# VE401 Probabilistic Methods in Eng. RC 4

**CHEN Xiwen** 

**UM-SJTU** Joint Institute

March 29, 2020

### Table of contents

### Reliability

Failure Density, Reliability and Hazard Rate Common Distributions for Reliability Studies

#### **Basic Statistics**

Samples and Data
Estimating Parameters
Estimating Intervals
Case Study

### Reliability

Failure Density, Reliability and Hazard Rate

Common Distributions for Reliability Studies

#### **Basic Statistics**

Samples and Data Estimating Parameters Estimating Intervals Case Study

### **Definitions**

Suppose A is a black box unit.

- **Failure density**  $f_A$ : distribution of the time T that A fails.
- ▶ Reliability function  $R_A$ : the probability that A is working at time t,  $R_A(t) = 1 F_A(t)$ .
- **Hazard rate**  $\rho_A$ :

$$ho_{A}(t) := \lim_{\Delta t o 0} rac{P[t \leq T \leq t + \Delta t | t \leq T]}{\Delta t} \ = \lim_{\Delta t o 0} rac{P[t \leq T \leq t + \Delta t]}{P[T \geq t] \cdot \Delta t} = rac{f_{A}(t)}{R_{A}(t)}, \ R_{A}(t) = e^{-\int_{0}^{t} 
ho_{A}(x) \mathrm{d}x}.$$

One often has information on  $\rho_A$ , but not  $F_A$  or  $R_A$ .

# Series and Parallel Systems

► Series system with *k* components.

$$R_s(t) = \prod_{i=1}^k R_i(t),$$

where  $R_i$  is the reliability of the *i*-th component.

► Parallel system with *k* components.

$$R_p(t) = 1 - \prod_{i=1}^k (1 - R_i(t)).$$

### Reliability

Failure Density, Reliability and Hazard Rate

Common Distributions for Reliability Studies

#### **Basic Statistics**

Samples and Data Estimating Parameters Estimating Intervals Case Study

# **Exponential Distribution**

▶ Density function.  $\beta > 0$  is a parameter,

$$f(x) = \begin{cases} \beta e^{-\beta x}, & x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

► Mean.

$$\mu = \frac{1}{\beta}$$
.

► Variance.

$$\sigma^2 = \frac{1}{\beta}.$$

► Reliability features.

$$\rho(t) = \beta, \ R(t) = e^{-\beta t}, \ f(t) = \rho(t)R(t) = \beta e^{-\beta t}.$$

### Weibull Distribution

ightharpoonup Density function.  $\alpha, \beta > 0$  are parameters,

$$f(x) = \left\{ egin{array}{ll} lpha eta x^{eta-1} e^{-lpha x^eta}, & x > 0, \\ 0, & ext{otherwise.} \end{array} 
ight.$$

► Mean.

$$\mu = \alpha^{-1/\beta} \Gamma(1 + 1/\beta).$$

► Variance.

$$\sigma^2 = \alpha^{-2/\beta} \Gamma(1 + 2/\beta) - \mu^2.$$

► Reliability features.

$$\rho(t) = \alpha \beta t^{\beta - 1}, \ R(t) = e^{-\alpha t^{\beta}}, \ f(t) = \rho(t)R(t) = \alpha \beta t^{\beta - 1}e^{-\alpha t^{\beta}}.$$

### Reliability

Failure Density, Reliability and Hazard Rate Common Distributions for Reliability Studies

#### **Basic Statistics**

Samples and Data

Estimating Parameters
Estimating Intervals
Case Study

### **Definitions**

- Statistics aims to gain information about the parameters of a distribution by conducting experiments.
- Population: a large collection of instances which we want to describe probability.
- ▶ Random sample of size n from distribution of X: a collection of n independent random variables  $X_1, \ldots, X_n$ , each with the same distribution as X. ( $\Leftrightarrow n$  i.i.d. random variables.)
- ▶ *x-th percentiles*:  $d_x$  such that x% of values in sampled data are less than or equal to  $d_x$ . (*first, second, third quartile*  $\Rightarrow$  x = 25, 50, 75.)
- ▶ Interquartile range:  $IQR = q_3 q_1$ , measures the dispersion of the data.
- **Precision**: smallest decimal place of data  $\{x_1, \ldots, x_n\}$ .
- **Sample range**:  $\max\{x_i\} \min\{x_i\}$ .

