Grassmannians and Fulton-Harris §15.4 Summer 2020 Reading Project

Matthew Kendall

June 25, 2020

1 / 23

Objectives

Learn about:

- Grassmannians
 - · As subsets of projective varieties
 - As matrices
- Exterior powers
- ullet Representation theory of Grassmannians in Fulton-Harris $\S 15.4$

The Grassmannian

• For our field we use $K = \mathbb{C}$.

Definition

The **Grassmannian** G(k, n) is the set of k-dimensional subspaces of \mathbb{C}^n .

Example

- **①** G(1, n) is the set of 1-dimensional subspaces of \mathbb{C}^n , or \mathbb{P}^{n-1} .
- **②** G(2,3) is the set of 2-dimensional subspaces of \mathbb{C}^3 . Correspond a plane with its normal to get an identification between G(2,3) and $G(1,3)=\mathbb{P}^2$.

Matthew Kendall Grassmannians and §15.4 June 25, 2020 3 / 23

Plücker embedding

Definition

To a k-dimensional subspace $W\subset\mathbb{C}^n$ spanned by vectors v_1,\ldots,v_k , associate to W the multivector

$$\lambda_W = v_1 \wedge \cdots \wedge v_k \in \Lambda^k \mathbb{C}^n$$
.

The map $\psi: G(k,n) \to \mathbb{P}(\Lambda^k(\mathbb{C}^n))$ such that $W \mapsto [\lambda_W]$ is the **Plücker embedding**.

The Plücker embedding is well defined:

• For another basis v'_1, \ldots, v'_k of W find change of basis matrix $P = \{p_{ij}\}_{1 \leq i,j \leq k}$ satisfying $v'_j = v_1 p_{1j} + v_2 p_{2j} + \cdots + v_k p_{kj}$. So

$$\lambda_W' = v_1' \wedge \dots \wedge v_k' = \det P \cdot v_1 \wedge \dots \wedge v_k = \det P \cdot \lambda_W. \tag{1}$$

See (7.73) in [Gun18] for details about above equation.

The Plücker embedding is an inclusion:

• For a point in the image $[\lambda] = \psi(W) = \psi(W')$,

$$\lambda = v_1 \wedge \cdots \wedge v_k = v'_1 \wedge \cdots \wedge v'_k,$$

so $0 = v_i' \wedge \lambda = v_i' \wedge v_1 \wedge \cdots \wedge v_k$. We get v_i' is a linear combination of v_i , so $W' \subset W$. Symmetric argument gives $W \subset W'$.

Matthew Kendall Grassmannians and §15.4 June 25, 2020 4 / 23

Plücker coordinates

Recall from Reed's lecture that the standard coordinates Z_0, \ldots, Z_n on \mathbb{C}^{n+1} are called **homogeneous coordinates** on \mathbb{P}^n . Choosing a basis for V gives homogeneous coordinates for $\mathbb{P}V$.

Definition (Intrinsic)

The **Plücker coordinates** on G(k,n) are the homogeneous coordinates on $\mathbb{P}(\Lambda^k\mathbb{C}^n)$ relative to the standard basis of $\Lambda^k\mathbb{C}^n$.

Note
$$\mathbb{P}(\Lambda^k \mathbb{C}^n) = \mathbb{P}^{\binom{n}{k}-1}$$
.

Example ([Gat])

• The Plücker embedding of G(1, n) maps the line

$$W = \operatorname{span}\{a_1e_1 + \cdots + a_ne_n\} \mapsto [\lambda_W] = [a_1e_1 + \cdots + a_ne_n].$$

Coordinates of W are $[a_1,\ldots,a_n]\in\mathbb{P}(\Lambda^1\mathbb{C}^n)=\mathbb{P}^{n-1}$. So $G(1,n)=\mathbb{P}^{n-1}$.

