

Trumpiausio kelio algoritmai

Praėjusios pamokos santrauka

- Dvejetainės paieškos algoritmas
- Laiko sudėtingumas:

O(log n)

- Įgyvendinimas Python ir C++
- Atlikome praktinį užduotį

Ką išmoksime šiandien

- Suprasime trumpiausio kelio algoritmų pagrindus (Dijkstra, Bellman-Ford, BFS ir kt.).
- Išmoksime, kaip naudoti parametrus algoritmų įgyvendinime.
- Praktikuosimės algoritmų taikymą naudojant Python ir C++.

Trumpiausio kelio paieška

- Tai algoritmas, skirtas rasti trumpiausią kelią tarp dviejų taškų grafe.
- Pritaikymas:
 - Navigacijos sistemos (Google Maps, GPS).
 - Tinklo maršrutizavimas (interneto duomenų perdavimas).
 - Žaidimų kūrimas (personažų judėjimo trajektorijos).
- Tikslas surasti kelią, kuris turi mažiausią "kainą" (svorį) tarp pradžios ir tikslo taškų

Kas yra grafas

Grafas yra duomenų struktūra, sudaryta iš viršūnių ir briaunų, kurios jungia šias viršūnes.

Grafų elementai:

- Viršūnė (Vertex): atskiras taškas grafe, pvz., vieta žemėlapyje.
- Briauna (Edge): ryšys tarp dviejų viršūnių, pvz., kelias tarp dviejų miestų.
- Svoris (Weight): kiekviena briauna gali turėti skaičių, kuris rodo atstumą, laiką ar kainą

Grafo svoris

Svoris – tai skaičius, priskiriamas grafo briaunoms (ryšiams tarp viršūnių).

- Ką rodo svoris?
 - Atstumą tarp dviejų taškų.
 - Laiką, per kurį įveikiamas kelias.
 - Kaštus ar kainą tarp dviejų taškų.

Kaip apskaičiuojamas svoris?

- Rankiniu būdu: svoriai priskiriami pagal realius duomenis (pvz., atstumai tarp miestų, kelio kainos).
- Automatiniai modeliai: tam tikrose situacijose svoris apskaičiuojamas dinamiškai, naudojant tam tikrą funkciją (pvz., kelio ilgio, kainos ar kito parametro vertę).
- Bendras svoris: Kelių briaunų (kelio) svoris yra visų briaunų svorių suma.
 - Pvz., jei kelias iš A į B per C turi briaunų svorius 5 ir
 10, bendras svoris = 5 + 10 = 15.

Neigiamas svoris

- Neigiamas svoris naudojamas situacijose, kai perėjimas tarp dviejų taškų yra "naudingas" (pvz., gaunamos nuolaidos ar papildomi resursai). Pvz., jei neigiamas svoris yra -3, bendras kelio svoris gali sumažėti:
 - \Box Kelias: A \rightarrow B \rightarrow C
 - \square Svoris: 2 + (-3) = -1.
- Problemos su neigiamais svoriais:
 - Neigiamų svorių naudojimas gali sukelti neigiamus ciklus, kai kelio svoris mažėja iki begalybės, pvz., važiuojant ratu galima nuolat "gauti naudą".

Dijkstros algoritmas

Naudojamas trumpiausiam keliui rasti grafe su teigiamais svoriais.

Veikimo principas:

- Inicializuojamas pradinio taško atstumas kaip 0, o kitų kaip begalybė.
- Algoritmas pasirenka viršūnę su mažiausiu atstumu ir atnaujina jos kaimynų atstumus.
- Procesas kartojamas, kol visi taškai aplankyti.
- Trūkumas: neveikia, jei grafas turi neigiamų svorių.

Bellman-Ford algoritmas

Naudojamas grafuose su neigiamais svoriais.

Veikimo principas:

- Kiekviena briauna peržiūrima maksimaliai (n-1) kartų, kur n yra viršūnių skaičius.
- Jei randa trumpesnį kelią, atnaujina atstumą.
- Gali aptikti neigiamus ciklus (kai kelio ilgis gali mažėti iki begalybės).
- Privalumas: gali apdoroti grafus su neigiamais svoriais.

