Appendix

```
In [11]:
    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.linear_model import LinearRegression
    import patsy
    import statsmodels.api as sm
    from statsmodels.stats.outliers_influence import variance_inflation_factor
    from sklearn import tree
    import seaborn as sns
In [12]:
sns.set(rc = {'figure.figsize': (12, 8)})
plt.style.use('fivethirtyeight')
```

Read in the data and make necessary conversions

```
data = pd.read_csv("laptopData.csv", index_col=0)
  data["ssd"] = data["ssd"].map({"SSD": 1, "No": 0})
  data["BIN"] = data["BIN"].map({False: 0, True: 1})
  data["sale"] = data["sale"].map({"SOLD": 1, "NOT SOLD": 0})
  data
```

Out[13]:	sale		price	ghz	ram	hd	ssd	BIN
	1	1	404.99	2.7	8.0	NaN	1	0
	2	1	355.00	2.5	8.0	128.0	1	0
	3	1	449.99	2.6	4.0	128.0	0	1
	4	0	499.99	2.5	4.0	320.0	0	1
	5	0	199.99	NaN	NaN	NaN	0	1
	•••			•••			•••	
	216	1	480.00	NaN	6.0	128.0	1	1
	217	1	452.00	2.6	8.0	240.0	1	0
	218	1	358.00	2.6	4.0	128.0	0	0
	219	1	450.00	NaN	4.0	128.0	1	0
	220	1	299.95	2.5	4.0	320.0	0	1

220 rows × 7 columns

Exploratory analysis on the response variable

```
In [14]: data.hist(column="price")
Out[14]: array([[<AxesSubplot:title={'center':'price'}>]], dtype=object)
```



```
In [15]:
          data["price"].describe()
                   220.000000
Out[15]: count
         mean
                  364.162727
         std
                  132.301459
         min
                   1.000000
         25%
                  299.980000
         50%
                  357.500000
         75%
                  449.992500
                   699.990000
         Name: price, dtype: float64
         Drop rows where the price is anomalous
```

```
In [16]:
           data = data.drop(data[data["price"] < 10].index)</pre>
In [17]:
           data.isna().sum()
Out[17]: sale
          price
                    0
                    49
          ghz
                    42
          ram
          hd
                    69
          ssd
                     0
          BIN
                     0
          dtype: int64
```

Data Imputation for missing values

```
In [18]: data.corr().round(2)
```

```
Out[18]:
                  sale price
                               ghz
                                     ram
                                             hd
                                                  ssd
                                                         BIN
           sale
                  1.00
                       -0.12
                               0.10 -0.05
                                          -0.05
                                                  0.16
                                                       -0.22
                        1.00
           price
                 -0.12
                              0.28
                                     0.25
                                          -0.16
                                                 0.44
                                                        0.26
                  0.10
                        0.28
                               1.00
                                     0.32 -0.08
                                                  0.19 -0.02
            ghz
                 -0.05
                        0.25
                              0.32
                                     1.00
                                          -0.02
                                                  0.29
                                                       -0.02
            ram
                 -0.05
                       -0.16
                             -0.08
                                   -0.02
                                           1.00
                                                -0.54
                                                       -0.17
             hd
                  0.16
                        0.44
                               0.19
                                     0.29
                                          -0.54
                                                  1.00
                                                       -0.01
            ssd
                -0.22
                        0.26
                             -0.02 -0.02
                                          -0.17
                                                 -0.01
                                                        1.00
In [19]:
           data[data["ssd"] == 1]["hd"].mode()
                128.0
Out[19]: 0
          dtype: float64
In [20]:
           data[data["ssd"] == 0]["hd"].mode()
Out[20]: 0
                320.0
          dtype: float64
          Fill in hd with most common (mode) value amongst laptops with same ssd value. This is
          because the highest correlated variable for hd is ssd
In [21]:
           data["hd"].fillna(data["ssd"].map({1: 128, 0: 320}), inplace=True)
           data.isna().sum()
                      0
Out[21]: sale
                      0
          price
                     49
          ghz
                     42
          ram
          hd
                      0
          ssd
                      0
          BIN
                      0
          dtype: int64
          Similarly, for ghz and ram, use a stratified mode to fill in missing values
In [22]:
           data.groupby("ghz")["ram"].agg(pd.Series.mode)
          ghz
Out[22]:
          2.5
                          4.0
          2.6
                          4.0
          2.7
                          8.0
          2.8
                  [4.0, 8.0]
          3.2
                          8.0
          Name: ram, dtype: object
In [23]:
           data.groupby("ram")["ghz"].agg(pd.Series.mode)
Out[23]: ram
                    2.5
          2.0
```

```
2.5
         3.0
                 2.5
         4.0
                 2.6
         6.0
                  2.5
         8.0
         12.0
                 []
         16.0
                  []
         Name: ghz, dtype: object
In [24]:
          imputed_data_ram = data["ram"].fillna(data["ghz"].map({2.5: 4, 2.6: 4, 2.7: 8, 2
          imputed_data_ghz = data["ghz"].fillna(2.5) # most values are 2.5, so fill with t
          data["ram"] = imputed data ram
          data["ghz"] = imputed_data_ghz
          data.isna().sum()
Out[24]: sale
                   0
         price
                   0
         ghz
                   0
         ram
                   0
         hd
                   0
                   0
         ssd
                   0
         BIN
         dtype: int64
```

