```
In [36]: import pandas as pd
       import numpy as np
       import matplotlib.pyplot as plt
       from sklearn.preprocessing import PolynomialFeatures
       from sklearn import linear_model
       from sklearn.metrics import r2_score
       df = pd.read_excel('D:\\1\\co2.xlsx')
       print(df)
       p_df = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION','CO2EMISSIONS']]
       x = df['ENGINESIZE']
       y = df['CO2EMISSIONS']
       print(p_df.head(10))
       #mission values with respect to Engine size scatter plot
       plt.figure(figsize=(5,5))
       plt.plot(x,y,marker='o',markersize=2,linestyle=' ') #just another way of scatter plt ,
       plt.xlabel('ENGINESIZE')
       plt.ylabel('CO2EMISSIONS')
       plt.show()
       print('==========')
       #data spliting
       split = np.random.rand(len(p_df))>0.8
       train_data = p_df[split]
       test_data = p_df[~split]
       print('train data: ', train data)
       print('=========')
       print('test_data: ', test_data)
       print('***==========')
       train_x = np.asanyarray(train_data[['ENGINESIZE']])
       train_y = np.asanyarray(train_data[['CO2EMISSIONS']])
       print('train_x: ',train_x)
       print('=======')
       print('train_y: ',train_y)
       print('****==========')
       print('=======')
       test_x = np.asanyarray(test_data[['ENGINESIZE']])
       test_y = np.asanyarray(test_data[['CO2EMISSIONS']])
       print('test_x: ',test_x)
       print('=======')
       print('test_y: ',test_y)
       poly = PolynomialFeatures(degree=2)
       train_x_poly = poly.fit_transform(train_x)
       print(train_x_poly)
       print('========')
       linear_reg_prob = linear_model.LinearRegression()
       train_y_ = linear_reg_prob.fit(train_x_poly, train_y)
       # The thetas and y-intercept
       print ('thetas: ', linear_reg_prob.coef_,'y_Intercept: ',linear_reg_prob.intercept_)
       print ('=======')
       # plotting fitting results
       plt.scatter(train_data.ENGINESIZE, train_data.CO2EMISSIONS, color='#c20641')
       X_{-} = np.arange(0, 20, 0.1)
       y_{=} linear_reg_prob.intercept_[0]+ linear_reg_prob.coef_[0][1]*X_+ linear_reg_prob.coef_[0][2]*np.power(X_, 2)
       plt.plot(X_, y_, '#e635e6')
       plt.xlabel("Enginesize")
       plt.ylabel("Emission")
       plt.grid()
       plt.show()
       print ('=========')
       # (5) observe the error
       test_poly = poly.fit_transform(test_x)
       test_y_ = linear_reg_prob.predict(test_poly)
       print("MSR: %.2f" % np.mean(np.absolute(test_y_ - test_y)),"MSE: %.2f" % np.mean((test_y_ - test_y) ** 2),"R2-score:
       %.2f" % r2_score(test_y_ , test_y) )
```

	MODEL	MAKE		MODEL		VEHICLE CLAS		
0	2002	ACURA		1.7		COMPAC		
1	2002	ACURA		1.7		COMPAC		
2	2002	ACURA		3.2		COMPAC		
3	2002	ACURA		3.2		MID-SIZ		
4	2002	ACURA		3.5	RL	MID-SIZ		
 735	2002		V70 TF 1.6		ODO CTATION W	ACON MTD CT7		
	2002	VOLVO	V70 T5 W			AGON - MID-SIZ		
736	2002	VOLVO	V70 T5 W			AGON - MID-SIZ		
737	2002	VOLVO		V70 WAG		AGON - MID-SIZ		
738	2002	VOLVO		V70 WAG		AGON - MID-SIZ		
739	2002	VOLV0	V70 XC	AWD TUR	RBO	SU	V 2.4	
	CYLIND	ERS TRA	NSMISSION	FUEL F	UELCONSUMPTIO	N Unnamed: 9	Unnamed: 10	\
0		4	A4	Χ	9.	5 7.3	8.5	
1		4	M5	Χ	8.	8 7.2	8.1	
2		6	AS5	Z	13.	6 8.8	11.4	
3		6	AS5	Z	13.		11.4	
4		6	A4	Z	15.		13.1	
				• • •			• • •	
735		5	AS5	Z	13.	4 9.9	11.8	
736		5	M5	Z	12.	9 9.5	11.3	
737		5	A 5	Z	12.	7 9.1	11.1	
738		5	M5	Z	12.	5 9.3	11.0	
739		5	AS5	Z	14.		12.5	
	Unname	d. 11	CO2EMISSIO	ANC.				
0	Officialite	33		196				
1		35		186				
2		25 25		262				
3		25		262				
4		22		301				
725								
735		24		271				
736		25		260				
737		25		255				
738		26		253				
739		23	;	288				
[740 rows x 13 columns]								

