MICROECONOMIC THEORY II

Bingyong Zheng

Email: bingyongzheng@gmail.com

 Adverse selection describes a principal-agent problem in which the agent has private information about a parameter of his optimization problem.

- Adverse selection describes a principal-agent problem in which the agent has private information about a parameter of his optimization problem.
- It is also referred to as hidden information, or hidden knowledge.

- Adverse selection describes a principal-agent problem in which the agent has private information about a parameter of his optimization problem.
- It is also referred to as hidden information, or hidden knowledge.
- In fact, hidden information is probably a better expression for describing this type of asymmetric information.

- Adverse selection describes a principal-agent problem in which the agent has private information about a parameter of his optimization problem.
- It is also referred to as hidden information, or hidden knowledge.
- In fact, hidden information is probably a better expression for describing this type of asymmetric information.
- Adverse selection is rather a possible consequence of this asymmetric information.

Adverse selection in Stock Market

"Just as a car buyer can never be sure whether information is being withheld by the seller, in the financial markets a buyer can never be sure whether there is something going on with a stock that is beyond his purview. The person on the other side of the trade might have insider information on the company, or he might know that there is a much larger overhang of potential selling, the demand the buyer sees being a first trickle in what will emerge as a flood of selling.

The adverse selection problem is especially troublesome for market makers, and particularly for market makers in specialized arenas, such as corporate bonds, mortgage securities, and emerging markets."

-----A Demon of Our Own Design, Richard Bookstaber

Consequence of Adverse selection in Stock market

"Market makers often didn't know who was on the other side of their trade, whether it was a tipped-off hedge fund manager who knew a stock was about to rocket higher (or plunge) or a dumb-as-dirt day trader making a reckless gamble. Because of that ignorance, market makers often would only buy the stock at a low price, or sell at a high price, in order to protect themselves. In response to the chance of getting winged by a well-armed gunslinger, market makers typically widen their quotes, providing a lower bid or higher offer. The result: wider spreads."

—Dark Pools, Scott Patterson

Insurance market

Model

Insurance market

- Model
 - ightharpoonup Consumer: initial wealth w, accident occurs with $\pi_i \in [0,1]$ in which L dollar loss

Insurance Market

Model

- ightharpoonup Consumer: initial wealth w, accident occurs with $\pi_i \in [0,1]$ in which L dollar loss
- Insurance companies: identical and offer full insurance at price p

Insurance Market

- Model
 - ightharpoonup Consumer: initial wealth w, accident occurs with $\pi_i \in [0,1]$ in which L dollar loss
 - Insurance companies: identical and offer full insurance at price p
- Symmetric information, Zero-profit condition

$$p_i = \pi_i L \quad \forall i.$$

Assume

$$\pi \in [\underline{\pi}, \bar{\pi}]$$

Assume

$$\pi \in [\underline{\pi}, \bar{\pi}]$$

Consumer purchase policy iff

$$u(w-p) \geq \pi u(w-L) + (1-\pi)u(w)$$

Assume

$$\pi \in [\underline{\pi}, \bar{\pi}]$$

Consumer purchase policy iff

$$u(w-p) \ge \pi u(w-L) + (1-\pi)u(w)$$

So consumer purchase policy iff accident probability

$$\pi \geq \frac{u(w) - u(w - p)}{u(w) - u(w - L)} \equiv h(p)$$

Assume

$$\pi \in [\underline{\pi}, \bar{\pi}]$$

Consumer purchase policy iff

$$u(w-p) \geq \pi u(w-L) + (1-\pi)u(w)$$

So consumer purchase policy iff accident probability

$$\pi \geq \frac{u(w) - u(w - p)}{u(w) - u(w - L)} \equiv h(p)$$

• Competitive equilibrium price under asymmetric information

$$p^* = E(\pi|\pi \ge h(p^*))L,$$
 $E(\pi|\pi \ge h(p^*)) = \frac{\int_{h(p^*)}^{\overline{\pi}} \pi dF(\pi)}{1 - F(h(p^*))}$

ullet Suppose $\pi \sim \mathit{U}(0,1)$

- Suppose $\pi \sim U(0,1)$
- In this case

$$E(\pi|\pi \geq h(p)) = \frac{1+h(p)}{2}$$

- Suppose $\pi \sim U(0,1)$
- In this case

$$E(\pi|\pi \geq h(p)) = \frac{1+h(p)}{2}$$

• Let $g(p) = E(\pi | \pi \ge h(p))L$, there is a unique equilibrium p^*

$$p^* = \frac{1 + h(p^*)}{2}L.$$

- Suppose $\pi \sim U(0,1)$
- In this case

$$E(\pi|\pi \geq h(p)) = \frac{1+h(p)}{2}$$

• Let $g(p) = E(\pi | \pi \ge h(p))L$, there is a unique equilibrium p^*

$$p^* = \frac{1 + h(p^*)}{2}L.$$

• That is $P^* = L$.

- Suppose $\pi \sim U(0,1)$
- In this case

$$E(\pi|\pi \geq h(p)) = \frac{1+h(p)}{2}$$

• Let $g(p) = E(\pi | \pi \ge h(p))L$, there is a unique equilibrium p^*

$$p^* = \frac{1 + h(p^*)}{2}L.$$

- That is $P^* = L$.
- Only consumer that is certain to have an accident buy the insurance.

USE CAR MARKET

• Price of automobile p, quality $\mu(p)$

USE CAR MARKET

- Price of automobile p, quality $\mu(p)$
- Two groups of traders

USE CAR MARKET

- Price of automobile p, quality $\mu(p)$
- Two groups of traders
 - Group one: total income Y_1 and has N used cars

$$u_1 = M + \sum_{i=1}^n x_i$$

 x_i quality of ith automobile

Use car market

- Price of automobile p, quality $\mu(p)$
- Two groups of traders
 - **①** Group one: total income Y_1 and has N used cars

$$u_1 = M + \sum_{i=1}^n x_i$$

 x_i quality of ith automobile

 $oldsymbol{2}$ Group two: total income Y_2 and

$$u_2 = M + \sum_{i=1}^n \frac{3x_i}{2}$$

• Symmetric information: both groups only knows

$$x_i \sim U(0,2)$$

and expected quality

$$\mu = 1.$$

• Symmetric information: both groups only knows

$$x_i \sim U(0,2)$$

and expected quality

$$\mu = 1$$
.

Supply

$$S(p) = \begin{cases} N, & p > 1 \\ 0, & p < 1 \end{cases}$$

• Symmetric information: both groups only knows

$$x_i \sim U(0,2)$$

and expected quality

$$\mu = 1$$
.

Supply

$$S(p) = \begin{cases} N, & p > 1 \\ 0, & p < 1 \end{cases}$$

Demand

$$D(p) = \begin{cases} \frac{Y_2 + Y_1}{p}, & p < 1 \\ \frac{Y_2}{p}, & 1 < p < \frac{3}{2} \\ 0 & p > \frac{3}{2} \end{cases}$$

Symmetric information

• Symmetric information: both groups only knows

$$x_i \sim U(0,2)$$

and expected quality

$$\mu = 1$$
.

