Ritka szóreprezentációk

Szemantika

Mi egy szó jelentése?

- Mi egy szó jelentése?
- Hogy lehet számítógépesen ábrázolni?

- Mi egy szó jelentése?
- Hogy lehet számítógépesen ábrázolni?
- Disztribúciós elmélet
 - Hasonló jelentésű szavak kontextusa is hasonló
 - A kutya megkergette a macskát.
 - A ragadozó elejtette a prédát.
 - A gepárd beérte az antilopot.

- Mi egy szó jelentése?
- Hogy lehet számítógépesen ábrázolni?
- Disztribúciós elmélet
 - Hasonló jelentésű szavak kontextusa is hasonló
 - A kutya megkergette a macskát.
 - A ragadozó elejtette a prédát.
 - A gepárd beérte az antilopot.
 - > fél évszázados elmélet

- Mi egy szó jelentése?
- Hogy lehet számítógépesen ábrázolni?
- Disztribúciós elmélet
 - Hasonló jelentésű szavak kontextusa is hasonló
 - A kutya megkergette a macskát.
 - A ragadozó elejtette a prédát.
 - A gepárd beérte az antilopot.
 - > fél évszázados elmélet (< fél évtizednyi hype)

Versengő paradigmák

- 2013: word2vec megjelenése
 - Korábbi években is voltak már NN-alapú modellek

Versengő paradigmák

- 2013: word2vec megjelenése
 - Korábbi években is voltak már NN-alapú modellek

Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors

Marco Baroni and Georgiana Dinu and Germán Kruszewski

Versengő paradigmák

- 2013: word2vec megjelenése
 - Korábbi években is voltak már NN-alapú modellek

Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors

Marco Baroni and Georgiana Dinu and Germán Kruszewski
Rehabilitation of Count-based Models for Word Vector
Representations

Szóbeágyazások (implicit) célja

 Szavakhoz rendeljünk vektorokat, úgy, hogy azok tükrözzék a szópárok együttelőfordulási szokásait

Szóbeágyazások (implicit) célja

- Szavakhoz rendeljünk vektorokat, úgy, hogy azok tükrözzék a szópárok együttelőfordulási szokásait
 - Ha i és j szavak gyakran fordulnak elő, akkor a szavakhoz társított vektorok pontszorzata legyen nagy
 - Ellenkező esetben pedig kicsi

Szóbeágyazások (implicit) célja

- Szavakhoz rendeljünk vektorokat, úgy, hogy azok tükrözzék a szópárok együttelőfordulási szokásait
 - Ha i és j szavak gyakran fordulnak elő, akkor a szavakhoz társított vektorok pontszorzata legyen nagy
 - Ellenkező esetben pedig kicsi
 - Pl. kutya=[3 2], macska=[2 4], gőzmozdony=[-2 -1]

$$kutya^{T} \overrightarrow{macska} \gg kutya^{T} \overrightarrow{gozmozdony}$$

word2vec variánsok

CBOW

Skip-gram

word2vec variánsok

hogy az X záródnak !

CBOW

Skip-gram

word2vec variánsok

hogy az X záródnak !

U V ajtók Y Z

CBOW

Skip-gram

word2vec célja

 Hasonló jelentésű input szavak kontextusukhoz illeszkedő outputot eredményezzenek

$$y(x) = softmax(V(W1_x))$$

a és b szó jelentése minél hasonlóbb, y(a) és y(b)
 (eloszlás)vektorok annál inkább hasonlítani fognak

Szóanalógiák

• a:b::c:?

RepEval 2016

Analysis Track

- Problems With Evaluation of Word Embeddings Using Word Similarity Tasks [pdf]
 Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, Chris Dyer
- Intrinsic Evaluations of Word Embeddings: What Can We Do Better? [pdf]
 Anna Gladkova, Aleksandr Drozd
- Issues in Evaluating Semantic Spaces Using Word Analogies [pdf]
 Tal Linzen
- Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance [pdf]

 Billy Chiu, Anna Korhonen, Sampo Pyysalo
- A Critique of Word Similarity as a Method for Evaluating Distributional Semantic Models [pdf]
 Miroslav Batchkarov, Thomas Kober, Jeremy Reffin, Julie Weeds, David Weir

RepEval 2016

Analysis Track

- Problems With Evaluation of Word Embeddings Using Word Similarity Tasks [pdf]
 Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, Chris Dyer
- Intrinsic Evaluations of Word Embeddings: What Can We Do Better? [pdf]

 Anna Gladkova, Aleksandr Drozd
- Issues in Evaluating Semantic Spaces Using Word Analogies [pdf]
 Tal Linzen
- Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance [pdf] Billy Chiu, Anna Korhonen, Sampo Pyysalo
- A Critique of Word Similarity as a Method for Evaluating Distributional Semantic Models [pdf]
 Miroslav Batchkarov, Thomas Kober, Jeremy Reffin, Julie Weeds, David Weir

- Espresso? But I ordered a cappuccino!
- Don't worry, the cosine distance between them is so small that they are almost the same thing.