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION	CO2EMISSIONS
0	1.7	4	9.5	196
1	1.7	4	8.8	186
2	3.2	6	13.6	262
3	3.2	6	13.5	262
4	3.5	6	15.0	301
5	3.5	6	15.5	311
6	3.0	6	15.3	306
7	3.2	6	15.6	308
8	2.0	4	11.1	221
9	2.0	4	10.1	209

========	=====	:=======	=======================================		=
train_data:		ENGINESIZE	CYLINDERS FUELCONS	SUMPTION CO2EMISSIONS	
4	3.5	6	15.0	301	
5	3.5	6	15.5	311	
23	4.2	8	15.4	301	
24	4.2	8	15.4	301	
26	2.7	6	16.5	336	
• •		• • •	• • •	•••	
719	2.3	5	12.9	260	
720	2.4	5	13.1	262	
727	2.4	5	13.6	274	
728	2.3	5	12.9	255	
737	2.4	5	12.7	255	

[149 rows x 4 columns]

========	=====	========	=======	=======	======		:
test_data:		ENGINESIZE	CYLINDERS	FUELCONS	JMPTION	CO2EMISSIONS	
0	1.7	4		9.5	19	6	
1	1.7	4		8.8	18	6	
2	3.2	6		13.6	26	2	
3	3.2	6		13.5	26	2	
6	3.0	6		15.3	30	6	
• •				• • •		•	
734	2.4	5		13.6	27	4	
735	2.3	5		13.4	27:	1	
736	2.3	5		12.9	26	9	
738	2.4	5		12.5	25	3	
739	2.4	5		14.2	28	8	

[591 rows x 4 columns]

***_____

train_x: [[3.5]

[3.5]

[4.2]

[4.2]

[2.7]

[2.7] [1.8]

[2.5]

[2.5]

[3.]

[2.5] [3.]

[3.]

[4.4][2.5]

[3.1]

[3.8]

[3.4] [4.6]

[5.3]

[4.8]

[4.8]

[5.3]

[6.]

[6.]

[3.8] [5.7]

[2.4]

[4.3]

[5.7]

[4.3]

[4.3] [4.3]

[5.3]

[5.3]

[4.3] [4.3]

[2.2] [2.2] [3.5] [2.4] [2.7]

[2.2] [2.] [4.7] [4.7] [4.7]

[3.8] [5.9] [5.9] [5.2]

[5.2] [3.6]

[4.6]

[2.] [3.] [4.6]

[5.4] [5.4] [2.] [2.] [2.] [4.6] [4.6] [4.8] [4.8] [5.3]

[4.2]

[4.3] [4.8]

[4.8] [5.3] [6.] [5.3] [5.3] [2.2] [2.2] [3.] [1.7] [1.7] [1.5] [4.5] [3.2] [4.] [4.] [4.] [4.] [4.]

[3.]
[3.]
[4.]
[2.4]
[1.5]
[3.9]
[2.3]
[3.]
[2.]
[2.6]
[3.2]
[5.4]
[4.3]
[5.5]
[3.3]
[3.3]
[3.6]
[3.6]
[3.6]
[3.6]
[3.6]
[3.6]
[3.6]
[2.2]
[2.5]
[2.5]

[2.5]

[2.5] [1.6] [2.7]

[3.4]

[3.]

[2.4] [1.5]

[4.7]

[3.] [2.7]

[3.4]

[1.9]

[2.]

