# **COMPUTER VISION**

## Homework 02

姓名 : 蘇宛琳

系所 : 電信所碩一

學號 : R05942060

指導教授 : 傅楸善老師

## Computer Vision Report – Homework 02

R05942060 蘇宛琳

- Write a program to generate Image Matching (Detecting Motion Vectors)
  - **↓** Camera calibration i.e. compute #pixels/mm object displacement
  - Use lens of focal length: 16mm, 25mm, 55mm
  - Object displacement of: 1mm, 5mm, 10mm, 20mm
  - Object distance of: 0.5m, 1m, 2m

  - Are pixels square or rectangular?
  - Calculate theoretical values and compare with measured values.
  - Calculate field of view in degrees of angle.

### > 設計原理

- ▲ 影像位移理論值計算
  - (1) 透過下圖的原理,可以經由相似三角形得到以下的公式: 影像位移=(焦距\*實際位移)/物距



舉例說明: 焦距=18mm,實際位移=1mm,物距=600mm >> 影像位移=(18\*1)/600=0.03mm

(2) 在換算影像位移(mm)和影像位移(pixel)時,我們必須先得知相機的 感感應器大小和影像大小,可得比例尺。

比例尺 = 4672pixel / 23.7mm



舉例說明: 影像位移為 0.03 mm >> (4672/23.7)\*0.03 = 6 pixel

#### ▲ 視野夾角計算

 $\checkmark$  感應器大小 = w ,焦距 = f ,視野夾角 $\theta$ 的計算,如下式  $\theta = \tan^{-1}\left(\frac{f}{w}\right)$ 



Sensor parameter

舉例說明:

$$d = 23.7 \text{ mm}$$
,  $f = 18 \text{ mm}$ ,  $\theta = \tan^{-1} \left( \frac{f}{w} \right) = \tan^{-1} \left( \frac{18}{23.7/2} \right) = 56.64 \text{ }$ 

#### ▲ 影像位移計算值計算

Step1. 先利用 MATLAB 中的 Data Curaor 取出魯夫的 center 大約位置 還有依據影像中魯夫的大小,來取設定 block 大小。

舉例說明: 焦距(18mm) 物距(600) 的影像

假設中心 center=(2265,1655), block=551x371





367

Step2. 接著透過第一堂課所教的 correlation 方式,來比較兩張圖魯夫 位置的水平位移的 pixel 數,且因為透過 Data Curaor 所取出的 中心位置並不準確,故將其周圍約 10 個 pixel 左右皆設為中心 點,分別與圖 b 進行 correlation,找出 correlation 的最小值,即 可求得最準確之 a 圖中心點,並同時設定 search range > 位移理 論值\*2,此時計算與圖 b 最佳的中心點的位移,如此一來不用 跑整張影像的向量圖,就可以輕鬆針對魯夫的移動來求得計算值。

#### 舉例說明:

圖 a 為焦距(18mm) 物距(600) 位移(0)

圖 b 為焦距(18mm) 物距(600) 位移(20)

取周圍 10 個點為中心點,故圖 a 的 center=(1650~1659,2260~2269)

Step1.

Center(1)=(1650,2260) Block=551x371

Search range=490 > 位移理論值\*2=120\*2=240

Search range





圖 a

displacement

圖 b

```
計算 correlation --> dmin(1)-->dx(1), dy(1) 接著依此類推計算到 center(10), 計算 correlation --> dmin(10) -->dx(10),dy(10) Step2. 取得最小的 dmin(k), 則 center(k)最為準確,且所得到的 dx(k), dy(k), 即為影像位移計算值。
```

### ▶ 程式碼

```
%%% use correlation to do image matching a
a=imread('600mm 0mm.jpg');a=rgb2gray(a);a=double(a);
b=imread('600mm_5mm.jpg');b=rgb2gray(b);b=double(b);
%%%% assume the block and search size and center
% block size
Bx=551; hBx=fix(Bx/2);
By=371; hBy=fix(By/2);
% search size ( hS=10 is equal that search size is 20)
hS=10;
% padarray zeros in image a and b
x=1650:1654;
y=2272:2276;
for i=1:length(x)
   d=[];
   for r=x(i)-hS:x(i)+hS
      for c=y(i)-hS:y(i)+hS
          d(r-x(i)+hS+1,c-y(i)+hS+1)=norm(a(x(i)-hBx:x(i)+hBx,y(i)-hBx))
hBy:y(i)+hBy)-b(r-hBx:r+hBx,c-hBy:c+hBy));
      end
   end
   [~,row1{i}]=min(d);
   [dmin(i),col(i)]=min(min(d));
   row(i)=row1{i}(col(i));
end
[~,k]=min(dmin);
```

xc=x(k);
yc=y(k);
dx=row(k)-hS-1;
dy=col(k)-hS-1;

