### Целочисленное деление

Михаил Шихов m.m.shihov@gmail.com

Лекция по дисциплине «информатика» (2 июля 2016 г.)

### Содержание

- Беззнаковое целочисленное деление
  - Деление с восстановлением остатков
  - Деление без восстановления остатков

- Деление чисел со знаком
  - Деление без восстановления остатков

### Целочисленное деление

В результате деления числа A (делимое) на число d (делитель) получается частное q и остаток  $\Delta$ , такие, что выполняется равенство:

$$A = q \cdot d + \Delta$$
,

где  $A,q,d,\Delta$  — целые, а  $|\Delta|<|d|$ .

Результат деления будем записывать как  $A \div d = q$  rem  $\Delta$ , например:

$$7 \div 3 = 2 \text{ rem } 1.$$

Результат целочисленного деления, как обратной умножению операции, получается серией вычитаний и сдвигов.



|   |   |   |   |   |     | — частное (q)            |
|---|---|---|---|---|-----|--------------------------|
| 5 | 2 | 9 | 3 | 8 | ÷43 | — делимое ÷ делитель (d) |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |

|   | 0 |   |   |   |   |     | $\mid$ — частное $(q)$   |
|---|---|---|---|---|---|-----|--------------------------|
|   | 5 | 2 | 9 | 3 | 8 | ÷43 | — делимое ÷ делитель (d) |
|   | 5 |   |   |   |   |     |                          |
| - | 0 |   |   |   |   |     |                          |
|   | 5 |   |   |   |   |     | $\Delta_1$               |
|   |   |   |   |   |   |     |                          |
|   |   |   |   |   |   |     |                          |
|   |   |   |   |   |   |     |                          |
|   |   |   |   |   |   |     |                          |
|   |   |   |   |   |   |     |                          |
|   |   |   |   |   |   |     |                          |
|   |   |   |   |   |   |     |                          |
|   |   |   |   |   |   |     |                          |
|   |   |   |   |   |   |     |                          |
|   |   |   |   |   |   |     |                          |
|   |   |   |   |   |   |     |                          |
| - |   |   |   |   |   |     |                          |

|     | 0 | 1 |   |   |   |     | — частное ( <i>q</i> )   |
|-----|---|---|---|---|---|-----|--------------------------|
|     | 5 | 2 | 9 | 3 | 8 | ÷43 | — делимое ÷ делитель (d) |
|     | 5 |   |   |   |   |     |                          |
| -   | 0 |   |   |   |   |     |                          |
| =   | 5 |   |   |   |   |     | $\Delta_1$               |
|     | 5 | 2 |   |   |   |     |                          |
| -   | 4 | 3 |   |   |   |     |                          |
| _=_ |   | 9 |   |   |   |     | $\Delta_2$               |
|     |   |   |   |   |   |     |                          |
|     |   |   |   |   |   |     |                          |
|     |   |   |   |   |   |     |                          |
|     |   |   |   |   |   |     |                          |
|     |   |   |   |   |   |     |                          |
|     |   |   |   |   |   |     |                          |
|     |   |   |   |   |   |     |                          |
|     |   |   |   |   |   |     |                          |
|     |   |   |   |   |   |     |                          |
|     |   |   |   |   |   |     |                          |

|   | 0 | 1 | 2 |   |   |     | $\mid$ — частное $(q)$            |
|---|---|---|---|---|---|-----|-----------------------------------|
|   | 5 | 2 | 9 | 3 | 8 | ÷43 | $-$ делимое $\div$ делитель $(d)$ |
|   | 5 |   |   |   |   |     |                                   |
| - | 0 |   |   |   |   |     |                                   |
| = | 5 |   |   |   |   |     | $\Delta_1$                        |
|   | 5 | 2 |   |   |   |     |                                   |
| - | 4 | 3 |   |   |   |     |                                   |
| = |   | 9 |   |   |   |     | $\Delta_2$                        |
|   |   | 9 | 9 |   |   |     |                                   |
|   | - | 8 | 6 |   |   |     |                                   |
|   | = | 1 | 3 |   |   |     | $\Delta_3$                        |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |

|   | 0 | 1 | 2 | 3 |   |     | $\mid$ — частное $(q)$            |
|---|---|---|---|---|---|-----|-----------------------------------|
|   | 5 | 2 | 9 | 3 | 8 | ÷43 | $-$ делимое $\div$ делитель $(d)$ |
|   | 5 |   |   |   |   |     |                                   |
| - | 0 |   |   |   |   |     |                                   |
| = | 5 |   |   |   |   |     | $\Delta_1$                        |
|   | 5 | 2 |   |   |   |     |                                   |
| - | 4 | 3 |   |   |   |     |                                   |
| = |   | 9 |   |   |   |     | $\Delta_2$                        |
|   |   | 9 | 9 |   |   |     |                                   |
|   | - | 8 | 6 |   |   |     |                                   |
|   | = | 1 | 3 |   |   |     | $\Delta_3$                        |
|   |   | 1 | 3 | 3 |   |     |                                   |
|   | - | 1 | 2 | 9 |   |     |                                   |
|   | = |   |   | 4 |   |     | $\Delta_4$                        |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |

|   | 0 | 1 | 2 | 3 | 1 |     | — частное ( <i>q</i> )   |
|---|---|---|---|---|---|-----|--------------------------|
|   | 5 | 2 | 9 | 3 | 8 | ÷43 | — делимое ÷ делитель (d) |
|   | 5 |   |   |   |   |     |                          |
| - | 0 |   |   |   |   |     |                          |
| = | 5 |   |   |   |   |     | $\Delta_1$               |
|   | 5 | 2 |   |   |   |     |                          |
| - | 4 | 3 |   |   |   |     |                          |
| = |   | 9 |   |   |   |     | $\Delta_2$               |
|   |   | 9 | 9 |   |   |     |                          |
|   | - | 8 | 6 |   |   |     |                          |
|   | = | 1 | 3 |   |   |     | $\Delta_3$               |
|   |   | 1 | 3 | 3 |   |     |                          |
|   | - | 1 | 2 | 9 |   |     |                          |
|   | _ |   |   | 4 |   |     | $\Delta_4$               |
|   |   |   |   | 4 | 8 |     |                          |
|   |   |   | - | 4 | 3 |     |                          |
|   |   |   | = |   | 5 |     | $\Delta_5$               |
|   |   |   |   |   |   |     |                          |

### Целочисленное деление (10CC), 52938 ÷ 43 Англо-американская система

|   | 0 | 1 | 2 | 3 | 1 |     | — частное ( <i>q</i> )   |
|---|---|---|---|---|---|-----|--------------------------|
|   | 5 | 2 | 9 | 3 | 8 | ÷43 | — делимое ÷ делитель (d) |
|   | 5 |   |   |   |   |     |                          |
| - | 0 |   |   |   |   |     |                          |
| = | 5 |   |   |   |   |     | $\Delta_1$               |
|   | 5 | 2 |   |   |   |     |                          |
| - | 4 | 3 |   |   |   |     |                          |
| = |   | 9 |   |   |   |     | $\Delta_2$               |
|   |   | 9 | 9 |   |   |     |                          |
|   | - | 8 | 6 |   |   |     |                          |
|   | = | 1 | 3 |   |   |     | $\Delta_3$               |
|   |   | 1 | 3 | 3 |   |     |                          |
|   | - | 1 | 2 | 9 |   |     |                          |
|   | = |   |   | 4 |   |     | $\Delta_4$               |
|   |   |   |   | 4 | 8 |     |                          |
|   |   |   | - | 4 | 3 |     |                          |
|   |   |   | = |   | 5 |     | $\Delta_5$               |
|   |   |   |   |   | 5 |     | — остаток (Д)            |

# Целочисленное деление (2CC), $10 \div 3$

|         |     | — частное $(q)$                 |
|---------|-----|---------------------------------|
| 1 0 1 0 | ÷11 | — делимое $\div$ делитель $(d)$ |
|         |     |                                 |
|         |     |                                 |
|         |     |                                 |
|         |     |                                 |
|         |     |                                 |
|         |     |                                 |
|         |     |                                 |
|         |     |                                 |
|         |     |                                 |
|         |     |                                 |
|         |     |                                 |
|         |     |                                 |

# Целочисленное деление (2CC), $10 \div 3$

|   | 0 |   |   |   |     | — частное ( <i>q</i> )   |
|---|---|---|---|---|-----|--------------------------|
|   | 1 | 0 | 1 | 0 | ÷11 | — делимое ÷ делитель (d) |
|   | 1 |   |   |   |     |                          |
| - | 0 |   |   |   |     |                          |
|   | 1 |   |   |   |     | $\Delta_1$               |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |
|   |   |   |   |   |     |                          |

|   | 0 | 0 |   |   |     | — частное (q)                     |
|---|---|---|---|---|-----|-----------------------------------|
|   | 1 | 0 | 1 | 0 | ÷11 | — делимое ÷ делитель ( <i>d</i> ) |
|   | 1 |   |   |   |     |                                   |
| - | 0 |   |   |   |     |                                   |
| = | 1 |   |   |   |     | $\Delta_1$                        |
|   | 1 | 0 |   |   |     |                                   |
| - |   | 0 |   |   |     |                                   |
| = | 1 | 0 |   |   |     | $\Delta_1$                        |
|   |   |   |   |   |     |                                   |
|   |   |   |   |   |     |                                   |
|   |   |   |   |   |     |                                   |
|   |   |   |   |   |     |                                   |
|   |   |   |   |   |     |                                   |
|   |   |   |   |   |     |                                   |
|   |   |   |   |   |     |                                   |

| _ |   | 0 | 0 | 1 |   |     | — частное (q)                     |
|---|---|---|---|---|---|-----|-----------------------------------|
|   |   | 1 | 0 | 1 | 0 | ÷11 | — делимое ÷ делитель ( <i>d</i> ) |
|   |   | 1 |   |   |   |     |                                   |
|   | - | 0 |   |   |   |     |                                   |
|   | = | 1 |   |   |   |     | $\Delta_1$                        |
|   |   | 1 | 0 |   |   |     |                                   |
|   | - |   | 0 |   |   |     |                                   |
|   | = | 1 | 0 |   |   |     | $\Delta_1$                        |
|   |   | 1 | 0 | 1 |   |     |                                   |
|   | - |   | 1 | 1 |   |     |                                   |
|   | = |   | 1 | 0 |   |     | $\Delta_1$                        |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |
|   |   |   |   |   |   |     |                                   |

