VV186 RC3

Zhu Jing

UM-SJTU Joint Institute

2018

Function: Definition

2.1.1. Definition. Let X and Y be sets and let P be a predicate with domain $X \times Y$. Let

$$f := \{(x, y) \in X \times Y : P(x, y)\}$$

and assume that P has the property that

$$\forall \quad \forall \quad \forall \quad x_1 = x_2 \Rightarrow y_1 = y_2. \tag{2.1.1}$$

Let

$$\operatorname{dom} f := \left\{ x \in X \colon \underset{y \in Y}{\exists} \colon (x, y) \in f \right\}$$

Then we say that f is a **function from** dom f **to** Y. The set dom $f \subset X$ is called the **domain** of f and Y is called the **codomain** of f. We also define the **range** of f by

$$\operatorname{ran} f := \Big\{ y \in Y \colon \underset{x \in X}{\exists} \colon (x, y) \in f \Big\}.$$

Function: Note

We can represent a function in three ways:

$$f = \{(x, y) \in V \times W : P(x, y)\}\$$

$$f = \{(x, y) \in V \times W : y = f(x)\}\$$

$$f : V \to W \qquad y = f(x)$$

Note that codomain and range are different:

Domain: V, the set of all the paired xRange: ran f, the set of all the paired y

Codomain: W

Range is a subset of codomain.

P(x,y) is (uniquely) defined for every x in V, but not necessarily every y in W.

Function: Note

If given x, then the function is uniquely defined. So the following example cannot be seen as a function

2.1.2. Example. Let
$$X, Y = \mathbb{Z}$$
 and $P(x, y): x^2 = y$. Then

$$f = \{(x, y) \in \mathbb{Z}^2 : y = x^2\} = \{(0, 0), (-1, 1), (1, 1), (-2, 4), (2, 4), ...\}.$$

Function Operation

$$f: V \to W \qquad y = f(x)$$

$$g: V \to W \qquad y = g(x)$$

$$f + g: V \to W \qquad y = f(x) + g(x)$$

$$f \cdot g: V \to W \qquad y = f(x) \cdot g(x)$$

$$f: V \to W \qquad y = f(x)$$

$$g: W \to Y \qquad y = g(x)$$

$$f \circ g: V \to Y \qquad y = f(g(x))$$

Sequence Definition

- 2.2.1. Definition. Let $\Omega\subset\mathbb{N}$. A map $\Omega\to\mathbb{R}$ is called a real sequence, a map $\Omega\to\mathbb{C}$ a complex sequence.
- 2.2.2. Notation. We denote the values of a sequence by a_n , i.e., a sequence maps $n\mapsto a_n,\ n\in\Omega\subset\mathbb{N}$. Instead of $\{(n,a_n)\colon n\in\Omega\}$ we denote a sequence by any of the following,

$$(a_n)_{n\in\Omega}=(a_n)=a_0, a_1, a_2, \dots$$

The values a_n are called **terms** of the sequence.

Sequence Convergence

If a_n is a real (or complex) sequence, a is a real (or complex) number,

$$\forall \exists_{\epsilon > 0} \forall |a_n - a| < \epsilon$$

then a_n is said to be convergent towards the limit a. We denote this by

$$\lim_{n\to\infty} a_n = a \qquad \text{or} \qquad a_n \to a \text{ as } a \to \infty$$

A sequence that is not convergent is called divergent.

Sequence Convergence Example

$$a_n = n$$
 is divergent to infinity
 $a_n = \frac{1}{n}$ converges to zero
 $a_n = (-1)^n$ diverges

Sequence

A bounded sequence is a sequence whose range is bounded.

Lemma: A convergent sequence is bounded.

