

GRU vs LSTM: Detecção de Notícias Falsas

- Alunos:
 - Diego Machado
 - Diogo Assis
 - Luiz Felipe Vieira
 - Marcos Silva
 - Renato Thürler

INTRODUÇÃO

- O problema das fake news: impacto social, político e sanitário.
- A importância de soluções automáticas para combatê-las.
- Detecção como tarefa de classificação de texto.

FUNDAMENTOS TEÓRICOS

- Aprendizado profundo e PLN.
- RNNs: modelagem de sequências.
- Long Short-Term Memory (Memória de Curto e Longo Prazo)
- Gated Recurrent Unit (Unidade Recorrente com Portas).
- LSTM e GRU:
 - arquiteturas
 - diferenças.
- LSTM: mais complexa, retém informação por mais tempo.
- GRU: mais simples e rápida.

METODOLOGIA

Conjunto de dados: ISOT Fake News Detection Dataset.

Etapas principais

- Seleção do dataset
- Pré-processamento (normalização)
- Divisão: treino (80%), teste (20%)
- Processamento nos dois modelos
- Resultado cmparativo

ARQUITETURA DOS MODELOS

PROCESSAMENTO

(Total: ~1 milhão de parâmetros)

- Sequência de tokens numéricos
- Embedding / padding
- Bi direção
- Dropout
- Resultado emparativo
- ReLU
- Sigmoide

MÉTRICAS UTILIZADAS

ACURÁCIA

Proporção de previsões corretas (tanto verdadeiras quanto falsas) sobre o total de previsões.

Fórmula: (TP + TN) / (TP + TN + FP + FN)

PRECISÃO

Proporção de previsões positivas corretas sobre o total de previsões positivas feitas.

Fórmula: TP / (TP + FP)

RECALL

Proporção de casos positivos reais que o modelo conseguiu identificar.

Fórmula: TP / (TP + FN)

F1-SCORE

Média harmônica entre precisão e recall.

Fórmula: 2 × (Precisão × Recall) / (Precisão + Recall)

AUC

Mede a capacidade do modelo de diferenciar classes. Quanto mais próxima de 1, melhor o desempenho.

RESULTADOS GRU

M.

				•
DOBRA	ACURACIA	PRECISÃO	RECALL	F1-SCORE
Fold 1	0.99	0.99	0.99	0.99
Fold 2	0.99	0.99	0.99	0.99
Fold 3	0,98	0,98	0,98	0,98
Fold 4	0,98	0.99	0,98	O,98
Fold 5	0.99	0.99	0.99	0.99

- O modelo GRU foi treinado com validação cruzada de
 5 dobras, o que aumenta a robustez na avaliação.
- As curvas de perda e AUC mostraram convergência estável ao longo das épocas, sem sinais de overfitting.
- A acurácia e o F1-Score se mantiveram elevados em todas as dobras, indicando desempenho consistente.

RESULTADOS GRU

- A matriz de confusão mostrou equilíbrio entre falsos positivos e falsos negativos.
- Isso revela uma boa capacidade de generalização do modelo GRU para dados nunca vistos.

RESULTADOS LSTM

DOBRA	ACURACIA	PRECISÃO	RECALL	F1-SCORE
Fold 1	98,69%	0.98	0.99	0.99
Fold 2	98,00%	0.99	0.98	0.98

- O modelo LSTM também apresentou desempenho elevado.
- As métricas de precisão e recall foram equilibradas para ambas as classes ("Fake" e "True"). O modelo consegue identificar corretamente tanto notícias falsas quanto verdadeiras.
- As curvas de desempenho demonstram estabilidade durante o treinamento, reforçando a capacidade do modelo de generalizar sem overfitting.

RESULTADOS LSTM

- A matriz de confusão do modelo LSTM também apresentou baixo número de falsos positivos e falsos negativos, com distribuição equilibrada entre as classes.
- Isso reforça a robustez do modelo e sua eficácia na distinção entre notícias falsas e verdadeiras, mesmo em dados não utilizados no treinamento.

GRU VS LSTM

DESEMPENHO MUITO PRÓXIMO

GRU LIGEIRAMENTE MELHOR EM ACURÁCIA FINAL

LSTM PODE MODELAR MELHOR DEPENDÊNCIAS LONGAS

GRU MAIS EFICIENTE COMPUTACIONALMENTE

VALIDAÇÃO CRUSADA K-FOLD K-5

MÉTRICA	GRU	LSTM
Acurácia	98,60%	98,56%
Precisão	98,80%	0,9974
F1-Score	98,60%	~0,98 ou ~0,99
Treinamento	Mais rápido	Mais robusto

CONCLUSÃO

- Ambas as arquiteturas são eficazes para detecção de fake news
- GRU é mais leve, ideal para contextos com menos recursos
- LSTM pode ser preferida em textos complexos ou longos
- A escolha depende do caso de uso e recursos disponíveis

REFERÊNCIAS

[1] N. CHAUDHURI, G. GUPTA, M. BAGHERZADEH, T. DAIM, AND H. YALCIN, "MISINFORMATION ON SOCIAL PLATFORMS: A REVIEW AND RESEARCH AGENDA," *TECHNOLOGY IN SOCIETY*, VOL. 78, P. 102654, 2024. [ONLINE]. AVAILABLE: HTTPS://WWW.SCIENCEDIRECT.COM/SCIENCE/ARTICLE/PII/S0160791X24002021

[2] S. **KHARE**, P. **SINGH**, AND P. **KUMAR**, "AN ANALYSIS OF VARIOUS CLASSIFICATION ALGORITHMS FOR FAKE NEWS DETECTION," IN *PROC. 2025 2ND INT. CONF. COMPUT. INTELL., COMMUN. TECHNOL. NETW. (CICTN)*, 2025, PP. 268–272, DOI: 10.1109/CICTN64563.2025.10932522

[3] T. S. **CAMELIA**, F. R. **FAHIM**, AND M. M. **ANWAR**, "A REGULARIZED LSTM METHOD FOR DETECTING FAKE NEWS ARTICLES," IN *PROC. 2024 IEEE INT. CONF. SIGNAL PROCESS., INF., COMMUN. SYST. (SPICSCON)*, 2024, PP. 01–06, DOI: 10.1109/SPICSCON64195.2024.10941441.

[4] S. R. **TANUKU**, "NOVEL APPROACH TO CAPTURE FAKE NEWS CLASSIFICATION USING LSTM AND GRU NETWORKS," IN *PROC. 2022 INT. CONF. FUTUR. TECHNOL. (INCOFT)*, BELGAUM, INDIA, 2022, PP. 1–4, DOI: 10.1109/IN-COFT55651.2022.10094467