

We claim:

1

2

molecule is cDNA.

Claims 1. An isolated nucleic acid molecule including a sequence encoding an 1 acquired resistance polypeptide, wherein said acquired resistance polypeptide is capable 2 of conferring, on a plant expressing said polypeptide, resistance to a plant pathogen. 3 2. The isolated nucleic acid molecule of claim 1, wherein said polypeptide is 1 capable of mediating the expression of a pathogenesis-related polypeptide. 2 3. The isolated nucleic acid molecule of claim 1, wherein said polypeptide 1 comprises an ankyrin-repeat motif. 2 4. The isolated nucleic acid molecule of claim 1, wherein said polypeptide is 2 obtained from an angiøsperm. 5. The isolated nucleic acid molecule of claim 4, wherein said angiosperm is a 1 2 member of the Solanaceae. 6. The isolated nucleic acid molecule of claim 4, wherein said angiosperm is a 1 2 member of the Cruciferae. 7. The isolated nucleic acid molecule of claim 1, wherein said nucleic acid 1 molecule is genomic DNA. 2

8. The isolated nucleic acid molecule of claim 1, wherein said nucleic acid

1	9. The isolated nucleic acid molecule of claim 1, wherein said plant pathogen
2	is a bacterium, virus, viroid, fungus, nematode, or insect.
•	Tak
1	10. An isolated nucleic acid molecule that encodes an acquired resistance
2	polypeptide that specifically hybridizes to a nucleic acid molecule comprising the
3	genomic nucleic acid sequence of Fig. (SEQ ID NO:1).
1	11. An isolated nucleic acid molecule that encodes an acquired resistance
2	polypeptide that specifically hybridizes to a nucleic acid molecule comprising the cDNA
3	of Fig. 5 (SEQ ID NO:2).
1	12. An isolated pucleic acid molecule that encodes an acquired resistance
2	polypeptide that specifically hybridizes to a nucleic acid molecule comprising the DNA
3	sequence of Fig. 7A (SEØ ID NO:13).
1	13. The solated nucleic acid molecule of claims 10-12, wherein said nucleic
2	acid molecule encodes a polypeptide that mediates the expression of a pathogenesis-
3	related polypeptide.
1	14. The isolated nucleic acid molecule of claims 10-12, wherein said nucleic
2	acid molecule encodes a polypeptide comprising an ankyrin-repeat motif.
L	-A4
1	15. The isolated nucleic acid molecule of claim 1 or 10-12, wherein said
2	nucleic acid molecule is operably linked to an expression control region.
1	16. A vector comprising the nucleic acid molecule of claim 1 or 10-12, said
2	vector being capable of directing expression of the polypeptide encoded by said nucleic
3	acid molecule.
	. –92–

1	17. A cell comprising an isolated nucleic acid/molecule of claim 1, 10-12, or
2	16.
1	18. The cell of claim 17, wherein said cell is a plant cell.
_	
	10. The will of alries 17 subspacing and a like a hostorial call
1	19. The cell of claim 17, wherein said cell is a bacterial cell.
1	20. The cell of claim 19, wherein said bacterial cell is Agrobacterium.
1	21. The cell of claim 18, wherein said plant cell has increased resistance to a
2	plant pathogen.
1	22. A transpania plant comprising a puglaia said malagula of claim 1, 10, 12.
1	22. A transgenic plant comprising a nucleic acid molecule of claim 1, 10-12,
2	or 16, wherein said nucleic acid molecule is expressed in said transgenic plant.
1	23. The transgenic plant of claim 22, wherein said transgenic plant is an
2	angiosperm.
1	24. The transgenic plant of claim 22, wherein said transgenic angiosperm is a
2	direct
2	incor.
1	25. The transgenic plant of claim 24, wherein said dicot is a cruciferous plant
1	26. The transgenic plant of claim 24, wherein said dicot is a solanaceous
2	nlant

