Number Theory

Instructor: Dušan Djukić

Problems – April 7

- 1. Find all triples of positive integers a, b, c such that $a \mid 2b+1, b \mid 2c+1$ and $c \mid 2a+1$.
- 2. Positive integers a, b, c, d satisfy ab = cd. Prove that there exist positive integers x, y, u, v such that a = xu, b = yv, c = xv, d = yu.
- 3. If a, b, c and $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ are integers, prove that abc is a perfect cube.
- 4. Suppose x, y, z are rational numbers with xyz = 1 such that both x+y+z and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ are integers. Prove that |x| = |y| = |z| = 1.
- 5. Find all pairs of positive integers (a, b) such that $a^{b^2} = b^a$.
- 6. Find all positive integers n that cannot be written in the form n = [a, b] + [b, c] + [c, a]. (By [x, y] we denote the LCM (least common multiple) of x and y.)
- 7. Suppose that positive integers x, y are such that $\frac{x^2+y^2+x}{xy}$ is an integer. Prove that x is a perfect square.
- 8. Prove that the largest power of 2 dividing $\frac{(2n)!}{n!}$ is 2^n .
- 9. Prove that:
 - (a) if $2^n 1$ is prime, then n is prime;
 - (b) if $2^n + 1$ is prime, then n is a power of 2.
- 10. If p > 3 is a prime number, prove that $\frac{2^{2p}+1}{5}$ is a composite number.
- 11. Let a > 1 be an integer. Prove that:
 - (a) $a^n 1 \mid a^m 1$ if and only if $n \mid m$;
 - (b) $a^n + 1 \mid a^m + 1$ if and only if $n \mid m$ and $\frac{m}{n}$ is odd.
- 12. Prove that $5^{2^n} 1$ is divisible by 2^{n+2} , but not by 2^{n+3} .
- 13. Prove that there are infinitely many positive integers n for which $n \mid 2^n + 1$.
- 14. Prove that every multiple of $2^n 1$ has at least n binary units.
- 15. Let $a, b \in \mathbb{N}$ be such that a!b! is divisible by a! + b!. Prove that $3a \ge 2b + 2$.