

Semi-Supervised Classification with Graph Convolutional Networks

Thomas N.Kipf, Max Welling ICLR 2017

School of Computer Science and Engineering
Chung-Ang University
DMAIS Lab
2025-02-25

Index

- Motivation
- Background
 - Laplacian Matrix
- □ Goal
- ☐ Graph Convolutional Network
- ☐ Semi-Supervised Node Classification
- Experiments
- Limitations
- Conclusion

Motivation

Graph-based semi-supervised learning

- $L = L_0 + \lambda L_{reg}, \text{ with } L_{reg} = \sum_{i,j} A_{ij} \left| \left| f(X_i) f(X_j) \right| \right|^2 = f(X)^T \Delta f(X)$
- L_0 : supervised loss w.r.t the labeled part of the graph
- L_{reg}: Induce the predictions of nearby nodes in the graph to be similar \rightarrow Restrict modeling capacity!

Background

Laplacian Matrix

- L = D A
- D: Degree Matrix, A: Adjacency Matrix

Labeled graph	Degree matrix		Adjacency matrix					Laplacian matrix											
	12	0	0	0	0	0 \	10	1	0	0	1	0\	1	2	-1	0	0	-1	0 \
6	0	3	0	0	0	0	1	0	1	0	1	0	11	-1	3	-1	0	-1	0
(4)	0	0	2	0	0	0	0	1	0	1	0	0	Ш	0	-1	2	-1	0	0
7 10	0	0	0	3	0	0	0	0	1	0	1	1	ш	0	0	-1	3	-1	-1
(3)-(2)	0	0	0	0	3	0	1	1	0	1	0	0	Ц.	-1	-1	0	-1	3	0
	10	0	0	0	0	1/	10	0	0	1	0	0/	1	0	0	0	-1	0	1/

 $x \times L$: Differences in values between one node and its neighbors

$$(x_1, x_2, x_3) \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}, \ 2x_1 - x_2 - x_3 = (x_1 - x_2) + (x_1 - x_3)$$

Goal

- \square Encode the graph structure directly using f(X,A)
 - Train on a supervised target L_0 for all nodes with labels
 - Avoid explicit graph-based regularization in the loss function
 - Learn representations of nodes with and without labels

- Two-layer GCN for semi-supervised node classification on a graph
 - $Z = f(X,A) = softmax(\hat{A}ReLU(\hat{A}XW^{(0)})W^{(1)})$

- Apply a convolutional filter to the graph
 - Useful for extracting local feature from entire data

→ General convolution not applicable!

How to define graph convolution?

- Apply Convolutional theorem
 - ☐ Fourier transform of the convolution of two functions is the pointwise product of their Fourier transforms

$$\mathcal{F}(w * h) = \mathcal{F}(w) \odot \mathcal{F}(h)$$

Fourier transform

An arbitrary input signal is represented by decomposing it into the sum of periodic functions with various frequencies

 \rightarrow How to apply it to graph?

- How to define Fourier transforms for graphs?
 - An arbitrary input signal is represented by decomposing it into the sum of periodic functions with various frequencies

입력신호(signal): Node features

→ Define the node as a sum of signals from neighbor nodes

- How to define Fourier transforms for graphs?
 - $g_{\theta} \star x = Ug_{\theta}U^Tx$
 - U : the matrix of eigenvectors of the normalized graph Laplacian $L=I_N-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}=U\Lambda U^T$
 - g_{θ} : function of the eigenvalues of graph Laplacian $L, i. e. g_{\theta}(\Lambda)$

$$x$$
 $U^T x$ $(g_{\theta}^*)U^T x$ $U^T x$ $(U)g_{\theta}^*U^T x$

Signal Graph Fourier Transform $g_{\theta}^* = g_{\theta}^*(\Lambda)$ Inverse Graph Fourier Transform

Computationally expensive!

