DATA MINING Input Features Classification Selection Problem

CASE STUDY

Abstract

The case study involves problem statement, methodology, results, analysis and conclusions regarding features selection during classification problems.

SUBMITTED TO: DR. SAMAN RIAZ

GROUP MEMBERS

MUHAMMAD FAIZAN ABID (098)

MUHAMMAD USMAN (101)

ZEESHAN MEHDI (007)

SYED MUHAMMAD AMMAR (120)

WAHAJ ALI (FALL-15 / 053 / BSEE)

Table of Contents

Problem	2
Solution	6
PCA	7
Chi-Square Test	8
sMethodology	Error! Bookmark not defined.
Flow-chart:	9
Numeric-Dataset:	10
Preprocessing	12
Categorical Dataset:	15
Preprocessing	17
Result & Analysis	20
Numeric Dataset Results & Analysis	20
Categorical Dataset Results & Analysis	22
CONCLUSION	24

Problem

In this growing era of technology, the data itself is making a high significance in every field either it is business, medicine, stock market, education etc. With growing technology, data itself is growing on a very mass scale which can be a problem for data analyst or data scientist as it is very difficult to manipulate "high dimensionality" data-set.

The core problems arsis with high dimensionality data-set are:

Under-Fitting

 If a data analyst tries to reduce the dimensions of the data without using any proper technique, by using his own respective sense to related field of data, this can be result in under-fitting as the model train on very a smaller number of features will not cover most of the data points.

Underfitted

• Over-Fitting

 It is a situation where the respective data analyst tries to cover up all features (including almost every feature), but somehow the train model tried to cover every data point which decrease the accuracy of overall model as the model is confused among the importance of features.

Overfitted

Complexity

o In the process of Extraction Transformation Loading (ETL), it is commonly seen that data-set with high number of attributes increase the load on machine while pre-processing. Also, once a model is built, the model itself holds too much complexity to generate a result due to high number of attributes.

• Inconsistency & Redundancy:

 Most of the times, we ignore feature engineering (which one to include and which one to exclude) which may cause inaccurate results by trained model as some features contains data inconsistency or redundant data which effects accuracy of model. It is important to highlight such features and to manipulate them respectively them.

• Time Consumption:

 Data-sets with high number of dimensions are used to exert load on machine while preprocessing and model training which ultimately cost time consumption and reduce overall time efficiency of the system.
 So, it is highly necessary to reduce number of features in a rightful manner in order to keep system optimized.

• Data Representation:

It is nearly impossible to represent data with large number of features.
 Suppose a data with 50 number of features, you have to make at least 10 different graphs in order to cover all features. In today's world, data representation is very important to create insights in order to grow business.

Solution

In order to tackle the problem of high dimensionality dataset, it is proposed to use some techniques with respect to type of your data in order to reduce dimensionality.

So multiple approaches can be used for dimensionality reduction. However, in this case study we will be using "Principal Component Analysis (PCA)" and "Chi-Square Test (x2)".

PCA

The main idea of principal component analysis (PCA) is to reduce the dimensionality of a data set consisting of many variables correlated with each other, either heavily or lightly, while retaining the variation present in the dataset, up to the maximum extent. The same is done by transforming the variables to a new set of variables, which are known as the principal components (or simply, the PCs) and are orthogonal, ordered such that the retention of variation present in the original

variables decreases as we move down in the order. So, in this way, the 1st principal component retains maximum variation that was present in the original components. The principal components are the eigenvectors of a covariance matrix, and hence they are orthogonal.

Importantly, the dataset on which PCA technique is to be used must be scaled. The results are also sensitive to the relative scaling. As a layman, it is a method of summarizing data. Imagine some juice bottles on a dining table. Each juice bottle is described by its attributes like color, strength, expiry, etc. But redundancy will arise because many of them will measure related properties. So, what PCA will do in this case is summarize each juice bottle in the stock with less characteristics.

Chi-Square Test

A chi-square test is used in statistics to test the independence of two events. Given the data of two variables, we can get observed count O and expected count E. Chi-Square measures how expected count E and observed count O deviates each other.

Let's consider a scenario where we need to determine the relationship between the independent category feature (predictor) and dependent category feature(response). In feature selection, we aim to select the features which are highly dependent on the response.

When two features are independent, the observed count is close to the expected count, thus we will have smaller Chi-Square value. So high Chi-Square value

indicates that the hypothesis of independence is incorrect. In simple words, higher the Chi-Square value the feature is more dependent on the response and it can be selected for model training.

