

DEEP LEARNING INFERENCE WITH INTEL® FPGA

Class 2

What We Discussed in Previous Lesson

Deep Learning (DL) is a type of machine learning for extracting patterns from data using neural networks

DL neural networks are built and trained using frameworks and combining various layers

FPGAs are made up of a variety of building blocks that using FPGA development tools will translate code into custom hardware

FPGAs provide a flexible, deterministic low-latency, high-throughput, and energy-efficient solution for accelerating the constantly changing networks and precisions for DL inference

Agenda

Computer Vision (CV) Primer

- Why CV is needed
- CV algorithm basics
- Components of Vision Systems Architecture

Where Inferencing fits into CV

Building a deep learning computer vision application

Different programming languages, hardware and tools

Objectives

You will be able to:

- Define the stages of a computer vision application
- Explain where deep learning inference can be used and how it is relevant for computer vision applications
- Define the programming languages and hardware platforms available to create computer vision applications
- Relate to the advantages of FPGA acceleration of deep learning computer vision applications

Computer Vision Enables Amazing New Applications

Use of video, computer vision and deep learning is growing rapidly across industries

Video Surveillance Problem

Proliferation of Surveillance Cameras And Sensors

Explosion of Data (especially video)

1.6 Exabytes/Day by 2020

Inefficiencies and Increased Cost

Human Monitoring

- Effective for only 20 min
- > Slow to react
- Expensive

Distribution

Network Overload

Storage growing @30%

Intel Is Removing Obstacles

Video Analytics accelerated by Intel® FPGAs

- Eliminate need for human operators
- Delivers deterministic latency orders of magnitude lower
- Delivers accurate results 24/7/365
- Reduces storage and network requirements by orders of magnitude
- Provides a flexible architecture for next generation mathematical approaches

Visual System Architecture

Characteristics of the Physical World

What light is getting to the image capture equipment?

- Color
- Brightness
- Intensity
- Light scatter

Pre-Processing

Modern cameras use software to perform many pre-processing steps on images captured:

- Sampling data received to create image of appropriate resolution
- Denoising to increase sharpness
- Correcting contrast to increase clarity
- Scale correction
- Extraction of low-level features

Detection and Segmentation of Image Components

Define region of interest

Scene segmentation - divide image into objects at the pixel level

High-Level Processing

Counting and identifying attributes of objects of a type

- Using object size, object position, or other feature and assigning these to specific categories
- Counting attributes of specific object types
 - object size/position, objs → categories

Example CV system could identify that:

- There are 20 birds in this image:
 - 5 Ducks
 - 15 Pigeons

High-Level Processing

"Image understanding" (Wikipedia)

- Low level includes image primitives such as edges, texture elements, or regions;
- Intermediate level includes boundaries, surfaces and volumes
- High level includes objects, scenes, or events.
- LEARNING SYSTEM is implemented here

Examples:

- Intermediate level learning:
 - "This image has grass, water, and concrete surfaces."
- High-level learning:
 - "Birds are sitting near a pond in Regent's Park, London."

High-Level Processing Gives the Data Context

If This is a Chair...

And this is a chair...

High-Level Processing Gives the Data Context

But, should a self driving car see these the same?

CV Algorithm Common Tasks

Background/Object

Animals

Cheetah, Gazelle

Sandy T. Cheetah

East @ 40 mph

Segmentation

Semantic Segmentation

 Label each pixel of an image by the object class

Instance Segmentation

 Label each pixel of an image by the object class and object instance

Common CNN segmentation networks

- Fully-Convolutional Net (FCN)
- SegNet

Object Detection

Localize and classify all objects in the image

- Common CNN Networks:
 - YOLO, Single Shot MultiBox Detector (SSD), Faster-RCNN, etc
 - Outputs
 - Bounding Box
 - Object Class
 - Possibly Confidence Score

Object Localization

Predict the region that contains the dominant object

Image Classification

Classify an imaged based on the dominant object inside it

Common CNN Networks for Classification

- AlexNet, GoogLeNet, SqueezeNet, VGG, MobileNet, ResNet, etc...
 - For each image, outputs probability for every class

Face Recognition

Maps detected face with a stored reference

Common CNN Networks:

CNNs with ability to differentiate face features e.g., SphereFace

Other Tasks

Object Tracking

Locating object in successive video frames

East @ 40 mph

Optical Character Recognition (OCR)

Object Detection for numbers and characters

Keypoint Detection

- Detect locations of a set of predefined keypoints of an object
 - i.e., human body, face

Different Applications Need Different Things

A Car

A black car

Volkswagen Passat License plate number

Not the owner!!

