CMOS 200-Stage Dynamic Shift Register

MAXIMUM RATINGS, Absolute-Maximum Values:
STORAGE TEMPERATURE RANGE (T _{sto})65 to +150°C
OPERATING-TEMPERATURE RANGE (Ta):
PACKAGE TYPES K, T, H55 to +125°C
DC SUPPLY-VOLTAGE RANGE, (VDD)
(Voltages referenced to VSS Terminal)0.5 to +15 V
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55 to +100°C (PACKAGE TYPES K, T)
For TA = +100 to +125°C (PACKAGE TYPES K, T) Derate Linearly at 12 mW/°C to 200 mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
For TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
INPUT VOLTAGE RANGE, ALL INPUTS
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79 mm) from case for 10 s max

Fig. 2 — Clock circuit logic diagram.

The RCA-CD4062A is a 200-stage dynamic shift register with provision for either single-or two-phase clock input signals. Singlë-phase-clocked operation is intended for low-power, low clock-line capacitance requirements. Single-phase clocking is specified for medium-speed operation (< 1 MHz) at supply voltages up to 10 volts. Clock input capacitance is extremely low (< 5 pF), and clock rise and fall times are non-critical. The clock-mode signal (CM) must be low for single-phase operation.

Two-phase clock-input signals may be used for high-speed operation (up to 5 MHz) or to further reduce clock rise and fall time requirements at low speeds. Two-phase operation is specified for supply voltages up to 15 volts. Clock input capacitance is only 50 pF/ phase. The clock-mode signal (CM) must be high for two-phase operation. The single-phase-clock input has an internal pull-down device which is activated when CM is high and may be left unconnected in two-phase operation.

The logic level present at the data input is transferred into the first stage and shifted one stage at each positive-going clock transition for single-phase operation, and at the positive-going transition of CL₁ for two-phase operation.

The CD4062A-Series types are supplied in 12-lead hermetic TO-5 packages (T suffix), 16-lead ceramic flat packages (K suffix), and in chip form (H suffix).

Features:

■ Minimum shift rates over full temperature range—

Single-phase clock: $3 \lor \le \lor_{DD} \le 10 \lor$; $f_{min} = 10 \text{ kHz}$; -55° C $\le T_A \le +125$ ° C ($f_{min} = 1 \text{ kHz}$ up to $T_A \le 75$ ° C)

Two-phase clock: 3 V \leq V_{DD} \leq 15 V; f_{min} = 10 kHz; -55° C \leq T_A \leq +125° C (f_{min} = 1 kHz up to T_A \leq 75° C)

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}$ C, Except as Noted.

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC		LIMITS		UNITS
_	V _{DD} (V)	MIN.	MAX.	
Supply-Voltage Range (For T _A = Full Package-Temperature Range): Single-Phase Clock		3	10	
Two-Phase Clock		3	12	V
Clock Input Frequency, fCL*	5 10	0.15 0.15	500 1000	kHz
Clock Pulse Width, tw*	5 10	250 500	66.7 X 10° 66.7 X 10°	ns
Clock Rise or Fall Times, t _r CL or t _f CL*	5 10	_	10 1	μς
Data Hold Time, t _H *	5 10	150 50	-	ns

^{*} For single-phase clock, 50% duty cycle

Two-Phase Clock Operation (CL₁, CL₂); Clock Mode (CM) = High; $3 \text{ V} \leq \text{V}_{DD} \leq 15 \text{ V}$. See Figure 4.

CHARACTERISTIC	TEST CON	LIMITS			UNITS	
onanao en		V _{DD} V	MIN.	TYP.	MAX.	
Maximum Clock Input Frequency, fCL		5	1.25	2.5	-	
	ĺ	10	2.5	5	-	MHz
Minimum Clock Input Frequency, fCL		5	150	10	_	
		10	150	10	-	Hz
Clock Overlap Time 90% -90% CL ₂ 10% 10% td ₁	2		40	_	_	ns
Average Input Capacitance, C ₁ CL ₁ , CL ₂			-	50	-	pF
Propagation Delays; t _{PHL} , t _{PLH}		5	-	250	500	
CL ₁ to Q		10	_	100	200	ns
CL ₁ to CL _{1D}		5	-	250	500	
CL ₂ to CL _{2D}		10	_	100	200	
Minimum Data Setup Time		5		150	300	
		10	-	50	100	ns
Minimum Data Hold Time ————————————————————————————————————		5			0	ns
<u> </u>	<u> </u>	10	_		0	<u></u> _
Clock Rise and Fall Times t_rCL_1 , CL_2 t_fCL_1 , CL_2			No Restrictions If Clock Overlap Require- ment Is Met			

Features (Cont'd):

- Low power dissipation
 0.3 mW/bit at 1 MHz and 10 V
 0.04 mW/bit at 0.5 MHz and 5V
 (alternating 1-0 data pattern)
- Data output TTL-DTL compatible
- Recirculating capability
- Delayed two-phase clock outputs available for cascading registers
- Asynchronous ripple-type presettable to all 1's or 0's
- Ultra-low-power-dissipation standby operation
- Quiescent current specified to 15 V
- Maximum input leakage current of 1 μA at 15 V (full package-temperature range)
- 1-V noise margin (full package-temperature range)

Applications:

- Serial shift registers
- Time-delay circuits
- CRT refresh memory
- Long serial memory

Fig. 3 - Timing diagram-single-phase clock.

Fig. 4 -- Timing diagram-two-phase clock.

