Distribution	$\mathrm{pdf}/\mathrm{pmf}$	E(X)	Var(X)	MGF
Binomial	$f(x \mid n, p) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$(1-p+pe^t)^n$
D Unif	$f(x \mid N) = \frac{1}{N}$	$\frac{N+1}{2}$	$\frac{(N+1)(N-1)}{12}$	$\frac{1}{N} \sum_{i=1}^{N} e^{it}$
Geometric	$f(x \mid p) = p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$	$\frac{pe^t}{1-(1-p)e^t} \ t < -log(1-p)$
Hypergeom	$f(x \mid N, M, K) = \frac{\binom{M}{x} \binom{N-M}{K-x}}{\binom{N}{K}}$	$\frac{KM}{N}$	$\tfrac{(KM)(N-M)(N-K)}{NN(N-1)}$	-
NBinom	$f(x \mid r, p) = \binom{r+x-1}{x} p^r (1-p)^x$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$(\frac{p}{1-(1-p)e^t})^r \ t < -log(1-p)$
Poisson	$f(x \mid \lambda) = \frac{e^{-\lambda} \lambda^x}{x!} \ 0 \le \lambda < \infty$	λ	λ	$e^{\lambda(e^t-1)}$
Beta	$f(x \mid \alpha, \beta) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}x \in [0, 1], \alpha, \beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \textstyle \sum_{k=1}^{\infty} (\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r}) \frac{t^k}{k!}$
Cauchy	$f(x \mid \theta, \sigma) = \frac{1}{\pi \sigma (1 + (\frac{x - \theta}{\sigma})^2)} \sigma > 0$	-	-	-
χ^2	$f(x \mid p) = \frac{x^{p/2 - 1}e^{-x/2}}{\Gamma(p/2)2^{p/2}}, x \in [0, \infty)$	p	2p	$(\tfrac{1}{1-2t})^{p/2}$
Exponential	$f(x \mid \beta) = \frac{1}{\beta} e^{-x/\beta} x \in [0, \infty), \beta > 0$	β	β^2	$\frac{1}{1-\beta t}, t < \frac{1}{\beta}$
F	$f(x\mid v_1,v_2) = \frac{\Gamma(\frac{v_1+v_2}{2})}{\Gamma(\frac{v_1}{2})\Gamma(\frac{v_2}{2})} (\frac{v_1}{v_2})^{v_1/2} \frac{x^{(v_1-2)/2}}{(1+(\frac{v_1}{v_2})x)^{(v_1+v_2)/2}}, x \in [0,\infty)$	$\frac{v_2}{v_2-2}v_2>2$	$2(\frac{v_2}{v_2-2})^2\frac{v_1+v_2-2}{v_1(v_2-4)},v_2>4$	$e^{\lambda(e^t-1)}$
Gamma	$f(x \mid \alpha, \beta) = \frac{x^{\alpha - 1} e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}, x \in [0, \infty), \alpha, \beta > 0$	$\alpha\beta$	$\alpha \beta^2$	$(\frac{1}{1-\beta t})^{\alpha}, t < \frac{1}{\beta}$
Normal	$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$	μ	σ^2	$e^{\lambda(e^t-1)}$
Т	$f(x \mid v) = \frac{\Gamma(\frac{v+1}{2})}{\Gamma(\frac{v}{2})\sqrt{v\pi}(1+\frac{x^2}{v})^{(v+1)/2}}$	0, v > 1	$\frac{v}{v-2}$, $v > 2$	-
Unif	$f(x \mid a, b) = \frac{1}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$

