Estatística não paramétrica Problema de posição

Fernando Lucambio

Departamento de Estatística Universidade Federal do Paraná

25 de março de 2024

Seja X_1, X_2, \cdots, X_n uma amostra aleatória de tamanho n de alguma distribuição desconhecida F. Seja p um número real positivo satisfazendo $0 e <math>\kappa_p(F)$ denotando o quantil de ordem p da distribuição F, ou seja, $\kappa_p(F)$ é tal que

$$P(X \le \kappa_p(F)) = p,$$

isto devido a que no seguinte estudo vamos considerar *F* absolutamente contínua.

O problema de posição consiste em verificar se $H_0: \kappa_p(F) = \kappa_0$, sendo κ_0 um valor dado, contra alguma das alternativas $\kappa_p(F) > \kappa_0$, $\kappa_p(F) < \kappa_0$ ou $\kappa_p(F) \neq \kappa_0$. O problema de posição e simetria consiste em verificar se $H_0: \kappa_{0.5}(F) = \kappa_0$ e F é simétrica contra $H_0: \kappa_{0.5}(F) \neq \kappa_0$ ou F não é simétrica.

Seja X_1, X_2, \dots, X_n uma amostra aleatória com função de densidade comum f. O problema aqui é verificarmos

$$H_0: \kappa_p(f) = \kappa_0$$
 $H_1: \kappa_p(f) > \kappa_0$,

onde $\kappa_p(f)$ é o quantil de ordem p para f, 0 . Vejamos como construir a estatística de teste.

Seja $i(X_1, X_2, \cdots, X_n)$ o número de elementos positivos em

$$X_1 - \kappa_0, X_2 - \kappa_0, \cdots, X_n - \kappa_0$$

Observemos que $P(X_i = \kappa_0) = 0$, desde que X_i seja uma variável aleatória do tipo contínua.

Pode ser demonstrado que o teste uniformemente mais poderoso para verificar H_0 versus H_1 é dado por

$$\varphi(x_1, x_2, \dots, x_n) = \begin{cases} 1, & i(x_1, x_2, \dots, x_n) > c, \\ \gamma, & i(x_1, x_2, \dots, x_n) = c, \\ 0, & i(x_1, x_2, \dots, x_n) < c, \end{cases}$$

onde c e γ são escolhidos de forma que

$$\sum_{k=c}^{n} \binom{n}{i} q^{i} p^{n-i} + \gamma \binom{n}{c} q^{c} p^{n-c} = \alpha,$$

com q=1-p. Isto é devido a que, sob H_0 verdadeira, $\kappa_p(f)=\kappa_0$, de maneira que $P(X \leq \kappa_0)=p$ e $P(X \geq \kappa_0)=q$ e $i(X)\sim Binomial(n,q)$.

A mesma estatística de teste pode ser utilizada em qualquer outra situação, ou seja, utiliza-se também caso $H_0: \kappa_p(f) \leq \kappa_0$ versus $H_1: \kappa_p(f) \geq \kappa_0$, $H_0: \kappa_p(f) \geq \kappa_0$ versus $H_1: \kappa_p(f) \leq \kappa_0$ e $H_0: \kappa_p(f) = \kappa_0$ contra $H_1: \kappa_p(f) \neq \kappa_0$.

As expressões do p-valor para este teste podem ser obtidas de maneira geral quando p=0.5. Por exemplo, se a alternativa é de cauda superior $H_1:\kappa_p(f)\geq\kappa_0$, o p-valor para o teste de sinal é dado pela probabilidade binomial na cauda superior

$$\sum_{i=i(x)}^{n} \binom{n}{i} 0.5^{n},$$

sendo $i(x) = i(x_1, x_2, \dots, x_n)$ o valor observado da estatística de teste. Poderíamos gerar tabelas e aplicar o teste de sinal exato para qualquer tamanho de amostra. Sabemos que a aproximação normal à binomial é especialmente boa quando p = 0.5.

Portanto, para valores moderados de *n* digamos, pelo menos 12, a aproximação normal pode ser usada para determinar as regiões de rejeição.

Como esta é uma aproximação contínua a uma distribuição discreta, uma correção de continuidade de 0.5 pode ser incorporada aos cálculos. Por exemplo, para a alternativa, $H_1: \kappa_{0.5}(f) \geq \kappa_0$, H_0 é rejeitada para $i(x_1, x_2, \cdots, x_n) \geq \kappa_\alpha$, sendo κ_α satisfazendo

$$\kappa_{\alpha} = 0.5n + 0.5 + 0.5\sqrt{n}z_{\alpha}$$

Similarmente, o p-valor aproximado é

$$1 - \Phi\Big(\frac{\kappa_0 - 0.5 - 0.5n}{\sqrt{0.25n}}\Big) \cdot$$

O teste do sinal para as diferentes hipóteses está programado no pacote **DescTools**, função **SignTest**.

