群的直积

定义 1 (群的扩张). 设 G, A, B 是群,若有 $N \triangleleft G$,使得 $A \cong N$, $B \cong G/N$,则称群 G 是 B 过 A 的扩张. 称 N 为扩张核.

注. 群的扩张与域的扩张完全不同,域从子域扩成扩域,而群不一定是子群,甚至不一定和子群同构.

定义 2 (正合序列). 设 G_1, G_2, \cdots, G_n 是群, 有同态映射如下,

$$G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} G_n$$

且满足 $f_i(G_i) = \ker f_{i+1}$,则称这个序列为**正合序列**.

注. 这里群的个数可以是有限的, 也可以是无限的.

定义 3 (短正合序列). 设 1 是 A 的幺元, 1' 是 B 的幺元, 则正合序列

$$\{1\} \xrightarrow{i} A \xrightarrow{\lambda} G \xrightarrow{\mu} B \xrightarrow{\varphi} \{1'\}$$

称为短正合序列.

注. 不难看出, λ 是单射, μ 是满射. 这是短正合序列的本质体现. 因此在书写上, 可简写为

$$1 \longrightarrow A \xrightarrow{\lambda} G \xrightarrow{\mu} B \longrightarrow 1$$

定理 1. 设 G, A, B 是群,则 G 是 B 过 A 的扩张当且仅当存在短正合序列

$$1 \longrightarrow A \xrightarrow{\lambda} G \xrightarrow{\mu} B \longrightarrow 1$$

证明. 必要性: 设存在 $N \triangleleft G$, 使得 $A \cong N$, $B \cong G/N$. 设同构映射 $f: A \to N$, $h: G/N \to B$, 把 f 开拓到 λ , 则 λ 是单同态. 设 $\mu = h \circ \pi$, 则 μ 是满同态. 于是存在短正合序列.

充分性: 设存在短正合序列

$$1 \longrightarrow A \xrightarrow{\lambda} G \xrightarrow{\mu} B \longrightarrow 1$$

则 λ 是单同态, μ 是满同态. 且

$$\lambda(A) = \ker \mu \triangleleft G.$$

设 $N = \ker \mu$, 而 $\lambda : A \to \lambda(A)$ 是单同态,又是满射,于是 λ 是同构, $A \cong \lambda(A) = N$.

对于满同态 $\mu:G\to B$,由同态基本定理,有 $G/\ker\mu\cong B$,于是 $G/N\cong B$. 因此 G是 B 过 A 的扩张.

定理 2. 设 G, G', A, B 是群.

- 1. 若 $G \in B$ 过 A 的扩张, $G \cong G'$,则 G' 也是 B 过 A 的扩张.
- 2. 若 G 和 G' 都是 B 过 A 的扩张,且存在同态 $f: G \to G'$,使下图交换,则 f 是同构映射. 称 G 和 G' 是 B 过 A 的等价扩张.

$$1 \longrightarrow A \xrightarrow{\lambda} G \xrightarrow{\mu} B \longrightarrow 1$$

$$\downarrow^{\mathrm{id}_{A}} \qquad \downarrow^{f} \qquad \downarrow^{\mathrm{id}_{B}}$$

$$1 \longrightarrow A \xrightarrow{\lambda'} G' \xrightarrow{\mu'} B \longrightarrow 1$$

证明. 1. 由于 G 是 B 过 A 的扩张,于是有短正合序列

$$1 \longrightarrow A \xrightarrow{\lambda} G \xrightarrow{\mu} B \longrightarrow 1$$

设 $f: G \to G'$ 是同构,则 $f \circ \lambda: A \to G'$ 是单同态, $\mu \circ f^{-1}$ 是满同态,且 $f \circ \lambda(A) = f(\ker \mu) = \ker \mu f^{-1}$,于是 G' 是 B 过 A 的扩张.

2. 先证 f 是单射. 只需证明 $\ker f = \{e\}$,这里 e 是 G 的幺元,并设 e' 是 G' 的幺元. 设 f(x) = e',下证 x = e.

由交换图,

$$\mu(x) = \mu' f(x) = \mu'(e') = 1,$$

于是 $x \in \ker \mu = \lambda(A)$, 存在 $a \in A$ 使 $x = \lambda(a)$, 即

$$e' = f(x) = f\lambda(a) = \lambda'(a),$$

又 λ 是单射,于是 a=1, $x=\lambda(1)=e$.

再证 f 是满射. 对任意 $x' \in G'$, 由 μ 是满射, $\mu(G) = B$, 则存在 $x \in G$, 使得 $\mu(x) = \mu'(x')$. 即

$$\mu' f(x) = \mu'(x'),$$

于是

$$\mu'(x'[f(x)]^{-1}) = \mu'(e') = 1,$$

即

$$x'f(x)^{-1} \in \ker \mu' = \lambda'(A) = f\lambda(A) \subset f(G),$$

于是 $x' \in f(G)f(x) \subset f(G)$.

