SEE - CALL - MAY 5011 INC.

- Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$ Using double integrals.
- If f(t) is a periodic function with period T so that f(t+T)=f(t) for all values of prove that $L(f(t)) = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt$
 - Solve $x''(t)+4x'(t)+4x(t)=4e^{-2t}$; x(0)=-1 x'(0)=4 by the Laplace at transform method,
 - Find Laplace transform of (i) $e^{-3t}(2\cos 5t 3\sin 5t)$ (ii) $\frac{\cos at \cos bt}{t}$
- a) Using partial fractions obtain inverse Laplace transform of (i) $\frac{s^2+s-2}{s(s+3)(s-2)}$ (ii) Find $L^{-1} \{ \frac{15}{e^2 + 4e + 13} \}$.
 - Rewrite the following functionusing unit step function and find its Laplace transform, $f(t) = \begin{cases} t^2 & 0 < t \le 3 \\ 4t & t > 3 \end{cases}$
 - Find the inverse Laplace transform of $\frac{1}{(s^2+1)(s+1)}$ using convolution theorem.
 - Unit V
 - 9. a) Formulate a partial differential equation of Z = yf(x) + xg(y)b) Determine the solution of $\left(x^2-y^2-z^2\right)p+2xyq=2xz$ by Lagrange's
 - Using the method of separation of variables solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ given $u(0, y) = 8e^{-3y} + 4e^{-5y}$
- 10. 8) Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$ given that when x=0, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$. b) Apply the method of separation of variables to determine the solution of
- c) Derive one dimensional wave equation in the form $\frac{\partial^2 y}{\partial^2 t} = c^2 \frac{\partial^2 y}{\partial x^2}$ BT* Bloom's Taxonomy, L* Level

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi)
Second Semester B.E. (Credit System) Degree Examination (IBRAR)
April - May 2016

April - May 2016	45.30	
15MA201 - ENGINEERING MATHEMATICS - II	Max. Marks:	100
tion: 3 Hours		100
Note: Answer Five full questions choosing One full question from each	in Unit.	BT*
Unit – I	Marks	ы
a) Show that the differential equation $(y\cos x + \sin y + y)dx + (\sin x + x\cos y + x)dy = 0$ is exact. Hence find	its	
	6	L3
solution. b) Obtain the orthogonal trajectories of the family of curves $r^n = a \sin n\theta$.	7	L5
1 (7	L2
c) Find the general and singular solutions of $p = \log(px - y)$		
a) Solve $xp^2 + x = 2yp$.	6	L3
b) When a resistance R ohms is connected in series with an inductance L henric with an e.m.f E volts, the current i amperes at time t is given by	es	
$L \frac{di}{dt} + Ri = E$. If $E = 10 \sin t$ volts and $i = 0$, when $t = 0$, find i as a funct	tion	
dt	7	L2
of t. Solve $y(x+y+1)dx + x(x+3y+2)dy = 0$.	7	L3
Unit — II	ε	L3
$c_{\text{abs}} = (D^2 A D + 3) v = \sin 5x$	7	L3
 a) Solve (D 4D 3) y = e^{-2x} sin 2x b) Solve (D²+5D+6) y = e^{-2x} sin 2x c) Solve (D²+4) y = tan 2x using the method of variation of parameters. 	7	L4
	6	1.3
a) Solve (D^2+2D+2) $y = 1+3x+x^2$ b) Solve (D^2-D-2) $y = 36xe^{2x}$ by the method of undetermined multipliers.	7	
 b) Solve (D²-D-2) y = 36xe²x c) Solve (D²+2D+4) y = 2x²+3e⁻x by the method of undetermined multipliers. 	I	ι
Unit – III		
$\Gamma(m)\Gamma(n)$		7 1
i. a) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.		7 L
b) Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta \cdot \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}} = \pi.$		0 1
Prove that $\int_{0}^{\sqrt{\sin \theta} d\theta} \int_{0}^{\sqrt{\sin \theta}} \sqrt{\sin \theta}$		6
c) Evaluate $\int_{0}^{1} x^{7} (1-x^{4})^{3} dx$ in terms of gamma function		7
	A A	
$\int_{0}^{1} \sqrt{1-x^2}$		
6. a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dy dx$ by changing the order of integration.		7
0 0	ρ.T.O.	1
	475	F 11

Make up / Supplem 15MA201

b) Evaluate $\int_{-\infty}^{\infty} x e^{-\left(\frac{x^2}{y}\right)} dy dx$ by changing the order of integration.

c) Find the volume bounded by the xy plane, the cylinder $x^2 + y^2 = 1$ and the plane x+y+z=3.