Distribution Properties

- 1. $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$
- 2. $F_{v_1,v_2}=(\frac{\chi^2_{v_1}}{v_1})/(\frac{\chi^2_{v_2}}{v_2}), \chi^2s$ are independent
- 4. $Gamma(1, \beta) = Exponential(\beta)$
- $5.~~Gamma(p/2,2)=\chi_p^2$
- 6. $X_1, ..., X_n \backsim Poisson(\lambda)$ Then $\sum X_i \backsim Poisson(n\lambda)$
- 7. $X_1, ..., X_{\alpha} \backsim Exponential(\beta),$ Then $\sum x_i \backsim Gamma(\alpha, \beta)$
- 8. $Z \backsim N(0,1), Z^2 \backsim \chi_1^2$
- 9. $X_i \backsim \chi^2_{p_{\bar{I}}}$ then $\sum X_i \backsim \chi^2_{\sum p_{\bar{I}}}$
- 10. $T = \frac{U}{\sqrt{V/p}}, U \backsim N(0, 1), V \backsim \chi_p^2$

Gamma Function

$$\Gamma(\alpha) = \int_0^\infty \, t^{\alpha - 1} e^{-t} dt$$

- 1. $\Gamma(\alpha + 1) = \alpha\Gamma(\alpha)$
- 2. $\Gamma(n) = (n-1)!$
- 3. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- 4. $\Gamma(1) = 1$
- 5. $\int_0^\infty t^{\alpha-1} e^{-\beta t} dt = \Gamma(\alpha) (\frac{1}{\beta})^{\alpha}$

Bivariate Normal

Bivariate N(X,Y) with μ_x , μ_y , σ_x^2 , σ_y^2 , ρ , Z_1 , $Z_2iidN(0,1)$ $X = \sigma_X Z_1 + \mu_X$ $Y = \sigma_Y (\rho Z_1 + \sqrt{1 - \rho^2} Z_2) + \mu_Y$ $aX + bY \sim N(a\mu_X + b\mu_Y, a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\rho\sigma_X \sigma_Y)$

Normal Sum

 $X \backsim N(\mu, \sigma^2), Y \backsim N(\gamma, \tau^2), X, Y$ are independent, then $Z = X + Y \backsim N(\mu + \gamma, \sigma^2 + \tau^2)$

Exponential Family

 $f(x \mid \theta) = h(x)c(\theta)exp(\sum_{i=1}^k)w_i(\theta)t_i(x)$

 $X\backsim N(\theta,\sigma^2)$ and g is a differentiable function satisfying $E\left|g'(x)\right|<\infty$ then $E[g(x)(x-\theta)]=\sigma^2E(g'(x))$

Multinomial Theorem

 $A = \{(x_1, ..., x_n) : \sum_{i=1}^n x_i = m\}$ $(p_1 + ... + p_n)^n = \sum_{x \in A} \frac{m!}{x_1!...x_n!} p_1^{x_1} p_n^{x_n}$

Location-Scale Family

 $-\infty < \mu < \infty, \overline{\sigma} > 0, z \backsim f(z)$, the location- scale family indexed by μ, σ is $X = \sigma Z + \mu, X \backsim \frac{1}{\sigma} f((x - \mu)/\sigma)$

2 Calculation

2.1 e related

 $\begin{array}{l} e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \\ e^a = \lim_{n \to \infty} (1 + \frac{a}{n})^n \end{array}$

2.2 Sum related

$$\begin{split} S_n &= \frac{a_1(1-q^n)}{1-q} \\ \sum_{i=1}^{\infty} \frac{1}{i^2} &= \frac{\pi^2}{6} \\ \sum_{k=1}^n k^2 &= \frac{n(n+1)(2n+1)}{6} \\ \sum_{i=1}^n (x_i - a)^2 &= \sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{i=1}^n (\bar{x} - a)^2 \\ \sum_{i=1}^n (x_i - \bar{x})^2 &= \sum_{i=1}^n x_i^2 - n\bar{x}^2 \\ \min \sum_i (x_i - a)^2 &= \sum_i (x_i - \bar{x})^2 \end{split}$$

