TOSHIBA Photocoupler GaAlAs Ired & Photo IC

TLP2530, TLP2531

Degital Logic Isolation

Line Receiver

Power Supply Control

Switching Power Supply

Transistor Inverter

The TOSHIBA TLP2530 and TLP2531 dual photocouplers consist of a pair of GaA ℓ As light emitting diode and integrated photodetector. This unit is 8–lead DIP.

Separate connection for the photodiode bias and output transistor collectors improve the speed up to a hundred times that of a conventional phototransistor coupler by reducing the base–collector capacitance.

- TTL compatibel
- Switching speed: t_{pHL} =0.3 μ s, t_{pLH} =0.3 μ s(typ.) (@R_L=1.9 μ S)
- Guaranteed performance over temp: 0~70°C
- Isolation voltage: 2500 Vrms(min.)
- UL recognized: UL1577, file no. E67349

Weight: 0.54g

Pin Configuration (top view)

- 1.: Anode.1
- 2. : Cathode.1
- 3.: Cathode.2
- 4. : Anode.2
- 5. : Gnd
- 6.: V_{O2}(output 2)
- 7. : V_{O1}(output 1)
- 8. : V_{CC}

Schematic

Maximum Ratings

	Characteristic	Symbol	Rating	Unit	
LED	Forward current(each channel)	rrent(each channel) (Note 1)		25	mA
	Pulse forward current (Each Channel)	(Note 2)	I _{FP}	50	mA
	Total pulse forward current (each channel)	(Note 3)	I _{FPT}	1	А
	Reverse voltage(each channel)		V _R	5	V
	Diode power dissipation (each channel)	(Note 4)	PD	45	mW
	Output current(each channel)		IO	8	mA
'n	Peak output current (each channel)		I _{OP}	16	mA
Detector	Supply voltage		V _{CC}	-0.5~15	V
۵	Output voltage(each channel)		Vo	-0.5~15	V
	Output power dissipation (each channel)	(Note 5)	PO	35	mW
Оре	erating temperature range	T _{opr}	−55~100	°C	
Stor	rage temperature range	T _{stg}	-55~125	°C	
Lea	d solder temperature(10s)**	T _{sol}	260	°C	
Isola (AC	Isolation voltage (AC, 1min., R.H.≤ 60%) (Note 7)			2500	Vrms

⁽Note 1) Derate 0.8mA above 70°C.

Recommended Operating Conditions

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V _{CC}	0	_	12	V
Forward current, each channel	IF	_	16	25	mA
Operating temperature	T _{opr}	-25	_	85	°C

⁽Note 2) 50% duty cycle, 1ms pulse width. Derate 1.6mA / °C above 70°C.

⁽Note 3) Pulse width 1µs, 300pps.

⁽Note 4) Derate 0.9mW / °C above 70°C.

⁽Note 5) Derate 1mW / °C above 70°C.

^{**2}mm below seating plane.

Electrical Characteristics Over Recommended Temperature (Ta = 0° C~70°C, unless otherwise noted)

