

Reconstructing Graph Diffusion History from a Single Snapshot

Ruizhong Qiu UIUC (Presenter)

Dingsu Wang UIUC

Lei Ying UMich

H. Vincent Poor Princeton

Yifang Zhang C3.ai DTI

Hanghang Tong
UIUC

C3.ai Digital Transformation Institute

Ubiquity of Graphs

Sociology:

Communication Network [1]

Epidemiology:

Contact Network [3]

Neuroscience:

Brain Network [2]

Cybersecurity:

Computer Network [4]

^[1] Valente. Network Models of the Diffusion of Innovations (2nd edition, 1995). Hampton Press.

^{2]} Avena-Koenigsberger et al. Communication dynamics in complex brain networks. Nature Reviews Neuroscience 19, 1 (2018), 17–33.

^[3] Klovdahl. Social networks and the spread of infectious diseases: The AIDS example. Social Science & Medicine 21, 11 (1985), 1203–1216. [4] Wang et al. Understanding the spreading patterns of mobile phone viruses. Science 324, 5930 (2009), 1071–1076.

Diffusion on Graphs

Sociology: Diffusion of Innovations [1]

Epidemiology: Disease Contagion [3]

Neuroscience: Activation Cascading [2]

Cybersecurity: Malware Spreading [4]

Valente. Network Models of the Diffusion of Innovations (2nd edition, 1995). Hampton Press.

Avena-Koenigsberger et al. Commúnication dynamics in complex bráin networks. Nature Reviews Neuroscience 19, 1 (2018), 17–33.

^[3] Klovdahl. Social networks and the spread of infectious diseases: The AIDS example. Social Science & Medicine 21, 11 (1985), 1203–1216.

$$\mathcal{X} = \{$$
 Susceptible

R Recovered }

• At time t = 0, only one node was infected.

- At time t = 0, only one node was infected.
- At time t = 1, a neighbor got infected, but the other did not.

- At time t = 0, only one node was infected.
- At time t=1, a neighbor got infected, but the other did not.
- At time t=2, two nodes got infected, and an infected node recovered.

- At time t = 0, only one node was infected.
- At time t=1, a neighbor got infected, but the other did not.
- At time t=2, two nodes got infected, and an infected node recovered.
- At time t=3, a new node got infected, and one more node recovered.

Problem Definition

- Problem (DASH): Reconstructing <u>Diffusion history from A single SnapsHot</u>.
 - Input: (i) graph $(\mathcal{V}, \mathcal{E})$; (ii) timespan T of interest; (iii) final snapshot $\mathbf{y}_T \in \mathcal{X}^{\mathcal{V}}$; (iv) initial distribution $P[\mathbf{y}_0]$.
 - Output: reconstructed complete diffusion history $\widehat{Y} = [\widehat{y}_0, ..., \widehat{y}_{T-1}, y_T]^T \in \mathcal{X}^{T \times V}$. \triangleright We **do not** assume knowing **true** diffusion parameters.

Challenges of the DASH Problem

C1: Ill-posednessNeed appropriate inductive bias

C2: Explosive search space Exponentially many possibilities

C3: Scarcity of training dataFew history data in practice

Previous Methods & Their Limitations

- Supervised time series imputation (e.g., [1, 2])
 - > Impractical due to the scarcity of training data.

(a) $P_{\beta}[Y]$ vs $P_{\widehat{\beta}}[Y]$ in the MLE formulation.

- Maximum likelihood estimation (MLE; e.g., [3, 4])
 - > Sensitive to estimation error of diffusion parameters (our Theorems 1 & 2).

Cini et al. Filling the G_ap_s: Multivariate time series imputation by graph neural networks. *International Conference on Learning Representations* (2022). Marisca et al. Learning to reconstruct missing data from spatiotemporal graphs with sparse observations. *Advances in Neural Information Processing Systems* (2022).

^[3] Sefer & Kingsford. Diffusion archeology for diffusion progression history reconstruction. Knowledge and Information Systems 49, 2 (2016), 403–427. Chen et al. Detecting multiple information sources in networks under the SIR model. IEEE Transactions on Network Science and Engineering 3, 1 (2016), 17–31.

Summary of Main Results

- ➤ Theoretical insights: Fundamental limitation of the MLE formulation.
 - Theorems 1 & 2 \Longrightarrow Unavoidable estimation error of diffusion parameters.
 - Theorem 3 \Longrightarrow The MLE formulation is **sensitive** to that estimation error.