2.3 Integral and Series

 $\int_{-\infty}^{\infty} e^{-ax^2 + bx + c} dx = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a} + c}$ $\int uv' dx = uv - \int u' v dx$ $f(x) = \sum_{n=0}^{\infty} \frac{f^n(x_0)}{n!} (x - x_0)^n$ $\int_0^1 p^t (1-p)^{k-t} dp = \frac{t!(k-t)!}{(k+1)!}$ $\int_0^\infty e^{-\frac{x^2}{2}} \, dx = \sqrt{\frac{\pi}{2}}$

$n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$ Leibnitz's Rule

If $f(x,\theta)$ and $a(\theta),b(\theta)$ are differentiable with respect to $\theta,$ then $\frac{d}{d\theta} \int_{a(theta)}^{b(\theta)} f(x,\theta) dx =$ $f(b(\theta), \theta) \frac{d}{d\theta} b(\theta) - f(a(\theta), \theta) \frac{d}{d\theta} a(\theta) +$ $\int_{a(\theta)}^{b(\theta)} \frac{\partial}{\partial \theta} f(x,\theta) dx$

2.4 Inequality

Bonferroni's Inequality

 $P(A \cap B) \ge P(A) + P(B) - 1$

Chebychev's Inequality

Let X be a random variable and let g(x) be a nonnegative function, then for any $r>0, P(g(X)\geq r)\leq \frac{E(g(X))}{r}$

Holder's Inequality

 $\frac{1}{p}\,+\,\frac{1}{q}\,=\,1$ then $\,\frac{1}{p}\,a^{\,p}\,+\,\frac{1}{q}\,b^{\,q}\,\geq\,ab,\;a,b,p,\,q\,>\,0$ $|E(XY)| \le E|XY| \le (E|X|^p)^{1/p} (E|Y|^q)^{1/q}$

Jensen's Inequality

 $g(ax+(1-a)y) \leq ag(x)+(1-a)g(y)$ then g(x) is convex and $Eg(X) \geq g(EX)$

Convex Function

A function g(x) is convex if $g(\lambda x + (1-\lambda)y) \le \lambda g(x) + (1-\lambda)g(y)$ for all x and y, and $0 < \lambda < 1$.

Probability

	Without replace	with replace
Ordered	$\frac{n!}{(n-r)!}$	n^r
Unordered	$\binom{n}{r}$	$\binom{n+r-1}{r}$

3.1 Transformation

Univariate Transformation

1. Y=g(X), g(x) is a monotone function 2. $f_X(x)$ is continuous on X 3. $g^{-1}(y)$ has a continuous derivative on y Then $f_Y(y)=f_X(g^{-1}(y))|\frac{d}{dy}g^{-1}(y)|, y\in y$

Univariate Transformation with non-monotone

- 1. Partition A_0, A_1, \ldots, A_k of x
- 2. there exist $g_i(x)$ satisfies, $g_i(x)$ is monotone on A_i and $g^{-1}(y)$ has a continuous derivative on

Then
$$f_Y(y) = \sum_{i=1}^k f_X(g_i^{-1}(y)) |\frac{d}{dy} g_i^{-1}(y)|, y \in y$$

Bivariate Transformation

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial z} & \frac{\partial y}{\partial z} \end{vmatrix}$$
 (1)

 $f_{U,V}(u,v) = f_{X,Y}(h_1(u,v),h_2(u,v))|J|$

When not one-to-one, suppose A_1, \ldots, A_k form a par-

$$\begin{cases}
U = g_1(x, y) \\
V = g_2(x, y)
\end{cases}$$
(2)

is one-to-one from \boldsymbol{A}_i to \boldsymbol{B} then

 $f_{U,V}(u,v) = \sum_{i=1}^k f_{X,Y}(h_{i,1}(u,v),h_{i,2}(u,v))|J_i|$

Let X have continuous cdf $F_X(x)$ and define the random variable $Y = F_X(X)$. Then $Y \sim Unif(0, 1)$.

