FAMILY TURBULENCE, CHILD DEVELOPMENT AND POLICY: THEORY AND EVIDENCE

Marc Chan a, Kai Liu b

- a Department of Economics, University of Melbourne
- ^b Faculty of Economics, University of Cambridge

Note: This research is supported by British Academy Research Grant SRG1819\191395.

Motivation

- Many children grow up in unstable family environments, often accompanied by partner abuse, violence and controlling behaviour.
- Household models with children have usually assumed stable families.
 - A Handful of exceptions: Tartari (2015); Gayle, Golan and Soytas (2015).
- Models of domestic violence/abuse do not incorporate children.
 - E.g., Bowlus and Seitz (2006).
- We develop a simple structural model with <u>dynamic strategic interactions</u> between parents, incorporating:
 - 1. Endogenous transitions between biological, single-parent and step-families.
 - 2. Partner abuse and coercive control (a key innovation).

Overview: Methodology

- We extend our earlier work (Chan and Liu 2022), which dealt with selection bias of family structure via two key features:
- A. Heterogeneity of families. Parents (and their children) may differ systematically in their **unobserved characteristics** across different types of relationships.
- B. **Biological** and **social (step)** parental relationships. Child's skill is influenced by the mother, biological father, and social father over time.
- 1. Extend their model to a truly forward-looking model.
- Include abuse and controlling behaviour as mechanisms of family dynamics.

Overview: Data

- Fragile Families and Child Wellbeing Study (FFCWS). It covers the disadvantaged population in the U.S and focuses on children born in less stable families (~5,000).
- FFCWS interviews both biological parents in the hospital at the time of childbirth and follows them even after they separate. (Age 0,1,3,5,..)
- It does a much better job of tracking the biological father, relative to other major survey data sets in the U.S.
 - This is crucial for dealing with selection bias of family structure.
- Questions on partner abuse and controlling behaviour. We distinguish:
 - Physical/emotional abuse: slapping, kicking, emotional insults, etc.
 - Controlling work: "He tries to prevent you from going to work or school"

Overview: Model

- Starts from a focal child's birth. Model both biological parents' behaviour irrespective of subsequent relationship status.
 - Labour supply; time investment in child; welfare use; child support (if separated).
- Externalities. Father can also choose whether to...
 - Abuse the partner: inflict a <u>disutility</u> on the partner (gaining utility on himself)
 - Control the partner's work: inflict a <u>fixed cost of work</u> on the partner, thereby reducing her work experience (with (dis)utility on himself)
- Mother makes a relationship choice upon father's action.
 - Stay with the father; become single; cohabit with a social(step) father.
- Unlike abuse, controlling behaviour <u>reduces</u> the mother's post-separation opportunities and is more strategic by nature. This has implications for the basic theoretical/empirical content of household models.

Relationships

- Focus on biological parental pair starting from focal child's birth (t = 0). Each period t consists of three decision subperiods $\tau = 1,2,3$.
 - Biological father (B; "father"). Mother (M).
 - Social/step father (S). He is endogenously matched with the mother.

Relationship status	$\tau = 1$	$\tau = 2$	$\tau = 3$
Single	[B]		M
Cohabited with the father (M-B)	В		${ m M}$
Cohabited with a social/step father (M-S)	[B]	\mathbf{S}	${ m M}$

- Relationship state variables: B_t , S_t .
 - B_t and S_t remain unchanged in period t.
 - $(B_t, S_t) = (0,0)$ if single. $(B_t, S_t) = (1,0)$ if with B. $(B_t, S_t) = (0,1)$ if with S.
- Relationship choice by the mother: b_t , s_t . Assume $(B_{t+1}, S_{t+1}) = (b_t, s_t)$.

Child ability

- Child ability $A_{t(\tau=1,2,3)}$ evolves following each parent's actions. It is a public good.
- Initial ability endowment is $A_{0(\tau=1)} = \gamma_{c0} + \mu_{cj}$.
- Latent μ_{cj} is naturally interpreted as a weighted function of both biological parents' skill endowments, alongside other factors.
- Subscript *j*: heterogeneity of biological father-mother type j = 1, ..., J.

Fathers (B, S): $\tau = 1, 2$.

