Noise-Induced Randomization in Regression Discontinuity Designs

Dean Eckles, Nikolaos Ignatiadis, Stefan Wager, Han Wu

Presented by: Sai Zhang

November 18, 2022

Outline

1 Discussio

Sai Zhang Eckles et al., 2020

References I

- Armstrong, T. B., & Kolesár, M. (2018). Optimal inference in a class of regression models. *Econometrica*, 86(2), 655–683.
- Armstrong, T. B., & Kolesár, M. (2020). Simple and honest confidence intervals in nonparametric regression. *Quantitative Economics*, 11(1), 1–39.
- Bartalotti, O., Brummet, Q., & Dieterle, S. (2021). A correction for regression discontinuity designs with group-specific mismeasurement of the running variable. *Journal of Business & Economic Statistics*, 39(3), 833–848.
- Calonico, S., Cattaneo, M. D., & Titiunik, R. (2014). Robust nonparametric confidence intervals for regression-discontinuity designs. *Econometrica*, 82(6), 2295–2326.
- Davezies, L., & Le Barbanchon, T. (2017). Regression discontinuity design with continuous measurement error in the running variable. *Journal of econometrics*, 200(2), 260–281.
- Dong, Y., & Kolesár, M. (2021). When can we ignore measurement error in the running variable? arXiv preprint arXiv:2111.07388.

Sai Zhang Eckles et al., 2020 2

References II

- Eckles, D., Ignatiadis, N., Wager, S., & Wu, H. (2020). Noise-induced randomization in regression discontinuity designs. arXiv preprint arXiv:2004.09458.
- Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-discontinuity design. *Econometrica*, 69(1), 201–209.
- Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. *Journal of econometrics*, 142(2), 615–635.
- Imbens, G., & Kalyanaraman, K. (2012). Optimal bandwidth choice for the regression discontinuity estimator. *The Review of economic studies*, 79(3), 933–959.
- Imbens, G., & Wager, S. (2019). Optimized regression discontinuity designs. Review of Economics and Statistics, 101(2), 264–278.
- Jiang, Z., & Ding, P. (2020). Measurement errors in the binary instrumental variable model. Biometrika, 107(1), 238–245.
- Kolesár, M., & Rothe, C. (2018). Inference in regression discontinuity designs with a discrete running variable. American Economic Review, 108(8), 2277–2304.

Sai Zhang Eckles et al., 2020

References III

- Kuroki, M., & Pearl, J. (2014). Measurement bias and effect restoration in causal inference. *Biometrika*, 101(2), 423–437.
- Li, F., Mercatanti, A., Mäkinen, T., & Silvestrini, A. (2021). A regression discontinuity design for ordinal running variables: Evaluating central bank purchases of corporate bonds. *The Annals of Applied Statistics*, 15(1), 304–322.
- Pearl, J. (2012). On measurement bias in causal inference. arXiv preprint arXiv:1203.3504.
- Pei, Z., & Shen, Y. (2017). The devil is in the tails: Regression discontinuity design with measurement error in the assignment variable. In *Regression discontinuity designs*. Emerald Publishing Limited.
- Rokkanen, M. A. (2015). Exam schools, ability, and the effects of affirmative action: Latent factor extrapolation in the regression discontinuity design.
- Rubin, D. B. (2008). For objective causal inference, design trumps analysis. The annals of applied statistics, 2(3), 808–840.

Sai Zhang Eckles et al., 2020

Thank you!