آموزش یادگیری عمیق Deep Learning

« شبکههای عصبی کانولوشنی »

سعید محققی / دانشگاه شاهد / ۹۹ – ۱۳۹۸

شبکههای عصبی کانولوشنی

- ۱ لایه کانولوشن (Conv)
- ۲- لایه کاهش اندازه (Pooling)
 - ۳- معماریهای مختلف CNN

LeNet

■ اولین نمونه موفق

[LeNet-5, Yann LeCun]

AlexNet

■ دومین نمونه موفق

روند پیشرفت مدلهای کانولوشنی

- در سال ۲۰۱۵، خطای مدلهای کانولوشنی عمیق، در تشخیص اشیا، کمتر از خطای انسان شد.
 - مدلهای کانولوشنی موسوم به ResNet (با ۱۵۲ لایه)

شبکه CNN

ویژگیها:

- استفاده از لایههای کانولوشن(conv) و کاهش اندازه (pooling)
 - استفاده از وزنهای پنجرهای (فیلترها)
 - استفاده از چند فیلتر در هر لایه (ایجاد چند خروجی متفاوت)
 - مناسب برای پردازش دادههای تصویری

لايه كانولوشن

32x32x3 image

5x5x3 filter

کانوالوشن ورودی و فیلتر

لغزاندن پنجره بر روی تصویر و محاسبه ضرب نقطه ای

لایه کانولوشن

لایه کانولوشن

لایه کانولوشن

activation maps

لايه كانولوشن

لايه كانولوشن

لایه کاهش اندازه

- هدف: کاهش اندازه دادهها و کاهش حجم محاسبات
 - روشهای کاهش اندازه:
- استفاده از گام (stride) برای پنجره کانولوشن
- استفاده از لایه Pooling استفاده از لایه

استفاده از گام 7

7x7

7x7

7x7

7x7

7x7

7x7

■ ورودى 7x7 و فيلتر 3x3

→ 5x5 خروجي

■ ورودی 7x7 و فیلتر 3x3

7x7

- ورودى 7x7 و فيلتر 3x3
 - استفاده از گام 2

■ ورودى 7x7 و فيلتر 3x3

→ 3x3 خروجی 2

Pooling لايه

■ عملیات Max Pooling

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

عملیات max pooling
با پنجره 2x2 و گام ۲

6	8
3	4

У

تابع غيرخطي

(<u>Re</u>ctified <u>L</u>inear <u>U</u>nit) ReLu تابع

$$f(x) = \left\{ egin{array}{ll} 0 & ext{for} & x < 0 \ x & ext{for} & x \geq 0 \end{array}
ight.$$

• اعمال تابع ReLu بر روى خروجي هر لايه كانولوشن

مثال شبکه CNN

معماریهای مختلف CNN

- VGGNet ■
- GoogLeNet
 - ResNet
 - U-Net ■
 - DenseNet
 - ...

مدل VGGNet

مدل GoogLeNet

■ شبکه GoogLeNet

مدل GoogLeNet

■ ماژول Inception

مدل ResNet

- قسمتی از شبکه ResNet (بیش از ۱۰۰ لایه)
 - ترکیب بلوکهای Residual

بلوک Residual

مدل ResNet

■ یک نمونه بلوک Residual

مدل DenseNet

مرور شبکه CNN

- ویژگیها
- استفاده از لایههای کانولوشن(conv) و کاهش اندازه (downsample)
 - استفاده از وزنهای پنجرهای (فیلترها)
 - استفاده از چند فیلتر در هر لایه (ایجاد چند خروجی متفاوت)
 - مناسب برای پردازش دادههای تصویری