Find Laplace transform of (i) $4\sin^2 2t + 5\cos 4t$ 7.

(ii)
$$\int_{0}^{t} e^{-t} \cos t \, dt$$

transform.

If f(t) is a periodic function with period T so that f(t+T) = f(t) for all values of t prove that $L(f(t)) = \frac{1}{1 - e^{-sT}} \int_{c}^{T} e^{-st} f(t) dt$.

Find the inverse Laplace transform of $\frac{1}{(s^2+1)(s+1)}$ using convolution theorem.

8. a) Rewrite $f(t) = \begin{cases} \sin t & 0 < t \le \frac{\pi}{2} \\ \cos t & t > \frac{\pi}{2} \end{cases}$ using unit step function and find its Laplace

Using partial fractions obtain inverse Laplace transform of $\frac{2s+3}{(s-1)(s+2)^3}$

A voltage $E = E_0 e^{-at}$ where E_0 and a are constants, is applied at time t=0 to an LR circuit of inductance L and resistance R. Find the current at time t>0.

a) Formulate a partial differential equation by eliminating the function F from the 9. $F\left(x^2+y^2,z-xy\right)=0$

Determine the solution of $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$ by Lagrange's

c) Solve $\frac{\partial^2 z}{\partial x^2} = a^2 z$ given that when x = 0, $\frac{\partial z}{\partial x} = a \sin y$ and $\frac{\partial z}{\partial y} = 0$

10. a) Solve $\frac{\partial^3 z}{\partial x^2 \partial y} + 18xy^2 + \sin(2x - y) = 0$

b) Apply the method of separation of variables and hence determine the solution of

Derive one dimensional heat flow equation in the form $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$

ET* Bloom's Taxonomy, L* Level

USN

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavil)

Second Semester B.E. (Credit System) Degree Examinations Make up / Supplementary Examinations - July 2016 1 HHHAH)

15MA201 - ENGINEERING MATHEMATICS - II

on: 3 Hours

Max. Marks: 100

Marks

Note: Answer Five full questions choosing One full question from each Unit.

		Unit -1 at the differential equation $(y^3 - 3x^2y)dx - (x^3 - 3xy^2)dy = 0$ is exact. If its solution.							
a) Show	that	the	differential	equation	$(y^3 - 3x^2y)dx - (x^3 - 3xy^2)dy = 0$ is	exact.			
Henre	find	ts so	lution.						

6

BT"

Find the orthogonal trajectories of family $\frac{x^2}{a^2} + \frac{y^2}{b^2 + 1} = 1$ where λ is a parameter.

7 12

Find the general and singular solutions of $y = xp + \frac{a}{n}$.

12 7

Solve $\left(x\frac{dy}{dx}\right)^2 + xy\frac{dy}{dx} - 6y^2 = 0$.

L3 6

If a body originally is at $80^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes. The temperature of air being 40°C. Find the temperature of the body after 40 minutes from the original. Solve $[xy\sin(xy) + \cos(xy)]ydx + [xy\sin(xy) - \cos(xy)]xdy = 0$.

7 12 L3

Solve (D³-6D²+11D-6) $y = e^{-2x} + e^{-3x}$

L3

solve (D^2+D^2+D+1) y = cos 2x

Solve (D^2-4D+4) y = (e^{2x}/x) using the method of variation of parameters.

Solve (D^2-4D+3) y = sin x

Solve $x^2(d^2y/dx^2) - 2x(dy/dx) - 4y = x^2 + 2 \log x$ A spring is such that 1.96 kg weight streches it 19.6 cms, an impressed force (1/2) cos 8t is acting on the spring. If the weight is started from equilibrium point with an imparted upward velocity of 14.7 cm/s then determine the position of the weight as a function of time.

14

7

Unit - III

Evaluate $\int_{0}^{1} \frac{x^{\alpha} - 1 dx}{\log x} \alpha \ge 0$ using differentiation under the integral sign.

6 **L**3

b) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.

14

Evaluate i) $\int_{0}^{\infty} x^4 e^{-x^2} dx$ ii) $\int_{0}^{\infty} x^6 e^{-2x} dx$

L

Evaluate $\iint_{0}^{a} \int_{0}^{x+y} e^{x+y+z} dz dy dx.$