

Projeto de Desenvolvimento .NET

Engenharia de Requisitos UML – Diagrama de Casos de Uso, Classes e Pacotes Etapas 2, 3, 4 e 5

Engenharia de Requisitos

- Concepção
- Levantamento
- Elaboração
- Negociação
- Especificação
- Validação
- Gestão

Engenharia de Requisitos

Concepção

Estabelecer um entendimento do problema e das pessoas envolvidas.

Levantamento

Coleta de Requisitos

Elaboração

As informações coletadas durante a concepção e o levantamento são expandidas e refinadas. Construção de um modelo técnico das características do software tendo como produto final um modelo de análise que define o domínio do problema.

Negociação

Clientes, usuários e outros interessados são solicitados a ordenar os requisitos e discutir os conflitos de prioridade. Riscos dos requisitos devem ser identificados e analisados. O impacto de cada requisito no custo do projeto e no prazo de entrega também deve ser validado.

Especificação

Na especificação, um documento escrito, combinando descrições em linguagem natural e modelos gráficos pode ser a melhor abordagem. Para sistemas menores, casos de uso podem ser suficientes.

Validação

Na validação, um exame sobre a especificação é realizado para garantir que todos os requisitos de software tenham sido declarados de modo não ambíguo. Além disso, omissões e erros devem ser detectados e corrigidos.

Gestão

A gestão de requisitos é um conjunto de atividades que ajuda a equipe de projeto a identificar, controlar e a rastrear requisitos e suas modificações em qualquer momento do projeto.

As tabelas de rastreamento relacionam os requisitos identificados a um ou mais aspectos do sistema, ou de seu ambiente. Alguns tipos de tabela de rastreamento são de:

- o Características
- Fontes
- o Dependência
- Subsistemas
- Interface

UML

Unified Modeling Language (UML) Linguagem de Modelagem Unificada

É uma linguagem de modelagem para a elaboração da estrutura de projetos de software.

Tem como **objetivo** <u>especificar</u>, <u>documentar</u> e <u>estruturar</u> para subvisualização e maior visualização lógica do desenvolvimento completo de um sistema de informação.

UML 2 possui 14 tipos de diagramas divididos em duas categorias:

- **Diagramas Estruturais**Enfatizam os elementos que precisam estar presentes no sistema modelado.
- **Diagramas Comportamentais**Enfatizam o que precisa acontecer no sistema modelado.

UML 2 possui 14 tipos de diagramas divididos em duas categorias:

Diagramas Estruturais

Enfatizam os elementos que precisam estar presentes no sistema modelado.

- Diagrama de Classes
- Diagrama de Objetos
- Diagrama de Componentes
- Diagrama de Instalação ou de Implantação
- Diagrama de Pacotes
- Diagrama de Estrutura Composta
- Diagrama de Perfil

UML 2 possui 14 tipos de diagramas divididos em duas categorias:

Diagramas Comportamentais

Enfatizam o que precisa acontecer no sistema modelado.

- Diagrama de Caso de Uso
- Diagrama de Transição de Estados (ou de Estados)
- Diagrama de Atividade
- Diagrama de Sequência
- Diagrama Visão Geral de Interação (ou de Interação)
- Diagrama de Colaboração (ou Comunicação)
- Diagrama de Tempo (ou Temporal)

UML: Diagrama de Atividades

http://www.uml-diagrams.org/online-shopping-uml-activity-diagram-example.html?context=activity-examples

Exemplo Online Store - Top Level

Exemplo Online Store - View Items

Exemplo Online Store – Checkout, authentication and payment use cases

UML: **Diagrama de Estados** Exemplo Online Bookshop

UML: Diagrama de Classes

UML 2 possui 14 tipos de diagramas divididos em duas categorias:

- **Diagramas Estruturais**Enfatizam os elementos que precisam estar presentes no sistema modelado.
- Diagramas Comportamentais
 Enfatizam o que precisa acontecer no sistema modelado.

UML 2 possui 14 tipos de diagramas divididos em duas categorias:

Diagramas Comportamentais

Enfatizam o que precisa acontecer no sistema modelado.

Diagrama de Caso de Uso

- Diagrama de Transição de Estados (ou de Estados)
- Diagrama de Atividade
- Diagrama de Sequência
- Diagrama Visão Geral de Interação (ou de Interação)
- Diagrama de Colaboração (ou Comunicação)
- Diagrama de Tempo (ou Temporal)

UML: Diagrama de Sequência

O que é um Diagrama de Caso de Uso?

