1

1A

AMENDMENTS TO THE CLAIMS

This listing of the claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1. (Currently Amended) A process for the preparation of a heteroaryl acetamide from a heteroaryl α -hydroxyacetamide, the process comprising directly hydrogenating the heteroaryl α -hydroxyacetamide in the presence of a strong acid, a halide, and a <u>precious metal</u> catalyst, the heteroaryl α -hydroxyacetamide having the structure of Formula 1 and the heteroaryl acetamide has the structure of Formula 1A:

$$R_{10}$$
 A
 A
 N
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2

wherein

2

Z is O, NR₂₀ or CR₂₁;

 X_1 and X_2 are independently selected from the group consisting of hydrogen, halogen, C_{1-4} alkoxy, C_{1-6} alkyl, -CF₃ and CH₃SO₂-;

R₁ and R₂ are independently hydrogen or hydrocarbyl;

 R_{10} is hydrogen, halogen, C_{1-4} alkyl, or a member of a fused ring wherein the fused ring is (i) a substituted or unsubstituted, saturated or unsaturated, five or six-membered, hyeterocyclic or carbocyclic ring fused to the A ring comprising R_{10} , the carbon atom to which R_{10} is attached, R_{20} , and the nitrogen atom to which R_{20} is attached, or (ii) a six-membered, aromatic, carbocyclic ring fused to the A ring comprising R_{10} , R_{11} , and the carbon atoms to which R_{10} and R_{11} are attached, optionally substituted with Y at a substitutable position thereof;

 R_{11} is hydrogen, halogen, C_{1-4} alkyl, or a member of a fused ring wherein the fused ring is (i) a six-membered, aromatic, carbocyclic ring fused to the A ring comprising R_{10} , R_{11} , and the carbon atoms to which R_{10} and R_{11} are attached, optionally substituted with Y at a substitutable position thereof, or (ii) a six-membered, aromatic, carbocyclic ring fused to the A ring comprising R_{11} , R_{12} , and the carbon atoms to which R_{11} and R_{12} are attached, optionally substituted with Y at a substitutable position thereof;

 R_{12} , if present, is hydrogen, halogen, C_{1-4} alkyl, or a member of a fused ring wherein the fused ring is (i) a six-membered, aromatic, carbocyclic ring fused to the A ring comprising R_{11} , R_{12} , and the carbon atoms to which R_{11} and R_{12} are attached, optionally substituted with Y at a substitutable position thereof;

 R_{20} is C_{1-5} alkyl or a member of a fused ring wherein the fused ring is a substituted or unsubstituted, saturated or unsaturated, five or six-membered, heterocyclic or carbocyclic ring fused to the A ring comprising R_{10} , the carbon atom to which R_{10} is attached, R_{20} , and the nitrogen atom to which R_{20} is attached;

R₂₁ is hydrogen, halogen or C₁₋₄ alkyl;

n is 0 or 1;

each Y is independently hydrogen, halogen or C_{1-4} alkyl; and when Z is CR_{21} , the A ring is aromatic.

- 2-5. (Canceled)
- 6. (Original) The process of claim 1 wherein X_1 and X_2 are independently selected from the group consisting of hydrogen, halogen, C_{1-4} alkoxy and C_{1-6} alkyl, R_1 and R_2 are independently hydrogen or C_{1-5} alkyl and Y is hydrogen, halogen or C_{1-4} alkyl.
- 7. (Currently Amended) A process for the preparation of an imidazopyridine acetamide from an imidazolpyridine α -hydroxyacetamide, the process comprising directly hydrogenating the imidazopyridine α -hydroxyacetamide in the presence of a strong acid, a halide, and a <u>precious metal</u> catalyst, the imidazopyridine α -hydroxyacetamide has the structure of Formula 6 and the imidazopyridine acetamide has the structure of Formula 6A:

$$X_1$$
 X_2
 X_2
 X_1
 X_2
 X_3
 X_4
 X_5

6

6A

$$X_1$$
 X_2
 X_1
 X_2
 X_1
 X_2

wherein

Y is hydrogen, halogen or C₁₋₄ alkyl;

 X_1 and X_2 are independently selected from the group consisting of hydrogen, halogen, C_{1-4} alkoxy, C_{1-6} alkyl, -CF₃ and CH₃SO₂-; and

 R_1 and R_2 are independently hydrogen or C_{1-5} alkyl.

