This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

ENHANCED ENGLISH ABSTRACT OF DE 3700005

-1- (WPAT)

ACCESSION NUMBER 88-198895/29

XRPX

N88-151767

TITLE Axial-cylinder engine crank mechanism - has connecting rods sliding and turning in gudgeon pins

DERWENT CLASSES PATENT ASSIGNEE INVENTORS

Q51 Q52 Q64 (ELSB/) ELSBETT L ELSBETT G, ELSBETT K

PRIORITY 87.

87.01.02 87DE-3700005 1 patent(s) 1 country(s)

NUMBERS 1 pa PUBLICATION DETAILS

S DE3700005 A 88.07.14 * (8829) 6p

APPLICATION DETAILS 87DE-3700005 87.01.02

SECONDARY INT'L. CLASS. F01B-003/00 F02B-075/26 F16H-021/34

ABSTRACT

DE3700005 A

The crank mechanism is for an engine, particularly Diesel. It has axial cylinders surrounding a crankshaft with oblique crankpin, and gudgeon pins in

crankshaft with oblique crankpin, and gudgeon pins in the pistons.

The crankshaft (2) and gudgeon pins (8) are

coupled together by individual connecting rods (7) so constructed that at the crankpin end they can turn about the crankpin axis (5) or parallel to it independently of each other, while their others ends both slide and turn in the gudgeon pins.

USE - IC engine crank mechanism gives sinusoidal movement which is the same for all pistons, with no need for separate guides. (2/4)

IMAGE FILENAME \

WP849GV1.GIF

© DE 37 00 005 A 1

DEUTSCHES
PATENTAMT

Aktenzeichen: P 37 00 005.5

Anmeldetag: 2. 1. 87

Offenlegungsteg: 14. 7. 88

⑤ Int. Ci. 4: F02 R 75/26

> F 16 H 21/34 F 01 B 3/00

Anmelder:

Elsbett, Ludwig; Elsbett, Günter; Elsbett, Klaus, 8543 Hilpoltstein, DE @ Erfinder:

gleich Anmelder

Für die Beurteilung der Petentfähigkeit in Betracht zu ziehende Druckschriften:

(A) Kolbenmechenik und Kinematik eines Axialmotors

Kurbeitrieb für einen Motor, insbesondere Dieselmotor, mit exister Zylinderanordnung um eine Kurbeiwelle mit schrägstehendem Kurbeizepfen und in den Zylindern laufenden Kolben, an deren dem Brannraum abgewandter Seite sich ein Kolbenbolzen befindet, wobei die kraftachlüssige Verbindung zwischen Kurbeiwelle und Kolbenbolzen durch einzelne Pleuel hargestellt wird, die so konstruiert eind, daß sie sich en ihrem dem Kurbeizepfen zugewandten Ende um die Kurbeizepfenaches oder parallel zu dieser unabhängig voneinander drehen können und am anderen Ende im Kolbenbolzen dreh- und schiebber gelagert sind.

37 00 005

Patentansprüche

FAX 18006661233

1. Kurbeltrieb für einen Motor, insbesondere Dieselmotor, mit axialer Zylinderanordnung um eine Kurbelwelle mit schrägstehendem Kurbelzapien s und in den Zylindern laufenden Kolben, an deren dem Brennraum abgewandter Seite sich ein Kolbenbolzen befindet, dadurch gekennzeichnet, daß die krastschlüssige Verbindung zwischen Kurbelgestellt wird, die so konstruiert sind, daß sie sich an ihrem dem Kurbelzapfen zugewandten Ende um die Kurbelzapfenachse oder parallel zu dieser unabhängig voneinander drehen können und am anderen Ende im Kolbenbolzen dreh- und schiebbar 15 gelagert sind.

2. Kurbeltrieb nach Anspruch 1, dadurch gekennzeichnet, daß das sich um den Kurbelzapsen drehende Pleuelauge segmentartig, d. h. nicht als ge-

schlossenes Auge, ausgeführt ist.

3. Kurbeltrieb nach einem oder mehreren der vorgenannten Ansprüche, dadurch gekennzeichnet, daß das Pleuel auf einer Lagerbuchse gelagert ist, die die Drehbewegung des Kurbelzapfens aufnur so weit drehen muß, daß der Fluchtungswinkelfehler ausgeglichen wird.

4. Kurbeltrieb nach einem oder mehreren der vorgenannten Ansprüche, dadurch gekennzeichnet. daß die Pleuelsegmente durch eine sie umschlie- 30 Bende Hülle auf Kurbelzapfen bzw. Lagerbuchse

gehalten werden.

5. Kurbeltrieb nach einem oder mehreren der vorgenannten Ansprüche, dadurch gekennzeichnet, daß diese Hülse als Kugelkäfig ausgebildet ist. der 35 die Pleuel mit einer kugeligen Fläche zusammenhält und führt, deren Radius vom Schnittpunkt der Achsen von Kurbeizapfen und Pleuel ausgeht

6. Kurbeltrieb nach einem oder mehreren der vorgenannten Ansprüche, dadurch gekennzeichnet, 40 daß die Pleuel einzeln schwenkbar in einer um den Kurbeizapfen drehbaren Nabe gelagert sind.

7. Kurbeltrieb nach einem oder mehreren der vorgenannten Ansprüche, dadurch gekennzeichnet, daß das im Kolbenbolzen gelagerte Ende des Pleu- 45 els durch einen im Zylinder geführten Gleitstein abgestützt wird, so daß die Kolben frei von Rückdreh- und Auslenkkräften sind.

