вариант	ф. номер	група	поток	курс	специалност
1					
_					
Име:					

ПЪРВИ ТЕСТ ТЕОРИЯ ПО ДИСКРЕТНИ СТРУКТУРИ 2 спец. Софтуерно инженерство 8.7.2016 г.

Задача 1. Дайте дефиниция на:

- 1. (20 точки) Регулярен език $\mathcal{L}[\alpha]$ за регулярен израз α ;
- 2. (20 точки) Рефлексивно и транзитивно затваряне на бинарна релация;
- 3. (20 точки) Краен недетерминиран автомат;
- 4. (20 точки) \vdash_M за краен детерминиран автомат M;
- 5. (20 точки) \vdash_{M} за краен недетерминиран автомат M;
- 6. (20 точки) L(M) за краен автомат M.
- 7. (20 точки) E(q) за краен недетерминиран автомат;

Задача 2.

(30 точки) Формулирайте теоремата и следствието на Майхил-Нероуд за регулярни езици.

(30 точки) Формулирайте лемата за разрастването за регулярни езици.

150 точки са достатъчни за теста!

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

ПЪРВИ ТЕСТ ТЕОРИЯ ПО ДИСКРЕТНИ СТРУКТУРИ 2 спец. Софтуерно инженерство 8.7.2016 г.

Задача 1. Дайте дефиниция на:

- 1. (20 точки) Регулярен език $\mathcal{L}[\alpha]$ за регулярен израз α ;
- 2. (20 точки) Затваряне на множество $B \subseteq A$ относно релация $R \subseteq A^2$;
- 3. (20 точки) Краен детерминиран автомат;
- 4. (20 точки) \vdash_M за краен недетерминиран автомат M;
- 5. (20 точки) Кога една дума се разпознава (приема) от даден краен детерминиран автомат M;
- 6. (20 точки) Релацията на еквивалентност \equiv_L за даден език L.

Задача 2.

(30 точки) Формулирайте лемата за разрастването за регулярни езици.

Задача 3. Каква е сложността на изучените алгоритми за:

- 1. (10 точки) Минимизация на краен детерминиран автомат;
- 2. (10 точки) Детерминизация на недетерминиран автомат;
- 3. (10 точки) Проверка дали два крайни детерминирани автомата са еквивалентни или не?

150 точки са достатъчни за теста!