King County Housing Sale Price Predictions

The Business Problem

Phil and Nancy are partners own a house in King County and are looking to renovate their home in order to maximize the value of their home. They have some spare money and have come to the AA Consulting Agency to seek advice on what they should renovate in their house in order to maximize the resale value. They are looking to renovate their house with the intention of flipping it to make a profit and move into a bigger house somewhere else in King County. Our analysis is aimed to help them decide which features to renovate and by how much their home value will increase. Our statistical analysis is aimed to predict home price based on certain renovations. We will test which renovations have the biggest impact on price, and create a predictive model which can help them make an informed data-driven decision.

This data was pulled from the King County government website and outlines home prices along with other features of the home in a csv file. We will be importing the file into two dateframes for use in the analysis. The data is generally clean, but contains zip codes from locations outside of King County, so we will be removing those as they are not relevant to the data. The address, lat, and long fields were gathered using a third party geocoding API, which explains why there was some discrepency.

IMPORTS

```
In [1]: import pandas as pd
        pd.option context('display.max rows', None, 'display.max columns', None)
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        from matplotlib import ticker
        import scipy.stats as stats
        import statsmodels.api as sm
        from statsmodels.stats.outliers_influence import variance_inflation_factor as VIF
        import sklearn.linear_model as lm
        from sklearn import metrics
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler,OneHotEncoder,OrdinalEncoder,PolynomialFeatures
        from sklearn.preprocessing import PowerTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.preprocessing import LabelEncoder
        from sklearn.preprocessing import OrdinalEncoder
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn.feature selection import RFE
        from sklearn.decomposition import PCA
        from itertools import chain, combinations
        import warnings
        warnings.filterwarnings(action='ignore')
        sns.set_style('darkgrid')
        %matplotlib inline
```

DATA

```
In [2]: df = pd.read_csv('data/kc_house_data.csv', index_col=0) # (30155,25), 3 duplicated entries
print(f"Duplicates found and removed: * {df.loc[df.duplicated()].shape[0]} *")
    df.drop_duplicates(inplace=True)

print("\nHEAD:")
    display(df.head())

print("\nTAIL:")
    display(df.tail())

print("\nINFO:")
    df.info()
```

Duplicates found and removed: * 3 *

HEAD:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	greenbelt	nuisance	 sewer_system	sqft_above	sqft_basen
id													
7399300360	5/24/2022	675000.0	4	1.0	1180	7140	1.0	NO	NO	NO	 PUBLIC	1180	
8910500230	12/13/2021	920000.0	5	2.5	2770	6703	1.0	NO	NO	YES	 PUBLIC	1570	1
1180000275	9/29/2021	311000.0	6	2.0	2880	6156	1.0	NO	NO	NO	 PUBLIC	1580	1
1604601802	12/14/2021	775000.0	3	3.0	2160	1400	2.0	NO	NO	NO	 PUBLIC	1090	1
8562780790	8/24/2021	592500.0	2	2.0	1120	758	2.0	NO	NO	YES	 PUBLIC	1120	

5 rows × 24 columns

TAIL:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	greenbelt	nuisance	 sewer_system	sqft_above	sqft_base
id													
7834800180	11/30/2021	1555000.0	5	2.0	1910	4000	1.5	NO	NO	NO	 PUBLIC	1600	
194000695	6/16/2021	1313000.0	3	2.0	2020	5800	2.0	NO	NO	NO	 PUBLIC	2020	
7960100080	5/27/2022	800000.0	3	2.0	1620	3600	1.0	NO	NO	YES	 PUBLIC	940	
2781280080	2/24/2022	775000.0	3	2.5	2570	2889	2.0	NO	NO	NO	 PUBLIC	1830	
9557800100	4/29/2022	500000.0	3	1.5	1200	11058	1.0	NO	NO	NO	 PUBLIC	1200	

INFO: <class 'pandas.core.frame.DataFrame'> Int64Index: 30152 entries, 7399300360 to 9557800100 Data columns (total 24 columns):

#	Column	Non-Null Cou	nt Dtype
0		30152 non-nu	ll object
1	price	30152 non-nu	ll float64
2	bedrooms	30152 non-nu	ll int64
3	bathrooms	30152 non-nu	ll float64
4	sqft_living	30152 non-nu	ll int64
5	sqft_lot	30152 non-nu	ll int64
6	floors	30152 non-nu	ll float64
7	waterfront	30152 non-nu	ll object
8	greenbelt	30152 non-nu	ll object
9	nuisance	30152 non-nu	ll object
10	view	30152 non-nu	ll object
11	condition	30152 non-nu	ll object
12	grade	30152 non-nu	ll object
13	heat_source	30120 non-nu	ll object
14	sewer_system	30138 non-nu	ll object
15	sqft_above	30152 non-nu	ll int64
16	sqft_basement	30152 non-nu	ll int64
17	sqft_garage	30152 non-nu	ll int64
18	sqft_patio	30152 non-nu	ll int64
19	<pre>yr_built</pre>	30152 non-nu	ll int64
20	<pre>yr_renovated</pre>	30152 non-nu	ll int64
21	address	30152 non-nu	ll object
22	lat	30152 non-nu	ll float64
23	long	30152 non-nu	ll float64
dtype	es: float64(5),	int64(9), ob	ject(10)
memo	ry usage: 5.8+ N	IB	

EDA

Column Names and Descriptions for King County Data Set

- id Unique identifier for a house
- · date Date house was sold
- price Sale price (prediction target)
- bedrooms Number of bedrooms
- bathrooms Number of bathrooms
- sqft_living Square footage of living space in the home
- sqft_lot Square footage of the lot
- floors Number of floors (levels) in house
- waterfront Whether the house is on a waterfront
 - Includes Duwamish, Elliott Bay, Puget Sound, Lake Union, Ship Canal, Lake Washington, Lake Sammamish, other lake, and river/slough waterfronts
- greenbelt Whether the house is adjacent to a green belt
- nuisance Whether the house has traffic noise or other recorded nuisances
- · view Quality of view from house
 - Includes views of Mt. Rainier, Olympics, Cascades, Territorial, Seattle Skyline, Puget Sound, Lake Washington, Lake Sammamish, small lake / river / creek, and other
- condition How good the overall condition of the house is. Related to maintenance of house.
 - See the <u>King County Assessor Website (https://info.kingcounty.gov/assessor/esales/Glossary.aspx?type=r)</u> for further explanation of each condition code
- grade Overall grade of the house. Related to the construction and design of the house.
 - See the <u>King County Assessor Website (https://info.kingcounty.gov/assessor/esales/Glossary.aspx?type=r)</u> for further explanation of each building grade code
- heat_source Heat source for the house
- sewer_system Sewer system for the house
- sqft above Square footage of house apart from basement
- sqft_basement Square footage of the basement
- sqft_garage Square footage of garage space
- sqft_patio Square footage of outdoor porch or deck space
- yr_built Year when house was built
- yr_renovated Year when house was renovated
- address The street address
- lat Latitude coordinate
- long Longitude coordinate

