世界知的所有権機関 国際 事務 局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 213/56, 213/61, 213/64, 213/73, 213/81, 215/12, 215/48, 217/22, 231/12, 233/64, 241/20, 257/04, 277/40, 277/68, 285/08, 513/04, A61K 31/41, 31/415, 31/425, 31/44, 31/445, 31/47, 31/495, (11) 国際公開番号

WO99/20607

(43) 国際公開日

1999年4月29日(29.04.99)

(21) 国際出願番号

PCT/JP98/04671

A1

(22) 国際出願日

1998年10月15日(15.10.98)

(30) 優先権データ

特願平9/285778

1997年10月17日(17.10.97)

弁理士 長井省三,外(NAGAI, Shozo et al.) 〒174-8612 東京都板橋区進根三丁目17番1号 山之内製聚株式会社 特許部内 Tokyo, (JP)

(71) 出願人(米国を除くすべての指定国について) 山之内製聚株式会社

(YAMANOUCHI PHARMACEUTICAL CO., LTD.)[JP/JP] 〒103-8411 東京都中央区日本橋本町二丁目3番11号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ) 丸山能也(MARUYAMA, Tatsuya)[JP/JP]

鈴木貴之(SUZUKI, Takayuki)[JP/JP]

恩田健一(ONDA, Kenichi)[JP/JP]

早川昌彦(HAYAKAWA, Masahiko)[JP/JP]

森友博幸(MORITOMO, Hiroyuki)[JP/JP]

君塚哲也(KIMIZUKA, Tetsuya)[JP/JP]

松井哲夫(MATSUI, Tetsuo)[JP/JP]

〒305-8585 茨城県つくば市御幸が丘21

山之内製薬株式会社内 Ibaraki, (JP)

(74) 代理人

(81) 指定国 AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO特許 (GH, GM, KE, LS, MW,

SD, SZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG,

CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

(54) Title: AMIDE DERIVATIVES OR SALTS THEREOF

(54)発明の名称 アミド誘導体又はその塩

$$R^2$$
 R^{1a}
 R^{1b}
 R^{1b}

Amide derivatives represented by general formula (I) or salts thereof wherein each symbol has the following meaning: ring B: an optionally substituted heteroaryl optionally fused with a benzene ring, X: a bond, lower alkylene or lower alkenylene optionally substituted by hydroxy or lower alkyl, carbonyl, or a group represented by -NH- (when X is lower alkylene optionally substituted by lower alkyl which may be bonded to the hydrogen atom bonded to a constituent carbon atom of ring B to form lower alkylene to thereby form a ring); A: a lower alkylene or a group represented by -(lower alkylene)-O-; R^{1a} and R^{1b}: the same or different and each hydrogen or lower alkyl; R²: hydrogen or halogeno; and Z: nitrogen or a group represented by =CH-. The compounds are useful as a diabetes remedy which not only functions to both accelerate the secretion of insulin and enhance insulin sensitivity but has an antiobestic action and an antihyperlipemic action based on its selective stimulative action on a β_3 receptor.

(57)要約

下記一般式(1)で示されるアミド誘導体又はその塩。

$$R^{2} \xrightarrow{OH} \xrightarrow{H} \xrightarrow{A} \xrightarrow{O} \xrightarrow{N} X \xrightarrow{B} (I)$$

(上記式中の記号は、それぞれ以下の意味を有する。

B環: 置換されていてもよく、ベンゼン環と縮合していてもよいヘテロアリール基、

X:結合、ヒドロキシ若しくは低級アルキル基で置換されていてもよい低級アルキレン若し くは低級アルケニレン、カルボニル又は一NH-で示される基、(Xが低級アルキル基 で置換されていてもよい低級アルキレン基の場合、B環を構成する炭素原子に結合した 水索原子と該低級アルキル基とが一体となって低級アルキレン基となり、環を形成して もよい)

A:低級アルキレン又は一低級アルキレンーOーで示される基、

R1°、R1b:同一又は異なって水素原子又は低級アルキル基、

R²:水素原子又はハロゲン原子、

Z: 窒素原子又は=CH-で示される基)

本発明はインスリン分泌促進作用とインスリン感受性増強作用を併せ持ち、さらに選択的 B 。受容体刺激作用に基づく抗肥満作用及び抗高脂血症作用をも併せ持つ、糖尿病の治療剤に 関する。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

```
SSSSSSTTTTTTTUUUUVY22
                                              トトトウウ米ブス南ジ
ルルリクガ国ズィーアン
リクガ国ズィーアン
イグ キトーリクガ
マイグ キトーリア
アイグ スナスカエ
アイグ エガフパブ
アイブ アコフバブ
```

明細書

アミド誘導体又はその塩

技術分野

本発明は、医薬、特に新規なアミド誘導体又はその塩及びそれらを有効成分とする糖尿病治療剤に関する。

背景技術

糖尿病は、持続的高血糖状態を伴う疾患であり、多くの環境因子と遺伝的因子とが作用した 結果生じるといわれている。血糖の主要な調整因子はインスリンであり、高血糖はインスリン 欠乏あるいはその作用を阻害する諸因子(例えば、遺伝的素因、運動不足、肥満、ストレス 等)が過剰となって生じることが知られている。

糖尿病には主として2つの種類があり、自己免疫疾患による膵インスリン分泌機能の低下によって生じるインスリン依存性糖尿病(IDDM)と持続的な高インスリン分泌に伴う膵疲弊による膵インスリン分泌機能の低下が原因であるインスリン非依存性糖尿病(NIDDM)とに分けられる。日本人の糖尿病患者の95%以上はNIDDMといわれており、生活様式の変化に伴い患者数の増加が問題となっている。

糖尿病の治療は、軽症においては食事療法、運動療法及び肥満の改善等が主として行われ、 更に進行すると、経口糖尿病薬(例えば、スルホニルウレア剤等のインスリン分泌促進剤、インスリンの感受性を増強するインスリン感受性増強剤等)の投与が行われ、更に重症の場合はインスリン製剤の投与が行われている。しかしながら、より高度な血糖管理が可能な薬剤の創製が切望されており、新たなメカニズムを有する有用性の高い糖尿病治療薬の開発が望まれている。

米国特許 4, 3 9 6, 6 2 7号及び同 4, 4 7 8, 8 4 9号には、フェニルエタノールアミン誘導体が記載されており、これらの化合物は抗肥満薬、抗高血糖症薬として有用であることが開示されている。これらの化合物の作用は、 β_3 受容体刺激作用によると報告されている。ここで β - アドレナリン 受容体は β_1 、 β_2 、 β_3 のサブタイプに分類され、 β_1 受容体の刺激は心拍数の増加を引き起こし、 β_2 受容体の刺激は筋肉中でのグリコーゲンの分解を刺激しこれによってグリコーゲンの合成を阻害し、筋肉振せん等の作用を生じることが知られ、 β_3 受

容体の刺激は抗肥満、抗高脂血(例えば、トリグリセライド低下、コレステロール低下、HD Lコレステロール上昇等)の作用を有することが知られている。

しかしながら、これらの β_3 受容体作動薬は、心拍数の増加や筋肉振せん等の β_1 受容体及び β_2 受容体刺激に基づく作用をも有しており、副作用の点で問題があった。

最近 β 受容体には種差が存在することが確認され、従来ラット等の齧歯類にて β 。受容体選択性が確認された化合物であっても、ヒトにおいては β 1及び β 2 受容体刺激作用に基づく作用が確認されたことが報告されている。このような点から、最近はヒトの細胞あるいはヒトの受容体を発現させた細胞を用いて、ヒトにおいて β 3 受容体選択的な刺激作用を有する化合物の研究が進められている。例えば、W095/29159公報には、下記一般式で示される置換スルホンアミド誘導体が記載され、ヒトにおいて β 3 受容体に選択的に刺激作用を有することより、肥満症、高血糖症等に有用であることが記載されている。しかしながら、これらの化合物のインスリン分泌促進作用並びにインスリン感受性増強作用については具体的に開示がない。

$$(R^1)_n \xrightarrow{QH} \xrightarrow{CHCH_2N} \xrightarrow{R^2} (X)_m \xrightarrow{R^4} \xrightarrow{N-SO_2(CH_2)_r} -R^7$$

(式中の記号は、上記公報参照。)

このように、いまなお、臨床的に有用性の高い新しいタイプの糖尿病治療剤の創製が**切望さ**れている。

発明の開示

本発明者等は、インスリン分泌促進作用とインスリン感受性増強作用を併せ持つ化合物を鋭 窓探索したところ、新規なアミド誘導体が良好なインスリン分泌促進作用とインスリン感受性 増強作用の両作用、さらには選択的な β 。受容体刺激作用を有することを見いだし本発明を完成した。

すなわち、本発明はインスリン分泌促進作用とインスリン感受性増強作用を併せ持ち、さらに選択的 β。受容体刺激作用に基づく抗肥満作用及び抗高脂血症作用をも併せ持つ糖尿病の治療に有用な、下記一般式(1)で示されるアミド誘導体又はその塩に関する。また、本発明は当該アミド誘導体を含有する医薬、殊に、当該アミド誘導体を有効成分とする糖尿病治療剤に

関する。

$$R^{2} \xrightarrow{OH} \xrightarrow{H} \xrightarrow{A} \xrightarrow{N} \xrightarrow{N} X \xrightarrow{B} (I)$$

(上記式中の記号は、それぞれ以下の意味を有する。

B環: 置換されていてもよく、ベンゼン環と縮合していてもよいヘテロアリール基、

X:結合、ヒドロキシ若しくは低級アルキル基で置換されていてもよい低級アルキレン若しくは低級アルケニレン、カルボニル又は-NH-で示される基、(Xが低級アルキル基で置換されていてもよい低級アルキレン基の場合、B環を構成する炭素原子に結合した水素原子と該低級アルキル基とが一体となって低級アルキレン基となり、環を形成してもよい)

A: 低級アルキレン又は一低級アルキレンーOーで示される基、

R¹®、R¹®:同一又は異なって水素原子又は低級アルキル基、

R2: 水素原子又はハロゲン原子、

Z: 容素原子又は=CH-で示される基)

一般式(1)の化合物をさらに説明すると、次の通りである。

本明細鸖の一般式の定義において、「低級」なる用語は、特に断らない限り、炭素数が1万 至6個の直鎖状又は分枝状の炭素鎖を意味する。

「低級アルキル基」としては、具体的には例えばメチル、エチル、並びに直鎖又は分枝状の プロピル、ブチル、ペンチル及びヘキシルである。好ましくは、炭素数1万至4のアルキルで あり、特に好ましくはメチル、エチル、プロピル、イソプロピルである。

「低級アルキレン基」としては、前記「低級アルキル基」から任意の水素原子を除いた2価基であり、好ましくは炭素数1乃至4個のアルキレン基であり、特に好ましくは、メチレン、エチレン、プロピレン及びブチレンである。「低級アルケニレン基」としては、ビニレン、プロペニレン、ブテニレン、ペンテニレン及びヘキセニレン基が挙げられる。

「置換されていてもよく、ベンゼン環と縮合していてもよいヘテロアリール基」の「ベンゼン環と縮合していてもよいヘテロアリール基」とは、後記ヘテロアリール基にベンゼン環が縮合した環基若しくは未縮合のヘテロアリール基である。

「ヘテロアリール基にベンゼン環が縮合した環基」として具体的には、キノリル、イソキノリル、キナゾリニル、キノリジニル、キノキサリニル、シンノリニル、ベンズイミダゾリル、イミダゾピリジル、ベンゾフラニル、ベンゾイソキサゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、オキサゾロピリジル、イソチアゾロピリジル、ベンゾチエニル等の縮合環へテロアリール基を意味し、更にオキソベンゾフラニル等のオキソ付加の環が挙げられる。

「ヘテロアリール基」としては、フリル、チェニル、ピロリル、イミダゾリル、チアゾリル、ピラゾリル、イソチアゾリル、イソキサゾリル、ピリジル、ピリミジル、ピリダジニル、ピラジル、チアジアゾリル、トリアゾリル及びテトラゾリル等の単環へテロアリール基、ナフチリジニル、ピリドピリミジニル等の二環式へテロアリール基が挙げられる。

「置換されていてもよく、ベンゼン環と縮合していてもよいヘテロアリール基」の置換基と しては、通常この環基に置換しうる基であればいずれでもよい。好ましくはハロゲン原子、低 級アルキル、低級アルケニル、低級アルキニル、ヒドロキシ、スルファニル、ハロゲノ低級ア ルキル、低級アルキルー〇一、低級アルキルーS-、低級アルキルー〇一〇〇一、カルボキシ、 スルホニル、スルフィニル、低級アルキルーSO-、低級アルキルーSO₂ー、低級アルキル -CO-、低級アルキル-CO-O-、カルバモイル、低級アルキル-NH-CO-、ジー低 級アルキルーN-CO-、ニトロ、シアノ、アミノ、グアニジノ、低級アルキルーCO-NH ー、低級アルキルーSO₂-NH-、低級アルキル-NH-、ジー低級アルキル-N-及び-O-低級アルキレン-O-等が挙げられる。また、これらの置換基は、アリール基、ヘテロア リール基、ハロゲン原子、ヒドロキシ、スルファニル、ハロゲノ低級アルキル、低級アルキル -O-、低級アルキル-S-、低級アルキル-O-CO-、カルボキシ、スルホニル、スル フィニル、低級アルキルーSO-、低級アルキルーSO₂-、低級アルキルーCO-、低級ア ルキルーCO-O-、カルバモイル、低級アルキル-NH-CO-、ジー低級アルキル-N-CO一、ニトロ、シアノ、アミノ、グアニジノ、低級アルキルーCO-NH-、低級アルキル -SO,-NH-、低級アルキル-NH-、ジー低級アルキル-N-等の置換基でさらに置換 されてもよく、これらのアリール基、ヘテロアリール基等の置換基はさらにハロゲン原子等に より置換されていてもよい。

「低級アルケニル基」としては、炭素数が2万至6個の直鎖又は分枝状のアルケニル基であり、具体的にはビニル、プロペニル、ブテニル、ペンテニル及びヘキセニル基が挙げられる。 「低級アルキニル基」としては、炭素数が2万至6個の直鎖又は分枝状のアルキニル基であり、具体的にはエチニル、プロピニル、ブチニル、ペンチニル及びヘキシニルが挙げられる。

「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を意味し、「ハロゲノ低級アルキル基」は上記低級アルキル基の任意の水素原子がハロゲン原子に置換された 基を意味する。

又、Xが結合の場合は、一CO一基の炭素原子とB環が直接結合していることを意味する。 本発明化合物(I)は、少なくとも1個の不斉炭素原子を有し、これに基づく(R)体、

(S)体等の光学異性体、ラセミ体、ジアステレオマ一等が存在する。本発明は、これらの異性体の分離されたものあるいは混合物を全て包含する。さらに、本発明には化合物(1)の水和物、エタノール等の溶媒和物や結晶多形の物質も包含される。

本発明化合物(I)は酸と塩を形成する場合がある。かかる塩としては塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の鉱酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマール酸、マレイン酸、乳酸、リンゴ酸、クエン酸、酒石酸、炭酸、ピクリン酸、メタンスルホン酸、エタンスルホン酸、グルタミン酸等の有機酸との酸付加塩を挙げることができる。

(製造法)

本発明化合物及びその塩は、その基本骨格あるいは置換基の種類に基づく特徴を利用し、 種々の合成法を適用して製造することができる。以下にその代表的な製造法について説明する。 第一製法

(式中、R¹°、R¹°、R²、A、B、X及びZは前記の意味を有する。 R°はアミノの保護基を、Y¹は脱離基を示し、具体的にはヒドロキシ、低級アルコキシ又

はハロゲン化物を意味する。)

本製法は化合物(||) と化合物(|||) とをアミド化反応させ、次に保護基を除去して本発明化合物(|) を合成する製法である。

本製法のアミド化は常法により行うことができる。

溶媒は化合物(III)のY'によって異なるが、おもに不活性溶媒又はアルコール系(イソプロパノール等)の溶媒が適用できる。

ここで、Y'が水酸基である場合は上記溶媒中、縮合剤の存在下で反応させる方法が適用できる。縮合剤としては、N, N'ージシクロヘキシルカルボジイミド(DCC)、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド(EDCI)、1, 1'ーカルボニルジイミダゾール(CDI)、ジフェニルホスホリルアジド(DPPA)やジエチルホスホリルシアニド(DEPC)等が挙げられる。

