Lineare Algebra 2 — Lösung zu Übungsblatt 2

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 14.05.2020 um 9:15 Uhr

8. Aufgabe: (2+2+2 *Punkte, Operationen auf Idealen*) Seien *R* ein Ring und *I*, *J* und *K* Ideale in *R*. Man zeige:

- (a) Es gilt I(J + K) = IJ + IK.
- (b) Es gilt $(I \cap J)(I + J) \subseteq IJ \subseteq I \cap J$.
- (c) Ist I + J = (1), so gilt $I \cap J = IJ$.

Lösung:

Ist $M \subseteq R$ eine Teilmenge, so ist das von M erzeugte Ideal in R gegeben durch

$$(M) := \{ \sum_{i=1}^{n} a_{i} m_{i} \mid a_{i} \in R, m_{i} \in M, n \in \mathbb{N} \}.$$

Um die Inklusionen der Ideale nachzuweisen, bemerken wir, dass für alle Ideale $J \subseteq R$ offenbar gilt:

$$(M) \subseteq J \iff M \subseteq J.$$

So gilt beispielsweise $I + J = (I \cup J)$ und $I \cdot J = (\{a \cdot b \mid a \in I, b \in J\})$.

(a) Das Ideal $I \cdot (J + K)$ wird erzeugt von $M := \{a \cdot (j + k) \mid a \in I, j \in J, k \in K\}$. Sei $a \cdot (j + k) \in M$. Dann ist $a \cdot (j + k) = aj + ak \in IJ + IK$. Damit ist $M \subseteq IJ + IK$ und somit mit obiger Überlegung $(M) \subseteq IJ + IK$. Für die andere Inklusion sehen wir, dass $IJ = (M_1)$, $IK = (M_2)$ gilt, wobei $M_1 := \{a \cdot j \mid a \in I\}$.

If the anterior inclusion series will, class $IJ = \{MIJ\}$, $IK = \{MIJ\}$ gilt, wo below $II := \{a \cdot k \mid a \in I, k \in K\}$ ist. Sei nun $a \cdot j \in M_1$. Dann ist $a \cdot j = a \cdot (j + 0) \in I \cdot (J + K)$ und es folgt $IJ \in I \cdot (J + K)$. Analog zeigt man, class $IK \subseteq I \cdot (J + K)$ gilt, wo mit dann $IJ + IK \subseteq I \cdot (J + K)$ folgt.

(b) Das Ideal $(I \cap J) \cdot (I + J)$ wird erzeugt von $M := \{a \cdot b \mid a \in I \cap J, b \in I + J\}$. Sei $a \cdot b \in M$, etwa b = x + y mit $x \in I$, $y \in J$. Dann ist

$$a \cdot b = a \cdot (x + y) = \underbrace{ax}_{\in IJ} + \underbrace{ay}_{\in IJ} \in IJ.$$

Somit ist $M \subseteq II$ und wie zuvor folgt $(M) \subseteq II$.

Das Ideal IJ wird erzeugt von Elementen der Form $a \cdot b$, $a \in I, b \in J$. Für ein solches Element gilt $a \cdot b \in J$, da J ein Ideal ist. Ebenso gilt $a \cdot b \in I$ und es folgt $a \cdot b \in I \cap J$. Dies zeigt die Inklusion $IJ \subseteq I \cap J$.

- (c) Sei I + J = (1). Dann existieren $a \in I, b \in J$, sodass 1 = a + b. Für $x \in I \cap J$ gilt $x = 1 \cdot x = (a + b)x = a \cdot x + b \cdot x \in IJ$. Damit folgt $I \cap J \subseteq IJ$ und mit (b) die Gleichheit.
- **9. Aufgabe:** (4 Punkte, Der Professor und seine Python) Ein Professor füttert seine Python alle 4 Tage und badet sie alle 7 Tage. Diese Woche hat er sie am Dienstag gefüttert und am Mittwoch gebadet. Wann, wenn überhaupt, wird er die Python am gleichen Tag füttern und baden? **Hinweis:** Pythons kommen unter anderem in China vor.

Lösung: Aus der Textaufgabe lassen sich folgende Kongruenzen ablesen:

$$x \equiv 2 \mod 4$$
 und $x \equiv 3 \mod 7$,

wobei "2" dem Dienstag entspricht und "3" dem Mittwoch und wir nach diesem Schema allen folgenden Tagen natürliche Zahlen zuordnen (z.B. Dienstag der Woche danach entspricht 9 etc.) Es gilt (4) + (7) = 1 in \mathbb{Z} , denn $4 \cdot 2 - 7 \cdot 1 = 1$ und damit können wir den chinesischen Restsatz anwenden. Wir erhalten den Isomorphismus

$$\mathbb{Z}/28\mathbb{Z} \stackrel{\cong}{\longrightarrow} \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$$