## Visualization — Histograms

Choose bin width / number of bins.

Sturges's rule.

$$k = \lceil \log_2(n) \rceil + 1, \qquad h = \frac{\max\{x_i\} - \min\{x_i\}}{k},$$

rounding *up* to the precision of the data.

Freedman-Diaconis rule.

$$h = \frac{2 \cdot \mathsf{IQR}}{\sqrt[3]{n}}.$$

#### Sketch.

- 1. Choose bin width *h*.
- 2. Find minimum of data min $\{x_i\}$ , subtract 1/2 of precision.
- 3. Successively add bin width and categorize all the data.

## Visualization — Stem-and-Leaf Diagrams

### Steps.

- 1. Choose a convenient number of leading decimal digits to serve as stems.
- 2. Label the rows using the stems.
- 3. For each datum of the random sample, note down the digit following the stem in the corresponding row.
- 4. Turn the graph on its side to get an impression of its distribution.

# Visualization — Stem-and-Leaf Diagrams

## Visualization — Boxplots

- 1. Calculate  $q_1, q_2, q_3$  and IQR.
- 2. Find *inner fences* and *outer fences* by

$$f_1 = q_1 - \frac{3}{2}IQR,$$
  $f_3 = q_3 + \frac{3}{2}IQR,$   $F_1 = q_1 - 3IQR,$   $F_3 = q_3 + 3IQR,$ 

and find adjacent values

$$a_1 = \min\{x_k : x_k \ge f_1\}, \qquad a_3 = \max\{x_k : x_k \le f_3\}.$$

3. Identify *near outliers* and *far outliers*.

# Visualization — Boxplots



### Reliability

Failure Density, Reliability and Hazard Rate Common Distributions for Reliability Studies

#### **Basic Statistics**

Samples and Data

**Estimating Parameters** 

Estimating Intervals
Case Study

### **Definitions**

- **Statistic**: a random variable that is derived from  $X_1, \ldots, X_n$ .
- **Estimator**: a statistic that is used to estimate a population parameter.
- **Point estimate**: a value of the estimator.
- ▶ **Unbiased**: expectation of an estimator  $\widehat{\theta}$  is equal to the true parameter.

$$\mathsf{E}[\widehat{\theta}] = \theta, \quad \mathsf{bias} = \theta - \mathsf{E}[\widehat{\theta}].$$

► Mean square error:

$$\begin{aligned} \mathsf{MSE}(\widehat{\theta}) &= \mathsf{E}[(\widehat{\theta} - \theta)^2] \\ &= \mathsf{E}[(\widehat{\theta} - \mathsf{E}[\widehat{\theta}])^2] + (\theta - \mathsf{E}[\widehat{\theta}])^2 \\ &= \mathsf{Var}[\widehat{\theta}] + (\mathsf{bias})^2. \end{aligned}$$

# Estimating Parameters — The Method of Moments

Method of moments. Given a random sample  $X_1, \ldots, X_n$  of a random variable X, for any integer  $k \geq 1$ ,

$$\widehat{\mathsf{E}[X^k]} = \frac{1}{n} \sum_{i=1}^n X_i^k$$

is an unbiased estimator for the kth moment of X. Proof. Denote  $\mu_k = E[X^k]$ , then

$$E\left[\widehat{\mu_k}\right] = E\left[\frac{1}{n}\sum_{i=1}^n X_i^k\right]$$
$$= \frac{1}{n}\sum_{i=1}^n E[X_i^k] = \frac{1}{n} \cdot n\mu_k = \mu_k.$$

# Estimating Parameters — Method of Maximum Likelihood

Method of maximum likelihood. Given a random sample  $X_1, \ldots, X_n$  of a random variable X with parameter  $\theta$  and density  $f_X$ , the *likelihood function* is given by

$$L(\theta) = \prod_{i=1}^n f_X(x_i).$$

The maximum likelihood estimator (MLE) of  $\theta$  is given by

$$\widehat{\theta} = \underset{\theta}{\operatorname{arg\,max}} L(\theta).$$

In most of the cases, we equivalently maximize the log-likelihood

$$\ell(\theta) = \ln L(\theta), \qquad \widehat{\theta} = \underset{\theta}{\operatorname{arg\,max}} \ \ell(\theta).$$

