

Classes of Problems

Halting problem Hilbert's 10th problem Unsolvable (Undecidable) Strong conjecture! Presburger arithmatic Unsolvable in realistic time NP-Complete Solvable Minimum spanning trees Shortest paths (Decidable) Solvable in realistic time

Realistic, Tangible Time

- Means polynomial time
 - Represented by polynomials w.r.t. input size n
 - E.g., $3n^k + 5n^{k-1} + \dots$
- Non-polynomials
 - Exponential
 - E.g., 2ⁿ
 - Factorial
 - E.g., *n*!

Yes/No Problem: Optimization Problem

- Yes/No problem (Decision problem)
 - E.g.: Does a Hamiltonian cycle of length k or less in a graph G exist?
- Optimization problem
 - E.g.: What is the shortest Hamiltonial cycle length of in a graph G?

✓ The two classes of problems are closely related

NP-Complete

NP-Complete

- Restricts to decision problems (Yes/No problems)
 - But, says much about (twin) optimization problems
- About the possibility of solving in realistic time
- A huge class of problems
 - If a problem in this class is solved in realistic time,
 all problems in this class are solved in realistic time
 - Intuitively speaking, if a problem in this class is easy,
 all problems in this class become easy

So far...

- If a problem belongs to NP-Complete/NP-Hard
- to solve the problem (based on the research so far)
- But, not proven yet
- One of the seven Million-Dollar Problems of 21st Century in Clay Mathematics Institute
 - The problem of "P=NP?"

Current State of NP-Comple/Hard

The boss ordered to solve a very hard problem

1. I cannot solve it. Maybe, I'm stupid.

2. I cannot solve it. It has no solution.

An analogy to the state of NP-Complete

3. I cannot solve it. But those many genius people couldn't solve it.

Preparation: Logical Structure

Problem 1: Is integer $X=x_1x_2...x_n$ a multiple of 3?

Problem 2: Is integer $X=x_1+x_2+...+x_n$ a multiple of 3?

- ✓ The answers of the two problems are always the same
 - Answer: Yes or No
- ➤ If problem 2 is easy, then problem 1 is also easy.

Situation

easy = solvable in realistic time

- Problem B is easy
- We can easily transform any instance of problem A
 to a matching instance of problem B
 where the answers(Yes or No) of the two instances are the same

✓ Is problem A also easy?

Poly-Time Reduction

 $A \leq_p B$: A is polynomial-time reducible to B

if we can transform any instance α of problem A to a matching instance β of problem B satisfying the following:

- 1. The transformation is done in polynomial time
- 2. The answers(Yes or No) of the two instances are the same

polynomial time means $O(n^p)$

- 1. Transform problem A to problem B in poly time
- 2. Solve the transformed problem B
- 3. Return the answer of the transformed problem B
- ✓ If problem B is easy, problem A is also easy

Equivalent Definitions

P and NP

a problem = a set of solutions

P and NP each is a set of problems

• P

- Polynomial
- Answers Yes or No in poly time
- NP
 - Nondeterministic Polynomial
 - Note: it does not mean Non-Polynomial!

 $L \in NP: \forall instance x \in L$, we can <u>verify</u> that $x \in L$ in poly time.

(given $x \in L$, check to see if $x \in L$)

 $L \in P$: \forall instance x, we can answer whether $x \in L$ or $x \notin L$ in poly time

a certificate

- Given a certificate to answer Yes, we can verify in poly time that the certificate is right
- No requirement for the case that the answer is No
- Mostly, it is trivial to show a problem is in NP
 - A simple process in the proof of NP-Completeness

Problem: Given *G*, is there a Hamiltonian cycle? (say Yes or No)

A certificate: a Hamiltonian cycle in G

Poly-time verification: check to see in poly-time

that the certificate is a Hamiltonian cycle

NP-Complete/Hard

NP: Given a certificate to answer Yes, we can verify in poly time that the certificate is right

Definition 1: (NP-Hard) or *L* is in NP-Hard A problem *L* is NP-Hard

if any problem in NP can be poly-time reducible to L. (i.e., any NP problem $\leq_p L$)

Definition 2: (NP-complete)

A problem *L* is NP-complete if:

- 1. *L* is NP, and
- 2. L is NP-Hard
- ✓ Since NP-Complete is a subset of NP-Hard, we can say an NP-Complete problem as NP-Hard
- ✓ Mostly the property 1(NP) of NP-Completeness is trivial, we focus on the property 2 (NP-Hardness)

Extremely Hard

Definition 1: (NP-Hard)

A problem *L* is NP-Hard

if any problem in NP can be poly-time reducible to *L*.

= all

Extremely hard to prove this.

We need an alternative to prove NP-Hardness.