Exemplo:

```
> library(DescTools)
> x = c(203,168,187,235,197,163,214,233,179,185,197,216)
> SignTest(x, mu = 195, alternative = "greater")
One-sample Sign-Test
data: x
S = 7, number of differences = 12, p-value = 0.3872
alternative hypothesis: true median is greater than 195
98.1 percent confidence interval:
 179 Inf
sample estimates:
median of the differences
                      197
```

O teste do sinal de amostra única, descrito aqui, pode ser modificado para se aplicar à amostragem de uma população bivariada. O teste de sinal perde informação, pois ignora a magnitude da diferença entre as observações e o quantil hipotético. O teste de postos sinalizados de Wilcoxon fornece um teste alternativo de posição e simetria que também leva em conta a magnitude dessas diferenças.

Seja X_1, X_2, \cdots, X_n uma amostra aleatória com função de distribuição F absolutamente contínua que é simétrica a respeito da mediana m. O problema é testar

$$H_0: m = m_0$$

contra as alternativas usuais unilaterais ou bilaterais.

Sem perda de generalidade, assumimos que $m_0=0$. Então F(-x)=1-F(x) para todo $x\in\mathbb{R}$.

Por exemplo, para testar

$$H_0: F(0) = \frac{1}{2}$$
 ou $m = 0$,

primeiro organizamos $|X_1|, |X_2|, \dots, |X_n|$ em ordem crescente de magnitude e atribuímos postos $1, 2, \dots, n$ mantendo-se a par dos sinais originais de X_i .

Por exemplo, se n = 4 e $|X_2| < |X_4| < |X_1| < |X_3|$ o posto de $|X_1|$ é 3, de $|X_2|$ é 1, de $|X_3|$ é 4 e de $|X_4|$ é 2.

Definimos

$$\begin{cases} T^+ &= \text{ soma dos postos dos } X \text{ positivos}, \\ T^- &= \text{ soma dos postos dos } X \text{ negativos} \end{cases}$$

Então, considerando H_0 verdadeira, esperamos que T^+ e T^- sejam o mesmo.

Observe que

$$T^+ + T^- = \sum_{i=1}^n i = \frac{n(n+1)}{2},$$

de maneira que T^+ e T^- são linearmente relacionados e oferecem critérios equivalentes. Definimos agora

$$Z_i = \left\{ egin{array}{ll} 1, & {\sf caso} & X_i > 0 \ 0, & {\sf caso} & X_i < 0 \end{array}
ight., \qquad i=1,2,\cdots,n,$$

e escrevemos $r(|X_i|) = r_i$, para o posto de $|X_i|$.

Então
$$T^{+} = \sum_{i=1}^{n} r_{i}Z_{i}$$
 e $T^{-} = \sum_{i=1}^{n} r_{i}(1 - Z_{i})$. Também,

$$T^{+}-T^{-}=-\sum_{i=1}^{n}r_{i}+2\sum_{i=1}^{n}r_{i}Z_{i}=2\sum_{i=1}^{n}r_{i}Z_{i}-\frac{n(n+1)}{2}$$

As estatísticas T^+ e T^- são conhecidas como estatísticas de Wilcoxon. Um grande valor de T ou, equivalentemente, um pequeno valor de T significa que a maioria dos grandes desvios de 0 são positivos e, portanto, rejeitamos H_0 em favor da alternativa, $H_1: m>0$.

H_0	H_1	Rejeitamos H_0 se
m = 0	m > 0	$T^{+} > c_{1}$
m = 0	m < 0	$T^+ < c_2$
m = 0	$m \neq 0$	$T < c_3$ ou $T > c_4$

Vamos encontrar agora a distribuição de T^+ .

Seja

$$Z_{(i)} = \left\{ egin{array}{ll} 1, & ext{se o } |X_i| ext{ que tem posto } i \, cuple & > 0, \ 0, & ext{caso contrário} \end{array}
ight.$$

É claro que $T^+ = \sum_{i=1}^n iZ_{(i)}$. As variáveis aleatórias

$$Z_{(1)}, Z_{(2)}, \cdots, Z_{(n)},$$

tem por distribuição Bernoulli, são não correlacionadas mas não necessariamente igualmente distribuídas.

