

Elementy podstaw teorii sieci Bayesa

Katedra Sztucznej Inteligencji

WYŻSZA SZKOŁA INFORMATYKI i ZARZĄDZANIA w RZESZOWIE

- Sieć Bayesowska składa się ze zbioru zmiennych oraz zbioru skierowanych łuków pomiędzy zmiennymi
- Zmienne wraz ze skierowanymi łukami tworzą acykliczny graf skierowany
- Z każdą strukturą składającą się ze zmiennej B i jej rodziców A_1, \ldots, A_n związana jest potencjalna tablica $P(B \mid A_1, \ldots, A_n)$

[F.V. Jensen: Bayesian Networks and Decision Graphs, Springer-Verlag, Berlin Heidelberg 2002, pp. 19]

Sieć Bayesa

- ➤ Składnik jakościowy
- **≻**Składnik ilościowy

Sieć Bayesa

➤ Składnik jakościowy

- > acykliczny graf skierowany zbudowany z:
 - > węzłów
 - > łuków

$$\mathbf{ML} = \prod_{i=1}^{\nu} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} - n_{ij})} \prod_{k=1}^{c_i} \frac{\Gamma(\alpha_{ijk} + n_{ijk})}{\Gamma(\alpha_{ijk})}$$

gdzie:

i=1,...,v, gdzie v jest liczbą atrybutów sieci Bayes'a

 $j=1,...,q_i$, gdzie q_i jest liczbą możliwych konfiguracji rodziców atrybutu X_i

 $k=1,...,c_i$ gdzie c_i jest liczbą wartości atrybutu X_i ,

 n_{ijk} to liczba takich wierszy w bazie, w których rodzice atrybutu X_i przyjmują wartość j a atrybut przyjmuje wartość k,

 α_{iik} , α_{ii} to parametry początkowego rozkładu Dirichleta

$$\alpha_{ij} = \frac{\alpha}{q_i}$$
 $\alpha_{ijk} = \frac{\alpha}{q_i \cdot c_i}$

 Γ - jest funkcją: $\Gamma(n) = (n-1)!$

$$\mathbf{ML} = \prod_{i=1}^{\nu} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} - n_{ij})} \prod_{k=1}^{c_i} \frac{\Gamma(\alpha_{ijk} + n_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$v = 4$$
 $i = 1..4$

$$\mathbf{ML} = \prod_{i=1}^{\nu} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} - n_{ij})} \prod_{k=1}^{c_i} \frac{\Gamma(\alpha_{ijk} + n_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$v = 4$$
 $i = 1..4$
 $q_i = 1$ $j = 1$

$$\mathbf{ML} = \prod_{i=1}^{\nu} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} - n_{ij})} \prod_{k=1}^{c_i} \frac{\Gamma(\alpha_{ijk} + n_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$\mathbf{ML} = \prod_{i=1}^{\nu} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} - n_{ij})} \prod_{k=1}^{c_i} \frac{\Gamma(\alpha_{ijk} + n_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$\mathbf{ML} = \prod_{i=1}^{\nu} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} - n_{ij})} \prod_{k=1}^{c_i} \frac{\Gamma(\alpha_{ijk} + n_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$\alpha_{ij} = \frac{\alpha}{q_i}$$

$$\alpha_{II} = 1$$
Zegar

$$egin{array}{ll} v=4 & i=1..4 \ q_i=1 & j=1 \end{array}$$

$$\infty = 1$$

Wydajność

 $\infty = 1$

$$\alpha_{ijk} = \frac{\alpha}{q_i \cdot c_i}$$

$$\alpha_{ijk} = \frac{\alpha}{q_i \cdot c_i}$$

$$\alpha_{III} = \frac{1}{2}; \quad \alpha_{112} = \frac{1}{2}$$

$$\alpha_{egar} \quad c_1 = 2$$

$$\alpha_{egar} \quad c_1 = 2$$

$$\alpha_{egar} \quad c_2 = 1$$

$$\alpha_{egar} \quad c_2 = 1$$

$$\alpha_{egar} \quad c_3 = 2$$

$$\alpha_{egar} \quad c_4 = 1$$

$$\alpha_{egar} \quad c_4 = 3$$

$$\alpha_{egar} \quad c_5 = 1$$

$$\alpha_{egar} \quad c_7 = 1$$

$$\alpha_{egar} \quad c_8 = 1$$

$$\mathbf{ML} = \prod_{i=1}^{\nu} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} - n_{ij})} \prod_{k=1}^{c_i} \frac{\Gamma(\alpha_{ijk} + n_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$\mathbf{ln}(\mathbf{ML}) = \sum_{i=1}^{\nu} \left\{ \sum_{j=1}^{q_i} \left\{ \ln \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} - n_{ij})} + \sum_{k=1}^{c_i} \left\{ \ln \frac{\Gamma(\alpha_{ijk} + n_{ijk})}{\Gamma(\alpha_{ijk})} \right\} \right\} \right\}$$

