Pollard's rho discrete logarithm algorithm

- Pollard rho discrete logarithm algorithm (1978) compute integers s and t such that $\beta^s = \alpha^t$
 - partition the group G into three roughly equal-sized set S_1 , S_2 and S_3 . Let $x_0 = 1_G$ and x_0 is not in S_2

$$x_{i+1} = \begin{cases} \beta x_i & \text{for } x_i \in S_1 \\ x_i^2 & \text{for } x_i \in S_2 \\ \alpha x_i & \text{for } x_i \in S_3 \end{cases}$$

Let
$$x_i = \beta^{a_i} \alpha^{b_i}$$

$$a_{i+1} = \begin{cases} a_i + 1 \pmod{n} & for \ x_i \in S_1 \\ 2a_i \pmod{n} & for \ x_i \in S_2 \\ a_i & for \ x_i \in S_3 \end{cases}$$

$$b_{i+1} = \begin{cases} b_i & for \ x_i \in S_1 \\ 2b_i \pmod{n} & for \ x_i \in S_1 \\ b_i + 1 \pmod{n} & for \ x_i \in S_2 \\ b_i + 1 \pmod{n} & for \ x_i \in S_3 \end{cases}$$

where
$$n = p-1$$
 when $G = Z_p^*$

```
We should expect some integer i=O(n^{1/2}) such that x_i = x_{2i}, then this gives \beta^s = \alpha^t (using Floyd's algorithm) with s = a_i - a_{2i} \pmod{n} t = b_{2i} - b_i \pmod{n} If \gcd(s,n) = 1 then compute s^{-1} \pmod{n} and we have \beta = \alpha^{s^{-1}t}, so that \log_{\alpha} \beta = s^{-1}t \pmod{n}. If \gcd(s,n) = d > 1 little work to do... (Omitted)
```

• Floyd's cycle-finding algorithm:

One starts with the pair (x_1, x_2) , and iteratively computes (x_i, x_{2i}) from the previous (x_{i-1}, x_{2i-2}) , until $x_m = x_{2m}$ for some m. The expected running time of this method is $O(n^{1/2})$.

- Pollard's rho algorithm for discrete logarithms
 - INPUT: a generator α of a cyclic group G and β is an element of G
 - OUTPUT: log_𝑛 a
 - 1. Set $x_0 \leftarrow 1$, $a_0 \leftarrow 0$, $b_0 \leftarrow 0$
 - 2. For $i = 1, 2, \dots$ Do the following:
 - 2.1 Use x_{i-1} , a_{i-1} , b_{i-1} to compute x_i , a_i , b_i Use x_{2i-2} , a_{2i-2} , b_{2i-2} to compute x_{2i} , a_{2i} , b_{2i}
 - 2.2 if $x_i=x_{2i}$, then do the following set $r \leftarrow b_i b_{2i}$ if $gcd(r,n) \neq 1$ then return 'failure' else return $r^{-1}(a_{2i}-a_i)$ mod n

• Example:

 α = 2 is a generator of the subgroup G of Z_{383}^* of order n= 191.(in this case $<\alpha>=G\neq Z_{383}^*$)

Suppose $\beta = 228$. Find $\log_2 228$.

Solution:

Partition G into 3 subsets, let

$$S_1 = \{x \in G \mid x = 1 \mod 3\}$$

$$S_2 = \{x \in G \mid x = 0 \text{ mod } 3\}$$

$$S_3 = \{x \in G \mid x = 2 \text{ mod } 3\}$$

i	X _i	b _i	a_{i}	x _{2i}	b_{2i}	a_{2i}
1	228	0	1	279	0	2
2	279	0	2	184	1	4
3	92	0	4	14	1	6
4	184	1	4	256	2	7
5	205	1	5	304	3	8
6	14	1	6	121	6	18
7	28	2	6	144	12	38
8	256	2	7	235	48	152
9	152	2	8	72	48	154
10	304	3	8	14	96	118
11	372	3	9	256	97	119
12	121	6	18	304	98	120
13	12	6	19	121	5	51
14	144	12	38	144	10	104 8

• Solution (continued):

From the table, we have $x_{14} = x_{28} = 144$. Finally compute

$$(b_{28} - b_{14})/(a_{14} - a_{28}) \mod 191$$

$$= (-2)/(-66) \mod 191$$

$$= 1/33 \mod 191$$

$$= 110 \mod 191.$$

Hence, $\log_2 228 = 110$.