> Problem formulation:

- A novel barycenter formulation based on hitting times.
- Provably stable against estimation error of diffusion parameters.
- \triangleright **Proposed method:** <u>DIffusion hi</u><u>Tting Times with <u>O</u>ptimal proposal (DITTO).</u>
 - Reducing the problem to estimating posterior expected hitting times via M–H MCMC;
 - Using a GNN to learn an **optimal** proposal to accelerate convergence of M–H MCMC.

Contents

- ✓ Introduction
- **▶** Revisiting Diffusion History MLE
- Proposed Method: DITTO
- Main Experiments
- Conclusion

NP-Hardness of Diffusion Parameter Estimation

- To estimate diffusion parameters β , a conventional approach is MLE: $\max_{\widehat{\beta}} P_{\widehat{\beta}}[y_T]$. (\star)
- **Theorem 1** (informal): Computing the probability $P_{\widehat{\beta}}[y_T]$ is NP-hard. $\succ O\left(\binom{T+1}{2}^n(n+m)\right)$ time.
 - Think deeper: Is there an algo for $\widehat{\beta}$ MLE without computing $P_{\widehat{\beta}}[y_T]$?
- **Theorem 2** (informal): *Diffusion parameter MLE* (*) *is NP-hard.*
 - \Rightarrow Implication: Estimation error of β is unavoidable.

Proof Sketch of Theorem 1

- By reduction from Minimum Dominating Set (MDS; NP-complete).
- Suppose an algo that can compute $p \approx P_{\widehat{\beta}}[y_T]$ up to relative error ϵ .
- Given any MDS instance G, we can construct an SI instance such that

$$MDS(G) = n - \left[\log_{\left(\frac{1+\epsilon}{1-\epsilon}2^n\right)} \left(\frac{\left(1 + \frac{1+\epsilon}{1-\epsilon}2^n\right)^n}{1-\epsilon} p \right) \right]. > n = \# \text{ nodes in } G$$

Example:

• Remark: Need arbitrary-precision arithmetics with $poly(n, log 1/\epsilon)$ bits.

Sensitivity to Estimation Error of Diffusion Parameters

• *MLE formulation* for diffusion history reconstruction:

$$\max_{\widehat{Y} \in \text{supp}(P|y_T)} P_{\widehat{\beta}}[\widehat{Y}].$$

• Theorem 3. Under the SIR model and mild conditions, for all possible history Y, we have:

$$\frac{\partial}{\partial \beta^{\mathrm{I}}} P_{\beta}[Y] = \Theta\left(\frac{1}{\beta^{\mathrm{I}}}\right) P_{\beta}[Y],$$

$$\frac{\partial}{\partial \beta^{\mathrm{R}}} P_{\beta}[Y] = \Theta\left(\frac{1}{\beta^{\mathrm{R}}}\right) P_{\beta}[Y].$$

 \triangleright Large for small β

(a) $P_{\beta}[Y]$ vs $P_{\widehat{\beta}}[Y]$ in the MLE formulation.

^[1] O'Brien et al. The epidemiology of nontuberculous mycobacterial diseases in the United States: results from a national survey. *American Review of Respiratory Disease* 135, 5 (1987), 1007–1014.

Proof Sketch of Theorem 3

- Follows from our **fine-grained** characterization of $P_{\beta}[Y]$:
- Lemma 8. Every possible history Y has

$$P_{\beta}[Y] = \omega_{Y}(\beta^{\mathrm{I}})^{n^{\mathrm{IR}}(y_{T}) - n^{\mathrm{IR}}(y_{0})} (\beta^{\mathrm{R}})^{n^{\mathrm{R}}(y_{T}) - n^{\mathrm{R}}(y_{0})} (1 + O(\|\beta\|))$$

for some constant number $\omega_Y > 0$ independent of β .

- ➤Intuition of Lemma 8:
 - $S \rightarrow I: \propto \beta^{I} (1 + O(\|\boldsymbol{\beta}\|));$
 - I \rightarrow R: $\propto \beta^{R} (1 + O(||\boldsymbol{\beta}||));$
 - $S \rightarrow R: \propto \beta^I \beta^R (1 + O(\|\boldsymbol{\beta}\|));$
 - $S \rightarrow S$, $I \rightarrow I$, $R \rightarrow R$: $\propto 1 + O(\|\beta\|)$.

