ETH zürich

Multiple Lineare Regression

Peter von Rohr

Outline

- Das Modell
- Stochastische Komponente: Zufälliger Rest
- Methode der kleinsten Quadrate Least Squares
- Annahmen und Eigenschaften
- Tests und Konfidenzintervalle
- Analyse der Residuen
- Modellwahl

Das linear Modell

- Gegeben: **Zielgrösse** (response variable) y_i für Individuum i. Entspricht einer Beobachtung oder Messung, welche zu i gehört.
- Gegeben: mehrere **erklärende Variablen** (predictors or covariables) $x_{i,1}, x_{i,2}, ..., x_{i,p}$, welche Eigenschaften von i beschreiben
- **Z**usammengefasst wissen wir von Individuum $i: (x_{i,1}, x_{i,2}, ..., x_{i,p}, y_i)$
- Multiple lineare Regression sagt:

Zielgrösse = **lineare** Funktion der **erklärenden Variablen** + **Rest**

Das Modell als Formel

$$y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_p x_{i,p} + \epsilon_i$$

- In einer Population mit *n* Individuen, können wir *n* solche Gleichungen aufstellen, wobei die i von 1 bis n laufen
- Zur Vereinfachung wird eine Matrix-Vektor Schreibweise verwendet

$$\mathbf{y} = \mathbf{X}\beta + \epsilon \tag{1}$$

wobei:

- Vektor mit Beobachtungen (Länge n)
- Vektor mit Parametern (Länge p)
- Matrix mit erklärenden Variablen (Dimension $n \times p$)
- Vektor mit zufälligen Resten (Länge n)

Stochastisches Modell

- **Z**ufällige Komponente ϵ im Lineares Modell (siehe Gleichung (1))
- Somit ist die Zielgrösse (y) auch zufällig
- In unserem Beispiel sind die erklärenden Variablen als fix angenommen
- In gewissen Anwendungen können auch erklärende Variablen als zufällig angenommen werden (BLUP-Zuchtwertschätzung)
- Verschiedene Einflüsse auf ϵ : Messfehler, unbekannte Einflussfaktoren
- Annahme: unbekannte Faktoren haben sich im "Mittel" auf
- $\rightarrow E(\epsilon) = \mathbf{0}$
- Streuung wird quantifiziert mit: $var(\epsilon) = \mathbf{I} * \sigma^2$

Beispiel

Einfluss des Geburtsgewichts (BW) und Zunahme vor dem Absetzen (WWG) auf Zunahme nach dem Absetzen (PWG)

BW	WWG	PWG
35.0	0.90	1.36
25.3	0.58	1.00
34.2	0.78	1.36
31.2	0.70	1.20
38.7	1.00	1.50
	35.0 25.3 34.2 31.2	35.0 0.90 25.3 0.58 34.2 0.78 31.2 0.70

Identifikation der Komponenten des Modells

Komponenten als Formeln

$$\mathbf{y} = \begin{bmatrix} 6.8 \\ 5.0 \\ 6.8 \\ 6.0 \\ 7.5 \end{bmatrix}, \mathbf{X} = \begin{bmatrix} 35.00 & 0.90 \\ 25.30 & 0.58 \\ 34.20 & 0.78 \\ 31.20 & 0.70 \\ 38.70 & 1.00 \end{bmatrix}, \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}, \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{bmatrix}$$
(2)

Achsenabschnitt: \mathbf{y} und ϵ ändern sich nicht

$$\mathbf{X} = \begin{bmatrix} 1 & 35.00 & 0.90 \\ 1 & 25.30 & 0.58 \\ 1 & 34.20 & 0.78 \\ 1 & 31.20 & 0.70 \\ 1 & 38.70 & 1.00 \end{bmatrix}, \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$
(3)

Weshalb ein Achsenabschnitt

Quadratische Regression und Transformationen

Wichtig: Auch das sind lineare Regressionen

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \end{bmatrix}, \mathbf{X} = \begin{bmatrix} 1 & log(x_{12}) & sin(x_{13}) \\ 1 & log(x_{22}) & sin(x_{23}) \\ 1 & log(x_{32}) & sin(x_{33}) \\ 1 & log(x_{42}) & sin(x_{43}) \\ 1 & log(x_{52}) & sin(x_{53}) \end{bmatrix}$$
(4)

 \rightarrow Modell $\mathbf{y} = \mathbf{X}\beta + \epsilon$ heisst **lineares** Modell, weil es linear in den Koeffizienten β ist.

Ziele einer Regression

- Anpassung: Möglichst kleine Abweichungen der angepassten Ebenen und der Zielgrösse
- Gute Schätzung der unbekannten Parameter: Sollen Änderungen der Zielgrösse in Abhängigkeit der Änderung der erklärenden Variablen darstellen
- Gute **Voraussage**: Soll neue Zielgrössen als Funktion von neuen Werten der erklärenden Variablen voraussagen können. **Achtung**: keine Extrapolation
- Unsicherheit bei der Schätzung: Vertrauensintervallen und statistische Tests als gute Werkzeuge

Keine Extrapolation

Schätzung der Parameter

- Methode der kleinsten Quadrate (Least Squares)
- Suche einer guten Schätzung für β , so dass die Abweichungen oder Reste möglichst klein sind
- Mathematische Formulierung: Abweichungen entsprechen

$$L = ||\mathbf{y} - \mathbf{X}\beta||^2 = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

- Möglichst kleine Abweichung: Minimierung durch Ableiten und die Ableitung 0 setzen
- Somit ist der Least Squares Schätzer $\hat{\beta}$ definiert als

$$\hat{\beta} = \operatorname{argmin}_{\beta} ||\mathbf{y} - \mathbf{X}\beta||^2$$

Normalgleichungen

Der Schätzer $\hat{\beta}$ berechnet sich als p dimensionaler Gradient

$$\frac{\partial L}{\partial \beta} = (-2)\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\hat{\beta})$$

Daraus folgen die Normalgleichungen

$$(\mathbf{X}^T\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}^T\mathbf{y}$$

Auflösung nach $\hat{\beta}$

$$\hat{eta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Restvarianz

- Least Squares liefert eigentlich keine Schätzung für die Restvarianz σ^2
- Aufgrund der Residuen $r_i = y_i \mathbf{x}_i^T \hat{\beta}$, ergibt sich die Schätzung

$$\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n r_i^2$$

- Schätzung ist plausible, da sie auf der Momentenmethode basiert
- Ungewöhnlicher Faktor 1/(n-p) so gewählt, dass:

$$E(\hat{\sigma}^2) = \sigma^2$$

Dieser Schätzer wird oft als Least-Squares Schätzer für σ^2 bezeichnet

Annahmen für ein lineares Modell

- Ausser, dass die Matrix **X** vollen Rang hat (p < n) wurden bis jetzt keine Annahmen gemacht
- Lineares Modell ist korrekt $\rightarrow E(\epsilon) = \mathbf{0}$
- Die Werte in X sind exakt.
- Die Varianz der Fehler ist konstant ("Homoskedazidität") für alle Beobachtungen $\rightarrow Var(\epsilon) = \mathbf{I} * \sigma^2$
- Die Fehler sind unkorreliert
- Weitere Eigenschaften folgen, falls die Fehler normal verteilt sind