SCI015 MINI **PROJECT**

Group: Law Ming Han Yin Jian Toh Zhi Yang

TABLE OF CONTENTS

CONCLUSION

MACHINE LEARNING

PROBLEM DEFINITION

BACKGROUND OF MUSIC INDUSTRY

AS OF 2021, THERE ARE 1.2 MILLION ARTISTS STREAMING ON SPOTIFY.

THIS IS A GROWING PLATFORM, AS OBSERVED FROM THE ENTRY OF 150,000 ARTISTS ONTO SPOTIFY IN 2020.

OI

DEFINITION

02

DATA PREPARATION &

CLEANING

O3

EDA & VISUALISATION

(04

(05)

CONCLUSION

MACHINE LEARNING

PRACTICAL MOTIVATION

- ASSIST NEW ARTISTS TO INCREASE THEIR LIKELIHOOD OF RELEASING A HIT SONG
- ASSIST ESTABLISHED ARTISTS TO REPLICATE THEIR PREVIOUS HIT SONGS

OUR GROUP INTENDS TO INVESTIGATE THE RELATIONSHIP BETWEEN AUDIO FEATURES AND POPULARITY OF SPOTIFY TRACKS.

O2 DATA PREPARATION AND CLEANING

DATA PREPARATION

ACCESSING TO THE SPOTIFY'S API

```
import spotipy
from spotipy.oauth2 import SpotifyClientCredentials
cid = '6b2418c9674f4f7c9f5e2809aa2b3678'
secret = '781801fad3b646c6b7844583a170957c'
client_credentials_manager = SpotifyClientCredentials(client_id=cid, client_secret=secret)
sp = spotipy.Spotify(client credentials manager
client credentials manager)
```

EXTRACTING RELEVANT DATA FROM THE API

```
for yr in range(20):
   for i in range(20):
       track results = sp.search(q='year:{}'.format(years[yr]), type='track', limit=50,offset=i*50)
       print(track results)
       for i, t in enumerate(track results['tracks']['items']):
           artist name.append(t['artists'][0]['name'])
           track_name.append(t['name'])
           track id.append(t['id'])
           popularity.append(t['popularity'])
```


0 **PROBLEM DEFINITION**

02 DATA PREPARATION &

CLEANING

EDA & VISUALISATION

04

05

MACHINE LEARNING

CONCLUSION

DATA PREPARATION

EXTRACTING AUDIO FEATURES BASED ON TRACK_ID

```
ls = list(df['track id'])
audio features = []
for ids in range(0, 19400, 100):
    audio features.append(sp.audio features(ls[ids:ids+100]))
audio features.append(sp.audio features(ls[19400:19419]))
for i in range(0, 194):
    for j in range(100):
        if audio features[i][i] != None:
            danceability.append(audio_features[i][j]['danceability'])
           energy.append(audio_features[i][j]['energy'])
           key.append(audio_features[i][j]['key'])
           loudness.append(audio features[i][j]['loudness'])
           mode.append(audio features[i][j]['mode'])
            speechiness.append(audio_features[i][j]['speechiness'])
           acousticness.append(audio_features[i][j]['acousticness'])
           instrumentalness.append(audio_features[i][j]['instrumentalness'])
            liveness.append(audio features[i][j]['liveness'])
```


01

PROBLEM

DEFINITION

DATA PREPARATION & CLEANING

O3

EDA & VISUALISATION

04)

05

MACHINE LEARNING CONCLUSION

CLEANING

- REMOVING DUPLICATES
 - SAME TRACK_ID
- REMOVAL OF NONE VALUES FOR AUDIO FEATURES DATA
 - REPLACE NONE VALUES WITH EXTREME VALUE FOR EASE OF REMOVAL WHEN COMBINED

WITH FINAL DATA SET

EXPORTING THEM INTO A CSV FILE FOR FURTHER EDA

EDA AND VISUALISATION

RESPONSE VARIABLE

POPULARITY: BASED ON THE TOTAL NUMBER OF PLAYS THE TRACK HAS HAD

AND HOW RECENT THOSE PLAYS ARE

PREDICTOR VARIABLES (NUMERIC)

DANCEABILITY: HOW SUITABLE A TRACK IS FOR DANCING

ENERGY: MEASURE OF INTENSITY AND ACTIVITY

LOUDNESS: THE OVERALL LOUDNESS OF A TRACK IN DECIBELS.

