第9章 S区元素-----氢、碱金属和碱土金属

9.1 氢

9.2 碱金属和碱土金属

9.2 碱金属和碱土金属

- 9.2.1 碱金属和碱土金属的通性
- 9.2.2 碱金属和碱土金属的一般制备方法
- 9.2.3 碱金属和碱土金属的化合物
- 9.2.4 锂和铍的特殊性、对角线规则

表9-2 碱金属的性质

元素	锂 Li	钠 Na	钾 K	铷 Rb	铯 Cs
原子序数	3	11	19	37	55
价电子层结构	$2s^1$	$3s^1$	$4s^1$	5s ¹	$6s^1$
氧化值	+1	+1	+1	+1	+1
熔点/°C	180.6	97.8	63.7	39	28.8
沸点/°C	1336	881.4	765.5	694	678.5
金属原子半径/pm	152	185	227.2	247.5	265.4
M+离子半径/pm	60	95	133	148	169
第一离子能/kJ·mol-1	520.2	495.8	418.8	403.0	272.5
第二离子能/kJ·mol-1	7298	4563	3051	2632	2422
电负性	1.0	0.9	0.8	0.8	0.7

表9-3 碱土金属的性质

元素	铍 Be	镁 Mg	钙 Ca	锶 Sr	钡 Ba
原子序数	4	12	20	38	56
价电子层结构	$2s^2$	$3s^2$	$4s^2$	$5s^2$	$6s^2$
氧化值	+2	+2	+2	+2	+2
熔点/°C	1277	650	850	769	725.1
沸点/°C	2484	1105	1487	1381	1849
金属原子半径/pm	110	160	197.3	215.1	217.3
M ²⁺ 离子半径/pm	31	65	99	113	135
第一离子能/kJ·mol-1	899.4	737.9	589.8	549.5	502.9
第二离子能/kJ·mol-1	1757	1451	1145	1064	965.3
电负性	1.5	1.2	1.0	1.0	0.9

9.2.1 碱金属和碱土金属的通性

IIA IA 电离能 金属性 原子半径增大 Be Li Na Mg 电负性减 还原性增强 K Ca Sr Rb Ba Cs

原子半径减小

电离能、电负性增大

金属性、还原性减弱

单质的物理性质:

有金属光泽

密度小

硬度小

熔点低

导电、导热性好

9.2.1 碱金属和碱土金属的通性

- a、与氧反应
- b、与氢反应
- c、与水反应

a、与氧反应

单质在空气中燃烧,形成相应的氧化物:

Li₂O Na₂O₂ KO₂ RbO₂ CsO₂

BeO MgO CaO SrO BaO₂

b、碱金属和钙、锶、钡能与H₂在高温直接化合, 生成离子型氢化物

$$2M + H_2 = 2MH$$

 $M + H_2 = MH_2 (M = Ca, Sr, Ba)$

介于离子型与共价型之间的氢化物:IIA族的Be、Mg

c、与水反应

碱金属与水的反应为:

$$2M(s) + 2H_2O(1) \rightarrow 2M^+(aq) + 2OH^-(aq) + H_2(g)$$

同族激烈程度增加

同周期激烈程度下降

储藏:

Na、K保存于煤油中, Li 浸在液体石蜡中, 或封闭在固体石蜡中

碱土金属与水的反应:

Be在水气中反应 Mg在热水中反应 钙 锶 钡与冷水反应

Ca

9.2.2 碱金属和碱土金属的一般制备方法

1. 电解法

电解熔盐的方法还可制备锂、铍、镁、钙等金属单质。

2. 热还原法

$$KCl(l) + Na(l) = NaCl(l) + K(g)$$

除了用活泼金属作还原剂外,也有用炭作还原剂的。

$$MgO + C \stackrel{2000C}{=} CO + Mg$$

Ca、Sr、Ba可用铝热剂法制取

$$3$$
SrO + 2 Al $==$ 3 Sr + Al₂O₃

9.2.3 碱金属和碱土金属的化合物

- 1氢化物
- 2 氧化物
- 3 氢氧化物
- 4 盐类

1氢化物

$$2M + H_2 = 2MH$$

 $M + H_2 = MH_2 (M = Ca, Sr, Ba)$

1)与H₂O反应时与H₂O中H+结合生成H₂

$$NaH + H_2O = NaOH + H_2$$

 $Na^+ + H^- + H^+OH^- = H_2 + Na^+ + OH^-$

这类氢化物可作为氢气发生剂

2) 还原性, $E^{\theta}(H_2/H^-) = -2.25V$, 常作还原剂

$$4NaH + TiCl_4 = Ti + 4NaCl + 2H_2$$

$$LiAlH_4 + 4H_2O = Al(OH)_3 + LiOH + 4H_2\uparrow$$

$$3\text{LiAlH}_4 + 4\text{BCl}_3 = 2\text{B}_2\text{H}_6 + 3\text{AlCl}_3 + 3\text{LiCl}$$

