- 1. (12 分)给定向量 $\vec{a} = 3\vec{i} + 2\vec{j} \vec{k}$, $\vec{b} = \vec{i} \vec{j} + 2\vec{k}$.
 - (1) 求 $|\vec{a}|$ 和 $\vec{a} \cdot \vec{b}$; (2) 计算以 $\vec{a} 2\vec{b}$ 和 $3\vec{a} + 2\vec{b}$ 为边的三角形面积.
- 2. (25 分) (1) 设 $f(x,y) = (2x+y)^{2x+y}$, 求 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$.
- (2) 设 z = z(x, y) 是由方程 $yz \ln z = x + y$ 确定的隐函数,求 dz 和 $\frac{\partial^2 z}{\partial x \partial y}$.
- (3) 设z = f(x, y) 是 R^2 上可微函数,它所表示的曲面与 xy 平面 (即平面 z = 0) 的交线 为 $y = 2x^2 3x + 4$,又 $f_x(1,3) = 2$,求 $f_y(1,3)$.
- 3. (10 分) 求下列积分(1) $\iint_D xydxdy$, 其中 D 是由 $y^2 = x$ 和 y = x 2 围成的区域.
- (2) $\iiint_{V} \frac{x^{2} + y^{2}}{z^{2}} dx dy dz, \quad \sharp + V = \left\{ (x, y, z) \middle| 1 \le z \le 2, x^{2} + y^{2} \le 2z \right\}.$
- 4. (10 分) 设 $f(x, y) = \begin{cases} \frac{x^2 y}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$
- (1) 求 $f_x(0,0)$ 和 $f_y(0,0)$; (2) 证明: f(x,y)在(0,0)不可微.
- 5. (10 分)求 $f(x,y) = \sin(x^2 + y^2)$ 在点(0,0)的6阶带有佩亚诺型余项的泰勒公式,

并求出
$$\frac{\partial^6 f}{\partial x^6}(0,0)$$
, $\frac{\partial^6 f}{\partial x^4 \partial y^2}(0,0)$ 和 $\frac{\partial^6 f}{\partial x \partial y^5}(0,0)$.

6. (8 分) 设z = f(x, y) 是 R^2 上可微函数, \vec{l}_1 和 \vec{l}_2 是任意两个相互垂直的单位向量.

证明: 在
$$R^2$$
上任意一点 P 处, $\left| gradf(P) \right|^2 = \left(\frac{\partial f}{\partial \vec{l_1}} \Big|_P \right)^2 + \left(\frac{\partial f}{\partial \vec{l_2}} \Big|_P \right)^2$.

7. (10 分) 设 $D = \{(x,y)|x^2 + y^2 < 1\}$, f(x,y) 在 $\overline{D} = \{(x,y)|x^2 + y^2 \le 1\}$ 有连续的一阶偏导数,且满足

$$|f(x,y)| \le 1, \forall (x,y) \in \overline{D}.$$

证明: 存在
$$(x_0, y_0) \in D$$
, 使得 $\left(\frac{\partial f}{\partial x}(x_0, y_0)\right)^2 + \left(\frac{\partial f}{\partial y}(x_0, y_0)\right)^2 < 16$.