Notes on MAT 137 study guide

Tianyu Du

September 26, 2017

Contents

1	Part 1. Sets and functions	1
2	Part 2. Limits & Continuity	2

1 Part 1. Sets and functions

Functions

 $f: A \rightarrowtail B$.

- A: **domain** of f.
- B: **codomain** of f.
- f(A): range of f.
- Onto/surjective if and only if codomain = range.
- One-to-one/injective if and only if $f(x) = f(y) \implies x = y$.
- Bijective if and only if a function is both surjective and injective.
- Even: $f(x) = f(-x) \forall x \in A$.
- Odd: $f(x) = -f(-x) \forall x \in A$.
- $\bullet \ \ \mathbf{Increasing[Decreasing]:} \ x < y \implies f(x) < f(y)[f(x) > f(y)].$

Operations on functions

- $\bullet \ (f \pm g)(x) = f(x) \pm g(x).$
- $(f \cdot g)(x) = f(x) \cdot g(x)$.
- $\bullet \ (\frac{f}{g})(x) = \frac{f(x)}{g(x)}.$

Composite of functions for functions

$$f:A\to B$$

$$g: C \to D$$

f(g(x)) is defined when $D \subset A$.

Exponential and logarithms for $x, y, n \in \mathbb{R}, x, y > 0$

- $\bullet \ b^{x+y} = b^x + b^y.$
- $b^{x-y} = \frac{b^x}{b^y}.$
- $\log_b(xy) = \log_b(x) + \log_b(y)$.
- $\log_b(\frac{x}{y}) = \log_b(x) \log_b(y)$.
- $\log_b(x^n) = n \log_b(x)$.
- $\log_y(b)\log_b(x) = \log_y(x)$.

The supremum and infimum A set S of real numbers is said to be bounded above [below] if there is a $s \in \mathbb{R}$ such that $s \ge x[s \le x]$ for all $s \in A$.

Definition A number is a **least upper bound(supremum)** of S if both:

- s is an upper bound of S.
- $\forall x$: upper bound of S, then $s \leq x$.

2 Part 2. Limits & Continuity

Definition We say that the limit of a function f(x) as x approaches a is $L(\lim_{x\to a} f(x) = L)$ if:

$$\forall \epsilon > 0, \exists b > 0, s.t. 0 < |x - a| \implies |f(x) - L| < \epsilon$$

 $\lim_{x\to a} f(x) = L$ exists if and only if the left-hand and right-hand limits both exist and are equal.