CASE STUDY 2

TEXTURE TALES

INTRODUCTION:

Texture Tales Clothing Company prides themselves on providing an optimized range of clothing and lifestyle wear for the modern adventurer!

I, the CEO of this trendy fashion company is asking you to assist the team's merchandising teams analyze their sales performance and generate a basic financial report to share with the wider business.

create database tales use tales

```
-- Table: product_details

create table product_details (
    product_id varchar(20) primary key,
    price int not null,
    product_name varchar(100) not null,
    category_id int not null,
    segment_id int not null,
    style_id int not null,
    category_name varchar(50) not null,
    segment_name varchar(50) not null,
    style_name varchar(50) not null,
```

```
-- Table: product_prices
create table product_prices (
        id int primary key,
        product_id varchar(20) foreign key references product_details(product_id),
        price int not null
  );
  -- Table: product_hierarchy
create table product_hierarchy (
        id int primary key,
        product_id varchar(20) foreign key references product_details(product_id),
        price int not null,
        start_date date not null,
        end_date date not null
);
  -- Table: sales
r create table sales (
        prod_id varchar(20) foreign key references product_details(product_id),
        qty int not null,
        price int not null,
        discount int not null,
        member varchar(20) not null,
        txn_id varchar(30) primary key,
        start_txn_time varchar(30) not null
);
 insert into product_details (product_id, price, product_name, category_id, segment_id, style_id, category_name, segment_name, style_name)
 ('P001', 1200, 'T-Shirt', 1, 1, 1, 'Tops', 'Men', 'Casual'),
 ('P002', 1500, 'Jacket', 1, 2, 2, 'Tops', 'Women', 'Winter'),
 ('P003', 900, 'Shorts', 2, 1, 3, 'Bottoms', 'Men', 'Activewear'),
 ('P004', 1800, 'Hoodie', 1, 2, 2, 'Tops', 'Women', 'Winter'),
 ('P005', 500, 'Cap', 3, 1, 4, 'Accessories', 'Men', 'Caps'),
 ('P006', 2000, 'Jeans', 2, 2, 5, 'Bottoms', 'Women', 'Denim'),
 ('P007', 750, 'Scarf', 3, 2, 4, 'Accessories', 'Women', 'Scarves'),
 ('P008', 1700, 'Track Pants', 2, 1, 3, 'Bottoms', 'Men', 'Activewear'),
 ('P009', 2200, 'Sweater', 1, 2, 2, 'Tops', 'Women', 'Winter'),
 ('P010', 850, 'Tank Top', 1, 1, 1, 'Tops', 'Men', 'Casual'),
 ('P011', 1299, 'Rain Jacket', 1, 1, 6, 'Tops', 'Men', 'Jackets'),
 ('P012', 1599, 'Windbreaker', 1, 2, 6, 'Tops', 'Women', 'Jackets'),
 ('P013', 999, 'Cargo Shorts', 2, 1, 3, 'Bottoms', 'Men', 'Shorts'),
 ('P014', 1899, 'Puffer Jacket', 1, 2, 6, 'Tops', 'Women', 'Jackets'),
 ('P015', 599, 'Bandana', 3, 1, 7, 'Accessories', 'Men', 'Bandana'),
 ('P016', 1199, 'Fleece Pants', 2, 2, 5, 'Bottoms', 'Women', 'Pants'),
 ('P017', 1399, 'Travel Duffel', 3, 1, 8, 'Accessories', 'Men', 'Bags'),
 ('P018', 799, 'Sports Bra', 1, 2, 9, 'Tops', 'Women', 'Innerwear'),
 ('P019', 899, 'Beanie', 3, 2, 4, 'Accessories', 'Women', 'Caps'),
 ('P020', 1099, 'Thermal Top', 1, 1, 10, 'Tops', 'Men', 'Thermal');
```

```
-- INSERT INTO product_prices (20 rows)
insert into product_prices (id, product_id, price)
values
(1, 'P001', 1200),
(2, 'P002', 1500),
(3, 'P003', 900),
(4, 'P004', 1800),
(5, 'P005', 500),
(6, 'P006', 2000),
(7, 'P007', 750),
(8, 'P008', 1700),
(9, 'P009', 2200),
(10, 'P010', 850),
(11, 'P011', 1299),
(12, 'P012', 1599),
(13, 'P013', 999),
(14, 'P014', 1899),
(15, 'P015', 599),
(16, 'P016', 1199),
(17, 'P017', 1399),
(18, 'P018', 799),
(19, 'P019', 899),
(20, 'P020', 1099);
-- INSERT INTO product_hierarchy (20 rows)
insert into product_hierarchy (id, product_id, price, start_date, end_date)
values
(1, 'P001', 1200, '2023-01-01', '2023-06-30'),
(2, 'P002', 1500, '2023-01-01', '2023-06-30'),
(3, 'P003', 900, '2023-01-01', '2023-06-30'),
(4, 'P004', 1800, '2023-01-01', '2023-06-30'),
(5, 'P005', 500, '2023-01-01', '2023-06-30'),
(5, 'P005', 500, '2023-01-01', '2023-06-30'),
(6, 'P006', 2000, '2023-07-01', '2023-12-31'),
(7, 'P007', 750, '2023-07-01', '2023-12-31'),
(8, 'P008', 1700, '2023-07-01', '2023-12-31'),
(9, 'P009', 2200, '2023-07-01', '2023-12-31'),
(10, 'P010', 850, '2023-07-01', '2023-12-31'),
(11, 'P011', 1299, '2023-01-01', '2023-06-30')
(11, 'P011', 1299, '2023-01-01', '2023-06-30'), (12, 'P012', 1599, '2023-01-01', '2023-06-30'), (13, 'P013', 999, '2023-01-01', '2023-06-30'),
(14, 'P014', 1899, '2023-01-01', '2023-06-30'), (15, 'P015', 599, '2023-01-01', '2023-06-30'),
(16, 'P016', 1199, '2023-07-01', '2023-12-31'), (17, 'P017', 1399, '2023-07-01', '2023-12-31'),
(18, 'P018', 799, '2023-07-01', '2023-12-31'), (19, 'P019', 899, '2023-07-01', '2023-12-31'),
(20, 'P020', 1099, '2023-07-01', '2023-12-31');
```

```
-- INSERT INTO sales (20 rows)
insert into sales (prod_id, qty, price, discount, member, txn_id, start_txn_time)
  ('P001', 2, 1200, 10, 'Y', 'TXN001', '2023-01-15 09:00'),
  ('P002', 1, 1500, 0, 'N', 'TXN002', '2023-01-18 13:00'), ('P003', 3, 900, 5, 'Y', 'TXN003', '2023-02-10 16:45'),
  ('P004', 2, 1800, 20, 'Y', 'TXN004', '2023-02-20 11:30'),
  ('P005', 1, 500, 0, 'N', 'TXN005', '2023-03-05 10:15'),
  ('P006', 2, 2000, 15, 'Y', 'TXN006', '2023-03-10 14:50'),
  ('P007', 1, 750, 10, 'N', 'TXN007', '2023-04-12 12:00'),
  ('P008', 2, 1700, 5, 'Y', 'TXN008', '2023-04-25 15:40'), ('P009', 1, 2200, 10, 'Y', 'TXN009', '2023-05-08 09:20'),
  ('P010', 3, 850, 0, 'N', 'TXN010', '2023-05-18 17:30'), ('P011', 1, 1299, 10, 'Y', 'TXN016', '2023-01-20 10:30'), ('P012', 2, 1599, 15, 'Y', 'TXN017', '2023-02-18 09:45'),
  ('P013', 1, 999, 0, 'N', 'TXN018', '2023-02-25 17:15'),
  ('P014', 1, 1899, 20, 'Y', 'TXN019', '2023-03-02 11:30'),
  ('P015', 2, 599, 5, 'N', 'TXN020', '2023-03-12 19:45'),
  ('P016', 1, 1199, 10, 'Y', 'TXN021', '2023-04-10 08:10'), ('P017', 3, 1399, 10, 'Y', 'TXN022', '2023-04-12 15:20'),
  ('P018', 2, 799, 0, 'N', 'TXN023', '2023-05-01 14:30'), ('P019', 1, 899, 5, 'Y', 'TXN024', '2023-05-05 13:40'),
  ('P020', 2, 1099, 15, 'Y', 'TXN025', '2023-05-20 10:05'),
  ('P013', 1, 999, 0, 'N', 'TXN026', '2023-06-15 11:20'),
  ('P015', 1, 599, 0, 'Y', 'TXN027', '2023-06-25 12:40'),
  ('P016', 2, 1199, 10, 'N', 'TXN028', '2023-07-03 17:00'), ('P018', 1, 799, 0, 'N', 'TXN029', '2023-07-07 18:20'),
  ('P020', 1, 1099, 5, 'Y', 'TXN030', '2023-07-11 20:30');
```