Y 'が低級アルコキシである場合はそのままで、又は前記不活性溶媒中、加熱下乃至加熱還 流下で反応させる方法が適用できる。

Y'がハロゲン化物である場合は前記不活性溶媒中、塩基存在下で反応させる方法が適用できる。

前記不活性溶媒としては、例えばジメチルホルムアミド(DMF)、ジメチルアセトアミド、テトラクロロエタン、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、テトラヒドロフラン、ジオキサン、ジメトキシエタン、酢酸エチル、ベンゼン、トルエン、キシレン、アセトニトリル、ジメチルスルホキシド等やこれらの混合溶媒が挙げられるが、種々の反応条件に応じて適宜選択される。塩基としては水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム又は炭酸カリウム等の無機塩基、Nーメチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン又はピリジン等の有機塩基が挙げられる。

R*のアミノの保護基は当業者が通常使用するアミノの保護基を意味し、代表的なものとしてはホルミル、アセチル、プロピオニル、メトキシアセチル、メトキシプロピオニル、ベンゾイル、チエニルアセチル、チアゾリルアセチル、テトラゾリルアセチル、チアゾリルグリオキシロイル、チエニルグリオキシロイル等のアシル、メトキシカルボニル、エトキシカルボニル、tertーブトキシカルボニル等の低級アルコキシカルボニル、ベンジルオキシカルボニル、pーニトロベンジルオキシカルボニル等のアラルキルオキシカルボニル、メタンスルホニル、エタンスルホニル等の低級アルカンスルホニル、ベンジル、pーニトロベンジル、ベンズヒドリル、トリチル等のアラルキル、トリメチルシリル等のトリ低級アルキルシリル等が挙げられ

る。

本製法における保護基の除去は常法に従えばよく、例えば、R*のアミノの保護基の除去は、i) ベンズヒドリル、pーメトキシベンジル、トリチル、tertーブトキシカルボニル、ホルミル等の保護基であるときは、ギ酸、トリフルオロ酢酸、トリフルオロ酢酸ーアニソール混液、臭化水素酸一酢酸混液、塩酸ージオキサン混液等の酸で処理する方法、ii) ベンジル、pーニトロベンジル、ベンズヒドリル、トリチル等であるときは、パラジウムー炭素又は水酸化パラジウムー炭素を用いる接触還元方法、iii) 保護基がトリ低級アルキルシリル等であるときは、水で処理する方法、フッ素化物アニオン(テトラnーブチルアンモニウムフルオリド、フッ化ナトリウム、フッ化カリウム、フッ化水素酸)等により容易に除去される。

第二製法

$$\begin{array}{c|c}
H_2N & A & O & B \\
R^{1a} & R^{1b} & N & X & B
\end{array}$$

$$\begin{array}{c|c}
R^2 & O & (V) \\
R^2 & Z & N & X & B
\end{array}$$

$$\begin{array}{c|c}
OH & H & O & O \\
R^{1a} & R^{1b} & N & X & B
\end{array}$$

$$\begin{array}{c|c}
(IV) & O & O & O \\
R^2 & Z & O & O & O \\
R^{1a} & R^{1b} & N & X & B
\end{array}$$

$$\begin{array}{c|c}
OH & H & O & O & O \\
R^{1a} & R^{1b} & N & X & B
\end{array}$$

$$\begin{array}{c|c}
OH & H & O & O & O \\
R^{1a} & R^{1b} & N & X & B
\end{array}$$

$$\begin{array}{c|c}
OH & H & O & O & O \\
R^{1a} & R^{1b} & N & X & B
\end{array}$$

$$\begin{array}{c|c}
OH & H & O & O & O \\
R^{1a} & R^{1b} & N & X & B
\end{array}$$

$$\begin{array}{c|c}
OH & H & O & O & O \\
R^{1a} & R^{1b} & N & X & B
\end{array}$$

$$\begin{array}{c|c}
OH & O & O & O & O \\
R^{1a} & R^{1b} & N & X & B
\end{array}$$

(式中、R'®、R'b、R2、A、B、X及びZは前記の意味を示す。)

本製法は化合物(IV) と化合物(V) を反応させ、本発明化合物(I) を得る製法である。 アミン化合物(IV) 及び化合物(V) をそのまま、あるいは不活性溶媒中で、加熱下乃至 加熱環流下、1~24時間反応させることにより本発明化合物(I) を得ることができる。

不活性溶媒としては例えば、アセトニトリル、テトラヒドロフラン、2ーブタノン、ジメチルスルホキシド又はNーメチルピロリドンが挙げられる。また反応の際、重炭酸ナトリウム、 炭酸カリウム又はジイソプロピルエチルアミンのような塩基を反応混合物に添加してもよい。

尚、上記製法において、再結晶化、粉砕、分取薄層クロマトグラフィー、W. C. Stillら、J. Org. Chem. 43, 2923 (1978) に記載されているようなシリカゲルフラッシュクロマトグラフィー、中圧液体クロマトグラフィー及びHPLCにより、望ましくない副生成物質を除き生成物質を精製することもできる。HPLCで生成される化合物は、

対応する塩として単離することができる。

前記製法で用いる原料化合物は当業者に公知の方法で容易に製造することができる。以下にその代表的な製造法を示す。

(原料化合物(11)の製法)

$$R^{b}NH \qquad (VIII)$$

$$R^{1a} \qquad R^{1b} \qquad NO_{2} \qquad OH \qquad R^{b}$$

$$R^{2} \qquad Z \qquad (VIIIa)$$

$$R^{1a} \qquad R^{1b} \qquad NO_{2}$$

(式中、 R^{1} °、 R^{1} °、 R^{2} 、 R^{2} 、 R^{6} 、 A、及びZは前記の意味を示す。 R^{6} は水素原子又はアラルキル系のアミノの保護基を示し、 R^{6} はエポキシ、 2-ハロゲノアセチル、 1-カルボキシメタン- 1-オールを意味する。)

本製法は工程 a ~工程 c に分けられ、工程 a は化合物(Vl)と化合物(Vll)とを反応させ、R°の種類により還元反応を行うことにより、化合物(Vllla)を得る工程、工程 b は化合物(Vllla)のR°が水素原子の場合に保護化を行う工程、工程 c はニトロをアミノへ還元し、化合物(ll)を得る工程である。

ここで、本製法のアラルキル系のアミノの保護基としては、ベンジル、pーニトロベンジル、ベンズヒドリル等が挙げられる。

工程a 以下の3つの場合につき説明する。,

- 1) R°がエポキシの場合は、化合物 (VI) と化合物 (VI۱) とを前記第二製法と同様 にして反応させることにより行うことができ、反応温度、溶媒等の反応条件についても同様である。
- 2) R°が2-ハロゲノアセチルの場合は、化合物 (VI) と化合物 (VII) とを塩基の存在下反応させ、更に還元反応を行うことにより、化合物 (VIIIa) を得ることができる。塩基は第一製法に記載の塩基と同様である。還元反応は還元剤の存在下、前記不活性溶媒又はアルコール系の溶媒中、攪拌しながら行うことができる。還元剤としては、例えば水素化ホウ

素ナトリウム、水素化シアノホウ素ナトリウム、水素化リチウムアルミニウム、ボラン等が用いられる。

3) R°が1ーカルボキシメタンー1ーオールの場合は、化合物(VI)と化合物(VII)とを縮合剤の存在下反応させ、更に2)と同様の還元反応を行うことにより、化合物(VIIIIa)を得ることができる。縮合剤は第一製法に記載の縮合剤と同様である。 工程b

化合物(Vllla)のR^bが水素原子の場合は、ジtert-ブチルジ炭酸エステル等を用いて、常法によりアミノの保護化を行い、化合物(Vlllb)を得ることができる。 工程c

ニトロよりアミノへ還元する方法は、鉄、亜鉛等を用いる金属還元、パラジウムー炭素、水酸化パラジウムー炭素、ラネーニッケル等の触媒を用いる接触還元などの常法で行うことができる。還元条件によってはR°が水素原子となる場合があるが、常法により再度保護化を行うことができる。

(原料化合物(IV)の製法)

A)

(式中、 R'°、R'b、Rb、A、B、X及びY'は前配の意味を示す。)

本反応は化合物(IX)と化合物(III)とをアミド化反応することにより化合物(IVa)を得、更にRbがアミノの保護基である場合は保護基を除去することにより、化合物(IV)を得る反応である。アミド化反応は前記第一製法と同様にして行うことができ、反応温度、溶媒等の反応条件についても同様である。

B)

$$\begin{array}{c|c} & & & \\ & & & \\ NC^{-A} & & & \\ NH_2 & & & \\ \hline \end{array} \begin{array}{c} & & \\ H_2N & A \\ \hline \end{array} \begin{array}{c} & \\ N & \\ \end{array} \begin{array}{c} \\ B \\ \end{array}$$

本反応は化合物(X)と化合物(111)とをアミド化反応させ、更に還元反応を行うことにより化合物(1Vb)を得る反応である。アミド化反応は前配第一製法と同様にして行うことができ、反応温度、溶媒等の反応条件についても同様である。還元反応は前配の接触還元又は塩化コバルト存在下水素化ホウ素ナトリウム等で還元する方法を適用できる。

その他、化合物(III)、化合物(V)、化合物(VI)、化合物(VII)は市販の化合物、あるいは市販の化合物を常法(例えば、Nーアルキル化反応、環化反応、加水分解反応等)に従って適宜合成された化合物が用いられる。

このようにして製造された本発明化合物(I)は、遊離化合物、常法による造塩処理を施したその塩、水和物、エタノール等の各種溶媒和物、あるいは結晶多形等として単離・精製される。単離・精製は抽出、濃縮、留去、結晶化、濾過、再結晶、各種クロマトグラフィー等の通常の化学操作を適用して行われる。

各種の異性体は異性体間の物理化学的な差を利用して常法により単離できる。例えば、ラセミ化合物は一般的なラセミ分割法により(例えば、一般的な光学活性酸(酒石酸等)とのジアステレオマー塩に導き、光学分割する方法等)立体化学的に純粋な異性体に導くことができる。 又、ジアステレオマーの混合物は常法、例えば分別結晶化又はクロマトグラフィー等により分離できる。また、光学活性な化合物は適当な光学活性な原料を用いることにより製造することもできる。

産業上の利用可能性

本発明の一般式(I)で示されるフェネタノール誘導体又はその塩は、インスリン分泌促進作用とインスリン感受性増強作用を併せ持ち、さらに選択的な β 。受容体刺激作用を有することより、糖尿病の治療剤として有用である。

本発明化合物は、後記耐糖能試験及びインスリン抵抗性モデル動物における血糖低下試験において確認されたように、良好なインスリン分泌促進作用とインスリン感受性増強作用を併せ

持ち、糖尿病においてその有用性が期待されるものである。本発明化合物のインスリン分泌促進作用及びインスリン感受性増強作用発現のメカニズムは、 β_3 受容体刺激作用が関与している可能性も考えられるが、その他のメカニズムによるものである可能性も有り、その詳細は未解明である。本発明化合物の β_3 受容体刺激作用は、ヒトにおいて β_3 受容体に選択的である。 β_3 受容体の刺激は脂肪分解(脂肪組織トリグリセライドのグリセロールと遊離脂肪酸への分解)を刺激し、これによって脂肪塊の消失を促進することが知られている。従って本発明化合物は、 β_3 受容体刺激による抗肥満作用、抗高脂血作用(例えば、トリグリセライド低下作用、コレステロール低下作用、HDLコレステロール上昇作用等)を有し、肥満症、高脂血症(例えば高トリグリセライド血症、高コレステロール血症、低HDL血症等)の予防・治療剤として有用である。これらの疾患は、糖尿病における増悪因子であることが知られており、これらの疾患の改善は糖尿病の予防・治療にも有用である。

また、本発明化合物は、肥満症、高脂血症の症状を低減することにより症状の改善の図れる その他の疾患、例えば、動脈硬化症、心筋梗塞、狭心症等の虚血性心疾患、脳梗塞等の脳動脈 硬化症あるいは動脈瘤等の予防・治療剤としても有用である。

さらに、本発明化合物の選択的 β 。受容体刺激作用は、 β 。受容体の刺激により改善することが提唱されているいくつかの疾患の予防・治療にも有用である。これらの疾患の例を以下に示す。

β。受容体は非括約筋性平滑筋収縮の運動性を媒介することが提唱されており、選択的β。 受容体刺激作用は心臓血管作用を伴うことなく腸運動性の薬理的制御を助けると考えられることより、腸運動の異常により生じる疾患、例えば、過敏性腸症候群のような種々の胃腸疾患の 治療に有用である可能性を有する。また、消化性潰瘍、食道炎、胃炎及び十二指腸炎(H. p y l o r i により誘発されるものを含む)、腸潰瘍(炎症性腸疾患、潰瘍性結腸炎、クローン 病及び直腸炎)及び胃腸潰瘍の治療に有用である。

さらに β_3 受容体は、肺におけるある種の感覚繊維の神経ペプチドの放出の阻害に作用を及ぼすことが示されている。感覚神経は咳を含めた気道の神経原性炎症に重要な役割を演じるので、本発明の特異的 β_3 作動薬は喘息のような神経原性炎症の治療に有用であってしかも心肺系への作用が少ない。

 β 。アドレナリン受容体はさらに脳における β 。受容体の刺激により選択的抗鬱作用を生じ得るので、従って本発明の化合物は抗鬱薬として有用である可能性を有する。

本発明化合物の ß 受容体に対する作用はヒト型受容体を発現している細胞を用いた実験に

よって、 β 。受容体選択的であることを確認しており、他の β 。受容体刺激に起因する副作用は低いか若しくは有しないものである。

本発明化合物の効果は以下の試験により確認された。

1. kkマウス(インスリン抵抗性モデル:肥満、高血糖)における血糖低下試験

雄性kkマウス(血糖値200mg/dl以上)を用いて、摂食下で血糖値を測定後、無作為に群分けした。被験薬物は1日1回、4日間、強制経口投与若しくは皮下投与し、最終投与後15~18時間後の血糖値を投与前値と比較した(n=6)。血糖値はマウスの尾静脈より、ガラス毛細管(ヘパリン処理済み)を用いて採血し、除タンパク処理後、上滑中のグルコース型(mg/dl)をグルコースオキシターゼ法により比色定量した。更に、血糖値を比験薬物投与前値より30%減少させる用量をED3の値として表した。

その結果、本発明化合物は経口投与、皮下投与のいずれにおいても、比験薬物投与前に比して有意に血糖値を低下させた。特に本発明化合物の中には、経口投与のED30値が3mg/kg/day以下という、強い活性を示す化合物が存在した。一方、前記 W095/29159公報実施例90の化合物のED30値は30mg/kg/day以上であり、また同実施例92の化合物もED30値が30mg/kg/dayであった。このことから本発明化合物は、前記 W095/29159公報に記載された化合物と比較しても、優れたインスリン感受性増強作用を有することが明らかとなった。

2. 正常ラットにおける耐糖能試験

7週齢の雄性SD系ラットを用いて、一昼夜絶食後、無作為に群分けし、oral glucose tolerance test (OGTT)を行った (n=4)。被験化合物は、グルコース (2g/kgを経口投与)の投与30分前に経口投与あるいは皮下投与した。血糖値はラットをペントバルビタール (65mg/kg) 麻酔下で、ヘパリン処理したガラスシリンジを用いて腹大静脈より採血し、除タンパク処理後、上清中のグルコース量 (mg/dl)をグルコースオキシターゼ法により比色定量した。血中インスリン値は、血漿中のインスリン量 (ng/ml)をRadioimu noassay (RIA)法により定量した。

その結果、本発明化合物を経口投与あるいは皮下投与した群においては、薬剤未処理群に比して血中インスリン値の有意な増加が観察された。また、グルコース投与後の血糖値の上昇も有意に抑制された。これらの結果より、本発明化合物は良好なインスリン分泌促進作用を有し、また、良好な高血糖抑制作用を有することが示された。

