Handling of the cluster 3D Fortran90-code

Instructions and status report

Started 23 April 2010; status 20. December 2016

Contents

1	Inst	allation and usage	2
	1.1	Installation	2
	1.2	Options for configure script	3
	1.3	Basic input structure	5
	1.4	Some practical advices	5
2	Inp	ut files	7
\mathbf{A}	On	the initialization of the electronic wavefunctions	15
В	Оре	en ends and to-be-dones	16

1 Installation and usage

1.1 Installation

- 1. Choose and create a directory where to install a code.
- 2. Download in the chosen directory the package pw-teleman_122016.tar.gz
- 3. Uncompress and unpackage the file:

```
gunzip pw-teleman_012017.tar.gz
tar -xvf pw-teleman_012017.tar
```

A directory 'pw-teleman' will be created. Enter this directory:

```
cd pw-teleman
```

- 4. Before compilation, one should update some settings (for detailed explanations of the parameters see section 2):
 - (a) Edit pw-teleman/code/source_f90/define.h to choose the wanted code options
 - (b) Edit pw-teleman/code/source_f90/params.F90 if you need to change some limiting values (rarely required).
- 5. To use environment modules for compiling or running a code, load a particular module. To see all available modules, run module avail, when you get command not found you must do for bash:
 - . /etc/profile.d/modules.sh

and for csh:

. /etc/profile.d/modules.csh.

Once you have done this, you can run:

```
module load <module name>
```

For example:

```
module load intel/composer_xe_2013.4.183
module load cuda/5.0
module load openmpi/1.6.4-intel
```

6. Run configure with appropriate options (see alist of option in section 1.2). Configure will create an appropriate Makefile for compilation. If no option is given, default compilation options will be used:

```
./configure
or, with some options:
./configure --with-compiler=your_compiler --with-fft=NETLIB etc...
```

7. Finally execute make command:

make

The executable will be created in the bin directory.

Default name for the new executable is 'cprefix>_pwtelaman.<extension>'. prefix prefix depends on the FFT library used, and will be 'gpu' for Cuda cuFFT, 'fftw' for FFTW3, 'mkl' for FFTW3 with MKL, or 'netlib' for NETLIB FFT pack (default). Depending on the choice made for parallelization, <extension> will be 'par' (parallel), 'seq' (sequential) or 'sim' (simpara).

Example: an executable build using MKL and full parallelization will be named:

 $mkl_pwteleman.par$

1.2 Options for configure script.

Options can be passed to the configure script in order to choose for:

- compiler;
- compilation options (static, debug);
- parallelization (MPI, OpenMp);
- FFT library (NETLIB, FFTW3, MKL, cuFFT).

If some of your libraries are not located in the system default search path, you need to add the adequate flags by setting environnement variable LDFLAGS when running configure:

```
./configure ... options ... LDFLAGS="-L/path/to/lib -L/path/to/other/lib"
Also, use variable CPPFLAGS in order to add nonstandard directory containing headers:
./configure ... options ... CPPFLAGS="-I/path/to/headers"
```

