

Algoritmos y Programación

Programación con Restricciones 3

Programación con restricciones

REIFICACIÓN

- Ejemplo, series mágicas
- Una serie $S=(S_0, ..., S_n)$ es mágica si S_i representa el número de ocurrencias de i.

• Posible solución: (2,1,2,0,0)

• El objetivo es escribir un programa (modelo) que nos permita obtener series de tamaño *n*.

Series mágicas

```
int n = 5;
range D = 0..n-1;
var{int} series[D] in D;
solve {
   forall(k in D)
      series[k] = sum(i in D) (series[i]=k);
}
```

La **reificación** (*reification* en inglés) de una restricción, consiste en transformar o crear otra restricción con una variable binaria 0/1. La variable toma el valor 1 si la restricción inicial se cumple y 0 en caso contrario.

```
int n = 5;
range D = 0..n-1;
var{int} series[D] in D;
solve {
   forall(k in D)
      series[k] = sum(i in D) (series[i]=k);
}
```

```
int n = 5;
range D = 0..n-1;
var{int} series[D] in D;
solve {
   forall(k in D)
      series[k] = sum(i in D) (series[i]=k);
}
```

```
series[0] = (series[0]=0)+(series[1]=0)+(series[2]=0)+(series[3]=0)+(series[4]=0);
series[1] = (series[0]=1)+(series[1]=1)+(series[2]=1)+(series[3]=1)+(series[4]=1);
series[2] = (series[0]=2)+(series[1]=2)+(series[2]=2)+(series[3]=2)+(series[4]=2);
series[3] = (series[0]=3)+(series[1]=3)+(series[2]=3)+(series[3]=3)+(series[4]=3);
series[4] = (series[0]=4)+(series[1]=4)+(series[2]=4)+(series[3]=4)+(series[4]=4);
```

Expansión del forall

Si por ejemplo, series[0] = 1

Como vemos, ahora series[1]>0, por tanto podemos eliminar el término de la primera ecuación (series[1]=0):

28/10/2021 - ACO (JQG)

- Permite modelar reglas del tipo:
 - Al menos 2 de entre un grupo de restricciones debe cumplirse
 - La suma de estos valores debe estar 2 y 4
 - El número de dispositivos periféricos puede ser a lo sumo 5

• ...

Parejas estables

Tenemos dos conjuntos: mujeres y hombres, con el mismo número de mujeres que de hombres, y además cada uno tiene su propia lista de preferencias. La pregunta que debemos responder es:

¿Cuál es la mejor manera de emparejarlos para que las parejas sean estables?

Parejas estables, ejemplo

María	Carlos	Marco	Juan
Ana	Juan	Marco	Carlos
Lucía	Juan	Carlos	Marco

Carlos	Ana	María	Lucía
Marco	María	Ana	Lucía
Juan	María	Lucía	Ana

Matriz de preferencias de las mujeres — Matriz de preferencias de los hombres

- Ejemplo de emparejamiento estable: {(María, Carlos), (Ana, Marco), (Lucía, Juan)}
- Ejemplo de emparejamiento inestable: {(María, Juan), (Ana, Marco), (Lucía, Carlos)}
 - Pareja bloqueante: (María, Carlos)

Parejas estables

- Historia
 - Mediados del siglo XIX, EEUU
 - Los hospitales hacían ofertas a los estudiantes en los que estaban interesados
 - Los estudiantes por miedo a no conseguir mejores ofertas aceptaban la primera
 - Esto generaba todo tipo de problemas que se solucionó con un organismo intermedio
 - El estudiante debía enviar al organismo intermedio su lista de preferencias
 - Los hospitales debían hacer lo mismo
 - El problema era encontrar el emparejamiento perfecto. En el año 1951 se creó el Programa Nacional de Emparejamiento de Residentes (PNER)

Parejas estables

- Gale y Shapley (1962) plantearon y resolvieron el problema sin conocer los trabajos del PNER.
- Obtener el número máximo de parejas estables es NP-Completo
- Investigaciones posteriores de Shapley, junto a Alvin Roth les vale el premio Nobel de economía en el año 2012.

"...por su trabajo sobre **asignaciones estables** y sus teorías de **rediseño de mercados económicos**.