|   | 0 | 0 | 1 | 1 |     | — частное ( <i>q</i> )   |
|---|---|---|---|---|-----|--------------------------|
|   | 1 | 0 | 1 | 0 | ÷11 | — делимое ÷ делитель (d) |
|   | 1 |   |   |   |     |                          |
| - | 0 |   |   |   |     |                          |
| = | 1 |   |   |   |     | $\Delta_1$               |
|   | 1 | 0 |   |   |     |                          |
| - |   | 0 |   |   |     |                          |
| = | 1 | 0 |   |   |     | $\Delta_1$               |
|   | 1 | 0 | 1 |   |     |                          |
| - |   | 1 | 1 |   |     |                          |
| = |   | 1 | 0 |   |     | $\Delta_1$               |
|   |   | 1 | 0 | 0 |     |                          |
|   | - |   | 1 | 1 |     |                          |
|   | = |   |   | 1 |     | $\Delta_1$               |
|   |   |   |   |   |     |                          |

|   | 0 | 0 | 1 | 1 |     | — частное (q)                     |
|---|---|---|---|---|-----|-----------------------------------|
|   | 1 | 0 | 1 | 0 | ÷11 | — делимое ÷ делитель ( <i>d</i> ) |
|   | 1 |   |   |   |     |                                   |
| - | 0 |   |   |   |     |                                   |
| = | 1 |   |   |   |     | $\Delta_1$                        |
|   | 1 | 0 |   |   |     |                                   |
| - |   | 0 |   |   |     |                                   |
| = | 1 | 0 |   |   |     | $\Delta_1$                        |
|   | 1 | 0 | 1 |   |     |                                   |
| - |   | 1 | 1 |   |     |                                   |
| = |   | 1 | 0 |   |     | $\Delta_1$                        |
|   |   | 1 | 0 | 0 |     |                                   |
|   | - |   | 1 | 1 |     |                                   |
|   | = |   |   | 1 |     | $\Delta_1$                        |
|   |   |   |   | 1 |     | — остаток (Д)                     |

### Беззнаковое целочисленное деление Первый способ

#### Начальное состояние:



### Беззнаковое целочисленное деление Первый способ

#### Конечное состояние:



### Целочисленное деление Второй способ

#### Начальное состояние:



### Целочисленное деление Второй способ

#### Конечное состояние:



### На ноль делить нельзя!

Все приведенные ниже алгоритмы работают при условии, что не получают на входе нулевой делитель.

### Беззнаковое целочисленное деление $A \div d = q$ rem $\Delta$

$$A=d\cdot q+\Delta,$$

В результате деления положительных чисел делимого A на делитель d получаемые в результате частное q и остаток  $\Delta$  — также положительны.

#### Алгоритм деления с восстановлением остатков п-разрядные беззнаковые целые

- ①  $i \leftarrow 1$ ; В младшую часть регистра остатков заносится делимое, в старшую часть регистра делителя делитель. Далее состояние регистра остатков остаток  $(\Delta)$ , регистра делителя делитель (d), регистра частного (q) частное.
- ② Выполнить сдвиги: частное q влево, остаток  $\Delta$  влево (в первом способе), делитель d вправо (во втором способе).
- lacktriangle Получить новый остаток  $\Delta \leftarrow (\Delta d)$ ;
- $oldsymbol{0}$   $\,$  Если  $\Delta < 0$ , то в младший разряд частного занести 0, иначе 1.
- ullet Если  $\Delta < 0$ , то выполнить восстановление старого значения остатка:  $\Delta \leftarrow (\Delta + d)$ .
- В регистре частного получено значение частного, в регистре остатков п-разрядный остаток (в первом способе в старших разрядах, во втором в младших).

### Алгоритм деления с восстановлением остатков Примечания

 В регистр остатков и регистр делителя добавлены знаковые разряды.

## Деление с восстановлением остатков I-й способ 46 ÷ 5

| Частное $q, \leftarrow$ | дел-е, ∆ ←      | дел-ль, <i>d</i> | прим.                    |
|-------------------------|-----------------|------------------|--------------------------|
|                         | ., 101110       | .,101            | операнды;                |
|                         | .,1 01110.      |                  | сдвиг;                   |
| 0                       | ,1 01110.       |                  | $\Delta_1 < 0$ :         |
| 0                       | 1,111011        | '                | $\Delta_1 \setminus 0$ , |
|                         | 1,111100 01110. |                  |                          |
| 0                       | 1,111100 01110. |                  | Восст. Д1;               |
| 0                       | · .,101         |                  | $\square$                |
|                         | .,1 01110.      |                  |                          |