Options for configure script				
Usage: ./configure [with-options]				
with-compiler= <choice></choice>	Choice of compiler. <choice> can be one of: gfortran,</choice>			
	ifort, mpifort (or older mpif90), xlf_r (no warranty).			
	Default is ifort if installed, gfortran otherwise.			
with-openmp[=dyn]	Invoke OpenMP.			
	with-openmp: use threads for FFT.			
	with-openmp=dyn: wave function parallelization.			
	Cannot be used together with optionwith-para			
with-para[=sim]	Choice of MPI parallelization.			
-	If not specified: sequential (no parallelization)			
	with-para: use full MPI parallelization.			
	with-para[=sim]: use pseudo-parallel code (simpara,			
	runs different inputs simultaneously).			
	Not available with all compilers, it is advised			
	to prefer the use of mpifort (or older mpif90).			
	Cannot be used together with optionwith-openmp			
	Camillot be used together with option with option			
with-fft= <choice></choice>	Choice of the FFT library. <choice> can be NETLIB,</choice>			
	FFTW (for FFTW3), MKL (for intel MKL) or CUFFT			
	(for CUDA cuFFT).			
	Default is NETLIB (furnished sources).			
	MKL requires fftw3xf wrappers for FFTW3 functions.			
	If wrappers are not intalled in standard location,			
	user can indicate the location using option			
	with-wrappers			
with-wrappers= <path></path>	Use this option to give the path to fftw3xf wrappers			
	for mkl, if the wrappers are not located in			
	\$MKLROOT/interfaces/fftw3xf. Wrappers allow MKL			
	routines to be called instead of FFTW3 routines			
with-mklthreads	together with optionwith-fft=MKL, uses MKL threads.			
	No effect with other FFT.			
with-static	Use static compilation. The final executable			
	will be able to work independently from			
	the external libraries.			
	This makes a big executable.			
	The make a sig executable.			
with-debug	Use compiler-specfic debug option during compilation.			
with-xW	Use deprecated optimization option -xW instead			
	C CCTA O A O			

of -axSSE4.2 -msse4.2

-				
Additionnal flags for configure script				
Usage	Usage: ./configure [with-options] [FLAGS]			
CPPFLAGS=" <flags>"</flags>	Used to add flags for the preprocessor at compile time.			
	Use this when you have headers in a nonstandard directory,			
	with <flags> being one or more flags</flags>			
	of the form -I/path/to/include			
LDFLAGS=" <flags>"</flags>	Used to add flags for the linker at compile time.			
	Use this if you have libraries in a nonstandard directory,			
	with <flags> being one or more flags</flags>			
	of the form -L/path/to/library			

1.3 Basic input structure

The cluster 3D code has five entries for options:

	$compile\ time$
define.h	variants of the code
	run time
for005. <name></name>	general input for settings, static and dynamics
for005ion. <name></name>	ionic configuration of cluster
<pre>for005surf.<name></name></pre>	atomic configuration of substrate (optional)
for005	defines the qualifier <name> for the other for005 files</name>

The first entry have to be set before compilation. The other four are read in for an actual run and can be varied from run to run. The input structure for these files is summarized in section 2.

1.4 Some practical advices

Important compile-time settings:

You have to chose the wanted options in 'define.h'.

Save and restart:

The parameters 'isave', 'istat', and 'irest' (in for005.<name>) allow to switch saving wavefunctions and restarting from them.

For ismax>0 and isave>1, the static wavefunctions are saved on rsave after the static iterations. These can be used in two ways. Setting istat=1 and ismax>0 continues static iteration from rsave. Setting ismax=0, istat=1, irest=0, and, of course, itmax>0 starts a dynamical run at time zero with the static wavefunctions

from rsave.

Dynamical configurations are saved on save. <name> after every isave time steps. Setting irest=1 will continue the dynamical calculation from the stage saved in save. <name>.

Diagonalization amongst occupied states:

The run time option ifhamdiag=1 activates the diagonalization of the mean-field Hamiltonian amongst the active wavefunctions in each static iteration step. This option can accelerate the convergence of the static solution significantly. *However:* At present, this method works safely only if the number of active states nstate equals the actual number of electrons. This has to be checked by the user. It may work in other cases, but may also induce oscillating iteration which nevers converges.

2 Input files

Compile time settings in define.h				
version control:				
IVERSION define your own version number				
grid represe	grid representation of kinetic energy:			
gridfft	FFT			
findiff	finite diffences 3. order (yet unsafe)			
numerov	finite diffences 5. order (yet unsafe)			
Variants of	the Coulomb solver (for gridfft=1):			
coufou	FALR (standard)			
coudoub	exact boundary conditions			
parallele ve	ersion:			
parayes	use parallelization for wavefunctions			
parano	produce serial code			
simpara	pseudo-parallel code, runs different inputs simultaneously			
versions of SIC for electrons:				
fullsic	old full SIC			
symmcond	old full SIC with double set technique			
twostsic	new full SIC from PhD Messud (obsolete)			
	Compile time settings in define.h – part 2			
options for	options for substrate:			
raregas enables substrates				

