Swarm Intelligence Approaches

Parameter Setting of Deep Learning Neural Network: Acase Study of Website Classification.

1. Introduction

The problem of detecting phishing websites hasbeen addressed many times using various methodologies from conventional classifiers to more complex hybrid methods. Recentadvancements in deep learning approaches suggested that the classification of phishing websites using deep learning neural networks should outperform the traditional machine learning algorithms. However, the results of utilizing deep neural networks heavily depend on the setting of different learning parameters. In this paper, we propose a swarm intelligence based approach to parameter setting of deep learning neural network.

Therefore we import the libraries and tabular Dataset that we intend to use in developing physhing website classifier.

In [8]:

```
#importing data for basic analysis-preprocessing.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from numpy.random import random
%matplotlib inline
#importing the libraries for data preprocessing
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, cross_val_score,KFold,Stratifi
from sklearn.metrics import confusion matrix, accuracy score, fl score, average precisi
from sklearn.preprocessing import RobustScaler, StandardScaler, LabelEncoder, MinMaxSca
from sklearn.linear model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoo
from sklearn.feature selection import SelectKBest, chi2
from keras.models import Sequential
from keras.layers import Activation, BatchNormalization
from keras.layers.core import Dense,Dropout
from keras.optimizers import Adam
from keras.metrics import categorical crossentropy
from keras.callbacks import ReduceLROnPlateau, EarlyStopping
Data=pd.read csv("//Users//nelsonotumaongaya//Desktop//Phishing.csv",header="infer")
Using TensorFlow backend.
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
```

```
nsorflow/python/framework/dtypes.py:516: FutureWarning: Passing (typ
e, 1) or '1type' as a synonym of type is deprecated; in a future vers
ion of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  np gint8 = np.dtype([("gint8", np.int8, 1)])
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
nsorflow/python/framework/dtypes.py:517: FutureWarning: Passing (typ
e, 1) or 'ltype' as a synonym of type is deprecated; in a future vers
ion of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
nsorflow/python/framework/dtypes.py:518: FutureWarning: Passing (typ
e, 1) or '1type' as a synonym of type is deprecated; in a future vers
ion of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  np qint16 = np.dtype([("qint16", np.int16, 1)])
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
nsorflow/python/framework/dtypes.py:519: FutureWarning: Passing (typ
e, 1) or '1type' as a synonym of type is deprecated; in a future vers
ion of numpy, it will be understood as (type, (1,)) / (1,)type'.
  np quint16 = np.dtype([("quint16", np.uint16, 1)])
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
nsorflow/python/framework/dtypes.py:520: FutureWarning: Passing (typ
e, 1) or '1type' as a synonym of type is deprecated; in a future vers
ion of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint32 = np.dtype([("qint32", np.int32, 1)])
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
nsorflow/python/framework/dtypes.py:525: FutureWarning: Passing (typ
e, 1) or 'ltype' as a synonym of type is deprecated; in a future vers
```

```
ion of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  np resource = np.dtype([("resource", np.ubyte, 1)])
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
nsorboard/compat/tensorflow stub/dtypes.py:541: FutureWarning: Passin
g (type, 1) or 'ltype' as a synonym of type is deprecated; in a futur
e version of numpy, it will be understood as (type, (1,)) / '(1,)typ
e'.
  np gint8 = np.dtype([("gint8", np.int8, 1)])
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
nsorboard/compat/tensorflow stub/dtypes.py:542: FutureWarning: Passin
g (type, 1) or 'ltype' as a synonym of type is deprecated; in a futur
e version of numpy, it will be understood as (type, (1,)) / '(1,)typ
e'.
  np quint8 = np.dtype([("quint8", np.uint8, 1)])
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
nsorboard/compat/tensorflow stub/dtypes.py:543: FutureWarning: Passin
g (type, 1) or 'ltype' as a synonym of type is deprecated; in a futur
e version of numpy, it will be understood as (type, (1,)) / '(1,)typ
e'.
  np qint16 = np.dtype([("qint16", np.int16, 1)])
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
nsorboard/compat/tensorflow stub/dtypes.py:544: FutureWarning: Passin
g (type, 1) or 'ltype' as a synonym of type is deprecated; in a futur
e version of numpy, it will be understood as (type, (1,)) / '(1,)typ
e'.
  _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
nsorboard/compat/tensorflow stub/dtypes.py:545: FutureWarning: Passin
g (type, 1) or '1type' as a synonym of type is deprecated; in a futur
e version of numpy, it will be understood as (type, (1,)) / '(1,)typ
  np qint32 = np.dtype([("qint32", np.int32, 1)])
/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/te
nsorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passin
g (type, 1) or 'ltype' as a synonym of type is deprecated; in a futur
e version of numpy, it will be understood as (type, (1,)) / '(1,)typ
e'.
  np resource = np.dtype([("resource", np.ubyte, 1)])
```

In [9]:

Data

Out[9]:

	having_IP_Address	URL_Length	Shortining_Service	having_At_Symbol	double_slash_redir
0	-1	1	1	1	
1	1	1	1	1	
2	1	0	1	1	
3	1	0	1	1	
4	1	0	-1	1	
11050	1	-1	1	-1	
11051	-1	1	1	-1	
11052	1	-1	1	1	
11053	-1	-1	1	1	
11054	-1	-1	1	1	

11055 rows × 31 columns

Understanding the Data Sets We explore the data sets further.

We need to understand the data set indetail first. We develop a brief understanding of the dataset with which we will be working with. For example how many features are there in the dataset, how man unique label. How are they distributed or how are the labels distributed, different data types and quantities.

In [3]:

Data.head()# we explore the headers on the datasets to understand the features.

Out[3]:

	having_IP_Address	URL_Length	Shortining_Service	having_At_Symbol	double_slash_redirectin
0	-1	1	1	1	-
1	1	1	1	1	
2	1	0	1	1	
3	1	0	1	1	
4	1	0	-1	1	

5 rows × 31 columns

In [4]:

Data.tail()# we explore the tail on the datasets to understand it. Shows the bottom

Out[4]:

	having_IP_Address	URL_Length	Shortining_Service	having_At_Symbol	double_slash_redir
11050	1	-1	1	-1	_
11051	-1	1	1	-1	
11052	1	-1	1	1	
11053	-1	-1	1	1	
11054	-1	-1	1	1	

5 rows × 31 columns

In [5]:

Data.tail().T# We explore the data sets to check on the headers conformity and under

Out[5]:

	11050	11051	11052	11053	11054
having_IP_Address	1	-1	1	-1	-1
URL_Length	-1	1	-1	-1	-1
Shortining_Service	1	1	1	1	1
having_At_Symbol	-1	-1	1	1	1
double_slash_redirecting	1	-1	1	1	1
Prefix_Suffix	1	-1	-1	-1	-1
having_Sub_Domain	1	1	1	-1	-1
SSLfinal_State	1	-1	-1	-1	-1
Domain_registeration_length	-1	-1	-1	1	1
Favicon	-1	-1	1	-1	1
port	-1	-1	1	1	1
HTTPS_token	1	1	1	1	1
Request_URL	1	1	1	-1	-1
URL_of_Anchor	1	-1	0	-1	-1
Links_in_tags	1	-1	-1	1	0
SFH	-1	0	-1	-1	-1
Submitting_to_email	-1	-1	1	1	1
Abnormal_URL	1	-1	1	1	1
Redirect	0	1	0	0	0
on_mouseover	-1	-1	1	-1	1
RightClick	-1	1	1	1	1
popUpWidnow	-1	-1	1	-1	1
Iframe	-1	1	1	1	1
age_of_domain	1	1	1	1	-1
DNSRecord	1	1	1	1	1
web_traffic	-1	1	1	1	-1
Page_Rank	-1	1	-1	-1	-1
Google_Index	1	1	1	1	-1
Links_pointing_to_page	1	-1	0	1	1
Statistical_report	1	1	1	1	-1
Result	1	-1	-1	-1	-1

In [6]:

Data.sample(10)

Out[6]:

	having_IP_Address	URL_Length	Shortining_Service	having_At_Symbol	double_slash_redire
5680	-1	1	1	-1	_
3981	1	-1	1	1	
6881	-1	-1	1	1	
10988	-1	-1	1	1	
8116	-1	-1	1	1	
5211	1	-1	1	-1	
414	1	-1	1	1	
6511	-1	-1	1	1	
5013	1	-1	1	1	
5175	-1	-1	-1	-1	

