

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering
Department of Electric Drives and Traction

Name of the report

Technical report

TABLE OF CONTENTS

1	Introd	n		
2	Rovnic	Rovnice asynchronního motoru (ASM)		
	Conclu	ision	3	
	Refere	nces	4	
Appe	ndix A	List of symbols and abbreviations	4	
A.1	List of a	abbreviations	4	
Α 2	List of s	symbols	5	

LIST OF FIGURES

LIST OF TABLES

1 Introduction

This is the introduction.

2 Rovnice asynchronního motoru

Rovnice pro ASM je možné odvodit při uvažování následujících zjednodušení:

- tloušťka vzduchové mezery je po celém obvodu mezi rotorem a statorem konstatní,
- statorová a rotorová vinutí jsou rozložena podél obvodu vzduchové mezery sinusově, vinutí jednotlivých fází jsou proti vůči sobě natočeny o 120°,
- ztráty v železe jsou zanedbány,
- není uvažováno sycení magnetického obvodu,
- aktivní železo stroje má nekonečnou relativní permeabilitu,
- statorová a rotorová vinutí jsou souměrná, tj. činné odpory, indukčnosti a vzájemné indukčnosti jednotlivých fází jsou identické.

Při uvažování uvedených zjednodušení je poté možné psát rovnice

$$\underline{u_1^k} = R_1 \underline{i_1^k} + \frac{\mathrm{d}\psi_1^k}{\mathrm{d}t} + \mathrm{j}\omega_k \underline{\psi_1^k},\tag{2-1}$$

$$\underline{u_2^k} = R_2 \underline{i_2^k} + \frac{\mathrm{d}\psi_2^k}{\mathrm{d}t} + \mathrm{j}(\omega_k - \omega)\underline{\psi_2^k},\tag{2-2}$$

$$\psi_1^k = L_1 i_1^k + L_m i_2^k, \tag{2-3}$$

$$\psi_2^k = L_2 i_2^k + L_{\rm m} i_1^k. \tag{2-4}$$

Kde k v horním indexu značí obecný souřadnicový systém, $\underline{u_1^k}$ (V) značí prostorový vektor napětí statorového vinutí, $\underline{u_2^k}$ (V) prostorový vektor napětí rotorového vinutí, $\underline{\psi_1^k}$ (Wb) prostorový vektor spřaženého magentického toku statorového vinutí, $\underline{\psi_2^k}$ (Wb) prostorový vektor spřaženého magnetického toku rotorového vinutí, R_1 () rezistivita statorového vinutí, R_2 (Ω) rezistivita rotorového vinutí, $\underline{i_1^k}$ (A) prostorový vektor proudu statorového vinutí, $\underline{i_2^k}$ (A) prostorový vektor proudu rotorového vinutí, ω (s⁻¹) elektrická úhlová rychlost rotoru, ω_s (s⁻¹) skluzová rychlost, ω_k (s⁻¹) obecná úhlová rychlost, L_1 (H) indukčnost statorového vinutí, L_2 (H) indukčnost rotorového vinutí.

Conclusion

And this is the conclusion of my report. $P_{\rm n}$.

Appendix A: List of symbols and abbreviations

List of abbreviations
ASM Asynchronní Motor

A.2 List of symbols P_n (W) nominal power