

Lightweight Adapter Tuning for Multilingual Speech Translation

Hang Le¹ Jiatao Gu² Didier Schwab¹

Juan Pino² Changhan Wang² Laurent Besacier^{1,3}

AFNLP ACL-IJCNLP 2021

¹Univ. Grenoble Alpes, CNRS, LIG ²Facebook Al

³Naver Labs Europe

Context and Motivation

Adapters for multilingual ST

Adapter

FFN

Attention

- Adapter tuning is one way to achieve models with **high** accuracy and low maintenance complexity.
- Adapter tuning has been so far investigated for multilingual NMT.
- \rightarrow We introduce first comprehensive analysis of adapters for multilingual speech-totext translation (ST).

Adapter layers

- Adapters are generally inserted between the layers of a pretrained network and finetuned on the adaptation corpus.
- Adapter modules can be introduced into a Transformer in a serial or parallel fashion.

 $f\colon$ a component of the backbone model. $g\colon$ an adapter layer. Instead of $\mathbf{y} = f(\mathbf{x})$, the new "adapted output" is given by: $\mathbf{y}_{\text{serial}} = g(f(\mathbf{x}))$ $\mathbf{y}_{\text{parallel}} = f(\mathbf{x}) + g(\mathbf{x}).$

Experimental setup

- . Dataset: MuST-C, from English to 8 target languages.
- (1) MuST-C original: from 385 hours (pt) to 504 hours (es).
- (2) MuST-C imbalanced: from 41 hours (de) to 504 hours (es).
- 2. **Model:** 12-layer encoder + 6-layer decoder.
- (1) D = 256 (small).
- (2) D = 512 (medium).
- 3. Vocabulary:
- Bilingual models: 8K.
- Multilingual models: 10K.
- 4. Speech pre-processing:
- 80-d log mel filter-bank.
- SpecAugment with Librispeech basic (LB) policy.

Refinement

Training settings: Finetune a (fully) pre-trained multilingual ST backbone on each language pair to boost performance and close potential gaps with bilingual models.

- Partial fine-tuning: Fine-tune only some components (e.g. encoder or decoder) on each language pair.
- Full fine-tuning: Fine-tune all the backbone on each pair.
- Adapter tuning: Add language-specific adapters to backbone and fine-tune them only.

(a) Transformer with adapters at its FFN sub-layers

Adapter

FFN

Attention

Attention

Speech embeddings Outputs (shifted)

(b) Language-specific adapters

FFN

Attention

(c) A typical adapter cell

Adapter tuning for multilingual ST

- (1) Pre-train a backbone model.
- (2) Add adapters for each language pair.
- (3) Finetune adapters on the corresponding bilingual data (the rest of the backbone is frozen).

Two scenarios to evaluate our adapters

(1) refinement, and (2) transfer learning.

Transfer learning

- Training settings: Initialize Transformer with pre-trained ASR encoder and mBART50 decoder, then fine-tune only some components on (multilingual) ST dataset.
- Different configurations for comparison:
- With and without (language-specific) adapters.
- Adapters added to decoder only, or both encoder & decoder.
- Cross (encoder-decoder) attention is fine-tuned or frozen.

