Math 425B W5P2 Hanting Zhang

Problem 2.5. For $p \in [1, \infty)$, define $\ell^p(\mathbb{N}; \mathbb{C})$ to be the set of all complex-valued sequences $(x_j)_{j=1}^{\infty}$ such that

$$\|(x_j)_{j=1}^{\infty}\|_{\ell^p} := \left[\sum_{j=1}^{\infty} |x_j|^p\right]^{\frac{1}{p}} < +\infty\|.$$

Define addition of sequences and multiplication by (complex) scalars componentwise in each case, i.e.,

$$(x_j)_{j=1}^{\infty} + (y_j)_{j=1}^{\infty} = (x_j + y_j)_{j=1}^{\infty}; \quad c(x_j)_{j=1}^{\infty} = (cx_j)_{j=1}^{\infty}.$$

Prove that $(\ell^p(\mathbb{N};\mathbb{C}), \|\cdot\|_{\ell^p})$ is a normed vector space, using the following outline.

(a) Adapt the proof of Hölder's inequality (Theorem 2.13 and Exercise 2.3) to prove that for complex-valued sequences $(x_j)_{j=1}^{\infty} \in \ell^p(\mathbb{N};\mathbb{C}), (y_j)_{j=1}^{\infty} \in \ell^q(\mathbb{N};\mathbb{C}),$ where p and q are Hölder conjugates, we have

$$\left| \sum_{j=1}^{\infty} x_j y_j \right| \le \| (x_j)_{j=1}^{\infty} \|_{\ell^p} \| (y_j)_{j=1}^{\infty} \|_{\ell^q}.$$

(b) Mimic the proof of Minkowski's inequality (Theorem 2.14) to prove that $\|\cdot\|_{\ell^p}$ is a norm on $\ell^p(\mathbb{N};\mathbb{C})$, for $p \in [1,\infty)$.

Lemma 1. Define $\mathcal{F}: \ell^p(\mathbb{N}; \mathbb{C}) \to \mathcal{R}_{loc}(\mathbb{R})$ by

$$\mathcal{F}((x_j)_{j=1}^{\infty}) = \sum_{j=1}^{\infty} x_j 1_{[j-1,j]}.$$

Then we have the nice property that,

$$\|(x_j)_{j=1}^{\infty}\|_{\ell^p} = \|\mathcal{F}((x_j)_{j=1}^{\infty})\|_{L^p}$$

Proof. Indeed, by definition

$$\|\mathcal{F}((x_j)_{j=1}^{\infty})\|_{L^p} = \left(\int_{-\infty}^{\infty} \left| \sum_{j=1}^{\infty} x_j 1_{[j-1,j]} \right|^p dt \right)^{\frac{1}{p}}$$
$$= \left(\int_{-\infty}^{\infty} \sum_{j=1}^{\infty} |x_j|^p 1_{[j-1,j]} dt \right)^{\frac{1}{p}}$$

1 Page 1

Math 425B W5P2 Hanting Zhang

$$= \left(\sum_{j=1}^{\infty} \int_{j-1}^{j} |x_{j}|^{p} dt\right)^{\frac{1}{p}}$$

$$= \left(\sum_{j=1}^{\infty} (j - (j-1))|x_{j}|^{p}\right)^{\frac{1}{p}}$$

$$= \left(\sum_{j=1}^{\infty} |x_{j}|^{p}\right)^{\frac{1}{p}} = \|(x_{j})_{j=1}^{\infty}\|_{\ell^{p}}.$$

Note \mathcal{F} is well defined since $\mathcal{F}((x_j)_{j=1}^{\infty}) < +\infty$.

Proof. We proceed with the lemma, which makes things much easier.

