Wholesale Customer Data

Clustering

Data

https://archive.ics.uci.edu/ml/datasets/Wholesale+customers#

Attribute Information:

- 1) FRESH: annual spending (m.u.) on fresh products (Continuous);
- 2) MILK: annual spending (m.u.) on milk products (Continuous);
- 3) GROCERY: annual spending (m.u.)on grocery products (Continuous);
- 4) FROZEN: annual spending (m.u.)on frozen products (Continuous)
- 5) DETERGENTS_PAPER: annual spending (m.u.) on detergents and paper products (Continuous)
- 6) DELICATESSEN: annual spending (m.u.)on and delicatessen products (Continuous);
- 7) CHANNEL: customers' Channel Horeca (Hotel/Restaurant/Café) or Retail channel (Nominal)
- 8) REGION: customers' Region Lisnon, Oporto or Other (Nominal)

Exploring data

- Exploring the data reveals that channels contain more variability than the regions (Example graph above).
 Similar patterns emerge for other variables.
- Strong correlation is found in Grocery & Detergent 0.92, Milk & Det 0.66 and Milk & Grocery 0.73
- Looking at various graphs such as the one above, we can roughly estimate 3 clusters

Hierarchical

d hclust (*, "complete")

80000

40000

Fig: Dendrogram: Milk and Grocery

hclust (*, "complete")

Fig: Dendrogram: Milk and Detergent/Paper

Cluster Dendrogram

- Different hierarchical clusterings dendrograms roughly categorize data into 3 or 4 groups
- Some observations seem to be separated out consistently (even though its hard to read here)
- Above dendrogram based on Milk and Grocery AND Milk and Det_Paper

Fig: Heatmap: Milk and Grocery

K-means

CLUSPLOT(wsData)

These two components explain 72.46 % of the point variability.

- 3 seems to be the optimum value for no. of clusters as seen from the plot of Within SS against no. of clusters
- Running kmeans with cluster size = 3, we get the following centers >>>

Fresh	Milk	Grocery	Frozen	Det_Paper	Deli
8000.04	18511.420	27573.900	1996.680	12407.360	2252.020
35941.40	6044.450	6288.617	6713.967	1039.667	3049.467
8253.47	3824.603	5280.455	2572.661	1773.058	1137.497

Conclusion

Fresh	Milk	Grocery	Frozen	Det_Paper	Deli
8000.04	18511.420	27573.900	1996.680	12407.360	2252.026 Cluster1: High Milk, Grocery, Det_
35941.40	6044.450	6288.617	6713.967	1039.667	3049,467 Cluster2: High Fresh, Frozen, Deli
8253.47	3824.603	5280.455	2572.661	1773.058	1137.497

	Channel 1	Channel 2
Cluster 1	2	48
Cluster 2	52	8
Cluster 3	244	86

<u>Cluster 1:</u> High spenders in Retail channel (Channel 2) tend to spend on Grocery, Milk and Det_Paper categories

Cluster 2: High spenders in Horeca channel (Channel 1) tend to spend higher

on Fresh product category

Cluster 3: Low spenders

Appendix

CLUSPLOT(ws[, c("Grocery", "Det_Paper", "Milk")])

These two components explain 97.67 % of the point variability.

Observation: If we run Kmeans with Grocery, Detergent_Paper and Milk, we can capture 97% variability in data