Descreve uma funcionalidade proposta para um novo sistema que será projetado. É uma ferramenta útil para o levantamento de requisitos funcionais.

Um tipo de diagrama de contexto que apresenta os elementos externos de um sistema e as maneiras segundo as quais eles as utilizam.

Ator

Humano, dispositivo ou outro software.

Generalização

Um ator pode herdar o papel de outro.

Representação: Linha sólida com um triângulo em direção ao ator mais geral.

Relações entre casos de uso

- Incluir <<include>>

O comportamento do caso de uso incluído é inserido <u>obrigatoriamente</u> no comportamento do caso de uso inclusor.

- Estender <<extends>>

O comportamento do caso de uso extensor pode ser ou não inserido no caso de uso estendido.

Nome	Notação	Descrição
Sistema	System A X	Limites entre o sistema e os usuários do Sistema.
Use case	A	Unidade de funcionalidade do Sistema.
Actor	X	X: Papel do ator

Name	Notation	Description
Associação	A X	Relationship between use cases and actors
Generalização	A B	Inheritance relationship between actors or use cases
Extensão	A <u>«extend»</u> B	B estende A: uso opcional do caso de uso B pelo caso de uso A
Inclusão	A <u>«include</u> » B	A inclui B: uso necessário do caso de uso B pelo caso de uso A

CLIENTE	SISTEMA
1. Cliente chega à livraria e dirige-se a um terminal de consulta.	2. Sistema exibe as formas de pesquisa (por título da obra, pelo nome do autor, pelo nome da editora).
3. Cliente escolhe a forma de pesquisa que lhe interessa.	4. Sistema exibe as informações sobre o produto desejado.

Caso de Uso: Encomendar Livro

Atores: Vendedor, Cliente

Descrição: Vendedor informa o título do livro desejado pelo Cliente. Sistema solicita dados do Cliente. Sistema gera pedido de encomenda do livro.

Sequência Típica de Eventos			
Atores	Sistema		
1. Cliente informa ao Vendedor o título do livro desejado.			
2. Vendedor informa título do livro ao Sistema.	3. Solicita dados do Cliente.		
4. Informa dados do Cliente.	5. Abre pedido de encomenda do livro.		
	6. Informa a data de previsão de chegada do livro.		
	7. Encerra operação.		
Sequência Alternativa de Eventos			

Não há.

<u>Kishorekumar</u> 62 (redrawn by <u>Marcel</u> Douwe Dekker)

Creative
Commons Attribution-Share
Alike 3.0 Unported

Diagramas de Casos de Uso

- Representa, graficamente, todos os casos de uso de um sistema, utilizando a linguagem UML.
- Por meio dele é possível visualizar, em um alto nível de abstração, quais os elementos (atores) interagem com o sistema em cada funcionalidade.

Diagramas de Casos de Uso

- O nome do caso de uso deve ser único.
- Deve estar na perspectiva do ator que dispara o caso de uso.
- Deve iniciar com o verbo no infinitivo.

 <<include>>: incorpora o comportamento de um caso de uso à outro caso de uso.

 <<extend>>: indica que o comportamento estendido poderá ou não ser usado. O uso do comportamento estendido é opcional.

• **Generalização**: utilizado para criar um caso de uso específico baseado em um caso de uso geral.

Exemplo Online Store - Top Level

Exemplo Online Store - View Items

Exemplo Online Store – Checkout, authentication and payment use cases

UML 2 possui 14 tipos de diagramas divididos em duas categorias:

- Diagramas Estruturais
 Enfatizam os elementos que precisam estar presentes no sistema modelado.
- Diagramas Comportamentais
 Enfatizam o que precisa acontecer no sistema modelado.

UML 2 possui 14 tipos de diagramas divididos em duas categorias:

Diagramas Estruturais

Enfatizam os elementos que precisam estar presentes no sistema modelado.

o Diagrama de Classes

- Diagrama de Objetos
- Diagrama de Componentes
- Diagrama de Instalação ou de Implantação
- Diagrama de Pacotes
- Diagrama de Estrutura Composta
- Diagrama de Perfil

Diagramas de Classes são uma "foto" das classes de um Sistema Orientado a Objetos. Contém os campos/atributos, métodos e conexões/relacionamentos entre as classes.

