PMlibとは

- アプリケーションの計算性能をモニターするクラスライブラリ
 - 注目する区間の性能統計情報を簡単に測定・レポートする。
 - 富岳版では電力監視・制御インタフェイスを追加
 - Power APIを容易に利用でき、HPCに適したレポート機能を利用できる
 - C++言語、Fortran言語に対応。
 - Linux系OSをもつコンピュータの上で使える。
 - 富岳
 - 富士通FX700、FX100
 - Intel Xeonサーバ(SkyL/IvyB/SandyB)・PC
 - Apple Macbook (ただしHWPC機能は利用不可)
 - オープンソース。
 - 最新版パッケージ(富岳電力制御機能対応)
 - https://github.com/mikami3heart/PMlib
 - 公式リポジトリ(電力未対応)
 - http://avr-aics-riken.github.io/PMlib/
 - 必要な前提ソフトウエア環境
 - Linux OS, C++, C, Fortranコンパイラ
 - (オプションに応じて)MPIライブラリ、PAPIライブラリ、OTFライブラリ

PMlibの利用方法

- 1. PMlibライブラリをインストールする
- 2. アプリケーション中の測定区間を決める
 - ソースプログラム中の注目箇所にPMlib APIを追加
- 3. アプリケーションをコンパイルしてPMlibとリンクする
- 4. アプリケーションを実行する
 - 実行時に性能統計情報がレポートされる
 - レポート出力情報は環境変数で制御可能なので、再コンパイル の必要はない
 - 測定区間は少数の属性を持つ
 - ラベル:任意の名称
 - 測定する計算量の種類: 演算量、データ移動量など
 - 測定する計算量をどう選択・算出するか?
 - PMlibがHWPC値を自動測定する方法
 - ユーサ゛か゛明示的に申告する方法

PMlib基本API

PMlib基本APIの一覧

引数 [内]は省略可能

関数名(C++)	関数名(C)	関数名(Fortran)	機能	呼び出し位置と回数	引数
initialize	C_pm_initialize	f_pm_initialize	PMlib全体の初期化	冒頭・一回	[(1)測定区間数]
start	C_pm_start	f_pm_start	測定の開始	任意・任意 (startとstopでペア)	(1)ラベル
stop	C_pm_stop	f_pm_stop	測定の停止		(1)ラベル、[(2)計算量、(3)任 意の係数]
report	C_pm_report	f_pm_report	統計レポートを出力	測定終了時・一回	(1)出力ファイルポインタ、[(2) ホスト名、(3)任意のコメント、 (4)区間の表示順序指定]

• 電力制御用の追加関数(呼び出さなくとも電力レポートは出力可能)

関数名(C++)	関数名(C)	関数名(Fortran)	機能	呼び出し位置と回数	引数
١	nop	nop	パワーノブ情報を取得する		(1)ノブの種類、(2)ノブの値
setPowerKnob	C_pm_setpowerk nob	f_pm_setpowerk nob	パワーノブの値を設定 する	任意・制約なし	(1)ノブの種類、(2)ノブの値

- この他に多数のAPI有り。各APIとその引数仕様についての詳しい説明は、 パッケージに含まれるdoc/以下のファイルを参照してください
 - doc/Readme.md

Doxygenファイル生成方法の説明

doc/html/index.html

Doxygenが生成するWeb資料

PMIibを利用するプログラムの構成例

Fortran 元ソース例

```
program main
call mykernel() !注目箇所
end
```

C++ 元ソース例

```
int main(int argc, char *argv[]) {
mykernel(); //注目箇所
return 0;
}
```

PMlib組み込み後

```
program main call f_pm_initialize (1) call f_pm_start ("label") call mykernel (msize,n,a,b,c) call f_pm_stop ("label") call f_pm_report ("") end
```

· PMlib組み込み後

```
#include <PerfMonitor.h>
using namespace pm_lib;
PerfMonitor PM;
int main(int argc, char *argv[])
{
PM.initialize();
PM.start("label");
mykernel();
PM.stop ("label");
PM.report(stdout);
return 0;
}
```

PMlibの出力情報

- 1、基本レポート
 - 各測定区間の全プロセス平均性能統計値
 - 時間:各区間の平均時間、呼び出し回数、累積経過時間
 - 計算量:呼び出し1回あたりの量、合計量、速度
 - 区間を登録順または経過時間順にソート出力
 - ジョブ全体での総合性能
 - 代表プロセスのHWPCイベント統計量
 - (富岳のみ)マスターノードの消費電力内訳、アプリ全体での合計消費電力*
- 2、詳細レポート
 - 各MPIプロセス毎のプロファイルを出力
 - 各MPIプロセス毎のHWPCイベント統計量
 - 指定プロセス番号のOpenMPスレッド毎のHWPCイベント統計量
- 出力の内容は環境変数で指定可能

