photo: Arizona

Artificial Intelligence

Data Mining, classification

Paweł Kasprowski, PhD, DSc.

Artificial Intelligence

- When there is no algorithmic solution of the problem
- The application *learns* to solve the problem
 - typically using some examples
- Intelligence is the ability to
 - learn based on given data
 - understand
 - use acquired knowledge to solve problems

Problems to be solved

Classification

- assign samples to predefined classes
- [photo of an animal -> species]
- [text -> author]
- [scan-path -> novice/expert]

Regression

- calculate a value for each sample
- [images of the house -> price of the house]
- [eye image -> gaze coordinates]

Conversion

- convert object into another object
- [image -> text description of the image]
- [voice recording -> text of the speech]

Task and method

- Task: find a function Y = f(X) where
 - X sample (input)
 - Y result class, value (output) label
- Method (learning by example):
 - take some number of samples X with known output Y (examples, labeled samples)
 - build the function based on these examples (learning process)
 - use the function to predict the label for unknown samples

Problem of "generality"

- It is relatively easy to create a function that correctly classifies all examples
- But is this function "general" enough?
 - is it able to correctly classify unknown samples?
- The answer is not trivial and that is why we have a lot of different classification methods
- "No free lunch" theorem

Over-fitting

- If the function (model) is optimized for the given data (given examples) it may have poor generality
- This problem is called over-fitting
- Solution is to simplify the model, e.g. stop learning even when it is not perfect for examples

The simplest algorithms

- K-Nearest Neighbors (kNN)
 - a new sample is classified as majority of its K nearest neighboring examples
- Linear Discriminant Analysis (LDA)
 - finds a linear equation separating positive and negative samples
- Naive Bayes
 - the class of a new sample is calculated based on examples using Bayes equation
- Decision Tree
 - the tree is built using examples by seaching for the most discriminative features
 - new samples are going through the tree reaching a leaf with the predicted class

More sophisticated algorithms

- Random Forest
 - a set of randomly generated decision trees voting for the final results
- Support Vector Machines (SVM)
 - recalculates examples into another space where they are easier to separate lineary (kernel trick)
- Neural Networks
 - based on neurons organized into layers

Hyperparameters

- Classification algorithms have parameters
 - (so called hyperparameters)
- kNN number of neighbors
- Random Forest number of trees
- SVM kernel function, parameters of the function, learning rate etc.
- Good choice of hyper parameters influences the quality of the model!
- Bad news: deep learning methods have A LOT hyper parameters

Scikit-learn

- Package implementing:
 - many popular classification algorithms
 - many classic methods for data handling
- General use:
 - load the dataset consisting of samples and their labels
 - create a model using one of the possible algorithms (classes)
 - train the model: model.fit(samples, labels)
 - use the model to predict classes:
 - predicted = model.predict(sample)

Universal example

python classifier

Creating a model

```
def classification(model_name,samples,labels,rangex,rangey):
models = {
    "KNN": KNeighborsClassifier(),
    "LDA": LinearDiscriminantAnalysis(),
    "NB": GaussianNB(),
    "TREE":DecisionTreeClassifier(),
    "RF":RandomForestClassifier(n estimators=20),
    "SVM":SVC(gamma='scale'),
    "PERC":Perceptron(max iter=2000),
    "GB":GradientBoostingClassifier()
model = models.get(model_name)
```


Using the model

```
# training the model
samples = np.array(samples)
labels = np.array(labels)
model.fit(samples, labels)
# classify all points in the matrix
all_points = [(x,y) for x in range(rangex) for y in range(rangey)]
all_points = np.array(all_points)
r = model.predict(all_points)
# fill the matrix with predictions
result = np.zeros([rangex,rangey])
for i in range(len(all_points)):
       result[all_points[i,0],all_points[i,1]]=r[i]
return result
```


Example for the iris dataset

iris.ipynb

import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
data = pd.read_csv('iris.data')

model = KNeighborsClassifier()
samples = data.values[:,0:4] # first four columns
labels = data.values[:,4] # the fifth column
model.fit(samples, labels)
predicted = model.predict([(5.9, 3.0, 5.1, 1.8)])
print("predicted",predicted)
> predicted ['Iris-virginica']

	sl	sw	pl	pw	iris
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Evaluating results

- Hyperparameters may be tuned
 - it is important to be able to check if the model is general
- First rule: never check the model using the same data that you used for training (examples)
 - over-fitting!
- The dataset should always be divided into:
 - training set (used to build the model)
 - test set (to check how it works for unknown samples)

Evaluation

- Dividing into training set and test set may be not enough!
 - we optimize the model (by tuning hyper parameters) for the given test set
- The safest way:
 - training set (for learning)
 - validation set (for hyper parameters tuning)
 - test set (for final evaluation)
 - the "holdout" dataset

Sklearn train_test_split

- (trainSamples, testSamples, trainLabels, testLabels) = sklearn.model_selection.train_test_split(samples, labels)
 iris.ipynb / Train Test Split
- Two pairs:
 - trainSamples, trainLabels
 - testSamples, testLabels
- Default: 75% train, 25% test
- Parameters:
 - train_size percent or number of samples
 - test_size percent or number of samples

Stratification

- Problem: proportion of samples for classes may differ in training and test sets
- For instance: 50-50-50 in the original set
 - training: 40-30-25
 - test: 10-20-25
- Effect: class0 will be treated as more probable!
- Solution: stratified division (maintain distribution)
- Parameter: stratify=labels

