

Cinemática inversa de robots manipuladores

- 1. Introducción.
- 2. Solución algebraica.
- 3. Solución geométrica.
- 4. Solución de Pieper.
- 5. Conclusiones.

2

<u>Introducción</u>

- Cinemática inversa
 - Determinar la posición de las articulaciones del robot si lo que se conoce es la localización del extremo

Introducción

- Valores de las variables articulares para que el extremo se encuentre en una localización dada.
 - Sin solución: soluciones fuera del espacio de trabajo o fuera de rango.
 - Múltiples soluciones: codo arriba-abajo, muñeca arriba-abajo.

5

Introducción

- Valores de las variables articulares para que el extremo se encuentre en una localización dada.
 - Sistemas de ecuaciones en la resolución cinemática.

Introducción

Formas de resolución de la cinemática inversa

- Solución algebraica
 - Consiste en obtener un sistema de *n* ecuaciones en función de la localización del extremo del robot.
 - Se puede obtener partiendo de la solución de la cinemática directa mediante el algoritmo de Denavit-Hartenberg, despejando de la matriz de transformación final las variables articulares.
- Solución geométrica
 - Consiste en descomponer la cadena cinemática del robot en varios planos geométricos, resolviendo por trigonometría el problema asociado a cada plano.
- Solución de Pieper (desacoplo cinemático)
 - Consiste en separar las articulaciones de la muñeca del resto, resolviendo ambos conjuntos por separado.

7

Introducción

Formas de resolución de la cinemática inversa:

- Solución algebraica
 - Solución empleada para resolver cualquier tipo de robot. Para robots de un alto número de GDL (n<=6), las ecuaciones resultantes se resuelven mediante métodos matemáticos numéricos.
- Solución geométrica
 - Robots de pocos grados de libertad (*n*<=4) y para robots antropomórficos de 6 GDL con muñeca esférica y composición tipo planar para los 3 primeros GDL.
- Solución de Pieper (desacoplo cinemático)
 - Para robots antropomórficos de n = 6 GDL con muñeca esférica.

SOLUCIÓN ALGEBRAICA

Solución algebraica

• <u>Ejemplo</u>: robot de 3 GDL, una articulación prismática y dos rotacionales.

9

- Algoritmo de Denavit-Hartenberg
 - 1. Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con n (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.

11

Solución algebraica

- Algoritmo de Denavit-Hartenberg
 - **2**. Numerar cada articulación comenzando por 1 (la correspondiente al primer grado de libertad) y acabando en **n**.

- Algoritmo de Denavit-Hartenberg
 - 3. Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de giro. Si es prismática será el eje a lo largo del cual se produce el desplazamiento.

13

Solución algebraica

- Algoritmo de Denavit-Hartenberg
 - 4. Para el eje i, de 0 a n-1, situar el eje zi sobre el eje de la articulación i+1.

- Algoritmo de Denavit-Hartenberg
 - 5. Situar el origen del sistema de la base S_0 en cualquier punto del eje z_0 . Los ejes x_0 e y_0 se situarán de modo que formen un sistema dextrógiro con z_0 .

15

Solución algebraica

- Algoritmo de Denavit-Hartenberg
 - 6. Para i de 1 a n-1, situar el origen del sistema Si en la intersección del eje z_i con la línea normal común a z_{i-1} y z_i. Si ambos ejes se cortasen se situaría Si en el punto de corte. Si fuesen paralelos situaría Si se situaría en la articulación i+1.

- Algoritmo de Denavit-Hartenberg
 - **7.** Situar $\mathbf{x_i}$ en la línea normal común a $\mathbf{z_{i-1}}$ y $\mathbf{z_{i}}$.

17

Solución algebraica

- Algoritmo de Denavit-Hartenberg
 - 8. Situar y_i de modo que forme un sistema dextrógiro con x_i y z_i .

