fn make_row_by_row

Michael Shoemate

Proves soundness of make_row_by_row in mod.rs at commit f5bb719 (outdated¹). This constructor is a special case of make_row_by_row_fallible. The proof for this constructor appeals to the proof for make_row_by_row_fallible.

make_row_by_row returns a Transformation that applies a user-specified function to each record in the input dataset.

1 Hoare Triple

Precondition

Compiler-verified

- Generic DI (input domain) is a type with trait RowByRowDomain<DO>.
- Generic DO (output domain) is a type with trait DatasetDomain. DatasetDomain is used to define the type of the row domain.
- Generic M (metric) is a type with trait <code>DatasetMetric</code>. <code>DatasetMetric</code> is used to restrict the set of valid metrics to those which measure distances between datasets.
- MetricSpace is implemented for (DI, M). Therefore M is a valid metric on DI.
- MetricSpace is implemented for (DO, M).
- Argument input_domain is of type DI
- Argument input_metric is of type M
- Argument output_row_domain is of type DI::ElementDomain, as defined by DatasetDomain.
- Argument row_function is an immutable thread-safe function taking in a value of the carrier type
 of the element domain associated with input_domain, and returning a value of the carrier type of
 output_row_domain or an error.

User-verified

- row_function has no side-effects.
- If the input to row_function is a member of input_domain's element domain, then the output is a member of output_row_domain.

¹See new changes with git diff f5bb719..52d86bbb rust/src/transformations/manipulation/mod.rs

Pseudocode

Postcondition

Theorem 1.1. For every setting of the input parameters (input_domain, input_metric, output_row_domain, outprow_function, DI, DO, M) to make_row_by_row such that the given preconditions hold, make_row_by_row raises an exception (at compile time or run time) or returns a valid transformation. A valid transformation has the following properties:

- 1. (Appropriate output domain). For every element x in $input_domain$, function(x) is in $output_domain$ or raises a data-independent runtime exception.
- 2. (Stability guarantee). For every pair of elements x, x' in input_domain and for every pair (d_{in}, d_{out}) , where d_in has the associated type for input_metric and d_out has the associated type for output_metric, if x, x' are d_in-close under input_metric, stability_map(d_in) does not raise an exception, and stability_map(d_in) \leq d_out, then function(x), function(x') are d_out-close under output_metric.

2 Proofs

Proof. (Part 1 – appropriate output domain). Since the preconditions for this constructor are a superset of the preconditions on make_row_by_row_fallible, the proof of make_row_by_row_fallible applies. Thus, by the output domain proof on make_row_by_row_fallible, for all settings of input arguments, the function returns a dataset in the output domain. □

Proof. (Part 2 – stability map). The proof of make_row_by_row_fallible similarly applies. Thus, by the stability map proof on make_row_by_row_fallible, for all settings of input arguments, where x, x' are d_in-close under input_metric, function(x), function(x') are d_out-close under output_metric.