注. 1 的证明中,用了两次扩张的充要条件,即定理1. 对于 $f(\ker \mu) = \ker \mu f^{-1}$,可以由核的定义以及集合的包含关系证得.

定义 4 (内直积). 设 G 是 B 过 A 的扩张,N 为扩张核,若存在 H < G,使得 $H \cap N = \{e\}$ 且 G = HN,则称此扩张为非本质扩张,G 称为 N 与 H 的半直积,记作 $G = H \times N$. 进一步,若 $H \triangleleft G$,则称这种扩张为平凡扩张,G 是 N 与 H 的内直积,记作 $G = H \otimes N$.

注,对非本质扩张,有 $B \cong H$. 因为

$$B \cong G/N = HN/N \cong H/(H \cap N) = H/\{e\} \cong H.$$

例 1. 设 $G = (\mathbb{Z}, +)$, $A = N = 2\mathbb{Z} \triangleleft \mathbb{Z}$, $B = G/N = \mathbb{Z}_2$,则 $G \in B$ 过 A 的扩张. 由于不存在子群 $H \cong B = \mathbb{Z}_2$,于是这个扩张不是非本质扩张.

定理 3. 设 A < G, B < G, 则

- 1. G = AB 且 $A \cap B = \{e\}$ 当且仅当对任意 $g \in G$,存在唯一 $a \in A, b \in B$ 使得 g = ab.
- 2. 若 G = AB 且 $A \cap B = \{e\}$,则 A, B 都是 G 的正规子群的充要条件为对任意 $a \in A, b \in B, ab = ba$. 此时 $G = A \otimes B$.

证明. 1. 必要性: 由 G = AB,对任意 $g \in G$,存在 $a \in A, b \in B$ 使得 g = ab,假设另有 $a' \in A, b' \in B$ 使得 g = a'b',则 ab = a'b', $bb'^{-1} = a^{-1}a' = e$,于是 a = a', b = b'.

充分性: 若对任意 $g \in G$, 存在唯一 $a \in A, b \in B$ 使得 g = ab, 则 G = AB. 若 $c \in A \cap B$, 则 c = ec = ce,于是 c = e.

2. 必要性: 若 $A \triangleleft G$, 则 $bab^{-1} \in A$, 于是 $a^{-1}bab^{-1} \in A$. 又 $B \triangleleft G$, 则 $a^{-1}ba \in B$, 于 是 $a^{-1}bab^{-1} \in B$, 故 $a^{-1}bab^{-1} \in A \cap B$. 于是 $a^{-1}bab^{-1} = e$, ba = ab.

充分性: 若对任意 $a \in A$, $b \in B$ 有 ab = ba, 由于 G = AB, 对任意 $g \in G$, 存在 $a \in A, b \in B$ 使得 g = ab, 于是对任意 $a_0 \in A$,

$$ga_0g^{-1} = aba_0b^{-1}a^{-1} = aa_0bb^{-1}a^{-1} = aa_0a^{-1} \in A,$$

于是 $A \triangleleft G$,同理 $B \triangleleft G$.

可以将内直积的概念推广到多个正规子群的情况.

定义 5. 设 N_1, N_2, \dots, N_k 是 G 的正规子群. 若 G 中任意元素分解为 N_i 中元素的乘积是唯一的,则称 G 是 N_1, N_2, \dots, N_k 的内直积,记作

$$G = N_1 \otimes N_2 \otimes \cdots \otimes N_k = \bigotimes_{i=1}^k N_i.$$

以上讨论了一个群的内直积分解,下面说明两个群的内直积总是存在且唯一.

定义 6 (外直积). 设 A, B 是两个群,定义集合 $G = \{(a,b) \mid a \in A, b \in B\}$,定义 G 中元素的运算 $(a_1,b_1)(a_2,b_2) = (a_1a_2,b_1b_2)$. 则可验证 G 关于上述运算构成群,称为 A 和 B 的外直积,记作 $G = A \times B$.

定理 4. 设 A 和 B 是两个群,则一定存在 B 过 A 的平凡扩张 G,且 G 在同构意义下唯一.

证明. 设 $G = A \times B$,则 G 是群. 记 $A' = \{(a, 1') \mid a \in A\}$, $B' = \{(1, b) \mid b \in B\}$,则可证 $A' \triangleleft G$, $B' \triangleleft G$,且 G = A'B', $A' \cap B' = \{(1, 1')\}$.

由内直积定义, $G = A' \otimes B' = B' \otimes A'$. 则 $G \neq B'$ 过 A' 的平凡扩张. 容易在 A 和 A',B 和 B' 建立同构,即 $A \to A'$, $a \mapsto (a,1')$, $B \to B'$, $b \mapsto (1,b)$,故 $G \neq B$ 过 A 的平凡扩张.

设 G_1 也是 B 过 A 的平凡扩张. 则有 $A_1 \triangleleft G_1$, $B_1 \triangleleft G_1$, $G_1 = A_1B_1$, $A_1 \cap B_1 = \{e'\}$, 且 $A \cong A_1$, $B \cong B_1$. 下证 $G \cong G_1$.

设 $f_1: A \to A_1, a \mapsto a_1$, $f_2: B \to B_1, b \mapsto b_1$ 是两个同构映射. 令 $f: G \to G_1, (a, b) \mapsto f_1(a)f_2(b)$. 下证 f 是同构.

因为 f_1 和 f_2 都是满射,于是对任意 $f_1(a)$ 和 $f_2(b)$ 都有原像 a 和 b. 于是 f 是满射. 假设 $f_1(a')f_2(b') = f_1(a)f_2(b)$,由于 G_1 是平凡扩张,因此分解是唯一的. $f_1(a') = f_1(a)$, $f_2(b') = f_2(b)$. 又因为 f_1 和 f_2 是单射,于是 a' = a, b' = b,(a, b) = (a', b').

而

$$f((a,b)(a',b')) = f((aa',bb')) = f_1(aa')f_2(bb') = f_1(a)f_1(a')f_2(b)f_2(b')$$

= $f_1(a)f_2(b)f_1(a')f_2(b') = f((a,b))f((a',b')),$

于是 f 是同构映射.

注. 外直积 $G = G_1 \times G_2$ 中, G_1 和 G_2 一般不是 G 的子群,但是存在某个同构关系,使得 G_1 , G_2 分别和 G 的两个子群同构. 而在内直积 $G = H \otimes N$ 中,H 和 N 都是 G 的正规子 群. 内直积和外直积在本质上是一致的.

注. 上述定理实际上说明了对于 $G = A \times B$, 存在 $A' \triangleleft G$, $B' \triangleleft G$ 且 $A' \cong A$, $B' \cong B$, 使 得 $G = A' \otimes B'$.

反之,对于 $G = A \otimes B$,它和外直积的关系如下.

定理 5. 若 $G = A \otimes B$,则 $A \times B \cong G$.

证明. 令 $f: A \times B \to G, (a,b) \mapsto ab$,容易判断这是良定义的. 对任意 $g \in G$,都有唯一 $a \in A$, $b \in B$ 使得 g = ab,于是 f 是满射. 对任意 $g_1 = g_2$,有 $(a_1,b_1) = (a_2,b_2)$,于是 $a_1 = a_2$, $b_1 = b_2$,于是 f 是单射. 又

$$f((a_1,b_1)(a_2,b_2)) = f((a_1a_2,b_1b_2)) = a_1a_2b_1b_2 = a_1b_1a_2b_2 = f((a_1,b_1)) f((a_2,b_2)),$$

于是
$$f$$
 是同构映射.

下面介绍外直积的若干性质.

定理 6. 设 $G = A \times B$,则

- 1. G 是有限群当且仅当 A 和 B 都是有限群,且当 G 为有限群时,有 |G| = |A||B|.
- 2. G 是交换群当且仅当 A 和 B 都是交换群.
- 3. $A \times B \cong B \times A$.

证明. 1. 由 Cartesian 积的性质立即可得.

2. 若 G 是交换群,对任意 $a_1, a_2 \in A$, $b_1, b_2 \in B$ 有 $(a_1, b_1)(a_2, b_2) = (a_2, b_2)(a_1, b_1)$,即 $(a_1a_2, b_1b_2) = (a_2a_1, b_2b_1)$,于是 $a_1a_2 = a_2a_1$, $b_1b_2 = b_2b_1$. 反之,若 A 和 B 都是交换群,对任意 $(a_1, b_1), (a_2, b_2) \in G$,有

$$(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2) = (a_2a_1, b_2b_1) = (a_2, b_2)(a_1, b_1),$$

于是 G 是交换群.

3. 设映射 $f: A \times B \to B \times A, (a,b) \mapsto (b,a)$, 则这是良定义的, 且是双射. 而

$$f((a_1,b_1)(a_2,b_2)) = f((a_1a_2,b_1b_2)) = (b_1b_2,a_1a_2) = (b_1,a_1)(b_2,a_2) = f((a_1,b_1)) f((a_2,b_2)),$$

于是 f 是同构映射.

定理 7. 设 A, B 是群, $a \in A, b \in B$ 是两个有限阶元,则对 $(a, b) \in A \times B$,有

$$|(a,b)| = [|a|,|b|].$$

证明. 设 |a| = m, |b| = n, |(a,b)| = t, [|a|,|b|] = s. 则 $(a,b)^s = (a^s,b^s) = (e_1,e_2)$, 于是 $t \mid s$. 又 $(e_1,e_2) = (a,b)^t = (a^t,b^t)$, 于是 $a^t = e_1$, $b^t = e_2$, 于是 $m \mid t$, $n \mid t$, 而 s = [m,n], 于是 $s \mid t$, 所以 t = s, 即 |(a,b)| = [|a|,|b|].