2005 年秋季<<代数与几何>> 期中试题 上>

一. (28分)

1 (10 分) 己知 \Box 3 中两条直线 l_1 : $\frac{x-2}{2} = \frac{y-1}{-3} = \frac{z}{0}$ 和 l_2 : $\frac{x}{2} = \frac{y}{3} = z$. 求过 l_1 且与 l_2 平行的平面方程,及与 l_1 和 l_2 都垂直相交的直线方程…

2(6 分)已知 V_1 和 V_2 是 V 的两个线性子空间,则 V_1+V_2 , $V_1 \cap V_2$, $V_1 \cup V_2$ 中还是线性子空间的是哪些? 不一定是线性子空间的是哪些? 不是线性子空间请举例说明。

3 (8分) □⁴中的一组向量

$$S = \{\vec{\alpha}_1 = (1,0,0,1), \, \vec{\alpha}_2 = (0,0,0,1), \, \vec{\alpha}_3 = (1,t,0,1), \, \vec{\alpha}_4 = (2,t,0,3)\} \; ,$$

当 dim(L(S))=2 时, t 为何值?

当 dim(L(S))=3 时,t 为何值? 此时写出 L(S)的一组基,并将这组基用 Gram-Schmidt 标准正交化化为 L(S)的一组标准正交基。

4 (4 分) σ为 $V_1(F)$ 到 $V_2(F)$ 的线性映射,用 Kerσ, r(σ)和 $dim(V_1)$ 写出σ为单射的两个等价 命题。

二(18 分) 定义
$$\sigma$$
: \Box 5 \rightarrow $R[x]_6$ 为 $\sigma(a_1, a_2, a_3, a_4, a_5) = a_1 + a_3 x^3 + a_5 x^5$,

- (1) (6 分)证明σ为□ ⁵到 R[x]₆ 的线性映射。
- (2) (6分) 求出 Imo 和 Kero及它们的维数。
- (3) (6 分) 若 $\bar{\alpha}$ = (1,1,1,1,0),求 $\sigma(\bar{\alpha})$ 在{1,x+1,(x+1)²,(x+1)³,(x+1)⁴,(x+1)⁵}下的坐标。

三(18分) 设 $V_1(F)$ 和 $V_2(F)$ 均为有限维线性空间, $\sigma \in L(V_1(F), V_2(F))$.

1. (9 分) σ 为 $V_1(F)$ 到 $V_2(F)$ 的同构映射的充分必要条件为 σ 将 $V_1(F)$ 的一组基映成为 $V_2(F)$ 的一组基

2 (9 分) 若 $V_1(F)$ 为实内积空间, $V_1(F)$ 与 $V_2(F)$ 同构,试定义 $V_2(F)$ 的一个内积使之成为内积空间.

四(21分,每题 7分)设V 为有限维线性空间, $\sigma \in L(V,V)$. 定义映射 σ^2 如下 $\sigma^2(\vec{\alpha}) = \sigma(\sigma(\bar{\alpha}))$

证明: (1) $\sigma^2 \in L(V, V)$ 且 $Ker \sigma \subset Ker(\sigma^2)$.

- (2) $\dim(Ker(\sigma^2)) = \dim(Ker\sigma) + \dim(\operatorname{Im} \sigma \cap Ker\sigma)$.
- (3)令 $V=\Box^3$, $\sigma(x_1,x_2,x_3)=(x_1,-x_2,x_1-x_2)$ 。 试验证上述(1)与(2)的结论。

五(15分)设 V 为有限维线性空间, $V=W_1 \oplus W_2$,其中 W_1,W_2 是子空间。

对 $\varphi \in L(V,V)$, 称 映 射 φ 为 W_1 上 的 射 影 变 换 , 如 果 对 任 意 $\bar{\alpha} = \bar{\alpha}_1 + \bar{\alpha}_2 \in V(其中\bar{\alpha}_1 \in W, \bar{\alpha}_2 \in W_2), \\ \bar{\alpha} \varphi(\bar{\alpha}) = \bar{\alpha}_1 .$

证明:

(1)(9 分) 若 φ 为子空间 $W \subset V$ 上的射影变换,则 $\varphi^2 = \varphi$ 。

(2)(6 分) 反之,若 $\varphi \in L(V,V)$ 满足 $\varphi^2 = \varphi$,则必有 V 的一个子空间 W,使得 φ 是 W 上的射影变换.

