

UC Berkeley Space Technologies and Rocketry Flight Readiness Review Presentation

Airframe Macros

Simulated Macros:

Apogee: 5507 ft Max. Vel: Mach 0.54 Max Accel: 8.75 g

Stability: 2.37 Length: 9.42 ft Weight (wet): 27.31 lb.

Airframe Design

- Weights (Wet Total: 27.31 lbs. Dry Total: 22.38 lbs.)
 - Electrical 2 lbs. (allocated) Nose Cone
 - Payload 6 lbs. (allocated) Payload Tube
 - Recovery -
 - Recovery Tube
 - 0.811 lbs. Main Parachute
 - 0.134 lbs. Drogue Parachute
 - 0.623 lbs. Shock Cord
 - + ~ 1/3 lb. misc
 - Booster +
 - 2 lbs Avionics
 - Propulsion 4.9 lbs. (Wet only) Booster Section
 - Airframe Rest of the weight, throughout the launch vehicle

Airframe Design

- Lengths (Total: 9.42 ft)
 - Nose Cone 24 in. (4:1 Length:Diameter)
 - Payload/Electronics can use
 - Payload Tube 18 in.
 - Payload Transition Coupler 3 in.
 - Transition 8 in.
 - 6 4 in. change.
 - Transition Recovery coupler 4 in.
 - Recovery Tube 26 in.
 - Recovery Av Bay Coupler 15 in. (Runs through the entire Av Bay tube)
 - Av Bay Tube 7 in.
 - Booster 26 in.
 - Boat Tail 4.7 in.

Airframe Renders

Airframe Renders

Airframe Test Plans

- The only non-flight proven components of the rocket were the transition piece and boattail
- Crash landing from Feb 3rd test flight serves to verify robustness of both parts in place of the previously designed formal test

Airframe Integration

- Integration issues from Feb. 3 test flight
 - Non blue tube coupler fits were too tight:
 - The nose cone shoulder and transition couplers were sanded
 - Launch Standoffs and their tubes had to be aligned:
 - Alignment was done with a spare piece of 1515 rail prior to launch
 - Ejection's scissor lift centering ring was not level:
 - A spacer was laser cut and epoxied to correct the error
 - Ejection's payload posts were not long enough to keep the scissor lift stable:
 - They were redesigned and will be integrated into the Arktos rebuild

Airframe Manufacturing

- Transition Piece
 - 3D Printed with PETG
 - Reinforced with fiberglass
 - 8 strips of 1.5" width and 15" long
 - Layup with West System Epoxy
- Boat Tail
 - 3D Printed with PETG
 - No fiberglass reinforcement needed
 - Non structural component
 - Low thermal exposure

Airframe Simulation

- Software
 - ANSYS Fluent
 - OpenRocket
- Goals
 - Accurately simulate pressure and drag on rocket components
 - Use data to predict flights
 - Optimize rocket cost and design by simulating parts before manufacture
- The simulation pictured here was a test of pressure and drag across our tangent ogive nose cone.

Airframe Simulation

- Goals that we have accomplished
 - Apogee prediction
 - Drag prediction
 - Stress Analysis
- The simulations pictured here are our comparison of OpenRocket and Fluent's drag analyses. We used OpenRocket to get drag vs time and Fluent to get a graph of drag at specific vertical velocities. By comparing data across multiple simulations, we hope to get a better understanding of our rocket's aerodynamics.

Motor Choice

- Final motor choice
 - Cesaroni L730
 - ~6 avg thrust to weight ratio

Flight Curve

Avionics Bay and Deployment System

Recovery Specs

Parachute Sizes

Drogue Chute: 12" Elliptical parachute from Fruity Chutes; the red and white one

Main Chute: 72" Toroidal parachute from Fruity Chutes; the orange and black one

Kinetic Energy Estimates

After Drogue:

Nosecone - 733ft-lbs

Booster - 700ft-lbs

After Main:

Nosecone - 54.51ft-lbs

Booster - 52.01ft-lbs

Recovery Specs

Velocity Estimates

At drogue deployment: Oft/s

At main deployment: 130.27ft/s

Terminal after main: 17.76ft/s

Deployment System

Dual Side Dual Deployment

Black Powder

Recovery Sled Design

Design focus on accessibility and compactness
Went through several iterations
Altimeters and batteries mounted on either side
Houses 2 PerfectFlite Stratologger CFs & 2 9V batteries
Sled slot fits into pre-cut rails in bulkhead
Made of 3D printed plastic

Airframe Integration

Recovery Deployment

No longer using single side dual deployment
Opted for dual side, dual deployment due to space issues
Black Powder Ejection Charges w/ e-matches
Redundancy

Recovery Drift Calculations

Current descent time: 117s

Wind Speed (mph)	Drift (ft)
5	609
10	1217
15	1826
20	2435

Recovery Tests

- Static Load Test
- Ground Deployment Test
- Electronics Test
 - To verify Handbook Req. 2.10

- After vehicle lands, airframe is separated by a radio-triggered gas expansion deployment system (black powder)
- Rover is pushed out of airframe by a scissor-lift ejection system
- Rover detects ejection and drives away from airframe
 - Distance verification using encoders + inertial measurement unit (accelerometer + gyroscope) data

- Deployment
 - Black powder separation system
- Ejection
 - Scissor lift shove-out
- Movement
 - Rectangular two-wheeled rover capable of obstacle avoidance and traversing rough terrain
- Solar
 - Deployment system and panel functionality verification

• 1. Ejection computer receives remote signal to begin payload process 7) Rover **Ejection** Deployment (

• 5. Ejection computer detects disconnection of breakaway wires and initiates rover ejection 7) Rover **Ejection** Deployment

6. Rover detects successful ejection by monitoring a switch, accelerometer, and gyroscope 7) Rover **Ejection** Deployment (

Payload - Deployment Overview

- Black powder ejection system
 - 6g Powder Charges
- Nomex Shielding for heat protection
- Elect. Bay separate from Ignition Chamber with electronics mounted to sled
- Breakaway wire connector from ejection electronics
- Weight estimate:
 - Currently ~1.4 lb

Payload - Deployment Board

Payload - Deployment Integration

- Centering ring glued into transition section
- Permanent bulkhead bolted to centering ring
- Electronics sled mounted to aft end of permanent bulkhead without interference with recovery bulkhead
- Black powder charge secured into position on fore end of permanent bulkhead
- Nomex shielding and loose bulkhead placed into position
- Within assembled airframe, loose bulkhead coincident with posts
- Three shear pins connecting transition and payload tubing

Payload – Deployment Tests

Detonation Test - Completed: Success

Remote Radio Trigger Test - Completed: Success

Separation Distance Test - Completed: Success

Rover Shield Test - Completed: Success

Payload – Ejection Overview

- Horizontal scissor lift used to eject rover out of the payload section and onto the ground.
- Electrical components are mounted on a sled attached to nose cone side of scissor lift.
- Compressed length: 6 inches
- Extended length: 19.5 inches
 - Scissor lift extends the length of the rover plus a 3.5 in. margin of safety.
- Weight estimate:
 - Currently ~1.6 lb

Payload – Ejection Board

Payload - Ejection Integration

Centering ring glued into nose cone

Electronics sled mounts on fore end of bottom plate

Bottom plate screws into centering rings

- Top plate oriented with respect to the posts
 - Ensured during installation of posts
- Breakaway wire runs along length of payload section, connecting ejection and deployment electronics

Payload - Ejection Tests

Frame Load-bearing Capacity: Incomplete due to loss of primary frame

Lift Actuation Force: Complete - Success

Linkage Lateral Flex: Complete - Success

Linkage Vertical Flex: Complete - Success

Lift Range of Motion: Complete - Success

Payload – Rover Overview

Chassis Dimensions: 8.5" x 3.75" x 2.0"

Rectangular frame with polycarbonate surfaces, PLA sidewall, and polycarbonate side plate supports.

- Solid toothed cross-linked polyethylene wheels.
 - Lightweight, deformable
 - Uniform material, Solid hub / soft treads
- Twin polycarbonate skids.
 - Stabilizing skids hold rover body in place
 - Simple design that takes mechanical load off of servos

Payload – Rover Electronics Overview

- 4S LiPo Battery
- Microprocessor for custom code
- Tactile touch switch on wheel
- Accelerometer, gyroscope, ultrasonic sensors, and motor encoders
- Two motors with ESCs
- Two servos for skid deployment
- One servo for solar deployment
- Potentiometer and ADC for verification of solar deployment

Payload – Rover Overview

- Motor Controller (x2)
- Rover Computer
- Servos (x2)
- Ultrasonic Sensors (x2)
- Motor (x2)

Payload – Rover Computer V2

Payload – Rover Computer V2

- Upgraded to ATMega 644p to accommodate larger and more complex rover program.
- Optimized IO layout.
- Custom designed board offers superior customizability.
- Board manages all rover components

