Tentamen i Digital o Datorteknik för E, GU, IT, Z. 2006-08-24

Kortform av lösningar till tentan. För full poäng krävs fullständiga lösningar enligt typtentan

1a) R=X-Y utförs som R=X+Y_{1k}+1; $Y_{1komp} = 10110$.

	111111
X	11101
+Y _{1komp}	+ 10110
=R	= 10100

- **1b)** N=1; Z=0; V=0; $C_5=1 \Rightarrow C=0$
- 1c) X=29 Y=9; R=20 (Kontroll: 29-9=20); verkar rimligt ty C=0) C=1 anger att resultatet är fel vid tal utan tecken
- **1d)** X=-3; Y=9; R=-12 (Kontroll: -3-9=-12); verkar rimligt ty V=0) V anger fel vid tal med tecken.
- **1e)** Studera tabell 2.2, mittersta kolumnen, i blåa boken. För att erhålla en reflekterande kod används kodorden 011, 010, 110 och 111.
- 1f) 100001₂. Det går att representera -31 på 6 bitar ty 2⁶=64 och vilket ger talområdet [-32,31]

Upg 2

- **2a)** Enligt tabellen är $g(xyz) \neq f(xyz)$
- **2b)** Se blåa boken del 1 exempel 5.12

2c)

xyz	F
000	0
001	0
010	0
011	0
100	1
101	1
110	1
111	0

Disjunktiv normal form:

f = (xy'z') + (xy'z) + (xyz')

Konjunktiv minimal form: f=(x)(y'+z')

xyz	y⊕z	ΧZ	f	(x+z')	(y'+z)	g
000	0	0	0	1	1	1
001	1	0	1	0	1	0
010	1	0	1	1	0	0
011	0	0	0	0	1	0
100	0	0	0	1	1	1
101	1	1	1	1	1	1
110	1	0	1	1	0	0
111	0	1	1	1	1	1

		yz				
		00	01	11	10	
	0 <	$\bigcirc 0$	0	$\langle 0 \rangle$	0	>
X	1	1	1	(0)	1	
				$\overline{}$		

2d) Rita nätet

Upg 3 a)

xyz	F
000	1
001	1
010	1
011	0
100	0
101	0
110	1
111	1

Minimerat blir f=(x'y')+(xy)+(yz')

Rita nätet med NAND/NAND-logik

Upg 3b)

Detta Tillst	Nästa tillst		
$\mathbf{q}_{\scriptscriptstyle{1}}\mathbf{q}_{\scriptscriptstyle{0}}$	$\mathbf{q}_{_{1}}^{^{\dagger}}\mathbf{q}_{_{0}}^{^{\dagger}}$	$J_{1}K_{1}$	J _o K _o
0.0	11	1 -	1 -
01	10	1 -	- 1
10	0.0	- 1	0 -
11	01	- 1	- 0

Rita figur med följande insignaler till vipporna

т _ 1	T - ~ /
$U_1 = L_0$	$U_0 = Q_1$
·	
$K_{1} = \bot$	K.= a.'
	1 1

Upg 4 4a)

State	RTN-beskrivning	Styrsignaler (=1)
0	$PC \rightarrow MA, PC+1 \rightarrow PC$	OE _{PC} , LD _{MA} , IncPC,
1	$M \rightarrow MA$	MR, LD_{MA}
2	$M \rightarrow T$	MR, LD_T
3	$A-T-C \rightarrow R$, Flaggor $\rightarrow CC$	$OE_A, f_{3}, f_{2}, g_{1}, g_{0}, LD_R, LD_{CC},$
4	$R \rightarrow A$, NF	OE _R , LD _A , NF

4b)

- 0) Förbered för läsning av adressoperand i minnet, Öka PC med ett, Minska stackpekaren
- 1) Läs adressoperanden från minnet till register MA
- 2) Läs dataoperanden från minnet till register T
- 3) Utför subtraktion med Carry, spara resultatet i register R och påverka flaggbitarna
- 4) Flytta resultatet till register A, Ny Fetch

Instruktionen är SBCA \$Adr

4c)

State nr	RTN-beskrivning	Styrsignaler (=1)
0	$B \rightarrow T$, $2B \rightarrow R$	OE_B , LD_T , f_3 , f_1 , f_0 , LD_R ,
1	2R→R	OE_R , f_3 , f_1 , f_0 , LD_R ,
2	$R+T\rightarrow R$	OE_R , f_3 , f_1 , LD_R ,
3	R→A,	OE_R , LD_A ,

Upg 5

5a) \$05 Invertera högsta COM COM \$06 Invertera mellersta NEG \$07 2-komplementera lägsta **BCC** SLUT Hoppa om klart **INC** Öka mellersta \$06 **BCC** SLUT Hoppa om klart **INC** \$05 Öka mellersta SLUT NOP

5b)

Adr	Kod			
			ORG	\$30
30		Start	LDB	#\$0C
31				
32		LOOP	LDA	, X+
33			STA	\$FE
34				
35			DECB	
36	5C		BPL	LOOP
37	FA			
38			NOP	
			·	·

Maskininstruktion: \$5C \$FA

TillAdr - FrånAdr = Offset\$32 - \$38 = \$FA

5c)

	ORG	\$30
Start	LDB	#\$0C
LOOP	LDA	, X+
	STA	\$FE
	DECB	
	BMI	KLART
	BRA	LOOP
KLART	NOP	

Upg 6b

Start	LDX	#SegCode	Pekare till tabell
	LDAB	Inport	Läs inporten
	TFR	B,A	Kopiera
	LSRA		Skifta fram P
	LSRA		
	LSRA		
	LSRA		
	ANDB	#\$0F	Maska fram Q
	ABA		Summan
	CMPA	#10	Giltigt värde
	BLO	OK	hoppa om JA
	LDAB	#Error	Skriv Error
	STAB	Utport	
	BRA	End	
OK	LDAB	A,X	Översätt indata till Segmentkod
	STAB	Utport	och skriv ut
End	BRA	Start	