<u>清华大学本科生考试试题专用纸</u>	
考试课程数据结构	
姓名_ 班级_ 学号_	
 一、选择题(30分) 1、从逻辑上可以把数据结构分为()两大类。 A. 动态结构、静态结构 B. 顺序结构、链式结构 C. 线性结构、非线性结构 D. 初等结构、构造型结构 	
2、设某数据结构的二元组形式表示为 A=(D, R), D={01, 02, 03, 04, 05, 06, 07, 08, 09}, R={r}, r={<01, 02>, <01, 03>, <01, 04>, <02, 05>, <02, 06>, <03, 07>, <03, 08>, <03, 09>}, 则数据结构 A 是 ()。 (A) 线性结构 (B) 树型结构 (C) 物理结构 (D) 图型结构	
3、算法的时间复杂度取决于() A. 问题的规模 B. 待处理数据的初态 C. A和B D. 计算机硬件	1
4、一个栈的输入序列为 123···n,若输出序列的第一个元素是 n,输出第 i(1<=i<=n)	
A. 顺序表 B. 链表 C. 链队列 D. 栈	
6、下面关于串的的叙述中,哪一个是不正确的? () A. 串是字符的有限序列 B. 空串是由空格构成的串 C. 模式匹配是串的一种重要运算 D. 串既可以采用顺序存储,也可以采用链式存储	
7、假定在数组 A 中,每个元素的长度为 3 个字节,行下标 i 从 1 到 8,列下标 j) 10. 从首地址 SA 开始连续存放在存储器内,存放该数组至少需要的单元数为(A. 80 B. 100 C. 240 D. 270	从
/ 下列选项中与数据存储结构无关的术语是() A. 顺序表 B. 链表 C. 链队列 D. 栈	
求单链表中当前结点的后继和前驱的时间复杂度分别是() A. O(n)和O(1) B. O(1)和O(1) C. O(1)和O(n) D. O(n)和O(n)	

10、二维数组 A[8][9]按行价朱顺序。	储, 若数组元素 A[2][3]的存储地址为 1087, 元素 A[6][7]的存储地址为 ()
A. 1207 A. 1207	储, 若数组元素 A[2][2] (4)
A[4][7]的存储地址为 1153, 则数组元 A. 1207 C. 1211	· 1209 (7]的存储地址为 ()
11、数据结构是 (、	. 1213
A. 一种数据光和	
C. 一组性质相同4. w	· 数据的存储结构
一件以名种特点业	
12、设串sl= Data Structures with	·····································
的值为 () A. 15	系的数据元素的集合 Java",s2=-it",则子串定位函数 index(s1,s2)
	B. 16
	0. 18
3、 在具有 n 个结点的有序单链表中	插入一个新结点并使链表仍然有序的时间复杂度是
A. O(1)	1 30 年 50 年
C. O(nlogn)	B. O(n)
	D. $O(n^2)$
4、 队和栈的主要区别是() A. 逻辑结构不同	
C. 所包含的 <mark>运算个数</mark> 不同	B. 存储结构不同
	D. 限定插入和删除的位置不同
5、链栈与顺序栈相比,比较明显的位	
	B. 删除操作更加方便
C. 不会出现下溢的情况	D. 小会出现上溢的情况
16、已知广义表的表头为 a, 表尾为(b, c),则此广义表为()
A. (a, (b, c))	
C. ((a), b, c)	D. $((a, b, c))$
17、 带头结点的单链表 head 为空的判	川定条件是()
A. head=NULL	B. head->next=NULL
C. head->next=head	D. head!=NULL
18、 在一个单链表中, 若 p 所指结点 7	下是最后结点,在p之后插入s所指结点,则执
	B. s->next=p->next; p->next=s;
C. s->next=p->next; p=s;	
	表中查找其值等于 x 结点时,在查找成功的
19、从一个具有 <u>n</u> 个结点的有力单。 需平均比较() 个结点。	[表甲恒代共值等 1 X 结点的,在恒代成功]
	B. n/2
A. n	D. 0(n log 2n)
C. $(n-1)/2$	D. O(11 Mg 211)
20、 栈和队列都是 ()	
A. 限制存取位置的线性结构	B. 顺序存储的线性结构
C. 链式存储的线性结构	D. 限制存取位置的非线性结构

C. 数组数素处在行动	定先顺序和列优先顺序两种存储方式是因为() E次序关系 B. 数组的元素必须从左到右顺序排列
22	¹⁹ 列两个关系由
