Notes of Modern Quantum Chemistry, Szabo & Ostlund

wsr

July 3, 2020

Contents

0		
1		
	1.1	
	1.2	
	1.3	
	1.4	N-D Complex Vector Spaces
		1.4.1 Change of Basis
2	0.1	
	2.1	The Electronic Problem
		2.1.1 Atomic Units
		2.1.2 The B-O Approximation
	0.0	2.1.3 The Antisymmetry or Pauli Exclusion Principle
	2.2	Orbitals, Slater Determinants, and Basis Functions
		2.2.1 Spin Orbitals and Spatial Orbitals
		2.2.2 Hartree Products
		2.2.3 Slater Determinants
		2.2.4 The Hartree-Fock Approximation
		2.2.5 The Minimal Basis H_2 Model
	0.0	2.2.6 Excited Determinants
	2.3	Operators and Matrix Elements
		2.3.1 Minimal Basis H ₂ Matrix Elements
		2.3.2 Notations for 1- and 2-Electron Integrals
	2.4	2.3.3 General Rules for Matrix Elements
	2.4	Second Quantization
		2.4.1 Creation and Annihilation Operators and Their Anticommutation Relation
	2.5	Spin-Adapted Configurations
		2.5.1 Spin Operators
		2.5.2 Restricted Determinants and Spin-Adapted Configurations
3		e Hartree-Fock Approximation
	3.1	The HF Equations
		3.1.1 The Coulomb and Exchange Operators
		3.1.2 The Fock Operator

	3.2	Derivat	ion of the HF Equations
		3.2.1	Functional Variation
		3.2.2	Minimization of the Energy of a Single Determinant
		3.2.3	The Canonical HF Equations
	3.3	Interpre	etation of Solutions to the HF Equations
		3.3.1	Orbital Energies and Koopmans' Theorem
			Brillouin's Theorem
		3.3.3	The HF Hamiltonian
	3.4	Restric	ted Closed-shell HF: The Roothaan Equations
			Closed-shell HF: Restricted Spin Orbitals
		3.4.2	Introduction of a Basis: The Roothaan Equations
		3.4.3	The Charge Density
			Expression for the Fock Matrix
			Orthogonalization of the Basis
		3.4.6	The SCF Procedure
		3.4.7	Expectation Values and Population Analysis
	3.5	Model	Calculations on H_2 and $\mathrm{He}\hat{\mathrm{H}}^+$
			The 1s Minimal STO-3G Basis Set
		3.5.2	STO-3G H_2
		3.5.3	An SCF Calculation on STO-3G HeH ⁺
	3.6		omic Basis Sets
		3.6.1	Contracted Gaussian Functions
		3.6.2	Minimal Basis Sets: STO-3G
		3.6.3	Double Zeta Basis Sets: 4-31G
		3.6.4	Polarized Basis Sets: 6-31G* and 6-31G**
	3.7	Some I	llustrative Closed-shell Calculations
		3.7.1	Total Energies
		3.7.2	Ionization Potentials
		3.7.3	Equilibrium Geometries
		3.7.4	Population Analysis and Dipole Moments
	3.8	Unrestr	ricted Open-shell HF: The Pople-Nesbet Equations
		3.8.1	Open-shell HF: Unrestricted Spin Orbitals
			Introduction of a Basis: The Pople-Nesbet Equations
		3.8.3	Unrestricted Density Matrices
			Expression for the Fock Matrices
			Solution of the Unrestricted SCF Equations
		3.8.6	Illustrative Unrestricted Calculations
4	Con	figurat	ion Interaction 11
_	4.1	_	onfigurational Wave Functions and the Structure of Full CI Matrix 11
	1.1		Intermediate Normalization and an Expression for the Correlation Energy 11
	4.2		Exited CI
	4.3		llustrative Calculations
	4.4		l Orbitals and the 1-Particle Reduced DM
	4.5		CSCF and the GVB Methods
	4.6		ted CI and the Size-consistency Problem
_	ъ.	1 0	landal min Maraira
5	Pa 11 5.1		dependent Electron Pair Approximation 12
	11.1	1 110 1110	.0.4.0.4.0.0.1.0.1.1.4.0.1.0.1.1.4.0.1.1.0.0.1.0.1

		5.1.1 Invariance under Unitary Transformations: An Example	13			
		5.1.2 Some Illustrative Calculations	13			
	5.2	Coupled-pair Theories	13			
		5.2.1 The Coupled-cluster Approximation	13			
		5.2.2 The Cluster Expansion of the Wave Function	14			
		5.2.3 Linear CCA and the Coupled-Electron Pair Approximation	14			
		5.2.4 Some Illustrative Calculations	15			
	5.3	Many-electron Theories with Single Particle Hamiltonians	15			
		5.3.1 The Relaxation Energy via CI, IEPA, CEPA and CCA	15			
		5.3.2 The Resonance Energy of Polyenes in Hückel Theory	15			
6	Many-body Perturbation Theory					
	6.1	RS Perturbation Theory	15			
	6.2	Diagrammatic Representation of RS Perturbation Theory	15			
		6.2.1 Diagrammatic Perturbation Theory for Two States	15			
		6.2.2 Diagrammatic Perturbation Theory for N States	15			
		6.2.3 Summation of Diagrams	15			
	6.3	Orbital Perturbation Theory: One-Particle Perturbations	15			
	6.4	Diagrammatic Representation of Orbital Perturbation Theory	15			
	6.5	Perturbation Expansion of the Correlation Energy	15			
	6.6	The N -dependence of the RS Perturbation Expansion	15			
	6.7	Diagrammatic Representation of the Perturbation Expansion of the Correlation	10			
	0.1	Energy	15			
		6.7.1 Hugenholtz Diagrams	15			
		6.7.2 Goldstone Diagrams	16			
		6.7.3 Summation of Diagrams	16			
		6.7.4 What Is the Linked-Cluster Theorem?	16			
	6.8	Some Illustrative Calculations	16			
	0.0	Some mustrative Calculations	10			
7	The	The 1-Particle Many-body Green's Function				
	7.1	Green's Function in Single-Particle Systems	16			
	7.2	The 1-Particle Many-body Green's Function	16			
		7.2.1 The Self-Energy	16			
		7.2.2 The Solution of the Dyson Equation	16			
	7.3	Application of the Formalism to H_2 and HeH^+	16			
\mathbf{A}	Inte	egral Evaluation with 1s Primitive Gaussians	16			
В	2-E	lectron Self-consistent-field Program	16			
		_	10			
C	- ·	alytic Derivative Methods and Geometry Optimization	16			
	C.1	Introduction	16			
	C.2	General Considerations	16			
	C.3	Analytic Derivatives	17			
	C.4	Optimization Techniques	17			
	C.5	Some Optimization Algorithms	17			
	C.6	Transition States	18			
	C.7	Constrained Variation	18			
D	Mol	lecular Integrals for H_2 as a Function of Bond Length	18			

