1 $p = 3, 3 \mid n, n-1$ case full argument

1.1 Generators

Let x_1, \ldots, x_{n-1} be a basis for the n-1 dimensional representation of S_n derived from the standard representation with basis e_0, \ldots, e_{n-1} by the relation $x_i = e_i - e_0$ and the action of the symmetric group defined accordingly. Let s_{ij} be the transposition of i and j, for $0 \le i < j \le n-1$.

For $1 \le i < j \le n-1$, the relevant eigenvectors are $x_i - x_j$. For s_{0i} for $1 \le i \le n-1$, the relevant eigenvector is x_i .

Let f_a for a = 1, ..., n-1 be $f_a = -x_a^3 + c\left(\sum_{i=1}^{n-1} x_a x_i (x_a - x_i)\right) + c^2\left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j x_a\right)$. We will show that all the f_a are killed by Dunkl operators. Because of their symmetry, we need only consider f_1 . Since f_1 is symmetric in the x_i excluding x_1 , the only Dunkl operators we need consider are D_1, D_2 .

We note that f_1 is preserved by s_{ij} for all i, j > 1. We consider s_{1a} for $2 \le a$. We see that $s_{1a}f_1 = -x_a^3 + c\left(\sum_{i=1}^{n-1} x_a x_i(x_a - x_i)\right) + c^2\left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j x_a\right) = f_a$. Then:

$$f_1 - f_a = -(x_1 - x_a)^3 + c \left(\sum_{i=1}^{n-1} x_1 x_i (x_1 - x_i) - x_a x_i (x_a - x_i) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j (x_1 - x_a) \right)$$

$$= -(x_1 - x_a)^3 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_a - x_i) (x_1 - x_a) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j (x_1 - x_a) \right)$$

Then
$$\frac{f_1 - s_{1a} f_1}{x_1 - x_a} = -(x_1 - x_a)^2 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_a - x_i) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j \right).$$

We consider s_{0a} for $2 \le a$. We see that s_{0a} sends x_a to $-x_a$ and x_i for $i \ne a$ to $x_a - x_1$. We see that:

$$\begin{split} s_{0a}f_1 &= s_{0a} \left(-x_1^3 + c \left(\sum_{i=1}^{n-1} x_1 x_i (x_1 - x_i) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j x_1 \right) \right) \\ &= s_{0a} \left(-x_1^3 + c \left(\sum_{i \neq a} x_1 x_i (x_1 - x_i) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} x_i x_j x_1 \right) + c x_1 x_a (x_1 - x_i) + c^2 x_a^2 x_1 + 2c^2 \sum_{i \neq a} x_i x_a x_1 \right) \\ &= -(x_1 - x_a)^3 + c \left(\sum_{i \neq a} (x_1 - x_a)(x_i - x_a)(x_1 - x_a - x_i + x_a) \right) + \\ c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i - x_a)(x_j - x_a)(x_1 - x_a) \right) + c(x_1 - x_a)(-x_a)(x_1 - x_a - x_i + x_a) + c^2 (-x_a)^2 (x_1 - x_a) + \\ 2c^2 \sum_{i \neq a} (x_i - x_a)(-x_a)(x_1 - x_a) \\ &= -x_1^3 + x_a^3 + c \left(\sum_{i \neq a} (x_1 - x_a)(x_i - x_a)(x_1 - x_i) \right) + \\ c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i - x_a)(x_j - x_a)(x_1 - x_a) \right) + c(x_1 - x_a)(-x_a)(x_1 - x_i) + c^2 x_a^2 (x_1 - x_a) + \\ 2c^2 \sum_{i \neq a} (x_i - x_a)(-x_a)(x_1 - x_a) \\ &= c^2 \sum_{i \neq a} (x_i - x_a)(-x_i - x_a) \\ &= c^2 \sum_{i \neq a} (x$$

The only remaining case to consider is s_{01} . We see that s_{01} sends x_1 to $-x_1$ and x_a for $a \ge 2$ to $x_a - x_1$. Then $s_{01}f_1$ goes to

$$-(-x_1)^3 + c \left(\sum_{i=2}^{n-1} (-x_1)(x_i - x_1)(-x_1 - (x_i - x_1))\right) + c^2 \left(\sum_{i=2}^{n-1} \sum_{j=2}^{n-1} (x_i - x_1)(x_j - x_1)(-x_1)\right) + c^2 \left(\sum_{i=2}^{n-1} \sum_{j=2}^{n-1} (x_i - x_1)(x_j - x_1)(-x_1)\right) + c^2 \left(\sum_{i=2}^{n-1} (x_i - x_1)x_1^2\right) + c^2 \left(\sum_{i=2}^{n-1} \sum_{j=2}^{n-1} -x_i x_j x_1 + x_i x_1^2 + x_j x_1^2 - x_1^3\right) + c^2 \left(\sum_{i=2}^{n-1} (x_i - x_1)x_1^2\right) + 2c^2 x_1^3$$

