BỘ GIÁO DỰC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2006

Môn: TOÁN, khối A

(Đáp án - Thang điểm gồm 05 trang)

Câu	Ý	Nội dung	Điểm
I			2,00
	1	Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm)	
		$y = 2x^3 - 9x^2 + 12x - 4.$ • TXD: \mathbb{R} .	
		• Sự biến thiên: $y' = 6(x^2 - 3x + 2)$, $y' = 0 \Leftrightarrow x = 1$, $x = 2$.	0,25
		Bảng biến thiên: $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		1 +∞	
		y	
			0.50
		$y_{CD} = y(1) = 1, y_{CT} = y(2) = 0.$	0,50
		• Đồ thị:	
		y ↑	
		1	
		$O \mid 1 \mid 2 \mid \tilde{X}$	
			0,25
		-4	,
		1	
		I	
	2	Tìm m để phương trình có 6 nghiệm phân biệt (1,00 điểm)	
		Phương trình đã cho tương đương với: $2 x ^3 - 9 x ^2 + 12 x - 4 = m - 4$.	
		Số nghiệm của phương trình đã cho bằng số giao điểm của đồ thị hàm số	
		$y = 2 x ^3 - 9 x ^2 + 12 x - 4$ với đường thẳng $y = m - 4$.	0,25
		Hàm số $y = 2 x ^3 - 9 x ^2 + 12 x - 4$ là hàm chẵn, nên đồ thị nhận Oy làm trục	0.25
		đối xứng.	0,25

		Từ đồ thị của hàm số đã cho suy ra đồ thị hàm số:	
		$y = 2 x ^3 - 9x^2 + 12 x - 4$	
		y = m - 4 $-2 - 1$	0,25
		Từ đồ thị suy ra phương trình đã cho có 6 nghiệm phân biệt khi và chỉ khi:	0,25
		$0 < m - 4 < 1 \Leftrightarrow 4 < m < 5.$	
II	1	Giải phương trình lượng giác (1,00 điểm)	2,00
		Điều kiện: $\sin x \neq \frac{\sqrt{2}}{2}$ (1).	
		Phương trình đã cho tương đương với:	
		$2(\sin^{6} x + \cos^{6} x) - \sin x \cos x = 0 \Leftrightarrow 2\left(1 - \frac{3}{4}\sin^{2} 2x\right) - \frac{1}{2}\sin 2x = 0$	
		$\Leftrightarrow 3\sin^2 2x + \sin 2x - 4 = 0$	0,50
		$\Leftrightarrow \sin 2x + \sin 2x - 4 - 0$ $\Leftrightarrow \sin 2x = 1$	0,50
		$\Leftrightarrow x = \frac{\pi}{-} + k\pi (k \in \mathbb{Z})$	0
		4 4 7.	0,25
		$\Leftrightarrow x = \frac{\pi}{4} + k\pi \qquad (k \in \mathbb{Z}).$ Do điều kiện (1) nên: $x = \frac{5\pi}{4} + 2m\pi \qquad (m \in \mathbb{Z}).$	0,25
	2	Giải hệ phương trình (1,00 điểm)	3,22
		Diều kiện: $x \ge -1$, $y \ge -1$, $xy \ge 0$. Đặt $t = \sqrt{xy}$ $(t \ge 0)$. Từ phương trình thứ	
		nhất của hệ suy ra: $x + y = 3 + t$.	0,25
		Bình phương hai vế của phương trình thứ hai ta được:	
		$x + y + 2 + 2\sqrt{xy + x + y + 1} = 16$ (2).	
		Thay $xy = t^2$, $x + y = 3 + t$ vào (2) ta được:	0,25
		$3+t+2+2\sqrt{t^2+3+t+1}=16 \iff 2\sqrt{t^2+t+4}=11-t$	0,20
		$\Leftrightarrow \begin{cases} 0 \le t \le 11 \\ 4(t^2 + t + 4) = (11 - t)^2 \end{cases} \Leftrightarrow \begin{cases} 0 \le t \le 11 \\ 3t^2 + 26t - 105 = 0 \end{cases} \Leftrightarrow t = 3$	0,25
		Với $t=3$ ta có $x+y=6$, $xy=9$. Suy ra, nghiệm của hệ là $(x;y)=(3;3)$.	0,25
	1	- ··· · · · · · · · · · · · · · · · · ·	- , -

