Operace v FP a iterační algoritmy

INP 2019 FIT VUT v Brně

Př. Latence instrukcí (mikroarchitektura Intel Haswell, 2013)

Instrukce	Latence
MOV r,r	1
MOV m,r	3
ADD r,r	1
MUL r32	4
DIV r32	22 – 29
ROR, ROL	1
FADD	3
FMUL	5
FDIV	10 - 24
FSQRT	10 - 23
FSIN	47 – 106
FPTAN	130

Jsou uvedeny minimální hodnoty latence jako počet hod. taktů jádra. www.agner.org/optimize/instruction_tables.pdf

Operace FP

- Číslo X s pohyblivou řádovou čárkou $X = M_X B^{E_X}$ zapíšeme jako dvojici (M_X, E_X) , kde **mantisa** M_X je ve dvojkovém doplňkovém kódu, nebo v přímém kódu se znaménkem na n_M bitech, **exponent** E_X je v kódu s posunutím na n_E bitech. Třetím definičním údajem je hodnota **základu B.**
- Základní aritmetické operace pro dvojici čísel *X*, *Y* s plovoucí čárkou jsou:

$$X + Y = (M_X . 2^{Ex - Ey} + M_Y) . 2^{Ey}$$
, kde $E_X \le E_Y$
 $X - Y = (M_X . 2^{Ex - Ey} - M_Y) . 2^{Ey}$, kde $E_X \le E_Y$
 $X * Y = (M_X . M_Y) . 2^{Ex + Ey}$
 $X : Y = (M_X : M_Y) . 2^{Ex - Ey}$

Požadované operace

- Pro sčítání a odčítání:
 - 1. Vypočte se v pevné čárce rozdíl E_X E_Y
 - 2. Posune se M_X o E_X E_Y bitů (tj. doprava, pokud je $E_X \le E_Y$)
 - 3. Vypočte se v pevné čárce M_X . 2 Ex Ey +/- M_Y
- Dále je zapotřebí provést **normalizaci a zaokrouhlení výsledku** (viz přednáška Reprezentace dat). Nechť $V = (M_V, E_V)$ označuje výsledek. Normalizovat výsledek znamená posouvat mantisu vlevo (vpravo) a podle toho zmenšovat (zvětšovat) exponent E_V tak dlouho, až se do sledovaného bitu (v_0 nebo v_1) dostane 1.
- Sčítání exponentů se provádí v binární sčítačce s korekcí, nebo ve speciální sčítačce pro posunutý kód.
- Sčítání mantis se provádí v binární sčítačce se šířkou $n_M + 2$ bitů s doplněným záchytným klopným obvodem S.
- V případě násobení (dělení) v FP se využije pro násobení (dělení) mantis dedikovaná násobička (dělička) mantis pracující v FX.

Princip obvodové realizace sčítačky/odčítačky FP

Obvodová realizace operací v FP

- Pro operace s pohyblivou čárkou prováděné v rámci uvedených algoritmů by bylo možno teoreticky použít sčítačku a násobičku ALU s pevnou čárkou. V praxi se to však takto neděje. Obvody aritmetiky s pohyblivou čárkou jsou konstruovány jako zcela nezávislá jednotka s vlastním řadičem.
- Dělení čísel s pohyblivou čárkou a celou řadu dalších operací (sinus, kosinus atd.) je možné v HW provádět iteračními algoritmy.

Newtonův iterační algoritmus

Na základě odhadu x_i hledáme přesnější odhad x_{i+1} v bodě průsečíku tečny funkce f s osou x. Rovnice přímky procházející bodem $f(x_i)$ je

$$y - f(x_i) = f'(x_i)(x - x_i).$$

Pokládáme-li přímku za aproximaci funkce f(x), můžeme psát

$$f(x_{i+1}) - f(x_i) = f'(x_i)(x_{i+1} - x_i).$$

V průsečíku tečny s osou x je $f(x_{i+1}) = 0$, takže odtud dostáváme iterační vzorec

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Newtonův algoritmus - dělení

Iterační vzorec

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

použijeme pro případ dělení. Máme-li dělit číslem b, zvolíme f(x) = 1/x - b, a hledáme bod průchodu této funkce osou x, tedy bod x, kde f(x) = 0, takže pak platí 1/x = b, resp. x = 1/b. Operaci dělení číslem b nahradíme násobením číslem 1/b.

Derivace

$$f'(x) = -1/x^2$$
, odtud
 $x_{i+1} = x_i - (1/x_i - b)/(-1/x_i^2) =$
 $= x_i + x_i - bx_i^2 = x_i (2 - bx_i)$

Rychlost konvergence závisí na volbě x_0 a je typicky kvadratická.

Newtonův algoritmus dělení - prakticky

Postup výpočtu *a / b* je následující:

- 1. Posune se b tak, aby padlo do intervalu <1, 2) a pomocí tabulky odhadů zvolíme první odhad x_0 .
- 2. Provedeme krok iteračního výpočtu $x_{i+1} = x_i (2 bx_i)$. Krok 2 opakujeme tak dlouho, až se dosáhne požadované přesnosti na p bitů, kdy je relativní chyba $(x_i 1/b)/(1/b) = 2^{-p}$. V následujícím kroku i+1 je relativní chyba

$$(x_{i+1} - 1/b)/(1/b) = 2^{-2p}$$

3. Výsledek n-té iterace x_n vynásobíme číslem a, výsledek x_n .a posuneme o odpovídající počet bitů podle kroku 1.

Newtonův algoritmus dělení - příklad

Spočtěte binárně 1/b pro b = 20. $(20)_{10} = (10100)_2$ $x_{i+1} = x_i (2 - bx_i)$

• řádovou čárku posuneme tak, aby $b \in <1, 2$), tedy:

$$10100 \rightarrow 1,0100$$
 (o 4 bity doleva)

• zvolíme např. $x_0 = 1$, potom:

$$x_1 = x_0(2 - bx_0) = 1.(10 - 1,01) = 1.0,11 = 0,11$$

 $x_2 = 0,11(10 - 1,01.0,11) = 0,11(10 - 0,1111) = 0,11.1,0001 = 0,110011$
 $x_3 = 0,110011(10 - 1,01.0,110011) = 0,110011(10 - 0,11111111) = 0,110011.1,000000001 = 0,11001100110011$
atd.

• řádovou čárku posuneme o 4 bity doleva: 0,000011001100110011 Ověření správnosti: 1/20 = 0,05 a $(0,000011001100110011)_2 = (0,051952362)_{10}$

Newtonův algoritmus dělení v HW

 $x_{i+1} = x_i \left(2 - bx_i\right)$

Další funkce pomocí iteračních algoritmů

Zde platí, že postupy vhodné pro programovou implementaci, jako MacLaurinův rozvoj nebo Čebyševovy polynomy atd., nemusí být pro obvodovou realizaci iteračních výpočtů výhodné, a proto byla odvozena řada modifikovaných nebo nových algoritmů, např. Goldschmidtův algoritmus apod.

Všeobecná zásada je najít co nejrychlejší algoritmy, založené pouze na operacích sčítání (odčítání), posuvů a případně i násobení.

CORDIC

Algoritmus CORDIC (Coordinate Rotational Digital Computer) publikoval J. E. Volder v r. 1959. Následně byl zobecněn pro další typy výpočtů.

Myšlenka: Využitím jednoho algoritmu můžeme počítat řadu matematických funkcí pouhým vyčíslováním funkce ve tvaru

$$a \pm b.2^{-i}$$

tedy pomocí součtů, rozdílů a bitových posunů (tzn. rychlá a levná HW implementace).

Použití: CORDIC je používán typicky ve vestavěných zařízeních s jednoduchým procesorem (kapesní kalkulačky, jednočipové mikrokontrolery, apod.), čímž umožňuje efektivně počítat mnoho funkcí. Používá se také např. v koprocesorech Intel počínaje I 8087, pro číslicovou Fourierovu transformaci, číslicovou filtraci signálů apod.

CORDIC – rotační režim

Algoritmus lze provozovat ve dvou režimech – rotačním a vektorovém. Každý režim umožňuje vypočítat jiné funkce.

Rotační režim

Princip: rotací vektoru (1,0) o úhel z získáváme hodnotu cos z a sin z.

Rotaci provádíme postupným přičítáním nebo odčítáním vhodně zvolených úhlů (postupně se zmenšující hodnoty) tak, aby získaná hodnota konvergovala k požadované hodnotě z.

- 1. počátek v (1,0),
- 2. rotace tak, aby úhel byl z,
- 3. $x = \cos z$ a $y = \sin z$

CORDIC – vektorový režim

Algoritmus lze provozovat ve dvou režimech – rotačním a vektorovém. Každý režim umožňuje vypočítat jiné funkce.

Vektorový režim

Princip: rotací vektoru (1,y) o úhel z tak, aby výsledný vektor byl rovnoběžný s osou X, získáváme hodnotu arctan y.

Nulování hodnoty y provádíme

postupným přičítáním nebo odčítáním

vhodně zvolených hodnot tak, aby

získaná hodnota postupně konvergovala k 0.

- 1. počátek v (1,y),
- 2. rotace o z tak, aby y bylo 0,
- 3. z odpovídá tan-1 y

Rotace vektoru

Přechod od bodu A k bodu B lze obecně vyjádřit jako:

$$x_{B} = r.\cos(\varphi + \alpha) =$$

$$r.\cos\varphi.\cos\alpha - r.\sin\varphi.\sin\alpha \qquad (1)$$

$$y_{B} = r.\sin(\varphi + \alpha) =$$

$$r.\sin\varphi.\cos\alpha + r.\cos\varphi.\sin\alpha \qquad (2)$$

$$x_A = r.\cos \varphi$$

 $y_A = r.\sin \varphi$

Dosadíme-li za r do (1) $r = x_A/\cos \varphi$, $r = y_A/\sin \varphi$ pořadě, a do (2) v opačném pořadí, dostaneme výrazy

$$x_B = \cos \alpha (x_A - y_A . tg \alpha)$$

 $y_B = \cos \alpha (y_A + x_A . tg \alpha)$

Rotace vektoru

Požadovaný úhel natočení α můžeme složit z n úhlů s kladným i záporným znaménkem (viz obrázek), tedy z <u>orientovaných</u> úhlů α_i '.

Příklad:

rotace vektoru orientovaného do osy x o úhel α dosažená pomocí tří iterací s postupně se snižujícími absolutními hodnotami úhlů α_i

CORDIC - rotace vektoru

Výsledný úhel natočení $\alpha = \alpha_0' + \alpha_1' + ... \alpha_{n-1}'$

Postup iteračního výpočtu je pak následující:

Položíme $x_0 = x_A$, $y_0 = y_A$ a určíme x_{i+1} , y_{i+1} postupně pro $i = 0, 1 \dots n-1$.

Dostáváme pak iterační vzorce

$$x_{i+1} = \cos \alpha_i' \cdot (x_i - y_i \cdot \operatorname{tg} \alpha_i')$$
 (3)

$$y_{i+1} = \cos \alpha_i' \cdot (y_i + x_i \cdot \operatorname{tg} \alpha_i') \tag{4}$$

Problém: uvedený vztah vyžaduje implementovat obecné násobičky:

- každý krok obsahuje násobení odlišným koeficientem tg α_i '
- každý krok obsahuje násobení odlišným koeficientem cos α_i

Řešení:

- vhodná volba úhlů α_i tak, aby hodnota tg α_i byla mocninou dvou
- zavedení pevného počtu iterací a odložení násobení koeficienty cos $\alpha_{i}^{'}$

CORDIC - rotace vektoru

Vhodná volba úhlů α_i

Ve dvojkové soustavě volíme takové úhly α_i , že platí tg $\alpha_i' = \pm 2^{-i}$.

Tato volba nemá vliv na konvergenci, neboť je-li tg α_i klesající posloupnost, pak také α_i je klesající posloupnost (viz tabulka dále).

Tím se v rovnicích (3), (4) nahradí násobení posuvem o i bitů (vpravo).

Odložení násobení

Další zjednodušení provedeme odložením násobení hodnotami cos α_i nakonec výpočtu, kdy výsledek vynásobíme hodnotou (agregační konstanta)

$$K_{n-1} = \cos \alpha_0 \cdot \cos \alpha_1 \dots \cos \alpha_{n-1} = 0.60725\dots$$

kde $\alpha_i = /\alpha_i'$, protože platí $\cos \alpha_i' = \cos /\alpha_i'$.

Hodnota agregační konstanty závisí pouze na počtu kroků, který je fixní a je volen na základě požadované přesnosti.

Tabulka úhlů CORDIC

Pro i=0,1,... sestavíme tabulku hodnot α_i , pro něž platí $\alpha_i= \operatorname{arctg} 2^{-i}$

i	α [°]	tg a	cos α	K
0	45,000	1	0,707107	0,707107
1	26,565	0,5	0,894427	0,632456
2	14,036	0,25	0,970143	0,613572
3	7,125	0,125	0,992278	0,608834
4	3,576	0,0625	0,998053	0,607648
5	1,790	0,03125	0,999512	0,607352
6	0,895	0,015625	0,999878	0,607278
7	0,448	0,0078125	0,999969	0,607259
•••				

Agregační konstanta K konverguje se zvětšujícím se počtem iterací k hodnotě 0,60725293.

CORDIC - finální podoba

Dosazením dostaneme konečný tvar iteračních vzorců

$$x_{i+1} = x_i - (+) y_i 2^{-i}$$

 $y_{i+1} = y_i + (-) x_i 2^{-i}$
 $z_{i+1} = z_i + (-) \alpha_i$

Rotační režim: vyjdeme-li z vektoru $x_0 = 1$, $y_0 = 0$, přičemž $z_0 = \alpha$, pak aplikací iteračních vzorců tak, aby $z_n \rightarrow 0$ (tzn. natočili jsme vektor o úhel α), dostáváme po n iteracích hodnoty

$$x_n = \cos \alpha / K_{n-1}$$
, $y_n = \sin \alpha / K_{n-1}$.

Abychom získali požadované hodnoty kosinu a sinu, musíme obě složky násobit agregační konstantou K_{n-1} .

Optimalizace: Položíme-li $x_0 = K_{n-1}$, $y_0 = 0$, vyhneme se závěrečnému násobení a výsledek je přímo roven

$$x_n = \cos \alpha$$
, $y_n = \sin \alpha$.

Poznámka: Pro úhly větší než 90° využíváme symetrie a opakování grafu goniometrických funkcí.

Výpočet sin a cos pomocí CORDIC v jazyce Python

```
def cordic(alpha, n=16): #úhel alpha, počet iterací
    alphatab = [math.atan(2**(-i))] for i in range(n)]
                                                           Tabulka úhlů
    K = reduce(lambda x, y: x*y, [math.cos(a) for a in alphatab])
    x, y, z = K, 0.0, alpha
                                       Výpočet agregační konstanty
    for i in range(n):
                                       Na základě hodnoty znaménka
        if z < 0:
                                       přičítáme nebo odčítáme úhel z
            xn = x + y * 2**(-i)
            yn = y - x * 2**(-i)
                                      tabulky úhlů.
            z += alphatab[i]
        else:
            xn = x - y * 2**(-i)
            yn = y + x * 2**(-i)
            z -= alphatab[i]
                                       Po n iteracích získáváme v x a y
        x,y = xn,yn
                                       hodnoty cos(alpha) a sin(alpha)
    return (x, y) # cos(aplha), sin(aplha)
```

Př. S využitím sedmi iterací algoritmu CORDIC vypočtěte sin(28.027°) a cos(28.027°)

Rotujeme vektor (1,0) o úhel 28.027°, průběžný úhel označme z.
$$X_0 = 1$$
 $Y_0 = 0$ $z_0 = 28.027°$

Odečti úhel $\alpha_0 = 45^\circ \rightarrow z_1 = z_0 - \alpha_0 = 28.027 - 45 = -16.973°$

Průběžný úhel je kladný, úhel α_0 odečítáme
$$X_1 = X_0 - Y_0 / 1 = 1 - 0 / 1 = 1$$

$$Y_1 = Y_0 + X_0 / 1 = 0 + 1 / 1 = 1$$

Přičti úhel $\alpha_1 = 26.565^\circ \rightarrow z_2 = z_1 + \alpha_1 = -16.973 + 26.565 = 9.592°$

