

比亚迪维修手册

齿轮齿条式电动助力转向系统 (R-EPS)

目录

1.	EPS 系统概述	2
	EPS 系统电路及引脚定义图	
	EPS 系统自诊断及故障排除	
	维修注意事项	
	转角标定和软件配置	
	拆制	g

1. EPS 系统概述

1.1 系统介绍

EPS(Electric Power Steering,以下简称 EPS)系统,是指利用 EPS 电机提供转向动力,辅助驾驶员进行转向操作的转向系统。该系统是由传感器(扭矩转角传感器、车速传感器)、控制器(EPS 电子控制单元)、执行器(EPS 电机)以及相关机械部件组成。

1.2 系统功能

EPS 系统是在机械转向系统的基础上,将最新的电子技术和高性能的电机控制技术应用于汽车转向系统。R-EPS 系统在原有汽车转向系统的基础上,改造并且增加了以下几个部分: EPS 电子控制单元、扭矩及转角传感器、EPS 电机系统的传动机构采用电机驱动,取代了传统机械液压机构。它能够在各种环境下给驾驶员提供实时转向盘助力。

EPS 系统由电机提供助力,助力大小由 EPS 电子控制单元实时调节与控制,根据车速的不同提供不同的助力,改善汽车的转向特性,减轻停车泊位和低速行驶时的操纵力,提高高速行驶时的转向操纵稳定性,进而提高了汽车的主动安全性。

EPS 系统主要有以下几个功能:

① 助力控制功能

EPS 的助力特性属于车速感应型,即在同一转向盘力矩输入下,电机的目标电流随车速的变化而变化,能较好地兼顾轻便性与路感的要求。EPS 的助力特性采用分段型助力特性,根据转向盘偏离方向施加助力转矩,以保证低速时转向轻便,高速时操作稳定并获得较好的路感;

② 回正控制功能

转向时,由于转向轮主销后倾角和主销内倾角的存在,使得转向轮具有自动回正的作用。 EPS 系统在机械转向机构的基础上,增加了 R-EPS 电机和减速机构。R-EPS 系统通过 R-EPS 电 子控制单元对 R-EPS 电机进行转向回正控制,与前轮定位产生的回正力矩一起进行车辆的转向 回正动作,使转向盘迅速回正,抑制转向盘振荡,保持路感,提高转向灵敏性和稳定性,优化转 向回正特性,缩短了收敛时间。回正控制通过调整回正补偿电流,进而产生回正作用转矩,该转 矩沿某一方向使转向轮返回到中间位置;

③ 阻尼控制功能

车辆高速行驶时,通过控制阻尼补偿电流进行阻尼控制,增强驾驶员路感,改善车辆高速行驶情况下转向的稳定性。

1.3 工作原理

汽车转向时,扭矩及转角传感器把检测到的扭矩及角度信号的大小、方向经处理后传给 R-EPS 电子控制单元,R-EPS 电子控制单元同时接收车速信号,然后根据车速信号、转角和扭矩信号决定电机的旋转方向和助力扭矩的大小。同时电流传感器检测电路的电流,对驱动电路实施监控,最后由驱动电路驱动电机工作,实施助力转向。其工作原理如下图所示

比亚迪唐二代新能源车维修手册

2. EPS 系统电路及引脚定义图

2.1 EPS 系统电路原理图

图 2-1 R-EPS 系统电路原理图

2.1 EPS 引脚定义和接插件

连接器类型	管脚	功能	信号类型
电器正负极接插	1	供电端负极	电平信号,模拟信号
件 (B23)	2	供电端正极	电平信号,模拟信号
	1	N/A	
	2	N/A	
	3	CAN_H	CAN 总线高电平,数字信号
	4	CAN_L	CAN 总线低电平,数字信号
CAN/IG 接插件	5	IG 电	电平信号,模拟信号
(B22)	6	N/A	
	7	N/A	
	8	N/A	
	9	N/A	
	10	N/A	

3. EPS 系统自诊断及故障排除

3.1 一般故障检修信息

当启动车辆后,EPS指示灯会点亮,并保持2~3秒后熄灭,此时说明EPS指示灯及系统运行正常。

车辆启动后,如果系统有任何问题,则故障报警灯应持续显示,且伴随仪表文字提示"请检查转向系统"和报警声音。

3.2 故障排除表

故障排除表有助于找到故障的原因,表中数字表明了引起故障的可能情况,请按顺序检查每一个 零件。必要时,请修理或更换有故障的零件或进行调整。

症状	可能原因	症状	可能原因
转向沉重	1) 轮胎(充气不当) 2) 前轮定位(不正确) 3) 转向节(磨损) 5) 转向管柱总成(有故障) 6) 电动助力转向器总成(有故障)	游隙过大	1)转向节(磨损) 2)中间轴、滑动节叉(磨损) 3)转向器(有故障)
		异常噪声	1)减速机构(磨损) 2)转向节(磨损)
	1) 轮胎(充气不当) 2) 前轮定位(不正确) 3) 转向管柱(弯曲)		3) 电动助力转向器总成(有故障)
回位不足		转向盘抖动	1) 电动助力转向器总成(有故障) 2) 转向管柱总成(有故障)

3.3 自诊断故障排除方法

当 EPS 系统发生故障时,用诊断设备读取 EPS 模块的故障码,根据读出来的故障码按对应的故障 排查方法排查。 各故障码排除方法

台以 停拘排炼力法			
DTC	故障描述	故障分析	故障排除流程
C1B8417 C1B8416	诊断过压 诊断欠压	EPS 供电异常、 EPS 控制单元内 部故障	1. 测试 EPS 电源电压(B-23 接插件)是否异常,正常情况下 B-23 插件的 2 号引脚电压与地之间应处于 14V(9~16V 之间属于正常)左右,B-23 插件的 1 号引脚与地间是否导通;否: 2 2. EPS 控制单元故障
U029D00	车速报文丢失	CAN 通信系统异 常	1. 检查 ESP 系统是否异常,读取一下 ESP 和 EPB 系统的故障码情况,辅助判断;否: 2 2. EPS 控制单元故障
U029E00	轮速报文丢失	CAN 通信系统异常	1. 检查 ESP 系统是否异常,读取一下 ESP 和 EPB 系统的故障码情况,辅助判断;否:2 2. EPS 控制单元故障
U1F0E87	前驱动电机控制模块命 令报文丢失	CAN 通信系统异 常	1. 检查前电机控制器是否异常;否:2 2. EPS 控制单元故障
U1F0887	前驱动电机控制模块遥 控驾驶报文丢失	CAN 通信系统异常	1. 检查前电机控制器是否异常; 否: 2 2. EPS 控制单元故障
U1F0987	前驱动电机控制模块状 态报文丢失	CAN 通信系统异常	1. 检查前电机控制器是否异常; 否: 2 2. EPS 控制单元故障
U1F0A87	档位报文丢失	CAN 通信系统异常	1. 检查档位控制器是否异常; 否: 2 2. EPS 控制单元故障
U1F0B87	仪表报文丢失	CAN 通信系统异常	1. 检查仪表是否异常; 否: 2 2. EPS 控制单元故障
U1F0D29	转向模式无效	CAN 通信系统异常	1. 检查多媒体是否异常;否:2 2. EPS 控制单元故障

