

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentkiassifikation 6:

C07D 277/30, 319/06, 417/06, 277/24, 493/04 // (C07D 493/04, 313:00, 303:00)

A1

(11) Internationale Veröffentlichungsnummer:

(43) Internationales

Veröffentlichungsdatum:

28. Januar 1999 (28.01.99)

WO 99/03848

(21) Internationales Aktenzeichen:

PCT/EP98/04462

(22) Internationales Anmeldedatum:

16. Juli 1998 (16.07.98)

(30) Prioritätsdaten:

197 31 316.7

16: Juli 1997 (16.07.97)

DR

(71) Anmelder (für alle Bestimmungsstaaten ausser US): SCHER-ING AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, D-13353 Berlin (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): MULZER, Johann [DE/AT]; Universitätsstrasse 10/16, A-1090 Wien (AT). MAN-TOULIDIS, Andreas [DE/AT]; Reithlegasse 1578, A-1190 Wien (AT).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: THIAZOLE DERIVATIVES, METHOD FOR THEIR PRODUCTION AND USE
- (54) Bezeichnung: THIAZOLDERIVATE, VERFAHREN ZUR HERSTELLUNG UND VERWENDUNG

(57) Abstract

The invention relates to thiszole derivatives of formula (II), in which R^1 is C_1 — C_4 alkyl, R^2 is any protective group with chelating power, R^3 is hydrogen or C_1 — C_4 alkyl, and Y is CO_2R^4 , CHO, CH=CH2 or CH2 R^3 , in which R^4 stands for C_1 — C_4 alkyl and an optionally substituted benzyl group, R^3 is halogen, hydroxy, p-toluenesulphonate and -OSO₂B, and B stands for C_1 — C_4 alkyl or C_1 — C_4 perfluoroalkyl. These derivatives are produced without diastereomers and are used in the production of epothilon A and epothilon B and their derivatives.

(57) Zusammenfassung

Thiszolderivate der Formel II, worin R¹ C₁-C₄-Alkyl, R² eine beliebige chelatisierungsfähige Schutzgruppe, R³ Wasserstoff oder C₁-C₄-Alkyl, Y CO₂R⁴,CHO,CH-CH₂ oder CH₂R⁵, wobel R⁴ für C₁-C₄-Alkyl und eine gegebenenfalls substituierte Benzylgruppe, R³ für Halogen, Hydroxy, p-Toluolsulfonat und -OSO₂B und B für C₁-C₄-Alkyl oder C₁-C₄-Perfluoralkyl steht, bedeutet, lassen sich diastereomerenrein herstellen und sind geeignet für die Herstellung von Epothilon A und Epothilon B und deren Derivaten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

		RS.	Success:	LS	Lesotho	SI .	Slowenies
AL	Albenies		Spenies		Litages	SK	Slowakei
AM	Armenien	TI.	Pimind	LT		SN	
AT	Österreich	m	Prankraich	LU	Loxenburg .		Senegai
ĄŪ	Australien	GA	Galtus .	LV	Lettlanid	SZ	Sweetland
AZ	- Aserbaidechen	GB	Vereinigtes Königreich	MC	Monaco	TD	Tuched
BA	Bosnien-Herzegowina	GE	Georgian	MD	Republik Moldan	TG	Togo
BB	Barbados	GH	Ghann	MG	Madagaskar	TJ	Tedechikistan*
BE	Belgion	GN	Guinea	MIK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Paso	GR	Griechenland		Republik Massdonisa	TR	Türkei
BG	Bulgarien	HU	Ungara	ML	Mali	TT	Trinidad und Tobego
BJ	Benin	12	Irland	MN	Mongolni	UA	Ukraine
BR	Brasilien	iL	Israel	MR	Mauratanian	UG	Uganda
BY	Belanus	IS	Taland	MW	Melawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italian	MOK	Mexileo		Amerika
-		JP.		NB	Niger	UZ	Usbokistan
CF	Zentralafrikanische Republik		Japan.	NL	Niederlands	VN	Vietnam
CG	Kongo	KE	Kenia	NO		YU	Jugoslawien
CH	Schweis	KG	Kirgisistan		Norwegen	ZW	Zimbabwa
a	Côte d'Ivoire	KP	Demokratische Volkerepublik	NZ	Neuscaland	211	21100000
CM	Kamerun		Kores	PL	Poles		
CN	Chine ·	KOR	Republik Korea	PT	Portugui		
CU	Kuba	KZ	Kasacheten	RO	Rumânion		
CZ	Techechische Republik	· LC	St. Lucia	RU	Russische Föderstion		
DE	Deutschland	Ц	Liechtenstein	SD	Studen		
DK	Dinemark	LK	Sri Lanks	838	Schweden		
EE	Estland '	LR	Liberia	SG	Singapur		

10

15

20

Thiazolderivate, Verfahren zur Herstellung und Verwendung

Die Erfindung betrifft den in den Patentansprüchen gekennzeichneten Gegenstand, daß heißt Thiazolderivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Epothilon A, Epothilon B oder deren Derivaten.

Es ist bekannt, daß die Naturstoffe Epothilon A (R = H) und Epothilon B (R = Methyl) (Verbindung I, DE 195 42 986 A1, DE 41 38 042 C2)

fungizid und cytotoxisch wirken. Nach Hinweisen für eine in vitro Aktivität gegen Brust- und Darmtumorzelllinien erscheint diese Verbindungsklasse in besonderem Maße interessant für die Entwicklung eines Arzneimittels. Verschiedene Arbeitsgruppen beschäftigen sich daher mit der Synthese dieser makrocyclischen Verbindungen. Die Arbeitsgruppen gehen von unterschiedlichen Bruchstücken des Makrocyclus aus, um die gewünschten Naturstoffe zu synthestisieren. Danishefsky et al plant die Synthese aus drei Bruchstücken C(1)-C(2) + C(3)-C(9) + C(10)-C(20). Bei dem C(10)-C(20)-Bruchstück handelt es sich um ein Thiazolderivat, das in einer 15-stufigen Synthese nicht diastereomerenrein erhalten werden konnte (JOC, 1996, 61, 7998-7999). Diastereomerenreinheit ist jedoch oft entscheidend für die Wirkung und Voraussetzung für die Herstellung eines Arzneimittels.

Es bestand daher die Aufgabe, geeignete Bruchstücke diastereomerenrein bereitzustellen, aus denen sich die makrocyclischen Verbindungen und deren Derivate synthetisieren lassen.

Es wurde nun gefunden, daß die Thiazolderivate der Formel II

$$QR^2$$
 R^1
 R^3
 R^3
 R^1
 R^1
 R^2
 R^3
 R^3
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4

worin R¹ C₁-C₄-Alkyl,

R² eine beliebige chelatisierungsfähige Schutzgruppe,

R³ Wasserstoff oder C₁-C₄-Alkyl

Y CO₂R⁴, CHO, CH=CH₂ oder CH₂R⁵, wobei

R⁴ für C₁-C₄-Alkyl oder eine gegebenenfalls substituierte Benzylgruppe.

R⁵ für Halogen, Hydroxy, p-Toluolsulfonat oder -OSO₂B und

B für C₁-C₄-Alkyl oder C₁-C₄-Perfluoralkyl steht,

bedeutet,

10

15

30

sich diastereomerenrein herstellen lassen und geeignet sind für die Herstellung von Epothilon A und Epothilon B und deren Derivaten.

Unter C_1 - C_4 -Alkyl für R^1 , R^3 , R^4 , und B sind Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl und Tertiärbutyl zu verstehen.

- Unter einer beliebigen chelatisierungsfähigen Schutzgruppe R² sind zum Beispiel Benzylreste wie z.B. Benzyl, p-Methoxybenzyl (PMB), Silylreste wie z.B. Trimethyl-silyl, 2-(Trimethylsilyl)ethoxymethyl (SEM), Tetrahydropyranyl, Methoxymethyl, Benzyloxymethoxymethyl, Benzoyl, Acetyl zu verstehen.
- Die substituierte Benzylgruppe R⁴ kann z.B. p-Methoxybenzyl, 2,4-Dimethoxybenzyl oder ein durch andere elektronenschiebende Substituenten substituierter Benzylrest sein.

Mit Halogen sind Fluor, Chlor, Brom und Iod gemeint, wobei Brom und Iod bevorzugt sind.

Unter C_1 - C_4 -Perfluoralkyl sind geradkettige oder verzweigte vollständig fluorierte Alkylreste wie zum Beispiel CF_3 , C_2F_5 , C_3F_7 , C_4F_9 zu verstehen.

WO 99/03848 PCT/EP98/04462 -3-

5

10

15

20

25

30

Die Verbindungen II können nach dem in Schema I gezeigten Verfahren hergestellt werden, in dem die Synthese beispielhaft für Verbindung IIa mit $R^2 = p$ -Methoxybenzyl, $R^3 = Methyl$ und $Y = CO_2Et$ dargestellt ist.

Ausgehend von der natürlich vorkommenden (S)-Äpfelsäure (III) wird die α-Hydroxysäurefunktion mit Trifluoressigsäureanhydrid/Methanol (a) in den Mono-methylester überführt. Die noch verbliebene Säurefunktion wird dann mit Diboran in Tetrahydrofuran (b) zum Alkohol reduziert. Der so erhaltene (S)-(-)-Methyl-2,4-Dihydroxyester wird mit p-Methoxybenzyldimethylacetal mit Camphersulfonsäure in Toluol unter Rückfluß (c) in das cyclische Acetal (IV) überführt. Aus dem Methylester wird durch Reaktion mit einem Äquivalent Methyllithium in 2 Stunden bei -100°C (d) das Methylketon (V) erhalten. Umsetzung mit einer C₂-, C₃- oder C₄-metallorganischen Verbindung z.B. einer Grignardverbindung unter üblichen Reaktionsbedingungen führt zu den übrigen Resten R¹. Bei der Wittigreaktion (e) wird das 2-Methyl-4-thiazolylmethyltriphenylphosphoniumbromid, das in zwei Stufen aus 1,3-Dichlorpropanon zugänglich ist, zuerst mit Natnumhexamethyldisilazid bei -78°C in Tetrahydrofuran zusammengegeben bevor das Keton dazugegeben wird. Die Reaktion führt nach 1 Stunde und Erwärmen auf -40°C zu einem E/Z-Gemisch (E/Z = 3,6:1). Das E-Isomer (VI) ist durch einfache Flashchromatographie abzutrennen. Regioselektive Freisetzung der terminalen Hydroxygruppe durch reduktive Öffnung des Acetals mit 4 Äquivalenten Diisobutylaluminiumhydrid in Methylenchlorid in 4 Stunden bei -20°C (f) ergibt ein gut trennbares Gemisch (5,6:1 für das gewünschte Regioisomer) der Alkohole. Nach Trennung wird der Alkohol durch Swern-Oxidation in einer Stunde unter Aufwärmen von -78°C nach O°C (g) in den entsprechenden Aldehyd überführt, der sofort zur Wadsworth-Homer-Emmons-Kondensation unter Still's Bedingungen (h) mit Ethyl-2-Diethoxyphosphinylpropionat oder dem entsprechend dem gewünschten Rest R³ geeigneten Horner-Reagenz unter Zugabe von Kaliumhexamethyldisilazid, 18-Krone-6 bei -78°C für eine Stunde in Tetrahydrofuran umgesetzt wird. Es wird ein E/Z-Gemisch (E/Z = 6.2:1) der α,β -ungesättigten Ester erhalten, aus dem das Z-Isomer (IIa) in guter Ausbeute abgetrennt werden kann. Die Verwendung des Trifluorethylphosphonat-Derivates führt zu einer besseren Selektivität von 15:1.

