Machine Learning – Assignment 6

Q1. (Provide only mathematical solutions for this question) Six points with the following attributes are given, calculate and find out clustering representations and dendrogram using Single, complete, and average link proximity function in hierarchical clustering technique.

Q2: Use CC_GENERAL.csv given in the folder and apply: a) Preprocess the data by removing the categorical column and filling the missing values. b) Apply StandardScaler() and normalize() functions to scale and normalize raw input data. c) Use PCA with K=2 to reduce the input dimensions to two features. d) Apply Agglomerative Clustering with k=2,3,4 and 5 on reduced features and visualize result for each k value using scatter plot. e) Evaluate different variations using Silhouette Scores and Visualize results with a bar chart.

```
## Q2
#import numpy as np
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,metrics
from sklearn.metric selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.decomposition import PCA
from sklearn.decomposition import PCA
from sklearn.metrics import AgglomerativeClustering
from sklearn.metrics import agglomerativeClustering
from sklearn.metrics import silhouette_score

import warnings
warnings.filterwarnings("ignore")

[60] dataframe = pd.read_csv('/content/gdrive/MyDrive/Dataset/CC GENERAL.csv')
dataframe.info()
```

0 CUST.ID 8950 non-null object
1 BALANCE PREQUENCY 8950 non-null float64
3 PURCHASES 8950 non-null float64
3 PURCHASES 8950 non-null float64
5 INSTALLMENTS_PURCHASES 8950 non-null float64
5 INSTALLMENTS_PURCHASES 8950 non-null float64
6 CASH_ADVANCE 8950 non-null float64
8 ONEOFF PURCHASES FREQUENCY 8950 non-null float64
8 ONEOFF PURCHASES_FREQUENCY 8950 non-null float64
10 CASH_ADVANCE_FREQUENCY 8950 non-null float64
11 CASH_ADVANCE_FREX 8950 non-null float64
12 PURCHASES_INSTALLMENTS_FREQUENCY 8950 non-null float64
12 PURCHASES_TRX 8950 non-null float64
13 CREDIT_LIMIT 8950 non-null float64
14 PAYMENTS 8950 non-null float64
15 MINIMUM_PAYMENTS 8950 non-null float64
15 MINIMUM_PAYMENTS 8950 non-null float64
15 PRILITER 8950 non-null float64
16 PRC_FULL_PAYMENT 8950 non-null float64
17 TENNER 8950 non-null float64
dtypes: float64(14), int64(3), object(1)
memory usage: 1.2+ MB

[61] dataframe.head()

CUST_ID BALANCE BALANCE FREQUENCY PURCHASES ONEOFF PURCHASES INSTALLMENTS PURCHASES CASH ADVANCE PURCHASES FREQUENCY ONEOFF PURCHASES FREQUENCY PURCHASES INSTALLMENTS FR **0** C10001 40.900749 0.818182 95.40 0.00 95.4 0.000000 0.166667 0.000000 1 C10002 3202.467416 0.909091 0.00 0.00 0.0 6442.945483 0.000000 0.000000 0.000000 2 C10003 2495.148862 1.000000 773,17 773.17 1.000000 1.000000 0.083333 3 C10004 1666.670542 0.636364 1499.00 1499.00 0.0 205.788017 0.083333 16.00

Ji.

[62] dataframe.describe()

	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADVANCE	PURCHASES_FREQUENCY	ONEOFF_PURCHASES_FREQUENCY	PURCHASES_INSTALLMENTS_FRE
count	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000	8950.0
mean	1564.474828	0.877271	1003.204834	592.437371	411.067645	978.871112	0.490351	0.202458	0.5
std	2081.531879	0.236904	2136.634782	1659.887917	904.338115	2097.163877	0.401371	0.298336	0.5
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
25%	128.281915	0.888889	39.635000	0.000000	0.000000	0.000000	0.083333	0.000000	0.0
50%	873.385231	1.000000	361.280000	38.000000	89.000000	0.000000	0.500000	0.083333	0.
75%	2054.140036	1.000000	1110.130000	577.405000	468.637500	1113.821139	0.916667	0.300000	0.
max	19043.138560	1.000000	49039.570000	40761.250000	22500.000000	47137.211760	1.000000	1.000000	1.0

j.

df = dataframe.drop(['CUST_ID'], axis=1)
df.head() BALANCE BALANCE_FREQUENCY PURCHASES ONEOFF_PURCHASES INSTALLMENTS_PURCHASES CASH_ADVANCE PURCHASES_FREQUENCY ONEOFF_PURCHASES_FREQUENCY PURCHASES_INSTALLMENTS_FREQUENCY **0** 40.900749 0.818182 95.40 0.00 95.4 0.000000 0.166667 1 3202.467416 0.909091 0.00 0.00 0.0 6442.945483 0.000000 0.000000 0.000000 773.17 773.17 0.0000000 1.000000 1.000000 0.000000 2 2495.148862 1.000000 **3** 1666.670542 0.636364 1499.00 0.0 205.788017 0.083333 0.083333 0.000000 1499.00 4 817.714335 1.000000 16.00 16.00 0.0 0.000000 0.083333 0.083333 0.000000 %

