CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 12

Extension 2 Mathematics Half Yearly 2017

Time allowed: 2 hours	
Name:	Teacher: Ms Strilakos

Instructions:

- All questions should be attempted on your own paper.
- Show ALL necessary working.
- Marks may not be awarded for careless or badly arranged work.
- Only board-approved calculators may be used.
- Please write on one side of each sheet of paper only, and do not use multiple columns on the page.

TOPIC	Complex Numbers	Graphs	Conics	TOTAL
MARKS	/25	/15	/32	/72

Given 1-i is a root of the equation $x^2+(a+i)x+(4+bi)=0$ where a and (a) b are real, find the values of a and b.

[2 marks]

4

- On the same diagram, draw a neat sketch of the locus specified by each of (b) (i) the following:

 - (α) |z-(2+i)|=1 (β) |z+1|=|z-3|
 - Hence write down all value(s) of z which satisfy simultaneously (ii)

$$|z - (2+i)| = 1$$
 and $|z+1| = |z-3|$

Use your diagram in (i) to determine the values of $k \,\,$ for which the (iii) simultaneous equations

$$|z - (2+i)| = 1$$
 and $|z - i| = k$

have exactly one solution for z.

[5 marks]

(lpha) Find algebraically the locus in the Argand plane represented by (c)

$$|z^2 - \bar{z}^2| < 4$$

(β) Sketch this locus on an Argand diagram.

[3 marks]

Question 2

- Find the five fifth roots of $1 + \sqrt{3}i$. (i)
- Find the area of the pentagon formed by the five points representing (ii) these roots.

[4 marks]

- (i) Verify that $\propto = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$ is a root of the equation $z^5 + z 1 = 0$
- (ii) Find the monic cubic equation with real coefficients whose roots are also roots of $z^5+z-1=0$ but do not include \propto .

[6 marks]

Question 4

The complex numbers z_1 and z_2 are given by $z_1 = 1 + i\sqrt{3}$ and $z_2 = iz_1$.

- (i) Label accurately the points representing z_1 and z_2 in an Argand diagram.
- (ii) On the same Argand diagram, sketch the locus of the points z satisfying

(
$$\alpha$$
) $|z-z_1| = |z-z_2|$

$$(\beta) \quad \arg(z - z_1) = \arg z_2$$

(iii) Determine, in the form x + iy, the complex number z_3 represented by the intersection of the two loci of part (ii). (Show complete justification for your answer)

[5 marks]

The graph of $g(x) = x^4 - 4x^3 + 4x^2 - \frac{1}{2}$ is shown below.

- (i) Use this graph to sketch the graphs of each of the following on separate diagrams, clearly indicating the trends of the curves for all x, including when g(x)=0.
 - (a) y = |g(x)|
 - (b) $y^2 = g(x)$
- (ii) Calculate the slope of the curve $y^2 = g(x)$ at any point x and describe the nature of the curve at a zero of g(x).

[3+2=5 marks]

The graph of the function $f(x) = 4x - x^2$ is shown below.

Sketch on separate sets of axes, without using calculus, the graph of each of the following, clearly showing any asymptotes, turning points and axes intercepts, and labelling where appropriate.

(i)
$$y = |f(x)|$$

(ii)
$$y = \frac{1}{|f(x)|}$$

(iii)
$$y = \sqrt{f(x)}$$

(iv)
$$y = \log_e\{f(x)\}$$

(v)
$$y = e^{f(x)}$$

(vi)
$$y = f(x) \cdot \log_e x$$

[1+2+1+2+2+2=10 marks]

(i) Determine the real values of λ for which the equation

$$\frac{x^2}{4-\lambda} + \frac{y^2}{2-\lambda} = 1$$

- defines
- (α) an ellipse
- (β) a hyperbola
- (ii) Describe how the shape of this curve changes as λ increases from 1 towards 2.
- (iii) What is the limiting position of the curve, as $\lambda \to 2^-$ {ie: what shape and dimensions does the curve approach as $\lambda \to 2^-$ }?

[2+1+1=4]

Question 8

(a) (i) Show that

$$4x^2 + 9y^2 + 24x - 36y + 36 = 0$$

represents an ellipse.

(ii) Find its centre, eccentricity, foci and directrices and sketch the graph.

[4 marks]

An ellipse has Cartesian equation

$$\frac{x^2}{2} + y^2 = 1.$$

A straight line L has equation y = mx + c, where m and c are positive constants.

(i) Show that the x coordinates of the points of intersection between L and the ellipse satisfy the equation

$$(2m^2 + 1)x^2 + 4mcx + 2(c^2 - 1) = 0$$

(ii) Given that L is a tangent to the ellipse, show that $c^2 = 2m^2 + 1$.

The line L meets the negative x axis and the positive y axis at the points X and Y respectively. The point O is the origin.

- (iii) Find the area of the triangle OXY, in terms of m.
- (iv) Show that as m varies, the minimum area of the triangle OXY is $\sqrt{2}$.
- (v) Find the x coordinate of the point of tangency between the line L and the ellipse when the area of the triangle is minimum.

[1+1+1+2+2=7]

(b) The ellipse E with Cartesian equation

$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$

has foci S and S' at $(\pm 1,0)$ and directrices with equations $x=\pm 4$

If $P(x_1, y_1)$ is a general point on this ellipse

- (i) Prove that the sum of the distances SP and SP' is independent of P.
- (ii) Find the gradient of the normal to E at $P(x_1,y_1)$.
- (iii) Prove that the normal to E at P bisects $\angle SPS'$

NOTE: You may find the following formula useful:

$$\tan\alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

[1+1+4=6 marks]

Question 11

- (i) Show that, of the points $(r\cos\theta, r\sin\theta)$ and $(s\cos\left(\theta + \frac{\pi}{2}\right), s\sin\left(\theta + \frac{\pi}{2}\right))$ lie on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ with centre 0, then $\frac{1}{r^2} + \frac{1}{s^2} = \frac{1}{a^2} \frac{1}{b^2}$
- (ii) Deduce that, if P and Q are points on the hyperbola such that OP is perpendicular to OQ, then

$$\frac{1}{OP^2} + \frac{1}{OQ^2}$$

is independent of the position of P and Q.

[5 marks]

Let $P(cp,\frac{c}{p})$ and $Q(cq,\frac{c}{q})$ be the endpoints of a chord drawn on the rectangular hyperbola with equation $xy=c^2$.

If PQ has a constant length k, find the locus of R, the midpoint of PQ.

[6 marks]

END OF PAPER

			•	
	·	•		
·				
				,

 $\chi^2 + (a+i)\chi + (4+bi) = 0$ a, b ∈ R let x=1-i $(1-i)^2 + (a+i)(1-i) + (4+bi) = 0$ le 1-2i+1/2+a-ai+i-1/2+4+bi=0 te 1+a+4 + (-i-ai+bi)=0 Equating real and magnam parts: 5+a=0, a=-5 -1-a+b=0 (Solution: a=-5 b=-4 2+1 = 2-3 (1) 1z-(2+i)=1 3 They meet at only one parit ie. Z=1+i

This is really asking where the will will douch another well contre (0,1) if the radius of this other circle is k. it What possible values can k take?

Arrower: R can be withen I or

(c) $ z^2 - \overline{z}^2 < 4$
lot z=2+iy ==x-y
; $4^2 = 2^2 - y^2 + 2xyi$
and $\overline{z}^2 = x^2 - 2xyi - y^2$
ob Z ² -Z ² = 471.41
and $ z^2 - \overline{z}^2 = 4\pi y$
$ \overline{z}^2 - \overline{z}^2 < 4$
means 142m/ <4
1/2 /xy/<1
(B)
- VV

Question 2	(ii) The roots lè on a ciele contre (0,0)
i) Let $z^5 = 1 + \sqrt{3}i = 2 \cos(\pi + 2k)$	(ii) The room it on a case (ourse (our
$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	radius 2 ^{VS} equally spaced and
K=0,±1±	· 2 · · ·
	soparated by 211.
Let = r ciso le a root.	0 3
r5=2 .8 r=2 45	
$3nd 5\theta = \frac{\pi}{3} + 2k\pi$	
	1 Using Area of $\Delta = \frac{1}{2}bc sin A$
of $k=0$, $Z_1 = 2^{1/5}$ $in \frac{T}{15}$	Total area of Pentagon
$4x k=1, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	=5x \(\frac{1}{2}\times 2\frac{1}{5}\times 2\frac{1}{5}\times 2\frac{1}{5}\times 2\frac{1}{5}\times 1
= (2 "s is] [5]	$= 3.14 u^2 . (2.d.ps)$
For k=-1, == 2 is is == =========================	
$=2^{1/5} \cdot is \left(\frac{5\pi}{15}\right)$	
$= \left(2^{1/5} \cos\left(-\frac{\pi}{3}\right)\right)$	
$f_{x} k = 2$, $Z_{y} = 2^{1/5} cis \left(\frac{11}{15} + \frac{1}{5} \right)$	
$= \left(2^{1/5} \bar{c}_{15} \left(\frac{13\pi}{15}\right)\right)$	
To k=-2, 7= 2 s cs 15-41	

QUESTICAL 2 (CONE) (ii) for y = |goal atazero, (i)(d) |z| >1. othe cure has sharp possib, since it is (B) ang Z reflected in als x-oxis. dan 0=53 0=5 (ii) the stope of y2 = goi) is queit by dy ·0/-芸< ang 天< 芸 QUESMON 5 (i) (a) y = |g(x)|This is undefined for goo =0 & 00 At 900) =0 ,42= 960 must have vertical tangent. 90 = x4-4x3+4x2-1 900 = 423 -12767 +876 y= | 960| $dy = 2x^3 - 6x^2 + 4x = 2x(x^2 - 3x + 2)$ = $2\pi(x-2)(x-1)$ ony deficat for

QUESTION 7		
<u>(ì)</u>	$\frac{\chi^2}{4-\lambda}$ $+\frac{\mu^2}{2-\lambda}$ = 1	
(a) For an ell	pie 4-2>0 and 2-2>0 ie 2<4 x 2<2	
	% X<2	
(B) For a hy	perbola $4-270$ and $2-2$ in 2 in	2
	.°. 2<2<4	0.
	→2 ⁻ , de mayor anis gets	
(ii) A 2	1-2 2 major axis approaches	252 with and posits at the foci. (
ie if	approaches the indewal joining the	foi of the ellipse When λ=1. 1.e.S.
		·
	·	

QUESTION B 422 + 942 + 24x - 364 + 36 = 0 4x2+2+x +9y2-36y+36=0 $4(x^2+6x)+9(y^2-4y)+36=0$ $(x+3)^2-9+9(y-2)^2-4+36=0$ $4(x+3)^2 + 9(y-2)^2 = 36$ $\frac{(\chi_{+3})^2 + (y-2)^2}{9} =$ (ii) Owhe b=2(h + ae, k -3±15, 2 dreetnia: x=h±a

Nau, 3x,2+4y,2=12
isother puice P(x,y,) lies
enthe ellipse:
Subst. for 4y,2=12-3x,2 in 0 80.
$\frac{3}{12-3x} = \frac{4y_1 - x_1 y_1}{12-3x_1} = \frac{y_1(4-x_1)}{-3(x_1-4)} = \frac{y_1}{3}$
and tun $LS'PN = \frac{-\chi_{,y_{,}} - 4y_{,}}{ 2+3\chi_{,} } = \frac{-y_{,}}{3} (4+\chi_{,}) = \frac{-y_{,}}{3}$
o'o dan LSPN = dam LSPN
or the normal beseets LSPS!

