MEDIAN

Median is the middle value of observation, It is denoted by M_d

INDIVIDUAL SERIES:-
$$M_d = (\frac{N+1}{2})$$
 th value (ODD)

DISCRETE SERIES:- $M_d = (\frac{N}{2})$ th value $+(\frac{N}{2}+1)$ th value (EVEN)

CONTINUOUS SERIES:- $M_d = L_1 + \frac{N}{2} + \frac{N}{2} + \frac{N}{2}$

where L_1 =lower limit of median class N = total number of observation f_c = c.f of the class preceding the median class f = frequency of the median class f = length of class interval

QU:- determine MEDIAN for the following series:-

solution – arranging the values of the series in ascending order

no. of observation
$$= N = 7 = an odd number$$

$$M_d = (N+1)$$
 th term $= (7+1)$ $= 8$ $= 4$ th term $= 75$

2. 23, 9,65,44,11

arranging in ascending order

$$N = 5$$
 (odd)

MEDIAN =
$$(5+1)/2 = 6/2 = 3$$
 th term = $\frac{23}{2}$

IF 'N' IS EVEN:

```
QU:- find median- 94,33,86,68,32,80,48,70 solution – arranging in ascending order 32,33,48,,68,70,80,86,96 we get N= 8 which is EVEN
```

so median =
$$M_d = (8/2)$$
 th term +(8/2) +1 th term

2

= $\frac{4^{th} \text{ term} + 5 \text{ th term}}{2}$

= $\frac{68 + 70}{2}$

= $\frac{138/2}{M_d}$
 $M_d = \frac{69}{Sangeeta}$

Discrete series (ungrouped data)-

QU:- determine median for the following data-

: 20 21 22 23 24 25 26 27 28 wages No. of workers : 8 19 6 10 11 16 20 25 9

Solution:-

Wages(x)	Workers(f)	Cumulative frequency(c f)
20	8	8
21	10	18
22	11	29
23	16	45
24	20	65
25	25	90
26	19	109
27	9	118
28	6	124
	∑ f =124	

$$N = 124 (EVEN)$$

$$M_d = (124)^{th} term + (124 + 1)^{th} term$$

$$= \frac{62^{th} \text{ term} + 63^{th} \text{term}}{2}$$

This term lies on c.f. 65 And 65 is c. f. of 24

$$M_d = 24+24 = 48 = 24$$

Then median =24

QU:- find median -

Runs scored : 25 35 45 55 65 75 90

No. of players: 6 11 25 30 17 8 2

Solution:

X	f	Cf
25	6	6
35	11	17
45	25	42
55	30	72
65	17	89
75	8	97
90	2	99
	∑ f =99	

$$N = 99 \text{ (odd)}$$

$$M_d = (99+1)$$
th term
2
= (100/2) th term
= 50

Which lies on c.f. 72 And 72 is c.f. Of 55

Then median = 55

Qu:- determine median-

x:5 10 15 20 25 f:3 4 2 5 4

Solution:-

x	f	C f
5	3	3
10	4	7
15	2	9
20	5	14
25	4	18
	∑f = 18	

Here N= 18 (even)

$$M_d = \frac{18 \text{ th term } + (18 + 1) \text{th term}}{2}$$

$$= \frac{9 \text{ th term } + 10 \text{ th term}}{2} = \frac{15 + 20}{2} = \frac{35}{2} = 17.5$$

MEDIAN = 17.5

CONTINUOUS SERIES (GROUPED DATA)

Determine MEDIAN for the following data

Wages	No. of workers
20-25	14
25-30	28
30-35	33
35-40	30
40-45	20
45-50	15
50-55	13
55-60	7

Solution:

