# **Profunctorial Semantics I**

Fosco Loregian TAL March 19, 2020

## **Algebraic structures**

A group is a set equipped with operations

- $m:G\times G\to G$
- $i: G \rightarrow G$
- $e:1\rightarrow G$

...

you know the drill

# **Algebraic structures**

### Theorem (Higman-Neumann 1953)

A group is a set equipped with a single binary operation /:G imes G o G subject to the single equation

$$x/((((x/x)/y)/z)/(((x/x)/x)/z)) = y$$

for every  $x, y, z \in X$ .

Well.

This is awkward.

The theory of equationally definable classes of algebras, initiated by Birkhoff in the early thirties, is [...] hampered in its usefulness by two defects. [...T]he second is the awkwardness inherent in the presentation of an equationally definable class in terms of operations and equations.

Quite recently, Lawvere, by introducing the notion - closely akin to the clones P. Hall - of an algebraic theory, rectified the second defect.

#### **Definition**

An operator domain is a sequence  $\underline{\Omega} = (\Omega_n \mid n \in \mathbb{N})$ ; the elements of  $\Omega_n$  are called operations of arity n.

#### **Definition**

An interpretation  $\underline{E}$  of an operator domain  $\underline{\Omega}$  consists of a pair  $(E,(f_{\omega}\mid \omega\in\Omega_n,n\in\mathbb{N}))$  where  $f_{\omega}:E^n\to E$  is an n-ary operation on the set E called the *carrier* of  $\underline{E}$ .

An operator domain can be represented as a (rooted) graph: for example, for groups



Way better to use functors.

A Lawvere theory is an identity-on-objects functor  $p: \mathsf{Fin}^\mathsf{op} \to \mathcal{L}$  that commutes with finite products.

Unwinding the definition:

- £ is a category with the same objects as Fin, the category of finite sets and functions;
- p is a functor that acts trivially on objects
- The only thing that can change between Fin and  $\mathcal L$  is the number of morphisms  $[n] \to [m]$ .

Equivalently: p is a promonad on the opposite of Fin, regarded as an object of the bicategory of profunctors, that preserves the monoidal structure.  $\mathcal{L}$  is the Kleisli object of p.

$$\left\{ \begin{array}{c} \text{identity on obj} \\ \text{left adjoints} \\ p: [\mathcal{L}.\mathsf{Set}] \to [\mathsf{Fin}^\mathsf{op}.\mathsf{Set}] \end{array} \right\} \stackrel{\longleftarrow}{\longleftrightarrow} \left\{ \begin{array}{c} \mathsf{monads in Prof} \\ p: \mathsf{Fin}^\mathsf{op} \leadsto \mathsf{Fin}^\mathsf{op} \end{array} \right\}$$

- The trivial theory is the identity funtor  $1_{\text{Fin}}: \text{Fin}^{\text{op}} \to \text{Fin}^{\text{op}}$
- Since p preserves products, it is uniquely determined by its value on [1]. This means that if  $p : \operatorname{Fin}^{\operatorname{op}} \to \mathcal{L}$  is a Lawvere theory, then every object of  $\mathcal{L}$  is  $X^n$  if p[1] = X.
- The only difference between Fin and  $\mathcal L$  is thus the set of morphisms  $[n] \to [m]$ , added on top of those in Fin.

$$\mathcal{L}_{\mathsf{Grp}} = igcap_{[0] \longrightarrow e}^{i} [1] \longleftarrow [2]$$

A model for a Lawvere theory p is a product-preserving functor  $\ell: \mathcal{D} \to \mathsf{Set}$ .

The category  $\mathsf{Mod}(p)$  for a Lawvere theory is a full, reflective subcategory of the category  $[\mathcal{L},\mathsf{Set}]$  of all functors  $\mathcal{D} \to \mathsf{Set}$ .

