

HOME CREDIT INDONESIA Data Scientist

ALGORITMA LOGISTIC REGRESSION & XGBOOST

MOHAMAD ARIF SOFYAN

LINKEDIN: https://www.linkedin.com/in/mohamadarifsofyan/

GITHUB: https://github.com/arifsofyan004

IMPORT DATA


```
path_bureau = '/content/home-credit-default-risk/bureau.csv'
path_bureau_balance = '/content/home-credit-default-risk/bureau_balance.csv'
path_POS_CASH_balance = '/content/home-credit-default-risk/POS_CASH_balance.csv'
path credit card balance = '/content/home-credit-default-risk/credit card balance.csv'
path_previous_application = '/content/home-credit-default-risk/previous_application.csv'
path_installments_payments = '/content/home-credit-default-risk/installments_payments.csv'
df_bureau = pd.read_csv(path_bureau)
df_bureau_balance = pd.read_csv(path_bureau_balance)
df_POS_CASH_balance = pd.read_csv(path_POS_CASH_balance)
df_credit_card_balance = pd.read_csv(path_credit_card_balance)
df_previous_application = pd.read_csv(path_previous_application)
df_installments_payments = pd.read_csv(path_installments_payments)
print('Ukuran data POS_CASH_balance:', df_POS_CASH_balance.shape)
print('Ukuran data bureau_balance:', df_bureau_balance.shape)
print('Ukuran data previous_application:', df_previous_application.shape)
print('Ukuran data installments_payments:', df_installments_payments.shape)
print('Ukuran data credit_card_balance:', df_credit_card_balance.shape)
print('Ukuran data bureau:', df_bureau.shape)
Ukuran data POS_CASH_balance: (10001358, 8)
Ukuran data bureau_balance: (27299925, 3)
Ukuran data previous_application: (1670214, 37)
Ukuran data installments_payments: (13605401, 8)
Ukuran data credit_card_balance: (3840312, 23)
Ukuran data bureau: (1716428, 17)
```

• Isi data aplikasi pelatihan

Serta ukuran Data Lainya

- Ukuran data POS_CASH_balance: (10001358, 8)
- Ukuran data bureau balance: (27299925, 3)
- Ukuran data previous_application: (1670214, 37)
- Ukuran data installments_payments: (13605401, 8)
- Ukuran data credit_card_balance: (3840312, 23)
- Ukuran data bureau: (1716428, 17)

Data Understanding

Menjelajahi data yang akan kita analisis lebih dalam.

application_train memiliki 307.511 entri dan 122 fitur.

Fitur application_train

- SK_ID_CURR memiliki 307.511 nomor identifikasi unik,
- TARGET adalah variabel target dengan dua nilai (default atau tidak),
- CODE_GENDER memiliki tiga kategori, dan seterusnya untuk fitur lainnya.

Informasi ini memberikan gambaran awal tentang kompleksitas dataset dan variasi fitur yang akan kita teliti dalam analisis berikutnya.

```
[ ] print('Ukuran data application train:', df application train.shape)
    Ukuran data application train: (307511, 122)
    df_application_train.nunique()
    SK_ID_CURR
                                     307511
    TARGET
    NAME CONTRACT TYPE
    CODE_GENDER
    FLAG OWN CAR
    FLAG_OWN_REALTY
                                         15
    CNT CHILDREN
    AMT_INCOME_TOTAL
                                       2548
    AMT CREDIT
                                       5603
    AMT_ANNUITY
                                      13672
    AMT_GOODS_PRICE
                                       1002
    NAME_TYPE_SUITE
    NAME_INCOME_TYPE
    NAME_EDUCATION_TYPE
    NAME_FAMILY_STATUS
    NAME HOUSING TYPE
    REGION_POPULATION_RELATIVE
                                         81
    DAYS BIRTH
                                      17460
    DAYS EMPLOYED
                                      12574
    DAYS REGISTRATION
                                      15688
    DAYS_ID_PUBLISH
                                       6168
    OWN CAR AGE
                                         62
    FLAG MOBIL
    FLAG EMP PHONE
    FLAG WORK PHONE
    FLAG CONT MOBILE
    FLAG PHONE
    FLAG_EMAIL
    OCCUPATION TYPE
```

Pemilihan Feature

- Jika terdapat pasangan fitur dengan korelasi yang tinggi, salah satunya akan dipilih. Tidak ada standar pasti untuk menentukan nilai korelasi yang dianggap tinggi, tetapi biasanya angka 0.7 digunakan sebagai acuan.
- Fitur yang sangat didominasi oleh salah satu nilai saja akan dibuang pada tahap ini.
- Menghapus kolom yang memiliki persentase nilai yang hilang yang cukup tinggi, yang mungkin sulit untuk diimputasi dengan tepat atau dapat mengganggu kinerja model.

Feature Enginering

```
Konversi DAYS_BIRTH menjadi usia dalam tahun

[ ] df_application_train['AGE'] = round(-df_application_train['DAYS_BIRTH'] / 365, 1)

Konversi DAYS_EMPLOYED menjadi tahun bekerja

[ ] df_application_train['YEARS_EMPLOYED'] = round(-df_application_train['DAYS_EMPLOYED'] \cdot / 365, 1)
```

Membuat fitur baru yang lebih informatif dari data yang sudah ada

- Persentase kredit terhadap pendapatan.
- Total permintaan kredit dari berbagai aspek.
- Konversi DAYS_BIRTH menjadi usia dalam tahun
- Konversi DAYS_EMPLOYED menjadi tahun bekerja

Exploratory Data Analysis

• CNT_CHILDREN: Nilai maksimum (19) terlihat agak aneh. Ini bisa menjadi indikasi outlier atau data yang tidak biasa.

Menghapus jumlah anak lebih dari 10 (Outlier)

Ekplorasi Variabel Target

Variabel target dalam dataset menunjukkan ketidakseimbangan yang signifikan:

• Kategori 1: 8.1%

• Kategori 0: 91.9%

Dengan persentase 8.1% untuk kategori 1 dan 91.9% untuk kategori 0, terdapat ketidakseimbangan yang mencolok antara pelamar yang gagal membayar kredit dengan yang berhasil

Distribusi Target

Dataset Splitting

```
[ ] from sklearn.model_selection import train_test_split

X = df_application_train.drop(columns=['TARGET'])
y = df_application_train['TARGET']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
X_train.shape, X_test.shape, y_train.shape, y_test.shape

((246002, 53), (61501, 53), (246002,), (61501,))
```

Untuk melatih model prediksi dengan data, kita membagi dataset menjadi data pelatihan dan data uji.

- Data pelatihan terdiri dari 246.002 entri, dan data uji terdiri dari 61.501 entri.
- Setiap data terdiri dari 53 fitur.
- Variabel target (y) juga telah dibagi secara proporsional antara data pelatihan dan data uji.

Imputasi, Skalasi dan Encoding

- Imputasi Missing Value: Untuk data numerik, nilai yang hilang diisi dengan median, sementara untuk data kategorikal, nilai yang hilang diisi dengan nilai yang paling sering muncul.
- Skalasi: Data numerik telah dinormalisasi menggunakan metode StandardScaler untuk memastikan rentang nilai yang konsisten.
- Encoding: Data kategorikal telah diubah menjadi bentuk numerik menggunakan OneHotEncoder untuk memungkinkan penggunaan dalam model machine learning.

Modeling Logistic Regression

```
logistic_model = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('classifier', LogisticRegression(solver='liblinear', max_iter=1000, penalty='l2'))
1)
# Menambahkan parameter yang akan diuji
param_space_lr = {
    "classifier__C": np.logspace(-3, 3, 7),
    "classifier__fit_intercept": [True, False]
model lr = RandomizedSearchCV(logistic model, param distributions=param space lr, n iter=10, cv=3, random state=42)
model lr.fit(X train, y train)
# Tampilkan hasil regresi logistik
print("Best Parameters (Logistic Regression):", model_lr.best_params_)
print("Training Accuracy (Logistic Regression):", model_lr.score(X_train, y_train))
print("Model Best Score (Logistic Regression):", model_lr.best_score_)
print("Test Accuracy (Logistic Regression):", model_lr.score(X_test, y_test))
Best Parameters (Logistic Regression): {'classifier__fit_intercept': False, 'classifier__C': 0.001}
Training Accuracy (Logistic Regression): 0.91925675401013
Model Best Score (Logistic Regression): 0.9192648842870547
Test Accuracy (Logistic Regression): 0.9193509048633356
```