Contents

- ✓ Introduction
- ✓ Revisiting Diffusion History MLE
- **▶** Proposed Method: DITTO
- Main Experiments
- Conclusion

Hitting Times

- *Hitting times* for a node u in a history Y:
 - First infection time: $h_u^{\mathbf{I}}(\mathbf{Y}) \coloneqq \min\{T+1, \min\{t \geq 0: y_{t,u} \geq \mathbf{I}\}\}.$
 - First recovery time: $h_u^{\mathbb{R}}(Y) \coloneqq \min\{T+1, \min\{t \geq 0: y_{t,u} \geq \mathbb{R}\}\}$.

Stability of Posterior Expected Hitting Times

(**Key** theoretical observation)

• Theorem 4. Under SIR model and mild conditions, for any possible snapshot y_T ,

$$\nabla_{\boldsymbol{\beta}} \underset{\boldsymbol{Y} \sim P_{\boldsymbol{\beta}}|\boldsymbol{y}_{T}}{\mathbb{E}} [h_{u}^{I}(\boldsymbol{Y})] = O(1),$$

$$\nabla_{\boldsymbol{\beta}} \underset{\boldsymbol{Y} \sim P_{\boldsymbol{\beta}}|\boldsymbol{y}_{T}}{\mathbb{E}} [h_{u}^{R}(\boldsymbol{Y})] = O(1).$$

 \triangleright **Stable** even for small β

(a) $P_{\beta}[Y]$ vs $P_{\widehat{\beta}}[Y]$ in the MLE for- (b) $\mathbb{E}[h_u^x(Y)]$ vs $\mathbb{E}[h_u^x(Y)]$ in mulation.

The barycenter formulation.

Figure 2: Sensitivity of the MLE formulation vs stability of the barycenter formulation.

Proof Idea: Use Lemma 8 again to characterize $P_{\beta}[Y]$ and $P_{\beta}[y_T]$.

MLE Formulation → **Barycenter Formulation**

Recall:

• Estimation error of β is unavoidable.

X The MLE formulation is **sensitive** to estimation error of β .

Posterior expected hitting times are stable against estimation error of β .

• Our solution:

>A novel *barycenter formulation* based on *hitting times*.

Barycenter Formulation

• History distance d:

(Euclidean distance with *hitting times* as coordinates)

$$d(\widehat{Y},Y) := \sqrt{\sum_{u \in \mathcal{V}} \sum_{x=I,R} \left(h_u^x(\widehat{Y}) - h_u^x(Y) \right)^2}.$$

• Barycenter formulation:

(Finding the *barycenter* \widehat{Y} of the posterior distribution $P_{\widehat{\beta}}|y_T$ w.r.t. the history distance d)

$$\min_{\widehat{Y}} \mathbb{E}_{Y \sim P_{\widehat{B}}|y_T} \left[d(\widehat{Y}, Y)^2 \right].$$

Solution to the Barycenter Formulation

Bias—variance decomposition:
 Posterior expected hitting times

$$\mathbb{E}_{\mathbf{Y} \sim P_{\widehat{\boldsymbol{\beta}}} | \mathbf{y}_{T}} \left[d(\widehat{\mathbf{Y}}, \mathbf{Y})^{2} \right] = \sum_{u \in \mathcal{V}} \sum_{x = \mathbf{I}, \mathbf{R}} \left(\left(h_{u}^{x}(\widehat{\mathbf{Y}}) - \mathbb{E}_{\mathbf{Y} \sim P_{\widehat{\boldsymbol{\beta}}} | \mathbf{y}_{T}} [h_{u}^{x}(\mathbf{Y})] \right)^{2} + \mathbb{V}_{\mathbf{Y} \sim P_{\widehat{\boldsymbol{\beta}}} | \mathbf{y}_{T}} [h_{u}^{x}(\mathbf{Y})] \right).$$

