

Universidade do Vale do Itajaí Escola Politécnica

Sistema de Arquivos FAT

Sobre o FAT

- Muitos usuários de Windows já ouviram falar em partições FAT ou FAT32 sem saber ao certo o que isso significa
- Essas são siglas de sistemas de arquivos para o Windows
- Para este mesmo sistema operacional, há também o sistema de arquivos NTFS

Sobre o FAT

- Todas as aplicações precisam armazenar e recuperar informações
 - O espaço de endereçamento virtual pode ser pequeno demais para aplicações
- Além disso, as informações mantidas na memória são perdidas com o término do processo e múltiplos processos não acessam a mesma informação ao mesmo tempo

Sobre o FAT

- A solução para armazenar a informação em discos é criar arquivos
 - A informação deve ser persistente, ou seja, um arquivo desaparecerá quando for removida explicitamente
- O sistema de arquivos (parte do SO) é responsável pelo modo como são estruturados, nomeados, acessados, usados, protegidos e implementados

O que é um sistema de arquivos?

- Não é possível gravar dados num HD ou num Pen drive sem um sistema de arquivos, que é, basicamente, uma estrutura que indica como os arquivos devem ser gravados e guardados em mídias
- Através do sistema de arquivos, é que se determina o espaço utilizado no disco, além de ser o método que permite gerenciar como partes de um arquivo podem ficar "espalhadas" no dispositivo de armazenamento

O que é um sistema de arquivos?

- Um sistema de arquivos é uma estrutura global na qual os arquivos são nomeados, armazenados e organizados
- Memória de massa: Nome genérico para qualquer dispositivo capaz de armazenar dados para uso posterior
 - Ex: disquete, discos rígidos, cd-rom, SSD
- Os dados são armazenados em forma de arquivos e a maneira com que os arquivos são armazenados e manipulados dentro de um sistema de memória de massa varia de acordo com o Sistema Operacional

Um outro detalhe importante

- É o sistema de arquivos que determina como arquivos podem ser gravados, copiados, alterados, nomeados e até apagados
 - Toda e qualquer manipulação de dados numa mídia necessita de um sistema de arquivos para que essas ações sejam possíveis
- Se não houver estrutura de armazenamento e manipulação é impossível gravar dados

Um outro detalhe importante

- As regras exatas para nomear um arquivo variam de sistema para sistema. Muitos sistemas permitem nomes com até 255 caracteres permitindo dígitos e caracteres especiais
- A extensão do arquivo é separada do nome através de um "." (ponto)

O que é FAT?

- FAT é a sigla para File Allocation Table (ou tabela de alocação de arquivos)
- Trata-se de um sistema que funciona através de uma espécie de tabela que contém indicações para onde estão as informações de cada arquivo
- Quando um arquivo é salvo em um pen drive por exemplo, o FAT divide a área do disco em pequenos blocos.
 - O Assim, um arquivo pode e ocupa vários blocos, mas eles não precisam estar numa sequência
- Os blocos de determinados arquivos podem estar em várias posições diferentes
 - O Daí a necessidade de uma tabela para indicar cada bloco

Surgimento

- O primeiro FAT surgiu em 1977 para funcionar com a primeira versão do DOS
- Trata-se de um sistema que funciona através de uma espécie de tabela que contém indicações para onde estão as informações de cada arquivo

Surgimento

- Com o surgimento de dispositivos de armazenamento com mais capacidade e mais sofisticados, o sistema FAT foi ganhando alterações (identificadas pelos nomes FAT12 e FAT16)
- Isso foi necessário porque o FAT era limitado a determinada capacidade de armazenamento
 - Ex: ele só operava com tamanho máximo de 2 GB
- Assim, num disco de 5 GB, seria necessário dividi-lo em 3 partições
- Fora o fato de que o FAT apresentava problemas com informações acima de 512 MB

Surgimento

 Diante de tantos problemas, em 1996, a Microsoft lançou um novo FAT: o FAT32, que é compatível com os Windows 95/98/Me/2000 e XP (apesar destes dois últimos terem um sistema de arquivos mais avançado, o NTFS)

Resumo

- Mapa de utilização do disco
- Julho 1987 (MS-DOS 4.0)
- Graças à ela o sistema operacional é capaz de saber onde exatamente no disco um determinado arquivo está armazenado
- FAT16 = 2¹⁶ = 65.536 posições x 512 bytes = 33.554.432 bytes
 = 32 MB
- Limite de 512 arquivos e ou pastas no diretório
- Tamanho máximo arquivo 2 GB

