

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15° Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	140 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 30.77$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Prossure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the surface.

2.4 Seismic Loads

$S_S =$ $S_{DS} =$ $S_1 =$ $S_{D1} =$	1.67 1.00	$R = 1.25$ $C_S = 0.8$ $\rho = 1.3$ $\Omega = 1.25$	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of structures under five stories and with a period, T_s , of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
$T_a =$		$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $1.0D + 1.0S \\ 1.0D + 0.6W \\ 1.0D + 0.75L + 0.45W + 0.75S \\ 0.6D + 0.6W \\ ^{M} \\ 1.238D + 0.875E \\ ^{O} \\ 1.1785D + 0.65625E + 0.75S \\ 0.362D + 0.875E \\ ^{O} \\ 0.362D + 0.875E \\ ^{O} \\ \\$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u> Front</u>	<u>Rear</u>	
Tensile Load =	<u>1712.95</u>	<u>5819.86</u>	k
Compressive Load =	<u>5021.27</u>	<u>5208.03</u>	k
Lateral Load =	<u>301.30</u>	<u>2096.31</u>	k
Moment (Weak Axis) =	<u>0.61</u>	<u>0.41</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O = 139602.1 \text{ in-lbs}$ Resisting Force Required = 2115.18 lbs A minimum 132in long x 31in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3525.30 lbs to resist overturning. Minimum Width = <u>31 in</u> in Weight Provided = 6180.63 lbs Sliding Force = 483.51 lbs Friction = Use a 132in long x 31in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1208.78 lbs Resisting Weight = 6180.63 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 483.51 lbs Cohesion = 130 psf Use a 132in long x 31in wide x 18in tall 28.42 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3090.31 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{31 \text{ in}} \quad \frac{32 \text{ in}}{33 \text{ in}} \quad \frac{34 \text{ in}}{6779 \text{ lbs}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.58 \text{ ft}) = \quad \frac{6181 \text{ lbs}}{6380 \text{ lbs}} \quad \frac{6579 \text{ lbs}}{6779 \text{ lbs}} \quad \frac{6779 \text{ lbs}}{6779 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S			1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			S	0.6D + 0.6W			
Width	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in
FA	1681 lbs	1681 lbs	1681 lbs	1681 lbs	1781 lbs	1781 lbs	1781 lbs	1781 lbs	2471 lbs	2471 lbs	2471 lbs	2471 lbs	-781 lbs	-781 lbs	-781 lbs	-781 lbs
F _B	1740 lbs	1740 lbs	1740 lbs	1740 lbs	1847 lbs	1847 lbs	1847 lbs	1847 lbs	2561 lbs	2561 lbs	2561 lbs	2561 lbs	-2677 lbs	-2677 lbs	-2677 lbs	-2677 lbs
F _V	148 lbs	148 lbs	148 lbs	148 lbs	854 lbs	854 lbs	854 lbs	854 lbs	741 lbs	741 lbs	741 lbs	741 lbs	-967 lbs	-967 lbs	-967 lbs	-967 lbs
P _{total}	9601 lbs	9801 lbs	10000 lbs	10199 lbs	9808 lbs	10007 lbs	10207 lbs	10406 lbs	11212 lbs	11412 lbs	11611 lbs	11810 lbs	251 lbs	370 lbs	490 lbs	610 lbs
М	4082 lbs-ft	4082 lbs-ft	4082 lbs-ft	4082 lbs-ft	5366 lbs-ft	5366 lbs-ft	5366 lbs-ft	5366 lbs-ft	6782 lbs-ft	6782 lbs-ft	6782 lbs-ft	6782 lbs-ft	1349 lbs-ft	1349 lbs-ft	1349 lbs-ft	1349 lbs-ft
е	0.43 ft	0.42 ft	0.41 ft	0.40 ft	0.55 ft	0.54 ft	0.53 ft	0.52 ft	0.60 ft	0.59 ft	0.58 ft	0.57 ft	5.38 ft	3.64 ft	2.75 ft	2.21 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	259.5 psf	258.2 psf	257.0 psf	255.8 psf	242.2 psf	241.4 psf	240.7 psf	240.0 psf	264.4 psf	262.9 psf	261.6 psf	260.3 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	416.2 psf	410.0 psf	404.2 psf	398.7 psf	448.1 psf	440.9 psf	434.2 psf	427.8 psf	524.7 psf	515.1 psf	506.1 psf	497.6 psf	538.5 psf	49.8 psf	43.2 psf	43.6 psf

Maximum Bearing Pressure = 539 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 31in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_O = 2974.5 \text{ ft-lbs}$

Resisting Force Required = 2302.85 lbs

S.F. = 1.67

Weight Required = 3838.09 lbs
Minimum Width = 31 in in
Weight Provided = 6180.63 lbs

A minimum 132in long x 31in wide x 18in tall ballast foundation is required to resist

overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		31 in		31 in			31 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	247 lbs	630 lbs	218 lbs	928 lbs	2784 lbs	905 lbs	82 lbs	184 lbs	54 lbs	
F _V	207 lbs	204 lbs	209 lbs	154 lbs	149 lbs	161 lbs	207 lbs	205 lbs	208 lbs	
P _{total}	7899 lbs	8281 lbs	7870 lbs	8212 lbs	10068 lbs	8189 lbs	2320 lbs	2422 lbs	2291 lbs	
M	827 lbs-ft	821 lbs-ft	832 lbs-ft	627 lbs-ft	621 lbs-ft	648 lbs-ft	824 lbs-ft	818 lbs-ft	825 lbs-ft	
е	0.10 ft	0.10 ft	0.11 ft	0.08 ft	0.06 ft	0.08 ft	0.36 ft	0.34 ft	0.36 ft	
L/6	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	
f _{min}	210.4 psf	224.3 psf	209.0 psf	237.8 psf	303.5 psf	235.2 psf	14.3 psf	18.3 psf	13.2 psf	
f _{max}	345.5 psf	358.5 psf	344.9 psf	340.2 psf	405.1 psf	341.1 psf	148.9 psf	152.1 psf	148.1 psf	

Maximum Bearing Pressure = 405 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 31in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 31in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.863 k 12.808 k 7.421 k <u>52%</u>	Rear Strut Maximum Axial Load = 4.074 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 55%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.522 k 12.808 k 7.421 k <u>21%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.438 \text{ in} \end{array}$

 $0.438 \le 0.726$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 117 \text{ in}$$

$$J = 0.432$$

$$323.677$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= 117 \\ J &= 0.432 \\ 205.839 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.5 \text{ ksi}$

3.4.16

 $\phi F_L =$

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max} W k = 1.152 \text{ k-ft}$$

Sx =

 $M_{max}St =$

 $\phi F_L St =$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^T$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = **BF0**

Strong Axis:

$$L_{\rm b} = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

b/t =

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

16.2

$$\phi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_{L} = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.2$$

3.4.16

$$D/t = 7.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 29.4 \text{ ksi}$$
 $bx = 984962 \text{ mm}^4$
 2.366 in^4
 $bx = 43.717 \text{ mm}$
 $bx = 1.375 \text{ in}^3$
 $bx = 3.363 \text{ k-ft}$

43.2 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W \, k = & 33.3 \, \, ksi \\ y = & 923544 \, \, mm^4 \\ & 2.219 \, \, in^4 \\ x = & 40 \, \, mm \\ Sy = & 1.409 \, \, in^3 \\ M_{max} W \, k = & 3.904 \, \, k\text{-ft} \end{array}$$

Compression

 $M_{max}St =$

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

S1 =12.21 (See 3.4.16 above for formula)

32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc} \right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6} \right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \phi \mathsf{F_L} &= & \phi b [\mathsf{Bc-1.6Dc}^* \sqrt{((\mathsf{LbSc})/(\mathsf{Cb}^* \sqrt{(\mathsf{lyJ})/2}))}] \end{split}$$

31.4

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

 $\phi F_L =$

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

38.9 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

 $0.621 in^{3}$

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

y =

Sx =

 $M_{max}St =$

SCHLETTE

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

	<u>Weak Axis:</u> 3.4.14
$L_b = 86.60 \text{ in}$	$L_b = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_L = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

28.2 ksi

 $M_{\text{max}}St = 0.021 \text{ m/s}$ $M_{\text{max}}St = 1.460 \text{ k-ft}$

Compression

 $\varphi F_L St =$

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 30.6 \text{ ksi}$

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

28.2 ksi

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L =$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used 0.0 3.4.16.1 N/A for Weak Direction $\frac{1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt} \Big)^2$ $\frac{1.41.0}{141.0}$ $\frac{1}{4}$ $\frac{$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in³

1.460 k-ft

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$X = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.76536$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 18.9268 \text{ ksi}$

