

Calculus 3 Workbook

Chain rule

CHAIN RULE FOR MULTIVARIABLE FUNCTIONS

■ 1. If $x = e^t$, $y = t^2 - 3$, and z = 2t + 1, use chain rule to find df/dt.

$$f(x, y, z) = xy^2z^3$$

■ 2. If $r = \phi^2$ and $\theta = \phi + \pi$, use chain rule to find $dz/d\phi$ at $\phi = \pi/4$.

$$z(r,\theta) = r^2 \sin \theta$$

■ 3. If $u = \ln(3t)$ and $v = \ln t$ with t > 0, use chain rule to find the global maximum of the function.

$$f(u, v) = 3u - 2v^2$$

CHAIN RULE FOR MULTIVARIABLE FUNCTIONS AND TREE DIAGRAMS

■ 1. If $x = \sin(t + s)$, y = 2ts, and z = 2t - 5s, use chain rule to find the partial derivatives f_t and f_s .

$$f(x, y, z) = 7x + 2y^2z$$

■ 2. If $x = \log_2(ts)$ and $y = \log_3(2t + s)$, use chain rule to find partial derivatives f_s and f_t at (1,1).

$$f(x, y) = x^2 - 2xy - y^2 + x + 3y - 4$$

■ 3. If x = 2t - s and y = t + 2s, use chain rule to find the point (s, t) where $f_t = f_s = 0$.

$$f(x, y) = 2x^2 - 3xy + y^2 + y + 9$$

W W W . KRISTAKING MATH. COM