

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro(43) Internationales Veröffentlichungsdatum
3. Juni 2004 (03.06.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/046658 A1(51) Internationale Patentklassifikation⁷: **G01F 1/66**

(21) Internationales Aktenzeichen: PCT/EP2003/012861

(22) Internationales Anmeldedatum:
17. November 2003 (17.11.2003)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 54 054.3 19. November 2002 (19.11.2002) DE(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): ENDRESS + HAUSER FLOWTEC AG [CH/CH]; Kägenstrasse 7, CH-4153 Reinach (CH).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): BUSSINGER, Klaus

[CH/CH]; Heiligholzstrasse 28, CH-4142 Münchenstein (CH). FRÖHLICH, Thomas [CH/CH]; Kienbergstrasse 20, CH-4058 Basel (CH). STOCKER, Harald [DE/DE]; Lindenweg 25a, 79650 Schopfheim (DE).

(74) Anwalt: ANDRES, Angelika; Endress + Hauser Deutschland Holding GmbH, Colmarer Strasse 6, 79576 Weil am Rhein (DE).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.*[Fortsetzung auf der nächsten Seite]*

(54) Title: DEVICE FOR THE DETERMINATION AND/OR MONITORING OF THE VOLUME AND/OR MASS FLOW OF A MEDIUM

(54) Bezeichnung: VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG DES VOLUMEN- UND/ODER DES MASSENDURCHFLUSSES EINES MEDIUMS

(57) **Abstract:** The invention relates to an ultrasounds throughflow measurement device (1). The aim of the invention is to disclose a throughflow measuring device (1), characterised by a low electricity usage, or by a low power consumption. Said aim is achieved, whereby the regulation/analytical unit (11) is provided with at least one component (12) with a high power consumption and that the regulation/analytical unit (11) is embodied such that the component (12) with the high power consumption is intermittently operated in a measuring phase and an idle phase, whereby during the measuring phase the component (12) is activated and in the idle phase said component (12) has a reduced power consumption or is switched off.

[Fortsetzung auf der nächsten Seite]

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht

— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Die Erfindung bezieht sich auf ein Ultraschall-Durchflussmessgerät (1). Der Erfindung liegt die Aufgabe zugrunde, ein Durchflussmessgerät (1) vorzuschlagen, das sich durch einen geringen Stromverbrauch bzw. durch eine geringe Leistungsaufnahme auszeichnet. Die Aufgabe wird dadurch gelöst, dass der Regel-/Auswerteeinheit (11) zumindest eine Komponente (12) mit hoher Leistungsaufnahme zugeordnet ist, und dass die Regel-/Auswerteeinheit (11) derart ausgestaltet ist, dass die Komponente (12) mit der hohen Leistungsaufnahme intermittierend in einer Messphase und in einer Ruhephase betrieben wird, wobei die Komponente (12) in der Messphase aktiviert ist, während die Komponente (12) in der Ruhephase eine reduzierte Leistungsaufnahme aufweist oder ausgeschaltet ist.

Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder des Massendurchflusses eines Mediums

5

Die Erfindung bezieht sich auf eine Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Mediums, das ein Behältnis in einer Strömungsrichtung durchfließt, mit zumindest einem Ultraschallwandler, der Ultraschall-Meßsignale aussendet und/oder empfängt, und mit einer Regel-/Auswerteeinheit, die den Volumen- und/oder den Massendurchfluß des Mediums in dem Behältnis anhand der Ultraschall-Meßsignale nach dem Laufzeitdifferenz-Prinzip oder nach dem Doppler-Prinzip ermittelt.

15

Ultraschall-Durchflußmeßgeräte werden vielfach in der Prozeß- und Automatisierungstechnik eingesetzt. Sie erlauben es, den Volumen- und/oder Massenstrom eines Mediums in einem Behältnis, insbesondere in einem Rohr berührungslos zu bestimmen.

20

Die bekannten Ultraschall-Durchflußmeßgeräte arbeiten entweder nach dem Doppler-Prinzip oder nach dem Laufzeitdifferenz-Prinzip. Beim Laufzeitdifferenz-Prinzip wird die unterschiedliche Laufzeit von Ultraschall-Meßsignalen in Strömungsrichtung und entgegen der Strömungsrichtung des Mediums ausgewertet. Hierzu werden die Ultraschall-Meßsignale von den Ultraschallwandlern wechselweise in Strömungsrichtung und entgegen der Strömungsrichtung des Mediums ausgesendet bzw. empfangen. Anhand der Laufzeitdifferenz der Ultraschall-Meßsignale lässt sich die Fließgeschwindigkeit und damit bei bekanntem Durchmesser des Rohres der Volumendurchfluß bzw. bei bekannter Dichte des Mediums der Massendurchfluß bestimmen.

30

Beim Doppler-Prinzip werden Ultraschall-Meßsignale mit einer vorgegebenen Frequenz in das strömende Medium eingekoppelt. Die in dem Medium reflektierten Ultraschall-Meßsignale werden ausgewertet. Anhand einer zwischen dem eingekoppelten und dem reflektierten Ultraschall-Meßsignal auftretenden Frequenzverschiebung lässt sich ebenfalls die Fließgeschwindigkeit des Mediums bzw. der Volumen und/oder Massenstrom bestimmen. Der

Einsatz von Durchflußmeßgeräten, die nach dem Doppler-Prinzip arbeiten, ist nur möglich, wenn in dem Medium Luftbläschen oder Verunreinigungen vorhanden sind, an denen die Ultraschall-Meßsignale reflektiert werden. Damit ist der Einsatz derartiger Ultraschall-Durchflußmeßgeräte im Vergleich zu den 5 Ultraschall-Durchflußmeßgeräten, die nach dem Laufzeitdifferenz-Prinzip arbeiten, ziemlich eingeschränkt.

Hinsichtlich der Typen von Meßgeräten wird unterschieden zwischen Ultraschall-Durchflußmeßaufnehmern, die in das Rohr eingesetzt werden, und 10 Clamp-On Durchflußmeßgeräten, bei denen die Ultraschallwandler von außen an die Rohrleitung mittels eines Spannverschlusses angepreßt werden. Clamp-On Durchflußmeßgeräte sind beispielsweise in der EP 0 686 255 B1, der US-PS 4,484,478 oder der US-PS 4,598,593 beschrieben.

15 Bei beiden Typen von Ultraschall-Durchflußmeßgeräten werden die Ultraschall-Meßsignale unter einem vorgegebenen Winkel in das Rohr, in dem sich das strömende Medium befindet, eingestrahlt und/oder empfangen. Um die Ultraschall-Meßsignale unter einem bestimmten Winkel in das Rohr bzw. in das Medium einstrahlen zu können, erfolgt bei Clamp-On Durchflußmeßgeräten die Ein- und Auskopplung der Ultraschall-Meßsignale in das Rohr über einen Vorlaufkörper bzw. einen Koppelkeil. Um eine optimale Impedanzanpassung zu erreichen, ist es darüber hinaus bekannt, die Koppelkeile aus 20 einem geeignet brechenden Material, z.B. aus Kunststoff zu fertigen. Hauptbestandteil eines Ultraschallwandlers ist üblicherweise zumindest ein 25 piezoelektrisches Element, welches die Ultraschall-Meßsignale erzeugt und/oder empfängt.

Es liegt auf der Hand, daß die Ultraschall-Meßsignale bei Durchgang durch das Medium und - im Fall von Clamp-On Meßgeräten - noch zusätzlich durch 30 die Rohrwand bzw. aufgrund ungünstiger Impedanzverhältnisse bei der Ein- und Auskopplung in das bzw. aus dem Medium stark abgeschwächt empfangen werden. Um brauchbare Meßergebnisse zu erhalten, müssen die empfangenen Ultraschall-Meßsignale geeignet verstärkt werden. Die 35 Verstärkung liegt üblicherweise in einem Bereich von 20-120 dB. Die Frequenz der Ultraschall-Meßsignale ist im Bereich von ca. 100 kHz bis 10 MHz angesiedelt. Elektronische Bauteile, die in diesem Frequenzbereich

arbeiten, haben einen relativ hohen Stromverbrauch bzw. eine relativ hohe Leistungsaufnahme.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Durchflußmessung vorzuschlagen, die sich durch einen geringen Stromverbrauch bzw. durch eine geringe Leistungsaufnahme auszeichnet.

Die Aufgabe wird dadurch gelöst, daß der Regel-/Auswerteeinheit zumindest eine Komponente mit hoher Leistungsaufnahme zugeordnet ist, und daß die Regel-/Auswerteeinheit derart ausgestaltet ist, daß die Komponente mit der hohen Leistungsaufnahme intermittierend in einer Meßphase und in einer Ruhephase betrieben wird. In der Meßphase ist die Komponente mit der hohen Leistungsaufnahme aktiviert, während sie in der Ruhephase eine reduzierte Leistungsaufnahme aufweist oder ausgeschaltet ist. Wie bereits zuvor erwähnt, kann es sich bei dem Durchflußmeßgerät um ein Clamp-On Durchflußmeßgerät oder um ein Meßgerät, das in das Rohr einbringbar ist, handeln. Bei der Komponente mit der hohen Leistungsaufnahme handelt es sich beispielsweise um einen Verstärker, einen Analog/Digital Wandler, einen Mikroprozessor oder einen Programmierbaren Logikbaustein. Erfindungsgemäß ist es möglich, eine Komponente mit hohem Leistungsverbrauch so zu takten, daß stets die Energieversorgung des Ultraschall-Durchflußmeßgeräts sichergestellt ist.