8-10. (Canceled)

11. (Original) The process of claim 7 wherein Y is methyl, X_1 and X_2 are independently hydrogen or methyl and R_1 and R_2 are methyl.

12-13. (Canceled)

14. (Previously Presented) The process of claim 7 wherein the strong acid is sulfuric acid.

15-16. (Canceled)

17. (Previously Presented) The process of claim 7 wherein the halide is a bromide ion.

18-26. (Canceled)

27. (Currently Amended) The process of claim 7 wherein the <u>precious metal</u> catalyst is a palladium catalyst.

28-29. (Canceled)

30. (Currently Amended) The process of claim 27 wherein the <u>precious metal</u> catalyst is palladium on barium sulfate.

31-34. (Canceled)

35. (Original) A process for the preparation of an imidazopyridine acetamide from an imidazopyridine α -hydroxyacetamide, the process comprising directly hydrogenating an imidazopyridine α -hydroxyacetamide in the presence of hydrogen gas, a strong acid or mixture of strong acids with a pKa of about -9 or less, a chloride or bromide ion and a palladium catalyst, wherein the imidazopyridine α -hydroxyacetamide has the structure of Formula 7 and the imidazopyridine acetamide product has the structure of Formula 7A:

7A

$$X_1$$
 X_1
 X_1
 X_1
 X_2

wherein

Y is C₁₋₄ alkyl;

X₁ C₁₋₄ alkyl; and

R₁ and R₂ are independently hydrogen or C₁₋₅ alkyl.

- 36. (Original) The process of claim 35 wherein Y, X₁, R₁ and R₂ are methyl.
- 37. (Original) The process of claim 35 wherein the bromide or chloride ion is a bromide ion.

38-40. (Canceled)

- 41. (Previously Presented) The process of claim 35 wherein the palladium catalyst is palladium on barium sulfate.
- 42. (Original) The process of claim 35 wherein the imidazopyridine α -hydroxyacetamide, the strong acid, the chloride or bromide ion and the palladium catalyst is dissolved in a solvent of methanol, ethanol, n-propanol, formic acid, acetic acid, ethanoic acid or propionic acid.
 - 43. (Canceled)

44. (Previously Presented) The process of claim 42 wherein the solvent is acetic acid.

45-46. (Canceled)

47. (Previously Presented) The process of claim 35 wherein the reaction temperature is about 70°C to about 75°C.

48-49. (Canceled)

- 50. (Previously Presented) The process of claim 35 wherein the reaction pressure is about 2.0 atmospheres to about 2.8 atmospheres.
- 51. (Original) The process of claim 36 wherein the strong acid is sulfuric acid, the bromide or chloride ion is bromide ion and the catalyst is palladium on barium sulfate.
- 52. (Previously Presented) The process of claim 35 wherein the strong acid is sulfuric acid, the bromide or chloride ion is bromide ion and the catalyst is palladium on barium sulfate.
- 53. (Previously Presented) The process of claim 52 wherein the reaction temperature is about 70°C to about 75°C and the reaction pressure is about 2.0 atmospheres to about 2.8 atmospheres.
- 54. (New) The process of claim 1, wherein the process further comprises directly hydrogenating the heteroaryl α -hydroxyacetamide in the presence of hydrogen gas, in addition to the strong acid, the halide, and the precious metal catalyst.
- 55. (New) The process of claim 7, wherein the process further comprises directly hydrogenating the imidazolpyridine α-hydroxyacetamide in the presence of hydrogen gas, in addition to the strong acid, the halide, and the precious metal catalyst.