SUBJECTIVE QUESTIONS

Advanced Linear Regression Part-II

C44 Group

Table of Contents

Table of Contents	1
Assignment-II Subjective Questions	2
Question 1	2
Question 2	2
Question 3	<i>6</i>
Question 4	7
Appendix (Reference for Answers)	
Model Summary	8
	11

Assignment-II Subjective Questions

Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose to double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

- Optimal alpha for Ridge = 7, Optimal value for Lasso = 0.0001 (Model-1: Target variable is log transformed and min-max scaled *Refer: Model Summary*)
- With the alpha doubled there is degradation seen in R2-score of Ridge and Lasso
- With alpha doubling the RSS/RMSE of Ridge and Lasso regression degraded for training data but improved for test-data. This implies that increasing the regularization factor is improving the generalization by trading of residual errors in training data by improving it in test-data.

	Metric	Linear Regression	Ridge Regression	Lasso Regression	Lasso_Top_Pred_Elim
0	Regularization	0.000000	7.000000	0.000100	0.000100
1	R2 Score (Train)	0.853000	0.953000	0.959000	0.955000
2	R2 Score (Test)	0.760000	0.899000	0.890000	0.892000
3	RSS (Train)	10.952758	3.504164	3.060471	3.353166
4	RSS (Test)	7.527175	3.178369	3.461134	3.376821
5	RMSE (Train)	0.103574	0.058584	0.054750	0.057308
6	RMSE (Test)	0.131093	0.085185	0.088894	0.087805

Figure 1 Scores with alpha

	Metric	Linear Regression	Ridge Regression	Lasso Regression	Lasso_Top_Pred_Elim
0	Regularization	0.000000	14.000000	0.000200	0.000200
1	R2 Score (Train)	0.853000	0.945000	0.950000	0.946000
2	R2 Score (Test)	0.760000	0.899000	0.897000	0.897000
3	RSS (Train)	10.952758	4.092453	3.748709	4.033671
4	RSS (Test)	7.527175	3.175073	3.235024	3.224333
5	RMSE (Train)	0.103574	0.063311	0.060594	0.062855
6	RMSE (Test)	0.131093	0.085141	0.085941	0.085799

Figure 2 Scores with alpha*2

- GrLivArea, Condition2_PosN, Condition2_PosA, OverallQual_8,OverallQual_9 are the top predictors with Lasso Regression with alpha
- GrLivArea, Condition2_PosN, BsmtFinSF1, OverallQual_8,OverallQual_9 are the top variables with Lasso Regression with alpha*2
- GrLivArea, GarageArea,1stFlrSF, OverallQual_9, BsmntFinSF1 are the top-5 Predictors for Ridge Regression for alpha
- GrLivArea, GarageArea,1stFlrSF, OverallQual_9, OverallQual_8 are the top-5 Predictors for Ridge Regression for alpha*2
- 3 to 4 predictors in the top-5 predictor variables don't seem to change with the modification of regularization factors by a factor of 2, both in Lasso as well as ridge regression

• The Ridge and Lasso Columns in the following table indicate the top-most feature variables along with coefficients when the regularization value or the alpha value is doubled.

Number of Features in Linear Regresion = 57
Intercept for LinearReg = 0.578
Intercept for Ridge = 0.024
Intercept for Lasso = -0.105
Intercept for Lasso_With_Top_Predictors_Eliminated= 0.02
TOP 25 FEATURES