比亚油宋新能源车维修手册

	BYDAUTO		<u>比业迪米新能源车维修丰册</u>
C1B1000	ESP 信号无效	CAN 通信系统异	1. 检查 ESP 系统是否异常; 否: 2
		常	2. EPS 控制单元故障
U1F0C29	全地形模式无效	CAN 通信系统异	1. 检查前电机控制器是否异常;否:2
0170029	生地形模式儿双		
		常	2. EPS 控制单元故障
U014787	发动机报文丢失	 CAN 通信系统异	1. 检查发动机是否异常(针对燃油车);
		常	否: 2
		币	2. EPS 控制单元故障
U014729	发动机信号无效		1. 检查发动机是否异常(针对燃油车);
0011120	2000000	 发动机系统异常	否: 2
		X49/1/13/13/13/17/17	1. 2 2. EPS 控制单元故障
01 00000		DDG 老休見光	
C1B8600	控制器配置信息未写入	EPS 系统异常	1. 需要用诊断设备,对车辆写入配置(具
			体操作见下 EPS 配置操作规范),成功
			写入配置后,清除故障码,重新上下电
1			后检查故障是否仍然存在;否:2
			2. EPS 控制单元故障
C1B9200	TAS Angle 未标定	EPS 系统异常	1. 需要用诊断设备,对车辆按照要求标定转
C1B9100	TAS Angle Sensor 错误		向(具体操作见下 EPS 标定操作规范),成
			功标定后,清除故障码,重新上电后检查故
			障是否仍然存在: 否: 2
1			2. EPS 控制单元故障
C1 D0000	POLL PEDDOM ## #F 49 ## ##		2. 日 5 注 侧 手 / 山 灰 厚
C1B8900	ECU EEPROM 数据移植故		
	障		
C1B8A00	ECU 车辆标定参数错误		
C1B8B00	ECU 内部电子故障		
C1B8C00	ECU 标定参数丢失故障	EPS 系统异常	更换 EPS 总成
C1B8D00	ECU 标定参数下载故障		
C1B8E00	ECU 内部故障		
C1B8800	电机控制/助力监控故		
CIDOCOO	障		
C1B9000	供电丢失	整车供电异常	│ │ 检査 EPS 的供电端(B-23 接插件)线束是
C1D9000	供电云大	金干供电开币	位直 CF3 的供电弧(D=23 按细件)线术定 否异常
	larte that an an it no	14 - 4 PD D 14	1727
C1B8704	扭矩传感器故障	传感器异常	1. 检查 EPS 的扭矩转角传感器的线束和接插
	1 2		件是否完好;否:2
	N		2. 更换 EPS 总成
C1B8F00	系统过热	EPS 自身电机或	1. 读取 EPS 模块数据流中的系统温度和
		ECU 温度过高	ECU 温度,若温度过高(超过 90℃),
			则等待温度降低后,查看助力是否恢复
			正常,故障码是否可以成功清除;否:2
			2. 更换 EPS 总成
C1B9500	MPC 扭矩请求值错误	 MPC 系统异常	1. 检查 MPC 系统: 否: 2
C1D3900			
0150000	(LKA)	100 5 4- P	2. 更换 EPS 总成
C1B9600	激活退出条件监控成立	MPC 系统异常	1. 检查 MPC 系统; 否: 2
	(LKA)		2. 更换 EPS 总成
U024687	MPC 报文丢失(LKA)	CAN 通讯异常	1. 检查 MPC 系统; 否: 2
			2. 更换 EPS 总成
U024683	MPC 报文 Checksum or	CAN 通讯异常	1. 检查 MPC 系统; 否: 2
	Counter 错误(LKA)		2. 更换 EPS 总成
U014087	BCM 电源状态报文丢失	CAN 通讯异常	1. 检查 BCM 系统是否异常; 否: 2
0014001	DOM 电极仍起取入公人	OTH AR NOT IT	1. 位直 BCM 宗机定日开市; 日: 2 2. 更换 EPS 总成
			4.

