MATHEMATICS Max Marks: 80

SECTION – I (Straight Objective Type)

This section contains 7 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct.

- 47. The coordinates of a point P(x,y) are functions of time 't' the locus of point P(x,y) is a curve given by $\frac{dx}{dt} + \frac{dy}{dt} = t$ and $\frac{dx}{dt} 2\frac{dy}{dt} = t^2$ at any instant of time 't' the locus of point P(x,y) is a curve given by (assume x(0) = 0, y(0) = 0)
 - A) $(x+y)^3 = (x-2y)^3$

B)
$$x = \frac{t^2}{6} - \frac{t^3}{9}$$
; $y = \frac{t^2}{3} + \frac{t^3}{9}$

- C) $8(x+y)^3 = 9(x-2y)^2$
- D) $9(x+y)^3 = 8(x-2y)^2$
- 48. The solution of the differential

Equation $\frac{\sqrt{x}dx + \sqrt{y}dy}{\sqrt{x}dx - \sqrt{y}dy} = \sqrt{\frac{y^3}{x^3}}$ is given by

A)
$$\frac{3}{2}\log\left(\frac{y}{x}\right) + \log\left(\frac{x^{\frac{3}{2}} + y^{\frac{3}{2}}}{x^{\frac{3}{2}}}\right) + \left(\tan^{-1}\left(\frac{y}{x}\right)\right)^{\frac{3}{2}} + c = 0$$

B)
$$\frac{2}{3}\log\left(\frac{y}{x}\right) + \log\left(\frac{x^{\frac{3}{2}} + y^{\frac{3}{2}}}{x^{\frac{3}{2}}}\right) + \tan^{-1}\left(\frac{y}{x}\right) + c = 0$$

C)
$$\frac{2}{3} \left(\frac{y}{x} \right) + \log \left(\frac{x+y}{x} \right) + \tan^{-1} \left(\frac{y^{-\frac{3}{2}}}{x^{\frac{3}{2}}} \right) + c = 0$$

D)
$$\frac{1}{2}\log(x^3+y^3) + \tan^{-1}\left(\frac{y}{x}\right)^{3/2} = c/2$$

Sr.IPLCO_Adv_Q.P

space for rough work

- Let ABC be a triangle with vertices $A(6,2\sqrt{3}+2)$, B(4,2) and C(8,2). Let R be the 49. region consisting of all these points P inside triangle ABC which satisfy $d(P, BC) \ge \max \{d(P, AB), d(P, AC)\}$ where d(P, L) denotes the distance of the points P from the line L. Then the area of the region R is (in square units)
 - A) $\frac{2\sqrt{3}}{3}$
- B) $\frac{4\sqrt{3}}{2}$ C) $2\sqrt{3}$
- D) $4\sqrt{3}$
- The solutions of the differential equation $\frac{dy}{dx} = \frac{1}{xy(x^2 \sin y^2 + 1)}$ is_____ 50.

(c - being an arbitary constant)

- A) $x^2 \left(\cos y^2 \sin y^2 2ce^{-y^2}\right) = 2$ B) $x^2 \left(\cos y^2 \sin y^2 2e^{-y^2}\right) = 4c$
- C) $y^2 \left(\cos x^2 \sin x^2 2ce^{-y^2}\right) = 2$ D) $y^2 \left(\cos x^2 \sin x^2 ce^{-y^2}\right) = 4c$
- Suppose a solution of the differential equation $(xy^3 + x^2y^7)\frac{dy}{dx} = 1$ satisfies the 51. initial condition $y\left(\frac{1}{4}\right) = 1$ then the value of $\frac{dy}{dx}$ when y = -1 is _____
 - A) $-\frac{3}{20}$ B) $\frac{-20}{3}$ C) $\frac{-5}{16}$ D) $\frac{-16}{5}$

