Математический анализ

Харитонцев-Беглов Сергей

2 октября 2021 г.

Содержание

1.	MHC	ожества, отношения	1
	1.1	Орг. моменты	1
	1.2	Что такое множество	1
	1.3	Операции с множествами	2
	1.4	Вещественные числа	4
	1.5	Мат. индукции	5
	1.6	Наибольшие/наименьшие элементы	5
	1.7	Инфинум/Супремум	6
2.	ледовательности	8	
	2.1	Предел последовательности	8
	2.2	Бесконечно большие и бесконечно малые	11
	23	Экспонента	1 /

1. Множества, отношения

1.1. Орг. моменты

- За основу начала была взята книжка "Виноградов, Громов «Курс по математическому анализу». Том 1". Но это было давно, как база, но смотреть туда можно.
- Зорич «Математический анализ».
- Фихтенгольц. Книжка устарела, написана старым языком, но там разобрано много примеров, поэтому можно смотреть просто темы.
- Курс на степике. (Часть вторая).

Для связи можно использовать почту aikhrabrov@mail.ru.

Система состоит из нескольких кусочков: 0.3-оценка за практику(A3, кр...)+0.35-Коллоквиум в неч-Экзамен в четном модуле. Хвост образуется только в конце семестра.

Первый модуль — общие слова, последовательности, пределы последовательности, функции, непрерывность. Второй модуль — конец непрерывности, производная, начало интегралов.

1.2. Что такое множество

Обойдемся без формалистики — мы тут занимаемся прикладной математикой. Поэтому

Определение **1.1.** Множество — какой-то набор элементов. Для любого элемента можно сказать принадлежит множеству или нет.

Операция	определение	название
	$\forall x: \ x \in A \Rightarrow x \in B$	— подмножество <i>В</i>
	$A \subset B \land B \subset A$	A равно B
	$A \subset B \land A! = b$	A — собственное подмножество B

Способы задания множеств:

- Полное задание: $\{a, b, c\}$.
- Неполное: a_1, a_2, \ldots, a_k . Но должно быть понятно как образована последовательно. Например $\{1, 5, \ldots, 22\}$ непонятно
- Можно так же и бесконечные: $\{a_1, a_2, \dots$
- Словесным описанием. Например, множество простых чисел.
- Формулой. Например, пусть задана функция $\Phi(x)$ функция для всех чисел, которая возращает истину или ложь. Тогда можно взять множество $\{x:\Phi(x)=$ истина. Но не всякая функция подходит, особенно если функция из реального мира. Например: «натуральное число может быть описано не более чем 20 словами русского языка». Не подходит оно по следующей причине: пусть наша функция подходит, то образуется множество $A = \{x_1, x_2, x_3, \ldots\}$. У каждого множества есть минимальный элемент, тогда минимальное невходящее число может быть описано как «первое число, которое нельзя описать не более чем 20 словами русского язык», что меньше 20 слов. Противоречие.

1.3. Операции с множествами.

Символ	Определение	Описание
\cap	$A \cap B = \{x \mid x \in A \land x \in B\}$	Пересечение множеств
$\bigcap_{k=1}^{n} A_k$	$A = A_1 \cap A_2 \cap \ldots \cap A_n$	Пересечение множества множеств
U	$A \cup B = \{x \mid x \in A \lor x \in B\}$	Объединение множеств
$\bigcup_{k=1}^{n} A_k$	$A = A_1 \cup A_2 \cup \ldots \cup A_n$	Объединение множества множеств
\	$A \setminus B = \{x \mid x \in A \land x \notin B\}$	Разность множеств
×	$A \times B = \{(x, y) \mid x \in A, y \in B\}$	Произведение множеств
\triangle	$A \triangle B = (A \setminus B) \cup (B \setminus A)$	Симметрическая разность
Ø	$\forall x: x \notin \varnothing$	пустое множество
N		Натуральные числа
\mathbb{Z}		целые числа
Q	$\frac{a}{b}$, где $a \in \mathbb{Z}, b \in \mathbb{N}$	рациональные числа
\mathbb{R}		действительные числа
2^X		множество всех подмножеств X

Важный момент: $1 \in \{1\}$, но $1 \notin \{\{1\}\}$ Правила де Моргана. Пусть есть $A_{\alpha} \subset X$

1.
$$X \setminus \bigcup_{\alpha \in I} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}$$
.

2.
$$X \setminus \bigcap_{\alpha \in I} = \bigcup_{\alpha \in I} X \setminus A_{\alpha}$$
.

Доказательство: $X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \{x : x \in X \land x \notin A_{\alpha} \ \forall \alpha \in I\} = \{x : \forall \alpha \in IX \setminus A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}.$

Теорема 1.1.
$$A \cap \bigcup_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} A \cap B_{\alpha}$$
 $A \cup \bigcap_{\alpha \in I} B_{\alpha} = \bigcap_{\alpha \in I} A \cup B_{\alpha}$

Доказательство. TODO.

Определение 1.2. Упорядоченная пара $\langle x,y\rangle$. Важное свойство $\langle x,y\rangle=\langle x',\rangle\iff x=x'\wedge y=y'$

Определение 1.3. Пусть даны множества X_1, \ldots, X_n , то упорядоченной n- (кортеж) $-\langle x_1, \ldots, x_n \rangle$, обладающее условием $\langle x_1, \ldots, x_n \rangle = \langle y_1, \ldots, y_n \rangle \iff x_1 = y_1 \wedge \ldots \wedge x_n = y_n$

Определение 1.4. Отношение $R \subset X \times Y$. x и y находятся в отношении R, если их $\langle x, y \rangle \in R$.

Определение 1.5. Область отношения $\delta_R = \text{dom}_R = \{x \in X : \exists y \in Y : \langle x, y \rangle \in R.$

Определение 1.6. Область значений $\rho_R = \operatorname{ran}_R = \{y \in Y : \exists x \in X : \langle x, y \rangle \in R$

Определение 1.7. Обратное отношение $R^{-1} \subset Y \times X$ $R^{-1} = \{\langle y, x \rangle\} \in R$.

Определение 1.8. Композиция отношения. $R_1 \subset X \times Y, R_2 \subset Y \times Z : R_1 \circ R_2 \subset X \times Z.$ $R_1 \circ R_2 = \{\langle x, z \rangle \in X \times Z \mid \exists y \in Y : \langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2\}$

Примеры отношений.

- Отношение равенства. $R = \{ \langle x, x \rangle : x \in X \}$. Но это просто равенство.
- " \geqslant " $(X = \mathbb{R})$. $R = \{\langle x, y \rangle : x \geqslant y\}$
- ">" $(X = \mathbb{R})$. $R = \{\langle x, y \rangle : x > y\}$ $\delta_{>} = 2, 3, 4 \dots$ $\rho_{>} = \mathbb{N}$ $>^{-1} = \langle = \{\langle x, y \rangle : x < t\}$ $> \circ \rangle = \{\langle x, z \rangle | x - z \geqslant 2\}$
- X прямые на плоскости. " \bot ": $R=\{\langle x,y\rangle:\ x\perp y\}.$ $\delta_\bot=\rho_\bot=X$ $\bot^{-1}=\bot$ \bot \circ $\bot=\parallel$
- $\langle x,y \rangle \subset R$, когда x отец y. $\delta_R = \{ \text{Все, y кого есть сыновья} \}$. ρ_R — религиозный вопрос. См. Библию $R^{-1} = \text{сын}$ $R \circ R = \{ \text{дед по отцовской линии} \}$

Определение 1.9. Функция из X в Y — отношение ($\delta_f = X$), если:

$$\langle x, y \rangle \in f$$

 $\langle x, z \rangle \in f$ $\Rightarrow y = z.$

Используется запись y = f(y).

