RHex: A Simple and Highly Mobile Hexapod Robot

Saranli, Buehler, Koditschek 2001

Benjamin Mottis, Antoine Perrin, Matteo Righi

Executive Summary

Which type of robot?

Hexapod

Which type of control?

Overall Open-loop control and Joint torque closed-loop control

Which type of design method?

Simulation and hand-tuned

Which type of gait?

Tripod walking gait

Inspiration

Results

New [3]

Introduction

- Autonomous, mechanically simple
- Design: 6 compliant legs, each powered by a single actuator, completing a full revolution
- Advantage of legs: control of ground reaction forces

Notation

States

Body position and orientation r_b, R_b

Body yaw angle

Leg states and parameters

Leg attachment point in \mathcal{B} $\mathbf{a_{i}}$

Toe position in W $\mathbf{f_i}$

 $:= [\theta_i, \phi_i, \rho_i]^T$ leg state in spherical $\mathbf{v_i}$

coordinates

 $\bar{\mathbf{v}}_{\mathbf{i}}$ $:= [v_{x_i}, v_{y_i}, v_{z_i}]^T$ leg state in Cartesian

coordinates

 leg_i Stance flag for leg i

Forces and torques

Radial leg spring force F_{r_i} Bend torque in θ_i -direction

Hip torque in ϕ_i -direction

Controller parameters

Period of rotation for a single leg t_c Duration of slow leg swing

Leg sweep angle for slow leg swing

Leg angle offset

 $:= [t_c, t_s, \phi_s, \phi_o]$ control vector u

Differential change in ϕ_o for turning $\Delta \phi_o$

Differential change in t_s for turning Δt_s

Design

- Importance of a simple mechanical design
- C-shaped legs to increase radial compliance
- Alternating tripod gait
- Sum of forces:

Motion profiles for left and right tripod

Tripod Gait

Control

Control: Turning

2 different strategies

- Turning in place:
 - opposite rotation for contralateral leg

- Turning in movement
 - differential perturbations

[4]

Simulation studies

GOAL: Test the calculations and Justify the building of a prototype and future expensive experiments

Simulation environment:

SimSect (Home made)

Simulation Properties:

- Real mass
- Real dimensions

Manual tuning:

$$-ts = tc/2$$

- Phi
$$0 = 0$$

Adding feedback to improve performances

Limitation: Leg spring damping constant and ground friction coefficient not experimentally verified \rightarrow Simulation accurate regarding morphologie and mass parameters only.

Experimental Platform

- Forward locomotion on different surfaces
- Turning
- Obstacle crossing
- Obstacle course
- Rough surface
- Payload and Runtime

	Carpet	Linoleum	Grass	Gravel	Rough	Single Obstacle	Comp. Const.	Obstacle Course
Total number of runs	10	11	16	25	32	14	14	26
Successful runs	10	10	10	10	16	10	10	10
Electronics and hardware problems	-	_	1	5	6	_	1	2
Deviation from course	();	1		5	7	(1	5
Operator mistake ^a	32 3.	1	5	5		3	2	2
Stuck on obstacle	(2 /	()	· —	(2)	3	1	2	7

Experimental Platform: results

- Velocity without obstacles between 0.45 and 0.55 m/s
- Average consumption without obstacles between 80 and 140W

Experimental Platform: results

- Turning in movement:
 - yaw rate depends of the forward velocity
 - o constant turning radius of 2m
- Turning in place:
 - higher yaw rate: 0.7 rad/s

Fig. 9. Turning yaw rate as a function of forward velocity. See Extension 9 for all the data and analysis scripts associated with the turning experiments.

Experimental Platform: results

Rough surface:

- Random height variations of up to 20.32 cm (116% leg length)
- Average velocity of the fastest run: 0.56m/s

Fig. 13. Sample profiles of row 6 (columns 8, 9, and 10) with RHex statically posed for comparison.

Robot deviation

Pros and Cons:

Pros:

- Simple + robust
- Versatility
- Power autonomy

Cons:

- No feedback -> Open loop
- Proof-of-concept design -> Basic

Possible Exam Questions

- 1. Explain the advantages of using simpler mechanical design?
 - Better autonomy
 - Less likely to break
 - Easier to tune

- 2. Explain basically how RHex is controlled
 - Open loop control for the robot position
 - Closed loop control for the joints angle/torque

Thank you for your attention

Do you have any questions?

References

- Images:
 - o Title slide: https://www.rhex.web.tr
 - Executive Summary: https://www.researchgate.net/figure/Rhex-Saranli-Buehler-Koditschek-2001 fig3 266473429
- Impact
 - [1] https://epubs.siam.org/doi/pdf/10.1137/S0036144504445133
 - [2]https://link.springer.com/article/10.1023/A:1012426720699
- Videos:
 - [3] https://youtu.be/ntll-pDUxPE
 - o [4] https://youtu.be/ISzngY3kESI
 - o [5] https://sponberg.gatech.edu/2015/10/09/how-roaches-run-on-rough-terrian/