Methodology

Flow-chart:

Numeric-Dataset:

Our first data-set is of Breast Cancer.

(Snippet of Data-set)

Total # of Rows: 569

Total # of columns: 31 (without target class)

Names of features (all features hold continuous data):

- 1. mean radius
- 2. mean radius
- 3. mean texture

- 4. mean perimeter
- 5. mean area
- 6. mean smoothness
- 7. mean compactness
- 8. mean concavity
- 9. mean concave points
- 10.mean symmetry
- 11.mean fractal dimension
- 12.radius error
- 13.texture error
- 14.perimeter error
- 15.area error
- 16.smoothness error
- 17.compactness error
- 18.concavity error
- 19.concave points error
- 20.symmetry error
- 21.fractal dimension error
- 22.worst radius
- 23.worst texture
- 24.worst perimeter
- 25.worst area
- 26.worst smoothness
- 27.worst compactness
- 28.worst concavity
- 29.worst concave points
- 30.worst symmetry
- 31.worst fractal dimension

Target Class: Is_Cancer

Target State: Binary (0 or 1)

Preprocessing

For every model training, pre-processing steps are very important. Coming towards this data-set, this data-set holds all numeric values (continuous data). So, in order to preprocess this data, there are multiple steps.

First of all, we will cater null values if there any by using mean method. Also, different methods can also be used to fill null values.

So now, after this step our data looks clean enough to proceed. Now coming toward most important step is "dimensionality reduction". By looking at this data, we can suggest PCA algorithm as it works best on the continuous data.

PCA steps: transform an $N \times d$ matrix X into an $N \times m$ matrix Y:

- Centralized the data (subtract the mean).
- □Calculate the $d\times d$ covariance matrix: $C = \frac{1}{N-1}X^TX$
 - $C_{i,j} = \frac{1}{N-1} \sum_{q=1}^{N} X_{q,i} X_{q,j}$

 - \Box $C_{i,j}$ (off-diagonal) is the covariance between variables i and j.
- □Calculate the eigenvectors of the covariance matrix (orthonormal).

As our current data-set holds 31 features (mentioned in Result & Analysis), we will convert them into 5 new features which will hold most of the information. One thing very important here to standardization of the data as it effects PCA performance.

Here is the snippet of data before standardization.

:		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture	worst perimeter	worst area	w smoothn
	0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871	 25.380	17.33	184.60	2019.0	0.16
	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667	 24.990	23.41	158.80	1956.0	0.12
	2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999	 23.570	25.53	152.50	1709.0	0.14
	3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744	 14.910	26.50	98.87	567.7	0.20
	4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883	 22.540	16.67	152.20	1575.0	0.13
	564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623	 25.450	26.40	166.10	2027.0	0.14
	565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533	 23.690	38.25	155.00	1731.0	0.11
	566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648	 18.980	34.12	126.70	1124.0	0.11
	567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016	 25.740	39.42	184.60	1821.0	0.16
	568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884	 9.456	30.37	59.16	268.6	80.0

569 rows × 30 columns

Here is snippet of data after standardization

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture	worst perimeter
0	1.097064	-2.073335	1.269934	0.984375	1.568466	3.283515	2.652874	2.532475	2.217515	2.255747	 1.886690	-1.359293	2.303601
1	1.829821	-0.353632	1.685955	1.908708	-0.826962	-0.487072	-0.023846	0.548144	0.001392	-0.868652	 1.805927	-0.369203	1.535126
2	1.579888	0.456187	1.566503	1.558884	0.942210	1.052926	1.363478	2.037231	0.939685	-0.398008	 1.511870	-0.023974	1.347475
3	-0.768909	0.253732	-0.592687	-0.764464	3.283553	3.402909	1.915897	1.451707	2.867383	4.910919	 -0.281464	0.133984	-0.249939
4	1.750297	-1.151816	1.776573	1.826229	0.280372	0.539340	1.371011	1.428493	-0.009560	-0.562450	 1.298575	-1.466770	1.338539
564	2.110995	0.721473	2.060786	2.343856	1.041842	0.219060	1.947285	2.320965	-0.312589	-0.931027	 1.901185	0.117700	1.752563
565	1.704854	2.085134	1.615931	1.723842	0.102458	-0.017833	0.693043	1.263669	-0.217664	-1.058611	 1.536720	2.047399	1.421940
566	0.702284	2.045574	0.672676	0.577953	-0.840484	-0.038680	0.046588	0.105777	-0.809117	-0.895587	 0.561361	1.374854	0.579001
567	1.838341	2.336457	1.982524	1.735218	1.525767	3.272144	3.296944	2.658866	2.137194	1.043695	 1.961239	2.237926	2.303601
568	-1.808401	1.221792	-1.814389	-1.347789	-3.112085	-1.150752	-1.114873	-1.261820	-0.820070	-0.561032	 -1.410893	0.764190	-1.432735
569 r	ows × 30 c	olumns											

So now we split data into training & testing data and perform PCA separately. After implementing PCA, we get data-set with 5 PCA-Components.