SPEECHINESS: PRESENCE OF SPOKEN WORDS IN A TRACK.

ACOUSTICNESS: MEASURE OF WHETHER THE TRACK IS ACOUSTIC.

INSTRUMENTALNESS: PREDICTS WHETHER A TRACK CONTAINS NO VOCALS.

LIVENESS: DETECTS THE PRESENCE OF AN AUDIENCE IN THE RECORDING.

TEMPO: OVERALL ESTIMATED TEMPO OF A TRACK IN BEATS PER MINUTE

DURATION: DURATION OF THE TRACK IN MINUTES

PREDICTOR VARIABLES (CATEGORICAL)

MODE: MAJOR (I) OR MINOR (O) SCALE

KEY: THE KEY THE TRACK IS IN

TIME SIGNATURE: AN ESTIMATION OF HOW MANY BEATS PER BAR

DISTRIBUTION OF ALL VARIABLES (NUMERIC & CATEGORICAL)

SUMMARY STATISTICS (NUMERIC)

	danceability	energy	loudness	speechiness	acousticness	instrumentalness	liveness	valence	tempo	duration
count	19416.000000	19416.000000	19416.000000	19416.000000	19416.000000	19416.000000	19416.000000	19416.000000	19416.000000	19416.000000
mean	0.570222	0.674815	-7.838767	0.090111	0.230815	0.177834	0.229087	0.490992	122.719028	3.953030
std	0.169750	0.233090	4.320179	0.105160	0.297112	0.325169	0.201796	0.252063	27.946602	3.010822
min	0.000000	0.000020	-44.761000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.290000
25%	0.458000	0.525000	-9.351500	0.036100	0.005130	0.000000	0.098300	0.287000	100.253250	3.030000
50%	0.575000	0.716000	-6.844500	0.049900	0.074900	0.000087	0.141000	0.487000	124.893000	3.690000
75%	0.694000	0.868000	-5.080000	0.090700	0.378000	0.124250	0.304000	0.693000	138.056000	4.410000
max	0.985000	1.000000	1.526000	0.961000	0.996000	1.000000	0.996000	0.998000	220.099000	80.000000

CORRELATION BETWEEN NUMERIC VARIABLES AND POPULARITY

	danceability	energy	loudness	speechiness	acousticness	instrumentalness	liveness	valence	tempo	duration	popularity
danceability	1.000	0.014	0.194	0.157	-0.109	-0.163	-0.195	0.409	-0.119	-0.034	0.061
energy	0.014	1.000	0.699	0.038	-0.698	0.004	0.129	0.267	0.204	-0.035	-0.004
loudness	0.194	0.699	1.000	-0.001	-0.543	-0.341	-0.047	0.264	0.138	-0.046	0.063
speechiness	0.157	0.038	-0.001	1.000	0.010	-0.115	0.132	0.030	0.011	-0.009	0.028
acousticness	-0.109	-0.698	-0.543	0.010	1.000	0.013	-0.001	-0.124	-0.174	-0.008	-0.032
instrumentalness	-0.163	0.004	-0.341	-0.115	0.013	1.000	0.058	-0.194	0.020	0.059	-0.057
liveness	-0.195	0.129	-0.047	0.132	-0.001	0.058	1.000	-0.050	-0.019	0.019	-0.036
valence	0.409	0.267	0.264	0.030	-0.124	-0.194	-0.050	1.000	0.046	-0.138	-0.007
tempo	-0.119	0.204	0.138	0.011	-0.174	0.020	-0.019	0.046	1.000	-0.012	0.004
duration	-0.034	-0.035	-0.046	-0.009	-0.008	0.059	0.019	-0.138	-0.012	1.000	-0.003
popularity	0.061	-0.004	0.063	0.028	-0.032	-0.057	-0.036	-0.007	0.004	-0.003	1.000

INSIGHTS: None of the numeric variables have a strong linear relationship with popularity.