② Consider $W = \text{span}\{e_1 + e_2, e_1 + e_3\} \in \textit{G}(2,3)$. Since

$$[(e_1 + e_2) \wedge (e_1 + e_3)] = [-e_1 \wedge e_2 + e_1 \wedge e_3 + e_1 \wedge e_3],$$

W maps to the point $[-1,1,1] \in \mathbb{P}^2$

The Grassmannian as a projective variety

• Recall that a **projective variety** of \mathbb{P}^n is the zero locus of a set of homogeneous polynomials $F_{\alpha} \in \mathbb{C}[Z_0, \dots, Z_n]$.

Theorem

The Grassmannian G(k,n) is a projective variety of $\mathbb{P}(\Lambda^k\mathbb{C}^n)=\mathbb{P}^{\binom{n}{k}-1}$.

To prove this, we need some facts about exterior powers.

Definition

- A multivector $\omega \in \Lambda^k V$ is totally decomposable or a simple tensor if $\omega = v_1 \wedge \cdots \wedge v_k$ for some $v_i \in V$.
- The vector $v \in V$ divides the multivector $\omega \in \Lambda^k V$ if $\omega = v \wedge \varphi$ for some $\varphi \in \Lambda^{k-1} V$.

4 □ ト 4 □ ト 4 重 ト 4 重 ト 3 ■ 9 Q ○

Matthew Kendall Grassmannians and §15.4 June 25, 2020 6 / 23

Proposition

A vector $v \in V$ divides $\omega \in \Lambda^k V$ if and only if $\omega \wedge v = 0$.

Proof.

Forward direction is immediate. Suppose $\omega \wedge v = 0$ and let v_1, \ldots, v_n be a basis for V such that $v_n = v$. Write

$$\omega = \sum_{i_1 < \cdots < i_k} a_{i_1, \dots, i_k} v_{i_1} \wedge \cdots \wedge v_{i_k}.$$

Then

$$0 = \omega \wedge v = \sum_{i_1 < \dots < i_k} a_{i_1, \dots, i_k} v_{i_1} \wedge \dots \wedge v_{i_k} \wedge v,$$

so for $i_k \neq n$, $a_{i_1,\ldots,i_k} = 0$. This means that every nonzero simple tensor in ω contains a V.

Matthew Kendall Grassmannians and §15.4 June 25, 2020 7 / 23

Proving G(k, n) is a projective variety of $\mathbb{P}(\Lambda^k \mathbb{C}^n)$

Lemma

The vector $[\omega] \in \mathbb{P}(\Lambda^k \mathbb{C}^n)$ will lie in the Grassmannian G(k,n) if and only if the map

$$\varphi(\omega): \mathbb{C}^n \to \Lambda^{k+1} \mathbb{C}^n$$
$$: \mathbf{v} \mapsto \omega \wedge \mathbf{v}$$

has rank at most n - k.

Proof.

It suffices to show $[\omega]$ lies in the Grassmannian if and only if dim ker $\varphi(\omega) \geq k$.

- (\rightarrow) If $[\omega]$ lies in the Grassmannian, then $\omega = v_1 \wedge \cdots \wedge v_k$. So $v_i \in \ker \varphi(\omega)$.
- (\leftarrow) $v \in \ker \varphi(\omega)$ if and only if v divides ω by the previous proposition. At most k linearly independent vectors divide ω , so $\ker \varphi = \operatorname{span}\{v_1, \ldots, v_k\}$. Applying the proposition k times allows us to write $\omega = cv_1 \wedge \cdots \wedge v_k$.

Matthew Kendall Grassmannians and §15.4 June 25, 2020 8 / 23

Proving G(k, n) is a projective variety of $\mathbb{P}(\Lambda^k \mathbb{C}^n)$

Theorem

The Grassmannian G(k, n) is a projective variety of $\mathbb{P}(\Lambda^k \mathbb{C}^n)$.

Proof.