22、下面关于线州。	中列两个关系中 B. 数组的元素必须从左到右顺序排列 B. 数组的元素必须从左到右顺序排列 D. 数组是多维结构,内存是一维结构 者,必须占用一片连续的存储的 B. 数 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 + 75 177 - 177	NH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
线性表现	者。以 一
线性 表一	* 少须占用一片连续的大
一	1、少百用一片流体,
23、若长度为 200000	者,便于进行插入和删除操作。 者,便于进行插入和删除操作。 者,不必占用一片连续的存储单元。 者,便于插入和删除操作。 采用顺序存储结构,在其第 i 个位置插入一个新元素的算法的时 1<=i<=n+1)。 C. O(n)
间复杂度为人	采用顺序方(t) (L)
A. 0(0) B. 0(1) 24、在双向链表比量 (1)	1<=i<=n+1) 在其第 i 个位置插入一个新云素的 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
B. 0(1)	Cocc
上次问链表指针 2007	D. $O(n^2)$
p->Llink=a:a->pu	C. O(n) D. O(n²) 结点前插入一个指针 q 的结点操作是 ()。 link=p;p->Llink->Rlink=q;q->Llink=q;
p->Llink=q:q->li	Ink=p;p->Llink->Rlink=q:q->\1:
$q \rightarrow Rlink= p$	link->Rlink=q;q->Rlink=n;q->\link
q->Llink=n \\.	link=p;p->Llink->Rlink=q;q->Llink=q; link->Rlink=q;q->Rlink=p;q->Llink=p->Llink; link=p->Llink;p->Llink->Rlink=q;p->Llink=q; nk;q->Rlink=q;p->Llink=q;p->Llink=q;
	nk; q- Rlink=q; p- Llink=q;
25、对于一个头指针为 he	ead 的典 3 体 Fu
A. head==NULL B. he	ead 的带头结点的单链表,判定该表为空表的条件是()
26	C. head-nextbank
40、 1分 : 十一	next-nead), head!-Mur
40、 设计一个判别表达式	ead 的带头结点的单链表,判定该表为空表的条件是() ead→next==NULL C. head→next==head D. head!=NULL 中左,右括号是否配对出现的算法。亚田(
A. 线性表的顺序存储。	结构
A. 线性表的顺序存储。 C. 线性表的链式存储。	结构 B. 队列
A. 线性表的顺序存储。 C. 线性表的链式存储。 27、 设栈 S 和队列 Q 的初	结构 B. 队列
A. 线性表的顺序存储。 C. 线性表的链式存储。 27、 设栈 S 和队列 Q 的初	结构 B. 队列
A. 线性表的顺序存储。 C. 线性表的链式存储。 27、 设栈 S 和队列 Q 的初	结构 B. 队列
A. 线性表的顺序存储统 C. 线性表的链式存储统 27、设栈 S 和队列 Q 的初 元素出栈后即进队列 Q 至少应该是()。	结构 B. 队列 结构 D. 栈 始状态为空,元素 e1, e2, e3, e4, e5 和 e6 依次通过栈 S, 一 d, 若 6 个元素出队的序列是 e2, e4, e3, e6, e5, e1 则栈 S 的容
A. 线性表的顺序存储。C. 线性表的顺序存储。C. 线性表的链式存储。27、 设栈 S 和队列 Q 的初元素出栈后即进队列 Q 至少应该是()。A. 6 B. 4	结构 B. 队列 结构 D. 栈 始状态为空,元素 e1, e2, e3, e4, e5 和 e6 依次通过栈 S, 一 0, 若 6 个元素出队的序列是 e2, e4, e3, e6, e5, e1 则栈 S 的容 C. 3 D. 2
A. 线性表的顺序存储。C. 线性表的顺序存储。C. 线性表的链式存储。27、 设栈 S 和队列 Q 的初元素出栈后即进队列 Q 至少应该是()。A. 6 B. 4	结构 B. 队列 结构 D. 栈 始状态为空,元素 e1, e2, e3, e4, e5 和 e6 依次通过栈 S, 一 0, 若 6 个元素出队的序列是 e2, e4, e3, e6, e5, e1 则栈 S 的容 C. 3 D. 2
A. 线性表的顺序存储。C. 线性表的顺序存储。C. 线性表的链式存储。27、 设栈 S 和队列 Q 的初元素出栈后即进队列 Q 至少应该是()。A. 6 B. 4	结构 B. 队列 结构 D. 栈 始状态为空,元素 e1, e2, e3, e4, e5 和 e6 依次通过栈 S, 一 分,若 6 个元素出队的序列是 e2, e4, e3, e6, e5, e1 则栈 S 的容 C. 3 D. 2 时,处理参数及返回地址,应采用的数据结构是(