SUMMARY STATISTICS (CATEGORICAL)

	key	mode	time_signature
count	19416.000000	19416.000000	19416.000000
mean	5.297384	0.648795	3.929440
std	3.555519	0.477359	0.367445
min	0.000000	0.000000	0.000000
25%	2.000000	0.000000	4.000000
50%	5.000000	1.000000	4.000000
75%	8.000000	1.000000	4.000000
max	11.000000	1.000000	5.000000

CLEANING

DEFINITION

DISTRIBUTION OF CATEGORICAL VARIABLES AGAINST POPULARITY

INSIGHTS: Only time signature indicate a relationship with popularity.

REMOVAL OF OUTLIERS USING ISOLATION FOREST

- Unsupervised learning algorithm that can isolate outliers from a multi-dimensional dataset effectively.
- EXPLOITS THE NATURE THAT ANOMALIES ARE "FEW AND DIFFERENT".

```
from sklearn.ensemble import IsolationForest
iForest = IsolationForest(n_estimators = 100, contamination = 0.05)
# fit model
iForest.fit(variables)
# predict on data
anomaly_mask = iForest.predict(variables) #anomalies will be masked as -1 in the array
print("number of anomalies identified:",anomaly_mask.tolist().count(-1)) #number of anomalies marked
temp = pd.concat([variables, popularity],axis=1).reindex(variables.index)
temp_wo = temp[(anomaly_mask != -1)].reset_index(drop=True)
print("new shape:",temp_wo.shape) # check the shape
number of anomalies identified: 970
new shape: (18446, 14)
```


ONE-HOT ENCODING

- AS THE CATEGORICAL VARIABLES MAY NOT BE *ordinal*, integer encoding is unfeasible.
- WE DECIDED TO ENCODE NOMINAL (UNORDERED) CATEGORICAL VARIABLES VIA ONE-HOT ENCODING

key_0	key_1	key_2	key_3	key_4	key_5	key_6	key_7	key_8	key_9	key_10	key_11	mode_0	mode_1	time_signature_1	time_signature_3	time_signa
0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	
0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	
0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	

MACHINE LEARNING

RATIONALE

Since response variable is numeric, we decided to carry out machine learning using multivariate linear regression model.

LINEAR REGRESSION MODEL I

Using top 6 numeric predictor variables

Goodness of Fit of Model Train Dataset

Explained Variance (R^2) : 0.008451468096549952 Mean Squared Error (MSE) : 928.3012852883592

Goodness of Fit of Model Test Dataset

Explained Variance (R^2) : 0.007836228489523145 Mean Squared Error (MSE) : 943.7999077942966

Explained Variance of Model 1 with CV: 0.00687301640532747 Standard Deviation of scores: 0.0056686750240689575

02

DATA PREPARATION & CLEANING

O3
EDA & VISUALISATION

O5 CONCLUSION

LINEAR REGRESSION MODEL II

Using all numeric predictor variables

Goodness of Fit of Model Train Dataset
Explained Variance (R^2) : 0.01405685270875845
Mean Squared Error (MSE) : 923.0534476156436

Explained Variance of Model 2 with CV: 0.01181121680073377

Standard Deviation of scores: 0.007154644542709526

LINEAR REGRESSION MODEL III

Using all categorical predictor variables

Goodness of Fit of Model Train Dataset

Explained Variance (R^2) : 0.0013309442827409423 Mean Squared Error (MSE) : 934.9676169863106

Goodness of Fit of Model Test Dataset

Explained Variance (R^2) Mean Squared Error (MSE) : 951.8817419608972

Explained Variance of Model 3 with CV: -0.0014752871233808195

Standard Deviation of scores: 0.0022211904659367654

: -0.0006597493138613686

LINEAR REGRESSION MODEL IV

Using all (numeric and categorical) variables

Goodness of Fit of Model Train Dataset
Explained Variance (R^2) : 0.015190483566692947

Mean Squared Error (MSE) : 0.0151904835666929

Goodness of Fit of Model Test Dataset

Explained Variance (R^2) : 0.012360285011229322 Mean Squared Error (MSE) : 939.4963802410358

Explained Variance of Model 4 with CV: 0.010445790529205346

Standard Deviation of scores: 0.00775455993960656

CROSS-VALIDATION SCORES (LINEAR REGRESSION)

	MEAN (EXPLAINED VARIANCE)	STANDARD DEVIATION
MODELI	0.0069	0.0057
MODEL II	0.0118	0.0072
MODELIII	-0.0015	0.0022
MODELIV	0.0104	0.0078

RESULTS ANALYSIS (LINEAR REGRESSION)

	EXPLAINED	VARIANCE	MEAN SQUARED ERROR		
	TRAIN	TEST	TRAIN	TEST	
MODELI	0.0085	0.0078	928.3	943.8	
MODEL II	0.0141	0.0112	923.1	940.6	
MODEL III	0.0013	-0.0007	935.0	951.9	
MODELIV	0.0152	0.0124	922.0	939.5	

THE USAGE OF MORE VARIABLES GIVES A MORE ACCURATE PREDICTION.

Interesting: The difference in explained variance for model 4 and model 2 is noticeable

CATEGORICAL VARIABLES IN THE PREDICTION OF POPULARITY WORSENS MODEL IN LINEAR REGRESSION, TOO MUCH VARIABLES, LEADING TO A TOO COMPLEX MODEL

EXPLORING OTHER MODELS

- GIVEN THE BIMODAL DISTRIBUTION ABOVE, WE CLASSIFY POPULARITY INTO TWO CLASSES:
 - TRUE: POPULARITY >= 50
 - FALSE: POPULARITY < 50</p>
- NO CLASS IMBALANCE

RATIONALE

SINCE RESPONSE VARIABLE IS NOW CATEGORICAL, WE DECIDED TO CARRY OUT MACHINE LEARNING

USING DECISION TREES/LOGISTIC REGRESSION MODEL.

MODEL V: SINGLE DECISION TREE

TPR Train: 0.7146932952924394
TNR Train: 0.4184528034066714

FPR Train: 0.5815471965933287 FNR Train: 0.28530670470756064

DEFINITION

<AxesSubplot:>

0

Test Data

Accuracy: 0.5443209541881269

TPR Test: 0.692019282271023 TNR Test: 0.3929747530186608

FPR Test: 0.6070252469813392 FNR Test: 0.30798071772897695

<AxesSubplot:>

Accuracy of Model 5 with CV: 0.5493367323503744 Standard Deviation of scores: 0.013589544836058991

OI O2 O3

PROBLEM DATA PREPARATION & EDA & VISUALISATION

CLEANING

04
MACHINE LEARNING

05 CONCLUSION

MODEL VI: RANDOM FOREST (UNOPTIMISED)

DATA PREPARATION &

CLEANING

PROBLEM

DEFINITION

EDA & VISUALISATION

MACHINE LEARNING

CONCLUSION

ANALYSIS

- RANDOM FOREST USES MULTIPLE DECISION TREES THAT CHOOSES FEATURES RANDOMLY.
- IT DOES NOT RELY ON THE FEATURE IMPORTANCE EXHIBITED BY A SINGLE DECISION TREE.
- RANDOM FOREST CAN GENERALIZE OVER THE DATA IN A BETTER WAY.
- CLASSIFICATION ACCURACY, TPR AND TNR SLIGHTLY IMPROVED BY USING RANDOM FOREST

MODEL VII: RANDOM FOREST (OPTIMISED HYPERPARAMETERS: MAX_DEPTH = IO, N_ESTIMATORS =900)

DEFINITION

CLEANING

- THE MODEL'S ACCURACY ON THE TRAIN AND TEST SET HAS IMPROVED BASED ON THE OPTIMISED VALUES OF N_ESTIMATORS =900 AND MAX_DEPTH=10
- HOWEVER, THE ACCURACY OF THE TRAIN SET IS MUCH HIGHER THAN THAT OF THE TEST SET, WHICH PROVES THAT THE MODEL FAILS TO GENERALIZE TO THE TEST DATA.
- THIS PHENOMENON IS REFERRED TO AS 'OVERFITTING'.

MODEL VIII: REGULARISED RANDOM FOREST (WITH OPTIMISED HYPERPARAMETERS + PRE-PRUNING)

- REGULARISATION TECHNIQUE: PRE-PRUNING
 - O INVOLVES TUNING THE HYPERPARAMETERS OF THE RANDOM FOREST MODEL.
 - HYPERPARAMETERS: MIN_SAMPLES_LEAF, MIN_SAMPLES_SPLIT
 - THIS AIMS TO CONTROL THE COMPLEXITY OF THE MODEL, AND REDUCE OVERFITTING
- OPTIMISED PARAMETERS: MIN_SAMPLES_LEAF = 0.01, MIN_SAMPLES_SPLIT = 0.01

