Мониторинг состояния водных объектов в районе города Заволжье

Шерстнева Анастасия Максимовна
10 класс, МБОУ СШ № 19, г. Заволжье Нижегородской области
Научный руководитель Т.В. Хрипунова,
учитель химии и биологии МБОУ СШ № 19, г. Заволжье Нижегородской области

В ходе работы проведен мониторинг водных объектов в районе г. Заволжье на наличие загрязнения. Были проведены органолептические и физико-химические исследования воды, использованы методы биоиндикации (с помощью кресс-салата и дафний), проведено исследование на наличие микропластика в воде. По результатам исследований были выявлены наиболее и наименее загрязненные озера и реки в районе города.

Нижегородская область славится большим количеством рек и озер. Есть они и там, где проживаем мы.

Объектом исследования стали водные объекты, расположенные рядом с нашим городом: озеро Михалёво, Черемисское (Шеляуховское), озеро на Липовском карьере (в народе Голубое), Змейки на 10 поселке, озеро рядом с поселком Гумнищи, р. Волга протекает также по нашему району.

Предмет исследования: комплексная оценка экологического состояния водных объектов, расположенных рядом с городом Заволжье. **Гипотеза:** из года в год состояние водных объектов ухудшается из-за антропогенного воздействия человека на них.

Цель: изучение экологического состояния водных объектов, находящихся в пригороде города Заволжье.

Задачи: 1. Познакомиться с историческими сведениями о водных объектах. 2. Изучить качество воды в них с помощью разных методик: pH, электропроводность, токсичность воды с помощью дафний. Для этого произвести заборы воды в исследуемых водоемах. 3. Определить наличие микропластика в водных объектах. 4. Провести массово-разъяснительную работу с учащимися школы по пропаганде бережного отношения к рекам и озерам. Сроки выполнения работы: сентябрь 2020 – февраль 2022 года.

Практическая значимость исследования состоит в возможности использования материалов исследования в работе с местным населением, со школьниками по пропаганде природоохранных и экологических знаний, знакомство учащихся с другими источниками, историей своего родного края.

Во время проведения исследования нами были использованы следующие методики: 1) Методические рекомендации по проведению экологического практикума (Н.А. Пугал, В.Е. Евстигнеев) для определения мутности, цветности, прозрачности, вкуса и запаха воды в озерах. 2) Сравнительная комплексная характеристика малых рек и ручьев. «Экосистема» 1999 (использованы методики А.С. Боголюбова, Д.Н. Засько). 3) Методы биотестирования качества природных вод с помощью кресс-салат, дафний (А.И. Федорова, А.Н. Никольская). 4) Методики из книги «Изучаем экологию города» Александровой В.П. – описание озер, составление паспорта озера. 5) Методика биотестирования с помощью дафний. Для оценки качества воды в реках и озерах были использованы датчики рН и электропроводности из набора для экологического мониторинга «Зеленый патруль». Вода проверялась также на наличие микропластика. Методика была взята из статьи «МИКРОПЛАСТИК В МОРСКОЙ СРЕДЕ: ОБЗОР МЕТОДОВ ОТБОРА, ПОДГОТОВКИ И АНАЛИЗА ПРОБ ВОДЫ, ДОННЫХ ОТЛОЖЕНИЙ И БЕРЕГОВЫХ НАНОСОВ» М. Б. Зобкова, Е. Е. Есюковой (журнал «ОКЕАНОЛОГИЯ», 2018, том 58, № 1, с. 149—157).

Практическая часть работы. Определение географического положения и названий озер.

Для исследования были взяты несколько озер, расположенных вокруг г. Заволжье, а также р. Волга, на берегах которой расположен город, р. Белая, впадающая в р. Волга в районе Горьковского водохранилища, р. Узола, впадающая в р. Волга примерно в 10 км от г. Городца. Было определено их географическое положение, приведены сведения об исторических названиях озер и рек, об использовании их человеком.

