempo de inserção: O(1), como nas listas não ordenadas.
 - Espaço: O(n), onde n é o número de pares armazenados.
- Para cada chave a inserir ou procurar, calcula-se o índice correspondente no vector.
 - O mapeamento das chaves para índices válidos do vector é feita pela chamada função de dispersão (hash function).
 - A função de dispersão é determinística: dada a mesma chave, devolve sempre o mesmo índice.
 - Várias chaves podem ser mapeadas no mesmo índice.
 - Mas convém que as chaves fiquem bem distribuídas (dispersas) pelos índices do vector.
 - Dicionários implementados em vector com função de dispersão são conhecidos como tabelas de dispersão (hash tables).

Introdug

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com

Introducão

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Introducão

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Módulo HashTable (tabela de dispersão)

- · Nome do módulo
- Serviços:

Dicionários

Introducão

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- HashTable
- Serviços
 - HashTable(n): construtor
 - get (key): devolve o elemento associado à chave dada
 - set (key, elem): actualiza o elemento associado à chave k, caso esta exista, ou insere o novo par (k, e)
 - remove (key): remove a chave dada bem como o elemento associado
 - contains (key): tabela contém a chave dada
 - isEmpty(): tabela vazia
 - size(): número de associações;
 - clear(): limpa a tabela;
 - keys (): devolve um vector com todas as chaves existentes.

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- HashTable
- Serviços
 - HashTable(n): construtor
 - get (key): devolve o elemento associado à chave dada
 - set (key, elem): actualiza o elemento associado á chave k, caso esta exista, ou insere o novo par (k, e)
 - remove (key): remove a chave dada bem como o elemento associado
 - contains (key): tabela contém a chave dada
 - isEmpty(): tabela vazia
 - size(): número de associações;
 - clear(): limpa a tabela;
 - keys (): devolve um vector com todas as chaves existentes.

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

• HashTable

· Serviços:

- HashTable(n): construtor
- get (key): devolve o elemento associado à chave dada
- set (key, elem): actualiza o elemento associado á chave k, caso esta exista, ou insere o novo par (k, e)
- remove (key): remove a chave dada bem como o elemento associado
- · contains (key): tabela contém a chave dada
- isEmpty(): tabela vazia
- size(): número de associações;
- clear(): limpa a tabela;
- keys (): devolve um vector com todas as chaves existentes.

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

• HashTable

· Serviços:

- HashTable(n): construtor;
- get (key): devolve o elemento associado à chave dada
- set (key, elem): actualiza o elemento associado à chave k, caso esta exista, ou insere o novo par (k, e)
- remove (key): remove a chave dada bem como o elemento associado
- contains (key): tabela contém a chave dada
- isEmpty(): tabela vazia
- size(): número de associações;
- clear(): limpa a tabela;
- keys (): devolve um vector com todas as chaves existentes.

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

• HashTable

· Serviços:

- HashTable(n): construtor;
- get (key): devolve o elemento associado à chave dada
- set (key, elem): actualiza o elemento associado à chave k, caso esta exista, ou insere o novo par (k, e)
- remove (key): remove a chave dada bem como o elemento associado
- · contains (key): tabela contém a chave dada
- isEmpty(): tabela vazia
- size(): número de associações;
- clear(): limpa a tabela
- keys (): devolve um vector com todas as chaves existentes.

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Nome do módulo:
 - HashTable
- · Serviços:
 - HashTable(n): construtor;
 - get (key): devolve o elemento associado à chave dada
 - set (key, elem): actualiza o elemento associado à chave k, caso esta exista, ou insere o novo par (k, e)
 - remove (key): remove a chave dada bem como o elemento associado
 - · contains (key): tabela contém a chave dada
 - isEmpty(): tabela vazia
 - size(): número de associações;
 - clear(): limpa a tabela
 - keys (): devolve um vector com todas as chaves existentes.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Nome do módulo:
 - HashTable
- · Serviços:
 - HashTable(n): construtor;
 - get (key): devolve o elemento associado à chave dada
 - set (key, elem): actualiza o elemento associado à chave k, caso esta exista, ou insere o novo par (k, e)
 - remove (key): remove a chave dada bem como o elemento associado
 - · contains (key): tabela contém a chave dada
 - isEmpty(): tabela vazia
 - size(): número de associações;
 - clear(): limpa a tabela
 - keys (): devolve um vector com todas as chaves existentes.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Nome do módulo:
 - HashTable
- Serviços:
 - HashTable(n): construtor;
 - get (key): devolve o elemento associado à chave dada
 - set (key, elem): actualiza o elemento associado à chave k, caso esta exista, ou insere o novo par (k, e)
 - remove (key): remove a chave dada bem como o elemento associado
 - contains (key): tabela contém a chave dada
 - isEmpty(): tabela vazia
 - size(): número de associações;
 - clear(): limpa a tabela
 - keys(): devolve um vector com todas as chaves existentes.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Nome do módulo:
 - HashTable
- Serviços:
 - HashTable(n): construtor;
 - get (key): devolve o elemento associado à chave dada
 - set (key, elem): actualiza o elemento associado à chave k, caso esta exista, ou insere o novo par (k, e)
 - remove (key): remove a chave dada bem como o elemento associado
 - contains (key): tabela contém a chave dada
 - isEmpty(): tabela vazia
 - size (): número de associações;
 - clear(): limpa a tabela
 - keys (): devolve um vector com todas as chaves existentes.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Nome do módulo:
 - HashTable
- Serviços:
 - HashTable(n): construtor;
 - get (key): devolve o elemento associado à chave dada
 - set (key, elem): actualiza o elemento associado à chave k, caso esta exista, ou insere o novo par (k, e)
 - remove (key): remove a chave dada bem como o elemento associado
 - contains (key): tabela contém a chave dada
 - isEmpty(): tabela vazia
 - size(): número de associações;
 - clear(): limpa a tabela;
 - keys (): devolve um vector com todas as chaves existentes.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Nome do módulo:
 - HashTable
- Serviços:
 - HashTable(n): construtor;
 - get (key): devolve o elemento associado à chave dada
 - set (key, elem): actualiza o elemento associado à chave k, caso esta exista, ou insere o novo par (k, e)
 - remove (key): remove a chave dada bem como o elemento associado
 - contains (key): tabela contém a chave dada
 - isEmpty(): tabela vazia
 - size(): número de associações;
 - clear(): limpa a tabela;
 - keys(): devolve um vector com todas as chaves existentes.

