

WHAT IS CLAIMED IS:

- 1 1. An alignment assembly enclosed within an optics module having a light  
2 source and a lens comprising:
  - 3 an alignment stage coupled to enable adjustment of a relative  
4 position of said light source and said lens, said alignment stage being  
5 manipulable from an exterior of said optics module;
  - 6 a melttable material positioned within said optics module to lock  
7 said alignment stage in a fixed location when a target said relative position of  
8 said light source and lens is achieved; and  
9 a heat source in heat-transfer engagement with said melttable  
10 material to selectively melt said melttable material.
- 1 2. The alignment assembly of claim 1 wherein said alignment stage is  
2 responsive to first applied displacement forces which induce lateral move-  
3 ments of said alignment stage in achieving said target relative position of said  
4 light source and said lens, said alignment stage being responsive to second  
5 applied displacement forces which induce said alignment stage to contact  
6 said melttable material when said target relative position is achieved.
- 1 3. The alignment assembly of claim 2 wherein said second applied displace-  
2 ment forces are electrostatic forces applied to said alignment stage to induce  
3 displacement in a direction that is generally perpendicular to said lateral  
4 movements induced by said first applied displacement forces.
- 1 4. The alignment assembly of claim 2 wherein said alignment stage includes  
2 a metallic plating that is located such that said metallic plating contacts said  
3 melttable material when said second applied displacement forces are  
4 generated, said melttable material being a solder.

- 1    5. The alignment assembly of claim 4 wherein said solder is a gold/tin alloy.
- 1    6. The alignment assembly of claim 1 wherein said alignment stage, said  
2    meltable material and said heat source are integrated components defined by  
3    a plurality of layers on a substrate.
- 1    7. The alignment assembly of claim 6 wherein said substrate is a semicon-  
2    ductor substrate and at least some of said layers have thicknesses of less  
3    than 30 micrometers.
- 1    8. The alignment assembly of claim 1 wherein said alignment stage is  
2    supported by thermally actuated members that provide said adjustment of  
3    said relative position of said light source and said lens, said alignment stage  
4    being responsive to electrostatic force to selectively displace said alignment  
5    stage to contact said meltable material when said target relative position is  
6    achieved.

1       9. An optics module comprising:

2              an enclosure;

3              a light source within said enclosure;

4              a lens positioned within said enclosure to optically manipulate a

5     beam generated by said light source;

6              an alignment assembly enabled to vary the relative positioning

7     between said lens and an axis of said beam, said alignment assembly being

8     located within said enclosure, said alignment assembly including support

9     members which are flexible to provide said varying relative positioning in a

10    direction generally perpendicular to said axis, said alignment assembly being

11    responsive to actuator forces to flex said support members;

12              a locking mechanism which disables said alignment assembly to

13    provide a fixed said relative positioning in which said alignment assembly is

14    unresponsive to said actuator forces; and

15              input/output connections at an exterior of said enclosure for

16    operating said alignment assembly and said locking mechanism.

1       10. The optics module of claim 9 wherein one of said light source and said

2     lens is fixed to said alignment assembly.

1       11. The optics module of claim 9 wherein said locking mechanism includes

2     (a) a heater, (b) a solder, and (c) a source of electrostatic force, said align-

3     ment assembly being responsive to said electrostatic force to move in a

4     direction generally aligned with said axis of said beam so as to bring said

5     alignment assembly into contact with said solder, said heater being located

6     and activated to selectively melt said solder.

1    12. The optics module of claim 9 wherein said locking mechanism includes a  
2    connection for permanently fixing at least one of said support members in  
3    position after a target condition of said relative positioning is achieved.

1    13. The optics module of claim 9 wherein said support members are thermal  
2    actuators that vary said relative positioning in response to applications of  
3    heat.

1    14. The optics module of claim 9 wherein said alignment assembly and said  
2    heat source are defined by layers deposited on a semiconductor substrate.

1    15. A method of forming an alignment assembly for an optics module  
2    comprising:

3                 forming a plurality of patterned layers on at least one substrate  
4    so as to define a cooperative assembly of:

5                 (a) an alignment stage coupled to enable adjustment  
6    of a relative position of a light source and a lens, said alignment stage  
7    being configured to support one of said light source and said lens;

8                 (b) meltable material positioned to lock said alignment  
9    stage in a fixed location when a target said relative position of said light  
10   source and said lens is achieved; and

11                 (c) a heat source in heat-transfer engagement with  
12   said meltable material to selectively melt said meltable material.

1    16. The method of claim 15 wherein forming said patterned layers includes  
2    defining said meltable material as a solder.

1    17. The method of claim 16 wherein defining said meltable material includes  
2    depositing a gold/tin alloy.

1    18. The method of claim 15 wherein forming said patterned layers includes  
2    fabricating an actuator that is manipulated by applications of actuator signals.

1    19. The method of claim 18 wherein fabricating said actuator includes  
2    forming said central region supported by flexible members.

1    20. A method of providing optical alignment within an optics module com-  
2    prising:

3                 applying actuator signals to laterally displace an alignment stage  
4    which controls the relative lateral position of a beam axis to a lens, including  
5    controlling said actuator signals to provide a target said relative lateral  
6    position;

7                 detecting when said target relative lateral position is achieved;  
8                 shifting said alignment stage in a direction generally parallel to  
9    said beam axis to contact said alignment stage with a meltable material,  
10   including melting said meltable material; and  
11                 cooling said meltable material to fix said alignment stage in a  
12   position to maintain said target relative lateral position.

1    21. The method of claim 20 further comprising a fusible structure which  
2    disables lateral movement of said alignment stage following said cooling step.

1    22. The method of claim 20 wherein applying said actuator signals is a step  
2    of manipulating thermal actuators that support said alignment stage.

- 1    23. The method of claim 20 wherein melting said meltable material is a step
- 2    of applying heat to a gold/tin alloy.