Les réactions d'oxydo-réduction

DELAHI MOHAMED (1 bac SM)

I – REACTIONS D'OXYDO-REDUCTION, OXYDANT, REDUCTEUR

<u>1 – Définitions</u>

Définition d'une réaction d'oxydo-réduction :

C'est une réaction caractérisée par un transfert d'électrons entre un oxydant et un réducteur.

Exemple : réaction entre Fe et $Cu^{2+}_{(aq)}$

$$Fe_{(s)} + Cu_{(aq)}^{2+} \rightarrow Fe_{(aq)}^{2+} + Cu_{(s)}$$

Définition d'un oxydant :

Un oxydant est une espèce chimique (molécule ou ion) capable de capter un ou plusieurs électrons lors d'une réaction chimique.

Définition d'un réducteur :

Un réducteur est une espèce chimique (molécule ou ion) capable de céder un ou plusieurs électrons lors d'une réaction chimique.

Définition d'une oxydation :

Une oxydation est une perte d'électrons.

Définition d'une réduction :

Une réduction est un gain d'électrons.

<u>2 – Oxydants et réducteurs dans la classification périodique</u>

En classe de 2^{nde}, nous avons vu qu'un élément dont la dernière couche n'est pas remplie complètement tend à acquérir la structure du gaz rare le plus proche.

- S'il tend à gagner des électrons, c'est un oxydant.
- S'il tend à perdre des électrons, c'est un réducteur.

Exemples:

Na (gaz rare le plus proche Ne) : tend à perdre 1 é ; c'est le réducteur du couple Na^+/Na . I_2 (gaz rare la plus proche Xe) : tend à gagner 1 é ; c'est l'oxydant du couple I_2/I^- .

II - COUPLE OXYDANT-REDUCTEUR

1- Définition

Un couple oxydant/réducteur est constitué d'un oxydant et d'un réducteur qui se transforment l'un en l'autre par un transfert d'électrons.

 $Oxydant + n\acute{e} = r\acute{e}ducteur$

Exemples:

$$Fe^{2+} + 2\acute{e} \rightleftharpoons Fe$$

(réducteur)

- couple I₂/I

$$I_2 + 2\acute{e} \rightleftharpoons 2I^-$$

2 – Equilibre d'une demi-équation associée à un couple

La demi-équation respecte les même règles d'ajustement de la stoechiométrie que les équations chimiques.

Méthode d'équilibre d'une demi équation redox en milieu acide :

- Ecrire la demi-équation sous la forme $Ox + n\acute{e} = red$
- Assurer, si nécessaire la conservation des éléments autres que H et O.
- Assurer la conservation de l'élément O avec des molécules d'eau.
- Assurer la conservation de l'élément H avec des protons H⁺.
- Assurer la conservation de la charge avec des électrons.

Méthode d'équilibre d'une demi équation redox en milieu basique :

- Equilibrer la demi-équation en milieu acide.
- Ecrire l'autoprotolyse de l'eau avec autant d'H⁺ que dans l'équation précedente

Autoprotolyse de l'eau :
$$H^+ + HO^- \rightarrow H_2O$$

- Additionner les deux équations précédentes de manière à éliminer les H⁺.
- a) Exemples de couples cation métallique / métal

$$\begin{array}{ll} Cu^{^{2+}}{}_{(aq)}+2\acute{e}\rightleftarrows Cu_{(s)} & Zn^{^{2+}}{}_{(aq)}+2\acute{e}\rightleftarrows Zn_{(s)} \\ Pb^{^{2+}}{}_{(aq)}+2\acute{e}\rightleftarrows Pb_{(s)} & Al^{^{3+}}{}_{(aq)}+3\acute{e}\rightleftarrows Al_{(s)}\dots \end{array}$$

b) Exemple de couple cation métallique / cation métallique

$$Fe^{3+}_{(aq)} + \acute{e} \rightleftharpoons Fe^{2+}_{(aq)}$$

c) Exemples de couples ion métallique / molécule

$$2H^{^{+}}{}_{(aq)}+2\acute{e} \rightleftarrows H_{2(g)} \hspace{1cm} I_{2(aq)}+2\acute{e} \rightleftarrows 2I^{^{-}}{}_{(aq)}$$

d) Exemples de couples dans lequel un élément commun s'associe à l'oxygène

$$S_2O_8^{2-}_{(aq)} + 2\acute{e} \rightleftharpoons 2SO_4^{2-}_{(aq)} ; S_4O_6^{2-}_{(aq)} + 2\acute{e} \rightleftharpoons S_2O_3^{2-}_{(aq)}$$

Equilibre en milieu acide :

$$\begin{split} &MnO_{4~(aq)}^{-} + 8H^{^{+}} + 5e \rightleftarrows Mn^{2+}_{~~(aq)} + 4H_{2}O & O_{2} + 2H^{^{+}} + 2\acute{e} \rightleftarrows H_{2}O_{(l)} \\ &2HClO_{(aq)} + 2H^{^{+}} + 2\acute{e} \rightleftarrows Cl_{2} + 2H_{2}O & Cr_{2}O_{7}^{^{2-}}_{~~(aq)} + 14H^{^{+}} + 6\acute{e} \rightleftarrows 2Cr^{3+}_{~~(aq)} + 7H_{2}O \end{split}$$

Equilibre en milieu basique :

$$IO_3^-$$
(aq)/ $\Gamma{(aq)}$ $IO_3^- + 6\acute{e} + 6H^+ \rightleftharpoons \Gamma + 3H_2O$

$$6H_2O \rightleftharpoons 6H^+ + 6HO^-$$

$$IO_3^- + 6\acute{e} + 3H_2O \rightleftharpoons \Gamma + 6HO^-$$

ClO
$$^{-}$$
(aq)/Cl{2(g)} 2ClO $^{-}$ + 2é + 4H $^{+}$ \rightarrow Cl₂ + 2H₂O
4H₂O \rightarrow 4H $^{+}$ + 4HO $^{-}$
2ClO $^{-}$ + 2é + 2H₂O \rightleftharpoons Cl₂ + 4HO $^{-}$

III - EQUATION CHIMIQUE D'UNE REACTION D'OXYDO-REDUCTION

1 – Caractéristiques

Une réaction d'oxydo-réduction fait intervenir deux couples oxydant/réducteur.

Pour obtenir l'équation d'une réaction d'oxydo-réduction, on peut additionner les deux demiéquations de chacun des couples oxydant/réducteur mis en jeu.

Réaction entre un oxydant 1 et un réducteur 2 appartenant respectivement aux couples oxydant 1/ réducteur 1 et oxydant 2/ réducteur 2 :

$$n' x (oxydant 1 + né \rightleftharpoons réducteur 1)$$

 $n x (réducteur 2 \rightleftharpoons oxydant 2 + n'é)$

oxydant 1 + réducteur 2 + n'né
$$\rightarrow$$
 réducteur 1 + oxydant 2 + nn'é oxydant 1 + réducteur 2 \rightarrow réducteur 1 + oxydant 2

2 – Exemples

Réaction entre la vitamine (ou acide ascorbique) C₂H₈O₆ et le diiode

Couples:
$$C_2H_6O_6/C_2H_8O_6$$
 I_2/I^-

$$C_2H_8O_6 \rightleftharpoons C_2H_6O_6 2\acute{e} + 2H^+$$

$$I_2 + 2\acute{e} \rightleftharpoons 2I^-$$

$$C_2H_8O_6 + I_2 \rightarrow C_2H_6O_6 + 2I^- + 2H^+$$