Beschreibung

Es ist bekannt Taumelscheibenmotoren mit einer Taumelscheibe auszurüsten, die eine seste Teilung ausweist und eine Obertragungsmechanik von dieser Taumelscheibe auf die Kolben, um die durch die Taumelbe- 55 wegung verursachten Schwenk-, Schiebe- und Drehbewegungen zu kompensieren. Diese Mechaniken ergeben in der Praxis eine komplizierte und oft erheblich unterschiedliche Hubkinematik für die einzelnen Kolben. Eine separate Abstützung zur Aufnahme des Rück- 60 drehmoments ist in vielen Fällen nötig.

Zweck der Erfindung ist es, eine einer Sinus-Funktion folgende Hubbewegung zu erreichen, die für jeden Kolben gleich ist, sowie Vermeidung von separaten Führungen, Kinematik mit einfachen Formeln und Vermeidung as von radialen (um Schrägzapfenmitte) Schiebebewegungen im Bereich des Kolbenbolzens.

Die Lösung besteht darin, eine Auflösung der Tau-

melscheibe in einzelne Pleuelsegmente drehbar um die Mitte des Schrägzapfens gelagert direkt oder über eine Zwischenhülse auf dem Schrägzapfen vorzunehmen. Das Rückdrehmoment wird auf alle Zylinder verteilt.

Die Kinematik (Fig. 1)

Zwei über Kurbelarme K festverbundene Achsen x und y schneiden sich im Punkt M unter dem Winkel a. welle und Kolbenbolzen durch einzelne Pleuel her- 10 Rechtwinklig zu y und ebenfalls durch M laufend geht eine Ebene, die eine weitere Linie z welche im Abstand a von a liegt, im Punkt Pschneidet. Rotiert die a-Achse, so macht der Schnittpunkt Pauf der z-Achse einen Hub nach folgender Formel (auf die Mittelstellung bezogen):

$$5 = a \cdot \tan \alpha \cdot \sin \Theta (\Theta = \text{Drehwinkel})$$

Der maximale Hub (Gesamthub) beträgt:

Definition des Fehlerwinkels δ

In der Projektion (R) decken sich die Linien MP und nimms, und auf deren Außenseite das Pleuel sich 25 MO. Am Umfang eines Kreises um Achse a mit Radius a liegt eine weitere Achse zi auf einem Strahl MO1 im Winkelabstand y. In gleicher Weise gibt es einen Strahl MP1 im gleichen Winkelabstand y in Projektion S, der sich jedoch nicht mit MO1 deckt, sondern eine Winkeldifferenz & aufweist. Erst bei Drehung der x-Achse um den Winkelbetrag ywird wieder Deckung erreicht.

Der Ausgleich dieses variierenden Fluchtungsfehlers ist Gegenstand der Erfindung. Er errechnet sich wie folgt:

$$\delta = \beta - \gamma$$

$$\gamma = \tan^{-1} \frac{\sin \beta \cdot \cos \alpha}{\cos \beta}$$

Funktionsbeschreibung

In einem Gehäuse (1) eines Axialmotors sind um die Mitte der Kurbeiwelle (2) herum Zylinder (3) angeordnet, in denen sich gegenüberliegend und fest verbunden je zwei Kolben (4) bewegen. Die Kurbelwelle hat einen schräggestellten Kurbelzapfen (5), um den sich eine Lagerbuchse (6) drehen kann. Auf dieser Buchse sind um die Kurbelzapfenmitte drehbar die Pleuelsegmente (7) 30 gelagert. Das im Kolbenzapfen (8) geführte Pleuelende ist als Zapfen ausgebildet und im Bolzen schieb- und drehbar. Der Kolbenbolzen (8) ist seinerseits im Verbindungsstück (9) der beiden Kolben (4) drehbar. Zwischen den Segmenten bleibt ein veränderlicher Spalt 6 frei, da sich der Teilungswinkel & der Segmente im Laufe der Umdrehung verändert: Um ein Abheben der Pleuel von der Buchse (6) zu verhindern, werden die Enden in Führungshülsen (10) geführt. Es ist nicht schädlich, wenn im Augenblick der höchsten Kraft das Pleuel zwischen Holse (10) und Buchse (6) klemmt de die Buchse selbst sich auf Zapfen (5) weiterdrehen kann und die übrigen Pleuel sich noch frei einstellen können.

Um die Kolben von den Auslenk- und Rückdrehkräften freizuhalten, kann am Verbindungsstück (9) zusätzlich ein Gleitstein (15) angebracht sein, der ebenfalls im Zylinder (3) geführt ist

In Bild 4 sind die Pleuel (7) einzeln um Bolzen (12) drehbar um die Achse des Schrägzapfens (5) herum in

OS 37 00 005

3

einer Nabe (13) angeordnet. Der Schwenkwinkel der Pleuei muß den Fehlerwinkel & kompensieren. Die Pleuel (7) liegen abwechselnd im Laufe der Kurbelwellendrehung am Anschlagbolzen (14) an. Diese Bolzen (14) stützen auch das Rückdrehmoment ab.

Noch einfacher herzustellen ist das Pleuel, wenn die Hülse als Kugelkäfig (11). Fig. 3, ausgeführt ist, mit R durch den Mittelpunkt M der Kurbelwelle; denn dadurch kann die in dem Käfig zu führende Oberfläche in der gleichen Drehoperation mit dem Zapfen durchgeführt werden.

15

w

23

30

35

40

45

50

55

60

65

808 828/148