Notas del curso Topología I

Cristo Daniel Alvarado

16 de febrero de 2024

Índice general

0.	Introduccion
	0.1. Temario
	Conceptos Fundamentales 1.1. Fundamentos

Capítulo 0

Introduccion

0.1. Temario

Checar el Munkres

0.2. Bibliografía

- 1. J. R. Munkres 'Topología' Prentices Hall.
- 2. M. Gemignsni 'Elementary Topology' Dover.
- 3. J. Dugundji 'Topology' Allyn Bacon.

Capítulo 1

Conceptos Fundamentales

1.1. Fundamentos

Definición 1.1.1

Sea X un conjunto y $\mathcal A$ una familia no vacía de subconjuntos de X. Definamos los **complementos** de $\mathcal A$

$$\mathcal{A}' := \left\{ X - A \middle| A \in \mathcal{A} \right\}$$

(básicamente es el conjunto de todos los complementos de los conjuntos en \mathcal{A}). Para no perder ambiguedad, no denotaremos al complemento de un conjunto por B^c , sino por X-B (para denotar quien es el conjunto sobre el que se toma el complemento del conjunto).

La unión de los elementos de A se define como el conjunto:

$$\bigcup \mathcal{A} = \bigcup_{A \in \mathcal{A}} A = \left\{ x \in X \middle| x \in A \text{ para algún elemento } A \in \mathcal{A} \right\}$$

denotada por el símbolo de la izquierda.

La intersección de los elementos de A se define como el conjunto:

$$\bigcap \mathcal{A} = \bigcap_{A \in \mathcal{A}} A = \left\{ x \in X \middle| x \in A \text{ para todo elemento } A \in \mathcal{A} \right\}$$

Observación 1.1.1

En caso de que la colección \mathcal{A} sea vacía, no se puede hacer lo que marca la definición anterior. Como \mathcal{A} es vacía, entonces \mathcal{A}' también es vacía.

- 1. Suponga que $\cup A \neq \emptyset$, entonces existe $x \in X$ tal que $x \in \cup A$, luego existe algún elemento $A \in A$ tal que $x \in A$, pero esto no puede suceder, pues la familia A es vacía. $\#_c$. Por tanto, $\cup A = \emptyset$.
- 2. Ahora, si aplicamos las leyes de Morgan, y tomamos

$$X - \cap A = X - \cap \emptyset = \cup \emptyset' = \cup \emptyset = \emptyset$$

luego, $\cap \mathcal{A} = X$.

En definitiva, si \mathcal{A} es una colección vacía, entonces definimos $\cup \mathcal{A} = \emptyset$ y $\cap \mathcal{A} = X$.

La observación junto con la definición anterior se usarán a lo largo de todo el curos y serán de utilidad.

Definición 1.1.2

Sea X un conjunto y sea τ una familia de subconjuntos de X. Se dice que τ es una **una topología** definida sobre X si se cumple lo siguiente:

- 1. $\emptyset, X \in \tau$.
- 2. Si \mathcal{A} es una subcolección de τ , entonces $\bigcup \mathcal{A} \in \tau$.
- 3. Si $A, B \in \tau$, entonces $A \cap B \in \tau$.

Observación 1.1.2

En algunos libros viejos viene la siguiente condición adicional a la definición:

4. Si $p, q \in X$ con $p \neq q$, entonces existen $U, V \in \tau$ tales que $p \in U, q \in V$ y $U \cap V = \emptyset$.

en este caso se dirá que el espacio es Hausdorff.

Observación 1.1.3

Se tienen las siguientes observaciones:

1. Sea X un conjunto y A una familia de subconjuntos de X. Si

$$\mathcal{A} = \{ A_{\alpha} | \alpha \in I \}$$

entonces podemos escribir

$$\bigcup \mathcal{A} = \bigcup_{A \in \mathcal{A}} A = \bigcup_{\alpha \in I} A_{\alpha}$$

e igual con la intersección:

$$\bigcap \mathcal{A} = \bigcap_{A \in \mathcal{A}} A = \bigcap_{\alpha \in I} A_{\alpha}$$

Si \mathcal{A} es una familia vacía, y se toma como definición lo dicho en la observación 1.0.1, entonces podemos omitir el primer inciso de la definición anterior.

2. Si τ es una topología sobre X y para $n \in \mathbb{N}, A_1, ..., A_n \in \tau$, entonces $A_1 \cap ... \cap A_n \in \tau$.

Ejemplo 1.1.1

Sea X un conjunto no vacío.

- 1. El conjunto potencia (denotado por \mathcal{P}) de X es una topología sobre X, la cual se llama la **topología discreta**, y se denota por τ_D .
- 2. La colección formada únicamente por X y \emptyset es una topolgía sobre X, es decir $\tau = {\emptyset, X}$ es llamada la **topología indiscreta**, y se escribe como τ_I .
- 3. En el caso de que $X = \{1\}$, se tendría que $\tau_D = \{\emptyset, \{1\}\}\$ y $\tau_I = \{\emptyset, \{1\}\}\}$. Si $X = \{1, \zeta\}$, entonces $\tau_D = \{\emptyset, \{1\}, \{\zeta\}, \{1, \zeta\}\}\$ y $\tau_I = \{\emptyset, \{1, \zeta\}\}$.
- 4. Si τ es una topología sobre X, entonces

$$\tau_I \subseteq \tau \subseteq \tau_D$$

4

5. Sea $a \in X$. Entonces $\tau = \{\emptyset, X, \{a\}, \}$ es una topología sobre X.

6. Sea $A \subseteq X$ y sea $\tau(A) = \{B \subseteq X | A \subseteq B\} \cup \{\emptyset\}$. Esta familia $\tau(A)$ es una topología sobre X.

Solución:

Para el inciso 6., veamos que $\tau(A)$ es una topología sobre X. En efecto, verificaremos que se cumplen las 3 condiciones:

- 1. Claro que $\emptyset \in \tau(A)$ por definición de $\tau(A)$. Además $X \in \tau(A)$ ya que $X \subseteq X$ y $A \subseteq X$.
- 2. Sea \mathcal{B} una familia no vacía de subconjuntos de $\tau(A)$, entonces existe $B_0 \in \mathcal{B}$ tal que $A \subseteq B_0$, por lo cual

$$A \subseteq B_0 \subseteq \bigcup_{B \in \mathcal{B}} B \subseteq X$$

por tanto $\bigcup_{B \in \mathcal{B}} B \in \tau(A)$.

3. Sean $C, D \in \tau(A)$, entonces $A \subseteq C$ y $A \subseteq B$, por ende $A \subseteq B \cap C \subseteq X$. Así, $B \cap C \in \tau(A)$.

Por los incisos anteriores, la familia descrita en el inciso 6. es una topología sobre X.

Observación 1.1.4

Sea X un conjunto no vacío. Si $A = \{a\} \subseteq X$, entonces escribimos τ_a en vez de $\tau(A)$.

Ejemplo 1.1.1

Se continuan con los ejemplos anteriores:

- 7. Sea $\tau_{cf} = \{A \subseteq X | X A \text{ es un conjunto finito}\} \bigcup \{\emptyset\}$. Esta es una topología sobre X y se llama la **topología de los complementos finitos**.
- 8. Si X es un conjunto finito, entonces $\tau_{cf} = \tau_D = \mathcal{P}$.
- 9. Considere (en un conjunto finito X) a τ_{cf} y sean $a, b \in X$ con $a \neq b$. Si $U_a = X \{b\}$, $U_b = X \{a\}$, entonces $U_a, U_b \in \tau_{cf}$ y además, $a \in U_a$ pero $b \notin U_a$ y $a \notin U_b$ pero $b \in U_b$. Esta propiedad es muy importante tenerla en mente pues más adelante se usará.