# Estimating Mean

#### Method of moments.

**E**stimating mean  $\mu$ .

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

▶ Biasness. As we have noted earlier,

$$\mathsf{E}\left[\widehat{\mu}\right] = \mu.$$

# **Estimating Mean**

Maximum likelihood estimate. Suppose X follows a normal distribution with <u>unknown</u> mean  $\mu$  and <u>known</u> variance  $\sigma^2$ , and we wish to estimate mean  $\mu$ .

ightharpoonup Estimating mean  $\mu$ .

$$L(\mu) = \frac{1}{(2\pi)^{n/2}\sigma^n} \exp\left[\frac{1}{\sigma^2} \left(\sum_{i=1}^n X_i^2 - 2\mu \sum_{i=1}^n X_i + n\mu^2\right)\right].$$

$$\widehat{\mu} = \arg\max_{\mu} \left\{-\frac{n}{2} \ln(2\pi\sigma^2) + \frac{1}{\sigma^2} \left(\sum_{i=1}^n X_i^2 - 2\mu \sum_{i=1}^n X_i + n\mu^2\right)\right\}$$

$$= \frac{1}{n} \sum_{i=1}^n X_i.$$

Biasness. As seen earlier, the estimator is unbiased.

# **Estimating Variance**

#### Method of moments.

 $\triangleright$  Estimating variance  $\sigma^2$ .

$$\widehat{\sigma^2} = \widehat{\mathsf{E}[X^2]} - \widehat{\mathsf{E}[X]}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2.$$

▶ Biasness. This estimator is not unbiased since

$$E[X_i^2] = Var[X_i] + E[X_i]^2 = \sigma^2 + \mu^2,$$
  
$$E[\overline{X}^2] = Var[\overline{X}] + E[\overline{X}]^2 = \frac{\sigma^2}{n} + \mu^2,$$

and thus

$$\mathsf{E}[\widehat{\sigma^2}] = \sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 = \frac{n-1}{n}\sigma^2 \neq \sigma^2.$$

# **Estimating Variance**

Maximum likelihood estimate. Suppose X follows a Poisson distribution with parameter k, and we wish to estimate variance k (since both mean and variance of Poisson distribution are k).

Estimating variance k. We know from lecture slides that

$$L(k) = e^{-nk} \frac{k^{\sum X_i}}{\prod X_i!},$$

$$\widehat{k} = \arg\max_{k} \left\{ -nk + \ln k \sum_{i=1}^{n} X_i - \ln \prod_{i=1}^{n} X_i \right\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_i.$$

▶ <u>Biasness</u>. Although both the MLE estimate for mean and variance are sample mean, the estimators are unbiased.

# Summary

Unbiased estimator for mean and variance.

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad \widehat{\sigma^2} = S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

► Unbiased estimator for moments.

$$\widehat{\mathsf{E}[X^k]} = \frac{1}{n} \sum_{i=1}^n X_i^k.$$

► MLE estimator for parameters.

$$\widehat{\theta} = \underset{\theta}{\operatorname{arg\,max}} \ L(\theta) = \underset{\theta}{\operatorname{arg\,max}} \ \ell(\theta) = \underset{\theta}{\operatorname{arg\,max}} \ \sum_{i=1}^{n} \ln f_X(x_i).$$

### Reliability

Failure Density, Reliability and Hazard Rate Common Distributions for Reliability Studies

#### **Basic Statistics**

Samples and Data Estimating Parameters

**Estimating Intervals** 

Case Study

### Confidence Intervals

Definition. Let  $0 \le \alpha \le 1$ . A  $100(1-\alpha)\%$  (two-sided) confidence interval for a parameter  $\theta$  is an interval  $[L_1, L_2]$  such that

$$P[L_1 \le \theta \le L_2] = 1 - \alpha.$$

In most cases, we use *centered confidence interval* with

$$P[\theta < L_1] = P[\theta > L_2] = \frac{\alpha}{2}.$$

The  $100(1-\alpha)\%$  upper confidence bound and lower confidence bound for  $\theta$  are given by  $L_u, L_l$  such that

$$P[\theta \le L_{\mu}] = 1 - \alpha, \qquad P[L_{I} \le \theta] = 1 - \alpha.$$

#### Standard normal distribution.

Density function.

