Right Place, Write Architecture for SMR drives

Surbhi Palande, Alexandra Fedorova, Margo Seltzer

Problem:

 Can we achieve similar performance as the Conventional Magnetic Recording (CMR) drives using Shingled Magnetic Recording Drives (SMR) Drives.

Challenges:

- SMR Drives support only sequential writes.
- Random writes are either managed by an SMR translation layer on the device or by the Host OS.

Current Approach:

- Updated/Random writes are written to a non shingled disk portion (cache).
- Cache is emptied using a Read-Merge-Write operation.
- Sequential writes are written to the shingled portion.

Problem with current Approach:

- Cache emptying causes application I/O to stall; causes higher latency.
- Smaller cache exacerbates this problem.

Our Approach:

- Employ log structured architecture in the host OS to manage the host Managed
 SMR drives.
- Develop a Linux kernel based device mapper that implements log structuring for experiments.

	CMR	DM-SMR	HM-SMR
Cost	4 cents / GB	3 cents / GB	1.2 cents / GB
Random I/O	500 to 1000 IOPs	~150 IOPs	> 150 IOPs

Our contributions:

- A log structured device mapper.
- A literature survey of flash memory to investigate the reasons for the current STL architecture.
- A published cost and performance analysis of DM-SMR drives vs HM-SMR Drives.
- Discovering that HM-SMR are much superior to DM-SMR drives and the storage industry should stop producing them.

Parallel Work:

 Research if I/O priority assignment can improve the performance of log structured architure implemented on host managed
NVMe SSDs and host managed SMR drives (Zoned Storage Devices).