A JOURNEY

IN

PURE MATHEMATICS

A JOURNEY

IN

PURE MATHEMATICS

MAT3006 & 3040 & 4002 Notebook

Prof. Daniel Wong

The Chinese University of Hongkong, Shenzhen

Contents

Ackn	nowledgments	vii
Notat	tions	ix
1	Week1	1
1.1	Monday for MAT3040	1
1.1.1	Introduction to Advanced Linear Algebra	1
1.1.2	Vector Spaces	2
1.2	Monday for MAT3006	5
1.2.1	Overview on uniform convergence	5
1.2.2	Introduction to MAT3006	6
1.2.3	Metric Spaces	7
1.3	Monday for MAT4002	10
1.3.1	Introduction to Topology	10
1.3.2	Metric Spaces	11
1.4	Wednesday for MAT3040	15
1.4.1	Review	15
1.4.2	Spanning Set	15
1.4.3	Linear Independence and Basis	17

Acknowledgments

This book is from the MAT3006, MAT3040, MAT4002 in spring semester, 2018-2019.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

1.4. Wednesday for MAT3040

1.4.1. Review

- 1. Vector Space: e.g., \mathbb{R} , $M_{n \times n}(\mathbb{R})$, $C(\mathbb{R}^n)$, $\mathbb{R}[x]$.
- 2. Vector Subspace: $W \le V$, e.g.,
 - (a) $V = \mathbb{R}^2$, the set $W := \mathbb{R}^2_+$ is not a vector subspace since W is not closed under scalar multiplication;
 - (b) the set $W = \mathbb{R}^2_+ \bigcup \mathbb{R}^2_-$ is not a vector subspace since it is not closed under addition.
 - (c) For $V = \mathbb{M}_{3\times 3}(\mathbb{R})$, the set of invertible 3×3 matrices is not a vector subspace, since we cannot define zero vector inside.
 - (d) Exercise: How about the set of all singular matrices? Answer: it is not a vector subspace since the vector addition does not necessarily hold.

1.4.2. Spanning Set

Definition 1.11 [Span] Let V be a vector space over \mathbb{F} :

1. A linear combination of a subset S in V is of the form

$$\sum_{i=1}^n \alpha_i \boldsymbol{s}_i, \quad \alpha_i \in \mathbb{F}, \boldsymbol{s}_i \in S$$

Note that the summation should be finite.

2. The **span** of a subset $S \subseteq V$ is

$$\operatorname{span}(S) = \left\{ \sum_{i=1}^{n} \alpha_{i} \mathbf{s}_{i} \middle| \alpha_{i} \in \mathbb{F}, \mathbf{s}_{i} \in S \right\}$$

3. S is a spanning set of V, or say S spans V, if

$$span(S) = V$$
.

■ Example 1.12 For $V = \mathbb{R}[x]$, define the set

$$S = \{1, x^2, x^4, \dots, x^6\},\,$$

then $2+x^4+\pi x^{106}\in \operatorname{span}(S)$, while the series $1+x^2+x^4+\cdots\notin\operatorname{span}(S)$. It is clear that $\operatorname{span}(S)\neq V$, but S is the spanning set of $W=\{p\in V\mid p(x)=p(-x)\}$.

■ Example 1.13 For $V = M_{3\times 3}(\mathbb{R})$, let $W_1 = \{ \boldsymbol{A} \in V \mid \boldsymbol{A}^T = \boldsymbol{A} \}$ and $W_2 = \{ \boldsymbol{B} \in V \mid \boldsymbol{B}^T = -\boldsymbol{B} \}$ (the set of skew-symmetric matrices) be two vector subspaces. Define the set

$$S := W_1 \bigcup W_2$$

Exercise: \boldsymbol{S} spans V.

Proposition 1.7 Let S be a subset in a vector space V.

- 1. $S \subseteq \operatorname{span}(S)$
- 2. $\operatorname{span}(S) = \operatorname{span}(\operatorname{span}(S))$
- 3. If $\mathbf{w} \in \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_n\} \setminus \text{span}\{\mathbf{v}_2, \dots, \mathbf{v}_n\}$, then

$$v_1 \in \operatorname{span}\{w, v_2, \dots, v_n\} \setminus \operatorname{span}\{v_2, \dots, v_n\}$$

Proof. 1. For each $\mathbf{s} \in S$, we have

$$\mathbf{s} = 1 \cdot \mathbf{s} \in \operatorname{span}(S)$$

2. From (1), it's clear that $\operatorname{span}(S) \subseteq \operatorname{span}(\operatorname{span}(S))$, and therefore suffices to show $\operatorname{span}(\operatorname{span}(S)) \subseteq \operatorname{span}(S)$:

Pick $\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i \in \text{span}(\text{span}(S))$, where $\mathbf{v}_i \in \text{span}(S)$. Rewrite

$$m{v}_i = \sum_{j=1}^{n_i} eta_{ij} m{s}_j, \quad m{s}_j \in S,$$

which implies

$$\boldsymbol{v} = \sum_{i=1}^{n} \alpha_i \sum_{j=1}^{n_i} \beta_{ij} \boldsymbol{s}_j$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n_i} (\alpha_i \beta_{ij}) \boldsymbol{s}_j,$$

i.e., v is the finite combination of elements in S, which implies $v \in \text{span}(S)$.

