MOM2 – BIG DATA & Geosciences

Francois Bonneau <u>francois.bonneau@univ-Lorraine.fr</u>
06 99 36 71 41

Corentin Gouache

Janvier 2021

Big Data ... how big?

Objectif du pojet

« les étudiants seront capables de considérer la complexité particulière de certaines données métier et d'adapter un processus d'Extraction de Connaissances à ces données, notamment en fonction des exigences d'un expert.»

Application à la géologie dans le cadre de données sismique spatialisé.

Modalité d'évaluation:

- Soutenance orale le 19/01/2021
- Compétences technique:
 - Compréhension du problème et des données.
 - Capacité à mobiliser vos compétences pour analyser et discuter un aspect de ces données.
 - Capacité à présenter et à discuter (problème résolu, perspectives...)
- Gestion du projet: Organisation, travail en groupe, praticité.

Notion de sismicité.

Catalogue sismique.

Aléa sismique.

Moteur de la sismicité

• Observations à l'échelle de la terre:

• Energie libérée par la relaxation des contraintes s'appliquant sur un volume de roche.

Milleu non perturbé

Qu'est ce qu'on mesure?

Catalogue Sismique: Réseau National de Surveillance Sismique (RéNaSS)

Enregistrements sismiques

Incertitudes d'enregistrement (bruit de fond, perturbations...)

Catalogue Sismique: Réseau National de Surveillance Sismique

Catalogue Sismique:

Réseau National de Surveillance Sismique

(RéNaSS)

San Francisco après le tremblement de terre 1906

 Probabilité qu'un séisme destructeur se produise dans une région donnée pendant une période donnée.

- Caractérisation de la sismicité (Position, Date, Magnitude ...)
- Propagation de sont impact sur les constructions (lois d'atténuations, modèles numériques ...)

- Probabilité qu'un séisme destructeur se produise dans une région donnée pendant une période donnée.
 - Création de modèles numériques -- Ex: Unified Structural Representation of the southern California crust and upper mantle [Shaw et al, EPSL 2014]

- -Intégration de données géologiques pétrophysiques et géophysiques
- Modèle structural
- Modèle géotechnique
- Modèle de vitesses

 Probabilité qu'un séisme destructeur se produise dans une région donnée pendant une période donnée.

- Caractérisation de la sismicité (Position, Date, Magnitude ...)
- Propagation de sont impact sur les constructions (lois d'atténuations, modèles numériques ...)

Caractérisation de la sismicté

Séquence sismique

Lois d'échelle

Declustering

Séquence sismique

[http://cires1.colorado.edu/~bilham/Honshu2011/Honshu2011.html]

Séquence sismique

• Séquence sismique

Lois d'échelle: Analyse spatiale

• Dimension de corrélation Dc:

$$C_2(r) = \frac{N(r)}{N_t} \approx r^{D_c}$$

- N(r) : nombre de paire de point distant d'une distance inferieur à r
- Nt: Nombre total de paires
- Traduit la capacité du nuage de point à remplir l'espace

[Grassberger and Procaccia,1983]

Lois d'échelle: Analyse temporelle

- Répliques: Lois D'Omori (1894):
 N(t) ~ t^{-p}
 - p: (p-value) caractérise
 l'amortissement du nombre de réplique au court du temps
- Notez que la loi statistique couramment utilisée pour caractériser les événements indépendants est une loi de poisson

[Hainzl ,2006]

Lois d'échelle: Analyse en Magnitude

Isolement des séquences ... declustering

Isolement des séquences ... declustering

Isolement des séquences ... declustering

Catalogue Sismique: Réseau National de Surveillance Sismique (RéNaSS)

Big Data ... how big?

Data

Data analysis / Declustering / Uncertainty management

Catalogue de séismes				
X	Υ	Z	Time	Magnitude

Sismicité naturelle - Problèmes à résoudre

- Filtrer le catalogue pour en extraire des informations pertinentes.
 - Extraire une séquence particulière
 - Extraire la sismicité de fond (séismes isolé hors séquences)
 - Extraire les main shocks (plus fort séismes d une séquences)
- Discuter l'homogénéité des données.
 - Proposer et discuter d'éventuels régionalisation
 - Visualiser les différentes populations et leurs charactéristiques.

Simuler la sismicité

Introduction aux éléments discrets (DEM)

Simulation de la réponse sismique à une sollicitation mécanique

Problèmes à résoudre

Cross-section of deformed state

Map of seismic events

Introduction au simulations DEM

• Lois de contacts entre particules

Compression uni-axial par simulation DEM

i: itération d'occurrence

p0, **p1**, **p2**: position dans I espace (x,y,z)

t: type d'événement (0→ mode I, 1→ mode II, 2→ glissements)

s: taille géométrique de l'événement

norm 0, 1, 2: vecteur normal au plan de rupture.

E: Energie libérée.

Du microcrack à l'événement sismique

- Notion d'échelle:
 - Microcrack ... événement unitaire non enregistrable à cause de la sensibilité des capteurs.
 - Calculons la sismicité associée en regroupant les microcracks:
 - X,Y,Z de l'émission acoustique = barycentre des microcracks
 - t0 de l'émission acoustique = min (t0) des microcracks
 - E de l'émission acoustique = sum(E des microcracks)
- De l'énergie à la magnitude:

$$M_e = \frac{2}{3}\log E - 3.2$$

[Kanamori, 1977]

Simulation DEM - Problèmes à résoudre

- Analyser les corrélations entre les événements générés
 - Fichiers sans les glissements entre particules 1609Ko (~100 000 microcracks)
 - Fichiers avec les glissements entres particules 5 Go (??? Pas d'ouverture possible avec un éditeur de texte)

Pistes de reflexions

- Calculer et afficher les lois d'échelle à partir des émissions acoustiques modélisées. Est-ce représentatif des lois d'echelles classiquement observé dans la nature?
- Visualiser la géométrie des clusters, identifications des fissures de l'echantillons.

Déroulement du projet

- 5 séances:
 - 04/01/2021: 14h-18h (4h)
 - 05/01/2021: 16h-18h (2h)
 - 06/01/2021: 14h-18h(4h)
 - 11/01/2021: 14h-18h(4h)
 - 18/01/2021: 16h- 18h(2h)
- Fin: 19/01/2021: 14h-18h (4h) → soutenance oral
- Travail en groupe: 5 groupes (3 personnes)

À vous de jouer...