Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2018 EN3BS05 Engineering Physics

Programme: B.Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

	_	estions are compulsory. Inter- lld be written in full instead of	nal choices, if any, are indicated. Answers of fonly a, b, c or d.	Q.1		
Q.1 i.		stimulated emission (c) A for absorption and B ₁₂ emission		1		
		emission	gand B ₂ [101 stillulated absorption and			
	ii.					
		fiber respectively then the Numerical Aperture is given by				
		(a) $(n_1^2 - n_2^2)$	(b) $(n_1^2 - n_2^2)^3$			
		(c) $(n_1^2 - n_2^2)^{1/2}$	(d) $1/(n_1^2 - n_2^2)$	1		
	iii. In Newton's ring arrangement the diameter of rings forme					
		proportional to	(1) 1 / 10			
	•	(a) λ (b) $\sqrt{\lambda}$		1		
	iv.	Nicol prism is based on the	•	1		
		(a) Refraction(c) Double refraction	(b) Reflection(d) Double reflection			
	v.	` '		1		
	v. Heisenberg Uncertainty principle holds for (a) Microscopic and macroscopic particles					
		(b) Only microscopic particl				
		(c) Only macroscopic particle				
		(d) All of these				
	vi.	Matter waves were first expe	erimentally observed by	1		
		(a) De-Broglie	(b) Schrodinger			
		(c) Davisson and Germer	(d) Bohr			
			P.T	.O.		

	vii.	Divergence of a vector field is:		1
		(a) Scalar		
		(b) Vector		
		(c) Not defined		
		(d) None of these		
	viii.	Required time for a sound to	decay to 60 dB is called as	1
		(a) Echo time	(b) Delay time	
		(c) Reverberation time	(d) Transient time	
	ix.	Force that produces an acce	leration of 1 ms ⁻² in a body of mass of 1	1
		kg is called		
		(a) Slow Newton	(b) Zero Newton	
		(c) One Newton	(d) Two Newton	
	х.	Elastic collision is collision i	n which kinetic energy is	1
		(a) Conserved	(b) Not conserved	
		(c) Increases	(d) Decreases	
Q.2	i.	Differentiate between Sponta	aneous emission and Stimulated emission	2
	ii.	-	with core glass of refractive index 1.5 and	3
		•	a index difference of 0.0005. Determine	
		(a) The cladding refractive i		
		(b) The acceptance angle		
		(c) The numerical aperture		
	iii.	· ·	and working of Ruby laser with neat	5
		diagram.	S ,	
OR iv.		· ·	f Optical fibers with suitable diagram.	5
		1		
Q.3 i. WI		What is Malus law?		2
	ii.	In a plane transmission grati	ng the angle of diffraction for the second	3
		1	For the wavelength 5 x 10^{-5} cm is 30^{0} .	
			s in one centimetre of grating surface.	
	iii.		formation of Newton's ring in reflected	5
		•	e that the diameters of bright rings are	
		_	ots of the odd natural numbers.	
OR	iv.		? Obtain an expression for maxima and	5
			diffraction at a single slit with intensity	-
		distribution curve.		

Q.4	i.	Explain the concept of Miller indices.	2
	ii.	Define wave packet and give any two properties of matter wave.	3
OR	iii.	A particle is moving in one-dimensional box described by	5
		V = 0 for 0 < x < L	
		$V = \infty \text{ for } 0 \ge x \text{ and } x \ge L$	
		Write and solve its Schrodinger's wave equation and obtain Eigen	
		value and Eigen function.	
OR	iv	Write short note on:	5
		(a) Heisenberg's Uncertainty principle	
		(b) Compton's Effect	
Q.5	i.	Write short note on:	4
		(a) Electromagnetic Damping	
		(b) Sabines formula in accoustics	
	ii.	Write Maxwells equation and derive electromagnetic wave equation	6
		in free space using it.	
OR	iii.	Give the physical significance of Curl and prove stokes theorem.	6
Q.6		Attempt any two:	
	i.	What are pseudo forces? Explain any one pseudo force by giving its	5
		application.	
	ii.	Derive gravitational potential due to a uniform spherical body at a	5
		point P on the surface of it and draw a graph showing the variation of	
		potential with distance.	
	iii.	Differentiate between elastic collision and inelastic collision by	5
		giving one example each.	

