Lecture 2: Deep Learning - Introduction and Applications

Isaiah Hull^{1,2}

¹BI Norwegian Business School ²CogniFrame

November 7, 2023

Introduction

Lecture 2: Overview

- 1. Introduction to Deep Learning.
- 2. Deep Learning Applications.

Reading

- ► Based on Ng and Ma (2023).
 - ► https://cs229.stanford.edu/main_notes.pdf

Nonlinear Models

Supervised Learning and Model Types

- ► Supervised learning: predicting *y* from input *x*.
- ▶ Model: $h_{\theta}(x)$.
- ► Familiar examples:
 - ► Linear regression: $h_{\theta}(x) = \theta^{\top} x$.
 - ▶ With feature map: $h_{\theta}(x) = \theta^{\top} \phi(x)$.

Supervised Learning and Model Types

- ► Common feature is linearity in parameters θ .
- ightharpoonup Eventually consider non-linear models in θ and x.
- ► Will focus on neural networks specifically.
- ▶ Initially, consider $h_{\theta}(x)$ as an abstract non-linear model.

Training and Regression with Non-Linear Models

- ► Terminology differs from econometrics.
- ► Training examples (observations): $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$.
- ▶ Define a nonlinear model and an associated loss or cost function.
- ► Regression problem: continuous target (dependent variable).

Training and Regression with Non-Linear Models

- ► The output is a real number $(y^{(i)} \in \mathbb{R})$.
- ▶ Model also outputs a real number: $h_{\theta}(x) \in \mathbb{R}$.
- ► Loss function example: least squares.

Regression and Mean-Square Cost Function

► *i*-th example (observation) cost:

$$J^{(i)}(\theta) = \frac{1}{2} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2$$

► Mean-square cost for entire dataset (sample):

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} J^{(i)}(\theta)$$

Regression and Mean-Square Cost Function

- ► Similar to OLS but:
 - ► Average, rather than sum of squared residuals.
 - Doesn't change local/global minima.
 - ▶ Different parameterization for $h_{\theta}(x)$.
- ► "Loss" and "cost" used interchangeably.

Binary Classification and Loss Function

- ▶ Inputs: $x \in \mathbb{R}^d$.
- ▶ Parameterized model: $\bar{h}_{\theta} : \mathbb{R}^d \to \mathbb{R}$.
- ▶ Output (logit): $\bar{h}_{\theta}(x) \in \mathbb{R}$.
- ▶ Logistic function $g(\cdot)$ to convert logit:

$$h_{ heta}(x) = g\left(ar{h}_{ heta}(x)
ight) = rac{1}{1 + \exp\left(-ar{h}_{ heta}(x)
ight)}$$

Binary Classification and Loss Function

► Conditional distribution of *y*:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

► Negative likelihood loss function:

$$J^{(i)}(\theta) = -\log p\left(y^{(i)} \mid x^{(i)}; \theta\right) = \ell_{\text{logistic}}\left(\bar{h}_{\theta}\left(x^{(i)}\right), y^{(i)}\right)$$

Loss Functions

► Total loss:

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} J^{(i)}(\theta)$$

- ► Multi-class classification:
 - ► Response variable y can be k values: $y \in \{1, 2, ..., k\}$.
 - ▶ Parameterized model: $\bar{h}_{\theta} : \mathbb{R}^d \to \mathbb{R}^k$.

Multi-Class Classification

- ▶ Outputs (logits): $\bar{h}_{\theta}(x) \in \mathbb{R}^k$.
- ► Use softmax for probability vector:

$$P(y = j \mid x; \theta) = \frac{\exp\left(\bar{h}_{\theta}(x)_{j}\right)}{\sum_{s=1}^{k} \exp\left(\bar{h}_{\theta}(x)_{s}\right)}$$

Multi-Class Classification

► *i*-th example loss (negative log-likelihood):

$$J^{(i)}(heta) = \ell_{\mathrm{ce}}\left(ar{h}_{ heta}\left(oldsymbol{x}^{(i)}
ight),oldsymbol{y}^{(i)}
ight)$$

► Average of loss for training examples:

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} J^{(i)}(\theta)$$

Exponential family and non-linear parameterization.

Model Training

Optimizers and SGD

- Common Optimizers: gradient descent (GD), stochastic gradient descent (SGD), and variants.
- ► Gradient descent update rule:

$$\theta := \theta - \alpha \nabla_{\theta} J(\theta)$$

- Learning Rate (α): controls step size.
- ► Modification of gradient descent: stochastic gradient descent.

