# Функция перманент

Воронин Иван Петрович, научный руководитель А. Э. Гутерман

## Введение

**Определение:** Пусть  $A = (a_{ij})$  - квадратная матрица порядка n:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Перманентом матрицы А называется величина:

$$perA = \sum_{\sigma \in S_n} a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)},$$
 где суммирование ведётся по всем перестановкам  $\sigma$  множества  $\{1,2,\ldots,n\}.$ 

Для матрицы  $B=(b_{ij})$  размера n imes m,  $n \leqslant m$ :

$$peregin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{pmatrix}$$
 определяется как:  $\sum_{lpha} \sum_{\sigma \in S_{lpha}} b_{1\sigma(1)} \cdot b_{2\sigma(2)} \cdot \dots \cdot b_{n\sigma(n)},$ 

где  $\alpha = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$  есть n - элементное подмножество множества  $\{1, 2, \dots, m\}$ . То есть суммирование ведётся по всем квадратным подматрицам порядка n матрицы B (их конечно же  $C_m^n$ ).

Например, 
$$per\begin{pmatrix} 4 & 5 & 7 \\ 6 & 8 & 3 \end{pmatrix} = per\begin{pmatrix} 4 & 5 \\ 6 & 8 \end{pmatrix} + per\begin{pmatrix} 4 & 7 \\ 6 & 3 \end{pmatrix} + per\begin{pmatrix} 5 & 7 \\ 8 & 3 \end{pmatrix} = 62 + 54 + 71 = 187.$$

Иными словами, перманент матрицы B есть сумма всех произведений таких её n элементов, что никакие два из них не находятся в одной строке или в одном столбце. Разумеется, перманент квадратной матрицы не меняется при её транспонировании, так что при n > m: определим  $per(B) := per(B^T)$ .

Иногда удобен способ вычисления перманента матрицы, оперируя строчными суммами:

$$per\begin{pmatrix}b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m}\end{pmatrix} = \sum_{s \neq t} b_{1s} \cdot b_{2t} = (b_{11} + b_{12} + \dots + b_{1m}) \cdot (b_{21} + b_{22} + \dots + b_{2m}) - (b_{11} \cdot b_{21} + b_{12} \cdot b_{22} + \dots + b_{1m} \cdot b_{2m})$$

Такой подход вычисления перманента называется формулой Бине [1].

Ввиду сходства в определении перманента и детерминанта, многие результаты, полученные для второго, имеют свои аналоги для первого. Сразу стоит отметить, что перманент не наследует от детерминанта мультипликативное свойство, а также инвариантность при некоторых элементарных преобразованиях строк и столбцов. Однако, функция перманент, конечно, так же полилинейна относительно строк, а в случае квадратных матриц - и столбцов. Справедлива теорема Лапласа [13] о разложении перманента по строке:

Пусть  $A=(a_{ij})$  - матрица размера  $n\times m,\ n\leqslant m$ :

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix},$$

тогда  $perA = a_{11} \cdot perA_{11} + a_{12} \cdot perA_{12} + \ldots + a_{1m} \cdot perA_{1m}$ , где  $A_{ij}$  - подматрица A, получаемая удалением из неё i-той строки и j-того столбца. Перманент произведения матриц выглядит ужасающим, а вот перманент суммы матриц  $A = (a_{ij})$  и  $B = (b_{ij})$  порядка n устроен проще детерминанта, ибо не зависит от знаков перестановок:

$$per(A+B) = per \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \dots & a_{nn} + b_{nn} \end{pmatrix} = perA + perB + \sum_{r=1}^{n-1} \sum_{\alpha,\beta} \left( perA_{[\alpha,\beta]} \cdot per\overline{B}_{[\alpha,\beta]} \right),$$

где  $A_{[\alpha,\beta]}$  - подматриаца A, полученная на пересечении строк кортежа  $\alpha=(\alpha_1\leqslant\alpha_2\leqslant\ldots\leqslant\alpha_r)$  и столбцов кортежа  $\beta=(\beta_1\leqslant\beta_2\leqslant\ldots\leqslant\beta_r)$ , а  $\overline{B}_{[\alpha,\beta]}$  - подматрица B, полученная удалением строк кортежа  $\alpha$  и столбцов кортежа  $\beta$ . То есть порядок  $A_{[\alpha,\beta]}$  равен r, а порядок  $\overline{B}_{[\alpha,\beta]}$  равен (n-r), и суммирование для каждого r ведётся по всем парам кортежей  $\alpha$  и  $\beta$ . Отсюда понятно, как устроен перманент суммы матриц A и B размера  $n\times m$ , где  $n\leqslant m$ , а затем, применяя транспонирование матриц, наконец, для произвольных n и m.

Хотелось бы верить, что теорию перманента можно так или иначе свести к намного более широко изученной теории детерминанта, однако "лаконично" это сделать пока не удалось. А именно, естественным желанием при попытке конвертации перманента в детерминант является расстановка знаков + и - перед элементами матрицы. Так, например,

$$per\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad + bc = det\begin{pmatrix} a & -b \\ c & d \end{pmatrix}.$$

Однако подобный подход терпит неминуемый крах уже при работе с матрицами порядка 3:

**Утверждение 1** (Проблема Пойа [1]). *Не существует расстановки знаков перед элементами матрицы порядка 3, конвертирующей перманент в детерминант.* 

#### Доказательство:

Предположим обратное, тогда число минусов, приписываемых элементам каждой диагонали, соответствующей чётной пере-

становке, должно быть чётным: достаточно рассмотреть матрицы  $\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ ,  $\begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{pmatrix}$  и  $\begin{pmatrix} 0 & 0 & a \\ b & 0 & 0 \\ 0 & c & 0 \end{pmatrix}$  , и тем самым

общее число приписанных минусов должно быть чётным. С другой стороны, аналогично, число минусов на каждой диагонали, соответствующей нечётной перестановке, должно быть нечётным, откуда и общее их число нечётно, ибо нечётных перестановок, равно как и чётных, три. Получено противоречие.

Но тогда и для матриц больших порядков подобная расстановка знаков нереализуема. В самом деле, допустим, что для матрицы порядка n>3 существует нужный способ расстановки знаков. Рассмотрим матрицу вида:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 & \dots & 0 \\ a_{21} & a_{22} & a_{23} & \vdots & \ddots & \vdots \\ a_{31} & a_{32} & a_{33} & 0 & \dots & 0 \\ 0 & \dots & 0 & 1 & & \\ \vdots & \ddots & \vdots & & \ddots & \\ 0 & \dots & 0 & & 1 \end{pmatrix} = \begin{pmatrix} A & O \\ O & E_{n-3} \end{pmatrix}, \ \text{её перманент равен } per A.$$

С помощью нашей расстановки знаков приведём её к виду:

$$egin{pmatrix} A' & O \\ O & E'_{n-3} \end{pmatrix}$$
 , где  $E'_{n-3}$  - диагональная матрица порядка  $(n-3)$  с  $(\pm 1)$  на диагонали.

Детерминант полученной матрицы равен  $det(A')\cdot (\pm 1)$ , причём мы уже знаем, что  $\exists A\colon det(A')\neq perA$ . Единственным спасением стало бы равенство det(A')=-perA, когда на диагонали  $E'_{n-3}$  нечётное число (-1), и значит, на диагонали  $A^{'}$  нечётное число замен(достаточно взять  $A=E_3$ ), но перестановка (1,2,3) для элементов матрицы A - чётная, откуда следует противоречие.