Training Data:

	PCA-1	PCA-2	PCA-3	PCA-4	PCA-5
0	-2.158330	1.698969	-1.095885	-1.163401	-0.567506
1	3.762117	0.931613	3.734847	-1.581371	-2.467616
2	-2.213925	-1.836971	-0.238475	-0.974115	0.584291
3	1.599827	2.203594	-3.156443	-0.169390	-1.109276
4	1.650250	1.459177	-1.917315	1.284165	-0.939887
450	-1.248698	0.769058	0.899252	4.002755	-0.864534
451	-4.551813	-2.781786	1.164885	-0.194569	0.239992
452	-3.221108	-2.247268	0.041821	-1.162988	1.304741
453	-4.643109	-0.284077	1.652673	-0.107984	-2.034921
454	12.921333	2.684580	6.269831	-1.404877	-3.142794

455 rows × 5 columns

Testing Data:

	PCA-1	PCA-2	PCA-3	PCA-4	PCA-5
0	0.525166	0.321703	-0.952458	-0.433863	1.022118
1	-1.736773	0.782417	2.475560	1.275663	2.308672
2	6.570045	-1.911929	0.005279	-0.713947	-0.484667
3	3.075021	-1.368350	2.682932	-1.033881	-0.536782
4	-0.839703	-2.074784	-0.211020	-0.214358	-0.444422
109	8.900092	-1.302009	1.622525	1.010093	-0.023199
110	0.988026	1.011470	0.580263	1.960171	0.588477
111	4.398378	6.175283	-3.050683	3.228339	0.270585
112	2.107139	0.936916	1.443023	-0.978948	-1.190131
113	-1.562892	1.190187	-1.807731	1.332132	-0.341807

114 rows x 5 columns

So now we are good to proceed towards model fitting. As this is classification problem so we will be using three different models.

- 1. Decision Tree
- 2. Logistic Regression

The performance is discussed in Result and Analysis part.

Categorical Dataset:

Our second data-set is of Telco Customer.

(Snippet of Data-set)

Total # of Rows: 7043

Total # of columns: 20 (without target class)

Names of features:

- 1. customerID (categorical)
- 2. gender (categorical)
- 3. SeniorCitizen (categorical)
- 4. Partner (categorical)
- 5. Dependents (categorical)
- 6. Tenure (integer)
- 7. PhoneService (categorical)
- 8. MultipleLines (categorical)
- 9. InternetService (categorical)
- 10. OnlineSecurity (categorical)
- 11. OnlineBackup (categorical)
- 12. DeviceProtection (categorical)
- 13. TechSupport (categorical)
- 14. StreamingTV (categorical)
- 15. StreamingMovies (categorical)
- 16. Contract (categorical)
- 17. PaperlessBilling (categorical)
- 18. PaymentMethod (categorical)
- 19. Monthly Charges (continuous)
- 20. TotalCharges (continuous)

Target Class: Churn (categorical)

Target State: Binary (Yes or No)

Preprocessing

For every model training, pre-processing steps are very important. Coming towards this data-set, this data-set holds most of features as categorical and a few as numerical or continuous. So, in order to preprocess this data, there are multiple steps.

First of all, we remove customerID, numerical and continuous features from data to make data fully categorical.

