UNIAVAN - Centro Universitário Avantis Curso: Engenharia Elétrica Disciplina: Análise de Sistemas Lineares

Modelos de Sinais

Prof. Luiz Fernando M. Arruda, Me. Eng.

Sumário

Degrau Unitário

2 Impulso Unitário

3 Exponencial e^{st}

Funções Especiais

As funções especiais desempenham um papel fundamental em diversas áreas da matemática aplicada e engenharia, particularmente no campo da teoria de sinais e sistemas. Entre essas funções, destacam-se:

- degrau unitário
- impulso unitário
- exponencial

A função degrau unitário u(t) expressa um sinal cujo valor inicial é 0 quando t < 0, e muda para 1 em t > 0.

$$u(t) = \begin{cases} 0 & \text{se } t < 0 \\ 1 & \text{se } t \ge 0 \end{cases}$$

Aplicação do degrau unitário em uma função exponencial

Aplicação do degrau unitário com deslocamento temporal

unia (an 🕮

Prof. Arruda, Me. Eng. (UNIAVAN)

Exemplo de um pulso retangular x(t), descrita em termos de funções degrau, pode ser descrito como a soma de dois degraus unitários atrasados. A função degrau atrasa em T segundos u(t-T).

$$x(t) = u(t-2) - u(t-4)$$

unia lan 🕮

Análise de um sinal divido no tempo:

O sinal x(t) pode ser divido em dois sinais, $x_1(t)$ e $x_2(t)$. Assim, $x_1(t)$ pode ser obtido através ma multiplicação de uma rampa t pelo degrau unitário, u(t) - u(t-2).

$$x_1(t) = t[u(t) - u(t-2)]$$

Já o sinal $x_2(t)$ pode ser obtido por outra rampa com inclinação -2, descrita por -2t+c, com valor 0 para t=3, logo c=6, ficando -2t+6=-2(t-3). Adotado um degrau unitário em u(t-2)-u(t-3).

$$x_2(t) = -2(t-3)[u(t-2) - u(t-3)]$$

Análise de um sinal divido no tempo:

Calcule o sinal x(t) a partir de $x_1(t) + x_2(t)$.

Análise de um sinal divido no tempo:

Calcule o sinal x(t) a partir de $x_1(t) + x_2(t)$.

$$x(t) = x_1(t) + x_2(t)$$

$$= t[u(t) - u(t-2)] - 2(t-3)[u(t-2) - u(t-3)]$$

$$= t \cdot u(t) - t \cdot u(t-2) - 2(t-3)u(t-2)$$

$$+ 2(t-3)u(t-3)$$

$$= t \cdot u(t) - u(t-2)(t+2(t-3))$$

$$+ 2(t-3)u(t-3)$$

$$= t \cdot u(t) - u(t-2)(t+2t-6)$$

$$+ 2(t-3)u(t-3)$$

$$= t \cdot u(t) - u(t-2)(3t-6) + 2(t-3)u(t-3)$$

$$= t \cdot u(t) - u(t-2)(3(t-2)) + 2(t-3)u(t-3)$$

$$x(t) = t \cdot u(t) - 3(t-2)u(t-2) + 2(t-3)u(t-3)$$

Exercício: Degrau Unitário

Descreva o sinal da figura abaixo através de uma expressão única para todo t.

Resposta

$$x(t) = 2 \cdot u(t+1.5) - 2(1 - e^{-t/2})u(t) - 2e^{-t/2}u(t-3)$$

Prof. Arruda, Me. Eng. (UNIAVAN)

Exercício: Degrau Unitário

Mostre que o sinal apresentado na figura abaixo pode ser descrito por x(t) = (t-1)u(t-1) - (t-2)u(t-2) - u(t-4).

Impulso Unitário $\delta(t)$

De acordo com (LATHI; GREEN, 2004), o impulso unitário δ é a função mais importante no estudo de sinais e sistemas. Ele é constituido de um pulso retangular muito pequeno $(\in \to 0)$ e sua altura tende a um valor muito grande $(1/\in \to \infty)$. Desta forma, $\delta(t)=0$ em todo t menos em 0.

$$\delta(t) = 0 \qquad t \neq 0$$

$$\int_{-\infty}^{\infty} \delta(t) = 1$$

$$\delta(t) \qquad \qquad \frac{1}{\epsilon} \qquad \epsilon \to 0$$
(a) (b)

Exponencial

$$\int_0^\infty \alpha \cdot e^{-\alpha \cdot t} dt = 1$$

Triangular

Gaussiano

Propriedades do Impulso

Multiplicação por um Impulso

Uma vez que uma função Impulso só tem valor em t=0, a sua multiplicação por uma função ϕ contínua no tempo, retornará justamente $\phi(0)$.

$$\phi(t)\delta(t) = \phi(0) \cdot \delta(t)$$

Assim, a multiplicação de uma função contínua no tempo pelo impulso unitário, retorna um impulso em t=0 com força $\phi(0)$. Adotando essa analogia temos:

$$\phi(t)\delta(t-T) = \phi(T)\delta(t-T)$$

Amostragem de uma Função Impulso

A propriedade de amostragem de impulso unitario, diz que, desde que $\phi(t)$ seja uma função contínua no instante t=0, o resultado será o proprío sinal no instante do impulso.

$$\int_{-\infty}^{\infty} \phi(t)\delta(t) dt = \phi(0) \int_{-\infty}^{\infty} \delta(t) dt$$
$$= \phi(0)$$