- For an $\omega \in \Lambda^k \mathbb{C}^n$, write its homogeneous coordinates $[a_1, \ldots, a_N]$ in terms of the standard basis $e_{i_1} \wedge \cdots \wedge e_{i_k}$, $i_1 < \cdots < i_k$, for $\Lambda^k \mathbb{C}^n$.
- Write the matrix of $\varphi(\omega) \in \operatorname{Hom}(\mathbb{C}^n, \Lambda^{k+1}\mathbb{C}^n)$ in terms of the standard basis e_1, \ldots, e_n of \mathbb{C}^n and $e_{i_1} \wedge \cdots \wedge e_{i_{k+1}}$, $i_1 < \cdots < i_{k+1}$, for $\Lambda^{k+1}\mathbb{C}^n$.
- By the lemma, $[\omega]$ is in the Grassmannian if and only if $\varphi(\omega)$ has rank at most n-k, which happens if and only if the $(n-k+1)\times (n-k+1)$ minors of $\varphi(\omega)$ vanish. All these equations are in terms of the coordinates a_i of ω , so the set of $[\omega]$ in the Grassmannian is precisely the solutions to the vanishing of these minors.

9 / 23

Matthew Kendall Grassmannians and §15.4

Plücker coordinates in matrix form

Represent a k-plane $W \subset \mathbb{C}^n$ spanned by coordinate vectors v_1, \ldots, v_k as a matrix $k \times n$ matrix M_W with rows v_i .

Definition (Matrix)

The **Plücker coordinates** of W are the determinants of the $k \times k$ submatrices of M_W for some ordering of the columns.

Example ([Gat])

The Plücker coordinates of $W=\text{span}\{e_1+e_2,e_1+e_3\}\in \textit{G}(2,3)$ are the 2×2 minors of

$$M_W = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

For the ordering of columns (1,2),(1,3),(2,3), this is the point $[-1,1,1] \in \mathbb{P}^2$.

• Note that performing row operations on M_W changes the $k \times k$ determinants by at most a constant factor.

Matthew Kendall Grassmannians and §15.4 June 25, 2020 10 / 23

Important Plücker coordinates example

Example: G(2,4)

If the plane $W \subset \mathbb{C}^4$ is spanned by the rows of

$$M_W = \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} \\ v_{21} & v_{22} & v_{23} & v_{24} \end{bmatrix}.$$

The determinants of the 2×2 submatrices are

$$\begin{aligned} W_{12} &= v_{11}v_{22} - v_{12}v_{21}, & W_{13} &= v_{11}v_{23} - v_{13}v_{21}, & W_{14} &= v_{11}v_{24} - v_{14}v_{21}, \\ W_{23} &= v_{12}v_{23} - v_{13}v_{22}, & W_{24} &= v_{12}v_{24} - v_{14}v_{22}, & W_{34} &= v_{13}v_{24} - v_{14}v_{23}. \end{aligned}$$

The W_{ij} are the Plücker coordinates of W in $\mathbb{P}(\Lambda^2\mathbb{C}^4) = \mathbb{P}^5$. The coordinates of any $W \in G(2,4)$ satisfy one equation

$$W_{12}W_{34}-W_{13}W_{24}+W_{14}W_{23}=0.$$

We have that G(2,4) is a subvariety of \mathbb{P}^5 cut out by the above equation.

• G(2,4) is a *quadric hypersurface* in \mathbb{P}^5 : it is four dimensional and the degree of the polynomial in the W_{ij} 's is two.

Matthew Kendall Grassmannians and §15.4 June 25, 2020 11 / 23

イロン イ部 とくきと くきと 一覧 一

Grassmannian as a manifold

Theorem

The dimension of G(k, n) over the complex numbers is k(n - k).

Proof.