Химический состав воды из озер и рек. В каждом водоеме были обнаружены ионы железа, в большем количестве в оз. Шеляуховское, Долгое (озера-старицы р. Волга), в р. Белая и Волга. Ионы аммония обнаружены во всех источниках, в меньшем количестве в р. Узола. Фосфаты не обнаружены только в оз. Голубое. рН воды во всех водоемах находится в районе 7-8 единиц. Меньше всего в оз. Михалево (7,02), больше всего в р. Узола (1 участок – 8,58). Результаты представлены на диаграммах 1, 2 и в табл. 1. В реках Волга и Белая, а также в о. Долгое и Михалевское было обнаружено большее загрязнение органическими веществами. В оз. Михалево отмечена самая высокая электропроводность, ниже всего она в о. Змейки.

Самый неприятный запах оказался в воде из р. Белая, вода имела гнилостный запах. Также неприятный запах был от воды из о. Долгое и р. Волга. На поверхности воды в этих водоемах были обнаружены пятна от смазочных масел и бензина. Вода почти во всех водоемах имеет желтый оттенок. Меньше всего цветность в воде из о. Голубое (вода с голубизной).

Биоиндикация воды из рек и озер с помощью проростков кресс-салата. Для определения качества воды в реке мы использовали метод прорастания кресс-салата. В одинаковые образцы почвы были высажены семена кресс-салата, которые поливались водой из исследуемых водоемов в равных количествах. Проростки находились в равных условиях по поливу, освещенности и температуре. Для контроля была использована водопроводная вода. В каждый образец почвы было посажено по 40 семян кресс-салата. Данные по биоиндикации представлены в таблице 2. Лучше всего кресс-салат рос на контрольном образце, хуже всего – с водой из о. Михалево. В нем была обнаружена самая высокая электропроводность (следовательно, солей там много в воде), поэтому вода плохо влияет на рост проростков. Всхожесть семян там тоже оказалась самая

низкая. Меньше половины семян взошло и на образце с водой из о. Исток, но высота проростков там больше, чем в образцах с водой из рек.

Диаграмма 1.

Диаграмма 2.

Таблица 1. Химический и органолептический состав воды в исследуемых объектах.

Название	озеро Голубое	0.	озеро Исток	озеро Долгое	р.Волга	
		Шеляуховское			(заводоуправление),	
		(Черемисское)			водохранилище	
org	3 кап., загрязнено	Зкапли, низкое	3 кап., низкое	5 кап., загрязнено	5 кап., загрязнено	
_	органикой слабо загрязнение заг		загрязнение	органикой	органикой	
запах,	1 балл	2 балла	1 балл	4 балла	4 балла маслянистые	
в баллах		бензиновые			и бензиновые пятна	
		пятна				
Название	о.Михалево	о.Змейки	р.Белая	р.Узола 1	р.Узола 2	
org	5 кап., загрязнено	3 капли, низкое	6 кап.,	3 кап., низкое	3 кап., низкое	
	органикой	загрязнение	загрязнено	загрязнение	загрязнение	
			органикой			
запах	1 балл	1 балл	5 баллов	1 балл	1 балл	

Таблица 2. Данные эксперимента по биоиндикации воды из водоемов с помощью растения кресс-салата. Всхожесть проростков составила 90% на образце с обычной водой.

1. Определение токсичности воды в водоемах с помощью дафний

Для проведения эксперимента мы брали сосуды для исследуемой воды сосуда для контрольной пробы,

Исследуемые	следуемые Дни исследования/ кол-во ростков, максимальный рост						всхожесть,	
объекты	1	2	3	4	5	6	7	в %
Волга	0	3 р. по 0,4	8 р. по 1	10 р. по	15 р. по	18 р. по 2	21 p.	52,5%
	СМ	СМ	СМ	1,1 см	1.6 см	СМ	по 2.2 см	
Белая	0	0	6 р. по 0,5	8 р. по 0,8	12 р. по	16 р. по	20 р. по 2	50,0%
			СМ	CM	1.1 см	1,6 см	см см	
Узола	0	0	7 р. по 0,6	10 р. по	16 р. по	19 р. по	22 р. по	55,0%
			СМ	0,9 см	1,3 см	по 1,7 см	2,1 см	
Исток	0	3 р. по 0,4	7 р. по 0,8	10 р. по 1	13 р. по	16 р. по 2	19 p.	47.5%
	СМ	СМ	СМ	СМ	1,5 см	СМ	по 2,4 см	
Голубое	0	8 р. по	14 р. в по	20 р. по	24 р. по	28 р. по 2	30 p.	75%
	СМ	0,5 см	1 см	1,2 см	1,6 см	СМ	по 2,5 см	
Михалевское	0	2 р. по 0,2	3 р. по 0,3	3 р. по 0.3	4 р. по 0,	6 р. по 1	7 p.	17.5%
	СМ	СМ	СМ	СМ	8 см	СМ	по 1.3 см	
Шеляуховское	0	4 р. по	9 р. по	13 р. по 1	18 р. по	21 р. по 2	25 p.	62.5%
(Черемисское)	СМ	0,4 см	0,8 см	СМ	1.3 см	СМ	по 2.3 см	
Змейки	0	7 р. по	12 р. по 1	19 р. по	24 р. по	26 р. по 2	29 p.	72%
	СМ	0,5 см	СМ	1,2 см	1,6 см	СМ	по 2,5 см	
контроль	0	0	7 р. по 0,5	15 р. по	20 р. по	28 р. по	36 р. по	90%
		0	СМ	1,3 см	2,0 см	2,7 см	3,8 см	