#### **Theorem**

The following conditions are equivalent:

- $\ell$  is a model for a Lawvere theory  $\mathcal{L}$ ;
- The composition  $\ell \circ p$  preserves finite products;
- The composition  $\ell \circ p$  is representable (with respect to the inclusion  $J: \mathsf{Fin} \to \mathsf{Set}$ ), i.e.

$$\ell(X[n]) \cong \operatorname{Set}(J[n], A)$$

for some  $A \in Set$ .

As a consequence, the square

$$\begin{array}{ccc} \mathsf{Mod}(p) & \stackrel{r}{\longrightarrow} & [\mathcal{D},\mathsf{Set}] \\ & & & & \downarrow_{\_\circ X} \\ & \mathsf{Set} & \xrightarrow{[J,1]} & [\mathsf{Fin}^\mathsf{op},\mathsf{Set}] \end{array}$$

is a pullback.

- $\mathsf{Mod}(p)$  is a reflective subcategory of  $[\mathcal{D},\mathsf{Set}]$ . We write  $r_!\dashv r$  for the resulting adjunction.
- The functor u is monadic, with left adjoint f.
- This sets up a functor

$$\mathfrak{M}:\mathsf{Th}_L(\mathsf{Fin}) o \mathsf{Mnd}_{<\omega}(\mathsf{Set})$$

because the monad uf above is finitary.

There is an equivalence of categories between  $\mathsf{Th}_L(\mathsf{Fin})$  and  $\mathsf{Mnd}_{<\omega}(\mathsf{Set})$ .

We have to construct a functor in the opposite direction,  $\mathfrak{Z}: \mathsf{Mnd}_{<\omega}(\mathsf{Set}) \to \mathsf{Th}_L(\mathsf{Fin});$  given T, we consider the composition  $\mathsf{Fin} \hookrightarrow \mathsf{Set} \xrightarrow{F^T} \mathsf{Set}^T$  and its bo-ff factorization, in a square



- the left vertical arrow is a Lawvere theory almost by definition.
- Set<sup>T</sup> has the universal property of the category of  $\mathcal{L}$ -models.

## Theories as promonads

There is a 2-monad  $\tilde{S}:\operatorname{Prof}\to\operatorname{Prof}$  whose algebras are exactly promonoidal categories.

Given a profunctor  $p: \mathcal{A} \leadsto \mathcal{B}$  between promonoidal categories  $(\mathcal{A}, \mathfrak{P}, J_A), (\mathcal{B}, \mathfrak{Q}, J_B)$ :

- p is a pseudo- $\tilde{S}$ -algebra morphism;
- The cocontinuous left adjoint  $\hat{p}$  associated to p is strong monoidal with respect to the convolution monoidal product on presheaf categories;

Assume the promonoidal structures  $\mathfrak{P},\mathfrak{Q}$  on A,B are representable; then, the conditions above are in turn equivalent to

• Both mates  $p^{\triangleleft}: A \rightarrow PB$  che  $p^{\triangleright}: B \rightarrow P^*A$  are strong monoidal wrt convolution on their codomains.



# Theories as [Fin, Set]-categories

#### **Theorem**

$$[\mathsf{Fin},\mathsf{Set}]\cong\mathsf{End}_{<\omega}(\mathsf{Set})$$

If the LHS is endowed with the monoidal structure induced by composition of endofunctors; this is called the substitution monoidal product of functors  $F, G : Fin \rightarrow Set:$ 

$$F * G : m \mapsto \int_{-\infty}^{n} Fn \times (Gm)^n$$

The substitution monoidal product is a highly non-symmetric, right closed monoidal structure (not left closed).

The category [Fin, Set] works as base of enrichment.

# Theories as [Fin, Set]-categories

### From [Garner]

From now on we blur the distinction between the categories [Fin, Set]  $\cong$  End $_{<\omega}$ (Set):

- A finitary monad is a monoid in  $\operatorname{End}_{<\omega}(\operatorname{Set})$ , i.e. a  $\operatorname{End}_{<\omega}(\operatorname{Set})$ -category with a single object, i.e. a [Fin, Set]-category with a single object.
- A Lawvere theory is a [Fin, Set]-category that is absolute (Cauchy-, Karoubi-)complete as an enriched category and generated by a single object.
- Lawvere theories form a reflective subcategory in finitary monads; reflection is the enriched Cauchy completion functor.

## Theories as [Fin, Set]-categories

### Equivalently,

- A Lawvere [Fin, Set]-category is an enriched category where every object A is the tensor  $y[n] \odot X$  for a distinguished object  $X \cong y[1] \odot X$ . All such categories are enriched-Cauchy complete.
- A [Fin, Set]-category is a special kind of cartesian multicategory: one where a multimorphism  $f: X_1 \dots X_n \to Y$  is such that  $X_1 = X_2 = \dots = X_n$ .

#### Generalisations/extensions:

- let  $\mathbb{N}$  be the discrete category over natural numbers;
- let P be the groupoid of natural numbers;

The categories  $[\mathbb{N}, \mathsf{Set}]$  and  $[\mathbf{P}, \mathsf{Set}]$  become monoidal with respect to substitution products  $*_N, *_P$ :

$$F *_{N} G = \coprod_{k \in \mathbb{N}} G_{k} \times \coprod_{\vec{n} \mid \sum n_{i} = n} X_{n_{1}} \times \cdots \times X_{n_{k}}$$
$$F *_{P} G = \int_{0}^{k, \vec{n}} Y_{k} \times X_{n_{1}} \times \cdots \times X_{n_{k}} \times \mathbf{P}(\sum n_{i}, n)$$

### PRO(P)S

 $st_N$  and  $st_P$ -monoids are respectively non-symmetric and symmetric operads.

- A PRO is an identity-on-objects strong monoidal functor  $p: \mathbb{N} \to \mathcal{P}. \ \mathcal{P}$  is possibly non-cartesian.
- A PROP is an identity-on-objects strong monoidal functor  $p: \mathbb{N} \to \mathcal{P}$ .  $\mathcal{P}$  is symmetric monoidal.

These are, of course, other examples of promonoidal promonads.

## PRO(P)s and operads

Every PRO  $p: \mathsf{Fin}^\mathsf{op} \to \mathcal{T}$  gives rise to the operad  $O(\mathcal{T}) = (\mathcal{T}(n,1) \mid n \in \mathbb{N})$ . 2. Conversely, any operad  $(\mathcal{O}(n) \mid n \in \mathbb{N})$  gives rise to a pro  $T(\mathcal{O})$ , where

$$T(\mathcal{O})(n,m) = \coprod_{k_1 + \ldots + k_m = n} \mathcal{O}(k_1) \times \cdots \times \mathcal{O}(k_m).$$

(It would be helpful to imagine a picture of m trees stacked vertically.)

If we begin with an operad  $\mathcal{O}$ , we have  $\mathcal{O}=O(T(\mathcal{O}))$ . (This is because  $T(\mathcal{O})(n,1)=\mathcal{O}(n)$ , according to the above formula.)

On the other hand, if we start with a PRO  $\mathcal{T}$ , then there exists a canonical map of PROs  $T(O(\mathcal{T})) \to \mathcal{T}$ , given by, for each n and m, a canonical function

$$\coprod_{k_1+\dots+k_m=n} T(k_1,1) \times \dots \times T(k_m,1) \to T(n,m) \qquad (\star)$$

induced from the monoidal product on T.

This sets up an adjunction

$$T : \mathsf{Opd}[\mathsf{S}] \leftrightarrows \mathsf{PRO}[\mathsf{P}] : O$$

with fully faithful left adjoint, so that [symmetric] operads can be regarded as a PRO[P]s  $\mathcal{T}$  such that each function (\*) is bijective.



Re-enact [Garner] away from Set.