Supply

$$S(p) = \begin{cases} N, & p > 1 \\ 0, & p < 1 \end{cases}$$

Demand

$$D(p) = \begin{cases} \frac{Y_2 + Y_1}{p}, & p < 1 \\ \frac{Y_2}{p}, & 1 < p < \frac{3}{2} \\ 0 & p > \frac{3}{2} \end{cases}$$

Equilibrium

$$p = \begin{cases} 1, & \text{if } Y_2 < N \\ \frac{Y_2}{N} & \text{if } \frac{2Y_2}{3} < N < Y_2 \\ \frac{3}{2} & \text{if } N < \frac{2Y_2}{3} \end{cases}$$

• Group one knows quality, group two does not

- Group one knows quality, group two does not
- Demand of group one

$$D_1(p) = \begin{cases} \frac{Y_1}{p}, & \mu > p \\ 0, & \mu$$

- Group one knows quality, group two does not
- Demand of group one

$$D_1(p) = \begin{cases} \frac{Y_1}{p}, & \mu > p \\ 0, & \mu$$

Demand of group two

$$D_2(p) = \begin{cases} \frac{Y_2}{p}, & \frac{3\mu}{2} > p \\ 0 & \frac{3\mu}{2}$$

- Group one knows quality, group two does not
- Demand of group one

$$D_1(p) = \begin{cases} \frac{Y_1}{p}, & \mu > p \\ 0, & \mu$$

Demand of group two

$$D_2(p) = \begin{cases} \frac{Y_2}{p}, & \frac{3\mu}{2} > p \\ 0 & \frac{3\mu}{2}$$

Supply

$$S(p)=\frac{pN}{2}$$

- Group one knows quality, group two does not
- Demand of group one

$$D_1(p) = \begin{cases} \frac{Y_1}{p}, & \mu > p \\ 0, & \mu$$

Demand of group two

$$D_2(p) = \begin{cases} \frac{Y_2}{p}, & \frac{3\mu}{2} > p \\ 0 & \frac{3\mu}{2}$$

Supply

$$S(p)=\frac{pN}{2}$$

Average quality supplied

$$\mu = \frac{p}{2}$$
.

Asymmetric information (2)

Total demand

$$D(p,\mu) = \left\{ egin{array}{l} rac{Y_1 + Y_2}{p}, & \mu > p \ rac{Y_2}{p} & \mu$$

Asymmetric information (2)

Total demand

$$D(p,\mu) = \begin{cases} \frac{Y_1 + Y_2}{p}, & \mu > p \\ \frac{Y_2}{p} & \mu$$

• Note that with price p,

$$\mu = \frac{p}{2}$$
.

Asymmetric information (2)

Total demand

$$D(p,\mu) = \begin{cases} \frac{Y_1 + Y_2}{p}, & \mu > p \\ \frac{Y_2}{p} & \mu$$

• Note that with price p,

$$\mu = \frac{p}{2}$$
.

• NO trade in equilibrium, even if at any given price $p \in [0,3]$, there are group one trader willing to sell at a price which group two are willing to pay.

 Consumers can credibly communicate how risky they are to insurance companies, i.e., by purchasing different types of policies.

13 / 71

- Consumers can credibly communicate how risky they are to insurance companies, i.e., by purchasing different types of policies.
- The signaling game

- Consumers can credibly communicate how risky they are to insurance companies, i.e., by purchasing different types of policies.
- The signaling game
 - ➤ Nature choose risk type $t_i \in T \equiv \{h, I\}$

- Consumers can credibly communicate how risky they are to insurance companies, i.e., by purchasing different types of policies.
- The signaling game
 - ➤ Nature choose risk type $t_i \in T \equiv \{h, l\}$
 - ightharpoonup Prior belief: $Prob(\underline{\pi}) = \alpha$, $Prob(\overline{\pi}) = 1 \alpha$.

- Consumers can credibly communicate how risky they are to insurance companies, i.e., by purchasing different types of policies.
- The signaling game
 - ➤ Nature choose risk type $t_i \in T \equiv \{h, I\}$
 - ightharpoonup Prior belief: $Prob(\underline{\pi}) = \alpha$, $Prob(\overline{\pi}) = 1 \alpha$.
 - ➤ Consumer (Sender) chooses message $m_i \in M \equiv \{(B, p)\}.$

- Consumers can credibly communicate how risky they are to insurance companies, i.e., by purchasing different types of policies.
- The signaling game
 - ➤ Nature choose risk type $t_i \in T \equiv \{h, I\}$
 - ightharpoonup Prior belief: $Prob(\underline{\pi}) = \alpha$, $Prob(\overline{\pi}) = 1 \alpha$.
 - ➤ Consumer (Sender) chooses message $m_i \in M \equiv \{(B, p)\}.$
 - Insurance company (*Receiver*) responds given belief $\beta(B, p)$: accept, reject.

• A pure strategy for the low-risk consumer is a policy $\psi_I(B_I, p_I)$, and a pure strategy for the high-risk is $\psi_h(B_h, p_h)$.

- A pure strategy for the low-risk consumer is a policy $\psi_I(B_I, p_I)$, and a pure strategy for the high-risk is $\psi_h(B_h, p_h)$.
- Belief: $\beta(B, p)$ —the consumer who proposes (B, p) is low-risk type

- A pure strategy for the low-risk consumer is a policy $\psi_I(B_I, p_I)$, and a pure strategy for the high-risk is $\psi_h(B_h, p_h)$.
- Belief: $\beta(B, p)$ —the consumer who proposes (B, p) is low-risk type
- Signaling game pure strategy sequential equilibrium: $(\psi_l, \psi_h, \sigma(\cdot), \beta(\cdot))$ is a pure strategy sequential equilibrium of the insurance signaling game if

- A pure strategy for the low-risk consumer is a policy $\psi_I(B_I, p_I)$, and a pure strategy for the high-risk is $\psi_h(B_h, p_h)$.
- Belief: $\beta(B, p)$ —the consumer who proposes (B, p) is low-risk type
- Signaling game pure strategy sequential equilibrium: $(\psi_l, \psi_h, \sigma(\cdot), \beta(\cdot))$ is a pure strategy sequential equilibrium of the insurance signaling game if
 - ightharpoonup Given $\sigma(\cdot)$, ψ_I , ψ_h maximize low-risk, high-risk's expected utility respectively; $\sigma(\cdot)$ maximizes insurance company's expected profit given belief

- A pure strategy for the low-risk consumer is a policy $\psi_I(B_I, p_I)$, and a pure strategy for the high-risk is $\psi_h(B_h, p_h)$.
- Belief: $\beta(B, p)$ —the consumer who proposes (B, p) is low-risk type
- Signaling game pure strategy sequential equilibrium: $(\psi_l, \psi_h, \sigma(\cdot), \beta(\cdot))$ is a pure strategy sequential equilibrium of the insurance signaling game if
 - ightharpoonup Given $\sigma(\cdot)$, ψ_l , ψ_h maximize low-risk, high-risk's expected utility respectively; $\sigma(\cdot)$ maximizes insurance company's expected profit given belief
 - Belief satisfy Bayes rule,

- A pure strategy for the low-risk consumer is a policy $\psi_I(B_I, p_I)$, and a pure strategy for the high-risk is $\psi_h(B_h, p_h)$.
- Belief: $\beta(B, p)$ —the consumer who proposes (B, p) is low-risk type
- Signaling game pure strategy sequential equilibrium: $(\psi_l, \psi_h, \sigma(\cdot), \beta(\cdot))$ is a pure strategy sequential equilibrium of the insurance signaling game if
 - Siven $\sigma(\cdot)$, ψ_l , ψ_h maximize low-risk, high-risk's expected utility respectively; $\sigma(\cdot)$ maximizes insurance company's expected profit given belief
 - > Belief satisfy Bayes rule,
 - $\beta(\psi) \in [0,1]$