• Variances are **constant** w.r.t. $\widehat{Y} \implies$ Optimal solution \widehat{Y} :

$$h_{u}^{x}(\widehat{\mathbf{Y}}) = \text{round}\left(\underset{\mathbf{Y} \sim P_{\widehat{\boldsymbol{\beta}}}|\mathbf{y}_{T}}{\mathbb{E}} [h_{u}^{x}(\mathbf{Y})]\right), \quad x = I, R;$$

$$\hat{y}_{t,u} = \begin{cases} S, & \text{for } 0 \leq t < h_{u}^{I}(\widehat{\mathbf{Y}}); \\ I, & \text{for } h_{u}^{I}(\widehat{\mathbf{Y}}) \leq t < h_{u}^{R}(\widehat{\mathbf{Y}}); \\ R, & \text{for } h_{u}^{R}(\widehat{\mathbf{Y}}) \leq t \leq T. \end{cases}$$

Now our problem **reduces** to estimating $\mathbb{E}_{Y \sim P_{\widehat{R}}|y_T}[h_u^x(Y)]$.

M-H MCMC for Posterior Expectation Estimation

- How to estimate $\mathbb{E}_{Y \sim P_{\widehat{\beta}}|y_T}[h_u^{\chi}(Y)]$? $\triangleright \text{Recall: Intractable to compute } P_{\widehat{\beta}}[Y|y_T]$.
- Our solution: *M-H MCMC* [1, 2].
 - 1. Design a **proposal** distribution $Q_{\theta}(y_T)[\cdot]$ over **possible** histories.
 - 2. Each step of M–H MCMC samples L histories $Y^{(s,i)} \sim Q_{\theta}(y_T)$, i = 1, ..., L.

 \triangleright The Markov chain $\langle Y^{(s,i)} \rangle$ provably converges to the posterior distribution $P_{\widehat{\beta}}|y_T|$ [2].

$$\mathbb{E}_{\mathbf{Y} \sim \mathbf{P}_{\widehat{\boldsymbol{\beta}}} | \mathbf{y}_{T}} [h_{u}^{x}(\mathbf{Y})] \approx \frac{1}{L} \sum_{i=1}^{L} h_{u}^{x} (\mathbf{Y}^{(s,i)}), \qquad s \to +\infty.$$

Learning an Optimal Proposal for M-H MCMC

- The convergence rate of M–H MCMC depends critically on the proposal Q_{θ} .
 - \triangleright The proposal $Q_{\theta}(y_T)$ closer to $P_{\widehat{\beta}}|y_T \Longrightarrow$ Higher rate of convergence [1].
- Our solution: Use a GNN to learn an optimal proposal.

• We want
$$Q_{\theta}(\mathbf{y}_{T})$$
 to approximate $P_{\widehat{\beta}}|\mathbf{y}_{T}$ well \Longrightarrow Objective function:
$$\min_{\theta} \mathbb{E}_{\mathbf{Y} \sim P_{\widehat{\beta}}} \Big[\Big(\log Q_{\theta}(\mathbf{y}_{T})[\mathbf{Y}] - \log P_{\widehat{\beta}}[\mathbf{Y}|\mathbf{y}_{T}] \Big)^{2} \Big]. \tag{*}$$

Equivalent Objective for the Proposal GNN

Vanilla objective function:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{Y} \sim P_{\widehat{\boldsymbol{\beta}}}} \left[\left(\log Q_{\boldsymbol{\theta}}(\boldsymbol{y}_T) [\boldsymbol{Y}] - \log P_{\widehat{\boldsymbol{\beta}}} [\boldsymbol{Y} | \boldsymbol{y}_T] \right)^2 \right]. \tag{*}$$

 \clubsuit Recall: Intractable to compute $P_{\widehat{\beta}}[Y|y_T]$. Solution?

• Theorem 5 (Equivalent objective). Under mild conditions, for any strictly convex function $\psi: \mathbb{R}_+ \to \mathbb{R}$, the vanilla objective Eq. (*) is equivalent to

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{Y} \sim P_{\widehat{\boldsymbol{\beta}}}} \left[\psi \left(\frac{Q_{\boldsymbol{\theta}}(\boldsymbol{y}_T)[\boldsymbol{Y}]}{P_{\widehat{\boldsymbol{\beta}}}[\boldsymbol{Y}]} \right) \right]. \quad (**)$$

