

Data Analytics on the 2011 UK Census

Intelligent Data and Text Analytics

Coursework 1

Student Number: 2089114

Course: MSc Data Analytics

Year: 2024

Word count: 2,994

Table of Contents

Demographic Information	3
Basic Statistics for Categorical Variable	3
Basic Statistics for Numerical Variable	6
Visualisations	6
Classification	9
Classification with Naïve Bayes	9
Classification with K-Nearest Neighbour	9
Classification with Logistic Regression	9
Additional Metric Analysis	10
Regression	11
Association Rule Mining.	12
Rule 1	12
Rule 2	12
Rule 3	12
Rule 4	13
Rule 5	13
Rule 6	13
Rule 7	14
Rule 8	14
Clustering	14
K-Means Clustering	14
Hierarchical Clustering	16
Key Interpretations and Comparison	18
Deferences	20

This report will analyse the 2011 UK Census, a nationwide survey carried out across the United Kingdom to collect data about members of the population and their characteristics. This census provides rich comprehensive data about the population. Data analysis will be performed on this census on various levels, through means of classification, regression, association rule mining and clustering. To become familiarised with the data, see Table 1.

Demographic Information

Table 1.Basic statistics for categorical data

Variable	Mode	Frequency		Percentage	
Region	South-East	South-East	88084	South-East	15.460385
· ·		London	83582	London	14.670200
		North-West	71436	North-West	12.538351
		East of England	59411	East of England	10.427739
		West Midlands	56875	West Midlands	9.982624
		South-West	53774	South-West	9.438340
		Yorkshire and the	53471	Yorkshire and the	9.385158
		Humber		Humber	
		East Midlands	45782	East Midlands	8.035595
		Wales	30976	Wales	5.436866
		North-East	26349	North-East	4.624741
Residence Type	Resident in a	Resident in a	559086	Resident in a	98.130024
31	communal	communal		communal	
	establishment	establishment		establishment	
		Not a resident in a	10654	Not a resident in a	1.869976
		communal		communal	
		establishment		establishment	
Sex	Female	Female	289172	Female	50.755081
		Male	280568	Male	49.244919
Student	No	No	443203	No	77.790396
		Yes	126537	Yes	22.209604
Country of Birth	UK	UK	485645	UK	85.239758
J		Non-UK	77291	Non-UK	13.566013
		No code required	6804	No code required	1.194229
Religion	Christian	Christian	333481	Christian	58.532137
C		No religion	141658	No religion	24.863622
		Not stated	40613	Not stated	7.128339
		Muslim	27240	Muslim	4.781128
		Hindu	8213	Hindu	1.441535
		No code required	6804	No code required	1.194229
		Sikh	4215	Sikh	0.739811
		Jewish	2572	Jewish	0.451434
		Buddhist	2538	Buddhist	0.445466
		Other religion	2406	Other religion	0.422298
Family	Married/Equivalent	Married/equivalent	300961	Married/	52.824271
Composition		Not in a family	96690	equivalent	
-		Cohabiting	72641	Not in a family	16.970899
		Lone Parent Family	64519	Cohabiting	12.749851
		(female head)		Lone Parent Family	11.324288
		No code required	18851	(female head)	
		Lone Parent Family	9848	No code required	3.308702
		(male head)		Lone Parent Family	1.728508
		Other related family	6230	(male head)	
				Other related family	1.093481
Population Base	Usual Resident	Usual Resident	431868	Usual Resident	98.091403

