1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №5 по курсу «Моделирование»

на тему: «Моделирование работы информационного центра»

Студент <u>ИУ7-73Б</u>		В. П. Авдейкина
(Группа)	(Подпись, дата)	(Фамилия И.О.)
Руководитель	(Подпись, дата)	

СОДЕРЖАНИЕ

1	Условие лабораторной	3
2	Теоретическая часть	4
2.1	Схемы модели	4
2.2	2 Равномерное распределение	5
2.3	В Переменные и уравнение имитационной модели	5
3	Практическая часть	6

1 Условие лабораторной

Моделируем информационный центр. В информационный центр приходят клиенты (пользователи) через интервал времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса от пользователя за 20 ± 5 , 40 ± 10 и 40 ± 20 ед. времени (минут). Клиенты стараются занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель, откуда выбираются на обработку. На первый компьютер — от первого и второго операторов, на второй — от третьего. Время обработки запроса в компьютерах — 15 и 30 минут соответственно. Смоделировать процесс обработки 300 запросов. Определить вероятность отказа.

2 Теоретическая часть

2.1 Схемы модели

На рисунке 1 представлена структурная схема модели.

Рисунок 1 — Структурная схема модели

В процессе взаимодействия клиентов с информационным центром возможно два режима работы:

- режим нормального обслуживания, когда клиент выбирает одного из свободных операторов, отдавая предпочтение тому, у кого максимальная производительность;
- режим отказа клиенту в обслуживании, когда все операторы заняты.

На рисунке 2 представлена схема модели в терминах систем массового обслуживания (СМО).

Рисунок 2 — Схема модели в терминах СМО

2.2 Равномерное распределение

Случайная величина X имеет равномерное распределение на отрезке [a, b], если ее плотность распределения f(x) равна:

$$p(x) = \begin{cases} \frac{1}{b-a}, & \text{если } a \le x \le b; \\ 0, & \text{иначе.} \end{cases}$$
 (1)

При этом функция распределения F(x) равна:

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & a \le x \le b; \\ 1, & x > b. \end{cases}$$
 (2)

Обозначение: $X \sim R[a, b]$.

$$T_i = a + (b - a) \cdot R,\tag{3}$$

где R — псевдослучайное число от 0 до 1.

2.3 Переменные и уравнение имитационной модели

Эндогенные переменные:

- время обработки задания i-ым оператором;
- время решения задания на j-ом компьютере.

Экзогенные переменные:

- -n0 число обслуженных клиентов;
- n1 число клиентов, получивших отказ.

Вероятность отказа в обслуживании клиента будет вычисляться как:

$$P = \frac{n_0}{n_0 + n_1} \tag{4}$$

3 Практическая часть

На рисунке 3 представлены примеры работы разработанной программы для нахождение вероятности отказа.

Рисунок 3 — Результат работы программы