0

spatial mol orb – ψ – i,j,k,...spatial basis fxn – ϕ – $\mu,\nu,\lambda,...$ spin orb – χ occ mol orb – a,b,c,...vir mol orb – r,s,t,...exact many-elec wfn – Φ approx many-elec wfn – Ψ exact energy – $\mathscr E$ approx energy – E

1

- 1.1
- 1.2
- 1.3

1.4 N-D Complex Vector Spaces

Suppose

$$\mathcal{O}|a\rangle = |b\rangle \tag{1.1}$$

$$\langle i \mid \mathcal{O} \mid j \rangle = O_{ij} \tag{1.2}$$

def the **adjoint** of \mathcal{O} as \mathcal{O}^{\dagger}

$$\langle a | \mathcal{O}^{\dagger} = \langle b | \tag{1.3}$$

$$\langle i \mid \mathcal{O}^{\dagger} \mid j \rangle = O_{ii}^{*} \tag{1.4}$$

1.4.1 Change of Basis

$$|\alpha\rangle = \sum_{i} |i\rangle \langle i|\alpha\rangle = \sum_{i} |i\rangle U_{i\alpha}$$
 (1.5)

$$|i\rangle = \sum_{\alpha} |\alpha\rangle \langle i|\alpha\rangle = \sum_{\alpha} |\alpha\rangle U_{i\alpha}^*$$
 (1.6)

If i, α are all orthonormal, **U** must be unitary.

$$\Omega_{\alpha\beta} = \langle \alpha \, | \, \mathcal{O} \, | \, \beta \rangle = \dots \sum_{ij} U_{\alpha i}^* O_{ij} U_{j\beta}$$
(1.7)

or

$$\mathbf{\Omega} = \mathbf{U}^{\dagger} \mathbf{O} \mathbf{U} \tag{1.8}$$

2.1 The Electronic Problem

- 2.1.1 Atomic Units
- 2.1.2 The B-O Approximation
- 2.1.3 The Antisymmetry or Pauli Exclusion Principle
- 2.2 Orbitals, Slater Determinants, and Basis Functions
- 2.2.1 Spin Orbitals and Spatial Orbitals
- 2.2.2 Hartree Products
- 2.2.3 Slater Determinants

def

$$|\chi_{i}(\mathbf{x}_{1})\chi_{j}(\mathbf{x}_{2})\cdots\chi_{k}(\mathbf{x}_{N})\rangle \equiv \frac{1}{\sqrt{N!}}\begin{vmatrix} \chi_{i}(\mathbf{x}_{1}) & \chi_{j}(\mathbf{x}_{1}) & \cdots & \chi_{k}(\mathbf{x}_{1}) \\ \chi_{i}(\mathbf{x}_{2}) & \chi_{j}(\mathbf{x}_{2}) & \cdots & \chi_{k}(\mathbf{x}_{2}) \\ \vdots & \vdots & & \vdots \\ \chi_{i}(\mathbf{x}_{N}) & \chi_{j}(\mathbf{x}_{N}) & \cdots & \chi_{k}(\mathbf{x}_{N}) \end{vmatrix}$$
(2.1)

It can be further shortened to

$$|\chi_i\chi_j\cdots\chi_k\rangle$$
 (2.2)

2.2.4 The Hartree-Fock Approximation

2.2.5 The Minimal Basis H_2 Model

gerade, ungerade

2.2.6 Excited Determinants

Suppose the ground state det

$$|\psi_0\rangle = |\chi_1 \cdots \chi_a \cdots \chi_b \cdots \chi_N\rangle \tag{2.3}$$

thus, singly excited det

$$|\psi_a^r\rangle = |\chi_1 \cdots \chi_r \cdots \chi_b \cdots \chi_N\rangle \tag{2.4}$$

$$|\psi_{ab}^{rs}\rangle = |\chi_1 \cdots \chi_r \cdots \chi_s \cdots \chi_N\rangle \tag{2.5}$$

How does program determine what dets can exist? by gerade/ungerade?