не содержащей токсичных веществ. Налили в них по 100 мл исследуемой воды и по 100 мл чистой воды для контроля. Воду профильтровали через фильтровальную бумагу. В качестве контрольной воды использовали водопроводную воду с отстаиванием в течение 7 суток. В каждый сосуд поместили по 10 особей дафний (односуточных). Повторность была трехкратная. Дафний во время эксперимента не кормили. Учет выживших дафний проводили через 1, 6, 24, 48, 72 и 96 часов. При определении зоны загрязнения водоема учитывали поведение дафний. В контрольном образце дафнии не погибли в течение первых 96 часов. Выживаемость 100%. Результаты выживаемости дафний представлены на диаграмме 3.

Диаграмма 3.

По полученным экспериментальным данным мы нашли среднее арифметическое число выживших дафний в контроле и опыте. Для расчета процента гибели дафний в опыте по отношению к контролю использовали формулу: X_1 - X_2 / X_2 , где X_1 — среднее арифметическое число выживших дафний в контроле; X_2 — среднее арифметическое число выживших дафний в опыте.

Озеро Шеляуховское, Змейки, Голубое: в пробе погибло 30% дафний, что свидетельствует о токсичности воды в данных образцах. Зона загрязнения - 2-я.

Озеро Исток, Михалевское: в пробе погибло 20% дафний, это свидетельствует о слаботоксичности воды в данных образцах. <u>Зона загрязнения - 3-я</u>

Река Узола: в пробе погибло 10% дафний, слаботоксичная вода в образце, <u>Зона загрязнения - 3-я.</u>

Река Волга, о. Долгое: в пробах погибло 40% дафний, что свидетельствует о сильной токсичности воды в образцах. Зона загрязнения - 1-я

Река Белая: в пробе погибло 50% дафний, что свидетельствует о сильной токсичности воды в данных образцах. Зона загрязнения - 1-я.

2. Определение микропластика в образцах воды.

Для определения наличия микропластика в исследуемых водоемах были проведены измерения объема воды, которая пройдет через фильтр без задержки. Пробу воды брали на расстоянии 2-3 м от берега в зависимости от глубины водоема (чтобы было не менее 50-60 см до дна). Измерения проводились 12 сентября 2022 года. Через фильтр пропускалось до 200 л воды (максимально). Если вода начинала течь медленно и фильтр засорялся, то пропускание воды через фильтр заканчивали. Далее фильтры с полученной нерастворимой массой твердых примесей высушивалась в течение месяца. Потом фильтры взвешивались вместе с примесями, фильтр промывался в подкисленном растворе сульфата железа (II) и перекиси водорода для растворения органических примесей. Фильтр оставался в данном растворе на 1 час. Затем фильтр промывался, водный раствор сливали в чашки Петри и рассматривали образец воды под микроскопом для обнаружения микропластика. Фильтр высушивался, потом взвешивался для определения твердого остатка, оставшегося после фильтрования воды из водоемов. Полученные результаты были занесены в таблицу 3.

Таблица 3. Исследование воды из исследуемых водоемов на наличие микропластика.