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{z^2/2}, \qquad z \in \mathbb{R}.$$

▶ Statistical values. Command for x such that  $P[X \ge x] = p$ : InverseCDF [NormalDistribution [0, 1], 1-p].

$$\alpha = 0.05 \quad \Rightarrow \quad z_{\alpha} = 1.64485, \quad z_{\alpha/2} = 1.95996.$$

Standard normal distribution.



#### Chi-squared distribution.

ightharpoonup Origin.  $Z_1, \ldots, Z_n$  are i.i.d. random variables.

$$Z_i \sim \mathsf{Normal}(0,1) \quad \Rightarrow \quad \chi_n^2 = \sum_{i=1}^n Z_i^2 \sim \mathsf{ChiSquared}(n).$$

▶ Density function.  $f_{\chi_n^2}(x) = 0$  for x < 0 and

$$f_{\chi_n^2}(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} e^{-x/2}, \qquad x \ge 0,$$

where n is the degree of freedom.

▶ Statistical values. Command for x such that  $P[X \ge x] = p$ : InverseCDF [ChiSquareDistribution[n], 1-p].

Chi-squared distribution.



#### Chi distribution.

ightharpoonup Origin.  $Z_1, \ldots, Z_n$  are i.i.d. random variables.

$$Z_i \sim \mathsf{Normal}(0,1) \quad \Rightarrow \quad \chi_n = \sqrt{\sum_{i=1}^n Z_i^2} \sim \mathsf{Chi}(n).$$

▶ Density function.  $f_{\chi_n}(x) = 0$  for x < 0 and

$$f_{\chi_n}(x) = \frac{2}{2^{n/2}\Gamma(n/2)}x^{n-1}e^{-x^2/2}, \qquad x \ge 0,$$

where n is the degree of freedom.

▶ Statistical values. Command for x such that  $P[X \ge x] = p$ : InverseCDF [ChiDistribution[n], 1-p].

### Chi distribution.



#### Student T-distribution.

ightharpoonup Origin.  $Z, \chi^2_{\gamma}$  are i.i.d. random variables such that

$$Z \sim \mathsf{Normal}(0,1), \qquad \chi_{\gamma}^2 \sim \mathsf{ChiSquared}(\gamma),$$
  $\Rightarrow \qquad T_{\gamma} = rac{Z}{\sqrt{\chi_{\gamma}^2/\gamma}} \sim \mathsf{StudentT}(\gamma).$ 

Density function.

$$f_{\mathcal{T}_{\gamma}}(t) = rac{\Gamma((\gamma+1)/2)}{\Gamma(\gamma/2)\sqrt{\pi\gamma}} \left(1 + rac{t^2}{\gamma}
ight)^{-rac{\gamma+1}{2}}, \qquad t \in \mathbb{R}.$$

▶ Statistical values. Command for x such that  $P[X \ge x] = p$ : InverseCDF [StudentTDistribution[n], 1-p].

Student T-distribution.



# Summary

Suppose  $X_1, \ldots, X_n$  are samples from a population X, where X follows normal distribution with mean  $\mu$  and variance  $\sigma^2$ .

Normal distribution.

$$Z = rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \operatorname{Normal}(0, 1).$$

Chi-squared distribution.

$$\chi^2_{n-1} = \frac{(n-1)S^2}{\sigma^2} \sim \mathsf{ChiSquared}(n-1).$$

Chi distribution.

$$\chi_{n-1} = \sqrt{rac{(n-1)S^2}{\sigma^2}} \sim \operatorname{Chi}(n-1).$$

Student T-distribution.

$$T_{n-1} = rac{\overline{X} - \mu}{S/\sqrt{n}} \sim \mathsf{StudentT}(n-1).$$

# Interval Estimation for Mean (Variance Known)

Mean. Suppose we have a random sample of size n from a normal population with *unknown* mean  $\mu$  and *known* variance  $\sigma^2$ .

Statistic and distribution.

$$Z = rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathsf{Normal}\left(0,1
ight).$$

▶  $100(1-\alpha)\%$  two-sided confidence interval for  $\mu$ .

$$\overline{X} \pm \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}$$
.

▶  $100(1-\alpha)\%$  one-sided interval for  $\mu$ .

$$L_u = \overline{X} + \frac{z_{\alpha} \cdot \sigma}{\sqrt{n}}, \qquad L_I = \overline{X} - \frac{z_{\alpha} \cdot \sigma}{\sqrt{n}}.$$

# Interval Estimation for Mean (Variance Unknown)

Mean. Suppose we have a random sample of size n from a normal population with *unknown* mean  $\mu$  and *unknown* variance  $\sigma^2$ .

Statistic and distribution.

$$T_{n-1} = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim \text{StudentT}(n-1).$$

▶  $100(1-\alpha)\%$  two-sided confidence interval for  $\mu$ .

$$\overline{X} \pm \frac{t_{\alpha/2,n-1}S}{\sqrt{n}}$$
.

▶  $100(1-\alpha)\%$  one-sided interval for  $\sigma^2$ .

$$L_u = \overline{X} + \frac{t_{\alpha,n-1}S}{\sqrt{n}}, \qquad L_I = \overline{X} - \frac{t_{\alpha,n-1}S}{\sqrt{n}}.$$

#### Interval Estimation for Variance

Variance. Suppose we have a random sample of size n from a normal population with *unknown* mean  $\mu$  and *unknown* variance  $\sigma^2$ .

Statistic and distribution.

$$\chi^2_{n-1} = \frac{(n-1)S^2}{\sigma^2} \sim \mathsf{ChiSquared}(n-1).$$

▶  $100(1-\alpha)\%$  two-sided confidence interval for  $\sigma^2$ .

$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right].$$

▶  $100(1-\alpha)\%$  one-sided interval for  $\sigma^2$ .

$$L_u = \frac{(n-1)S^2}{\chi_{1-\alpha, n-1}^2}, \qquad L_l = \frac{(n-1)S^2}{\chi_{\alpha, n-1}^2}.$$

#### Interval Estimation for Standard Deviation

Std. Deviation. Suppose we have a random sample of size n from a normal population with unknown mean  $\mu$  and unknown variance  $\sigma^2$ .

Statistic and distribution.

$$\chi_{n-1} = \sqrt{rac{(n-1)S^2}{\sigma^2}} \sim \mathsf{Chi}\,(n-1)\,.$$

▶  $100(1-\alpha)\%$  two-sided confidence interval for  $\sigma^{\diamondsuit}$ .

$$\left\lceil \frac{\sqrt{(n-1)S^2}}{\chi_{\alpha/2,n-1}}, \frac{\sqrt{(n-1)S^2}}{\chi_{1-\alpha/2,n-1}} \right\rceil.$$

▶  $100(1-\alpha)\%$  one-sided interval for  $\sigma^{\$}$ .

$$L_u = \frac{\sqrt{(n-1)S^2}}{\chi_{1-\alpha,n-1}}, \qquad L_I = \frac{\sqrt{(n-1)S^2}}{\chi_{\alpha,n-1}}.$$

#### Reliability

Failure Density, Reliability and Hazard Rate Common Distributions for Reliability Studies

#### **Basic Statistics**

Samples and Data
Estimating Parameters
Estimating Intervals
Case Study

Suppose we obtain n = 70 sample points from simulation.

#### We would like to:

- 1. visualize these data points,
- 2. obtain point estimates for mean and variance (suppose they are unknown), and
- 3. obtain interval estimates for
  - 3.1 mean when variance is known,
  - 3.2 mean and variance when variance is unknown.

Histogram. Using Freedman-Diaconis Rule,

$$q_1 = 2.76, \quad q_3 = 5.84 \quad \Rightarrow \quad \mathsf{IQR} = q_3 - q_1 = 3.08,$$

and

$$h = \frac{2IQR}{\sqrt[3]{n}} = 1.49468 \approx 1.50$$
 (rounding up).

