# Introduction to Statistical Machine Learning

#### Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National



## Cheng Soon Ong & Christian Walder

Machine Learning Research Group
Data61 | CSIRO
and
College of Engineering and Computer Science
The Australian National University

Canberra February – June 2019

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

## Part VIII

Mixture Models and EM 2

### Introduction to Statistical Machine Learning

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University



EM for Gaussian Mixtures

EM for Gaussian
Mixtures - Relation to
K-Means

Aixture of Bernoulli

M for Gaussian lixtures - Latent

- DATA |
- EM for Gaussie Mixtures
- EM for Gaussian Mixtures - Relation to K-Means
- fixture of Bernoulli
- M for Gaussian lixtures - Latent ariables
- Convergence of EM

- Find the values for  $\{r_{nk}\}$  and  $\{\mu_k\}$  so as to minimise J.
- But  $\{r_{nk}\}$  depends on  $\{\mu_k\}$ , and  $\{\mu_k\}$  depends on  $\{r_{nk}\}$ .
- Iterate until no further change
  - **1** Minimise J w.r.t.  $r_{nk}$  while keeping  $\{\mu_k\}$  fixed,

$$r_{nk} = \begin{cases} 1, & \text{if } k = \arg\min_{j} ||\mathbf{x}_{n} - \boldsymbol{\mu}_{j}||^{2} \\ 0, & \text{otherwise.} \end{cases}$$

 $\forall n=1,\ldots,N$ 

## **Expectation step**

**4** Minimise J w.r.t.  $\{\mu_k\}$  while keeping  $r_{nk}$  fixed,

$$0 = 2 \sum_{n=1}^{N} r_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k)$$
$$\boldsymbol{\mu}_k = \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}_n}{\sum_{n=1}^{N} r_{nk}}$$

Maximisation step

# Responsibilities

For *k*-means clustering, we have hard assignments

For GMM, we have soft assignments

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University



EM for Gauss Mixtures

EM for Gaussian Mixtures - Relation to K-Means

ixture of Bernoulli istributions

M for Gaussian ixtures - Latent triables

Introduction to Statistical Machine Learning

Starting point is the log of the likelihood function

$$\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

ullet Critical point of  $\ln p(\mathbf{X} \,|\, m{\pi}, m{\mu}, m{\Sigma})$  w.r.t.  $m{\mu}_k$ 

$$0 = \sum_{n=1}^{N} \underbrace{\frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}}_{\gamma(z_{nk})} \boldsymbol{\Sigma}^{-1}(\mathbf{x}_n - \boldsymbol{\mu}_k)$$

Therefore

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

where the effective number of points assigned to Gaussian k is  $N_k = \sum_{n=1}^{N} \gamma(z_{nk})$ .

Ong & Walder & Webers Data61 | CSIRO The Australian National University



EM for Gaussian Mixtures

EM for Gaussian Mixtures - Relation to K-Means

ixture of Bernoulli istributions

A for Gaussian ixtures - Latent riables



EM for Gaussian Mixtures

EM for Gaussian Mixtures - Relation to K-Means

Mixture of Bernoulli

M for Gaussian lixtures - Latent ariables

Convergence of EM

· Maximum of the log of the likelihood function for

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \, \mathbf{x}_n$$

Similarly for the covariance matrix

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T,$$

• and for the mixing coefficients  $\pi_k$  (using a Lagrange multiplier as  $\sum_k \pi_k = 1$ )

$$\pi_k = \frac{N_k}{N}.$$

• This is not a closed form solution because the responsibilities  $\gamma(z_{nk})$  depend on  $\pi, \mu, \Sigma$ .

- Given a Gaussian mixture and data X, maximise the log likelihood w.r.t. the parameters  $(\pi, \mu, \Sigma)$ .
  - Initialise the means  $\mu_k$ , covariances  $\Sigma_k$  and mixing coefficients  $\pi_k$ . Evaluate the log likelihood function.
  - **②** E step : Evaluate the  $\gamma(z_{nk})$  using the current parameters

$$\gamma(z_{nk}) = \frac{\pi_k \, \mathcal{N}(\mathbf{x}_n \, | \, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \, \mathcal{N}(\mathbf{x}_n \, | \, \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