BFS algoritmas (Plotis Pirmas Paieška)

 Naudojamas, kai visų briaunų svoriai vienodi (pvz., nuliniai arba vienetiniai svoriai).

Veikimo principas:

- Pradinis taškas įtraukiamas į eilę.
- Kiekvienas taškas aplankomas pagal atstumą nuo pradinio taško, einant "bangomis" per grafą.
- Idealiai tinka nedidelių vienodo svorio grafų paieškai.
- Privalumas: paprastas ir efektyvus, kai nėra skirtingų svorių.

Parametrų vaidmuo algoritmuose

- Parametrai tai reikšmės, kurios įvedamos į algoritmą, kad jis galėtų atlikti užduotį.
- Jie lemia, kaip ir ką algoritmas skaičiuos.

Parametrai nulemia:

- Nuo kurio taško pradėti skaičiavimus.
- Kokį kelią algoritmas pasirinks.
- Kiek truks skaičiavimai ir kokie bus galutiniai rezultatai.

Algoritmo įėjimo parametrai

- Pradiniai taškai (Start Points):
 - Tai taškai, nuo kurių algoritmas pradeda savo paiešką.
 - Pvz., rasti trumpiausią kelią iš vieno miesto į kitą: pradinis miestas yra įėjimo parametras.
- Galutiniai taškai (End Points):
 - Taškai, į kuriuos algoritmas turi nukeliauti.
 - Pvz., kelionės tikslas tarp miestų galutinis taškas algoritme.

Svoriai kaip parametrai

Svorio reikšmės:

- Kiekvienas grafas gali turėti skirtingas svorių reikšmes tarp taškų (briaunų).
- Svoriai gali būti:
 - Teigiami (nustatantys atstumą ar kaštus).
 - Neigiami (parodantys naudą ar pelną).
- Kaip svoriai keičia rezultatą?
 - Skirtingos svorio reikšmės gali visiškai pakeisti algoritmo elgesį:
 - Mažesni svoriai reiškia trumpesnį kelią.
 - Neigiami svoriai leidžia algoritmui optimizuoti net "taupant" resursus.

Kaip parametrai lemia algoritmo eigą

Algoritmo eiga priklauso nuo parametrų:

- Pradiniai taškai nustato, kur algoritmas pradeda paiešką:
 - Pavyzdžiui, rasti trumpiausią kelią nuo tam tikro miesto priklauso nuo to, kuris miestas pasirinktas kaip pradinis taškas.
- Galutiniai taškai nustato, kur algoritmas turi pasiekti tikslą:
 - Algoritmas keičia kelią, atsižvelgdamas į galutinį tašką, kurį siekia pasiekti.

Algoritmo logika keičiasi su parametrais:

- Priklausomai nuo pradinių sąlygų, skaičiavimai prasidės nuo skirtingų vietų grafe.
- Parametrai valdo paieškos kryptį ir taškus, kuriuos reikia apskaičiuoti.

Parametrai ir rezultatas

Svorio įtaka rezultatui:

- Skirtingi svoriai tarp briaunų gali lemti skirtingus rezultatus:
 - Mažesni svoriai lemia trumpesnį kelią, o didesni ilgesnį.
 - Neigiami svoriai gali net sukelti ciklus arba "pelningus" kelius (kai kelionė atneša naudą).

Parametrų pakeitimas keičia galutinį rezultatą:

- Keičiant pradinius taškus ar svorius, gauname skirtingus trumpiausius kelius:
 - Pavyzdžiui, pradėjus nuo kito taško arba pakeitus briaunos svorį, gali keistis optimalus kelias.

Pavyzdys su parametrais

Praktinis pavyzdys:

- Grafas su taškais A, B, C, D:
- Pradiniai taškai: A.
- Galutiniai taškai: D.
- Skirtingi svoriai tarp A-B (3), B-C (2), A-C (5), C-D (1).
- Kaip keičiasi rezultatas keičiant svorius?
 - Jei svoris tarp A ir B sumažinamas iki 1, algoritmas pasirenka trumpesnį kelią per B.

