Artificial Intelligence Quiz 01

Instructor: Ayesha Enayet

CMS:	Name:
------	-------

Instructions:

- Students are **not allowed to use any device** during the quiz.
- Only blue or black ink pens are allowed.
- Show essential steps of your reasoning for credit.

Question 1: 4-Queens via A*

Points: 20

Place 4 queens on a 4×4 chessboard so that no two queens attack each other (no two in the same row, column, or diagonal). Use A^* to solve the 4-Queens problem.

- a) (10 pts) Specify a search formulation: state, actions, step cost, goal test, and an admissible & consistent heuristic.
- b) (8 pts) Run A* and show the sequence of node expansions (with g, h, f) until the first solution is found, assuming you place queens column-by-column (1 \rightarrow 4), try rows 1 \rightarrow 4 in order, and break ties by smaller h (i.e., deeper nodes first since h decreases as you go deeper). **Hint:**Start: (), g=0, h=4, f=4. Expand \Rightarrow children for col1: (1), (2), (3), (4).
- c) (2 pts) Give the first solution you reach in (Q_1, Q_2, Q_3, Q_4) form, where Q_i is the row of the queen in column i.

Question 2: BFS vs DFS Expansions on 4-Queens

Consider the 4-Queens problem under this standard search setup:

- Initial state: the empty tuple () (no queens placed).
- Start rule: begin by placing one queen in *column 1*; children of () are (1), (2), (3), (4), corresponding to choosing rows 1..4 for column 1.

Points: 20

- State: a conflict-free partial placement (Q_1, \ldots, Q_c) of queens in columns 1..c (one queen per column), $0 \le c \le 4$.
- Action: from column c, place a queen in column c+1 in any safe row (no same-row or diagonal conflicts).
- Goal: c = 4 (four queens placed without conflict).
- Child generation order: when expanding a node at column c, try rows $1 \to 4$ for column c+1.
- BFS: FIFO by depth; within a depth, use the given child order.
- **DFS**: pre-order (backtracking) using the same child order; backtrack immediately on dead ends.
- State notation: write tuples like (2,4,1) to mean $Q_1=2$, $Q_2=4$, $Q_3=1$.

Tasks

1.	(8 pts) Write the node expansion order for BFS until the first goal is found, starting from ().
2.	(8 pts) Write the node expansion order for DFS until the first goal is found, starting from ().
3.	(4 pts) Report and briefly compare the total number of nodes expanded by BFS vs DFS to reach the first solution.
	BFS total: DFS total:

Question 3: Completeness of A*

A* search runs with an OPEN list ordered by f(n) = g(n) + h(n). Write down the condition(s) that must be met to ensure A* is *complete* (i.e., guaranteed to find a goal if one exists).

Points: 10