Class interval	f	Cf
20-25	14	14
25-30	28	42
30-35	33	75
35-40	30	105
40-45	20	125
45-50	15	140
50-55	13	153
55-60	7	160
	∑f =160	

$$L_1 = 35$$
, $N = 160$, $i = 5$
 $f_{c} = 75$, $f = 30$

Now N /2 th term =160/2 =80 th term

Which is included in 35-40 MEDIAN class =35-40 applying formula

$$\frac{N}{2} - f_{c}$$

$$\frac{1}{2} - f_{c}$$

$$\frac{1}{3} - f_{c}$$

$$\frac{1}$$

Find median:-

production per day	:	21-22	23-24	25-26	27-28	29-30
No. of day	:	7	13	22	10	8

Solution:-

Class interval	f	Cf
20.5-22.5	7	7
22.5-24.5	13	20
24.5-26.5	22	42
26.5-28.5	10	52
28.5-30.5	8	60
	∑f =60	

Now N/2 th term =
$$60/2$$
 = 30 th term

Which included in cf (40)

Then MEDIAN CLASS =24.5 - 26.5

So
$$L_1 = 24.5$$
, $i = 2$ $N = 60$ $f_c = 20$ $f = 22$

Change into exclusive

Size =1, so
$$1/2 = 0.5$$
 then $21-0.5 = 20.5$ & $22+0.5 = 22.5$

Then class interval 20.5-22.5

$$M_{d} = L_{1} + \frac{N/2 - f_{c}}{60/2 - 20} * \frac{60/2 - 20}{2}$$

$$= 24.5 + \frac{22}{30-20} * \frac{30-20}{2}$$

$$= 24.5 + \frac{20}{22}$$

$$= 24.5 + \frac{20}{22}$$

$$= 24.5 + 0.909$$

$$= 25.409 = 25.41 \text{ (approx.)}$$

MERITS OF MEDIAN

- It is very easy to calculate
- It is determined by graphically
- It can be used to find the average of qualitative data, like ranks ,grades.
- It can be determined simply by observation in individual & ungrouped data.

DEMARITS OF MEDIAN

- It is not based on all items.
- It is affected by sampling fluctuations.
- It is unfit for further algebraic calculations.
- It is not affected by extreme values

Find Median - UNEQUAL CLASS INTERVAL

Daily time (in minutes)	No. of executives
Less than 20	6
20 - 25	11
25 – 30	15
30 - 40	24
40 - 50	19
50 - 65	12
65 and above	7

We make same size class interval

Class interval	frequency
15-20	6
20-25	11
25-30	15
30-35	12 (24/2)
35-40	12
40-45	9.5 (19/2)
45-50	9.5
50-55	4 (12/3)
55-60	4
60-65	4
65-70	7

MODE

Mode is the value of the observation having the maximum frequency

Individual series: maximum frequency

Grouped data:- Mode =
$$M_o = L_1 + \frac{f_1 - f_0}{2 f_1 - f_0 - f_2}$$
 *

L = lower limit of model class

f₁ = frequency of model class

f₀ = frequency of the class proceeding the model class

f₂ = frequency of the class succeeding the model class

i = length of the class interval

Qu:- find mode – 28,24,26,42,24,41,46,24

<u>Solution</u> – The number **24** is repeated maximum times (3 times) hence **24** is the mode of given observation

QU: 7,9,11,7,6,5,9,13

Solution – here 7 (2 times) & 9 (2 times), so there are two modes here i.e. 7 & 9

QU:- 3,5,6,7,9,12,3,6,5,9,12,7

Solution:- Here each of the observation is the same (2 times)

So there is **no mode** in the given observation

Determine mode-

Marks	No. of students
1-5	7
6-10	10
11-15	16
16-20	32
21-25	24
26-30	18
31-35	10
36-40	5
41-45	1

Class interval	Frequency
0.5-5.5	7
5.5-10.5	10
10.5-15.5	16 f ₀
<u>15.5-20.5</u>	<u>32 f₁</u>
20.5-25.5	24 f ₂
25.5-30.5	18
30.5-35.5	10
35.5-40.5	5
40.5-45.5	1

Model class - 15.5-20.5

$$L_1 = 15.5, f_1 = 32$$

$$i = 5$$
, $f_0 = 16$

$$f_2 = 24$$

$$= 15.5 + \frac{16}{64 - 16 - 24} *$$

QU – find mode –

shoe size : 6 7 8 9 10 no. of pairs : 3 11 128 57 4

QU: - determine mode -

collar size : 7 8 9 10 11 12 13 no. of shirts : 5 8 11 45 42 38 25

QU:- find mode :-

No. of patients
148
124
109
71
30
16
1

7/7/2020

Solution

Class interval	f
10-20	148-124 =24
20-30	124-109 = 15
30-40	109-71 = 38 f_0
40-50	71-30 =41 f ₁
50-60	30-16 = 14 f ₂
60-70	16-1 =15
70-80	1