3.2 MGF

 $M_X(t) = E(e^{tx})$ $\begin{array}{ccc} M_{aX+b}(t) = e^{bt} M_X(at) \\ \hline \text{Sum of r.v} \end{array}$

 $\overline{X,Y}$ are independent with mgf $M_X(t), M_Y(t)$ then $Z=X+Y \to M_Z(t)=M_X(t)M_Y(t)$

3.3 Hierarchical Models

$$\begin{split} E(X) &= E(E(X \mid Y)) \\ Var(X) &= E(Var(X \mid Y)) + Var(E(X \mid Y)) \end{split}$$

3.4 Order Statistics

3.4.1 Discrete

$$\begin{split} P(X_{(j)} \leq x_i) &= \sum_{k=j}^n \binom{n}{k} P_i^k (1 - P_i)^{n-k}, \\ P_i &= \sum_{j=1}^i p_j \end{split}$$

3.4.2 Continuous

$$\begin{split} F_{\left(X_{(j)}\right)}(x) &= \sum_{k=j}^{n} \binom{n}{k} [F_{X}(x)]^{k} [1 - F_{X}(X)]^{n-k} \\ f_{X_{(j)}}(x) &= \frac{n!}{(j-1)!(n-j)!} f_{X}(x) [F_{X}(x)]^{j-1} [1 - F_{X}(x)]^{n-j} \\ f_{X_{i},X_{j}}(u,v) &= \left(\frac{n!}{(i-1)!(j-i-1)!(n-j)!} f_{X}(u) f_{X}(v) \right. \\ &\left. [F_{X}(u)]^{i-1} [F_{X}(v) - F_{X}(u)]^{j-i-1} [1 - F_{X}(v)]^{n-j} \right) \end{split}$$

3.5 Convergence

- 1. In Probability: $\lim_{n\to\infty} P(|X_n-X|\leq\epsilon)=1$ 2. Almost Sure: $P(\lim_{n\to\infty}|X_n-X|\leq\epsilon)=1$ 3. Distribution: $\lim_{n\to\infty} F_{X_n}(x)=F_X(x)$, at all
- $x\,,\,F_{X}\left(x\right)$ is continuous.

Slutsky's Theorem

If $X_n \to X$ in distribution and , $Y_n \to a$ in probability, a is a constant, then $Y_n X_n \to a X$ in distribution $X_n + Y_n \to X + a$ in distribution

First Order Taylor Approximation r.v.s $T_1, ..., T_k$ have means $\theta_1, ..., \theta_k$ and T $(T_1, ..., T_k), \boldsymbol{\theta} = (\theta_1, ..., \theta_k)$. Define $g_i'(\boldsymbol{\theta})$ $\frac{\partial}{\partial t_i}g(\mathbf{t})\mid_{t_1=\theta_1,...,t_k=\theta_k}$ $\begin{array}{ll} & \text{Tr} & \text{Re} & \text{Re} \\ g(g(T)) \approx g(\theta) + \sum_{i=1}^k g_i'(\theta) E_{\theta}(T_i - \theta_i) = g(\theta) \\ & \text{Var}(g(T)) \approx \sum_{i=1}^k [g_i'(\theta)]^2 Var(T_i) \\ & 2 \sum_{i>j} g_i'(\theta) g_j'(\theta) Cov(T_i, T_j) \end{array}$

First Order: Let Y_n be a sequence of r.v.s that satisfies $\sqrt{n}(Y_n-\theta)\to N(0,\sigma^2)$ in distribution. For a given function g and a specific value of θ , suppose that g'(x) exists and is not θ , then $\sqrt{n}(g(Y_n)-g(\theta))\to N(0,\sigma^2(g'(\theta))^2)$. Second Order: suppose $g'(\theta)=0$ and $g''(\theta)$ exists and is not θ .

is not 0, then

is not 0, then $n[g(Y_n)-g(\theta)] \to \sigma^2 \frac{g''(\theta)}{2} \chi_1^2 \text{ in distribution.}$ Multivariate: $X_1, \dots, X_n, E(X_{ij}) = \mu_i$, $Cov(X_{ik}, X_{jk}) = \theta_{ij}, \tau^2 = \sum \sum \theta_{ij} \frac{\partial g(\mu)}{\partial \mu_i} \frac{\partial g(\mu)}{\partial \mu_i}$