[2.8]

[2.8] [1.9] [1.8]

[2.3]

```
[2.4]
[2.4]
 [2.3]
[2.4]]
______
train_y: [[301]
[311]
[301]
[301]
[336]
[306]
[262]
 [258]
 [276]
 [267]
 [281]
 [251]
 [347]
 [400]
 [265]
 [260]
 [262]
 [288]
 [288]
 [380]
 [363]
 [375]
 [368]
 [462]
 [387]
 [260]
 [294]
 [255]
 [368]
 [398]
 [380]
 [359]
 [400]
 [374]
 [374]
 [334]
 [400]
 [260]
 [245]
 [288]
 [251]
 [274]
 [260]
 [265]
 [359]
 [398]
[396]
 [313]
 [460]
[423]
 [355]
 [359]
 [474]
 [347]
[244]
 [299]
 [359]
 [361]
 [435]
 [216]
 [214]
 [216]
 [301]
 [288]
 [299]
[361]
[357]
 [340]
 [405]
 [382]
 [428]
 [391]
 [437]
[370]
 [396]
 [283]
 [245]
 [262]
 [189]
 [186]
 [219]
 [214]
 [299]
```

```
[334]
 [336]
 [301]
 [306]
 [306]
 [306]
 [327]
 [269]
 [290]
 [278]
 [363]
 [269]
 [212]
 [324]
 [271]
 [304]
 [235]
 [262]
 [276]
 [315]
 [281]
 [301]
 [308]
 [354]
 [393]
 [258]
 [366]
 [274]
 [352]
 [343]
 [288]
 [308]
 [288]
 [338]
 [453]
 [232]
 [255]
 [214]
 [262]
 [258]
 [253]
 [258]
 [255]
 [294]
 [228]
 [322]
 [343]
 [248]
 [230]
 [129]
 [391]
 [283]
 [308]
 [345]
 [165]
 [239]
 [223]
 [278]
 [267]
 [192]
 [237]
 [260]
 [262]
 [274]
 [255]
 [255]]
test_x: [[1.7]
 [1.7]
 [3.2]
[3.2]
[3.]
 [3.2]
[2.]
 [2.]
 [2.]
 [1.8]
 [1.8]
 [1.8]
 [1.8]
 [3. ]
[3. ]
 [3.]
 [3.]
[2.7]
[2.7]
[3.]
```

[4.2] [2.7] [2.7]

[4.2] [4.2] [1.8] [1.8] [1.8] [6.7] [6.7]

[6.7] [6.7] [6.7] [2.2] [2.2] [2.5]

[2.5] [2.5]

[2.5] [2.5] [2.5] [2.5] [2.5] [2.5] [3.] [3.] [3.]

[3.] [3.]

[2.5] [2.5] [2.5] [3.]

[4.4] [4.4] [4.4] [3.2] [3.2]

[3.2] [3.2] [4.9]

[3.] [4.4] [2.5] [3.]

[3.8] [3.8] [3.8] [3.8] [3.8] [3.4] [4.6]

[6.] [6.] [4.6] [4.3] [4.3]

[4.3] [4.3]

[4.3]

[4.3]

[4.3] [4.3]

[5.3]

[5.3] [4.8] [5.3]

[5.3] [6.]

[3.8]

[5.7]

[2.2]

[2.2] [2.4]

[2.2] [2.2]

[5.7] [5.7]

[5.]

[5.7] [3.4]

[3.8]

[5.3] [4.8] [4.8]

[5.3] [5.3] [4.8] [5.3] [6.] [6.] [6.] [3.1] [3.4] [3.8] [4.3]

[2.2] [2.2] [1.6]

[2.]
[2.]
[2.]
[2.]
[4.2]
[4.2]
[4.2]
[3.4]
[3.5]
[2.7]
[3.5]
[2.7]
[3.5]
[2.7]

[2.]
[2.]
[2.]
[3.5]
[2.4]
[2.7]
[2.7]
[2.7]
[3.8]
[1.5]
[1.6]
[1.6]
[2.2]
[2.]
[2.]
[2.]
[2.]
[2.]
[3.3]
[3.3]
[3.3]
[3.9]
[4.7]
[5.9]
[3.9]

[3.9] [4.7] [5.9]

[4.7]

[5.9] [3.3] [3.8]

[3.8] [3.8]

[3.7]

[3.7] [4.7]

[4.7]

[5.9]

[4.7]

[4.7] [3.9]

[5.2]

[3.9]

[5.2] [3.9] [5.2]

[5.9]

[5.2] [5.9] [8.] [8.] [3.6] [3.6] [2.5] [2.5] [4.6] [4.6]

[4.2] [4.6] [5.4] [4.2] [5.4] [5.4] [4.6] [4.6] [4.6] [4.1] [4.1] [4.2] [4.2] [4.6] [4.2] [4.6] [4.2] [4.6] [4.6] [5.4] [4.6] [4.6] [5.4] [5.4] [5.4] [5.4]

[4.6] [2.3] [2.3] [3.] [4.] [4.] [4.] [3.] [3.] [3.] [3.8] [3.8] [4.3] [4.3] [4.8] [5.3]

[4.8] [5.3] [5.3]

[5.3] [6.] [6.] [6.] [4.2]

[4.2] [4.3]

[5.]

[5.7]

[4.3] [5.]

[5.7]

[4.3]

[4.3] [4.3]

[4.8] [6.]

[5.3] [5.3] [6.]

[6.] [6.] [6.] [4.3] [4.3] [4.3] [4.3] [4.3]

[4.3]

[2.2] [2.2] [2.3] [2.3]

[1.7] [1.7] [2.4] [2.4] [1.5] [2.6] [1.6] [1.6] [2.7] [2.7] [2.7] [2.7] [2.7] [2.7] [3.5] [3.5] [3.5] [3.5] [4.] [4.] [4.7] [2.5] [4.] [2.5] [4.7] [2.7] [2.7] [2.7] [2.7] [2.7] [3.7] [4.7] [2.7] [4.7] [2.7] [4.7] [2.7] [4.7] [2.7] [4.7] [2.7] [4.7] [4.7] [2.7] [4.

[3.] [3.] [4.3] [3.] [3.] [3.] [4.3] [4.7]

[3.] [3.] [4.6] [3.9] [3.] [3.]

[5.4]

[4.6]

[2.]

[2.5]

[2.5]

[3.] [3.] [4.] [4.] [4.] [4.] [1.8]

[1.8] [1.8]

[1.6]

[1.6] [1.6] [2.] [2.] [3.] [3.] [2.3]

[2.6]

[3.2]

[5.4] [5.8]

[3.2] [3.2] [4.3]

[4.3]

[5.4] [3.2] [3.2] [3.2] [4.3] [5.4] [5.] [4.3] [5.] [5.4]

[5.] [6.] [2.3] [3.2] [3.2]

[3.2] [2.5] [2.5] [3.5] [3.5] [2.4] [2.4] [3.3]

[3.3]

[3.3] [3.3] [3.3] [3.3]

[3.3] [3.5] [3.5]

[3.5]

[3.5] [1.8] [1.8] [2.5] [2.5] [2.5] [3.3] [3.3]

[2.2] [2.2] [3.4] [3.5]

[4.] [4.2] [3.5]

[3.4]

[3.4]

[3.4] [3.8]

[3.8]

[3.8] [3.8] [5.7] [5.7]

[2.2]

[2.2]

[3.4] [3.1]

[3.8] [3.8]

[3.4]

[3.4]

[2.2] [2.2]

[2.4] [2.4]

[3.6] [3.6]

[3.6]

[3.6] [3.6] [3.6] [3.6] [3.6] [2.7] [2.7] [3.2] [5.4] [5.4] [2.] [2.] [2.] [2.]

[2.3]
[2.3]
[2.3]
[2.3]
[2.3]
[2.3]
[2.3]
[2.3]
[2.3]
[2.3]
[2.2]
[3.]
[2.2]
[1.9]
[1.9]
[1.9]
[1.9]
[1.9]
[2.2]
[3.]
[2.5]
[2.]
[2.5]
[2.5]
[2.5]
[2.5]
[2.5]
[2.5]
[2.5]
[2.7]
[2.7]
[2.4]
[3.]
[3.]

[3.] [1.8]

[1.8] [1.8] [1.8]

[1.8] [1.8]

[1.5]

[1.5] [2.4]

[3.]

[2.]

