

Operational Amplifiers

4 Active Circuits

4.3 The Operational Amplifier

- Op Amps first used in a 1947 National Defence Research Council paper describing high gain amplifier circuits used to carry out mathematical operations.
 - Early op amps were made from vacuum tubes, but by the 70's, the IC version became dominant.

The global KCL equation for the complete set of variables is $i_O = I_{C_+} + I_{C_-} + i_P + i_N$

- Transfer characteristic is divided into three regions or modes: +saturation, saturation, and linear.
 - \circ +Saturation mode when $A(v_p-v_n)>V_{CC}$ and $v_O=+V_{CC}$
 - \circ -Saturation mode when $A(v_p-v_n)<-V_{CC}$ and $v_O=-V_{CC}$
 - \circ Linear mode when $A|v_p -v_n| < V_{CC}$ and $v_O = A(-v_p v_n)$
- The i-v relationships of the ideal model of the op amp are as:
 - $v_P = v_N$
 - $i_P = i_N = 0$

Non-Inverting OP AMP

- The proportionality constant K is sometimes called the closed-loop gain because it defines the input-output voltage relationship when the feedback loop is connected (closed).
- There are two types of gains when discussing OP AMP circuits, first is closed-loop gains above.
 - Second is open-loop gain voltage gain provided by the OP AMP device itself.

Effects of Finite OP AMP Gain

• Ideal OP AMP model has infinite gain, but the actual devices have very large but finite gain.

Start by determining the output voltage

$$egin{aligned} v_O &= rac{R_1 + R_2}{R_O + R_1 + R_2} A(v_P - v_N) \ &= \left[rac{R_1 + R_2}{R_0 + R_1 + R_2}
ight] A \left[v_S - rac{R_2}{R_1 + R_2} v_O
ight] \ &= rac{A(R_1 + R_2)}{R_O + R_1 + R_2(1 + A)} v_S \end{aligned}$$

Now we take $A
ightarrow \infty$

$$v_O=rac{R_1+R_2}{R_2}v_S=Kv_S$$

4.4 OP AMP Circuit Analysis

 OP AMP circuit analysis uses advantage of OP AMPS being connected in cascade (like in series)

Voltage Follower

- · Also called a buffer
- Feedback is a direct path to the inverting input
- Since there is no input current $i_P=0$ there is no voltage across R_S and thus $v_P=v_N$
 - \circ Hence $v_O=v_S$ and the name is the voltage "follower"
- This is used in interface circuits to separate the source from the load.

The Inverting Amplifier

$$v_O = -igg(rac{R_2}{R_1}igg)v_S$$

The Summing Amplifier

The Differential Amplifier

Node-Voltage Analysis with OP AMP Circuits

- 1. Identify a node voltage at all non-reference nodes, including OP AMP outputs, but do not formulate node equations at the OP AMP output nodes.
- 2. Formulate node equations at the remaining non-reference nodes and then use the ideal OP AMP voltage constraint $v_P=v_N$ to reduce the number of unknowns.

Operational Amplifiers 4