Méthodologie de calcul d'un correcteur PID

1 - Rappels sur les objectifs de la commande

Un objectif majeur de l'automatique [1] est la conception des lois de commande destinées à élaborer le signal u(t). Ces lois seront mises en oeuvre par des systèmes concrets, analogiques ou numériques. La figure 1 représente un système de commande, celui-ci a pour sortie le signal de commande u(t). Il a pour entrées, d'une part un signal de consigne (ou signal de référence), noté r(t) et d'autre part la mesure y(t). Le système global constitué du processus à contrôler et du système de commande est un système en boucle fermée.

Figure 1 - Système de commande

La boucle fermée seule est capable de :

- stabiliser un système instable en boucle ouverte,
- compenser des perturbations externes,
- compenser des incertitudes internes au processus lui-même.

Un même système de commande peut réaliser deux fonctions distinctes :

- l'asservissement, c'est à dire la poursuite, par la sortie, d'une consigne variable au cour du temps,
- la régulation, c'est à dire la compensation (ou rejet) de l'effet de perturbations variables sur la sortie.

La théorie de l'automatique permet de concevoir et d'analyser des correcteurs en tenant compte de multiples objectifs, des contraintes imposées par le procédé, notamment son entrée et des compromis qui en résultent. Les principaux objectifs sont :

- maintenir ou obtenir la stabilité,
- faire poursuivre rapidement une consigne par un système naturellement lent,
- obtenir des réponses rapides sans brutaliser les actionneurs,
- rejeter des perturbations non mesurées,
- tenir compte des incertitudes omniprésentes, aussi bien dans le modèle du processus à commander, que dans les caractéristiques des bruits et perturbations.

L'expérience a enseigné aux automaticiens qu'un simple P.I.D. (ou même P.I.) suffisait à obtenir d'excellentes performances. Par ailleurs, le P.I.D. présente des atouts majeurs :

- il est standardisé du point de vue matériel et on le trouve dans toutes les technologies (électronique, pneumatique, numérique...),

- il est standardisé du point de vue conceptuel, tous les automaticiens expérimentés connaissent l'effet spécifique des trois actions.

- le P.I.D. peut être réglé sur le site, empiriquement, par un technicien qui observe les réponses en boucle fermée et rectifie son réglage.

2 - Les différentes actions du correcteur PID

Comme son nom l'indique, le PID comporte trois actions P, I, D, une action de filtrage pouvant être ajoutée. Sa fonction de transfert est donnée par l'expression (1):

$$C(p) = C_0 \frac{1 + \tau_{ip}}{\tau_{ip}} \frac{1 + \tau_{ap}}{1 + \tau_{bp}} \frac{1}{1 + \tau_{fp}} , \qquad (1)$$

ou encore,

$$C(p) = C_0 \cdot C_1(p) \cdot C_2(p) \cdot C_3(p)$$
, (2)

avec Co, l'action proportionnelle ou gain du correcteur,

$$C_1(p) = \frac{1 + \tau_i p}{\tau_i p}$$
, l'action intégrale, (3)

$$C_2(p) = \frac{1+\tau_a p}{1+\tau_b p}$$
, l'action dérivée, (4)

$$C_3(p) = \frac{1}{1 + \tau_f p}$$
, l'action de filtrage. (5)

Le diagramme asymptotique de gain de C(j\omega) est donn\u00e9e par la figure 2 :

Figure 2 - Diagramme asymptotique de gain d'un correcteur PID

Le PID avec action de filtrage est donc caractérisé par 5 paramètres : C_0 , τ_i , τ_a , τ_b , τ_f . Sa synthèse nécessite donc de déterminer ces 5 paramètres à partir du cahier des charges, c'est à dire des performances souhaitées, notamment la rapidité, la précision, le degré de stabilité, le rejet de perturbations.

La prise en compte de ces éléments se traduit notamment par deux paramètres caractéristiques de la commande :

- la pulsation au gain unité ω_u , qui fixe la rapidité de l'asservissement et qui, par définition, est la fréquence pour laquelle le gain de la boucle ouverte $\beta(j\omega_u)$ est égale à l'unité,
- la marge de phase, M_{ϕ} , qui fixe le degré de stabilité et qui est la différence entre l'argument de la boucle ouverte $\beta(j\omega_u)$ à la pulsation ω_u et -180°.

Figure 3 - Diagramme de Bode d'une boucle ouverte $\beta(j\omega)$

Les paragraphes suivants présentent brièvement le rôle de chacune des actions, leur influence sur la commande et les limitations quant au choix de leurs paramètres respectifs. Une méthodologie de calcul d'un correcteur PID est aussi présentée.

2.1 - Action proportionnelle

L'action proportionnelle permet de fixer la pulsation au gain unité ω_u en boucle ouverte, sachant que ω_u détermine la rapidité de l'asservissement et donc notamment le temps de réponse de la réponse indicielle.

 ω_u est généralement choisie entre 5 et 10 fois ω_c , la fréquence transitionnelle basse du procédé. C_0 est alors réglé en conséquence.

L'action proportionnelle modifie le gain statique de la boucle ouverte comme l'indique la figure 4.

Elle dépend d'un seul paramètre : C₀, le gain du correcteur.

Figure 4 - Module de l'action proportionnelle

2.2 - Action intégrale

L'action intégrale permet d'annuler l'erreur statique et de rejeter les perturbations en sortie du procédé.

Cette action modifie le gain et la phase en basses fréquences et ne doit pas ou peu modifier le gain et la phase autour de ω_u . On a donc ω_i : $\omega_i = 1/\tau_i < \omega_u$. Un correcteur à action proportionnelle intégrale $C_1(p)$ est donnée par la relation (6) :

$$C_1(p) = \frac{1 + \tau_i p}{\tau_i p}$$
 (6)

Son diagramme de Bode est présenté par la figure 5. L'action intégrale dépend d'un seul paramètre : τ_i .

-90°

C1(j ω) dB

-20 dB/déc

0dB $1/\tau i \quad \omega u_{\parallel}$ Arg [C1(j ω)]°

0°

-45°

-45°

-45°

Figure 5 - Diagramme de Bode de l'action intégrale

Plus τ; est petite, plus ω; est grande et meilleure est l'action intégrale.

Cependant lorsque $\omega_i = 1/\tau_i$ se déplace vers les hautes fréquences, c'est-à-dire vers ω_u , les courbes de gain et de phase du correcteur PI viennent modifier le gain et la phase de la boucle ouverte autour de ω_u .

Si ω_i reste < ω_u /5 la modification du gain à ω_u pour le PI est pratiquement nulle. Par contre le PI apporte un retard de phase non négligeable, par exemple :

-26,6° pour
$$\omega_i = \omega_u/2$$
,
-11,3° pour $\omega_i = \omega_u/5$,
-5,7° pour $\omega_i = \omega_u/10$.

Ce retard de phase n'est pas un inconvénient, à condition, d'une part d'en tenir compte lors du calcul du correcteur à avance de phase (correcteur PD) ; d'autre part que le PD puisse apporter l'avance de phase nécessaire afin d'obtenir la marge de phase souhaitée en tenant compte de l'argument du procédé à ω_u et du retard de phase apporté par le PI à ω_u .

2.3 - Action proportionnelle dérivée

L'action proportionnelle dérivée permet d'apporter de l'avance de phase autour de la pulsation au gain unité ω_u afin d'obtenir la marge de phase souhaitée M_ϕ pour garantir le degré de stabilité fixé par le concepteur. Cette action modifie le gain et la phase du procédé autour de ω_u .

La fonction de transfert d'un correcteur à action proportionnelle dérivée (PD), ou correcteur à avance de phase $C_2(p)$, est donnée par la relation suivante qui comprend en fait l'action proportionnelle vue au paragraphe 2.1 :

$$C_2(p) = C_0 \frac{1 + \tau_a p}{1 + \tau_b p}$$
 (7)

Son diagramme de Bode est présenté par la figure 6.

et

Figure 6 - Diagramme de Bode de l'action proportionnelle dérivée

Il existe plusieurs méthodes pour calculer un correcteur à avance de phase. La méthode suivante permet de calculer directement le correcteur, sans itération, à ω_u fixée par le concepteur.

L'action proportionnelle dérivée dépend de 3 paramètres C_0 , $\omega_a = 1/\tau_a$ et $\omega_b = 1/\tau_b$ directement calculés à partir de ω_u et M_{ϕ} souhaitées en boucle ouverte. ω_u sera la pulsation centrale du correcteur PD et Φ_m l'avance de phase que celui-ci doit apporter à ω_u .

