

$$tan \theta = \frac{h}{L}$$

$$2h = m \cdot \lambda$$
 for dark fringes.

$$\frac{2h}{L} = \frac{m}{L} \cdot \lambda$$

n (spatial fringe frequency i.e. fringes per length.)

$$\frac{2h}{L} = n \cdot \lambda$$

$$2.\tan\theta = n.\lambda$$

$$\tan\theta = \frac{n \cdot \lambda}{2}$$

$$\theta = \tan^{-1}\left(\frac{n\lambda}{2}\right)$$

If we take
$$\frac{h}{\int_{h^2+L^2}^{h}}$$

$$2h = m.\lambda$$

$$\frac{2h}{\sqrt{h^2+L^2}} = \frac{m \cdot \lambda}{(h^2+L^2)}$$

$$2.5 \text{in} O = \text{n.} \lambda$$

$$2.\sin \Theta = n.\lambda$$

$$\Theta = \sin^{-2}\left(\frac{n.\lambda}{2}\right)$$

2)
$$V_{rms} = 200 \sqrt{2}$$

$$f = \frac{50}{\pi}$$

resistor inductor +

Φ = + 45°

$$X_1 = \hat{x}$$

$$Z = \sqrt{R^2 + \chi_L^2}$$

$$w = 2\pi f = 100$$

$$X_L = \omega L$$

$$X_L = WL$$

$$Z = \frac{V_{rms}}{I_{rms}} = 200\overline{\Omega} = \overline{\Omega} R$$

$$R = 200 \Omega$$

$$R = 200 \Omega$$

$$200 \Omega = 100 L \Rightarrow L = 2 Herry$$

$$\sin \theta = \frac{h}{1}$$

$$2h = m.\lambda$$
 for dark fringes

$$\frac{2h}{L} = \frac{m\lambda}{L}$$

2.
$$\sin \theta = \frac{m}{L}$$
. λ

$$\sin \theta = \frac{n \cdot \lambda}{2}$$

$$\theta = \sin^{-1}\left(\frac{n\lambda}{2}\right)$$

Total internal reflection is observed.

Oi > Ocritical where Ocritical is defined by the following

 $sin(O_{critical})$, $n_L = N_{air} \cdot sin \frac{TL}{2} = N_{air}$

 $O_{critical} = sin^{-1} \left(\frac{Nair}{O_1} \right)$

 $Sin(\Theta_i) > Sin(\Theta_{critical})$ since Sinx is an increasing in $(0, T_2)$

 $\frac{1}{2}$ > $\frac{\text{Nair}}{\text{NL}}$

 $n_L > \sqrt{2}$. Nair

One can assume nair to equal 1

Hence $n_L > \sqrt{2}$

4.6) $R_2 < nR_1$

 $\label{eq:Anomaly} A^{\bullet}: \ n > \frac{R_2}{R_1} \quad , \quad P_1 \quad \text{and} \quad P_2 \quad \text{are visible as the} \\ \qquad \qquad \text{topmost and bottommost points}.$

$$\sin (\Theta_i)$$
. $\Delta = \sin (\Theta_r)$. n

$$sin(\theta_i) = \frac{R_1}{R_2} \cdot n$$

$$\frac{R}{R_2} = \frac{R_1}{R_2} \cdot n$$

$$R^{\circ} = n.R_{1}$$