PELL EQUATIONS

DAI WENHAN

1. An Introduction to Pell Equations

Definition 1.1 (Pell Equation). The equation of the form $x^2 - Dy^2 = 1$ with $D \in \mathbb{Z} \setminus \{0\}$ is called *Pell equation*.

The solutions of Pell equation strongly depends on the choice of D.

- When D < 0, all solutions for $x^2 Dy^2 = 1$ must be trivial, i.e., $(x, y) = (\pm 1, 0)$.
- When D > 0 is a perfect square, all solutions for $x^2 Dy^2 = 1$ must be trivial as well.

Therefore, without loss of generality, we only study about the case where D > 0 and is not a perfect square. It can be proved that in these nontrivial case, the Pell equation always obtain at least one non-trivial integer solution (see, for example, [AG76]).

Definition 1.2 (Fundamental Solution). Among all solutions for $x^2 - Dy^2 = 1$, the fundamental solution or the minimal solution is a non-trivial pair (x_0, y_0) such that $x_0 + \sqrt{D}y_0$ is minimal.

Proposition 1.3. Suppose (x_0, y_0) is the fundamental solution for $x^2 - Dy^2 = 1$. Then for any integer solution (x, y), we have $x \ge x_0$ and $y \ge y_0$.

Proof. Assume $x_0 > x$ for some x. Then

$$x_0^2 = Dy_0^2 + 1 > x^2 = Dy^2 + 1$$

which implies $y_0 > y$ at once. This contradicts to the assumption that $x_0 + \sqrt{D}y_0$ is the minimal.

It's an essential step to find out the fundamental solution while solving the Pell equations. There are two ways to do this:

- (1) taking trials for $y = 1, 2, \dots$ until $1 + Dy^2$ is a perfect square;
- (2) using the continued fraction (c.f. [Sho67, p. 204]).

Theorem 1.4. The Pell equation $x^2 - Dy^2$ has infinitely many solutions of positive integers when D > 0 and D is a perfect square. All solutions of positive integers (x_n, y_n) with $n \in \mathbb{N}$ can be represented by the fundamental solution (x_0, y_0) , say

$$(*) x_n + \sqrt{D}y_n = (x_0 + \sqrt{D}y_0)^n.$$

Proof. According to the binomial theorem, for $\sqrt{D} \in \mathbb{R} \setminus \mathbb{Q}$ and any $n \in \mathbb{N}$, if (x_n, y_n) satisfies (*), we have

$$x_n - \sqrt{D}y_n = (x_0 - \sqrt{D}y_0)^n.$$

Multiplying with (*),

$$x_n^2 - Dy_n^2 = (x_0 + \sqrt{D}y_0)^n (x_0 - \sqrt{D}y_0)^n = (x_0^2 - Dy_0^2)^2 = 1,$$

Date: August 1, 2022.

and hence (x_n, y_n) is a solution to $x^2 - Dy^2 = 1$. Suppose there exists some (x, y) that cannot be represented by (x_k, y_k) , i.e., $x + \sqrt{D}y \neq (x_0 + \sqrt{D}y_0)^n$ for any n. As $x_0 + \sqrt{D}y_0 > 1$, there is a unique $r \in \mathbb{N}^*$ such that

$$(x_0 + \sqrt{D}y_0)^r < x + \sqrt{D}y < (x_0 + \sqrt{D}y_0)^{r+1}.$$

This is equivalent to

$$1 < \frac{x + \sqrt{D}y}{(x_0 + \sqrt{D}y_0)^r} = (x + \sqrt{D}y)(x_0 - \sqrt{D}y_0)^r < x_0 + \sqrt{D}y_0.$$

Here $1/(x_0 + \sqrt{D}y_0)^r = (x_0 - \sqrt{D}y_0)^r/(x_0^2 + \sqrt{D}y_0^2)^r = (x_0 - \sqrt{D}y_0)^r$. On the other hand, note that there are $X, Y \in \mathbb{Z}$ such that

$$(x + \sqrt{D}y)(x_0 - \sqrt{D}y_0)^r = X + \sqrt{D}Y.$$

Thus,

$$X - DY^{2} = (X + \sqrt{D}Y)(X - \sqrt{D}Y)$$

$$= (x + \sqrt{D}y)(x_{0} - \sqrt{D}y_{0})^{r}(x - \sqrt{D}y)(x_{0} + \sqrt{D}y_{0})^{r}$$

$$= (x^{2} - Dy^{2})(x_{0}^{2} - Dy_{0}^{2}) = 1.$$

Therefore, (X,Y) is a solution for the Pell equation, and then

$$1 < X + \sqrt{D}Y < x_0 + \sqrt{D}y_0 \quad \Rightarrow \quad 0 < X - \sqrt{D}Y = \frac{1}{X + \sqrt{D}Y} < 1$$

It boils down to verify that $X, Y \in \mathbb{N}^*$. Consider

- $(X + \sqrt{D}Y) + (X \sqrt{D}Y) = 2X > 1 + 0 = 1$, hence X > 0 and then $X \in \mathbb{N}^*$;
- $\sqrt{D}Y > X 1 \ge 0$, thus $Y \in \mathbb{N}^*$ again.

