

How to Generate Personalized Tasks and Sample Solutions for Anonymous Peer Review in Electrical Engineering using LATEX, PGFPLOTS and CircuiTikZ

TUG 2021 – Presentations covering the TeX world. Typography & typesetting, fonts & design, publishing and more. The 42nd Annual Conference of the TeX Users Group

Mathias Magdowski

Chair for Electromagnetic Compatibility, Institute for Medical Engineering Otto von Guericke University, Magdeburg, Germany

August 8, 2021

License: @ CC BY 4.0 (Attribution, ShareAlike)

Survey

What field are you from?

Motivation

- 1. mathematics, computer science, technology
- 2. education and teaching
- 3. medicine and care
- 4. languages and media
- 5. banking and insurance
- 6. anything else

Organizational Matters

Slides:

yes

Organizational Matters

Motivation

Slides:

yes

Recording:

yes

Organizational Matters

Slides:

yes

Recording:

yes

Questions:

with pleasure

Overview

Why all this?

How are the tasks generated in LATEX?

Topic "Charge and Current"

Topic "Nodal Analysis"

What has come out of it?

Why all this?

Traditional Performance Assessments

Source: https://pixabay.com/de/photos/taschenrechner-notizblock-1687962/

Demands in the Working World

Source: https://pixabav.com/de/arbeitsplatz-team-gesch%C3%A4ftstreffen-1245776/

Classical E-Learning Tasks

Motivation

0000000000

Free Handwritten Solution

Feitraum
$$O_5 \leq t \leq 1_8$$
:
Show: $i(t) = -3\frac{A}{s} \cdot t$
Ladeing: $Q(t) = \int_0^t (t) dt + Q(0)$

$$= \int_0^t -3\frac{A}{s} \cdot t dt + 0$$

$$= \left[-3\frac{A}{s} \cdot \frac{t^2}{2}\right]_0^t = -\frac{3}{2}\frac{A}{s} \cdot t^2$$

$$Q(1s) = -1.5$$

Free Handwritten Solution

Examples of Student Misconceptions

Specification of Fourier coefficients in V and V $^{\circ}$:

also see: https://twitter.com/LehrstuhlEMV/status/1257605076308426753

Examples of Student Misconceptions

Motivation

000000000000

Complex impedance converted to time function:

also see: https://twitter.com/LehrstuhlEMV/status/1264294433027174401

Idea

Personalizable tasks for handwritten solution:

- ▶ handwritten → authentic, low-threshold for formulas, schematics, diagrams, misconceptions become visible
- ▶ personalized → no plagiarism possible
- ▶ peer review → no correction effort → good ready-made personalized sample solution
- ▶ via Moodle and e-mail → scalable, no "red tape"

Creation and Sending of the Tasks

Submission and Distribution of the Solutions

Mutual Correction and Completion

How are the tasks generated in LATEX?

1. Task (same for all)

The displayed time curve shows the current i as a function of time t. The charge Q(t) is searched for the four sections

- 1. $0 s \le t \le 1 s$,
- 2. $1 s < t \le 2 s$,
- 3. $2 s < t \le 3 s$ and
- 4. $3 s < t \le 4 s$.

The initial charge is Q(t = 0) = 0.

Calculate the charge Q(t) for each section as a formula by integrating the current over time and draw the corresponding time curve.

Diagram (for Matriculation Number 123 456)

Motivation

Diagram (for Matriculation Number 123 457)

Diagram (for Matriculation Number 123 458)

Diagram (for Matriculation Number 123 459)

Create Randomized PGFPLOTS Diagrams

```
\documentclass { standalone }
\usepackage{pgfplots.siunitx}
\begin { document }
% Set random number generator to matriculation number
\pgfmathsetseed{123456}
% Current at time 1 s (in A, can also still be zero, but should not be)
\pgfmathrandominteger {\stromeinsrandom}{-4}{4}
% if current is zero, set to 1 A
\pgfmathsetmacro {\ stromeins } { if the nelse (\ stromeins random == 0, 1, \ stromeins random ) }
% Current in the period from 1 s to 2 s (in A, can also be zero)
\protect\ \paramathrandominteger {\stromzwei}{-4}{4}
% Current in the period from 2 s to 3 s (in A. can also be zero)
\pgfmathrandominteger {\stromdreirandom} {-4}{4}
% if the current is equal to the value from the previous period, invert the sign
\pgfmathsetmacro {\stromdrei} { ifthenelse (\stromzwei ==\stromdreirandom, -\stromdreirandom.\stromdreirandom)}
% if both currents are zero, set new current to 1 A
 \pafmathsetmacro {\stromdrei}{ ifthenelse (abs (\stromzwei)+abs (\stromdrei)==0,1,\stromdrei)}
% Current in the period from 3 s to 4 s (in A. can also be zero)
\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
% if both currents are zero, set new current to 1 A
\pgfmathsetmacro {\stromvier}{\ifthenelse(abs(\stromzwei)+abs(\stromvierrandom)==0,1,\stromvierrandom)}
% if both currents are zero, set new current to 1 A
\pgfmathsetmacro {\stromvier}{ ifthenelse (abs (\stromdrei) + abs (\stromvier) == 0.1.\stromvier)}
% if the current is equal to the value from the previous period, invert the sign
\pgfmathsetmacro{\stromvier}{ifthenelse(\stromdrei==\stromvier.-\stromvier.\stromvier)}
```


