3MCACC2: FINITE AUTOMATA AND FORMAL LANGUAGES

Total No. of Hours: 52 Hours/Week: 04

Course Objective: Insight to theory of computation and formal languages for aspiring systems level programming.

Course Outcome: Students will be able to

CO1: Learn the fundamentals of finite state machines

CO2: Design deterministic finite state automaton using NFA, RE, CFG

CO3: Learn the importance of applications in areas of automated systems

	Introduction - Strings, Alphabets and Languages, Deterministic Finite	
Unit I	Automaton (DFA), Non Deterministic Automaton (NFA). Equivalence of NFA	
	and DFA without proof, Automaton with €-moves, DFA design techniques,	10 hrs
	Moore and Mealy machines, conversion from NFA to DFA, Application of	
	DFA.	
	Regular expressions - €-NFA from RE - Kleen's theorem, RE from FA,	
Unit II	elimination states method, Applications of RE, Regular languages, properties of	10 hrs
	regular languages, Pumping lemma, Minimization of FA, Table fill algorithm	
Unit III	Context Free grammar and Languages-Definition of grammar, Chomsky	
	Hierarchy, grammar from FA, Grammar from RE, Derivation, Derivation	12 hrs
	tree, ambiguous grammar, Application of CFG	
	Pushdown Automata – Transitions, Graphical representation of PDA,	
Unit IV	language accepted by PDA, Construction of PDA, Deterministic and non-	
	deterministic PDA, CFG to PDA, Application of GNF, PDA to CFG,	10 hrs
	Chomsky Normal Form, Properties of CFL's	
Unit V	Turing machines- Model, transition table, Acceptance of a language by	
	TM, Construction of TM, counter machines, off line TM, Undecidability -	10 hrs
	Language not recursively enumerable, halting problem	

REFERENCE BOOKS

- [1] John E Hopcroft and Jeffrey D Ullman, "Introduction to Automata Theory", Addison-Wesley, Third Edition.
- [2] Gyorgy E Revesz, "Introduction to Formal Languages", Jones and Bartlett Publishers, Fourth Edition.
- [3] Dick Grune, Henri E Bal, Ceriel J. H. Jacobs, Kone G. Langendoen, "*Modern Compiler Design*", Wiley dreamtech India Pvt. Ltd., Edition 2003.
- [4] Derick Wood, "Theory of Computation", Longman Higher Education.
- [5] Daniel Cohen, "Theory of Computation", ISBN Publications.
- [6] Jon Duckett, "Beginning HTML, XHTML, CSS, and JavaScript", Wiley Publishing, 2010