МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа по физическим методам исследований ЯМР-релаксация

Выполнили студенты группы Б06-103: Попеску Полина Фитэль Алена

Содержание

1	Вве	едение	3					
2	Teo	ретическая справка	3					
	2.1	Физические принципы ЯМР	3					
	2.2	Уравнение Блоха и радиочастотные импульсы	3					
	2.3 Релаксация ядерной намагниченности							
	2.4	Механизмы ЯМР-релаксации	4					
	2.5	Импульсные последовательности. Последовательность КПМГ для регистрации времени T_2 и последовательность насыщение—восстановление для регистрации времен T_1	5					
3	Экс	спериментальная установка	7					
4	Ход работы и обработка результатов							
	4.1	4.1 Определение длительности $\pi/2$ и π импульсов						
	4.2	4.2 Оценка скорости релаксации воды						
		4.2.1 Оценка времени поперечной релаксации воды T_2	8					
		4.2.2 Оценка времени продольной релаксации воды T_1	9					
		4.2.3 Оценка времени спада свободной индукции воды T_2^*	10					
		4.2.4 Оценка неоднородности постоянного магнитного поля B_0	11					
	4.3	Оценка скорости релаксации в растворах $MnSO_4$ и Na_2SO_4 различной концентрации	12					
5	Вы	ROJINI	14					

1 Введение

Цели работы:

- Изучить механизмы релаксации ядерной намагниченности.
- Получить времена продольной и поперечной релаксации протонов на примере солей MnSO4 и Na_2SO4 .

2 Теоретическая справка

2.1 Физические принципы ЯМР

Явление ЯМР заключается в резонансном поглощении электромагнитной энергии макроскопической системой ядерных магнитных моментов, помещенных в постоянное внешнее магнитное поле. Ядерные магнитные моменты связаны с наличием у протонов и нейтронов спинов.

$$E = -(\mu, B_0) = \mu B_0 cos(\theta) = g\beta \cdot N B_0 m_z$$

где θ — угол между направлениями векторов μ и B_0 , а m_z — проекция спина на ось z, совпадающую с направлением B_0 , β N = $5.0508 \cdot 1027 \text{Дж/Тл}$ — ядерный магнетон, g — так называемый фактор Ланде, представляющий из себя безразмерную величину (индивидуален для каждого вещества). Протон имеет спин I = 1/2, поэтому возможные значения проекции спина на ось квантования равны $m_z = +1/2$, - 1/2 Из (1) следует, что в магнитном поле B_0 происходит расшепление на два состояния, имеющие разную энергию. Между этими уровнями возможны переходы при поглощении кванта электромагнитной энергии определенной частоты — это и есть суть ЯМР.

2.2 Уравнение Блоха и радиочастотные импульсы

В равновесном состоянии суммарная намагниченность М ансамбля спинов, помещенных во внешнее постоянное магнитное поле, ориентируется параллельно направлению приложенного поля. Удобной моделью для описания поведения вектора суммарной намагниченности в магнитном поле является феноменологическая теория Блоха.

$$\frac{dM(t)}{dt} = \gamma M(t) \cdot B(t),$$

где
$$\gamma = \frac{2\pi g \beta_N}{h}$$

При воздействии радиочастотного поля $B_1(t)=B_{1m}\sin wt$, направленного перпендикулярно направлению постоянного магнитного поля B_0 , на систему спинов намагниченность последней будет находиться под воздействием поля $B(t)=B_1(t)+B_0$. Действие переменного поля удобно анализировать на основе уравнения Блоха, используя систему координат, вращающуюся с Ларморовой частотой $w_0=\gamma B_0$ вокруг направления z постоянного поля. В этой системе уравнение (2) без учета релаксации имеет вид:

$$\frac{dM(t)}{dt} = \gamma M(t) \cdot (B(t) - \frac{w_0}{\gamma})$$

Под действием переменного электромагнитного поля с резонансной частотой $w_0 = \gamma B$ вектор намагниченности во вращающейся СК совершает прецессию вокруг вектора B_1 поля с угловой частотой $w_1 = \gamma B_1$. Если переменное магнитное поле действует в течение короткого времени τ_0 , то вектор намагниченности повернется на угол:

$$\theta = \gamma B_1 \tau_0$$

где θ — угол поворота в радианах, γ — гиромагнитное отношение.