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- IIIIIouuçau
- Funções de Dispersão
- Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Nome do módulo:
 - HashTable
- Serviços:
 - HashTable(n): construtor;
 - get (key): devolve o elemento associado à chave dada
 - set (key, elem): actualiza o elemento associado à chave k, caso esta exista, ou insere o novo par (k, e)
 - remove (key): remove a chave dada bem como o elemento associado
 - contains (key): tabela contém a chave dada
 - isEmpty(): tabela vazia
 - size(): número de associações;
 - clear(): limpa a tabela;
 - keys(): devolve um vector com todas as chaves existentes.

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Funções de Hash (duas partes)
 - Cálculo do hash code:
 - Função de Compressão (m é a dimensão do vector)
- h(k) é o valor de hash da chave k
- Problema
 - Colesia: chaves distrates padem graduzir a mesma valor de la chaen (la museum prijes de verson).

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Funções de Hash (duas partes):
 - · Cálculo do hash code:
 - chave \longrightarrow inteir
 - Função de Compressão (m é a dimensão do vector inteiro --> inteiro [0, m-1]
- h(k) é o valor de hash da chave k.
- Problema:
 - Colisao: chaves distintas podem produzir o mesmo valor de hash (i.e. mesmo índice do vector)!

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- Funções de Hash (duas partes):
 - · Cálculo do hash code:

chave \longrightarrow inteiro

- Função de Compressão (*m* é a dimensão do vector
 - inteiro \longrightarrow inteiro [0,m-1]
- h(k) é o valor de *hash* da chave k.
- Problema:
 - Colisão: chaves distintas podem produzir o mesmo valor de hash (i.e. mesmo índice do vector)!

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- Funções de Hash (duas partes):
 - · Cálculo do hash code:

chave \longrightarrow inteiro

- Função de Compressão (m é a dimensão do vector
 - inteiro \longrightarrow inteiro [0, m-1]
- h(k) é o valor de hash da chave k.
- Problema:
 - Colisão: chaves distintas podem produzir o mesmo valor de hash (i.e. mesmo índice do vector)!

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- Funções de Hash (duas partes):
 - Cálculo do hash code:

```
chave \longrightarrow inteiro
```

```
inteiro \longrightarrow inteiro [0, m-1]
```

- h(k) é o valor de hash da chave k.
- Problema:
 - Colisão: chaves distintas podem produzir o mesmo valor de hash (i.e. mesmo índice do vector)!

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- Funções de Hash (duas partes):
 - · Cálculo do hash code:

```
chave \longrightarrow inteiro
```

```
inteiro \longrightarrow inteiro [0, m-1]
```

- h(k) é o valor de hash da chave k.
- Problema:
 - Colisão: chaves distintas podem produzir o mesmo valor de hash (i.e. mesmo índice do vector)!

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- Funções de Hash (duas partes):
 - Cálculo do hash code:

```
chave \longrightarrow inteiro
```

```
inteiro \longrightarrow inteiro [0, m-1]
```

- h(k) é o valor de hash da chave k.
- Problema
 - Colisao: chaves distintas podem produzir o mesmo valor de hash (i.e. mesmo índice do vector)!

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- Funções de Hash (duas partes):
 - · Cálculo do hash code:

```
chave \longrightarrow inteiro
```

```
inteiro \longrightarrow inteiro [0, m-1]
```

- h(k) é o valor de hash da chave k.
- Problema:
 - Colisão: chaves distintas podem produzir o mesmo valor de hash (i.e. mesmo índice do vector)!