Onpedenetue 1.10. Последовательность — функция у которой $\delta_f = \mathbb{N}$

Определение 1.11. Отношение R называется рефлективным, если $\forall x : \langle x, x \rangle \in R$.

Определение 1.12. Отношение R называется симметричным, если $\forall x,y\in X: \langle x,y\rangle\in R\Rightarrow \langle y,x\rangle\in R$

Определение 1.13. Отношение R называется иррефлективным, если $\forall x \langle x, x \rangle \notin R$

Определение 1.14. Отношение R называется антирефлексивным, если $\begin{cases} \langle x,y \rangle \in R \\ \langle y,x \rangle \in R \end{cases} \Rightarrow x=y$

Определение 1.15. Отношение R называется транзитивным, если $\begin{cases} \langle x,y\rangle \in R \\ \langle x,z\rangle \in R \end{cases} \Rightarrow \langle x,z\rangle \in R$

Определение **1.16.** Отношение называется отношением эквивалентности, если отношение рефлективно, симметрично, транзитивно.

Пример. Равенство, сравнение по модулю \mathbb{Z} , $\|$, отношение подобия треугольников.

Определение **1.17.** Если выполняется рефлективность, антисимметричность и транзитивность, от данное отношение — отношение нестрогий частичного порядка.

Пример. \geqslant ; $A \subset B$ на 2^X .

Определение **1.18.** Если выполняется иррефлективность и транзитивность, то данное отношение — отношение строгого частичного порядка.

Пример. >; A собственное подмножество B на 2^X .

Упражнение. Иррефлексивность + транзитивность \Rightarrow антисимметрично.

Упражнение. R — нестрогий ч.п. $\Rightarrow R = \{\langle x, y \rangle \in R : x \neq y\}$ — строгий ч.п.

1.4. Вещественные числа

Есть две операции.

- \bullet +: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$.
 - Коммутативность. x + y = y + x.
 - Ассоциативность. (x + y) + z = x + (y + z)
 - Существует ноль. $\exists 0 \in \mathbb{R} \ x + 0 = x$
 - Существует противоположный элемент. $\exists (-x) \in \mathbb{R} \ x + (-x) = 0$
- \bullet $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.
 - Коммутативность. $x \cdot y = y \cdot x$.
 - Ассоциативность. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - Существует единица. $\exists 0 \in \mathbb{R} \ x \cdot 1 = x$
 - Существует обратный элемент. $\exists x^{-1} \in \mathbb{R} \ x \cdot x^{-1} = 1$

Свойство дистрибутивности: $(x+y) \cdot z = x \cdot z + y \cdot z$. Структура с данными операциями называется полем

Введем отношение \leq . Оно рефлексивно, антисимметрично и транизитивно, то есть нестрогий частичного порядка. Причем:

- $x < y \Rightarrow x + z < y + z$
- $0 \le x \land 0 \le y \Rightarrow 0 \le x \cdot y$

Аксиома полноты. Если A и $B \subset \mathbb{R}$ и $\forall a \in A, b \in B$: $a \leqslant b$ и $A \neq \emptyset \land B \neq \emptyset$, тогда $\exists c \in \mathbb{R} \ a \leqslant c \leqslant b$.

Замечание. Множество рациональных не удовлетворяет аксиоме полноты. Например: $A=\{x\in\mathbb{Q}\mid x^2<2\},\ B=\{x\in Q\mid x>0\land x^2>2\}.$ Единственная точка, между этими множествами — $\sqrt{2}$

Теорема 1.2 (Принцип Архимеда). Пусть $x \in \mathbb{R} \land y > 0$. Тогда $\exists n \in \mathbb{N} : x < ny$

Доказательство. $A = \{u \in \mathbb{R} : \exists n \in \mathbb{N} : u < ny\}$. Пусть $A \neq !\mathbb{R}, B = \mathbb{R} \setminus A \neq \emptyset, A \neq \emptyset,$ т.к. $0 \in A$.

Возьмем $a \in A, b \in B.$ $b < a \Rightarrow \exists n : a < ny \Rightarrow b < ny \Rightarrow$ противоречие.

По аксиоме полноты $\exists c \in \mathbb{R} : a \leqslant c \leqslant b \ \forall a \in A, \forall b \in B.$

Пусть $c \in A$. Тогда $c < ny \Rightarrow c < c + y < ny + y = (n+1)y \Rightarrow c < c + y \Rightarrow c + y \in A$. Противоречие. Пусть $c \in B$. Рассмотрим $c - y < c \Rightarrow c - y \in A \Rightarrow \exists n : c - y < ny \Rightarrow c < ny + y = (n+1)y \Rightarrow c \in A$.

Противоречие.

Следствие. Если $\epsilon > 0$, то $\exists n \in \mathbb{N} \ \frac{1}{n} < \epsilon$

Доказательство. $x=1, y=\epsilon \Rightarrow ny=n\epsilon > x=1 \iff \epsilon > \frac{1}{n}$

1.5. Мат. индукции

Пусть P_n - последовательность утверждений. Тогда, если P_1 — верное и из того, что P_n — верно следует, что P_{n+1} — верно. Тогда все P_n верны $\forall n \in \mathbb{N}$

Определение 1.19. Пусть $A \subset \mathbb{R}$. Тогда A — ограничено сверху, если $\exists \in \mathbb{R} : \forall a \in A \ a < c$. Такое c называется верхней границей.

Определение 1.20. Пусть $A \subset \mathbb{R}$. Тогда A — ограничено снизу, если $\exists b \in \mathbb{R} : \forall a \in A \ a > b$. Такое b называется нижней границей.

Определение 1.21. Пусть $A \subset \mathbb{R}$. Тогда A — ограничено, если оно ограничено сверху и снизу.

Пример. \mathbb{N} не ограничено сверху, но ограничено снизу.

Доказательство. Пусть $\exists c \in \mathbb{R}: c \geqslant n \ \forall n \in \mathbb{N}$. Тогда это противоречит принципу Архимеда при x = c, y = 1.

Для ограниченности снизу достаточно взять c = -1.

1.6. Наибольшие/наименьшие элементы

Теорема 1.3. В непустом конечном множестве A есть наибольший и наименьший элементы.