2 氧化物

正常氧化物(其中含 O²- 离子)

过氧化物(其中含 O_2^{2-} 离子)

超氧化物(其中含 O_2^- 离子)

臭氧化物(其中含 O_3^- 离子)

2 氧化物

表 9-5 碱金属和碱土金属的氧化物

	碱金属	碱土金属
正常氧化物	M_2O	MO
过氧化物	M_2O_2	MO ₂ (除Be、Mg外)
超氧化物	MO ₂ (除Li外)	MO ₄ (除Be、Mg外)
臭氧化物	MO ₃ (除Li、Na外)	

(1) 正常氧化物 —— 锂和所有IIA族金属元素在空气中燃烧形成

$$4Li + O_2 = 2Li_2O$$

其它IA族氧化物可由其过氧化物或硝酸盐与金属作用制得

$$Na_2O_2 + 2Na = 2Na_2O$$
 $2KNO_3 + 10K = 6K_2O + N_2$

碱土金属氧化物也可以通过它们的碳酸盐或硝酸盐的热分解而制得

$$CaCO_3 = CaO + CO_2$$

(2) 过氧化物—— 碱金属和钙、锶、钡都可形成过氧化物(peroxide)

Na2O2可用作氧化剂、漂白剂和氧气发生剂

氧化钡在空气中或氧气中加热到500 ℃~700 ℃, 就转变为过氧化钡:

$$2BaO + O_2 = 2BaO_2$$

$$BaO_2 + H_2SO_4 = BaSO_4 + H_2O_2$$

(3) 超氧化物和臭氧化物

钾、铷、铯在过量氧气中燃烧,可制得黄色至橙色的固体超氧化物(superoxide) MO_2 。

超氧化钾KO2具有强氧化性,与水、二氧化碳反应产生氧气:

$$2KO_2 + 2H_2O = O_2 + 2K^+ + 2OH^- + H_2O_2$$

$$4KO_2 + 2CO_2 = 2K_2CO_3 + 3O_2$$

干燥的K、Rb、Cs的氢氧化物固体与臭氧反应可生成臭氧化物如:

$$3KOH(s) + 2O_3(g) = 2KO_3(s) + KOH \cdot H_2O(s) + \frac{1}{2}O_2(g)$$

$$2KO_3 = 2KO_2 + O_2$$

3 氢氧化物

注意: 碱性减弱 两性 $Be(OH)_{2}$ $Be(OH)_2$ LiOH 碱 中强碱 NaOH $Mg(OH)_2$ LiOH 性 $Ca(OH)_2$ KOH $Mg(OH)_2$ 中强碱 增 $Sr(OH)_2$ RbOH 强 s区其他元素的氢氧化物都是强碱 $Ba(OH)_2$ CsOH $Be(OH)_2 + 2H^+ = Be^{2+} + 2H_2O$ $Be(OH)_{2} + 2OH^{2} - Be(OH)_{4}^{2}$

R-OH 规则

含氧酸、氢氧化物都可用简化通式R—O—H表示。

在水中可有两种解离方式:

阳离子Rⁿ⁺所带电荷及离子半径

 H^+

R-OH 规则

离子势
$$\varphi = \frac{\mathbf{R}^{n+}$$
阳离子的电荷 $= \frac{z}{r}$

当 R^{n+} 离子的电荷数小,半径大, ϕ 值小时,R—O键比O—H键弱,ROH呈碱性;当 R^{n+} 离子的电荷数大,半径小, ϕ 值大时,R—O键比O—H键强,ROH呈酸性。