Funções de Dispersã

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

Tabelas de dispersas. Tarições de Masil

- Funções de Hash (duas partes):
 - · Cálculo do hash code:

```
chave → inteiro
```

```
inteiro \longrightarrow inteiro [0, m-1]
```

- h(k) é o valor de hash da chave k.
- Problema:
 - Colisão: chaves distintas podem produzir o mesmo valor de hash (i.e. mesmo índice do vector)!

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

 A escolha de uma "boa" função de hash pode ter em consideração o tipo dos dados que serão utilizados:

- O valor de hash deve ser independente de qualquer padrão que exista nos dados (chaves).
- Vamos ver vários exemplos de h(k).

Colisões

- Tabela de dispersão com encadeamento interno
- A escolha de uma "boa" função de hash deve minimizar o número de colisões.
 - O desempenho da tabela de dispersão depende da capacidade da função de hash para distribuir uniformemente as chaves pelos índices do vector.
- A escolha de uma "boa" função de hash pode ter em consideração o tipo dos dados que serão utilizados:
 - Uma análise estatística da distribuição das chaves pode ser considerada.
- O valor de hash deve ser independente de qualquer padrão que exista nos dados (chaves).
- Vamos ver vários exemplos de h(k)...

Colisões

Tabela de dispersão com encadeamento externo

- A escolha de uma "boa" função de hash deve minimizar o número de colisões.
 - O desempenho da tabela de dispersão depende da capacidade da função de hash para distribuir uniformemente as chaves pelos índices do vector.
- A escolha de uma "boa" função de hash pode ter em consideração o tipo dos dados que serão utilizados:
 - Uma análise estatística da distribuição das chaves pode ser considerada.
- O valor de hash deve ser independente de qualquer padrão que exista nos dados (chaves).
- Vamos ver vários exemplos de h(k)...

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- A escolha de uma "boa" função de hash deve minimizar o número de colisões.
 - O desempenho da tabela de dispersão depende da capacidade da função de hash para distribuir uniformemente as chaves pelos índices do vector.
- A escolha de uma "boa" função de hash pode ter em consideração o tipo dos dados que serão utilizados:
 - Uma análise estatística da distribuição das chaves pode ser considerada.
- O valor de hash deve ser independente de qualquer padrão que exista nos dados (chaves).
- Vamos ver vários exemplos de h(k)...

Funções de Dispersã

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- A escolha de uma "boa" função de hash deve minimizar o número de colisões.
 - O desempenho da tabela de dispersão depende da capacidade da função de hash para distribuir uniformemente as chaves pelos índices do vector.
- A escolha de uma "boa" função de hash pode ter em consideração o tipo dos dados que serão utilizados:
 - Uma análise estatística da distribuição das chaves pode ser considerada.
- O valor de hash deve ser independente de qualquer padrão que exista nos dados (chaves).
- Vamos ver vários exemplos de h(k)...

Colisões

Tabela de dispersão com encadeamento externo

- A escolha de uma "boa" função de hash deve minimizar o número de colisões.
 - O desempenho da tabela de dispersão depende da capacidade da função de hash para distribuir uniformemente as chaves pelos índices do vector.
- A escolha de uma "boa" função de hash pode ter em consideração o tipo dos dados que serão utilizados:
 - Uma análise estatística da distribuição das chaves pode ser considerada.
- O valor de hash deve ser independente de qualquer padrão que exista nos dados (chaves).
- Vamos ver vários exemplos de h(k)...

Colisões

Tabela de dispersão com encadeamento externo

- A escolha de uma "boa" função de hash deve minimizar o número de colisões.
 - O desempenho da tabela de dispersão depende da capacidade da função de hash para distribuir uniformemente as chaves pelos índices do vector.
- A escolha de uma "boa" função de hash pode ter em consideração o tipo dos dados que serão utilizados:
 - Uma análise estatística da distribuição das chaves pode ser considerada.
- O valor de hash deve ser independente de qualquer padrão que exista nos dados (chaves).
- Vamos ver vários exemplos de h(k)...

Funções de hash: aproximações

NASA da da dista Sa

Método da multiplicação

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

1 Método da divisão:

· Este método usa o resto da divisão inteira:

$$h(k) = k \% m$$

• Se *m* é par, então

$$h(k) = \begin{cases} \text{par} & \text{se } k \text{ \'e par} \\ \text{impar} & \text{se } k \text{ \'e impa} \end{cases}$$

- Outra má opção é m = 2^p (h(k) serão os p bits menos significativos).
- Para este método utilizar um valor primo para m é uma escolha razoável.

