Problem 1. Find the number of Sylow 2-subgroups in S_5 .

Solution: Order of Sylow 2-group in S_5 has order $2^3 = 8$. Notice that D_4 also has order 8, and we consider four indices out of five as vertices of a rectangle, then D_4 can be represented as permutations. There are 5 ways to pick four vertices, and within each choice, there are 4! = 24 ways to name each vertex, 6 distinct namings up to rotation, and finally 3 distinct namings up to both flipping and rotation. Thus the number is 15, given the fact that the only options are 3, 5, 15 by Sylow Theorem.

Problem 2. Show that finite group G of cardinal $p^{\alpha}m$ with (m,p)=1 has a subgroup of order p^i for any $i \leq \alpha$.

Proof: Prove by induction, for the base case where $\alpha = 1$, the conclusion is straight from Sylow Theorem. Now suppose for $\alpha \leq n$, the conclusion is true, then for n+1, by Sylow Theorem, there exists a Sylow p-group S, of order p^{n+1} . Since p-group has a non-trivial center, pick $x \in Z(S)$ such that x has order p^k for some $0 < k \leq n+1$. We raise x by power p^{k-1} , then $x^{p^{k-1}}$ has order p. Now consider $S/\langle x^{p^{k-1}}\rangle$, which has order p^n , and by induction it has a subgroup of order p^i for any $i \leq n = \alpha$, thus by considering the canonical homomorphism $S \to S/\langle x^{p^{k-1}}\rangle$, it's preimage is what we desired.

Problem 3. Let G be a group of order 255. Show that G is not simple.

Proof: Notice that $255 = 3 \times 5 \times 17$. Consider the Sylow 17-subgroup of G. By Sylow Theorem, the number of Sylow 17-group is congruent to 1 mod 17, and it divides $3 \times 5 = 15$, only 1 satisfies both conditions, thus there is only one Sylow 17-subgroup in G, which is normal in G, hence G is not simple.