						-		
Linear Regression		Ridge		Lasso	L	_asso_New (Eliminating top 5	Predictors)	
	LinearReg		Ridge		Lasso	Lasso_Top_Pred_Elim		
BsmtCond_Po	-0.668000	GrLivArea	0.132000	GrLivArea	0.282000	1stFlrSF	0.222000	
OverallQual_3	-0.462000	1stFirSF	0.102000	OverallQual_9	0.148000	2ndFlrSF	0.197000	
OverallQual_2	-0.453000	GarageArea	0.078000	Condition2_PosN	-0.126000	OverallQual_10	-0.135000	
OverallQual_4	-0.403000	OverallQual_9	0.074000	OverallQual_8	0.107000	OverallQual_3	-0.128000	
Condition2_PosN	-0.403000	OverallQual_8	0.073000	OverallCond_9	0.106000	OverallQual_4	-0.120000	
OverallQual_5	-0.336000	BsmtFinSF1	0.069000	BsmtFinSF1	0.104000	Condition2_PosA	0.118000	
YearBuilt_1880	0.311000	2ndFlrSF	0.061000	Neighborhood_MeadowV	-0.098000	BsmtFinSF1	0.111000	
YearBuilt_1898	-0.300000	LotArea	0.057000	GarageArea	0.098000	Neighborhood_MeadowV	-0.105000	
OverallQual_6	-0.272000	OverallQual_4	-0.054000	YearBuilt_1900	-0.084000	GarageArea	0.103000	
YearBuilt_1987	0.262000	Neighborhood_Crawfor	0.052000	BsmtUnfSF	0.075000	OverallQual_5	-0.096000	
GarageYrBlt_1910	0.212000	BsmtUnfSF	0.052000	Neighborhood_ClearCr	0.075000	BsmtUnfSF	0.084000	
YearBuilt_1931	-0.210000	Neighborhood_Edwards	-0.050000	Neighborhood_Crawfor	0.072000	OverallQual_6	-0.081000	
YearBuilt_1935	-0.185000	Fireplaces	0.047000	Neighborhood_Somerst	0.066000	SaleType_ConLD	0.079000	
YearBuilt_1938	-0.168000	OverallQual_3	-0.041000	LotArea	0.063000	YearBuilt_1900	-0.075000	
MSSubClass_160	-0.149000	CentralAir_Y	0.041000	OverallCond_8	0.059000	Neighborhood_Somerst	0.074000	
OverallQual_7	-0.148000	Neighborhood_NridgHt	0.039000	SaleType_ConLD	0.057000	Neighborhood_Crawfor	0.069000	
Neighborhood_MeadowV	-0.139000	Neighborhood_MeadowV	-0.039000	OverallQual_7	0.054000	Neighborhood_ClearCr	0.064000	
YearBuilt_1924	-0.136000	Neighborhood_Somerst	0.039000	GarageType_CarPort	-0.053000	OverallCond_3	-0.064000	
YearBuilt_1926	-0.135000	OverallCond_9	0.038000	OverallCond_7	0.051000	LotArea	0.062000	
Neighborhood_Crawfor	0.128000	Neighborhood_ClearCr	0.038000	Exterior1st_BrkFace	0.050000	Neighborhood_StoneBr	0.061000	
OverallQual_9	0.114000	Functional_Typ	0.036000	Neighborhood_Edwards	-0.050000	leighborhood_Edwards	-0.061000	
GarageType_CarPort	-0.113000	FullBath	0.035000	OverallQual_3	-0.050000	Neighborhood_NridgHt	0.060000	
Fireplaces	0.111000	GarageYrBlt_2008	0.035000	GarageYrBlt_2008	0.050000	GarageYrBlt_2008	0.059000	
OverallCond_3	-0.108000	YearBuilt_1900	-0.034000	Functional_Typ	0.049000	Exterior1st_BrkFace	0.054000	
GarageYrBlt_1997	0.108000	Exterior1st_BrkFace	0.034000	YearBuilt_1987	0.044000	GarageType_CarPort	-0.050000	
Neighborhood_ClearCr	0.100000	OverallCond_3	-0.033000	MSSubClass_160	-0.042000	Functional_Typ	0.049000	
YearBuilt_1940	-0.099000	BsmtQual_TA	-0.033000	CentralAir_Y	0.040000	OverallCond_4	-0.045000	
YearBuilt_2009	0.098000	KitchenQual_TA	-0.031000	OverallQual_4	-0.040000	CentralAir_Y	0.045000	
YearBuilt_1910	-0.094000	MSSubClass_160	-0.031000	Neighborhood_NridgHt	0.040000	BsmtCond_Gd	0.042000	
YearRemodAdd_1999	0.092000	HalfBath	0.030000	Neighborhood_StoneBr	0.040000	YearBuilt_2009	0.039000	
YearBuilt_1925	-0.086000	MSSubClass_30	-0.030000	GarageYrBlt_1971	-0.039000	KitchenQual_Fa	-0.039000	
						_		

Figure 3 Ridge and Lasso Predictors and Coefficients with doubled alpha

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Figure 4 Coefficient Emergence with varying alpha

Shown below in Equation 1 and Equation 2 Ridge and Lasso Cost Functions minimized for determining β_j , used in the regression for M observations of the target Variable y_i and p Predictor Variables given by x_{ij}

Equation 1 Ridge Regression

$$\textstyle \sum_{i=1}^{M} (y_i - \hat{y_i})^2 = \sum_{i=1}^{M} (y_i - \sum_{1}^{P} \beta_j x_{ij})^2 + \propto \sum_{1}^{P} \beta_j^2}$$

Equation 2 Lasso Regression Equation

$$\textstyle \sum_{i=1}^{M} \left(y_i - \widehat{y_i}\right)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{1}^{P} \beta_j x_{ij}\right)^2 + \propto \sum_{1}^{P} \left|\beta_j\right|$$

- In Ridge and Lasso the additional terms try to penalize the increase of coefficients by minimizing the joint term one of which is β_j^2 and $|\beta_j|$. The regularization term (alpha) regularizes the coefficients such that if the coefficients take large values the optimization function is penalized. By keeping the coefficient growth under check Ridge and Lasso Regression try to minimize the complexity of the model while preventing overfitting issues of linear regression.
- From the plots we can see how the coefficients start emerging for Ridge and Lasso with decreasing alphas. Decreasing the alpha will start the emergence of coefficients at orders of magnitude higher for Ridge than that of Lasso and hence Ridge optimal alphas are orders of magnitudes higher.
- The optimal value of the alpha can be chosen by the model in such a way that both mean-test-scores for testing data and training data is minimized, while maximizing their R2 scores.
- The difference between the Lasso and Ridge is that with the alpha increase for Ridge the
 coefficients starts shrinking towards zero but doesn't become zero where as in the Lasso
 the coefficients gets completely eliminated. Because of this the Lasso can lead to feature
 selection.

- The choice of the alpha and the model that we apply depends on the our business goal, in case we want to go for optimal feature selection's while making the model simpler then the Lasso is chosen, But if we want good accuracy with good scores(R2,Mean-test/train scores) include higher number of features without causing overfitting then we go for Ridge regression. However, the complexity will increase as the dynamic range of the coefficients becomes higher for Ridge and it demands higher bits to for processing and storage. Lasso will be useful when there are millions of features where ridge regression will lead to significant complexity.
- Ridge generally works well even in presence of highly correlated features as it will
 include all features where coefficients get decided based on the correlation between the
 features whereas in Lasso highly correlated features are selected and remaining are set
 to zero. Also change in Model parameters for Lasso changes the top predictor variable
 as compared to ridge regression. So, this also will be a factor for choosing the right
 model.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

- I. The top-5 Predictor Variabes with Lasso Regression
 - GrLivArea
 - Condition2_PosN
 - Condition2_PosA
 - OverallQual_8
 - OverallQual_9

Refer: Model Summary

- II. The top-5 Predictor Variables obtained from Lasso regression after eliminating the above Variables
 - YearBuilt_1893
 - 1stFlrSF
 - 2ndFlrSF
 - OverallQual_10
 - OverallQual_3

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

- More robust model is the model which does not change its accuracy when the training data changes. For a generalizable model it should not undergo changes when it sees a new data.
- Same model should fit properly to new, previously unseen data, assumed to be from the same distribution.
- To make the model more generalized and robust we must make the model simple.
- But when we try to make the model simple it suffers from bias as it does not
 perform well on the training data itself but when we try to make it complex it
 memorizes the data and suffers from overfitting, and it does not perform well on
 the test data and this variance of the model between training and test-data is
 termed as variance which is high for Complex models.
- Striking the right balance between the bias and variance where the variance of the model can be reduced by trading off against the training error*(bias) will achieve an optimal model.
- So the accuracy of the model on the training data is traded off in order to make it more robust and generalizable model for unseen data.
- This is achieved using Regularization techniques like Lasso and Ridge regression. Regularization helps with managing the model complexity by essentially shrinking the model coefficients estimates to 0 (by adding a penalty term for increased coefficients) and discourages the model from becoming too complex and thus avoiding the risk of overfitting and essentially making it more robust and generalizable.
- Regularization also takes care of Multicollinearity by reducing the coefficients of collinear variables close to zero.
- Apart from this the data analysis and cleaning need to be performed on training data by treatment of outliers and missing data with appropriate imputations, removal of unreliable features, removal of collinear features...etc to ensure the generation of a robust model.
- Based on the distribution of the target data the data-transformation also can be performed in case distribution is significantly skewed.

