Planimetria

- 1. Wykaż, że trapez nie będący równoległobokiem jest równoramienny wtedy i tylko wtedy, gdy ma równe przekątne.
- **2.** W równobocznym trójkącie ABC wybrano na bokach BC, AC, AB odpowiednio punkty A_1, B_1, C_1 tak, że $BA_1 = CB_1 = AC_1$. Wykaż, że $\Delta A_1B_1C_1$ jest równoboczny.
- Wykaż, że dwusieczna kąta prostego w trójkącie prostokątnym jest także dwusieczną kąta między środkową i wysokością tego trójkąta poprowadzonymi z wierzchołka kąta prostego.
- Wykaż, że suma długości środkowych trójkąta jest mniejsza od obwodu i większa od ³/₄ obwodu tego trójkąta.
- Wykaż, że środki podstaw trapezu i punkt przecięcia się jego przekątnych są punktami współliniowymi.
- **6.** Punkty A_1,A_2,A_3,\dots,A_{24} dzielą okrąg na 24 równe łuki. Wykaż, że $| \not A_1BA_{16}| = 105^\circ$, gdzie B jest punktem przecięcia się cięciw A_1A_{10} i A_5A_{16} .
- Wykaż, że jeżeli każda z dwóch przekątnych czworokąta wypukłego dzieli go na trójkąty o równych polach, to ten czworokąt jest równoległobokiem.
- 8. Uzasadnij, że pole trapezu równoramiennego, w którym przekątna o długości d tworzy z dłuższą podstawą kąt α , jest równe $P = \frac{1}{2}d^2\sin 2\alpha$.
- 9. Dany jest prostokąt ABCD, w którym |AB| = a, |BC| = b. Wykaż, że odległości wierzchołków B i D od prostej AC są równe $\frac{ab}{\sqrt{a^2+b^2}}$.
- Wykaż, że środkowe trójkąta dzielą go na sześć trójkątów o równych polach.
- **11.** W trójkącie równoramiennym *ABC* podstawa *AB* ma długość *c*, zaś kąt wewnętrzny przy podstawie jest równy α . Uzasadnij, że długość środkowej *BD* tego trójkąta jest równa $x = \frac{c\sqrt{1+8\cos^2\alpha}}{4\cos\alpha}$.
- **12.** Wykaż, że jeżeli a,b,c są długościami boków trójkąta, a kąt α jest kątem wewnętrznym zawartym między bokami o długości b i c, to $\frac{a^2}{2bc} + \cos\alpha \ge 1$.