Solución:

Veamos que la famila del ejemplo 7. es una topología sobre X. En efecto, veamos que se cumplen las 3 condiciones:

- 1. Claro que $\emptyset \in \tau_{cf}$ (por definición de τ_{cf}). Y además $X \in \tau_{cf}$ ya que $\emptyset = X X$ es un conjunto finito y $X \subseteq X$.
- 2. Sea \mathcal{A} una familia no vacía de subconjuntos de τ_{cf} . Se cumple entonces que existe $A_0 \in \mathcal{A}$ tal que $X A_0$ es finito. Por lo cual como

$$X - \bigcup A \subseteq X - A$$

ya que $A \subseteq \bigcup \mathcal{A}$, se tiene que $X - \bigcup \mathcal{A}$ es finito y $\bigcup \mathcal{A} \subseteq X$. Por tanto, $\bigcup \mathcal{A} \in \mathcal{A}$.

3. Sean $A, B \in \tau_{cf}$. Probaremos que $A \cap B \in \tau_{cf}$. Afirmamos que $X - A \cap B$ es finito, en efecto, por leyes de Morgan se tiene que

$$X - (A \cap B) = (X - A) \cup (X - B) \subseteq X$$

donde X - A y X - B son finitos, por lo cual su unión también lo es. Por tanto $A \cap B \in \tau_{cf}$.

Por los tres incisos anteriores, se sigue que τ_{cf} es una topología sobre X.

A continuación se verá una proposición la cual tiene como objetivo el inducir una topología sobre un espacio métrico (X, d) arbitrario.

Proposición 1.1.1

Sea (X, d) un espacio métrico. Dados $a \in X$ y $\varepsilon \in \mathbb{R}^+$, al conjunto $B_d(x, \varepsilon) = \{y \in X | d(x, y) < \varepsilon\}$ se llama ε -bola con centro en x y radio ε .

Sea

$$\tau_d = \{ A \subseteq X | \forall a \in A \exists r > 0 \text{ tal que } B_d(a, r) \subseteq A \}$$

Esta colección es una topología sobre X.

Demostración:

Se verificará que se cumplen las tres condiciones.

- 1. Por vacuidado, $\emptyset \in \tau_d$. Además, $X \in \tau_d$, pues para todo $x \in X$, $B_d(x, 1) \subseteq X$.
- 2. Sean \mathcal{A} una familia no vacía de subconjuntos de τ_d . Sea $p \in \cup \mathcal{A}$, es decir que existe $A_\beta \in \mathcal{A}$ tal que $p \in A_\beta$, así existe r > 0 tal que $B_d(a, r) \subseteq A_\beta \subseteq \cup \mathcal{A}$, luego $\cup \mathcal{A} \in \tau_d$.
- 3. Sean $M, N \in \tau_d$, y sea $p \in M \cap N$, es decir que $p \in M$ y $p \in N$, por lo cual existen $r_1, r_2 > 0$ tales que $B_d(p, r_1) \subseteq M$ y $B_d(p, r_2) \subseteq N$. Sea $r = \min\{r_1, r_2\}$, es inmediato que $B_d(p, r) \subseteq B_d(p, r_i)$, para i = 1, 2. Por tanto, $B_d(p, r) \subseteq M \cap N$. Luego, como el p fue arbitrario, se sigue que $M \cap N \in \tau_d$.

Definición 1.1.3

La topología de la proposición anterior es llamada la **topología generada por la métrica** d.

Sea (X, d) espacio métrico. Veamos que, dados $x \in X$ y r > 0, se cumple que $B_d(x, r) \in \tau_d$.

Solución:

Sea $y \in B_d(x,r)$, entonces d(x,y) < r. Sea $\varepsilon = d(x,y)$ y, supongamos que $x \neq y$ (pues en caso contrario, el caso es inmediato) luego $\varepsilon > 0$ y además $\varepsilon < r$. Sea $s = r - \varepsilon \in \mathbb{R}^+$.

Afirmamos que $B_d(y,s) \subseteq B_d(x,r)$. En efecto, sea $z \in B_d(y,s)$, entonces

$$\begin{aligned} d(z,y) &< s \\ \Rightarrow d(z,y) &< r - \varepsilon \\ \Rightarrow d(z,y) + \varepsilon &< r \\ \Rightarrow d(z,y) + d(y,x) &< r \\ \Rightarrow d(z,x) &< r \end{aligned}$$

por tanto, $x \in B_d(x,r)$. Luego, $B_d(x,r) \in \tau_d$.