df.fillna(dataframe.mean(), inplace=True) df.isnull().any() BALANKE BALANKE BALANKE BALANKE BALANKE BALANKE PREQUENCY False PURCHASES False ONEOFE PURCHASES False INSTALLHENTS PURCHASES False INSTALLHENTS PURCHASES False PURCHASES, FREQUENCY ONEOFE PURCHASES, FREQUENCY PURCHASES, INSTALLMENTS, FREQUENCY PURCHASES, INSTALLMENTS, FREQUENCY CASH_ADVANCE FREQUENCY CASH_ADVANCE FREQUENCY False PURCHASES, INSTALLMENTS, FREQUENCY CASH_ADVANCE FREQUENCY False PURCHASES, INSTALLMENTS, FREQUENCY CASH_ADVANCE FREQUENCY False PURCHASES, TINS False PURCHASES, TRX False PURCHASES, TRX False PURCHASES, TRX False PURCHASES, TRX False PURCHASES, TRY FALSE PURCHASES PURCHASE PURCHASES P

EOFF_PURCHASES_FREQUENCY PURCHASES_INSTALLMENTS_FREQUENCY CASH_ADVANCE_FREQUENCY CASH_ADVANCE_TRX PURCHASES_TRX CREDIT_LIMIT PAYMENTS MINIMUM_PAYMENTS PRC_FULL_PAYMENT

0.191873

-0.120143

-0.082628

-0.132318

-0.308478

-0.111716

-0.262958

1.000000

0.799561

-0.131168

0.132616

0.183192

0.097898

-0.249773

-0.133372

0.385152

0.141555

-0.067175

-0.046212

-0.073999

0.656498

-0.203478

-0.069088

-0.169207

0.799561

1.000000

-0.066157

0.149699

0.255278

0.109185

-0.169784

-0.043421

0.154338

0.189626

-0.075850

-0.131168

-0.066157

1.000000

0.272877

0.370832

0.095858

0.162066

0.121874

0.531267 0.322802

0.095795 0.065008

0.256496 0.384084

0.303983 0.453238

0.119778 0.103464

0.295030 0.243537

0.060752 0.085551

0.132616 0.183192

0.149699 0.255278

0.272877 0.370832

1.000000 0.421852

0.421852 1.000000

0.125134 0.125046

0.055671 0.112138

0.139034 0.106136

0.356959

0.319721

0.114249

0.093515

0.048597

0.131687

0.139223

0.002976

-0.029963

0.029590

0.097898

0.109185

0.095858

0.125134

0.125046

1.000000

-0.139674

0.057257

TENURE

-0.318959 0.072692

-0.095082 0.119776

0.180379 0.086288

0.132763 0.064150

0.182569 0.086143

-0.152935 -0.068312 0.305802 0.061506

0.157531 0.082466

0.250087 0.073275

-0.249773 -0.133372

-0.169784 -0.043421

0.162066 0.121874

0.055671 0.139034

0.112138 0.106136

-0.139674 0.057257

1.000000 -0.016486 -0.016486 1.000000

G4] df.isnull().any()

BALANCE
BALANCE_FREQUENCY
PURCHASES

ONEOFF_PURCHASES
INSTALLMENTS_PURCHASES
CASH_ADVANCE

MINIMUM_PAYMENTS
PRC_FULL_PAYMENT

TENURE dtype: bool

CASH_ADVANICE

PURCHASES_FREQUENCY

PURCHASES_INSTALLIBENTS_FREQUENCY

PURCHASES_INSTALLIBENTS_FREQUENCY

CASH_ADVANICE_FREQUENCY

CASH_ADVANICE_FRX

PURCHASES_ITAX

REDIT_LINIT

PAYMENTS

MINITMAM_PAYMENTS

[66] df.corr().style.background_gradient(cmap="Greens")

0.073166

0.202415

0.214042

-D 086754

1.000000

0.142329

-0.111716

-0.069088

0.295030

0.243537

-0.029963

0.157531

0.082466

-0.063186

0.176079

0.315567

0.127729

-0.177070

0.862934

0.142329

1.000000

-0.262958

-0.169207

0.060752

0.085551

0.029590

0.250087

0.073275

False False False

False False

False False

False False False False False True False

True False

False

```
[67] x = df.iloc[:,0:-1]
y = df.iloc[:,-1]

scaler = preprocessing.Standardscaler()
scaler.fit(x)
X_scaled_array = scaler.transform(x)
X_scaled_array = scaler.transform(x)
X_scaled_df = pd.DataFrame(X_scaled_array, columns = x.columns)

#Normalization is the process of scaling individual samples to have unit norm.
#This process can be useful if you plan to use a quadratic form such as the dot-product or any other kernel to quantify the similarity of any pair of samples.
X_normalized = preprocessing.normalize(X_scaled_df)
# Converting the numpy array into a pandas DataFrame
X_normalized = pd.DataFrame(X_normalized)

[69] pca2 = PCA(n_components=2)
principalComponents = pca2.fit_transform(X_normalized)
principalDf = pd.DataFrame(data = principalComponents, columns = ['P1', 'P2'])
finalDf = pd.concat([principalDf, df[['TENURE']]], axis = 1)
finalDf.head()
```

	P1	P2	TENURE
0	-0.488186	-0.677233	12
1	-0.517294	0.556075	12
2	0.334384	0.287313	12
3	-0.486616	-0.080780	12
4	-0.562175	-0.474770	12

