FONCTIONS PART3 E04

EXERCICE N°2 (Le corrigé)

Soit la fonction f définie sur \mathbb{R} par $f(t) = -2t^3 + 3t^2 + 5t$.

- 1) Montrer que f(t) = -2t(t+1)(t-2.5). $-2t(t+1)(t-2.5) = -2t(t^2-1.5t-2.5) = -2t^3+3t^2+5t = f(t)$
- 2) Quelles sont les racines de f?

D'après la question précédente, les racines sont $\begin{bmatrix} -1 & ; & 0 \text{ et } 2,5 \end{bmatrix}$ t=t-0

Remarque:

$$f(t) = -2t(t+1)(t-2,5)$$

- 3) Déterminer le tableau de signes de f(t) sur \mathbb{R} .
- -2 > 0 est faux quelque soit la valeur de t.
- $t > 0 \Leftrightarrow t > 0$ (bah oui....)
- $t+1 > 0 \Leftrightarrow t > -1$
- $x-2.5 > 0 \Leftrightarrow x > 2.5$

Attention on range les valeurs dans l'ordre croissant.

t	$-\infty$		-1		0		2,5		+∞
-2		_		_		_		_	
t		_	0	_		+		+	
t+1		_		+	0	+	T	+	
t-2,5		_		-		_	0	+	
f(t)		_	0	+	0	_	0	+	

La dernière ligne du tableau nous indique le signe de f(t) en fonction de t

4) En déduire les solutions de -2t(t+1)(t-2,5) > 0 sur \mathbb{R} . D'après le tableau de signes, l'ensemble des solutions est :]-1; $0[\cup]2,5$; $+\infty[$

Remarques:

« >0 » veut dire qu'on cherche les « + » dans la dernière ligne du tableau. Si on avait eu « ≥0 » les crochets auraient été « fermés » (sauf le dernier bien sûr)