GEOG 4/5/7 9073: Environmental Analysis in R

Week 02.01: Data structures and programmatic thinking

Dr. Bitterman

Today's schedule

- Open discussion
- Data structures
- Exercises

Anything to discuss? Questions?

Your homework for today

(setup your computing environment, review chapters 1-4 in *R for Data Science*, come to class with 2 questions about R, geospatial programming in general, or this course)

Find a *different* buddy

- Share:
 - How you found the setup process to go (e.g., did you run into any issues?)
 - What you thought of Chapters 1-4
 - Your questions

Report out (to the whiteboard!!!)

Bringing everyone along together

- One of our challenges in this kind of course
- Spatial analysis is not programming...
- ...and programming is not spatial analysis

Some handy dandy operations on vectors

First, create a vector

```
x \leftarrow seq(1:20) # what does this do? How would you know? # alterative method... seq is an "overloaded" function <- what does this mean? x \leftarrow seq(1, 20, 1)
```

Operations

```
sum(x)
mean(x)
median(x)
sd(x)
length(x)
```

Data types

Table 2.1 Data type, tests and conversion functions

Type	Test	Conversion
character	is.character	as.character
complex	is.complex	as.complex
double	is.double	as.double
expression	is.expression	as.expression
integer	is.integer	as.integer
list	is.list	as.list
logical	is.logical	as.logical
numeric	is.numeric	as.numeric
single	is.single	as.single
raw	is.raw	as.raw

Factors can be a pain

- What's a "factor" according to your book?
- What are some key properties of factors?
 - Ordering
 - Levels

Interrogating types

the typeof() function

```
typeof(8675309)
typeof(integer(8675309))

typeof(TRUE)

typeof("banana")

typeof(rep(1, 10))

typeof(list(1, 3, 4, "orange"))
```

Let's look more closely at data frames and tibbles

From the course GitHub page, get "oh_counties_DP2020.csv" (it's in the data folder)

(https://github.com/pjbitterman/KSU_spatial_data_sci_R)

```
library(tidyverse) #get the helper functions

# read the data
mydf <- read_csv("./data/oh_counties_DP2020.csv)

# look at it
mydf</pre>
```

What do you see?

The value of exploratory data analysis (EDA)

- When you first get new data, it's a good idea to look at it before starting work
- Many ways of doing so... like what?

```
summary(mydf) # what do you get?
# How many observations does your data have?
nrow(mydf)
# and attibutes?
ncol(mydf)
# an easier way to look at attributes
glimpse(mydf)
# access a single attribute
mydf$poptotal # Total population
summary(mydf$poptotal)
hist(mydf$poptotal)
```

Subsetting your data

• Often you need to filter your data such that only those observations meeting certain criteria are retained (or removed)

```
# requires dplyr/tidyverse
dplyr::filter(mydf, poptotal > 50000 & medianage < 40)</pre>
```

Another way to write that function

```
mydf %>% dplyr::filter(., poptotal > 50000 & medianage < 40)
```

What's the %>% and how does it work?

The pipe (%>%)

- from magrittr package
- essentially says "take what's on the left and pass it to the right"
- R assumes you want to pipe to the first argument of the right-hand function, but...
- you can explicitly place the output of the pipe using a . on the right-hand side

```
mydf %>% dplyr::filter(., poptotal > 50000 & medianage < 40)
```

But what's the point? (to the whiteboard!!!)

PLOTTING

Why do we plot our data?

(I know it's a bit of a silly question, just go with it)

Many methods, we'll focus on two (but really just one)

- 1. "base R"
- 2. ggplot

Setup

- Open RStudio, start a new project (or use the one from last class)
- Make sure you have oh_counties_DP2020.csv from last class

Required packages

```
library(tidyverse)
library(ggplot2)
```

read the data, remind yourself what it looks like

```
mydf <- read_csv("./data/oh_counties_DP2020.csv")
glimpse(mydf)</pre>
```

Some simple base R plots

the "plot" function can be used in multiple ways

```
# scatter plot
# should be highly correlated
plot(mydf$poptotal, mydf$Hhtotal)
```

What do you see?

```
# scatter plot #2
plot(mydf$medianage, mydf$Hhtotal)
```

Let's try a histogram

```
# histogram
hist(mydf$Hhtotal)
```

and exert a bit more control

```
# change the number of breaks
hist(mydf$Hhtotal, breaks = 20)
```

ggplot: "the grammar of graphics"

Let's build a plot step-by-step

the setup

```
# the initial call
ggplot(mydf, aes(x = poptotal, y = medianage))
```

What happened?

Let's add a geom

Wait, what's a "geom"???

```
ggplot(mydf, aes(x = poptotal, y = medianage)) +
  geom_point()
```

Note the "+" ...it's a very different notation

and we can modify the points:

```
ggplot(mydf, aes(x = poptotal, y = medianage)) +
  geom_point(colour = "blue")
```

And alter the theme

```
ggplot(mydf, aes(x = poptotal, y = medianage)) +
  geom_point(colour = "blue") +
  theme_minimal()
```

Try a different one! How would you know what options there are for themes?

Add some labels

```
ggplot(mydf, aes(x = poptotal, y = medianage)) +
  geom_point(colour = "blue") +
  theme_minimal() +
  labs(x = "Total Population", y = "Median Age")
```

...and add a title

```
# and give it a title
ggplot(mydf, aes(x = poptotal, y = medianage)) +
  geom_point(colour = "blue") +
  theme_minimal() +
  labs(x = "Total Population", y = "Median Age",
  title = "My First ggplot")
```

fit a line

don't just throw arbitrary models/fits on your data

```
ggplot(mydf, aes(x = poptotal, y = medianage)) +
  geom_point(colour = "blue") +
  geom_smooth(method = "glm", colour = "red") +
  theme_minimal() +
  labs(x = "Total Population", y = "Median Age",
  title = "My First ggplot")
```

Let's try something different

Using categorical data

(first, we have to make some categories) - let's walk through this code

```
mydf2 <- mydf %>% mutate(sizeCategory = ifelse(poptotal > 100000, "big", "small"))
```

check your work:

```
summary(mydf2$sizeCategory) ### What happened?
# turn them into factors to count them
summary(as.factor(mydf2$sizeCategory))
```

A first example

Let's break it down:

what happened?

One more example:

a pipe with a boxplot

```
mydf2 %>% ggplot(., aes(x = sizeCategory, y = medianage)) +
   geom_boxplot(aes(fill = sizeCategory)) +
   theme_minimal() +
   labs(x = "Categorical size",
        y = "Median Age",
        title = "I made a boxplot",
        subtitle = "...it's handy for comparing groups")
```

If there's time, try it yourself:

using ggplot:

- Make a histogram
- Try a barplot...
 - subset of the counties (however you want)
 - o counties on the x-axis, number of vacant units on the y-axis

Review and next class

- Any questions?
- This week's readings/tasks:
 - Chapter 2 in textbook
 - Continue to review Hadley's book/site
 - Practice on your own