Funcionamento do sistema FAT

- Ao trabalharmos com HDs é necessário prepará-los, fazendo uma formatação física
- Este processo, divide os discos em trilhas (uma espécie de caminho circular) e setores (subdivisões de cada trilha, com geralmente 512 bytes)
- Um conjunto de trilhas recebe o nome de cilindro
- A formatação física já vem de fábrica e pode ser alterada se o usuário quiser dividir o disco em partições
- Depois deve-se fazer uma formatação lógica, que nada mais é do que "instalar" o sistema de arquivos no dispositivo de armazenamento

Funcionamento do sistema FAT

- O sistema de arquivos FAT não trabalha diretamente com cada setor, mas sim com um grupo de setores. Esse grupo é chamado de cluster (ou unidade de alocação)
- Se por exemplo, um disco com setor de 512 bytes, tiver 5 KB de tamanho, ele terá 10 setores e 5 clusters, se cada cluster ocupar dois setores
- Sendo assim, quando o FAT precisar acessar um determinado setor, primeiro ele descobre em qual cluster ele se encontra

Relembrando

- O FAT não trabalha com setores, mas sim com unidades de alocação chamadas clusters, que são conjuntos de setores
- O tamanho do cluster é definido automaticamente pelo Sistema
 Operacional quando o disco é formatado
- Tamanho do Cluster Múltiplos de 2

Tamanho de cluster

- O sistema FAT exige que cada cluster do disco seja usado somente para um único arquivo, ou seja, num mesmo cluster, não pode haver informações sobre mais de um arquivo
- Isso pode até parecer óbvio, mas gera um problema: desperdício
- Para mostrar isso, vamos supor que desejamos guardar num disquete um arquivo de 5 KB
- Imaginemos que este disquete tenha 8 KB de espaço e dois clusters de 4 KB
- Um cluster ocuparia 4 KB do arquivo, enquanto o outro cluster ocuparia apenas
 1 KB

Tamanho de cluster

- Como o cluster só pode trabalhar com um arquivo, haveria desperdício de 3 KB
- Vamos imaginar agora que em vez de termos clusters com 4 KB, teremos clusters com 2 KB
 - Assim, 3 cluster seriam usados, sendo que um ainda apresentaria desperdício de 1 KB
 - No entanto, sobrou um cluster com 2 KB, que pode ser usado por outro arquivo
- Percebe-se com isso que o tamanho do cluster deve ser o máximo que o FAT consegue manipular
 - A principal diferença entre FAT e FAT32, é que este último consegue trabalhar com um número maior de clusters

Diferenças entre FAT e FAT32

- O sistema FAT (ou FAT16) consegue trabalhar com 65536 clusters
- Esse número é obtido elevando o número 2 a 16 (daí a terminologia FAT16)
- Mas, na verdade, o sistema FAT16 usa apenas 65525 clusters por disco (ou partição)
- É importante frisar que o tamanho do cluster deve obedecer também uma potência de 2: 2 KB, 4 KB, 8 KB, 16 KB e 32 KB, ou seja, não é possível ter cluster de 5 KB, 7 KB, etc
- O tamanho dos clusters no sistema FAT também é uma potência de 2.
 - O limite máximo de tamanho para uma partição em FAT16 é de 2 GB (correspondente a 2 elevado a 16)

Estrutura Básica FAT16

FAT16 File System Structure Region			
Reserved Region (incl. Boot Sector)			
File Allocation Table (FAT)			
Root Directory			
Data Region			

- O primeiro setor (setor de boot) contém informações que são utilizadas para calcular o tamanho e a localização das outras regiões
- Também contém código para a carga do sistema operacional instalado no volume
- A região de dados é dividida em blocos lógicos denominados clusters. Cada um destes clusters é mapeado na região da FAT
- As informações de mapeamento podem ser uma referência a outro cluster ou uma indicação de final de arquivo
- O diretório raiz contém nomes de arquivos, datas, flags de atributos e o primeiro cluster associado