№	Название	Объем воды,	Macca	Macca	Масса осадка, в г	Количество
п/п	водоема	пошедший	фильтра до	фильтра	/ плотность	обнаруженно
		на	растворения	после		Γ0
		фильтрован	осадка, в г	растворения		микропласти
		ие, в л		осадка, в г		ка, шт.
1	р. Узола 1	200 (100%)	1,75	1,69	$0.06 (3*10^{-4} \text{г/л})$	3
2	р. Узола 2	200 (100%)	3,58	3,52	$0,06 (3*10^{-4} \Gamma/\pi)$	3
3	р. Белая	60 (30%)	3,20	1,74	$1,46 (2,4*10^{-2} г/л)$	13
4	р. Волга	84 (42%)	4,29	2,65	1,64 (1,95*10-2 г/л)	7
5	о. Долгое	200 (100%)	1,92	1,77	$0,15 (7,5*10^{-4} г/л)$	7
6	о. Исток	170 (85%)	2,83	1,82	1,01 (5,94*10-3 г/л	8
7	о. Змейки	200 (100%)	1,81	1,49	0,32 (1,6*10-3 г/л)	5
8	о. Голубое	200 (100%)	1,98	1,88	0,12 (6*10-4 г/л)	1
9	о. Черемисское	180 (90%)	1,91	1,86	$0.05 (2.8*10^{-4} \Gamma/\pi)$	2
10	о. Михалевское	190 (95%)	3,98	2,55	1,43 (7,5*10-3 г/л)	4
11	Горьковское	145 (72,5%)	2,82	2,06	$0,76 (5,2*10^{-3} г/л)$	7
	вдхр.					

Меньше всего воды понадобилось для фильтрования на р. Белая и р. Волга. В этих водоемах много оказалось водорослей, остатков других растений, взвеси песка, поэтому фильтр быстро забивался. Больше всего осадка по массе получилось в образцах воды из р. Белая, Волга и о. Михалевское.

С помощью светового микроскопа (увеличение x160) мы проверили воду на наличие микропластика. Больше всего его было обнаружено в образце из р. Белая (3 розовых нитевидных остатка, полупрозрачные желтоватые и беловатые остатки вытянутой формы). Такие же полупрозрачные желтоватые остатки были обнаружены в образцах из остальных озер и рек. В о. Змейки был обнаружен образец синего цвета нитевидной формы. В образце из водохранилища были обнаружены остатки белого пенопласта. Во время отбора проб в реках и озерах были найдены остатки полиэтиленовых пакетов, остатки шариковых ручек, пластиковых бутылок разного цвета, пакеты из-под напитков «Тетрапак» и др. В р. Узола была найдена покрышка от автомобиля.

Таким образом, проведя исследования образцов наиболее загрязненным водоемом оказалась р. Белая, в которой были обнаружены как остатки пластика, так и другие отходы человека (свалки бутылок, пакетов,

бумаг), водоем оказался сильно заросшим, от воды шел неприятный запах. В летний период рядом с рекой проезжать было неприятно из-за сильного запаха. Возможно, в реку идет сброс фекальных вод, каких-либо отходов животноводства или сельского хозяйства.

Вода в р. Волга также сильно загрязнена, на берегах находится много мусора, в воде остатки органических веществ в виде пленок на поверхности. От воды исходит тоже неприятный запах.

Меньше всего пластиковых отходов было обнаружено в о. Голубое. Оно находится всех дальше от г. Заволжье, в стороне от основной магистрали Н.Новгород — Иваново, поэтому меньше используется местным населением. Озеро очень красивое, вода кажется насыщенного голубого цвета. Во время нашего исследования мы впервые познакомились с этим озером. Остальные озера находятся в шаговой доступности от населения города, поэтому они имеют большую степень загрязнения.

Для повышения экологической культуры учащихся мы привлекаем внимание молодежи, общественности к проблемам водных источников посредством школьных акций на местах, акций по очистке водоемов. Ежегодно проводим уборку мусора на берегах р. Волга и о. Михалевское совместно с представителями области и Нижегородской ГЭС. Таким образом, мы пытаемся работать как для продвижения устойчивого управления водными ресурсами, так и для изменения общественного сознания, формируя экологически дружественное отношение людей к природе и к рекам, озерам и родникам, формируя нравственное и духовное сознание людей.

