Adopted Levels, Gammas 1998Ti06

History	

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. R. Tilley, C. Cheves, J. Kelley, S. Raman, H. Weller	NP A636, 249 (1998)	21-Apr-1997

 $Q(\beta^-) = -13892.5 \ 12; \ S(n) = 16865.30 \ 16; \ S(p) = 1.284 \times 10^4; \ Q(\alpha) = -4730$ 2012Wa38

Note: Current evaluation has used the following Q record.

 $Q(\beta^{-})=-13886\ 7;\ S(n)=16864.4\ 6;\ S(p)=12843.50\ 7;\ Q(\alpha)=-4729.84\ 1$ 1997Au04

See other reaction references in 1998Ti06.

²⁰Ne Lev<u>els</u>

Cross Reference (XREF) Flags

Α	20 F β^- decay	E	$^{16}O(\alpha,\alpha)$, $^{16}O(\alpha,2\alpha)$	Ι	19 F(p, γ)
В	20 Na β^+ decay	F	$^{16}O(^{6}Li,d)$	J	$^{19}F(p,p), ^{19}F(p,d)$
C	$^{12}\text{C}(^{12}\text{C},\alpha)$	G	$^{16}O(^{7}Li,t)$	K	19 F(p, α)
D	$^{16}\Omega(\alpha, \gamma)$	н	$^{16}O(^{12}C^{8}Be)$		

E(level)	${ m J}^\pi$	$T_{1/2}$	XREF	Comments
0.0	0+	stable	ABCD FGHI	T=0
1633.674 <i>15</i>	2+	0.73 ps 4	ABCD FGHI	μ =+1.08 8 (1989Ra17); Q=-0.23 3 (1989Ra17); T=0
4247.7 11	4+	$64 \text{ fs } \hat{6}$	ABCD FGH	μ =+0.5 6 (1989Ra17); T=0
4966.51 20	2-	3.3 ps 4	ABC FG I	T=0
5621.4 17	3-	139 fs <i>35</i>	A CD F	%IT=7 3; %α=93 3
				$\Gamma_{\gamma} = 2.4 \times 10^{-4} \text{ eV } 6; \text{ T} = 0$
5787.7 26	1-	0.028 keV 3	A CDEFGH	$\%$ IT=0.016 3; $\%\alpha$ =100
				$\Gamma_{\gamma} = 4.6 \times 10^{-3} \text{ eV } 8; \text{ T} = 0$
6706 <i>47</i>			В	T=0
6725 5	0_{+}	19.0 keV 9	A DEF	$%IT=1.7\times10^{-4}; \%\alpha=100$
				$\Gamma_{\gamma} = 0.033 \text{ eV}; T = 0$
7004.0 <i>36</i>	4-	305 fs 62	A C F	T=0
7156.3 5	3-	8.2 keV <i>3</i>	C EFGH	$%IT=2.0\times10^{-5} 2; \%\alpha=100$
				$\Gamma_{\gamma} = 16.1 \times 10^{-4} \text{ eV } 15; \text{ T} = 0$
7191 <i>3</i>	0_{+}	3.4 keV 2	CDE	$%IT=1.29\times10^{-4} 25; \%\alpha=100$
				$\Gamma_{\gamma} = 4.4 \times 10^{-3} \text{ eV } 8; \text{ T} = 0$
7421.9 12	2+	15.1 keV 7	BCDEF	$\%IT=1.9\times10^{-4} 3; \%\alpha=100$
				$\Gamma_{\gamma} = 0.029 \text{ eV } 4; \text{ T} = 0$
7833.4 <i>15</i>	2+	2 keV	BCDE	$%IT=3.4\times10^{-3}; \%\alpha=100$
				$\Gamma_{\gamma} = 0.069 \text{ eV } 7; \text{ T} = 0$
8453 <i>4</i>	5-	0.013 keV 4	CDEF	%IT=0.10 4; %α=99.90 4
	- 1			$\Gamma_{\gamma} = 0.013 \text{ eV } 3; \text{ T} = 0$
≈8700	0_{+}	>800 keV	E	$%\alpha=100$
0700 7	1 -	211 77 0	CD.F.	T=0
8708 7	1-	2.1 keV 8	CDE	$\%IT=3.3\times10^{-3}$ 15; $\%\alpha=100$
9777 6 22	6+	0.11 lcsV 2	CDEECH	Γ_{γ} =0.070 eV 17; T=0
8777.6 22	0	0.11 keV 2	CDEFGH	%IT=0.091 21; $%\alpha$ =100 Γ_{γ} =0.100 eV 15; T=0
8820	(5^{-})	<1 keV	E	$\%\alpha = 100$
0020	(5)	<1 KC V		T=0
8854 5	1-	19 keV	СЕ	$\%\alpha=100$
	_			T=0
$90.0 \times 10^2 18$	2+	≈800 keV	E	$\%\alpha$ =?
				T=0
9031 7	4+	3 keV	CDE	%IT=0.011; $%\alpha$ =100
				$\Gamma_{\gamma} = 0.34 \text{ eV } 4; \text{ T} = 0$
9116 <i>3</i>	3-	3.2 keV	CDE	$\%IT = 8 \times 10^{-4}; \%\alpha = 100$

E(level)	J^π	$T_{1/2}$	XREF	Comments
				Γ_{γ} =0.026 eV 3; T=0
9196 <i>30</i>	2+		В	T=0
9318 2	(2^{-})		CD	T=0
9487 5	2+	29 keV <i>15</i>	B DE	%IT=9×10 ⁻⁴ 6; %α=100 Γ_{γ} =0.26 eV 10; T=0
9873 <i>4</i>	3 ⁺		BC	$\Gamma_{\gamma}^{\prime}/\Gamma = 0.82 \ 27; T = 0$
9935 12	(1^{+})	<24.3 fs	C	T=0
9990 8	4+	155 keV <i>30</i>	CDE	%IT= $6 \times 10^{-4} \ 3$; % $\alpha = 100$ $\Gamma_{\gamma} = 0.9 \ \text{eV} \ 4$; T= 0
10262 5	5-	145 keV 40	C EFGH	$\%\alpha = 100$ T=0
10273.2 19	2+	≤0.3 keV	B DE	%IT=?; %α=? Γ_{γ} =4.6 eV 5; T=1
10406 5	3-	80 keV	C E	$\%\alpha = 100$ T=0
10553 5	4+	16 keV	CE	$\%\alpha$ =100 T=0
10584 5	2+	24 keV	ВЕ	$\%\alpha = 100$
103013	_	21 Ke v	2 2	T=0
10609 <i>6</i>	6-	16 fs 5	С	T=0
10694 <i>6</i>	$4^{-},3^{+}$		C	T=0
10800 75	4+	350 keV	EF	$% \alpha = 100$
10840 6	3-	45 keV	C E	$T=0$ % $IT=?$; % $\alpha=?$ $T=0$
10843 4	2+	13 keV	В Е	$\%\alpha$ =100 T=0
10884 <i>3</i>	3 ⁺	<21 fs	В	$\Gamma_{\gamma}/\Gamma < 0.3$; T=1
10917 6	3 ⁺	\21 13	C	T=0
10940 9	2+		В	1-0
$109.7 \times 10^2 \ 12$	0+	580 keV		$%\alpha=100$
			Е	T=0
11020 8	4+	24 keV	C E	$\%\alpha$ =100 T=0
11090 3	4 ⁺	≤0.5 keV	DE	%IT=?; % α =? Γ_{γ} =0.34 eV 4; T=1
11116 9	2+		В	, ,
11240 23	1-	175 keV	E	$\%\alpha$ =100
				T=0
11262.3 <i>19</i>	1+		B D	T=1
11270 5	1-	≤0.3 keV	DE	%IT=?; % α =? Γ_{γ} =0.71 eV 6; T=1
11320 9	2+	40 keV 10	ВЕ	$\%\alpha = 100$ T=0
11528 6	$3^{+},4^{-}$	≤21 fs	С	T=0
11555 6	(3^+)		Č	T=0
11558 4	0+	1.1 keV 4	DE	$\%$ IT=?; $\%\alpha$ =? T=0
11601 <i>10</i>	2-			T=0 T=1 Decay mode not specified.
11653 <i>5</i> 11885 <i>7</i>	(3^+) 2^+	46 keV	C B E	T=0 %IT=?; $%\alpha$ =?
11005 /	2	IO AC T	<i>D</i> <u>L</u>	T=0
11928 4	4+	0.44 keV 15	DE	%IT= 6×10^{-3} 3; % α =100 Γ_{γ} =0.026 eV 6; T=0
11951 4	8+	0.035 keV 10	CDEFGH	$\%\text{IT}=0.022\ 7;\ \%\alpha=100$

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
11985 <i>16</i>	1-	30 keV 5	CDE	Γ_{γ} =7.7×10 ⁻³ eV 11; T=0 %IT=?; % α =? T=0
12098 <i>6</i> 12137 <i>5</i>	2 ⁻ 6 ⁺		C C E	$T=1$ $%\alpha=100$
12221 4	2+	<1 keV	CD	$T=0$ %IT=?; % α =? $T=1$
12253 10	4 ⁺	155 keV <i>15</i>	E	$\%\alpha=100$ $T=0$
12256 3	3-	<1 keV	DE	$\%IT=?; \%\alpha=?$ $T=1$
12327 10	2+	390 keV 50	E	$\%\alpha=100$ T=0
12401 5	3-	37.3 keV 9	CDE	%IT= 5×10^{-4} ; % $\alpha = 100$ $\Gamma_{\gamma} = 0.2 \text{ eV}$; T=(1)
12436 <i>4</i>	0+	24.4 keV 5	CDE	%IT=7.0×10 ⁻⁴ 21; % α =100 Γ_{γ} =0.17 eV 5; T=0
12472 10	(2+)	124 keV 6	E	$\%\alpha = 100$ T=0
12585 5	6+	72 keV 9	C EFGH	$\%\alpha=100$ T=0
12592 <i>15</i>	(2 ⁺)	145 keV 25	E	$\%\alpha=100$ T=0
12713 5	5-	84 keV 8	CE	$\%\alpha=100$ T=0
12743 10	(2 ⁺)	61 keV <i>12</i>	CE	$\%\alpha=100$ T=0
12836 5	1-	30 keV 5	CE	$\%\alpha=100$ T=0
12957 5	2+	38 keV 4	CE	$\%\alpha=100$ T=0
13048 5	4+	18 keV 3	CE	%α=100 T=0
13060.7 <i>21</i> 13095 <i>6</i>	2 ⁻ 2 ⁺	1.0 keV 162 keV <i>13</i>	E	%p=?; % α =? % α =100 T=0
13105 5	6+	102 keV 5	E	$\%\alpha=100$ $T=0$
13137 5	3-	48 keV 4	E	$\%\alpha=100$ T=0
13171.3 <i>21</i>	1+	2.3 keV 2	IJ	
13222 10	0^+	40 keV 13	CE	$K = \frac{1 - (1)}{8\alpha - 100}$ T=0
13224 15	1-	80 keV	E	K %p=?; % α =? T=0
13226 5	3-	53 keV 4	E	$\%\alpha=100$ T=0
13307.5 <i>21</i> 13338 <i>5</i>	1+ 7-	0.9 keV <i>1</i> 0.08 keV <i>3</i>	C E	K %IT=?; %p=?; % α =? % α =100
13341 5	4+	26 keV 3	E	$T=0$ $\%\alpha=100$ $T=0$
13414 2	3-	24 keV 3	E IJ	$T=0$ $K \%\alpha=100$ $T=0$

