STA732

Statistical Inference

Lecture 20: UMP restricted to unbiased tests

Yuansi Chen

Spring 2023

Duke University

https://www2.stat.duke.edu/courses/Spring23/sta732.01/

Recap from Lecture 19

 Least favorable distributions as a way to reduce composite null to simple null

In general, think Langrangian multipler for constrained optimization think least favorable prior when dealing worst-case criteria!

Goal of Lecture 20

- 1. What to do when UMP does not exist
- General strategies for uniformly most powerful unbiased (UMPU) tests
- 3. UMP with power derivative restriction

Chap. 12.5-7 of Keener or Chap. 4 of Lehmann and Romano

Beyond UMP

Types of optimality:

Point estimation	Hypothesis testing
Uniform (in general does not exist)	UMP
Restrict: UMVU, MRE	Chap 4-6 in Lehmann and Romano
Global: Bayes, Minimax	Chap 8
Asymptotics	Chap 11-13

Typicall approaches to go beyond UMP

Restrict to smaller class of test functions

- Unbiased test
- Invariance
- Monotonicity

Global measures

- Maximize the average power: put a prior on Ω_1
- Maximize worst case power: maximize the minimum power over Ω_1

Unbiased tests

Def. Unbiased test, 12.25 in Keener

Let $\alpha \in [0,1]$. A test ϕ is unbiased level- α if

$$\beta_\phi(\theta) \leq \alpha, \forall \theta \in \Omega_0 \text{ and } \beta_\phi(\theta) \geq \alpha, \forall \theta \in \Omega_1$$

Remark

- Unbiasedness enforces the appealing property that the probability of rejection is greater under any alternative distribution than it is under any null distribution
- It is related to a special case of risk unbiasedness if we design the loss function L such that $L(\theta_0, \text{reject}) = 1 \alpha$, $L(\theta_0, \text{accept}) = 0$, $L(\theta_1, \text{reject}) = 0$ and $L(\theta_1, \text{accept}) = \alpha$.

Restrict test with some invariance (not covered)

Let $X_1,\ldots,X_n \overset{\text{iid}}{\sim} \mathcal{N}\left(\theta,\sigma^2\right)$ for σ,θ both unknown, and test $H_0:\theta=0$ versus $H_1:\theta\neq 0$. For $i\in\{1,\ldots,n\}$, let $X_i'=cX_i$ with c>0. Then $\mathbb{E}\left(X_i'\right)=\theta'=c\theta$. Since testing $\theta=0$ is equivalent to testing $\theta'=0$, it is natural to impose the invariance constraint

$$\forall c > 0 \quad \phi(X) = \phi(cX)$$

Such a test is unaffected by arbitrary rescaling of the data (which might occur when changing units from centimeters to meters).

7

Restrict to tests with monotonicity (not covered)

Let X,Y be independent, $X \sim \mathcal{N}\left(\theta_X,1\right)$ and $Y \sim \mathcal{N}\left(\theta_Y,1\right)$ for θ_X,θ_Y unknown, and test $H_0:\theta_X \leq 0,\theta_Y \leq 0$.

A monotonicity restriction requires that if ϕ rejects upon observing (x,y), then it should also reject for (x',y') where x'>x and y'>y.

General strategies for UMPU

Strategy outline

- 1. Prove that unbiasedness implies weaker constraints (α -similarity)
- 2. Fix an alternative hypothesis
- 3. Find a MP test ϕ under the weaker constraints (generalization of Neyman-Pearson lemma)
- 4. If ϕ does not depend on the alternative hypothesis, then it is UMP for the composite alternative under the weaker constraints
- 5. Show ϕ is UMP under the original constraint (unbiasedness).

Common boundary

Testing $H_0:\theta\in\Omega_0$ vs $H_1:\theta\in\Omega_1$. Ω_0 and Ω_1 are subsets of a Euclidean space. Let ω be the common boundary between Ω_0 and Ω_1 :

$$w = \bar{\Omega}_0 \cap \bar{\Omega}_1$$

In words, ω is the intersection of the closures of Ω_0 and Ω_1

Examples of common boundary

Example 1

Testing $H_0:\theta=\theta_0$ vs $H_1:\theta\neq\theta_0$, then $\omega=\{\theta_0\}$

Example 2

Testing $H_0: \theta_1 \leq \tilde{\theta}$ vs $H_1: \theta_1 > \tilde{\theta}$ in the presence of nuisance parameters $(\theta_2, \dots, \theta_{k+1})$, then

$$\omega = \left\{\theta \in \mathbb{R}^{k+1}: \theta_1 = \tilde{\theta}\right\}$$

α -similarity

Def. α -similarity, 4.1 in Lehmann and Romano

A test ϕ satisfying $\mathbb{E}_{\theta}\phi(X)=\alpha$ for all $\theta\in\omega$ is called $\alpha\text{-similar}$ on ω