Szóanalógiák újratöltve

• a:b:?:?

Szóanalógiák újratöltve

• a:b:?:?

Szóanalógiák újratöltve

• a:b:?:?

Folytonos szóreprezentációk

```
alma [1000 ... 00000 ... 0] ——[3.2 -1.5]
[0\ 0\ 0\ 0\ \dots\ 0\ 1\ 0\ 0\ \dots\ 0] \longrightarrow [-1.1\ 12.6]
lapát
zebra [0\ 0\ 0\ 0\ ...\ 0\ 0\ 0\ 0\ ...\ 1] \longrightarrow [0.8\ 0.5]
```

Folytonos szóreprezentációk korlátai

- A megtanult reprezentációk pont olyan jók, mint amilyen a rendelkezésre álló korpusz
 - man: programmer:: women: X
 - Alacsony fedés (agglutináció)
 - Karakterszintű (morfológia alapú) modellek
 - Poliszémia
 - Többnyelvűség
 - In vivo vs. in vitro
 - Korlátozott interpretálhatóság

Ritka & folytonos szóreprezentációk

alma
$$[3.2 -1.5] \longrightarrow [0 \ 1.7 \ 0 \ 0 \ -0.2 \ 0]$$
...
banán $[2.8 -1.6] \longrightarrow [0 \ 1.1 \ 0 \ 0 \ -0.4 \ 0]$
...
lapát $[-1.1 \ 12.6] \longrightarrow [1.7 \ 0 \ -2.1 \ 0 \ 0 \ -0.8]$
...
zebra $[0.8 \ 0.5] \longrightarrow [0 \ 0 \ 1.3 \ 0 \ -1.2 \ 0]$

Ritka folytonos reprezentációk tanulása

• Adott x_i (i=1,...,|V|) szóbeágyazások esetén

Ritka folytonos reprezentációk tanulása

Adott x_i (i=1,...,|V|) szóbeágyazások esetén

Ritka folytonos reprezentációk tanulása

• Adott x_i (i=1,...,|V|) szóbeágyazások esetén

Szófaji kódolás (POS tagging) feladata

- Adott természetes nyelvű tokensorozatra határozzuk meg az egyes tokenek szófaját
 - Tipikus in vivo kiértékelés

Token	А	vonat	nem	vár	
Elvárt szófaj	DET	NN	RB	VB	PUNCT
Predikált szófaj	DET	NNP	DET	VB	PUNCT
Helyes?	+1	0	0	+1	+1

- Kiértékelés
 - Pontosság: #eltalált szófajú szavak/#összes szó

"Klasszikus" szekvenciajelölő

- Minden szóhoz számítsunk ki φ_i jellemzőket
 - ϕ_j vizsgálhatja pl. egy szó felszíni jegyeit (prefixum/szuffixum), de a szókörnyezetét is

"Klasszikus" szekvenciajelölő

- Minden szóhoz számítsunk ki φ_i jellemzőket
 - φ_j vizsgálhatja pl. egy szó felszíni jegyeit
 (prefixum/szuffixum), de a szókörnyezetét is

"Klasszikus" szekvenciajelölő

- Minden szóhoz számítsunk ki φ_i jellemzőket
 - φ_j vizsgálhatja pl. egy szó felszíni jegyeit
 (prefixum/szuffixum), de a szókörnyezetét is

Szekvenciajelölő ritka jellemzőkkel

Használjuk a dekompozícióból jövő α-t

- Pl.
$$\overrightarrow{Fruit} \approx 1.1 \cdot \overrightarrow{d}_{28} - 0.4 \cdot \overrightarrow{d}_{171}$$

Szekvenciajelölő ritka jellemzőkkel

Használjuk a dekompozícióból jövő α-t

- Pl.
$$\overrightarrow{Fruit} \approx 1.1 \cdot \overrightarrow{d}_{28} - 0.4 \cdot \overrightarrow{d}_{171}$$

Többnyelvű eredmények

Eredmények kiátlagolva 12 nyelvre

	Sűrű	Ritka
polyglot	91.17%	94.44%
CBOW	88.30%	93.74%
SG	86.89%	93.63%
Glove	81.53%	91.92%

- Fő észrevételek
 - polyglot > CBOW > SG > Glove

Többnyelvű eredmények

Eredmények kiátlagolva 12 nyelvre

	Sűrű	Ritka	Javulás
polyglot	91.17%	94.44%	+3.3
CBOW	88.30%	93.74%	+5.4
SG	86.89%	93.63%	+6.7
Glove	81.53%	91.92%	+10.4

- Fő észrevételek
 - polyglot > CBOW > SG > Glove
 - Ritka reprezentáció >> sűrű reprezentáció

Általánosítóképesség

A tanítóadatbázist mesterségesen lecsökkentettük

- Első 150, illetve 1500 mondat fölhasználása

Általánosítóképesség

A tanítóadatbázist mesterségesen lecsökkentettük

Első 150, illetve 1500 mondat fölhasználása

Tulajdonnévfelismerésen is tesztelve

Ritka == interpretálható reprezentáció?

