Algorithms in Bioinformatics Spring 2023 Lecture 6

Jason Ernst
University of California, Los Angeles

Announcements

- HW3 chapter 8 due 4/25
- Project 1a due 4/27
- Discussion sections Friday focus will be on chapter 8

Announcements

- HW3 chapter 8 due 4/25
- Project 1a due 4/27
- Discussion sections Friday focus will be on chapter 8

_computational BIOLOGY

ANALYSIS

Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

Babak Alipanahi^{1,2,6}, Andrew Delong^{1,6}, Matthew T Weirauch³⁻⁵ & Brendan J Frey¹⁻³

Focus on first p.1-13 of supplementary note for computational methods details

Question due Thur 5/4 Responses due Tue 5/9

Motifs

Lecture 6 April 20th, 2023

Topics

- Motif background and representations
- De novo motif discovery

- Motif background and representations
- De novo motif discovery

The cell needs to regulate the process of going from DNA to mRNA.

- The cell needs to regulate the process of going from DNA to mRNA.
- Transcription factors (TFs) binding DNA play a major role in controlling this process to activate or repress gene expression. Thousands of TFs in human.

- The cell needs to regulate the process of going from DNA to mRNA.
- Transcription factors (TFs) binding DNA play a major role in controlling this process to activate or repress gene expression. Thousands of TFs in human.

- The cell needs to regulate the process of going from DNA to mRNA.
- Transcription factors (TFs) binding DNA play a major role in controlling this process to activate or repress gene expression. Thousands of TFs in human.
- How does a transcription factor know to only bind specific locations in the genome?

Transcription factor binding to DNA

- Binding domain of transcription factors will preferentially recognize specific short DNA sequences based on biophysical constraints
- Preferences will differ between transcription factors

DNA-binding domain of *Engrailed*

Transcription factors recognize sequence motifs in genome

Understanding TF binding important to interpreting sequence variants

Understanding TF binding important to interpreting sequence variants

Possible ideas:

M-mer
Define a motif to be a single k-mer:

e.g. ACTAGGAT

Question: What are potential advantages or

disadvantages of this approach?

Possible ideas:

- K-mer
- K-mer neighborhood

(k,d)-motifs – a k-mer and all k-mers with at most d mismatches

(CAT,1): AAT,GAT,TAT,CCT,CGT,CTT,CAA,CAC,CAG,CAT

Question: What are potential advantages or disadvantages of this approach?

- K-mer
- K-mer neighborhood
- Degenerate sequence codes

- K-mer
- K-mer neighborhood
- Degenerate sequence codes

```
ACGAAAA
CCGTACA
ACGAAGA
CCGTATA
ACTTATA
A
```

- K-mer
- K-mer neighborhood
- Degenerate sequence codes

```
ACGAAAA
CCGTACA
ACGAAGA
CCGTATA
ACTTATA
```

- K-mer
- K-mer neighborhood
- Degenerate sequence codes

```
ACGAAAA
CCGTACA
ACGAAGA
CCGTATA
ACTTATA
G or T
```

- K-mer
- K-mer neighborhood
- Degenerate sequence codes

```
ACGAAAA
CCGTACA
ACGAAGA
CCGTATA
ACTTATA
A or T
```

- K-mer
- K-mer neighborhood
- Degenerate sequence codes

```
ACGAAAA
CCGTACA
ACGAAGA
CCGTATA
ACTTATA
```

- K-mer
- K-mer neighborhood
- Degenerate sequence codes

```
ACGAAAA
CCGTACA
ACGAAGA
CCGTATA
ACTTATA

A or C or G or T
```

Possible ideas:

- K-mer
- K-mer neighborhood
- Degenerate sequence codes

Question: How many non-empty combinations of four nucleotides are possible?

Possible ideas:

- K-mer
- K-mer neighborhood
- Degenerate sequence codes

Question: How many non-empty combinations of four nucleotides are possible?

$$2^4 - 1 = 15$$

Possible ideas:

- K-mer
- K-mer neighborhood
- Degenerate sequence codes

ACGAAAA

CCGTACA

ACGAAGA

CCGTATA

ACTTATA

======

MCKWANA

Base set	IUPAC nucleotide code
Α	Α
С	С
G	G
Т	T
A or G	R
C or T	Υ
G or C	S
A or T	W
G or T	K
A or C	M
C or G or T	В
A or G or T	D
A or C or T	Н
A or C or G	V
A or C or G or T	N

- K-mer
- K-mer neighborhood
- Degenerate sequence codes
- Positional weight matrix (PWM; profile matrix)

1234567
ACGAAAA
CCGTACA
ACGAAGA
CCGTATA
ACTTATA

	1	2	3	4	5	6	7
Α	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

Possible ideas:

- K-mer
- K-mer neighborhood
- Degenerate sequence codes
- Positional weight matrix (PWM; profile matrix)

1234567
ACGAAAA
CCGTACA
ACGAAGA
CCGTATA
ACTTATA

	1	2	3	4	5	6	7
Α	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

Question: What are potential advantages or disadvantages of this approach?

Possible ideas:

- K-mer
- K-mer neighborhood
- Degenerate sequence codes
- Positional weight matrix (PWM; profile matrix)

1234567	
ACGAAAA	
CCGTACA	
ACGAAGA	
CCGTATA	
ACTTATA	

	1	2	3	4	5	6	7
Α	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

Question: What assumptions are being made when representing an alignment as a positional weight matrix?

Possible ideas:

- K-mer
- K-mer neighborhood
- Degenerate sequence codes
- Positional weight matrix (PWM; profile matrix)

1234567	
ACGAAAA	
CCGTACA	
ACGAAGA	
CCGTATA	
ACTTATA	

	1	2	3	4	5	6	7
Α	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

Question: What assumptions are being made when representing an alignment as a positional weight matrix?

Assuming independence. Also fixed spacing.

Scoring with a positional weight matrix

	1	2	3	4	5	6	7
A	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

Question: How should we score agreement of this sequence with the PWM?

CCGTATA

Scoring with a positional weight matrix

	1	2	3	4	5	6	7
A	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

Question: How should we score agreement of this sequence with the PWM?

CCGTATA

$$\frac{2}{5} \times 1 \times \frac{4}{5} \times \frac{3}{5} \times 1 \times \frac{2}{5} \times 1 = \frac{48}{625}$$

Scoring with a positional weight matrix

	1	2	3	4	5	6	7
A	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

Question: How should we score agreement of this sequence with the PWM?

CCGTATA

$$\frac{2}{5} \times 1 \times \frac{4}{5} \times \frac{3}{5} \times 1 \times \frac{2}{5} \times 1 = \frac{48}{625}$$

Question: What additional assumption are we implicitly making here?

	1	2	3	4	5	6	7
A	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

Question: How should we score agreement of this sequence with the PWM?

CCGTATA

$$\frac{2}{5} \times 1 \times \frac{4}{5} \times \frac{3}{5} \times 1 \times \frac{2}{5} \times 1 = \frac{48}{625}$$

Question: What additional assumption are we implicitly making in the scoring here? Each nucleotide is a priori equally likely

M

Background Models

Probability can be evaluated relative to background model

$$log \frac{P(sequence|PWM)}{P(sequence|Background)}$$

If we assume a uniform background distribution over nucleotides, then each is assumed to occur with probability 0.25

CCGTATA
$$\log(\frac{\frac{40}{625}}{0.25^7}) = 7.14$$

If we assume G or C occur with probability 0.2 and As and Ts with probability 0.3

$$\log(\frac{\frac{48}{625}}{0.2^3 \times 0.3^4}) = 7.08$$

v

Background Models

Probability can be evaluated relative to background model

$$log \frac{P(sequence|PWM)}{P(sequence|Background)}$$

If we assume a uniform background distribution over nucleotides, then each is assumed to occur with probability 0.25

CCGTATA
$$\log(\frac{\frac{40}{625}}{0.25^7}) = 7.14$$

If we assume G or C occur with probability 0.2 and As and Ts with probability 0.3

$$\log(\frac{\frac{48}{625}}{0.2^3 \times 0.3^4}) = 7.08$$

For simplicity we will assume a uniform background which will make the denominator the same for all sequences of a fixed length

	1	2	3	4	5	6	7
A	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

Question: How should we score agreement of this sequence with the PWM?

ACTTATA

$$\frac{3}{5} \times 1 \times \frac{1}{5} \times \frac{3}{5} \times 1 \times \frac{2}{5} \times 1 = \frac{18}{625}$$

	1	2	3	4	5	6	7
Α	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

ACTTATA

$$\frac{3}{5} \times 1 \times \frac{1}{5} \times \frac{3}{5} \times 1 \times \frac{2}{5} \times 1 = \frac{18}{625}$$

Question: How can we run into problems using this PWM for scoring?

	1	2	3	4	5	6	7
Α	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

ACTTATC

$$\frac{3}{5} \times 1 \times \frac{1}{5} \times \frac{3}{5} \times 1 \times \frac{2}{5} \times 0 = 0$$

Any sequence that has a nucleotide not previously observed in a position will always get a score of 0

	1	2	3	4	5	6	7
Α	3/5	0	0	2/5	1	1/5	1
С	2/5	1	0	0	0	1/5	0
G	0	0	4/5	0	0	1/5	0
Т	0	0	1/5	3/5	0	2/5	0

ACTTATC

$$\frac{3}{5} \times 1 \times \frac{1}{5} \times \frac{3}{5} \times 1 \times \frac{2}{5} \times 0 = 0$$

Any sequence that has a nucleotide not previously observed in a position will always get a score of 0

Question: What can be done to address this?

PWM based on pseudo-counts

Add one observation for each nucleotide at each position. Could also add fractional or more than one observation

1234567
ACGAAAA
CCGTACA
ACGAAGA
CCGTATA
ACTTATA
AAAAAAA
CCCCCCC
GGGGGGG
TTTTTTTT

	1	2	3	4	5	6	7
Α	4/9	1/9	1/9	3/9	6/9	2/9	6/9
С	3/9	6/9	1/9	1/9	1/9	2/9	1/9
G	1/9	1/9	5/9	1/9	1/9	2/9	1/9
Т	1/9	1/9	2/9	4/9	1/9	3/9	1/9

PWM based on pseudo-counts

Add one observation for each nucleotide at each position. Could also add fractional or more than one observation

1234567
ACGAAAA
CCGTACA
ACGAAGA
CCGTATA
ACTTATA
AAAAAAA
CCCCCCC
GGGGGGG
TTTTTTTT

	1	2	3	4	5	6	7
Α	4/9	1/9	1/9	3/9	6/9	2/9	6/9
С	3/9	6/9	1/9	1/9	1/9	2/9	1/9
G	1/9	1/9	5/9	1/9	1/9	2/9	1/9
Т	1/9	1/9	2/9	4/9	1/9	3/9	1/9

ACTTATC

$$\frac{4}{9} \times \frac{6}{9} \times \frac{2}{9} \times \frac{4}{9} \times \frac{6}{9} \times \frac{3}{9} \times \frac{1}{9}$$
= 0.000723

	1	2	3	4	5	6	7
Α	4/9	1/9	1/9	3/9	6/9	2/9	6/9
С	3/9	6/9	1/9	1/9	1/9	2/9	1/9
G	1/9	1/9	5/9	1/9	1/9	2/9	1/9
Т	1/9	1/9	2/9	4/9	1/9	3/9	1/9

ACTTATCGA

Score each position and record matches above some threshold that depends on the PWM

	1	2	3	4	5	6	7
Α	4/9	1/9	1/9	3/9	6/9	2/9	6/9
С	3/9	6/9	1/9	1/9	1/9	2/9	1/9
G	1/9	1/9	5/9	1/9	1/9	2/9	1/9
Т	1/9	1/9	2/9	4/9	1/9	3/9	1/9

$$\frac{4}{9} \times \frac{6}{9} \times \frac{2}{9} \times \frac{4}{9} \times \frac{6}{9} \times \frac{3}{9} \times \frac{1}{9}$$
= 0.000723

Score each position and record matches above some threshold that depends on the PWM

	1	2	3	4	5	6	7
Α	4/9	1/9	1/9	3/9	6/9	2/9	6/9
С	3/9	6/9	1/9	1/9	1/9	2/9	1/9
G	1/9	1/9	5/9	1/9	1/9	2/9	1/9
Т	1/9	1/9	2/9	4/9	1/9	3/9	1/9

$$\frac{3}{9} \times \frac{1}{9} \times \frac{2}{9} \times \frac{3}{9} \times \frac{1}{9} \times \frac{2}{9} \times \frac{1}{9}$$
= 0.00000753

Score each position and record matches above some threshold that depends on the PWM

	1	2	3	4	5	6	7
Α	4/9	1/9	1/9	3/9	6/9	2/9	6/9
С	3/9	6/9	1/9	1/9	1/9	2/9	1/9
G	1/9	1/9	5/9	1/9	1/9	2/9	1/9
Т	1/9	1/9	2/9	4/9	1/9	3/9	1/9

$$\frac{1}{9} \times \frac{1}{9} \times \frac{1}{9} \times \frac{4}{9} \times \frac{1}{9} \times \frac{2}{9} \times \frac{6}{9}$$
$$= 0.0000100$$

Libraries of Hundreds PWMs exist

- Derived from aligned sets of short curated sequence from small-scale experiments
- Discovered de novo from high-throughput experiments

Libraries of Hundreds PWMs exist

- Derived from aligned sets of short curated sequence from small-scale experiments
- Discovered de novo from high-throughput experiments

One scan set of sequences for libraries of available PWMs and compute statistical enrichments

Topics

- Motif background and representations
- De novo motif discovery

Problem: Give a collection of sequences identify motifs de novo

Sequence 1 AATCAGTTATCTGTTGTATACCCGGAGTCC
Sequence 2 AGGTCGAATGAAACGTTCTTGCACGTACAT
Sequence 3 GAGATAACCGCTTGATATGACTCATTGCCA
Sequence 4 ATATTCCGGACGCTGTGACGATCCGGTTGT
Sequence 5 GAACGCAACCAGTTCAGTGCTTATCATGAA

Problem: Give a collection of sequences identify motifs *de novo*

```
Sequence 1 AATCAGTTATCTGTTGTATACCCGGAGTCC
Sequence 2 AGGTCGAATGAAACGTTCTTGCACGTACAT
Sequence 3 GAGATAACCGCTTGATATGACTCATTGCCA
Sequence 4 ATATTCCGGACGCTGTGACGATCCGGTTGT
Sequence 5 GAACGCAACCAGTTCAGTGCTTATCATGAA
```

Do you see any shared pattern in the above set of sequences?

Problem: Give a collection of sequences identify motifs *de novo*

```
Sequence 1 AATCAGTTATCTGTTGTATACCCGGAGTCC
Sequence 2 AGGTCGAATGAAACGTTCTTGCACGTACAT
Sequence 3 GAGATAACCGCTTGATATGACTCATTGCCA
Sequence 4 ATATTCCGGACGCTGTGACGATCCGGTTGT
Sequence 5 GAACGCAACCAGTTCAGTGCTTATCATGAA
```

Do you see any shared pattern in the above set of sequences?

Problem: Give a collection of sequences identify motifs de novo

```
Sequence 1 AATCAGTTATCTGTTGTATACCCGGAGTCC

Sequence 2 AGGTCGAATGAAACGTTCTTGCACGTACAT

Sequence 3 GAGATAACCGCTTGATATGACTCATTGCCA

Sequence 4 ATATTCCGGACGCTGTGACGATCCGGTTGT

Sequence 5 GAACGCAACCAGTTCAGTGCTTATCATGAA
```

Do you see any shared pattern in the above set of sequences?

Promoter regions of co-expressed genes

Applied motif discovery on 600bp upstream of genes in the same k-means clusters

- Promoter regions of co-expressed genes
- Locations of TF binding across the genome from a mapping experiment

- Promoter regions of co-expressed genes
- Locations of TF binding across the genome from a mapping experiment
- Regions across the genome where the DNA is accessible in a cell type from a mapping experiment

Mapped by DNase I hypersensitivity or ATAC-seq

- Promoter regions of co-expressed genes
- Locations of TF binding across the genome from a mapping experiment
- Regions across the genome where the DNA is accessible in a cell type from a mapping experiment
- Experiments designed to measure TF binding specificity

High-throughput SELEX experiment

Stormo and Zhao, Nature Reviews Genetics 2010

- Promoter regions of co-expressed genes
- Locations of TF binding across the genome from a mapping experiment
- Regions across the genome where the DNA is accessible in a cell type from a mapping experiment
- Experiments designed to measure TF binding specificity

Protein binding microarray

Design properties:

- 44,000 sequences of 35bp
- Sequences designed such all 10mers appear once
- All 8-mers appear 16 times

.

A formulation of the motif discovery problem

- Give an input motif of length k and set of t sequences
- Output a motif instance for each input sequence and a corresponding motif that optimizes some objective function
- Assumption each input sequence has one instance of the motif

```
Sequence 1 AATCAGTTATCTGTTGTATACCCGGAGTCC

Sequence 2 AGGTCGAATGAAACGTTCTTGCACGTACAT

Sequence 3 GAGATAACCGCTTGATATGACTCATTGCCA

Sequence 4 ATATTCCGGACGCTGTGACGATCCGGTTGT

Sequence 5 GAACGCAACCAGTTCAGTGCTTATCATGAA
```

.

A formulation of the motif discovery problem

- Give an input motif of length k and set of t sequences
- Output a motif instance for each input sequence and a corresponding motif that optimizes some objective function
- Assumption each input sequence has one instance of the motif

```
Sequence 1 AATCAGTTATCTGTTGTATACCCGGAGTCC
```

Sequence 2 AGGTCGAATGAAACGTTCTTGCACGTACAT

Sequence 3 GAGATAACCGCTTGATATGACTCATTGCCA

Sequence 4 ATATTCCGGACGCTGTGACGATCCGGTTGT

Sequence 5 GAACGCAACCAGTTCAGTGCTTATCATGAA

Will depend on motif representation and scoring function.

Also will need a way to optimize the score.

- Will depend on motif representation
- Need to score individual instances and then combine the scores
- Question: If our motif representation was a k-mer string, how could we score motif instances?

M

- Will depend on motif representation
- Need to score individual instances and then combine the scores
- Question: If our motif representation was a k-mer string, how could we score motif instances? Hamming distance – number of mis-matches e.g. d(CAT,TAT) = 1

M

- Will depend on motif representation
- Need to score individual instances and then combine the scores
- Question: If our motif representation was a k-mer string, how could we score motif instances? Hamming distance – number of mis-matches e.g. d(CAT,TAT) = 1
- Question: What could our overall optimization function be?

10

Scoring a set of motif instances

- Will depend on motif representation
- Need to score individual instances and then combine the scores
- Question: If our motif representation was a k-mer string, how could we score motif instances? Hamming distance – number of mis-matches e.g. d(CAT,TAT) = 1
- Question: What could our overall optimization function be?
 Minimize our correct ellipstences "Median et

Minimize sum across all instances. "Median string problem."

- Will depend on motif representation
- Need to score individual instances and then combine the scores
- Question: If our motif representation was a PWM, how could we score motif instances?

.

Scoring a set of motif instances

- Will depend on motif representation
- Need to score individual instances and then combine the scores
- Question: If our motif representation was a PWM, how could we score motif instances?

Can use probabilities derived earlier or log of them Note: textbook uses simpler based on number of mismatches with consensus

.

- Will depend on motif representation
- Need to score individual instances and then combine the scores
- Question: If our motif representation was a PWM, how could we score motif instances? Can use probabilities derived earlier or log of them
- Question: How can we combine across multiple sequences?

- Will depend on motif representation
- Need to score individual instances and then combine the scores
- Question: If our motif representation was a PWM, how could we score motif instances? Can use probabilities derived earlier or log of them
- Question: How can we combine across multiple sequences
 - Sum of the log probabilities

Optimization problem

- We need to find a motif instance from each sequence and corresponding motif
- What are some brute force strategies we could use for this problem?

■ Idea 1: Try every possible combination of position in each sequence ______

Suppose we have t sequences n nucleotides per sequence k is length of motif

Idea 1: Try every possible combination of position in each sequence

Suppose we have t sequences n nucleotides per sequence k is length of motif

Idea 1: Try every possible combination of position in each sequence

Suppose we have t sequences n nucleotides per sequence k is length of motif

v.

Brute force approaches to motif discovery

Idea 1: Try every possible combination of position in each sequence $\frac{k}{-}$

Suppose we have

t sequences
n nucleotides per sequence
k is length of motif

Sequence 1

Sequence 2

ATG

Sequence 2

ATG

Sequence 2

ATG

Sequence 3

Question: How long would this take to solve assuming *k* is much smaller than *n*?

•

Brute force approaches to motif discovery

Idea 1: Try every possible combination of position in each sequence $\frac{k}{-}$

Suppose we have t sequences n nucleotides per sequence k is length of motif

Sequence 1 CAT

Sequence 1 CAT

Sequence 2 ATG

Sequence 2 ATG

Sequence 2 ATG

Sequence 3 GCA

Question: How long would this take to solve assuming k is much smaller than n?

$$O((n-k+1)^t)$$

Brute force approaches to motif discovery

Idea 2: Brute force search over the motif representation

Suppose our motif representation is a k-mer sequence t sequences n nucleotides per sequence k is length of motif

Question: What complexity be of trying and evaluating all k-mers

Brute force approaches to motif discovery

Idea 2: Brute force search over the motif representation

Suppose our motif representation is a k-mer sequence t sequences n nucleotides per sequence k is length of motif

Question: What complexity be of trying and evaluating all k-mers

 4^k possible k-mers. $n \times k \times t$ time to evaluate each k-mer Would require $O(4^k * n * k * t)$ time

Brute force approaches to motif discovery

Idea 2: Brute force search over the motif representation

Suppose our motif representation is a k-mer sequence t sequences t nucleotides per sequence t is length of motif

Question: What complexity be of trying and evaluating all k-mers

 4^k possible k-mers. $n \times k \times t$ time to evaluate each k-mer Would require $O(4^k * n * k * t)$ time

Note compares favorably to previous approach for large *n*. Why?

$$O((n-k+1)^t)$$

Brute force approaches to motif discovery

Idea 2: Brute force search over the motif representation

Suppose our motif representation is a k-mer sequence t sequences t nucleotides per sequence t is length of motif

Question: What complexity be of trying and evaluating all k-mers

 4^k possible k-mers. $n \times k \times t$ time to evaluate each k-mer Would require $O(4^k * n * k * t)$ time

Note compares favorably to previous approach for large *n*. Why?

$$O((n-k+1)^t)$$

Can independently score each sequence

Brute force approaches to motif discovery

Idea 2: Brute force search over the motif representation

Suppose our motif representation is a PWM *t* sequences *n* nucleotides per sequence *k* is length of motif

Question: How can we try to (approximately) optimize this if applying brute force on the PWM representation?

10

Brute force approaches to motif discovery

Idea 2: Brute force search over the motif representation

Suppose our motif representation is a PWM *t* sequences *n* nucleotides per sequence *k* is length of motif

Question: How can we try to (approximately) optimize this if applying brute force on the PWM representation?

Discretize entries into d possible values for each entry of PWM. Could cover space of PWMs with d=t+1

Brute force approaches to motif discovery

Idea 2: Brute force search over the motif representation

Suppose our motif representation is a PWM *t* sequences *n* nucleotides per sequence *k* is length of motif

Question: How can we try to (approximately) optimize this if applying brute force on the PWM representation?

Discretize entries into d possible values for each entry of PWM. Could cover space of PWMs with d=t+1

Question: What would the complexity of this be?

100

Brute force approaches to motif discovery

Idea 2: Brute force search over the motif representation

Suppose our motif representation is a PWM *t* sequences *n* nucleotides per sequence *k* is length of motif

Question: How can we try to (approximately) optimize this if applying brute force on the PWM representation?

Discretize entries into d possible values for each entry of PWM. Could cover space of PWMs with d=t+1

Question: What would the complexity of this be?

$$O(d^{3k} * n* k * t)$$

Optimization problem

- We need to find a motif instance from each sequence and corresponding motif
- What are some brute force strategies we could use for this problem?
- What are some other strategies?

Sequence 2
Sequence 3

 Start by placing a motif instance at first position in first sequence

Sequence 2
Sequence 3

 Start by placing a motif instance at first position in first sequence

discovery 3 Sequence 1 1/5 2/5 1/5 Sequence 2 2/5 1/5 1/5 G 1/5 1/5 1/5 Sequence 3 1/5 1/5 2/5 Motif

- Start by placing a motif instance at first position in first sequence
- Build motif based off of it (with pseudocounts)

discovery 3 Sequence 1 1/5 2/5 1/5 Sequence 2 CAG 2/5 1/5 1/5 G 1/5 1/5 1/5 Sequence 3 1/5 1/5 2/5 Motif

- Start by placing a motif instance at first position in first sequence
- Build motif based off of it (with pseudocounts)
- Identify highest scoring motif instance in second sequence

discovery 3 Sequence 1 1/6 3/6 1/6 Sequence 2 CAG C 3/6 1/6 1/6 G 1/6 1/6 2/6 Sequence 3 1/6 1/6 2/6 Motif

- Start by placing a motif instance at first position in first sequence
- Build motif based off of it (with pseudocounts)
- Identify highest scoring motif instance in second sequence
- Update motif

discovery 3 Sequence 1 1/6 3/6 1/6 Sequence 2 CAG C 3/6 1/6 1/6 G 1/6 1/6 2/6 Sequence 3 CAT 1/6 1/6 2/6 Motif

- Start by placing a motif instance at first position in first sequence
- Build motif based off of it (with pseudocounts)
- Identify highest scoring motif instance in second sequence
- Update motif
- Repeat for next sequence

discovery 3 Sequence 1 CAT 1/7 Sequence 2 CAG CAG 4/7 1/7 1/7 G 1/7 1/7 2/7 Sequence 3 CAT 1/7 1/7 3/7 Motif

- Start by placing a motif instance at first position in first sequence
- Build motif based off of it (with pseudocounts)
- Identify highest scoring motif instance in second sequence
- Update motif
- Repeat for next sequence

- Start by placing a motif instance at first position in first sequence
- Build motif based off of it (with pseudocounts)
- Identify highest scoring motif instance in second sequence
- Update motif
- Repeat for next sequence
- Repeat for next start position of sequence 1

discovery

- Start by placing a motif instance at first position in first sequence
- Build motif based off of it (with pseudocounts)
- Identify highest scoring motif instance in second sequence
- Update motif
- Repeat for next sequence
- Repeat for next start position of sequence 1

- Start by placing a motif instance at first position in first sequence
- Build motif based off of it (with pseudocounts)
- Identify highest scoring motif instance in second sequence
- Update motif
- Repeat for next sequence
- Repeat for next start position of sequence 1

Motif

- Start by placing a motif instance at first position in first sequence
- Build motif based off of it (with pseudocounts)
- Identify highest scoring motif instance in second sequence
- Update motif
- Repeat for next sequence
- Repeat for next start position of sequence 1

- Start by placing a motif instance at first position in first sequence
- Build motif based off of it (with pseudocounts)
- Identify highest scoring motif instance in second sequence
- Update motif
- Repeat for next sequence
- Repeat for next start position of sequence 1

Optimization problem

- We need to find a motif instance from each sequence and corresponding motif
- What are some brute force strategies we could use for this problem?
- What are some limitations/other strategies?

Random Initialization + Iterative Batch Greedy Updates

Start by placing a motif instance randomly for each sequence

Random Initialization + Iterative Batch Greedy Updates

- Start by placing a motif instance randomly for each sequence
- Create a motif matrix

Random Initialization + Iterative Batch Greedy Updates

- Start by placing a motif instance randomly for each sequence
- Create a motif matrix
- Update motif instances to be highest score based on current motif

Random Initialization + Iterative Batch Greedy Updates

- Start by placing a motif instance randomly for each sequence
- Create a motif matrix
- Update motif instances to be highest score based on current motif
- Update motif based on current motif instances
- Iterate until convergence
- Repeat for multiple different initializations

Optimization problem

- We need to find a motif instance from each sequence and corresponding motif
- What are some brute force strategies we could use for this problem?
- What are some limitations/other strategies?

Gibbs Sampling Algorithm I

1. Select a random position in each sequence

Gibbs Sampling Algorithm II

2. Select a sequence at random

Gibbs Sampling Algorithm III

3. Select a sequence at random

Gibbs Sampling Algorithm III

3. Select a sequence at random

Gibbs Sampling Algorithm IV

4. Score possible sites in seq using weight matrix

Gibbs Sampling Algorithm V

5. Sample a new site proportional to likelihood

Gibbs Sampling Algorithm VI

6. Iterate until convergence (no change in sites or minimal change in (P))