- A pure strategy for the low-risk consumer is a policy $\psi_I(B_I, p_I)$, and a pure strategy for the high-risk is $\psi_h(B_h, p_h)$.
- Belief: $\beta(B, p)$ —the consumer who proposes (B, p) is low-risk type
- Signaling game pure strategy sequential equilibrium: $(\psi_l, \psi_h, \sigma(\cdot), \beta(\cdot))$ is a pure strategy sequential equilibrium of the insurance signaling game if
 - Siven $\sigma(\cdot)$, ψ_l , ψ_h maximize low-risk, high-risk's expected utility respectively; $\sigma(\cdot)$ maximizes insurance company's expected profit given belief
 - > Belief satisfy Bayes rule,
 - $\beta(\psi) \in [0,1]$
 - If $\psi_I \neq \psi_h$, then $\beta(\psi_I) = 1$, $\beta(\psi_h) = 0$

- A pure strategy for the low-risk consumer is a policy $\psi_I(B_I, p_I)$, and a pure strategy for the high-risk is $\psi_h(B_h, p_h)$.
- Belief: $\beta(B, p)$ —the consumer who proposes (B, p) is low-risk type
- Signaling game pure strategy sequential equilibrium: $(\psi_l, \psi_h, \sigma(\cdot), \beta(\cdot))$ is a pure strategy sequential equilibrium of the insurance signaling game if
 - Siven $\sigma(\cdot)$, ψ_l , ψ_h maximize low-risk, high-risk's expected utility respectively; $\sigma(\cdot)$ maximizes insurance company's expected profit given belief
 - > Belief satisfy Bayes rule,
 - $\beta(\psi) \in [0,1]$
 - If $\psi_l \neq \psi_h$, then $\beta(\psi_l) = 1$, $\beta(\psi_h) = 0$
 - If $\psi_I = \psi_h$, then $\beta(\psi_I) = \beta(\psi_h) = \alpha$

• Individual's optimal insurance problem:

$$egin{array}{ll} \max _{B} & \pi u \left(w - L + B \left(1 - q
ight)
ight) + \left(1 - \pi
ight) u \left(w - Bq
ight) \ s.t. & B \geq 0, & B \leq w/q \end{array}$$

• Individual's optimal insurance problem:

$$\max_{B} \quad \pi u (w - L + B (1 - q)) + (1 - \pi) u (w - Bq)$$

s.t. $B \ge 0, \ B \le w/q$

• Lagrangian function

$$\mathcal{L} = \pi u (w - L + B (1 - q)) + (1 - \pi) u (w - Bq) + \lambda (w/q - B).$$

• Individual's optimal insurance problem:

$$\max_{B} \quad \pi u (w - L + B (1 - q)) + (1 - \pi) u (w - Bq)$$

s.t. $B \ge 0, \ B \le w/q$

Lagrangian function

$$\mathcal{L} = \pi u \left(w - L + B \left(1 - q \right) \right) + \left(1 - \pi \right) u \left(w - Bq \right) + \lambda \left(w/q - B \right).$$

• The first-order conditions:

$$\pi u'(w-L+B(1-q))(1-q)-(1-\pi)u'(w-Bq)q-\lambda \leq 0;$$

 $\lambda(B-w/q)=0, \lambda \geq 0, B \geq 0.$

Individual's optimal insurance problem:

$$\max_{B} \quad \pi u (w - L + B (1 - q)) + (1 - \pi) u (w - Bq)$$

s.t. $B \ge 0, \ B \le w/q$

Lagrangian function

$$\mathcal{L} = \pi u (w - L + B (1 - q)) + (1 - \pi) u (w - Bq) + \lambda (w/q - B).$$

The first-order conditions:

$$\pi u'(w - L + B(1 - q))(1 - q) - (1 - \pi)u'(w - Bq)q - \lambda \le 0;$$

 $\lambda(B - w/q) = 0, \lambda \ge 0, B \ge 0.$

Thus, the optimal B satisfies

$$\frac{\pi u'\left(w-L+B\left(1-q\right)\right)}{\left(1-\pi\right)u'\left(w-Bq\right)}=\frac{q}{1-q}$$

GRAPHICAL ILLUSTRATION

SINGLE CROSSING PROPERTY

• Note that P = Bq and B(1-q) = B - P, so

$$MRS(B,P) = \frac{\pi u'(w-L+B-P)}{\pi u'(w-L+B-P)+(1-\pi)u'(w-P)} = \frac{P}{B} = q.$$

• Note that P = Bq and B(1 - q) = B - P, so

$$MRS(B,P) = \frac{\pi u'(w-L+B-P)}{\pi u'(w-L+B-P)+(1-\pi)u'(w-P)} = \frac{P}{B} = q.$$

$$MRS_{l}(B, P) < MR_{h}(B, P)$$

• Note that P = Bq and B(1-q) = B - P, so

$$MRS(B,P) = \frac{\pi u'(w-L+B-P)}{\pi u'(w-L+B-P)+(1-\pi)u'(w-P)} = \frac{P}{B} = q.$$

Single crossing property

$$MRS_{l}(B, P) < MR_{h}(B, P)$$

• Hence:

• Note that P = Bq and B(1 - q) = B - P, so

$$MRS(B,P) = \frac{\pi u'(w-L+B-P)}{\pi u'(w-L+B-P) + (1-\pi)u'(w-P)} = \frac{P}{B} = q.$$

$$MRS_{l}(B, P) < MR_{h}(B, P)$$

- Hence:
 - $\succ u_l(B,p)$ and $u_h(B,p)$ are continuous, differentiable, strictly concave in (B,p)

On consumer choices

• Note that P = Bq and B(1-q) = B - P, so

$$MRS(B,P) = \frac{\pi u'(w-L+B-P)}{\pi u'(w-L+B-P) + (1-\pi)u'(w-P)} = \frac{P}{B} = q.$$

$$MRS_{l}(B, P) < MR_{h}(B, P)$$

- Hence:
 - $\succ u_l(B,p)$ and $u_h(B,p)$ are continuous, differentiable, strictly concave in (B,p)
 - $ightharpoonup MRS_l(B,p)$ (MRS_h(B,p)) is greater than, equal to or less than $\underline{\pi}$ ($\bar{\pi}$) as B is less than, equal to or greater than L.

• Note that P = Bq and B(1 - q) = B - P, so

$$MRS(B,P) = \frac{\pi u'(w-L+B-P)}{\pi u'(w-L+B-P) + (1-\pi) u'(w-P)} = \frac{P}{B} = q.$$

$$MRS_{l}(B, P) < MR_{h}(B, P)$$

- Hence:
 - $\succ u_l(B,p)$ and $u_h(B,p)$ are continuous, differentiable, strictly concave in (B,p)
 - $ightharpoonup MRS_l(B,p)$ (MRS_h(B,p)) is greater than, equal to or less than $\underline{\pi}$ ($\bar{\pi}$) as B is less than, equal to or greater than L.
 - $\rightarrow MRS_l(B,p) < MRS_h(B,p)$

INSURANCE COMPANY'S PROBLEM

Р			

Insurance company's problem

Insurance company's problem

CONSUMERS' PREFERENCES FOR RISKS

Equilibrium

ON SEQUENTIAL EQUILIBRIUM

• Lemma 8.1. (Jehle & Reny) Let

$$\tilde{u}_I \equiv \max_{(B,p)} u_I(B,P)$$
 s.t. $p = \bar{\pi}B \le w$, $u_h^c \equiv u_h(L,\bar{\pi}L)$.

