

TrenchMV[™] Power MOSFET

IXTH180N10T IXTQ180N10T

 $V_{DSS} = 100 V$ $I_{D25} = 180 A$ $R_{DS(on)} \le 6.4 m\Omega$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum	Ratings
V _{DSS} V _{DGR}	$T_J = 25^{\circ} \text{ C to } 175^{\circ} \text{ C}$ $T_J = 25^{\circ} \text{ C to } 175^{\circ} \text{ C}; R_{GS} = 1 \text{ M}\Omega$	100 100	V
V _{GSM}	Transient	± 30	V
D25 LRMS	T _c =25°C Lead Current Limit, RMS	180 75	A
I _{DM} I _{AR} E _{AS}	T_{c} = 25° C, pulse width limited by T_{JM} T_{c} = 25° C T_{c} = 25° C	450 25 750	A A mJ
dv/dt	$I_{S} \le I_{DM}$, di/dt ≤ 100 A/ μ s, $V_{DD} \le V_{DSS}$ $T_{J} \le 175^{\circ}$ C, $R_{G} = 3.3 \Omega$	3	V/ns
$\overline{\mathbf{P}_{\scriptscriptstyle \mathrm{D}}}$	T _C =25°C	480	W
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	°C °C °C
T _L T _{SOLD}	1.6 mm (0.062 in.) from case for 10 s Plastic body for 10 seconds	300 260	°C °C
M _d	Mounting torque	1.13 / 10	Nm/lb.in.
Weight	TO-3P TO-247	5.5 6	g g

TO-3P (IXTQ)

G = Gate	D = Drain
S = Source	TAB = Drain

Features

- Ultra-low On Resistance
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- easy to drive and to protect
- 175 °C Operating Temperature

Advantages

- Easy to mount
- Space savings
- High power density

Symbol	ymbol Test Conditions Ch				aracteristic Values		
$(T_J = 25^{\circ} \text{ C unless otherwise specified})$			Min.	Тур.	Max		
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		100			V	
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		2.5		4.5	V	
I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$				± 200	nA	
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 150° C			5 250	μ Α μ Α	
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 25 \text{ A}, \text{ Note}$	s 1, 2		5.4	6.4	$m\Omega$	

Applications

- Automotive
 - Motor Drives
 - 42V Power Bus
 - ABS Systems
- DC/DC Converters and Off-line UPS
- Primary Switch for 24V and 48V Systems
- Distributed Power Architechtures and VRMs
- Electronic Valve Train Systems
- High Current Switching Applications
- High Voltage Synchronous Recifier

Symbol	Test Conditions	Cha	aracteris	tic Values
(T _J = 25° C u	nless otherwise specified)	Min.	Тур.	Max.
g_{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 60 \text{ A}, \text{ Note 1}$	70	110	S
C _{iss}			6900	pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		923	pF
C _{rss}			162	pF
t _{d(on)}	Resistive Switching Times		33	ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 25 \text{ A}$		54	ns
t _{d(off)}	$R_{\rm G}$ = 3.3 Ω (External)		42	ns
t _f			31	ns
Q _{g(on)}			151	nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 25 \text{ A}$		39	nC
\mathbf{Q}_{gd}			45	nC
R _{thJC}				0.31°C/W
R _{thCS}			0.25	°C/W

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
T _. = 25° C ui	nless otherwise specified) M	in.	Тур.	Max.	
I _s	$V_{GS} = 0 V$			180	Α
I _{SM}	Pulse width limited by $T_{_{\rm JM}}$			450	Α
V _{SD}	$I_F = 25 \text{ A}, V_{GS} = 0 \text{ V}, \text{ Note 1}$			0.95	V
t _{rr}	I _F = 25 A, -di/dt = 100 A/μs		100		ns
	$V_R = 50 \text{ V}, V_{GS} = 0 \text{ V}$				

Notes: 1. Pulse test, $t \le 300 \mu s$, duty cycle $d \le 2 \%$;

2. On through-hole packages, $R_{\rm DS(on)}$ Kelvin test contact location must be 5 mm or less from the package body.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a preproduction design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-247AD Outline

Terminals: 1 - Gate 3 - Source

2 - Drain Tab - Drain

Dim.	Millimeter		Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A_1	2.2	2.54	.087	.102
A_2	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b_1	1.65	2.13	.065	.084
b_2	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Е	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

TO-3P (IXTQ) Outline

Pins: 1 - Gate 2 - Drain 3 - Source 4, TAB - Drain

SYM	INCH	I ES	MILLIMETE		
2114	MIN	MAX	MIN	MAX	
Α	.185	.193	4.70	4.90	
Α1	.051	.059	1.30	1.50	
A2	.057	.065	1.45	1.65	
b	.035	.045	0.90	1.15	
b2	.075	.087	1.90	2.20	
b4	.114	.126	2.90	3.20	
O	.022	.031	0.55	0.80	
D	.780	.791	19.80	20.10	
D1	.665	.677	16.90	17.20	
П	.610	.622	15.50	15.80	
E1	.531	.539	13.50	13.70	
Ф	.215 BSC		5.45 BSC		
L	.779	.795	19.80	20.20	
L1	.134	.142	3.40	3.60	
øΡ	.126	.134	3.20	3.40	
øP1	.272	.280	6.90	7.10	
S	.193	.201	4.90	5.10	

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25°C 180 V_{GS} = 10V 160 9V 8V 140 120 ID - Amperes 100 80 60 40 20 0 0.2 0.4 0.6 0.8 12 0

Fig. 3. Output Characteristics @ 150°C

V_{DS} - Volts

Fig. 5. R_{DS(on)} Normalized to I_D = 90A Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 90A Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 8. Transconductance T_J = -40°C 25℃ gfs - Siemens 150°C I_D - Amperes

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