Algoritmo de Denavit-Hartenberg

19

Solución algebraica

Algoritmo de Denavit-Hartenberg

1. Reglas para la definición de los sistemas de referencia \Rightarrow 1-9 reglas. 2. Reglas para calcular los parámetros DH (θ_i d_i a_i α_i) \Rightarrow 10-13 reglas. 3. Reglas para calcular las matriz de transformación base T_{extremo} . 14-15 reglas.

- Algoritmo de Denavit-Hartenberg:
 - 10. $heta_i$: ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
 - 11. d_i : distancia medida sobre \mathbf{z}_{i-1} que habría que desplazar \mathbf{S}_{i-1} para alinear \mathbf{x}_{i-1} y \mathbf{x}_i
 - **12**. a_i : distancia medida sobre $\mathbf{x_i}$ (que ahora coincidiría con $\mathbf{x_{i-1}}$) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
 - **13**. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo $\mathbf{Si-1}$ coincidiese totalmente con \mathbf{Si} .

	$ heta_{\!\scriptscriptstylei}$	d _i	a _i	$lpha_{i}$
1	90°	q_1	l ₁	0

21

Solución algebraica

- Algoritmo de Denavit-Hartenberg:
 - 10. $heta_i$: ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
 - 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar Si-1 para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
 - **12**. a_i : distancia medida sobre \mathbf{x}_i (que ahora coincidiría con \mathbf{x}_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
 - **13**. α : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

	$ heta_{\!\scriptscriptstylei}$	d _i	a _i	$lpha_{i}$
1	90°	q_1	I ₁	0
2	q_2	0	l ₂	0

- Algoritmo de Denavit-Hartenberg:
 - **10**. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
 - 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
 - 12. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo Si-1 para que su origen coincidiese con Si.
 - 13. α_i : ángulo que habría que girar en torno a x_{i-1} (que ahora coincidiría con x_i) para que el nuevo Si-1 coincidiese totalmente con Si.

	$ heta_{\!\scriptscriptstylei}$	d _i	a _i	$lpha_{i}$
1	90°	q_1	I ₁	0
2	q_2	0	l ₂	0
3	q_3	0	l ₃	0

23

Solución algebraica

- Algoritmo de Denavit-Hartenberg:
 - Reglas para la definición de los sistemas de referencia → 1-9 reglas.
 Reglas para calcular los parámetros DH que relación.
 - 2. Reglas para calcular los parámetros DH que relaciona un sistema de referencia con otro $(\theta_i \ d_i \ a_i \ \alpha_i) \rightarrow 10$ -13 reglas.
 - 3. Reglas para calcular las matriz de transformación base T_{extremo}. 14-15 reglas.

L		$ heta_{\!\scriptscriptstyle I}$	d_{i}	a _i	$lpha_{\mathrm{i}}$	
	1	90°	q_1	l ₁	0	$\longrightarrow {}^{0}\mathbf{T}_{1}$
	2	q_2	0	l ₂	0	$\longrightarrow {}^{1}\mathbf{T}_{2}$
	3	q_3	0	l ₃	0	\longrightarrow ² \mathbf{T}_3

- Algoritmo de Denavit-Hartenberg:
 - **14**. Obtener las matrices ⁱ⁻¹T_i.
 - □ **15**. Obtener la matriz de transformación que relaciona el sistema de la base con el del extremo del robot $T={}^0T_1{}^1T_2...{}^{n-1}T_n$
 - 16. La matriz T define la posición y orientación del extremo del robot respecto a la base en función de las n coordenadas articulares.

$$\mathbf{T}_{i} = \begin{bmatrix} \cos \vartheta_{i} & -\cos \alpha_{i} \cdot \sin \vartheta_{i} & \sin \alpha_{i} \cdot \sin \vartheta_{i} & a_{i} \cdot \cos \vartheta_{i} \\ \sin \vartheta_{i} & \cos \alpha_{i} \cdot \cos \vartheta_{i} & -\sin \alpha_{i} \cdot \cos \vartheta_{i} & a_{i} \cdot \sin \vartheta_{i} \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