$$\mathbf{ln}(\mathbf{ML}) = \sum_{i=1}^{4} \left\{ \sum_{j=1} \left\{ \ln \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} - n_{ij})} + \sum_{k=1}^{c_i} \left\{ \ln \frac{\Gamma(\alpha_{ijk} + n_{ijk})}{\Gamma(\alpha_{ijk})} \right\} \right\} \right\}$$

$$\{[\ln\Gamma(\alpha_{11}) - \ln\Gamma(\alpha_{11} - n_{11})] + [\ln\Gamma(\alpha_{111} - n_{111}) - \ln\Gamma(\alpha_{111})] + [\ln\Gamma(\alpha_{112} - n_{112}) - \ln\Gamma(\alpha_{112})]\}$$

$$\{[\ln \underline{\Gamma(\alpha_{21}}) - \ln \Gamma(\alpha_{21} - n_{21})] + [\ln \Gamma(\alpha_{211} - n_{211}) - \ln \Gamma(\alpha_{211})] + [\ln \Gamma(\alpha_{212} - n_{212}) - \ln \Gamma(\alpha_{212})]\}$$

$$\{[\ln \Gamma(\alpha_{31}) - \ln \Gamma(\alpha_{31} - n_{31})] + [\ln \Gamma(\alpha_{311} - n_{311}) - \ln \Gamma(\alpha_{311})] + [\ln \Gamma(\alpha_{312} - n_{312}) - \ln \Gamma(\alpha_{312})]\}$$

$$+\{[\ln\Gamma(\alpha_{41})-\ln\Gamma(\alpha_{41}-n_{41})]+[\ln\Gamma(\alpha_{411}-n_{411})-\ln\Gamma(\alpha_{411})]+[\ln\Gamma(\alpha_{412}-n_{412})-\ln\Gamma(\alpha_{412})]+[\ln\Gamma(\alpha_{412}-n_{412})]+[\ln\Gamma(\alpha_{$$

$$+[\ln\Gamma(\alpha_{413}-n_{413})-\ln\Gamma(\alpha_{413})]\}$$

Prawdopodobieństwo marginalne

$$ln(ML) = -13,40$$

Cache

Rozkład prawdopodobieństwa

- > Rozkład prawdopodobieństwa początkowego (a priori π)
- > Rozkład prawdopodobieństwa dla sieci bez połączeń
- > Rozkład prawdopodobieństwa dla węzłów posiadających "rodziców"

Rozkład prawdopodobieństwa

$$P(X_{i}) = \frac{\pi * \alpha + x_{i}}{\alpha + n} \quad ; \text{ gdzie } x_{i} \text{ ilość wystąpień określonej wartości atrybutu}$$

$$\begin{cases} \frac{\pi * \alpha + x_{i=niska}}{\alpha + n} = \frac{\frac{1}{3} * 1 + 1}{1 + 3} = 0,333 \end{cases} \quad P(X_{1}) = \begin{cases} \frac{\pi * \alpha + x_{i=scybki}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,625 \end{cases}$$

$$P(X_{4}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{3} * 1 + 1}{1 + 3} = 0,333 \end{cases}$$

$$P(X_{3}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{3} * 1 + 1}{1 + 3} = 0,333 \end{cases}$$

$$P(X_{2}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,625 \end{cases}$$

$$P(X_{2}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,625 \end{cases}$$

$$P(X_{2}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,375 \end{cases}$$

$$P(X_{2}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,375 \end{cases}$$

$$P(X_{3}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,375 \end{cases}$$

$$P(X_{3}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,375 \end{cases}$$

$$P(X_{3}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,375 \end{cases}$$

$$P(X_{2}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,375 \end{cases}$$

$$P(X_{3}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,375 \end{cases}$$

$$P(X_{3}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,375 \end{cases}$$

$$P(X_{3}) = \begin{cases} \frac{\pi * \alpha + x_{i=iniska}}{\alpha + n} = \frac{\frac{1}{2} * 1 + 2}{1 + 3} = 0,375 \end{cases}$$

