Package 'pressuRe'

April 11, 2024

Type Package			
Title Imports, Processes, and Visualizes Biomechanical Pressure Data			
Version 0.2.4			
Description Allows biomechanical pressure data from a range of systems to be imported and processed in a reproducible manner. Automatic and manual tools are included to let the user define regions (masks) to be analyzed. Also includes functions for visualizing and animating pressure data. Example methods are described in Shi et al., (2022) <doi:10.1038 s41598-022-19814-0="">, Lee et al., (2014) <doi:10.1186 1757-1146-7-18="">, van der Zward et al., (2014) <doi:10.1186 1757-1146-7-20="">, Najafi et al., (2010) <doi:10.1016 j.gaitpost.2009.09.003="">, Cavanagh and Rodgers (1987) <doi:10.1016 0021-9290(87)90255-7="">.</doi:10.1016></doi:10.1016></doi:10.1186></doi:10.1186></doi:10.1038>			
License MIT + file LICENSE			
Encoding UTF-8			
LazyData true			
RoxygenNote 7.2.3			
<pre>URL https://github.com/Telfer/pressuRe</pre>			
Imports abind, dplyr, gdistance, ggmap, ggplot2, magick, magrittr, pracma, raster, readxl, scales, sf, stringr, zoo			
Depends R (>= 2.10)			
NeedsCompilation no			
Author Scott Telfer [aut, cre, cph] (https://orcid.org/0000-0001-0002-0104-4027), Ellen Li [aut] (https://orcid.org/0000-0001-5545-7364)			
Maintainer Scott Telfer < scott.telfer@gmail.com>			
Repository CRAN			
Date/Publication 2024-04-10 23:40:31 UTC			
R topics documented:			
animate_pressure			

2 animate_pressure

	auto_detect_side	4
	cop	4
	cpei	5
	create_mask_auto	6
	create_mask_manual	7
	edit_mask	8
	footprint	9
	load_emed	10
	load_footscan	11
	load_pedar	12
	load_pliance	13
	load_tekscan	14
	load_xsensor	14
	mask_analysis	15
	pedar_insole_areas	16
	pedar_insole_grid	17
	plot_pressure	17
	pressure_interp	19
	select_steps	20
	whole_pressure_curve	21
Index		22

animate_pressure

Animate pressure

Description

Produces animation (gif) of pressure data

Usage

```
animate_pressure(
  pressure_data,
  plot_colors = "default",
  fps,
  dpi = 96,
  file_name
)
```

Arguments

```
pressure_data Array. A 3D array covering each timepoint of the measurement. z dimension represents time

plot_colors String

fps Numeric. Number of frames per second in animation

dpi Numeric. Resolution of gif

file_name Name (inlcuding path) of export file
```

arch_index 3

Value

Animation in gif format

Examples

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
animate_pressure(pressure_data, fps = 10, file_name = "pli_gif.gif")</pre>
```

 $arch_index$

Calculate Arch Index.

Description

Calculate Arch Index.

Usage

```
arch_index(pressure_data, plot = TRUE)
```

Arguments

pressure_data List. Includes a 3D array covering each timepoint of the measurement. z dimen-

sion represents time

plot Logical. Not implemented yet

Value

Numeric. Arch index value

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
arch_index(pressure_data)</pre>
```

4 cop

auto_detect_side

Detect foot side

Description

Detects which foot plantar pressure data is from (left or right), usually would only be needed for barefoot pressure plate data. Generally reliable but may be thrown off by severe deformities or abnormal walking patterns

Usage

```
auto_detect_side(pressure_data)
```

Arguments

pressure_data

List. First item should be a 3D array covering each timepoint of the measurement. z dimension represents time

Value

```
String. "LEFT" or "RIGHT"
```

Examples

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
auto_detect_side(pressure_data)</pre>
```

cop

Center of pressure

Description

Generates xy coordinates for center of pressure during each frame of measurement

Usage

```
cop(pressure_data)
```

Arguments

pressure_data L

List. First item is a 3D array covering each timepoint of the measurement. z dimension represents time

Value

Data frame with x and y coordinates of COP throughout trial

cpei 5

Examples

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
cop(pressure_data)</pre>
```

cpei *CPEI*

Description

Determine Center of Pressure Excursion Index (CPEI) for footprint pressure data

Usage

```
cpei(pressure_data, foot_side, plot_result = TRUE)
```

Arguments

pressure_data List. First item is a 3D array covering each timepoint of the measurement. Not

currently available for pedar.

foot_side String. "right" or "left". Required for automatic detection of points

plot_result Logical. Plots pressure image with COP and CPEI overlaid

Value

Numeric. CPEI value

Author(s)

```
Scott Telfer < scott.telfer@gmail.com>
```

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
cpei(pressure_data, foot_side = "auto", plot_result = FALSE)</pre>
```

6 create_mask_auto

create_mask_auto

Automatically mask pressure footprint

Description

Automatically creates mask for footprint data

Usage

```
create_mask_auto(
  pressure_data,
  masking_scheme,
  foot_side = "auto"
  res_value = 10000,
  plot = TRUE
)
```

Arguments

pressure_data

List. First item is a 3D array covering each timepoint of the measurement. z dimension represents time

masking_scheme

String. "automask_simple", "automask_novel", "pedar_mask1", "pedar_mask2", "pedar_mask3". "simple_automask" applies a simple 3 part mask (hindfoot, midfoot, forefoot) "automask_novel" attempts to apply a 9-part mask (hindfoot, midfoot, mets, hallux, lesser toes), similar to the standard novel automask "pedar_mask1" splits the insole into 4 regions using sensel boundaries: hindfoot, midfoot, forefoot, and toes- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470545/ "pedar_mask2" splits the insole into 4 regions using percentages: hindfoot, fore-

foot, hallux, and lesser toes- https://jfootankleres.biomedcentral.com/articles/10.1186/1757-

1146-7-18 "pedar_mask3" splits the foot into 9 regions using sensel boundaries: medial hindfoot, lateral hindfoot, medial midfoot, lateral midfoot, MTPJ1,

1146-7-20

foot side

String. "RIGHT", "LEFT", or "auto". Auto uses auto detect side function

res_value

Numeric. Adjusting this can help if the line between the forefoot and toes isn't correct. Default is 100000. This line is calculated using a least cost function and this parameter basically adjusts the resistance of the pressure value for that

algorithm

plot

Logical. Whether to play the animation

Value

List. Masks are added to pressure data variable

 pressure_array. 3D array covering each timepoint of the measurement. z dimension represents time create_mask_manual 7

- pressure_system. String defining pressure system
- sens_size. Numeric vector with the dimensions of the sensors
- time. Numeric value for time between measurements
- masks. List
- events. List

Examples

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
pressure_data <- create_mask_auto(pressure_data, "automask_novel",
res_value = 100000, foot_side = "auto", plot = FALSE)</pre>
```

create_mask_manual

Create masking

Description

Allows user to manually define mask regions

Usage

```
create_mask_manual(
  pressure_data,
  mask_definition = "by_vertices",
  n_masks = 1,
  n_verts = 4,
  n_sens = 4,
  threshold = 0.005,
  plot_existing_masks = TRUE,
  mask_names = "default",
  plot = TRUE
)
```

Arguments

pressure_data List. First item is a matrix covering each timepoint of the measurement. mask_definition

String. "by_vertices" or "by_sensors". The first option let's you draw a shape around the area you want to select, the second allows you to define this area by clicking on specific sensors

n_masks Numeric. Number of masks to add
n_verts Numeric. Number of vertices in mask
n_sens Numeric. Number of sensors mask will contain

8 edit_mask

Value

List. Mask(s) are added to pressure data variable

- pressure_array. 3D array covering each timepoint of the measurement. z dimension represents time
- pressure_system. String defining pressure system
- sens_size. Numeric vector with the dimensions of the sensors
- time. Numeric value for time between measurements
- masks. List
- events. List
- sensor_polygons. Data frame with corners of sensors
- max_matrix Matrix with maximum image

Examples

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
pressure_data <- create_mask_manual(pressure_data, mask_definition = "by_vertices",
n_masks = 1, n_verts = 4)
pressure_data <- create_mask_manual(pressure_data, mask_definition = "by_sensors",
n_masks = 1, n_sens = 8)</pre>
```

edit_mask

Edit mask

Description

Allows user to manually adjust mask vertices

Usage

```
edit_mask(
  pressure_data,
  n_edit,
  threshold = 0.002,
  edit_list = seq(1, length(pressure_data[[5]])),
  image = "max"
)
```

footprint 9

Arguments

Value

List. Edited mask is added to the pressure data variable

over time

 pressure_array. 3D array covering each timepoint of the measurement. z dimension represents time

- pressure_system. String defining pressure system
- sens_size. Numeric vector with the dimensions of the sensors
- time. Numeric value for time between measurements
- · masks. List
- · events. List
- sensor_polygons. Data frame with corners of sensors
- max_matrix Matrix with maximum image

Examples

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
pressure_data <- create_mask_auto(pressure_data, "automask_novel",
foot_side = "auto", plot = FALSE)
pressure_data <- edit_mask(pressure_data, n_edit = 1, threshold = 0.002,
image = "max")</pre>
```

footprint

Footprint

Description

Determines footprint of pressure data

Usage

```
footprint(pressure_data, variable = "max", frame = NULL, plot = FALSE)
```

10 load_emed

Arguments

pressure_data List. Includes a 3D array covering each timepoint of the measurement. z dimen-

sion represents time

variable String. "max" = maximum value of each sensor across full dataset. "mean"

= average value of sensors over full dataset."frame" = an individual pressure frame. "meanmax" average max values across cycles (currently just for pedar)

frame Integer. Only used if variable = "frame".

plot Logical. Display pressure image

Value

Matrix. Maximum or mean values for all sensors

Examples

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
footprint(pressure_data, plot = FALSE)</pre>
```

load_emed

Load emed data

Description

Imports and formats .lst files collected on emed system and exported from Novel software

Usage

```
load_emed(pressure_filepath)
```

Arguments

```
pressure_filepath
```

String. Filepath pointing to emed pressure file

Value

A list with information about the pressure data.

- pressure_array. 3D array covering each timepoint of the measurement. z dimension represents time
- pressure_system. String defining pressure system
- sens_size. Numeric vector with the areas of the sensors
- time. Numeric value for time between measurements
- · masks. List
- events. List
- sensor_polygons. Data frame with corners of sensors
- max_matrix Matrix with maximum image

load_footscan 11

Examples

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)</pre>
```

load_footscan

Load footscan data

Description

Imports and formats files collected on footscan systems (formerly RSScan)

Usage

```
load_footscan(pressure_filepath)
```

Arguments

```
pressure_filepath
```

String. Filepath pointing to emed pressure file

Value

A list with information about the pressure data.

- pressure_array. 3D array covering each timepoint of the measurement. z dimension represents time
- pressure_system. String defining pressure system
- sens_size. Numeric vector with the dimensions of the sensors
- time. Numeric value for time between measurements
- · masks. List
- events. List
- sensor_polygons. Data frame with corners of sensors
- max_matrix. Matrix

@examples footscan_data <- system.file("extdata", "footscan_test.xls", package = "pressuRe") pressure_data <- load_footscan(footscan_data) @importFrom readxl read_excel @export

12 load_pedar

load_pedar

Load pedar data

Description

Imports and formats .asc files collected on pedar system and exported from Novel software

Usage

```
load_pedar(pressure_filepath)
```

Arguments

```
pressure_filepath
```

String. Filepath pointing to pedar pressure file

Value

A list with information about the pressure data.

- pressure_array. 3D array covering each timepoint of the measurement. z dimension represents time
- pressure_system. String defining pressure system
- sens_size. String with sensor type
- time. Numeric value for time between measurements
- masks. List
- events. List
- sensor_polygons. Data frame with corners of sensors
- max_matrix Matrix with maximum image

```
pedar_data <- system.file("extdata", "pedar_example.asc", package = "pressuRe")
pressure_data <- load_pedar(pedar_data)</pre>
```

load_pliance 13

load_pliance

Load pliance data

Description

Imports and formats .asc files collected on pliance system and exported from Novel software

Usage

```
load_pliance(pressure_filepath)
```

Arguments

```
pressure_filepath
```

String. Filepath pointing to pliance pressure file

Value

A list with information about the pressure data.

- pressure_array. 3D array covering each timepoint of the measurement. z dimension represents time
- pressure_system. String defining pressure system
- sens_size. String with sensor type
- time. Numeric value for time between measurements
- masks. List
- events. List
- sensor_polygons. Data frame with corners of sensors
- max_matrix. Matrix

```
pliance_data <- system.file("extdata", "pliance_test.asc", package = "pressuRe")
pressure_data <- load_pliance(pliance_data)</pre>
```

load_xsensor

load_tekscan

Load Tekscan data

Description

Imports and formats files collected on tekscan systems and exported from Tekscan software

Usage

```
load_tekscan(pressure_filepath)
```

Arguments

pressure_filepath

String. Filepath pointing to emed pressure file

Value

A list with information about the pressure data.