2 Método da multiplicação:

- Pode fazer uso dos operadores de bit shift
- Exemplo: $h(k) = (k \ll 3) + (k \gg 28) + 33$

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

1 Método da divisão:

· Este método usa o resto da divisão inteira:

$$h(k) = k \% m$$

$$h(k) = \begin{cases} par & \text{se } k \text{ \'e par} \\ fimpar & \text{se } k \text{ \'e fimpar} \end{cases}$$

- Outra má opção é m = 2^p (h(k) serão os p bits menos significativos).
- Para este método utilizar um valor primo para m é uma escolha razoável.
- 2 Método da multiplicação:
 - Pode fazer uso dos operadores de bit shift
 - Exemplo: h(k) = (k << 3) + (k >> 28) + 33

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

1 Método da divisão:

· Este método usa o resto da divisão inteira:

$$h(k) = k \% m$$

$$h(k) = \begin{cases} par & \text{se } k \text{ \'e par} \\ \text{impar} & \text{se } k \text{ \'e impar} \end{cases}$$

- Outra má opção é m = 2^p (h(k) serão os p bits menos significativos).
- Para este método utilizar um valor primo para m é uma escolha razoável.
- 2 Método da multiplicação:
 - Pode fazer uso dos operadores de bit shift
 - Exemplo: $h(k) = (k \ll 3) + (k \gg 28) + 33$

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- 1 Método da divisão:
 - · Este método usa o resto da divisão inteira:

$$h(k) = k \% m$$

$$h(k) = \begin{cases} par & \text{se } k \text{ \'e par} \\ \text{impar} & \text{se } k \text{ \'e impar} \end{cases}$$

- Outra má opção é m = 2^p (h(k) serão os p bits menos significativos).
- Para este método utilizar um valor primo para m é uma escolha razoável.
- 2 Método da multiplicação:
 - Pode fazer uso dos operadores de bit shift
 - Exemplo: h(k) = (k << 3) + (k >> 28) + 33

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- 1 Método da divisão:
 - · Este método usa o resto da divisão inteira:

$$h(k) = k \% m$$

$$h(k) = \begin{cases} par & \text{se } k \text{ \'e par} \\ \text{impar} & \text{se } k \text{ \'e impar} \end{cases}$$

- Outra má opção é m = 2^p (h(k) serão os p bits menos significativos).
- Para este método utilizar um valor primo para m é uma escolha razoável.
- 2 Método da multiplicação:
 - Pode fazer uso dos operadores de bit shift
 - Exemplo: h(k) = (k << 3) + (k >> 28) + 33

Funções de Dispersã

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- 1 Método da divisão:
 - · Este método usa o resto da divisão inteira:

$$h(k) = k \% m$$

$$h(k) = \begin{cases} par & \text{se } k \text{ \'e par} \\ impar & \text{se } k \text{ \'e impar} \end{cases}$$

- Outra má opção é m = 2^p (h(k) serão os p bits menos significativos).
- Para este método utilizar um valor primo para m é uma escolha razoável.
- 2 Método da multiplicação:
 - Pode fazer uso dos operadores de bit shift
 - Exemplo: h(k) = (k << 3) + (k >> 28) + 33

Funções de Dispersã

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- 1 Método da divisão:
 - · Este método usa o resto da divisão inteira:

$$h(k) = k \% m$$

$$h(k) = \begin{cases} par & \text{se } k \text{ \'e par} \\ \text{impar} & \text{se } k \text{ \'e impar} \end{cases}$$

- Outra má opção é m = 2^p (h(k) serão os p bits menos significativos).
- Para este método utilizar um valor primo para m é uma escolha razoável.
- 2 Método da multiplicação:
 - · Pode fazer uso dos operadores de bit shift
 - Exemplo: $h(k) = (k \ll 3) + (k \gg 28) + 33$

Funções de Dispersá

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

- 1 Método da divisão:
 - · Este método usa o resto da divisão inteira:

$$h(k) = k \% m$$

$$h(k) = \begin{cases} par & \text{se } k \text{ \'e par} \\ \text{impar} & \text{se } k \text{ \'e impar} \end{cases}$$

- Outra má opção é m = 2^p (h(k) serão os p bits menos significativos).
- Para este método utilizar um valor primo para m é uma escolha razoável.
- 2 Método da multiplicação:
 - Pode fazer uso dos operadores de bit shift
 - Exemplo: h(k) = (k << 3) + (k >> 28) + 33

- Todos os objectos em Java têm uma função de dispersão, hashCode (), que devolve um inteiro
- Vamos utilizar esta função nas nossas tabelas de dispersão.

Funções de Dispersão

Dicionários

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

```
private int hashstring(String str, int tablesize)
  int len=str.length();
  long hash=0:
  char[] buffer=str.toCharArray();
  int c=0;
  for (int i=0; i < len; i++)</pre>
    c = buffer[i]+33;
    hash = ((hash << 3) + (hash >> 28) + c);
  hash = hash % tablesize:
  return (int) (hash>=0 ? hash : hash + tablesize);
```

- Todos os objectos em Java têm uma função de dispersão, hashCode (), que devolve um inteiro
- Vamos utilizar esta função nas nossas tabelas de dispersão.

Dicionários

Introdução

Funções de Dispersão Factor de Carga

Colisões

COlisões Tabela de dispersão com

encadeamento externo
Tabela de dispersão com
encadeamento interno

```
private int hashstring (String str, int tablesize)
  int len=str.length();
  long hash=0:
  char[] buffer=str.toCharArray();
  int c=0;
  for (int i=0; i < len; i++)</pre>
    c = buffer[i]+33;
    hash = ((hash << 3) + (hash >> 28) + c);
  hash = hash % tablesize:
  return (int) (hash>=0 ? hash : hash + tablesize);
```

- Todos os objectos em Java têm uma função de dispersão, hashCode (), que devolve um inteiro.
- Vamos utilizar esta função nas nossas tabelas de dispersão.

Funções de Dispersá

Factor de Carga

Colisões

```
private int hashstring (String str, int tablesize)
  int len=str.length();
  long hash=0:
  char[] buffer=str.toCharArray();
  int c=0;
  for (int i=0; i < len; i++)</pre>
    c = buffer[i]+33;
    hash = ((hash << 3) + (hash >> 28) + c);
  hash = hash % tablesize:
  return (int) (hash>=0 ? hash : hash + tablesize);
```

- Todos os objectos em Java têm uma função de dispersão, hashCode (), que devolve um inteiro.
- Vamos utilizar esta função nas nossas tabelas de dispersão.

Funções de Dispersá

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

- O factor de carga (load factor) é o número de elementos na tabela dividido pelo tamanho da tabela (α = ⁿ/₂).
- Dimensionamento de o

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Introdução Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Dicionários

- O factor de carga (load factor) é o número de elementos na tabela dividido pelo tamanho da tabela ($\alpha = \frac{n}{m}$).
- Dimensionamento de α
 - um valor alto de α significa que vamos ter maior probabilidade de colisões;
 - um valor baixo de α significa que temos muito espaço desperdicado;
 - valor recomendado para lpha: entre 50% e 80%

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

- Tabela de dispersão com encadeamento interno
- O factor de carga (load factor) é o número de elementos na tabela dividido pelo tamanho da tabela ($\alpha = \frac{n}{m}$).
- Dimensionamento de α:
 - um valor alto de α significa que vamos ter maior probabilidade de colisões;
 - um valor baixo de α significa que temos muito espaço desperdiçado;
 - valor recomendado para α : entre 50% e 80%

Dicionários

Introdução Funções de Dispersão

Factor de Carga

Colisões

- Tabela de dispersão com encadeamento interno
- O factor de carga (load factor) é o número de elementos na tabela dividido pelo tamanho da tabela ($\alpha = \frac{n}{m}$).
- Dimensionamento de α:
 - um valor alto de α significa que vamos ter maior probabilidade de colisões;
 - um valor baixo de α significa que temos muito espaço desperdiçado;
 - valor recomendado para α : entre 50% e 80%

Dicionários

Introdução Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- O factor de carga (load factor) é o número de elementos na tabela dividido pelo tamanho da tabela ($\alpha = \frac{n}{m}$).
- Dimensionamento de α:
 - um valor alto de α significa que vamos ter maior probabilidade de colisões;
 - um valor baixo de α significa que temos muito espaço desperdiçado;
 - valor recomendado para α : entre 50% e 80%

Introdução

Funções de Dispersão

Dicionários

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- O factor de carga (load factor) é o número de elementos na tabela dividido pelo tamanho da tabela ($\alpha = \frac{n}{m}$).
- Dimensionamento de α:
 - um valor alto de α significa que vamos ter maior probabilidade de colisões;
 - um valor baixo de α significa que temos muito espaço desperdiçado;
 - valor recomendado para α : entre 50% e 80%.

Tabela de dispersão com encadeamento externo (Separate Chaining / Closed Addressing Hasi Table)

Tabela de dispersão com encadeamento interno (Open Addressina Hash Table)

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Tabela de dispersão com encadeamento externo (Separate Chaining / Closed Addressing Hash Table)
 - Múltiplos pares chaves-valor associados a um mesmo índice
 - Cada entrada do vector contém uma lista ligada de pares chave-valor.
- 2 Tabela de dispersão com encadeamento interno (Open Addressing Hash Table)
 - No máximo, um par chave-valor em cada posição do vector;
 - No caso de colisão, segue-se um procedimento consistente para encontrar uma posição livre e armazenar aí:
 - O vector é tratado como circular.

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Consues

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

- Tabela de dispersão com encadeamento externo (Separate Chaining / Closed Addressing Hash Table)
 - Múltiplos pares chaves-valor associados a um mesmo índice;
 - Cada entrada do vector contém uma lista ligada de pares chave-valor
- 2 Tabela de dispersão com encadeamento interno (Open Addressing Hash Table)
 - No máximo, um par chave-valor em cada posição do vector;
 - No caso de colisão, segue-se um procedimento consistente para encontrar uma posição livre e armazenar aí:
 - O vector é tratado como circular.