(a) Note that

$$\int_{-\infty}^{\infty} |\mathcal{F}((x_j)_{j=1}^{\infty})| |\mathcal{F}((y_j)_{j=1}^{\infty})| dt = \int_{-\infty}^{\infty} \sum_{j=1}^{\infty} x_j y_j 1_{[j-1,j]} dt$$
$$= \sum_{j=1}^{\infty} \int_{j-1}^{j} x_j y_j dt$$
$$= \sum_{j=1}^{\infty} x_j y_j.$$

By Hölder's inequality on L^p , we have

$$\sum_{j=1}^{\infty} x_j y_j = \int_{-\infty}^{\infty} |\mathcal{F}((x_j)_{j=1}^{\infty})| |\mathcal{F}((y_j)_{j=1}^{\infty})| dt$$

$$\leq \|\mathcal{F}((x_j)_{j=1}^{\infty})\|_{L^p} \|\mathcal{F}((y_j)_{j=1}^{\infty})\|_{L^q}$$

$$= \|(x_j)_{j=1}^{\infty}\|_{\ell^p} \|(y_j)_{j=1}^{\infty}\|_{\ell^q},$$

as desired.

(b) Note again that

$$\|\mathcal{F}((x_{j})_{j=1}^{\infty}) + \mathcal{F}((y_{j})_{j=1}^{\infty})\|_{L^{p}} = \left(\int_{-\infty}^{\infty} |\mathcal{F}((x_{j})_{j=1}^{\infty}) + \mathcal{F}((y_{j})_{j=1}^{\infty})|^{p} dt\right)^{\frac{1}{p}}$$
$$= \left(\int_{-\infty}^{\infty} |(x_{j} + y_{j})1_{[j-1,j]}|^{p} dt\right)^{\frac{1}{p}}$$

$$= \|\mathcal{F}((x_j + y_j)_{j=1}^{\infty})\|_{L^p}.$$

By Minkowski's inequality on L^p , we have

$$\begin{aligned} \|(x_j + y_j)_{j=1}^{\infty}\|_{\ell^p} &= \|\mathcal{F}((x_j)_{j=1}^{\infty}) + \mathcal{F}((y_j)_{j=1}^{\infty})\|_{L^p} \\ &\leq \|\mathcal{F}((x_j)_{j=1}^{\infty})\|_{L^p} + \|\mathcal{F}((y_j)_{j=1}^{\infty})\|_{L^p} \\ &= \|(x_j)_{j=1}^{\infty}\|_{\ell^p} + \|(y_j)_{j=1}^{\infty}\|_{\ell^p}, \end{aligned}$$

as desired.

Problem 2.6. Prove that $(\ell^p(\mathbb{N};\mathbb{C}), \|\cdot\|_{\ell^p})$ is complete for all $p \in [1, \infty)$.

Proof. Let $x^{(n)} = (x_j^{(n)})_{j=1}^{\infty} \in \ell^p(\mathbb{N}; \mathbb{C})$ be a sequence for each $n \in \mathbb{N}$, so that $(x^{(n)})_{n=1}^{\infty}$ is a sequence of sequences. For this problem, assume that $(x^{(n)})_{n=1}^{\infty}$ is Cauchy. We want to show that it converges to some $x = (x_j)_{j=1}^{\infty}$.

Indeed, being Cauchy implies that for any $\varepsilon > 0$, there is some N such that for any n, m > N, we have $||x^{(n)} - x^{(m)}||_{\ell^p} < \varepsilon$. Thus for all j,

$$|x_j^{(n)} - x_j^{(m)}|^p \le \sum_{j=1}^{\infty} |x_j^{(n)} - x_j^{(m)}|^p = ||x^{(n)} - x^{(m)}||_{\ell^p}^p < \varepsilon^p,$$

and we may conclude that each componentwise sequence $(x_j^{(n)})_{n=1}^{\infty}$ is Cauchy in \mathbb{C} . Since \mathbb{C} is complete, all of these converge to some x_j . Thus we can define the sequence $x = (x_j)_{j=1}^{\infty}$.