		C4 1::	(720	C4 14 1::	1 529704
		Student living away	6730	Student living away	1.528604
		from home during		from home during	
		term-time	1.670	term-time	0.270002
	0.15	Short-term resident	1673	Short-term resident	0.379993
Age	0-15	0-15	106832	0-15	18.751009
		35-44	78641	35-44	13.802963
		45-54	77388	45-54	13.583038
		25-34	75948	25-34	13.330291
		16-24	72785	16-24	12.775125
		55-64	65665	55-64	11.525433
		65-74	48777	65-74	8.561274
		75+	43704	75+	7.670867
Marital Status	Single	Single	221084	Single	50.215435
		Married	151210	Married	34.344756
		Widowed	30430	Widowed	6.911652
		Divorced	29285	Divorced	6.651585
		Separated but	8262	Separated but legally	1.876571
		legally married		married	
Health	Very good health	Very good health	198777	Very good health	45.148783
		Good health	140516	Good health	31.915797
		Fair health	64163	Fair health	14.573524
		Bad health	23137	Bad health	5.255172
		Very bad health	6874	Very bad health	1.561311
		No code required	6804	No code required	1.545412
Economic	No code required	No code required	112618	No code required	25.579246
Activity		Employee	109049	Employee	24.768608
		Retired	97480	Retired	22.140909
		Student	24756	Student	5.622900
		Self-employed	19538	Self-employed	4.437721
		Unemployed	18109	Unemployed	4.113148
		Long-term	17991	Long-term	4.086347
		sick/disabled		sick/disabled	
		Looking after	17945	Looking after	4.075899
		home/family		home/family	
		Full-time student	12717	Full-time student	2.888448
		Other	10068	Other	2.286773
Occupation	No code required	No code required	149984	No code required	34.066291
•	•	Elementary	48140	Elementary	10.934175
		Administrative/Secr	40886	Administrative/Secret	9.286553
		etarial		arial	
		Professional	37790	Professional	8.583350
		Sales and Customer	32291	Sales and Customer	7.334346
		service		service	
		Skill Trades	31190	Skill Trades	7.084273
		Caring, Leisure	28919	Caring, Leisure and	6.568454
		and Other Service		Other Service	
		Associate	26039	Associate	5.914312
		Professional and		Professional and	
		Technical		Technical	
		Process, Plant,	23599	Process, Plant,	5.360108
		Machine Operatives		Machine Operatives	
		Managers/Directors/	21433	Managers/Directors/S	4.868138
		Senior Officials		enior Officials	
Industry	No code required	No code required	149984	No code required	34.066291
 J	1	Wholesale and retail	51473	Wholesale and retail	11.691208
		trade		trade	22.57.200
		Mining	37759	Mining	8.576309
		Human health +	35658	Human health +	8.099103
		social work	22320	social work	0.077103
		Real estate	32146	Real estate	7.301412
		Education	29555	Education	6.712911
		Transport + storage	21381	Transport + storage	4.856327
		Accommodation and	20184	Accommodation and	4.584449
		food service	2010 1	food service	7.207777
		Construction	18800	Construction	4.270097
	L	Construction	10000	Construction	7.210071

		Public	16347	Public administration	3.712940
		administration	10317	Other service	3.345212
		Other service	14728	activities	0.0.0212
		activities	11,720	Financial and	2.232489
		Financial and	9829	insurance	
		insurance		Agriculture/forestry/f	0.551251
		Agriculture/forestry/	2427	ishing	***************************************
		fishing		8	
Hours Worked	No code required	No code required	302321	No code required	68.667026
Per Week	Î	31-48 hours (full	60041	31-48 hours (full	13.637282
		time)		time)	
		16-30 hours (part	52133	16-30 hours (part	11.841116
		time)		time)	
		<=15 hours (part	25776	<=15 hours (part	5.854576
		time)		time)	
Approximated	No code required	No code required	122855	No code required	27.904404
Social Grade		C1	116234	C1	26.400558
		DE	104003	DE	23.622496
		C2	51281	C2	11.647599
		AB	45898	AB	10.424943

The key insights into this reveal the following, majority of the sample:

- Reside in South-East of the UK, while the North-East is the least represented.
- Live in communal establishments (hospitals, care homes. Prisons, defence bases, boarding schools and student's halls of residence).
- Are females (only slightly more than males)
- Are 0-15 years of age (other age groups are evenly distributed)
- Not students
- Of Christian faith
- Most of the sample are born in the UK ('No code required' here may refer to individuals in communal establishments where information such as country of birth was not recorded, or simply missing data)
- In a married/equivalent family composition.
- Primarily usual residents
- Single or married
- Very good/good health
- Economic activity is distributed similarly across 'No code required,' 'Employee,' and 'Retired,' ('No code required' in this context may refer to those with no jobs or source of income, such as full-time students, retirees or volunteering/unpaid work)
- Reported 'No code required' for their occupation possibly unemployed/students/children/dependent individuals or missing data.
- Reported 'No code required,' for industry information possibly unemployed individuals/retirees/students or simply missing data
- Reported 'No code required' for the 'Hours-worked-per-week' variable possibly due to people not in the working force or missing data.
- Approximated Social Grade responses were distributed somewhat evenly across 'No code required,' C1 and DE, referring to lower-middle to working class population.

Table 2.

Basic statistics for numerical variable

	Mean	Standard Deviatio n	Minimu m Value	Lower Quartile (25%)	Middle Quartile (50%)	Upper Quartile (75%)	Maximu m value
Number of Hours	35.23	13.52	1.00	27.00	37.00	45.00	60.00

To visualise this, see Figure 1.

Figure 1:

Boxplot demonstrating the number of hours worked by respondents

Axes: >

As expressed in Table 2, on average, respondents worked approximately 35 hours a week. A minimum value of 1 implies little working hours, likely due to part-time or volunteering roles. 25% of the respondents work 27 hours or less, 50% work at least 37 hours a week, 75% work 45 hours or less. Maximum value of 60 hours indicates some are working substantial longer hours than the average, likely a full-time position. A large range of 59, suggests the census includes individuals working various hours.

Figure 2:

Contingency table

Occupation	Female	Male
Administrative and Secretarial	42636	10618
Associate Professional and Technical	18999	25938
Caring, Leisure and Other Service	30872	6425
Elementary	30731	27752
Managers/Directors/Senior Officials	14473	25315
No code required	76619	73365
Process, Plant and Machine Operatives	7103	27714
Professional	33431	30680
Sales and Customer Service	26853	11670

Figure 2 reveals the occupation of caring, leisure and other services is dominated by female workers. Similarly, in administrative/secretarial roles, as well as sales and customer service with greater female workers. Some occupations are largely male dominated, specifically roles in Managers/Directors/Senior Officials, Process, Plant and Machine Operative roles and jobs in Skill Trades.

A chi-square test of independence yielded a p-value of 0.0, suggesting a strong significant relationship between Occupation and Sex.

Given these findings, it raised the question if males tend to work longer hours than females, see Figure 3:

Figure 3.Average no of hours by sex

On average, males tend to work greater hours than females, error bars for females are larger than errors bars for males, showing there is more variability in hours worked for females than for males. This suggests females may typically be more involved in jobs requiring less strict shift hours, such as part-time and flexible jobs.

Figure 4:

Bar chart representing average weekly hours worked against social grades (AB = Higher & intermediate managerial, administrative, professional occupations, <math>C1 = Supervisory, clerical & junior managerial, administrative, professional occupations, C2 = Skilled manual occupations, DE = Semi-skilled & unskilled manual occupations, Unemployed and lowest grade occupations)

Majority of the sample belong to AB and C2 social grades, dedicating around 40 hours of work per week. C1 has a slightly lower average than C2, while 'No code required' and DE have the lowest average hours worked per week. The error bars in C1 and DE are slightly larger than that of AB and C2, suggesting a wider range of work hours within C1 and DE, whilst more demanding jobs in AB and C2 appear to have less variability, suggesting more consistency in hours worked in this social grade.

Figure 5:

Ages 25-64 have the most consistent work patterns distributing consistently around 30-40 hours a week. The median, which typically lies between 30-40 hours emphasises this. There is more variability among groups such as 16-24, 65-74 and 75+, suggesting more diverse lifestyles, with some working very few or many hours, including retired individuals, students and people working part-time.

