Phương pháp học hiệu quả cho mô hình Biterm Topic Model

Nguyễn Bá Cương

Viện Công nghệ thông tin và Truyền thông Đại học Bách khoa Hà Nội

Giáo viên hướng dẫn: Ths. Ngô Văn Linh

Hà Nội 6, 2017

Nội dung

- Short texts và mô hình chủ đề
 - Short texts
 - Các mô hình chủ đề
- Phương pháp học mới cho mô hình BTM
 - Phương pháp Gibbs-sampling
 - Phương pháp suy diễn biến phân
 - Phương pháp học ngẫu nhiên
- Thử nghiệm Đánh giá
 - Dữ liệu thử nghiệm
 - Kết quả thử nghiệm
- 4 Kết luận

Nội dung

- Short texts và mô hình chủ đề
 - Short texts
 - Các mô hình chủ đề
- Phương pháp học mới cho mô hình BTN
 - Phương pháp Gibbs-sampling
 - Phương pháp suy diễn biến phân
 - Phương pháp học ngẫu nhiên
- Thử nghiệm Đánh giá
 - Dữ liệu thử nghiệm
 - Kết quả thử nghiệm
- 4 Kết luận

Gới thiêu về short texts

Những văn bản ngắn rất là phổ biến trên các trang web

YAHOO! NEWS

Google AdWords

You Tube

WORLD NEWS »

· Syrian prime minister survives Dama bombing, six die

- Saudi-U.S. relations to withstand No oil boom
- Retailers to compensate victims of £ disaster

Ads related to laptop (i)

Laptop

www.kelkoo.co.uk/Laptop Search among thousands of deals and save mo

Donate Computers to Kids

www.maly.co.il/ 100,000 Kids Need Your Support Help Us bridg

No SQL Database Tutorial part1 | Introduction to NoSql 上传者: Ahmad Naser

精选

O'Reilly Webcast: MongoDB Schema Design: How to Think 上传者: OreillyMedia 观看次数:18.885次

Expand

Marck Zuckerberg

Booking.com

WWW2013 @www2013ric Science made easy: new Newspaper editors vs the #www2013

WWW2013 @www2013ric

:) - with Christopher Domingue Follow • 1 Follower • Add Answer Martinez Escalante and zaaaaaa The Dangers of Big Data Sco.IV9203A9

Writing: What are some good habits to

some good online sites available? Like This Page * Augus Follow * 1 Follower * Add Answer

Health and Wellness: Why is it that one Meeting with journalists from Br still become darker despite the applicat

> Medicine and Healthcare: In what order without oxygen?

Follow • 2 Followers • Add Answer

Brisa Barra Hotel

"The hotel was really areat. We didn't want to be in ipanema or Copacaban. so we decided to go to Barra de Tinica." Natalia, Capital Federal

Hotel Praia Linda ***

"Absolutely loved it!!! Brilliant hotel! The staff are very friendly and helpful, always ready to provide the best customer service with a smile on their faces. The rooms are very clean and in good condition." Ana, Teddington 🌃

Mô hình chủ đề

(a) Mô hình chủ đề

Mô hình sinh của các văn bản với chủ đề ẩn

- ullet Một văn bản \sim một tập trộn của các chủ đề ẩn
- ullet Một từ \sim một điểm trong một chủ đề

Mô hình chủ đề truyền thống cho short texts

Vấn đề:

- Không đủ ngữ cảnh để xác định ý nghĩa của câu
- Các đặc điểm short texts
 - Độ dài văn bản rất ngắn
 - Số lượng dữ liệu của văn bản ngắn là rất lớn và tăng nhanh
 - Các chủ để nó phản ánh đến các xu hướng xã hội

Một số giải pháp:

- Khái thác kiến thức từ bên ngoài để làm giàu sự biểu diễn cho short texts
 - => Việc tìm kiếm dữ liệu từ bên ngoài mất nhiều chi phí.
- Kết hợp một số văn bản ngắn thành một văn bản dài dựa trên một số thông tin. Như tập hợp các bài đăng trên Twitter bời cùng một người dùng, hay cùng hashtags.
 - => Việc làm này là không mang tính tống quát

Mô hình Biterm Topic Model (BTM)

Ý tưởng chính

- Chủ đề là tập các từ tương đồng.
 Các từ cùng xuất hiện trong cùng môt văn bản
 - => Tại sao không mô hình trực tiếp các từ đồng xuất hiện để học các chủ đề.
- Mô hình chủ đề chịu nhiều vấn đề từ văn bản ngắn
 Tại sao không sử dụng toàn
 - => Tại sao không sử dụng toàn toàn bộ dữ liệu.

(b) Mô hình BTM

Nội dung

- Short texts và mô hình chủ đề
 - Short texts
 - Các mô hình chủ đề
- Phương pháp học mới cho mô hình BTM
 - Phương pháp Gibbs-sampling
 - Phương pháp suy diễn biến phân
 - Phương pháp học ngẫu nhiên
- Thử nghiệm Đánh giá
 - Dữ liệu thử nghiệm
 - Kết quả thử nghiệm
- 4 Kết luận

Phương pháp Gibbs Sampling

- Ý tưởng: Sinh ra một mẫu phân bố hậu nghiệm bằng cách duyệt qua các giá trị từ tập dữ liêu ban đầu.
- Vấn đề của phương pháp Gibbs-sampling
 - Không xác định được thời gian hội tụ
 - Dữ liệu biterm sinh ra quá lớn
 - => Gibbs-sampling cho thời gian chạy rất lâu.

Phương pháp suy diễn biến phân (VB)

- Thay vì tối ưu hóa trực tiếp hàm mục tiêu, ta xây dựng một cận dưới cho hàm mục tiêu và tối ưu hóa trên cân dưới đó.
- Thuật toán thực hiện hai bước như sau
 - Bước E ta tính giá trị

$$t_{n,k} = \frac{\phi_{k,w_{n,1}}\phi_{k,w_{n,2}}\theta_k}{\sum_k \phi_{k,w_{n,1}}\phi_{k,w_{n,2}}\theta_k}$$

Bước M ta cập nhật giá trị

$$\theta_{k} = \frac{\sum_{n} t_{n,k} + \alpha}{\sum_{k'} \left(\sum_{n} t_{n,k'} + \alpha\right)}$$
$$\phi_{k,w} = \frac{\sum_{n} t_{n,k} c(b_{n}, w) + \beta}{W\beta + \sum_{n} 2t_{n,k}}$$

Algorithm 1 Thuật toán Online VB cho mô hình BTM

Input: Số lượng chủ đề $K, \alpha, \beta, \{\gamma_i\}_{i=1}^T$, tập dữ liệu $B^{(1)}, ..., B^{(T)}$

Output: ϕ, θ

1: Khởi tạo ngẫu nhiên
$$\phi, \theta, S^0_{\theta_k} = 0, S^0_{\phi_{k,w}} = 0, i = 0$$

2: **for**
$$i = 1$$
 to ∞ **do**

3: **for each** biterm
$$b_j = (w_{i,1}, w_{i,2}) \ni B^{(i)}$$
 do

4:
$$t_{j,k} \propto \phi_{k,w_{j,1}} \phi_{k,w_{j,2}} \theta_k$$

6:
$$S_{\phi_{k,w}}^{i} = \sum_{j} t_{i,k} c(b_{j}, w)$$
; $S_{\theta_{k}}^{i} = \sum_{j} t_{j,k}$

7:
$$S_{\phi_{k,w}}^{i} = (1 - \gamma_{i})S_{\phi_{k,w}}^{(i-1)} + \gamma_{i}S_{\phi_{k,w}}^{i}; S_{\theta_{k}}^{i} = (1 - \gamma_{i})S_{\theta_{k}}^{(i-1)} + \gamma_{i}S_{\theta_{k}}^{i}$$

8:
$$\theta_k \propto S_{\theta_k}^i + \alpha$$
; $\phi_{k,w} \propto S_{\phi_{k,w}}^i + \beta$

9: end for

Phương pháp học ngẫu nhiên

- Trong quá trình học, ở mỗi minibatch, chúng ta bỏ đi một phần dữ liêu của minibatch đó.
 - Dữ liệu bỏ đi là một cách ngẫu nhiên. Bỏ đi từng biterm trong tập dữ liệu với xác suất là p.
 - Ở mỗi vòng lặp, dữ liệu bỏ đi không được sử dụng.
- Ý tưởng này áp dụng rộng cho nhiều phương pháp học khác.
 - Áp dụng cho phương pháp VB => RVB
 - Áp dụng cho phương pháp Gibbs-sampling => R-Gibbs-sampling

Algorithm 2 Thuật toán Online RVB cho mô hình BTM

Input: Số lượng chủ đề $K, \alpha, \beta, \{\gamma_i\}_{i=1}^T$, tập dữ liệu $B^{(1)}, ..., B^{(T)}, p$ **Output:** ϕ, θ

- 1: Khởi tạo ngẫu nhiên $\phi, \theta, S^0_{\theta_k} = 0, S^0_{\phi_{k_w}} = 0, i = 0$
- 2: **for** i = 1 to ∞ **do**
- 3: Chọn một lượng các biterm trong mỗi mini-batch $B^{(i)}$. Mỗi biterm trong minibatch thì khả năng bỏ đi là một giá trị xác suất p. Tập dữ liệu sau khi bỏ đi là C
- 4: **for each** biterm $b_j = (w_{i,1}, w_{i,2}) \ni C$ **do**
- 5: $t_{j,k} \propto \phi_{k,w_{j,1}} \phi_{k,w_{j,2}} \theta_k$
- 6: **end for**
- 7: $S_{\phi_{k,w}}^i = \sum_j t_{i,k} c(b_j, w)$; $S_{\theta_k}^i = \sum_j t_{j,k}$
- 8: $S_{\phi_{k,w}}^{i} = (1 \gamma_{i})S_{\phi_{k,w}}^{(i-1)} + \gamma_{i}S_{\phi_{k,w}}^{i}; \quad S_{\theta_{k}}^{i} = (1 \gamma_{i})S_{\theta_{k}}^{(i-1)} + \gamma_{i}S_{\theta_{k}}^{i}$
- 9: $\theta_k \propto S_{\theta_k}^i + \alpha$; $\phi_{k,w} \propto S_{\phi_{k,w}}^i + \beta$
- 10: end for

Algorithm 3 Thuật toán Online R-Gibbs-sampling cho mô hình BTM

Input:
$$K, \alpha, \beta$$
, tập dữ liệu $B^{(1)}, ..., B^{(T)}, p$
Output: $\{\phi^{(t)}, \theta^{(t)}\}_{t=1}^T$

1: Khởi tạo
$$\alpha^{(1)} = (\alpha, ..., \alpha)$$
 và $\{\beta_k^{(1)} = (\beta, ..., \beta)\}_{k=1}^K$

- 2: **for** t = 1 to T **do**
- 3: Khởi tạo ngẫu nhiên các giá trị chủ để cho tất cả các biterm
- 4: **for** iter = 1 to N_{iter} **do**
- 5: Chọn một lượng các biterm trong mỗi mini-batch $B^{(t)}$.

Mỗi biterm trong minibatch thì khả năng bỏ đi là một giá trị xác suất p. Tập dữ liêu sau khi bỏ đi là C

- for each biterm $b_i = (w_{i,1}, w_{i,2}) \ni C$ do
- 7: Tính giá trị k và cập nhật $n_k^{(t)}, n_{w_{i,1}|k}^{(t)}$ và $n_{w_{i,2}|k}^{(t)}$ theo k
- 8: **end for**
- 9: Cập nhật $\alpha^{(t+1)}$ và $\{\beta_k^{(t+1)}\}_{k=1}^K$
- 10: end for
- 11: Cập nhật $\phi^{(t)}$ và $\theta^{(t)}$
- 12: end for

6:

Những điểm mạnh của phương pháp học mới

Phương pháp VB:

- Thời gian học của phương pháp VB nhanh hơn so với phương pháp Gibbs-sampling mà tác giả đề xuất.
- VB cho chất lượng mô hình cao hơn so với phương pháp học bằng Gibbs-sampling

Phương pháp học ngẫu nhiên:

- Phương pháp học ngẫu nhiên cho thời gian chạy nhanh hơn so với phương pháp gốc thực hiện.
- Phương pháp học ngẫu nhiên cho chất lượng chủ đề xấp xỉ như kết quả mà phương pháp gốc thực hiện

Nội dung

- Short texts và mô hình chủ đề
 - Short texts
 - Các mô hình chủ đề
- Phương pháp học mới cho mô hình BTM
 - Phương pháp Gibbs-sampling
 - Phương pháp suy diễn biến phân
 - Phương pháp học ngẫu nhiên
- Thử nghiệm Đánh giá
 - Dữ liệu thử nghiệm
 - Kết quả thử nghiệm
- 4 Kết luận

Bộ dữ liệu thử nghiệm

	Số lương văn bản	Độ dài trung bình	V
Twitter	1,485,068	10.14	89,474
Yahoo Questions	537,770	4.73	24,420
Nytimes Titles	1,684,127	5.15	55,488

 $\mathsf{Bang}:\mathsf{Bang}$ mô tả dữ liệu thử nghiệm

Tiêu chí đánh giá

- Thử nghiệm so sánh trên 3 phương pháp:
 - Gibbs-sampling
 - Suy diễn biến phân VB
 - Học ngẫu nhiên: Phương pháp RVB và R-Gibbs-sampling
- Tiêu chí đánh giá:
 - Khả năng phán đoán mô hình: Sử dụng độ đo log predictive probability
 - Chất lượng chủ đề: Sử dụng độ đo NPMI
 - Thời gian chạy