Check test samples

iris.ipynb / Check an error

Checking the test set

```
correct = 0;
predictedLabels = model.predict(testSamples)
for i in range(len(testSamples)):
  print(testLabels[i],"->",predictedLabels[i],end=' ')
  if(testLabels[i]==predictedLabels[i]):
    correct = correct + 1; print('OK')
  else:
    print('error!!!')
print("Correct: {} of {} accuracy = {:.2f}"
    .format(correct,len(testSamples),correct/len(testSamples)))
```


Cross-validation

- Dynamic division into training and test
 - the same examples are sometimes training and sometimes test samples
- 10-fold cross validation:
 - divide the whole dataset into 10 subsets
 - for each subset
 - train the model using the remaining 9 subsets
 - test the results using the chosen subset
 - average the results
- Folds are randomized but may be stratified
 - the same distribution of classes in each fold

Sklearn cross_validate

- iris.ipynb / Cross validation
 - sklearn.model_selection.cross_validate(model, samples, labels, cv=<number of folds>)
- Returns for each fold:
 - fit_time
 - score time
 - test_score
- Many parameters to check other metrics!

- Accuracy the number of correctly classified samples to all samples
 - a problem with unbalanced sets
 - if 90% of test samples is positive the blind classifier achieves 90% accuracy
- Precision the cost of false positives
 - not belonging to class predicted as belonging
- Recall the cost of false negatives
 - belonging to class predicted as not belonging
- F1-Score combination of precision and recall
- Cohen's kappa compares prediction with random prediction

Measures interpretation

- Example: We have built the model that diagnoses COVID-19 based on a genetic test
- For every eye movement sample the model returns:
 - H if a person is healthy
 - S when a person is sick
- We test the model using
 - 18 samples from sick people (S)
 - 82 samples from healthy people (H)
- We achieve 82% accuracy
 - is it bad or good?
 - it depends: we must examine a confusion matrix

Confusion matrix

Predicted as >> Real class	н	S
H	81	1
S	17	1

P N
TP FN
FP TN

Accuracy 0.82

H: S:

precision: 0.83 precision: 0.50

recall: 0.99 recall: 0.06

F1-score: 0.90 F1-score: 0.1

Predicted as >> Real class	н	S
H	80	2
S	15	3

P N
TP FN
FP TN

Accuracy 0.83

H: S:

precision: 0.84 precision: 0.60

recall: 0.98 recall: 0.17

F1-score: 0.90 F1-score: 0.26

Predicted as >> Real class	н	S
H	66	16
S	2	16

P N
TP FN
FP TN

Accuracy 0.82

H:

precision: 0.97

recall: 0.80

F1-score: 0.88

S:

precision: 0.50

recall: 0.89

F1-score: 0.64

Predicted as >> Real class	н	S
H	64	18
S	0	18

P N
TP FN
FP TN

Accuracy 0.82

H: S:

precision: 1.00 precision: 0.50

recall: 0.78 recall: 1.00

F1-score: 0.88 F1-score: 0.67

Example for three classes

Confusion matrix

[[24 3 9]

[32424]

[2 15 49]]

precision	recall	f1-score	support
0.83	0.67	0.74	36
0.57	0.47	0.52	51
0.60	0.74	0.66	66
	0.83 0.57	0.83 0.67 0.57 0.47	precision recall f1-score 0.83 0.67 0.74 0.57 0.47 0.52 0.60 0.74 0.66

micro avg	0.63	0.63	0.63	153
macro avg	0.67	0.63	0.64	153
weighted avg	0.64	0.63	0.63	153

Accuracy: 0.63

Scikit learn measures

- Useful functions from *sklearn.metrics*:
 - confusion matrix(labels, results)
 - classification_report(labels, results)
 - accuracy_score(labels, results)
 - precision_score(labels, results)
 - recall_score(labels, results)
 - cohen_kappa_score(labels, results)

– ...

Measures calculation

iris.ipynb / Measures calculation

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,cohen_kappa_score

```
predictedLabels = model.predict(testSamples)
print(confusion_matrix(testLabels, predictedLabels))
print(classification_report(testLabels, predictedLabels))
accuracy = accuracy_score(testLabels, predictedLabels)
print("Accuracy: {:.2f}".format(accuracy))
c_kappa = cohen_kappa_score(testLabels, predictedLabels)
print("Cohen's Kappa: {:.2f}".format(c_kappa))
```


Adding own scorers to cross validation

iris.ipynb / Adding own scorers to cross validation

from sklearn.metrics import make_scorer, precision_score, recall_score

```
p_scorer = make_scorer(precision_score, average='micro')
r_scorer = make_scorer(recall_score, average='micro')
my_scorer = {'precision': p_scorer, 'recall': r_scorer}
```

```
sklearn.model_selection.cross_validate(model, samples, labels, cv=5, scoring=my_scorer)
```


Summary

- Accuracy is often not enough
 - especially for unbalanced datasets
- Cohen's kappa is the reliable way to evaluate results
 - but has some drawbacks as well!
- The evaluation depends on the target we want to achieve
 - False Acceptance Rate (FAR=0)
 - no incorrectly classified healthy people
 - False Rejection Rate (FRR=0)
 - no incorrectly classified sick people

