Inicio AOC_02.pptx

Based on the text Digital design and computer architecture,

harris & harris 2nd Edition 2012

Temas

- Introducción
- Ecc Booleaneas
- Algebra Booleana
- Desde la lógica a las compuertas (Gates)
- Logica Combinacional Multinivel
- X's y Z's
- Mapas de Karnaugh
- Blocks constructivos Combinacionales
- Sincronización

Introduccción

Un circuito lógico está compuesto de:

- Entradas (Inputs)
- Salidas (Outputs)
- Especificación funcional
- Especificación de temporización o sincronización

Circuitos

Nodos

- Entradas: A, B, C

Salidas: Y, Z

- Interno: n1

• Elementos de Circuito

- E1, E2, E3

- Cada uno un circuito

Tipos de circuitos lógicos

- Logica Combinacional
 - Sin Memoria
 - Las salidas están determinadas por los valores actuales de las entradas
- Logica Secuencial
 - Tiene memoria
 - Las salidas están determinadas por los valores previos y actuales de las entradas.

Reglas de creación combinatoria

- Todo elemento es combinacional
- Todo nodo es ya sea una entrada o se conecta exactamente a una salida
- El circuito no contiene trayectos ciclicos
- Ejemplo:

Ecuaciones booleanas

- Especificación Funcional de salidas en términos de las entradas
- Ejemplo: $S = F(A, B, C_{in})$ $C_{out} = F(A, B, C_{in})$

Algunas definiciones

Complemento: variable con una barra sobre él

- Otro modo de indicar una variable complementada es con ' o con ¬ A', B', C' ¬A, ¬B, ¬C
- · Literal: variable o su complemento

Implicante: producto de literales

 Minterm: product that includes all input variables ABC, ABC, ABC

Maxterm: sum that includes all input variables
 (A+B+C), (A+B+C), (A+B+C)

Formato Suma de productos (SOP)

- Todas las ecuaciones pueden ser escritas en la forma SOP form
- Cada fila tiene un mintérmino
- Un mintérm is un producto (AND) de literales
- Cada mintérmino es TRUE para esa fila (y solo esa fila)
- Escriba la función haciendo OR con los mintérminos donde la salida es verdadera (TRUE)
- Así se tiene una suma (OR) de productos (términos AND)

			_	minterm
<u>A</u>	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	$\overline{A} \; B$	m_1°
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3^-

$$Y = F(A, B) = A'B + AB$$

Formato Suma de productos (SOP)

- Todas las ecuaciones se pueden escribir en forma SOP.
- Cada fila tiene un minitérmino.
- Un mintérmino es un producto (AND) de literales.
- Cada mintérmino es TRUE para esa fila (y solo esa fila).
- Forme la función haciendo ORing en mintérminos donde la salida es TRUE.
- Así, se tiene una suma (OR) de productos (Y términos).

				minterm
	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) = A'B + AB = \Sigma(1, 3)$$

Formato Productos de Suma (POS)

- Todas las ecuaciones booleanas se pueden escribir en forma POS.
- Cada fila tiene un maxtérmino.
- Un maxtérmino es una suma (OR) de literales.
- Cada maxtérmino es FALSE para esa fila (y solo esa fila).
- Escriba la función haciendo ANDing con los maxtérminos para los cuales la salida es FALSE.
- Así, se tiene un producto (AND) de sumas (términos OR).

				maxterm
A	В	Y	maxterm	name
0	0	0	A + B	M_{\circ}
0	1	1	$A + \overline{B}$	M_1
1	0	0	A + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = F(A, B) = (A + B)(A + B') = \Pi(0, 2)$$

Ejemplo de ecuaciones booleanas

- Estás yendo a la cafetería a almorzar:
 - No vas a almorzar (E')
 - si no está abierto (O') o
 - si solo sirven hotdogs (C).
- Escriba una tabla de verdad para determinar si almorzarás (E).

0	С	E
0	0	
0	1	
1	0	
1	1	

Ejemplo de ecuaciones booleanas

- vas a la cafetería a almorzar:
 - No vas a almorzar (E')
 - Si no está abierto (O')
 - o Si solo sirven hotdogs(C)
- Escriba una tabla de verdad para determinar si almorzarás (E).

