Revisão - MOS

Transistores MOS

Transistores Bipolares

Amplificadores

Resposta em Frequência

Transistores MOSFET

(Metal-Oxide-Semiconductor Field Effect Transistor)

Estrutura do Transistor **n**MOSFET

O transistor é simétrico, a região de dopagem n^+ pode ser fonte ou dreno.

Estrutura do Transistor <u>**n</u>MOSFET**</u>

A porta do transistor pode ser formado por polisilício ou outros tipos de materiais condutores (metais).

Formação do canal tipo *n*

Capacitor de placas paralelas, onde o contato metálico é o terminal com cargas positivas, o óxido é o dielétrico e o substrato é o terminal com cargas negativas

Formação do canal tipo *n*

As lacunas são repelidas pelo potencial positivo na porta, deixando íons negativos, formando a região de depleção.

Os elétrons livres são atraídos para a interface, criando a região de inversão (canal).

Aula 1 - Revisão MOS

Formação do canal tipo *n*

Transistor funciona como um resistor linear cujo valor é controlado por $V_{GS.}$

Curva característica $i_D \times v_{DS}$ – Transistor nMOS

Transistor funciona como um resistor linear cujo valor é controlado por $V_{GS.}$

Resistor Controlado por Tensão

A camada de inversão pode ser vista como um resistor.

Como a carga no canal depende da tensão de porta, a resistência do canal é dependente de V_{GS} .

Estreitamento do canal

Aula 1 - Revisão MOS

Estrangulamento do canal (pinch off)

12

Transistores MOSFET

Curva característica $i_D \times v_{DS}$ – Transistor nMOS

Aula 1 - Revisão MOS

Curva característica $i_D \times v_{DS}$ – Transistor nMOS

$$i_D = k_n' \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right] .$$

$$i_D = \frac{1}{2} k_n' \frac{W}{I} (v_{GS} - V_t)^2$$

$$para v_{DS} = v_{GS} - V_t$$
 $i_D = \frac{1}{2} k'_n \frac{W}{L} (v_{DS})^2$

Modelo equivalente para **grande sinais** do transistor nMOS <u>operando na saturação</u>

Obs: r_0 infinito.

Característica i_D x v_{GS} do Transistor nMOS na saturação.

Transistor operando como fonte de corrente controlado por v_{GS}

Modulação do comprimento do canal

A corrente no canal aumenta com o aumento de $v_{DS}!!$

Modelo equivalente para grandes sinais do transistor nMOS operando na saturação.

$$r_0 = \frac{\partial v_{DS}}{\partial i_D}\Big|_{v_{GS \text{ const}}}.$$
 $r_0 = \frac{1}{\lambda I_D *}$ ou $r_0 = \frac{V_A}{I_D *}$

 $*I_D$ é a corrente sem o efeito de modulação de canal

Transcondutância (g_m)

Transcondutância (g_m)

$$\int_{D} \int_{d} \frac{i_{d}}{\int} \frac{??}{I} (V_{GS} - V_{t})^{2} + k_{n} \frac{W}{I} (V_{GS} - V_{t}) v_{gs} + \frac{1}{2} k_{n} \frac{W}{I} v_{gs}^{2}$$

Pequenos sinais: $v_{gs} \ll 2(V_{GS} - V_t)$

$$g_{m} = \frac{i_{d}}{v_{gs}} = k'_{n} \frac{W}{L} (V_{GS} - V_{t})$$

 i_d e v_{gs} somente pequenos sinais (ac)

Transcondutância (g_m)

W/L Constant V _{GS} −V _T Variable	W/L Variable V _{GS} −V _T Constant	W/L Variable V _{GS} −V _T Constant
$g_{ m m}\!\propto\!\sqrt{I_{ m D}}$ $g_{ m m}\!\propto\!V_{ m GS}\!-\!V_{ m T}$	$egin{aligned} oldsymbol{g}_{m} & \propto oldsymbol{I}_{D} \ oldsymbol{g}_{m} & \propto rac{oldsymbol{W}}{oldsymbol{L}} \end{aligned}$	$g_{ m m} \! \propto \! \sqrt{rac{W}{L}}$ $g_{ m m} \! \propto \! rac{1}{V_{ m GS} \! - \! V_{ m T}}$

$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t) \quad g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} \qquad g_m = \frac{2I_D}{V_{GS} - V_t}$$

Modelo de pequenos sinais - π

Incluindo o efeito da tensão de Early

Modelo de pequenos sinais - T

Incluindo o efeito da tensão de Early

A **resistência** entre fonte e porta, olhando pela fonte é $1/g_m$.

Polarização de Circuitos para Amplificadores MOS.

Fonte de corrente.

Configurações básicas de Amplificadores usando transistores MOS

Fonte Comum, Porta Comum e Dreno Comum

Exemplo 1 : Considerando a circuito abaixo, encontre:

- a) $i_D e v_D (cc)$.
- b) O valor de g_m no ponto de polarização;
- c) Ganho de tensão;
- d) Se o transistor tem $\lambda = 0.01 \ V^{-1}$, encontre r_0 e o ganho de tensão no ponto de polarização.

$$\begin{split} V_t &= 2 \ V \\ k'_n \ W/L &= 1 \ mA/V^2 \\ V_{GS} &= 4 \ V \\ V_{DD} &= 10 \ V \\ R_D &= 3.6 \ k\Omega \end{split}$$

Exemplo 2 : Deseja-se projetar um estágio de amplificação com ganho de tensão de 5 V/V usando o circuito abaixo. Qual o valor de R_D para que a potência dissipada não exceda 1mW ?

Sugestão de Estudo:

- Sedra & Smith 5ed.

Cap. 4, item 4.1, 4.2, 4.3 e 4.5

Cap. 4, item 4.6 (até 4.6.7)

- Razavi. 2ed.

Cap. 6.

Exercícios correspondentes.

Aula 1 - Revisão MOS