5. <name></name>	
st)	
this	
surface thickness of jellium background quadrupole deformation of jellium background	
triaxiality of jellium background	
s will	
ВОХ	
3011	
L:£±1777 \	
hiftWFx)	
-	

	Namelist GLOBAL	in for005. <name></name>
	convergence issues	
e0dmp damping parameter for static solution of Kohn-Sham equat.		am equations
	(typically about the energy of the lowest bound st	sate)
epswf	step size for static solution of Kohn-Shahm equati	ons (of order of 0.5)
epsoro	required variance to terminate static iteration (or	$der of 10^{-5}$)

	Namelist DYNAMIC	in for005. <name></name>			
numerical and physical parameters for statics and dynamics					
dt1	Δ.				
ismax	maximum number of static iterations $\frac{1}{\Delta x^2} \leq 1$				
idyniter	switch to s.p. energy as E0DMP for 'iter>idyniter'				
ifhamdiag	- 5	*			
IIIIamulag	diagonalization of m.f. Hamiltonian in static step (presently limited to fully occupied configurations)				
isitmax	nr. of imaginary-time steps to improve	,			
itmax	number of time steps for electronic prop				
ifexpevol	exponential evolution 4. order instead of	_			
iffastpropag	accelerated time step in TV splitting	л т у зриссиид			
111db opi opag	(for pure electron dynamics, interplay v	with absorbing b c ??)			
irest	switch to restart dynamics from file 'sar	= '			
istat	switch to read wavefunctions from file ':				
15000	it continues static iteration for 'ismax				
	it starts dynamics from these wf's for				
idenfunc	choice of density functional for LDA	i isiiiax—0			
ruciii uiic	$1 \rightarrow \text{Perdew & Wang 1992 (default sett}$	ing)			
	$2 \rightarrow \text{Gunnarson & Lundquist}$, iiig)			
	$3 \rightarrow \text{only exchange in LDA}$				
isave	saves results after every 'isave' steps				
IBAVC	on file 'rsave' in and after static iteration	nn			
	on file 'save' in dynamic propagation)11			
ipseudo	switch for using pseudo-densities to rep	resent substrate			
1750440	atoms				
ipsptype	type of pseudopotentials: $0 = \text{soft local}$	(errf):			
1 1 1 1 1	1 = full Goedecker; 2 = local Goedecker;				
	3 = read from file goed.asci (no need to specify);				
	4 = semicore read from file goed.asci	1 0))			
directenergy	.true. = direct computation of energy	7			
0,3	(only for LDA, Slater, KLI)				
ifsicp	selects type of self-interaction correction	n			
1	0 = pure LDA, 1 = SIC-GAM, 2 = AD				
	4 = SIC-KLI; $5 = exact exchange$; $6 =$				
	7 = localized SIC; 8 = full SIC (double	,			
	IFSICP=7 or 8 requires switch twosts:	<i>'</i>			
	Option IFSICP=7 needs yet testing.				
icooltyp	type of cooling (0=none, 1=pseudo-dyn	namics,			
	2=steepest descent, 3=Monte Carlo)				
ifredmas	switch to use reduced mass for ions in o	dynamics			
ionmdtyp	ionic propagation (0=none, 1=leap-frog	g, 2=velocity Verlet)			
ntref	nr. time step after which absorbing bou				
nabsorb	number of absorbing points on boundar				
powabso	power of absorbing boundary conditions	S			
ispherabso	switch to spherical mask in absorbing b	oounds			