Доказательство. Докажем по индукции:

- База. |A| = 1. Очевидно.
- Переход. $n \to n+1$.
- Доказательство. Рассмотрим множество из n+1 элемента $\{x_1 \dots x_n, x_{n+1}\}$. Выкинем из него последний элемент. Тогда по индукционному предположению у нас есть максимальный элемент x_k . Тогда рассмотрим два случая:
 - 1. $x_k \geqslant x_{n+1}$. Тогда x_k наибольший элемент множества $\{x_1 \dots x_n, x_{n+1}\}$.
 - 2. $x_k < x_{n+1}$. Тогда по транзитивности x_{n+1} больше всех других элементов множества. Значит, x_{n+1} наибольший элемент множества $\{x_1 \dots x_n, x_{n+1}\}$.

Теорема 1.4. В непустом ограниченном сверху (снизу) множестве целых чисел есть наибольший (наименьший) элемент.

Автор: Харитонцев-Беглов Сергей

Доказательство. Пусть $A \subset \mathbb{Z}$. c — его верхняя граница.

Возьмем $b \in A$ и рассмотрим $B := x \in A \mid x \geqslant b$. Заметим, что B содержит конечное число элементов, значит в нем есть наибольший элемент. Пусть это $m \in B$: $\forall x \in B : x \leqslant m$. Докажем, что m — наибольший элемент и в A.

Для этого заметим, что любой $x \in A$ либо лежит в B, либо x < b, а по транзитивности $x < b \leqslant m$.

Определение 1.22. Пусть $x \in \mathbb{R}$, тогда $[x] = \lfloor x \rfloor$ — наименьшее целое число, не превосходящее x.

1. $[x] \le x < [x] + 1$

Левое неравенство очевидно. Правое неравенство можно доказать от противного: пусть $x \ge [x] + 1$, тогда справа целое число большое [x], но меньшее x. Противоречие.

2. $x - 1 < [x] \le x$

Теорема 1.5. Если $x < y \ (x, y \in \mathbb{R})$, то

- 1. $\exists r \in \mathbb{Q} : x < r < y$.
- 2. $\exists r \notin \mathbb{Q} : x < r < y$

Пункт 1. $\epsilon := y - x > 0$.

Найдется $n \in \mathbb{N}$: $\frac{1}{n} < \varepsilon = y - x$. Тогда $m \coloneqq [xn] + 1$: $r = \frac{m}{n}$ подходит.

$$\frac{m}{n}>x\iff [xn]+1=m>xn-$$
 свойство целой части. $\frac{m}{n}< y.$ $\frac{m-1}{n}=\frac{[nx]}{n}\leqslant \frac{nx}{n}=x\Rightarrow \frac{m}{n}\leqslant x+\frac{1}{n}< x+\epsilon=x+y-x=y$

 $\textit{Пункт 2. } \sqrt{2} \notin \mathbb{Q}. \ \text{Рассмотрим } x - \sqrt{2} < y - \sqrt{2} \Rightarrow \exists r \in Q: \ x - \sqrt{2} < r < y - \sqrt{2} \Rightarrow x < \underbrace{r + \sqrt{2}}_{} < y.$

Почему r' иррационально? Иначе $\sqrt{2} = r' - r \in \mathbb{Q}$.

1.7. Инфинум/Супремум

Определение 1.23. $A \subset \mathbb{R}$ — непустое и ограниченное сверху. Тогда супремум — наименьшая из всех верхних границ A. Обозначается $\sup A$.

Определение 1.24. $A \subset \mathbb{R}$ — непустое и ограниченное снизу. Тогда инфинум — наибольшая из всех нижних границ A. Обозначается inf A.

Пример. $A = \{\frac{1}{n} \mid n \in \mathbb{N}\}. \sup A = 1. \inf A = 0.$

Теорема 1.6. Пусть $A \subset \mathbb{R}$ — непустое и ограниченное сверху. Тогда $\sup A$ существует и единственен.

Доказательство. Существование: Пусть B — все верхние границы A. Во-первых B — не пусто, так как A ограничено сверху.

Тогда возьмем $b \in B$. b — верхняя граница для A, то есть $\forall a \in A : a \leqslant b$. Тогда по аксиоме полноты $\exists C \in \mathbb{R} \ \forall a \in A, b \in B : a \leqslant c \leqslant b$. Из левого неравенства получаем, что c — верхняя граница, то есть $c \in B$. Из второго неравенства получаем, что c — наименьший элемент B. Так и получается, что $c = \sup A$.

Единственность. Если $c = \sup A$ и $c' = \sup A$, то $c \leqslant c'$, так как c — наименьший элемент B, но и $c' \leqslant c$, так как c' — наименьший элемент B. Значит c = c'. Противоречие.

Следствие. $A \subset B \subset \mathbb{R}$, B ограничено сверху, A — не пустое. Тогда $\sup A \leqslant \sup B$.

Доказательство. Если c — верхняя граница B, то c — верхняя граница для A. Заметим, что все верхние границы $A \supset B$. Тогда все понятно.

Теорема 1.7. Пусть $A \subset \mathbb{R}$ — непустое и ограниченное снизу. Тогда $\inf A$ существует и единственен.

Упражнение. Доказательство.

Следствие. $A \subset B \subset \mathbb{R}$, B ограничено снизу, A — не пустое. Тогда $\inf A \geqslant \inf B$.

Замечание. Без аксиомы полноты теоремы существования не верны. $A = \{x \in \mathbb{Q} \mid x^2 < 2\}$. Любое рациональное число $> \sqrt{2}$ — верхние границы. А вот $\sup A$ нет.

Теорема 1.8. Пусть непустое $A \in \mathbb{R}$. Тогда

•
$$a = \inf A \iff \begin{cases} a \leqslant x \ \forall x \in A \\ \forall \epsilon > 0 \ \exists x \in A : \ x < a + \epsilon \end{cases}$$

•
$$b = \sup A \iff \begin{cases} a \geqslant x \ \forall x \in A \\ \forall \epsilon > 0 \ \exists x \in A : \ x > a - \epsilon \end{cases}$$

Доказательство. Рассмотрим два неравенства по отдельности:

- 1. b верхняя граница.
- 2. $b \epsilon$ не является верхней границей множества A. То есть $\forall b' < b : b'$ не является верхней границей.

Все это в точности значит, что $b = \sup A$.

Теорема 1.9 (Теорема о вложенных отрезках). Пусть $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \dots$ Тогда $\exists c \in \mathbb{R} : \forall n : c \in [a_n, b_n].$

Доказательство. Пусть $A = \{a_1, a_2, \ldots\}, B = \{b_1, b_2, \ldots\}$. Заметим, что так как отрезки вложены, то $a_1 \leqslant a_2 \leqslant \ldots$, а $b_1 \geqslant b_2 \geqslant \ldots$ Проверим, что $a_i \leqslant b_j \forall i, j \in \mathbb{N}$. Пусть $i \leqslant j$, тогда $a_1 \leqslant a_2 \leqslant \ldots \leqslant a_i \leqslant \ldots \leqslant a_j \leqslant b_j$. Пусть i > j, тогда $b_1 \geqslant b_2 \geqslant \ldots b_j \geqslant \ldots b_i \geqslant a_i$. Тогда по аксиоме полноты $\exists c \in \mathbb{R} : a_i \leqslant c \leqslant b_j \ \forall i, j \in \mathbb{N} \Rightarrow \forall n \forall a_n \leqslant c \leqslant b_n \Rightarrow c \in [a_n, b_n]$

Замечание. $\sqrt{2}=1.41\dots$ Тогда отрезке: $[1,2],[1.4,1.5],[1.41,1.42],\dots$ Тогда единственная точка, лежащая во всех отрезках: $\sqrt{2}$.