And let $(\psi_l, \psi_h, \sigma(\cdot), \beta(\cdot))$ be a s.e. with utilities for low-risk and high-risk are, respectively, u_l^* and u_h^* . Then

ON SEQUENTIAL EQUILIBRIUM

• Lemma 8.1. (Jehle & Reny) Let

$$\tilde{u}_I \equiv \max_{(B,p)} u_I(B,P)$$
 s.t. $p = \bar{\pi}B \le w$, $u_h^c \equiv u_h(L,\bar{\pi}L)$.

And let $(\psi_l, \psi_h, \sigma(\cdot), \beta(\cdot))$ be a s.e. with utilities for low-risk and high-risk are, respectively, u_l^* and u_h^* . Then

$$ightharpoonup u_l^* \geq \tilde{u}_l;$$

ON SEQUENTIAL EQUILIBRIUM

• Lemma 8.1. (Jehle & Reny) Let

$$\tilde{u}_I \equiv \max_{(B,p)} u_I(B,P)$$
 s.t. $p = \bar{\pi}B \le w$, $u_h^c \equiv u_h(L,\bar{\pi}L)$.

And let $(\psi_I, \psi_h, \sigma(\cdot), \beta(\cdot))$ be a s.e. with utilities for low-risk and high-risk are, respectively, u_I^* and u_h^* . Then

 $> u_l^* \ge \tilde{u}_l;$ $> u_h^* \ge u_h^c.$

• An equilibrium is a separating equilibrium if the different types of consumers propose different policies.

- An equilibrium is a separating equilibrium if the different types of consumers propose different policies.
- Theorem 8.1. (Jehle & Reny) In separating equilibrium,

- An equilibrium is a separating equilibrium if the different types of consumers propose different policies.
- Theorem 8.1. (Jehle & Reny) In separating equilibrium,

$$\rightarrow \psi_I \neq \psi_h = (L, \bar{\pi}L)$$

- An equilibrium is a separating equilibrium if the different types of consumers propose different policies.
- Theorem 8.1. (Jehle & Reny) In separating equilibrium,
 - $> \psi_I \neq \psi_h = (L, \bar{\pi}L)$
 - $ightharpoonup p_l \geq \underline{\pi}B_l$

- An equilibrium is a separating equilibrium if the different types of consumers propose different policies.
- Theorem 8.1. (Jehle & Reny) In separating equilibrium,
 - $> \psi_I \neq \psi_h = (L, \bar{\pi}L)$
 - $ightharpoonup p_l \geq \underline{\pi}B_l$
 - $ightharpoonup u_I(\psi_I) \geq \tilde{u}_I \equiv \max_{(B,p)} u_I(B,p) \ s.t. \ \ p = \underline{\pi}B \leq w$

- An equilibrium is a separating equilibrium if the different types of consumers propose different policies.
- Theorem 8.1. (Jehle & Reny) In separating equilibrium,
 - $\rightarrow \psi_I \neq \psi_h = (L, \bar{\pi}L)$
 - $ightharpoonup p_l \ge \underline{\pi}B_l$
 - $ightharpoonup u_l(\psi_l) \geq \tilde{u}_l \equiv \max_{(B,p)} u_l(B,p) \text{ s.t. } p = \underline{\pi}B \leq w$
 - $u_h^c \equiv u_h(\psi_h) \ge u_h(\psi_l)$, where $u_h^c \equiv u_h(L, \bar{\pi}L)$ is high-risk's utility in competitive equilibrium with full information

Existence of separating equilibrium

©BINGYONG ZHENG 25 / 71

• An equilibrium is pooling equilibrium if both high-risk and low-risk propose the same policy.

- An equilibrium is pooling equilibrium if both high-risk and low-risk propose the same policy.
- Theorem 8.2. (Jehle &Reny) $\psi = (B, p)$ is the outcome in some pooling equilibrium if and only if

- An equilibrium is pooling equilibrium if both high-risk and low-risk propose the same policy.
- Theorem 8.2. (Jehle &Reny) $\psi = (B, p)$ is the outcome in some pooling equilibrium if and only if
 - $\succ u_I(B,p) \geq \tilde{u}_I, u_h(B,p) \geq u_h^c$

- An equilibrium is pooling equilibrium if both high-risk and low-risk propose the same policy.
- Theorem 8.2. (Jehle &Reny) $\psi = (B, p)$ is the outcome in some pooling equilibrium if and only if
 - $ightharpoonup u_l(B,p) \geq \tilde{u}_l, \ u_h(B,p) \geq u_h^c$
 - $ightharpoonup p \geq (\alpha \underline{\pi} + (1 \alpha)\overline{\pi})B$

EXISTENCE OF POOLING EQUILIBRA

JOB MARKET SIGNALING GAME

• Sequential-move game between firm and worker

Job Market Signaling Game

- Sequential-move game between firm and worker
- Nature selects the type of a worker, θ_H or θ_L , $\theta_H > \theta_L$.

JOB MARKET SIGNALING GAME

- Sequential-move game between firm and worker
- Nature selects the type of a worker, θ_H or θ_L , $\theta_H > \theta_L$.
- Worker know own type θ , chooses $e \ge 0$.

Job Market Signaling Game

- Sequential-move game between firm and worker
- Nature selects the type of a worker, θ_H or θ_L , $\theta_H > \theta_L$.
- Worker know own type θ , chooses $e \ge 0$.
- Observing e but not θ , the firm offers wage w(e).

JOB MARKET SIGNALING GAME

- Sequential-move game between firm and worker
- Nature selects the type of a worker, θ_H or θ_L , $\theta_H > \theta_L$.
- Worker know own type θ , chooses $e \ge 0$.
- Observing e but not θ , the firm offers wage w(e).
- Worker's utility

$$u(w,e)=w-\frac{e}{2\theta}$$

if accepts offer; zero otherwise.

APPLY IC TO SEPARATING EQUILBRIUM

• Set of separating equilibria

$$e_L^* = 0, \qquad e_H^* \in [e_1, e_2];$$

 $w(e_L^*) = \theta_L \qquad w(e_H^*) = \theta_H.$

APPLY IC TO SEPARATING EQUILBRIUM

• Set of separating equilibria

$$e_{L}^{*} = 0, \qquad e_{H}^{*} \in [e_{1}, e_{2}];$$

 $w(e_{L}^{*}) = \theta_{L} \qquad w(e_{H}^{*}) = \theta_{H}.$

• Take separating equilbrium $(e_L^* = 0, e_H^* = e_2)$;

APPLY IC TO SEPARATING EQUILBRIUM

• Set of separating equilibria

$$e_L^* = 0, \qquad e_H^* \in [e_1, e_2];$$
 $w(e_L^*) = \theta_L \qquad w(e_H^*) = \theta_H.$

- Take separating equilbrium $(e_L^* = 0, e_H^* = e_2)$;
- ullet Consider an off-the-equilibrium message $e \in (e_1, e_2)$.

