Nachklausur in Experimentalphysik 4

Prof. Dr. L. Fabbietti Sommersemester 2020 06.10.2020

Zugelassene Hilfsmittel:

- 1 Doppelseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Die Bearbeitungszeit beträgt 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe A (10 Punkte)

- (a) Wie viele Energieniveaus sind für eine gegebene Hauptquantenzahl n möglich?
- (b) Was zeichnet den Singulett-Zustand eines Mehrelektronensystems aus?
- (c) Für welche Elemente ist die Ionisationsenergie am größten, für welche am geringsten?
- (d) Woher kommt die Auswahlregel $\Delta l = \pm 1$?
- (e) Erklären Sie, warum der Übergang $J = 0 \Rightarrow J = 0$ nicht möglich ist.
- (f) Was kann man über die mittlere quadratische Schwankung eines Messwertes sagen, wenn die Wellenfunktion eine Eigenfunktion zum zugehörigen Operator ist?
- (g) Was unterscheidet die Molekülorbital- von der Heitler-London-Näherung?
- (h) Nennen Sie drei makroskopisch messbare Größen eines Gases.
- (i) Warum führt die relativistische Korrektur immer zu einer Absenkung der Energieniveaus?
- (j) Wieso kann man das Stern Gerlach Experiment nicht mit der Quantenzahl l beschreiben?

Aufgabe 1 (8 Punkte)

Berechnen Sie explizit den Erwartungswert $\langle r^{-3} \rangle$ im wasserstoffähnlichen 2p-Zustand (siehe Tabelle nächste Seite). Verifizieren Sie, dass Ihr Ergebnis ein Spezialfall der folgenden allgemeinen Formel für wasserstoffähnliche Zustände ψ_{lnm} mit $l \geq 1$ ist:

$$\left\langle \psi_{lnm} \left| \frac{1}{r^3} \right| \psi_{lnm} \right\rangle = \frac{Z^2}{a_0^3} \frac{1}{n^3 (l+1) (l+\frac{1}{2})}$$
 (1)

Hinweis: $\int_0^\infty xe^{-ax}dx = \frac{1}{a^2}$

n	l	m	Wellenfunktionen $\Psi_{n,l,m} = R_{n,l} \cdot Y_{l,m}$
2	0	0	$\left(\frac{Z}{2a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/(2a_0)} \cdot \sqrt{\frac{1}{4\pi}}$
2	1	0	$\frac{1}{\sqrt{3}} \left(\frac{Z}{2a_0} \right)^{3/2} \frac{Zr}{a_0} e^{-Zr/(2a_0)} \cdot \sqrt{\frac{3}{4\pi}} \cos \theta$
2	1	±1	$\frac{1}{\sqrt{3}} \left(\frac{Z}{2a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/(2a_0)} \cdot \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\phi}$

Aufgabe 2 (5 Punkte)

Das negative H⁻-Ion ist ein Zweielektronensystem. Wie groß ist die Bindungsenergie des zweiten Elektrons, wenn man folgendes Potential zugrunde legt (Z = 1):

$$V_2(r) = -\frac{e}{4\pi\varepsilon_0 a_0} \left(1 + \frac{a_0}{r}\right) e^{-2r/a_0}$$

Nehmen Sie bei der Berechnung des Erwartungswertes der potentiellen Energie an, dass sich das zweite Elektron ebenfalls im 1s-Zustand $\psi(r)=\frac{1}{\sqrt{\pi}a_0^{3/2}}e^{-r/a_0}$ befindet. Warum ist Ihr Ergebnis kleiner als der experimentelle Wert von -0,75 eV für die Bindungsenergie des zweiten Elektrons? Hinweis: $\int_0^\infty x^n e^{-\eta x} dx = n! \eta^{-(n+1)} Hinweis$: $E_{kin}=\frac{1}{2}E_{pot}$

Aufgabe 3 (10 Punkte)

Die Feinstrukturaufspaltung wird bei wasserstoffähnlichen Ionen wie beim neutralen Wasserstoff näherungsweise beschrieben durch

$$E_{\rm FS} = \frac{E_n}{n} (\alpha Z)^2 \left(\frac{1}{j + \frac{1}{2}} - \frac{3}{4n} \right)$$

- (a) In wieviele Energieniveaus spalten die Terme des doppelt ionisierten Lithiums mit den Hauptquantenzahlen n=3 und n=4 durch die Feinstruktur-Wechselwirkung auf?
- (b) Geben Sie die Verschiebung (in eV) an für die in (a) bestimmten Niveaus beim doppelt ionisierten Lithium mit n=3.
- (c) Zeigen Sie, dass der Korrekturwert für keinen der möglichen Werte von n und j verschwindet, sondern immer zu einer Absenkung gegenüber dem unkorrigierten Energieniveau führt.

Aufgabe 4 (9 Punkte)

Die Hyperfeinaufspaltung von Energieniveaus wird hervorgerufen durch die Wechselwirkung des magnetischen Moments $\vec{\mu}_I$ des Atomkerns mit dem durch die Hülle am Kernort erzeugten Magnetfeld (hier für 1s-Elektronen)

$$\vec{B}(0) = \frac{2}{3}\mu_0 \frac{d\vec{\mu}}{dV} = -\frac{2}{3}\mu_0 \frac{Z^3}{\pi a_0^3} g_J \mu_B \frac{\vec{J}}{\hbar}$$
 (2)

Das magnetische Moment des Kerns lässt sich ausdrücken als

$$\vec{\mu}_I = g_I \mu_K \frac{\vec{I}}{\hbar} \tag{3}$$

mit dem Kerndrehimpuls \vec{I} , dem g-Faktor g_I des Kerns und dem Kernmagneton $\mu_K = \mu_B/1836$.

- (a) Leiten Sie die durch diese Hyperfeinwechselwirkung verursachte Energieaufspaltung des Wasserstoff-1s-Niveaus her (Sie können als Abkürzung die Hyperfeinkonstante $A = \frac{2\mu_0 Z^3}{3\pi a_0^3} g_I \mu_K g_J \mu_B$ nutzen).
- (b) Wie groß ist diese Aufspaltung (in eV oder cm⁻¹)? Welche Wellenlänge hat die Strahlung, die beim Übergang vom oberen zum unteren Hyperfeinniveau emittiert wird?

Aufgabe 5 (9 Punkte)

In der Sonnenkorona befinden sich u.a. vierfach geladene Siliziumionen im Grundzustand $Si^{4+}(1s^22s^22p^6 \ ^1S_0)$. Wenn die Si^{4+} -Ionen mit einem Elektron stoßen, kann dieses von den Si^{4+} -Ione eingefangen werden. Dabei kommt es zur Bildung eines angeregten Zwischenzustandes im Si^{3+} , beispielsweise mit der Konfiguration $1s^22s^22p^53s5p$.

- (a) Welche Gesamtdrehimpulse sind für diese Konfiguration $Si^{4+}(1s^22s^22p^53s)$ möglich?
- (b) Welche Gesamtdrehimpulse sind für diese Konfiguration $Si^{3+}(1s^22p^22p^53s5p)$ möglich?
- (c) Welche spektroskopischen Zustände sind insgesamt möglich (Spektroskopische Symbole)?

Aufgabe 6 (10 Punkte)

Betrachten Sie das unten abgebildete Absorptionsspektrum von gasförmigem Bromwasserstoff. Gezeigt sind Absorptionslinien der Übergänge zwischen verschiedenen Rotationszuständen (k) beim Vibrationsübergang $\nu=0 \to \nu=1$ innerhalb des elektronischen Grundzustands. **Hinweis:** Atommassen $m_H=1$ u, $m_{Br}=80$ u, der Bindungsabstand im Molekül ist $R_0=141.4$ pm.

- (a) Die Federkonstante der Molekülbindung sei $D=380\,\frac{\mathrm{N}}{\mathrm{m}}$. Berechnen Sie die Frequenz der Streckschwingung. Welcher Stelle im Spektrum entspricht diese Frequenz und warum?
- (b) Geben Sie den quantenmechanischen Ausdruck für die Rotationsenergie des Moleküls an. Benutzen Sie dazu das Modell des klassischen starren Rotators.
- (c) Zeichnen sie das angegebene Termschema und ergänzen Sie das Termschema qualitativ richtig für $\nu=1$ um die Niveaus der fehlenden Rotationszustände k=1..3.

- (d) Bestimmen Sie den Linienabstand zwischen R(0) und R(1).
- (e) Warum ist die Absorption nicht bei allen Übergängen gleich stark?

Aufgabe 7 (14 Punkte)

Bei einem thermodynamischen Prozess werden $V_1=0.01\mathrm{m}^3$ eines (idealen) Gases aus Molekülen mit fünf Freiheitsgraden von einer Temperatur $T_1=300\mathrm{K}$ auf eine Temperatur $T_2=900\mathrm{K}$ ($V_2>V_1$) gebracht. Dabei ergibt sich eine Druckerhöhung von $p_1=1$ bar auf $p_2=2$ bar.

- (a) Skizzieren Sie den Vorgang in einem p-V-Diagramm und beschriften Sie es. Wählen Sie dabei den kürzesten, linearen Weg zwischen Start- und Endpunkt und zeichnen Sie die beiden Isothermen für T_1 und T_2 qualitativ ein.
- (b) Bestimmen Sie die Anzahl der Moleküle des Gases und die zugehörige Stoffmenge.
- (c) Bestimmen Sie das Gasvolumen V_2 nach Abschluss des Vorgangs und den Betrag ΔU der Änderung der Inneren Energie. Nimmt diese zu oder ab?
- (d) Berechnen Sie für diesen Prozess die verrichtete Arbeit W_{12} und die umgesetze Wärme Q_{12} . Werden sie zugeführt oder abgegeben? Markieren Sie im p-V-Diagramm die Fläche, die die umgesetzte Arbeit repräsentiert.

Konstanten

$$\begin{split} \hbar &= 1.05 \cdot 10^{-34} \text{Js} & m_e &= 9.11 \cdot 10^{-31} \text{kg} \\ e &= 1.6 \cdot 10^{-19} \text{C} & m_p &= 1.67 \cdot 10^{-27} \text{kg} \\ \epsilon_0 &= 8.85 \cdot 10^{-12} \text{As/V/m} & \alpha &= 7.3 \cdot 10^{-3} \\ a_0 &= \frac{4\pi \varepsilon_0}{e^2} \frac{\hbar^2}{m_e} = 5, 3 \cdot 10^{-11} \text{m} & \mu_B &= \frac{e \cdot \hbar}{2m_e} = 9, 27 \cdot 10^{-24} \text{Am}^2 \\ R_\infty &= \frac{m_e e^4}{8c \epsilon_0^2 h^3} = 1, 10 \cdot 10^7 \text{m}^{-1} & g_I &= g_P &= 5, 586 \end{split}$$