	Namelist DYNAMIC	in for005. <name></name>			
	way of excitation				
centfx	initial boost of electronic wavefunction	ns in x-direction			
centfy	initial boost of electronic wavefunction	ns in y-direction			
centfz	initial boost of electronic wavefunction	ns in z-direction			
tempion	initial temperature of cluster ions				
ekmat	initial kinetic energy of substrate atom	(boost in x , in eV)			
itft	choice of shape of laser pulse				
	1 = ramp laser pulse, sine switching or	n/off			
	2 = gaussian laser pulse				
	$3 = \cos^2 \text{ pulse}$				
tnode	time (in fs) at which pulse computation	n starts			
deltat	length of ramp pulse ($itft = 1$), in fs				
tpeak	time (in fs, relative to tnode) at which	peak is reached			
	(for $itft = 1$ and 2, pulse length beco	$\mathrm{mes}\ 2^*$ tpeak $)$			
omega	laser frequency (in Ry)				
e0	laser field strength in Ry/Bohr				
e1x,e1y,e1z	orientation of pulse				
e0_2	field strength of second laser pulse (on	ly itft=3)			
phase2	phase of second pulse				
omega2	frequency of second pulse				
tstart2	initial ime of second pulse				
tpeak2	peak time of 2. pulse (pulse length is 2	2*tpeak2)			
iexcit	modus of excitation (0=shifts, 1=rotat	ion)			
iangmo	switch to compute angular momentum				
irotat	axis of rotation for excitation (x=1,y=				
phirot	angle of rotation for excitation (in unit	s of degree)			
phangle	angle of "rotation" into a $1ph$ state				
phphase	phase of "rotation" into a $1ph$ state				
nhstate, npstate	nr. of hole and particle state for $1ph$ ex	xcitation			
	this $1ph$ option can only be run from i	.stat=1			
eproj	energy of incoming projectile (= last ic	on in the list)			
vpx,vpy,vpz	direction of the incoming projectile				
taccel	time span over which the projectile is a	accelerated to eproj			
	for taccel=0 one has to use init_lcae	p=1			

Namelist DYNAMIC			
flags for observables			
iemomsRel calculates multipole momentes of electron density			
relative to origin (0) or c.m. of cluster (1)			
modulus for printing information in static iteration	on		
switch to compute and print spatial s.p. moment	S		
switch to compute and print transition m.elemen	ts		
switch to slices of integrated densities for all time	es		
modulus for printing information in dynamic			
jinfo modulus for printing dynamical information on infosp. < nam			
jdip modulus for printing dipole moments on pdip. <name></name>			
modulus for printing quadrupole moments on pqu	uad. <name></name>		
modulus for printing ionization pescel. <name></name>			
modulus for printing energy information on pene	rgies. <name></name>		
activates computation of Becke's localization			
modulus for analyzing and printing electron local	lization in dynamics		
various files are written of the form pelf*. <name< td=""><td>>></td></name<>	>>		
modulus for analyzing and printing electron local	lization in statics		
modulus for printing s.p. energies and variances			
modulus for printing ionic positions on pposion.	<name></name>		
modulus for printing ionic velocities on pvelion.	<name></name>		
jstateoverlap switch to compute overlap of static state with			
the state directly after dynamical initialization			
	calculates multipole momentes of electron density relative to origin (0) or c.m. of cluster (1) modulus for printing information in static iterative switch to compute and print spatial s.p. moments switch to compute and print transition m.elements switch to slices of integrated densities for all time modulus for printing information in dynamic modulus for printing dynamical information on it modulus for printing dipole moments on pdip. modulus for printing quadrupole moments on pdip. modulus for printing ionization pescel. name modulus for printing energy information on penetactivates computation of Becke's localization modulus for analyzing and printing electron local various files are written of the form pelf*. name modulus for printing s.p. energies and variances modulus for printing ionic positions on pposion. modulus for printing ionic velocities on pvelion switch to compute overlap of static state with		