基本レポート例

Section	number of	averaged	process	execution	time [sec]	hardware c	ounted flo	oating point ops.
Label	calls	total	[%]	total/call	sdv	f.p.ops	sdv	performance
	+							
stream_check(*)	: 1	1. 319e-01	99. 59	1. 319e-01	3. 93e-03	8. 000e+08	0.00e+00	6.06 Gflops(*)
sub3_add	: 10	3. 213e-02	24. 26	3. 213e-03	1. 13e-04	2. 000e+08	0.00e+00	6.23 Gflops
sub4_triad	: 10	3. 211e-02	24. 24	3. 211e-03	1. 28e-04	4. 000e+08	0.00e+00	12.46 Gflops
sub2_scale	: 10	2. 471e-02	18.66	2. 471e-03	1.41e-04	2.000e+08	0.00e+00	8.09 Gflops
sub1_copy	: 10	2. 459e-02	18. 56	2. 459e-03	8. 49e-05	1. 450e+03	0.00e+00	0.06 Mflops
	+	 				 		
All sections com	bined	1. 135e-01	–E>	cclusive HWP	C sections-	8. 000e+08		7.05 Gflops
	+	 				 		
Total of all pro	cesses	1. 135e-01	–E>	clusive HWP	C sections-	3. 200e+09		28.19 Gflops

基本レポート例(続き)

PMI ib hardware performance counter (HWPC) report of the averaged process -----

Report for option HWPC_CHOOSER=FLOPS is generated.

Section		SP_0PS	DP_OPS	Total_FP	[Flops]	[%Peak]
stream check(*)	.+-	0 000e+00	8 000e+08	8 000e+08	6 060e+00	7 902e-01
sub3 add		0.000e+00				
sub4_triad		0.000e+00				
sub2_scale	:	0.000e+00	2.000e+08	2.000e+08	8. 094e+09	1.054e+00
sub1_copy		0.000e+00	1. 450e+03	1. 450e+03	5.898e+04	7. 679e-06

PMIib Power Consumption report per node basis -----

Report of the master node is generated for POWER_CHOOSER=NODE option.

Section		total	CMG+L2	MEMORY	•	P. meter	Energy[Wh]
stream_check(*) sub3_add sub4_triad sub2_scale sub1_copy	: : : : : : : : : : : : : : : : : : : :	157. 96 163. 69	108. 07 109. 73 109. 04 106. 25	44. 15 47. 93 46. 04 46. 93 46. 96	9. 58 9. 88	152. 32 165. 10 164. 52 151. 70	5. 58e-03 1. 47e-03 1. 47e-03 1. 04e-03 1. 04e-03

new feature to produce power consumption report

The aggregate power consumption of 4 processes on 1 nodes = 1.99e+01 [J] == 5.54e-03 [Wh]

電力レポートの細かさ指定 (環境変数)

Report for POWER_CHOOSER=NUMA option.

Section		Estimat total	ed power CMGOL2	inside CMG1L2	node [W] CMG2L2	CMG3L2	MEMO	MEM1	MEM2	MEM3	TF+A+U	P. meter	Energy[Wh]
sub4_triad sub2_scale	:	158. 71 149. 38 155. 91 168. 65 144. 72	28. 84 25. 91 26. 54 29. 52 24. 90	28. 75 25. 88 26. 64 29. 53 24. 87	28. 84 25. 88 26. 67 29. 53 24. 87	28. 69 25. 93 26. 97 29. 11 25. 05	9. 40 11. 58 12. 56 12. 40 10. 59	9. 39 11. 57 12. 55 12. 35 11. 04	9. 36 11. 71 12. 50 12. 23 11. 16	9. 32 7. 30 8. 65 8. 04 8. 14	10. 17 9. 45 10. 07 10. 33 8. 99	159. 93	7. 03e-03 1. 22e-03 1. 42e-03 8. 02e-04 1. 03e-03

The aggregate power consumption of 4 processes on 1 nodes = 2.36e+01 [J] == 6.55e-03 [Wh]

Report for POWER_CHOOSER=PARTS option.