E(level)	\mathbf{J}^{π}	$T_{1/2}$	XREF		Comments
13426 5	(5-)	49 keV 7	E		%α=100
13461 <i>10</i>	1-	195 keV 25	E	K	T=0 $\%$ p=?; $\%\alpha$ =?
13484 2	1+	6.4 keV 3		JK	%IT=?; %p=?; %α=? T=1
13507 5	1-	24 keV 8	E	JK	%p=?; % α =? T=0
13529 5	2+	61 keV 8	E		$\%\alpha=100$ T=0
13530 <i>15</i>	(0^{+})	76 keV 32	E		$\%\alpha=100$ T=0
13573 5	2+	12 keV 5	C E	K	$\%\alpha=100$ T=0
13586 <i>3</i>	2+	9 keV <i>1</i>		JK	$%p=?; %\alpha=?$
13642 <i>3</i>	0_{+}	17 keV <i>1</i>	C :	JK	%p=?; $%\alpha$ =? T=1
13676.0 23	(2-)	4.5 keV 2		JK	%IT=?; %p=?; %α=?
13677 5	5-	11 keV 2	E		$\%\alpha=100$ T=0
13692 10	7-	310 keV <i>30</i>	E		$\%\alpha = 100$ T=0
13736.0 25	1+	7.7 keV 5		JK	%IT=?; %p=?; %α=?
13744 20	0_{+}	≈80 keV	E		$\%\alpha=100$ T=0
13827 10	3-	136 keV <i>15</i>	CE		$\%\alpha=100$ T=0
13866 30	1-	≈175 keV	CE	K	$\%$ p=?; $\%\alpha$ =? T=0
13881.0 <i>23</i>	2+	0.14 keV 5	C I	JK	%IT=?; %p=?; %α=? T=1
13908 5	2+	74 keV 10	E	K	$\%\alpha=100$ T=0
13926.0 <i>23</i>	(0^+)	3.5 keV 4		K	%p=?; %α=?
13928 5	6+	65 keV <i>3</i>	EFG		$\%\alpha=100$ T=0
13948 <i>10</i>	0+	79 keV <i>15</i>	E		$\%\alpha = 100$ T=0
13965 5	4+	8.1 keV 10	E		$\%\alpha = 100$ T=0
14020	1-	≈70 keV		K	$%p=?; %\alpha=?$
14063.0 23	2+	≈140 keV		JK	$\%$ p=?; $\%\alpha$ =?
14115 5	2+	42 keV 6	E		$\%\alpha=100$ T=0
14128 2	2-	4.7 keV 7	I.	JK	$%IT=?; %p=?; %\alpha=?$
14150.0 <i>23</i>	2-	11.8 keV 10	I.	JK	%IT=?; $\%$ p=?; $\%\alpha$ =?
14200	1+	14 keV <i>1</i>	I.	J	%IT=?; %p=?
14270 <i>10</i>	4+	92 keV 9	E		$\%\alpha=100$ T=0
14304 10	(6 ⁺)	60 keV 13	CE		$\%\alpha=100$ T=0
14311 5	6+	117 keV 8	C EFGH		$\%\alpha=100$ T=0
14313 <i>15</i>	(3-)	≈45 keV	E		$\%\alpha=100$ T=0
14370 3		≈5 keV		JK	$\%$ p=?; $\%\alpha$ =?
14454 5	5-	≈15 keV	E		$\hat{\%}\alpha=100$

E(level)	${\sf J}^\pi$	T _{1/2}	XREF		Comments
					T=0
14455 <i>3</i>	$(0^+,2^+)$	33 keV <i>3</i>	E	JK	%p=?; % α =? T=0
14475 6	0^{+}	68 keV 2		JK	%p=?; %α=?
14593 10	4+	260 keV 25	E		$\%\alpha$ =100
14597 7	1-	116 keV 5	E	K	T=0 %p=?; $%\alpha$ =? T=0
14653 10	(0^+)	25 keV	:	JK	%p=?; %α=?
14699.0 <i>33</i>	(1^{+})	36 keV 10	E	JK	%p=?; %α=?
14731 <i>10</i>	(4^{+})	60 keV 25	E		$\%\alpha=100$
14761 5	6 ⁺	7.3 keV 48	E		T=0 %α=100 T=0
14776 <i>4</i>	(1^{-})	110 keV 20	-	JK	%p=?; %α=?
14807 5	6+	86 keV 7	E	K	$\%\alpha=100$
11007 5	O	00 Re v 7	_	•	T=0
14816 5	5-	117 keV <i>13</i>	E		$\%\alpha$ =100
					T=0
14839 <i>10</i>	(4^{+})	79 keV <i>15</i>	E		$\%\alpha=100$ T=0
14888 10	2+	100 keV 30	E	v	$\%$ p=?; $\%\alpha$ =?
14000 10	2	100 KEV 30	E	K	T=0
15047 10	2+	66 keV 20	CE	K	%p=?; % α =? T=0
15073 10	5-	160 keV 25	E		$\%\alpha = 100$ T=0
15142 <i>15</i>	(2^{+})	≈60 keV	E		$\%\alpha=100$
15159 5	6 ⁺	60 keV 15	С		$T=0$ $\%\alpha=?$
13137 3	O	00 Ke v 15			T=0
15174 <i>10</i>	5-	230 keV 25	E		%α=100 T=0
15230		28 keV			%p=?; %α=?
15270	(1^{-})	285 keV	C EFGH		$\%$ p=?; $\%\alpha$ =?
15330 5	4+	34 keV 10	C E		$\%\alpha=100$
					T=0
15346 <i>15</i>	6+		E		T=0
15366 <i>5</i>	7-	110 keV 10	EFGH		$\%\alpha$ =100
					T=0
15436 <i>15</i>	(3-)	90 keV 20	CE	K	%p=?; % α =? T=0
15500		55 keV	E	K	~ ~ ~
15700 15	(8-)	33 Re v	CE	•	$\%\alpha=100$
10,00 10	(0)		0 -		T=0
15874 9	8+	100 keV 15	C F H		$\%\alpha=100$
15970	(6^+)		E		$\%\alpha=100$
	` /				T=0
16010 25	(2+)	100 keV		K	%p=?; $%\alpha$ =? T=(1)
16139 <i>15</i>		38 keV	CE	K	$%\alpha=100$
16250			E		$\%\alpha$ =100
16329 <i>11</i>	4+	45 keV	E	K	%p=?; % α =? T=0
16437 <i>11</i>	$(0,2,4)^+$	35 keV	E		$\%\alpha=100$
	(~, ~ , ·)	,	-		T=0

E(level)	J^{π}	T _{1/2}	XREF	Comments
16505 <i>15</i>	6+	24 keV <i>4</i>	E	$\%\alpha$ =100 T=0
16559 <i>15</i>	5-	90 keV <i>30</i>	E	$\%\alpha=100$ T=0
16581 <i>15</i>	7-	92 keV 8	CE	$\%\alpha=100$ T=0
16628 20	3-	80 keV 25	E	60 60 60 60 60 60 60 60
16630 20	(7^{-})		FGH	$\%\alpha = 100$
16667 <i>15</i>	(<i>i</i>)	100 keV 25	E	$\%\alpha=100$
10007 13	7	100 KC V 23	_	T=0
16717 <i>15</i>	5-	≈25 keV	CE	$\%\alpha=100$ T=0
16732.9 27	0+	2.0 keV 5	IJK	$\%$ IT=?; $\%$ p=?; $\%\alpha$ =? T=2
16746 25	8+	160 keV 50	E	$\%\alpha=100$ T=0
16847 <i>15</i>	5-	16 keV 8	E	$\%\alpha=100$ T=0
16871 20	6+	350 keV <i>50</i>	E	$\%\alpha=100$ T=0
17072 20	4+	180 keV <i>30</i>	E	$\%\alpha = 100$ T=0
17155 <i>15</i>	5-	26 keV 5	E	$\%\alpha = 100$ T=0
17213 <i>15</i>	4+	225 keV 30	E	$\%\alpha = 100$ T=0
17284 <i>15</i>	3-	86 keV 25	E	$\%\alpha=100$ T=0
17295 <i>15</i>	8+	200 keV 25	EFGH	$\%\alpha=100$ T=0
17390 <i>15</i>		<10 keV	E	$\%\alpha=100$
17430 <i>15</i>	9-	220 keV 25	CE	$\%\alpha=100$ T=0
17541 <i>15</i>	6+	86 keV 9	E	$\%\alpha=100$ T=0
17550 <i>10</i>	(2 ⁺)	19 keV	K	%n=?; %p=?; % α =? T=(1)
17606 <i>15</i>	5-	140 keV 20	E	$\%\alpha = 100$ T=0
17769 20	4+	≈125 keV	E K	%p=?; $%\alpha$ =? T=0
17851 <i>15</i>	5-	200 keV 30	E	$\%\alpha=100$ T=0
17910 20	(0^+)			%n=?; %p=?
18005 <i>15</i>	7-	<10 keV	E	$\%\alpha$ =100
				T=0
18024 5	5-	34 keV 7	E	$\%\alpha=100$ T=0
18083 25	4+	140 keV 60	E	$\%\alpha=100$ T=0
18125 5	7-	29 keV 6	CE	$\%\alpha=100$ T=0
18286 <i>10</i>	6+	190 keV <i>30</i>	E	$\%\alpha$ =100 T=0

