Assignment 5: E-R Diagram Structure

EPPS 6354: Information Management

1. An E-R diagram can be viewed as a graph. What do the following mean in terms of the structure of an enterprise schema?

- The graph is disconnected.
 - Entity sets are not related to each other if the graph is disconnected
 - This means that the sets are completely independent of each other
- The graph has a cycle.
 - This indicates that there is a relationship between connected pairs of entity sets on the cycle
 - A minimum of two types of relations between pairs of entity sets may exist in a cycle

2. Construct an E-R diagram for a hospital with a set of patients and a set of medical doctors.

• Associate with each patient a log of the various tests and examinations conducted.

3. Why do we have weak entity sets?

- Weak entity sets can be converted into a strong entity set by adding primary key attributes.
- The purpose of weak entity sets is to demonstrate that a relation has a dependent relationship with a strong entity set.
- Converting weak entity sets into strong entity sets results in data redundancy (both sets include the same primary key) and impacts data storage.

4a. SQL exercise

• i. Find ID and name of each employee who lives in the same city as the location of the company for which the employee works.

```
SELECT e.ID, e.person_name
FROM employee AS e, works AS w, company AS c
WHERE e.ID = w.ID AND w.company_name = c.company_name
AND e.city = c.city;
```

4a. SQL exercise

• ii. Find ID and name of each employee who lives in the same city and on the same street as does her or his manager.

```
SELECT e.ID, e.person_name
FROM employee AS e, employee AS em, manages AS m
WHERE e.ID = em.ID AND em.ID = m.ID AND e.street = em.street
AND e.city = em.city;
```

4a. SQL exercise

• iii. Find ID and name of each employee who earns more than the average salary of all employees of her or his company.

```
SELECT e.ID, e.person_name
FROM employee AS e
WHERE salary > (SELECT AVG(salary)
FROM works AS w
WHERE e.ID = w.ID);
```

4b. SQL exercise

• This query lists the Game Design course twice.

```
SELECT name, title
FROM instructor NATURAL JOIN teaches NATURAL JOIN section NATURAL JOIN course
WHERE semester = 'Spring' AND year = 2017;
```

name	title						
Brandt	Game Design						
Brandt	Game Design						
Kim	Intro. to Digital Systems						

4b. SQL exercise

• This error occurs because the course had two sections in Spring 2017 with the same instructor, Prof. Brandt.

```
SELECT *
FROM course AS c NATURAL JOIN teaches AS t NATURAL JOIN instructor AS i
WHERE t.semester = "Spring" AND t.year = 2017;
```

course_id	title	dept_	name	credits	ID	sec_id	semester	year	name	salary
CS-190	Game Design	Comp.	Sci.	4	83821	1	Spring	2017	Brandt	92000
CS-190	Game Design	Comp.	Sci.	4	83821	2	Spring	2017	Brandt	92000
EE-181	Intro. to Digital Systems	Elec.	Eng.	3	98345	1	Spring	2017	Kim	80000

4b. SQL exercise

• The following code ensures that the course name is selected only once.

```
SELECT DISTINCT i.name, c.title
FROM course AS c NATURAL JOIN teaches AS t NATURAL JOIN instructor AS i
WHERE t.semester = "Spring" AND t.year = 2017;
```

name	title							
Brandt	Game Design							
Kim	Intro. to Digital Systems							