1

ASSIGNMENT 3

EE24BTECH11003 - Akshara Sarma Chennubhatla

D: MCQs with One or More than One Correct

- 3) The probability that at least one of the events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then Pr(A) + Pr(B) is (1987 - 2Marks)
 - a) 0.4
- b) 0.8
- c) 1.2
- d) 1.4

e) none

(Here \overline{A} and \overline{B} are the complements of A and B, respectively).

- 4) For two given events A and B, $Pr(A \cap B)$ (1988 - 2Marks)
 - a) not less than Pr(A) + Pr(B) 1
 - b) not greater than Pr(A) + Pr(B)
 - c) equal to $Pr(A) + Pr(B) Pr(A \cup B)$
 - d) equal to $Pr(A) + Pr(B) + Pr(A \cup B)$
- 5) If E and F are independent events such that 0 < Pr(E) < 1 and 0 < Pr(F) < 1, then(1989 - 2Marks)
 - a) E and F are mutually exclusive
 - b) E and F^c (the complement of the event F) are d) $\Pr(E|\overline{F}) + \Pr(\overline{E}|\overline{F}) = 1$ independent
 - c) E^c and F^c are independent
 - d) $Pr(E|F) + Pr(E^c|F^c) = 1$.
- 6) For any two events A and B in a sample space (1991 - 2Marks)
 - a) $Pr(A|B) \ge \frac{Pr(A) + Pr(B) 1}{Pr(B)}$, $Pr(B) \ne 0$ is always true
 - b) $Pr(A \cap \overline{B}) = Pr(A) Pr(A \cap B)$ does not hold
 - c) $Pr(A \cup B) = 1 Pr(\overline{A})Pr(\overline{B})$, if A and B are independent
 - d) $Pr(A \cup B) = 1 Pr(\overline{A})Pr(\overline{B})$, if A and B are disjoint.
- 7) E and F are two independent events. The probability that both E and F happen is $\frac{1}{12}$ and the probability that neither E nor F happens is (1993 - 2Marks) $\frac{1}{2}$. Then,

 - a) $Pr(E) = \frac{1}{3}, Pr(F) = \frac{1}{4}$ b) $Pr(E) = \frac{1}{2}, Pr(F) = \frac{1}{6}$ c) $Pr(E) = \frac{1}{6}, Pr(F) = \frac{1}{2}$

- d) $Pr(E) = \frac{1}{4}, Pr(F) = \frac{1}{3}$
- 8) Let 0 < Pr(A) < 1, 0 < Pr(B) < 1 and $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A) Pr(B)$ then (1995S)
 - a) Pr(A|B) = Pr(B) Pr(A)
 - b) Pr(A' B') = Pr(A') Pr(B')
 - c) $Pr(A \cup B)' = Pr(A') Pr(B')$
 - d) Pr(A|B) = Pr(A)
- 9) If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn at random, then the probability that 2 white and 1 black ball will be drawn is (1998 - 2Marks)
 - a) $\frac{13}{32}$ b) $\frac{1}{4}$ c) $\frac{1}{32}$
- d) $\frac{3}{16}$
- 10) If \overline{E} and \overline{F} are the complementary events of events E and F respectively and if 0 < Pr(F) <(1998 - 2Marks)1. then
 - a) $Pr(E|F) + Pr(\overline{E}|F) = 1$
 - b) $Pr(E|F) + Pr(E|\overline{F}) = 1$
 - c) $Pr(\overline{E}|F) + Pr(E|\overline{F}) = 1$
- 11) There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. Then the probability that only two tests are needed is (1998 - 2Marks)
 - a) $\frac{1}{3}$
- b) $\frac{1}{6}$ c) $\frac{1}{2}$ d) $\frac{1}{4}$
- 12) If E and F are events with $Pr(E) \leq Pr(F)$ and $Pr(E \cap F) > 0$, then (1998 - 2Marks)
 - a) occurrence of $E \Rightarrow$ occurrence of F
 - b) occurrence of $F \Rightarrow$ occurrence of E
 - c) non-occurrence of E \Rightarrow non-occurrence of F
 - d) none of the above implications holds
- 13) A fair coin is tossed repeatedly. If the tail appears on first four tosses, then the probability of the head appearing on the fifth toss equals (1998 - 2Marks)

- a) $\frac{1}{2}$
- b) $\frac{1}{32}$ c) $\frac{31}{32}$
- d) $\frac{1}{5}$
- 14) Seven white balls and three black balls are randomly placed in a row. The probability that no two black balls are placed adjacently equals (1998 - 2Marks)
- a) $\frac{1}{2}$ b) $\frac{7}{15}$ c) $\frac{2}{15}$ d) $\frac{1}{3}$
- 15) The probabilities that a student passes in Mathematics, Physics and Chemistry are m, p and c, respectively. Of these subjects, the student has a 75% chance of passing in at least one, a 50% chance of passing in at least two, and a 40% chance of passing in exactly two. Which of the following relations are true? (1999 – 3Marks)
 - a) $p + m + c = \frac{19}{20}$ b) $p + m + c = \frac{27}{20}$
 - c) $pmc = \frac{1}{10}$
- d) $pmc = \frac{1}{4}$
- 16) Let E and F be two independent events. The probability that exactly one of them occurs is $\frac{11}{25}$ and the probability of none of them occurring is $\frac{2}{25}$. If Pr (T) denotes the probability of occurrence of the event T, then
 - a) $Pr(E) = \frac{4}{5}, Pr(F) = \frac{3}{5}$ b) $Pr(E) = \frac{1}{5}, Pr(F) = \frac{2}{5}$
 - c) $Pr(E) = \frac{2}{5}, Pr(F) = \frac{1}{5}$ d) $Pr(E) = \frac{3}{5}, Pr(F) = \frac{4}{5}$
- 17) A ship is fitted with three engines E_1, E_2 and E_3 . The engines function independently of each other with respective probabilities $\frac{1}{2}, \frac{1}{4}$ and $\frac{1}{4}$. For the ship to be operational at least two of its engines must function. Let X denote the event that the ship is operational and let X_1, X_2 and X_3 denote respectively the events that the engines E_1, E_2 and E_3 are functioning. Which of the following is(are) true? (2012)
 - a) $\Pr(X_1^c|X) = \frac{3}{16}$
 - b) Pr (Exactly two engines of the ship are functioning |X| =

 - c) $\Pr^{8}(X|X_{2}) = \frac{5}{16}$ d) $\Pr(X|X_{1}) = \frac{7}{16}$