Aufgabe 1

Abbildung 1: Quantenschaltkreis Q entspricht dem Schaltkreis aus Präsenzübung 4 Aufgabe 4

Gesucht ist ein Schaltkreis, welcher die reversieble Einbettung $U_f \mid \overrightarrow{x}y \rangle \rightarrow \mid \overrightarrow{x}\rangle \bigotimes \mid f(\overrightarrow{x}) \oplus y \rangle$ berechnet. Ein Bestandteil des Schaltkreises darf das Quantengate Q sein, welches dem Schaltkreis aus Aufgabe 4 der Präsenzübung 4 entspricht (Abb. 1). Das U_f dieser Aufgabe entspricht dabei dem U_f der Präsenzaufgabe. Um nun aus Q das Gate U_f zu erhalten muss jeweils die Auswirkung des Gates W_2 auf $\mid y \rangle$ ausgeglichen werden. Dazu kann man die Eigenschaft von W_2 nutzen, dass $\mid y \rangle \xrightarrow{W_2} \xrightarrow{W_2} \mid y \rangle$ ist.

Abbildung 2: Schaltkreis aus W_2 und Q um U_f zu selektieren

Das voran und nachstellen von W_2 auf $|y\rangle$ sorgt nun dafür, dass auf $|\vec{x}y\rangle$ nur U_f wirkt und das der gesuchten Schaltung entspricht.

/

hulg. 12 3 9 £ 4 9,5 3 6 18,5

Aufgabe 2

a)

Abbildung 3: Quantenschaltkreis für die reversible Einbettung von f

b)

Abbildung 4: Quantenschaltkreis Q_S des Algorithmus von Simon für dieses f

c)
$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} s_1 \\ s_1 \\ s_1 \\ 0 \end{pmatrix} = \begin{pmatrix} s_2 \\ s_3 \\ s_4 \\ 0 \end{pmatrix}$$
$$\Rightarrow (s_1, s_2, s_3, s_4) = (1, 1, 1, 1) \lor (s_1, s_2, s_3, s_4) = (0, 0, 0, 0)$$

d) $Pr[n-1 \text{ Vektoren aus } \mathbb{F}_2^n \text{ sind linear unabhängig}]$

 $=\prod_{i=1}^{n-1}Pr[y_i\neq 0^n\wedge y_i \text{ ist l.u. von } y_1 \text{ bis } y_{i-1}]$ $=\prod_{i=0}^{n-2}Pr[y_{i+1}\neq 0^n\wedge y_{i+1} \text{ ist l.u. von } y_1 \text{ bis } y_i]$ $=\prod_{i=0}^{n-2}Pr[y_{i+1}\neq 0^n\wedge y_{i+1}\notin \{y_1,..,y_i\}\wedge y_{i+1} \text{ ist nicht Summe zweier oder mehr ungleicher Summanden aus}$ $\{y_1,..,y_i\}$

 $= \prod_{i=0}^{n-2} \frac{2^{n-1-i} - \binom{i}{2} - \binom{i}{3} - \dots - \binom{i}{i}}{2^{n}} = \prod_{i=0}^{n-2} \frac{2^{n} - \sum_{j=0}^{i} \binom{i}{j}}{2^{n}} = \prod_{i=0}^{n-2} \frac{2^{n} - 2^{i}}{2^{n}} = \prod_{i=0}^{n-2} (\frac{2^{n}}{2^{n}} - \frac{2^{i}}{2^{n}}) = \prod_{i=0}^{n-2} (1 - 2^{i-n})$

 $\int_{i=0}^{2} (1-2^{i-4}) = (1-2^{-4})(1-2^{-3})(1-2^{-2}) = \frac{315}{512} \approx 62\%$

remoited homplished.

2' Martich hiater

New day, with gludwertalt in Fr (24: 57 =0)

Übungsgruppe: Mo. 16:00 Daniel Teuchert 108012214552

Aufgabe 3

Da $S_u = \{ \land, \neg, c \}$ universell ist, kann insbesondere jede reversible Funktion mittels S_u dargestellt werden. Es genügt daher, jedes Element als Verknüpfung von T, Hilfsvariablen und 0, 1 zu schreiben (s. Script).

