TRAJECTORIES with COSMOGRAVITY TUTORIAL

Choose the type of mass and mobile

Enter the physical parameters of the trajectory

Click on Start to start the simulation

Calculated						
values						
during the						
simulation						

r(m)	Proper time	Acceleration gradient	U _r (m.s ⁻¹)	U _φ (m.s ⁻¹)	Distant observer time	spectral shift
4.993e+4	1.578e-4	5.952e+5	-9.044e+5	4.883e+7	1.651e-4	4.511e-2

Calculation on break

Baryonic mass and particle

Inputs:

M = 2.000e + 30 kg

 $r_{phy} = 1.000e + 4 \text{ m}$

Scale of the simulation

reference frame

Distant observer

mobile1:

 $r_0 = 5.000e + 4 m$

 $U_e(r_0) = 5.100e + 7 \text{ m.s}^{-1}$

 $U_r(r_0) = 0.000e + 0 \text{ m.s}^{-1}$

The Save button saves the graphic and the Inputs.

The Stop key ends the simulation and resets the inputs to the default values ... but the Last values key is used to recall the previous inputs.

Example 1: Small asteroid

Example 1 : Simulation result