• Father acts at $\tau=1$ given state variables $S_{t(\tau=1)}\equiv (B_t,S_t,A_{t(\tau=1)},E_t)$ and realizations of his preference and wage shocks $(\epsilon_{t(\tau=1)})$.

```
Abuse=0,1 (if cohabited)Control_work=0,1 (if cohabited)
```

- Work=0,1
- Quality time with child={low, high}
- Pay child support =0,1 (if separated)

$$V_{jt}^{B}(\mathbf{S}_{t(\tau=1)}, \boldsymbol{\epsilon}_{t(\tau=1)}) := \\ \max_{k \in \mathcal{C}_{t(\tau=1)}} [u_{jkt}^{B} + \delta^{B} E_{t(\tau=1)} V_{j,t+1}^{B}(\mathbf{S}_{k,t+1(\tau=1)}(\boldsymbol{\epsilon}_{t(\tau=2)}, \boldsymbol{\epsilon}_{qt(\tau=3)}, \boldsymbol{\epsilon}_{t(\tau=3)}), \boldsymbol{\epsilon}_{t+1(\tau=1)})]$$

- Forward-looking cohabiting fathers will react to <u>state-level child support rules</u> and <u>enforcement</u>, which are used as exclusion restrictions.
- Social father at $\tau=2$ makes similar choices based on perceived values of each alternative (essentially static).

Mother (M): $\tau = 3$.

- A matching technology (function of mother's skill endowment and <u>census-tract</u> availability of high-quality men) governs candidate social father's quality Q_t .
- Once Q_t is determined, mother acts given state variables (including fathers' actions) and realization of wage and preference shocks:
 - Relationship choice (b_t, s_t)
 - No work, PT work, FT work
 - Quality time with child={low, high}
 - Welfare=0,1

(welfare rules as another exclusion restriction)

$$V_{jt}^{M}(\mathbf{S}_{t(\tau=3)}, \boldsymbol{\epsilon}_{t(\tau=3)}) := \max_{k \in \mathcal{C}_{t(\tau=3)}} [u_{jkt}^{M} + \delta^{M} E_{t(\tau=3)} V_{j,t+1}^{M}(\mathbf{S}_{k,t+1(\tau=3)}(\boldsymbol{\epsilon}_{t+1(\tau=1)}, \boldsymbol{\epsilon}_{t+1(\tau=2)}, \boldsymbol{\epsilon}_{q,t+1(\tau=3)}), \boldsymbol{\epsilon}_{t+1(\tau=3)})]$$

- 1. Abuse leads to more separation. (e.g., via state dependence in abusive behaviour)
- 2. Controlling work reduces women's independence and leads to less separation. However, the effectiveness of control is <u>dampened</u> by local availability of high-quality men, child support enforcement, etc.

Intertemporal optimization and estimation

- Strategic interactions between parents (B, S, M) modelled as a multiperiod stochastic game.
- State variables and biological family types are common knowledge to each agent. Shocks are private information.
- Markov strategies. The backward recursion "interweaves" the expected value functions of B, S, and M, yielding the Markov perfect equilibrium.
 - Solve the dynamic programming problem and equilibrium separately for each biological family pair in the sample.
- Estimation by maximum likelihood (~100 parameters), accounting for:
 - Choices of each parent.
 - 2. Heterogeneity of biological families.
 - 3. Heterogeneity and selection of social fathers.
 - 4. Endogeneity of the initial relationship status.
 - 5. Selection into work by each parent.

Relationship status by child's age

Relationship Status (%)							
Wave	Single	М-В	M-S				
0	52.3	47.7	0.0				
1	49.1	45.3	5.7				
3	48.6	40.1	11.3				
5	48.6	33.0	18.5				
Total	49.6	41.5	8.9				

- M-B: Intact biological families.
- M-S: Mother cohabiting with social father.
- Proportion of single mothers remain stable, but masks a lot of transitions (see paper).

Incidence of abusive and controlling behavior by parents' latent skill endowment (among biological families)

- Partition parents' latent skill endowments into low and high by median.
 - See also Chan and Liu (2022) for the control function approach.
- Controlling behaviour is most common among highDad-lowMom pairs.
 It is least common among lowDad-highMom pairs.

