z = -2, que es paralela al eje y y pasa por los puntos (2, 0, -2). De hecho, la ecuación y = 3 - 4t dice, en esencia, que y puede tomar cualquier valor (mientras que x y z permanecen fijos).

EJEMPLO 4.5.5 Illustración de la falta de unicidad en las ecuaciones simétricas de una recta

En el ejemplo 4.5.1 la recta cuyas ecuaciones se encontraron contiene al punto (5, 5, -18). Al elegir P = (5, 5, -18) y Q = (3, 1, -2), se encuentra que $\mathbf{v} = -2\mathbf{i} - 4\mathbf{j} + 16\mathbf{k}$, de manera que x = 5 - 2t, y = 5 - 4t y z = -18 + 16t. (Observe que si $t = \frac{3}{2}$ se obtiene (x, y, z) = (2, -1, 6).) Las ecuaciones simétricas son ahora

$$\frac{x-5}{-2} = \frac{y-5}{-4} = \frac{z+18}{16}$$

Note que (-2, -4, 16) = -2(1, 2, -8).

Así como la ecuación de una recta en el espacio se obtiene especificando un punto sobre la recta y un vector *paralelo* a esta recta, pueden derivarse ecuaciones de un plano en el espacio especificando un punto en el plano y un vector ortogonal a todos los vectores en el plano. Este vector ortogonal se llama **vector normal** al plano y se denota por **n** (vea la figura 4.36).

Figura 4.36
El vector n es orto

El vector **n** es ortogonal a todos los vectores en el plano.

Vector normal

Definición 4.5.1

Plano

Sea P un punto en el espacio y sea $\overrightarrow{\mathbf{n}}$ un vector dado diferente de cero. Entonces el conjunto de todos los puntos Q para los que $\overrightarrow{PQ} \cdot \mathbf{n} = 0$ constituye un **plano** en \mathbb{R}^3 .

Notación. Por lo general, un plano se denota por el símbolo π .

Sea $P = (x_0, y_0, z_0)$ un punto fijo sobre un plano con vector normal $\mathbf{n} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$. Si Q = (x, y, z) es otro punto en el plano, entonces $\overrightarrow{PQ} = (x - x_0)\mathbf{i} + (y - y_0)\mathbf{j} + (z - z_0)\mathbf{k}$.

Como $\overrightarrow{PO} \perp \mathbf{n}$, tenemos que $\overrightarrow{PO} \cdot \mathbf{n} = 0$. Pero esto implica que

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
(4.5.8)

Una manera más común de escribir la ecuación de un plano se deriva de (4.5.8):

Ecuación cartesiana de un plano ax + by + cz = d (4.5.9) donde $d = ax_0 + by_0 + cz_0 = \overrightarrow{OP} \cdot \mathbf{n}$

Determinación de la ecuación de un plano que pasa por un punto dado y tiene un vector normal dado

Encuentre un plano π que pasa por el punto (2, 5, 1) y que tiene un vector normal $\mathbf{n} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$.

SOLUCIÓN ightharpoonup De (4.5.8) se obtiene directamente (x-2)-2(y-5)+3(z-1)=0, es decir,

$$x - 2y + 3z = -5 (4.5.10)$$

Los tres planos coordenados se representan de la siguiente manera: