600 06 21 8888888
2) Dada a Matriz A= [0 0 s], determinar:
2. J7 A2 [] 0 0] 3x3 5 Solução: A2 = A.A
$A^{2} = \{0\ 0\ 1\} \{0\ 0\ 1\} \{(0\land 0\lor 0\land 1\lor 1\land 1)(0\land 0\lor 0\land 0\lor 1\land 0)\}_{a,a}$ $[] 0\ 0\] \times [] 0\ 0\] = \{(2^{2} L e \ 1^{2} C)(2^{2} L e \ 2^{2} C)(2^{2} L e \ 3^{2} C)\}$ $[] 0\ 0\] \{3^{2} L e \ 1^{2} C)(3^{2} L e \ 2^{2} C)(3^{2} L e \ 3^{2} C)\}$
$= \frac{(0 \vee 0 \vee 5) (0 \vee 0 \vee 0) (0 \vee 0 \vee 0)}{(0 \vee 0 \vee 0) (0 \vee 0 \vee 0) (0 \vee 0 \vee 0)}, \text{ for tanto: } A^2 = 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$
Nome: Gabriel Gonçalves de Oliveira RA: 2331550021 Propessora: Dra. Marisa Atsuko Mitto - 1º ADS Lista de Exercícios - Matemática - Aula 15
It Dados as matrices booleanas A=[] 1 0] e B=[3 0] beterminar: (Deixar na resolução o resul- tado da operação v (ou))
I.17 A.B
$ \frac{100}{100} \frac{1}{100} \frac{1}{100} \frac{1}{10000000000000000000000000000000000$
$= \frac{(1 \wedge 0 \wedge 0) (0 \wedge 0 \wedge 0) (1 \wedge 0 \wedge 0)}{(0 \wedge 0 \wedge 0) (0 \wedge 0 \wedge 0) (0 \wedge 1 \wedge 1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{3 \times 3}$ $= \frac{(1 \wedge 0 \wedge 0) (0 \wedge 0 \wedge 0) (1 \wedge 1 \wedge 0)}{(0 \wedge 0 \wedge 0) (1 \wedge 1 \wedge 0)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{3 \times 3}$

P31

2) Determinar a inversa das matrizes dadas:

2. J
$$A = \begin{bmatrix} -j & 5 \\ 2 & 3 \end{bmatrix}_{2 \times 2}$$
 $\rightarrow A \cdot A^{-1} = \begin{bmatrix} 1_2 \rightarrow \begin{bmatrix} -j & 5 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} \alpha & b \\ c & d \end{bmatrix} = \begin{bmatrix} j & 6 \\ 0 & j \end{bmatrix}$

$$\Rightarrow \begin{bmatrix} -Ja+5c=1 & -Jb+5d=0 \\ 2a+3c=0 & 2b+3d=1 \end{bmatrix}$$

data JO-06-21

OCHOROLOGY

OCH

@ © @ @ Q & Q	
S-Ja+5c=J (2) J	S-Ja+5c=1 .(-3) Ca+3c=0 .(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53a-15c=-3+ $150a+15c=0$ $53a+0=-3$
C = 2 13	$\begin{bmatrix} a = -3 \\ \hline 13 \end{bmatrix}$
$\frac{5-1b+5d=0}{2b+3d=1} \cdot (1)$	S-16+3d=0 .(-3) 2b+3d=1 .(5)
$\frac{5-26+10d=0}{26+3d=1} + \frac{9}{9}$ $\frac{7-26+10d=0}{9-13d=1}$	36-15d=0 + $136+0=5$
$ \begin{array}{c c} \hline d = J \\ \hline 13 \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$3.8^{-1} = I_2 \rightarrow \begin{bmatrix} 3 & -1 \end{bmatrix} \cdot \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$
->[(3.a+(-1).c)(3.b+(- [(-5.a+4.c)(-5.b+4	dot18+-7+0
$\frac{3a-jc=1}{-5a+4c=0}$ $\frac{3b-jd=1}{-5b+4d}$	=0

53a-JC=1 2-5a+4c=0

pg ?

$\frac{53a-Jc=1}{1-5a+4c=0}$ (5)	$\begin{cases} 53\alpha - 3c = 1 & (4) \\ 2 - 5\alpha + 4c = 0 & (1) \end{cases}$	
$\frac{515a-5c=5}{1-15a+12c=0}$	$\begin{array}{c} 532a - 4c = 4 \\ 7 - 5a + 4c = 0 \end{array}$ $7a + 0 = 4$	
C=5 7 7	$\left[\begin{array}{c} \alpha = 4 \\ \overline{7} \end{array}\right]_{r}$	
$\begin{cases} 36-Jd=0 . (5) \\ -56+4d=J . (3) \end{cases}$	(36-1d=0 .(4) 2-56+4d=1 .(1)	
$5 \cdot 156 - 5d = 0$ 1 - 156 + 12d = 3 0 + 7d = 3	$ \begin{cases} 5126 - 4d = 0 \\ -56 + 4d = 1 \end{cases} $ $ 76 + 0 = 1 $	
	$\begin{bmatrix} b = 1 \\ 7 \end{bmatrix} = \begin{bmatrix} 4/7 & 5/7 \\ 5/7 & 3/7 \end{bmatrix}_{2 \times 2}$	
Gabriel Gonçalves de Oliveira 2111550021 1º ADS		

"Bem-aventurado o povo que conhece os gritos de alegria, que anda, o Senhor, na luz da tua presença. Em ten nome se alegra o dia todo e na tua justiça se rexalta porque tu és a glória de sua corça; no ten cavor e exaltado o nosso poder. Pois ao Senhor pertenne o nosso escudo, e ao Santo de Israel, o nosso Ren. rei. "Salmos 89:15-18