Optimization and Tips for Neural Network Training

Geena Kim

Outline and Keywords

Optimization methods

Stochastic Gradient Descent

- Learning rate
- Momentum
- Decay

Tips for neural network training

- General tips for overfitting
- Regularization methods
 - Dropout
 - Batch normalization

Advanced Gradient Descent methods

- Learning rate scheduling
- Nestrov momentum
- AdaGrad
- AdaDelta
- RMSprop
- Adam

Gradient Descent

Optimization Goal

Find a set of (optimized) weights which minimize the error (or loss function) at the output

Weight update rule

$$W_{ij} \leftarrow W_{ij} - \alpha \frac{\partial \mathcal{L}}{\partial W_{ij}}$$

Global minimum vs. local minimum

Gradient Descent

Error surface in the multi dimension can be complicated! also... cliffs and Local Minima plateaus. Global Minima

Saddle Point

Stochastic Gradient Descent

How many training samples at a time do we include to calculate the error?

Practically we use mini batches

Training speed and accuracy vs. minibatch size

Stochastic Gradient Descent

With decreasing learning rate (Learning rate scheduling)

```
Algorithm 8.1 Stochastic gradient descent (SGD) update
Require: Learning rate schedule \epsilon_1, \epsilon_2, \ldots
Require: Initial parameter \theta
   k \leftarrow 1
   while stopping criterion not met do
      Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\} with
      corresponding targets y^{(i)}.
      Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})
      Apply update: \theta \leftarrow \theta - \epsilon_k \hat{q}
      k \leftarrow k + 1
   end while
```

Stochastic Gradient Descent with momentum

SGD with learning rate alone is slow to converge

Adding a momentum (moving average) can make it faster

$$\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(\boldsymbol{f}(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}) \right),$$

$$\theta \leftarrow \theta + v$$
.

warning- different notations used (from deeplearningbook.org)

```
tf.keras.optimizers.SGD(
    learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD', **kwargs
)
```

SGD tuning parameters

```
tf.keras.optimizers.SGD(
    learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD', **kwargs
)
```

Popular options to tweak

- learning_rate: the base learning rate
- momentum
- decay
- nestrov
- (advanced) callback

Stochastic Gradient Descent with momentum

SGD with learning rate alone is slow to converge

Adding a momentum (moving average of a weight) can make it faster

$$\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(\mathbf{f}(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)}) \right),$$

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \mathbf{v}.$

** see what happens when the gradient is 0 (on plateau)

Stochastic Gradient Descent with decay

Learning rate scheduling using decay

For iteration k (epoch)

$$\epsilon_k = (1 - \alpha)\epsilon_0 + \alpha\epsilon_{\tau} \qquad \alpha = \frac{k}{\tau}$$

^{**} In the algorithm pseudocode k is for step (each mini batch), and decay learning rate by step, but normally we decrease learning rate each epoch

Learning rate scheduling

```
tf.keras.optimizers.SGD(
    learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD', **kwargs)
```

learning_rate=0.1, momentum=0, decay=0, nestrov=False

learning_reate=0.1,
momentum=0.8, decay=learning_rate/epochs

Learning rate scheduling (custom)

```
tf.keras.callbacks.LearningRateScheduler(
    schedule, verbose=0
)
```

```
# This function keeps the learning rate at 0.001 for the first ten epochs Ex1
# and decreases it exponentially after that.
def scheduler(epoch):
    if epoch < 10:
        return 0.001
    else:
        return 0.001 * tf.math.exp(0.1 * (10 - epoch))

callback = tf.keras.callbacks.LearningRateScheduler(scheduler)
model.fit(data, labels, epochs=100, callbacks=[callback],
        validation_data=(val_data, val_labels))</pre>
```

Learning rate scheduling (custom)

```
tf.keras.callbacks.LearningRateScheduler(
    schedule, verbose=0
)
```

```
0.75
0.70
0.65
0.60
validation training
20 40 60 80 100
```


comparison

Nestrov momentum

Nestrov momentum does early correction on gradient It's supposed to make converge faster, but on SGD it doesn't do much

Regular momentum

$$\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \nabla \boldsymbol{\theta} \left(\frac{1}{m} \sum_{i=1}^{m} L(\mathbf{f}(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)}) \right),$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \mathbf{v}.$$

Nestrov momentum

$$m{v} \leftarrow \alpha m{v} - \epsilon
abla_{m{ heta}} \left[\frac{1}{m} \sum_{i=1}^{m} L\left(m{f}(m{x}^{(i)}; m{ heta} + \alpha m{v}), m{y}^{(i)} \right) \right],$$
 $m{ heta} \leftarrow m{ heta} + m{v},$

Adagrad

learning rate is normalized by the sqrt of the total sum of the gradient

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i}$$

An overview of gradient descent optimization algorithms https://arxiv.org/pdf/1609.04747.pdf

Adadelta

learning rate is normalized by the RMS of the gradient Weight change is proportional to the RMS ratio

$$\Delta \theta_t = -\frac{\eta}{RMS[g]_t} g_t \qquad \Delta \theta_t = -\frac{RMS[\Delta \theta]_{t-1}}{RMS[g]_t} g_t$$

$$\theta_{t+1} = \theta_t + \Delta \theta_t$$

RMSprop

Variant of Adadelta RMSprop takes a moving average when it calculate the RMS of the gradient

$$E[g^{2}]_{t} = 0.9E[g^{2}]_{t-1} + 0.1g_{t}^{2}$$
$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^{2}]_{t} + \epsilon}}g_{t}$$

An overview of gradient descent optimization algorithms https://arxiv.org/pdf/1609.04747.pdf

Adaptive Moment Estimation (Adam)

Mimics momentum for gradient and gradient-squared

 m_t and v_t are estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradients

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

animated image source: https://imgur.com/a/Hqolp

Tips for training NN

Monitor overfitting as epoch goes

Train hyperparameter tuning: learning rate and other hyperparams

Architecture hyperparameter tuning: NN architecture, # layers, # neurons, activation ft, etc

Try different optimization methods

Regularization: Dropout and Batch Normalization, or add L1/L2 reg on the loss

Monitoring Overfitting in Training

Dataset split
Train / Validation / Test

Diagram credit: Fei-Fei Li

Monitoring Overfitting in Training

Ways to reduce overfitting

Dropout [1]

Batch normalization [2]

- [1] http://jmlr.csail.mit.edu/papers/volume15/srivastava14a/srivastava14a.pdf
- [2] https://arxiv.org/pdf/1502.03167.pdf