Confidence intervals

Warm-up: Pivots

Let
$$X_1,\ldots,X_n \overset{iid}{\sim} Exponential(heta)$$
, with density $f(x| heta) = heta e^{- heta x}$.

Find a pivotal quantity $Q(X_1,\ldots,X_n,\theta)$ and construct a 1-lpha confidence interval for heta using the pivotal quantity.

Hints:

- Begin with the maximum likelihood estimate of θ , which is
- If $X\sim Exponential(heta)$, then $cX\sim Exponential\left(rac{ heta}{c}
 ight)$ $Exponential\left(rac{1}{2}
 ight)=\chi_2^2$

Wald CI

Let
$$X_1,\ldots,X_n \overset{iid}{\sim} Exponential(\theta)$$
, with density $f(x|\theta)=\theta e^{-\theta x}$.

Delta method

Suppose $\hat{ heta}$ is an estimate of $heta \in \mathbb{R}$, such that

$$\sqrt{n}(\hat{ heta}- heta)\stackrel{d}{
ightarrow} N(0,\sigma^2)$$

for some σ^2 , and g is a continuously differentiable function with $g'(\theta) \neq 0$. Then

$$\sqrt{n}(g(\hat{ heta}-g(heta))\overset{d}{
ightarrow}N(0,\sigma^2[g'(heta)]^2)$$

Proof sketch:

- lacktriangle First-order Taylor expansion of $g(\hat{ heta})$ around heta
- Slutsky's theorem

Variance stabilizing transformations

Example

Suppose that $X_1,\ldots,X_n \overset{iid}{\sim} Bernoulli(p)$.