[2.4]

[2.7]

[3.4] [3.4]

[3.4]

[4.7] [4.7] [2.]

```
[2.]
 [2.8]
 [2.]
 [2.]
 [1.9]
 [1.8]
 [1.8]
 [2.8]
 [1.8]
 [1.8]
 [1.9]
 [1.8]
 [2.]
 [2.]
 [1.9]
 [1.9]
 [1.8]
 [1.8]
 [2.8]
 [2.8]
 [2.8]
 [1.8]
 [1.8]
 [2.8]
 [2.8]
 [2.8]
 [2.3]
 [2.3]
 [2.3]
 [1.9]
 [2.4]
 [2.4]
 [2.4]
 [2.3]
 [2.9]
 [2.9]
 [1.9]
 [2.4]
 [2.4]
 [2.3]
 [2.3]
 [2.4]
 [2.4]]
test_y: [[196]
 [186]
 [262]
 [262]
 [306]
 [308]
 [221]
 [209]
 [225]
 [255]
 [237]
 [269]
 [253]
 [294]
 [294]
 [283]
 [294]
 [304]
 [304]
 [294]
 [301]
 [343]
 [306]
 [368]
 [347]
 [255]
 [262]
 [237]
 [460]
 [460]
 [453]
 [460]
 [460]
 [460]
 [258]
 [251]
 [265]
 [258]
 [276]
 [281]
 [265]
 [258]
 [265]
```

[271]

[276]

[271] [260]

[251]

[281]

[265]

[260]

[251]

[290]

[265]

[258]

[276]

[281] [294]

[317]

[320]

[299]

[299]

[315] [324]

[375]

[338] [375]

[267]

[274]

[253]

[375] [262]

[283]

[276]

[283]

[276]

[288]

[460] [460]

[288]

[331]

[352] [347]

[359]

[352] [405]

[347]

[334]

[380] [371]

[361]

[380] [357]

[395]

[260] [276]

[230]

[242]

[253] [237]

[221]

[294] [274]

[363]

[370] [400]

[239]

[276] [391]

[384]

[428]

[389] [396]

[389]

[396] [481]

[404]

[406]

[260] [239]

[276]

[331]

[352]

[283]

[275] [228]

[228] [251]

[253] [251]

[253]

[334] [340]

[340] [276] [288] [288] [262]

[283]

[262]

[265] [283]

[288]

[225]

[200] [212]

[301] [276]

[248] [262]

[265]

[269] [301]

[317]

[214] [205]

[225] [205]

[265] [239]

[242]

[265] [253]

[253] [239]

[237] [299]

[299] [280]

[324] [350]

[352] [421]

[382]

[363] [370]

[437]

[400] [437]

[299] [301]

[306] [308]

[361] [345]

[370] [368]

[435] [416]

[393] [389]

[444] [396] [446]

[396] [446]

[423] [449] [437]

[419] [419]

[472] [474]

[472] [262]

[251] [301]

[278] [375]

[391] [405]

[375] [361] [375] [412]

[288] [262]

[393] [432] [359]

[375]

[359]

[354]

[345]

[320]

[359] [340]

[338]

[327]

[343]

[352]

[352]

[370]

[384]

[393]

[361]

[196] [216]

[216]

[196]

[214]

[274]

[262] [299]

[271]

[237]

[315] [322]

[313]

[370]

[354]

[265]

[265] [271]

[278]

[324] [306]

[306]

[347] [334]

[375]

[368]

[361] [380]

[357]

[380]

[462] [395]

[387]

[334] [340]

[368]

[363]

[398] [380]

[370]

[400] [352]

[359]

[400] [386]

[460] [396]

[370]

[460]

[481]

[404] [406]

[331] [352]

[347]

[359] [331]

[334] [352]

[400]

[275]

[260]

[235] [216]

[177]

[196]

[253] [262]

[104]

[290] [267]

[196] [212] [198]

[219]

[219]

[255]

[276]

[292]

[244]

[265]

[290]

[235]

[230]

[274]

[366]

[359]

[366]

[292]

[306]

[327]

[306]

[327] [278]

[357]

[384]

[343]

[347] [315]

[368]

[294]

[223] [352]

[246]

[228]

[301] [288]

[409]

[458]

[253] [292]

[299]

[292] [292]

[292]

[290]

[421] [304]

[299] [297]

[313]

[306] [290]

[288]

[449]

