Отчет по Лабораторной Работе № 5_1

Компонентное моделирование. Scilab, подсистема xcos

Нзита Диатезилуа Катенди

Table of Contents

Цели и задачи работы

Цель лабораторной работы

Построить с помощью х соз фигуры Лиссажу с различными значениями параметров.

Выполнение лабораторной работы

Строим с помощью хсоз формы Лиссажу со следующими параметрами:

1)
$$A = B = 1$$
, $a = 2$, $b = 2$, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;

Задача 1

На рис.1 в качестве примера приведена модель функционирования двух источников синусоидального сигнала, позволяющая в зависимости от задаваемых параметров построить различные фигуры Лиссажу.

Пример модели в хсоѕ

Фигура Лиссажу: A = B = 1, a = 2, b = 2, δ = 0

Фигура Лиссажу: A = B = 1, a = 2, b = 2, $\delta = \pi/4$

Фигура Лиссажу: A = B = 1, a = 2, b = 2, $\delta = 3\pi/4$

Фигура Лиссажу: A = B = 1, a = 2, b = 2, $\delta = \pi$

Постройте с помощью хсоз фигуры Лиссажу со следующими параметрами:

A = B = 1, a = 2, b = 4, δ = 0; π /4; π /2; 3π /4; π

Фигура Лиссажу: A = B = 1, a = 2, b = 4, $\delta = 0$

Фигура Лиссажу: A = B = 1, a = 2, b = 4, $\delta = \pi/4$

Фигура Лиссажу: A = B = 1, a = 2, b = 4, δ = $3\pi/4$

Фигура Лиссажу: A = B = 1, a = 2, b = 4, $\delta = \pi$

Постройте с помощью хсоѕ фигуры Лиссажу со следующими параметрами:

3) A = B = 1, a = 2, b = 6, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π

Фигура Лиссажу: A = B = 1, a = 2, b = 6, $\delta = 0$

Фигура Лиссажу: A = B = 1, a = 2, b = 6, $\delta = \pi/4$

Фигура Лиссажу: A = B = 1, a = 2, b = 6, $\delta = \pi/2$

Фигура Лиссажу: A = B = 1, a = 2, b = 6, $\delta = 3\pi/4$

Задача 2

Modelica – свободно распространяемый объектно-ориентированный язык для моделирования сложных физических систем. В основе языка Modelica лежит концепция соединяемых блоков. При соединении в соответствии с требуемой схемой автоматически генерируются соответствующие уравнения.

Язык Modelica в чем-то похож на императивные объектно-ориентированные языки. В нём есть выражения, классы, наследование, функции. В основу языка положена конструкция «уравнение» (equation).

Редактор OMEdit, окно редактирования кода модели

Редактор OMEdit, построение графика

Редактор OMEdit, Simulation Setup

Редактор OMEdit, построение графика при изменении параметров моделирования

Выводы

По мере выполнения данной работы я построил фигуры Лиссажу на xcos.