Замечание. Для полуинтервалов, (интервалов) неверно:

$$\bigcap_{n=1}^{\infty} (0, \frac{1}{n}) = \varnothing.$$

Замечание. Для лучей неверно.

$$\bigcap_{n=1}^{\infty} [n, +\infty) = \varnothing.$$

2. Последовательности

2.1. Предел последовательности

Oпределение 2.1. $f: \mathbb{N} \to \mathbb{R}$

Способы задания последовательностей

- 1. Формулой. $f_n \coloneqq \frac{\sin n}{n^n}$
- 2. Рекуррентой: $f_1 = 1, f_2 = 2, f_{n+2} = f_n + f_{n+1}$.

Способы визуализации:

- 1. Можно ставить точки на прямой. Но если последовательность, например, $a_n := \sin(\frac{n\pi}{2})$, то получится кукож.
- 2. График. Считаем значения в натуральных точках.

Определение 2.2. Последовательность a_n ограничена сверху, если $\exists C : \forall n \in \mathbb{N} : a_n \leqslant c$.

Определение 2.3. Последовательность a_n ограничена снизу, если $\exists C : \forall n \in \mathbb{N} : a_n \geqslant c$.

Onpedenehue 2.4. Последовательность a_n ограничена, если она ограничена и сверху, и снизу.

Определение 2.5. Последовательность a_n монотонно возрастает, если $a_1 \leqslant a_2 \leqslant a_3 \leqslant \dots$

Определение 2.6. Последовательность a_n строго монотонно возрастает, если $a_1 < a_2 < \dots$

Определение 2.7. Последовательность a_n монотонно убывает, если $a_1 \geqslant a_2 \geqslant a_3 \geqslant \dots$

Определение 2.8. Последовательность a_n строго монотонно убывает, если $a_1 > a_2 > a_3 > \dots$

Определение 2.9 (Нетрадиционное определение предела). $l = \lim a_n \iff$ вне любого интервала, содержащего l находится конечное число членов последовательности.

Замечание. Мы можем смотреть только на симметричные относительно точки l интервалы. Если он не симметричен, то можно большую границу уменьшить. Так можно сделать, так как мы знаем, что вне меньшего конечное число точек, то и снаружи большего точно конечное число точек. Тогда наш интервал выглядит как $(l-\epsilon;l+\epsilon)$

Замечание. Конечное число точек снаружи интервала \iff начиная с некоторого номера все попали в интервал, так как возьмем последнюю точку вне интервалов, и взяли её номер +1.

Определение 2.10 (Традиционное определение предела). $l = \lim a_n \iff \forall \epsilon > 0: \exists N: \forall n \geqslant N: |a_n - l| < \epsilon$

- 1. Предел единственный. Пусть l и l' единственный. (Kapmunka). Рассмотрим интервал содержащий l, но не l'. Снаружи конечное число точек, теперь наоборот, там тоже конечное число точек. Тогда последовательность конечна.
- 2. Если из последовательности выкинуть какое-то число членов, то предел не изменится. Доказательство через картинку.

- 3. Если как-то переставить члены последовательности, то предел не изменится. Ну очевидно, что количество членов не изменилось, точки не поменяли своё местоположение.
- 4. Если члены последовательности записать с какой-то кратностью (конечной), то предел не изменится.
- 5. Если добавить к последовательности конечное число членов, то наличие/отсутствие предела и значение предела, если он существует, не поменяется. Доказательство по картинке.
- 6. Изменение конечного числа членов в последовательности не меняет предел.

Пример. $\lim \frac{1}{n}=0$. Мы знаем, что найдется такой номер, что $\frac{1}{n}<\beta$, тогда при $n\geqslant N$ $0<\frac{1}{n}\leqslant \frac{1}{N}<\beta$

Пример. $a_n = (-1)^n$ не имеет предела.

Доказательство. Посмотрим на картинку. Возьмем сначала точку не равную ± 1 . Тогда можно выбрать интервал, которые не содержит ± 1 . То есть интервал не содержит бесконечное число точек.

Для
$$x=1$$
 можно взять $(0;2)$, для $x=-1$ можно взять $(-2;0)$.

Лемма. $\forall a,b,x_n,y_n,\epsilon>0: a=\lim x_n\wedge b=\lim y_n\Rightarrow \exists N: \forall n\geqslant N: |x_n-a|<\epsilon\wedge |y_n-b|<\epsilon$

Доказательство. Запишем определения пределов: $\forall \epsilon > 0 \exists N_1 \forall n \geqslant N_1 |x_n - a| < \epsilon$ и $\forall \epsilon > 0 \exists N_2 \forall n \geqslant N_2 |y_n - b| < \epsilon$. Тогда просто возьмем $N = \max(N_1, N_2)$.

Теорема 2.1 (Предельный переход в неравенствах). $\forall x_n, y_n(x_i < y_i \ \forall i) \ a = \lim x_n \land b = \lim y_n \Rightarrow a \leqslant b$

Доказательство. Докажем от противного. Пусть a>b. Посмотрим картиночку. Пусть $\epsilon\coloneqq\frac{a-b}{2}$. По лемме $\exists N: \forall n\geqslant N: |x_n-a|<\epsilon \wedge |y_n-b|<\epsilon$. Заметим, что $x_n-a|<\epsilon\Rightarrow x_n>a-\epsilon$, а $|y_n-b|<\epsilon\Rightarrow y_n< b+\epsilon\Rightarrow x_n>a-\epsilon=b+\epsilon>y_n$. Противоречие.

Замечание. Строгий знак может не сохраняться. Пример: $x_n = -\frac{1}{n} < y_n = \frac{1}{n}$, но предел и там, и там 0. Т.к. $\forall \epsilon > 0 \exists N : \forall n \geqslant N : \frac{1}{n} = |y_n| = |x_n| < \epsilon$

Следствие. Три пункта:

- 1. $\forall n x_n \leqslant b \land \lim x_n = a \Rightarrow a \leqslant b$.
- 2. $\forall na \leqslant y_n \wedge \lim y_n = b \Rightarrow a \leqslant b$.
- 3. $\forall n x_n \in [a; b] \land \lim x_n = l \Rightarrow l \in [a, b]$.

Доказательство. Константу можно заменить на последовательность $z_n = \mathrm{const}$

Теорема 2.2 (Теорема о двух милиционерах (теорема о сжатой последовательности)). Пусть $\forall n: x_n \leq y_n \leq z_n \wedge \lim x_n = \lim z_n =: l$, тогда $\lim y_n = l$.

