EE5609 – Matrix Theory 2023 Practice Set 4

Lakshmi Prasad Natarajan

Solutions are not to be returned

Practice Set

Notation: Bold lower case letters will denote column vectors, and bold upper case letters are matrices. The symbol \mathbb{F} denotes either \mathbb{R} or \mathbb{C} .

- 1. David Lay, Exercises 2.2: Questions 33, 34.
- David Lay, Exercises 2.3:
 Questions 27, 28, 30, 36, 37, 39.
- 3. Let \mathbf{A} be $m \times n$. Suppose $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution $\mathbf{x} = \mathbf{c}$. Argue that the collection of all solutions is exactly equal to the set $\{\mathbf{c} + \mathbf{n} : \mathbf{n} \in \text{Null}(\mathbf{A})\}$.
- 4. Linear Independence of Rows of \mathbf{R} .
 - (a) Suppose \mathbf{R} is an $m \times n$ RREF matrix. If one of the rows of \mathbf{R} is all-zero, does this matrix have linearly independent rows?
 - (b) If all the rows of R are non-zero, does R have linearly independent rows? Use the fact that every pivot column of R is a standard basis vector.
 - (c) Can we conclude that if R has m pivot entries then R has linearly independent rows?
- 5. Linear Independence of Rows of A.
 - (a) Let \mathbf{A} be $m \times n$, let \mathbf{T} be an $m \times m$ invertible matrix and let $\mathbf{B} = \mathbf{T}\mathbf{A}$. Argue that \mathbf{B} has linearly dependent rows if and only if \mathbf{A} has linearly dependent rows.
 - Hint: Use the fact that T and T^T are invertible. Hence, $x^TT = 0$ if and only if x = 0.
 - (b) Suppose $\mathbf{R} = RREF(\mathbf{A})$. Can we say that \mathbf{A} has linearly independent rows if and only if \mathbf{R} has linearly rows?
 - (c) Conclude that A has linearly independent rows if and only if number of pivots equals m.
 - (d) Can we say that the left-nullspace of \boldsymbol{A} is $\{\boldsymbol{0}\}$ if and only if the number of pivots equals m?
- 6. Let **A** be $m \times n$ and **R** = RREF(**A**). Use the fact that **A** and **R** have the same nullspace.
 - (a) If the sum of the first two columns of \mathbf{R} is all-zero, what is the sum of the first two columns of \mathbf{A} ?
 - (b) If the second and fourth columns of \mathbf{R} are equal, can we say that the second and fourth columns of \mathbf{A} are equal?
 - (c) Argue that the last column of \mathbf{R} is a linear combination of the other columns of \mathbf{R} if and only if the last column of \mathbf{A} is a linear combination of the other columns of \mathbf{A} .
 - (d) Is it true that the last column of R is a linear combination of the other columns of R if and only if the last column of R is not a pivot column?

7. Determining if $\mathbf{b} \in \text{Col}(\mathbf{A})$.

Let \mathbf{A} be $m \times n$ and \mathbf{b} be of length m. Consider the augmented matrix $\mathbf{G} = [\mathbf{A} \ \mathbf{b}]$, which is of size $m \times (n+1)$. Let $\mathbf{R} = \text{RREF}(\mathbf{G})$.

- (a) Argue that $b \in \text{Col}(A)$ if and only if the last column of G is a linear combination of the other columns of G.
- (b) Use the previous question to show that $\boldsymbol{b} \in \operatorname{Col}(\boldsymbol{A})$ if and only if the last column of \boldsymbol{R} is not a pivot column.
- 8. Let $\mathbf{A} = [\mathbf{B} \ \mathbf{C}]$ be a block matrix.
 - (a) Argue that if \boldsymbol{A} has linearly independent columns then both \boldsymbol{B} and \boldsymbol{C} have linearly independent columns.
 - (b) What is the contrapositive of the above statement?
 - (c) By giving a counter example, show that the converse of this statement is not true.
 - (d) Argue that if \boldsymbol{A} has linearly dependent rows then both \boldsymbol{B} and \boldsymbol{C} have linearly dependent rows.
 - (e) What is the contrapositive of the above statement?
 - (f) By giving a counter example, show that the converse of this statement is not true.
 - (g) Can you make analogous observations for the case $\boldsymbol{A} = \begin{bmatrix} \boldsymbol{B} \\ \boldsymbol{C} \end{bmatrix}$.
- 9. Suppose \mathbf{A} is $m_1 \times n$, \mathbf{B} is $m_2 \times n$. Can you identify a matrix \mathbf{C} (in terms of \mathbf{A} and \mathbf{B}) such that $\text{Null}(\mathbf{C}) = \text{Null}(\mathbf{A}) \cap \text{Null}(\mathbf{B})$?
- 10. If $\mathbf{A} = \begin{bmatrix} \mathbf{B} \\ \mathbf{C} \end{bmatrix}$, is it true that $\operatorname{Row}(\mathbf{B}) \subset \operatorname{Row}(\mathbf{A})$ and $\operatorname{Row}(\mathbf{C}) \subset \operatorname{Row}(\mathbf{A})$?
- 11. If $\mathbf{A} = [\mathbf{B} \ \mathbf{C}]$, is it true that $\operatorname{Col}(\mathbf{B}) \subset \operatorname{Col}(\mathbf{A})$ and $\operatorname{Col}(\mathbf{C}) \subset \operatorname{Col}(\mathbf{A})$?
- 12. Determine if the following matrices have linearly independent columns or not. In each case you must give a proof to support your answer.
 - (a) a square diagonal matrix where all the diagonal entries are non-zero.
 - (b) a square upper triangular matrix where all the entries in the main diagonal are non-zero.
 - (c) a "tall" upper triangular matrix where all the diagonal entries are non-zero.
 - (d) an $m \times 2$ matrix of the form