Relation to unbiasedness

When $\beta_{\phi}(\theta)$ is continuous in θ , unbiasedness implies α -similarity on ω .

draw a picture

UMP among α -similar is sufficient for UMPU

Lem. 4.1.1 Lehmann and Romano

If $\theta\mapsto\beta_\phi(\theta)$ is continuous on Ω for all ϕ , and ϕ_0 is a UMP test among α -similar level- α tests, then ϕ_0 is also UMPU at level α

Proof: compare to the constant test

 ϕ_0 is UMP among α -similar tests, it is at least as powerful as the constant test $\phi_{\alpha}(X)\equiv \alpha.$

UMPU in two-sided testing without nuisance params

Testing $H_0:\theta=\theta_0$ vs $H_1:\theta\neq\theta_0.$ Suppose X is from a 1-param exp family

$$p_{\theta}(x) = h(x) \exp(\theta T(x) - A(\theta))$$

UMPU in two-sided testing without nuisance params

Testing $H_0: \theta=\theta_0$ vs $H_1: \theta\neq\theta_0$. Suppose X is from a 1-paramexp family

$$p_{\theta}(x) = h(x) \exp(\theta T(x) - A(\theta))$$

- We know that no UMP test exist in the Gaussian case
- Assume ϕ is unbiased at level- α , then

$$\begin{split} \beta_\phi(\theta_0) &= \mathbb{E}_{\theta_0} \phi(X) = \alpha \\ \beta_\phi(\theta_0) &\leq \beta_\phi(\theta) \text{ for all } \theta \in \mathbb{R} \end{split}$$

- If we further assume β_ϕ is differentiable, then the second point translate to

$$0 = \beta_\phi'(\theta_0) = \int \phi(x) \frac{d}{d\theta} p_{\theta_0}(x) d\mu(x)$$

To find UMPU in two-sided testing, we first find UMP with power derivative constraint

$$\begin{aligned} \max_{\phi} \beta_{\phi}(\theta') & \forall \theta' \in \Omega_1 \\ \text{s.t. } \beta_{\phi}(\theta_0) &= \alpha \\ \beta'_{\phi}(\theta_0) &= 0 \end{aligned}$$

Method of undetermined multipliers allow us to deal with UMP problems with multiple constraints!

Proof for UMP with power derivative constraint in two-sided testing, 1-param exp family

- Fix a simple alternative $\theta' > \theta_0$
- Use method of undetermined multipliers to determine a rejection region for the simple vs simple testing
- Discuss the shape of the rejection region
- Find UMP test for $H_0:\theta_0,H_1:\theta'>\theta_0$
- Reverse the above argument to show the same test works for $H_0:\theta_0,H_1:\theta'<\theta_0$
- The test does not depend on the alternative, so UMP for the composite alternative

Recall: Methods of Undetermined Multipliers applied to testing (1)

We plan to apply the Methods of Undetermined Multipliers to the case U is the space of test functions ϕ :

$$F_i(\phi) = \int \phi(x) f_i(x) d\mu(x).$$

We want to

$$\max \quad \int \phi(x) f_{m+1}(x) d\mu(x)$$
 s.t.
$$\int \phi(x) f_i(x) d\mu(x) = c_i, \quad \forall i=1,\dots,m$$

Recall: Methods of Undetermined Multipliers applied to testing (2)

According to Lem 3.6.1, we consider to maximize

$$F_{m+1}(\phi) - \sum_i k_i F_i(\phi) = \int \phi(x) \left(f_{m+1}(x) - \sum_{i=1}^m k_i f_i(x) \right) d\mu(x)$$

It is not hard to show (ignoring all regularity assumptions), the optimal solution should have the form

$$\phi(x) = \begin{cases} 1 & \text{if } f_{m+1}(x) > \sum_{i=1}^m k_i f_i(x) \\ 0 & \text{if } f_{m+1}(x) < \sum_{i=1}^m k_i f_i(x) \end{cases}$$

Finally, we choose k_i so that the constraints are all satisfied Existence of ϕ^* in general space (convex and closed) requires some technical details, see Chapter 12.5 Keener

Conclude that the UMP test with with power derivative constraint is also UMPU

- First, $\phi_{\alpha}\equiv\alpha$ also satisfies the two constraints. Since ϕ is more powerful, then ϕ is unbiased.
- Second, all unbiased tests satisfy the two constraints. Conclude that ϕ is UMP among all level— α unbiased tests.

Example

Suppose
$$X_1,\dots,X_n\stackrel{\text{i.i.d.}}{\sim}\mathcal{N}(0,\sigma^2)$$
 with $H_0:\sigma=\sigma_0$ vs $H_1:\sigma\neq\sigma_0$

Summary

- UMPU exists in two sided testing without nuisance parameters
- UMPU via method of undetermined multipliers

What is next?

UMPU in multiparameter exp family

- Nuisance parameters
- the idea of conditioning

Thank you