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

- Tabela de dispersão com encadeamento externo (Separate Chaining / Closed Addressing Hash Table)
 - Múltiplos pares chaves-valor associados a um mesmo índice;
 - Cada entrada do vector contém uma lista ligada de pares chave-valor.
- 2 Tabela de dispersão com encadeamento interno (Open Addressing Hash Table)
 - No máximo, um par chave-valor em cada posição do vector;
 - No caso de colisão, segue-se un procedimento consistente para encontrar uma posição livre e armazenar aí;
 - O vector é tratado como circular

Dicionários

Introdução

Funções de Dispersão Factor de Carga

Colieñas

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

Tabela de dispersão com encadeamento externo (Separate Chaining / Closed Addressing Hash Table)

- Múltiplos pares chaves-valor associados a um mesmo índice;
- Cada entrada do vector contém uma lista ligada de pares chave-valor.
- 2 Tabela de dispersão com encadeamento interno (Open Addressing Hash Table)
 - No máximo, um par chave-valor em cada posição do vector;
 - No caso de colisão, segue-se um procedimento consistente para encontrar uma posição livre e armazenar aí;
 - O vector e tratado como circular.

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

- Tabela de dispersão com encadeamento externo (Separate Chaining / Closed Addressing Hash Table)
 - Múltiplos pares chaves-valor associados a um mesmo índice;
 - Cada entrada do vector contém uma lista ligada de pares chave-valor.
- 2 Tabela de dispersão com encadeamento interno (Open Addressing Hash Table)
 - No máximo, um par chave-valor em cada posição do vector;
 - No caso de colisão, segue-se un procedimento consistente para encontrar uma posição livre e armazenar aí;
 - O vector e tratado como circular.

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

labela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

- Tabela de dispersão com encadeamento externo (Separate Chaining / Closed Addressing Hash Table)
 - Múltiplos pares chaves-valor associados a um mesmo índice;
 - Cada entrada do vector contém uma lista ligada de pares chave-valor.
- 2 Tabela de dispersão com encadeamento interno (Open Addressing Hash Table)
 - No máximo, um par chave-valor em cada posição do vector;
 - No caso de colisão, segue-se um procedimento consistente para encontrar uma posição livre e armazenar aí;
 - O vector e tratado como circular.

Dicionários

Introdução

Funções de Dispersão Factor de Carga

0 " "

Colisoes

labela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

- Tabela de dispersão com encadeamento externo (Separate Chaining / Closed Addressing Hash Table)
 - Múltiplos pares chaves-valor associados a um mesmo índice;
 - Cada entrada do vector contém uma lista ligada de pares chave-valor.
- 2 Tabela de dispersão com encadeamento interno (Open Addressing Hash Table)
 - No máximo, um par chave-valor em cada posição do vector;
 - No caso de colisão, segue-se um procedimento consistente para encontrar uma posição livre e armazenar aí;
 - O vector é tratado como circular.

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Complexidade Tempora
 - IIISSIGSO: U(1)
- Pesquisa: proporcional ao comprimento máximo da lista lista.
- Remoção: o mesmo que a pesquisa.
- Não esquecendo que ... uma má função de hash compromater todo o desempenho da tabela de discompromater.

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

Complexidade Temporal:

- Inserção: O(1
 - tempo de cálculo da h(k) + tempo de inserção no inicio da lista ligada.
- Pesquisa: proporcional ao comprimento máximo da lista ligada.
- Remoção: o mesmo que a pesquisa
- Não esquecendo que ... uma má função de hash pode comprometer todo o desempenho da tabela de dispersão

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento interno

Complexidade Temporal:

- Inserção: O(1)
 - tempo de cálculo da h(k) + tempo de inserção no início da lista ligada.
- Pesquisa: proporcional ao comprimento máximo da lista ligada.
- Remoção: o mesmo que a pesquisa
- Não esquecendo que ... uma má função de hash pode comprometer todo o desempenho da tabela de dispersão

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Complexidade Temporal:
 - Inserção: O(1)
 - tempo de cálculo da h(k) + tempo de inserção no início da lista ligada.
 - Pesquisa: proporcional ao comprimento máximo da lista ligada.
 - Remoção: o mesmo que a pesquisa
- Não esquecendo que ... uma ma função de nash pode comprometer todo o desempenho da tabela de dispersão

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Complexidade Temporal:
 - Inserção: O(1)
 - tempo de cálculo da h(k) + tempo de inserção no início da lista ligada.
 - Pesquisa: proporcional ao comprimento máximo da lista ligada.
 - Remoção: o mesmo que a pesquisa
- Nao esquecendo que ... uma ma função de hash pode comprometer todo o desempenho da tabela de dispersão

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Complexidade Temporal:
 - Inserção: O(1)
 - tempo de cálculo da h(k) + tempo de inserção no início da lista ligada.
 - Pesquisa: proporcional ao comprimento máximo da lista ligada.
 - Remoção: o mesmo que a pesquisa.
- Nao esquecendo que ... uma ma função de nash pode comprometer todo o desempenho da tabela de dispersão

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Complexidade Temporal:
 - Inserção: O(1)
 - tempo de cálculo da h(k) + tempo de inserção no início da lista ligada.
 - Pesquisa: proporcional ao comprimento máximo da lista ligada.
 - Remoção: o mesmo que a pesquisa.
- Não esquecendo que ... uma má função de hash pode comprometer todo o desempenho da tabela de dispersão!

