PLSC 476: Empirical Legal Studies

Christopher Zorn

September 2, 2025

Logistics

Details:

- Syllabus is on the Github repository
 (https://github.com/PrisonRodeo/PLSC476-FA2025-git)
- Three broad course "themes":
 - · Introduction / review software, statistics, etc.
 - · Empirical work on courts and judges
 - · Empirical analysis of (and in) the practice of law
- Research modules (4 @ 15% each):
 - · Module #1 will be "common" (assigned the end of this week)
 - · Modules #2-4 will be your choice
 - · More details will be posted soon

Levels of Measurement

- Nominal (classification)
- Ordinal (order)
- Interval (equal intervals)
- Ratio ("true zero")

Variables: Discrete vs. Continuous

Examples of Variables, by Type and Level of Measurement

Level of Measurement	Discrete	Continuous			
Nominal	$\{Blonde, Brunette, Redhead\}$	n/a			
Ordinal	Social Class (Upper, middle, lower)	n/a			
Interval	Year	Temperature (in degrees F)			
Ratio	Counts of things	Height, weight, distance, etc.			

Central Tendency

Arithmetic Mean (minimizes squared deviations):

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Median (minimizes absolute deviations):

$$\dot{X}$$
 = "middle observation" of X
= 50th percentile of X .

Mode (most frequently-occurring value):

Variation: Range and Percentiles

Range:

$$\mathsf{Range}(X) = \mathsf{max}(X) - \mathsf{min}(X)$$

The kth percentile is the value of the variable below which k percent of the observations fall

- 50th percentile = \check{X}
- 0th percentile = minimum(X)
- 100th percentile = maximum(X)

Variance and S.D.

Variance:

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

Standard deviation:

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2}$$

Skewness

Typically:

$$\mu_{3} = \frac{M_{3}^{2}}{\sigma^{3}}$$

$$= \frac{\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{3}}{\left[\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}\right]^{3/2}}$$

- Skewness = $0 \rightarrow \text{symmetrical}$
- Skewness $> 0 \rightarrow$ "positive" (tail to the right)
- Skewness $< 0 \rightarrow$ "negative" (tail to the left)

Skewness Illustrated

Means, Medians, Modes, and Skewness

Dichotomous / "Binary" Variables

Defined as:

$$D \in \{0, 1\}$$

Central Tendency:

$$\begin{array}{rcl} \mathsf{Mean}\; \bar{D} & = & \widehat{\mathsf{Pr}(D=1)} \\ \mathsf{Median} & = & \mathsf{Mode} \end{array}$$

Variance:

$$\sigma_D^2 = \bar{D} \times (1 - \bar{D})$$

and so SD:

$$\sigma_D = \sqrt{ar{D} imes (1 - ar{D})}$$

Types of Relationships

Strength of Relationships

Tabular Methods "Crosstabs"

- Requires nominal- or ordinal-level data...
- Rows / columns denote categories (or intervals) of Y and X respectively
- Cell entries indicate frequencies of observations that meet both conditions...
- Levels of Measurement:
 - · Nominal categories = no indication of "direction"
 - · Ordinal categories should appear in order
 - · Continuous variables require "binning" ...
 - · Are related to statistics (e.g., χ^2)

Statistical Measures of Association

The general idea:

- If two variables X and Y are unrelated, then we should see an "even" distribution of cases on each, irrespective of the values of the other
- If we observe something other than such an "even" distribution, then the variables are not unrelated
- Formally: No association means f(Y|X) = f(Y)

				Χ	
		Nominal	Binary	Ordinal	Interval/Ratio
	Nominal	χ^2	χ^2	χ^2	t -test (and η)
Y	Binary	χ^2	ϕ , Q	γ, τ_c	t-test
	Ordinal	χ^2	γ, τ_c	$\gamma, \tau_{a}, \tau_{b}$	Spearman's $ ho$
	Interval / Ratio	t -test (and η)	t-test	Spearman's $ ho$	r (+ regression)

Statistical Inference

Hypothesis Testing

Moving parts:

- A null hypothesis, usually denoted H₀
- an alternative (or research) hypothesis H_a or H_1
- a test statistic $\theta = f(\text{sample data } \mathbf{X})$
- a rejection region for the null in the space of the sample statistic

Type I and Type II Errors:

- Type I error: rejecting a true null hypothesis (think of this as a "false positive")
- Type II error: failing to reject a false null hypothesis (think of this as a "false negative")

	Reality / Population					
Test Statistic / Sample	H_a	$\overline{H_0}$				
H _a	Correct	Type I error				
<u>H</u> ₀	Type II Error	Correct				

Example: 2024-25 Final English Premier League (EPL)

> print(EPL)

					_				a 30:44	.
	Rank								GoalDifference	
1	1	Liverpool	38	25	9	4	86	41	45	84
2	2	Arsenal	38	20	14	4	69	34	35	74
3	3	Manchester City	38	21	8	9	72	44	28	71
4	4	Chelsea	38	20	9	9	64	43	21	69
5	5	Newcastle United	38	20	6	12	68	47	21	66
6	6	Aston Villa	38	19	9	10	58	51	7	66
7	7	Nottingham Forest	38	19	8	11	58	46	12	65
8	8	Brighton and Hove Albion	38	16	13	9	66	59	7	61
9	9	AFC Bournemouth	38	15	11	12	58	46	12	56
10	10	Brentford	38	16	8	14	66	57	9	56
11	11	Fulham	38	15	9	14	54	54	0	54
12	12	Crystal Palace	38	13	14	11	51	51	0	53
13	13	Everton	38	11	15	12	42	44	-2	48
14	14	West Ham United	38	11	10	17	46	62	-16	43
15	15	Manchester United	38	11	9	18	44	54	-10	42
16	16	Wolverhampton Wanderers	38	12	6	20	54	69	-15	42
17	17	Tottenham Hotspur	38	11	5	22	64	65	-1	38
18	18	Leicester City	38	6	7	25	33	80	-47	25
19	19	Ipswich Town	38	4	10	24	36	82	-46	22
20	20	Southampton	38	2	6	30	26	86	-60	12