Model Selection & Variable Selection

```
In [25]:
          plt.rcParams["figure.figsize"] = (20,10)
          def draw_outcome_plots(df, outcome, n_rows, n_cols):
              fig=plt.figure()
              variables = df.columns.drop(outcome)
              for i, var name in enumerate(variables):
                  ax=fig.add subplot(n rows, n cols, i+1)
                  if len(df[var name].unique()) > 10:
                      df.plot.scatter(x= var name, y= outcome, ax=ax)
                      df.boxplot(column=outcome, by=var name, grid = False, ax=ax)
                  ax.set(ylabel=outcome)
                  ax.set title(var name)
              fig.suptitle('Scatter and Box Plots by '+outcome)
              fig.tight layout()
              plt.show()
          draw outcome plots(data, 'price', 2, 3)
```

c argument looks like a single numeric RGB or RGBA sequence, which should be a voided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points.

Looking at boxplots, there seem to be linear trends across all variables except $\$ sale $\$ and $\$ hd $\$. This may need further investigation.

This is indicative of a linear regression model, also because the response variable is normally distributed.

Exclude sale since that is being influenced by the response variable

```
y1, X1 = patsy.dmatrices("price ~ ghz + ram + hd + ssd + BIN", data, return_type
model1 = sm.OLS(y1, X1).fit()
print(model1.summary())
```

OLS Regression Results							
		=======				=======	
Dep. Variable:		price	R-squar	red:		0.312	
Model:		OLS	Adj. R-	-squared:		0.296	
Method:	Least	Squares	F-statistic: 1				
Date:	Thu, 08	Sep 2022	Prob (F-statistic): 1.58e				
Time:		15:33:47	Log-Lik	elihood:		-1296.4	
No. Observations:		215	AIC:			2605.	
Df Residuals:		209	BIC:			2625.	
Df Model:		5					
Covariance Type:	n	onrobust					
	ef std	====== err	======= t	P> t	[0.025	0.9751	

	coef	std err	t	P> t	[0.025	0.975]
Intercept ghz ram hd ssd	-183.0675 170.0113 9.8137 -0.0050 87.9694 67.1178	178.151 69.891 3.703 0.092 20.529 14.087	-1.028 2.433 2.650 -0.054 4.285 4.765	0.305 0.016 0.009 0.957 0.000	-534.270 32.230 2.514 -0.186 47.498 39.347	168.135 307.793 17.113 0.176 128.441 94.888
Omnibus: 5.752 Prob(Omnibus): 0.056 Skew: 0.242 Kurtosis: 3.691			056 Jarque 242 Prob(J	,	:	1.836 6.366 0.0415 7.12e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

[2] The condition number is large, 7.12e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Also check with an interaction term of hd:ssd since that is an inference we are interested in

```
In [27]:
    y2, X2 = patsy.dmatrices("price ~ ghz + ram + hd*ssd + BIN", data, return_type="
    model2 = sm.OLS(y2, X2).fit()
    print(model2.summary())
```