Characteristic		Symbol	Test Condition		Min.	Typ.**	Max.	Unit
	TLP2530	CTR	I _F = 16mA, V _O = 0.4V V _{CC} = 4.5V, Ta = 25°C		7	30	_	%
Current transfer ratio	TLP2531	OIK	VCC = 4.3V, 1a = 23 G	(Note 6)	19	30	_	70
(each channel)	TLP2530	CTR	I _F = 16mA, V _O = 0.5V V _{CC} = 4.5V	(Note 6)	5	_		. %
	TLP2531	CIK			15	_	_	
Logic low output voltage	TLP2530	V _{OL}	I _F = 16mA, I _O = 1.1mA V _{CC} = 4.5V		_	0.1	0.4	V
(each channel)	TLP2531	VOL	I _F = 16mA, I _O = 2.4mA V _{CC} = 4.5V			0.1	0.4	V
Logic high output current (each channel)		Іон	$I_F = 0$ mA, $V_O = V_{CC} = 5.5$ V Ta = 25°C		_	3	500	nA
			I _F = 0mA, V _O = V _{CC} = 15V		_	_	50	μΑ
Logic low supply current		ICCL	I _{F1} = I _{F2} = 16mA V _{O1} = V _{O2} = Open V _{CC} = 15V		_	160		μА
Logic high supply current		Іссн	$I_{F1} = I_{F2} = 0mA$ $V_{O1} = V_{O2} = Open$ $V_{CC} = 15V$		_	0.05	4	μА
Input forward voltage (each channel)		V _F	I _F = 16mA, Ta = 25°C		_	1.65	1.7	V
Temperature coefficent of forward voltage(each channel)		ΔV _F / ΔTa	I _F = 16mA		_	-2	_	mV/°C
Input reverse breakdown voltage(each channel)		BV _R	IR = 10μA, Ta = 25°C		5	_	_	V
Input capacitance (each channel)		C _{IN}	f = 1MHz, V _F = 0		_	60		pF
Input-output insulation leakage current		I _{I-O}	Relative humidity = 45% t = 5s, V_{I-O} = 3000 V_{dc} Ta = 25°C	(Note 7)			1.0	μА
Resistance (input-output)		R _{I-O}	V _I -O = 500V _{dc}	(Note 7)		10 ¹²	_	Ω
Capacitance (input-output)		C _{I-O}	f = 1MHz	(Note 7)	_	0.6	_	pF
Input-input leakage current		I _{I-I}	Relative humidity = 45% t = 5s, V _{I-I} = 500V	(Note 8)	_	0.005	_	μА
Resistance (input-input)		R_{I-I}	V _I -I = 500V _{dc}	(Note 8)	_	10 ¹¹	_	Ω
Capacitance (input-iutput)		C _{I-I}	f = 1MHz	(Note 8)	_	0.25	_	pF

^{**}All typicals at Ta = 25°C.

Switching Characteristics (unless otherwise specified, Ta = 25°C, V_{CC} = 5V, I_F = 16mA)

Characteristic		Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit
Propagation delay time to logic low	TLP2530	t _{pHL} 1	R _L = 4.1kΩ		0.3	1.5	μs	
at output (each channel)	TLP2531		•	R _L = 1.9kΩ	_	0.2	0.8	μο
Propagation delay time to logic	TLP2530	t _{pLH}	1	R _L = 4.1kΩ	_	0.5	1.5	μs
high at output (each channel)	TLP2531		1	R _L = 1.9kΩ	_	0.3	0.8	
Common mode transient immunity at logic	TLP2530	- CM _H	2	$I_F = 0$ mA, $V_{CM} = 400V_{p-p}$ R _L = 4.1k Ω	_	1500	_	· V / µs
high level output (each channel, Note 9)	TLP2531			2	$I_F = 0mA, V_{CM} = 400V_{p-p}$ $R_L = 1.9k\Omega$	_	1500	_
Common mode transient immunity at logic	TLP2530		2	$V_{CM} = 400V_{p-p}$ R _L = 4.1k Ω , I _F = 16mA	_	-1500	_	V / µs
low level output (each channel, Note 9)	TLP2531	CML		$V_{CM} = 400_{p-p}$ R _L = 1.9k Ω , I _F = 16mA	_	-1500	_	
Bandwidth (each channel, Note 10)		BW	3	R _L = 100Ω	_	2	_	MH_Z

- (Note 6) DC current transfer ratio is defined as the ratio of output collector current, I_{O,} to the forward LED input current, I_{F,} times 100%.
- (Note 7) Device considered a two–terminal device: Pins 1, 2, 3 and 4 shorted together and pins 5, 6, 7, and 8 shorted together.
- (Note 8) Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
- (Note 9) Common mode transient immunity in logic high level is the maximum tolerable (positive) dVcm / dt on the leading egde of the common mode pulse, Vcm, to assure that the output will remain in a logic high state(i.e., $V_O > 2.0V$).

Common mode transient immunity in logic low Level is the maximum tolerable (negative) dVcm / dt on the trailing edge of the common mode pulse signal, Vcm, to assure that the output will remain in logic low state(i.e., $V_O > 0.8V$).

(Note 10) The frequency at which the ac output voltage is 3dB below the low frequency asymptote.

Test Circuit 1: Switching Time, tpHL, tpLH

Test Circuit 2: Transient Immunity And Typical Waveform

Test Circuit 3: Frequency Responce

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes
 are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the
 products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with
 domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.

8

The information contained herein is subject to change without notice.