An Alternative to Prove NP-Hardness

Theorem 1:

A problem L is NP-Hard

if a known NP-Hard problem A can be poly-time reducible to L. (i.e., $A \leq_p L$)

Algorithm for problem A

This means $A \leq_p L$.

Since it is a given condition that any NP problem $\leq_p A$, any NP problem $\leq_p L$. (by transitivity)

- ✓ If problem L is easy, then problem A is also easy.
 - → Therefore, all NP problems are easy.

Example: NP-Hardness Proof

- Given fact: HAM (Hamiltonian cycle problem) is NP-Hard
- We can prove that TSP is NP-Hard using the given fact.

Hamiltonian cycle (of an undirected graph)

- A simple cycle to visit every vertex
- Hamiltonian cycle problem (HAM)

Given: an undirected graph G

Question: Is there a Hamiltonian cycle in G2

• TSP

Given: a weighted undirected complete graph G

Question: Is there a Hamiltonian cycle of length k or less in G?

Claim:

TSP is NP-Hard → Proof: next page

edge between every pair of vertices

We say HAM is poly-time reducible to TSP

Transform an instance α of Hamiltonian cycle problem to an instance β of TSP in poly time as follows:

Instance α has a Hamiltonian cycle

 \Leftrightarrow Instance β has a Hamiltonian cycle of length n or less (n = 4 in this example)

Therefore, TSP is NP-Hard.

of vertices

Counter-Intuitive Example of NP-Complete

- Shortest path problem
 - Shortest (simple) path from vertex s to t
 - Easy
- Longest path problem
 - Longest (simple) path from vertex s to t
 - NP-Hard

✓ Apparently similar, but extremely different! (Based on research so far)

LONGEST-PATH

- Longest path problem
- (Optimization version) Given a weighted (undirected) graph,
 what is the longest simple path length from vertex s to vertex t?
- (Yes/No version) Given a weighted (undirected) graph, is there any simple path from vertex s to vertex t of length K or greater?

HAM-PATH-2-POINTS

- Hamiltonian path problem between two vertices
- Given a (undirected) graph, is there any Hamiltonian path from vertex s to vertex t?
- Known to be NP-Complete

Property 1: LONGEST-PATH is NP

If we are provided a simple path from s to t of length K or greater (a certificate), we can verify in poly time that it is a simple path of length K or greater.

(We can check it in $O(n^2)$, a comfortable poly time)

It means LONGEST-PATH is NP. (Property 1 of NP-Completeness)

✓ Proving NP (Property 1) is this easy in most cases. That's why we focus on the NP-Hardness.

Property 2: HAM-PATH-2-POINTS ≤, LONGEST-PATH

Transform an instance α of HAM-PATH-2-POINTS

to an instance β of LONGEST-PATH in poly time as follows:

Using the same graph, assign weight 1 to all the edges in α

instance α of HAM-PATH-2-POINTS

Matching instance β of LONGEST-PATH

Instance α has a Hamiltonian path between s and t

- \Leftrightarrow Instance β has a simple path between s and t of length n-1 or greater (in fact, exactly n-1) (in this example, n-1 = 4)
- ➤ Therefore, LONGEST-PATH is NP-Hard. (Property 2 of NP-Complete)

By Properties 1 & 2, LONGEST-PATH is NP-Complete.

CLIQUE

- Input
 (unweighted, undirected) Graph G = (V, E) and a positive integer K
- Question
 Is there any complete subgraph (clique) of size K in G?
- Claim: CLIQUE is NP-Complete
- 3SAT
 - Input: a Boolean formula ϕ in 3-CNF
 - Question: Is ϕ satisfiable?
 - Known to be NP-Complete

Clause: literals are combined by 'v'

CNF(Conjunctive Normal Form): clauses are combined by '^'

3-CNF: clauses in CNF each has exactly 3 literals

Satisfying assignment: assignment (0 or 1) of literals that evaluates the formula to true. If there is a satisfying assignment of ϕ , we say ϕ is satisfiable.

3SAT

- Input: a Boolean formula ϕ in 3-CNF
- Question: Is ϕ satisfiable?
- Known to be NP-Complete

$3SAT \leq_p CLIQUE$

Example instance ϕ : $(x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (\overline{x}_2 \lor \overline{x}_3 \lor x_4)$

Question: Is there a satisfiable assignment of x_i 's that evaluates ϕ to true?

Matching instance β of CLIQUE

3SAT ≤_p CLIQUE

$$\phi$$
: $(x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (\overline{x}_2 \lor \overline{x}_3 \lor x_4)$

m: # of clauses (3 in this example)

There is a satisfiable assignment of x_i 's that evaluates ϕ to true iff

there is a clique of size m in β

Obvious that the transformation takes a poly time.

Therefore, $3SAT \leq_p CLIQUE$.

Is the Theory of NP-Hard any Useful?

- A problem is proved to be NP-Complete/Hard
 - ⇒ Stop to develop an easy algorithm
 - ⇒ Develop a heuristic algorithm that tries to find a suboptimal solution in the given time budget

Relationship of P and NP

- ✓ Not determined which of (a) or (b) is right.
- ✓ Prize money \$1,000,000 at stake (Clay Institute)
- ✓ Strongly conjectured to be case (a)

Relationship of NP, NP-Hard, and NP-Complete

Intuitive meaning of NP-Hard: as hard as any NP problem

NP-Complete: NP subset of NP-Hard

✓ The area of P is a conjecture

Extending NP-Hard to Optimizaztion Problems

Extending NP-Hard to Optimizaztion Problems

- By definition, NP-Complete is restricted to <u>decision problems</u>
 (Yes/No problems)
- But, NP-Hard is not restricted to decision problems

[Reminder] L is NP-Hard if every NP problem $\leq_p L$ (An NP-Hard problem need not to be NP; thus, it need not to be a decision problem)

Redefinition of Poly-Time Reduction

Definition (Yes/No version): Transform any instance α of problem A to a matching instance β of problem B satisfying the following:

- 1. The transformation is done in polynomial time (easy)
- 2. The answers of the two instances are the same

Extended Definition: ...

1. ...

2. We can get α 's answer using β 's solution

오히려 이것이 poly-time reduction의 본질에 더 가깝다

Optimization Version of TSP

Known to be NP-Hard

[Reminder] TSP (Yes/No version)

Input: \int undirected (positive) weighted complete graph G = (V, E) positive number K

Question: Is there a Hamiltonian cycle of length *K* or less in G?

[OPT-TSP]

NP-Hard since TSP \leq_{ρ} OPT-TSP

Input: undirected (positive) weighted complete graph G = (V, E)

Question: What is the length of the shortest Hamiltonian cycle in G?

OPT-TSP is NP-Hard

Claim: $TSP \leq_{p} OPT-TSP$

Proof:

- i) Use the instance α of TSP as it is. ($\alpha \equiv \beta$. zero transformation time)
- ii) Solve OPT-TSP with $\alpha (\equiv \beta)$ to the optimum. (get the shortest Ham cycle length M)
- iii) \int If $M \le K \to$ answer to α is Yes Otherwise \to answer to α is No

The above means that we can get α 's answer using β 's solution.

$$\therefore$$
 TSP \leq_p OPT-TSP

- ✓ Therefore, OPT-TSP is NP-Hard
- ✓ Usually, a Yes/No problem is closely related this way to the corresponding optimization problem.

It is Possible to be not NP but NP-Hard

Approximationwith OPT-TSP as an Example

Approximation

- When a problem is proved to be NP-Complete/Hard
 - Stop to develop an easy algorithm
 - Develop a heuristic algorithm that tries to find a suboptimal solution in the given time budget

Ratio bound $\rho(n)$ of an algorithm for a minimization problem:

 $\frac{C}{C^*} \le \rho(n)$ where n: the problem size

 C^* : the optimal solution cost

C: the cost of a solution produced by the algorithm

OPT-TSP w/ Triangle Inequality (Metric TSP)

$$w_{ij} \leq w_{ik} + w_{kj}$$
, \forall vertices i, j, k

- 1. NN (Nearest Neighbor Algorithm)
 - Start at a random vertex, keep visiting the nearest unvisited neighbor
 - [Thm] The ratio bound $\rho(n)$ for NN $\rho(n) = \frac{1}{2}(\lceil \log_2 n \rceil + 1) \text{ for all instances}$ $\frac{c}{c^*} > \frac{1}{3}(\log_2(n+1) + \frac{4}{3}) \text{ for some large instances}$
 - Guarantees almost nothing (just for theoretical interest.
 Practically, little attraction.)

- 2. MST (Minimum Spanning Tree Algorithm)
 - Construct a min. sp. tree T starting at a random vertex
 - Return the Ham. Cycle H that visits the vertices in the order of a preorder traverse of T
 - [Thm] The ratio bound $\rho(n)$ for MST

$$\rho(n) = 2$$

<Proof>

$$C = cost(H) \le 2cost(T) \le 2C^*$$

3. MM (Minimum Matching Algorithm)

- Find a min. sp. tree T starting at a random vertex
- Let V' be the set of odd-degree vertices in T
- Find a matching of V' which has maximum cardinality and minimum weight, say M
- Add M to T (to get an Eulerian cycle C₁ of T')
- Convert C₁ into a TSP tour C₂ (a Ham. cycle) by using short cuts.

