

H. Kasuga (Ed.)

Indoor Air Quality

With 155 Figures and 190 Tables

Springer-Verlag Berlin Heidelberg New York
London Paris Tokyo Hong Kong

INT ARCH OCCUP ENVIRON HEALTH SUPPL
O (O), 1990

PM3006448111

Prof. M. D., Ph. D. Hitoshi Kasuga
Department of Public Health, School of Medicine
Tokai University, Bohseidai, Isehara-shi
Kanagawa 259-11, Japan

ISBN 3-540-51580-1 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-51580-1 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data

Indoor air quality / H. Kasuga (ed.). Papers from the International Conference on Indoor Air Quality held Nov. 4-6, 1987 at the New Otani Hotel, in Tokyo, Japan, under the auspices of the Council for Environment and Health.

Includes bibliographical references. ISBN 0-387-51580-1 (U.S., alk. paper) 1. Smoking --

Environmental aspects -- Congresses. 2. Tobacco -- Environmental aspects -- Congresses.

3. Indoor air pollution -- Congresses. 4. Smoking -- Physiological effect -- Congresses.

Indoor Air Quality (1987 : Tokyo, Japan) III. Council for Environment and Health (Japan) TDB84.I53 1989 616.9'3 -- dc20

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990
Printed in Germany

The use of registered names, trademarks, etc. in the publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product Liability: The publisher can give no guarantee for information about drug dosage and application thereof contained in this book. In every individual case the respective user must check its accuracy by consulting other pharmaceutical literature.

Typesetting: Elsner & Behrens GmbH, Oftersheim
Printing and bookbinding: Weihert GmbH, Darmstadt

2119/3140-543210 - Printed on acid-free paper

PM3006448112

Preface

The International Conference on Indoor Air Quality, Tokyo, 1987 was held from November 4-6, 1987, at The New Otani Hotel in Tokyo, Japan, under the auspices of the Council for Environment and Health, whose president is Dr. Hitoshi Kasuga of Tokai University.

The 1980s have witnessed remarkable progress in numerous research programs on indoor air quality. It is noteworthy that the effects of environmental tobacco smoke (ETS) on nonsmokers and of nitrogen dioxide-induced indoor air pollution drew recognition as serious problems not only among epidemiologists, pathologists, and clinicians the world over, but from the general public as well.

There have been significant advances in the area of ETS alone. The separate findings of Takeshi Hirayama and Dimitrios Trichopoulos, released almost simultaneously in 1981, on the relationship between ETS and lung cancer drew immediate attention worldwide and triggered more than 10 follow-up studies. The controversy raised by this work still continues.

A number of international symposiums have been held on this topic, with those in Geneva (1983), Vienna (1984), and Essen (1986) commanding the greatest global attention. Yet, none have established a definite causal relationship between ETS and lung cancer.

A special report in 1986 by the U.S. Surgeon General, entitled "The Health Consequences of Involuntary Smoking", concluded that passive smoking is a cause of disease, including lung cancer, in healthy nonsmokers. This conclusion was reached through exhaustive study and despite many reservations, supporting the findings of Hirayama et al.

At about the same time, the Japanese Ministry of Public Health and Welfare published "Smoking and Health," its first such report, giving mild support to the view that smoking is harmful in stating:

Although there is currently no worldwide support for the view of there being a significant risk of lung cancer from passive smoking, fear and concern have been expressed over its danger in many countries.

At the annual meetings of the World Health Organization and at the World Conference on Smoking and Health, discussions were based on the assumption of an established link between ETS and lung cancer. These conferences thus provide solid ground for antismoking campaigns.

Dr. Ernest Wynder, a keynote lecturer at the Tokyo conference, touched on one of the grounds for debate on the causal relationship between smoking and lung cancer. He pointed out that since this association is weak,

WA
754
Lind5
19/10

VI Preface

the conclusions drawn at these conferences are being highly influenced by biases involved in the measured amounts of ETS exposure, questionnaire responses, and subsequent classification of nonsmokers. This perhaps makes evaluation of what Dr. Wynder calls "critical association" extremely difficult.

As one of the planners and organizers of this conference, I believed it possible to objectively and scientifically evaluate this critical association by establishing a clear focus on an issue which has tended to become hopelessly obscured. I thus sought to establish an international forum for researchers to discuss ETS and pool available scientific data on indoor air quality produced over the past several years.

A total of 100 researchers, including younger people in the forefront of research, and leading scholars in their respective fields (60 from abroad and 40 from Japan) were invited to participate in the conference.

The conference opened with keynote lectures by Dr. Ernest L. Wynder, Dr. Barbara S. Huika, Peter N. Lee, and Hitoshi Kasuga. These were followed by general presentations on ETS Measurement (Sessions 1 to 3), on the Biological Effects of ETS (Sessions 4 to 8), on the Epidemiology of Passive Smoking (Sessions 9 to 11), and on Indoor Air Pollution (Sessions 14 to 17).

Reports from the above presentations were summarized at three panel discussions: Epidemiology of Passive Smoking (Session 12), Reassessment of Passive Smoking as Lung Cancer Risk (Session 13), and ETS Measurement, Biological Effects of ETS, and Indoor Air Pollution (Session 18).

Session 13 proved to be a major highlight of the conference as exciting debate at this evening session extended into late hours.

Some 95% of all those invited attended the conference. Among those unable to come were Dr. Doll, who could not take the trip because of advanced age, and Mr. Garfinkel and Dr. Trichopoulos, who had other academic commitments and sent coresearchers on their behalf.

Special thanks go to Professor G. Lehnert, vice president of the conference, and Professor K. Maseda and Dr. Fukuma, who served as vice presidents and panelists.

I am also very much indebted to Messrs. Y. Yanagisawa and T. Namekata, from the United States, and Professors K. Maeda, K. Aoki, Y. Tsunetoshi, from Japan, who chaired the panel sessions.