 \bullet θ_L type has no incentive to deviate

Equilibrium payoff
$$> \max_{w \in W^*(\Theta,m)} u_L(e,w,\theta_L)$$
Max payoff from deviating to e

• θ_L type has no incentive to deviate

$$\underbrace{u_L^*(\theta_L)}_{\text{Equilibrium payoff}} > \underbrace{\max_{w \in W^*(\Theta,m)} u_L(e,w,\theta_L)}_{\text{Max payoff from deviating to } e}.$$

• But θ_H type has incentive to deviate

$$\underbrace{u_H^*(\theta_H)}_{\text{Equilibrium payoff}} < \underbrace{\max_{w \in W^*(\Theta,m)} u_H(e,w,\theta_H)}_{\text{Max payoff from deviating to e}}.$$

• θ_L type has no incentive to deviate

$$\underbrace{u_L^*(\theta_L)}_{\text{Equilibrium payoff}} > \underbrace{\max_{w \in W^*(\Theta,m)} u_L(e,w,\theta_L)}_{\text{Max payoff from deviating to } e}.$$

• But θ_H type has incentive to deviate

$$\underbrace{u_H^*(\theta_H)}_{\text{Equilibrium payoff}} < \underbrace{\max_{w \in W^*(\Theta,m)} u_H(e,w,\theta_H)}_{\text{Max payoff from deviating to } e}.$$

ullet Thus, off-equilibrium education level can come only from $heta_H$

$$\Theta^{**}(e) = \{\theta_H\}.$$

©BINGYONG ZHENG

• Given e only comes from θ_H , best response for firm to offer $w(e) = \theta_H$;

- Given e only comes from θ_H , best response for firm to offer $w(e) = \theta_H$;
- For θ_H type

$$\underbrace{\min_{\substack{w \in W^*(\Theta^{**}(e),e)}} u_H(e,w,\theta_H)}_{\theta_H - c(e,\theta_H)} > \underbrace{u_H^*(\theta_H)}_{\theta_H - c(e_2,\theta_H)}.$$

- Given e only comes from θ_H, best response for firm to offer w(e) = θ_H;
- For θ_H type

$$\underbrace{\min_{\substack{w \in W^*(\Theta^{**}(e),e) \\ \theta_H - c(e,\theta_H)}} u_H(e,w,\theta_H)}_{\theta_H - c(e_2,\theta_H)} > \underbrace{u_H^*(\theta_H)}_{\theta_H - c(e_2,\theta_H)}.$$

• Lowest payoff θ_H type obtains from deviating to e is higher than the equilibrium payoff;

- Given e only comes from θ_H, best response for firm to offer w(e) = θ_H;
- For θ_H type

$$\underbrace{\min_{\substack{w \in W^*(\Theta^{**}(e),e)}} u_H(e,w,\theta_H)}_{\theta_H - c(e,\theta_H)} > \underbrace{u_H^*(\theta_H)}_{\theta_H - c(e_2,\theta_H)}.$$

- Lowest payoff θ_H type obtains from deviating to e is higher than the equilibrium payoff;
- Thus, the separating equilibrium

$$\{e_L^*(\theta_L), e_H^*(\theta_H)\} = \{0, e_2\}\}$$

violates IC.

• Now suppose there are three types: θ_L , θ_M and θ_H ;

- Now suppose there are three types: θ_L , θ_M and θ_H ;
- With three types, IC does not work;

- Now suppose there are three types: θ_L , θ_M and θ_H ;
- With three types, IC does not work;
- Consider one separating equilibrium

$$e_L^*=0,\quad e_M^*,\quad e_H^*.$$

- Now suppose there are three types: θ_L , θ_M and θ_H ;
- With three types, IC does not work;
- Consider one separating equilibrium

$$e_L^*=0, \quad e_M^*, \quad e_H^*.$$

ullet Take one off-the-equilibrium message $e \in (\widehat{e}, e_H^*)$.

• θ_L type sending message $e \in (\widehat{e}, e_H^*)$ is equilibrium dominated

$$\underbrace{u_L^*(\theta_L)}_{\text{Equilibrium payoff}} > \underbrace{\max_{w \in W^*(\Theta,m)} u_L(e,w,\theta_L)}_{\text{Max payoff from deviating to } e} \ .$$

ullet type sending message $e \in (\widehat{e}, e_H^*)$ is equilibrium dominated

$$\underbrace{u_L^*(\theta_L)}_{\text{Equilibrium payoff}} > \underbrace{\max_{w \in W^*(\Theta,m)} u_L(e,w,\theta_L)}_{\text{Max payoff from deviating to } e} \ .$$

ullet $heta_M$ type could send the message $e \in (\widehat{e}, e_H^*)$ because

$$\underbrace{u_{M}^{*}(\theta_{M})}_{\text{Equilibrium payoff}} < \underbrace{\max_{w \in W^{*}(\Theta, m)} u_{M}(e, w, \theta_{M})}_{\text{Max payoff from deviating to } e}$$

ullet type sending message $e \in (\widehat{e}, e_H^*)$ is equilibrium dominated

$$\underbrace{u_L^*(\theta_L)}_{\text{Equilibrium payoff}} > \underbrace{\max_{w \in W^*(\Theta,m)} u_L(e,w,\theta_L)}_{\text{Max payoff from deviating to } e}.$$

ullet $heta_M$ type could send the message $e \in (\widehat{e}, e_H^*)$ because

$$\underbrace{u_M^*(\theta_M)}_{\text{Equilibrium payoff}} < \underbrace{\max_{w \in W^*(\Theta,m)} u_M(e,w,\theta_M)}_{\text{Max payoff from deviating to } e}.$$

• θ_H type could send the message $e \in (\hat{e}, e_H^*)$ because

$$\underbrace{u_H^*(\theta_H)}_{\text{Equilibrium payoff}} < \underbrace{\max_{w \in W^*(\Theta,m)} u_H(e,w,\theta_H)}_{\text{Max payoff from deviating to } e}$$

• θ_L type sending message $e \in (\widehat{e}, e_H^*)$ is equilibrium dominated

$$\underbrace{u_L^*(\theta_L)}_{\text{Equilibrium payoff}} > \underbrace{\max_{w \in W^*(\Theta,m)} u_L(e,w,\theta_L)}_{\text{Max payoff from deviating to } e} \ .$$

ullet $heta_M$ type could send the message $e \in (\widehat{e}, e_H^*)$ because

$$\underbrace{u_{M}^{*}(\theta_{M})}_{\text{Equilibrium payoff}} < \underbrace{\max_{w \in W^{*}(\Theta,m)} u_{M}(e,w,\theta_{M})}_{\text{Max payoff from deviating to }e}.$$

ullet $heta_H$ type could send the message $e \in (\widehat{e}, e_H^*)$ because

Equilibrium payoff
$$< \max_{w \in W^*(\Theta,m)} u_H(e,w,\theta_H)$$
Max payoff from deviating to e