Create Randomized PGFPLOTS Diagrams

```
\begin{tikzpicture}
        \begin{axis}[
                 xlabel={$t$ in \si{\second}}.
                 vlabel = {\$i(t)\$ in \si{\ampere}}.
                 xmin = -0.9.xmax = 4.9.vmin = -4.9.vmax = 4.9.
                 xtick = \{1, 2, 3, 4\}, ytick = \{-4, -3, -2, -1, 1, 2, 3, 4\},
                 xticklabel style={below right}.
                 yticklabel style={below left},
                 axis x line=middle, axis y line=center,
                 xmajorgrids, ymajorgrids, 1
                 \addplot+[mark=none.line width=1pt] coordinates {
                          (-0.5.0)
                          (0,0)
                          (1.\stromeins)
                          (1.\stromzwei)
                          (2.\stromzwei)
                          (2.\stromdrei)
                          (3.\stromdrei)
                          (3.\stromvier)
                          (4.\stromvier)
                          (4,0)
                          (4.5.0):
        \end{axis}
\end{tikzpicture}
\end{document}
```

1. Sample Solution (for Matriculation Number 123 456)

Sectionwise calculation:

Motivation

 $0 \le t \le 1$ s: Current in the 1. section (1 point):

$$i(t) = 1 \frac{A}{s} \cdot t$$

Charge in the 1. section (1 point):

$$Q(t) = \int_{0}^{t} 1 \frac{A}{s} t' dt' + 0 = 1 \frac{A}{s} \cdot \left[\frac{t'^{2}}{2} \right]_{0}^{t} = 0.5 \frac{A}{s} t^{2}$$

$$Q(1 s) = 0.5 A s$$

1. Sample Solution (for Matriculation Number 123 457)

Sectionwise calculation:

Motivation

 $0 \le t \le 1$ s: Current in the 1. section (1 point):

$$i(t) = -2\frac{A}{s} \cdot t$$

Charge in the 1. section (1 point):

$$Q(t) = \int_{0}^{t} -2\frac{A}{s}t' dt' + 0 = -2\frac{A}{s} \cdot \left[\frac{t'^{2}}{2}\right]_{0}^{t} = -1\frac{A}{s}t^{2}$$

$$Q(1 s) = -1 A s$$

1. Sample Solution (for Matriculation Number 123 458)

Sectionwise calculation:

Motivation

 $0 \le t \le 1$ s: Current in the 1. section (1 point):

$$i(t) = 4\frac{A}{s} \cdot t$$

Charge in the 1. section (1 point):

$$Q(t) = \int_{0}^{t} 4 \frac{A}{s} t' dt' + 0 = 4 \frac{A}{s} \cdot \left[\frac{t'^{2}}{2} \right]_{0}^{t} = 2 \frac{A}{s} t^{2}$$

$$Q(1 s) = 2 A s$$

1. Sample Solution (for Matriculation Number 123 459)

Sectionwise calculation:

 $0 \le t \le 1$ s: Current in the 1. section (1 point):

$$i(t) = 1 \frac{A}{s} \cdot t$$

Charge in the 1. section (1 point):

$$Q(t) = \int_{0}^{t} 1 \frac{A}{s} t' dt' + 0 = 1 \frac{A}{s} \cdot \left[\frac{t'^{2}}{2} \right]_{0}^{t} = 0.5 \frac{A}{s} t^{2}$$

$$Q(1 s) = 0.5 A s$$

Algorithmic Generation of the Sample Solutions

```
% Truncate decimal places for an integer number
\pgfmathdeclarefunction\{trimzero\}\{1\}\{\pgfmathparse\{ifthenelse(\#1==round(\#1),int(\#1),\#1)\}\}
% Convert current (in A) to integers
\pgfmathsetmacro {\stromeins }{ int (\stromeins )}
% Charge at the end of the 1st section (in As)
\pgfmathsetmacro {\ladungeins } { trimzero (\stromeins /2)}
% Differential operator (small upright d)
\newcommand * {\ diff } {\ mathop {}\!\ mathrm {d}}}
Current in the 1. section (1 point):
\begin{equation}
       i(t) = SI{\text{ampere per second} \ \ t}
\end{equation}
Charge in the 1, section (1 point):
\begin{subequations}\begin{align}
       Q(t) &= \int \int dt \left( \int dt \right) dt
       &= \SI{\ladungeins}{\ampere\per\second} t^2
\end{align}\end{subequations}
Charge at the end of the 1, section (1 point):
\begin{equation}
       Q(\S\{1\}\{\{second\}\}) = \S\{\{\{adungeins\}\{\{ampere\}\}\}\}
\end{equation}
```


