1 - Quadrado de Políbio

Políbio foi um geógrafo e historiador da Grécia antiga e atribui-se a ele, a invenção de um sistema criptográfico que permite com facilidade transformar letras em números e, através de uma chave numérica simples, recriar o texto inicial. Este sistema simples de criptografia foi usado até o século XIX. O método de criptografar utilizando esse quadrado consiste em associar uma letra a dois números formados pelo número da linha e coluna de cada letra, deste modo, basta trocar a letra pelo respectivo número. Para dificultar que a mensagem fosse descriptografada, a numeração das linhas e colunas não era fixa.

RA: 82429891

	1	2	3	4	5	
1	Α	В	O	D	Е	
2	F	G	I	I/J	K	
3	L	М	N	0	Р	
4	Q	R	S	Т	U	
5	V	W	Х	Υ	Z	

Usando o quadrado acima como exemplo, a mensagem "Bom Dia" seria B=12 O=34 M=32 D=41 I=42 A=11. Assim, a mensagem cifrada obtida é 123432414211.

2 - Cifra ADFGX

A invenção do telégrafo no século XIX possibilitou a comunicação entre grandes distâncias sem a necessidade de um mensageiro. Isto fez com que as trocas de mensagens entre remetente e destinatário se tornassem mais seguras. Entretanto, o uso desta tecnologia trouxe alguns inconvenientes, como o vazamento de informações pelos operadores dos telégrafos ou ainda a possibilidade da linha telegráfica ser "grampeada" por parte dos inimigos. Com o intuito de evitar os problemas obtidos com a invasão da comunicação à distância, os alemães desenvolveram uma cifra com base no Quadrado de Políbio, o qual substitui os números 12345 pelas letras ADFGX, como poder ser visto na figura abaixo.

	A	D	F	G	X	
A	A	В	С	D	E	
D	F	G	Н	I/J	k	
F	L	М	N	0	P	
G	Q	R	S	T	U	
X	V	W	X	Y	Z	

Usando o quadrado acima como exemplo, neste caso, a mensagem "Boa Tarde" seria B=AD O=FG A=AA T=GG A=AA R=GD D=AG E=AX. Assim, a mensagem cifrada obtida é AD FG AA GG AA GD AG AX.

A mensagem cifrada é então organizada numa tabela baseada numa chave de tamanho variável de acordo com a dimensão da mensagem, podendo ser de qualquer tamanho, mas que não contenha letras repetidas. O passo seguinte é ordenar a chave por ordem alfabética e transpôr a mensagem cifrada.

Supondo que a chave criptográfica é a palavra "FRIO", obtém-se:

F	R	I	0	>	F	I	0	R
Α	D	F	G		Α	F	G	D
Α	Α	G	G		Α	G	G	Α
Α	Α	G	D		Α	G	D	Α
Α	G	Α	Χ		Α	Α	Χ	G

A mensagem final, a ser transmitida via rádio será então lida por colunas:

AA AA FG GA GG DX DA AG

Para ler a mensagem, o destinatário terá somente que inverter o processo, sabendo a chave utilizada e a composição do diagrama de substituição em uso.

3 - Exemplos de algoritmos de criptografia com chaves simétricas utilizados atualmente:

- **3.1 ChaCha20:** É uma cifra de fluxo de 256 bits, leve e de alto desempenho, frequentemente usada para proteger dados transmitidos online, como e-mails, mensagens, tráfego da web e arquivos sendo carregados para a nuvem. Desenvolvido por Daniel J. Bernstein, um criptologista matemático, o ChaCha20 é projetado para corrigir os pontos fracos de seu antecessor, o Salsa20, oferecendo segurança aprimorada e, ao mesmo tempo, mantém o desempenho ideal. O ChaCha20 criptografa informações usando uma chave exclusiva e um nonce (um número usado apenas uma vez) para garantir que cada mensagem seja criptografada de forma diferente. Esse método torna extremamente difícil para os invasores descriptografar os dados sem a chave secreta.
- **3.1 Blowfish:** Um algoritmo de bloco que foi projetado para ser rápido e eficiente, especialmente em sistemas embarcados. Ele usa tamanhos de chave variáveis de até 448 bits e é popular em aplicações de criptografia de dados. ornando-o ideal para aplicações tanto domésticas, quanto comerciais. O Blowfish foi desenvolvido em 1993 por Bruce Schneier como uma alternativa grátis mais rápida para os algoritmos criptográficos existentes.

4 - Exemplos de algoritmos de criptografia com chaves assimétricas utilizados atualmente:

- **4.1 Troca de chaves de Diffie—Hellman:** É um método de criptografia que estabelece um compartilhamento de chaves secreto que pode ser usado para troca de mensagens secretas dentro de um canal de comunicação público. Desenvolvido por Whitfield Diffie e Martin Hellman, foi um dos primeiros exemplos práticos de métodos de troca de chaves implementado dentro do campo da criptografia, tendo sido publicado em 1976. O método permite que duas partes que não possuem conhecimento prévio uma da outra, compartilhem uma chave secreta sob um canal de comunicação inseguro.
- **4.2 NTRU:** NTRU é um sistema de criptografia de chave pública assimétrica pós-quântica que usa criptografia baseada em redes para encriptar e desencriptar dados. Foi desenvolvido em 1996 pelos matemáticos J. Hoffstein, J. Pipher e Silverman. O NTRU é composto por dois algoritmos: NTRUEncrypt, para encriptação, e NTRUSign, para assinaturas digitais. O NTRU é resistente a ataques e tem um design que facilita a segurança prática e é considerado um sistema probabilístico porque usa um elemento aleatório para encriptar uma mensagem.