Для поворота суммарной намагниченности на заданный угол настраивают амплитуду B_1 идлительность τ_0 в соответствии с (4). При этом для угла 90 импульс называется $\pi/2$ -импульсом,а для угла 180 называется π -импульсом.

Рис. 1: Поведение суммарной намагниченности под действием $\pi/2$ -импульса (вращающаяся СК). А. до включения.Б. начало действия импульса.В. поворот намагниченности.г. окончание действия импульса.Д.прецессия намагниченности вокруг оси z после выключения импульса

2.3 Релаксация ядерной намагниченности

Релаксация намагниченности - это процесс восстановления суммарной намагниченности к исходному равновесному состоянию. Уравнение Блоха с учетом процессов релаксации:

$$\frac{dM_z(t)}{dt} = \gamma [M_y B_z - M_z B_y] - \frac{M_z}{T_2}$$

$$\frac{dM_y(t)}{dt} = \gamma [M_z B_x - M_x B_z] - \frac{M_y}{T_2}$$

$$\frac{dM_z(t)}{dt} = \gamma [M_x B_y - M_y B_x] - \frac{M_z - M_0}{T_1}$$

Решение уравнения Блоха после окончания действия $\pi/2$ -импульса выглядит следующим образом:

$$M(t) = M_0 \begin{pmatrix} 0 \\ e^{\frac{-t}{T_2}} \\ 1 - e^{\frac{-t}{T_1}} \end{pmatrix}$$

2.4 Механизмы ЯМР-релаксации

При тепловом движении частиц, имеющих магнитные моменты, возникают локальные магнитные поля, изменяющиеся во времени случайным образом. В спектре их случайных функций поля есть компоненты с частотой ЯМР. Их действие аналогично действию внешнего радиочастотного поля, т.е. переменное локальное поле может вызывать переходы между уровнями энергии спиновой системы. Изменяющееся случайным образом поле B(t) можно описать с помощью корреляционной функции $K(\tau)$:

$$K_i(\tau) = \overline{(B_i'(t)B_i'(t+\tau))}$$

где B_i – одна из компонент флуктуирующего поля, а черта означает усреднение по всевозможным реализациям этого произведения по различным начальным моментам времени t. Значения случайной функции на больших интервалах времени не коррелированы, следовательно, K при стремлении аргумента к бесконечности стремится к 0.

Поперечная релаксация определяется: 1. Компонентами локального поля, изменяющимися с частотами близкими к резонансной – аналогично спин-решеточной релаксации (спиновая подсистема отдает часть энергии термостату, потом берет обратно) 2. Потерей когерентности прецессии («сбой фазы прецессии») магнитных моментов, образующих вектор намагниченности М из-за изменения частоты ЯМР в переменном поле B(t).

Выражение для скорости поперечной релаксации для системы невзаимодействующих друг с другом спинов в модели невзаимодействующих протонов в изотропном флуктуирующем локальном поле имеет вид:

$$\frac{1}{T_2} = \frac{1}{2T_1} + \frac{1}{T_2'} = \gamma \overline{|B'(t)|^2} (\frac{1}{2}J(w_0) + \frac{1}{2}J(0)) = \gamma^2 \overline{|B'(t)|^2} (\frac{\tau_c}{1 + w_0^2 \tau_c^2} + \tau_c)$$