10 rows × 31 columns

In [7]:

Data.T

Out[7]:

	0	1	2	3	4	5	6	7	8	9	 11045	11046	11047	110
having_IP_Address	-1	1	1	1	1	-1	1	1	1	1	 1	-1	-1	
URL_Length	1	1	0	0	0	0	0	0	0	1	 -1	-1	-1	
Shortining_Service	1	1	1	1	-1	-1	-1	1	-1	-1	 1	1	1	
having_At_Symbol	1	1	1	1	1	1	1	1	1	1	 1	1	1	
double_slash_redirecting	-1	1	1	1	1	-1	1	1	1	1	 1	1	1	
Prefix_Suffix	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	 -1	-1	-1	
having_Sub_Domain	-1	0	-1	-1	1	1	-1	-1	1	-1	 1	1	1	
SSLfinal_State	-1	1	-1	-1	1	1	-1	-1	1	1	 -1	1	-1	
Domain_registeration_length	-1	-1	-1	1	-1	-1	1	1	-1	-1	 -1	-1	-1	
Favicon	1	1	1	1	1	1	1	1	1	1	 1	1	1	
port	1	1	1	1	1	1	1	1	1	1	 1	1	1	
HTTPS_token	-1	-1	-1	-1	1	-1	1	-1	-1	1	 1	1	-1	
Request_URL	1	1	1	-1	1	1	-1	-1	1	1	 1	-1	1	
URL_of_Anchor	-1	0	0	0	0	0	-1	0	0	0	 0	0	-1	
Links_in_tags	1	-1	-1	0	0	0	0	-1	1	1	 1	1	-1	
SFH	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	 -1	1	-1	
Submitting_to_email	-1	1	-1	1	1	-1	-1	1	1	1	 1	1	-1	
Abnormal_URL	-1	1	-1	1	1	-1	-1	1	1	1	 1	1	1	
Redirect	0	0	0	0	0	0	0	0	0	0	 0	0	0	
on_mouseover	1	1	1	1	-1	1	1	1	1	1	 1	1	1	
RightClick	1	1	1	1	1	1	1	1	1	1	 1	1	1	
popUpWidnow	1	1	1	1	-1	1	1	1	1	1	 1	1	1	
Iframe	1	1	1	1	1	1	1	1	1	1	 1	1	1	
age_of_domain	-1	-1	1	-1	-1	1	1	-1	1	1	 1	1	1	
DNSRecord	-1	-1	-1	-1	-1	1	-1	-1	-1	-1	 1	1	1	
web_traffic	-1	0	1	1	0	1	-1	0	1	0	 0	0	1	
Page_Rank	-1	-1	-1	-1	-1	-1	-1	-1	1	-1	 -1	-1	-1	
Google_Index	1	1	1	1	1	1	1	1	1	1	 1	1	1	
Links_pointing_to_page	1	1	0	-1	1	-1	0	0	0	0	 0	1	0	
Statistical_report	-1	1	-1	1	1	-1	-1	1	1	1	 1	1	1	
Result	-1	-1	-1	-1	1	1	-1	-1	1	-1	 1	1	-1	

31 rows × 11055 columns

In [8]:

Data.isnull().sum()#Check if there are any missing values

Out[8]:

having IP Address 0 URL Length 0 Shortining Service 0 0 having_At_Symbol double slash redirecting 0 Prefix Suffix 0 having Sub Domain 0 SSLfinal State 0 Domain registeration length Favicon 0 0 port 0 HTTPS token Request URL 0 URL of Anchor 0 Links_in_tags 0 SFH 0 0 Submitting_to_email Abnormal URL 0 0 Redirect on mouseover 0 0 RightClick 0 popUpWidnow 0 Iframe age_of_domain 0 DNSRecord 0 web_traffic 0 Page Rank 0 Google Index 0 Links pointing to page 0 0 Statistical report Result 0 dtype: int64

2. We now Querry the data sets to obtain the reports.

In [9]:

len(Data)#Shows how much data the Dataset contains:

Out[9]:

11055

In [10]:

Data.head() #Shows the top Data in the set that you are exploring.

Out[10]:

	having_IP_Address	URL_Length	Shortining_Service	having_At_Symbol	double_slash_redirectin
0	-1	1	1	1	-
1	1	1	1	1	
2	1	0	1	1	
3	1	0	1	1	
4	1	0	-1	1	

5 rows × 31 columns

Dtype

int64

int64

In [11]:

Data.info() #This displays all columns and their data types,

<class 'pandas.core.frame.DataFrame'> RangeIndex: 11055 entries, 0 to 11054 Data columns (total 31 columns):

Column # Non-Null Count _____ _____ 0 11055 non-null having IP Address 1 URL Length 11055 non-null 2 Shortining Service 3 having At Symbol 4 double slash redirecting 5 Prefix Suffix having Sub Domain 6 7 SSLfinal State 8 Domain_registeration_length 11055 non-null 9 Favicon 10 port 11 HTTPS token 12 Request URL URL of Anchor 14 Links in tags 15 SFH 16 Submitting to email 17 Abnormal URL 18 Redirect 19 on mouseover RightClick 20 21 popUpWidnow 22 Iframe age of domain 23 24 DNSRecord 25 web traffic Page Rank 26 Google Index 27

11055 non-null int64 int64 11055 non-null int64 11055 non-null int64 11055 non-null int64 int64 11055 non-null 11055 non-null int64 11055 non-null int64

11055 non-null int64

dtypes: int64(31) memory usage: 2.6 MB

Result

Links pointing to page

Statistical report

28

29

30

In [12]:

Data.describe()# This shows you some basic descriptive statistics for all numeric co

Out[12]:

	having_IP_Address	URL_Length	Shortining_Service	having_At_Symbol	double_slash_redi
count	11055.000000	11055.000000	11055.000000	11055.000000	11055.
mean	0.313795	-0.633198	0.738761	0.700588	0.
std	0.949534	0.766095	0.673998	0.713598	0.
min	-1.000000	-1.000000	-1.000000	-1.000000	-1.
25%	-1.000000	-1.000000	1.000000	1.000000	1.
50%	1.000000	-1.000000	1.000000	1.000000	1.
75%	1.000000	-1.000000	1.000000	1.000000	1.
max	1.000000	1.000000	1.000000	1.000000	1.

8 rows × 31 columns

Cleaning the dataset accordingly so that it is well suited for a Machine Learning Model.

Let us examine the feature "Sub-domain and multi sub-domain". A technique used by phishers to scam users is by adding a sub-domain to the URL so users may believe they are dealing with an authentic website.

```
In [13]:
```

```
x=Data.iloc [:,1:-1]
x=x.values
y=Data.iloc[:,-1].values
```

In [14]:

```
x
```

Out[14]:

```
array([[ 1,
              1, 1, ...,
                                  1, -1],
                             1,
                             1,
                                  1, 1],
        [ 0,
        . . . ,
        [-1,
                   1, ...,
                                      1],
              1,
                   1, ...,
                             1,
                                  1, 1],
        [-1,
                  1, \ldots, -1,
        [-1,
              1,
                                  1, -1]])
```

In [15]:

```
y
Out 5151
```

Out[15]:

```
array([-1, -1, -1, ..., -1, -1, -1])
```

2. Building The Model Using Decision Tree

```
In [16]:
```

```
from sklearn import preprocessing x1= preprocessing.normalize(x) #We normalize the data: refers to rescaling real valued numeric attributes into the #It is useful to scale the input attributes for a model that relies on the magnitude In [17]:
```

Out[17]:

x1

```
array([[ 0.18898224, 0.18898224, 0.18898224, ..., 0.18898224,
         0.18898224, -0.18898224],
       [ 0.2
                      0.2
                                   0.2
         0.2
                      0.2
                                ],
       0.
                      0.2
                                   0.2
                                             , \dots, 0.2
         0.
                   , -0.2
                                ],
       [-0.19611614, 0.19611614,
                                   0.19611614, ..., 0.19611614,
                      0.19611614],
         0.
                                   0.18898224, ..., 0.18898224,
       [-0.18898224,
                     0.18898224,
         0.18898224, 0.18898224],
       [-0.19245009, 0.19245009, 0.19245009, ..., -0.19245009,
         0.19245009, -0.19245009]
```

We spilt the data and create training and test data sets 80% Training set and 20% is the Testing Set.

In [18]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x1,y,test_size=0.20,random_state=42)
```

In [19]:

```
print(x_train.shape, y_train.shape,x_test.shape, y_test.shape)
(8844, 29) (8844,) (2211, 29) (2211,)
```

In [20]:

```
#We now fit the model to determine the accuracy using Decision Trees
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
clf_gini=DecisionTreeClassifier(criterion="gini", random_state=100,max_depth=3, min_clf_gini.fit(x_train, y_train)
Y_pred=clf_gini.predict(x_test)
from sklearn import metrics
metrics.accuracy_score(y_test,Y_pred)*100
```

Out[20]:

91.40660334690185

In [21]:

```
import pydotplus
from sklearn.tree import export_graphviz
from IPython.display import Image
dot_data=tree.export_graphviz(clf_gini)
graph=pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())
```

Out[21]:

Plotting the Data Graphically

if the value in the column of result is less than 1 then it is legit, if its more than >>1 then its phishy "Sub-domain and multi sub-domain". A technique used by phishers to scam users is by adding a sub-domain to the URL so users may believe they are dealing with an authentic website. therefore the dots in the domain part should be less than 1, if it is more than 1 or equals to zero then its not legitimate, hence suspicious else phishy

In [22]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x1,y,test_size=0.20,random_state=42)
from sklearn.metrics import accuracy_score
```

In [23]:

```
maxdepths=[3,4,5,6,7,8,9,10,11,15,20,25,30,35,40,45,50,60]# alist contains
trainAcc=np.zeros(len(maxdepths))
testAcc=np.zeros(len(maxdepths))
```

```
In [24]:
```

```
trainAcc
```

```
Out[24]:
```

In [25]:

testAcc

Out[25]:

In [26]:

```
index=0
for depth in maxdepths:
    clf=tree.DecisionTreeClassifier(max_depth=depth)
    clf=clf.fit(x_train,y_train)
    y_predTrain=clf.predict(x_train)
    y_predTest=clf.predict(x_test)
    trainAcc[index]=accuracy_score(y_train,y_predTrain)
    testAcc[index]=accuracy_score(y_test,y_predTest)
    index +=1
```

In [27]:

```
plt.plot(maxdepths,trainAcc,'ro-',maxdepths,testAcc,'bv--')
plt.legend(['Training Accuracy','Test Accuracy'])
plt.xlabel('Max Depth')
plt.ylabel('Accuracy')
```

Out[27]:

Text(0, 0.5, 'Accuracy')

Conclusion

The plot shows that the accuracy will continue to improve as the maximum depth of the tree increases, i.e the model becomes more complex.

(II)Building the Model using Multi Linear Regression (Swarm Intelligence Approach)

Linear Regression is one of the most commonly used predictive modelling techniques. The aim of the modelling technique is to find a Mathematical equation for continuous response variable. The equation can be generalised as:y=B1+B2x+x. The coefficients are called regression coefficient(B1 and B2). We import the libraries for our data sets, the libraries will assist us in exploring the data sets.

In [28]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#importing the libraries for our data sets.
```

In [29]:

```
#we now load the dataset from the folder called Phishing
Data=pd.read_csv("//Users//nelsonotumaongaya//Desktop//Phishing.csv",header="infer")
```

In [30]:

Data# we now visualize our dataset

Out[30]:

	having_IP_Address	URL_Length	Shortining_Service	having_At_Symbol	double_slash_redir
0	-1	1	1	1	
1	1	1	1	1	
2	1	0	1	1	
3	1	0	1	1	
4	1	0	-1	1	
11050	1	-1	1	-1	
11051	-1	1	1	-1	
11052	1	-1	1	1	
11053	-1	-1	1	1	
11054	-1	-1	1	1	

11055 rows × 31 columns

In [31]:

```
#We now check for our dataset information.
Data.info
```

Out[31]:

<pre><bound dataframe.info="" having_at_symbol<="" method="" of="" pre="" shortining_service=""></bound></pre>								
				\		1		
0 1	-	1	1			1		
1		1	1			1		
1		1	1			1		
2		1	0			1		
1		_	U			_		
3		1	0			1		
1		-	Ů			-		
4		1	0			-1		
1		_	ŭ			-		
• • •		•						
• • •								
11050		1	-1			1		
-1								
11051	_	1	1			1		
-1								
11052		1	-1			1		
1								
11053	_	1	-1			1		
1								
11054	_	1	-1			1		
1								
double	_slash_red	irecting	Pref	_	hav	ing_Sub_		
0		-1		-1			-1	
1		1		-1			0	
2		1		-1			-1	
3		1		-1			-1	
4		1		-1			1	
		• • •		• • •			• • •	
11050		1		1			1	
11051		-1		-1			1	
11052		1		-1			1	
11053		1		-1			-1	
11054		1		-1			-1	
ggr f:	-1 01-1-	D			1 %			
	al_State	Domain_re	giste	ration_len	gtn	ravicon	• • •	pop
UpWidnow \	1				-1	1		
0 1	-1				-1	1	• • •	
1	1				-1	1		
1	1				-1	1	• • •	
2	-1				-1	1		
1	-1				-1	_	• • •	
3	-1				1	1		
1	-1				_	1	• • •	
4	1				-1	1		
-1	1				T	1	• • •	
· ±								
	• • •				•••	•••	• • •	
11050	1				-1	-1		
-1	_				-	-	-	
_								

11051 -1	-1	-1	-1
11052 1	-1	-1	1
11053 -1	-1	1	-1
11054 1	-1	1	1

	Iframe	age_of_domain	DNSRecord	web_traffic	Page_Rank	Goog
le_Ind						
0	1	-1	-1	-1	-1	
1						
1	1	-1	-1	0	-1	
1			-			
2	1	1	-1	1	-1	
1 3	1	-1	-1	1	-1	
1	1	-1	-1	1	-1	
4	1	-1	-1	0	-1	
1						
• • •	• • •	• • •	• • •	• • •	• • •	
11050	-1	1	1	-1	-1	
11030	-1	1	1	-1	-1	
11051	1	1	1	1	1	
1						
11052	1	1	1	1	-1	
1						
11053	1	1	1	1	-1	
1						
11054	1	-1	1	-1	-1	
-1						

	Links_pointing_to_page	Statistical_report	Result
0	1	-1	-1
1	1	1	-1
2	0	-1	-1
3	-1	1	-1
4	1	1	1
• • •	• • •	• • •	
11050	1	1	1
11051	-1	1	-1
11052	0	1	-1
11053	1	1	-1
11054	1	-1	-1

[11055 rows x 31 columns]>

In [32]:

Data

Out[32]:

	having_IP_Address	URL_Length	Shortining_Service	having_At_Symbol	double_slash_redir
0	-1	1	1	1	
1	1	1	1	1	
2	1	0	1	1	
3	1	0	1	1	
4	1	0	-1	1	
11050	1	-1	1	-1	
11051	-1	1	1	-1	
11052	1	-1	1	1	
11053	-1	-1	1	1	
11054	-1	-1	1	1	

11055 rows × 31 columns

In [33]:

```
#We now check for number of columns in our dataset
Data.columns.values
```

```
Out[33]:
```

Lets Get the Independent and Dependent Variables

In [34]:

```
#Get dependent and independent variables.
# enables us select all rows / columns
# -1 is the index of last column in python
x = Data.iloc[:,:-1].values #independent variables
y = Data.iloc[:,-1].values #dependent variable
```

In [35]:

```
#We now Display all values in x - independent variables print(x)
```

```
[-1]
      1
          1 ... 1
                    1 -1]
 [ 1
      1
         1 ...
                 1
                     1 1]
         1 ...
                 1
 [ 1
      0
                     0 - 1]
 [ 1 -1 1 ... 1
                    0 1]
 [-1 \ -1 \ 1 \ \dots \ 1
                    1 1]
 [-1 \ -1 \ 1 \ \dots \ -1]
                    1 -1]]
```

In [36]:

```
#Display all values in y - dependent variables
print(y)
```

```
[-1 \ -1 \ -1 \ \dots \ -1 \ -1 \ -1]
```

Lets Check for missing values in my dataset. True shows that the respective column have missing values

In [37]:

```
Data.isnull()
```

Out[37]:

	having_IP_Address	URL_Length	Shortining_Service	having_At_Symbol	double_slash_redir
0	False	False	False	False	
1	False	False	False	False	
2	False	False	False	False	
3	False	False	False	False	
4	False	False	False	False	
11050	False	False	False	False	
11051	False	False	False	False	
11052	False	False	False	False	
11053	False	False	False	False	
11054	False	False	False	False	

11055 rows × 31 columns

Lets Check for the sum of missing values in our dataset.

In [38]:

Data.isnull().sum()	
Out[38]:	
having_IP_Address	0
URL_Length	0
Shortining_Service	0
having_At_Symbol	0
double_slash_redirecting	0
Prefix_Suffix	0
having_Sub_Domain	0
SSLfinal_State	0
Domain_registeration_length	0
Favicon	0
port	0
HTTPS_token	0
Request_URL	0
URL_of_Anchor	0
Links_in_tags	0
SFH	0
Submitting_to_email	0
Abnormal_URL	0
Redirect	0
on_mouseover	0
RightClick	0
popUpWidnow	0
Iframe	0
age_of_domain	0
DNSRecord	0
web_traffic	0
Page_Rank	0
Google_Index	0
Links_pointing_to_page	0
Statistical_report	0
Result	0
dtype: int64	

From the results, the dataset is clean, there are no missing values

Splitting the Dataset into Train Set and Test Set

```
In [39]:
```

```
#We now split the dataset into train and
# 80% observation in Train and 20% in Test - since we have 50 observation
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2, random_statest_split)
```

```
In [40]:
print (x train)
[[ 1 -1
         1 ...
                 1
                    1
                       1]
 [ 1
     1
                    0 1]
         1 ...
                 1
 [-1 -1]
         1 ...
                1
                    [1 -1]
 \lceil -1 \rceil
     1
         1 ... 1
                    1
                       11
 [-1 -1]
         1 ...
                 1
                    1
                       11
        1 ...
 [1 -1]
                 1
                    1 1]]
In [41]:
print (y_train)
[1 -1 -1 \dots 1 -1]
In [42]:
#Display.max function in pandas enables us to display all values in our dataset.
pd.options.display.max columns=None
print (x test)
[[ 1 -1
         1 ... 1
                   0 1]
 [1 -1]
         1 ...
                 1
                    0
                       1]
         1 ...
                 1
 [1 -1]
                       1]
 [-1 \ -1 \ 1 \ \dots \ 1]
                    1
                       11
        1 ...
 [1 -1]
                 1
                    0
                       1]
 [ 1 -1 1 ... 1
                    1 1]]
In [43]:
```

Fitting Multi Linear Regression to the Training Set.

```
In [44]:
```

print (y test)

 $[-1 \ -1 \ -1 \ \dots \ 1 \ 1]$

11

```
#We will import Linear Regression function from sklearn package
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train, y_train)
```

```
Out[44]:
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normali
ze=False)

```
In [45]:
```

```
print(x_train)
        1 ...
[[ 1 -1
                    1
                 1
                      1]
 [ 1 1
         1 ...
                1
                    0 1]
 [-1 -1]
        1 ...
                1
                    1 -1]
 [-1]
     1
        1 ... 1
                    1
                       1]
 [-1 -1]
         1 ...
                 1
                    1
                       11
 [ 1 -1 1 ...
                 1
                    1 1]]
In [46]:
print(y_test)
[-1 \ -1 \ -1 \ \dots \ 1 \ 1 \ 1]
```

Predicting the Test Set Results

```
In [47]:
```

```
#Predicting Test Results
y_pred = regressor.predict(x_test)
```

```
In [48]:
```

```
print(y_pred)
```

```
In [49]:
```

```
#Compare Predicted and Actuals
Data = pd.DataFrame({'Actual':y_test.flatten(),'Predicted':y_pred.flatten()})
```

In [50]:

Data

Out[50]:

	Actual	Predicted
0	-1	-0.364588
1	-1	-0.949405
2	-1	0.472669
3	-1	-0.665583
4	1	0.186053
2206	1	0.926493
2207	-1	-1.109687
2208	1	-0.276190
2209	1	-0.260772
2210	1	0.946514

2211 rows × 2 columns

We Now Visualize The Results

In [51]:

```
#Visualize Actuals Vs Predicted
df1 = Data.head(40)
df1.plot(kind='bar',figsize=(16,10))
plt.grid(which='major', linestyle='-', linewidth='0.5', color='green')
plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
plt.show()
```


In [52]:

```
#Import Metrics from sklearn
from sklearn import metrics
```

In [53]:

```
#Evaluate the Performance of the algorithm
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))
```

```
Mean Absolute Error: 0.4190841065745994
Mean Squared Error: 0.307601513936276
Root Mean Squared Error: 0.5546183498012629
```

Conclusion

Therefore the accuracy of the model is 94%- This shows that the model is fit for data analytics.since the predicted results against the actual indicate close relationship of the data.

3. K-Nearest Neighbour Classifier (Swam Intelligence Approach)

Introduction

In this approach the class label of a test instance is predicted based on the majority class of its k closest training instances. The number of nearest neighbors, k, is a hyperparameter that must be provided by the user, along with the distance metric. By default we can use Euclidean distance (equivalent to Minkoswki distance with an exponent factor equals to p=2)

In [54]:

```
#we import the libraries for our data preprocessing
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from numpy.random import random
%matplotlib inline
```

In [55]:

```
#we now load the dataset from the folder called Phishing
Data=pd.read_csv("//Users//nelsonotumaongaya//Desktop//Phishing.csv",header="infer")
```

In [56]:

Data

Out[56]:

	having_IP_Address	URL_Length	Shortining_Service	having_At_Symbol	double_slash_redir
0	-1	1	1	1	
1	1	1	1	1	
2	1	0	1	1	
3	1	0	1	1	
4	1	0	-1	1	
11050	1	-1	1	-1	
11051	-1	1	1	-1	
11052	1	-1	1	1	
11053	-1	-1	1	1	
11054	-1	-1	1	1	

11055 rows × 31 columns

2 Building The Model Using K-Nearest Neighbor Classifier

We have already explored the same data in Decision tree and Regression Analysis therefore the data is clean-

```
In [57]:
#We first split the dataset into training set comprising 80% and test set, comprising
from sklearn.model_selection import train_test_split
x train, x test, y train, y test = train test split(x,y, test size = 0.2, random stat
In [58]:
x_train
```

Out[58]:

```
array([[ 1, -1, 1, ..., 1,
                              0, -1],
       [-1, -1, 1, \ldots,
                           1,
                               1,
       [-1, -1,
                 1, ...,
                           1,
                               1,
                                   11,
       [1, -1, 1, \ldots, 1,
                               1,
                                   1],
       [-1,
            1, 1, ...,
                           1,
                               0,
                                    1],
       [1, -1, 1, \ldots,
                          1,
                               0,
                                   1]])
```

In [59]:

```
y train
```

Out[59]:

```
array([-1, -1, 1, ..., 1, 1,
```

In [60]:

```
#Display.max function in pandas enables us to display all values in our dataset.
pd.options.display.max columns=None
x test
```

Out[60]:

```
array([[-1, -1, 1, ..., 1,
                             1,
                                  11,
       [1, -1, 1, \ldots, 1,
                                  1],
       [-1, -1, -1, \ldots, -1, -1,
       [1, -1,
                         1,
                              0,
               1, ...,
                                  1],
       [1, -1, 1, \ldots, 1,
                             0, 11,
       [1, 1, 1, \ldots, 1,
                            1, -1]])
```

In [61]:

```
y_test
```

Out[61]:

```
array([-1, 1, 1, ..., -1, 1, 1])
```

In [62]:

```
#We import KNeighborsClassifier from sklearn
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score
import matplotlib.pyplot as plt
%matplotlib inline
numNeighbours=[1,5,10,15,20,25,30]
trainAcc=[]
testAcc=[]
```

In [63]:

```
#We fit the KNearest Neighbor model to the training set
for k in numNeighbours:
    clf=KNeighborsClassifier(n_neighbors=k, metric='minkowski',p=2)
    clf.fit(x_train,y_train)
    y_predTrain=clf.predict(x_train)
    y_predTest=clf.predict(x_test)
    trainAcc.append(accuracy_score(y_train,y_predTrain))
    testAcc.append(accuracy_score(y_test,y_predTest))
```

In [64]:

```
plt.plot(numNeighbours,trainAcc,'ro-',numNeighbours,testAcc,'bv--')
plt.legend(['Training Accuracy','Test Accuracy'])
plt.xlabel('Number of Neighbours')
plt.ylabel('Accuracy')
```

Out[64]:

Text(0, 0.5, 'Accuracy')

3 Conclusion

Based on the training accuracy graph, it decreases with increase in depth. The same happens with test accuracy graph. It decreases sharply then increases slightly then it drops. From the test accuracy graph, the model performs best when it has a depth of 1 hence that is when it is best to deploy it (with this depth its accuracy level in detecting phishing sites is 96%).

4. Polynomial Regression

Explore the Dataset Again to Understand it.

In [65]:

```
#library import section
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np # linear algebra
import matplotlib.pyplot as plt # plotting
import os # accessing directory structure
from mpl_toolkits.mplot3d import Axes3D
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn import tree
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LinearRegression
```

In [66]:

```
# Load the training data from the CSV file
Data=pd.read_csv("//Users//nelsonotumaongaya//Desktop//Phishing.csv",header="infer")
Data.dataframeName = 'Phishing.csv'
#determine data size
nRow, nCol = Data.shape
print(f'There are {nRow} rows and {nCol} columns')
print("\nLet's take a quick glance at what the data looks like:")
Data.head(5)
```

There are 11055 rows and 31 columns

Let's take a quick glance at what the data looks like:

Out[66]:

	having_IP_Address	URL_Length	Shortining_Service	having_At_Symbol	double_slash_redirectin
0	-1	1	1	1	-
1	1	1	1	1	
2	1	0	1	1	
3	1	0	1	1	
4	1	0	-1	1	

Each row has records/inputs(the features/indepedent variables) collected for a particular webite; and the end result(output/dependent variable): if the website was used for phising or not

In [67]:

```
print("\nKey statistical values:")
print(Data.describe())
```

_	stical value ving IP Addr		Length	Shortini	ing Service	having At
Symbol \		000 0111_1		01101 01111		
count 000000	11055.000	000 11055.0	000000	13	1055.000000	11055.
mean 700588	0.313	795 –0.6	633198		0.738761	0.
std 713598	0.949	534 0.7	766095		0.673998	0.
min 000000	-1.000	000 -1.0	000000		-1.000000	-1.
25% 000000	-1.000	000 -1.0	000000		1.000000	1.
50% 000000	1.000	000 -1.0	000000		1.000000	1.
75% 000000	1.000	000 -1.0	000000		1.000000	1.
max 000000	1.000	000 1.0	00000		1.000000	1.
do	ouble slash r	edirecting	Prefix	Suffix	having Sub	Domain \
count		055.000000		.000000		000000
mean		0.741474	-0	.734962	0.	063953
std		0.671011	0	.678139	0.	817518
min		-1.000000	-1	.000000	-1.	000000
25%		1.000000	-1	.000000	-1.	000000
50%		1.000000	-1	.000000	0.	000000
75%		1.000000	-1	.000000	1.	000000
max		1.000000		.000000		000000
SS	SLfinal_State	Domain_reg	gistera	tion lend	yth Fa	vicon \
count	11055.000000	_		1055.0000		
mean	0.250927			-0.3367	771 0.6	28584
std	0.911892			0.9416	529 0.7	77777
min	-1.000000			-1.0000	000 -1.0	00000
25%	-1.000000			-1.0000	000 1.0	00000
50%	1.000000			-1.0000	000 1.0	00000
75%	1.000000			1.0000	000 1.0	00000
max	1.000000			1.0000	000 1.0	00000
in_tags	_	HTTPS_toker	n Req	uest_URL	URL_of_And	hor Links_
_		11055.00000	1105	5.000000	11055.000	000 1105
mean 0.118137	0.728268	0.675079	9	0.186793	-0.076	526 –
std 0.763973	0.685324	0.737779	9	0.982444	0.715	138
min 1.000000	-1.000000	-1.000000) –	1.000000	-1.000	000 –
25% 1.000000	1.000000	1.000000) –	1.000000	-1.000	000 –
50% 0.000000	1.000000	1.000000	0	1.000000	0.000	000
75%	1.000000	1.000000	0	1.000000	0.000	000

0.00000

max	1.000000	1.000000	1.000000	1.000000	
1.00000		1.000000	1.000000	1.000000	
	SFH	Submitting to	email Abnorm	al URL Re	direct
\			_	_	
count	11055.000000	11055.	000000 11055.	000000 11055.	000000
mean	-0.595749	0.	635640 0.	705292 0.	115694
std	0.759143	0.	772021 0.	708949 0.	319872
min	-1.000000	-1.	000000 -1.	000000 0.	000000
25%	-1.000000	1.	000000 1.	000000 0.	000000
50%	-1.000000	1.	000000 1.	000000 0.	000000
75%	-1.000000	1.	000000 1.	000000 0.	000000
max	1.000000	1.	000000 1.	000000 1.	000000
domain	on_mouseover	RightClick	popUpWidnow	Iframe	age_of_
count	11055.000000	11055.000000	11055.000000	11055.000000	11055.
000000					
mean	0.762099	0.913885	0.613388	0.816915	0.
061239					
std	0.647490	0.405991	0.789818	0.576784	0.
998168					
min	-1.000000	-1.000000	-1.000000	-1.000000	-1.
000000					
25%	1.000000	1.000000	1.000000	1.000000	-1.
000000					
50%	1.000000	1.000000	1.000000	1.000000	1.
000000					
75%	1.000000	1.000000	1.000000	1.000000	1.
000000					
max	1.000000	1.000000	1.000000	1.000000	1.
000000					
	DNSRecord	web_traffic	Page_Rank	Google_Index	\
count	11055.000000	11055.000000	11055.000000	11055.000000	
mean	0.377114	0.287291	-0.483673	0.721574	
std	0.926209	0.827733	0.875289	0.692369	
min	-1.000000	-1.000000	-1.000000	-1.000000	
25%	-1.000000	0.000000	-1.000000	1.000000	
50%	1.000000	1.000000	-1.000000	1.000000	
75%	1.000000	1.000000	1.000000	1.000000	
max	1.000000	1.000000	1.000000	1.000000	
	Links_pointin		tistical_repor		
count	110	055.000000	11055.00000		
mean		0.344007	0.71958		
std		0.569944	0.69443		
min		-1.000000	-1.00000		
25%		0.000000	1.00000		
50%		0.000000	1.00000		
75%		1.000000	1.00000		
max		1.000000	1.00000	0 1.00000	U

Distribution graphs (histogram/bar graph) of sampled columns:

1.Loading and Understanging the Phishing Websites

Dataset"

"We need to understand the data set indetail first.\n", "We develop a brief understanding of the dataset with which we will be working with. For example how many features are there in the dataset, how man unique label. How are they distributed or how are the labels distributed, different data types and quantities. "

```
In [68]:
```

```
#importing data for basic analysis-preprocessing.\n",
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from numpy.random import random
%matplotlib inline
```

Getting useful information from the dataset"

"Now, lets quickly find out how many classes in the dataset and how they the distributed in the dataset."

```
In [69]:
```

```
Data=pd.read_csv("//Users//nelsonotumaongaya//Desktop//Phishing.csv", header="infer")
from collections import Counter
```

```
In [70]:
```

```
classes =Counter(Data['Result'].values)
```

```
In [71]:
```

```
classes.most_common()
```

```
Out[71]:
```

```
[(1, 6157), (-1, 4898)]
```

This information can be presented using a DataFrame which will produce a very good table

```
In [72]:
```

```
class_dist=pd.DataFrame(classes.most_common(),columns=['Class','Num_Observation'])
```

```
In [73]:
```

```
class_dist
```

Out[73]:

	Class	Num_Observation
0	1	6157
1	-1	4898

We could also use a plot to convey the information as well

In [74]:

```
import matplotlib.pyplot as plt
%matplotlib inline
```

In [75]:

```
plt.style.use('ggplot')
```

In [76]:

```
subplot=class_dist.groupby("Class")["Num_Observation"].sum().plot(kind="barh",width=
subplot.set_xlabel("Number of Observations",fontsize=15)
subplot.set_ylabel("Class",fontsize=14)
for i in subplot.patches:
    subplot.text(i.get_width()+0.1,i.get_y()+0.1, str(i.get_width()),fontsize=11)
```


In []:

"What is the range of the values present in the different columns, what are the unique values present in them and so on pandas we can use describe."