III			2,00
	1	Tính khoảng cách giữa hai đường thẳng A'C và MN (1,00 điểm)	
		Gọi (P) là mặt phẳng chứa A'C và song song với MN. Khi đó:	0.25
		d(A'C,MN) = d(M,(P)).	0,25
		Ta có: $C(1;1;0), M(\frac{1}{2};0;0), N(\frac{1}{2};1;0)$	
		$\overrightarrow{A'C} = (1;1;-1), \overrightarrow{MN} = (0;1;0)$	
		$\begin{bmatrix} \overrightarrow{\mathbf{A}'\mathbf{C}}, \overrightarrow{\mathbf{MN}} \end{bmatrix} = \begin{pmatrix} \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix}; \begin{vmatrix} -1 & 1 \\ 0 & 0 \end{vmatrix}; \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \end{pmatrix} = (1; 0; 1).$	0,25
		Mặt phẳng (P) đi qua điểm A'(0;0;1), có vectơ pháp tuyến $\vec{n} = (1;0;1)$, có	
		phương trình là: $1.(x-0)+0.(y-0)+1.(z-1)=0 \Leftrightarrow x+z-1=0.$	0,25
		Vậy d(A'C,MN) = d(M,(P)) = $\frac{\left \frac{1}{2} + 0 - 1\right }{\sqrt{1^2 + 0^2 + 1^2}} = \frac{1}{2\sqrt{2}}$.	0,25
	2	Viết phương trình mặt phẳng (1,00 điểm)	
		Gọi mặt phẳng cần tìm là (Q): $ax + by + cz + d = 0$ $(a^2 + b^2 + c^2 > 0)$.	
		$\begin{array}{ c c c c c }\hline Vi\ (Q)\ \text{di qua }A'(0;0;1)\ vi\ C(1;1;0)\ \text{n\'en:} \begin{cases} c+d=0\\ a+b+d=0 \end{cases} \Leftrightarrow c=-d=a+b. \end{array}$	
		Do đó, phương trình của (Q) có dạng: $ax + by + (a + b)z - (a + b) = 0$.	0,25
		Mặt phẳng (Q) có vectơ pháp tuyến $\vec{n} = (a;b;a+b)$, mặt phẳng Oxy có	
		vector pháp tuyến $\vec{k} = (0,0,1)$.	
		Vì góc giữa (Q) và Oxy là α mà $\cos \alpha = \frac{1}{\sqrt{6}}$ nên $\left \cos(\vec{n}, \vec{k})\right = \frac{1}{\sqrt{6}}$	0,25
		$\Leftrightarrow \frac{ a+b }{\sqrt{a^2+b^2+(a+b)^2}} = \frac{1}{\sqrt{6}} \iff 6(a+b)^2 = 2(a^2+b^2+ab)$	
		\Leftrightarrow a = -2b hoặc b = -2a.	0,25
		Với $a = -2b$, chọn $b = -1$, được mặt phẳng $(Q_1): 2x - y + z - 1 = 0$.	
		Với $b = -2a$, chọn $a = 1$, được mặt phẳng $(Q_2): x - 2y - z + 1 = 0$.	0,25
IV			2,00
	1	Tính tích phân (1,00 điểm)	
		Ta có: $I = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{\sqrt{\cos^{2} x + 4\sin^{2} x}} dx = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{\sqrt{1 + 3\sin^{2} x}} dx.$	
		Đặt $t = 1 + 3\sin^2 x$ ⇒ $dt = 3\sin 2x dx$.	0,25
		Với $x = 0$ thì $t = 1$, với $x = \frac{\pi}{2}$ thì $t = 4$.	0,25
		Suy ra: $I = \frac{1}{3} \int_{1}^{4} \frac{dt}{\sqrt{t}}$	0,25
		$=\frac{2}{3}\sqrt{t}\bigg _1^4=\frac{2}{3}.$	0,25