Experimental results for Refinement

	Dict	D		Adapt ENC				# params (M) trainable/total		es	fr	it	nl	pt	ro	ru	avg
								ining data (hours)		504	492	465	442	385	432	489	3.36
1	mono		_	_	_		_	$8 \times 31.1/8 \times 31.1$	22 16	30 42	27 92	22 92	24 10	27 19	21.51	14 36	23.82
	multi		_	_	-	_	_	32.1/32.1							20.78		23.76
3	multi		128	-	\checkmark	_	-	$8 \times 0.4/35.3$	22.45	30.85	27.71	23.06	24.57	27.52	20.93	14.57	23.96
4	multi	526	128	\checkmark	\checkmark	_	-	$8 \times 1.2/41.7$	22.84*	31.25*	28.29*	23.27*	24.98*	28.16*	21.36*	14.71	24.36
5	multi		_	-	-	_	\checkmark	$8 \times 14.6 / 8 \times 32.1$	23.49	31.29	28.40	23.63	25.51	28.71	21.73	15.22	24.75
6	multi		_	-	-	√	\checkmark	$8 \times 32.1 / 8 \times 32.1$	23.13*	31.39*	<u>28.67</u> *	<u>23.80</u> *	<u>25.52</u> *	<u>29.03</u> *	<u>22.25</u> *	<u>15.44</u> *	<u>24.90</u>
7	mono		_	-	_	_	-	$8 \times 74.3 / 8 \times 74.3$	21.93	30.46	27.90	22.64	23.98	25.98	20.50	14.01	23.42
8	multi		_	-	_	_	-	76.3/76.3	23.98	32.47	29.24	24.97	26.20	29.81	22.74	15.30	25.59
9	multi		256	-	√	_	-	8×1.6/89.1	24.38	32.78	29.69	24.72	26.25	29.93	22.63	15.40	25.72
10	multi		256	\checkmark	\checkmark	_	-	$8 \times 4.8 / 114.7$	24.61	32.94	29.67	<u>25.12</u>	26.16	<u>30.53</u>	22.66	15.31	25.88
11	multi	512	_	-	_	_	\checkmark	$8 \times 35.5 / 8 \times 36.3$	24.67	33.12	30.11	25.05	26.33	29.85	23.04	15.61	25.97
12	multi		_	-	-	√	\checkmark	$8 \times 76.3 / 8 \times 76.3$	24.54*	32.95*	29.96*	25.01	26.31	30.04	22.66	15.54*	25.88
	MuST-C Imbalanced training data (hours)								41	504	492	232	89	38	86	245	
	multi		_	-	_	_	-	32.1/32.1	15.99	30.51	28.17	21.80	20.27	22.47	17.38	13.18	21.22
2	multi	256	128	\checkmark	\checkmark	_	-	$8 \times 1.2/41.7$	<u>17.02</u>	30.71	<u>28.42</u>	22.37	<u>21.01</u>	<u>23.74</u>	<u>18.55</u>	13.52	<u>21.92</u>
	multi		_	-	-	\checkmark	\checkmark	$8 \times 32.1 / 8 \times 32.1$	16.93	30.86	28.34	<u>22.42</u>	20.86	23.44	18.49	<u>13.63</u>	21.87
	multi		_	-	_	_	-	76.3/76.3								14.09	
5	multi	512	256	\checkmark	\checkmark	_	-	8×4.8/114.7 8×76.3/8×76.3	17.46	31.94	29.09	23.11	21.76	24.96	19.50	14.10	22.74
6	multi		_	_	-	\checkmark	\checkmark	$8 \times 76.3 / 8 \times 76.3$	17.49	31.67	29.27	22.97	21.80	24.80	19.43	14.17	22.70

- Both adapter tuning and fine-tuning yield improvements over the multilingual baseline.
- Adding adapters to the encoder improve the overall performance.
- On MuST-C original, fine-tuning slightly outperforms adapter-tuning.
- On MuST-C Imbalanced, adapter-tuning achieved the best performance, especially for the low-resource languages (pt, de, ro nl).

Experimental results for Transfer learning

	Adap ENC	ter DEC		# params (M) trainable/total	de	es	fr	it	nl	pt	ro	ru	avg
1 -	_	_	_	$8 \times 31.1 / 8 \times 31.1$	22.16	30.42	27.92	22.92	24.10	27.19	21.51	14.36	23.82
2 -	_	_	√	38 / 486	18.41	25.42	23.46	18.44	20.87	20.55	17.19	11.79	19.52
3 512	_	\checkmark	_	101 / 587	0.94	0.65	0.93	0.76	0.95	0.89	0.52	0.93	0.82
4 512	2 –	\checkmark	√	139 / 587	21.98	29.47	27.05	22.89	24.06	26.34	21.0	14.35	23.39
5 512	2	\checkmark	_	152 / 638	11.04	18.62	16.10	12.37	13.18	14.29	10.62	6.95	12.90
6 512	2	\checkmark		190 / 638	22.62	30.85	28.23	23.09	24.43	26.56	22.13	14.92	24.10

- Fine-tuning cross-attention is crucial to transfer to multilingual ST.
- Adding adapters to the backbone decoder or to both encoder and decoder further boosts performance.
- \rightarrow Adapters is able to connect off-the-shelf models in a modular fashion.