25

Solución algebraica

Algoritmo de Denavit-Hartenberg:

	$X_{x_{\text{extremo}}^0}$	$\mathcal{X}_{\mathbf{y}_{ ext{extremo}}^0}$	$\mathcal{X}_{\mathbf{z}_{ ext{extremo}}^0}$	x_{extremo}^0
		$\mathcal{Y}_{\mathbf{y}_{ ext{extremo}}^0}$	$y_{z_{ m extremo}^0}$	y_{extremo}^0
3	$z_{x_{\text{extremo}}^0}$		$Z_{z_{ m extremo}^0}$	$z_{ m extremo}^0$
	0	0	0	1

	$ heta_{\!\scriptscriptstylei}$	d _i	a _i	$lpha_{\!\scriptscriptstyle \mathrm{i}}$	
1	90°	q_1	l ₁	0	\longrightarrow ${}^{0}\mathbf{T}_{1}$
2	q_2	0	l ₂	0	\longrightarrow ${}^{1}\mathbf{T}_{2}$
3	q_3	0	l ₃	0	\longrightarrow ² \mathbf{T}_3

• Resolución matricial a partir de las matrices T obtenidas:

27

Solución algebraica

• Resolución matricial a partir de las matrices T obtenidas:

Resolución matricial a partir de las matrices T obtenidas:

29

Solución algebraica

- Resolución matricial a partir de las matrices T obtenidas:
 - Realizando el mismo procedimiento para aislar el parámetro q3.

- Resolución matricial a partir de las matrices T obtenidas:
 - Realizando el mismo procedimiento para aislar el parámetro q3.

$$(^{1}\mathbf{T}_{2})^{-1} \cdot (^{0}\mathbf{T}_{1})^{-1} \cdot {^{0}}\mathbf{T}_{3} = ^{2}\mathbf{T}_{3}$$

31

Solución algebraica

- Resolución matricial a partir de las matrices T obtenidas:
 - Realizando el mismo procedimiento para aislar el parámetro q3.

$$({}^{1}\mathbf{T}_{2})^{-1} \cdot ({}^{0}\mathbf{T}_{1})^{-1} \cdot {}^{0}\mathbf{T}_{3} = {}^{2}\mathbf{T}_{3}$$

- Resolución matricial a partir de las matrices T obtenidas:
 - Realizando el mismo procedimiento para aislar el parámetro q3.

33

Solución algebraica

- Resolución matricial a partir de las matrices T obtenidas:
 - Realizando el mismo procedimiento para aislar el parámetro q3.

$$\begin{split} -x_{\rm extremo}^0 & {\rm sen} q_2 + \left(y_{\rm extremo}^0 - l_1\right) {\rm cos} q_2 = l_3 {\rm cos} q_3 + l_2 \\ -x_{\rm extremo}^0 & {\rm cos} q_2 - \left(y_{\rm extremo}^0 - l_1\right) {\rm sen} q_2 = l_3 {\rm sen} q_3 \\ & \qquad \qquad \qquad \\ & \qquad$$

 $q_{3} = \arccos\left(\frac{x_{\text{extremo}}^{0}^{2} + (y_{\text{extremo}}^{0} - l_{1})^{2} - l_{2}^{2} - l_{3}^{2}}{2l_{2}l_{3}}\right)$ $q_{2} = \arccos\left(\frac{(l_{2} + l_{3}\cos q_{3})(y_{\text{extremo}}^{0} - l_{1})^{2} - x_{\text{extremo}}^{0}l_{3}\sin q_{3}}{x_{\text{extremo}}^{0}^{2} + (y_{\text{extremo}}^{0} - l_{1})^{2}}\right)$

Resolución matricial a partir de las matrices T obtenidas:

organisation de los parámetros articulares q1,q2,q3.

organisation de los parámetros articulares q1,q2,q3.