Target (Price) Analysis

We want to ensure normality in the target data as part of the assumtions for linear regression, so lets look at the log transformation of Price and Price wi
outliers removed.

```
In [3]: # Using Interquartile Range method to determine outliers
        IQR = df['price'].quantile(.75) - df['price'].quantile(.25)
        IQR scaler = 1.5
        price_outlier_u_bound = df['price'].quantile(.75) + IQR_scaler * IQR
        price outlier 1 bound = df['price'].quantile(.25) - IQR scaler * IQR
        # Series with outliers sliced off
        price_no_outliers = df.loc[(df['price'] <= price_outlier_u_bound) & \</pre>
                                    (df['price'] >= price_outlier_l_bound), 'price']
        fig, ax = plt.subplots(3,2, figsize = (10,8))
        # boxplot of target
        sns.boxplot(x=df['price'], ax=ax[0][0])
        ax[0][0].set title('Price Distribution')
        ax[0][0].set_xticklabels([])
        # boxplot of target - target_outliers
        sns.boxplot(x=price_no_outliers, ax=ax[0][1])
        ax[0][1].set_title('Price Dirstribution (no outliers)')
        ax[0][1].set_xticklabels([])
        # histogram of target
        sns.histplot(df['price'], bins=20, kde=True, ax=ax[1][0])
        ax[1][0].set_title('Price')
        ax[1][0].set_ylabel('Frequency')
        ax[1][0].set xlabel('price')
        formatter = ticker.FuncFormatter(lambda x, pos: '%1.0fK' % (x * 1e-3))
        ax[1][0].yaxis.set_major_formatter(formatter)
        formatter = ticker.FuncFormatter(lambda x, pos: '$%1.1fM' % (x * 1e-6))
        ax[1][0].xaxis.set_major_formatter(formatter)
        # histogram of target - target_outliers
        sns.histplot(price_no_outliers, bins=20, kde=True, ax=ax[1][1])
        ax[1][1].set_title('Price (no outliers)')
        ax[1][1].set_ylabel('Frequency')
        ax[1][1].set_xlabel('price')
        formatter = ticker.FuncFormatter(lambda x, pos: $1.0fK' % (x * 1e-3))
        ax[1][1].yaxis.set_major_formatter(formatter)
        formatter = ticker.FuncFormatter(lambda x, pos: '$%1.1fM' % (x * 1e-6))
        ax[1][1].xaxis.set_major_formatter(formatter)
        # histograms of log(target)
        sns.histplot(np.log(df['price']), bins=20, kde=True, ax=ax[2][0])
        ax[2][0].set_title('Log Transformation of Price')
        ax[2][0].set_ylabel('Frequency')
        ax[2][0].set_xlabel('log(price)')
        formatter = ticker.FuncFormatter(lambda x, pos: '%1.0fK' % (x * 1e-3))
        ax[2][0].yaxis.set_major_formatter(formatter)
        # histograms of log(target - target_outliers)
        sns.histplot(np.log(price_no_outliers), bins=20, kde=True, ax=ax[2][1])
        ax[2][1].set_title('Log Transformation of Price (no outliers)')
        ax[2][1].set_ylabel('Frequency')
        ax[2][1].set_xlabel('log(price)')
        formatter = ticker.FuncFormatter(lambda x, pos: '%1.0fK' % (x * 1e-3))
        ax[2][1].yaxis.set_major_formatter(formatter)
        # organize axes
        plt.tight_layout()
        # save fig to png
        plt.savefig('imgs/price_outliers.png')
        print('price outliers count: {}'.format(df.shape[0] - price_no_outliers.shape[0]))
```


price outliers count: 1991

 $Log(Price), Price_no_outliers \ and \ log(Price) \ have the \ most \ normal-like \ distributions.$

Price Normality

Lets look deeper on whether we should log transform price for linear regression

```
In [4]: # Compare normality of target_no_outliers vs log_target_no_outliers
        # Set up plot and properties of two targets
        fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(12,10))
        targets = [np.log(df['price']), price_no_outliers, np.log(price_no_outliers)]
        labels = ['Log Transformed Price', "Price (No Outliers)", "Log Transformed Price (No Outliers)"]
        colors = ["blue", "lightgreen", 'red']
        # Plot histograms
        for index, ax in enumerate([axes[0][0],axes[1][0],axes[2][0]]):
            sns.histplot(targets[index], bins=20, element="step", kde=True, color=colors[index], ax=ax)
            ax.set_xlabel(labels[index])
            ax.set_title(labels[index])
        # Plot Q-Q plots
        for index, ax in enumerate([axes[0][1],axes[1][1],axes[2][1]]):
            sm.graphics.qqplot(targets[index], dist=stats.norm, line='45', fit=True, ax=ax)
            scatter = ax.lines[0]
            line = ax.lines[1]
            scatter.set_markeredgecolor(colors[index])
            scatter.set_markerfacecolor(colors[index])
            line.set_color("black")
            ax.set_title(labels[index])
        fig.tight_layout()
```


From the qq-plots we can rank normality:

- 1. Log transformed price
- 2. Price without outliers
- 3. Log transformed price without outliers

Numeric and Categorical Split

Splitting the dataframe into two for independant EDA

```
In [5]: numeric_df = df.select_dtypes([int, float]).copy()
cat_df = df.select_dtypes(object)
```

Numeric EDA

In [6]: display(numeric_df.head())
display(numeric_df.describe(percentiles=[.05,.25,.5,.75,.95]))

		price	bedrooms	bathrooms sq	ft_living	sqft_lot	floors	sqft_above	sqft_ba	sement	sqft_garag	e sqft_patio	yr_built y	r_renovated	lat
	id														
739930	00360	675000.0	4	1.0	1180	7140	1.0	1180		0		0 40	1969	0 4	7.461975
891050	00230	920000.0	5	2.5	2770	6703	1.0	1570		1570		0 240	1950	0 4	7.711525
118000	00275	311000.0	6	2.0	2880	6156	1.0	1580		1580		0 (1956	0 4	7.502045
160460	1802	775000.0	3	3.0	2160	1400	2.0	1090		1070	20	0 270	2010	0 4	7.566110
856278	30790	592500.0	2	2.0	1120	758	2.0	1120		550	55	0 30	2012	0 4	7.532470
		price	bedrooms	bathrooms	sqf	t_living	sqft	t_lot	floors	sqft_a	bove sqft	_basement	sqft_garag	e sqft_pati	о у
count	3.015	200e+04	30152.000000	30152.000000	30152.	000000	3.015200e	+04 30152	.000000	30152.00	00000 30	152.000000	30152.00000	0 30152.00000	0 30152.0
mean	1.108	029e+06	3.413571	2.334671	2112.	408729	1.672492e	+04 1	.543380	1809.83	9347	476.010812	330.22741	4 217.39685	6 1975.1
std	8.946	277e+05	0.981653	0.889548	974.	052997	6.038545e	+04 0	.567615	878.32	25182	579.635101	285.77042	5 245.30950	3 32.0
min	2.736	000e+04	0.000000	0.000000	3.	000000	4.020000e	+02 1	.000000	2.00	00000	0.000000	0.00000	0.00000	0 1900.0
5%	4.250	000e+05	2.000000	1.000000	940.	000000	1.196000e	+03 1	.000000	830.00	00000	0.000000	0.00000	0.00000	0 1916.0
25%	6.480	000e+05	3.000000	2.000000	1420.	000000	4.850000e	+03 1	.000000	1180.00	00000	0.000000	0.00000	0 40.00000	0 1953.0
50%	8.600	000e+05	3.000000	2.500000	1920.	000000	7.480000e	+03 1	.500000	1560.00	00000	0.000000	400.00000	0 150.00000	0 1977.0
75%	1.300	000e+06	4.000000	3.000000	2619.	250000	1.057925e	+04 2	.000000	2270.00	00000	940.000000	510.00000	320.00000	0 2003.0
95%	2.500	000e+06	5.000000	4.000000	3890.	000000	4.573800e	+04 2	.000000	3460.00	00000 1	500.000000	780.00000	0 680.00000	0 2021.0
max	3.075	000e+07	13.000000	10.500000	15360.	000000	3.253932e	+06 4	.000000	12660.00	00000 8	020.000000	3580.00000	0 4370.00000	0 2022.0