Classification

Classification was performed on the "Approximate Social Grade" variable, consisting of 5 categories, see Table 1. Naïve Bayes, K-Nearest Neighbour (KNN) and Logistic Regression classified the "Approximate Social Grade" variable and can be interpreted by its precision, recall and F1-score.

Table 3.

Classification with Naïve Bayes on Approximate Social Grade

	Precision	Recall	F1_score
C1	0.30	0.05	0.09
C2	0.31	0.21	0.25
DE	0.24	0.05	0.08
No code	0.29	0.96	0.45
required			
AB	1.00	0.19	0.32

C1 and DE both have low precision, recall and F1 scores, suggesting the Naïve Bayes struggles classifying these groups. C2 shows stronger recall and F1, indicating better classification. Classification in the 'No code required' group revealed a high recall and F1-score, suggesting more accurate classifications to this group, but a low precision suggests there are possible false positives. Although there is a perfect precision score for AB, it's lower recall suggests misclassifications for individuals in this group.

Table 4Classification with KNN on Approximate Social Grade

	Precision	Recall	F1_score
C1	0.43	0.60	0.50
C2	0.61	0.65	0.63
DE	0.46	0.37	0.41
No code	0.55	0.46	0.50
required			
AB	0.97	0.92	0.94

KNN performs exceptionally well in accurately classifying individuals to the AB group with high F1-Score, precision and recall. Accurate classification to C2 group is moderate with reasonable precision and recall, whereas classifying people to C1 and 'No code required' show difficulty in correct classifications with lower F1 scores, precision and recall. Results for DE highlight the weakest performance for the KNN classifier.

Table 5Classification with Logistic Regression on Approximate Social Grade

	Precision	Recall	F1_score
C1	0.49	0.36	0.41
C2	0.65	0.76	0.70
DE	0.52	0.36	0.43
No code	0.52	0.60	0.55
required			
AB	1.00	1.00	1.00

Logistic Regression classifier demonstrates perfect classification in the AB group, identification of C2 group also performs very well. Identifying individuals in 'No code required' displays moderate performance, although allocations to C1 and DE show weaker performance with lower F1-Scores, recall and precision.

Naïve Bayes' precision, recall and F1-score are reportedly low for categories C1, DE and AB; it may have a high recall for 'No code required' category, but the KNN still dominated for the AB group with high precision, recall and F1. Nevertheless, KNN struggles classifying individual's into C1 and DE social grades. Logistic Regression demonstrates perfect classification for the AB group, moderate performance for C2 and 'No code required,' but it struggled with C1 and DE. Deciding if Logistic Regression or KNN is the better model here is difficult, hence additional metric analysis was conducted.

Additional Metric Analysis

Table 6.

Mean Absolute Error (MAE) values for each classifier against CM and CV:

	KNN	Logistic Regression
Cross Validation	0.575	0.585

KNN is slightly more reliable with fewer misclassifications, only slightly outperforming Logistic Regression

Table 7.

Mean Squared Error (MSE) values for each classifier against CM and CV:

	KNN	Logistic Regression
Cross Validation	1.179	1.198

Both KNN and Logistic Regression are better at estimating social grades of individuals to their actual social grade, KNN only slightly performs more reliably than Logistic Regression.

Table 8.

Root Mean Squared Error (RMSE) values for each classifier against CM and CV:

	KNN	Logistic Regression
Cross Validation	1.086	1.095

Approximated social grade predictions vary more from actual grades with Logistic Regression while the KNN varies the least.

Table 9.

Accuracy values for each classifier against CM and CV

	KNN	Logistic Regression
Cross Validation	0.660	0.663

Logistic Regression only slightly outperforms KNN in accurately classifying social grades.

Table 10.

Area Under the Curve (AUC) values for each classifier against CM and CV

	KNN	Logistic Regression
Cross Validation	0.754	0.754

Both classifiers have the same AUC of 0.754 (across CM and CV), implying each classifier has a similar ability in distinguishing between social grades, regardless of their differences in other performance.

Overall, Naïve Bayes performs the worst, so it is not suitable as a model in predicting social grade levels. KNN produces the lowest measures in MAE, MSE and RMSE, thus if the primary objective is to minimise error rates and ensure more reliable predictions of approximated social grade levels, KNN is the ideal candidate due to its low error metrics. Although, Logistic Regression achieves the highest accuracy, so if the priority is accuracy is predicting social grades, Logistic Regression will be most preferable. Although Logistic Regression outperforms KNN in accuracy by a very little amount, KNN performs just as well.

As a result, KNN is the most suitable classifier for predicting Approximate Social Grade

Regression

Regression was performed on the numeric variable "Number of Hours", referring to the number of hours worked per week. Linear Regression (LR) and Regression Tree (RT) were applied. The strength of. the model's predictions were evaluated by the MAE, MSE, RMSE, but also R^2 score, and adjusted R^2 .

Table 11.Comparison of metrics across LR and RT as a predictor of 'Number of Hours' (rounded to 3 d.p)

	Linear Regression	Regression Tree
Mean Absolute Error	0.530	0.397
Mean Squared Error	0.539	0.462
Root Mean Squared Error	0.734	0.680
R^2	0.134	0.257
Adjusted R ²	0.134	0.257

RT has a lower MAE (0.397) than LR (0.530), suggesting LR makes fewer errors in predictions on average. It further outperforms LR, as seen in the MSE, where RT has a value of 0.462 as opposed to LR with a value of 0.539. The RMSE for RT (0.680) is smaller than that of the LR model (0.734), indicating fewer errors in predicting the number of hours individuals work. An R^2 value of 0.257 for RT means it can explain 25.7% of the variance in number of hours worked among individuals, while LR can only account for 13.4% of this variance. Matching adjusted R^2 values for both models suggest there was no overfitting.

In comparison, the RT consistently outperformed LR across all the metrics, with lower error rates in MAE, MSE and RMSE, highlighting that its predictions of hours worked per week are closer to the actual values. It explains more variance in number of hours worked across individuals than LR. A possible explanation may be that RT is able to better understand non-linear relationships, while LR's assumption of better suitability to linear data demonstrated its limits to non-linear data.

Nevertheless, both models do have relatively low R^2 values, the RT may outperform LR but there is still 74.3% of variance that is unexplained by RT, and 86.6% for LR. Neither provide a comprehensive overview in predicting the Number of Hours variable, so improvements are required.

Association Rule Mining

Association rule mining was conducted on the entire sample and all attributes.

Table 12:

Rule 1:

Items	Antecedent	Consequent	Support	Confidence	Lift
Not a Student,	Married, Not a	Not a student,	0.294	0.946	2.581
Married, UK,	Resident in	White,			
Married/equivalent,	communal	Married/equivalent			
Not a Resident in	establishment,	_			
communal	UK, Usual				
establishment, White,	Resident				
Usual Resident					

Rule 1 shows 29.4% of the respondents are not a student, married, born in the UK, family dynamic is married/equivalent, not a resident in a communal establishment, ethnically White and a usual resident. If they are married, living outside a communal establishment, from the UK and a usual resident, it is 94.6% likely they are not a student, of White ethnicity and family composed as married/equivalent. A very high lift value strengthens the relationship between antecedent and consequent.

Table 13:

Rule 2:

Items	Antecedent	Consequent	Support	Confidence	Lift
White, Not a Student,	Very good	Not a Student,	0.268	0.685	0.882
Very good health,	health, White	Usual Resident			
Usual Resident					

Rule 2 implies 26.8% of the population are ethnically White, not a student, very good health and a usual resident. If they are of very good health and white, it is 68.5% likely they are not a student and are a usual resident. A low lift value below 1 implies a lack of relationship.