3. ヒトβ a、β 。及びβ 1 一受容体刺激試験

ヒト β_3 -刺激作用はSK-N-MC細胞系(permanent にヒト β_3 及びヒト β_1 受容体を発現した細胞を購入)を用い、ヒト β_2 、 β_1 -刺激作用はCHO細胞系(ヒト β_2 、 β_1 -刺激作用はCHO細胞系(ヒト β_2 、 β_1 -刺激作用はCHO細胞系(ヒト β_2 、 β_1 -刺激作用は、化合物($10^{-10}\sim1$ 0^{-4} M)の刺激作用は、各細胞を24 wellプレート上に 10^{5} 個/wellで培養し、2 日後 subconfluent な状態で、cyclic AMP(cAMP)の産生活性を指標に検討した。尚ヒト β_3 -刺激作用は、 β_1 -受容体遮断薬(CGP20712A、 10^{-6} M)存在下で検討した。各細胞中のcAMP産生量(pmol/ml)は、125 l-cAMPを用いてRIA法により測定した。各化合物の作用強度は、得られた用量反応曲線からpD2 値及び最大活性(1. A. (%)、イソプロテレノール 10^{-6} Mの最大反応を100%とする)を算出し比較した。

その結果、本発明化合物は、ヒト β 。受容体に対して選択的に刺激作用を有することが確認された。

本発明化合物又はその塩の一種又は二種以上を有効成分として含有する医薬組成物は、通常の製薬学的に許容される担体を用いて調製される。本発明における医薬組成物の投与は経口投与又は注射剤、座剤、経皮剤、吸入剤若しくは膀胱注入等による非経口投与のいずれの形態であってもよい。

投与量は症状、投与対象の年齢、性別等を考慮して個々の場合に応じて適宜決定されるが、 通常経口投与の場合成人1日当たり0.01mg/kg乃至100mg/kg程度であり、これを1回で、あるいは2~4回に分けて投与する。また、症状によって静脈投与される場合は、 通常成人1回当たり、0.001mg/kg乃至10mg/kgの範囲で1日に1回乃至複数 回投与される。

製剤用の担体としては固体又は液体状の非毒性医薬用物質が挙げられる。

本発明による経口投与のための固体組成物としては、錠剤、丸剤、カプセル剤、散剤、顆粒 剤等が用いられる。このような固体組成物においては、ひとつ又はそれ以上の活性物質が、少なくともひとつの不活性な希釈剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、寒天、ペクチン、メタケイ酸アルミン酸マグネシウム、アルミン酸マグネシウムと混合される。組成物は常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤や繊維素グリコール酸カルシウムのような崩壊剤、ラクトースのような安定化剤、グルタミン酸又はアスパラギン酸のような溶解補助剤を含有していてもよい。錠剤又は丸剤は必要によりショ糖、

ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート 等の糖衣又は胃溶性若しくは腸溶性物質のフィルムで被膜してもよい。

経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水、エタノールを含む。この組成物は不活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していてもよい。非経口投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤としては、例えば注射剤用蒸留水及び生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤としては、例えばプロピレングリコール、ポリエチレングリコール、カカオバター、オリーブ油、ゴマ油のような植物油、エタノールのようなアルコール類、アラビアゴム、ポリソルベート80(商品名)等がある。このような組成物は、さらに等張化剤、防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えば、ラクトース)、溶解補助剤(例えば、グルタミン酸、アスパラギン酸)のような補助剤を含んでもよい。これらは例えばバクテリア保管フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。これらはまた無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる。

発明を実施するための最良の形態

以下、実施例に基づき本発明をさらに詳細に説明する。本発明化合物は、下記実施例に記載の化合物に限定されるものではなく、また、前記一般式(I)に示される化合物、その塩、その水和物、その幾何並びに光学異性体、結晶多形の全てを包含するものである。さらに、本発明で使用される原料が新規な場合を参考例として説明する。

参考例1

酢酸エチルと1N水酸化ナトリウム水溶液の混合液に4-ニトロフェニルエチルアミン 塩酸塩 25.2gを加え、混合物を激しく攪拌した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を留 去した。得られた残渣に2-プロパノール100ml および(R)-スチレンオキシド15.0gを順次加え、 反応混合物を12時間加熱還流した。溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム/メタノール=100/1→10/1)にて精製した。得られた残渣を 再びシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル/トリエチルアミン=1/5/trace)に供することにより、(R)-1-フェニル-2-[[2-(4-ニトロフェニル)エチル]アミノ]エタノール8.05gを得た。

参考例2

f - ' 's '

(R)-1-フェニル-2-[[2-(4-ニトロフェニル)エチル]アミノ]エタノール8.02g、ジャーブチルジ 炭酸エステル6.30gのテトラヒドロフラン80ml溶液を12時間室温にて攪拌した。溶媒を留去し得 られた残渣をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=3/1)にて精 製することにより、(R)-N-(2-ヒドロキシ-2-フェニルエチル)-N-[2-(4-ニトロフェニル)エチル] カルバミン酸 t-ブチルエステル10.8gを得た。

参考例3

(R)-N-(2-ヒドロキシ-2-フェニルエチル)-N-[2-(4-ニトロフェニル)エチル]カルバミン酸 セブチルエステルのエタノール200ml溶液に10%パラジウム-炭素1.03gを加え、常圧水素雰囲気下、室温にて2時間撹拌した。不溶物をセライトを用いて除去した後、遮液を減圧下濃縮することにより、(R)-N-[2-(4-アミノフェニル)-N-(2-ヒドロキシ-2-フェニルエチル)エチル]カルバミン酸 セブチルエステル9.54gを得た。

参考例4

(R)-N-[2-(4-アミノフェニル)-N-(2-ヒドロキシ-2-フェニルエチル)エチル]カルバミン酸 セブチルエステル448mg、トリエチルアミン330mgのクロロホルム4ml溶液に2-ピリジンカルボニルクロリド146mgを加えた。反応溶液を室温にて2時間撹拌した後、溶媒を減圧下留去した。残渣をクロロホルムで希釈した後、有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去することにより得られた残渣をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=1/3)にて精製し、(R)-N-(2-ヒドロキシ-2-フェニルエチル)-N-[2-[4-[(2-ピリジンカルボニル)アミノ]フェニル]エチル]カルバミン酸セブチルエステル321mgを得た。

参考例5

(R)-N-[2-(4-アミノフェニル)-N-(2-ヒドロキシ-2-フェニルエチル)エチル]カルバミン酸 セブチルエステル377mgのテトラヒドロフラン10ml溶液に1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド 塩酸塩203mg、1-ヒドロキシベンゾトリアゾール143mg、8-キノリンカルボン酸202mgを順次加えた。反応溶液を、室温にて18.5時間攪拌した後、溶媒を減圧下留去した。残渣を酢酸エチルに希釈した後、有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去することにより得られた残渣をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=2/1)にて精製し、(R)-N-(2-ヒドロキシ-2-フェニルエチル)-N-[2-[4-[(8-キノリンカルボニル)アミノ]フェニル]エチル]カルバミン酸

tーブチルエステル302mgを得た。

参考例6

(R)-N-(2-ヒドロキシ-2-フェニルエチル)-N-[2-[4-[(2-1H-イミダゾール-2-イルアセチル)アミノ]フェニル]エチル]カルバミン酸 セブチルエステル403mgのアセトニトリル10ml溶液に室温にて、炭酸カリウム120mg、2-フルオロベンジルブロミド164mgを順次加えた。反応溶液を50°Cにて12時間攪拌した。不溶物をセライトを用いて濾去した後、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=1/3)にて精製することにより、(R)-N-[2-[4-[[2-[1-(2-フルオロベンジル)-1H-イミダゾール-2-イル]アセチル]アミノ]フェニル]エチル]-N-(2-ヒドロキシ-2-フェニルエチル)カルバミン酸 セブチルエステル253mgを得た。

参考例7

(R)-2-[N-(ベンジル)-N-[2-(4-エトロフェニル)エチル]アミノ]-1-フェニルエタノール13.4g のメタノール150ml 溶液に鉄粉8.6g、2N塩酸40mlを加えた。反応混合物を2時間加熱還流した後、1NJK酸化ナトリウムを加え、生じた不溶物をセライトを用いて遮去した。濾液を減圧下濃縮してメタノールを除去した。得られた水層ををクロロホルムで抽出し、有機層を無水硫酸マグネシウムで乾燥した後、溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=1/1)にて精製することにより、(R)-2-[N-[2-(4-アミノフェニル)エチル]-N-(ベンジル)アミノ]-1-フェニルエタノール11.45gを得た。

参考例8

(R)-2-[N-[2-(4-アミノフェニル)エチル]-N-(ベンジル)アミノ]-1-フェニルエタノール502mg (こ2-(3-メチルピリジン-2-イル)酢酸エチル336mg、キシレン10mlを加えた。反応混合物を9時間 還流した後、溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (溶出液:ヘキサン/酢酸エチル=1/3)にて精製することにより、(R)-4'-[2-[N-(ベンジル)-N-(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(3-メチルピリジン-2-イル)酢酸アニリド 222mgを得た。

参考例9

2-フルオロアセトフェノン0.96gのテトラヒドロフラン20mlの溶液に、ベンジルトリメチルアンモニウムトリブロミド2.65gを加えた。反応混合物を、室温下、30分攪拌後、不溶物を濾去し、溶媒を減圧濃縮した。得られた残渣を2-ブタノン40mlに溶解し、N-ベンジル-4-ニトロフェネチルアミン1.81gとジイソプロピルエチルアミン0.92gを加え、反応混合物を1時間加熱

還流した。溶媒を減圧留去し、酢酸エチルを加え、水、飽和食塩水で順次洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧留去した。得られた残渣をメタノール40mlに溶解し、水 素化ホウ素ナトリウム0.34gを加え、反応混合物を、室温下、1時間攪拌した。溶媒を減圧留去し、酢酸エチルを加え、水、飽和食塩水で順次洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム)で精製して、2-[N-(ベンジル)-N-[2-(4-ニトロフェニル)エチル]アミノ]-1-(2-フルオロフェニル)エタノール1.95gを得た。

参考例10

参考例11

4'-シアノメチル-2-(4,6-ジメチル-2-ピリジル) 酢酸アニリド640mgのテトラヒドロフラン 15mlの溶液にラネーニッケルのエタノール懸濁液15mlを加え、さらに濃アンモニア水を加え、p Hを約10に調整した。混合物を常圧水素雰囲気下12時間室温で撹拌した。反応混合物をセライトで濾過し、溶媒を減圧留去し、4'-(2-アミノエチル)-2-(4,6-ジメチル-2-ピリジル) 酢酸アニリド640mgを得た。

参考例12

4'-(2-アミノエチル)-2-(4,6-ジメチル-2-ピリジル) 酢酸アニリド630mgのトルエン20mlの溶液にベンズアルデヒド0.27mlを加え、ディーンスターク装置を用いて3時間加熱還流した。反応混合物を濾過し、溶媒を減圧留去した。得られた残渣のメタノール30mlの溶液を0°Cに冷却し、水素化ホウ素ナトリウム63mgを加え、0°Cで1時間撹拌した。反応混合物の溶媒のほぼ半量を減圧留去し、残渣に水、酢酸エチルを加え、有機層を飽和食塩水で2度洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた残渣のイソプロパノール50mlの溶液に、(R)-スチレンオキシド0.26mlを加え、12時間加熱還流した。溶媒を減圧留去して得た残渣をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム/メタノール=100/3)で精製して、(R)-4'-[2-[N-(ベンジル)-N-(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(4,6-ジメチル-2-ピリジル)酢酸アニリド920mgを得た。

実施例1

(R)-N-(2-ヒドロキシ-2-フェニルエチル)-N-[2-[4-[(2-ピリジンカルボニル)アミノ]フェニル]エチル]カルバミン酸 t-ブチルエステル458mgのエタノール10ml 溶液に4N塩化水素-酢酸エチル溶液10ml を加えた。反応溶液を室温にて3時間攪拌した後、溶媒を減圧下留去した。得られた粗結晶をメタノール-エタノール-酢酸エチルで再結晶することにより(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-ピリジンカルボン酸アニリド 2塩酸塩289mgを得た。

実施例1と同様にして実施例2乃至33の化合物を得た。

実施例2 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-3-ピリジンカルボン 酸アニリド 2塩酸塩

実施例3 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-8-キノリンカルボン酸アニリド 2塩酸塩

実施例4 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-(E)-3-(2-ピリジル) アクリル酸アニリド 2塩酸塩

実施例5 (R)-2-(ベンゾチアゾール-2-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例6 (R)-4-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(イミダゾ[2,1-b] チアゾール-3-イル)酢酸アニリド 2塩酸塩

実施例7 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-メチルチアゾール-4-イル)酢酸アニリド 塩酸塩

実施例8 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(1H-イミダゾール-2-イル)酢酸アニリド 2塩酸塩

実施例9 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(1H-テトラゾール-5-イル)酢酸アニリド 塩酸塩

実施例 1 O (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(5-スルファニル-1H-1, 2, 4-トリアゾール-3-イル) 酢酸アニリド 塩酸塩

実施例11 (R)-2-(2-アミノチアゾール-4-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-オキソ酢酸アニリド 2塩酸塩

実施例12 (R)-2-(5-アミノ-1, 2, 4-チアジアゾール-3-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例13 (R)-2-(5-エトキシカルボニルアミノ-1, 2, 4-チアジアゾール-3-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例14 (R)-2-[2-(3-フルオロフェニルアミノ)チアゾール-4-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例15 (R)-2-(2-クロロピリジン-6-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例 1 6 (R)-2-(2-ベンジルオキシピリジン-6-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例17 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(2-メチル-3-プロペニル)-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例18 (R)-2-(1-ベンジル-1H-イミダゾール-4-イル)-4 -[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例 1 9 (R)-2-[1-(2-クロロベンジル)-1H-イミダゾール-4-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例20 (R)-2-[1-(3-クロロベンジル)-1H-イミダゾール-4-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例2 1 (R)-2-[1-(4-クロロベンジル)-1H-イミダゾール-4-イル]-4-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例22 (R)-2-[1-(4-フルオロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例23 (R)-2-[1-(4-クロロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例24 (R)-2-[1-(4-ブロモベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例25 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(4-ヨードベンジル)-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例26 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(4-トリフルオロメチルベンジル)-1H-イミダゾール-2-イル)酢酸アニリド 2塩酸塩

実施例27 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(2-ナフチル)-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

奥施例28 (R)-2-[1-(4-フルオロベンジル)-5-メチル-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例29 (R)-2-[1-(4-フルオロベンジル)-4-メチル-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例30 (R)-2-[1-(4-フルオロベンジル)-1H-テトラゾール-5-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例3 1 (R)-2-[2-(3, 4-ジクロロベンジル)-1H-テトラゾール-5-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例32 (R)-2-[2-(4-フルオロベンジル)-1H-テトラゾール-5-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例33 (R)-2-[1-(3,4-ジクロロベンジル)-1H-テトラゾール-5-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例34

(R) -N-[2-[4-[2-(1H-1, 2, 4-トリアゾール-3-イル)アセチルアミノ]フェニル]エチル]-N-(2-ヒドロキシ-2-フェニルエチル)カルバミン酸 t-ブチルエステル175mgのメタノール5mlの溶液に、4Nt塩化水素-酢酸エチル溶液4mlを加えた。混合物を室温で3時間攪拌した後、溶媒を濾過し、得られた粉末をエタノールで洗浄した。得られた粉末を乾燥して(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(1H-1, 2, 4-トリアゾール-3-イル)酢酸アニリド 2塩酸塩125mgを得た。

実施例34と同様にして実施例35乃至40の化合物を得た。

実施例35 (R)-2-(5-ベンジルスルファニル-1H-1, 2, 4-トリアゾール-3-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例36 (R)-2-(2-アセタミドチアゾール-4-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例37 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-メタンスルフォンアミドチアゾール-4-イル)酢酸アニリド 塩酸塩

実施例38 (R)-2-(2-グアニジノチアゾール-4-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例39 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-フェニルアミノチアゾール-4-イル)酢酸アニリド 塩酸塩

実施例40 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(4-ニトロベンジル)-1H-イミダゾール-2-イル]酢酸アニリド 塩酸塩

実施例41

(R)-N-[2-[4-[2-(2-アミノチアゾール-4-イル)アセトアミノ]フェニル]エチル]-N-[(2-ヒドロキシ-2-フェニル)エチル]カルバミン酸 t-ブチルエステル690mgにメタノール30mlと4地塩化水素-酢酸エチル溶液15mlを加え、室温で2時間攪拌した。溶媒を減圧留去した後、残渣を逆相カラムクロマトグラフィー(溶出液: π /メタノール=2/1)で精製し、(R)-2-(2-アミノチアゾール-4-イル)-4'-[2-(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩310mgを得た。

実施例41と同様にして実施例42乃至57の化合物を得た。

実施例42 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-(2-アミノチアゾール-4-イル) カルボン酸アニリド 塩酸塩

