Lecture 8 – Logistic Regression Part 1

Instructor: Hamed Hasheminia

Agenda

- Intro to Logistic Regression
- Odds and Log of Odds
- Using Logistic Regression to make predictions
- How to interpret results of a Logistic Regression model
- How to interpret coefficients of a Logistic Regression Model
- Strengths and weaknesses of Logistic Regression Models

Credit Data

Can we use Linear Regression?

Suppose that the Default classification task that we code

$$Y = \begin{cases} 0 & \text{if No} \\ 1 & \text{if Yes.} \end{cases}$$

 Can we simply preform a linear regression of Y on X and classify as Yes if Y_hat > 0.5?

Credit data

The orange marks indicate the response Y, either 0 or 1. Linear regression does not estimate Pr(Y = 1|X) well. Logistic regression – the right hand side graph - seems well suited to the task.

Logistic Regression

• Let's write p(x) = Pr(Y = 1 | X) for short and consider using balance to predict default. Logistic regression uses the form:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

- (e = 2.51828.. is a mathematical constant [Euler's number.])
- It is easy to see that no matter what values beta_0, beta_1 or X take, P(x) will have values between 0 and 1.

Logistic Regression

A bit of rearrangement gives

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

 This monotone transformation is called the log odds or logit transformation of p(X).

Maximum Likelihood Estimation

 Most statistical packages can fit linear logistic regression models by maximum likelihood.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

- What is our estimated probability of default for someone with a balance of \$1000?
- How about with a balance of \$2000?

Making predictions

Balance = \$1000

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

• Balance = \$2000

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

What if we have categorical inputs?

Let's do it again, using student as the predictor.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

$$\begin{split} \widehat{\Pr}(\mathbf{default=Yes}|\mathbf{student=Yes}) &= \frac{e^{-3.5041+0.4049\times1}}{1+e^{-3.5041+0.4049\times1}} = 0.0431, \\ \widehat{\Pr}(\mathbf{default=Yes}|\mathbf{student=No}) &= \frac{e^{-3.5041+0.4049\times0}}{1+e^{-3.5041+0.4049\times0}} = 0.0292. \end{split}$$

Logistic regression with several variables

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Why is coefficient for **student** negative, while it was positive before?

Confounding

- Students tend to have higher balances than non-students, so their marginal default rate is higher than for non-students.
- But for each level of balance, students default less than nonstudents

How do we interpret coefficients?

- One can explain beta_i as an approximation for percentage change in odds for a unit change of X_i keeping all other variables constant.
- Slightly more accurate way of measuring the precentage change of odds for a unit change of X_i would be to use
 - exp(beta_i) − 1
- For small values of beta_i, these two measures are very close.

Let's interpret coefficients of Logistic Regression

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

A few notes about Logistic regression lines

- For categorical data, these models are among the most interpretable models.
- If you have more than 2 categories, then you shall use another class of logistic regression models called multinomial regression line. (you can use such models for prediction but model's interpretability decreases.)
- If we you have well-separated classes, then logistic regression model give you unstable results
- You do not need to standardize your inputs to train a logistic regression model
- Almost every concept discussed for linear regression lines can be used in logistic regression lines – i.e. (p-values, interaction effects, etc)

Summary

- We discussed the use of Logistic Regression
- The definition of odds were introduced
- We used Logistic Regression to make predictions
- We learned hot to interpret the results of a Logistic Regression model
- Lastly we discussed strengths and weaknesses of Logistic Regression Models