Car detection for autonomous driving

Car detection for Smart City analytics, police tracking for a particular car, or authorization through a toll

Recognition of potential stolen car

Different Applications Need Different Things

People Detection

People Tracking

Smart City application in retail for marketing purposes

Detect Age and gender of people shopping for particular products or authorization of a particular person to use an ATM

Track shopping patterns of particular demographics

Analyze behavior/intentions

Asset Protection against potential thieves

Encoding/Decoding

Decoding

Decode video from source format to a format that can be easily processed

Encoding

- Convert/compress video to a format for display or other type of consumption
- H.265 (HEVC), H.264 (AVC), MPEG-2, etc...

Pre-Processing/Post-Processing

Pre-Processing

- Convert video format to one expected by the inference network
- Common tasks: resize, scale, deinterlace, color space conversions, de-noise, sharpen, etc...

Post-Processing

- Prepare inference output for application consumption
- Common tasks: draw rectangle around classified object to highlight it

Inference

Computationally-intensive process of executing a trained network on the input video/image data to find a pattern

Example of End-to-End Inference Application

License Plate Recognition at Toll Booth (3 inferences with 3 different networks)

Different Languages and Hardware Platforms Available

Programming languages

- DL Frameworks for CNN topologies
- OpenCL*
- OpenCV
- OpenVX*

Hardware Platforms

- CPU
- FPGA
- GPU
- VPU
- Dedicated ASICs

Deep Learning Frameworks

Software framework for designing, training, validating, and deploying deep neural networks

Various frameworks designed for different purposes

Easy to use high-level programming interface

- May not be fully optimized for each hardware accelerator
- Not lightweight since they provide end-to-end functionality
- Different frameworks are not interoperable

Open Computing Language (OpenCL™)

General purpose programming model for writing programs that execute across heterogeneous parallel platforms

- Provides increased performance with hardware acceleration on CPUs, GPUs, and FPGAs
- Host API and kernel language
 - Low-level programming language based on C/C++
- Open, royalty-free standard managed by Khronos® Group (Intel® leads group)
 - www.khronos.org

Open Source Computer Vision Library (OpenCV)

G U OpenCV

Free cross-platform portable library aimed at real-time computer vision

- 2500+ algorithms and functions
- C++, Python*, Java* and Matlab* interfaces
- Written in optimized C/C++ and enabled with OpenCL™

Low-level library providing building blocks for your application

 Functionality: image retrieval, pre-processing, feature extraction, segmentation, object detection, recognition, pose estimation, reconstruction, motion analysis, machine learning, etc...

Example OpenCV Program

Canny Edge Detector

```
#include "opencv2/opencv.hpp"
using namespace cv;
int main (int argc, char** argv)
     Mat img, gray;
     img = imread(argv[1], 1);
     imshow("original", img);
     cvtColor(img, gray, COLOR BRGR2GRAY);
     GaussianBlur(gray, gray, Size(7, 7), 1.5);
     Canny (gray, gray, 0, 50);
     imshow("edges", gray);
     waitKey();
     return 0;
```


OpenVX™

Open, royalty free standard API managed by the Khronos® Group*

Contains library of predefined and customizable vision functions

 E.g. CNN, Various Filters, Edge Detector, Color Convert, HOG, HoughLines, Magnitude, Mean and Standard Deviation, Scale etc...

