Links are disabled because this is a static copy of a profile report

analytical (Calls: 1, Time: 0.036 s)

Generated 05-Aug-2024 09:52:33 using performance time.

 $function\ in\ file\ D: \ A alto \ 2324 \ BScThesis \ FullRepo\ parallel simulations_finite bath \ src\ analytical. method is a simulation bath \ src\ analytical bath\ src\ analytical\ b$

Copy to new window for comparing multiple runs

Lines where the most time was spent

Line Number	Code	Calls	Total Time	% Time	Time Plot
4	omega = linspace(0,2*w,1000000	1	0.030 s	85.1%	
10	nl = 2*gavg./((omega-Omega).^2	1	0.005 s	13.8%	-
5	gavg = (gamma^2)/(3*N);	1	0.000 s	0.4%	
12	end	1	0.000 s	0.3%	
9	rate = pi*nu0*gavg;	1	0.000 s	0.1%	
All other lines			0.000 s	0.3%	
Totals			0.036 s	100%	

Children (called functions)

Function Name	Function Type	Calls	Total Time	% Time	Time Plot
linspace	function	1	0.010 s	28.6%	
Self time (built-ins, overhead, etc.)			0.026 s	71.4%	
Totals			0.036 s	100%	

Function listing

```
time
         Calls
                 line
                   2 function [nl, omega] = analytical (N, w, gamma)
                    4 omega = linspace(0,2*w,1000000);
              1
 0.030
                    5 gavg = (gamma^2)/(3*N);
< 0.001
              1
< 0.001
                    6 Omega = w;
              1
                    7 nu0 = N/(2*Omega);
< 0.001
                   8 \% g2 = (gamma^2)/(3*N);
                   9 rate = pi*nu0*gavg;
< 0.001
  0.005
                   10 nl = 2*gavg./((omega-Omega).^2+(2*rate)^2);
                  11
< 0.001
              1
                   12 end
```