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments			
18430 7	2+	9.5 keV <i>30</i>	IJK	%IT=3×10 ⁻³ ; %n=?; %p=?; %α=?			
18430 20	7-	185 keV <i>40</i>	E	$\Gamma_{\gamma} \approx 0.30 \text{ eV}; \text{ T=2}$ $\% \alpha = 100$			
				T=0			
18494 20	5-	130 keV <i>30</i>	E	$\%\alpha=100$ T=0			
18538 7	8+	138 keV <i>33</i>	C	$\%\alpha=?$			
18621 20	8+	185 keV <i>30</i>	E	$\%\alpha=100$ T=0			
18745 25	6+	140 keV 50	E	$\%\alpha=?$ T=0			
18768 20	7-	140 keV <i>35</i>	EF	$\%\alpha=100$ T=0			
18960 25	8+	200 keV 60	E	$\%\alpha = 100$ T=0			
19051 <i>15</i>	5-	≈90 keV	E	$\%\alpha=100$ T=0			
19150 20	6+	200 keV 50	E	$\%\alpha=100$ T=0			
19284 <i>15</i>	6+	140 keV 25	E	$\%\alpha=100$ T=0			
19298 25	7-	430 keV 60	EF	$\%\alpha=100$ T=0			
19443 <i>10</i>	6+	130 keV <i>15</i>	E	$\%\alpha=100$ T=0			
19536 25	6+	250 keV 60	E	$\%\alpha = 100$ T=0			
19655 20	6+	140 keV <i>35</i>	E	%α=100 T=0			
19731 20	8+	330 keV <i>60</i>	E	$\%\alpha=100$ T=0			
19845 <i>40</i>	6+	$3.6 \times 10^2 \text{ keV } 12$	E	$\%\alpha=100$ T=0			
19859 <i>10</i>	5-	170 keV 25	E	$\%\alpha=100$ T=0			
19884 <i>40</i>	7-	≈120 keV	EF	$\%\alpha=100$ T=0			
19991 <i>30</i>	4+	$1.3 \times 10^2 \text{ keV } 10$	E	$\%\alpha=100$ T=0			
20027 15	6+	80 keV <i>35</i>	E	$\%\alpha=100$ T=0			
20106 25	7-	190 keV <i>35</i>	E	$%\alpha=100$ T=0			
$201.5 \times 10^2 \ 15$				%IT=?; %n=? T _{1/2} : Γ=broad.			
20168 35	6+	$2.9 \times 10^2 \text{ keV } 10$	E	$\%\alpha=100$ T=0			
20296 15	7-	255 keV 40	E	$\%\alpha=100$ T=0			
20341 20	5-	190 keV <i>40</i>	E	$\%\alpha=100$ T=0			
20344 15	7-	135 keV <i>35</i>	E	$\%\alpha=100$ T=0			
20419 30	6+	215 keV 90	E	$\%\alpha=100$ T=0			
20445 25	6+	370 keV 55	E	$\%\alpha$ =100			

E(level)	\mathbf{J}^{π}	T _{1/2}		XREF			Comments	
20468 30	5-	280 keV	70	E	T= %α	0 x=100		
20686 6	9-	78 keV		E G	$T=0$ $\%\alpha=100$			
					7σα T=			
20760 30	7-	240 keV	50	EF	%α T=	x=100 0		
20800 25	5-	170 keV	60	E	%α T=	x = 100		
20950 40	7-	300 keV	50 C	E		z=100		
21062 6	9-	60 keV	7 6 C	E GH		z=100		
2130×10 ¹ 10	7-	300 keV	7	EF		z=100		
2180×10 ¹ 10	7-	300 keV	C	EF		z=100		
2230×10 ¹ 10	7-	500 keV	C	EF	$% \alpha$	=100		
2260×10 ¹ 30						T=?; %n=?		
22800 60	9-	500 keV	C	E	$% \alpha$	2: Γ=broad. =100		
22870 40	9-	225 keV	40 C	E GH	$T=0$ $% \alpha = 100$			
2340×10 ¹ 20	8+	500 keV	,	E	$T=0$ $\%\alpha=100$			
23700 <i>30</i>	(9-)	≤200 keV	,	FG	T=1	0 e=100		
24210 25	8+	350 keV		E G	$% \alpha = 0$	z=100		
2490×10 ¹ 50						T=?; %n=?		
25100 <i>50</i>	8+	≈200 keV	,	E G	$% \alpha$	2: Γ=broad. =100		
25670 <i>50</i>		≈400 keV	,	E G	$T=$ % α	v=100		
$2710 \times 10^{1} \ 10$ 27500	(9^{-}) 10^{+}	700 keV	,	EF H		z=100 Γ=?; %n=?		
					$T_{1/}$	2: Γ=broad.		
28000	8+	1600 keV	r	E	%α T=	e=100 0		
$2820 \times 10^{1} \ 30$		700 keV	r	E	$% \alpha$	=100		
						γ ⁽²⁰ Ne)		
$E_i(level)$ J_i^{π}		E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	Comments	
$\frac{1}{1633.674}$ $\frac{1}{2^{+}}$		3.602 15	100	0.0	0+	[E2]	B(E2)(W.u.)=20.3 10	
4247.7 4 ⁺ 4966.51 2 ⁻			100	1633.674		[E2]	B(E2)(W.u.)=22 2 B(E1)(W.u.)=7.3×10 ⁻⁶ 8; B(M2)(W.u.)=0.017 4;	
4966.51 2	333.	2.54 20	99.4 2	1633.674	Δ'	[E1+M2+E3]	B(E3)(W.u.)=62	
		5.85 20	0.6 2	0.0	0+	[M2]	δ (M2/E1)=0.076 11, δ (E3/E1)=0.043 16. B(M2)(W.u.)=0.0025 8	
5621.4 3		4.9 <i>18</i> 7.3 <i>17</i>	4.8 <i>16</i> 87.6 <i>10</i>	4966.51 1633.674	2 ⁻ 2 ⁺	[M1] [E1]	B(M1)(W.u.)=2.0×10 ⁻³ 9 B(E1)(W.u.)=6.6×10 ⁻⁶ 19	
	370	, 1/	37.0 10	1055.077	_	لبا	2(21)(11.41)=0.0/10 1/	

γ ⁽²⁰Ne) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	Comments
5621.4	3-	5620.6 17	7.6 10	$0.0 0^{+}$	[E3]		B(E3)(W.u.)=11 4
5787.7	1-	4154 3	82 5	1633.674 2+	[E1]		$B(E1)(W.u.)=1.1\times10^{-4} 2$
2.0	•	5787 <i>3</i>	18 5	$0.0 0^{+}$	[E1]		$B(E1)(W.u.)=8.3\times10^{-6}$ 3
6725	0^{+}	5090 <i>5</i>	100	1633.674 2 ⁺	[E2]		B(E2)(W.u.)=3.6
0723	O	6724 5	100	$0.0 0^{+}$	[E0]		B(B2)(W.a.)=3.0
7004.0	4-	1383 4	25	5621.4 3	[M1]		$B(M1)(W.u.)=6.9\times10^{-3}$
7004.0	7	2037 4	11	4966.51 2	[E2]		B(E2)(W.u.)=1.8
		2756 4	63.5	4247.7 4+	[E1]		$B(E1)(W.u.)=9.1\times10^{-5}$
		5369 4	0.5 2	1633.674 2 ⁺	[M2]		$B(M2)(W.u.)=1.5\times10^{-2} 8$
7156.3	3-	1369 3	40 5	5787.7 1 ⁻	[E2]		B(E2)(W.u.)=50 8
7130.3	3	2908.4 12	60 5		[E2]		B(E2)(W.u.)=30.6 $B(E1)(W.u.)=7.9\times10^{-5}.9$
7191	0^{+}	5556 <i>3</i>	100	4247.7 4 ⁺ 1633.674 2 ⁺	[E1] [E2]		B(E1)(W.u.)=7.9×10 9 B(E2)(W.u.)=0.31 6
/171	U	7190 <i>3</i>	100	$0.0 0^{+}$	[E2] [E0]		B(E2)(W.u.)=0.31 0
7421.9	2+	3173.9 17	≤7.6	4247.7 4 ⁺	[E0]		I_{γ} : author quotes I_{γ}/Σ (I_{γ}) $\leq 7.6\%$.
7421.7	2	5787.3 12	≥89.2	1633.674 2 ⁺	[M1+E2]	+8.4 +15-10	B(M1)(W.u.)= 1.0×10^{-4} 3;
		3101.3 12	≥09.2	1033.074 2	[MII+E2]	+6.4 +13-10	B(E2)(W.u.)=1.72
							I_{γ} : author quotes I_{γ}/Σ (I_{γ}) \geq 90.6% 14.
		7420.4 12	≤10.8	$0.0 0^{+}$			I_{γ} : author quotes I_{γ}/Σ (I_{γ}) \leq 9.0% 14. I_{γ} : author quotes I_{γ}/Σ (I_{γ}) \leq 9.4% 14.
7833.4	2+	3585.4 19	<2	4247.7 4 ⁺			1γ . author quotes $1\gamma/2$ $(1\gamma) \le 9.4\%$ 14.
7055.4	2	6198.7 <i>15</i>	17 <i>1</i>	1633.674 2 ⁺	[M1]		$B(M1)(W.u.)=2.3\times10^{-3}$ 3
		7831.8 <i>15</i>	83 1	$0.0 0^{+}$	[E2]		B(E2)(W.u.)=0.73 9
8453	5-	2832 5	100	5621.4 3	[E2]		B(E2)(W.u.)=27 6
8708	1-	7073 7	13 8	1633.674 2 ⁺	[E2]		$B(E1)(W.u.)=5\times10^{-5} 3$
8708	1	8706 <i>7</i>	87 8	$0.0 0^{+}$	[E1]		$B(E1)(W.u.)=3\times10^{-3}$ $B(E1)(W.u.)=1.9\times10^{-4}$ 5
8777.6	6+	4529.3 25	100	4247.7 4 ⁺	[E1]		B(E2)(W.u.)=20 3
9031	4 ⁺	4782 7	<2	4247.7 4+	[12]		D(L2)(W.u.)=20 3
7031	•	7396 7	100	1633.674 2+	[E2]		B(E2)(W.u.)=5.8 7
9116	3-	3495 <i>4</i>	17 4	5621.4 3	[M1]		$B(M1)(W.u.)=4.9\times10^{-3}$ 12
		4149 3	33 5	4966.51 2	[M1]		$B(M1)(W.u.)=5.8\times10^{-3}$ 11
		7480 <i>3</i>	50 <i>5</i>	1633.674 2+	[E1]		$B(E1)(W.u.)=6.2\times10^{-5}$ 10
9318	(2^{-})	7682.7 20	100	1633.674 2+	[]		_()(,
9487	2+	7848 <i>3</i>	100	1633.674 2+	[M1]		$B(M1)(W.u.)=2.5\times10^{-2}$ 10
					. ,		I_{γ} : authors report I_{γ}/Σ (I_{γ})=(100)%.
		9481 <i>3</i>		$0.0 0^{+}$			
9873	3 ⁺	2451 5	≈3	7421.9 2+			
		4252 5	≈7	5621.4 3-			
		4905 <i>4</i>	≤5	4966.51 2			
		5624 5	12 3	4247.7 4+			
		8237 <i>4</i>	78	1633.674 2+			
005-		9870 <i>4</i>	< 0.5	$0.0 0^{+}$			
9935	(1^{+})	4967 12	22 5	4966.51 2			
0000	4+	8299 12	78 <i>5</i>	1633.674 2 ⁺	[FO]		D/F2\/W \ 0.2.27
9990	4+	8354 8	100	1633.674 2+	[E2]		B(E2)(W.u.)=8.3 37
		9987 8		$0.0 0^{+}$			I_{γ} : authors report I_{γ}/Σ (I_{γ})=(100)%.
10273.2	2+	2440.4 <i>33</i>	0.22 6	7833.4 2 ⁺	[M1]		$B(M1)(W.u.)=2.6\times10^{-2}$ 7
10273.2	Z	2852 <i>4</i>	6.9 4	7421.9 2 ⁺	[M1]		B(M1)(W.u.)=2.0×10 / B(M1)(W.u.)=0.64 8
		4652 4	2.1 2	5621.4 3	[E1]		$B(E1)(W.u.)=1.9\times10^{-3}$ 3
		5306 3	1.3 1	4966.51 2			B(E1)(W.u.)=1.9×10 3 B(E1)(W.u.)=8.0×10 ⁻⁴ 11
		8638 <i>3</i>	1.3 <i>1</i> 88.9 <i>5</i>	1633.674 2 ⁺	[E1]		B(B1)(W.u.)=8.0×10 · 11 B(M1)(W.u.)=0.30 3
		10271 3	0.65 <i>14</i>	$0.0 0^{+}$	[M1]		B(W1)(W.u.)=0.303 $B(E2)(W.u.)=9.5\times10^{-2} 26$
10600	6-	2156 8	4.5 12		[E2]		$B(E2)(W.u.)=9.3\times10-20$ $B(M1)(W.u.)=6.1\times10^{-3}$ 28
10609	U	3605 8	4.5 <i>12</i> 95.5 <i>12</i>	8453 5 ⁻ 7004.0 4 ⁻	[M1] [E2]		B(E2)(W.u.)=17 6
10694	4-,3+	5726 <i>6</i>	95.5 12 75 4	4966.51 2 ⁻	[154]		D(L2)(W.u.)-1/ U
1007	٠,٠	6445 6	25 4	4247.7 4 ⁺			
10884	3+	6635 4	23 5	4247.7 4+			
					novt noss (f-	otnotes of and -f	toble)
				Continued on	next page (10	otnotes at end of	table)