Setor de boot – FAT16

D1	011	0'		
Part	Offset	Size	Description	
Code	0000h	3 bytes	Code to jump to the bootstrap code.	
OS Name	0003h	8 bytes	Oem ID - Name of the formatting OS	
	000Bh	2 bytes	Bytes per Sector	
	000Dh	1 bytes	Sectors per Cluster - Usual there is 512 bytes per sector.	
	000Eh	2 bytes	Reserved sectors from the start of the volume.	
	0010h	1 bytes	Number of FAT copies - Usual 2 copies are used to prevent data loss.	
	0011h	2 bytes	Number of possible root entries - 512 entries are recommended.	
BIOS Para-	0013h	2 bytes	Small number of sectors - Used when volume size is less than 32 Mb.	
meter Block	0015h	1 bytes	Media Descriptor	
	0016h	2 bytes	Sectors per FAT	
	0018h	2 bytes	Sectors per Track	
	001Ah	2 bytes	Number of Heads	
	001Ch	4 bytes	Hidden Sectors	
	0020h	4 bytes	Large number of sectors - Used when volume size is greater than 32 Mb.	
0024h		1 bytes	Drive Number - Used by some bootstrap code, fx. MS-DOS.	
	0025h	1 bytes	Reserved - Is used by Windows NT to decide if it shall check disk integrity.	
Ext. BIOS	0026h	1 bytes	Extended Boot Signature - Indicates that the next three fields are available.	
Para- meter Block	0027h	4 bytes	Volume Serial Number	
	002Bh	11 bytes	Volume Label - Should be the same as in the root directory.	
	0036h	8 bytes	File System Type - The string should be 'FAT16'	
Code	003Eh	448 bytes	Bootstrap code - May schrink in the future.	
Sig.	01FEh	2	Boot sector signature - This is the AA55h signature.	

FAT – FAT16

Valid FAT16 values

Value	Description
0000h	Free cluster
0001h - 0002h	Not allowed
0003h - FFEFh	Number of the next cluster
FFF7h	One or more bad sectors in cluster
FFF8h - FFFFh	End-of-file

Estrutura de entrada no diretório – FAT16

Offset	Size	Description
00h	8 bytes	Filename
08h	3 bytes	Filename Extension
0Bh	1 bytes	Attribute Byte
0Ch	1 bytes	Reserved for Windows NT
0Dh	1 bytes	Creation - Millisecond stamp (actual 100th of a second)
0Eh	2 bytes	Creation Time
10h	2 bytes	Creation Date
12h	2 bytes	Last Access Date
14h	2 bytes	Reserved for FAT32
16h	2 bytes	Last Write Time
18h	2 bytes	Last Write Date
1Ah	2 bytes	Starting cluster
1Ch	4 bytes	File size in bytes

Estrutura básica FAT32 comparado ao FAT16

FAT File System Structure

FAT32 File System Structure

Estrutura de entrada no diretório – FAT32

Structure of Directory Entries

Offset	Size	Description	
00h	8 bytes	Filename	
08h	3 bytes	Filename extension	
0Bh	1 bytes	Flag byte	
0Ch	8 bytes	Unused in FAT32 - But should be left as it was previously read	
14h	2 bytes	Starting cluster (High word)	
1 6h	2 bytes	Time	
18h	2 bytes	Date	
1Ah	2 bytes	Starting cluster (Low word)	
1Ch	4 bytes	File size in bytes	

FAT – FAT32

Valid FAT Values

Value	Description
0000000h	Free cluster
000000001h - FFFFFF5h	Number of the next cluster
FFFFFFF6h - FFFFFF7h	One or more bad sectors in cluster
FFFFFFFh	End-of-file

Setor de boot – FAT32

Structure of the FAT32 Boot sector

Part	Offset	Size	Description	
Code	0000h	3 bytes	JMP 0x80h	
OS Name	0003h	8 bytes	Oem ID - Name of the formatting OS	
	000Bh	2 bytes	Bytes per Sector on the physical medium - Normally 512 bytes	
	000Dh	1 bytes	Sectors per Cluster - 1, 2, 4, 8, 16, 32, 64 or 128 sectors	
	000Eh	2 bytes	Reserved sectors in front of the FAT(s) incl. the Boot sector	
	0010h	1 bytes	Number of FAT copies - Normaly 2	
	0011h	4 bytes	Not used in FAT32	
	0015h	1 bytes	Media Descriptor - The same as in FAT16, but FAT32 is only allowed on harddrives, so the value is F8h	
	0016h	2 bytes	Not used in FAT32	
	0018h	2 bytes	Sectors per Track - The disc geometry used when formatting the partition.	
BIOS Para- meter	001Ah	2 bytes	Heads - The disc geometry used when formatting the partition.	
Block	001Ch	4 bytes	The number of sectors on the disk from the start of the partition to the beginning of the first FAT.	
	0020h	4 bytes	Number of sectors in the partition	
	0024h	4 bytes	Sectors per FAT	
	0028h	2 bytes	FAT handling flags	
	002Ah	2 bytes	FAT32 Drive Version (High byte = Major version, Low byte = Minor version)	
	002Ch	4 bytes	Cluster number for the start of the Root Directory Table	
	0030h	2 bytes	Sector number from the start of the partition, for the File System Information Sector	
	0032h	2 bytes	Sector number from the start of the partition, for the Backup Boot Sector	
	0034h	12 bytes	Reserved	
	0040h	1 bytes	Logical Drive Number - Normaly 00h for floppies and 80h for hard drives.	
	0041h	1 bytes	Current Head	
Ext. BIOS Para-	0042h	1 bytes	Signature	
meter Block	0043h	4 bytes	ID - Random generated serial number	
	0047h	11 bytes	Volume Label - The same as stored in a special file in the root directory.	
	0052h	8 bytes	System ID - This is the string 'FAT32 '	
Code	005Ah	420 bytes	Free - Used for executable code - May shrink in the future.	
Sig.	01FEh	2	Executable sector signature (AA55h when read into a register)	

