

팀번호 5

2024-하계 집중이수제 주간학습보고서 (3주차)

창의과제	Unsupervised domain adapation 이미지 Segmentation 알고리즘 연구							
이름	김이나		학습기간	2024.07.08 ~ 2024.07.14				
학번	21011647		학습주차		3주차	학습시간	8	
학과(전공)	컴퓨터공학과		과목명	자기주	도창의전공 III	수강학점	3	
* 수강학점에 따른 회차별 학습시간 및 10회차 이상 학습 준수								
금주 학 습목 표	GPU 사용을 위한 GCP 환경 세팅 및 코드 reimplementation 진행							
	 <gcp li="" 세팅〉<="" 환경=""> PØDA: Prompt-driven Zero-shot Domain Adaptation 논문의 성능을 개선하기 위해서, 몇 가지 환경 세팅이 필요했다. 1. 50 GB 정도의 데이터셋을 보관할 storage 2. Nvidia GPU, 작지 않은 시스템 RAM 3. 4명이 공용 계정으로 쓸 환경 이에 Colab Pro와 Google Cloud Platform의 compute engine을 함께 쓰기로 결정하였다. 클라우드 서비스를 처음 써보며 설정한 환경은 아래와 같다. </gcp>							
학습내용	Series ② N1	Description Balanced price		vCPUs ?		atform tel Skylake		
			Monthly estimate \$314.93 That's about \$0.43 hour Pay for what you use: no i Item 4 vCPU + 15 GB men 1 NVIDIA T4 10 GB balanced pers Use discount	upfront costs and per	second billing Monthly estimate \$177.94 \$270.10 \$1.30 -\$134.41			
	어러 reference를 참고하여 , 2개의 cpu 코어와 15GB의 시스템 메모리, 그리고 100GB의 부팅 디스크로 결정했다. 또한 , 개인 SSH private key를 발급 받아 vs code에서도 사용할 수 있도록 아래와 같이 설정을 했다. Host 34.64.145.26 HostName 34.64.145.26							
	HostName 34.64.145.26 User yinakim							

이제 환경 세팅이 끝났으면 , GPU Driver를 적용할 차례이다.

순서는 다음과 같다.

GPU 드라이버 설치-> CUDA 설치-> cudann 설치 -> GPU 설정 완료 우분투 환경에 맞도록 버전을 주의하였고 , 성공적으로 GPU 세팅이 완료되었고 코드 reimplementation을 시작할 준비가 되었다.

<논문 코드 reimplementation>

논문의 깃허브[링크:<u>https://github.com/astra-vision/PODA</u>] 코드를 clone 받은 뒤 Training부터 inference까지의 reimplementation을 거치고자 했다.

! python3 PIN_aug.py --dataset 'cityscapes' --data_root '<u>/cor</u>

2024-07-02 10:07:56.537832: I tensorflow/core/util/port.cc:11 2024-07-02 10:07:56.588979: E external/local_xla/xla/stream_e 2024-07-02 10:07:56.589024: E external/local_xla/xla/stream_e 2024-07-02 10:07:56.590547: E external/local_xla/xla/stream_e 2024-07-02 10:07:56.590547: E external/local_xla/xla/stream_e 2024-07-02 10:07:56.597951: I tensorflow/core/platform/cpu_fe To enable the following instructions: AVX2 AVX512F AVX512_NNN 2024-07-02 10:07:57.756571: W tensorflow/compiler/tf2tensorrt cuda

Dataset: cityscapes, Train set: 2975, Val set: 500

100%| 244M/244M [00:C

코드 분석

PIN_aug.py main.py 1. 첫째 성능 개선

PIN_aug.py

import pickle
import os
import clip

그림: training 수행하는 모습, Notion에 코드를 리뷰하는 모습

해당 내용 수행을 통해 지난 주에 리뷰한 논문의 PIN_aug 의 역할을 더 심층있게 공부할 수 있었다.

또한 , 코드 리뷰를 돌아가면서 수행함으로써 자신이 몰랐던 기능이나 오개념을 바로잡을 수 있었다.

학습방법

[Google Cloud Platform 공식문서 참고]

최적의 VM instance를 구성할 수 있도록 Billing 예상 서비스와, 환경 설정 관련 문서를 적용하며 클라우드 컴퓨팅 서비스에 대해서 알게 되었다. 모두가 모여 같이 필요한 글을 찾아보고 ssh 키를 발급받으며 적용해보았다.

[코드 reimplementation]

논문의 코드를 이해함으로써 지난 주의 내용을 더욱 심층적으로 이해하였다. 또한 Notion에 코드를 주석과 함께 정리해두고 만나서 코드 리뷰하는 시간을 가졌다.

학습성과 및 목표달성도

100%

- 1. Cloud Copmuting Service를 처음 경험해보며 , 환경 세팅부터 GPU 드라이버 설치까지 실험에 필요한 조건을 고려하여 구성하여 도움이 되었다.
- 2. 논문의 코드를 해석하고 경로를 수정해서 training부터 inference까지의 과정을 거치며 reimplementation을 성공적으로 마칠 수 있었다.

참고자료 및 문헌	https://jeinalog.tistory.com/8 : GCP 환경 설정 https://cloud.google.com/?hl=ko : Google Cloud Platform
내주 계획	성능 향상 위한 새로운 방법론 (논문)survey - 1 가설 설정 : PODA optimization시 synthesis image를 활용하여 domain gap을 줄인다.

2024 년 07 월 14 일

지도교수 김세원