γ (20Ne) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	${ m I}_{\gamma}$	E_f	\mathbf{J}_f^{π}	Mult.	Comments
10884	3 ⁺	9248 3	77 5	1633.674	2+		
11090	4+	6841 <i>4</i>	99.50 25	4247.7	4 ⁺	[M1]	$B(M1)(W.u.)=5.0\times10^{-2} 6$
11070	•	9454 3	0.50 25	1633.674		[E2]	$B(E2)(W.u.)=1.0\times10^{-2}$ 5
11262.3	1+	9626.1 19	16 5	1633.674		[M1]	B(M1)(W.u.)=0.11 4
	_	11258.9 19	84 5	0.0	0+	[M1]	B(M1)(W.u.)=0.37 7
11270	1-	1952 6	9 1	9318	(2^{-})	[M1]	B(M1)(W.u.)=0.40 6
		2416 7	27.0 15	8854	ì- ´	[M1]	B(M1)(W.u.)=0.63 8
		6302 5	6.5 10	4966.51	2^{-}	[M1]	$B(M1)(W.u.)=8.8\times10^{-3}$ 7
		9634 5	2.5 10	1633.674	2+	[E1]	$B(E1)(W.u.)=4.0\times10^{-5}$ 16
		11267 5	55 2	0.0	0^{+}	[E1]	$B(E1)(W.u.)=5.4\times10^{-4}$ 7
11528	$3^{+},4^{-}$	4523 7		7004.0	4-		Deexcites the 11528 and/or the 11555 level.
		6560 <i>6</i>	70 <i>3</i>	4966.51	2^{-}		
		7279 <i>6</i>	30 <i>3</i>	4247.7	4+		
11555	(3^{+})	4550 7		7004.0	4-		Deexcites the 11555 and/or the 11528 level.
		9918 <i>6</i>		1633.674			
11558	0_{+}	7309 5	<8	4247.7	4+		
		9921 4	100	1633.674			
11653	(3^{+})	7404 6	86 <i>3</i>	4247.7	4+		
		10016 5	14 3	1633.674			3
11928	4+	7678 <i>5</i>	79 11	4247.7	4+	[M1]	$B(M1)(W.u.)=2.2\times10^{-3} 6$
	- 1	10291 4	21 11	1633.674		[E2]	$B(E2)(W.u.)=1.8\times10^{-2} 10$
11951	8+	3173 5	100	8777.6	6+	[E2]	B(E2)(W.u.)=9.0 13
12221	2+	10584 4	100	1633.674			I_{γ} : authors report I_{γ}/Σ (I_{γ})=(100)%.
12256	3-	6634 4	37.0 15	5621.4	3-		
12401	2-	10619 3	63.0 15	1633.674		CC13	D(E1)(W) 7.4.10-4
12401	3-	8151 6	≈70	4247.7	4 ⁺	[E1]	$B(E1)(W.u.)=7.4\times10^{-4}$
		10764 5	≈29	1633.674		[E1]	$B(E1)(W.u.)=1.3\times10^{-4}$
12426	0^{+}	12397 5	≈1 100	0.0	0 ⁺ 2 ⁺	[E2]	D(E2)(W ₂₂) 0.42-12
12436 13484	0 · 1 +	10796 <i>5</i> 8515.6 <i>20</i>	100 5	1633.674 4966.51	2-	[E2]	B(E2)(W.u.)=0.43 13
13464	1	11846.5 20	95	1633.674	_		
13881.0	2+	8912 23	80	4966.51	2-		
13001.0	2	12243 23	20	1633.674			
16732.9	0^{+}	5469 6	100	11262.3	1+		I_{γ} : authors report I_{γ}/Σ (I_{γ})=(100)%.
10/32.7	3	10941 6	100	5787.7	1-		1y. manors report 1/12 (1) = (100) /0.
		15092 5		1633.674			
18430	2+	6208 21	100	12221	2+	[M1]	$B(M1)(W.u.)=6\times10^{-2}$
							I_{γ} : authors report I_{γ}/Σ (I_{γ})=(100)%.

Adopted Levels, Gammas 1998Ti06

Adopted Levels, Gammas 1998Ti06

Adopted Levels, Gammas 1998Ti06 Legend Level Scheme (continued) $\begin{array}{ll} \quad & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \quad & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \quad & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Type not specified $\begin{array}{r} 1^{+} \\ 4^{+} \\ 3^{+} \\ \hline 4^{-},3^{+} \\ 6^{-} \\ 2^{+} \\ 4^{+} \\ \hline (1^{+}) \\ 3^{+} \end{array}$ 11262.3 11090 \leq 0.5 keV 10884 $<\!\!21\;fs$ 10694 16 fs 5 ≤0.3 keV 10609 10273.2 155 keV *30* <24.3 fs 9990 9935 9873 2⁺ (2⁻) 9487 29 keV 15 9318 9116 3.2 keV 8453 0.013 keV 4 7833.4 2 keV 7421.9 15.1 keV 7 7004.0 305 fs 62 5621.4 139 fs 35 4966.51 3.3 ps 4 4247.7 64 fs 6 1633.674 0.73 ps 4 0.0 stable $^{20}_{10}{\rm Ne}_{10}$

Adopted Levels, Gammas 1998Ti06 Legend Level Scheme (continued) $\begin{array}{ll} \quad & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \quad & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \quad & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Type not specified - - 1306 (E2)100 9031 3 keV 8777.6 0.11 keV 2 8708 2.1 keV 8 8453 0.013 keV 4 2+ 7833.4 2 keV 7421.9 15.1 keV 7 3.4 keV 2 8.2 keV 3 7191 7156.3 7004.0 305 fs 62 0^{+} 6725 19.0 keV 9 | 5620 (51/82) | 39873 (187) | 554 (181/8) | 514 (187) - 495,655 /AQ| - 33,25,54 /AQ| - 14,442 /AQ| 5787.7 0.028 keV 3 5621.4 139 fs 35 4966.51 3.3 ps 4 4247.7 64 fs 6 1633.674 0.73 ps 4 0.0 stable

 $^{20}_{10}{\rm Ne}_{10}$

 $^{22}_{10}\text{Ne}_{12}$ -1

Adopted Levels, Gammas

	His	tory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 127, 69(2015)	1-Apr-2015

 $Q(\beta^{-})=-2843.20\ 17;\ S(n)=10364.26\ 4;\ S(p)=15266.1\ 18;\ Q(\alpha)=-9666.81\ 2$ 2012Wa38

2006As01: No evidence of excited state population in 22 Ne from 9 Be(18 O, α^{14} C), (18 O, 10 Be 12 C), and (18 O, 9 Be 13 C) reactions.

Other reaction: 22 Ne(α,α'): 1971Ol01,1984Sa28,1987Su09.