$$q_1 = z_{\text{extremo}}^0$$

$$q_1 = z_{\text{extremo}}^0$$

$$q_2 = \arccos\left(\frac{x_{\text{extremo}}^0 + (y_{\text{extremo}}^0 - l_1)^2 - l_2^2 - l_3^2}{2l_2l_3}\right)$$

$$q_3 = \arccos\left(\frac{x_{\text{extremo}}^0 + (y_{\text{extremo}}^0 - l_1)^2 - l_2^2 - l_3^2}{2l_2l_3}\right)$$

$$q_4 = \arccos\left(\frac{(l_2 + l_3 \cos q_3)(y_{\text{extremo}}^0 - l_1)^2 - x_{\text{extremo}}^0 l_3 \sin q_3}{2l_2l_3}\right)$$

$$q_5 = \arccos\left(\frac{(l_2 + l_3 \cos q_3)(y_{\text{extremo}}^0 - l_1)^2 - x_{\text{extremo}}^0 l_3 \sin q_3}{2l_2l_3}\right)$$

$$q_7 = \arccos\left(\frac{(l_2 + l_3 \cos q_3)(y_{\text{extremo}}^0 - l_1)^2 - x_{\text{extremo}}^0 l_3 \sin q_3}{2l_2l_3}\right)$$

$$q_8 = \arccos\left(\frac{(l_2 + l_3 \cos q_3)(y_{\text{extremo}}^0 - l_1)^2 - x_{\text{extremo}}^0 l_3 \sin q_3}{2l_2l_3}\right)$$

$$q_3 = \arccos\left(\frac{x_{\text{extremo}}^0 + (y_{\text{extremo}}^0 - l_1)^2 - l_2^2 - l_3^2}{2l_2l_3}\right)$$

$$q_{2} = \arccos\left(\frac{\left(l_{2} + l_{3}\cos q_{3}\right)\left(y_{\text{extremo}}^{0} - l_{1}\right)^{2} - x_{\text{extremo}}^{0}l_{3}\sin q_{3}}{x_{\text{extremo}}^{0}^{2} + \left(y_{\text{extremo}}^{0} - l_{1}\right)^{2}}\right)$$

	$ heta_{\!i}$	d _i	a _i	$lpha_{i}$
1	90°	q_1	l ₁	0
2	q_2	0	l ₂	0
3	q_3	0	l ₃	0

35

SOLUCIÓN GEOMÉTRICA

Solución geométrica

- Resolución del problema mediante geometría y trigonometría.
 - · Resolución q1

37

Solución geométrica

- Resolución del problema mediante geometría y trigonometría.
 - Resolución q2

- Resolución del problema mediante geometría y trigonometría.
 - Resolución q3

39

 Consiste en separar las articulaciones de la muñeca del resto, resolviendo ambos conjuntos por separado.

Muñeca esférica Los 3 GDL se cortan en un punto denominado punto muñeca

El movimiento de las articulaciones de la muñeca no altera la posición espacial del punto de corte

3 primeros GDL = posicionan el robot en el punto muñeca

41

Solución de Pieper

- Desacoplo cinemático.
 - La posición de la muñeca es: $p_5^0 = p_{\text{muñeca}}^0$
 - La posición del extremo es: $p_6^0 = p_{\text{extremo}}^0$

d_i: distancia, medida a lo largo de z_{i-1} que habría que desplazar S_{i-1} para que x_i y x_{i-1} queden alineados.

$$\boldsymbol{p}_5^0 = \boldsymbol{p}_6^0 - d_6 \cdot \boldsymbol{z}_6$$

- Resolución cinemática inversa con Pieper.
 - Obtenido el punto muñeca (p₅⁰): resolución mediante el método geométrico de q1,q2,q3.
 - Para el cálculo de las últimas tres se emplea la orientación:

43

Solución de Pieper

Ejemplo de resolución de un robot de 6 GDL.