- ightharpoonup Implication: Intractable $P_{\widehat{\beta}}[Y|y_T]$ in Eq. $(*) \to \text{Tractable } P_{\widehat{\beta}}[Y]$ in Eq. (**).
- In this work, we use $\psi(z) \coloneqq -\log z$, and this objective Eq. (**) instantiates as $\min_{\boldsymbol{\theta}} \underset{\boldsymbol{Y} \sim P_{\widehat{\boldsymbol{\beta}}}}{\mathbb{E}} \left[\log P_{\widehat{\boldsymbol{\beta}}}[\boldsymbol{Y}] \log Q_{\boldsymbol{\theta}}(\boldsymbol{y}_T)[\boldsymbol{Y}]\right] \Longleftrightarrow \min_{\boldsymbol{\theta}} \underset{\boldsymbol{Y} \sim P_{\widehat{\boldsymbol{\beta}}}}{\mathbb{E}} \left[-\log Q_{\boldsymbol{\theta}}(\boldsymbol{y}_T)[\boldsymbol{Y}]\right].$

Time Complexity

Figure 3: Running time (training time + testing time).

- Overall time complexity: $O(T(n \log n + m))$.
 - ► Nearly linear w.r.t. the output size $\Theta(Tn)$.

Contents

- ✓ Introduction
- ✓ Revisiting Diffusion History MLE
- ✓ Proposed Method: DITTO
- **➤ Main Experiments**
- Conclusion

Diffusion

Synthetic

Synthetic

Synthetic

Synthetic

Real SI

Real SI

Real SIR

Real SIR

Experimental Setting

Datasets:

- Synthetic graph + synthetic diffusion
- Real graph + synthetic diffusion
- Real graph w/ real diffusion ➤ Not exactly SI/SIR; unknown true β

#Nodes

1,000

1,000

11,461

15.810

82

18,470

344

3,521

Dataset

Oregon2

BrFarmers

Prost

Pol

Covid

Hebrew

BA

ER

#Edges

3,984

3,987

32,730

38,540

230

48,053

2,044

18,064

Timespan

10

10

15

15

16

40

10

Graph

Synthetic

Synthetic

Real

Real

Real

Real

Real

Real

		I •
	Racal	lines:
_	Dasci	IIIICA.

- Supervised methods: GCN [1], GIN [2], BRITS [3], GRIN [4], SPIN [5]
- MLE-based methods: DHREC [6], CRI [7]

Evaluation metrics:

- F-1 score of node states
- Normalized rooted mean squared error (NRMSE) of hitting times

^[1] Kipf & Welling. Semi-supervised classification with graph convolutional networks. International Conference on Learning Representations (2017).

^[2] Xu et al. How powerful are graph neural networks? International Conference on Learning Representations (2019).

^[3] Cao et al. BRITS: Bidirectional recurrent imputation for time series. Advances in Neural Information Processing Systems 31 (2018).

^[4] Cini et al. Filling the G_ap_s: Multivariate time series imputation by graph neural networks. International Conference on Learning Representations (2022).

^[5] Marisca et al. Learning to reconstruct missing data from spatiotemporal graphs with sparse observations. Advances in Neural Information Processing Systems 35 (2022).

^[6] Sefer & Kingsford. Diffusion archeology for diffusion progression history reconstruction. Knowledge and Information Systems 49, 2 (2016), 403–427.

^[7] Chen et al. Detecting multiple information sources in networks under the SIR model. IEEE Transactions on Network Science and Engineering 3, 1 (2016), 17–31.

Performance for Real-World Diffusion

> BrFarmers is very close to SI [1].

Table 4: Results for real-world diffusion. "OOM" indicates "out of memory."

Туре	Method	BrF F1↑	armers NRMSE↓	 F1↑	Pol NRMSE↓	C	Covid NRMSE↓	Hebrew F1↑ NRMSE↓		
Supervised (w/ estimated $\widehat{oldsymbol{eta}}$)	GCN GIN BRITS GRIN SPIN	.5409 .4548 .5207 .8003 .8268	.6660 .6565 .3995 .2425	.6518	.4946 .4767 DOM .3731 DOM	.3162 .3226 .3524 .5448 .5917	.5214 .4951 .5333 .3040 .2932	.3350 .3704 .3120 .5916 .5178	.6070 .7816 .6584 .2212 .3330	
MLE	DHREC CRI	.6131 .6058	.4150 .4444	.7023 .7468	.3398 .2942	.3540 .4170	.6023 .5487	.6251 .5344	.4169 .3552	
Barycenter	DITTO (ours)	<u>.8206</u>	<u>.2142</u>	.7471	.2903	.6240	.2637	.6411	<u>.2983</u>	

DITTO: Consistently strong performance across all datasets.