Payload – Rover Computer V2

- Manufacturing Testing: Completed -Success
- Electronics Resilience Test:
 Completed Success
- Terrain Test: Incomplete
- Hill Climb Test: Incomplete
- Rover Actuation Test: Incomplete
- Distance Measurement Test: Incomplete
- Obstacle Avoidance Test: Incomplete

Payload – Solar Overview

- 2" x 1" solar cells chained together on two panels
 - 5V, 30mA, 0.15W each
- One panel mounted above rover electronics
- Second panel mounted on hood of rover body
- Hood attached to body with hinge
- Hinge actuated with servo whose fins are attached to rod to rotate hood
- Potentiometer shaft attached to hinge to verify deployment position
- Voltage output of solar panels passed to rover computer

Payload – Solar Tests

Solar Cell Integration: Completed - Success

Servo Integration: Completed - Success

Panel Deployment: Incomplete

Payload – Electronics Tests

Radio Link Test: Completed - Success

Electronics Bench Test (deployment and ejection):
 Completed - Success

Airframe Integration Test: Completed - Success

Black Powder Test (deployment and ejection):
 Completed - Success

Payload Electrical – Ground Station

- 434MHz Radio, 500mW
- Antenna
 - 434MHz Yagi
 - 7 element
 - Handheld
- Communicates with Ejection Board
 - 434MHz Radio
 - Half-wave dipole antenna for remote signal reception
 - Sensor data + remote initiation of payload sequence

Safety

- Safety improvements:
 - Last launch: recovery failure and inadvertent payload deployment
 - Improvements to design & procedures:
 - Updating recovery system to a standard dual-deploy system
 - Increasing number of shear pins connecting transition to payload tube
 - Considering nylon tether system
 - Updated procedure is to disarm payload if no ejection signal is received
- All members will have PPE and access to checklists at launch

Outreach

- Completed Events:
 - Ohlone College Night of Science (Oct 7, 2017)
 - Parent Education Program (Oct 14, 2017)
 - High School Engineering Program (Oct 21, 2017)
 - Discovery Days, CSU East Bay (Oct 28, 2017)
 - Discovery Days, AT&T Park (November 11, 2017)
 - High School Engineering Program (Feb 11, 2017)
 - Splash! at Berkeley (March 4th, 2018)
- Current Outreach Numbers:
 - 1826 direct interactions with students
 - 1289 indirect interactions with community members (not including students above)
- Planned Events:
 - Currently have 9 outreach events planned this semester

Project Plan

Project Plan – Requirements Verification – Vehicle (Incomplete)

- The vehicle must be flown in its fully ballasted configuration during the full-scale test flight. Fully ballasted refers to the same amount of ballast that will be flown during the launch day flight. Additional ballast may not be added without a re-flight of the fullscale launch vehicle.
- All teams will successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on launch day.
- After successfully completing the full-scale demonstration flight, the launch vehicle or any of its components will not be modified without the concurrence of the NASA Range Safety Officer
- All other Launch Vehicle requirements complete

Project Plan – Requirements Verification – Recovery (Ongoing)

- Each team must perform a successful ground ejection test for both the drogue and main parachutes. This must be done prior to the initial subscale and full-scale launches.
- At landing, each independent sections of the launch vehicle will have a maximum kinetic energy of 75 ft-lbf.
- The electronic tracking device will be fully functional during the official flight on launch day
- The recovery system electronics will be shielded from any other onboard devices which may adversely affect the proper operation of the recovery system electronics.

Project Plan – Requirements Verification – Vehicle (Incomplete)

All requirements are either complete or ongoing

Project Plan - Requirements Verification - Payload

- Complete:
- Each team will choose one design experiment from the list in section 4.3 of the handbook
- Ongoing:
- Teams will construct a custom rover that will deploy from the internal structure of the launch vehicle
- Incomplete:
- At landing, the team will remotely activate a trigger to deploy the rover from the rocket
- After deployment, the rover will autonomously move at least 5ft from the launch vehicle
- Once the rover has reached its final destination, it will deploy a set of foldable solar cell panels

Project Plan – Requirements Verification – Safety

- Complete:
- Each team must identify a student safety officer who will be responsible for all respective responsibilities listed in section 5.3 of the handbook
- Ongoing:
- During test flights, teams will abide by the rules and and guidance of the local rocketry club's RSO (NAR)
- Teams will abide by all rules set forth by the FAA
- Each team will use a launch safety checklist. The final checklists will be included in the FRR reports and used during the Launch Readiness Review (LRR) and any launch day operations

