Rapport TP1 de Métaheuristiques en optimisation

Edorh François, Guison Vianney

14 février 2018

Table des matières

1	Mét	thodes implémentées	2
	1.1	Crossovers	2
		1.1.1 Binaires	2
		1.1.2 À valeurs réelles	2
		1.1.3 Au choix	3
	1.2	Mutations	3
		1.2.1 Binaires	
		1.2.2 À valeurs réelles	3
	1.3	Sélections	3
	1.4	Stratégie "Steady State"	4
		Critères d'arrêt	

1 Méthodes implémentées

1.1 Crossovers

Toutes les méthodes de crossover sont dans le fichier Crossover.m. Elles sont stockées dans la variable globale CROSSOVER.

1.1.1 Binaires

Les méthodes de crossover sur valeurs binaires suivantes ont été implémentés :

- single-point crossover
- multi-point crossover, avec un paramètre de contrôle N compris entre 1 et L-1 (L étant la longeur du chromosome)
- uniform crossover, avec deux variantes:
 - Utiliser un paramètre P représentant une probabilité constante
 - Utiliser deux paramètres de contrôle P et T, où la probabilité d'une pair (a, b) est donnée par P(T(a), T(b)).

1.1.2 À valeurs réelles

Les méthodes de crossover sur valeurs réelles suivantes ont été implémentés :

- whole arithmetic crossover
- local arithmetic crossover
- blend crossover (ou $BLX-\alpha$), avec un paramètre de contrôle α (valeur par défaut de 0.5)
- simulated binary crossover, avec un paramètre de contrôle N >= 0.

1.1.3 Au choix

one BitAdaptation
(F0, F1), F0 and F1 as crossover functions TODO : Complete

1.2 Mutations

Toutes les méthodes de mutation sont dans le fichier Mutation.m. Elles sont stockées dans la variable globale MUTATION.

1.2.1 Binaires

La méthode de mutation binaire implémentée est la mutation bit-flip.

1.2.2 À valeurs réelles

Les méthodes de mutation sur valeurs réelles suivantes ont été implémentés :

- uniform mutation
- boundary mutation
- normal mutation, TODO: Check control parameters
- normalN mutation, TODO: Check control parameters
- polynomial mutation, avec un paramètre de contrôle N >= 0
- non-uniform mutation, avec un paramètre de contrôle B.

1.3 Sélections

Toutes les méthodes de sélection sont dans le fichier Sélection.m. Elles sont stockées dans la variable globale SELECTION.

Les méthodes de sélection suivantes ont été implémentés :

- wheel selection
- stochastic universal sampling
- tournament selection, avec un paramètre de contrôle K, compris entre 1 et N, le nombre d'individus
- unbiased tournament selection, avec un paramètre de contrôle K, compris entre 1 et N, le nombre d'individus
- truncation selection, avec un paramètre C compris entre 1 et N, le nombre d'individus, où N/C correspond au nombre d'individus utilisés dans la sélection.

1.4 Stratégie "Steady State"

1.5 Critères d'arrêt

Toutes les méthodes d'arrêt sont dans le fichier StopCriteria.m. Elles sont stockées dans la variable globale STOP_CRITERIA.

Les critères d'arrêt suivant ont été implémentés :

- time
- threshold, avec deux paramètres de contrôle :
 - R, la relation entre la fitness et la limite T (>=, <=, ...)
 - T, la limite fixée
- variance, avec un paramètre de contrôle V
- min-max ratio, avec un paramètre de contrôle R
- mean-change rate, avec un paramètre de contrôle CR

N.B : Même si un critère d'arrêt différent du temps est défini, l'algorithme ne dépassera pas le nombre d'itérations maximum donnés.