We can tell immediately that most columns have outliers

Dropping Lat/Long

In [7]: # We remove latitude and longitute columns, as they are implicitly determined by the zipcode categorical variable
numeric_df.drop(columns=['lat','long'], inplace=True)

drop suspicious row with 4 bathrooms and bedrooms but no living space
display(numeric_df.loc[[1549500215], :])
numeric_df.drop(index=1549500215, inplace=True)

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	sqft_above	sqft_basement	sqft_garage	sqft_patio	yr_built	yr_renovated
id												
1549500215	1803000.0	4	4.0	3	326701	2.0	2	1	1	0	2021	0

Heatmap

Now we check the pearson correlation between all the continuous numeric columns


```
numeric abs(correlation) order:
sqft_living
                 0.610040
sqft above
                 0.540142
                 0.481183
bathrooms
sqft_patio
                 0.313659
bedrooms
                 0.290017
                 0.265311
sqft garage
sqft basement
                 0.245532
floors
                 0.179608
yr_built
                 0.095408
                 0.085952
saft lot
yr renovated
                 0.085088
Name: price, dtype: float64
```

From the heatmap, we can see there is a high correlation between the square footage measurements. Which will most likely violate the assumption of independance between the features for linear regression

Home Square feet

From our understanding of the data, sqft_living encompasses information from sqft_basement, sqft_patio, sqft_above and sqft_garage. We could keep only sqft_living, but instead we will make a new column: sqft_home, which is a linear combination of these correlated columns, weighted by their correlations with price. This way we can avoid multicolinearity while preserving most of the information between these columns.

We will recalculate the weights in this process after train-test split to avoid Data Leakage

PairPlots

Now lets plot all numeric features against each other to vizualize their correlations, paying specific attention to price. With seaborn's pairplot we can also check normality of the feature distributions and homoscedasticity.

Removing outliers for skewed Numeric features

'sqft_home', 'sqft_lot', 'bedrooms', 'bathrooms' and 'floors' have concerning outliers, and their plots against price seems heteroscedatic, showing variability in the predictive capability of these features at large values.

```
In [11]: # remove outliers from features
         outlier_features = ['sqft_home', 'sqft_lot', 'bedrooms', 'bathrooms', 'floors']
         outlier_u_bound = {}
         outlier_l_bound = {}
         # df to modify and compare with numeric_df
         outlier_df = numeric_df.copy()
         # calculate outlier bounds with Inter Quartile Range Method on X_train
         for col in outlier_features:
             IQR = numeric_df[col].quantile(.75) - numeric_df[col].quantile(.25)
             IQR scaler = 1.5
             outlier_u_bound[col] = numeric_df[col].quantile(.75) + IQR_scaler * IQR
             outlier_l_bound[col] = numeric_df[col].quantile(.25) - IQR_scaler * IQR
         # slice out outliers from data
         for col in outlier_features:
            outlier_df = outlier_df.loc[(outlier_df[col] <= outlier_u_bound[col]) &\</pre>
                                         (outlier_df[col] >= outlier_l_bound[col])]
         # setup axes and seaborn plot background
         fig, ax = plt.subplots(nrows=len(outlier_features), ncols=2, figsize=(10,13))
         sns.set_style('darkgrid')
         # title for the entire figure
         fig.suptitle('Removing Predictor Outliers')
         # data and label iterables for graphing in a loop
         data = [numeric_df, outlier_df]
         titles = [['Home Area Distribution', 'Home Area Distribution (no outliers)'],
                 ['Lot Area Distribution', 'Lot Area Distribution (no outliers)'],
                 \hbox{['Bedroom Count Distribution', 'Bedroom Count Distribution (no outliers)'],}\\
                 ['Bathroom Count Distribution', 'Bathroom Count Distribution (no outliers)'],
                 ['Floor Count Distribution','Floor Count Distribution (no outliers)']]
         xlabels = ['Living Area (ft^2)','Living Area (ft^2)','Bedroom Count','Bathroom Count','Floor Count']
         # Side by side comparisons of the feature distributions before and after removing outliers
         for row in range(len(outlier_features)):
             for col in range(2):
                 sns.histplot(x=outlier_features[row], data=data[col], kde=True, bins='auto', ax=ax[row][col])
                 ax[row][col].set_xlabel(xlabels[row])
                 ax[row][col].set_ylabel('frequency')
                 ax[row][col].set_title(titles[row][col])
         plt.tight_layout()
         plt.savefig('imgs/feature_outliers_all.png')
         plt.show()
```


Categorical EDA

									ıd()	cat_df.hea	In [13]:
address	sewer_system	heat_source	grade	condition	view	nuisance	greenbelt	waterfront	date		Out[13]:
										id	
2102 Southeast 21st Court, Renton, Washington	PUBLIC	Gas	7 Average	Good	NONE	NO	NO	NO	5/24/2022	7399300360	
11231 Greenwood Avenue North, Seattle, Washing	PUBLIC	Oil	7 Average	Average	AVERAGE	YES	NO	NO	12/13/2021	8910500230	
8504 South 113th Street, Seattle, Washington 9	PUBLIC	Gas	7 Average	Average	AVERAGE	NO	NO	NO	9/29/2021	1180000275	
4079 Letitia Avenue South, Seattle, Washington	PUBLIC	Gas	9 Better	Average	AVERAGE	NO	NO	NO	12/14/2021	1604601802	
2193 Northwest Talus Drive, Issaquah, Washingt	PUBLIC	Electricity	7 Average	Average	NONE	YES	NO	NO	8/24/2021	8562780790	

Average

Washingt...

Ordinal Encoding

We need the labels to be numbers so we will encode in their proper orders

```
In [14]:
         oe_cols = ['view', 'condition', 'grade', 'waterfront', 'greenbelt', 'nuisance']
        ['1 Cabin',
                     '2 Substandard',
                    '3 Poor',
                    '4 Low',
                    '6 Low Average',
                    '7 Average',
                    '8 Good',
                    '9 Better',
                    '10 Very Good',
                    '11 Excellent',
                    '12 Luxury',
'13 Mansion'],
                    ['NO','YES'],
['NO','YES'],
['NO','YES']]
         for col, order in zip(oe_cols,oe_orders):
            cat_df[col] = OrdinalEncoder([order]).fit_transform(cat_df[[col]])
         cat_df.head()
Out[14]:
```

:		date	waterfront	greenbelt	nuisance	view	condition	grade	heat_source	sewer_system	address
	id										
	7399300360	5/24/2022	0.0	0.0	0.0	0.0	3.0	6.0	Gas	PUBLIC	2102 Southeast 21st Court, Renton, Washington
	8910500230	12/13/2021	0.0	0.0	1.0	2.0	2.0	6.0	Oil	PUBLIC	11231 Greenwood Avenue North, Seattle, Washing
	1180000275	9/29/2021	0.0	0.0	0.0	2.0	2.0	6.0	Gas	PUBLIC	8504 South 113th Street, Seattle, Washington 9
	1604601802	12/14/2021	0.0	0.0	0.0	2.0	2.0	8.0	Gas	PUBLIC	4079 Letitia Avenue South, Seattle, Washington
	8562780790	8/24/2021	0.0	0.0	1.0	0.0	2.0	6.0	Electricity	PUBLIC	2193 Northwest Talus Drive, Issaquah, Washingt

