## Learning Objective: Transmission Line

**Problem 1.** Consider a voltage of an electromagnetic wave traveling on a lossless transmission line is given by  $\tilde{V} = V_o \exp(-j20\pi z)$ , where  $|V_o| = 5 \exp(-\alpha z)$ , and z is the distance from the generator in meters. The phase shift of  $V_o$  is 0, and angular frequency is  $\omega_o = 4\pi \times 10^9 \text{ rad/s}$ .

- (a) Determine the expression of time-domain voltage wave v(z, t) using a sin function.
- (b) Determine the frequency, wavelength, and phase velocity of the wave.
- (c) At z=2 m, the amplitude of the wave is 5 V. Determine  $\alpha$ .

**Problem 2.** Consider a 3-m section of lossless RG-59 coaxial transmission line, is driven by a voltage source of  $V_s = \cos(2\pi \times 10^6 t)$  V as shown in the schematic below. The coaxial line uses insulating material with a relative permittivity of  $\epsilon_r = 4$ , a conductance of  $\sigma_s = 10^{-5}$  S/m, and a outer-to-inner radius ratio of  $r_b/r_a = 2.7182$ . Assume  $R' \ll \omega L'$  and  $G' \ll \omega C'$ .



- (a) Determine the characteristic impedance  $Z_0$  of the transmission line.
- (b) Determine the propagation constant  $\gamma$  of the transmission line.
- (c) Determine the reflection coefficient  $\Gamma$  at the transmission line.

**Problem 3.** Consider a 3-m section of 100- $\Omega$  lossless RG-59 coaxial transmission line is terminated by a 300- $\Omega$  load  $Z_L$ , is driven by a voltage source of  $V_s = \cos(2\pi \times 25 \times 10^6 t)$  V with a source resistance  $R_s = 50 \Omega$ . The coaxial line uses insulating material with a relative permittivity of  $\epsilon_r = 4$ .



- (a) Determine the standing wave ratio at the load  $Z_L$ .
- (b) Determine the input impedance  $Z_{in}$  of the transmission line.
- (c) Suppose the input impedance  $Z_{in} = 50 + j25 \Omega$ , determine the  $jX_s$  component and its value for a single series reactance matching network at the input.