Durch das gezielte Abschalten von nur einer Komponente ist das Durchflußmeßgerät nach dem Wiedereinschalten wesentlich schneller betriebsbereit als wenn die Energieversorgung für das Meßgerät getaktet würde. Hier würde das An- und Abschalten der Stromversorgung sehr lange dauern, da es nach einem Ausschalten des Durchflußmeßgeräts stets eine gewisse Zeit braucht, bis wieder eine stabile Spannung zum Betreiben des Durchflußmeßgeräts zur Verfügung steht. Ein weiterer Vorteil des komponentenweisen Taktens des Durchflußmeßgeräts ist darüber hinaus darin zu sehen, daß die Meßperformance, d.h. die Anzahl der Messungen pro Zeiteinheit gegenüber dem ungetakteten, kontinuierlichen Betrieb nicht verringert wird. Daher ist es mit der erfindungsgemäß Lösung möglich, trotz der Taktung einzelner Komponenten eine kontinuierliche Messung durchzuführen.

- Eine vorteilhafte Weiterbildung der erfindungsgemäßen Vorrichtung sieht zumindest eine Komponente mit einer Schaltfunktion vor, wobei die Komponente mit der Schaltfunktion zumindest eine Komponente mit hohem Leistungsverbrauch aktiviert oder deaktiviert. Beispielsweise handelt es sich 5 bei der Komponente mit der Schaltfunktion um einen Halbleiter-Schalter.
- Eine besonders günstige Ausgestaltung der erfindungsgemäßen Vorrichtung sieht vor, daß in die Komponente mit der hohen Leistungsaufnahme eine Vorrichtung zur Verringerung des Stromverbrauchs bzw. der Leistungsaufnahme integriert ist. Hiermit kann z.B. ein Verstärker in einen Stromsparmodus versetzt werden; ein Mikroprozessor kann in einen Sleep-Mode versetzt 10 werden.
- Gemäß einer vorteilhaften Weiterbildung der erfindungsgemäßen Vorrichtung wird vorgeschlagen, daß die Zeitspanne zwischen zwei aufeinanderfolgenden Meß- bzw. Ruhephasen der Komponente mit hoher Leistungsaufnahme und/oder die Zeitdauer einer Meß- und/oder einer Ruhephase der Komponente mit hoher Leistungsaufnahme vorgegeben ist/sind. Eine alternative Ausführungsform sieht eine Eingabeeinheit vor, über die die Zeitspanne zwischen zwei 15 aufeinanderfolgenden Meß- bzw. Ruhephasen der Komponente mit hoher Leistungsaufnahme und/oder die Zeitdauer einer Meß- und/oder Ruhephase der Komponente mit hoher Leistungsaufnahme vorgebbar ist.
- Eine besonders günstige Variante schlägt vor, daß die Regel-/Auswerteeinheit 20 anhand von vorgegebenen System- und oder Prozeßgrößen die Laufzeit der Meßsignale ermittelt und die Zeitspanne zwischen zwei aufeinanderfolgenden Meß- bzw. Ruhephasen der Komponente mit hoher Leistungsaufnahme und/oder die Zeitdauer einer Meß- und/oder Ruhephase der Komponente mit hoher Leistungsaufnahme in Abhängigkeit von der ermittelten Laufzeit vorgibt. 25 Da bei dieser Art der Festlegung der Meß- und der Ruhephasen die aktuellen Gegebenheiten am Meßort berücksichtigt werden, läßt sich hier eine auf den speziellen Anwendungsfall abgestimmte, optimale Energieeinsparung 30 erzielen.
- In gewissen Anwendungsfällen kann es vorkommen, daß trotz der Taktung 35 der Komponente(n) mit hohem Leistungsbedarf die zur Verfügung stehende

Energie nicht ausreicht. Hier ist gemäß einer vorteilhaften Weiterbildung der erfindungsgemäßen Vorrichtung vorgesehen, daß die Regel-/Auswerteeinheit anhand von vorgegebenen System- und/oder Prozeßgrößen die Laufzeit der Meßsignale ermittelt; weiterhin wird die Zeitspanne zwischen zwei

5 aufeinanderfolgenden Meß- bzw. Ruhephasen der Komponente mit hoher Leistungsaufnahme und/oder die Zeitdauer einer Meß- und/oder Ruhephase der Komponente mit hoher Leistungsaufnahme in Abhängigkeit von der ermittelten Laufzeit und in Abhängigkeit von der zur Verfügung stehenden Energie vorgegeben.

10

Darüber hinaus sieht eine vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung vor, daß der Regel-/Auswerteeinheit ein Energiespeicherelement zugeordnet ist, das so ausgelegt ist, daß es zumindest die Energie speichern kann, die in der Meßphase zum Betreiben der Komponenten der Regel-

15

/Auswerteeinheit bzw. des Durchflußmeßgeräts erforderlich ist.

Die Erfindung wird anhand der nachfolgenden Zeichnungen näher erläutert.
Es zeigt:

20

Fig. 1: eine schematische Darstellung einer Ausgestaltung des erfindungsgemäßen Ultraschall-Durchflußmeßgeräts,

25

Fig. 2: ein Blockschaltbild einer ersten Ausführungsform der erfindungsgemäßen Vorrichtung,

Fig. 3: ein Blockschaltbild einer zweiten Ausführungsform der erfindungsgemäßen Vorrichtung und

30

Fig. 4: ein Laufzeitdiagramm eines Ultraschall-Meßsignals, an dem die Wirkungsweise der erfindungsgemäßen Vorrichtung verdeutlicht ist.

