Modelos Generativos Variational Autoencoders VAE

IPRODAM3D

Prof. Cristian López Del Alamo

Generative Modelos

Función de distribución

Concepto: Máxima Verosimilitud : $\max \prod p(x)$

maximum log Likelihood

$$|max - log - likelihood => arg heta mix rac{1}{2}||y_i - f(x, heta)||_2$$

maximum a posteriori

maximum a posteriori

$$max-posteriori=>arg heta mix$$
 $\frac{1}{2}||y_i-f(x, heta)||_2+\frac{\lambda}{2}|| heta||_2$ Clasificación o reconstrucción Regularización

w0

Autoencoders

$$egin{aligned} Sea & x & \in \mathcal{R}^n, E(.\,): \mathcal{R}^n
ightarrow \mathcal{R}^d & y & D(.\,): \mathcal{R}^d
ightarrow \mathcal{R}^n \ & & \ \hat{x} = D(E(x)) & tal & que, & argmin_{ heta} & ||x - \hat{x}||^2 \end{aligned}$$

Recuerde $igg|max - log - likelihood => arg heta mix rac{1}{2} ||y_i - f(x, heta)||_2$

Autoencoders

Fuente: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

$$\mathcal{L}(heta,\phi) = ||x - \hat{x}|| + KL(\mathcal{N}(\mu_x,\sigma_x),\mathcal{N}(0,1))$$

Calidad de reconstrucción

Asegura continuidad, completitud

Fuente: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Autoencoder

$$z = \mu + \sigma$$

No es continuo, no es posible aplicar la gradiente descendiente

$$z = \mu_x + \sigma_x * \mathcal{N}(0,1)$$

Continuo, es posible aplicar la gradiente descendiente

$$\mathcal{L}(heta,\phi) = ||x-\hat{x}|| + KL(\mathcal{N}(\mu_x,\sigma_x),\mathcal{N}(0,1))$$

Trained by minimizing negative ELBO:

$$\boxed{ \left| l_{i} \left(\boldsymbol{\theta}, \boldsymbol{\phi} \right) = - E_{\boldsymbol{z} - q_{\boldsymbol{\phi}} \left(\boldsymbol{z} | \boldsymbol{x}_{i} \right)} \left[\log p_{\boldsymbol{\theta}} (\boldsymbol{x}_{i} \mid \boldsymbol{z}) \right] + KL \left(q_{\boldsymbol{\phi}} (\boldsymbol{z} \mid \boldsymbol{x}_{i}) \mid\mid p(\boldsymbol{z}) \right) \right| }$$

Fuente: Sargur N. Srihari

IPRODAM3D Dr. Cristian López Del Alamo

Aplicaciones

Fuente: https://medium.com/analytics-vidhya/an-introduction-to-generative-deep-learning-792e93d1c6d4

Aplicaciones

Fuente: https://medium.com/analytics-vidhya/an-introduction-to-generative-deep-learning-792e93d1c6d4

Fuente: [Litany el all, 2018] https://arxiv.org/abs/1712.00268

¿Preguntas?

Modelos Generativos Autoencoders

IPRODAM3D

Dr. Cristian López Del Alamo