

Image Restoration

Preview

- Goal of image restoration
 - Improve an image in some predefined sense
 - Difference with image enhancement ?
- Features
 - Image restoration v.s image enhancement
 - Objective process v.s. subjective process
 - A prior knowledge v.s heuristic process
 - A prior knowledge of the degradation phenomenon is considered
 - Modeling the degradation and apply the inverse process to recover the original image

Preview (cont.)

- Target
 - Degraded <u>digital image</u>
 - Sensor, digitizer, display degradations are less considered
- Spatial domain approach
- Frequency domain approach

Outline

- A model of the image degradation / restoration process
- Noise models
- Restoration in the presence of <u>noise only</u> spatial filtering
- Periodic noise reduction by frequency domain filtering
- Linear, position-invariant degradations
- Estimating the degradation function
- Inverse filtering

A model of the image degradation/restoration process

 $g(x,y)=f(x,y)*h(x,y)+\eta(x,y)$

G(u,v)=F(u,v)H(u,v)+N(u,v)

Noise models

- Source of noise
 - Image acquisition (digitization)
 - Image transmission
- Spatial properties of noise
 - Statistical behavior of the gray-level values of pixels
 - Noise parameters, correlation with the image
- Frequency properties of noise
 - Fourier spectrum
 - Ex. white noise (a constant Fourier spectrum)

Noise probability density functions

- Noises are taken as random variables
- Random variables
 - Probability density function (PDF)

Gaussian noise

- Math. tractability in spatial and frequency domain
- Electronic circuit noise and sensor noise

$$p(z) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(z-\mu)^2/2\sigma^2}$$
mean variance

Note:
$$\int_{-\infty}^{\infty} p(z)dz = 1$$

Gaussian noise (PDF)

Uniform noise

 Less practical, used for random number generator

$$p(z) = \begin{cases} \frac{1}{b-a} & \text{if } a \le z \le b \\ 0 & \text{otherwise} \end{cases}$$

Mean:
$$\mu = \frac{a+b}{2}$$

Variance:
$$\sigma^2 = \frac{(b-a)^2}{12}$$

Uniform PDF

Impulse (salt-and-pepper) nosie

Quick transients, such as faulty switching during imaging

$$p(z) = \begin{cases} P_a & \text{for } z = a \\ P_b & \text{for } z = b \\ 0 & \text{otherwise} \end{cases}$$

If either P_a or P_b is zero, it is called *unipolar*. Otherwise, it is called bipoloar.

•In practical, impulses are usually stronger than image signals. Ex., a=0(black) and b=255(white) in 8-bit image.

Impulse (salt-and-pepper) nosie PDF

Test for noise behavior

Test pattern

Its histogram:

Salt & Pepper Gaussian Uniform

Periodic noise

- Arise from electrical or electromechanical interference during image acquisition
- Spatial dependence
- Observed in the frequency domain

Sinusoidal noise: Complex conjugate pair in frequency domain

Estimation of noise parameters

- Periodic noise
 - Observe the frequency spectrum
- Random noise with unknown PDFs
 - Case 1: imaging system is available
 - Capture images of "flat" environment
 - Case 2: noisy images available
 - Take a strip from constant area
 - Draw the histogram and observe itMeasure the mean and variance

Observe the histogram

Gaussian

uniform

Measure the mean and variance

Histogram is an estimate of PDF

$$\mu = \sum_{z_i \in S} z_i p(z_i)$$

$$\sigma^2 = \sum_{z_i \in S} (z_i - \mu)^2 p(z_i)$$

 \Leftrightarrow Gaussian: μ , σ Uniform: a, b

Outline

- A model of the image degradation / restoration process
- Noise models
- Restoration in the presence of <u>noise only</u> spatial filtering
- Periodic noise reduction by frequency domain filtering
- Linear, position-invariant degradations
- Estimating the degradation function
- Inverse filtering

Additive noise only

$$g(x,y)=f(x,y)+\eta(x,y)$$

$$G(u,v)=F(u,v)+N(u,v)$$

Spatial filters for de-noising additive noise

- Skills similar to image enhancement
- Mean filters
- Order-statistics filters
- Adaptive filters

Mean filters

Arithmetic mean

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

Window centered at (x,y)

Geometric mean

$$\hat{f}(x,y) = \left[\prod_{(s,t)\in S_{xy}} g(s,t)\right]^{1/mn}$$

original | | | | | |

Gaussian

Noisy

 $\mu=0$

 $\sigma=20$

Arith.

Geometric mean mean

Mean filters (cont.)

Harmonic mean filter

$$\hat{f}(x,y) = \frac{mn}{\sum_{(s,t)\in S_{xy}} \frac{1}{g(s,t)}}$$

Contra-harmonic mean filter

$$\hat{f}(x,y) = \frac{\sum_{(s,t)\in S_{xy}} g(s,t)^{Q+1}}{\sum_{(s,t)\in S_{xy}} g(s,t)^{Q}}$$

Q=-1, harmonic

Q=0, airth. mean

$$Q = +, ?$$

Pepper Noise 黑點

Contraharmonic Q=-1.5

Wrong sign in contra-harmonic filtering

Q = -1.5

Q = 1.5

Order-statistics filters

- Based on the ordering(ranking) of pixels
 - Suitable for unipolar or bipolar noise (salt and pepper noise)
- Median filters
- Max/min filters
- Midpoint filters
- Alpha-trimmed mean filters

Order-statistics filters

Median filter

$$\hat{f}(x, y) = \underset{(s,t) \in S_{xy}}{median} \{g(s,t)\}$$

Max/min filters

$$\hat{f}(x, y) = \max_{(s,t) \in S_{xy}} \{g(s,t)\}$$

$$\hat{f}(x, y) = \min_{(s,t) \in S_{xy}} \{g(s,t)\}$$

Noise $P_a = 0.1$ $P_b = 0.1$

bipolar

3x3 Median Filter Pass 2

3x3 Median Filter Pass 3

Pepper noise

Salt noise

Max filter

Min filter

Order-statistics filters (cont.)