Algorithm 1 Stochastic Gradient Descent

- 1: Hyperparameter: learning rate α , number of total iteration n_{iter} .
- 2: Initialize θ randomly.
- 3: for i = 1 to n_{iter} do
- 4: Sample j uniformly from $\{1, ..., n\}$, and update θ by

$$\theta := \theta - \alpha \nabla_{\theta} J^{(j)}(\theta) \tag{7.9}$$

Source: Ng and Ma (2023).

Hardware Parallelization and Mini-batch SGD

- ► Computing gradient of *B* (batch size) examples simultaneously often faster due to hardware parallelization.
- ► Mini-batch version of SGD prevalent in deep learning.
- ▶ Variants of SGD and mini-batch SGD exist with different sampling schemes.

Algorithm 2 Mini-batch Stochastic Gradient Descent

- 1: Hyperparameters: learning rate α , batch size B, # iterations n_{iter} .
- 2: Initialize θ randomly
- 3: for i = 1 to n_{iter} do
- 4: Sample B examples j_1,\ldots,j_B (without replacement) uniformly from $\{1,\ldots,n\}$, and update θ by

$$\theta := \theta - \frac{\alpha}{B} \sum_{k=1}^{B} \nabla_{\theta} J^{(j_k)}(\theta)$$
 (7.10)

Source: Ng and Ma (2023).

Introduction to TensorFlow

Example: Recovery Rate Model

► Training Models in TensorFlow

Steps in Training a Deep Learning Model

- 1. Define a neural network parametrization $h_{\theta}(x)$.
- 2. Implement the backpropagation algorithm for efficient gradient computation of $J^{(j)}(\theta)$.
- 3. Execute SGD, mini-batch SGD, or other gradient-based optimizers with $J(\theta)$.

Neural Networks

Neural Networks: Introduction

- ▶ Broad type of non-linear models: $\bar{h}_{\theta}(x)$.
- ► Combines matrix multiplications with element-wise non-linear operations.
- ► Regression: $h_{\theta}(x) = \bar{h}_{\theta}(x)$.
- ► Classification:
 - ightharpoonup Binary: $h_{\theta}(x) = 1/\left(1 + \exp\left(-\overline{h}_{\theta}(x)\right)\right)$
 - ► Multi-class: $h_{\theta}(x) = \operatorname{softmax}(\bar{h}_{\theta}(x))$

Neural Network with a Single Neuron: The Housing Example

- ► Example in this unit: predict house price from its size.
- ► Starting point: fit a straight line.
- ▶ New requirement: disallow negative prices, introducing a "kink."
- ► How can we represent a function with a kink as $\bar{h}_{\theta}(x)$?

Source: Ng and Ma (2023).

Parameterization and Activation Functions

▶ Define $h_{\theta}(x)$:

$$ar{h}_{ heta}(x) = \max(wx + b, 0),$$
 where $heta = (w, b) \in \mathbb{R}^2$

Parameterization and Activation Functions

► Rectified linear unit (ReLU):

$$ReLU(t) \equiv max\{t, 0\}$$

- ► ReLU is an example of an activation function.
- ► Single neuron due to single non-linear activation function.

Basic Terminology

- ▶ *b*: often referred to as the "bias."
- ► w: known as the weight vector.
- ► Can extend to multi-neuron case.

 $ar{h}_{\! heta}(x) = \mathsf{ReLU}\left(w^ op x + b
ight)$

Neural Network with a Single Neuron for Multidimensional Input

► Where: $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{b} \in \mathbb{R}$, and $\mathbf{\theta} = (\mathbf{w}, \mathbf{b})$.

Deep Learning: Introduction and Applications

Stacking Neurons

- ► Neural networks can be made more complex by stacking neurons.
- ► Each neuron passes its output as input to the next neuron.
- ► Allows for flexibility in modeling complex functions.

Deepening the Housing Example

- ▶ New features: size, number of bedrooms, zip code, wealth of neighborhood.
- ► Neural network have modular structure, which allows us to stack them to create complex structures.
- ► Individual neurons are fundamental building block.

Deriving Features for Housing Price Prediction

- ► Family size: function of size of the house and number of bedrooms.
- ► Walkability: inferred from zip code.
- ► School quality: based on zip code and neighborhood wealth.
- ► House price: depends on family size, walkability, and school quality.

Small Neural Network for Predicting Housing Prices

Source: Ng and Ma (2023).

