Linear Equations Number of operations

Linear Systems

Gabriel Cramer

Gauss Elimination

Carl Friedric Gauss

Gauss – Jordan Elimination

Camille Jordan

LU Factorization

Norms and Conditions

$$A = [A] = a_{ij} = a_i$$

with a_i is column i

Addition and subtraction

$$A \pm B = C$$

$$a_{ij} \pm b_{ij} = c_{ij}$$

$$A + B = B + A$$

$$[A + B] + C = [A] + [B + C]$$

Multiplication

$$A * B = C$$

With A = [n, k] and B = [k, m], then C = [n, m] and

$$c_{ij} = \sum_{s=1}^{k} a_{is} b_{sj}$$

sth column

$$c_{ij} =$$

Distribution: A * (B + C) = A * B + A * C

Division

For
$$A * B = I$$
,
then $B = A^{-1}$. Matix B is **inverse** of matrix A

For
$$A * B = C$$
,
to determine B , mulitipy both sides by inverse of A , A^{-1}

$$(A^{-1}*A)*B = A^{-1}*C$$
 With $A^{-1}*A = I$, and $I*B = B$, then
$$B = A^{-1}*C$$

Linear equations-
$$n$$
 linear equations for n unknown x_i . With $x_i = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$

The linear equations will be in the form

$$\begin{cases} a_{11} x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21} x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{31} x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ \dots & \dots & \dots \\ a_{n1} x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n \end{cases}$$

The inhomogeneous vector
$$b$$
 has the form $b_i = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$

General matrix form and Solution

$$Ax = b$$

$$x = A^{-1}b$$

Problem(?)

Cramer's Rule Ax = bThen $x_{j} = \frac{|A_{sj}|}{|A|}$ $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{24} & \dots & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & a_{34} & \dots & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1}a_{n2} & a_{n3} & a_{n4} & \dots & \dots & a_{nn} \end{bmatrix}$

|A| is determinant of A and A_{sj} is defined as associated j matrix of A A_{sj} is matrix A with th jth column substituted by inhomogeneous vector b.

$$A_{sj} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \dots & b_1 & \dots \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} \dots & b_2 & \dots & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & b_3, & \dots & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1}a_{n2} & a_{n3} & \dots & b_n & \dots & \dots & a_{nn} \end{bmatrix}$$

$$J \text{th column}$$

Problem with Cramer's rule(?)
How many operations?

Properties of linear equations

$$Ax = b \text{ or } \sum_{j=1}^{n} a_{ij} x_j = b_i$$

1- Scaling- any equation can be multiplied by an arbitrary constant α without changing values of unknown vector x.

$$\sum_{j=1}^{n} \alpha \ a_{ij} x_j = \alpha b_i$$

2- Switching – interchanging any two rows, and in solving the equations, it is referred to as pivoting.

$$\begin{cases} a_{11} x_1 + a_{12}x_2 + a_{13}x_3 + \dots a_{1n}x_n = b_1 \\ a_{21} x_1 + a_{22}x_2 + a_{23}x_3 + \dots a_{2n}x_n = b_2 \\ a_{31} x_1 + a_{32}x_2 + a_{33}x_3 + \dots a_{3n}x_n = b_3 \\ & \dots & \dots \\ a_{n1} x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots a_{nn}x_n = b_n \end{cases}$$

3- Linear Combinations

$$\sum_{j=1}^{n} \alpha_1 a_{1j} x_j = \alpha_1 b_1$$

$$\sum_{j=1}^{n} \alpha_2 a_{2j} x_j = \alpha_2 b_2$$

Summing up:

$$\sum_{j=1}^{n} (\alpha_1 a_{1j} + \alpha_2 a_{2j}) x_j = \alpha_1 b_1 + \alpha_2 b_2$$

This combination is called elimination procedure

Elimination Method

Using rows and their linear combinations to eliminate unknown variable x, as shown in example below:

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1$$
 $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2$ $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3$ R_3