Результат Пойа был значительно обобщён Маркусом и Минком [11], которые показали, что при  $n\geqslant 3$  не существует такого линейного преобразования  $\phi$  множества  $M_n(\mathbb{R})$ , что  $\forall A \in M_n : perA = det(\phi(A))$ , что окончательно разрушило надежду найти способ простой конвертации перманента в детерминант. Теорема Валианта [7] утверждает, что задача вычисления перманента даже для бинарных матриц является NP-полной. Стоит отметить, что задача вычисления перманента бинарных матриц имеет широкое приложение в теории графов [6], [15]. О многих других связанных сюжетах можно прочесть в [4], [5].

# **Класс** (1,-1) матриц

Частным случаем класса (1,-1) матриц являются широко известные матрицы Адамара [8], [9].

Обозначим через  $\Omega_n$  множество матриц порядка n с элементами из множества  $\{1,$  - $1\}$ . Многие задачи, связанные с исследованием перманента (1,-1) принципиально зависят от факта обращения его в нуль. Эффективным методом доказательства того, что перманент матрицы не равен нулю, является нахождение достаточно большой степени двойки, не делящей его значение.

Утверждение 2.  $\forall A \in \Omega_n : det A \equiv 0 \pmod{2^{n-1}}$ .

#### Доказательство:

Прибавим первую строку ко всем остальным – получим в последующих (n-1) строках числа из множества  $\{0,\pm 2\}$ , теперь разложим детерминант по первой строке.

Для перманента самой простой оценкой на степень вхождения двойки будет  $\lfloor rac{n}{2} 
floor.$ 

Утверждение 3 (Wang [12]).  $\forall A \in \Omega_n : perA \equiv 0 \pmod{2^{\lfloor \frac{n}{2} \rfloor}}$ .

#### Доказательство:

Индукция по n.

**База**: Перманент матрицы порядка 1 равен  $(\pm 1)$ .

**Переход**: Пусть n - нечётное, разложим perA по первой строке, в ней k единиц и (n-k) минус единиц.

$$perA = per \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = a_{11} \cdot perA_{11} + a_{12} \cdot perA_{12} + \dots + a_{1n} \cdot perA_{1n},$$

где по предположению индукции  $perA_{1i} \equiv 0 \pmod{2^{\frac{n-1}{2}}}$ , причём  $(a_{11} \cdot perA_{11} + a_{12} \cdot perA_{12} + \ldots + a_{1n} \cdot perA_{1n}) = a_{12} \cdot perA_{12} + \ldots + a_{2n} \cdot perA_{2n}$  $= (\pm per A_{11} \pm per A_{12} \pm \ldots \pm per A_{1n}) \div 2^{\frac{n-1}{2}}.$ 

$$per A = per \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1(n-1)} & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2(n-1)} & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3(n-1)} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{n(n-1)} & a_{nn} \end{pmatrix} = per \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot per \overline{A}_{[(1,2),(1,2)]} \ + \ per \begin{pmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{pmatrix} \cdot per \overline{A}_{[(1,2),(1,3)]} \ + \\ + \dots \ + \ per \begin{pmatrix} a_{1(n-1)} & a_{1n} \\ a_{2(n-1)} & a_{2n} \end{pmatrix} \cdot per \overline{A}_{[(1,2),((n-1),n)]}, \text{ причём все} \ per \overline{A}_{[(1,2),(\alpha,\beta)]} \ \vdots \ 2^{\frac{n}{2}-1},$$

а все перманенты матриц порядка 2 кратны двум

В работе [2] представлены технические доказательства намного более точных оценок делимости перманента на степень двойки, а именно:

**Утверждение 4.** Пусть  $n=2^t-1,\ t\in\mathbb{N}.\ \forall A\in\Omega_n:\ per A\ \vdots\ 2^{n-\lfloor\log_2 n\rfloor-1},$  но  $per A\not\not: 2^{n-\lfloor\log_2 n\rfloor}.$ 

**Утверждение 5.** Пусть  $n \neq 2^t - 1$ ,  $t \in \mathbb{N}$ . Тогда  $\forall A \in \Omega_n : perA : 2^{n - \lfloor \log_2 n \rfloor}$ .

Гипотеза Кройтера утверждает, что делимость на  $2^{n-\lfloor \log_2{(n+1)} \rfloor}$  всегда достижима , что проверено в работе [14] только для  $n \leqslant 20$ .

В работе [11] показано, что для  $n \equiv 2$  и для  $n \equiv 1 \pmod 4$  всегда  $\exists A \in \Omega_n : perA = 0$ . В общем случае для  $n \equiv 3 \pmod 4$  не известно, когда существует такая матрица  $A \in \Omega_n$ , что perA = 0.

Так, например, для  $n=3:\ per A\in\{\pm 2,\pm 6\}$ . Для n=7 имеем  $per A\not/2^5$  из Утверждения, ведь  $7=2^3-1$ . Для n=15 имеем  $per A\not/2^{12}$ , ведь  $15=2^4-1$ . А вот для n=11 и n=19  $\exists A: per A=0$  (см. примеры на этой странице).

В работе [3] в несколько строк получено следствие Утверждения, его не использующее:

**Утверждение 6.** *Если*  $n=2^k-1,\ k\in\mathbb{N},\ au\sigma\ \not\exists A\in\Omega_n:\ perA=0.$ 

# Класс симметрических (1,-1) матриц

При работе с некоторыми задачами о графах интерес представляет рассмотрение симметрических (1, -1) матриц (их множество обозначим как  $\Omega_n^+$ ). Имея условие симметричности матрицы, хотелось бы усилить оценки максимальной степени вхождения двойки в значения перманента по сравнению с Утверждением. Займёмся этим.

Пользуясь [2] Лемма 2.3, будем работать с выражением:

$$per(A) = \sum_{j=0}^{n} (-2)^{j} \cdot k_{j} \cdot (n-j)!$$

Здесь A – симметрическая (1,-1) матрица порядка n, а  $k_j$  – количество её отрицательных частичных обобщённых диагоналей длины j. Считаем, что  $k_0 = 1$ . Далее я буду называть обобщённые диагонали просто диагоналями.

Заметим, что  $k_j$  может быть представлено как  $k_j = d_j + m_j$ , где  $d_j$  - количество отрицательных частичных диагоналей длины j, лежащих целиком на главной диагонали матрицы (из левого верхнего угла в правый нижний), а  $m_j$  - количество остальных отрицательных частичных диагоналей длины j. Тогда в случае симметрических матриц  $m_j$  чётно, ведь частичные диагонали, не вложенные в главную, разбиваются на пары симметричных относительно неё.

$$per(A) = \sum_{j=0}^{n} (-2)^{j} \cdot k_{j} \cdot (n-j)! = (-2)^{0} \cdot k_{0} \cdot n! + \sum_{j=1}^{n} (-2)^{j} \cdot k_{j} \cdot (n-j)! = n! + \sum_{j=1}^{n} (-2)^{j} \cdot (d_{j} + m_{j}) \cdot (n-j)! = n! + \sum_{j=1}^{n} (-2)^{j} \cdot d_{j} \cdot (n-j)! + \sum_{j=1}^{n} (-2)^{j} \cdot m_{j} \cdot (n-j)! = n! + D + M$$
(1)