Mode =
$$40 + \frac{41-38}{2(41)-38-14} *$$

$$= 40 + 30/82-52$$

$$= 40 + 30/30$$

$$= 40 + 1$$

$$\mathbf{M_d} = \mathbf{41}$$

UNEQUAL CLASS INTERVAL

QU - Find mode -

Daily wages	no. of workers
0-5	5
5-10	7
10-20	9
20-40	25
40-60	30
60-80	24
80-90	8
90-100	6

Class interval	F
0-20	5+7+9 =21
20-40	25 f ₀
40-60	30 f ₁
60-80	24 f ₂
80-100	8+6 =14

Mode =
$$40 + \frac{30-25}{2(30)-25-24}$$
 *

= $40 + 5* 20 / 60 - 49$

= $40 + 100 / 11$

= $40 + 9.09$

M_d = 49.09

21

MERITS OF MODE –

- it is easy to understand
- It can be determined graphically
- It is not affected by extreme values
- It can be easily determined simply by observation in ungrouped data
- It is use for qualitative data

DEMERITS OF MODE –

- It is not based on all observation
- It is not suitable for mathematical treatment

USES OF MODE

- it is used by manufactures, businessmen and agriculturists
- It is useful for industry
- It is used in economic survey
- weather forecasts are based on mode

RELATION AMONG MEAN MODE & MEDIAN

```
Mean - mode = 3 (mean - median)
```

QU- if mean = 70.2, and mode = 70.5 then find median

QU - if arithmetic mean is 150 and median is 140 then find mode

QU- If mode is 7 and median is 9 then find mean

QU: - determine mode – (grouping method)

collar size : 7 8 9 10 11 12 13 no. of shirts : 5 8 11 45 42 38 25

GROUPING TABLE

X	f(1)	(2)	(3)	(4)	(5)	(6)
7	5	13				
8	8	}	19	24		
9	11	56		-	64	
10	45]	87			98
11	42	80	-	125		
12	38		63		105	
13	25					

ANALYSIS TABLE

X	7	8	9	10	11	12	13
1				1			
2					1	1	
3				1	1		
4				1	1	1	
5					1	1	1
6			1	I	I		
TOTAL			1	4	5	3	1

Since highest total is $\frac{5}{1}$. Which is the value of 11 therefore mode is $\frac{11}{1}$

Qu if the weighted mean is 9.85 ,then find the missing weight

x	Weight(w)	wx
5	20	100
8	15	120
10	30	300
12	? (let x)	12x
15	15	225
	$\sum w = 80+x$	$\sum wx = 745 + 12x$

Applying formula
$$-\sum_{X_W} \frac{\sum w \ x}{X_W} = \frac{\sum w \ x}{745+12X}$$

$$9.85 = \frac{80+X}{9.85(80)+9.85X} = \frac{745+12X}{9.85(80)+9.85X} = \frac{745+12X}{20}$$

$$788.00+ 9.85 \ x=745+12X$$

$$43 = 2.15X$$

$$x = 43 \ / 2.15$$

$$= 4300 \ / 215$$

The mean of the following data is 50, but frequencies f_1 and f_2 in classes 20-40 and 60-80 are missing .find the missing frequencies:-

Class	frequency
interval	
0-20	17
20-40	f_1
40-60	32
60-80	f_2
80-100	19
	120

SOLUTION:-

Classes	Mid value(x)	f	d= (x-A/i	fd
0-20	10	17	-2	-34
20-40	30	f_1	-1	-f ₁
40-60	50	32	0	0
60-80	70	f_2	+1	+f ₂
80-100	90	19	+2	+38
		∑f =120		$\sum f d = 4 + f_2 - f_1$

7/7/2020 Sangeeta 27