[301] [258]

[221]

[278] [271]

[315]

[299] [324]

[313]

[370] [354]

[248]

[242]

[246] [221]

[207]

[228]

[244] [288]

[299] [253]

[267]

[283]

[278] [320]

[324]

[343]

[267]

[274] [299]

[299]

[324] [260]

[274]

[269] [299] [304]

[391]

[306] [320]

[324]

[320]

[396]

[237]

[292]

[269]

[242]

[235]

[278]

[260]

[283] [258]

[352]

[347]

[377]

[352] [343]

[361]

[368] [255]

[366]

[347]

[205]

[200]

[246] [235]

[248]

[361]

[368]

[230] [244]

[246]

[285]

[290] [340]

[260]

[276]

[276] [288]

[262]

[283]

[267] [260]

[294] [278]

[230]

[244]

[246]

[260] [276]

[283]

[276] [288]

[230]

[244] [255]

[253]

[288]

[290] [308]

[313]

[306] [285]

[288]

[285] [343]

[338]

[297] [271]

[304]

[294]

[428]

[428] [260]

[260]

[248]

[248]

[269] [260]

[262] [246]

[253]

[283] [260] [262]

[246]

[242]

[283]

[237]

[244]

[255]

[239]

[205]

[189]

[212]

[198]

[184] [214]

[212]

[253]

[246]

[285]

[253]

[276]

[265] [262]

[276]

[265]

[253]

[253] [258]

[274]

[258]

[274] [209]

[196]

[313]

[253]

[255] [251]

[253] [327]

[230]

[221]

[260] [267]

[255]

[281]

[237] [**1**93]

[202]

[230] [179]

[175]

[179]

[166] [251]

[304]

[251] [251]

[248]

[299] [334]

[336]

[336]

[370] [389]

[253]

[230]

[331] [239]

[223] [192]

[246]

[225] [260]

[246]

[228] [165]

[228]

[239]

[223]

[192]

[165]

[246]

[239] [267]

[265]

[278] [246]