Temos

$$\mathsf{E}(Z_{(i)}) = P(Z_{(i)} = 1) = P([r(|X_i|) = i, X_j > 0] \, \text{para algum} \, j)$$

= $P(i\text{-}\acute{e}sima \, \text{estat} \acute{s}tica \, \text{de ordem em}$
 $|X_1|, |X_2|, \cdots, |X_n| \, \text{corresponde a um} \, X_i \, \text{positivo})$

Então

$$E(Z_{(i)}) = \int_0^\infty n \binom{n-1}{i-1} [F_{|X|}(u)]^{i-1} [1 - F_{|X|}(u)]^{n-i} f(u) du$$

a qual pode ser escrita como

$$\mathsf{E}(Z_{(i)}) = n \binom{n-1}{i-1} \int_0^\infty [F(u) - F(-u)]^{i-1} [1 - F(u) + F(-u)]^{n-i} f(u) du,$$

onde f é a função de densidade de X.

Além disso

$$Var(Z_{(i)}) = E(Z_{(i)}(1-E(Z_{(i)})))$$

e

$$Cov(Z_{(i)}, Z_{(i)}) = 0, \quad i \neq j.$$

Sob H_0 , X é simétrica a respeito de 0, de modo que $F(0) = \frac{1}{2}$ e F(-u) = 1 - F(u), para todo u > 0.

Então

$$\mathsf{E}\big(Z_{(i)}\big) \, = \, n \binom{n-1}{i-1} \int_0^\infty \big(2F(u)-1\big)^{i-1} \big(2-2F(u)\big)^{n-i} f(u) \mathrm{d} u \cdot$$

Escolhendo $\nu = 2F(u) - 1$, temos que

$$E(Z_{(i)}) = \frac{n}{2} \binom{n-1}{i-1} \int_0^1 \nu^{i-1} (1-\nu)^{n-i} d\nu$$
$$= \frac{n}{2} \binom{n-1}{i-1} B(i, n-i+1) = \frac{1}{2}.$$

Os momentos de T^+ , em geral, são dados por

$$\mathsf{E}(T^+) = \sum_{i=1}^n i \mathsf{E}(Z_{(i)})$$

е

$$Var(T^{+}) = \sum_{i=1}^{n} i^{2} E(Z_{(i)}(1 - E(Z_{(i)}))).$$

De maneira que, considerando H_0 verdadeira, temos

$$E_{H_0}(T^+) = \frac{1}{2} \sum_{i=1}^n i = \frac{n(n+1)}{4}$$

е

$$Var_{H_0}(T^+) = \frac{1}{4} \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{24}$$

Observe que $T^+=0$ se todas as diferenças tiverem sinais negativos e $T^+=n(n+1)/2$ se todas as diferenças tiverem sinais positivos. Aqui, uma diferença significa uma diferença entre as observações e o valor postulado da mediana.

A estatística T^+ é completamente determinada pelas funções indicadoras $Z_{(i)}$, assim o espaço amostral pode ser considerado como um conjunto de (z_1, z_2, \cdots, z_n) , onde cada z_i é 0 ou 1, de cardinalidade 2^n .

Sob H_0 , $m=m_0$ e cada arranjo é igualmente provável. Portanto

$$P_{H_0}(T^+ = t) = \frac{\left\{\begin{array}{c} \text{no. de maneiras de atribuir sinais + ou - aos} \\ \text{inteiros 1,2,..., n para que a soma seja t} \end{array}\right\}}{2^n}$$

Observemos que toda atribuição tem uma atribuição conjugada com sinais de mais e menos trocados, de modo que, este conjugado \mathcal{T}^+ é dado por

$$\sum_{i=1}^{n} i(1-Z_{(i)}) = \frac{n(n+1)}{2} - \sum_{i=1}^{n} iZ_{(i)}.$$

Assim, sob H_0 , a distribuição de T^+ é simétrica em relação à média n(n+1)/4.

Exemplo:

Para os dados -0.465, 0.120, -0.238, -0.869, -1.016, 0.417, 0.056, 0.561 queremos verificar se $H_0: m=1.0$ versus $H_1: m>1.0$.

```
> x = c(-0.465, 0.120, -0.238, -0.869, -1.016, 0.417, 0.056, 0.561)
> library(ggplot2)
> dados = data.frame(x=c(rep(" ",8)), dados = x)
> qplot( x=x, y=dados, data=dados , geom=c("boxplot","jitter"))
> hist(x, xlab = "x", col = "green", border = "red",
        xlim = c(-1.5, 1.5), vlim = c(0, 0.8), breaks = 5,
        freq = F, ylab="dados", main = "")
> lines(density(x)); box(); grid()
> wilcox.test(x, mu = -1, alternative = "greater")
Wilcoxon signed rank exact test
data: x
V = 35, p-value = 0.007813
alternative hypothesis: true location is greater than -1
```

Exemplo:

