FMI, Info, Anul II, 2018-2019 Programare logică

Seminar 5 Forma prenex. Skolemizare. Herbrandizare

Teorie pentru S4.1:

O formulă φ este în **formă rectificată** dacă:

- (i) nici o variabilă nu apare și liberă și legată;
- (ii) cuantificatori distincți leagă variabile distincte.

Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

O formulă prenex este o formulă de forma $Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi$ unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, \dots, n\}, x_1, \dots, x_n$ sunt variabile distincte şi φ nu conține cuantificatori.

Pentru o formulă rectificată putem obține o formulă echivalentă în formă prenex astfel:

• Se înlocuiesc \rightarrow și \leftrightarrow :

$$\varphi \to \psi \quad \exists \quad \neg \varphi \lor \psi$$
$$\varphi \leftrightarrow \psi \quad \exists \quad (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$$

• Se aplică următoarele echivalențe:

$$\neg\exists x\,\neg\varphi\quad \vdash\!\vdash \forall x\,\varphi\qquad \qquad \forall x\,\varphi\wedge\forall x\,\psi\quad \vdash\!\vdash \forall x\,(\varphi\wedge\psi)$$

$$\neg\forall x\,\neg\varphi\quad \vdash\!\vdash \exists x\,\varphi\qquad \qquad \exists x\,\varphi\vee\exists x\,\psi\quad \vdash\!\vdash \exists x\,(\varphi\vee\psi)$$

$$\neg\exists x\,\varphi\quad \vdash\!\vdash \exists x\,\neg\varphi\qquad \qquad \forall x\,\forall y\,\varphi\quad \vdash\!\vdash \forall y\,\forall x\,\varphi$$

$$\neg\forall x\,\varphi\quad \vdash\!\vdash \exists x\,\neg\varphi\qquad \qquad \exists x\,\exists y\,\varphi\quad \vdash\!\vdash \exists y\,\exists x\,\varphi$$

$$\forall x\,\varphi\wedge\psi\quad \vdash\!\vdash \forall x\,(\varphi\wedge\psi)\;\mathrm{dacă}\;x\not\in FV(\psi)$$

$$\forall x\,\varphi\wedge\psi\quad \vdash\!\vdash \exists x\,(\varphi\wedge\psi)\;\mathrm{dacă}\;x\not\in FV(\psi)$$

$$\exists x\,\varphi\wedge\psi\quad \vdash\!\vdash \exists x\,(\varphi\wedge\psi)\;\mathrm{dacă}\;x\not\in FV(\psi)$$

$$\exists x\,\varphi\wedge\psi\quad \vdash\!\vdash \exists x\,(\varphi\wedge\psi)\;\mathrm{dacă}\;x\not\in FV(\psi)$$

(S5.1) Considerăm un limbaj de ordinul I cu $\mathbf{R} = \{P, R, Q\}$ cu ari(P) = 1 și ari(R) = ari(Q) = 2. Găsiți formele echivalente prenex pentru următoarele formule:

- 1) $\forall x \exists y (R(x,y) \to R(y,x)) \to \exists x R(x,x)$
- 2) $\neg P(x) \rightarrow \neg \forall y \exists x R(x,y)$
- 3) $\exists x R(x,y) \leftrightarrow \forall y Q(x,y)$

Teorie pentru S4.2:

Fie φ enunţ în formă prenex. Definim φ^{sk} o formă Skolem a lui φ şi $\mathcal{L}^{sk}(\varphi)$ astfel:

- dacă φ este liberă de cuantificatori, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- dacă φ este universală¹, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c]$, $\mathcal{L}^1 = \mathcal{L} \cup \{c\}$.
- dacă $\varphi = \forall x_1 \dots \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\},$

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ . Dacă φ^1 este liberă de cuantificatori sau universală, atunci $\varphi^{sk} = \varphi^1$. Dacă φ^1 nu este universală, atunci formăm $\varphi^2, \varphi^3, \ldots$, până ajungem la o formulă universală și aceasta este φ^{sk} .

(S5.2) Consideram un limbaj de ordinul I cu $\mathbf{C} = \{b\}$ şi $\mathbf{R} = \{P, R, Q\}$ cu ari(P) = 1 şi ari(R) = ari(Q) = 2. Găsiţi formele Skolem pentru următoarele formule în formă prenex:

- 1) $\forall x \exists y \forall z \exists w (R(x,y) \land (R(y,z) \rightarrow (R(z,w) \land R(w,w))))$
- 2) $\forall x_1 \forall y_1 \exists y_2 \exists x_2 ((\neg R(x_1, y_2) \lor Q(b, y_1)) \land (\neg Q(x_1, y_2) \lor R(x_2, b)))$
- 3) $\exists x_1 \forall y_1 \exists x_2 (P(y_1) \lor R(x_1, x_2))$

Teorie pentru S4.3:

Fie φ un enunţ în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

• Definim universul Herbrand al formulei φ , notat $T(\varphi)$, astfel:

¹Un enunt se numește **universal** dacă conține doar cuantificatori universali.

- dacă c este o constantă care apare în φ atunci $c \in T(\varphi)$,
- dacă φ nu conține nicio constantă atunci alegem o constantă arbitrară c și considerăm că $c \in T(\varphi)$,
- dacă f este un simbol de funcție care apare în φ cu ari(f) = n și $t_1, \ldots, t_n \in T(\varphi)$ atunci $f(t_1, \ldots, t_n) \in T(\varphi)$.
- \bullet Definim **expansiunea Herbrand** a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in T(\varphi) \}.^2$$

(S5.3) Considerăm un limbaj de ordinul I cu $\mathbf{F} = \{f,g\}$ cu ari(f) = 2 și ari(g) = 1, $\mathbf{C} = \{b,c\}$ și $\mathbf{R} = \{P,Q\}$ cu ari(P) = 3, ari(Q) = 2.

- (a) Descrieți termenii din universul Herbrand.
- (b) Descrieți formulele din expansiunea Herbrand a următoarelor formule:
 - 1) $\varphi := \forall x \forall y P(c, f(x, b), g(y))$
 - 2) $\psi := \forall x \forall y (Q(x, b) \lor Q(x, g(y)))$
- (c) Cercetați satisfiabilitatea formulelor φ și ψ .
- (S5.4) Considerăm următoarea formulă în logica de ordinul I:

$$\varphi = \forall y \, \forall z \, ((\neg P(f(a)) \vee Q(y)) \wedge P(z) \wedge \neg Q(b))$$

Construiți expansiunea Herbrand și arătați că formula nu este satisfiabilă.

²Reamintim că $\psi[x/t]$ este formula obținută înlocuind în ψ toate aparițiile libere ale lui x cu t.