On a alors:
$$1/\tau_a < \omega_u < 1/\tau_b$$
. (8)

Deux grandeurs sont à définir par le concepteur :

 $\omega_{\rm u}$ = pulsation au gain unité désirée (en rd/s),

$$\label{eq:argument} \begin{split} \text{Arg}[C(j\omega_u).G(j\omega_u)]^\circ = \text{argument de la boucle ouverte désiré (en °) à ω_u désirée, qui dépend de la marge de phase désirée M_ϕ, sachant que :$$

 $|C(j\omega_u).G(j\omega_u)|_{dB}$ = module de la boucle ouverte (en dB) à ω_u désirée = 0 dB par définition,

et deux autres grandeurs sont à mesurer :

 $|G(j\omega_u)|_{dB}$ = module du procédé (en dB) à ω_u désirée, Arg $[G(j\omega_u)]^\circ$ = argument du procédé (en °) à ω_u désirée. Les trois paramètres du correcteur $\tau_a,\,\tau_b$ et C_o s'en déduisent alors :

$$\Phi_{m} = Arg[C(j\omega_{u}).G(j\omega_{u})]^{\circ} - Arg[G(j\omega_{u})]^{\circ}$$
,

$$a = \frac{1 + \sin(\Phi_m)}{1 - \sin(\Phi_m)} ,$$

$$\omega_a = \frac{1}{\tau_a} = \frac{\omega_u}{\sqrt{a}} \quad , \quad$$

$$\omega_b = \frac{1}{\tau_b} = \omega_u.\sqrt{a} \quad ,$$

Le gain C_0 permet de régler le module de la boucle ouverte corrigée à 0dB pour la pulsation ω_u désirée :

 $|C(j\omega_u).G(j\omega_u)|_{dB} = 20\log[C_0] + 10\log[a] + |G(j\omega_u)|_{dB} = 0dB.$

2.4 - Action de filtrage

L'action de filtrage permet d'éliminer les bruits sur le signal de commande en hautes fréquences. Cette action modifie le gain et la phase aux hautes fréquences et ne doit pas ou peu modifier le gain et la phase autour de ω_u .

La fonction de transfert du filtre passe-bas C₃(p) est donnée par la relation suivante :

$$C_3(p) = \frac{1}{1 + \tau_{f}p}$$
 (9)

On a donc:

$$\omega_{\mathbf{u}} < \omega_{\mathbf{f}} = 1/\tau_{\mathbf{f}}.\tag{10}$$

Son diagramme de Bode est présenté par la figure 7.

L'action de filtrage dépend d'un seul paramètre, τ_f , la constante de temps du filtre.

Figure 7 - Diagramme de Bode d'une action de filtrage

Plus τ_f est petite, plus les bruits sont filtrés. Cependant lorsque ω_f se déplace vers les basses fréquences, c'est à dire vers ω_u , les courbes de gain et de phase du filtre viennent modifier le gain et la phase de la boucle ouverte autour de ω_u .

Si ω_f reste > $5\omega_u$, la modification du gain à ω_u pour le filtre est pratiquement nulle. Par contre le filtre apporte un retard de phase non négligeable, par exemple :

-26,6° pour
$$\omega_i = 2\omega_u$$
,
-11,3° pour $\omega_i = 5\omega_u$,
-5,7° pour $\omega_i = 10\omega_u$.

et

Ce retard de phase n'est pas un inconvénient, à condition, d'une part d'en tenir compte lors du calcul du correcteur à avance de phase (correcteur PD) ; d'autre part que le PD puisse apporter l'avance de phase nécessaire afin d'obtenir la marge de phase souhaitée en tenant compte de l'argument du procédé à ω_u et du retard de phase apporté par le filtre à ω_u .

3 - Méthodologie de synthèse d'un correcteur PID

Il existe différentes méthodes de synthèse d'un correcteur PID, plus ou moins systématiques. La méthode que présente ce paragraphe permet de calculer sans itération le correcteur PID.

Généralement le cahier des charges pour la synthèse du correcteur PID est du type suivant : afin de rejeter correctement les échelons de perturbations, l'étude en régulation impose une marge de phase M_ϕ et la fréquence au gain unité en boucle ouverte ω_u , généralement égale de 5 à $10\omega_c$, ω_c étant la fréquence transitionnelle basse du procédé. La pulsation d'intégration $\omega_i = 1/\tau_i$ est choisie la plus grande possible et telle que le retard de phase apporté à ω_u soit de 6° maximum. La pulsation de filtrage $\omega_f = 1/\tau_f$ est choisie la plus petite possible et telle que les bruits de fréquences $\geq 10\omega_u$ soient filtrés.

Donc, deux grandeurs sont à définir par le concepteur :

 ω_u = pulsation au gain unité désirée (en rd/s),

 $Arg[C(j\omega_u).G(j\omega_u)]^\circ = argument de la boucle ouverte désiré (en °) à <math>\omega_u$ désirée, qui dépend de la marge de phase désirée M_{ϕ} ,

sachant que:

$$|C(j\omega_u).G(j\omega_u)|_{dB}$$
 = module de la boucle ouverte (en dB) à ω_u désirée = 0 dB par définition,

et deux autres grandeurs sont à mesurer :

 $|G(j\omega_u)|_{dB}$ = module du procédé (en dB) à ω_u désirée, Arg $[G(j\omega_u)]^\circ$ = argument du procédé (en °) à ω_u désirée.

