Titanic: Machine Learning from Disaster

徐永棚

(m) Getting Started Prediction Competition

Titanic: Machine Learning from Disaster

Start here! Predict survival on the Titanic and get familiar with ML basics

Kaggle · 19,264 teams · Ongoing

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	只用這兩個訓練模型
Age	Age in years	八角色附凹训练法坐
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

train = pd.read_csv("train.csv") 訓練資料 test = pd.read_csv("test.csv") 測試資料 submission = pd.read_csv("gender_submission.csv") 要的上傳檔案格式

前處理

Passenger I	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	Braund, M	male	22	1	0	A/5 21171	7.25		S
2	1	1	Cumings, l	female	38	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen,	female	26	0	0	STON/O2.	7.925		S
4	1	1	Futrelle, M	female	35	1	0	113803	53.1	C123	S
5	0	3	Allen, Mr.	male	35	0	0	373450	8.05		S
6	0	3	Moran, Mr	male		0	0	330877	8.4583		Q
7	0	1	McCarthy,	male	54	0	0	17463	51.8625	E46	S
8	0	3	Palsson, M	male	2	3	1	349909	21.075		S

```
train['Sex_Code'] = train['Sex'].map({'female' : 1, 'male': 0}).astype('int')
test['Sex_Code'] = test['Sex'].map({'female' : 1, 'male': 0}).astype('int')
```

新增一個欄位:Sex_Code

把female轉成1 把male轉成0

knn

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
#KNN
Base = ['Sex_Code', 'Pclass']
#測試k是多少可以得到最高的準確度
k_range = range(1,100)
                                   透過交叉驗證來測試我們模型訓練的好壞
k_scores = []
for k number in k range:
   knn = KNeighborsClassifier(n_neighbors=k_number)
   scores = cross_val_score(knn,train[Base],train['Survived'],cv=5,scoring='accuracy')
    k_scores.append(scores.mean())
                                                            分成5組
print('max score:',max(k_scores))
print('best k:',k_scores.index(max(k_scores)) + 1)
plt.plot(k_range,k_scores)
plt.xlabel('Value of K')
                                             max score: 0.7901073378946708
plt.ylabel('Cross Validated Accuracy')
                                                                        在k=1~100找最好的k
                                             best k: 6
plt.show()
                                                0.7900
                                               0.7875
                                              0.7850
                                              g 0.7825
                                               0.7800
                                              ပ္ကို 0.7775
                                               0.7750
```

0.7725

Value of K

knn

▶ 直接提交到kaggle上,準確率為0.77511

```
knn = KNeighborsClassifier(n_neighbors=6)
knn.fit(train[Base],train['Survived'])
submit = knn.predict(test[Base])
submit = pd.DataFrame({'PassengerId': submission['PassengerId'], 'Survived':submit})
submit.to_csv("submit_knn.csv", index = False)
#kaggle 0.77511
```

Decision tree

▶ 一樣用cross validation,大概看一下準確率

```
from sklearn.tree import DecisionTreeClassifier

dctree = DecisionTreeClassifier(max_depth=3)
#dctree.fit(train_data,train_label)
#ans = dctree.predict(test_data)
scores = cross_val_score(dctree,train[Base],train['Survived'],cv=5,scoring='accuracy')
print(scores)
```

[0.74860335 0.79213483 0.78651685 0.75280899 0.78651685]

▶ 直接上傳到kaggle,準確率為0.77511

```
dctree.fit(train[Base],train['Survived'])
submit = dctree.predict(test[Base])
submit = pd.DataFrame({'PassengerId': submission['PassengerId'], 'Survived':submit})
submit.to_csv("submit_dctree.csv", index = False)
#0.77511
```

Decision tree

```
dotfile = open("C:/Users/徐永棚/ML_hw/dtree2.dot", 'w')
tree.export_graphviz(dctree, out_file = dotfile, feature_names = Base)
dotfile.close()
```


WebGraphviz is Graphviz in the Browser: http://webgraphviz.com/

Naïve Bayes

▶ 一樣用cross validation,大概看一下準確率

```
from sklearn.naive_bayes import CategoricalNB
NB = CategoricalNB()
#NB.fit(train_data,train_label)
#ans = NB.predict(test_data)
scores = cross_val_score(NB,train[Base],train['Survived'],cv=5,scoring='accuracy')
print(scores)
```

[0.80446927 0.80337079 0.78651685 0.75280899 0.78651685]

▶ 直接上傳到kaggle,準確率為0.76555

```
NB.fit(train[Base],train['Survived'])
submit = NB.predict(test[Base])
submit = pd.DataFrame({'PassengerId': submission['PassengerId'], 'Survived':submit})
submit.to_csv("submit_naive.csv", index = False)
#0.76555
```