Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convocatoria extraordinaria

Ejercicio 1. (2.5 puntos) Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_{z}^{n+1} \frac{e^{z^2 - t}}{1 + t^2} dt \quad \forall z \in \mathbb{C}.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge en \mathbb{C} y que su suma es una función entera.

Ejercicio 2. (2.5 puntos) Integrando una conveniente función sobre la poligonal $[-R, R, R + i\pi, -R + i\pi, -R]$, con $R \in \mathbb{R}^+$, calcular la integral

$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{e^x + e^{-x}} dx.$$

Ejercicio 3. (2.5 puntos) Sea Ω un dominio de \mathbb{C} y $\{\alpha_n\} \subset \Omega$ una sucesión convergente a $\alpha \in \Omega$. Sean $f, g \in \mathcal{H}(\Omega)$, supongamos que existe $k \in \mathbb{N}$ de modo que $f^k(\alpha_n) = g^k(\alpha_n)$ para todo $n \in \mathbb{N}$. Probar que existe $\lambda \in \mathbb{C}$, con $\lambda^k = 1$, tal que $f(z) = \lambda g(z)$ para cada $z \in \Omega$.

Ejercicio 4. (2.5 puntos) Sea f una función entera y sea $g \in \mathcal{H}(\mathbb{C} \setminus \{f(0)\})$ verificando que $g(f(z)) = \frac{1}{z}$ para todo $z \in \mathbb{C}^*$.

- Probar que f es inyectiva en \mathbb{C}^* .
- ullet Probar que f es un polinomio de grado uno.
- Deducir la forma que debe tener g.