Во многих практически важных случаях К имеет вид:

$$K(\tau) = \overline{|B'(t)|}^2 \exp^{\frac{|\tau|}{\tau_C}}$$

Спектральная плотность определяется как Фурье-преобразование функции корреляции:

$$J(w) = \int_{+\infty}^{-\infty} K(\tau) \exp^{-iwt} d\tau$$

Для нашей экспоненциальной функции:

$$J(w) = \frac{2\tau_C}{1 + w^2 \tau_c^2} |B'(t)|^2$$

Поперечные компоненты локального флуктурирующего поля, направленные вдоль осей х и у и осциллирующие с резонансной частотой w0, приводят к спин-решеточной релаксации. Скорость продольной релаксации определяется J на частоте резонанса:

$$\frac{1}{T_1} = \gamma^2 J(w_0) = \gamma^2 |\overline{B'(t)}|^2 \frac{2\tau_C}{1 + w_0^2 \tau_C^2}$$

2.5 Импульсные последовательности. Последовательность КПМГ для регистрации времени T_2 и последовательность насыщение—восстановление для регистрации времен T_1

Практически все современные методики использования ЯМР заключаются в изучении поведе- ния намагниченности системы спинов после воздействия на нее определенной последовательности радиочастотных импульсов. Простейшим примером является последовательность, состоящая из одного $\pi/2$ -импульса. После окончания действия радиочастотного импульса зависимость поперечной намагниченности от времени во вращающейся системе координат будет определяться соотношением $M_y = M_0 exp^{-\frac{t}{T_2}}$. В ЛСО временная зависимость поперечной намагниченности будет иметь вид $M_y' = M_0 exp^{-\frac{t}{T_2}} \sin w_0 t$.

Рис. 2: Спад свободной индукции после воздействия $\pi/2$ -импульса в однородном и неоднородном магнитных полях

Данную зависимость, регистрируемую после воздействия $\pi/2$ -импульса, называют сигналом спада свободной индукции (ССИ). Фурье-преобразование зависимости $M_y(t)$ позволяет получить частотный спектр ЯМР. В условиях реального эксперимента постоянное магнитное поле не является идеально однородным в объеме образца. Неоднородность поля приводит к тому, что прецессия векторов намагниченности происходит с разными частотами в разных областях пространства. Поэтому со временем фазовая когерентность прецессии векторов намагниченности разных частей образца теряется, в результате поперечная компонента суммарной намагниченности образца уменьшается. Общая скорость уменьшения поперечной намагниченности $(1/T_2^*)$, фигурирующая

в уравнении Блоха, в неоднородном магнитном поле определяется скоростью поперечной релаксации и потерей фазовой когерентности из-за неоднородности постоянного магнитного поля:

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{\gamma \triangle B}{2}$$

где \triangle В характеризует неоднородность МП. Итак, если магнитное поле неоднородно, то регистри- ровать спектры ЯМР становится невозможно из-за значительного уширения сигналов. Анализ спада свободной индукции после воздействия $\pi/2$ -импульса в таком поле не даст определить значение T_2 . Для обхода этой проблемы используются специальные импульсные последовательности, основанные на явлении спинового эха Хартмана-Ханна.

• Для регистрации времен поперечной релаксации используется последовательность КПМГ. Импульсная последовательность КПМГ состоит из одного $\pi/2$ импульса, поворачивающего намагниченность на угол $\pi/2$ вокруг оси х, и серии π -импульсов, поворачивающих намагничен- ность на угол π вокруг оси у, прикладываемых через определенные промежутки времени (рис. 3). Данная импульсная последовательность основана на наблюдении серии сигналов спинового эха Хартмана—Ханна. В отсутствие процессов поперечной релаксации амплитуда сигналов эха оставалась бы неизменной, а при протекании поперечной релаксации их амплитуда постепенно уменьшается. Время поперечной релаксации T_2 определяют из зависимости значения амплитуды сигнала эха T_2 0 определяют из зависимости значения амплитуды сигнала эха T_2 0 определяют из зависимости значения амплитуды сигнала эха T_2 0 определяют из зависимости

$$M(2n\tau) = M_0 \exp^{\frac{-2n\tau}{T_2}}$$

Время τ обычно выбирается так, чтобы τ « T_1 , восстановлением продольной компоненты намагниченности при этом можно пренебречь.