Sei $S_q' = \{T_{\wedge}, T_{\neg}, T_c\}$ das r-reversible Pendant zu S_u mit dem gezeigt wird, dass $S_q = \{T\}$ r-reversibel ist.

$$T_{\wedge} = T(x_1, x_2, 0) = (x_1, x_2, x_1 x_2)$$

$$T_{\neg} = T(x_1, 1, 1) = (x_1, 1, 1 + x_1) = (x_1, 1, -x_1)$$

$$T_c = T(x_1, 1, 0) = (x_1, 1, x_1)$$

 $S_u = \{ \land, \neg, c \}$ kann also durch $S_q' = \{ T_\land, T_\neg, T_c \}$ dargestellt werden, wobei lediglich das Toffoli-Gate T und 0, 1 verwendet werden. Daraus folgt, dass $S_q = \{ T \}$ r-reversibel ist.

Übungsgruppe: Mo. 16:00 Daniel Teuchert 108012214552

Aufgabe 4

617

(angle, rangle stated of Cruppe

- a) Nach dem Satz von Lagrange gilt: Die Ordnung jeder Untergruppe teilt die Ordnung der Gruppe. Da < a > in $\mathbb{Z}_{p_i}^*$ eine Untergruppe der Gruppe < a > in \mathbb{Z}_N^* mit a ist Generator ist, folgt $t_i | t \forall i \in \{1, ..., k\}$. Daraus folgt, dass $t = kgV(t_1, ..., t_k)$ Daraus folgt außerdem, das $s = max\{s_1, ..., s_k\}$, denn die maximale Potenz von 2 in einem der t_i muss auch in t vorkommen, da t das kgV von allen t_i ist.
- b) $s_i = r_i$ gilt gdw. a ein quadratischer Rest modulo p_i ist. Da a uniform aus \mathbb{Z}_N^* gezogen wird, gilt für jedes i unabhängig: $a \in_R \mathbb{Z}_{p_i}^*$ Außerdem gilt für $\mathbb{QR} = \{x \in \mathbb{Z}_{p_i}^* | x \text{ ist Quadratischer Rest modulo } p_i\}$: $|\mathbb{QR}| = \frac{|\mathbb{Z}_N^*|}{2}$. Dies liegt daran, dass $x \to x^2$ eine 2 zu 1 Abbildung ist $(x^2 = (-x)^2)$. Somit gilt Ws[a ist quadratischer Rest modulo a ist a ist quadratischer Rest modulo a is a is a in a in a is a in a
- c) Fall 1: $r_j = r_i$ $\operatorname{Ws}[s_i \neq s_j] \geq \operatorname{Ws}[s_i = r_i \land s_j \neq r_j] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

Fall 2:
$$r_j \neq r_i$$

Ws $[s_i \neq s_j] \ge$ Ws $[s_i = r_i \land s_j = r_j] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

- $\begin{aligned} &\operatorname{Ws}[s_i \neq s_j] \operatorname{Ws}[s_i \neq s_j] + r_i \operatorname{Ws}[r_j = r_i] + \operatorname{Ws}[r_j = r_i] + \operatorname{Ws}[r_j = r_i] + 1 \operatorname{Ws}[$
- Es gilt: $\operatorname{ord}_{\mathbb{Z}_N^*}(a) = t = 2^s u$ und $\operatorname{ord}_{\mathbb{Z}_{p_i}^*}(a) = t_i = 2^{s_i} u_i$ Wie in a) gezeigt, gilt $t = \operatorname{kgV}(t_1, ..., t_k)$ und somit auch $s = \max\{s_1, ..., s_k\}$ Daraus folgt, das u_i u teilt, denn t_i teilt t $\Rightarrow u_i \cdot K = u$ für K ungerade $\Rightarrow a^{2^{s_i-1}u} = a^{\frac{2^{s_i}u_i\cdot K}{2}} \mod p_i$ Es gilt: $t_i = \operatorname{ord}(a) \mod p_i$: $\Rightarrow 1^{\frac{K}{2}} = 1^{\frac{1}{2}} \mod p_i$ Hierfür gibt es nur 2 Lösungen: 1 und -1

In diesem Fall bleibt jedoch nur die Lösung $a^{2^{s-1}u}=-1 \bmod p_i$, da $a^{\frac{2^{s_i-1}u_i}{2}}$ nicht 1 sein kann, da $\frac{2^{s_i-1}u_i}{2} < t_i = \operatorname{ord}(a) \bmod p_i$, also muss gelten $a^{\frac{2^{s_i-1}u_i}{2}}=-1 \bmod p_i$ und weil K ungerade ist, kann auch $a^{(\frac{2^{s_i-1}u_i}{2})^K} \bmod p_i$ nicht 1 werden.

e) Wie bereits in d) gezeigt, gilt: $a^{2^{s_i-1}u} \mod p_i = -1$, falls $s_i \ge 1$ Fall 1: $s_i = s$ $\Rightarrow a^{2^{s-1}u} = a^{2^{s_i-1}u} = -1 \mod p_i$ $\Rightarrow a^{2^{s-1}u} = -1 \mod p_i$, falls $s_i = s$

Fall 2: $s_i < s \Rightarrow s = s_i + k$, mit $k \ge 1$ $\Rightarrow a^{2^{s-1}u} = a^{2^{s_i+k-1}u} = a^{2^{s_i-1}2^ku} = (a^{2^{s_i-1}u})^{2^k} = (-1)^{2^k} = 1^{2^{k-1}} = 1 \mod p_i$ $\Rightarrow a^{2^{s-1}u} = 1 \mod p_i$, falls $s_i < s$. Daraus folgt auch: u_i teilt u, da beide Zahlen ungerade sind und somit nicht

= 1997(--) \$1 75 mit & 25-14 mode; =+1

=) 95T(...) +N

in 2^{s_i} bzw. 2^s enthalten sind.

f) Falls gilt: $a^{2^{s-1}u} \mod p_i = -1 \Rightarrow a^{2^{s-1}u} + 1 = K \cdot p_i$, für ein $K \in \mathbb{Z}$ Fall 1: ggT(N, K) = 1 $\Rightarrow ggT(N, a^{2^{s-1}u} + 1) = p_i$, also ein nicht-trivialer Teiler von N.

Fall 2: ggT(N, K) = q, aber p_i teilt nicht K

 $\Rightarrow ggT(N, a^{2^{s-1}u} + 1) = p_i \cdot q$, also ein nicht-trivialer Teiler von N.

Fall 3: ggT(N, K) = q und p_i teilt $K \Rightarrow p_i$ teilt q \Rightarrow ggT $(N, a^{2^{s-1}u} + 1) = q$, also ein nicht-trivialer Teiler von N.

 \Rightarrow wenn $\exists i$, mit $a^{2^{s-1}u} \mod p_i = -1$, gilt $ggT(N, a^{2^{s-1}u})$ ist ein nicht-trivialer Teiler. Dieser Fall tritt genau dann ein, wenn es ein j gibt mit $s_j \geq 1$, denn dann gibt es ein i mit $s_i = \max\{s_1, ..., s_k\} = \max\{s_1, ..., s_k\}$ $s \ge 1$ und es gilt $a^{2^{s_i-1}u} = -1 = a^{2^{s-1}u} \mod p_i$. Ws $[s \ge 1] = \text{Ws}[\exists i \ne j \text{ mit } s_i \ne s_j] \ge \frac{1}{4}$ (siehe c)) \Rightarrow Mit Ws $\frac{1}{4}$ ist $ggT(N, a^{2^{s-1}u})$ ein nicht-trivialer Teiler. Fhi mut & a 2 " a mode ==

g) Algorithmus:

1. Wähle $a \in_R \mathbb{Z}_N^*$ uniform

2. Berechne PERIODE(N, a) und erhalte so $t = \operatorname{ord}_{\mathbb{Z}_N^*}(a)$ mit $t = 2^s \cdot u$

Plane 3. Berechne $\frac{a}{2}$ 1=x

Session 4. Berechne ggT(N,x)=p

5. Falls gilt: p|N gebe p aus, sonst gehe zu Schritt 1

Korrektheit: $x = \frac{a^t}{a} + 1 = \frac{a^{2^s \cdot u}}{a^2} + 1 \not\bowtie a^{2^{s-1} \cdot u} + 1$ Es gilt mit Ws $\geq \frac{1}{4}$ dass ggT(N, x) = p ein nicht-trivialer Teiler von N ist und das somit gilt p|N Bei dem zweifachen durchlaufen von den Schritten 1-4 ist die Wahrscheinlichkeit einen nicht-trivialen Teiler gefunden zu haben schon bei $1 - (\frac{3}{4})^2 = 0,4375 = 43,75\%$

Laufzeit: PERIODE(N, a): O(T(N)), ggT(N, x): O(log(Nx))Gesamt: $O(\max\{T(N), \log(N)^3)\}) = O(T(N) + \log(N)^3) = O(T(N)\log(N)^3)$.

> 95T geht in for ? (N) (Berechnen von a * foer med N benit. St log3 N)