Let  $\mathcal{V}$  be a locally presentable base of enrichment; let  $\mathfrak{F}(\mathcal{V})$  be the subcategory of finitely presentable objects:

- $\mathfrak{F}(\mathcal{V})$  is the free finite weighted cocompletion of the point;
- There is a strong monoidal equivalence of categories

$$[\mathfrak{F}(\mathcal{V}),\mathcal{V}]\cong [\mathcal{V},\mathcal{V}]_{<\omega}$$

between functors  $\mathfrak{F}(\mathcal{V}) \to \mathcal{V}$  and finitary endo- $\mathcal{V}$ -functors;

• The  $\mathcal{V}$ -substitution product on LHS is

$$F * G = A \mapsto \int^{B} FB \otimes_{\mathcal{V}} (GA)^{B}$$

- There is an equivalence of categories between finitary
  ν-monads and enriched-Cauchy-complete categories
  generated by a single object under iterated finite
  powers.
- Models for a Lawvere theory correspond to algebras for the associated finitary monad; free models are free agebras are representables in

$$\begin{split} Alg(T,\mathcal{C}) &= [\mathfrak{F}(\mathcal{V}),\mathcal{V}]\text{-}\mathsf{Cat}(T,\mathcal{C}) \\ &\cong [\mathfrak{F}(\mathcal{V}),\mathcal{V}]\text{-}\mathsf{Cat}(\hat{T},\mathcal{C}) \\ &= Mod(\hat{T},\mathcal{C}) \end{split}$$

| class of lims | finite ×          | D-limts               | finite powers                  | weighted D-limits | bicat ×               |
|---------------|-------------------|-----------------------|--------------------------------|-------------------|-----------------------|
| theory        | Fin <sup>op</sup> | completion of $\{*\}$ | completion of {*}              | completion of {*} | completion of $\{*\}$ |
| semantics     | Set               | Set                   | ν                              | ν                 | Prof                  |
| eq. with      | finitary          | D-accessible          | $[\mathfrak{F}(V),V]$ -monoids | [?,V]-monoids     | ???                   |
|               |                   |                       |                                |                   |                       |

#### **Profunctorial semantics**

- Characterise the free carbicat CB(\*) on a singleton: see link here);
- Check if the univ property of Fin remains true for  $\mathbb{CB}(*)$ ;
- Take  $\mathbb{CB}(*) = F$ , and consider its free cocompletion in the bicolimit sense
- Prove that

$$[PF, PF] \cong [\mathbb{CB}(*), PF]$$
$$\cong PF$$

monoidally;  $\odot$ -monoids := monoids in PF wrt composition in [PF, PF].

### **Profunctorial semantics**

• Prove that there is a syntax-VS-semantics adjunction here: theories are promonoidal promonads T on (a 1-skeleton of)  $\mathbb{CB}(*)$ , and models are carbicat homomorphisms  $\mathsf{KI}(T) \to \mathsf{Prof}$ . There is an equivalence

```
\{theories\} \cong \{??? monads\}
```

 Let PROs come into play: analogue of the adjunction between PROs and operads.



## **Bibliography**

- Lawvere, F. William. "Functorial semantics of algebraic theories."
  Proceedings of the National Academy of Sciences of the United
  States of America 50.5 (1963): 869.
- Linton, Fred EJ. "Some aspects of equational categories."
  Proceedings of the Conference on Categorical Algebra. Springer,
  Berlin, Heidelberg, 1966.
- Garner, Richard. "Lawvere theories, finitary monads and Cauchy-completion." Journal of Pure and Applied Algebra 218.11 (2014): 1973-1988.
- Nishizawa, Koki, and John Power. "Lawvere theories enriched over a general base." Journal of Pure and Applied Algebra 213.3 (2009): 377-386.
- Hyland, Martin, and John Power. "The category theoretic understanding of universal algebra: Lawvere theories and monads." Electronic Notes in Theoretical Computer Science 172 (2007): 437-458.