2.3 Operators and Matrix Elements

2.3.1 Minimal Basis H₂ Matrix Elements

2.3.2 Notations for 1- and 2-Electron Integrals

For spin orb, physicists'

$$\langle ij | kl \rangle = \left\langle \chi_i(1)\chi_j(2) \left| \frac{1}{r_{12}} \right| \chi_k(1)\chi_l(2) \right\rangle$$
 (2.6)

$$\langle ij \parallel kl \rangle = \langle ij \mid kl \rangle - \langle ij \mid lk \rangle$$
 (2.7)

chemists'

$$[ij|kl] = \left\langle \chi_i(1)\chi_j(1) \left| \frac{1}{r_{12}} \right| \chi_k(2)\chi_l(2) \right\rangle$$
 (2.8)

For spatial orb

$$(ij|kl) = \left\langle \psi_i(1)\psi_j(1) \left| \frac{1}{r_{12}} \right| \psi_k(2)\psi_l(2) \right\rangle$$
 (2.9)

2.3.3 General Rules for Matrix Elements

1. $|K\rangle = |\cdots mn \cdots \rangle$

$$\langle K \, | \, \mathcal{H} \, | \, K \rangle = \sum_{m}^{N} \langle m \, | \, h \, | \, m \rangle + \frac{1}{2} \sum_{m}^{N} \sum_{n}^{N} \langle mn \, | | \, mn \rangle = \sum_{m}^{N} [m|h|m] + \frac{1}{2} \sum_{m}^{N} \sum_{n}^{N} ([mm|nn] - [mn|nm])$$
(2.10)

or (Since [mm|mm] - [mm|mm] = 0)

$$\langle K | \mathcal{H} | K \rangle = \sum_{m}^{N} [m|h|m] + \sum_{m}^{N} \sum_{n>m}^{N} ([mm|nn] - [mn|nm])$$
 (2.11)

2. $|K\rangle = |\cdots mn \cdots\rangle, |L\rangle = |\cdots pn \cdots\rangle$

$$\langle K \mid \mathcal{H} \mid L \rangle = \langle m \mid h \mid p \rangle + \sum_{n=1}^{N} \langle mn \parallel pn \rangle = [m|h|p] + \sum_{n=1}^{N} ([mp|nn] - [mn|np]) \qquad (2.12)$$

3.
$$|K\rangle = |\cdots mn \cdots\rangle, |L\rangle = |\cdots pq \cdots\rangle$$

$$\langle K | \mathcal{H} | L\rangle = \langle mn || pq\rangle = [mp|nq] - [mq|np] \tag{2.13}$$

2.4 Second Quantization

2.4.1 Creation and Annihilation Operators and Their Anticommutation Relations

$$a_i^{\dagger} a_i^{\dagger} + a_i^{\dagger} a_i^{\dagger} = 0 \quad a_i a_i + a_i a_i = 0 \tag{2.14}$$

$$\{a_i, a_i^{\dagger}\} \equiv a_i a_i^{\dagger} + a_i^{\dagger} a_i = \delta_{ij} \tag{2.15}$$

2.5 Spin-Adapted Configurations

2.5.1 Spin Operators

total spin

$$\hat{\mathscr{P}} = \sum_{i}^{N} \hat{\mathbf{s}}(i) \tag{2.16}$$

$$\hat{\mathscr{S}}_x = \sum_{i}^{N} \hat{\mathbf{s}}_x(i) \tag{2.17}$$

$$\hat{\mathscr{S}}_{+} = \sum_{i}^{N} \hat{\mathbf{s}}_{+}(i) \tag{2.18}$$

$$\hat{\mathcal{S}}^2 = \hat{\mathcal{S}}_+ \hat{\mathcal{S}}_- - \hat{\mathcal{S}}_z + \hat{\mathcal{S}}_z^2 \tag{2.19}$$

$$\hat{\mathscr{S}}^2 |\Phi\rangle = S(S+1) |\Phi\rangle \tag{2.20}$$

$$\hat{\mathscr{S}}_z |\Phi\rangle = M_S |\Phi\rangle \tag{2.21}$$

$$\hat{\mathscr{S}}_z |ij\cdots k\rangle = \frac{1}{2} (N^\alpha - N^\beta) |ij\cdots k\rangle$$
 (2.22)

2.5.2 Restricted Determinants and Spin-Adapted Configurations

$$|^{1}\Psi_{1}^{2}\rangle = \frac{1}{\sqrt{2}}(|1\bar{2}\rangle + |\bar{1}2\rangle) = \frac{1}{\sqrt{2}}(\psi_{1}(1)\psi_{2}(2)\alpha(1)\beta(2) - \psi_{2}(1)...)$$
 (2.23)

3 The Hartree-Fock Approximation

3.1 The HF Equations

3.1.1 The Coulomb and Exchange Operators

$$\mathscr{J}_b(1) = \int \mathrm{d}x_2 \chi_b^*(2) r_{12}^{-1} \chi_b(2) \tag{3.1}$$

$$\mathscr{K}_b(1) = \int dx_2 \chi_b^*(2) r_{12}^{-1} \hat{\mathscr{P}}_{12} \chi_b(2)$$
(3.2)

$$= \int \mathrm{d}x_2 \chi_b^*(2) r_{12}^{-1} \chi_b(1) \hat{\mathscr{P}}_{12} \tag{3.3}$$

$$\langle \chi_a(1) | \mathcal{J}_b(1) | \chi_a(1) \rangle = J_{ab} \tag{3.4}$$

$$\langle \chi_a(1) \mid \mathcal{K}_b(1) \mid \chi_a(1) \rangle = K_{ab} \tag{3.5}$$

3.1.2 The Fock Operator

3.2 Derivation of the HF Equations

- 3.2.1 Functional Variation
- 3.2.2 Minimization of the Energy of a Single Determinant
- 3.2.3 The Canonical HF Equations

3.3 Interpretation of Solutions to the HF Equations

3.3.1 Orbital Energies and Koopmans' Theorem

$$\varepsilon_{i} = \langle i \mid h \mid i \rangle + \sum_{b} \langle ib \parallel ib \rangle \tag{3.6}$$

$$= \langle i \mid h \mid i \rangle + \sum_{b} (\langle ib \mid ib \rangle - \langle ib \mid bi \rangle)$$
 (3.7)

Koopmans' Theorem

$$IP = -\varepsilon_a \quad EA = -\varepsilon_r \tag{3.8}$$

Koopmans' EA is often bad.