Input and Hidden Units

- ► Input features: x_1, x_2, x_3, x_4 .
- ► Intermediate variables (hidden units): *a*₁ (family size), *a*₂ (walkable), *a*₃ (school quality)

$$a_1 = \text{ReLU} (\theta_1 x_1 + \theta_2 x_2 + \theta_3)$$

 $a_2 = \text{ReLU} (\theta_4 x_3 + \theta_5)$
 $a_3 = \text{ReLU} (\theta_6 x_3 + \theta_7 x_4 + \theta_8)$

▶ Parameters: $(\theta_1, \dots, \theta_8)$.

Output Parameterization

▶ Output representation: $\bar{h}_{\theta}(x)$.

$$\bar{h}_{\theta}(x) = \theta_9 a_1 + \theta_{10} a_2 + \theta_{11} a_3 + \theta_{12}$$

- ► Parameters: $\theta = (\theta_1, \dots, \theta_{12})$.
- ► Complex function of x with parameters θ .
- ightharpoonup Try to learn θ .

Inspiration from Biological Neural Networks

- ► Artificial neural networks inspired by biological ones.
- ► Hidden units: analogous to biological neurons.
- ▶ Parameters θ_i : correspond to synapses.
- Uncertain similarity: deep artificial networks vs. biological ones.
- ► Open question: human brain learning mechanism vs. backpropagation in artificial networks.

Two-layer Fully-Connected Neural Networks

- ▶ Intermediate variables are functions of all $x_1, ..., x_4$.
- ► This setup avoids the need for prior assumptions:

$$egin{aligned} a_1 &= \mathsf{ReLU}\left(w_1^ op x + b_1
ight) \ a_2 &= \mathsf{ReLU}\left(w_2^ op x + b_2
ight) \ a_3 &= \mathsf{ReLU}\left(w_3^ op x + b_3
ight) \end{aligned}$$

▶ The network is fully-connected: all a_i 's depend on all x_i 's.

General Two-layer Fully-Connected Neural Network

- ► For input $x \in \mathbb{R}^d$ and m hidden units.
- ► Connection to previous slide: we generalize to *d* dimensions.

$$orall j \in [1,\ldots,m], \quad z_j = w_j^{[1]^ op} x + b_j^{[1]}$$
 $a_j = \operatorname{\mathsf{ReLU}}\left(z_j\right),$ $a = [a_1,\ldots,a_m]^ op$ $ar{h}_{ heta}(x) = w^{[2]^ op} a + b^{[2]}$

▶ Notation: a is a column vector, and indices ^[1] and ^[2] distinguish parameters.

Vectorization in Neural Networks

- ► Simplify neural network expressions using matrix and vector notations.
- Speed up implementation by avoiding for loops.
- Utilize matrix algebra and optimized numerical packages.
- ► Modern networks need vectorization for efficiency.

Vectorizing the Neural Network: Weight Matrix

- ▶ Define weight matrix $W^{[1]}$ by concatenating all vectors $w_j^{[1]}$.
- ▶ Dimension of $W^{[1]}$: $\mathbb{R}^{m \times d}$:

$$W^{[1]} = \left[egin{array}{c} -w_1^{[1]^{ op}} - \ -w_2^{[1]^{ op}} - \ dots \ -w_m^{[1]^{ op}} - \end{array}
ight]$$

Computing z in Vectorized Form

- ► Use matrix-vector multiplication.
- ▶ Define $z: [z_1, ..., z_m]^\top \in \mathbb{R}^m$.

$$z = W^{[1]}x + b^{[1]}$$

Vectors as Column Vectors

- ▶ By default, vectors in \mathbb{R}^d are viewed as column vectors.
- ▶ Vectors can also be treated as $d \times 1$ matrices.

Computing Activations

- ► Activations are computed using the ReLU function.
- ► Element-wise non-linear application.
- ► Element-wise ReLU is parallelized efficiently.

$$a = ReLU(z)$$

Summarizing the Model

- ▶ Define $W^{[2]}$: $\left[w^{[2]^{\top}}\right] \in \mathbb{R}^{1 \times m}$.
- ▶ Use weight matrices for efficient computation.

$$a = \text{ReLU}\left(W^{[1]}x + b^{[1]}\right)$$

$$ar{h}_{ heta}(x) = W^{[2]}a + b^{[2]}$$

Structure of a Neural Network

- ▶ $W^{[1]}$ and $W^{[2]}$: weight matrices for first and second layers.
- ▶ $b^{[1]}$ and $b^{[2]}$: biases for the first and second layers.
- Activation a is the hidden layer.
- ► A two-layer neural network is a one-hidden-layer neural network.

Multi-layer Neural Networks

- ► Generalizes concept to multiple layers.
- Activation: $a^{[k]} = \text{ReLU}(W^{[k]}a^{[k-1]} + b^{[k]})$.