35

Fig. 1 zeigt eine schematische Darstellung einer Ausgestaltung des erfindungsgemäßen Ultraschall-Durchflußmeßgeräts 1. Bei dem Meßgerät 1 handelt es sich um ein Clamp-On Durchflußmeßgerät. Im gezeigten Fall

ermittelt das Meßgerät 1 den Volumendurchfluß bzw. den Massendurchfluß des Mediums 4 nach der bekannten Laufzeitdifferenz-Methode.

Wesentliche Komponenten des Clamp-On Ultraschall-Durchflußmeßgerätes 1
5 sind die beiden Ultraschallwandler 5, 6 und die Regel-/Auswerteeinheit 11.
Die beiden Ultraschallwandler 5, 6 sind mittels einer in der Fig. 1 nicht
gesondert dargestellten Befestigungsvorrichtung in einem Abstand L
voneinander an dem Rohr 2 angebracht. Entsprechende
Befestigungsvorrichtungen sind aus dem Stand der Technik hinlänglich
10 bekannt und werden auch von der Anmelderin angeboten und vertrieben. Das
Rohr 2 mit dem Innendurch-messer di wird von dem Medium 4 in
Strömungsrichtung S durchströmt.

Ein Ultraschallwandler 5; 6 weist als wesentlichen Bestandteil zumindest ein
15 piezoelektrisches Element 9; 10, das die Ultraschall-Meßsignale erzeugt
und/oder empfängt. Die Ultraschall-Meßsignale werden über den Koppelkeil 7;
8 in das vom Medium 4 durchströmte Rohr 2 eingekoppelt bzw. aus dem Rohr
2 ausgekoppelt. Ein Koppelkeil 7; 8 ist in bekannter Weise so ausgestaltet,
daß sich eine möglichst gute Impedanzanpassunga beim Übergang von
20 einem Medium in das andere realisieren läßt. Mit SP ist übrigens der Schall-
pfad gekennzeichnet, auf dem sich die Ultraschall-Meßsignale in dem Rohr 2
bzw. in dem Medium 4 ausbreiten. Im gezeigten Fall handelt es sich um eine
sog. Zwei-Traversenanordnung der Ultraschallwandler 5, 6. Eine Traverse
kennzeichnet dabei den Teilbereich des Schallpfades SP, auf dem ein
25 Ultraschall-Meßsignal den Behälter 2 einmal quert. Die Traversen können je
nach Anordnung der Ultraschallwandler 5, 6 und ggf. unter Einfügen eines
Reflektorelements in den Schallpfad SP diametral oder chordial verlaufen.

Der Abstand L der beiden Ultraschallwandler 5, 6 ist möglichst so bemessen,
30 daß ein großer Anteil der von dem jeweils einen Ultraschallwandler 5; 6 in das
Rohr 2 eingestrahlten Energie von dem jeweils anderen Ultraschallwandler 6;
5 empfangen wird. Der optimale Abstand L der beiden Ultraschallwandler 5, 6
ist von mehreren System- und Prozeßgrößen abhängig. Sind diese Größen
bekannt, so läßt sich der optimale Abstand L der Ultraschallwandler 5; 6 über
35 die Laufzeit der Ultraschall-Meßsignale hochgenau berechnen. Bei der
Berechnung kommt das Gesetz von Snellius in bekannter Weise zur Anwen-

dung. Bei den System- und Prozeßgrößen handelt es sich insbesondere um den Innendurchmesser d_i des Rohres 2, um die Dicke w der Rohrwand 3, um die Schallgeschwindigkeit c_r des Materials, aus dem das Rohr 2 gefertigt ist, oder um die Schallgeschwindigkeit c des Mediums 4.

5

In Fig. 2 ist ein Blockschaltbild einer ersten Ausführungsform der erfindungsgemäßen Vorrichtung zu sehen; Fig. 3 zeigt ein Blockschaltbild einer alternativen Ausführungsform. Die beiden Blockschaltbilder sind stark vereinfacht: So wurde die Vorrichtung zur Anregung der Sensoren (Sendestufe) weggelassen. Ein ebenfalls üblicherweise vorhandener Multiplexer, der der Umschaltung der Sensoren dient, wurde ebenfalls nicht eingezeichnet.

