

Modrey - Model Revision tool for Boolean logical models of biological regulatory networks

Filipe Gouveia, Inês Lynce, and Pedro T. Monteiro

{filipe.gouveia,ines.lynce,pedro.tiago.monteiro}@tecnico.ulisboa.pt

INESC-ID / Instituto Superior Técnico Universidade de Lisboa Lisbon, Portugal

CMSB 2020

Table of Contents

- Introduction
 - Regulatory networks
 - Motivation
- 2 Modrey
 - Modrey Tool
- 3 Evaluation
- 4 Tutorial

Regulatory Networks

- Biological processes arise at the cellular level, governed by complex regulatory networks
- Regulatory network
 - Collection of molecular compounds (e.g. proteins, genes)
 - Compounds interact with each other
- Computational modelling allows
 - Functional understanding of the network
 - Test hypotheses
 - Identify predictions in silico
 - ▶ ..

Boolean Logical Model

- Different formalisms can be used [KS08]
 - We consider the Boolean logical formalism [Tho73].
- Compounds represented by a Boolean variable
 - active/inactive

- Interactions defined as positive (activation) or negative (inhibition)
- Regulations defined as Boolean functions

$$f_{v_1}=v_2\wedge v_3$$

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3} = v_1$$

Motivation

- As new experimental data becomes available, models may become inconsistent
 - ▶ Models may not be able to reproduce the new information
 - Models need to be revised
- Model Revision is mainly a manual task
 - Performed by a modeler
 - Prone to error
- How can we repair an inconsistent model?
 - Change a regulatory function?
 - Change the type of interaction?
 - Add or remove interactions?

Table of Contents

- Introduction
 - Regulatory networks
 - Motivation
- 2 Modrey
 - Modrey Tool
- 3 Evaluation
- 4 Tutorial

- Modrey is a freely available model revision tool
 - https://filipegouveia.github.io/ModelRevisionASP/
- Confronts a Boolean Logical Model with experimental observations
 - Stable state observations
 - Time-series observations
 - ★ Synchronous
 - * Asynchronous
- ullet ModRev implements the following methods
 - Consistency check and reasons of inconsistency [GLM18]
 - Revision under stable state observations [GLM19]
 - Search for function repairs [GLM20a]
 - Revision under Time-series observations [GLM20b]

ModRev arquitecture

Repair Operations:

- Change regulatory Function
- Change interaction type
- Remove interaction
- Add interaction

Repair Operations:

- Change regulatory Function
- Change interaction type
- Remove interaction
- Add interaction

Optimization Criteria:

- Minimize interaction addition/removal
- Minimize interaction type changes
- Minimize Boolean function changes

Table of Contents

- Introduction
 - Regulatory networks
 - Motivation
- 2 Modrey
 - Modrey Tool
- 3 Evaluation
- 4 Tutorial

Evaluation

Segment Polarity (SP) network [SCT02]

Conf.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
F	5	25	50	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	50	100	5	10
E	0	0	0	0	5	10	15	20	25	50	75	0	0	0	0	0	0	0	0	5	25	50	25	10
R	0	0	0	0	0	0	0	0	0	0	0	1	5	10	15	0	0	0	0	0	0	0	5	5
Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5	10	15	0	0	0	5	5

Random changes were made according to probabilistic parameters

▶ F% : Change a **F**unction

► E%: Flip the sign of an Edge

R%: Remove an existing edge

► A% : Add a missing edge

100 corrupted models for each of the 24 configurations

• 5 time-series observations with 20 time-steps

Evaluation

Evaluation

ullet MODREV repaired the model smaller # operations

Models repaired mostly under 60 seconds

- Changing the topology of the network has the greatest impact
- Better performance under the asynchronous update scheme
 - Only on regulatory function is updated at each time step

Table of Contents

- Introduction
 - Regulatory networks
 - Motivation
- 2 Modrey
 - Modrey Tool
- 3 Evaluation
- 4 Tutorial

vertex(v1).

vertex(v2).

vertex(v3).

$$f_{v_1} = v_2 \wedge v_3$$

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3}=v_1$$

$$f_{v_1} = v_2 \wedge v_3$$

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3} = v_1$$

vertex(v1).
vertex(v2).

vertex(v3).

edge(v1,v2,1).

edge(v1,v3,1). edge(v2,v1,1).

edge(v2,v1,1). edge(v3,v1,1).

edge(v3,v2,0).

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3}=v_1$$

```
vertex(v1).
vertex(v2).
vertex(v3).
edge(v1, v2, 1).
edge(v1,v3,1).
edge(v2,v1,1).
edge(v3,v1,1).
edge(v3, v2, 0).
functionOr(v1,1..1).
functionAnd(v1,1,v2). functionAnd(v1,1,v3).
functionOr(v2,1..2).
functionAnd(v2,1,v1). functionAnd(v2,2,v3).
functionOr(v3,1..1).
functionAnd(v3,1,v1).
```


exp(p1).
obs_vlabel(p1,v1,0).
obs_vlabel(p1,v2,0).
obs_vlabel(p1,v3,1).

$$f_{v_1} = v_2 \wedge v_3$$

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3}=v_1$$

$$f_{v_1} = v_2 \wedge v_3$$

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3} = v_1$$

Stable State observation

```
exp(p1).
obs_vlabel(p1,v1,0).
obs_vlabel(p1,v2,0).
obs_vlabel(p1,v3,1).
```

```
$ ./modrev -m model.lp -obs obsSS.lp -ss
```


$$f_{v_1} = v_2 \wedge v_3$$

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3} = v_1$$

Stable State observation

```
exp(p1).
obs_vlabel(p1,v1,0).
obs_vlabel(p1,v2,0).
obs_vlabel(p1,v3,1).
```

```
$ ./modrev -m model.lp -obs obsSS.lp -ss
```

```
### Found solution with 1 repair operation.
Inconsistent node v3.
Repair #1:
    Flip sign of edge (v1,v3).
```