²²Ne Levels

Cross Reference (XREF) Flags

```
^{22}F \beta^- decay
                                                                                                                                         <sup>22</sup>Ne(e,e')
                                                                      J
                                                                                 ^{18}O(^{6}Li,d)
          <sup>22</sup>Na \varepsilon decay

<sup>4</sup>He(<sup>19</sup>F,p\gamma)

<sup>11</sup>B(<sup>13</sup>C,d)
                                                                                                                                        <sup>22</sup>Ne(p,p')
                                                                                 ^{18}O(^{7}Li,t),(^{7}Li,t\gamma)
В
                                                                      K
                                                                                                                              T
C
                                                                      L
                                                                                 ^{19}F(\alpha,p\gamma)
                                                                                                                              U
                                                                                                                                         Coulomb excitation
                                                                                ^{20}Ne(t,p)
                                                                                                                                         ^{23}Na(d,^{3}He)
D
                                                                      M
                                                                                                                              V
                                                                                ^{20}Ne(t,p\gamma)
           <sup>12</sup>C(<sup>18</sup>O, <sup>8</sup>Be), <sup>14</sup>C(<sup>18</sup>O, <sup>10</sup>Be) N
Ē
                                                                                                                                         ^{23}Na(t,\alpha)
           ^{14}C(^{12}C,\alpha)
                                                                                                                                         ^{26}Mg(d,^{6}Li)
F
                                                                                <sup>21</sup>Ne(n,\gamma) E=thermal X
                                                                                ^{21}Ne(n,\gamma): res
                                                                                                                                         ^{26}Mg(^{3}He,^{7}Be)
           ^{18}O(\alpha,\gamma)
                                                                                                                                         <sup>150</sup>Nd(<sup>26</sup>Mg, <sup>22</sup>Neγ)
                                                                                ^{21}Ne(d,p)
           ^{18}O(\alpha,n): res
Н
           ^{18}O(^{4}He, ^{4}He'): res
                                                                                ^{22}Ne(\gamma, \gamma')
```

E(level) [†]	J^{π}	$T_{1/2}^{g}$	XREF	Comments
0.0 ^c	0+cf	stable	ABCD GH JKLMNOPQRSTUVWXY	δ <r<sup>2>(²⁰Ne, ²²Ne)=-0.321 fm² 4 (stat) 43 (syst) (2011Ma48,2008Ge07). Absolute ²²Ne charge radius=2.952 fm 9 (2008Ge07) deduced with respect to known ²⁰Ne charge radius=3.006 fm 5. J^π: From optical spectroscopy (1927Ha01); L=0 in (⁶Li,d), (⁷Li,t), and (t,p); natural parity.</r<sup>
1274.537 ^c 7	2+ <i>cf</i>	3.60 ps 5	AB D G JKLMNOPQ S UVWXYZ	 μ=+0.65 2; Q=-0.19 4 E(level): From γ-ray energy. J^π: E2 to 0+; L=2 in (⁶Li,d), (⁷Li,t), and (t,p); natural parity. μ: Recoil into Vacuum, Differential method (1977Ho01, 2014StZZ). Q: Coulomb Excitation Reorientation (1981Sp07, 2014StZZ). T_{1/2}: From mean lifetime 5.19 ps 7: weighted average of mean lifetimes – 5.16 ps 13 (1984Bh03), 5.1 ps 2 (1983Ko01), 4.6 ps 6 (1979Ma13), 5.15 ps 31 (1979Fo02), 5.2 ps 3 (1977Ho01), 5.62 ps 20 (1977Ra01), 4.9 ps 7 (1977Og03), 5.15 ps 14 (1977Sc36), 4.9 ps 4 (1974Ol01), 5.4 ps 4 (1973An01), 5.5 ps 10 (1973Si31), 5.9 ps 11 (1972Sn01), 5.9 ps 6 (1972Sz05), 3.6 ps 7 (1970Na07), 4.6 ps 5 (1969Jo10), 6.1 ps 5 (1969ScZV), and 3.1 ps 11 (1960An07).
3357.2 ^{‡c} 5	4+ <i>cf</i>	225 fs 4	A D G JKLMN Q S VWXYZ	μ =+2.2 6 J ^{π} : L=4 in (⁶ Li,d); natural parity.

Continued on next page (footnotes at end of table)

 μ : Tilted Foil hyperfine field integral perturbed angular

E(level) [†]	${ m J}^{\pi}$	T _{1/2} 8		XRE	F		Comments
							correlation (1984Ba10, 2014StZZ). T _{1/2} : From mean lifetime 324 fs 6: weighted average of mean lifetimes – 324 fs 9 (1979Fo02), 311 fs 17 (1978Fi04), 328 fs 10 (1978Ek01), 285 fs 50 (1974Fi16), 360 fs 50 (1972Br17 – average of measurements with 39 different slowing down materials), 270 fs 90 (1968Ku05), 400 fs 110 (1967Wa13), and 390 fs 80 (1964Es02).
4456.2 9	2 ⁺ f	3.7 ⁱ fs 25	A CD G	JKLMN	Q S	VWXYZ	J ^π : E2 to 0 ⁺ ; L=2 in (6 Li,d), (7 Li,t), and L=(2) in (t,p); natural parity. T _{1/2} : From (e,e') – 1979Ma13. Other values: <11 fs (1979Al01–(19 F,p γ)), <30 (α ,p γ)), while 37 fs 6 (1993Ol05 – (α ,p γ)) is higher compared to other values.
5146.0 9	2 ^{-f}	0.8 ps 2	CD G	KLMN	Q	VWX	J ^π : E1 to 2 ⁺ , L=1,3 in (t,p); unnatural parity. T _{1/2} : From mean lifetime 1.1 ps 2: weighted average of mean lifetimes – 1.2 ps <i>3</i> (1975Me19), 1.15 ps <i>45</i> (1976Fi02), 1.3 ps <i>5</i> (1979Al01), and 0.9 ps <i>4</i> (1993Ol05).
5329.6 13	1+ <i>f</i>	1.2 fs <i>3</i>	D G	L N	QRS	W	E(level): Weighted average of data from (e,e'), (γ,γ') , and $(\alpha,p\gamma)$. J ^{π} : M1+E2 to 2+, J ^{π} =1+ in (e,e') (1974Ma43); (unnatural parity). T _{1/2} : From mean lifetime 1.7 ps 3: Weighted average of 1.7 fs 3 (e,e') (1979Ma13) and 1.8 fs 7 (γ,γ') (1984Be26).
5363.4 11	2+ <i>f</i>	69 ⁱ fs 12	D	JKLMN	Q	WX	J^{π} : E2 to 0+; L=2 in (t,p); natural parity. $T_{1/2}$: <20 fs in 1976Fi02 – reason for this discrepancy is unknown.
5523.3 [‡] 6	$(4)^{+f}$	21 fs 3	A CD	JKLMN	Q	WX Z	J ^π : L=4 in (⁶ Li,d), (t,p); natural parity; J=3 in ¹¹ B(¹³ C,d). T _{1/2} : From mean lifetime 30 fs 4: Weighted average of 27 fs 4 (1979Al01) and 37 fs 6 (1993Ol05). Uncertainty – lower experimental value.
5641.2 [‡] 7	3+ <i>f</i>	<3 <i>i</i> fs	A CD	KLMN	Q	WX	J^{π} : M1 to 2^{+} ; L=2 in (d,p); unnatural parity.
5910.1 9	3- <i>f</i>	32 fs <i>11</i>	A D	JKLMN	S	WX	E(level): From (n,γ) . J^{π} : E1 to 2 ⁺ ; L=3 in (6 Li,d); natural parity; γ to 4 ⁺ . $T_{1/2}$: From mean lifetime 46 fs 16: Weighted average of 51 fs 23 (1976Fi02) and 44 fs 16 (1993Ol05). Uncertainty – lower experimental value.
6119.9 <i>16</i>	$2^{+}f$	14 fs 7	D	JKLMN	Q S	WX	J^{π} : L=2 in (t,p); natural parity. $T_{1/2}$: From (e,e'). Other value: 24 fs 9 (1993Ol05).
6235 2 6311.0 ^c 10	0^{+f} $(6^{+})^{c}$	236 ⁱ fs 83 49 fs 4	CD G	JKLM L	S	X W Z	J ^π : L=0 in (⁶ Li,d), (⁷ Li,t), and (t,p); natural parity. T _{1/2} : From mean lifetime 70 fs 6: Weighted average of 78 fs 15 (1976Fi02), 70 fs 10 (1979Al01), and 69 fs 6 (1993Ol05). Uncertainty – lowest experimental value.
6345.1 [‡] <i>10</i>	$4^{+}f$	13 ⁱ fs 3	A CD G	KLMN	Q	WX	J^{π} : L=4 in (t,p), natural parity.
6635.8 8	$(3,4)^{+}$	49 ⁱ fs 21	CD	LM	Q	WX	J^{π} : M1+E2 to 4 ⁺ , γ to 2 ⁺ , L=2 in (d,p).
6689.0 <i>11</i>	1^{-f}	243 ⁱ fs 132		KLM	S	WX	J^{π} : L=1 in (t,p); natural parity.
6819.4 <i>16</i>	2+	<3 ⁱ fs	CD	KLM	QS	WX	J^{π} : L=2 in (t,p), (${}^{7}Li$,t); natural parity.
6853.5 16	(1+)	0.38 [#] fs 16	D G	LM	QRST	W	J^{π} : M1 to 0^+ and 2^+ , also from $\sigma(\theta)$ and DWIA calculation in (p,p') .

