CSE202 Design and Analysis of Algorithms

Week 6 — Randomized Algorithms 1: Principle & First Examples

Randomness is Useful

For several problems, the best known solution uses randomness

Best strategy in some games

Factoring an integer N

Deterministic: $O(N^{1/4+\epsilon})$

Probabilistic: $O(\exp((\log N)^{1/3+\epsilon}))$

Min-Cut in a Graph with m edges, n vertices

$$O(mn + n^2 \log n)$$

$$O(n^2 \log n)$$

Two Flavours of Randomized Algorithms

Las Vegas: always gives the correct answer. Running time is a random variable.

Monte Carlo: sometimes incorrect, but with bounded probability.

I. Toy Monte Carlo Example: Freivalds' Algorithm

Simple Way to Check Matrix Product

Input: $3 n \times n$ matrices

$$\left(\begin{array}{c}A\end{array}\right)\times\left(\begin{array}{c}B\end{array}\right)\stackrel{?}{=}\left(\begin{array}{c}C\end{array}\right)$$

Direct approach: compute D = C - AB and test whether D = 0.

Complexity: matrix multiplication, $O(n^{2.38})$ (in theory)

Freivalds' Algorithm

- 1. Pick a random v uniformly in $\{0,1\}^n$
- 2. Compute w := Cv A(Bv)
- 3. Return (w = 0)

Complexity

$$O(n^2)$$

optimal

Might be wrong, but not too often

Probability of Error

The only possible error is when $D \neq 0$ but w = 0.

$$Pr(D \neq 0 \land w = 0) \leq ??$$

$$\Pr(D \neq 0 \land w = 0) \leq \Pr(d^t \cdot v = 0), d \text{ non-zero row of } D$$

$$= \Pr(d_i v_i = -\sum_{j>i} d_j v_j), \text{ for the first } d_i \neq 0$$

 $d_i v_i$ takes 2 values, each with proba 1/2, while the sum is independent of d_i

 $\leq 1/2.$

Drawing the coordinates of *v* from a set of size *k* reduces the bound to 1/*k*.

Boosting the Probability

Repeating the algorithm k times leads to

 $\Pr(k \text{ errors}) \le 1/2^k$.

k = 10 means a probability $\leq 0.1 \%$ k = 100 means a probability $\leq 10^{-30}$

If your algorithm has 90% chance of being wrong, iterating it 66 times reduces the probability of error to < 0.1%.

II. Quicksort

Recall: QuickSort Partitioning (CSE103)

Runs

Input: an array of *n* comparable elements a pivot *p* among them

Output: array partitioned around *p*; new index of *p*.

```
def partition(A, lo, hi):
    p = A[lo]; i = lo; j = hi
    while True:
        for i in range(i+1, hi):
            if A[i]>=p: break
        for j in range(j-1, lo-1, -1):
            if A[j]<=p: break
            if i>=j: break
            A[i], A[j]=A[j], A[i]
            A[lo], A[j]=A[j], A[lo]
            return j
```


Complexity:

n-1 comparisons (all of them with p)

Exercise:
identify appropriate
variants/invariants
and prove correctness.

Recall Quicksort from CSE 103

- 1. Partition
- 2. Sort subarrays recursively

Deterministic variant:

```
def sort(A):
    quicksort(A,0,len(A))

def quicksort(A,lo,hi):
    if hi<=lo+1: return
    q = partition(A,lo,hi)
    quicksort(A,lo,q)
    quicksort(A,q+1,hi)</pre>
```

Quadratic worst-case on a sorted array:

- . 1 is compared with the n-1 other entries
- . sorting is called recursively on A[2:n]

$$(n-1) + (n-2) + \dots = n(n-1)/2 = O(n^2)$$
 comparisons.

Average-Case Complexity

Strong Hypothesis: the keys are distinct and all permutations of the input are equally likely

Observation: this property is preserved by partitioning

$$\underbrace{ \begin{array}{c|c} p \\ \leq p \end{array} } \geq p$$

$$C_0 = 0$$

$$C_n := \text{num. comparisons}$$

$$C_n = \underbrace{n-1}_{-1} + C_{i-1} + C_{n-i} \quad \text{if pivot at index } i$$

$$C_n = \underbrace{n-1}_{\text{partition}} + C_{i-1} + C_{n-i}$$
 if pi

Average number of comparisons $E_n := \mathbb{E}(C_n)$

$$E_n = n - 1 + \sum_{i=1}^{n} \frac{E_{i-1} + E_{n-i}}{n}$$

Perfect partitioning: $C_n \le n - 1 + 2C(\lceil n/2 \rceil)$ $= O(n \log n)$ (Master Theorem)

prob. 1/n

Euler's constant
$$\gamma \approx 0.577$$

$$= 2(n+1)\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) - 4n$$
Proof on the blackboard

$$= 2n\log n + 2(\gamma - 2)n + O(1) \approx 1.39n\log_2 n - 2.85n$$

Randomized Version

A simple change:

Now, for arbitrarily bad input, the expected number of comparisons is $\approx 2n \log n - 2.85n$

The Average has Predictive Value

The worst-case remains quadratic, but unlikely

Bounding the Bad Cases

Variance of the number of comparisons:

Proof: 3 pages of technical computation. Omitted

$$V_n := \mathbb{E}((C_n - E_n)^2) = (7 - 2\pi^2/3) n^2 + O(n \log n), \quad n \to \infty.$$

Standard deviation:

$$\sigma_n := \sqrt{V_n} \approx 1.93 \, n$$

Chebyshev's inequality:

$$\Pr(|C_n - E_n| \ge k\sigma_n) \le \frac{1}{k^2}$$
.

10
$\Pr(C_n \ge 3 n \log n)$
$\Pr(C_n \ge 10 n \log n)$
$Pr(C_n > 0.1 n^2)$

n

1,000	10,000	100,000
$\leq 3 \ 10^{-3}$	$\leq 3 \ 10^{-3}$	$\leq 3 \ 10^{-3}$
$\leq 2 \ 10^{-4}$	$\leq 8 10^{-5}$	$\leq 5 \ 10^{-5}$
$\leq 6 10^{-5}$	$\leq 5 \ 10^{-7}$	$\leq 5 \ 10^{-9}$

Quicksort vs Mergesort

	Quicksort	Mergesort
running time	$n \log n$	$n \log n$
in place?	yes	no
extra space	$\log n$	n
deterministic	no	yes

Further Improvements

Median-of-three partitioning for better pivots:

Take 3 elements at random; use their median as the pivot; (bonus) the other two as sentinels.

Cutoff to insertion sort: stop recursion at size ≈ 10

One sweep of insertion sort on the whole array

Three-way partitioning for duplicate keys

See exercise

III. QuickSelect

QuickSelect

Select: $(A := \{a_1, ..., a_n\}, k) \mapsto x \in A \text{ s.t. } |\{a \in A \mid a \le x\}| = k$

Median: Select with $k = \lfloor n/2 \rfloor$

Sorting gives an algorithm in $O(n \log n)$ comparisons

def select(A,k): random.shuffle(A) return quickselect(A,0,len(A),k) def quickselect(A,lo,hi,k): q = partition(A,lo,hi) if q==k: return A[q] if q>k: return quickselect(A,lo,q,k) return quickselect(A,q+1,hi,k)

Median vs Mean:

Only a linear number of comparisons!

Simple Linear Upper Bound

Bound by recursion on the biggest side

$$E_n \le n - 1 + \frac{1}{n} \sum_{i=1}^n E_{\max(i-1,n-i)}$$

$$\leq n - 1 + \frac{2}{n} \sum_{i=\lceil n/2 \rceil}^{n-1} E_i + \begin{cases} \frac{1}{n} E_{\lfloor n/2 \rfloor}, & \text{if } n \text{ is odd,} \\ 0 & \text{otherwise.} \end{cases}$$

Then, by induction $E_n \leq 4n + 1$.

Proof. $n-1+\frac{2}{n}\sum_{i=\lceil n/2\rceil}^{n-1}(4i+1)+\frac{1}{n}(2n+1)$

Average number of comparisons: $\sim 2(\ln 2 + 1)n \approx 3.39 n$ (much more difficult)

$$\leq n - 1 + \frac{2}{n} \left(n(2n - 1) - \frac{n}{2}(n - 1) \right) + \frac{1}{n} (2n + 1)$$

$$= 4n + 1/n.$$

References for this lecture

The slides are designed to be self-contained.

They were prepared using the following books that I recommend if you want to learn more:

Next

Assignment this week: variations on quicksort

Next tutorial: a Monte-Carlo algorithm for min-cut

Next week: Vacation time!

Feedback

Moodle for the slides, TDs and exercises.

Questions or comments: <u>Bruno.Salvy@inria.fr</u>