Basic Training on the Global InMAP Model: A Workshop

Dr. Sumil Thakrar, University of Minnesota (UM)

Dr. Vikram Ravi, National Renewable Energy Laboratory (NREL)

10th-11th March 2022

Zoom Housekeeping

Welcome to our workshop! Here are a few notes about using Zoom:

- You will be automatically muted upon joining the webinar.
- To **mute** or **unmute** up yourself, use the microphone icon.
- Please raise your hand to speak using the "Reactions" icon and lower your hand when you are done.
- Use the chat feature to add comments and share input.
- If you have technical issues, please use the chat feature to message Emily Klos.
- You can adjust your audio through the audio settings. If you are having issues, you can also dial-in and listen by phone, which can be found in your registration confirmation email.

- A survey will launch at the end of this session. We appreciate any feedback you offer!
- If you would like live help in the session, you have the option for Sumil and Vikram to take control of your screen on Zoom.

Welcome & Module 2 Overview

Garvin Heath, Strategic Energy Analysis Center, NREL

Recap of Module 1

In Module 1, we:

- Discussed what Global InMAP does operationally
- Downloaded and set up Global InMAP and test files for the workshop
- Described the ESRI Shapefile format and the TOML format
- Described the configuration file and its 5 main parameters
- Demonstrated how Global InMAP is run

Module 2 Overview

In Module 2, we will:

- Learn how to prepare and edit emission inputs,
- Modify our own configuration files for your simulation,
- Practice running Global InMAP on your machine,
- Generate results and interpret outputs

Using QGIS

Input emissions

- Open and view shapefile emissions,
- Edit emissions data,
- Find the emissions totals

Output results

- Open and view shapefile results,
- Find the average concentrations,
- Save the results to an image

Important Note about emissions attributes

Pay attention to **spelling** and **units** before running the emissions in Global InMAP

voc	NOx	NH3	SOx	PM25	Height	Diam	Temp	Velocity
0.02902050	0.85819300	0.00216838	0.67853100	0.00532864	127.0000000	5.00000000	400.000000	23.0000000
0.027551200	0.81474400	0.00205860	0.64417700	0.00505886	127.0000000	5.00000000	400.000000	23.0000000

Units: ton/year metres metres Kelvin m/s

(or kg/year, μg/s, as specified in sampleConfig.toml)

Breakout Groups

Open test_emis.shp in QGIS

If you haven't already done so, please download QGIS from download.qgis.org/

test_emis.shp should be in the asean_workshop-main folder

Module 2 Overview

In Module 2, we will:

- Learn how to prepare and edit emission inputs,
- Modify our own configuration files for your simulation,
- Practice running Global InMAP on your machine,
- Generate results and interpret outputs

The Configuration File

- The configuration file is in the TOML format, and tells Global InMAP everything it needs to know to run your simulation
- We will be looking at sampleConfig.toml and talking about 5 main parameters in turn:
 - VariableGridData: The path to the computational grid.
 - EmissionsShapefiles: The path to the emission inputs.
 - EmissionUnits: The units of the emissions.
 - OutputFile: The path to where InMAP results go.
 - OutputVariables: The desired attributes for the InMAP results.

Open the configuration file sampleConfig.toml in your text editor

Please use a text editor that does not use Rich Text Formatting

Windows: Notepad, WordPad, Notepad++

Mac OS: TextEdit, Emacs, Vim

Breakout Groups

Run Global InMAP!

inmap-v1.9.5-windows-amd64.exe run steady -s --config=sampleConfig.toml

"inmap" calls the executable. In this workshop, we will download a release of InMAP, so it will be called something like "inmap-v1.9.5-darwin-amd64"

"run steady -s" tells
InMAP to run in a mode
where the grid is already
saved out in a .gob file
specified in the
configuration. This is
faster for our purposes.

"sampleConfig.toml" is the path to the configuration file that describes the Global InMAP set-up, including the emissions input files, and the grid.

Results

- It takes ~7 minutes and ~1GB memory to get results
- The test emissions increase population-weighted total PM_{2.5} concentrations by 1.2 μg m⁻³ (90% pSO₄)
- There are 10,200 additional deaths each year in the test region from the test emissions
- We can see the spatial distribution of the results:

Change in PM2.5 concentrations

12°N 12°N 9°N 9°N 6°N 2.0 6°N 3°N 1.5 0° 1.0 3°S 3°S 0.5 6°S 6°S 90°E 95°E 100°E 105°E 90°E 100°E 105°E 110°E

Additional Resources

- Help with the Command Line
 - http://www.cs.columbia.edu/~sedwards/classes/2017/1102spring/Command%20Prompt%20Cheatsheet.pdf
- QGIS tutorials
 - https://www.youtube.com/watch?v=NHolzMgaqwE
- Other InMAP tutorials
 - https://inmap.run/blog/2019/03/04/tutorial/
- Papers
 - InMAP model (Tessum et al., 2017)https://doi.org/10.1371/journal.pone.0176131
 - Global extension (Thakrar et al., 2022)
 - https://doi.org/10.26434/chemrxiv-2021-wn21q-v3
- These slides are available in the workshop data

Time for Questions

Closing Remarks

Beni Suryadi, ASEAN Centre for Energy