 $\frac{\sqrt{n}[g(\bar{X_1},..,\bar{X_s}) - g(\mu_1,..,\mu_p)] \to^D N(0,\tau^2)}{\sqrt{n}[g(\bar{X_1},..,\bar{X_s}) - g(\mu_1,..,\mu_p)] \to^D N(0,\tau^2)}$

4 Data Reduction

Sufficient Stat

if $\frac{f_X(x|\theta)}{f_{T(X)}(T|\theta)}$ is constant as a function of θ , T(X) is a sufficient statistic for θ .

Let $f(x|\theta)$ be a joint pmf or pdf of sample X. A statistic T(x) is sufficient for θ iff $\exists g(t|\theta), h(x)$ s.th $\forall x, \theta$ $f(x|\theta) = g(T(x)|\theta)h(x)$

Exponential Sufficiency

Let X_1,\ldots,X_n iid observations from pdf or pmf $f(x|\theta)$ that belongs to the exponential family given by

$$f(x|\theta) = h(x)c(\theta) \exp \left[\sum_{i}^{k} w_{i}(\theta)t_{i}(x) \right]$$

Them, for $\theta = (\theta_1, \dots, \theta_d), d \leq k$

$$T(X) = \left(\sum_j^n t_1(x_j), \dots, \sum_j^n t_k(x_j)\right)$$

Is sufficient for θ

Minimal Sufficient Statistic

Let $f(x \mid \theta)$ be the pdf or pmf of sample X. Suppose $\exists T(X)$ s.th. $\forall X, Y \in \mathcal{X}$ the ratio $f(X|\theta)/f(Y|\theta)$ is a constant function of θ iff T(X) = T(Y). Then T is minimal.

Basu's Theorem

1.1f T(X) is complete and minimal sufficient statistic, then T(X) is independent from all ancically statiscs. 2.If minimal suffucient statistic exists, then any comstatistic is also a minimal sufficient statistic

Complete stat. in the expo family

Same set up as Thm 6.2.10, then T(X) is a complete open set in \mathbb{R}^k . A counter example: $N(\theta, \theta^2)$.

Complete Statistic

Let $f(x \mid \theta)$ be a family of pdfs or pmfs for a statistic T(X). The family of probability distributions is called complete if $E_{\theta}g(T)=0$ for all θ implies $P_{\theta}(g(T)=0)=1$ for all θ . Equivalently, T(X) is called complete statistic.

Ancillary Statistic

A statistic S(X) is an ancillary statistic if its distribution does not depend on the parameter.

5 Point Estimation

Newton Method

1-D: iterate $\theta^{(t+1)} = \theta^{(t)} - l'(\theta^{(t)})/l''(\theta^{(t)})$ 2-D: iterate $\theta^{(t+1)} = \theta^{(t)} - l''(\theta^{(t)})^{-1}l'(\theta^{(t)})$ where $l''(\theta^{(t)})^{-1}$ is the matrix inverse

Two Dimension Optimization

Verify a function $H(\theta_1,\theta_2)$ has a local maximum: 1. first order partial derivative are 0 2. at least one second order partial derivative derivative

- is negative
 3. Hessian Matrix is positive

Mean Squared Error

 $E_{\theta}(W - \theta)^{2} = Var_{\theta}W + (Bias_{\theta}W)^{2}$ $Bias_{\theta}W = E_{\theta}(W) - \theta$

Invariance MLE

If $\hat{\theta}$ is the MLE of θ , then $\forall \tau(\theta)$, the MLE of $\tau(\theta)$ is

Best Unbiased Estimator

An estimator W^* is best unbiased estimator of $\tau(\theta)$ if it satisfies $E_{\theta}W^* = \tau(\theta), \forall \theta$, and for any $W \in \{W: E_{\theta}W(X) = \tau(\theta), \forall \theta\} \ Var_{\theta}(W^*) < Var_{\theta}(W) \forall \theta$. This is also called uniform minimum variance unbiased estimators. mator (UMVUE) of $\tau(\theta)$.