2006 年秋季<<代数与几何>> 期中试题 上 (注意: 请将所有答案都写在答卷纸上).

一. (10分)已知 V 是 n 维线性空间, Θ 是 V 的所有秩为 n 的向量组 的集合,我们定义 Θ 上的一个关系 R: $\theta_1 R \theta_2$ 当且仅当 $\theta_1 \pi \theta_2$ 能够互相线性表示。

证明: R是一个等价关系, 并求商集》 中的元素个数。

二(21分,每题7分)

设 λ 为实数, $P_1(1,0,-1), P_2(0,1,0), P_3(-\lambda,1+\lambda,\lambda^2)$ 为 \mathbb{R}^3 中的点。

- 1。当 λ 为何值时,向量 $\overline{P_1P_2}$, $\overline{P_1P_3}$ 线性无关?
- 2。求以 $\overline{OP_1}$, $\overline{OP_2}$, $\overline{OP_3}$ 为邻边的平行六面体的体积。
- 3。求过原点并与直线 P_1P_2 垂直的平面方程。

三(14分,每题7分)

设 $\vec{\varepsilon}_1$, $\vec{\varepsilon}_2$,..., $\vec{\varepsilon}_n$ 为n维欧式空间的单位正交基, $\vec{\alpha} = \lambda_1 \vec{\varepsilon}_1 + \lambda_2 \vec{\varepsilon}_2 + \cdots + \lambda_n \vec{\varepsilon}_n$, $\lambda_i \in \mathbb{R}$, $1 \le i \le n$. 证明:

- 1. $|\vec{\alpha}|^2 = \lambda_1^2 + \lambda_2^2 + \dots + \lambda_n^2$.
- 2。 设 $V_k = L(\vec{\varepsilon}_1, \vec{\varepsilon}_2, \dots, \vec{\varepsilon}_k), 1 \le k \le n,$ 则 $\forall \vec{\beta} \in V_k,$ 有 $\left| \vec{\alpha} \sum_{i=1}^k \lambda_i \vec{\varepsilon}_i \right| \le |\vec{\alpha} \vec{\beta}|.$

四(24分,每题6分)

设V1和V2是有限维线性空间V的子空间。

- 1. $V_1 \cup V_2$ 是否一定为V的子空间? 请举例说明。
- ②。若 $V_1 \cup V_2$ 为V的子空间,证明 $V_1 \cup V_2 = V_1 + V_2$ 。
- ③。若存在向量 $\bar{x} \in V_1 + V_2$,使得 $\bar{x} = \bar{x_1} + \bar{x_2}$, $\bar{x_1} \in V_1$, $\bar{x_2} \in V_2$ 的分解唯一,则 $V_1 + V_2$ 为直和。
- 4。若 $\dim(V_1)$ + $\dim(V_2)$ > $\dim(V)$,则 V_1 和 V_2 有公共的非零向量。

五 (16分)

设 σ : $\mathbb{R}^3 \to \mathbb{R}^3$ 为

$$\sigma(x_1, x_2, x_3) = (x_1 + x_3, -x_1 + 2x_2 + x_3, x_1 - x_2).$$

1(10分)。若存在非零向量 $\bar{\alpha} \in \mathbb{R}^3$ 和实数 λ 使得 $\sigma(\bar{\alpha}) = \lambda \bar{\alpha}$,求 λ 的值。

2(6分)。令集合 $V_{\lambda} = \{\bar{\alpha} \in \mathbb{R}^3 : \sigma(\bar{\alpha}) = \lambda \bar{\alpha}\}$ 。证明 V_{λ} 是 \mathbb{R}^3 的子空间,并求 $\dim(V_{\lambda})$.