実施例43 (R)-2-(2-アミノ-5-メチルチアゾール-4-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例44 (R)-2-(2-アミノチアゾール-4-イル)-2-メチル-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]プロピオン酸アニリド 塩酸塩

実施例45 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-(2-アミノ-4.5.6.7-テトラヒドロベンゾチアゾール-4-イル)カルボン酸アニリド 2塩酸塩

実施例46 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(イミダゾ[2,1-b]チアゾール-6-イル)酢酸アニリド 塩酸塩

実施例47 (R)-2-(2-ベンジル-1H-1, 2, 4-トリアゾール-3-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例48 (R)-2-(1-ベンジル-1H-1, 2, 4-トリアゾール-3-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例49 (R)-2-(3-ベンジル-2-チオキソチアゾール-4-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例50 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-(5, 6, 7, 8-テトラヒドロキノリン-8-イル)カルボン酸アニリド 2塩酸塩

実施例5 1 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(1-フェニル-1H-イミダゾール-2-イル)酢酸アニリド 2塩酸塩

実施例52 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(4-イソプロピルベンジル)-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例53 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(4-フェニルベンジル)-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例54 (R)-2-[1-(2-クロロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例55 (R)-2-[1-(3-クロロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例56 (R)-2-[1-(3,4-ジクロロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例57 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(2-ピリジル) メチル-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例1と同様にして実施例58の化合物を得た。

実施例58 (R)-2-(2-アミノピリジン-6-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例59

(R)-N-[2-[4-[[2-(2-アミノチアゾール-4-イル)-2-オキソアセチル]アミノ]フェニル]エチル]-N-(2-ヒドロキシ-2-フェニルエチル)カルバミン酸 t-ブチルエステルのメタノール30ml溶液に室温にて水素化ホウ素ナトリウム130mgを加えた。反応混合物を室温にて3時間攪拌した後、溶媒を減圧下留去した。残渣をメタノール5mlに溶解した反応溶液に4N塩化水素-酢酸エチル溶液10mlを加えた。反応溶液を室温にて8時間攪拌した後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム/メタノール=5/1)にて精製した。得られた残渣を逆相カラムクロマトグラフィー(溶出液:水/メタノール=2/1)にて精製することにより(R)-2-(2-アミノチアゾール-4-イル)-2-ヒドロキシ-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩7mgを得た。

実施例60

(R) -N-[2-[4-[[2-(2-ベンジルオキシピリジン-6-イル) アセチル] アミノ] フェニル] エチル] - N-(2-ヒドロキシ-2-フェニルエチル) カルバミン酸 t-ブチルエステル349mgにペンタメチル ベンゼン478mg、トリフルオロ酢酸5mlを順次加えた反応溶液を室温にて4時間攪拌した後、溶 媒を減圧下留去した。残渣に水および炭酸カリウムを加え溶液を塩基性にした後、水層をク

ロロホルム-テトラヒドロフランの混合溶媒で抽出した。有機層を無水硫酸マグネシウムで 乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム/メタノール=10/1→5/1)にて精製した。得られた残渣のエタノール溶液に44塩化水素-酢酸エチル溶液100μlを加え、溶媒を減圧下留去した。得られた粗結晶をエタノール・酢酸エチルで再結晶することにより(R)-2-(2-ベンジルオキシピリジン-6-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩65mgを得た。

実施例1と同様にして実施例61乃至76、83乃至85の化合物を、実施例41と同様に して実施例77乃至82の化合物をそれぞれ得た。

実施例6 1 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-メチルプロピル-1H-イミダゾール-2-イル)酢酸アニリド 2塩酸塩

実施例62 (R)-2-[1-(2-フルオロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例63 (R)-2-[1-(3-フルオロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例6 4 (R)-2-[1-(2,4-ジフルオロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例65 (R)-2-[1-(2,6-ジフルオロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例66 (R)-2-[1-(3,5-ジフルオロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例 6 7 (R)-2-[1-(2,5-ジフルオロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例68 (R)-2-[1-(3,4-ジフルオロベンジル)-11+イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例69 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(2,3,6-トリフルオロベンジル)-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例 7.0 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル) アミノ] エチル]-2-[1-(2, 4, 5-トリフルオロベンジル)-1H-イミダゾール-2-イル] 酢酸アニリド 2塩酸塩

実施例7 1 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(3, 4, 5-トリフルオロベンジル)-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例72 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(2,3,4,5,6-ペンタフルオロベンジル)-1H-イミダゾール-2-イル] 酢酸アニリド 2塩酸塩

実施例73 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(3-ヨードベンジル)-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例74 (R)-2-[1-(2,6-ジクロロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 塩酸塩

実施例75 (R)-2-[1-(4-シアノベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例76 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(キノリン-2-イル)-1H-イミダゾール-2-イル]酢酸アニリド 3塩酸塩

実施例77 (R)-2-[1-(2-クロロ-6-フルオロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒ ドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド

実施例78 (R)-2-[1-(2-クロロ-4-フルオロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド

実施例79 (R)-2-[1-(2,5-ジクロロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例80 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(2,3,4-トリフルオロベンジル)-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例8 1 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(4-メトキシカルボニルベンジル)-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例82 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-[(ピペリジン-1-カルボニル)ベンジル]-11-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例83 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(1-ピラゾリル) 酢酸アニリド 塩酸塩

実施例84 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(1,2,4-トリアゾール-1-イル)酢酸アニリド 2塩酸塩

実施例85 (R)-2-(2-アミノベンズイミダゾール-1-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例86

4'-[2-[N-(ベンジル)-N-(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリジル)酢

酸アニリド20.1gのメタノール400ml溶液に10%パラジウム-炭素5.96gを加えた。反応溶液を常圧水素雰囲気下6時間撹拌した。不溶物をセライトを用いて濾去した後、濾液を減圧濃縮した。得られた残渣のメタノール溶液に4k塩化水素-酢酸エチル溶液10.8mlを加え、溶媒を減圧下留去した。得られた粗結晶をメタノールーエタノールで再結晶することにより、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリジル)酢酸アニリド 塩酸塩を得た。

実施例86と同様にして実施例87乃至90の化合物を得た。

実施例87 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(3-ピリジル)酢

酸アニリド 塩酸塩

実施例88 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(4-ピリジル)酢

酸アニリド 塩酸塩

実施例89 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-3-(2-ピリジル)プロピオン酸アニリド 塩酸塩

実施例90 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-[1-(2-フェニルエチル)-1H-イミダゾール-2-イル]酢酸アニリド 2塩酸塩

実施例91

(R)-2-(1H-ベンズイミダゾール-2-イル)-4'-[4-[2-[N-ベンジル-N-(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]フェニル]酢酸アニリド240mgをエタノール30mlに溶解し、10%パラジウム-炭素170mgを加え、常圧水素雰囲気下、9時間攪拌した。触媒を濾去後、溶媒を減圧留去して残渣をエタノール-酢酸エチルで洗浄することにより、(R)-2-(1H-ベンズイミダゾール-2-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 200mgを得た。

実施例86と同様にして実施例92及び93の化合物を得た。

実施例92 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(3-メチルピリジン-2-イル)酢酸アニリド 塩酸塩

実施例93 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピラジニル) 酢酸アニリド 塩酸塩

実施例94

(R)-4'-[4-[2-[N-(ベンジル)-N-(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]フェニル]-2-(1-ベンジル-1H-イミダゾール-2-イル)酢酸アニリド350mgをエタノール20mlに溶解し、10%パラジウム-炭素130mgを加え、常圧水素雰囲気下、17.5時間攪拌した。触媒を遮去後、溶媒を減圧留去して残渣をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム/メタノール/濃

アンモニア水=200/10/1) で精製した。得られた油状物質をメタノールに溶解し、4N塩化水素-酢酸エチル溶液280 μ lを加えた。混合物に活性炭を加えて濾過し、溶媒を減圧留去して(R)-2-(1-ベンジル-1H-イミダゾール-2-イル)-4'-[2-[(2-ヒ・ドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩200 π を得た。

実施例91と同様にして実施例95及び97の化合物を、実施例94と同様にして実施例98及び100の化合物を、実施例86と同様にして実施例99、101乃至103の化合物をそれぞれ得た。

実施例95 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(4-メチル-2-ピリジル) 酢酸アニリド

実施例96 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(5-メチル-2-ピリジル)酢酸アニリド

実施例 9 7 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル) アミノ] エチル]-2-(6-メチル-2-ピリジル) 酢酸アニリド

実施例98 4'-[(R)-2-[((R)-2-ヒドロキシ-2-フェニルエチル)アミノ]プロピル]-2-(2-ピリジル)酢酸アニリド 塩酸塩

実施例99 4'-[(S)-2-[(R)-2-ヒドロキシ-2-フェニルエチル)アミノ]プロピル]-2-(2-ピリジル)酢酸アニリド 塩酸塩

実施例 1 O O 2-(1-ベンジル-1H-イミダゾール-2-イル)-4'-[(S)-2-[(R)-2-ヒドロキシ-2-フェニルエチル)アミノ]プロピル]酢酸アニリド 塩酸塩

実施例101 4'-[2-[[2-ヒドロキシ-2-(2-フルオロフェニル)エチル]アミノ]エチル]-2-(2-ピリジル)酢酸アニリド 塩酸塩

実施例102 4'-[2-[[2-ヒドロキシ-2-(3-フルオロフェニル)エチル]アミノ]エチル]-2-(2-ピリジル)酢酸アニリド 塩酸塩

実施例103 4'-[2-[[2-ヒドロキシ-2-(4-フルオロフェニル)エチル]アミノ]エチル]-2-(2-ピリジル)酢酸アニリド 塩酸塩

実施例104

4'-シアノメチル-2-(2-ピリミジニル)酢酸アニリド805mgのテトラヒドロフラン30ml溶液にラネーニッケルの30mlエタノール溶液および濃アンモニア水3mlを加えた。反応溶液を常圧水素雰囲気下4時間撹拌した後、不溶物をセライトを用いて除去し、溶媒を留去した。得られた残渣に2-プロパノール10ml、(R)-スチレンオキシド300mg、メタノール2mlを順次加えた。反応混

合物を10時間加熱還流した後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー (溶出液:クロロホルム/メタノール=10/1)にて精製した。得られた残渣のメタノール溶液に4N塩化水素-酢酸エチル溶液150μlを加え、溶媒を減圧下留去した。得られた残渣をメタノール-エタノール-酢酸エチルで結晶化した後、エタノール-ジエチルエーテルにて再結晶することにより(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリミジニル)酢酸アニリド 塩酸塩160gを得た。

実施例104と同様にして実施例105乃至108の化合物を、実施例91と同様にして実施例109の化合物を得た。

実施例105 (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-キノリル) 酢酸アニリド 塩酸塩

実施例106 (R)-4'-[2-[[2-ヒドロキシ-2-(3-クロロフェニル)エチル]アミノ]エチル]-2-(2-ピリジル)酢酸アニリド 塩酸塩

実施例 1 O 7 4'~[2-[[2-ヒドロキシ-2-(3-ピリジル)エチル]アミノ]エチル]-2-(2-ピリジル) 酢酸アニリド 塩酸塩

実施例108 (R)-2-[1-(4-クロロベンジル)-1H-ベンズイミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド 2塩酸塩

実施例109 (R)-2-(4,6-ジメチル-2-ピリジル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド

実施例110

Ÿ

4'-(3-アミノプロピル)-2-(2-ピリジル)酢酸アニリドに2-プロパノール10ml、(R)-スチレンオキシド600mgを順次加えた。反応混合物を4時間加熱還流した後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム/メタノール=30/1→10/1)にて精製した。得られた残渣のメタノール溶液に4N塩化水素-酢酸エチル溶液100μlを加え、溶媒を減圧下留去した。得られた粗結晶をエタノール-ジエチルエーテルにて再結晶することにより(R)-4'-[3-[(2-ヒドロキシ-2-フェニルエチル)アミノ]プロピル]-2-(2-ピリジル)酢酸アニリド 塩酸塩 71mgを得た。

実施例111

N-[2-[4-[[2-(2-ピリジル)アセチル]アミノ]フェノキシ]エチル]カルバミン酸 t-ブチルエステル3.62gのメタノール30ml溶液に4地塩化水素-酢酸エチル溶液50mlを加えた。反応溶液を室温にて8時間攪拌した後、溶媒を減圧下留去した。残渣に炭酸水素ナトリウム水溶液および炭酸

カリウムを加え、pHを約12とした。得られた水層をクロロホルム、テトラヒドロフランの混合溶媒で抽出した。有機層を無水硫酸マグネシウムで乾燥し濃縮することにより得られた残渣をメタノール40mlに溶解し、(R)-スチレンオキシド1.02gを加えた。反応溶液を26時間加熱還流した後、溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム/メタノール=30/1→10/1)で精製後、メタノールに溶解し、4N塩化水素-酢酸エチル溶液0.59mlを加え、溶媒を減圧下留去した。得られた粗結晶をメタノール-エタノールから再結晶することにより、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エトキシ]-2-(2-ピリジル)酢酸アニリド 塩酸塩320mgを得た。

実施例112

જે .

N-[1,1-ジメチル-2-[4-[[2-(2-ピリジル)アセチル]アミノ]フェニル]エチル]カルバミン酸 セブチルエステル490mgのメタノール10ml溶液に4h塩化水素-酢酸エチル溶液30mlを加えた。反 応溶液を室温にて8時間攪拌した後、溶媒を減圧下留去した。残渣に炭酸水素ナトリウム水溶 液および炭酸カリウムを加え、pHを約12とした。得られた水層をクロロホルム、テトラヒドロフランの混合溶媒で抽出した。有機層を無水硫酸マグネシウムで乾燥し濃縮することにより得られた残渣を2-プロパノール2ml、メタノール2mlに溶解し、(R)-スチレンオキシド120mgを加えた。反応溶液を24時間加熱還流した後、溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム/メタノール=30/1→5/1)で精製後、メタノールに溶解し、4h塩化水素-酢酸エチル溶液0.1mlを加え、溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム/メタノール=5/1)および逆相カラムクロマトグラフィー(溶出液:水/メタノール=2/1→1/1)にて精製することにより、(R)-4'-[2,2-ジメチル-2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリジル)酢酸アニリド 塩酸塩35mgを得た。

実施例1と同様にして実施例113の化合物を得た。

実施例113 (R)-1-[4-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]フェニル]-3-(2-ピリジル)尿素 2塩酸塩

以下、 表 1 に参考例化合物の物理化学的性状を、 表 2 に実施例化合物の物理化学的性状をそれぞれ示す。また表 3 には一部の実施例化合物の構造式を示す。

表中の記号は以下の意味を表す。

Rex.:参考例番号、Ex.:実施例番号、DATA:物理化学的性状、NMR:核磁気共

鳴スペクトル (TMS内部標準:特記しない限り、溶媒はDMSO-dを用いた。)、mp:融点、dec:分解、MS(m/z):質量分析値 (m/z)、Structure:構造式