Cramer-Rao Inequality

Let X_1,\dots,X_n be a sample with pdf $f(x|\theta)$, and let $W(X)=W(X_1,\dots,X_n)$ be any estimator satisfying

$$\frac{d}{d\theta} E_{\theta} W(X) = \int_{\mathcal{X}} \, \frac{\partial}{\partial \theta} \left[W(x) f(x|\theta) \right] dx, \text{ and}$$

 $Var_{\theta}(W(X)) < \infty$, then

$$Var_{\theta}(W(X)) \geq \frac{\left(\frac{d}{d\theta}E_{\theta}W(X)\right)^2}{E_{\theta}\left(\left(\frac{\partial}{\partial}\log f(x|\theta)\right)^2\right)}$$

NOTE: The Cramer-Rao theorem does not apply to cases in which the range of the pdf depends on the parameter!!!! Which implies we don't know what is the actual lower bound!!

Cramer-Rao Inequality iid case

If the assumptions of theorem 7.3.9 are satisfied, and, additionally if the sample is iid with pdf $f(x_i|\theta)$, then

$$Var_{\theta}(W(X)) \geq \frac{\left(\frac{d}{d\theta} E_{\theta} W(X)\right)^2}{nE_{\theta}\left(\left(\frac{\partial}{\partial \theta} \log f(x_i | \theta)\right)^2\right)}$$

Fisher Information

Fisher Information = $E_{\theta}((\frac{\partial}{\partial \theta} log L(x \mid \theta))^2)$

If $f(x_i|\theta)$ satisfies

$$\begin{split} \frac{d}{d\theta} E_{\theta} & \left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right) = \\ & \int \frac{\partial}{\partial \theta} \left[\left(\frac{\partial}{\partial \theta} \log f(x|\theta) \right) f(x|\theta) \right] dx & \quad (4) \end{split}$$

Which is true for exponential families, then

$$E_{\theta}\left(\left(\frac{\partial}{\partial}\log f(x_i|\theta)\right)^2\right) = -E_{\theta}\left(\frac{\partial^2}{\partial \theta^2}\log f(x_i|\theta)\right)$$

Attainment

Let X_1,\ldots,X_n be iid $f(x|\theta)$ where the pdf satisfies the conditions of the Cramér-Rao theorem. Let the joint likelihood function be $L(\theta|X)$. If W(X) is any unbiased estimator of $\tau(\theta)$, then W(X) attains the Cramér-Rao lowerbound iff

$$a(\theta)[W(X) - \tau(\theta)] = \frac{\partial}{\partial \theta} \log L(\theta|X)$$

For some function $a(\theta)$.

Rao-Blackwell

Let W be any unbiased estimator of $\tau(\theta)$, and let T be a sufficient statistic for θ . Define $\phi(\theta) = E(W|T)$. Then $E_{\theta}\phi(T) = \tau(\theta)$, and $Var_{\theta}\phi(T) \leq Var_{\theta}(W)$ for all θ (so the new is uniformly better unbiased than the previous).

Uniqueness of UMVUE

If W is best unbiased estimator of $\tau(\theta)$, then W is unique.

if adding noise improves, then it is a bad estimator

If $E_{\theta}(W) = \tau(\theta)$, W is the best unbiased estimator of $\tau(\theta) \iff Cor(W, W') = 0$ for all W' unbiased estimators of 0.

suff and complete to find UMVUE

Let T be a complete sufficient statistic for a parameter θ , and let $\phi(T)$ be any estimator based only on T. Then $\phi(T)$ is the unique best unbiased estimator of its expected value