Quanto maior o tamanho do cluster, mais o desperdício de espaço

Quanto mais clusters existir, mais demorado será o uso do sistema de arquivos

Tamanho do cluster	Capacidade máxima de armazenamento
2 kb	128 mb
4 kb	256 mb
8 kb	512 mb
16 kb	1 gb
32 kb	2 gb
64 kb	4 gb

MS-DOS/95/98/ME	NT/2000/XP
Até 2GB	Até 4GB

Tamanho padrão de clusters de FAT para volumes do sistema de arquivos do Windows Server 2003

Tamanho do volume	Tamanho do cluster de FAT16	Tamanho do cluster de FAT32
7 MB-16 MB	2 KB	Não compatível
17 MB-32 MB	512 bytes	Não compatível
33 MB-64 MB	1 KB	512 bytes
65 MB-128 MB	2 KB	1 KB
129 MB-256 MB	4 KB	2 KB
257 MB-512 MB	8 KB	4 KB
513 MB-1,024 MB	16 KB	4 KB
1,025 MB-2 GB	32 KB	4 KB
2 GB-4 GB	64 KB	4 KB
4 GB-8 GB	Não Compatível	4 KB
8 GB-16 GB	Não Compatível	8 KB
16 GB-32 GB	Não Compatível	16 KB
32 GB-2 TB	Não compatível	Não compatível

- Apesar de que é possível determinar o tamanho do cluster do FAT32 também por programas de terceiros, com o Partition Magic (não é possível ter clusters de diferentes tamanhos)
- O tamanho máximo da partição em FAT32 é de 2 TB

Introdução ao FAT32

- O FAT32 (File Allocation Table ou Tabela de Alocação de Arquivos) é um sistema de arquivos que organiza e gerencia o acesso a arquivos em HDs e outras mídias
- Criado em 1997 pela Microsoft para substituir o FAT16 usado pelo MS-DOS e com uma série de limitações
- O FAT32 foi implementado nos sistemas Windows 95, Windows 98 e Millennium e ainda possui compatibilidade com os sistemas Windows 2000 e Windows XP, que utilizam um sistema de arquivos mais moderno, o NTFS, que foi continuado, sendo usado também nos sistemas Windows Vista, Windows 7, Windows Server 2008, Windows 10 e Windows 11

Mas o que é? e o Funcionamento?

- A tabela de alocação de arquivos (FAT) é uma estrutura de dados que o Windows cria após a formatação física de uma unidade
- Esta tabela guarda informações sobre a localização de cada arquivo dentro da unidade física para que elas possam ser salvas, recuperadas, alteradas ou deletadas posteriormente
- Elas são armazenadas em blocos dispostos em diferentes posições do disco, justificando a necessidade de uma tabela que aponte para cada um destes blocos
- Em resumo, para todo o tipo de acesso a dados em uma mídia, é necessário um sistema de arquivos para realizar tais ações
 - Sem uma estrutura de armazenamento de dados como o FAT32, nenhum procedimento de acesso a disco é possível

Mas o que é? e o Funcionamento?

- Uma explicação básica do que seria FAT
- Esses dígitos significam como o Windows armazena os arquivos no HD (Hard Disk), de que modo eles armazenam, no FAT16 o Windows adota 16 bits para endereçar os dados para o HD
- Então quantos bits usa o FAT 32?
- O FAT32 adota 28 bits.
 - Já acharam que seria 32 não é?
 - 4 bits são reservados para evoluções futuras

Mas o que é? e o Funcionamento?