Appendix (Reference for Answers)

Model Summary

Multiple Model options were tried with various configurations for Linear, Ridge and Lasso Regression

- Model-1 Min-Max Scaling for Target and Predictor Variables, Log Transformation for Target Variable
- Model-2 Min Max scaling for Target and Predictor Variables, Log Transformation for Target Variable, Doubling of Optimal Regularization parameters obtained for Lasso and Ridge
- Model-3 Min-Max Scaling applied for Predictor Variables only, Log transformation of Target Variable
- Model-4 Min-Max Scaling applied for Predictor Variables, No Transformation of Target Variable
- Model-5 Min-Max Scaling applied for Predictor Variables+ Target Variable, No Transformation of Target Variable

Lasso Regression was also tried with elimination of the top-5 predictors for each Model.In some of the models the log transformation on the target variable was performed as the target variable showed some skewness in its distribution.

MODEL-I

- Min-Max Scaling for Target Variable along with the Predictor Variables
- · Log transformation of the Target Variable
- · Regression Linear, Ridge, Lasso & "Lasso with Top Predictors Eliminated" Performed

Lin	ear Regression		Ridge		Lasso		Lasso_New	
		LinearReg		Ridge		Lasso		Lasso_Top_Pred_Elim
	BsmtCond_Po	-0.668176	GrLivArea	0.152796	GrLivArea	0.279500	YearBuilt_1893	0.223142
	OverallQual_3	-0.462437	1stFirSF	0.100946	Condition2_PosN	-0.240197	1stFirSF	0.213242
	OverallQual_2	-0.453495	OverallQual_9	0.087843	Condition2_PosA	0.159116	2ndFlrSF	0.202960
	OverallQual_4	-0.403082	GarageArea	0.083459	OverallQual_9	0.154912	OverallQual_10	-0.163537
C	ondition2_PosN	-0.402971	BsmtFinSF1	0.080743	OverallQual_8	0.118378	OverallQual_3	-0.126222
	OverallQual_5	-0.335804	OverallQual_8	0.077459	OverallCond_9	0.114399	OverallQual_4	-0.125452
	YearBuilt_1880	0.311000	2ndFirSF	0.071262	BsmtFinSF1	0.110599	SaleType_ConLD	0.120687
	YearBuilt_1898	-0.299887	LotArea	0.061149	YearBuilt_1900	-0.104651	BsmtFinSF1	0.119126
	OverallQual_6	-0.272009	Neighborhood_Crawfor	0.060889	Neighborhood_MeadowV	-0.104395	OverallCond_9	0.118359
	YearBuilt_1987	0.261693	BsmtUnfSF	0.059987	YearBuilt_1932	0.103068	Neighborhood_MeadowV	-0.111529
		Metric	Linear Regression	Ridg	e Regression La	sso Reg	ression Lasso_	Top_Pred_Elim
0	Regular	ization	0.000000)	7.000000	0	.000100	0.000100
1	R2 Score	(Train)	0.853000	•	0.953000	0	.959000	0.955000
2	R2 Score	e (Test)	0.760000)	0.899000	0	.890000	0.892000
3	RSS	(Train)	10.952758		3.504164	3	.060471	3.353166
4	RSS	(Test)	7.527175	,	3.178369	3	3.461134	3.376821
5	RMSE	(Train)	0.103574		0.058584	0	.054750	0.057308
6	RMSE	(Test)	0.131093	1	0.085185	0	.088894	0.087805

Figure 5 Results for Model-I (Performance Scores, Top-Predictors and Coefficients)

MODEL-2

- Min-Max Scaling for Target Variable along with the Predictor Variables
- Log transformation of the Target Variable
- Regression Linear, Ridge, Lasso & "Lasso with Top Predictors Eliminated" Performed
- Regularization parameter is doubled for Lasso and Ridge (14 for Ridge, 0.0002 for Lasso)