• Hence, observing $e \in (\hat{e}, e_H^*)$, the firm's belief concentrate on θ_M and θ_H :

$$\Theta^{**} = \{\theta_M, \theta_H\}.$$

• Given firm's belief $\Theta^{**} = \{\theta_M, \theta_H\}$, the lowest wage to offer

$$\theta_M = \min\{w | w \in W^*(\Theta^{**}(e), e)\}.$$

• Given firm's belief $\Theta^{**} = \{\theta_M, \theta_H\}$, the lowest wage to offer

$$\theta_M = \min\{w | w \in W^*(\Theta^{**}(e), e)\}.$$

ullet Given firm's offer, θ_M type worker has no incentives to deviate towards e

$$\min_{w \in W^*(\Theta^{**}(e),e)} u_M(e,w,\theta_M) < u_M^*(\theta_M).$$

• Given firm's belief $\Theta^{**} = \{\theta_M, \theta_H\}$, the lowest wage to offer

$$\theta_M = \min\{w | w \in W^*(\Theta^{**}(e), e)\}.$$

ullet Given firm's offer, $heta_M$ type worker has no incentives to deviate towards e

$$\min_{w \in W^*(\Theta^{**}(e),e)} u_M(e,w,\theta_M) < u_M^*(\theta_M).$$

• Given $w \in W^*(\Theta^{**}(e), e)$, θ_H type worker has no incentives to deviate towards e

$$\min_{w \in W^*(\Theta^{**}(e),e)} u_H(e,w,\theta_H) < u_H^*(\theta_H).$$

• Given firm's belief $\Theta^{**} = \{\theta_M, \theta_H\}$, the lowest wage to offer

$$\theta_M = \min\{w | w \in W^*(\Theta^{**}(e), e)\}.$$

ullet Given firm's offer, $heta_M$ type worker has no incentives to deviate towards e

$$\min_{w \in W^*(\Theta^{**}(e),e)} u_M(e,w,\theta_M) < u_M^*(\theta_M).$$

• Given $w \in W^*(\Theta^{**}(e), e)$, θ_H type worker has no incentives to deviate towards e

$$\min_{w \in W^*(\Theta^{**}(e),e)} u_H(e,w,\theta_H) < u_H^*(\theta_H).$$

• Hence, there is no type of worker $\theta \in \Theta^{**}$ for whom deviation to $e \in (\widehat{e}, e_H^*)$ is profitable.

D1 CRITERION

• Let us now check if the previous separating equilibrium (e_L^*, e_M^*, e_H^*) survives the D1-Criterion;

D1 CRITERION

- Let us now check if the previous separating equilibrium (e_I^*, e_M^*, e_H^*) survives the D1-Criterion;
- Let us consider the off-the-equilibrium message e';

D1 CRITERION

- Let us now check if the previous separating equilibrium (e_I^*, e_M^*, e_H^*) survives the D1-Criterion;
- Let us consider the off-the-equilibrium message e';
- First, we need to construct sets $D(\theta_k, \widehat{\Theta}, e')$ for k = L, M, H, representing the set of wage offers for which a θ_k -worker is better-off when he deviates towards message e' than when he sends his equilibrium message:

$$D(\theta_k, \widehat{\Theta}, e') \equiv \{w \in [\theta_L, \theta_H] | u_k(e', w, \theta_k) > u_k^*(\theta_k)\}.$$

D1 CRITERION

- Let us now check if the previous separating equilibrium (e_L^*, e_M^*, e_H^*) survives the D1-Criterion;
- Let us consider the off-the-equilibrium message e';
- First, we need to construct sets $D(\theta_k, \widehat{\Theta}, e')$ for k = L, M, H, representing the set of wage offers for which a θ_k -worker is better-off when he deviates towards message e' than when he sends his equilibrium message:

$$D(\theta_k, \widehat{\Theta}, e') \equiv \{ w \in [\theta_L, \theta_H] | u_k(e', w, \theta_k) > u_k^*(\theta_k) \}.$$

Also let

$$D^{o}(\theta_{k},\widehat{\Theta},e') \equiv \{w \in [\theta_{L},\theta_{H}] | u_{k}(e',w,\theta_{k}) = u_{k}^{*}(\theta_{k})\}.$$

D1 FIRST STEP

• We see from the figure

$$D(\theta_H, \widehat{\Theta}, e') \bigcup D^o(\theta_H, \widehat{\Theta}, e') \subset D(\theta_M, \widehat{\Theta}, e').$$

 θ_M type has more incentives to deviate to e' than θ_H type

D1 FIRST STEP

• We see from the figure

$$D(\theta_H, \widehat{\Theta}, e') \bigcup D^o(\theta_H, \widehat{\Theta}, e') \subset D(\theta_M, \widehat{\Theta}, e').$$

 θ_M type has more incentives to deviate to e' than θ_H type

Also,

$$D(\theta_L, \widehat{\Theta}, e') \bigcup D^o(\theta_L, \widehat{\Theta}, e') \subset D(\theta_M, \widehat{\Theta}, e').$$

 θ_M type has more incentives to deviate to e' than θ_L type

D1 FIRST STEP

We see from the figure

$$D(\theta_H, \widehat{\Theta}, e') \bigcup D^o(\theta_H, \widehat{\Theta}, e') \subset D(\theta_M, \widehat{\Theta}, e').$$

 θ_M type has more incentives to deviate to e' than θ_H type

Also,

$$D(\theta_L, \widehat{\Theta}, e') \bigcup D^o(\theta_L, \widehat{\Theta}, e') \subset D(\theta_M, \widehat{\Theta}, e').$$

 θ_M type has more incentives to deviate to e' than θ_L type

• Applying the D1 criterion, the θ_M type is the most likely to deviate to e'

$$\Theta^{**}(e') = \{\theta_M\}.$$

• Given $\Theta^{**}(e')$, firm offer

$$w(e') = \theta_M$$
.

• Given $\Theta^{**}(e')$, firm offer

$$w(e') = \theta_M.$$

• For θ_M worker,

$$\min_{w \in W^*(\Theta^{**}(e'),e')} u_M(e',w,\theta_M) > u_M^*(\theta_M).$$

Deviating towards e' is profitable!

• Given $\Theta^{**}(e')$, firm offer

$$w(e') = \theta_M.$$

• For θ_M worker,

$$\min_{w \in W^*(\Theta^{**}(e'),e')} u_M(e',w,\theta_M) > u_M^*(\theta_M).$$

Deviating towards e' is profitable!

 \bullet So the equilibrium (e_L^*,e_M^*,e_H^*) violates the D1 criterion

Insurance model: separating equilibrium

©BINGYONG ZHENG 56 / 71

Insurance model: pooling equilibrium

• IC to insurance signaling game: Sequential equilibrium $(\psi_I, \psi_h, \sigma, \beta)$ satisfy IC if for all ψ $(\psi \neq \psi_I)$ or $\psi \neq \psi_h$,

- IC to insurance signaling game: Sequential equilibrium $(\psi_I, \psi_h, \sigma, \beta)$ satisfy IC if for all ψ $(\psi \neq \psi_I)$ or $\psi \neq \psi_h$,
 - $\succ u_l(\psi) > u_l^* \text{ and } u_h(\psi) < u_h^* \Longrightarrow \beta(\psi) = 1;$

- IC to insurance signaling game: Sequential equilibrium $(\psi_I, \psi_h, \sigma, \beta)$ satisfy IC if for all ψ $(\psi \neq \psi_I)$ or $\psi \neq \psi_h$,
 - $ightharpoonup u_l(\psi) > u_l^* \text{ and } u_h(\psi) < u_h^* \Longrightarrow \beta(\psi) = 1;$
 - $ightharpoonup u_h(\psi) > u_h^* \text{ and } u_l(\psi) < u_l^* \Longrightarrow \beta(\psi) = 0.$

- IC to insurance signaling game: Sequential equilibrium $(\psi_I, \psi_h, \sigma, \beta)$ satisfy IC if for all ψ $(\psi \neq \psi_I)$ or $\psi \neq \psi_h$,
 - $ightharpoonup u_l(\psi) > u_l^* \text{ and } u_h(\psi) < u_h^* \Longrightarrow \beta(\psi) = 1;$
 - $> u_h(\psi) > u_h^*$ and $u_l(\psi) < u_l^* \Longrightarrow \beta(\psi) = 0.$
- Theorem 8.3. (Jehle& Reny) There is a unique policy pair (ψ_I, ψ_h) that can be supported by a sequential equilibrium satisfying the intuitive criterion. And this equilibrium is the best separating equilibrium for the low-risk consumer.

