Développement 22. Le théorème de Weierstrass par les polynômes de Bernstein

Théorème 1. Soit $f: [0,1] \longrightarrow \mathbf{C}$ une fonction continue. Pour $h \geqslant 0$, on pose $\omega(h) \coloneqq \sup\{|f(u) - f(v)| \mid u, v \in [0,1], |u-v| \leqslant h\}.$

Pour tout entier $n \ge 1$, on considère le polynôme

$$B_n(x) := \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f(k/n) \in \mathbf{C}[x].$$

Alors

- (i) la suite $(B_n)_{n \in \mathbb{N}}$ converge uniformément vers la fonction f sur [0,1];
- (ii) plus précisément, il existe une constante C>0 telle que

$$\forall n \geqslant 1, \qquad ||f - B_n||_{\infty} \leqslant C\omega(1/\sqrt{n}).$$

Preuve Montrons le point (i). On fixe un réel $x \in [0, 1]$. Soit $(X_i)_{i \in \mathbb{N}}$ une suite de variables aléatoires indépendantes de loi de Bernoulli de paramètre x. Soit $n \ge 1$ un entier. Grâce au théorème de transfert, la variable aléatoire $S_n := X_1 + \cdots + X_n$ vérifie

$$\mathbf{E}\left[f\left(\frac{S_n}{n}\right)\right] = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f(k/n) = B_n(x)$$

de telle sorte que

$$f(x) - B_n(x) = \mathbf{E}\left[f(x) - f\left(\frac{S_n}{n}\right)\right]. \tag{1}$$

Soit $\delta \in \]0,1[$. L'inégalité triangulaire permet d'écrire

$$|f(x) - B_n(x)| \leq \mathbf{E} \left[\left| f(x) - f\left(\frac{S_n}{n}\right) \right| \right]$$

$$= \mathbf{E} \left[\left| f(x) - f\left(\frac{S_n}{n}\right) \right| \mathbf{1}_{|x - S_n/n| \leq \delta} + \left| f(x) - f\left(\frac{S_n}{n}\right) \right| \mathbf{1}_{|x - S_n/n| > \delta} \right]$$

$$\leq \omega(\delta) + 2\|f\|_{\infty} \mathbf{P} \left[\left| x - \frac{S_n}{n} \right| \geq \delta \right].$$

Comme $\mathbf{E}[S_n/n]=x$, l'inégalité de Bienaymé-Tchebychev donne

$$\mathbf{P}\left[\left|f(x) - f\left(\frac{S_n}{n}\right)\right| \geqslant \delta\right] \leqslant \frac{\operatorname{Var}[S_n/n]}{\delta^2} = \frac{1}{\delta^2} \frac{x(1-x)}{n} \leqslant \frac{1}{4n\delta^2}.$$

Avec cette dernière relation, on trouve alors

$$|f(x) - B_n(x)| \le \omega(\delta) + \frac{\|f\|_{\infty}}{2n\delta^2}.$$

Ceci étant vrai pour tout réel $x \in [0, 1]$, on obtient

$$||f - B_n||_{\infty} \leq \omega(\delta) + \frac{||f||_{\infty}}{2n\delta^2}.$$

On en déduit $\limsup_{n\to+\infty} \|f-B_n\|_{\infty} \leq \omega(\delta)$. Comme la fonction f est continue et par le théorème de Heine, son module $\omega(\delta)$ tend vers zéro lorsque $\delta \longrightarrow 0$. Ceci conclut que $\|f-B_n\|_{\infty} \longrightarrow 0$.

Montrons désormais le point (ii). Soit $x \in [0,1]$ un réel fixé. Soit $n \ge 1$ un entier.

Le lemme appliqué aux quantités $\lambda = \sqrt{n} \, |x - S_n/n|$ et $h = 1/\sqrt{n}$ nous fournit

$$\omega\left(\left|x-\frac{S_n}{n}\right|\right) \leqslant \left(\sqrt{n}\left|x-\frac{S_n}{n}\right|+1\right)\omega\left(\frac{1}{\sqrt{n}}\right).$$

En reprenant l'égalité (1) puis avec l'inégalité de Cauchy-Schwarz, on obtient

$$|f(x) - B_n(x)| \leq \mathbf{E} \left[\omega \left(\left| x - \frac{S_n}{n} \right| \right) \right]$$

$$\leq \omega \left(\frac{1}{\sqrt{n}} \right) \mathbf{E} \left[\sqrt{n} \left| x - \frac{S_n}{n} \right| + 1 \right]$$

$$\leq \omega \left(\frac{1}{\sqrt{n}} \right) \left[1 + \sqrt{n} \left\| x - \frac{S_n}{n} \right\|_2 \right]$$

$$= \omega \left(\frac{1}{\sqrt{n}} \right) \left[1 + \sqrt{n \operatorname{Var}[S_n/n]} \right]$$

$$= \omega \left(\frac{1}{\sqrt{n}} \right) \left[1 + \sqrt{n} \sqrt{\frac{x(1-x)}{n}} \right] \leq \omega \left(\frac{1}{\sqrt{n}} \right) \left[1 + \frac{1}{2\sqrt{n}} \right] \leq \frac{3}{2} \omega \left(\frac{1}{\sqrt{n}} \right).$$

Ceci montre que

$$||f - B_n||_{\infty} \leqslant C\omega(1/\sqrt{n})$$
 avec $C := 3/2$.

Lemme 2. Pour tous réels $\lambda, h \ge 0$, on a $\omega(\lambda h) \le (\lambda + 1)\omega(h)$.

Preuve Montrons d'abord que la fonction ω est sous-additive. Soient $h_1, h_2 \ge 0$ deux réels. Soient $u, v \in [0, 1]$ deux réels tels que $|u - v| \le h_1 + h_2$. Quitte à échanger les rôles des réels u et v, on peut supposer que v > u de sorte que $v - u \le h_1 + h_2$.

- S'il existe un indice $i \in \{1, 2\}$ tel que $v u \leq h_i$, alors $|f(v) f(u)| \leq \omega(h_i)$.
- Sinon on a $v-u>h_1$ et $v-u>h_2$, alors on peut écrire

$$v - u = v - (u + h_1) + u + h_1 - u$$
 avec
$$\begin{cases} 0 < v - (u + h_1) \le h_2, \\ 0 \le u + h_1 - u = h_1 \end{cases}$$

et on obtient

$$|f(v) - f(u)| \le |f(v) - f(u + h_1)| + |f(u + h_1) - f(u)|$$

 $\le \omega(h_2) + \omega(h_1).$

Dans les deux cas, on a $|f(v) - f(u)| \le \omega(h_1) + \omega(h_2)$. En passant à la borne supérieure, on obtient $\omega(h_1 + h_2) \le \omega(h_1) + \omega(h_2)$.

Ceci étant montré, une récurrence immédiate montre que $\omega(rh) \leq r\omega(h)$ pour tout entier $r \in \mathbb{N}$ et tous réels $h \geq 0$. Enfin, soient $\lambda, h \geq 0$ deux réels. Comme la fonction ω est croissante et avec ce qui précède, on conclut

$$\omega(\lambda h) \leq \omega((|\lambda|+1)h) \leq (|\lambda|+1)\omega(h) \leq (\lambda+1)\omega(h).$$

^{1]} Hervé Queffélec et Claude Zuily. Analyse pour l'agrégation. 5e édition. Dunod, 2020.