0	С	E
0	0	0
0	1	0
1	0	1
1	1	0

Formas SOP y POS

• SOP – Suma de Productos

0	С	Ε	minterm
0	0		<u> </u>
0	1		<u> </u>
1	0		0 <u>C</u>
1	1		ОС

• POS – Productos de Sumas

0	С	Ε	maxterm
0	0		O + C
0	1		$O + \overline{C}$
1	0		O + C
1	1		$\overline{O} + \overline{C}$

Formas SOP y POS

• SOP – Suma de Productos

0	С	Ε	minterm
0	0	0	O C
0	1	0	O C
1	0	1	0 <u>C</u>
1	1	0	O C

$$E = OC' = \Sigma(2)$$

• POS – Producto de Sumas

0	С	E	maxterm
0	0	0	0 + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
1	1	0	$\overline{O} + \overline{C}$

$$E = (O + C)(O + C')(O' + C') = \Pi(0, 1, 3)$$

Álgebra de boole

- Axiomas y teoremas para simplificar ecuaciones booleanas.
- Como el álgebra regular, pero más simple: las variables tienen solo dos valores (1 o 0).
- Dualidad en axiomas y teoremas:
 ANDs y ORs, 0 y 1 intercambiados.

Axiomas booleanos

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1'	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2'	T = 0	NOT
A3	$0 \bullet 0 = 0$	A3'	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

T1: Teorema de identidad

$$B \cdot 1 = B$$

$$B + 0 = B$$

$$\begin{bmatrix} B \\ 1 \end{bmatrix} = B$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 $=$ B

T2: Teorema del elemento nulo

•
$$\mathbf{B} \cdot \mathbf{0} = \mathbf{0}$$

•
$$B + 1 = 1$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = 0$$

T3: Teorema de la Idempotencia

$$B \cdot B = B$$

$$B + B = B$$

$$\begin{bmatrix} B \\ B \end{bmatrix} = B$$

$$B \rightarrow B \rightarrow B$$

T4: Teorema de la Identidad

$$B = B$$

$$B \longrightarrow B \longrightarrow$$

T5: Teorema del complemento

• B · B' =
$$0$$

•
$$B + B' = 1$$

$$\frac{B}{B}$$
 = 0 ----

$$\frac{B}{B}$$
 \longrightarrow 1

Resumen de los teoremas booleanos

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Teoremas booleanos de varias variables

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9'	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11'	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$ = $(B + C) \bullet (\overline{B} + D)$	Consensus
T12	$ \overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots) $	T12′	$ \overline{B_0 + B_1 + B_2 \dots} = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}) $	De Morgan's Theorem

Simplificando ecuaciones boolenas

```
Ejemplo 1
Y = AB + A'B
= B(A + A')
= B(1)
= B
T1
```

Simplificando ecuaciones boolenas

Ejemplo 2:

```
Y = A(AB + ABC)
= A(AB(1 + C))
= A(AB(1))
= A(AB)
= A(AB)
= (AA)B
= AB
T3
```

Teorema de Morgan

$$Y = (AB)' = A' + B'$$

$$Y = (A + B)' = A' \cdot B'$$

Impulsando burbujas

· Hacia atrás:

- Cambia el cuerpo del componente
- Agrega burbujas a las entradas

Hacia Adelante:

- Cambia el cuerpo del componente
- Agrega burbujas a las salidas

Impulsando burbujas

• Cual es la expresión Booleana para este circuito?

$$Y = AB + CD$$

Impulsando burbujas

Otro ejemplo:

С no output bubble bubble on input and output no bubble on input and output

 $Y = \overline{A}\overline{B}C + \overline{D}$

Desde la lógica a las puertas

- Lógica de dos niveles: ANDs followed by ORs
- Example: Y = A'B'C' + AB'C' + AB'C

Reglas de los esquemáticos de circuitos

- Entradas a la izquierda (o arriba)
- Salidas a la derecha (o abajo)
- Las puertas fluyen de izquierda a derecha
- Los cables rectos son los mejores

Reglas de los esquemáticos de circuitos

- Los cables siempre se conectan en una unión en T
- Un punto donde se cruzan los cables indica una conexión entre los cables
- Los cables que se cruzan sin un punto no hacen conexión

Circuitos con múltiples salidas

Ejemplo: Circuito Prioritario

Salida establecida correspondiente a la entrada del bit más significativo de valor TRUE

A_3	A_2	A_1	A_o	Υ ₃	Y ₂	Y ₁	Υ ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	0 0 1 0 0 1 0 0 1 1 0 0 1	01010101010101	1	0	0	0
A_3 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1	1	1	0000000111111111	Y ₂ 0 0 0 1 1 1 0 0 0 0 0 0 0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hardware del circuito de prioridad

A_3	A_2	A_{1}	A_o	Y ₃	Y_2	Y_1	Yo
0	0	0	0	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1	0	0	0 1 0 0 0 0 0 0 0 0 0
0	0	0	1	0	0	0	1
0	0 0 0 0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1 1 1 0 0	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	0	1	0 1 0 1 0 1 0 1 0 1 0 1	1	0	0	0
1	1	0	0	1	0	0	0
1	1 1 1	0	1	1	0	0	0
1	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0 0 0 0 1 1 1 1 0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

Condiciones DON'T CARES (NO IMPORTA)

_		_					
A_3	A_2	A_1	A_o	Y ₃	Y_2	Y ₁	Y_o
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 0 1 1 1 1 1	$egin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 1 1 0 0 1 1 0 0 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	000000011111111	0 0 0 0 1 1 1 1 0 0 0 0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	Y _o 0 1 0 0 0 0 0 0 0 0 0 0

A_3	A_2	A_{1}	A_o	Y ₃	Y_2	Y ₁	Y ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	X	Χ	0	1	0	0
1	Χ	Χ	X	0 0 0 0 1	0	0	0

Contención: X

- Contención: el circuito intenta llevar la salida a 1 y 0
- Valor real en algún punto intermedio
- Podría ser 0, 1 o en zona prohibida
- Puede cambiar con el voltaje, la temperatura, el tiempo, el ruido
- A menudo causa una disipación de energía excesiva

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

Advertencias: La contención generalmente indica un error. X se usa para "no importa" y contención: se debe mirar el contexto para distinguirlos

Estado de nodo flotante

- Flotante, alta impedancia, abierto, alto Z
- La salida flotante puede ser 0, 1 o algo intermedio
- -- Un voltímetro no indicará si un nodo está flotando, pero si puede observar con osciloscopio

E	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Aplicación del Triestado en la conexión a buses de un sistema digital

- Los nodos flotantes se utilizan en buses triestado:
 - -- Muchos conductores diferentes
 - -- Exactamente uno está activo a la vez

Mapas de Karnaugh (K-Maps)

- Las expresiones booleanas se pueden minimizar combinando términos
- Los mapas K minimizan las ecuaciones gráficamente

$$PA + PA' = P$$

A	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y \/	B			
C	$-\infty$	01	11	10
0	ABC	ĀB <u></u> C	<i>AB</i> C	<i>A</i> BC
1	ĀBC	ĀBC	ABC	ABC

K-Maps

- Círculo 1 en cuadrados adyacentes
- En la expresión booleana, incluya solo literales cuyo valor TRUE y su complemento no estén en el círculo

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$Y = A'B'$$

K-Maps de tres entradas

Truth Table

_ A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

Definiciones en K-Maps

• Complemento: variable marcada con alguno de los caracteres indicados anteriormente

• Literal: variable o su complemento

• Implicante: producto de literales

• Implicant Primo: implicante correspondiente al círculo más grande en el K-Map

Reglas en K-Map

- Cada 1 debe rodearse (con círculo) al menos una vez
- Cada círculo debe abarcar una potencia de 2 (es decir, 1, 2, 4) cuadrados en cada dirección
- Cada círculo debe ser lo más grande posible.
- Un círculo puede envolver los bordes
- Se marca con un círculo "no me importa" (X) solo si ayuda a minimizar la ecuación

Mapa de 4-entradas

Α	В	С	D	Y
0	0		0	1
0	0 0	0 0	1	0
0	0	1	0	1
0	0 0	1 1 0	0 1 0 1 0	1
0	1	0	0	0
0		0		1
0	1 1 1 0	0 1 1 0	1 0 1 0	1
0	1	1	1	1
1	0	0	0	1
1		0		1
1	0	1	1 0 1 0	1
1	0	1 1 0	1	0
1	1	0	0	0
1	1	0	1 0	0
0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 1 1 1	1 1	0	1 0 1 0 1 1 1 1 1 0 0 0
1	1	1	1	0

Υ	_			
CD A	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

Mapa de 4-entradas

A	В	С	D	Y
0	0	0	0	1
0	0	0	1	1 0
0	0	1	0	1
0	0	1	0 1 0 1 0 1 0	1
0	1	1 0	0	0
0	1 1	0	1	1
0	1	1 1 0	0	1
0	1 1	1	1	1
1	0	0	0	1
1		0		1
1	0	0 1	0	1
1	0 0 0 1 1	1 0	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1 1	1	1	1 0 1 0 1	1 0 1 1 1 1 0 0
1	1	1	1	0