# Деление с восстановлением остатков І-й способ (2) 46 $\div$ 5

| Частное $q, \leftarrow$ | дел-е, △ ←    | дел-ль, <i>d</i> | прим.               |
|-------------------------|---------------|------------------|---------------------|
| 0                       | .,1 01110.    | .,101            | <b>↑</b>            |
| 0.                      | .,10 1110     |                  | сдвиг;              |
| 00                      | + .,10 1110   |                  | $\Delta_2 < 0$ ;    |
|                         | 1,111101 1110 |                  |                     |
| 00                      | 1,111101 1110 | F                | Восст. Д2;          |
|                         | <u>.,101</u>  |                  | Bocci. <b>1</b> 2,  |
|                         | .,10 1110     |                  |                     |
| 00.                     | .,101 110     |                  | сдвиг;              |
| 001                     | ,101 110      |                  | $\Delta_3 \geq 0$ ; |
| 001                     | 1,111011      |                  | $\Delta 3 \geq 0$ , |
|                         | ., 110        |                  |                     |
| 001.                    | .,1 10        |                  | сдвиг;              |

# Деление с восстановлением остатков І-й способ (3) $46 \div 5$

| Частное $q, \leftarrow$ | дел-е, $\Delta \leftarrow$                            | дел-ль, <i>d</i> | прим.                          |
|-------------------------|-------------------------------------------------------|------------------|--------------------------------|
| 001.                    | .,1 10                                                | .,101            | <b>↑</b>                       |
| 0010                    | + ·,····1 10····<br>1,111011 ·····<br>1,111100 10···· |                  | $\Delta_4 < 0;$                |
| 0010                    | + 1,111100 10<br>+ .,101                              |                  | Восст. Д4;                     |
| .0010.                  | .,11 0                                                |                  | сдвиг;                         |
| .00100                  | + .,11 0<br>1,1111011<br>1,1111111 0                  |                  | $\Delta_5 < 0;$                |
| .00100                  | + 1,111111 0<br>- ,101<br>- ,11 0                     |                  | Восст. <b>Δ</b> <sub>5</sub> ; |

# Деление с восстановлением остатков I-й способ (4) $46 \div 5 = 9$ rem 1

| Частное $q,\leftarrow$ | дел-е, ∆ ←                      | дел-ль, <i>d</i> | прим.            |
|------------------------|---------------------------------|------------------|------------------|
| .00100                 | .,11 0                          | .,101            | <b>†</b>         |
| 00100.                 | .,110                           |                  | сдвиг;           |
| 001001                 | + .,110<br>1,111011<br>,,000001 |                  | $\Delta_6 > 0$ ; |

$$q = (001001)_2 = 9$$

$$\Delta=(000001)_2=1$$

## Деление с восстановлением остатков II-й способ 53 ÷ 5

| Частное $q, \leftarrow$ | дел-е, Δ        | дел-ль, $d ightarrow$ | прим.               |
|-------------------------|-----------------|-----------------------|---------------------|
|                         | ., 110101       | .,101                 | операнды;           |
|                         | ., 110101       | .,10 1                | сдвиг;              |
| 0                       | , 110101        |                       | $\Delta_1 < 0$ ;    |
|                         | 1,111101 1      |                       | $\Delta_1 < 0$ ,    |
|                         | 1,111110 010101 |                       |                     |
|                         | 1,111110 010101 |                       | D A .               |
| 0                       | + .,10 1        |                       | Восст. $\Delta_1$ ; |
|                         | ., 110101       |                       |                     |

# Деление с восстановлением остатков II-й способ $(2)^{-53}$

| Частное $q, \leftarrow$ | дел-е, $\Delta$ | дел-ль, $d ightarrow$ | прим.                         |
|-------------------------|-----------------|-----------------------|-------------------------------|
| 0                       | ., 110101       | .,10 1                | <b>↑</b>                      |
| 0 .                     | ., 110101       | .,1 01                | сдвиг;                        |
| 00                      |                 |                       | $\Delta_2 < 0$ :              |
| 00                      | 1,111110 11     |                       | $\Delta_2 < 0$ ,              |
|                         | 1,111111 100101 |                       |                               |
| 00                      | 1,111111 100101 |                       | Восст. Д2;                    |
| 00                      | 1 .,1 01        |                       | $\square$ Bocci. $\Delta_2$ , |
|                         | ., 110101       |                       |                               |
| 00 .                    | ., 110101       | ., 101                | сдвиг;                        |
| 001                     | 110101          |                       | $\Delta_3 > 0$ ;              |
| 001                     | 1,111111 011    |                       | $\Delta_3 \geq 0$ ,           |
|                         | .,1101          |                       |                               |
| 001.                    | .,1101          | .,                    | сдвиг;                        |

# Деление с восстановлением остатков II-й способ $(3)^{53} \div 5$

| Частное $q, \leftarrow$ | дел-е, Δ          | дел-ль, $d ightarrow$ | прим.               |
|-------------------------|-------------------|-----------------------|---------------------|
| 001.                    | .,1101            | .,                    | <b>↑</b>            |
| 0010                    | + .,1101          |                       | $\Delta_4 < 0;$     |
|                         | 1,111111 111001   |                       |                     |
| 0010                    | + 1,111111 111001 |                       | Восст. $\Delta_4$ ; |
|                         | .,1101            |                       |                     |
| .0010.                  | .,1101            | .,101.                | сдвиг;              |
| .00101                  | + 1,111111 11011. |                       | $\Delta_5 \geq 0;$  |
|                         | ., 11             |                       |                     |
| 00101.                  | .,11              | .,101                 | сдвиг;              |