C API for building, verifying, and coordinating graph execution (Nodes)

Putting It All Together

Intel® tools and libraries work together in the best possible way to minimize development time and optimize system power/performance while abstracting the hardware platform away

Application Development with OpenVINO™ Toolkit

Video Analytics Models Included with OpenVINO™

Topology	Туре	Description
age-gender-recognition-retail-0013	object_attributes	Age & gender classification. Used in audience analytics.
face-detection-retail-0004	detection	Face Detection (SqNet1.0modif+single scale) without BatchNormalization trained with negatives.
person-detection-retail-0001	detection	Person detection (HyperNet+RFCN). Used in Audience Analytics.
license-plate-recognition-barrier-0001	ocr	Chinese license plate recognition
face-detection-adas-0001	detection	Face Detection (MobileNet with reduced channels + SSD with weights sharing)
person-detection-retail-0012	detection	MobileNet + single SSD - cluster. Used in Audience Analytics.
head-pose-estimation-adas-0001	headpose	Vanilla CNN trained from scratch yaw + pitch + roll + landmarks
vehicle-attributes-recognition-barrier-0010	object_attributes	Vehicle attributes recognition with modified ResNet10 backbone
person-vehicle-bike-detection-crossroad-0066	detection	Multiclass (person, vehicle, non-vehicle) detector based on SSD detection architecture, RMNet backbone and learnable image downscale block
vehicle-license-plate-detection-barrier-0007	detection	Multiclass (vehicle, license plates) detector based on ResNet10+SSD

Many more coming soon

Intel[®] Media SDK

API to Access Intel® Quick Sync Video: Hardware Accelerated Encoding, Decoding, and Processing

- H.265 (HEVC)
- H.264 (AVC)
- MPEG-2 and more
- Resize, scale, deinterlace
- Color conversion, composition
- Denoise, sharpen, and more

Benefits

- Outstanding performance
- Rich API to tune encoding pipeline
- Future proofed: support new processor without code changes

Targeting Digital Security and Surveillance, Connected Car Applications, and More

Smart Camera

using

Car Infotainment and Cluster Display

and

Embedded Linux*

Intel Atom®, Pentium®, and Celeron® 1

¹ Intel® Celeron® Processor N3350, Intel® Pentium® Processor N4200, Intel Atom® E3930, E3940, E3950 processors

Video Pipeline Acceleration Hardware

Enable Video Pipeline Acceleration Hardware

Using Intel® Media SDK and the OpenVINO™ toolkit together enables customers to build high performance, intelligent vision solutions.

Intel Integrated Graphics

Intel® Core™ Processors include Gen GPU hardware

Gen GPUs can be used for graphics and also as general compute resources

Libraries contained in the OpenVINO™ toolkit (and many others) support Gen offload using OpenCL™

6th Generation Intel® Core™ i7 (Skylake) Processor

OpenCL™ Used to Enable Processor Graphics

Required to run with a GPU target (clDNN) using Intel® Processor Graphics

Custom kernels

Other kernels can be used for other noninference pipeline stages, such as color conversions

Intel® Solution

Video Analytics at the Edge

Video Analytics with Intel

Building a real video analytics workload

- Heterogeneous system (CPU, GPU, FPGA, VPU)
- Computer Vision, Deep Learning, Media

Using Intel tools abstracts accelerator platform away

- Code the full workload for CPU (OpenCV), meet accuracy targets
- Until you meet the Power and performance targets
 - Identify critical path and most compute/memory demanding task
 - Offload critical task to an accelerator
 - Measure performance and device utilization

Get it here:

Intel® OpenVINO™ Toolkit

https://software.intel.com/en-us/openvino-toolkit

Intel[®] Media SDK

https://software.intel.com/media-sdk

Intel® System Studio

https://software.intel.com/en-us/intel-system-studio

Intel® Smart Video Portal

https://www.intel.com/content/www/us/en/embedded/solutions/smart-video/video-overview.html

Summary

Computer vision applications have multiple stages from image capture, pre processing, inference and post processing

Post processing provides context to the data and how it is used in the larger application

OpenCL™, OpenVX*, OpenCV are common programming languages used to develop CV applications

Intel provides a variety of hardware platforms and a common set of tools to implement CV applications

Legal Disclaimers/Acknowledgements

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at www.intel.com.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, MAX, Stratix, Cyclone, Arria, Quartus, HyperFlex, Intel Atom, Intel Xeon and Enpirion are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

OpenCL is the trademark of Apple Inc. used by permission by Khronos

*Other names and brands may be claimed as the property of others

© Intel Corporation