After that, we cater null values if there any by using mode method. Also, different methods can also be used to fill null values.

gender	SeniorCitizen	Partner	Dependents	Phone Service	MultipleLines	InternetService	Online Security	OnlineBackup	DeviceProtection	Tech Support	Strea
Female	0	Yes	No	No	No phone service	DSL	No	Yes	No	No	
Male	0	No	No	Yes	No	DSL	Yes	No	Yes	No	
Male	0	No	No	Yes	No	DSL	Yes	Yes	No	No	
Male	0	No	No	No	No phone service	DSL	Yes	No	Yes	Yes	
Female	0	No	No	Yes	No	Fiber optic	No	No	No	No	
Male	0	Yes	Yes	Yes	Yes	DSL	Yes	No	Yes	Yes	
Female	0	Yes	Yes	Yes	Yes	Fiber optic	No	Yes	Yes	No	
Female	0	Yes	Yes	No	No phone service	DSL	Yes	No	No	No	
Male	1	Yes	No	Yes	Yes	Fiber optic	No	No	No	No	
Male	0	No	No	Yes	No	Fiber optic	Yes	No	Yes	Yes	

So now, after this step our data looks clean enough to proceed. Now coming toward most important step is "dimensionality reduction". By looking at this data, we can suggest Chi-Square Test as it works best on the categorical data.

$$\chi^2 = \sum \frac{(O - E)^2}{E}$$

Where:

 χ^2 = Chi Square obtained Σ = the sum of

 \overline{O} = observed score

E =expected score

Let's take a view of result of chi-square test which tell us about features importance. The features are arranged based on p-values (ascending order).

FEATURES	P-VALUES
TechSupport	1.186565e-95
OnlineSecurity	1.619912e-95
Contract	1.127358e-82
InternetService	3.154657e-62
OnlineBackup	1.537075e-50
DeviceProtection	6.000278e-36
Dependents	3.870061e-26
SeniorCitizen	2.817944e-25
PaperlessBilling	8.276605e-20

Partner	6.505617e-16
PaymentMethod	1.928091e-10
StreamingMovies	9.883292e-04
MultipleLines	2.621376e-03
StreamingTV	2.556954e-02
gender	4.304357e-01
PhoneService	6.710351e-01

So, we can clearly see that the most important feature is "Tech Support". Now we finalized our final data-set by picking up top 8 features.

The dataset is then split into training and testing data. Random forest classifier is applied to gain the predictions (results).

The performance is discussed in Result and Analysis part.

Result & Analysis

In this part of case study, we will be covering the main aspects with respect to performance. The analysis will be done with respect to time complexity of model and confusion matrix of model.

Numeric Dataset Results & Analysis

TRAINING TIME

Models	Training Time with	Training Time	Gain With PCA
	PCA	without PCA	
Decision Tree	3.99ms	13ms	69.31%
Logistic Regression	7.99ms	75.6ms	89.44%

PREDICTION TIME

Models	Prediction Time with PCA	Prediction Time without PCA	Gain with PCA
Decision Tree	997µs	998µs	0.11%
Logistic Regression	997μs	1.01ms	1.29%

SIMPLE ACCURACY

Models	Simple Accuracy with PCA	Simple Accuracy without PCA	Gain with PCA
Decision Tree	0.9	0.89	1.12%
Logistic Regression	0.92	0.86	6.53%

PRECISION SCORE

Models	Precision Score with PCA	Precision Score without PCA	Gain with PCA
Decision Tree	0.87	0.85	2.3%
Logistic Regression	0.9	0.87	3.4%

RECALL SCORE

Models	Recall Score with PCA	Recall Score without PCA	Gain with PCA
Decision Tree	1	1	0%
Logistic Regression	1	0.93	7%

F1-SCORE

Models	F1-Score with PCA	F1-Score without PCA	Gain with PCA
Decision Tree	0.94	0.91	3.2%
Logistic Regression	0.95	0.9	5.27%

Categorical Dataset Results & Analysis

TRAINING TIME

Models	Training Time with	Training Time	Gain with Chi-
	Chi-Square Test	without Chi-	Square Test
		Square Test	
Random Forest	404ms	1.1s	63.28%

SIMPLE ACCURACY

Models	Simple Accuracy with Chi-Square Test	Simple Accuracy without Chi- Square Test	Gain with Chi- Square Test
Random Forest	0.81	0.7	14%

PRECISION SCORE

Models	Precision Score with Chi-Square Test	Precision Score without Chi-Square Test	Gain with Chi- Square Test
Random Forest	0.61	0.42	31.15%

RECALL SCORE

Models	Recall Score with Chi-Square Test	Recall Score without Chi- Square Test	Gain with Chi- Square Test
Random Forest	0.6	0.52	16.13%

F1-SCORE

Models	F1-Score with Chi- Square Test		Gain with Chi- Square Test
Random Forest	0.61	0.46	24.6%

CONCLUSION

From the case study, we came to conclusion that feature selection is a very important and effective step in data-preprocessing as it boosts your methodology in terms of time efficiency, model accuracy and data representation. There are multiple feature selection techniques which can be used with respect to type of data you are treating.