3.4.9

$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-85.82	-85.82	0	0
2	M14	V	-85.82	-85.82	0	0
3	M15	V	-137.311	-137.311	0	0
4	M16	V	-137.311	-137.311	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	197.385	197.385	0	0
2	M14	V	152.759	152.759	0	0
3	M15	V	85.82	85.82	0	0
4	M16	y	85.82	85.82	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes			2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	387.862	2	1202.401	1	1.001	1	.004	1	0	1	0	1
2		min	-510.031	3	-1368.437	3	-80.509	5	309	4	0	1	0	1
3	N7	max	.031	9	1307.846	1	315	12	0	12	0	1	0	1
4		min	117	2	-387.608	3	-231.77	4	47	4	0	1	0	1
5	N15	max	.023	9	3862.515	1	0	1	0	11	0	1	0	1
6		min	-1.5	2	-1317.65	3	-223.675	5	46	4	0	1	0	1
7	N16	max	1478.281	2	4006.177	1	0	1	0	9	0	1	0	1
8		min	-1612.549	3	-4476.812	3	-80.302	5	312	4	0	1	0	1
9	N23	max	.031	9	1307.846	1_	7.271	1	.016	1	0	1	0	1
10		min	117	2	-387.608	3	-227.348	4	463	4	0	1	0	1
11	N24	max	387.862	2	1202.401	1	05	12	0	12	0	1	0	1
12		min	-510.031	3	-1368.437	3	-80.955	4	312	4	0	1	0	1
13	Totals:	max	2252.272	2	12889.186	1	0	11						
14		min	-2633.429	3	-9306.553	3	-920.352	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	79.569	1	537.49	1	-4.807	12	0	3	.189	1	0	1
2			min	3.523	12	-702.488	3	-132.697	1	015	1	.008	12	0	3
3		2	max	79.569	1	376.323	1	-3.805	12	0	3	.069	4	.648	3
4			min	3.523	12	-494.261	3	-101.968	1	015	1	.004	12	495	1
5		3	max	79.569	1	215.156	1	-2.804	12	0	3	.036	5	1.071	3
6			min	3.523	12	-286.035	3	-71.24	1	015	1	032	1	815	1
7		4	max	79.569	1	53.989	1	-1.802	12	0	3	.019	5	1.268	3
8			min	3.523	12	-77.809	3	-40.511	1	015	1	092	1	961	1
9		5	max	79.569	1	130.418	3	579	10	0	3	.004	5	1.239	3
10			min	3.523	12	-107.177	1	-15.96	4	015	1	12	1	932	1
11		6	max	79.569	1	338.644	3	20.947	1	0	3	004	12	.985	3
12			min	3.523	12	-268.344	1	-12.099	5	015	1	114	1	729	1
13		7	max	79.569	1	546.87	3	51.675	1	0	3	003	12	.506	3
14			min	-4.101	5	-429.511	1	-10.55	5	015	1	074	1	351	1
15		8	max	79.569	1	755.096	3	82.404	1	0	3	0	10	.202	1
16			min	-15.221	5	-590.678	1	-9	5	015	1	034	4	199	3
17		9	max	79.569	1	963.323	3	113.133	1	0	3	.104	1	.929	1
18			min	-26.342	5	-751.845	1	-7.45	5	015	1	042	5	-1.13	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	79.569	1	913.012	1	-4.208	12	.005	14	.243	1	1.831	1
20			min	3.523	12	-1171.549	3	-143.861	1	015	1	.005	12	-2.287	3
21		11	max	79.569	1	751.845	1	-3.207	12	.015	1	.104	1	.929	1
22			min	3.523	12	-963.323	3	-113.133	1	0	3	.001	12	-1.13	3
23		12	max	79.569	1	590.678	1	-2.205	12	.015	1	.033	4	.202	1
24			min	3.523	12	-755.096	3	-82.404	1	0	3	002	3	199	3
25		13	max	79.569	1	429.511	1	-1.203	12	.015	1	.015	5	.506	3
26			min	3.523	12	-546.87	3	-51.675	1	0	3	074	1	351	1
27		14	max	79.569	1	268.344	1	201	12	.015	1	0	15	.985	3
28			min	.614	15	-338.644	3	-20.947	1	0	3	114	1	729	1
29		15	max	79.569	1	107.177	1	9.782	1	.015	1	004	12	1.239	3
30			min	-10.102	5	-130.418	3	-12.635	5	0	3	12	1	932	1
31		16	max	79.569	1	77.809	3	40.511	1	.015	1	002	12	1.268	3
32			min	-21.223	5	-53.989	1	-11.085	5	0	3	092	1	961	1
33		17	max	79.569	1	286.035	3	71.24	1	.015	1	0	3	1.071	3
34			min	-32.343	5	-215.156	1	-9.535	5	0	3	047	4	815	1
35		18	max	79.569	1	494.261	3	101.968	1	.015	1	.062	1	.648	3
36			min	-43.464	5	-376.323	1	-7.985	5	0	3	049	5	495	1
37		19	max	79.569	1	702.488	3	132.697	1	.015	1	.189	1	0	1
38			min	-54.585	5	-537.49	1	-6.436	5	0	3	057	5	0	3
39	M14	1	max	59.314	4	571.431	1	-4.939	12	.009	3	.216	1	0	1
40			min	1.51	12	-556.751	3	-136.89	1	012	1	.009	12	0	3
41		2	max	48.194	4	410.264	1	-3.937	12	.009	3	.099	4	.517	3
42			min	1.51	12	-396.87	3	-106.161	1	012	1	.005	12	532	1
43		3	max	37.677	1	249.097	1	-2.936	12	.009	3	.054	5	.86	3
44			min	1.51	12	-236.988	3	-75.432	1	012	1	014	1	889	1
45		4	max	37.677	1	87.93	1	-1.934	12	.009	3	.029	5	1.03	3
46			min	1.51	12	-77.107	3	-44.704	1	012	1	079	1	-1.071	1
47		5	max	37.677	1	82.775	3	932	12	.009	3	.006	5	1.027	3
48			min	1.51	12	-73.236	1	-23.952	4	012	1	111	1	-1.079	1
49		6	max	37.677	1	242.656	3	16.754	1	.009	3	004	12	.851	3
50			min	-3.985	5	-234.403	1	-19.085	5	012	1	109	1	913	1
51		7	max	37.677	1	402.538	3	47.482	1	.009	3	003	12	.501	3
52			min	-15.106	5	-395.57	1	-17.535	5	012	1	074	1	572	1
53		8	max	37.677	1	562.419	3	78.211	1	.009	3	0	10	0	15
54			min	-26.226	5	-556.737	1	-15.986	5	012	1	056	4	065	2
55		9	max		1	722.3	3	108.94	1	.009	3	.095	1	.635	1
56			min	-37.347	5	-717.904		-14.436	5	012	1	07	5	717	3
57		10	max	59.579	4	879.071	1	-4.076	12	.009	3	.23	1	1.5	1
58		10	min	1.51	12	-882.182	3	-139.668	1	012	1	.005	12	-1.586	3
59		11		48.459		717.904			12	.012	1	.1	4	.635	1
60			min	1.51	12	-722.3	3	-108.94	1	009	3	.001	12	717	3
61		12			1	556.737	1	-2.073	12	.012	1	.053	5	0	15
62		12	min	1.51	12	-562.419	3	-78.211	1	009	3	006	1	065	2
63		13		37.677	1	395.57	1	-1.071	12	.012	1	.028	5	.501	3
64		13	min	1.51	12	-402.538	3	-47.482	1	009	3	074	1	572	1
65		1/	max		1	234.403	1	027	3	.012	1	.005	5	.851	3
66		17	min	1.51	12	-242.656	3	-24.508	4	009	3	109	1	913	1
67		15			1	73.236	1	13.975	1	.012	1	003	12	1.027	3
68		15	min	-3.492				-19.198		009	3	003 111	1	-1.079	1
69		16	max		<u>5</u> 1	-82.775 77.107	3	44.704	<u>5</u>	.012	1	002	12	1.03	3
70		10	min	-14.613	5	-87.93	1	-17.648	5	009	3	002	1	-1.071	1
71		17			1	236.988	3	75.432	1	009 .012	1	.001	3		3
72		17	max	-25.733	_		<u>3</u>							.86	1
		10	min		5	-249.097		-16.098	5	009	3	059	4	889	_
73		Ιğ	max	37.677	1	396.87	3	106.161	1	.012	1	.085 072	5	.517	3
74		10	min	-36.854	5	-410.264	1	-14.548	5	009	3		_	532	1
75		19	max	37.677	1	556.751	3	136.89	1	.012	1	.216	1	00	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]								z-z Mome	
76			min	-47.974	5	-571.431	<u>1</u>	-12.999	5	009	3	087	5	0	3
77	M15	1	max	76.906	5	677.556	2	-4.903	12	.013	1	.216	1	00	2
78			min	-39.476	1	-312.282	3	-136.877	1	008	3	.009	12	0	3
79		2	max	65.786	5	484.443	2	-3.901	12	.013	1	.135	4	.291	3
80			min	-39.476	1	-224.918	3	-106.149	1	008	3	.004	12	629	2
81		3	max	54.665	5	291.331	2	-2.899	12	.013	1	.079	5	.487	3
82			min	-39.476	1	-137.554	3	-75.42	1	008	3	014	1	-1.05	2
83		4	max	43.544	5	98.395	1_	-1.897	12	.013	1	.045	5	.589	3
84			min	-39.476	1	-50.19	3	-44.691	1	008	3	079	1	-1.261	2
85		5	max	32.424	5	37.174	3	896	12	.013	1	.012	5	.596	3
86			min	-39.476	1	-94.893	2	-33.069	4	008	3	111	1	-1.262	2
87		6	max	21.303	5	124.539	3	16.766	1	.013	1	004	12	.508	3
88			min	-39.476	1	-288.006	2	-28.2	5	008	3	109	1	-1.055	2
89		7	max	10.182	5	211.903	3	47.495	1	.013	1	003	12	.326	3
90			min	-39.476	1	-481.118	2	-26.65	5	008	3	074	1	64	1
91		8	max	59	15	299.267	3	78.223	1	.013	1	0	10	.049	3
92			min	-39.476	1	-674.23	2	-25.1	5	008	3	08	4	029	1
93		9	max	-1.8	12	386.631	3	108.952	1	.013	1	.095	1	.822	2
94			min	-39.476	1	-867.342	2	-23.55	5	008	3	104	5	322	3
95		10	max	-1.8	12	1060.455	2	-4.113	12	.013	1	.23	1	1.867	2
96			min	-39.476	1	-473.995	3	-139.681	1	012	2	.005	12	788	3
97		11	max	7.885	5	867.342	2	-3.111	12	.008	3	.134	4	.822	2
98			min	-39.476	1	-386.631	3	-108.952	1	013	1	.001	12	322	3
99		12	max	-1.8	12	674.23	2	-2.109	12	.008	3	.077	5	.049	3
100		12	min	-39.476	1	-299.267	3	-78.223	1	013	1	006	1	029	1
101		13	max	-1.8	12	481.118	2	-1.108	12	.008	3	.042	5	.326	3
102		10	min	-39.476	1	-211.903	3	-47.495	1	013	1	074	1	64	1
103		14	max	- <u>1.8</u>	12	288.006	2	088	3	.008	3	.009	5	.508	3
103		14	min	-39.476	1	-124.539	3	-33.638	4	013	1	109	1	-1.055	2
105		15		-39.470 -1.8	12	94.893	2	13.963	1	.008	3	003	12	.596	3
106		10	max min	-45.038	4	-37.174	3	-28.313	5	013	1	003 111	1	-1.262	2
107		16			12	50.19		44.691	1		3	002	12	.589	3
107		10	max	-1.8 -56.159	4	-98.395	<u>3</u> 1		5	.008 013	1	002	1	-1.261	2
		17	min		12	137.554	3	<u>-26.763</u> 75.42	1		3		3		3
109		17	max	-1.8						.008		.001		.487	
110		4.0	min	<u>-67.279</u>	4	-291.331	2	-25.214	5	013	1	085	4	-1.05	2
111		18	max	-1.8	12	224.918	3	106.149	1	.008	3	.084	1	.291	3
112		40	min	<u>-78.4</u>	4	-484.443	2	-23.664	5	013	1	107	5	629	2
113		19	max	-1.8	12	312.282	3_	136.877	1	.008	3	.216	1	0	2
114	1440		min	-89.521	4	-677.556	2	-22.114	5	013	1	132	5	0	5
115	M16	1	max	<u>76.671</u>	5	646.673	2	-4.685	12	.013	1	.19	1	0	2
116			mın		1	-290.057	3	-132.892	1	011	3	.008	12	0	3
117		2	max	65.55	5	453.56	2	-3.683	12	.013	1	.099	4	.267	3
118			min	<u>-84.04</u>	1	-202.693	3	-102.163	1	011	3	.003	12	596	2
119		3	max	54.429	5	260.448	2	-2.681	12	.013	1	.058	5	.439	3
120			min	-84.04	1	-115.329	3	-71.434	1	011	3	031	1_	983	2
121		4	max	43.309	5	67.336	2	-1.68	12	.013	1	.033	5	.517	3
122			min	-84.04	1	-27.965	3	-40.706	1_	011	3	092	1	-1.16	2
123		5	max	32.188	5	59.4	3	659	10	.013	1	.009	5	.5	3
124			min	-84.04	1	-125.776	2	-23.56	4	011	3	119	1	-1.129	2
125		6	max	21.067	5	146.764	3_	20.752	1_	.013	1	004	12	.388	3
126			min	-84.04	1	-318.889	2	-19.63	5	011	3	114	1	888	2
127		7	max	9.947	5	234.128	3	51.481	1	.013	1	003	12	.182	3
128			min	-84.04	1	-512.001	2	-18.081	5	011	3	074	1	438	2
129		8	max	731	15	321.492	3	82.209	1	.013	1	0	10	.224	1
130			min	-84.04	1	-705.113	2	-16.531	5	011	3	054	4	119	3
131		9	max	-3.498	12	408.856	3	112.938	1	.013	1	.104	1	1.09	2
132			min	-84.04	1	-898.225	2	-14.981	5	011	3	07	5	515	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
133		10	max	-3.498	12	1091.338	2	-4.33	12	.013	1	.243	1	2.168	2
134			min	-84.04	1	-496.221	3	-143.667	1	011	3	.006	12	-1.005	3
135		11	max	3.825	5	898.225	2	-3.329	12	.011	3	.104	1	1.09	2
136			min	-84.04	1	-408.856	3	-112.938	1	013	1	.002	12	515	3
137		12	max	-3.498	12	705.113	2	-2.327	12	.011	3	.053	4	.224	1
138			min	-84.04	1_	-321.492	3	-82.209	1	013	1	002	1	119	3
139		13	max	-3.498	12	512.001	2	-1.325	12	.011	3	.026	5	.182	3
140			min	-84.04	1_	-234.128	3	-51.481	1	013	1_	074	1	438	2
141		14	max	-3.498	12	318.889	2	324	12	.011	3	.002	5	.388	3
142			min	-84.04	_1_	-146.764	3	-26.15	4	013	1_	114	1_	888	2
143		15	max	-3.498	12	125.776	2	9.977	1	.011	3	004	12	.5	3
144			min	-84.04	_1_	-59.4	3	-20.156	5	013	1_	119	1_	-1.129	2
145		16	max	-3.498	12	27.965	3	40.706	1	.011	3	002	12	.517	3
146			min	-84.04	1_	-67.336	2	-18.606	5	013	1	092	1	-1.16	2
147		17	max	-3.498	12	115.329	3	71.434	1	.011	3	0	3	.439	3
148		40	min	-84.04	1_	-260.448	2	-17.056	5	013	1	068	4	983	2
149		18	max	-3.498	12	202.693	3	102.163	1	.011	3	.063	1	.267	3
150		40	min	-91.697	4_	-453.56	2	-15.507	5	013	1_	079	5	596	2
151		19	max	-3.498	12	290.057	3	132.892	1	.011	3	.19	1	0	2
152	MO	4		-102.817	4_	-646.673	2	-13.957	5	013	1	095	5	0	5
153	M2	1		1174.445	1	2.333	4	1.133	1	0	3	0	3	0	1
154		2	min		<u>3</u> 1	.572	<u>15</u> 4	<u>-75.902</u>	1	0	<u>4</u> 3	0	1	0	1
155		2		1174.773 -1246.304	3	2.318 .569	15	1.133	4	0	4	017	4	0	15
156		3	min	1175.102	<u>ა</u> 1	2.303		<u>-76.186</u>	1	_		017	1	0	
157 158		3	min	-1246.058	3	.565	<u>4</u> 15	1.133 -76.471	4	0	<u>3</u>	034	4	001	15
159		4			<u> </u>	2.288	4	1.133	1	0	3	0	1	0	15
160		4	max	-1245.812	3	.561	15	-76.756	4	0	4	051	4	002	4
161		5		1175.759	_ <u></u>	2.272	4	1.133	1	0	3	0	1	002	15
162		5		-1245.565	3	.558	15	-77.041	4	0	4	068	4	002	4
163		6		1176.087	_ <u></u>	2.257	4	1.133	1	0	3	.001	1	0	15
164		-	min	-1245.319	3	.554	15	-77.326	4	0	4	085	4	003	4
165		7		1176.416	1	2.242	4	1.133	1	0	3	.001	1	- <u>005</u> 0	15
166			min	-1245.073	3	.551	15	-77.611	4	0	4	102	4	003	4
167		8		1176.744	1	2.227	4	1.133	1	0	3	.002	1	0	15
168			min	-1244.826	3	.547	15	-77.895	4	0	4	119	4	004	4
169		9		1177.072	1	2.211	4	1.133	1	0	3	.002	1	0	15
170				-1244.58	3	.544	15	-78.18	4	0	4	137	4	004	4
171		10		1177.401	1	2.196	4	1.133	1	0	3	.002	1	001	15
172				-1244.334	3	.54	15	-78.465	4	0	4	154	4	005	4
173		11		1177.729	1	2.181	4	1.133	1	0	3	.002	1	001	15
174				-1244.087	3	.536	15	-78.75	4	0	4	171	4	005	4
175		12	max	1178.058	1	2.166	4	1.133	1	0	3	.003	1	001	15
176				-1243.841	3	.533	15	-79.035	4	0	4	189	4	005	4
177		13		1178.386	1	2.15	4	1.133	1	0	3	.003	1	001	15
178			min	-1243.595	3	.529	15	-79.319	4	0	4	206	4	006	4
179		14		1178.715	1_	2.135	4	1.133	1	0	3	.003	1	002	15
180				-1243.348	3	.526	15	-79.604	4	0	4	224	4	006	4
181		15		1179.043	1_	2.12	4	1.133	1	0	3	.003	1	002	15
182				-1243.102	3	.522	15	-79.889	4	0	4	242	4	007	4
183		16		1179.371	_1_	2.105	4	1.133	1	0	3	.004	1_	002	15
184				-1242.856	3	.518	15	-80.174	4	0	4	259	4	007	4
185		17	max		_1_	2.089	4	1.133	1	0	3	.004	1	002	15
186				-1242.609	3	.515	15	-80.459	4	0	4	277	4	008	4
187		18		1180.028	1_	2.074	4	1.133	1	0	3	.004	1	002	15
188			_	-1242.363	3	.511	15	-80.744	4	0	4	295	4	008	4
189		19	max	1180.357	_1_	2.059	4	1.133	1	0	3	.005	1	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
190			min	-1242.117	3	.508	15	-81.028	4	0	4	313	4	009	4
191	M3	1	max	364.107	2	8.106	4	.015	1	0	3	0	1	.009	4
192			min	-482.703	3	1.918	15	-1.186	5	0	4	012	4	.002	15
193		2	max	363.936	2	7.333	4	.015	1	0	3	0	1	.006	4
194			min	-482.831	3	1.736	15	644	5	0	4	012	4	.001	12
195		3	max	363.766	2	6.561	4	.015	14	0	3	0	1	.003	2
196			min	-482.959	3	1.555	15	101	5	0	4	012	4	0	3
197		4	max		2	5.788	4	.494	4	0	3	0	1	0	2
198			min	-483.086	3	1.373	15	0	12	0	4	012	4	001	3
199		5	max	363.425	2	5.016	4	1.036	4	0	3	0	1	0	15
200		-	min	-483.214	3	1.192	15	0	12	0	4	012	4	003	3
201		6	max		2	4.244	4	1.578	4	0	3	0	1	0	15
202		-	min	-483.342	3	1.01	15	0	12	0	4	011	4	004	6
		7			2		4	2.12					1		
203			max	363.085		3.471			4	0	3	0		001	15
204		0	min	-483.47	3	.828	15	0	12	0	4	011	4	006	6
205		8	max	362.914	2	2.699	4	2.662	4	0	3	0	1	002	15
206			min	-483.597	3	.647	15	0	12	0	4	01	4	007	6
207		9	max		2	1.926	4	3.204	4	0	3	0	1	002	15
208			min	-483.725	3	.465	15	0	12	0	4	008	5	008	6
209		10	max	362.574	2	1.154	4	3.746	4	0	3	0	1	002	15
210			min	-483.853	3	.284	15	0	12	0	4	007	5	009	6
211		11	max		2	.43	2	4.288	4	0	3	0	1	002	15
212			min	-483.981	3	006	3	0	12	0	4	005	5	009	6
213		12	max	362.233	2	079	15	4.831	4	0	3	0	1	002	15
214			min	-484.108	3	458	3	0	12	0	4	003	5	009	6
215		13	max	362.063	2	261	15	5.373	4	0	3	0	1	002	15
216			min	-484.236	3	-1.165	6	0	12	0	4	001	5	009	6
217		14	max	361.892	2	443	15	5.915	4	0	3	.001	4	002	15
218			min	-484.364	3	-1.937	6	0	12	0	4	0	12	008	6
219		15	max	361.722	2	624	15	6.457	4	0	3	.004	4	002	15
220			min	-484.492	3	-2.709	6	0	12	0	4	0	12	007	6
221		16	max	361.551	2	806	15	6.999	4	0	3	.007	4	001	15
222			min	-484.619	3	-3.482	6	0	12	0	4	0	12	006	6
223		17	max	361.381	2	987	15	7.541	4	0	3	.01	4	0	15
224			min	-484.747	3	-4.254	6	0	12	0	4	0	12	004	6
225		18	max	361.211	2	-1.169	15	8.083	4	0	3	.013	4	0	15
226			min	-484.875	3	-5.027	6	0	12	0	4	0	12	002	6
227		19	max		2	-1.35	15	8.625	4	0	3	.017	4	0	1
228		1.0	min	-485.003	3	-5.799	6	0	12	0	4	0	12	0	1
229	M4	1	max	1304.78	1	0.700	1	313	12	0	1	.009	4	0	1
230	IVIT	<u> </u>		-389.908		0	1	-230.567		0	1	0	10	0	1
231		2		1304.951	1	0	1	313	12	0	1	0	12	0	1
232				-389.78	3	0	1	-230.714		0	1	018	4	0	1
233		3		1305.121	1	0	1	313	12	0	1	0	12	0	1
234		3		-389.652		0	1	-230.862		0	1	044	4	0	1
235		4			1	0	1	313	12	0	1	044 0	12	0	1
		4		1305.291			_					_			
236		_	min		3	0	1	-231.01	4	0	1	071	4	0	1
237		5		1305.462	1	0	1	313	12	0	1	0	12	0	1
238			min		3	0	1	-231.157	4	0	1	097	4	0	1
239		6		1305.632	1	0	1	313	12	0	1	0	12	0	1
240			min		3	0	1	-231.305		0	1	124	4	0	1
241		7		1305.802	1	0	1	313	12	0	1	0	12	0	1
242				-389.141	3	0	1	-231.453		0	1	15	4	0	1
243		8		1305.973		0	1	313	12	0	1	0	12	0	1
244				-389.014		0	1	-231.6	4	0	1	177	4	0	1
245		9		1306.143		0	1	313	12	0	1	0	12	0	1
246			min	-388.886	3	0	1	-231.748	4	0	1	204	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1306.313	_1_	0	1	313	12	0	_1_	0	12	0	1
248			min	-388.758	3	0	1	-231.896	4	0	1	23	4	0	1
249		11	max	1306.484	1	0	1	313	12	0	1	0	12	0	1
250			min	-388.63	3	0	1	-232.043	4	0	1	257	4	0	1
251		12	max	1306.654	1	0	1	313	12	0	1	0	12	0	1
252			min	-388.502	3	0	1	-232.191	4	0	1	283	4	0	1
253		13	max	1306.824	1	0	1	313	12	0	1	0	12	0	1
254			min	-388.375	3	0	1	-232.338	4	0	1	31	4	0	1
255		14	max	1306.995	1	0	1	313	12	0	1	0	12	0	1
256			min	-388.247	3	0	1	-232.486	4	0	1	337	4	0	1
257		15		1307.165	1	0	1	313	12	0	1	0	12	0	1
258			min	-388.119	3	0	1	-232.634	4	0	1	363	4	0	1
259		16	max	1307.335	1	0	1	313	12	0	1	0	12	0	1
260			min	-387.991	3	0	1	-232.781	4	0	1	39	4	0	1
261		17		1307.506	1	0	1	313	12	0	1	0	12	0	1
262			min		3	0	1	-232.929	4	0	1	417	4	0	1
263		18		1307.676	1	0	1	313	12	0	1	0	12	0	1
264		10	min	-387.736	3	0	1	-233.077	4	0	1	444	4	0	1
265		19		1307.846	1	0	1	313	12	0	1	0	12	0	1
266		19	min	-387.608	3	0	1	-233.224	4	0	1	47	4	0	1
267	M6	1		3773.857	<u> </u>	2.86	2	0	1	0	1	0	4	0	1
268	IVIO	-	min	-4074.007	3	.031	3	-76.571	4	0	4	0	1	0	1
269		2		3774.185	<u> </u>	2.849	2	0	1	0	1	0	1	0	3
				-4073.761			3								2
270			min		3	.022		-76.856	4	0	4	017	4	0	
271		3		3774.514	1_	2.837	2	0	1	0	1_1	0	1	0	3
272			min	-4073.515	3	.013	3	-77.141	4	0	4	034	4	001	2
273		4		3774.842	1_	2.825	2	0	1	0	1	0	1	0	3
274		_	min	-4073.268	3_	.004	3	-77.426	4	0	4	051	4	002	2
275		5		3775.171	1_	2.813	2	0	1	0	1	0	1	0	3
276			min	-4073.022	3	005	3	-77.71	4	0	4	068	4	003	2
277		6		3775.499	1_	2.801	2	0	1	0	1	0	1	0	3
278		<u> </u>	min	-4072.776	3	014	3	-77.995	4	0	4	086	4	003	2
279		7		3775.828	1_	2.789	2	0	1	0	1	0	1	0	3
280			min	-4072.529	3_	023	3	-78.28	4	0	4	103	4	004	2
281		8		3776.156	_1_	2.777	2	0	1	0	1	0	1	0	3
282		_	min	-4072.283	3	032	3	-78.565	4	0	4	12	4	004	2
283		9		3776.484	1_	2.765	2	0	1	0	1	0	1	0	3
284			min	-4072.037	3_	041	3	-78.85	4	0	4	138	4	005	2
285		10		3776.813	_1_	2.753	2	0	1	0	1	0	1_	0	3
286			min		3	05	3	-79.135	4	0	4	155	4	006	2
287		11		3777.141	_1_	2.742	2	0	1	0	1	0	1	0	3
288			min		3	059	3	-79.419	4	0	4	173	4	006	2
289		12		3777.47	_1_	2.73	2	0	1	0	1	0	1	0	3
290				-4071.298	3	067	3	-79.704	4	0	4	19	4	007	2
291		13	max	3777.798	_1_	2.718	2	0	1	0	1	0	1	0	3
292			min	-4071.051	3	076	3	-79.989	4	0	4	208	4	007	2
293		14	max	3778.127	1	2.706	2	0	1	0	1	0	1	0	3
294			min	-4070.805	3	085	3	-80.274	4	0	4	226	4	008	2
295		15	max	3778.455	1	2.694	2	0	1	0	1	0	1	0	3
296				-4070.559	3	094	3	-80.559	4	0	4	244	4	009	2
297		16		3778.783	1	2.682	2	0	1	0	1	0	1	0	3
298			min		3	103	3	-80.844	4	0	4	262	4	009	2
299		17		3779.112	1	2.67	2	0	1	0	1	0	1	0	3
300			min		3	112	3	-81.128	4	0	4	279	4	01	2
301		18		3779.44	1	2.658	2	0	1	0	1	0	1	0	3
302				-4069.82	3	121	3	-81.413	4	0	4	297	4	01	2
303		19		3779.769	1	2.646	2	0	1	0	1	0	1	0	3
									•						

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	T	Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	<u>LC</u>
304			min	-4069.573	3	13	3	-81.698	4	0	4	316	4	011	2
305	<u>M7</u>	1_	max		2	8.117	6	0	1	0	_1_	0	1	.011	2
306			min	-1519.755	3	1.905	15	-1.256	5	0	4	012	4	0	3
307		2	max		2	7.344	6	0	1	0	1	0	1	.008	2
308			min	-1519.883	3	1.723	15	714	5	0	4	012	4	002	3
309		3	max	1411.74	2	6.572	6	0	1	0	1	0	1	.006	2
310			min	-1520.011	3	1.541	15	172	5	0	4	012	4	003	3
311		4	max	1411.569	2	5.799	6	.415	4	0	1	0	1	.003	2
312			min	-1520.138	3	1.36	15	0	1	0	4	012	4	004	3
313		5	max	1411.399	2	5.027	6	.957	4	0	1	0	1	.001	2
314			min	-1520.266	3	1.178	15	0	1	0	4	012	4	005	3
315		6	max	1411.228	2	4.255	6	1.5	4	0	1_	0	_1_	0	2
316			min	-1520.394	3	.997	15	0	1	0	4	012	4	006	3
317		7	max	1411.058	2	3.482	6	2.042	4	0	1	0	1	001	15
318			min	-1520.522	3	.815	15	0	1	0	4	011	4	007	3
319		8	max	1410.888	2	2.71	6	2.584	4	0	1	0	1	002	15
320			min	-1520.65	3	.631	12	0	1	0	4	01	4	007	3
321		9	max	1410.717	2	2.049	2	3.126	4	0	1	0	1	002	15
322			min	-1520.777	3	.33	12	0	1	0	4	009	4	008	4
323		10	max	1410.547	2	1.447	2	3.668	4	0	1	0	1	002	15
324			min	-1520.905	3	026	3	0	1	0	4	007	4	009	4
325		11	max	1410.377	2	.845	2	4.21	4	0	1	0	1	002	15
326			min	-1521.033	3	478	3	0	1	0	4	006	4	009	4
327		12	max	1410.206	2	.243	2	4.752	4	0	1	0	1	002	15
328			min	-1521.161	3	929	3	0	1	0	4	004	4	009	4
329		13	max	1410.036	2	274	15	5.294	4	0	1	0	1	002	15
330			min	-1521.288	3	-1.38	3	0	1	0	4	002	5	009	4
331		14	max	1409.866	2	456	15	5.837	4	0	1	0	4	002	15
332			min	-1521.416	3	-1.925	4	0	1	0	4	0	1	008	4
333		15	max	1409.695	2	637	15	6.379	4	0	1	.003	4	002	15
334			min	-1521.544	3	-2.697	4	0	1	0	4	0	1	007	4
335		16	max	1409.525	2	819	15	6.921	4	0	1	.006	4	001	15
336			min	-1521.672	3	-3.47	4	0	1	0	4	0	1	006	4
337		17	max	1409.355	2	-1.001	15	7.463	4	0	1	.009	4	0	15
338			min	-1521.799	3	-4.242	4	0	1	0	4	0	1	004	4
339		18	max	1409.184	2	-1.182	15	8.005	4	0	1	.012	4	0	15
340			min	-1521.927	3	-5.014	4	0	1	0	4	0	1	002	4
341		19	max	1409.014	2	-1.364	15	8.547	4	0	1	.016	4	0	1
342			min	-1522.055	3	-5.787	4	0	1	0	4	0	1	0	1
343	M8	1		3859.448	1	0	1	0	1	0	1	.008	4	0	1
344				-1319.95	3	0	1	-225.488	4	0	1	0	1	0	1
345		2		3859.619	1	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-225.636	4	0	1	017	4	0	1
347		3		3859.789	1	0	1	0	1	0	1	0	1	0	1
348			min		3	0	1	-225.783		0	1	043	4	0	1
349		4		3859.959	1	0	1	0	1	0	1	0	1	0	1
350			min	-1319.566	3	0	1	-225.931	4	0	1	069	4	0	1
351		5		3860.13	1	0	1	0	1	0	1	0	1	0	1
352		Ĭ	min		3	0	1	-226.078	_	0	1	095	4	0	1
353		6		3860.3	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	-226.226		0	1	121	4	0	1
355		7		3860.47	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-226.374		0	1	147	4	0	1
357		8		3860.641	_ <u></u>	0	1	0	1	0	1	0	1	0	1
358		J	min		3	0	1	-226.521	4	0	1	173	4	0	1
359		9		3860.811	<u> </u>	0	1	0	1	0	1	0	1	0	1
360		3		-1318.928	3	0	1	-226.669		0	1	199	4		1
300			min	1010.320	3	U		-220.009	4	U		199	4	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

361		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	361		10	max	3860.981	1_	0	1	0	_1_	0	1		1	0	1
386				min	-1318.8	3	0	1	-226.817	4	0	1	225	4	0	1
3865			11	max					_		_	_				
386												•				
386			12					_								-
388			40	_				•		•						
389			13													_
370			4.4							•						
371			14								_					_
372			15					_			_	_		_		
373			13				_		_	_						
375	$\overline{}$		16			_					_			_		
375			- 10						•		_					-
376			17	_								•				1
18						3		1	-227.85	4		1	408	4	0	1
379			18	max	3862.344	1	0	1	0	1	0	1	0	1	0	1
380	378			min	-1317.778	3	0	1	-227.998	4	0	1	434	4	0	1
381 M10	379		19	max	3862.515	1	0	1	0	1	0	1	0	1	0	1
382						3		_	-228.145		0	1	46	4	0	1
383		M10	1	max		1_				12	0	1	0		0	1
384	$\overline{}$					3					_			_		
385 3 max 1175.102 1 2.199 6 046 12 0 1 0 12 0 15			2								_					
386														_		
387 4 max 1175.43 1 2.184 6 046 12 0 1 0 12 0 15 388 min -1245.812 3 .492 15 -77.326 4 0 5 051 4 001 6 389 5 max 1175.759 1 2.168 6 046 12 0 1 0 12 0 15 390 min -1245.565 3 .488 15 -77.61 4 0 5 068 4 002 6 391 6 max 1176.087 1 2.153 6 046 12 0 1 0 12 0 15 392 min -1245.073 3 .484 15 -77.895 4 0 5 085 4 002 6 393 7 max 1176.416 1			3													
388			4							_						_
389			4													
390																_
391			5								_					
392			6								_			_		
393			0													
394	$\overline{}$		7								_			_		
395 8 max 1176.744 1 2.123 6 046 12 0 1 0 12 0 15 396 min -1244.826 3 .477 15 -78.465 4 0 5 12 4 003 6 397 9 max 1177.072 1 2.107 6 046 12 0 1 0 12 0 15 398 min -1244.58 3 .474 15 -78.75 4 0 5 138 4 004 6 399 10 max 1177.401 1 2.092 6 046 12 0 1 0 12 0 15 400 min -1244.334 3 .47 15 -79.035 4 0 5 155 4 004 6 401 11 max 1177.729 1								_			_					
396			8			_										
397 9 max 1177.072 1 2.107 6 046 12 0 1 0 12 0 15 398 min -1244.58 3 .474 15 -78.75 4 0 5 138 4 004 6 399 10 max 1177.401 1 2.092 6 046 12 0 1 0 12 0 15 400 min -1244.334 3 .47 15 -79.035 4 0 5 155 4 004 6 401 11 max 1177.729 1 2.077 6 046 12 0 1 0 12 001 15 402 min -1244.087 3 .466 15 -79.319 4 0 5 173 4 005 6 403 12 max 1178.058 1 2.062 6 046 12 0 1 0 12 001												5				
398 min -1244.58 3 .474 15 -78.75 4 0 5 138 4 004 6 399 10 max 1177.401 1 2.092 6 046 12 0 1 0 12 0 15 400 min -1244.334 3 .47 15 -79.035 4 0 5 155 4 004 6 401 11 max 1177.729 1 2.077 6 046 12 0 1 0 12 001 15 402 min -1244.087 3 .466 15 -79.319 4 0 5 173 4 005 6 403 12 max 1178.058 1 2.062 6 046 12 0 1 0 12 001 15 404 min -1243.841 3 .463			9	max	1177.072	1				12	0			12		_
400 min -1244.334 3 .47 15 -79.035 4 0 5 155 4 004 6 401 11 max 1177.729 1 2.077 6 046 12 0 1 0 12 001 15 402 min -1244.087 3 .466 15 -79.319 4 0 5 173 4 005 6 403 12 max 1178.058 1 2.062 6 046 12 0 1 0 12 001 15 404 min -1243.841 3 .463 15 -79.604 4 0 5 19 4 005 6 405 13 max 1178.386 1 2.046 6 046 12 0 1 0 12 001 15 406 min -1243.595 3 <td< td=""><td>398</td><td></td><td></td><td>min</td><td>-1244.58</td><td>3</td><td>.474</td><td>15</td><td></td><td>4</td><td>0</td><td>5</td><td>138</td><td>4</td><td>004</td><td>6</td></td<>	398			min	-1244.58	3	.474	15		4	0	5	138	4	004	6
401 11 max 1177.729 1 2.077 6 046 12 0 1 0 12 001 15 402 min -1244.087 3 .466 15 -79.319 4 0 5 173 4 005 6 403 12 max 1178.058 1 2.062 6 046 12 0 1 0 12 001 15 404 min -1243.841 3 .463 15 -79.604 4 0 5 19 4 005 6 405 13 max 1178.386 1 2.046 6 046 12 0 1 0 12 001 15 406 min -1243.595 3 .459 15 -79.889 4 0 5 208 4 006 6 407 14 max 1178.715 <t< td=""><td>399</td><td></td><td>10</td><td></td><td></td><td>1</td><td>2.092</td><td>6</td><td>046</td><td>12</td><td>0</td><td>1</td><td>0</td><td>12</td><td>0</td><td>15</td></t<>	399		10			1	2.092	6	046	12	0	1	0	12	0	15
402 min -1244.087 3 .466 15 -79.319 4 0 5 173 4 005 6 403 12 max 1178.058 1 2.062 6 046 12 0 1 0 12 001 15 404 min -1243.841 3 .463 15 -79.604 4 0 5 19 4 005 6 405 13 max 1178.386 1 2.046 6 046 12 0 1 0 12 001 15 406 min -1243.595 3 .459 15 -79.889 4 0 5 208 4 006 6 407 14 max 1178.715 1 2.031 6 046 12 0 1 0 12 001 15 408 min -1243.348 3 <t< td=""><td>400</td><td></td><td></td><td></td><td></td><td>3</td><td></td><td>15</td><td></td><td></td><td>0</td><td>5</td><td>155</td><td>_</td><td></td><td>6</td></t<>	400					3		15			0	5	155	_		6
403 12 max 1178.058 1 2.062 6 046 12 0 1 0 12 001 15 404 min -1243.841 3 .463 15 -79.604 4 0 5 19 4 005 6 405 13 max 1178.386 1 2.046 6 046 12 0 1 0 12 001 15 406 min -1243.595 3 .459 15 -79.889 4 0 5 208 4 006 6 407 14 max 1178.715 1 2.031 6 046 12 0 1 0 12 001 15 408 min -1243.348 3 .456 15 -80.174 4 0 5 226 4 006 6 409 15 max 1179.043 1 2.016 6 046 12 0 1 0 12 001 15 410 min -1243.102 3			11			_1_								12		15
404 min -1243.841 3 .463 15 -79.604 4 0 5 19 4 005 6 405 13 max 1178.386 1 2.046 6 046 12 0 1 0 12 001 15 406 min -1243.595 3 .459 15 -79.889 4 0 5 208 4 006 6 407 14 max 1178.715 1 2.031 6 046 12 0 1 0 12 001 15 408 min -1243.348 3 .456 15 -80.174 4 0 5 226 4 006 6 409 15 max 1179.043 1 2.016 6 046 12 0 1 0 12 001 15 410 min -1243.102 3 <t< td=""><td>$\overline{}$</td><td></td><td></td><td>_</td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td></t<>	$\overline{}$			_		3							_	_		
405 13 max 1178.386 1 2.046 6 046 12 0 1 0 12 001 15 406 min -1243.595 3 .459 15 -79.889 4 0 5 208 4 006 6 407 14 max 1178.715 1 2.031 6 046 12 0 1 0 12 001 15 408 min -1243.348 3 .456 15 -80.174 4 0 5 226 4 006 6 409 15 max 1179.043 1 2.016 6 046 12 0 1 0 12 001 15 410 min -1243.102 3 .452 15 -80.459 4 0 5 243 4 007 6 411 16 max 1179.371 1 2 6 046 12 0 1 0 12 002 15			12													
406 min -1243.595 3 .459 15 -79.889 4 0 5 208 4 006 6 407 14 max 1178.715 1 2.031 6 046 12 0 1 0 12 001 15 408 min -1243.348 3 .456 15 -80.174 4 0 5 226 4 006 6 409 15 max 1179.043 1 2.016 6 046 12 0 1 0 12 001 15 410 min -1243.102 3 .452 15 -80.459 4 0 5 243 4 007 6 411 16 max 1179.371 1 2 6 046 12 0 1 0 12 002 15			40													
407 14 max 1178.715 1 2.031 6046 12 0 1 0 12001 15 408 min -1243.348 3 .456 15 -80.174 4 0 5226 4006 6 409 15 max 1179.043 1 2.016 6046 12 0 1 0 12001 15 410 min -1243.102 3 .452 15 -80.459 4 0 5243 4007 6 411 16 max 1179.371 1 2 6046 12 0 1 0 12002 15			13													
408 min -1243.348 3 .456 15 -80.174 4 0 5 226 4 006 6 409 15 max 1179.043 1 2.016 6 046 12 0 1 0 12 001 15 410 min -1243.102 3 .452 15 -80.459 4 0 5 243 4 007 6 411 16 max 1179.371 1 2 6 046 12 0 1 0 12 002 15			1.1					_								
409 15 max 1179.043 1 2.016 6 046 12 0 1 0 12 001 15 410 min -1243.102 3 .452 15 -80.459 4 0 5 243 4 007 6 411 16 max 1179.371 1 2 6 046 12 0 1 0 12 002 15			14													
410 min -1243.102 3 .452 15 -80.459 4 0 5 243 4 007 6 411 16 max 1179.371 1 2 6 046 12 0 1 0 12 002 15			15													
411 16 max 1179.371 1 2 6046 12 0 1 0 12002 15			10													
			16													
TIZ			10													_
413 17 max 1179.7 1 1.985 6 046 12 0 1 0 12 002 15	$\overline{}$		17													
414 min -1242.609 3 .445 15 -81.028 4 0 5279 4007 6																
415			18								_					
416 min -1242.363 3 .441 15 -81.313 4 0 5297 4008 6																
417			19											_		

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
418			min	-1242.117	3	.438	15	-81.598	4	0	5	315	4	008	6
419	M11	1	max	364.107	2	8.051	6	0	12	0	1	0	12	.008	6
420			min	-482.703	3	1.881	15	-1.187	5	0	4	012	4	.002	15
421		2	max	363.936	2	7.279	6	0	12	0	1	0	12	.005	2
422			min	-482.831	3	1.699	15	645	5	0	4	012	4	.001	15
423		3	max	363.766	2	6.506	6	0	12	0	1	0	12	.003	2
424			min	-482.959	3	1.518	15	103	5	0	4	012	4	0	3
425		4	max	363.596	2	5.734	6	.486	4	0	1	0	12	0	2
426			min	-483.086	3	1.336	15	015	1	0	4	012	4	001	3
427		5	max	363.425	2	4.961	6	1.029	4	0	1	0	12	0	15
428			min	-483.214	3	1.155	15	015	1	0	4	012	4	003	3
429		6	max	363.255	2	4.189	6	1.571	4	0	1	0	12	001	15
430			min	-483.342	3	.973	15	015	1	0	4	011	4	005	4
431		7	max	363.085	2	3.416	6	2.113	4	0	1	0	12	002	15
432			min	-483.47	3	.792	15	015	1	0	4	011	4	006	4
433		8	max	362.914	2	2.644	6	2.655	4	0	1	0	12	002	15
434			min	-483.597	3	.61	15	015	1	0	4	01	4	007	4
435		9	max	362.744	2	1.872	6	3.197	4	0	1	0	12	002	15
436			min	-483.725	3	.429	15	015	1	0	4	008	4	008	4
437		10	max	362.574	2	1.099	6	3.739	4	0	1	0	12	002	15
438			min	-483.853	3	.247	15	015	1	0	4	007	4	009	4
439		11	max	362.403	2	.43	2	4.281	4	0	1	0	12	002	15
440			min	-483.981	3	006	3	015	1	0	4	005	4	009	4
441		12	max	362.233	2	116	15	4.823	4	0	1	0	12	002	15
442			min	-484.108	3	458	3	015	1	0	4	003	4	009	4
443		13	max	362.063	2	298	15	5.366	4	0	1	0	12	002	15
444			min	-484.236	3	-1.219	4	015	1	0	4	001	4	009	4
445		14	max	361.892	2	479	15	5.908	4	0	1	.001	4	002	15
446			min	-484.364	3	-1.992	4	015	1	0	4	0	1	008	4
447		15	max	361.722	2	661	15	6.45	4	0	1	.004	4	002	15
448			min	-484.492	3	-2.764	4	015	1	0	4	0	1	007	4
449		16	max	361.551	2	842	15	6.992	4	0	1	.007	4	001	15
450			min	-484.619	3	-3.536	4	015	1	0	4	0	1	006	4
451		17	max	361.381	2	-1.024	15	7.534	4	0	1	.01	4	001	15
452			min	-484.747	3	-4.309	4	015	1	0	4	0	1	004	4
453		18	max	361.211	2	-1.206	15	8.076	4	0	1	.013	4	0	15
454			min	-484.875	3	-5.081	4	015	1	0	4	0	1	002	4
455		19	max	361.04	2	-1.387	15	8.618	4	0	1	.017	4	0	1
456			min	-485.003	3	-5.854	4	015	1	0	4	0	1	0	1
457	M12	1	max	1304.78	1	0	1	7.579	1	0	1	.009	4	0	1
458			min	-389.908	3	0	1	-226.745	4	0	1	0	1	0	1
459		2		1304.951	1	0	1	7.579	1	0	1	0	1	0	1
460			min		3	0	1	-226.893		0	1	017	4	0	1
461		3		1305.121	1	0	1	7.579	1	0	1	.002	1	0	1
462			min	-389.652	3	0	1	-227.041	4	0	1	043	4	0	1
463		4	max	1305.291	1	0	1	7.579	1	0	1	.002	1	0	1
464			min		3	0	1	-227.188	4	0	1	069	4	0	1
465		5	max	1305.462	1	0	1	7.579	1	0	1	.003	1	0	1
466			min	-389.397	3	0	1	-227.336	4	0	1	096	4	0	1
467		6		1305.632	1	0	1	7.579	1	0	1	.004	1	0	1
468			min	-389.269	3	0	1	-227.483	4	0	1	122	4	0	1
469		7		1305.802	1	0	1	7.579	1	0	1	.005	1	0	1
470				-389.141	3	0	1	-227.631		0	1	148	4	0	1
471		8		1305.973	1	0	1	7.579	1	0	1	.006	1	0	1
472		Ĭ	min		3	0	1	-227.779		0	1	174	4	0	1
473		9		1306.143	1	0	1	7.579	1	0	1	.007	1	0	1
474				-388.886	3	0	1	-227.926		0	1	2	4	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

475	Member	Sec		Axial[lb]						Torque[k-ft]				z-z Mome	
475		10		1306.313	1_	0	1	7.579	1	0	1	.008	1	0	1
476			min	-388.758	3	0	1	-228.074	4	0	1	226	4	0	1
477		11		1306.484	1_	0	1	7.579	1	0	1	.009	1	0	1
478			min	-388.63	3	0	1	-228.222	4	0	1	252	4	0	1
479		12			_1_	0	_1_	7.579	1_	0	1_	.009	1_	0	1
480			min	-388.502	3	0	1	-228.369	4	0	1	279	4	0	1
481		13		1306.824	_1_	0	1	7.579	1	0	1	.01	1_	0	1
482			min	-388.375	3	0	1	-228.517	4	0	1	305	4	0	1
483		14	max	1306.995	_1_	0	1	7.579	1	0	1	.011	1	00	1
484			min	-388.247	3	0	1	-228.664	4	0	1	331	4	0	1
485		15	max	1307.165	<u>1</u>	0	1	7.579	1	0	1	.012	1_	0	1
486			min	-388.119	3	0	1	-228.812	4	0	1	357	4	0	1
487		16	max	1307.335	_1_	0	1	7.579	1	0	1	.013	1_	0	1
488			min	-387.991	3	0	1	-228.96	4	0	1	384	4	0	1
489		17	max	1307.506	1	0	1	7.579	1	0	1	.014	1	0	1
490			min	-387.864	3	0	1	-229.107	4	0	1	41	4	0	1
491		18	max	1307.676	1	0	1	7.579	1	0	1	.015	1	0	1
492			min	-387.736	3	0	1	-229.255	4	0	1	436	4	0	1
493		19	max	1307.846	1	0	1	7.579	1	0	1	.016	1	0	1
494			min	-387.608	3	0	1	-229.403	4	0	1	463	4	0	1
495	M1	1	max	132.7	1	702.469	3	54.574	5	0	1	.189	1	0	3
496			min	-6.435	5	-536.246	1	-79.496	1	0	3	057	5	015	1
497		2	max	133.071	1	701.431	3	55.815	5	0	1	.147	1	.269	1
498			min	-6.262	5	-537.63	1	-79.496	1	0	3	028	5	37	3
499		3	max	287.439	3	603.317	1	-3.474	12	0	3	.105	1	.539	1
500			min	-176.907	2	-516.187	3	-78.562	1	0	1	0	15	725	3
501		4	max	287.717	3	601.933	1	-3.474	12	0	3	.064	1	.221	1
502			min	-176.536	2	-517.225	3	-78.562	1	0	1	008	5	452	3
503		5	max	287.995	3	600.549	1	-3.474	12	0	3	.022	1	004	15
504			min	-176.166	2	-518.262	3	-78.562	1	0	1	016	5	179	3
505		6	max	288.273	3	599.166	1	-3.474	12	0	3	0	12	.095	3
506			min	-175.795	2	-519.3	3	-78.562	1	0	1	027	4	413	1
507		7	max	288.551	3	597.782	1	-3.474	12	0	3	003	12	.369	3
508			min	-175.424	2	-520.338	3	-78.562	1	0	1	061	1	729	1
509		8	max	288.829	3	596.399	1	-3.474	12	0	3	004	12	.644	3
510			min	-175.053	2	-521.375	3	-78.562	1	0	1	102	1	-1.044	1
511		9	max	296.592	3_	47.313	2	38.079	5	0	9	.061	1_	.751	3
512			min	-122.18	2	.417	15		1	0	3	113	5	-1.19	1
513		10	max	296.87	3	45.93	2	39.32	5	0	9	0	10	.732	3
514			min	-121.809	2	0	5	-116.263	1	0	3	094	4	-1.203	1
515		11		297.148	3	44.546	2	40.562	5	0	9	003	12		3
516				-121.439	2	-1.736	4	-116.263		0	3	084	4	-1.215	1
517		12		304.852	3	347.326	3	122.77	5	0	2	.101	1_	.623	3
518			min		10	-646.424	1	-76.815	1	0	3	165	5	-1.073	1
519		13	max		3_	346.288	3	124.011	5	0	2	.06	1_	.44	3
520			min	-72.206	10	-647.808	1	-76.815	1	0	3	1	5	732	1
521		14		305.408	3_	345.251	3	125.253	5	0	2	.02	1_	.257	3
522			min	-71.897	10	-649.191	1	-76.815	1	0	3	034	5	39	1
523		15	max		3_	344.213	3	126.494	5	0	2	.032	5	.075	3
524			min		10	-650.575	1	-76.815	1	0	3	021	1	047	1
525		16	max		_3_	343.175	3	127.735	5	0	2	.099	5	.32	2
526			min	-71.279	10	-651.959	1	-76.815	1	0	3	061	1	106	3
527		17		306.242	3	342.137	3	128.977	5	0	2	.167	5	.658	2
528			min	-70.97	10	-653.342	1	-76.815	1	0	3	102	1	287	3
529		18	max		5_	648.461	2	-3.498	12	0	5	.14	5	.331	2
530			min	-133.26	1_	-289.06	3	-104.097	4	0	2	146	1	142	3
531		19	max	13.957	5	647.078	2	-3.498	12	0	5	.095	5	.011	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]	LC		LC	z-z Mome	LC
532			min	-132.889	1	-290.097	3	-102.856	4	0	2	19	1_	013	1
533	M5	1	max	287.716	_1_	2343.035	3	82.986	5	0	1	0	_1_	.03	1
534			min	8.417	12	-1818.817	1	0	1	0	4	126	4	002	3
535		2	max	288.087	1	2341.997	3	84.228	5	0	1	0	1	.99	1
536			min	8.602	12	-1820.2	1	0	1	0	4	082	4	-1.238	3
537		3	max	922.702	3	1833.293	1	13.809	4	0	4	0	1	1.907	1
538			min	-624.328	2	-1646.7	3	0	1	0	1	039	4	-2.425	3
539		4	max	922.98	3	1831.909	1	15.05	4	0	4	0	1	.94	1
540			min	-623.958	2	-1647.738	3	0	1	0	1	031	4	-1.556	3
541		5	max	923.258	3	1830.525	1	16.292	4	0	4	0	1	.016	9
542			min	-623.587	2	-1648.776	3	0	1	Ö	1	023	4	686	3
543		6	max		3	1829.142	1	17.533	4	0	4	0	1	.184	3
544			min	-623.216	2	-1649.813	3	0	1	0	1	014	5	992	1
545		7	max		3	1827.758	1	18.775	4	0	4	0	1	1.055	3
546			min	-622.845	2	-1650.851	3	0	1	0	1	006	5	-1.957	1
547		8	max	924.093	3	1826.374	1	20.016	4	0	4	.006	4	1.926	3
548		0	min	-622.475	2	-1651.889	3	0	1	0	1	0	1	-2.921	1
		9		936.445				121.753				0			3
549		9	max		3	158.091	2		4	0	1		1_1	2.215	
550		40	min	-513.163	2	.418	15	0		0	-	149	4_	-3.307	1
551		10	max	936.724	3	156.708	2	122.995	4	0	1	0	1_	2.148	3
552		4.4	min	-512.792	2	0	15	0	1	0	1	085	5_	-3.351	1
553		11	max		3	155.324	2	124.236	4	0	1	0	_1_	2.082	3
554			min	-512.421	2	-1.608	6	0	1	0	1	02	5	-3.393	1
555		12	max	949.475	3	1090.775	3	166.996	4	0	1	0	1_	1.828	3
556			min	-403.149	2	-1992.677	1	0	1	0	4	229	4	-3.025	1
557		13	max	949.753	3	1089.738	3	168.237	4	0	1	0	_1_	1.253	3
558			min	-402.778	2	-1994.061	1	0	1	0	4	141	4	-1.973	1
559		14	max	950.031	3	1088.7	3	169.479	4	0	1	0	1	.678	3
560			min	-402.407	2	-1995.445	1	0	1	0	4	052	4	921	1
561		15	max	950.309	3	1087.662	3	170.72	4	0	1	.038	4	.21	2
562			min	-402.036	2	-1996.828	1	0	1	0	4	0	1	004	13
563		16	max	950.587	3	1086.624	3	171.962	4	0	1	.128	4	1.244	2
564			min	-401.666	2	-1998.212	1	0	1	0	4	0	1	47	3
565		17	max	950.865	3	1085.587	3	173.203	4	0	1	.22	4	2.279	2
566			min	-401.295	2	-1999.595	1	0	1	0	4	0	1	-1.043	3
567		18	max	-8.846	12	2186.325	2	0	1	0	4	.218	4	1.175	2
568			min	-287.709	1	-991.627	3	-39.641	5	0	1	0	1	545	3
569		19	max	-8.661	12	2184.941	2	0	1	0	4	.198	4	.026	1
570		1.0	min	-287.338	1	-992.665	3	-38.4	5	0	1	0	1	021	3
571	M9	1	max	132.7	1	702.469	3	79.496	1	0	3	008	12	0	3
572	IVIO		min	4 0 0 -	12	-536.246		3.523	12	0	1	189	1	015	1
573		2	max		1	701.431	3	80.48	4	0	3	007	12	.269	1
574		_	min	4.992	12	-537.63	1	3.523	12	0	1	147	1	37	3
575		3		287.439	3	603.317	1	78.562	1	0	1	005	12	.539	1
576		J	min		2	-516.187	3	-9.324	5	0	3	105	1	725	3
577		4		287.717	3	601.933	1	78.562	1	0	1	003	12	.221	1
578		4	min		2	-517.225	3	-8.082	5	0	3	064	1	452	3
579		5			3						1	004	12		15
		3	max			600.549	1	78.562	1	0				004	
580		_		-176.166	2	-518.262	3	-6.841	5	0	3	023	4	179	3
581		6		288.273	3	599.166	1	78.562	1	0	1	.019	1_	.095	3
582		-		-175.795	2	-519.3	3	-5.599	5	0	3	021	5	413	1
583		7		288.551	3	597.782	1	78.562	1_	0	1	.061	_1_	.369	3
584			min	-175.424	2	-520.338	3	-4.358	5	0	3	024	5	729	1
585		8		288.829	3	596.399	1	78.562	1	0	1	.102	1_	.644	3
586			min	-175.053	2	-521.375	3	-3.116	5	0	3	026	5	-1.044	1
587		9		296.592	3	47.313	2	116.263	1	0	3	003	12	.751	3
588			min	-122.18	2	.422	15	4.983	12	0	9	133	4	-1.19	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	296.87	3	45.93	2	116.263	1	0	3	0	1	.732	3
590			min	-121.809	2	.005	15	4.983	12	0	9	093	4	-1.203	1
591		11	max	297.148	3	44.546	2	116.263	1	0	3	.062	1	.714	3
592			min	-121.439	2	-1.697	6	4.983	12	0	9	066	5	-1.215	1
593		12	max	304.852	3	347.326	3	147.594	4	0	3	004	12	.623	3
594			min	-72.515	10	-646.424	1	3.185	12	0	2	197	4	-1.073	1
595		13	max	305.13	3	346.288	3	148.836	4	0	3	003	12	.44	3
596			min	-72.206	10	-647.808	1	3.185	12	0	2	119	4	732	1
597		14	max	305.408	3	345.251	3	150.077	4	0	3	0	12	.257	3
598			min	-71.897	10	-649.191	1	3.185	12	0	2	04	4	39	1
599		15	max	305.686	3	344.213	3	151.319	4	0	3	.039	4	.075	3
600			min	-71.588	10	-650.575	1	3.185	12	0	2	0	12	047	1
601		16	max	305.964	3	343.175	3	152.56	4	0	3	.119	4	.32	2
602			min	-71.279	10	-651.959	1	3.185	12	0	2	.002	12	106	3
603		17	max	306.242	3	342.137	3	153.802	4	0	3	.2	4	.658	2
604			min	-70.97	10	-653.342	1	3.185	12	0	2	.004	12	287	3
605		18	max	-4.87	12	648.461	2	84.11	1	0	2	.186	4	.331	2
606			min	-133.26	1	-289.06	3	-77.99	5	0	3	.006	12	142	3
607		19	max	-4.685	12	647.078	2	84.11	1	0	2	.19	1	.011	3
608			min	-132.889	1	-290.097	3	-76.748	5	0	3	.008	12	013	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.122	1	.005	3	9.72e-3	1	NC	1	NC	1
2			min	456	4	025	3	002	2	-1.897e-3	3	NC	1	NC	1
3		2	max	0	1	.281	3	.029	1	1.113e-2	1	NC	5	NC	2
4			min	456	4	09	1	012	5	-1.977e-3	3	763.841	3	8440.101	1
5		3	max	0	1	.529	3	.069	1	1.255e-2	1	NC	5	NC	3
6			min	456	4	257	1	014	5	-2.056e-3	3	422.327	3	3463.973	1
7		4	max	0	1	.679	3	.103	1	1.396e-2	1	NC	5	NC	3
8			min	456	4	349	1	01	5	-2.136e-3	3	332.472	3	2295.777	1
9		5	max	0	1	.712	3	.121	1	1.537e-2	1	NC	5	NC	3
10			min	456	4	353	1	002	5	-2.216e-3	3	317.407	3	1957.851	1
11		6	max	0	1	.632	3	.117	1	1.679e-2	1	NC	5	NC	3
12			min	456	4	272	1	.004	15	-2.296e-3	3	356.192	3	2030.683	1
13		7	max	0	1	.462	3	.091	1	1.82e-2	1	NC	5	NC	3
14			min	456	4	124	1	.003	10	-2.375e-3	3	480.837	3	2594.291	1
15		8	max	0	1	.246	3	.053	1	1.961e-2	1	NC	4	NC	2
16			min	456	4	.001	15	0	10	-2.455e-3	3	863.456	3	4519.326	1
17		9	max	0	1	.219	2	.017	3	2.103e-2	1	NC	4	NC	1
18			min	456	4	.005	15	005	10	-2.535e-3	3	2337.225	2	NC	1
19		10	max	0	1	.285	1	.016	3	2.244e-2	1	NC	3	NC	1
20			min	456	4	038	3	01	2	-2.615e-3	3	1437.703	1	NC	1
21		11	max	0	12	.219	2	.017	3	2.103e-2	1	NC	4	NC	1
22			min	456	4	.005	15	01	5	-2.535e-3	3	2337.225	2	NC	1
23		12	max	0	12	.246	3	.053	1	1.961e-2	1_	NC	4	NC	2
24			min	456	4	.001	15	01	5	-2.455e-3	3	863.456	3	4519.326	1
25		13	max	0	12	.462	3	.091	1	1.82e-2	1_	NC	5	NC	3
26			min	456	4	124	1	003	5	-2.375e-3	3	480.837	3	2594.291	1
27		14	max	0	12	.632	3	.117	1	1.679e-2	1	NC	5	NC	3
28			min	456	4	272	1	.004	15	-2.296e-3	3	356.192	3	2030.683	1
29		15	max	0	12	.712	3	.121	1	1.537e-2	1	NC	5	NC	3
30			min	456	4	353	1	.007	10	-2.216e-3	3	317.407	3	1957.851	1
31		16	max	0	12	.679	3	.103	1	1.396e-2	1_	NC	5	NC	3
32			min	456	4	349	1	.006	10	-2.136e-3	3	332.472	3	2295.777	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r Lo	C (n) L/v Ratio	LC	(n) L/z Ratio	LC
33		17	max	0	12	.529	3	.069	1 1.255e-2 1		5	NC	3
34			min	456	4	257	1	.004	10 -2.056e-3 3	422.327	3	3463.973	1
35		18	max	0	12	.281	3	.029	1 1.113e-2 1	NC	5	NC	2
36			min	456	4	09	1	0	10 -1.977e-3 3	763.841	3	8440.101	1
37		19	max	0	12	.122	1	.005	3 9.72e-3 1	NC	1	NC	1
38			min	456	4	025	3	002	2 -1.897e-3 3	NC NC	1	NC	1
39	M14	1	max	0	1	.223	3	.005	3 6.015e-3 1	NC	1	NC	1
40			min	366	4	391	1	002	2 -4.003e-3 3	NC NC	1	NC	1
41		2	max	0	1	.529	3	.02	1 7.207e-3 1	NC	5	NC	1
42			min	366	4	741	1	017	5 -4.862e-3 3		1	NC	1
43		3	max	0	1	.788	3	.055	1 8.398e-3 1	NC	5	NC	2
44			min	366	4	-1.042	1	021	5 -5.721e-3 3	359.053	1	4340.168	1
45		4	max	0	1	.968	3	.088	1 9.59e-3 1	NC	15	NC	3
46			min	366	4	-1.263	1	014	5 -6.58e-3 3	268.331	1	2690.455	1
47		5	max	0	1	1.054	3	.107	1 1.078e-2 1		15	NC	3
48			min	366	4	-1.385	1	002	5 -7.439e-3 3	235.42	1	2211.969	1
49		6	max	0	1	1.045	3	.106	1 1.197e-2 1	NC	15	NC	3
50			min	366	4	-1.407	1	.006	10 -8.297e-3 3	230.155	1	2241.185	1
51		7	max	0	1	.959	3	.085	1 1.316e-2 1	NC	15	NC	3
52			min	366	4	-1.346	1	.003	10 -9.156e-3 3		1	2815.256	
53		8	max	0	1	.828	3	.05	1 1.436e-2 1		15	NC	2
54			min	366	4	-1.234	1	0	10 -1.002e-2 3		1	4831.933	1
55		9	max	0	1	.699	3	.024	4 1.555e-2 1		15	NC	1
56			min	366	4	-1.117	1	004	10 -1.087e-2 3		1	9778.119	4
57		10	max	0	1	.639	3	.014	3 1.674e-2 1		5	NC	1
58			min	366	4	-1.061	1	009	2 -1.173e-2 3		1	NC	1
59		11	max	0	12	.699	3	.015	3 1.555e-2 1		15	NC	1
60			min	366	4	<u>-1.117</u>	1	<u>017</u>	5 -1.087e-2 3		1	NC	1
61		12	max	0	12	.828	3	.05	1 1.436e-2 1		15	NC	2
62			min	366	4	-1.234	1	02	5 -1.002e-2 3		1	4831.933	
63		13	max	0	12	.959	3	.085	1 1.316e-2 1		15	NC	3
64			min	366	4	-1.346	1	013	5 -9.156e-3 3		1	2815.256	
65		14	max	0	12	1.045	3	.106	1 1.197e-2 1		15	NC	3
66			min	366	4	-1.407	1	0	15 -8.297e-3 3		1	2241.185	
67		15	max	0	12	1.054	3	.107	1 1.078e-2 1		15	NC	3
68			min	366	4	-1.385	1	.006	10 -7.439e-3 3		1	2211.969	_
69		16	max	0	12	.968	3	.088	1 9.59e-3 1		15	NC	3
70			min	366	4	-1.263	1	.005	10 -6.58e-3 3		1	2690.455	
71		17	max	0	12	.788	3	.055	1 8.398e-3 1		5	NC	2
72			min	366	4	-1.042	1	.003	10 -5.721e-3 3		1	4340.168	
73		18		0	12	.529	3	.025	4 7.207e-3 1		5	NC 0.400,450	1
74		4.0	min	366	4	<u>741</u>	1	0	10 -4.862e-3 3		1	9489.459	
75		19	max	0	12	.223	3	.005	3 6.015e-3 1		1	NC	1
76			min	366	4	<u>391</u>	1	002	2 -4.003e-3 3		1	NC NC	1
77	M15	1_	max	0	12	.228	3	.004	3 3.398e-3 3		1	NC NC	1
78			min	309	4	39	1	002	2 -6.131e-3 1		1	NC NC	1
79		2	max	0	12	.428	3	.02	1 4.128e-3 3		5	NC 0404-04	1
80			min	309	4	781	1	027	5 -7.35e-3 1		1	8484.34	5
81		3	max	0	12	.601	3	.055	1 4.858e-3 3		5	NC 4007.004	2
82		4	min	309	4	<u>-1.116</u>	1	033	5 -8.569e-3 1	0	1_	4327.264	
83		4	max	0	12	.73	3	.089	1 5.588e-3 3		15	NC ocoo occ	3
84		_	min	309	4	<u>-1.357</u>	1	024	5 -9.788e-3 1		1_	2683.865	
85		5	max	0	12	.805	3	.107	1 6.319e-3 3		15	NC	3
86			min	31	4	-1.484	1	006	5 -1.101e-2 1		1_	2206.726	
87		6	max	0	12	.825	3	.106	1 7.049e-3 3		15	NC OCCE OCCE	3
88		-	min	31	4	<u>-1.496</u>	1	.006	10 -1.223e-2 1		1_	2235.264	
89		7	max	0	12	.799	3	.085	1 7.779e-3 3	NC NC	15	NC	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC		
90			min	31	4	-1.412	1	.003	10 -1.344e-2	1	228.996	1_	2805.405	1
91		8	max	0	12	.742	3	.05	1 8.509e-3	3	NC	<u>15</u>	NC	2
92			min	31	4	-1.27	1	0	10 -1.466e-2	1	265.83	1_	4802.221	1
93		9	max	0	12	.682	3	.032	4 9.24e-3	3	NC	15	NC	1
94			min	31	4	-1.128	1	004	10 -1.588e-2	1	317.275	1	7317.374	4
95		10	max	0	1	.653	3	.013	3 9.97e-3	3	NC	5	NC	1
96			min	31	4	-1.06	1	009	2 -1.71e-2	1	349.479	1	NC	1
97		11	max	0	1	.682	3	.015	1 9.24e-3	3	NC	15	NC	1
98			min	31	4	-1.128	1	025	5 -1.588e-2	1	317.275	1	9156.188	5
99		12	max	0	1	.742	3	.05	1 8.509e-3	3	NC	15	NC	2
100			min	31	4	-1.27	1	03	5 -1.466e-2	1	265.83	1	4802.221	1
101		13	max	0	1	.799	3	.085	1 7.779e-3	3	NC	15	NC	3
102			min	309	4	-1.412	1	02	5 -1.344e-2	1	228.996	1_	2805.405	1
103		14	max	0	1	.825	3	.106	1 7.049e-3	3	NC	15	NC	3
104			min	309	4	-1.496	1	002	5 -1.223e-2	1	211.674	1	2235.264	1
105		15	max	0	1	.805	3	.107	1 6.319e-3	3	NC	15	NC	3
106			min	309	4	-1.484	1	.006	10 -1.101e-2	1	214.02	1	2206.726	1
107		16	max	0	1	.73	3	.089	1 5.588e-3	3	NC	15	NC	3
108			min	309	4	-1.357	1	.005	10 -9.788e-3	1	242.029	1	2683.865	1
109		17	max	0	1	.601	3	.055	1 4.858e-3	3	NC	5	NC	2
110			min	309	4	-1.116	1	.003	10 -8.569e-3	1	322.196	1	4327.264	
111		18	max	0	1	.428	3	.034	4 4.128e-3	3	NC	5	NC	1
112			min	309	4	781	1	0	10 -7.35e-3	1	598.244	1	6906.628	4
113		19	max	0	1	.228	3	.004	3 3.398e-3	3	NC	1	NC	1
114			min	309	4	39	1	002	2 -6.131e-3	1	NC	1	NC	1
115	M16	1	max	0	12	.116	1	.004	3 5.963e-3	3	NC	1	NC	1
116			min	138	4	076	3	002	2 -8.968e-3	1	NC	1	NC	1
117		2	max	0	12	.034	3	.029	1 6.984e-3	3	NC	5	NC	2
118			min	138	4	161	2	02	5 -1.02e-2	1	884.811	2	8483.796	
119		3	max	0	12	.119	3	.069	1 8.005e-3	3	NC	5	NC	3
120			min	138	4	371	2	025	5 -1.143e-2	1	492.581	2	3470.185	
121		4	max	0	12	.164	3	.103	1 9.026e-3	3	NC	5	NC	3
122			min	138	4	492	2	019	5 -1.267e-2	1	392.791	2	2295.188	
123		5	max	0	12	.162	3	.121	1 1.005e-2	3	NC	5	NC	3
124			min	138	4	506	2	007	5 -1.39e-2	1	383.611	2	1953.619	
125		6	max	0	12	.114	3	.117	1 1.107e-2	3	NC	5	NC	3
126			min	138	4	417	2	.004	15 -1.513e-2	1	449.34	2	2021.246	
127		7	max	0	12	.031	3	.092	1 1.209e-2	3	NC	5	NC	3
128			min	138	4	247	2	.004	10 -1.637e-2	1	667.653	2	2570.808	
129		8	max	0	12	.017	9	.054	1 1.311e-2	3	NC	3	NC	2
130			min		4	069	3	0	10 -1.76e-2		1658.838		4427.229	
131		9	max	0	12	.185	1	.022	4 1.413e-2	3	NC	4	NC	1
132		1 3	min	138	4	157	3	003	10 -1.883e-2	1	2886.549	3	NC	1
133		10	max	0	1	.267	1	.012	3 1.515e-2	3	NC	<u>5</u>	NC	1
134		10	min	138	4	196	3	008	2 -2.007e-2	1	1548.404	1	NC	1
135		11		0	1	.185	1	.016	1 1.413e-2	3	NC	4	NC	1
136		11	max	138	4		3		5 -1.883e-2	1	2886.549	3	NC	1
		12	min			157		016		<u> </u>			NC NC	
137		12	max	120	1 4	.017	9	.054	1 1.311e-2	3	NC	2	4427.229	2
138		10	min	138		069	3	017	5 -1.76e-2 1 1.209e-2	<u>1</u>	1658.838			
139		13	max	120	1	.031	2	.092		3	NC 667.652	<u>5</u> 2	NC 2570.808	3
140		4.4	min	138		247		008		1	667.653			
141		14	max	0	1	.114	3	.117	1 1.107e-2	3	NC 440.24	5	NC 2024 246	3
142		45	min	138	4	417	2	.004	15 -1.513e-2	1_	449.34	2	2021.246	
143		15	max	0	1	.162	3	.121	1 1.005e-2	3	NC	5_	NC 4050.040	3
144		40	min	138	4	<u>506</u>	2	.008	10 -1.39e-2	1_	383.611	2	1953.619	
145		16	max	0	1	.164	3	.103	1 9.026e-3	3	NC	5	NC	3
146			min	138	4	492	2	.007	10 -1.267e-2	1	392.791	2	2295.188	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
147		17	max	0	1	.119	3	.069	1	8.005e-3	3	NC	5	NC	3
148			min	138	4	371	2	.004	10	-1.143e-2	1_	492.581	2	3470.185	
149		18	max	0	1	.034	3	.029	4	6.984e-3	3	NC	5	NC	2
150		10	min	138	4	161	2	0	10	-1.02e-2	1_	884.811	2	7902.067	4
151		19	max	0	1	.116	1	.004	3	5.963e-3	3	NC NC	1	NC NC	1
152	140	-	min	138	4	076	3	002	2	-8.968e-3	1_	NC NC	1	NC NC	1
153	<u>M2</u>	1_	max	.005	1	.003	2	.006	1	1.181e-3	5_	NC NC	1	NC 440,000	2
154		_	min	006	3	007	3	432	4	-1.559e-4	_1_	NC NC	1	110.698	4
155		2	max	.005	1	.003	2	.006	1	1.262e-3	_5_	NC NC	1	NC 400 040	2
156			min	005	3	006	3	397	4	-1.445e-4	<u>1</u>	NC NC	1	120.618	4
157		3	max	.005	1	.002	2	.005	1	1.342e-3	5_	NC	1	NC 100 110	2
158			min	005	3	006	3	361	4	-1.33e-4	_1_	NC	1	132.413	4
159		4	max	.005	1	.002	2	.005	1	1.422e-3	5	NC	1	NC NC	1
160		_	min	005	3	006	3	326	4	-1.216e-4	_1_	NC	1	146.576	4
161		5	max	.004	1	.002	2	.004	1	1.503e-3	_5_	NC	1	NC_	1
162			min	004	3	006	3	292	4	-1.101e-4	<u>1</u>	NC	1	163.773	4
163		6	max	.004	1	.001	2	.004	1	1.583e-3	5	NC	1	NC	1
164			min	004	3	005	3	259	4	-9.871e-5	_1_	NC	1	184.934	4
165		7	max	.004	1	0	2	.003	1	1.663e-3	5_	NC	1	NC	1
166			min	004	3	005	3	226	4	-8.727e-5	1_	NC	1	211.376	4
167		8	max	.003	1	0	2	.003	1	1.744e-3	_4_	NC	1	NC	1
168			min	004	3	005	3	195	4	-7.584e-5	1_	NC	1	245.027	4
169		9	max	.003	1	0	2	.002	1	1.828e-3	_4_	NC	1	NC	1
170			min	003	3	005	3	166	4	-6.44e-5	1_	NC	1	288.792	4
171		10	max	.003	1	0	15	.002	1	1.913e-3	4_	NC	1	NC	1
172			min	003	3	004	3	138	4	-5.296e-5	1_	NC	1	347.225	4
173		11	max	.002	1	0	15	.002	1	1.997e-3	4_	NC	1	NC	1
174			min	003	3	004	3	112	4	-4.152e-5	1_	NC	1	427.797	4
175		12	max	.002	1	0	15	.001	1	2.081e-3	4	NC	1	NC	1
176			min	002	3	003	3	088	4	-3.008e-5	1_	NC	1	543.477	4
177		13	max	.002	1	0	15	0	1	2.166e-3	4_	NC	1	NC	1
178			min	002	3	003	3	067	4	-1.865e-5	1_	NC	1	718.444	4
179		14	max	.002	1	0	15	0	1	2.25e-3	4	NC	1	NC	1
180			min	002	3	003	3	048	4	-7.208e-6	1_	NC	1	1002.177	4
181		15	max	.001	1	0	15	0	1	2.335e-3	4	NC	1	NC	1
182			min	001	3	002	3	032	4	-2.08e-7	3	NC	1	1509.648	4
183		16	max	0	1	0	15	0	1	2.419e-3	4	NC	1	NC	1
184			min	0	3	002	3	019	4	3.996e-7	12	NC	1	2562.389	4
185		17	max	0	1	0	15	0	1	2.503e-3	4	NC	1	NC	1
186			min	0	3	001	3	009	4	9.111e-7	12	NC	1	5375.331	4
187		18	max	0	1	0	15	0	1	2.588e-3	4	NC	1	NC	1
188			min	0	3	0	3	003	4	1.423e-6	12	NC	1	NC	1
189		19	max	0	1	0	1	0	1	2.672e-3	4	NC	1	NC	1
190			min	0	1	0	1	0	1	1.934e-6	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-6.097e-7	12	NC	1	NC	1
192			min	0	1	0	1	0	1	-5.962e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.013	4	3.987e-6	1	NC	1	NC	1
194			min	0	2	001	6	0	12	0	15	NC	1	NC	1
195		3	max	0	3	0	15	.025	4	6.01e-4	4	NC	1	NC	1
196			min	0	2	003	6	0	12	9.553e-7	12	NC	1	NC	1
197		4	max	0	3	001	15	.037	4	1.2e-3	4	NC	1	NC	1
198			min	0	2	005	6	0	12	1.738e-6	12	NC	1	NC	1
199		5	max	0	3	001	15	.049	4	1.798e-3	4	NC	1	NC	1
200			min	0	2	007	6	0	12	2.52e-6	12	NC	1	9657.556	4
201		6	max	.001	3	002	15	.059	4	2.397e-3	4	NC	1	NC	1
202			min	0	2	008	6	0	12	3.303e-6	12	NC	1	8738.26	5
203		7	max	.001	3	002	15	.07	4	2.995e-3	4	NC	1	NC	1
				_		_			-			_		_	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
204		0	min	001	2	01	6	0.70	12	4.085e-6		9464.738	6	8344.438	5
205		8	max	.002	3	002	15	.079	4	3.594e-3	4	NC 0404 404	1	NC 8331.433	1
206			min	<u>001</u>		011	6	0	12	4.868e-6	-	8424.121	6		5
207		9	max	.002	3	003	15	.089	4	4.193e-3	4	NC 7001 155	1	NC OCEO C14	E
208		10	min	001	3	012	15	000	12	5.65e-6 4.791e-3	12	7801.155	<u>6</u> 2	8658.614 NC	<u>5</u>
209		10	max	.002	2	003		<u>.098</u>	12	6.433e-6	4	NC 7484.601		9359.842	5
210		11	min	002	3	012	6			5.39e-3	12	NC	6	9359.642 NC	
211		11	max	.002	2	003	15	.106 0	12	7.215e-6	4	7426.784	6	NC NC	1
		10	min	002		012	6				12	NC	<u>0</u> 1		1
213		12	max	.003 002	2	003 012	15	<u>.115</u> 0	12	5.988e-3 7.998e-6	12	7625.123	6	NC NC	1
215		13	min	.002	3	012	15	.123	4	6.587e-3	4	NC	1	NC NC	1
		13	max		2			0	12		12	8123.36	6	NC NC	1
216		1.1	min	002		011	15			8.78e-6		NC	<u>0</u> 1		1
217 218		14	max	.003	2	002		.131	12	7.185e-3	4	9035.019		NC NC	1
219		15	min	002 .003	3	01 002	15	<u> </u>	4	9.563e-6 7.784e-3	<u>12</u>	NC	<u>6</u> 1	NC NC	1
220		10	max	003	2	002	1	0	12	1.035e-5	12	NC NC	1	NC NC	1
221		16	min	002 .004	3	009 001	15	.148	4	8.383e-3	-	NC NC	1	NC NC	1
222		10	max		2		1			1.113e-5	4		1		1
		17	min	003		008 0		<u>0</u>	12	8.981e-3	12	NC NC	1	NC NC	1
223		17	max min	.004 003	2	006	15	.1 <u>57</u> 0	12	1.191e-5	<u>4</u> 12	NC NC	1	NC NC	1
225		18	max	.004	3	0	15	.166	4	9.58e-3	4	NC	1	NC	1
226		10	min	003	2	005	1	0	12	1.269e-5	12	NC NC	1	NC NC	1
227		19		003 .004	3	005 0	5	.176	4	1.269e-3 1.018e-2	4	NC NC	1	NC NC	1
		19	max		2	_	1			1.016e-2 1.348e-5	12	NC NC	1	NC NC	1
228 229	M4	1	min	003 .003	1	003 .003	2	<u> </u>	12	-2.633e-7	12	NC NC	1	NC NC	2
230	IVI4		max	<u>.003</u>	3	004	3	176	4	-8.331e-4	4	NC NC	1	140.986	4
		2	min		1		2	176 0	12			NC NC	1	NC	2
231			max	.003	3	.002	3	162		-2.633e-7 -8.331e-4	12		1	153.492	4
		2	min	0	1	004			4		4	NC NC	1	NC	
233		3	max	<u>.003</u> 	3	.002 004	3	0 147	12	-2.633e-7 -8.331e-4	12 4	NC NC	1	168.364	4
235		4	min	.003	1	.002	2	147 0	12	-2.633e-7	12	NC NC	1	NC	2
236		4	max	<u>.003</u>	3	003	3	133	4	-8.331e-4		NC NC	1	186.219	4
237		5		.002	1	.002	2	<u>133</u> 0	12	-2.633e-7	12	NC NC	1	NC	2
238		J	max	<u>.002</u>	3	003	3	119	4	-8.331e-4	4	NC NC	1	207.896	4
239		6	max	.002	1	.002	2	<u>119</u> 0	12	-2.633e-7	12	NC NC	1	NC	2
240		-0	min	0	3	003	3	106	4	-8.331e-4	4	NC	1	234.555	4
241		7	max	.002	1	.002	2	<u>100</u> 0	12	-2.633e-7	12	NC	1	NC	2
242		+-	min	0	3	003	3	093	4	-8.331e-4	4	NC	1	267.847	4
243		8	max	.002	1	.002	2	<u>093</u> 0	12	-2.633e-7	12	NC	1	NC	2
244		0	min	0	3	003	3	08		-8.331e-4		NC	1	310.177	4
245		9	max	.002	1	.003	2	00	12	-2.633e-7		NC	1	NC	1
246		1	min	0	3	002	3	068	4	-8.331e-4		NC	1	365.167	4
247		10	max	.002	1	.002	2	<u>.000</u>	12	-2.633e-7		NC	1	NC	1
248		10	min	0	3	002	3	057	4	-8.331e-4		NC	1	438.48	4
249		11	max	.001	1	.002	2	0	12	-2.633e-7	12	NC	1	NC	1
250			min	0	3	002	3	046	4	-8.331e-4		NC	1	539.381	4
251		12	max	.001	1	0	2	0	12	-2.633e-7	12	NC	1	NC	1
252		12	min	0	3	002	3	036	4	-8.331e-4		NC	1	683.898	4
253		13	max	.001	1	0	2	<u>030</u> 0	12	-2.633e-7	12	NC	1	NC	1
254		13	min	0	3	001	3	028	4	-8.331e-4		NC	1	901.787	4
255		14		0	1	0	2	<u>028</u> 0	12	-2.633e-7	12	NC	1	NC	1
256		14	min	0	3	001	3	02	4	-8.331e-4		NC NC	1	1253.595	4
257		15	max	0	1	0	2	<u>02</u> 0	12	-2.633e-7		NC	1	NC	1
258		13	min	0	3	0	3	013	4	-8.331e-4		NC	1	1878.918	4
259		16	max	0	1	0	2	013 0	12	-2.633e-7	12	NC NC	1	NC	1
260		10	min	0	3	0	3	008	4	-8.331e-4		NC	1	3163.759	•
200			111111	U	J	U	J	000	4	0.0016-4	7	INC		3103.738	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec	T	x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
261		17	max	0	1	0	2	0	12	-2.633e-7	12	NC	1	NC occorre	1
262		10	min	0	3	0	3	004	4	-8.331e-4	4_	NC	1_	6539.852	4
263		18	max	0	1	0	2	0	12	-2.633e-7	12	NC	1_	NC NC	1
264			min	0	3	0	3	001	4	-8.331e-4	4_	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	-2.633e-7	12	NC	_1_	NC	1
266			min	0	1	0	1	0	1	-8.331e-4	4_	NC	1_	NC	1
267	M6	1	max	.017	1	.014	2	0	1	1.232e-3	_4_	NC	4_	NC	1
268			min	019	3	021	3	436	4	0	1_	2299.822	3	109.773	4
269		2	max	.016	1	.013	2	0	1	1.311e-3	4	NC	4	NC	1
270			min	018	3	02	3	4	4	0	1	2435.284	3	119.611	4
271		3	max	.015	1	.012	2	0	1	1.39e-3	4	NC	4	NC	1
272			min	017	3	018	3	364	4	0	1	2587.713	3	131.309	4
273		4	max	.014	1	.01	2	0	1	1.469e-3	4	NC	4	NC	1
274			min	016	3	017	3	329	4	0	1	2760.516	3	145.355	4
275		5	max	.014	1	.009	2	0	1	1.548e-3	4	NC	1	NC	1
276			min	015	3	016	3	295	4	0	1	2958.075	3	162.411	4
277		6	max	.013	1	.008	2	0	1	1.627e-3	4	NC	1	NC	1
278			min	014	3	015	3	261	4	0	1	3186.122	3	183.397	4
279		7	max	.012	1	.007	2	0	1	1.706e-3	4	NC	1	NC	1
280			min	012	3	014	3	228	4	0	1	3452.294	3	209.623	4
281		8	max	.011	1	.006	2	0	1	1.785e-3	4	NC	1	NC	1
282			min	011	3	013	3	197	4	0	1	3767.012	3	242.999	4
283		9	max	.01	1	.005	2	0	1	1.864e-3	4	NC	1	NC	1
284		 	min	01	3	012	3	167	4	0	1	4144.862	3	286.407	4
285		10	max	.009	1	.004	2	0	1	1.943e-3	4	NC	1	NC	1
286		10	min	009	3	01	3	139	4	0	1	4606.911	3	344.365	4
287		11	max	.008	1	.003	2	0	1	2.022e-3	4	NC	1	NC	1
288				008	3	009	3	113	4	0	1	5184.764	3	424.286	4
289		12	min	008 .007	1	.003	2	<u>113</u> 0	1	2.101e-3	4	NC	<u>၂</u>	NC	1
		12	max		3		3				1				
290		13	min	007	1	008		089	1	0	•	5928.083	3	539.035	1
291		13	max	.006	3	.002	2	0	4	2.18e-3	4	NC	1	NC 712 604	•
292		1.1	min	006		007	3	067			1_	6919.639 NC	3	712.604 NC	4
293		14	max	.005	1	.001	2	0	1	2.259e-3	4		1		1
294		4.5	min	005	3	006	3	048	4	0	1_	8308.422	3	994.093	4
295		15	max	.004	1	0	2	0	1	2.338e-3	4	NC NC	1	NC	1
296		40	min	004	3	005	3	032	4	0 447- 0	1_	NC NC	1_	1497.603	
297		16	max	.003	1	0	2	0	1	2.417e-3	4	NC	1	NC OF 10,000	1
298		4.7	min	003	3	003	3	<u>019</u>	4	0	1_	NC	1_	2542.299	
299		17	max	.002	1	0	2	0	1	2.496e-3	4_	NC	1_	NC 5004.55	1
300		10	min	002	3	002	3	009	4	0	1_	NC NC	1_	5334.55	4
301		18		0	1	0	2	0	1	2.575e-3	4_	NC	1	NC NC	1
302		1	min	001	3	001	3	003	4	0	1_	NC	1_	NC NC	1
303		19	max	0	1	0	1	0	1	2.654e-3	4_	NC	1_	NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	<u>M7</u>	1	max	0	1	0	1	0	1	0	_1_	NC	_1_	NC	1
306			min	0	1	0	1	0	1	-5.901e-4	4	NC	1_	NC	1
307		2	max	0	3	0	2	.013	4	0	_1_	NC	_1_	NC	1
308			min	0	2	002	3	0	1	-4.382e-6	5	NC	1_	NC	1
309		3	max	.001	3	0	15	.025	4	5.836e-4	4_	NC	1_	NC	1
310			min	001	2	004	3	0	1	0	_1_	NC	_1_	NC	1
311		4	max	.002	3	001	15	.037	4	1.171e-3	4_	NC	_1_	NC	1
312			min	002	2	006	3	0	1	0	_1_	NC	_1_	NC	1
313		5	max	.003	3	002	15	.048	4	1.757e-3	4	NC	_1_	NC	1_
314			min	003	2	008	3	0	1	0	1_	NC	1_	9231.684	4
315		6	max	.004	3	002	15	.059	4	2.344e-3	4	NC	1_	NC	1_
316			min	003	2	009	3	0	1	0	1_	9822.235	3	8322.485	
317		7	max	.004	3	002	15	.069	4	2.931e-3	4	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
318			min	004	2	011	3	0	1	0	1_	8718.336	3	7921.604	
319		8	max	.005	3	003	15	.079	4	3.518e-3	4	NC	1_	NC	1
320			min	005	2	011	3	0	1	0	<u>1</u>	8056.856	3	7877.943	
321		9	max	.006	3	003	15	.088	4	4.105e-3	4	NC	1_	NC NC	1
322		4.0	min	005	2	<u>012</u>	4	0	1	0	<u>1</u>	7702.415	3	8147.208	
323		10	max	.007	3	003	15	.096	4	4.692e-3	4	NC	1_	NC 0750,000	1
324		4.4	min	006	2	013	4	0	1	0	1_	7537.195	4	8752.626	
325		11	max	.007	3	003	15	.105	4	5.279e-3	4_	NC 7470 045	1_	NC 0700 F0F	1
326		40	min	007	2	013	4	0	1	0	1_1	7476.015	4	9786.585	
327 328		12	max	.008	3	003	15	<u>113</u>	1	5.865e-3 0	<u>4</u> 1	NC 7673.136	<u>1</u> 4	NC NC	1
329		13	min	008 .009	3	013 003	15	.121	4	6.452e-3	4	NC	1	NC NC	1
		13	max		2			0	1			8172.262	4	NC NC	1
330		14	min	008 .01	3	012 003	15	.129	4	7.039e-3	<u>1</u> 4	NC	_ 4	NC NC	1
331		14	max	009	2	003 012	1	1 <u>29</u>	1	0	<u>4</u> 1	9087.345	4	NC NC	1
333		15	min max	.01	3	012 002	15	.137	4	7.626e-3	4	NC	1	NC NC	1
334		15	min	01	2	002 011	1	0	1	0	1	NC	1	NC	1
335		16	max	.011	3	002	15	.145	4	8.213e-3	4	NC	1	NC	1
336		10	min	01	2	00 <u>2</u> 01	1	0	1	0.2136-3	1	NC	1	NC	1
337		17	max	.012	3	001	15	.154	4	8.8e-3	4	NC	1	NC	1
338		1 '	min	011	2	01	1	0	1	0.06-5	1	NC	1	NC	1
339		18	max	.013	3	0	15	.163	4	9.387e-3	4	NC	1	NC	1
340		10	min	012	2	009	1	0	1	0	1	NC	1	NC	1
341		19	max	.013	3	0	15	.172	4	9.974e-3	4	NC	1	NC	1
342		'	min	012	2	008	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	1	.01	2	0	1	0	1	NC	<u> </u>	NC	1
344			min	003	3	013	3	172	4	-8.556e-4	4	NC	1	144.068	4
345		2	max	.009	1	.01	2	0	1	0	1	NC	1	NC	1
346			min	003	3	012	3	158	4	-8.556e-4	4	NC	1	156.849	4
347		3	max	.008	1	.009	2	0	1	0	1	NC	1	NC	1
348			min	003	3	012	3	144	4	-8.556e-4	4	NC	1	172.049	4
349		4	max	.008	1	.009	2	0	1	0	1	NC	1	NC	1
350			min	003	3	011	3	13	4	-8.556e-4	4	NC	1	190.297	4
351		5	max	.007	1	.008	2	0	1	0	1	NC	1_	NC	1
352			min	002	3	01	3	117	4	-8.556e-4	4	NC	1	212.451	4
353		6	max	.007	1	.008	2	0	1	0	1_	NC	1_	NC	1
354			min	002	3	009	3	103	4	-8.556e-4	4	NC	1_	239.697	4
355		7	max	.006	1	.007	2	0	1	0	1	NC	1_	NC	1
356			min	002	3	009	3	091	4	-8.556e-4	4	NC	1_	273.721	4
357		8	max	.006	1	.006	2	00	1_	0	1	NC	_1_	NC	1
358			min		3	008	3	078		-8.556e-4		NC	1	316.983	
359		9	max	.005	1	.006	2	0	1	0	1	NC	_1_	NC	1
360		10	min	002	3	007	3	<u>066</u>	4	-8.556e-4	4_	NC	_1_	373.183	4
361		10	max	.005	1	.005	2	0	1	0	1_	NC		NC	1
362		44	min	002	3	006	3	0 <u>55</u>	4	-8.556e-4	4	NC NC	1_	448.109	4
363		11	max	.004	1	.005	2	0	1	0	1	NC	1_	NC 554 004	1
364		10	min	001	3	006	3	<u>045</u>	4	-8.556e-4	4	NC	1_	551.231	4
365		12	max	.004	1	.004	2	0	1	0	1	NC	1_	NC 000,000	1
366		40	min	001	3	005	3	035	4	-8.556e-4	4	NC NC	1_1	698.929	4
367		13	max	.003	1	.003	3	0 027	1	0	1_1	NC NC	1	NC	1
368		1.4	min	001	3	004			4	-8.556e-4	4		_	921.614	4
369		14	max	.003	3	.003	3	0	1	0	1_1	NC NC	1	NC	1
370		15	min	002	1	004	2	019	1	-8.556e-4	<u>4</u> 1	NC NC	<u>1</u> 1	1281.166	4
371 372		15	max	.002	3	.002 003	3	013	4	_	4	NC NC	1	NC 1020 256	1
373		16	min max	.002	1	.002	2	013 0	1	-8.556e-4 0	<u>4</u> 1	NC NC	1	1920.256 NC	1
374		10	min	0	3	002	3	008	4	-8.556e-4	4	NC NC	1	3233.392	
3/4			THILL	U	J	002	J	000	4	0.0006-4	7	INC		0200.032	_+

