SPECIFICATION

Character Type Dot Matrix LCD Module

JM204A

Kentec GmbH - Elektronische Baulemente

GENERAL SPECIFICATION

Interface with 4-bit or 8-bit MPU(directly connected to M6800 serial MPU)

Display Specification

Display Character: 20character X 4line Character Font: 5 X 7dots+cursor

Display type: STN,TN

Display color-Display background color: ①STN: Yellow-Green,Blue-Gray, Black-White

②TN: Position, Negative

Polarizer mode: Positive, Negative; Reflective, Transflective, Transmissive

Viewing angle: 6:00 OR 12:00

Display duty: 1/16 Driving bias: 1/5

Character Generator ROM (CGROM):10080 bits(208 characterX5X8 dots)&(32 character

X5X11 dots)

Character Generator RAM (CGRAM): 64 X 8 bits (8 characters X5 X 8 dots)

Display Data RAM (DDRAM): 80X8 bits (80 characters max)

Mechanical characteristics (Unit:mm)

Extenal dimension: 98.0X60.0X10.0 (15.0 for LED Backlight)

View area: 76.0X25.2 Character font: 5X7dots+cursor

Character size: 3.01X4.83 Dots size:0.56X0.56

Character pitch: 3.61X5.43

POWER: +5V power

Optical Characteristics

(1) Definition of viewing Angle

(2) Definition of Contrast Ratio:

Contrast Ratio = Reflectance value of non-selected state brightness

Reflectance value of selected state brightness

Test condition: standard A light source

(3) Response Time

Response time is measured as the shortest period of time possible between the change in state of an LCD segment as demonstrated below

External Dimension

• Absolute Maximum Ratings

Item	Cymbol	Condition	Standar	d Value	Unit
Item	Symbol	Condition	Min	Max	Oiiit
Supply Voltage for logic	Vdd		-0.3	7.0	V
Supply Voltage for LCD	V5	Ta=25℃	Vdd-13.5	0	V
Input Voltage	Vi	10 23 0	-0.3	Vdd+0.3	V
Operating Temperature	Тор	-	0	50	${\mathcal C}$
Storage Temperature	Tstg	-	-20	70	${\mathbb C}$

■ Electrical Characteristics (Ta=25 °C, Vdd= 5.0V)

Item	Symbol	Condition	Sta	ndard Va	lue	Unit
nem	Symbol	Collation	Min	Type	Max	Oilit
Supply Voltage for logic	Vdd-GND	-	4.5	5.0	5.5	V
Supply Current for logic	Idd		ı	1.5	3.0	mA
Driving Current for LCD	Iee		ı	0.4	1.0	mA
Driving Voltage for LCD	Vdd-V5	Vdd=5V	3.8	4.5	4.9	V
Input Voltage H level	Vih		2.2	-	Vdd	V
Input Voltage L level	Vil		-0.3	-	0.6	V
Output Voltage "H"	Voh	Ioh=-0.205mA	2.4		-	V
Output Voltage "L"	Vol	Iol=1.2mA	-	-	0.4	V

Absolute Maximum Ratings For LED Backlight

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	VLED	If=200mA	-	4.1	-	V
LED Forward Consumption Current	If	Vf=4.1V	-	200	-	mA
LED Allowable Dissipation	Pd	-	-	850	-	mW

Block Diagram

Bus Timing

Write Mode Timing Diagram

Read Mode Timing Diagram

● AC Characteristics (Vdd=4.5V~5.5V,Ta=-30~+85 °C)

Mode	Characteristic	Symbol	Min.	Тур.	Max.	Unit
	E Cycle Time	t_{C}	500	-	-	
	E Rise/Fall Time	t_{R,t_F}	-	-	20	
	E Pulse Width (High,Low)	t_{W}	230	-	-	
Write Mode	R/W and RS Setup Time	${ m t_{SU1}}$	40	-	-	ns
	R/W and RS Hold Time	t _{H1}	10	-	-	
	Data Setup Time	$t_{ m SU2}$	80	-	-	
	Data Hold Time	t _{H2}	10	-	-	-
	E Cycle Time	t_{C}	500	-	-	
	E Rise/Fall Time	t_{R,t_F}	-	-	20	-
	E Pulse Width (High,Low)	t_{W}	230	-	-	
Read Mode	R/W and RS Setup Time	$t_{ m SU}$	40	-	-	ns
	R/W and RS Hold Time	t_{H}	10	-	-	
	Data Output Delay Time	t_{D}	-	-	120	
	Data Hold Time	t _{DH}	5	-	-	