Useful Lemma:

1. The sequence (a_n) converges to a if and only if the sequence $(b_n) := (a_n - a)$ converges to zero, i.e.,

$$a_n \rightarrow a$$

$$\Leftrightarrow$$

$$a_n - a \rightarrow 0$$

2. The sequence (a_n) converges to 0 if and only if the sequence $(b_n) = (|a_n|)$ converges to zero, i.e.,

$$a_n \rightarrow 0$$

$$\Leftrightarrow$$

$$|a_n| \to 0$$

Sequence: General Result

- 1. A convergent sequence has precisely one limit.
- 2. The addition and multiplication of limits
 - 2.2.15. Proposition. Let (a_n) and (b_n) be convergent real or complex sequences with $a_n \to a$ and $b_n \to b$ for some $a, b \in \mathbb{C}$. Then
 - 1. $\lim(a_n+b_n)=a+b$,
 - 2. $\lim(a_n \cdot b_n) = ab$,
 - 3. $\lim \frac{a_n}{b_n} = a/b$ if $b \neq 0$.

Sequence: Proof of the third statement

$$\begin{aligned} \left| \frac{a_n}{b_n} - \frac{a}{b} \right| &= \left| \frac{b \cdot a_n - a \cdot b_n}{b \cdot b_n} \right| \\ &= \left| \frac{b \cdot a_n - b \cdot a + a \cdot b - a \cdot b_n}{b \cdot b_n} \right| \\ &= \left| \frac{b(a_n - a) + a(b - b_n)}{b \cdot b_n} \right| \\ &\le \left| \frac{1}{b_n} \right| \cdot |a_n - a| + \left| \frac{a}{b \cdot b_n} \right| \cdot |b - b_n| \end{aligned}$$

Because $|a_n - a| \to 0$, $|b_n - b| \to 0$, $\left|\frac{1}{b_n}\right|$ and $\left|\frac{a}{b \cdot b_n}\right|$ are bounded, we have $\left|\frac{a_n}{b} - \frac{a}{b}\right| \to 0$.

Sequence: Application

1. Squeeze theorem:

If $\lim a_n = \lim b_n = a$, and if $a_n < c_n < b_n$ for all $n > N \in \mathbb{N}$, then we have $\lim c_n = a$.

2. Corollary for complex numbers:

2.2.17. Corollary. Let (r_n) be a real sequence with $\lim r_n = 0$ and let (z_n) be a complex sequence with

$$|z_n| < r_n$$

for sufficiently large n.

Then $z_n \to 0$.

Sequence: Application

- 3. Bernoulli's inequality:
 - 2.2.19. Lemma. For x > -1 and $n \in \mathbb{N}$,

$$(1+x)^n > nx.$$

- 4. Proposition
 - 2.2.20. Proposition. Let $q\in\mathbb{C},\ |q|<1.$ Then $\lim_{n\to\infty}q^n=0.$
- 5. Complex sequence:
 - 2.2.21. Lemma. Let (z_n) be a complex sequence, $z_n = x_n + iy_n$ and let $z = x + iy \in \mathbb{C}$. Then

$$\rightarrow z$$

Real Sequence

- 2.2.22. Definition. A real sequence (a_n) is called
 - ▶ *increasing* if $a_n \le a_{n+1}$ for all $n \in \mathbb{N}$.
 - ▶ *decreasing* if $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$.
 - ▶ *strictly increasing* if $a_n < a_{n+1}$ for all $n \in \mathbb{N}$.
 - ▶ *strictly decreasing* if $a_n > a_{n+1}$ for all $n \in \mathbb{N}$.
 - monotonic if it is either increasing or decreasing.

Important theorem:

2.2.24. Theorem. Every monotonic and bounded (real) sequence (a_n) is convergent. More precisely,

$$a_n \nearrow \sup\{a_n \colon n \in \mathbb{N}\}$$
 if (a_n) is increasing,
 $a_n \searrow \inf\{a_n \colon n \in \mathbb{N}\}$ if (a_n) is decreasing,

Sequence Exercise

Calculate

$$\lim \left(\frac{n^2+n+1}{2n^3-1}+\frac{n^2+n+2}{2n^3-4}+\ldots+\frac{n^2+n+n}{2n^3-n^2}\right)$$

Which of the solution is correct and why?

Extra exercises

See blackboard

Reference

1. VV186 Slide and previous RC Slide