Sequences and Convergence

Definition 1. (Convergence of a Sequence) Let (X,d) be a metric space and let (x_n) be a sequence in X. (x_n) converges to a limit $x \in X$ if and only if for every $\epsilon > 0$, we can find $N \in \mathbb{N}$ such that if n > N, $d(x_n, x) < \epsilon$.

Notation 1.

- 1. $x_n \to x$ as $n \to \infty$
- $2. x_n \to x$
- 3. $\lim_{x\to\infty} x_n = x$

Remark. (i) $x_n \to x \iff \forall \epsilon > 0 \ \exists N \in \mathbb{Z} \text{ such that } \forall n > N \ d(x_n, x) < \epsilon$.

- (ii) If (x_n) does not converge, we say it diverges.
- (iii) $x_n \to x \iff \forall \epsilon > 0 \ \exists N \in \mathbb{Z} \text{ such that } \forall n > N \ d(x_n, x) < \epsilon$ $x_n \to x \iff \forall \epsilon > 0 \ \exists N \in \mathbb{R} \text{ such that } \forall n > N \ d(x_n, x) < \epsilon$

Definition 2. (Bounded Sequence) Let (X,d) be a metric space and let (x_n) be a sequence in X. (x_n) is said to be bounded if the set $\{x_n : n \in \mathbb{N}\}$ is a bounded set in the metric space X.

$$(x_n)$$
 is bounded $\iff \exists q \in X \ \exists r > 0 \text{ such that } \{x_n : n \in \mathbb{N}\} \subseteq N_r(q)$
 $\iff \exists q \in X \ \exists r > 0 \text{ such that } d(x,q) < r$

Example. Consider \mathbb{R} equipped with the standard metric.

- (i) $x_n = (-1)^n$: this sequence is bounded, has a finite range $\{-1,1\}$, and diverges.
- (ii) $x_n = \frac{1}{n}$: this sequence is bounded, has an infinite range, and converges to 0.
- (iii) $x_n = 1$: this sequence is bounded, has a finite range, and converges to 1.
- (iv) $x_n = n^2$: this sequence is undbounded, has an infinite range, and diverges.

Example. Consider $Y = (0, \infty)$ with the induced metric from \mathbb{R} . $x_n = \frac{1}{n}$: this sequence is bounded, has infinite range, and diverges.

Theorem 1. (An equivalent characterization of convergence) Let (X, d) be a metric space.

$$x_n \to x \iff \forall \epsilon > 0 \ N_{\epsilon}(x)$$
 contains x_n for all but at most finitely many n .

Proof.

$$\begin{array}{lll} x_n \to x & \Longleftrightarrow & \forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \text{such that} \; \forall n > N \; d(x_n,x) < \epsilon \\ & \Longleftrightarrow & \forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \text{such that} \; \forall n > N \; x_n \in N_\epsilon(x) \\ & \Longleftrightarrow & \forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \text{such that} \; N_\epsilon(x) \; \text{contains} \; x_n \; \forall n > N \\ & \Longleftrightarrow & \forall \epsilon > 0 \; N_\epsilon(x) \; \text{contains} \; x_n \; \text{for all but at most finitely many} \; n. \end{array}$$

Theorem 2. (Uniqueness of a Limit) Let (X,d) be a metric space and let (x_n) be a sequence in X. If $x_n \to x$ in X and $x_n \to \overline{x}$ in X, then $x = \overline{x}$.

To prove this theorem, we make use of the following lemma:

Lemma 1. Suppose $a \ge 0$. If $a < \epsilon \ \forall \epsilon > 0$, then a = 0.

Proof. In order to prove that $x = \bar{x}$, it is enough to show that $d(x, \bar{x}) = 0$. To this end, according to Lemma 1, it is enough to show that

$$\forall \epsilon > 0 \ d(x, \bar{x}) < epsilon.$$

Let $\epsilon > 0$ be given.

$$x_n \to x \implies \exists N_1 \text{ such that } \forall n > N_1 \ d(x_n, x) < \frac{\epsilon}{2}$$

 $x_n \to \bar{x} \implies \exists N_2 \text{ such that } \forall n > N_2 \ d(x_n, \bar{x}) < \frac{\epsilon}{2}$

Let $N = \max\{N_1, N_2\}$. Pick any n > N. We have

$$d(x, \bar{x}) \le d(x, x_n) + d(x_n, \bar{x})$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

Theorem 3. (Convergent \Longrightarrow bounded) Let (X,d) be a metric space and let (x_n) be a sequence in X. If $x_n \to x$ in X, then (x_n) is bounded.

Proof. By definition of convergence with $\epsilon = 1$, we have

$$\exists N \in \mathbb{N} \text{ such that } \forall n > N \ x_n \in N_1(x).$$

Now, let $r = \max\{1, d(x_1, x), d(x_2, x), ..., d(x_n, x)\} + 1$. Then, clearly,

$$\forall n \in \mathbb{N} \ d(x_n, x) < r$$

Hence,

$$\forall n \in \mathbb{N} \ x_n \in N_r(x).$$

Therefore, (x_n) is bounded.

Corollary 1. (contrapositive) If (x_n) is NOT bounded in X, then (x_n) diverges in X.

Theorem 4. (Limit Point is a Limit of a Sequence) Let (X,d) be a metric space and let $E \subseteq X$. Suppose $x \in E'$. Then there exists a sequence $x_1, x_2, ...$ of distinct points in $E \setminus \{x\}$ that converges to x.

Proof. Since $x \in E'$,

$$\forall \epsilon > 0 \ N_{\epsilon}(x) \cap (E \setminus \{x\})$$
 is infinite.

In particular,

for
$$\epsilon=1$$
 $\exists x_1\in E\backslash\{x\}$ such that $d(x_1,x)<1$
for $\epsilon=\frac{1}{2}$ $\exists x_2\in E\backslash\{x\}$ such that $x_2\neq x_1\wedge d(x_2,x)<\frac{1}{2}$
for $\epsilon=\frac{1}{3}$ $\exists x_3\in E\backslash\{x\}$ such that $x_3\neq x_2\wedge d(x_3,x)<\frac{1}{3}$

:

for
$$\epsilon = \frac{1}{n} \exists x_n \in E \setminus \{x\}$$
 such that $x_n \neq x_1, x_2, x_3, \dots \land d(x_n, x) < \frac{1}{n}$

:

In this way we obtain a sequence $x_1, x_2, x_3, ...$ of distinct points in $E \setminus \{x\}$ that converges to x. Let $\epsilon > 0$ be given. We need to find N such that if n > N then $d(x_n, x) < \epsilon$. Let N be such that $\frac{1}{N} < \epsilon$ (archimedean property). Then $\forall n > N$ $d(x_n, n) < \frac{1}{n} < \frac{1}{N} < \epsilon$ as desired.