Good Luck!

This quiz has a back side! Don't forget about Question 3 and Bonus Question!

- 1. (5 points) Given the following system of differential equations: $y' = \begin{bmatrix} -1 & -4 \\ -1 & -1 \end{bmatrix} y$,
 - (a) Find the general solution. (b) Classify the equilibrium. (c) Sketch the phase portrait.

Solution:

(a) We solve the problem using the eigenvalue method.

The matrix A has two real distinct eigenvalues, that are obtained by solving the following equation: $det(A - \lambda I) = (\lambda - 1)(\lambda + 3) = 0$.

Therefore, we have $\lambda_1 = -3$ and $\lambda_2 = 1$.

The corresponding eigenvectors are obtained by solving the homogeneous systems $(A-\lambda_i I)x_i = 0$ with i = 1, 2.

With $\lambda_1 = -3$ we find $x_1 = (2,1)^T$ and with $\lambda_2 = 1$ we find $x_2 = (-2,1)^T$. The two independent solutions are

$$y_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-3t}$$
 and $y_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix} e^t$

The general solution is given by

$$y = c_1 y_1 + c_2 y_2 = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-3t} + c_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix} e^t.$$

- (b) The equilibrium of the system is the point (0,0). Since the eigenvalues have opposite sign, it is a saddle point and therefore it is unstable.
- (c)
- 2. (5 points) Given the solution $y = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-\frac{t}{2}} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ of the system $y' = \frac{1}{4} \begin{bmatrix} -5 & 3 \\ 3 & -5 \end{bmatrix} y$,
 - (a) Show that y is a general solution of the system. (b) Classify the equilibrium. (c) Sketch the phase portrait.

Solution:

(a) In order to show that y is a general solution, we have to prove that it is a solution and that the two solutions $\begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-\frac{t}{2}}$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are linearly independent. Plugging y into the system we have

$$-\frac{1}{2}c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-\frac{t}{2}} - 2c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \frac{1}{4} \begin{bmatrix} -5 & 3 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-\frac{t}{2}} + \frac{1}{4} \begin{bmatrix} -5 & 3 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$

which is an identity, meaning that y is a solution of the system.

Moreover, we compute the Wonskian at t = 0

$$W = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2 \neq 0,$$

meaning that the solutions are linearly independent.

Thus the linear combination of the two solutions is a general solution.

- (b) The equilibrium given by the origin is an asymptotically stable node, since the eigenvalues of the matrix are both real and negative.
- (c)

3. (5 points) Given the following system of differential equations $y' = \begin{bmatrix} -1 & 1 & -1 \\ -2 & 0 & 2 \\ -1 & 3 & -1 \end{bmatrix} y$,

the characteristic polynomial associated to the matrix of the system is $p(\lambda) = -(\lambda - 2)(\lambda + 2)^2$. Let y_1 be the solution relative to the eigenvalue $\lambda_1 = 2$, find the solutions y_2 and y_3 associated to the repeated eigenvalues λ_2 and λ_3 .

Solution: The repeated eigenvalues of the matrix are $\lambda_2 = \lambda_3 = -2$. The solution relative to λ_2 is given by the eigenvalue method

$$y_2 = x_2 e^{\lambda_2 t} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} e^{-2t}.$$

Since the corresponding eigenspace has dimension one, we need to find a generalized eigenvector w corresponding to the eigenvalue -2, such that $(A + 2I)w = x_2$.

The vector which satisfies this system is given by $w = (1/2, 1/2, 0)^T$, and therefore the solution is

$$y_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \frac{e^{-2t}}{2} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} te^{-2t}.$$

[Bonus] (2 points) Find the solution y_1 of Question 3.

Solution: The solution associated to the eigenvalue $\lambda_1 = 2$ is given by

$$y_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} e^{2t}.$$