六 (15分)

设V为n 维线性空间, σ , τ , $\rho \in L(V, V)$. 1(8分). 证明:对任意 τ_1 , $\tau_2 \in L(V, V)$, 有 $= r(A) - d \ln R(A) \cap R$

2(7分). 证明: $r(\sigma\tau)+r(\tau\rho)\leq r(\sigma\tau\rho)+r(\tau)$ (可利用上述1的结论).

$$F(\sigma z) = r(z) - d - (2n(z)) \cap (2n(z)) + r(z)$$

 $+ r(\sigma z) - d - (2n(z)) \cap (2n(z))$
 $\leq r(\sigma z) + r(z)$

2007年秋季《代数与几何》期中试题 上

(住) 意):请将所有答案都写在答卷纸上)。

-(10分). 设 \bar{a} 和 \bar{b} 为非零向量,且 $|\bar{b}|=1$, \bar{a} 和 \bar{b} 之间的夹角为 $\frac{\pi}{4}$. 求 $\lim_{x \to 0} \frac{|\vec{a} + x\vec{b}| - |\vec{a}|}{x}$. 一万

二(20分). 设有异面直线 L_1 : $\begin{cases} y=2, \\ x+z-4=0 \end{cases}$ 和 L_2 : $\frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}.$ (1). 求 L₁和 L₂之间的夹角. (1,0,-1) (2.1,1) (2) 求 过L₁且平行于 L₂的平面方程. P. (1, 2,3)

 $W_2 = \{(x_1, x_2, x_3, x_4) : 3x_1 + x_2 + x_3 = 0, 7x_1 + 7x_3 - 3x_4 = 0\}.$ 分别求 子空间W, ∩W, 和 W, + W, 的维数和一组基.

四(18分). 设 $\lambda, \lambda, \in \square$,在线性空间 \square 3中定义

$$(\vec{\alpha}, \vec{\beta}) = \lambda_1 a_1 b_1 + \lambda_2 a_2 b_2 + a_3 b_3, \not\exists \vec{\alpha} = (a_1, a_2, a_3), \vec{\beta} = (b_1, b_2, b_3) \in \Box^3.$$

(1) 证明 $(\bar{\alpha}, \bar{\beta})$ 是 \Box 3的内积的充要条件是 $\lambda > 0, \lambda_2 > 0$.

(2)/设 $\lambda_1 = 2$, $\lambda_2 = 1$, \square 3按上面的内积构成一个实内积空间.

 $\forall W=L(\vec{e}_1,\vec{e}_2)$,其中 $\vec{e}_1=(1,0,0)$, $\vec{e}_2=(1,1,0)$.试求W的一组正交基.

(3). 条件同(2), 求 $\vec{e}_3 = (1,1,1)$ 在W中的投影.

(X, M, D)

五(12分). 在线性空间V(F)中,已知向量组 $\vec{\alpha}_1, \vec{\alpha}_2, \dots, \vec{\alpha}_s$ 线性无关,且 $\vec{\alpha}_1, \vec{\alpha}_2, \dots, \vec{\alpha}_s$ 可由 $\vec{\beta}_1, \vec{\beta}_2, \dots, \vec{\beta}_s$ 线性表示. 证明 $\vec{\beta}_1, \vec{\beta}_2, \dots, \vec{\beta}_s$ 线性无关且可由 $\vec{\alpha}_1, \vec{\alpha}_2, \dots, \vec{\alpha}_s$ 线性表示.

六(20分). 设V(F)为线性空间, $\varphi:V(F)\to V(F)$ 为线性变换, $\mathbb{V}(F)$ 的线性子空间. $\overline{\delta}$

(1). 证明: $\dim(W) \leq \dim(\varphi^{-1}(W)) \leq \dim(W) + \dim(\ker \varphi)$, 这里 $\varphi^{-1}(W) = \{\vec{\alpha} \in V(F) : \varphi(\vec{\alpha}) \in W\}$.

(2). 设 ψ : $V(F) \rightarrow V(F)$ 也为线性变换. 证明: $\dim(\ker(\psi \circ \varphi)) \leq \dim(\ker \varphi) + \dim(\ker \psi)$.

2008年秋季几何与代数(1)期中考试(A卷) 上

2008.11.15

一、填空题(每空3分,共30分)

- 1. 设 \vec{a} , \vec{b} , \vec{c} 满足条件 $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, 则
 - (a) $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} =$ $(|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2);$
 - (b) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \underline{\qquad} \vec{b} \times \vec{a}$.
- 2. 设 $\vec{a}_1, \vec{a}_2, \vec{a}_3$ 是一个线性空间中的三个向量, 若秩 $\{\vec{a}_1, \vec{a}_2, \vec{a}_3\} = 3$, 则 秩 $\{\vec{a}_1 + \vec{a}_2, \vec{a}_1 5\vec{a}_2, 5\vec{a}_1 \vec{a}_2\} =$ _______
- 3. 设集合 $A = \{a, b, c, d\}$, A有三个二元关系

$$R_1 = \{(a,a), (a,b), (b,b), (c,c), (c,d), (d,d)\},\$$

$$R_2 = \{(a,a), (a,b), (a,c), (b,a), (c,a), (d,d)\},\$$

$$R_3 = \{(a,a), (b,b), (c,c), (d,c), (c,d), (d,d)\},\$$

- 4. 已知 $\alpha_1=(1,1,1),\ \alpha_2=(1,0,1),\ \alpha_3=(1,1,0)$ 是 \mathbb{R}^3 的一组基,则 $\beta=(2,3,-4)$ 关于这组基的坐标为_____
- 5. 设直线 $l: \frac{x-4}{2-D} = \frac{y}{2} = \frac{z-5}{B+6}$, 则当 $B = \underline{\hspace{1cm}}$, $D = \underline{\hspace{1cm}}$ 时, 该直线同时平行于平面 x 2y + z = 0 和 x + 2y 3z 1 = 0.
- 6. 设 $\alpha_1 = (1, 2, 3, -4), \alpha_2 = (2, 3, -4, 1), \alpha_3 = (2, -5, 8, -3), \alpha_4 = (5, 26, -9, -12), \alpha_5 = (3, -4, 1, 2)$,则向量组 $S = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$ 的一个极大线性无关组是_____
- 7. 线性空间 $V_n = \{a_0 + a_1x + \dots + a_nx^n | a_i \in \mathbb{R}, i = 0, \dots, n\}$, 线性映射 $\sigma: V_3 \to V_2$ 的定义为 $\sigma(\alpha) = \sigma(a_0 + a_x + a_2x^2 + a_3x^3) = a_1 + 2a_2x + 3a_3x^2$,则 σ 关于基 $\{1, x, x^2, x^3\}$ 和 $\{1, x, x^2\}$ 的矩阵表示为

二、计算题 (每题13分, 共39分)

- 1. 设 V_0, V_1, \dots, V_{n+1} 均为数域F1:线性空间, $V_0 = V_{n+1} = \{\vec{0}\}$,设 $\sigma_i \in L(V_i, V_{i+1}), i = 0, 1, \dots, n$,且 $\ker(\sigma_{i+1}) = \operatorname{Im}(\sigma_i), i = 0, 1, 2, \dots, n-1$ 。求 $\sum_{i=1}^{n} (-1)^i \dim V_i$ 。
- 2. 已知 $S = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ 是 \mathbb{R}^3 中一组向量,其中 $\alpha_1 = (1, -1, 0), \alpha_2 = (1, 0, 1), \alpha_3 = (2, -1, 0), \alpha_4 = (4, -2, 1).$ 试用Schmidt正交化方法,由S构造 \mathbb{R}^3 的一组两两正交的向量组。
- 3. 线性映射 $\tau: \mathbb{R}^4 \to \mathbb{R}^3$ 定义为

$$au \left(egin{array}{c} x_1 \ x_2 \ x_3 \ x_4 \end{array}
ight) = \left(egin{array}{c} x_1 - x_2 + x_3 + x_4 \ x_1 + 2x_3 - x_4 \ x_1 + x_2 - 2x_3 - 3x_4 \end{array}
ight).$$

求 τ 的像空间 $Im(\tau)$ 以及核空间 $Ker(\tau)$ 的一组基.

三、证明题(第1,2题每题13分,第3题5分,共31分)

1. 设 W_1, W_2, W_3 是有限维线性空间V的三个线性子空间,并设

$$n_1 = \dim[(W_2 + W_3) \cap W_1] + \dim(W_2 \cap W_3),$$

$$n_2 = \dim[(W_1 + W_3) \cap W_2] + \dim(W_1 \cap W_3),$$

$$n_3 = \dim[(W_1 + W_2) \cap W_3] + \dim(W_1 \cap W_2).$$

证明: $n_1 = n_2 = n_3$.

2. 设 $\sigma \in L(V_1, V_2)$, $W \oplus \ker \sigma = V_1$, $U \oplus \sigma(V_1) = V_2$ 。对任意 $z \in V_2$, 令z = u + y, 这里 $u \in U, y \in \sigma(V_1)$, 并如下定义线性映射 $\tau \in L(V_2, V_1)$:

$$\tau(z) = x \in W$$
, 其中 $\sigma(x) = y$ 。

- 证明: (1). $\sigma \circ \tau \circ \sigma = \sigma$; (2). $\tau \circ \sigma \circ \tau = \tau$.
- 3. 设 $V_i(F)$ (i=1,2,3,4)为线性空间,且 $\sigma \in L(V_1,V_2), \tau \in L(V_3,V_4), \phi \in L(V_1,V_4)$ 。问: 尚 σ,τ,ϕ 满足什么条件时,存在 $\psi \in L(V_2,V_3)$ 使得 $\phi = \tau \circ \psi \circ \sigma$?

清华大学本科生考试试题专用纸

考试课程 《几何与代数 1》期中考试 上 (A 卷) 2009 年 11 月 21 日

٠,	填空题(第4题8分,其余每空4分,共40分)
1.	\mathbb{R}^3 中 $\vec{\alpha}_1=(1,0,1),\ \vec{\alpha}_2=(0,1,2),\vec{\alpha}_3=(1,1,-1)$ 为一组基。则 $\vec{\beta}=(4,3,2)$ 在该基下的坐标表示为
2.	设空间中三个平面 π_i , $(i=1,2,3)$ 的方程为 $a_ix+b_iy+c_iz=d_i$. 若记 $\vec{\alpha}_i=(a_i,b_i,c_i)\in\mathbb{R}^3$, $\vec{\beta}_i=(a_i,b_i,c_i,d_i)\in\mathbb{R}^4$, 且有 $r(\vec{\alpha}_1,\vec{\alpha}_2,\vec{\alpha}_3)=2$, $r(\vec{\beta}_1,\vec{\beta}_2,\vec{\beta}_3)=3$. 请问 (1). 三个平面有公共交点?(填"是"或"否")
	(2). 若 $\pi_1 \cap \pi_2 = l_1$, $\pi_2 \cap \pi_3 = l_2$, $\pi_3 \cap \pi_1 = l_3$, 则 l_1, l_2, l_3 平行. (填"是"或"否")
3.	设 $\vec{\alpha}_1=(4,-5,2,6),\ \vec{\alpha}_2=(2,-2,1,3),\ \vec{\alpha}_3=(6,-3,3,9),\ \vec{\alpha}_4=(4,-1,5,6),\ 则向量组 \{\vec{\alpha}_1,\vec{\alpha}_2,\vec{\alpha}_3,\vec{\alpha}_4\} 的极大无关组为$
4.	设 \mathbb{R}^4 中 $\vec{\alpha}_1=(1,0,1,1),\ \vec{\alpha}_2=(1,1,0,0),\ \vec{\alpha}_3=(0,1,1,1),\ $ 试用 Schmidt 正交化的方法求子空间 $L\{\vec{\alpha}_1,\vec{\alpha}_2,\vec{\alpha}_3\}$ 的一组单位正交基 (在标准内积下)
5.	在 \mathbb{R}^3 中直角坐标系 O - xyz 下,两直线
	$l_1: \left\{ \begin{array}{l} x+2y+3z=4 \\ 2x+3y+4z=5 \end{array} \right., \ l_2: \left\{ \begin{array}{l} 5x-4y+2z=6 \\ 3x+y-4z=2 \end{array} \right.$
	均平行于平面 π : $ax + by + cz = d$,且 π 距原点 O 的距离为 2 ,则 π 的方程为
6.	已知 \mathbb{R}^3 中向量 $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ 不共线,若 $\vec{\alpha} \times \vec{\beta} = \vec{\beta} \times \vec{\gamma} = \vec{\gamma} \times \vec{\alpha}$,则 $\vec{\alpha} + \vec{\beta} + \vec{\gamma} =$
7.	设方程组 $\begin{cases} px_1 + x_2 + x_3 = 4 \\ x_1 + qx_2 + x_3 = 3 \end{cases}$,当待定系数 p,q 满足时,方程 $x_1 + 2qx_2 + x_3 = 4$
	$x_1 + 2qx_2 + x_3 = 4$ 组有唯一解; 当待定系数 p, q 满足
	The state of the s

- 二、计算题(每题15分,共30分)
 - 1. 在 \mathbb{R}^4 中 $W_1=L\{\vec{\alpha}_1,\vec{\alpha}_2,\vec{\alpha}_3\},\ W_2=L\{\vec{\beta}_1,\vec{\beta}_2,\vec{\beta}_3\},\$ 其中

$$\vec{\alpha}_1 = (1, 1, 0, 2), \quad \vec{\alpha}_2 = (1, 1, -1, 3), \quad \vec{\alpha}_3 = (1, 2, 1, -2);
\vec{\beta}_1 = (1, 2, 0, -6), \quad \vec{\beta}_2 = (1, -2, 2, 4), \quad \vec{\beta}_3 = (2, 3, 1, -5).$$

分别求 $W_1 + W_2$, $W_1 \cap W_2$ 的维数和一组基。

2. 设线性映射 $\sigma: \mathbb{R}^4 \to \mathbb{R}^3$ 定义为

$$\sigma \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 - 3x_3 + x_4 \\ 2x_1 + x_3 - 3x_4 \\ x_1 + 3x_2 - 2x_3 - 2x_4 \end{pmatrix}.$$

求 $\operatorname{Im}(\sigma)$ 与 $\operatorname{Ker}(\sigma)$ 的一组基,以及 σ 在自然基下的矩阵表示 $M(\sigma)$.

- 三、证明与解答题 (第1题12分,第2题13分,第3题5分,共30分)
 - 1. 设 V 为有限维线性空间, $\sigma, \tau \in L(V, V)$, 且 $\sigma^2 = \sigma, \tau^2 = \tau$, 证明:
 - (1). $\text{Im}\sigma = \text{Im}\tau \iff \sigma\tau = \tau, \ \tau\sigma = \sigma.$
 - (2). $Ker \sigma = Ker \tau \iff \sigma \tau = \tau, \ \tau \sigma = \sigma.$
 - 2. 设 $\sigma_1, \sigma_2 \in L(V_1, V_2)$,且 $\dim V_1 = 8$, $\dim V_2 = 9$, $r(\sigma_1) = 6$, $r(\sigma_2) = 5$,记 $W = \operatorname{Im} \sigma_1 \cap \operatorname{Im} \sigma_2$.
 - (1). 证明: $U = \sigma_1^{-1}(W)$ 为 V_1 的子空间。
 - (2). 试分别估计 $\dim W$ 和 $\dim U$ 的取值范围。
 - 3. 设 W_i 分别为欧式空间 $V_i(\mathbb{R})$ 中的 k 维子空间 (i=1,2), $\{\vec{\alpha}_1,\vec{\alpha}_2,\cdots,\vec{\alpha}_k\}$ 与 $\{\vec{\beta}_1,\vec{\beta}_2,\cdots,\vec{\beta}_k\}$ 分别为 W_1 与 W_2 的一组基。求证:存在 $\sigma\in L(V_1,V_2)$,使得 $\sigma(\vec{\alpha}_i)=\vec{\beta}_i$ $(1\leqslant i\leqslant k)$,且若 $\vec{x}\in W_1^\perp$,有 $\sigma(\vec{x})\in W_2^\perp$