QUESTION U
(1) $(r\cos\theta, r\sin\theta)$ and $(s\cos(\theta+\frac{\pi}{2}), s\sin(\theta+\frac{\pi}{2}))$ liè on
$\frac{\chi^2 - y^2}{a^2} = 1$
If (roso, rosio) lies on the hyperbola then
$\frac{r^2 \cos^2 \theta - r^2 \sin^2 \theta}{a^2} = 1 - 1$
If (S cos(日共), Ssin(日共)) luès on the hyperbola
He (s (-sino), 500,0) " " Huen,
$\frac{S^2 \sin^2 \theta}{a^2} - \frac{S^2 \cos^2 \theta}{b^2} = 1 \qquad -2$
① Decomes $r^2 \left(\frac{(b^2 \theta - s\bar{n}^2 \theta)}{a^2} \right) = 1$ in $\frac{1}{r^2} = b^2 (b^2 \theta - a^2 s\bar{n}^2 \theta)$
and $\frac{\partial}{\partial x^2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2$
$\frac{1}{00} + \frac{1}{12} + \frac{1}{12} = b^2 (\sin^2 \theta + \cos^2 \theta) - a^2 (\sin^2 \theta + \cos^2 \theta)$
$= \frac{b^2 - a^2}{a^2b^2}$
$= \frac{1}{h^2} + $

	Now, (PLOQ.	IF P				
	m _{OP} =	rsin 0	UNIX G	15 ($-S.Sin \Theta$	5 Sin (0+ 1) , Scoro	
	-	= tano					
. <u>r</u>	n _{OQ} =	<u>sonb</u> - <u>s.smb</u>	cet 0				
Succe	m _{OP} x	$m_{QQ} = 4c$	mocoto	= - .	₂ ° 4 D	PLOQ.	
New	OP ² =	$= \Upsilon^2(0)^2 \theta$	+γ²5ū²0=γ	2			<u></u>
and	002=	32 Sm20	+520020 =5	2			
. 00	<u> </u> OP ²	+ 1	= 1 V ²	+ 1 52	13 of 101 of 101		
		•	= \(\frac{1}{\alpha^2} \)	1 2 2	from 1	paut(i).	
Ju	ie az	and b2	are compta	nt inday	rendent o	fo anaka	hypothola,
	- An	$o^{g} = O^{2}$	+ 102	io mo	lependent	of the posi	tion of PoudQ
					as hagui	<u>.</u>	
	un.						
	,	1,000					·
	17.						<u> </u>

Thus, at R,
$$x = \frac{c(p+q)}{2}$$
, $y = \frac{c(\frac{1}{p} + \frac{1}{q})}{2}$

Now, from (1), $PQ^2 = k^2$

$$= c^2 \left((p^2 + 2pq + q^2) - 4pq \right)$$

$$+ c^2 \left((\frac{1}{p^2} + \frac{2}{pq} + \frac{1}{q^2}) - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p} + \frac{1}{q})^2 - \frac{1}{pq} \right)$$

$$+ c^2 \left((\frac{1}{p}$$

$$k^{2} = c^{2} \left(\left(\frac{2x}{c} \right)^{2} - \frac{4x}{y} \right) + c^{2} \left(\left(\frac{2y}{c} \right)^{2} - \frac{4y}{x} \right)$$

ie
$$k^2 = c^2 \left(\frac{4x^2}{c^2} - \frac{4x}{y} \right) + c^2 \left(\frac{4y^2}{c^2} - \frac{4y}{x} \right)$$

$$k^{2} = 4x^{2} - \frac{4xc^{2}}{y} + 4y^{2} - \frac{4cy}{x}$$

x xy

$$k^{2}xy = 4x^{3}y - 4x^{2}c^{2} + 4xy^{3} - 4c^{2}y^{2}$$
$$= 4xy(x^{2}+y^{2}) - 4c^{2}(x^{2}+y^{2})$$

$$k^2 xy = (x^2 + y^2)(4xy - 4c^2)$$

ie
$$k^2 xy = 4(xy - c^2)(x^2 + y^2)$$