Schema I

Die Verbindung der allgemeinen Formel IIa stellt einen zentralen Baustein für die Synthese von Epothilon-Derivaten und Epothilon selbst dar.

Die Esterfunktion in Position 11 kann in jede beliebige, für den späteren Ringschluß benötigte, Funktionalität überführt werden.

Derivatisierungen in 12-und 13-Position (Epothilon-Zählweise) sind aus der Doppelbindung möglich. So zum Beispiel die Überführung in das im Epothilon selbst vorhandene Epoxid durch Sharpless-Oxidation:

Dazu wird der Ester IIa mit 3 Äquivalenten Diisobutylaluminiumhydrid in Tetrahydrofuran bei -20°C (i) zum α,β-ungesättigten Alkohol reduziert und anschließend die Doppelbindung des Allylalkohols mit 4A Molekularsieb, Titantetraisopropylat, D-(-)-diisopropyltartrat, Tertiärbutylhydroperoxid in Methylenchlorid für 3 Stunden bei -30°C (k)
diastereoselektiv epoxidiert.

Auch die noch in geschützter Form vorliegende Hydroxyfunktion in 15-Position läßt Derivatisierungen an dieser Stelle zu oder ist unter literaturbekannten Bedingungen spaltbar.

Verbindungen mit Y = CHO können durch Dibal-Reduktion von Verbindung IIa in literaturbekannter Weise erhalten werden. Nachfolgende Wittigreaktion führt zu Verbindungen mit Y = CH=CH₂.

25

20

Die Verbindungen mit $Y = CH_2R^5$ mit $R^5 = p$ -Toluolsulfonat, (C_1-C_4) alkylsulfonat, oder (C_1-C_4) perfluoralkylsulfonat können aus dem Alkohol (VII) erhalten werden.

Die Verbindungen mit $Y = CH_2$ -Halogen lassen sich aus z.B. der Verbindung mit $Y = CH_2$ -p-Toluolsulfonat oder Y = OH in üblicher Weise erhalten.

Im Gegensatz zu dem Verfahren von Danishefsky et al werden nur 10 Stufen für die Synthese bis zur Stufe des Epoxids benötigt und das Thiazolderivat der Formel IIa kann ebenso wie auch das Epoxid diastereomerenrein erhalten werden. Ein weiterer Vorteil besteht darin, daß das verwendete natürliche Ausgangsmaterial und die Reaktionen der Synthese eine Herstellung größerer Mengen erlauben.

Die Weiterverarbeitung der erfindungsgemäßen Verbindungen zu Epothilon A und B kann wie in der nachstehenden Reaktionssequenz angegeben erfolgen. Die Verbindung der allgemeinen Formel XI wird analog zu bekannten Verfahren durch Abspaltung der primären Schutzgruppe, Oxidation in Position 1, selektive Freisetzung der 15-Hydroxygruppe, wie sie beispielsweise von K.C. Nicolaou et al. In Nature, Vol. 387, 1997, S. 268 – 272 und J. Am. Chem. Soc.1997, 119, S. 7960 – 7973 beschrieben sind. zu Epothilon B weiterverarbeitet:

- f) (i) Iodidbildung, (ii) Sulfonkupplung, 76,5%; g) Desulfonierung, 70%;
- 35 h) Desilylierung, 98%; i) Aldolreaktion.

Die nachfolgenden Beispiele dienen der näheren Erläuterung des Erfindungsgegenstandes, ohne ihn auf diese beschränken zu wollen.

15

20

30

Präparative Methoden

Alle Umsetzungen metallorganischer Reagenzien und alle Reaktionen in absoluten Lösemitteln werden unter Luft- und Feuchtigkeitsausschluß durchgeführt. Die verwendeten Glasapparaturen werden vor Versuchsbeginn mehrmals im Ölpumpen-vakuum ausgeheizt und mit getrocknetem Argon der Firma Linde belüftet. Wenn nicht anders angegeben, werden sämtliche Reaktionsansätze magnetisch gerührt.

Methylenchlorid wird über eine basische Aluminiumoxidsäule der Aktivitätsstufe I (Woelm) getrocknet. Diethylether wird nach Vortrocknung auf einer basischen Aluminiumoxidsäule über eine 8:1 Natrium/Kalium-Legierung refluxiert bis zur stabilen Blaufärbung des Benzophenon-Indikators und vor der Verwendung frisch abdestilliert. Das Tetrahydrofuran (THF) wird über KOH vorgetrocknet, über eine mit basischem Aluminiumoxid beschickte Säule filtriert und anschließend über Kalium mit Triphenylmethan als Indikator destilliert.

Der Essigsäureethylester (EE) wird nach Vortrocknung über Calciumchlorid ebenso wie Hexan (Hex) vor der Verwendung zur Säulenchromatographie am Rotationsverdampfer abdestilliert.

Chromatographische Verfahren

Sämtliche Reaktionen werden durch Dünnschichtchromatographie (DC) auf Kieselgel-60-Alufolien mit UV-Indikator F₂₅₄ der Firma Merck verfolgt. Als Laufmittel werden zumeist Lösemittelgemische aus Hexan (Hex) und Essigsäureethylester (EE) verwendet. Zum Sichtbarmachen nicht UV-aktiver Substanzen bewährt sich meist Anisaldehyd Eisessig/Schwefelsäure (1:100:1) als Standard-Tauchreagenz.

Die präperative Säulenchromatographie wird an Kieselgel-60 der Firma Merck (0,04-0,063 mm, 230-400 mesh) durchgeführt, wobei als Eluens Lösemittelgemische aus Hexan (Hex) und Essigsäureethylester (EE) bzw. Diisopropylether dienen.

Im analytischen, wie auch im präperativen Maßstab werden die hochdruckflüssig-keitschromatographischen Trennungen (HPLC) auf Modulsystemen der Firmen Knauer (Pumpe 64, UV- und RI-Detektoren, Säulen und Schreiber), Waters/Millipore (Injek-tionssystem U6K9) und Milton-Roy (Integrator CI-10) durchgeführt. Für die analytische HPLC wird zumeist eine Knauer-Säule (4·250 mm) mit 5 μm Nucleosil und für die präperative HPLC eine Säule (16·250 mm, 32·250 mm bzw. 64·300 mm) mit 7 μ m oder 5 μm Nucleosil 50 verwendet.

Färbereagenzien

5

10

15

30

35

Färbereagenz I (F I): 1 g Cer(IV)sulfat in 10 mL konz. Schwefelsäure und 90 mL Wasser liefert mit den meisten reduzierbaren Verbindungen intensiv blaue Farbreaktion beim Trocknen.

Färbereagenz II (F II): Eine 10%ige ethanolische Lösung von Molybdatophosphorsäure stellt ein weiteres Tauchreagenz zum Nachweis ungesättigter und reduzierbarer Verbindungen dar. Im Unterschied zum Färbereagenz I zeigt das Molydat-Färbereagenz, speziell auf einige Funktionalitäten ansprechend, ein breiteres Farbspektrum bei praktisch gleicher Zuverlässigkeit.

Färbereagenz III (F III): 1 mL Anisaldehyd in 100 mL Ethanol und 2 mL konz. Schwefelsäure stellt ein äußerst empfindliches Färbereagenz dar, daß zudem auch das wohl breiteste Farbspektrum zeigt.

Färbereagenz IV (F IV): Das Vanillin-Tauchbadreagenz ist ähnlich empfindlich, wie das Anisaldehyd-Färbereagenz und zeigt wie dieses ein nahezu breites Farbspektrum.

- Färbereagenz V (F V): 1 g 2,4-Dinitrophenylhydrazin in 25 mL Ethanol, 8 mL Wasser und 5 mL konz. Schwefelsäure stellt ein hervorragendes, seletiv schon ohne Erwärmung auf Aldehyde und etwas langsamer auf Ketone ansprechendes, Tauchreagenz dar.
- Färbereagenz VI (F VI): Eine 0.5%ige wässerige Lösung von Kaliumpermanganat zeigt durch Entfärbung oxidierbare Gruppen an, wobei ungesättigte, nicht aromatische Struktureinheiten spontan ohne Erwärmung reagieren.

Spektroskopische Verfahren und allgemeine Analytik

NMR-Spektroskopie

Die ¹H-NMR-Spektren werden mit einem AC 250, AM 270 oder AMX 500 Spektrometer der Firma Bruker mit den Substanzen als Lösung in deuterierten Lösemitteln und Tetramethylsilan als internem Standard aufgenommen. Die Auswertung der Spektren erfolgt nach den Regeln erster Ordnung. Ist eine auftretende Signalmultiplizität damit nicht zu erklären, erfolgt die Angabe des beobachteten Liniensatzes. Zur Bestimmung der Stereochemie wird die NOE-Spektroskopie (Nuclear Overhauser Effect) verwendet.

WO 99/03848 PCT/EP98/04462

Zur Charakterisierung der Signale werden folgende Abkürzungen verwendet: s (Singulett), d (Dublett), dd (Doppeldublett), ddd (6-Liniensystem bei zwei gleichen Kopplungskonstanten bzw. ein 8-Liniensystem bei drei verschiedenen Kopplungs-konstanten), t (Triplett), q (Quartett), quint (Quintett), sext (Sextett), sept (Septett), m (Multiplett), mc (zentriertes Multiplett), br (breit) und v (verdecktes Signal).

Die ¹³C-NMR-Spektren werden mit einem AC 250 der Firma Bruker mit CDCl₃-Signal bei 77,0 ppm als internem Standard vermessen, wobei die Protonenresonanzen breitbandentkoppelt werden.

10

15

20

25

Verwendete Abkürzungen

abs.: absolut, Ar: Aryl/Aromat, ber.: berechnet, Brine: kalt gesättigte Kochsalzlösung. c: Konzentration, COSY: korrelierte Spektroskopie (correlated spectroscopy), DC: Dünnschichtchromatographie, DDQ: Dichloro-dicyano-Quinon, d.e.: diastereomeric excess, DIBAL: Diisobutyl-aluminiumhydrid, DMF: N,N'-Dimethylformamid, DMS: Dimethylsulfid, DMSO: Dimethylsulfoxid, ds: Diastereoselektion, EA: Elementaranalyse, e.e.: enantiomeric excess, EE: Essigsäureethylester, EI: Elektronenstoßionisation. eq: Äquivalent(e), eV: Elektronenvolt, FG: functional group, gef.: gefunden. ges.: gesättigt(e), h: Stunde(n), Hex: n-Hexan, HMDS: Hexamethyldisilazid, HPLC: Hochdruckflüssigkeitschromatographie (high pressure liquid chromatographie, Hünig Base: N-Ethyl-diisopropylamin, HRMS: High Resolution Massenspektrometrie, HV: Hochvakuum, iPrOH: 2-Propanol, IR: Infrarotspektrometrie/Infrarotspektrum, J: Kopplungskonstante, LDA: Lithiumdiisopropylamin, Lsg.: Lösung, Lsm.: Lösemittel, Me: Methyl, MeLi: Methyllithium, min: Minute(n), MS: Massenspektrometrie/Massenspektren. NMR: Kernmagnetische Resonanz (Nuclear Magnetic Resonanz), NOE: Kern-Overhauser-Effekt (Nuclear Overhauser Effect), PCC: Pyridiniumchlorochromat, PG: Schutzgruppe (protection group), Ph: Phenyl, ppm: parts per million, Rkt.: Reaktion. rt: Retentionszeit, RT: Raumtemperatur (20-30 °C), Std.: Stunde(n), TBAF: Tetra-n-Butylammoniumfluorid, TBDPS: tert.-Butyldiphenyl-silyl-, TBS: tert.-Butyldimethylsilyl-, tert/t: tertiär, TFA: Trifluorethansäure, TFAA: Trifluorethansäureanhydrid, TFMS: Trifluormethansulfonsäure, THF: Tetrahydrofuran, TMS: Trimethylsilyl-, u: g. mol⁻¹.