E(level) [†]	J^π	$T_{1/2}^{g}$	_			XREI	F		Comments
6900 2	0+	76 ⁱ fs 8				KLM	S	W	J^{π} : L=0 in (⁷ Li,t).
7051 <i>3</i>	1^{-f}	100 ⁱ fs 30		D		KLMN	QS	W	J^{π} : L=1 in (t,p); natural parity.
7341.1 <i>11</i>	$0^{+}f$	<3 ⁱ fs		D		JKL N	Q	WX Z	J ^{π} : L=0 in (7 Li,t), (6 Li,d) for doublet; natural parity for doublet. γ -rays to 1 $^{+}$ and 2 $^{+}$.
7341.2 [‡] <i>11</i>	$(4)^{+}f$	35 ⁱ fs 21	Α	D		LM			J^{π} : L=(4) in (t,p); natural parity.
7405.9 7	$(3)^{-f}$	32 ⁱ fs 10		D		KLM	Q	WX	J ^π : L=1 in (d,p), E1 to 2 ⁺ (α ,p γ), γ -ray feeding from 4 ⁺ state at 8855; natural parity for doublet. Another possibility 1 ⁻ , as suggested in 1993Ol05 – (α ,p γ), less likely considering γ feeding from 4 ⁺ .
7423.0 [‡] 9	(5 ⁺)	<3 <i>i</i> fs	A	D		LM		W Z	J ^{π} : From (α ,p γ) (1993Ol05), based on γ (θ) and Hauser-Feshbach calculations.
7469? 2	1,2	55 ⁱ fs 21				L	QS	W	J^{π} : From $(\alpha,p\gamma)$. 1559 γ to 3 $^{-}$.
7489 <i>5</i>	1^{-f}				G	KLMN		W	J^{π} : L=1 in (⁷ Li,t) and (t,p); natural parity.
7643.1 <i>13</i>	2+	470 ^k as 200		D		JKLM	QS	X	J^{π} : L=2 in (⁷ Li,t); 7641 γ E2 to 0 ⁺ .
7663.7 9	(2)					LM	QS		XREF: S(7630). J^{π} : L=1 in (d,p); also from (e,e').
7722.0 11	3- f			D		JKLM	Q	X	J^{π} : L=3 (⁶ Li,d), (⁷ Li,t), and (t,p); natural parity.
7921 2	$(2)^{+}f$			D		KLM	QS	X	J^{π} : L=2 in (t,p); natural parity. J=3 in (13 C,d).
8076.9 <i>14</i>	$(4)^{+}$			D		KLM	Q		J ^π : L=2 in (d,p); J=3 in (13 C,d); γ -ray transitions to $^{2+}$, $^{4+}$,($^{6+}$).
8134.3 4	$2^{+}f$			D		JKLM	Q	X	J^{π} : L=2 in (t,p); natural parity.
8162.2 <i>13</i> 8375.9 <i>16</i>	$2^+,3,4^+$ $(3)^-$			D		LM KLM	S Q	X	J^{π} : γ' s to 2^+ and 4^+ . J^{π} : L=3 in (t,p); natural parity; γ transitions to
8452 7	(3)			D		KLII	ų.	X	2 ⁺ , 4 ⁺ . But J=5 in (¹³ C,d).
8489.6 <i>12</i>	2+			D		KLM	Q	Λ	XREF: M(8500).
									J^{π} : L=2 in (t,p).
8561.4 [#] <i>19</i>	$(1,2)^+$	0.35 [#] fs <i>13</i>				LM	QR		J^{π} : L=2 in (d,p), γ to 0 ⁺ and 1 ⁻ .
8573 10				_		77 T W	0.0	X	
8596.0 <i>9</i> 8741.0 <i>14</i>	(3)-			D D		KLM LM	Q S Q	X	J^{π} : L=3 in (t,p); but J=5 in (¹³ C,d).
8855.3 <i>15</i>	$(4)^{+}$			ע		LM	Q	Λ	J^{π} : L=2 in (d,p); γ transitions to (3) ⁻ , (6) ⁺ .
8900.3 16				D	G	L	Q T		J^{π} : Reported as doublet of 1^{-} and $(4,5)^{+}$ in 1998En04.
8976 <i>3</i>				D		J LM			
9045 3	$(2^+,3^-)$			D		LM	Q	X	J^{π} : γ' s to 4^+ , 1^- . J^{π} : L=1 in (d,p); possible γ -ray branch to 2^+
9097 3	(1 to 3) ⁻	"		D		J LM	Q		(1976Fi02).
9178 3	1+	84 [#] as 3					RS		XREF: S(9140). E(level): Other values: 9165 3 (1979Be10 – (γ, γ')), 9170 4 (1976Fi02 – $(\alpha, p\gamma)$), 9179 10 (1974Fl07 – (t,p)). J $^{\pi}$: From (pol γ, γ).
9178.1 7	(4) ⁺ 2 ⁺			D		J LM	T		J^{π} : L=4 in (t,p); but J=5 in (13 C,d).
9229 3	2+					J LM		X	J^{π} : L=2 in (t,p); γ transitions to 1 ⁻ ,2 ⁻ states.
9250 <i>3</i> 9324 2				D		L L			
9508 [@] 10				D		J LM			
9541 <i>10</i>	2+					M			J^{π} : L=2 in (t,p).
9625 12	5			D		J L			XREF: D(9640)L(9609).
									E(level): Average of data from $(\alpha, p\gamma)$, (⁶ Li,d), and (¹³ C,d).

E(level) [†]	J^{π}	$T_{1/2}^{g}$	XREF	Comments
9654 10			D M	J ^{π} : From (α ,p γ) (1976Br06). XREF: D(9630).
9725 <mark>&</mark> 10	(3^{-})		J LM	XREF: L(9697).
.,	(-)			J^{π} : L=(3) in (7 Li,t).
9841 [@] 10	(2^{+})		J LM	J^{π} : L=(2) in (${}^{7}Li,t$).
10066 ^{&} 10	(0^+)		J M	J^{π} : L=(0) in (7 Li,t).
10137 ^{&} 10	2+		J LM	J^{π} : L=2 in (t,p).
10208.5 ^a 10	1-	<2 ^a keV	G J LM R	J^{π} : L=1 in (6 Li,d), γ to 0 ⁺ .
10280.4 ^a 10	$(0^+,1^-,2^+)$	$<2^a$ keV	G J L	J^{π} : From (α, γ) angular distributions.
10294.8 ^a 10	(2 ⁺)	<2 <i>a</i> keV	G M	J^{π} : Suggested in 1994Gi01, 9018 γ D to 2 ⁺ .
10384 15			J 1M O	E(level): From (t,p).
1011510				J^{π} : 6,8 in $(\alpha,p\gamma)$.
10416.4 <i>3</i>			J 1M P	E(level): From (n,γ) : res.
10462.5 5	3-		M P	J^{π} : 6,8 in $(\alpha, p\gamma)$. E(level): From (n, γ) : res.
10402.3 3	3		11 1	J^{π} : L=3 in (t,p).
10501.6 <i>3</i>	2+		M P	E(level): From (n,γ) : res.
				J^{π} : L=2 in (t,p).
10544.9 <i>4</i>	2+		M P	E(level): From (n,γ) : res.
L				J^{π} : L=2 in (t,p).
10616 ^b 3	(5 ⁻)	6 keV	GH J LM	J^{π} : From $\alpha \gamma$ angular distribution measurements (α, γ) .
10696 4		<4 ^a keV	G J	E(level): From (α, γ) .
10706 <i>6</i>		$<10^a$ keV	GH M	XREF: M(10720).
10740 2	5-	6 IroV	CII I	E(level): From (α, γ) .
10749 3	5	6 keV	GH L	E(level): From (α, n) . J^{π} : From (α, γ) . Natural parity listed in 1990En08 Table 22.11.
10857 ^b 3 10890 10	3 ⁻ 1 ⁺	6 keV	GH J M T	J^{π} : L=3 in (t,p). J^{π} : From $\sigma(\theta)$ and DWIA calculation in (p,p').
10921 <mark>b</mark> 3	1-	24 keV	GH M	J^{π} : L=1 in (t,p); γ transitions to 0^+ , 2^+ states.
11032 ^a 6	$(8^+,6^+)$	$<10^a$ keV	GH J L	Z J^{π} : 8 ⁺ in $(\alpha, p\gamma)$, $(8^+, 6^+)$ in (α, γ) .
11064 10	2+	-0	M	J^{π} : L=2 in (t,p).
11130 ^a 5 11172	6,7	<5 ^a keV	G J L H	J^{π} : From $(\alpha, p\gamma)$, angular correlation measurements.
11194 <mark>b</mark> 3		7 keV	GH M	
11269 <mark>b</mark> 5	$2^+,3^+,4^+$	12 keV	GH J M	J^{π} : From 1978Tr05 (α, γ) – based on $\alpha \gamma$ angular
11323			Н	distribution measurements.
11431 <mark>b</mark> 8		48 keV	GH M	J^{π} : Natural parity in 1978Tr05 (α, γ).
11465 <mark>b</mark> 3	(1^{-})	<3 keV	GH	J^{π} : From 1978Tr05,1970Ch18 (α, γ).
11522 8	7-	10 10	GH LM	E(level): Weighted average of data 11533 10 (1994Ma37) and 11520 15 (1974Fl07) in (t,p), and 11482 20 (α ,p γ).
				J^{π} : From $(\alpha, p\gamma)$, angular correlation measurements. Natural parity listed in 1990En08 – Table 22.11.
11577 5		18 keV	GH M	E(level): From (α,n) .
11656 <i>10</i> 11686 <i>5</i>	(2 ⁺)	9 keV	M	E(level), J^{π} : From (α, γ) .
	$(2^{+})^{d}$	5 keV	GH M	
11708 <i>15</i> 11745	(2)	41 keV	HI M G	E(level): From (t,p).
11/10		II IC Y	•	

