Assignment-2

Python Programming

Assignment Date	26 September 2022
Student Name	Vaishnavi R
Student Roll Number	820419106068
Maximum Marks	2 Marks

1. Download the dataset

2. Load the dataset.

3. Perform Below Visualizations.

Univariate Analysis

```
In [4]: import seaborn as sns
sns.histplot(data, x="EstimatedSalary")
```

Out[4]: <AxesSubplot:xlabel='EstimatedSalary', ylabel='Count'>


```
In [ ]: • Bi - Variate Analysis
In [5]: sns.displot(data, x="EstimatedSalary" , y="Gender")
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x200f1b09e80>

4. Perform descriptive statistics on the dataset.

In [8]: data.mean()

C:\Users\Raju\AppData\Local\Temp\ipykernel_912\531903386.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reducti
ons (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before
calling the reduction.
 data.mean()

Out[8]: RowNumber 5.000500e+03 1.569094e+07 CustomerId CreditScore 6.505288e+02 Age 3.892180e+01 5.012800e+00 Tenure Balance 7.648589e+04 1.530200e+00 NumOfProducts HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01 dtype: float64

In [9]: data.median()

C:\Users\Raju\AppData\Local\Temp\ipykernel_912\4184645713.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reduct ions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.median()

Out[9]: RowNumber 5.000500e+03 CustomerId 1.569074e+07 CreditScore 6.520000e+02 3.700000e+01 Age Tenure 5.000000e+00 Balance 9.719854e+04 1.000000e+00 NumOfProducts HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 0.000000e+00 dtype: float64

In [10]: data.mode()

Out[10]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Sala
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0	1.0	1.0	1.0	24924.9
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na

10000 rows × 14 columns

In [11]: data.skew()

C:\Users\Raju\AppData\Local\Temp\ipykernel_912\1188251951.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reduct ions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.skew()

Out[11]: RowNumber

0.000000 CustomerId 0.001149 CreditScore -0.071607 1.011320 Age Tenure 0.010991 Balance -0.141109 NumOfProducts 0.745568 HasCrCard -0.901812 IsActiveMember -0.060437 EstimatedSalary 0.002085 Exited 1.471611 dtype: float64

In [12]: data.kurt()

C:\Users\Raju\AppData\Local\Temp\ipykernel_912\2907027414.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reduct ions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data.kurt()

Out[12]: RowNumber -1.200000 CustomerId -1.196113

CreditScore -0.425726 1.395347 Age Tenure -1.165225 Balance -1.489412 NumOfProducts 0.582981 HasCrCard -1.186973 IsActiveMember -1.996747 EstimatedSalary -1.181518 0.165671 Exited dtype: float64

In [13]: data.var() C:\Users\Raju\AppData\Local\Temp\ipykernel_912\445316826.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reducti ons (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.var() Out[13]: RowNumber 8.334167e+06 CustomerId 5.174815e+09 CreditScore 9.341860e+03 Age 1.099941e+02 Tenure 8.364673e+00 Balance 3.893436e+09 3.383218e-01 NumOfProducts 2.077905e-01 HasCrCard IsActiveMember 2.497970e-01 EstimatedSalary 3.307457e+09 Exited 1.622225e-01 dtype: float64 In [14]: data.std() C:\Users\Raju\AppData\Local\Temp\ipykernel_912\2723740006.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reduct ions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.std() Out[14]: RowNumber 2886.895680 CustomerId 71936.186123 CreditScore 96.653299 10.487806 Age Tenure 2.892174 62397.405202 Balance NumOfProducts 0.581654 HasCrCard 0.455840 IsActiveMember 0.499797 EstimatedSalary 57510.492818 0.402769 Exited dtype: float64

5. Handle the Missing values.

```
In [15]: data.isna().sum()
Out[15]: RowNumber
         CustomerId
                           0
         Surname
                            0
         CreditScore
                           0
         Geography
         Gender
         Age
         Tenure
                           0
         Balance
         NumOfProducts
                           0
         HasCrCard
         IsActiveMember
         EstimatedSalary
                           0
         Exited
         dtype: int64
```

6. Find the outliers and replace the outliers

```
In [16]: sns.boxplot(data['Age'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variable as a keyword a rg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit ke yword will result in an error or misinterpretation.
    warnings.warn(
```