O que não é representado em um diagrama de classes?

- Detalhes de como as classes interagem
- Algoritmos como os comportamentos são implementados
- Métodos triviais podem ser omitidos (get/set)
- Classes que vem de bibliotecas também podem ser omitidas (Ex: ArrayList)

Nome da **classe** fica no topo da caixa

- <<interface>>
- Nome da classe em itálico caso seja abstrata

Student

-name:String

id:int

-totalStudents:int

#getID();int

+getNamle():String

~getEmailAddress():String

+qetTotalStudents():int

Rectangle

- width: int

- height: int

l/area: double

+ Rectangle(width: int, height: int)

+ distance(r: Rectangle): double

Atributos

- Incluem todos os campos de um objeto.
- Incluem propriedades "derivadas" de propriedades.

Operações/Métodos/Funções

- Podem ser omitidos métodos triviais (com exceção de interfaces)
- Não deve conter métodos herdados.

Student

-name:String

-id:int

-totalStudents:int

#getID();int

+getNamle():String

~getEmailAddress():String

+getTotalStudents():int

Rectangle

- width: int

- height: int

l/area: double

- + Rectangle(width: int, height: int)
- + distance(r: Rectangle): double

Sintaxe de Atributos

- nome: tipo [count] = defaultValue

Símbolo	Visibilidade
+	public
#	protected
-	private
~	package (default)
/	derived

Atributos <u>sublinhados</u> são **estáticos**.

Student

-name:String

-id:int

-totalStudents:int

#getID()tint

+getNamle():String

~getEmailAddress():String

+qetTotalStudents():int

Rectangle

- width: int

- height: int

/ area: double

+ Rectangle(width: int, height: int)

+ distance(r: Rectangle): double

Sintaxe de Métodos

- nome (parâmetros): tipo de retorno

Parâmetros são representados no formato:

nome: tipo

Omitir retornos do tipo void

Métodos sublinhados são estáticos.

Student

-name:String

-id:int

-totalStudents:int

#getID();int

+getNamle():String

~getEmail Address(): String

+getTotalStudents():int

Rectangle

- width: int.

- height: int

l/area: double

+ Rectangle(width: int, height: int)

+ distance(r: Rectangle): double

Generalização: relação de herança

- Herança entre classes
- Implementação de Interface

Associação: relação de uso

- Dependência
- Agregação
- Composição

Generalização: relação de herança

- Herança entre classes
- Implementação de Interface

Associação: relação de uso

- Dependência
- Agregação
- Composição

Generalização

Parent	Estilo da Linha/Seta
class	sólida, seta preta
abstract class	sólida, seta branca
interface	tracejada, seta branca

Relações óbvias geralmente não são representadas. Exemplo: Java Object

Associação

1. Multiplicidade

Símbolo	Quantidade
*	0, 1, ou mais
1	exatamente 1
24	entre 2 e 4
5*	5 ou mais

2. Nome

Relações que o objeto possui.

3. Navegabilidade

Direção

Tipo de Associação

- aggregation: "is part of"
 - clear, white diamond

- composition: "is entirely made of"
 - stronger version of aggregation
 - the parts only exist while the whole exists
 - black diamond

- dependency: "uses temporarily"
 - dotted arrow or line

http://www.uml-diagrams.org/examples/online-shopping-domain-uml-diagram-example.html?context=cls-examples

UML Diagrama de Pacotes

UML 2 possui 14 tipos de diagramas divididos em duas categorias:

- Diagramas Estruturais
 Enfatizam os elementos que precisam estar presentes no sistema modelado.
- Diagramas Comportamentais
 Enfatizam o que precisa acontecer no sistema modelado.

UML 2 possui 14 tipos de diagramas divididos em duas categorias:

Diagramas Estruturais

Enfatizam os elementos que precisam estar presentes no sistema modelado.

- Diagrama de Classes
- Diagrama de Objetos
- Diagrama de Componentes
- Diagrama de Instalação ou de Implantação
- Diagrama de Pacotes

- Diagrama de Estrutura Composta
- Diagrama de Perfil

http://www.uml-diagrams.org/package-diagrams-overview.html

http://www.uml-diagrams.org/package-diagrams-overview.html