Graph Embedding with Adapative-curvature

Project Proposal

11/04/2022

Jialin Chen

Motivation

What about graphs with local structures of different curvatures?

Curvature on Graph

• Forman curvature F(i,j) for $e = (i,j) \in E$ $F(i,j) = w_e \left(\frac{w_i}{w_e} + \frac{w_j}{w_e} - \sum_{e_i \sim e, e_j \sim e} \left[\frac{w_i}{\sqrt{w_e w_{e_i}}} + \frac{w_j}{\sqrt{w_e w_{e_j}}} \right]$

where w_e , w_i denote the weight on edge e and node i.

- For the case that all $w_e = w_i = 1$: $F(i,j) = 4 \deg(i) \deg(j)$
- Augmented Forman Curvature:

$$F'(i,j) = 4 - \deg(i) - \deg(j) + 3\gamma \#_{\Delta}(i,j)$$

- γ considers the contribution of triangles
- $\#_{\Delta}(i,j)$ denotes the number of triangles based at $i \sim j$
- Consider at most 2-hop information

Curvature on Graph

- Two Contributions of **Understanding Oversquashing paper**:
 - Propose a new edge-based Balanced Forman Curvature for graph
 - Discover the relation between **the proposed curvature** and **local structure** of the graph (e.g., Cheeger constant)

weaker connection between large communities
=> more negative curvature!

Graph G		Ric_G
Cycles	C_3 C_4 $C_{n\geq 5}$	$\frac{3}{2}$ 1 0
Complete K_n		$rac{n}{n-1}$
$\operatorname{Grid} G_n$		0
Tree T_r		$\frac{4}{r+1} - 2$

Intuitive understanding of the proposed curvature

Balanced Forman Curvature for graph

- $\#_{\Delta}(i,j) = S_1(i) \cap S_1(j)$ are the triangles based at $i \sim j$
- $\#_{\blacksquare}^{i}(i,j) = \{k \in S_{1}(i) \setminus S_{1}(j), k \neq j: \exists w \in (S_{1}(k) \cap S_{1}(j)) \setminus S_{1}(i)\}$ are the neighbors of i forming a 4-cycle based at the edge $i \sim j$ without diagonals inside.
- $\gamma_{max}(i, j)$ is the maximal number of 4-cycles based at $i \sim j$ traversing a common node
- $S_r(i) = \{j \in V : d_G(i,j) = r\}$
- $\#_{\Delta}(i,j)$ is related to positive curvature; $\#^i_{\blacksquare}$ is related to negative curvature

Example:

- $\#_{\Delta}(0,1)=1$
- $\#_{\blacksquare}^{0}(0,1) = \{2,3\}; \#_{\blacksquare}^{1}(0,1) = \{5\}$
- $\gamma_{max}(0,1) = 2$, as there exist two 4-cycles passing through node 5

Balanced Forman Curvature for graph

$$Ric(i,j) = \frac{2}{d_i} + \frac{2}{d_j} - 2 + 2\frac{|\#_{\Delta(i,j)}|}{\max\{d_i,d_j\}} + \frac{|\#_{\Delta(i,j)}|}{\min\{d_i,d_j\}} + \frac{\gamma_{max}^{-1}}{\max\{d_i,d_j\}} (\#_{\blacksquare}^i(i,j) + \#_{\blacksquare}^j(i,j))$$

Think

Cons:

- 1. Does not account for tree-like structures explicitly
- 2. Consider only (at most) 3-hop information

Improvements:

- 1. design a tree indicator (Gromov's δ -hyperbolicity /hierarchy of the nodes)
- 2. involve multi-hop information into the curvature
- 3. consider higher-dimensional structures (simplicial complex, polyhedron, etc.)

Node-based Curvature

- Graph embedding aims to map each node in the graph to an vector in the embedding space
- Need to define node-based curvature
- Node-based Forman scalar curvature:

 $F(i) = \frac{1}{d_i} \sum_{e=(i,j)\in E} F(i,j)$

Node-based Balanced Forman scalar curvature:

$$Ric(i) = \frac{1}{d_i} \sum_{e=(i,j) \in E} Ric(i,j)$$

Cons:

Positive curvature and negative curvature may cancel each other Nodes with the same curvature may have different local structure

Node with positive curvature

Our Goal

- Choose an appropriate curvature definition that can reflect local structures of interest (or propose a new curvature!)
 - Tree/cycle/grid structure; community connectivity; multi-hop structure, etc.
- Give a manifold with **non-constant curvature** that is suitable for graphs with different local structures
- Train a model to embed the graph (map each node to a vector on the manifold)
 - Loss function design: embedding distortion / curvature matching
 - Metric: mean average precision / down-stream task performance

Homogenous v.s. Heterogenous

Homogenous manifold (Sphere, Euclidean space, Hyperboloid)

Curvature is independent of the point

Hyperboloid: $\mathbb{H}^{d,K} = \left\{ \boldsymbol{x} \in \mathbb{R}^{d+1} : \langle \boldsymbol{x}, \boldsymbol{x} \rangle_H = \frac{1}{K} \right\}$, K < 0 is the negative curvature Sphere: $\mathbb{S}^{d,K} = \left\{ \boldsymbol{x} \in \mathbb{R}^{d+1} : \langle \boldsymbol{x}, \boldsymbol{x} \rangle_S = \frac{1}{K} \right\}$, K > 0 is the curvature

Heterogenous manifold
Non-constant curvature
Suitable for node-wise embedding

Previous Method

Product Manifold

Given two Riemannian manifolds (M_1, g_1) and (M_2, g_2) , their Cartesian product $M = M_1 \otimes M_2$ is also a Riemannian manifold with $g = g_1 \otimes g_2$.

The scalar curvature of the product manifold:

$$R_g(p_1, p_2) = R_{g_1}(p_1, p_2) + R_{g_2}(p_1, p_2)$$

• To enable changeable curvature:

Let $M = M_h \otimes M_{\varphi}$

 M_{φ} is a **rotatially symmetric manifold** in \mathbb{R}^3 .

The curvature of M_{φ} : $R_{\varphi}(r)$ depends on the radial distance r and (predefined) radial function $\varphi(r)$.

 M_h is a homogenous manifold (constant curvature)

Previous Method

• For $x \in G \to f(x) = (z(x), r(x), \theta)$ $R_M(z, r, \theta) = R_h + R_{\varphi}(r)$ $\downarrow \qquad \downarrow \qquad \downarrow$ constant changeable

• Con: $M=M_h\otimes M_{\varphi}$, where the homogenous manifold M_h can only

represent single type of structure

Di Giovanni, Francesco, Giulia Luise, and Michael Bronstein. "Heterogeneous manifolds for curvature-aware graph embedding." arXiv preprint arXiv:2202.01185 (2022).

Ours: Fusion Manifold

To involve hyperbolic and spherical space:

•
$$M = \lambda_1(M_h \otimes M_{\varphi_1}) \otimes \lambda_2(M_s \otimes M_{\varphi_2})$$
 with $g = \lambda_1(g_1 \otimes g_{\varphi_1}) \otimes \lambda_2(g_2 \otimes g_{\varphi_2})$

Fused curvature:

$$R_M(z_1, r_1, \theta_1, z_2, r_2, \theta_2) := \frac{1}{\lambda_1} R_h + \frac{1}{\lambda_2} R_s + \frac{1}{\lambda_3} R_{\varphi}(r)$$

- where $z_1 \in M_h$, $z_2 \in M_s$, θ_i is unrelated to the curvature
- Euclidean information is incoporated in M_{arphi_i}
- λ_1 , λ_2 , λ_3 are learnable
- z_1 : hyperbolic component of node embedding
- z_2 : spherical component of node embedding

HGNN Algorithm

- Input Transformation: $x^{0,M} := \exp_{0}^{R_{0}(x)}((0, x^{0,E}))$
- Message: $\boldsymbol{h}_i^{l,M} = (W^l \otimes^{R_{l-1}(x_i)} \boldsymbol{x}_i^{l-1,M}) \oplus^{R_{l-1}(x_i)} \boldsymbol{b}^l$ Hyperbolic linear: $W \otimes^{R(x)} \boldsymbol{x}^{l,M} \coloneqq \exp_o^{R(x)}(W \log_o^{R(x)}(\boldsymbol{x}^{l,M}))$

 - Mobius addition: $\mathbf{x}^M \oplus^{R(x)} \mathbf{b} := \exp_{\mathbf{x}^M}^{R(x)}(P_{\mathbf{x}^N}^{R(x)}(\mathbf{b}))$

Edge curvature

- Aggregation: $AGG(x^M)_i \coloneqq \exp_{x_i^M}^{R_{l-1}(x_i)}(\sum_{j \in \mathcal{N}(i)} w_{ij} \log_{x_j^M}^{R_{l-1}(x_j)}(x_j^M))$ Update: Update $^{R_{l-1},R_l}(x^M) \coloneqq \exp_o^{R_l(x)}(\sigma\left(\log_o^{R_{l-1}(x)}(x^M)\right))$

Improvement:

- Incorporate multi-hop / higher-dimension message passing
- be consistent with curvature definition

Loss

- Loss consists of two components
 - Average Distance Distortion

$$L_d(f) = \sum_{i,j} \left| \frac{d_E^2\left(f(x_i), f(x_j)\right)}{d_G^2(x_i, x_j)} - 1 \right|$$

Node-wise Curvature Matching

$$L_{cn}(f) = \sum_{i} \frac{\left(F(x_i) - R(f(x_i))\right)^2}{(|F(x_i)| + \varepsilon)^2}$$

- E denotes the embedding space, f denotes the embedding function
- F is the node-wise curvature on graph, R is the curvature on the manifold
- However, nodes with the same curvature may have different geometric structures (e.g., connects the edges with different curvatures)

Improvement

 Preserve the curvature along the geodesic between two embeded points on the manifold

Geodesic l corresponds to edge eIf e has negative curvature, then the model should make sure the curvature along l is always negative **Edge-wise Curvature Matching:**

$$L_{Ce}(f) = \sum_{(i,j)\in E} F(i,j) - \lambda \frac{\int_0^l R(t)dt}{gl(f(x_i), f(x_j))}$$

 $gl(\cdot,\cdot)$ is the geodesic length function. With explicit formula of the embedding space,

$$\frac{\int_0^l R(t)dt}{gl(f(x_i),f(x_j))} := h(x_i,x_j) \text{ will be easy to calculate}$$

Evaluation

- Graph Reconstruction:
 - Average distance distortion: $\sum_{i,j} \left| \frac{d_E^2 \left(f(x_i), f(x_j) \right)}{d_G^2 \left(x_i, x_j \right)} 1 \right|$
 - Synthesic: Ring of trees / SBM / Erdös-Rényi / Barabási-Albert
 - Real-world datasets: Cities / CS PhDs / Power / WebEdu /Facebook
- Neighbor Information Searching
 - Curvature on the embedding space helps to discover the neighbor structure of the node (linked triangles, hierarchy level, etc.)
- Down-stream Task performance
 - node classification $P(i = y | f(x_i), R(f(x_i)))$
 - link prediction $P((i,j) \in E | f(x_i), f(x_j), R(f(x_i)), R(f(x_j), \int_{f(x_i)}^{f(x_j)} R(t) dt)$