Disciplina: Sistemas Computacionais Distribuídos

Professor: Klausner Vieira Gonçalves

Local / Horário: Sexta - das 19:00 hs as 22:30 hs

Ementa:

Introdução e caracterização de sistemas computacionais distribuídos com ênfase em sistemas com acoplamento fraco. Evolução histórica. Modelos arquiteturais, objetivos, aplicações e tendências modernas. Noções sobre redes locais e sua aplicação em sistemas computacionais distribuídos. Comunicação e sincronização em Sistemas computacionais distribuídos. Servidores remotos. Servidor de arquivos, diretórios, impressora, nomes, correio eletrônico, etc. Sistema de Arquivos: organização, segurança, confiabilidade e desempenho. Estudos de Casos - Aspectos de projeto e implementação de diversos sistemas propostos e construídos com sucesso recentemente. Middlewares

Objetivos Gerais:

- Ter pensamento lógico e raciocínio baseado em conhecimento visando um fortalecimento de conteúdo em sistemas computacionais distribuídos.
- Capacitar o aluno para abstração na resolução de problemas de computação paralela e concorrente.

Objetivos Específicos:

- Dar embasamento técnico para o aluno ter habilidades com o uso, ampliação, projeto ou aplicação em sistemas computacionais distribuídos.
- Capacitar tecnicamente o aluno para atuar na programação com interação de Hardware/Software no desenvolvimento de Sistemas computacionais distribuídos.

Conteúdo Programático:

- 1. Sistemas Computacionais Distribuídos
 - Introdução e caracterização de sistemas computacionais distribuídos.
 - Aspectos históricos, modelos arquiteturais.
 - Noções sobre redes locais e como se relacionam com os sistemas distribuídos.
- 2. Desenvolvimento de Sistemas Computacionais Distribuídos
 - Apresentação de tecnologias e métodos de implementação de sistemas distribuídos.
 - Comunicação entre sistemas e processos.
- 3. Sistema Operacional e Segurança
 - Funcionamento do Sistema Operacional em relação aos sistemas distribuídos.
 - Visão de segurança na comunicação entre sistemas distribuídos.

Cronograma de Aula:

Data	Conteúdo
19/03	Apresentação da Disciplina (Ementa, Objetivos, Conteúdo Programático, Critérios de Avaliação e
	Bibliografia) e Introdução sobre Sistemas Distribuídos
26/03	Arquitetura de Sistemas Distribuídos
09/04	Comunicação em um Ambiente de Computação Distribuída (Protocolos, Características da
	comunicação entre processos, Sockets e Comunicação UDP/TCP)
16/04	Comunicação em um Ambiente de Computação Distribuída (Chamada de Procedimento Remoto
	(RPC), Comunicação Orientada a Mensagem e Middleware Orientado a Mensagem)
23/04	Prova P1
30/04	Correção/Discussão da Prova P1 e Nomeação em um Ambiente de Computação Distribuída
07/05	Sincronização em um Ambiente de Computação Distribuída
14/05	Consistência e Replicação em um Ambiente de Computação Distribuída
21/05	Tolerância a falhas em um Ambiente de Computação Distribuída
28/05	Objetos e Componentes Distribuídos
11/06	Prova P2
18/06	Prova Sub
25/06	Encerramento da Disciplina

Avaliação

A1 = (P1 * 0.7) + (Ma1 * 0.2) + (Mb1 * 0.1)

A2 = (P2 * 0.7) + (Ma2 * 0.2) + (Mb2 * 0.1)

M = (A1 + 2 * A2) / 3

*Ma - Atividade em Grupo

*Mb - Questionário respondido em aula

*P - Prova individual

Bibliografia Básica:

COULOURIS, G.; DOLLIMORE, J.; KINDBERG, T., Sistemas Distribuídos: Conceitos e Projeto. Bookman, 2007.

MULLENDER, S. (ed) Distributed Systems, ACM PRESS Frontier Series, Addison-Wesley Publishing Company, 1989.

TANENBAUM, A.S. and van RENESSE, R., Distributed Operating Systems, ACM Computing Surveys, Dec. 1985.

Bibliografia Complementar:

COULOURIS, G. F.; DOLLIMORE, J. Distributed Systems, Addison-Wesley Publishing Company, 1988.

HOPPER, A.; TEMPLE, S.; WILLIAMSON, R. Local Area Network Design, Addison-Wesley Publishi ng Company, 1986.

NEEDHAM, R.M.; HERBERT,A. J. The Cambridge Computing Systems, Addison-Wesley Publishing Company, 1982.

SVOBODOVA, L. File Servers for Network - Based Distributed Systems. ACM Computing Surveys, Dec. 1984.

TANENBAUM A. S., STEEN M., Distributed Systems: Principles and Paradigms, Prentice-Hall, 2002.