- Sabe-se que quanto menor um cluster, menor o desperdício
- No entanto, isso aumenta a quantidade de clusters, e quanto mais clusters existir, mais demorado será o uso do sistema de arquivos
- Portanto, usar tamanho de clusters com 8 KB, pode ser uma boa ideia, já que esse valor consegue gerar um equilíbrio
- No entanto, deve-se considerar vários outros aspectos técnicos para se definir o tamanho do cluster
 - Isso deixa claro que esta operação é voltada a usuários experientes

Para definir o tamanho do cluster

- Pode-se usar programas de terceiros ou usar um recurso não documentado pela Microsoft do comando FORMAT
- Para deixar o tamanho do cluster com 8 KB, digite no DOS:

FORMAT C: /Z:16 nem sonhe em fazer isso ai no PC;

 O número 16 é usado porque 16 x 512 bytes = 8 KB. Se em vez de 16, fosse usado 32, o cluster teria 16 KB (32 x 512 bytes = 16 KB)

O que é VFAT

- VFAT é a sigla para (Virtual File Allocation Table)
 - Trata-se de um sistema introduzido no Windows 95.
- Ele possui as mesmas características do sistema FAT, mas pode suportar nome de arquivos longos
- O sistema de arquivos FAT só trabalha com nomes no estilo 8.3
 - 8 caracteres para o nome e 3 para a extensão, como "palavras.txt"
- Com o VFAT, é possível ter nomes de arquivos com até 256 caracteres mais 3 para a extensão
 - O sistema FAT32 herdou todas as características do VFAT

Vantagens FAT32

- Com o FAT32, o desperdício em disco foi sensivelmente reduzido
- O FAT16, seu antecessor, utilizava clusters de até 64 KB enquanto o FAT32 pode utilizar clusters de 4 KB.
- Se um arquivo ocupa 4 KB de espaço, tanto no FAT16 como no FAT32 a ocupação será de 1 cluster porém o FAT16 tem grande perda

Vantagens FAT32

- O FAT32 é mais confiável, pois ele consegue posicionar o diretório principal em qualquer lugar do disco
- Nos sistemas FAT antigos, havia uma limitação no número de entradas que podiam ser alocadas no diretório principal (512 arquivos e/ou pastas)
 - Não há essa limitação no FAT32
- Suporta arquivos de até 4 GB e o nome dos arquivos passou de 8 para 256 caracteres e superou o antigo limite de 3 caracteres para a extensão, embora este padrão ainda seja largamente utilizado

Desvantagens FAT32

- O FAT32 é cerca de 6% mais lento que o sistema FAT16
 - Como o tamanho do cluster é menor, existirão mais clusters no disco tornando um pouco mais demorado o armazenamento de dados
- Não é possível limitar o acesso de determinados arquivos a determinados usuários
- O FAT32 tem apenas as mesmas quatro permissões que existiam desde o MS-DOS (Somente Leitura, Sistema, Oculto e Arquivo)

Desvantagens FAT32

- Um outro problema da FAT32 é a "incompatibilidade" com sistemas antigos
- FAT32 não suporta arquivos com mais de 4 GB
- Você não pode criar uma partição FAT32 maior do que 32GB

Revisão FAT

- Um sistema de arquivos é a estrutura usada pelo computador para organizar dados em um disco rígido
 - Se você está instalando um novo disco rígido, é necessário particionar e formatar esse disco usando um sistema de arquivos antes de começar a armazenar dados ou programas
- No Windows, as três opções de sistemas de arquivos disponíveis são NTFS, FAT32 e o antigo e raramente usado FAT (também conhecido como FAT16)

Referências

- http://www.maverick-os.dk/FileSystemFormats/FAT16 FileSystem.html
- http://www.tavi.co.uk/phobos/fat.html
- https://www.cs.fsu.edu/~cop4610t/assignments/project3/spec/fatspec.pd
 f
- https://fromthegroundupmyway.blogspot.com/2020/10/it-is-time-to-look-into-fat.html
- https://en.wikibooks.org/wiki/Linux Basics/The structure of Linux
- https://simple.wikipedia.org/wiki/File_allocation_table
- https://en.wikipedia.org/wiki/Design of the FAT file system#:~:text=F
 AT32%20stores%20the%20root%20directory,the%20Data%20Region%
 20starts%20here.&text=This%20is%20where%20the%20actual,up%20
 most%20of%20the%20partition.