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Complexidade Temporal:
 - Inserção: O(1)
 - tempo de cálculo da h(k) + tempo de inserção no início da lista ligada.
 - Pesquisa: proporcional ao comprimento máximo da lista ligada.
 - Remoção: o mesmo que a pesquisa.
- Não esquecendo que ... uma má função de hash pode comprometer todo o desempenho da tabela de dispersão!

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Complexidade Temporal:
 - Inserção: O(1)
 - tempo de cálculo da h(k) + tempo de inserção no início da lista ligada.
 - Pesquisa: proporcional ao comprimento máximo da lista ligada.
 - Remoção: o mesmo que a pesquisa.
- Não esquecendo que ... uma má função de hash pode comprometer todo o desempenho da tabela de dispersão!

Tabela de dispersão com encadeamento externo: esqueleto

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Tabela de dispersão com encadeamento externo: esqueleto

```
public class HashTable<E> {
  public HashTable(int n) {
      array = (KeyValueList<E>[]) new KeyValueList[n];
      for(int i = 0; i < array.length; i++)</pre>
         arrav[i] = new KevValueList<E>();
  public E get(String k) {
      assert contains(k): "Key does not exist";
      . . . . . .
  public void set(String k, E e) {
      assert contains(k) && get(k).equals(e);
  public void remove(String k) {
      assert contains(k) : "Key does not exist";
      assert !contains(k) : "Key still exists";
  public boolean contains(String k) { ... }
  public String[] keys() { ... }
  public int size() { ... }
  public boolean isEmpty() { ... }
  private KeyValueList<E>[] array;
  private int size = 0;
```

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

```
Dicionários
```

```
public class HashTable<E> {
   public E get (String key)
      assert contains (kev):
      int pos = hashFcn(key);
      return array[pos].get(key);
   public void set(String key, E elem)
      int pos = hashFcn(key);
      boolean newelem = array[pos].set(key, elem);
      if (newelem) size++;
      assert contains (key) && get (key) .equals (elem);
```

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- No mínimo, o tamanho da tabela tem de ser igual ac número máximo de elementos a armazenar
- É usual sobredimensionar-se a tabela de forma a mante α < 0.7:

- Resolução de Colisões
- f(x) = (f(x) = 0) % 77
 e repetile até encontrar uma posição fora
 o valor o pode ser constante (pesquise fora)
 f(x) = (f(x) = 0) % 77
 f(x) = (f(x)

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- No mínimo, o tamanho da tabela tem de ser igual ao número máximo de elementos a armazenar.
- E usual sobredimensionar-se a tabela de forma a mante α < 0.7:
 - O objectivo é minimizar o tempo despendido com a resolução das colisões.
- Resolução de Colisões:
 - $i_0 = h(k)$
 - se posição i_i ocupada, então tentar:
 - $i_{j+1} = (i_j + c) \% m$
 - e repetir até encontrar uma posição livre.
 - o valor c pode ser constante (pesquisa linear), ou seguir outra estratégia (quadrática, ...).

- No mínimo, o tamanho da tabela tem de ser igual ao número máximo de elementos a armazenar.
- É usual sobredimensionar-se a tabela de forma a manter $\alpha < 0.7$:
 - O objectivo é minimizar o tempo despendido com a resolução das colisões.
- Resolução de Colisões
 - $i_0 = h(k)$
 - se posição i_i ocupada, então tentar:
 - $i_{i+1} = (i_i + c) \% m$
 - e repetir até encontrar uma posição livre.
 - o valor c pode ser constante (pesquisa linear), ou seguir outra estratégia (quadrática, . . .).

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- No mínimo, o tamanho da tabela tem de ser igual ao número máximo de elementos a armazenar.
- É usual sobredimensionar-se a tabela de forma a manter $\alpha < 0.7$:
 - O objectivo é minimizar o tempo despendido com a resolução das colisões.
- Resolução de Colisões
 - $h_0 = h(k)$
 - $i_{j+1} = (i_j + c) \% m$
 - e repetir até encontrar uma posição livre.
 - o valor c pode ser constante (pesquisa linear), ou seguir outra estratégia (quadrática,...).

- No mínimo, o tamanho da tabela tem de ser igual ao número máximo de elementos a armazenar.
- É usual sobredimensionar-se a tabela de forma a manter $\alpha < 0.7$:
 - O objectivo é minimizar o tempo despendido com a resolução das colisões.
- Resolução de Colisões:
 - $i_0 = h(k)$
 - se posição i_i ocupada, então tentar;
 - $i_{j+1} = (i_j + c) \% m$
 - e repetir até encontrar uma posição livre.
 - o valor c pode ser constante (pesquisa linear), ou seguir outra estratégia (quadrática, ...).

