数学クォータ科目「数学」第5回(3/3)

逆行列と行列の正則性

佐藤 弘康 / 日本工業大学 共通教育学群

【復習】実数の逆数

- 問2の逆数とはどのような数ですか?
 - (答) $\frac{1}{2}$ または 2^{-1} または 0.5 (一2 は逆符号の数)
- 問 実数 a の逆数とはどのような数ですか? (答) $\frac{1}{a}$ または a^{-1}
- 問 実数 a に対し、 $\frac{1}{a}$ はどのような数ですか? (答) a との 積 が 1 となる数.
 - 実数 a の逆数とは、ab = 1 を満たす数 b のこと.
 - $\underline{a \neq 0}$ ならば, a の逆数が存在する. a の逆数を a^{-1} または $\frac{1}{a}$ と書く.

定義

n 次正方行列 A に対し,AB = BA = E を満たす n 次正方行列 B を 「A の逆行列」といい, $B = A^{-1}$ と書く(ただし, E は n 次単位行列).

- AB = E が成り立つならば, BA = E も成り立つ.
- A の逆行列が存在するならば、それは一意的である。

逆行列の求め方

•
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
の逆行列は?

$$\circ$$
 A の逆行列を $B = \begin{pmatrix} x & z \\ y & w \end{pmatrix}$ とおくと,

$$E = AB \iff \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x & z \\ y & w \end{pmatrix} = \begin{pmatrix} ax + by & az + bw \\ cx + dy & cz + dw \end{pmatrix}$$
$$\iff \begin{cases} ax + by = 1 \\ cx + dy = 0 \end{cases} \quad \text{for } \begin{cases} az + bw = 0 \\ cz + dw = 1 \end{cases}$$

。 2つの連立方程式を解くことにより,
$$A^{-1}=\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

を得る.

2次正方行列の逆行列の公式

逆行列の求め方

- 一般の n 次正方行列の逆行列は?
 - 考え方は 2次の場合と同じ.
 - \circ 「未知数が n 個で式の数が n 個」の連立方程式を n 個解く必要がある(とてもたいへん).
 - 行列の 基本変形 という手法で求めることができる.

(この科目では扱いません)

逆行列の存在性

- 問 正方行列 A に対し、その逆行列 A^{-1} は必ず存在するだろうか? (答)必ず存在するとは限らない.
 - 零行列 O の逆行列が存在しないこと は明らか.
 - : 零行列にどんな行列をかけても零行列になるから、
 - $A \neq O, B \neq O, AB = O$ を満たす行列 A, B の逆行列は存在しない.
 - $oxdot A^{-1}$ が存在すると仮定する.

AB = O の両辺に左から A^{-1} をかけると, B = O となる. これは, $B \neq O$ に矛盾する.

正則行列

定義

正方行列 A の 逆行列が存在する とき, A を正則行列とよぶ.

• 2次正方行列
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
の逆行列は $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

- スカラー $\frac{1}{ad-bc}$ の分母が 0 のとき, 逆行列は定まらない.
- ad bc = 0 のとき, A の逆行列は存在しない.
- これは同値条件である. つまり、

2次正方行列
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
は正則 \iff $ad-bc \neq 0$

逆行列の応用:連立1次方程式の解法

- 連立1次方程式は Ax = b と表すことができる. ただし, A は係数行列, b は定数項ベクトル (前回のスライド p.9 を参照).
- 係数行列 A が正方行列 (つまり、未知数 x, y, z, ... の個数と式の個数が同じ) のとき、
 A が正則ならば、連立方程式の 解 x は、A の逆行列によって求めることができる。

連立1次方程式の解

A が正方行列, かつ正則ならば,

連立1次方程式 Ax = b の解は $x = A^{-1}b$ である..

x = b の両辺に<u>左から A^{-1} をかける</u>ことにより、 $x = Ex = (A^{-1}A)x = A^{-1}(Ax) = A^{-1}b$

今回(第5回講義)のまとめ

- (1) 行列 とは? … 数(成分)を格子状に並べたもの. 行 と 列 で構成.
 - 行列の 型, 正方行列, 対角成分, 対角行列, 単位行列, 零行列
 - 和 と スカラー倍 の演算
- (2) 行列の 積
 - 連立1次方程式 の行列表示
- (3) 逆行列
 - 行列の正則性(正則行列)
 - 連立1次方程式 の解が逆行列を用いて表わされること