比亚油宋新能源车维修手册

U029187

档位报文丢失 (燃油)

CAN 通讯异常

1. 检查档位系统是否异常: 否: 2

2. 更换 EPS 总成

4. 维修注意事项

(1) SRS气囊系统操作注意事项

本车配备有安全气囊(SRS),如果不按正确的顺序操作,可能会引起安全气囊在维修过程中意外打开,并导致严重的事故。故维修之前(包括零件的拆卸或安装、检查或更换),一定要阅读安全气囊系统的注意事项。

(2)本车的电动助力转向系统带有主动回正控制功能及遥控驾驶功能,转向系统(齿轮齿条式电动助力转向器总成等)经过拆换后,需重新进行车辆四轮定位,并标定转角信号。标定转向盘零点信号以后,车辆重新上 ON 档电,清除残留故障码。

注意:转角信号标定前,禁止进行遥控驾驶操作,否则可能会引起相关损坏故障。 用诊断设备进行标定操作时:

注意:车辆轮胎要朝正前方;方向盘要对准中间位置;双手手离开转向盘,转向盘不能受外在力的影响。

- (3) 拆卸或重新安装动助力转向器总成时:
- ①避免撞击电动助力转向器总成,特别是传感器,R-EPS电子控制单元,R-EPS电机和减速机构。如果电动助力转向器总成跌落或遭受严重冲击,需要更换一个新的总成。
 - ② 移动助力转向器总成时,请勿拉拽线束。
- ③在从转向器上断开转向管柱或者中间轴之前,车轮应该保持在正前方向,车辆处于断电状态,否则,会导致转向管柱上的时钟弹簧偏离中心位置,从而损坏时钟弹簧。
- ④断开转向管柱或者中间轴之前,车辆处于断电状态。断开上述部件后,不要移动车轮。不遵循这些程序会使某些部件在安装过程中定位不准。
 - ⑤转向盘打到极限位置的持续时间不要太长,否则可能会损坏助力电机。

5. 转角标定和软件配置

5.1 转角标定

- 1. 转角标定前提:方向盘、万向节、转向管柱、转向器拆装更换或重做四轮定位后,都需要重新标定 EPS 系统的转角。
- 2. 标定注意事项:
- (1) 胎压正常,正常负载状况,车辆由自身车轮支撑,仅司机一人必须坐于车内;
- (2) 进入 EPS 系统标定前车辆已经完成四轮定位:
- (3) 车辆不能有明显震动,如不能关车门、关发动机罩等干扰,人手勿要操作方向盘或施加力矩在方向盘上;
- (4) 检查确认方向盘机械位置处于正中零点;
- (5) 以上条件均满足后,由标定人员点击 EPS 标定设备命令对 EPS 转角传感器进行标定操作;
- (6) 转角传感器数值(转角标定完成后以设备读取 EPS 内部角度为准,偏差范围 0±3°)
- (7) 标定完成后,清除 EPS 系统故障码,重新上下电,查看 EPS 系统是否存在故障码。

5.2 PDC 标定

- 1. PDC 标定前提: 重做四轮定位后,需要对车辆转向系统进行 PDC 标定。
- 2. 标定注意事项:
- (1) 进入 EPS 系统 PDC 标定前车辆已经完成四轮定位,且仍有跑偏现象存在;

比亚迪宋新能源车维修手册

- (2) 人手勿要操作方向盘或施加力矩在方向盘上:
- (3)以上条件均满足后,由标定人员点击 EPS 标定设备中的 PDC 标定命令对 EPS 系统 PDC 值进行标定操作:
- (5) 标定完成通过操作整车启动按钮,使整车重新上下电,查看 EPS"数据流"中的"PDC 初始力矩值"是否为 ONm;如果为 ONm,表明标定成功;如果不为 ONm;表明标定失败,需重新操作标定过程; (6) 确认标定成功后,查看 EPS 系统是否存在故障码,是否正常。

5.3 软件配置

- 1. 软件配置前提: 车辆的整个转向总成更换之后,需要对车辆的转向系统的软件重新进行配置。
- 2. 软件配置注意事项:
- (1) 在整车更换转向总成,进行四轮定位,对车辆进行转角标定操作之后;
- (2) 整车上电, 勿要操作方向盘
- (3)通过诊断设备自带的软件(对更换过转向总成的售后车辆,对转向参数进行配置的一个软件),对车辆的转向系统进行配置。
- (4) 配置完成后,清除故障码,整车重新上下电,查看 EPS 系统是否正常

6. 拆卸