• IC Specifications

See The Reference of Samsung Data Book-----KS0070B

• Pin assignment

Pin NO.	Symbol	Fu	unction	Remark
1	GND		0V	
2	Vdd	Power supply	+5V	
3	V5		For LCD	Variable
4	RS	Register Select(H	H=Data,L=Instruction)	
5	R/W	Read/Write L=MPU	J to LCM,H=LCM to MPU	
6	Е	F	Enable	
7	DB0	Data		
8	DB1	Data		
9	DB2	Data	ı bus bit 2	
10	DB3	Data	a bus bit 3	
11	DB4	Data	ı bus bit 4	
12	DB5	Data	ı bus bit 5	
13	DB6	Data	ı bus bit 6	
14	DB7	Data	ı bus bit 7	
15	A	Anode		
16	K	Cathode	of LED Unit	

Reflector of Screen and DDRAM Address

Display position	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10
DDRAM address	00	01	02	03	04	05	06	07	08	09
Display position	1-11	1-12	1-13	1-14	1-15	1-16	1-17	1-18	1-19	1-20
DDRAM address	0A	0B	0C	0D	0E	0F	10	11	12	13
Display position	3-1	3-2	3-3	3-4	3-5	3-6	3-7	3-8	3-9	3-10
DDRAM address	14	15	16	17	18	19	1A	1B	1C	1D
Display position	3-11	3-12	3-13	3-14	3-15	3-16	3-17	3-18	3-19	3-20
DDRAM address	1E	1F	20	21	22	23	24	25	26	27
Display position	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10
DDRAM address	40	41	42	43	44	45	46	47	48	49
Display position	2-11	2-12	2-13	2-14	2-15	2-16	2-17	2-18	2-19	2-20
DDRAM address	4A	4B	4C	4D	4E	4F	50	51	52	53
Display position	4-1	4-2	4-3	4-4	4-5	4-6	4-7	4-8	4-9	4-10
DDRAM address	54	55	56	57	58	59	5A	5B	5C	5D
Display position	4-11	4-12	4-13	4-14	4-15	4-16	4-17	4-18	4-19	4-20
DDRAM address	5E	5F	60	61	62	63	64	65	66	67

[&]quot;1-1" means first character of line 1 on screen

• Instruction Table

T4				Inst	ructi	ion C	Code				Description	Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time(fosc= 270kHz)
											Write"20H" to DDRAM	Í
Clear Display	0	0	0	0	0	0	0	0	0	1	set DDRAM address to	1.53ms
											"00H" from AC	
											Set DDRAM address to "00H" from AC and	
											return cursor to its	
Return Home	0	0	0	0	0	0	0	0	1	_	original position if	1.53ms
											shifted. The contents of	20002
											DDRAM are not	
											changed	
Entry Mode											Assign cursor moving	
Set	0	0	0	0	0	0	0	1	I/D	SH	direction and enable the	39 µ s
											shift of entire display	
Display	0	0	0		0	0	1	Б		ъ	Set display(D)	20
ON/OFF Control	0	0	0	0	0	0	1	D	C	В	cursor(C) and blinking of cursor(B) on/off	39 μ s
Control											Set cursor moving and	
											display shift control	
Cursor or	0	0	0	0	0	1	S/C	R/L	_	_	bit, and the direction,	39 μ s
Display Shift											without changing	0.5 P. 0
											DDRAM data	
											Set interface data	
											length(DL:8bit/4bit),	
Function Set	0	0	0	0	1	DL	N	F	_	_	number of display line	39 μ s
											(N:2line/1line)	·
											and, display font type F:5X11dots / 5X8dots	
Set CGRAM											Set CGRAM address in	
Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	address counter	39 µ s
Set DDRAM	0	_	1	100	A 0.5	A C 4	1.02	1.00	A C 1	4.00	Sat DDP AM addragg in	20
Address	0	0	1	AC6	AC5	AC4	AC3	AC2	ACI	AC0	address counter	39 μ s
											Whether during internal	
Read Busy											operation or not can be	
Flag and	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	, .	0μs
Address											The contents of address	
											counter can also be read Write data into internal	
Write Data to	1	0	D7	D6	D5	D4	D3	D2	D1	D0	RAM	43 μ s
RAM	1		וע		טע	דע			ועו	יטען	(DDRAM/CGRAM)	вηсτ
D 11											Read data from internal	
Read data	1	1	D7	D6	D5	D4	D3	D2	D1	D0	RAM	43 μ s
from RAM											(DDRAM/CGRAM)	·

