Esercizio 1

A lezione non è stata fatta la dimostrazione, ma si può dimostrare che se due linguaggi sono regolari allora la loro unione è regolare, quindi la risposta è **VERO**.

Nota inutile ai fini dell'esercizio:

Se prendessimo ad esempio:

- $\mathcal{L}_1 = \{w \in \{a,b\}^* | w \text{ ha una lunghezza pari}\}$
- $\mathcal{L}_2 = \{w \in \{a, b\}^* | w \text{ termina con } a\}$

DFA per \mathcal{L}_1

DFA per \mathcal{L}_2

L'unione di \mathcal{L}_1 con \mathcal{L}_2 sta a significare che la parola su $\{a,b\}$ deve essere pari oppure finire con la lettera a. Per costruire l'automa che verifichi l'unione potremo leggere la parola contemporaneamente in entrambi i DFA e se al termine della parola mi trovo in uno stato finale di uno dei due DFA allora la parola appartiene all'unione.

Possiamo costruire il DFA finale quindi facendo il prodotto cartesiano degli stati, quello iniziale sarà AC mentre quelli finali saranno AC, AD e BD ottenendo il seguente DFA, confermando che l'unione è regolare.

Andando ad 'occhio' si poteva comunque costruire un DFA che riconosceva $\mathcal{L}_1 \cup \mathcal{L}_2$:

Esercizio 2

Sulle slide o dispensa studenti.

Esercizio 3

Per la costruzione di un DFA partendo da un NFA partiamo dallo stato iniziale A e calcoliamo la sua ϵ -chiusura:

$$closure(A) = \{A, B, C, E\} = T_0$$

Da questo stato controlliamo in che stati andiamo a finire tramite una

• a-transizione: $closure(D, E) = \{D, E\} = T_1$

• b-transizione: $closure(A, E) = \{A, B, C, E\} = T_0$

Facciamo la stessa cosa da T_1 :

• a-transizione: $closure(E) = \{E\} = T_2$

• b-transizione: $closure(A, B) = \{A, B, C, E\} = T_0$

Facciamo la stessa cosa da T_2 :

• a-transizione: $closure(E) = \{E\} = T_2$

• b-transizione: $closure(A) = \{A, B, C, E\} = T_0$

La funzione di transazione del DFA sarà:

	a	b
T_0	T_1	T_0
T_1	T_2	T_0
T_2	T_2	T_0

Quindi se Q è lo stato iniziale del DFA allora: $Q[ab] = T_0 = A, B, C, E$

