CORRIGÉ DU DS°1 (le 18/09/2010)

PARTIE 1 : Étude des polynômes de Newton

1. Chaque N_k est évidemment de degré k. Étant tous de degrés différents, la famille $(N_k)_{0 \le k \le n}$ est libre. Étant formée de n+1 éléments dans $\mathbb{R}_n[X]$ de dimension n+1, <u>c'en est une base</u>.

La famille $(N_k)_{k\in\mathbb{N}}$ étant formée de polynômes de degrés différents, elle est libre.

De plus, pour tout polynôme $P \in \mathbb{R}[X]$, il existe $n \in \mathbb{N}$ tel que $P \in \mathbb{R}_n[X]$. P est donc, d'après la question précédente, combinaison linéaire des $(N_k)_{0 \le k \le n}$, donc la famille $(N_k)_{k \in \mathbb{N}}$ est génératrice de $\mathbb{R}[X]$.

Ainsi, $(N_k)_{k\in\mathbb{N}}$ est une base de $\mathbb{R}[X]$.

- **2.** a) Immédiat : $\forall P \in \mathbb{R}[X]$, $\Delta(P) \in \mathbb{R}[X]$ et $\forall (\lambda, \mu) \in \mathbb{R}^2$, $\forall (P, Q) \in \mathbb{R}[X]^2$, $\Delta(\lambda P + \mu Q) = \lambda \Delta(P) + \mu \Delta(Q) \dots$
 - **b)** Δ_n est un endomorphisme de $\mathbb{R}_n[X]$: car Δ_n est linéaire (cf. ci-dessus), et, si P est de degré inférieur ou égal à n, il en est de même de $\Delta(P)$.

On a : $\Delta(N_0) = 0$ et, pour $k \ge 1$, $\Delta(N_k) = N_{k-1}$ car :

$$\Delta(N_k) = \frac{1}{k!} (X+1)(X) \dots (X-k+2) - \frac{1}{k!} X(X-1) \dots (X-k+1)$$

$$= \frac{1}{k!} X \dots (X-k+2) [(X+1) - (X-k+1)]$$

$$= \frac{1}{(k-1)!} X \dots (X-k+2) = N_{k-1}$$

On en déduit que la matrice de Δ_n dans la base $(N_k)_{0 \le k \le n}$ est égale à : $\begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \ddots & 0 & 1 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}$

- c) Pour $n \geqslant 1$, $\operatorname{Im}(\Delta_n) = \operatorname{Vect}\{\Delta_n(\mathbf{N}_k),\ 0 \leqslant k \leqslant n\} = \operatorname{Vect}\{\mathbf{N}_k,\ 0 \leqslant k \leqslant n-1\} = \mathbb{R}_{n-1}[\mathbf{X}]$. On en déduit, d'après le théorème du rang : $\dim(\operatorname{Ker}(\Delta_n)) = 1$. Puisque, facilement, $\mathbb{R}_0[\mathbf{X}] \subset \operatorname{Ker}(\Delta_n)$, on en déduit : $\operatorname{Ker}(\Delta_n) = \mathbb{R}_0[\mathbf{X}]$.
- **d)** Si $P \in \mathbb{R}[X]$, il existe $n \in \mathbb{N}^*$ tel que $P \in \mathbb{R}_{n-1}[X] = Im(\Delta_n)$. Il existe donc $Q \in \mathbb{R}_n[X]$ tel que $P = \Delta_n(Q)$, donc $P = \Delta(Q)$.

On en déduit : $Im(\Delta) = \mathbb{R}[X]$.

Si $P \in \mathbb{R}[X]$, il existe $n \in \mathbb{N}$ tel que $P \in \mathbb{R}_n[X]$, donc $P \in \text{Ker}(\Delta) \Rightarrow P \in \text{Ker}(\Delta_n) = \mathbb{R}_0[X]$, d'où $\text{Ker}(\Delta) \subset \mathbb{R}_0[X]$. L'inclusion réciproque étant facile, on a donc : $\underline{\text{Ker}(\Delta) = \mathbb{R}_0[X]}$

Autre démonstration possible : si $P \in Ker(\Delta)$, on a P(X + 1) = P(X) d'où $\forall n \in \mathbb{Z}, P(n) = P(0)$. P coïncidant avec le polynôme constant égal à P(0) pour une infinité de valeurs, il est constant...

3. a) $\Delta = \varphi - \mathrm{Id}_{\mathbb{R}[X]}$, où φ est l'endomorphisme de $\mathbb{R}[X]$ qui à tout polynôme P associe le polynôme $\varphi(P) = P(X+1)$ (il est facile de vérifier que c'est bien un endomorphisme).

Puisque ϕ et $Id_{\mathbb{R}[X]}$ commutent, la formule du binôme donne immédiatement :

$$\Delta^k = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} \Phi^i$$

et puisque : $\forall P \in \mathbb{R}[X], \ \forall i \in \mathbb{N}, \ \varphi^i(P) = P(X+i)$ (récurrence facile), on en déduit la formule demandée.

b) On a vu que, si $P \in \mathbb{R}_k[X]$, $\Delta(P) \in \mathbb{R}_{k-1}[X]$. Soit $n \in \mathbb{N}^*$ et $P \in \mathbb{R}_{n-1}[X]$. Alors $\Delta^{n-1}(P) \in \mathbb{R}_0[X]$ puis $\Delta^n(P) = 0$. $[(\Delta_{n-1})^n = 0$, i.e Δ_{n-1} nilpotent; on pouvait aussi le démontrer en remarquant que la matrice de Δ_{n-1} dans la base $(N_k)_{0 \le k \le n-1}$ est triangulaire supérieure à éléments diagonaux nuls].

