CME 307 / MS&E 311: Optimization

Gradient descent

Professor Udell

Management Science and Engineering Stanford

February 7, 2024

Outline

Classification

Unconstrained minimization

Analysis via Polyak-Lojasiewicz condition

Background: classification

classification problem: m data points

- feature vector $a_i \in \mathbf{R}^n$, i = 1, ..., m
- ▶ label $b_i \in \{-1, 1\}, i = 1, ..., m$

choose decision boundary $a^Tx = 0$ to separate data points into two classes

- $ightharpoonup a^T x > 0 \implies \text{predict class } 1$
- $ightharpoonup a^T x < 0 \implies \text{predict class -1}$

classification is correct if $b_i a_i^T x > 0$

Background: classification

classification problem: m data points

- feature vector $a_i \in \mathbf{R}^n$, i = 1, ..., m
- ▶ label $b_i \in \{-1, 1\}, i = 1, ..., m$

choose decision boundary $a^Tx = 0$ to separate data points into two classes

- $ightharpoonup a^T x > 0 \implies \text{predict class } 1$
- $ightharpoonup a^T x < 0 \implies \text{predict class -1}$

classification is correct if $b_i a_i^T x > 0$

- projective transformation transforms affine boundary to linear boundary
- \triangleright classification is invariant to scalar multiplication of x

Logistic regression

(regularized) logistic regression minimizes the finite sum

minimize
$$\sum_{i=1}^{m} \log(1 + \exp(-b_i a_i^T x)) + r(x)$$
 variable $x \in \mathbf{R}^n$

where

- ▶ $b_i \in \{-1, 1\}, a_i \in \mathbb{R}^n$
- ▶ $r: \mathbb{R}^n \to \mathbb{R}$ is a **regularizer**, e.g., $\|x\|^2$ or $\|x\|_1$

support vector machine (SVM) minimizes the finite sum

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^m \max(0, 1 - b_i a_i^T x) + \gamma \|x\|^2 \\ \text{variable} & x \in \mathbf{R}^n \end{array}$$

where $b_i \in \{-1,1\}$ and $a_i \in \mathbf{R}^n$.

support vector machine (SVM) minimizes the finite sum

minimize
$$\sum_{i=1}^{m} \max(0, 1 - b_i a_i^T x) + \gamma ||x||^2$$
 variable $x \in \mathbf{R}^n$

where $b_i \in \{-1,1\}$ and $a_i \in \mathbb{R}^n$. not differentiable!

support vector machine (SVM) minimizes the finite sum

minimize
$$\sum_{i=1}^{m} \max(0, 1 - b_i a_i^T x) + \gamma ||x||^2$$
 variable $x \in \mathbf{R}^n$

where $b_i \in \{-1,1\}$ and $a_i \in \mathbb{R}^n$. not differentiable!

how to solve?

support vector machine (SVM) minimizes the finite sum

minimize
$$\sum_{i=1}^{m} \max(0, 1 - b_i a_i^T x) + \gamma ||x||^2$$
 variable $x \in \mathbf{R}^n$

where $b_i \in \{-1,1\}$ and $a_i \in \mathbb{R}^n$. not differentiable!

how to solve?

- use subgradient method
- transform to conic form
- solve dual problem instead
- **smooth** the objective

Outline

Classification

Unconstrained minimization

Analysis via Polyak-Lojasiewicz condition

Unconstrained minimization

minimize
$$f(x)$$

- $ightharpoonup f: \mathbf{R}^n \to \mathbf{R}$ differentiable
- ▶ assume optimal value $f^* = \inf_x f(x)$ is attained (and finite)
- ightharpoonup assume a starting point $x^{(0)}$ is known

unconstrained minimization methods

produce sequence of points $x^{(k)}$, k = 0, 1, ... with

$$f(x^{(k)}) \rightarrow f^*$$

(we hope)

Gradient descent

minimize
$$f(x)$$

idea: go downhill

Algorithm Gradient descent

Given: $f: \mathbb{R}^d \to \mathbb{R}$, stepsize t, maxiters **Initialize:** x = 0 (or anything you'd like)

For: $k = 1, \ldots, maxiters$

update x:

$$x \leftarrow x - t \nabla f(x)$$

Gradient descent: choosing a step-size

- **constant step-size.** $t^{(k)} = t$ (constant)
- **b** decreasing step-size. $t^{(k)} = 1/k$
- **line search.** try different possibilities for $t^{(k)}$ until objective at new iterate

$$f(x^{(k)}) = f(x^{(k-1)} - t^{(k)} \nabla f(x^{(k-1)}))$$

decreases enough.

tradeoff: line search requires evaluating f(x) (can be expensive)

define
$$x^+ = x - t\nabla f(x)$$

- \blacktriangleright exact line search: find t to minimize $f(x^+)$
- ▶ the **Armijo rule** requires t to satisfy

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2$$

for some $c \in (0,1)$, e.g., c = .01.

define
$$x^+ = x - t\nabla f(x)$$

- ightharpoonup exact line search: find t to minimize $f(x^+)$
- ▶ the **Armijo rule** requires *t* to satisfy

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2$$

for some $c \in (0,1)$, *e.g.*, c = .01.

a simple **backtracking line search** algorithm:

- ightharpoonup set t=1
- ightharpoonup if step decreases objective value sufficiently, accept x^+ :

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2 \implies x \leftarrow x^+$$

otherwise, halve the stepsize $t \leftarrow t/2$ and try again

define
$$x^+ = x - t\nabla f(x)$$

- ightharpoonup exact line search: find t to minimize $f(x^+)$
- ▶ the **Armijo rule** requires t to satisfy

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2$$

for some $c \in (0, 1)$, *e.g.*, c = .01.

a simple backtracking line search algorithm:

- ightharpoonup set t=1
- \triangleright if step decreases objective value sufficiently, accept x^+ :

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2 \implies x \leftarrow x^+$$

otherwise, halve the stepsize $t \leftarrow t/2$ and try again

 \mathbf{Q} : can we can always satisfy the Armijo rule for some t?

define
$$x^+ = x - t\nabla f(x)$$

- \blacktriangleright exact line search: find t to minimize $f(x^+)$
- ▶ the **Armijo rule** requires t to satisfy

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2$$

for some $c \in (0, 1)$, *e.g.*, c = .01.

a simple backtracking line search algorithm:

- ightharpoonup set t=1
- \triangleright if step decreases objective value sufficiently, accept x^+ :

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2 \implies x \leftarrow x^+$$

otherwise, halve the stepsize $t \leftarrow t/2$ and try again

 \mathbf{Q} : can we can always satisfy the Armijo rule for some t?

A: yes! see gradient descent demo

Demo: gradient descent

https://github.com/stanford-cme-307/demos/blob/main/gradient-descent.ipynb

How well does GD work?

for $x \in \mathbf{R}^n$,

- $ightharpoonup f(x) = x^T x$
- $f(x) = x^T A x$ for $A \succeq 0$
- $f(x) = ||x||_1$ (nonsmooth but differentiable **almost** everywhere)
- f(x) = 1/x on x > 0 (strictly convex but not strongly convex)

https:

//github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb

Outline

Classification

Unconstrained minimization

Analysis via Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function $f: \mathbf{R} \to \mathbf{R}$ satisfies the **Polyak-Lojasiewicz condition** if

$$\frac{1}{2} \|\nabla f(x)\|^2 \ge \mu(f(x) - f^*)$$

Definition (Polyak-Lojasiewicz condition)

A function $f: \mathbf{R} \to \mathbf{R}$ satisfies the **Polyak-Lojasiewicz condition** if

$$\frac{1}{2} \|\nabla f(x)\|^2 \ge \mu(f(x) - f^*)$$

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f(x) = g(Ax) where $g : \mathbf{R}^m \to \mathbf{R}$ is strongly convex and $A : \mathbf{R}^n \to \mathbf{R}^m$ is linear. Then f is Polyak-Lojasiewicz.

Definition (Polyak-Lojasiewicz condition)

A function $f: \mathbf{R} \to \mathbf{R}$ satisfies the **Polyak-Lojasiewicz condition** if

$$\frac{1}{2}\|\nabla f(x)\|^2 \ge \mu(f(x) - f^*)$$

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f(x) = g(Ax) where $g : \mathbf{R}^m \to \mathbf{R}$ is strongly convex and $A : \mathbf{R}^n \to \mathbf{R}^m$ is linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even when m < n

Definition (Polyak-Lojasiewicz condition)

A function $f: \mathbf{R} \to \mathbf{R}$ satisfies the **Polyak-Lojasiewicz condition** if

$$\frac{1}{2}\|\nabla f(x)\|^2 \ge \mu(f(x) - f^*)$$

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f(x) = g(Ax) where $g : \mathbf{R}^m \to \mathbf{R}$ is strongly convex and $A : \mathbf{R}^n \to \mathbf{R}^m$ is linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even when m < n

Q: Are all Polyak-Lojasiewicz functions convex?

Definition (Polyak-Lojasiewicz condition)

A function $f : \mathbf{R} \to \mathbf{R}$ satisfies the **Polyak-Lojasiewicz condition** if

$$\frac{1}{2} \|\nabla f(x)\|^2 \ge \mu(f(x) - f^*)$$

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f(x) = g(Ax) where $g : \mathbf{R}^m \to \mathbf{R}$ is strongly convex and $A : \mathbf{R}^n \to \mathbf{R}^m$ is linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even when m < n

Q: Are all Polyak-Lojasiewicz functions convex?

A: No. A river valley is Polyak-Lojasiewicz but not convex.

why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity and yields simpler proofs

PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any stationary point of a Polyak-Lojasiewicz function is globally optimal.)

PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any stationary point of a Polyak-Lojasiewicz function is globally optimal.)

proof: if $\nabla f(\bar{x}) = 0$, then

$$0 = \frac{1}{2} \|\nabla f(x)\|^2 \ge \mu(f(\bar{x}) - f^*) \ge 0$$

 $\implies f(\bar{x}) = f^*$ is the global optimum.

strong convexity ⇒ Polyak-Lojasiewicz

Theorem

If f is μ -strongly convex, then f is μ -Polyak-Lojasiewicz.

strong convexity ⇒ Polyak-Lojasiewicz

Theorem

If f is μ -strongly convex, then f is μ -Polyak-Lojasiewicz.

proof: minimize the strong convexity condition over *y*:

$$\min_{y} f(y) \geq \min_{y} \left(f(x) + \nabla f(x)^{T} (y - x) + \frac{\mu}{2} ||y - x||^{2} \right)
f^{*} \geq f(x) - \frac{1}{2\mu} ||\nabla f(x)||^{2}
\frac{1}{2} ||\nabla f(x)||^{2} \geq \mu(f(x) - f^{*})$$

as minimum occurs for $y - x = -\nabla f(x)/\mu$

Types of convergence

objective converges

$$f(x^{(k)}) \to f^*$$

iterates converge

$$x^{(k)} \to x^\star$$

under

▶ strong convexity: objective converges \implies iterates converge proof: use strong convexity with $x = x^*$ and $y = x^{(k)}$:

$$f(x^{(k)}) - f^* \ge \frac{\mu}{2} ||x^{(k)} - x^*||^2$$

▶ Polyak-Lojasiewicz: not necessarily true (x^* may not be unique)

Rates of convergence

linear convergence with rate c

$$f(x^{(k)}) - f^* \le c^k (f(x^{(0)}) - f^*)$$

- looks like a line on a semi-log plot
- example: gradient descent on smooth strongly convex function
- sublinear convergence
 - looks slower than a line (curves up) on a semi-log plot
 - ightharpoonup example: 1/k convergence

$$f(x^{(k)}) - f^* \leq \mathcal{O}(1/k)$$

- example: gradient descent on smooth convex function
- example: stochastic gradient descent

Gradient descent converges linearly

Theorem

If $f: \mathbf{R}^n \to \mathbf{R}$ is μ -Polyak-Lojasiewicz, L-smooth, and $x^* = \operatorname{argmin}_x f(x)$ exists, then gradient descent with stepsize L

$$x^{(k+1)} = x^{(k)} - \frac{1}{L} \nabla f(x^{(k)})$$

converges linearly to f^* with rate $(1 - \frac{\mu}{L})$.

Gradient descent converges linearly: proof

proof: plug in update rule to *L*-smoothness condition

$$f(x^{(k+1)}) - f(x^{(k)}) \leq \nabla f(x^{(k)})^{T} (x^{(k+1)} - x^{(k)}) + \frac{L}{2} ||x^{(k+1)} - x^{(k)}||^{2}$$

$$\leq (-\frac{1}{L} + \frac{1}{2L}) ||\nabla f(x^{(k)})||^{2}$$

$$\leq -\frac{1}{2L} ||\nabla f(x^{(k)})||^{2}$$

$$\leq -\frac{\mu}{L} (f(x^{(k)}) - f^{*}) \rhd (\text{using PL})$$

decrement proportional to error \implies linear convergence:

$$f(x^{(k)}) - f^{\star} \leq (1 - \frac{\mu}{L})(f(x^{(k-1)}) - f^{\star})$$

$$\leq (1 - \frac{\mu}{L})^{k}(f(x^{(0)}) - f^{\star})$$

Practical convergence

► Gradient descent with optimal stepsize converges even faster.

$$f(x^{(k+1)}) = \inf_{\alpha} f(x^{(k)} - \alpha \nabla f(x^{(k)})) \le f(x^{(k)} - \frac{1}{L} \nabla f(x^{(k)}))$$

Practical convergence

▶ Gradient descent with optimal stepsize converges even faster.

$$f(x^{(k+1)}) = \inf_{\alpha} f(x^{(k)} - \alpha \nabla f(x^{(k)})) \le f(x^{(k)} - \frac{1}{L} \nabla f(x^{(k)}))$$

► Local vs global convergence

Practical convergence

Gradient descent with optimal stepsize converges even faster.

$$f(x^{(k+1)}) = \inf_{\alpha} f(x^{(k)} - \alpha \nabla f(x^{(k)})) \le f(x^{(k)} - \frac{1}{L} \nabla f(x^{(k)}))$$

- ► Local vs global convergence
- What does this proof technique tell us about the convergence of gradient descent on non-convex functions? On functions that are convex but not strongly convex?

Quiz

- ► A strongly convex function always satisfies the Polyak-Lojasiewicz condition
 - A. true
 - B. false
- Suppose $f: \mathbf{R} \to \mathbf{R}$ is *L*-smooth and satisfies the Polyak-Lojasiewicz condition. Then any stationary point $\nabla f(x) = 0$ of f is a global optimum:
 - $f(x) = \operatorname{argmin}_{y} f(y) =: f^{*}.$
 - A. true
 - B. false
- Suppose $f: \mathbf{R} \to \mathbf{R}$ is *L*-smooth and satisfies the Polyak-Lojasiewicz condition. Then gradient descent on f converges linearly from any starting point.
 - A. true
 - B. false