

SETCOVER

greedy approximation algorithm layering algorithm for weighted VertexCover application to ShortestSuperString

Let *U* be some ground set (universe),

Let *U* be some ground set (universe),

```
Let U be some ground set (universe), and let S be a family of subsets of U with \bigcup S = U.
```


Let U be some ground set (universe), and let S be a family of subsets of U with $\bigcup S = U$.

Let U be some ground set (universe), and let S be a family of subsets of U with $\bigcup S = U$.

Let U be some ground set (universe), and let S be a family of subsets of U with $\bigcup S = U$.

Let U be some ground set (universe), and let S be a family of subsets of U with $\bigcup S = U$.

Let U be some ground set (universe), and let S be a family of subsets of U with $\bigcup S = U$.

Each $S \in S$ has cost c(S) > 0.


```
Let U be some ground set (universe), and let S be a family of subsets of U with \bigcup S = U.
```

Each $S \in S$ has cost c(S) > 0.


```
Let U be some ground set (universe), and let S be a family of subsets of U with \bigcup S = U.
```

Each $S \in S$ has cost c(S) > 0.


```
Let U be some ground set (universe), and let S be a family of subsets of U with \bigcup S = U.
```

Each $S \in S$ has cost c(S) > 0.


```
Let U be some ground set (universe), and let S be a family of subsets of U with \bigcup S = U.
```

Each $S \in S$ has cost c(S) > 0.


```
Let U be some ground set (universe), and let S be a family of subsets of U with \bigcup S = U.
```

Each $S \in S$ has cost c(S) > 0.

Greedy Approximation Algorithm for SetCover

What is the real cost of picking a set?

What is the real cost of picking a set?

What is the real cost of picking a set?

What is the real cost of picking a set? Set with k elements and cost c has per-element cost c/k. What happens if we "buy" a set?

What is the real cost of picking a set?

Set with k elements and cost c has per-element cost c/k.

What happens if we "buy" a set?

Fix price of elements bought and recompute per-element cost.

total cost: $\sum_{u \in U} \operatorname{price}(u)$

What is the real cost of picking a set?

Set with k elements and cost c has per-element cost c/k.

What happens if we "buy" a set?

Fix price of elements bought and recompute per-element cost.

total cost: $\sum_{u \in U} \operatorname{price}(u)$

Greedy: Always choose the set with minimum per-element cost.

What is the real cost of picking a set?

Set with k elements and cost c has per-element cost c/k.

What happens if we "buy" a set?

Fix price of elements bought and recompute per-element cost.

total cost: $\sum_{u \in U} \operatorname{price}(u)$

Greedy: Always choose the set with minimum per-element cost.

What is the real cost of picking a set?

Set with k elements and cost c has per-element cost c/k.

What happens if we "buy" a set?

Fix price of elements bought and recompute per-element cost.

total cost: $\sum_{u \in U} \operatorname{price}(u)$

Greedy: Always choose the set with minimum per-element cost.

Q: for unit cost (i.e., cardinality set cover), what does this correspond to?

always pick the set that covers most of the remaining elements


```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
                                                          // covered elements
   S' \leftarrow \emptyset
                                                                  // picked sets
   while C \neq U do
         S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
   return S'
                                                                   // Cover of U
```

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
                                                       // covered elements
   S' \leftarrow \emptyset
                                                               // picked sets
   while C \neq U do
        S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
                                                                              1/3
                                                                                                   6/3
                                                                                                              5/6
                                                                 33/3
                                                                                 4/34
                                                                            4/4
   return S'
                                                               // Cover of U
```

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
                                                      // covered elements
   S' \leftarrow \emptyset
                                                              // picked sets
   while C \neq U do
        S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
                                                                           1/3
                                                                                                  6/3
                                                                                                            5/6
                                                                 33/3
                                                                                4/34
                                                                           4/4
   return S'
                                                               // Cover of U
```

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
                                                       // covered elements
   S' \leftarrow \emptyset
                                                              // picked sets
   while C \neq U do
        S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
                                                                           1/3
                                                                                                  6/3
                                                                                                             5/6
        foreach u \in S \setminus C do
                                                                 33/3
                                                                                4/34
                                                                            4/4
   return S'
                                                               // Cover of U
```

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
                                                              // covered elements
   S' \leftarrow \emptyset
                                                                       // picked sets
   while C \neq U do
         S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
                                                                                                               6/3
                                                                                                                            5/6
         foreach u \in S \setminus C do
                                                                         33/3
               \mathsf{price}(u) \leftarrow \frac{c(S)}{|S \setminus C|}
                                                                                      4/4
    return S'
                                                                        // Cover of U
```

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
                                                             // covered elements
   S' \leftarrow \emptyset
                                                                      // picked sets
   while C \neq U do
         S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
                                                                                                              6/3
                                                                                                                          5/6
         foreach u \in S \setminus C do
                                                                        33/3
              price(u) \leftarrow \frac{c(S)}{|S \setminus C|}
                                                                                     4/4
         C \leftarrow C \cup S
   return S'
                                                                       // Cover of U
```

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
                                                           // covered elements
   S' \leftarrow \emptyset
                                                                    // picked sets
   while C \neq U do
         S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
                                                                                                           6/2
                                                                                                                       5/6
         foreach u \in S \setminus C do
                                                                      33/2
              \mathsf{price}(u) \leftarrow \frac{c(S)}{|S \setminus C|}
                                                                                  4/4
         C \leftarrow C \cup S
         S' \leftarrow S' \cup \{S\}
                                                                                                How does the
                                                                                                algorithm continue?
   return S'
                                                                     // Cover of U
```

Greedy SetCover: analysis

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

 $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Proof.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Proof. Iteration at which alg. buys $u_j \Rightarrow$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Proof. Iteration at which alg. buys $u_i \Rightarrow$

• $\leq j-1$ elements of S may already be bought

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then

$$\operatorname{price}(u_j) \leq \frac{c(S)}{(\ell - j + 1)}$$
.

Proof. Iteration at which alg. buys $u_j \Rightarrow$

- $\leq j-1$ elements of S may already be bought
- $\geq \ell j + 1$ elements of S not yet bought

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma.

Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Proof.

Iteration at which alg. buys $u_j \Rightarrow$

- $\leq j-1$ elements of S may already be bought
- $\geq \ell j + 1$ elements of S not yet bought
- per-element cost for S:

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma.

Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Proof.

Iteration at which alg. buys $u_i \Rightarrow$

- $\leq j-1$ elements of S may already be bought
- $\geq \ell j + 1$ elements of S not yet bought
- per-element cost for $S: \leq \frac{c(S)}{(\ell j + 1)}$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then

$$\operatorname{price}(u_j) \leq \frac{c(S)}{(\ell - j + 1)}$$
.

Proof. Iteration at which alg. buys $u_i \Rightarrow$

- $\leq j-1$ elements of S may already be bought
- $\geq \ell j + 1$ elements of S not yet bought
- per-element cost for $S: \leq \frac{c(S)}{(\ell j + 1)}$
- price by alg. no larger due to greedy choice

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Corollary. For $S \in S$, price $(S) := \sum_{i=1}^{\ell} \text{price}(u_i)$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Corollary. For $S \in S$, price $(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$, where $\ell = |S|$.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Corollary. For $S \in \mathcal{S}$, price $(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$, where $\ell = |S|$.

Proof.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

 $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Corollary. For $S \in S$, price $(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$, where $\ell = |S|$.

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Corollary. For
$$S \in S$$
, price $(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$, where $\ell = |S|$.

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^m c(S_i)$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Corollary. For
$$S \in \mathcal{S}$$
, price $(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$, where $\ell = |S|$.

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^m c(S_i)$ Cost of solution returned by GreedySetCover: $\operatorname{price}(U) =$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in $\mathcal S$ and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Corollary. For
$$S \in S$$
, price $(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$, where $\ell = |S|$.