- Take a k-plane $W \subset \mathbb{C}^n$ spanned by basis v_1, \ldots, v_k . Let M_W be the $k \times n$ matrix with v_i as row i. M_W has k linearly independent columns $i_1 < i_2 < \cdots < i_k$. Let W_{i_1, \ldots, i_k} be the $k \times k$ submatrix of M_W with columns i_1, \ldots, i_k .
- The matrix $W_{i_1,\dots,i_k}^{-1}M_W$ represents W. Its column i_j is $\delta_j\in\mathbb{C}^k$. For example, if $i_j=j$,

$$W_{i_1,\ldots,i_k}^{-1}M_W = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & a_{1,1} & a_{1,2} & \cdots & a_{1,n-k} \\ 0 & 1 & 0 & \cdots & 0 & a_{1,1} & a_{1,2} & \cdots & a_{2,n-k} \\ \vdots & & & & & & \vdots \\ 0 & 0 & 0 & \cdots & 1 & a_{k,1} & a_{k,2} & \cdots & a_{k,n-k} \end{bmatrix}.$$

- Let $U_{i_1,...,i_k}$ be the set of W such that $W_{i_1,...,i_k}$ is invertible. Then $U_{i_1,...,i_k}$ are open subset of G(k,n).
- Take charts $A^{i_1,\dots,i_k}:U_{i_1,\dots,i_k}\to\mathbb{C}^{k(n-k)}$ that send W to the $k\times(n-k)$ submatrix of $W_{i_1,\dots,i_k}^{-1}M_W$ whose columns are complementary to i_1,\dots,i_k . The charts are isomorphic to $\mathbb{C}^{k(n-k)}$.

Plücker coordinates on a chart

As we know, the Plücker coordinates of k-plane $W\subset \mathbb{C}^n$ are the $\binom{n}{k}$ determinants of size $k\times k$ in M_W .

Proposition

On the chart A^{i_1,i_2,\dots,i_k} , the $k \times k$ determinants of M_W become $\ell \times \ell$ determinants of $A^{i_1,\dots,i_k}(W) \in \mathbb{C}^{k(n-k)}$.

For example, for G(3,7) any matrix in $U_{1,2,3}$ can be represented as

$$\begin{bmatrix} 1 & 0 & 0 & a_{1,4} & a_{1,5} & a_{1,6} & a_{1,7} \\ 0 & 1 & 0 & a_{2,4} & a_{2,5} & a_{2,6} & a_{2,7} \\ 0 & 0 & 1 & a_{3,4} & a_{3,5} & a_{3,6} & a_{3,7} \end{bmatrix}$$

so determinants can look like

$$\begin{vmatrix} 1 & 0 & a_{1,5} \\ 0 & 0 & a_{2,5} \\ 0 & 1 & a_{3,5} \end{vmatrix} = -a_{2,5}, \ \begin{vmatrix} 0 & a_{1,5} & a_{1,7} \\ 0 & a_{2,5} & a_{2,7} \\ 1 & a_{3,5} & a_{3,7} \end{vmatrix} = a_{1,5}a_{2,7} - a_{1,7}a_{2,5}.$$

Plücker relations on a chart

Consider any $\ell \times \ell$ submatrix $A^{i_1,\dots,i_k}(W) \in \mathbb{C}^{k(n-k)}$. The $\ell \times \ell$ determinant can be expanded by rows. It is a sum of ℓ terms, each one of the form

$$\mathsf{det}(1 \times 1 \; \mathsf{matrix}) \cdot \mathsf{det}((\ell-1) \times (\ell-1) \; \mathsf{matrix}).$$

Each of these terms are products of Plücker coordinates, so we get a quadratic relation in terms of these Plücker coordinates:

$$(\mathsf{Pl}\;\mathsf{coord}) = \sum_{j=1}^\ell (-1)^{j-1} (\mathsf{Pl}\;\mathsf{coord}) (\mathsf{Pl}\;\mathsf{coord}).$$

These quadratic relations are called the **Plücker relations**.

