Q. 1.6

					dran	n		
year	tech	clo	ck speed ipc/ core	cores	band	lwidth sp fl	oating cahe	
	2010	32	3.33	4	2	17.1	107	4
	2013	22	3.9	6	4	25.6	250	8
	2015	14	4.2	8	4	34.1	269	8
	2017	14	4.5	8	4	38.4	288	8
	2019	14	4.9	8	8	42.7	627	12

10-13	-31%	17%	50%	100%	50%	134%	100%
13-15	-36%	8%	33%	0%	33%	8%	0%
15-17	0%	7%	0%	0%	13%	7%	0%
17-19	0%	9%	0%	100%	11%	118%	50%
Imp/year	-7%	4%	8%	20%	11%	27%	15%
double every	10.65	17.63	8.64	3.60	6.75	2.71	4.80

Q. 1.6

proccessor	clock rate Cl	PI
p1	3.00E+09	1.5
p2	2.50E+09	1
p3	4.00E+09	2.2

Performance = Clock Rate / CPI						
Number of Cycles = Clock Rate \times Time (in seconds)						
Number of Instructions = Number of Cycles \times CPI						
Time in sec 10						

		Performance	number of cycles	number of instu.
p1				
performance	2.00E+09	instruction/second	3.00E+10 cycles	4.50E+10 instructions
p2				
performance	2.50E+09	instruction/second	2.50E+10 cycles	2.50E+10 instructions
p3				
performance	1.82E+09	instruction/second	4.00E+10 cycles	8.80E+10 instructions

a. p2 has the highest performance

Q 1.7

Column1	CPI A	CPI B	CPI C	CPI D	Clock Rate	Instruction count =	1.00E+06
---------	-------	-------	-------	-------	------------	---------------------	----------

F Z	10%	20%	50%	20%	3.00E+09
P2	2	2	2	2	3.00F±0
P1	1	2	3	3	2.50E+09

which is faster? global cpi p1 = 2.6a. what is the global CPI for global cpi p2 = 2

b.Find the clock cylcles for cpu clock cylcle = Instructions X average clock cycles per instruction(cpi)

clock cyles
p1 2.60E+06
clock cyles
p2 2.00E+06

CPU execution time = clock cycles / Clock Rate

Execution time P1 1.04E-03 seconds
Execution time P2 6.67E-04 seconds

since P2 has a faster clockrate as well as a lower global

Q. 1.10.1

				# of	1. clock		4. instr.	
Column1	CPI		clock rate	instruction	cycles	2 ins. Time	Time	8. inst time
arithmitic		1	2.00E+09	2.56E+09	2.56E+09	1.83E+09	9.14E+08	4.57E+08
Load/Store		12	2.00E+09	1.28E+09	1.54E+10	1.10E+10	5.49E+09	2.74E+09
branch		5	2.00E+09	2.56E+08	1.28E+09	1.28E+09	1.28E+09	1.28E+09
					1.92E+10	1.41E+10	7.68E+09	4.48E+09

0.7 X # of

processor 1.10.1 1.10.2

program is parallel

# of processor	# of instructions can handle	Total execution time for all 3	doubled execution time
1	0.7	9.60	10.88
2	1.4	7.04	7.95
4	2.8	3.84	4.30
8	5.6	2.24	2.47

Q. 1.14

	execution time	fp execution time		branch time	INT	
original	250	70	85	40	55	
20% better fp	236	56	85	40	55	the total time is reduce to 236 seconds
total reduced 20%	200	70	85	40	5	the int is reduce to 5 secon
get to 20% better by reduce branch	200	70	85	-10	55	because we get a negative number it is not possible
Q 1.15	Clock rate	2.0E+09				

Program a	Fp execution INT	I	L/S	Branch	total time
# of					
Instructions	5.0E+07	1.1E+08	8.0E+07	1.6E+07	
срі	1	1	4	2	
execution					
time	0.03	0.06	0.16	0.02	0.26
2x faster fp					
inprovement	-0.10	0.06	0.16	0.02	0.13
2x faster 1/s					
improvement	0.025	0.055	0.03	0.016	0.13

cpi, but this is not possible.

cpi. The cpi of the ls would need to be .8

0.015	0.033	0.112	0.0112	0.1712	1.495327103	The new time is about