Zipcode Encoding

The zipcode in the address will be a useful feature, so we will one hot encode them We keep only the data in King County

```
In [15]: # King County Zipcodes
                        # https://www.ciclt.net/sn/clt/capitolimpact/gw_ziplist.aspx?FIPS=53033
                      ci_zips = ['98002 (Auburn)', '98092 (Auburn)', '98224 (Baring)', '98004 (Bellevue)', '98005 (Bellevue)', '98006 (Bellevue)', '
                       # strip zipcode from address and populate new columns 'zipcode', if zipcode not in King county, set to nan
                       cat_df['zipcode'] = [address.split(',')[-2][-5:] for address in cat_df['address']]
cat_df['zipcode'] = cat_df['zipcode'].apply(lambda x: x if x in ci_zips else np.nan)
                       cat_df.dropna(inplace=True)
                        # columns to one-hot encode
                       ohe_cols_preprocessed = ['heat_source','sewer_system','zipcode']
                        \# Set up encoder, dropping the first column after processing for: Degrees of freedom = 1
                       ohe = OneHotEncoder(sparse = False, drop='first')
                       ohe.fit(cat_df[ohe_cols_preprocessed])
                       ohe_cols = ohe.get_feature_names()
                        # Excecute transformation
                       cat_df[ohe_cols] = ohe.transform(cat_df[ohe_cols_preprocessed])
                        # Drop old columns
                       cat_df.drop(columns=ohe_cols_preprocessed + ['address', 'date'], inplace=True)
                       cat_df.head()
Out[15]:
                                                waterfront greenbelt nuisance view condition grade x0_Electricity/Solar x0_Gas x0_Gas/Solar x0_Oil ... x2_98155 x2_98166 x2_98168 x2_98
                                         id
                                                                               0.0
                                                                                                             0.0
                                                                                                                                                                                                  1.0
                                                                                                                                                                                                                                          0.0 ...
                                                                                                                                                                                                                                                                                      0.0
                                                                                                                                                                                                                                                                                                          0.0
                         7399300360
                                                            0.0
                                                                                                  0.0
                                                                                                                                 3.0
                                                                                                                                              6.0
                                                                                                                                                                                   0.0
                                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                          1.0 ...
                                                                               0.0
                         8910500230
                                                            0.0
                                                                                                  1.0
                                                                                                             20
                                                                                                                                 2.0
                                                                                                                                              6.0
                                                                                                                                                                                   0.0
                                                                                                                                                                                                  0.0
                                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                                                                      0.0
                                                                                                                                                                                                                                                                                                         0.0
                                                                                                                                                                                                                                          0.0 ...
                         1180000275
                                                            0.0
                                                                               0.0
                                                                                                  0.0
                                                                                                            2.0
                                                                                                                                 2.0
                                                                                                                                              6.0
                                                                                                                                                                                   0.0
                                                                                                                                                                                                  1.0
                                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                                                                      0.0
                                                                                                                                                                                                                                                                                                         0.0
                         1604601802
                                                            0.0
                                                                               0.0
                                                                                                  0.0 2.0
                                                                                                                                 2.0
                                                                                                                                              8.0
                                                                                                                                                                                   0.0
                                                                                                                                                                                                  1.0
                                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                          0.0 ...
                                                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                                                                      0.0
                                                                                                                                                                                                                                                                                                         0.0
                         8562780790
                                                            0.0
                                                                               0.0
                                                                                                  1.0 0.0
                                                                                                                                                                                   0.0
                                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                          0.0 ...
                                                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                                                                      0.0
                                                                                                                                                                                                                                                                                                          0.0
                                                                                                                                 2.0
                                                                                                                                             6.0
                                                                                                                                                                                                  0.0
                       5 rows × 90 columns
In [16]: # sanity check for and drop nulls
                       display(cat_df.isna().sum().sum())
                       cat_df.dropna(inplace=True)
                       0
```

Helper Functions

Defining useful scoring and printing functions

```
In [17]: def get_train_score(xtrain, ytrain):
             create sklearn linear model and return the R2 score on training data
             params:
                xtrain -> array of shape (sample_size, num_features)
                ytrain -> array of shape (sample_size, num_targets)
             returns:
             float R2 score of training linear regression
             lr = lm.LinearRegression()
             lr.fit(xtrain, ytrain)
             return lr.score(xtrain, ytrain)
         def get_adjusted_train_score(xtrain, ytrain):
             create sklearn linear model and return the adjusted R2 score on training data
                xtrain -> array of shape (sample_size, num_features)
                ytrain -> array of shape (sample size, num targets)
             returns:
             float Adjusted R2 score of training linear regression
             R2 = get_train_score(xtrain,ytrain)
             # number of observations in train data
             n = xtrain.shape[0]
             # number of features in train data (including constant)
             k = xtrain.shape[1] + 1
             return 1 - ( (1-R2) * ( (n-1)/(n-k-1) ) )
         def get_test_score(xtrain, ytrain, xtest, ytest):
             create sklearn linear model and return the R2 score on test data
             params:
                 xtrain -> array of shape (sample_size, num_features)
                ytrain -> array of shape (sample_size, num_targets)
                xtest -> array of shape (sample_size, num_features)
                ytest -> array of shape (sample_size, num_targets)
             returns:
             float R2 score of test data from linear regression
             lr = lm.LinearRegression()
             lr.fit(xtrain, ytrain)
             return lr.score(xtest, ytest)
         def get_adjusted_test_score(xtrain, ytrain, xtest, ytest):
             create sklearn linear model and return the adjustec R2 score on test data
             params:
                xtrain -> array of shape (sample_size, num_features)
                ytrain -> array of shape (sample_size, num_targets)
                xtest -> array of shape (sample_size, num_features)
                ytest -> array of shape (sample_size, num_targets)
             returns:
             float adjusted R2 score of test data from linear regression
            R2 = get test score(xtrain,ytrain,xtest,ytest)
             # number of observations in test data
             n = xtest.shape[0]
             # number of features in test data (including constant)
             k = xtest.shape[1] + 1
            return 1 - ( (1-R2) * ( (n-1)/(n-k-1) ) )
         def print_train_scores(xtrain, ytrain):
             \# Print train data R2 and ajusted R2 in sequence
             print(f"
                             Train R2: {get_train_score(xtrain, ytrain)}")
             print(f"Train Adjusted R2: {get_train_score(xtrain, ytrain)}")
         def print test scores(xtrain, ytrain, xtest, ytest):
             # Print test data R2 and ajusted R2 in sequence
             print(f"
                              Test R2: {get_test_score(xtrain, ytrain, xtest, ytest)}")
             print(f" Test Adjusted R2: {get_test_score(xtrain, ytrain, xtest, ytest)}")
         def print errors(pred, ytest):
             # print Mean Squared, Root Mean Squared and Absolute Error
                                 MSE:",metrics.mean_squared_error(ytest, pred))
             print("
             print("
                                 RMSE:",metrics.mean_squared_error(ytest, pred,squared=False) )
            print("
                                 MAE: ", metrics.mean absolute error(ytest, pred))
         def print_stats(res):
             # print condition number
             print(f"Condition Number: {res.condition number}")
```