**M** step : Re-estimate the parameters using the current  $\gamma(z_{nk})$ 

$$\boldsymbol{\mu}_k^{\mathsf{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \, \mathbf{x}_n \qquad \qquad \pi_k^{\mathsf{new}} = \frac{N_k}{N}$$

$$oldsymbol{\Sigma}_k^{\mathsf{new}} = rac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - oldsymbol{\mu}_k^{\mathsf{new}}) (\mathbf{x}_n - oldsymbol{\mu}_k^{\mathsf{new}})^T$$

Evaluate the log likelihood, if not converged then goto 2.

$$\ln p(\mathbf{X} \,|\, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k^{\mathsf{new}} \, \mathcal{N}(\mathbf{x} \,|\, \boldsymbol{\mu}_k^{\mathsf{new}}, \boldsymbol{\Sigma}_k^{\mathsf{new}}) \right\}$$

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 \ CSIRO
The Australian National
University



EM for Gaussian Mixtures

EM for Gaussian Mixtures - Relation to K-Means

ixture of Bernoulli

M for Gaussian ixtures - Latent vriables

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University





EM for Gaussian Mixtures - Relation to K-Means

fixture of Bernoulli

EM for Gaussiar Mixtures - Laten Variables





EM for Gaussia Mixtures

EM for Gaussian Mixtures - Relation to K-Means

Mixture of Bernoulli Distributions

EM for Gaussian Mixtures - Latent Variables

Convergence of EM

- Assume a Gaussian mixture model.
- Covariance matrices given by  $\epsilon \mathbf{I}$ , where  $\epsilon$  is shared by all components.
- Then

$$p(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{(2\pi\epsilon)^{D/2}} \exp\left\{-\frac{1}{2\epsilon} \|\mathbf{x} - \boldsymbol{\mu}_k\|^2\right\}.$$

- Keep  $\epsilon$  fixed, do not re-estimate.
- Responsibilities

$$\gamma(z_{nk}) = \frac{\pi_k \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 / 2\epsilon\right\}}{\sum_j \pi_j \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 / 2\epsilon\right\}}$$

• Taking the limit  $\epsilon \to 0$ , the term in the denominator for which  $\|\mathbf{x}_n - \boldsymbol{\mu}_i\|^2$  is the smallest will go to zero most slowly.

EM for Gaussian Mixtures - Relation to K-Means

Aixture of Bernoulli

EM for Gaussian Mixtures - Latent Variables

Convergence of EM

Assume a Gaussian mixture model.

$$\gamma(z_{nk}) = \frac{\pi_k \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 / 2\epsilon\right\}}{\sum_j \pi_j \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 / 2\epsilon\right\}}$$

Therefore

$$\gamma(z_{nk}) = \begin{cases} 1 & \text{if } \|\mathbf{x}_n - \boldsymbol{\mu}_k\| < \|\mathbf{x}_n - \boldsymbol{\mu}_j\| & \forall j \neq k \\ 0 & \text{otherwise} \end{cases}$$

- Holds independent of  $\pi_k$  as long as none are zero.
- Hard assignment to exactly one cluster : *K*-means.

$$\lim_{\epsilon \to 0} \gamma(z_{nk}) = r_{nk}$$

- DATA |
- EM for Gaussia Mixtures
- EM for Gaussian Mixtures - Relation to K-Means
- Mixture of Bernoulli Distributions
- EM for Gaussian Mixtures - Latent Variables
- Convergence of EM

- Set of *D* binary variables  $x_i$ , i = 1, ..., D.
- Each governed by a Bernoulli distribution with parameter  $\mu_i$ . Therefore

$$p(\mathbf{x} \mid \boldsymbol{\mu}) = \prod_{i=1}^{D} \mu_i^{x_i} (1 - \mu_i)^{1 - x_i}$$

Expectation and covariance

$$\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu}$$
$$\operatorname{cov}[\mathbf{x}] = \operatorname{diag}\{\mu_i(1 - \mu_i)\}\$$

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\pi}) = \sum_{k=1}^{K} \pi_k p(\mathbf{x} \mid \boldsymbol{\mu}_k)$$

with

$$p(\mathbf{x} \mid \boldsymbol{\mu}_k) = \prod_{i=1}^{D} \mu_{ki}^{x_i} (1 - \mu_{ki})^{1 - x_i}$$