# Деление с восстановлением остатков II-й способ (4) $53 \div 5 = 10$ rem 3

| Частное $q, \leftarrow$ | дел-е, △                                        | дел-ль, $d ightarrow$ | прим.                   |
|-------------------------|-------------------------------------------------|-----------------------|-------------------------|
| 00101.                  | .,11                                            | .,101                 | <b>↑</b>                |
| 001010                  | + .,                                            |                       | $\Delta_6 < 0$ ;        |
| 001010                  | 1,111111 111110<br>+ 1,111111 111110<br>+ .,101 |                       | Восст. Δ <sub>6</sub> ; |
|                         | ., 000011                                       |                       |                         |

$$q = (001010)_2 = 10$$
  
 $\Delta = (000011)_2 = 3$ 

### Деление без восстановления остатков

Если новый остаток  $\Delta$  получается отрицательным, то к нему прибавляется делитель, чтобы восстановить старое (положительное) значение остатка. Чтобы не тратить на это время — проследим, что происходит к моменту получения следующего остатка  $\Delta'$ .

• В первом способе:

$$\Delta' = egin{cases} 2 \cdot \Delta + d, & \text{ если } \Delta < 0 \colon 2 \cdot (\underbrace{\Delta + d}_{\mathsf{B.O.}}) - d = 2 \cdot \Delta + d, \ 2 \cdot \Delta - d, & \text{ если } \Delta \geq 0. \end{cases}$$

• Во втором способе:

$$\Delta' = egin{cases} \Delta + d/2, & ext{ если } \Delta < 0: (\underbrace{\Delta + d}) - d/2 = \Delta + d/2, \ \Delta - d/2, & ext{ если } \Delta \geq 0. \end{cases}$$

## Алгоритм деления без восстановления остатков *п*-разрядные беззнаковые целые

- ①  $i \leftarrow 1$ ; В младшую часть регистра остатков заносится делимое, в старшую часть регистра делителя делитель. Далее состояние регистра остатков остаток ( $\Delta$ ), регистра делителя делитель (d), регистра частного (q) частное.
- ② Выполнить сдвиги: частное q влево, остаток  $\Delta$  влево (в первом способе), делитель d вправо (во втором способе).
- ullet Если  $\Delta < 0$ , то  $\Delta \leftarrow (\Delta + d)$ , иначе  $\Delta \leftarrow (\Delta d)$ ;

- ullet Восстановим остаток. Если  $\Delta < 0$ , то  $\Delta \leftarrow (\Delta + d)$ .
- В регистре частного получено значение частного, в регистре остатков n-разрядный остаток (в первом способе в старших разрядах, во втором в младших).

### Алгоритм деления без восстановления остатков Примечания

• В первом способе в регистре остатка добавлено два разряда под знак: по младшему знаковому разряду судят о знаке полученного остатка, а по старшему судят о знаке остатка до его сдвига вправо.

## Деление без восстановления остатков I-й способ

| Частное $q, \leftarrow$ | дел-е, $\Delta \leftarrow$                       | дел-ль, <i>d</i> | прим.                  |
|-------------------------|--------------------------------------------------|------------------|------------------------|
|                         | 00, 101110                                       | ,101             | операнды;              |
|                         | 00,1 01110.                                      |                  | СДВИГ;                 |
| 0                       | + 00,1 01110.<br>+ 11,111011<br>11,111100 01110. |                  | $-d, \Delta_1 < 0;$    |
| 0.                      | 11,111000 1110                                   |                  | сдвиг;                 |
| 00                      | + 11,111000 1110<br>,101<br>11,111101 1110       |                  | $+d, \Delta_2 < 0;$    |
| 00.                     | 11,111011 110                                    |                  | сдвиг;                 |
| 001                     | + 11,111011 110<br>,101<br>00,000000 110         |                  | $+d, \Delta_3 \geq 0;$ |
| 001.                    | 00,000001 10                                     |                  | сдвиг;                 |

#### Деление без восстановления остатков l-й способ (2) $46 \div 5 = 9 \text{ rem } 1$

| Частное $q, \leftarrow$ | дел-е, △ ←     | дел-ль, <i>d</i> | прим.                             |
|-------------------------|----------------|------------------|-----------------------------------|
| 001.                    | 00,000001 10   |                  | <b>↑</b>                          |
| 0010                    | + 00,000001 10 |                  | $-d, \Delta_4 < 0;$               |
| 0010                    | 11,111011      |                  | $-u, \Delta_4 < 0,$               |
|                         | 11,111100 10   |                  |                                   |
| .0010.                  | 11,111001 0    |                  | сдвиг;                            |
| .00100                  | 11,111001 0    |                  | $+d, \Delta_5 < 0;$               |
| .00100                  | ',101          |                  | $  \neg u, \Delta_5 \setminus 0,$ |
|                         | 11,111110 0    |                  |                                   |
| 00100.                  | 11,111100      |                  | сдвиг;                            |
| 001001                  | 11,111100      |                  | $+d, \Delta_6 \geq 0;$            |
| 001001                  | ,101           |                  | $  10, \Delta_6 \geq 0,$          |
|                         | 00,000001      |                  |                                   |
| (001001)                | 0 4 (000001)   | 1                |                                   |

 $q = (001001)_2 = 9$ ;  $\Delta = (000001)_2 = 1$ .