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^m c(S_i)$ Cost of solution returned by GreedySetCover: $\operatorname{price}(U) = \sum_{u \in U} \operatorname{price}(u) \leq$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Corollary. For
$$S \in \mathcal{S}$$
, price $(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$, where $\ell = |S|$.

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^m c(S_i)$

Cost of solution returned by GreedySetCover:

$$price(U) = \sum_{u \in U} price(u) \le \sum_{i=1}^{m} price(S_i)$$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Corollary. For
$$S \in \mathcal{S}$$
, price $(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$, where $\ell = |S|$.

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^m c(S_i)$

Cost of solution returned by GreedySetCover:

$$price(U) = \sum_{u \in U} price(u) \le \sum_{i=1}^{m} price(S_i)$$

$$\le \sum_{i=1}^{m} c(S_i) \cdot \mathcal{H}_k =$$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$$

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then

$$\operatorname{price}(u_j) \leq \frac{c(S)}{(\ell - j + 1)}$$
.

Corollary. For $S \in S$, price $(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}$, where $\ell = |S|$.

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^m c(S_i)$

Cost of solution returned by GreedySetCover:

$$price(U) = \sum_{u \in U} price(u) \le \sum_{i=1}^{m} price(S_i)$$

$$\le \sum_{i=1}^{m} c(S_i) \cdot \mathcal{H}_k = OPT \cdot \mathcal{H}_k$$

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

Q: which sets does the algorithm choose? what is an optimal cover?

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

Can we do better?

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \le 1 + \ln k = O(\log n).$$

Can we do better?

No – SetCover cannot be approximated within factor $(1 - o(1)) \cdot \ln n$ (unless P = NP). [Feige, JACM 1998]

VERTEXCOVER as SETCOVER

Vertex cover is a special case of set cover. Q: How?

Vertex cover is a special case of set cover.

```
Given graph G = (V, E)
let U = E and S = \{S_1, ..., S_n\} where S_i = \{e \in U \mid v_i \in e\}
```

VERTEXCOVER as **SETCOVER**

Vertex cover is a special case of set cover.

Given graph G = (V, E)let U = E and $S = \{S_1, ..., S_n\}$ where $S_i = \{e \in U \mid v_i \in e\}$

Vertex cover is a special case of set cover.

Given graph
$$G = (V, E)$$

let $U = E$ and $S = \{S_1, ..., S_n\}$ where $S_i = \{e \in U \mid v_i \in e\}$

Vertex cover is a special case of set cover.

Given graph G = (V, E)let U = E and $S = \{S_1, ..., S_n\}$ where $S_i = \{e \in U \mid v_i \in e\}$

Vertex cover is a special case of set cover.

Given graph G = (V, E)let U = E and $S = \{S_1, ..., S_n\}$ where $S_i = \{e \in U \mid v_i \in e\}$

Vertex cover is a special case of set cover.

Given graph G = (V, E)let U = E and $S = \{S_1, \dots, S_n\}$ where $S_i = \{e \in U \mid v_i \in e\}$

Vertex cover is a special case of set cover.

Given graph G = (V, E)let U = E and $S = \{S_1, ..., S_n\}$ where $S_i = \{e \in U \mid v_i \in e\}$

Q: How does the greedy algorithm for set cover work for vertex cover?

The greedy algorithm always chooses the vertex with largest remaining degree!

Layering Algorithm for Weighted VertexCover

Example:

Example:

Q: What is a min cardinality vertex cover here?

Example:

Q: What is a min cardinality vertex cover here?

Example:

Q: What is a min cardinality vertex cover here? Is this also a minimum weight vertex cover?

Example:

Q: What is a min cardinality vertex cover here?

Is this also a minimum weight vertex cover? No!

Does 2-approx work with weights?

Example:

Q: What is a min cardinality vertex cover here?

Is this also a minimum weight vertex cover? No!

