Non-backtracking Random Walks

Cory Glover

Brigham Young University Department of Mathematics

Joint work with Mark Kempton, Brigham Young University Tyler Jones, Brigham Young University

> SCR 2020 Provo, UT February 29,2020

Problem

- When the Pagerank vector of a non-backtracking random walk give the same values as a simple random walk?
- Can the Pagerank vector of a non-backtracking random walk be calculated faster than a simple random walk?

Review

Definition (Hashimoto Matrix)

$$B((u,v),(x,y)) = \begin{cases} 1 & v = x, u \neq y \\ 0 & \text{otherwise} \end{cases}$$

Regular Graphs

Theorem (Arrigo et. al., 2018)

Let A be the adjacency matrix of an undirected k-regular graph, with $k \ge 2$. For any $\epsilon \in [0, 1]$, define

$$\hat{P} = \epsilon \hat{D}^{-1}B + \frac{1 - \epsilon}{n} \mathbf{1} \mathbf{v}^T$$

and $P = \epsilon D^{-1}A + \frac{1-\epsilon}{n}\mathbf{1}\mathbf{1}^T$, where $\mathbf{v} = T^TD^{-1}\mathbf{1}$. If $\hat{P}^T\hat{y} = \hat{y}$ and $P^Tx = x$, with $\|x\|_1 = \|\hat{y}\|_1 = 1$, then

$$T\hat{y} = x$$
.

Bipartite Graphs

Theorem

Let A be the adjacency matrix of a bipartite biregular graph, with $d_1, d_2 \geq 2$. For any $\epsilon \in [0, 1]$, define $\hat{P} = \epsilon \hat{D}^{-1}B + \frac{1-\epsilon}{n}\mathbf{1}\mathbf{v}^T$ and $P = \epsilon D^{-1}A + \frac{1-\epsilon}{n}\mathbf{1}\mathbf{1}^T$, where $\mathbf{v} = T^TD^{-1}\mathbf{1}$. If $\hat{P}^T\hat{y} = \hat{y}$ and $P^Tx = x$, with $\|x\|_1 = \|\hat{y}\|_1 = 1$, then

$$T\hat{y} = x$$
.

Estimating Pagerank vs Nonbacktracking Pagerank

Conjecture

In most cases, NBRW mix faster than simple random walks.

Alon et. al. (2007) showed that in most cases, NBRW mix faster on k-regular graphs, with $k \ge 2$.

Mixing Rate

Theorem (Lovasz 1993)

Let G be a connected non-bipartite graph with transition probability matrix P. Let $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$ be the eigenvalues of P. Then the mixing rate of G is $\rho = \max\{|\lambda_2|, |\lambda_n|\}$.

Ihara's Theorem

Theorem (Ihara)

Given a graph G with n vertices and m edges, define B to be the Hashimoto matrix of G. Let A be the adjacency matrix of G and let D be the diagonal degree matrix. Then

$$det(I - uB) = (1 - u^2)^{m-n} det(I - uA + u^2(D - I)).$$

Thus, the eigenvalues of B are $\mu = \frac{1}{u}$.

Comparing Eigenvalue

From Krzakala et. al. (2013), the matrix K of a graph G

$$K = \begin{pmatrix} A & D - I \\ -I & \mathbf{0} \end{pmatrix}$$

is a invariant subspace of B.

Eigenvalues of K

$$\begin{pmatrix} A & D - I \\ -I & \mathbf{0} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mu \begin{pmatrix} x \\ y \end{pmatrix},$$

$$x = -\mu y$$

$$\mu^2 y - \mu A y + (D - I) y = \mathbf{0}$$

for all $\mu \in \sigma(K)$.

Relationship Between *A* and *K*

Let **x** be the eigenvector associated with $\lambda \in \sigma(A)$.

Then,

$$\mu^{2}\mathbf{x}^{T}\mathbf{y} - \mu\mathbf{x}^{T}A\mathbf{y} + \mathbf{x}^{T}(D - I)\mathbf{y} = 0,$$

$$\mu^{2} - \mu\lambda + \mathbf{x}^{T}(D - I)\mathbf{y} = 0.$$

Solving for μ ,

$$\mu = \frac{\lambda \pm \sqrt{\lambda^2 - 4\mathbf{x}^T(D-I)\mathbf{y}}}{2}.$$

Open Questions

$$\mu = \frac{\lambda \pm \sqrt{\lambda^2 - 4\mathbf{x}^T(D-I)\mathbf{y}}}{2}$$

- How are μ and λ related?
- Is it + or −?
- Can we get all eigenvalues μ ?
- How to convert μ to eigenvalue of P?

Current Pagerank Algorithms

- Borgs et. al. (2016) created algorithm to solve significant Pagerank problem, i.e. find all nodes with Pagerank value greater than Δ , in $O(\frac{n}{\Delta})$
- Bahmini, Chowdhury, and Goel (2010) created algorithm to estimate personalized pagerank and global pagerank in $O(\frac{n \ln(m)}{\epsilon^2})$.

Current: [2] Paths: []

Current: [2, 1]Paths: []

 $\begin{array}{c} \text{Current: } [2,1,3] \\ \text{Paths: } [] \end{array}$

Current: [2] Paths: [[2, 1, 3]]

Current: [1] Paths: [[2, 1, 3], [2, 4]]

$$\tilde{\pi}_{v} = \frac{X_{v}}{nR/\epsilon}$$

where X_{ν} is the number of paths containing ν .

Computational Results

(b) Karate

Computational Results

$$y = Cx^{-\alpha}$$

(a) Simple Example

(b) Karate

Computational Results

(a) SRW: $\alpha = .54$, NBRW: $\alpha = .56$

(b) SRW: $\alpha = .49$, NBRW: $\alpha = .52$

Figure: Simple Example:
$$|C - C_{NB}| = .034$$

Karate: $|C - C_{NB}| = .0052$

Conclusions

Thank you!