数字电路与逻辑设计实验报告

学院:数据科学与计算机 专业:计算机类

姓名: 郑康泽 学号: 17341213 日期: 2018年5月1号

实验题目: 利用 MSI 设计组合逻辑电路

内容一预习报告

(1) 将 74LS197 连接成 16 进制计数器, 74LS197 的 CPO 接 10kHz 方波信号;

(2) 将 74LS138 的E2、E3接低电平;

(3) 将 74LS197 输出端 Q_3 、 Q_2 、 Q_1 、 Q_0 依次与 74LS138 输入 E_1 、A、B、C 相连。使用示波器逻辑分析仪观测并记录 CLK1、 E_1 、A、B、C 和 Y_0 、 Y_1 、 Y_2 、 Y_3 、 Y_4 、 Y_5 、 Y_6 、 Y_7 波形,分析波形之间的相位关系;

仿真电路:

波形图:

备注: 其中 A0~A7 对应 74LS138 的 Y0~Y7, A8 对应 CLK0, A9 对应 Q3, A11 对应 Q2, A13 对应 Q1, A15 对应 Q0。

分析: 两条线之间是一个周期, 在 A9 即 E1 一直为高电平时, A0 ~ A7 即 Y0 ~ Y7 一直为高电平, 当 A9 即 E1 为高电平时, A0 ~ A7 即 Y0 ~ Y7 依次变低电平, 再变回高电平, 这是因为 Q0 ~ Q2 对应 8 进制时钟。

(4) 将 74LS138 的 E1 接高电平, E2、E3 均与 74LS197 输出端 Q3 相连, 74LS197 输出端

Q2、Q1、Q0 依次与 74LS138 输入端 A、B、C 相连。使用示波器逻辑分析仪观测并记录 CLK1、E1、A、B、C 和 Y₀ 、 Y₁ 、Y₂ 、Y₃ 、Y₄ 、 Y₅ 、 Y₆ 、 Y₇波形,分析波形之间的相位关系。

仿真电路:

示波器:

备注: 其中 A0~A7 对应 74LS138 的 Y0~Y7, A8 对应 CLK0, A9 对应 Q3, A11 对应 Q2, A13 对应 Q1, A15 对应 Q0。

分析: 三条分割线之间构成一个 16 进制的周期, 在右边半周期, 由于 A0~A7 即 Y0~Y7 一直为高电平可以判断此时 E2、E3 为高电平,则此时 Q3 为高电平,此时输出一直为高电平;在左边半周期, A0~A7 依次有高变低再变高,可以判断 E2、E3 为低电平,则此时 Q3 为低电平。

内容二预习报告

自行设计,根据功能表列出 Y 的输出表达式,与 151 芯片输表达式比较后获得 151 芯片接法。真值表如图:

根据 Y 的真值表可得:

Y=M1M0AB+M1M0AB+M1M0AB+M1M0AB+M1M0AB+M1M0AB+M1M0AB+M1M0AB

 $= \overline{M1M0A*0} + \overline{M1M0A*B} + \overline{M1M0A*B} + \overline{M1M0A*1} + \overline{M1M0A*B} + \overline{M1M0A*B}$

+M1M0A*1+M1M0A*0

74LS151 输出表达式为:

 $Z = \frac{\overline{S2S1S0}D0 + \overline{S2S1}S0D1 + \overline{S2}S1\overline{S0}D2 + \overline{S2}S1S0D3 + S2\overline{S1S0}D4 + S2\overline{S1}S0D5 + S2S1\overline{S0}D6 + S2S1S0D7}{S2S1S0D6 + S2S1S0D7}$

将 Y 的输出表达式与与 74LS151 的输出表达式对比得出

令 S2=M1,S1=M0,S0=A, D1=D2=D4=B,D5=B; 置 D0=D7=0(低电平), D3=D6=1(高电平), Y=Z

动态测试仿真图:

示波器:

备注: 题目中的 SO、S1、S2 对应电路图中芯片 74HC151 的 A、B、C, 题目中的 D0 ~ D7

对应芯片的 $X0 \sim X7$,示波器从上到下对应 CP0,B、A、M0、M1、Y 的波形。 分析:示波器的波形符合 PPT 中的波形

内容三预习报告

设计半加减器,用门电路,74LS138,74LS151实现,真值表如图:

输入			输出	
М	А	В	Υ	C(进/借位)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

画出 Y 的卡诺图:

所以 Y 的表达式为: Y = AB + AB

画出 C 的卡诺图:

所以 C 的表达式为: C = MAB + MAB

仿真电路:

首先采用门电路实现,根据逻辑表达式,电路图为:

然后采用 74LS138, 这是一块译码器的芯片, 仿真电路图为:

最后采用 74LS151, 仿真电路图为:

示波器结果如图:

备注: 从上到下依次是时钟 CP1,74LS197 的输出 Q1、Q2、Q3,分别代表 B、A、M。经过门电路(74LS138)(74LS151)的逻辑功能之后,Y和C的波形如图(上为Y,下为C)。分析:Y、C的波形完全符合真值表的各种情况,说明电路图是对的。

实验报告(内容二)

1. 实验仪器: 数字电路实验箱、示波器; 器件: 74LS197*1、74LS151*1、与非门(代替非门)

代码转换电路设计:
具体设计与仿真已在预习报告中完成.

3. 转换电路效果检验: 实验连接电路:

示波器输入信号与输出信号的波形:

实验结果分析与讨论:

自上而下的波形分别是时钟,Q0、Q1、Q2、Q3、Y,经过 74LS151 数据选择器,Y 的 波形与真值表相符。

4. 实验心得与体会:

实验过程过程中一直认为数字电路实验箱坏了,因为示波器一直没有显示,后来同学提醒,原来是因为开关没拨到 74LS151 这边。所以还是对数字电路实验箱不够熟悉。但是本次示波器终于是自己调出来的,对示波器的操作更加熟悉。