ЛИНЕЙНЫЕ ОПЕРАТОРЫ

Пусть L - линейное пространство.

Определение. $\hat{A}: L \to L$ называется *отображением*, если каждому

 $\vec{x} \in L$ ставится в соответствие единственный вектор $\vec{y} \in L$: $\vec{y} = \hat{A}\vec{x}$,

 \vec{y} - образ вектора \vec{x} , \vec{x} - прообраз \vec{y} .

Пусть \vec{x} , $\vec{y} \in L$, $\alpha \in R$.

Определение. Отображение \hat{A} , действующее в L, называется линейным оператором, если:

- 1) $\hat{A}(\vec{x} + \vec{y}) = \hat{A} \vec{x} + \hat{A} \vec{y}; \ \forall \ \vec{x}, \vec{y} \in L;$

Свойства линейного оператора:

- 1) $\hat{A}\vec{0} = \vec{0}$;
- 2) $\hat{A}(\alpha \vec{x} + \beta \vec{y}) = \alpha \hat{A} \vec{x} + \beta \hat{A} \vec{y}$.

Пусть L - конечномерное линейное пространство.

Матрица линейного оператора $\widehat{\mathbf{A}}$

Пусть в линейном пространстве L задан линейный оператор $\hat{A}: L \to L$ и некоторый базис $S = \{\vec{e}_1, \dots, \vec{e}_n\}$.

Найдем образ произвольного вектора $\vec{x} = (x_1, ..., x_n) \in L$, заданного своими координатами в базисе $S = \{\vec{e}_1, ..., \vec{e}_n\}$.

$$\vec{y} = \hat{A}\vec{x} = \hat{A}(x_1\vec{e}_1 + \dots + x_n\vec{e}_n) = x_1\hat{A}\vec{e}_1 + \dots + x_n\hat{A}\vec{e}_n$$

Таким образом, действие линейного оператора полностью определено, если известны образы векторов базиса.

Подействуем оператором \hat{A} на векторы базиса $S = \{\vec{e}_1, ..., \vec{e}_n\}$:

$$\hat{A}\vec{e}_1 = a_{11}\vec{e}_1 + \dots + a_{n1}\vec{e}_n$$

$$\hat{A}\vec{e}_n = a_{1n}\vec{e}_1 + \dots + a_{nn}\vec{e}_n.$$

Получим матрицу $A = \begin{pmatrix} a_{11} & ... & a_{1n} \\ ... & ... & ... \\ a_{n1} & ... & a_{nn} \end{pmatrix}$, столбцами которой являются координаты образов базисных векторов.

Матрицу A, полученную таким образом, называют матрицей линейного оператора \hat{A} в базисе $S = \{\vec{e}_1, ..., \vec{e}_n\}$.

Если известна матрица $\mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$ линейного оператора, то можно найти координаты образа произвольного вектора $\vec{x} = (x_1, \dots, x_n) \in L$:

$$\vec{y} = \hat{A}\vec{x} = > \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$

или

$$Y=AX$$
, где $Y=egin{pmatrix} y_1 \ \cdots \ y_n \end{pmatrix}$, $X=egin{pmatrix} x_1 \ \cdots \ x_n \end{pmatrix}$.

Таким образом, действие линейного оператора \hat{A} на вектор \vec{x} сводиться к умножению некоторой матрицы $\mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$ на вектор-столбец

$$X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
, составленный из координат вектора \vec{x} в базисе $S = \{\vec{e}_1$, ..., \vec{e}_n }.

<u>Замечание.</u> Матрица линейного оператора полностью характеризует линейный оператор. Кроме того, любая квадратная матрица порядка n определяет линейный оператор n-мерного линейного пространства L.

Определение. Образом линейного оператора \hat{A} называется множество $Im\ \hat{A}$ всех векторов L, таких что, для любого $\vec{y} \in Im\ \hat{A}\ \exists \vec{x}: \hat{A}\vec{x} = \vec{y}$.

Определение. Ядром линейного оператора \hat{A} называется множество $Ker \hat{A}$ всех векторов L, таких что, для любого $\vec{x} \in Ker \hat{A}$ $\hat{A}\vec{x} = \vec{0}$

Пусть A - матрица линейного оператора \hat{A} в некотором базисе. Тогда $\ker \hat{A}$ является решением однородной системы AX=0; где $O=\begin{pmatrix} 0\\ \vdots\\ 0 \end{pmatrix}$;

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Теорема. Ядро и образ линейного оператора, действующего в L, являются линейными подпространствами пространства L.

Определение. Рангом линейного оператора называется размерность его образа. Rang $(\hat{A}) = \dim(\operatorname{Im} \hat{A})$.

Определение. Дефектом линейного оператора называется размерность его ядра. Defect $(\hat{A}) = \dim (\operatorname{Ker} \hat{A})$.

Теорема. Для \forall линейного оператора $\hat{A}: L \to L$ Rang (\hat{A}) + Defect (\hat{A}) = dim L.

Пусть в L заданы два базиса $S_1 = \{\vec{e}_1, \dots, \vec{e}_n\}$ и $S_2 = \{\vec{f}_1, \dots, \vec{f}_n\}$.

Теорема (преобразование матрицы линейного оператора при переходе к другому базису). Матрицы A_1 и A_2 линейного оператора \hat{A} в базисах S_1 и S_2 связаны соотношением $A_2 = P^{-1}A_1P$, где P - матрица перехода от базиса S_1 к базису S_2 .

Определение. Линейный оператор \hat{A}^{-1} называется обратным к линейному оператору \hat{A} , действующему в пространстве L, если $\hat{A}\hat{A}^{-1} = \hat{A}^{-1}\hat{A} = \hat{I}$, где \hat{I} тождественный оператор ($\hat{I}\vec{x} = \vec{x}$).

Таким образом
$$\hat{A}(\hat{A}^{-1}\vec{x}) = \hat{A}^{-1}(\hat{A}\vec{x}) = \vec{x}$$
.

Теорема (критерии обратимости линейного оператора).

- 1) Линейный оператор \hat{A} , действующий в линейном пространстве L, обратим тогда и только тогда, когда его матрица в каком-либо базисе невырожденная (det $A \neq 0$).
- **2)** Линейный оператор \hat{A} , действующий в линейном пространстве L, обратим тогда и только тогда, когда его образ совпадает со всем пространством L: Im $\hat{A} = L$
- **3)** Линейный оператор \hat{A} , действующий в линейном пространстве L, обратим тогда и только тогда, когда его ядро тривиально, т.е. Ker $\hat{A} = \{\vec{0}\}$.

Если линейный оператор \hat{A}^{-1} существует, то его матрицей является матрица A^{-1} .