Chapitre 3

Ensemble, relation, fonction

Définitions 3.1

Ex. 1 — Remplir si possible chacune des cases suivantes :

DX. 1 Rempin si possible chacune des cases survantes.			
Mots	Extension	Compréhension	intervalle
Les nombres pairs.			
	$\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$		
		$\{x \in \mathbb{Z} \mid x \le 5\}$	
]0,1[
Nombre premier plus petit que 5.			

 $\mathbf{Ex.}\ \mathbf{2}$ — Vrai ou faux

a.
$$\frac{18}{2} \in \mathbb{Z}$$

b. $\{2,4,6\} \in \mathbb{N}$

c. $\pi \in \mathbb{Q}$

d. $2 \in \{\{2\}\}$

e. $\{2\} \in \{\{2\}\}$

f. $\{2,3,5\} \subseteq \mathbb{R}$

g. $\emptyset \in \{0, 1, 2, 3, ...\}$

h. $\emptyset \subseteq A$, A un ensemble

i. $A \subseteq A$, A un ensemble

j. $\{\emptyset\} \subseteq \mathbb{N}$

* k. $\mathbb{R} \subseteq \mathbb{C}$

* 1. $\mathbb{R}^2 \subseteq \mathbb{R}^3$

* m. $\emptyset \subseteq \mathbb{R}^3$

* n. $I_2 \in \mathbb{R}^2$

* o. $\emptyset \in \mathbb{R}^3$

Ex. 3 — Soit $A = \{a, b, c\}$ et $B = \{1, 2, 3, 4\}$. Énumérer les éléments de $A \times B$.

 ${\bf Ex.~4}$ — Représenter en extension l'ensemble puissance des ensembles suivants :

a. $\{a, b\}$

b. $\{a, b, c\}$

c. $\{a\}$

d. $\{\{\}\}\$ (c'est à dire $\{\emptyset\}$)

e. $P(\{a,b\})$

f. $\{a,b\} \times \emptyset$

 $\mathbf{Ex.}\ \mathbf{5}$ — Donner la cardinalité des ensembles suivants :

a. \varnothing g. $P(P(\varnothing))$ b. $\{\varnothing, \{a\}\}$ h. \mathbb{Z} c. $\{a, \{a\}, \{a, \{a\}\}\}\}$ i. $\{x \in \mathbb{N} \mid x \text{ est premier}\}$ d. $P(\{a, b, c\})$ j. $A \times A$, si $A = \{a, b, c\}$ e. $P(\{a, \{a\}, \{a, \{a\}\}\})$ k. $P(A) \times A$, si $A = \{a, b, c\}$ f. $P(\varnothing)$ l. $\{x \in \mathbb{N} \mid x_b \text{ a au plus 5 chiffres }\}$

3.2 Opérations sur les ensembles

Ex. 6 — Soit les trois ensembles suivants :

•
$$U = \{a, b, c, d, e, f, g, h\}$$

•
$$A = \{a, b, c, d, e\}$$

•
$$B = \{a, b, f\}$$

•
$$C = \{b, c, d, g\}$$

2

- a. Représenter par un diagramme de Venn les ensembles A,B,C.
- b. Énumérer l'ensemble $A \cup B$.
- c. Énumérer l'ensemble $A \cap \overline{C}$.
- d. Énumérer l'ensemble A B.
- e. Énumérer l'ensemble $A \cap B \cap C$.

- f. Énumérer l'ensemble $A \cup B \cup C$.
- g. Énumérer l'ensemble $\overline{A \cap B \cap C}$.
- h. Énumérer l'ensemble $\overline{A \cap B}$.
- i. Énumérer l'ensemble $\overline{A} \cup \overline{B}$.
- j. Énumérer l'ensemble $\overline{A} \cap B$.

Ex. 7 — Soient
$$A = \{x \in \mathbb{Z} \mid x \text{ est pair}\}\$$
et $B = \{x \in \mathbb{Z} \mid x \text{ est multiple de } 3\}.$

a. Quelle est l'union $A \cup B$?

b. Quelle est l'intersection $A \cap B$?

Ex. 8 — Soit
$$U = \mathbb{R}$$
 (ensemble des réels), $A = [0, 5]$ et $B = [3, 10]$.

- a. Quelle est l'union $A \cup B$?
- b. Quelle est l'intersection $A \cap B$?
- c. Quelle est \overline{A} ?
- d. Quel est $\overline{A \cup B}$?

Ex. 9 — Soit
$$A = \{x \in \mathbb{R} \mid x > 1\}$$
 et $B = \{x \in \mathbb{R} \mid x \le 4\}$.

- a. Quel est le complémentaire de l'union A et de B?
- b. Quel est le complémentaire de l'intersection A et de B?

Ex. 10 — Parmi 40 postes de travail, 25 ont des licences *Maple* et 30 ont des licences *Office* et 4 n'en ont aucune. Calculer le nombre de postes qui ont les deux licences?

Ex. 11 — Dans un groupe de 38 personnes :

- 18 parlent français;
- 18 parlent anglais;
- 26 parlent espagnol;
- 14 parlent français et espagnol;
- 9 parlent français et anglais;
- 13 parlent anglais et espagnol;
- 4 ne parlent ni français, ni anglais, ni espagnol.

Représenter cette situation avec un diagramme de Venn.

Ex. 12 — On a catégorisé les dépenses d'un groupe de 160 étudiants. Parmi ceux-ci, 81 possède un cellulaire, 97 une automobile et 89 un logement. De plus, 21 ont ces trois dépenses et 4 n'en n'ont aucune. Finalement, 140 ont un cellulaire ou une automobile et 151 ont une automobile ou un logement Calculer combien d'étudiants ont seulement un cellulaire.

3.3 Produit cartésien, relations et fonctions

Ex. 13 — Identifier les fonctions dans les réels parmi les relations suivantes :

$$a. \quad f(x) = \frac{x+1}{x-1}$$

c. $f(x) = log(x^2 - 1)$

d. f(x) = sin(x)

b. $f(x) = 3 + \frac{2}{x}$

e. $f(x) = \pm \sqrt{x^4 + 3}$

f. f(x) = tan(x)

Ex. 14 — Identifier le domaine et la portée des fonctions suivantes :

b. $f(x) = \sqrt{x^2 + 6x + 5}$

c. $f(x) = log_{\pi} \left(\frac{4}{x^2}\right)$

Ex. 15 — Décrire en compréhension la portée de $f: A \rightarrow B$.

Ex. 16 — Déterminer si les relations décrites sont des fonctions injectives, surjectives et bijectives de $\mathbb Z$ dans $\mathbb{Z}.$

a.
$$f(n) = n + 1$$

c.
$$f(n) = 2n^3 + 1$$

b.
$$f(n) = 2n^2 + 1$$

d.
$$f(n) = \left\lfloor \frac{n}{3} \right\rfloor$$

Ex. 17 — Déterminer si les relations décrites sont des fonctions injectives, surjectives et bijectives de $\mathbb R$ dans $\mathbb{R}.$

a.
$$f(x) = k, k \in \mathbb{Z}$$

c.
$$f(x) = 2x^2 + 1$$

d. $f(x) = 2x^3 + 1$

b.
$$f(x) = 2x + 1$$

d.
$$f(x) = 2x^3 + 1$$

Ex. 18 — Démontrer que $f(x) = 3x^2 - 6x + 4$ n'est pas une fonction surjective de \mathbb{R}^2 .

Ex. 19 — Démontrer que f(x) = 5x - 3 est une fonction injective de \mathbb{R}^2 .