Доказательство. Возьмем $\epsilon > 0$. По лемме: $\exists N : \forall n \geqslant N : |x_n - l| < \epsilon \land |z_n - l| < \epsilon$, откуда $x_n > l - \epsilon$ и $z_n < l + \epsilon$. Тогда $l - \epsilon < x_n \leqslant y_n \leqslant z_n < l + \epsilon \Rightarrow l - \epsilon < y_n < l + \epsilon$, то есть $|y_n - l| < \epsilon$. \square

Cnedcmeue. Если $\forall n|y_n|\leqslant z_n\wedge\lim z_n=0\Rightarrow\lim y_n=0$

Доказательство. $x_n \coloneqq -z_n$. Тогда $|y_n| \leqslant z_n \iff -z_n \leqslant y_n \leqslant z_n$. Ну тогда и $\lim y_n = 0$

Теорема 2.3 (Теорема Вейерштрасса для монотонной последовательности). Три пункта:

- 1. $\forall x_n x_n \uparrow \land x_n$ ограничена сверху $\Rightarrow \exists a = \lim x_n$.
- 2. $\forall x_n x_n \downarrow \land x_n$ ограничена снизу $\Rightarrow \exists a = \lim x_n$.
- 3. Монотонная последовательность имеет предел 👄 она ограничена.

 $\Pi y \mu \kappa m \ 1. \ b \coloneqq \sup\{x_1, x_2, \ldots\}$ — существует, т.к. x_n — ограничено сверху. Теперь докажем, что $\lim x_n = b$, возьмем $\epsilon > 0$. b — наименьшая верхняя граница $\Rightarrow \forall \epsilon > 0b - \epsilon$ — не верхняя граница. То есть $\exists N: x_N > b - \epsilon$. Проверим, что такое N подходит: при $n \geqslant N$ $b - \epsilon < x_N < x_{N+1} < \epsilon$ $\dots x_n \leqslant b \leqslant b + \epsilon \Rightarrow b - \epsilon < x_n < b + \epsilon.$

Пункт 3. Докажем отдельно в каждую сторону:

- \leftarrow Если \uparrow , то пункт 1, иначе пункт 2.
- ⇒ Докажем это утверждение для любой последовательности. Пусть $\lim x_n = a$. Возьмем $\epsilon = 1$, тогда $\exists N : \forall n > N : |x_n - a| < 1 \Rightarrow a - 1 < x_n < a + 1$. Ну

тогда верхняя граница $\max\{a+1, x_1, x_2, \dots, x_{N+1}\}$, а нижняя $\min\{a-1, \dots\}$.

Замечание. В 1: $\lim x_n = \sup\{x_1, x_2, \ldots\}$, во 2: $\lim x_n = \inf\{x_1, x_2, \ldots\}$.

Теорема 2.4 (О арифметичеких операциях с пределами). $\forall x_n, y_n a = \lim x_n \wedge \lim y_n = b$. Тогда:

- 1. $x_n + y_n$ имеет предел и он равен a + b
- 2. $x_n y_n$ имеет предел и он равен a b
- 3. $x_n * y_n$ имеет предел и он равен a * b
- 4. $|x_n|$ имеет предел и он равен |a|
- 5. $\frac{x_n}{y_n}$ имеет предел, если $b \neq 0 \land \forall n y_n \neq 0$ и он равен $\frac{a}{b}$

Доказательство.

- 1. Возьмем $\epsilon>0$ и найдем N из леммы для $\frac{\epsilon}{2}$. Тогда $\forall n\geqslant N: |x_n-a|<\frac{\epsilon}{2}\wedge |y_n-a|<\frac{\epsilon}{2}\Rightarrow$ $|(x_n + y_n) - (a+b)| \le |x_n - a| + |y_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$
- 2. Так же.
- 3. Поскольку $\lim y_n = b$, то y_n ограничена, а значит $\exists M : |y_n| \leqslant M$. Рассмотрим $|x_n y_n ab| = b$ $|x_n y_n - a y_n + a y_n - a b| \leqslant |x_n y_n - a y_n| + |a y_n - a b| = |y_n| |x_n - a| + |a| |y_n - b| \leqslant M|x_n - a| + |a| |y_n| - b.$ $M|x_n-a|<rac{\epsilon}{2}\iff |x_n-a|<rac{\epsilon}{2M}.$ Значит $\exists N_1$ при котором $\forall n>N_1$ выполнено. $|a||y_n-b|<$ $\frac{\epsilon}{2} \Leftarrow |y_n - b| < \frac{\epsilon}{2|a|+1}$. Тогда найдется N_2 , такой что $\forall n \geqslant N_2$ это выполнено. Такой что $\bar{N} = \max N_1, N_2.$
- 4. $||x| |a|| \le |x_n a| \iff -|x_n a| \le |x_n| |a| \le |x_n a|$, а в правой части написано, что $|x_n| = |(x_n - a) + a| \le |x_n - a| + |a|$. Понятно, что это выполняется при любых x_n, a .

Возьмем N, для которого $\forall n > N : |x_n - a| < \epsilon$. Тогда $\forall n \geqslant N : ||x_n| - |a|| \leqslant |x_n - a| < \epsilon$

5. Докажем, что $\lim \frac{1}{y_n} = \frac{1}{b}$. Возьмем $|\frac{1}{y_n} - \frac{1}{b}| = \frac{|y_n - b|}{|y_n||b|} \iff (1)$. Посмотрим на картинку: возьмем $\epsilon = \frac{b}{2}$. Получим интервал $(\frac{b}{2}; \frac{3b}{2})$. Тогда берем $N_1 : \forall n \geqslant N |y_n - b| < |b|/2 \Rightarrow |y_n| > \frac{|b|}{2}$. Тогда $(1) \iff \frac{|y_n - b|}{|\frac{b|}{2}|b|} = \frac{2}{|b|^2} |y_n - b| < \epsilon \iff |y_n - b| < \epsilon \cdot \frac{|b|}{2}$. Поэтому $\exists N_2 : \forall n \geqslant N_2$ такой, что это выполняется. Ну тогда $N = \max N_1, N_2$.

Следствие. Если $\lim x_n = a$, то $\lim cx_n = ca$.

Следствие. Если $\lim x_n = a \wedge \lim y_n = b$, то $\lim (cx_n + dy_n) = ca + db$

Замечание. Если $\lim y_n = b \neq 0$, то начиная с некоторого $N, y_n \neq 0$

Пример. $\lim \frac{n^2+2n-3}{4n^2-5n+6} = \frac{1+\frac{2}{n}-\frac{3}{n^2}}{4-\frac{5}{n}+\frac{6}{n^2}} = \frac{\lim(1+\frac{2}{n}-\frac{3}{n^2})}{4-\frac{5}{n}+\frac{6}{n^2}} = \frac{1}{4}$

2.2. Бесконечно большие и бесконечно малые

Определение 2.11. Последовательность x_n называется бесконечной малой, если $\lim x_n = 0$.

Утверждение 2.5. $\forall x_n, y_n : x_n$ — бесконечно мала последовательность $\land y_n$ ограничена, $x_n y_n$ — бесконечно малая последовательность.

Доказательство. y_n — ограничена $\Rightarrow \exists M: \forall n: |y_n| \leqslant M$. Возьмем $\epsilon > 0$ и подставим в определение $\lim x_n = 0$. Тогда найдется $N: \forall n \geqslant N: |x_n| < \frac{\epsilon}{M}$. Следовательно $x_n y_n \leqslant M |x_n| < M \frac{\epsilon}{M} = \epsilon \Rightarrow \lim x_n y_n = 0$.

