Chemistry 172

$\mathrm{I}\Sigma\Pi$

Winter 2016

1 General Equations

1.1 Entropy Equations

Table 1: Equations for Entropy

Vary Temperature	Vary Pressure	Vary Volume
$\Delta S = C_{\text{v/p}} \ln \frac{T_f}{T_i}$	$\Delta S = nR \ln \frac{P_i}{P_i}$	$\Delta S = nR \ln \frac{V_f}{V_i}$

$$S = k \ln W$$

$$S_{\rm surr} = -q_{\rm reaction}/T$$

1.2 Enthalpy Equations

$$\Delta H = \Delta U + P\Delta V$$

$$\Delta H = \Delta U + \Delta nRT$$

$$\Delta H = \frac{C_p}{\Delta T}$$

$$\Delta U = \frac{C_V}{\Delta T}$$

$$C_p = C_v + nR$$

$$w_{\rm sys} = -\int_{V_t}^{V_t} PdV$$

Table 2: Equations for Work

	Constant Pressure	Constant Temperature	Constant Volume
Ì	$w_{\rm sys} = -P_{\rm ext}\Delta V$	$w_{\rm sys} = -nRT \ln \frac{V_{\rm f}}{V_{\rm i}}$	0

2 Carnot/Heat Engines

No engine working between two given heat reserviors can be more efficient than a reversible engine working between these two reserviors. The cycle is known as the Carnot cycle. No engine can have the a greater efficiency than a Carnot engine because all steps are reversible.

3 EQUILIBRIUM

Table 3: Ideal Molecules

Table 5. Ideal Wolectiles						
Molecule	Translation	Rotation	$C_{ m v}$	$C_{ m p}$	Internal Energy	
Atom	3	0	$\frac{3}{2}R$	$\frac{5}{2}R$	$\frac{3}{2} nRT$	
Linear	3	2	$\frac{5}{2}R$	$\frac{7}{2}R$	$\frac{5}{2} nRT$	
Non-Linear	3	3	3R	4R	3 nRT	

$$\begin{split} \epsilon &= 1 - \frac{Q_{\rm c}}{Q_{\rm h}} \\ Q_{\rm h} &= W_{\rm by~gas},~Q_{\rm c} = W_{\rm on~gas} \\ Q_{\rm h/c} &= nRT_{\rm h/c}\frac{V_2}{V_1} \\ \epsilon_{\rm C} &= 1 - \frac{T_{\rm c}}{T_{\rm h}}~({\rm Carnot~Efficiency}) \end{split}$$

3 Equilibrium

$$\Delta S_{\mathrm{total}} = 0$$

$$\Delta G = \Delta H - T \Delta S$$

Table 4: Gibbs Free Energy

ΔH	ΔS	ΔG	Spontaneous?
<0	>0	<0	yes
>0	<0	>0	no
<0	<0	?	yes if $ T\Delta S < \Delta$ H
>0	>0	?	yes if $\Delta H < T\Delta$ S