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	lember	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
375		<u> 17</u>	max	.001	1	.001	2	0	1	0	1_	NC	1	NC	1
376			min	0	3	001	3	004	4	-8.556e-4	4_	NC	1_	6683.856	4
377		18	max	0	1	0	2	0	1	0	1_	NC	1	NC	1
378			min	0	3	0	3	001	4	-8.556e-4	4_	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	_1_	NC	1	NC	1
380	1440		min	0	1	0	1	0	1	-8.556e-4	4_	NC	1	NC	1
	M10	_1_	max	.005	1	.003	2	0	12	1.231e-3	4_	NC	1	NC	2
382			min	006	3	007	3	435	4	7.273e-6	12	NC	1	109.916	4
383		2	max	.005	1	.003	2	0	12	1.31e-3	4_	NC	1	NC	2
384			min	00 <u>5</u>	3	006	3	4	4	6.761e-6	12	NC NC	1_	119.767	4
385		3	max	.005	1	.002	2	0	12	1.389e-3	4_	NC	1	NC	2
386			min	005	3	006	3	<u>364</u>	4	6.25e-6	12	NC	1_	131.48	4
387		_4_	max	.005	1	.002	2	0	12	1.467e-3	4	NC NC	1	NC .	1
388			min	005	3	006	3	329	4	5.738e-6	12	NC	1	145.544	4
389		5_	max	.004	1	.002	2	0	12	1.546e-3	4_	NC NC	1	NC 400,000	1
390			min	004	3	006	3	294	4	5.227e-6	12	NC NC	1	162.622	4
391		6	max	.004	1	.001	2	0	12	1.625e-3	4	NC NC	1	NC 400 COZ	1
392		7	min	004	3	005	3	261	4	4.715e-6	12	NC NC	1	183.637	4
393		7	max	.004	1	0	2	0	12	1.703e-3	4	NC NC	1	NC 000,000	1
394			min	004	3	005	3	228	4	4.204e-6	12	NC NC	1	209.896	4
395		8	max	.003	1	0	2	0	12	1.782e-3	4	NC NC	1	NC 040 040	1
396			min	004	3	005	3	1 <u>97</u>	4	3.692e-6	12	NC NC	1	243.316	4
397		9	max	.003	3	0	2	0	12	1.861e-3	4	NC NC	1	NC 200 704	1
398		40	min	003		005	3	167	4	3.181e-6	<u>12</u>	NC NC		286.781	4
399		10	max	.003	3	0 004	2	0 139	12	1.939e-3	4	NC NC	1	NC 344.815	4
400		11	min	003	1	004 0	3	<u>139</u> 0	4	2.669e-6 2.018e-3	<u>12</u>	NC NC	•	NC	1
401		11	max	.002 003	3	004	2	113	12	2.016e-3 2.158e-6	4	NC NC	1		
		12	min	003 .002	1	004 0	2		12		12	NC NC	1	424.84 NC	4
403		12	max		3		3	0		2.096e-3	4		1		1
404		13	min	002 .002	1	003 0	15	089 0	12	1.646e-6 2.175e-3	<u>12</u> 4	NC NC	1	539.74 NC	1
406		13	max min	002	3	003	3	067	4	1.135e-6	12	NC	1	713.539	4
407		14	max	.002	1	<u>003</u> 0	15	<u>067</u> 0	12	2.254e-3	4	NC	1	NC	1
407		14	min	002	3	003	3	048	4	4.569e-7	10	NC	1	995.401	4
409		15	max	.001	1	<u>003</u> 0	15	046 0	12	2.332e-3	4	NC NC	1	NC	1
410		10	min	001	3	002	3	032	4	-4.23e-6	1	NC	1	1499.583	4
411		16	max	0	1	<u>002</u> 0	15	<u>032</u> 0	12	2.411e-3	4	NC	1	NC	1
412		10	min	0	3	002	4	019	4	-1.567e-5	1	NC	1	2545.688	4
413		17	max	0	1	0	15	0	12	2.49e-3	4	NC	1	NC	1
414			min	0	3	001	4	009	4	-2.711e-5	1	NC	1	5341.774	4
415		18	max	0	1	0	15	0		2.568e-3	4	NC	1	NC	1
416		-10	min	0	3	0	4	003	4	-3.854e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	2.647e-3	4	NC	1	NC	1
418		-10	min	0	1	0	1	0	1	-4.998e-5	1	NC	1	NC	1
	M11	1	max	0	1	0	1	0	1	1.552e-5	1	NC	1	NC	1
420	14111		min	0	1	0	1	0	1	-5.884e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.013	4	3.901e-7	4	NC	1	NC	1
422			min	0	2	002	4	0	1	-3.987e-6		NC	1	NC	1
423		3	max	0	3	0	15	.025	4	5.892e-4	4	NC	1	NC	1
424			min	0	2	003	4	0	1	-2.349e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	.037	4	1.178e-3	4	NC	1	NC	1
426			min	0	2	005	4	0	1	-4.3e-5	1	NC	1	NC	1
427		5	max	0	3	002	15	.048	4	1.767e-3	4	NC	1	NC	1
428			min	0	2	007	4	001	1	-6.251e-5	1	NC	1	9519.987	4
429		6	max	.001	3	002	15	.059	4	2.355e-3	4	NC	1	NC	1
430			min	0	2	009	4	001	1	-8.201e-5	1	NC	1	8606.827	4
431		7	max	.001	3	003	15	.069	4	2.944e-3	4	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
432			min	001	2	01	4	002	1	-1.015e-4	1_	9107.966	4	8219.589	4
433		8	max	.002	3	003	15	.078	4	3.533e-3	4_	NC	_1_	NC	1
434			min	001	2	012	4	002	1	-1.21e-4	1	8131.054	4	8206.774	4
435		9	max	.002	3	003	15	.088	4	4.122e-3	4	NC	1_	NC	1_
436			min	001	2	013	4	002	1	-1.405e-4	1	7548.418	4	8528.215	4
437		10	max	.002	3	003	15	.096	4	4.71e-3	4	NC	2	NC	1
438			min	002	2	013	4	003	1	-1.6e-4	1	7256.996	4	9216.805	4
439		11	max	.002	3	003	15	.105	4	5.299e-3	4	NC	2	NC	1
440			min	002	2	013	4	003	1	-1.795e-4	1	7213.281	4	NC	1
441		12	max	.003	3	003	15	.113	4	5.888e-3	4	NC	1	NC	1
442			min	002	2	013	4	003	1	-1.99e-4	1	7416.537	4	NC	1
443		13	max	.003	3	003	15	.121	4	6.477e-3	4	NC	1	NC	1
444			min	002	2	012	4	004	1	-2.186e-4	1	7910.597	4	NC	1
445		14	max	.003	3	003	15	.129	4	7.066e-3	4	NC	1	NC	1
446			min	002	2	011	4	004	1	-2.381e-4	1	8807.085	4	NC	1
447		15	max	.003	3	002	15	.137	4	7.654e-3	4	NC	1	NC	1
448			min	002	2	01	4	004	1	-2.576e-4	1	NC	1	NC	1
449		16	max	.004	3	002	15	.146	4	8.243e-3	4	NC	1	NC	1
450			min	003	2	008	4	005	1	-2.771e-4	1	NC	1	NC	1
451		17	max	.004	3	001	15	.154	4	8.832e-3	4	NC	1	NC	1
452			min	003	2	006	1	005	1	-2.966e-4	1	NC	1	NC	1
453		18	max	.004	3	0	15	.163	4	9.421e-3	4	NC	1	NC	1
454			min	003	2	005	1	005	1	-3.161e-4	1	NC	1	NC	1
455		19	max	.004	3	0	12	.173	4	1.001e-2	4	NC	1	NC	1
456			min	003	2	003	1	006	1	-3.356e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.006	1	1.067e-5	1	NC	1	NC	2
458			min	0	3	004	3	173	4	-8.276e-4	4	NC	1	143.388	4
459		2	max	.003	1	.002	2	.005	1	1.067e-5	1	NC	1	NC	2
460			min	0	3	004	3	159	4	-8.276e-4	4	NC	1	156.105	4
461		3	max	.003	1	.002	2	.005	1	1.067e-5	1	NC	1	NC	2
462			min	0	3	004	3	145	4	-8.276e-4	4	NC	1	171.229	4
463		4	max	.003	1	.002	2	.004	1	1.067e-5	1	NC	1	NC	2
464			min	0	3	003	3	131	4	-8.276e-4	4	NC	1	189.387	4
465		5	max	.002	1	.002	2	.004	1	1.067e-5	1	NC	1	NC	2
466			min	0	3	003	3	117	4	-8.276e-4	4	NC	1	211.431	4
467		6	max	.002	1	.002	2	.004	1	1.067e-5	1	NC	1	NC	2
468			min	0	3	003	3	104	4	-8.276e-4	4	NC	1	238.542	4
469		7	max	.002	1	.002	2	.003	1	1.067e-5	1	NC	1	NC	2
470			min	0	3	003	3	091	4	-8.276e-4	4	NC	1	272.398	4
471		8	max	.002	1	.002	2	.003	1	1.067e-5	1	NC	1	NC	2
472			min	0	3	003	3	079	4	-8.276e-4	4	NC	1	315.445	4
473		9	max	.002	1	.001	2	.002	1	1.067e-5	1	NC	1	NC	1
474			min	0	3	002	3	067	4	-8.276e-4	4	NC	1	371.367	4
475		10	max	.002	1	.002	2	.002	1	1.067e-5	1	NC	1	NC	1
476		1.0	min	0	3	002	3	056	4	-8.276e-4	4	NC	1	445.922	4
477		11	max	.001	1	.002	2	.002	1	1.067e-5	1	NC	1	NC	1
478		+ ' '	min	0	3	002	3	045	4	-8.276e-4	4	NC	1	548.532	4
479		12	max	.001	1	0	2	.001	1	1.067e-5	1	NC	1	NC	1
480		12	min	0	3	002	3	036	4	-8.276e-4	4	NC	1	695.497	4
481		13	max	.001	1	<u>002</u> 0	2	036 0	1	1.067e-5	1	NC NC	1	NC	1
482		13	min	0	3	001	3	027	4	-8.276e-4	4	NC NC	1	917.076	4
483		11				<u>001</u> 0	2	<u>027</u> 0	1			NC NC		NC	
		14	max	0	3			019		1.067e-5	1_1		1		1
484		4.5	min	0		001	3		4	-8.276e-4	4_	NC NC	1_1	1274.84	4
485		15	max	0	1	0	2	0	1	1.067e-5	1_	NC NC	1_1	NC	1
486		40	min	0	3	0	3	013	4	-8.276e-4	4	NC NC	1_	1910.749	
487		16	max	0	1	0	2	0	1	1.067e-5	1	NC NC	1_	NC 2047 207	1
488			min	0	3	0	3	008	4	-8.276e-4	4	NC	<u>1</u>	3217.337	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	1.067e-5	1	NC	1	NC	1
490			min	0	3	0	3	004	4	-8.276e-4	4	NC	1	6650.557	4
491		18	max	0	1	0	2	0	1	1.067e-5	1	NC	1	NC	1
492			min	0	3	0	3	001	4	-8.276e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.067e-5	1_	NC	1_	NC	1
494			min	0	1	0	1	0	1	-8.276e-4	4	NC	1_	NC	1
495	<u>M1</u>	1	max	.005	3	.122	1	.456	4	1.697e-2	_1_	NC	_1_	NC	1
496			min	002	2	025	3	0	12	-2.446e-2	3	NC	1_	NC	1
497		2	max	.005	3	06	1	.444	4	8.275e-3	1_	NC	5	NC	1
498			min	002	2	012	3	004	1	-1.209e-2	3	1852.007	<u>1</u>	NC	1
499		3	max	.005	3	.008	3	.432	4	1.325e-2	4	NC	5	NC	1
500			min	002	2	007	2	006	1	-1.177e-4	3	887.146	1_	9060.993	
501		4	max	.005	3	.041	3	.42	4	1.169e-2	4_	NC	5	NC 0450 477	1
502		_	min	002	2	084	1	006	1	-4.585e-3	3	555.231	1_	6152.177	5
503		5	max	.005	3	.084	3	.409	4	1.017e-2	1	NC 207 004	<u>15</u>	NC	1
504			min	002	2	166	1	004	1	-9.052e-3	3	397.831	1_	4688.501	5
505		6	max	.005	3	.13 245	3	.397	4	1.531e-2 -1.352e-2	<u>1</u> 3	NC	<u>15</u>	NC 3830.498	5
506 507		7	min	002	3		3	002	4			311.592	•	NC	
			max	.005	2	.174	1	.385	12	2.045e-2	1	9843.686	<u>15</u> 1	3278.978	1
508 509		8	min	002 .005	3	<u>317</u> .211	3	.372	4	-1.799e-2 2.559e-2	<u>3</u>	260.916 8748.632	15	NC	1
510		0	max	002	2	373	1	.312	12	-2.245e-2	3	231.04	1	2908.35	4
511		9	max	.005	3	.235	3	.357	4	2.826e-2	<u> </u>	8177.523	15	NC	1
512		9	min	002	2	409	1	0	1	-2.265e-2	3	215.523	1	2698.609	4
513		10	max	.002	3	.244	3	.34	4	2.928e-2	1	8003.558	15	NC	1
514		10	min	002	2	421	1	0	12	-2.001e-2	3	210.887	1	2641.128	4
515		11	max	.004	3	.238	3	.321	4	3.031e-2	1	8177.354	15	NC	1
516			min	002	2	409	1	0	12	-1.736e-2	3	215.84	1	2709.573	4
517		12	max	.004	3	.218	3	.301	4	2.868e-2	1	8748.243	15	NC	1
518			min	002	2	373	1	0	1	-1.461e-2	3	232.018	1	2921.258	
519		13	max	.004	3	.185	3	.277	4	2.303e-2	1	9842.94	15	NC	1
520			min	002	2	315	1	0	1	-1.17e-2	3	263.32	1	3443.677	4
521		14	max	.004	3	.144	3	.252	4	1.739e-2	1	NC	15	NC	1
522			min	002	2	242	1	0	12	-8.786e-3	3	316.75	1	4504.287	4
523		15	max	.004	3	.097	3	.226	4	1.175e-2	1	NC	15	NC	1
524			min	002	2	161	1	0	12	-5.873e-3	3	408.464	1	6760.624	4
525		16	max	.004	3	.049	3	.2	4	8.838e-3	4	NC	5	NC	1
526			min	002	2	08	1	0	12	-2.959e-3	3	577.652	1	NC	1
527		17	max	.004	3	.003	3	.176	4	9.754e-3	4	NC	5	NC	1
528			min	002	2	005	2	0	12	-4.592e-5	3	937.921	1	NC	1
529		18	max	.004	3	.059	1	.156	4	1.052e-2	2	NC	5	NC	1
530			min	002	2	038	3	0	12	-4.334e-3	3	1981.078	1_	NC	1
531		19	max	.004	3	.116	1	.138	4	2.116e-2	2	NC	1_	NC	1
532			min	002	2	076	3	0	1	-8.789e-3	3	NC	1_	NC	1
533	<u>M5</u>	1_	max	.016	3	.285	1	.456	4	0	_1_	NC	_1_	NC	1
534			min	01	2	038	3	0	1	-2.311e-6	4	NC	1_	NC	1
535		2	max	.016	3	.141	1	.447	4	6.783e-3	_4_	NC	5	NC	1
536			min	01	2	019	3	0	1	0	_1_	797.113	1	NC	1
537		3	max	.016	3	.024	3	.436	4	1.336e-2	4	NC	_5_	NC	1
538			min	01	2	023	1	0	1	0	<u>1</u>	372.678	_1_	7596.106	
539		4	max	.016	3	.113	3	.424	4	1.088e-2	4_	9627.536	<u>15</u>	NC 5 400 007	1
540			min	01	2	222	1	0	1	0	1_	226.187	1_	5499.987	4
541		5	max	.015	3	.233	3	.411	4	8.409e-3	4	6735.736	15	NC 4400.054	1
542			min	01	2	44	1	0	1	0	1_	158.134	1_	4422.854	
543		6	max	.015	3	.367	3	.398	4	5.935e-3	4	5185.056	<u>15</u>	NC 0750 CO4	1
544		-	min	01	2	<u>657</u>	1	0	1	0	1_	121.63	1_	3758.684	
545		7	max	.015	3	.497	3	.385	4	3.46e-3	4_	4289.699	15	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio I	LC		
546			min	009	2	854	1	0	1	0	1_	100.010	1	3296.495	4
547		8	max	.015	3	.605	3	.371	4	9.861e-4	4		<u> 15</u>	NC	1
548			min	009	2	-1.013	1	0	1	0	1		1_	2942.825	4
549		9	max	.014	3	.676	3	.357	4	0	1_		15	NC	1_
550			min	009	2	-1.113	1	0	1	-1.331e-6	5	02.000	1	2699.068	4
551		10	max	.014	3	.701	3	.34	4	0	1	3421.824	<u> 15</u>	NC	1
552			min	009	2	-1.146	1	0	1	-1.259e-6	5	80.136	1	2660.335	4
553		11	max	.014	3	.683	3	.321	4	0	1		15	NC	1
554			min	009	2	-1.113	1	0	1	-1.187e-6	5	82.131	1	2736.622	4
555		12	max	.013	3	.624	3	.301	4	7.025e-4	4	3769.313	15	NC	1
556			min	009	2	-1.011	1	0	1	0	1	88.708	1	2882.16	4
557		13	max	.013	3	.528	3	.278	4	2.465e-3	4	4290.002	15	NC	1
558			min	008	2	848	1	0	1	0	1_	101.642	1	3389.94	4
559		14	max	.013	3	.407	3	.251	4	4.228e-3	4	5185.65	15	NC	1
560			min	008	2	646	1	0	1	0	1	124.098	1	4618.774	4
561		15	max	.012	3	.273	3	.224	4	5.991e-3	4	6736.912	15	NC	1
562			min	008	2	426	1	0	1	0	1	163.492	1	7789.254	5
563		16	max	.012	3	.136	3	.197	4	7.754e-3	4	9629.999	15	NC	1
564			min	008	2	208	1	0	1	0	1		1	NC	1
565		17	max	.012	3	.009	3	.173	4	9.517e-3	4		5	NC	1
566			min	008	2	015	2	0	1	0	1		1	NC	1
567		18	max	.012	3	.138	1	.153	4	4.833e-3	4		5	NC	1
568			min	008	2	099	3	0	1	0	1	875.66	1	NC	1
569		19	max	.012	3	.267	1	.138	4	0	1		1	NC	1
570			min	008	2	196	3	0	1	-9.506e-7	4		1	NC	1
571	M9	1	max	.005	3	.122	1	.456	4	2.446e-2	3		1	NC	1
572			min	002	2	025	3	0	1	-1.697e-2	1		1	NC	1
573		2	max	.005	3	.06	1	.446	4	1.209e-2	3		5	NC	1
574			min	002	2	012	3	0	12	-8.275e-3	1		1	NC	1
575		3	max	.005	3	.008	3	.435	4	1.332e-2	4		5	NC	1
576			min	002	2	007	2	0	12	-3.203e-5	10		1	7760.005	4
577		4	max	.005	3	.041	3	.423	4	1.046e-2	5		5	NC	1
578			min	002	2	084	1	0	12	-5.035e-3	1		1	5561.401	4
579		5	max	.005	3	.084	3	.411	4	9.052e-3	3		15	NC	1
580			min	002	2	166	1	0	12	-1.017e-2	1		1	4433.132	4
581		6	max	.005	3	.13	3	.398	4	1.352e-2	3		15	NC	1
582			min	002	2	245	1	0	12	-1.531e-2	1		1	3744.433	4
583		7	max	.005	3	.174	3	.385	4	1.799e-2	3		15	NC	1
584			min	002	2	317	1	0	1	-2.045e-2	1		1	3275.488	4
585		8	max	.005	3	.211	3	.371	4	2.245e-2	3		15	NC	1
586			min		2	373	1	0	1	-2.559e-2				2926.505	5
587		9	max	.005	3	.235	3	.357	4	2.265e-2	3		15	NC	1
588			min	002	2	409	1	0	12	-2.826e-2	1			2692.712	
589		10	max	.004	3	.244	3	.34	4	2.001e-2	3		15	NC	1
590		10	min	002	2	421	1	0	1	-2.928e-2	1		1	2641.962	4
591		11	max	.004	3	.238	3	.321	4	1.736e-2	3		<u>-</u> 15	NC	1
592		+ ' '	min	002	2	409	1	0	1	-3.031e-2	1		1	2716.84	4
593		12	max	.002	3	.218	3	.301	4	1.461e-2	3		15	NC	1
594		12	min	002	2	373	1	0	12	-2.868e-2	1		1	2903.076	4
595		13	max	.002	3	.185	3	.277	4	1.17e-2	3		1 <u>5</u>	NC	1
596		13	min	002	2	315	1	0	12	-2.303e-2	1		1	3443.77	4
597		14	max	.004	3	.144	3	.251	4	8.786e-3	3		<u> </u> 15	NC	1
598		14	min	002	2	242	1	001	1	-1.739e-2	1		1	4603.567	5
599		15		.002	3	.097	3	.224	4	5.873e-3	3		<u>-</u> 15	NC	1
600		10	max	002	2	161	1	004	1	-1.175e-2	<u>3</u>		10 1	7268.025	
601		16	min	002 .004	3	161 .049	3	004 .197	4		<u> </u>		5	NC	1
		10	max							7.545e-3	-				
602			min	002	2	08	1	005	1	-6.103e-3	<u>1</u>	577.652	1	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.004	3	.003	3	.173	4	9.547e-3	4	NC	5	NC	1
604			min	002	2	005	2	006	1	-4.599e-4	1	937.921	1	NC	1
605		18	max	.004	3	.059	1	.154	4	4.514e-3	5	NC	5	NC	1
606			min	002	2	038	3	004	1	-1.052e-2	2	1981.078	1	NC	1
607		19	max	.004	3	.116	1	.138	4	8.789e-3	3	NC	1	NC	1
608			min	002	2	076	3	0	12	-2.116e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)		
4855	1.0	0.65	3156		

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{e}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status	
Steel	2559	6071	0.42	Pass	
Concrete breakout	5118	10231	0.50	Pass	
Adhesive 5118		8093	0.63	Pass (Governs)	
Shear Factored Load, V _{ua} (lb)		Design Strength, øVn (lb)	Ratio	Status	
Steel	1784	3156	0.57	Pass (Governs)	
T Concrete breakout x+	3567	8641	0.41	Pass	
Concrete breakout y-	1784	22862	0.08	Pass	
Pryout	3567	20601	0.17	Pass	
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status	

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.