Sturm Liouville Problems

Consider
$$L(y) = Ly = -Py'' + Qy + Ry$$

Suppose y satisfies:
 $(*)$ $\{ Gy(a) + Gy'(a) = 0 \}$
 $\{ G_1y(b) + G_2y'(b) = 0 \}$

ODEs

Def. Ly is self-adjoint

if P'=-Q since then,

Ly=(-Py')'+Ry, and

(Ly,y2)2=(y,Ly2)2

if y2 satisfy (*).

Linear Algebra

Def. L(v) = Av, A n*n

L is self-adjoint if

A = A⁷ (i.e. A is

symmetric), since then,

(L(v), w) end = (v, L(w)) end

(Av)⁷w = v⁷A⁷w

= v⁷Aw

= v⁷(Aw)

Eigenvalue Problem

Ly =
$$\lambda_3(x)y$$

 λ : eigenvalue
 $y = y(x)$: eigenfunc., $y \neq 0$
Prop. L self - adjoint
Ly = $\lambda_i S(x)y_i$, y_i with (*)
 $\lambda_1 \neq \lambda_2$, then
 $(y_1, y_2)_3 = \int_a^b y_1 y_2 S = 0$

L(v) =
$$Av = \lambda V$$

for some $v \neq 0$
 λ : eigenvalue
 v : eigenvectors
Prop. A symmetric
 $Avi = \lambda i vi$ with $\lambda_1 \neq \lambda_2$
 $\Rightarrow v_1 \perp v_2$
i.e. $(v_1, v_2) = 0$

check:

$$(\lambda_1 - \lambda_2) (V_1, V_2)$$

= $(\lambda_1 V_1, V_2) - (V_1, \lambda_2 V_2)$
= $(\lambda_1 V_1, V_2) - (V_1, \lambda_1 V_2)$
= $(\lambda_1 V_1, V_2) - (V_1, \lambda_1 V_2)$
= $(\lambda_1 V_1, V_2) - (V_1, \lambda_1 V_2)$

Thm. Let Ly = -(Py')' + Ry. Suppose PEC'[a, b], P>0 R, 3 E C(a, b], 320 Then Ly = AS(X)y, where y satisfies (*), has infinitely many eigenvalues λk , keN, with $\lambda k \rightarrow \infty$ as $k \rightarrow \infty$ There is precisely one eigenfunction Φ_{κ} st LAR = NKS(X) OR and | | OK | | 12 = 1. The eigenfunctions Φ_k are ON and complete, i.e. every fec'[a,b] with (*) can be written as f= = (f, dk) dk

Thm. (Symmetric matrices are diagonalizable)

There are ON eigenvectors $v_1, ... v_n$ of $A = A^T$ st any $v \in \mathbb{R}^n$ can be written as $v = \sum_{i=1}^n (v_i, v_i) v_i$ and hence $Av = \sum_{i=1}^n (v_i, v_i) Av_i$ $= \sum_{i=1}^n (v_i, v_i) Av_i$

Ex. Ly = -y", take S = 1i.e. $y'' + \lambda y = 0$ y(0) = y(x) = 0We know $\lambda_k = k^2$, k = 1, 2, ...

$$\phi_{k}(x) = \frac{\sin(kx)}{\sqrt{\pi/2}} \quad \text{ON eigenfunction on } [0, \pi]$$
and $f \in C^{1}[0, \pi]$, $f(0) = f(\pi) = 0$.

Then $f(x) = \frac{5}{k\pi} b_{k} \sin(kx)$ Fourier sine series
$$= \frac{5}{k\pi} \left(f, \frac{\sin(kx)}{\sqrt{\pi/2}} \right) = \frac{5}{k\pi} \left(f, \frac{\sin(kx)}{\sqrt{\pi/2}} \right)$$

$$Ly = -((1-x^2)y^1)^1$$
 for $x \in [-1, 1]$

Fact:
$$\lambda_k = k(k+1)$$
, $P_k(x) = \frac{1}{2^k k!} \frac{d^k}{d^k x} (x^k-1)^k$

$$P_{\nu}(x)=1$$
, $P_{\nu}(x)=x$, $P_{\nu}(x)=\frac{1}{2}(3x^2-1)$, ...

The Legendre polynomial/eqn. arise in solution of $\Delta\omega=0$ in 3-D when using separation of variables in spherical coordinates.

Ex. (periodic boundary conditions)

$$y''(x) + \lambda y(x) = 0$$

(*)
$$y(-\pi) = y(\pi)$$
, $y(-\pi) = y(\pi)$

if
$$\lambda < 0$$
: $y(x) = 0$ (check!)

if
$$\lambda=0$$
: $y(x)=ax+b$

$$\longrightarrow y(x)=const=\frac{1}{2}a.$$

if
$$\omega^2 = \lambda > 0$$
: $y(x) = a\cos(\omega x) + b\sin(\omega x)$

$$a\cos(\omega\pi)$$
 - $b\sin(\omega\pi) = y(-\pi) = y(\pi) = a\cos(\omega\pi) + b\sin(\omega\pi)$
 $a\omega\cos(\omega\pi) + b\omega\sin(\omega\pi) = y'(-\pi) = y'(\pi) = -a\omega\cos(\omega\pi) + b\omega\sin(\omega\pi)$

get: $-2b\sin(\omega\pi) = 0$ or $2a\sin(\omega\pi) = 0$ $a, b \neq 0 \Rightarrow \omega\pi = k\pi$, keN $\Rightarrow y_k(x) = a_k\cos(kx) + b_k\sin(kx)$ with $\lambda_k = k^2$