Time series visualization techniques II

EC 361-001

Prof. Santetti Spring 2024

Materials

Required readings:

• Hyndman & Athanasopoulos, ch. 2

Motivation

Motivation

So far, we have studied *three* types of time-series **visualization** techniques:

- Time plots;
- Seasonal plots;
- Scatter plots.

There is *more* to explore, and we will study further techniques that can give important **insights** about the relevant **features** of our time series.

Before the next plots, we must clarify what a lag means:

In time series jargon, the number of **time steps** between a series' observations is known as a **lag**.

In terms of **notation**, we will use the subscript t to denote a **time index**.

• For instance, given a time series called y, its value at time t can be denoted by y_t .

In case we want to denote the value of time series y one step in the past, we will write this as y_{t-1} .

Similarly, for any step k in the past, we can denote such value by y_{t-k} .

Such steps must be consistent with the **frequency** of the time series (e.g., monthly, quarterly, daily, yearly, etc.)

One key feature of time-series data is that **past** values usually help to explain **present** and/or **future** values.

Therefore, values of a time series in the *past* may be **correlated** with more *recent* observations.

More formally, for a given k value, y_{t-k} and y_t may share a nonzero correlation coefficient.

Just as **correlation** measures the extent of a *linear* relationship between two variables, **autocorrelation** measures the linear relationship between *lagged* values of a time series.

The sample **autocovariance** at lag *k* of a time series *y* is given by

$$c_k = rac{\displaystyle\sum_{t=k+1}^T (y_t - ar{y})(y_{t-k} - ar{y})}{T}$$

The **variance** of *y* is given by

$$ext{Var}(y) = rac{\displaystyle\sum_{t=1}^T (y_t - ar{y})(y_t - ar{y})}{T}$$

And the **autocorrelation coefficient** at lag k is given by

$$r_k = rac{c_k}{ ext{Var}(y)}$$

Lag plots display the data plotted against its different lags in a scatter plot.

Different colors correspond to each period (vertical axis) against lagged values (horizontal axis).

In case the time series shows **seasonality**, the autocorrelation coefficient will be **large** and **positive** at the **multiples** of the seasonal period.

• e.g., 12 lags for monthly data; 4 lags for quarterly data, and so on.

International airline passengers

Jan 1949 - Dec 1960

Lag plot: Airline passengers

Lag plot: Airline passengers


```
air_passengers ▷
  ACF(lag_max = 12)
#> # A tsibble: 12 x 2 [1M]
#>
           lag acf
      <cf_lag> <dbl>
#>
   1
            1M 0.948
#>
            2M 0.876
#>
#>
            3M 0.807
#>
            4M 0.753
            5M 0.714
#>
   6
            6M 0.682
#>
#>
            7M 0.663
            8M 0.656
#>
   8
#>
   9
            9M 0.671
#> 10
           10M 0.703
#> 11
           11M 0.743
#> 12
           12M 0.760
```

Lag plot: Airline passengers

Australian beer production

1992Q1-2010Q2

Lag plot: Australian beer production

1992Q1-2010Q2

Source: Hyndman and Athanasopoulos (2021).

```
beer ⊳
  ACF(lag_max = 8)
#> # A tsibble: 8 x 2 [1Q]
#>
       lag acf
   <cf_lag> <dbl>
     1Q -0.102
#> 1
#> 2
    2Q -0.657
#> 3
    3Q -0.0603
#> 4
    4Q 0.869
#> 5
     5Q -0.0892
     6Q -0.635
#> 6
     7Q -0.0542
#> 7
      8Q 0.832
#> 8
```

A more **insightful** way to observe the autocorrelation coefficient is through the **Autocorrelation Function (ACF) plot**.

It simply plots together the values of the autocorrelation coefficient against different lags.


```
beer ▷
  ACF(lag_max = 8)
#> # A tsibble: 8 x 2 [1Q]
                acf
#>
         lag
    <cf_lag> <dbl>
#> 1
          1Q -0.102
      2Q -0.657
       3Q -0.0603
          4Q 0.869
#> 4
          5Q -0.0892
       6Q -0.635
#> 6
         7Q -0.0542
          8Q 0.832
#> 8
```


An autocorrelation function plot is also known as correlogram.


```
air_passengers ▷
  ACF(lag_max = 12)
#> # A tsibble: 12 x 2 [1M]
           lag
                 acf
#>
      <cf_lag> <dbl>
#>
            1M 0.948
#>
   1
            2M 0.876
#>
            3M 0.807
            4M 0.753
#>
#>
            5M 0.714
            6M 0.682
            7M 0.663
#>
#>
   8
            8M 0.656
   9
            9M 0.671
#> 10
           10M 0.703
#> 11
           11M 0.743
#> 12
           12M 0.760
```

The ACF plot may show interesting patterns, depending on the **features** of the time series.

- When data have a **trend**, the autocorrelations for *small* lags tend to be **large** and **positive**.
 - Observations nearby in time are also nearby in value!

• When data are **seasonal**, the autocorrelations will be *larger* for the *seasonal* lags (at multiples of the seasonal period) than for other lags.

 When data are both trended and seasonal, the ACF plot usually shows a combination of the above effects.

A different look at the autocorrelation function, by Alison Horst

White noise

White noise

Some time series may not show autocorrelation at all.

When this is the case, they are called white noise.

A time series w_t is defined to be **white noise** if its observations are identically and independently distributed (i.i.d.) with a mean of zero and constant variance.

White noise

ACF plot of white noise data

Next time: Time series decomposition