The Gradient & Directional Derivatives

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 13.6 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Be able to compute a gradient vector, and use it to compute a directional derivative of a given function in a given direction.
- Be able to use the fact that the gradient of a function f(x, y) is perpendicular (normal) to the level curves f(x, y) = k and that it points in the direction in which f(x, y) is increasing most rapidly.

PRACTICE PROBLEMS:

For problems 1-3, compute the directional derivative of f at the point P in the direction of \overrightarrow{v} .

1.
$$f(x,y) = x^4 - y^4$$
; $P(0,-2)$; $\overrightarrow{v} = \frac{\sqrt{2}}{2}\mathbf{i} + \frac{\sqrt{2}}{2}\mathbf{j}$

2.
$$f(x,y) = y \sin x$$
; $P\left(\frac{\pi}{2}, 1\right)$; $\overrightarrow{v} = \langle 1, -1 \rangle$

$$\boxed{-\frac{1}{\sqrt{2}}}$$

3.
$$f(x, y, z) = e^x \cos(yz)$$
 at $P = (1, \pi, 0)$, $\overrightarrow{v} = -2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$

$$\boxed{-\frac{2e}{\sqrt{14}}}$$

4. Find the directional derivative of $g(x, y, z) = z \ln(x + y)$ at P(0, 1, -2) in the direction from P to Q(1, 3, 2).

1

$$-\frac{6}{\sqrt{21}}$$
; Detailed Solution: Here

5. Find the directional derivative of $f(x,y) = \frac{y^2}{x+y}$ at the point (-1,-1) in the direction of a vector which makes a counterclockwise angle $\theta = \frac{\pi}{4}$ with the positive x-axis.

$$\boxed{\frac{\sqrt{2}}{4}}$$

6. Suppose $f(x,y) = \tan(xy)$. Find a unit vector **u** such that $D_{\mathbf{u}}f(1,\pi) = 0$.

$$\mathbf{u} = \left\langle \frac{1}{\sqrt{\pi^2 + 1}}, -\frac{\pi}{\sqrt{\pi^2 + 1}} \right\rangle$$
 or $\mathbf{u} = \left\langle -\frac{1}{\sqrt{\pi^2 + 1}}, \frac{\pi}{\sqrt{\pi^2 + 1}} \right\rangle$; Detailed Solution: Here

7. Suppose that f(x, y, z) is a differentiable function. Let $f_x(1, 1, 2) = 5$, $f_y(1, 1, 2) = -1$, and $f_z(1, 1, 2) = 0$. What is the directional derivative of f(x, y, z) at (1, 1, 2) in the direction of $\overrightarrow{a} = \langle -3, 0, 4 \rangle$?

$$-3$$

8. Suppose $D_{\mathbf{u}}f(3,-2) = 1$ and $D_{\mathbf{v}}f(3,-2) = 2$ where $\mathbf{u} = \frac{4}{5}\mathbf{i} + \frac{3}{5}\mathbf{j}$ and $\mathbf{v} = -\frac{4}{5}\mathbf{i} + \frac{3}{5}\mathbf{j}$. Compute $f_x(3,-2)$ and $f_y(3,-2)$.

$$f_x(3,-2) = -\frac{5}{8}; f_y(3,-2) = \frac{5}{2}$$

For problems 9-11, find the gradient of f at the given point.

- 9. $f(x,y) = 3xy y^2x^3$ at (1,-1) $\nabla f(1,-1) = -6\mathbf{i} + 5\mathbf{j}$
- 10. $f(x,y) = \cos(2x y^2)$ at $(\pi/4, 0)$ $\nabla f\left(\frac{\pi}{4}, 0\right) = \langle -2, 0 \rangle$
- 11. $f(x, y, z) = 4xyz y^2z^3 + 4z^3y$ at (2, 3, 1) $\nabla f(2, 3, 1) = 12\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$
- 12. For each of the following, determine the maximum value of the directional derivative at the given point as well as a unit vector in the direction in which the maximum value occurs.
 - (a) $g(x,y) = e^{xy^2}$; P(1,3)

The maximum value of the directional derivative of g at P is $e^9\sqrt{117}$ which occurs in the direction of $\mathbf{u} = \left\langle \frac{9}{\sqrt{117}}, \frac{6}{\sqrt{117}} \right\rangle$.

(b)
$$w = \sqrt{4 - x^2 - y^2 - z^2}$$
; $P(1, -1, 0)$

The maximum value of the directional derivative of
$$w$$
 at P is 1 which occurs in the direction of $\mathbf{u} = \left\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right\rangle$.

13. The temperature at the point
$$(x, y, z)$$
 in a room is $T(x, y, z) = \frac{xz}{x^2 + y^2}$. Find the direction in which the temperature increases most rapidly at the point $(-3, 4, 1)$.

$$\frac{7}{625}$$
i + $\frac{24}{625}$ **j** - $\frac{3}{25}$ **k**

14. Compute a unit vector in the direction in which
$$f(x, y, z) = x^3yz^2$$
 decreases most rapidly at $P(2, -1, 1)$; and, find the rate of change of f at P in that direction.

The direction in which
$$f$$
 decreases most rapidly is $\mathbf{u} = \left\langle \frac{3}{\sqrt{29}}, -\frac{2}{\sqrt{29}}, \frac{4}{\sqrt{29}} \right\rangle$. And, the rate of change in this direction is $-4\sqrt{29}$. Detailed Solution: Here

For problems 15-16, sketch the level curve of f(x,y) which passes through the given point P. Then draw the gradient of f at P on the same axes.

15.
$$f(x,y) = 20 - 5x + y$$
; $P = (3,5)$

16.
$$f(x,y) = x^2 + y^2$$
; $P\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

Point
$$P$$
 is on the level curve $f(x,y)=1$, i.e., $x^2+y^2=1$; $\nabla f\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)=\left\langle\sqrt{2},\sqrt{2}\right\rangle$.

17. The graph shown below depicts some level curves of an unspecified function f(x,y).

Which of the vectors is most likely to be ∇f at P? Explain your reasoning.

 \overrightarrow{d} . $\nabla f(P)$ should point in the direction of greatest increase and it should be normal to point P on the level curve of f(x,y).