Milestone 2 Report: LSTM-Based Remaining Useful Life (RUL) Prediction

Project: Predictive Maintenance using LSTM

Name: K Manjushree Date: 2025-10-05

1. Objective

Train and evaluate LSTM models for predicting the Remaining Useful Life (RUL) of engines from the NASA C-MAPSS datasets (FD001–FD004).

2. Model Architecture

Stacked LSTM model with dropout and dense layers: LSTM(64) \rightarrow Dropout(0.2) \rightarrow LSTM(32) \rightarrow Dropout(0.2) \rightarrow Dense(16, ReLU) \rightarrow Dense(1) Loss: MSE | Metric: MAE | Optimizer: Adam

3. Training Details

Epochs: 50 | Batch Size: 64 Separate models trained for FD001–FD004 using preprocessed sequences.

4. Results

Training and validation loss curves and predicted vs actual RUL plots were generated for each dataset.

5. Implementation Notes

Scripts: model_definition.py, train_model_all.py, evaluate_model_all.py Saved Models: outputs/ | Graphs: graphs/ Keras metrics issue handled with compile=False during evaluation.

6. Key Achievements

• Successfully trained LSTM models for FD001–FD004 • Generated loss curves and RUL prediction plots • Reusable pipeline for future datasets

7. Next Steps

• Hyperparameter tuning • Explore advanced LSTM (BiLSTM, attention) • Implement early stopping • Integrate with Milestone 3

8. References

1. NASA C-MAPSS Dataset:

https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/ 2. TensorFlow & Keras Documentation: https://www.tensorflow.org/

Graphs for FD001

Loss curve image

Predicted vs Actual RUL image

Training vs Validation Loss (FD002) 10000 8000 4000 Training Loss Validation Loss 2000 Training Loss Validation Loss Epochs

Graphs for FD002

Loss curve image

Predicted vs Actual RUL image

Graphs for FD003

Loss curve image

Predicted vs Actual RUL image

Graphs for FD004

Loss curve image

Predicted vs Actual RUL image