Connaissant ces 4 grandeurs, on en déduit les 5 paramètres du correcteur dans l'ordre suivant : τ_i , τ_f , τ_a , τ_b et C_0 , avec :

$$1/\tau_{i} << 1/\tau_{a} < \omega_{u} < 1/\tau_{b} << 1/\tau_{f}.$$
 (11)

- calcul de τ_i

 τ_i est choisie telle que le retard de phase apporté à ω_u soit de 6°,

$$\Leftrightarrow \omega_i = \frac{1}{\tau_i} = \frac{\omega_u}{10},$$

$$\Longleftrightarrow \tau_i \!\!=\!\!\! \frac{10}{\omega_u}.$$

- Calcul de τ_f

 τ_f est choisie telle que les fréquences supérieures à 10 ω_u soient filtrées. Le retard de phase apporté à ω_u est de 6°,

$$\Leftrightarrow \omega_f = \frac{1}{\tau_f} = 10\omega_u,$$

$$\Leftrightarrow \tau_f \!\!=\!\! \frac{1}{10\omega_u}.$$

- Calcul de τ_a et τ_b

Les trois paramètres du correcteur $\tau_a,\,\tau_b$ et C_o s'en déduisent alors :

$$\Phi_{\rm m} = \text{Arg}[C(j\omega_{\rm u}).G(j\omega_{\rm u})]^{\circ} - (\text{Arg}[G(j\omega_{\rm u})]^{\circ} - 6^{\circ} - 6^{\circ}),$$

$$a = \frac{1 + \sin(\Phi_m)}{1 - \sin(\Phi_m)} ,$$

$$\omega_a = \frac{1}{\tau_a} = \frac{\omega_u}{\sqrt{a}} \quad , \quad$$

$$\omega_b = \frac{1}{\tau_b} = \omega_u.\sqrt{a} \quad ,$$

Le gain C_0 permet de régler le module de la boucle ouverte corrigée à 0dB pour la pulsation ω_u désirée :

$$|C(j\omega_u).\beta(j\omega_u)|_{dB} = 20\log[C_0] + 10\log[a] + |\beta(j\omega_u)|_{dB} = 0dB.$$

- Exemple de synthèse d'un correcteur PID

Supposons que le cahier des charges impose ω_u = 20rd/s, $M\phi$ = 60° et une erreur statique nulle. Le retard de phase qu'apporte le PI à ω_u devra être de -6° maximum. Les fréquences supérieures à $10\omega_i$ seront filtrées.

Les mesures sur le procédé $G(j\omega)$ à ω_u donnent :

$$Arg[G(j\omega_u)] = -160^\circ$$
,

et
$$|G(j\omega_u)|dB = -8dB$$
.

On en déduit :

$$\Leftrightarrow \tau_i \!\!=\!\! \frac{10}{\omega_u} \!=\! 0.5$$
 s, 6° de retard de phase à ω_u

$$\Leftrightarrow \tau_f\!\!=\!\!\frac{1}{10\omega_u}\!=5.10^{\text{-}3}~\text{s}$$
 , 6° de retard de phase à ω_u ,

$$\phi m = -120^{\circ} - (-160^{\circ} - 6^{\circ} - 6^{\circ}) = 52^{\circ}$$

$$a = \frac{1 + \sin(\phi_m)}{1 - \sin(\phi_m)} = 8,43$$
,

$$\tau_a = 1/\omega_a = \frac{\sqrt{a}}{\omega_u} = 145 \text{ ms},$$

$$\tau_b = 1/\omega_b = \frac{1}{\omega_u \sqrt{a}} = 17 \text{ ms},$$

$$C_0 / 0dB = 20log(C_0) + 10log(a) - 8dB,$$

 $C_0 = 0.87.$

On obtient alors le correcteur suivant :

$$C(p) = 0.87 \frac{1 + 0.5p}{0.5p} \frac{1 + 0.145p}{1 + 0.017p} \frac{1}{1 + 5.10^{-3}p} .$$

4 - Synthèse fréquentielle d'un correcteur numérique et notamment d'un PID numérique

Cette méthodologie permet de calculer un correcteur discret $C(z^{-1})$ soit à partir du modèle continu G(p), soit à partir du modèle discret $G_0(z)$, avec les mêmes outils qu'en continu.

Cette méthodologie est présentée en Annexe A.2.

5 - Bibliographie

[1] - Ph. de LARMINAT - Automatique : commande des systèmes automatisés - Editions HERMES, Paris - 1993.