Pasos a seguir

- 1. Resolver cinemática directa (DH).
- 2. Calcular el punto muñeca
- 3. Resolver cinemática inversa para obtener q1,q2,q3 con el punto muñeca.
- 4. Obtener ⁰Rot₃ que depende de q1,q2,q3 que son conocidos.
- 5. Calcular q4,q5,q6 a partir de las matrices de rotación.

- Ejemplo de resolución de un robot de 6 GDL.
 - 1. Resolver la cinemática directa

Tabla de parametros DF						
	$ heta_{\!\scriptscriptstyle i}$	d _i	a _i	$\alpha_{\rm i}$		
1	90°	q_1	l ₁	0		
2	q_2	0	l ₂	0		
3	 3 q₃+90° 4 q₄-90° 	0	0	90°		
4		l ₃	0	-90°		
5	q_5	0	0	90°		
6	q_6	l ₄	0	0		

45

Solución de Pieper

• Ejemplo de resolución de un robot de 6 GDL.

• 2. Calcular el punto muñeca.

3. Resolver mediante el método geométrico q1, q2, q3

- Ejemplo de resolución de un robot de 6 GDL.
 - 4. Obtener ⁰Rot₃ que depende de q1,q2,q3 que son conocidos.

$$\underbrace{{}^{0}\mathbf{Rot}_{\text{extremo}}}_{\text{conocida}} = \underbrace{{}^{0}\mathbf{Rot}_{3}}_{\text{conocida}} \cdot {}^{3}\mathbf{Rot}_{\text{extremo}}$$

$${}^{3}\mathbf{Rot}_{\text{extremo}} = {}^{3}\mathbf{Rot}_{6} = {}^{3}\mathbf{Rot}_{4} \cdot {}^{4}\mathbf{Rot}_{5} \cdot {}^{5}\mathbf{Rot}_{6}$$

$$\underbrace{{}^{\theta_{i}} \quad d_{i} \quad a_{i} \quad \alpha_{i}}_{4} \quad a_{i} \quad \alpha_{i}$$

$$\underbrace{{}^{4} \quad q_{4} \cdot 90^{\circ} \quad l_{3} \quad 0 \quad -90^{\circ}}_{5} \quad q_{5} \quad 0 \quad 0 \quad 90^{\circ}$$

$$\underbrace{{}^{5} \quad q_{5} \quad 0 \quad 0 \quad 90^{\circ}}_{6} \quad a_{6} \quad a_$$

 q_6

47

Solución de Pieper

$$\mathbf{T}_{i} = \begin{bmatrix} \cos\theta_{i} & -\cos\alpha_{i} \cdot \sin\theta_{i} & \sin\alpha_{i} \cdot \cos\theta_{i} & a_{i} \cdot \cos\theta_{i} \\ \sin\theta_{i} & \cos\alpha_{i} \cdot \cos\theta_{i} & -\sin\alpha_{i} \cdot \cos\theta_{i} & a_{i} \cdot \sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Ejemplo de resolución de un robot de 6 GDL.
 - 4. Obtener ⁰Rot₃ que depende de q₁,q₂,q₃ que son conocidos.

- Ejemplo de resolución de un robot de 6 GDL.
 - 5. Calcular q4,q5,q6 a partir de las matrices de rotación.

$${}^{3}\mathbf{Rot}_{\text{extremo}} = {}^{3}\mathbf{Rot}_{6} \implies {}^{3}\mathbf{Rot}_{6} = ({}^{0}\mathbf{Rot}_{3})^{-1} \cdot {}^{0}\mathbf{Rot}_{\text{extremo}}$$

$$\downarrow^{3}\mathbf{Rot}_{6} = {}^{0}\mathbf{Rot}_{3}^{T} \cdot \begin{bmatrix} \mathbf{X}_{x_{\text{extremo}}}^{0} & \mathbf{X}_{y_{\text{extremo}}}^{0} & \mathbf{X}_{z_{\text{extremo}}}^{0} \\ \mathbf{y}_{x_{\text{extremo}}}^{0} & \mathbf{y}_{y_{\text{extremo}}}^{0} & \mathbf{y}_{z_{\text{extremo}}}^{0} \end{bmatrix}$$

