Разработка системы анимации трехмерных сцен на GPU

Иванов Тимофей (8-1)

Амбросовская Дарья (8-2)

Фокеев Борис (8-2)

Подкопаев Александр (8-4) Сорин Алексей (10-5)

Уросова Софья (8-4)

Григорович Вячеслав (9-5)

Крейнин Матвей (9-5)

Писарев Евгений (9-5)

Синяков Степан (9-5)

Файзуллин Музаффар (10-1)

Шабанов Никита (10-3)

Мосягин Олег (10-5)

Сорин Николай (10-5)

Филиппов Денис (10-5)

Кожухаров Никита (10-6)

Пономаренко Ульяна (10-6)

Тарасов Денис (10-6)

Научный руководитель: Галинский В.А.,

руководитель группы компьютерной графики, преподаватель информатики и программирования СПб губернаторского физико-математического лицея № 30 Computer Graphics Support Group

Санкт-Петербургский губернаторский физико-математический лицей № 30

Структура проекта

Система анимации

Система управления объектами анимации

Базовые поля структуры объектов анимации:

- Инициализация
- Деинициализация
- Обработка сообщений
- Отрисовка
- Регистрация отложенного вывода
- Очередь в списке объектов отложенной отрисовки

Хранение объектов анимации:

- Основной контейнер
- Контейнер объектов отложенного вывода
- Массив объектов отложенного вывода

Система рендеринга

сесс Конвейер вывода

Конвейер вывода: G-buffers

Заполнение буферов кадра

Вывод объектов и их освещение

Отложенный вывод неосвещаемых объектов

Материалы поверхности

Каждый примитив по разному освещается и обрабатывается.

Computer Graphics Support Group

Санкт-Петербургский губернаторский физико-математический лицей № 30

Отложенное освещение

Заполняем буфер кадра (G-buffers)

Обнуляем цветовые плоскости

Включаем режим смешивания цветов

Применяем модель освещения для каждой точки на экране

Пример смешивания цветов конического источников света

Источники света

Точечный (Point)

Отложенное построение

Контейнер для отложенных объектов

Рисование в конце кадра

Отложенное построение используют:

- •lights
- deferred primitives
- particles
- font
- •lens flare

Отложенное построение

Lens Flares

- Возможность вывода в плоскости экрана блика от источника света
- Придание реалистичности композиции
- Быстрое выполнение за счет выполнения построения на видеокарте

Computer Graphics Support Group Санкт-Петербургский губернаторский физико-математический лицей № 30

Ресурсы: Шейдера

Шейдера: Vertex + Tessellation + Geometry + Fragment

Vertex: Прием и передача координат дальше по конвейеру.

Tessellation: Построение ломанных линий, которые являются каркасом будущей травы.

Geometry: Вокруг этих ломанных генерируется оболочка, являющаяся корпусом травы.

Fragment: Заполнение геометрических буферов для

последующего вывода.

Сесь Шейдера: Vertex + Tessellation + Geometry + Fragment

Поэтапная генерация травы.

СССС Шейдера: Vertex + Tessellation + Geometry + Fragment

Адаптивная тесселяция

Сесе Шейдера: Vertex + Tessellation + Fragment

Vert: Проброс вершин.

Ctrl: Задание количества разбиений.

Eval: Размещение вершин и расчет нормалей.

Frag: Наложение текстур по маске.

Computer Graphics Support Group Санкт-Петербургский губернаторский физико-математический лицей № 30

Ресурсы: Текстуры

Используемые виды:

- •2D Textures
- •2D Textures x 6 (Cube-Map)

MIP mapping

Поддерживаемые форматы:

- •R32UI, RGBA8
- •R32F, RGB32F, RGBA32F

Вкл.

Текстуры

Использование

Текстурирование объектов

Вывод текста

Система частиц **Computer Graphics Support Group**

Построение карт высот

Skybox

FBO

еесе Топологии

Примитивы

Контекстное моделирование

Подсистема управления памятью

Преимущества:

- Возможность хранения в едином пространстве
- Легкость выполнения работ с системой хранения

Разработка кода

- Авторов: 18
- Языки: C/GLSL (вершинные, тесселяционные, геометрические, фрагментные шейдера)
- Время разработки: декабрь 2017-апрель 2018
- Размер кода: 600 KiB (60 x *.c – 340 KiB, 30 x *.h – 130 KiB, 80 x *.glsl – 130 KiB)
- Строк кода: 21000 (*.c – 11500, *.h - 4700, *.glsl – 4800)

Разработка кода

- Иванов Тимофей (8-1)
 подсистемы ввода и синхронизации по времени, наложение теней
- Амбросовская Дарья (8-2) подсистема управления материалами
- Фокеев Борис (8-2)
 построение небесных оболочек
- Подкопаев Александр (8-4)
 прикладные примеры объектов анимации
- Уросова Софья (8-4)
 подсистема управления памятью, эффекты в плоскости экрана
- Григорович Вячеслав (9-5)
 подсистема вывода, иерархическое (контекстное) моделирование
- Крейнин Матвей (9-5) подсистема освещения
- Писарев Евгений (9-5)
 подсистема вывода, иерархическое (контекстное) моделирование
- Синяков Степан (9-5) подсистема управления примитивами

- Файзуллин Музаффар (10-1)
 подсистема управления анимацией
- **Шабанов Никита (10-3)** система вывода в геометрические буфера, экранные эффекты
- Мосягин Олег (10-5)
 подсистема управления шейдерами, процедурно генерируемые объекты
- Сорин Алексей (10-5) подсистема топологий
- Сорин Николай (10-5) подсистема управления изображениями
- Филиппов Денис (10-5)
 система вывода в геометрические буфера, визуализация частиц
- Кожухаров Никита (10-6)
 библиотека пространственной математики, объекты управления камерой
- Пономаренко Ульяна (10-6)
 прикладные примеры объектов анимации
- Тарасов Денис (10-6) подсистема управления текстурами, тесселяционные объекты

Computer Graphics Support Group Санкт-Петербургский губернаторский физико-математический лицей № 30

