

机器学习

第二讲:线性回归

2025春

授课老师: 顾小东

回忆: 机器学习核心要素

要素:

#1 数据 (Experience)

#2 模型 (Hypothesis)

#3 损失函数 (Objective)

#4 优化算法 (Improve)

$$\theta^* = \operatorname*{argmin}_{\theta} \mathcal{L}(\theta | \mathcal{D})$$

机器学习中的回归问题

机器学习

监督学习

- 回归(✔)
- 分类

. . . .

无监督学习

强化学习

Advertisement	Sales
\$90	\$1000
\$120	\$1300
\$150	\$1800
\$100	\$1200
\$130	\$1380
\$200	??

Regression: predicts real-valued labels

回归问题

Why regression?

Regress the <u>true value</u> of a statistical variable through many experimentally <u>observed values</u>.

What is regression?

A function that describe the relationship between one **dependent** variable and a series of other (**independent**) variables.

回归问题的应用

预测

归因分析

控制

. .

线性回归

使用一个线性函数进行回归

$$y = f(x) = \mathbf{w}^T x + w_0$$

Linear model for regression is a (d+1)-dimensional hyperplane

模型结构

线性回归模型的核心是一个简单的线性函数

• 训练过程:

• 根据数据误差, 估算合适的参数 w和 wo

• 预测过程:

• 对于输入的新数据 x, 计算 $f(x) = \mathbf{w}^\mathsf{T} x + w_0$., 得到回归值y

损失函数

• 对于任一输入样本x,模型输出预测值 y. 令 $r \in R$ 为该样本对应的目标值,则相应的平方误差定义为:

$$l(\mathbf{w}, w_0 | x, r) = (r-y)^2$$

• 对于完整数据集 $D = \{(x^{(1)}, r^{(1)}), ..., (x^{(N)}, r^{(N)})\}$, 损失函数定义为均方误差 (MSE):

$$L(\mathbf{w}, w_0 \mid D) = \frac{1}{2N} \sum_{\ell=1}^{N} (r^{(\ell)} - y^{(\ell)})^2$$

训练优化

一般采用梯度下降法(Gradient Descend)优化损失函数:

- 优化目标: min_w L(w)
- 迭代步骤:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_{t} - \boldsymbol{\eta}_{t} \, \frac{\partial L}{\partial w}$$

如何计算 $\frac{\partial L}{\partial w}$?

梯度下降法优化模型

$$L(\mathbf{w}, w_0 | D) = -\frac{1}{2N} \sum_{\ell=1}^{N} (r^{(\ell)} - y^{(\ell)})^2$$

怎么求 $\frac{\partial L}{\partial w}$?

对于任意 w_i (j = 1,...,d):

$$\frac{\partial L}{\partial w_{j}} = -\frac{1}{N} \sum_{\ell} \left(r^{(\ell)} - y^{(\ell)} \right) \frac{\partial y^{(\ell)}}{\partial w_{j}} = -\frac{1}{N} \sum_{\ell} \left(r^{(\ell)} - y^{(\ell)} \right) x^{(\ell)}$$
Chain rule

迭代规则:
$$\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} + \frac{1}{N} \sum_{\ell=1}^{N} (r^{(\ell)} - y^{(\ell)}) x^{(\ell)}$$

算法总结

采用梯度下降法训练线性回归模型

```
Input: D = \{(\mathbf{x}^{(l)}, \mathbf{r}^{(l)})\}\ (l = 1:N)
for j = 0, ..., d
       w_i \leftarrow rand(-0.01, 0.01)
repeat
       for j = 0, ..., d
             \Delta w_i \leftarrow 0
       for l = 1,...,N
             y \leftarrow 0
             for j = 0, ..., d
                    y \leftarrow y + w_i x_i^{(l)}
             \Delta w_i \leftarrow \Delta w_i + (r^{(l)} - y)x_i^{(l)}
       \Delta w_i = \Delta w_i / N
       for j = 0, ..., d
             w_i \leftarrow w_i + \eta \Delta w_i
until convergence
```

线性回归的矩阵形式

• 预测值:
$$y=Xw=\begin{bmatrix} x^{(1)}w\\ x^{(2)}w\\ \vdots\\ x^{(N)}w \end{bmatrix}$$

• 损失函数:
$$L(w) = \frac{1}{2}(r-y)^T(r-y) = \frac{1}{2}(r-Xw)^T(r-Xw)$$

线性回归的矩阵形式

• 梯度

$$\frac{\partial L(w)}{\partial w} = -X^{T}(r - Xw)$$

• 最优参数

$$\frac{\partial L(w)}{\partial w} = 0 \implies X^{T}(r - Xw) = 0$$

$$\Rightarrow X^{T}r = X^{T}Xw$$

$$\Rightarrow w^{*} = (X^{T}X)^{-1}X^{T}r$$

线性回归的矩阵形式

• 将最优参数w*代入原始模型,得到预测值为

$$y = X(X^TX)^{-1}X^Tr$$
$$= Hr$$

几何解释

- 列向量 $[x_1, x_2, ..., x_d]$ 构成 \mathbb{R}^n 的 一个子空间.
- H 是向量r在该子空间上距离最 短的一个投影

正则化

问题: X^TX 可能不可逆

When some column vectors are not independent (e.g., $x_2=3x_1$), then X^TX is singular, thus $w^* = (X^TX)^{-1}X^Tr$ cannot be directly calculated.

解决方法: 正则化 (对损失函数引入一个惩罚项)

$$L(w) = \frac{1}{2} (r - y)^{T} (r - y) = \frac{1}{2} (r - Xw)^{T} (r - Xw) + \frac{\lambda}{2} ||w||_{2}^{2}$$

新的梯度: $\frac{\partial L(w)}{\partial w} = -X^T(r - Xw) + \lambda w$

新的最优解:
$$\frac{\partial L(w)}{\partial w} = 0 \Rightarrow -X^T(r - Xw) + \lambda w = 0$$

 $\Rightarrow X^T r = (X^T X + \lambda I) w$

$$\Rightarrow w^* = (X^T X + \lambda I)^{-1} X^T r$$

Penalty to model amounts to data augmentation (adding data prior)

敲一敲代码

Tutorial:

Python

https://colab.research.google.com/github/cs231n/cs231n.github.io/blob/master/python-colab.ipynb

Linear regression with Python
https://www.kaggle.com/code/sudhirnl7/linear-regression-

tutorial/data?select=insurance.csv

What's Next?

Classifications

Find a decision boundary that maximizes the margin between two classes.

Machine Learning

- Supervised Learning
 - Regression
 - − Classification(√)
 - ...
- Unsupervised Learning
- Reinforcement Learning