Hasil dari proses ini adalah sebagai berikut:

- Parameter Terbaik: 'fit_intercept': False, 'C': 0.001
- Akurasi Pelatihan: 91.93%
- Skor Terbaik Model: 91.93%
- Akurasi Uji: 91.94%

- Pemodelan: Model Regresi Logistik dibangun dengan solver 'liblinear', max_iter 1000, dan menggunakan regularisasi L2.
- Pemilihan Parameter: Kami menggunakan RandomizedSearchCV untuk mencari parameter terbaik, dengan rentang yang ditentukan untuk parameter C dan fit_intercept.

Modeling XGBoost

```
xgb_model = Pipeline(steps=[
   ('preprocessor', preprocessor),
   ('classifier', XGBClassifier())
1)
# Menambahkan parameter yang akan diuji
param_space_xgb = {
    'classifier__n_estimators': [100, 500, 1000],
    'classifier__max_depth': [3, 5, 7],
model_xgb = RandomizedSearchCV(xgb_model, param_distributions=param_space_xgb, n_iter=10, cv=3, random_state=42)
model_xgb.fit(X_train, y_train)
# Tampilkan hasil XGBoost
print("Best Parameters (XGBoost):", model_xgb.best_params_)
print("Training Accuracy (XGBoost):", model_xgb.score(X_train, y_train))
print("Model Best Score (XGBoost):", model_xgb.best_score_)
print("Test Accuracy (XGBoost):", model_xgb.score(X_test, y_test))
/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_search.py:305: UserWarning: The total space of param
 warnings.warn(
Best Parameters (XGBoost): {'classifier__n_estimators': 100, 'classifier__max_depth': 3}
Training Accuracy (XGBoost): 0.9197160998691067
Model Best Score (XGBoost): 0.9192608188002467
Test Accuracy (XGBoost): 0.9194809840490399
```

Hasil dari eksplorasi parameter:

Parameter Terbaik: 'n_estimators': 100, 'max_depth': 3

Akurasi Pelatihan: 91.97%

Skor Terbaik Model: 91.93%

Akurasi Uji: 91.95%

Melalui RandomizedSearchCV, kami mencari parameter terbaik untuk XGBoost.
Parameter yang kami eksplorasi adalah jumlah estimator (n_estimators) dan kedalaman maksimum (max_depth).

Evaluation Logistic Regression

Classification	n Report: precision	recall	f1-score	support
0	0.92 0.55	1.00	0.96 0.01	56536 4965
accuracy macro avg weighted avg	0.74 0.89	0.50 0.92	0.92 0.48 0.88	61501 61501 61501

Dari laporan klasifikasi, meskipun akurasi tinggi, model memiliki kinerja yang buruk dalam mengklasifikasikan kelas minoritas (kelas 1).

ROC AUC Score: 0.735 Dengan skor 0.735, model Regresi Logistik kita memiliki kinerja yang baik dalam memisahkan kelas positif dan negatif.

Evaluation XGBoost

글	Classificatio	-	recall	f1-score	support	
	0 1	0.92 0.55	1.00	0.96 0.03	56536 4965	
	accuracy macro avg weighted avg	0.73 0.89	0.51 0.92	0.92 0.49 0.88	61501 61501 61501	

Dari laporan klasifikasi, meskipun akurasi tinggi, model memiliki kinerja yang buruk dalam mengklasifikasikan kelas minoritas (kelas 1).

ROC AUC Score: 0.741 Dengan skor 0.741, model XGBoost kita memiliki kinerja yang baik dalam memisahkan kelas positif dan negatif.