#### Деление без восстановления остатков II-й способ 53 ÷ 5

| Частное $q, \leftarrow$ | дел-е, $\Delta$ | дел-ль, $d	o$ | прим.                  |
|-------------------------|-----------------|---------------|------------------------|
|                         | ., 110101       | .,101         | операнды;              |
|                         |                 | .,10 1        | сдвиг;                 |
| 0                       | , 110101        |               | $-d, \Delta_1 < 0;$    |
|                         | 1,111101 1      |               | $u, \Delta_1 < 0,$     |
|                         | 1,111110 010101 |               |                        |
| 0 .                     |                 | .,1 01        | сдвиг;                 |
| 00                      | 1,111110 010101 |               | $+d, \Delta_2 < 0;$    |
|                         | 1 .,1 01        |               | $+u, \Delta_2 < 0,$    |
|                         | 1,111111 100101 |               |                        |
| 00 .                    |                 | ., 101        | сдвиг;                 |
| 001                     | 1,111111 100101 |               | $+d, \Delta_3 > 0;$    |
| 001                     | T., 101         |               | $+u, \Delta 3 \geq 0,$ |
|                         | .,1101          |               |                        |
| 001.                    |                 | .,            | сдвиг;                 |

## Деление без восстановления остатков II-й способ (2) 53 $\div$ 5

| Частное $q, \leftarrow$ | дел-е, Δ                                              | дел-ль, $d ightarrow$ | прим.                  |
|-------------------------|-------------------------------------------------------|-----------------------|------------------------|
| 001.                    | .,1101                                                | .,                    | <b>↑</b>               |
| 0010                    | + .,                                                  |                       | $-d, \Delta_4 < 0;$    |
| .0010.                  | 1,111111 111001                                       | .,                    | сдвиг;                 |
| .00101                  | + 1,111111 111001<br>+ .,101.<br>-,11                 |                       | $+d, \Delta_5 \geq 0;$ |
| 00101.                  |                                                       | .,101                 | сдвиг;                 |
| 001010                  | + ·,····· ·11<br>+ 1,111111 111011<br>1,111111 111110 |                       | $-d, \Delta_6 < 0;$    |

# Деление без восстановления остатков II-й способ (3) $53 \div 5 = 10$ rem 3

| Частное $q, \leftarrow$ | дел-е, Δ                                 | дел-ль, $d ightarrow$ | прим.          |
|-------------------------|------------------------------------------|-----------------------|----------------|
| 001010                  | 1,111111 111110                          | ., 101                | <b>↑</b>       |
| 001010                  | + 1,111111 111110<br>+ .,101<br>-,000011 |                       | Восст. остатка |

$$q = (001010)_2 = 10$$
  
 $\Delta = (000011)_2 = 3$ 

#### Деление чисел со знаком Неоднозначность результатов, см. подробнее в [1]

| Пример           |   | Отсечение | Модуль Округление <i>q</i> |               |
|------------------|---|-----------|----------------------------|---------------|
|                  |   |           | $\Delta \geq 0$            | меньшему зна- |
|                  |   |           |                            | чению         |
| 7 ÷ 3            | = | 2 rem 1   | 2 rem 1                    | 2 rem 1       |
| $(-7) \div 3$    | = | -2 rem -1 | -3 rem 2                   | -3 rem 2      |
| $7 \div (-3)$    | = | -2 rem 1  | -2 rem 1                   | -3 rem -2     |
| $(-7) \div (-3)$ | = | 2 rem -1  | 3 rem 2                    | 2 rem 1       |

Остановимся на варианте «Отсечение».

#### Определение разряда частного $q_0$

Пусть S(x) — функция возвращающая знак x. Исходное правило:

- **④** Если знаки делимого A и текущего остатка  $\Delta$  совпадают, то разряд частного (модуля)  $q_0 \leftarrow 1$ , иначе  $q_0 \leftarrow 0$ .
- ② Если знаки делимого A и делителя d различны, то  $q_0 \leftarrow (\neg q_0)$ . (Т.е. инверсия разряда для отрицательного результата!)

