Traitement des Images Numériques

Traitements locaux 2019-2020

Opérations arithmétiques ponctuelles

- Addition ou soustraction d'une constante Éclaircissement ou Assombrissement
- multiplication de deux images
 Extraction d' une zone par un masque modélisé par une image binaire (0,1)

Opérations ponctuelles

Opérateurs : addition, soustraction, multiplication, division et, ou, min, max

images - 2019/2020

Opérations arithmétiques ponctuelles

- Log ou exp d'une image
- Fonction Gamma (renforcer certaines zones)

$$I'(i,j) = \left(\frac{I(i,j) - I_1}{I_2 - I_1}\right)^{\gamma} \bullet I_{\text{max}}$$

 Fonction statistique Zscore Normalisation de l'image

$$I'(i,j) = \left(\frac{I(i,j) - Moy}{\sigma}\right)$$

Addition

- La variance d'une somme de variables aléatoires
- $N(0,\sigma)$ n fois $\rightarrow N(0, \sigma/\sqrt{n})$

Application : atténuation du bruit

Addition

Soustraction

- extraction de contour : différence entre une image et l'image faiblement translatée
- suppression de **bruit** : différence entre une image de référence et une image à traiter
- mise en évidence des fluctuations
- détection de mouvement : différence entre deux images consécutives d'une séquence images - 2019/2020

Contours par différence

Recalage

- Images prises à des instants différents
- Images prises dans des conditions différentes (ajout de produits de contraste)
- Images prises avec des modalités différentes
 - images anatomiques
 - images fonctionnelles
- Recherche d'une transformation

Recalage

Principe du recalage

Recalage

- Choix de points d'appui
 - Artificiels
 - Liés à la scène (coins , luminosité)
- Choix d'une famille de transformations
 - Transformation affine → 6 paramètres
- Résolution
 - Exacte à l'aide de 3 points
 - Régression → robustesse

Recalage

- Une forme contenue dans une image par superposition
 - Des centres de gravité
 - Des axes principaux d'inertie
 vecteurs et valeurs propres de la matrice d'inertie
- Translation et rotation de manière explicite

Méthodes locales

Méthodes locales

- Les transformations ponctuelles ne tiennent pas compte des positions
- Ni de l'environnement du pixel
 - un voisinage
 - toute l'image → méthode globale

Le zoom

Par réplication

70	70	80	80
70	70	80	80
72	72	76	76
72	72	76	76

70	80	ZOOM	70	?	80	?
72	76	x2	?	?	?	?
			72	?	76	?
			?	?	?	?

Par interpolation

70	75	80	80
71	74.5	78	78
72	74	76	76
72	74	76	76

Exemple de zoom

Le principe

 Faire dépendre le niveau de gris I' (i,j) des niveaux de gris des pixels voisins

- •Le plus fréquent est de considérer une combinaison linéaire des niveaux de gris
- Les poids sont stockés dans une matrice que l'on nomme noyau du filtre
- •Passe bas si on supprime des détails
- •Passe haut si on réhausse les détails

Exemple – filtre Passe bas

Noyau

1/9

1	1	1
1	1	1
1	1	1

5	6	7	9	

Exemple – filtre Passe haut

noyau

5	5	5	9	9	9
5	5	5	9	9	9
5	5	5	9	9	9
	5	5	9	9	9
5	5	5	9	9	9

-1	-1	-1
-1	8	-1
-1	-1	-1

0	-12	12	0	

Application

Un outil: la convolution

 Un opérateur produit dans l'espace des fonctions

$$(f,g) \to h$$

$$(f \otimes g)(x) = \int_{-\infty}^{\infty} f(x-t)g(t)dt$$

- la convolution est commutative
- f la fonction ou l'image initiale
- g un motif de référence
- h l'image transformée

Convolution

$$(I \otimes k)(x) = \int_{-\infty}^{\infty} I(\alpha)k(x-\alpha)d\alpha$$

Composition

Convolution entre filtres

$$m \otimes g$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$