	Namelist SURFACE	in for005. <name></name>
ne	Number of fixed shells in substrate	
nc	number of O cores in $MgO(001)$	
nk	number of Mg cations in $MgO(001)$	
ivdw handling of Van-der-Waals with substrate ato		te atoms
	$0 \Longrightarrow \text{no VdW}$	
	$1 \Longrightarrow$ enables full computation of VdW	
	$2 \Longrightarrow$ enables effective VdW through Ps.	P parameters
ifadiadip	switch to adiabatic treatment of substrat	te dipoles
shiftx	global shift in x for all substrate atoms	
shifty, shiftz	as shiftx for y and z direction	
mion	mass of surface anion (16 for O in MgO((001))
mkat	mass of surface kation (24.3 for Mg in M	IgO(001)
me	mass of valence shell	
cspr	spring constant for interaction between o	core and valence shell
chgc0	charge of (anion) core	
chge0	charge of valence shell	
chgk0	charge of cation	
sigmak	gauss width of cation	
sigmac	gauss width of core	
sigmav	gauss width of valence shell	
iUseCell	switch for reading/building lattice of sub	ostrate atoms
iPotFixed	 0 ⇒ lattice atoms are read in from input 1 ⇒ lattice is built from replicating unit lattice parameters rlattvec are is switch for Madelung summation of substread/write electrostatic potential from passo that their run-time calculation can be 0 ⇒ do not read; calculate full potential 	it cell and read in (see md.F) crate atoms articles with imob=0, e skipped
<pre>ifmdshort isrtyp(i,j)</pre>	 1 ⇒ read in potFixedIon() from previor -1 ⇒ calculate potFixedIon() write results be later read in by option 1, stop after 2 ⇒ calculate potFixedIon() at the begaincludes short range interaction electron-type of interaction between the different 0 → no short range interaction 1 → GSM core 2 → GSM valence shell =1 ⇒ Born-Matter 3 → GSM kation =2 ⇒ Argon case 4 → Na core 	usly prepared file ult to a file which can ter that ginning, do not write -substrate kinds of particles
unfixCLateralRadx unfixELateralRadx fixCBelowx	$5 \rightarrow \mathrm{DFT}$ electron radius of cylinder with mobile cores radius of cylinder with mobile valence electron fixes cores which lay below given x value	

	Namelist PERIO	in for005. <name></name>
ch	effective charge of ion	
amu	mass of ion in units of hydrogen ma	SS
dr1,dr2	radii of soft local PsP	
prho1,prho2	strenghts of soft local PsP	
crloc	radius for local part of Goedecker P	sP
cc1,cc2	strengths for local part of Goedecke	r PsP
r0g,r1g,r2g	radii for non-local parts of Goedecke	er PsP
h0_11g,h0_22g,h0_33g	strenghts for non-local parts of Goed	decker PsP
h1_11g,h1_22g,h2_11g	strenghts for non-local parts of Goed	decker PsP
radiong	carrier radius for projecteor in non-l	local Goedecker PsP

	Nl' EGIG	
	Namelist FSIC	in for005. <name></name>
step	step size in iteration of localizing or symmetry condition	
precis	precision in iteration of localizing or symmetry condition	
${\tt SymUtBegin}$	nr. iteration where symmetry condition starts	
	for pure localizing step set SymUtBeg	ginį ismax
radmaxsym	limiting value in radius division for	actucal step

Ionic structure and e^- -initialization in for005ion.<name> This initialization does not use NAMELIST but reads input in fixed order.

Each line stands for one ion. Each column has a definite meaning.

- Col. 1 x-coordinate
- Col. 2 y-coordinate
- Col. 3 z-coordinate
- Col. 4 number of element in periodic system (e.g.: Na↔11)
- Col. 5 only init_lcao=1: ordering of nodes in repeated initialization at this ion
- Col. 6 only init_lcao=1: radius of initial Gaussian at this ion
- Col. 7 only init_lcao=1: starting spin for initalization at this ion

The handling of the initialization of electronic wavefunctions is rather involved. A more detailed explanation is given in appendix A.

A On the initialization of the electronic wavefunctions

The basic switch is init_lcao. The case init_lcao=0 is the simpler option. This initializes harmonic oscillator wavefunctions about one common center. This center is usually the origin of the coordinte-space grid. It can be moved deliberately by shiftWFx, shiftWFy, and shiftWFz. The initial oscillator may be deformed. Its deformation is given by the dimensionless quadrupole b2occ and triaxiality gamocc (in degree). The oscillator states are filled in order of increasing oscillator energies. A spin asymmtry can be enforced with ispinsep=1. This option is useful when dealing with odd electron number. The upper end of initialization is determined by deocc. A deocc \approx 0 typically initializes just as many states as are occupied. If more is required, enhance deocc.