$$\begin{bmatrix} 1 & \alpha_1 \\ 1 & \alpha_2 \\ \vdots & \vdots \\ 1 & \alpha_m \end{bmatrix}$$

where $\alpha_1, \ldots, \alpha_m$ are all distinct. Does your answer depend on the value of m?

- (e) the transpose of the above matrix. How does your answer depend on m?
- (f) an $m \times n$ matrix \boldsymbol{A} with $nnz(\boldsymbol{A}) < n$. (Recall that nnz is the number of non-zero entries in a matrix.)
- (g) the all-ones $m \times n$ matrix. How does your answer depend on m and n?
- (h) 2×2 matrix **A** with $a_{1,1}a_{2,2} a_{2,1}a_{1,2} \neq 0$.
- (i) the 2×2 real matrix that rotates a point in \mathbb{R}^2 by θ radians anti-clockwise.
- 13. Product of matrices versus linear independence of columns.
 - (a) If B has linearly dependent columns, then what about AB (irrespective of what A is)?

(b) If \boldsymbol{A} and \boldsymbol{B} have linearly independent columns then show that \boldsymbol{AB} has linearly independent columns.

Hint: Use the column viewpoint for matrix-matrix multiplication.

(c) We will now want to show that the converse to the previous question is not true. In particular, show that there exist matrices \boldsymbol{A} and \boldsymbol{B} such that \boldsymbol{A} has linearly dependent columns, \boldsymbol{B} has linearly independent columns and \boldsymbol{AB} has linearly independent columns.

14. Vandermonde matrices.

Our intention is to show that square Vandermonde matrices are invertible. We will use a polynomial interpretation to proceed with the proof. We will rely on the following fundamental result about polynomials.

Theorem 1: Let $f(x) = f_0 + f_1 x + f_2 x^2 + \cdots + f_{n-1} x^{n-1}$ be any non-zero polynomial in the variable x and with coefficients $f_0, \ldots, f_{n-1} \in \mathbb{F}$. Then f(x) has at the most n-1 distinct roots in \mathbb{F} .

This theorem can be restated as follows. Suppose $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ are distinct scalars, and suppose f(x) is a polynomial such that $f(\alpha_1) = \cdots = f(\alpha_n) = 0$. Then, either f(x) is the zero polynomial, i.e., f(x) = 0, or f(x) has degree at least n.

Let us now use Theorem 1 to prove that square Vandermonde matrices are invertible.

(a) Suppose $f(x) = f_0 + f_1 x + \cdots + f_{n-1} x^{n-1}$. Note that this means the degree of f(x) is at the most (n-1). Let $\alpha \in \mathbb{F}$. Show that α is a root of f(x) if and only if

$$\begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_{n-1} \end{bmatrix} = 0.$$

(b) Let $\alpha_1, \ldots, \alpha_n$ be distinct scalars. Show that all of them are roots of f(x) if and only if

$$\begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \cdots & \alpha_n^{n-1} \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_{n-1} \end{bmatrix} = \mathbf{0}.$$

(c) Let

$$\mathbf{A} = \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \cdots & \alpha_n^{n-1} \end{bmatrix} \text{ and } \mathbf{f} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_{n-1} \end{bmatrix}$$

Use Theorem 1 and the fact that the degree of f(x) is at the most (n-1) to show the following: $\mathbf{A}\mathbf{f} = \mathbf{0}$ if and only if $\mathbf{f} = \mathbf{0}$.

- (d) Argue that **A** is invertible if $\alpha_1, \ldots, \alpha_n$ are distinct.
- (e) Prove the converse also, i.e., show that if any two of $\alpha_1, \ldots, \alpha_n$ are equal then **A** is not invertible.

3

Hint: Show that A has linearly dependent rows.

15. The discrete Fourier transform (DFT) matrix.

(Solve this after solving the previous question on Vandermonde matrices.) Let $\mathbb{F} = \mathbb{C}$, and let $\omega = \exp\left(-j\frac{2\pi}{n}\right)$ where $j = \sqrt{-1}$. The DFT matrix is defined as the $n \times n$ complex matrix \boldsymbol{F} whose entry in row k and column ℓ is

$$[\mathbf{F}]_{k,\ell} = \frac{1}{\sqrt{n}} \omega^{(k-1)(\ell-1)}.$$

Prove the following:

- (a) \boldsymbol{F} is a symmetric matrix.
- (b) $\sqrt{n}\mathbf{F}$ is a Vandermonde matrix.
- (c) \boldsymbol{F} is invertible.