Appreciation also is extended to Dr. Shimizu and Dr. Matsuki, who served as secretary general, for their efforts in organizing the conference.

In conclusion, heartfelt thanks go to all conference participants for their cooperation and excellent presentations. I wish them continued good health and success.

November 1989
Kanagawa, Japan

Hitoshi Kasuga

Contents

Opening Address (*H. Kasuga*) 1

Keynote Lectures

Environmental Tobacco Smoke and Lung Cancer:
A Critical Assessment (*E. L. Wynder and G. C. Kabat*) 5

Measuring Exposure and Assessing Health Effects of Environmental
Tobacco Smoke (*B. S. Hulka*) 16

Increased Risk of Lung Cancer in Non-smokers Married to Smokers:
A Result of ETS Exposure or of Bias? (*P. N. Lee*) 25

An Introduction to the Study of Smoking Using Urinary
Hydroxyproline (*H. Kasuga*) 37

Chapter 1: Environmental Tobacco Smoke Measurement

The Aging of Sidestream Tobacco Smoke Components in Ambient
Environments (*R. R. Rawbone, W. Burns, and G. Haslett*) 55

Indoor Air Quality:
The Contribution of Environmental Tobacco Smoke
(*R. Perry, J. N. Lester, M. Hunter, P. W. W. Kirk, and S.-O. Baek*) ... 62

Personal Exposure to Ambient Nicotine in Different Seasons
(*S. Umemura, Y. Ishizu, and M. Muramatsu*) 76

The Measurement of ETS Through Adsorption/Desorption
Procedures (*C. Proctor and H. Dymond*) 82

Removal of Cigarette Smoke Particulates from Room Environment
(*H. Emi, C. Kanazawa, and Y. Otani*) 90

PM3006448115

VIII Contents

Results from Surveys of Environmental Tobacco Smoke in Offices and Restaurants (<i>G. B. Oldaker III, P. F. Perfetti, F. C. Conrad, Jr., J. M. Conner, and R. L. McBride</i>)	99
Strategy for Future ETS Exposure Measurements Relative to Its Transient Nature and Other Indoor Air Pollutants (<i>I. O'Neill</i>)	105
Assessment of ETS Impact on Office Air Quality (<i>J. J. Piadé, C. Gerber, and W. Fink</i>)	112
ETS in Offices and When Smoking Is Restricted to Designated But Not Separately Ventilated Areas (<i>T. D. Sterling and B. Mueller</i>)	120
Chapter 2: Biological Effects Associated with Exposure to Environmental Tobacco Smoke	
Environmental Tobacco Smoke and Lung Cancer - Recent Aspects on Confounders and Dose Levels (<i>R. Rylander and L. C. Kao</i>)	133
Urinary Mutagenicity, Hydroxyphenanthrene, and Thioether Excretion After Exposure to Environmental Tobacco Smoke (<i>G. Scherer, K. Westphal, and F. Adlikofer</i>)	138
The Effects of Environmental Tobacco Smoke on Pulmonary Function (<i>M. D. Lebowitz and J. J. Quackenboss</i>)	147
Are There Any Impairments of Maximal Expiratory Flow-Volume Curves by Passive Smoking? (<i>M. Kentner and D. Weltje</i>)	153
Effects of Light or Moderate Smoking on Birth Weight or on Serum Biochemical Components in Infants of Japanese Women (<i>Y. Shimizu and T. Ishiguro</i>)	167
Psychophysiological Response to Environmental Tobacco Smoke in an Experimental Social Setting (<i>G. Winneke, M. Neuf, A. Roscová, and H.-W. Schlipkötter</i>)	173
Acute Cardiovascular Responses to Experimental Passive Smoking in Young, Healthy, Adult Men (<i>M. Asano, C. Ohkubo, A. Sasaki, T. Irie, and H. Komine</i>)	184
Involuntary Smoking and Urinary Cotinine (<i>H. Matsuki, H. Kasuga, K. Misawa, and Y. Kawano</i>)	194
A Comparison of Plasma and Urinary Nicotine and Cotinine Levels in Smokers and Nonsmokers: Nicotine Excretion Pathways Are Possibly Differential According to the Dosage of Tobacco Smoke Uptake (<i>S. Itani, E. Higashi, and Y. Shimizu</i>)	202

PM3006448116

Contents IX

The Significance of Urinary Hydroxyproline Excretion in Smokers and Passive Smokers <i>(F. Adlkofer, G. Scherer, W.-D. Heller, X. Sünkel, and T. Heintz)</i>	213
The Effect of Parental Smoking and Industrial Pollution on Birth Weight <i>(P. Rantakallio, A.-L. Hartikainen-Sorri, and T. Leino)</i>	219
Effect of Sidestream Smoke (Passive Smoke) on Cell Viability and Interferon Production <i>(G. Sonnenfeld)</i>	226
Passive Exposure to Nicotine in Daily Environment <i>(S. Kira, T. Arai, J. Fukui, M. Aiba, A. Iwase, and Y. Doi)</i>	231
Chapter 3: Epidemiology of Passive Smoking	
Harvard's Indoor Air Pollution Health Study <i>(J. D. Spengler)</i>	241
Chest Diseases of Elderly Women Due to Domestic Cooking and Passive Smoking: The Cracow Study <i>(W. Jedrychowski, B. Tobiasz-Adamczyk, E. Mróz, and J. Cećek)</i>	249
Model Specification Effects in ETS/Nutrition Research <i>(S. J. Kilpatrick)</i>	256
Effect of Paternal Smoking on Fetuses <i>(S. Kikuchi and T. Takahashi)</i>	272
Passive Smoking as a Low Level Carcinogen: Epidemiologic Risk Assessment <i>(D. Trichopoulos and K. Katsouyanni)</i>	278
Passive Smoking and Lung Cancer: An American Cancer Society Study <i>(S. D. Stellman and L. Garfinkel)</i>	283
Is There a Threshold Effect for ETS? Results of Data from Chinese Females Who Had Never Smoked <i>(L. C. Koo and J. H-C. Ho)</i>	290
Passive Smoking and Cancer: The Association Between Husbands Smoking and Cancer in the Lung of Non-smoking Wives <i>(T. Hirayama)</i>	299
Air Pollution and Lung Cancer <i>(D. G. Xian, Y. W. Qing, and X. Z. Yi)</i>	312
Meta-Analyses on Passive Smoking and Lung Cancer <i>(H. Letzel and K. Überla)</i>	316
Epidemiological Issues on Involuntary Smoking and Lung Cancer <i>(Y. Shimizu, T. Namekata, and K. Takemoto)</i>	323
Passive Smoking and Lung Cancer: A Reanalysis of Hirayama's Data <i>(K. Überla and W. Ahlbom)</i>	333

PM3006448117

X Contents

What Is the Epidemiologic Evidence for a Passive Smoking-Lung Cancer Association? (<i>N. Mantei</i>)	341
Chapter 4: General Indoor Air Pollution	
Comparison of Personal NO ₂ Exposures Among the USA and Asian Countries (<i>Y. Yanagisawa</i>)	351
The Relationship Between Respiratory Illness in Children and Gas Cookers and Paraffin Heaters in the UK (<i>R. J. W. Melia, R. J. Rona, and S. Chinn</i>)	363
Indoor Nitrogen Dioxide Pollution Associated with Gas Stoves and Unvented Heaters in Japan (<i>H. Nitta, S. Nakai, and K. Maeda</i>)	364
Highly Sensitive Methods for the Evaluation of Carcinogens and Mutagens Indoor (<i>H. Matsushita, K. Tanabe, and S. Goto</i>)	371
Health Effects of 50 Selected Constituents of Environmental Tobacco Smoke (<i>D. M. Aviado</i>)	383
Indoor Air Pollution from Tobacco Smoke as Seen by Scientists in Governmental Administration (<i>C. Hugo</i>)	390
Source, Nature, and Symptomatology of Indoor Air Pollutants (<i>G. Robertson</i>)	393
Health Aspects of Indoor Air Pollution by Organic Matter and Combustion Products (<i>W. Stöber and G. Rosner</i>)	403
Indoor Tuberculosis Infections in Small Offices in Downtown Tokyo (<i>M. Minowa, T. Shimo, T. Oi, and I. Shigematsu</i>)	415
Experimental Studies on the Odor of Cigarette Smoke (<i>K. Nishida, K. Ohisuka, K. Sasaki, M. Yamakawa, and Y. Kita</i>)	424
Lung Cancer and Indoor Air Pollution in Xuan Wei, China: Current Progress (<i>X. He, R. S. Chapman, R. Yang, S. Cao, J. L. Mumford, and C. Liang</i>)	435
Characterization of Indoor Pollution in Korea (<i>C.-W. Cho and S. H. Cho</i>)	442
Indoor Air Quality and the Pollution Transition (<i>K. R. Smith</i>)	448
Domestic Smoke Pollution and Acute Respiratory Infection in a Rural Community of the Hill Region of Nepal (<i>M. R. Pandey, R. P. Neupane, and A. Gautam</i>)	457

PM3006448118

Panel Discussions

ETS Measurements, Biological Effects of ETS, and Indoor Air Pollution Chairmen: <i>Y. Tsunetoshi and Y. Yanagisawa</i>	465
Epidemiology of Passive Smoking and Lung Cancer (I) Chairmen: <i>K. Maeda and T. Namekata</i>	480
Epidemiology of Passive Smoking and Lung Cancer (II) Chairmen: <i>K. Aoki and T. Namekata</i>	497
Outline (<i>H. Kasuga</i>)	509

PM3006448119

List of Participants

Austria

Klus, Hubert
Research and Development
The Austria Tabakwerke AG
Hasnerstrasse 124 A
A-1160 Wien

Canada

Sterling, Theodor D.
School of Computing Science
Simon Fraser University
Burnaby, B.C. V5A 1S6

China

Dong, Guo-Xian
The Liaoning Tumour Hospital
1, Block 3, Xiaobayan Rd.
Shenyang, Liaoning

He, Xingzhou
Institute of Environmental
Health and Engineering
Chinese Academy of
Preventive Medicine
29 Nanwei Road
Beijing

Zhao, Hu-Wu
The People's Hospital
of Yunnan Province
Kunming

Denmark

Hugod, Carl
The Danish National Board of Health
St. Kongensgade 1
DK-1264 Copenhagen

F. R. G.

Adlkofler, Franz
Forschungsgesellschaft Rauchen
und Gesundheit mbH
Frauenthal 2
D-2000 Hamburg 13

Ball, Michael
Research and Development
H. F. & Ph. F. Reemtsma
GmbH & Co.
Luruper Chaussee 145
D-2000 Hamburg 50

Dierick, Dieter
Deutscher Dienst für Wissenschaft
und Kulturpolitik
Kaulbachstrasse 6d
D-1000 Berlin 46

Gostomzyk, Johannes G.
Gesundheitsamt der Stadt Augsburg
Hoher Weg 8
D-8900 Augsburg

Kentner, Michael
Institut für Arbeits- und Sozialmedizin
und Poliklinik für Berufskrankheiten
der Universität Erlangen-Nürnberg
Schillerstrasse 25/29
D-8520 Erlangen

Lehnert, Gerhard
Ordinarius für Arbeitsmedizin
Universität Hamburg
Adolph-Schönfelder-Strasse 5
D-2000 Hamburg 76

Letszel, Heinz
Stancor
Gesellschaft für medizinische
Forschungsberatung mbH
Behringstrasse 12
D-8033 Planegg

XIV List of Participants

Norpoth, Klaus H.

Institute of Hygiene and
Occupational Medicine
University Medical Center
Essen University
Hufelandstrasse 55
D-4300 Essen

Greece

Katsouyanni, K.

Department of Hygiene
and Epidemiology
University of Athens Medical School
Goudi, Athens 115-27

Scherer, Gerhard

Forschungsgesellschaft Rauchen
und Gesundheit mbH
Frauenthal 2
D-2000 Hamburg 13

Trichopoulos, Dimitros

Department of Hygiene
and Epidemiology
University of Athens Medical School
Goudi, Athens 115-27

Stöber, Werner

Fraunhofer-Institute of Toxicology
and Aerosol Research
Nikolaus-Fuchs-Straße 1
D-3000 Hannover 61

Hong Kong

Koo, Linda C.

Department of Community Medicine
University of Hong Kong
Li Shu Fan Building 5
Sassoon Road

Überla, Karl K.

Institut für Medizinische
Informationsverarbeitung,
Statistik und Biomathematik
University of Munich
Marchioninistrasse 15
D-8000 München 70

Japan

Aoki, Kurio

Department of Preventive Medicine
Nagoya University
65 Tsurumai-cho
Showa-ku, Nagoya 466

Winneke, Gerhard

Medizinisches Institut
für Umwelt hygiene
an der Universität Düsseldorf
Auf'm Hennekamp 50
D-4000 Düsseldorf

Asano, Makishige

Department of Physiological Hygiene
The Institute of Public Health
6-1, Shirokanedai 4-chome
Minato-ku, Tokyo 108

Finland

Dassen, Wyndand

Rantakallio, Paula T.
Department of Public Health Science
University of Oulu
Aapistie 3
90220 Oulu

Department of Public Health
School of Medicine
Tokai University
Babaedai, Isahara-shi
Kanagawa 259-11

France

Emi, Hitoshi

Department of Chemistry
and Chemical Engineering
Kanazawa University
40-20, Kodatsuno 2-chome
Kanazawa-shi, Ishikawa 920

O'Neill, Ian K.

International Agency
for Research on Cancer
150 Cours Albert Thomas
F-69372 Lyon Cedex 08

Pukuma, Seigo

Chiba Cancer Center
666-2, Nitonacho
Chiba-shi, Chiba 280

List of Participants XV

<i>Fukushima, Masao</i> Department of Public Health Fukushima Medical College 5-75, Sugitsumacho Fukushima-shi, Fukushima 960	<i>Itoji, Shunro</i> Kyoto Senbei Hospital 447, Myohoin-Maegawa-cho Higashiyama-ku, Kyoto 605
<i>Goto, Yuichiro</i> Department of Internal Medicine School of Medicine Tokai University Bohseidai, Ischura-shi Kanagawa 259-11	<i>Kagawa, Jun</i> Department of Hygiene and Public Health Tokyo Women's Medical College 8-1, Kawadacho Shinjuku-ku, Tokyo 162
<i>Hashimoto, Seiichiro</i> Kyoto Senbei Hospital 447, Myohoin-Maegawa-cho Higashiyama-ku, Kyoto 605	<i>Kanuga, Hitoshi</i> Department of Public Health School of Medicine Tokai University Bohseidai, Ischura-shi Kanagawa 259-11
<i>Hayashi, Chikio</i> The University of the Air 2-11, Wakaba Chiba-shi, Chiba 260	<i>Katsuki, Hideo</i> The University of the Air 2-11, Wakaba Chiba-shi, Chiba 260
<i>Higashi, Eigo</i> Kyoto Senbei Hospital 447, Myohoin-Maegawa-cho Higashiyama-ku, Kyoto 605	<i>Kikuchi, Saburo</i> Department of Obstetrics and Gynaecology The Second Hospital Nippon Medical School 1-396, Kosegumachi, Nakahara-ku Kawasaki-shi, Kanagawa 211
<i>Hirayama, Takeshi</i> Institute of Preventive Oncology HI-Bldg. 1-2, Ichigaya-sadobaraicho Shinjuku-ku, Tokyo 162	<i>Kira, Shiro</i> Department of Respiratory Medicine School of Medicine Juntendo University 1-1, Hongo 2-chome Bunkyo-ku, Tokyo 113
<i>Homma, Hiomi</i> The University of the Air 2-11, Wakaba Chiba-shi, Chiba 260	<i>Maeda, Kazuho</i> Department of Epidemiology School of Health Sciences University of Tokyo 3-1, Hongo 7-chome Bunkyo-ku, Tokyo 113
<i>Ishiguro, Tatsuya</i> Department of Obstetrics and Gynaecology Shiga University of Medical Science Seta-Tsukinowamachi Obitsu-shi, Shiga 520-21	<i>Matsuji, Hideaki</i> Department of Public Health School of Medicine Tokai University Bohseidai, Ischura-shi Kanagawa 259-11
<i>Ishii, Tadanori</i> Central Research Institute Japan Tobacco Inc. 2, Umegaoka 6-chome Midori-ku, Yokohama, Kanagawa 227	
<i>Ishizu, Yoshiaki</i> Central Research Institute Japan Tobacco Inc. 2, Umegaoka 6-chome Midori-ku, Yokohama, Kanagawa 227	

XVI List of Participants

<i>Matsuhashi, Hideturu</i> Department of Community Environmental Sciences The Institute of Public Health 6-1, Shirokanedai 4-chome Minato-ku, Tokyo 108	<i>Ochiai, Kunio</i> Japanese Association of Medical Sciences 2-5, Kanda Surugadai Chiyoda-ku, Tokyo 101
<i>Minowa, Masumi</i> Department of Epidemiology The Institute of Public Health 6-1, Shirokanedai 4-chome Minato-ku, Tokyo 108	<i>Oi, Teru</i> Chiyoda-ku Kanda Health Center 3-10, Kanda Nishiki-cho Chiyoda-ku, Tokyo 101
<i>Misawa, Kyoko</i> Department of Public Health School of Medicine Tokai University Bohseidai, Isehara-shi Kanagawa 259-11	<i>Shimizu, Yoshiharu</i> Department of Public Health Saitama Medical School 38, Moro-Hongo, Moroyamacho Inuma-gun, Saitama 350-04
<i>Minoura, Hiroshi</i> Smoking Research Foundation 18th Mori Bldg. 3-13, Toranomon 2-chome Minato-ku, Tokyo 105	<i>Takahashi, Toru</i> Department of Obstetrics and Gynaecology The Second Hospital Nippon Medical School 1-396, Kosugimachi, Nakahara-ku Kawasaki-shi, Kanagawa 211
<i>Mori, Toru</i> Epidemiology Department The Research Institute of Tuberculosis Japan Anti-Tuberculosis Association 1-24, Matsuyama 3-chome Kiyose-shi, Tokyo 204	<i>Takemoto, Kazuo</i> Department of Public Health Saitama Medical School 38, Moro-Hongo, Moroyamacho Inuma-gun, Saitama 350-04
<i>Muramatsu, Morohiko</i> Central Research Institute Japan Tobacco Inc. 2, Umegaoka 6-chome Midori-ku, Yokohama, Kanagawa 227	<i>Tominaga, Saketami</i> Division of Epidemiology Aichi Cancer Center, Research Institute 1-1, Kanokoden Chikusa-ku, Nagoya 464
<i>Nishida, Konosuke</i> Laboratory for Control of Environmental Micropollutants Kyoto University 1-2, Yumihama Otsu-shi, Shiga 520	<i>Trunetoshi, Yoshizo</i> Department of Public Health Miyazaki Medical College 5200, Kihara, Kiyotakemachi Miyazaki-gun, Miyazaki 889-16
<i>Nitta, Hiroaki</i> Department of Epidemiology School of Health Sciences University of Tokyo 3-1, Hongo 7-chome Bunkyo-ku, Tokyo 113	<i>Umemura, Setsuko</i> Central Research Institute Japan Tobacco Inc. 2, Umegaoka 6-chome Midori-ku, Yokohama, Kanagawa 227
<i>Ohashi, Yasuo</i> University Hospital Computer Center University of Tokyo Hospital Bunkyo-ku, Tokyo 113	<i>Verplanck, Anton J. W.</i> Department of Public Health School of Medicine Tokai University Bohseidai, Isehara-shi Kanagawa 259-11

PM3006448123

List of Participants XVII

Yamakawa, Masanobu
 Laboratory for Control
 of Environmental Micropollutants
 Kyoto University
 1-2 Yumihama
 Otsu-shi, Shiga 520

Yokoyama, Hiromichi
 Kanagawa Prefectural Junior
 College of Nutrition
 399, Sakuragaoka, Hodogaya-ku
 Yokohama-shi, Kanagawa 240

Korea

Cho, Chul-Whan
 College of Medicine
 Korea University
 # 4, 2-ka, Myungryun-dong
 Seoul 110

Kim, Yoon Shin
 Department of Medical Information
 & Management
 College of Medicine
 Hanyang University
 17 Haengdang-Dong
 Sungdong-ku
 Seoul 133

Nepal

Pandey, Mrigendra R.
 Ministry of Health
 His Majesty's Government
 P. O. Box 2587
 Thepathali, Kathmandu

Northern Ireland

Rawbone, Roger R.
 Research Division
 Gallagher Ltd.
 Virginia House
 York Street
 Belfast BT15 1JE

Poland

Jedrychowski, Wieslaw
 Department of Epidemiology
 Institute of Social Medicine
 Medical School in Kraków
 7, Kopernika Street, Kraków

Sweden

Curvall, Eva M.
 Research Department
 Swedish Tobacco Company
 P. O. Box 17007
 S-104 62 Stockholm

Rylander, R.
 Department of Environmental Hygiene
 University of Gothenburg, Box 33031
 S-400 33 Gothenburg

Switzerland

Enzell, Curt
 Philip Morris Europe
 P. O. Box 11
 Quai Jeanrenaud, 53
 CH-2003 Neuchâtel

Padé, Jean-Jacques
 Philip Morris Europe
 P. O. Box 11
 Quai Jeanrenaud, 53
 CH-2003 Neuchâtel

U. K.

Lee, Peter N.
 P. N. Lee Statistics and Computing Ltd.
 25 Cedar Road
 Sutton, Surrey SM2 5DG

Melia, Jane W.
 Department of Community Medicine
 United Medical and Dental Schools
 of Guy's and St. Thomas's Hospitals
 St. Thomas's Campus
 Lambeth Palace Rd.
 London SE1 7EH

Perry, Roger
 Public Health & Water Resource
 Engineering
 Imperial College
 University of London
 South Kensington
 London SW7

Proctor, Christopher J.
 Research & Development Centre
 B. A. T. [UK and Export] Limited
 Regent's Park Road, Millbrook
 Southampton SO9 1PE

XVIII List of Participants

<i>Roe, Francis J.</i> 19 Marryat Road, Wimbledon Common London, SW19 5BB	<i>Namekata, Tsukasa</i> Battelle Memorial Institute Human Affairs Research Centers 4000 NE 41st Street Seattle, WA 98103
<i>U. S. A.</i>	<i>Nystrom, Charles W.</i> R. J. Reynolds Tobacco Company Fundamental R & D Bowman Gray Technical Center Reynolds Blvd. Winston-Salem, NC 27102
<i>Aviado, Domingo M.</i> Atmospheric Health Sciences Inc. P. O. Box 307 152 Parsonage Hill Road Short Hills, NJ 07078	<i>Oberdoerster, Gunter</i> Environmental Health Sciences Center University of Rochester Rochester, NY 14642
<i>Dinardi, Salvatore R.</i> School of Health Sciences University of Massachusetts Amherst, MA 01003	<i>Oldaker, Guy B.</i> Research & Development Department R. J. Reynolds Tobacco Company Bowman Gray Technical Center Winston-Salem, NC 27102
<i>First, Melvin H.</i> School of Public Health Harvard University 665 Huntington Avenue Boston, MA 02115	<i>Osdene, Thomas S.</i> Operations Center Philip Morris P. O. Box 26603 Richmond, VA 23261
<i>Hiller, Charles</i> University of Arkansas for Medical Sciences 4301 West Markham Slot 555 Little Rock, AR 72205	<i>Robertson, Gray J.</i> ACVA Atlantic Inc. 10378-B Democracy Lane Fairfax, VA 22030
<i>Huika, Barbara S.</i> Department of Epidemiology School of Public Health University of North Carolina Rosenau Hall 201H Chapel Hill, NC 27514	<i>Schwartz, Sorell L.</i> Department of Pharmacology Georgetown University School of Medicine Washington, DC 20007
<i>Kilpatrick, S. James</i> Department of Biostatistics Medical College of Virginia - Virginia Commonwealth University Box 32, MCV Station Richmond, VA 23298-0032	<i>Smith, Kirk R.</i> Environment and Policy Institute, East-West Center 1777 East-West Road Honolulu, HI 96843
<i>Lebowitz, Michael D.</i> Division of Respiratory Sciences, Room 2332 Arizona Health Science Center Tucson, AZ 85724	<i>Sonnenfeld, Gerald</i> Department of Microbiology and Immunology School of Medicine University of Louisville Louisville, KY 40292
<i>Mantel, Nathan</i> The American University 4900 Auburn Avenue Bethesda, MD 20814	

PM3006448125

List of Participants XIX

Spengler, John D.
School of Public Health
Harvard University
665 Huntington Avenue
Bldg. I, Rm 1305
Boston, MA 02115

Box 692
601 Elmwood Avenue
Rochester, NY 14642

Stellman, Jeanne M.
School of Public Health
Columbia University
600 W 168th Street
New York, NY 10032

Wiedemann, Herbert P.
Cleveland Clinic Foundation
Pulmonary Disease Dept., A90
9500 Euclid Avenue
Cleveland, OH 44106

Stellman, Steven D.
American Cancer Society
4 West 35th Street
New York, NY 10001

Wynder, Ernest L.
American Health Foundation
320 East 43rd Street
New York, NY 10017

Utell, Mark J.
University of Rochester Medical Center
Pulmonary and Critical Care Unit

Yanagisawa, Yukio
School of Public Health
Harvard University
665 Huntington Avenue
Boston, MA 02115

Assessment of ETS Impact on Office Air Quality

J. J. Piadé, C. Gerber, and W. Fink

NOTICE
This material may be
protected by copyright
law (Title 17 U.S. Code).

Summary

The contribution of environmental tobacco smoke (ETS) to indoor air quality was investigated by quantifying the concentration of some of its constituents in the course of a series of strictly controlled experiments.

One brand of commercial cigarettes was smoked by trained smokers following a prescribed protocol both in a test-chamber and in an office of a modern, air-conditioned building. The ETS components investigated were CO, NO, NO₂ and nicotine. The concentration of respirable suspended particles (RSP) was also monitored using three different methods.

The concentrations of these ETS constituents and their ratios are reported, together with background and outdoor levels. In addition, the influence of room ventilation, smoke generation rate, wall deposition effects, etc., is discussed.

Introduction

The indoor air concentration of ETS components has been surveyed by many authors in real-life measurements, but with little or no information on smoke generation. In other reports, mostly for exposure studies, both smoke generation and air concentration of several ETS components were carefully monitored, but with often unrealistic smoke levels [1, 2].

This paper is the first part of a study aimed at investigating ETS chemistry in real-life situations, but with a strictly defined smoke generation and investigating a wide array of components. It comes as a continuation of previous investigations on sidestream smoke (SS) generated in a test-chamber [3]. In this study the effects of smoke generation patterns, room ventilation and air mixing should be assessed, with an emphasis on the time variation of the measured concentrations and their ratios. This paper reports on early results establishing the experimental concept, checking methods and evaluating the impact of various indoor environmental factors.

Experimental Procedures

Smoking Sessions

The office used for this study has a surface of 12 m² and a volume of 35 m³, with a door and a large window. Its walls are plastered, the floor is carpeted and it is furnished with a desk, three chairs and a cupboard. It is situated in a modern building

H. Kanuga (Ed.) Indoor Air Quality
© Springer-Verlag, Berlin Heidelberg 1990

INT ARCH OCCUP ENVIRON HEALTH SUPPL
6(6), 1990

PM3006448127

with central air conditioning. The ventilation was checked to ensure 3.5 air changes per hour.

Smokers normally consuming about 1 pack per day were trained to take 2-s puffs per minute in a reproducible way, as checked by consistent puff-counts per cigarette. They were asked to smoke commercial cigarettes according to a pre-determined, realistic protocol. All smokings took place in the same room, but ventilation was turned on or off with possible additional air mixing.

Analytical Methods

For each session, the concentrations of CO, NO, NO₂ and respirable suspended particles (RSP) were measured continuously. Nicotine concentration was measured periodically.

Samplings were done using feed-back flow control pumps (SKC Aircheck Sampler 224-36) drawing air from near the center of the room at an height of about 1.2 m.

Carbon monoxide was measured continuously by non-dispersive IR (Dasibi 3008) and nitrogen oxides by chemiluminescence (Tecan CLD 502).

Nicotine was sampled by pumping air through XAD-4 tubes (SKC 226-30-11-04) which were extracted with 1 ml of ethyl acetate (0.01% triethylamine) and analysed by capillary gas chromatography according to [4]. Quinoline was used as an internal standard.

RSP concentration was simultaneously measured by three different methods:

- Filter gravimetry, by pumping air at 2 l/min through a filter pad (Fluoropore, Millipore FALP03700), possibly after passing through an impactor (TSI 3.5 µ cut-off) retaining particles that would not be inhaled [5], according to [4]. The weight change was measured with a microbalance (Mettler M3).
- Portable piezobalance (TSI model 5500).
- RAM nephelometric detector (GCA RAS-1).

Instrument Calibration for RSP Determination

The gravimetric determination is a direct method which is well established [4, 6]. It is precise down to about 30 µg/m³ for 1-h samplings and the coefficient of variation of replicate analyses is about 4%. It only provides time-averaged answers, whereas the RAM gives almost real-time readings and the piezobalance provides a result every 3-5 min.

The TSI 5,500 is factory calibrated and gives direct readings of RSP levels (mg/m³). It has been used in many ETS studies [7] and its performance has been questioned by several authors [2]. The manufacturer reports it to underestimate tobacco smoke by 15% [9] and in a recent study significant differences between the responses of two identical instruments were reported [8]. The response of the TSI 5,500 we used to SS (between 0.09 and 1.2 mg/m³) was compared to gravimetric determinations in a series of experiments performed in our test-chamber. The difference between both determinations was consistently smaller than the variability of the methods, provided that the sampling flow rate of the piezobalance was kept at exactly 1 l/min and that its sensor was washed after each determination.

In contrast to the piezobalance, the RAM has to be calibrated before use with the aerosol studied [10]. This is due to its sensitivity to the particle size distribution of the

PM3006448128

Fig. 1. Calibration of RAM vs. gravimetric determinations

sample. To this aim, the time-averaged RAM output was compared to gravimetric results in a series of experiments where smoke was generated in the test-chamber by SS only (machine smoking, mainstream smoke (MS) exhausted out of the room), or by SS plus exhaled MS (human smoking). Determinations were made for total airborne particulate matter or for RSP only (by sampling through $3.5\text{ }\mu\text{m}$ impactors).

The results are given in Fig. 1. They reveal two possible sources of systematic error:

- If the RAM is calibrated using SS only for ETS measurements, RSP results will be significantly over-estimated.
- It is obvious that omitting the impactor will result in over-estimating the air burden if one should perform a direct gravimetric determination. But since the RAM response is practically not affected by the adjunction of an impactor, it is essential that the calibration be made by comparison with *RSP only* (i.e. using $3.5\text{ }\mu\text{m}$ impactors at the filter and RAM inlets).

Results and Discussion

For each smoking session of this first set of office ETS studies, the smoke generation protocols and the environmental conditions are given in Table 1.

In experiment 3, five cigarettes were smoked simultaneously, and the room ventilation was left on. Time zero was set at the moment when the cigarettes were extinguished. Figure 2 shows the plot, as a function of time, of the CO concentration together with that of RSP as measured with the RAM and with the piezobalance and the time-averaged concentration of nicotine. These values are all background corrected.

Figure 2 shows that the CO concentration decreases exponentially. The calculated decay rate is almost equal to the measured air changes per hour in the room. Thus CO is a good tracer that can be used to offset the effects of room ventilation.

The RSP concentration as measured by the RAM also decreases exponentially, a little faster than the CO. Thus the RSP to CO ratio does not remain constant with time.

PM3006448129

Table 1. Smoke generation protocol and environmental conditions

Experiment code	Number of cigarettes smoked	Generation rate	Room ventilation
1	1	at time 0	on
2	2	at time 0	on
3	5	at time 0	on
4	9	every 15 min	on
5	2	at time 0	off
6	4	every 15 min	off
7	4	every 15 min	off, fans on

Fig. 2. RSP, CO, and nicotine decay after smoking 5 cigarettes

Actually, the decay rate of the RSP/CO ratio reflects the kinetics of wall impaction and sedimentation of the particles.

If we now consider the piezobalance determinations, they are slightly higher than the RAM measurements for unaged ETS. After about 40 min both curves coincide. An explanation for this discrepancy may be sought in changes in the smoke particle size during the early aging phase [11].

The plot of the nicotine concentration shows that it decays much faster than RSP immediately after smoking. After 1 h, the level drops much more slowly, actually even more slowly than the CO. This is probably due to the fact that nicotine is mostly present in the gas phase [12], and wall effects become very important. Of course the nicotine/RSP ratio is far from remaining constant.

Figure 3 shows the time variation of NO and NO₂ concentrations. The decay of the NO concentration appears to be exponential. Considering the NO/CO ratio, which offsets the effect of room ventilation, evidences the contribution of what seems to be a pseudo-

PM3006448130

Fig. 3. NO, NO/CO, NO₂, and NO₂/CO decay after smoking 5 cigarettesFig. 4. RSP, CO, NO, NO₂, and nicotine concentration; 9 cigarettes smoked at 15-min-intervals

first order chemical decay. It should be noted that the NO decay was recently reported to be pseudo-first order in MS gas phase, but pseudo-second order in the whole MS [13]. The time increase of the NO₂/CO ratio, on the other hand, reveals a chemical generation of NO₂ in the early phase of ETS aging. Of course, the NO₂ level decreases in absolute value after a few minutes.

A steady-state situation can be created with a constant smoke generation rate. This is what is obtained in experiment 4, where a cigarette is smoked every 15 min with the room ventilation left on. The corresponding profiles are shown on Fig. 4.

PM3006448131

Table 2. Time averaged RSP and nicotine concentrations

Experiment code	RSP		Nicotine	
	Sampling time (min)	Concentration (mg/m ³)	Sampling time (min)	Concentration (μg/m ³)
1	90	0.089	40	8.6
2	96	0.189	40	18.6
3	79	0.391	40	25.6
4	150	0.478	40	21.4
5	121	0.350	40	25.3
6	128	0.508	40	28.7
7	130	0.486	40	16.8
Indoor background		0.033		0.7

Each time a cigarette is smoked, there is a rise and subsequent decay of the CO, NO and RSP concentrations, and after about 1 h a steady-state concentration is achieved. Even the nicotine level becomes fairly constant after a brief initial peak. This kind of experiment could be very useful in determining how environmental conditions may affect the ratio between the concentrations of two ETS components.

The effect of changes in the environmental conditions can also be quantitatively evaluated when the time-averaged nicotine and gravimetric RSP concentrations obtained for all the situations investigated are compared. These results are gathered in Table 2 and perusal of this table allows the following comments to be made:

Comparing the RSP and nicotine averaged concentrations in experiments 1, 2 and 3, it appears that these values are not proportional to the number of cigarettes smoked, even in this strictly controlled set of experiments. This is even more true for the nicotine values and thus the nicotine to RSP ratio is fairly different in these three experiments. The drastic effect of room ventilation is obvious when comparing the results of experiments 2 and 5 or, in the case of continuous smoke generation, 4 and 6. Again, the impact of room ventilation is quite different whether one considers RSP or nicotine. Eventually, the effect of an increased air turbulence in the room is apparent when comparing the results of experiments 6 and 7. It appears that the average concentration of nicotine is much more reduced by air turbulence than that of RSP, pointing at the large influence of wall effects on nicotine concentration.

Background Indoor and Outdoor Levels

In average, the indoor background levels were about 0.6 ppm for CO, 10 ppb for NO, 50 ppb for NO₂, 30 μg/m³ for RSP and 0.7 μg/m³ for nicotine.

In addition to indoor analyses, and in order to put these results in perspective, the outdoor concentration of CO, NO and NO₂ was measured, at the same time as the smoking sessions were held, by extending probes 1 m outside the window. The levels monitored over a 24-h period are plotted on Fig. 5. For nitrogen oxides, these values are at times higher than any level obtained in the course of our experiments. This is due in part to the proximity of a highway.

PM3006448132

Fig. 5. Outdoor CO, NO, and NO₂ concentrations

Conclusion

This study constitutes a first part of a program we have initiated on the analytical investigation of ETS in indoor air. Much more work is needed to obtain a good understanding of the main processes governing ETS aging. This initial study outlined some possible flaws in RSP measurement. It showed that a careful examination of the time variation of the measured concentrations and their ratios may yield valuable insights into ETS aging processes. As these ratios are not constant, it appears that no component can readily serve as a marker for other ETS components. In particular, nicotine was found to be quite outstanding in its behaviour, making it a poor marker of ETS exposure. Eventually the large impact of indoor environment factors such as air mixing, room ventilation, wall surfaces etc. on ETS was outlined.

References

1. National Research Council (1986) The physicochemical nature of sidestream smoke and environmental tobacco smoke, measuring exposures and assessing health effects. National Academy Press, Washington DC, pp 25-53
2. Sterling TD, Dimich H, Kobayashi D (1982) Indoor by-product levels of tobacco smoke, a critical review of the literature. JAPCA 32: 250-259
3. Blake CJ, Piadé JJ, Fink W (1986) Quantitative evaluation of cigarette sidestream smoke components under controlled experimental conditions. Presented at the International Experimental Toxicology Symposium on Passive Smoking, Oct. 23-25, 1986, Essen (FRG)
4. Ogden MW, Conner JM (1987) Methods of analysis for nicotine, respirable suspended particles and ultraviolet particulate matter in environmental tobacco smoke. Collaborative Study; Presented at the 41 Tobacco Chemists' Research Conference, Oct 4-7, 1987, Greenboro NC (USA)
5. Heyder J (1985) Studies of particle deposition and clearance in humans. In: Grosdanoff P et al (eds) Problems of inhalatory toxicity studies. BGA Publ, MMV-Medizin Verlag, Munich

PM3006448133

6. Pio CA (1986) General sampling techniques. In: Harrison RH et al (eds) *Handbook of air pollution analysis*. Chapman and Hall, London New York
7. Repace JL, Lowrey AH (1983) Indoor air pollution, tobacco smoke and public health, part I; *Science* 208 (1980) 464-472, Part II; *World Smoking and Health* 7(4) (1983) 35-46
8. Ingebretsen BJ, Heavner DL, Angel AL, Conner JM, Oldaker GB, Green CR (1986) A comparative study of environmental tobacco smoke particulate mass measurements in an environmental chamber. Presented at the International Experimental Toxicology Symposium on Passive Smoking, Oct. 23-25 1986, Essen (FRG)
9. Sem GJ, Tsurubayashi K, Homma K (1977) Performance of the piezoelectric microbalance respirable aerosol sensor. *Am Ind Hyg Assoc J* 38:580-588
10. Rawbone RG, Burns W, Patrick RA (1987) The measurement of environmental tobacco smoke particulates. *Toxicology Lett* 35:125-129
11. Ingebretsen BJ (1986) Aerosol studies of cigarette smoke. *Rec Adv Tob Sci* 12:54-142
12. Eudy LW, Thome FA, Heavner DL, Green CR, Ingebretsen BJ (1985) Studies on the vapor/particulate phase distribution of environmental nicotine by selective trapping and detection methods. Presented at the 39 Tobacco Chemists' Research Conference Oct. 2-5 1985, Montreal (CAN)
13. Botland CDR, Chamberlain AT, Higenbottam TW, Barber RW, Thrush BA (1985) A comparison between the rates of reaction of nitric oxide in the gas phase and in whole cigarette smoke. *Beitr Tabakforschung Int* 13(2):67-73

PM3006448134