喪1

教	
Rex	DATA
1	NMR (CDC3) 8: 2.75(1H,dd,J=12.4, 8.8Hz), 2.85-3.04(5H,m), 4.70(1H,dd,J=8.8, 3.7Hz), 7.24-7.40(7H,m), 8.1
	0-8-20(2H,m)
2	NMR (CDC3) δ: 1.44(9H,s), 2.75-3.10(2H,m), 3.20-3.70(4H,m), 4.93(1H,br), 7.25-7.40(7H,m), 8.14(2H,d,J=8.4
	Hz)
3	NMR (CDC3) & 1.47(9H,s), 2.55-2.80(2H,m), 3.20-3.40(2H,m), 3.45-3.65(2H,m), 4.87(1H,m), 6.57-6.65(2H,m
), 6.83-7.04(2H,m), 7.25-7.40(5H,m)
4	NMR (CDC3) 8: 1.47(9H,s), 2.62-2.93(2H,m), 3.14-3.58(4H,m), 4.35(1H,brs), 4.90(1H,br), 7.06-7.40(7H,m), 7.
	45-7:50(1H,m), 7:67-7.72(2H,m), 7:90(1H,dt,L=2.0, 8.0Hz), 8:25-8:31(1H,m), 8:58-8:63(1H,m), 9:98(1H,brs)
5	NMR (CDC3) & 1.49(9H,s), 2.64-2.90(2H,m), 3.16-3.60(4H,m), 4.38(1H,brs), 4.91(1H,br), 7.10-7.42(7H,m), 7.
	55(1H,dd, 1=8.0, 4.4Hz), 7.74(1H,t, 1=8.0Hz), 7.77-7.84(2H,m), 8.01(1H,d, 1=8.0, 1.2Hz), 8.34(1H,d, 1=8.4, 1.6Hz
), 8.96(1H,d,J=7.6, 1.6Hz), 9.02(1H,d,J=4.4, 2.0Hz), 13.61(1H,brs)
6	NMR (CDC3) & 1.47(9H,s), 2.60-2.80(2H,m), 3.15-3.55(4H,m), 3.78(2H,s), 4.36(1H,brs), 4.82-4.94(1H,m), 5.1
	8(2H,s), 6.92-6.99(2H,m), 7.00-7.13(5H,m), 7.25-7.38(6H,m), 7.42-7.48(2H,m), 10.34(1H,brs)
7	NMR (CDC3) δ: 2.56-2.94(6H,m), 3.40-3.65(2H,m), 3.80(1H,brs), 3.95(1H,d,13.6Hz), 4.62(1H,dd,J=10.0, 3.2H
	z), 6.57-6.66(2H,m), 6.87-6.98(2H,m), 7.20-7.37(10H,m)
8	NMR (CDO3) & 2.40(3H.s), 2.54-3.00(6H.m), 3.57(1H.d.)=13.6Hz), 3.88(2H,s), 3.95(1H,d.)=13.6Hz), 4.62(1H
	,dd, =10.4, 3.6Hz), 7.00-7.75(16H.m), 8.44(1H.d, =4.4Hz), 9.66(1H.brs)
9	NMR (CDC3) & 258-265(1H,m), 275-3.00(5H,m), 3.59(1H,d,J=13.2Hz), 3.95(1H,d,J=13.2Hz), 5.01(1H,dd,J=13.2Hz), 5.
	=10.0, 3.2Hz), 6.97-7.03(1H,m), 7.12-7.35(9H,m), 7.48-7.56(1H,m), 8.04-8.13(2H,m)
10	NMR (CDC3) & 3.70(2H,s), 3.88(2H,s), 7.23-7.32(4H,m), 7.54-7.62(2H,m), 7.71(1H,dt,L=7.6, 1.6Hz), 8.63(1H,
<u> </u>	d), 10.04(1H,brs)
11	NMR (CDC3) 8: 2.26(3H,s), 2.39(3H,s), 2.57(2H,t,L=7.2Hz), 2.72(2H,t,L=7.2Hz), 3.72(2H,s), 6.95(1H,s), 7.01(1
ļ	H,s), 7.11(2H,d,J=8.8Hz), 7.51(2H,d,J=8.8Hz), 10.17(1H,s)
12	NMR & 2.32(3H,s), 2.41(3H,s), 2.90-3.19(6H,m), 3.75(2H,s), 4.01(2H,s), 4.89(1H,dt,J=7.6, 3.2Hz), 6.99-7.71(16
1	H,m), 10.26(1H,s)

表2

表2							
Ex.	DATA						
1	mp: 223-225°C、NMR 8: 295-3.28(6H,m), 4.98-5.07(1H,m), 7.23-7.44(6H,m), 7.65-7.75(1H,m), 7.88(2H,d,L=						
	8.4Hz), 8.05-8.22(2H,m), 8.75(1H,d,J=4.4Hz), 8.97(1H,brs), 9.43(1H,brs), 10.65(1H,brs)						
2	mp: 263-265°C、NMR & 2.92-3.10(3H,m), 3.13-3.27(3H,m), 5.00(1H,dd,J=10.8, 2.8Hz), 7.24-7.44(8H,m), 7.7						
_	4-7.81 (3H,m), 8.57(1H,d,J=8.0Hz), 8.81-8.96(2H,m), 9.20-9.30(2H,m), 10.71(1H,brs)						
3	mp: 145-147°C、NMR 8: 2.94-3.10(3H,m), 3.14-3.30(3H,m), 4.97-5.05(1H,m), 7.27-7.46(7H,m), 7.77-7.90(4						
	H,m), 8.30(1H,dd, 1=8.4, 1.6Hz), 8.60-8.71(2H,m), 8.89(1H,brs), 9.10-9.30(2H,m), 13.12(1H,brs)						
4	mp:246-248°C (dec). NMR 8: 2.92-3.09(3H, m), 3.11-3.26(3H,m), 5.01(1H,dd,J=10.4, 2.8Hz), 7.24(2H,d,J=8						
,	.4Hz), 7.29-7.47(6H,m), 7.56-7.75(4H,m), 7.85(1H,d,J=8.0Hz), 8.11(1H,t,J=7.6Hz), 8.73(1H,d,J=4.4Hz), 8.92(1						
	H,brs), 9.32(1H,brs), 10.69(1H,brs)						
5	mp: 228-233°C (dec), NMR & 2.88-3.09(3H,m), 3.10-3.24(3H,m), 4.30(2H,s), 4.93-5.01(1H,m), 6.19(1H,d,L=						
	3.6Hz), 7.18-7.27(2H,m), 7.28-7.53(7H,m), 7.57-7.62(2H,m), 7.97(1H,d,1=7.6Hz), 8.08(1H,d,1=8.0Hz), 8.83(1H						
	.brs), 9.11(1H,brs), 10.57(1H,brs)						
6	mp: 161-162°C, NMR & 2.86-3.24(6H,m), 4.24(2H,s), 4.97(1H,dd, 1-9.6, 2.8Hz), 7.16-7.23(2H,m), 7.27-7.44(
	5H,m), 7.55(1H,s), 7.61(2H,d,J=8.4Hz), 7.85(1H,s), 8.27(1H,d,J=2.4Hz), 8.97(1H,brs), 9.47(1H,brs), 10.94(1H,						
	brs)						
7	NMR 8: 270(3H,s), 286-3.27(6H,m), 3,85(2H,s), 5.00-5.05(1H,m), 7.18-7.60(10H,m), 10.43(1H,s)						
8	mp: 203-207°C、NMR 8: 2.92-3.08(3H,m), 3.10-3.22(3H,m), 4.28(2H,s), 5.01(1H,d,J=7.8Hz), 6.21(1H,brs), 7.						
	22(2H,d,J=8.3Hz), 7.25-7.63(4H,m), 8.93(1H,brs), 9.38(1H,brs), 10.86(1H,s)						
9	mp: 259-261°C、NMR 8: 2.90-3.10(3H,m), 3.10-3.25(3H,m), 4.15(2H,s), 4.97(1H,d,J=10.8Hz), 6.20(1H,d,J=3						
	9-tz), 721(2H,d,J=8.8Hz), 730-7.42(5H,m), 7.57(2H,d,J=8.8Hz), 8.85(1H,brs), 9.14(1H,brs), 10.58(1H,s)						
10	mp:210-213°C、NMR 8: 2.86-3.08(3H,m), 3.12-3.22(3H,m), 3.73(2H,s), 4.91-4.98(1H,m), 6.19(1H,d,J=3.9Hz						
), 721(2H,d,J=8.3Hz), 7.29-7.42(5H,m), 7.54(2H,d,J=8.3Hz), 8.78(1H,brs), 8.99(1H,brs), 10.35(1H,s), 13.21(1H						
	,brs), 13.34(1H,brs)						
11	mp: 205-210°C (dec). NMR 8: 290-3.25(6H,m), 4.95-5.04(1H,m), 7.23-7.44(7H,m), 7.67-7.75(2H,m), 8.15(1						
	H.s), 8.88(1H.brs), 9.25(1H.brs), 10.83(1H,brs)						
12	mp: 244-246°C、NMR 8: 290-3.08(3H,m), 3.10-3.20(3H,m), 3.67(2H,s), 5.00(1H,dd,J=2.4,10.02Hz), 7.19(2H						
	,d,1=8.3Hz), 7.28-7.42(5H,m), 7.57(2H,d,1=8.3Hz), 8.90(1H,s), 9.31(1H,s), 10.31(1H,s)						
13	mp:205-208°C、NMR 8: 1.27(3H,t,J=7.1Hz), 2.88-3.08(3H,m), 3.12-3.22(3H,m), 3.86(2H,s), 4.27(2H,q,J=7.1Hz), 2.88-3.08(3H,m), 3.12-3.22(3H,m), 3.86(2H,s), 4.27(2H,g,J=7.1Hz), 2.88-3.08(3H,m), 3.12-3.22(3H,m), 3.86(2H,s), 4.27(2H,g,J=7.1Hz), 2.88-3.08(3H,m), 3.12-3.22(3H,m), 3.86(2H,s), 4.27(2H,g,J=7.1Hz), 3.86(2H,s), 4.27(2H,g,J=7.1Hz), 3.86(2H,s), 4.27(2H,g,J=7.1Hz), 3.86(2H,s), 3.86(2H,s)						
	Hz), 4.96(1H,d,1=8.3Hz), 6.20(1H,s), 7.19(2H,d,1=8.3Hz), 7.30-7.42(5H,m), 7.57(2H,d,1=8.3Hz), 8.81(1H,s), 9.						
	10(1H,s), 10.33(1H,s), 12.53(1H,s)						
14	mp: 169-173°C、NMR &: 2.88-3.22(6H,m), 3.66(2H,s), 4.98(1H,dd,L=2.9, 13.1Hz), 6.72(1H,s), 7.19(2H,dt,L=8.						
1	3Hz), 723-7.42(8H,m), 7.59(2H,d,J=8.3Hz), 7.72-7.78(1H,m), 8.85(1H,s), 9.18(1H,brs), 10.24(1H,brs), 10.55(1						
45	H,s) mp:248-251°C, NMR & 2.90-3.08(3H,m), 3.09-3.21(3H,m), 3.88(2H,s), 5.02(1H,dd,J=10.0, 2.4Hz), 6.20(1H,						
15	mp:248-251°C; NVIH 6: 290-3.06(3H,m), 3.09-3.21(3H,m), 3.06(2H,5), 3.06(1H,000-10.0; 2-41-24, 0.25(1H, 0.25), 7.16-7.22(2H,m), 7.28-7.46(7H,m), 7.57-7.63(2H,m), 7.84(1H,t,1=7.2Hz), 8.95(1H,brs), 9.40(1H,brs), 10.48						
	(1H,brs)						
16	mp:237-238°C、NMR 8: 2.87-3.24(6H,m), 3.77(2H,s), 4.93-5.03(1H,m), 5.32(2H,s), 6.20(1H,d,J=4.0Hz), 6.73						
"	(1H,d,J=8.0Hz), 6.99(1H,d,J=7.2Hz), 7.16-7.22(2H,m), 7.25-7.46(10H,m), 7.57-7.63(2H,s), 7.67(1H,dd,J=8.4,7						
	2Hz), 8.87(1H,brs), 9.24(1H,brs), 10.30(1H,brs)						
17	mp:190-193°C、NMR 8:1.68(3H,m), 2.90-3.10(3H,m), 3.10-3.20(3H,m), 4.32(2H,s), 4.67(1H,s), 4.83(2H,s),						
"	4.94(1H,s), 4.99(1H,d,J=8.3Hz), 6.21(1H,brs), 7.21(2H,d,J=8.7Hz), 7.24-7.42(5H,m), 7.56(2H,d,J=8.8Hz), 7.66(
	2H,d,J=1.9Hz), 7.71(1H,d,J=1.9Hz), 8.89(1H,brs), 9.30(1H,brs), 10.92(1H,s)						
18	mp:139-141°C、NMR 8:3.01(3H,brs), 3.15(3H,brs), 3.92(2H,s), 5.05(1H,d,J=10.3Hz), 5.44(2H,s), 6.19(1H,br						
"	s), 7.19(2H,d,1=8.3Hz), 7.31-7.47(10H,m), 7.60(2H,d,1=8.3Hz), 7.66(1H,s), 9.05(1H,brs), 9.35(1H,s), 9.60(1H,b						
	rs), 10.76(1H,s)						
19	mp: 140-143°C, NMR & 2.99-3.09(3H,m), 3.16(3H,brs), 3.95(2H,s), 5.06(1H,d,J=10.4Hz), 5.57(2H,s), 6.19(1						
"	H,brs), 7.19(2H,d,J=8.6Hz), 729-735(1H,m), 7.37-7.48(8H,m), 7.55-7.57(1H,m), 7.61(2H,d,J=8.6Hz), 9.09(1H,						
	brs), 9.31(1H,d,J=1.5Hz), 9.65(1H,brs), 10.79(1H,s)						

表2(続き)