Определение 2.12. $\lim x_n = +\infty$ означает то, что вне любого луча вида $(E; +\infty)$ лежит лишь конечное число членов последовательности. Или: $\forall E \exists N : \forall n \geqslant Nx_n > E$.

Определение 2.13. $\lim x_n = -\infty$ означает то, что вне любого луча вида $(-\infty, E)$ лежит лишь конечное число членов последовательности. Или: $\forall E \exists N : \forall n \geqslant Nx_n < E$.

Определение 2.14. $\lim x_n = \infty$ означает то, что в любом промежутке содержится конечное число членов последовательности. Или: $\forall \exists N \forall n \geqslant N | x_n | > E$.

Замечание. $\lim x_n = \infty \iff \lim |x_n| = +\infty$

Замечание. $\lim x_n = +\infty$ (или 0∞) $\Rightarrow \lim x_n = \infty$. Но \neq ! Пример $x_n = (-1)^n \cdot n$.

Замечание. $\lim x_n = \infty \Rightarrow x_n$ — неограниченная последовательность. Но наоборот неверно. Пример: $x_n = \begin{cases} n & n - \text{четно} \\ 0 & n - \text{нечетно} \end{cases}$.

Определение 2.15. x_n называется бесконечно большой, если $\lim x_n = \infty$.

Теорема 2.6. $\forall x_n : \forall n x_n \neq 0 \Rightarrow x_n$ — бесконечно малая $\iff \frac{1}{x_n}$ — бесконечно большая.

Доказательство. Докажем в каждую сторону отдельно:

- $\Rightarrow x_n$ бесконечно малая $\iff \lim x_n = 0$. Возьмем E из определения бесконечно большой и $\varepsilon = \frac{1}{E}$, подставим в предел. Тогда $\exists N : \forall n \geqslant N |x_n| < \varepsilon = \frac{1}{E} \Rightarrow |\frac{1}{x_n}| > E$.
- $\Leftarrow \frac{1}{x_n}$ бесконечно большая $\Rightarrow \frac{1}{x_m} = \infty$. Возьмем $\varepsilon > 0$ из определения бесконечно малой и $E = \frac{1}{\varepsilon}$ и подставим в lim. Тогда $\exists N, \forall n \geqslant N: |\frac{1}{x_n}| > E = \frac{1}{\varepsilon} \Rightarrow |x_n| < \varepsilon$

Определение 2.16. $\overline{\mathbb{R}} = \mathbb{R} \cup \pm \infty$

Теорема 2.7. В $\overline{\mathbb{R}}$ предел единственен.

Доказательство. Пусть $\lim x_n = a \in \overline{\mathbb{R}}$ и $\lim x_n = b \in \overline{\mathbb{R}}$. Если $a,b \in \mathbb{R}$, то знаем. Иначе рассмотрим случаи:

- $a = \pm \infty, b \in \mathbb{R}$. Картинка.
- $a = +\infty, b = -\infty$. Ну такого быть не может, смотри картинку.

Теорема 2.8 (о стабилизации знака). Если $\lim x_n = a \in \overline{\mathbb{R}} \land a \neq 0 \Rightarrow \exists N : \forall n \geqslant N$ все члены последовательности имеют тот же знак, что и a.

Доказательство. Несколько случаев:

- $a \in \mathbb{R}$. Картинка. Начиная с некоторого номер все $x_n \in (0; 2a)$ или $x_n \in (2a; 0)$.
- $a = +\infty$. Картинка. Возьмем E = 0, начина с некоторого номера все члены попали в этот луч.
- $a = \infty$. Аналогично.

Теорема 2.9 (предельный переход в неравентсве $\overline{\mathbb{R}}$). $\forall n: x_n \leqslant y_n \wedge \lim x_n = a \in \overline{\mathbb{R}} \wedge \lim y_n = b \in \overline{\mathbb{R}} \Rightarrow a \leqslant b$.

Доказательство. Если $a, b \in \mathbb{R}$, то уже есть. Иначе предположим противное:

• $a=+\infty$ и $b\in\mathbb{R}$. Картинка...

Теорема 2.10 (Теорема о двух миллиционерах).

- 1. $\forall x_n, y_n : x_n \leq y_n \wedge \lim x_n = +\infty \Rightarrow \lim y_n = +\infty$
- 2. $\forall x_n, y_n : x_n \leq y_n \wedge \lim y_n = -\infty \Rightarrow \lim x_n = -\infty$

Доказательство.

- 1. $\forall E : \lim x_n = +\infty \Rightarrow \exists N : n \geqslant Nx_n > E$, Ho $y_n \geqslant x_n > E$.
- 2. Упражнение для читателя.

Теорема 2.11 (О арифметических действиях с бесконечно большими).

- 1. $\forall x_n, y_n \lim x_n = +\infty, y_n$ ограничена снизу $\Rightarrow \lim(x_n + y_n) = +\infty$
- 2. $\forall x_n, y_n \lim x_n = -\infty, y_n$ ограничена сверху $\Rightarrow \lim(x_n + y_n) = -\infty$

- 3. $\forall x_n, y_n \lim x_n = \infty, y_n$ ограничена $\Rightarrow \lim (x_n + y_n) = \infty$
- 4. $\forall x_n, y_n \lim x_n = \pm \infty \land \exists C : \forall n : y_n \geqslant C > 0 \Rightarrow \lim(x_n y_n) = \pm \infty$
- 5. $\forall x_n, y_n \lim x_n = \pm \infty \land \exists C : \forall n : y_n \leqslant C < 0 \Rightarrow \lim(x_n y_n) = \mp \infty$
- 6. $\forall x_n, y_n \lim x_n = \infty \land \exists C : \forall n : |y_n| \geqslant C > 0 \Rightarrow \lim(x_n y_n) = \infty$
- 7. $\forall x_n, y_n \lim x_n = a \neq 0 \land \forall n : \lim y_n = 0 \Rightarrow \lim \frac{x_n}{y_n} = \infty$
- 8. $\forall x_n$ ограничена, y_n : $\lim y_n = \infty \Rightarrow \lim \frac{x_n}{y_n} = 0$
- 9. $\forall x_n, y_n$ ограничена : $\lim x_n = \infty \land y_n \neq 0 \Rightarrow \lim \frac{x_n}{y_n} = \infty$

Доказательство.

