Solved selected problems of Real Analysis - Carothers

Franco Zacco

Chapter 8 - Compactness

Proof. 1 If K is a non-empty compact subset of \mathbb{R} then K is bounded and closed therefore the $\sup K \in K$ and $\inf K \in K$.

Proof. 2 Let $E = \{x \in \mathbb{Q} : 2 < x^2 < 3\}$ then the complement on \mathbb{Q} is

$$E^c = \{x \in \mathbb{Q} : x > 0 \text{ and } x^2 > 3\} \cup \{x \in \mathbb{Q} : x < 0 \text{ and } x^2 > 3\} \cup \{x \in \mathbb{Q} : x^2 < 2\}$$

We see that $\{x\in\mathbb{Q}:x>0 \text{ and } x^2>3\}=(\sqrt{3},\infty)\cap\mathbb{Q}$ where $(\sqrt{3},\infty)$ and \mathbb{Q} are open sets hence $\{x\in\mathbb{Q}:x>0 \text{ and } x^2>3\}$ is open. Also, we see that $\{x\in\mathbb{Q}:x<0 \text{ and } x^2>3\}=(-\infty,-\sqrt{3})\cap\mathbb{Q}$ and that $\{x\in\mathbb{Q}:x^2<2\}=(-\sqrt{2},\sqrt{2})\cap\mathbb{Q}$ so both $\{x\in\mathbb{Q}:x<0 \text{ and } x^2>3\}$ and $\{x\in\mathbb{Q}:x^2<2\}$ are open sets. Therefore since E^c is the union of open sets it's also an open set hence E is closed.

On the other hand, if $x \in E$ then $x \in (\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ or $x \in (-\sqrt{2}, -\sqrt{3}) \cap \mathbb{Q}$ hence -2 < x < 2 which implies that E is bounded.

Let us call the sup E (that we know exists) as $\sqrt{3}$ we want to prove that there is a sequence in E that tends to it. Let us form a sequence (x_n) where each element $x_n \in B_{1/n}(\sqrt{3}) = (\sqrt{3} - 1/n, \sqrt{3} + 1/n)$ then we see that $\sqrt{3} - 1/n < x_n < \sqrt{3}$ for every $n \in \mathbb{N}$ which implies that $x_n \to \sqrt{3}$ therefore we have a Cauchy sequence that converges to a point that is not in E hence E is neither complete nor compact.

Proof. **3** Let A be compact in M then A is totally bounded so given $\epsilon > 0$ there are finitely many sets $A_1, ..., A_n \subset A$ with $\operatorname{diam}(A_i) < \epsilon$ such that $A \subset \bigcup_{i=1}^n A_i$ so let $B = \bigcup_{i=1}^n A_i$ we see that $\operatorname{diam}(B) < \infty$ since every set is of diameter at most ϵ also we have that $\operatorname{diam}(A) \leq \operatorname{diam}(B) < \infty$ which implies that $\operatorname{diam}(A)$ is finite.

On the other hand, we know that $\operatorname{diam}(A) = \sup\{d(a,b) : a,b \in A\}$. Let us define $(x_n) \subseteq A$ and $(y_n) \subseteq A$ where each x_n and y_n is defined such that $\operatorname{diam}(A) - 1/n < d(x_n, y_n) \le \operatorname{diam}(A)$ which we know it exists because otherwise $\operatorname{diam}(A) - 1/n$ would be an upper bound which is smaller than $\operatorname{diam}(A) = \sup\{d(a,b) : a,b \in A\}$, implying a contradiction. This in turn implies that $d(x_n, y_n) \to \operatorname{diam}(A)$.

Since A is compact from Theorem 8.2 we have that every sequence in A has a subsequence that converges to a point in A hence there is a subsequence $(x_{n_k}) \subset A$ from (x_n) such that $x_{n_k} \to x$ where $x \in A$ also from (y_n) we can select a subsequence $(y_{n_k}) \subset A$ where we took the n_k 's from the (x_{n_k}) subsequence this implies that (y_{n_k}) might not converge but we know there is a subsequence $(y_{n_{k_t}})$ that converges to a point $y \in A$ hence we can take $(x_{n_{k_t}})$ from (x_{n_k}) that also converges to $x \in A$. This implies that $d(x_{n_{k_t}}, y_{n_{k_t}}) \to d(x,y)$. Finally, since every subsequence must converge to the same limit as the main sequence therefore we have that d(x,y) = diam(A).

Proof. 4 Let A and B be compact in M, we want to show that $A \cup B$ is compact. Let $(x_n) \subseteq A \cup B$ be a sequence then either $(x_n) \subset A$ or $(x_n) \subset B$ or in both for infinitely many points in any case we can take a subsequence (x_{n_k}) that converges to a point in A and/or in B since they are compact. Therefore since (x_n) has a convergent subsequence $(x_{n_k}) \subset A \cup B$ we get from Theorem 8.2 that $A \cup B$ is compact.

Proof. **6** Let $(a_n) \subset A$ and $(b_n) \subset B$ be sequences, since A is compact then there is $(a_{n_k}) \subset A$ such that it converges to $a \in A$. We can also take a sequence $(b_{n_k}) \subset (b_n) \subset B$ which has a convergent subsequence $(b_{n_{k_t}}) \subset B$ that converges to $b \in B$ since B is compact, hence we can also take $(a_{n_k}) \subset A$ which still converges to $a \in A$.

On the other hand, let us also define a sequence $(a_n, b_n) \subset A \times B$. We know because of problem 3.46 that the subsequence $(a_{n_{k_t}}, b_{n_{k_t}}) \subset A \times B$ also converges in $A \times B$ because each subsequence converges separately in A and B. Therefore $A \times B$ is compact as well.

Proof. 8 Let $K = \{x \in \mathbb{R}^n : ||x||_1 = 1\}$ since K is a subset of \mathbb{R}^n to show K is compact in \mathbb{R}^n under the Euclidean norm we need to show that K is closed and bounded under the Euclidean norm.

Let $x \in K$ we know that $0 \le ||x||_2 \le ||x||_1 = 1$ hence K is bounded under the Euclidean norm.

Now let us define $f(x) = \|x\|_1$ we see that $K = f^{-1}(\{1\})$ since $\{1\}$ is a closed set and f is cotinuous in \mathbb{R}^n under the 1-norm we see that K must be closed under the 1-norm. This implies that for some $\epsilon > 0$ there is some $N \in \mathbb{N}$ such that when $n \geq N$ we have that $\|x_n - x\|_1 < \epsilon$ but also we know that $\|x_n - x\|_2 \leq \|x_n - x\|_1 < \epsilon$ hence K is also closed under the Euclidean norm.

Therefore K is compact in \mathbb{R}^n under the Euclidean norm.

Proof. 21 Let $f:[a,b] \to \mathbb{R}$ be a continuous function, since [a,b] is a closed and bounded subset of \mathbb{R} we know that [a,b] is compact hence $f([a,b]) \in \mathbb{R}$ is compact because of Theorem 8.4. then f([a,b]) is bounded and closed so there is $c,d \in \mathbb{R}$ such that $c \leq f(x) \leq d$ for every $f(x) \in f([a,b])$ or $f([a,b]) \subset [c,d]$ moreover there is $x_1,x_2 \in [a,b]$ such that $f(x_1) = c$ and $f(x_2) = d$.

Let us take $J = [x_1, x_2]$ if $x_1 \leq x_2$ or $J = [x_2, x_1]$ if $x_1 > x_2$ where $J \subset [a, b]$. Since f is continuous and because of the Intermediate Value Theorem we know that f takes any value between $f(x_1)$ and $f(x_2)$ which implies that $[f(x_1), f(x_2)] = [c, d] \subset f([a, b])$. Therefore f([a, b]) = [c, d].

Proof. **22** Let $E \subseteq M$ be a closed set (hence compact because of Corollary 8.3) and let us take a convergent sequence $(y_n) \subseteq f(E)$ such that it converges to $y \in N$ we want to prove that also $y \in f(E)$ which would imply that f(E) is a closed set.

By definition, there is $x_n \in E$ such that $f(x_n) = y_n$ hence we can form a sequence $(x_n) \subseteq E$, but E is compact so there is $(x_{n_k}) \subseteq E$ such that $x_{n_k} \to x$ where $x \in E$. Also, f is continuous so $f(x_{n_k}) \to f(x)$ or $y_{n_k} \to f(x)$ but we knew that $y_n \to y$ so by unicity of limits we have that $y = f(x) \in f(E)$. Therefore f(E) is closed and f is a closed map. \square

Proof. **23** Let E be a closed set from M since M is compact and $f: M \to N$ is continuous then from proof 22 we know that f is a closed map hence f(E) is closed in N but also we know that $f(E) = (f^{-1})^{-1}(E)$ since f is bijective therefore f^{-1} is continuous and f is a homeomorphism.

Proof. **25** Let V be a normed vector space and let a function $f:[0,1] \to V$ defined as f(t) = x + t(y - x) where $x \neq y \in V$.

First, we want to prove that f is continuous. Let $\epsilon > 0$ and let $s, t \in [0, 1]$ if $|s - t| < \delta$ where $\delta = \epsilon / ||y - x||$ (we can do this since $x \neq y$) we have that

$$\begin{split} |s-t| < \frac{\epsilon}{\|y-x\|} \\ \|(s-t)(y-x)\| < \epsilon \\ \|s(y-x)-t(y-x)\| < \epsilon \\ \|x+s(y-x)-(x+t(y-x))\| < \epsilon \\ \|f(s)-f(t)\| < \epsilon \end{split}$$

Therefore f is continuous.

Now we want to prove that f is one-to-one and onto (i.e. bijective). Suppose f(t) = f(s) for some $t, s \in [0, 1]$ hence

$$x + t(y - x) = x + s(y - x)$$
$$t(y - x) = s(y - x)$$
$$t = s$$

Therefore f is one-to-one.

To prove that f is onto suppose $z \in V$ we want to prove that there is $t \in [0,1]$ such that f(t) = z let us take t = (z-x)/(y-x) hence

$$f(t) = x + \frac{z - x}{y - x}(y - x) = z$$

Therefore f is onto as we wanted.

Finally, since [0,1] is compact in \mathbb{R} because it's closed and bounded and f is continuous and bijective from proof 23 we have that f is a homeomorphism from [0,1] to V.

Proof. **30** We want to prove first that (a) is equivalent to (b). Let \mathcal{F} be a collection of closed sets in M such that $\bigcap_{i=1}^n F_i \neq \emptyset$ for all choices of finitely many sets $F_1, ..., F_n$ let us suppose $\bigcap \{F : F \in \mathcal{F}\} = \emptyset$ we want to arrive at a contradiction.

Now let us define $\mathcal{G} = \{F^c : F \in \mathcal{F}\}$ we see that $(\bigcap \{F : F \in \mathcal{F}\})^c = M$ also from De Morgan's law, we have that $(\bigcap \{F : F \in \mathcal{F}\})^c = \bigcup \{F^c : F \in \mathcal{F}\}$ hence $M \subseteq \bigcup \{G : G \in \mathcal{G}\}$ then from (a) we have that there are finitely many sets $G_1, ..., G_n \in \mathcal{G}$ such that $M \subseteq \bigcup_{i=1}^n G_i$ where $G_i = (F_i)^c$ then $(\bigcup_{i=1}^n (F_i)^c)^c = \emptyset$ but we know that $(\bigcup_{i=1}^n (F_i)^c)^c = \bigcap_{i=1}^n ((F_i)^c)^c = \bigcap_{i=1}^n F_i$ hence $\bigcap_{i=1}^n F_i = \emptyset$ but we know that $\bigcap_{i=1}^n F_i \neq \emptyset$ then we have a contradiction therefore it must be that $\bigcap \{F : F \in \mathcal{F}\} \neq \emptyset$.

Finally, we want to prove that (b) is equivalent to (a). Let \mathcal{G} be a collection of open sets in M such that $M \subseteq \bigcup \{G : G \in \mathcal{G}\}$ and let us suppose that for every combination of finitely many sets $G_1, ..., G_n \in \mathcal{G}$ we have that $M \not\subseteq \bigcup_{i=1}^n G_i$ we want to arrive at a contradiction.

Let us define $\mathcal{F} = \{(G_i)^c : G_i \in \mathcal{G}\}$ for $1 \leq i \leq n$ such that $\bigcap_{i=1}^n (G_i)^c \neq \emptyset$ which we know it exists because if $\bigcap_{i=1}^n (G_i)^c = \emptyset$ then $\bigcap_{i=1}^n (G_i)^c = (\bigcup_{i=1}^n G_i)^c = \emptyset$ which implies that $\bigcup_{i=1}^n G_i = M$ but we said that $M \not\subseteq \bigcup_{i=1}^n G_i$. Then because of (b) we have that $\bigcap \{(G)^c : G \in \mathcal{G}\} \neq \emptyset$ but also from De Morgan's law, we have that $(\bigcap \{(G)^c : G \in \mathcal{G}\})^c = \bigcup \{G : G \in \mathcal{G}\}$ so $M \subseteq (\bigcap \{(G)^c : G \in \mathcal{G}\})^c$ hence it must happen that $\bigcap \{(G)^c : G \in \mathcal{G}\} = \emptyset$ which is a contradiction to what we've got from (b), therefore it must happen that there are finitely many sets $G_1, ..., G_n \in \mathcal{G}$ such that $M \subseteq \bigcup_{i=1}^n G_i$. \square

Proof. **36** Let us suppose that $d(F,K) = \inf\{d(x,y) : x \in F, y \in K\} = 0$ we want to arrive at a contradiction. Let us take $(x_n) \subseteq F$ and $(y_n) \subseteq K$ such that $d(x_n, y_n) \to 0$. Since K is compact then (y_n) has a subsequence such that $y_{n_k} \to y$ where $y \in K$. Also, let us take a subsequence $(x_{n_k}) \subseteq (x_n)$ so we have that

$$0 \le d(x_{n_k}, y) \le d(x_{n_k}, y_{n_k}) + d(y_{n_k}, y)$$

We see that $d(x_{n_k}, y_{n_k}) \to 0$ since it is a subsequence of $d(x_n, y_n)$ hence both have the same limit and $d(y_{n_k}, y) \to 0$ because K is compact as we just saw therefore $x_{n_k} \to y$ but we know F is closed then $y \in F$ but also $K \cap F = \emptyset$ hence we have a contradiction and must be that $d(F, K) = \inf\{d(x, y) : x \in F, y \in K\} > 0$.

Finally, let $F = \{(x, y) : y = 0\}$ and $K = \{(x, y) : y = 1/x\}$ we see that both F and K are closed sets and disjoint but $d(F, K) = \inf\{d(x, y) : x \in F, y \in K\} = 0$.

Proof. **44** Let $f:(M,d)\to (N,\rho)$ be a Lipschitz map then there is $K<\infty$ such that $\rho(f(x),f(y))\leq Kd(x,y)$ for all $x,y\in M$ hence given $\epsilon>0$ there is $\delta=\epsilon/K$ such that when $d(x,y)<\delta=\epsilon/K$ we have that

$$\rho(f(x), f(y)) \le Kd(x, y) < \epsilon$$

Therefore f is uniformly continuous.

Let us suppose now that f is isometric then we know that $\rho(f(x), f(y)) = d(x, y)$ hence given $\epsilon > 0$ if we take $\delta = \epsilon$ we have that whenever $d(x, y) < \delta = \epsilon$ we get that $\rho(f(x), f(y)) = d(x, y) < \epsilon$. Therefore an isometry is also uniformly continuous.