表2	
20	mp: 140-143°C、NMR 8: 3.01-3.09(3H,m), 3.16(3H,brs), 3.93(2H,s), 5.06(1H,d,J=10.3Hz), 5.47(2H,s), 6.15(1
}	H,brs), 7.19(2H,d,J=8.6Hz), 7.29-7.33(1H,m), 7.38-7.46(7H,m), 7.61(2H,d,J=8.6Hz), 7.63(1H,s), 7.70(1H,s), 9.0
	8(1H,brs), 9.38(1H,s), 9.63(1H,brs), 10.78(1H,s)
21	mp: 141-146°C、NMR 8: 2.96-3.14(3H,m), 3.15(3H,brs), 3.91(2H,s), 5.04(1H,d,L=10.3Hz), 5.45(2H,s), 6.22(1
	H,brs), 7.19(2H,d,1=8.6Hz), 7.29-7.42(6H,m), 7.50(3H,s), 7.59(2H,d,1=8.6Hz), 7.65(1H,s), 9.02(1H,brs), 9.32(1
1	H,d,J=1.5Hz), 9.55(1H,brs), 10.73(1H,s)
22	mp:230-235°C、NMR &:259-3.10(3H,m),3.10-3.25(3H,m),4.47(2H,s),5.01(1H,dd,J=10.3,2.4Hz),5.45(2H,
	s), 6.21 (1H,brs), 7.16-7.22(4H,m), 7.28-7.50(7H,m), 7.54(2H,d,J=8.3Hz), 7.68(2H,dd,J=5.8, 1.9Hz), 8.94(1H,br
' '	s), 9.42(1H,brs), 10.98(1H,s)
23	mp: 203-209°C、NMR &: 290-3.10(3H,m), 3.10-3.20(3H,m), 4.41-4.48(2H,m), 4.95-5.05(1H,m), 5.46(2H,s), 6
	21(1H,brs), 7.20(2H,d,J=8.6Hz), 7.30-7.42(6H,m), 7.50-7.54(2H,m), 7.70(2H,s), 8.92(1H,brs), 9.39(1H,brs), 10.
	88-10.95(1H,m)
24	mp: 221-223°C、NMR & 2.90-3.08(3H,m), 3.10-3.22(3H,m), 4.04(2H,s), 4.97(1H,d,J=9.1Hz), 5.44(2H,s), 6.20
	(1H,brs), 7.20(2H,d,J=8.1Hz), 7.30-7.41(9H,m), 7.49(2H,d,J=8.6Hz), 7.55(2H,d,J=8.6Hz), 8.83(1H,brs), 9.16(1
	H,brs), 10.76(1H,s)
25	mp:222-225°C、NMR & 260-3.05(3H,m), 3.10-3.20(3H,m), 4.43(2H,s), 5.01(1H,d,J=7.6Hz), 5.44(2H,s), 6.21
	(1H,brs), 7.15-723(4H,m), 7.26-7.46(5H,m), 7.51(2H,d,J=8.8Hz), 7.65-7.72(4H,m), 8.94(1H,brs), 9.41(1H,brs),
	10.93(1H,s), 14.72(1H,brs)
26	mp: 197-203°C、NMR & 2.80-3.10(3H,m), 3.10-3.25(3H,m), 4.44(2H,s), 4.99(1H,d,J=8.0Hz), 5.61(2H,s), 6.21
i	(1H,brs), 7.17(2H,d,J=8.6Hz), 7.30-7.42(5H,m), 7.48(2H,d,J=8.5Hz), 7.54(2H,d,J=8.0Hz), 7.70(2H,d,J=8.1Hz),
	7.72-7.77(2H,m), 8.90(1H,brs), 9.34(1H,brs), 10.90(1H,s)
27	mp: 208-214°C、NMR & 2.90-3.10(3H,m), 3.10-3.22(3H,m), 4.44(2H,s), 4.97(1H,d,J=9.7Hz), 5.62(2H,s), 6.20
	(1H,brs), 7.16(2H,d,J=8.0Hz), 7.30-7.55(10H,m), 7.70-7.94(6H,m), 8.82(1H,brs), 9.14(1H,brs), 10.76(1H,s)
28	mp:219-223°C、NMR &:211(3H.s), 292-3.08(3H,m), 3.10-3.20(3H,m), 4.43(2H,s), 5.02(1H,dd,J=10.2, 2.4H
1	z), 5.51(2H,s), 6.22(1H,brs), 7.14-7.34(7H,m), 7.36-7.42(4H,m), 7.48-7.53(3H,m), 8.95(1H,brs), 9.43(1H,brs), 10
	.94(1H,s), 14.61 (1H,brs)
29	mp: 204-207°C、NMR &: 2.24(3H.s.), 2.80-3.10(3H.m.), 3.10-3.50(3H.m.), 4.43(2H.s.), 5.01(1H,dd,J=10.3, 2.5H
	z), 5.39(2H,s), 6.21(1H,brs), 7.17-7.24(2H,m), 7.30-7.42(7H,m), 7.47(2H,dd,L=8.8, 5.4Hz), 7.55(2H,d,L=8.3Hz),
	8.94(1H,brs), 9.40(1H,brs), 11.00(1H,s), 14.70(1H,brs)
30	mp: 225-228°C、NMR 8: 290-3.07(3H,m), 3.10-3.23(3H,m), 4.28(2H,s), 4.97(1H,d, 12.10.3Hz), 5.68(2H,s), 6.2
	0(1H,d, 1=3.4Hz), 7.16-7.23(4H,m), 7.30-7.46(7H,m), 7.53(2H,d, 1=8.8Hz), 8.82(1H,brs), 9.11(1H,brs), 10.63(1H
	,s)
31	mp: 232-235°C、NMR &: 290-3.10(3H,m), 3.10-3.25(3H,m), 4.03(2H,s), 4.98(1H,d, 1.10.3Hz), 5.97(2H,s), 6.2
ì	0(1H,brs), 7.19(2H,d,J=8.3Hz), 7.29-7.42(6H,m), 7.55(2H,d,J=8.3Hz), 7.67-7.77(2H,m), 8.87(1H,brs), 9.22(1H,
	brs), 10.49(1H,s), 14.61(1H,brs)
32	mp:233-235°C、NMR &: 290-3.10(3H,m), 3.10-3.25(3H,m), 4.01(2H,s), 4.98(1H,d, 1.10.3Hz), 5.91(2H,s), 6.1
	9(1H,brs), 7.17-7.48(11H,m), 7.55(2H,d,J=8.3Hz), 8.85(1H,brs), 9.18(1H,brs), 10.47(1H,s)
33	mp: 240-242°C、NMR & 290-3.10(3H,m), 3.10-3.25(3H,m), 4.32(2H,s), 4.98(1H,dt, 1=10.3, 3.4Hz), 5.72(2H,s
1), 620(1H,d,J=3.9Hz), 7.20(2H,d,J=8.3Hz), 7.30-7.40(6H,m), 7.51(2H,d,J=8.8Hz), 7.62(1H,d,J=8.3Hz), 7.67(1
	H,d,,=20Hz), 8.86(1H,brs), 9.17(1H,brs), 10.67(1H,s)
34	mp:221-224°C, NMR & 2.90-3.07(3H,m), 3.10-3.20(3H,m), 4.05(2H,s), 5.00(2H,dd,J=2.7, 10.2Hz), 7.21(2H,
	d, 1=8.61-tz), 7.29-7.42(5H,m), 7.58(2H,d, 1=8.61-tz), 8.83(1H,s), 8.91(1H,brs), 9.32(1H,brs), 10.62(1H,s)
35	mp: 222-224°C、NMR & 289-3.07(3H,m), 3.12-3.21(3H,m), 3.84(2H,s), 4.33(2H,s), 4.98(1H,dd,J=2.4, 10.2H
	z), 720(2H,d,1=8.3Hz), 722-7.42(10H,m), 7.58(2H,d,1=8.3Hz), 8.87(1H,brs), 9.22(1H,brs), 10.44(1H,s)
36	mp:242-245°C、NMR &:2.11(3H,s), 2.99-3.06(3H,m), 3.09-3.21(3H,m), 3.68(2H,s), 5.00(1H,dd,J=2.1, 10.2H
	z), 6.02(1H,brs), 6.98(1H,s), 7.18(2H,d,J=8.1Hz), 7.28-7.42(5H,m), 7.58(2H,d,J=8.1Hz), 8.89(1H,brs), 9.30(1H,
	brs), 10.25(1H,s), 12.10(1H,s)
37	mp: 252-256°C、NMR &: 289(3H,s), 2.91-3.07(3H,m), 3.11-3.21(3H,m), 3.65(2H,s), 4.95-5.02(1H,m), 6.20(1
	H,brs), 6.58(1H,s), 7.20(2H,d,J=8.6Hz), 7.28-7.42(5H,m), 7.57(2H,d,J=8.6Hz), 8.87(1H,brs), 9.24(1H,brs), 10.3
L	9(1H,s), 12.56(1H,s)

表2 (続き)

_	(税き)
38	mp:>230°C(dec.)、NMR & 2.88-3.22(6H,m), 3.73(2H,s), 3.65(2H,s), 5.00(1H,dd,J=2.0, 10.0Hz), 6.20(1H,brs), 7.12(1H,s), 7.18(2H,d,J=8.8Hz), 7.28-7.42(5H,m), 7.59(2H,d,J=8.8Hz), 8.39(4H,brs), 8.91(1H,brs), 9.32(1H,br
1	s), 10.41(1H,s), 12.60(1H,s)
39	mp: 177-181°C, NMR 8: 2.90-3.10(3H,m), 3.10-3.25(3H,m), 3.67(2H,s), 5.00(1H,dd,J1=10.0, 2.0Hz), 6.68(1
	H,s), 6.97(1H,t,l=7.2Hz), 7.19(2H,d,l=8.4Hz), 7.27-7.42(9H,m), 7.59(2H,d,l=8.0Hz), 8.90(1H,brs), 9.29(1H,brs)
l	, 10.29(1H,s), 10.54(1H,brs)
40	mp: 237-243°C、NMR δ: 2.90-3.06(3H,m), 3.06-3.20(3H,m), 4.45(2H,s), 5.01(1H,dd,L=7.8, 2.0Hz), 5.70(2H,s)
	, 6.21(1H,brs), 7.14(2H,d,J=8.8Hz), 7.29-7.42(5H,m), 7.46(2H,d,J=8.8Hz), 7.54(2H,d,J=8.8Hz), 7.77(2H,dd,J=1
	4.4, 2.0Hz), 8.13(2H,d,J=8.4Hz), 8.94(1H,brs), 9.41(1H,brs), 10.95(1H,s)
41	mp: 151-159°C、NMR 8: 2:90-3:10(3H,m), 3:10-3:20(3H,m), 3:76(2H,s), 5:02(1H,dd,J=10.2, 2:7Hz), 6:70(1H,
	s), 720(2H,d,L=8.8Hz), 7.25-7.40(5H,m), 7.59(2H,d,L=8.8Hz), 8.96(1H,brs), 9.21(1H,brs), 9.43(1H,brs), 10.58(1
	H,s)
42	mp: 205-209°C、NMR & 2.90-3.08(3H,m), 3.13-3.23(3H,m), 4.92-4.97(1H,m), 6.20(1H,brs), 7.19-7.42(10H,m)
), 7.71(2H,d, 1=8.8Hz), 8.76(1H,brs), 8.92(1H,brs), 9.65(1H,s)
43	NMR 8: 220(3H,s), 2.90-3.07(3H,m), 3.10-3.20(3H,m), 3.74(2H,s), 5.00(1H,dd,1=2.5, 10.3Hz), 7.20(2H,d,1=8.8
L	Hz), 7.28-7.42(5H,m), 7.59(2H,d,J=8.8Hz), 8.91(1H,brs), 9.13(1H,brs), 9.33(1H,brs), 10.58(1H,s)
44	NMR & 1.48(6H,s), 2.86-3.22(6H,m), 4.90-4.96(1H,m), 6.19(1H,brs), 6.40(1H,brs), 7.17(2H,d, 1=8.8Hz), 7.27-7.
	41(5H,m), 7.56(2H,d,J=8.8Hz), 8.74(1H,brs), 8.90(1H,brs), 9.53(1H,brs)
45	NMR & 1.68-2.12(4H,m), 2.43-2.59(2H,m), 2.91-3.07(3H,m), 3.11-3.20(3H,m), 3.76-3.81(1H,m), 5.00(1H,dd,J
	=2.5, 10.3Hz), 6.20(1H,brs), 7.19(2H,d,J=8.3Hz), 7.27-7.42(5H,m), 7.60(1H,d,J=8.3Hz), 8.90(1H,brs), 9.33(1H,
L	brs), 10.43(1H,s)
46	NMR & 288-3.24(6H,m), 3.83(2H,s), 4.95-5.04(1H,m), 6.19(1H,brs), 7.16-7.22(2H,m), 7.26-7.45(6H,m), 7.55-7
	.63(2H,m), 7.87(1H,s), 8.04(1H,d,J=3.6Hz), 8.91(1H,brs), 9.32(1H,brs), 10.42(1H,brs)
47	MS (m/z): 456((M+H)+), NMR 8: 284-3.19(6H,m), 4.03(2H,s), 4.87-4.97(1H,m), 5.43(2H,s), 6.12(2H,s), 7.20(
	2H,d,L=8.3Hz), 7.25-7.41(11H,m), 7.53(2H,d,L=8.3Hz), 7.90(1H,s), 10.38(1H,s) NMR & 2.88-3.18(6H,m), 3.69(2H,s), 4.87-4.95(1H,m), 5.36(2H,s), 6.15-6.21(1H,m), 7.18(2H,d,L=8.3Hz), 7.27
48	-7.41(11H,m), 7.54(2H,d,1=8.3Hz), 8.57(1H,s), 8.72(1H,brs), 8.82(1H,brs), 10.20(1H,s)
10	NMR 8: 2.88-3.07(3H,m), 3.11-3.21(3H,m), 3.67(2H,s), 4.93-4.99(1H,m), 5.53(2H,s), 6.20(1H,d,=3.9Hz), 7.00(
49	1H,s), 7.13(2H,d,J=7.3Hz), 7.18(2H,d,J=8.3Hz), 7.24-7.42(8H,m), 7.49(2H,d,J=8.3Hz), 8.82(1H,brs), 9.11(1H,b
	rs), 10.35(1H,s)
50	NMR &: 1.76-1.87(2H,m), 2.18-2.26(2H,m), 2.80-3.22(8H,m), 4.39-4.47(1H,m), 4.95-5.07(1H,m), 7.15-7.22(2H,
30	m), 7.27-7.43(5H,m), 7.54-7.63(2H,m), 7.74-7.82(1H,m), 8.27(1H,d,J=7.2Hz), 8.67(1H,d,J=4.8Hz), 8.97(1H,brs
), 9.47(1H,brs), 10.74(1H,brs)
51	NMR & 290-3.10(3H,m), 3.10-3.20(3H,m), 4.18(2H,s), 4.96(1H,d,J=8.0Hz), 6.20(1H,brs), 7.18(2H,d,J=8.6Hz),
	7.20-7.60(12H,m), 7.84(1H,s), 7.97(1H,s), 8.83(1H,brs), 9.17(1H,brs), 10.55(1H,s)
52	NMR & 1,14(6H.d.)=12.9Hz), 2,83(1H.sep.)=12.9Hz), 2,90-3,22(6H,m), 4,38(2H,s), 4,97(1H,d.)=4,1Hz), 5,39(
	2H,s), 620(1H,brs), 7.07-7.42(10H,m), 7.52(2H,d,J=8.8Hz), 7.67(2H,d,J=3.9Hz), 8.84(1H,brs), 9.17(1H,brs), 10
<u> </u>	.76(1H,s)
53	NMR δ: 1.14(6H,d,J=12.9Hz), 2.83(1H,sep,J=12.9Hz), 2.90-3.22(6H,m), 4.38(2H,s), 4.97(1H,d,J=4.1Hz), 5.39(
ł	2H,s), 6.20(1H,brs), 7.07-7.42(10H,m), 7.52(2H,d,J=8.8Hz), 7.67(2H,d,J=3.9Hz), 8.84(1H,brs), 9.17(1H,brs), 10
L	.76(1H,s)
54	NMR & 295-3.02(3H,m), 3.15(3H,brs), 4.44(2H,s), 5.01(1H,bd,J=10.3, 25Hz), 5.58(2H,s), 6.21(1H,brs), 7.19(2
	H,d,J=8.6+tz), 7.27-7.42(6H,m), 7.51(2H,d,J=8.6+tz), 7.58-7.60(1H,m), 7.69(1H,d,J=2.4+tz), 7.72(1H,d,J=2.0+tz)
), 7.75(1H,d,J=20Hz), 8.96(1H,brs), 9.44(1H,brs), 10.91(1H,s)
55	NMR & 2.94-3.04(3H,m), 3.15(3H,brs), 3.94(2H,s), 5.01(1H,d, =10.3Hz), 5.31(2H,s), 6.21(1H,d, =3.9Hz), 7.01
	(1H,s), 7.17-7.41 (12H,m), 7.54(2H,d, L=8.3Hz), 8.98(1H,brs), 9.35(1H,brs), 10.55(1H,s)
56	NMR δ: 2.95-3.05(3H,m), 3.15(3H,brs), 4.44(2H,s), 5.01(1H,dd,1=10.3, 2.5Hz), 5.51(2H,s), 6.20(1H,brs), 7.19(3 H,d,1=8.6Hz), 7.26-7.42(7H,m), 7.50-7.54(3H,m), 7.58(1H,d,1=2.0Hz), 7.73(1H,d,1=2.0Hz), 8.95(1H,brs), 9.43(
1	1H,brs), 10.98(1H,s)

表2 (続き)

表2	(続き)
57	NMR & 2.92-3.05(3H,m), 3.15(3H,brs), 4.43(2H,s), 5.01(1H,dd,J=10.2, 2.6Hz), 5.65(2H,s), 7.20(2H,d,J=8.4Hz),
	7.29-7.48(5H,m), 7.50-7.53(3H,m), 7.70(1H,d,J=2.0Hz), 7.78(1H,d,J=2.0Hz), 7.85(1H,d,J=8.0, 2.0Hz), 8.49(1
	H,d,J=8.0Hz), 8.94(1H,brs), 9.42(1H,brs), 10.86(1H,s)
58	mp: 150-152°C、NMR δ: 2.88-3.07(3H,m), 3.08(3H,m), 3.95(2H,s), 5.00(1H,dd,L=2.8, 10.0Hz), 6.21(1H,s), 6.
	82(1H,d,J=7.6Hz), 6.91(1H,d,J=8.0Hz), 7.17-7.23(2H,m), 7.28-7.43(5H,m), 7.55-7.62(2H,m), 7.82-8.04(3H,m),
	8.90(1H,brs), 9.31(1H,brs), 10.67(1H,brs), 14.07(1H,brs)
59	NMR & 2.90-3.25(6H,m), 4.95-5.04(1H,m), 5.20(1H,s), 6.22(1H,brs), 6.78(1H,s), 7.17-7.24(2H,m), 7.27-7.44(5
	H,m), 7.67-7.75(2H,m), 8.50-9.10(3H,br), 9.45(1H,br), 10.22(1H,brs)
60	mp:214-216°C、NMR & 2.86-3.24(6H,m), 3.65(2H,s), 4.98(1H,dd,1=2.8, 10.4Hz), 6.18(1H,d,1=6.8Hz), 6.28 (
	1H,d,J=8.8Hz), 7.16-722(2H,m), 7.28-7.45(6H,m), 7.53-7.59(2H,s), 8.85(1H,brs), 9.18 (1H,brs), 10.36(1H,brs)
61	mp: 180-182°C、NMR 8: 0.87(6H,d,J=6.8Hz), 2.05-2.15(1H,m), 2.59-3.10(3H,m), 3.10-3.20(3H,m), 4.03(2H,
ļ	d, 1=7.8Hz), 4.41(2H,s), 5.01(1H,d, 1=8.3Hz), 6.20(1H,brs), 7.21(2H,d, 1=8.3Hz), 7.29-7.42(9H,m), 7.60(2H,d, 1=
L	8.8Hz), 7.69(1H,d,J=1.9Hz), 7.75(1H,d,J=2.0Hz)
62	mp:226-228°C、NMR 8: 2.87-3.23(6H,m), 4.45(2H,s), 5.02(1H,dd,J=2.4, 10.0Hz), 5.55(2H,s), 6.21(1H,brs), 7.
	16-7.46(11H,m), 7.49-7.55(2H,m), 7.66(1H,d,J=2.0Hz), 7.71(1H,d,J=2.0Hz), 8.95(1H,brs), 9.44(1H,brs), 10.93(1
	H,brs), 14.82(1H,brs)
සෙ	mp: 224-225°C、NMR 8: 2.90-3.05(3H,m), 3.05-3.25(3H,m), 4.46(2H,s), 5.01(1H,d, 1=8.0Hz), 5.50(2H,s), 6.21
	(1H,brs), 7.14-7.50(11H,m), 7.54(2H,d,J=8.8Hz), 7.70-7.73(2H,m), 8.93(1H,brs), 9.39(1H,brs), 10.95(1H,s)
64	mp: 205-208°C、NMR 8: 2:90-3.06(3H,m), 3.10-3.21(3H,m), 4.41(2H,s), 4.99(1H,d,J=8.3Hz), 5.51(2H,s), 6.21
	(1H,s), 7.06-7.12(1H,m), 7.20(2H,d,J=8.3Hz), 7.28-7.42(6H,m), 7.69(2H,dd,J=2.0, 8.3Hz), 8.87(1H,s), 9.26(1H,
	s), 10.81(1H,s)
65	mp:211-216°C、NMR 8:3.00(3H,brs), 3.15(3H,brs), 4.44(2H,s), 5.05(1H,dd,J=10.2, 1.9Hz), 5.58(2H,s), 6.22(
1	1H,brs), 7.14-7.22(4H,m), 7.29-7.32(1H,m), 7.37-7.42(4H,m), 7.47-7.54(3H,m), 7.65(1H,s), 7.69(1H,d,J=1.9Hz)
	, 9.02(1H,brs), 9.55(1H,brs), 10.97(1H,s)
66	mp: 199-201°C、NMR 8: 287-3.23(6H,m), 4.45(2H,s), 4.95-5.04(1H,m), 5.51(2H,s), 6.20(1H,brs), 7.10-7.43(1
1	OH,m), 7.49-7.55(2H,m), 7.71(1H,d,J=2.0Hz), 7.74(1H,d,J=2.0Hz), 8.89(1H,brs), 9.30(1H,brs), 10.90(1H,brs), 1
	4.73(1H,brs)
67	mp: 131-135°C, NMR & 3.00(3H,brs), 3.16(3H,brs), 4.49(2H,s), 5.04(1H,d,l=10.0Hz), 5.56(2H,s), 6.23(1H,br
	s), 7.20(2H,d, 1=8.2Hz), 7.23-7.34(4H,m), 7.37-7.42(4H,m), 7.53(2H,d, 1=8.2Hz), 7.72(2H,s), 9.01(1H,brs), 9.54(
	1H,brs), 11.00(1H,s)
68	mp:217-219°C, NMR 8:290-3.05(3H,m), 3.05-3.20(3H,m), 4.46(2H,s), 5.00(1H,d,J=8.0Hz), 5.47(2H,s), 6.21
1	(1H,brs), 7.20(2H,d,J=8.0Hz), 7.25-7.50(7H,m), 7.50-7.60(3H,m), 7.70(1H,d,J=1.9Hz), 7.71(1H,d,J=2.0Hz), 8.9
	1(1H,brs), 9.33(1H,brs), 10.93(1H,s) mp: 213-217°C, NMR & 290-3.05(3H,m), 3.05-3.20(3H,m), 4.42(2H,s), 5.02(1H,dd,J=10.2, 2.4Hz), 5.62(2H,
69	s), 6.21(1H,brs), 7.20(2H,d,J=8.3Hz), 7.29-7.42(6H,m), 7.49(2H,d,J=8.3Hz), 7.51-7.50(1H,m), 7.68-7.73(2H,m),
	8.95(1H,brs), 9.42(1H,brs), 10.89(1H,s)
70	mp:212-213°C, NMR & 287-323(6H,m), 4.47(2H,s), 5.02(1H,dd, 1=24, 10.0Hz), 5.53(2H,s), 6.21(1H,brs), 7
70	.16-7.23(2H,m), 7.28-7.34(1H,m), 7.36-7.43(4H,m), 7.48-7.55(2H,m), 7.57-7.57(2H,m), 7.69-7.74(2H,m), 8.95(
	1H,brs), 9.43(1H,brs), 10.95(1H,brs), 14.86(1H,brs)
71	mp: 209-213°C、NMR &: 290-3.05(3H,m), 3.05-3.20(3H,m), 4.47(2H,s), 4.98-5.01(1H,m), 5.49(2H,s), 6.21(1
1 "	H,brs), 7.21(2H,d,1=8.3Hz), 7.28-7.34(1H,m), 7.36-7.44(6H,m), 7.53(2H,d,1=8.8Hz), 7.71(1H,d,1=1.9Hz), 7.74(
1	1H,d,J=1,9Hz), 8.91(1H,brs), 9.34(1H,brs), 10.97(1H,s)
72	mp: 190-193°C、NMR &: 2.90-3.08(3H,m), 3.10-3.21(3H,m), 4.38(2H,s), 4.99(1H,dd,J=2.5, 10.2Hz), 5.69(2H,
'-	s), 6.20(1H,s), 7.21(2H,d,J=8.8Hz), 7.29-7.42(5H,m), 7.48(2H,d,J=8.3Hz), 7.70(1H,d,J=1.9Hz), 7.77(1H,s), 8.88
	(1H,s), 9.27(1H,s), 10.84(1H,s)
73	mp: 233-234°C、NMR & 290-323(6H,m), 4.47(2H,s), 5.02(1H,dd,J=2.4, 10.0Hz), 5.44(2H,s), 6.21(1H,brs), 7
	.12-7.23(3H,m), 7.28-7.34(1H,m), 7.36-7.44(5H,m), 7.52-7.58(2H,m), 7.66-7.73(3H,m), 7.79-7.81(1H,m), 8.96(
	1H,brs), 9.44(1H,brs), 10.96(1H,brs), 14.79(1H,brs)

表2 (続き)

畏2	(続き)
74	mp: 180-183°C、 NMR & 2.67-2.76(4H,m), 2.78-2.86(2H,m), 4.00(2H,s), 4.66(1H,dd, 128.3, 3.9Hz), 5.39(2H,s), 5.42(1H,brs), 6.57(1H,d, 12.9Hz), 6.78(1H,s), 7.03(2H,d, 12.83Hz), 7.21-7.26(1H,m), 7.27-7.34(4H,m), 7.46-7.
	50(1H,m), 7.52(2H,d, 1=8.3Hz), 7.56(1H,s), 7.58(1H,s), 8.32(1H,s), 10.32(1H,s)
75	mp:210-215°C、NMR & 2.91-3.03(3H,m), 3.15(3H,brs), 4.44(2H,s), 5.01(1H,dd,1=10.4, 2.6Hz), 5.53(2H,s), 6 21(1H,brs), 7.18(2H,d,1=8.3Hz), 7.30-7.32(1H,m), 7.37-7.42(4H,m), 7.48(2H,d,1=8.3Hz), 7.49(2H,d,1=8.3Hz),
	7.74(1H,d,1=20Hz), 7.75(1H,d,1=20Hz), 7.79(2H,d,1=83Hz), 8.94(1H,brs), 9.39(1H,brs), 10.93(1H,s)
70	mp:162-165°C、NMR & 293-3.05(3H,m), 3.14(3H,brs), 4.47(2H,s), 5.03(1H,dd,l=10.3, 2.5Hz), 5.62(1H,brs),
76	mp:162-166 C. Niviri 6.2956.06(61),111,5.14(61),053,4.47 (21,5),460(11,64)=166,224 (21,5),660(11,64)=166,7.12(2H,d,)=8.8Hz),7.69(1H,t)=7.5Hz),7
	.75(1H,d,J=1.9Hz), 7.83-7.86(2H,m), 7.97(1H,d,J=8.3Hz), 8.44(1H,d,J=8.3Hz), 8.99(1H,brs), 9.52(1H,brs), 10.8
Ì	4(1H,s)
77	NMR 8: 2.64-2.74(4H,m), 2.77-2.82(2H,m), 3.93(2H,s), 4.63(1H,dd,J=7.8, 4.4Hz), 5.33(2H,s), 6.80(2H,d,J=6.3
''	Hz), 7.14(2H,d,J=8.8Hz), 7.20-7.24(1H,m), 7.28-7.35(5H,m), 7.43(1H,d,J=7.8Hz), 7.47-7.52(3H,m), 10.27(1H,s
78	NMR & 263-2.72(4H,m), 2.75-2.81(2H,m), 3.79(2H,s), 4.62(1H,dd,J=7.8, 4.4Hz), 5.30(1H,brs), 5.33(2H,s), 6.6
	8(1H,d,L=1.0Hz), 6.91(1H,dd,L=8.8, 5.9Hz), 7.06(1H,d,L=1.0Hz), 7.12(2H,d,L=8.8Hz), 7.19-7.24(2H,m), 7.28-7.
	33(4H,m), 7,43(2H,d,J=8,3Hz), 7,49(1H,dd,J=8,3, 2,5Hz), 8,32(1H,s), 10,21(1H,s)
79	NMR & 2.88-3.08(3H,m), 3.10-3.22(3H,m), 4.40(2H,s), 4.97(1H,d,1=8.3Hz), 5.56(2H,s), 6.20(1H,s), 7.19(2H,d,
	J=8.3Hz), 7.24(1H,d,J=2.5Hz), 7.30-7.60(9H,m), 7.64(1H,d,J=2.0Hz), 7.72(1H,s), 8.83(1H,s), 9.14(1H,s), 10.71
	(1H,s)
80	NMR 8: 290-3.08(3H,m), 3.10-3.22(3H,m), 4.44(2H,s), 5.02(1H,d,1=8.8Hz), 5.59(2H,s), 6.21(1H,s), 7.20(2H,d,
	J=8.0Hz), 7.24-7.42(7H,m), 7.50(2H,d,)=8.8Hz), 7.72(2H,d,)=6.8Hz), 8.94(1H,s), 9.42(1H,s), 10.93(1H,s)
81	NMR & 287-3.23(6H,m), 3.85(3H,s), 4.30(2H,s), 4.945.01(1H,m), 5.55(2H,s), 6.17-6.22(1H,br), 7.14-7.23(2H,br), 1.052(1H,br), 1.05
	m), 7.28-7.50(9H,m), 7.57-7.64(2H,m), 7.87-7.93(2H,m), 8.83(1H,brs), 9.10(1H,brs), 10.68(1H,brs), 14.86(1H,b
-	rs) NMR & 1.30-1.64(6H,m), 2.88-3.22(8H,m), 3.45-3.65(2H,m), 4.39(2H,s), 4.97(1H,d,)=9.8Hz), 5.50(2H,s), 6.21(
82	1H,s), 7.20(2H,d,J=8.3Hz), 7.30-7.42(9H,m), 7.51(2H,d,J=8.7Hz), 7.71(2H,d,J=7.8Hz), 8.81(1H,s), 9.14(1H,s),
1	10.77(1Hs)
83	mp: 229-232°C、NMR 8: 290-3.00(3H,m), 3.10-3.18(3H,m), 5.00(1H,dd,J=2.8, 10.1Hz), 5.03(2H,s), 6.27(1H,t
~	,J=2.0Hz), 7.20(2H,d,J=8.8Hz), 7.29-7.42(5H,m), 7.46(1H,d,J=2.4Hz), 7.58(2H,d,J=8.8Hz), 7.77(1H,d,J=2.0Hz
), 8,91(1H,s), 9,32(1H,s), 10,53(1H,s)
84	mp: 237-240°C、NMR 8: 2.90-3.08(3H,m), 3.10-3.22(3H,m), 4.96(1H,dd,J=2.0, 10.0Hz), 5.15(2H,s), 7.21(2H,
	d.J=8.0Hz), 7.28-7.42(5H,m), 7.56(2H,d,J=8.4Hz), 8.03(1H,s), 8.61(1H,s), 8.82(1H,s), 9.09(1H,s), 10.57(1H,s)
85	mp:244-248°C、NMR & 290-3.06(3H,m), 3.10-3.20(3H,m), 5.00(1H,d,)=7.6Hz), 5.20(2H,s), 6.20(1H,s), 7.20
	-7.50(11H,m), 7.59(2H,d,J=7.2Hz), 8.94(3H,s), 9.36(1H,s), 10.95(1H,s), 12.92(1H,s)
86	mp: 223-224°C、NMR & 286-3.22(6H,m), 3.49(2H,s), 4.93-5.03(1H,m), 6.20(1H,d,J=4.0Hz), 7.15-7.43(9H,m
), 7.55-7.62(2H,m), 7.75(1H,dt, =1.6, 8.0Hz), 8.45-8.53(1H,m), 8.06-9.50(2H,br), 10.35(1H,brs)
87	mp: 236-238°C、NMR & 286-3.23(6H,m), 3.72(2H,s), 4.91-5.02(1H,m), 6.20(1H,d,)=4.0Hz), 7.15-7.22(2H,m)
), 727-7.45(6H,m), 7.53-7.62(2H,m), 7.73-7.82(1H,m), 8.40-8.60(2H,m), 8.84(1H,brs), 9.16(1H,brs), 10.35-10.5
	0(1H,bt)
88	mp: 195-198°C、NMR & 286-322(6H,m), 3.73(2H,s), 4.93-5.04(1H,m), 6.15-625(1H,br), 7.14-722(2H,m), 7
-	28-7.43(7H,m), 7.54-7.63(2H,m), 8.47-8.53(2H,m), 9.07(2H,brs), 10.50(1H,brs) mp; 202-204°C, NMR δ: 2.71-2.81(2H,m), 2.88-3.24(8H,m), 3.49(2H,s), 4.93-5.05(1H,m), 6.20(1H,brd,)=3.2
89	Hz), 7.15-723(3H,m), 7.26-7.44(6H,m), 7.52-7.60(2H,m), 7.69(1H,dt,l=1.6, 7.6Hz), 8.45-8.51(1H,m), 9.07(2H,
	hz), 7.15-723(3H,m), 7.26-7.44(6H,m), 7.52-7.60(2H,m), 7.69(1H,d),=1.6, 7.61 (24, 6.40-6.51(11 (m), 9.67/23 (brs), 10.07(1H,brs)
90	mp:220-227°C、NMR & 2.80-3.20(8H,m), 4.31(2H,s), 4.42(2H,t,)=8.0Hz), 5.00(1H,d,)=1.0Hz), 6.21(1H,brs),
50	7.20-7.40(12H,m), 7.59(2H,d, J=8.6Hz), 7.65(2H,dd, J=12.9, 0.9Hz), 8.91(1H,brs), 9.34(1H,brs), 10.98(1H,s)
91	mp: 158-165°C、NMR δ: 251-278(6H,m), 3.96(2H,s), 4.59(1H,t)=52Hz), 5.20(1H,brs), 7.13-7.32(9H,m), 7.5
31	0-7-53(4H,m), 10-33(1H,s), 12-37(1H,brs)
92	740
"-	-7.22(3H,m), 7.28-7.45(5H,m), 7.50-7.64(2H,m), 8.30(1H,d,J=4.4Hz), 8.60-9.50(2H,br), 10.32(1H,brs)

表2(続き)