3. By hypothesis, $\mathbf{w} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$ with $\alpha_1 \neq 0$, which implies

$$oldsymbol{v}_1 = -rac{lpha_2}{lpha_1}oldsymbol{v}_2 + \cdots + \left(-rac{1}{lpha_1}oldsymbol{w}
ight)$$

which implies $v_1 \in \text{span}\{w, v_2, ..., v_n\}$. It suffices to show $v_1 \notin \text{span}\{v_2, ..., v_n\}$. Suppose on the contrary that $v_1 \in \text{span}\{v_2, ..., v_n\}$. It's clear that $\text{span}\{v_1, ..., v_n\} = \text{span}\{v_2, ..., v_n\}$. (left as exercise). Therefore,

$$\emptyset = \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\} \setminus \operatorname{span}\{\boldsymbol{v}_2,\ldots,\boldsymbol{v}_n\},$$

which is a contradiction.

1.4.3. Linear Independence and Basis

Definition 1.12 [Linear Independence] Let S be a (not necessarily finite) subset of V. Then S is **linearly independent** (l.i.) on V if for any finite subset $\{s_1, \ldots, s_k\}$ in S,

$$\sum_{i=1}^{k} \alpha_i \mathbf{s}_i = 0 \Longleftrightarrow \alpha_i = 0, \forall i$$

17

- lacksquare Example 1.14 For $V=\mathcal{C}(\mathbb{R})$,
 - 1. let $S_1 = \{\sin x, \cos x\}$, which is l.i., since

$$\alpha \sin x + \beta \cos x = \mathbf{0}$$
 (means zero function)

Taking x=0 both sides leads to $\beta=0$; taking $x=\frac{\pi}{2}$ both sides leads to $\alpha=0$.

2. let $S_2 = \{\sin^2 x, \cos^2 x, 1\}$, which is linearly dependent, since

$$1 \cdot \sin^2 x + 1 \cdot \cos^2 x + (-1) \cdot 1 = 0, \forall x$$

3. Exercise: For $V = \mathbb{R}[x]$, let $S = \{1, x, x^2, x^3, \dots, \}$, which is l.i.: Pick $x^{k_1}, \dots, x^{k_n} \in S$ with $k_1 < \dots < k_n$. Consider that the euqation

$$\alpha_1 x^{k_1} + \dots + \alpha_n x^{k_n} = \mathbf{0}$$

holds for all x, and try to solve for $\alpha_1, \ldots, \alpha_n$ (one way is differentation.)

Definition 1.13 [Basis] A subset S is a basis of V if

- (a) S spans V;
- (b) *S* is l.i.
- **Example 1.15** 1. For $V = \mathbb{R}^n$, $S = \{\boldsymbol{e}_1, \dots, \boldsymbol{e}_n\}$ is a basis of V
 - 2. For $V=\mathbb{R}[x]$, $S=\{1,x,x^2,\dots\}$ is a basis of V3. For $V=M_{2\times 2}(\mathbb{R})$,

$$S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

is a basis of V

 \bigcirc Note that there can be many basis for a vector space V.

Proposition 1.8 Let $V = \text{span}\{\boldsymbol{v}_1, ..., \boldsymbol{v}_m\}$, then there exists a subset of $\{\boldsymbol{v}_1, ..., \boldsymbol{v}_m\}$, which is a basis of V.

Proof. If $\{v_1, ..., v_m\}$ is l.i., the proof is complete.

Suppose not, then $\alpha_1 \boldsymbol{v}_1 + \cdots + \alpha_m \boldsymbol{v}_m = \boldsymbol{0}$ has a non-trivial solution. w.l.o.g., $\alpha_1 \neq 0$, which implies

$$m{v}_1 = -rac{lpha_2}{lpha_1}m{v}_2 + \dots + \left(rac{lpha_m}{lpha_1}
ight)m{v}_m \implies m{v}_1 \in \mathrm{span}\{m{v}_2,\dots,m{v}_m\}$$

By the proof in (c), Proposition (1.7),

$$\mathrm{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m\}=\mathrm{span}\{\boldsymbol{v}_2,\ldots,\boldsymbol{v}_m\},$$

which implies $V = \text{span}\{\boldsymbol{v}_2, \dots, \boldsymbol{v}_m\}$.

Continuse this argument finitely many times to guarantee that $\{v_i, v_{i+1}, ..., v_m\}$ is l.i., and spans V. The proof is complete.

Corollary 1.1 If $V = \operatorname{span}\{v_1, \dots, v_m\}$ (i.e., V is finitely generated), then V has a basis. (The same holds for non-finitely generated V).

Proposition 1.9 If $\{v_1,...,v_n\}$ is a basis of V, then every $v \in V$ can be expressed uniquely as

$$\boldsymbol{v} = \alpha_1 \boldsymbol{v}_1 + \cdots + \alpha_n \boldsymbol{v}_n$$

Proof. Since $\{v_1, ..., v_n\}$ spans V, so $v \in V$ can be written as

$$\boldsymbol{v} = \alpha_1 \boldsymbol{v}_1 + \dots + \alpha_n \boldsymbol{v}_n \tag{1.1}$$

Suppose further that

$$\boldsymbol{v} = \beta_1 \boldsymbol{v}_1 + \dots + \beta_n \boldsymbol{v}_n, \tag{1.2}$$

it suffices to show that $\alpha_i = \beta_i$ for $\forall i$:

Subtracting (1.1) into (1.2) leads to

$$(\alpha_1 - \beta_1)\boldsymbol{v}_1 + \cdots + (\alpha_n - \beta_n)\boldsymbol{v}_n = 0.$$

By the hypothesis of linear independence, we have $\alpha_i - \beta_i = 0$ for $\forall i$, i.e., $\alpha_i = \beta_i$.