Donc, d'après la formule précédente :

$$\forall P \in \mathbb{R}_{n-1}[X], \ \Delta^n(P)(X) = \sum_{i=0}^n (-1)^{n-i} \binom{n}{i} P(X+i) = 0.$$

En isolant le terme pour i=0, on en tire : $(-1)^n P(X)=-\sum_{i=1}^n (-1)^{n-i} \binom{n}{i} P(X+i)$ d'où l'égalité :

$$\forall P \in \mathbb{R}_{n-1}[X], \ P(X) = \sum_{i=1}^{n} a_i P(X+i), \text{ avec } \underline{a_i = (-1)^{i-1} \binom{n}{i}}.$$

Montrons maintenant que le n-uplet (a_1,a_2,\ldots,a_n) est unique : s'il existait un autre n-uplet (b_1,b_2,\ldots,b_n) tel que, pour *tout* polynôme $P \in \mathbb{R}_{n-1}[X]$, on ait :

$$P(X) = \sum_{i=1}^{n} a_i P(X+i) = \sum_{i=1}^{n} b_i P(X+i)$$

on aurait en particulier:

$$\sum_{i=1}^{n} a_i (X+i)^{n-1} = \sum_{i=1}^{n} b_i (X+i)^{n-1}$$

Or on montre (cf. feuille d'exercices n^o 3) que les polynômes $(X+i)^{n-1}$, $1 \le i \le n$ forment une base de $\mathbb{R}_{n-1}[X]$. On en déduit alors : $a_i = b_i$ pour tout $i \in [1, n]$. CQFD.

4. a) Pour tous entiers k et l tels que $0 \le k \le l$, on a : $\Delta^k(N_l) = N_{l-k}$: cela découle directement du calcul déjà fait à la question 2.b.

Pour l < k, on a alors $\Delta^k(N_l) = \Delta^{k-l}(\Delta^l(N_l)) = \Delta^{k-l}(N_0) = 0$.

b) Si $P \in \mathbb{R}_n[X]$, puisque $(N_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$, il existe des réels $\lambda_k(0 \le k \le n)$ tels que $P = \sum_{k=0}^n \lambda_k N_k$.

Pour $l \le n$, on a alors, d'après le résultat précédent : $\Delta^l(P) = \sum_{k=l}^n \lambda_k N_{k-l}$, d'où $\Delta^l(P)(0) = \sum_{k=l}^n \lambda_k N_{k-l}(0)$.

Or $N_0(0) = 1$ et $N_i(0) = 0$ si $i \ge 1$, donc l'égalité précédente se réduit à : $\Delta^l(P)(0) = \lambda_l$, ce qui donne la formule demandée. [Pour ceux qui connaissent leur cours, noter l'analogie avec la démonstration de la formule de Taylor!]

- 5. **a)** Un calcul assez simple donne : $N_k(x) = \begin{cases} 0 & \text{si } 0 \le x \le k-1 \\ \binom{x}{k} & \text{si } x \ge k \\ (-1)^k \binom{k-x-1}{k} & \text{si } x < 0. \end{cases}$
 - **b)** (i) ⇒ (ii) est immédiat.

(ii) \Rightarrow (iii) Si P(0), P(1),...,P(n) sont des entiers, puisque $\Delta^k(P)(0) = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} P(i)$ pour tout entier k d'après 3.a, on en déduit que les $\lambda_k = \Delta^k(P)(0)$ sont des entiers pour tout $k \in [0, n]$. Le résultat découle alors de la formule de Grégory.

(iii) \Rightarrow (i) Le calcul de la question précédente montre que, pour tout $k \in \mathbb{N}$ et tout $x \in \mathbb{Z}$, $N_k(x) \in \mathbb{Z}$. Donc si $P = \sum_{k=0}^{n} \lambda_k N_k$ avec les λ_k entiers, on aura $P(x) \in \mathbb{Z}$ pour tout $x \in \mathbb{Z}$.

PARTIE 2 : Étude des polynômes de Bernoulli

1. Puisque, pour $n \ge 1$, $\operatorname{Im}(\Delta_n) = \mathbb{R}_{n-1}[X]$, il existe un polynôme $P \in \mathbb{R}_n[X]$ tel que $\Delta(P) = \Delta_n(P) = nX^{n-1}$. On peut alors poser : $B_n = P - \int_0^1 P(t) \, dt$, et on aura bien les deux relations voulues.

S'il existait un autre polynôme $Q \in \mathbb{R}[X]$ vérifiant les deux conditions de l'énoncé, on aurait alors : $\Delta(B_n - Q) = 0$ et $\int_0^1 (B_n(t) - Q(t)) dt = 0$. D'où $B_n - Q \in \text{Ker}(\Delta) = \mathbb{R}_0[X]$, d'où $B_n - Q = cste$, et la condition sur l'intégrale donne directement cste = 0 soit $B_n = Q$, d'où <u>l'unicité</u>.

2. a) D'après ce qui a été dit ci-dessus, on a $B_n \in \mathbb{R}_n[X]$. De plus, si $P \in \mathbb{R}[X]$, $\deg(\Delta(P)) < \deg(P)$ donc la condition $\Delta(B_n) = nX^{n-1}$ (pour $n \ge 1$) implique $\deg(B_n) = n$ (et cela reste vrai pour n = 0). En écrivant ensuite (pour $n \ge 1$) $B_n = a_nX^n + Q$ avec $\deg(Q) \le n - 1$, l'égalité $\Delta(B_n) = nX^{n-1}$ donne facilement $a_n = 1$. Ainsi, les B_n sont normalisés (et cela reste vrai pour n = 0).

b) D'après ce qui précède, il suffit de chercher les polynômes B_1, B_2 et B_3 sous la forme : $B_1 = X + \alpha$, $B_2 = X^2 + \beta X + \gamma$ etc... et le calcul des intégrales permet de trouver :

$$B_1 = X - \frac{1}{2}$$
, $B_2 = X^2 - X + \frac{1}{6}$, $B_3 = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X$

- **3.** a) Pour $n \ge 2$, on a : $B_n(X+1) B_n(X) = nX^{n-1}$ d'où, pour X=0, $B_n(1) = B_n(0)$ (il faut $n \ge 2$ pour que l'exposant dans X^{n-1} soit supérieur à 1!).
 - **b)** Posons, pour $n \ge 2$, $C_n = \frac{B'_n}{n}$. Alors :

$$\Delta(C_n) = \frac{1}{n} [B'_n(X+1) - B'_n(X)] = \frac{1}{n} [B_n(X+1) - B_n(X)]' = (n-1)X^{n-2}$$

De plus,
$$\int_{0}^{1} C_{n}(t) dt = \frac{1}{n} [B_{n}(1) - B_{n}(0)] = 0.$$

Ainsi, C_n vérifie les mêmes hypothèses que B_{n-1} , d'où, par unicité, $C_n = B_{n-1}$ soit $\underline{B'_n = nB_{n-1}}$ pour $n \ge 2$, et un calcul direct montre que cela reste vrai pour n = 1.

- **4. a)** On pose $C_n(X) = (-1)^n B_n (1-X)$. Pour $n \ge 1$: $\Delta(C_n) = (-1)^n [B_n(-X) B_n (1-X)] = (-1)^n [-\Delta(B_n)(-X)] = (-1)^n [-n(-X)^{n-1}] = nX^{n-1}.$ De plus, $\int_0^1 C_n(t) dt = (-1)^n \int_0^1 B_n(u) du = 0 \text{ (en posant } u = 1-t), \text{ d'où, par unicit\'e de } B_n, \underline{B_n = C_n} \text{ pour } n \ge 1 \text{ (et cela reste vrai pour } n = 0).$
 - b) On en déduit que la courbe représentative de B_n est symétrique par rapport à la droite d'équation $x = \frac{1}{2}$ si n est pair, et symétrique par rapport au point de coordonnées $(\frac{1}{2},0)$ si n est impair.
 - c) et que, pour tout entier $k \ge 1$, B_{2k+1} s'annule en 0, 1 et $\frac{1}{2}$.
- **5.** a) La formule de Taylor (pour les polynômes) donne, puisque B_n est de degré n:

$$B_n(x+y) = \sum_{k=0}^n \frac{1}{k!} B_n^{(k)}(x) y^k \quad (*)$$

Mais $B'_n = nB_{n-1}$ pour $n \ge 1$, donc, par récurrence, pour $k \le n$, $B_n^{(k)} = n(n-1)...(n-k+1)B_{n-k}$ soit encore $B_n^{(k)} = \frac{n!}{(n-k)!}B_{n-k}$.

En remplaçant dans (*), on obtient bien :

$$\forall (x,y) \in \mathbb{R}^2 , B_n(x+y) = \sum_{k=0}^n \binom{n}{k} B_{n-k}(x) y^k$$

- En faisant x = 0 dans la formule précédente, on obtient le résultat demandé.
 - A l'ordre n+1 et pour y=1, la formule précédente donne :

$$B_{n+1}(x+1) = \sum_{k=0}^{n+1} {n+1 \choose k} B_k(x) = B_{n+1}(x) + \sum_{k=0}^{n} {n+1 \choose k} B_k(x)$$

Puisque $B_{n+1}(x+1) - B_{n+1}(x) = (n+1)x^n$ pour tout $n \in \mathbb{N}$, on obtient bien :

$$\sum_{k=0}^{n} {n+1 \choose k} B_k(x) = (n+1)x^n$$

• Pour $n \geqslant 1$, et en prenant x = 0, on en déduit : $\sum_{k=0}^{n} \binom{n+1}{k} b_k = 0$

PSI* 10-11

c) Cette égalité permet de calculer, par un algorithme très simple, b_n lorsqu'on connaît les b_k pour $0 \le k \le n-1$, puisqu'elle s'écrit aussi, après simplification par (n+1)!:

$$\frac{b_n}{n!} = -\sum_{k=0}^{n-1} \frac{b_k}{k!(n+1-k)!}$$

Voilà ce que donne Maple :

```
> restart;
> b[0] := 1:
> deb := time():
> for i to 700 do
> b[i] := -factorial(i)*(sum(b[k]/(factorial(k)*factorial(i+1-k)), k = 0 .. i-1))
 print('temps passé :', time()-deb); 1; b[4]; 1; b[6];
                            'temps passé : ', 13.587
                                    -1/30
                                    1/42
```

On peut diviser le temps d'éxécution presque par deux, en calculant plutôt les $\frac{b_k}{k!}$; voici le programme correspondant:

```
restart;
 b[0] := 1: c[0] := 1:
deb := time():
for i to 700 do c[i] := -(sum(c[k]/factorial(i+1-k), k = 0 .. i-1));
b[i] := factorial(i)*c[i]
end do:
 print('temps passé :', time()-deb); b[4]; b[6];
```

temps passé :,
$$8.720$$
 $-1/30$
 $1/42$

a) Posons, pour $n \in \mathbb{N}^*$ et $p \in \mathbb{N}^*$: $C_n(X) = p^{n-1} \sum_{j=0}^{p-1} B_n\left(\frac{X+j}{p}\right)$. Alors:

$$\Delta(C_n) = p^{n-1} \left[\sum_{j=0}^{p-1} B_n \left(\frac{X+j+1}{p} \right) - \sum_{j=0}^{p-1} B_n \left(\frac{X+j}{p} \right) \right]$$
$$= p^{n-1} \left[B_n \left(\frac{X+p}{p} \right) - B_n \left(\frac{X}{p} \right) \right]$$

(les termes se "télescopent") soit $\Delta(C_n) = p^{n-1}\Delta(B_n)\left(\frac{X}{p}\right) = p^{n-1}n\left(\frac{X}{p}\right)^{n-1} = nX^{n-1}$. De plus:

$$\int_{0}^{1} C_{n}(t) dt = p^{n-1} \sum_{j=0}^{p-1} \int_{0}^{1} B_{n} \left(\frac{t+j}{p} \right) dt$$
$$= p^{n-1} \sum_{j=0}^{p-1} \int_{j/p}^{(j+1)/p} B_{n}(u) du$$

(en ayant effectué les changements de variable $u = \frac{t+j}{n}$)

soit
$$\int_0^1 C_n(t) dt = p^{n-1} \int_0^1 B_n(u) du = 0$$
.
Ainsi, par unicité de B_n , $B_n = C_n$ pour $n \ge 1$ (et cela reste vrai pour $n = 0$).

b) • Pour
$$p = 2$$
 et $X = 0$, la formule précédente donne : $B_n(0) = 2^{n-1} (B_n(0) + B_n(1/2))$ d'où $B_n(\frac{1}{2}) = (2^{1-n} - 1)b_n$

• Pour
$$p = 3$$
 et $X = 0$, on a : $b_n = 3^{n-1}(b_n + B_n(1/3) + B_n(2/3))$.
puisque n est pair, on a $B_n(2/3) = B_n(1/3)$ d'où finalement : $B_n\left(\frac{1}{3}\right) = \frac{b_n}{2}(3^{1-n} - 1)$

• Pour
$$p = 2$$
 et $X = 1/2$, on a : $B_n(1/2) = 2^{n-1}(B_n(1/4) + B_n(3/4))$.
puisque n est pair, on a $B_n(3/4) = B_n(1/4)$, d'où : $B_n\left(\frac{1}{4}\right) = \frac{b_n(2^{1-n} - 1)}{2^n}$.

• Pour
$$p = 2$$
 et $X = 1/3$, on a : $B_n(1/3) = 2^{n-1}(B_n(1/6) + B_n(2/3))$.
puisque n est pair, on a $B_n(1/3) = B_n(2/3)$, d'où :
$$B_n\left(\frac{1}{6}\right) = \frac{b_n(2^{n-1} - 1)(3^{n-1} - 1)}{(2^n)(3^{n-1})}$$

- a) Soit la propriété \mathcal{H}_n , pour $n \in \mathbb{N}^*$:
 - $\begin{cases} \bullet & \text{B}_{2n} \text{ admet sur l'intervalle}[0,1] \text{ exactement deux racines } \alpha_n \text{ et } \beta_n \text{ qui v\'erifient} \\ & 0 < \alpha_n < \frac{1}{2} < \beta_n < 1 \\ \bullet & \text{les seules racines de B}_{2n+1} \text{ dans } [0,1] \text{ sont } 0, \frac{1}{2} \text{ et } 1 \\ \bullet & \text{le signe de B}_{2n+1} \text{ sur }]0, \frac{1}{2} [\text{ est celui de } (-1)^{n-1}. \\ \bullet & b_{2n} \text{ est non nul et est du signe de } (-1)^{n-1} \end{cases}$

Démontrons cette propriété par récurrence sur n:

- Pour n = 1, c'est facile (reprendre les valeurs trouvées de B_2 et B_3 , et faire les calculs, simples).
- Supposons \mathcal{H}_n vérifiée à un ordre $n \ge 1$, et démontrons \mathcal{H}_{n+1} .

En supposant par exemple *n impair*, on a le tableau de variations suivant, le signe de B_{2n+1} sur $]\frac{1}{2},1[$ se déduisant de celui sur $]0, \frac{1}{2}[$ à l'aide de la relation vue en 4.a, et en utilisant le fait que $B'_{2n+2}=(2n+2)B_{2n+1}:$

<i>x</i>	0		1/2		1
B_{2n+1}		+		_	
B_{2n+2}	b_{2n+2}	7	$B_{2n+2}(1/2)$	>	b_{2n+2}

De plus, B_{2n+1} ne s'annulant qu'en 0, 1/2 et 1, B_{2n+2} est strictement monotone sur chacun des deux intervalles. D'après la relation trouvée en 5.a, $B_{2n+2}\left(\frac{1}{2}\right)=(2^{-2n-1}-1)b_{2n+2}$ donc est de signe différent de b_{2n+2} (et ne peut être nul,car sinon, b_{2n+2} le serait aussi alors que B_{2n+1} est strictement croissante sur]0,1/2[). Ainsi, dans le tableau ci-dessus, on a $b_{2n+2} < 0$ et $B_{2n+2} \left(\frac{1}{2}\right) > 0$.

Le théorème appelé ordinairement "théorème de bijection" prouve que B_{2n+2} admet sur [0,1] exactement deux racines α_{n+1} et β_{n+1} , telles que $0 < \alpha_{n+1} < \frac{1}{2} < \beta_{n+1} < 1$.

On en déduit alors le signe de B_{2n+2} , puis le tableau suivant, compte tenu de la relation $B_{2n+3} = (2n+3)B'_{2n+2}$:

Là encore, sur chaque intervalle, B_{2n+3} est strictement monotone. Le tableau ci-dessous prouve donc que B_{2n+3} ne peut s'annuler qu'en 0, 1/2 et 1, et que, de plus, elle est négative sur]0, 1/2[.

Cela établit donc le résultat à l'ordre n + 1.

(Rem: la démonstration dans le cas n pair est similaire: seuls les signes et les sens de variation sont changés).

- Enfin, on a $\alpha_n + \beta_n = 1$, d'après la relation $B_{2n}(1 \alpha_n) = B_{2n}(\alpha_n)$.
- b) Les calculs faits en 6.b montrent que $B_n\left(\frac{1}{6}\right)$ et $B_n\left(\frac{1}{4}\right)$ sont de signes contraires (signe qui dépend de celui de b_n), pour n pair.

 Les tableaux de variations ci-dessus donnent donc directement : $\frac{1}{6} < \alpha_n < \frac{1}{4}$
- 8. a) Les tableaux de variations ci-dessus montrent que $\left|B_{2n}\right|$ ne peut atteindre son maximum sur [0,1] qu'en 0 ou 1/2. Or, d'après le calcul fait en 6.b, $\left|B_{2n}\left(\frac{1}{2}\right)\right| < |b_{2n}|$. Donc, pour tout $x \in [0,1]$, $\left|B_{2n}(x)\right| \le |b_{2n}|$.
 - b) Là encore, les tableaux de variations ci-dessus montrent que $\left|B_{2n+1}\right|$ ne peut atteindre son maximum qu'en α_n ou β_n (puisque ses valeurs en 0, 1/2 et 1 sont nulles). Or $\alpha_n + \beta_n = 1$, donc $\left|B_{2n+1}(\alpha_n) = \left|B_{2n+1}(\beta_n)\right|$ d'après la relation vue en 4.a.

Donc, pour tout $x \in [0, 1]$, $|B_{2n+1}(x)| \le |B_{2n+1}(\alpha_n)|$.

- c) Il s'agit ici d'appliquer <u>l'inégalité</u> des accroissements finis : si $f \in \mathscr{C}^1([a,b],\mathbb{R})$ et si $M = \sup\{|f'(x)|, x \in [a,b]\}$, alors $|f(b)-f(a)| \leq M|b-a|$.
 - Puisque $B_{2n+1}'=(2n+1)B_{2n}$, compte tenu de la majoration obtenue précédemment pour $|B_{2n}|$, on a :

$$|B_{2n+1}(\alpha_n) - B_{2n+1}(\beta_n)| \le (2n+1)|\alpha_n - \beta_n||b_{2n}|$$

Mais $B_{2n+1}(\beta_n) = -B_{2n+1}(\alpha_n)$, donc l'inégalité ci-dessus implique, puisque $|\alpha_n - \beta_n| \le 1$: $\left| B_{2n+1}(\alpha_n) \right| \le \frac{2n+1}{2} \left| b_{2n} \right|$

• Puisque $B'_{2n+2} = (2n+2)B_{2n+1}$, et compte tenu de la majoration obtenue précédemment pour $|B_{2n+1}|$, on a :

$$\left| B_{2n+2}(1/2) - B_{2n+2}(0) \right| \le \frac{1}{2} (2n+2) \left| B_{2n+1}(\alpha_n) \right|$$

Mais le calcul fait en 6.b donne $B_{2n+2}(1/2) = (2^{-2n-1}-1)b_{2n+2}$, donc l'inégalité ci-dessus implique : $\frac{1}{n+1}\left(1-\frac{1}{2^{2n+1}}\right)\left|b_{2n+2}\right| \leqslant \left|B_{2n+1}(\alpha_n)\right|.$

PARTIE 3 : Séries de Riemann et nombres de Bernoulli

Note pour les 5/2: cette partie revient à trouver le développement en série de Fourier des B_n , prolongées correctement sur \mathbb{R} , à partir de leur valeur sur [0,1], pour devenir 1-périodiques et paires ...

1. La formule proposée peut se démontrer par récurrence sur N, mais un calcul direct (qu'il faut absolument savoir faire!) est possible :

$$\begin{split} \sum_{k=1}^{N} \cos(2k\pi t) &= \Re e\left(\sum_{k=1}^{N} e^{2ik\pi t}\right) = \Re e\left(e^{2i\pi t}\frac{1-e^{2iN\pi t}}{1-e^{2i\pi t}}\right) \\ &\text{(somme des termes d'une suite géométrique de raison} \neq 1, \operatorname{car} \ t \in]0,1[) \\ &= \Re e\left(e^{2i\pi t}\frac{e^{iN\pi t}\left(e^{-iN\pi t}-e^{iN\pi t}\right)}{e^{i\pi t}\left(e^{-i\pi t}-e^{i\pi t}\right)}\right) \\ &= \Re e\left(e^{i(N+1)\pi t}\frac{\sin(N\pi t)}{\sin(\pi t)}\right) = \frac{\cos((N+1)\pi t)\sin(N\pi t)}{\sin(\pi t)} \\ &= \frac{\sin((2N+1)\pi t)-\sin(\pi t)}{2\sin(\pi t)} \end{split}$$

d'où on déduit : $1 + 2\sum_{k=1}^{N} \cos(2k\pi t) = \frac{\sin\left((2N+1)\pi t\right)}{\sin(\pi t)}$

On supposera n > 1. (il y a un problème en t = 1 pour n = 1).
 D'après la question II.4.a, on a φ_n(1 - t) = ±φ_n(t) (selon la parité de n), donc il suffit de montrer que φ_n se prolonge en une fonction de classe 𝒞¹ sur [0,1[.
 On utilisera pour cela le célèbre théorème de prolongement des fonctions de classe 𝒞¹ (φ_n étant déjà de classe 𝒞¹

sur]0,1[d'après les théorèmes usuels) :

• Tout d'abord, φ_n est prolongeable par continuité en 0: en effet, $\lim_{t\to 0} \frac{\mathrm{B}_n(t) - \mathrm{B}_n(0)}{t} = \mathrm{B}'_n(0) = n\mathrm{B}_{n-1}(0)$ existe, et $\lim_{t\to 0} \frac{t}{\sin(\pi t)} = \frac{1}{\pi}$, d'où $\lim_{t\to 0} \varphi_n(t)$ existe.

Notons encore φ_n la fonction ainsi prolongée, continue sur [0,1[.

• Il reste à démontrer que $\lim_{t\to 0} \varphi_n'(t)$ existe. Or, pour $t\in]0,1[$, le calcul donne :

$$\varphi_n'(t) = \frac{B_n'(t)\sin(\pi t) - [B_n(t) - B_n(0)]\pi\cos(\pi t)}{(\sin(\pi t))^2}.$$

Un développement limité donne alors

$$\varphi_n'(t) = \frac{\left[B_n'(0) + tB_n''(0) + o(t)\right]\left[\pi t + o(t^2)\right] - \left[tB_n'(0) + \frac{t^2}{2}B_n''(0) + o(t^2)\right]\left[\pi + o(t)\right]}{\pi^2 t^2 + o(t^4)}$$

En utilisant $B'_n = nB_{n-1}$ et $B''_n = n(n-1)B_{n-2}$, cela permet de trouver :

$$\lim_{t \to 0} \varphi'_n(t) = \frac{n(n-1)B_{2n-2}(0)}{2\pi} \quad \text{CQFD}.$$

3. Il s'agit ici du fameux <u>lemme de Lebesgue</u> (*Rem : le résultat reste valable si l'on suppose seulement f continue par morceaux, mais la démonstration est plus difficile, voir un prochain cours...)*

Une simple intégration par parties (puisque l'on suppose f de classe \mathscr{C}^1) donne, pour $x \neq 0$:

$$\int_{0}^{1} f(t)\sin(xt) dt = \left[\frac{-1}{x}f(t)\cos(xt)\right]_{0}^{1} + \frac{1}{x}\int_{0}^{1} f'(t)\cos(xt) dt$$

Or:

$$\left| \frac{1}{x} \int_0^1 f'(t) \cos(xt) \, \mathrm{d}t \right| \le \frac{1}{|x|} \int_0^1 |f'(t)| |\cos(xt)| \, \mathrm{d}t \le \frac{1}{|x|} \mathrm{M}_1$$

où $M_1 = \sup\{|f'(t)|, \ t \in [0,1]\}$ (qui existe car f' est continue sur un segment) donc :

$$\lim_{x \to \infty} \frac{1}{x} \int_0^1 f'(t) \cos(xt) dt = 0 \quad (a)$$

De plus, en utilisant l'inégalité triangulaire :

$$\left| \left[\frac{-1}{x} f(t) \cos(xt) \right]_0^1 \right| = \left| \frac{-1}{x} \left[f(1) \cos x - f(0) \right] \right| \le \frac{2M_0}{|x|}$$

où $M_0 = \sup\{|f(t)|, \ t \in [0,1]\}$ (qui existe car f est continue sur un segment) donc :

$$\lim_{x \to \infty} \left[\frac{-1}{x} f(t) \cos(xt) \right]_0^1 = 0 \quad (b)$$

De (a) et (b), on en déduit :

$$\lim_{x \to +\infty} \int_0^1 f(t) \sin(xt) dt = 0$$

4. • Pour k et n entiers strictement positifs, on définit :

$$I_{n,k} = \int_0^1 B_n(t) \cos(2k\pi t) dt$$

Pour $n \ge 2$, une double intégration par parties donne :

$$\begin{split} I_{n,k} &= \int_0^1 B_n(t) \cos(2k\pi t) dt \\ &= \left[-B_n(t) \frac{\sin(2k\pi t)}{2k\pi} \right]_0^1 + \frac{1}{2k\pi} \int_0^1 B_n'(t) \sin(2k\pi t) dt \\ &= 0 + \frac{1}{2k\pi} \left(\left[B_n'(t) \frac{\cos(2k\pi t)}{2k\pi} \right]_0^1 - \frac{1}{2k\pi} \int_0^1 B_n''(t) \cos(2k\pi t) dt \right) \end{split}$$

Or $B_n' = nB_{n-1}$ donc $B_n'(1) = B_n'(0)$ pour $n \ge 2$, puis $B_n'' = n(n-1)B_{n-2}$ donc il reste :

$$I_{n,k} = \frac{-n(n-1)}{(2k\pi)^2} I_{n-2,k}$$

• On calcule alors:

$$I_{1,k} = \int_0^1 (t - \frac{1}{2}) \cos(2k\pi t) dt = 0$$

(on peut faire une intégration par parties, ou, plus astucieusement, faire le changement de variable t = 1 - u qui amène à $I_{1,k} = -I_{1,k}$).

