PARTIE 4

Exercice 1

Un quadriréacteur gros-porteur (certification type CS-25) se présente à l'atterrissage ; les valeurs nominales volets sortis (configuration normale) sont :

Grandeur	Symbole	Valeur
Masse à l'atterrissage	m	290t
Vitesse de décrochage (volets 30)	V_{s}	118 <i>Kt</i>
Vitesse d'approche	V_{att}	$1.3V_s$
Décélération moyenne disponible (auto-	Γ	0.25g
brake + invers., piste sèche)		o o

- 1) Calculez la **longueur de piste nécessaire** dans la configuration **normale** (volets pleinement sortis)
- 2) Une panne bloque les volets en position rentrée. Les essais montrent une **perte de 30%** sur C_{zmax} ; on suppose que la masse reste inchangée.
 - a) Déterminez la nouvelle **vitesse de décrochage** V_s
 - b) Calculez la **distance d'atterrissage requise** si l'aéronef peut encore décélérer en moyenne à 0.25*g*

3) Dans la pratique :

- le déploiement des aérofreins est **interdit** au-dessus de $V_{att} = 180Kt$
- le système de freinage n'atteint plus qu'une décélération moyenne de 0.12g (chauffe des freins, adhérence).
 - a) Calculez la distance d'arrêt dans ces conditions
 - b) Comparez à la distance trouvée en Q2 et discutez la marge opérationnelle.
- 4) À la lumière des résultats, décrivez :
- les **risques opérationnels** d'un atterrissage volets rentrés (par ex. vitesse d'impact, énergie frein, longueur RWY),
- les **options** qu'aurait l'équipage (déroutement, choix d'un aérodrome longue piste, délestage carburant, etc.).

Exercice 2 : Calcul de moments aérodynamiques sur un profil NACA 2412

On dispose des coefficients de pression Kp mesurés en soufflerie, à M=0,2 pour un profil NACA 2412 de corde c=1,8 m à l'incidence α =4°.

Les points d'acquisition sont répartis tous les 10 % de corde; la table ci-dessous donne les valeurs moyennes **intrados / extrados** (symbole « – » pour intrados, « + » pour extrados).

Abscisse $\frac{x}{c}$	K_p^+	K_p^-
0,0	-0,20	+0,75
0,1	-0,95	+0,70
0,2	-1,10	+0,55
0,3	-1,05	+0,40
0,4	-0.85	+0,25
0,5	-0,65	+0,15
0,6	-0,50	+0,05
0,7	-0,40	-0,05
0,8	-0,35	-0,10
0,9	-0,30	-0,12
1,0	-0,28	-0,12

1. Portance linéique

En assimilant la surface influencée entre deux stations à un trapèze (voir implication au niveau indications), calculez le coefficient global de portance C_z du profil. (3 pts)

2. Moment de tangage au bord d'attaque

En utilisant la même intégration trapézoïdale, calculez le coefficient de moment autour du **bord d'attaque** (C_{m1}) (3 pts)

3. Moment au quart de corde

Déduisez le coefficient de moment au quart de corde $C_{m_quart} = C_{m1} + \frac{1}{4}C$

4. Axe neutre (centre aérodynamique)

En supposant que pour ce profil la variation de C_m avec l'incidence est linéaire avec

$$\frac{\partial C_{m1}}{\partial C_z} = -0.25$$

vérifiez que le centre aérodynamique est bien situé aux environs du quart de corde.

Indications:

$$C_z = \sum \frac{(Kp_i^- - Kp_i^+) + (Kp_{i+1}^- - Kp_{i+1}^+)}{2} \Delta x$$

$$C_{m1} = \sum \frac{x_i (Kp_i^- - Kp_i^+) + x_{i+1} (Kp_{i+1}^- - Kp_{i+1}^+)}{2} \Delta x$$

Exercice 3 : seuil de compressibilité avec une tolérance de 1 % sur la masse

Pour un écoulement subsonique, on utilise la correction de Prandtl-Glauert sur le coefficient de portance.

- 1) Montrer que l'erreur relative sur la masse peut s'écrire : $|\varepsilon| = 1 \sqrt{1 M^2}$;
- 2) Déterminer le mach (M_{lim}) à partir duquel on ne peut plus négliger la correction Prandtl-Glauert si l'erreur relative admissible sur la masse est fixée à 1 %.