Es wurde bereits an vorhergehender Stelle beschrieben, daß – je nach Verhältnissen auf dem Schallpfad SP – die empfangenen Ultraschall-Meßsignale verstärkt werden müssen, damit das Durchflußmeßgerät 1 brauchbare und zuverlässige Meßergebnisse liefert. Die erforderliche Verstärkung liegt üblicherweise im Bereich von 20-120 dB. Da die Frequenz der Ultraschall-Meßsignale im Bereich von ca. 100 kHz bis 10 MHz zu finden ist, müssen zur Verstärkung der Ultraschall-Meßsignale natürlich auch elektronische Bauteile eingesetzt werden, die in diesem Frequenzbereich arbeiten. Derartige Bauteile haben einen relativ hohen Stromverbrauch, bzw. sie haben eine relativ hohe Leistungsaufnahme. An diesem Punkt setzt die Erfindung ein.

25

Die von dem piezoelektrischen Element 9; 10 empfangenen Ultraschall-Meßsignale werden in dem Verstärker 13 mit einem geeigneten Verstärkungsfaktor verstärkt. Anschließend werden die Ultraschall-Meßsignale von dem Analog/Digital Wandler 14 digitalisiert und zur Auswertung an einen Mikroprozessor weitergeleitet. Die Auswertung kann beispielsweise von dem Mikroprozessor 15 übernommen werden. Die zuvorgenannten Komponenten sind einer Regel-/Auswerteeinheit 11 zugeordnet. Würden alle Komponenten kontinuierlich arbeiten, so würde ihr Leistungsbedarf die pro Zeiteinheit maximal zur Verfügung stehende Energie übersteigen. Erfindungsgemäß ist die Regel-/Auswerteeinheit 11 nun derart ausgestaltet, daß zumindest eine Komponente 12 mit einer hohen Leistungsaufnahme intermittierend in einer

30

35

Meßphase und in einer Ruhephase betrieben wird. In der Meßphase ist die Komponente 12 mit der hohen Leistungsaufnahme aktiviert, während sie in der Ruhephase eine reduzierte Leistungsaufnahme aufweist oder ganz ausgeschaltet ist. Die Figuren Fig. 2 und Fig. 3 beziehen sich auf den Fall, daß es sich bei der Komponente 12 mit der hohen Leistungsaufnahme um den Verstärker 13 und/ oder den Analog/Digital 14 handelt. Der Mikroprozessor 15 taktet den Verstärker 13 und/oder den Analog/Digital Wandler 14 so, daß er/sie nur während der Meßphase t2 aktiviert ist/sind; während der Ruhephase t1 ist/sind der Verstärker 13 und/oder der Analog/Digital Wandler 14 deaktiviert.

Bei der in Fig. 2 dargestellten Ausgestaltung erfolgt die Taktung des Verstärkers 13 über den vom Mikroprozessor 15 angesteuerten Schalter 18. Bei dem Schalter 18 handelt es sich beispielsweise um einen Halbleiter-Schalter. Es ist möglich, daß der Analog/Digital Wandler z.B. durch An- und Abschalten des Taktes ein-und ausgeschaltet wird. Bei der in Fig. 3 gezeigten Ausführungsform erfolgt die Taktung des Verstärkers 13 über eine in den Verstärker 13 integrierte Komponente 21, die der Reduktion der Leistungsaufnahme des Verstärkers 13 dient. Die getaktete Ansteuerung der Komponente 21 übernimmt der Mikroprozessor 15.

Die Komponente 21 versetzt den Verstärker 13 entsprechend einem vorgegebenen und/oder errechneten Takt in einen Stromsparmode (bzw. in einen Sleep-Mode). Das Versetzen der Komponenten 12 mit hoher Leistungsaufnahme in den Stromsparmode kann entweder über die Unterbrechung der Speisung erfolgen (in Fig. 2 wird durch die Betätigung des Schalters 18 die Speisung des Verstärkers 13 unterbrochen) oder es wird ein bzw. kein Sampling Takt an die entsprechende Komponente 12, z.B. an den A/D Wandler 14 angelegt. Bei der zuletzt genannten Methode wird der Umstand ausgenutzt, daß der Stromverbrauch üblicherweise mit der Frequenz des anliegenden Taktes skaliert. Daher ist diese Ausgestaltung als besonders vorteilhaft anzusehen. Weiterhin kann auch die Leistungsaufnahme z.B. des Logikbausteins 16 über das An- und Abschalten des Taktes geregelt werden.

In Fig. 3 ist der Fall dargestellt, daß neben dem Verstärker 13 auch der A/D Wandler 14 und der Logikbaustein 16 getaktet werden können. Prinzipiell

wird eine Taktung nur dann erfolgen, wenn die zur Verfügung stehende Energie nicht ausreicht. Dies ist insbesondere dann der Fall, wenn das Ultraschall-Meßgerät 1 über eine Zweidrahtleitung mit einer entfernten Kontrollstelle verbunden ist und über die gleiche Zweidrahtleitung von der Kontrollstelle her mit Energie versorgt wird.