**Определение 1.** Через  $\nu_2(N)$  обозначим степень вхождения двойки в каноническое разложение числа N на простые.

**Определение 2.** Через  $\sigma_2(N)$  обозначим сумму битов(количество единиц) в двоичной записи числа N

**Теорема 1.**  $\nu_2(n!) = n - \sigma_2(n)$ 

#### Доказательство:

В терминах записи числа в двоичной системе исчисления, целочисленное деление на  $2^k$  есть сдвиг на k бит вправо с затиранием вылезших правее нулевого разряда. Пусть  $2^k \leqslant n < 2^{k+1}$  и  $n = a_k \cdot 2^k + a_{k-1} \cdot 2^{k-1} + \cdots + a_1 \cdot 2^1 + a_0 \cdot 1$ , то есть в двоичной записи  $n_2 = \overline{a_k a_{k-1} \dots a_1 a_0}$ 

Тогда:

$$\left\lfloor \frac{n}{2} \right\rfloor = a_k \cdot 2^{k-1} + a_{k-1} \cdot 2^{k-2} + \dots + a_1, \ \left\lfloor \frac{n}{4} \right\rfloor = a_k \cdot 2^{k-2} + a_{k-1} \cdot 2^{k-3} + \dots + a_2, \ \dots$$

Откуда:

$$\nu_2(n!) = a_k \cdot (2^{k-1} + 2^{k-2} + \dots + 2^1 + 1) + a_{k-1} \cdot (2^{k-2} + 2^{k-3} + \dots + 2^1 + 1) + \dots + a_2 \cdot (2^1 + 1) + a_1 = a_k \cdot (2^k - 1) + a_{k-1} \cdot (2^{k-1} - 1) + \dots + a_2 \cdot (2^2 - 1) + a_1 \cdot (2^1 - 1) + a_0 (1 - 1) = a_k \cdot 2^k + a_{k-1} \cdot 2^{k-1} + \dots + a_1 \cdot 2^1 + a_0 \cdot 1 - (a_k + a_{k-1} + \dots + a_1 + a_0) = n - \sigma_2(n)$$

**Определение 3.** Назовём (r+1)-нулевыми числа, в двоичной записи которых есть хотя бы r+1 нуль.

**Утверждение 7.**  $\nu_2(n!) \geqslant n - |\log_2(n)| + r$  тогда и только тогда, когда n является (r+1)-нулевым.

#### Доказательство:

Из Теоремы имеем:

$$\nu_2(n!) = n - \sigma_2(n) \geqslant n - \lfloor \log_2(n) \rfloor + r \iff \sigma_2(n) \leqslant \lfloor \log_2(n) \rfloor - r$$

Замечание 1. Натуральные числа вида  $2^t-1$  не являются **n-нулевыми** ни для какого натурального n. Действительно, их бинарные записи не содержат нулей.

Утверждение 8.  $\nu_2\left((-2)^j\cdot (n-j)!\right) \geqslant n-|\log_2(n)|$  для **1-нулевых** n.

#### Доказательство:

$$\nu_2\left((-2)^j \cdot (n-j)!\right) = j + \nu_2\left((n-j)!\right) = j + n - j - \sigma_2(n-j) = n - \sigma_2(n-j) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n) \rfloor + 1), \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1) \\ \geqslant n - (\lfloor \log_2(n-j) \rfloor + 1)$$

где первое неравенство следует из соображения, что сумма битов не больше их количества, а второе из монотонности функции логарифма. Причём одновременно равенства выполнены только при  $n=2^k-1$  для некоторого  $k\in\mathbb{N}$ , а j=0. Действительно,  $\sigma_2(n-j)=\lfloor\log_2(n-j)\rfloor+1$  только, если его бинарная запись n-j состоит только из единиц, а  $\lfloor\log_2(n)\rfloor$  возрастает на единицу при переходе через степень двойки. Значит, в остальных случаях, а именно при наличии хотя бы одного нуля в двоичной записи, неравенство из утверждения выполнено.

Наложим условия на симметрическую (1,-1) матрицу порядка n, при которой её перманент делится на  $2^{n-\lfloor \log_2(n)\rfloor+1}$ . А именно потребуем делимости на данную степень двойки всех трёх слагаемых выражения (1): n!, M и D:

Для n! вопрос решён Утверждением. Подойдут **2-нулевые** n.

Разберёмся с M. При **1-нулевых** n, которые по определению являются надмножеством **2-нулевых**, имеем:

$$u_2\left((-2)^j\cdot m_j\cdot (n-j)!\right)\ \geqslant\ n-\lfloor\log_2(n)\rfloor+
u_2(m_j)\ \geqslant\ n-\lfloor\log_2(n)\rfloor+1$$
 в силу чётности  $m_j$ 

Откуда при **2-нулевых** n имеем делимость

$$M = \sum_{j=1}^n (-2)^j \cdot m_j \cdot (n-j)!$$
 Ha  $2^{n-\lfloor \log_2(n-j) \rfloor + 1}$ 

Осталось разобраться со слагаемым

$$D = \sum_{j=1}^{n} (-2)^{j} \cdot d_{j} \cdot (n-j)!$$

Напомню, что  $d_j$  – количество отрицательных частичных диагоналей длины j, лежащих целиком на главной диагонали матрицы (из левого верхнего угла в правый нижний). Пусть на главной диагонали находятся ровно k минус единиц. Если подобрать k так, чтобы для  $\forall j \in \{1,\ldots,n\}: (d_j \cdot (n-j)!) \stackrel{.}{:} 2^{n-\lfloor \log_2(n)\rfloor+1-j},$  то, аналогично полученной делимости M на  $2^{n-\lfloor \log_2(n)\rfloor+1},$  для 2-нулевых n, заключим её для D. Но  $d_j = C_k^j$ , то есть нас интересуют такие k, что  $C_k^j$  чётно для  $\forall j \in \{1,\ldots,n-1\},$  ведь для j=n и так имеем  $1-\lfloor \log_2(n)\rfloor \leqslant 0$  при  $n \geqslant 2$ . Назовём интересующие нас k замечательными.

Утверждение 9. Замечательными являются в точности степени двойки и нуль.

#### Доказательство:

Воспользуемся Теоремой:

$$\nu_2\left(C_{2^n}^k\right) = \nu_2\left(\frac{2^n!}{k!(2^n-k)!}\right) = \nu_2(2^n!) - \nu_2(k!) - \nu_2(2^n-k)! = 2^n - \sigma_2(2^n) - (k-\sigma_2(k)) - (2^n-k-\sigma_2(2^n-k)) = \sigma_2(k) + \sigma_2(2^n-k) - \sigma_2(2^n) = \sigma_2(k) + \sigma_2(2^n-k) - \sigma_2(2^$$

Тогда при  $n\geqslant 2$ , при  $k\in\{1,\ldots,2^n-1\}$  имеем  $\sigma_2(k)\geqslant 1$  и  $\sigma_2(2^n-k)\geqslant 1$ , значит,  $\nu_2(C_{2^n}^k)\geqslant 1$ . То есть степени двойки действительно **замечательные**. А **замечательность** нуля и единицы очевидна.

С другой стороны, если число m не является степенью двойки, то есть  $m=2^n+r$ , где  $r\in\{1,\ldots,2^n-1\}$ , то

$$\nu_2\left(C_{2^n+r}^r\right) = \nu_2\left(\frac{(2^n+r)!}{r!\cdot 2^n!}\right) = \nu_2\left((2^n+r)!\right) - \nu_2(r!) - \nu_2(2^n!) = 2^n + r - \sigma_2(2^n+r) - (r - \sigma_2(r)) - (2^n - \sigma_2(2^n)) = \sigma_2(r) + \sigma_2(2^n) - \sigma_2(2^n+r) = \sigma_2(r) + 1 - \sigma_2(2^n+r) = \sigma_2(r) + 1 - (\sigma_2(r) + 1) = 0$$

Значит, кроме степеней двойки, **замечательных** чисел нет. И конечно же, **замечательные** числа, как степени двоек, являются подмножеством **1-нулевых** (для  $n \geqslant 4$ ).

