SOLUTIONS: Control Engineering

The transfer function for the circuit in Figure 1.2 is given by 1. a)

$$\frac{Z_f(s)}{Z_i(s)} = -\frac{C_i(s+1/R_iC_i)}{C_f(s+1/R_fC_f)} = -\frac{C_is+1/R_i}{C_fs+1/R_f}$$

Putting in the values:
$$G(s) = G_1(s)G_2(s) = \frac{s+3}{(s+1)(s+2)}$$
. [5]

b) Since
$$y(s) = G(s)u(s)$$
 we have $\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = \dot{u}(t) + 3u(t)$. [5]

If z(t) solves $\ddot{z}(t) + 3\dot{z}(t) + 2z(t) = u(t)$ then $y(t) = 3z(t) + \dot{z}(t)$. Let $x_1(t) = z(t), x_2(t) = \dot{z}(t)$ and $x(t) = \begin{bmatrix} x_1(t) & x_2(t) \end{bmatrix}^T$. Then a state-space realisation is c)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad y(t) = \begin{bmatrix} 3 & 1 \end{bmatrix} x(t)$$
 [5]

d)
$$y_{ss} := \lim_{t \to \infty} y(t) = \lim_{s \to 0} sy(s) = \lim_{s \to 0} sG(s)u(s) = G(0) = 1.5.$$
 [5]

e)
$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} se(s) = \lim_{s \to 0} \frac{sr(s)}{1 + K_pG(s)} = \frac{1}{1 + K_pG(0)} \le .01 \Rightarrow \boxed{K_p \ge 66.}$$
 [5]

f)
$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} se(s) = \lim_{s \to 0} \frac{sr(s)}{1 + K_p G(s)} = \lim_{s \to 0} \frac{1}{s + sK_p G(s)} = \infty$$
 [5]

- The Nyquist criterion: N = Z P where N is the number of clockwise encirh) clements of $-1/K_p$, Z is the number of unstable closed loop poles and P is the number of unstable open loop poles (=0). So for:

 - $-2/3 < K_p < \infty \Rightarrow N = 0 \Rightarrow Z = 0$, $-\infty < K_p < -2/3 \Rightarrow N = 1 \Rightarrow Z = 1$
 - $K_p = -2/3 \Rightarrow$ the closed loop is marginally stable

2. a) The Nyquist diagram is shown below. The real-axis intercepts can be found from the Routh array with K(s) = K. The characteristic equation is 1 + KG(s) = 0 or $s^3 + 3s^2 + 3s + 1 + 4K = 0$. The Routh array is

The values K = 2 and K = -1/4 result in a zero row, and so the real-axis intercepts -1/K are obtained as $\boxed{-0.5,4}$ and the corresponding frequencies are obtained from the auxiliary polynomials as $\boxed{\sqrt{3},0}$, respectively [6]

- b) The closed loop is stable since the elements of the first column of the Routh array have positive signs. The gain margin = 2 from the Routh array. At the cross-over frequency ω_c , $|G(j\omega_c)| = 1$, or $4 = |j\omega_c + 1|^3$ or $\omega_c \sim 1.23$. The angle of $G(j\omega_c)$ is $\sim -152.9^\circ$ and so the phase margin is $\sim 27.1^\circ$. [6]
- c) Phase-lead compensation introduces positive phase in the cross-over frequency range and so tends to improve the phase margin. However, it introduces high gain in that frequency range, and may therefore reduce the gain margin. [6]
- d) i) Here, $\varepsilon(s) = -(\delta(s) + Q(s)\varepsilon(s))$ where Q(s) = G(s)K(s). [3]
 - ii) Solving for $\varepsilon(s)$, $\varepsilon(s) = -S(s)\delta(s)$ where $S(s) = (I + G(s)K(s))^{-1}$ so the loops are equivalent with this value of S(s).
 - stable, the Nyquist stability criterion states that the loop in Figure 2.3 is stable if there are no encirclements by $S(j\omega)\Delta(j\omega)$ of the point -1. The given condition implies that $|S(j\omega)\Delta(j\omega)| < 1$ so there are no encirclements by $S(j\omega)\Delta(j\omega)$ of -1 so the loop is stable [3].
 - iv) It follows that the smaller $|S(j\omega)|$ is, the larger the allowed $|\Delta(j\omega)|$ for closed loop stability, and since $|S(j\omega)| = 1/|1 + G(j\omega)K(j\omega)|$, the larger the loop gain $|G(j\omega)K(j\omega)|$ is, the more robust the closed–loop will be against additive uncertainties. [3]

- 3. a) The closed loop poles should be located at $s_1, \bar{s}_1 = -2 \pm j2$. [5]
 - b) The block diagram is shown below. [5]

c) The closed loop transfer function is given by

$$H(s) = \frac{K_p G(s)}{1 + KG(s)(s+z)}$$

where

$$G(s) = \frac{1}{s(s+1)}, K = K_p K_v, z = 1/K_v$$

It follows that the characteristic equation is given by

$$1 + K(s+z)G(s) = 0$$

[5]

The root-locus is shown below. The specifications cannot be satisfied if $K_v = 0$ since the root locus does not pass through the required pole locations [5]

- The location of the zero -z is determined from the angle criterion: $\theta = 116^{\circ} + 135^{\circ} 180^{\circ} \sim 71.6^{\circ}$ which is satisfied by $K_v = 3/8$. The gain is obtained from the gain criterion $K = -s_1(s_1+1)/(s_1+8/3) = 3$ so $K_p = 8$.
- f) The root-locus is shown below. [5]

