多维随机变量及其概率分布

• 二维随机变量

假设E是随机试验, Ω 是样本空间,X,Y是定义在 Ω 的随机变量

分布函数:

$$F(x,y) = P\{X < x, Y < y\}$$
关于 X , Y联合分布函数

分布函数性质:

- 1. $0 \le F(x, y) \le 1$
- 2. F(x,y) 当y不变 $x_1 \le x_2$ 时 $F(x_1,y) \le F(x_2,y)$

3.
$$F(-\infty, y) = 0, F(x, -\infty) = 0, F(-\infty, -\infty) = 0$$
. $F(+\infty, +\infty) = 1$

4.
$$P\{x_1 < X \le x_2, \ y_1 < Y \le y_2\} = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0$$

二维离散型的联合分布及边缘分布

X\Y	1	2	3
1	0	$\frac{1}{2}$	1/8
2	$\frac{1}{8}$	1/8	1/8

关于X、Y的边缘分布:横纵求和

二维连续分布函数与密度函数关系

f(s,t)为联合密度函数

$$F(x,y)=P\{X\leq x,\ Y\leq y\}=\int_{-\infty}^{x}\int_{-\infty}^{y}f(s,t)dsdt$$

。 二维边缘分布函数

变量X取定点x,变量Y取任意值,得到对X的边缘分布函数 $F_X(x)$

$$F_X(x) = P\{X \le x\} = F(x, +\infty) = P\{X \le x, Y \le +\infty\}$$
 $F_X(x)$: X的边缘分布函数

$$F_Y(y) = P\{Y \le y\} = F(+\infty, y) = P\{X \le \infty, Y \le y\}$$
 $F_X(x)$: X的边缘

。 二维边缘密度函数与联合密度函数

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,t) dt = \int_{-\infty}^{+\infty} f(x,y) dy$$

$$f_Y(x) = \int_{-\infty}^{+\infty} f(s,y) dt = \int_{-\infty}^{+\infty} f(x,y) dx$$

。 二维均匀分布

当
$$D$$
是矩形时: $f(x,y)=egin{cases} rac{1}{(b-a)(d-c)} & a\leq x\leq b, c\leq y\leq d \\ 0 &$ 其他
$$= D$$
是圆形区域时: $f(x,y)=egin{cases} rac{1}{\pi R^2} & x^2+y^2\leq R^2 \\ 0 &$ 其他

随机变量的独立性

判断随机变量的充要独立条件

$$f(x,y) = f_X(x)f_Y(y)$$

$$F(x,y) = F_X(x)F_Y(y)$$

二维离散型独立性判断

X\Y	0	1
0	0.2	0.2
1	0.2	0.4

其横纵坐标边缘概率之和的乘积等于其坐标上值则独立

二维连续性随机变量函数分布

通过密度函数求分布函数(积分)