Complex Analysis

Daniel Mao

Contents

1 The Gamma Function				
	1.1	Definitions	1	
	1.2	Properties	1	
	1.3	Particular Values of the Gamma Function	1	
2	2 Analytic Functions			
	2.1	Holomorphic Functions	3	

ii CONTENTS

Chapter 1

The Gamma Function

1.1 Definitions

Definition (Gamma Function). We define the Gamma Function as

$$\Gamma(z) := \int_0^\infty x^{z-1} e^{-x} dx.$$

if $\Re(z) > 0$.

1.2 Properties

Proposition 1.2.1.

$$(\forall z \in \mathbb{C}, \Re(z) > 0), \Gamma(z+1) = z\Gamma(z).$$

Proposition 1.2.2.

$$(\forall n \in \mathbb{N}), \Gamma(n) = (n-1)!.$$

1.3 Particular Values of the Gamma Function

$$\Gamma(1) = 1$$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

$$\Gamma(2) = 1$$

Chapter 2

Analytic Functions

2.1 Holomorphic Functions

Definition (Holomorphic). Let f be a function from \mathbb{C}^n to \mathbb{C} . We say that f is **holomorphic** if $\forall x \in \text{dom}(f)$, f is complex differentiable in a neighborhood $\mathcal{N}(x)$.