Bei dem Logikbaustein 16 handelt es sich beispielsweise um ein PLD (Programmable Logic Device). Programmierbare Logikbausteine 16 werden bevorzugt eingesetzt, wenn die zu taktende Komponente schnell angesteuert werden soll. Durch den Einsatz eines Logikbausteins wird der Mikroprozessor 15 selbst entlastet. Insbesondere werden alle schnell auszuführenden Operationen vorzugsweise hardwaremäßig und nicht softwaremäßig in dem Logikbaustein 16 realisiert. Eine weitere Möglichkeit besteht darin, daß ein Prozessorkern und die notwendigen schnellen Logikfunktionen vom Entwickler selbst in ein entsprechendes programmierbares Bauteil implementiert werden. Bekannt ist diese Möglichkeit unter dem Begriff SoPC (System on a Programmable Chip). Ist dem Mikroprozessor ein PLD oder ein SoPC zugeordnet, so ist es gemäß einer Ausgestaltung der erfindungsgemäßen Vorrichtung je nach Anwendungsfall auch möglich, mindestens diese eine Komponente des Mikroprozessors 15 zu takten, während die verbleibende(n) Komponenten kontinuierlich mit Strom versorgt wird (werden).

Wie bereits erwähnt, ist anstelle des Halbleiter-Schalters 18 in Fig. 3 eine Vorrichtung 21 zur Reduktion der Stromaufnahme bzw. zum Unterbrechen der Stromaufnahme direkt in den Verstärker 13 integriert. Damit lässt sich der Verstärker 13 leicht in einen Stromsparmode versetzen.

In den Figuren Fig. 2 und Fig. 3 ist darüber hinaus jeweils ein Energiespeicherelement 20, insbesondere ein Kondensator vorgesehen. Dieses Energiespeicherelement 20 wird aktiviert, wenn trotz der Taktung der Komponente 12 mit hohem Stromverbrauch die zur Verfügung stehende Energie nicht zum Betreiben des Durchflußmeßgeräts 1 ausreicht. Die Eingabe-/Anzeigeeinheit 19 stellt die Schnittstelle zum Bedienpersonal her.

In Fig. 4 ist die Wirkungsweise der erfindungsgemäß Vorrichtung anhand eines Laufzeitdiagramms verdeutlicht. Das Ultraschall-Meßsignal verläßt den Ultraschallwandler 5, 6 zum Zeitpunkt '0' und breitet sich einerseits über die Rohrwand (\rightarrow erster Peak) und andererseits über das Medium 4 (\rightarrow 2. Peak) aus. Dargestellt ist in Fig. 4 übrigens ein typisches Laufzeitdiagramm, wie es sich bei der in Fig. 1 gezeigte Zwei-Traversen-Anordnung der Ultraschallwandler 5, 6 ergibt.

Damit der 2. Peak – also das die Fließgeschwindigkeit des Mediums 4
10 repräsentierende Ultraschall-Meßsignal - ausgewertet werden kann, muß der Verstärker 13 während der Zeitdauer t_2 , der sog. Meßphase, aktiviert sein. Die Meßphase schließt sich an die sog. Ruhephase an, in der der Verstärker 13 deaktiviert ist. Diese Ruhephase hat die Zeitdauer t_1 . Die Zeitdauer t_1 der
15 Ruhephase und die Zeitdauer t_2 der Meßphase sind so aufeinander abgestimmt, daß jeweils zumindest die Ultraschall-Meßsignale, die die Information über die Fließgeschwindigkeit des Mediums 4 tragen, empfangen werden. Üblicherweise liegt die Pulsdauer eines Ultraschall-Meßsignals bei ca. 10 μ sec. Übliche Puls-Repetitionsraten liegen in der Größenordnung von einigen Millisekunden. Erfindungsgemäß wird die Komponente 12 mit dem
20 hohen Leistungsverbrauch, hier der Verstärker 13, nur während der Zeitdauer t_2 aktiviert, wenn das Ultraschall-Meßsignal am jeweiligen Empfangs-Ultraschallwandler 5; 6 ankommt. Hierdurch wird der mittlere Stromverbrauch bzw. der mittlere Leistungsverbrauch im Verhältnis der Ein-/Ausschaltdauer t_2 / t_1 reduziert. Beträgt die Einschaltdauer $t_2 = 50 \mu$ sec und die Ausschaltdauer
25 $t_1 = 5 \text{ msec}$, so ergibt sich folglich eine Leistungseinsparung von einem Faktor 100 gegenüber dem kontinuierlichen Betrieb.

Die Laufzeit des Ultraschall-Meßsignals läßt sich entweder messen oder errechnen. Eine Berechnung der Laufzeit ist zumindest näherungsweise möglich, wenn die geometrischen Daten des Rohres (d , und w) sowie die akustischen Eigenschaften des Rohres und des Mediums (c_R und c_M) bekannt sind. Anwendung findet bei der Berechnung das Gesetz von Snellius.