Durch diesen Isomorphismus wissen wir nun, dass ein eindeutiges Urbild zu $(\bar{2},\bar{3}) \in \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$ in $\mathbb{Z}/28\mathbb{Z}$ existiert, also eine Lösung für unsere obigen Kongruenzen. Wenn wir nun eine Lösung x_0 in \mathbb{Z} explizit bestimmen, so sind

$$x = x_0 + k \cdot 28, \quad k \in \mathbb{Z}$$

alle weiteren Lösungen des Problems. Es gibt eine minimale positive Lösung des Problems (und zwar die zwischen 0 und 27). Diese Lösung ist x = 10, denn da $4 \cdot 2 - 7 \cdot 1 = 1$ erhalten wir

$$8 = 2 \cdot 4 \equiv \begin{cases} 0 \mod 4, \\ 1 \mod 7, \end{cases} \quad \text{und} \quad -7 = -1 \cdot 7 \equiv \begin{cases} 1 \mod 4, \\ 0 \mod 7, \end{cases}$$

und somit erfüllt $x=3\cdot 8+2\cdot (-7)=10$ die geforderten Kongruenzen. Damit wird der Professor seine Python am Mittwoch der darauffolgenden Woche baden und füttern und ab dem Zeitpunkt an jedem Mittwoch mit 28 Tagen Abstand.

- **10. Aufgabe:** $(1+1+2+2+2 \ Punkte, Der \ Ring \mathbb{Z}[\sqrt{-3}])$ Sei $\mathbb{Z}[\sqrt{-3}] := \{a+b\sqrt{-3} \mid a,b \in \mathbb{Z}\} \subset \mathbb{C}$. Mit der üblichen Addition und Multiplikation von komplexen Zahlen wird $\mathbb{Z}[\sqrt{-3}]$ zu einem nullteilerfreien Ring. Sei $\delta \colon \mathbb{Z}[\sqrt{-3}] \to \mathbb{N}_0$ gegeben durch $a+b\sqrt{-3} \mapsto a^2+3b^2$.
 - (a) Man zeige, dass $\delta(1) = 1$ und $\delta(x \cdot y) = \delta(x) \cdot \delta(y)$ für alle $x, y \in \mathbb{Z}[\sqrt{-3}]$.
 - (b) Man folgere aus (a), dass $\mathbb{Z}[\sqrt{-3}]^{\times} = \{x \in \mathbb{Z}[\sqrt{-3}] \mid \delta(x) = 1\} = \{\pm 1\}.$
 - (c) Man finde ein Element in $\mathbb{Z}[\sqrt{-3}]$, welches irreduzibel, aber nicht prim ist.
 - (d) Man zeige: $GGT(4, 2 + 2\sqrt{-3}) = \emptyset$.
 - (e) Man zeige, dass $\mathbb{Z}[\sqrt{-3}]$ nicht faktoriell ist.

Lösung:

(a) Seien x, y in $\mathbb{Z}[\sqrt{-3}]$ mit $x = a + b\sqrt{-3}$, $y = \tilde{a} + \tilde{b}\sqrt{-3}$, dann ist $x \cdot y = (a\tilde{a} - 3b\tilde{b}) + (b\tilde{a} + a\tilde{b})\sqrt{-3}$.

$$\delta(x \cdot y) = (a\tilde{a} - 3b\tilde{b})^2 + 3(b\tilde{a} + a\tilde{b})^2 = (a\tilde{a})^2 + 3(\tilde{a}b)^2 + 3(\tilde{a}\tilde{b})^2 + 9(b\tilde{b})^2 = (a^2 + 3b^2)(\tilde{a}^2 + 3\tilde{b}^2) = \delta(x) \cdot \delta(y)$$

Außerdem ist $\delta(1) = 1^2 = 1$.

(b) Wir zeigen die folgenden Inklusionen (1) und (2)

$$\mathbb{Z}[\sqrt{-3}]^{\times} \subseteq \{x \in \mathbb{Z}[\sqrt{-3}] \mid \delta(x) = 1\} \subseteq \{\pm 1\} \subseteq \mathbb{Z}[\sqrt{-3}]^{\times}$$

Da die letzte Inklusion trivial ist, folgt dann die Behauptung.

