Marking Scheme

Class- X, Session- 2021-22

TERM II

Subject- Mathematics (Standard)

	SECTION A					
Q.No	HINTS/SOLUTION	MARKS				
1	$a = 6, d = 3$; $a_{25} = 6 + 24(3) = 78$ $a_{15} = 6 + 14(3) = 48$; $a_{25} - a_{15} = 78 - 48 = 30$ OR	1 1				
	7(a+6d) = 5(a+4d)	1				
	$\Rightarrow 2a + 22d = 0 \Rightarrow a + 11d = 0 \Rightarrow t_{12} = 0$	1				
2	$5mx^2 - 6mx + 9 = 0$					
	$b^2 - 4ac = 0 \Rightarrow (-6m)^2 - 4(5m)(9) = 0$	1				
	$\Rightarrow 36m(m - 5) = 0$					
	\Rightarrow m = 0, 5; rejecting m=0, we get m = 5	1				
	P 2r O					
	$let \angle APO = \theta$					
	$Sin\theta = \frac{OA}{OP} = \frac{1}{2} \Rightarrow \theta = 30^{\circ}$	1/2				
	$\Rightarrow \angle APB = 2\theta = 60^{\circ}$	1/2				
	Also $\angle PAB = \angle PBA = 60^{\circ} (: PA = PB)$	1/2				
	$\Rightarrow \triangle$ APB is equilateral					
4	CSA (cone) = $\pi r l = 12320$	1/2				
	$\frac{22}{7} \times 56 \times l = 12320$					
	l = 70 cm	1				
	$h = \sqrt{70^2 - 56^2} = 42 \text{ cm}$	1/2				

5	Modal class is $40-60$, $l=40$, $h=20$, $f_1=?$, $f_0=10$, $f_2=6$								
	$45 = 40 + 20 \times \left[\frac{f_1 - 10}{2f_1 - 10 - 6} \right]$							1/2	
	$\Rightarrow \frac{1}{4} = \frac{f_1 - 10}{2f_1 - 16}$								
	$\Rightarrow 2f_1 - 16 = 4f_1 - 4$	$t_0 \Rightarrow f_1 =$	= 12					1	
6	Let the present age of								
	$(x-5)^2 = 5x + 11$							1	
	$x^2 - 15x + 14 = 0\%$								
	(x-14)(x-1)=0	$\Rightarrow x = 1$	or 14					1/2	
	x = 14 years (rejecting	x = 1 as i	n that case	e Ritu's age	5 years ag	o will be –	ve)	1/2	
	, , ,)R	, 3		,		
		2) 0		/1X					
	$9x^2 - 6px + (p^2 - q)$	-	2						
	$a = 9, \qquad b = -6p,$							1/2	
	$D = b^2 - 4ac = (-6$							1/2	
	$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{6p \pm 6q}{18} = \frac{p+q}{3} \text{ or } \frac{p-q}{3}$								
	24 1	8 3	-	ION B					
7	Distance (in m)	0 - 1	1-2	2 2	- 3	3 - 4	4 - 5		
	Number of Students	40	80	6	52	38	30		
	cf	40	120	18	32	220	250		
	$\frac{n}{2} = \frac{250}{2} = 125 \implies median \ class \ is \ 2 - 3, l = 2, h = 1, cf = 120, f = 62$								
	$median = l + \frac{\frac{n}{2} - cf}{f} \times i$								
	$=2+\frac{5}{62}$								
	$=\frac{129}{62}=2\frac{5}{62}m \ or \ 2.08m$								
	50% of students jumped below $2\frac{5}{62}$ m and 50% above it.								
8	Draw a circle of radius 4cm								
	Draw OA and construct $\angle AOB = 120^{0}$								
	$Draw \angle OAP = \angle OBP$	$=90^{0}$							
	PA and PB are required tangents								
9	Runs Scored	0 - 40	40 - 80	80 - 120	120 - 160	160 - 200	TOTAL		
	Number of Batsmen (f_i)	12	20	35	30	23	120		

		x_i	20	60	100	140	180		
		$f_i x_i$	240	1200	3500	4200	4140	13280	$1\frac{1}{2}$
	mean $(\bar{x}) = \frac{\sum f_i x_i}{\sum f_i} = \frac{13280}{120} = 110.67 \text{ runs}$								$1\frac{1}{2}$
10	P				R				
	У				x				
	Q ·	30°	20m	6	o° s				1
	In $\triangle PQS$, $tan60^0 = \frac{y}{20} \Rightarrow y = 20\sqrt{3}$ m								1/2
	In $\triangle RSQ$, $tan 30^0 = \frac{x}{20} \Rightarrow x = \frac{20}{\sqrt{3}}m$							1/2	
	$y - x = 20\sqrt{3} - \frac{20}{\sqrt{3}} = \frac{40}{\sqrt{3}} = \frac{40\sqrt{3}}{3} = 23.06m$								1
	OR								
						P			
	1.	7 m B		50m		Q R			1
	Let PR be the building and AB be the boy								
	In I	ΔPQR , $tan 60^0$ =	$= \frac{PQ}{50} \Rightarrow PQ$	$=50\sqrt{3}m$					1
	Height of the building = $PR = (50\sqrt{3} + 1.7)m = 88.2m$								1
11	SECTION C Volume of shell = Volume of cylinder								
		$\frac{4\pi}{3}[5^3 - 3^3] =$							$1\frac{1}{2}$
		$h = \frac{8}{3} = 2\frac{2}{3}cm$							1

		T.			
	TSA of cylinder is $= 2\pi r(r+h) = 2 \times \frac{22}{7} \times 7 \times \left(7 + \frac{8}{3}\right) = 44 \times \frac{29}{3} = \frac{1276}{3} cm^2 \text{ or } 425.33 cm^2$	$1\frac{1}{2}$			
12	P O B	1			
	$\angle OAP + \angle OBP + \angle APB + \angle AOB = 360^{\circ}$ $\Rightarrow 90^{\circ} + 90^{\circ} + \angle APB + \angle AOB = 360^{\circ} \ (\because Tangent \ \bot radius)$ $\Rightarrow \angle APB + \angle AOB = 180^{\circ}$	$1\frac{1}{2}$ $1\frac{1}{2}$			
	T				
	Let $\angle PTQ = \theta$ TPQ is an isosceles triangle. $\angle TPQ = \angle TQP = \frac{1}{2}(180^o - \theta) = 90^\circ - \frac{\theta}{2}$ $\angle OPT = 90^o$				
	$\angle OPQ = \angle OPT - \angle TPQ = 90^{o} - \left(90^{o} - \frac{\theta}{2}\right) = \frac{\theta}{2}$ $\angle OPQ = \frac{1}{2} \angle PTQ$ $2\angle OPQ = \angle PTQ$	$1\frac{1}{2}$ 1			
13	<u>Case Study-1</u> <u>i)</u> T				
	240m R	1			
	In $\triangle PTR$, $\tan 30^\circ = \frac{240}{x} \Rightarrow x = 240\sqrt{3} m$	1			

	ii) Distance of boat from tower= $240\sqrt{3}-240\left(\sqrt{3}-1\right)=240m$ Let the angle of depression = θ $tan\theta=\frac{240}{240}=1 \Rightarrow \theta=45^o$	1
14	i) 3000, 3005, 3010,,3900.	1
	$a_n = a + (n-1)d$	
	3900 = 3000 + (n - 1)5	
	$\Rightarrow 900 = 5n - 5 \Rightarrow 5n = 905 \Rightarrow n = 181$	1
	Minimum number of days of practice = $n-1=180 \ days$	
	n	
	$S_n = \frac{n}{2}(a+l)$	1
	$=\frac{181}{2} \times (3000 + 3900) = 624450$ pushups	1
	<u> </u>	_