9.2 半群

31. 设(S_1 , $*_1$), (S_2 , $*_2$)和(S_3 , $*_3$)是半群, $f: S_1 \to S_2$ 和 $g: S_2 \to S_3$ 是同态,证明 $g \circ f$ 是从 S_1 到 S_3 的一个同态。

证: $:: f: S_1 \to S_2$ 和 $g: S_2 \to S_3$ 是同态。:: f和 g 都是处处定义的函数,即 $Dom(f)=S_1$ 且 $Dom(g)=S_2$ 。 $:: g \circ f$ 是从 S_1 到 S_3 的函数且处处定义的。另, $\forall a,b \in S_1$, $g \circ f(a*_1b)=g(f(a*_1b))=g(f(a)*_2f(b))=g(f(a))*_3g(f(b))=g \circ f(a)*_3g \circ f(b)$ 。综上, $g \circ f$ 是从 S_1 到 S_3 的一个同态。

35. 设 R^+ 是所有正实数的集合,证明: 由 $f(x) = \ln x$ 所定义的函数 $f: R^+ \to R$ 是半群(R^+ ,×)到半群(R,+)上的一个同构,其中×和+分别 是普通乘法和加法。

证: $f(x) = \ln x$ 的定义域为 R^+ ,f是处处定义的; 设 $f(x_1) = f(x_2)$, $\ln x_1 = \ln x_2$,得 $x_1 = x_2$ 。 ∴ f是单射的; $\forall r \in R$,对应输入 $e^r \in R^+$,有 $\ln(e^r) = r$ 。 ∴ f是满射的; 综上, $f(x) = \ln x$ 是一一对应。 $\forall a, b \in R^+$, $f(a \times b) = \ln(a \times b) = \ln(a) + \ln(b) = f(a) + f(b)$ 综上,函数 $f: R^+ \to R$ 是半群 (R^+, \times) 到半群(R, +)上的一个同构。

9.3 半群的积与商

5. 证明定理 1: 如果(S,*)和(T,*')是半群,那么(S×T,*")是一个半群,其中*"由(s_1 , t_1)*"(s_2 , t_2)=(s_1 * s_2 , t_1 * t_2)定义。

证: $\forall (s_1, t_1), (s_2, t_2), (s_3, t_3) \in S \times T$,有 $s_1, s_2, s_3 \in S$ 和 $t_1, t_2, t_3 \in T$ 。设(S, *)和(T, *)是半群,所以*和*[']均为结合的二元运算:

$$(s_1 * s_2) * s_3 = s_1 * (s_2 * s_3);$$

 $(t_1 * t_2) * t_3 = t_1 * (t_2 * t_3).$

$$\therefore$$
 ((s₁, t₁)*"(s₂, t₂))*"(s₃, t₃)

=
$$(s_1 * s_2, t_1 * t_2) * (s_3, t_3)$$

=
$$((s_1 * s_2) * s_3, (t_1 * t_2) * t_3)$$

=
$$(s_1 * (s_2 * s_3), t_1 * (t_2 * t_3))$$

$$=(s_1, t_1) *'' (s_2 * s_3, t_2 *' t_3)$$

=
$$(s_1, t_1) * "((s_2, t_2) * "(s_3, t_3))$$

18. 证明: 半群上的两个同余关系的交是一个同余关系。

证:设半群上的两个同余关系为R和S,即R和S也是等价关系。由教材P176定理5(c),ROS也是等价关系。

设 $a(R \cap S)b$ 且 $a'(R \cap S)b'$,由 \cap 的定义,得 $\begin{cases} a R b \perp a' R b' \\ a S b \mid a' S b' \end{cases}$;

因为R和S是同余关系,所以 $\{(a*a') R (b*b') \\ (a*a') S (b*b') \\ \oplus$ 的定义,得 $(a*a') (R \cap S) (b*b')$ 。

28. 证明或反证: Z_4 与第 24 题中的半群 S 是同构的。

证:观察半群 S 的运算表(P395)和 Z_4 的运算表(P392),发现二者主对角线上的情况不同。

S表的主对角线全为a,但 Z_4 表的主对角线有[0]和[2]两个不同元素。

S 和 Z_4 之间无法定义相应的一一对应的函数满足同构的要求。所以 S 和 Z_4 不是同构的。

(注: 24 题的半群同构于 P399-表 9.5; Z4 同构于同构于 P399-表 9.7; P403 例 17,表 9.5 与表 9.6-9.8 不是同构的。)

9.4 群

21. 设 G 是一个有限群,单位元是 e。证明: $\forall a \in G$,存在非负整数 n,使得 $a^n = e$ 。

证: 考虑序列e, a^1 , a^2 , ..., 因为G是有限群,所以该序列中并非所有项都不同。设 $i \le j$, 有 $a^i = a^j$ 。由于群上的二元运算是结合的,有 $e^i = (a^{-1})^i a^i = (a^{-1})^i a^j = a^{j-i} = e$. 设 $n=i-j \ge 0$ 。得证。