49

Solución de Pieper

 ${}^{3}\mathbf{Rot}_{6} = {}^{0}\mathbf{Rot}_{3}^{\mathrm{T}} \cdot \begin{bmatrix} \mathbf{x}_{\mathbf{x}_{\mathrm{extremo}}^{0}} & \mathbf{x}_{\mathbf{y}_{\mathrm{extremo}}^{0}} & \mathbf{x}_{\mathbf{z}_{\mathrm{extremo}}^{0}} \\ \mathbf{y}_{\mathbf{x}_{\mathrm{extremo}}^{0}} & \mathbf{y}_{\mathbf{y}_{\mathrm{extremo}}^{0}} & \mathbf{y}_{\mathbf{z}_{\mathrm{extremo}}^{0}} \\ \mathbf{z}_{\mathbf{x}_{\mathrm{extremo}}^{0}} & \mathbf{z}_{\mathbf{y}_{\mathrm{extremo}}^{0}} & \mathbf{z}_{\mathbf{z}_{\mathrm{extremo}}^{0}} \end{bmatrix}$

Ejemplo de resolución de un robot de 6 GDL.

• 5. Calcular q4,q5,q6 a partir de las matrices de rotación.

- Ejemplo de resolución de un robot de 6 GDL.
 - 5. Calcular q4,q5,q6 a partir de las matrices de rotación.

51

Solución de Pieper

- Ejemplo de resolución de un robot de 6 GDL.
 - 5. Calcular q4,q5,q6 a partir de las matrices de rotación.

- Ejemplo de resolución de un robot de 6 GDL.
 - 5. Calcular q4,q5,q6 a partir de las matrices de rotación.

53

Solución de Pieper

- Ejemplo de resolución de un robot de 6 GDL.
 - 5. Calcular q4,q5,q6 a partir de las matrices de rotación.

- Ejemplo de resolución de un robot de 6 GDL.
 - 5. Calcular q4,q5,q6 a partir de las matrices de rotación

$$q_{4} = \arccos\left(-\frac{z_{\pi_{\text{extremo}}^{0}}}{\operatorname{sen} q_{5}}\right)$$

$$q_{5} = \arccos\left(x_{\pi_{\text{extremo}}^{0}}(-\operatorname{sen} q_{2} \cos q_{3} + \cos q_{2} \operatorname{sen} q_{3}) + y_{\pi_{\text{extremo}}^{0}}(\cos q_{2} \cos q_{3} - \operatorname{sen} q_{2} \operatorname{sen} q_{3})\right)$$

$$q_{6} = \arccos\left(-\frac{x_{\pi_{\text{extremo}}^{0}}(-\operatorname{sen} q_{2} \cos q_{3} + \cos q_{2} \operatorname{sen} q_{3})}{\operatorname{sen} q_{5}} - y_{\pi_{\text{extremo}}^{0}}(\cos q_{2} \cos q_{3} - \operatorname{sen} q_{2} \operatorname{sen} q_{3})\right)$$

55

Conclusiones

- Cinemática inversa: configuración articular necesaria para alcanzar una localización y rotación dada.
 - Método geométrico.
 - Método algebraico.
 - Solución de Pieper.
- Bibliografía:
 - Robots y Sistemas Sensoriales. F. Torres, J. Pomares, P. Gil, S. Puente, R. Aracil. Prentice Hall. 2002.
 - Introduction to Robotics: Mechanics and Control. John Craig. Addison Wesley. 2004.
 - Fundamentos de Robótica. A. Barrientos, L. F. Peñín, C. Balaguer, R. Aracil. Mc Graw Hill. 2007.

57