- 1. y_n ограничена снизу $\Rightarrow y_n \geqslant c$. А так как $\lim x_n = +\infty \Rightarrow \forall E \exists N : \forall n \geqslant N : x_n > E$. Подставим E c вместо E. $\exists N \forall n \geqslant N x_n > E C \Rightarrow x_n + y_n \geqslant E c + y_n \geqslant E c + c = E$.
- 2. Упражнение.
- 3. Упражнение.
- 4. $\lim x_n = +\infty \Rightarrow \forall E \exists N \forall n \geqslant N : x_n > E$. Подставим $\frac{E}{c}$ вместо $E: x_n > \frac{E}{c} \Rightarrow x_n y_n \geqslant x n_C > \frac{E}{c} \cdot c = E$.
- 5. Упражнение.
- 6. Упражнение.
- 7. $\lim y_n = 0 \Rightarrow y_n$ бесконечно малое $\Rightarrow \frac{1}{y_n}$ бесконечно большая. Поймем, что $|x_n| \geqslant C > 0$ при больших n. Возьмем картинку и окрестность $\frac{a}{2}$. Заметим, что начиная с некоторого номер $|x_n| \geqslant \frac{a}{2} > 0$.
- 8. y_n бесконечно большая $\Rightarrow \frac{1}{y_n}$ бесконечно малая $\Rightarrow x_n \cdot \frac{1}{y_n}$ произведение ограниченное и бесконечно малой.
- 9. x_n бесконечно большая $\frac{1}{x_n}$ бесконечно малая $\Rightarrow y_n \cdot \frac{1}{x_n}$ бесконечно малая.

Арифметика с бесконечностями:

1.
$$\pm \infty + c = \pm \infty$$

$$2. +\infty +\infty = +\infty$$

3.
$$-\infty + -\infty = -\infty$$

4.
$$\pm \infty \cdot c = \pm \infty$$
, если $c > 0$

5.
$$\pm \infty \cdot c = \mp \infty$$
, если $c < 0$

6.
$$+\infty \cdot +\infty = +\infty$$

 $-\infty - \infty = +\infty$
 $+\infty - \infty = -\infty$

Запрещенные операции:

- $1. +\infty +\infty$ или $+\infty + -\infty$. Может получиться беспредел, любое число, любая бесконечность.
- $2. +\infty \cdot 0$
- 3. $\frac{\pm \infty}{+infty}$. Может получиться беспредел, любое число, бесконечность правильного знака.
- 4. $\frac{0}{0}$ любое число, любая бесконечность, отсутствие предела.

Пример.

- $x_n = n + a, y_n = n, x_n y_n = a : \lim x_n = +\infty, \lim y_n = +\infty, \lim x_n y_n = a$
- $x_n = 2n \to +\infty, y_n = n\infty + \infty, x_n y_n = n \to +\infty$
- ясно.
- $x_n = n + (-1)^n \to +\infty, y_n = n \to +\infty, x_n y_n = (-1)^n$ нет предела.

Упражнение. Примеры к остальному.

2.3. Экспонента

Теорема 2.12 (Неравенство Бернулли). $\forall x \geqslant -1, n \in \mathbb{N}(1+x)^n \geqslant 1+nx$. Равенство при x= $0 \lor n = 1.$

Доказательство. Индукция:

- База n = 1: $1 + x \ge 1 + x$.
- Переход $n \to n+1$.
- Предположение: $(1+x)^n \ge 1 + nx$.
- Заметим, что $(1+x)^{n+1}=(1+x)\cdot(1+x)^n\geqslant (1+x)(1+nx)=1+x+nx+nx^2=1+(n+1)x+nx^2\geqslant (1+x)(1+nx)$ 1+(n+1)x. Строгий знак при $x\neq 0$.

Замечание. На самом деле $(1+x)^P\geqslant 1+Px,$ если x>-1 и $P\geqslant -1$ или $P\leqslant 0.$ Иначе верно $(1+x)^P \leqslant 1 + Px.$

Теорема 2.13. Пусть $a \in \mathbb{R}$ и $x_n := (1 + \frac{a}{n})^n$. Тогда при n > -a монотонно возрастает и ограничена сверху.

Доказательство.
$$\frac{x_n}{x_{n+1}} = \frac{(1+\frac{a}{n})^n}{(1+\frac{a}{n-1})^{n-1}} = \frac{(n+a)^n}{n^n} \cdot \frac{(n-1)^{n-1}}{(n-1+a)^{n-1}} = \frac{n-1+a}{n-1} \left(\frac{(n+a)(n-1)}{n\cdot(n-1+a)}\right)^n = \frac{n-1+a}{n-1} \left(\frac{n^2+an-n-a}{n^2+an-n}\right)^n = \frac{n-1+a}{n-1} \left(1-\frac{a}{n(n-1+a)}\right)^n \geqslant \frac{n-1+a}{n-1} \left(1+n\cdot\frac{-a}{n(n-1+a)}\right) = \frac{n-1+a}{n-1} \cdot \frac{n-1+a-a}{n-1+a} = 1$$

Убедимся в выполнении условий для неравенства Бернулли. Посмотрим на $\frac{a}{n-1+a}$. Если a>0, то очевидно. Если a < 0, то $n_1 > a$, а значит дробь меньше нуля.

Ограниченность:
$$y_n := (1 - \frac{a}{n})^n$$
 возрастает при $n > a$. $x_n y_n = \left(\left(1 + \frac{a}{n}\right)\left(1 - \frac{a}{n}\right)\right)^n = \left(1 - \frac{a^2}{n^2}\right)^n \leqslant 1$. Тогда $x_n \leqslant \frac{1}{y_n} \leqslant \frac{1}{y_{n-1}} \leqslant \ldots \leqslant \frac{1}{y_{[a]+1}}$

Следствие. $x_n := \left(1 + \frac{a}{n}\right)^n$ имеет предел.

Определение 2.17. $\exp a := \lim_{n \to \infty} \left(1 + \frac{a}{n}\right)^n$ $e := \exp 1 = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2.7182818284590$

 $\pmb{Cnedcmeue}.$ Последовательность $z_n \coloneqq (1+\frac{1}{n})^{n+1}$ монотонно убывает и стремится к e.

Доказательство.
$$\lim z_n = \lim \left(1 + \frac{1}{n}\right)^n \lim \left(1 + \frac{1}{n}\right) = e \cdot 1 = e$$
. $\frac{1}{z_n} = \frac{1}{\left(\frac{n+1}{n}\right)^{n+1}} = \left(\frac{n}{n+1}\right)^{n+1} = \left(1 - \frac{1}{n+1}\right)^{n+1}$ — строго монотонно возрастает.

Свойства экспоненты:

- 1. $\exp 0 = 1, \exp 1 = e$.
- 2. $\exp a > 0$
- 3. $\exp a \geqslant 1 + a$. $\left(1 + \frac{a}{n}\right)^n \geqslant 1 + n\frac{a}{n} = 1 + a$, при n > -a. Далее совершим предельный переход.
- 4. $\exp a \exp(-a) \leqslant 1$. $\left(1 + \frac{a}{n}\right)^n \cdot \left(1 \frac{a}{n}\right)^n = \left(1 \frac{a^2}{n^2}\right)^n \leqslant 1$. Далее предельный переход.
- 5. $\forall a, b : a \leq b \Rightarrow \exp a \leq \exp b$. Знаем, что $1 + \frac{a}{n} \leq 1 + \frac{b}{n}$ и при больших n они положительны, тогда можно возвести в n-ую степень и совершить предельный переход.
- 6. $\exp a < \frac{1}{1-a}$ при $a \le 1$. $\exp a \cdot \exp(-a) \le 1 \Rightarrow \exp a \le \frac{1}{\exp(-a)}$. А $\exp(-a) \ge 1 + (-a) = 1 a$ (применили Бернулли). Тогда можно уменьшить знаменатель, тем самым увеличить дробь.
- 7. $\forall n \in \mathbb{N} x_n < e < z_n$. Знаем, что $x_n \uparrow$. Тогда возьмем $k \geqslant n+1 : x_n < x_{n+1} < x_k$. Устремляем $k \to \infty : x_n < x_{n+1} \leqslant e \iff x_n < e$.