Заключение и выводы

В результате проделанной работы мы познакомились с еще ранее неизвестным озером Голубое, узнали причину появления этого названия у местных жителей, продолжили работу над исследованием качества воды в водных источниках около г. Заволжье (мониторинг за их состоянием ведется уже с 2015 года), выявили, что вода в исследуемых водоемах находится не в лучшем состоянии. В воде было обнаружено загрязнение как по органолептическим, так и по химическим показателям. С помощью биоиндикации было обнаружено, что хуже всего развиваются семена и растения кресс-салата с помощью воды из о. Исток и р. Белая, лучше всего – из о. Змейки и Голубое. Смертность дафний также оказалась выше всего в воде из р. Белая, Волга и о. Долгое, которые активно используются человеком. Меньше всего смертность дафний была в образце воды из р. Узола. Нам удалось обнаружить во всех образцах воды остатки микропластика, который может негативно сказываться как на состоянии водоема, так и на состоянии его обитателей. Больше всего таких остатков было обнаружено в осадке из р. Белая. Во время пропускания воды из этой реки через фильтр ее потребовалось меньше всего именно в этом водоеме. Данная река вызывает опасения у многих жителей Городецкого района по поводу ее экологического состояния. Ежегодно мы стараемся привлечь внимание наших школьников к проблеме водных объектов, чтобы сохранить их в чистоте для будущих поколений.

Литература

- 1. Афанасьев Ю.Я. Мониторинг и методы контроля окружающей среды: Учеб.пособие в двух частях: Часть 2. Специальная / Ю.А. Афанасьев[и др.] М: Изд-во МНЭПУ, 2001 337 с.
- 2. А.С.Боголюбов, Д.Н.Засько. Сравнительная комплексная характеристика малых рек и ручьев. Диск © «Экосистема» 1999
- 3. Бубнов, А.Г. Биотестовый анализ интегральный метод оценки качества объектов окружающей среды: учебно-методическое пособие / А.Г. Бубнов [и др.]; под общ. ред. В.И. Гриневича; ГОУ ВПО Иван. гос. хим.-технол. ун-т. Иваново, 2007.-112 с.
- 3. В.П. Александрова , А.Н. Гусейнов, Е.А. Нифантьева, И.В. Болгова, И.А. Шапошникова. Изучаем экологию города на примере московского столичного региона (пособие учите-лю по организации практических занятий) // М.: Издательство Бином. 2009. 400 стр., илл.
- 4. Измайлова Н.Л., Ляшенко О.А., Антонов И.В. Биотестирование и биоиндикациясостояния водных объектов. Учебно-методическое пособие к лабораторным работам по прохождению учебной (ознакомительной) практики. Ризограф Санкт-Петербургского государственного технологического университета растительных полимеров, 198095, СПб., ул. Ивана Черных, 4., 2014 http://www.nizrp.narod.ru/metod/kafoxrokrsr/4.pdf
- 5. Мелехова, О.П. Биологический контроль окружающей среды: биоиндикация и биотестирование: учеб.пособие для студ. высш. учеб. заведений / О.П. Мелехова [и др.]. М.: Издательский центр «Академия», 2007. 288 с.
- 6. Н.А.Пугал, В.Е.Евстигнеев «Методические рекомендации по проведению экологиче-ского практикума». ООО «Химлабо», 2008
- 7. Радченко, Н.М. Методы биоиндикации в оценке состояния окружающей среды / Н.М. Радченко, А.А. Шабунов. Вологда: Издательский центр ВИРО, 2006. 148 с.
- 8. Семенченко, В.П. Принципы и системы биоиндикации текучих вод / В.П. Семенченко Мн.: Орех, 2004, 125 с.
- 9. А.И. Федорова, А.Н. Никольская. Практикум по экологии и охране окружающей среды, гуманитарный издательский центр <<Владос>>, 2000
- 10. Шеховцова Т.Н. Биологические методы анализа / Т.Н. Шеховцова // Соросовский образовательный журнал, том 6, №11, 2000, С. 17-21.

Интернет-ресурсы:

- 1. http://maps.yandex.ru карты Городецкого района
- 2. https://aqua-tropica.ru/dafnija-magna-daphnia-magna/