25. 设 G 是一个群, $H = \{x | x \in G, \forall y \in G, xy = yx\}$ 。证明:H 是 G 的一个子群。

证:

- \forall x ∈ H, x ∈ G. 因此 H ⊆ G。
- 设 G 的单位元为 e, \forall y ∈ G,有ey = ye,所以 e ∈ H。
- $\forall x, y \in H$,根据 H 的定义, $\forall z \in G$,有 $\begin{cases} xz = zx \\ vz = zv \end{cases}$
- $\therefore \forall z \in G$,(xy)z = x(yz) = x(zy) = (xz)y = (zx)y = z(xy)且 $xy \in G$ 所以 $xy \in H$ 。

 $-\forall x \in H, x^{-1} \in G \ \underline{L} \ x \cdot x^{-1} = x^{-1} \cdot x = e$ 。由 H 定义知: $\forall y \in G$,则 $x^{-1} \cdot y = x^{-1} \cdot y \cdot x \cdot x^{-1} = x^{-1} \cdot (y \cdot x) \cdot x^{-1} = x^{-1} \cdot (x \cdot y) \cdot x^{-1} = x^{-1} \cdot x \cdot y \cdot x^{-1} = y \cdot x^{-1}$ 。所以 $x^{-1} \in H$ 。 综上,H 为 G 的子群。

27. 设 A_n 是 S_n 中所有偶置换的集合,证明: A_n 是 S_n 的一个子群。

证: S_n 是 n 个字母上的对称群(P401 例 7 有定义)。其中每个元素是这 n 个字母上的一个置换,其单位元是恒等置换 I,二元运算为关系的合成。置换有两类: 奇置换、偶置换,I 为偶置换。

- A_n 是 S_n 中所有偶置换的集合,所以 I∈ A_n ;
- 任意偶置换的合成仍然是偶置换;
- 任意偶置换的逆仍然是偶置换;

所以, A_n 是 S_n 的一个子群。

31. 证明: 函数 f(x)=|x|是从非零实数群 G到正实数群 G的一个同态,其中群 G和G中的运算是乘法。

证: f(x)是处处定义的。

 $\forall x, y \in G$, $f(x \times y) = |x \times y| = |x| \times |y| = f(x) \times f(y)$.

所以f(x): $G \to G'$ 是同态。

9.5 群的积与商

22. 设N是群G的一个子群, $a \in G$,定义

 $a^{-1}Na = \{a^{-1}na | n \in N\},$

证明: $N \neq G$ 的一个正规子群当且仅当 $\forall a \in G$, $a^{-1}Na = N$ 。

证: $N \not\in G$ 的一个正规子群 *iff* $\forall a \in G$, aN = Na *iff* $\forall a \in G$, $Na \subseteq aN^{\oplus}$ 目 $aN \subseteq Na^{\oplus}$:

- ① $\forall a \in G, \ Na \subseteq aN \ iff \ \forall a \in G, \ \forall n \in N, \ \exists n' \in N, \ na = an' \ iff \ \forall a \in G, \ \forall n \in N, \ n' = a^{-1}na \in N \ iff \ \forall a \in G, \ \forall n' \in a^{-1}Na(由 a^{-1}Na定义), \ n' \in N \ iff \ \forall a \in G, \ a^{-1}Na \subseteq N;$
- ② $\forall a \in G$, $aN \subseteq Na$ iff $\forall a \in G$, $\forall n \in N$, $\exists n' \in N$, an = n'a iff $\forall a \in G$, $\forall n \in N$, $\exists n' \in N$, $n = a^{-1}n'a \in a^{-1}Na$ iff $\forall a \in G$, $N \subseteq a^{-1}Na$;
- ∴ $\forall a \in G$, $Na \subseteq aN \coprod aN \subseteq Na$ iff $\forall a \in G$, $a^{-1}Na \subseteq N \coprod N \subseteq a^{-1}Na$ iff $\forall a \in G$, $a^{-1}Na = N$.

得证。

32. 设 G 是一个阿贝尔群,N 是 G 的一个子群,证明:G/N 是一个阿贝尔群。

证: :G 为阿贝尔群且 N 为 G 的子群。 : $\forall a \in G, \forall n \in N, an = na$ 。 所以 $\forall a \in G, aN = Na$ 。 N 为 G 的正规子群。

由定理 4,可根据 N 定义 G 上的同余关系 R, N=[e] (e 为 G 的单位元),得商群 G/R。

声明

上述证明资料仅供本班(中山大学人工智能学院)学生参考,切勿传播。

这些证明尽量使用教材中出现的知识点和方法。不一定是唯一的证明过程。

这些证明中难以避免存在不足和纰漏,请同学们辨证地看待这些资料,欢迎指正错误和交流心得。

对本资料的不正当获取或错误使用所造成的任何后果,均与本课题组无关。

常晓斌,陈梓潼 2022/10/15