Par une récurrence immédiate, on en déduit alors : $I_{n,k}=0$ pour n impair.

• On calcule ensuite:

$$I_{2,k} = \int_0^1 (t^2 - t + 1/6) \cos(2k\pi t) dt = \frac{2}{(2k\pi)^2}$$

(intégrer deux fois par parties, par exemple)

et la relation précédente permet alors d'obtenir par récurrence : $I_{2n,k} = \frac{(-1)^{n-1}(2n)!}{(2k\pi)^{2n}}$

5. Il suffit de remplacer par tout ce qui a été trouvé avant :

$$\begin{split} \int_0^1 \varphi_{2m} \sin\left((2N+1)\pi t\right) \mathrm{d}t &= \int_0^1 \frac{[B_{2m}(t) - b_{2m}] \sin((2N+1)\pi t)}{\sin(\pi t)} \mathrm{d}t \\ &= \int_0^1 [B_{2m}(t) - b_{2m}] \left[1 + 2\sum_{k=1}^N \cos(2k\pi t)\right] \mathrm{d}t \\ &= \int_0^1 B_{2m}(t) \mathrm{d}t - b_{2m} + 2\sum_{k=1}^N \int_0^1 B_{2m}(t) \cos(2k\pi t) \mathrm{d}t \\ &= 2\sum_{k=1}^N I_{2m,k} - b_{2m} = \boxed{2\sum_{k=1}^N \frac{(-1)^{m-1}(2m)!}{(2k\pi)^{2m}} - b_{2m}} \end{split}$$

(les intégrales $b_{2m} \int_0^1 \cos(2k\pi t) dt$ et $\int_0^1 B_{2m}(t) dt$ étant nulles).

6. De l'égalité précédente, on déduit : $\sum_{k=1}^{N} \frac{1}{k^{2m}} = \frac{(-1)^{m-1} \pi^{2m} 2^{2m-1}}{(2m)!} \left(b_{2m} + \int_{0}^{1} \varphi_{2m} \sin\left((2N+1)\pi t\right) dt \right).$

Puisque : $\lim_{N\to\infty} \int_0^1 \varphi_{2m} \sin\left((2N+1)\pi t\right) dt$ existe et est égale à 0 d'après III.3, on en déduit que $\lim_{N\to+\infty} \sum_{k=1}^N \frac{1}{k^{2m}}$ existe et que cette limite est égale à :

$$S_{2m} = \sum_{k=1}^{+\infty} \frac{1}{k^{2m}} = (-1)^{m-1} b_{2m} \frac{\pi^{2m} 2^{2m-1}}{(2m)!}$$

En particulier, puisque $b_2 = \frac{1}{6}$, $b_4 = \frac{-1}{30}$, $b_6 = \frac{1}{42}$, $b_8 = \frac{-1}{30}$ et $b_{10} = \frac{5}{66}$, cela permet de trouver les résultats célébrissimes :

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6} , \sum_{k=1}^{+\infty} \frac{1}{k^4} = \frac{\pi^4}{90} , \sum_{k=1}^{+\infty} \frac{1}{k^6} = \frac{\pi^6}{945} , \sum_{k=1}^{+\infty} \frac{1}{k^8} = \frac{\pi^8}{9450} , \sum_{k=1}^{+\infty} \frac{1}{k^{10}} = \frac{\pi^{10}}{93555}$$
 etc....

7. **a)** C'est immédiat : $\sum_{k=1}^{+\infty} \frac{1}{k^{2m}} \le \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \le 2$.

La majoration : $\frac{|b_{2m}|}{(2m)!} \le \frac{4}{(4\pi^2)^m}$ découle alors directement de cette inégalité et de la relation trouvée en III.6.

b) L'"encadrement judicieux" dont parle l'énoncé est plus connu sous le nom de comparaison série-intégrale.

Puisque la fonction
$$t\mapsto \frac{1}{t^{2m}}$$
 décroît sur $]1,+\infty[$, on a, pour $k\geqslant 2$: $\frac{1}{k^{2m}}\leqslant \int_{k-1}^k \frac{\mathrm{d}t}{t^{2m}}$.

D'où, en sommant :
$$\sum_{k=2}^{N} \frac{1}{k^{2m}} \le \int_{1}^{N} \frac{dt}{t^{2m}} = \frac{1 - N^{-2m+1}}{2m - 1}$$
.

En faisant tendre N vers $+\infty$, on obtient : $1 \le S_{2m} \le 1 + \frac{1}{2m-1}$, d'où ensuite : $\lim_{m \to +\infty} S_{2m} = 1$.

De l'égalité trouvée en III.6, on en déduit l'équivalent de b_{2m} quand $m \to +\infty$:

$$b_{2m} \sim \frac{(-1)^{m-1}(2m)!}{\pi^{2m}2^{2m-1}}$$

PARTIE 4: Formule sommatoire d'Euler Mac-Laurin

1. •
$$R_1 = \int_0^1 \frac{f''(t)B_2(t)}{2} dt = \frac{1}{2} \left[\left[f'(t)B_2(t) \right]_0^1 - \int_0^1 f'(t)B_2'(t) dt \right]$$

$$= \frac{1}{2} \left[f'(1)B_2(1) - f'(0)B_2(0) - \left[f(t)B_2'(t) \right]_0^1 + \int_0^1 f(t)B_2''(t) dt \right].$$

Or $B_2(0) = B_2(1) = b_2$, $B_2'(t) = 2t - 1$ et $B_2''(t) = 2$ donc on trouve

$$R_1 = \frac{b_2}{2} [f'(1) - f'(0)] - \frac{f(1) + f(0)}{2} + R_0, \text{ puisque } R_0 = \int_0^1 f(t) dt.$$

• Puis, pour tout entier $k \ge 1$:

$$\begin{split} \mathbf{R}_{k+1} &= \int_0^1 \frac{f^{(2k+2)}(t) \mathbf{B}_{2k+2}(t)}{(2k+2)!} \, \mathrm{d}t \\ &= \frac{1}{(2k+2)!} \left(\left[f^{(2k+1)}(t) \mathbf{B}_{2k+2}(t) \right]_0^1 - \int_0^1 f^{(2k+1)(t)} \mathbf{B}_{2k+2}'(t) \, \mathrm{d}t \right) \\ &= \frac{1}{(2k+2)!} \left(b_{2k+2} [f^{(2k+1)}(1) - f^{(2k+1)}(0)] - (2k+2) \int_0^1 f^{(2k+1)}(t) \mathbf{B}_{2k+1}(t) \, \mathrm{d}t \right) \\ &= \frac{b_{2k+2}}{(2k+2)!} [f^{(2k+1)}(1) - f^{(2k+1)}(0)] - \frac{b_{2k+1}}{(2k+1)!} [f^{(2k)}(1) - f^{(2k)}(0)] + \mathbf{R}_k \end{split}$$

(en ayant intégré une nouvelle fois par parties la 2ème intégrale).

Mais, pour
$$k \ge 1$$
, $b_{2k+1} = 0$ d'où finalement :
$$R_{k+1} = \frac{b_{2k+2}}{(2k+2)!} [f^{(2k+1)}(1) - f^{(2k+1)}(0)] + R_k$$

2. La formule :
$$\int_0^1 f(t) dt = \frac{f(0) + f(1)}{2} - \sum_{j=1}^n \frac{b_{2j}}{(2j)!} \left[f^{(2j-1)}(1) - f^{(2j-1)}(0) \right] + R_n$$

est vraie pour n = 1 d'après le premier calcul fait dans la question précédente, et elle se démontre ensuite facilement par récurrence sur n en utilisant le deuxième calcul.

3. Il suffit de majorer l'intégrale :
$$|\mathbf{R}_n| = \left| \int_0^1 \frac{f^{(2n)}(t)\mathbf{B}_{2n}(t)}{(2n)!} \, \mathrm{d}t \right|$$

$$\leqslant \int_0^1 \frac{|f^{(2n)}(t)||\mathbf{B}_{2n}(t)|}{(2n)!} \, \mathrm{d}t \leqslant \int_0^1 \frac{\mathbf{M}|b_{2n}|}{(2n)!} \, \mathrm{d}t, \text{ en utilisant II.7.a, puis en utilisant III.7.a}$$
 et on obtient bien :
$$|\mathbf{R}_n| \leqslant \frac{4\mathbf{M}}{(4\pi^2)^n}.$$

- **4.** Applications : (il fallait ici supposer $a \neq 0$, petit oubli d'énoncé)
 - a) Pour $f(t) = e^{at}$, la formule sommatoire d'Euler- Mac-Laurin s'écrit, pour tout $n \in \mathbb{N}^*$ (puisque f est de classe \mathscr{C}^{∞} et que $f^{(j)}(t) = a^j f(t)$):

$$\int_0^1 e^{at} dt = \frac{1 + e^a}{2} - \sum_{i=1}^n \frac{b_{2i}}{(2i)!} [a^{2i-1}e^a - a^{2i-1}] + R_n \text{ et } \int_0^1 e^{at} dt = \frac{e^a - 1}{a}$$

d'où :
$$\sum_{j=1}^{n} \frac{b_{2j}}{(2j)!} a^{2j-1} [e^{a} - 1] = \frac{1 + e^{a}}{2} + \frac{1 - e^{a}}{a} + R_{n}$$

puis :
$$\sum_{j=1}^{n} \frac{b_{2j}}{(2j)!} a^{2j} = \frac{a}{2} \frac{e^{a} + 1}{e^{a} - 1} - 1 + \frac{R_{n}}{e^{a} - 1} \quad (*).$$

Or:
$$|R_n| \le \frac{4M}{(4\pi^2)^n}$$
, avec ici $M = \sup_{t \in [0,1]} |a^{2n} e^{at}| = |a|^{2n} e^{|a|}$.

Puisque $|a| < 2\pi$, on a $\frac{|a|^2}{(4\pi)^2} < 1$ d'où $\lim_{n \to \infty} R_n = 0$, d'où, en passant à la limite dans l'égalité (*), on obtient bien :

$$\frac{a}{2}\frac{e^{a}+1}{e^{a}-1} = 1 + \sum_{k=1}^{+\infty} \frac{b_{2k}}{(2k)!} a^{2k}$$

b) En appliquant le résultat précédent avec a = 2ix avec $x \in]-\pi, \pi[$, on obtient, après calculs :

$$x \cot x = 1 + \sum_{k=1}^{+\infty} (-1)^k b_{2k} \frac{2^{2k}}{(2k)!} x^{2k}$$

Par troncature, on retrouve ainsi, par exemple, le développement limité (bien connu) :

$$x \cot x = 1 - \frac{1}{3}x^2 - \frac{1}{45}x^4 - \frac{2}{945}x^6 - \frac{1}{4725}x^8 - \frac{2}{93555}x^{10} + \mathbf{O}(x^{12})$$

FIN