GVSoC: A Highly Configurable, Fast and Accurate Full-Platform Simulator for RISC-V based IoT processors

Paper review

Vinicius Peixoto

MO801 - Tópicos em Arquitetura de Computadores

Sep 17th 2025

Agenda

- 1. Introduction
- 2. Target architecture
- 3. Criticism
- 4. My first section
- 5. My second section

Introduction

Architecture-level simulation

- Different levels of abstraction
- Tradeoff between accuracy vs. simulation speed
- Functional simulators
 - Only simulate behavior (no uarch nuances)
 - Typically very fast, often inaccurate
 - Example: Spike

Architecture-level simulation

- Timing simulators
 - Model the uarch of the target (cache hierarchy, pipelines, branch pred., ...)
 - Much slower than functional simulation
 - Cycle-accurate: accurate cycle-by-cycle simulation
 - Example: Verilator (System Verilog → C++ executable)
 - ► Instruction-level: instruction-by-instruction simulation
 - Faster than cycle-accurate
 - Example: Gem5's O3CPU model

Architecture-level simulation

- Timing simulators
 - Event-driven: events instead of cycles
 - event = change of state in the system occurring at a certain point in time
 - Schedule events in a queue based on their latency
 - Jump directly to time of occurrence of next event
 - Skipping idle cycles → consistent savings in simulation time
 - Examples: SystemC + Transaction Level Modeling (TLM), RISC-V-TLM

State of the art

- Established timing simulation solutions lack flexibility (e.g. testing SoCs)
 - Cycle-accurate sims: slow, adding peripherals is cumbersome
 - Timing sims: faster, but still difficult to extend
- Author's proposal: a highly flexible, event-driven simulator targeted at full system emulation

Target architecture

PULP

- Parallel Ultra-Low Power platform
 - Open-source heterogeneous computing platform
 - RISC-V MCU (PULP SoC) + parallel programmable accelerator
 (PULP CL) + peripherals
 - Separate clock domains for easier workload tuning

PULP SoC

- FC (Fabric Controller): RISC-V processor
 - Manages the peripheral subsystem
 - Offloads compute-intensive tasks to the accelerator
 - ► Equipped with 256KiB 2MiB of SRAM
 - Stores the code and application data
 - Paper calls it L2 (?)

PULP SoC

- FC (Fabric Controller): RISC-V processor
 - ► Comprehensive set of peripherals (JTAG, SPI, I2C, I2S, GPIOs, ...)
 - I/O DMA (called uDMA) for L2 memory ↔ peripheral data transfer
 - HyperBUS DDR interface
 - 8-bit high-speed bus for memory expansion (external DRAM, flash, ...)

PULP PL

• a

Figure 1: The PULP SoC architecture.

Criticism

 Low memory even for IoT devices, unfeasible for testing intensive workloads

My first section

For
$$f = \frac{dF}{dx}$$
 we know that

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$$

See https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus

slide without a title

My second section

```
function heron(x)
    r = x
    while abs(r^2 - x) > eps()
        r = (r + x / r) / 2
    end
    return r
end

@test heron(42) ≈ sqrt(42)
```

Something very important