Выполнена: ФИО	класс
----------------	-------

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Математика. 11 класс. Вариант МА10609

Ответом к каждому из заданий 1–12 является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы.

1	Показания счётчика электроэнергии 1 февраля составляли 71181 кВт ч,
	а 1 марта — 71 326 кВт ч. Сколько нужно заплатить за электроэнергию
	за февраль, если 1 кВт ч электроэнергии стоит 5 рублей 20 копеек? Ответ
	дайте в рублях.

Ответ:

На рисунке жирными точками показано суточное количество осадков, выпадавших в Томске с 8 по 24 января 2005 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какого числа за данный период впервые выпало ровно 1,5 миллиметра осадков.

Ответ: ____

3 Найдите площадь четырёхугольника, изображённого на клетчатой бумаге с размером клетки 1×1.

Ответ: ______.

4 На конференцию приехали 6 учёных из Швейцарии, 3 из Болгарии и 6 из Австрии. Каждый из них делает на конференции один доклад. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что третьим окажется доклад учёного из Болгарии.

Ответ: . .

5 Найдите корень уравнения $\sqrt{\frac{3}{5x-30}} = \frac{1}{5}$.

Ответ: ______.

6 Основания равнобедренной трапеции равны 43 и 7. Высота трапеции равна 27. Найдите тангенс острого угла трапеции.

Ответ: ______.

7 Прямая y = -3x + 8 параллельна касательной к графику функции $y = x^2 + 7x - 6$. Найдите абсциссу точки касания.

Ответ: ______.

В цилиндрический сосуд налили 2200 см³ воды. Уровень жидкости оказался равным 16 см. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 6 см. Чему равен объём детали? Ответ выразите в см³.

Ответ: ______.

Часть 2

9 Найдите значение выражения $\left(17a^{12}b^3 - \left(5a^4b\right)^3\right):\left(4a^{12}b^3\right)$ при a=-2,8 и b=5,3.

Ответ:

Некоторая компания продаёт свою продукцию по цене p=600 руб. за единицу, переменные текущие затраты на производство одной единицы продукции составляют v=400 руб., постоянные расходы предприятия $f=600\,000$ руб. в месяц. Месячная прибыль предприятия (в рублях) вычисляется по формуле $\pi(q)=q(p-v)-f$, где q (единиц продукции) — месячный объём производства. Определите значение q, при котором месячная прибыль предприятия будет равна 500 000 руб.

Ответ: ______.

11 Пристани A и B расположены на озере, расстояние между ними равно 234 км. Баржа отправилась с постоянной скоростью из A в В. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в В. Найдите скорость баржи на пути из A в В. Ответ дайте в км/ч.

Ответ: . .

12 Найдите наименьшее значение функции $y = 8 + \frac{5\pi\sqrt{3}}{18} - \frac{5\sqrt{3}}{3}x - \frac{10\sqrt{3}}{3}\cos x$ на отрезке $\left[0; \frac{\pi}{2}\right]$.

Ответ: .

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13 а) Решите уравнение $\frac{\log_2^2(\sin x) + \log_2(\sin x)}{2\cos x \sqrt{3}} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{\pi}{2}; 2\pi\right]$.
- В одном основании прямого кругового цилиндра с высотой 3 и радиусом основания 8 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
 - а) Докажите, что диагонали этого сечения равны между собой.
 - б) Найдите объём пирамиды *CABNM*.
- **15** Решите неравенство $\frac{35^{|x|} 5^{|x|} 5 \cdot 7^{|x|} + 5}{2^{\sqrt{x+2}} + 1} \ge 0.$
- 16 Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D.
 - а) Докажите, что $\angle ABM = \angle DBC = 30^{\circ}$.
 - б) Найдите расстояние от центра прямоугольника до прямой ${\it CM}$, если ${\it BC}=9$.

У фермера есть два поля, каждое площадью 8 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 350 ц/га, а на втором — 200 ц/га. Урожайность свёклы на первом поле составляет 250 ц/га, а на втором — 300 ц/га.