Proof. **45** Let $f: \mathbb{N} \to \mathbb{R}$ and if we take $\delta = 1/2$ we have that |n-m| < 1/2 for every $n, m \in \mathbb{N}$ hence n = m so $|f(n) - f(m)| < \epsilon$ no mater which $\epsilon > 0$ we take since f(n) = f(m). Therefore f is uniformly continuous.

Proof. **46** First, we want to prove that $|d(x,z) - d(y,z)| \leq d(x,y)$. From the triangle inequality we know that

$$d(x,z) \le d(x,y) + d(y,z)$$

$$d(x,z) - d(y,z) \le d(x,y)$$

and that

$$d(y,z) \le d(y,x) + d(x,z)$$

$$d(y,z) - d(x,z) \le d(x,y)$$

$$-d(x,y) \le d(x,z) - d(y,z)$$

Hence this implies that $|d(x,z)-d(y,z)| \leq d(x,y)$ as we wanted to show.

Now we will prove that the map $x \to d(x,z)$ for some fixed $z \in M$ is a uniformly continuous map in M. Given some $\epsilon > 0$, let us take $\delta = \epsilon$ then when $d(x,y) < \delta = \epsilon$ from what we proved earlier we have that

$$|d(x,z) - d(y,z)| \le d(x,y) < \delta = \epsilon$$

Therefore the map $x \to d(x,z)$ is uniformly continuous.

Proof. 47 First, we want to prove that $|d(x,A) - d(y,A)| \le d(x,y)$. From the triangle inequality for any $a \in A$ we know that

$$d(x, A) = \inf\{d(x, a) : a \in A\} \le d(x, a) \le d(x, y) + d(y, a)$$
$$d(x, A) - d(x, y) \le d(y, a)$$

So we see that d(x,A) - d(x,y) is a lower bound for d(y,a) hence we have that

$$d(x, A) - d(x, y) \le \inf\{d(y, a) : a \in A\} = d(y, A)$$

$$d(x, A) - d(y, A) \le d(x, y)$$

Similarly, we have that

$$d(y, A) = \inf\{d(y, a) : a \in A\} \le d(y, a) \le d(y, x) + d(x, a)$$
$$d(y, A) - d(x, y) \le d(x, a)$$

So we see that d(y, A) - d(x, y) is a lower bound for d(x, a) hence we have that

$$d(y, A) - d(x, y) \le \inf\{d(x, a) : a \in A\} = d(x, A)$$

$$d(y, A) - d(x, A) \le d(x, y)$$

$$-d(x, y) \le d(x, A) - d(y, A)$$

Hence this implies that $|d(x,A) - d(y,A)| \le d(x,y)$ as we wanted to show.

Now we will prove that the map $x \to d(x,A)$ is a uniformly continuous map in M. Given some $\epsilon > 0$, let us take $\delta = \epsilon$ then when $d(x,y) < \delta = \epsilon$ from what we proved earlier we have that

$$|d(x, A) - d(y, A)| \le d(x, y) < \delta = \epsilon$$

Therefore the map $x \to d(x, A)$ is uniformly continuous.

Proof. **48** Let $f:(M,d) \to (N,\rho)$ be a uniformly continuous map and let $(x_n) \subseteq M$ be a Cauchy sequence. We want to prove that $f((x_n))$ is also a Cauchy sequence.

Since f is uniformly continuous given some $\epsilon > 0$ there is some $\delta > 0$ (which depends on ϵ and/or f) such that $\rho(f(x_n), f(x_m)) < \epsilon$ whenever $x_n, x_m \in (x_n)$ satisfy $d(x_n, x_m) < \delta$ but since (x_n) is Cauchy there is $N \in \mathbb{N}$ where this will be satisfied for every $n, m \geq N$ hence we have that $\rho(f(x_n), f(x_m)) < \epsilon$ is also satisfied for every $n, m \geq N$ which implies that $f((x_n))$ is also a Cauchy sequence.