Now fix some $k \in \mathbb{N}$. We have

$$\sum_{j=1}^{k} |x_j^{(n)} - x_j^{(m)}|^p \le \sum_{j=1}^{\infty} |x_j^{(n)} - x_j^{(m)}|^p = ||x^{(n)} - x^{(m)}||_{\ell^p}^p < \varepsilon^p.$$

Taking $m \to \infty$, we have $\sum_{j=1}^{k} |x_j^{(n)} - x_j|^p < \varepsilon^p$. Taking $k \to \infty$ (note the importance of the order we take these limits!), we have $\sum_{j=1}^{\infty} |x_j^{(n)} - x_j|^p = ||x^{(n)} - x||_{\ell^p}^p < \varepsilon^p$. Minkowski's inequality says that, for all n > N,

$$||x||_{\ell^p} < ||x - x^{(n)}||_{\ell^p} + ||x^{(n)}||_{\ell^p} = ||x^{(n)} - x||_{\ell^p} + ||x^{(n)}||_{\ell^p} < \varepsilon + ||x^{(n)}||_{\ell^p}.$$

Thus we know that $||x||_{\ell^p}$ is bounded and in $\ell^p(\mathbb{N};\mathbb{C})$. Furthermore, $||x^{(n)} - x||_{\ell^p}^p < \varepsilon^p$ implies $\lim_{n\to\infty} x^{(n)} = x$. This shows that $\ell^p(\mathbb{N};\mathbb{C})$ is complete, as desired.

3 Page 3

Problem 2.7. Let $(V, \| \cdot \|)$ be a normed vector space. We say that a series $\sum_{n=1}^{\infty} v_n$ in V converges in V if there exists $w \in V$ such that $\|\sum_{n=1}^{N} v_n - w\| \to 0$ as $N \to \infty$, that is, if the sequence $(s_N)_{N=1}^{\infty}$ of partial sums $s_N = \sum_{n=1}^{N} v_n$ converges in V under the norm $\| \cdot \|$. We say that the series $\sum_{n=1}^{\infty} v_n$ converges absolutely if the series of numbers $\sum_{n=1}^{\infty} \|v_n\|$ converges in \mathbb{R} .

Prove that $(V, \|\cdot\|)$ is a Banach space if and only if every absolutely convergent series in V converges in V.

Proof. (\Rightarrow): Suppose we have a Banach space $(V, \| \cdot \|)$ and an absolutely convergent series $\sum_{n=1}^{\infty} v_n$. Fix any $\varepsilon > 0$. Because $\sum_{n=1}^{\infty} \|v_n\|$ converges, there exists some N such that for all i, j > N, assuming i > j without loss of generality, $\sum_{n=i}^{j} \|v_n\| < \varepsilon$. Thus

$$||s_i - s_j|| = \left\| \sum_{n=i+1}^j v_n \right\| \le \sum_{n=i}^j ||v_n|| < \varepsilon.$$

We conclude that $(s_n)_{n=1}^{\infty}$ is a Cauchy sequence in V. Thus it must converge, as desired.

(\Leftarrow): Suppose that if a sequence $\sum_{n=1}^{\infty} v_n$ converges absolutely, then it converges in V. Let $(s_n)_{n=1}^{\infty}$ be a Cauchy sequence in V. For any $\varepsilon > 0$ and $k \in \mathbb{N}$, there exists some N such that for any $n_k, n_{k+1} > N$, we have $||s_{n_k} - s_{n_{k+1}}|| < \varepsilon/2^k$. Choose the n_k in a proper manner to define $a_k = s_{n_k} - s_{n_{k+1}}$, so as to form a subsequence $(a_{n_k})_{k=1}^{\infty}$. Now we have,

$$\sum_{k=1}^{\infty} ||a_k|| < \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon.$$

which converges absolutely. By assumption then $\sum_{k=1}^{\infty} a_k$ converges. Thus the subsequence $\sum_{i=1}^{k} a_i = s_{n_k}$ converges. We know that if a Cauchy sequence has a subsequential limit, then the entire sequence does too, so $(s_n)_{n=1}^{\infty}$ also converges, as desired.

4 Page 4