杉山 素直

履歴書, 最終更新日: August 15, 2025

連絡先

住所 Center for Particle Cosmology, Department of Physics and Astronomy,

University of Pennsylvania, Philadelphia, PA 19104, USA

部屋 4N21

メール ssunao@sas.upenn.edu

ウェブサイト https://git-sunao.github.io https://github.com/git-sunao

研究分野

理論および観測的宇宙論:

宇宙の大規模構造、重力レンズ(弱レンズ、マイクロレンズ)、原始ブラックホール

共同研究

すばる望遠鏡 HSC 弱重力レンズグループ、メンバー (2021 年~現在, 2024 年 12 月より**共同議長**) ダークエネルギーサーベイ (DES)、メンバー (2024 年~現在)

職歴

現在 ポスドク研究員、

2023年9月-現在

アメリカ合衆国、ペンシルベニア大学、フィラデルフィア

受入教員: Bhuvnesh Jain JSPS 海外特別研究員,

2023年9月 – 現在

アメリカ合衆国、ペンシルベニア大学、フィラデルフィア

過去 ポスドク研究員,

2023年4月-2023年8月

日本,カブリ数物連携宇宙研究機構,千葉

指導教員: 高田昌広

プロジェクト研究員, 2023 年 4 月 – 2023 年 8 月

日本, Beyond AI, 東京

日本学術振興会特別研究員 (DC2), $2021 \pm 4 \, \text{月} - 2023 \pm 3 \, \text{月}$

日本,カブリ数物連携宇宙研究機構,千葉

学歴 東京大学,東京,日本,

2020年4月-2023年3月

物理学専攻,博士課程

論文題目: "Joint cosmology analyses using gravitational weak lensing data from Sub-

aru Hyper Suprime-Cam"

指導教員: 高田昌広 東京大学, 東京, 日本,

2018年4月-2020年3月

物理学専攻,修士

論文: "Validation of cosmological analysis based on perturbation theory for wide-field qalaxy survey"

指導教員: 高田昌広

東京大学, 東京, 日本,

2014年4月-2018年3月

物理学専攻,学士

獲得研究資金 および 受賞

Grant-in-Aid for JSPS Research Fellows (DC2), Japan Society for the Promotion of Science, Apr. 2021 – Mar. 2023

理学系研究科奨励賞 (博士課程), 東京大学, 理学系, 2023年3月

WINGS IGPEES, コース修了, Sep. 2018 – Mar. 2023

教育

Collaborative coding: git and github, CD3 symposium 2023, Kavli IPMU

Coadvised students: Rafael C. H. Gomes (a PhD student at UPenn since 2023), Noriaki Nakasawa (a master student at the University of Nagoya, 2022)

活動

学会 セミナー/ワークショップ/会議	日本天文学会 (ASJ), 2018 年 – 現在 日本物理学会 (JPS), 2022 年 – 現在 IPMU ランチセミナー (共同オーガナイザー), 2019 年 – 2021 年 HSC 弱重力レンズミニワークショップ主催, 2022 年 8 月
レフェリー	Sesto 2025 - Tracing Cosmic Evolution with Galaxy Clusters V (SOC), 2025 International Journal of Modern Physics D The Astrophysical Journal
コンピューティング	American Astronomical Society Journals Journal of Cosmology and Astroparticle Physics 開発コード: fft-extended-source, fastnc, dark emulator (Dark Quest Project の一部) C、C++、Python、HSCパイプライン (画像解析用)を使用で
採択された観測	きます Definitive search for PBH dark matter in the multiverse cosmology with HSC の PI Survey of M31 eclipsing binaries: Toward a 1% distance measurement の co-PI

アウトリーチ, メディア協力

NHK コズミック フロント 「原始ブラックホール 宇宙創成のマスターキー」 出演, 2021年

Quanta Magazine on Clashing Cosmic Numbers Challenge Our Best Theory of the Universe, インタビュー, 2024年