Introdução

Funções de Dispersão

Dicionários

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- No mínimo, o tamanho da tabela tem de ser igual ao número máximo de elementos a armazenar.
- É usual sobredimensionar-se a tabela de forma a manter $\alpha <$ 0.7:
 - O objectivo é minimizar o tempo despendido com a resolução das colisões.
- Resolução de Colisões:
 - $i_0 = h(k)$
 - se posição i_i ocupada, então tentar:
 - $i_{j+1} = (i_j + c) \% m$
 - e repetir até encontrar uma posição livre
 - o valor c pode ser constante (pesquisa linear), ou seguir outra estratégia (quadrática,...).

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

- No mínimo, o tamanho da tabela tem de ser igual ao número máximo de elementos a armazenar.
- É usual sobredimensionar-se a tabela de forma a manter $\alpha < 0.7$:
 - O objectivo é minimizar o tempo despendido com a resolução das colisões.
- Resolução de Colisões:
 - $i_0 = h(k)$
 - se posição i_i ocupada, então tentar:
 - $i_{j+1} = (i_j + c) \% m$
 - e repetir até encontrar uma posição livre
 - o valor c pode ser constante (pesquisa linear), ou seguir outra estratégia (quadrática,...).

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- No mínimo, o tamanho da tabela tem de ser igual ao número máximo de elementos a armazenar.
- É usual sobredimensionar-se a tabela de forma a manter $\alpha <$ 0.7:
 - O objectivo é minimizar o tempo despendido com a resolução das colisões.
- Resolução de Colisões:
 - $i_0 = h(k)$
 - se posição *i*_i ocupada, então tentar:
 - $i_{j+1} = (i_j + c) \% m$
 - e repetir até encontrar uma posição livre
 - o valor c pode ser constante (pesquisa linear), ou seguir outra estratégia (quadrática,...).

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- No mínimo, o tamanho da tabela tem de ser igual ao número máximo de elementos a armazenar.
- É usual sobredimensionar-se a tabela de forma a manter $\alpha < 0.7$:
 - O objectivo é minimizar o tempo despendido com a resolução das colisões.
- Resolução de Colisões:
 - $i_0 = h(k)$
 - se posição i_i ocupada, então tentar:
 - $i_{j+1} = (i_j + c) \% m$
 - e repetir até encontrar uma posição livre.
 - o valor c pode ser constante (pesquisa linear), ou seguir outra estratégia (quadrática,...).

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

- No mínimo, o tamanho da tabela tem de ser igual ao número máximo de elementos a armazenar.
- É usual sobredimensionar-se a tabela de forma a manter $\alpha < 0.7$:
 - O objectivo é minimizar o tempo despendido com a resolução das colisões.
- Resolução de Colisões:
 - $i_0 = h(k)$
 - se posição i_i ocupada, então tentar:
 - $i_{j+1} = (i_j + c) \% m$
 - e repetir até encontrar uma posição livre.
 - o valor c pode ser constante (pesquisa linear), ou seguir outra estratégia (quadrática, ...).

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo Tabela de dispersão com encadeamento interno

$$h(k) = k \% m$$
 com $m = 5 e k \in [0; 99]$

insert(2)		<u>inser</u>	insert(21)			t(34)	<u>)</u>	<u>insei</u>	t(54			
	key	data		key	data		key	data		key	data	
0			0			0			0	54		
1			1	21		1	21		1	21		
2	2		2	2		2	2		2	2		
3			3			3			3			
4			4			4	34		4	34		<u>Colisão</u> : índice #4
										(4	(+ 1) m	od $5 = 0$

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

$$h(k) = k \% m$$
 com $m = 5 e k \in [0; 99]$

insert(2)		<u>inser</u>	insert(21)			t(34)	<u>)</u>	<u>insei</u>	t(54			
	key	data		key	data		key	data		key	data	
0			0			0			0	54		
1			1	21		1	21		1	21		
2	2		2	2		2	2		2	2		
3			3			3			3			
4			4			4	34		4	34		<u>Colisão</u> : índice #4
										(4	(+ 1) m	od $5 = 0$

Dicionários

Introdução

Funções de Dispersão

Factor de Carga

Colisões

Tabela de dispersão com encadeamento externo

- Tabela de dispersão com encadeamento externo:
 - Não tem limite rígido do número de elementos.
 - Desempenho degrada suavemente à medida que o factor de carga aumenta.
 - Não desperdiça memória com dados que ainda não existem.
- Tabela de dispersão com encadeamento interno:
 - Não precisa de guardar apontadores de uns elementos para os outros.
 - Não perde tempo a alocar nós sempre que chega um novo elemento.
 - Toda a memória é alocada no início. Não requer alocação dinâmica.
 - Especialmente adequado quando os elementos são de pequena dimensão.
- Na prática, e para a maior parte das situações, estas diferenças são marginais.