REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION OCOMO EXAMEN DU BACCALAUREAT SESSION 2018 Session principale Expreuve: Mathématiques Section: Sciences de l'informatique Coefficient de l'épreuve: 3

Le sujet comporte 4 pages, la page 4/4 est à rendre avec la copie

Exercice 1 (4 points)

1) Résoudre dans l'ensemble ${\mathbb C}$ des nombres complexes, l'équation

$$z^2 - (1+i)z + i = 0$$

- 2) a) Montrer que pour tout z non nul, $z + \frac{1}{z} = 1 \iff z^2 z + 1 = 0$.
 - b) Résoudre alors dans \mathbb{C} les deux équations : $z + \frac{1}{z} = 1$ vet $z + \frac{1}{z} = i$
- 3) On considère le polynôme $P(z) = z^4 (1+i)z^3 + (2+i)z^2 (1+i)z + 1$
 - a) Vérifier, que pour tout nombre complexe z non nul, on a :

$$\frac{P(z)}{z^{2}} = \left(z + \frac{1}{z}\right)^{2} - \left(1 + i\right)\left(z + \frac{1}{z}\right) + i$$

b) Résoudre alors dans \mathbb{C} , en posant $Z=z+\frac{1}{z}$, l'équation P(z)=0

Exercice 2 (4 points)

On considère les deux matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 et $B = I_3 + A$ où I_3 désigne la matrice unité d'ordre 3.

- 1) Montrer que $A^2 = 3A$.
- 2) a) En développant, calculer les produits $(4I_3 A) \times B$ et $B \times (4I_3 A)$.
 - b) En déduire que B est inversible et déterminer B^{-1} .

3) on considère le système (S) suivant :

$$\begin{cases} 2x+y+z=3\\ x+2y+z=-1 \text{ où } x, y \text{ et } z \text{ sont des nombres réels}\\ x+y+2z=1 \end{cases}$$

- a) Écrire (S) sous la forme matricielle.
- b) Résoudre alors le système (S).

Exercice 3 (6 points)

On considère les deux suites d'entiers naturels (x_n) et (y_n) définies sur \mathbb{N} par :

$$x_0 = 5$$
 et $x_{n+1} = 3x_n - 2$
 $y_0 = 1$ et $y_{n+1} = 3y_n + 8$

- 1) On définit la suite (u_n) , par $u_n = x_n 1$ pour tout $n \in \mathbb{N}$
 - a) Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - b) En déduire que pour tout entier naturel n, $x_n = 4 \times 3^n + 1$.
- 2) a) Montrer que $PGCD(x_n, x_{n+1})$ divise 2.
 - b) En déduire que $PGCD(x_n, x_{n+1}) = 1$.
- 3) a) Montrer, par récurrence, que pour tout entier naturel n, $5x_n 4y_n = 21$.
 - b) En déduire l'expression de y_n en fonction de n.
 - c) Déterminer les valeurs possibles du $PGCD(x_n, y_n)$.
- 4) a) Donner, selon les valeurs de l'entier naturel n, le reste de la division euclidienne de 3" par 7.
 - b) Montrer que si n = 5[6] alors $PGCD(x_n, y_n) = 7$.
 - c) Déterminer $PGCD(x_{2018}, y_{2018})$.

Exercice 4 (6 points)

Pour tout entier $n \in \mathbb{N}^*$, on considère la fonction $f_n : \mathbb{R} \to \mathbb{R}$ définie par $f_n(x) = e^{\frac{-x}{n}}$ et C_n sa courbe représentative dans un repère orthonormé $\left(O, \vec{i}, \vec{j}\right)$ du plan.

- 1) a) dresser le tableau des variations de f_n .
 - b) Vérifier que toutes les courbes C_n passent par le point J(0, 1).
 - c) Pour $n \in \mathbb{N}^*$, étudier la position relative de C_n et C_{n+1} sur chacun des intervalles $]-\infty,0]$ et $[0,+\infty[$.
- 2) Dans la figure en annexe, on a construit les courbes C_1 et C_3 ainsi que la droite Δ : y = x dans le repère $\left(O, \vec{i}, \vec{j}\right)$
 - a) Recopier puis compléter les phrases suivantes :
 - « la courbe tracée en trait interrompu est celle de »
 - « la courbe tracée en trait continue est celle de »
 - b) Tracer alors dans le même repère la courbe C_2 de la fonction f_2 .
- 3) On considère la fonction g_n définie sur $[0,+\infty[$ par $g_n(x)=f_n(x)-x$
 - a) Étudier les variations de g_n .
 - b) Montrer qu'il existe un seul réel $x_n \in \left]0$, $1\left[\text{ tel que }g_n\left(x_n\right)=0\right]$.
 - c) Vérifier que x_n est l'abscisse du point d'intersection de la courbe C_n de f_n et la droite Δ .
 - d) Placer x_1 , x_2 et x_3 sur l'axe des abscisses.
- 4) a) Montrer que $g_{n+1}(x_n) = e^{\frac{-x_n}{n+1}} e^{\frac{-x_n}{n}}$
 - b) En déduire que $g_{n+1}(x_n) > g_{n+1}(x_{n+1})$, puis conclure que (x_n) est croissante.
 - c) Déduire que la suite (x_n) est convergente et déterminer sa limite.

Nom et Prénom :		Section: N° d*inscription: Série: Série:	Signatures des surveillants
Date et lieu de naissance :		Nom et Prénom :	
N N N N N N N N N N N N N N N N N N N		Date et lieu de naissance :	,
V	×		

Épreuve : Mathématiques - Section : Sciences de l'informatique -Session principale - 2018

Annexe à rendre avec la copie

