Part 2 - Analogue 1

Passive components 1.1

1.1.1 Resistors

- Poly $20\,\Omega$ to $40\,\Omega$ per square
- N-well $2 k\Omega$ to $4 k\Omega$ per square

1.1.2Capacitors

- MOS $2 \, \text{fF} \, \mu \text{m}^{-2}$ to $3 \, \text{fF} \, \mu \text{m}^{-2}$. Between the poly and diffusion regions
- Poly 1/Poly 2 cap $0.8\,\mathrm{fF}\,\mu\mathrm{m}^{-2}$ to $1\,\mathrm{fF}\,\mu\mathrm{m}^{-2}$.

1.1.3 Switched caps

Alternatively, switched caps can be used as resistors.

$$R = \frac{T}{C}$$

where T is the time period of the clock.

GaAs 1.3.2

1.2 **Opamp**

- A differential trans-conductance front-end that converts the difference between the input signals v1 and v2 to a current.
- A high gain stage that amplifies the input signal
- An output buffer stage that is capable of driving a load resistor without reducing the gain
- Compensation circuitry to improve the frequency characteristics of the amplifier
- Bias circuitry to set the DC operating point of the different stages

Miller cap C_c reduces ringing, but should be minimised as it can take a significant proportion of the area.

1.3 **Technologies**

SOI vs CMOS 1.3.1

Faster

Denser

Advantages

Higher temp

Lower capacitance

Better isolation

Insulated layer below normal CMOS processes

Disadvantages

Floating bodies

Kink effects

Self heating Less robust

Cost

Advantages	Disadvantages
	Cost