• Для регистрации времен продольной релаксации используется импульсная последовательность насыщение—восстановление. Эта последовательность состоит из двух радиочастотных $\pi/2$ - импульсов. До воздействия первого $\pi/2$ импульса, суммарная намагниченность M_0 системы ядер ориентирована параллельно оси z, направление которой совпадает c направлением постоянного магнитного поля B_0 (рис. а). Воздействуя в момент времени τ_1 вторым $\pi/2$ -импульсом, можно перевести продольную компоненту намагниченности $M_{||}$ в плоскость (x, y), в которой она может быть измерена (рис. r). После восстановления равновесия (в течение времени около $5T_1$) данную последовательность повторяют c увеличенным значением интервала между импульсами τ_1 . Время продольной релаксации T_1 определяют по зависимости значения M|| от времени между импульсами τ_1 в серии экспериментов c различными значениями τ_1 :

$$M_{\parallel}|(\tau_1) = M_0(1 - exp^{\frac{\tau_1}{T_1}})$$

Рис. 3: Импульсная последовательность КПМГ, используемая для регистрации времѐн поперечной релаксации T2

3 Экспериментальная установка

Используемые приборы и материалы:

- ЯМР-релаксометр Bruker Minispec.
- Исследуемые вещества: H_2O ; $MnSO_4$, $C_{conu} = 0.25M$; Na_2SO_4 , $C_{conu} = 0.25M$.

Рис. 4: Принципиальная схема ЯМР-релаксометра: 1 — постоянный магнит, 2 — приемо-передающая катушка, 3 — генератор импульсов и приемник излучения, 4 — компьютер, 5 — система термостатирования образца, 6 — воздушный компрессор, 7 — термопара

Основной частью ЯМР-релаксометра является магнит (1 на рис. 4), создающий постоянное магнитное поле напряженностью В0. Величина напряженности постоянного МП релаксометра Bruker minispec, используемого в этой работе, составляет около $0.5\ \mathrm{Tr}\ (5\cdot 103\ \mathrm{Fc})$. Этой напряженности соответствует рабочая частота для протонов $B0=20\ \mathrm{MFu}$. Переменное магнитное поле, перпендикулярное постоянному магнитному полю, создается при помощи катушки индуктивности, вдоль оси которой располагается пробирка с исследуемым образцом. Параллельно катушке включен конденсатор так, что образованный радиочастотный контур настроен на резонансную ларморовскую частоту. Для создания импульсов переменного поля катушка 2 соединяется с радиочастотным генератором, расположенным в 3. Слабый сигнал ЯМР предварительно усиливается, затем поступает в блок управляющей электроники, где и производится его детектирование. При этом следует учитывать наличие переходных процессов в приемном контуре и усилителе, из-за которых у приемника существует т.н. «мертвое время» порядка $100\ \mathrm{hc}$, необходимое для переключения в режим приема и усиления слабого сигнала намагниченности после периода генерации мощных импульсов.

4 Ход работы и обработка результатов

4.1 Определение длительности $\pi/2$ и π импульсов

Задание: Постройте зависимость амплитуды намагниченности от длительности радиочастотного импульса. Определите по графику длительности 90° и 180° импульсов.

- Для проведения данного эксперимента использовалась программа pulses $10 \mathrm{MHz}$ программного обеспечения HMP -релаксометра, которая измеряет амплитуду сигнала $\mathrm{FID} \sim M_x$ в зависимости от времени.
- Согласно теории, угол поворота вектора намагниченности от равновесного положения (параллельного z) $\theta = \gamma B_1 \tau_{\theta}$, где $B_1 \, sin(wt)$ вращающееся в плоскости ху переменное магнитное поле, τ_{θ} длительность импульса. Проекция вектора намагниченности, повернутоно на угол θ относительно z: $M_x \sim sin(\theta) \sim sin(\gamma B_1 \tau_{\theta})$. Значит, экспериментальные данные должны описываться синусоидальной зависимостью.

