## EE 810. Home work #5

Name. Onhar Vively Apte,

DBO ID .

- 1. If a 4 by 4 matrix has  $\det A = \frac{1}{2}$ , find  $\det(2A)$ ,  $\det(-A)$ ,  $\det(A^2)$ , and  $\det(A^{-1})$ .

  - det (2A) = 24 . def A
    - = 16 \ (\frac{1}{2})
- def (-A) = (-1) det (A)
- $det(A^2) = det(A) \cdot det(A)$
- def CA-1)
  - (1/2)
    - 2
  - det (2A) = 8 ٠. det (-A) = 1/2
    - det (A2) = 1/4 det (A-1) = 2

5. Count row exchanges to find these determinants:

$$\det\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \pm 1 \qquad \text{and} \qquad \det\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} = -1.$$



$$2 \times 10^{\circ}$$
 No. of row exchanges for  $Q(1) = 2$   
No of row exchanges for  $Q(2) = 3$ 

|    | _ | r. | - 1 |
|----|---|----|-----|
| 4. | 2 | U  | (ס  |

**10.** If Q is an orthogonal matrix, so that  $Q^{T}Q = I$ , prove that  $\det Q$  equals +1 or -1. What kind of box is formed from the rows (or columns) of Q?

Given:  $Q^TQ = I$ 



det (Q) = ±1

| def(0): +1  | or -1, | the | box | forme | d by |
|-------------|--------|-----|-----|-------|------|
| the rows or |        |     |     |       |      |
| vector will |        |     |     |       |      |
|             | ume of |     |     |       |      |
|             |        |     |     |       |      |

17. Find the determinants of

For which values of  $\lambda$  is  $A - \lambda I$  a singular matrix?

① 
$$de+(A) = \begin{vmatrix} 4 & 2 \\ 1 & 3 \end{vmatrix} = (4 \times 3) - (2 \times 1) = 12 - 2 = 10$$

(2) 
$$\det (A^{-1}) = \left(\frac{1}{10}\right)^2 \begin{vmatrix} 3 & -2 \\ -1 & 4 \end{vmatrix} = \frac{1}{100}\left(12 - 2\right) = \frac{1}{100}\left(10\right) = \frac{1}{100}$$

3 det 
$$(A-A\pm) = \begin{vmatrix} 4-A & 2 \\ 1 & 3-A \end{vmatrix} = (4-A)(3-A) - (2)(1)$$

$$= (2-4A-3A+A^2) - 2$$

$$= \lambda^2 - 7A + 10$$

$$= \lambda^2 - 5A-2A+10$$

$$= \lambda(A-5) - 2(A-5)$$

$$\frac{10/10}{\text{metrix}} = \frac{\lambda = 5 \text{ or } \lambda = 2}{\text{A} - \lambda I} \text{ is Singular.}$$

.. det (A) = 10  
· det (A<sup>-1</sup>) = 
$$\frac{1}{10}$$
  
· det (A-AI) = (A-5)(A-2)  
· A-AI is singular for A=5 or A=2

= (1-5)(1-2)

② det (B) =

**20.** Do these matrices have determinant 0, 1, 2, or 3?

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \textcircled{2} \qquad B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

= +1

$$\begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0$$

$$= 0 - 1 [(1)(6) - (1)(1)] + 1 [(1)(1) - (1)(6)]$$

 $= \left[ (1)(1) - (1)(1) \right]$ 

= 1[07 0

**25.** Elimination reduces A to U. Then 
$$A = LU$$
:

$$A = \begin{bmatrix} 3 & 3 & 4 \\ 6 & 8 & 7 \\ -3 & 5 & -9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 3 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & -1 \end{bmatrix} = LU.$$

Find the determinants of 
$$L$$
,  $U$ ,  $A$ ,  $U^{-1}L^{-1}$ , and  $U^{-1}L^{-1}A$ .

3 det 
$$(v^{-1}L^{-1}) = det(v^{-1}) \cdot det(L^{-1})$$

$$= \left(\frac{1}{\det(U)}\right) \cdot \left(\frac{1}{\det(L)}\right)$$

= -6

**8.** Compute the determinants of  $A_2$ ,  $A_3$ ,  $A_4$ . Can you predict  $A_n$ ?

$$A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad A_4 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}.$$

Use row operations to produce zeros, or use cofactors of row 1.

.. We can see, in general: 
$$det(A_n) = (-1)^{n-1}(n-1)$$

## 4.3 (34)

34. With 2 by 2 blocks, you cannot always use block determinants!

$$\begin{vmatrix} A & B \\ 0 & D \end{vmatrix} = |A||D| \qquad \text{but} \qquad \begin{vmatrix} A & B \\ C & D \end{vmatrix} \neq |A||D| - |C||B|.$$

- (a) Why is the first statement true? Somehow B doesn't enter.
- (b) Show by example that equality fails (as shown) when C enters.
- (c) Show by example that the answer det(AD CB) is also wrong.

| Given matrix: | A | B                | _ | ٦,       | aız | Ьп  | b,,             |  |
|---------------|---|------------------|---|----------|-----|-----|-----------------|--|
|               | 0 | $\triangleright$ |   | azı      | 922 |     | brz             |  |
|               |   | 4 4              | } | 0        | 0   | d,, | d,2             |  |
|               |   |                  |   | ٥        | 0   | 921 | d <sub>22</sub> |  |
|               |   |                  |   | <b>_</b> |     |     |                 |  |

cofacting along coloumn1

| <i>:</i> . | Α | В | = | an | 922 | b 21 | brz | - a <sub>22</sub> | a,2 | Ьп  | biz |
|------------|---|---|---|----|-----|------|-----|-------------------|-----|-----|-----|
|            | 0 | D |   |    |     |      |     |                   | ٥   |     | dız |
|            |   |   | • |    | 0   | 921  | 922 |                   | 0   | 921 | 922 |



| You, |             |         |        |          |            |       |
|------|-------------|---------|--------|----------|------------|-------|
|      | A B         | -       |        | 0 6      |            |       |
|      | C D         |         |        | 0 2      |            | 10/10 |
|      |             |         |        | 0 0      |            |       |
|      |             |         | 0 0    | 40       |            |       |
|      |             |         |        |          |            |       |
|      |             | 2 (     | 2      |          | eg 4       |       |
|      |             |         |        |          |            |       |
| From | eg 3 ·      | ( 4), u | oe hau | re prove | ol,        |       |
|      | <u>(</u> c) |         |        | •        | •          | _     |
|      |             | de+ (AD | -BC)   | is wro   | ong answer |       |
|      |             |         |        |          |            |       |
|      |             | for A   | D D    |          |            |       |
|      |             | - 2     | 4 × 4  |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |
|      |             |         |        |          |            |       |

| 4. | 4 | (2         | ጸ | 7 |
|----|---|------------|---|---|
| -, | • | <b>\</b> – | U | / |

| 28. | A box has edges from $(0,0,0)$ to $(3,1,1)$ , $(1,3,1)$ , and $(1,1,3)$ . Find its volume and |
|-----|-----------------------------------------------------------------------------------------------|
|     | also find the area of each parallelogram face.                                                |

| consider | 3 vectors: | Q = | 3 | , b= 3 | , c= | <br>  1 |
|----------|------------|-----|---|--------|------|---------|
|          |            |     | i | _ ' _  |      | 3       |
|          |            |     |   |        |      | _ ~     |

from vectors, we can clearly see, 
$$a_1b_1c_1$$
 have same length, i.e.:

$$|ength of | (2+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | (1+|^2+3^2) | ($$

