# Data Acquisition for Argument Search: The args.me corpus



Yamen Ajjour Weimar



Henning Wachsmuth



Johannes Kiesel Weimar



Matthias Hagen



Martin
Potthast
Leipzig



Benno Stein Weimar

Yamen Ajjour Bauhaus-Universität Weimar webis.de









# **Argument Search Engine**



# **Argument Search Engine**



# Design of an Argument Search Engine



# **Argument Acquisition**

We focus on the first step in designing an argument search engine: argument acquisition.



# **Argument Acquisition**



#### Argument Acquisition is a real challenge because:

- Annotating arguments is very expensive.
- Mining arguments from the Web is a hard task.

| Approach                               | F1-score |
|----------------------------------------|----------|
| Baseline (Linear Regression)           | 0.6      |
| Modiefied BiLSTM (Stab et al., 2018)   | 0.66     |
| Baseline (Majority)                    | 0.6      |
| Distant-supervision (Al-khatib., 2016) | 0.7      |

# Argument Acquisition Paradigms: Consequences



Consequences of choosing the source and approach to extract arguments from:

- Precision vs Recall: Trade off between the quality of the arguments and the coverage of the retrieved arguments.
- Stance balance: how balanced are the stances of the presented arguments?
- Efficiency: How fast is the argument search engine at retrieving arguments?
- Research Focus: What are the research challenges that the paradigm allows to study?

# Argument Acquisition Paradigm of args.me



#### Consequences:

- High precision, low recall.
- Stance balance is guaranteed.
- Very efficient.
- Research focus on all computational argumentation tasks, e.g, argument generation.

# Argument Acquisition Paradigm of IBM Debater



#### Consequences:

- High precision, low recall.
- Stance balance is guaranteed.
- Very efficient.
- Research focus on all computational argumentation tasks, e.g, argument ranking.

# Argument Acquisition Paradigm of ArgumentText



#### Consequences:

- Low precision, high recall.
- Stance balance is not guaranteed.
- Slow since argument mining is performed online.
- Research focus on argument mining.

# **Argument Acquisition Paradigms**



# Low Hanging Fruits in Debateportals

Debate portals are websites where people discuss or list arguments about controversial topic, e.g, climate change.

There are two types of Debateportals:

- Dialogical: people discuss topics in rounds.
- Monlogical: people or admin list arguments.



Dialogical Debate portals



Monological Debate portals

# Extraction Heuristics for Dialogical Debateportals

We extract for each post an argument whose conclusion is the topic.



# Extraction Heuristics for Monological Debateportals



# Extraction Heuristics for Monological Debateportals

We extract for each post two arguments:

- The conclusion and premise of the post.
- An argument whose conclusion is the topic and its premise is the conclusion of the post.



# Args.me corpus statistics

Args.me corpus is the largest argument corpus with 387,606 arguments.

| Count of arguments | Count of pro stance | Count of con stance | Count of debates |
|--------------------|---------------------|---------------------|------------------|
| 387 606            | 200 099             | 187 507             | 59 637           |



# Args.me corpus statistics

Most of the conclusions in args.me corpus have 1-5 supporting or attacking arguments.

Some conclusions have more than 50 supporting or attacking arguments.



# Argument search tasks

List of tasks that can be performed on the args.me corpus:

- Argument relation classification
- Stance classification
- Same side classification
- Argument generation
- ַ ..

# **Argument Relation Classification**

Task Description: Given two arguments detect if one attacks or support the other.

**Application:** Retrieval of counter arguments for an given argument.



| Approach                      | Accuracy |
|-------------------------------|----------|
| Baseline (Linear Regression)  | 0.77     |
| LSTM (Cocarascu et al., 2017) | 0.89     |

#### Stance Classification

**Task Description:** Given a topic and an argument, detect whether the argument is pro or con the topic.

**Application:** Classifying the retrieved arguments for a query into pro or contra.



| Approach                | Accuracy |  |
|-------------------------|----------|--|
| Baseline (Majority)     | 0.51     |  |
| Sentiment-based         | 0.65     |  |
| (Bar-Haim et al., 2017) | 0.05     |  |

### Same Side Classification

**Task Description:** Given two arguments, detect whether they are on the same or opposite side.

**Application:** Grouping the retrieved arguments for a query under different claims.



| Approach | Accuracy |
|----------|----------|
| Majority | 0.50     |
| BERT     | 0.73     |

# First insights from args.me



Top five conclusions in args.me corpus

Top five queries in args.me query logs

# Summary

- Argument acquisition paradigm: a set of decisions made while designing an argument search engine.
- Comparison of three major argument search engines under the argument acquisition paradigm.
- Introduction of the largest argument corpus args.me corpus.
- Introduction of several tasks that can be performed on args.me corpus.