- ConceptNet (CN) tudásbázis alapján
 - A bázisok és CN attribútumok együttes előfordulásának vizsgálata
 - Pontonkénti kölcsönös információtartalom

Ritka == interpretálható reprezentáció?

Ritka == interpretálható reprezentáció?

Basis	Top-1	Top-2	Top-3	Top-4	Top-5	Most associated ConcepNet relation
P381	village	neighbourhood	neighborhood	fort	township	AtLocation/house
P238	amendment	decision	inquiry	obligation	petition	HasContext/law
P574	stability	coherence	sensitivity	separation	efficiency	lsA/act
P898	harden	darken	pierce	flatten	loosen	lsA/change
P953	coal	oil	food	cotton	grain	AtLocation/house

Ritka szóreprezentációk több nyelvre

```
apple [3.2 -1.5] \longrightarrow [0 1.7 0 0 -0.2 0] ... banana [2.8 -1.6] \longrightarrow [0 1.1 0 0 -0.4 0] ... zebra [0.8 0.5] \longrightarrow [0 0 1.3 0 -1.2 0]
```

Ritka szóreprezentációk több nyelvre

Többnyelvű ritka szóreprezentációk

$$D^{(f)}, \alpha^{(f)} = \min_{D, \alpha} \sum_{i=1}^{|V|} ||w_i^{(f)} - D\alpha_i||_2^2 + \lambda ||\alpha_i||_1$$

 "Sűrű" szóbeágyazások f forrás,- és c célnyelv közötti leképezésére több megoldás ismert (Smith et al., 2017; Artetxe et al., 2016; Hamilton et al., 2016)

Többnyelvű ritka szóreprezentációk

$$D^{(f)}, \alpha^{(f)} = \min_{D, \alpha} \sum_{i=1}^{|V|} ||w_i^{(f)} - D\alpha_i||_2^2 + \lambda ||\alpha_i||_1$$

- "Sűrű" szóbeágyazások f forrás,- és c célnyelv közötti leképezésére több megoldás ismert (Smith et al., 2017; Artetxe et al., 2016; Hamilton et al., 2016)
 - A célnyelvre a forrásnyelv D^(f)szótármátrixát és a forrásnyelv-célnyelv közötti M leképezést használjuk

Többnyelvű ritka szóreprezentációk

$$D^{(f)}, \alpha^{(f)} = \min_{D, \alpha} \sum_{i=1}^{|V|} ||w_i^{(f)} - D\alpha_i||_2^2 + \lambda ||\alpha_i||_1$$

- "Sűrű" szóbeágyazások f forrás,- és c célnyelv közötti leképezésére több megoldás ismert (Smith et al., 2017; Artetxe et al., 2016; Hamilton et al., 2016)
 - A célnyelvre a forrásnyelv $D^{(f)}$ szótármátrixát és a forrásnyelv-célnyelv közötti M leképezést használjuk

$$\alpha^{(c)} = \min_{\alpha} \sum_{i=1}^{|V|} ||M w_i^{(c)} - D^{(f)} \alpha_i||_2^2 + \lambda ||\alpha_i||_1$$

λ	Prec.	Rec.	F			
0.1	0.023	0.024	0.024			
0.3	0.001	0.001	0.001			
0.5	0.000	0.000	0.000			
		M=I				

λ	Prec.	Rec.	F	Prec.	Rec.	F		
0.1	0.023	0.024	0.024	0.170	0.117	0.139		
0.3	0.001	0.001	0.001	0.345	0.118	0.176		
0.5	0.000	0.000	0.000	0.600	0.009	0.018		
	M=I			Tets	szőlege	s M		

λ	Prec.	Rec.	F	Prec.	Rec.	F	Prec.	Rec.	F
0.1	0.023	0.024	0.024	0.170	0.117	0.139	0.098	0.137	0.114
0.3	0.001	0.001	0.001	0.345	0.118	0.176	0.167	0.208	0.185
0.5	0.000	0.000	0.000	0.600	0.009	0.018	0.271	0.202	0.232
	M=I			Tetszőleges M			Ort	ogonáli	s M

Nyelvközi szófaji kódolás eredményei

Konklúzió

- Egyszerű modell, mégis pontos eredmények
- Nyelv,-és feladatközi robusztusság
- Jó általánosítóképesség
- Bíztató jelek az interpretálhatóságra vonatkozóan
- Nyitott kérdések?

Konklúzió

- Egyszerű modell, mégis pontos eredmények
- Nyelv,-és feladatközi robusztusság
- Jó általánosítóképesség
- Bíztató jelek az interpretálhatóságra vonatkozóan
- Nyitott kérdések?
 - Szószerkezet/mondat/bekezdés szintű reprezentációk