Autoencoder

Tuan Nguyen - Al4E

Outline

- Unsupervised Learning (Introduction)
- Autoencoder (AE)
- Autoencoder application
- Convolutional AE
- Denoising AE

Supervised vs Unsupervised

Supervised Learning

x₂ Cooling the charge with the charge with

Unsupervised Learning

Supervised Learning

• Data: (X,Y)

Goal: Learn a Mapping Function

(f)where:

Supervised Learning

Label data?

01

What happens when our labels are noisy?

- Missing values.
- Labeled incorrectly.

02

What happens where we don't have labels for training at all?

Unsupervised Learning

Up until now we have encountered in this course mostly **Supervised Learning** problems and algorithms.

Let's talk about Unsupervised Learning

Unsupervised Learning

Unsupervised Learning

Data: X no label

Goal: Learn the structure of the data learn correlations between features

Unsupervised Learning

Examples: Clustering, Compression, Feature & Representation learning, Dimensionality reduction, Generative models, etc.

(AMG). VA Els.)

PCA – Principal Component analysis

- Statistical approach for data compression and visualization
- Invented by Karl Pearson in 1901
- Weakness: linear components only.

Autoencoder

- The autoencoder idea was a part of NN history for decades (LeCun et al, 1987).
- Traditionally an autoencoder is used for dimensionality reduction and feature learning.
- Recently, the connection between autoencoders and latent space modeling has brought autoencoders to the front of generative modeling.

Simple Idea

- Given data x (no labels) we would like to learn the functions f (encoder) and g (decoder) where:

$$f(x) = s(wx + b) = z$$
 and

$$g(z) = s(w'z + b') = \hat{x}$$

s.t
$$h(x) = g(f(x)) = \hat{x}$$

where h is an **approximation** of the identity function.

Training Autoencoder

Using **Gradient Descent** we can simply train the model as any other FC NN with:

- Traditionally with <u>squared error loss</u> function

$$L(x,\hat{x}) = \|x - \hat{x}\|^2$$

- If our input is interpreted as <u>bit vectors</u> or vectors of bit probabilities the <u>cross entropy</u> can be used

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$

Traditional Autoencoder

Traditional Autoencoder

- Unlike the PCA now we can use activation functions to achieve non-linearity.
- It has been shown that an AE without activation functions achieves the PCA capacity.

Auto-encoder

Can reconstruct the original object

Deep Autoencoder

Of course, the auto-encoder can be deep

Symmetric is not necessary.

Deep Autoencoder

Denoise

Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." *ICML*, 2008.

Text Retrieval

Text Retrieval

The documents talking about the same thing will have close code.

Similar image search

Retrieved using Euclidean distance in pixel intensity

Reference: Krizhevsky, Alex, and Geoffrey E. Hinton. "Using very deep autoencoders for content-based image retrieval." *ESANN*, 2011.

Similar image search

max pooly , Copy 8=2.

Auto-encoder for CNN

DAN. 14x14 BXVEMXM **Deconvolution**: nxn Learnable Upsampling: 3 x 3 "deconvolution", stride 2 pad 1_ Input gives weight for filter Output: 4 x 4 Input: 2 x 2

Convolution

Input

Output

Transposed convolution

Transposed convolution

Convolutional AE

Convolutional AE

Denoising AE

Intuition:

- We still aim to encode the input and to NOT mimic the identity function.
- We try to undo the effect of *corruption* process stochastically applied to the input.

Process

Supervised.

Taken some input x

Apply Noise

 $\widetilde{\chi}$

Q&A