Так как

$$(x = y) \Leftrightarrow \neg(x \oplus y) \Leftrightarrow (1 \oplus x \oplus y),$$

то исходное правило можно выразиь одной формулой и упростить:

$$q_0 \leftarrow \neg(S(A) = S(\Delta)) \oplus (S(A) \oplus S(d)) \Leftrightarrow \Leftrightarrow (1 \oplus S(A) \oplus S(\Delta)) \oplus (S(A) \oplus S(d)) \Leftrightarrow (1 \oplus S(d) \oplus S(\Delta)) \Leftrightarrow \Rightarrow \neg(S(d) \oplus S(\Delta)).$$

#### Алгоритм деления в ДК без восстановления остатков п-разрядные знаковые целые в ДК

- ullet  $i \leftarrow 1$ ; Инициализируются регистры q,  $\Delta$  и d.
- ② Выполняются сдвиги: q влево,  $\Delta$  влево (I сп.), d вправо (II сп., с учётом знака).
- ullet Если знаки  $\Delta$  и d совпадают, то  $\Delta \leftarrow (\Delta d)$ , иначе  $\Delta \leftarrow (\Delta + d)$ .
- $igoplus q_0 \leftarrow 
  eg(S(s) \oplus S(\Delta))$ . Т.е. если знаки d и  $\Delta$  совпадают, то  $q_0 \leftarrow 1$ , иначе  $q_0 \leftarrow 0$ . Обр. код!
- Выполняется процедура коррекции остатка и частного (см. следующий слайд).

#### Процедура коррекции остатка и частного Вход: A — делимое, d — делитель, q — частное, $\Delta$ — остаток. Выход: q, $\Delta$

|           | $d \ge 0$                                                                                                                                                                                                              | d < 0                                                                                                                                                                                                             |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A \ge 0$ | $q \leftarrow q,$ $\Delta \leftarrow egin{cases} (\Delta + d), & \Delta < 0, \ \Delta, & 	ext{иначе,} \end{cases}$                                                                                                     | $q \leftarrow (q+1),$ $\Delta \leftarrow egin{cases} (\Delta-d), & \Delta < 0, \ \Delta, & 	ext{иначе}, \end{cases}$                                                                                              |
| A < 0     | $q \leftarrow egin{cases} q, & (\Delta=0) \lor (\Delta=-d) \ (q+1), & 	ext{иначе}, \ \ \Delta \leftarrow egin{cases} 0, & (\Delta=0) \lor (\Delta=-d), \ (\Delta-d), & \Delta>0, \ \Delta, & 	ext{иначе}, \end{cases}$ | $q \leftarrow egin{cases} q+1, & (\Delta=0) \lor (\Delta=d), \ q, & 	ext{иначе}, \ \ \Delta \leftarrow egin{cases} 0, & (\Delta=0) \lor (\Delta=d), \ \Delta+d, & \Delta>0, \ \Delta, & 	ext{иначе}. \end{cases}$ |

## Деление без ВО в ДК І-й способ $27 \div (-5)$

| Частное $q,\leftarrow$ | дел-е, △ ←      | дел-ль, <i>d</i> | прим.                              |
|------------------------|-----------------|------------------|------------------------------------|
|                        | 0,011011        | 1,111011         | операнды;                          |
|                        | 0,0 11011.      |                  | сдвиг;                             |
| 1                      | 0,0 11011.      |                  | $+d, \Delta_1 < 0;$                |
| 1                      | 1,111011        |                  | $  \cdot u, \Delta_1 \setminus 0,$ |
|                        | 1,111011 11011. |                  |                                    |
| 1.                     | 1,110111 1011   |                  | сдвиг;                             |
| 11                     | 1,110111 1011   |                  | $-d, \Delta_2 < 0;$                |
| 11                     | · .,101         |                  | $-u, \Delta_2 < 0,$                |
|                        | 1,111100 1011   |                  |                                    |
| 11.                    | 1,111001 011    |                  | сдвиг;                             |
| 111                    | 1,111001 011    |                  | $-d, \Delta_3 < 0;$                |
| 111                    | ' .,101         |                  | $-u, \Delta_3 < 0,$                |
|                        | 1,111110 011    |                  |                                    |
| 111.                   | 1,111100 11     |                  | сдвиг;                             |

# Деление без ВО в ДК І-й способ (2) $^{27}$ $\div$ (-5)

| Частное $q, \leftarrow$ | дел-е, $\Delta \leftarrow$ | дел-ль, <i>d</i> | прим.                  |
|-------------------------|----------------------------|------------------|------------------------|
| 111.                    | 1,111100 11                |                  | <b>↑</b>               |
| 1110                    | 1,111100 11                |                  | $-d, \Delta_4 \geq 0;$ |
| 1110                    | 0,000101                   |                  | $-u, \Delta_4 \geq 0,$ |
|                         | 0,000001 11                |                  |                        |
| .1110.                  | 0,000011 1                 |                  | сдвиг;                 |
| .11101                  | 0,000011 1                 |                  | $+d, \Delta_5 < 0;$    |
| .11101                  | 1,111011                   |                  | $+u, \Delta_5 < 0,$    |
|                         | 1,111110 1                 |                  |                        |
| 11101.                  | 1,111101                   |                  | сдвиг;                 |
| 111010                  | 1,111101                   |                  | $-d, \Delta_6 \geq 0;$ |
| 111010                  | '.,101                     |                  | $-u, \Delta_6 \geq 0,$ |
|                         | 0,000010                   |                  |                        |