Table 14:

Rule 3:

Items	Antecedent	Consequent	Support	Confidence	Lift
Not a Student, Very	Very good	Not a Student	0.309	0.669	0.860
good health, 'Usual	health, Usual				
Resident	Resident				

Rule 3 suggests 30.9% of the sample are not a student, with very good health and a usual resident. If they have very good health and a usual resident it is 66.9% likely they are not a student. A slightly low lift value does not support this proposed association.

Table 15:

Rule 4:

Items	Antecedent	Consequent	Support	Confidence	Lift

Not a Student, Usual	Single	Not a Student,	0.255	0.540	0.695
Resident, Single	-	Usual Resident			

Rule 4 states 25.5% of the population are not a student, a usual resident and single. If they are single, it is 54% likely they are not a student and are a usual resident. A moderately weak lift value of 0.695 indicates a weak association between antecedent and consequent.

Table 16:

Rule 5:

Items	Antecedent	Consequent	Support	Confidence	Lift
(27.0, 37.0, Not a Student, UK	Not a Student	(27.0, 37.0, UK	0.385	0.495	0.892

Rule 5 highlights 38.5% of the sample are aged 27-37, not a student and from the UK. If they are not a student, it is 49.5% likely they are aged 27-37 and from the UK. The lift value does not support any such association as it is below 1.

Table 17:

Rule 6:

Items	Antecedent	Consequent	Support	Confidence	Lift
Married, Not a	Married, Not a	Christian, Usual	0.252	0.667	1.162
Resident in	Student	Resident, Not a			
communal		Resident in			
establishment, Usual		communal			
Resident, Christian,		establishment			
Not a Student					

Rule 6 proposes 25.2% of the population are married, not a resident in communal establishment, a usual resident, Christian and not a student. If they are married and not a student, they are 66.7% likely to be Christian, a usual resident and living outside communal establishment. Lift value strengthens there is an association, given it is above 1.

Table 18:

Rule 7:

Items	Antecedent	Consequent	Support	Confidence	Lift
UK, Christian, Not a	UK, Christian	Not a Student,	0.416	0.797	1.155
Student 'White		White			

Rule 7 suggests 41.6% of the sample are from the UK, Christian, not a student and White. If they are from the UK and Christian, they are 79.7% likely to not be a student and of White ethnicity. Lift value is above 1, therefore, supporting there is a strong association.

Table 19:

Rule 8:

Items Ar	intecedent	Consequent	Support	Confidence	Lift
Not a Resident in W	White, Good ealth	Not a Student, Not a Resident in communal establishment	0.260	0.886	1.149

Rule 8 dictates 26% of the population are not a resident in a communal establishment, White, not a student and in good health. If they are White and with good health, they are 88.6% likely to not be a student and living outside communal establishment. Lift value above 1 indicates such a relationship exists.

Clustering

K-Means Clustering algorithm was applied to the entire dataset to define clusters based on similarity, mean values were standardised and mapped back to its corresponding categorical variable.

Table 20a.

K-Means Clustering on all attributes – standardised values

	Region	Residence Type	Family	Population	Sex
			Composition	Base	
Cluster 1	0.00302147	-0.04711457	0.13004111	0.11670853	-0.01065922
Cluster 2	-0.00671955	0.10477968	-0.2892028	-0.25955202	0.02370541
	Age	Marital Status	Student	Country of	Health
				Birth	
Cluster 1	0.49230477	-0.3417143	-0.52570225	0.04234671	-0.2428996
Cluster 2	-1.09485314	0.75994993	1.16912692	-0.09417627	0.5401926
	Ethnic	Religion	Economic Activity	Occupation	Industry
	Group				
Cluster 1	0.10712471	-0.10746843	-0.16202918	-0.06688598	-0.00919845
Cluster 2	-0.23823825	0.23900265	0.36034215	0.14874998	0.02045674
	Hours	Approximated			
	worked per	Social Grade			
	week				
Cluster 1	-0.19584187	-0.37673261			
Cluster 2	0.43553933	0.83782833			

Figure 8.