Activation Functions

- ► Functions applied element-wise introducing non-linearity.
- ► Example functions:
 - Sigmoid
 - Tanh
 - ► Leaky ReLU
 - GELU
 - Softplus

Linearity vs Non-Linearity

- $\blacktriangleright \text{ Why not } \sigma(z) = z?$
- ▶ With linear activation, multiple layers collapse to a single matrix product:

$$\tilde{W}x$$
 where $\tilde{W} = W^{[2]}W^{[1]}$.

► Importance of non-linear activation functions: represent complex relationships.

Activation Functions

Source: Ng and Ma (2023).

Feature Maps in Traditional Machine Learning

- ► Represent non-linear functions: $\theta^{\top} \phi(x)$.
 - \blacktriangleright θ : parameters; $\phi(x)$: feature map.
- ▶ Performance depends on the feature map choice.
- ► Process of choosing: feature engineering.

Deep Learning as Feature Learning

- ► Feature map is learned, not handcrafted.
- ▶ Let β be parameters (excluding final layer).
- Abstract: $a^{[r-1]} = \phi_{\beta}(x)$.
- $ightharpoonup \operatorname{Model}: \bar{h}_{\theta}(x) = W^{[r]}\phi_{\beta}(x) + b^{[r]}.$

Training and Optimization

- ▶ When β is fixed, $\phi_{\beta}(\cdot)$ is a feature map.
- ▶ During training, β , $W^{[r]}$, and $b^{[r]}$ are optimized.
- Learn the model and feature map simultaneously.
- ► Less dependence on domain knowledge and feature engineering.

Deep Learning Representations

- ► Second to last layer $a^{[r]}$ is the "learned feature."
 - ► E.g., in house pricing, neural network might learn "family size."
- ► Learned representations can be transferred across datasets.
 - ► Might be complex and difficult to interpret.

Interpretability Challenge

- ► Neural networks can be viewed as a "black box."
- Difficult to discern the features they discover.
- ► This poses challenges for interpretability.

Modules in Modern Neural Networks

- ► Modern neural networks are more sophisticated.
- ► Networks incorporate layers and building blocks.
- ► Will examine building blocks.

Matrix Multiplication as a Building Block

► Matrix multiplication serves as a primary building block:

$$\mathsf{MM}_{W,b}(z) = Wz + b$$

- ► *W* denotes the weight matrix.
- ► *b* is the bias vector.
- ightharpoonup z is the input.

MLP: Composition of Modules

► MLP is a sequence of matrix multiplication modules interwoven with nonlinear activation modules:

$$MLP(x) = MM(\sigma(MM \sigma(\cdots MM(x))))$$

► Each module typically has its unique set of parameters.

Larger Modules from Smaller Ones

A single 'layer' often encompasses an activation function, σ , and a matrix multiplication module, MM.

Source: Ng and Ma (2023).

- ► ResNets have revolutionized vision applications
- ► A residual block is given as follows:

$$\mathsf{Res}(z) = z + \sigma(\mathsf{MM}(\sigma(\mathsf{MM}(z))))$$

► A simplified ResNet:

$$ResNet-S(x) = MM(Res(Res(\cdots Res(x))))$$

Layer Normalization

► Layer normalization, LN, is pivotal post-nonlinear activations. It transforms:

$$\mathsf{LN} - \mathsf{S}(z) = \left[egin{array}{c} rac{z_1 - \hat{\mu}}{\hat{\sigma}} \ dots \ rac{z_m - \hat{\mu}}{\hat{\sigma}} \end{array}
ight]$$

► However, merely having zero mean and standard deviation 1 might not be ideal. Hence:

$$\mathsf{LN}(z) = \beta + \gamma \cdot \mathsf{LN} - \mathsf{S}(z)$$

Backpropagation

- ► Relies on chain rule.
- ► If f(g(h(x))), then:

$$\frac{df}{dx} = \frac{df}{dg} \times \frac{dg}{dh} \times \frac{dh}{dx}$$

► Compute local gradient and multiply with gradient from next operation.

Forward and Backward Passes

- 1. Forward Pass:
 - ► Compute output layer by layer.
 - ► Standard computation pass.
- 2. Backward Pass:
 - ► Compute gradient of loss with respect to each neuron's output.
 - ► Continue layer-by-layer in reverse.

Weight Update

- ▶ Update weights using optimization algorithm.
- Adjust weights to decrease error:

$$W_{new} = W_{old} - \alpha imes rac{\partial L}{\partial W}$$

▶ where L = loss and $\alpha = learning$ rate.

