```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import SelectKBest, f_classif, mutual_info_classif
from sklearn.ensemble import RandomForestClassifier
from \ sklearn. feature\_selection \ import \ Select KBest, \ f\_class if, \ mutual\_info\_class if
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score,classification_report,ConfusionMatrixDisplay
from sklearn.neighbors import KNeighborsClassifier
from xgboost import XGBClassifier
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
df1 = pd.read_csv('/content/ddaefda0913b36051550.csv')
df2 = pd.read_csv('/content/6344ec94bb4449051550.csv')
df3 = pd.read_csv('/content/a04662ab156537051550.csv')
```

df1.head() # print first 5 rows - df1.tail()

_		latitude	longitude	brightness	scan	track	acq_date	acq_time	satellite	instrument	confidence	version	bright_t31	frp	daynigh
	0	28.0993	96.9983	303.0	1.1	1.1	2021-01- 01	409	Terra	MODIS	44	6.03	292.6	8.6	
	1	30.0420	79.6492	301.8	1.4	1.2	2021-01- 01	547	Terra	MODIS	37	6.03	287.4	9.0	
	2	30.0879	78.8579	300.2	1.3	1.1	2021-01- 01	547	Terra	MODIS	8	6.03	286.5	5.4	
	3	30.0408	80.0501	302.0	1.5	1.2	2021-01- 01	547	Terra	MODIS	46	6.03	287.7	10.7	
	4	30.6565	78.9668	300.9	1.3	1.1	2021-01- 01	547	Terra	MODIS	43	6.03	287.6	9.0	

df2.head()

		latitude	longitude	brightness	scan	track	acq_date	acq_time	satellite	instrument	confidence	version	bright_t31	frp	daynigh
	0	30.1138	80.0756	300.0	1.2	1.1	2022-01- 01	511	Terra	MODIS	7	6.03	288.4	7.1	
	1	23.7726	86.2078	306.1	1.6	1.2	2022-01- 01	512	Terra	MODIS	62	6.03	293.5	10.4	
	2	22.2080	84.8627	304.8	1.4	1.2	2022-01- 01	512	Terra	MODIS	42	6.03	293.3	5.8	
	3	23.7621	86.3946	306.9	1.6	1.2	2022-01- 01	512	Terra	MODIS	38	6.03	295.2	9.3	
	4	23.6787	86.0891	303.6	1.5	1.2	2022-01- 01	512	Terra	MODIS	52	6.03	293.1	7.2	

Next steps: Generate code with df2 View recommended plots New interactive sheet

df3.head()

_		latitude	longitude	brightness	scan	track	acq_date	acq_time	satellite	instrument	confidence	version	bright_t31	frp	daynigh
	0	9.3280	77.6247	318.0	1.1	1.0	2023-01- 01	821	Aqua	MODIS	62	61.03	305.0	7.6	
	1	10.4797	77.9378	313.8	1.0	1.0	2023-01- 01	822	Aqua	MODIS	58	61.03	299.4	4.3	
	2	13.2478	77.2639	314.7	1.0	1.0	2023-01- 01	822	Aqua	MODIS	55	61.03	302.4	4.9	
	3	12.2994	78.4085	314.3	1.0	1.0	2023-01- 01	822	Aqua	MODIS	58	61.03	301.9	4.8	
	4	14.1723	75.5024	338.4	1.2	1.1	2023-01- 01	823	Aqua	MODIS	88	61.03	305.3	41.5	

Next steps: Generate code with df3

View recommended plots

New interactive sheet

df = pd.concat([df1, df2, df3], ignore_index=True)
df.head()

		latitude	longitude	brightness	scan	track	acq_date	acq_time	satellite	instrument	confidence	version	bright_t31	frp	daynigh
	0	28.0993	96.9983	303.0	1.1	1.1	2021-01- 01	409	Terra	MODIS	44	6.03	292.6	8.6	
	1	30.0420	79.6492	301.8	1.4	1.2	2021-01- 01	547	Terra	MODIS	37	6.03	287.4	9.0	
	2	30.0879	78.8579	300.2	1.3	1.1	2021-01- 01	547	Terra	MODIS	8	6.03	286.5	5.4	
	3	30.0408	80.0501	302.0	1.5	1.2	2021-01- 01	547	Terra	MODIS	46	6.03	287.7	10.7	
	4	30.6565	78.9668	300.9	1.3	1.1	2021-01- 01	547	Terra	MODIS	43	6.03	287.6	9.0	

df.shape # rows and cols

→ (271217, 15)

df.info() # dt, memc

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 271217 entries, 0 to 271216 Data columns (total 15 columns): # Column Non-Null Count Dtype -----0 latitude 271217 non-null float64 longitude 271217 non-null float64 brightness 271217 non-null float64 scan 271217 non-null float64 271217 non-null float64 track acq_date 271217 non-null object acq_time 271217 non-null int64 satellite 271217 non-null object instrument 271217 non-null object confidence 271217 non-null int64 271217 non-null float64 10 version 11 bright_t31 271217 non-null float64 12 frp 271217 non-null float64 271217 non-null object 13 daynight 271217 non-null int64 14 type dtypes: float64(8), int64(3), object(4) memory usage: 31.0+ MB

Any missing values?
df.isnull().sum()

```
<del>_</del>_
        latitude
                  0
       longitude
                  0
      brightness
                  0
         scan
         track
                  0
       acq_date
                  0
       acq_time
                  0
       satellite
                  0
      instrument 0
      confidence 0
        version
                  0
      bright_t31 0
                  0
          frp
                  0
       daynight
                  0
         type
     dtype: int64
df.duplicated().sum()
→ np.int64(0)
```

List out column names to check df.columns

df.describe().T # statistics of dataset - numbers!

₹		count	mean	std	min	25%	50%	75%	max	
	latitude	271217.0	23.947505	4.919846	8.1362	20.9655	23.7888	27.7827	34.9734	ılı
	longitude	271217.0	81.284024	6.559071	68.4526	75.8802	79.3209	84.7559	97.1044	
	brightness	271217.0	323.719192	14.147221	300.0000	314.5000	322.0000	330.7000	505.7000	
	scan	271217.0	1.421732	0.630742	1.0000	1.0000	1.2000	1.5000	4.8000	
	track	271217.0	1.152716	0.201943	1.0000	1.0000	1.1000	1.2000	2.0000	
	acq_time	271217.0	824.623755	353.966965	321.0000	648.0000	756.0000	825.0000	2202.0000	
	confidence	271217.0	64.065081	18.165329	0.0000	54.0000	66.0000	76.0000	100.0000	
	version	271217.0	21.933778	24.935515	6.0300	6.0300	6.0300	61.0300	61.0300	
	bright_t31	271217.0	303.499177	8.282440	267.2000	298.2000	302.5000	309.2000	400.1000	
	frp	271217.0	27.722058	81.017471	0.0000	8.7000	13.5000	24.5000	6961.8000	
	type	271217.0	0.100385	0.437215	0.0000	0.0000	0.0000	0.0000	3.0000	

[#] Check Unique values of target variable
df.type.value_counts()

```
∓
             count
      type
           257625
       0
       2
             13550
       3
               42
     dtype: int64
# Check unique and n unique for all categorical features
for col in df.columns:
 if df[col].dtype == 'object':
   print(f"Column: {col}")
   print(f"Unique values: {df[col].unique()}")
   print(f"Number of unique values: {df[col].nunique()}")
   print("-" * 50)
→ Column: acq_date
     Unique values: ['2021-01-01' '2021-01-02' '2021-01-03' ... '2023-12-29' '2023-12-30'
      '2023-12-31']
     Number of unique values: 1088
    Column: satellite
    Unique values: ['Terra' 'Aqua']
```

```
Unique values: ['D' 'N']

Number of unique values: 2

# Count plot for 'type'

plt.figure(figsize=(8, 6))
```

```
# Count plot for 'type'
plt.figure(figsize=(8, 6))
sns.countplot(x='type', data=df)
plt.title('Distribution of Fire Types')
plt.xlabel('Fire Type')
plt.ylabel('Count')
plt.show()
```

Number of unique values: 2

Column: instrument Unique values: ['MODIS'] Number of unique values: 1

Column: daynight


```
# Histogram of 'confidence'
plt.figure(figsize=(8, 6))
sns.histplot(df['confidence'], bins=20, kde=True)
plt.title('Distribution of Confidence')
plt.xlabel('Confidence')
plt.ylabel('Frequency')
plt.show()
```



```
# Box plot for 'confidence' by 'type'
plt.figure(figsize=(8, 6))
sns.boxplot(x='type', y='confidence', data=df)
plt.title('Confidence by Fire Type')
plt.xlabel('Fire Type')
plt.ylabel('Confidence')
plt.show()
```