Замечание 2. А ещё можно рассмотреть треугольник Паскаля по модулю 2, получится красивая рекурсивная картинка: треугольник Серпинского<sup>1</sup> с пустотами - нулями и ячейками - единицами. Причём строки из двух единиц по краям и всеми нулями между ними имеют номера — в точности степени двойки.

Наконец, сформулируем наше утверждение о делимости перманента.

**Утверждение 10.** Для **2-нулевых** n перманент симметрической (1,-1) матрицы порядка n с **замечательным** количеством минус единиц на главной диагонали, делится на  $2^{n-\lfloor \log_2(n)\rfloor+1}$ 

**Утверждение 11** (без введённых определений). Для чисел n таких, что в их двоичной записи есть хотя бы два нуля, перманент симметрической (1,-1) матрицы порядка n делится на  $2^{n-\lfloor \log_2(n)\rfloor+1},$  если количество минус единиц на главной диагонали равно  $k\!=\!2^t,$  для некоторого  $t\in\mathbb{N}$ 

Обратим внимание, что в ходе рассуждения о делимости было полученно, что для M и N достаточно потребовать от n быть **1-нулевым**, в то время как для слагаемого n! требуется наличие уже 2 нулей в двоичной записи. Тем самым получаем:

Замечание 3. Для 1-нулевых n перманент симметрической (1,-1) матрицы порядка n с замечательным количеством минус единиц на главной диагонали, делится на  $2^{n-\lfloor \log_2(n) \rfloor}$ , но не делится на  $2^{n-\lfloor \log_2(n) \rfloor + 1}$ . Тем самым степень входжения двойки в значение перманента в точности равна  $n-\lfloor \log_2(n) \rfloor$ .

**Утверждение 12.** Убрать условие наличия двух нулей в двоичной записи n в общем случае нельзя. В качестве доказательства привожу в Приложении после списка литературы примеры найденных мной матриц.

<sup>&</sup>lt;sup>1</sup>Source text: https://en.wikipedia.org/wiki/Sierpinski triangle

### Литература

- 1. H. Minc, Theory of permanents (1984).
- 2. М. В. Будревич, А. Э. Гутерман, К. А. Таранин, О делимости перманента (±1)-матриц Записи научных семинаров ПОМИ Том 439, 2015 г.
- 3. R. Simion, F.W. Schmidt, On (+1,-1)-matrices with vanishing permanent Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, USA.
- 4. Wolfram MathWorld (0,1)-Matrix.
- 5. Gerard Sierksma, Elmer Sterken, The structure matrix of (0,1)-matrices.
- 6. Hall's marriadge theorem Wikipedia.
- 7. NP-completeness of 01-permanent Wikipedia.
- 8. Hadamard matrix Wikipedia.
- 9. Hong-Yeop Song, Examples and Constructions of Hadamard Matrices Yonsei University.
- 10. А. Ю. Эвнин Перманент матрицы и его вычисление
- 11. Marvin Marcus, Henryk Minc, On the relation between the determinant and the permanent The University of British Columbia Vancouver, Canada The National Burea of Standards Washington, D.C. The University of Florida Gainesville, Florida.
- 12. Edward Tzu-Hsia Wang, On permanents of (1, -1)-matrices Israel J. Math. 18 (1974), 353-361.
- 13. Laplace expansion Wikipedia
- 14. IAN M. WANLESS, Permanents of matrices of signed ones School of Engineering and Logistics, Charles Darwin University, Darwin NT 0909, Australia Communicated by Stephen Kirkland.
- 15. A proof of the Frobenius-König theorem.
- 16. R. B. Bapat, Recent developments and open problems in the theory of permanents Indian Statistical Institute New Delhi, 110016.
- 17. A note on the Van der Warden. Permanent conjecture JACQUES DUBOIS.

# Приложение

Для  $\Omega_1^+$  существует:

$$per(1)=1$$
, и в оценке $(1=2^1-1)$ :  $2^{1-\lfloor \log_2 1 \rfloor -1}=2^0$ .

Для  $\Omega_2^+$  существует:

$$per \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 2$$
, и в оценке:  $2^{2-\lfloor \log_2 2 \rfloor} = 2^1$ .

Для  $\Omega_3^+$  существует:

$$per egin{pmatrix} -1 & -1 & 1 \ -1 & 1 & -1 \ 1 & -1 & 1 \end{pmatrix} = 2$$
, и в оценке $(3=2^2-1)$ :  $2^{3-\lfloor \log_2 3 \rfloor -1} = 2^1$ .

Для  $\Omega_4^+$  существует:

Для  $\Omega_5^+$  существует:

Для  $\Omega_6^+$  существует:

Для  $\Omega_7^+$  существует:

Для  $\Omega_8^+$  существует:

Для  $\Omega_{\rm q}^+$  существует:

Для  $\Omega_{10}^+$  существует:

Для  $\Omega_{11}^{+}$  существует:

### Для $\Omega_{12}^{+}$ существует:

### Для $\Omega_{13}^+$ существует:

#### Для $\Omega_{14}^{+}$ существует:

### Для $\Omega_{15}^{+}$ существует:

И в оценке  $(15=2^4-1)$ :  $2^{15-\lfloor \log_2 15 \rfloor -1}=2^{11}$ 

### Для $\Omega_{16}^{+}$ существует:

И в оценке:  $2^{16-\lfloor \log_2 16 \rfloor} = 2^{12}$ 

### Для $\Omega_{17}^{+}$ существует:

И в оценке:  $2^{17-\lfloor \log_2 17 \rfloor} = 2^{13}$ 

## Для $\Omega_{18}^+$ существует:

И в оценке:  $2^{18-\lfloor \log_2 18 \rfloor} = 2^{14}$ 

### Для $\Omega_{19}^{+}$ существует:

И в оценке:  $2^{19-\lfloor \log_2 19 \rfloor} = 2^{15}$ 

#### Для $\Omega_{20}^{+}$ существует:



И в оценке:  $2^{20-\lfloor \log_2 20 \rfloor} = 2^{16}$ 

#### Для $\Omega_{21}^{+}$ существует:

```
-1
                                                     1
                                                         -1 -1
                                                                          1
                                                                               1
                          -1
                                           1
                                               -1
                                                                     1
                                                                                    -1
                                                               -1
                                                                                                              -1
                           1
                                1
                                     -1
                                                1
                                                     1
                                                         -1
                                                                    -1
                                                                              -1
                                                                                    -1
                      1
                                           1
                                                                         -1
                          -1
                                     -1
                                           1
                                                1
                                                     1
                                                          1
                                                               1
                                                                    -1
                                                                               1
                                                                                    1
                                                                                          1
                                                                                               1
                                                                                                    1
                     -1
                                -1
                                                                         -1
                                                                                    -1
                                     1
                                           1
                                                1
                                                          1
                                                               -1
                                                                                               1
                                                                                                              -1
                -1
                      1
                                                    -1
                                                                     1
                                                                              -1
                                                                                         -1
                                     -1
                                          -1
                                                1
                                                    -1
                                                          1
                                                               1
                                                                     1
                                                                                    1
                                                                                          1
                                                                                                              1
                                                                              -1
      1
            1
                      1
                          -1
                                1
                                     1
                                          -1
                                                1
                                                    -1
                                                          1
                                                               -1
                                                                    -1
                                                                          1
                                                                                    1
                                                                                               1
                                                                                          1
                                                                                                              1
                                                1
                                                     1
                                                          1
                                                               -1
                                                                                                         1
           -1
                      1
                          -1
                                1
                                     -1
                                           1
                                                                    -1
                                                                         -1
                                                                              -1
                                                                                    -1
                                                                                          1
                                                                                               1
                                                                                                    1
                                                                                                              1
                                      1
                                          -1
                                                1
                                                    -1
                                                          1
                                                               -1
                                                                     1
                                                                              -1
                                                                                    -1
                                                                                                         1
                                                                                                              1
      1
                                -1
                                                                         -1
                                                                         -1
                                                                              -1
      -1
                           1
                                1
                                     1
                                           1
                                                    -1
                                                               1
                                                                     1
                                                                                    -1
                                                                                               1
                                                                                                    1
                                                                                                        -1
                                                                                                              -1
                 1
                      1
                                               -1
                                                         -1
                                                                                         1
      1
                 1
                          -1
                               -1
                                     1
                                          -1
                                               -1
                                                    -1
                                                         -1
                                                               -1
                                                                    -1
                                                                          1
                                                                               -1
                                                                                    1
                                                                                          1
                                                                                               1
                                                                                                    1
                                                                                                        -1
                                                                                                              1
                      1
                           1
                                1
                                     1
                                          1
                                               -1
                                                    -1
                                                          1
                                                               -1
                                                                    -1
                                                                          1
                                                                               1
                                                                                    1
                                                                                         -1
                                                                                                    1
                                                                                                         1
                                                                                                              1
per
                           1
                                                                               1
                                                                                    1
                                          -1
                                                                                                             -1
                                     -1
                                                               -1
                      1
                           1
                                          1
                                                                     1
                                                                         -1
                                                                               1
                                                                                         1
                                                                                                    1
                                                                                                         1
                                                                                                              -1
                -1
                                -1
                                                1
                                                    -1
                                                         -1
                                                                                    -1
                                                                                              -1
                                1
                                                     1
                                                          1
                                                               -1
                                                                                    -1
                                                                                                              1
                     -1
                          -1
                                     -1
                                          -1
                                               -1
                                                                    -1
                                                                         -1
                                                                               1
                                                                                                   -1
                                                                                                         1
                                                                              -1
                                               -1
                                                               1
                                                                                               1
      1
           -1
                     -1
                          -1
                                -1
                                     -1
                                          -1
                                                    -1
                                                          1
                                                                     1
                                                                          1
                                                                                   -1
                                                                                          1
                                                                                                   -1
                                                                                                         1
                                                                                                              -1
                           1
                                1
                                                     1
                                                          1
                                                               1
                                                                                         1
                                                                                               1
                     -1
                                               -1
                                                                         -1
                                     1
                                                     1
                                                               -1
                                                                    1
                                                                         -1
                                                                               1
                                                                                    1
                                                                                               1
                                                                                                             -1
                     -1
                           1
                                1
                                          -1
                                                1
                                                         -1
                                                                                         -1
                                                                                                         1
                      1
                                1
                                     1
                                          -1
                                                1
                                                     1
                                                         -1
                                                               1
                                                                    -1
                                                                          1
                                                                               1
                                                                                    1
                                                                                         1
                                                                                                    1
                                                                                                         1
                                                                                                              -1
                                1
                                                1
                                                     1
                      1
                                     1
                                          1
                                                          1
                                                               -1
                                                                    1
                                                                         -1
                                                                              -1
                                                                                   -1
                                                                                         1
                                                                                               1
                                                                                                         1
                                                                                                              1
                                     1
                                           1
                                               -1
                                                    -1
                                                          1
                                                               -1
                                                                     1
                                                                          1
                                                                               1
                                                                                    -1
                                                                                          1
                                                                                               1
                                                               -1
                                                                   -1
                                1
                                                     1
                                                                                   -1
                                                                                              -1
                                                                                                              1
                                      1
                                               -1
                                                          1
                                                                          1
                                                                              -1
                                                                                        -1
```

=-9043968 /  $2^{18}$ . И в оценке:  $2^{21-\lfloor \log_2 21 \rfloor}=2^{17}$ 

### Для $\Omega_{22}^+$ существует:

=-47972352  $\not/$   $2^{19}$ . И в оценке:  $2^{22-\lfloor \log_2 22 \rfloor}=2^{18}$ 

#### Для $\Omega_{23}^{+}$ существует:

```
-1
                -1
                      -1
                            1
                                  1
                                             1
                                                  1
                                                        1
                                                             1
                                                                   1
                                                                        1
                                                                              1
                                                                                   1
                                                                                         1
                                                                                              1
                                                                                                    1
                                                                                                         -1
                                                                                                               1
                                                                                                                    -1
                                                                                                                               1
                                                                                                         -1
                                                                                                                    -1
      -1
            1
                 -1
                       1
                            1
                                 -1
                                             1
                                                  -1
                                                       -1
                                                             -1
                                                                   1
                                                                        -1
                                                                              1
                                                                                   -1
                                                                                        -1
                                                                                              1
                                                                                                   -1
                                                                                                               1
                                                                                                                         -1
                                                                                                                               -1
      -1
                      -1
                                  1
                                        1
                                             1
                                                  -1
                                                       -1
                                                             1
                                                                  -1
                                                                        -1
                                                                             -1
                                                                                        -1
                                                                                              -1
                                                                                                    1
                                                                                                         -1
                                                                                                                     1
                                                                                                                         -1
                                                                                                                               -1
            1
      -1
                      -1
                                       -1
                                                  -1
                                                       -1
                                                              1
                                                                  -1
                                                                        1
                                                                             -1
                                                                                   1
                                                                                        -1
                                                                                                   -1
                                                                                                         -1
                                                                                                               1
                                                                                                                    -1
                                                                                                                         -1
                                                                                                                               -1
                                                                                                                    -1
      1
                      -1
                            1
                                 -1
                                       -1
                                                  1
                                                        1
                                                                        -1
                                                                                   1
                                                                                         1
                                                                                              1
                                                                                                    1
                                                                                                         1
                                                                                                                    -1
           1
                      -1
                                       1
                                                                   1
                                                                        1
                                                                             -1
                                                                                                   -1
                                                                                                                               -1
      -1
                 1
                            -1
                                 -1
                                             1
                                                  -1
                                                       -1
                                                             1
                                                                                   1
                                                                                         1
                                                                                              -1
                                                                                                         -1
                                                                                                                    -1
                                                                                                         -1
      1
            1
                 1
                      -1
                            -1
                                 -1
                                       1
                                             1
                                                  1
                                                        1
                                                             1
                                                                   1
                                                                        1
                                                                              1
                                                                                   -1
                                                                                         1
                                                                                              1
                                                                                                   -1
                                                                                                                    -1
                                                                                                                          1
                                                                                                                               -1
      1
           -1
                 -1
                      -1
                                  1
                                       -1
                                             1
                                                  -1
                                                       -1
                                                             -1
                                                                  -1
                                                                        -1
                                                                             -1
                                                                                   1
                                                                                         1
                                                                                              1
                                                                                                    1
                                                                                                         1
                                                                                                                     1
                                                                                                                          1
                                                                                                                               1
      1
           -1
                 -1
                      -1
                            1
                                  1
                                       -1
                                             1
                                                  -1
                                                       -1
                                                             1
                                                                  -1
                                                                        -1
                                                                                   -1
                                                                                         1
                                                                                              1
                                                                                                    1
                                                                                                         -1
                                                                                                               1
                                                                                                                    -1
                                                                                                                          1
                       1
                                       1
                                             1
                                                  -1
                                                        1
                                                                                   1
                                                                                         1
                                                                                              1
                                                                                                    1
                                                                                                         1
per
                 -1
                      -1
                                       1
                                                       -1
                                                                        1
                                                                                   -1
                                                                                        -1
                                                                                                         1
                                                                                                                          1
      1
                -1
                       1
                            1
                                 -1
                                       1
                                             1
                                                  -1
                                                       -1
                                                             1
                                                                   1
                                                                        -1
                                                                              1
                                                                                   -1
                                                                                         1
                                                                                                   -1
                                                                                                         -1
                                                                                                               1
                                                                                                                     1
      1
                 -1
                      -1
                                 -1
                                       -1
                                             1
                                                  -1
                                                       -1
                                                                   1
                                                                        1
                                                                             -1
                                                                                   1
                                                                                         1
                                                                                              -1
                                                                                                    1
                                                                                                         -1
                                                                                                                     1
                                                                                                                          1
                                                                                                                               1
                                                       -1
                                                                       -1
                                                                                                         1
      1
                -1
                       1
                                  1
                                       1
                                            -1
                                                  1
                                                                  -1
                                                                              1
                                                                                   1
                                                                                        -1
                                                                                              1
                                                                                                    1
                                                                                                                    -1
                                                                                                                          1
                                                                                                                               -1
                                                                  -1
                                                                                                    1
                                                                                                                               1
                -1
                      -1
                                       1
                                             1
                                                  1
                                                        1
                                                                        1
                                                                              1
                                                                                   -1
                                                                                         1
                                                                                                         -1
                                                                                                                    -1
                                                                                                                          1
                       1
                                  1
                                       -1
                                                  1
                                                                  -1
                                                                        -1
                                                                                   1
                                                                                         1
                                                                                                   -1
                                                                                                         -1
                                       -1
                                                                  -1
                                                                        -1
                                                                                   1
                                                                                         1
                                                                                                                               1
                -1
                      -1
                                  1
                                       -1
                                                  1
                                                       -1
                                                             1
                                                                   1
                                                                        -1
                                                                             -1
                                                                                   1
                                                                                        -1
                                                                                                                         -1
      1
                 -1
                       1
                            1
                                 -1
                                       -1
                                            -1
                                                  1
                                                        1
                                                             -1
                                                                  -1
                                                                        1
                                                                             -1
                                                                                   -1
                                                                                        -1
                                                                                              -1
                                                                                                   -1
                                                                                                         1
                                                                                                                     1
                                                                                                                          1
                                                                                                                               -1
                 1
                                 -1
                                       -1
                                            -1
                                                             1
                                                                   1
                                                                              1
                                                                                   -1
                                                                                              -1
                                                                                                    1
                                                                                                                               -1
      -1
           -1
                      -1
                            -1
                                                  1
                                                       -1
                                                                        1
                                                                                        -1
                                                                                                         1
                                                                                                               1
                                                                                                                     1
                                                                                                                         -1
                                                                                              -1
                                                                                                                               -1
      1
           -1
                      -1
                            -1
                                 -1
                                      -1
                                             1
                                                        1
                                                             1
                                                                                   1
                                                                                         1
                                                                                                                         -1
                 -1
                                                  1
                                                                   1
                                                                        -1
                                                                              1
                                                                                                   -1
                                                                                                               1
                                                                                                                    -1
                                                                                                         -1
                                                                        -1
                                                                                              1
                                                                                                    1
                                                                                                         1
                                                                                                                               1
                 -1
                      -1
                            1
                                 -1
                                       -1
                                                       -1
                                                             -1
                                                                   1
                                                                              1
                                                                                   -1
                                                                                         1
                                                                                                                    -1
                                                                                                                         -1
```

 $=39447953408 \ / \ 2^{20}.$  И в оценке:  $2^{23-\lfloor \log_2 23 \rfloor}=2^{19}$ 