R-OH 规则

(R的半径以pm为单位)

$$\sqrt{\phi} < 0.22$$

R-OH 呈碱性

$$\sqrt{\phi} \in 0.22 \sim 0.32$$
 R-OH呈两性

$$\sqrt{\phi} > 0.32$$

R-OH呈酸性

表9-6 IA,IIA族Rⁿ⁺的√φ 及M(OH)_n的酸碱性

MOH	LiOH	NaOH	KOH	RbOH	CsOH
\mathbb{R}^{n+}	Li^+	Na^+	K^+	Rb^+	Cs^+
r/pm	60	95	133	148	169
$\sqrt{\phi}$	0.13	0.10	0.09	0.08	0.08
酸碱性	中强碱	•	强	碱 ———	
$M(OH)_2$	$Be(OH)_2$	$Mg(OH)_2$	Ca(OH) ₂	$Sr(OH)_2$	Ba(OH) ₂
\mathbb{R}^{n+}	$\mathrm{Be^{2+}}$	Mg^{2+}	Ca^{2+}	Sr^{2+}	Ba ²⁺
r/pm	31	65	99	113	135
$\sqrt{\phi}$	0.25	0.18	0.14	0.13	0.12
酸碱性	两性	中强碱	强碱	强碱	强碱

结论

同一周期中,自左至右,R的电荷 \uparrow , $r\downarrow$, 使 ϕ 值趋于 \uparrow , 氢氧化物从碱性过渡到酸性;

同一主族元素,离子的最外层电子构型相同,电荷也相同,从上到下,离子半径↑,*ϕ*值↓,因而氢氧化物碱性增强。

```
LiOHNaOHKOHRbOHCsOH中强强强强强Be(OH)2Mg(OH)2Ca(OH)2Sr(OH)2Ba(OH)2两性中强强强强
```

(箭头指向)碱性增强,溶解度增大。

4 盐类

(1) 性质

A. 绝大多数盐都是离子化合物。

碱金属和碱土金属的盐类大多数是离子化合物,熔点较高,熔化时能导电,在水中完全解离,离子都是无色的,有色的盐一般都是由负离子带有颜色而引起的。

锂和铍的某些盐类表现出一定的共价性。如LiCl和BeCl₂可溶于酒精、乙醚等溶剂中。

B. 焰色反应

物质在灼烧时使火焰呈特征颜色的性质称焰色反应(flame color test),利用焰色反应可检验这些元素的存在。

C. 热稳定性

碱金属碳酸盐(除Li₂CO₃外)可熔化而不发生分解,而碱土金属碳酸盐在常温下稳定,但强热时均可分解为相应的金属氧化物和二氧化碳。

$$MCO_3(s) \stackrel{\Delta}{=\!=\!=} MO(s) + CO_2(g)$$

碱土金属碳酸盐	$MgCO_3$	CaCO ₃	SrCO ₃	BaCO ₃
分解温度	540 °C	900 °C	1290 °C	1360 °C

表9-8 IIA族碳酸盐分解温度的估算*

碳酸盐	$\frac{\Delta_{\rm r} H_{\rm m}^{\theta}}{{\rm kJ}\cdot {\rm mol}^{-1}}$	$\frac{\Delta_{r}S_{m}^{\theta}}{kJ \cdot mol^{-1} \cdot K^{-1}}$	$\frac{T\Delta_{\rm r}S_{\rm m}^{\theta}}{\rm kJ \cdot mol^{-1}}$ (298K)	$\frac{\Delta_{\rm r} G_{\rm m,298}^{\theta}}{{\rm kJ \cdot mol}^{-1}}$	$\Delta_{r}G_{m,T}^{\theta} = 0$ (平衡态) $T(分解温度)$ $\approx \frac{\Delta_{r}H_{m}^{\theta}}{\Delta_{r}S_{m}^{\theta}}/K$
$MgCO_3$	100.7	0.175	52.2	48.5	575
CaCO ₃	179.2	0.160	47.7	131.5	1120
SrCO ₃	234.6	0.171	50.9	183.7	1372
BaCO ₃	271.5	0.174	51.8	219.7	1560

^{*}由于忽略了温度对 $\Delta_{\mathbf{r}}H_{\mathbf{m}}^{\theta}$ 、 $\Delta_{\mathbf{r}}S_{\mathbf{m}}^{\theta}$ 的影响,所以计算结果比较粗略。

D. 溶解度

1、碱金属盐:大多易溶于水,只有少数几种难溶于水;

难溶的碱金属盐:

一些Li盐,锑酸二氢钠Na H_2SbO_4 ,醋酸铀酰锌钠 Na $Ac\cdot Zn(Ac)_2\cdot 3UO_2(Ac)_2\cdot 9H_2O$,偏铋酸钠Na BiO_3 ,钾、铷、铯的高氯酸盐,氯铂酸盐(其中铷和铯盐比相应的钾盐还要难溶)。