Number of Features in Linear Regresion = 58 TOP FEATURES

Linear	Regression		Ridge		Lasso		Lasso_New		
		LinearReg	3	Ridge		Lasso		L	asso_Top_Pred_Elim
	BsmtCond_Po	-0.668176	GrLivArea	0.131937	GrLivArea	0.282427	1	stFirSF	0.222452
	OverallQual_3	-0.46243	7 1stFirSF	0.101777	OverallQual_9	0.147888	21	ndFirSF	0.19657
	OverallQual_2	-0.45349	GarageArea	0.077985	Condition2_PosN	-0.126013	OverallO	Qual_10	-0.135229
	OverallQual_4	-0.403082	OverallQual_9	0.074051	OverallQual_8	0.106936	Overal	Qual_3	-0.127780
	Condition2_PosN	-0.40297	1 OverallQual_8	0.072623	OverallCond_9	0.106341	Overall	Qual_4	-0.120425
	OverallQual_5	-0.33580	BsmtFinSF1	0.069176	BsmtFinSF1	0.104332	Condition	2_PosA	0.118278
	YearBuilt_1880	0.31100	2ndFirSF	0.060600	Neighborhood_MeadowV	-0.098417	Bsmt	FinSF1	0.110903
	Me	tric L	inear Regression	Ridge	Regression Las	so Reg	ression Las	so_Top	_Pred_Elim
0	Regulariza	ition	0.000000		14.000000	0	.000200		0.000200
1	R2 Score (Tr	ain)	0.853000		0.945000	0	.950000		0.946000
2	R2 Score (T	est)	0.760000		0.899000	0	.897000		0.897000
3	RSS (Tr	ain)	10.952758		4.092453	3	748709		4.033671
4	RSS (T	est)	7.527175		3.175073	3	.235024		3.224333
5	RMSE (Tr	ain)	0.103574		0.063311	0	.060594		0.062855
6	RMSE (T	est)	0.131093		0.085141	0	.085941		0.085799

Figure 6 Results for Model-2 (Performance Scores, Top-Predictors and Coefficients)

MODEL-3

- Min-Max scaling on Predictor Variables only
- · Log transformation of the Target Variable
- Regression Linear, Ridge, Lasso & "Lasso with Top Predictors Eliminated" Performed

Number of Features in Linear Regresion = 54 TOP FEATURES

	LinearReg		Ridge		Lasso		Lasso Top Pred Elim
YearBuilt_1880	0.638420	GrLivArea	0.200143	GrLivArea	0.384372	1stFirSF	0.40116
Condition2_PosN	-0.543200	1stFirSF	0.132226	OverallQual_9	0.178837	2ndFirSF	0.23975
BsmtCond_Po	-0.463904	OverallQual_9	0.115063	OverallQual_8	0.138723	OverallQual_4	-0.15132
YearBuilt_2008	0.395005	GarageArea	0.109320	GarageArea	0.134877	OverallQual_3	-0.144006
YearBuilt_2007	0.383596	BsmtFinSF1	0.105763	BsmtFinSF1	0.093642	OverallQual_5	-0.11180
MSSubClass_180	-0.377639	OverallQual_8	0.101461	Neighborhood_Crawfor	0.077942	LotArea	0.098426
RoofMatl_WdShake	0.377202	2ndFirSF	0.093344	Neighborhood_Somerst	0.073738	Neighborhood_Somerst	0.095468
YearBuilt_1987	0.353799	LotArea	0.080098	CentralAir_Y	0.072597	OverallQual_6	-0.093566
	etric L	inear Regression		Regression Lass	_	ession Lasso 1	Top_Pred_Elim

	Metric	Linear Regression	Riage Regression	Lasso Regression	Lasso_lop_Pred_Ellm
0	Regularization	0.000000	7.000000	0.001000	0.001000
1	R2 Score (Train)	0.767000	0.953000	0.928000	0.916000
2	R2 Score (Test)	0.671000	0.899000	0.890000	0.887000
3	RSS (Train)	29.702012	6.012277	9.222387	10.677458
4	RSS (Test)	17.702366	5.453294	5.901445	6.086434
5	RMSE (Train)	0.170561	0.076737	0.095041	0.102264
6	RMSE (Test)	0.201038	0.111582	0.116076	0.117881

Figure 7 Results for Model-3 (Performance Scores, Top-Predictors and Coefficients)

MODEL-4

- Min Max Scaling is applied only on Predictor Variables
- No Transformation applied to Target Variable
- Regression Linear, Ridge, Lasso & "Lasso with Top Predictors Eliminated" Performed