	2	Tìm giá trị lớn nhất của A (1,00 điểm)	
		Từ giả thiết suy ra: $\frac{1}{x} + \frac{1}{y} = \frac{1}{x^2} + \frac{1}{y^2} - \frac{1}{xy}$.	
		$\boxed{\text{Dặt } \frac{1}{x} = a, \frac{1}{y} = b \text{ ta có: } a + b = a^2 + b^2 - ab} $ (1)	
		$A = a^{3} + b^{3} = (a+b)(a^{2} + b^{2} - ab) = (a+b)^{2}.$	0,25
		Từ (1) suy ra: $a + b = (a + b)^2 - 3ab$.	
		Vì $ab \le \left(\frac{a+b}{2}\right)^2$ nên $a+b \ge (a+b)^2 - \frac{3}{4}(a+b)^2$	0,50
		$\Rightarrow (a+b)^2 - 4(a+b) \le 0 \Rightarrow 0 \le a+b \le 4$	
		Suy ra: $A = (a+b)^2 \le 16$.	
		Với $x = y = \frac{1}{2}$ thì $A = 16$. Vậy giá trị lớn nhất của A là 16.	0,25
V.a			2,00
7 000	1	Tìm điểm $M \in d_3$ sao cho $d(M, d_1) = 2d(M, d_2)$ (1,00 điểm)	
		Vì $M \in d_3$ nên $M(2y; y)$.	0,25
		Ta có:	
		$d(M,d_1) = \frac{ 2y+y+3 }{\sqrt{1^2+1^2}} = \frac{ 3y+3 }{\sqrt{2}}, d(M,d_2) = \frac{ 2y-y-4 }{\sqrt{1^2+(-1)^2}} = \frac{ y-4 }{\sqrt{2}}.$	0,25
		$d(M, d_1) = 2d(M, d_2) \iff \frac{ 3y+3 }{\sqrt{2}} = 2\frac{ y-4 }{\sqrt{2}} \iff y = -11, y = 1.$	0,25
		Với $y = -11$ được điểm $M_1(-22; -11)$.	
		Với $y=1$ được điểm $M_2(2;1)$.	0,25
	2	Tìm hệ số của x ²⁶ trong khai triển nhị thức Niutơn (1,00 điểm)	
		• Từ giả thiết suy ra: $C_{2n+1}^0 + C_{2n+1}^1 + \dots + C_{2n+1}^n = 2^{20}$ (1).	
		Vì $C_{2n+1}^k = C_{2n+1}^{2n+1-k}, \forall k, 0 \le k \le 2n+1$ nên:	
		$C_{2n+1}^{0} + C_{2n+1}^{1} + \dots + C_{2n+1}^{n} = \frac{1}{2} \left(C_{2n+1}^{0} + C_{2n+1}^{1} + \dots + C_{2n+1}^{2n+1} \right) $ (2).	0,25
		Từ khai triển nhị thức Niuton của $(1+1)^{2n+1}$ suy ra:	
		$C_{2n+1}^{0} + C_{2n+1}^{1} + \dots + C_{2n+1}^{2n+1} = (1+1)^{2n+1} = 2^{2n+1}$ (3).	
		Từ (1), (2) và (3) suy ra: $2^{2n} = 2^{20}$ hay $n = 10$.	0,25
		• Ta có: $\left(\frac{1}{x^4} + x^7\right)^{10} = \sum_{k=0}^{10} C_{10}^k \left(x^{-4}\right)^{10-k} \left(x^7\right)^k = \sum_{k=0}^{10} C_{10}^k x^{11k-40}.$	0,25
		Hệ số của x^{26} là C_{10}^k với k thỏa mãn: $11k-40=26 \Leftrightarrow k=6$.	0.05
		Vậy hệ số của x^{26} là: $C_{10}^6 = 210$.	0,25

V.b			2,00
7	1	Giải phương trình mũ (1,00 điểm)	2,00
		Phương trình đã cho tương đương với: $3\left(\frac{2}{3}\right)^{3x} + 4\left(\frac{2}{3}\right)^{2x} - \left(\frac{2}{3}\right)^{x} - 2 = 0$ (1).	0,25
		Đặt $t = \left(\frac{2}{3}\right)^x (t > 0)$, phương trình (1) trở thành: $3t^3 + 4t^2 - t - 2 = 0$	0,25
		$\Leftrightarrow (t+1)^{2} (3t-2) = 0 \Leftrightarrow t = \frac{2}{3} \text{ (vi } t > 0 \text{)}.$	0,25
		Với $t = \frac{2}{3}$ thì $\left(\frac{2}{3}\right)^x = \frac{2}{3}$ hay $x = 1$.	0,25
	2	Tính thể tích của khối tứ diện (1,00 điểm) Kẻ đường sinh AA'. Gọi D là điểm đối xứng với A' qua O' và H là hình chiếu của B trên đường thẳng A'D.	
		A' O' H D	
		Do BH⊥A'D và BH⊥AA' nên BH⊥(AOO'A').	0,25
		Suy ra: $V_{OO'AB} = \frac{1}{3}.BH.S_{AOO'}$.	0,25
		Ta có: A'B = $\sqrt{AB^2 - A'A^2} = \sqrt{3}a \implies BD = \sqrt{A'D^2 - A'B^2} = a$ $\Rightarrow \Delta BO'D \ \text{dều} \Rightarrow BH = \frac{a\sqrt{3}}{2}.$	0,25
		Vì AOO' là tam giác vuông cân cạnh bên bằng a nên: $S_{AOO'} = \frac{1}{2}a^2$.	
		Vậy thể tích khối tứ diện OO'AB là: $V = \frac{1}{3} \cdot \frac{\sqrt{3}a}{2} \cdot \frac{a^2}{2} = \frac{\sqrt{3}a^3}{12}$.	0,25

Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án quy định.

-----Hết-----