Curvature, Geodesics, and Exponential Maps

Tony Dear

Geometric Phase on a Sphere

- Geometric phase example in Marsden and Ostrowski.
 - Vector locally points in same direction.
 - Orientation is changed as it moves away and back.
- Doing the same thing on the earth?
- What if the space were Euclidean?
- What prevents a manifold from globally looking Euclidean?

What Is Curvature?

- Simplest 1D manifold—a curve
- Curvature of the curve at a point
 P measures how fast we are changing directions at P.
- Two ways of looking at it
 - Draw a circle of curvature.
 - Look at the tangent vector.
- Signed curvature

$$\kappa = \frac{d\mathbf{T}}{ds}$$
 acceleration

Curves in 3D Space

- Curves embedded in 3D space.
- A helix and circle → constant curvature
 - -z component of **T** is constant.
- Unit vector from plane of curvature has a changing orientation.
- Leads to a reorienting "body frame".

$$\mathbf{B} = \mathbf{T} \times \mathbf{N}$$

 The torsion of a 3D curve tells us how fast the binormal vector is reorienting.

$$\tau = -\mathbf{N} \cdot \mathbf{B}'$$

T: tangent

N: normal

B: binormal

Surfaces: Gaussian Curvature

- 2D surface embedded in 3D.
- Infinitely many curves through *P*.
- Are just intersections of normal planes with the surface.

- Each curve has normal curvature k_n in their resp. planes.
 - Using change in tangent vectors as before.
- Max and min $k_n \to principal$ curvatures, called k_1 and k_2 .
- Gaussian curvature is a single measure for a surface point.

$$K = k_1 k_2$$

Examples

Hyperboloid – Negative Gaussian curvature

Geodesic Curvature

- Normal curvature of γ at P was defined by the tangent vectors along γ (or embed γ in normal plane).
- Now consider the tangent plane at *P*.
- Can locally project γ onto tangent plane at P as γ^* .
 - Why can we do this?
- Curvature of γ^* at P is the **geodesic curvature** k_g .
 - Sort of like a 1st-order measure.

The Covariant Derivative

- Projection of both curve and its tangent vectors into a tangent space.
- Tangent vectors make up a velocity vector field $\dot{\gamma}$ along γ .
- Infinitesimal vector change around $P \rightarrow covariant derivative$.
- Geodesic curvature at P is magnitude of this vector.

$$D_{\dot{\gamma}(P)}\dot{\gamma}\in T_PM$$
Tangent vector Vector field

- Alternatively, find vector difference first, then project.
- More generally, the covariant derivative of a vector field X at P on a manifold M in a direction $Y \in T_PM$ measures fast X is changing, projected into T_PM . D_YX

Parallel Transport and Geodesics

- A vector field X is *parallel* along curve γ if $D_{\dot{\gamma}}X=0$ everywhere along γ .
- Given γ and vector x, the **parallel transport** of x along γ is the vector field X, such that X is parallel along γ .

- A curve γ is a **geodesic** on a manifold M if
 - $-\gamma$ has zero geodesic curvature everywhere.
 - the projection into the tangent space anywhere along γ is a straight line.
 - its velocity vector field $\dot{\gamma}$ is parallel along itself.
 - γ parallel transports its own velocity vector, i.e. the parallel transport of the velocity vector at any point P ∈ γ is the velocity vector field $\dot{\gamma}$.

Examples

Riemannian Manifolds

Distances on manifolds are specified by metrics.

$$g_P: T_PM \times T_PM \to \mathbf{R}$$

- Properties of metrics on manifolds
 - Bilinearity. $g_p(aU_p + bV_p, Y_p) = ag_p(U_p, Y_p) + bg_p(V_p, Y_p)$
 - Symmetry. $g_p(X_p, Y_p) = g_p(Y_p, X_p)$
 - Nondegeneracy. For every $X_p \neq 0$ there exists Y_p s.t. $g_p(X_p, Y_p) \neq 0$.
- If $g_P(X(P), Y(P))$ is a smooth mapping from M to \mathbb{R} for differentiable vector fields X, Y on M, then g_P is a *Riemannian metric* and M is a *Riemannian manifold*.
 - Curve lengths along M can be found by integrating g.

Exponential Maps

- <u>Uniqueness</u>: On a Riemannian manifold, given point $P \in M$ and velocity vector $X \in T_PM$, there is a *unique geodesic* γ around P s.t. $\gamma'(P) = X$.
- The *exponential map* starts at $\gamma_X(0) = P$ and runs along the geodesic with velocity X to $\gamma_X(1) \in M$.

$$\exp_P(X) = \gamma_X(1)$$

 $\exp_P: D \to M$, where $D \subset T_PM$

• Distance traveled from P to $\gamma_X(1)$ is |X|, measured by the metric.

Domain of exp in general is only a subset of T_PM , since γ_X may not always be defined in the entire interval [0,1].

Exponential Maps on Lie Groups

- Lie groups have manifold structure -> can define exp maps.
- For a Lie group G and Lie algebra element $X \in \mathfrak{g}$, there exists a unique smooth homeomorphism

$$\gamma_X : \mathbf{R} \to G \text{ s.t. } \gamma_X(0) = e \text{ and } \dot{\gamma}_X(0) = X.$$

- Can define "geodesic curves" from the identity.
- Exponential map takes elements in the Lie algebra $\mathfrak g$ and maps them along γ to an element of the group.

$$\exp: \mathfrak{g} \to G \qquad \exp(X) = \gamma_X(1)$$

Example: $\mathfrak{so}(3)$ and SO(3)

Matrix Lie groups:
$$\exp(X) = \sum_{k=0}^{\infty} \frac{1}{k!} X^k$$

Lie algebra for
$$SO(n)$$
: $\mathfrak{so}(n) = \{\widehat{\omega} \in \mathbb{R}^{n \times n} \mid \widehat{\omega}^T = -\widehat{\omega}\}$

Exp map for SO(3):
$$\exp(\widehat{\omega}\theta) = I + \widehat{\omega}\sin\theta + \widehat{\omega}^2(1 - \cos\theta) = R(\omega, \theta)$$

- Since every $\widehat{\omega} \in \mathfrak{so}(3)$ is isomorphic to $\omega \in \mathbb{R}^3$, the components $\omega \theta$ serve as the **exponential coordinates** (angle-axis representation) for $R(\omega, \theta)$.
- The *logarithm map* is an "inverse" to the $\log R = \begin{cases} 0, & \theta = 0\\ \frac{\theta}{2\sin\theta} (R - R^T), & \theta \neq 0 \end{cases}$ exponential map for matrix Lie groups.
- Extracting angle/axis from rotation matrix.