3.3.2 Brillouin's Theorem

$$\langle \Psi_0 \,|\, \mathcal{H} \,|\, \Psi_a^r \rangle = 0 \tag{3.9}$$

3.3.3 The HF Hamiltonian

$$\mathcal{H}_0 = \sum_{i=1}^{N} f(i) \tag{3.10}$$

3.4 Restricted Closed-shell HF: The Roothaan Equations

3.4.1 Closed-shell HF: Restricted Spin Orbitals

$$E_0 = 2\sum_a h_{aa} + \sum_a \sum_b (2J_{ab} - K_{ab})$$
(3.11)

3.4.2 Introduction of a Basis: The Roothaan Equations

- 3.4.3 The Charge Density
- 3.4.4 Expression for the Fock Matrix
- 3.4.5 Orthogonalization of the Basis

$$\mathbf{X}^{\dagger}\mathbf{S}\mathbf{X} = \mathbf{1} \tag{3.12}$$

S can be diagonalized by unitary matrix U:

$$\mathbf{U}^{\dagger}\mathbf{S}\mathbf{U} = \mathbf{s} \tag{3.13}$$

Symmetric Orthogonalization

$$\mathbf{X} = \mathbf{S}^{-1/2} = \mathbf{U}\mathbf{s}^{-1/2}\mathbf{U}^{\dagger} \tag{3.14}$$

(linear dependence must be removed)

Canonical Orthogonalization

$$\mathbf{X} = \mathbf{U}\mathbf{S}^{-1/2} = \mathbf{U}\mathbf{s}^{-1/2}\mathbf{U}^{\dagger} \tag{3.15}$$

Suppose s has m small values, we make a truncated $K \times (K - m)$ matrix

$$\tilde{\mathbf{X}} = \dots \tag{3.16}$$

thus

$$\phi'_{\mu} = \sum_{\nu}^{K} \phi_{\nu} \tilde{X}_{\nu\mu} \qquad \mu = 1, 2, \cdots, K - m$$
 (3.17)

However, calculate 2e integrals in transformed matrix is very time-consuming. Since

$$\phi' = \phi \mathbf{X} \tag{3.18}$$

$$\psi = \phi \mathbf{C} \tag{3.19}$$

we have

$$\psi = \phi' \mathbf{X}^{-1} \mathbf{C} \tag{3.20}$$

Let

$$\mathbf{C}' = \mathbf{X}^{-1}\mathbf{C} \qquad or \ \mathbf{C} = \mathbf{X}\mathbf{C}' \tag{3.21}$$

thus

$$\mathbf{FXC'} = \mathbf{SXC'}\boldsymbol{\varepsilon} \tag{3.22}$$

$$(\mathbf{X}^{\dagger}\mathbf{F}\mathbf{X})\mathbf{C}' = (\mathbf{X}^{\dagger}\mathbf{S}\mathbf{X})\mathbf{C}'\boldsymbol{\varepsilon} = \mathbf{C}'\boldsymbol{\varepsilon}$$
(3.23)

def:

$$\mathbf{F}' = \mathbf{X}^{\dagger} \mathbf{F} \mathbf{X} \tag{3.24}$$

3.4.6 The SCF Procedure

P. 148

I think \mathbf{C}' should be $(K-m) \times K$.

3.4.7 Expectation Values and Population Analysis

$$N = \sum_{\mu} \sum_{\nu} P_{\mu\nu} S_{\mu\nu} = \operatorname{tr} \mathbf{PS}$$
 (3.25)

Mulliken:

$$q_A = Z_A - \sum_{\mu \in A} (\mathbf{PS})_{\mu\mu} \tag{3.26}$$

Löwin:

$$q_A = Z_A - \sum_{\mu \in A} (\mathbf{S}^{1/2} \mathbf{P} \mathbf{S}^{1/2})_{\mu\mu}$$
 (3.27)

3.5 Model Calculations on H_2 and HeH^+

3.5.1 The 1s Minimal STO-3G Basis Set

$$\alpha = \alpha_{(\zeta = 1.0)} \times \zeta^2 \tag{3.28}$$

3.5.2 STO-3G H₂

3.5.3 An SCF Calculation on STO-3G HeH⁺

3.6 Polyatomic Basis Sets

3.6.1 Contracted Gaussian Functions

Notation: (pGTO)/[cGTO] (ignore $p_x, p_y, ...$)

$$\begin{array}{ccc} {\rm STO\text{-}3G} & (6{\rm s3p/3s})/[2{\rm s1p/1s}] \\ 4{\rm -}31{\rm G} & (8{\rm s4p/4s})/[3{\rm s2p/2s}] \\ {\rm T.\ Dunning\ (JCP\ 1970)} & (9{\rm s5p/4s})/[3{\rm s2p/2s}] \\ 6{\rm -}31{\rm G}^*\ ({\rm sph}) & (10{\rm s4p1d})/[3{\rm s2p1d/2s}] \\ 6{\rm -}31{\rm G}^{**}\ ({\rm sph}) & (10{\rm s4p1d/4s1p})/[3{\rm s2p1d/2s1p}] \end{array}$$

- 3.6.2 Minimal Basis Sets: STO-3G
- Double Zeta Basis Sets: 4-31G
- 3.6.4 Polarized Basis Sets: 6-31G* and 6-31G**

What's D polarized basis?

