MVS E- 101 Advance Mathematics and Numerical Analysis

Unit 1

Numerical solution of Partial Differential Equation (PDE): Numerical solution of PDE of hyperbolic, parabolic and elliptic types by finite difference method.

Unit 2

Integral transforms: general definition, introduction to Mellin, Hankel and Fourier transforms and fast Fourier transforms, application of transforms to boundary value problems in engineering.

Unit 3

Integral equations: Conversion of Linear Differential equation (LDE) to an integral equation (IE), conversion of boundary value problems to integral equations using Green s function, solution of Integral equation, IE of convolution type, Abel s IE, Integral differential equations, IE with separable variable, solution of Fredholm Equation with separable kernels, solution of Fredholm and Volterra equations by method of successive approximations.

Unit 4

Calculus of Variation: Functionals and their Variational, Euler □s equation for function of one and two independent variables, application to engineering problems.

Unit-5

FEM: Variational functionals, Euler Lagrange s equation, Variational forms, Ritz methods, Galerkin s method, descretization, finite elements method for one dimensional problems.

Reference Books:

- 1. CF Froberg, Introduction to numerical analysis.
- 2. SS Sastry, Introductory methods of numerical analysis
- 3. Krasnove, Kiselevanded Makarenho, Integral equations
- 4. Buchanan, Finite element Analysis (schaum Outline S), TMH
- 5. Krishnamurthy, Finite element analysis, TMH
- 6. Higher Engineering Mathematics by B.V. Ramana, Tata Mc Hill.
- 7. Advance Engineering Mathematics by Ervin Kreszig, Wiley Easten Edd.
- 8. Applied Numerical Methods with MATLAB by Steven C Chapra, TMH
- 9. Numerical Methods in engineering, Salvadori and Baron
- 10. Theory and problems of Numeric analysis (Schaum Outline S), Schied, TMH

MVS E – 102 Strength of material and theory of elasticity

UNIT-I

Plane Stress & Plane Strain: Plane Stress, Plane Strain, Stress and Strain at a points, Differential equations of equilibrium, constitutive relation: ansisotropic materials Linear elasticity; Stress, strain, constitutive relations; Boundary conditions, Compatibility equation, stress function.

UNIT-II

Two Dimensional Problems in Rectangular Co-ordinates: Solutions by Polynomials, Saint-Venant S Principle, Determination of displacements, bending of beams, solution of two dimensional problem in Fourier series.

UNIT-III

Two Dimensional Problems in Polar Coordinates: General equations in Polar coordinates, Pure bending of curved bars, displacements for symmetrical stress distributions, bending of curved bar, stress distribution in plates with circular holes, stresses in a circular disc general solution.

UNIT-IV

Analysis of stress and strain in Three Dimensions: Principal stress and strain, shearing stress and strains, elementary equation of equilibrium, compatibility conditions, problems of elasticity involving pure bending of prismatic bars.

UNIT-V

Torsion of Prismatic Bars: Torsion of prismatic bars, membrane analogy, torsion of a bar of narrow rectangular cross section, torsion of rectangular bars, solution of torsional problem, torsion of rolled section, torsion of hollow shafts and thin tubes, torsion buckling torsional flexural buckling.

References Books:

- 1. Timoshenko, S.P., Theory of Elasticity
- 2. Timoshenko, S.P., Theory of Elastic Stability
- 3. Iyenger N.G.R., Structural Stability of Columns & Plates.

MVS E – 103 Advance Structural Analysis

UNIT1

Matrix Method (Flexibility Method): Force methods, Basic Concepts, evaluation of flexibility, transformation, analysis of a single member of different types, transformation of single member.

UNIT 2

Applications to plane and space structures with pin joints and rigid joints, energy approach in flexibility method, effect of support displacement and transformation.

UNIT 3

Matrix Method (stiffness Method): Displacement methods, Basic concepts, Evaluation of stiffness coefficients, Direct stiffness method, energy approach in stiffness method. Code No. approach for global stiffness matrix, effect of support displacement and temperature.

UNIT 4

Symmetrical & anti-symmetrical problems, Stiffness of plane & space frames solution of problems, comparison of force and displacement methods of solution. Reference Books:

- 1. C.S. Reddy, Basic Structural Analysis, TMH, Publishers
- 2. W Wearer Jr. & James M. Gere, Matrix Analysis of Framed Structures, CBS Pub.
- 3. Rajsekeran, Sankarsubramanian, Computational structural Mechanics, PHI
- 4. Pandit, Structural Analysis: a matrix approach, TMH

MVS E - 104 Design of concrete structures

Unit 1

Earthquake and wind effects on structures, loads on structures, reinforced concrete design of flat slabs, grid floors, deep beams, design of building □s load bearing and framed structures, design of foundations, seismic analysis.

Unit 2

Design of ground and elevated water tanks, design of bridge decks.

Unit 3

Pre-stressed concrete: analysis and design of sections under flexure using limit state approach, anchorage zone and end block design, composite construction, introduction to statistically indeterminate pre-stressed concrete structures.

Unit 4

Silos and bunkers, Janseen s and Airy s theory, rectangular bunkers with sloping bottoms and with high side walls, battery of bunkers.

Reference Books:

- 1. Jaikrishna, Chandrasekaran, Elements of earthquake engineering.
- 2. Shah and Karve, Text book of reinforced concrete
- 3. Punamia, RCC designs
- 4. IS-456, -875, -1893, -1984
- 5. Krishna Raju, Prestressed concrete.
- 6. Varghese, Advanced RC Designs, PHI
- 7. Everard, Theory and problems of RC design (Shaum S Outline S), TMH

MVS E - 105 Computer aided design

Unit 1

Cpp programming language: Basics of programming, loops, decisions, structures, functions, objects/ classes, arrays.

Unit 2

Overloading, inheritance, virtual functions and pointers, object oriented programming, Turbo Cpp features and programming, structure engineering problems programming.

Unit 3

Computer Aided drafting, 2-D and 3-D drawings, Introduction to CAD software, drawing of buildings.

Unit 4

Introduction to computer graphics, 3-D modeling software and analysis software.

Reference Books:

- 1. Robert Lafore, Object oriented programming in CPP
- 2. E. Balaguruswamy, Programming in C
- 3. Syal and Gupta, Computer programming and engineering analysis.
- 4. AutoCAD, SolidEdge, Cadlab software and Manuals.