Capacitação Trilhando Caminhos em Ciência de Dados.

Projeto: Conjunto de Dados Avaliação de Riscos de Diabetes

Instrutora: Thais Ratis

Autores:

- Flávio Silva
- Patrícia Lópes
- Pablo Veinberg

Definição do problema

O conjunto de dados contém uma gama diversificada de atributos relacionados à saúde, meticulosamente coletados para auxiliar no desenvolvimento de modelos preditivos para identificar indivíduos em risco de diabetes. Nosso objetivo é promover a colaboração e a inovação dentro da comunidade de ciência de dados, levando a um melhor diagnóstico precoce para o diabetes.

Amostra Inicial dos dados

	Id	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	1	6	148	72	35	0	33.6	0.627	50	1
1	2	1	85	66	29	0	26.6	0.351	31	0
2	3	8	183	64	0	0	23.3	0.672	32	1
3	4	1	89	66	23	94	28.1	0.167	21	0
4	5	0	137	40	35	168	43.1	2.288	33	1

Pré-Processamento: Alteração do nome das colunas e exclusão da coluna 'id'

data.drop('id', axis=1, inplace=True)

	quant_gravidez	glicose	pressao_saguinea	espesura_pele	insulina	imc	${\tt diabetes_genetica}$	idade	target
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	C
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	C
4	0	137	40	35	168	43.1	2.288	33	1

Pré-Processamento: Duplicidades e valores nulos

```
1 # Duplicated
2 data.drop_duplicates(keep='first', inplace=True)
3 data.duplicated().sum()
```

```
1 # Missing values
2 data.isnull().sum().sum()
```

Análise de Dados: correlação entre as variáveis

Correlação dos Dados

	quant_gravidez	glicose	pressao_saguinea	espesura_pele	insulina	imc	${\tt diabetes_genetica}$	idade	target
quant_gravidez	1.000000	0.124729	0.143599	-0.085663	-0.076876	0.010874	-0.034159	0.532993	0.220380
glicose	0.124729	1.000000	0.140420	0.067604	0.333652	0.231745	0.137337	0.262591	0.459152
pressao_saguinea	0.143599	0.140420	1.000000	0.178080	0.082516	0.249552	0.042145	0.243475	0.073921
espesura_pele	-0.085663	0.067604	0.178080	1.000000	0.434904	0.367135	0.182582	-0.101986	0.078016
insulina	-0.076876	0.333652	0.082516	0.434904	1.000000	0.195511	0.190193	-0.038262	0.127030
imc	0.010874	0.231745	0.249552	0.367135	0.195511	1.000000	0.130382	0.043150	0.264761
diabetes_genetica	-0.034159	0.137337	0.042145	0.182582	0.190193	0.130382	1.000000	0.034839	0.172160
idade	0.532993	0.262591	0.243475	-0.101986	-0.038262	0.043150	0.034839	1.000000	0.244260
target	0.220380	0.459152	0.073921	0.078016	0.127030	0.264761	0.172160	0.244260	1.000000

Distribuição dos dados – Alguns Histogramas

Valores na Variável Dependente

Seleção de Variáveis Dependentes e Independentes

```
1 X = data.drop('target', axis=1) # variáveis indepentes
2 y = data.target # Variável dependente
```


Calculando Vizinhos mais Próximos (KNN)

```
1 def results(y test,y pred):
      results = confusion matrix(y test, y pred)
      print ('Confusion Matrix :')
      print(results)
 5
      accuracy = accuracy score(y test, y pred)
 6
      print("Accuracy: %.2f%" % (accuracy * 100.0))
      print ('Report : ')
8
      print (classification report(y test, y pred))
9
      return accuracy
11 def compute knn(X, y, k, print = False):
      X train, X test, y train, y test = train test split(X, y, test_size=0.2, random_state=42)
12
      model = KNeighborsClassifier(n neighbors=k, metric='euclidean', algorithm='auto')
13
14
      model.fit(X train, y train)
15
16
      y pred = model.predict(X test)
17
18
      accuracy = results(y test, y pred)
19
20
      return accuracy
```

Calculando Resultados com K entre 3 e 30

	k	accuracy
0	3	0.711538
1	5	0.692308
2	7	0.692308
3	9	0.724359
4	11	0.743590
5	13	0.743590
6	15	0.801282
7	17	0.788462
8	19	0.775641
9	21	0.782051
10	23	0.762821
11	25	0.775641
12	27	0.756410
13	29	0.769231

Calculando Resultado com K = 15

```
Confusion Matrix :
[[99 11]
 [20 26]]
Accuracy: 80.13%
Report :
              precision
                          recall f1-score
                                              support
                   0.83
                             0.90
                                       0.86
                                                  110
                   0.70
                             0.57
                                       0.63
                                                   46
                                       0.80
                                                  156
    accuracy
                   0.77
                             0.73
                                       0.75
                                                  156
  macro avg
weighted avg
                   0.79
                             0.80
                                       0.79
                                                  156
```


An Indra company