Sr.IPLCO_Adv_Q.P

space for rough work

Sri Chaitanya IIT Academy

15-11-15_Sr.IPLCO_JEE-ADV_(2011_P1)_RPTA-12_Q.Paper

- A function y = f(x) satisfies the differential equation $\frac{dy}{dx} y = \cos x \sin x$ with 52. initial condition that y is bounded when $x \to \infty$, then the area enclosed by y = f(x), $y = \cos x$ and the y-axis, in first quadrant is
 - A) $\sqrt{2} 1$
 - B) $\sqrt{2}$
- D) $\frac{1}{\sqrt{2}}$
- Let f(x) be a non-negative continuous function such that the area bounded by the 53. curve y = f(x), x-axis and the ordinates $x = \frac{\pi}{4}$, $x = \beta > \frac{\pi}{4}$ is

$$\beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2}\beta$$
. Then $f'(\pi/2) =$ _____

- A) $\frac{\pi}{2} \sqrt{2} 1$ B) $\frac{\pi}{2} + \sqrt{2} 1$ C) $\frac{-\pi}{2}$ D) $1 \frac{\pi}{4} + \sqrt{2}$

SECTION - II

Multiple Correct Answer Type

This section contains 4 multiple correct answer(s) type questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONE OR MORE is/are correct.

Let $f:(0,\infty)\to(0,\infty)$ be a differentiable function satisfying

$$x\int_{0}^{x} (1-t)f(t)dt = \int_{0}^{x} tf(t)dt \ \forall x \in R \& f(1) = 1 \text{ then}$$

A)
$$f(2) = \frac{1}{8}e^{\frac{1}{2}}$$
 B) $f(2) = \frac{1}{8}e^{-\frac{1}{2}}$ C) $f(3) = \frac{1}{27}e^{\frac{2}{3}}$ D) $f(3) = \frac{1}{27}e^{-\frac{2}{3}}$

Sr.IPLCO_Adv_Q.P

space for rough work

- 55. The normal at a general point (a, b) on curve makes an angle θ with positive direction of x-axis, which satisfies $b(a^2 \tan \theta \cot \theta) = a(b^2 1)$ then equation of the curve, can be
 - A) $y = e^{x^2/2} + c$ B) $\log_e(ky^2) = x^2$ C) $y = ke^{x^2/2}$ D) $x^2 + y^2 = k$
- 56. Let y = f(x) be a polynomial such that

$$\int_{x+\sqrt{5}}^{x+\sqrt{2}} f(x) dx = ax + b \quad \forall x \in R \quad (a \neq 0, b \in R) \text{ and } f(0) = 3, f(1) = 5 \text{ then}$$

Which of the following is/are true?

- A) $y = f(x), f: R \to R$ is one-one and on to
- B) $y = f(x), f: R \to R$ is neither one-one nor on to
- C) Area, bounded by the curve y = f(x), between the lines x = 0, x = 2 x-axis is
- 10 square units
- D) Area, bounded by the curve y = f(x), between the lines x = 0, x = 2, x-axis is 8 square units
- 57. Given a function g which has a derivative $g^1(x)$ for every real x and which satisfies the following conditions $g^1(0) = 2 \& g(x+y) = e^x g(y) + e^y g(x)$ for all x and y, then which of the following is/are correct
 - A) $g(2x) = 2e^x g(x)$ and $g(3x) = 3e^{2x} g(x)$
 - B) $g(nx) = ne^{(n-1)x}g(x)$, n is a positive integer
 - C) $g(0) = 0 \& \lim_{h \to 0} \frac{g(h)}{h} = 2$
 - D) There is a constant c such that $g'(x) = g(x) + ce^x$, for all x

Sr.IPLCO_Adv_Q.P

space for rough work

SECTION - III

[Linked Comprehension Type]

This section contains 2 paragraphs. Based upon one of paragraphs 2 multiple choice questions and based on the other paragraph 3 multiple choice questions have to be answered. Each of these questions has four choices (A), (B),(C) and (D) out of which **ONLY ONE** is correct.

Paragraph for Questions Nos. 58 to 60

f(x) is a polynomial function such that $f(x^2+1)=f(x^2)+2x^2$ and f(0)=0q(x) = xf(x) then

If $\int_0^1 g(x) dx = A$ then 58.

A)
$$A = 2 \int_0^1 f(x) dx \neq 0$$

B) |A| = 1

C)
$$A + |A| = 0$$

D)
$$\frac{1}{2} < |A| < 1$$

Area bounded by $\min\{f(x), g(x)\}, x = 2 \& x$ -axis in first quadrant, is 59.

B)
$$\frac{5}{6}$$
 C) $\frac{11}{2}$

C)
$$1\frac{1}{2}$$

D)
$$\frac{4}{3}$$

Paragraph for Questions Nos. 61 to 62

A curve y = f(x) satisfies the differential equation $(1+x^2)\frac{dy}{dx} + 2yx = 4x^2$ and passes through the origin

The function y = f(x)60.

- A) Is strictly increasing $\forall x \in R$
- B) Is such that it has a local minima but not local maxima
- C) Is such that it has a local maxima but not local minima
- D) Has no inflection point

Sr.IPLCO_Adv_Q.P

space for rough work

- The area enclosed by $y = f^{-1}(x)$, the x-axis & the ordinate at $x = \frac{2}{3}$ is 61.
 - A) 2 ln 2
- B) $\frac{4}{3}ln \ 2$ C) $\frac{2}{3}ln \ 2$ D) $\frac{1}{3}ln \ 2$
- For the function y = f(x) which one of the following does not hold good? 62.
 - A) f(x) is a rational function
 - B) f(x) has the same domain and same range
 - C) y = f(x) is a injective function
 - D) g(x) is the inverse of f(x), (if it exists) then $g'\left(\frac{2}{3}\right) = \frac{4}{3}$

SECTION - IV (INTEGER ANSWER TYPE)

This section contains 7 questions Answer to each of the questions is a single digit integer ranging from '0' to '9'. The bubble corresponding to the correct answer is to be darkened in the ORS.

- Slope of the tangent at any point (x, y) on the curve y = f(x) is $\frac{y}{x^2}$ and the curve 63.
- The differential equation of the family of curves $c(y+c)^2 = x^3$ (where c is an 64. arbitary constant) is $mx \left(\frac{dy}{dx}\right)^3 + ny \left(\frac{dy}{dx}\right)^2 - 27x = 0$ then |m+n| =_____

Sr.IPLCO_Adv_Q.P

space for rough work

Sri Chaitanya IIT Academy

15-11-15_Sr.IPLCO_JEE-ADV_(2011_P1)_RPTA-12_Q.Paper

- 65. Let A and B be the points of intersection of the parabola $y = x^2$ and the line y = x + 2 and let C be the point on the parabola where the tangent line is parallel to the graph of y = x + 2 then $\frac{\text{(area of the parabolic segment cut from the parabola by the line)}}{\text{area of the triangle ABC}} = \frac{m}{n}$ (where m,n are integers HCF(m,n) = 1) then m + n = 1
- 66. Let $P(x) = x^3 3b^2x + 16$ if P(x) = 0 has all integral roots (no complex root) and local minimum value of P(x) is 0. And the area bounded by the curve y = P(x), & x-axis, is k then $\left[\frac{\sqrt{k}}{2}\right]$ (in square units), ([.] denotes greatest int eger function)
- 67. For what value of a (a > 2) is the area of the region bounded by $y = \frac{1}{x}, y = \frac{1}{2x-1}, x = 2$ & x = a equal to $ln\left(\frac{4}{\sqrt{5}}\right)$?
- 68. Let $F(x) = \int_{x}^{x^2 + \frac{\pi}{6}} 2\cos^2 t \, dt$ for all $x \in \mathbb{R}$ and $f: \left[0, \frac{1}{2}\right] \to [0, \infty)$ be a continuous function. For $a \in \left[0, \frac{1}{2}\right]$, if F'(a) + 2 is the area of the region bounded by x = 0, y = 0, y = f(x) and x = a, then f(0) is
- 69. If c is a constant such that, the line joining the points (0,3), (5,-2) is a tangent to the curve $y = \frac{c}{x+1}$ then the area of the region bounded by the curve and x-axis and x = 1, x = 2 is $\lambda \left\{ 1 \frac{1}{2 \cdot 2} + \frac{1}{2^2 \cdot 3} \frac{1}{2^3 \cdot 4} + \dots \right\}$ where λ equals to ______

Sr.IPLCO_Adv_Q.P

space for rough work