MLE/Supervised: Bad when real diffusion deviates from SI/SIR.

Comparison with MLE-Based Methods

Table 5: Comparison with MLE-based methods on synthetic SI and SIR diffusion. *We use GRIN trained with true β as the ideal performance and calculate Gap w.r.t. this ideal performance.

Type Method		BA-SI			ER-SI				Oregon2-SI				Prost-SI					
Туре	Metnoa	F1↑	Gap↓	NRMSE↓	Gap↓	F1↑	Gap↓	NRMSE↓	Gap↓	F1↑	Gap↓	NRMSE.	Gap↓	F1↑	Gap↓	NRMSE↓	Gap↓	
Ideal	GRIN	.8404*	_	.2123*	_	.8317*	_	.2166*	_	.8320*	_	.2249*	_	.8482*	_	.2155*	_	
MLE	DHREC CRI	.6026 .7502	28.30% 10.73%	.4644 .3012	118.75% 41.87%	.6281 .7797	24.48% 6.25%	.4495 .2744	107.53% 26.69%	.6038 .8183	27.43% 1.65%	.4101 .2438	82.35% 8.40%	.6558 .8083	22.68% 4.70%	.4138 .2491	92.02% 15.59%	
Barycenter	DITTO (ours)	.8384	0.24%	.2139	0.75%	.8269	0.58%	.2225	2.72%	.8280	0.48%	.2289	1.78%	.8327	1.83%	.2317	7.52%	
T															Prost-SIR			
Tymo	Mathad		В	A-SIR			E	R-SIR			Oreg	gon2-SIR			Pr	ost-SIR		
Туре	Method	F1↑	B Gap↓	A-SIR NRMSE↓	Gap↓	F1↑	E Gap↓	R-SIR NRMSE↓	Gap↓	 F1↑	Oreį Gap↓	gon2-SIR │NRMSE↓	Gap↓	F1↑	Pr Gap↓	ost-SIR NRMSE↓	Gap↓	
Type Ideal	Method GRIN	F1↑	120	•	Gap↓ –	F1↑		•	Gap↓ —	 F1↑ .8024*	,	,	Gap↓ _	F1↑			Gap↓ _	
Ideal			Gap↓	NRMSE				NRMSE↓	-		Gap↓	NRMSE↓			Gap↓	NRMSE↓	Gap↓ 161.86%	
	GRIN	.7867*	Gap↓ _	NRMSE↓ .1692*	_	.7626*	Gap↓ —	NRMSE↓ .2484*	_	.8024*	Gap↓ _	NRMSE↓ .1651*	-	.8067*	Gap↓ _	NRMSE↓ .1652*	_	

DITTO: Stably achieves the strongest performance.

MLE: Performance varies largely across datasets due to sensitivity.

Contents

- ✓ Introduction
- ✓ Revisiting Diffusion History MLE
- ✓ Proposed Method: DITTO
- ✓ Main Experiments
- **≻**Conclusion

Conclusion

- PROBLEM: Reconstructing <u>Diffusion history from A single SnapsHot</u> (**DASH**).
- THEORETICAL INSIGHTS: Fundamental limitation of the MLE formulation.
 - \triangleright Estimation error of β are unavoidable.
 - \triangleright The MLE formulation is **sensitive** to estimation error of β .
- NOVEL FORMULATION: *Barycenter formulation* with provable **stability**.
- PROPOSED METHOD: <u>DIffusion hiTting Times with Optimal proposal</u> (**DITTO**).
 - > Reducing DASH to estimating posterior expected hitting times via M–H MCMC;
 - > Using a GNN to learn an optimal proposal to accelerate convergence of M-H MCMC.
- **EXPERIMENTAL RESULTS:**
 - > Outperforms both **supervised** and **MLE-based** methods.
 - > Strong performance for both synthetic and real-world diffusion.

(a) F1 vs timespan T.

0.0002

(b) NRMSE vs timespan T.

Thanks for attending

Reconstructing Graph Diffusion History from a Single Snapshot

Ruizhong Qiu UIUC (Presenter)

Dingsu Wang UIUC

Lei Ying **UMich**

H. Vincent Poor Princeton

Yifang Zhang C3.ai DTI

Hanghang Tong UIUC

C3.ai Digital Transformation Institute

