Algoritmi e Strutture Dati

a.a. 2023/24

Compito del 12/06/2024

Cognome:			Nome:		
Matricola:			E-mail:		
			Parte I esercizio vale 2 pun	ti)	
Avvertenza: Si giust esercizi non verranno			oste. In caso di disc	ussioni poco forma	ıli o approssimative gli
	l'operazione C	ancellazione si assi	uma di essere sull'ele	emento x a cui si ap	
Tabelle Hash	Ricerca	Minimo	Cancellazione	Massimo	Costruzione
con liste di collisione (caso medio)*					
Мах-Неар					
*La Tabella	Hash ha dimens	ione m e il fattore d	i carico è α e le liste	sono doppiamente	concatenate.
2. Sia <i>G</i> un graf	fo non orientato	con n vertici ed m a	archi. Si stabilisca se	le seguenti afferma	azioni sono corrette:
<i>b</i>)	Se $m = n - 1$	allora G è connesso allora G è un albero allora G è aciclico			

In caso affermativo si fornisca una dimostrazione, altrimenti un controesempio.

3. Un nuovo algoritmo per determinare un albero di copertura minimo in un grafo pesato ha complessità

$$T(m) = 3T\left(\frac{m}{3}\right) + \frac{m}{3}$$

dove m rappresenta il numero di archi del grafo in ingresso. Si dica se l'algoritmo in questione è preferibile o meno all'algoritmo di Kruskal e perché.

Algoritmi e Strutture Dati

a.a. 2023/24

Compito del 12/06/2024

Cognome:	Nome:
Matricola:	E-mail:

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

Avvertenza: Si giustifichino tecnicamente tutte le risposte. In caso di discussioni poco formali o approssimative gli esercizi non verranno valutati pienamente.

- 1. Siano T_l e T_2 due **alberi binari di ricerca** tali che tutte le chiavi memorizzate in T_l sono minori delle chiavi memorizzate in T_2 .
 - a. Scrivere una funzione in C o in C++ PTree MergeBST (PTree T1, PTree T2) che presi in input T_1 e T_2 restituisca un albero binario di ricerca T le cui chiavi sono tutte e sole le chiavi contenute in T_1 e T_2
 - b. Determinare la complessità della funzione proposta nel caso migliore e nel caso peggiore.

La rappresentazione dell'albero binario di ricerca è tramite puntatori e utilizza i tipi PTree e PNode.

- 2. Un giovane amante del trekking vuole organizzare la prossima camminata e ha raccolto nel vettore *alture* l'altitudine di n punti che vorrebbe raggiungere. Dal punto in posizione 0 <= i < n, il giovane può raggiungere qualsiasi altro punto in posizione i < j < n, data una condizione: l'altitudine del punto in posizione j deve essere minore o uguale a quella del punto in posizione i. Una sequenza di punti consecutivi forma un percorso, la cui lunghezza è il numero dei punti.
 - a. fornire una caratterizzazione ricorsiva della lunghezza l_i di un percorso di lunghezza massima che abbia come ultimo punto alture[i];
 - b. tradurre tale definizione in un algoritmo di programmazione dinamica con il metodo bottom-up che determina la lunghezza del percorso più lungo percorribile dal giovane.
 - c. valutare e giustificare la complessità dell'algoritmo.

Il prototipo della funzione è il seguente:

int percorso piu lungo(vector<int>& alture)

3. Sia G = (V, E) un grafo orientato e pesato, con funzione peso $w : E \to \mathbb{R}$, che non contenga cicli negativi e cappi. Si assuma che i vertici siano numerati da 1 a n, ovvero $V = \{1, \ldots, n\}$, e sia W la matrice di dimensione $n \times n$ definita come segue:

$$W[i,j] = \begin{cases} 0 & se \ i = j \\ w(i,j) & se \ i \neq i \ e \ (i,j) \in E \\ +\infty & se \ i \neq j \ e \ (i,j) \notin E \end{cases}$$

Si stabilisca quali problemi risolvono i due algoritmi riportati di seguito (che prendono in ingresso la matrice *W* associata al grafo), se ne dimostri la correttezza e se ne calcoli la complessità.

```
MyAlgorithm1(W)

1.  n = n.ro di righe di W

2.  alloca spazio per un vettore D
    di dimensione n

3.  D[1] = 0

4.  for i = 2 to n

5.  D[i] = +∞

6.  for k = 1 to n

7.  for i = 1 to n

8.  for j = 1 to n

9.  D[j] = min{ D[j], D[i] + W[i,j] }

10. return D
```

Cosa restituiscono in uscita i due algoritmi in presenza del grafo seguente? (Scrivere <u>esplicitamente</u> il *vettore D* nel primo caso e la *matrice D* nel secondo. Non è necessario riportare la simulazione degli algoritmi.)

4. Il seguente algoritmo accetta in ingresso la matrice di adiacenza di un grafo non orientato e restituisce TRUE o FALSE. Qual è la funzione svolta dall'algoritmo e qual è la sua complessità?

```
MyAlgorithm3(A)
1. n = n.ro di righe di A
  crea due matrici n x n B e C
3.
    for i = 1 to n
       for j = 1 to n
4.
          B[i,j] = 0
for k = 1 to n
5.
6.
             B[i,j] = A[i,k]*A[k,j]
8.
    for i = 1 to n
       for j = 1 to n
9.
           C[i,j] = 0
for k = 1 to n
10.
11.
12.
               C[i,j] = B[i,k]*A[k,j]
13. sum = 0
14. for i = 1 to n
15.
       sum = sum + C[i,i]
16. if sum = 0 then
15.
       return TRUE
16. else
       return FALSE
17.
```

Cosa restituirebbe l'algoritmo nei casi seguenti? Perché?