Section	Esti tot	nated power al CMGO	r inside CMG1	node [W] CMG2	CMG3	L2CMG0	L2CMG1	L2CMG2	L2CMG3	Acore0	Acore1	TofuD	UnCMG	MEMO	MEM1	MEM2	MEM3	PCI 1	ofuOpt	P. meter	Energy[Wh]
stream_check(*)	158.	08 23.37	23. 33	23. 38	23. 46	3. 61	3. 59	3. 60	3. 60	0. 72	0. 58	0. 31	5. 28	11. 17	11. 11	11. 12	11. 12	0. 00	2. 64	153. 27	5. 58e-03
sub4_triad	157.	56 22.75	23. 24	22. 78	22. 78	3.90	3. 70	3.81	3.82	0. 74	0. 59	0.32	5. 38	12.09	10.97	12.06	12. 10	0.00	2. 69	141. 19	1. 26e-03
sub3_add	158.	25 22.93	22. 81	22. 95	22. 98	3.67	3. 75	3. 79	3.80	0.73	0.59	0.32	5.39	11.99	11. 24	11. 71	11. 73	0.00	2. 61	140. 17	1. 25e-03
sub2_scale	160.	70 23.62	23. 47	23.62	23.64	3.68	3. 76	3. 67	3. 72	0.74	0.61	0.33	5. 54	11. 76	12.41	11. 70	11.83	0.00	2. 87	121. 25	8. 30e-04
sub1_copy	166.	39 25. 25	25. 30	25. 27	25.36	4. 01	4.03	3.83	3. 81	0.76	0.61	0.33	5. 33	11.53	11.81	11.03	11.04	0.00	2. 67	182. 37	1. 25e-03

total				
CMG0	L2CMG0	Acore0	MEMO	PCI
CMG1	L2CMG1	Acorel	MEM1	TofuOpt
CMG2	L2CMG2	TofuD	MEM2	P.meter
CMG3	L2CMG3	UnCMG	MEM3	Energy[Wh]

HWPCレポートの種類

```
HWPC_CHOOSER=FLOPS environment variable is provided.
Header ID:
              SP OPS
                        DP OPS Total FP
                                          [Flops]
                                                [%Peak]
       0 : 0.000e+00
                    Rank
    1 : 0.000e+00 1.201e+10 1.201e+10 8.847e+08 1.152e-01
Rank
   HWPC CHOOSER=BANDWIDTH environment variable is provided.
Header ID: CMG bus RD CMG_bus_WR RD [Bytes] WD [Bytes] Mem [B/s]
                                                            [Bytes]
       0: 1.880e+08 2.279e+05 4.813e+10 5.834e+07 3.551e+09
Rank
                                                            4. 819e+10
    1 : 1.879e+08 2.079e+05 4.809e+10 5.321e+07 3.547e+09 4.814e+10
Rank
   HWPC CHOOSER=VECTOR environment variable is provided.
Header ID: DP SVE op DP FIX op SP SVE op SP FIX op Total FP Vector FP [Vector %]
                    Rank
       0 : 0.000e+00
    1: 0.000e+00 1.201e+10 0.000e+00 0.000e+00 1.201e+10 0.000e+00 0.000e+00
Rank
   HWPC CHOOSER=CACHE environment variable is provided.
            LOAD INS STORE INS
                                           L1 TCM
                                                  L2 TCM [L1$ hit%] [L2$ hit%] [L*$ hit%]
Header ID:
                                 L1 HIT
       0: 1.201e+10 4.933e+06 1.185e+10 1.878e+08 1.877e+08 9.844e+01 4.536e-04 9.844e+01
Rank
Rank
    1 : 1.201e+10 4.933e+06 1.185e+10 1.878e+08 1.877e+08 9.844e+01 4.657e-04 9.844e+01
   HWPC CHOOSER=CYCLE environment variable is provided.
Header ID:
             TOT CYC
                     TOT INS
                                 FP inst FMA inst [FMA ins%]
                                                            [Ins/cyc]
                    3. 307e+10 9. 003e+09 3. 003e+09 3. 336e+01
       0 : 2.714e+10
                                                            1.015e-01
Rank
    1 : 2.714e+10 3.307e+10 9.003e+09 3.003e+09 3.336e+01 1.015e-01
Rank
   HWPC CHOOSER=LOADSTORE environment variable is provided.
            LOAD INS STORE INS SVE LOAD SVE STORE SVE SMV LD SVE SMV ST GATHER LD SCATTER ST [Vector %]
Header ID:
       0: 1.201e+10 4.935e+06 1.200e+10 3.003e+06 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.997e+01
Rank
    1 : 1.201e+10 4.933e+06 1.200e+10 3.003e+06 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.997e+01
Rank
                                                                                             9
```

出力のオプション

- 詳細プロファイルテキストレポート
 - プロセス毎・スレッド毎の計算量・システムの実効性能諸値
 - アプリケーションと一体で利用しやすい

今のところHWPCデータにのみ対応 見た目はかわいらしくなるが、実用面 ではテキストの方が使いやすい

- OTF(Open Trace Format)ファイル出力 | ではテキストの方が使いやすい
 - 専用のポスト処理プログラムTRAiLを用いてWebブラウザで表示
 - 計算性能を時刻歴に可視化する機能