• Instruction Description

A. Clear Display

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Clear all the display data by writing "20H"(space code) to all DDRAM address, and set DDRAM address to "00H" into AC(address counter).

Return cursor to the original status, namely, bring the cursor to the left edge on the first line of the display.

Make the entry mode increment(I/D="High").

B. Return Home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	1

Set DDRAM address to "00H" into the address counter.

Return cursor to its original site and return display to its original status, if shifted.

Contents of DDRAM does not change.

C. Entry Mode Set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	SH

Set the moving direction of cursor and display.

I/D:Increment /decrement of DDRAM address(cursor or blink)

I/D=High,cursor/blink moves to right and DDRAM address is increased by 1.

I/D=low,cursor/blink moves to left and DDRAM address is decreased by 1.

*CGRAM operates the same way as DDRAM, when reading from or writing to CGRAM.

SH:Shift of entire display

When DDRAM read (CGRAM read/write) operation or SH=Low,shifting of entire display is not performed.if SH=High, and DDRAM write operation,shift of entire display is performed according to I/D value(I/D=High,shift left,I/D=Low, shift right).

D. Display ON/OFF Control

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	С	В

D:Display ON/OFF control bit

When D=High, entire display is turned on.

When D=Low, display is turned off, but display data remains in DDRAM.

C:Cursor ON/OFF control bit

When C=High, cursor is turned on.

When C=Low, cursor is disappeared in current display ,but I/D register preserves its data.

B:Cursor Blink ON/OFF control bit

When B=High, cursor blink is on, which performs alternately between all the "High" data and display characters at the cursor position.

When B=Low ,blink is off.

E. Cursor or Display Shift

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	-	-

Shifting of right/left cursor position or display without writing or reading of display data. This instruction is used to correct or search display data.

During 2-line mode display, cursor moves to the 2^{nd} line after the 40^{th} digit of the 1^{st} line.

Note that display shift is performed simultaneously in all the lines.

When displayed data is shifted repeatedly, each line is shifted individually.

When display shift is performed, the contents of the address counter are not changed.

S/C	R/L	Operation
0	0	Shift cursor to the left, AC is decreased by1
0	1	Shift cursor to the right, AC is increased by1
1	0	Shift all the display to the left, cursor moves according to the display
1	1	Shift all the display to the right, cursor moves according to the display

F. Function set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	F	-	-

DL:Interface data length control bit

When DL=High, it means 8-bit bus mode with MPU.

When DL=Low, it means 4-bit bus mode with MPU.

When 4-bit bus mode, it needs to transfer 4-bit data twice.

N:Display line number control bit

When N=Low, 1-line display mode is set.

When N=High, 2-line display mode is set.

F:Display font type control bit

When F=Low, 5x8 dots format display mode is set.

When F=High, 5x11 dots format display mode.

G. Set CGRAM Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address to AC.

This instruction makes CGRAM data available from MPU.

H. Set DDRAM Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Set DDRAM address to AC.

This instruction makes DDRAM data available from MPU.

When 1-line display mode(N=Low), DDRAM address is from "00H" to "4FH".

In 2-line display mode(N=High),DDRAM address in the 1st line is from "00H" to "27H",and DDRAM address in the 2nd line is from "40H" to "67H".

I. Read Busy Flag & Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

This instruction shows whether IC is in internal operation or not.

If BF is "High",internal operation is in progress and should wait until BF is to be Low,which by then the next instruction can be performed. In this instruction you can also read the value of the address counter.

J. Write data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write binary 8-bit data to DDRAM/CGRAM.

The selection of RAM from DDRAM, and CGRAM, is set by the previous address set instruction (DDRAM address set, CGRAM address set).