# Деление без ВО в ДК І-й способ (3) $27 \div (-5) = -5 \text{ rem } 2$

| Частное $q, \leftarrow$ | дел-е, △ ← | дел-ль, <i>d</i> | прим.                 |
|-------------------------|------------|------------------|-----------------------|
| 111010                  | 0,000010   |                  | <b>↑</b>              |
| 111010                  | 0.000010   |                  | a / (a + 1):          |
| 000001                  | 0,000010   |                  | $q \leftarrow (q+1);$ |
| 111011                  |            |                  |                       |

$$ДK(q) = (111011)_2 \Rightarrow -5$$
 $ДK(\Delta) = (000010)_2 \Rightarrow 2$ 

### Деление без восстановления остатков II-й способ $(-25) \div 6$

|                 | 1                                              |                       | ,                      |
|-----------------|------------------------------------------------|-----------------------|------------------------|
| Частное $q$ , ← | дел-е, $\Delta$                                | дел-ль, $d ightarrow$ | прим.                  |
|                 | 1,111111 100111                                | .,110                 | операнды;              |
|                 |                                                | .,11 0                | сдвиг;                 |
|                 | 1,111111 100111                                |                       |                        |
| 1               | + .,11 0                                       |                       | $+d, \Delta_1 \geq 0;$ |
|                 | $\frac{1}{0, \dots, 10} \frac{100111}{100111}$ |                       |                        |
|                 | 0,                                             |                       |                        |
| 1.              |                                                | .,1 10                | сдвиг;                 |
| 4.4             | 0,10 100111                                    |                       |                        |
| 11              | + 1,111110 10                                  |                       | $-d, \Delta_2 \geq 0;$ |
|                 | 0 1 000111                                     |                       |                        |
|                 | 0,1 000111                                     |                       |                        |
| 11.             |                                                | ., 110                | сдвиг;                 |
|                 | 0,1 000111                                     |                       |                        |
| 111             | + 1,111111 010                                 |                       | $-d, \Delta_3 \geq 0;$ |
|                 |                                                |                       |                        |
|                 | 0,10111                                        |                       |                        |
| 111.            |                                                | .,                    | сдвиг;                 |

# Деление без восстановления остатков II-й способ (2) $(-25) \div 6$

| Частное $q, \leftarrow$ | дел-е, 🛆        | дел-ль, $d ightarrow$ | прим.                  |
|-------------------------|-----------------|-----------------------|------------------------|
| 111.                    | 0,              | .,                    | <b>↑</b>               |
| 1110                    | 0,              |                       | $-d, \Delta_4 > 0;$    |
| 1110                    | 1,111111 1010   |                       | $-u, \Delta_4 \geq 0,$ |
|                         | 1,111111 111111 |                       |                        |
| .1110.                  |                 | .,110.                | сдвиг;                 |
| .11101                  | 1,111111 111111 |                       | $+d, \Delta_5 > 0;$    |
| .11101                  | <u>.,110.</u>   |                       | $+u, \Delta 5 \geq 0,$ |
|                         | 0,1011          |                       |                        |
| 11101.                  |                 | .,110                 | сдвиг;                 |
| 111011                  | 0,1011          |                       | $-d, \Delta_6 > 0;$    |
| 111011                  | 1,111111 111010 |                       | $0, \Delta_6 \geq 0,$  |
|                         | 0,101           |                       |                        |

## Деление без восстановления остатков II-й способ (3) $(-25) \div 6 = -4$ rem -1

| Частное $q, \leftarrow$      | дел-е, △                                                 | дел-ль, $d ightarrow$ | прим.                |
|------------------------------|----------------------------------------------------------|-----------------------|----------------------|
| 111011                       | 0,101                                                    | .,110                 | <b>↑</b>             |
| 111011                       | + ·,·········101<br>+ 1,111111 111010<br>1,111111 111111 |                       | Восст. остатка, $-d$ |
| + 111011<br>000001<br>111100 | 1,111111 <u>111111</u>                                   |                       | $q \leftarrow (q+1)$ |

$$ДK(q) = (111100)_2 \Rightarrow -4$$
 $ДK(\Delta) = (111111)_2 \Rightarrow -1$ 

Выполнить беззнаковое деление чисел:

- **1**  $27 \div 9$ , первым способом без восстановления остатков;

Выполнить целочисленное деление в дополнительном коде чисел со знаком:

- 122 ÷ 22, первым и вторым способами;
- 122 ÷ 19, первым способом;
- **③**  $(-119) \div 11$ , первым способом;
- $(-118) \div (-11)$ , вторым способом;
- **3**  $123 \div (-12)$ , вторым способом.

Выполнить целочисленное деление в дополнительном коде в 8-и разрядной сетке чисел со знаком (любым способом):

- $\bullet$   $(-128) \div (-127);$
- $(-128) \div 127$ ;
- $\bullet$  127 ÷ (-128);
- $0 \div (127)$

#### Советы самоучке

Подробно об особенностях целочисленного деления см. в [1]. «Длинные» алгоритмы умножения и деления, см. в четвертой главе «Арифметика» [2]

#### Библиография I



Г. Уоррен-мл. Алгоритмические трюки для программистов / Г. Уоррен-мл. —

2 изд. —

М.: Издательский дом «Вильямс», 2014. —

512 c.



🗻 Д.Э.Кнут. Искусство программирования, получисленные алгоритмы / Д.Э.Кнут. —

3 изд. —

М.: Вильямс, 2005. —

T. 2. —

832 c.