Visual representation of the mean values per cluster

Table 20b.Standardised values mapped back to its categorical meaning

	Region	Residence Type	Family Composition	Population Base	Sex
Cluster 1	Scotland	Resident	Cohabiting	Student living away during term time	Female
Cluster 2	Scotland	Not resident	Married/equivalent	Student living away	Female
	Age	Marital Status	Student	Country of Birth	Health
Cluster 1	35-44	Married	Not a student	Not born in the UK	Fair health
Cluster 2	0-15	Separated but legally married	A Student	Not born in the UK	Bad health
	Ethnic Group	Religion	Economic Activity	Occupation	Industry
Cluster 1	Chinese/Othe r ethnic group	Christian	Unemployed	Administrati ve & Secretarial	Financial & Insurance activities

Cluster 2	Black/Black British	Christian	Full-time student	Skill trades	Financial & Insurance activities
	Hours worked per week	Approximated Social Grade		I	
Cluster 1	Part time (16-30 hours)	C1			
Cluster 2	Part time (16-30 hours)	C2			

Hierarchical clustering was applied to the entire dataset to collate a tree of nested clusters based on similarity, like K-Means clustering, mean values were standardised and mapped back to its corresponding categorical variable.

Table 21a. *Hierarchical Clustering on all attributes*

	Region	Residence	Family	Population	Sex
		Type	Composition	Base	
Cluster 1	0.21636134	-0.13804384	1.43985716	0.11776432	0.9850107
Cluster 2	0.93892917	-0.13804384	0.14324745	0.11776432	1.0152174
	Age	Marital Status	Student	Country of	Health
				Birth	
Cluster 1	1.81182162	1.6580582	-0.53432737	0.40141031	-0.69325558
Cluster 2	-0.89149957	0.75994993	-0.53432737	0.40141031	-0.69325558
	Ethnic	Religion	Economic	Occupation	Industry
	Group		Activity		
Cluster 1	0.39542183	-0.77609871	0.94360325	-0.97544702	-0.6033569
Cluster 2	0.39542183	1.91071878	-1.09361447	1.6757684	-1.521950
	Hours	Approximated			
	worked per	Social Grade			
	week				
Cluster 1	0.24653177	0.6579581			
Cluster 2	-0.91048077	-0.06006826			

Figure 9.

Visual representation of the mean values per cluster

Table 21b.Standardised values mapped back to its categorical meaning

	Region	Residence	Family	Population	Sex
	_	Type	Composition	Base	
Cluster 1	Wales	Resident in communal establishment	Cohabiting	Student living away during term time	Female
Cluster 2	West Midlands	Not resident	Cohabiting	Student living away during term time	Female
	Age	Marital Status	Student	Country of Birth	Health
Cluster 1	65-74	Divorced	Not a student	Not born in the UK	Good health
Cluster 2	0-15	Separated but legally married	A student	Not born in the UK	Good health
	Ethnic	Religion	Economic	Occupation	Industry
	Group		Activity		

Cluster 1	Chinese/Other ethnic group	No religion	Student	Professional	Accommodation and food service activities
Cluster 2	Chinese/Other ethnic group	Sikh	No code required	Elementary	Mining
	Hours worked per week	Approximated Social Grade			
Cluster 1	Part time (16-30 hours)	C2			
Cluster 2	Part time (<=15 hours)	C1			

Key interpretations and Comparison

Demographics

In K-Means, Cluster 1 represents the population that are mainly aged 35-44, married and in cohabiting arrangements, while Cluster 2 describes the sample is predominantly aged 0-15 years, typically separated but legally married and are students.

In Hierarchical clustering, age is more differentiated, Cluster 1 highlights 65-74 year olds, likely divorced, while Cluster 2 consists of those aged 0-15 years, particularly full-time students.