-30

15

20

25

30

Beispiel 1

(2S,4S)-2-[4-Methoxyphenyl]-1,3-dioxan-4-carbonsäuremethylester

AW-5-2 C₁₃H₁₆O₅ M= 252.26 g/mol C 61.9% H 6.4% O 31.7%

In einem ausgeheizten 250 ml Dreihalslöwenthalkolben werden 6.7 g (50 mmol) (S)-Äpfelsäure bei 0 °C unter Argon vorgelegt. Unter Rühren werden bei 0 °C 30 ml Trifluoressigsäureanhydrid über einen Tropftrichter sehr langsam zugegeben (Druckausgleich!). Nach vollständiger Zugabe wird das Eisbad entfernt und die Reaktionslösung noch 2 h bei Raumtemperatur gerührt.

Nun wird Trifluoressigsäure und überschüssiges Anhydrid zunächst im Wasserstrahlvakuum und anschließend an der Ölpumpe entfernt und der kristalline Rückstand bei 0 °C tropfenweise mit 4.5 ml Methanol versetzt (Druckausgleich, s.o.!) und nach Entfernung des Eisbades noch ca. 12 h gerührt.

Nach Einengung und Trocknung im Vakuum wird die kristalline Verbindung von (2S)-2-Hydroxy-butan-1,4-disäure-1-monomethylester in 70 ml abs. THF gelöst und bei 0 °C tropfenweise mit 100 ml einer 1M Boran-THF-Komplex-Lsg. versetzt, 3 h nachgerührt und dann vorsichtig durch tropfenweise Zugabe von 60 ml Methanol die Reaktion abgebrochen. Nach Einengung am Rotationsverdampfer wird das zähe Öl zur Entfernung von Trimethylborat noch mehrfach mit Methanol versetzt und im Vakuum eingedampft. (Eventuell liegt die Dihydroxyverbindung im Gemisch mit Hydroxy-buty-rolacton vor, das so gereinigte Rohprodukt wird direkt weiter umgesetzt).

In einem ausgeheizten 250 ml Dreihalslöwenthalkolben wird obiges Rohprodukt in 220 ml abs. Toluol mit 12.8 mL (65 mmol) Anisaldehyddimethylacetal vorgelegt, mit 1.16 g Campfersulfonsäure versetzt und über einen mit aktiviertem 4Å Molsieb gefüllten Soxhletextraktor unter Rückfluß 5 h gerührt. Nach Abkühlung der Lösung wird über eine mit Kieselgel beschickte Fritte filtriert, nachgewaschen mit Ether, mit ges. Natri-umcarbonat-Lsg. ausgeschüttelt, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Das Rohprodukt wird über eine 5:1-Hex/EE-Kieselgelsäule chromatographiert. Man erhalt 6.65 g (52.7%) des thermodynamischen Acetalproduktes als kristalline Verbindung.

15

20

25

¹H-NMR (400 MHz, CDCl₃): δ in ppm =

1.85 (dtd, $J_{3a,3b}$ = 13.5 Hz, $J_{3a,4a \text{ u. } 2}$ = 2.8 Hz, $J_{3a,4b}$ = 1.5 Hz, 1H, 3a-H); 2.12 (dddd, $J_{3b,3a}$ = 13.5 Hz, $J_{3b,2}$ \Rightarrow $J_{3b,4a}$ \Rightarrow 12.0 Hz, $J_{3b,4b}$ = 5.0 Hz, 1H, 3b-H); 3.76+3.77 (s, 3H+3H, OC H_3 +CO₂C H_3); 3.98 (ddd, $J_{4a,3b} = J_{4a,4b} = 12.0$ Hz, $J_{4a,3a} = 2.5$ Hz, 1H. 4a-H); 4.30 (ddd, $J_{4b,4a}$ = 12.0 Hz, $J_{4b,3b}$ = 5.0 Hz, $J_{4b,3a}$ = 1.5 Hz, 1H, 4b-H); 4.49 (dd, $J_{2,3b}$ = 12.0 Hz, $J_{2,3a}$ = 2.8 Hz, 1H, 2-H); 5.47 (s, 1H, OCHArO); 6.87 (dt, $J_{ArH,ArH}$ = 8.5 Hz, $J_{ArH,OCHArO}$ = 2.0 Hz, 2H, ArH); 7.42 (d, $J_{ArH,ArH}$ = 8.5 Hz, 2H. ArH).

¹³C-NMR (100 MHz, CDCl₃): δ in ppm = 10

> 28.1 (C-3); 52.2 (C-6); 55.5 (C-11); 66.6 (C-4); 75.7 (C-2); 101.3 (C-5); 113.6 (C-9); 127.5 (C-8); 130.2 (C-7); 160.1 (C-10); 170.4 (C-1).

IR (Si-Film): v in cm⁻¹ =

2961m; 2855m; 1730s; 1614m; 1519m; 1445m; 1375m; 1310s; 1251vs; 1207m; 1185m; 1137s; 1096s; 1070m; 1028vs; 993vs; 832s.

MS (EI, 70 eV, 30° C): m/e =

252 (98) [M⁺]; 251 (100) [M⁺-H]; 221 (14); 193 (86); 169 (16); 137 (88); 136 (98); 135 (98); 121 (28); 119 (34); 109 (42); 77 (53); 69 (58); 57 (25); 55 (31).

Schmp.:

78-80°C (aus Et₂O)

C₁₃H₁₆O₅:

 $(M = 252.26 \text{ g·mol}^{-1})$

EA: ber.: C: 61,90 % H: 6,39 %

C: 61.67 % H: 6.43 % gef.:

Beispiel 2

(2S,4S)-(2-[4-Methoxyphenyl]-1,3-dioxan-4-yl)-ethan-1-on

AW-6-2 C13H16O4 M = 236.26 g/molC 66.1% H 6.8% O 27.1%

10

15

20

25

30

In einem 250 ml Dreihalsrundkolben werden 2.066 g (8.19 mmol) der aus Beispiel 1 erhaltenen Verbindung in ca. 80 ml abs. THF bei -100 °C tropfenweise mit 7.17 ml einer 1.6 M MeLi-Lsg. (1.4 eq) versetzt und 1-2 h nachgerührt.

Bei vollständigem Umsatz des Eduktes, wird das Kühlbad entfernt und zügig mit ca. 100 ml ges. NH₄Cl-Lsg. gequenscht und 1 h nachgerührt. Zur Aufarbeitung wird mit Ether verdünnt, die Phasen getrennt, die org. Phase mit Wasser, ges. NaHCO₃-Lsg., Wasser und Brine gewaschen und die wässerige Phase nochmals mit Ether extrahiert. Die vereinigten org. Phasen werden über Magnesiumsulfat getrocknet, filtriert und einrotiert, wobei das Produkt eventuell schon auskristallisiert (in diesem Fall kann zur Reinigung einfach mit kaltem Hexan gewaschen werden). Nach Chromatographie über eine 3:1-Hex/EE-Kieselgelsäule wurden 1.656 g (85.6%) erhalten.

¹H-NMR (400 MHz, CDCl₃): δ in ppm =

1.79 (dtd, $J_{2a,2b} = 13.3$ Hz, $J_{2a,1a}_{u...3} = 2.9$ Hz, $J_{2a,1b} = 1.5$ Hz, 1H, 2a-H); 1.90 (dddd, $J_{2b,2a} = 13.3$ Hz, $J_{2b,2}_{u...3} = 11.8$ Hz, $J_{2b,1b} = 4.9$ Hz, 1H, 2b-H); 2.27 (s. 3H, COCH₃); 3.79 (s. 3H, OCH₃); 3.96 (td, $J_{1a,1b} = J_{1a,2b} = 11.8$ Hz, $J_{1a,2a} = 2.5$ Hz, 1H, 1a-H); 4.25(dd, $J_{3,2b} = 11.3$ Hz, $J_{3,2a} = 3.0$ Hz, 1H, 3-H); 4.29 (ddd, $J_{1b,1a} = 11.3$ Hz, $J_{1b,2b} = 4.9$ Hz. $J_{1b,2a} = 1.0$ Hz, 1H, 1b-H); 5.50 (s. 1H, OCHArO); 6.89 (d. $J_{ArH,ArH} = 8.8$ Hz, 2H, ArH); 7.43 (d. $J_{ArH,ArH} = 8.4$ Hz, 2H, ArH).

¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

25.7 (C-5); 27.2 (C-2); 55.2 (C-11); 66.7 (C-1); 81.5 (C-2); 100.9 (C-6); 113.6 (C-9); 127.3 (C-8); 130.5 (C-7); 160.1 (C-10); 208.1 (C-1).

IR (Si-Film): v in cm⁻¹ =

2999m; 2969s; 2931s; 2909m; 2871s; 2832m; 1710s; 1615m; 1590m; 1520s; 1464m; 1452m; 1429s; 1399m; 1359vs; 1328w; 1310m; 1296m; 1236vs; 1220m; 1207m; 1180s; 1119s; 1100s; 1069m; 1035vs; 1018vs; 992vs; 971vs; 948m; 833vs.

MS (EI, 70 eV, 30° C): m/e =

236 (88) [M⁺]; 235 (91); 221 (20); 194 (72); 193 (78); 163 (33); 153 (27); 137 (88); 136 (88); 135 (86); 121 (77); 109 (85); 100 (28); 92 (47); 84 (99); 83 (65); 77 (92); 65 (31); 63 (31); 57 (43); 55 (31); 43 (100).

Schmp.: 74-76°C

 $C_{13}H_{16}O_4$: (M= 236.26 g·mol⁻¹) EA: ber.: C: 66,09 % H: 6.83 % gef.: C: 66.34 % H: 6.99 %

Beispiel 3

5

10

15

20

25

(2'S,4'S,1E)-4-[2-(4-Methoxyphenyl-1,3-dioxan-4-yl)-prop-1-enyl]-2-methylthiazol

AM-5-2 C₁₈H₂₁NO₃S M= 331.42 g/mol C 65.2% H 6.4% N 4.2% O 14.5% S 9.7%

In einem 100 mL Dreihals-Löwenthalkolben werden 1.475 g (3.25 mmol; 1.3 eq) Wittigreagenz (2-Methyl-thiazol-4-yl-methyl-triphenylphosphoniumbromid); nach erneuter Trocknung im Ölpumpenvakuum mit 5 ml abs. THF suspendiert. Nach Abkühlung der Suspension auf -78 °C, wird mit einer Lösung von 715 mg (3.9 mmol; 1.2 eq) NaHMDS, gelöst in 5 ml abs. THF, durch langsame Zugabe deprotoniert und 15 min nachgerührt.