RAM set instruction can also determine the AC direction to RAM.

After write operation, the address is automatically increased /decreased by 1,according the entry mode.

K. Read data from RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM.

The selection of RAM is set by the previous address set instruction. If the address set instruction of RAM is not performed before this instruction, the data that has been read first is invalid, as the direction of AC is not yet determined. If RAM data is read several times without RAM address instructions set before read operation, the correct RAM data can be obtained from the second. But the first data would be incorrect, as there is no time margin to transfer RAM data.

In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction, it also transfers RAM data to output data register.

After read operation, address counter is automatically increased/decreased by 1 according to the entry mode.

After CGRAM read operation, display shift may not be executed correctly.

Note:In case of RAM write operation,AC is increased/decreased by 1 as in read operation.

At this time,AC indicates the next address position, but only the previous data can be read by the read instruction.

Relationship between Character Code and CGRAM

		Cha	rac	ter c	ode	;		С	GR	AM	[Ad	dre	SS			CG	RA	ΜI	Data			Pattern
D	7 D6	D5	D4	D3	D2	D1	D0	A5	A4	A3	A2	A1	A0	P	7 P	6 P5	P4	P3	P2 I	P1 F	0	number
0	0	0	0	X	0	0	0	0	0	0	0	0	0	X	X	X	0	1	1	1	0	pattern 1
											0	0	1	X	X	X	1	0	0	0	1	
											0	1	0	X	X	X	1	0	0	0	1	
											0	1	1	X	X	X	1	1	1	1	1	
											1	0	0	X	X	X	1	0	0	0	1	
											1	0	1	X	X	X	1	0	0	0	1	
				1					1		1	1	0	X	X	X	1	0	0	0	1	
											1	1	1	X	X	X	0	0	0	0	0	
0	0	0	0	X	1	1	1	0	0	0	0	0	0	х	X	X	1	0	0	0	1	pattern8
											0	0	1	X	X	X	1	0	0	0	1	P
											0	1	0	X	X	X	1	0	0	0	1	
											0	1	1	X	X	X	1	1	1	1	1	
											1	0	0	X	X	X	1	0	0	0	1	
											1	0	1	X	X	X	1	0	0	0	1	
											1	1	0	X	X	X	1	0	0	0	1	
											1	1	1	X	X	X	0	0	0	0	0	

Display Data RAM(DDRAM)

DDRAM stores display data of maximum 80x8 bits(80 characters). DDRAM address is set in the address counter(AC) as a hexadecimal number

MSB						LSB
AC6	AC5	AC4	AC3	AC2	AC1	AC0

• Initializing Flowchart(Condition:fosc=270KHZ)

Application Example

Application Circuit

Application Flowchart

Program Example

ORG 0000H

AJMP MAIN8

MAIN8: MOV P1,#00H

CLR P3.0

CLR P3.1 CLR P3.2

LCALL INST0

;IC Initializing, Set interface data length (8bit), numbers of

display line (1line)and ,display font type(5X8dots)

LCALL OPRN

;Set display ON

LCALL INST1

;Set numbers of display line (2lines)