Example: G(2,4) on the $A^{1,2}$ chart

A subspace in $U_{1,2}$ can have matrix

$$\begin{bmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{bmatrix},$$

so the six Plücker coordinates are 1, c, d, -a, -b, ad-bc. The Plücker relation among these coordinates is

$$(1)(ad - bc) - (c)(-b) + (d)(-a) = 0.$$

It corresponds $W_{12}W_{34} - W_{13}W_{24} + W_{14}W_{23} = 0$ in \mathbb{P}^5 .

Matthew Kendall Grassmannians and §15.4 June 25, 2020

14 / 23

Plücker relations on Plücker coordinates

It turns out that we can write Plücker relations for G(k, n) globally in terms of Plücker coodinates.

Plücker coordinates for G(2, n)

For sequences of integers $1 \le i < j_1 < j_2 < j_3 \le n$, the Plücker coordinates for G(2, n) are

$$W_{i,j_1}W_{j_2,j_3}-W_{i,j_2}W_{j_1,j_3}+W_{i,j_3}W_{j_1,j_2}=0.$$

See [Pos] for proof.

• The Plücker relation for G(2,4) in coordinates $\{W_{12},W_{13},W_{14},W_{23},W_{24},W_{34}\}$ for $\mathbb{P}(\Lambda^2\mathbb{C}^4)=\mathbb{P}^5$ is

$$W_{12}W_{34}-W_{13}W_{24}+W_{14}W_{23}=0.$$

• The Plücker relations for G(2,5) in terms of coordinates W_{ij} , $1 \le i < j \le 5$, are

$$\begin{aligned} W_{12} \, W_{34} - W_{13} \, W_{24} + W_{14} \, W_{23} &= 0, \\ W_{12} \, W_{34} - W_{13} \, W_{24} + W_{14} \, W_{23} &= 0, \\ W_{12} \, W_{34} - W_{13} \, W_{24} + W_{14} \, W_{23} &= 0, \end{aligned} \qquad W_{12} \, W_{34} - W_{13} \, W_{24} + W_{14} \, W_{23} &= 0, \\ W_{12} \, W_{34} - W_{13} \, W_{24} + W_{14} \, W_{23} &= 0, \end{aligned}$$

$$W_{12}W_{34}-W_{13}W_{24}+W_{14}W_{23}=0.$$

4 D > 4 D > 4 E > 4 E > E 9 Q C

 Matthew Kendall
 Grassmannians and §15.4
 June 25, 2020
 15 / 23

Automorphisms of the Grassmannian

We return to Fulton-Harris §15.4.

Proposition

All automorphisms of the Grassmannian G(k,n) are induced by automorphisms of \mathbb{C}^n .

See (10.19) in [Har95] for full proof.

Half-Proof Sketch.

We show an automorphism of \mathbb{C}^n induces an automorphism of G(k,n). Represent a k-plane W in \mathbb{C}^n as a $k \times n$ matrix M_W . Multiplication on the right by an $n \times n$ matrix preserves the rank of M_W . The resulting matrix represents another k-plane in G(k,n) and this is a correspondence.

- It turns out there are more automorphisms for the case n=2k: see (10.19) in [Har95].
- Restrict attention to $SL_n \mathbb{C}$.
- Scalar multiples λI act trivially on k-planes, so we consider the action of $\mathsf{PSL}_n\mathbb{C} = \mathsf{SL}_n\mathbb{C}/\{\lambda I : \lambda^n = 1\}.$

- 4 ロ ト 4 園 ト 4 園 ト 4 園 ト 9 Q Q

16 / 23

Polynomials on the Grassmannian

Proposition

For an *n*-dimensional vector space V, the space of all homogeneous polynomials of degree m on $\mathbb{P}(\Lambda^k V^*)$ is the symmetric power $\operatorname{Sym}^m(\Lambda^k V)$.