## > 實驗結果

|      |            | 空咖               | 影像    | 影像      | 影像      | 20 HZ           | 採用          |
|------|------------|------------------|-------|---------|---------|-----------------|-------------|
| 焦距   | 物距<br>(mm) | 實際<br>位移<br>(mm) | 位移    | 位移      | 位移      | 視野<br>夾角<br>(度) | Center      |
| (mm) |            |                  | 理論值   | 理論值     | 計算值     |                 | Block       |
|      |            |                  | (mm)  | (pixel) | (pixel) |                 |             |
| 18   | 600        | 1                | 0.030 | 6       | 7       | 56.64           | Center      |
|      |            | 5                | 0.150 | 30      | 26      |                 | (1650,2272) |
|      |            | 10               | 0.300 | 60      | 54      |                 | Block       |
|      |            | 20               | 0.600 | 120     | 101     |                 | 551x371     |
|      | 1200       | 1                | 0.015 | 3       | 2       |                 | Center      |
|      |            | 5                | 0.075 | 15      | 16      |                 | (1612,2339) |
|      |            | 10               | 0.150 | 30      | 30      |                 | Block       |
|      |            | 20               | 0.300 | 60      | 55      |                 | 291x201     |
|      | 1800       | 1                | 0.010 | 2       | 3       |                 | center      |
|      |            | 5                | 0.050 | 10      | 9       |                 | (1590,2324) |
|      |            | 10               | 0.100 | 20      | 19      |                 | Block       |
|      |            | 20               | 0.200 | 40      | 45      |                 | 191x141     |
| 53   | 600        | 1                | 0.088 | 17      | 21      | 77.40           | center      |
|      |            | 5                | 0.441 | 87      | 61      |                 | (1670,2277) |

|     |      | 10 | 0.883 | 174 | 128 |       | Block       |
|-----|------|----|-------|-----|-----|-------|-------------|
|     |      | 20 | 1.766 | 384 | 252 |       | 1401x1001   |
|     | 1200 | 1  | 0.044 | 9   | 10  |       | center      |
|     |      | 5  | 0.220 | 44  | 45  |       | (1630,2400) |
|     |      | 10 | 0.441 | 87  | 78  |       | Block       |
|     |      | 20 | 0.883 | 174 | 162 |       | 771x501     |
|     | 1800 | 1  | 0.029 | 6   | 12  |       | center      |
|     |      | 5  | 0.147 | 29  | 37  |       | (1322,2400) |
|     |      | 10 | 0.294 | 58  | 58  |       | Block       |
|     |      | 20 | 0.588 | 116 | 101 |       | 521x342     |
| 135 | 600  | 1  | 0.225 | 44  | 50  | 85.98 | center      |
|     |      | 5  | 1.125 | 222 | 159 |       | (1597,2221) |
|     |      | 10 | 2.250 | 444 | 430 |       | Block       |
|     |      | 20 | 4.500 | 887 | 788 |       | 2531x1801   |
|     | 1200 | 1  | 0.113 | 22  | 23  |       | center      |
|     |      | 5  | 0.563 | 111 | 109 |       | (1550,2500) |
|     |      | 10 | 1.125 | 222 | 200 |       | Block       |
|     |      | 20 | 2.250 | 444 | 414 |       | 1650x1101   |
|     | 1800 | 1  | 0.075 | 15  | 16  |       | center      |
|     |      | 5  | 0.375 | 74  | 78  |       | (1140,2325) |
|     |      | 10 | 0.750 | 148 | 149 |       | Block       |
|     |      | 20 | 1.500 | 296 | 310 |       | 1201x801    |