Association

H0: no association; H1: associated

1. Chi-square (early)

<u>Example calculation illustrating the methodology of a case-control GWA study</u>

2. Linear Regression

a. General linear regression (Ir)

b. mixed linear model (MLM)

The advantages of mixed linear model association (MLMA) include preventing false-positive associations due to population or relatedness structure, and increasing power by applying a correction that is specific to this structure.

Yang, Jian et al. "Advantages and pitfalls in the application of mixed-model association methods." *Nature genetics* vol. 46,2 (2014): 100-6. doi:10.1038/ng.2876

c. logistic regression

$$logit (\mu_i) = X_i \alpha + G_i \beta + b_i$$
$$\mu_i = P(y_i = 1 | X_i, G_i, b_i)$$

$$\mathbf{y} = \mathbf{x}_{\rm snp} \beta_{\rm snp} + \mathbf{X}_c \beta_c + \mathbf{g} + \mathbf{e}$$

Computational cost of EMMAX, FaST-LMM, GEMMA, GRAMMAR-Gamma and GCTA

For each method we list the computational cost of each step (see main text).

	Building GRM	Variance components	Association statistics
EMMAX	$O(MN^2)$	$O(N^3)$	$O(MN^2)$
FaST-LMM*	$O(MN^2)$	$O(N^3)$	$O(MN^2)$
GEMMA	$O(MN^2)$	$O(N^3)$	$O(MN^2)$
GRAMMAR-Gamma	$O(MN^2)$	$O(N^3)$	O(MN)
GCTA	$O(MN^2)$	$O(N^3)$	$O(MN^2)$

^{*}If $M \le N$, the computational cost of FaST-LMM can be reduced to $O(M^2N)$.

M~marker, N~individual