1. GENERAL

1.1. NOTATION

A= Surface area b = Width of a structure in the across-wind direction R^2 = Correlation factor that accounts for the lack of correlation of wind pressures = Dynamic amplification factor $C_{\rm d}$ $C_{\rm e}(z)$ = Height-dependent surface friction coefficients $C_{\mathfrak{p}}$ = Surface pressure coefficient = Surface pressure coefficient for 1.0 m² area = Surface pressure coefficient for 10.0 m² area $C_{p,10}$ $C_{q}(z)$ = Height-dependent wind pressure coefficient $C_{\rm s}$ = Load correlation coefficient C_{t} = Topography coefficient D = Diameter of circular cross-section of a building = Width of the structure in the along-wind direction d F= Total wind loads on a building = Frequency in Hz $f_L(z,f)$ = Nondimensional normalized frequency = First natural frequency of a building in Hz. f_0 = Height of the building. h = Average height of surrounding buildings h_0 = Ficticous increase in ground level to account for surrounding structures $I_{\rm w}(z)$ = Height-dependent turbulance intensity L(z)= Height-dependent turbulance length = Total wind load in a sbuilding at height z O(z)= Basic wind pressure q_{b} = Wind pressure for unit area at height z $q_{p}(z)$ = Resonance factor that accounts for dynamic amplification of response $R_b(\eta_b)$ = Aerodynamic admittance function in horizontal direction $R_h(\eta_h)$ = Aerodynamic admittance function in vertical direction $S_{\rm L}(z, f)$ = Power spectral density function of turbulance = Strouhal number S_{t} = Basic wind speed V(z,t) = Total wind speed $|V(z,t)|_{\text{max}}$ = Maximum total wind sped at height z = Critical wind speed for vortex shedding $V_{\rm m}(z)$ = Height-dependent average wind velocity w(z,t)) = Dynamic component of wind velocity – turbulance. = Maximum turbulance velocity \overline{w}_{\max} = Surface friction coefficient z_{0} = Minimum height in which surface friction is constant z_{\min} = Reference height $Z_{\mathbf{r}}$ δ = Logarithmic decrement corresponding to the first vibration mode = Damping coefficient corresponding to the first vibration mode = Mass density of air ($\rho = 12.5 \text{ N/m}^3$)

= Standard deviation of turbulance

 $\sigma_{\!\scriptscriptstyle
m W}$