Time-series observation


```
#const t = 2.
exp(p2).
obs_vlabel(p2,0,v1,0). obs_vlabel(p2,0,v2,0).
obs_vlabel(p2,0,v3,1).
obs_vlabel(p2,1,v1,1). obs_vlabel(p2,1,v2,0).
obs_vlabel(p2,1,v3,0).
obs_vlabel(p2,2,v1,0). obs_vlabel(p2,2,v2,0).
obs_vlabel(p2,2,v3,0).
```

\$./modrev -m model.lp -obs obsTS01.lp -up s

$$f_{v_1} = v_2 \wedge v_3$$

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3} = v_1$$

$$f_{v_1} = v_2 \wedge v_3$$

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3} = v_1$$

| \$./modrev -m model.lp -obs obsTS01.lp -up s

Found solution with 5 repair operations.

Inconsistent node v1.

Repair #1:

Change function of v1 to (v2) || (v3)

Inconsistent node v2.

Repair #1:

Change function of v2 to (v1 && v3) Flip sign of edge (v1,v2).

Repair #2:

Change function of v2 to (v1 && v3) Flip sign of edge (v3,v2).

Inconsistent node v3.

Repair #1:

Change function of v3 to (v1 && v2)

Add edge (v2,v3) with sign 1.

Repair #2:

Change function of v3 to (v1 && v3) Add edge (v3,v3) with sign 1.

Thank you!

 ${
m ModRev}$ https://filipegouveia.github.io/ModelRevisionASP/

Acknowledgements:

References

[SCT02]

[GLM18]	Filipe Gouveia, Inës Lynce, and Pedro T Monteiro. "Model Revision of Logical Regulatory Networks Using Logic-Based Tools". In: ICLP 2018 (Technical Communications). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.
[GLM19]	Filipe Gouveia, Inês Lynce, and Pedro T Monteiro. "Model Revision of Boolean Regulatory Networks at Stable State". In: International Symposium on Bioinformatics Research and Applications. Ed. by Zhipeng Cai, Pavel Skums, and Min Li. Springer International Publishing. 2019, pp. 100–112.
[GLM20a]	Filipe Gouveia, Inês Lynce, and Pedro T. Monteiro. "Revision of Boolean Models of Regulatory Networks Using Stable State Observations". In: <i>Journal of Computational Biology</i> 27.2 (2020), pp. 144–155.
[GLM20b]	Filipe Gouveia, Ines Lynce, and Pedro Tiago Monteiro. "Semi-automatic model revision of Boolean regulatory networks: confronting time-series observations with (a)synchronous dynamics". In: bioRxiv

[KS08] Guy Karlebach and Ron Shamir. "Modelling and analysis of gene regulatory networks". In: Nature Reviews Molecular Cell Biology 9.10 (2008), p. 770.

preprint doi:10.1101/2020.05.10.086900 (2020).

Lucas Sánchez, Claudine Chaouiya, and Denis Thieffry. "Segmenting the fly embryo: logical analysis of the role of the Segment Polarity cross-regulatory module". In: *Int. J. Dev. Biol.* 52.8 (2002), pp. 1059–1075.

[Tho73] René Thomas. "Boolean formalization of genetic control circuits". In: J. Theor. Biol. 42.3 (1973), pp. 563–585.

$$f_{v_1} = v_2 \wedge v_3$$

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3}=v_1$$

Incomplete time-series observation

Time

		0	1	2
<u>e</u>	<i>v</i> ₁	0		1
Node	<i>v</i> ₂	1	0	0
_	<i>V</i> 3			

#const t = 2.

exp(p3).

obs_vlabel(p3,0,v1,0). obs_vlabel(p3,0,v2,1).

 $obs_vlabel(p3,1,v2,0)$.

 $\verb"obs_vlabel"(p3,2,v1,1)". "obs_vlabel"(p3,2,v2,0)".$

\$./modrev -m model.lp -obs obsTS02.lp -up s

$$f_{v_1} = v_2 \wedge v_3$$

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3}=v_1$$

$$f_{v_1} = v_2 \wedge v_3$$

$$f_{v_2} = v_1 \vee \neg v_3$$

$$f_{v_3}=v_1$$

\$./modrev -m model.lp -obs obsTS02.lp -up s

Found solution with 3 repair operations.
Inconsistent node v1.

Repair #1:

Change function of v1 to $(v2) \mid \mid (v3)$ Flip sign of edge (v2,v1).

Inconsistent node v2.

Repair #1:

Change function of v2 to (v1 && v3)

Modrey Input

- vertex(V).: V is a node of the network
- \bullet edge(V1,V2,S). : edge from V1 to V2 with sign $S \in \{0,1\}$
- functionOr(V,1..N). : regulatory function of V in DNF is represented by a disjunction of N \in N terms
- functionAnd(V,T,R).: node R is present in the T-th term of the regulatory function of V
- exp(E). : E is an experimental observation
- obs_vlabel(E,V,S). : node V has an observed value of S \in {0,1} in experiment E (Stable State)
- obs_vlabel(E,T,V,S). : in time-step T node V has an observed value of S \in {0,1} in experiment E (Time-series)