MODEL VIII: RANDOM FOREST (WITH OPTIMISED HYPERPARAMETERS + PRE-PRUNING)

DEFINITION

CLEANING

ANALYSIS

- WITH PRE-PRUNING, CLASSIFICATION ACCURACY FOR TEST SET REMAINED RELATIVELY THE SAME, WHILE THAT FOR TRAIN SET DECREASED GREATLY.
 - O OVERFITTING IS REDUCED, WHILE MAINTAINING CLASSIFICATION ACCURACY
- INSIGNIFICANT IMPROVEMENT IN TEST CLASSIFICATION ACCURACY MIGHT BE DUE TO THE UNRELATED NATURE OF OUR DATASET
 (BETWEEN POPULARITY AND AUDIO FEATURES)
- REGULARISATION ATTEMPT UNSUCCESSFUL

MODEL IX: LOGISTIC REGRESSION CLASSIFICATION

ANALYSIS

- LOGISTIC REGRESSION IS A STATISTICAL ANALYSIS METHOD TO PREDICT A BINARY OUTCOME, SUCH AS YES OR NO, BASED ON PRIOR OBSERVATIONS OF A DATA SET
- LOGISTIC REGRESSION APPLIES REGULARISATION BY DEFAULT
- LOGISTIC REGRESSION MODEL PERFORMED SIMILAR TO PRE-PRUNED MODEL, WITH NO 'OVERFITTING'.

CROSS VALIDATION SCORES (CLASSIFICATION MODEL)

AM

	MEAN (CLASSIFICATION ACCURACY)	STANDARD DEVIATION
MODEL V	0.5493	0.0136
MODEL VI	0.5574	0.0133
MODEL VII	0.5653	0.0141
MODEL VIII	0.5590	0.0159
MODELIX	0.5539	0.0144

RESULTS ANALYSIS (CLASSIFICATION MODEL)

	CLASSIFICATION ACCURACY	
	TRAIN	TEST
MODEL V	0.5733	0.5443
MODEL VI	0.5905	0.5684
MODEL VII	0.7482	0.5785
MODEL VIII	0.5918	0.5617
MODEL IX	0.5560	0.5671

THE CONCLUSION

CONCLUSION

- OUT OF ALL CLASSIFICATION MODELS, LOGISTIC REGRESSION MODEL PERFORMS THE BEST.
 - O THIS CAN BE OBSERVED BY REDUCTION IN 'OVERFITTING' AS WELL AS THE IMPROVEMENT IN ACCURACY FROM TRAIN SET TO TEST SET
- ADDITIONALLY, ALTHOUGH PRE-PRUNING WAS DONE TO REGULARISE THE DATA, IT WAS NOT A GOOD
 ATTEMPT BECAUSE THE ACCURACY ON THE TEST SET DID NOT IMPROVE

OUR THOUGHTS

NO PERFECT FORMULA

- VARIOUS GENRES EXISTS FOR A REASON
- POPULAR SONGS CHANGE OVERTIME ACCORDING TO DEMOGRAPHIC AND TASTE

EXTERNAL FACTORS

- MARKETING
- FUNDING
- EXPLOIT OF SPOTIFY
 POPULARITY ALGORITHM

RECOMMENDATIONS

NARROW OUR SCOPE

EXPLORE THE RELATIONSHIP
 IN THE SAME GENRE, RATHER
 THAN ACROSS MULTIPLE
 GENRES

DIFFERENT MACHINE LEARNING MODEL

 INCORPORATE DEEP LEARNING NEURAL NETWORKS TO BETTER STUDY THE RELATIONSHIP BETWEEN POPULARITY AND AUDIO VARIABLES

THANKS!

REFERENCES

LEWINSON, E. (2021, AUGUST 26). *Outlier Detection with Isolation Forest*. Medium. Retrieved April 1, 2022, from https://towardsdatascience.com/outlier-detection-with-isolation-forest-3di90448d45e

SWAMINATHAN, S. (2019, JANUARY 18). LOGISTIC REGRESSION - DETAILED OVERVIEW. MEDIUM. RETRIEVED APRIL 1, 2022, FROM HTTPS://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc

SPOTIFY API - HTTPS://DEVELOPER.SPOTIFY.COM/DOCUMENTATION/WEB-API/