Hierarchical clusering offers a more complex and nuanced explanation for the variable relationship across age groups, suggesting age is not evenly distributed throughout clusters but entwined with other attributes such as marital status and job type.

Health

Both clustering models show contrasting trends of health status. In K-Means, Cluster 1 represents those with fair health, while Cluster 2 identifies those in bad health.

In Hierarchical Clustering, health is commonnly good for both clusters, contrasting K-Means.

A feature of hierarchical clustering is that it does not assume fixed cluster boundaries, while K-Means does, implying health status may be dependent on other attributes, hence the difference in Cluster 1 and 2 for K-Means but not Hierarchical.

Ethnic Group and Religion

K-Means proposes majority of the population are of Chinese/Other ethnic group and of Christian faith (Cluster 1), while Cluster 2 suggests they are Black/Black British and also of Christian faith.

For Hierarchical clustering, groups are also majorly Chinese/Other ethnic group, although religion varies compared to K-Means; Cluster 1 dictates the population mainly has no religious affiliation, while Cluster 2 highlights those with Sikh faith.

It is possible hierarchical clustering can reveal more nuanced interactions between individual's religion and ethnic background, while K-Means may not be able to perform as well in this manor.

Economic Activity

Both Clusters represent population from the financial and insurance industry, with different economic activities. Cluster 1 highlights those unemployed but somewhat involved in administrative and secretarial occupations, while Cluster 2 represents those in skilled trades roles.

Hierarchical is more complex, where Cluster 1 captures those with professional occupations in accommodation and food service sectors, conversely, Cluster 2 presents those in elementary roles within mining industry.

Given it is unlikely individuals can be unemployed but involved in administrative and secretarial roles, it suggests K-Means cannot convey the nuances of occupations, industry and economic activity as well as hierarchical clustering can, where this model is possibly reflecting influences from other variables on occupational grouping.

Hours Worked per Week:

With K-Means, the population is suggested to be primarily working part-time (16-30 hours per week) in Cluster 1, and less than or equal to 15 hours in Cluster 2.

In Hierarchical Clustering, Clusters are reportedly the same as K-Means. K-Means performed just as well as Hierarchical Clustering to identify similarities in work patterns.

Approximated Social Grade

With K-Means, social grade is varied, Cluster 1 represents most individuals belong to C1, characterised by lower-middle class workers, while Cluster 2 suggest most individuals belong to C2, representing skilled manual workers.

Hierarchical Clustering shows C2 is the most common social grade in Cluster 1, and C1 is the most common social grade in Cluster 2, the complete opposite to K-Means.

Hierarchical clustering possibly identified attributes social grade is dependent on, such as economic activity, occupation and industry worked in, therefore proposed a different cluster formation to K-Means. Since it does not assume cluster boundaries that are predefined, it is possible Hierarchical Clustering recognises these interdependencies and relationships.

Overall comparison

K Means typically predefines its cluster boundaries, simplifying data into distinct clusters. It excels in providing clear-cut groups but underperforms in capturing complex, nuanced relationships between variables unlike hierarchical clustering.

Hierarchical Clustering is more flexible and provides more of an in-depth detailed analysis. It's sensitivity to clustering boundaries are not predefined and less sensitive than that of K-Means, allowing this model to outperform K-Means in capturing complex interrelationships and interdependencies between variables.

In summary, K-Means would be more sutiable in creating well-defined, larger clusters from major demographic features such as age, marital status and occupation, while Hierarchical Clustering is more effective at revealing intricate and subtle relationships, which is very suitable for datasets with many multi-category dimensions, such as the dataset used for this report. Therefore, Hierarchical Clustering was the most suitable and effective model for clustering in this context.

Reference:

Navlani, A. (2024, August 11). *Python logistic regression tutorial with Sklearn & Scikit*. DataCamp. https://www.datacamp.com/tutorial/understanding-logistic-regression-python

seaborn.violinplot — *seaborn 0.13.2 documentation*. (n.d.). https://seaborn.pydata.org/generated/seaborn.violinplot.html