- ★ ЧУМ замкнутых классов с отношением включения является решеткой
 - $C_1 \wedge C_2 = C_1 \cap C_2$

- 🛨 ЧУМ замкнутых классов с отношением включения является решеткой
 - $\bullet \ \ C_1 \wedge C_2 = C_1 \cap C_2$
 - $C_1 \vee C_2 = \langle C_1 \cup C_2 \rangle$
 - 🛨 вообще, система замкнутых множеств всегда образует решетку

- ★ ЧУМ замкнутых классов с отношением включения является решеткой
 - $\bullet \ \ C_1 \wedge C_2 = C_1 \cap C_2$
 - $\bullet \ \ C_1 \lor C_2 = \langle C_1 \cup C_2 \rangle$
 - ★ вообще, система замкнутых множеств всегда образует решетку
 - ullet Решетку замкнутых классов б.ф. иногда обозначают \mathcal{P}_2 в честь Поста
 - ullet \mathcal{P}_k это решетка замкнутых классов функций на k-элементном множестве

- ★ ЧУМ замкнутых классов с отношением включения является решеткой
 - $\bullet \ \ C_1 \land C_2 = C_1 \cap C_2$
 - $C_1 \vee C_2 = \langle C_1 \cup C_2 \rangle$
 - \star вообще, система замкнутых множеств всегда образует решетку
 - ullet Решетку замкнутых классов б.ф. иногда обозначают \mathcal{P}_2 в честь Поста
 - ullet \mathcal{P}_k это решетка замкнутых классов функций на k-элементном множестве
- ullet Единицей решетки \mathcal{P}_2 является класс $oldsymbol{B}$ всех булевых функций

- ★ ЧУМ замкнутых классов с отношением включения является решеткой
 - $\bullet \ \ C_1 \wedge C_2 = C_1 \cap C_2$
 - $C_1 \vee C_2 = \langle C_1 \cup C_2 \rangle$
 - \star вообще, система замкнутых множеств всегда образует решетку
 - ullet Решетку замкнутых классов б.ф. иногда обозначают \mathcal{P}_2 в честь Поста
 - ullet \mathcal{P}_k это решетка замкнутых классов функций на k-элементном множестве
- ullet Единицей решетки \mathcal{P}_2 является класс $oldsymbol{\mathsf{B}}$ всех булевых функций
- ullet Нулем решетки \mathcal{P}_2 является класс $\mathbf{Pr} = \{PROJ_i\}$ всех проекций
 - это функции, которые можно задать формулами без операторов (или схемами без вентилей)

- ★ ЧУМ замкнутых классов с отношением включения является решеткой
 - $\bullet \ \ C_1 \wedge C_2 = C_1 \cap C_2$
 - $C_1 \vee C_2 = \langle C_1 \cup C_2 \rangle$
 - \star вообще, система замкнутых множеств всегда образует решетку
 - ullet Решетку замкнутых классов б.ф. иногда обозначают \mathcal{P}_2 в честь Поста
 - ullet \mathcal{P}_k это решетка замкнутых классов функций на k-элементном множестве
- ullet Единицей решетки \mathcal{P}_2 является класс $oldsymbol{\mathsf{B}}$ всех булевых функций
- ullet Нулем решетки \mathcal{P}_2 является класс $\mathbf{Pr} = \{PROJ_i\}$ всех проекций
 - это функции, которые можно задать формулами без операторов (или схемами без вентилей)
- ullet Элемент решетки aтом, если он покрывает 0, и коaтом, если его покрывает 1

- ★ ЧУМ замкнутых классов с отношением включения является решеткой
 - $\bullet \ \ C_1 \wedge C_2 = C_1 \cap C_2$
 - $\bullet \ \ C_1 \lor C_2 = \langle C_1 \cup C_2 \rangle$
 - ★ вообще, система замкнутых множеств всегда образует решетку
 - ullet Решетку замкнутых классов б.ф. иногда обозначают \mathcal{P}_2 в честь Поста
 - ullet \mathcal{P}_k это решетка замкнутых классов функций на k-элементном множестве
- ullet Единицей решетки \mathcal{P}_2 является класс $oldsymbol{\mathsf{B}}$ всех булевых функций
- ullet Нулем решетки \mathcal{P}_2 является класс $\mathbf{Pr} = \{PROJ_i\}$ всех проекций
 - это функции, которые можно задать формулами без операторов (или схемами без вентилей)
- ullet Элемент решетки aтом, если он покрывает 0, и коaтом, если его покрывает 1

Следствие о замкнутых классах

Коатомами решетки \mathcal{P}_2 являются в точности классы $\mathsf{L},\mathsf{S},\mathsf{M},\mathsf{T}_0,\mathsf{T}_1$.

- ★ ЧУМ замкнутых классов с отношением включения является решеткой
 - $C_1 \wedge C_2 = C_1 \cap C_2$
 - $C_1 \vee C_2 = \langle C_1 \cup C_2 \rangle$
 - ★ вообще, система замкнутых множеств всегда образует решетку
- ullet Решетку замкнутых классов б.ф. иногда обозначают \mathcal{P}_2 в честь Поста
 - ullet \mathcal{P}_k это решетка замкнутых классов функций на k-элементном множестве
- ullet Единицей решетки \mathcal{P}_2 является класс $oldsymbol{\mathsf{B}}$ всех булевых функций
- ullet Нулем решетки \mathcal{P}_2 является класс $\mathbf{Pr} = \{PROJ_i\}$ всех проекций
 - это функции, которые можно задать формулами без операторов (или схемами без вентилей)
- ullet Элемент решетки атом, если он покрывает 0, и коатом, если его покрывает 1

Следствие о замкнутых классах

Коатомами решетки \mathcal{P}_2 являются в точности классы $\mathsf{L},\mathsf{S},\mathsf{M},\mathsf{T}_0,\mathsf{T}_1$.

Доказательство:

- классы L, S, M, T₀, T₁ несравнимы по включению
 - см. примеры принадлежности функций классам
- по теореме Поста замкнутый класс, не содержащийся ни в одном из классов L, S, M, T₀, T₁, совпадает с B
- \Rightarrow каждый из классов L, S, M, T_0 , T_1 коатом, и других коатомов нет

Диаграмма Хассе решетки \mathcal{P}_2