- (1) Sei $x \in \mathbb{Z}[\sqrt{-3}]^{\times}$, dann existiert ein $y \in \mathbb{Z} \setminus \{0\}$ mit $x \cdot y = 1$. Durch Benutzung der Normabbildung erhalten wir $\delta(x) \cdot \delta(y) = \delta(x \cdot y) = \delta(1) = 1$, wodurch folgt, dass $\delta(x) = \delta(y) = 1$, da der Zielbereich von δ gerade \mathbb{N}_0 ist.
- (2) Sei $x \in \{x \in \mathbb{Z}[\sqrt{-3}] \mid \delta(x) = 1\}$ der Gestalt $x = a + b\sqrt{-3}$ mit $a, b \in \mathbb{Z}$. Dann gilt die Gleichung

$$\delta(x) = a^2 + 3b^2 = 1$$

Hieraus folgt direkt, dass b=0 sein muss, denn sonst wäre $3b^2>1 \ \forall b\in\mathbb{Z}\setminus\{0\}$. Weiterhin sehen wir, dass $a\in\{\pm 1\}$ gelten muss, das heißt $x\in\{\pm 1\}$.

- (c) Wir behaupten, dass $1 + \sqrt{-3}$ irreduzibel (1) ist, aber nicht prim (2).
 - (1) Angenommen $1 + \sqrt{-3}$ ist reduzibel, das heißt es existieren $x, y \in \mathbb{Z}[\sqrt{-3}]$, die keine Einheiten sind, sodass $1 + \sqrt{-3} = x \cdot y$. Nun folgt durch Anwendung der Normabbildung

$$4 = \delta(1 + \sqrt{-3}) = \delta(x) \cdot \delta(y)$$

Nach (b) gilt dann $\delta(x)$, $\delta(y) \neq 1$, wodurch folgt, dass $\delta(x) = \delta(y) = 2$.

Doch es existiert kein Element in $\mathbb{Z}[\sqrt{-3}]$ mit Norm 2, denn:

Angenommen für $x \in \mathbb{Z}[\sqrt{-3}]$ mit $x = a + b\sqrt{-3}$ gelte $\delta(x) = 2$. Dann erhalten wir wieder eine Gleichung

$$\delta(x) = a^2 + 3b^2 = 2$$

Analog zur Argumentation in Teil (*b*) folgern wir b = 0 und damit $a \in \{\pm \sqrt{2}\}$, aber $\sqrt{2} \notin \mathbb{Z}[\sqrt{-3}]$, daher gibt es kein Element in $\mathbb{Z}[\sqrt{-3}]$ mit Norm 2.

(2) $1 + \sqrt{-3}$ ist nicht prim, denn:

$$4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$$

das heißt $1 + \sqrt{-3} \mid 4$ aber gleichzeitig gilt

$$4 = 2 \cdot 2$$

 $1 + \sqrt{-3} \nmid 2$, da $\delta(1 + \sqrt{-3}) = \delta(2) = 4$, das heißt, wenn $1 + \sqrt{-3} \mid 2$, dann sind $1 + \sqrt{-3}$ und 2 assoziiert zueinander, aber das kann offensichtlich nicht sein, da nach Teilaufgabe (*b*) gilt, dass $\mathbb{Z}[\sqrt{-3}]^{\times} = \{\pm 1\}$.

(d) Angenommen ein ggT d von 4 und $2 + 2\sqrt{-3}$ existiert. Da 2 ein gemeinsamer Teiler von 4 und $2 + 2\sqrt{-3}$ ist, gilt 2

Da 2 ein gemeinsamer Teiler von 4 und $2+2\sqrt{-3}$ ist, gilt $2\mid d$ in $\mathbb{Z}[\sqrt{-3}]$, das heißt es existiert ein $c\in\mathbb{Z}[\sqrt{-3}]$ sodass $2\cdot c=d$.

Da d ein gemeinsamer Teiler von 4 und $2+2\sqrt{-3}$ ist, gilt $d\mid 4$ in $\mathbb{Z}[\sqrt{-3}]$, das heißt existiert ein $x\in\mathbb{Z}[\sqrt{-3}]$ sodass $d\cdot x=4$. Also gilt insgesamt gilt

$$2 \cdot c \cdot x = 4$$

und da $\mathbb{Z}[\sqrt{-3}]$ nullteilerfrei ist, können wir kürzen und erhalten die Gleichung

$$c \cdot x = 2$$

Da 2 in $\mathbb{Z}[\sqrt{-3}]$ irreduzibel ist (*, siehe unten), folgt dass

$$c \in \mathbb{Z}[\sqrt{-3}]^{\times}$$
 oder $x \in \mathbb{Z}[\sqrt{-3}]^{\times}$

Fall 1:

Sei $x \in \mathbb{Z}[\sqrt{-3}]^{\times} = \{\pm 1\} \Rightarrow d = \pm 4$. Aber $4 \nmid 2 + 2\sqrt{-3}$, denn $\delta(4) = 16 = \delta(2 + 2\sqrt{-3})$, also müssten sie assoziiert sein, was offensichtlich nicht gilt.

Fall 2

Sei $c \in \mathbb{Z}[\sqrt{-3}]^{\times} = \{\pm 1\} \Rightarrow d = \pm 2$. Dies kann aber nicht sein, denn $1 + \sqrt{-3}$ ist gemeinsamer Teiler von 4 und $2 + 2\sqrt{-3}$, aber $1 + \sqrt{-3}$ teilt nicht ± 2 (siehe (c)).