Similar calculation as with mixture of Gaussian

$$\gamma(z_{nk}) = \frac{\pi_k p(\mathbf{x}_n \mid \boldsymbol{\mu}_k)}{\sum_{j=1}^K \pi_j p(\mathbf{x}_n \mid \boldsymbol{\mu}_j)}$$

$$N_k = \sum_{n=1}^N \gamma(z_{nk})$$

$$\bar{\mathbf{x}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n \qquad \mu_k = \bar{\mathbf{x}}$$

$$\pi_k = \frac{N_k}{N}$$

Introduction to Statistical Machine Learning

Ong & Walder & Webers
Data61 \ CSIRO
The Australian National
University



M for Gaussiar lixtures

Mixtures - Relation to
K-Means

Mixture of Bernoulli Distributions

M for Gaussian Mixtures - Latent Variables

# EM for Mixture of Bernoulli Distributions - Digits



Introduction to Statistical











Examples from a digits data set, each pixel taken only binary values.





Parameters  $\mu_{ki}$  for each

component in the mixture.







Fit to one multivariate Bernoulli distribution.





EM for Gaussian Mixtures - Relation to K-Means

#### Mixture of Bernoulli Distributions

M for Gaussian Iixtures - Laten ariables



EM for Gaussiai Mixtures

EM for Gaussian Mixtures - Relation to

lixture of Bernoulli

EM for Gaussian Mixtures - Latent Variables

Convergence of EM

- EM finds the maximum likelihod solution for models with latent variables.
- Two kinds of variables
  - Observed variables X
  - Latent variables Z

plus model parameters  $\theta$ .

• Log likelihood is then

$$\ln p(\mathbf{X} \mid \boldsymbol{\theta}) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \right\}$$

- Optimisation problem due to the log-sum.
- Assume maximisation of the distribution  $p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})$  over the complete data set  $\{\mathbf{X}, \mathbf{Z}\}$  is straightforward.
- But we only have the incomplete data set  $\{X\}$  and the posterior distribution  $p(Z | X, \theta)$ .



EM for Gaussia Mixtures

EM for Gaussian Mixtures - Relation to K-Means

fixture of Bernoulli

EM for Gaussian Mixtures - Latent Variables

Convergence of EM

• Key idea of EM: As **Z** is not observed, work with an 'averaged' version  $Q(\theta, \theta^{\text{old}})$  of the complete log-likelihood  $\ln p(\mathbf{X}, \mathbf{Z} \mid \theta)$ , averaged over all states of **Z**.

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathsf{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z} \,|\, \mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}}) \, \ln p(\mathbf{X}, \mathbf{Z} \,|\, \boldsymbol{\theta})$$

- DATA |
- EM for Gaussia Mixtures
- EM for Gaussian Mixtures - Relation to K-Means
- Mixture of Bernoulli
- EM for Gaussian Mixtures - Latent Variables
- Convergence of EM

- Choose an initial setting for the parameters  $\theta^{\text{old}}$ .
- **2** E step Evaluate  $p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}})$ .
- **M** step Evaluate  $\theta^{\text{new}}$  given by

$$oldsymbol{ heta}^{\mathsf{new}} = rg \max_{oldsymbol{ heta}} Q(oldsymbol{ heta}, oldsymbol{ heta}^{\mathsf{old}})$$

where

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathsf{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z} \,|\, \mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}}) \, \ln p(\mathbf{X}, \mathbf{Z} \,|\, \boldsymbol{\theta})$$

 Check for convergence of log likelihood or parameter values. If not yet converged, then

$$oldsymbol{ heta}^{\mathsf{old}} = oldsymbol{ heta}^{\mathsf{new}}$$

and go to step 2.



EM for Gaussian Aixtures

EM for Gaussian Mixtures - Relation to K-Means

ixture of Bernoulli

M for Gaussian ixtures - Latent triables

Convergence of EM

 Start with the product rule for the observed variables X, the unobserved variables Z, and the parameters θ

$$\ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) = \ln p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}) + \ln p(\mathbf{X} \mid \boldsymbol{\theta}).$$

ullet Apply  $\sum_{\mathbf{Z}} q(\mathbf{Z})$  with arbitrary  $q(\mathbf{Z})$  to the formula

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}) + \ln p(\mathbf{X} \mid \boldsymbol{\theta}).$$

Rewrite as

$$\ln p(\mathbf{X} \mid \boldsymbol{\theta}) = \underbrace{\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q(\mathbf{Z})}}_{\mathcal{L}(q,\boldsymbol{\theta})} \underbrace{-\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})}}_{\text{KL}(q||p)}$$

• KL(q||p) is the Kullback-Leibler divergence.