Lema 1.1.1

Todo espacio métrico (X, d) es Hausdorff.

Demostración:

Veamos que dados $x, y \in X$, $x \neq y$ existen $r, s \in \mathbb{R}^+$ tales que $B_d(x, r) \cap B_d(y, s) = \emptyset$. Como $x \neq y$ entonces $d(x, y) = m \in \mathbb{R}^+$. Tomemos $r = \frac{m}{\pi}$ y $s = \frac{\pi - 1}{\pi}m$, veamos que la intersección es vacía.

En efecto, en caso de que no lo fuese, se tendría que si existiera $p \in B_d(x,r) \cap B_d(y,s)$, entonces $d(p,x) < \frac{m}{\pi}$ y $d(p,y) < \frac{\pi-1}{\pi}m$, por lo cual por designaldad triangular se signe que:

$$d(x,y) \le d(p,x) + d(p,y) < \frac{1+\pi-1}{\pi}m = m = d(x,y)$$

lo cual es una contradicción $\#_c$. Por tanto, la intersección es vacía.

Tenemos que para $A \subseteq X$, $A \in \tau_d$ si y sólo si existen $\{a_\alpha\}_{\alpha \in I} \subseteq A$ y $\{\varepsilon_\alpha\}_{\alpha \in I} \subseteq \mathbb{R}^+$ tal que

$$\bigcup_{\alpha} B_d(a_{\alpha}, \varepsilon_{\alpha}) = A$$

donde $\forall \alpha \in I$ se tiene que $A_{\alpha} \in A$.

Corolario 1.1.1

Sea (X, d) un espacio métrico y sea

$$\mathcal{B}_d = \left\{ B_d(x, \varepsilon) | x \in X, \varepsilon \in \mathbb{R}^+ \right\}$$

entonces, para $A \subseteq X$ se tiene que $A \in \tau_d$ si y sólo si existe una colección $\{B_\alpha\}_{\alpha \in I} \subseteq \mathcal{B}_d$ tal que $A = \bigcup_{\alpha \in I} B_\alpha$. La colección $\mathcal{B}_d \subseteq \tau_d$.

Ejemplo 1.1.2

Sea $m \in \mathbb{N}$ y considere el espacio métrico \mathbb{R}^m con la métrica d_u , siendo:

$$d_u(x,y) = [(x_1 - y_1)^2 + \dots + (x_m - y_m)^2]^{\frac{1}{2}}$$

para $x = (x_1, ..., x_m), y = (y_1, ..., y_m) \in \mathbb{R}^m$. Esta métrica será denominada **métrica usual**. Vamos a escribir a la topología generada por esta métrica como τ_u , y se dice la **topología usual definida sobre** \mathbb{R}^m . En particular, cuando m = 1 tenemos que τ_u la topología usual definida sobre \mathbb{R} . En este caso, se tiene que $A \in \tau_u$ si y sólo si existe $\{a_\alpha\}$ y $\{B_\alpha\}$ subfamilias de \mathbb{R} tal que $A = \bigcup_{\alpha \in I} (a_\alpha, b_\alpha)$.

Observación 1.1.5

Tenemos que para todo $n \in \mathbb{N}$, los conjuntos $\left(-\frac{1}{n}, \frac{1}{n}\right) \in \tau_u$, y $\bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\} \notin \tau_u$. Es decir, que la topología solo es cerrada (en general) bajo intersecciones finitas.

Definición 1.1.4

Sea X un conjunto, y sean τ_1 y τ_2 topologías sobre X. Decimos que τ_2 es **más fina** que la topología τ_1 si se tiene que $\tau_1 \subseteq \tau_2$ (a veces también se dice que τ_1 es **menos fina** que τ_2 s).