A. 线性表的顺序存储。C. 线性表的顺序存储。C. 线性表的链式存储。27、 设栈 S 和队列 Q 的初元素出栈后即进队列 Q 至少应该是()。A. 6 B. 4	结构 B. 队列 B. 人 B. 队列 B. 人 B.
A. 线性表的顺序存储。 C. 线性表的顺序存储。 C. 线性表的链式存储。 27、设栈 S 和队列 Q 的初元素出栈后即进队列 Q 至少应该是()。 A. 6 B. 4 28、递归实现或函数调用 A. 栈 C. 队列	结构 B. 队列 B. 人
A. 线性表的顺序存储统 C. 线性表的顺序存储统 C. 线性表的链式存储统 27、设栈 S 和队列 Q 的初 元素出栈后即进队列 Q 至少应该是()。 A. 6 B. 4 28、递归实现或函数调用 A. 栈 C. 队列 设某链表中最常用的	结构 B. 队列 B. 队列 B. 队列 D. 栈
A. 线性表的顺序存储。 C. 线性表的顺序存储。 C. 线性表的链式存储。 27、设栈 S 和队列 Q 的初元素出栈后即进队列 Q 至少应该是()。 A. 6 B. 4 28、递归实现或函数调用 A. 栈 C. 队列	结构 B. 队列 B. 人 B. 队列 B. 人 B.
A. 线性表的顺序存储统 C. 线性表的顺序存储统 C. 线性表的链式存储统 27、 设栈 S 和队列 Q 的初 元素出栈后即进队列 Q 至少应该是()。 A. 6 B. 4 28、 递归实现或函数调用 A. 栈 C. 队列 设某链表中最常用的方式最节省运算时间。	结构 B. 队列 B. 队列 B. 队列 D. 栈
A. 线性表的顺序存储统 C. 线性表的顺序存储统 C. 线性表的链式存储统 27、 设栈 S 和队列 Q 的初 元素出栈后即进队列 Q 至少应该是()。 A. 6 B. 4 28、 递归实现或数调用 A. 栈 C. 队列 设某链表中最常用的方式最节省运算时间。 A. 单向链表	结构 B. 队列 B. 队列 B. 队列 D. 栈
A. 线性表的顺序存储统 C. 线性表的顺序存储统 C. 线性表的链式存储统 27、设栈 S 和队列 Q 的初 元素出栈后即进队列 Q 至少应该是()。 A. 6 B. 4 28、递归实现或函数调用 A. 栈 C. 队列 设某链表中最常用的方式最节省运算时间。 A. 单向链表 C. 双向链表	结构 B. 队列 B. 以列 b. 栈 b. 大态为空,元素 e1, e2, e3, e4, e5 和 e6 依次通过栈 S. 一分 c. 3 D. 2 D. 2 D. 2 D. 2 D. 发性表 B. 多维数组 D. 线性表 D. 线性表 D. 双向循环链表 D. 双向循环链表 D. 双向循环链表
A. 线性表的顺序存储统 C. 线性表的顺序存储统 C. 线性表的链式存储统 27、设栈 S 和队列 Q 的初 元素出栈后即进队列 Q 至少应该是()。 A. 6 B. 4 28、递归实现或函数调用 A. 栈 C. 队列 设某链表中最常用的方式最节省运算时间。 A. 单向链表 C. 双向链表	结构 B. 队列 B. 以列 b. 栈 b. 大态为空,元素 e1, e2, e3, e4, e5 和 e6 依次通过栈 S. 一分 c. 3 D. 2 D. 2 D. 2 D. 2 D. 发性表 B. 多维数组 D. 线性表 D. 线性表 D. 双向循环链表 D. 双向循环链表 D. 双向循环链表
A. 线性表的顺序存储统 C. 线性表的顺序存储统 C. 线性表的链式存储统 27、设栈 S 和队列 Q 的初 元素出枝后即进队列 Q 至少应该是()。 A. 6 B. 4 28、递归实现或数调用 A. 栈 C. 队列 设某链表中最常用间。 A. 以对 设某链表 它. 双向链表 C. 双向链表 30、设一个有序的单链表	结构 B. 队列 B. 队列 D. 栈
A. 线性表的顺序存储统 C. 线性表的顺序存储统 C. 线性表的链式存储统 27、设栈 S 和队列 Q 的初 元素出栈后即进队列 Q 至少应该是()。 A. 6 B. 4 28、递归实现或函数调用 A. 栈 C. 队列 设某链表中最常用的方式最节省运算时间。 A. 单向链表 C. 双向链表	结构 B. 队列 B. 队列 D. 栈 D. 栈 D. 栈 D. 栈 D. 栈 D. 表 6 个元素出队的序列是 e2, e4, e5 和 e6 依次通过栈 S, 一分 6 个元素出队的序列是 e2, e4, e3, e6, e5, e1 则栈 S 的容 C. 3 D. 2 D. 2 D. 发理参数及返回地址,应采用的数据结构是() B. 多维数组 D. 线性表 操作是在链表的尾部插入或删除元素,则选用下列() 不 B. 单向循环链表 D. 双向循环链表 D. 双向循环链表 D. 双向循环链表 中有 n 个结点,现要求插入一个新结点后使得单链表仍然保 2杂度为()。

