Number Theory I

Agenda

Primes

Divisors

Prime Factors

Sieve of Eratosthenes

Primes

prime numbers are whole numbers greater than 1, that have only two factors or divisors: 1 and the number itself

2	3	5	7	11
13	17	19	23	29
31	37	41	43	47
53	59	61	67	71
73	79	83	89	97

Primes

- How to check if a number (n) is prime or not?
- The simplest way is to iterate through the numbers from 2 to
 n-1 and check if there is a divisor among them or not
- This runs in O(n) time complexity. Can we do better?

```
bool isPrime(ll n) {
  for(ll i=2; i<=n-1; i++)
     if(n%i==0)
     return false;
  return true;
}</pre>
```

Primes (Square Root Rule)

Let **n** = **a** * **b**

min(a,b) <= sqrt(n)

```
Example: 16 = 1 * 16

16 = 2 * 8

16 = 4 * 4
```

If n is divisible by a, so n is also divisible by n/a which is

Primes (Square Root Rule)

- How to check if a number (n) is prime or not?
- Using the square root rule, we need to iterate only through elements from 2 to sqrt(n) and check if there is a divisor among them or not
- This runs in O(sqrt(n)) time complexity which is faster that O(n)

```
bool isPrime(ll n) {
  for(ll i=2; i*i<=n; i++)
    if(n%i==0)
     return false;
  return true;
}</pre>
```

Divisors

Using the same square root rule, we can get the divisors for n in

```
O(sqrt(n))
```

```
vector <ll> getDivisors(ll n) {
    vector <ll> divs;
    for(ll i=1; i*i<=n; i++) {
        if(n%i==0){
            divs.push back(i);
            if(i!=n/i) divs.push back(n/i);
    return divs;
```

Prime Factors

• Prime Factors for a number (n) are a set of prime numbers that decompose this number

• Examples:

Prime Factors

How to find the prime factors for a number (n)?

- Using the square root rule, we can iterate through elements from 2 to sqrt(n), and keep dividing n over its divisors. This is runs in O(sqrt(n)) time complexity
- Example N=60:
 - \circ 60 is divisible by 2 \rightarrow N=60/2=30, {2^1}
 - \circ 30 is divisible by 2 \rightarrow N=30/2=15, {2^2}
 - 15 is divisible by 3 \rightarrow N=15/3=5, {2^2, 3^1}
 - \circ 5 is divisible by 5 \rightarrow N=5/5=1, {2^2, 3^1, 5^1}

Prime Factors

```
vector<pair<ll, ll>> factorize(ll n) {
    vector<pair<ll, ll>> fact;
    for(ll i=2; i*i<=n; i++) {
         int cnt=0;
         while (n\%i==0) {
             n/=i;
             cnt++;
        if(cnt) fact.push back({i,cnt});
    if(n>1) fact.push back(\{n,1\});
    return fact;
```

Sieve of Eratosthenes

How to find all prime numbers from 1 to n?

- The main idea of Sieve of Eratosthenes is a number is prime until it's proven to be not prime
- Sieve of Eratosthenes works as follows:
 - 1. Initially all numbers are prime except 1
 - 2. For each number from 2 to sqrt(n): if it's still prime, mark all its multiples as not prime
- The time complexity of Sieve is O(n log (log n))

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Sieve of Eratosthenes

```
vector<bool> sieve(ll n) {
   vector<bool>isPrime(n+1,1);
   isPrime[0]=isPrime[1]=0;
   for(ll i=2; i*i<=n; i++)
      if(isPrime[i])
            for(ll j=i*i; j<=n; j+=i)
               isPrime[j]=0;
   return isPrime;
```

To Solve

- <u>T-primes</u>
- Almost Prime
- Number into Sequence