Chapter 1

Introduction

\sim

Why to study algorithms?

- It is commonly believed that in order to obtain high speed computer. This is, however, not entirely true. speed computation, it suffices to have a very high
- A good algorithm implemented on a slow computer may perform much better than a bad algorithm implemented on a fast computer.

α

Sorting problem:

To sort a set of elements into increasing or

Sort

Sorting Algorithm:

Insertion sort

Quick sort

Etc.

Insertion Sort

11, 7, 14, 1, 5, 9, 10.

Insertion sort works on the above sequence of data elements as follows:

Sorted Sequence

<u>-</u> (

7,11

7, 11, (14)

(1,)7, 11, 14

d 1,(5,)7, 11, 14

1, 5, 7, 9, 11, 14

1, 5, 7, 9, (10) 11, 14

Unsorted Sequence

7, 14, 1, 5, 9, 10

14, 1, 5, 9, 10 1, 5, 9, 10

5, 9, 10

9, 10

20

OuickSort

- Ouicksort would use the first data element, say x, to divide all data elements into three subsets:
- those smaller than x,

×

- those larger than x, and
- those equal to x.

- ×
- Divide approach & recursive algorithm

We now have to sort two sequences:

(14) (17) (26, 21) (17, 14, 26, 21).

Quicksort Example

Input: 10, 5, 1, 17, 14, 8, 7, 26, 21, 3

10, 5, 1, 17, 14, 8, 7, 26, 21, 3 Steps:

(5, 1, 8, 7, 3) (10) (17, 14, 26, 21).

We now have to sort two sequences:

(17, 14, 26, 21). \longrightarrow (14) (17) (26, 21)

Comparison of algorithms

Comparison of two algorithms implemented on two computers (average of ten times)

α

Analysis of algorithms

- Measure the goodness of algorithms
- efficiency
- asymptotic notations: e.g. $O(n^2)$
- worst case
- average case
- best case
- amortized analysis (均攤分析法)
- Measure the difficulty of problems
- NP-complete $(\ge O(2^n))$ or polynomial solvable
- Undecidable
- lower bound
- Is the algorithm optimal?

Asymptotic notations

 $\overline{Def} \colon f(n) = O(g(n))$

$$\exists c, n_0 \rightarrow |f(n)| \le c|g(n)| \forall n \ge n_0$$

• e.g. $f(n) = 3n^2 + 2$

$$g(n) = n^2$$

$$\Rightarrow$$
 n₀=2, c=4

:
$$f(n) = O(n^2)$$

• e.g.
$$f(n) = n^3 + n = O(n^3)$$

• e. g.
$$f(n) = 3n^2 + 2 = O(n^3)$$
 or $O(n^{100})$

2 -10

Asymptotic notations

Def: $f(n) = \Omega(g(n))$ "at least", "lower bound"

 \exists c, and n_0 , \ni $|f(n)| \ge c|g(n)| \forall n \ge n_0$

e. g. $f(n) = 3n^2 + 2 = \Omega(n^2)$ or $\Omega(n)$

Def : f(n) = $\Theta(g(n))$ ∃ c_1 , c_2 , and n_0 , $\ni c_1|g(n)| \le |f(n)| \le c_2|g(n)| ∀ n ≥$

e. g. $f(n) = 3n^2 + 2 = \Theta(n^2)$

Def: f(n) ~ o(g(n))

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}\to 1$$

e.g. $f(n) = 3n^2 + n = o(3n^2)$

Problem size n and function

	10	102	103	104
log ₂ n	3.3	9.9	10	13.3
u	10	105	103	104
nlog ₂ n	0.33×10 ²	0.7×10 ³	104	1.3×10 ⁵
n^2	102	104	106	108
5 u	1024	1.3×10 ³⁰	>10100	>10100
ju	3x10 ⁶	>10100	>10100	>10100

Time Complexity Functions

2 -12

Common computing time functions

- Time complexity classes:
- O(1) < O(log n) < O(n) < O(n log n) < O(n²) < O(n³) < $O(2^n) < O(n!) < O(n^n)$
- Exponential algorithm: O(2ⁿ)
- polynomial algorithm: e.g. O(n²), O(nlogn), ...
- Algorithm A: O(n³), algorithm B: O(n)
- Should Algorithm B run faster than A?

__ O Z

It is true only when n is large enough!

Introduction

- **How do we measure the goodness of an** algorithm?
- How do we measure the difficulty of a problem?
- How do we know that an algorithm is optimal for a problem?
- exist any other better algorithm to solve How can we know that there does not the same problem?

The goodness of an algorithm

- Time complexity (more important)
- Space complexity (memory size)
- For a parallel algorithm :
- time-processor product
- O(log n) time, O(n) processors \rightarrow O(n log n)
- For a VLSI circuit:
- area-time (AT, AT²), A is the area of the VLSI

Undecidable problems

(output T or F) for which it is known to be impossible to construct a single algorithm that always leads to a An undecidable problem is a decision problem correct yes-or-no answer.

Example:

- computer program, decide whether the program finishes Halting problem: "Given a description of an arbitrary running or continues to run forever".
- program and an input, whether the program will eventually This is equivalent to the problem of deciding, given a halt when run with that input, or will run forever.
- Alan Turing proved in 1936.

- 0/1 Knapsack problem 背色問題

•	# 2 K				
	\$4 12 kg				
◀	P_{S}	2	2		
	P_4	—	1		
•	P_3	10	4		
	P_2	2	1		
	P_1	4	12		
		Value	Weight		

- M (total weight limitation)=15;
- 0/1 constraint;
- best solution (maximal sum of weight)?
- This problem is NP-complete.
- As the number of items becomes very large, it is very hard to find an optimal solution.

Traveling salesperson problem (TSP)

Given: A set of n planar points

Find: A closed tour which includes all points exactly once such that its total length is minimized.

This problem is NP-complete.

http://www.math.uwaterloo.ca/tsp/index.html

18

Partition problem

Given: A set of positive integers S

Find: S_1 and S_2 such that $S_1 \cap S_2 = \emptyset$, $S_1 \cup S_2 = S$,

$$\sum_{i \in S_1} i = \sum_{i \in S_2} i$$

(partition into S_1 and S_2 such that the sum of S_1 is equal to that of S_2)

e.g. S={1, 7, 10, 4, 6, 3, 8, 13}

S₁={1, 10, 4, 8, 3}
S₂={7, 6, 13}

This problem is NP-complete.

Determine: min # of guards and their placements such that the entire art gallery can be monitored.

NP-complete

Minimum spanning tree

- graph: greedy method
- geometry(on a plane): divide-and-conquer
- # of possible spanning trees for n points: nn-2 (Cayley's formula)
- $n=10 \rightarrow 10^8$, $n=100 \rightarrow 10^{196}$

Cayley's Formula

https://www.youtube.com/watch?v=Ve447EOW8ww

http://www.csie.ntu.edu.tw/~kmchao/tree07spr/counting.pdf

Convex hull

- Given a set of planar points, find a smallest convex polygon which contains all points.
- It is not obvious to find a convex hull by examining all possible solutions
- divide-and-conquer

One-center problem

- Given a set of planar points, find a smallest circle which contains all points.
- Prune-and-search