Geometry Processing

Today

Curves

- Bezier curves
- _ De Casteljau's algorithm
- _ B-splines, etc.

Surfaces

- Bezier surfaces
- Subdivision surfaces (triangles & quads)

Bézier Surfaces

Extend Bézier curves to surfaces

Ed Catmull's "Gumbo" model

Utah Teapot

Bicubic Bézier Surface Patch

Bezier surface and 4 x 4 array of control points

Visualizing Bicubic Bézier Surface Patch

Evaluating Bézier Surfaces

Evaluating Surface Position For Parameters (u,v)

For bi-cubic Bezier surface patch,

Input: 4x4 control points

Output is 2D surface parameterized by (u,v) in $[0,1]^2$

Method: Separable 1D de Casteljau Algorithm

Goal: Evaluate surface position corresponding to (u,v)

(u,v)-separable application of de Casteljau algorithm

- Use de Casteljau to evaluate point u on each of the 4 Bezier curves in u. This gives 4 control points for the "moving" Bezier curve
- Use 1D de Casteljau to evaluate point v on the "moving" curve

Method: Separable 1D de Casteljau Algorithm

Mesh Operations: Geometry Processing

- Mesh subdivision
- Mesh simplification
- Mesh regularization

Mesh Operations: Geometry Processing

- Mesh subdivision
- Mesh simplification
- Mesh regularization

Mesh Subdivision (upsampling)

Increase resolution

Mesh Simplification (downsampling)

Decrease resolution; try to preserve shape/appearance

Mesh Regularization (same #triangles)

Modify sample distribution to improve quality

Subdivision

Loop Subdivision

Common subdivision rule for triangle meshes

First, create more triangles (vertices)

Second, tune their positions

Loop Subdivision

Split each triangle into four

- Assign new vertex positions according to weights
 - New / old vertices updated differently

Loop Subdivision — Update

For new vertices:

Update to: 3/8 * (A + B) + 1/8 * (C + D)

Loop Subdivision — Update

For old vertices (e.g. degree 6 vertices here):

Update to:

(1 - n*u) * original_position + u * neighbor_position_sum

n: vertex degree

u: 3/16 if n=3, 3/(8n) otherwise

Loop Subdivision Results

FYI: Catmull-Clark Vertex Update Rules (Quad Mesh)

$$f = \frac{v_1 + v_2 + v_3 + v_4}{4}$$

$$e = \frac{v_1 + v_2 + f_1 + f_2}{4}$$

Edge point
$$\begin{array}{c|c}
v_1 \\
e \\
f_1 \\
f_2 \\
\end{array}$$

Vertex point
$$v = \frac{f_1 + f_2 + f_3 + f_4 + 2(m_1 + m_2 + m_3 + m_4) + 4p}{16}$$

midpoint of edge old "vertex point"

Convergence: Overall Shape and Creases

Loop with Sharp Creases

Catmull-Clark with Sharp Creases

Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases

Subdivision in Action (Pixar's "Geri's Game")

https://vimeo.com/168651722

Mesh Simplification

Mesh Simplification

Goal: reduce number of mesh elements while maintaining the overall shape

How to compute?

Collapsing An Edge

Suppose we simplify a mesh using edge collapsing

Quadric Error Metrics

- How much geometric error is introduced by simplification?
- Not a good idea to perform local averaging of vertices
- Quadric error: new vertex should minimize its sum of square distance (L2 distance) to previously related triangle planes!

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/08_Simplification.pdf

Quadric Error of Edge Collapse

- How much does it cost to collapse an edge?
- Idea: compute edge midpoint, measure quadric error

- Better idea: choose point that minimizes quadric error
- More details: Garland & Heckbert 1997.

Simplification via Quadric Error

Iteratively collapse edges

Which edges? Assign score with quadric error metric*

- approximate distance to surface as sum of distances to planes containing triangles
- iteratively collapse edge with smallest score
- greedy algorithm... great results!

* (Garland & Heckbert 1997)

Quadric Error Mesh Simplification

Garland and Heckbert '97

Thank you!

(And thank Prof. Lingqi Yan, Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)