Portanto, para um impulso unitário localizado no tempo t=T, tem-se:

$$\int_{-\infty}^{\infty} \phi(t)\delta(t-T) dt = \phi(T) \int_{-\infty}^{\infty} \delta(t) dt$$
$$= \phi(T)$$

unia\an 🕮

Propriedades do Impulso

Função Generalizada

Uma vez que uma função Impulso é descontínua para t=0, a sua derivada du/dt não existe para t=0 no sentido ordinário, mas existe no modelo generalizado e vale, de fato, $\delta(t)$.

$$\int_{-\infty}^{\infty} \frac{du}{dt} \phi(t) dt = u(t)\phi(t) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} u(t)\dot{\phi}(t) dt$$
$$= \phi(\infty) - 0 - \int_{-\infty}^{\infty} \dot{\phi}(t) dt$$
$$= \phi(\infty) - \phi(t) \Big|_{0}^{\infty}$$
$$= \phi(0)$$

Desta forma,

$$\frac{du}{dt} = \delta(t)$$

e consequentemente:

$$\int_{-\infty}^{t} \delta(\tau) \, d\tau = u(t)$$

Assim, a função de degrau unitário pode ser obtida da integração de uma função de impulso unitário. Similarmente, a rampa unitária $x(t) = t \cdot u(t)$.

Exemplo - Impuso unitário

Mostre que: $(t^3 + 3)\delta(t) = 3\delta(t)$

Exemplo - Impuso unitário

Mostre que: $(t^3 + 3)\delta(t) = 3\delta(t)$

$$f(t)\delta(t) = f(0)\delta(t)$$
$$(t^3 + 3)\delta(t)$$
$$= (0^3 + 3)\delta(t)$$
$$= 3\delta(t)$$

Exercício: Impulso Unitário

Mostre que:

•
$$\left[\sin\left(t^2 - \frac{\pi}{2}\right)\right]\delta(t) = -\delta(t)$$

•
$$e^{-2t}\delta(t) = \delta(t)$$

$$\bullet \frac{\omega^2 + 1}{\omega^2 + 9} \delta(\omega - 1) = \frac{1}{5} \delta(\omega - 1)$$

Exponencial e^{st}

Outra função muito importante na área de sinais e sistemas é o sinal exponencial e^{st} , onde o termo s é gerado por um número complexo.

$$s = \sigma + j\omega$$

Logo,

$$e^{st} = e^{(\sigma + j\omega)t}$$

$$= e^{\sigma t} \cdot e^{j\omega t}$$

$$= e^{\sigma t} (\cos(\omega t) + j \cdot \sin(\omega t))$$

$$e^{\sigma t} cos(\omega t) = \frac{1}{2} \left(e^{st} + e^{s^* t} \right)$$

c - Senoide $cos(\omega t)$ $(\sigma=0,s=\pm j\omega)$ d - Senoide variando exponencialmente $e^{\sigma t}cos(\omega t)$ $(s=\sigma\pm j\omega)$

Plano Frequência Complexa

Exercícios

Simplifique as expressões

(a)
$$\left(\frac{\sin t}{t^2+2}\right)\delta(t)$$

(b)
$$\left(\frac{j\omega+2}{\omega^2+9}\right)\delta(\omega)$$

(c)
$$[e^{-t}\cos(3t-60^{\circ})]\delta(t)$$

(d)
$$\left(\frac{\sin\left[\frac{\pi}{2}(t-2)\right]}{t^2+4}\right)\delta(1-t)$$

(e)
$$\left(\frac{1}{j\omega+2}\right)\delta(\omega+3)$$

(f)
$$\left(\frac{\sin k\omega}{\omega}\right)\delta(\omega)$$

Calcule as integrais

(a)
$$\int_{-\infty}^{\infty} \delta(\tau) x(t-\tau) d\tau$$

(b)
$$\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau$$

(c)
$$\int_{-\infty}^{\infty} \delta(t) e^{-j\omega t} dt$$

(d)
$$\int_{-\infty}^{\infty} \delta(2t-3)\sin(\pi t) dt$$

(e)
$$\int_{-\infty}^{\infty} \delta(t+3)e^{-t} dt$$

(f)
$$\int_{-\infty}^{\infty} (t^3 + 4)\delta(1 - t) dt$$

(g)
$$\int_{-\infty}^{\infty} x(2-t)\delta(3-t)$$

Uma senóide $e^{\sigma t}\cos \omega t$ pode ser expressa como a soma das exponenciais e^{st} e e^{-st} com frequências complexas $s = \sigma + j\omega$ e $s = \sigma - j\omega$. Localize no plano complexo as frequências das seguintes senóides:

- (a) $\cos(3t)$
- (b) $e^{-3t}\cos(3t)$
- (c) $e^{2t}\cos(3t)$
- (d) e^{-2t}
- (e) e^{2t}
- (f) 5

Próxima Aula

Introdução a sinais e sistemas: Sistemas Lineares e Não Lineares; Sistemas Invariantes e Variantes no Tempo; Sistemas Instantâneos e Dinâmicos; Sistema Causal e Não Causal; Sistema em Tempo Contínuo e em Tempo Discreto; Sinais Analógicos e Digitais; Sinais Invertíveis e Não Invertíveis; Sistemas Estáveis e Instáveis

Obrigado!!!

Referencial Bibliográfico I

DISTEFANO, Joseph J; STUBBERUD, Allen J; WILLIAMS, Ivan J. Schaum's outline of feedback and control systems. New York: McGraw-Hill Professional, 2013.

HAYES, Monson H. Schaum's outlines Digital Signal Processing. New York: McGraw-Hill Professional, 2011.

HSU, Hwei P. Schaum's outlines signals and systems, 4th Edition. New York: McGraw-Hill Professional, 2019. v. 4.

LATHI, Bhagwandas Pannalal; GREEN, Roger A. Linear systems and signals. New York: Oxford University Press, 2004. v. 2.