- [Thm] The ratio bound $\rho(n)$ for MM

$$\rho(n) = \frac{3}{2}$$

<Proof>

Note: $cost(T) \le C^*$

 $cost(C_1) = cost(T) + cost(M)$

Claim: $cost(M) \le \frac{1}{2}C^*$

<Proof>

An optimal tour $C_{opt}(\cos t C^*)$ can be changed to a tour C'_{opt} with only vertices in V' by using short cuts.

$$cost(C'_{opt}) \le C^*$$
.

Take alternate edges in C'_{opt} and then we have two matchings of V'.

Then the smaller of the two matchings must have $cost \leq \frac{1}{2} cost(C'_{opt})$.

Since M is the min. weight matching of V',

 $cost(M) \le the smaller matching above$

$$\leq \frac{1}{2} cost(C'_{opt})$$

$$\leq \frac{1}{2} C^*$$

Therefore, $cost(C_2) \le cost(C_1) = cost(T) + cost(M) \le \frac{3}{2}C^*$

OPT-TSP without Triangle Inequality

true even for any ratio bound function $\rho(n)$

 $\rho \geq 1$

Theorem: If P \neq NP, there exists no poly-time approximation algorithm with a constant ratio bound ρ

<Proof>

Show that if there is a poly-time approximation algorithm A with a ratio bound ρ , then we show that the Hamiltonian cycle problem is in P.

Given a HAM instance G=(V,E), we construct an instance of TSP G'=(V,E') as follows:

$$w_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ \rho|V| + 1 & \text{otherwise} \end{cases}$$

An instance α of Hamiltonian cycle

Matching instance β of OPT-TSP

This is a poly-time transformation.

Run the (poly-time) algorithm A on G; if A returns a tour of length $\leq \rho |V|$, then there exists a Ham cycle in G, otherwise, there is no Ham cycle in G.

Thus, if there is such a poly-time approximation for OPT-TSP, HAM can be solved in poly time. Therefore NP=P. ■

✓ We say this type of technique as 'amplification.'

이론적 근사 알고리즘의 실용성은 낮다

OPT-TSP에 대해 ratio bound 1.5가 실용적 의미가 있는가?

TABLE II EXPERIMENTAL RESULTS UNDER THE MIXED FRAMEWORK					
Graph	EA	Best	Ave(%)	σ/\sqrt{n}	Gen(CPU)
lin318	DGLS	42029	42029.00 (0.000)	0.00	791(27)
(42029)	NGLS	42029	42029.00 (0.000)	0.00	388(20)
att532	DGLS	27686	27692.64(0.024)	0.72	3984(86)
(27686)	NGLS	27686	27690.01 (0.014)	0.72	4270(171)
dsj1000	DGLS	18659688	18660177(0.003)	115	5190(1075)
(18659688)	NGLS	18659688	18659894 (0.001)	18	4898(1331)
d2103	DGLS	80450	80471.33 (0.027)	4.45	3008(512)
(80450)	NGLS	80450	80480.51(0.038)	5.32	2520(448)
pcb3038	DGLS	137698	137792.25(0.071)	5.91	18246(830)
(137694)	NGLS	137699	137770.08 (0.055)	5.68	27371(1504)
fnl4461	DGLS	182620	182742.53(0.097)	5.79	69300(2906)
(182566)	NGLS	182602	182694.65 (0.070)	4.36	99740(6421)
rl11849	DGLS	923786	924371.90(0.117)	74.19	95507(18542)
(923288)	NGLS	923656	924072.60 (0.085)	58.64	123614(36631)

이론적 보장은 없지만 genetic algorithm(GA)으로 찾은 OPT-TSP의 솔루션 품질 Optimal solution을 찾거나 평균 0.1% 미만으로 근접한다

Co-NP

Co-NP

Co-NP: set of problems L s.t. $\overline{L} \in NP$ Equivalently, $L \in Co-NP$ if $\overline{L} \in NP$

In the universe(set) of all unweighted undirected graphs

HAM = {graph G: G has a Hamiltonian cycle}

 $\overline{HAM} = \{graph G: G doesn't have a Hamiltonian cycle\}$

 $HAM \in NP$

 $\overline{\text{HAM}} \in \text{Co-NP} \longleftarrow \overline{\overline{\text{HAM}}} = \text{HAM} \in \text{NP}$

Equivalently,

given a certificate of $\overline{\text{HAM}}(=\text{HAM})$ (a Ham cycle of a graph $G \in \text{HAM}$), we can verify that the certificate is <u>not in $\overline{\text{HAM}}$ </u> (in HAM) in poly time.

If NP \neq Co-NP, then P \neq NP

Equivalently, if P = NP, then NP = Co-NP

<Proof>

If P = NP, then NP = P = Co-P = Co-NP. Hence, NP = Co-NP.

Equivalently, if NP \neq Co-NP, then P \neq NP.

Co-P: set of problems L s.t. $\overline{L} \in P$ Obvious that P = Co-P

√ "NP = Co-NP?" is also a million-dollar problem