### Для $\Omega_{24}^{+}$ существует:

```
-1
                                                    1
                                                                    1
                                              1
                                                    1
                                                        -1
                                                                                     1
                                                                                                                                       1
                                                                                                           1
                                        1
                                                               1
                                                                    1
                                                                          1
                                                                               1
                                                                                    -1
                                                                                                                 1
                                                                                                                                  1
                                                                                                                                       -1
                                                                                                           -1
                                       -1
                                                         1
                                                                                          1
                                                                                                                                       -1
            1
                       1
                            -1
                                  -1
                                              1
                                                   1
                                                              -1
                                                                    1
                                                                         -1
                                                                               -1
                                                                                    -1
                                                                                               -1
                                                                                                      1
                                                                                                                 1
                                                                                                                       1
                                                                                                                            1
                                                                                                                                 -1
                                                                         -1
                             1
                                   1
                                        1
                                                              -1
                                                                              -1
                                                                                               -1
                                                                                                           1
                                                                                                                                 -1
                                                                                                                                       -1
           -1
                  1
                       -1
                                             -1
                                                    1
                                                        -1
                                                                   -1
                                                                                     1
                                                                                          -1
                                                                                                     -1
                                                                                                                -1
                                                                                                                      -1
                                                                                                                            1
      -1
                       -1
            1
                                             -1
                                                         1
                                                               1
                                                                    1
                                                                          1
                                                                               -1
                                                                                          1
                                                                                                1
                                                                                                      1
                                                                                                           1
                                                                                                                -1
                                                                                                                                  1
                                                                                                                                       1
                  1
                             1
                                  -1
                                       -1
                                                   -1
                                                                                     1
                                                                                                                      -1
                                                                                                                            1
                                       -1
                                              1
           -1
                             1
                                  -1
                                                   -1
                                                        -1
                                                               1
                                                                   -1
                                                                          1
                                                                               -1
                                                                                    -1
                                                                                          1
                                                                                                1
                                                                                                     -1
                                                                                                           -1
                                                                                                                -1
                                                                                                                       1
                                                                                                                            1
                                                                                                                                 -1
                                                                                                                                       1
                 -1
      1
                             -1
                                        1
                                              1
                                                   -1
                                                        -1
                                                              -1
                                                                   -1
                                                                         -1
                                                                               1
                                                                                     1
                                                                                          -1
                                                                                                1
                                                                                                      1
                                                                                                                            1
                                                                                                                                       1
                                                         1
                                                                          1
                                                                                          1
                                                                                               -1
                                                                                                                                       1
      1
            1
                 -1
                       1
                             1
                                  -1
                                       -1
                                             -1
                                                   1
                                                                   -1
                                                                               -1
                                                                                     1
                                                                                                     -1
                                                                                                                 1
                                                                                                                       1
                                                                                                                                  1
                                                                          1
      -1
                       1
                            -1
                                   1
                                       -1
                                             -1
                                                    1
                                                         1
                                                               1
                                                                    1
                                                                               1
                                                                                    -1
                                                                                          -1
                                                                                                                -1
                                                                                                                                  1
                                                                                                                                       1
           -1
                 -1
                                                                                                      1
                                                                                                                      -1
                                                                          1
                                                                                                           1
                                                                                                                                       -1
      -1
            1
                       -1
                            -1
                                        1
                                             -1
                                                         1
                                                               1
                                                                    1
                                                                               -1
                                                                                    -1
                                                                                          1
                                                                                                1
                                                                                                      1
                                                                                                                -1
                                                                                                                                  1
                  1
                                   1
                                                   -1
                                                                                                                       1
      1
                                                         1
                                                               1
                                                                          1
                                                                                               -1
                                                                                                           1
                                                                                                                 1
                                                                                                                                  1
                                                                                                                                       -1
           -1
                  1
                       1
                            -1
                                   1
                                       -1
                                             -1
                                                   -1
                                                                    1
                                                                               1
                                                                                    -1
                                                                                          -1
                                                                                                      1
                                                                                                                       1
per
                                        1
                                                         1
                                                               1
                                                                         -1
                                                                                               -1
                                                                                                           1
                                                                                                                                  1
                                                                                                                                       -1
                            -1
                                   1
                                             -1
                                                   1
                                                                    1
                                                                                    -1
                                                                                                     -1
                                                                                                                      -1
                                                         1
                                                                    1
                                                                                     1
                                                                                          1
                                                                                               -1
                                                                                                                                       -1
                                                                                    -1
                                                                                                                                       1
                                        1
                                                   1
                                                                   -1
                                                                          1
                                                                               1
                                                                                    -1
                                                                                          1
                                                                                                      1
                                                                                                                       1
                                                                                                                                       -1
                                        1
                                              1
                                                   -1
                                                        -1
                                                                   -1
                                                                         -1
                                                                               -1
                                                                                    -1
                                                                                          -1
                                                                                               -1
                                                                                                     -1
                                                                                                                       1
                                                                                                                            1
                                                                                                                                 -1
                                                                                                                                       1
                 -1
                                   1
                                                                                                                -1
                                                                         -1
      1
            1
                 -1
                       1
                             -1
                                   1
                                       -1
                                              1
                                                   -1
                                                         1
                                                               1
                                                                    1
                                                                              -1
                                                                                     1
                                                                                          1
                                                                                               -1
                                                                                                     -1
                                                                                                                -1
                                                                                                                      -1
                                                                                                                            1
                                                                                                                                 -1
                                                                                                                                       1
                                       -1
                             1
                                                   -1
                                                                          1
                                                                               -1
                                                                                                     -1
                                                                                                                 1
                                                                                                                       1
                                                                                                                                       1
      -1
           -1
                 1
                                   1
                                             -1
                                                        -1
                                                               1
                                                                    1
                                                                                     1
                                                                                          -1
                                                                                               -1
                                                                                                                            -1
                                                                                                                                  1
                                       -1
                                                        -1
      1
                                                   1
                                                                               1
                                                                                          1
                                                                                                                            -1
           -1
                  1
                       1
                            -1
                                  -1
                                             -1
                                                              -1
                                                                    1
                                                                         -1
                                                                                    -1
                                                                                               -1
                                                                                                     -1
                                                                                                           1
                                                                                                                 1
                                                                                                                       1
                                                                                                                                 -1
                                                                                                                                       -1
      -1
                 -1
                                  -1
                                              1
                                                   1
                                                        -1
                                                               1
                                                                    1
                                                                         -1
                                                                               -1
                                                                                    -1
                                                                                          1
                                                                                                1
                                                                                                     -1
                                                                                                           1
                                                                                                                 1
                                                                                                                      -1
                                                                                                                                       1
            1
                                        1
                                                                          1
                                                                               1
                                                                                     1
                                                                                                      1
      -1
                  1
                       1
                             1
                                   1
                                              1
                                                   -1
                                                              -1
                                                                    1
                                                                                                1
                                                                                                                -1
                                                                                                                      -1
                                                                                                                                  1
                                                                                                                                       -1
                  1
                                              1
                                                   1
                                                         1
                                                               1
                                                                    1
                                                                          1
                                                                               -1
                                                                                               -1
                                                                                                           1
                                                                                                                -1
                                                                                                                       1
                                                                                                                            1
                                                                                                                                  1
                                                                                                                                       1
      -1
           -1
                            -1
                                        -1
                                                                                    -1
                                                                                          -1
                                                                                                     -1
                                                         1
                                                              -1
                                                                   -1
                                                                        -1
                                                                              -1
```

=257715863552  $\not | 2^{21}$ . И в оценке:  $2^{24-\lfloor \log_2 24 \rfloor}=2^{20}$ 

