PRÁTICA 2 - TENSÃO SUPERFICIAL II

CQ320 - FÍSICO-QUÍMICA EXPERIMENTAL

BANCADA 4

DISCENTES: ADRIEL AZEVEDO; DAVI RAMOS JORGE; LUIZ DEMBICKI, MATEUS

DE MATOS LEME; MATHEUS SOARES DE SOUZA CRUZ.

1. INTRODUÇÃO

O método da massa da gota é um experimento estruturado sobre o preceito de que, considerando uma gota ideal, a área da coluna do capilar (externa se o líquido molhar o tubo) multiplicado pela tensão superficial é igual a força que segura a gota prestes a se soltar (Lei de Tate). Teoricamente, esse conceito é suficiente para suprir qualquer correlação entre esses dados, porém quando analisado o ponto de desprendimento da gota percebe-se que uma fração da matéria que a compõe retorna para cima. Essa divisão gerou a necessidade de um fator de correção, tendo em vista que na teoria espera-se que o desprendimento se refira à uma esfera perfeita conforme ela se desenvolve (ATKINS, 2016).

Verificou-se por meio da comparação com outros métodos de análise experimental que o fator de correção necessário é relacionado ao volume da gota formada, cuja mesma é relacionada ao raio do capilar utilizado, sendo assim tais dados foram tabulados. O decorrer da experimentação demonstrou certo padrão progressivo e relativamente previsível no fator de correção, possibilitando facilmente o uso de interpolação para dados não obtidos experimentalmente sem que fossem gerados grandes erros. A área da superfície da gota também pode ser utilizada para a obtenção da quantidade material excessiva de soluto, dependendo somente da tensão superficial da solução, temperatura e concentração do soluto no ponto em questão (ATKINS, 2016).

Esse experimento consiste na utilização de dodecilsulfato de sódio (SDS), um surfactante (substância parcialmente hidrofílica e parcialmente hidrofóbica), com o objetivo de explorar e comprovar os efeitos do mesmo na tensão superficial da água de maneira quantitativa. A dupla afinidade dos surfactantes tem como principal consequência o efeito na disposição das

moléculas quando interagindo com seu meio. A formação de micelas e a disposição orientada na interface do sistema são os meios que essas substâncias respondem espacialmente para que alcancem certa estabilidade, sendo o enfraquecimento da tensão superficial um dos impactos, indicando assim uma adsorção negativa do SDS em meio à água (ATKINS, 2016).

2. OBJETIVOS

O objetivo do experimento é avaliar a tensão superficial de uma solução de dodecilsulfato de sódio (SDS), através da obtenção do raio da bureta. Além disso, o experimento visa calcular o excesso superficial e a área ocupada por uma molécula do composto em solução. Por fim, com o tratamento de dados, objetiva-se encontrar a concentração micelar crítica de SDS.

3. PROCEDIMENTO EXPERIMENTAL

Na primeira parte da prática, pesou-se um copo de plástico e adicionou-se água destilada na bureta. Posteriormente foram contadas as gotas gotejadas no copo, em 2,0 mL de água. Após esse procedimento o copo, agora com água, foi pesado, sendo possível calcular a massa de água gotejada e a massa de cada gota. Com esses valores foi possível determinar o raio e, consequentemente, o fator de correção.

Na segunda parte da prática foram preparadas soluções de SDS com água destilada em diferentes concentrações, o grupo preparou soluções com concentração de 9,0; 10,0 e 12,0 mmol/L. Após a preparação correta das soluções, foi repetido o processo da primeira parte da prática: pesou-se um copo plástico vazio, adicionou-se uma das soluções de SDS na bureta, foram contadas as gotas de 1,0 mL de SDS que foram gotejadas no copo, o copo com as gotas de SDS foi pesado e, por fim, foi calculada a massa da solução e a massa de cada gota. Vale ressaltar que esse procedimento foi repetido para cada uma das diferentes concentrações de SDS.

4. RESULTADOS E DISCUSSÃO

No dia da prática realizada, obteve-se como condições ambientes do laboratório a Temperatura de 18 °C.

Os dados coletados experimentalmente e os valores calculados estão dispostos na tabela 1

Tabela 1 - Dados do líquido padrão (água)

água	m _{copo} (g)	nº de gotas	M _{copo+gotas}	Δm (kg)	massa média de 1 gota (kg)	Raio Calculado (m)
1	0,762	38	2,765	0,002003	5,2815E-05	0.0017222
2	0,741	37	2,752	0,002003 0,002011	5,2015E-05 -	0,0017323

Fonte: Os autores (2022)

Os dados coletados experimentalmente e os valores calculados de γ estão dispostos na tabela 2.