Therefore, $X - \sqrt{D}Y < 1 < X + \sqrt{D}Y < x_0 + \sqrt{D}y_0$ contradicts to the assumption that (x_0, y_0) is the minimal solution.

Example 1.5. Here comes an example to understand Theorem 1.4. Given (x_0, y_0) , we have

$$(x_0 \pm \sqrt{D}y_0)^3 = x_0^3 \pm 3x_0^2 y_0 \sqrt{D} + 3x_0 D y_0^2 \pm D y_0^3 \sqrt{D}$$
$$= \underbrace{(x_0^3 + 3x_0 D y_0^2)}_{x_3} - \sqrt{D} \underbrace{(3x_0^2 y_0 + D y_0)}_{y_3}.$$

Remarks 1.6. Here comes some properties on series $\{x_n\}$ and $\{y_n\}$.

(1) From two equations in Theorem 1.4 (*), we get

$$x_n = \frac{1}{2}((x_0 + \sqrt{D}y_0)^n + (x_0 - \sqrt{D}y_0)^n),$$

$$y_n = \frac{1}{2\sqrt{D}}((x_0 + \sqrt{D}y_0)^n - (x_0 - \sqrt{D}y_0)^n).$$

(2) By induction, for $n \ge 2$, we obtain recursive formulas read as

$$x_n = 2x_0x_{n-1} - x_{n-2},$$

$$y_n = 2x_0y_{n-1} - y_{n-2}.$$

These equations are hard to deduce but relatively easy to verify.

Definition 1.7 (Pell Equation, Type II). The equation of the form $x^2 - Dy^2 = -1$ with $D \in \mathbb{Z} \setminus \{0\}$ is called *Pell equation of type II*.

The Pell equations of type II are more difficult to understand. We list out the following result without a proof.

Theorem 1.8. Let $D \in \mathbb{N}^*$ be a non-perfect square integer. Suppose the equation $x^2 - Dy^2 = -1$ has a solution of positive integers. Then it has infinitely many solutions of positive integers, and all of them can be represented by the fundamental solution as

$$x_n + \sqrt{D}y_n = (x_0 + \sqrt{D}y_0)^{2n+1}$$

for all $n \in \mathbb{N}$.

Remarks 1.9. We list out some remarks to understand Theorem 1.8.

- (1) The equation $x^2 Dy^2 = -1$ of type II does not necessarily have a solution even for those nice $D \in \mathbb{Z}$. However, the equation $x^2 Dy^2 = 1$ of type I always has a solution under the same circumstance.
- (2) The definition for a fundamental solution (x_0, y_0) of $x^2 Dy^2 = -1$ is the same as before, i.e., the non-trivial solution such that $x + \sqrt{D}y$ is the minimal.
- (3) It's a tricky and verbose problem on algebraic number theory to find out for which D the Pell equation of type II has a solution.

2. Problems and Examples

Problem 2.1. For $n \in \mathbb{N}$, it is called a triangular number if there exists some $k \in \mathbb{N}$ such that $n = 1 + 2 + \cdots + k$. Find out a triangular number N of 4 digits such that it is a perfect square as well.

Solution. Suppose $N=m^2=k(k+1)/2$. This is equivalent to

$$(2k+1)^2 - 2(2m)^2 = x^2 - 2y^2 = 1$$
, $x = 2k+1$, $y = 2m$.

Note that the fundamental solution for $x^2 - 2y^2 = 1$ is $(x_0, y_0) = (3, 2)$. On the other hand, as m^2 has 4 digits, we see $32 \le m \le 99$ and then $64 \le y \le 198$. By Theorem 1.4,

$$x_2 + \sqrt{D}y_2 = (3 + 2\sqrt{2})^2 = 17 + 2\sqrt{2} \quad \Rightarrow \quad x_2 = 17, \ y_2 = 12.$$

Again, by Remarks 1.6 (2), we have the recursive formula $y_n = 2x_0y_{n-1} - y_{n-2} = 6y_{n-1} - y_{n-2}$. Given $(x_1, y_1) = (x_0, y_0) = (3, 2)$, we compute

$$y_3 = 70 > 64$$
, $y_4 = 408 > 198$.

Therefore, the only solution in need is m = 70/2 = 35 with $N = m^2 = 1225$.