STATIC ELECTRICAL CHARACTERISTICS

	CONDITIONS LIMITS AT INDICATED										
CHARACTER	RISTICS	V 12 12			TEMPERATURES (°C)				UNITS		
		V _O	VIN	V _{DD}	-55			+125			
		(V)	(V)	(V)		TYP.	LIMIT				
Quiescent De Current, I		_	-	5	12	0.5	12	720			
CM=High, Cl	-		_	10	25	1	25	1500	μΑ		
	CL2=Low		_	15	50	1	50	2000			
	Output Voltage: Low Level, VOL		5	5	0						
VOL			10	10	0	v					
High Level		-	0	5	4.	•					
VOH		-	0	10	9.	9.95 Min.; 10 Typ.					
Noise Immu	•	4.2	1	5	1.	5 Min.;	2.25 T	yp.			
Inputs Lo	w,	9		10			.5 Typ.				
Inputs Hig		0.8		5		V					
V _{NH}	1		10		1.5 Min.; 2.25 Typ. 3 Min.; 4.5 Typ.						
Noise Margir	n:	4.5		5		1 M					
Inputs Lo			<u> </u>		v						
V _{NML}	9		10	ļ							
Inputs Hig	gh,	0.5	_	5							
V _{NMH}		1	_	10							
Output Driv Current: N-Channe											
(Sink),	,						<u> </u>				
I _D N Min.	a	0.4	_	4.5	1.6	2.6	1.3	0.91	mA		
1	Output	0.5	-	10	5	8*	4	3.2			
	CL _{1D} ,	0.5	-	5	0.87	1.4	0.7	0.49			
]	CL _{2D}	0.5	_	10	2.2	3.6	1.8	1.26			
P-Channe	ı				<u> </u>						
(Source):		4.5		5	-0.31	-0.5	-0.25	-0.17			
IDP Min.		2.5	<u> </u>	5	-0.93	-1.5	-0.75	-0.52	mA		
1	Output	9.5	-	10	-0.87	-1.4	-0.7	-0.49			
	CL _{1D} ,	4.5	-	5	-0.43	-0.7	-0.35	-0.24			
	CL _{2D}	9.5	-	10	-1.1	-1.8	-0.9	-0.63			
Input Leakage Current,		Ar	iy Inp 	ut 	-						
IIL, IIH		_	_	15	±1	0 ⁻⁵ Ту	p., ±1 N	fax.	μΑ		

^{*} Maximum power dissipation rating \leq 200 mW.

Fig. 5— Typical n-channel drain characterstics for Q output.

Fig. 6— Typical p-channel drain characteristics for Q output.

Fig. 7— Typical transition time vs. C_L for data outputs.

Fig. 8— Typical transition time vs. C_L for delayed clock output.

DYNAMIC CHARACTERISTICS AT $T_A = 25^{\circ}$ C, $V_{SS} = 0$ V, $C_L = 50$ pF, Input t_r , $t_f = 20$ ns, except trCL and trCL

Single-Phase-Clock Operation; Clock Mode (CM) \triangleq Low; 3 V \leq V_{DD} \leq 10 V (See Figure 3)

CHARACTERISTIC	TEST COND	TEST CONDITIONS			LIMITS			
		V _{DD}	MIN.	TYP.	MAX.	UNITS		
Maximum Clock Input Frequency, fCL	t _r , t _f =20 ns	5	0.5	1	_	1411		
(50% Duty Cycle)		10	1	2		MHz		
Minimum Clock Input Frequency, fCL		5	150	10		Hz		
(50% Duty Cycle)		10	150	10	<u> </u>	1112		
Clock Rise and Fall Times**		5		<u> </u>	10	μs		
t _r CL, t _f CL		10	<u> </u>		1			
Average Input Capacitance, C ₁	All Inputs Ex		-	5.		pF		
Propagation Delays:		5		1000	2000			
CL to Q		10		400	800	ns		
CL to CL _{1D} (Positive Going)	/F00/ Dailer	5		750	1500			
CL	(50% Points)	10	-	300	600			
CL to CL _{2D} (Positive Going)		5	-	500	1000			
CL	(50% Points)	10	-	200	400			
CL to CL _{1D} (Negative Going)	- 	5	ļ	450	900	ns		
	(50% Points)	10	 -	175	350			
CL _{1D}		10	_	'/3	330			
CL to CL _{2D} (Negative Going)	/50% D :	5		750	1500			
CL CL _{2D}	(50% Points)	10	-	300	600			
Transition Time: t _{TLH} , t _{THL}		5		100	200	 		
Q Output		10	T -	50	100	ns		
	7	5	-	200	400			
CL _{1D} , CL _{2D}		10	<u> </u>	100	200			
Data Set-Up Time		5			0			
ts CL		10	-	-	0	ns		
△ Data Hold Time		5		<u> </u>	150			
t _H _{CL}		10	-	-	150	ns		

If more than one unit is cascaded in single-phase parallel clocked application, t_rCL should be made less that or equal to the sum of the propagation delay at 15 pF, and the transition time of the output driving stage. (See Figs. 5 and 7 for cascading options.)

▲ Use of delayed clock permits high-speed logic to precede CD4062A register (see cascade register operation)

TERMINAL DIAGRAM

Fig. 9- Typical power dissipation vs. frequency.

Fig. 10- Minimum shift frequency vs. ambient temperature.

Fig. 11- Quiescent-device-current test circuit.

Fig. 12- Noise-immunity test circuit.

Fig. 13-Input-leakage-current test circuit.