TRABAJO CONFLUENCIA

FLA – Fundamentos Lógicos Algebraicos

Índice:

Ejercicio 1:	. 2
Ejercicio 2:	. 4
<i>.</i> Ejercicio 3:	
Eiercicio 4:	

Ejercicio 1:

691.trs

```
(RULES

h(a,a) -> f(c)

a -> a

a -> a

b -> h(c,a)

)
```

Primero será necesario definir el elemento μ que cumpla la propiedad LHRV siendo: $\mu(h) = \{1\}$, ya que, debido a la inexistencia de variables, el μ -LHRV se cumple.

Una vez hemos ejecutado la herramienta SRTools se obtienen los siguientes pares críticos:

Critical Pairs						
< h(a,a) , f(c)	>	Convergent				
< h(a,a) , f(c)	>	Convergent				
< h(a,a) , f(c)	>	Convergent				
< h(a,a) , f(c)	>	Convergent				
< a , a >		Trivial				

Debido a que los pares críticos obtenidos son convergentes significa que podemos reducir el número de pares críticos que necesitamos considerar:

```
\mu-críticos = < h(a,a), f(c) >
```

Web Interface

```
Answer:
NO

Problem 1:

(VAR v_NonEmpty:S)

(RULES
a -> a
b -> h(c,a)
h(a,a) -> f(c)
```

Por tanto, como no es μ -terminante podemos determinar por el Lema de Newmann que no es μ -confluente, ya que para ser μ -confluente, tiene que ser μ -terminante y ser localmente μ -confluente

Ejercicio 2:

693.trs

```
(RULES

c -> b

a -> a

b -> b

f(f(a)) -> c
```

Primero será necesario definir el elemento μ que cumpla la propiedad LHRV siendo: $\mu(h) = \{1,1.1\}$ ya que, debido a la inexistencia de variables, el μ -LHRV se cumple.

Una vez hemos ejecutado la herramienta SRTools se obtienen los siguientes pares críticos:

```
Critical Pairs
< f(f(a)) , c > Convergent
```

Debido a que los pares críticos obtenidos son convergentes significa que podemos reducir el número de pares críticos que necesitamos considerar:

```
\mu-críticos = < f(f(a)), c >
```

Web Interface

```
Answer:
NO

Problem 1:

(VAR v_NonEmpty:S)

(RULES
a -> a
b -> b
c -> b
f(f(a)) -> c
)
```

Por tanto, como no es μ -terminante podemos determinar por el Lema de Newmann que no es μ -confluente, ya que para ser μ -confluente, tiene que ser μ -terminante y ser localmente μ -confluente

Ejercicio 3:

```
(RULES

c -> f(h(b,b))

c -> b

b -> b

c -> a
)
```

Primero será necesario definir el elemento μ que cumpla la propiedad LHRV siendo: $\mu(f(h)) = \{1\}$ ya que, debido a la inexistencia de variables, el μ -LHRV se cumple.

Una vez hemos ejecutado la herramienta SRTools se obtienen los siguientes pares críticos:

Critical Pairs					
<	b	,	f(h(b,b)) >	Non	Convergent
<	a	,	f(h(b,b)) >	Non	Convergent
<	a	,	b >	Non	Convergent

Debido a que los pares críticos obtenidos no son convergentes por tanto no podemos reducir el número de pares críticos que necesitamos considerar:

```
\mu-críticos = <b, f(h(b,b)) > , <b, f(h(b,b)) > , < a , b >
```

Web Interface

```
Answer:
NO

Problem 1:

(VAR v_NonEmpty:S)

(RULES
b -> b
c -> b
c -> a
c -> f(h(b,b))
)
```

Por tanto, como no es μ -terminante podemos determinar por el Lema de Newmann que no es μ -confluente, ya que para ser μ -confluente, tiene que ser μ -terminante y ser localmente μ -confluente

Ejercicio 4:

```
(RULES
h(h(c,a),b) -> b
a -> h(a,b)
a -> a
)
```

Primero será necesario definir el elemento μ que cumpla la propiedad LHRV siendo: $\mu(h) = \{1\}$ ya que, debido a la inexistencia de variables, el μ -LHRV se cumple.

Una vez hemos ejecutado la herramienta SRTools se obtienen los siguientes pares críticos:

Critical Pairs						
< h(h(c,h(a,b)),b) , b >	Unknokw					
< h(h(c,a),b) , b >	Convergent					
< a , h(a,b) >	Convergent					

Debido a que los pares críticos obtenidos son convergentes significa que podemos reducir el número de pares críticos que necesitamos considerar, pero como en este caso el valor $\{1\}$ definido en el $\mu(h)$ no corresponde a ningún par critico, se determina que no existen μ -críticos.

```
Critical Pairs Calculation
L \rightarrow R = R0 = h(h(c,a),b) \rightarrow b
L' \rightarrow R' = R1 = a \rightarrow h(a,b)
Pos = 1.2
L|_{1.2} = a
\sigma(L) = h(h(c,a),b)
\sigma(R') = h(a,b)
\sigma(R) = b
S = \sigma(L)[\sigma(R')]_{1.2} = h(h(c, h(a,b)), b)[h(a,b)]_{1.2} = h(h(c,h(a,b)), b)
< h(h(c,h(a,b)),b) , b >
L \rightarrow R = R0 = h(h(c,a),b) \rightarrow b
L' \rightarrow R' = R2 = a \rightarrow a
Pos = 1.2
|L|_{1.2} = a
\sigma(L) = h(h(c,a),b)
\sigma(R') = a
\sigma(R) = b
S = \sigma(L)[\sigma(R')]_{1.2} = h(h(c,\underline{a}),b)[a]_{1.2} = h(h(c,a),b)
< h(h(c,a),b) , b >
L \rightarrow R = R1 = a \rightarrow h(a,b)
L' \rightarrow R' = R2 = a \rightarrow a
Pos = \Lambda
L|_{\Lambda} = a
σ =
\sigma(L) = a
\sigma(R') = a
\sigma(R) = h(a,b)
S = \sigma(L)[\sigma(R')]_{\Lambda} = \underline{a}[a]_{\Lambda} = a
< a , h(a,b) >
```

Web Interface

```
Answer:
NO

Problem 1:

(VAR v_NonEmpty:S)

(RULES
a -> a
a -> h(a,b)
h(h(c,a),b) -> b
)
```

Por tanto, como no es μ -terminante podemos determinar por el Lema de Newmann que no es μ -confluente, ya que para ser μ -confluente, tiene que ser μ -terminante y ser localmente μ -confluente.