Foundation Models and Large Language Models

Generative Al

Module 1 – Lesson 2

Today's activities

- Traditional ML
- Foundation models and LLMs
- Transformers Architecture
- Challenges and Limitations of LLMs

Review: Traditional ML (1/2)

- Trained on task-specific data
 - Models specialized for the task
- Training typically starts from scratch
- Several model choices
 - Tree-based models, linear models, neural networks, etc.

Review: Traditional ML (2/2)

- Optimized for one task
 - Classification, regression, clustering
- Challenging to adapt to another similar task

Review: Machine learning terminology

ML: Train a computer to recognize patterns in historical data to make <u>predictions</u> on new data

features

The ML algorithm takes a random function and refines it until the features predict the correct label.

model

	reatu	reatures			labet		
Number of logins	Watched Prime Video	•••	Number of purchases			Prime signup after free trial	
120	Yes	•••	4			Yes	
1	No		0			No	
219	No		12			Yes	
57	Yes		2			Yes	
0	No		0			No	
23	Yes		1			No	
				,			

lahel

Review: Foundation models

 Large ML models that are pre-trained with vast amounts of data. These can be adapted to more specialized tasks.

- Can be trained on any kind of data
 - Text
 - Images
 - Video
 - Audio
 - Etc...

Review: Large Language Models (LLMs)

- Foundation models trained on text.
- Large ML models that learn the probabilities of words being used in certain contexts.
- **Training task:** Learn to predict the missing word in a text sequence.

Foundation models (FMs)

Tasks Text generation Summarization Unlabeled Information FM data extraction O&A Chatbot Pretrain Adapt

Traditional ML models

Foundation models

The growth of LLMs

Parameters in notable artificial intelligence systems

Parameters are variables in an AI system whose values are adjusted during training to establish how input data gets transformed into the desired output; for example, the connection weights in an artificial neural network.

Transformer Networks

Sequence-to-sequence models

Use input sequences to produce output sequences.

- Input and output are both variable-length sequences.
- Examples:

Auto-completion

Q What is AWS

What is AWS WAF
What is AWS STS
What is AWS Guardduty
What is AWS Security Hub
What is AWS Lambda

Machine translation

Encoder-Decoder Architecture

Transformers

- Developed as an encoder-decoder model
- Uses the attention mechanism
 - Rich semantic and syntactic representation
 - Long context memory
- Parallel processing of inputs
- Distributed inference

"Who was the first president of the United States?"

Transformers

- Encoder generates rich representation of input
- Decoder generates relevant content
 - Output is again passed as input to the decoder
- Positional information added to input

"Who was the first president of the United States?"

Attention Mechanism

 Attention helps models associate each word with other words in the sentence

Attention Mechanism

- Allows the model to access all the words/tokens in the observable input
- Indicates which tokens are most relevant for the next prediction

- Both the encoder and decoder use the attention mechanism
 - Multi-headed attention module

Encoder-only Architecture

- Only uses the encoder block
- Attention layers access all the words in the input sentence.
 - Bi-directional attention
- Suitable for Natural Language Understanding (NLU) tasks
 - Sentence classification
 - Named entity recognition (NER)
 - Text extraction
- Examples:
 - BERT Models
 - ELECTRA

Decoder-only Architecture

- Only uses the decoder block
- Only access words that came before
 - Auto-regressive models
- Generate next token based on input
- Suitable for text generation tasks

- Examples:
 - GPT Models by OpenAI
 - Llama models by Meta
 - Claude models by Anthropic

Transformers: Summary

- State-of-the art deep learning architecture
- Propelled the growth and adoption of Generative AI
- Transformers can process the input data in parallel
- Self-attention mechanism capture interdependencies between all words, regardless of position
- Typically undergo self-supervised learning
 - Labels generated automatically from unlabeled data
 - No need to curate labelled data
- Increasingly popular with Computer Vision (CV), Audio, Reinforcement Learning (RL) tasks, and multi-modal applications

Transformers for all!

Figure 1: The pipeline of our proposed CMA-CLIP.

Challenges and Limitations of LLMs

Challenges and limitations of LLMs (1/3)

Reliability and bias

- Knowledge limited to the training data
- Inability to discern false information or bias

Context window

- Model's attention limited to the context window
- Inputs exceeding the context window length are invisible to the model
- For instance, Titan Premier had a limit of 30,000 tokens at the time of release

Challenges and limitations of LLMs (2/3)

Potential copyright infringement issue

- Training data might contain sensitive or copywrite data
- May generate content similar to someone's intellectual or creative property
- Have ethical and legal implications

Create and propagate misinformation

- May generate personal or sensitive data that could be used to identify and harm others
- Create and propagate misinformation about individuals, groups, organizations, etc.

Challenges and limitations of LLMs (3/3)

System costs

- Requires significant investment in the form of computer systems, human capital (engineers, researchers, scientists, etc.), and power.
- Models with >100 billion parameters can have a total project cost of over \$100 million

Environmental Impact

- LLMs need a lot of power and leave behind large carbon footprints
- According to a study, CO_2 emissions from training 5B models on GPU is roughly equivalent to a trans-American flight.

Next lesson

- This lesson covered foundation modes and LLMs.
- In the next lesson, you will learn about prompt engineering and a few techniques to improve the quality of the model's response through prompting.

