Сравнение алгоритмов решения задачи о рюкзаке

Таблица 1. Стоимость предметов, взятых в рюкзак, в зависимости от общего числа предметов при максимальной вместимости рюкзака, в 100 раз превосходящей количество предметов

		Алгоритм				
		Генетический	Жадный	Ветвей и	Многопоточный	
				границ	генетический	
Размер входного	10	45	45	36	45	
	25	205	194	149	195	
файла	50	0	526	285	0	
	75	0	827	597	0	
	90	0	1042	724	0	
	100	0	1748	1184	0	
	128	0	1879	1328	0	

Таблица 2. Время работы алгоритма в миллисекундах в зависимости от общего числа предметов при максимальной вместимости рюкзака, в 100 раз превышающей количество предметов

		Алгоритм				
		Генетический	Жадный	Ветвей и	Многопоточный	
				границ	генетический	
Размер входного	10	116	0.0007	0.0032	59	
	25	8906	0.0011	0.0086	62	
файла	50	170	0.0023	0.0143	66	
	75	207	0.0033	0.0205	65	
	90	227	0.0034	0.0186	70	
	100	239	0.0045	0.0268	72	
	128	277	0.0052	0.0289	76	

Обоснование выбора алгоритма для использования с OpenMP

Жадный алгоритм нельзя распараллелить, так как он выполняется последовательно. Метод ветвей и границ тяжело распараллелить, так как он использует общую очередь с приоритетом и общую переменную лучшей цены. Генетический алгоритм просто распараллелить, так как скрещивание каждой пары особей происходит независимо от других.

Выводы

Генетический алгоритм работает долго, но дает наиболее оптимальное решение, если популяция развивается. Развитие популяции зависит от макропараметров. На больших файлах при использованных макропараметрах популяция вообще не развивается. Многопоточная реализация генетического алгоритма работает в несколько раз быстрее

однопоточной. Жадный алгоритм работает за наименьшее время, и на случайных данных дает хорошее решение. Метод ветвей и границ работает чуть дольше жадного алгоритма, и на случайных данных ни разу не выдал результат лучше.