Da beide Fälle zum Widerspruch führen, folgt $GGT(4, 2 + 2\sqrt{-3}) = \emptyset$

(*) Angenommen 2 ist reduzibel in $\mathbb{Z}[\sqrt{-3}]$, dann existieren $x, y \in \mathbb{Z}[\sqrt{-3}]$, die keine Einheiten sind, sodass gilt $2 = x \cdot y$. Durch Anwendung der Normabbildung erhalten wir die Gleichung

$$4 = \delta(2) = \delta(x) \cdot \delta(y)$$

Nach Teil (c) gibt es aber keine Elemente mit Norm 2 in $\mathbb{Z}[\sqrt{-3}]$. Daraus folgt dass $\delta(x) = 1$ oder $\delta(y) = 1$, das heißt nach Teil (b), dass x oder y eine Einheit in $\mathbb{Z}[\sqrt{-3}]$ ist. Widerspruch!

- (e) $\mathbb{Z}[\sqrt{-3}]$ ist nicht faktoriell, da 2 und $1+\sqrt{-3}$ (bzw. $1-\sqrt{-3}$ mit der gleichen Argumentation wie in (c)) beide irreduzibel sind und offensichtlich nicht zueinander assoziiert sind, weswegen 4 zwei verschiedene Zerlegungen in irreduzible Elemente hat: $2 \cdot 2 = 4 = (1 + \sqrt{-3})(1 \sqrt{-3})$.
- **11. Aufgabe:** (6 Punkte, Noethersche Ringe) Sei R ein Ring. Ein Ideal $I \subseteq R$ heißt endlich erzeugt, wenn es endlich viele Elemente $a_1, \ldots, a_n \in I$ gibt, sodass $I = (a_1, \ldots, a_n)$ ist. Dabei bezeichnet $(a_1, \ldots, a_n) = \{r_1 a_1 + \cdots + r_n a_n \mid r_1, \ldots, r_n \in R\}$ wie in der Vorlesung das von a_1, \ldots, a_n erzeugte Ideal. Man zeige, dass die folgenden Aussagen äquivalent sind:
 - (i) *R* is noethersch.
 - (ii) Jedes Ideal in *R* ist endlich erzeugt.

Hinweis: Für die Implikation (ii) \Rightarrow (i) orientiere man sich am Beweis aus der Vorlesung, dass jeder Hauptidealring noethersch ist.

Lösung:

(i) \Rightarrow (ii) Sei R noethersch, d.h. jede aufsteigende Kette von Idealen von R wird stationär. Sei $I \subseteq R$ ein Ideal. Wähle ein Element $a_1 \in I$. Falls $(a_1) = I$ gilt, ist I bereits endlich erzeugt und wir sind fertig. Anderenfalls exisitert ein Element $a_2 \in I$, sodass $a_2 \notin (a_1)$ ist. Ist nun $(a_1, a_2) = I$, sind wir fertig. Anderenfalls finden wir ein $a_3 \in I$, sodass $a_3 \notin (a_1, a_2)$ ist. Hört dieser Prozess nicht auf, erhalten wir eine echt aufsteigende Kette von Idealen von I

$$(a_1) \subsetneq (a_1, a_2) \subsetneq (a_1, a_2, a_3) \subsetneq \dots$$

die nicht stationär wird. Da R jedoch nach Vorraussetzung noethersch ist, erhalten wir nach endlich vielen Schritten ein vollständiges Erzeugendensystem von I, d.h endlich viele $a_1, \ldots, a_n \in I$, sodass $I = (a_1, \ldots, a_n)$ ist.

(ii) \Rightarrow (i) Es gelte (ii). Sei $I_1 \subseteq I_2 \subseteq \ldots$ eine aufsteigende Kette von Idealen aus R. Wir setzen $I := \cup_{k \in \mathbb{N}} I_k$. Im Beweis von Bemerkung 2.13 aus der Vorlesung haben wir gezeigt, dass dies ein Ideal ist. Nach Vorraussetzung ist I nun endlich erzeugt, d.h. es exisitieren $a_1, \ldots, a_r \in R$, sodass $I = (a_1, \ldots, a_r)$ ist. Für jedes $i \in \{1, \ldots, r\}$ existiert ein $j_i \in \mathbb{N}$, sodass $a_i \in I_{j_i}$ ist. Setzen wir $n := \max\{j_i \mid i = 1, \ldots, r\}$, so folgt $a_1, \ldots, a_r \in I_n$ und somit $I \subseteq I_n \subseteq I$. Wir erhalten also $I = I_n$, was schließlich $I_k = I_n$ für alle $k \ge n$ impliziert.

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.