

Lymphoma Subtype Classification Using Neural Networks To Support Human Hematopathologist decisions

Chiara Fantinato, Riccardo Malgarotto Boschiero

Human Data Analytics Academic Year 2022/2023

Outline

- **□** Introduction
- □ Dataset
- **□** Pre-processing
- **☐** Processing Pipeline
 - ☐ ResNet50-based architecture
 - **□** ResNet built from scratch
 - ☐ Heatmaps
 - □ Visual attention mechanism
- **□** Results
- **□** Concluding Remarks

Introduction

Background

- **Lymphoma** is a type of cancer that begins in lymphocytes.
- The delivered **treatment** depends on the type of the lymphoma.
- Lymphoma subtype classification is a complex task even for expert hematopathologists.
- Implementation of algorithms for the **automated classification** of Lymphoma subtypes could be helpful to support physicians' decisions.
- Deep learning models struggles to show impact in medical domain due to a lack of transparency.

Aim of the study

- Perform lymphoma subtype classification using neural networks.
- Provide visual explanations for machine's decisions.

Dataset

- 374 images of size 1388x1040
 - 113 images for Chronic Lymphocytic Leukemia (CLL)
 - 139 images for Follicular Lymphoma (FL)
 - 122 images Mantle Cell Lymphoma (MCL)
- Large degree of staining and sectioning variation.
- Randomly divided into training, validation, and test set according to 6:2:2.

Pre-processing (1)

Artifact management

- 3x3 gaussian filter.
- Images affected by artifacts detected automatically.
 - Variance of image filtered using a Laplacian filter greater than 700 → Presence of artifacts

Pre-processing (2)

- **Histogram equalization** → improve image contrast
- Macenko normalization → reduce the staining variation in histological slides

Original

Pre-processing (3)

Data Augmentation

- Split images into patches
 - Resize images from 1388x1040 to 1300x1040 and split into 20 non-overlapping patches of 260x260 with a stride of 260
 - Resize images from 1388x1040 to 1300x1040 and split into 63 overlapping patches of 260x260 with a stride of 130
 - Probability of belonging to a class is obtained by summing the output probabilities of each patch
- Rotate and/or flip images (after resize from 1388x1040 to 224x224): 8 rotated and flipped versions of each image were retrieved

ResNets

Basic elements of ResNets:

- Convolutional block
- Residual block

ResNet50

Transfer learning: weights initialized weights computed on ImageNet and then adapted to our dataset.

Proposed ResNet Architecture

Heatmaps

- Idea: Provide visual explanation for machine's decisions.
- Heatmaps: Weighted average of the last convolution layers using as weights the parameters the last dense layer.
- Validity of heatmaps:
 - Mean of the ratios between
 - Number of non-zero pixels in the intersection image
 - Number of non-zero pixels in the image obtained by summing all the masked images related to that image
 - Number of images without intersection

Visual attention meachanism

Idea: Histological lymphoma features could be focused on a restricted area of the slide.

Results (1)

- ResNet50: 10 epochs, 32 batch size, AdaMax optimizer, variable learning rate from 0.001 to 0.0001
- **Proposed ResNet:** 15 epochs, 32 batch size, AdaMax optimizer, variable learning rate from 0.001 to 0.0001
- Best pre-processing: gaussian filter to remove artifacts, non-overlapping patches data augmentation (histogram equalization an Macenko normalization are not useful)

Model	Test accuracy [%]
Orlov et al. [2]	98.00
Andrew Janowczyk and Anant Madabhushi [4]	96.58
Tambe et al. [5]	97.33
Zhang et al. [6]	98.63
Hathem et al. [7]	98.70
ResNet50	98.67
Proposed ResNet	94.67

Results (2)

- Our ResNet misclassifies 4 images out of 75 in the test set.
- TPR_{MCL} = 1: All MCL images have been correctly classified.
- FPR_{CLL} = 0 and $precision_{CLL}$ = 1: All CLL images predicted as CLL are correctly classified
- F-measure = 0.946

Class	TPR	TNR	FPR	Precision
CLL	0.857	1	0	1
FL	0.963	0.957	0.043	0.929
MCL	1	0.957	0.043	0.931

Results (3)

Validity of heatmaps

Validity of heatmaps seems to be higher for the proposed ResNet.

Model	Mean [%]	Images without intersection
ResNet50	40	10
Proposed ResNet	60	0

Visual attention mechanism

Accuracy decrease by adding to the model a local branch which focused on a restricted area of the images.

Model	Branch	Training accuracy [%]	Validation accuracy [%]
ResNet50	Global	99.72%	98.67%
	Local	100%	98.67%
	Fusion	100%	98.67%
Proposed ResNet	Global	98.00%	97.33%
	Local	99.00%	83.00%
	Fusion	99.83%	93.33%

Results (4)

Visual attention mechanism

Feeding the local branch with masked images obtained from both good (top) and bad (bottom) intersections → Accuracy decrease

Concluding remarks

- Artifacts management improve classification performances.
- High degree of staining variation is not a limit for automated lymphoma subtypes classification.
- Splitting images into patches is the winning strategy.
- Decreasing model complexity leads to slightly lower but comparable classification performances.
- Inclusion of visual attention mechanism in the processing pipeline worsen classification performances.
- Explainable deep learning could be the meeting point between machine learning and physicians.

Limitations of the study

- Based on a limited dataset including only 3 lymphoma subtypes and histological data (e.g., no molecular data).
- No clinical confirmation of the areas of interest indicated by the heatmaps.
 - Further step: Ask human hematopathologist to annotate regions of interest in images.

Thanks for your attention!