SCREENING: COMPETITION

Competitive screening

 Model: assume two insurance companies the engage in Bertrand competition;

Competitive screening

- Model: assume two insurance companies the engage in Bertrand competition;
- Firms offer policies to screen consumers: high-risk type chooses one policy and low-risk choose another;

Competitive screening

- Model: assume two insurance companies the engage in Bertrand competition;
- Firms offer policies to screen consumers: high-risk type chooses one policy and low-risk choose another;
- Cream skimming occurs when one insurance company takes strategic advantage of the set of policies offered by the other by offering a policy that would attract away only the low-risk consumers from the competing company.

Competitive screening

- Model: assume two insurance companies the engage in Bertrand competition;
- Firms offer policies to screen consumers: high-risk type chooses one policy and low-risk choose another;
- Cream skimming occurs when one insurance company takes strategic advantage of the set of policies offered by the other by offering a policy that would attract away only the low-risk consumers from the competing company.
- Lemma 8.2. (Jehle & Reny) Insurance companies earn zero expected profits in equilibrium.

Existence of separating equil. (1)

Existence of separating equil. (1)

Existence of separating equil. (2)

©BINGYONG ZHENG

Main result

• Theorem 8.4. (Jehle & Reny) Pooling equilibrium does not exist.

Main result

- Theorem 8.4. (Jehle & Reny) Pooling equilibrium does not exist.
- Theorem 8.5. (Jehle & Reny) Suppose ψ_I^* and ψ_h^* are the policies chosen by low- and high-risk consumers in a pure strategy separating equilibrium. Then $\psi_h^* = \psi_h^c$ and $\psi_I^* = \bar{\psi}_I$, where $\bar{\psi}_I$ is the best separating equilibrium for consumers in the insurance signaling game.

Main result

- Theorem 8.4. (Jehle & Reny) Pooling equilibrium does not exist.
- Theorem 8.5. (Jehle & Reny) Suppose ψ_I^* and ψ_h^* are the policies chosen by low- and high-risk consumers in a pure strategy separating equilibrium. Then $\psi_h^* = \psi_h^c$ and $\psi_I^* = \bar{\psi}_I$, where $\bar{\psi}_I$ is the best separating equilibrium for consumers in the insurance signaling game.
- Theorem 8.6. (Jehle & Reny) No pure strategy equilibrium may exist if the proportion of high-risk is too low.

• Moral hazard refers to the reduced incentive to exercise care once you purchase insurance.

- Moral hazard refers to the reduced incentive to exercise care once you purchase insurance.
- Moral hazard occurs in a variety of circumstances:

- Moral hazard refers to the reduced incentive to exercise care once you purchase insurance.
- Moral hazard occurs in a variety of circumstances:
 - Insurance market;

- Moral hazard refers to the reduced incentive to exercise care once you purchase insurance.
- Moral hazard occurs in a variety of circumstances:
 - Insurance market;
 - Work place, etc.

- Moral hazard refers to the reduced incentive to exercise care once you purchase insurance.
- Moral hazard occurs in a variety of circumstances:
 - Insurance market;
 - > Work place, etc.
- Moral hazard can look very similar to adverse selection—both arise from information asymmetry.

- Moral hazard refers to the reduced incentive to exercise care once you purchase insurance.
- Moral hazard occurs in a variety of circumstances:
 - Insurance market;
 - Work place, etc.
- Moral hazard can look very similar to adverse selection—both arise from information asymmetry.
 - Adverse selection arises from hidden information about the type of individual youre dealing with;

- Moral hazard refers to the reduced incentive to exercise care once you purchase insurance.
- Moral hazard occurs in a variety of circumstances:
 - Insurance market;
 - > Work place, etc.
- Moral hazard can look very similar to adverse selection—both arise from information asymmetry.
 - Adverse selection arises from hidden information about the type of individual youre dealing with;
 - > Moral hazard arises from hidden actions.

• One insurance company and one consumer.

- One insurance company and one consumer.
- Consumer initial wealth W. L losses,

$$I \in \{0, 1, \ldots, L\},\$$

each occurring with probability $\pi_I(e) > 0$.

- One insurance company and one consumer.
- Consumer initial wealth W. L losses,

$$I \in \{0, 1, \ldots, L\},\$$

each occurring with probability $\pi_I(e) > 0$.

• Disutility of effort: $e \in \{0,1\}$ and d(1) > d(0).

- One insurance company and one consumer.
- Consumer initial wealth W. L losses,

$$I \in \{0, 1, \ldots, L\},\$$

each occurring with probability $\pi_I(e) > 0$.

- Disutility of effort: $e \in \{0,1\}$ and d(1) > d(0).
- Monotone likelihood ratio: $\pi_I(0)/\pi_I(1)$ is strictly increasing in $I \in \{0, 1, ..., L\}$.

- One insurance company and one consumer.
- Consumer initial wealth W. L losses,

$$I \in \{0, 1, \ldots, L\},\$$

each occurring with probability $\pi_I(e) > 0$.

- Disutility of effort: $e \in \{0,1\}$ and d(1) > d(0).
- Monotone likelihood ratio: $\pi_I(0)/\pi_I(1)$ is strictly increasing in $I \in \{0, 1, ..., L\}$.
- Insurance company chooses policy $(p, B_0, B_1, \dots, B_L)$ to maximize profit.

$$\max_{e,p,B_I} p - \sum_{l=0}^{L} \pi_l(e)B_l, \quad \text{subject to}$$

$$\sum_{l=1}^{L} \pi_l(e)u(w - p - l + B_l) - d(e) \ge \bar{u}.$$

Symmetric information optimal contract

• Lagrangian:

$$\mathcal{L} = p - \sum_{l=0}^{L} \pi_l(e) B_l + \lambda \left[\sum_{l=1}^{L} \pi_l(e) u(w - p - l + B_l) - d(e) - \overline{u} \right].$$

Symmetric information optimal contract

• Lagrangian:

$$\mathcal{L} = p - \sum_{l=0}^{L} \pi_l(e) B_l + \lambda \left[\sum_{l=1}^{L} \pi_l(e) u(w - p - l + B_l) - d(e) - \overline{u} \right].$$

• First order conditions:

$$\frac{\partial \mathcal{L}}{\partial p} = 1 - \lambda \left[\sum_{l=1}^{L} \pi_l(e) u'(w - p - l + B_l) \right] = 0, \quad (1)$$

$$\frac{\partial \mathcal{L}}{\partial B_{I}} = -\pi_{I}(e) + \lambda \pi_{I}(e) u'(w - p - l + B_{I}) = 0, \qquad \forall I \geq 0, (2)$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = \sum_{l=1}^{L} \pi_l(e) u(w - p - l + B_l) - d(e) - \bar{u} \ge 0.$$
 (3)

Symmetric information optimal contract

• Lagrangian:

$$\mathcal{L} = p - \sum_{l=0}^{L} \pi_l(e) B_l + \lambda \left[\sum_{l=1}^{L} \pi_l(e) u(w - p - l + B_l) - d(e) - \bar{u} \right].$$

First order conditions:

$$\frac{\partial \mathcal{L}}{\partial p} = 1 - \lambda \left[\sum_{l=1}^{L} \pi_l(e) u'(w - p - l + B_l) \right] = 0, \quad (1)$$

$$\frac{\partial \mathcal{L}}{\partial B_I} = -\pi_I(e) + \lambda \pi_I(e) u'(w - p - l + B_I) = 0, \qquad \forall I \ge 0, (2)$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = \sum_{l=1}^{L} \pi_l(e) u(w - p - l + B_l) - d(e) - \bar{u} \ge 0.$$
 (3)

• Thus it is optimal to have

$$B_I = I$$
 for $I = 0, 1, ..., L$.