Según subraya la Academia en su declaración, ambos abordaron un problema fundamental: cómo coordinar de la mejor forma posible los diferentes actores presentes en la sociedad, por ejemplo para que los alumnos sean asignados a escuelas o los órganos donados lleguen a los pacientes que necesitan un trasplante"

Algoritmo de Gale y Shapley

```
Cada persona está libre
Mientras algún hombre h esté libre hacer
Comienzo
        m:=primera mujer de la lista de preferencias de h que no ha sido propuesta
        Si m está libre entonces
                 Asignar h a m
        sino
                 Si m prefiere a h antes que a su pareja actual h'
                         romper la relación m-h' y asociar m con h
                 sino
                          m rechaza a h y h permanece libre
Fin
El matching obtenido es estable.
```

Ejemplo

- $H=\{h_0,h_1,h_2,h_3\}$ (hombres)
- $M=\{m_0, m_1, m_2, m_3\}$ (mujeres),

Preferencias:

h ₀ :	$m_0 m_1 m_2 m_3$	m_0 :	$h_0 h_2 h_3 h_1$
h ₁ :	$m_2 m_1 m_3 m_0$	m_1 :	$h_0 h_1 h_2 h_3$
h ₂ :	$m_2 m_1 m_3 m_0$	m ₂ :	$h_1 h_2 h_0 h_3$
h ₃ :	$m_1 m_2 m_3 m_0$	m ₃ :	$h_3 h_0 h_2 h_1$

 $M_1 = \{(h_0, m_0), (h_1, m_2), (h_2, m_1), (h_3, m_3)\}$ es estable

Emparejamientos estables

Los siguientes matchings son estables:

$$\begin{split} &M_1 = \{(h_0,\,m_0),\,(h_1,\,m_1),\,(h_2,\,m_2),\,(h_3,\,m_3)\} \\ &M_2 = \{(h_0,\,m_1),\,(h_1,\,m_0),\,(h_2,\,m_2),\,(h_3,\,m_3)\} \\ &M_3 = \{(h_0,\,m_0),\,(h_1,\,m_1),\,(h_2,\,m_3),\,(h_3,\,m_2)\} \\ &M_4 = \{(h_0,\,m_1),\,(h_1,\,m_0),\,(h_2,\,m_3),\,(h_3,\,m_2)\} \\ &M_5 = \{(h_0,\,m_1),\,(h_1,\,m_3),\,(h_2,\,m_0),\,(h_3,\,m_2)\} \\ &M_6 = \{(h_0,\,m_2),\,(h_1,\,m_0),\,(h_2,\,m_3),\,(h_3,\,m_1)\} \\ &M_7 = \{(h_0,\,m_3),\,(h_1,\,m_2),\,(h_2,\,m_0),\,(h_3,\,m_1)\} \\ &M_8 = \{(h_0,\,m_2),\,(h_1,\,m_3),\,(h_2,\,m_1),\,(h_3,\,m_0)\} \\ &M_9 = \{(h_0,\,m_2),\,(h_1,\,m_3),\,(h_2,\,m_1),\,(h_3,\,m_0)\} \\ &M_{10=} \{(h_0,\,m_3),\,(h_1,\,m_2),\,(h_2,\,m_1),\,(h_3,\,m_0)\} \end{split}$$

parámetros

Parejas estables: Programación declarativa

wrank					mrank								
María	Carlos	Marco	Juan		Carlos	S	Ana	M	aría	L	ucía	a	
Ana	Juan	Marco	Carlos		Marco	o]	María	A	na	L	ucía	a	
Lucía	Juan	Carlos	Marco		Juan		María	Lı	ıcía	I	Ana	,	
Matriz de preferencias de las mujeres — Matriz de preferencias de los hombres													
<pre>include "globals.mzn";</pre>					Por ejemplo, mrank[Carlos, Ana] = 1								1
enum Women = {Maria, Ana, Lucia}; enum Men = {Carlos, Marco, Juan}; María (C,M,J) Ana (C,M,J) Lucía (C,M,J)													
		-	t: wrank: t: mrank:		/		='		_		_	_	
array[Me array[Wc	_		: wife; : husband		Carlos (M,A,L)		Marcos () /2021 -			[M,A,L])		

Parejas estables

array de variables de decisión

wife[m]: Variable de decisión

```
constraint
  forall(m in Men)(husband[wife[m]] = m) /\
  forall(w in Women)(wife[husband[w]] = w) /\
```

inverse(wife, husband)

El matrimonio es recíproco, si x está casado con y, y está casado con x, o lo que es lo mismo: husband[wife[m]] = m y wife[husband[w]] = w.