Nochmals direkt vor der Verwendung getrocknete 590 mg (2.5 mmol) der aus Beispiel 2 erhaltenen Verbindung, gelöst in 5 ml abs. THF, werden bei -78 °C langsam zugetropft, 5 min nachgerührt, anschließend das Kühlbad entfernt und auf Raumtemperatur erwärmen gelassen. Nach ca. 40 min wird die Reaktionslösung im Wasserbad auf 40-50 °C erwärmt und 1 h gerührt.

Zur Aufarbeitung wird durch Zugabe von ges. NH₄Cl-Lsg. gequenscht, die Phasen getrennt, die organische Phase über Magnesiumsulfat getrocknet, filtriert und einrotiert. Nach Chromatographie über eine 6:5:1-CH₂Cl₂/Hex/EE-Kieselgelsäule werden 171 mg Z-Olefin und 614 mg E-Olefin erhalten.

Die Olefinierungsprodukte werden somit in einer Ausbeute von 94.75% im Verhältnis von 1:3.6-Z:E-Olefin erhalten.

¹H-NMR (400 MHz, CDCl₃) (E-Olefin): δ in ppm =

1.67 (dtd, $J_{2a,2b}$ = 13.3 Hz, $J_{2a,1a \text{ u. }3}$ = 2.5 Hz, $J_{2a,1b}$ = 1.5 Hz, 1H, 2a-H); 2.02 (mc, 1H, 2b-H); 2.10 (d, $J_{4,5}$ = 1.0 Hz, 1H, 4-H); 2.69 (s, 3H, TAr-C H_3); 3.78 (s, 3H,

5.

10

15

20

OCH₃); 4.02 (td, $J_{1a,1b} \cong J_{1a,2b} \cong 11.5$ Hz, $J_{1a,2a} = 2.5$ Hz, 1H, 1a-H); 4.29 (ddd.' $J_{1b,1a} = 11.5$ Hz, $J_{1b,2b} = 5.0$ Hz, $J_{1b,2a} = 1.5$ Hz, 1H, 1b-H); 4.34 (mc, 1H, 3-H); 5.56 (s, 1H, OCHArO); 6.63 (q, $J_{5,4} \cong 1.0$ Hz, 1H, 5-H); 6.88 (mc, 2H, Ar-H); 6.97 (s, 1H, TAr-H); 7.44 (mc, 2H, Ar-H).

¹³C-NMR (100 MHz, CDCl₃) (E-Olefin): δ in ppm =

15.1 (C-16); 19.2 (C-9); 30.2 (C-2); 55.3 (C-15); 67.1 (C-1); 81.7 (C-3); 101.1 (C-10);

113.5 (C-13); 115.7 (C-7); 118.9 (C-5); 127.5 (C-12); 131.3 (C-11); 139.1 (C-4); 152.8 (C-6); 159.9 (C-14); 164.4 (C-8).

IR (Si-Film): ν in cm⁻¹ =

3105w; 3057w; 2959m; 2925m; 2850m; 1658w; 1614s; 1517s; 1463m; 1442m; 1429m; 1394m; 1371m; 1302s; 1248vs; 1215w; 1172s; 1152w; 1118s; 1096s; 1062w; 1034s; 977w; 830m.

MS (EI, 70 eV, 40° C): m/e =

331 (41) [M⁺]; 279 (35); 247 (23); 231 (21); 195 (34); 178 (24); 167 (54); 164 (52); 149 (57); 140 (43); 139 (51); 136 (92); 135 (100); 119 (96); 97 (40); 94 (44); 91 (69); 77 (36); 69 (52); 57 (44); 55 (43); 43 (50).

C₁₈H₂₁NO₃S: EA: ber.: C: 65,23 % H: 6,39 % N: 4.22 % (M= 331.42 g·mol⁻¹) gef.: C: 65.37 % H: 6.41 % N: 4.40 %

25 Beispiel 4

(3S, 4E)-3-[(4-Methoxyphenyl)methoxy]-4-methyl-5-(2-methylthiazol-4-yl)pent-4-enol

AM-12-2 C₁₈H₂₃NO₃S M= 333.44 g/mol C 64.8% H 7.0% N 4.2% O 14.4% S 9.6%

15

20

25

In 30 ml abs. CH₂Cl₂ werden 662 mg (2 mmol) der aus Beispiel 3 erhaltenen Verbindung bei -20 °C tropfenweise mit 8 ml einer 1M DIBAL-Lsg. (4 eq) versetzt und ca. 5 h gerührt. Zum Reaktionsabbruch wird mit 1 ml MeOH gequenscht und anschließend langsam gesättigte NaK-Tartrat-Lsg. (30 ml) hinzugegeben. Die Lsg. wird über Nacht gerührt, wobei sich zwei klare Phasen gebildet haben. Die Phasen werden getrennt, die wässerige Phase noch zweimal mit CH₂Cl₂ extrahiert und die vereinigten org. Phasen mit ges. NH₄Cl-Lsg. gewaschen. Nach Trocknung über MgSO₄ wird filtriert und im Vakuum eingeengt.

Chromatographie über eine 2:1-Hex/EE-Kieselgelsäule erbrachte 594 mg (89.1%) Gesamtausbeute im Verhältnis 15:85 ((89 mg); (505 mg)).

¹H-NMR (400 MHz, CDCl₃): δ in ppm =

1.68 (dq, $J_{2a,2b}$ = 14.3 Hz, $J_{2a, 1's u. 3}$ = 4.9 Hz, 1H, 2a-H); 1.94 (mc, 1H, 2b-H); 1.99 (s, 3H, 4-H); 2.37 (br s, 1H, 1-OH); 2.66 (s, 3H, TAr-C H_3); 3.68 (br mc, 2H, 1-H); 3.73 (s, 3H, OC H_3); 3.99 (dd, $J_{3,2a}$ = 8.9 Hz, $J_{3,2b}$ = 3.9 Hz, 1H, 3-H); 4.18+4.42 (je d, J= 11.3 Hz, 2H, OC H_2 Ar); 6.48 (s, 1H, 5-H); 6.80 (mc, 2H, Ar-H); 6.93 (s, 1H, TAr-H); 7.18 (mc, 2H, Ar-H).

¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

13.6 (C-16); 19.2 (C-9); 36.7 (C-2); 55.2 (C-15); 61.1 (C-1); 69.9 (C-3); 84.3 (C-10); 113.9 (C-13); 115.9 (C-7); 121.1 (C-5); 129.4 (C-12); 130.2 (C-11); 139.1 (C-4); 152.6 (C-6); 159.2 (C-14); 164.7 (C-8).

IR (Si-Film): ν in cm⁻¹ =

3396br; 2926m; 2856w; 2835w; 1612m; 1586w; 1514vs; 1464m; 1453m; 1442m; 1302m; 1248vs; 1181m; 1173m; 1060m; 1035s; 821m.

30 MS (EI, 70 eV, 40° C): m/e =

333 (9) [M⁺]; 281 (14); 231 (14); 212 (40); 197 (51); 164 (30); 135 (22): 122 (40); 121 (100); 113 (31); 97 (23); 91 (39); 77 (37); 69 (38).

C₁₈H₂₃NO₃S: EA: ber.: C: 64,84 % H: 6,95 % N: 4.20 % gef.: C: 65.08 % H: 7.00 % N: 4.14 %

Beispiel 5

5

10

15

20

25

30

(5S,2Z,6E)-2,6-Dimethyl-5-[(4-ethoxyphenyl)methoxy]-7-(2-methylthiazol-4-yl)hepta-2,6-diensäure-ethylester

AM-14-1 C₂₃H₂₉NO₄S M= 415.54 g/mol C 66.5% H 7.0% N 3.4% O 15.4% S 7.7%

In 30 ml abs. CH_2Cl_2 werden 102 μ L Oxalylchlorid (1,1 eq) vorgelegt und nach Einkühlung auf -78°C unter Argon langsam mit 187 μ L DMSO (2,5 eq) versetzt und 10 min nachgerührt. (Trübung)

Bei -78 °C werden 354 mg (1,062 mmol)der aus Beispiel 4 erhaltenen Verbindung, gelöst in 5 ml abs. CH₂Cl₂, langsam zugegeben und 10 min nachgerührt. Anschließend wird ca. 1 ml (>5 eq) Hünigbase zugegeben, 15 min nachgerührt und dann das Kühlbad entfernt. (Wieder klare Lsg.). Die Reaktionslösung wird mit 40 ml einer 1:1-Hex/EE-Lsg. verdünnt und mit Eiswasser gequenscht. Die Phasen werden getrennt, die wässerige Phase noch zweimal mit Ether extrahiert und die vereinigten organischen Phasen über Magnesiumsulfat getrocknet, über eine kurze Kieselgelfritte filtriert, im Vakuum eingeengt und an der Ölpumpe getrocknet. Der Rohaldehyd wird ohne weitere Aufreinigung direkt für die nachfolgende Umsetzung verwendet.

In 25 ml abs. THF werden 303,5 mg 2-Phosphonopropionsäure-triethylester (1,2 eq) und 842 mg 18-Krone-6 (3 eq) bei -78 °C vorgelegt. Bei dieser Temperatur wird durch langsame Zugabe von 239 mg KHMDS (1,15 eq), gelöst in ca. 5 ml abs. THF, deprotoniert und 10 min nachgerührt. Anschließend wird der Rohaldehyd, gelöst in ca. 10 ml abs. THF, langsam zugegeben. DC-Kontrolle nach ca. 30 min zeigte bereits vollständigen Umsatz, so dass das Kühlbad entfernt und die Reaktion durch Zugabe von ges. NH₄Cl-Lsg. gequenscht wurde.

Nach Phasentrennung wird mit ges. NaHCO₃-Lsg. gewaschen, die wässerigen Phasen noch zweimal mit Ether extrahiert und die vereinigten organischen Phasen über Magnesiumsulfat getrocknet. Nach Filtration der organischen Phasen über kurze Kieselgelfritte wird am Rotationsverdampfer eingeengt. Chromatographie über ein 3:1-Hex/EE-Kieselgelvorsäule erbrachte 377 mg (85,46%) Isomerengemisch im Verhältnis

10

15

20

25

von ca. 6,2:1 Zur Trennung der Doppelbindungsisomere emphielt sich eine Chromatographie über eine 7:1-Hex/EE-Kieselgelsäule oder eine Reinigung auf der präperativen HPLC.

(Mitlerweile wurde auch die Verwendung des Trifluorethyl-Phosphonat-Derivates untersucht, die eine Selektivität von 15:1 erbrachte).

¹H-NMR (400 MHz, CDCl₃) (Z-Isomer): δ in ppm =

1.28 (t, J=7.5 Hz, 3H, -CO₂CH₂CH₃); 1.88 (d, $J_{2.3}=1.5$ Hz, 3H, 2-H); 2.04 (d, $J_{6.7}=1.0$ Hz, 3H, 6-H); 2.73 (s, 3H, TAr-CH₃); 2.82 (mc, 2H, 4-H's); 3.80 (s, 3H, OCH₃); 3.88 (t, $J_{5,4a}$ u. $_{4b}=7.0$ Hz, 1H, 5-H); 4.17 (q, J=7.0 Hz, 2H, -CO₂CH₂CH₃); 4.24+4.49 (je d, J=11.5 Hz, 2H, OCH₂Ar); 5.96 (tq, $J_{3,4a}$ u. $_{4b}=6.9$ Hz, $J_{3.2}=1.5$ Hz, 1H, 3-H); 6.54 (s, 1H, 6-H); 6.87 (mc, 2H, Ar-H); 6.99 (s, 1H, TAr-H); 7.25 (mc, 2H, Ar-H).

¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

13.4 (C-20); 14.3 (C-13); 19.2 (C-11); 20.7 (C-21); 34.4 (C-4); 55.3 (C-19); 60.1 (C-12); 69.8 (C-14); 84.3 (C-5); 113.7 (C-17); 115.8 (C-9); 121.4 (C-7); 128.4 (C-2); 129.4 (C-16); 130.7 (C-15); 138.8 (C-3); 139.1 (C-6); 152.7 (C-8): 159.1 (C-18); 164.5 (C-10); 167.9 (C-1).

MS (EI, 70 eV, 110° C): m/e =

415 (8) [M⁺]; 371 (13) [M⁺-OEt]; 294 (20); 289 (40); 288 (100); 248 (26); 231 (18); 204 (18); 164 (29); 138 (30); 122 (96); 121 (92); 113 (28); 97 (61); 91 (39); 78 (50); 77 (71); 69 (40); 53 (45); 43 (37).

C₂₃H₂₉NO₄S: EA: ber.: C: 66,48 % H: 7,03 % N: 3.37 % (M=415.54 g·mol⁻¹) gef.: C: 65.91 % H: 6.77 % N: 3.29 %

Beispiel 6

10

15

20

25

(5S,2Z,6E)-2,6-Dimethyl-5-[(4-methoxyphenyl)methoxy]-7-(2-methyl-thiazol-4-yl)hepta-2,6-dienol

AM-15 C₂₁H₂₇NO₃S M= 373.51 g/mol C 67.5% H 7.3% N 3.8% O 12.9% S 8.6%

In 100 ml abs. THF werden bei -20 °C 417 mg (1,0035 mmol) der aus Beispiel 5 erhaltenen Verbindung vorgelegt und dann tropfenweise mit 3 ml einer 1M-DIBAL in Heptan Lösung versetzt. Nach 3 h wurde zur Vervollständigung des Reaktionsumsatzes noch 1 ml der DIBAL-Lsg. nachgegeben und nochmals 30 min bei -20 °C nachgerührt.

Zum Reaktionsabbruch wurde mit 1 ml MeOH gequenscht und nach Verdünnung mit 50 ml Diethylether werden 100 ml halbkonz. NaK-Tartrat-Lsg. zugegeben. Nach ca. 2-3 h kräftigen Rührens bei RT werden die Phasen getrennt, die wässerige Phase noch zweimal mit Ether extrahiert und die vereinigten organischen Phasen über Magnesiumsulfat getrocknet, filtriert und im Vakuum eingeengt. Chromatographische Reinigung über eine 1:1-Hex/EE-Kieselgelsäule erbrachte 272 mg (72,56%) Vinylalkohol.

¹H-NMR (400 MHz, CDCl₃): δ in ppm =

1.79 (s, 3H, 2-H); 2.03 (d, $J_{6, 7}$ = 1.0 Hz, 3H, 6-H); 2.21 (mc, 1H, 4a-H); 2.47 (br, 1H, 1-OH); 2.52 (dt, $J_{4b, 4a}$ = 14.3 Hz, $J_{4b, 3u, 5}$ = 8.4 Hz, 1H, 4b-H); 2.70 (s. 3H. TAr-CH₃); 3.75 (dd, $J_{5, 4a}$ = 8.4 Hz, $J_{5, 4b}$ = 4.4 Hz, 1H, 5-H); 3.77 (s, 3H, OCH₃); 3.84+4.13 (je br d, J= 11.8 Hz, 2H, 1-H's); 4.20+4.46 (je d, J= 11.3 Hz. 2H. OCH₂Ar); 5.26 (t, $J_{3,4a}$ u. J_{4b} = 8.0 Hz, 1H, 3-H); 6.49 (s, 1H, 7-H); 6.84 (mc. 2H. Ar-H); 6.97 (s, 1H, TAr-H); 7.20 (mc, 2H, Ar-H).

¹³C-NMR (100 MHz; CDCl₃): δ in ppm =

13.8 (C-18); 19.2 (C-11); 22.2 (C-19); 34.0 (C-4); 55.2 (C-17); 61.3 (C-1); 70.0 (C-12); 83.7 (C-5); 113.7 (C-15); 115.8 (C-9); 121.1 (C-7); 123.8 (C-3); 129.6

(C-14); 129.9 (C-13); 138.2 (C-2); 139.4 (C-6); 152.6 (C-8); 159.2 (C-16); 164.7 (C-10).

MS (EI, 70 eV, 50° C): m/e =

373 (9) [M⁺]; 357 (8); 307 (11); 289 (27); 288 (96); 219 (19); 197 (17); 167 (39); 164 (28); 149 (33); 138 (41); 122 (100); 121 (92); 119 (34); 109 (27); 97 (52); 91 (81); 78 (39); 77 (56); 69 (36); 43 (56).

10 Beispiel 7

5

15

20

25

30

(5S,2Z,6E)-2,6-Dimethyl-2,3-epoxy-5-[(4-methoxyphenyl)-methoxy]-7-(2-methylthiazol-4-yl)hept-6-enol

AM-16 C₂₁H₂₇NO₄S M= 389.50 g/mol C 64.8% H 7.0% N 3.6% O 16.4% S 8.2%

Zu einer Suspension von ca. 80 mg aktiviertem, zerstoßenem 3Å Molsieb in 2 ml abs. CH_2Cl_2 werden bei -15 °C 20,5 mg (0,0874 mmol) D-(-)-Diisopropyl-Tartrat und 21,7 μ l (7,28 μ mol) Titanisopropoxid zugegeben.

Bei -30 °C werden 199 µl einer ca. 5,5M tert.-Butylhydroperoxid-Lsg. in Nonan langsam zugetropft, 10 min nachgerührt. Anschließend wird die resultierende Reagenzlösung bei -30 °C tropfenweise mit 265 mg (0,7095 mmol) der aus Beispiel 5 erhaltenen Verbindung, gelöst in ca. 1 ml abs. CH₂Cl₂, versetzt und 3 d gerührt.

Zur Aufarbeitung der Reaktion wird zunächst mit 15 ml CH₂Cl₂ verdünnt, 1 ml Wasser zugegeben und 30 min nachgerührt. Anschließend werden 1 ml (Brine/3N NaOH=1:1) zugegeben und wiederum 30 min kräftig nachgerührt. Nach Phasentrennung, zweimaliger Extraktion der wässerigen Phase mit CH₂Cl₂, Trocknung der vereinigten organischen Phasen über Magnesiumsulfat und Filtration über eine kurze Celite-Fritte wird im Vakuum eingeengt. Chromatographie über eine 1:1-Hex/EE-Kieselgel-

20

säule erbrachte 235 mg (215 mg direkt und 20 mg ex ¹³C-Daten in der Mischfraktion) (85,04%) und noch 40 mg Gemischrest.

¹H-NMR (400 MHz, CDCl₃): δ in ppm =

1.40 (s, 3H, 2-H); 1.76 (ddd, ${}^{2}J_{4a, 4b}$ = 15.3 Hz, $J_{4a, 5}$ = 10.8 Hz, $J_{4a, 3}$ = 9.9 Hz, 1H, 4a-H); 2.01 (ddd, ${}^{2}J_{4b, 4a}$ = 14.8 Hz, $J_{4b, 3}$ = 3.4 Hz, $J_{4b, 5}$ = 2.5 Hz, 1H, 4b-H); 2.04 (d, ${}^{4}J_{6, 7}$ = 1.0 Hz, 3H, 6-H); 2.71 (s, 3H, TAr-C H_{3}); 2.76 (dd, $J_{3, 4a}$ = 9.9 Hz, $J_{3, 4b}$ = 3.5 Hz, 1H, 3-H); 3.29 (dd, $J_{1-OH, 1}$ = 10.8 Hz, $J_{1-OH, 1}$ = 2.0 Hz, 1H, 1-OH); 3.45 (dd, ${}^{2}J_{1a, 1b}$ =11.8 Hz, $J_{1a, 1-OH}$ = 2.0 Hz, 1H, 1a-H); 3.61 (t br, ${}^{2}J_{1b, 1a}$ =11.3 Hz, 1H, 1b-H); 3.78 (s, 3H, OC H_{3}); 3.99 (dd, $J_{5, 4a}$ = 10.8 Hz, $J_{5, 4b}$ = 2.5 Hz, 1H, 5-H); 4.22+4.51 (je d, ${}^{2}J_{1a, 1b}$ =11.5 Hz, 2H, OC H_{2} Ar); 6.49 (d, ${}^{4}J_{1a, 1b}$ =1.0 Hz, 1H, 7-H); 6.86 (mc, 2H, Ar-H); 7.00 (s, 1H, TAr-H); 7.22 (mc, 2H, Ar-H).

15 ¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

13.4 (C-18); 19.2 (C-11); 20.4 (C-19); 33.7 (C-4); 55.2 (C-17); 60.5 (C-1); 62.1 (C-3); 64.2 (C-2); 70.0 (C-12); 81.3 (C-5); 113.9 (C-15); 116.4 (C-9); 121.7 (C-7); 129.0 (C-14); 131.1 (C-13); 138.1 (C-6); 152.3 (C-8); 159.5 (C-16); 164.9 (C-10).

Patentansprüche

1. Verbindungen der allgemeinen Formel II

5

10

worin R¹ C₁-C₄-Alkyl,

R² eine beliebige chelatisierungsfähige Schutzgruppe,

R³ Wasserstoff oder C₁-C₄-Alkyl

Y CO₂R⁴, CHO, CH=CH₂ oder CH₂R⁵, wobei

R⁴ für C₁-C₄-Alkyl oder eine gegebenenfalls substituierte Benzylgruppe,

 (Π)

R⁵ für Halogen, Hydroxy, p-Toluolsulfonat oder -OSO₂B und

B für C₁-C₄-Alkyl oder C₁-C₄-Perfluoralkyl steht,

15 bedeutet.

2. Verbindungen der allgemeinen Formel II

20

25

worin R1 C1-C4-Alkyl,

R² p-Methoxybenzyl

R³ Methyl und

Y CO₂R⁴

mit R⁴ C₁-C₄-Alkyl

bedeutet.

3. Verbindung der Formel IV

(IV)

- worin PMP p-Methoxyphenyl bedeutet.
 - 4. Verbindungen der Formel V

(V)

10

worin R¹ C₁-C₄-Alkyl und
PMP p-Methoxyphenyl bedeutet.

5. Verbindungen der Formel VI

15

20

(VI)

worin

R¹ C₁-C₄-Alkyl und PMP P-Methoxyphenyl bedeutet. 6. Verbindungen der Formel IIa

s worin

 $R^1 = C_1 - C_4 - Alkyl$

PMB p-Methoxybenzyl bedeutet.

R³ Wasserstoff oder C₁-C₄-Alkyl'

7. Verbindungen der Formel VII

worin

R¹ C₁-C₄-Alkyl

R² eine chelatisierungsfähige Schutzgruppe darstellt.