Bezugszeichenliste

5

- 1 Durchflußmeßgerät
- 2 Rohr / Behältnis
- 3 Rohrwand
- 4 Medium
- 10 5 Ultraschallwandler
- 6 Ultraschallwandler
- 7 Koppelkeil
- 8 Koppelkeil
- 9 Piezoelektrisches Element
- 15 10 Piezoelektrisches Element
- 11 Regel-/Steuereinheit
- 12 Komponente mit hohem Stromverbrauch
- 13 Verstärker
- 14 Analog/Digital Wandler
- 20 15 Mikroprozessor
- 16 Logikbaustein
- 17 Komponente mit Schaltfunktion
- 18 Halbleiter-Schalter
- 19 Eingabeeinheit
- 25 20 Energiespeicherelement
- 21 integrierte Vorrichtung zur Reduktion der Leistungsaufnahme
- 22 Energieversorgung

Patentansprüche

5

1. Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Mediums (4), das ein Behältnis (2) in einer Strömungsrichtung (S) durchfließt, mit zumindest einem Ultraschallwandler (5; 6), der Ultraschall-Meßsignale aussendet und/oder empfängt, und mit einer Regel-/Auswerteeinheit, die den Volumen- und/oder den

10

Massendurchfluß des Mediums in dem Behältnis anhand der Ultraschall-Meßsignale nach dem Laufzeitdifferenz-Prinzip oder nach dem Doppler-Prinzip ermittelt,

dadurch gekennzeichnet,

15

daß der Regel-/Auswerteeinheit (11) zumindest eine Komponente (12) mit hoher Leistungsaufnahme zugeordnet ist, und

daß die Regel-/Auswerteeinheit (11) derart ausgestaltet ist, daß die Komponente (12) mit der hohen Leistungsaufnahme intermittierend in einer Meßphase und in einer Ruhephase betrieben wird, wobei die Komponente (12) in der Meßphase aktiviert ist, während die Komponente (12) in der Ruhephase eine reduzierte Leistungsaufnahme aufweist oder ausgeschaltet ist.

20

2. Vorrichtung nach Anspruch 1,

dadurch gekennzeichnet,

25

daß es sich bei dem Durchflußmeßgerät (1) um ein Clamp-On Durchflußmeßgerät oder um ein Meßgerät handelt, das in das Behältnis (2) einbringbar ist.

30

3. Vorrichtung nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

daß es sich bei der Komponente (12) mit der hohen Leistungsaufnahme um einen Verstärker (13), einen Analog/Digital Wandler (14), einen Mikroprozessor (15) oder einen Logikbaustein (16) handelt.

35

4. Vorrichtung nach Anspruch 1 oder 3,
dadurch gekennzeichnet,
daß zumindest eine Komponente (17) mit einer Schaltfunktion vorgesehen ist,
wobei die Komponente (17) mit der Schaltfunktion zumindest eine Komponente
5 (12) mit hohem Leistungsverbrauch aktiviert oder deaktiviert.

5. Vorrichtung nach Anspruch 3 oder 4,
dadurch gekennzeichnet,
daß eine Vorrichtung zur Reduktion der Stromaufnahme in die Komponente
10 (12) mit der hohen Leistungsaufnahme integriert ist.

6. Vorrichtung nach Anspruch 4,
dadurch gekennzeichnet,
daß es sich bei der Komponente (17) mit der Schaltfunktion um einen
15 Halbleiter-Schalter (18) handelt.

7. Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet,
daß die Zeitspanne zwischen zwei aufeinanderfolgenden Meß- bzw.
20 Ruhephasen der Komponente (12) mit hoher Leistungsaufnahme und/oder die
Zeitdauer einer Meßphase (t2) und/oder die Zeitdauer einer Ruhephase (t1)
der Komponente (12) mit hoher Leistungsaufnahme vorgegeben ist/sind.

8. Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet,
daß eine Eingabeeinheit (19) vorgesehen ist, über die Zeitspanne zwischen
25 zwei aufeinanderfolgenden Meß- bzw. Ruhephasen der Komponente (12) mit
hoher Leistungsaufnahme und/oder die Zeitdauer einer Meßphase (t2)
und/oder die Zeitdauer einer Ruhephase (t1) der Komponente (12) mit hoher
30 Leistungsaufnahme vorgebbar ist.

9. Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet,
daß die Regel-/Auswerteeinheit (11) anhand von vorgegebenen System- und
35 oder Prozeßgrößen die Laufzeit der Meßsignale ermittelt und die Zeitspanne
zwischen zwei aufeinanderfolgenden Meß- bzw. Ruhephasen der

Komponente (12) mit hoher Leistungsaufnahme und/oder die Zeitdauer einer Meßphase (t2) und/oder die Zeitdauer einer Ruhephase (t1) der Komponente (12) mit hoher Leistungsaufnahme in Abhängigkeit von der ermittelten Laufzeit vorgibt.

5

10. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet,

daß die Regel-/Auswerteeinheit (11) anhand von vorgegebenen System-
und/oder Prozeßgrößen die Laufzeit der Meßsignale ermittelt, und

10

daß die Regel-/Auswerteeinheit (11) die Zeitspanne zwischen zwei
aufeinanderfolgenden Meß- bzw. Ruhephasen der Komponente (12) mit
hoher Leistungsaufnahme und/oder die Zeitdauer einer Meßphase (t2) bzw.
die Zeitdauer einer Ruhephase (t1) der Komponente (12) mit hoher
Leistungsaufnahme in Abhängigkeit von der ermittelten Laufzeit und in
15 Abhängigkeit von der zur Verfügung stehenden Energie vorgibt.