$$= x_1^3 + c \left(\sum_{i=2}^{n-1} (x_i - x_1)x_1^2\right) + 2c^2 x_1^3$$

$$= x_1^3 + c \left(\sum_{i=2}^{n-1} x_1 x_i (x_i - x_1)\right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} -x_i x_j x_1\right)$$

$$= -f_1$$

The above used the fact that $n-2 \equiv 1 \mod 3$. Therefore $\frac{f_1 - s_{01} f_1}{x_1} = 2f_1/x_1 = -f_1/x_1 = x_1^2 + c\left(\sum_{i=1}^{n-1} x_i(x_i - x_1)\right) - c\left(\sum_{i=1}^{n-1} x_i(x_i - x_1)\right)$

$$c^{2}\left(\sum_{i=1}^{n-1}\sum_{j=1}^{n-1}x_{i}x_{j}\right).$$

We can use these to calculate the effects of the Dunkl operators.

1.2 Dunkl operators

1.2.1 $D_1 f_1$

We first consider $D_1 f_1 = \partial_1 f_1 - c \sum_{a>1} \frac{f_1 - s_{1a} f_1}{x_1 - x_a} - c \frac{f_1 - s_{01} f_1}{x_1}$. Let $G_1 = \sum_{a>1} \frac{f_1 - s_{1a} f_1}{x_1 - x_a}$, $G_2 = \frac{f_1 - s_{01} f_1}{x_1}$. We wish to show that $\partial_1 f_1 = c G_1 + c G_2$, since then $D_1 f_1 = 0$. We calculate $\partial_1 f_1$:

$$\partial_1 f_1 = \partial_1 \left(-x_1^3 + c \left(\sum_{i=1}^{n-1} x_1 x_i (x_1 - x_i) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j x_1 \right) \right)$$

$$= c \left(\sum_{i=2}^{n-1} x_1 x_i + x_i (x_1 - x_i) \right) + c^2 \left(\sum_{i=2}^{n-1} \sum_{j=2}^{n-1} x_i x_j \right) + 2c^2 \left(\sum_{i=2}^{n-1} 2x_i x_1 \right)$$

$$= c \left(\sum_{i=2}^{n-1} x_1 x_i + x_i x_1 - x_i^2 \right) + c^2 \left(\sum_{i=2}^{n-1} \sum_{j=2}^{n-1} x_i x_j \right) + c^2 \left(\sum_{i=2}^{n-1} x_i x_1 \right)$$

$$= c \left(\sum_{i=2}^{n-1} -x_1 x_i - x_i^2 \right) + c^2 \left(\sum_{i=2}^{n-1} \sum_{j=1}^{n-1} x_i x_j \right)$$

We also see that
$$G_1 = \sum_{a>1} \frac{f_1 - s_{1a} f_1}{x_1 - x_a} = \sum_{a=2}^{n-1} -(x_1 - x_a)^2 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_a - x_i)\right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j\right)$$
 and $G_2 = x_1^2 + c \left(\sum_{i=1}^{n-1} x_i (x_i - x_1)\right) - c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j\right)$.

Since $n-2 \equiv 1 \mod 3$, we see that the c^2 terms cancel in $G_1 + G_2$. We also note that $x_i(x_i - x_1) = x_i(x_1 + x_1 - x_i) - x_i^2$ for all i, so $G_1 + G_2 = x_1^2 - c\left(\sum_{i=1}^{n-1} x_i^2\right) + \sum_{a=1}^{n-1} -(x_1 - x_a)^2 + c\left(\sum_{i=1}^{n-1} x_i(x_1 + x_a - x_i)\right)$.