Does 2-approx work with weights? No!

Now instead the approach of local ratio / layering!

decompose weights: $w = w_1 + w_2$, and consider instances I_w , I_{w_1} , and I_{w_2}

decompose weights: $w = w_1 + w_2$, and consider instances I_w , I_{w_1} , and I_{w_2}

$$w_1(v) = w_1(v') = \min(w(v), w(v')),$$

 $w_1(u) = 0 \text{ for } u \neq v, v'$

decompose weights: $w = w_1 + w_2$, and consider instances I_w , I_{w_1} , and I_{w_2}

$$w_1(v) = w_1(v') = \min(w(v), w(v')),$$

 $w_1(u) = 0$ for $u \neq v, v'$

any vertex cover for w_1 has weight 14 or 28

decompose weights: $w = w_1 + w_2$, and consider instances I_w , I_{w_1} , and I_{w_2}

$$w_1(v) = w_1(v') = \min(w(v), w(v')),$$

 $w_1(u) = 0$ for $u \neq v, v'$

any vertex cover for w_1 has weight 14 or 28

any vertex cover is a 2-approximation for w_1

Approximation Algorithm for Weighted VertexCover

decompose weights: $w = w_1 + w_2$, and consider instances I_w , I_{w_1} , and I_{w_2}

$$w_1(v) = w_1(v') = \min(w(v), w(v')),$$

 $w_1(u) = 0$ for $u \neq v, v'$

any vertex cover for w_1 has weight 14 or 28

any vertex cover is a 2-approximation for w_1

(recursively) compute a 2-approximation for w_2

Approximation Algorithm for Weighted VertexCover

decompose weights: $w = w_1 + w_2$, and consider instances I_w , I_{w_1} , and I_{w_2}

$$w_1(v) = w_1(v') = \min(w(v), w(v')),$$

 $w_1(u) = 0$ for $u \neq v, v'$

any vertex cover for w_1 has weight 14 or 28

any vertex cover is a 2-approximation for w_1

(recursively) compute a 2-approximation for w_2

Claim: A 2-approximation for w_2 is a 2-approximation for w

Let $w = w_1 + w_2$. If x is an r-approximate solution for w_1 and w_2 then x is r-approximate with respect to w as well.

Let $w = w_1 + w_2$. If x is an r-approximate solution for w_1 and w_2 then x is r-approximate with respect to w as well.

Proof.

Let $w = w_1 + w_2$. If x is an r-approximate solution for w_1 and w_2 then x is r-approximate with respect to w as well.

Proof.

$$w_1(x) \leq r \cdot w_1(x_1^*)$$

Let $w = w_1 + w_2$. If x is an r-approximate solution for w_1 and w_2 then x is r-approximate with respect to w as well.

Proof.

$$w_1(x) \le r \cdot w_1(x_1^*) \le r \cdot w_1(x^*)$$

Let $w = w_1 + w_2$. If x is an r-approximate solution for w_1 and w_2 then x is r-approximate with respect to w as well.

Proof.

$$w_1(x) \le r \cdot w_1(x_1^*) \le r \cdot w_1(x^*)$$

$$w_2(x) \le r \cdot w_2(x_2^*) \le r \cdot w_2(x^*)$$

Let $w = w_1 + w_2$. If x is an r-approximate solution for w_1 and w_2 then x is r-approximate with respect to w as well.

Proof.

$$w_1(x) \le r \cdot w_1(x_1^*) \le r \cdot w_1(x^*)$$

$$w_2(x) \le r \cdot w_2(x_2^*) \le r \cdot w_2(x^*)$$

$$w(x) = w_1(x) + w_2(x) \le r \cdot (w_1(x^*) + w_2(x^*)) = r \cdot w(x^*)$$

decompose weights: $w = w_1 + w_2$, and consider instances I_w , I_{w_1} , and I_{w_2}

such that any feasible solution is an r-approximation for w_1 and recurse on w_2

other choices of w_1 work too:

other choices of w_1 work too:

 $c := \min(w(u)/\text{degree}(u), u \in V)$

other choices of w_1 work too:

 $c := \min(w(u)/\text{degree}(u), u \in V)$

other choices of w_1 work too:

 $c := \min(w(u)/\text{degree}(u), u \in V)$

 $w_1(v) := c \cdot \text{degree}(v)$

other choices of w_1 work too:

 $c := \min(w(u)/\text{degree}(u), u \in V)$

 $w_1(v) := c \cdot \text{degree}(v)$

other choices of w_1 work too:

 $c := \min(w(u)/\text{degree}(u), u \in V)$

 $w_1(v) := c \cdot \text{degree}(v)$

before computing *c*:

- remove degree 0 nodes (not useful in cover)
- remove weight 0 nodes (and add to cover)

other choices of w_1 work too:

 $c := \min(w(u)/\text{degree}(u), u \in V)$

 $w_1(v) := c \cdot \text{degree}(v)$

before computing *c*:

- remove degree 0 nodes (not useful in cover)
- remove weight 0 nodes (and add to cover)

$$w_1(V) = c \cdot \sum_{v \in V} \text{degree(v)}$$

other choices of w_1 work too:

 $c := \min(w(u)/\text{degree}(u), u \in V)$

 $w_1(v) := c \cdot \text{degree}(v)$

before computing *c*:

- remove degree 0 nodes (not useful in cover)
- remove weight 0 nodes (and add to cover)

 $w_1(V) = c \cdot \sum_{v \in V} \text{degree(v)} = c \cdot 2|E|$ (handshaking lemma)

other choices of w_1 work too:

$$c := \min(w(u)/\text{degree}(u), u \in V)$$

$$w_1(v) := c \cdot \text{degree}(v)$$

before computing *c*:

- remove degree 0 nodes (not useful in cover)
- remove weight 0 nodes (and add to cover)

$$w_1(V) = c \cdot \sum_{v \in V} \text{degree(v)} = c \cdot 2|E|$$
 (handshaking lemma) optimal vertex cover V_1^* has to cover all edges $\Rightarrow |E| \leq \sum_{v \in V_1^*} \text{degree(v)}$

other choices of w_1 work too:

$$c := \min(w(u)/\text{degree}(u), u \in V)$$

$$w_1(v) := c \cdot \operatorname{degree}(v)$$

before computing *c*:

- remove degree 0 nodes (not useful in cover)
- remove weight 0 nodes (and add to cover)

$$w_1(V) = c \cdot \sum_{v \in V} \text{degree(v)} = c \cdot 2|E|$$
 (handshaking lemma) optimal vertex cover V_1^* has to cover all edges $\Rightarrow |E| \leq \sum_{v \in V_1^*} \text{degree(v)}$

$$\Rightarrow w_1(V) \le 2 \sum_{v \in V_1^*} c \cdot \text{degree(v)} = 2w_1(V_1^*)$$

other choices of w_1 work too:

$$c := \min(w(u)/\text{degree}(u), u \in V)$$

$$w_1(v) := c \cdot \text{degree}(v)$$

before computing *c*:

- remove degree 0 nodes (not useful in cover)
- remove weight 0 nodes (and add to cover)

$$w_1(V) = c \cdot \sum_{v \in V} \text{degree(v)} = c \cdot 2|E|$$
 (handshaking lemma) optimal vertex cover V_1^* has to cover all edges $\Rightarrow |E| \leq \sum_{v \in V_1^*} \text{degree(v)}$

$$\Rightarrow w_1(V) \le 2 \sum_{v \in V_1^*} c \cdot \text{degree}(v) = 2w_1(V_1^*)$$

 \Rightarrow 2-approximation, generalizes to k-approximation for set cover with every element occurring in at most k sets.

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\}$

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\}$

Q: What is the shortest superstring?

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow cbaabcb$?

Q: What is the shortest superstring?

