Final Project - Analyzing Sales Data

Date: 14 July 2023

Author: Chavinee Prasertpong **Course**: Pandas Foundation

```
# import data
import pandas as pd
df = pd.read_csv("sample-store.csv")
```

preview top 5 rows
df.head()

	Row	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country/Region	City
0	1	CA- 2019- 152156	11/8/2019	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson
1	2	CA- 2019- 152156	11/8/2019	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson
2	3	CA- 2019- 138688	6/12/2019	6/16/2019	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Angeles
3	4	US- 2018- 108966	10/11/2018	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale
4	5	US- 2018- 108966	10/11/2018	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale

5 rows × 21 columns

shape of dataframe df.shape

(9994, 21)

```
# see data frame information using .info()
df.info()
<class 'pandas.core.frame.DataFrame'>
```

```
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 21 columns):
#
                   Non-Null Count Dtype
    Column
___
    -----
                   _____
0
    Row ID
                   9994 non-null
                                  int64
1
    Order ID
                   9994 non-null object
2
                   9994 non-null
    Order Date
                                  object
3
    Ship Date
                   9994 non-null object
4
    Ship Mode
                   9994 non-null object
5
    Customer ID
                   9994 non-null
                                  object
6
    Customer Name
                   9994 non-null
                                  object
7
    Segment
                   9994 non-null
                                  object
    Country/Region 9994 non-null
8
                                  object
9
    City
                   9994 non-null
                                  object
10
   State
                   9994 non-null object
11
   Postal Code
                   9983 non-null
                                  float64
12 Region
                   9994 non-null
                                  object
13 Product ID
                   9994 non-null
                                  object
14 Category
                   9994 non-null
                                  object
```

We can use pd.to_datetime() function to convert columns 'Order Date' and 'Ship Date' to datetime.

```
# example of pd.to_datetime() function
pd.to_datetime(df['Order Date'].head(), format='%m/%d/%Y')
```

```
0 2019-11-08

1 2019-11-08

2 2019-06-12

3 2018-10-11

4 2018-10-11

Name: Order Date, dtype: datetime64[ns]
```

```
# TODO - convert order date and ship date to datetime in the original dataframe
df['Order_date'] = pd.to_datetime(df['Order Date'].head(), format='%m/%d/%Y')
df['Ship_date'] = pd.to_datetime(df['Ship Date'].head(), format='%m/%d/%Y')
df.head()
```

	Row	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country/Region	City
0	1	CA- 2019- 152156	11/8/2019	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson
1	2	CA- 2019- 152156	11/8/2019	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson
2	3	CA- 2019- 138688	6/12/2019	6/16/2019	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Angeles
3	4	US- 2018- 108966	10/11/2018	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale
4	5	US- 2018- 108966	10/11/2018	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale

5 rows × 23 columns

```
# TODO – count nan in postal code column
df['Postal Code'].isna().sum()
```

11

```
# TODO - filter rows with missing values
df[df['Postal Code'].isna()]
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country/Region	City
2234	2235	CA- 2020- 104066	12/5/2020	12/10/2020	Standard Class	QJ-19255	Quincy Jones	Corporate	United States	Burlingto
5274	5275	CA- 2018- 162887	11/7/2018	11/9/2018	Second Class	SV-20785	Stewart Visinsky	Consumer	United States	Burlingto
8798	8799	US- 2019- 150140	4/6/2019	4/10/2019	Standard Class	VM- 21685	Valerie Mitchum	Home Office	United States	Burlingto
9146	9147	US- 2019- 165505	1/23/2019	1/27/2019	Standard Class	CB- 12535	Claudia Bergmann	Corporate	United States	Burlingto
9147	9148	US- 2019- 165505	1/23/2019	1/27/2019	Standard Class	CB- 12535	Claudia Bergmann	Corporate	United States	Burlingto
9148	9149	US- 2019- 165505	1/23/2019	1/27/2019	Standard Class	CB- 12535	Claudia Bergmann	Corporate	United States	Burlingto
9386	9387	US- 2020- 127292	1/19/2020	1/23/2020	Standard Class	RM- 19375	Raymond Messe	Consumer	United States	Burlingto
9387	9388	US- 2020- 127292	1/19/2020	1/23/2020	Standard Class	RM- 19375	Raymond Messe	Consumer	United States	Burlingto
9388	9389	US- 2020- 127292	1/19/2020	1/23/2020	Standard Class	RM- 19375	Raymond Messe	Consumer	United States	Burlingto
9389	9390	US- 2020- 127292	1/19/2020	1/23/2020	Standard Class	RM- 19375	Raymond Messe	Consumer	United States	Burlingto
9741	9742	CA- 2018- 117086	11/8/2018	11/12/2018	Standard Class	QJ-19255	Quincy Jones	Corporate	United States	Burlingto

11 rows × 23 columns

TODO - Explore this dataset on your owns, ask your own questions
sales_seg = df.groupby(['Segment','Category'])['Sales'].sum().sort_values(ascending)

Data Analysis Part

Answer 10 below questions to get credit from this course. Write pandas code to find answers.

```
# TODO 01 - how many columns, rows in this dataset

df.shape

rows,columns = df.shape
print(rows)
print(columns)

9994
23

# TODO 02 - is there any missing values?, if there is, which column? how many nan v
```

df.isna().sum()

```
Row ID
                    0
Order ID
Order Date
Ship Date
Ship Mode
Customer ID
                    0
Customer Name
Segment
                    0
Country/Region
City
State
                    0
                  11
Postal Code
Region
                    0
Product ID
Category
Sub-Category
Product Name
                    0
Sales
Quantity
                    0
Discount
Profit
                    0
Order date
                 9989
                 9989
Ship_date
dtype: int64
```

```
# TODO 03 - your friend ask for `California` data, filter it and export csv for him
cal_df = df[df['State'] == 'California']
cal_df.to_csv("California_df.csv")
```

```
# TODO 04 - your friend ask for all order data in `California` and `Texas` in 2017
df['Order Date'] = pd.to_datetime(df['Order Date'], format='%m/%d/%Y')
df2017 = df[df['Order Date'].dt.year==2017]
cal_texas_2017 = df2017.query('State == "California" | State == "Texas"')
cal_texas_2017.to_csv('Cal_texas_2017.csv')
```

```
# TODO 05 - how much total sales, average sales, and standard deviation of sales you
df[df['Order Date'].dt.year == 2017]['Sales'].agg(['sum','mean','std'])
```

```
# TODO 06 - which Segment has the highest profit in 2018
data_order2018 = df[df['Order Date'].dt.year == 2018]
data_order2018.groupby('Segment')['Profit'].sum().sort_values(ascending=False)
```

Segment

Consumer 28460.1665
Corporate 20688.3248
Home Office 12470.1124
Name: Profit, dtype: float64

TODO 07 - which top 5 States have the least total sales between 15 April 2019 - 3 data_order2019 = df[(df['Order Date'] >= "2019-04-15") & (df['Order Date'] <= "2019 data_order2019.sort_values().head(5)

State

New Hampshire 49.05
New Mexico 64.08
District of Columbia 117.07
Louisiana 249.80
South Carolina 502.48
Name: Sales, dtype: float64

```
# TODO 08 - what is the proportion of total sales (%) in West + Central in 2019 e.g
orders_2019 = df[df['Order Date'].dt.year == 2019]
total_sales_2019 = orders_2019['Sales'].sum()

total_sales_wc = orders_2019.query('Region == "West" | Region == "Central"')['Sales
portion_wc = ((total_sales_wc/total_sales_2019)*100).round(2)
print(f"{portion_wc} %")
```

54.97 %

	Product Name	Quantity	Sales
500	Canon imageCLASS 2200 Advanced Copier	5	17499.950
844	GBC Ibimaster 500 Manual ProClick Binding System	13	9892.740
19	3D Systems Cube Printer, 2nd Generation, Magenta	7	9099.930
1039	High Speed Automatic Electric Letter Opener	3	8842.662
1011	HP Designjet T520 Inkjet Large Format Printer	5	8749.950
499	Canon imageCLASS 2200 Advanced Copier	4	8399.976
497	Canon PC1060 Personal Laser Copier	5	5599.920
836	GBC DocuBind P400 Electric Binding System	4	5443.960
1037	Hewlett Packard LaserJet 3310 Copier	9	5399.910
209	Ativa V4110MDD Micro-Cut Shredder	7	4899.930