Рис. 5: Зависимость амплитуды намагниченности M_x от длительности сигнала

- Полученные данные (Рисунок 5) с хорошей точностью описываются функцией $y = A \cdot \sin(\omega \cdot t + \phi)$. Отсюда можно найти длительности $\pi/2$ и π импульсов: когда $(\omega \cdot t + \phi) = \pi/2$, проекция вектора намагниченности на ось х максимальна, а $(\omega \cdot t + \phi) = \pi$, она равна нулю.
- После построоения графика и аппроксимации данных синусоидой, получаем:

$$\tau_{90} = (13.4 \pm 1.4)$$
 MKC, $\tau_{180} = (27.6 \pm 2.8)$ MKC

4.2 Оценка скорости релаксации воды

4.2.1 Оценка времени поперечной релаксации воды T_2

 $\it 3adanue:$ Постройте график зависимости амплитуды сигнала эха от времени для образца, состоящего из воды, используя экспериментальные данные, полученные при измерении $\it T_2$. Определите по графику значение времени $\it T_2$ воды.

- Для нахождения времени поперечной релаксации T_2 используется последовательность импульсов КПМГ. В данном эксперименте для заданния такой импульсной последовательности использовалось приложение t2_cpmg.app.
- Из теоретического введения известно, что амплитуда сигнала эха для КПМГ зависит от времени (т.е. от номера сигнала и временем между импульсами) как $M(t) \sim e^{-t/T_2}$.
- Для получения значения T_2 построим полученную зависимость (Рисунок 6) в логарифмических координатах (Рисунок 7). Тогда из угла наклона прямой, проведенной по точкам до изгибания кривой получаем $T_2(H_2O) = (2396 \pm 4)$ мс.

Рис. 6: Экспериментальная зависимость амплитуды сигнала эха импульсной последовательности КПМГ для воды

Рис. 7: Зависимость амплитуды сигнала эха импульсной последовательности КПМГ для воды в логарифмических координатах

4.2.2 Оценка времени продольной релаксации воды T_1

 ${\it Sadanue:}$ Постройте график зависимости амплитуды намагниченности от времени для образца, состоящего из воды, используя экспериментальные данные, полученные при измерении T_1 . Определите по графику значение времени T_1 воды

• Для нахождения времени продольной релаксации T_1 используется последовательность импульсов 'насыщениевосстановление', реализуемая в данном эксперименте с помощью програмы «t1_saturation _recovery.app». • Из теоретического введения известно, что амплитуда сигнала эха для 'насыщение-восстановления' зависит от времени как $M(t) \sim 1 - e^{-t/T_1}$

Рис. 8: Экспериментальная зависимость амплитуды сигнала импульсной последовательности 'насыщениевосстановление' для воды

• Для получения значения T_1 сделаем аппроксимацию полученных даных (Рисунок 8) нашей теоретической зависимостью(Рисунок 9), в результате получаем: $T_1 = (2940 \pm 35)ms$.

Рис. 9: Аппроксимация зависимости амплитуды сигнала импульсной последовательности 'насыщениевосстановление' для воды

4.2.3 Оценка времени спада свободной индукции воды T_2^*

 ${\it 3adahue:}$ Постройте спад свободной индукции для образца, состоящего из воды, используя экспериментальные данные, полученные при измерении T_2^* . Определите по графику значение времени T_2^* воды.

- Спад свободной индуции это временная зависимость поперечной компоненты намагниченности после воздействия одиночного $\pi/2$ импульса.
- Из решения уравнения Блоха в лабораторной системе отсчета $M_y \sim e^{-t/T_2^*} sin(w_0 t)$, где w_0 ларморовская частота $w_0 = \gamma B_0$.

