Docket No.: C3540.0002

AMENDMENTS TO THE CLAIMS

1. (Currently Amended): A polynuclear α -diimine Ni(II) complex represented by the following formula:

wherein M is Ni; X is Cl or Br; m is an integer from 0 to 100, and n is an integer from 0 to 100; wherein at least one of m and n is not 0; R_1 and R_2 are the same or different, and are selected from the group consisting of H, methyl, ethyl, isopropyl and tert-butyl; wherein R_3 and R_4 are the same or different, and are selected from the group consisting of H, methyl, ethyl, propyl, butyl and phenyl, or R_3 and R_4 form a cyclic alkyl group; R_5 and R_6 are the same or different, and is are selected from the group consisting of methyl, ethyl, propyl and a heterocyclic group; and each Q is independently: :

- 2. (Currently Amended): A polynuclear α -diimine Ni(II) complex of claim 1, wherein, m is an integer from 1 to 100, and n is 0.
- 3. (Currently Amended): A polynuclear α -diimine Ni(II) complex of claim 1, wherein, X is Br; m is an integer from 1 to 20, n is 0; R_1 is isopropyl, R_2 is methyl or isopropyl; and R_3 and R_4 are the same and are H or methyl, or R_3 and R_4 form a cyclohexyl group.

4. (Previously amended): A polynuclear α -diimine Ni(II) complex of claim 3, wherein m is an integer from 1 to 10.

- 5. (Previously amended): A polynuclear α -diimine Ni(II) complex of claim 1, wherein m is 0.
- 6. (Currently Amended): A polynuclear α -diimine Ni(II) complex of claim 1, wherein, X is Br; m is 0, n is an integer from 1 to 30; R_1 is isopropyl, R_2 is methyl or isopropyl; R_3 and R_4 are the same, and are H or methyl, or R_3 and R_4 form a cyclohexyl group; and R_5 and R_6 are methyl.
- 7. (Currently Amended): A polynuclear α -diimine Ni(II) complex of claim 1, wherein, X is Br; m is 0, n is an integer from 1 to 20; R_1 and R_2 are isopropyl; R_3 and R_4 are the same, and are H or methyl; and R_5 and R_6 are methyl.
- 8. (Currently Amended) A polynuclear α -diimine Ni(II) complex of claim 1, wherein, X is Br; m is an integer from 1 to 10, n is an integer from 1 to 20; R_1 is isopropyl, R_2 is methyl or isopropyl; R_3 and R_4 are the same, and are H or methyl, or R_3 and R_4 form a cyclohexyl group; and R_5 and R_6 are methyl.
- 9. (Currently Amended): A polynuclear α -diimine Ni(II) complex of claim 1, wherein, X is Br; m is an integer from 1 to 10, n is an integer from 1 to 20; R_1 and R_2 are methyl; R_3 and R_4 are the same, and are H or methyl; and R_5 and R_6 are methyl.
- 10. (Currently Amended): A method for the preparation of the polynuclear α -diimine Ni(II) complex of claim 1, comprising the steps of:
- (a) condensing an α -diketone represented by the formula I, II or a mixture thereof,

a substituted aromatic diamine represented by the formula

Application No.: 09/853,527

Docket No.: C3540.0002

$$R_1$$
 R_1
 R_1
 R_2
 R_2
 R_2

$$R_1$$
 R_2
 R_3
 R_4
 R_2
 R_2
 R_2

and a substituted aromatic amine represented by the formula

 \dot{R}_2

$$R_1$$
 R_2
 R_2

in a medium of alcohol, aromatic hydrocarbon, alcohol-ether mixture, or alcohol-halogenated hydrocarbon mixture and under the catalytic action of HCOOH, CF₃COOH, HF, HCl, HBr, or HI; thereby obtaining an oligomer of substituted α -diimine of the formula

(b) carrying out $\underline{\mathbf{a}}$ coordination reaction of the oligomer of step (a) with NiX₂, in the absence of water and oxygen, thereby obtaining a polynuclear α -diimino Ni(II) complex of the following formula:

wherein, R₁, R₂, R₃, R₄, R₅, R₆, Q, M, X, m and n are as defined in claim 1.

11. (Withdrawn) A method for preparing polyethylene, comprising the step of using the polynuclear α -dimine Ni(II) complex of claim 1 as the precursor of the catalyst.