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}^{g}$		XR	EF	Comments
11751	1-	8 keV	G			
11772 [@] 10	3-			I M		J^{π} : L=3 in (t,p). Inconsistent with 1 ⁻ in (⁴ He, ⁴ He').
11892 6	1	10 ^d keV	G I	E M	ST	E(level): Weighted average of data from 11886 10 (α, γ) , 11907 10 and 11895 15 (t,p), and 11880 10 $({}^{4}\text{He}, {}^{4}\text{He'})$. J ^{π} : 1 ⁺ in (p,p'), 1 ⁻ in (${}^{4}\text{He}, {}^{4}\text{He'}$) and (α, γ) .
12000 10	1+				Т	J^{*} : 1 · III (p,p), 1 · III (· He, · He) and (α, γ) .
12020 <i>10</i> 12071 <i>15</i> 12218 <i>15</i>	0 ⁺ d	68 ^d keV		I M M		
12250 <i>10</i>	0^{+d}	76 ^d keV		Ι		
12280 <i>10</i>	1^{-d}	51 ^d keV	G I	Ι		
12390 <i>10</i> 12450 <i>20</i>	$3^ (0^+,1^-)$	99 ^d keV	1	M I		J^{π} : L=3 in (t,p), Inconsistent with 2 ⁺ in (⁴ He, ⁴ He'). J^{π} : L=0,1 in (t,p).
12570 10	$(1^{-})^{d}$	105 ^d keV]	Ι	S	
12610 <i>10</i> 12643 <i>15</i>	$(2^+)^{d}$	124 ^d keV	1	I M		
12700 10	3^{-d}	15 ^d keV]	Ι		
12800 <i>10</i>	2^{+d}	50 ^d keV		- [
12820 <i>10</i>	$\frac{1}{1}$	170 <mark>d</mark> keV		- [
12862 15	(3-)	145 ^{<i>j</i>} keV		E M		XREF: I(12840). J^{π} : L=(3) in (t,p). J^{π} =1 ⁻ in (⁴ He, ⁴ He'):res.
12900 10	3- d	39 <mark>d</mark> keV	-	Г М		E(level): Average of data from (t,p) and (⁴ He, ⁴ He').
12990 <i>10</i>	0^{+d}	80 ^d keV		 [E(tover), riverage of data from (t,p) and (ric, ric).
13030 <i>10</i> 13078 <i>20</i>	2^{+d}	90^d keV		- [
13190 10	3- d	79 <mark>d</mark> keV	-			
13210 10	0^{+d}	81 ^d keV		[
13274 20	O	OI KC V	-	M		
13392 8 13460 <i>10</i>	3 ^{-d}	58 ^d keV	1	E M		E(level): Average of data from (t,p) and (⁴ He, ⁴ He').
13490 10	4^{+d}	29 ^d keV]	[
13540 10	0^{+}	96 <mark>d</mark> keV]	Ι		
13570 10	3- d	136 ^d keV]	[
13650 10	$(3^{-})^{d}$	48 <mark>d</mark> keV		Γ		
13670 10	$(2^{+})^{d}$	41 ^d keV		Γ		
13690 <i>10</i>	$(5^{-})^{d}$	50 ^d keV		Ι		
13730 10	$4^{+}d$	57 ^d keV]	[
13820 10	$(2^+)^{d}$	51 ^d keV		[
13880 <i>10</i>	4+d	46 ^d keV		Ι	T	XREF: T(13890).
14060 <i>20</i> 14470			E		T	
15580 <i>40</i> 16510 <i>10</i>					T T	
$17.00 \times 10^3 \ 10$			F			
$17.48 \times 10^3 \ 10$			E			
18.43×10 ³ 10		≈330 ^h keV	EF			E(level): Average of data from $(^{18}O, ^{8}Be), ^{14}C(^{18}O, ^{10}Be)$ and $(^{12}C, \alpha)$.
19280 <i>20</i>	$(7^{-})^{d}$	88 ^d keV	F I	Ε		XREF: F(19130).

²²Ne Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}g$		XREF	Comments
19.45×10 ³ 10	(6+)		E		J ^{π} : Based on α - α angular distribution measurements (2006Yi01).
19560 20	$(7^{-})^{d}$	75 ^d keV		I	
19.89×10 ³ 10	(10+)		E		J ^{π} : Based on α - α angular distribution measurements (2006Yi01).
$20.00 \times 10^3 \ 10$	(9 ⁻) ^e	≈270 keV	F		
$20.70 \times 10^3 10$	$(11^{-})^{d}$	≈340 ^d keV	F		
20850 20	$(9^{-})^{d}$	110 ^d keV		I	
21840 20	$(9^{-})^{d}$	170 ^d keV	EF	I	XREF: F(21600).
					E(level): From (⁴ He, ⁴ He'):res.
2		1.			Γ – Other value: ~ 350 keV (12 C, α).
$22.20 \times 10^3 \ 10$	$(12^+)^{e}$	$\approx 250^{h} \text{ keV}$	F		
$22.90 \times 10^3 10$		≈290 ^h keV	F		
$24.14 \times 10^3 \ 20$			F	I	XREF: F(24000).
$25.00 \times 10^3 10$	$(9^{-})^{e}$	≈350 ^h keV	F		
$25.90 \times 10^3 10$			F		
$26.89 \times 10^3 \ 20$			F	I	XREF: F(27000).

[†] From 19 F(α ,p γ), except otherwise noted.

γ (²²Ne)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	Ι _γ @	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	$\delta^{@b}$	Comments
1274.537	2+	1274.537 7	100	0.0 0+	E2		B(E2)(W.u.)=12.76 18
							E_{γ} ,Mult.: From ²² Na β^+ decay.
3357.2	4+	2082.6 [‡] 5	100	1274.537 2+	E2		B(E2)(W.u.)=17.5 4
4456.2	2+	1099 [#]		3357.2 4 ⁺			
		3181.4	100.0 <i>21</i>	1274.537 2+	M1+E2	+0.09 2	B(M1)(W.u.)=0.18 <i>12</i> ; B(E2)(W.u.)=1.0 8 δ: Average of +0.11 <i>3</i> (1994Br11 – also

[‡] From 22 F β^- decay.

[#] From (γ, γ') .

[@] From (t,p).

[&]amp; Average of data from (t,p) and (⁶Li,d). Uncertainty – lowest experimental value.

^a From (α, γ) .

^b Weighted average of data from (α, γ) and (α, n) . Uncertainty – lowest experimental value.

^c Identified as member of a rotational band based on 0^+ g.s. in 1976Fi02 $(\alpha,p\gamma)$.

^d From ¹⁸O(⁴He, ⁴He'):res. J^{π} assignments are based on double differential cross section measurements and fitting.

^e From (12 C,α). J^{π} assignments are based on the analysis of double (α,α) angular correlations with the residual 18 O nucleus in the 0^+ ground state.

^f Natural/Unnatural parity quoted in comment column from 1971Ol01 – $\sigma(180^{\circ})$ (α,α').

^g Γ_0 values from (α,n) :res, except otherwise noted.

^h From (12 C, α).

ⁱ From 1993Ol05 (α ,p γ).

^j From (⁴He, ⁴He'):Re.

 $[^]k$ From (e,e').

γ ⁽²²Ne) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	Ι _γ @	\mathbb{E}_f	J_f^{π}	Mult.@	$\delta^{@b}$	Comments
4456.2 5146.0	2 ⁺ 2 ⁻	4455.7 689.8	3.1 2 <i>I</i> 89 ^a 6	0.0 4456.2	0 ⁺ 2 ⁺	E2 E1+M2	-0.29 2	possibility of a large value), +0.08 2 (1967Bu01). B(E2)(W.u.)=0.7 5 B(E1)(W.u.)=0.0014 4; B(M2)(W.u.)=1.2×10 ³ 4
		3871.1	100 ^a 6	1274.537	2+	E1+M2	+0.96 18	δ: Other value: +0.04 8 (1967Bu01). B(E1)(W.u.)=5.1×10 ⁻⁶ 17; B(M2)(W.u.)=1.4 5
5329.6	1+	4054.6	50 12	1274.537	2+	M1+E2	+1.9 5	δ: Other value: +0.10 10 1972Ho52. B(M1)(W.u.)=0.020 11; B(E2)(W.u.)=31 12 S: Weighted guarage of 1.7 10
5363.4	2+	5328.9 4088.4	100 <i>12</i> 100 <i>4</i>	0.0 1274.537	0 ⁺ 2 ⁺	[M1] M1+E2	-0.19 4	δ: Weighted average of -1.7 10 (1972Ho52) and -2.0 6 (1993Ol05). B(M1)(W.u.)=0.081 25 B(M1)(W.u.)=0.0039 8; B(E2)(W.u.)=0.06 3 δ: Weighted average of -0.12 6 (1993Ol05), -0.25 8 (1968Ku05), and
		5362.7	16 <i>4</i>	0.0	0+	[E2]		-0.27 8 (1976Fi02). B(E2)(W.u.)=0.070 22
5523.3	(4) ⁺	2166.1 [‡] 5	100.0‡ 6	3357.2	4 ⁺	M1		B(M1)(W.u.)=0.102 <i>15</i> δ : -0.04 <i>3</i> (1993Ol05) and -0.07 <i>12</i> (1968Ku05) both in $(\alpha, p\gamma)$).
		4247.9 [‡] 10	1.6 [‡] 3	1274.537	2+	E2		B(E2)(W.u.)=0.084 20
5641.2	3+	2283.9 [‡] 7	45 [‡] 3	3357.2	4+	M1(+E2)	-0.12 <i>17</i>	B(M1)(W.u.)>0.18 I_{γ} : Other value: 30 4 in (t,p γ).
		4366.1 [‡] 10	100‡ 3	1274.537	2+	M1+E2	+0.15 2	δ: From 1968Ku05 (α,pγ). B(M1)(W.u.)>0.059; B(E2)(W.u.)>0.36 δ: Weighted average of +0.18 <i>3</i> (1968Ku05), +0.19 <i>4</i> (1967Bu01), +0.13 <i>3</i> (1972Ho52), and +0.16 <i>3</i> (1976Br06).
5910.1	3-	1453.8	21 6	4456.2	2+	E1(+M2)	+0.19 10	B(E1)(W.u.)=(0.0013 6); $B(M2)(W.u.)=(1.0\times10^2 5)$
		2552.7 4635.0	21 <i>6</i> 100 <i>6</i>	3357.2 1274.537	4 ⁺ 2 ⁺	E1+M2	+0.17 6	B(E1)(W.u.)=0.00019 7; B(M2)(W.u.)=1.1 9 δ: Other value: 0.02 2 (1976Br06).
6119.9	2+	1663.6	10.3 ^a 13	4456.2	2+	M1+E2	+1.1 3	B(M1)(W.u.)=0.012 8; B(E2)(W.u.)=38
		4844.8	100 ^a 4	1274.537	2+	M1+E2	+2.3 3	B(M1)(W.u.)=0.0017 10; B(E2)(W.u.)=2.7 14 δ: also an alternate value: -0.11 4 (1993Ol05).
		6119.0	18 ^a 3	0.0	0+	E2		(19950103). B(E2)(W.u.)=0.18 <i>10</i> Mult.: From (e,e') based on B(E2).
6235	0+	905	100	5329.6	1+			
6311.0	(6 ⁺)	2953.6	100	3357.2	4+	[E2]		B(E2)(W.u.)=14.0 <i>12</i>
6345.1	4+	2987.7 [‡] 9	100	3357.2	4+	M1+E2	+0.68 16	B(M1)(W.u.)=0.043 <i>12</i> ; B(E2)(W.u.)=16
6635.8	(3,4)+	3278.3	89 6	3357.2	4+	M1+E2	-0.9 3	B(M1)(W.u.)=0.0033 18; B(E2)(W.u.)=1.8 10
6689.0	1-	5360.6 5413.7 6687.9	100 6 45 9 100 9	1274.537 1274.537 0.0		[E1] (E1)		B(E1)(W.u.)=7.E-6 4 B(E1)(W.u.)=8.E-6 5
				Continued	lonn	evt page (for	otnotes at en	d of table)