- How to define Fourier transforms for graphs?
 - $g_{\theta}(\Lambda)$ can be approximate!
 - $g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_k T_k(\tilde{L}) x, \quad \tilde{L} = \frac{2}{\lambda_{max}} L I_N,$
 - $T_k(x) = 2xT_{k-1}x T_{k-2}(x), T_0(x) = 1 \text{ and } T_1(x) = x$
 - It depends only on nodes that are at maximum K steps away from the central $node(K^{th} \text{ order neighborhood})$

- Layer-wise Linear Model
 - Suppose that K=1, $\lambda_{max}pprox 2$, $heta= heta_0'=- heta_1'$
 - $g_{\theta'} \star x \approx \theta \left(I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x$

Semi-Supervised Node Classification

Schematic depiction of multi-layer Graph Convolutional Network

(a) Graph Convolutional Network

$$L = -\sum_{l \in Y_L} \sum_{f=1}^F Y_{lf} ln Z_{lf}$$

Semi-Supervised Node Classification

■ GCN outperforms other methods

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Evaluation of Propagation Model

The trick they proposed (i.e., $K=1, \lambda_{max}\approx 2, \theta=\theta_0'=-\theta_1'$) had a good effect on the accuracy

Table 3: Comparison of propagation models.

Description	Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. 5) $K = \frac{K}{K}$	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.8	79.5	74.4
Chebyshev filter (Eq. 5) $K =$	$2 \qquad \sum_{k=0}^{\infty} I_k(L) A \Theta_k$	69.6	81.2	73.8
1 st -order model (Eq. 6)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter (Eq. 7)	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick (Eq. 8)	$ ilde{D}^{-rac{1}{2}} ilde{A} ilde{D}^{-rac{1}{2}}X\Theta$	70.3	81.5	$\boldsymbol{79.0}$
1 st -order term only	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron	$X\Theta$	46.5	55.1	71.4

Limitations

- ☐ Memory requirement
 - Use Full Batch Gradient Descent(include all Neighbors)
- □ Directed edges and edge features
 - Do not support directed graph
- Limiting assumptions
 - $\tilde{A} = A + \lambda I_N$

Conclusions

- Graph-based semi-supervised learning
 - The assumption that connected nodes in the graph are likely to share the same label
- ☐ Graph Convolutional Network
 - Import graph convolution of spectral domain into spatial domain
- Experiments
 - Outperform other methods
 - Renormalization trick for computational efficiency shows good results
- Limitation
 - Memory requirement, Directed edges and edge features, Limiting assumptions

LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation

2025-02-25

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, Meng Wang
SIGIR '20: Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval

Index

- Introduction
 - What is a Recommender System?
 - GCN in Recommender Systems
- Ablation study on NGCF
- ☐ Goal
- LightGCN
- Experiments
- Conclusion

What is a Recommender System (RecSys)?

- Predict whether a user will interact with an item
- Based on Collaborative filtering
 - Method of making automatic predictions about a user's interests by utilizing information collected from many users
 - Parameterize users and items as embeddings and learn

GCN in Recommender Systems

Neural Graph Collaborative filtering (NGCF)

- Suppose that the user-item graph is bipartite graph
- $e_u^{(k+1)} = \sigma(W_1 e_u^{(k)} + \sum_{i \in N_u} \frac{1}{\sqrt{|N_u||N_i|}} (W_1 e_i^{(k)} + W_2 \left(e_i^{(k)} \odot e_u^{(k)} \right)))$
- $e_i^{(k+1)} = \sigma(W_1 e_i^{(k)} + \sum_{u \in N_i} \frac{1}{\sqrt{|N_u||N_i|}} (W_1 e_u^{(k)} + W_2 \left(e_u^{(k)} \odot e_i^{(k)} \right)))$

GCN in Recommender Systems

- Each node in user-item graph is only described in a one-hot ID
 - → No concrete semantics in ID embeddings
 - → Feature transformation and nonlinear activation has no contribution!

Ablation study

Removing two operations leads to significant accuracy improvements

Goal

- Develop a light yet effective model by including the most essential ingredients of GCN for recommendation
 - More interpretable, practically easy to train and maintain, etc.

Light Graph Convolution (LGC)

Light Graph Convolution (LGC)

- Same as the basic idea of GCN (i.e., neighborhood aggregation)
- Remove unnecessary operations

$$e_u^{(k+1)} = \sum_{i \in N_u} \frac{1}{\sqrt{|N_u|}\sqrt{|N_i|}} e_i^{(k)}$$

$$e_i^{(k+1)} = \sum_{u \in N_i} \frac{1}{\sqrt{|N_i|}\sqrt{|N_u|}} e_u^{(k)}$$

Layer Combination

- α_k : the importance of the k-th layer embedding
 - ☐ (1) Prevent oversmoothing (2) Capture different semantics (3) self-connection

$$e_u = \sum_{k=0}^K \alpha_k e_u^{(k)}$$

$$e_i = \sum_{k=0}^K \alpha_k e_i^{(k)}$$

Model Prediction

The ranking score for recommendation generation

$$\hat{y}_{ui} = \mathbf{e}_u^T \mathbf{e}_i$$

Matrix Form

- User-item interaction matrix $\mathbf{R} \in \mathbb{R}^{M \times N}$
- Adjacency matrix $A = \begin{bmatrix} 0 & R \\ R^T & 0 \end{bmatrix}$
- $E^{(k+1)} = \left(D^{-\frac{1}{2}}AD^{-\frac{1}{2}}\right)E^{(k)}$
- Final embedding matrix used for model prediction

$$E = \alpha_0 E^{(0)} + \alpha_1 E^{(1)} + \dots + \alpha_K E^{(k)} = \alpha_0 E^{(0)} + \alpha_1 \tilde{A} E^{(0)} + \dots + \alpha_K \tilde{A}^K E^{(0)}$$

$$\tilde{A} = D^{-\frac{1}{2}} A D^{-\frac{1}{2}} : \text{symmetrically normalized matrix}$$

Self-Connection

- $E^{(k+1)} = (D+I)^{-\frac{1}{2}}(A+I)(D+I)^{-\frac{1}{2}}E^{(k)}$
- $(D+I)^{-\frac{1}{2}}$ terms for simplicity, since they only re-scale embeddings

$$\mathbf{E}^{(K)} = (\mathbf{A} + \mathbf{I})\mathbf{E}^{(K-1)} = (\mathbf{A} + \mathbf{I})^K \mathbf{E}^{(0)}$$

$$= {K \choose 0} \mathbf{E}^{(0)} + {K \choose 1} \mathbf{A} \mathbf{E}^{(0)} + {K \choose 2} \mathbf{A}^2 \mathbf{E}^{(0)} + \dots + {K \choose K} \mathbf{A}^K \mathbf{E}^{(0)}$$

- Alleviate over-smoothing (APPNP)
 - Staying close to the root node
 - Leveraging the information from a large neighborhood

$$E^{(k+1)} = \beta E^{(0)} + (1 - \beta)\tilde{A}E^{(k)}$$

$$\mathbf{E}^{(K)} = \beta \mathbf{E}^{(0)} + (1 - \beta)\tilde{A}\mathbf{E}^{(K-1)},$$

$$= \beta \mathbf{E}^{(0)} + \beta (1 - \beta)\tilde{A}\mathbf{E}^{(0)} + (1 - \beta)^2\tilde{A}^2\mathbf{E}^{(K-2)}$$

$$= \beta \mathbf{E}^{(0)} + \beta (1 - \beta)\tilde{A}\mathbf{E}^{(0)} + \beta (1 - \beta)^2\tilde{A}^2\mathbf{E}^{(0)} + \dots + (1 - \beta)^K\tilde{A}^K\mathbf{E}^{(0)}$$

Can use a large K for long-range modeling with controllable oversmoothing!