Then the lower bound of the first bin is

$$\min\{x_i\} - \text{pre.}/2 = 0.62 - 0.005 = 0.615.$$

#### Histogram.

$$ln[\cdot]:= \{q1, q2, q3\} = Quartiles[X]$$
  
 $iqr = InterquartileRange[X]$   
 $h = 2 iqr / \sqrt[3]{70}$ 

Min[X] - 0.005

 $Out[ \circ ] = \{2.76, 3.915, 5.84\}$ 

Out[ • ]= 3.08

Out[•]= 1.49468

Out[ • ]= 0.615



Stem-and-leaf diagram. We use stem units as 1.

In[\*]:= Needs["StatisticalPlots`"]
 StemLeafPlot[Floor[X, 0.1], IncludeEmptyStems → True]

|                 | Stem | Leaves           |
|-----------------|------|------------------|
| <i>Out[• ]=</i> | 0    | 69               |
|                 | 1    | 23346699         |
|                 | 2    | 1223466778       |
|                 | 3    | 0111223445668889 |
|                 | 4    | 11345899         |
|                 | 5    | 0013447788       |
|                 | 6    | 0356689          |
|                 | 7    | 223788           |
|                 | 8    | 9                |
|                 | 9    | 0                |
|                 | 10   |                  |
|                 | 11   | 3                |
|                 |      | <del>-</del>     |

Stem units: 1

Boxplots. The inner fences and outer fences are determined as

$$f_1 = q_1 - \frac{3}{2}IQR = -1.86,$$
  $f_3 = q_3 + \frac{3}{2}IQR = 10.46,$   $F_1 = q_1 - 3IQR = -6.48,$   $F_3 = q_3 + 3IQR = 15.08,$ 

and adjacent values

$$a_1 = \min\{x_k : x_k \ge f_1\}, \qquad a_3 = \max\{x_k : x_k \le f_3\}.$$

Mathematica commands 
$$\Rightarrow$$

#### Boxplots.

```
BoxWhiskerChart[
       X, {"Outliers", {"Outliers", Blue}, {"FarOutliers", Red}},
       AspectRatio \rightarrow 1/7, BarOrigin \rightarrow Left,
       GridLines → {{{a3, Dashed}}, {F3, Dashed}}, None}, ImageSize → Large, FrameTicks → {
          {None, None},
          {Range[Min[Floor[X, 0.1]], Max[Ceiling[X, 0.1]]],
           {{q1, "q1"}, {q2, "q2"}, {q3, "q3"}, {a3, "near"}, {F3, "far"}}}}
                                                                      near
Out[ • ]=
             0.6
                    1.6
                           2.6
                                  3.6
                                         4.6
                                               5.6
                                                      6.6
                                                             7.6
                                                                    8.6
                                                                           9.6
                                                                                 10.6
```

Point estimate for mean and variance. We use unbiased estimators for mean and variance.

► Mean.

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = 4.38.$$

Variance.

$$\widehat{\sigma^2} = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = 4.90.$$

Interval estimate for mean and variance.

▶ Mean. (Variance  $\sigma^2 = 4$ .) A 95% two-sided confidence interval for mean  $\mu$  is given by

$$\mathsf{CI} = \left[ \overline{X} - \frac{z_{\alpha/2}\sigma}{\sqrt{n}}, \overline{X} + \frac{z_{\alpha/2}\sigma}{\sqrt{n}} \right] = [3.91, 4.85].$$

▶ Mean. (Variance unknown.) A 95% two-sided confidence interval for mean  $\mu$  is given by

$$\mathsf{CI} = \left[ \overline{X} - \frac{t_{\alpha/2, n-1} S}{\sqrt{n}}, \overline{X} + \frac{t_{\alpha/2, n-1} S}{\sqrt{n}} \right] = [3.21, 5.55].$$

► <u>Variance</u>. A 95% two-sided confidence interval for variance  $\sigma^2$  is given by

$$CI = \left| \frac{(n-1)S^2}{\chi^2}, \frac{(n-1)S^2}{\chi^2} \right| = [3.60, 7.05].$$

Thanks for your attention!