$$\begin{split} G_1 + G_2 &= x_1^2 - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + \sum_{a=1}^{n-1} -(x_1 - x_a)^2 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_a - x_i) \right) \\ &= x_1^2 - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + \sum_{a=1}^{n-1} -x_1^2 - x_a^2 + 2x_a x_1 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_a - x_i) \right) \\ &= x_1^2 - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + \sum_{j=1}^{n-1} -x_1^2 - x_j^2 + 2x_j x_1 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_j - x_i) \right) \\ &= x_1^2 + -(n-1)x_1^2 - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + \sum_{j=1}^{n-1} -x_j^2 - x_j x_1 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_j - x_i) \right) \\ &= 2x_1^2 - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + \sum_{j=1}^{n-1} \left(-x_j^2 - x_j x_1 \right) + c \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_1 + x_i x_j - x_i^2 \right) \\ &= \sum_{j=2}^{n-1} \left(-x_j^2 - x_j x_1 \right) - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + c \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j \right) - c \left(\sum_{i=1}^{n-1} x_i x_1 - x_i^2 \right) \\ &= \sum_{j=2}^{n-1} \left(-x_j^2 - x_j x_1 \right) - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + c \left(\sum_{i=1}^{n-1} \sum_{j=2}^{n-1} x_i x_j \right) + c \left(\sum_{i=1}^{n-1} x_i^2 \right) \\ &= \sum_{j=2}^{n-1} \left(-x_j^2 - x_j x_1 \right) - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + c \left(\sum_{i=1}^{n-1} \sum_{j=2}^{n-1} x_i x_j \right) + c \left(\sum_{i=1}^{n-1} x_i^2 \right) \\ &= \sum_{j=2}^{n-1} \left(-x_j^2 - x_j x_1 \right) + c \left(\sum_{i=1}^{n-1} \sum_{j=2}^{n-1} x_i x_j \right) + c \left(\sum_{i=1}^{n-1} x_i^2 \right) \end{aligned}$$

Then a simple change of indices tells us that $cG_1 + cG_2 = \partial_1 f_1$ as desired.

1.2.2 $D_2 f_1$

We see that $D_2 f_1 = \partial_2 f_1 - c \frac{f_1 - s_{12} f_1}{x_2 - x_1} + \dots$

1.3 Complete intersection

Then we see that the ideal I generated by f_1, \ldots, f_{n-1} has $I \subseteq J$ where J is the kernel of the β form, since the generators f_1, \ldots, f_{n-1} are killed by the Dunkl operators.

We note that the f_i are linearly independent, since x_i^3 has nonzero coefficient in f_j only when i=j. We will show that A/I, where $A=k[x_1,\ldots,x_{n-1}]$, is a complete intersection by showing that $f_1(x)=\cdots=f_{n-1}(x)=0$ implies x=0.

A simple algebraic manipulation lets us see that $f_a = -x_a^3 + cx_a^2 \left(\sum_{i=1}^{n-1} x_i\right) + (c^2 + 2c)x_a \left(\sum_{i=1}^{n-1} x_i\right)^2 + x_a \left(\sum_{1 \le i < j \le n-1} 2cx_ix_j\right)$. We also note that $\sum_{i=1}^{n-1} f_i = (c^2 + 2)\sum_{i=1}^{n-1} x_i^3 = (c^2 + 2)\left(\sum_{i=1}^{n-1} x_i\right)^3$ Therefore

if $f_1(x) = \cdots = f_{n-1}(x) = 0$, we see that $\sum_{i=1}^{n-1} x_i = 0$. Modulo this new relation, we see that $f_a = x_a \left(-x_a^2 + \sum_{1 \le i < j \le n-1} 2cx_ix_j \right)$. Therefore if $f_a = 0$ for all a, we see that for each a, either $x_a = 0$ or x_a is a square root of $C = \sum_{1 \le i < j \le n-1} 2cx_ix_j$. If C = 0 or C has no square roots, then all the x_a are 0 and we are done; so we assume C has two square roots which are additive inverses of each other. Then each pair x_ix_j either multiply to $\pm C$ or 0, so C = 2cmC for some integer m. Then (1 + cm)C = 0; if $C \ne 0$, then 1 + cm = 0; however, m is an integer, so this is impossible. Therefore C = 0, so all the x_a are 0.

Therefore $f_1(x) = \cdots = f_{n-1}(x) = 0$ implies x = 0, so A/I is a complete intersection; it then must have Hilbert polynomial $h_{A/I}(t) = (t^2 + t + 1)^{n-1}$.

By Proposition 3.4 in http://arxiv.org/abs/1107.0504, we see that the Hilbert polynomial of A/J is $(t^2 + t + 1)^{n-1}h(t^3)$ for some polynomial h with nonnegative integer coefficients; since $I \subseteq J$, we see that $h_{A/I}(t) \ge h_{A/J}(t)$ coefficientwise; however by this restriction of the form of $h_{A/J}(t)$, we see that the only possible choice for h is h(t) = 1. Therefore $h_{A/I}(t) = h_{A/J}(t)$, so I = J and these n-1 generators generate the whole ideal.