朝日新聞, 宇宙の標準理論にほころび? 暗黒物質の精密な「地図」で解析, インタビュー, 2024年

最新の論文リストは ADS を参照ください。 * = 著者リストアルファベット順

筆頭著者または主要な貢献をした査読付論文

- R. C. H. Gomes, Sugiyama, S., B. Jain, et al. Cosmology with second and third-order shear statistics for the Dark Energy Survey: Methods and simulated analysis. arXiv e-prints, arXiv:2503.03964, March 2025:arXiv:2503.03964
- 2. S. Sugiyama, R. C. H. Gomes, and M. Jarvis. Fast modeling of the shear three-point correlation function. arXiv e-prints, arXiv:2407.01798, July 2024:arXiv:2407.01798
- 3. R. Dalal, X. Li, A. Nicola, et al. Hyper Suprime-Cam Year 3 results: Cosmology from cosmic shear power spectra. Phys. Rev. D, 108(12):123519, December 2023:123519
- 4. H. Miyatake, S. Sugiyama, M. Takada, et al. Hyper Suprime-Cam Year 3 results: Cosmology from galaxy clustering and weak lensing with HSC and SDSS using the emulator based halo model. Phys. Rev. D, 108(12):123517, December 2023:123517
- 5. X. Li, T. Zhang, S. Sugiyama, et al. Hyper Suprime-Cam Year 3 results: Cosmology from cosmic shear two-point correlation functions. Phys. Rev. D, 108(12):123518, December 2023:123518
- S. More, S. Sugiyama, H. Miyatake, et al. Hyper Suprime-Cam Year 3 results: Measurements of clustering of SDSS-BOSS galaxies, galaxy-galaxy lensing, and cosmic shear. Phys. Rev. D, 108(12):123520, December 2023:123520
- 7. S. Sugiyama, H. Miyatake, S. More, et al. Hyper Suprime-Cam Year 3 results: Cosmology from galaxy clustering and weak lensing with HSC and SDSS using the minimal bias model. Phys. Rev. D, 108(12):123521, December 2023:123521
- 8. S. Sugiyama, M. Takada, and A. Kusenko. Possible evidence of axion stars in HSC and OGLE microlensing events. *Physics Letters B*, 840:137891, May 2023:137891
- 9. H. Miyatake, S. Sugiyama, M. Takada, et al. Cosmological inference from an emulator based halo model. II. Joint analysis of galaxy-galaxy weak lensing and galaxy clustering from HSC-Y1 and SDSS. Phys. Rev. D, 106(8):083520, October 2022:083520
- H. Miyatake, Y. Kobayashi, M. Takada, et al. Cosmological inference from an emulator based halo model. I. Validation tests with HSC and SDSS mock catalogs. Phys. Rev. D, 106(8):083519, October 2022:083519
- 11. S. Sugiyama. Fast Fourier Transformation Based Evaluation of Microlensing Magnification with Extended Source. ApJ, 937(2):63, October 2022:63
- 12. S. Sugiyama, M. Takada, H. Miyatake, et al. HSC Year 1 cosmology results with the minimal bias method: HSC \times BOSS galaxy-galaxy weak lensing and BOSS galaxy clustering. Phys. Rev. D, 105(12):123537, June 2022:123537
- 13. S. Sugiyama, V. Takhistov, E. Vitagliano, et al. Testing stochastic gravitational wave signals from primordial black holes with optical telescopes. *Physics Letters B*, 814:136097, March 2021:136097
- 14. *A. Kusenko, M. Sasaki, S. Sugiyama, et al. Exploring Primordial Black Holes from the Multiverse with Optical Telescopes. Phys. Rev. Lett., 125(18):181304, October 2020:181304
- S. Sugiyama, M. Takada, Y. Kobayashi, et al. Validating a minimal galaxy bias method for cosmological parameter inference using HSC-SDSS mock catalogs. Phys. Rev. D, 102(8):083520, October 2020:083520
- 16. S. Sugiyama, T. Kurita, and M. Takada. On the wave optics effect on primordial black hole constraints from optical microlensing search. MNRAS, 493(3):3632–3641, April 2020:3632–3641

17. H. Niikura, M. Takada, N. Yasuda, et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. *Nature Astronomy*, 3:524–534, April 2019:524–534

その他の共著論文

- 18. T. Zhang, X. Li, S. Sugiyama, et al. Cosmology and Source Redshift Constraints from Galaxy Clustering and Tomographic Weak Lensing with HSC Y3 and SDSS using the Point-Mass Correction Model. arXiv e-prints, arXiv:2507.01386, July 2025:arXiv:2507.01386
- 19. T. Zhang, S. Sugiyama, S. More, et al. Modelling Galaxy Clustering and Tomographic Galaxy-Galaxy Lensing with HSC Y3 and SDSS using the Point-Mass Correction Model and Redshift Self-Calibration. arXiv e-prints, arXiv:2507.01377, July 2025:arXiv:2507.01377
- 20. R. Terasawa, M. Takada, T. Kurita, and S. Sugiyama. Late-time suppression of structure growth as a solution for the S₈ tension. arXiv e-prints, arXiv:2505.09176, May 2025:arXiv:2505.09176
- 21. R. Terasawa, X. Li, M. Takada, et al. Exploring the baryonic effect signature in the Hyper Suprime-Cam Year 3 cosmic shear two-point correlations on small scales: The S_8 tension remains present. Phys. Rev. D, 111(6):063509, March 2025:063509
- 22. R. Terasawa, M. Takada, S. Sugiyama, and T. Kurita. Testing small-scale modifications in the primordial power spectrum with Subaru HSC cosmic shear, primary CMB and CMB lensing. arXiv e-prints, arXiv:2503.20396, March 2025:arXiv:2503.20396
- 23. K.-F. Chen, I. N. Chiu, M. Oguri, et al. Weak-Lensing Shear-Selected Galaxy Clusters from the Hyper Suprime-Cam Subaru Strategic Program: I. Cluster Catalog, Selection Function and Mass-Observable Relation. *The Open Journal of Astrophysics*, 8:2, January 2025:2
- 24. T. Sunayama, H. Miyatake, S. Sugiyama, et al. Optical cluster cosmology with SDSS redMaPPer clusters and HSC-Y3 lensing measurements. Phys. Rev. D, 110(8):083511, October 2024:083511
- 25. I. N. Chiu, K.-F. Chen, M. Oguri, et al. Weak-Lensing Shear-Selected Galaxy Clusters from the Hyper Suprime-Cam Subaru Strategic Program: II. Cosmological Constraints from the Cluster Abundance. *The Open Journal of Astrophysics*, 7:90, October 2024:90
- 26. J. Shi, T. Sunayama, T. Kurita, et al. The intrinsic alignment of galaxy clusters and impact of projection effects. MNRAS, 528(2):1487–1499, February 2024:1487–1499
- 27. T. Zhang, X. Li, R. Dalal, et al. A general framework for removing point-spread function additive systematics in cosmological weak lensing analysis. MNRAS, 525(2):2441–2471, October 2023:2441–2471
- 28. Y. Park, T. Sunayama, M. Takada, et al. Cluster cosmology with anisotropic boosts: validation of a novel forward modelling analysis and application on SDSS redMaPPer clusters. MNRAS, 518(4):5171–5189, February 2023:5171–5189