Number of Features in Linear Regresion = 55 TOP FEATURES Linear Regression Ridge Lasso Lasso_New LinearReg Ridge Lasso Lasso Top Pred Elim 1stFirSF **GrLivArea** 39250.623970 GrLivArea 75809.918445 Heating_OthW -102098.484324 2ndFlr\$F 45002.931036 OverallQual_9 50466.657630 OverallQual_9 28168.064530 Condition2_PosN -84609.305311 OverallQual_9 79123.055944 1stFirSF 25335.798828 OverallQual_8 33704.142516 OverallQual 4 -30977.605495 GarageArea 20506.462485 YearBuilt_1880 77453.243126 OverallCond_9 21883.332020 BsmtCond_Po -77362.972708 OverallQual_8 20248.615012 BsmtFinSF1 21204.839524 -30092:947093 OverallQual_3 -59893.269259 BsmtFinSF1 19506.810981 GarageArea 21166.518014 Metric Linear Regression Ridge Regression Lasso Regression Lasso_Top_Pred_Elim 0 0.000000e+00 8.000000e+00 1.000000e+02 Regularization 1.000000e+02 1 R2 Score (Train) 8.490000e-01 9.480000e-01 9.340000e-01 9.270000e-01 R2 Score (Test) 8.940000e-01 8.910000e-01 7.580000e-01 8.900000e-01 3 RSS (Train) 6.490639e+11 2.248939e+11 2.854148e+11 3.153608e+11 RSS (Test) 4.307153e+11 1.941131e+11 1.878468e+11 1.952776e+11 5 RMSE (Train) 2.521337e+04 1.484144e+04 1.671958e+04 1.757483e+04 RMSE (Test) 3.135870e+04 2.070927e+04 2.111491e+04 2.105185e+04

Figure 8 Results for Model-4 (Performance Scores, Top-Predictors and Coefficients)

MODEL-5

- Min-Max Scaling for Target Variable along with the Predictor Variables
- No transformation of the Target Variable
- Regression Linear , Ridge , Lasso & "Lasso with Top Predictors Eliminated" Performed

Number of Features in Linear Regresion = 49 TOP FEATURES

RSS (Test)

RMSE (Train)

RMSE (Test)

Linear	Regression		Ridge		Lasso		Lasso_New	
		LinearReg		Ridge		Lasso		Lasso_Top_Pred_Elim
	Condition2_PosN	-0.534324	GrLivArea	0.164849	GrLivAre	ea 0.311662	Condition2_PosN	-0.461705
	BsmtCond_Po	-0.509124	OverallQual_9	0.118304	OverallQual	_9 0.208414	1stFirSF	0.295728
	Heating_OthW	-0.450044	1stFirSF	0.106408	OverallQual	_8 0.140904	Condition2_PosA	0.218193
	OverallQual_3	-0.436686	GarageArea	0.086125	GarageAre	ea 0.092887	2ndFirSF	0.212998
	OverallQual_4	-0.415598	OverallQual_8	0.085042	BsmtFinSi	F1 0.070454	OverallQual_4	-0.148879
	OverallQual_5	-0.380742	BsmtFinSF1	0.081927	1stFirs	SF 0.060455	OverallQual_10	-0.141768
	YearBuilt_1880	0.335951	2ndFirSF	0.072366	LotAre	ea 0.058289	OverallQual_5	-0.139274
	Me	etric Li	inear Regression	Ridge	Regression L	asso Reg	ression Lasso_To	p_Pred_Elim
0	Regulariza	ation	0.000000		8.000000	0	.001000	0.000100
1	R2 Score (T	rain)	0.847000		0.948000	0	.918000	0.949000
2	R2 Score (Test)	0.749000		0.894000	0	.884000	0.873000
3	RSS (T	rain)	11.555673		3.966971	6	.175760	3.833260

3.313485

0.062333

0.086977

Figure 9 Results for Model-5 (Performance Scores, Top-Predictors and Coefficients)

7.879431

0.106386

0.134125

3.635397

0.077774

0.091104

3.992477

0.061273

0.095474

Across Models Inferences

- 3-4 Predictors among the Top-5 Predictors found to be mostly same across all the Model Variations for Lasso Regression. (GrLivArea, GarageArea, OverallQual_8, OverallQual_9)
- 3-4 Predictors among the Top-5 Predictors found to be mostly same across all the Model Variations for Ridge Regression (GrLivArea,1stFlrSF, OverallQual_8, OverallQual_9)
- 3 Predictors among the Top-5 Predictors are mostly same between Ridge and Lasso Regression for most of the Models.
- Top predictor variables with and without Min-Max scaling of the Target variable is same.
 (Model-4 and Model-5)

