I Questions de cours

1 - Exercice 37 banque CCINP:

On note E l'espace vectoriel des applications continues de [0;1] dans \mathbb{R} . On pose :

$$\forall f \in E, \ N_{\infty}(f) = \sup_{x \in [0,1]} |f(x)| \text{ et } N_1(f) = \int_0^1 |f(t)| dt$$

- a) Démontrer que N_1 et N_{∞} sont deux normes sur E.
- b) Démontrer qu'il existe k > 0 tel que, pour tout $f \in E$, $N_1(f) \le kN_\infty(f)$.
- c) Démontrer que les normes N_1 et N_{∞} ne sont pas équivalentes.
- 2 Exercice 54 banque CCINP :

Soit E l'ensemble des suites à valeurs réelles qui convergent vers 0.

a) Prouver que E est un sous-espace vectoriel de l'espace vectoriel des suites à valeurs réelles.

Pour tout $u = (u_n)_{n \in \mathbb{N}} \in E$, on pose $||u|| = \sup_{n \in \mathbb{N}} |u_n|$.

- b) Montrer que $\|\cdot\|$ est une norme sur E.
- c) Montrer que, pour tout $u = (u_n)_{n \in \mathbb{N}} \in E$, la série $\sum_{n \geq 0} \frac{u_n}{2^{n+1}}$ converge.
- 3 Démontrer que tout boule (ouverte ou fermée) est une partie convexe.

II Exercices

Exercice 1:

Soit E l'espace vectoriel des suites presque nulles.

Pour tout $a \in E$, on pose : $||a|| = \max_{k \in \mathbb{N}} |a_k|$.

- 1 Montrer que $\|\cdot\|$ est une norme sur E.
- 2 Pour $n \in \mathbb{N}$, on note e_n la suite dont tous les termes sont nuls sauf le terme d'indice n qui vaut 1.

Montrer que la suite $(e_n)_{n\in\mathbb{N}}$ est bornée mais ne converge pas au sens de $\|\cdot\|$.

Exercice 2:

Soit E l'espace vectoriel des fonctions réelles de classe \mathcal{C}^1 sur [0;1].

Pour tout $f \in E$, on note :

$$N(f) = |f(0)| + \int_0^1 |f'(x)| \, \mathrm{d}x \text{ et } N_\infty(f) = \max_{x \in [0;1]} |f(x)|$$

- 1 Montrer que N est une norme sur E.
- 2 Pour tout $n \in \mathbb{N}^*$, on définit f_n sur [0;1] par :

$$\forall x \in [0;1], \ f_n(x) = \frac{1}{n}\sin(\pi nx)$$

Calculer $N_{\infty}(f_n)$ et $N(f_n)$ en fonction de n.

- 3 Montrer que les normes N et N_{∞} ne sont pas équivalentes.
- 4 -Montrer que :

$$\forall f \in E, \ N_{\infty}(f) \le N(f)$$

Indication : On remarquera que pour tout $x \in [0;1]$, $f(x) - f(0) = \int_0^x f'(t) dt$.

Exercice 3:

On note $E = \mathcal{C}^0([0;1], \mathbb{R})$ et pour $f \in E$, on pose :

$$||f||_1 = \int_0^1 |f(t)| dt$$
 et $N(f) = \int_0^1 t |f(t)| dt$

- 1 Montrer que N est une norme sur E.
- 2 Pour tout $n \in \mathbb{N}$, on note f_n la fonction définie sur [0;1] par :

$$f_n: t \longmapsto \begin{cases} n(1-nt) & \text{si } t \in \left[0; \frac{1}{n}\right] \\ 0 & \text{sinon} \end{cases}$$

Calculer $N(f_n)$ en fonction de n et vérifier que $(f_n)_{n\in\mathbb{N}}$ converge vers la fonction nulle au sens de N.

3 - Pour tout $n \in \mathbb{N}$, calculer $||f_n||_1$. Que peut-on en conclure?

Exercice 4:

Dans $\mathbb{R}[X]$, on considère les normes N_1 et N_2 définies par :

$$N_1(P) = \int_0^1 |P(t)| dt$$
 et $N_2(P) = \int_0^2 |P(t)| dt$

Montrer que N_1 est dominée par N_2 mais que N_2 n'est pas dominée par N_1 .

Exercice 5:

Soit E un espace vectoriel normé réel. Montrer que tout sous-espace affine de E est une partie convexe.

Exercice 6:

Soient $n \in \mathbb{N}^*$ et $(a_1, ..., a_{n+1})$ une (n+1)-liste de scalaires deux à deux distincts. Montrer que l'on définit une norme sur $\mathbb{K}[X]$ en posant :

$$||P|| = \max_{k \in [1; n+1]} |P(a_k)|$$