[239] [271]

```
[265]
 [278]
 [271]
[255]
[265]
[246]
[255]
[253]
[255]
[265]
[278]
[292]
[246]
[262]
[274]
[271]
 [260]
[253]
[288]]
*****
[[ 1.
       3.5 12.25]
       3.5 12.25]
[ 1.
       4.2 17.64]
[ 1.
[ 1.
       4.2 17.64]
[ 1.
       2.7 7.29]
       2.7 7.29]
[ 1.
       1.8 3.24]
[ 1.
[ 1.
       2.5 6.25]
[ 1.
       2.5 6.25]
             9. ]
[ 1.
       3.
       2.5 6.25]
[ 1.
[ 1.
             9. ]
       3.
             9. ]
[ 1.
       3.
       4.4 19.36]
[ 1.
       2.5 6.25]
[ 1.
[ 1.
       3.1 9.61]
[ 1.
       3.8 14.44]
       3.4 11.56]
[ 1.
       4.6 21.16]
[ 1.
       5.3 28.09]
[ 1.
[ 1.
       4.8 23.04]
[ 1.
       4.8 23.04]
       5.3 28.09]
[ 1.
       6. 36. ]
[ 1.
[ 1.
       6. 36. ]
       3.8 14.44]
[ 1.
[ 1.
       5.7 32.49]
       2.4 5.76]
[ 1.
[ 1.
       4.3 18.49]
       5.7 32.49]
[ 1.
       4.3 18.49]
[ 1.
       4.3 18.49]
[ 1.
[ 1.
       4.3 18.49]
[ 1.
       5.3 28.09]
       5.3 28.09]
[ 1.
       4.3 18.49]
[ 1.
       4.3 18.49]
[ 1.
       2.2 4.84]
[ 1.
[ 1.
       2.2 4.84]
[ 1.
       3.5 12.25]
       2.4 5.76]
[ 1.
       2.7 7.29]
[ 1.
       2.2 4.84]
[ 1.
[ 1.
       2.
            4. ]
       4.7 22.09]
[ 1.
       4.7 22.09]
[ 1.
       4.7 22.09]
 [ 1.
[ 1.
        3.8 14.44]
 [ 1.
        5.9 34.81]
 [ 1.
        5.9 34.81]
        5.2 27.04]
 [ 1.
       5.2 27.04]
[ 1.
[ 1.
       3.6 12.96]
[ 1.
       4.6 21.16]
       2. 4. ]
[ 1.
           9. ]
[ 1.
       3.
       4.6 21.16]
[ 1.
[ 1.
       5.4 29.16]
[ 1.
       5.4 29.16]
[ 1.
        2.
            4. ]
           4. ]
[ 1.
       2.
[ 1.
       2. 4. ]
       4.6 21.16]
[ 1.
[ 1.
       4.6 21.16]
       3. 9. ]
[ 1.
[ 1.
       4.8 23.04]
       5.3 28.09]
[ 1.
[ 1.
        4.2 17.64]
```

```
[ 1.
        4.3 18.49]
[ 1.
        4.8 23.04]
[ 1.
        4.8 23.04]
[ 1.
        5.3 28.09]
[ 1.
        6.
             36. ]
[ 1.
        5.3 28.09]
       5.3 28.09]
[ 1.
[ 1.
        2.2
             4.84]
[ 1.
             4.84]
        2.2
[ 1.
        3.
              9. ]
[ 1.
             2.89]
        1.7
[ 1.
        1.7
              2.89]
[ 1.
        2.
              4. ]
[ 1.
       1.5
             2.25]
[ 1.
        4.5 20.25]
[ 1.
        3.2
            10.24]
[ 1.
        3.2
            10.24]
[ 1.
        4.
             16. ]
[ 1.
        4.
             16. ]
[ 1.
        4.
             16. ]
[ 1.
        4.
             16. ]
[ 1.
        4.
             16. ]
[ 1.
             6.25]
        2.5
[ 1.
              9. ]
        3.
[ 1.
        3.
              9. ]
[ 1.
        4.
             16. ]
[ 1.
        2.4
             5.76]
[ 1.
             2.25]
        1.5
[ 1.
        3.9 15.21]
[ 1.
        2.3
             5.29]
[ 1.
              9. ]
        3.
[ 1.
        2.
              4. ]
[ 1.
        2.
              4. ]
[ 1.
        2.6
             6.76]
[ 1.
        3.2 10.24]
[ 1.
        3.2 10.24]
[ 1.
        5.4 29.16]
[ 1.
        4.3 18.49]
[ 1.
        3.2 10.24]
[ 1.
        5.5 30.25]
[ 1.
        2.3
            5.29]
[ 1.
        3.3 10.89]
[ 1.
        3.5 12.25]
[ 1.
        3.3 10.89]
[ 1.
        3.3 10.89]
[ 1.
        3.4 11.56]
[ 1.
        3.6 12.96]
[ 1.
        3.6 12.96]
[ 1.
        3.6 12.96]
[ 1.
        6.7 44.89]
[ 1.
        2.2
             4.84]
[ 1.
        3.
              9. ]
[ 1.
             3.61]
       1.9
[ 1.
        2.2
              4.84]
[ 1.
        2.5
              6.25]
[ 1.
        2.5
              6.25]
[ 1.
        2.5
              6.25]
[ 1.
        2.5
              6.25]
[ 1.
        2.5
              6.25]
[ 1.
        1.6
              2.56]
[ 1.
        2.7
             7.29]
[ 1.
        3.4 11.56]
              9. ]
[ 1.
        3.
[ 1.
        2.4
             5.76]
[ 1.
        1.5
             2.25]
[ 1.
        4.7 22.09]
              9. ]
[ 1.
        3.
             7.29]
[ 1.
        2.7
       3.4 11.56]
[ 1.
[ 1.
       1.9 3.61]
[ 1.
       2.
             4. ]
             4. ]
[ 1.
       2.
[ 1.
       2.8 7.84]
[ 1.
       2.8 7.84]
       1.9 3.61]
[ 1.
[ 1.
       1.8 3.24]
[ 1.
       2.3 5.29]
       2.4 5.76]
[ 1.
       2.4 5.76]
[ 1.
       2.3 5.29]
[ 1.
       2.4 5.76]]
[ 1.
```

thetas: [[0. 75.15834589 -4.16427389]] y_Intercept: [101.857034]

MSR: 25.20 MSE: 1149.03 R2-score: 0.63