γ ⁽²²Ne) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{\textcircled{@}b}$	Comments
6819.4	2+	1455.9 1673.3	43 <i>16</i> 57 <i>16</i>	5363.4 5146.0	2 ⁺ 2 ⁻			
		2363.1	100 16	4456.2	2+	M1+E2	+2.5 4	B(M1)(W.u.)>0.021; B(E2)(W.u.)>2.1×10 ²
		5544.1	70 16	1274.537	2+	M1		B(M1)(W.u.)>0.011 δ: +0.10 10 1993Ol05 (α ,p γ).
6853.5	(1^+)	5578.2	85 8	1274.537		M1+E2	+1.3 5	B(M1)(W.u.)=0.06 4; B(E2)(W.u.)=22 12
	- 1	6852.3	100 8	0.0	0+	M1		B(M1)(W.u.)=0.10 5
6900	0+	5624.7	100	1274.537		E2		B(E2)(W.u.)=0.36 4
7051	1-	5776	100.0 ^a 11	1274.537		[E1]		$B(E1)(W.u.)=4.1\times10^{-5}$ 13
50.44.4	0+	7050	9.9 ^a 11	0.0	0+	[E1]		$B(E1)(W.u.)=2.2\times10^{-6}$ 7
7341.1	0_{+}	2011.4	100 8	5329.6	1+	(M1)		B(M1)(W.u.)>0.51
		2884.7	75 8	4456.2	2+	(E2)		$B(E2)(W.u.)>1.1\times10^2$
7341.2	(4) ⁺	1430.9	100 6	5910.1	3-			E _γ : γ-ray not seen in ²² F β ⁻ decay. I _γ from $(\alpha, p\gamma)$.
		3983.5 [‡] 10	96 <i>6</i>	3357.2	4+	M1+E2	-0.7 3	B(M1)(W.u.)=0.0033 22; B(E2)(W.u.)=0.7 6
7405.9	(3)	2259.8	100 3	5146.0	2-	M1+E2	+1.3 4	B(M1)(W.u.)=0.014 7; B(E2)(W.u.)=33 13
		6130.4	56 <i>3</i>	1274.537	2+	E1		$B(E1)(W.u.)=4.2\times10^{-5}$ 14
7423.0	(5^+)	1900.0 [‡] 6	100	5523.3	$(4)^{+}$			
7469?	1,2	1559	100	5910.1	3-			
7489	1-	1369	10 6	6119.9	2+			
		2125	10 6	5363.4	2+			
		6213	23 6	1274.537				
7640.1	2+	7487	100 6	0.0	0+	E1		
7643.1	2+	3186.7	42 5	4456.2	2+	M1 . E0	0.00.5	C. F. 107(F)00
		6367.6 7641.7	100 <i>5</i> 12 <i>5</i>	1274.537 0.0	2 ⁺ 0 ⁺	M1+E2 E2	-0.085	δ: From 1976Fi02.
7663.7	(2)	1428.7	100	6235	0+	EZ		
7722.0	3-	1602.0	19 16	6119.9	2+			
	-	2198.6	25 16	5523.3	$(4)^{+}$			
		2575.8	22 16	5146.0	2-			
		3265.5	100 16	4456.2	2+			
		4364.3	78 <i>16</i>	3357.2	4+			
	1	6446.5	69 16	1274.537				
7921	$(2)^{+}$	580	20 15	7341.2	$(4)^{+}$			
		1102	29 15	6819.4	2+			
		2398 6645	33 <i>15</i> 100 <i>15</i>	5523.3 1274.537	$(4)^+$ 2^+			
8076.9	$(4)^{+}$	1765.8	50 22	6311.0	(6^+)			
3070.9	(4)	2713.3	36 22	5363.4	2+			
		4719.1	100 22	3357.2	4 ⁺			
		6801.2	92 22	1274.537				
8134.3	2+	1314.9	8 3	6819.4	2+			
		6858.6	100 <i>3</i>	1274.537	2+	M1+E2	-0.485	I_{γ} : From 1976Fi02 (α ,p γ).
8162.2	$2^+,3,4^+$	1342.8	8 8	6819.4	2+			,
		4804.4	44 8	3357.2	4+			
		6886.5	100 8	1274.537				
8375.9	$(3)^{-}$	712.2	8 7	7663.7	(2)			
		5018.1	100 7	3357.2	4 ⁺			
0400 6	2+	7100.1	28 7	1274.537	2+			
8489.6	2+	412.7	32 <i>32</i>	8076.9	$(4)^{+}$			
		1148.4 2254.5	100 <i>32</i> 82 <i>32</i>	7341.2 6235	$(4)^+$ 0^+			
		<i>22J</i> ₹, <i>J</i>	02 32	0233	U			

γ ⁽²²Ne) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	Comments
8489.6	2+	2848.2	71 32	5641.2	3 ⁺		
		5131.8	71 32	3357.2	4+		
8561.4	$(1,2)^+$	1872.3	72 12	6689.0	1-		
0506.0		8559.6	100 12	0.0	0+		
8596.0		519.1 3449.7	100 <i>6</i> 20 <i>6</i>	8076.9 5146.0	$(4)^+$ 2^-		
8741.0	(3)-	1399.6	19 <i>12</i>	7341.2	$(4)^{+}$		
0741.0	(3)	1689.9	28 12	7051	1-		
		4284.3	100 12	4456.2	2+		
		5383.1	28 12	3357.2	4+		
8855.3	$(4)^{+}$	1449.3	39 10	7405.9	$(3)^{-}$		
0000 2		2544.1	100 10	6311.0	(6^+)		
8900.3		1477.2	54 33	7423.0	(5^+)		
		1559.0 2211.2	100 <i>33</i> 71 <i>33</i>	7341.2 6689.0	$(4)^+$ 1^-		
		2589.1	79 33	6311.0	(6 ⁺)		
		3258.8	54 33	5641.2	3+		
		3536.6	58 <i>33</i>	5363.4	2+		
8976		1312	56 11	7663.7	$(2)^{-}$		
0045	(a+ a-)	1925	100 11	7051	1-		
9045	$(2^+,3^-)$	1402	71 24	7643.1	2+		
		1994 5687	92 <i>24</i> 100 <i>24</i>	7051 3357.2	1 ⁻ 4 ⁺		
9178	1+	9176	100 24	0.0	0^{+}		E_{γ} : placement in (γ, γ) .
9178.1	$(4)^{+}$	3267.6	64 11	5910.1	3-		E_{γ} . procedure in (γ,γ) .
		4721.3	25 11	4456.2	2+		
		5819.9	100 11	3357.2	4+		
9229	2+	1565	79 9	7663.7	$(2)^{-}$		
0250		2178	100 9	7051	1-		
9250		1528 3130	100 <i>11</i> 56 <i>11</i>	7722.0 6119.9	3 ⁻ 2 ⁺		
9324		1602	100	7722.0	3-		
9625	5	3314	45	6311.0	(6 ⁺)		
		6267	100	3357.2	4+		
10208.5	1-	8932.0	25 <mark>&</mark> 6	1274.537			
		10206.0	100 <mark>&</mark> 6	0.0	0_{+}	E1	
10280.4	$(0^+,1^-,2^+)$	2791.2	23 ^{&} 7	7489	1-		
		3426.6	45 <mark>&</mark> 9	6853.5	(1^{+})		
		4950.2	100 <mark>&</mark> 12	5329.6	1+		
		5823.4	2 ^{&} 1	4456.2	2+		
		9003.9	57 <mark>&</mark> 12	1274.537	2+		
10294.8	(2^+)	2805.6	19 & 5	7489	1-		
		3441.0	16 <mark>&</mark> 5	6853.5	(1^+)		
		4964.6	30 <mark>&</mark> 7	5329.6	1+		
		5837.8	11&4	4456.2	2+		
		9018.3	100 & 12	1274.537		D	δ : 0.04 5 in (α, γ) .
10416.4		4071	100 12	6345.1	4 ⁺	D	(u, y).
10616	(5 ⁻)	4270	100 <mark>&</mark> 8	6345.1	4 ⁺		
10010	(5)	7258	52 ^{&} 8	3357.2	4 ⁺		
10696		7337	100	3357.2	4 4 ⁺		
10706		9429	100	1274.537			
10749	5-	4437	100 <mark>&</mark> 10	6311.0	(6^+)		
					(-)		

γ (22Ne) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	J_i^π	E_{γ}^{\dagger}	Ι _γ .@	E_f	\mathbf{J}_f^{π}
10749	5-	7390	92 <mark>&</mark> 10	3357.2	4+	11269	2+,3+,4+	6122	100 & 15	5146.0	2-
10857	3-	9580	100	1274.537	2+			7910	81 <mark>&</mark> <i>15</i>	3357.2	4+
10921	1-	9644	100 <mark>&</mark> 9	1274.537	2+	11431		10154	100	1274.537	2+
		10918	79 <mark>&</mark> 9	0.0	0_{+}	11465	(1^{-})	6320	100 <mark>&</mark> 4	5146.0	2-
11032	$(8^+,6^+)$	4721 [#]		6311.0	(6^{+})			10190	33 <mark>&</mark> 4	1274.537	2+
11130	6,7	4818	100	6311.0	(6^{+})			11464	49 <mark>&</mark> 4	0.0	0_{+}
11194		2294	100 <mark>&</mark> 4	8900.3		11522	7-	5221	100	6311.0	(6^+)
		9917	18 <mark>&</mark> 4	1274.537	2+						

 $^{^\}dagger$ From level energy difference, recoil energy subtracted, except otherwise noted. ‡ From $^{22}{\rm F}\,\beta^-$ decay, except otherwise noted. $^\sharp$ Placement from ($^{26}{\rm Mg},^{22}{\rm Ne}\gamma$).

[@] From 1993Ol05 $(\alpha,p\gamma)$, except otherwise noted.

[&]amp; From (α, γ) .

^a From $(t,p\gamma)$.

^b From $(\alpha, p\gamma)$, except otherwise noted.

Legend

Level Scheme

Intensities: Relative photon branching from each level

Coincidence

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

