Analiza seria 3

Bartosz Kucypera, bk439964

5 maja 2023

Zadanie 4

$$S(x) = \sum_{n=1}^{\infty} \frac{\cos(n\pi)\cos(x/n)}{\sqrt{n} + \cos(x)}, \text{ dla } x \in \mathbb{R}$$

W zadaniu mamy chyba mały błąd (albo czegoś nie widzę). Szereg nie jest dobrze zdefiniowany dla np. $x=\pi$, bo pierwszy wyraz szeregu $S(\pi)=\frac{-1\cdot -1}{1+-1}=\frac{1}{0}$, założyłem, więc że sumujemy od 2.

Zbadajmy jak S zachowuje się na przedziałach postaci [a,b] $a,b \in \mathbb{R}$.

Niech
$$f_n(x) = \frac{1}{\sqrt{n + \cos(n)}}, g_n(x) = \cos(n\pi)\cos(x/n) = (-1)^n \cos(x/n).$$

1) Ciąg sum częściowych $\sum_{n=2}^{\infty} g_n(x)$ ograniczony na [a,b]

Niech $n_0 \in \mathbb{N}$ takie, że $n_0 > \max(|a|, |b|)$.

Zauważmy, że każdy ciąg postaci $(\cos(x/n))_{n_0}^{\infty}, x \in [a,b]$, jest monotonicznie zbierzny do 1.

Dla każdego $n \ge n_0$, |x/n| < 1. Jeśli x < 0, (x/n) jest rosnący i zbieżny do 0, cos rosnący na (-1,0], więc $\cos(x/n)$ montonicznie zbieżny do 1.

Dla $x = 0, \cos(x/n) = 1$.

Dla x > 0, (x/n) malejący, cos malejący na [0,1) czyli też ciąg zbieżny monotonicznie do 1.

$$\sum_{n=n_0}^{N} g_n(x) = \sum_{n=n_0}^{N} (-1)^n (\cos(x/n) - 1 + 1) = \underbrace{\sum_{n=n_0}^{N} (-1)^n (\cos(x/n) - 1)}_{L} + \underbrace{\sum_{n=n_0}^{N} (-1)^n}_{R}$$

przy czym L to suma częściowa zbieżnego szeregu (z kryterium Leibniza), więc jest ograniczona, R też oczywiście ograniczony.

Czyli
$$\sum_{n=n_0}^N g_n(x)$$
 ograniczony, n_0 ustalone, więc $\sum_{n=2}^N g_n(x)$ też ograniczony.

2) $f_n \rightrightarrows 0$ na [a,b]

Ciąg $(f_n(x))_2^{\infty}$ punktowo zbieżny do 0.

Zauważmy, że:

$$|f_n(x)| = \left|\frac{1}{\sqrt{n} + \cos(x)}\right| \le \frac{1}{\sqrt{n} - 1},$$

czyli

$$\lim_{n \to \infty} \sup_{x \in [a,b]} |f_n(x) - 0| = 0,$$

więc f_n zbieżne jednostajnie z definicji.

Konkluzja

Niech (S_N) będzie ciągiem sum częściowych S. Skoro na przedziale [a,b] zachodzi 1) i 2) to na mocy jednostajnego kryterium Dirichlet'a szereg S zbieżny jednostajnie na [a,b].

 S_N jest ciągiem funkcji ciągłych (każdy element to skończona suma fuckji ciągłych), więc skoro (S_N) zbieżny jednostajnie do S, więc S też ciągła na [a,b].

Z dowolności wybrou przedzaiłu [a, b], wnioskujemy ciągłość S na \mathbb{R} . (dla każdego $x_0 \in \mathbb{R}$, S ciągła na $[x_0 - 1, x_0 + 1]$ czyli ciągła w x_0)