Lehmann-Scheffé

Unbiased estimators based on complete sufficient statis-

6 Hypothesis Test

Truth	Accept	Reject
H_0	correct	Type I
H_1	Type II	correct

Definition on tests

Power function $\beta(\theta) = \Pr_{\theta}(X \in R)$ α -level(size) $\sup_{\theta \in \Theta_0} \beta(\theta) \le (=)\alpha$

 $\in \Theta_0^c, \theta''$ Unbiased β is unbiased if $\forall \{\theta'\}$

Unbiased β is unbiased if $\forall \{\theta' \in \Theta_0^i, \theta'' \in \Theta_0\}$, $\beta(\theta') \geq \beta(\theta'')$, $\beta(\theta') \geq \beta(\theta'')$, $\beta(\theta') \geq \beta(\theta'')$. Small values $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, and every $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, and every $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, and every $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta(\theta')$, and every $\beta(\theta') = \beta(\theta')$, $\beta(\theta') = \beta($

Let $\mathcal C$ be the class of test for testing $H_0:\theta\in\Theta_0$ vs $H_1:\theta\in\Theta_0^c$. A test in class $\mathcal C$, with power function $\beta(\theta)$, is a uniformly most powerful (UMP) class $\mathcal C$ test if $\beta(\theta)\geq\beta'(\theta)$ for every $\theta\in\Theta_0^c$ and every $\beta'(\theta)$ that is a power function of a test in class $\mathcal C$.

Neyman-Pearson Lemma

Consider testing $H_0: \theta=\theta_0$ vs $H_1: \theta=\theta_1$, where the corresponding to θ_i is $f(x|\theta_i)$, i=0,1, using a test with rejection region R that satisfies

$$x \in R \text{ if } f(x|\theta_1) > kf(x|\theta_0), \text{ and}$$

 $x \in R^c \text{ if } f(x|\theta_1) < kf(x|\theta_0)$

$$(8.3.1)$$

for some $k \ge 0$, and

$$\alpha = \Pr_{\theta_0}(X \in R) \tag{8.3.2}$$

- 1. (Sufficiency) Any test that satisfies both is a UMP level α test.
- 2. (Necessity) If such test exists with k > 0, then every UMP level α test is a size α test and every UMP level α test satisfies (8.3.1) except perhaps on a set A satisfying $\Pr_{\theta_0}(X \in A) = \Pr_{\theta_1}(X \in A)$

Sufficient and NP lemma

If $T \sim g(t \mid \theta)$ is a sufficient estimator of θ , then the UMP can be built using $g(t \mid \theta)$ instead.

MLR

 $\theta_2>\theta_1, \frac{g(t|\theta_2)}{g(t|\theta_1)}$ is a monotone function of t on $\{t:g(t\mid\theta_1)>0\ or\ g(t\mid\theta_2)>0\}$

For H_0 : $\theta \le \theta_0$ vs H_1 : $\theta > \theta_0$. For T sufficient for For $H_0: \theta \geq \theta_0$ vs $H_1: \theta \geq \theta_0$. For T sufficient for θ , if $g(t|\theta)$ has the Monotone Likelihood Ratio property, then $\forall t_0$ for which the test rejects if $T > t_0$ is a UMP level α test, where $\alpha = P_{\theta_0}(T > t_0)$. For $H_0: \theta \geq \theta_0$ vs $H_1: \theta < \theta_0$. $T < t_0$ is a UMP level $\alpha = P_{\theta_0}(T < t_0)$ test.