In [77]:

Data.describe(). T# We describe the data. further description of the dataset

Out[77]:

	count	mean	std	min	25%	50%	75%	max
having_IP_Address	11055.0	0.313795	0.949534	-1.0	-1.0	1.0	1.0	1.0
URL_Length	11055.0	-0.633198	0.766095	-1.0	-1.0	-1.0	-1.0	1.0
Shortining_Service	11055.0	0.738761	0.673998	-1.0	1.0	1.0	1.0	1.0
having_At_Symbol	11055.0	0.700588	0.713598	-1.0	1.0	1.0	1.0	1.0
double_slash_redirecting	11055.0	0.741474	0.671011	-1.0	1.0	1.0	1.0	1.0
Prefix_Suffix	11055.0	-0.734962	0.678139	-1.0	-1.0	-1.0	-1.0	1.0
having_Sub_Domain	11055.0	0.063953	0.817518	-1.0	-1.0	0.0	1.0	1.0
SSLfinal_State	11055.0	0.250927	0.911892	-1.0	-1.0	1.0	1.0	1.0
Domain_registeration_length	11055.0	-0.336771	0.941629	-1.0	-1.0	-1.0	1.0	1.0
Favicon	11055.0	0.628584	0.777777	-1.0	1.0	1.0	1.0	1.0
port	11055.0	0.728268	0.685324	-1.0	1.0	1.0	1.0	1.0
HTTPS_token	11055.0	0.675079	0.737779	-1.0	1.0	1.0	1.0	1.0
Request_URL	11055.0	0.186793	0.982444	-1.0	-1.0	1.0	1.0	1.0
URL_of_Anchor	11055.0	-0.076526	0.715138	-1.0	-1.0	0.0	0.0	1.0
Links_in_tags	11055.0	-0.118137	0.763973	-1.0	-1.0	0.0	0.0	1.0
SFH	11055.0	-0.595749	0.759143	-1.0	-1.0	-1.0	-1.0	1.0
Submitting_to_email	11055.0	0.635640	0.772021	-1.0	1.0	1.0	1.0	1.0
Abnormal_URL	11055.0	0.705292	0.708949	-1.0	1.0	1.0	1.0	1.0
Redirect	11055.0	0.115694	0.319872	0.0	0.0	0.0	0.0	1.0
on_mouseover	11055.0	0.762099	0.647490	-1.0	1.0	1.0	1.0	1.0
RightClick	11055.0	0.913885	0.405991	-1.0	1.0	1.0	1.0	1.0
popUpWidnow	11055.0	0.613388	0.789818	-1.0	1.0	1.0	1.0	1.0
Iframe	11055.0	0.816915	0.576784	-1.0	1.0	1.0	1.0	1.0
age_of_domain	11055.0	0.061239	0.998168	-1.0	-1.0	1.0	1.0	1.0
DNSRecord	11055.0	0.377114	0.926209	-1.0	-1.0	1.0	1.0	1.0
web_traffic	11055.0	0.287291	0.827733	-1.0	0.0	1.0	1.0	1.0
Page_Rank	11055.0	-0.483673	0.875289	-1.0	-1.0	-1.0	1.0	1.0
Google_Index	11055.0	0.721574	0.692369	-1.0	1.0	1.0	1.0	1.0
Links_pointing_to_page	11055.0	0.344007	0.569944	-1.0	0.0	0.0	1.0	1.0
Statistical_report	11055.0	0.719584	0.694437	-1.0	1.0	1.0	1.0	1.0
Result	11055.0	0.113885	0.993539	-1.0	-1.0	1.0	1.0	1.0

In [78]:

```
Data.info()# Gives more information about the data as null
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 11055 entries, 0 to 11054 Data columns (total 31 columns): Column Non-Null Count Dtype 0 having IP Address 11055 non-null int64 1 URL Length 11055 non-null int64 2 Shortining Service 11055 non-null int64 3 having At Symbol 11055 non-null int64 double slash_redirecting 4 11055 non-null int64 5 Prefix Suffix 11055 non-null int64 6 having_Sub_Domain 11055 non-null int64 7 11055 non-null int64 SSLfinal State 8 Domain_registeration_length 11055 non-null int64 Favicon 11055 non-null int64 11055 non-null int64 10 port 11055 non-null int64 HTTPS token Request URL 11055 non-null int64 URL of Anchor 11055 non-null int64 11055 non-null int64 Links in tags 11055 non-null int64 15 SFH 16 Submitting to email 11055 non-null int64 Abnormal URL 11055 non-null int64 11055 non-null int64 18 Redirect 19 on mouseover 11055 non-null int64 RightClick 11055 non-null int64 11055 non-null int64 21 popUpWidnow 11055 non-null int64 Iframe 23 age_of_domain 11055 non-null int64 24 DNSRecord 11055 non-null int64 11055 non-null int64 25 web traffic 11055 non-null int64 Page Rank Google Index 11055 non-null int64 11055 non-null int64 Links_pointing_to_page 11055 non-null int64 29 Statistical report Result 11055 non-null int64 30 dtypes: int64(31) memory usage: 2.6 MB

3. Cleaning the Class Labels and Inspecting for Missing Vaues

The aim id clean the data and split it into two parts. Training and Testing

Introduction

It is not good practice to create Machine Learning models using the labels with negative values. it affects the performance of the model hence we need to change the value -1 to be 0"

```
01/06/2020
                                     Swam Intelligence Approaches - Jupyter Notebook
 In [79]:
 Data.rename(columns={"Result":"Class"},inplace=True)
 Data["Class"] = Data["Class"] . map({-1:0,1:1})
 Data["Class"].unique()
 Out[79]:
 array([0, 1])
 We now split the dataset into 80:20 ratio
 In [80]:
 from sklearn.model selection import train test split
```

```
In [11]:
x=Data.iloc[:,0:30].values.astype(int)
y=Data.iloc[:,30].values.astype(int)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=np.ran
In [12]:
х
Out[12]:
array([[-1,
             1, 1, ..., 1,
                              1, -11,
       [ 1,
             1, 1, ...,
                           1,
                               1, 1],
       [ 1,
                 1, ...,
       [1, -1, 1, \ldots, 1,
                               0,
       [-1, -1, 1, \ldots,
                          1,
                               1,
       [-1, -1, 1, \ldots, -1,
                              1, -1])
In [13]:
У
Out[13]:
array([-1, -1, -1, ..., -1, -1, -1])
In [14]:
len(y_train)
Out[14]:
8844
In [15]:
8844+2211
Out[15]:
11055
```

```
In [16]:
```

```
2211/11055*100# this how we have picked our training set
```

Out[16]:

20.0

Let's Serialize the splits as well. Remember that our splits are now nothing but an array of valus and can be serialized"

```
In [17]:
```

Out[17]:

```
# our data now does not have missing values
x_train
```

1, 1], 1],

0,

1,

1]])

```
array([[-1, -1, 1, ...,
                          1,
       [-1, 1, 1, \ldots,
                          1,
```

```
[1, -1,
          1, ...,
                   1,
                        0, -1],
[-1, -1, 1, \ldots,
                   1,
                            1],
[1, -1, 1, \ldots, 1,
                        1,
                            1],
[-1, -1, -1, \ldots,
```

1,

```
In [18]:
```

```
x train
```

```
Out[18]:
```

```
array([[-1, -1, 1, ...,
                           1,
                               1,
                                   1],
            1, 1, ...,
       [-1,
                           1,
                               0, 1],
       [1, -1,
                 1, ...,
                           1,
                               0, -1],
       [-1, -1, 1, \ldots,
                           1,
                               1,
                                   1],
                               1,
       [1, -1, 1, \ldots,
                          1,
                                   1],
       [-1, -1, -1, \ldots, 1,
                               1,
                                   1]])
```

```
In [19]:
```

```
y_train
```

```
Out[19]:
```

```
array([1, -1, -1, ..., 1, 1, -1])
```

4. Training Logistics Regression Model"¶

We instatiate Logistic Regression Model and fit it to the training data

In [20]:

```
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, classif
from sklearn.linear_model import LogisticRegression
import wandb
import time
```

We define some utility function for training machine learning model, with code to measure its training time performance

In [21]:

```
def train eval pipeline(model, train data, test data, name):
    #initialize weights and biases
    wandb.init(project="Phishing-websites-detection", name=name)
    #segragate the datasets
    (x_train, y_train)=train data
    (x_test,y_test)=test_data
    #Train the model and keep the log of all the necessary metrics
    start=time.time()
    model.fit(x train,y train)
    end=time.time()-start
    prediction=model.predict(x test)
    wandb.log({"accuracy": accuracy score(y test,prediction)*100.0, "precision": prediction
    print("Accuracy score of the Logistic Regression classifier with default hyperpe
    print("\n")
    print("---Classificatin Report of the Logistic Regression classifier with defaul
    print("\n")
    print(classification report(y test, prediction, target names=["Phishing Websites",
logreg=LogisticRegression()
train_eval_pipeline(logreg,(x_train,y_train),(x_test,y_test),"logistic_regression")
```

Logging results to Weights & Biases (https://wandb.com) (Documentation)

(https://docs.wandb.com/integrations/jupyter.html).

Project page: https://app.wandb.ai/python2020-/Phishing-websites-detection

(https://app.wandb.ai/python2020-/Phishing-websites-detection)

Run page: https://app.wandb.ai/python2020-/Phishing-websites-detection/runs/1abodntm

(https://app.wandb.ai/python2020-/Phishing-websites-detection/runs/1abodntm)

Accuracy score of the Logistic Regression classifier with default hype rparameter values 93.71%

---Classificatin Report of the Logistic Regression classifier with default hyperparameter values ----

	precision	recall	f1-score	support
Phishing Websites	0.94	0.92	0.93	974
Normal Websites	0.94	0.95	0.94	1237
accuracy			0.94	2211
macro avg	0.94	0.94	0.94	2211
weighted avg	0.94	0.94	0.94	2211

Improving the Model

Can we improve this model? Agood way to start approaching this idea is tune the hyperparameters of the model. We want to look at which is the best parameter for our model. We define the grid of values for the hyperparameter we would like to tune. In this case we use random search for hyperparameters tuning.

In [22]:

```
#import GridSearchCV if something goes outside the region we penalize it
from sklearn.model_selection import RandomizedSearchCV
```

In [23]:

```
#We define the grid
penalty=["11","12"]
C=[0.8,0.9,1.0]
tol=[0.01,0.001,0.0001]#what we can tolerate-tolerant values
max_iter=[100,150,200,250]# maximum iteration
```

In [26]:

```
#we create key value dist
param_grid=dict(penalty=penalty,C=C,tol=tol,max_iter=max_iter)
```

Now with the grid, we work to find the best set of values of hyperparameters values.

In [28]:

```
#Instanstiate RandomizedSearchCV with the required parameters.
param_grid=dict(penalty=penalty,C=C,tol=tol,max_iter=max_iter)
random_model=RandomizedSearchCV(estimator=logreg,param_distributions=param_grid, cv=
```

In [29]:

```
#Instanstiate RandomizedSearchCV with the required parameters.
random_model=RandomizedSearchCV(estimator=logreg,param_distributions=param_grid, cv=
random_model_result=random_model.fit(x_train,y_train)
```

/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/skl earn/model_selection/_validation.py:536: FitFailedWarning: Estimator f it failed. The score on this train-test partition for these parameters will be set to nan. Details:
ValueError: Solver lbfgs supports only '12' or 'none' penalties, got l

ValueError: Solver lbfgs supports only '12' or 'none' penalties, got l 1 penalty.

FitFailedWarning)

/Users/nelsonotumaongaya/opt/anaconda3/lib/python3.7/site-packages/skl earn/model_selection/_validation.py:536: FitFailedWarning: Estimator f it failed. The score on this train-test partition for these parameters will be set to nan. Details:

ValueError: Solver lbfgs supports only '12' or 'none' penalties, got 1 1 penalty.

FitFailedWarning)

In [30]:

```
#summary of the results
best score, best params=random model result.best score ,random model result.best par
```

In [31]:

```
#summary of the results
best_score, best_params=random_model_result.best_score_,random_model_result.best_par
print("Best Score: %.2f using %s" %(best_score*100, best_params))

Best Score: 92.41 using {'tol': 0.01, 'penalty': '12', 'max_iter': 10
0, 'C': 0.9}
```

Random search did not help much in boosting up the accuracy score. Just to ensure that lets take the hyperparameter values and train another logistic regression model with the same values.

In [32]:

```
#log the hyperparameter values with which we are going to train our model.
config=wandb.config
config.tol=0.01
config.penalty="12"
config.C=1.0
```

In [33]:

```
#Train the model
logreg=LogisticRegression(tol=config.tol,penalty=config.penalty,max iter=250,C=confi
train eval pipeline(logreg,(x train,y train),(x test,y test), Logistic-regression -
Logging results to Weights & Biases (https://wandb.com) (Documentation)
(https://docs.wandb.com/integrations/jupyter.html).
Project page: https://app.wandb.ai/python2020-/Phishing-websites-detection
(https://app.wandb.ai/python2020-/Phishing-websites-detection)
Run page: https://app.wandb.ai/python2020-/Phishing-websites-detection/runs/1ntr66vp
(https://app.wandb.ai/python2020-/Phishing-websites-detection/runs/1ntr66vp)
ValueError
                                             Traceback (most recent call
 last)
<ipython-input-33-ef11bdd6b5c7> in <module>
      1 #Train the model
      2 logreg=LogisticRegression(tol=config.tol,penalty=config.penalt
y, max iter=250, C=config.C)
 ---> 3 train eval pipeline(logreg,(x train,y train),(x test,y test),
'Logistic-regression -random-search')
<ipython-input-21-0998d3a485b0> in train eval pipeline(model, train da
ta, test data, name)
            #Train the model and keep the log of all the necessary met
      7
rics
      8
            start=time.time()
 ---> 9
            model.fit(x_train,y_train)
     10
            end=time.time()-start
            prediction=model.predict(x test)
~/opt/anaconda3/lib/python3.7/site-packages/sklearn/linear model/ logi
stic.py in fit(self, X, y, sample weight)
   1486
                 The SAGA solver supports both float64 and float32 bit
 arrays.
   1487
-> 1488
                 solver = check solver(self.solver, self.penalty, self
.dual)
   1489
   1490
                 if not isinstance(self.C, numbers.Number) or self.C <</pre>
0:
~/opt/anaconda3/lib/python3.7/site-packages/sklearn/linear model/ logi
stic.py in check solver(solver, penalty, dual)
    439
             if penalty not in all penalties:
                 raise ValueError("Logistic Regression supports only pe
    440
nalties in %s,"
                                   " got %s." % (all penalties, penalt
--> 441
у))
    442
             if solver not in ['liblinear', 'saga'] and penalty not in
    443
```

ValueError: Logistic Regression supports only penalties in ['11', '1 2', 'elasticnet', 'none'], got 12.

('12', 'none'):

8. Random Forest Classifier-RFC

```
In [34]:
#print("Random Forest Classifier")
#forest_params = {"max_depth": list(range(10,50,1)), "n_estimators" : [350,400,450]}
#forest = GridSearchCV(RandomForestClassifier(), forest params,n jobs=-1,cv=10,scori
#forest.fit(x train, y train)
#random forest = forest.best estimator
#print("Best Estimator")
#print(random forest)
In [35]:
#Parameters have been choosing based on GridSearchCV
random forest = RandomForestClassifier(max depth=10, n estimators=350)
random_forest.fit(x_train,y_train)
Out[35]:
RandomForestClassifier(bootstrap=True, ccp alpha=0.0, class weight=Non
e,
                       criterion='gini', max depth=10, max features='a
uto',
                       max leaf nodes=None, max samples=None,
                       min impurity decrease=0.0, min impurity split=N
one,
                       min samples leaf=1, min samples split=2,
                       min weight fraction leaf=0.0, n estimators=350,
                       n jobs=None, oob score=False, random state=Non
e.
                       verbose=0, warm start=False)
In [37]:
forest_score = cross_val_score(random_forest, x_train, y_train, cv=10,scoring='roc_a
forest_score_teste = cross_val_score(random_forest, x_test, y_test, cv=10,scoring='r
print('Score RFC Train: ', round(forest_score.mean() * 100, 2).astype(str) + '%')
print('Score RFC Test: ', round(forest_score_teste.mean() * 100, 2).astype(str) +
Score RFC Train:
                  99.25%
Score RFC Test:
                99.16%
In [38]:
y_pred_rf = random_forest.predict(x_test)
```

```
In [39]:
```

```
cm_rf = confusion_matrix(y_test,y_pred_rf)
```

In [51]:

```
acc_score_rf = accuracy_score(y_test,y_pred_rf)
f1_score_rf = f1_score(y_test,y_pred_rf)
pred_rf = average_precision_score(y_test,y_pred_rf)
recall_rf = recall_score(y_test,y_pred_rf)
roc_rf = roc_auc_score(y_test,y_pred_rf,multi_class='ovo')
print('Accuracy Random Forest ',round(acc_score_rf*100,2).astype(str)+'%')
print('Pred media Random Forest ',round(pred_rf*100,2).astype(str)+'%')
print('F1 Random Forest ',round(f1_score_rf*100,2).astype(str)+'%')
print('Recall Random Forest ',round(recall_rf*100,2).astype(str)+'%')
print('ROC Random Forest ',round(roc_rf*100,2).astype(str)+'%')
```

Accuracy Random Forest 96.38% Pred media Random Forest 94.93% F1 Random Forest 96.8% Recall Random Forest 97.82% ROC Random Forest 96.19%

The accuracy in Random Forest for Website Phishing is 96.38%

In [55]:

```
fig, ax = plt.subplots(figsize=(10,6))
sns.heatmap(cm_rf, ax=ax, annot=True, cmap=plt.cm.copper)
ax.set_title("Random Forest \n Confusion Matrix", fontsize=14)
ax.set_xticklabels(['B', 'M'], fontsize=14, rotation=0)
ax.set_yticklabels(['B', 'M'], fontsize=14, rotation=360)
```

Out[55]:

```
[Text(0, 0.5, 'B'), Text(0, 1.5, 'M')]
```


Ada Boost Classifier

In [56]:

```
#print("Ada Boost Classifier")
#ada_params = {'n_estimators' : list(range(100,200))}
#grid_ada = GridSearchCV(AdaBoostClassifier(), ada_params,n_jobs=8,cv=10,scoring='rd
#grid_ada.fit(X_train, y_train)
#ada = grid_ada.best_estimator_
#print("Best Estimator")
#print(ada)
```

In [57]:

```
#Parameters have been choosing based on GridSearchCV
ada = AdaBoostClassifier(n_estimators=102)
ada.fit(x_train,y_train)
```

Out[57]:

In [58]:

```
ada_score = cross_val_score(ada, x_train, y_train, cv=10,scoring='roc_auc_ovo')
ada_score_teste = cross_val_score(ada, x_test, y_test, cv=10,scoring='roc_auc_ovo')
print('Score AdaBoost Train: ', round(ada_score.mean() * 100, 2).astype(str) + '%')
print('Score AdaBoost Test: ', round(ada_score_teste.mean() * 100, 2).astype(str) +
```

```
Score AdaBoost Train: 98.61%
Score AdaBoost Test: 98.81%
```

In [59]:

```
y_pred_ada = ada.predict(x_test)
```

In [60]:

```
cm_ada = confusion_matrix(y_test,y_pred_ada)
```

In [64]:

```
acc_score_ada = accuracy_score(y_test,y_pred_ada)
f1_score_ada = f1_score(y_test,y_pred_ada)
precisao_ada = average_precision_score(y_test,y_pred_ada)
recall_ada = recall_score(y_test,y_pred_ada)
roc_ada = roc_auc_score(y_test,y_pred_ada,multi_class='ovo')
print('Acuracy ADA Boost ',round(acc_score_ada*100,2).astype(str)+'%')
print('Pred media Ada Boost ',round(precisao_ada*100,2).astype(str)+'%')
print('F1 Ada Boost ',round(f1_score_ada*100,2).astype(str)+'%')
print('Recall Ada Boost ',round(recall_ada*100,2).astype(str)+'%')
print('ROC Ada Boost ',round(roc_ada*100,2).astype(str)+'%')
```

```
Acuracy ADA Boost 93.94%
Pred media Ada Boost 92.16%
F1 Ada Boost 94.62%
Recall Ada Boost 95.31%
ROC Ada Boost 93.75%
```

In [66]:

```
fig, ax = plt.subplots(figsize=(10,6))
sns.heatmap(cm_ada, ax=ax, annot=True, cmap=plt.cm.copper)
ax.set_title("Ada Boost \n Confusion Matrix", fontsize=14)
ax.set_xticklabels(['B', 'M'], fontsize=14, rotation=0)
ax.set_yticklabels(['B', 'M'], fontsize=14, rotation=360)
```

Out[66]:

[Text(0, 0.5, 'B'), Text(0, 1.5, 'M')]

9. Gradient Boost Classifier- GBC

In [67]:

```
#print("Gradient Boost Classifier")
#grad_params = {'n_estimators' : [50,55,60,65,70,75,80,85,90],'max_depth' : list(ran
#grad = GridSearchCV(GradientBoostingClassifier(), grad_params,n_jobs=-1,cv=10,scorn
#grad.fit(X_train, y_train)
#grad_boost = grad.best_estimator_
#print("Best Estimator")
#print(grad_boost)
```

In [68]:

```
#Parameters have been choosing based on GridSearchCV
grad boost = GradientBoostingClassifier(n estimators=65, max depth=4)
grad boost.fit(x train, y train)
Out[68]:
GradientBoostingClassifier(ccp alpha=0.0, criterion='friedman mse', in
it=None,
                           learning rate=0.1, loss='deviance', max dep
th=4,
                           max features=None, max leaf nodes=None,
                           min_impurity_decrease=0.0, min_impurity_spl
it=None,
                           min samples leaf=1, min samples split=2,
                           min weight fraction leaf=0.0, n estimators=
65,
                           n iter no change=None, presort='deprecate
d',
                           random state=None, subsample=1.0, tol=0.000
1,
                           validation fraction=0.1, verbose=0,
                           warm start=False)
```

In [69]:

```
grad_score = cross_val_score(grad_boost, x_train, y_train, cv=10,scoring='roc_auc_ov
grad_score_teste = cross_val_score(grad_boost, x_test, y_test, cv=10,scoring='roc_au
print('Score GradBoost Train: ', round(grad_score.mean() * 100, 2).astype(str) + '%'
print('Score GradBoost Test: ', round(grad_score_teste.mean() * 100, 2).astype(str)
```

Score GradBoost Train: 99.0% Score GradBoost Test: 99.02%

In [70]:

```
y_pred_gb = grad_boost.predict(x_test)
```

In [71]:

```
cm_gb = confusion_matrix(y_test,y_pred_gb)
```

In [73]:

```
acc_score_gb = accuracy_score(y_test,y_pred_gb)
f1_score_gb = f1_score(y_test,y_pred_gb)
pred_gb = average_precision_score(y_test,y_pred_gb)
recall_gb = recall_score(y_test,y_pred_gb)
roc_gb = roc_auc_score(y_test,y_pred_gb,multi_class='ovo')
print('Acuracy Gradient Boosting ',round(acc_score_gb*100,2).astype(str)+'%')
print('Pred media Gradient Boosting ',round(pred_gb*100,2).astype(str)+'%')
print('F1 Gradient Boosting ',round(f1_score_gb*100,2).astype(str)+'%')
print('Recall Gradient Boosting ',round(recall_gb*100,2).astype(str)+'%')
print('ROC Gradient Boosting ',round(roc_gb*100,2).astype(str)+'%')
```

Acuracy Gradient Boosting 95.75%
Pred media Gradient Boosting 94.44%
F1 Gradient Boosting 96.22%
Recall Gradient Boosting 96.69%
ROC Gradient Boosting 95.62%

In [74]:

```
fig, ax = plt.subplots(figsize=(10,6))
sns.heatmap(cm_gb, ax=ax, annot=True, cmap=plt.cm.copper)
ax.set title("Gradient Boosting \n Confusion Matrix", fontsize=14)
ax.set_xticklabels(['B', 'M'], fontsize=14, rotation=0)
ax.set_yticklabels(['B', 'M'], fontsize=14, rotation=360)
```

Out[74]:

[Text(0, 0.5, 'B'), Text(0, 1.5, 'M')]

In [80]:

```
results = [ada_score, forest_score, grad_score]
results test = [ada score teste, forest score teste, grad score teste]
name_model = ["AdaBoost","RFC","GradBoost"]
```

In [81]:

```
fig,ax=plt.subplots(figsize=(10,5))
ax.boxplot(results)
ax.set_xticklabels(name_model)
plt.tight_layout()
```


In [82]:

```
fig,ax=plt.subplots(figsize=(10,5))
ax.boxplot(results_test)
ax.set_xticklabels(name_model)
plt.tight_layout()
```


In []: