Universidade de Pernambuco (UPE) Escola Politécnica de Pernambuco (POLI)

Programa de Pós-graduação em Engenharia da Computação (PPGEC)

Programa de Pós-graduação em Engenharia de Sistemas (PPGES)

Relatório da Prática de Inteligência de Enxames

Alunos:

Carlos Henrique Maciel Cristóvão Zuppardo Rufino

Professor: Dr. Carmello Bastos Filho

Lista de Figuras

2.1	Função Rastrigin para $n = 2$	6
4.1	Boxplot para configuração 5-global-decay	10
4.2	Boxplot para configuração 5-global-c1c2	10
4.3	Boxplot para configuração 5-local-decay	11
4.4	Boxplot para configuração 5-local-c1c2	11
4.5	Boxplot para configuração 20-global-decay	12
4.6	Boxplot para configuração 20-global-c1c2	12
4.7	Boxplot para configuração 20-local-decay	13
4.8	Boxplot para configuração 20-local-c1c2	13
4.9	Boxplot para configuração 50-global-decay	14
4.10	Boxplot para configuração 50-global-c1c2	14
4.11	Boxplot para configuração 50-local-decay	15
4.12	Boxplot para configuração 50-local-c1c2	15

Lista de Tabelas

2.1	Número possível de partículas do enxame	•
2.2	Tipos de topologia investigadas	7
2.3	Variação dos coeficientes	,
4.1	Teste de Wilcoxon Pareado para variação nos parâmetros C_1 e C_2	16

Sumário

1	Introdução	4
	1.1 Algorítmo PSO	4
	1.2 Objetivo da medição	
	1.3 Objetivo do estudo	5
2	Planejamento	6
	2.1 Função para otimização	6
	2.2 Tabela de testes	6
3	Operação	8
4	Resultados	9
	4.1 Resultados obtidos	9
	4.2 Comparação de execução	15
5	Conclusão	17

Introdução

A motivação deste estudo é aprender como desenvolver um algorítmo de inteligência de enxames, mais especificamente o *PSO* (do inglês *Particle Swarm Optimization*, Otimização por Enxame de Partículas), e adiquirir alguma sensibilidade quanto aos parâmetros da técnica. O objeto de estudo deste trabalho é o algorítmo clássico do PSO e quais impactos os parâmetros tem no desempenho da técnica, tais como: tamanho do enxame, importância do conhecimento cognitivo, importância do conhecimento social entre outros.

Alguns experimentos serão montados e, se necessário, um estudo estatístico será efetuado para melhorar a compreensão do que os parâmetros podem ajudar ou atrapalhar no funcionamento do algorítmo.

1.1 Algorítmo PSO

O PSO é um algorítmo inspirado no voo de aves em busca de alimentos. Foi idealisado por Kennedy e Eberhart em 1995 [1]. Cada particula é uma solução cadidata para um problema e, por meio de troca de informações, o conjunto de partículas (o enxame) realiza, iterativamente, uma busca para encontrar uma "boa" solução para o problema. A solução é representada pelo posicionamento da partícula no espaço de busca. Não é possível afirmar que a solução final é a melhor pois seria necessário uma exploração total do espaço de busca.

Como há movimentação de partículas, é obvia a presença de uma velocidade e de uma posição. O algorítmo original do PSO apresenta duas equações que definem a atualização da velocidade e da posição iterativamente. Estas equações são, respectivamente

$$\vec{v}[t+1] = \omega \vec{v}[t] + C_1 r_1 (\vec{p}_{Best} - \vec{x}[t]) + C_2 r_2 (\vec{g}_{Best} - \vec{x}[t])$$
(1.1)

 \mathbf{e}

$$\vec{x}[t+1] = \vec{x}[t] + \vec{v}[t+1]$$
 (1.2)

onde \vec{v} e \vec{x} são, respectivamente, a velocidade e a posição da partícula. C_1 e C_2 são números tal que $C_1, C_2 \in \mathbb{R}$ e representam a importância que a partícula dá a, respectivamente, informação cognitiva e a informação do enxame. r_1 e r_2 são números uniformemente distribuídos no intervalo [0,1] e ω representa a inércia da partícula.