93	
	mp: 236-238°C、NMR & 2.86-3.24(6H,m), 3.95(2H,s), 4.91-5.01(1H,m), 5.44(2H,s), 6.19(1H,d,J=4.4Hz), 7.15 -7.22(2H,m), 7.27-7.43(5H,m), 7.52-7.62(2H,m), 8.50-8.69(3H,m), 8.83(1H,br), 9.12(1H,brs), 10.41(1H,brs)
94	NMR & 290-3.10(3H,m), 3.10-3.20(3H,m), 4.38(2H,s), 4.98(1H,t,)=10.4Hz), 5.44(2H,s), 6.20(1H,d,)=3.2Hz), 7 20(2H,d,)=8.4Hz), 7.30-7.45(9H,m), 7.53(2H,d,)=8.8Hz), 7.64(2H,s), 8.85(1H,brs), 9.21(1H,brs), 10.79(1H,s)
95	NMR & 231(3H,s), 2.89-3.17(6H,m), 3.79(2H,s), 4.98(1H,dt,L=3.2, 10.4Hz), 7.10-7.41(12H,m), 10.32(1H,s)
96	NMR & 227(3H,s), 2.89-3.17(6H,m), 3.79(2H,s), 4.99(1H,dt,J=3.6, 10.0Hz), 7.17-7.59(12H,m), 10.31(1H,s)
97	NMR & 2.44(3H,s), 2.78-3.20(6H,m), 3.80(2H,s), 4.97(1H,dt,l=3.2, 10.4Hz), 7.12-7.66(12H,m), 10.33(1H,s)
98	NMR δ: 1,06(3H,d,)=6,4Hz), 250-2,65(2H,m), 2.90-3.15(3H,m), 3.83(2H,s), 4.80-4.94(1H,m), 7.10-7.18(2H,m), 7.23-7.45(7H,m), 7.52-7.60(2H,m), 7.71-7.80(1H,m), 8.41-8.52(1H,m), 10.25(1H,brs)
99	mp: 203-204°C, NMR & 1.13(3H,d,J=6.4Hz), 255-264(1H,m), 3.00-3.50(4H,m), 3.84(2H,s), 4.92-5.02(1H,m)
), 620(1H,d,1=4.0Hz), 7.13-7.20(2H,m), 7.24-7.46(7H,m), 7.54-7.60(2H,m), 7.73-7.80(1H,m), 8.51(1H,brs), 8.6 7(1H,brs), 9.13(1H,brs), 10.31(1H,brs)
100	NMR $\&$: 1.06(3H,d,1=6.4Hz), 2.50-2.65(1H,m), 2.57-3.50(4H,m), 3.78(2H,s), 4.77-4.92(1H,m), 5.25(2H,s), 6.85(1H,s), 7.10-7.55(15H,m), 10.33(1H,brs)
101	mp: 194-196°C、NMR & 2.88-3.25(6H,m), 3.89(2H,s), 5.20-5.26(1H,m), 6.30(1H,s), 7.17-7.48(7H,m), 7.54-7.
	60(3H,m), 7.81-7.88(1H,m), 8.54(1H,d, 1=4.0Hz), 8.82(1H,s), 9.16(1Hs), 10.35(1H,s)
102	mp: 214-215°C、 NMR & 2.88-3.25(6H,m), 3.85(2H,s), 4.96-5.02(1H,m), 6.33(1H,d,J=3.8Hz), 7.12-7.31(6H,m), 7.39-7.48(2H,m), 7.58(2H,d,J=8.3Hz), 7.74-7.80(1H,m), 8.50(1H,s), 8.82(1H,s), 9.01(1H,s), 10.30(1H,s)
103	mp: 223-225°C、NMR & 2.88-3.06(3H,m), 3.10-3.20(3H,m), 3.84(2H,s), 4.94-5.01(1H,m), 6.24(1H,d, \downarrow =4.0Hz), 7.16-7.30(5H,m), 7.38-7.46(3H,m), 7.58(2H,d, \downarrow =8.8Hz), 7.76(1H,d, \downarrow =1.6, 7.6Hz), 8.50(1H,d, \downarrow =8.8Hz), 8.83(1 H,s), 9.08(1H,s), 10.31(1H,s)
104	mp: $208-210^{\circ}$ C. NMR & 2.88-3.24(6H,m), 3.99(2H,s), 4.90-5.01(1H,m), 6.20(1H,d,=3.6Hz), 7.15-7.24(2H,m), 7.28-7.44(6H,m), 7.53-7.62(2H,m), 8.50-9.30(4H,m), 10.33(1H,brs)
105	mp:234-235°C、NMR & 294-325(6H,m), 4.07(2H,s), 4.90-5.02(1H,m), 6.20(1H,d,l=4.0Hz), 7.16-723(2H,m), 7.72-7.44(5H,m), 7.53-7.65(4H,m), 7.71-7.78(1H,m), 7.94-8.00(2H,m), 8.33(1H,d,l=8.0Hz), 8.50-9.25(2H,m), 10.46(1H,brs)
106	mp: 221-222°C、 NMR $\&$: 2.90-3.25(6H,m), 3.85(2H,s), 4.92-5.08(1H,m), 6.35(1H,d, \downarrow =3.6Hz), 7.14-7.23(2H,m), 7.23-7.31(1H,m), 7.33-7.50(5H,m), 7.54-7.64(2H,m), 7.76(1H,dt, \downarrow =1.6, 7.6Hz), 8.43-8.55(1H,m), 8.80-9.40(2 H,br), 10.36(1H,brs)
107	mp: 204-205°C、 NMR δ: 2.85-3.28(6H,m), 3.85(2H,s), 5.02-5.14(1H,m), 6.37(1H,d,J=4.0Hz), 7.14-7.32(3H,m), 7.36-7.46(2H,m), 7.55-7.64(2H,m), 7.70-7.86(2H,m), 8.46-8.56(2H,m), 8.57-8.65(1H,m), 9.13(2H,brs), 10.37(1H,brs)
108	NMR 8: 2:63-2:67(4H,m), 2:73-2:78(2H,m), 4:07(2H,s), 4:60(1H,dd,J=7.4, 4:9Hz), 5:24(1H,brs), 5:57(2H,s), 7:12 -7:23(7H,m), 7:27-7:31(4H,m), 7:37(3H,d,J=8:3Hz), 7:46(2H,d,J=8:3Hz), 7:60-7:61(1H,m), 8:31(1H,s), 10:31(1H,s)
109	NMR & 2.26(3H,s), 2.40(3H,s), 2.90-3.17(6H,m), 3.75(2H,s), 4.99(1H,dt, 1=3.2, 6.8Hz), 6.97-7.60(11H,m), 10.3 5(1H,s)
110	mp: 183-184°C、NMR 8: 1.85-2.05(2H,m), 2.53-2.65(2H,m), 2.83-3.03(3H,m), 3.05-3.16(1H,m), 3.88(2H,s), 4 95(1H,d,,=9.6Hz), 6.15(1H,brs), 7.10-7.18(2H,m), 7.22-7.43 (7H,m), 7.50-7.60(2H,m), 7.75(1H,dt,=1.6, 7.2Hz), 8.45-8.53(1H,m), 8.91(2H,brs), 10.29(1H,brs)
111	mp: 225-226°C、NMR 8: 3.02-3.14(1H,m), 3.18-3.46(3H,m), 3.84(2H,s), 4.22-4.35(2H,m), 4.98-5.08(1H,m), 6 21(1H,d,J=3.6Hz), 6.90-6.97(2H,m), 7.23-7.44(7H,m), 7.53-7.62(2H,m), 7.76(1H,dt,J=1.6, 7.2Hz), 8.45-8.54(1H,m), 8.80-9.50(2H,br), 10.29(1H,brs)
112	NMR & 1.21(6H,s), 2.85-3.23(4H,m), 3.89(2H,s), 4.90-5.00(1H,m), 6.21(1H,brs), 7.11-7.19(2H,m), 7.28-7.50(7 H,m), 7.53-7.62(2H,m), 7.78-7.90(1H,m), 8.45-8.60(2H,m), 9.00-9.10(1H,br), 10.35(1H,brs)
113	mp: 132-133°C、NMR 8: 2.90-3.10(3H,m), 3.13-3.23(3H,m), 4.96(1H,dd,l=2.5, 10.2Hz), 7.06-7.11(1H,m.), 7. 21(2H,d,l=8.7Hz), 7.30-7.42(5H,m), 7.47-7.53(3H,m), 7.81-7.87(1H,m), 8.29(1H,d,l=4.9Hz), 8.78(1H,s), 9.00(1H,s), 9.88(1H,s), 10.51(1H,s)

	C 1 c 1 c
Ex.	Structure
1	
23	OH THE TOTAL COLUMN TO THE
33	OH H CI
41	OH H N O S NH,
47	OH H OH N
58	OH H N NH ₂
86	OH H
93	OH II
104	OH H

また、表4及び5に化学構造式を掲載する化合物は、前記実施例若しくは製造法に記載の方法とほぼ同様にして、又はそれらに当業者に自明の若干の変法を適用して、容易に製造することができる。尚、表4及び5に掲載した化合物につき、各種、互変、幾何、光学活性体が存在する場合があるが、本発明化合物には前記各種異性体の単離されたもの、又はその混合物が含まれる。

表4

No.	XB	No.	XB	No.	XB
1	CH ₂ N	2	CH ₂ N NH ₂	3	S NH ₂
4	S NH ₂	5	CH ₂ N NH ₂		CH ₂ N
7	CH ₂ N NH ₂	8	CH ₂ N OCH ₃	9	CH ₂ N
10	CH ₂ N	11	N-S CH ₂ N CH ₃	12	NH ₂

表5

請求の範囲

1. 下記一般式(1)で示されるアミド誘導体又はその塩。

$$R^{2} \xrightarrow{OH} \xrightarrow{H} \xrightarrow{A} \xrightarrow{N} X \xrightarrow{B} (I)$$

(上記式中の記号は、それぞれ以下の意味を有する。

B環: 置換されていてもよく、ベンゼン環と縮合していてもよいヘテロアリール基、

X:結合、ヒドロキシ若しくは低級アルキル基で置換されていてもよい低級アルキレン若しくは低級アルケニレン、カルボニル又は-NH-で示される基、(Xが低級アルキル基で置換されていてもよい低級アルキレン基の場合、B環を構成する炭素原子に結合した水素原子と該低級アルキル基とが一体となって低級アルキレン基となり、環を形成してもよい)

A: 低級アルキレン又は一低級アルキレン一〇一で示される基、

R1°、R1°: 同一又は異なって水素原子又は低級アルキル基、

R²:水素原子又はハロゲン原子、

Z:窒素原子又は=CH-で示される基)

- 2. Aがメチレン、エチレン又は一CH₂Oーで示される基である請求の範囲1記載のアミド 誘導体又はその塩。
- 3. B環が、ハロゲン原子、低級アルキル、低級アルケニル、低級アルキニル、ヒドロキシ、スルファニル、ハロゲノ低級アルキル、低級アルキルー〇一、低級アルキルーS一、低級アルキルーS〇、低級アルキルーS〇一、九ルボキシ、スルホニル、スルフィニル、低級アルキルーS〇一、低級アルキルーS〇一、低級アルキルー〇〇一、大力ルバモイル、低級アルキルーNH〇〇一、ジー低級アルキルーNー〇〇一、ニトロ、シアノ、アミノ、低級アルキルーNH―、ジー低級アルキルーNー〇〇一、ニトロ、シアノ、アミノ、低級アルキルーNH―、ジー低級アルキルーNー、アリールー低級アルキル、ハロゲノアリールー低級アルキル、グアニジノ、低級アルキルー〇〇一NH―又は低級アルキルーS〇2一NHーから選択される置換基で置換されていてもよいヘテロアリール基である請求の範囲2記載のアミド誘導体又はその塩。

4. R²、R¹®及びR¹®が水素原子であり、 Zが=CH-である請求の範囲3記載のアミド 誘導体又はその塩。

5. 下記一般式 (la) で示されるアミド誘導体又はその塩。

(上記式中の記号は、それぞれ以下の意味を有する。

B環: ヘテロアリール基、

X:結合又は低級アルキレン基、

R:水素原子、ハロゲン原子、低級アルキル基、アミノ基、アリール低級アルキル基又はハロゲノアリール低級アルキル基)

- 6. (R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-ピリジンカルボン酸アニリド、(R)-2-[1-(4-クロロベンジル)-1H-イミダゾール-2-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド、(R)-2-[1-(3,4-ジクロロベンジル)-1H-テトラゾールー5-イル]-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド、(R)-2-(2-アミノチアゾール-4-イル)-4'-[2-(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド、(R)-2-(2-ベンジル-1H-1,2,4-トリアゾール-3-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]酢酸アニリド、(R)-2-(2-アミノピリジン-6-イル)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]アミノ]エチル]酢酸アニリド、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリジル)酢酸アニリド、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリジル)酢酸アニリド、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリジニル)酢酸アニリド、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリジニル)酢酸アニリド、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリミジニル)酢酸アニリド、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリミジニル)酢酸アニリド、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリミジニル)酢酸アニリド、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリミジニル)酢酸アニリド、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリミジニル)酢酸アニリド、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)アミノ]エチル]-2-(2-ピリミジニル)酢酸アニリド、(R)-4'-[2-[(2-ヒドロキシ-2-フェニルエチル)
- 7. 請求の範囲1乃至6記載のアミド誘導体又はその塩を含有することを特徴とする医薬。
- 8. 請求の範囲1乃至6記載のアミド誘導体又はその塩を有効成分とすることを特徴とする糖 尿病治療剤。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/04671

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C07D213/56, 61, 64, 73, 81, 215/12, 48, 217/22, 231/12, 233/64, 241/20, 257/04, 277/40, 68, 285/08, 513/04, A61K31/41, 415, According to International Patent Classification (IPC) or to both national classification and IPC					
	ent Classification (IPC) of to both nation	Onal crassification and it c			
B. FIELDS SEARCHED		1.12			
Int.Cl ⁶ C07D21 241/00)-20, 257/00-04, 277/0	217/00-22, 231/00-12, 00-68, 285/00-08, 513/	00-04,		
Documentation searched other	than minimum documentation to the	extent that such documents are included	in the fields searched		
		e of data base and, where practicable, se			
CAPLUS (STN),	REGISTRY (STN)	of data case and,	,		
C. DOCUMENTS CONSID	ERED TO BE RELEVANT				
Category* Citation of	document, with indication, where appr	ropriate, of the relevant passages	Relevant to claim No.		
9 April	JP, 8-92228, A (TAKEDA CHEM IND LTD), 9 April 1996 (09. 04. 96) & EP, 643050, Al & US, 5614544, A				
PA JP, 9-51 9 Decemb & WO, 9	JP, 9-512275, A (MERCK & CO INC), 9 December, 1997 (09. 12. 97) & WO, 95/29159, A1 & US, 5541197, A				
A JP, 7-10	& EP, 757674, A1 JP, 7-10827, A (MERCK & CO INC), 13 January, 1995 (13. 01. 95) & WO, 93/19861, A1 & US, 5553475, A				
Further documents are	listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance carlier document but published on or after the international filing date considered to earlier document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed *Date of the actual completion of the international search *Date of the actual completion of the international search report					
28 December,	(19. 01. 99)				
Name and mailing address of Japanese Pate	ent Office	Authorized officer Telephone No.	•		

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/04671

A. (Continuation) CLASSIFICATION OF SUBJECT MATTER

425, 44, 445, 47, 495, 505

B. (Continuation) FIELDS SEARCHED

A61K31/00-505

Form PCT/ISA/210 (extra sheet) (July 1992)

国際出願番号 PCT/JP98/04671

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl. * C07D213/56. 61. 64. 73. 81, 215/12, 48, 217/22, 231/12, 233/64, 241/20, 257/04, 277/40, 68, 285/08, 513/04, A61K31/41, 415, 425, 44, 445, 47, 495, 505						
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl.* CO7D213/00-81, 215/00-48, 217/00-22, 231/00-12, 233/00-64, 241/00-20, 257/00-04, 277/00-68, 285/00-08, 513/00-04, A61K31/00-505						
最小限資料以外の資料で調査を行った分野に含まれるもの						
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS (STN) , REG ISTRY (STN)						
C. 関連する	ると認められる文献		関連する			
引用文献の カテゴリ*	引用文献名 及び一部の簡所が関連すると	きは、その関連する箇所の表示	語求の範囲の番号			
A	JP, 8-92228, A (TAKEDA CHEM IND LTI &EP, 643050, A1 &US, 5614544, A	1-8				
PA	JP, 9-512275, A (MERCK & CO INC) 9. 12月. 1997 (09. 12. 97)					
A	JP,7-10827,A(MERCK & CO INC)13.1月.1995(13.01.95) 1-8 &WO,93/19861,A1 &US,5553475,A					
□ C欄の統	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。			
もの 「E」国際出に 以後に 「L」優先権 日若し 文章	のカテゴリー 連のある文献ではなく、一般的技術水準を示す 原日前の出願または特許であるが、国際出願日 公扱されたもの 主張に疑姦を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 理由を付す) よる開示、使用、展示等に言及する文献 願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献				
国際調査を完	了した日 28.12.98	国際調査報告の発送日 19.0	1.99			
日本	の名称及びあて先 国特許庁(ISA/JP) 野便番号100-8915 ####################################	特許庁審査官(権限のある職員) 齋藤 恵 (な話番号 03-3581-1101				