Problem 2.2. Find out the minimal positive integer n > 1 such that the arithmetic average of $1^2, 2^2, \ldots, n^2$ is a perfect square.

Solution. The condition is read as

$$\frac{1^2 + 2^2 + \dots + n^2}{n} = \frac{(n+1)(2n+1)}{6} = m^2,$$

which is equivalent to $16n^2 + 24n + 8 = 3(4m)^2$. Thus,

$$(4n+3)^2 - 3(4m)^2 = x^2 - 3y^2 = 1$$
, $x = 4n+3$, $y = 4m$.

Its fundamental solution is given by $(x_0, y_0) = (x_1, y_1) = (2, 1)$. Hence

$$x_k = 4x_{k-1} - x_{k-2}, \quad x_1 = 2;$$

$$y_k = 4y_{k-1} - y_{k-2}, \quad y_1 = 1.$$

From this, we see a necessary condition $x_k \equiv -x_{k-2} \mod 4$ and $y_k \equiv -y_{k-2} \mod 4$. On the other hand, it is readily true that $x \equiv 3 \mod 4$ and $y \equiv 0 \mod 4$. The solution on k is $k \equiv 2 \mod 4$.

• If k=2, then $x_2=7=4n+3$ with n=1, which contradicts to n>1.

• If k = 6, we compute

$$x_6 = 4x_5 - x_4 = 4(4x_4 - x_3) - x_4 = 15x_4 - 4x_3$$

= 15(4x₃ - x₂) - 4x₃ = 56x₃ - 15x₂ = 56(4x₂ - x₁) - 15x₂
= 209x₂ - 56x₁ = 1351,

which implies that 4n + 3 = 1351 and then n = 337 > 1.

Therefore, the anwser is n = 337.

Problem 2.3 (IMO 2001 Shortlist). Consider the equation set

$$\begin{cases} x + y = z + u, \\ 2xy = zu. \end{cases}$$

Seek for the maximum of the real constant m such that for any solution (x, y, z, u) of positive integers for the equation set, $x \ge y$ always implies $m \le x/y$.

Solution. We are to find out the lower bound of x/y. Firstly,

$$(x+y)^2 - 4 \cdot 2xy = (z+u)^2 - 4 \cdot zu \quad \Rightarrow \quad x^2 - 6xy + y^2 = (z-u)^2.$$

We can rewrite this formula in a homogeneous way, say

$$(\frac{x}{y})^2 - 6(\frac{x}{y}) + 1 = (\frac{z-u}{y})^2 \geqslant 0 \quad \Rightarrow \quad \frac{x}{y} \geqslant 3 + 2\sqrt{2}.$$

(Comment: note that $3 + 2\sqrt{2} \notin \mathbb{Q}$ but $x/y \in \mathbb{Q}$; therefore, consider to prove validity of the lower bound.) Suppose p is a prime divisor for $(z, u) := \gcd(z, u)$. Then $p \mid x$ and $p \mid y$ simultaneously. Without loss of generality, keeping the equation set invariant, we may suppose (z, u) = 1. Here comes

$$(x+y)^2 - 2 \cdot 2xy = (z+u)^2 - 2 \cdot zu \quad \Rightarrow \quad (x-y)^2 = z^2 + u^2.$$

As (z, u) = 1, it is clear that (z, u, x - y) is a primary pythagorean triple. This means the existence of a parametrization (again, may assume $2 \mid u$):

$$u = 2ab$$
, $z = a^2 - b^2$, $x - y = a^2 + b^2$, $(a, b) = 1$.

Also, $x + y = z + u = a^2 + 2ab - b^2$, and hence $x = a^2 + ab = a(a+b)$, $y = ab - b^2 = b(a-b)$. Moreover,

$$z - u = a^2 - b^2 - 2ab = (a - b)^2 - 2b^2$$
.

The most important step is to set z - u = 1 to make (z - u)/y to be minimal. In case z - u = 1 is satisfied, the solution a - b = 3 with b = 2 admit a Pell equation, say

$$(a-b)^2 - 2b^2 = 1.$$

According to Theorem 1.4, it has infinitely many solutions of positive integers so that a-b and b can be sufficiently large as required. Consequently, y can be sufficiently large just so $y \to \infty$ is possible. It renders that

$$\frac{z-u}{v} \to 0 \quad \Rightarrow \quad \frac{x}{v} \to 3 + 2\sqrt{2}.$$

Hence we have proved that $m = 3 + 2\sqrt{2}$ is the infimum for x/y.

References

[AG76] William W Adams and Larry Joel Goldstein. Introduction to number theory. Prentice Hall, 1976.[Sho67] James E Shockley. Introduction to number theory. Holt, Rinehart and Winston, 1967.

School of Mathematical Sciences, Peking University, 100871, Beijing, China *Email address*: daiwenhan@pku.edu.cn