2、碱土金属盐:大多是难溶的,

硝酸盐、氯化物是可溶的,

碳酸盐、草酸盐和硫酸盐等也都是难溶的。

硫酸盐、铬酸盐的溶解度按Ca—Sr—Ba的顺序降低。

碱土金属盐类溶解度小的性质常应用于分析化学和试剂生产中

$$Mg^{2+} + NH_3 \cdot H_2O + HPO_4^{2-} = MgNH_4PO_4 \downarrow + H_2O$$

$$Ca^{2+} + C_2O_4^{2-} = CaC_2O_4 \downarrow$$

$$Ba^{2+} + SO_4^{2-} = BaSO_4 \downarrow$$

将所得沉淀灼烧,MgNH4PO4和CaC2O4分解:

$$2MgNH_4PO_4 \stackrel{\Delta}{=\!=\!=} Mg_2P_2O_7 + 2NH_3 + H_2O$$

(焦磷酸镁)

$$CaC_2O_4 \stackrel{\Delta}{=\!=\!=} CaO + CO + CO_2$$

磷酸铵镁

根据所得Mg₂P₂O₇、CaO和BaSO₄的质量即可计算镁、钙、钡的含量。

利用锶、钡铬酸盐溶解度的差别分离Ba2+离子和Sr2+离子

已知
$$K_{\rm sp}^{\theta}({\rm BaCrO_4}) = 1.2 \times 10^{-10}, K_{\rm sp}^{\theta}({\rm SrCrO_4}) = 2.2 \times 10^{-5}$$

先沉淀的是: BaCrO₄, 当Ba²⁺离子完全沉淀时:

$$[\text{CrO}_4^{2-}] = \frac{K_{\text{sp}}^{\theta}(\text{BaSO}_4)}{[\text{Ba}^{2+}]} = \frac{1.2 \times 10^{-10}}{10^{-5}} = 1.2 \times 10^{-5} \,\text{mol} \cdot \text{L}^{-1}$$

假定Sr²⁺离子浓度为0.1mol·L⁻¹,则此时:

$$[Sr^{2+}][CrO_4^{2-}] = 0.1 \times 1.2 \times 10^{-5} = 1.2 \times 10^{-6} < K_{sp}^{\theta}(SrCrO_4) = 2.2 \times 10^{-5}$$

因此可使Ba²⁺、Sr²⁺两种离子分离。

(2) 某些重要的盐

A. 碳酸盐

碳酸钠又称苏打(soda),俗称纯碱,是基本化工产品之一。 常用索尔维(E Solvay,比利时工业化学家)法或氨碱法生产。

索尔维(E Solvay,比利时工业化学家)法或氨碱法

优点:原料经济,能连续生产,副产物NH3和CO2可循环使用。

缺点:大量的CaCl2用途不大,致使NaCl随之损耗,食盐利用率不高

 $(\sqrt{270\%})$.

侯氏制碱法(Hou's process),又称联合制碱法或联碱法

工艺上形成一个闭路循环,物尽其用,基本无污染物排出。

制取碳酸钾: $CO_2 + 2KOH \longrightarrow K_2CO_3 + H_2O$

碳酸钙: $CaCO_3 + 2H^+ = Ca^{2+} + H_2O + CO_2\uparrow$ $CaCO_3 + 2HAc = Ca(Ac)_2 + H_2O + CO_2\uparrow$

 $CaCO_3 + CO_2 + H_2O \rightleftharpoons Ca(HCO_3)_2$

 $Ca(HCO_3)_2 \rightleftharpoons CaCO_3 + CO_2 + H_2O$

B. 氯化物

氯化钠可自海水或盐湖中晒制而得,这样直接得到的食盐, 其中含有硫酸钙和硫酸镁等杂质而被称做粗盐。

$$Ca^{2+} + CO_3^{2-} = CaCO_3 \downarrow$$

 $Mg^{2+} + 2OH^{-} = Mg(OH)_2 \downarrow$
 $Ba^{2+} + SO_4^{2-} = BaSO_4 \downarrow$

氯化镁MgCl₂·6H₂O是无色晶体,无水MgCl₂是生产金属镁的主要原料。MgCl₂可从光卤石KCl·MgCl₂·6H₂O或海水中制取。

氯化钙: 索尔维法制碳酸钠的副产品。

从水溶液中结晶出来为六水化合物CaCl₂·6H₂O,在加热时失水,得到无水氯化钙。

无水氯化钙可用做干燥剂,但不能用来干燥NH₃,因为它将与氨作用生成化合物CaCl₂·6NH₃。

氯化钡:

将硫酸钡、碳和氯化钙的混合物加热制得。

$$BaSO_4 + 4C \longrightarrow BaS + 4CO$$

$$BaS + CaCl_2 = BaCl_2 + CaS$$

用水溶出BaCl₂,经蒸发结晶得BaCl₂·2H₂O无色晶体。

C. 硫酸盐

硫酸钠:以硫酸处理氢氧化钠或碳酸钠可制硫酸钠(sodium sulfate),用于玻璃、纸张、染料等制造中。

当温度低于32.4°C硫酸钠结晶从溶液中析出时,含有十个结晶水 Na_2SO_4 · $10H_2O$,这个水合物叫芒硝(glaubers salt)。如果温度高于32.4°C,即析出无水盐。

十水合物的溶解度随温度升高而增加,无水物的溶解度随温度的升高而下降,32.4°C叫转变温度,这个转变温度非常恒定,所以可作校正温度计的一个固定温度点。

硫酸钾可从天然盐矿制得,它可用作肥料及用于明矾制造上。

硫酸钙的二水合物 $CaSO_4 \cdot 2H_2O$ 叫石膏,加热到 120° C左右,部分失水成为 $CaSO_4 \cdot \frac{1}{2}H_2O$ 叫烧石膏(plaster):

$$CaSO_4 \cdot 2H_2O = CaSO_4 \cdot \frac{1}{2}H_2O + 1\frac{1}{2}H_2O$$

烧石膏细粉与少量水混合,可逐渐硬化并膨胀,故用来铸造模型。

硫酸钡:是钡存在于自然界的主要形式(重晶石BaSO₄),硫酸钡是制造其他钡盐的原料。

一般都是在高温用C把它还原为BaS,再由BaS制造其他钡盐

$$BaSO_4 + 4C \longrightarrow BaS + 4CO$$

硫酸钡也可做白色涂料,它是唯一无 毒的钡盐而又能强烈地吸收X射线, 因而用于肠胃病检查中。

D. 硝酸盐——以硝酸处理氢氧化物或碳酸盐可得相应的硝酸盐

硝酸钠又称智利硝石(sodium nitrate or chile nitre)。

硝酸钾是用硝酸钠与氯化钾复分解反应来制得:

$$NaNO_3 + KCl = NaCl + KNO_3$$

钠和钾的硝酸盐可用作肥料,硝酸钾用于生产黑火药。钠盐在空气中容易潮解,所以在制造黑火药时,不能用NaNO3代替KNO3。

钙、锶、钡的硝酸盐受热分解为亚硝酸盐和氧气,火焰呈鲜艳 的色彩,故用于烟火或制造红、绿信号弹。

9.2.4 锂和铍的特殊性、对角线规则

在周期系中,某元素的性质和它左上方或右下方的元素的相似性,称为对角线规则 (diagonal rule)。除锂和镁以外,铍和IIIA族的铝、IIIA族的硼与 IVA族的硅,也存在着对角关系。

锂及其化合物的性质与碱金属有较大的区别,而与镁却颇为相似。

如:

- (1) 单质与氧作用生成正常氧化物;
- (2) 氢氧化物均为中强碱,且水中溶解度不大,这些氢氧化物在加热时都分解为相应氧化物Li₂O和MgO;而其他碱金属氢氧化物在高温下熔化挥发而不分解;

- (3) 碱金属碳酸盐如 Na_2CO_3 , K_2CO_3 加热熔化不分解,而 Li_2CO_3 和 $MgCO_3$ 一样,加热时均分解为相应氧化物和二氧化碳;
- (4) 碱金属的氟化物、碳酸盐、磷酸盐等易溶于水,而锂和镁的这些相应化合物则难溶于水;
- (5) 硝酸锂热分解产物与硝酸镁类似:

$$4LiNO_3 = 2Li_2O + 4NO_2\uparrow + O_2\uparrow$$
$$2Mg(NO_3)_2 = 2MgO + 4NO_2\uparrow + O_2\uparrow$$

而硝酸钠等则加热分解为相应亚硝酸盐和氧气。

$$2\text{NaNO}_3 = 2\text{NaNO}_2 + 3\text{O}_2\uparrow$$