Class 11: AlphaFold

Anyoleth Alarcon A17347293

Table of contents

Predicted Alignment Error for Domains	
Score Residue Conservation from alignment file 6	
Here we read the results from AlphaFOld and try to interpret all the models and quality score metrics:	
<pre>library(bio3d) pth <- "dimer_23119" pdb.files <- list.files(path = pth, full.names = TRUE, pattern = ".pdb")</pre>	
Align and supperpose all these models	
<pre>file.exists(pdb.files)</pre>	
[1] TRUE TRUE TRUE TRUE	
<pre>pdbs <- pdbaln(pdb.files, fit = TRUE, exefile="msa")</pre>	
Reading PDB files: dimer_23119/dimer_23119_unrelaxed_rank_001_alphafold2_multimer_v3_model_2_seed_0 dimer_23119/dimer_23119_unrelaxed_rank_002_alphafold2_multimer_v3_model_5_seed_0 dimer_23119/dimer_23119_unrelaxed_rank_003_alphafold2_multimer_v3_model_4_seed_0 dimer_23119/dimer_23119_unrelaxed_rank_004_alphafold2_multimer_v3_model_1_seed_0 dimer_23119/dimer_23119_unrelaxed_rank_005_alphafold2_multimer_v3_model_3_seed_0	000.pdl 000.pdl 000.pdl
Extracting sequences	

```
pdb/seq: 1 name: dimer_23119/dimer_23119_unrelaxed_rank_001_alphafold2_multimer_v3_model_2 pdb/seq: 2 name: dimer_23119/dimer_23119_unrelaxed_rank_002_alphafold2_multimer_v3_model_5 pdb/seq: 3 name: dimer_23119/dimer_23119_unrelaxed_rank_003_alphafold2_multimer_v3_model_4 pdb/seq: 4 name: dimer_23119/dimer_23119_unrelaxed_rank_004_alphafold2_multimer_v3_model_1 pdb/seq: 5 name: dimer_23119/dimer_23119_unrelaxed_rank_005_alphafold2_multimer_v3_model_3
```

```
plot(pdbs$b[1,], typ="l", ylim=c(0,100), ylab="pLDDT score")
lines(pdbs$b[2,], typ="l", col="blue")
lines(pdbs$b[3,], typ="l", col="green")
lines(pdbs$b[4,], typ="l", col="orange")
lines(pdbs$b[5,], typ="l", col="red")
```



```
rd <- rmsd(pdbs, fit=T)
```

Warning in rmsd(pdbs, fit = T): No indices provided, using the 198 non NA positions

```
library(pheatmap)

colnames(rd) <- paste0("m",1:5)
rownames(rd) <- paste0("m",1:5)
pheatmap(rd)</pre>
```


Predicted Alignment Error for Domains

```
$names
[1] "plddt" "max_pae" "pae" "ptm" "iptm"
```

```
head(pae1$plddt)
```

[1] 91.44 96.06 97.38 97.38 98.19 96.94

```
pae1$max_pae
```

[1] 13.57812

pae3\$max_pae

[1] 12.41406

pae5\$max_pae

[1] 29.85938

We can plot the N by N PAE scores

Score Residue Conservation from alignment file

AlphaFold returns it's large alignment file used for analysis Here we read this file and score conservation per position

```
aln_file <- list.files(path=pth,</pre>
                         pattern=".a3m$",
                          full.names = TRUE)
aln_file
```

```
[1] "dimer_23119/dimer_23119.a3m"
```

```
aln <- read.fasta(aln_file[1], to.upper = TRUE)</pre>
```

```
[1] " ** Duplicated sequence id's: 101 **"
[2] " ** Duplicated sequence id's: 101 **"
```

```
dim(aln$ali)
```

[1] 5378 132

```
sim <- conserv(aln)</pre>
```

```
plotb3(sim[1:99],
    ylab="Conservation Score")
```


Find the consensus sequence at a very high cut-off to find invarient values

```
con <- consensus(aln, cutoff = 0.9)
con$seq</pre>
```