С другой стороны $z_n \downarrow$. Тогда по той же технике $z_n > z_{n+1} \geqslant e \iff z_n \geqslant e$.

8. 2 < e < 3. $2 = x_1$, $3 = z_5$ или z_6 .

Замечание. $z_n - x_n = \frac{x_n}{n} \approx \frac{e}{n}$.

Лемма. $\forall a_n \lim a_n = a \Rightarrow y_n := (1 + \frac{a_n}{n})^n \to \exp a$.

Доказательство. Пусть $x_n = (1 + \frac{a}{n})^n$, $A = 1 + \frac{a}{n}$, $B = 1 + \frac{a_n}{n}$. Тогда $|x_n - y_n| = |A^n - B^n| = \underbrace{|A - B|}_{= \frac{|a - a_n|}{n}} \cdot |A^{n-1} + A^{n-2}B + \ldots + B^{n-1}|$.

Тогда $\lim a_n = a \Rightarrow a_n$ — ограниченная последовательность $(|a_n| \leqslant M)$. Тогда $|a_n| \leqslant M \Rightarrow A = 1 + \frac{a}{n} \leqslant 1 + \frac{M}{n}, B = 1 + \frac{a}{n} \leqslant 1 + \frac{M}{n}$. Тогда исходное: $\frac{|a-a_n|}{n} n \left(1 + \frac{M}{n}\right)^{n-1} \leqslant |a-a_n| (1 + \frac{M}{n})^n \leqslant |a-a_n| \exp M \to 0$.

To ect $\lim x_n - y_n \Rightarrow \lim x_n - \lim (x_n - y_n) = \exp a - 0 = \exp a$.

Теорема 2.14. $\exp(a+b) = \exp a \cdot \exp b$.

Доказательство.
$$x_n \coloneqq \left(1 + \frac{a}{n}\right)^n \to \exp a$$
. $y_n \coloneqq \left(1 + \frac{b}{n}\right)^n \to \exp b$. Тогда $x_n y_n = \left((1 + \frac{a}{n})(1 + \frac{b}{n})\right)^n = \left(1 + \frac{a + b + \frac{ab}{n}}{n}\right)^n \xrightarrow{\text{Лемма}} \exp(a + b)$

Следствие.

1. $\forall t : |t| < 1 \Rightarrow \lim_{n \to \infty} t^n = 0$

2. $\forall t : |t| > 1 \Rightarrow \lim_{n \to \infty} t^n = \infty$

Доказательство.

- 2. Пусть x = |t| 1 > 0. Тогда $|t^n| = |t|^n = (1+x)^n > 1 + nx \to +\infty$
- 1. Если 0<|t|<1, то $|\frac{1}{t}|>1$ и $\left(\frac{1}{t}\right)^n$ бесконечно большая $\Rightarrow t^n$ бесконечно малая.

Теорема 2.15. $\forall x_n > 0 \lim \frac{x_{n+1}}{x_n} = a < 1 \Rightarrow \lim x_n = 0.$

Доказательство. Картинка. Возьмем окрестность с правой границей $b=\frac{a+1}{2}$. Тогда начиная с некоторого номера m члены последовательности $\frac{x_{n+1}}{x_n}$ попали в этот интервал. То есть $\frac{x_{n+1}}{x_n} \leqslant b < 1$ при $n \geqslant m$.

Пусть
$$n > m$$
. $x_n = \frac{x_n}{x_{n+1}} \cdot \frac{x_{n-1}x_{n-2}}{x_m} \cdot \dots \cdot \frac{x_{m+1}}{x_m} \cdot x_m \leqslant b^{n-m} \cdot x_m = b^n \frac{x_m}{b^m}$. Тогда $0 < x_n < \underbrace{b^n}_{\to 0} \frac{x_m}{b^m}$.

Следствие.

- 1. $\lim \frac{n^k}{a^n} = 0$ при a > 1 и $k \in \mathbb{N}$.
- 2. $\lim \frac{a^n}{n!} = 0$, при $a \in \mathbb{R}$.
- 3. $\lim \frac{n!}{n^n} = 0$.

Доказательство.

1.
$$x_n = \frac{n^k}{a^n} \cdot \frac{x_{n+1}}{x_n} = \frac{(n+1)^k}{a^{n+1}} \cdot \frac{a^n}{n^k} = \left(\frac{n+1}{n}\right)^k \cdot \frac{1}{a} \to \frac{1}{a} < 1.$$

2.
$$x_n = \frac{a^n}{n!} \cdot \frac{x_{n+1}}{x_n} = \frac{a^{n+1}}{(n+1)!} \cdot \frac{n!}{a^n} = \frac{a}{n+1} \to 0.$$

3.
$$x_n = \frac{n!}{n^n}$$
. $\frac{x_{n+1}}{x_n} = \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \frac{n+1}{(n+1)^{n+1}} n^n = \left(\frac{n}{n+1}\right)^n = \frac{1}{\left(1+\frac{1}{n}\right)^n} \to \frac{1}{e} < 1$.

Теорема 2.16 (Теорема Штольца). Пусть $y_1 < y_2 < y_3 < \dots$ и $\lim y_n = +\infty$. Если $\lim \frac{x_{n+1} - x_n}{y_{n+1} - y_n} = l \in \mathbb{R}$, то $\lim \frac{x_n}{y_n} = l$.

Доказательство. Ключевой случай: l=0. Пусть $a_n:=\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$. По условию $\lim a_n=0$. Зафиксируем $\varepsilon>0$. Тогда найдется номер m, такой, что при $n\geqslant m\Rightarrow |a_n|<\varepsilon$. Тогда $|x_{n+1}-x_n|=|a_n|(y_{n+1}-y_n)<\varepsilon(y_{n+1}-y_n).$ $|x_n-x_m|\leqslant |x_n-x_{n-1}|+|x_{n-1}+x_{n-2}|+\ldots+|x_{m+1}-x_m|<\varepsilon(y_n-y_{n-1})+\varepsilon(y_{n-1}+y_{n-2})+\ldots+\varepsilon(y_{m+1}-y_m)=\varepsilon(y_n-y_m)$.

Теперь посмотрим на $|\frac{x_n}{y_n}| \leqslant \frac{|x_n - x_m| + |x_m|}{|y_n|} < \frac{\varepsilon(y_n - y_m)}{y_n} + \frac{|x_m|}{y_n} < \varepsilon \frac{y_n}{y_n} + \frac{|x_m|}{y_n} = \varepsilon + \frac{|x_m|}{y_n} < 2\varepsilon$. Берем такой $N: \forall n \geqslant Ny_n \geqslant \frac{1}{\varepsilon}|x_m|$. Если $n > \max\{m, N\}$, то $|\frac{x_n}{y_n}| < 2\varepsilon$. Тогда $\lim \frac{x_n}{y_n} = 0$