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

K-Map con Don't cares

Α	В	С	D	Y
	0	0	0	1
0	0	0		1 0
0	0	1	1 0	1
0	0	1	1	1 1 0
0	1	0	0	0
0	1	0	1 0 1 0 1 0 1 0 1	
0	1	1	0	1
0	1	1	1	1
1	0	1 0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
0 0 0 0 0 0 0 1 1 1 1 1	1	1	0	X 1 1 1 X X X X X
1	1	1	1	X

Υ	_			
CDA	B 00	01	11	10
00	1	0	X	1
01	0	X	X	1
11	1	1	X	X
10	1	1	X	Х

K-Map con Don't cares

Α	В	С	D	Y
0	0		0	1
0	0 0	0 0	1	0
0	0	1	1 0	1
0	0	1	1	1
0	1	0	1 0	0
0	1 1 1	1 0 0 1 1 0 0 1 1 0		Χ
0	1	1	1 0	1
0	1	1		1
1	1 0 0 0	0	1 0	1
1	0	0		1
1	0	1	1 0 1 0 1	Χ
1	0	1	1	X
1	1 1	0	0	Χ
1	1	0	1	Χ
0 0 0 0 0 0 0 0 1 1 1 1 1 1	1	1	0	1 0 1 0 X 1 1 1 X X X X
1	1	1	1	X

$$Y = A + \overline{B}\overline{D} + C$$

Simplificar funciones con 5 o mas variables

• El algoritmo de Quine-McCluskey es funcionalmente idéntico al mapeo de Karnaugh, pero la forma tabular lo hace más eficiente para su uso en algoritmos informáticos y también brinda una forma determinística de verificar que se haya alcanzado la forma mínima de una función booleana. A veces se lo denomina método de tabulación.

	Column I		Column	H	Column III	
group 0	0 0000	1	0, 1	000- ✓	0, 1, 8, 9	-00-
1	1 0001	1	0, 2	00-0 ✓	0, 2, 8, 10	-0-0
group 1	2 0010	1	0, 8	-000 ✓	0, 8, 1, 9	-00
	8 1000	1	1, 5	0-01	0, 8, 2, 10	-0-0
ì	5 0101	1	1, 9	-001 ✓	2, 6, 10, 14	10
	6 0110	1	2, 6	0-10 /	2, 10, 6, 14	10
group 2	9 1001	1	2, 10	-010 ✓	182	
Į	10 1010	1	8, 9	100- ✓		
1	7 0111	1	8, 10	10-0 ✓		
group 3	14 1110	1	5, 7	01-1		
			6, 7	011-		
			6, 14	-110 V		
			10, 14	1-10 🗸		

Random example

Number of input variables: 4 V

Allow Don't-Care: no 🗸

Truth table:

table:	Implicants	(Order 0)

Implicants (Order 1):

Implicants (Order 2):

\$2.	x_3	x_2	x_1	x_0	y
0:	0	0	0	0	1
1:	0	0	0	1	1
2:	0	0	1	0	1
3:	0	0	1	1	0
4:	0	1	0	0	0
5:	0	1	0	1	1
6:	0	1	1	0	1
7:	0	1	1	1	1
8:	1	0	0	0	1
9:	1	0	0	1	1
10:	1	0	1	0	1
11:	1	0	1	1	0
12:	1	1	0	0	0
13:	1	1	0	1	0
14:	1	1	1	0	1
15:	1	1	1	1	0

	x_3	x_2	x_1	x_0	
):	0	0	0	0	-
:	0	0	0	1	-
:	0	0	1	0	-
•	0	1	0	1	-
	0	1	1	0	-
1	0	1	1	1	-
	1	0	0	0	-
	1	0	0	1	-
0:	1	0	1	0	-
4:	1	1	1	0	-

	x_3	x_2	x_1	x_0	
0, 1:	0	0	0	-	-
0, 2:	0	0		0	123
0, 8:	40	0	0	0	
1, 5:	0	9-	0	1	1
1, 9:	240	0	0	1	-
2, 6:	0	, <u>, -</u>	1	0	153
2, 10:	= 0	0	1	0	_
5, 7:	0	1		1	1
6, 7:	0	1	1	-	\
6, 14:	=0	1	1	0	153
8, 9:	1	0	0	-	-
8, 10:	1	0		0	109
10, 14:	1	36 — 1	1	0	-

	x_3	x_2	x_1	x_0
0, 1, 8, 9:	-	0	0	9—
0, 2, 8, 10:		0	-	0
2, 6, 10, 14:	-	-	1	0

17-03-2024

Prime implicant chart: $x_3 x_2 x_1 x_0 0 1 2 5 6 7 8 9$ 10 14 $(\bar{x}_2\bar{x}_1)$ 0, 1, 8, 9: 0 0 0 0 $(\bar{x}_2\bar{x}_0)$ 0, 2, 8, 10: 0 0 0 0 \bullet $(x_1\bar{x_0})$ 2, 6, 10, 14: 0 0 0 $(\bar{x}_3\bar{x}_1x_0)$ 1, 5: 0 0 0 $(\bar{x}_3 x_2 x_0)$ $(\bar{x}_3 x_2 x_1)$ 5, 7: 0 6, 7: 0

17-03-2024 52 / 69

Extracted essential prime implicants: $(\bar{x}_2\bar{x}_1)$, $(x_1\bar{x}_0)$

Reduced prime implicant chart (Iteration 0):

Extracted essential prime implicants: $(\bar{x}_3x_2x_0)$

Minimal boolean expression:

$$y = (\bar{x}_2 \bar{x}_1) \vee (x_1 \bar{x}_0) \vee (\bar{x}_3 x_2 x_0)$$

17-03-2024 53 / 69

Simplificar funciones con 5 o mas variables

En el sitio

https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/

La función que se minimiza se puede ingresar mediante una tabla de verdad que representa la función y = f(xn,...,x1,x0). Puede editar manualmente esta función haciendo clic en los elementos grises en la columna y, alternativamente, puede generar una función aleatoria presionando el botón "Ejemplo aleatorio".

Bloques constructivos combinacionales

- Multiplexores
- Decodificadores

Multiplexor (Mux)

- Selecciona entre una de N entradas para conectar a la salida
- Hay 2^N líneas de entrada y N líneas de selección cuyas combinaciones de bits determinan cual entrada se selecciona

	S	D_1	D_0	Y	S	Υ
_	0	0	0	0	0	D_0
	0	0	1	1	1	D_1
	0	1	0	0		•
	0	1	1	1		
	1	0	0	0		
	1	0	1	0		
	1	1	0	1		
	1	1	1	1		

Implementar Mux's

Puertas Lógicas

• Forma SOP

$$Y = D_0 \overline{S} + D_1 S$$

Triestados

- Para un Mux de N entradas, usa N triestados
- Encienda exactamente uno para seleccionar la entrada adecuada

Ejemplos de circuitos MUX

17-03-2024

Decodificadores

- N entradas, 2N salidas
- Solo una salida ALTA a la vez

A_1	A_0	Y_3	Y_2	Y ₁	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Ejemplos de decodificadores

17-03-2024

Implementación de un decodificador

Lógica usando decodificadores

Mintérmino OR

Sincronización

- Retardo entre cambio de entrada y cambio de salida¿
- Cómo construir circuitos rápidos?

Retraso de propagación y contaminación

- Demora de Propagación: t_{pd} = maxima demora desde entrada a salida
- **Demora de Contaminación:** t_{cd} = min delay from input to output

Retraso de propagación y contaminación

- El retraso es causado por
- -- Capacitancia y resistencia en un circuito
- -- Limitación de la velocidad de la luz
- Razones por las que tpd y tcd pueden ser diferentes:
- -- Diferentes retrasos ascendentes y descendentes
- -- Múltiples entradas y salidas, algunas de las cuales son más rápidas que otras
- -- Los circuitos se ralentizan cuando están calientes y se aceleran cuando están fríos.

Rutas críticas (largas) y cortas

Ruta (Path) crítica (Larga):
$$t_{pd} = 2t_{pd_AND} + t_{pd_OR}$$

Trayecto corto: $t_{cd} = t_{cd_AND}$

Fallas (glitches)

Cuando un solo cambio de entrada hace que

una salida cambie varias veces

Ejemplo de una falla (glitch)

¿Que sucede cuando A=0, C=1, B cae?

Ejemplo de una falla (glitch)

¿Por qué entender los fallos?

- Los fallos no causan problemas debido a las convenciones de diseño síncrono.
- Es importante reconocer un fallo: en simulaciones o en osciloscopio.
- No se pueden deshacer de todos los problemas técnicos: las transiciones simultáneas en múltiples entradas también pueden causar problemas técnicos.

Fin AOC_02.pptx