Combine and Train Test Split

```
In [18]: # joining numeric and categorical features by index
              clean_df = numeric_df.join(cat_df, how='inner')
              clean_outlier_df = outlier_df.join(cat_df, how='inner')
              # numeric Train test split (.75 train, .25 test)
              X_train, X_test, y_train, y_test = \
                    train_test_split(clean_df.drop(columns='price'),
                                               clean_df[['price']],
                                               test size=.25.
                                               random_state=42)
              print(f"Train/Test X shapes: {X_train.shape}, {X_test.shape}")
              print(f"Train/Test y shapes: {y_train.shape}, {y_test.shape}\n\nColumns:")
              print(f"clean_df\n{np.array(clean_df.columns.to_list())}")
              Train/Test X shapes: (21860, 102), (7287, 102)
              Train/Test y shapes: (21860, 1), (7287, 1)
              Columns:
              clean df
              ['price' 'bedrooms' 'bathrooms' 'sqft_living' 'sqft_lot' 'floors'
'sqft_above' 'sqft_basement' 'sqft_garage' 'sqft_patio' 'yr_built'
'yr_renovated' 'sqft_home' 'waterfront' 'greenbelt' 'nuisance' 'view'
'condition' 'grade' 'x0_Electricity/Solar' 'x0_Gas' 'x0_Gas/Solar'
                'x0_oil' 'x0_oil/Solar' 'x0_other' 'x1_PRIVATE RESTRICTED' 'x1_PUBLIC' 'x1_PUBLIC RESTRICTED' 'x2_98002' 'x2_98003' 'x2_98004' 'x2_98005' 'x2_98006' 'x2_98007' 'x2_98008' 'x2_98010' 'x2_98011' 'x2_98014' 'x2_98019' 'x2_98022' 'x2_98023' 'x2_98024' 'x2_98027' 'x2_98028' 'x2_98029' 'x2_98030' 'x2_98031' 'x2_98032' 'x2_98033' 'x2_98034'
                'x2_98038' 'x2_98039' 'x2_98040' 'x2_98042' 'x2_98045' 'x2_98051' 'x2_98052' 'x2_98053' 'x2_98055' 'x2_98056'
                'x2 98057' 'x2 98058' 'x2 98059' 'x2 98065' 'x2 98070' 'x2 98072'
                "x2_98074' 'x2_98075' 'x2_98077' 'x2_98092' 'x2_98102' 'x2_98103' 'x2_98105' 'x2_98106' 'x2_98107' 'x2_98108' 'x2_98109' 'x2_98102'
                'x2_98115' 'x2_98116' 'x2_98117' 'x2_98118' 'x2_98119' 'x2_98122'
                'x2_98125' 'x2_98126' 'x2_98133' 'x2_98136' 'x2_98144' 'x2_98146' 'x2_98148' 'x2_98155' 'x2_98166' 'x2_98168' 'x2_98177' 'x2_98178'
                'x2_98188' 'x2_98198' 'x2_98199' 'x2_98224' 'x2_98288']
```

Intercept only model

For Initial comparison, a model that predicts the average of y_train

Regressive Model Iterations

Baseline Model

For a baseline model, we will score the numeric feature with highest correlation with price on unseen data X_test

```
In [20]: X = X_train[['sqft_home']].copy()
         xtest = X_test[['sqft_home']].copy()
         y, ytest = y_train.copy(), y_test.copy()
         lr = lm.LinearRegression()
         lr.fit(X, y_train)
         print("Train R2:", get_train_score(X, y))
         print("Train Adjusted R2:", get_adjusted_train_score(X, y))
         print_test_scores(X, y, xtest[['sqft_home']], ytest)
         print_errors(lr.predict(xtest), ytest)
         # print model statistics
         results = sm.OLS(y_train,sm.add_constant(X)).fit()
         print_stats(results)
         Train R2: 0.38912017997934834
         Train Adjusted R2: 0.3890642821141317
                  Test R2: 0.3518565444743025
          Test Adjusted R2: 0.3518565444743025
                      MSE: 483574265611.467
                      RMSE: 695395.0428436105
                      MAE: 403638.722185664
         Condition Number: 6883.092953416579
```

Regression Model 1

Use all the numeric and categorical features

```
In [21]: X, xtest = X_train.copy(), X_test.copy()
         y, ytest = y_train.copy(), y_test.copy()
         # sklearn
         lr = lm.LinearRegression()
         lr.fit(X, y)
         print_train_scores(X, y)
         print_test_scores(X, y, xtest, ytest)
         print_errors(lr.predict(xtest),ytest)
         # statstics data
         results = sm.OLS(y_train,sm.add_constant(X)).fit()
         print stats(results)
                  Train R2: 0.6603394245872392
         Train Adjusted R2: 0.6603394245872392
                   Test R2: 0.6473374287937927
          Test Adjusted R2: 0.6473374287937927
                      MSE: 263118515547.41473
                      RMSE: 512950.79252050555
```

There was an increase in R2 from the basemodel, although the extreme multicolinearity suggests we should scale the features

Regression Model 2

We will use all the numeric and categorical features and Standard Scale them

MAE: 262639.1301189698

Condition Number: 1.8514570307466122e+17

```
In [22]: scale_cols = clean_df.drop(columns='price').columns.to_list()
         #print scale cols
        np.array(scale cols)
              Out[22]: array(['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors',
              dtype='<U21')
In [23]: X, xtest = X_train.copy(), X_test.copy()
         y, ytest = y_train.copy(), y_test.copy()
         # scale the features to have a mean of 0 and standard deviation of 1
         scaler = StandardScaler().fit(X)
         X[scale_cols], xtest[scale_cols] = scaler.transform(X), scaler.transform(xtest)
         # sklearn
         lr = lm.LinearRegression()
        lr.fit(X, y)
        print_train_scores(X, y)
         print_test_scores(X, y, xtest, ytest)
        print_errors(lr.predict(xtest),ytest)
         # statstics data
        results = sm.OLS(y train, sm.add constant(X)).fit()
        print_stats(results)
                 Train R2: 0.6603395424433508
         Train Adjusted R2: 0.6603395424433508
                  Test R2: 0.6473240905020876
         Test Adjusted R2: 0.6473240905020876
                     MSE: 263128467132.30054
                     RMSE: 512960.49275972566
                     MAE: 262655.7777069954
         Condition Number: 2295809634200880.0
```

Scaling the features had no effect on the R2, but reduced some multicolinearity.

Regression Model 3

In our EDA we saw that log('price') had the most normal distribution, so we will implement that

```
In [24]: X, xtest = X_train.copy(), X_test.copy()
         y, ytest = np.log(y_train.copy()), np.log(y_test.copy())
         \# scale the features to have a mean of 0 and standard deviation of 1
         scaler = StandardScaler().fit(X)
         X[scale_cols], xtest[scale_cols] = scaler.transform(X), scaler.transform(xtest)
         # sklearn
         lr = lm.LinearRegression()
         lr.fit(X, y)
         print train_scores(X, y)
         print_test_scores(X, y, xtest, ytest)
         # inverse log transform to see Errors in $ Dollar units
         print_errors(np.exp(lr.predict(xtest)),np.exp(ytest))
         # statstics data
         results = sm.OLS(y_train,sm.add_constant(X)).fit()
         print_stats(results)
                  Train R2: 0.7101373438015719
         Train Adjusted R2: 0.7101373438015719
                   Test R2: 0.6939157650664806
          Test Adjusted R2: 0.6939157650664806
                      MSE: 437244083108.2394
                      RMSE: 661244.3444810997
                      MAE: 220193.2860215568
         Condition Number: 2295809634200880.0
```

We can see that following the normality assumptions of linear regression has an effect on its predictive power.

We should take that one step further and apply the outlier removal we observed in EDA.

Now, to deal with the high multicolinearity, we should remove the features whos information is encapsulated by our 'sqft_home' feature.

Regression Model 4

Removing dependant features and feature outliers

```
In [25]: clean_outlier_df.drop(columns=['sqft_living','sqft_above','sqft_basement','sqft_garage','sqft_patio'], inplace=True)
         scale_cols = clean_outlier_df.drop(columns='price').columns.to_list()
In [26]: # Train test splitting from dataframe with feature's outliers removed
         X_train, X_test, y_train, y_test = train_test_split(clean_outlier_df.drop(columns=['price']),
                                                             clean_outlier_df[['price']],
                                                             test_size=.25,
                                                             random_state=42)
         X, xtest = X_train.copy(), X_test.copy()
         y, ytest = np.log(y_train.copy()), np.log(y_test.copy())
         # scale the features to have a mean of 0 and standard deviation of 1
         scaler = StandardScaler().fit(X)
         X[scale_cols], xtest[scale_cols] = scaler.transform(X), scaler.transform(xtest)
         # sklearn
         lr = lm.LinearRegression()
         lr.fit(X, y)
         print_train_scores(X, y)
         print_test_scores(X, y, xtest, ytest)
         print_errors(np.exp(lr.predict(xtest)),np.exp(ytest))
         # statstics data
         results = sm.OLS(y train, sm.add constant(X)).fit()
         print stats(results)
                  Train R2: 0.6972597421880891
         Train Adjusted R2: 0.6972597421880891
                   Test R2: 0.6832713611282084
          Test Adjusted R2: 0.6832713611282084
                      MSE: 90784167606.39491
                      RMSE: 301304.1114993204
                      MAE: 177201.50710497578
         Condition Number: 3.7225381428801965e+17
```

Unfortunately, that didn't seem to help our R2

Regression Model 5

Using no outlier price instead of log transformed price

```
In [27]: # remove target outliers from clean_outlier_df
         # Using Interquartile Range method to determine outliers
         IQR = df['price'].quantile(.75) - df['price'].quantile(.25)
         IOR scaler = 1.5
         price_outlier_u_bound = df['price'].quantile(.75) + IQR_scaler * IQR
         price_outlier_l_bound = df['price'].quantile(.25) - IQR_scaler * IQR
         # Series with outliers sliced off
         clean_outlier_df = clean_outlier_df.loc[(clean_outlier_df['price'] <= price_outlier_u_bound) & \</pre>
                                                 (clean_outlier_df['price'] >= price_outlier_l_bound)]
         # Train test splitting from dataframe with feature's outliers removed
         X_train, X_test, y_train, y_test = train_test_split(clean_outlier_df.drop(columns='price'),
                                                             clean_outlier_df[['price']],
                                                             test size=.25,
                                                             random_state=42)
         X, xtest = X_train.copy(), X_test.copy()
         y, ytest = y_train.copy(), y_test.copy()
         \# scale the features to have a mean of 0 and standard deviation of 1
         scaler = StandardScaler().fit(X)
         X[scale_cols], xtest[scale_cols] = scaler.transform(X), scaler.transform(xtest)
         # sklearn
         lr = lm.LinearRegression()
         lr.fit(X, y)
         print_train_scores(X, y)
         print_test_scores(X, y, xtest, ytest)
         print_errors(lr.predict(xtest),ytest)
         # statstics data
         results = sm.OLS(y_train,sm.add_constant(X)).fit()
         print_stats(results)
                  Train R2: 0.721615832570706
         Train Adjusted R2: 0.721615832570706
                   Test R2: 0.723048626563473
          Test Adjusted R2: 0.723048626563473
                      MSE: 49631570962.6705
                      RMSE: 222781.44214155385
                      MAE: 159140.2116252196
```

Checking VIF

Condition Number: 4481280365648220.5

Our predictor has improved although the condition number still indicates high multicolinearity,

```
In [28]: vif_data = pd.DataFrame()
    vif_data["feature"] = X.columns.to_list()
    # calculating VIF for each feature
    vif_data["VIF"] = [VIF(X.values, i) for i in range(X.shape[1])]
    # get regression coefficients from linear model
    vif_data['coef_'] = pd.Series(lr.coef_.flatten())
    # get pvals from statsmodel results, exclude const
    vif_data['pval'] = results.pvalues.to_list()[1:]
    # sort the dataframe to see the features with highest variance inflation
    vif_data.sort_values(by='VIF', ascending=False, inplace=True)

# show all 20 rows
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
    display(vif_data.head(20))
```

	feature	VIF	coef_	pval
6	sqft_home	4.119887	163621.819372	0.000000e+00
4	yr_built	3.457281	-18551.862233	4.720611e-09
12	grade	2.801636	73160.971207	1.139674e-142
1	bathrooms	2.768567	8126.657308	4.122695e-03
67	x2_98103	2.670590	92746.774388	3.637941e-236
76	x2_98117	2.575255	91389.232782	1.023359e-237
74	x2_98115	2.552052	94630.681144	1.811446e-256
47	x2_98042	2.490493	2179.261355	4.212566e-01
44	x2_98038	2.314458	17352.518688	2.144754e-11
2	sqft_lot	2.306730	20597.560222	1.761685e-15
82	x2_98133	2.266018	47944.036739	2.412492e-77
3	floors	2.230678	-6131.580574	1.591266e-02
43	x2_98034	2.198330	85282.125969	1.999227e-242
34	x2_98023	2.183650	-7825.321512	1.882353e-03
77	x2_98118	2.173039	45000.996994	3.289373e-71
69	x2_98106	2.089770	33177.766358	3.462284e-41
57	x2_98058	2.075752	14228.739842	6.674028e-09
79	x2_98122	1.966740	63387.105341	3.059709e-152
70	x2_98107	1.956321	73379.024063	4.332107e-203
80	x2_98125	1.948400	49676.777702	8.295845e-96

The VIF's for all features are good, < 5.

Final Regression Model Showing all steps

 $Increase\ Dimentionality\ by\ including\ polynomial\ features\ for\ all\ columns\ except\ one_hot\ encoded$

```
In [29]: df = pd.read_csv('data/kc_house_data.csv', index_col=0) # (30155,25), 3 duplicated entries
         # display(df.loc[df.duplicated(keep=False)])
         df.drop duplicates(inplace=True)
         \# drop suspicious row with 4 bathrooms and bedrooms but no living space
         df.drop(index=1549500215, inplace=True)
         # numeric Train test split (.75 train, .25 test)
         X_train, X_test, y_train, y_test = train_test_split(df.drop(columns='price'), df[['price']], test_size=.25, random_state
         # Aggregate feature
         sql_corr = X_train['sqft_living'].corr(y_train['price'])
         sqa_corr = X_train['sqft_above'].corr(y_train['price'])
         sqb_corr = X_train['sqft_basement'].corr(y_train['price'])
         sqg corr = X train['sqft garage'].corr(y train['price'])
         sqp_corr = X_train['sqft_patio'].corr(y_train['price'])
         X_train["sqft_home"] = (sql_corr*X_train['sqft_living'] + \
                                 sqa_corr*X_train['sqft_above'] + \
                                  sqb_corr*X_train['sqft_basement'] + \
                                 sqg_corr*X_train['sqft_garage'] + \
                                 sqp_corr*X_train['sqft_patio'])
         X_test["sqft_home"] = (sql_corr*X_test['sqft_living'] + \
                                 sqa_corr*X_test['sqft_above'] + \
                                 sqb_corr*X_test['sqft_basement'] + \
                                  sqg_corr*X_test['sqft_garage'] + \
                                 sqp_corr*X_test['sqft_patio'])
         # Using Interquartile Range method to calculate and remove price outliers
         IQR = y_train['price'].quantile(.75) - y_train['price'].quantile(.25)
         IQR_scaler = 6
         price_outlier_u_bound = y_train['price'].quantile(.75) + IQR_scaler * IQR
         price_outlier_l_bound = y_train['price'].quantile(.25) - IQR_scaler * IQR
         print(price_outlier_u_bound)
         y_train = y_train.loc[(y_train['price'] > price_outlier_l_bound) & (y_train['price'] < price_outlier_u_bound)]</pre>
         y_test = y_test.loc[(y_test['price'] > price_outlier_l_bound) & (y_test['price'] < price_outlier_u_bound)]</pre>
         # y_train = y_train.loc[(y_train['price'] > 78000) & (y_train['price'] < 7000000)]
         # y_test = y_test.loc[(y_test['price'] > 78000) & (y_test['price'] < 7000000)]</pre>
         # slice Feature data to match target data indicies
         X_train = X_train.loc[y_train.index]
         X_test = X_test.loc[y_test.index]
         # remove outliers from features
         outlier features = ['sqft home', 'bedrooms', 'bathrooms', 'sqft lot', 'floors']
         outlier_u_bound = {}
         outlier_l_bound = {}
         # calculate outlier bounds with Inter Quartile Range Method on X train
         for col in outlier features:
             IQR = X_train[col].quantile(.75) - X_train[col].quantile(.25)
             IQR scaler = 1.5
             outlier_u_bound[col] = X_train[col].quantile(.75) + IQR_scaler * IQR
             outlier_l_bound[col] = X_train[col].quantile(.25) - IQR_scaler * IQR
         # slice out outliers from data
         for col in outlier_features:
             X_train = X_train.loc[(X_train[col] <= outlier_u_bound[col]) &\</pre>
                                  (X_train[col] >= outlier_l_bound[col])]
             X_test = X_test.loc[(X_test[col] <= outlier_u_bound[col]) &\</pre>
                                 (X test[col] >= outlier l bound[col])]
         # Ordinal Encoding
         oe_cols = ['view', 'condition', 'grade']
         oe_orders = [['NONE', 'FAIR', 'AVERAGE', 'GOOD', 'EXCELLENT'],
                     ['Poor', 'Fair', 'Average', 'Good', 'Very Good'],
                     ['1 Cabin',
                     '2 Substandard',
                     '3 Poor',
                     '4 Low',
                     '5 Fair',
                     '6 Low Average',
                     '7 Average',
                     '8 Good',
                     '9 Better',
                     '10 Very Good',
                     '11 Excellent',
                     '12 Luxury',
                     '13 Mansion']]
         for col, order in zip(oe_cols,oe_orders):
             oe = OrdinalEncoder([order]).fit(X_train[[col]])
             X_train[col] = oe.transform(X_train[[col]])
             X_test[col] = oe.transform(X_test[[col]])
```

```
# label Encoding
le_cols = ['waterfront','greenbelt', 'nuisance']
for col in le_cols:
    le = LabelEncoder().fit(X_train[[col]])
    X_train[col] = le.transform(X_train[[col]])
    X_test[col] = le.transform(X_test[[col]])
# setting up zipcode column
# King County Zipcodes
# https://www.ciclt.net/sn/clt/capitolimpact/gw_ziplist.aspx?FIPS=53033
ci_zips = ['98002 (Auburn)', '98092 (Auburn)', '98224 (Baring)', '98004 (Bellevue)', '98005 (Bellevue)', '98006 (Bellevue)'
ci_zips = set([x.split()[0] for x in ci_zips])
X_train['zipcode'] = [address.split(',')[-2][-5:] for address in X_train['address']]
X_train['zipcode'] = X_train['zipcode'].apply(lambda x: x if x in ci_zips else np.nan)
X_test['zipcode'] = [address.split(',')[-2][-5:] for address in X_test['address']]
X_test['zipcode'] = X_test['zipcode'].apply(lambda x: x if x in ci_zips else np.nan)
# drop rows outside King county
old_idxs = set(X_train.index)
X_train.dropna(inplace=True)
old_idxs = set(X_test.index)
X_test.dropna(inplace=True)
ohe_cols = ['zipcode']
ohe = OneHotEncoder(sparse = False, drop='first')
train_ohe_df = ohe.fit_transform(X_train[ohe_cols])
train_ohe_df = pd.DataFrame(train_ohe_df, columns = ohe.get_feature_names(), index = X_train.index)
train_ohe_df
test_ohe_df = ohe.transform(X_test[ohe_cols])
test_ohe_df = pd.DataFrame(test_ohe_df, columns = ohe.get_feature_names(), index = X_test.index)
# Regular Scaling
numeric_cols = ['bedrooms',
                'bathrooms'
                'sqft lot',
                 'floors'
                 'yr_built',
                'sqft_home',
                'yr_renovated'] + oe_cols
# Unstandardized polynomial features **for LATER coeficient analysis**
poly = PolynomialFeatures(2, interaction_only=True, include_bias=False)
poly_ = pd.DataFrame(data=poly.fit_transform(X_train[numeric_cols]),
                    index=X train.index,
                    columns=poly.get_feature_names(numeric_cols))
p_mean = poly_.mean()
poly_means = {col:p_mean[col] for col in p_mean.index}
p_std = poly_.std()
poly_std = {col:p_std[col] for col in p_std.index}
# standardize continuous features
scaler = StandardScaler()
X_train[numeric_cols] = scaler.fit_transform(X_train[numeric_cols])
X_test[numeric_cols] = scaler.transform(X_test[numeric_cols])
# POLYNOIAL FEATURES
# squared polynomial features
poly = PolynomialFeatures(2, interaction_only=False, include_bias=False)
train_poly = pd.DataFrame(data=poly.fit_transform(X_train[numeric_cols]),
                        index=X train.index,
                        columns=poly.get_feature_names(numeric_cols))
test_poly = pd.DataFrame(data=poly.transform(X_test[numeric_cols]),
                        index=X_test.index,
                        columns=poly.get_feature_names(numeric_cols))
X_train = X_train[le_cols]
X_train = pd.concat([X_train, train_poly], 1)
X_train = pd.concat([X_train, train_ohe_df], 1)
X_test = X_test[le_cols]
X_test = pd.concat([X_test, test_poly], 1)
X_test = pd.concat([X_test, test_ohe_df], 1)
# slice target data to match feature data indicies
y_train = y_train.loc[X_train.index]
```

```
y_test = y_test.loc[X_test.index]
            # sklearn
           lr = lm.LinearRegression()
           lr.fit(X_train,y_train)
print("Train R2:", get_train_score(X_train, y_train))
           print("Train Adjusted R2:", get_adjusted_train_score(X_train, y_train))
print_test_scores(X_train, y_train, X_test, y_test)
            # # statsmodel
           model = sm.OLS(y_train,sm.add_constant(X_train))
           results = model.fit()
           print("MSE:",metrics.mean_squared_error(y_test, lr.predict(X_test)))
           print("RMSE:",metrics.mean_squared_error(y_test, lr.predict(X_test),squared=False) )
print("MAE:",metrics.mean_absolute_error(y_test, lr.predict(X_test)))
           results.summary()
           5224000.0
           Train R2: 0.7605936383412051
           Train Adjusted R2: 0.758698426332945
                       Test R2: 0.7815262346516275
            Test Adjusted R2: 0.7815262346516275
            MSE: 70101052890.4598
           RMSE: 264766.0342461997
           MAE: 174192.4507748189
Out[29]: OLS Regression Results
                Dep. Variable:
                                      price
                                                 R-squared:
                                                                  0.761
                                       OLS
                                             Adj. R-squared:
                                                                  0.759
                      Model:
```

Method:

Time:

Least Squares Date: Sat, 18 Feb 2023 Prob (F-statistic):

F-statistic:

07:55:44 **Log-Likelihood:** -2.5417e+05

404.2

0.00

Visualizing the Predicted vs. Actual Prices

```
In [30]: y_hat = lr.predict(X_test)
          y_df = pd.DataFrame({'hat':y_hat.flatten()}, index=range(y_hat.shape[0]))
          y_df['actual'] = y_test['price'].to_list()
          y_df['resid'] = y_df['hat'] - y_df['actual']
          fig, ax = plt.subplots(figsize=(8,6))
          # sns.jointplot(x= 'actual',y= 'resid', data=y_df).set()
sns.scatterplot(x='hat',y='actual', data=y_df, hue=-np.abs(y_df['resid']))
          ax.legend([],[], frameon=False)
          plt.xlabel('Predicted Price', fontdict={'fontsize':14,
                                                       'fontweight': 'bold'})
          plt.ylabel('Actual Price', fontdict={'fontsize':14,
                                                     fontweight':'bold'})
          plt.title('Predicted price vs. Actual Price', fontdict={'fontsize':20,
                                                                         'fontweight':'bold'})
          formatter = ticker.FuncFormatter(lambda x, pos: '$%1.1fM' % (x * 1e-6))
          ax.yaxis.set_major_formatter(formatter)
         ax.xaxis.set_major_formatter(formatter)
plt.plot([0, y_df['hat'].max()], [0, y_df['actual'].max()], linewidth=2, color='black', dashes=[2,2])
          plt.tight_layout()
          # plt.savefig('imgs/final_resid.png')
          plt.show()
```


Final Recommendations

With a Decent predictor for price, we can interpret the coeficients of the model to approximate the increase in Housing sale price for each unit increase of a feature

To do so we inverse standard scale transform the coeficients.

We will be disconsidering zipcode coeficients as one cannot renovate a zipcode.

```
In [31]: # features excluding zipcodes
          feat_names = X.columns.to_list()[:68]
         with pd.option_context('display.max_rows', None, 'display.max_columns', None):
              coefs = pd.DataFrame(columns=['feature', 'abs_coef_'])
              # take feature coeficients from linear model
              coefs['coef_'] = lr.coef_.flatten()[:68]
coefs['feature'] = feat_names
              # inverse Standard SCale the coeficients
              price_increments = []
              for i, (col, coef) in enumerate(zip(feat_names,coefs['coef_'])):
                  if col in p_mean.index.to_list():
                     price_increments.append((coef - poly_means[col])/poly_std[col])
                  else:
                     price_increments.append(coef)
              coefs['price_increments'] = price_increments
              # bring in pvalue per coeficient to analyze significance
              coefs['pval'] = results.pvalues.to_list()[1:69]
              # create abs(coeficient) column for sorting dataframe
              coefs['abs_coef_'] = np.abs(coefs['coef_'])
coefs = coefs.sort_values(by='abs_coef_', ascending=False)
              exclude_zips = ['x2' not in feat for feat in coefs['feature']]
              display(coefs.loc[exclude_zips])
```

	feature	abs_coef_	coef_	price_increments	pval
9	nuisance	1.893438e+06	-1.893438e+06	-1.893438e+06	1.146552e-13
0	bedrooms	4.161658e+05	4.161658e+05	5.043986e+05	3.330104e-44
8	greenbelt	1.588871e+05	1.588871e+05	1.588871e+05	3.628352e-195
12	grade	8.026283e+04	8.026283e+04	8.132733e+04	2.006261e-94
5	yr_renovated	6.819778e+04	6.819778e+04	1.691012e+02	4.818921e-55
2	sqft_lot	5.331506e+04	-5.331506e+04	-1.682950e+01	1.280502e-19
11	condition	5.134239e+04	5.134239e+04	7.296362e+04	2.055618e-45
1	bathrooms	4.999748e+04	4.999748e+04	6.443909e+04	2.903502e-04
7	waterfront	4.889266e+04	4.889266e+04	4.889266e+04	7.704450e-20
4	yr_built	2.436282e+04	2.436282e+04	6.952279e+02	1.623766e-10
10	view	1.498497e+04	-1.498497e+04	-1.967145e+04	2.392390e-02
18	x0_Other	1.125845e+04	-1.125845e+04	-1.125845e+04	7.064906e-02
14	x0_Gas	1.027657e+04	1.027657e+04	1.027657e+04	2.705521e-02
13	x0_Electricity/Solar	6.763253e+03	-6.763253e+03	-6.763253e+03	1.829647e-02
17	x0_Oil/Solar	6.487854e+03	6.487854e+03	6.487854e+03	9.783527e-02
20	x1_PUBLIC	4.445026e+03	4.445026e+03	4.445026e+03	1.193616e-01
15	x0_Gas/Solar	4.249414e+03	4.249414e+03	4.249414e+03	2.270411e-01
3	floors	4.119129e+03	4.119129e+03	7.517482e+03	1.869028e-01
16	x0_Oil	1.931161e+03	1.931161e+03	1.931161e+03	6.347407e-01
21	x1_PUBLIC RESTRICTED	1.472936e+03	-1.472936e+03	-1.472936e+03	6.387155e-01
6	sqft_home	9.859510e+02	-9.859510e+02	-3.756440e+00	7.983247e-01
19	x1_PRIVATE RESTRICTED	3.080863e+02	-3.080863e+02	-3.080863e+02	9.139830e-01

Vizualizing Home Sale Price increment per relevant features

```
In [32]: # Set the figure size
          fig, ax = plt.subplots(figsize=(10, 8))
           # bar
          data = coefs.loc[(coefs['feature'] == 'waterfront') | \
                               (coefs['feature'] == 'grade') | \
                              (coefs['feature'] == 'condition') | \
(coefs['feature'] == 'bathrooms') | \
                              (coefs[ feature ] == 'x0_Gas') | \
(coefs[ 'feature'] == 'floors') | \
(coefs[ 'feature'] == 'yr_built')]
           sns.barplot(
               x="price_increments",
               y="feature",
               data=data,
               color='#69b3a2',
               ax = ax
          formatter = ticker.FuncFormatter(lambda x, pos: '$%1.0f' % (x))
          ax.xaxis.set_major_formatter(formatter)
          ax.set_xlabel('Price')
           ax.set_ylabel('Feature')
           ax.set_title("Homesale Price Increment per unit increase in features")
          plt.tight_layout()
          plt.savefig('imgs/PriceIncrements.png')
          plt.show()
```