Cartesian: xx, yy, zz, xy, yz, xzSpherical: $3z^2 - r^2, x^2 - y^2, xy, yz, zx$, $(r^2 \text{ is removed})$

Some Illustrative Closed-shell Calculations

- Total Energies
- 3.7.2 Ionization Potentials
- **Equilibrium Geometries**
- 3.7.4 Population Analysis and Dipole Moments

Unrestricted Open-shell HF: The Pople-Nesbet Equations

Open-shell HF: Unrestricted Spin Orbitals

$$f^{\alpha}(1) = h(1) + \sum_{a}^{N_{\alpha}} \left[J_a^{\alpha}(1) - K_a^{\alpha}(1) \right] + \sum_{a}^{N_{\beta}} J_a^{\beta}(1)$$
 (3.29)

$$E_0 = \sum_{a} h_{aa} + \frac{1}{2} \sum_{a}^{N_{\alpha}} \sum_{b}^{N_{\alpha}} (J_{ab}^{\alpha\alpha} - K_{ab}^{\alpha\alpha}) + \frac{1}{2} \sum_{a}^{N_{\beta}} \sum_{b}^{N_{\beta}} (J_{ab}^{\beta\beta} - K_{ab}^{\beta\beta}) + \sum_{a}^{N_{\alpha}} \sum_{b}^{N_{\beta}} J_{ab}^{\alpha\beta}$$
(3.30)

3.8.2 Introduction of a Basis: The Pople-Nesbet Equations

$$\mathbf{F}^{\alpha}\mathbf{C}^{\alpha} = \mathbf{S}\mathbf{C}^{\alpha}\boldsymbol{\varepsilon}^{\alpha} \tag{3.31}$$

$$\mathbf{F}^{\beta}\mathbf{C}^{\beta} = \mathbf{S}\mathbf{C}^{\beta}\boldsymbol{\varepsilon}^{\beta} \tag{3.32}$$

3.8.3 Unrestricted Density Matrices

spin density

$$\rho^{S}(\mathbf{r}) = \rho^{\alpha}(\mathbf{r}) - \rho^{\beta}(\mathbf{r}) \tag{3.33}$$

$$\mathbf{P}^S = \mathbf{P}^\alpha - \mathbf{P}^\beta \tag{3.34}$$

3.8.4 Expression for the Fock Matrices

$$F_{\mu\nu}^{\alpha} = H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} \left[P_{\lambda\sigma}^{T}(\mu\nu|\sigma\lambda) - P_{\lambda\sigma}^{\alpha}(\mu\lambda|\sigma\nu) \right]$$
 (3.35)

$$F_{\mu\nu}^{\beta} = H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} \left[P_{\lambda\sigma}^{T}(\mu\nu|\sigma\lambda) - P_{\lambda\sigma}^{\beta}(\mu\lambda|\sigma\nu) \right]$$
 (3.36)

3.8.5 Solution of the Unrestricted SCF Equations

3.8.6 Illustrative Unrestricted Calculations

4 Configuration Interaction

4.1 Multiconfigurational Wave Functions and the Structure of Full CI Matrix

1.

$$\langle \Psi_0 \,|\, \mathcal{H} \,|\, S \rangle = 0 \tag{4.1}$$

- 2. Slater dets which differ by > 2 spin orbitals are zero. Non-zero blocks are sparse.
- 3. Single excitations have a very small effect on the ground state energy, but not small for dipole and excited states.

4.1.1 Intermediate Normalization and an Expression for the Correlation Energy

Intermediate Normalization:

$$|\Phi_0\rangle = |\Psi_0\rangle + \dots \tag{4.2}$$

thus

$$\langle \Psi_0 \, | \, \Phi_0 \rangle = 0 \tag{4.3}$$

thus

$$E_{\text{corr}} = \langle \Psi_0 | \mathcal{H} - E_0 | \Phi_0 \rangle = \sum_{c < d.t < u} c_{cd}^{tu} \langle \Psi_0 | \mathcal{H} | \Psi_{cd}^{tu} \rangle$$

$$(4.4)$$

4.2 Doubly Exited CI

$$\sum_{c < d, t < u} c_{cd}^{tu} \left\langle \Psi_0 \middle| \mathcal{H} \middle| \Psi_{cd}^{tu} \right\rangle = E_{\text{corr}}$$
(4.5)

$$\langle \Psi_{ab}^{rs} | \mathcal{H} | \Psi_0 \rangle + \sum_{c < d, t < u} c_{cd}^{tu} \langle \Psi_{ab}^{rs} | \mathcal{H} - E_0 | \Psi_{cd}^{tu} \rangle = c_{ab}^{rs} E_{\text{corr}}$$

$$(4.6)$$

def

$$B_{rasb} = \langle \Psi_{ab}^{rs} | \mathcal{H} | \Psi_0 \rangle \tag{4.7}$$

$$D_{rasb,tcud} = \left\langle \Psi_{ab}^{rs} \middle| \mathcal{H} - E_0 \middle| \Psi_{cd}^{tu} \right\rangle \tag{4.8}$$

$$c_{rasb} = c_{ab}^{rs} \tag{4.9}$$

thus

$$\begin{pmatrix} 0 & \mathbf{B}^{\dagger} \\ \mathbf{B} & \mathbf{D} \end{pmatrix} \begin{pmatrix} 1 \\ \mathbf{c} \end{pmatrix} = E_{\text{corr}} \begin{pmatrix} 1 \\ \mathbf{c} \end{pmatrix}$$
 (4.10)

then diagonalize.

Another way:

$$E_{\text{corr}} = -\mathbf{B}^{\dagger} (\mathbf{D} - E_{\text{corr}} \mathbf{1})^{-1} \mathbf{B}$$
(4.11)

solve it iteratively.