EPL Data Summary

> summary(EPL)

Rank	Team	Matches	Win	Draw
Min. : 1.00	Length:20	Min. :38	Min. : 2.0	Min. : 5.00
1st Qu.: 5.75	Class :charact	er 1st Qu.:38	1st Qu.:11.0	1st Qu.: 7.75
Median :10.50	Mode :charact	er Median:38	Median:15.0	Median: 9.00
Mean :10.50		Mean :38	Mean :14.3	Mean : 9.30
3rd Qu.:15.25		3rd Qu.:38	3rd Qu.:19.2	3rd Qu.:10.25
Max. :20.00		Max. :38	Max. :25.0	Max. :15.00
Loss	Goals	GoalsAgainst	GoalDifference	Points
Min. : 4.00	Min. :26.0	Min. :34.0	Min. :-60.0	Min. :12.0
1st Qu.: 9.75	1st Qu.:45.5	1st Qu.:45.5	1st Qu.:-11.2	1st Qu.:42.0
Median :12.00	Median:58.0	Median:52.5	Median : 3.5	Median:55.0
Mean :14.35	Mean :55.8	Mean :55.8	Mean : 0.0	Mean :52.4
3rd Qu.:18.50	3rd Qu.:66.0	3rd Qu.:62.8	3rd Qu.: 14.2	3rd Qu.:66.0
Max. :30.00	Max. :86.0	Max. :86.0	Max. : 45.0	Max. :84.0

Alternative Summary

> describe(EPL)

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
Rank	1	20	10.50	5.92	10.5	10.50	7.41	1	20	19	0.00	-1.38	1.32
Team*	2	20	10.50	5.92	10.5	10.50	7.41	1	20	19	0.00	-1.38	1.32
Matches	3	20	38.00	0.00	38.0	38.00	0.00	38	38	0	NaN	NaN	0.00
Win	4	20	14.35	6.00	15.0	14.69	5.93	2	25	23	-0.34	-0.73	1.34
Draw	5	20	9.30	2.87	9.0	9.12	2.22	5	15	10	0.52	-0.81	0.64
Loss	6	20	14.35	6.96	12.0	14.00	4.45	4	30	26	0.56	-0.61	1.56
Goals	7	20	55.75	14.71	58.0	56.12	13.34	26	86	60	-0.18	-0.59	3.29
GoalsAgainst	8	20	55.75	14.42	52.5	54.50	12.60	34	86	52	0.70	-0.62	3.22
GoalDifference	9	20	0.00	27.04	3.5	1.69	22.98	-60	45	105	-0.62	-0.28	6.05
Points	10	20	52.35	18.58	55.0	53.44	18.53	12	84	72	-0.46	-0.63	4.15

Hypothesis Testing: One Variable

In the EPL.

- wins are worth three points,
- draws are worth one point, and
- losses are worth zero points.

If (on average) teams are "balanced," then each team can expect to score

$$\frac{\{(0.5\times1)+[(0.25\times3)+(0.25\times0)]\}}{2}=1.25$$

points per game. Do they?

Hypothesis Testing: One Variable

Hypothesis test for $\overline{PPG} = 1.25$:

```
> EPL$PPG <- EPL$Points / EPL$Matches
> describe(EPL$PPG)
  vars n mean sd median trimmed mad min max range skew kurtosis
X1 1 20 1.38 0.49 1.45 1.41 0.49 0.32 2.21 1.89 -0.46 -0.63 0.11
> t.test(EPL$PPG,mu=1.25)
One Sample t-test
data: EPL$PPG
t = 1.2, df = 19, p-value = 0.3
alternative hypothesis: true mean is not equal to 1.25
95 percent confidence interval:
1.149 1.606
sample estimates:
mean of x
   1.378
```

Hypothesis Testing: Differences Of Means

Q: Do London-area teams score more points than those elsewhere?

```
Hypothesis test for \overline{PPG}_{London} = \overline{PPG}_{Non-London}:
> LACs<-c("Tottenham Hotspur", "West Ham United", "Chelsea",
          "Crystal Palace", "Fulham", "Arsenal")
> EPL$London<-ifelse((EPL$Team %in% LACs==TRUE).1.0)
> table(EPL$London)
14 6
> t.test(PPG~London,data=EPL)
 Welch Two Sample t-test
data: PPG by London
t = -0.51, df = 14, p-value = 0.6
alternative hypothesis: true difference in means between group O
  and group 1 is not equal to 0
95 percent confidence interval:
-0.5556 0.3438
sample estimates:
mean in group 0 mean in group 1
          1.346
                 1,452
```

Measures of Association

Q: Do teams that score a lot of goals also allow a lot of goals?

${\bf Examine \ the \ association \ between \ Goals \ Against:}$

```
> with(EPL, cor(Goals,GoalsAgainst))
[1] -0.7236
> with(EPL, cor.test(Goals,GoalsAgainst))
 Pearson's product-moment correlation
data: Goals and GoalsAgainst
t = -4.4, df = 18, p-value = 0.0003
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.8833 - 0.4135
sample estimates:
    cor
-0.7236
```

Next time: Data Visualization