The case init_lcao=1 initializes wavefunctions which are localized at the ions. This option is richer and a bit hard to handle. In a first step, the total number of wavefunctions is estimated and it is computed how many wavefunctions have to be initialized then for each ion. At one given ion, initialization starts with the 1s oscillator state. The first choice of spin is taken from column 7 of for005ion. <name> which initializes the entry of the actual ion in the the ipol array. The value ipol=+1 sets a spin up (i.e. ispin=1 in the code) as the first choice, while ipol=-1 sets a spin down (i.e. ispin=2). If more than one state is to be occupied, the next is then the 1s state with opposite spin. Next comes the $1p_i$ state with first spin where i is the direction given as first entry in column 5. For example if column 5 selects 'yzx', the $1p_y$ comes here. Occupation continues in order given by column 5 and 7 until the wanted number of orbitals at this ion site is reached. Column 6 sets the oscillator radius for the initialization at this ion (which allows to deal efficiently with systems consisting of very different ions). Column 7 becomes important for ions associated with an odd number of electrons as, e.g., hydrogen. One ought to distribute an equal collection of spins up and down over the whole system to avoid unnaturally polarized molecules.

B Open ends and to-be-dones

Status of Fortran90 code development:

- All common blocks have been replaced by modules and corresponding USE command. The then appearing dependences are mapped in the makefile.
- The code has been moved to IMPLICIT NONE. All variables should now be declared.
- All code is now genuinly double precision and can be complied without the autodouble option. Only exception if the FFT package fftpack.F90 in connection with NETLIB which still requires the autodouble, as handled explicitly in the Makefile. Note that the precision is set at the header of params.F90 and used as a KIND parameter in typical Fortran90 fashion. The name is set to DP.
- The somewhat dangerous practice of reusing workspace has been abandoned. Workspace is now associated dynamically with the ALLOCATE/DEALLOCATE mechanisms.
- The compiled code works now for all box sizes and number of s.p. states as long as memory allows. The box size and maximum number of states is now entered in for005.<name> in namelist GLOBAL.

Next in Fortran90 code development:

- Remove numbered labels and GOTO in favour of CYCLE or EXIT switches.
- Exploit compact vector operations to simplify long (and nested) DO loops.
- The access USE kinetic has been given too generously. Confine that to routines which really need it.
- The module params.F90 collects practically all global variables. It should be disentangled to more specific modules with restricted access.
- There are still problems with running substrates. For example the leap-frog switch does not propagate the substrate electrons. This case has to be tested.

 In future, it may be that the whole subtrate part is trated in a separate program connected to the electronic part by a master routine written in ttt python.
- Full SIC has yet to be implemented.

Open problems of general nature:

- The implementation of GSlat and full SIC needs to be checked and updated if necessary.
- Check PES and PAD for the option parayes.
- Option iaddCluster is presently questionable. It may be extended to allow for initialization of cluster collisions.
- The computation of pseudo-potentials from the substrates valence electrons should be separated from the slower atomic (ionic) parts. This concerns routine calcpseudo.
- The setting for the valence-electron mass in 'vstep' may be wrong for the case of MgO.
- Check proper setting of 'time' in outputs.
- Exponential propagation should yet be certified to cooperate with ionic motion.
- Subgrids for Gaussian pseudo-densities have fixed grid size of ± 7 points. This should be made more flexible to accommodate mesh size in relation for PsP radius.
- Although not necessary for performance, one may replace DO loops by the Fortran 95 SUM construct. This will make the code more transparent. This also holds for other compact Fortran 95 constructs.
- Present parallele version still needs to specify the number of nodes at compile time. This should be changed to allow dynamical adjustment of number of nodes.
- Spin-averaged code (numspin=1) does not reproduce the results from full spin calculation in case of ADSIC. Check.