	1	27. The transgenic plant of claim 23, wherein said transgenic angiosperm is a
	2	monocot.
	1	28. A seed from a transgenic plant of claim 22.
	1	29. A cell from a transgenic plant of claim 22.
		/
	1	30. A substantially pure acquired resistance polypeptide including an amino
	2	acid sequence that has at least 40% identity to the amino acid sequence of Fig. 5 (SEQ ID
	3	NO:3) or Fig. 7B (SEQ ID NO:14).
	1	31. The of substantially pure polypeptide claim 30, wherein said polypeptide
<u>o</u>	2	is capable of mediating the expression of a pathogenesis-related polypeptide.
Ø		
	1	32. The substantially pure polypertide of claim 30, wherein said polypertide
OBGORGE+ DEOES	2	includes an ankyrin-repeat motif or a G-protein coupled receptor motif.
ű	1	33. The substantially pure polypeptide of claim 30, wherein said polypeptide
T T	2	is obtained from an angiosperm.
17.4 17.4 18.4		
	1	34. The substantially pure polypeptide of claim 33, wherein said angiosperm
	2	is a member of the Solangceae.
	1	35. The substantially pure polypeptide of claim 33, wherein said angiosperm
	2	is a member of the Cruciferae.
Su	h	A6
_,,,,	1	36. A method of producing an acquired resistance polypeptide, said method
	2	comprising the steps of:

2

virus, viroid, fungus, nematode, or insect.

1	(a) providing a cell transformed with a nucleic acid molecule of claim 1;
2	10-12, or 16 positioned for expression in the cell;
3	(b) culturing the transformed cell under conditions for expressing the nucleic
4	acid molecule; and
5	(c) recovering the acquired resistance polypeptide.
	. /
1	37. A recombinant acquired resistance polypeptide produced by the method
2	of claim 31.
1	38. A substantially pure antibody that specifically recognizes and binds to an
2	acquired resistance polypeptide or a portion thereof.
1	39. The substantially pure antibody of claim 38, wherein said antibody
2	recognizes and binds to a recombinant acquired resistance polypeptide or a portion
3	-thereof.
	Sulc 40. A method of providing an increased level of resistance against a disease
1	40. A method of providing an increased level of resistance against a disease
2	caused by a plant pathogen in a transgenic plant, said method comprising the steps of:
3	(a) producing a transgenic plant cell including the nucleic acid molecule of
4	claim 1, 10-12, or 16 wherein said nucleic acid is positioned for expression in the plant
5	cell; and
6	(b) growing a transgenic plant from the plant cell wherein the nucleic acid
7	molecule is expressed in the transgenic plant and the transgenic plant is thereby provided
8	with an increased level of resistance against a disease caused by a plant pathogen.
_	
1	41. The method of claim 40, wherein said plant pathogen is a bacterium,

1	42. The method of claim 40, wherein said plant pathogen is <i>Phytophthora</i> ,
2	Peronospora, or Pseudomonas.
	/
1	43. A method of isolating an acquired resistance gene or fragment thereof,
2	said method comprising the steps of:
3	(a) contacting the nucleic acid molecule of Fig. 4 (SEQ ID NO:1), Fig. 5 (SEQ
4	ID NO:2), or Fig. 7A (SEQ ID NO:13) or a portion thereof with a preparation of DNA
5	from a plant cell under hybridization conditions providing detection of DNA sequences
6	having at least 40% or greater sequence identity to the nucleic acid sequence of Fig. 4
7	(SEQ ID NO:1), Fig. 5 (SEQ ID NO:2), or Fig. 7A (SEQ ID NO:13); and
8	(b) isolating said hybridizing DNA.
1	44. A method of isolating an adquired resistance gene or fragment thereof,
2	said method comprising the steps of:
3	(a) providing a sample of plant cell DNA;
4	(b) providing a pair of oligonucleotides having sequence identity to a region
5	of the nucleic acid of Fig. 4 (SEQ ID NO:1), Fig. 5 (SEQ ID NO:2), or Fig. 7A (SEQ ID
6	NO:13);
7	(c) contacting the pair of oligonucleotides with said plant cell DNA under
8	conditions suitable for polymerase chain reaction-mediated DNA amplification; and
9	(d) isolating the amplified acquired resistance gene or fragment thereof.
1	45. The method of claim 44, wherein said amplification step is carried out
2	using a sample of cDNA prepared from a plant cell.
1	46. The method of claim 44, wherein said pair of oligonucleotides are based
	/

- 2 resistance polypeptide is at least 40% identical to the amino acid sequence of Fig. 5 (SEQ
- 3 ID NO:3) or Fig. 7B (SEQ 10 NO:14).

add T-w