1. Sample Solution (for Matriculation Number 123 456)

1. Sample Solution (for Matriculation Number 123 457)

1. Sample Solution (for Matriculation Number 123 458)

1. Sample Solution (for Matriculation Number 123 459)

Survey

If you are also teaching, can you think of personalised/randomize tasks that can also be used for your subject?

- 1. yes, immediately, many
- 2. yes, some
- 3. yes, but only after some thought
- 4. no, not likely
- 5. nohow, no way

2. Task (same for all)

Nodal analysis shall be used to calculate the three nodal voltages $U_{\rm Kn1}$, $U_{\rm Kn2}$ and $U_{\rm Kn3}$ between the respective node and the reference node.

- a) Draw the three nodal voltages $U_{\rm Kn1}$, $U_{\rm Kn2}$ and $U_{\rm Kn3}$ in the circuit diagram (3 points).
- b) Set up the system of equations to calculate the nodal voltages using nodal analysis in matrix form (9 points).
- c) Insert the values of the components into the system of equations (1 point).
- d) Solve the system of equations and thus calculate the three nodal voltages $U_{\rm Kn1}$, $U_{\rm Kn2}$ and $U_{\rm Kn3}$ (3 points).

Circuit Diagram (for Matriculation Number 123 460)

Circuit Diagram (for Matriculation Number 123 461)

Circuit Diagram (for Matriculation Number 123 462)

Circuit Diagram (for Matriculation Number 123 463)

Create Randomized CircuiTikZ Circuits

```
\documentclass{standalone}
\usepackage { amsmath }
\newcommand{\ind}[1]{\mathrm{#1}}
\usepackage[european]{ circuitikz}
\begin {document}
\begin{tikzpicture}[scale=1.3]
\draw (2,0) to[short] (0,0);
(0.0) to [1, i^>=$1 {\ind{q}1}$] (0,2);
(0.0) to short. \star -1 (-2.0) to R. I=$R {1}$1 (-2.2) to short. -\star 1 (0.2);
\draw (2.0) to[short] (4.0):
\frac{(4,0)}{(4,2)}
\draw (2.0) to [R, I^=$R \{2\}$] (2.2);
\draw (0,2) to[short] (0,4);
draw (0,4) to [1, i^{=}1 {\inf \{q\}3\}} (4,4);
\draw (4.4) to[short] (4.2):
draw (0,2) to [1, i<^=$1 {\ind{q}4}$] (2,2);
\text{draw } (4,2) \text{ to } [R, I = R {3}] (2,2);
\node[circ] at (2.0) {}:\node[below] at (2.0) {0}:
\node[circ] at (0.2) {}:\node[above left] at (0.2) {1}:
\node[circ] at (4,2) {};\node[above right] at (4,2) {2};
\node[circ] at (2.2) {}:\node[above] at (2.2) {3}:
\end{tikzpicture}
\end{document}
```


2. Sample Solution (for Matriculation Number 123 460)

Set up the system of equations to calculate the network:

$$\begin{bmatrix} G_1 & 0 & 0 \\ 0 & G_3 & -G_3 \\ 0 & -G_3 & G_2 + G_3 \end{bmatrix} \cdot \begin{bmatrix} U_{\text{Kn1}} \\ U_{\text{Kn2}} \\ U_{\text{Kn3}} \end{bmatrix} = \begin{bmatrix} I_{\text{q1}} + I_{\text{q3}} + I_{\text{q4}} \\ I_{\text{q2}} - I_{\text{q3}} \\ -I_{\text{q4}} \end{bmatrix}$$

$$\begin{bmatrix} 9S & 0 & 0 \\ 0 & 7S & -7S \\ 0 & -7S & 13S \end{bmatrix} \cdot \begin{bmatrix} U_{Kn1} \\ U_{Kn2} \\ U_{Kn3} \end{bmatrix} = \begin{bmatrix} 11A \\ -3A \\ -5A \end{bmatrix}$$

2. Sample Solution (for Matriculation Number 123 461)

Set up the system of equations to calculate the network:

$$\begin{bmatrix} G_2 & -G_2 & 0 \\ -G_2 & G_2 + G_3 & -G_3 \\ 0 & -G_3 & G_1 + G_3 \end{bmatrix} \cdot \begin{bmatrix} U_{\text{Kn1}} \\ U_{\text{Kn2}} \\ U_{\text{Kn3}} \end{bmatrix} = \begin{bmatrix} -I_{\text{q1}} + I_{\text{q3}} + I_{\text{q4}} \\ -I_{\text{q2}} - I_{\text{q3}} \\ -I_{\text{q4}} \end{bmatrix}$$

$$\begin{bmatrix} 8S & -8S & 0 \\ -8S & 16S & -8S \\ 0 & -8S & 14S \end{bmatrix} \cdot \begin{bmatrix} U_{\text{Kn1}} \\ U_{\text{Kn2}} \\ U_{\text{Kn3}} \end{bmatrix} = \begin{bmatrix} 4A \\ -15A \\ -8A \end{bmatrix}$$

2. Sample Solution (for Matriculation Number 123 462)

Set up the system of equations to calculate the network:

$$\begin{bmatrix} G_1 + G_2 & 0 & -G_2 \\ 0 & G_3 & -G_3 \\ -G_2 & -G_3 & G_2 + G_3 \end{bmatrix} \cdot \begin{bmatrix} U_{\text{Kn1}} \\ U_{\text{Kn2}} \\ U_{\text{Kn3}} \end{bmatrix} = \begin{bmatrix} -I_{\text{q2}} \\ I_{\text{q1}} + I_{\text{q2}} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 7S & 0 & -4S \\ 0 & 1S & -1S \\ -4S & -1S & 5S \end{bmatrix} \cdot \begin{bmatrix} U_{\text{Kn1}} \\ U_{\text{Kn2}} \\ U_{\text{Kn3}} \end{bmatrix} = \begin{bmatrix} -1A \\ 2A \\ 0 \end{bmatrix}$$

2. Sample Solution (for Matriculation Number 123 463)

Set up the system of equations to calculate the network:

$$\begin{bmatrix} G_1 & 0 & 0 \\ 0 & G_2 + G_3 & -G_3 \\ 0 & -G_3 & G_3 \end{bmatrix} \cdot \begin{bmatrix} U_{\text{Kn1}} \\ U_{\text{Kn2}} \\ U_{\text{Kn3}} \end{bmatrix} = \begin{bmatrix} -I_{\text{q1}} - I_{\text{q3}} \\ 0 \\ I_{\text{q2}} + I_{\text{q3}} \end{bmatrix}$$

$$\begin{bmatrix} 7S & 0 & 0 \\ 0 & 6S & -3S \\ 0 & -3S & 3S \end{bmatrix} \cdot \begin{bmatrix} U_{Kn1} \\ U_{Kn2} \\ U_{Kn3} \end{bmatrix} = \begin{bmatrix} -6A \\ 0 \\ 10A \end{bmatrix}$$

Create Randomized Systems of Equations

```
\begin{equation *}
\begin{bmatrix}
G {1} & 0 & 0 \\
0 & G {3} & -G {3} \\
0 \& -G \{3\} \& G \{2\} + G \{3\}
\end{bmatrix} \cdot \begin{bmatrix}
U {\ind{Kn}1} \\
U {\ind{Kn}2} \\
U {\ind{Kn}3}
\end{bmatrix} = \begin{bmatrix}
I \{ \inf\{q\}1\} + I \{ \inf\{q\}3\} + I \{ \inf\{q\}4\} \setminus \{ \inf\{q\}4\} \} 
I \{ \setminus \{a\} \} = I \{ \setminus \{a\} \} \} \setminus \{a\} \}
 - I {\setminus ind{a}4}
\end{bmatrix}
\end{equation *}
```


What has come out of it?

Evaluation of a Typical Cycle

Motivation

Bare numbers:

- ► Tasks sent to about 200 students
- Solutions submitted by about 150 students
- Review carried out by about 140 students

Evaluation of a Typical Cycle

Bare numbers:

- ► Tasks sent to about 200 students
- Solutions submitted by about 150 students
- Review carried out by about 140 students

Advantage:

- excellent activation
- good exam preparation without "teaching to the test"

Typical Distribution of the Points

Typical Distribution of the Point Deviation

Motivation

When Do Students Submit?

Motivation

Motivation

Fun Facts

Fun Facts

Fun Facts

Further Information

Achievements to date:

- ▶ 13 different task types developed so far
- 36 runs in 8 semesters so far
 - 6400 personalized tasks sent out
 - ▶ 3000 student solutions submitted
 - ▶ 5720 student peer reviews accomplished

Links (in German):

Lightning Talk: https://youtu.be/LDw_Ifmg2WM

Twitter: #PersonalisierteAufgaben

Article: Die TEXnische Komödie 4/2019

FAQ: SlideShare

Thank you very much for your attention! Are there any questions?