4.3 Some Illustrative Calculations

4.4 Natural Orbitals and the 1-Particle Reduced DM

reduced density function

$$\rho(\mathbf{x}_1) = N \int d\mathbf{x}_2 \cdots d\mathbf{x}_N \Phi^*(\mathbf{x}_1, \cdots, \mathbf{x}_N) \Phi(\mathbf{x}_1, \cdots, \mathbf{x}_N)$$
(4.12)

1st-order reduced DM, or 1-P reduced DM

$$\gamma(\mathbf{x}_1, \mathbf{x}_1') = N \int d\mathbf{x}_2 \cdots d\mathbf{x}_N \Phi^*(\mathbf{x}_1, \cdots, \mathbf{x}_N) \Phi(\mathbf{x}_1', \cdots, \mathbf{x}_N)$$
(4.13)

$$\gamma(\mathbf{x}_1, \mathbf{x}_1') = \sum_{ij} \chi_i(\mathbf{x}_1) \gamma_{ij} \chi_j^*(\mathbf{x}_1')$$
(4.14)

def an orthonormal basis $\{\eta_i\}$ (natural spin orb),

$$\eta_i = \sum_k \chi_k U_{ki} \tag{4.15}$$

$$\gamma(\mathbf{x}_1, \mathbf{x}_1') = \sum_{kl} \eta_k(\mathbf{x}_1) (\mathbf{U}^{\dagger} \boldsymbol{\gamma} \mathbf{U})_{kl} \eta_l^*(\mathbf{x}_1')$$
(4.16)

def

$$\lambda = \mathbf{U}^{\dagger} \gamma \mathbf{U} \tag{4.17}$$

find a **U** to make λ diagonal, thus

$$\gamma(\mathbf{x}_1, \mathbf{x}_1') = \sum_{i} \lambda_i \eta_i(\mathbf{x}_1) \eta_j^*(\mathbf{x}_1')$$
(4.18)

 λ_i is called the occupation number of the natural spin orbs.

4.5 The MCSCF and the GVB Methods

4.6 Truncated CI and the Size-consistency Problem

Truncated CI is not size-consistent.

5 Pair and Coupled-pair Theories

5.1 The Independent Electron Pair Approximation

Full CI

$$E_{\rm corr} = \sum_{a \le b} e_{ab} \tag{5.1}$$

$$e_{ab} = \sum_{r < s} c_{ab}^{rs} \langle \Psi_0 | \mathcal{H} | \Psi_{ab}^{rs} \rangle$$
 (5.2)

IEPA: Do CID for each pair separately.

Do some approx., we get Epstein-Nesbet pair corr. E:

$$e_{ab}^{\rm EN} = -\sum_{r < s} \frac{\left| \langle \Psi_0 \mid \mathcal{H} \mid \Psi_{ab}^{rs} \rangle \right|^2}{\langle \Psi_{ab}^{rs} \mid \mathcal{H} - E_0 \mid \Psi_{ab}^{rs} \rangle}$$
(5.3)

more approx., first-order pair E:

$$e_{ab}^{\text{FO}} = \sum_{r \le s} \frac{\left| \left\langle \Psi_0 \mid \mathcal{H} \mid \Psi_{ab}^{rs} \right\rangle \right|^2}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} \tag{5.4}$$

5.1.1 Invariance under Unitary Transformations: An Example

2 independent H₂

MOs localized on the 2 monomers: $1_1, 2_1, 1_2, 2_2$ delocalized MOs:

$$a = \frac{1}{\sqrt{2}}(1_1 + 1_2) \tag{5.5}$$

$$b = \frac{1}{\sqrt{2}}(1_1 - 1_2) \tag{5.6}$$

$$r = \frac{1}{\sqrt{2}}(2_1 - 2_2) \tag{5.7}$$

$$s = \frac{1}{\sqrt{2}}(2_1 + 2_2) \tag{5.8}$$

5.1.2 Some Illustrative Calculations

IEPA is not variational.

IEPA is not invariant to unitary tranformations. works bad for Ne and N_2 .

5.2 Coupled-pair Theories

Ignore single, triple, etc.

$$|\Phi_0\rangle = |\Psi_0\rangle + \sum_{a < b, r < s} c_{ab}^{rs} |\Psi_{ab}^{rs}\rangle + \sum_{a < b < c < d, r < s < t < u} c_{abcd}^{rstu} |\Psi_{abcd}^{rstu}\rangle + \cdots$$
 (5.9)

then

$$\sum_{c < d, t < u} \langle \Psi_0 \mid \mathcal{H} \mid \Psi_{cd}^{tu} \rangle c_{cd}^{tu} = E_{\text{corr}}$$
(5.10)

$$\langle \Psi_{ab}^{rs} | \mathcal{H} | \Psi_{0} \rangle + \sum_{c < d, t < u} \langle \Psi_{ab}^{rs} | \mathcal{H} - E_{0} | \Psi_{cd}^{tu} \rangle c_{cd}^{tu} + \sum_{c < d, t < u} \langle \Psi_{ab}^{rs} | \mathcal{H} | \Psi_{abcd}^{rstu} \rangle c_{abcd}^{rstu} = E_{corr} c_{ab}^{rs}$$

$$\cdots \qquad (5.11)$$

How to truncate/decouple?

$$c_{abcd}^{rstu} := 0 \Rightarrow \text{CID},$$
 or, use CC.