Рис. 10: Экспериментальная зависимость спада свободной индукции воды после действия $\pi/2$ импульса

• Для получения значения T_2^* построим полученную зависимость (Рисунок 10) в логарифмических координатах (Рисунок 11). Тогда из угла наклона прямой, проведенной по точкам до изгибания кривой получаем $T_2^*(H_2O) = (0.7782 \pm 0.0010)$ мс.

Рис. 11: Аппроксимация зависимости спада свободной индукции воды после действия $\pi/2$ импульса в логарифмических координатах

4.2.4 Оценка неоднородности постоянного магнитного поля B_0

• Полная скорость уменьшения поперечной намагниченности состоит из скорости поперечной релаксации и и потерей фазовой когерентности из-за неоднородности постоянного магнитного поля (ΔB_0 - неоднородность

постоянного магнитного поля)

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{\gamma \Delta B_0}{2}$$

$$\Delta B_0 = \frac{2}{\gamma} \left(\frac{1}{T_2^*} - \frac{1}{T_2} \right), \quad \sigma \Delta B_0 = \frac{2}{\gamma} \sqrt{\left(\frac{\sigma T_2^*}{T_2^{*2}} \right)^2 + \left(\frac{\sigma T_2}{T_2^2} \right)^2}$$

• В воде присутствуют атомы H и O, при этом ЯМР может наблюдаться на H^+ (т.к. у O^{2-} полная внешняя 2р оболочка, суммарный спин 0, т.е. это диамагнитный атом). Гиромагнитное соотношение для протона (g=5.585) $\gamma = g \cdot \gamma_0 = 42.58$ М Γ ц/ Γ л

$$\Delta B_0 = (60.34 \pm 0.10)$$
мкТл

• Из сведений об экспериментальной установке $B_0 \approx 0.5$ Тл. Значит, $\Delta B_0 << B_0$, то есть магнитное поле действительно постоянное.

4.3 Оценка скорости релаксации в растворах $MnSO_4$ и Na_2SO_4 различной концентрации

 $\it Sadanue:$ Постройте зависимости скоростей продольной и поперечной релаксации $(1/T_1,\,1/T_2\,$ и $1/T_2^*)$ от концентрации солей сульфатов. Объясните различия в зависимостях скоростей релаксации для различных сульфатов.

• Приготовим растворы солей в воде объемом $V_{\text{воды}}=(33.0\pm0.5)$ мл. Добавим по $V=(10.0\pm0.5)$ мкл растворов MnSO4 ($C_{\text{соли}}=0.25M$) и Na_2SO4($C_{\text{соли}}=0.25M$) в пробирку с водой. Концентрация соли С в растворах считаем по формуле:

$$C = rac{C_{
m coлu}V_{
m coлu}}{V_{
m coлu} + V_{
m Boghi}}$$

• На Рисунок 12, Рисунок 13 показаны результаты снятия релаксационных кривых для солей различных концентраций. Для образца $MnSO_4$, 40 мкл не была получена зависимость амплитуды сигнала эха импульсной последовательности КМПГ для определения T_2 .

Рис. 12: Экспериментальная зависимость амплитуды сигнала эха импульсной последовательности КПМП для определения T_2

Рис. 13: Экспериментальная зависимость амплитуды сигнала эха импульсной последовательности saturation-recovery для определения T_1

- Проведем расчеты значений скоростей релаксации исследуемых растворов аналогично тем, что мы провели для воды(Таблица 1).
- Используя данные Таблицы 1, построим зависимости скоростей продольной и поперечной релаксации $(1/T_1, 1/T_2 \text{ и } 1/T_2^*)$ от концентрации солей сульфатов (Рисунок 14, Рисунок 15).

