

SEMICONDUCTOR TECHNICAL DATA

KIA6206F BIPOLAR LINEAR INTEGRATED CIRCUIT

DUAL HEADPHONE DRIVER (1.5V USE)

KIA6206F is a dual Headphone Driver IC designed for low voltage operation. (1.5V, 3.0V) Which is suitable for stereo headphone radio and radio cassette recorder equipments. This item can realize the low power dissipation and have high power output capability.

FEATURES

- · Condenser-less for input and output.
- · Condenser-less for bootstrap.
- · Built-in the muting function.
- High power output capability according to adopting the matrix drive method.

 $\begin{array}{lll} P_{OUT(1)}\!=\!14mW/ch(Typ.) & at \ V_{IN(R)}\!=\!V_{IN(L)} \ Mode \\ P_{OUT(2)}\!=\!5.5mW/ch(Typ.) & at \ V_{IN(R)}\!=\!-V_{IN(L)} \ Mode \\ P_{OUT(3)}\!=\!10.5mW/ch(Typ.) & at \ V_{IN(R)}\!=\!0 \ or \ V_{IN(L)}\!=\!0 \\ & (V_{CC}\!=\!1.5V, \ R_L\!=\!32\,\Omega, \ f\!=\!1kHz, \ THD\!=\!10\%) \end{array}$

- · Operating supply voltage range.
 - : $V_{CC(opr)} = 0.9 \sim 5.0 V(Ta = 25 ^{\circ}C)$

MAXIMUM RATINGS (Ta=25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	5	V
Output Current	$I_{O(peak)}$	160	mA
Power Dissipation (Note)	P_D	350	mW
Operating Temperature	T_{opr}	-25 ~ 75	$^{\circ}$
Storage Temperature	$T_{ m stg}$	-55~150	$^{\circ}$

Note : Derated above Ta=25°C in the proportion of 2.8mW/°C for KIA6206F.

BLOCK DIAGRAM

KIA6206F

ELECTRICAL CHARACTERISTICS (AC)

(Unless otherwise specified, Ta=25°C, V_{CC}=1.5V, f=1kHz, Rg=620 Ω , R_L=32 Ω)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Quiescent Supply Current	I_{CCQ}	_	$V_{IN}=0$	-	6	8.4	mA	
Input resistance	R_{IN}	_		_	50	_	kΩ	
Voltage Gain	Gv	_	$V_{\rm IN}$ =-50dBV	30	33	36	dB	
Channel Balance	С•В	_	$V_{IN(R)} \!\!=\! V_{IN(L).}$	_	0	1.3	dB	
Output Power	Po(1)	-	$V_{IN(R)}$ = $V_{IN(L)}$ THD=10%	11	14	-	mW	
	Po(2)	_	V _{IN(R)} =-V _{IN(L)} THD=10%	_	5.5	-		
	Po(3)	_	$V_{IN(R)}$ =0 or $V_{IN(L)}$ =0 THD=10%	-	10.5	-		
Total Harmonic Distortion	THD(1)	-	$\begin{array}{c} P_{O(L)} = P_{O(R)} = 1mW \\ V_{IN(R)} = V_{IN(L)} \end{array} \label{eq:policy}$	-	0.4	1.0	%	
	THD(2)	_	$\begin{aligned} &P_{O(L)} = &P_{O(R)} = &1mW \\ &V_{IN(R)} = &-V_{IN(L)} \end{aligned} \label{eq:policy}$	-	2.5	-		
	THD(3)	_	$V_{IN(R)}$ =0 or $V_{IN(L)}$ =0 P_{O} =1mW	-	0.9	-		
Output Noise Voltage	$ m V_{NO}$	-	B.W.=20Hz ~20kHz Rg=600 Ω	-	0.15	0.3	$mV_{\rm rms}$	
Cross Talk	C.T.	_	V_O =-10dBV, Rg=600 Ω	-	32	_	dB	
Ripple Rejection Ratio	R.R.	_	V_{RIP} =-30dBV, f_{RIP} =100Hz	-	35	-	dB	
Muting Attenuation	ATT	_	V _{MUTE} =1.5V	_	60	_	dB	

KIA6206F

DC CHARACTERISTICS (V_{CC} =1.5V, Ta=25 $^{\circ}$ C, Terminal voltage at no signal)

PIN NO.	SYMBOL	TYP.	UNIT
PIN 1 (INPUT L)	V1	0.16	V
PIN 2 (NF L)	V2	0.73	V
PIN 3 (MUTE)	V3	_	V
PIN 4 (Vcc)	V4	1.50	V
PIN 5 (BIAS)	V5	0.74	V
PIN 6 (PRE GND)	V6	0	V
PIN 7 (NF R)	V7	0.73	V
PIN 8 (INPUT R)	V8	0.16	V
PIN 9 (PHASE COMPENSATION)	V9	0.80	V
PIN 10 (OUTPUT)	V10	0.75	V
PIN 11 (PW. GND)	V11	0	V
PIN 12 (OUTPUT)	V12	0.75	V
PIN 13 (V _{CC})	V13	1.50	V
PIN 14 (PHASE COMPENSATION)	V14	0.80	V
PIN 15 (OUTPUT)	V15	0.75	V
PIN 16 (PHASE COMPENSATION)	V16	0.80	V

TEST CIRCUIT

