



# LISA Analysis Tools Workshop

Day 1 - Afternoon Session

**EMRI** waveforms and the LISA response function

Christian Chapman-Bird Institute for Gravitational Research, University of Glasgow

#### **Outline**

- Extreme-mass-ratio inspirals (EMRIs)
- FastEMRIWaveforms (**few**)
- The LISA response function
- fastlisaresponse



#### Compact binary coalescences



#### Extreme-mass-ratio inspirals (EMRIs)

- Compact binary coalescence: massive black hole (MBH) + compact object (CO)
- Characterised by mass ratio  $q \equiv \mu/M \lesssim 10^{-4}$ , two main consequences:
  - $\circ$  CO completes  $\mathcal{O}(10^5)$  orbital cycles **in the LISA band** before merger
    - Highly sensitive to initial conditions
  - Orbits retain significant eccentricity and orbital inclination
    - Waveform contains many higher-order modes



## We can identify features in the inspiral trajectory....



#### We can identify features in the inspiral trajectory....





... and their impact on the shape of the waveform.



# (few)

A part of the Black Hole Perturbation Toolkit bhptoolkit.org

$$h(t) = \sum_{lmkn} H_{lmkn}(p(t), e(t), x_I(t), \theta, \phi) e^{-i\Phi_{mkn}(p(t), e(t), x_I(t))}$$

$$(\Phi_{mkn} = m\Phi_{\phi} + k\Phi_{\theta} + n\Phi_r)$$

$$h(t) = \sum_{lmkn} H_{lmkn} \left( p(t), e(t), x_I(t), \theta, \phi \right) e^{-\left[i\Phi_{mkn}(p(t), e(t), x_I(t))\right]} \left( \Phi_{mkn} = m\Phi_{\phi} + k\Phi_{\theta} + n\Phi_r \right)$$

**few.trajectory**Integrate ODE system



$$h(t) = \sum_{lmkn} H_{lmkn}(p(t), e(t), x_I(t), \theta, \phi) e^{-i\Phi_{mkn}(p(t), e(t), x_I(t))} e^{-i\Phi_{mkn}(p(t), e(t), x_I(t))} e^{-i\Phi_{mkn}(p(t), e(t), x_I(t))}$$

**few.trajectory**Integrate ODE system

**few.amplitude**Functions of trajectory,
fold in viewing angles



$$h(t) = \sum_{lmkn} H_{lmkn}(p(t), e(t), x_I(t), \theta, \phi) e^{-i\Phi_{mkn}(p(t), e(t), x_I(t))}$$

 $(\Phi_{mkn} = m\Phi_{\phi} + k\Phi_{\theta} + n\Phi_{r})$ 

## few.trajectory

Integrate ODE system



Functions of trajectory, fold in viewing angles



Sum over all modes to build waveform





few.trajectory
Integrate ODE system

**few.amplitude**Functions of trajectory,
fold in viewing angles

**few.summation**Sum over all modes to

build waveform

few.waveform

Joins this all together!





$$h(t) = \sum_{lmkn} H_{lmkn}(p(t), e(t), x_I(t), \theta, \phi) e^{-i\Phi_{mkn}(p(t), e(t), x_I(t))}$$

 $(\Phi_{mkn} = m\Phi_{\phi} + k\Phi_{\theta} + n\Phi_{r})$ 

#### Challenges:

- Sum contains tens of thousands of terms (one per mode)
- For  $10\,\mathrm{s}$  sampling cadence,  $\mathcal{O}(10^7)$  data points per mode

This is a computationally expensive operation!



**Performant** 

Interpolation, graphics processing unit (GPU) vectorisation



**Performant** 

Interpolation, graphics processing unit (GPU) vectorisation



Easy to use

EMRI waveforms out of the box!



**Performant** 

Interpolation, graphics processing unit (GPU) vectorisation



Easy to use

EMRI waveforms out of the box!



#### Modular

General framework for building custom EMRI waveforms

Currently supported waveform models:

- FastSchwarzschildEccentricFlux (Non-spinning black holes)
- Pn5AAKWaveform (Kludge amplitudes, generic PN inspirals)

#### Coming soon (names a WIP...):

- KerrEccentricEquatorialFlux (Spinning MBH, equatorial inspirals)
- Pn5TrajPn5AdiabaticWaveform (Generic PN inspirals and amplitudes)

#### The LISA response function

LISA data will come in the form of time delay interferometry (TDI) observables

- Linear combinations of data streams delayed in time
- Necessary to suppress laser frequency noise
- Delays are multiples of light-travel time between spacecraft
  - Spacecraft orbits change with time, so the delays do too

An efficient implementation of the LISA response **essential** for feasible analyses



LISA Definition Study Report

#### **TDI Combinations**

- Construct effective paths from delayed laser link measurements and subtract them
- First-generation TDI combinations account for unequal arms
- Second-generation TDI combinations (constructed from first-gen combinations) account for linear changes in arm-lengths with respect to time



#### Time-delay interferometry

Many combinations are useful...



## fastlisaresponse ( ) lisa-on-gpu)

One-stop shop for time-domain LISA response:

- GPU vectorisation for millisecond response evaluation
- Link-based TDI generation: construct any combination!
- Commonly-used TDI combinations (XYZ, AET) are included **out-of-the-box**

Interfaces with lisaorbits via lisatools. detector:

- Generic orbital interface
- Sample orbit files provided for synthetic data studies

## fastlisaresponse ( ) lisa-on-gpu)

Waveform model

fastlisaresponse.pyResponseTDI

Takes waveform strain and produces TDI combinations

Spacecraft orbits (lisaorbits)

fastlisaresponse.ResponseWrapper

Single waveform generator object



#### **Conclusions**

- EMRI waveforms are complicated and computationally expensive
- few:
  - Out-of-the-box EMRI waveforms
  - Highly-optimised GPU methods: millisecond waveform generation
  - Modular: easily implement your own waveform models
- LISA data analysis requires flexible, efficient response implementation
- fastlisaresponse
  - Time-domain response, fast via GPU vectorisation
  - Support for generic orbits
  - Build any TDI combination: base support for XYZ/AET

# Bonus slides