Průběžný úhel byl záporný, přičítáme a měníme znaménka
$$X_2 = X_1 + Y_1 / 2 = 1 + 1 / 2 = 1.5$$

$$Y_2 = Y_1 - X_1 / 2 = 1 - 1 / 2 = 0.5$$

Odečti úhel $\alpha_2 = 14.036^\circ \rightarrow z_3 = z_2 - \alpha_2 = 9.592 - 14.036 = -4.444°$

$$X_3 = X_2 - Y_2 / 4 = 1.5 - 0.5 / 4 = 1.375$$

$$Y_3 = Y_2 + X_2 / 4 = 0.5 + 1.5 / 4 = 0.875$$

Přičti úhel $\alpha_3 = 7.125^\circ \rightarrow z_4 = z_3 + \alpha_3 = -4.444 + 7.125 = 2.680°$

$$X_4 = X_3 + Y_3 / 8 = 1.375 + 0.875 / 8 = 1.484375$$

$$Y_4 = Y_3 - X_3 / 8 = 0.875 - 1.375 / 8 = 0.703125$$

```
Odečti úhel \alpha_4 = 3.576^{\circ} \rightarrow z_5 = z_4 - \alpha_4 = 2.680 - 3.576 = -0.895^{\circ}
                    = 1.484375 - 0.703125 / 16
X_5 = X_4 - Y_4 / 16
                                                                                       = 1.440429
                                = 0.703125 + 1.484375 / 16
Y_5 = Y_4 + X_4 / 16
                                                                                       = 0.795898
Přičti úhel \alpha_5 = 1.790^{\circ} \rightarrow z_6 = z_5 + \alpha_5 = -0.895 + 1.790 = 0.894^{\circ}
                       = 1.440429 + 0.795898 / 32
X_6 = X_5 + Y_5 / 32
                                                                                       = 1.465300
Y_6 = Y_5 - X_5 / 32
                                = 0.795898 - 1.440429 / 32
                                                                                       = 0.750884
Odečti úhel z \alpha_6 = 0.895^{\circ} \rightarrow z_7 = z_6 - \alpha_6 = 0.894 - 0.895 = -0.0007^{\circ}
X_7 = X_6 - Y_6 / 64
                               = 1.465300 - 0.750884 / 64
                                                                                       = 1.453567
Y_7 = Y_6 + X_6 / 64
                                = 0.750884 + 1.465300 / 64
                                                                                       = 0.773779
```

Následuje násobení agregační konstantou odpovídající použitému počtu iterací, tzn. $K_6 = 0.607278$ a získání požadovaných hodnot:

$$sin(28.027^{\circ}) = 0.607278 * Y_7 = 0.46990$$

 $cos(28.027^{\circ}) = 0.607278 * X_7 = 0.88272$

CORDIC – v HW (základní implementace)

úhel v kroku i

 d_i je znaménko úhlu

$$x_{i+1} = x_i + y_i \cdot d_i \cdot 2^{-i}$$

 $y_{i+1} = y_i - x_i \cdot d_i \cdot 2^{-i}$

$$z_{i+1} = z_i - d_i$$
.arctanTab[i]
 $d_i = -1$ pokud $z_i < 0$, jinak +1

Zobecněný CORDIC

$$x_{i+1} = x_i - \mu d_i y_i 2^{-i}$$

 $y_{i+1} = y_i + d_i x_i 2^{-i}$
 $z_{i+1} = zi + d_i \alpha_i$

- μ = 1 kruhové rotace (sin,cos) α_i = tan⁻¹ 2⁻ⁱ
- $\mu = 0$ lineární rotace $\alpha_i = 2^{-i}$
- μ = -1 hyperbolické rotace $\alpha_{\rm i}$ = tanh⁻¹ 2⁻ⁱ
- Přímý výpočet funkcí: sin, cos, tan⁻¹, sinh, cosh, tanh⁻¹, tan⁻¹(y/x), y + xz, √(x² + y²), e², násobení, dělení
- Nepřímý výpočet funkcí: tan, tanh, ln, log, a^b, cos⁻¹, sin⁻¹, cosh⁻¹, sinh⁻¹, √a

Násobení a dělení pomocí algoritmu CORDIC (lineární rotace)

```
def cordicdiv (a,b, n=16):
                                       def cordicmul (a,b, n=16):
    x, y, z = b, a, 0.0
                                           x, y, z = a, 0.0, b
                                           for i in range(n):
    for i in range(n):
                                               if z >= 0:
        if y < 0:
            V += X * 2**-i
                                                   y += x * 2**-i
            7 -= 2**-i
                                                   7 -= 2**-i
        else:
                                               else:
                                                   y -= x * 2**-i
            v = x * 2**-i
            7 += 2**-i
                                                   z += 2**-i
    return z # a/b
                                           return y # a*b
```

Využíváme vektorový režim

Využíváme rotační režim

Konec kapitoly o implementaci aritmetických operací v HW