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

```
Example. U := \{cbaa, abc, bcb\} \rightarrow cbaabcb?
```

Q: What is the shortest superstring?

abc

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow cbaabcb$?

Q: What is the shortest superstring?

abc bcb

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

```
Example. U := \{cbaa, abc, bcb\} \rightarrow cbaabcb?
```

Q: What is the shortest superstring?

```
abc
bcb
cbaa
```

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

```
Example. U := \{cbaa, abc, bcb\} \rightarrow cbaabcb?

abcbaa
abc
bcb
cbaa
```

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

```
Example. U := \{cbaa, abc, bcb\} \rightarrow cbaabcb?

abcbaa "covers" all strings in U

abc
bcb
cbaa
```

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

```
Example. U := \{cbaa, abc, bcb\} \rightarrow cbaabcb?

W.l.o.g.: No string s_i abcbaa "covers" all strings in U is a substring of any other string s_j.

abc abc
```

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\}$

Greedy

approach: iteratively combine two strings with maximum overlap

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow \{cbaa, abcb\}$

Greedy

approach: iteratively combine two strings with maximum overlap

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow \{cbaa, abcb\} \rightarrow \{abcbaa\}$

Greedy

approach: iteratively combine two strings with maximum overlap

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow \{cbaa, abcb\} \rightarrow \{abcbaa\}$

Greedy

approach: iteratively combine two strings with maximum overlap

Interestingly, only approximation factor ≥ 2 is known

for this algorithm.

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow \{cbaa, abcb\} \rightarrow \{abcbaa\}$

Greedy

approach: iteratively combine two strings with maximum overlap

Interestingly, only approximation factor ≥ 2 is known for this algorithm.

Q: Example where approximation factor 2 is achieved?

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a shortest string s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \longrightarrow \{cbaa, abcb\} \longrightarrow \{abcbaa\}$

Greedy

approach: iteratively combine two strings with maximum overlap

Interestingly, only approximation factor ≥ 2 is known for this algorithm.

Q: Example where approximation factor 2 is achieved?

$$U' := \{ab^k, b^kc, b^{k+1}\} \longrightarrow \{ab^kc, b^{k+1}\} \longrightarrow \{ab^kcb^{k+1}\}$$

SETCOVER Instance: ground set U, set family S, costs c.

SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

SETCOVER Instance: ground set U, set family S, costs c. Ground set $U := \{s_1, \dots, s_n\}$.

SETCOVER Instance: ground set U, set family S, costs c. Ground set $U := \{s_1, \dots, s_n\}$.

SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)

 s_i : cabab s_j : ababc

SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

```
s_i: cabab s_j: ababc cabab ababc
```


SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

SETCOVER Instance: ground set U, set family S, costs c.

```
Ground set U := \{s_1, \ldots, s_n\}.
```

```
s_i: cabab s_j: ababc cabab ababc \sigma_{ij2}: cabababc
```


SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)

SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)

costs
$$c\left(S(\sigma_{ijk})\right) = |\sigma_{ijk}|$$
 (number of characters in σ_{ijk})

SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)


```
costs c\left(S(\sigma_{ijk})\right) = |\sigma_{ijk}| (number of characters in \sigma_{ijk}) set family S = \{S(\sigma_{ijk}) \mid k > 0\} (possibly i = j)
```

SETCOVER Instance: ground set U, set family S, costs c.

Ground set
$$U := \{s_1, \ldots, s_n\}$$
.

Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)


```
costs c\left(S(\sigma_{ijk})\right) = |\sigma_{ijk}| (number of characters in \sigma_{ijk}) set family S = \{S(\sigma_{ijk}) \mid k > 0\} (possibly i = j)
```

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U, and let OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then

 $OPT_{SSS} \leq OPT_{SC}$.

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U, and let OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then

 $OPT_{SSS} \leq OPT_{SC}$.

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U, and let OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then

 $OPT_{SSS} \leq OPT_{SC}$.

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

Then $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U, and let OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then

$$OPT_{SSS} \leq OPT_{SC}$$
.