1.2 Objetivo da medição

Será realizado um estudo comparativo do desempenho do algorítmo básico do PSO em uma função matemática para várias configurações dos parâmetros do algorítmo. A métrica de comparação será o melhor *fitness* por iteração (ou conjunto de iterações).

1.3 Objetivo do estudo

- Implementar e testar um algorítmo de inteligência de enxames
- Encontrar uma configuração que permita uma execução satisfatória, em termos de convergência, valor de *fitness*, etc. do algorítmo
- Adiquirir alguma sensibilidade de como os parâmetros contribuem na execução

No segundo capítulo tem-se a descrição do planejamento dos experimentos assim como o levantamento de hipóteses. No Capítulo três apresenta-se como os testes serão realizados e os resultados comparados. No quarto e último capítulo apresentam-se os resultados obtidos e finaliza-se com as conclusões.

Planejamento

Neste capítulo descreve-se o planejamento que foi realizado para a realização dos experimentos.

2.1 Função para otimização

A função que foi definida para realizar o estudo é a função Rastrigin. Esta função é definida tal que

$$f(\vec{x}) = An + \sum_{i=1}^{n} \left[x_i^2 - A\cos(2\pi x_i) \right]$$
 (2.1)

onde A = 10, $x_i \in [-5, 12; 5, 12]$ e n indica o número de dimensões que está se utilizando. Esta função possui mínimo global $f(\vec{x}) = 0$ quando $\vec{x} = \vec{0}$. A Figura 2.1 apresenta o formato da função quando n = 2

Figura 2.1: Função Rastrigin para n = 2.

Possuindo a equação (2.1) apenas mínimo, o objetivo de se utilizar a técnica de PSO será para minimizar, isto é, encontrar o valor mínimo da função Rastrigin.

2.2 Tabela de testes

Os parâmetros que serão variados nos testes serão:

- 1. **Número** de partículas do enxame
- 2. Topologia do enxame
- 3. Valor da **inércia**
- 4. Valor da importância do conhecimento social e cognitivo.

O critério de parada adotado para o algorítmo será o número de acesso à função de *fitness* que será fixado em 10000 (dez mil) acessos.

O número de partículas do enxame será entre os seguintes valores:

Tabela 2.1: Número possível de partículas do enxame

Número de partículas
5
20
50

As topologias do enxame serão:

Tabela 2.2: Tipos de topologia investigadas

J	
	Topologias
	Global
	Local

Já a o coeficiente de inércia (ω) e o coeficiente do conhecimento cognitivo e social (respectivamente C_1 e C_2) serão testados de acordo com a seguinte tabela:

Tabela 2.3: Variação dos coeficientes

Inércia (ω)	$C_1 \in C_2$
$\omega = 0, 9 \to 0, 4$	$C_1 = C_2 = 2,05 \text{ (constante)}$
$\omega = cte$	$C_1 = 2, 5 \rightarrow 1, 5; C_2 = 1, 5 \rightarrow 2, 5$

Portanto unindo as informações das Tabelas 2.1, 2.2 e 2.3 tem-se, no total, doze configurações diferentes para realizar experimentos. Cada experimento será realizado trinta vezes e, então, serão comparados.

Operação

O experimento consiste na análise da convergência do algorítmo PSO para cada caso de teste definido. Também será realizado o teste não paramétrico de Wilcoxon para comparar os casos em que uma simples inspeção visual não for suficiente para saber qual configuração foi melhor que a outra.

O tipo de erro utilizado no teste de hipótese não paramétrico de Wilcoxon é do Tipo II, o que significa que é o caso em que a hipótese nula é aceita, mesmo que realmente ela não seja verificada. Na prática, aceitam-se os falsos-positivos.