- pressure_array. 3D array covering each timepoint of the measurement. z dimension represents time
- pressure_system. String defining pressure system
- sens_size. Numeric vector with the dimensions of the sensors
- time. Numeric value for time between measurements
- masks. List
- events. List
- sensor_polygons. Data frame with corners of sensors
- max_matrix. Matrix

@examples tekscan_data <- system.file("extdata", "fscan_testL.asf", package = "pressuRe") pressure_data <- load_tekscan(tekscan_data) @importFrom @export

load_xsensor

Load xsensor data

Description

Imports and formats files collected on xsensor insole systems

Usage

```
load_xsensor(pressure_filepath)
```

mask_analysis 15

Arguments

```
pressure_filepath
```

String. Filepath pointing to emed pressure file

Value

A list with information about the pressure data.

- pressure_array. 2D array covering each timepoint of the measurement. row dimension represents time
- pressure_system. String defining pressure system
- sens_size. Numeric vector with the dimensions of the sensors
- time. Numeric value for time between measurements
- · masks. List
- events. List
- sensor_polygons. Data frame with corners of sensors
- max_matrix. Matrix

@examples xsensor_data <- system.file("extdata", "xsensor_data.csv", package = "pressuRe") pressure_data <- load_xsensor(xsensor_data) @importFrom abind abind @export

mask_analysis

Analyze masked regions of pressure data

Description

Analyze masked regions of pressure data

Usage

```
mask_analysis(
  pressure_data,
  partial_sensors = FALSE,
  variable = "press_peak_sensor",
  pressure_units = "kPa",
  area_units = "cm2"
)
```

Arguments

partial_sensors

Logical Defines how sensors that do not lie wholly within mask are dealt with. If FALSE, they will be excluded; if TRUE, for relevant variables their contribution will be weighted by the proportion of the sensor that falls within the mask border

16 pedar_insole_areas

Value

Data frame. Contains values for each mask plus additional information relevant to the data including cycle/step and foot side

Examples

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
pressure_data <- create_mask_auto(pressure_data, "automask_simple", plot = FALSE)
mask_analysis(pressure_data, FALSE, variable = "press_peak_sensor")</pre>
```

pedar_insole_areas

pedar sensor size data

Description

Sensor sizes for different pedar insoles

Usage

```
pedar_insole_areas
```

Format

```
## 'pedar_insole_areas' A data frame with 198 rows and 8 columns:
```

- u areas for size u
- v areas for size v
- w areas for size w
- x areas for size x
- y areas for size y
- uw areas for size uw
- xw areas for size xw
- vw areas for size vw

Source

Scott Telfer

pedar_insole_grid 17

pedar_insole_grid

pedar sensor grid data

Description

Sensor outline coordinates

Usage

```
pedar_insole_grid
```

Format

'pedar_insole_grid' A data frame with 199 rows and 8 columns:

V1 x1 coordinate

V2 y1 coordinate

V3 x2 coordinate

V4 y2 coordinate

V5 x3 coordinate

V6 y3 coordinate

V7 x4 coordinate

V8 y4 coordinate

Source

Scott Telfer

plot_pressure

Plot pressure

Description

Produces visualization of pressure data

plot_pressure

Usage

```
plot_pressure(
   pressure_data,
   variable = "max",
   smooth = FALSE,
   frame,
   step_n = "max",
   plot_COP = FALSE,
   plot_outline = FALSE,
   plot_colors = "default",
   break_values,
   break_colors,
   sensor_outline = TRUE,
   plot = TRUE,
   legend = TRUE
```

Arguments

pressure_data	List. Includes a 3D array covering each timepoint of the measurement. z dimension represents time
variable	String. "max" = footprint of maximum sensors. "mean" = average value of sensors over time (usually for static analyses). "frame" = an individual frame
smooth	Logical. Not implemented. If TRUE, plot will interpolate between sensors to increase data density
frame	Integer.
step_n	If numeric, the step number to plot (only for insole data). If "max", the max across complete trial, if "meanmax", the max on a per step basis
plot_COP	Logical. If TRUE, overlay COP data on plot. Default = FALSE
plot_outline	Logical. If TRUE, overlay convex hull outline on plot
plot_colors	String. "default": novel color scheme; "custom": user supplied
break_values	Vector. If plot_colors is "custom", values to split colors at
break_colors	Vector. If plot_colors is "custom", colors to use. Should be one shorter than break_values
sensor_outline	Logical. Sensor outline to be shown
plot	Logical. If TRUE, plot will be displayed
legend	Logical. If TRUE, legend will be added to plot

Value

ggplot plot object

pressure_interp 19

Examples

pressure_interp

Interpolate pressure data

Description

Resamples pressure data over time. Useful for normalizing to stance phase, for example

Usage