_

```
plt.figure(figsize=(10, 8))
sns.scatterplot(x='longitude', y='latitude', data=df, hue='type', s=10)
plt.title('Fire Locations by Type')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.legend(title='Fire Type')
plt.show()
```



```
# Count plot for 'daynight'
plt.figure(figsize=(6, 4))
sns.countplot(x='daynight', data=df)
plt.title('Distribution of Day/Night Observations')
plt.xlabel('Day/Night')
plt.ylabel('Count')
plt.show()
```



```
# Count plot for 'Satellite'
plt.figure(figsize=(6, 4))
sns.countplot(x='satellite', data=df)
plt.title('Distribution of Satellite Observations')
plt.xlabel('Satellite')
plt.ylabel('Count')
plt.show()
```



```
# Count plot for 'version'
plt.figure(figsize=(6, 4))
sns.countplot(x='version', data=df)
plt.title('Distribution of Version')
plt.xlabel('Version')
plt.ylabel('Count')
plt.show()
```



```
#this code take more time
#Pairplot for numerical features (subset)
#sns.pairplot(df[['latitude', 'longitude', 'brightness', 'confidence', 'frp', 'type']], hue='type', diag_kind='kde')
#plt.suptitle('Pairplot of Numerical Features')
#plt.show()

# Heatmap of correlations between numerical features
plt.figure(figsize=(10, 8))
correlation_matrix = df[['latitude', 'longitude', 'brightness', 'confidence', 'frp']].corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap of Numerical Features')
plt.show()
```


numerical_cols = df.select_dtypes(include=np.number).columns

```
{\tt numerical\_cols}
```


Histograms of Numerical Features


```
import statsmodels.api as sm
import scipy.stats as stats
# List of numerical features to check for distribution
numerical_features = ['brightness', 'confidence', 'frp', 'bright_t31', 'scan', 'track']
for feature in numerical_features:
    print(f"Analyzing distribution for: {feature}")
    # KDE Plot
    plt.figure(figsize=(12, 5))
    plt.subplot(1, 2, 1)
    sns.kdeplot(df[feature], fill=True)
    plt.title(f'KDE Plot of {feature}')
    plt.xlabel(feature)
    plt.ylabel('Density')
    # QQ Plot
    plt.subplot(1, 2, 2)
    stats.probplot(df[feature], dist="norm", plot=plt)
    plt.title(f'QQ Plot of {feature}')
    plt.tight_layout()
    plt.show()
    print("-" * 50)
```



```
# --- Temporal Analysis ---
 # Convert 'acq_date' to datetime objects
df['acq_date'] = pd.to_datetime(df['acq_date'])
# Extract temporal features
 df['year'] = df['acq_date'].dt.year
 df['month'] = df['acq_date'].dt.month
df['day_of_week'] = df['acq_date'].dt.dayofweek # Monday=0, Sunday=6
df['day_of_year'] = df['acq_date'].dt.dayofyear
\label{eq:df-def} $$ df['hour'] = df['acq\_time']. as type(str). str[:2]. as type(int) \# Assuming acq\_time is $$ HHMM $$ HMM $$ is $$ HHMM $$ is $$ HHMM $$ HMM $$
# Visualize fire detections over months
plt.figure(figsize=(10, 6))
 sns.countplot(data=df, x='month', palette='viridis')
 plt.title('Fire Detections by Month (2023)')
plt.xlabel('Month')
plt.ylabel('Number of Detections')
 plt.xticks(ticks=range(12), labels=['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
plt.show()
```

/tmp/ipython-input-29-3766763484.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legenc sns.countplot(data=df, x='month', palette='viridis')


```
# Visualize fire detections by day of the week
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='day_of_week', palette='viridis')
plt.title('Fire Detections by Day of Week (2023)')
plt.xlabel('Day of Week')
plt.ylabel('Number of Detections')
plt.xticks(ticks=range(7), labels=['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'])
plt.show()
```

/tmp/ipython-input-30-714612371.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legenc sns.countplot(data=df, x='day_of_week', palette='viridis')


```
# Visualize outliers using box plots for key numerical features
plt.figure(figsize=(12, 8))
sns.boxplot(data=df[numerical_cols])
plt.title('Box Plots for Key Numerical Features')
plt.ylabel('Value')
plt.show()
```


Box Plots for Key Numerical Features


```
def remove_outliers_iqr(df, column):
 Q1 = df[column].quantile(0.25)
 Q3 = df[column].quantile(0.75)
 IQR = Q3 - Q1
 lower\_bound = Q1 - 1.5 * IQR
 upper_bound = Q3 + 1.5 * IQR
  df_cleaned = df[(df[column] >= lower_bound) & (df[column] <= upper_bound)].copy()</pre>
 return df_cleaned
# Apply outlier removal to numerical columns
for col in numerical_cols:
 df = remove_outliers_iqr(df, col)
print("Shape after removing outliers:", df.shape)
→ Shape after removing outliers: (189370, 20)
# Visualize box plots after outlier removal
plt.figure(figsize=(12, 8))
sns.boxplot(data=df[numerical_cols])
plt.title('Box Plots for Numerical Features After Outlier Removal')
plt.ylabel('Value')
plt.show()
```