Ejemplo 1.1.3

Sea $X = \{1, 2, 3\}, \tau_1 = \{X, \emptyset, \{1\}\}, \tau_2 = \{X, \emptyset, \{2\}\}.$ Tomemos

$$\tau_1 \cup \tau_2 = \{X, \emptyset, \{1\}, \{2\}\}\$$

la familia $\tau_1 \cup \tau_2$ no es una topología sobre X, pues no es cerrada bajo uniones arbitrarias. Con

esto se tiene que la unión de dos topologías no necesariamente es una topología.

Teorema 1.1.1

Sea X un conjunto, y sea $\{\tau_{\alpha}\}_{{\alpha}\in I}$ una familia de topologías sobre X, entonces $\tau=\bigcap_{{\alpha}\in I}s\tau_{\alpha}$ es una topología sobre X.

Demostración:

Veamos que se cumplen las tres condiciones.

- 1. Claro que $X, \emptyset \in \tau$, pues $X, \emptyset \in \tau_{\alpha}$, para todo $\alpha \in I$.
- 2. Sea $\mathcal{A} = \{A_{\beta}\}_{\beta \in J} \subseteq \tau = \bigcap_{\alpha \in I} \tau_{\alpha}$ una subcolección arbitraria de elementos de τ . Por ser τ_{α} una topología, se sigue que $\bigcup \mathcal{A} \in \tau_{\alpha}$, para todo $\alpha \in I$.

Por tanto, $\bigcup A \in \tau$.

3. Sean $K, L \in \tau$, entonces $K, L \in \tau_{\alpha}$, para todo $\alpha \in I$, luego como τ_{α} es una topología sobre X, se tiene que $L \cap K \in \tau_{\alpha}$, para todo $\alpha \in I$, por tanto, $L \cap K \in \tau$.

Por los tres incisos anteriores, se sigue que τ es una topología sobre X.

Corolario 1.1.2

Sea X un conjunto y sean A una familia de subconjuntos de X. Definimos

$$\mathcal{K} = \{ \tau | \tau \text{ es una topología sobre } X \text{ y } \mathcal{A} \subseteq \tau \}$$

Entonces:

- 1. $\tau_D \in \mathcal{K}$.
- 2. Definiendo $\tau(\mathcal{A}) = \bigcap_{\tau \in \mathcal{K}} \tau$, se tiene que $\tau(\mathcal{A})$ es una topología sobre X.
- 3. Para toda topología $\tau \in \mathcal{K}, \tau(\mathcal{A}) \subseteq \tau$.
- 4. $\tau(\mathcal{A}) \in \mathcal{A}$.

Demostración:

Definición 1.1.5

Un espacio topológico es una pareja (X, τ) en donde X es un conjunto y τ es una topología sobre X. A los elementos de τ los llamaremos los **abiertos** del espacio (X, τ) a veces también se les nombra como los τ -abiertos de X.

Ejemplo 1.1.4

Ejemplos de espacios topológicos son (\mathbb{R}, τ_D) , (\mathbb{R}, τ_I) , (\mathbb{R}, τ_{cf}) , (\mathbb{R}, τ_u) , etc... Las diferencias notables son que $\{1, \sqrt{2}\}$ es abierto en (\mathbb{R}, τ_D) , pero no en (\mathbb{R}, τ_u) .

Sea X un conjunto y $\mathcal{A} \subseteq \mathcal{P}$. Por el corolario anterior, podemos trabajar con la topología $\tau(\mathcal{A})$, y tenemos así al espacio topológico $(X, \tau(\mathcal{A}))$, el cual en particular tiene como abiertos a los elementos de la familia \mathcal{A} .

Definición 1.1.6

Sea (X, τ) un espacio topológico.

1. Un subconjunto $C \subseteq X$ es un **conjunto cerrado** del espacio topológico (X, τ) si $X - C \in \tau$.

Ejemplo 1.1.5

En (\mathbb{R}, τ_u) se tiene que \mathbb{R} y \emptyset son abiertos y cerrados a la vez, pero el conjunto [1, 2[no es abierto ni cerrado,]1, 2[es abierto pero no cerrado y [1, 2] no es abierto pero sí es cerrado.