```
pressure_interp(pressure_data, interp_to)
```

Arguments

pressure_data List. First item should be a 3D array covering each timepoint of the measure-

ment. z dimension represents time.

interp_to Integer. Number of frames to interpolate to

Value

- pressure_array. 3D array covering each timepoint of the measurement. z dimension represents time
- pressure_system. String defining pressure system
- sens_size. Numeric vector with the dimensions of the sensors
- time. Numeric value for time between measurements
- masks. List
- events. List
- sensor_polygons. Data frame with corners of sensors
- max_matrix. Matrix

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
pressure_data <- pressure_interp(pressure_data, interp_to = 101)</pre>
```

20 select_steps

select_steps

Select steps

Description

Select steps, usually from insole data, and format for analysis

Usage

```
select_steps(
  pressure_data,
  threshold = "auto",
  min_frames = 10,
  n_steps = 5,
  skip = 2
)
```

Arguments

pressure_data List. First item should be a 3D array covering each timepoint of the measurement. z dimension represents time.

threshold Numeric. Threshold force to define start and end of step. If "auto", function will set threshold at minimum force in trial + 10N

min_frames Numeric. Minimum number of frames that need to be in step

n_steps Numeric. Target number of steps/cycles. User will be asked to keep selected steps until this target is reached or they run out of candidate steps

skip Numeric. Usually the first few steps of a trial are accelerating and not representative of steady state walking so this removes them

Value

- pressure_array. 3D array covering each timepoint of the measurement. z dimension represents time
- pressure_system. String defining pressure system
- sens_size. Numeric vector with the dimensions of the sensors
- time. Numeric value for time between measurements
- masks. List
- events. List
- sensor_polygons. Data frame with corners of sensors
- max_matrix. Matrix

whole_pressure_curve 21

Examples

```
pedar_data <- system.file("extdata", "pedar_example.asc", package = "pressuRe")
pressure_data <- load_pedar(pedar_data)
pressure_data <- select_steps(pressure_data)</pre>
```

whole_pressure_curve Whole pressure curve

Description

Generates vectors with option to plot for force, peak/mean pressure and area for complete measurement. Useful for checking data

Usage

```
whole_pressure_curve(
  pressure_data,
  variable,
  side,
  threshold = 10,
  plot = FALSE
)
```

Arguments

pressure_data List. A 3D array covering each timepoint of the measurement. z dimension

represents time

variable String. "peak_pressure", "force", or "area"

side For insole data only

threshold Numeric. Threshold value for sensor to be considered active. Currently only

applies to insole data

plot Logical. If TRUE also plots data as line curve

Value

Numeric vector containing variable values

```
emed_data <- system.file("extdata", "emed_test.lst", package = "pressuRe")
pressure_data <- load_emed(emed_data)
whole_pressure_curve(pressure_data, variable = "peak_pressure", plot = FALSE)
whole_pressure_curve(pressure_data, variable = "area", plot = FALSE)
whole_pressure_curve(pressure_data, variable = "force", plot = FALSE)</pre>
```

Index

```
* datasets
    pedar_insole_areas, 16
    pedar_insole_grid, 17
animate_pressure, 2
arch_index, 3
auto_detect_side, 4
cop, 4
cpei, 5
create_mask_auto, 6
create_mask_manual, 7
edit_mask, 8
footprint, 9
load_emed, 10
{\tt load\_footscan}, {\tt 11}
load_pedar, 12
load_pliance, 13
load_tekscan, 14
load_xsensor, 14
mask\_analysis, 15
pedar_insole_areas, 16
pedar_insole_grid, 17
plot_pressure, 17
pressure_interp, 19
select_steps, 20
whole_pressure_curve, 21
```