Algorithmen und Wahrscheinlichkeit

Woche 8

Minitest

Minitest

Password: capital

Nachbesprechung Serie & CodeExpert

•
$$\Pr[e \in E(S, V \setminus S)] = \frac{1}{2}$$
 muss man begründen

- nur weil die Elementarereignisse die gleiche Wahrscheinlichkeit haben, haben nicht alle Ergebnisse die gleiche Wahrscheinlichkeit
- \Longrightarrow für statements, = für expressions
- Code Expert
 - Was ist X^2 und wieso ist $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$
 - Wie berechnet man $\mathbb{E}[X^2]$

Randomisierte Algorithmen

Randomisierter Algorithmus : Eingabe I o Algorithmus A mit Zufallszahlen R o Ausgabe A(I,R)

- deterministisch: selbe Eingabe, selber Output
- nicht-deterministisch: selbe Eingabe, nicht unbedingt selber Output

Monte Carlo Algorithmus: Primzahltest, Target-shooting

→ Korrektheit ist die Zufallsvariable

Las Vegas Algorithmus: Quicksort, Duplikate finden

- → Laufzeit ist die Zufallsvariable
- \rightarrow Geometrisch verteilt mit $p = \Pr[A(I) \neq "???"]$

- immer gleiche Laufzeit
- manchmal falsches Ergebnis
- immer korrekte Antwort
- manchmal dauert zu lange / gibt nach einer bestimmter Zeit "???" aus

Quicksort/Quickselect

Quicksort: sortiert den Array erwartete Laufzeit: $O(n \log n)$

Quickselect: gibt das k-kleinste Element aus erwartete Laufzeit: $\mathcal{O}(n)$

QuickSort(A, ℓ , r) 1: if $\ell < r$ then 2: $p \leftarrow \text{Uniform}(\{\ell, \ell+1, \dots, r\})$ \Rightarrow wähle Pivotelement zufällig 3: $t \leftarrow \text{Partition}(A, \ell, r, p)$ 4: QuickSort(A, ℓ , t - 1) 5: QuickSort(A, t + 1, r)

```
QuickSelect(A, \ell, r, k)

1: p \leftarrow \text{Uniform}(\{\ell, \ell+1, \ldots, r\}) \Rightarrow wähle Pivotelement zufällig
2: t \leftarrow \text{Partition}(A, \ell, r, p)
3: if t = \ell + k - 1 then
4: return A[t] \Rightarrow gesuchtes Element ist gefunden
5: else if t > \ell + k - 1 then
6: return QuickSelect(A, \ell, t - 1, k) \Rightarrow gesuchtes Element ist links
7: else
8: return QuickSelect(A, t + 1, r, k - t) \Rightarrow gesuchtes Element ist rechts
```

Fehlerreduktion

Las-Vegas:

Sei A ein Las-Vegas-Algorithmus mit $\Pr[A(I) \neq "???"] \ge \epsilon$

Sei A_{δ} für $\delta>0$ ein Algorithmus, der entweder die erste Ausgabe verschieden von ??? ausgibt oder der nach $N=\lceil \epsilon^{-1} \cdot \ln(\delta^{-1}) \rceil$ Versuchen ??? ausgibt

 $\operatorname{dann} \operatorname{gilt} \Pr[A_{\delta}(I) = "???"] \leq \delta$

ϵ	δ	N
0.1	0.01	47
0.5	0.01	10
0.5	10 ⁻⁸⁰	369
0.9	10 ⁻³⁰	77

Fehlerreduktion

Monte-Carlo - Einseitiger Fehler:

$$\Pr[A(I) = \text{Ja}] = 1$$
 für alle Ja-Instanzen $I \Longrightarrow \text{Wenn } A(I) = \text{Ja}$, dann könnte die Ausgabe falsch sein $\Pr[A(I) = \text{Nein}] \ge \epsilon$ für alle Nein-Instanzen $I \Longrightarrow \text{Wenn } A(I) = \text{Nein}$, dann ist die Ausgabe immer korrekt

Sei A_{δ} für $\delta>0$ ein Algorithmus, der entweder Nein ausgibt, sobald das erste Mal Nein vorkommt, oder der nach $N=\lceil \epsilon^{-1} \cdot \ln(\delta^{-1}) \rceil$ Versuchen Ja ausgibt

dann gilt:

$$\Pr[A_{\delta}(I) = \text{Ja}] = 1 \text{ für alle Ja-Instanzen } I$$

$$\Pr[A_{\delta}(I) = \text{Nein}] \geq 1 - \delta \text{ für alle Nein-Instanzen } I$$

Monte-Carlo - Zweiseitiger Fehler:

$$\Pr[A(I) \text{ ist korrekt}] \geq 0.5 + \varepsilon \text{ für alle Instanzen } I \\ A_{\delta} \text{ gibt die meiste Antwort aus nach } N \text{ Wiederholungen} \qquad \Longrightarrow \qquad \Pr[A(I) \text{ ist falsch}] \leq \delta \text{ für alle Instanzen } I$$

Aufgaben

Aufgabe 1: Broken servers

Sie sind mit einem Netzwerk verbunden, das aus n Servern besteht, die von 1 bis n nummeriert sind. Sie können jeden Server i in Zeit $\mathcal{O}(1)$ kontaktieren und erhalten als Antwort entweder eine '0' oder eine '1'. Leider sind einige der Server kaputt uns Sie sollen herausfinden welche Server betroffen sind.

- Falls Server i kaputt ist, sendet er bei jeder Anfrage ein unabhängig gleichverteiltes Bit.
- Falls Server i intakt ist, dann antwortet er auf jede Anfrage mit dem gleichen Bit $a_i \in \{0,1\}$.

 Allerdings ist der Wert a_i unbekannt und kann von Server zu Server variieren.
- (a) Seien $\delta > 0$ und $i \in [n]$ gegeben. Beschreiben Sie einen Monte-Carlo Algorithmus, der herausfindet, ob Server i kaputt ist. Berechnen Sie die Fehlerwahrscheinlichkeiten (abhängig davon ob der Server kaputt/intakt ist) Ihres Algorithmus und stellen Sie sicher, dass Ihr Algorithmus Fehlerwahrscheinlichkeit höchstens $\frac{\delta}{n}$ hat.

Aufgabe 1: Broken servers

Sie sind mit einem Netzwerk verbunden, das aus n Servern besteht, die von 1 bis n nummeriert sind. Sie können jeden Server i in Zeit $\mathcal{O}(1)$ kontaktieren und erhalten als Antwort entweder eine '0' oder eine '1'. Leider sind einige der Server kaputt uns Sie sollen herausfinden welche Server betroffen sind.

- Falls Server i kaputt ist, sendet er bei jeder Anfrage ein unabhängig gleichverteiltes Bit.
- Falls Server i intakt ist, dann antwortet er auf jede Anfrage mit dem gleichen Bit $a_i \in \{0,1\}$.

 Allerdings ist der Wert a_i unbekannt und kann von Server zu Server variieren.

(b) Sei $\delta > 0$ gegeben. Beschreiben Sie einen Monte-Carlo Algorithmus, der eine Liste aller kaputten Server erstellt und Fehlerwahrscheinlichkeit höchstens δ hat. Hierbei sagen wir, dass der Algorithmus erfolgreich ist, wenn die Liste alle kaputten Server und keinen intakten Server enthält.