Độ đo khả năng phán đoán mô hình

Hình : Kết quả độ đo khả năng phán đoán mô hình cho bộ dữ liệu Twitter

Độ đo chất lượng chủ đề

(a) Online Gibbs-sampling và R-Gibbs-sampling

(b) Online VB và RVB

Normal

Hình : Kết quả đô đo chất lượng chủ đề cho bộ dữ liệu Twitter

Thời gian huấn luyện

	K	origin	p = 0.1	p = 0.3	p = 0.5	p = 0.7	p = 0.9
Gibbs	50	249935	231575	186822	80132	56739	24534
VB	50	3592	3463	2922	2166	1249	375
Gibbs	100	404573	357891	288019	213525	134510	46840
VB	100	3224	3050	2503	1870	1189	880
Gibbs	150	460189	429685	350120	297817	296984	114108
VB	150	3866	3696	3052	2429	1536	781
Gibbs	200	539904	538529	456806	387955	275327	171603
VB	200	4925	4594	3313	2622	1944	1322

Đánh giá

- Phương pháp Gibbs sampling, cho thời gian chạy rất chậm.
- Phương pháp VB cho thời học vượt trội hơn hẳn, và kết quả chất lượng mô hình cao hơn so với phương pháp học Gibbs sampling.
- Phương pháp học ngẫu nhiên cho thời gian học nhanh hơn nhiều lần ứng với lượng dữ liệu được bỏ đi.

Nội dung

- Short texts và mô hình chủ đề
 - Short texts
 - Các mô hình chủ đề
- Phương pháp học mới cho mô hình BTN
 - Phương pháp Gibbs-sampling
 - Phương pháp suy diễn biến phân
 - Phương pháp học ngẫu nhiên
- Thử nghiệm Đánh giá
 - Dữ liệu thử nghiệm
 - Kết quả thử nghiệm
- 4 Kết luận

Kết luận

- Phương pháp học VB
 - Kết quả cho thấy chất lượng chủ đề hay khả năng phán đoán của mô hình tốt hơn hẳn so với phương pháp Gibbs sampling
 - Thời gian học của phương pháp VB vượt trội hơn hẳn so với phương pháp Gibbs-sampling
- Phương pháp học ngẫu nhiên
 - Chất lượng mô hình xấp xỉ với phương pháp gốc.
 - Thời gian học nhanh hơn rất nhiều so với phương pháp gốc.

Độ đo khả năng phán đoán mô hình

Hình : Kết quả độ đo khả năng phán đoán mô hình cho bộ dữ liệu Yahoo

Độ đo chất lượng chủ đề

Hình : Kết quả độ đo chất lượng chủ đề cho bộ dữ liệu Twitter

Normal

Thời gian chạy với bộ dữ liệu Yahoo

	K	origin	r = 0.1	r = 0.3	r = 0.5	r = 0.7	r = 0.9
Gibbs	50	24259	22605	18919	14154	9594	3856
VB	50	546	534	501	432	388	176
Gibbs	100	32042	27544	21763	16729	19533	7565
VB	100	448	418	372	328	274	223
Gibbs	150	73385	68762	58344	44619	30748	12387
VB	150	514	490	453	398	337	265
Gibbs	200	64068	51862	46133	6406	41653	8894
VB	200	580	559	485	434	373	306

Độ đo khả năng phán đoán mô hình

Hình : Kết quả độ đo khả năng phán đoán mô hình cho bộ dữ liệu NYT

Normal

Độ đo chất lượng chủ đề

25.0

(a) Online Gibbs-sampling và R-Gibbs-sampling

(b) Online VB và RVB

— Normal — p = 0.1 — p = 0.3 — p = 0.5 — p = 0.7 — p = 0.9

Hình : Kết quả độ đo chất lượng chủ đề cho bộ dữ liệu NYT

Thời gian chạy với bộ dữ liệu NYT

	K	origin	r = 0.1	r = 0.3	r = 0.5	r = 0.7	r = 0.9
Gibbs	50	81029	75909	63424	49757	33146	11787
VB	50	1190	1876	1723	1506	1355	633
Gibbs	100	90219	85610	71573	56306	39515	15900
VB	100	1701	1569	1398	1229	996	880
Gibbs	150	130083	123790	124131	107083	89761	38267
VB	150	1800	1792	1660	1499	1250	1030
Gibbs	200	193110	180111	184658	151754	47640	33396
VB	200	2308	2171	1707	1554	1361	1096