```
In [17]: import numpy as np
data['Age']=np.where(data['Age']>50,20,data['Age']) #replacing
```

In [18]: import seaborn as sns
sns.boxplot(data['Age'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword a
rg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit ke
yword will result in an error or misinterpretation.
 warnings.warn(

Out[18]: <AxesSubplot:xlabel='Age'>

7. Check for Categorical columns and perform encoding.

In [19	91:	data.tail()	#Gender	cateaorical	column

Out[19]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Sa
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	9627
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	10169
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	4208
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	9288
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	3819
4													+

Encoding

In [21]: data['Gender'].replace({'Female':1,'Male':0},inplace=True)
 data.tail()

Out[21]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Sa
9995	9996	15606229	Obijiaku	771	France	0	39	5	0.00	2	1	0	9627
9996	9997	15569892	Johnstone	516	France	0	35	10	57369.61	1	1	1	10169
9997	9998	15584532	Liu	709	France	1	36	7	0.00	1	0	1	4208
9998	9999	15682355	Sabbatini	772	Germany	0	42	3	75075.31	2	1	0	9288
9999	10000	15628319	Walker	792	France	1	28	4	130142.79	1	1	0	3819
4)

Out[22]:

	RowNumber	CustomerId	Surname	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
C	1	15634602	Hargrave	619	1	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	1	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	1	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	1	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	1	43	2	125510.82	1	1	1	79084.10	0
9995	9996	15606229	Obijiaku	771	0	39	5	0.00	2	1	0	96270.64	0
9996	9997	15569892	Johnstone	516	0	35	10	57369.61	1	1	1	101699.77	0
9997	9998	15584532	Liu	709	1	36	7	0.00	1	0	1	42085.58	1
9998	9999	15682355	Sabbatini	772	0	42	3	75075.31	2	1	0	92888.52	1
9999	10000	15628319	Walker	792	1	28	4	130142.79	1	1	0	38190.78	0

10000 rows × 16 columns

8. Split the data into dependent and independent variables.

```
In [23]: y=data main['Exited']
          y.head()
Out[23]: 0
               1
               0
          1
               1
          3
               0
          Name: Exited, dtype: int64
In [24]: x=data_main.drop(columns=['Exited'],axis=1)
          x.head()
Out[24]:
             RowNumber Customerld Surname CreditScore Gender Age Tenure
                                                                               Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Geography
                           15634602 Hargrave
                                                    619
                                                                  42
                                                                                  0.00
                                                                                                                                     101348.88
                                                                              83807.86
                           15647311
                                         Hill
                                                                  41
                                                                                                                                     112542.58
                                                    608
                           15619304
                                        Onio
                                                    502
                                                                  42
                                                                          8 159660.80
                                                                                                                                     113931.57
                           15701354
                                        Boni
                                                    699
                                                                  39
                                                                                  0.00
                                                                                                                                     93826.63
                           15737888
                                                    850
                                                                  43
                                                                          2 125510.82
                                      Mitchell
                                                                                                                                      79084.10
```

9. Scale the independent variables

```
In [25]: x=data_main.drop(columns=['Surname',],axis=1)
          x.head()
Out[25]:
              RowNumber Customerld CreditScore Gender Age Tenure
                                                                     Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited Geography_Fi
           0
                           15634602
                                           619
                                                                        0.00
                                                                                                                           101348.88
           1
                      2
                           15647311
                                           608
                                                       41
                                                                 1 83807.86
                                                                                         1
                                                                                                    0
                                                                                                                   1
                                                                                                                           112542.58
                                                                                                                                        0
                                                         42
                                                                                                                           113931.57
                           15619304
                                           502
                                                                 8 159660.80
                                                                                         2
                                                                                                    0
           3
                      4
                           15701354
                                           699
                                                        39
                                                                        0.00
                                                                                                                   0
                                                                                                                            93826.63
                      5
                           15737888
                                           850
                                                     1 43
                                                                 2 125510.82
                                                                                                                            79084.10
In [26]: from sklearn.preprocessing import scale
          x=scale(x)
Out[26]: array([[-1.73187761, -0.78321342, -0.32622142, ..., 0.99720391,
                   -0.57873591, -0.57380915],
                  [-1.7315312 , -0.60653412, -0.44003595, ..., -1.00280393, -0.57873591, 1.74273971],
                  [-1.73118479, -0.99588476, -1.53679418, ..., 0.99720391,
                   -0.57873591, -0.57380915],
                  [\ 1.73118479,\ -1.47928179,\ 0.60498839,\ \ldots,\ 0.99720391,
                   -0.57873591, -0.57380915],
                  [\ 1.7315312\ ,\ -0.11935577,\ \ 1.25683526,\ \ldots,\ -1.00280393,
                    1.72790383, -0.57380915],
                  [ 1.73187761, -0.87055909, 1.46377078, ..., 0.99720391,
                   -0.57873591, -0.57380915]])
```

10. Split the data into training and testing

```
In [28]: from sklearn.model_selection import train_test_split
In [29]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
In [30]: x_train.shape
Out[30]: (8000, 15)
In [31]: x_test.shape
Out[31]: (2000, 15)
In [32]: y_train.shape
Out[32]: (8000,)
In [33]: y_test.shape
Out[33]: (2000,)
```