Tabela 2 - Dados das soluções aquosas de SDS

		, ,	
[SDS] (mmol/L)	8,5	9,0	10,0
N₁° gotas	38	38	36
m _{1 copo vazio} (g)	0,624	0,806	0,673
$m_{1 \text{ copo+gotas}}(g)$	1,69	1,828	1,676
Δm₁ (kg)	0,001066	0,001022	0,001003
m _{1, 1 qota} (kg)	2,805E-0 5	2,690E-0 5	2,786E-0 5
N₂º gotas	38	36	38
$m_{2, copo \ vazio}(g)$	0,665	0,823	0,691
m _{2, copo+gotas} (g)	1,697	1,832	1,727
Δm_2 (kg)	0,001032	0,001009	0,001036
m _{2, 1 gota} (kg)	2,716E-0 5	2,803E-0 5	2,726E-0 5
m _{média 1 gota} (kg)	2,7605E- 05	2,7461E- 05	2,7562E- 05
γ (N.m ⁻¹)	0,037299	0,037161	0,037299

Fonte: Os autores (2022)

Utilizando os dados calculados da tensão superficial, é possível construir um gráfico da isoterma de adsorção de Gibbs de γ (N.m⁻¹) versus ln [SDS]:

 γ X ln [SDS] 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 -1.5 -0.5 0.5 1.5 2.5 ln [SDS]

Figura 1 – Isoterma de adsorção de Gibbs de γ versus In [SDS]

Fonte: Os autores (2022)

É possível notar que a isoterma está seguindo uma tendência adequada se comparada com o formato esperado encontrado na literatura, conforme o gráfico a seguir:dodecilsulfato de sódio (SDS)

Figura 2 – Isoterma de adsorção de Gibbs de γ versus In [SDS].

Figura 1S. Tensão superficial versus concentração de SDS em solução aquosa

Fonte: Silva, Barreto e Bellettini (2013).

É possível determinar o excesso superficial (Γ) através da equação da isoterma de Gibbs:

$$\Gamma = -\left(\frac{1}{RT}\right) \times \left(\frac{d\gamma}{dc}\right)$$

Onde γ é a tensão superficial da solução e c é a concentração do soluto no seio da solução. A relação $\frac{d\gamma}{dc}$ da equação 4 pode ser obtida pelo coeficiente angular da reta contida no gráfico da isoterma de adsorção de Gibbs:

γ x ln [SDS]

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

0 0.5 1 1.5 2 2.5

ln [SDS]

Figura 3 – Seção linear da isoterma de adsorção de Gibbs de γ versus ln [SDS].

Fonte: Os autores (2022)

Dessa forma, resolvendo a equação 4, obtém-se Γ:

$$\Gamma = -\left(\frac{1}{8,314 \text{ J.mol}^{-1}.291 \text{ K}}\right) \times \left(-0,0204 \text{ N.m}^{-1}\right) = 8,432 * 10^{-6} \text{ mol. m}^{-2}$$

A partir de Γ (mol.m⁻²), pode-se determinar a área (m²) ocupada por uma molécula de SDS, conforme a equação a seguir:

$$A = \frac{1}{N_A \cdot \Gamma}$$

Equação 5

Onde $N_{_{A}}$ é número de Avogadro. Assim, tem-se que:

$$A = \frac{1}{6,022*10^{23} mol^{-1} \times 6,943*10^{-6} molm^{-2}} = 2,392*10^{-19} m^{2}$$
ou $A = 23,92 \text{ Å}^{2}$

Através da interseção das linhas de tendências linear (γ = 0,03737 N.m⁻¹; ln[SDS] = 2,233) do gráfico da figura 3, foi possível achar o valor da CMC de 9,328 mmol.L⁻¹ para o SDS.

$$A = \frac{1}{6.022*10^{23} mol^{-1} \times 6.943*10^{-6} molm^{-2}} = 2,392 * 10^{-19} m^{2}$$

Figura 4 – Intersecção das linhas de tendência

Fonte: Os autores (2022)

Para o cálculo do desvio, adotou-se como referência o valor de 6,2 mmol/L para o CMC, conforme o gráfico ilustrado na figura 2, sendo assim obtém-se:

$$\% desv = \frac{9,328-6,2}{6,2} * 100 = 50,45 \%$$

5. CONCLUSÃO

Podemos concluir pelos procedimentos adotados que ao aumentar a concentração de SDS ocorreu uma diminuição da tensão superficial da solução, onde mostra que o soluto é positivamente adsorvido, devido às camadas superficiais da solução que são enriquecidas no soluto em questão.

Também foi possível verificar que o comportamento do gráfico da isoterma de adsorção de Gibbs de γ em função do In [SD] seguiu o formato em que se espera nos dados obtidos na literatura. Com isso, a partir dele podemos encontrar o valor da concentração micelar crítica (CMC) de 9,328 mmol.L⁻¹,tendo um erro de 50,45% em comparação com o valor da literatura, onde possíveis erros experimentais possam ter influenciado nos cálculos, como medidas erradas e não precisas.

Por fim, é possível observar que temos o comportamento da tensão superficial praticamente o mesmo após o CMC reforçando os conceitos da prática, pois temos que a partir dessa concentração que não há mais espaço para que as moléculas sejam adsorvidas na superfície e assim micelas começam a se formar no interior da solução.

REFERÊNCIAS

ATKINS, P. Chemical Principles: The Quest for Insight. 7th Edition. New York, 2016.

SILVA, Isabella R. da; BARRETO, Pedro L. M.; BELLETTINI, Ismael C.. Estudo das dispersões aquosas de nanotubos de carbono utilizando diferentes surfactantes. Quím. Nova, São Paulo , v. 36, n. 1, p. 5-9, 2013 . Disponível em:

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-4042201300010 0002&Ing=en&nrm=iso>.