Lösungshinweise zur 1. Übung

Differential- und Integralrechnung für Informatiker

(A 1)

a)

M	US(M)	OS(M)	$\min M$	$\max M$	$\inf M$	$\sup M$
\mathbb{R}_+^*	$(-\infty,0]$	Ø	A	Æ	0	∞
$(-3,0] \cup \{7\}$	$(-\infty, -3]$	$[7,\infty)$	Æ	7	-3	7
$(-\sqrt{7},\infty)\cap\mathbb{Z}$	$(-\infty, -2]$	Ø	-2	Æ	-2	∞
$[\pi, 10] \cap \mathbb{Q}$	$(-\infty,\pi]$	$[10,\infty)$	A	10	π	10
$\{x \in \mathbb{R} \mid x^8 + 2x^4 \le -1\}$	\mathbb{R}	\mathbb{R}	A	Æ	∞	$-\infty$
$\{x \in \mathbb{R} \mid x^3 - x^2 - 6x \ge 0\}$	$(-\infty, -2]$	Ø	-2	Æ	-2	∞
$\left\{ x \in \mathbb{R} \mid \frac{x+1}{x^2+1} < 1 \right\}$	Ø	Ø	A	A	$-\infty$	∞

Für die letzten drei Mengen beachte man, dass

$$\{x \in \mathbb{R} \mid x^8 + 2x^4 \le -1\} = \emptyset$$
, weil $x^8 + 2x^4 \ge 0$, $\forall x \in \mathbb{R}$,

$$x^3 - x^2 - 6x \ge 0 \Leftrightarrow x(x-3)(x+2) \ge 0 \Leftrightarrow x \in [-2,0] \cup [3,\infty)$$

und

$$\frac{x+1}{x^2+1} < 1 \Leftrightarrow x - x^2 < 0 \Leftrightarrow x \in (-\infty, 0) \cup (1, +\infty).$$

b) Z. B. $M = (-3, 0] \cup (2, \infty)$.

(A 2)

- 1) a) $(-1,2] \in \mathcal{U}(1)$, da $B_1(1) = (0,2) \subseteq (-1,2]$.
- b) $\mathbb{N} \notin \mathcal{U}(1)$, weil $\not\exists r > 0$ mit $B_r(1) = (-r+1, r+1) \subseteq \mathbb{N}$, da, für alle r > 0, die r-Umgebung $B_r(1)$ von 1 (wegen der Dichtheitseigenschaft von $\mathbb{R} \setminus \mathbb{Q}$) auch irrationale Zahlen enthält, also $B_r(1) \not\subseteq \mathbb{N}$.
- c) $\mathbb{R} \setminus \{1\} \notin \mathcal{U}(1)$, da $1 \notin \mathbb{R} \setminus \{1\}$.
- d) $(-\infty, -1) \cup [0, 5] \in \mathcal{U}(1)$, da $B_1(1) = (0, 2) \subseteq (-\infty, -1) \cup [0, 5]$.
- e) $[1, \infty) \notin \mathcal{U}(1)$, weil $\not\exists r > 0$ mit $B_r(1) = (-r + 1, r + 1) \subseteq [1, \infty)$, da, für alle r > 0, die r-Umgebung $B_r(1)$ von 1 auch Zahlen enthält, die < 1 sind, also $B_r(1) \not\subseteq [1, \infty)$.
- 2) a) $[-1, \infty) \notin \mathcal{U}(-\infty)$, da $\not\exists a \in \mathbb{R}$ so, dass $(-\infty, a) \subseteq [-1, \infty)$ gilt.
- b) $(-\infty, 1) \cap (\mathbb{R} \setminus \mathbb{Q}) \notin \mathcal{U}(-\infty)$, weil $\not\exists a \in \mathbb{R}$ mit $(-\infty, a) \subseteq (-\infty, 1) \cap (\mathbb{R} \setminus \mathbb{Q})$, da, für alle $a \in \mathbb{R}$, das Intervall $(-\infty, a)$ (wegen der Dichtheitseigenschaft von \mathbb{Q}) auch rationale Zahlen enthält, also $(-\infty, a) \not\subseteq (-\infty, 1) \cap (\mathbb{R} \setminus \mathbb{Q})$.
- c) $\mathbb{Z} \notin \mathcal{U}(-\infty)$, weil $\not\exists a \in \mathbb{R}$ mit $(-\infty, a) \subseteq \mathbb{Z}$, da, für alle $a \in \mathbb{R}$, das Intervall $(-\infty, a)$ (wegen der Dichtheitseigenschaft von $\mathbb{R} \setminus \mathbb{Q}$) auch irrationale Zahlen enthält, also $(-\infty, a) \not\subseteq \mathbb{Z}$.

(A 3)

Sei $M \subseteq \mathbb{R}$.

- a) Für $x \in OS(M)$ ist auch $[x, \infty) \subseteq OS(M)$, also hat OS(M) unendlich viele Elemente.
- b) Hat M kein größtes Element, dann stimmt offensichtlich die Aussage. Wir nehmen an, $m_1 \in M$ und $m_2 \in M$ wären beide größte Elemente von M.

Da m_1 ein größtes Element von M und $m_2 \in M$ ist, erhält man

$$(1) m_2 \le m_1.$$

Da m_2 ein größtes Element von M und $m_1 \in M$ ist, erhält man

$$(2) m_1 \leq m_2.$$

Aus (1) und (2) folgt nun $m_1 = m_2$.

c) Ist $M = \emptyset$, dann ist, laut Definition, $-\infty$ das Supremum von M. Ist M nach oben unbeschränkt, dann ist ∞ das Supremum von M. In diesem Fall kann das Supremum von M keine reelle Zahl sein, weil das die Beschränktheit nach oben von M zur Folge hätte.

Es sei nun M nichtleer und nach oben beschränkt. In diesem Fall kann also das Supremum von M weder ∞ noch $-\infty$ sein. Wir nehmen an, die reellen Zahlen a und b wären beide Suprema von M. Insbesondere sind also a und b obere Schranken von M. Da a eine kleinste obere Schranke von M und b eine obere Schranke von M ist, folgt, dass $a \leq b$. Daraus, dass b eine kleinste obere Schranke von M und a eine obere Schranke von M ist, folgt $b \leq a$. Also ist a = b.

Also ist das Supremum einer Menge eindeutig bestimmt.

d) Da M ein größtes Element hat, ist M nichtleer und nach oben beschränkt, also ist sup $M \in \mathbb{R}$. Aus $\max M \in M$ und $\sup M \in OS(M)$ folgt

$$\max M \le \sup M.$$

Außerdem ist $\max M \in M \cap OS(M)$. Da sup M die kleinste obere Schranke und $\max M \in OS(M)$ ist, folgt

$$\sup M \le \max M.$$

Aus (3) and (4) erhält man nun die zu zeigende Gleichheit max $M = \sup M$.

(A 4)

Die Beweise sind analog zu denen aus (A 3).

(A 5)

F4: Sei S eine nach unten beschränkte Teilmenge von \mathbb{R} und M eine nichtleere Teilmenge von S. Dann ist M ebenfalls nach unten beschränkt und es gilt inf $S \leq \inf M$.

Beweis: Aus $\emptyset \neq M \subseteq S \Rightarrow S \neq \emptyset$. Da S nichtleer und nach unten beschränkt ist, folgt aus **Th3** in der ersten Vorlesung, dass $\exists \inf S \in \mathbb{R}$. Aus $\inf S \in \mathrm{US}(S)$ folgt, dass $\inf S \leq a, \forall a \in S$, also, da $M \subseteq S$ ist, gilt auch $\inf S \leq a, \forall s \in M$. Also ist $\inf S \in \mathrm{US}(M)$, was zur Folge hat, dass M nach unten beschränkt ist. **Th3** in der ersten Vorlesung impliziert nun, dass $\exists \inf M \in \mathbb{R}$. Da $\inf S \in \mathrm{US}(M)$ ist, erhält man schließlich die zu zeigende Ungleichung $\inf S \leq \inf M$.