LCALL CGROM

;Write data to CGROM

MAIN: MOV 30H,#0AH

MOV 31H,#0AH

LCALL MAIN1 ;C

;Call main program

LJMP MAIN

INST0: MOV R1,#03H

; IC Initialed subprogram

ABC: CLR P3.0

CLR P3.1 SETB P3.2

MOV A,#30H

MOV P1,A CLR P3.2

LCALL T2

DJNZ R1,ABC

RET

OPRN: CLR P3.0

; Display ON subprogram

CLR P3.1

MOV A,#0CH MOV P1,A

LCALL WRITE

RET

INST1: CLR P3.0

;Set numbers of display line (2lines) subprogram

CLR P3.1

MOV A,#38H MOV P1,A

LCALL WRITE

RET

CGROM:CLR P3.0

; Write data to CGROM subprogram

CLR P3.1

MOV A,#40H

MOV P1,A

LCALL WRITE

MOV R1,#20H

SETB P3.0

CLR P3.1

MOV DPTR,#TAB2

X1: CLR A

MOVC A,@A+DPTR

MOV P1,A

LCALL WRITE

INC DPTR

DJNZ R1,X1

RET

MAIN1: MOV DPTR,#TAB1

;Display TAB1 on screen

MOV R1,30H

MOV R2,31H

LCALL LINE1

LCALL LINE2

LCALL T3

MOV DPTR,#TAB7

;Display TAB7 on screen

MOV R1,30H

MOV R2,31H

LCALL LINE1

LCALL LINE2

LCALL T3

MOV DPTR,#TAB8

;Display TAB8 on screen

MOV R1,30H

MOV R2,31H

LCALL LINE1

LCALL LINE2

LCALL T3

MOV DPTR,#TAB9

;Display TAB9 on screen

MOV R1,30H

MOV R2,31H

LCALL LINE1

LCALL LINE2

LCALL T3

MOV DPTR,#TAB10

MOV R1,30H

;Display TAB10 on screen

MOV R2,31H LCALL LINE1 LCALL LINE2 LCALL T3 MOV DPTR,#TAB11 ;Display TAB11 on screen MOV R1,30H **MOV R2,31H** LCALL LINE1 LCALL LINE2 LCALL T3 **RET** LINE1: CLR P3.0 ;Write data to line 1 **CLR P3.1** MOV A,#80H MOV P1,A LCALL WRITE ;Set DDRAM address SETB P3.0 **CLR P3.1** MOV R0,#04H N1: L1: CLR A MOVC A,@A+DPTR MOV P1,A LCALL WRITE ;Write data to DDRAM INC DPTR DJNZ R0,L1 DJNZ R1,N1 **RET** LINE2: CLR P3.0 ;Write data on line 2 **CLR P3.1** MOV A,#0C0H MOV P1,A LCALL WRITE ;Set DDRAM address **CLR P3.1 SETB P3.0** MOV R0,#04H N2: L2: CLR A MOVC A,@A+DPTR MOV P1,A

LCALL WRITE

INC DPTR

;Write data to DDRAM

DJNZ R0,L2 DJNZ R2,N2

RET

WRITE: SETB P3.2 ;Write subprogram

MOV R7,#01H

AB: MOV R6,#0FFH AC: DJNZ R6,AC

DJNZ R7,AB

CLR P3.2

RET

T1: MOV R7,#40H ;Delay subprogram 1

AD: MOV R6,#0FFH

AE: DJNZ R6,AE

DJNZ R7,AD

RET

T2: MOV R7,#20H ;Delay subprogram 2

AF: MOV R6,#0FFH

AG: DJNZ R6,AG

DJNZ R7,AF

RET

T3: MOV R7,#03H ;Delay subprogram 3

AH: MOV R6,#8FH AI: MOV R5,#0FFH

AJ: DJNZ R5,AJ

DJNZ R6,AI DJNZ R7,AH

RET

TAB1: DB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH

DB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH
TAB2: DB 1FH,00H,1FH,00H,1FH,00H

DB 00H,1FH,00H,1FH,00H,1FH,00H,1FH DB 15H,15H,15H,15H,15H,15H,15H,15H

DB 0AH,0AH,0AH,0AH,0AH,0AH,0AH TAB7: DB 00H,00H,00H,00H,00H,00H,00H,00H TAB8: DB 01H,01H,01H,01H,01H,01H,01H TAB9: DB 02H,03H,02H,03H,02H,03H,02H,03H TAB10: DB 03H,02H,03H,02H,03H,02H,03H,02H DB 03H,02H,03H,02H,03H,02H,03H,02H

DB 03H,02H,03H,02H,03H,02H,03H,02H
TAB11: DB 31H,32H,33H,34H,35H,36H,37H,38H
DB 39H,41H,42H,43H,44H,45H,46H,47H
END

• Application Circuit 1

• Application Circuit 2

• Character Generator ROM

Upper 4bit Lower 4bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LННН	HLLL	HLLH	HLHL	нгнн	HHLL	ннгн	нннг	нннн
LLLL	CG RAM (1)															
LLLH	(2)															
LLHL	(3)															
LLHH	(4)															
LHLL	(5)															
LHLH	(6)															
LHHL	(7)															
LHHH	(8)															
HLLL	(1)															
HLLH	(2)															
HLHL	(3)															
нінн	(4)															
HHLL	(5)															
HHLH	(6)															
HHHL	(7)															
нннн	(8)															