-- Q1: Total quantity sold for all products

select sum(qty) as total_quantity_sold from sales;

-- Q2: Total revenue before discounts

select sum(qty * price) as total_revenue_before_discount from sales;

```
⊞ Resultsi Messagestotal_revenue_before_discount1 48178
```

-- Q3: Total discount amount for all products

select sum((qty * price) * discount / 100.0) as total_discount_amount from sales;

-- Q4: Number of unique transactions

select count(distinct txn_id) as unique_transactions from sales;

-- Q5: Average unique products purchased per transaction

select avg(product_count) as avg_unique_products_per_txn from (select txn_id, count(distinct prod_id) as product_count from sales group by txn_id) as txn_products;

-- Q6: Average discount value per transaction

select avg(discount_value) as avg_discount_per_txn from (select txn_id, sum((qty * price) * discount / 100.0) as discount_value from sales group by txn_id) as txn_discounts;

-- Q7: Average revenue for member and non-member transactions

select member, avg(qty * price) as avg_revenue

from sales

group by member;

member		avg_revenue		
1	N	1329		
2	Y	2325		

-- Q8: Top 3 products by total revenue before discount

select top 3 prod_id,

sum(qty * price) as total_revenue

from sales

group by prod_id

order by total_revenue desc;

■ Results				
	prod_id	total_revenue		
1	P017	4197		
2	P006	4000		
3	P004	3600		

-- Q9: Total quantity, revenue, and discount for each segment

select pd.segment_name, sum(s.qty) as total_qty, sum(s.qty * s.price) as total_revenue, sum((s.qty * s.price) * s.discount / 100.0) as total_discount from sales s join product_details pd on s.prod_id = pd.product_id group by pd.segment_name;

[⊞] Re	sults 🖺 Message	es			
	segment_name	total_qty	total_revenue	total_discount	
1	Men	23	24138	1539.150000	
2	Women	17	24040	2879.150000	

-- Q10: Top selling product for each segment (by quantity)

with segment_sales as (select pd.segment_name, s.prod_id, sum(s.qty) as total_qty from sales s join product_details pd on s.prod_id = pd.product_id group by pd.segment_name, s.prod_id),ranked_segment as (select *, rank() over (partition by segment_name order by total_qty desc) as rnk from segment_sales) select segment_name, prod_id, total_qty from ranked_segment where rnk = 1;

■ Results ■ Messages					
	segment_name	prod_id	total_qty		
1	Men	P003	3		
2	Men	P010	3		
3	Men	P015	3		
4	Men	P017	3		
5	Men	P020	3		
6	Women	P018	3		
7	Women	P016	3		

-- Q11: Total quantity, revenue, and discount for each category

select pd.category_name, sum(s.qty) as total_qty, sum(s.qty * s.price) as total_revenue, sum((s.qty * s.price) * s.discount / 100.0) as total_discount from sales s join product_details pd on s.prod_id = pd.product_id group by pd.category_name;

⊞ Re	sults	Messages			
	category_name		total_qty	total_revenue	total_discount
1	Accessories		9	8143	599.550000
2	Bottoms		12	15695	1264.700000
3	Tops		19	24340	2554.050000

-- Q12: Top selling product for each category (by quantity)

with category_sales as (select pd.category_name, s.prod_id, sum(s.qty) as total_qty from sales s join product_details pd on s.prod_id = pd.product_id group by pd.category_name, s.prod_id), ranked_category as (select *, rank() over (partition by category_name order by total_qty desc) as rnk from category_sales) select category_name, prod_id, total_qty from ranked_category where rnk = 1;

⊞ Re	esults 🖺 Message	es	
	category_name	prod_id	total_qty
1	Accessories	P015	3
2	Accessories	P017	3
3	Bottoms	P003	3
4	Bottoms	P016	3
5	Tops	P010	3
6	Tops	P018	3
7	Tops	P020	3