Nombres réels

Partie entière

QCOP REEL.1

Soit $x \in \mathbb{R}$.

- **1.** a) Définir le nombre |x|.
 - **b)** Donner un encadrement de x par $\lfloor x \rfloor$.
 - c) En déduire que :

$$x-1<\lfloor x\rfloor\leqslant x$$
.

2. Soit $n \in \mathbb{N}^*$. Montrer que :

$$\lfloor 3^n x \rfloor - 3 |3^{n-1} x| \in \{0, 1, 2\}.$$

QCOP REEL.2

Soient $x, y \in \mathbb{R}$.

- 1. Donner un encadrement de x par |x|.
- **2.** a) On suppose que $\lfloor x \rfloor > \lfloor y \rfloor$. Montrer que :

$$x \geqslant \lfloor x \rfloor \geqslant \lfloor y \rfloor + 1 > y$$
.

- **b)** En raisonnant par contraposée, en déduire que $|\cdot|$ est croissante sur \mathbb{R} .
- **3.** Montrer que $\lfloor \cdot \rfloor$ n'est pas strictement croissante.
- **4.** On suppose que $y \in \mathbb{Z}$ et x < y. Comparer |x| et |y|.

Densité

QCOP REEL.3

- **1.** Soit $x \in \mathbb{R}$. Soit $n \in \mathbb{N}$. Qu'est-ce qu'une approximation décimale de x à 10^{-n} près?
- **2.** Soit $A \subset \mathbb{R}$. Définir « A est dense dans \mathbb{R} ».
- 3. a) Montrer que :

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N} : \ 10^{-N_{\varepsilon}} \leqslant \varepsilon.$$

- **b)** Montrer que \mathbb{D} est dense dans \mathbb{R} .
- **4.** Montrer que \mathbb{Q} est dense dans \mathbb{R} .

QCOP REEL.4

- **1.** Soit $A \subset \mathbb{R}$. Définir « A est dense dans \mathbb{R} ».
- **2.** Soit $A \subset \mathbb{R}$. Montrer que les assertions suivantes sont équivalentes :
 - (i) A est dense dans \mathbb{R} :
 - (ii) $\forall x, y \in \mathbb{R}, x < y$ $\implies \exists a \in A : x \leqslant a \leqslant y;$
 - (iii) $\forall x, y \in \mathbb{R}, x < y$ $\implies \exists a \in A : x < a < y.$
- **3.** a) Soit $a \in \mathbb{Q}$. Soit $b \notin \mathbb{Q}$.

Que dire de a + b?

b) Montrer que $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .