Algorithms and Data Structures Coursework

Finlay Boyle

November 2019

Question 4

Part a

If f(x) + g(x) is o(f(x)g(x)) then $\lim_{x\to\infty} \frac{f(x)+g(x)}{f(x)g(x)} = 0$

$$\lim_{x \to \infty} \frac{f(x) + g(x)}{f(x)g(x)} = \lim_{x \to \infty} \left(\frac{f(x)}{f(x)g(x)} + \frac{g(x)}{f(x)g(x)} \right)$$
$$= \lim_{x \to \infty} \left(\frac{1}{g(x)} + \frac{1}{f(x)} \right)$$

This is not true for all asymptotically positive functions. A counter-example to this is $f(x) = \frac{x}{x+2}$ and $g(x) = x^4$. f(x) is asymptotically positive since $x^4 > 0 \ \forall x \neq 0$ and g(x) is asymptotically positive since $\frac{x}{x+2} > 0 \ \forall x > 0$.

$$\lim_{x \to \infty} \frac{1}{f(x)} = \lim_{x \to \infty} \frac{1}{x^4} = 0$$

and

$$\lim_{x \to \infty} \frac{1}{g(x)} = \lim_{x \to \infty} \frac{1}{\frac{x}{x+2}}$$

$$= \lim_{x \to \infty} \frac{x+2}{x}$$

$$= \lim_{x \to \infty} \left(1 + \frac{2}{x}\right)$$

$$= 1$$

hence

$$\lim_{x \to \infty} \left(\frac{1}{g(x)} + \frac{1}{f(x)} \right) = 1 + 0 = 1$$

So these functions are a counter-example so $x^4 + \frac{x}{x+2}$ is not $o(x^4 * \frac{x}{x+2})$ hence it is **false**.

Part b

If $2^x x^2$ is $o(2.1^x)$ then $\lim_{x\to\infty} \frac{2^x x^2}{2.1^x} = 0$

$$\lim_{x \to \infty} \frac{2^x x^2}{2 \cdot 1^x} = \lim_{x \to \infty} x^2 \left(\frac{2}{2 \cdot 1}\right)^x$$

$$= \lim_{x \to \infty} x^2 \left(\frac{2 \cdot 1}{2}\right)^{-x}$$

$$= \lim_{x \to \infty} \frac{x^2}{\left(\frac{2 \cdot 1}{2}\right)^x}$$

Then since the exponential is monotonic increasing as its base is greater than 1 and exponentials beat powers as $x \to \infty$ then $\lim_{x \to \infty} \frac{2^x x^2}{2.1^x} = 0$ hence $2^x x^2$ is $o(2.1^x)$ is **true**.

Part c

$$f(x) = x^2 log(x), g(x) = x^2$$

Assume $\exists C \in (0, \infty)$ and $k \in (0, \infty)$ such that $x^2 log(x) \leq Cx^2 \ \forall x \geq k$ then $log(x) \leq C$. However, log(x) is monotonic increasing so log(x) > C for sufficiently large x hence there does not exists a witness pair C, k which is a contradiction so $x^2 log(x)$ is not $O(x^2)$, the statement is **false**.

Part d

$$f(x) = x^2 log(x), g(x) = x^3 then$$

$$x^2log(x) \le Cx^3$$
$$log(x) \le Cx$$

This is **true** for $x \ge 1$ as log(1) = 0 and x = 1, x grows faster than log(x) therefore giving the witness pair C = 1, k = 1 so $x^2 log(x)$ is $O(x^3)$

Part e

$$f(x) = 7x^5$$
, $g(x) = 12x^4 + 5x^3 + 8$

Assume $\exists C \in (0,\infty)$ and $k \in (0,\infty)$ such that $7x^5 \leq C(12x^4 + 5x^3 + 8) \ \forall x \geq k$ then:

$$7x^{5} \le C(12x^{4} + 5x^{3} + 8)$$
$$7x \le 12C + \frac{5C}{x} + \frac{8C}{x^{4}}$$

As $x \to \infty$, $\frac{1}{x} \to 0$ and $\frac{1}{x^4} \to 0$ so:

$$\lim_{x \to \infty} \frac{5C}{x} = 0, \lim_{x \to \infty} \frac{8C}{x^4} = 0$$

So for sufficiently large x, $\frac{5C}{x}$ and $\frac{8C}{x^4}$ become insignificant so the RHS is a decreasing function whereas the LHS is a monotonic increasing function hence $7x^5 > C(12x^4 + 5x^3 + 8)$ for sufficiently large x so there cannot exist a witness pair C, k which is a contradiction therefore $7x^5$ is not $O(12x^4 + 5x^3 + 8)$ hence the statement is **false**.

Question 5

Part a

(Can f(n) be negative??) $T(n) = 64T(\frac{n}{8}) - n^2log(n)$ so a = 64, b = 8, $f(n) = -n^2log(n)$ Since a and b are constants the Master Theorem will apply if the recurrence satisfies one of the cases:

$$n^{log_b a} = n^{log_8 64} = n^2$$

 $f(n) = -n^2 log(n) = \Theta(n^2 log^1(n))$

It is clear that $f(n) = \Theta(n^2 log^1(n))$ because it only differs by a constant of -1 so the recurrence satisfies $\Theta(n^2 log^1(n))$ hence the Master Theorem can be applied since $k \geq 0$:

$$T(n) = \Theta(n^{\log_b a} \log^k(n)) = \Theta(n^2 \log^2(n))$$

Therefore, $T(n) = \Theta(n^2 \log^2(n))$

Part b

 $T(n)=4T(\frac{n}{2})+\frac{n}{\log(n)}$ so $a=4,\,b=2$ and $f(n)=\frac{n}{\log(n)}=n\log^{-1}(n)$ The Master Theorem may apply here because a and b are both constants.

$$n^{\log_b a} = n^{\log_2 4} = n^2$$

This appears to be case 1 of the Master Theorem because for case 2, $log^k(n)$ requires $k \ge 0$ whereas k = -1 here.

To use case 1, $f(n) = O(n^{2-\epsilon})$:

$$\frac{n}{\log(n)} \le Cn^{2-\epsilon}$$

$$\frac{1}{\log(n)} \le Cn^{1-\epsilon}$$

Since $n^{1-\epsilon}$ is monotonic increasing and tends towards ∞ because ϵ is a small positive constant and log(n) is also monotonic increasing as $n \to \infty$ so $\frac{1}{log(n)} \to 0$. So the inequality holds for $n \ge 2$, C = 1 (assuming $log(n) = log_2(n)$). Hence,

$$f(n) = O(n^{2-\epsilon})$$

The Master Theorem therefore applies so:

$$T(n) = \Theta(n^{\log_b(a)}) = \Theta(n^2)$$

Part c

 $T(n)=2^nT(\frac{n}{2})+n^n$ so $a=2^n,\,b=2$ and $f(n)=n^n$

The Master Theorem cannot be applied here because a is not a constant which is required for the Master Theorem. Hence, T(n) cannot be solved by the Master Theorem.

Part d

 $T(n) = 3T(\frac{n}{4}) + nlog(n)$ so a = 3, b = 4 and f(n) = nlog(n)As a and b are constants, the Master Theorem may apply here if it satisfies one of the cases.

$$n^{log_b(a)} = n^{log_4(3)} \approx n^{0.792}$$

Since $O(n^{log_4(3)}) < O(n) < O(nlog(n))$, this appears to case 3 of the Master Theorem. To use case 3, $f(n) = \Omega(n^{log_4(3)})$

$$Cnlog(n) \ge n^{log_43}$$

$$Clog(n) \ge n^{log_43-1}$$

$$Clog(n) \ge \frac{1}{n^{1-log_43}}$$

This inequality holds for C=1 and $n\geq 2$ (assuming $log(n)=log_2(n)$) since Clog(n) and n^{1-log_43} are both monotonic increasing so $\frac{1}{n^{1-log_43}}\to 0$ as $n\to\infty$. Hence,

$$f(n) = \Omega(n^{\log_4(3)})$$

Then for the second condition, $af(\frac{n}{h}) \leq cf(n)$ for some c < 1 and $n \geq k$:

$$\begin{split} 3f\left(\frac{n}{4}\right) & \leq cf(n) \\ \frac{3n}{4}log\left(\frac{n}{4}\right) & \leq cnlog(n) \\ \frac{3}{4}(log(n) - log(4)) & \leq clog(n) \\ \frac{3}{4}log(n) - \frac{3}{4}log(4) & \leq clog(n) \end{split}$$

So for sufficiently large n, if $\frac{3}{4} \le c < 1$ then this holds true as $\frac{3}{4}log(4)$ becomes insignificant as it is a constant. Hence, $\exists c < 1$ such that $af(\frac{n}{b}) \le cf(n)$ is true so this is case 3 of the Master Theorem:

$$T(n) = \Theta(f(n)) = \Theta(nloq(n))$$

Part e

 $T(n) = 3T(\frac{n}{3}) + \sqrt{n}$ so a = 3, b = 3 and $f(n) = \sqrt{n}$

As a and b are constants, the Master Theorem may apply here if it satisfies one of the cases.

$$n^{\log_b(a)} = n^{\log_3(3)} = n$$

This is clearly case 1 so $f(n) = O(n^{\log_b(a) - \epsilon})$:

$$n^{0.5} \le Cn^{1-\epsilon}$$
$$1 \le Cn^{0.5-\epsilon}$$

This is true for $C=1,\ n\geq 1$ and $\epsilon<0.5$ (but ϵ is a small positive constant anyway). Hence, $f(n)=O(n^{\log_b(a)-\epsilon})$ thus

$$T(n) = \Theta(n^{\log_b(a)}) = \Theta(n)$$

Question 6

Part b

The worse-case input for this algorithm for k pivots is:

- The first 2k elements of the array are reverse-sorted.
- The next k elements are all are greater than the first 2k elements. These elements are also reverse sorted.
- Repeat this for as many k element blocks each one must contain elements greater than all previous elements in the array. The k elements must be reverse-sorted.

For example, for a 15-element array with k = 5 a worst-case input would be [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 15, 14, 13, 12, 11, 20, 19, 18, 17, 16].

This is the worst-case input because when the algorithm selects the pivots it will select them from the right end. It will pick k elements which are reverse-sorted and then it will sort them using insertion sort. The worst-case for insertion sort is a reverse-sorted array. Then it will partition the array between these pivots however none of the elements in the array will be put in the partitions producing a n - k partition and k-sorted elements on the right side of the array. It will repeat this until there are 2k elements left. Each time it only reduces the problem by k-elements.

Once there are 2k elements left it will sort them using insertion sort. These elements will are also reverse-sorted which is again the worst-case for insertion sort. This overall gives the worst-case.