Challenges with Backpropagation

- ► Vanishing gradient: gradients diminish to near zero.
- ► Exploding gradient: gradients become too large.
- ► Local minima: possible to get stuck in suboptimal solutions.

Improvements and Variants

- ► Stochastic and mini-batch GD: update after a small set.
- ► Momentum: use previous weight change for current update.
- Advanced Optimizers: Adam, RMSprop.
- ► Regularization techniques: dropout, L1/L2 regularization, early stopping.

General Strategy of Backpropagation

- ► Neural networks: complex compositions of building blocks.
- ▶ Modules: MM, σ , Conv2D, LN, and others.
- ► Losses are also viewed as modules.

Example of Modular Composition

- ► Example: $J = M_k (M_{k-1} (\cdots M_1(x)))$.
- ► Modules involve parameters or fixed operations.
- ► Each M_i involves a set of parameters $\theta^{[i]}$.

Computational Efficiency and Granularity

- ► Small modules have efficient backward functions.
- Backward functions of atomic modules like addition, multiplication, ReLU are computationally efficient.
- ► Neural networks as compositions of atomic operations.
- ► Modularize using matrix multiplication, layer norm, etc. for practicality.

Back-propagation for MLPs

► If we are given backward functions for modules to evaluate loss, can compute gradient of loss with respect to hidden activations and parameters.

Back-propagation for MLPs: Forward Pass

► An *r*-layer MLP with logistic loss:

$$egin{aligned} z^{[1]} &= \mathrm{MM}_{W^{[1]},b^{[1]}}(x), \ &dots \ J &= \ell_{\mathrm{logistic}}\left(z^{[r]},y
ight). \end{aligned}$$

Back-propagation for MLPs: Backward Pass

► Compute the gradient of loss J w.r.t $z^{[r]}$:

$$\frac{\partial J}{\partial z^{[r]}} = \left(1/\left(1 + \exp\left(-z^{[r]}\right)\right) - y\right)$$

▶ Then, compute the gradient with respect to parameters $W^{[k+1]}$ and $b^{[k+1]}$ and others iteratively.

Minimal Example

Minimal Example: The Forward Pass

- ► Input is fed into the network.
- ► Activations are computed layer by layer:
 - ► Hidden neuron activation: $\mathbf{a} = \sigma(\mathbf{w}_1 \cdot \mathbf{x})$
 - Output neuron activation: $\hat{y} = \sigma(w_2 \cdot a)$
- ► Loss is calculated:
 - ► Mean Squared Error: $L = \frac{1}{2}(y \hat{y})^2$

Minimal Example: The Backward Pass

- ► Error is propagated back from the output:
 - Output layer gradient: $\frac{\partial L}{\partial w_2} = (\hat{y} y) \cdot \hat{y} \cdot (1 \hat{y}) \cdot a$
 - ► Hidden layer gradient: $\frac{\partial L}{\partial w_1} = (\hat{y} y) \cdot \hat{y} \cdot (1 \hat{y}) \cdot w_2 \cdot a \cdot (1 a) \cdot x$
- ► Weights are updated to reduce loss:

•
$$\mathbf{W}_2 = \mathbf{W}_2 - \alpha \cdot \frac{\partial L}{\partial \mathbf{W}_2}$$

► Apply steps iteratively to minimize the loss function.

Specialized Layers

Specialized Layer: Convolutional

- ▶ Building block of convolutional neural networks (CNNs).
- ► Process data in a grid-based topology, such as images.
- ► Learnable filters that apply convolution operations.
- ► Learning features from regions of input to capture spatial hierarchies.
- ► Produce feature map that represents presence of specific features.

Specialized Layer: Attention Mechanisms

- ▶ Permits network to focus on different parts of the input sequentially.
- ▶ Used in transformer models in NLP.
- ► Weigh importance of different parts of the data.
- ► Improve ability of the model to remember long-range dependencies.

Specialized Layer: Recurrent Layers

- ▶ Used to process sequences, including time series and text.
- ► Allow information to persist across sequence steps in loops.
- Includes LSTMs and GRUs.
- ► Capture temporal dependencies in sequences of variable lengths.

Specialized Layer: Pooling

- ► Reduce the spatial dimensions of input volume for next layer.
- ► Max pooling and average pooling most common.
- ► Makes feature representation smaller and more manageable.
- ► Contributes to network's robustness.

2. Deep Learning Applications

Introduction to TensorFlow

Colab Tutorial

► Introduction to Deep Learning

References I

Ng, Andrew and Tengyu Ma (2023) "CS229 Lecture Notes," June.