O mesmo computador será utilizado na realização de todos os testes, variando apenas o *seed* para o gerador pseudo-aleatório e os parâmetros do PSO. Como se trata do mesmo algoritmo sendo executado antes e depois de algumas mudanças, podem realizar o pareamento dos dados sem problemas.

O algoritmo programado foi escrito na linguagem de programação C: uma linguagem de nível intermediário, e otimizado para que o desempenho do programa fosse o melhor possível. O código-fonte escrito é bastante reduzido e modularizado. O nível de complexidade do programa na notação Big-O é $O(n^2)$. Para se executar o programa é necessário passar como parâmetro de inicialização a configuração desejada. Por exemplo, deseja-se executar o PSO com vinte partículas, então executa-se o comando:

./PSO 20

Como saída do programa, tem-se o melhor resultado já visitado pelo enxame para cada 50 iterações. A configuração do computador utilizado para realizar os experimentos é: Intel Core 2 Duo 2,00GHz, 2GB de memória RAM, sistema operacional GNU/Linux x86-64.

Cada configuração foi executada trinta vezes, no mesmo computador. Apesar do computador possuir mais de um núcleo, o programa desenvolvido não utilizou disso para acelerar seu processamento, executando assim o seu código em apenas um núcleo.

Resultados

Este capítulo apresenta os resultados obtidos para cada uma das doze configurações investigadas.

4.1 Resultados obtidos

As figuras a seguir são o bloxplot de cada configuração. A nomeclatura utilizada foi a seguinte: uma configuração **5-global-decay** significa:

- Cinco partículas no enxame
- Topologia **global**
- $\omega = 0, 9 \to 0, 4$

Já uma configuração 20-local-c1c2 significa:

- Vinte partículas no enxame
- Topologia local
- $C_1 = 2, 5 \rightarrow 1, 5 \text{ e } C_2 = 1, 5 \rightarrow 2, 5$

Figura 4.1: Boxplot para configuração 5-global-decay

Figura 4.2: Boxplot para configuração 5-global-c1c2

Figura 4.3: Boxplot para configuração 5-local-decay

Figura 4.4: Boxplot para configuração 5-local-c1c2

Figura 4.5: Boxplot para configuração 20-global-decay

Figura 4.6: Boxplot para configuração 20-global-c1c2

Figura 4.7: Boxplot para configuração 20-local-decay

Figura 4.8: Boxplot para configuração 20-local-c1c2

Figura 4.9: Boxplot para configuração 50-global-decay

Figura 4.10: Boxplot para configuração 50-global-c1c2

Figura 4.11: Boxplot para configuração 50-local-decay

GBest vs. Experimento

Figura 4.12: Boxplot para configuração 50-local-c1c2

4.2 Comparação de execução

Após estes experimentos serem executados foi realizado o teste de Wilcoxon Pareado com 95% de intervalo de confiança. O resultado está na Tabela 4.1.

Tabela 4.1: Teste de Wilcoxon Pareado para variação nos parâmetros C_1 e C_2 5 partículas | 20 partículas | 50 partículas |

	5 partículas	20 partículas	50 partículas
5 partículas	-	Р	P
20 partículas	M	-	P
50 partículas	M	M	-

Conclusão

O algoritmo PSO é bastante utilizado para otimizar funções. Além do algoritmo clássico há variações da técnica. Para este trabalho realizou-se um estudo de convergência para doze configurações do PSO clássico. Observou-se que todas as configurações foram capazes de convergir apesar de fazê-lo de modo diferente.

Observou-se que a topologia global obteve um resultado igual ou melhor que a topologia local e que o número de partículas teve influência nos resultados. Nos arranjos realizados, quando se tem mais partículas o resultado é melhor.

Referências Bibliográficas

[1] R. Kennedy, J.; Eberhart. Particle swarm optimization. *Proceedings of IEEE International Conference on Neural Networks*, 1995.