République Islamique de Mauritanie Ministère de l'Education Nationale et de la Réforme du Système Educatif Direction des Examens et des Concours

BACCALAUREAT Session Normale 2022 Epreuve de MATHEMATIQUES

Série : Mathématiques (Classes Expérimentales) Coefficient : 9 Durée : 4h

Exercice 1: (3 points)

Les statistiques montrent que 5% des candidats au bac national 2019 étaient en série C. On choisit, de façon aléatoire, de l'ensemble des candidats de 2019, un échantillon de n candidats $(n \ge 2)$. On suppose que ce choix peut être assimilé à un tirage successif avec remise. Soit X la variable aléatoire égale au nombre de candidats au bac C choisis dans cet échantillon	
1. Déterminer la loi de probabilité de X et son espérance mathématique 2. Calculer en fonction de n la probabilité de chacun des événements A et B suivants :	1 pt
A « Seulement deux candidats au bac C ont été choisis »	0.5 pt
B « Au moins un candidat au bac C a été choisi ». 3. Soit p_n la probabilité d'avoir choisi au moins un candidat au bac C donc $p_n = p(B)$.	0.5 pt
a) Calculer $\lim_{n\to +\infty} \mathbf{p}_n$ et interpréter le résultat.	0.5 pt
b) Quel est le nombre minimal de candidats qu'il faut choisir pour que $p_n \ge 0.99$?	0.5 pt
Exercice 2: (5 points) 1. Soit $P(z) = z^3 - (5+6i)z^2 + (-6+16i)z + 20+10i$, $z \in \mathbb{C}$	
a) Calculer $P(-1+i)$ puis déterminer les complexes a et b tels que $P(z) = (z+1-i)(z^2+az+b)$ b) En déduire les solutions de l'équation $P(z) = 0$.	1pt
On notera z_1 , z_2 et z_3 les solutions de cette équation avec $ z_1 < z_2 < z_3 $.	0.5pt
2. Dans le plan complexe, muni d'un repère orthonormal direct $(\mathbf{O}, \vec{\mathbf{u}}, \vec{\mathbf{v}})$, on considère les points	
A, B et C d'affixes respectives z_1 , z_2 et z_3 .	
a) Placer les points A, B, C et I, où I est le milieu du segment [AB].	1 pt
b) Soit D le barycentre du système $\{(A;3),(B;1)\}$. Vérifier que $z_D = i$ et placer D.	0.5pt
3. Soit H l'hyperbole de foyers A et B dont D est un sommet a) Déterminer le centre et l'excentricité de H.	0.5pt
b) Vérifier que l'équation réduite de H dans le repère (O, \vec{u}, \vec{v}) , s'écrit $(x-1)^2 - \frac{(y-1)^2}{3} = 1$.	0.5pt
c) Déterminer le 2 ^e sommet, les directrices et les asymptotes de l'hyperbole H et la construire.	1 pt
Exercice 3 (4 points)	
Soit ABC un triangle équilatéral direct de centre O et D le symétrique de O par rapport à (AC). On note I, J et K les milieux respectifs des segments [AB], [BC] et [CA].	
1. Faire une figure soignée illustrant les données précédentes.	0.5pt
2. a) Montrer qu'il existe un unique déplacement f qui transforme B en C et O en D.b) Justifier que f est une rotation et préciser ses éléments caractéristiques.	0.5pt 0.5pt
c) En utilisant une décomposition convenable, déterminer la nature et les éléments caractéristiques de la transformation $t_{\overline{AB}} \circ f$.	0.5pt
3. a) Montrer qu'il existe un unique antidéplacement g qui transforme A en C et K en J. b) Prouver que g est une symétrie glissante et donner sa forme réduite.	0.5pt 0.5pt
4. On considère la transformation $S = h \circ f$ où h est l'homothétie de centre B et de rapport $\frac{1}{2}$ et f	
la transformation définie dans la question 2. a) Déterminer S(O) puis caractériser S.	0.5pt
b) On considère la suite des points (M_n) définie par $M_0 = A$ et $\forall n \in \mathbb{N}, M_{n+1} = S(M_n)$.	
Montrer que \forall n ∈ N, $(\overrightarrow{OM_n}, \overrightarrow{OM_{n+3}}) = \pi$ puis en déduire que M_{2022} ∈ [OA]	0.5pt

Exercice 4: (4 points)

Soit f la fonction définie sur $]0;+\infty[$ par $f(x)=x-3-\frac{3\ln x}{x}$ et (C) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1. Soit u la fonction définie sur $[0;+\infty[$ par $u(x) = x^2 3 + 3 \ln x$.
- a) Dresser le tableau de variations de la fonction u. 0.5pt
- b) Montrer que l'équation u(x) = 0 admet une unique solution α et que 1.4 < α < 1.41. 0.5pt
- c) En déduire le signe de u(x) sur $]0;+\infty[$. 0.25pt
- 2. a) Calculer les limites suivantes : $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- b) Montrer que la courbe (C) admet une asymptote oblique D et étudier sa position relative par rapport à (C).
- 3. a) Montrer que f'(x) = $\frac{u(x)}{x^2}$ puis dresser le tableau de variation de f. 0.5pt
- b) Construire la courbe (C).
- 4. Calculer l'aire du domaine plan délimité par la courbe (C), l'axe des abscisses et les droites d'équations respectives x = 1 et x = e.
- 5. Soit φ la restriction de f sur l'intervalle $I = [0; \alpha]$.
- a) Montrer que φ réalise une bijection de I sur un intervalle J à déterminer. 0.25pt
- b) Construire, dans le repère précédent, la courbe (C') de la réciproque $\phi^{\text{--}}$ de ϕ .

Exercice 5: (4 points)

Pour tout entier naturel n, non nul, on définit sur \mathbb{R} la fonction g_n par $g_n(x) = x^n e^{-x}$.

- 1. a) Calculer, suivant la parité de n, $\lim_{x \to -\infty} g_n(x)$ et $\lim_{x \to -\infty} \frac{g_n(x)}{x}$.
- b) Calculer $\lim_{x \to +\infty} g_n(x)$. 0.5pt
- 2. a) Montrer que $\forall n \in \mathbb{N}, g'_n(x) = (n-x)x^{n-1}e^{-x}$.
- b) Dresser le tableau de variation de g_n selon la parité de n. 0.5pt
- 3. On pose $I_0 = \int_0^1 e^{-x} dx$ et $\forall n \in \mathbb{N}^*$, $I_n = \int_0^1 g_n(x) dx$.
- a) Justifier que $I_0 = 1 \frac{1}{e}$.
- b) A l'aide d'une intégration par parties, montrer que $\forall n \in \mathbb{N}$, $I_{n+1} = (n+1)I_n e^{-1}$.
- 4. Montrer que $\forall n \in \mathbb{N}$, $\frac{1}{(n+1)e} \le I_n \le \frac{1}{n+1}$ et en déduire la limite de la suite (I_n) .
- 5. $\forall n \in \mathbb{N}$, on pose $u_n = \frac{1}{n!}I_n$. e^{-1}

Montrer que $\forall n \in \mathbb{N}$, $u_{n+1} - u_n = -\frac{e^{-1}}{(n+1)!}$ et en déduire que $e(1 - u_n) = \sum_{k=0}^{n} \frac{1}{k!}$

Fin.

0.25pt