Таблица 1: Сводная таблица результатов измерений времен релаксации для растворов солей различных концентраций

	вода 33 мл	раствор MnSO4 (0.25M)				раствор Na_2SO4 (0.25M)	
Vсоли, мкл	0	10	20	30	40	10	20
С(соли), мкМ	0	76	151	227	303	76	151
σC ,мк ${ m M}$	0	8	8	8	8	8	8
T2, ms	2396	214.11	117.0	77.16	-	2279	2408
$\sigma T2, ms$	4	0.18	0.2	0.14	-	4	3
T1, ms	2941	668	380	262	218	2695	2976
$\sigma T1, ms$	34	8	3	2	3	20	18
$1/T2, \cdot 10^6 ms^{-1}$	417.4	4670	8547	12960	-	438.8	415.3
$\sigma(1/T2), \cdot 10^6 ms^{-1}$	0.7	4	15	20	-	0.8	0.5
$1/\text{T1}, \cdot 10^4 ms^{-1}$	3.4	14.97	26.32	38.17	45.87	3.71	3.36
$\sigma(1/T1), \cdot 10^4 ms^{-1}$	0.04	0.18	0.21	0.29	0.63	0.03	0.02

Рис. 14: Экспериментальная зависимость амплитуды сигнала эха импульсной последовательности КПМП для определения T_2

Рис. 15: Экспериментальная зависимость амплитуды сигнала эха импульсной последовательности saturation-recovery для определения T_1

• Из графиков Рисунка 14, Рисунка 15 видно, что для $MnSO_4$ с увеличением концентрации соли скорость релаксации линейно увеличивается, в отличие от Na_2SO_4 . Данный эффект объясняется тем, что Mn^{2+} - парамагнитный ион (имеет неспаренные электроны на внешней электронной оболочке, т.е. обладает ненулевым магнитным моментом в отсутствии внешнего магнитного поля (см.рис. 16-17).

Рис. 16: Электронное строение диамагнитного катиона Na^+

Рис. 17: Электронное строение парамагнитного катиона Mn^{2+}

- Согласно теории, скорость релаксации протонов в растворе с парамагнитными ионами растет пропорционально концентрации этих ионов: $\frac{1}{T_i} \sim [N], i=1,2$. Это объясняется формированием вокруг парамагнитных ионов координационной сферы из воды, скорость релаксации протонов в которой увеличена. Остальные протоны оказываются так же вовлечены во взаимодействие с неспаренными электронами парамагнитных частиц за счет диффузии и обменных процессов между молекулами.
- Таким образом, на Рисунках 14, Рисунках 15 мы видим линейный рост скорости для парамагнитного иона и отсутсвие такого эффекта для диамагнитного иона, что хорошо объясняется теорией.

5 Выводы

- 1. Были определены длительности 90 \circ и 180 \circ импульсов: $\tau_{90} = (13.4 \pm 1.4)$ мкс, $\tau_{180} = (27.6 \pm 2.8)$ мкс.
- 2. Для воды было определено время $T_2(H_2O)=(2396\pm 4)$ мс, $T_1(H_2O)=(2940\pm 35)$ мс, $T_2^*(H_2O)=(0.7782\pm 0.0010)$ мс.
- 3. При измерении скорости релаксации протонов в воде была оценена степень неоднородности постоянного магнитного поля. Оказалось, что поле практически однородно.
- 4. Для всех образцов солей были определены значения T_1, T_2 и T_2^* (Таблица1).
- 5. Из графиков зависимости скоростей релаксации $(1/T_1, 1/T_2, 1/T_2^*)$ от концентрации соли была получена возрастающая зависимость. Эти экспериментальные данные показывают, что скорость релаксации намагниченности линейно возрастает для сульфатов парамагнитных ионов и практически не изменяется для диамагнитных. Этот эффект объясняется возникновением вокруг парамагнитных ионов координационной водной сферы, в которой скорость релаксации протонов увеличена. Остальные протоны так же вовлекаются во взаимодействие с неспаренными элетронами ионов за счет диффузии и обменных процессов между ионами.