Intelligent Systems: Mathematics for Al Extrema, Interpolation and Roots Part II

Danesh Tarapore

Outline

- ► Interpolation, Taylor series
- Newton's method

Linear Interpolation (1)

- Sometimes we need the value of a function f(x) at some point x, but only know it exactly at a near by point x_0 .
- ▶ How can we estimate f(x) from $f(x_0)$.

Linear Interpolation (2)

- Sometimes we need the value of a function f(x) at some point x, but only know it exactly at a near by point x_0 .
- ▶ How can we estimate f(x) from $f(x_0)$.
- Use linear interpolation.
- Example: what we know is $x_0 = 4$, $f(x_0) = 2$. Can we use it to approximate f(4.2), i.e. $\sqrt{4.2}$?

Linear Interpolation (3)

- Example: what we know is $x_0 = 4$, $f(x_0) = 2$. Can we use it to approximate f(x = 4.2), i.e. $\sqrt{4.2}$?
- ► Tangent line at x_0 is $y = f(x_0) + f'(x_0)(x x_0)$ (red line in plot).
- $f(x) = \sqrt{x}, f'(x) = 1/(2\sqrt{x})$
- $\sqrt{4.2} \approx \sqrt{4} + 1/4(4.2 4)$
- $\sqrt{4.2} \approx 2.05,$ $(\sqrt{4.2} = 2.0493...)$

More generally: Taylor series

- ▶ In general, there are "higher order" corrections.
- ▶ If the function f is infinitely differentiable, we can develop it into a Taylor series around a point x_0 .

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

- Need x to be sufficiently close to x_0 .
- ▶ Be wary, series does not always converge!

Example using Taylor series for interpolation

Approximation (green line) of the sine function (black line) around $x_0 = 0$.

- ▶ Using Taylor series with $x_0 = 0$, we get,
- $f(x) \approx \frac{x}{1!} \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \dots$

Our problem:

- We want to find solutions of some (non-)linear equation $g(x^*) = A$.
 - Also for optimisation problems, if we want to find g'(x*) = 0, this is the same class of problem.

Our problem:

- We want to find solutions of some (non-)linear equation $g(x^*) = A$.
 - Also for optimisation problems, if we want to find g'(x*) = 0, this is the same class of problem.
- Can easily do it analytically for linear g and quadratic g, but this is not so easy in the general case!

Our problem:

We want to find solutions of some (non-)linear equation $g(x^*) = A$.

Our problem:

- We want to find solutions of some (non-)linear equation $g(x^*) = A$.
- ▶ 1st step: If we can solve f(x*) = 0 for any f we can also solve g(x*) = A.

Our problem:

- We want to find solutions of some (non-)linear equation $g(x^*) = A$.
- ▶ 1st step: If we can solve f(x*) = 0 for any f we can also solve g(x*) = A.
- ➤ 2nd step: want to find a numerical approximation of the solution. Let's assume f is differentiable.

Strategy to find root of f(x), i.e. solve x, for f(x)=0:

1. Start at some x_0 .

$$f(x) = x^2, x_0 = 4$$

- 1. Start at some x_0 .
- 2. Approximate f by its tangent at x_0 .

$$f(x)=x^2, x_0=4$$

- 1. Start at some x_0 .
- 2. Approximate f by its tangent at x_0 .
- 3. Calculate root of tangent (i.e., where tangent intercepts x axis), say x_1 .

$$f(x) = x^2, x_0 = 4$$

- 1. Start at some x_0 .
- 2. Approximate f by its tangent at x_0 .
- Calculate root of tangent (i.e., where tangent intercepts x - axis), say x₁.
- 4. Use x_1 as estimate for root.

$$f(x) = x^2, x_0 = 4$$

- 1. Start at some x_0 .
- 2. Approximate f by its tangent at x_0 .
- Calculate root of tangent (i.e., where tangent intercepts x - axis), say x₁.
- 4. Use x_1 as estimate for root.
- 5. Goto Step-2.

$$f(x) = x^2, x_0 = 4$$

More precisely:

▶ We calculate a sequence $\{x_n\}$ of roots of tangents f(x).

- ▶ We calculate a sequence $\{x_n\}$ of roots of tangents f(x).
- ► Tangent of f(x) at x_n is : $y = f(x_n) + f'(x_n)(x x_n)$.

- ▶ We calculate a sequence $\{x_n\}$ of roots of tangents f(x).
- Tangent of f(x) at x_n is : $y = f(x_n) + f'(x_n)(x - x_n)$.
- Root x* of tangent (i.e. where tangent intercepts x-axis) is:

$$0 = f(x_n) + f'(x_n)(x^* - x_n).$$

- ▶ We calculate a sequence $\{x_n\}$ of roots of tangents f(x).
- Tangent of f(x) at x_n is : $y = f(x_n) + f'(x_n)(x - x_n)$.
- Noot x^* of tangent (i.e. where tangent intercepts x-axis) is: $0 = f(x_n) + f'(x_n)(x^* - x_n).$
- So $x^* = x_n f(x_n)/f('x_n)$.

- ▶ We calculate a sequence $\{x_n\}$ of roots of tangents f(x).
- Tangent of f(x) at x_n is : $y = f(x_n) + f'(x_n)(x - x_n)$.
- Root x^* of tangent (i.e. where tangent intercepts x-axis) is: $0 = f(x_n) + f'(x_n)(x^* x_n)$.
- ► So $x^* = x_n f(x_n)/f('x_n)$.
- Use x^* as next value of x_n , i.e., $x_{n+1} = x_n f(x_n)/f'(x_n)$

Consider the function $f(x) = x^2$. Want to find its root starting from $x_0 = 2$.

- Consider the function $f(x) = x^2$. Want to find its root starting from $x_0 = 2$.
- Remember: $x_{n+1} = x_n f(x_n)/f'(x_n)$

- Consider the function $f(x) = x^2$. Want to find its root starting from $x_0 = 2$.
- ▶ Remember: $x_{n+1} = x_n f(x_n)/f'(x_n)$
- ► However: $f'(x) = 2x \rightarrow x_{n+1} = x_n x_n^2/(2x_n) \rightarrow x_{n+1} = \frac{1}{2x_n}$

- Consider the function $f(x) = x^2$. Want to find its root starting from $x_0 = 2$.
- Remember: $x_{n+1} = x_n f(x_n)/f'(x_n)$
- ► However: $f'(x) = 2x \rightarrow x_{n+1} = x_n x_n^2/(2x_n) \rightarrow x_{n+1} = \frac{1}{2x_n}$
- $x_0 = 2 \to x_1 = 1 \to x_2 = 1/2 \to x_3 = 1/4 \to x_n = 2^{-n+1} \to 0 \text{ as } n \to \infty$

Apply Newton-Raphson method to find the x-value at the point of intersection of $2\cos x$ and 3x starting from $x_0 = \pi/6$.

- Apply Newton-Raphson method to find the x-value at the point of intersection of $2\cos x$ and 3x starting from $x_0 = \pi/6$.
- From the above, we consider $f(x) = 2\cos x 3x$

- Apply Newton-Raphson method to find the x-value at the point of intersection of $2\cos x$ and 3x starting from $x_0 = \pi/6$.
- From the above, we consider $f(x) = 2 \cos x 3x$
- Remember: $x_{n+1} = x_n f(x_n)/f'(x_n)$

Consider the function $f(x) = x^2 - 2x - 1$. Want to find its root starting from $x_0 = 2$.

- Consider the function $f(x) = x^2 2x 1$. Want to find its root starting from $x_0 = 2$.
- ► Remember: $x_{n+1} = x_n f(x_n)/f'(x_n)$

- Consider the function $f(x) = x^2 2x 1$. Want to find its root starting from $x_0 = 2$.
- ▶ Remember: $x_{n+1} = x_n f(x_n)/f'(x_n)$
- ▶ Use another starting point say $x_0 = -2$ to find the second root.

Please note – method does not always converge!

Can get stuck around local extrema, the tangent at which does not cross the x-axis.

Problematic points are extrema – f'(x) = 0. Then choose another starting point.

Summary

What is essential to remember:

- Interpolation:
 - Linear interpolation
 - Taylor series
 - Newton-Raphson method for solving difficult equations

Next session

Next math session we take a look at scalars & vectors and linear algebra.