

Algèbre de Boole Simplification d'énoncés

L'ordinateur: machine numérique

Plan de match

- Principe: simplification d'énoncés
- Propriétés des opérateurs
- Procédures de simplification
- Exercices en classe

Dans votre livre:

Chapitre 5.3: Simplification d'énoncés.

Principe – simplification d'énoncés

- Les opérateurs booléens ont des propriétés que l'on peut écrire à l'aide des équivalences logiques.
- Ces équivalences sont utilisées pour simplifier les énoncés booléens complexes.

Propriétés

 Les propriétés présentées dans les prochaines diapositives partent tous de la prémisse suivante:

Soit p, q et r des énoncés booléens, t une tautologie et c une contradiction, Λ , V et \neg les opérations de conjonction et négation respectivement. Ces opérations satisfont alors aux propriétés suivantes:

p	q	r	$p \land q$	$p \lor q$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Idempotence et associativité

Idempotence

- $p \land p \equiv p$
- $p \lor p \equiv p$

Associativité

- $(p \lor q) \lor r \equiv p \lor (q \lor r)$
- $(p \land q) \land r \equiv p \land (q \land r)$

Commutativité et Distributivité

Commutativité

- $p \lor q \equiv q \lor p$
- $p \land q \equiv q \land p$

Distributivité

- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Élément absorbant et élément neutre

· Élément absorbant

- $p \lor t \equiv t$
- $p \wedge c \equiv c$

• Élément neutre

- $p \wedge t \equiv p$
- $p \lor c \equiv p$

Complémentarité et involution

Complémentarité

- $p \lor \neg p \equiv t$
- $p \land \neg p \equiv c$
- $\neg t \equiv c$
- $\neg c \equiv t$

Involution

•
$$\neg \neg p \equiv p$$

Loi de Morgan et négation de la conditionnelle

Loi de Morgan

•
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

$$\cdot \neg (p \land q) \equiv \neg p \lor \neg q$$

Négation de la conditionnelle

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

<u> </u>					K		
)	q	$p \rightarrow q$	¬Q	¬q	р∧¬q	$\neg Q \leftrightarrow R$
) [0	1	0	1	0	1
		1	1	0	0	0	1
	ւ	0	0	1	1	1	1
1	L	1	1	0	0	0	1

Questions?

Exemples en classe

L'image provient de www.flaticon.com

Exemple de simplification

• Démontrer la propriété $(p \land q) \lor (p \land \neg q) \equiv p$

Solution

Solution:

$$(p \land q) \lor (p \land \neg q) \equiv p \land (q \lor \neg q)$$
 par la distributivité
 $\equiv p \land t$ par la complémentarité
 $\equiv p$ car t est neutre pour \land

Exemple de simplification

• Démontrer la propriété $p \lor (p \land q) \equiv p$

Solution

Solution:

```
\begin{array}{ll} p \vee (p \wedge q) \equiv (p \wedge t) \vee (p \wedge q) & par \ l'\'el\'ement \ neutre \\ \equiv p \wedge (t \vee q) & par \ la \ distributivit\'e \\ \equiv p \wedge t & car \ t \ est \ absorbant \ pour \ \vee \\ \equiv p & car \ t \ est \ neutre \ pour \ \wedge \end{array}
```

Exemple de négation

• Donner la négation de l'expression $p \land (r \lor \neg q)$

Solution

Solution:

```
\neg [p \land (r \lor \neg q)] \equiv \neg p \lor \neg (r \lor \neg q) \quad par \ la \ loi \ de \ Morgan\equiv \neg p \lor (\neg r \land \neg \neg q) \quad par \ la \ loi \ de \ Morgan\equiv \neg p \lor (\neg r \land q) \quad par \ l'involution
```

La négation est donc $\neg p \lor (\neg r \land q)$

Questions?

Pour vous pratiquer...

Exercices formatifs

- Livre, chapitre 5.4 (p.111)
 - Nos 1, 2 et 3

Prochains cours

- Prochain cours:
 - · Algèbre de Boole les quantificateurs
 - Lab 2 simplification et quantification
- Cours suivant:
 - Travail en classe (Lab 2)

Icônes: https://www.flaticon.com