他の記事

1. S. Sugiyama, M. Takada, and H. Miyatake. Weak lensing cosmology with subaru hsc data. *ASJ EUREKA*, 117(1):304–314, May 2024:304–314

講演

全42件のうち19件のトークを選出しました。全リストはこちらをご覧ください。

- 1. Exploring Primordial Black Hole with Microlensing Data: Updates on Analysis Pipeline, UPenn CfPC workshop, 2024, Nov., Oral
- 2. Exploring Primordial Black Hole with Microlensing Data: Updates on Analysis Pipeline, Focus week on primordial black holes 2024, 2024, Nov., Oral (Invited Talk)
- 3. Cosmology with third-order shear statistics, Roman F2F meeting, 2024, Oct., Oral

- 4. Exploring Primordial Black Hole with Microlensing Data, Pacific conference, 2024, Aug., Oral (Invited Talk)
- 5. Cosmology from Subaru HSC weak lensing Year 3 data, MIfA colloquium, 2024, May., Oral (Invited Talk)
- 6. Cosmology from weak lensing three-point correlation function, astro/cosmo seminar at CMU, 2024, Feb., *Oral*
- 7. Cosmology from Subaru HSC weak lensing Year 3 data, Subaru Users Meeting FY2023, 2024, Jan., Oral
- 8. HSC Y3 weak lensing cosmology results, CosmoPalooza, 2023, Oct., Oral
- 9. HSC Year 3 Weak Lensing Cosmology Results, HSC webinar, 2023, Apr., Oral
- 10. HSC Y3 cosmology results, CMB x LSS, 2023, Apr., Oral (Invited Talk)
- 11. Collaborative coding: git and github, CD3 Opening Symposium, 2023, Apr., Oral
- 12. Revealing the nature of dark matter with gravitational lensing: weak and microlensing, Colloqium at Osaka theoretical astrophysics group, 2022, Jul., Oral (Invited Talk)
- 13. Exploring Primordial black hole with microlensing observation of Andromeda galaxy, Subaru Users Meeting 2021, 2022, Jan., Oral
- 14. すばる HSC と SDSS データの銀河弱重力レンズとクラスタリングの大スケール信号を用いた宇宙論統合解析, 天文学会 2021 年秋季年会, 2021, Sep., Oral
- 15. Exploring Dark Matter Candidates with Microlensing, KEK theory seminar, 2021, Apr., Oral
- 16. Testing stochastic gravitational wave signals by PBH microlensing, 4th KEK-PH + KEK-Cosmo Joint Lectures and Workshop on "Gravitational Wave", 2020, Nov., *Oral* (Invited Talk)
- 17. **HSC マイクロレンズによる PBH シナリオの観測的制限**, 第 9 回観測的宇宙論ワークショップ, 2020, Nov., *Oral*
- 18. 広天域銀河サーベイデータの宇宙論解析における摂動論的手法の有効性の検証, Seminar at astro group of Hirosaki University, 2020, Feb., *Oral*
- 19. Wave effect on PBH micro-lensing and constraintWave effect on PBH micro-lensing and constraint, 第7回観測的宇宙論ワークショップ, 2018, Dec., Oral

プレスリリース

原始ブラックホールと多元宇宙が予言するダークマターの探索, IPMU, 2020 Dec ダークマターを見る! – HSC 国際チームが宇宙の標準理論を検証, IPMU, 2024 Apr