

University of Tehran College of Engineering School of Electrical and Computer Engineering

Digital Systems 1

Dr.Navabi

Homework 5

Soroush Mesforush Mashhad SN:810198472

Ordibehesht 00

Question 1

A

The verilog and synthesized code are depicted below:

```
`timescale lns/lns
module Q1(input a,b,c,d , output f);
assign f = (~as~bscs~d) | (~as~bscsd) | (~asbs~cs~d) |
           (~asbscsd) | (~asbscs~d) | (asbs~cs~d) |
(asbs~csd) | (as~bs~cs~d) | (as~bs~csd);
endmodule
```

Figure 1: Original Verilog

```
Figure 1: Original Verilog

-module Q1(a, b, c, d, f);
wire 00;
wire 01;
wire 02;
wire 03;
wire 04;
wire 06;
wire 06;
wire 09;
wire 10;
wire 11;
wire 12;
wire 13;
wire 14;
wire 15;
wire 16;
wire 17;
wire 18;
wire 19;
wire 20;
wire 20;
wire 21;
wire 22;
wire 23;
wire 24;
wire 25;
wire 25;
wire 26;
wire 27;
wire 28;
wire 28;
wire 29;
input a;
input a;
input a;
input a;
input a;
input d;
output f;
NOT 30 (.A(18),.Y(25));
NOR 32 (.A(24),.Y(26));
NOR 34 (.A(27),.B(29),.Y(21));
NOR 36 (.A(21),.B(25),.Y(21));
NOR 37 (.A(26),.B(25),.Y(21));
NOR 37 (.A(21),.B(29),.Y(21));
NOR 37 (.A(21),.B(29),.Y(21));
NOR 37 (.A(22),.B(28),.Y(23));
assign 18 - c;
assign 19 - b;
assign 24 - a;
assign 27 - d;
```

Figure 2: Synthesized Verilog

Scanned by CamScanner Scanned by CamScanner

Due Date: 00 / 2 / 4 | 2 Digital Logic Design Soroush Mesforush Mashhad HW9 Student Number: 810198472 If we are allowed to use 3-input NAND GAM. f-actachald In this age I dore say that this Circuit has less gates a Probably a lower delay but if we use 2 inputgates only: In this ase our number of gates increase drastically and I think the delay is Probably more than the Synthecized circuit. 2-61 Atta synthesis ing the Veriley ade I've designed this circuit exactly from the synthesis results.

Scanned by CamScanner
Scanned by CamScanner

Question 2

A

The verilog and synthesized code are depicted below:

```
'timescale lns/lns
module Q2pl(input A,B,input Cin, output S, output Co);
assign {Co,S}=A+B+Cin;
endmodule
```

Figure 3: Original Verilog

```
module Q2p1(A, B, Cin, S, Co);
wire 00;
               wire 00
wire 01
               wire
wire
                                                 04
               wire
wire
               wire
wire
              wire 18;
wire 19;
input A;
input B;
input Cin;
output Co;
       output Co;
output S;
NOT 20 (.A(13),.Y(15));
NOT 21 (.A(03),.Y(17));
NOT 22 (.A(04),.Y(18));
NAND 23 (.A(18),.B(17),.Y(19));
NAND 24 (.A(04),.B(03),.Y(05));
NAND 25 (.A(06),.B(19),.Y(06));
NOR 26 (.A(06),.B(15),.Y(07));
NOR 27 (.A(04),.B(03),.Y(08));
NOR 28 (.A(18),.B(17),.Y(09));
NOR 29 (.A(09),.B(08),.Y(10));
NOR 30 (.A(10),.B(13),.Y(11));
NOR 31 (.A(11),.B(07),.Y(14));
NAND 32 (.A(10),.B(13),.Y(11));
NAND 33 (.A(12),.B(05),.Y(16));
assign 03 - A;
assign 03 - A;
assign 04 - Cin;
assign 13 - B;
assign 13 - B;
assign 5 - 14;
assign Co - 16;
andmoduld
```

Figure 4: Synthesized Verilog

Digital Logic Design Soroush Mesforush Mashhad Due Date: HW5 Student Number: 810198472 (Full Adder with yorg 5.1 I checked the truth table for this circuit Very Gre Polly and obtained the following results The Above table and k-maps is exactly the same as the full Adder talked about in class, hence the synthesis has worked Smoothly.

> Scanned by CamScanner Scanned by CamScanner

\mathbf{C}

Firstly, I have included the photos for the number of gates and cells of Part b before and after re-integration:

Number of wires: Number of wire bits:	8 4.1.2. Re-integrating ABC results.					
Number of public wires:	5	ABC RESULTS:	NAND cells:	5		
Number of public wire bits: Number of memories:	9	ABC RESULTS:	NOR cells:	6		
Number of memory bits: Number of processes:	0	ABC RESULTS:	NOT cells:	3		
Number of cells: \$_NAND_	5 1	ABC RESULTS:	internal signals:	3		
\$_NOT_ \$_OAI3_	1	ABC RESULTS:	input signals:	3		
\$_XNOR_	2	ABC RESULTS:	output signals:	2		

Figure 5: Part B

and now part c:

Figure 6: Part C

As we expected in the 4-bit full adder we have more gates than the one in part b, the exact values(after reintegration) are depicted in the table below:

В	С			
5 NAND's	12 NAND's			
6 NOR's	26 NOR's			
3 NOT's	13 NOT's			

As we can see the patterns in part b have repeated themselves in this adder, for example in both case the number of NOR cells is twice the number of NOT cells and etc.

C)	PTCEIL	0010	001	0100	0110	0111	1000	1001	1100	1101
	0 140				/					
	x 100			/					/	
	OXIX	/								
	Ixox						/	/	/	/
	7	/	/		V	/	V	V	/	/

fco, b, c, d) = ac + ac + abd

f(a,b,c,d) = ac + ac + bed

A) ~ time Scale Ins (Ins module CMP 1 bit (in put a, b, l, e, q, output lt, gt, eq); assign $\{2t, eq, gt\} = (a < b)?$ 3'bloo's (a = -b)? 3'bool: (a = -b)? 5'he, q3'; 3'b xxx

endmodule

b) In order to create an 8-bit Comparator I am forced to use 8, of the 1 bit Comparators ascarded.

nodule CMP8 bit (in put [7:0] A, input [7:0] B, output lt.yt, eq);

assign { led, glod, elog = 3'bool; lecture.

CMP 1 bit c1 (ACOT, BEO), Oro, eto3, gto3, (Cr3, gto7, eti7),

C2 (ALI], BLI), (LI), eti], gti], levi, gti3, eti3),

C3 (ALI], BLI2), lt21, eti2], gt23, lt33, gt33, eti3),

C4 (AL33, BE3), lt33, eti3], gt33, lt47, gt43, et49),

C5 (AL47, BC4), lc4), et47, gt43, lt53, gt53, et57),

C6 (AL57, BE5), lt51, et51, gt53, lt67, gt63, et6),

C7 (AL63, BL6), lt61, et6), gt63, lt77, gt73, et7),

C8 (AT73, BL7), lt73, et73, gt7), lt, gt, eq);

endmodule

MS (A(El, 1. 1, 143), S (SC23, SE33), . 00(0), efety

and module.