二、填空题(30分)	
1、数据的物理结构主要包括	
2、数据结构中评价算法的两个重要指标是	
3、 下面程序段中带下划线的语句的执行次数的数量级是:	
1=1; WHILE (i $\langle n \rangle$ { $\underline{i=i*2}$;}	
4、对于一个数据结构,一般从	
5、线性表L=(a1, a2, ···, an) 用数组表示,假定删除表中任一元素的概率相同,则删除一个元素平均需要移动三基体A ** **	
个元素平均需要移动元素的个数是 _ 6、顺序存储结构是通过 表示元素之间的关系的;链式存储结构是通过	
表示元素之间的关系的。	
7、对于双向链表,在两个结点之间插入一个新结点需修改的指针共	
8、设有一个空栈,现有输入序列为1,2,3,4,5,经过PUSH,PUSH,POP,PUSH,POP,PUSH,PUS 之后,输出序列是	Н
9、一个厂义表为(a, (a, b), d, e, ((i, j), k)),则该广义农的长及为二	_ 0
10、一个n×n的对称矩阵,如果以行为主序或以列为主序存入内存,则其占用内存容量:	为
11、假设为循环队列分配的数组空间为Q[20],若队列的长度和队头指针值分别为13和1 则当前尾指针的值为,	
12、假设一个6阶的下三角矩阵B按例优先顺序压缩存储在一维数组A中,其中A[0]存储 阵的第一个元素b11,则A[14]存储的元素是	
13、循环队列用数组A[0m-1]存放其元素值,已知其头尾指针分别是front和rear,则 前队列的元素个数是	_
14、设指针变量p指向单链表中结点A,指针变量s指向被插入的结点X,则在结点A的是插入结点X需要执行的语句序列: s->next=p->next;	画
15、在一个长度为n的顺序表中删除第i个元素时,需向前移动个元素。	
16、在单链表中,要删除某一指定的结点,必须找到该结点的结点。	
17、稀疏矩阵一般的压缩存储方法包括:	
18、已知L是带表头结点的非空单链表,且P结点既不是首元结点,也不是尾元结点,	试
下列提供的答案中选择合适的语句序列。	
a. 删除 P 结点的直接后继结点的语句序列是	
b. 删除 P 结点的直接前驱结点的语句序列是_	
c. 删除 P 结点的语句序列是	
d. 删除首元结点的语句序列是	
e. 删除尾元结点的语句序列是	
(1) P=P->next;	
(2) P->next=P;	
(3) $P \rightarrow \text{next} = P \rightarrow \text{next} \rightarrow \text{next}$;	
(4) P=P->next->next;	

```
(5) while (P!=NULL) P=P->next;
           (6) while (Q->next!=NULL) { P=Q; Q=Q->next; }
           (7) while (P->next!=Q) P=P->next;
           (8) while (P->next->next!=Q) P=P->next;
           (9) while (P->next->next!=NULL) P=P->next:
           (11) Q=P->next;
           (12) P=L;
          (13) L=L->next;
          (14) free(Q);
 三、分析题(20分)
 1、对下面过程写出调用 P(3)的运行结果。
              PROCEDURE p (w: integer);
                 BEGIN
                    IF w>0 THEN
                            BEGIN
                               p(w-1);
                               writeln(w);{输出W}
                               p(w-1)
                            END;
                 END:
P(3)的运行结果为:
2、阅读下面的算法
          LinkList mynote(LinkList L)
          {//L 是不带头结点的单链表的头指针
                if(L&&L->next){
                     q=L; L=L->next; p=L;
                      while(p->next) p=p->next;