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

Then $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length

$$\sum_{i=1}^{k} |\pi_i| = \sum_{i=1}^{k} c(S(\pi_i)) = OPT_{SC}.$$

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U, and let OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then

$$OPT_{SSS} \leq OPT_{SC}$$
.

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

Then $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length

$$\sum_{i=1}^{k} |\pi_i| = \sum_{i=1}^{k} c(S(\pi_i)) = OPT_{SC}.$$

Thus, $OPT_{SSS} \leq |s| = OPT_{SC}$.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

```
Lemma. OPT_{SC} \leq 2 \cdot OPT_{SSS}.
```

Proof. Consider an optimal superstring *s*.

```
Lemma. OPT_{SC} \leq 2 \cdot OPT_{SSS}.
```

Proof. Consider an optimal superstring *s*.

```
Lemma. OPT_{SC} \le 2 \cdot OPT_{SSS}.

Proof. Consider an optimal superstring s.

Construct a set cover of cost \le 2|s| = 2 \cdot OPT_{SSS}.
```

```
Lemma. OPT_{SC} \le 2 \cdot OPT_{SSS}.

Proof. Consider an optimal superstring s.

Construct a set cover of cost \le 2|s| = 2 \cdot OPT_{SSS}.
```

leftmost occurence of a string $s_{b_1} \in U$.

```
Lemma. OPT_{SC} \le 2 \cdot OPT_{SSS}.

Proof. Consider an optimal superstring s.

Construct a set cover of cost \le 2|s| = 2 \cdot OPT_{SSS}.
```

 S_{b_1}

— leftmost occurence of another string in U.

```
Lemma. OPT_{SC} \le 2 \cdot OPT_{SSS}.

Proof. Consider an optimal superstring s.

Construct a set cover of cost \le 2|s| = 2 \cdot OPT_{SSS}.
```

 S_{b_1} leftmost occurence of another string in U.

```
Lemma. OPT_{SC} \le 2 \cdot OPT_{SSS}.

Proof. Consider an optimal superstring s.

Construct a set cover of cost \le 2|s| = 2 \cdot OPT_{SSS}.
```

```
s_{e_1} s_{e_1} s_{e_1} last such string that overlaps s_{b_1}
```

```
Lemma. OPT_{SC} \leq 2 \cdot OPT_{SSS}.
```

Proof. Consider an optimal superstring *s*.


```
OPT_{SC} \leq 2 \cdot OPT_{SSS}.
Lemma.
```

Consider an optimal superstring s. Proof.


```
Lemma. OPT_{SC} \leq 2 \cdot OPT_{SSS}.
```

Proof. Consider an optimal superstring *s*.


```
Lemma. OPT_{SC} \leq 2 \cdot OPT_{SSS}.
```

Proof. Consider an optimal superstring *s*.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring *s*.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring *s*.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring *s*.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring *s*.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring *s*.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring *s*.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring *s*.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring *s*.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring *s*.


```
Lemma. OPT_{SC} \leq 2 \cdot OPT_{SSS}.
```

Proof. Consider an optimal superstring *s*.


```
Lemma. OPT_{SC} \leq 2 \cdot OPT_{SSS}.
```

Proof. Consider an optimal superstring *s*.


```
Lemma. OPT_{SC} \leq 2 \cdot OPT_{SSS}.
```

Proof. Consider an optimal superstring *s*.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_i .

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_i .

 $\{S(\pi_1), \dots, S(\pi_k)\}$ is a solution for the SETCOVER instance with cost $\sum_i |\pi_i|$.

```
Lemma. OPT_{SC} \leq 2 \cdot OPT_{SSS}.
```

Proof.

Each string $s_i \in U$ is a substring of some π_i .

 $\{S(\pi_1), \dots, S(\pi_k)\}$ is a solution for the SETCOVER instance with cost $\sum_i |\pi_i|$.

Substrings π_1, \ldots, π_k cover s, but π_j, π_{j+2} do not overlap.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_i .

 $\{S(\pi_1), \dots, S(\pi_k)\}$ is a solution for the SETCOVER instance with cost $\sum_i |\pi_i|$.

Substrings π_1, \ldots, π_k cover s, but π_j, π_{j+2} do not overlap.

Hence each character in s lies in (at least one but) at most **two** (subsequent) substrings π_j and π_{j+1} .

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_i .

 $\{S(\pi_1), \dots, S(\pi_k)\}$ is a solution for the SETCOVER instance with cost $\sum_i |\pi_i|$.

Substrings π_1, \ldots, π_k cover s, but π_j, π_{j+2} do not overlap.

Hence each character in s lies in (at least one but) at most **two** (subsequent) substrings π_j and π_{j+1} .

$$\sum_{i} |\pi_{i}| \leq 2|s| = 2 \cdot \text{OPT}_{SSS}$$

1. Construct SetCover instance $\langle U, S, c \rangle$.

- 1. Construct SetCover instance $\langle U, S, c \rangle$.
- 2. Compute a set cover $\{S(\pi_1), \dots, S(\pi_k)\}$ with the algorithm GreedySetCover.

- 1. Construct SetCover instance $\langle U, S, c \rangle$.
- 2. Compute a set cover $\{S(\pi_1), \dots, S(\pi_k)\}$ with the algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

- 1. Construct SetCover instance $\langle U, S, c \rangle$.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with the algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithm is a factor- $2\mathcal{H}_n$ approximation algorithm for ShortestSuperString.

- 1. Construct SetCover instance $\langle U, S, c \rangle$.
- 2. Compute a set cover $\{S(\pi_1), \dots, S(\pi_k)\}$ with the algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithm is a factor- $2\mathcal{H}_n$ approximation algorithm for ShortestSuperString.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

- 1. Construct SetCover instance $\langle U, S, c \rangle$.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with the algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithm is a factor- $2\mathcal{H}_n$ approximation algorithm for ShortestSuperString.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k$.

Can we do better?

Can we do better?

• The best known approximation factor for ShortestSuperString is $\frac{71}{30} \approx 2.367$.

Can we do better?

- The best known approximation factor for ShortestSuperString is $\frac{71}{30} \approx 2.367$.
- SHORTESTSUPERSTRING cannot be approximated within factor $\frac{333}{332} \approx 1.003$ (unless P = NP).

set cover: greedy algorithm is $O(\log k)$ approximation where k is the size of the largest set

set cover: greedy algorithm is $O(\log k)$ approximation where k is the size of the largest set

vertex cover: special case of set cover. Therefore, same approximation ratio, which is worse than 2-approximation that we have seen for min-cardinality vertex cover

set cover: greedy algorithm is $O(\log k)$ approximation where k is the size of the largest set

vertex cover: special case of set cover. Therefore, same approximation ratio, which is worse than 2-approximation that we have seen for min-cardinality vertex cover

weighted vertex cover: 2-approximation using local ratio (aka layering)

set cover: greedy algorithm is $O(\log k)$ approximation where k is the size of the largest set

vertex cover: special case of set cover. Therefore, same approximation ratio, which is worse than 2-approximation that we have seen for min-cardinality vertex cover

weighted vertex cover: 2-approximation using local ratio (aka layering)

shortest superstring: can be approximated using set cover with extra factor 2: approximation algorithm with factor $2\mathcal{H}_n = O(\log n)$

set cover: greedy algorithm is $O(\log k)$ approximation where k is the size of the largest set

vertex cover: special case of set cover. Therefore, same approximation ratio, which is worse than 2-approximation that we have seen for min-cardinality vertex cover

weighted vertex cover: 2-approximation using local ratio (aka layering)

shortest superstring: can be approximated using set cover with extra factor 2: approximation algorithm with factor $2\mathcal{H}_n = O(\log n)$

shortest superstring: better approximation algorithms exist