 $\pi = \frac{1}{2}$

<zegar></zegar>	<cache></cache>	<pamięć></pamięć>	<wydajność></wydajność>
wolny	brak	mała	niska
szybki	brak	duża	średnia
szybki	jest	duża	wysoka

Rozkład prawdopodobieństwa

$$P(X_i) = \frac{\pi * \alpha_j + n_j}{\alpha_j + n}$$

 $\pi = \frac{1}{2}$

<zegar></zegar>	<cache></cache>	<pamięć></pamięć>	<wydajność></wydajność>
wolny	brak	mała	niska
szybki	brak	duża	średnia
szybki	jest	duża	wysoka

Rozkład prawdopodobieństwa

$$P(X_i) = \frac{\pi * \alpha_j + n_j}{\alpha_j + n}$$
; gdzie n_j to kombinacji jest taka ja

 $P(X_i) = \frac{\pi * \alpha_j + n_j}{\alpha_j + n} \quad ; \quad \text{gdzie } n_j \text{ to liczba wszystkich przypadków takich, że dana kombinacji atrybutów występuje w bazie oraz że wartość jest taka jak oczekuiemy}$

Rozkład prawdopodobieństwa

Pamięć)
$\pi = \frac{1}{2}$	

<zegar></zegar>	<cache></cache>	<pamięć></pamięć>	<wydajność></wydajność>
wolny	brak	mała	niska
szybki	brak	duża	średnia
szybki	iest	duża	wvsoka

Pamięć				
Zegar	mała	duża		
wolny	0,833	0,167		
szybki	0,9	0,1		

Rozkład marginalny

$$P(W=niska) = \sum_{z,c,p} P(Z)*P(C)*P(P|Z)*P(W|Z,C,P) =$$

$$= \sum_{z,p} P(Z)*P(P|Z)* \sum_{c} P(C)*P(W|Z,C,P) =$$

$$= \sum_{z,p} P(Z)*P(P|Z)*[P(C=brak)*P(W|Z,C=brak,P) +$$

$$+P(C=jest)*P(W|Z,C=jest,P)] =$$

$$= \sum_{z} P(Z)* \sum_{p} P(P|Z)*[P(C=brak)*P(W|Z,C=brak,P) +$$

$$+P(C=jest)*P(W|Z,C=jest,P)] =$$

Rozkład marginalny

Rozkład marginalny

 $= P(Z=szybki)* \left(\frac{P(P=du\dot{z}a|Z=szybki)}{P(P=du\dot{z}a|Z=szybki)} * \right)$

Pamięć				
Zegar	mała	duża		
wolny	0,833	0,167		
szybki	0,9	0,1		

Rozkład marginalny

 $= P(Z=szybki)* (P(P=du\dot{z}a|Z=szybki)*$

*[P(C=brak)*P(W|Z=szybki,C=brak,P=duża)+

Wydajność					
Pamięć	Cache	Zegar	niska	wysoka	średnia
duża	brak	szybki	0,037	0,037	0,926
mała	brak	szybki	0,333	0,333	0,333
duża	jest	szybki	0,037	0,926	0,037
mała	jest	szybki	0,333	0,333	0,333
duża	brak	wolny	0,333	0,333	0,333
mała	brak	wolny	0,926	0,037	0,037
duża	jest	wolny	0,333	0,333	0,333
mała	jest	wolny	0,333	0,333	0,333

Uczenie sieci polega na:

obliczeniu rozkładu prawdopodobieństwa oraz obliczeniu rozkładu marginalnego

dla badanego zbioru danych, zaś kolejnym etapem badań jest

wnioskowanie

Ze względu na to, że BN określa wspólny rozkład prawdopodobieństwa, można go wykorzystać do wnioskowania. Najpopularniejsze metody wnioskowania to:

- wnioskowanie predykcyjne (od przyczyn do skutków) - od nowych informacji o przyczynach do nowych przekonań o skutkach, zgodnie z kierunkami łuków sieci
- wnioskowanie diagnostycznego (od skutków do przyczyn), od nowych skutków do nowych przekonaniach o przyczynach, w przeciwnym kierunku niż łuki sieci (Hagmayer i in., 2007; Pearl, 2009; Korb i in., 2014).