Second-Order Embedding

$$e_u^{(2)} = \sum_{i \in N_u} \frac{1}{\sqrt{|N_u|}\sqrt{|N_i|}} e_i^{(1)} = \sum_{i \in N_u} \frac{1}{|N_i|} \sum_{v \in N_i} \frac{1}{\sqrt{|N_u|}\sqrt{|N_v|}} e_v^{(0)}$$

- First layer: smoothness on users and items that have interactions
- Second layer: users that have overlap on interacted items

Model Training

- The trainable parameter : embeddings of the 0-th layer $\theta = \{E^{(0)}\}$
- Loss function

$$L_{BPR} = -\sum_{u=1}^{M} \sum_{i \in \mathcal{N}_u} \sum_{j \notin \mathcal{N}_u} \ln \sigma(\hat{y}_{ui} - \hat{y}_{uj}) + \lambda ||\mathbf{E}^{(0)}||^2$$

Make prediction score for interacting items and users larger and otherwise smaller

Performance Comparison with NGCF

LightGCN outperforms NGCF by a large margin

Dataset		Gow	alla	Yelp	2018	Amazon-Book		
Layer #	Method	recall	ndcg	recall	ndcg	recall	ndcg	
1 I avran	NGCF	0.1556	0.1315	0.0543	0.0442	0.0313	0.0241	
1 Layer	LightGCN	0.1755(+12.79%)	0.1492(+13.46%)	0.0631(+16.20%)	0.0515(+16.51%)	0.0384(+22.68%)	0.0298(+23.65%)	
2 I arrana	NGCF	0.1547	0.1307	0.0566	0.0465	0.0330	0.0254	
2 Layers	LightGCN	0.1777(+14.84%)	0.1524(+16.60%)	0.0622(+9.89%)	0.0504(+8.38%)	0.0411(+24.54%)	0.0315(+24.02%)	
2 I 0370#0	NGCF	0.1569	0.1327	0.0579	0.0477	0.0337	0.0261	
3 Layers	LightGCN	0.1823(+16.19%)	0.1555(+17.18%)	0.0639(+10.38%)	0.0525(+10.06%)	0.0410(+21.66%)	0.0318(+21.84%)	
4 Larrana	NGCF	0.1570	0.1327	0.0566	0.0461	0.0344	0.0263	
4 Layers	LightGCN	0.1830(+16.56%)	0.1550(+16.80%)	0.0649(+14.58%)	0.0530(+15.02%)	0.0406(+17.92%)	0.0313(+18.92%)	

^{*}The scores of NGCF on Gowalla and Amazon-Book are directly copied from Table 3 of the NGCF paper (https://arxiv.org/abs/1905.08108)

- □ Performance Comparison with State-of-the-Arts
 - LightGCN consistently outperforms other methods on all three datasets

Dataset	Gow	alla	Yelp	2018	Amazon-Book		
Method	recall	ndcg	recall	ndcg	recall	ndcg	
NGCF	0.1570	0.1327	0.0579	0.0477	0.0344	0.0263	
Mult-VAE	0.1641	0.1335	0.0584	0.0450	0.0407	0.0315	
GRMF	0.1477	0.1205	0.0571	0.0462	0.0354	0.0270	
GRMF-norm	0.1557	0.1261	0.0561	0.0454	0.0352	0.0269	
LightGCN	0.1830	0.1554	0.0649	0.0530	0.0411	0.0315	

- Comparison of LightGCN and LightGCN-single
 - We can see the effectiveness of weighted sum (i.e., α_k)

Conclusion

- GCN in Recommender System (NGCF)
 - No contribution of two operations to accuracy
- LightGCN
 - Remove unnecessary operations
 - Light graph convolution & Layer Combination
- Model Analysis
 - Weighted sum(i.e., α_k) can lead to self-connection, alleviating oversmoothing, etc.,
- Experiments
 - Outperform other methods