            S1:
           S2:
                      p->next=q; q->next=NULL;
                 }
                 return L:
           }
   请回答下列问题:
      说明语句 S1 的功能;
(1)
(2)
     说明语句组 S2 的功能;
```

设链表表示的线性表为 (a1, a2, …, an), 写出算法执行后的返回值所表示的线性表。

(3)

(1) 与出执行下列程序段后的顺序表 A 中的数据元素; (2) 简要叙述该程序段的功能。 if(head->next!=head) p=head->next; A->length=0; while(p->next!=head) p=p->next; A->data[A->length ++]=p->data;if(p->next!=head)p=p->next; } } 顺序表 A 中的数据元素为: 该程序段的功能为: 4、阅读下列函数 algo,并回答问题: (1) 假设队列 q 中的元素为(2,4,5,7,8),其中 "2" 为队头元素。写出执行函数调用 algo(&c 后的队列 q; (2) 简述算法 algo 的功能。 void algo(Queue *Q) Stack S: InitStack(&S); while (!QueueEmpty(Q)) Push (&S, DeQueue (Q)); while (! StackEmpty(&S)) EnQueue (Q, Pop (&S)); } 队列 q:

算法 algo 的功能为:

```
四、程序设计题(20分)
1、己知单链表的结点结构为:
 typedef int datatype; //结点数据类型,假设为 int
 typedef struct node {
                         //结点结构
    datatype data;
    struct node *next;
 } Lnode, * LinkedList; //结点类型, 单链表类型
下列算法对带头结点的单链表 L 进行简单选择排序. 使得 L 中的元素按值从小到大排列。请在空缺
业填入合适的内容,使其成为完整的算法。
  void SelectSort(LinkedList L)
  {
   LinkedList p,q,min;
   DataType rcd;
   p = (1);
   while(p!=NULL) {
    min=p;
    q=p->next;
    while(q!=NULL){
     if( (2) )min=q;
     q=q->next;
    }
     if( (3)
            ){
      rcd=p->data;
      p->data=min->data;
      min->data=rcd;
     }
      (4) ;
    }
   }
    (1):
    (2):
    (3):
    (4):
```

PAM疏矩阵采用带行表的三元组表表示, #define MaxRow 100 //稀疏矩阵的最大行数 typedef struct { int i,j,v; //行号、列号、元素值 }TriTupleNode; typedef struct{ TriTupleNode flata[MaxSize]; int RowTab[MaxRow+1]; //行表	其形式说明如下:
int Row lab[wax low · ·],// 1 表	200
int m,n,t; //矩阵的行数、列数和非零元个数	
}RTriTupleTable;	
下列算法 f31 的功能是:以行优先的顺序输入和疏矩阵的带行表的三元组表存储结构。请在空邮矩阵的行、列下标均从 1 起计) void f31(RTriTupleTable *R) { int i,k; scanf("%d %d %d",&R->m,&R->n,&R->t); R->RowTab[1]=0; k=1; //k 指示当前输入的非零元的行号 for(i=0; ① ; i++) { scanf("%d %d %d", ② , while(k <r->data[i].i) { ④ ; R->RowTab[k]=i; } }</r->	品流矩阵的非零元(行号、列号、元素值),建立稀土处填入合适内容,使其成为一个完整的算法。(注: ③ ,&R->data[i].v);
(1):	
(2):	and the second s
(3):	
(4):	X
(1)	