EM for Gaussiai Mixtures

EM for Gaussian Mixtures - Relation to K-Means

Mixture of Bernoulli

M for Gaussian Iixtures - Lateni Iariables

Convergence of EM

• 'Distance' between two distributions p(y) and q(y)

$$KL(q||p) = \sum_{y} q(y) \ln \frac{q(y)}{p(y)} = -\sum_{y} q(y) \ln \frac{p(y)}{q(y)}$$

$$KL(q||p) = \int q(y) \ln \frac{q(y)}{p(y)} dy = -\int q(y) \ln \frac{p(y)}{q(y)} dy$$

- $\mathrm{KL}(q||p) \geq 0$
- not symmetric:  $KL(q||p) \neq KL(p||q)$
- $\bullet \ \operatorname{KL}(q||p) = 0 \ \text{iff} \ q = p.$
- invariant under parameter transformations
- Example: Kullback-Leibler divergence between two normal distributions  $q(x) = \mathcal{N}(x \,|\, \mu_1, \sigma_1)$  and  $p(x) = \mathcal{N}(x \,|\, \mu_2, \sigma_2)$

$$KL(q||p) = \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}$$

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University



EM for Gaussia Mixtures

EM for Gaussian Mixtures - Relation to K-Means

Mixture of Bernoulli

M for Gaussian Aixtures - Latent

Convergence of EM

• The two parts of  $\ln p(\mathbf{X} \mid \boldsymbol{\theta})$ 



- Hold  $heta^{
  m old}$  fixed. Maximise the lower bound  $\mathcal{L}(q, heta^{
  m old})$  with respect to  $q(\cdot)$ .
- $\mathcal{L}(q, \boldsymbol{\theta}^{\mathsf{old}})$  is a functional.
- $\ln p(\mathbf{X} \mid \boldsymbol{\theta})$  does NOT depend on  $q(\cdot)$ .
- Maximum for  $\mathcal{L}(q, \boldsymbol{\theta}^{\mathsf{old}})$  will occur when the Kullback-Leibler divergence vanishes.
- Therefore, choose  $q(\mathbf{Z}) = p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}})$

$$\ln p(\mathbf{X} \mid \boldsymbol{\theta}) = \underbrace{\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q(\mathbf{Z})}}_{\mathcal{L}(q, \boldsymbol{\theta})} \underbrace{-\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})}}_{\mathrm{KL}(q \mid | p)}$$

$$\text{KL}(q \mid | p) = 0$$

$$\mathcal{L}(q, \boldsymbol{\theta}^{\mathrm{old}})$$

$$\ln p(\mathbf{X} \mid \boldsymbol{\theta}^{\mathrm{old}})$$

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University



EM for Gaussia Aixtures

EM for Gaussian Mixtures - Relation to K-Means

Mixture of Bernoulli Distributions

M for Gaussian Aixtures - Latent Variables

Data61 | CSIRO
The Australian National

• Hold  $q(\cdot) = p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}})$  fixed. Maximise the lower bound  $\mathcal{L}(q, \boldsymbol{\theta})$  with respect to  $\boldsymbol{\theta}$ :  $\boldsymbol{\theta}^{\mathsf{new}} = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(q, \boldsymbol{\theta}^{\mathsf{old}}) = \arg \max_{\boldsymbol{\theta}} \sum_{\mathbf{Z}} q(\cdot) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$ 

•  $\mathcal{L}(q, \theta^{\text{new}}) > \mathcal{L}(q, \theta^{\text{old}})$  unless maximum already reached.

M for Gaussian lixtures

• As  $q(\cdot) = p(\mathbf{Z} \,|\, \mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}})$  is fixed,  $p(\mathbf{Z} \,|\, \mathbf{X}, \boldsymbol{\theta}^{\mathsf{new}})$  will not be equal to  $q(\cdot)$ , and therefore the Kullback-Leiber distance will be greater than zero (unless converged).

EM for Gaussian Mixtures - Relation to

Mixture of Bernoulli

Mixture of Bernoulli Distributions

M for Gaussian Iixtures - Latent 'ariables



## EM Algorithm - Parameter View



Red curve : incomplete data likelihood. Blue curve : After E step. Green curve : After M step. Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University



EM for Gaussie Mixtures

EM for Gaussian
Mixtures - Relation to
K-Means

Mixture of Bernoulli Distributions

M for Gaussian Iixtures - Lateni 'ariables