Banker's Algorithm Complexity Analysis

Shoham Chakraborty

1004351 | CI03

From a quick analysis we can see the following time complexities:

Function Name	Time Complexity
Banker ()	O(1)
setMaximumDemand()	O(numberOfCustomers *
	numberOfResources)
requestResources ()	O(numberOfResources)
releaseResources()	O(numberOfResources)

We can see that the time complexities of functions are smaller compared to the complexity of the checkSafe() function, and hence can be ignored.

In checkSafe() we have two loops - the outer while() loop and the inner loop.

For the inner loop we have three components — for loop and the if statement, and updating the values of work. The resulting complexity from these statements is O(numberOfCustomers * numberOfResources). The analysis in pseudocode is as follows:

```
for I = 1 to N do // O(numberOfCustomers)
   if ((not FINISH[i]) and
        NEEDi <= WORK) then { // O(numberOfResources)
        WORK = WORK + ALLOCATION_i; // O(numberOfResources)
        FINISH[i] = true;
        NOCHANGE = false;
}

Complexity
= O(numberOfCustomers * (numberOfResources + numberOfResources))
= O(numberOfCustomers * numberOfResources)</pre>
```

This inner loop is wrapped in an outer REPEAT loop (implemented as a while loop). In the worst possible case, where the last entry satisfies – leading to every process needing to be evaluated. In this case, the loop will take O (numberOfCustomers) time.

Hence the resulting time complexity is:

Complexity = O(numberOfCustomers * numberOfCustomers * numberOfResources)

 $Resource\ Used:\ https://cis.temple.edu/~ingargio/old/cis307f95/readings/deadlock.html$