Compiling stable_matching0.mzn Running stable_matching0.mzn

wife: [Maria, Lucia, Ana]

husband: [Carlos, Juan, Marco]

Finished in 154msec

Al uso de variables de decisión como índices de array se le conoce en inglés como *element constraint*

Parejas estables

```
constraint
        inverse(wife, husband) /\
        forall(m in Men, w in Women)
                 (wrank[w,m] < wrank[w,husband[w]] -> mrank[m,wife[m]] < mrank[m,w]) /\</pre>
        forall(w in Women, m in Men)
                 (mrank[m,w] < mrank[m,wife[m]] -> wrank[w,husband[w]] < wrank[w,m]);</pre>
solve satisfy;
  1 -> mayor prioridad
                                                 entonces
     Si m prefiere a w, por encima de su esposa
                                                               w debe preferir a su esposo antes que a m
```

28/10/2021 - ACO (JQG)

Ejemplo:

- x,y: variables de decisión $\begin{cases} x \in \{3,4,5\} \\ y \in \{0,1,2,3,4,5\} \end{cases}$
- c es un array de enteros (en casos más complejos, podría ser un array de variables)

• restricción: x = c[y]

Ejemplo:

 $x \in \{3,4,5\}$ $y \in \{0,1,2,3,4,5\}$

Si por ejemplo, nos llega información de que $x \neq 3$:

• restricción: *x* = *c*[*y*]

$$y \in \{0,1,2,3,4,5\}$$

Ejemplo:

Si por ejemplo, nos llega información de que $y \neq 4$:

$$y \in \{0,1,2,3,4,5\}$$

$$x \in \{3,4,5\}$$

 $y \in \{0,1,2,3,4,5\}$

restricción: x = c[y]

Ejemplo:

Si por ejemplo, si además $y \neq 1$:

$$x \in \{3,4,5\}$$

 $y \in \{0,1,2,3,4,5\}$

restricción: x = c[y]

$$x \in \{3,4,5\}$$

$$x = 5$$

Resumiendo

Este ejemplo nos permite demostrar la utilización de 2 características interesantes de la programación con restricciones:

- 1. Uso de variables de decisión como índices en *arrays* (a este concepto se le llama en inglés *element constraint*)
- 2. Combinación lógica de restricciones

Grafos de Intervalo

28/10/2021 - ACO (JQG)

Grafos de Intervalo

28/10/2021 - ACO (JQG)

Problema de las 8 reinas

 Plantear el problema de las 8 reinas mediante programación con restricciones

- En general, existen muchas formas de modelar un problema
- Asociamos una variable de decisión para cada columna, y la solución vendría dada indicando, para esa columna, un valor que indicaría la fila donde ubicamos la reina en el tablero.
- Además tenemos 3 restricciones, aplicadas a filas, diagonal superior y diagonal inferior.

Solución

```
range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R, j in R: i < j) {
      row[i] ≠ row[j];
      row[i] ≠ row[j] + (j - i);
      row[i] ≠ row[j] - (j - i);
   }
}</pre>
```



```
Filas
Diagonal inferior
Diagonal superior
```

```
range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠ row[j];
      row[i] ≠ row[j] + (j - i);
      row[i] ≠ row[j] - (j - i);
   }
}</pre>
```

```
row[1] \( \neq \text{row}[2]; \\ \dots \\ \dots
```

```
row[1] \( \neq \text{row}[2]; \\ \text{row}[1] \( \neq \text{row}[8]; \\ \text{row}[1] \( \neq \text{row}[2] + 1; \\ \text{row}[1] \( \neq \text{row}[8] + 7; \\ \text{row}[1] \( \neq \text{row}[2] - 1; \\ \text{row}[1] \( \neq \text{row}[8] - 7; \end{argmatrix}
```



```
row[1] \( \neq \text{row}[2]; \\ \text{row}[1] \( \neq \text{row}[8]; \\ \text{row}[1] \( \neq \text{row}[2] + 1; \\ \text{row}[1] \( \neq \text{row}[8] + 7; \\ \text{row}[1] \( \neq \text{row}[2] - 1; \\ \text{row}[1] \( \neq \text{row}[8] - 7; \end{argmatrix}
```

