MST125 TMA01

William B. Sørensen

December 4, 2022

1 Question 1

Contents

1	Question 1 1.1 a														1										
	1.1																								1
	1.2	b																							1
	1.3	c																							2
2	Que	estion	2																						3
3	Que	estion																							3
	3.1	a																							3
		3.1.1	i																						3
		3.1.2	ii																						4
		3.1.3	iii																						4
	3.2	b																							4
		3.2.1	i																						4
		3.2.2	ii										_				_								4

1.1 a

MST125 TMA 01 Question 1 William Bjørn Sørensen, I220215X \LaTeX

1.2 b

1. The distance between $A(x_1, y_1)$ and $B(x_2, y_2)$ is given by

AB =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
.

Hence the distance between A(-3, 1) and B(2, -2) is

$$AB = \sqrt{(2 - (-3))^2 + (-1 - 1)^2}$$
$$= \sqrt{5^2 + (-3)^2}$$
$$= \sqrt{34}.$$

2. The gradient m of the line through (x_1, y_1) and (x_2, y_2) is given by

$$m = \frac{y_2 - y_1}{x_2 - x_1}.$$

Hence the gradient of the line through (-3, 1) and (2, -2) is

$$m = \frac{-2-1}{2-(-3)} = -\frac{3}{5}.$$

3. The gradient of the line is $-\frac{3}{5}$. Hence $\tan \alpha = -\frac{3}{5}$. Let ϕ be the acute angle that the line makes with the nagative direction of the x-axis. Then

$$\tan \phi = \frac{3}{5},$$

SO

$$\phi = \tan^{-1}\left(\frac{3}{5}\right) = 0.540\dots$$

Hence

$$\alpha = \pi - 0.540 \cdots = 2.601 \ldots$$

Therefore the angle α is 2.60 radiants (to 2 d.p.).

1.3 c

I intend to typeset my TMA through the fact that I believe the programatic power of LATEX a great advantage. Through MST125 I have even started using LATEX over Markdown (with mathjax) for school assignemts now.

Using LATEXin my daily school work leads me to a much DRYer (don't repeat yourself) documents where all my associate code can be refrenced with great accuracy without suffering from complecated compilation scripts.

I have also configured a Vim integration so I can use my primary editor for TMAs.

2 Question 2

(a) Find the least residue of 64^7 modulo 15.

$$64^7 \equiv x \mod 15$$
$$4^7 \equiv x \mod 15$$

We observe $4^2 \equiv 1 \mod 15$.

$$4^1 \equiv x \mod 15$$
$$64^7 \equiv 4 \mod 15$$

3 Question 3

3.1 a

3.1.1 i

We find the gcd using Euler's algorithm. These variable names come from CAS tool I wrote in Rust for Unit3.

We reshape for substitution

And then conduct said substitution

$$\begin{split} a \times (\mathfrak{J} + b \times \mathfrak{Y}) &= \mathfrak{J} \\ &= \mathfrak{J} - 2 \times \mathfrak{Z} \\ &= (\mathfrak{Y} - 5 \times (\mathfrak{J})) - 2 \times \mathfrak{Z} \\ &= (\mathfrak{Y} - 5 \times (\mathfrak{J})) - 2 \times (\mathfrak{J}) - 3 \times \mathfrak{J}) \\ &= (\mathfrak{Y} - 5 \times (\mathfrak{J})) - 2 \times ((\mathfrak{J}) - 3 \times (\mathfrak{Y}) - 5 \times (\mathfrak{J})) \\ &= 7 \times \mathfrak{Y} - 37 \times \mathfrak{J} \end{split}$$

Then we find the least residual of -37 and deduce that the multiplicative inverse of $17 \mod 90$ is 53.

This means the solution to $17x \equiv 9 \mod 90$ is $x \equiv 53 \times 9 \equiv 477 \equiv 27 \mod 90$.

3.1.2 ii

We begin by simplifying the congruence.

As we can see here $gcd(3,30) \neq 1$ and $3 \nmid 4$ so the congruence is unsolvable.

3.1.3 iii

We begin by simplifying the congruence.

This is small enough for a brute force attack but for clarities sake I will not do this.

We can see they are coprime. Hence we can skip Euler's algo.

We find least residual and multiply with 8. So $x \equiv -3 \times 8 \equiv 7 \times 8 \equiv 56 \equiv 6 \mod 10$.

3.2 b

3.2.1 i

$$7\times 15\equiv 105\equiv 4\times 26+1\equiv 1\mod 26$$

3.2.2 ii

Using the conversion table in Figure 1 we get

A	В	С	D	Е	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Figure 1: Linear 0-indexed α -numeric conversion table

 $\text{"IQZB"} \xrightarrow{\alpha-\text{numeric}} \{8,\ 16,\ 25,\ 2\} \xrightarrow{\text{affine}^{-1}} \{12,\ 24,\ 7,\ 0\} \xrightarrow{\alpha-\text{numeric}^{-1}} \text{"MYHA"}$