CLAIM AMENDMENTS

Please amend the claims as follows.

1	 (currently amended) A lighting arrangement comprising:
2	a source of electrical power; and
3	at least one m pairs of light-emitting diodes (LEDs), each pair of LEDs including a
4	first LED and a second LED, driven by the power source and connected in parallel in
5	each of n parallel paths, such that an anode of a the first one of the LEDs in the each
6	pair is electrically connected to the <u>a</u> cathode of the other, second LED in the pair, and
7	the an anode of the second LED in each pair is electrically connected to the a cathode
8	of the first LED in the pair, one of each pair of LEDs thereby being forward biased to
9	produce light regardless of the instantaneous polarity of electrical current supplied to the
10	LED pair by the power source;
11	a current-limiting device, connected in series between the power source and
12	each LED pair;
13	in which:
14	the m pairs of LEDs in each respective parallel path are connected in
15	series;
16	the n parallel paths share common power connections but are otherwise
17	electrically separated from each other such that electrical current entering each parallel
18	path passes through the m series-connected LED pairs of only that parallel path; and
19	m is a predetermined positive integer; and
20	n is a predetermined positive integer greater than one.
1	2. (currently amended) An arrangement as in claim 1, further comprising, for
2	each of the n parallel paths, a current-limiting device, connected in series between the
3	power source and each the m LED pairs in each respective path.
1	3. (canceled) An arrangement as in claim 1, further comprising a plurality m of

LED pairs connected in series in each of n parallel paths.

1	4. (currently amended) An arrangement as in claim 1, further A lighting
2	arrangement comprising:
3	a source of electrical power; and
4	at least one pair of light-emitting diodes (LEDs) driven by the power source, each
5	pair of LEDs including a first LED and a second LED, and connected in parallel such
6	that an anode of the first one LEDs in each pair is electrically connected to a cathode of
7	the second LED in the pair, and an anode of the second LED in each pair is electrically
8	connected to a cathode of the first LED in the pair, one of each pair of LEDs thereby
9	being forward biased to produce light regardless of the instantaneous polarity of
10	electrical current supplied to the LED pair by the power source;
11	a printed circuit board (PCB) base having front and rear surfaces and laterally
12	extending side-edge protrusions; and
13	contact surfaces on edge surfaces of the protrusions;
14	the PCB base forming a mounting substrate for the LED pairs.
1	5. (original) An arrangement as in claim 4, in which the protrusions are
2	positioned so as to mate with at least one internal contact surface of a light fixture.
1	6. (original) An arrangement as in claim 5, in which the light fixture is a screw-in
2	fitting.
1	7. (original) An arrangement as in claim 5, in which the light fixture is a bayonet
2	fitting.
1	8. (original) An arrangement as in claim 5, in which the light fixture is a flanged
2	fitting.
1	9. (original) An arrangement as in claim 5, in which the light fixture is a wedge-
2	based fitting.

1	10. (currently amended) An arrangement as in claim 5, in which the light fixture
2	is a standard, after-market pre-existing, commercially available fitting designed to
3	receive an incandescent light bulb.
1	11. (original) An arrangement as in claim 5, further comprising a biasing
2	arrangement that biases the contact surfaces of the protrusions into electrical contact
3	with the internal contact surfaces.
1	12. (original) An arrangement as in claim 5, further comprising at least one slot
2	in the PCB base forming a region of lateral compression, the PCB base having a width
3	equal to or slightly greater than an internal dimension of the light fixture, compression of
4	the PCB base, upon installation of the PCB base in the fixture, creating a lateral biasing
5	force biasing the contact surfaces of the protrusions into electrical contact with the
6	internal contact surfaces of the fixture.
1	13. (original) An arrangement as in claim 4, further comprising a separate pair
2	of parallel-connected LEDs on the front and back surfaces of the PCB base, one LED in
3	each pair being forward biased at the same time as a corresponding LED in the other
4	pair, whereby front-and-back illumination is provided by the LED pairs on the single
5	PCB substrate.
1	14. (currently amended) An arrangement as in claim 1, in which the power
2	source supplies unrectified alternating current to each LED pair, whereby only one of
3	the LEDs in each LED pair will be forward biased at any given moment, and heat
4	generated by the plurality of LED pairs is reduced and heat dissipation is increased.
1	15. (currently amended) An arrangement as in claim 1, in which A lighting
2	arrangement comprising:
3	a source of electrical power; and
4	at least one pair of light-emitting diodes (LEDs) driven by the power source, each
5	pair of LEDs including a first LED and a second LED, and connected in parallel such

- 6 that an anode of the first one LEDs in each pair is electrically connected to a cathode of the second LED in the pair, and an anode of the second LED in each pair is electrically 7 connected to a cathode of the first LED in the pair, one of each pair of LEDs thereby 8 being forward biased to produce light regardless of the instantaneous polarity of 9 10 electrical current supplied to the LED pair by the power source; 11 in which: 12 a plurality of LED pairs are mounted on a single printed circuit board (PCB) base; 13 and 14 the plurality of LED pairs include at least three pairs producing light of each of 15 three colors, whereby objects illuminated by the arrangement appear to a viewer to be illuminated by full spectrum white light. 16 1 16. (original) An arrangement as in claim 15, in which the colors are red, green 2 and blue.
- 1 17. (original) An arrangement as in claim 1, in which the LED pair comprises 2 two LED dies mounted with reverse polarity within a single LED casing.
 - 18. (currently amended) An arrangement as in claim 114, in which [[:]] a plurality of LED pairs are mounted on a single printed circuit board (PCB) base and the LEDs are separated by no more than 1 mm;
- a duty cycle of each LED in each pair is no more than 50%, whereby heat
 generated by the plurality of LED pairs is reduced and heat dissipation is increased.

1

2

3

1	19. (currently amended) A lighting arrangement comprising:
2	a source of electrical power;
3	at least one pair of light-emitting diodes (LEDs), each pair of LEDs including a
4	first LED and a second LED;
5	a current-limiting device, connected in series between the power source and
6	each LED pair;
7	a printed circuit board (PCB) base having front and rear surfaces and laterally
8	extending side-edge protrusions, the PCB base a mounting substrate for the LED pairs;
9	and
10	contact surfaces formed on edge surfaces of the protrusions;
11	in which:
12	the power source supplies unrectified alternating current to each LED pair;
13	each LED pair is driven by the power source;
14	the LEDs in each pair are connected in parallel such that an anode of a-the first
15	one of the LEDs in the each pair is electrically connected to the a cathode of the other,
16	second LED in the pair, and the an anode of the second LED in each pair is electrically
17	connected to the a cathode of the first LED in the pair, one of each pair of LEDs thereby
18	being forward biased to produce light regardless of the instantaneous polarity of
. 19	electrical current supplied to the LED pair by the power source; and
20	the protrusions are positioned so as to mate with at least one internal contact
. 21	surface of a fitting designed to receive an incandescent, plasma-based fluorescent or
22	halogen bulb.

20. canceled