- From Reed's §11.3 lecture, interpret $\operatorname{Sym}^k W$ as the space of homogeneous polynomials on $\mathbb{P}(W^*)$ by choosing a basis.
- It is easier to see how the homogeneous polynomials of degree m on $\mathbb{P}(\Lambda^k V)$ are $\operatorname{Sym}^m(\Lambda^k V^*)$, but [FH91] wishes to analyze $\operatorname{Sym}^m(\Lambda^k V)$.

Notation

Let the subspace $I(G)_m \subset \operatorname{Sym}^m(\Lambda^k\mathbb{C}^n)$ be the polynomials of degree m on $\mathbb{P}(\Lambda^k(\mathbb{C}^n)^*)$ that vanish on G(k, n).

Definition

Define the **homogeneous ideal** of a Grassmannian $I(G) = \bigoplus I(G)_m$. It is the set of polynomials that vanish on the Grassmannian G = G(k, n).

• It is called an ideal because if $f \in I(G)$ vanishes on the Grassmannian, so does any multiple.

Matthew Kendall Grassmannians and §15.4 June 25, 2020 17 / 23

 $I(G)_m$ is a representation of $\mathfrak{sl}_n\mathbb{C}$

Fact [Har95]

The Plücker relations generate the ideal of the Grassmannian.

Proof omitted.

Proposition

Each $I(G)_m$ is a representation of $\mathfrak{sl}_n\mathbb{C}$.

Proof.

- Elements $\mathsf{PSL}_n\mathbb{C}$ carry G(k,n) to itself bijectively.
- $\mathsf{PSL}_n\mathbb{C}$ carries Plücker coordinates of G(k,n) to linear combinations of Plücker coordinates.
- $\mathsf{PSL}_n\mathbb{C}$ sends polynomials of degree m to themselves by the fact.
- Note that the Lie algebra of $\operatorname{PSL}_n\mathbb{C}$ is $\mathfrak{sl}_n\mathbb{C}$. Differentiate $\operatorname{PSL}_n\mathbb{C} \to \operatorname{Aut}(I(G)_m)$ at the identity to get desired representation.

Matthew Kendall Grassmannians and §15.4 June 25, 2020 18 / 23

Exercises

Exercise 15.35

For G = G(2,4), deduce an isomorphism

$$I(G)_m \cong \operatorname{Sym}^{m-2}(\Lambda^2\mathbb{C}^4).$$

Proof.

- Write a polynomial $P \in \operatorname{Sym}^m(\Lambda^2\mathbb{C}^4)$ in terms of coordinates $W_{12}, W_{13}, W_{14}, W_{23}, W_{24}, W_{34}$ by choosing the standard basis $e_i \wedge e_j$, i < j, for $\Lambda^2\mathbb{C}^4$.
- We know G is a quadric hypersurface defined by the vanishing of the quadratic $f = W_{12}W_{34} W_{13}W_{24} + W_{14}W_{23}$, so P vanishes on G if and only if P is divisible by f.
- This associates P with a polynomial P/f in $\operatorname{Sym}^{m-2}(\Lambda^2\mathbb{C}^4)$. It is an isomorphism.

Matthew Kendall Grassmannians and §15.4 June 25, 2020 19 / 23

Part of Exercise 15.34

The quadratic part of the ideal of the Grassmannian G(2, n) satisfies

$$I(G)_2 \cong \Lambda^4 \mathbb{C}^n$$
.

The proof is in four steps:

1. A nonzero tensor $\varphi \in \Lambda^2 \mathbb{C}^n$ can be written as $v_1 \wedge v_2$ if and only if $\varphi \wedge \varphi = 0$.

§7.2 Problem 10, [Gun18]

Show that an exterior 2-form $\omega = \sum_{1 \leq i < j \leq n} a_{ij} u_i \wedge u_j$ in an *n*-dimensional vector space V in terms of a basis u_i also can be written as the sum

 $\omega = (v_1 \wedge v_2) + (v_3 \wedge v_4) + \cdots + (v_{2r-1} \wedge v_{2r})$ for an appropriate basis v_1, \ldots, v_n of V, where r is the largest integer such that the product $\omega \wedge \cdots \wedge \omega \neq 0$ of r copies of the form ω is nonzero.