Midpoint filter

$$\hat{f}(x,y) = \frac{1}{2} \left[\max_{(s,t) \in S_{xy}} \{g(s,t)\} + \min_{(s,t) \in S_{xy}} \{g(s,t)\} \right]$$

- Alpha-trimmed mean filter
 - Delete the d/2 lowest and d/2 highest gray-level pixels

$$\hat{f}(x,y) = \frac{1}{mn - d} \sum_{(s,t) \in S_{xy}} g_r(s,t)$$
Middle (mn-d) pixels

Uniform noise

 $\mu=0$ $\sigma^2=800$

Left + Bipolar Noise P_a = 0.1 P_b = 0.1

5x5 Arith. Mean filter

5x5 Geometric mean

5x5 Median filter

5x5
Alpha-trim.
Filter
d=5

Adaptive filters

- Adapted to the behavior based on the statistical characteristics of the image inside the filter region S_{xy}
- Improved performance v.s increased complexity
- Example: Adaptive local noise reduction filter

Adaptive local noise reduction filter

- Simplest statistical measurement
 - Mean and variance
- Known parameters on local region S_{xy}
 - g(x,y): noisy image pixel value
 - σ^2_n : noise variance (assume known a prior)
 - m₁: local mean
 - σ^2 : local variance

Adaptive local noise reduction filter (cont.)

- Analysis: we want to do
 - If σ^2_n is zero, return g(x,y)
 - If $\sigma^2_L > \sigma^2_n$, return value close to g(x,y)
 - If $\sigma^2_L = \sigma^2_n$, return the arithmetic mean m_L
- Formula

$$\hat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_I^2} [g(x,y) - m_L]$$

Gaussian noise μ =0 σ^2 =1000

Arith. mean 7x7

Geometric mean 7x7

Outline

- A model of the image degradation / restoration process
- Noise models
- Restoration in the presence of noise only spatial filtering
- Periodic noise reduction by frequency domain filtering
- Linear, position-invariant degradations
- Estimating the degradation function
- Inverse filtering

4

Periodic noise reduction

- Pure sine wave
 - Appear as a pair of impulse (conjugate) in the frequency domain

$$f(x,y) = A\sin(u_0 x + v_0 y)$$

$$F(u,v) = -j\frac{A}{2} \left[\delta(u - \frac{u_0}{2\pi}, v - \frac{v_0}{2\pi}) - \delta(u + \frac{u_0}{2\pi}, v + \frac{v_0}{2\pi}) \right]$$

Periodic noise reduction (cont.)

- Bandreject filters
- Bandpass filters
- Notch filters
- Optimum notch filtering

Bandreject filters

* Reject an isotropic frequency

a b c

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject filters.

Bandpass filters

 $- H_{bp}(u,v) = 1 - H_{br}(u,v)$

$$\mathfrak{I}^{-1}\left\{G(u,v)H_{bp}(u,v)\right\}$$

Notch filters

 Reject(or pass) frequencies in predefined neighborhoods about a center frequency

Outline

- A model of the image degradation / restoration process
- Noise models
- Restoration in the presence of noise only spatial filtering
- Periodic noise reduction by frequency domain filtering
- Linear, position-invariant degradations
- Estimating the degradation function
- Inverse filtering

A model of the image degradation /restoration process

If linear, position-invariant system

Linear, position-invariant degradation

Properties of the degradation function H

- Linear system
 - $H[af_1(x,y)+bf_2(x,y)]=aH[f_1(x,y)]+bH[f_2(x,y)]$
- Position(space)-invariant system
 - H[f(x,y)]=g(x,y)
 - $\blacksquare \Leftrightarrow H[f(x-\alpha, y-\beta)]=g(x-\alpha, y-\beta)$
- c.f. 1-D signal
 - LTI (linear time-invariant system)

Linear, position-invariant degradation model

- Linear system theory is ready
- Non-linear, position-dependent system
 - May be general and more accurate
 - Difficult to solve computationally
- Image restoration: find H(u,v) and apply inverse process
 - Image deconvolution

Estimating the degradation function

- Estimation by Image observation
- Estimation by experimentation
- Estimation by modeling

Estimation by image observation

- Take a window in the image
 - Simple structure
 - Strong signal content
- Estimate the original image in the window

$$H_s(u,v) = \frac{G_s(u,v)}{\hat{F}_s(u,v)}$$
 estimate

Estimation by experimentation

- If the image acquisition system is ready
- Obtain the impulse response

Estimation by modeling (1)

Ex. Atmospheric model $H(u,v) = e^{-k(u^2+v^2)^{5/6}}$

k = 0.0025

$$k = 0.001$$

k=0.00025

4

Estimation by modeling (2)

- Derive a mathematical model
- Ex. Motion of image

$$g(x,y) = \int_0^T f(x - x_0(t), y - y_0(t)) dt$$

Fourier transform

Planar motion

$$G(u,v) = F(u,v) \int_0^T e^{-j2\pi[ux_0(t) + vy_0(t)]} dt$$

Estimation by modeling: example

original

Apply motion model

Inverse filtering

 With the estimated degradation function H(u,v)

Estimate of original image

Problem: 0 or small values

Sol: limit the frequency around the origin

Full Cut inverse Outside filter 40% for k=0.0025 Cut Cut Outside Outside 85% 70%