11. Vorrichtung nach Anspruch 1,

dadurch gekennzeichnet,

daß der Regel-/Auswerteeinheit (11) ein Energiespeicherelement (20)

20

zugeordnet ist, das so ausgelegt ist, daß es zumindest die Energie speichern
kann, die in der Meßphase erforderlich ist.

1/2

Fig. 1

Fig. 2

2/2

Fig. 3

Fig. 4

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/12861

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G01F1/66

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 00/70313 A (GRAY JAMES ALASTAIR ; SMITH ERNEST ROBERT YARWOOD (AU); EMAIL LTD (AU)) 23 November 2000 (2000-11-23) the whole document	1,4,5,7, 8
Y A	----- EP 0 645 609 A (SIEMENS MEASUREMENTS LTD) 29 March 1995 (1995-03-29) the whole document	2,3,6,8 9-11
X Y A	----- US 5 333 508 A (PETROFF ALAN M ET AL) 2 August 1994 (1994-08-02) column 7, line 35 - line 40	1,2,4,7 3,5,6,8 9-11
X A	----- US 4 918 995 A (GILMAN ROBERT E ET AL) 24 April 1990 (1990-04-24) column 3 - column 10; figures 8,10,11	1,2,4,8 9-11
Y	-----	1-4,6-8
	-----	-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

5 April 2004

Date of mailing of the International search report

15/04/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Fenzl, B

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/12861

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 6 284 129 B1 (GIORDANO EDWARD C ET AL) 4 September 2001 (2001-09-04) column 10 - column 12; figures 14-16 -----	1-5,7,8
Y	US 5 199 306 A (HUNTER ROBERT M) 6 April 1993 (1993-04-06) column 4 - column 5; figure 3 -----	1-4,7

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 03/12861

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0070313	A	23-11-2000	WO AU CA EP	0070313 A1 4526000 A 2372727 A1 1181508 A1		23-11-2000 05-12-2000 23-11-2000 27-02-2002
EP 0645609	A	29-03-1995	GB AT DE DE EP US	2282447 A 189926 T 69423065 D1 69423065 T2 0645609 A1 5644090 A		05-04-1995 15-03-2000 30-03-2000 08-06-2000 29-03-1995 01-07-1997
US 5333508	A	02-08-1994	US AT AU DE DE EP ES WO US US	5020374 A 115730 T 6640790 A 69015160 D1 69015160 T2 0454821 A1 2067051 T3 9107642 A1 5198989 A 5226328 A		04-06-1991 15-12-1994 13-06-1991 26-01-1995 18-05-1995 06-11-1991 16-03-1995 30-05-1991 30-03-1993 13-07-1993
US 4918995	A	24-04-1990	NONE			
US 6284129	B1	04-09-2001	US US US US BR CA CN EA EP JP PL US WO	6106705 A 5935426 A 2003173273 A1 2001040121 A1 9811872 A 2308524 A1 1272801 T 2407 B1 1015090 A1 2001513585 T 338918 A1 6149801 A 9907456 A1		22-08-2000 10-08-1999 18-09-2003 15-11-2001 15-08-2000 18-02-1999 08-11-2000 25-04-2002 05-07-2000 04-09-2001 20-11-2000 21-11-2000 18-02-1999
US 5199306	A	06-04-1993	WO	9314381 A1		22-07-1993

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/12861

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 G01F1/66

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 G01F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 00/70313 A (GRAY JAMES ALASTAIR ; SMITH ERNEST ROBERT YARWOOD (AU); EMAIL LTD (AU)) 23. November 2000 (2000-11-23) das ganze Dokument	1,4,5,7, 8
Y A	EP 0 645 609 A (SIEMENS MEASUREMENTS LTD) 29. März 1995 (1995-03-29) das ganze Dokument	2,3,6,8 9-11
X Y A	US 5 333 508 A (PETROFF ALAN M ET AL) 2. August 1994 (1994-08-02) Spalte 7, Zeile 35 – Zeile 40	1,2,4,7 3,5,6,8 9-11
Y	US 4 918 995 A (GILMAN ROBERT E ET AL) 24. April 1990 (1990-04-24) Spalte 3 – Spalte 10; Abbildungen 8,10,11	1-4,6-8
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmelde datum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmelde datum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmelde datum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

5. April 2004

15/04/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Fenzl, B

INTERNATIONALES RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/12861

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	US 6 284 129 B1 (GIORDANO EDWARD C ET AL) 4. September 2001 (2001-09-04) Spalte 10 – Spalte 12; Abbildungen 14-16 _____	1-5,7,8
Y	US 5 199 306 A (HUNTER ROBERT M) 6. April 1993 (1993-04-06) Spalte 4 – Spalte 5; Abbildung 3 _____	1-4,7