Regress separation on abuse/control, conditional on parents' latent skills

	From M-B to Non-M-B			
Dependent variables	(1)	(2)		
Physical/ Emotional abuse	0.0561*	0.0682**		
	(0.030)	(0.031)		
Control work	-0.068	-0.318***		
	(0.048)	(0.107)		
Control work \times local men with bachelor degree		1.159**		
		(0.511)		
Control work \times child support enforcement		10.890		
		(7.340)		
Local men with bachelor degree		-0.004		
		(0.089)		
Child support enforcement		6.315***		
		(1.633)		
Control function:				
Father skill endowment	-0.358***	-0.353***		
	(0.051)	(0.051)		
Mother skill endowment	0.032	0.041		
	(0.067)	(0.067)		
<u>Covariates:</u>				
Father college	-0.0524**	-0.0474*		
	(0.025)	(0.026)		
Mother college	0.032	0.035		
	(0.025)	(0.025)		
Constant	0.147***	0.0862**		
	(0.030)	(0.035)		

Note: Biological families. Other covariates not shown.

- 1. Abuse => more separation.
 - No heterogeneity by local availability of high-quality men (not shown in table).
- 2. Control work \Rightarrow less separation.
 - Availability of high-quality men <u>dampens</u> this relationship.

Regress mother's work on abuse/control, conditional on parents' latent skills

Dependent variables	Mother work		
	(1)	(2)	
Physical/ Emotional abuse	-0.036		
	(0.025)		
Control work		-0.139***	
		(0.041)	
Control function:			
Father skill endowment	-0.196***	-0.188***	
	(0.045)	(0.045)	
Mother skill endowment	0.899***	0.882***	
	(0.059)	(0.059)	
$\underline{Covariates:}$			
Father college	0.015	0.015	
	(0.022)	(0.022)	
Mother college	0.212***	0.211***	
	(0.022)	(0.022)	
Constant	0.800***	0.798***	
	(0.026)	(0.026)	

Note: Biological families. Other covariates not shown.

- No association between Abuse and mother's work.
- Control work => less mother's work.

Conclusions

- We developed a structural model of child development with dynamic strategic interactions between parents, involving partner abuse and controlling work.
- Controlling work is a key innovation of the model. It reduces the mother's post-separation opportunities and is arguably strategic by nature.
- This has implications for the basic theoretical/empirical content of household models.
- Standard household models are fitted on standard variables such as labour supply. Does the new information about abusive/controlling behaviour matter?
 - They appear to strongly determine family dynamics.
 - The strategic model is a natural choice, but is it superior?
- Welfare and child support policy counterfactuals will be investigated.

Appendix

Relationship status: transition rates

		Wave 0 to 1			Wave 1 to 3			Wave 3 to 5			
		To: (%)		•	To: (%)			To: (%)			
		Single	М-В	M-S		Single	М-В	M-S	Single	М-В	M-S
From:	Single M-B M-S	68.7 27.5	22.8 69.9	8.5 2.6		71.3 24.4 50.4	14.9 71.9 0.0	13.8 3.8 49.6	71.5 24.6 36.4	9.1 70.8 0.0	19.4 4.7 63.6

- Singles and M-B (intact biological families): relatively stable. 70% remain in the same status.
- M-S (mothers with social father): least stable. Only 50% remain in the same status.
- Many singles switch to M-B or M-S, and vice versa.

Biological parental choices by relationship status

- Mother: invariant across relationship status.
- Father: highest in intact families, lowest when the mother is cohabited with a social father.
- This information is used to obtain the unobserved heterogeneity of biological families.

Wage and child ability by relationship status

- Intact biological families have the best outcomes.
 - E.g., lowest level of externalizing behavior.

Appendix: Exclusion restrictions and covariates (1)

		Father	(B)		SF	Initial
	Work	Invest	CS	Wage	Pr(college)	Relation
Father college	х	Х	X	X		X
Mother college					X	X
CS policies			x			
Welfare policies						
Years M knows B						x
M lived with parents @age 15						x
B lived with parents @age 15		X				X
Census tract variables:						
% bachelor degree					X	
Median HH income				\mathbf{x}		
local unempl. rate	X					
M-B type intercepts				x		X
M's latent ability (linear)					X	