5.2.1 The Coupled-cluster Approximation

Suppose

$$c_{abcd}^{rstu} \approx c_{ab}^{rs} * c_{cd}^{tu} = \dots {(5.12)}$$

thus

$$\langle \Psi_{ab}^{rs} | \mathcal{H} | \Psi_{0} \rangle + \sum_{c < d, t < u} \langle \Psi_{ab}^{rs} | \mathcal{H} - E_{0} | \Psi_{cd}^{tu} \rangle c_{cd}^{tu}$$

$$+ \sum_{c < d, t < u} \langle \Psi_{ab}^{rs} | \mathcal{H} | \Psi_{abcd}^{rstu} \rangle (c_{ab}^{rs} * c_{cd}^{tu}) = \left(\sum_{c < d, t < u} \langle \Psi_{0} | \mathcal{H} | \Psi_{cd}^{tu} \rangle c_{cd}^{tu} \right) c_{ab}^{rs}$$

$$(5.13)$$

after some tricks

$$\langle \Psi_{ab}^{rs} \mid \mathcal{H} \mid \Psi_{0} \rangle + \sum_{c < d, t < u} \langle \Psi_{ab}^{rs} \mid \mathcal{H} - E_{0} \mid \Psi_{cd}^{tu} \rangle c_{cd}^{tu}$$

$$+ \sum_{c < d, t < u} \langle \Psi_{0} \mid \mathcal{H} \mid \Psi_{cd}^{tu} \rangle \left(c_{ab}^{rs} c_{cd}^{tu} - \langle c_{ab}^{rs} * c_{cd}^{tu} \rangle \right) = \left(\sum_{c < d, t < u} \langle \Psi_{0} \mid \mathcal{H} \mid \Psi_{cd}^{tu} \rangle c_{cd}^{tu} \right) c_{ab}^{rs}$$

$$\langle \Psi_{ab}^{rs} \mid \mathcal{H} \mid \Psi_{0} \rangle + \sum_{c < d, t < u} \langle \Psi_{ab}^{rs} \mid \mathcal{H} - E_{0} \mid \Psi_{cd}^{tu} \rangle c_{cd}^{tu} - \sum_{c < d, t < u} \langle \Psi_{0} \mid \mathcal{H} \mid \Psi_{cd}^{tu} \rangle \langle c_{ab}^{rs} * c_{cd}^{tu} \rangle = 0 \quad (5.15)$$

along with (5.10), we get the energy of Coupled-Pair Many-Electron Theory (CPMET), aka CCA.

CCA is derived by J. Čižek and J. Paldus.

CC is size-consistent.

CC is invariant to unitary transformations of degenerate orbitals.

But, CC is not variational.

5.2.2 The Cluster Expansion of the Wave Function

5.2.3 Linear CCA and the Coupled-Electron Pair Approximation

linear CCA: set $< c^{rs}_{ab} * c^{tu}_{cd}> = 0$ in (5.15)

$$E_{\text{corr}}(\text{L-CCA}) = -\mathbf{B}^{\dagger}\mathbf{D}^{-1}\mathbf{B}$$
 (5.16)

L-CCA is size-consistent.

- 5.2.4 Some Illustrative Calculations
- 5.3 Many-electron Theories with Single Particle Hamiltonians
- 5.3.1 The Relaxation Energy via CI, IEPA, CEPA and CCA
- 5.3.2 The Resonance Energy of Polyenes in Hückel Theory
- 6 Many-body Perturbation Theory
- 6.1 RS Perturbation Theory
- 6.2 Diagrammatic Representation of RS Perturbation Theory
- 6.2.1 Diagrammatic Perturbation Theory for Two States
- 6.2.2 Diagrammatic Perturbation Theory for N States
- 6.2.3 Summation of Diagrams
- 6.3 Orbital Perturbation Theory: One-Particle Perturbations
- 6.4 Diagrammatic Representation of Orbital Perturbation Theory
- 6.5 Perturbation Expansion of the Correlation Energy

MPPT:

$$E_0^{(0)} = \sum_a \varepsilon_a \tag{6.1}$$

$$E_0^{(1)} = -\frac{1}{2} \sum_{ab} \langle ab \, || \, ab \rangle \tag{6.2}$$

$$E_0^{(2)} = \sum_{a < b, r < s} \frac{\left| \langle ab \parallel rs \rangle \right|^2}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s}$$
(6.3)

- 6.6 The N-dependence of the RS Perturbation Expansion
- 6.7 Diagrammatic Representation of the Perturbation Expansion of the Correlation Energy
- 6.7.1 Hugenholtz Diagrams
 - H1. numerator $\rightarrow \prod_{\text{dot}} \langle in, in \mid | out, out \rangle$
 - H2. denominator $\rightarrow \prod_{\text{adjacent dots}} \left(\sum \varepsilon_{\text{holes}} \sum \varepsilon_{\text{particles}} \right)$
 - H3. sign $\rightarrow (-1)^{h+l}$ (h: # of holes; l: # of closed loops)
 - H5. weight factor 2^{-k} (k: # of equivalent line pairs)

- 6.7.2 Goldstone Diagrams
- 6.7.3 Summation of Diagrams
- 6.7.4 What Is the Linked-Cluster Theorem?
- 6.8 Some Illustrative Calculations

7 The 1-Particle Many-body Green's Function

7.1 Green's Function in Single-Particle Systems

Solve Eq for ${\bf a}$

$$(E\mathbf{1} - \mathbf{H}_0)\mathbf{a} = \mathbf{b} \to \mathbf{G}_0(E) = (E\mathbf{1} - \mathbf{H}_0)^{-1}$$
 (7.1)

$$(E - \mathcal{H}_0)a(x) = b(x) \rightarrow G_0(x, x', E) = \sum_{\alpha} \frac{\psi_{\alpha}(x)\psi_{\alpha}^*(x')}{E - E_{\alpha}^{(0)}}$$
 (7.2)

7.2 The 1-Particle Many-body Green's Function

HF Green's function

$$G_0(\mathbf{x}, \mathbf{x}', E) = \sum_i \frac{\chi_i(\mathbf{x}) \chi_i^*(\mathbf{x}')}{E - \varepsilon_i}$$
(7.3)

$$[G_0(E)]_{ij} = \frac{\delta_{ij}}{E - \varepsilon_i} \tag{7.4}$$

i.e.

$$\mathbf{G}_0(E) = (E\mathbf{1} - \boldsymbol{\varepsilon})^{-1} \tag{7.5}$$

7.2.1 The Self-Energy

Dyson equation

$$\mathbf{G}(E) = \mathbf{G}_0(E) + \mathbf{G}_0(E)\mathbf{\Sigma}(E)\mathbf{G}(E) \tag{7.6}$$

- 7.2.2 The Solution of the Dyson Equation
- 7.3 Application of the Formalism to H_2 and HeH^+
- A Integral Evaluation with 1s Primitive Gaussians
- B 2-Electron Self-consistent-field Program
- C Analytic Derivative Methods and Geometry Optimization
- C.1 Introduction
- C.2 General Considerations

$$E(\mathbf{X}_1) = E(\mathbf{X}) + \mathbf{q}^{\dagger} \mathbf{f}(\mathbf{X}) + \frac{1}{2} \mathbf{q}^{\dagger} \mathbf{H}(\mathbf{X}) \mathbf{q} + \cdots$$
 (C.1)

where

$$\mathbf{q} = \mathbf{X}_1 - \mathbf{X}$$
 $f_i = \frac{\partial E(\mathbf{X})}{\partial X_i}$ $H_{ij} = \frac{\partial^2 E(\mathbf{X})}{\partial X_i \partial X_j}$ (C.2)

$$f(X_1) = f(X) + H(X)q$$
 (C.3)

Let
$$\mathbf{X}_1 = \mathbf{X}_e$$

$$\mathbf{f}(\mathbf{X}) = -\mathbf{H}(\mathbf{X})\mathbf{q} \tag{C.4}$$

i.e.

$$\mathbf{q} = -\mathbf{H}^{-1}(\mathbf{X})\mathbf{f}(\mathbf{X}) \tag{C.5}$$

C.3 Analytic Derivatives

for HF

$$\frac{\partial E}{\partial X_A} = \sum_{\mu\nu} P_{\nu\mu} \frac{\partial H_{\mu\nu}^{\text{core}}}{\partial X_A} + \frac{1}{2} \sum_{\mu\nu\lambda\sigma} P_{\nu\mu} P_{\lambda\sigma} \frac{\partial(\mu\nu||\sigma\lambda)}{\partial X_A} + \frac{\partial V_{NN}}{\partial X_A} + \sum_{\mu\nu} \frac{\partial P_{\nu\mu}}{\partial X_A} H_{\mu\nu}^{\text{core}} + \sum_{\mu\nu\lambda\sigma} \frac{\partial P_{\nu\mu}}{\partial X_A} P_{\lambda\sigma}(\mu\nu||\sigma\lambda)$$

$$= \dots$$

$$= \sum_{\mu\nu} P_{\nu\mu} \frac{\partial H_{\mu\nu}^{\text{core}}}{\partial X_A} + \frac{1}{2} \sum_{\mu\nu\lambda\sigma} P_{\nu\mu} P_{\lambda\sigma} \frac{\partial(\mu\nu||\sigma\lambda)}{\partial X_A} + \frac{\partial V_{NN}}{\partial X_A}$$

$$- \sum_{\mu\nu} Q_{\nu\mu} \frac{\partial S_{\mu\nu}}{\partial X_A} \tag{C.6}$$

where

$$Q_{\nu\mu} = 2\sum_{a} \varepsilon_a C_{\mu a} C_{\nu a} \tag{C.7}$$

C.4 Optimization Techniques

C.5 Some Optimization Algorithms

Nelder-Mead Optimization

```
find(h)
while(true):
    X* = (1+a) Xbar - a X[h]
    if Emin < E* < E[h] :
        update(X[h], X*)
    elif E* < Emin:
        X** = v X* + (1-v) Xbar
    if E** < Emin:
        update(X[h], X**)
    else:
        update(X[h], X*)
else:
    X** = b X[h] + (1-b) Xbar</pre>
```

Quasi-Newton Optimization

Murtagh-Sargent

$$\mathbf{q}_n = -\alpha_{n-1} \mathbf{G}_{n-1} \mathbf{f}_{n-1} \tag{C.8}$$

1. Set $\alpha_0 = 1$ and $\mathbf{G_0} = \mathbf{1}$. While $(E_1 > E_0)$ set $\alpha_0 \leftarrow \alpha_0/2$

2.

$$\mathbf{U}_{k} = -\alpha_{k-1}\mathbf{G}_{k-1}\mathbf{f}_{k-1} - \mathbf{G}_{k-1}(\mathbf{f}_{k} - \mathbf{f}_{k-1}) = -\mathbf{G}_{k-1}[\mathbf{f}_{k} + \mathbf{f}_{k-1}(\alpha_{k-1} - 1)] \quad (C.9)$$

$$a_k^{-1} = \mathbf{U}_k^{\dagger} \mathbf{d}_k = \mathbf{U}_k^{\dagger} (\mathbf{f}_k - \mathbf{f}_{k-1}) \tag{C.10}$$

$$T_k = \mathbf{U}_k^{\dagger} \mathbf{U}_k \tag{C.11}$$

if $a_k^{-1} < 10^{-5} T_k$ or $a_k \mathbf{U}_k^{\dagger} \mathbf{f}_{k-1} > 10^{-5}$, goto step 1 else

$$\mathbf{G}_k = \mathbf{G}_{k-1} + a_k \mathbf{U}_k \mathbf{U}_k^{\dagger} \tag{C.12}$$

$$\alpha_k = 1 \tag{C.13}$$

3.

$$\mathbf{q}_k = -\alpha_{k-1} \mathbf{G}_{k-1} \mathbf{f}_{k-1} \tag{C.14}$$

(C.15)

C.6 Transition States

C.7 Constrained Variation

D Molecular Integrals for H_2 as a Function of Bond Length