7 Interval Estimation

Concept of CI

1. Coverage Probability: $P(\theta \in [L(X), U(X)]|\theta)$ 2. Confidence Coefficient: $\inf_{\theta} P(\theta \in [L(X), U(X)])$

Location-Scale Pivote

te
μ
μ

 $\begin{array}{l} \text{if } f(t|\theta) = g(Q(t,\theta)) | \frac{\partial}{\partial t} Q(t,\theta)| \text{ then } Q(T,\theta) \text{ is pivote,} \\ \text{speciall case } g = 1, Q(T,\theta) = F_{\theta}(T) \end{array}$

Pivoting a CDF

Let T be a statistic with cdf $F_T(t|\theta), \alpha_1 + \alpha_2 = \alpha \in$ (0, 1)

 $\begin{array}{ll} (0,1) \\ 1. \quad \text{If } F_T(t|\theta) \text{ is a decreasing function of } \theta \colon P(T \leq t|\theta_U(t)) = \alpha_1/F_T(t|\theta_U(t)) = \alpha_1, P(T \geq t|\theta_L(t)) = \alpha_2/1 - F_T(t|\theta_L(t)) = \alpha_2 \\ 2. \quad \text{If } F_T(t|\theta) \text{ is a increasing function of } \theta \colon P(T \geq t|\theta_U(t)) = \alpha_1/1 - F_T(t|\theta_U(t)) = \alpha_2, P(T \leq t|\theta_L(t)) = \alpha_2/F_T(t|\theta_L(t)) = \alpha_1 \\ \text{then the interval } [\theta_L(T), \theta_U(T)] \text{ is a } 1 - \alpha \text{ confidence interval for } \theta \\ \end{array}$

Optimize of CI

Let f(x) be a unimodal pdf. If 1. $\int_a^b f(x)dx = 1 - \alpha, 2$. f(a) = f(b) > 0, 3. $a \le x^* \le b$, where x^* is a model of f(x), then [a, b] is the shortest $1 - \alpha$ CI.

8 Asymptotic Evaluation

Consistency

1. Definition: A sequence of estimator W_n , $\lim_{n\to\infty} P_{\theta}(|W_n-\theta|\geq \epsilon)=0$ 2. Proof(1): $(W_n)=0$ and $\lim Bias(W_n)=0$ 3. Proof(2): $n=1, \lim b_n=0, W_n$ consistent to θ , then $a_nW_n+b_n$ consistent to θ

Efficiency

1. Definition:asymptotic variance of W_n achieves the CRLB

2. MLE: $\hat{\theta}$ is MLE of θ , τ is continuous function, under the conditions, $\tau(\hat{\theta})$ is consistent and efficient to $\tau(\theta)$

Asymptotic Relative Efficiency, ARE

$$\begin{array}{lll} \sqrt{n}(W_n \ - \ \tau(\theta)) & \rightarrow & N(0,\sigma_W^2), \sqrt{n}(V_n \ - \ \tau(\theta)) & \rightarrow \\ N(0,\sigma_V^2), \ \text{then} \ ARE(V_n,W_n) = \frac{\sigma_W^2}{\sigma_*^2}. \end{array}$$

Asymptotic Distribution of Median

 $X_1, ..., X_n \sim f(x)$, Sample median M_n , population median μ , then $\sqrt{n}(M_n - \mu) \rightarrow N(0, 1/(2f(\mu))^2)$

Asymptotic Distribution of LRT-simple H_0

For testing $H_0:\theta=\theta_0$ vs $H_1:\theta\neq\theta_0,\hat{\theta}$ is the MLE of $\theta,f(x|\theta)$ satisfies the regularity conditions, then $-2log\lambda(X)\to\chi^2_1$ in distribution.

More general, the df of χ^2 is the difference of number of free parameters between θ_0 and θ .

Wald and Score Test

- 1. Wald: $Z_n = \frac{W_n \theta_0}{S_n} \to N(0,1), \ \theta_0$ is hypothesized $\theta, \ W_n$ is an estimator of $\theta, \ S_n$ is an estimate of the SD of W_n .
- 2. Score: $Z_S = S_{\theta_0} / \sqrt{I_n(\theta_0)} \rightarrow N(0, 1)$ $S(\theta) = \frac{\partial}{\partial \theta} \log \overset{\circ}{L}(\theta | X),$ $I_n(\theta) = -E(\frac{\partial^2}{\partial \theta^2} log L(\theta|X))$

TABLE OF COMMON DISTRIBUTIONS