```
toporder = order201920.groupby(['Product Name','Quantity'])['Sales'].sum().reset_ir
    .sort_values('Quantity',ascending = False).head(10)
toporder
```

	Product Name	Quantity	Sales
1325	Longer-Life Soft White Bulbs	14	43.120
724	Electrix Architect's Clamp-On Swing Arm Lamp,	14	1336.440
2054	Wilson Jones Turn Tabs Binder Tool for Ring Bi	14	53.984
1368	Metal Folding Chairs, Beige, 4/Carton	14	427.644
1173	Ibico Recycled Linen-Style Covers	14	437.472
2196	Xerox 1964	14	319.760
1641	Pressboard Covers with Storage Hooks, 9 1/2" x	14	13.748
1978	Ultra Door Push Plate	14	54.992
1178	Iceberg Mobile Mega Data/Printer Cart	13	1564.290
1003	Great White Multi-Use Recycled Paper (20Lb. an	13	62.192

```
# TODO 10 - plot at least 2 plots, any plot you think interesting :)
df.groupby('Segment')['Category'].value_counts().plot(kind='bar',color= ['salmon','
```

<Axes: xlabel='Segment,Category'>

◆ Download


```
df[['Profit','Quantity']]\
    .plot(x='Profit', y='Quantity', kind="scatter",color='orange')
```

<Axes: xlabel='Profit', ylabel='Quantity'>

■ Download


```
# TODO Bonus - use np.where() to create new column in dataframe to help you answer
import numpy as np

df['Profit_sum'] = np.where(df['Profit']>15, "Profit","Loss")
df
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country/Region	City
0	1	CA- 2019- 152156	2019- 11-08	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
1	2	CA- 2019- 152156	2019- 11-08	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
2	3	CA- 2019- 138688	2019- 06-12	6/16/2019	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Ange
3	4	US- 2018- 108966	2018- 10-11	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderda
4	5	US- 2018- 108966	2018- 10-11	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderda
9989	9990	CA- 2017- 110422	2017- 01-21	1/23/2017	Second Class	TB-21400	Tom Boeckenhauer	Consumer	United States	Miami
9990	9991	CA- 2020- 121258	2020- 02-26	3/3/2020	Standard Class	DB- 13060	Dave Brooks	Consumer	United States	Costa Me
9991	9992	CA- 2020- 121258	2020- 02-26	3/3/2020	Standard Class	DB- 13060	Dave Brooks	Consumer	United States	Costa Me
9992	9993	CA- 2020- 121258	2020- 02-26	3/3/2020	Standard Class	DB- 13060	Dave Brooks	Consumer	United States	Costa Me
9993	9994	CA- 2020- 119914	2020- 05-04	5/9/2020	Second Class	CC- 12220	Chris Cortes	Consumer	United States	Westmin

9994 rows × 24 columns

df['Quantity_sum'] = np.where(df['Quantity']>=5, "True","False")
df

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country/Region	City
0	1	CA- 2019- 152156	2019- 11-08	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
1	2	CA- 2019- 152156	2019- 11-08	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
2	3	CA- 2019- 138688	2019- 06-12	6/16/2019	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Ange
3	4	US- 2018- 108966	2018- 10-11	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderda
4	5	US- 2018- 108966	2018- 10-11	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderda
9989	9990	CA- 2017- 110422	2017- 01-21	1/23/2017	Second Class	TB-21400	Tom Boeckenhauer	Consumer	United States	Miami
9990	9991	CA- 2020- 121258	2020- 02-26	3/3/2020	Standard Class	DB- 13060	Dave Brooks	Consumer	United States	Costa Me
9991	9992	CA- 2020- 121258	2020- 02-26	3/3/2020	Standard Class	DB- 13060	Dave Brooks	Consumer	United States	Costa Me
9992	9993	CA- 2020- 121258	2020- 02-26	3/3/2020	Standard Class	DB- 13060	Dave Brooks	Consumer	United States	Costa Me
9993	9994	CA- 2020- 119914	2020- 05-04	5/9/2020	Second Class	CC- 12220	Chris Cortes	Consumer	United States	Westmin

9994 rows × 25 columns