ASYMMETRIC INFORMATION

Optimization problem

$$\max_{e,p,B_{I}} p - \sum_{l=0}^{L} \pi_{l}(e)B_{l}, \quad \text{subject to}$$

$$\sum_{l=1}^{L} \pi_{l}(e)u(w - p - l + B_{l}) - d(e) \geq \bar{u};$$

$$\sum_{l=1}^{L} \pi_{l}(e)u(w - p - l + B_{l}) - d(e) \geq \sum_{l=1}^{L} \pi_{l}(e')u(w - p - l + B_{l}) - d(e').$$

ASYMMETRIC INFORMATION

Optimization problem

$$\max_{e,p,B_{l}} p - \sum_{l=0}^{L} \pi_{l}(e)B_{l}, \quad \text{subject to}$$

$$\sum_{l=1}^{L} \pi_{l}(e)u(w - p - l + B_{l}) - d(e) \ge \overline{u};$$

$$\sum_{l=1}^{L} \pi_{l}(e)u(w - p - l + B_{l}) - d(e) \ge \sum_{l=1}^{L} \pi_{l}(e')u(w - p - l + B_{l}) - d(e').$$

If optimal policy to set e = 0:
 Similar as the symmetric information case.

MMETRIC INFORMATION

Optimization problem

$$\max_{e,p,B_{l}} p - \sum_{l=0}^{L} \pi_{l}(e)B_{l}, \quad \text{subject to}$$

$$\sum_{l=0}^{L} \pi_{l}(e)u(w - p - l + B_{l}) - d(e) \geq \overline{u};$$

$$\sum_{l=1}^{L} \pi_{l}(e) u(w - p - l + B_{l}) - d(e) \ge \sum_{l=1}^{L} \pi_{l}(e') u(w - p - l + B_{l}) - d(e').$$
• If optimal policy to set $e = 0$:

Similar as the symmetric information case.

• Optimal policy
$$e = 1$$
:
$$\mathcal{L} = p - \sum_{l=1}^{L} \pi_{l}(1)B_{l} + \lambda \left[\sum_{l=1}^{L} \pi_{l}(e)u(w - p - l + B_{l}) - d(e) - \bar{u} \right]$$

$$\mathcal{L} = p - \sum_{l=0}^{L} \pi_{l}(1)B_{l} + \lambda \left[\sum_{l=1}^{L} \pi_{l}(e)u(w - p - l + B_{l}) - d(e) - u \right]$$

$$\beta \left[\sum_{l=1}^{L} \pi_{l}(1)u(w - p - l + B_{l}) - \sum_{l=1}^{L} \pi_{l}(0)u(w - p - l + B_{l}) - d(1) + \frac{1}{68} \right]$$
68/71

SECOND BEST CONTRACT

First order conditions:

$$1 - \lambda \left[\sum_{l=1}^{L} \pi_{l}(1)u'(w - p - l + B_{l}) \right] - \beta \left[\sum_{l=1}^{L} (\pi_{l}(1) - \pi_{l}(0))u'(w - p - l + B_{l}) \right]$$

$$= 0;$$

$$- \pi_{l}(1) + [\lambda \pi_{l}(1) + \beta(\pi_{l}(1) - \pi_{l}(0))]u'(w - p - l + B_{l}) = 0 \quad \forall l; \quad (*)$$

$$\sum_{l=1}^{L} \pi_{l}(1)u(w - p - l + B_{l}) - d(1) - \bar{u} \ge 0;$$

$$\sum_{l=1}^{L} (\pi_{l}(1) - \pi_{l}(0))u(w - p - l + B_{l}) + d(0) - d(1) \ge 0.$$

SECOND BEST CONTRACT (CONTINUED)

Equation (*) implies

$$\frac{1}{u'(w-p+B_I-I)} = \lambda + \beta \left[1 - \frac{\pi_I(0)}{\pi_I(1)} \right]. \tag{CON-OP}$$

SECOND BEST CONTRACT (CONTINUED)

Equation (*) implies

$$\frac{1}{u'(w-p+B_I-I)} = \lambda + \beta \left[1 - \frac{\pi_I(0)}{\pi_I(1)}\right]. \tag{CON-OP}$$

• Clearly, $\lambda > 0$, $\beta > 0$.

SECOND BEST CONTRACT (CONTINUED)

Equation (*) implies

$$\frac{1}{u'(w-p+B_I-I)} = \lambda + \beta \left[1 - \frac{\pi_I(0)}{\pi_I(1)}\right]. \tag{CON-OP}$$

- Clearly, $\lambda > 0$, $\beta > 0$.
- Thus,

$$I - B_I$$
 is strictly increasing in $I = 0, 1, ..., L$.

ON SECOND BEST CONTRACT

• In contrast to perfect risk sharing, the second-best solution is crucially dependent on the distribution of *I* and its functional relation to effort *e*.

ON SECOND BEST CONTRACT

- In contrast to perfect risk sharing, the second-best solution is crucially dependent on the distribution of *I* and its functional relation to effort *e*.
- $\frac{\pi_l(1) \pi_l(0)}{\pi_l(1)}$ may be interpreted as a benefit-cost ratio for deviation from optimal risk sharing.

On second best contract

- In contrast to perfect risk sharing, the second-best solution is crucially dependent on the distribution of I and its functional relation to effort e.
- $\frac{\pi_l(1) \pi_l(0)}{\pi_l(1)}$ may be interpreted as a benefit-cost ratio for deviation from optimal risk sharing.
- $\frac{\pi_I(1)-\pi_I(0)}{\pi_I(1)}$ measures how strongly one is inclined to infer from I that the agent did not take the assumed action, and penalties or bonuses should be paid in proportion to this measure.

On second best contract

- In contrast to perfect risk sharing, the second-best solution is crucially dependent on the distribution of *I* and its functional relation to effort *e*.
- $\frac{\pi_I(1) \pi_I(0)}{\pi_I(1)}$ may be interpreted as a benefit-cost ratio for deviation from optimal risk sharing.
- $\frac{\pi_I(1)-\pi_I(0)}{\pi_I(1)}$ measures how strongly one is inclined to infer from I that the agent did not take the assumed action, and penalties or bonuses should be paid in proportion to this measure.
- Agent is forced to carry excess responsibility for the outcome and this is the implicit costs involved in contracting under imperfect information.