Triangle-Free Graphs Ramsey Numbers

David Stalfa & Adam Plumer

Ramsey numbers

 $R(x,y) \leq n$

Every size n graph has

- an x clique, or
- y independent vertices

Ramsey numbers

$$R(x,y) \leq n$$

Every size n graph has

- an x clique, or
- y independent vertices

An (x,y) graph = a graph with

- no x-clique
- no y independent vertices

Ramsey numbers

$$R(x,y) \le n$$

Every size n graph has

- an x clique, or
- y independent vertices

An (x,y) graph = a graph with

- no x-clique
- no y independent vertices

 $R(x,y) \le n$ iff there is no (x,y) graph of size n

(3,k) = set of triangle free graphs

 $R(3,4) \le 9$

$R(3,4) \le 9$

Proof by contradiction

Suppose there exists a (3,4) graph G of size 9

- G has a certain structure
- removing vertices from G would result in a graph from which it is impossible to reconstruct G

Therefore, there is no (3,4) graph of size 9

$R(3,4) \leq 9$

Suppose there is some (3,4) graph G of size 9

Max degree of $G = \min \text{ degree of } G = 3$

Remove one vertex and its neighborhood

 $R(3,4) \leq 9$

G is regular degree 3

Leaves a size 5 graph

Leaves a size 5 graph

- no 3-clique
- no 3 independent
 (all are independent of v in G)

There is only one (3,3) graph of size 5

There is only one (3,3) graph of size 5

Add *v* and its neighbors back

There is only one (3,3) graph of size 5

Add *v* and its neighbors back

There is only one (3,3) graph of size 5

Add *v* and its neighbors back

$R(3,4) \leq 9$

Suppose there exists a (3,4) graph G of size 9

- G must be regular degree 3
- removing a neighborhood from G results in a (3,3) graph of size 5
- G cannot be constructed from a (3,3) graph of size 5

So, there is no (3,4) graph of size 9

Therefore, $R(3,4) \le 9$

Suppose there exists a (3, 10) graph G of size 42

- G must be regular degree 9

- G must be regular degree 9
- Remove a vertex v and its neighborhood

- G must be regular degree 9
- Remove a vertex v and its neighborhood
- Results in a (3, 9) graph H of size 32

- G must be regular degree 9
- Remove a vertex v and its neighborhood
- Results in a (3, 9) graph H of size 32
- G cannot be reconstructed from any such H

Suppose there exists a (3, 10) graph G of size 42

- G must be regular degree 9
- Remove a vertex v and its neighborhood
- Results in a (3, 9) graph H of size 32
- G cannot be reconstructed from any such H

Therefore, there is no such G

Suppose there exists a (3, 10) graph G of size 42

- G must be regular degree 9
- Remove a vertex v and its neighborhood
- Results in a (3, 9) graph H of size 32
- G cannot be reconstructed from any such H

Therefore, there is no such G

These steps are computationally hard

Maximal triangle free (mtf) method

mtf graph = a graph in which the addition of any edge yields a 3-clique

There is some (x,y) graph of size n iff there is some mtf (x,y) graph of size n

Maximal triangle free (mtf) method

mtf graph = a graph in which the addition of any edge yields a 3-clique

There is some (x,y) graph of size n iff there is some mtf (x,y) graph of size n

There are often far fewer mtf (3, k) graphs of size n than there are (3, k) graphs of size n

Build up all mtf graphs of size 6

If an mtf graph is a (3,4) graph

Recursively remove edges and check for new 4-independent sets

mtf method Find (3,4) graphs of size 6

This is an mtf graph

This is also a (3,4) graph

Build up all mtf graphs of size 6

If an mtf graph is a (3,4) graph

Recursively remove edges and check for new 4-independent sets

Fun Facts

Naive upper bound gets pretty close -> R(2, 10) + R(3, 9) = 10 + 36 = 46

Lower bound for R (3, 10) is 40, found in 1987

Since 1987, found 4×10^7 different r(3, 10, 39) graphs

Tight general lower bound found in 1995 (t^2/log t)

Methods for finding lower bound efficiently:

Artificial bee colony algorithm

Simulated annealing

New Computational Upper Bounds for Ramsey Numbers R(3,k)

Jan Goedgebeur & Stanislaw P. Radziszowski