R³ Wasserstoff oder C₁-C₄-Alkyl

8. Verfahren zur Herstellung der Verbindung der allgemeinen Formel IIa

20

15

dadurch gekennzeichnet, daß

in einem Schritt 1

von (S)-Äpfelsäure (III) die α-Hydroxysäurefunktion mit Trifluoressigsäure/Methanol
(a) in den Methylester überführt wird, die noch vorhandene Säurefunktion mit Diboran

in Tetrahydrofuran (b) zum Alkohol reduziert wird und der so erhaltene (S)-(-)-Methyl-2,4-Dihydroxyester mit p-Methoxybenzyldimethylacetal (c) in das cyclische Acetal (IV) überführt wird,

in einem Schritt II

5

10

15

20

der Methylester mit einer C_1 - C_4 -Alkyl-metallorganischen Verbindung (d) in das entsprechende Alkylketon (V) überführt wird,

in einem Schritt III

das (C_1-C_4) -Alkylketon (V) in einer Wittigreaktion mit dem Thiazolylphosphoniumsalz (e) umgesetzt und das E-Isomere (VI) abgetrennt wird und

in einem Schritt IV

das E-Isomere (VI) durch Reaktion mit Diisobutylaluminiumhydrid (f), Swern-Oxidation (g) und Wadsworth-Horner-Emmons-Kondensation (h) mit Ethyl-2-Diethoxyphosphinylpropionat oder einem für R³ entsprechenden Horner-Reagenz und Reinigung vom

E-Isomeren in den Z- α,β-ungesättigten Ester (IIa) überführt wird.

Verbindung VI

Verbindung IIa

9. Verbindungen der allgemeinen Formel VIIa

$$OR^2$$
 R^1
 N
 S
 $(VIIa)$

worin R¹ Wasserstoff oder C₁-C₄-Alkyl und

R² p-Methoxybenzyl

R³ Wasserstoff oder C₁-C₄-Alkyl

bedeuten.

10

10. Verwendung der Verbindungen gemäß Ansprüche 1, 2, 3, 4, 5, 6, 7 und/oder 9 zur Herstellung von Epothilon A und Epothilon B und deren Derivaten.

INTERNATIONAL SEARCH REPORT

Int Ional Application No PCT/EP 98/04462

· · · · · · · · · · · · · · · · · · ·		PC1/EP 98	704462
A. CLASS IPC 6	HFICATION OF SUBJECT MATTER C07D277/30 C07D319/06 C07D41 //(C07D493/04,313:00,303:00)	7/06 C07D277/24 C07D	493/04
According t	to International Patent Classification(IPC) or to both national classification	fication and IPC	. •
	SEARCHED		
Minimum ok IPC 6	ocumentation searched (classification system followed by classification $CO7D$	ation symbols)	
Documenta	ition searched other than minimumdocumentation to the extent tha	t such documents are included in the fields se	arched
Electronic d	data base consulted during the international search (name of data	base and, where practical, search terms used	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.
A .	DONGFANG MENG ET AL: "Studies synthesis of epothilone A:Use o hydropyran templates for the markeyclic stereochemical relation JOURNAL OF ORGANIC CHEMISTRY.,	f nagement of ships"	1-10
	vol. 61, no. 23, 1996, pages 799 XP002035361 EASTON US cited in the application see the whole document		
A	DE 195 42 986 A (GESELLSCHAFT FI BIOTECHNOLOGISCHE FORSCHUNG) 2 cited in the application see the whole document		1-10
		-/	
X Furti	her documents are listed in the continuation of box C.	Patent family members are listed	in annex.
* Special ca	stegones of cited documents : ent defining the general state of the art which is not	"T" later document published after the inte or priority date and not in conflict with	the application but
consid "E" earlier o filing d	dered to be of particular relevance document but published on or after the international date	cited to understand the principle or the invention. "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the de-	claimed invention t be considered to
which crtation	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or makes	"Y" document of particular relevance; the cannot be considered to involve an ir document is combined with one or ments, such combination being obvious.	claimed invention iventive step when the ore other such docu-
"P" docume	means ent published prior to the international filing date but han the priority date claimed	in the art. "&" document member of the same patent	
Date of the	actual completion of theinternational search.	Date of mailing of the international sec	arch report
4	November 1998	23/11/1998	
Name and r	mailing address of the ISA European Patent Offics, P.B. 5818 Patentiaan 2 NL - 2280 MV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Henry, J	

INTERNATIONAL SEARCH REPORT

Int Ilonal Application No PCT/EP 98/04462

	INION) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No	
Ρ,Χ	JOHANN MULZER ET AL: "Synthesis of the C(11)-C(20) segment of the cytotoxic macrolide epothilone B " TETRAHEDRON LETTERS., vol. 38, no. 44, 3 November 1997, pages 7725-7728, XP002083207 OXFORD GB see the whole document	1-10	
		·	
•			

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int Ional Application No PCT/EP 98/04462

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 19542986 A	22-05-1997	WO 9719086 A EP 0873341 A	29-05-1997 28-10-1998

INTERNATIONALER RECHERCHENBERICHT

Int tionales Aktenzeicher PCT/EP 98/04462

		101/21	96/04462
A. KLASSI IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07D277/30 C07D319/06 C07D417/0 //(C07D493/04,313:00,303:00)	06 C070277/24 C0	
Nach der In	ternationalen Patentidassifikation (IPK) oder nach der nationalen Klass	ifikation und deriPK	
B. RECHE	RCHIERTE GEBI ETE		
IPK 6	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymboli C07D	9)	
Recherchier	te aber nicht zum Mindestprufstoffgehörende Veröffentlichungen, sow	reit diese unter die recherchierten Gel	Diele fallen
Während de	er internationalen Recherche konsultierte elektronische Datenbank (Na	me der Datenbank und evtt. verwend	dete Suchbegriffe)
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DONGFANG MENG ET AL: "Studies to synthesis of epothilone A:Use of hydropyran templates for the mana- acyclic stereochemical relationsh	gement of	1-10
	JOURNAL OF ORGANIC CHEMISTRY., Bd. 61, Nr. 23, 1996, Seiten 7998 XP002035361 EASTON US	• •	
	in der Anmeldung erwähnt siehe das ganze Dokument 		
A .	DE 195 42 986 A (GESELLSCHAFT FÜR BIOTECHNOLOGISCHE FORSCHUNG) 22. in der Anmeldung erwähnt siehe das ganze Dokument	Mai 1997	1-10
	 -	/	
			<u></u>
	ere Veröffentlichungen eind der Fortsetzung von Feld C zu ehmen	Siehe Anhang Patentfamille	· ·
"A" Veröffer aber ni "E" älteres i Anmek "L" Veröffen	ntlichung, die den altgemeinen Stand der Technit definiert. icht als besonders bedeutsam enzusehen ist. Dokument, das jedoch erst am oder nach dem internationalen dedatum vertifientlicht worden ist. sticktum, die geeignet ist, einen Prioritätsanspruch zweifelhaft ersen zu lessen, oder durch die das Veröffentlichungsdatum einer	Theorie ängegeben ist X* Veröffentlichung von besonderer i kann allein aufgrund dieser Veröf erfinderischer Tätloteit beruhend	ntlicht worden ist und mit der rn nur zum Verständnis des der nzipe oder der ihr zugrundeliegenden Bedeutung; die beanspruchte Erfindung fentlichung nicht als neu oder auf Ibetrachtet werden
ausget "O" Veröffer eine Be	ntichung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht	kann nicht als auf erfinderischer werden, wenn die Veröffentlichur	rätiging beruhend betrachtet ng mitelner oder mehreren anderen ine in Verbindung gebracht wird und mann naheliegend ist
	Abschlusses der internationalen Recherche . November 1998	Absendedatum des Internationals 23/11/1998	en Recherchenberichts
	NOVEMBET 1998	Bevoltmächtigter Bedlensteter	
- June 1997 P	Europäischee Patentamt, P.B. 5818 Patentisan 2 Nt 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70)-340-3016	Henry, J	

INTERNATIONALER RECHERCHENBERICHT

Into donales Aktenzeichen
PCT/EP 98/04462

		/EP 98	3/04462	
Kategone	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden T	eile	Betr. Anspruch Nr.	
P,X	JOHANN MULZER ET AL: "Synthesis of the C(11)-C(20) segment of the cytotoxic macrolide epothilone B " TETRAHEDRON LETTERS Bd. 38, Nr. 44, 3. November 1997, Seiten 7725-7728, XP002083207 OXFORD GB siehe das ganze Dokument	1-10		
·				
:				
•				

1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veroffentlichungen, die zur selben Patentfamilie gehoren

PCT/EP 98/04462

lm Recherchenbericht	Datum der	Mitglied(er) der	Oatum der
angeführtes Patentdokument	Veröffentlichung	Patentlamilie	Veröffentlichung
DE 19542986 A	22-05-1997	WO 9719086 A EP 0873341 A	29-05-1997 28-10-1998

B0561

99-132130/11 SCHERING AG

SCHD 97.07.16

97.07.16 97DE-1031316 (99.01.28) C07D 277/30, 277/24, 319/06, 417/06, 493/04 (C07D 303:00, 313:00, 493/04)

New thiaxolyl-alkadienol and -spoxide derivatives - used as intermediates for diastercomerically pure epothilon compounds having fungicidal and cytotoxic activity (Ger)

C99-038661 N(AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DK EE ES FI GB GE GH GM HR HU ID IL IS IP KE

KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU) R(AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU

MC MW NL OA PT SD SE SZ UG ZW) MULZER J. MANTOULIDIS A Addnl. Data:

98.07.16 98WO-EP04462

Protected thiazolyl-alkadienol derivatives of formula (II) and thiazolylepoxide compounds of formula (VII) are new.

 $R_1 = 1-4C$ alkyl;

R₁ = chelate forming protecting group;

 $R_i = H \text{ or } 1-4C \text{ alkyl}$:

B(7-F1) .1

Y = COOR., CHO, CH=CH1 or CH1R1:

R_a = 1.4C alkyl or optionally substituted benzyl; R_s = halo, OH, p-toluenesulphonase or -OSO₂B;

B = 1-4C alkyl or 1-4C perfluoroalkyl;

in (VII) R_1 can also be H if $R_2 = p$ -methoxybenzyl (PMB).

WO 99 03848-A+

1,3-Dioxan derivative intermediates of formulae (IV)-(VI) (see 'Preparation') are also new.

MORE SPECIFICALLY -

 $R_2 = PMB$;

 $R_1 = Me;$ $Y = COOR_4;$

R₄ = 1-4C alkyl, especially Et.

The use of (II) and (VII) is claimed as intermediates for epothilon A, epothilon B and their derivatives. Epothilon A of formula (I; R = H) and epothilon B of formula (I; R = Me) are macrocycli: natural products having fungicidal and cytotoxic activity, includit g in vitro activity against breast and stomach rumour cell lines; see DE19542986-A1 and DE4138042-C1.

WO 99 13848-A+/1

99-132130/11

ADVANTAGE

(II) and (VII) can be prepared in diaster-comerically pure form and converted into disserteomerically pure (1). (1) can be prepared from naturally occurring (S)-malic soid in 10 stages via (II), whereas the prior art synthesis of (I) has 15 stages.

PREPARATION

Claimed preparation of (II; $R_4 = PMB$; Y = COOEt) (II') from (S)-malic scid of formula (III) involves:

(1) converting the a-hydroxyscid function into the methyl ester with trifluoroscetic acid/methanol, reducing the other acid function to the alcohol using diborans in THF and converting the obtained (S)-(-)methyl-2,4-dihydroxy ester into the cyclic acoral of formula (IV) using PMB dimethyl sostal;

(2) converting (IV) into the corresponding alky! ketone of formula

(V) using a 1-4C alkyl organometallic compound:

(3) subjecting (V) to Wittig reaction with (2-methylthizzol-4ylmethyl)-triphenylphosphonium chloride and separating the (E) isomer product of formula (VI); and

(4) subjecting (VI) to reaction with disaburyl aluminium hydride

B0562

(DIBAL), Sween exidation and Wadsworth-Horner-Emme as condensation with ethyl 2-diethoxyphosphinylpropionate (ra corresponding Homer reagent for Rs and purifying the Z-o Bunsaturated ester (II').

WQ 9913848-A+/2

(II') can then be: converted into other compounds (II) by conventional reactions (e.g. reduction with DIBAL to give Y = CHO followed by Winig reaction to give Y = CH=CH_); or converted into the corresponding compound (VII) by reduction to the

corresponding a \(\beta \- unsaturated alcohol, using 3 equivalents of DIBAL

in THF at -20°C. followed by diastereo-selective epoxidation using 4 A molecular sieve, utamium tsuraisopropylate, (D)-(-)-dii sopropyl cartrate and terr. buryl hydroperoxide for 3 hours at -30%

EXAMPLE

A mixture of 30 ml CH2Cl2 and 102 µl oxalyl chlor de was cooled to -78°C, treated slowly under Ar with 187 µl DMSO, at rred for 10 minutes, treated slowly with a solution of 354 mg (3S,41)-3-(4methoxybenzyloxy)-4-methyl-5-(2-methylthiazol-4-yl)-1 end-4-enol in 5 ml CH2Cl2, stirred for 10 minutes, treated with 1 ml H mig's base and stirred for 15 minutes.

After removal of the cooling bath, the solution was tiluted with hexane/ EtOAc and quenched with ice-water. The organ c phase was dried, filtered and evaporated to give a crude aldehyde p oduct.

A mixture of 25 ml THF, 303.5 mg methyl 2. phosphonopropionate and 842 mg 18-crown-6 was cooked to -78°C. treated slowly with a solution of 239 mg potassium hexamethyl disilazide in 5 ml THF, stirred for 10 minutes, treated with a solution of the crude aldehyde in 10 ml THF and reacted until co iversion was complete by TLC (ca. 30 minutes).

After removing the cooling bath, the reaction was quenched with

WO ! 903848-A+/3

B0563

99-132130/11

NHLCI solution. The organic phase was worked up to give, after chromatographic purification, 377 mg of ethyl (5\$,2Z,6E)-2,6dirnethyl-5-(4-methoxybanzyloxy)-7-(2-methylthiazol-4-yl)-hepta-2,6dienoste as an isomer mixture in ratio 6.2: 1. (DAH) (33pp2400DwgNo.0/0)

WO ! 903848-A/4

99-132131/11 JBL SCI INC

B04 D16 J04 (B02)

IBLS-97.07.21

*WO 9903849-A1

98.07.17 98US-118220(+97US-053339) (99.01.28) C07D 277/64. 263/62, 277/66, 417/06, COTF 9/653, 9/6541, COTH 11/04, 17/00, GOIN

New dibenzazole derivatives - useful as fluorescent compounds in biological assays (Eng)

C99-438662 N(AU CA IP NZ) R(AT BE CH CY DE DK ES FI FR GB

GRIE IT LU MC NL PT SE) BROWN LR. XUC Addal. Data:

98.07.21 9EWO-US15080

Dibenzazole compounds of formula (I) and (II) are new?

B(4-E1, 4-N4, 6-E1, 6-F1, 11-C7A5, 11-C7B3, 12-KAA) D(5-H9) J(4-B1) .7

B0564

WO 3903849-A+

Page 665

Kojchi; Ohsumi, Kaji; Nakagawa, Ryusuke; Pukuda, Tashihiro; Nihei, Yukio: Suga. Yəsuyo; Akiyama, Yukio; Tsuji, Takashi (Pharmaccusical Research Laboratorics, Ajihomoto Co. Inc., Kawasaki-ku, Kawasaki, Japan 210-9581). Bioorg, Med. Chem. Lett. 1996, 8(23), 3371-3374 (Eng). Elsewor Science Ltd.: A series of B-ring modified combretasta-

tin analogs were synthexized and their inhibitory activity against micro tubule assembly, cytotoxic activity against Colon 26 adenocarcinorda cancer cell line were evaluated. Among these, pyridone deriv. (I) showed strong antimitatic activity and cytotoxicity, along with excellent water-

130: 139196s Synthesis of choline chlorido with self-catalysis. Song, Chengying: Zhao, Jianhong: Wang, Liucheng; Xu, Haisheng (Chemical Engineering Dep., Zhengzhou University Technology, Peap. Rep. China 150002). Huaxue Fanying Gongcheng Yu Gongoi 1998, 14(4). 431-435 (Ch), Zhejianeshong Chuban Duiwai Maoyi Gongsi. Choline chloride showed good self-estalyzing behavior in its props. from chlore-ethanol and trimethylamine. Under optimal conditions the yield of chaline chloride was over 99%.

130: 139199t Synthesis and evaluation of 2-amine-6-fluore-9-(2-hydroxyethoxymethyl)purine esters as potential products of acyclovic. Kim. Dae-Kee: Lee, Namkyu: Im, Guang-Jin: Kim. Hun-Tack: Kim. Key H. (Life Science Research Conter. SK Chemicals. Kyungki, 440-745 S Korea). Binorg, Mrd. Chem. 1996, 6(12), 2525-2530 (Eng). Elsevier Science Ltd.. 2-Amino-6-fluoro-9-(2-hydroxyethoxymothyl)purino (I) and its ester derivs, were synthesized as potential prodrugs of acyclovir, and were evaluated for their oral acyclovir biograilability in rate and in vivo antiviral efficacy in HSV-1-infected mice. ability in rate and in vivo antiviral clinicaty in HSV-1-infected mice.

Treatment of 2-annino-6-chloro-9-(2-hydroxyethoxymethyl)purine
with trimethylamine in THF/DMF (4:1) followed by a reaction of the
regulting trimethylammonium chloride salt with KP in DMF gave I in
78% yield. Estenfication of I with an appropriate acid anhydride (Ac₂Q.
(ELCO)₂O. (n-PrCO)₂O, or (i-PrCO)₂O) in DMF in the presence of a
catalytic amt. of DMAP at room temp. produced the esters in 30-98% yields. Of the prodrugs tested in rate, the isobutyrate achieved the highest mean urmary recovery of acyclovir (51%) that is 5.7-fold higher than that of sevelovir (9%) and comparable to that of valacyclovir (50%), The prodrug isobutyrate protected dose-dependently the mortality of HSV-1-infected mice, and the group treated with the isobutyrate at a

dose of 400 mg/kg showed the longest mean survival day (14.6 ± 3.1 days) (mean ± 5.D.)

130: 139200m Studies on phytochemicals: futoamids from Piper longum. Das. Biswanath; Kashinatham, A. (Organic Chemistry Division) sion, Indian Institute of Chemical Technology, Hyderabad, 500 007 India).
Piroterapia 1998, 69(6), 548 (Eng.), Indona SpA. Futsamide was isolated from Piper longum.

130: 139201n Theoretical studies on the tautomeric preparties of diamino-5-formamidopyrimidioes. Cysewski, Pietr (Dep. Clinical Blochem. Ludwik Rydymer Univ. Medical Sei., 85092 Bydgossea Pol.). Z. Naturforsch., C: Biosci. 1996. 53(11/12), 1027-1036 (Bng., Ven. lag der Zeitschrift fuer Naturforschung. The results of theer, grometry prediction of formamidopyrimidino(lapy)-adenine and fapy-guarine tautomers are presented. Among 54 potential tautameric structures of fapyadenine, the most stable structure corresponds to the diamino kets isomer. The solvent effect has insignificant influence on the fappy-adenine sautomers succession. The fappy-guarine has 173 potential isomers. There are I must stable tautomors of this guanine deriv., which may exchange the order depending on the polarity of the environment. In vapor, the most probable is the 4-enel 6-kets diamino tautemer, while in water environment the 4.6-dikets diamino isomer is dominant. A more polar solvent stabilizes more polar fapy-guanine tautomere.

130: 139202p Preparation of 15-deoxylencarbacyclins having high affinity to prortacyclin receptors. Watanaba, Yasuyoshi; Suzuki, Massaki; Hasate, Atsue; Watanaba, Yumike (Foundation for Scientific Technology Promotion, Japan) Jpm. Kokai Tokkyo Koko JP 11 05,784 (99 05.764) (Cl. C07C59/34), 12 Jan 1999, Appl. 97/160.320. 17 Jun 1907: A pp. (Japan). Title compde. I (X = CHeRCeH.Me: Y =

OH: Z=H: $R=C_{1-0}$ hydrocarbon) are prept. by reaction of formylpentalenepentaneates II with Ph₂P:CHCHO, reaction of formylethenylopentalenepentaneates I (X=CHO; Y=CTHP; Z=Me) with Me chloroformate, reaction of methosycarbonylosypentalenapentaneates (X = CH₂OCO₂Me; Y = OTHP, Z = Me) with (PhSO₄)₂CHR*C₆H₄Me (R* = C₁₀ hydrocarbon), elimination of phanylpentalenepentancic acid I (X \(\times \text{CM}_cC(SO_pPh)_R^oC_pH_dM_c; Y = OTHP, Z = Mc, R^o = same as above), and hydrolysis of carbasyclins I (X = CH_2RC_pH_dM_c; Y = OH; Z = Mc, R = same as above). If was reacted with Ph_pP:CHCHO in benzene under reflux for 20 h, reacted with CcCl_H_O and NaBH_d in MeOH for 5 min, condensed with Mc chloreformate in CH_2Cl_b in the presence of DMAP for 4 h, condensed with m-(PhSO_b_CCHC_pH_Me in the presence of tris-(dibenzylidenecetonaldipalladium(0)-chloreform addn. compd. and 1,2-bistdiphenylphasphinobethane in THP for 15 h, eliminated with Mg in McOH for 3 h, and hydrolyzed with NaOH in McOH at roam temp. for 12 h to give 15-doxy-16-m-tolyl=11.18.19.20-intranceign-archerecipic 12 h to give 15-decay-16-m-tolyl-17,18,19,20-tetranorisocarbacyclin

12 n to give 13-0003y-10-m-unji-17,30,15,20-thranovisocaromycun showing high affinity to prostacyclin receptors.

130: 139203q Preparation of F-18 labeled prostaglandins as antitumor agents and tumor diagnostic agents. Watenabe, Yasuyoshi; Suzuki, Kazutoshi; Harada, Takaishi; Suzuki, Masaki; hanosni: Suzuki, Razvioshi: Harada, Takaishi; Suzuki, Masaki; hanezato. Atsuo (Foundation for Scientific Technology Promotion, Japan)

Jpn. Keksi Tohkyo Kobo JP 11 08,778 [99 08,778] (Cl. C07C40500),

12 Jan 1899. Appl. 97/160,321. 17 Jun 1997; 4 pp. (Japan). (7E)—N—

[[4-(fluo;n-1eF)phenyilmethyl]—9-ozn-prosta=7,10-dien=1-amide (I)

are propul by reaction of 1-[[(7E)=1,9-diexoprosta=7,10-dien=1-yi]
oxy]—2.5—Pyrrolidinedione (II) with p-[!eF]fluorobensylamine. II was

mated with p-[197]fluorobensylamine. ireated with p-(14F)fluorobenzylamine in accientific at room temp. for

treated with 9-1"Fittuoreamzytamine in accusulative as room water for 15-20 min to give 92% I.

15-20 min to give 92% I.

130' 139204r Process for synthesizing carbapeness side chain satermediates. Brands, Karol M. J.; Williams, John M.; Delling, Ulf H.; Johson, Ronald B.; Davies, Anthony J.; Cottrell, Ian F.; Cameron, Mark; Ashwood, Michael S. (Merek & Co., Inc., USA) PCT Int. Appl. WO 99 02.881 (Cl. COTD485/08), 21 Jan 1999, GB Appl. 98/10,184, 13 May 1998; 39 pp. (Engl. A process of synthesizing a compd. of formula

(I) (P = protecting group) is described. A compd. of formula (II) is reacted with diphonylphosphinic chloride to activate the carboxylic acid group, and then reacted with methanosylfonyl chloride to produce a compd. of formula (III). III is then reacted with a group II metal sulfide source in water to produce I.

source in water to produce I.

150: 13806s syntheses of epothilogo derivatives and intermediates for use in treatment of hyperproliferative cellular disease. Vite. Gregory D.: Borzilleri. Robert M.; Kim, Soong-hoon; Johnson, James A. (Bristol-Myers Squibb Company, USA) PCT Int. Appl. WO 90 02,814 (Cl. C07D313/00), 21 Jan 1999, US Appl. 67.524, 4 Dec 1997; 70 pp. (Engl. Syntheses of epothilogo derivs. (I) (R = H. Me; A = CH₂.

O, NH: X=H when bond double, α -emmy when bond single) and intermediates for use in treatment of hyperproliferative cellular disease are described

130: 1332081 Method for the production and use of this sole derivatives. Mulser, Jehunn: Mantoulidis, Andress (Schering Aktiongerelisthaft Germany) PCT Lat. Appl. WO 99 03.548 (Cl. C07D277/20), 28 Jan 1999, DE Appl. 19,731,316, 16 Jul 1997; 33 pp. (Ger). The inven-28 Jan 1999, DE Appl. 19,731,316, 16 Jul 1997; 33 pp. (Ger). The invention relates to thissele derive. I IR¹ = C_{1-4} -alkyl; R⁵ = a presentive group with chelating power, e.g. $CH_0C_0H_0.0Me^{-4}$; R° = H. C_{1-4} -alkyl, esp. Me; Y = CO_0R^4 , CHO, CH=CH₂, CH_R⁵; R° = C_{1-4} -alkyl, (un)-substituted beneyl group; R° = halopen, hydrexy, p-telucensulfonate, OSO_0B; B = C_{1-4} -alkyl, C_{1-4} -perfluoroelkyll. Intermediates II (PMP = CO_0R^4 -A), III, IV and V in the prepr. of I are also claimed. Thus, I (R¹ = RP = Me, R² = $CH_0C_0H_0.0Me^{-4}$), was prepd. from heteme III (R¹ = Me) via Wittig reaction with (2-mathyl-1.3-thissel-4-yilmethyll-triphenylphosphonium bremide, regionelective and deprotection of thissele IV (R¹ = Me), followed by saidn, and Harner-Emmons reaction with (ΣtO)_P(O)CHMeCO_0Et. I (R¹ = R° = Me, R² = $CH_0C_0H_0.0Me^{-4}$) was converted to advanced intermediate VI (R¹ = R² = Me, R² = $CH_0C_0H_0.0Me^{-4}$) via redn. with DIBAL-H in heptane/THF followed by stereoselective epaxids. with MagCO_H in CH_Ci_c contp. catalytic Ti-(OCHMe_1), and disopropyl (-)-D-tarrate. These derive, are produced without dispersemers and are used in the proda. of epothilones A and B and their derive. B and their deriva.

-UG.24.1999 11:37AM 7609 252 7280

130: 139207u Synthesis of isolmide of chlorine and bacteriochlorine and their use for diagnosis and tre atment of cancer. Panday, Ravindra K.: Kosyrov. Andrei N.: Dougherty, Thomas J. (Health Research, Inc., USA) U.S. US & 864,035 (Cl. 540-472; C07D407/22). 26 Jan 1999, US Appl. 613,134, 8 Mar 1996; 16 pp., Cont.—in—part of U.S.-Ser. No. 613,134. (Eng). Chlorins and becteriochlorins (I) IZ = O.

NR14; $R^{1a} = \text{(un)substituted alkyl; } R^1 = \text{arnine acid, polyamine, polyether, OR13; } R13= \text{alkyl; } R^a - R^{11} = -H, OH, \text{ alkyl, alkylene.} -OR16; } R^{16} = H, \text{ alkyl, aryl, carbonyl cents. group, provided that: } R^a may be taken together with <math>R^a$ to form =0; R^a may be taken together with R^a to form =0; R^a may be taken together with R^{a} to form =0; R^a may be taken together with R^a to form =0; R^a may be taken together with R^a to form =0; and R^a and R^a may together form a chem. bend and R^a and R^a may together form a chem. bend; and R^a

= H, slkyl; provided that if one Z = O, the other Z = NR14) were propil for use in photodynamic therapy of tumers. Thus, I |Z=N|; H2)SMe; $R^1=CH2CH2Me$; $R^2=\beta E$ t; $R^2=\alpha H$; $R^2=\alpha Me$; $R^2=\beta H$; Prester by reaction with 1-hoxylamine followed by reaction with 1.3-dicyclohoxylearbodiimide. If efficacy for in vive photodynam c therapy was evaluated RIF tumor model.

NO.528

For papers of related interest see also Section:

1 133442v Oligonucleotide analogo: an overview,
133684j Inactivation of O*-Alkylguanine-DNA Alkyltras sferase. 1. Novel Od-(Hetaryimethyl)guanines Having Basic Rings is the Side Chain.

5 1983564 2-Fluoroabstisis acid analogs: Their synthesis and biological activities

1353794 Characterization of antibody models of the ryano line receptor for use in high-throughput screening.

10 1363228 Absolute stereostructures of novel cytotoxic m tabolites.

gymnastatins A-E, from a Gymnascolla species separated from a Halichondria sponge

11 136549w New Bioactive Flavonoids and Stilbenes in Cabe Resin

Insecticide.
136550 Isolation of knowing A from covotillo (Karwingki, humboldtiana) fruits.

136466 Antifungal serivity of Picter recomous leaf extract and isola-

tion of the active compound.

136572y Enanticopecific Semisynthesis of (+)—Almuhey clide A, a Novel Netural Hoptelide Inhibitor of the Mammalian Mitschendrial

Respiratory Chain.

136668 Nordihydrocapsiate, a New Capsinoid from the Fruits of a

Nonpungent Pepper, Capsicum annuum.
136586f Two glutaric acid derivatives from elives.

136657g Two linear acetogenies from Goniethalamus gat desert. 136590e Butanolides as a common feature of Iryantheri Iancifolia

and Virola surinamencia. 186592e Severibusine, a new quinotine-2,4-dione and other constituents from Severinia buzifolia.

136695h Structure elucidation of annohoptocina, two ner heptahydrosylated Con accregening by high-energy callision-induct d dissocia-

tion tandem mass spectrometry. 20 138824f Professor Sir Derek Barton.

22 Physical Organic Chemistry.

23 139065 Synthesis and structure of linear and cyclic of gomers of 3-hydroxybutanoic acid with specific sequences of (R)- and (S)configurations.
30 138487a Oxidation of aromatic monoterpensa with hydrog a perceids

catalyzed by Mn(III) purphyrin complexes.
78 147834m Thermal stability of robust unsymmetrical cops or purphy-

rins with multiple diphenylamine and nitro substituents.

For patents of related interest see also Sections 33 139676p Preparation of cyclin dependent kinase inhibit ng purine

derivative

63 144161k Water soluble polymer-tecrolimus conjugated compounds and process for preparing the same.

27-HETEROCYCLIC COMPOUNDS (ONE HETERO ATOM)

This section includes the synthesis, parification, stabilization, reactions, and determination of molecular structure of cyclic contpounds that contain two or more carbon atoms in a single ring and ne more than one hetere atom (nitrogen, oxygen, sulfar, and the hilogens), as well as spire compounds with one hetere atom in each ring. Physical organic studies are included in Section 23. Studies on the preparation, processing, and properties of caprolactam, ethylene oxide, propylene oxide, and similar common monomers, unless a non-polymer application is explicitly stated, are included in Section 35 or 36. Industrial manufacturing and processing of compounds normally found in this section are included in Section 45. found in this section are included in Section 45.

130: 139208v Chemistry of indeles: new reactivities of indele nucleus and its synthetic application. Murakami, Yamiski (Sch. Pharmaceutical Sciences, Tobe Univ. Myamis, Punsbashi, Chiba, Japan 274-8510). Yekagaku Zasshi 1968, 119(1), 38-60 (Japan), Pharmaceutical Sesiety of Japan. This review summarizes the authors studies on the development of new reactivities of the indele nucleus and on its application in synthesis with 50 refs. These studies involve the following five main subjects: (1) The Vilameier-Haack reaction was applied to 1,2,3,4-tetrahydrocarbasole and its N-alkyl compds. The conditions and the mechanisms of the formation of three kinds of products obtained from the latter compd. were clarified, and among the three products. 1,9-dimethylcarbasole-3-aldehyde was useful for the syntheses of obvious and ellipticine. (2) The Fischer indele synthesis of various 2-substituted phanylhydrazones was exame, in detail and it was found that the Fischer indele synthesis of 2-sulfonylexyphenythydrazones that the Fischer indele synthesis of 2-sulfenylexyphenythydrasenes served a new and convenient method for the synthesis of 7-exygenaled indeles. This reaction was applied to the synthesis of eudistemidine A.

(3) The reactivities of Et indele-2-carboxylate for acylation and bromb

nation were also studied, and the use of this comed. as a star ing mate nation were also studied, and the use of this campe. As a star ing material for the synthesis of 4-methoxy-\$f-carbelines was at cressfully investigated. (4) Asylation of Et pyrrole-2-carboxylate wis concludy studied and this reaction was applied to the syntheses of bens one ring-substituted indoles and bensifitudeles involving supplearamin. (5) Two kinds of method for the debanaylation of N-bensylindoles were developed union without Alfila-bensons or Me Hibburn and these are come meantains. using either AlCly-bensons or Me Hilbium, and they are comp ementary with each other.

130: 1392.08 Recent advances in central of absolute stare-130: 1392.08 Recent advances in central of absolute stare-ochemistry in Diels-Alder cycloadditions of 3-pyroms. Posner, Gary H.; Buil, D. Sesti (Department of Chemistry, The John : Hopkins University, Saltimore, MD 21216 USAL Recent Res. Den. C y. Chem. 1997. 1, 289-271 (Eng., Transvorid Rescarch Network, This review of recent progress in controlling the abs. stereethers, of bicycle lactone

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
□ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.