1- eliminate x_1 from rows 2 by forming $R_2 - \frac{a_{21}}{a_{11}}R_1$. The ratio $\frac{a_{21}}{a_{11}}$ or its more general form $\frac{a_{ij}}{a_{ii}}$ is em (elimination multiplier - m_{ij}).

$$(a_{22} - \frac{a_{21}}{a_{11}})x_2 + (a_{23} - \frac{a_{21}}{a_{11}})x_3 = (b_2 - \frac{a_{21}}{a_{11}}b_1)$$
 R'_2

2- Repeat step 2 for row 3 to eliminate x_2 using the above equation by forming $R_3 - \frac{a_{32}}{(a_{22} - \frac{a_{21}}{a_{11}})} R'_2$

$$(a_{33} - \frac{a_{32}}{(a_{22} - \frac{a_{21}}{a_{11}})}x_3) = b_3 - \frac{a_{32}}{(a_{22} - \frac{a_{21}}{a_{11}})}(b_2 - \frac{a_{21}}{a_{11}}b_1)$$

3- x_3 is directly obtained from the above equation and successive back substitutions will produce x_2 and x_1 .

Number of operations (?)

Notes

1- A is augmented by vector b in the form A|b

$$A|b = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{33} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$$

2- Modified equations can be written with modified coefficients in shorter forms

$$R'_2$$
 $a'_{22} x_2 + a'_{23} x_3 = b'_2$
or $[a'_{22} a'_{23} | b'_2]$

3- Multiple *b* vectors –

Augment matrix A with all b vectors

$$A|b = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 & c_1 & d_1 & \dots \\ a_{21} & a_{22} & a_{33} & b_2 & c_2 & d_2 & \dots \\ a_{31} & a_{32} & a_{33} & b_3 & c_3 & d_3 & \dots \end{bmatrix}$$

And proceed with elimination method.

4- Pivoting and switching when a_{ii} is zero or very small. Pivoting and switching should be automatic, not pre-selected, in computer routines. Gauss Elimination

Gauss Elimination

To automate elimination method with pivoting and scaling with coefficient matrix A and inhomogeneous vector b, define an order vector o $(n \times 1)$ for rows which is initially (1,2,3,...,n).

1- In column 1, the largest coefficient be row k. Pivot row k to be the first row, with order vector will be o = (k, 2, 3, ..., 1, ..., n)

- 2- Eliminate x_k from (n-1) equations
- 3- In modified (n-1) equations, pivot and eliminate x_k , and o=(k,k',3,...,1,...n).
- 4- Upon completion, matrix A is transformed to an upper triangular matrix that could be solved for x direct backward substitution.
- 5- Number of operations(?)

Gauss – Jordan Elimination

This elimination procedure will find A^{-1} and x

1- Form an augmented matrix in the form

$$[A \mid b \mid I]$$

2- By elimination, transform *A* to *I* so that we have

$$[A \mid b \mid I] \rightarrow [I \mid b' \mid A']$$

$$3-A' = A^{-1}$$
 and $b' = x$

4- No. of operations (?).

LU Factorization

$$L = \begin{bmatrix} a_{11} & 0 & 0 & 0 & \dots & \dots & 0 \\ a_{21} & a_{22} & 0 & 0 & \dots & \dots & 0 \\ a_{31} & a_{32} & a_{33} & 0 & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & \dots & a_{nn} \end{bmatrix} \qquad U = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & a_{24} & \dots & \dots & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & \dots & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} & a_{45} & a_{4n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & \dots & a_{nn} \end{bmatrix}$$

For linear equation Ax = b, decompose matrix A as product of L and U

$$A = LU$$
$$LUx = b$$

Multiply both sides with L^{-1}

$$L^{-1}LUx = L^{-1}b \rightarrow IUx = L^{-1}b$$

With IU = U and set $b' = L^{-1}b$

$$Ux = b'$$

This equation solved for x with direct backward substitution.

Factorization Procedure

For Ax = b, use Gauss elimination to transform matrix A into U.

In this transformation, keep the elimination multipliers m_{ij} and

$$l_{ij} = m_{ij}$$
.

This procedure is Doolittle factorization and with steps on the left, x can be determined.

<u>MatLab</u>

For A is defined [l, u] = lu(A)

For A and P defined [l, u, P] = lu(A) with PA = LU

More on determinants

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

For which del [A] = $|A| = a_{11} a_{12} - a_{12} a_{21}$

1- Pivot matrix A to A^p

$$A^p = \begin{bmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{bmatrix}.$$

$$|A^p| = a_{12}a_{21} - a_{11} a_{12} = -|A|$$

Pivoting by *i* rows, $|A^p| = (1)^i |A|$

2- Multiply A by a constant α

$$\alpha A = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} \\ a_{21} & a_{22} \end{bmatrix} \rightarrow |\alpha A| = \alpha |A|$$

3- Set
$$R_1' = R_1 + \lambda R_2$$

$$R_1' = \begin{bmatrix} a_{11} + \lambda a_{21} & a_{12} + \lambda a_{21} \\ a_{21} & a_{22} \end{bmatrix}$$

$$|R_1'| = |A|$$

Solving Tridiagonal Matrix

$$T = \begin{bmatrix} a_{11} & a_{12} & 0 & 0 & \dots & \dots & 0 \\ a_{21} & a_{22} & a_{23} & 0 & \dots & \dots & 0 \\ 0 & a_{32} & a_{33} & a_{34}, \dots & \dots & 0 \\ & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & a_{(n-1)n} & a_{nn} \end{bmatrix}$$

- 1- Gauss elimination to make it zero the lowest diagonal elements to make T a U. Back substitution to find x. In this transformation, the vector b should also be modified.
- 2- Use Gauss elimination to calculate em's and decompose T to L and U.
- 3- No. of operations (?)
- 4- T can be stored as a $3 \times n$ matrix to save memory space.

$$T = \begin{bmatrix} - & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{34} \\ & \cdots & \cdots & \cdots \\ & \vdots & \vdots & \vdots \\ a_{(n-1)n} & a_{nn} & - \end{bmatrix}$$

Norms and conditions

For *A* a matrix and *b* a vector

Norm of
$$A = ||A||$$

Norm of $b = ||b||$

For *b*

$$\begin{aligned} ||b||_1 &= \sum_{i=1}^n |x_i| \\ ||b||_2 &= \left[\sum_{i=1}^n x_i^2\right]^{1/2} \\ ||b||_{\infty} &= \max_{i=1,n} x_i \end{aligned}$$

For A

$$\begin{split} \|A\|_1 &= \max_{j=1,n} \sum_{i=1}^n \left| a_{i,j} \right| \quad \text{columns} \\ \|A\|_2 &= \max_{i=1,n} \sum_{i=1}^n \left| a_{i,j} \right| \quad \quad \text{rows} \\ \|A\|_3 &= \min_{i=1,n} \lambda_i \quad \quad \text{Special norm} \\ \|A\|_e &= \left[\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2 \right]^{1/2} \quad \text{Euclidean norm} \end{split}$$

$$\lambda_i = n$$
 eigenvalues of A

Norm Properties

$$\begin{split} \|A\| &\geq 0 & \text{zero when } A = 0 \\ \|kA\| &= k\|A\| \\ \|A+B\| &\leq \|A\| + \|B\| \\ \|AB\| &\leq \|A\| \times \|B\| \end{split}$$

Conditioning number C(A)

For linear problem Ax = b, conditioning number defined as

$$C(A) = ||A|| \, ||A^{-1}||$$

A variation of x as δx in terms of variation of matrix A as δA

$$\frac{\|\delta x\|}{\|x\|} \le C(A) \frac{\|\delta A\|}{\|A\|}$$

C(A) scales δx with δA

$$C(A) << 1$$
 problem is well-conditioned $C(A) \gg 1$ problem is ill-conditioned