Marking Scheme EN3BS05 Engineering Physics

Q.1	i.	The Einstein's coefficients are	1
		(b) A for spontaneous emission and B_{12} and B_{21} for absorption and	
		stimulated emission	
	ii.	If n_1 and n_2 are the refractive index of core and cladding of an optical	1
		fiber respectively then the Numerical Aperture is given by	
		(c) $(n_1^2 - n_2^2)^{1/2}$	
	iii.	In Newton's ring arrangement the diameter of rings formed is	1
		proportional to	
		(b) √λ	
	iv.	Nicol prism is based on the phenomenon of	1
		(c) Double refraction	
	v.	Heisenberg Uncertainty principle holds for	1
		(b) Only microscopic particles	
	vi.	Matter waves were first experimentally observed by	1
		(c) Davisson and Germer	
	vii.	Divergence of a vector field is a	1
		(a) Scalar	
	viii.	Required time for a sound to decay to 60 db	1
		(c) Reverberation time	
	ix.	Force that produces an acceleration of 1 ms ⁻² in a body of mass of 1 kg	1
		is called	
		(c) One newton	1
	х.	Elastic collision is collision in which kinetic energy is	1
		(a) Conserved	
Q.2	i.	Differentiate between Spontaneous emission and Stimulated emission	2
Q.2	1.	Spontaneous emission -1 mark	4
		Stimulated emission - 1 mark	
	ii.	A glass clad fiber is made with core glass of refractive index 1.5 and	3
	11.	the cladding is doped to give a index difference of 0.0005. Determine	
		a) The cladding refractive index	
		b) The acceptance angle	
		c) The numerical aperture	
		c, and numerical aperture	

α 1	. •
\sim	lifton.
SUI	ution:

Cladding index difference = (n1 - n2) / n1 - 1 mark So n2 = 1.49925

Acceptance angle = $\sin^{-1}\left(\sqrt{(n_1^2-n_2^2)}\right)$ - 1 mark Acceptance angle = 2.72^0

Numerical aperture = $\sqrt{(n_1^2 - n_2^2)}$ - 1 mark Numerical aperture = 0.0474

iii. Explain the construction and working of Ruby laser with neat diagram.

Diagram - 1 mark
Energy level diagram - 1 mark
Description - 3 marks

5

5

3

5

5

- OR iv. Explain with suitable diagram the different types of Optical fibers.

 Types of fibers
 Explanation of each three types -3 marks
- Q.3 i. What is Malus law?
 - ii. In a plane transmission grating the angle of diffraction for the second order principal maximum for the wavelength 5×10^{-5} cm is 30^{0} . Calculate the number of lines in one centimetre of grating surface.

$$(e+d)\sin\theta = n\lambda$$

$$n = 2, \lambda = 5 \times 10^{-5} \text{ cm}$$

$$(e+d) = 10^{-3} \text{ cm}$$

$$- 1 \text{ mark}$$

$$\theta = 30^{0}$$

Number of lines in one centimetre = $\frac{1}{e+d} = \frac{10000}{2} = 5000 - 2$ marks

iii. Describe and explain the formation of Newton's ring in reflected monochromatic light. Prove that the diameters of bright rings are proportional to the square-roots of the odd natural numbers.

Diagram - 1 mark
Explanation of diagram - 1 mark
Proof - 3 marks

OR iv. What is diffraction grating? Obtain an expression for maxima and minima due to fraunhofer diffraction at a single slit with intensity distribution curve.

What is diffraction grating - 1 mark

		Expression for Intensity - 2 marks	
		Expression of maxima - 0.5 mark	
		Expression of minima - 0.5 marks	
		Intensity distribution curve - 1 mark	
Q.4	i.	Explain the concept of Miller indices.	2
	ii.	Define wave packet and give any two properties of matter wave.	3
		Definition - 1 mark	
		Properties each 1 mark (1 mark * 2) - 2 Marks	
OR	iii.	A particle is moving in one-dimensional box described by	5
		V = 0 for 0 < x < L	
		$= \infty$ for $0 \ge x$ and $x \ge L$	
		Write and solve its Schrodinger's wave equation and obtain eigen	
		value and eigen function.	
		Explanation of diagram - 1 mark	
		Wave function - 2 marks	
		Eigen value - 2 marks	
OR	iv	Write short note on:	5
		a) Heisenberg's Uncertainty principle	
		Expression - 0.5 Marks	
		Statement -2 marks	
		b) Compton's Effect	
		Statement -2 marks	
		Diagram -0.5 marks	
Q.5	i.	Write short note on	4
		a) Electromagnetic Damping -2 marks	
		b) Sabines formula in acoustics -2 marks	
	ii.	Write Maxwells equation and derive electromagnetic wave equation	6
		in free space using it.	
		Maxwells equation - 2 marks	
		Derivation - 4 marks	
OR	iii.	Give the physical significance of Curl and prove stokes theorem.	6
		physical significance of Curl - 2 marks	
		proof of stokes theorem - 4 marks	
Q.6		Attempt any two:	
	i.	What are pseudo forces? Explain any one pseudo force by giving its	5
		application.	

	Pseudo forces	- 2 marks	
	Explanation of any one pseudo force by giving its app	lication	
		- 3 marks	
ii.	Derive gravitational potential due to a uniform spherical	erical body at a	5
	point P inside the body and draw a graph showing	the variation of	
	potential with distance.		
	Diagram	- 1mark	
	Derivation	- 3 marks	
	Graph	- 1 mark	
iii.	Differentiate between elastic collision and inelast	ic collision by	5
	giving one example each.		
	Differentiation	- 3 marks	
	Example each	- 2 marks	