Proof.

Use $V = \mathbb{C}^n$ and r = 1.

Matthew Kendall Grassmannians and §15.4 June 25, 2020 20 / 23

$$I(G)_2$$
 for $G(2, n)$

2. Write the matrix for $\varphi \in \Lambda^2 \mathbb{C}^n$ in skew-symmetric form in terms of the standard basis. $\varphi \wedge \varphi = 0$ if and only if the Pfaffians of the symmetric 4 \times 4 minors vanish.

Definition

The **Pfaffian** of an $2n \times 2n$ skew-symmetric matrix $A = (a_{ij})$ is the unique polynomial pf in the a_{ij} such that det $A = pf(a_{ij})^2$.

The Pfaffian of a 4×4 skew-symmetric matrix:

$$pf \begin{bmatrix}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{bmatrix} = af - be + dc.$$

Proof.

Write $\varphi = \sum_{1 \leq i < j \leq n} a_{ij} e_i \wedge e_j$. The coefficient of $e_{i_1} \wedge e_{i_2} \wedge e_{i_3} \wedge e_{i_4}$ for $i_1 < i_2 < i_3 < i_4$ in $\varphi \wedge \varphi$ is $a_{i_1i_2} a_{i_3i_4} - a_{i_1i_3} a_{i_2i_4} + a_{i_1i_4} a_{i_2i_3}$. This is the Pfaffian of the 4 × 4 symmetric minor of φ with columns i_1, i_2, i_3, i_4 .

Matthew Kendall Grassmannians and §15.4 June 25, 2020 21 / 23

$$I(G)_2$$
 for $G(2, n)$

3. The vector space generated by linear combinations of the Pfaffians is isomorphic to $\Lambda^2\mathbb{C}^n$.

Proof.

The Pfaffians are $\binom{n}{4}$ quadratic relations corresponding to a choice of four columns. They are independent. Correspond the Pfaffian $a_{i_1i_2}a_{i_3i_4}-a_{i_1i_3}a_{i_2i_4}+a_{i_1i_4}a_{i_2i_3}$ to the basis vector $e_{i_1}\wedge e_{i_2}\wedge e_{i_3}\wedge e_{i_4}$ in $\Lambda^4\mathbb{C}^n$.

4. The vector space generated by the Pfaffians is the quadratic ideal $I(G)_2$ of G(2, n)! So $I(G)_2$ is isomorphic to the vector space generated by the Pfaffians which is isomorphic to $\Lambda^2 \mathbb{C}^n$

Matthew Kendall Grassmannians and §15.4 June 25, 2020 22 / 23

References

Joe Harris. *Algebraic geometry*. Vol. 133. Graduate Texts in Mathematics. A first course, Corrected reprint of the 1992 original. Springer-Verlag, New York, 1995, pp. xx+328. ISBN: 0-387-97716-3.

Robert C. Gunning. *An introduction to analysis*. Princeton University Press, Princeton, NJ, 2018, pp. x+370. ISBN: 978-0-691-17879-0.

Andreas Gathmann. *Algebraic Geometry Notes*. URL: https://www.mathematik.uni-kl.de/~gathmann/class/alggeom-2014/alggeom-2014-c8. (accessed: 07.21.2020).

Alex Postnikov. 18.315 (Alex Postnikov, MIT, Fall 2014). URL: http://web.mit.edu/clian/www/315_notes.pdf. (accessed: 07.22.2020).

 4 □ ▶ 4 ⓓ ▶ 4 ⓓ ▶ 4 ⓓ ▶ 4 ⓓ ▶ 3 ⓓ ♥ 9 ०

 Matthew Kendall
 Grassmannians and §15.4
 June 25, 2020
 23 / 23