Single-Port RAM Verification

Aurhor: Ammar Wahidi

Undergraduate Student, Electronics and Communication Engineering

Ain Shams University

Email: aammarahmed123@gmail.com

Date: July 10, 2025

Revision number: V.2

Introduction

This document presents the RTL verification of a single-port RAM IP. It provides a detailed overview of the IP design, the verification strategy employed, the test items and corresponding test case table, as well as coverage results. Additionally, the document includes a list of bugs that were discovered during the verification process.

IP Design details

Input

Signal	Description
clk	System clock
rst	Active-High reset, When asserted, it resets Data_out to first element in the memory.
en	High: Write enable, Low: Read enable
Data_in	32-bit data input to be written into memory.
address	4-bit address used for both read and write operations.

[verification Plan]

Output

Signal	Description
Data_out	32-bit data output from memory during a read operation.
valid_out	High: Data_out is valid, Low: Data_out is garbage.

This memory module exhibits 1-cycle read latency and 0-cycle write latency.

Verification Strategy

Exit Criteria

Test Items

Items shall be:

- Memory Reset
 - o "reset" Set to 1: Memory access defaults to the first element (address 0).
 - o "reset" Set to 0: Memory access should follow the input address (address).
- Memory enable
 - o "en" Set to 1: Perform Write operation write "Data_in" to "memory[addr]".
 - "en" Set to 0: Perform Read operation read from "memory[addr]" to "data_out".
- Memory Address Access
 - o "address" between 1 to 15.
 - o "address" is 0.
 - o "address" is undefined (x) or high-impedance (z) values.
 - o The "address" input should correctly access the intended memory location.
- Memory Data
 - o "Data in" is a valid (Random) value.
 - o "Data_in" Maximum Value.
 - o "Data_in" Minimum Value (0).
 - o "Data_in" is undefined (x) or high-impedance (z) values.

Test Cases

Test	Description	
Test01	· Memory Reset/enable/Data input is random.	
Test02	· Memory Reset/disable.	
Test03	Memory Reset/enable/Data input is Minimum.Memory Reset /disable.	

[verification Plan]

Test04	 Memory Reset/enable/ address indicates to Random/Data input is Minimum. Memory Set /disable/ address indicates to 0.
Test05	Memory Reset/enable/Data input is random value.Memory Set /disable/ address indicates to 0.
Test06	Memory Reset/enable/Data input is undefined or high impedance.Memory Set /disable/ address indicates to 0.
Test07	 Memory Set/enable/Adress indicates to random value between 0 to 15/Data input is random. Memory Set /disable/ Adress indicates to the same random value between 0 to 15.
Test08	 Memory Set/enable/Adress indicates to random value between 0 to 15/Data input is Maximum. Memory Set /disable/ Adress indicates to the same random value between 0 to 15.
Test09	 Memory Set/enable/Adress indicates to random value between 0 to 15/Data input is Minimum. Memory Set /disable/ Adress indicates to the same random value between 0 to 15.
Test10	 Memory Set/disable/Adress indicates to random value between 0 to 15/Data input is random. Memory Set/disable/Adress indicates to random value between 0 to 15/Data input is random.
Test11	 Memory Set/enable/Adress indicates to random value between 0 to 15/Data input is random. Memory Set/enable/Adress indicates to random value between 0 to 15/Data input is random.
Test12	 Memory Set/enable/Adress indicates to random value between 0 to 15/ Data input is undefined or high impedance.
Test13	 Memory Set/disable/Adress undefined (x) or high-impedance (z).
Test14	 Memory Set/enable/Adress undefined (x) or high-impedance (z)/ Data input is undefined or high impedance.

Coverage Results

Opened Issues

Feature Assessment

[verification Plan]