

Asia Regional Finals–Manila Site 2006 October 27

Problem I

Gaussian Prime Factors

Let a, b, c, d be integers. The complex number a + bj, where $j^2 = -1$, is a factor of c + dj, if there exist integers e and f such that

$$c + dj = (a + bj)(e + fj)$$

. A complex number a+bj where a and b are integers is a Gaussian prime if the factors are 1, -1, -a-bj and a+bj only.

The following are Gaussian primes: 1+j, 1-j, 1+2j, 1-2j, 3 and 7.

The Gaussian prime factors of 5 are:

$$1 + 2j$$
 and $1 - 2j$, or $2 + j$ and $2 - j$, or $-1 - 2j$ and $-1 + 2j$, or $-2 - j$ and $-2 + j$.

Write a program that finds all the Gaussian prime factors of a positive integer.

Input

One line of input per case. The line represents a positive integer n.

Output

One line of output per test case. The line represents the Gaussian prime factors of n. If a+bj is a Gaussian prime factor of n, then a>0, |b|>a, if $b\neq 0$. If b=0, the output must be a.

Sample Input	Sample Output	
2	Case #1: 1+j, 1-j	
5	Case #2: 1+2j, 1-2j	
6	Case #3: 1+j, 1-j, 3	
700	Case #4: 1+j, 1-j, 1+2j, 1-	·2j,
	7	

Problem I Page 15 of 17