Pavyzdžiai su Python, naudojant grafus

```
# Viršūnių sąrašas (vertices)
vertices = ['A', 'B', 'C', 'D', 'E']
# Briaunų sąrašas su svoriais (edges)
edges = [
    ('A', 'B', 4),
                                Viršūnių sąrašas: ['A', 'B', 'C', 'D', 'E']
                                 Briaunų sąrašas (pradinis taškas, galutinis taškas, svoris):
    ('A', 'C', 2),
                                 A -> B (svoris: 4)
    ('B', 'C', 5),
                                 A -> C (svoris: 2)
    ('B', 'D', 10),
                                B -> C (svoris: 5)
    ('C', 'E', 3),
                                B -> D (svoris: 10)
                                 C -> E (svoris: 3)
    ('D', 'E', 1)
                                 D -> E (svoris: 1)
# Grafo atvaizdavimas: viršūnių ir briaunų su svoriais sąrašai
print("Viršūnių sąrašas:", vertices)
print("Briaunų sąrašas (pradinis taškas, galutinis taškas, svoris):")
for edge in edges:
    print(f"{edge[0]} -> {edge[1]} (svoris: {edge[2]})")
```

Pavyzdžiai su C++, naudojant grafus

```
// Viršūnių sąrašas (vertices)
std::vector<char> vertices = {'A', 'B', 'C', 'D', 'E'};
// Briaunų sąrašas su svoriais (edges), naudojant std::tuple
std::vector<std::tuple<char, char, int>> edges = {
    {'A', 'B', 4},
    {'A', 'C', 2},
    {'B', 'C', 5},
                                          Viršūnių sąrašas: A B C D E
    {'B', 'D', 10},
                                          Briaunų sąrašas (pradinis taškas, galutinis taškas, svoris):
    {'C', 'E', 3},
                                          A -> B (svoris: 4)
    {'D', 'E', 1}
                                          A \rightarrow C \text{ (svoris: 2)}
};
                                          B -> C (svoris: 5)
                                          B -> D (svoris: 10)
// Spausdiname viršūnių sąrašą
                                          C -> E (svoris: 3)
std::cout << "Viršūnių sąrašas: ";</pre>
                                          D -> E (svoris: 1)
for (char v : vertices) {
    std::cout << v << " ";
std::cout << std::endl;
// Spausdiname briaunų sąrašą su svoriais
std::cout << "Briaunų sąrašas (pradinis taškas, galutinis taškas, svoris):"
          << std::endl;</pre>
for (auto edge : edges) {
    std::cout << std::get<0>(edge) << " -> " << std::get<1>(edge)
              << " (svoris: " << std::get<2>(edge) << ")" << std::endl;</pre>
```

Dijkstros algoritmas

- Dijkstros algoritmas yra skaičiavimo metodas, naudojamas rasti trumpiausią kelią grafuose su teigiamais svoriais.
- Algoritmas nustato trumpiausią atstumą nuo pradinio taško iki visų kitų taškų grafuose.

Algoritmo sudėtingumas

Paprasčiausias Djikstros algoritmo įvykdymas laiko rinkinio Q viršūnes paprastame tiesiniame sąraše ar masyve, ir operacija Išrinkti mažiausią yra paprasta tiesinė paieška per visas viršūnes Q. Šiuo atveju algoritmo sudėtingumas yra

 $O(V^2)$

Algoritmo žingsniai

- Inicializavimas
- Nustatome pradinių taškų atstumus:
 - Atstumas nuo A iki A: 0
 - □ Atstumas nuo A iki B: ∞
 - □ Atstumas nuo A iki C: ∞
 - □ Atstumas nuo A iki D: ∞
 - □ Atstumas nuo A iki E: ∞
- Kuriame neaplankytų viršūnių sąrašą: {A, B, C,

- Grafas su
 viršūnėmis A, B, C,
 D, E ir atstumais:
 - □ A -> B (4)
 - □ A -> C (2)
 - □ B -> C (5)
 - □ B -> D (10)
 - □ C -> E (3)
 - □ D -> E (1)

Algoritmo žingsniai (tęs)

- Keliaujame nuo pradinio taško (A):
- Patikriname kaimynus:
 - Atstumas į B: 0 + 4 = 4 (naujas atstumas)
 - Atstumas į C: 0 + 2 = 2 (naujas atstumas)
- Atstumas po pirmo žingsnio:
 - □ A: 0
 - □ B: 4
 - □ C: 2
 - □ D: ∞
 - □ E: ∞
- Pažymime A kaip aplankytą: {B, C, D, E}

- Grafas su
 viršūnėmis A, B, C,
 D, E ir atstumais:
 - □ A -> B (4)
 - \Box A -> C (2)
 - □ B -> C (5)
 - □ B -> D (10)
 - □ C -> E (3)
 - □ D -> E (1)

Algoritmo žingsniai (tęs)

- Pasikartojame per C (mažiausias atstumas):
 - Atstumas į E: 2 + 3 = 5 (naujas atstumas)
- Atstumas po šio žingsnio:
 - □ A: 0
 - □ B: 4
 - □ C: 2
 - □ D: ∞
 - □ E: 5
- 3. Pasikartojame per B:
 - Atstumas į D: 4 + 10 = 14 (naujas atstumas)

- Grafas su viršūnėmis A, B, C, D, E ir atstumais:
 - □ A -> B (4)
 - \Box A -> C (2)
 - □ B -> C (5)
 - □ B -> D (10)
 - \Box C -> E (3)
 - □ D -> E (1)

Galutinis rezultatas

- Atstumas po visų perėjimų:
 - □ A: 0
 - □ B: 4
 - □ C: 2
 - D: 14
 - □ E: 5
- Trumpiausi atstumai nuo A:
 - \triangle A -> A: 0
 - □ A -> B: 4
 - □ A -> C: 2
 - □ A -> D: 14
 - □ A -> E: 5

- Grafas su viršūnėmis A, B, C, D, E ir atstumais:
 - □ A -> B (4)
 - \Box A -> C (2)
 - □ B -> C (5)
 - □ B -> D (10)
 - \Box C -> E (3)
 - □ D -> E (1)

Pseudokodas

```
Kintamieji
FOR i=0 to |V|-1
         dist(i)=INFINITY
                                                           S – pradžios viršūnė
         prev(i)=NULL
                                                           F – aplankytų viršūnių
END FOR
                                                           sąrašas
                                                           G – grafas
WHILE F nepilnas
                                                           E – briauna su viršūnėmis
         imame viršūnę v iš U su artimiausiu keliu iki S
                                                           (v1, v2)
         pridedame V j F
                                                           V – viršūnė
         FOR V briaunai(v1,v2)
                                                           dist(i) – atstumų nuo S iki
                   IF (dist(v1)+ilgis(v1,v2) < dist(v2)
                                                           kiekvienos V masyvas
                            dist(v2)=dist(v1)+ilgis(v1,v2)
                                                           prev(i) – rodyklės į
                            prev(v2)=v1
                                                           ankstesnes V
                            [galbūt reikia atnaujinti U]
                   END IF
                                                           i – indeksas
         END FOR
                                                           U – neaplankytų viršūnių
END WHILE
                                                           sąrašas
```

Praktika

 Įgyvendinkite paprastą Dijkstra's algoritmo versiją Python arba C++ kalba.

- Grafas su
 viršūnėmis A, B, C,
 D, E ir atstumais:
 - □ A -> B (1)
 - \Box A -> C (1)
 - □ B -> C (1)
 - □ B -> D (1)
 - □ C -> E (1)
 - □ D -> E (1)

Apibendrinimas

- Trumpiausio kelio paieška: aptarėme, kaip trumpiausio kelio algoritmai taikomi realiame gyvenime, pvz., navigacijos sistemose ir tinklo maršrutizavime.
- Grafų sąvokos: kas yra grafas, viršūnės, briaunos ir svoriai.
- Dijkstra's algoritmas: veikia tik su teigiamiems svoriams ir kaip jis nustato trumpiausius kelius.
- Bellman-Ford algoritmas: gali dirbti su neigiamais svoriais ir kaip jis apdoroja grafus su neigiamais ciklais.
- BFS algoritmas: naudojamas, kai visos briaunos turi vienodą svorį.
- Grafo svoris ir neigiamas svoris.
- Kaip neigiami svoriai, kaip jie gali paveikti kelių paiešką.
- Dijkstros algoritmo įgyvendinimas

Pabaiga