	========		91622. =====	ion Res ======	uics ========	========	
Dep. Variab	le:	pr	ice	R-squa	red:		0.341
Model:			OLS	Adj. R	-squared:		0.322
Method:		Least Squa	res	F-stat	istic:		17.96
Date:	Т	hu, 08 Sep 2	022	Prob (F-statisti	c):	9.41e-17
Time:		15:33	:47	Log-Li	kelihood:		-1291.7
No. Observa	tions:		215	AIC:			2597.
Df Residual	s:		208	BIC:			2621.
Df Model:			6				
Covariance	Type:	nonrob	ust				
========	=======	========	=====	=====	=======	========	=======
	coef	std err		t 	P> t	[0.025	0.975]
Intercept	-25.7613	182.228	-0	.141	0.888	-385.012	333.489
ghz	124.4547	70.168	1	.774	0.078	-13.877	262.786
ram	9.0168	3.641	2	.476	0.014	1.838	16.195
hd	-0.1403	0.100	-1	.397	0.164	-0.338	0.058
ssd	-32.5746	44.453	-0	.733	0.465	-120.211	55.062
hd:ssd	0.7034	0.231	3	.042	0.003	0.248	1.159
BIN	70.3974	13.859	5	.080	0.000	43.076	97.719
Omnibus:	========	7 .	===== 678	===== Durbin	======= -Watson:	========	 1.848
Prob(Omnibu	s):		022		-Bera (JB)	:	9.815
Skew:	- , -		260	Prob(J	` ,	-	0.00739
Kurtosis:			908	Cond.	•		7.50e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.5e+03. This might indicate that there are strong multicollinearity or other numerical problems.

AIC values are very similar, so prefer to keep the model without the interaction term as it is more easily interpretable, and the coefficients seem more reasonable and closer to reality

Model Diagnostics

```
def diagnostic_plots(fit, response):
    fig, (ax1) = plt.subplots(1,1)
    ax1.scatter(fit.fittedvalues, response)
    abline_max = min(max(fit.fittedvalues), max(response))
    ax1.plot([0, abline_max], [0, abline_max], color='r')
    ax1.set_title('Model Fit Plot')
    ax1.set_ylabel('Observed values')
    ax1.set_xlabel('Fitted values');
    ax1.set_box_aspect(1)

diagnostic_plots(model1, data.price)
```


Recommendation

From the best model, predict prices and look at laptops that have lower prices than the predictions. These are "good" deals. Further filter based on requirements like ssd=1, and BIN=0 (since this makes the price cheaper) and large HD capacity

```
In [36]: data["savings"] = data["price"] - model1.predict(X1)
  data[(model1.predict(X1) < data["price"]) & (data["ssd"] == 1) & (data["sale"]</pre>
```

Out[36]:		sale	price	ghz	ram	hd	ssd	BIN	savings
	6	0	699.95	2.5	4.0	128.0	1	1	264.285959
	7	0	437.71	2.5	4.0	128.0	1	1	2.045959
	23	0	565.00	2.5	8.0	240.0	1	1	90.639956
	30	0	500.00	2.7	8.0	160.0	1	0	58.356284

	sale	price	ghz	ram	hd	ssd	BIN	savings
36	0	437.71	2.5	4.0	128.0	1	1	2.045959
39	0	499.99	2.7	8.0	128.0	1	0	58.186608
53	0	564.95	2.5	8.0	128.0	1	1	90.031090
54	0	560.00	2.7	8.0	160.0	1	0	118.356284
75	0	565.00	2.7	8.0	160.0	1	0	123.356284
100	0	579.00	2.7	8.0	160.0	1	0	137.356284

In [37]:

data.loc[[23, 30, 53, 100]]

Out[37]:		sale	price	ghz	ram	hd	ssd	BIN	savings
	23	0	565.00	2.5	8.0	240.0	1	1	90.639956
	30	0	500.00	2.7	8.0	160.0	1	0	58.356284
	53	0	564.95	2.5	8.0	128.0	1	1	90.031090
	100	0	579.00	27	8.0	160.0	1	0	137 356284

In []:	
In []:	
In []:	