#### Для $\Omega_{25}^{+}$ существует:

```
1
                                                         1
                                                                                                                                 -1
                               1
                                    -1
                                         -1
                                               1
                                                              -1
                                                                                              1
                                                                                                  -1
     -1
          -1
                1
                     -1
                          1
                               -1
                                    1
                                          -1
                                               -1
                                                    -1
                                                         -1
                                                              1
                                                                   -1
                                                                         1
                                                                              -1
                                                                                   -1
                                                                                              1
                                                                                                   1
                                                                                                             1
                                                                                                                  -1
                                                                                                                       1
                                                                                                                             1
                                                                                                                                  1
                                                                                                                                  -1
     1
                1
                          1
                                    -1
                                          1
                                               1
                                                              -1
                                                                    1
                                                                         1
                                                                                        1
                                                                                             -1
                                                                                                  -1
                                                                                                             1
                                                                                                                       1
                                                                                                                                 -1
                                                                                                        -1
                                    1
                                                         1
                                                                                             1
     1
          -1
                1
                          -1
                               1
                                     1
                                          -1
                                               1
                                                    1
                                                         -1
                                                              -1
                                                                   -1
                                                                              1
                                                                                   1
                                                                                        1
                                                                                             -1
                                                                                                   1
                                                                                                        -1
                                                                                                             -1
                                                                                                                  -1
                                                                                                                             1
                                                                                                                                  1
     1
               -1
                          1
                                          1
                                               -1
                                                    -1
                                                         1
                                                                                   1
                                                                                        1
                                                                                                                  1
                                                                                                                             1
                                                                                                                                  1
                     1
                                    -1
                                                              -1
                                                                              -1
                                                                                             -1
                                                                                                  -1
     1
           1
                          1
                                          -1
                                                              -1
                                                                    1
                                                                              -1
                                                                                   1
                                                                                             -1
                                                                                                                                 -1
               -1
                                         -1
                                              -1
                                                                                        -1
                                                                                                                                 -1
                          -1
                               1
                                                              1
                                                                   -1
                                                                              -1
                                                                                             -1
                                                                                                             1
                                                                                                                  1
          -1
                                     1
                                                                                   -1
                                                                                                  -1
                                                                                                        1
                                                                                                                                  1
                                    -1
                                                              1
                                                                                                   1
                                                                                                             1
     1
          -1
               1
                     -1
                          -1
                                         -1
                                              -1
                                                    1
                                                         -1
                                                                   -1
                                                                        -1
                                                                              -1
                                                                                  -1
                                                                                        -1
                                                                                             -1
                                                                                                        -1
                                                                                                                        1
                                                                                                                                 -1
     1
                -1
                     -1
                          1
                                               1
                                                         1
                                                              -1
                                                                         1
                                                                                   -1
                                                                                        1
                                                                                              1
                                                                                                   -1
                                                                                                                       1
                                                                                                                                 -1
per
                                                              -1
                                                                                   -1
                                                                                                                                 -1
                                                                                                                            -1
      1
           1
                1
                     -1
                          1
                               -1
                                    1
                                          1
                                               1
                                                    1
                                                                    1
                                                                         -1
                                                                              1
                                                                                        -1
                                                                                              1
                                                                                                   1
                                                                                                                  1
                                                                                                                       -1
                                                              -1
                                                                                                                                 -1
          -1
               -1
                                1
                                          -1
                                                                                   -1
                                                                                        1
                                                                                                                       1
                                                                                                                            -1
      1
                     1
                          1
                                               -1
                                                    -1
                                                         1
                                                                    1
                                                                         1
                                                                              1
                                                                                             -1
                                                                                                   1
                                                                                                             1
                                                                                                                  1
                                          1
                                               1
                                                                                   1
                                                                                                                                 -1
                                                              -1
     -1
           1
                1
                     -1
                          1
                                1
                                    1
                                          1
                                               -1
                                                    -1
                                                         1
                                                                   1
                                                                        -1
                                                                              1
                                                                                   -1
                                                                                        -1
                                                                                             1
                                                                                                   1
                                                                                                        -1
                                                                                                             1
                                                                                                                  1
                                                                                                                       1
                                                                                                                             1
                                                                                                                                  1
                                                         1
                                                                    1
                                                                                                                  1
                                         -1
                                                                                              1
                                                                                                  -1
                                                                                                                                  -1
                                                                                                  -1
     -1
          -1
                               1
                                     1
                                         -1
                                               1
                                                              1
                                                                    -1
                                                                                   -1
                                                                                        1
                                                                                             -1
                                                                                                        1
                                                                                                                  1
                                                                                                                        1
                                                                                                                             1
                                                                                                                                  1
     -1
                          -1
                                         -1
                                                         1
                                                                   1
                                                                                             -1
           1
               -1
                               -1
                                               1
                                                    1
                                                              -1
                                                                              1
                                                                                   1
                                                                                        -1
                                                                                                   1
                                                                                                        1
                                                                                                                       1
                                                                                                                            -1
                                                                                                                                  1
     -1
          -1
                          1
                                    -1
                                         -1
                                               1
                                                         -1
                                                              1
                                                                   -1
                                                                              1
                                                                                   1
                                                                                        1
                                                                                             -1
                                                                                                  -1
                                                                                                                                 -1
                                    -1
                                                                                                                                 -1
     1
           1
                     1
                          -1
                               -1
                                          1
                                               -1
                                                    1
                                                         1
                                                              -1
                                                                   -1
                                                                         1
                                                                              1
                                                                                   -1
                                                                                        1
                                                                                             1
                                                                                                   1
                                                                                                        -1
                                                                                                             1
                                                                                                                  1
                                                                                                                       1
                                                                                                                            -1
     -1
           1
                1
                          1
                                1
                                    -1
                                          -1
                                               1
                                                    1
                                                         1
                                                              1
                                                                    1
                                                                         -1
                                                                              1
                                                                                   -1
                                                                                        1
                                                                                              1
                                                                                                   1
                                                                                                        1
                                                                                                             -1
                                                                                                                  1
                                                                                                                        1
                                                                                                                            -1
                                                                                                                                  -1
     -1
          -1
                     1
                          -1
                               1
                                     1
                                          1
                                               1
                                                    1
                                                         1
                                                              -1
                                                                   -1
                                                                        -1
                                                                              -1
                                                                                  -1
                                                                                        1
                                                                                              1
                                                                                                   1
                                                                                                        -1
                                                                                                            -1
                                                                                                                       -1
                                                                                                                            -1
                                                                                                                                  1
                         -1
                                                    -1
                                                                   -1
                                                                        -1
                                                                             -1
                               -1
```

=-931456352256  $\not| 2^{22}$ . И в оценке:  $2^{25-\lfloor \log_2 25 \rfloor}=2^{21}$ 

## Для $\Omega_{26}^+$ существует:



=11890470158336  $\cancel{/}\ 2^{23}$ . И в оценке:  $2^{26-\lfloor \log_2 26 \rfloor}=2^{22}$ 

#### Для $\Omega_{27}^{+}$ существует:

=-38138328121344  $\dot{/}$   $2^{24}$ . И в оценке:  $2^{27-\lfloor \log_2 27 \rfloor}=2^{23}$ 

# Для $\Omega_{28}^+$ существует:

=-419531717607424  $\not | 2^{25}$ . И в оценке:  $2^{28-\lfloor \log_2 28 \rfloor}=2^{24}$ 

# Для $\Omega_{29}^+$ существует:



=-2960700976660480  $\dot{/}$   $2^{26}$ . И в оценке:  $2^{29-\lfloor \log_2 29 \rfloor}=2^{25}$ 

## Для $\Omega_{30}^+$ существует:

 $=-14413597853614080\ /\ 2^{27}.$  И в оценке:  $2^{30-\lfloor \log_2 30 \rfloor}=2^{26}$ 

# Для $\Omega_{31}^+$ существует:



С  $per = 77368377001115648 \not : 2^{27}$ . И в оценке  $(31 = 2^5 - 1) : 2^{31 - \lfloor \log_2 31 \rfloor - 1} = 2^{26}$ 

# Для $\Omega_{32}^+$ существует:

С  $per = 1764926150645121024 \not : 2^{28}$ . И в оценке:  $2^{32 - \lfloor \log_2 32 \rfloor} = 2^{27}$ 

Для  $\Omega_{11}^{+}$  существует (1,-1) матрица с per = 0:

Для  $\Omega_{19}^+$  существует (1,-1) матрица с per=0:

P.S. Вычисления на компьютере проводились непосредственно перебором: генерировалась случайная симметрическая (1, -1) матрица нужного размера, по формуле Райзера[10, p.48] вычислялся её перманент, и, наконец, если он равнялся искомой величине, матрица записывалась в файл, в противном случае генерировалась новая. Поиск примера симметрической матрицы  $11 \times 11$  с нулевым перманентом с помощью разложения Лапласа занял целых 15 минут, а с помощью формулы Райзера порядка сотой секунды!

Обратно к тексту

А вот, собственно, и код на языке C++, с помощью которого я вычислял значения перманента по формуле Райзера с оптимизацией, использующей коды Грея и битовые операции над числами.

```
int64 t per(vector<vector<int64 t>>& A) {
  int64 t answer = 0;
  uint32 t n = A.size();
  uint32 t prev mask = 0;
  uint32 t mask;
  uint32 t distinguish column;
  uint32 t prev number of columns = 0;
  uint32 t number of columns;
  vector<int64 t> sum in row(n, 0);
  for (uint64 t i = 1; i < (1 << n); ++i) {
      mask = (i xor (i >> 1)); // Grey's code
      distinguish column = builtin ctz(mask xor prev mask); // count number of trailing zeroes
      number_of_columns = __builtin_popcount(mask); // count number of set bits
     if (number of columns > prev number of columns) {
      // if distinguish column is contained in mask(therefore, it is absent in prev mask)
        for (uint32 t row = 0; row < n; ++row) {
           sum in row[row] += A[row][distinguish column]; // add new element in sum in row
      } else { // else, distinguish column is absent in mask(therefore, it is contained in prev mask)
        for (uint32 t row = 0; row < n; ++row) {
           sum in row[row] -= A[row][distinguish column]; // subtract element from the sum in row
        }
      }
      prev number of columns = number of columns;
      int64 t S = 1;
      for (auto row : sum_in_row) {
        S *= row;
      answer += ( builtin ctz(n - number of columns) ? S : -S);
      prev mask = mask;
  return answer;
}
```