

Sunitha V R

Department of Science & Humanities

Unit III: Application of Quantum Mechanics to Electrical transport in Solids

- > Suggested Reading
 - 1. Fundamentals of Physics, Resnik and Halliday, Chapter 41
 - 2. Concepts of Modern Physics, Arthur Beiser, Chapter 9
 - 3. Learning material prepared by the department- Unit III
- > Reference Videos
 - 1. Physics Of Materials-IIT-Madras/lecture-07.html

Unit III: Application of Quantum Mechanics to Electrical transport in Solids

Class #23

- Features of classical free electron model
- •Expression for electrical conductivity
- •Failures of classical free electron theory

Features of classical free electron model

Drude and Lorentz proposed the classical free electron theory of electrical conductivity of metals in 1900

- ■Valence electrons- treated as conduction electrons
- •Electrostatic interaction- neglected
- **■**Electrons in the metal—treated as free electron gas
- ■Free-electron gas- follows Maxwell-Boltzmann statistics

Thermal Velocity

Thermal energy of the free electrons in the absence of the electric field is given by

$$\frac{1}{2}mv_{th}^2 = \frac{3}{2}kT$$

Therefore average thermal velocity
$$v_{th} = \sqrt{\frac{3k_BT}{m}}$$

- Random motion of the electrons do not contribute to a net drift of electrons.
- no current flows through the material

Drift Velocity

Under the influence of electric field E the average velocity experienced by the electrons is called drift velocity

$$v_d = \frac{e\tau E}{m} = \mu E$$

Where
$$\mu = \frac{e\tau}{m} = \frac{v_d}{E}$$
 is the drift velocity per unit electric field

Expression for electrical conductivity

The current through a conductor $I = nev_d A$

Where v_d is the drift velocity given by $v_d = \frac{e\tau E}{m}$

$$\therefore I = neA \frac{e\tau E}{m}$$

Expression for electrical conductivity

$$J = \frac{I}{A} = \frac{ne^2\tau}{m} E = \sigma E$$

where σ is a constant for a given metal

$$\sigma = \frac{ne^2\tau}{m} = ne\mu$$

The resistivity of the metal is given by

$$\rho = \frac{1}{\sigma} = \frac{m}{ne^2\tau} = \frac{1}{ne\mu}$$

Experimental temperature dependence of resistivity

Total resistivity of the metal is given by $\rho = \rho_i + \rho_{sc}$

Substituting the value of ρ we get $\frac{m}{ne^2\tau} = \frac{m}{ne^2\tau_{res}} + \frac{m}{ne^2\tau_{sc}}$

This gives the effective relaxation time $\frac{1}{\tau} = \frac{1}{\tau_{res}} + \frac{1}{\tau_{sc}}$

$$\frac{1}{\tau} = \frac{1}{\tau_{res}} + \frac{1}{\tau_{sc}}$$

Failures of classical free electron theory

- **■**Temperature dependence of resistivity
- Specific heat of electrons in a metal
- **■**Conductivity variations with electron concentrations

Temperature dependence of resistivity

Temperature dependence of the relaxation time $\tau = \frac{\lambda}{\lambda}$

For a given temperature
$$v_{th}=\sqrt{\frac{3k_BT}{m}}$$

Hence $v_{th}{\sim}\sqrt{T}$ or $\tau\sim T^{-\frac{1}{2}}$

Hence
$$v_{th} \propto \sqrt{T}$$
 or $\tau \propto T^{-\frac{1}{2}}$

Since the resistivity
$$\rho \propto \frac{1}{\tau}$$
 : $\rho \propto \sqrt{T}$

According to experimental observations $\rho \propto T$

Specific heat of electrons in a metal

Specific heat of the metal is
$$C_{el} = \frac{dU}{dT}$$

For one mole of a mono-valent metal
$$U = \frac{3}{2} k_B T. N_A$$

Hence the specific heat of the electrons

$$C_{el} = \frac{dU}{dT} = \frac{3}{2} k_B \cdot N_A = \frac{3}{2} R$$

Experimental estimation of the specific heat of electrons is ≈ 1% of the theoretical values

Conductivity variations with electron concentrations

$$\sigma = \frac{ne^2\tau}{m}$$

Free electron concentration of copper and aluminum is 8.4x10²⁸/m³ and 18.1x10²⁸/m³

$$n_{cu} < n_{Al}$$

Conductivity of copper and aluminum at 20°C is 5.9x10⁷ S/m and 3.5x10⁷ S/m

$$\sigma_{cu} > \sigma_{Al}$$

Copper with lesser electronic concentration has a higher electrical conductivity as compared to trivalent Aluminum.

Class 23. Quiz ...

The concepts which are correct are....

- 1. Drude model treats the free electrons equivalent to molecules in a gas
- 2. The distribution of energy and velocity is assumed to follow Maxwell-Boltzmann statistics
- 3. The drift velocity of the electron is due to the application thermal energy
- 4. The resistivity in metal due to impurities dependent on temperature
- 5. The classical free electron theory explains the electronic specific heat (C_v) of solid

THANK YOU

Sunitha VR, Ph.D.

Assistant Professor, Department of Science and Humanities

sunithavr@pes.edu

+91 80 21722683 Extn 716