Фермер может продавать картофель по цене 2500 руб. за центнер, а свёклу — по цене 3000 руб. за центнер. Какой наибольший доход может получить фермер?

18 Найдите все значения a, при которых уравнение

$$(2x+a+1+tgx)^2 = (2x+a-1-tgx)^2$$

имеет единственное решение на отрезке $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

- Возрастающие арифметические прогрессии a_1, a_2, \dots и b_1, b_2, \dots состоят из натуральных чисел.
 - а) Приведите пример таких прогрессий, для которых $a_1b_1 + a_3b_3 = 3a_2b_2$.
 - б) Существуют ли такие прогрессии, для которых $a_1b_1 + 2a_4b_4 = 3a_3b_3$?
 - в) Какое наибольшее значение может принимать произведение a_3b_3 , если $a_1b_1+2a_4b_4\leq 300$?

Ответы к тренировочной работе по математике 06.03.2017

(профильный уровень)

	1	2	3	4	5	6	7	8	9	10	11	12
Вариант 10609	754	9	24,5	0,2	21	1,5	-5	825	-27	5500	9	3
Вариант 10610	918	14	22,5	0,4	30	2	4	300	-20	6000	10	4
Вариант 10611	3	277	5	0,16	5	45	-5	282,5	-13	4	90	-5
Вариант 10612	5	23	6,5	0,25	-1	45	-1	170	14	5	80	-4

Критерии оценивания заданий с развёрнутым ответом

- a) Решите уравнение $\frac{\log_2^2(\sin x) + \log_2(\sin x)}{2\cos x \sqrt{3}} = 0.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{\pi}{2}; 2\pi\right]$.

Решение.

а) Перейдём к системе:

$$\begin{cases} \log_2(\sin x) (\log_2(\sin x) + 1) = 0, \\ 2\cos x - \sqrt{3} \neq 0. \end{cases}$$

Пусть $y = \log_2(\sin x)$.

Получаем

$$y(y+1)=0$$
, откуда $y=0$ или $y=-1$.

После обратной замены получаем $\log_2(\sin x) = 0$ или $\log_2(\sin x) = -1$, то есть $\sin x = 1$ или $\sin x = \frac{1}{2}$ при условии $\cos x \neq \frac{\sqrt{3}}{2}$.

Если $\sin x = \frac{1}{2}$, то

$$x = \frac{\pi}{6} + 2\pi k$$
 или $x = \frac{5\pi}{6} + 2\pi n, k, n \in \mathbb{Z}$.

Числа $x=\frac{\pi}{6}+2\pi k$, $k\in\mathbb{Z}$, не удовлетворяют условию $\cos x\neq \frac{\sqrt{3}}{2}$.

Если $\sin x = 1$, то

$$x = \frac{\pi}{2} + 2\pi m, \ m \in \mathbb{Z}.$$

б) C помощью числовой окружности отберём корни на отрезке $\left[\frac{\pi}{2};2\pi\right]$

Получим $x = \frac{5\pi}{6}$ или $x = \frac{\pi}{2}$.

Ответ: a) $\frac{5\pi}{6} + 2\pi n$; $\frac{\pi}{2} + 2\pi m$, $n, m \in \mathbb{Z}$; 6) $\frac{\pi}{2}$; $\frac{5\pi}{6}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a или в пункте δ .	1
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- В одном основании прямого кругового цилиндра с высотой 3 и радиусом основания 8 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
 - а) Докажите, что диагонали этого сечения равны между собой.
 - б) Найдите объём пирамиды *CABNM* .

Решение.

а) Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Отрезки AN и BM равны как диагонали прямоугольника, что и требовалось доказать.

Отрезок *OH* равен $\sqrt{8^2-4^2}=4\sqrt{3}$. Высота *CH* пирамиды *CABNM* равна $8+4\sqrt{3}$. Следовательно, объём пирамиды *CABNM* равен

$$\frac{1}{3} \cdot 24 \cdot \left(8 + 4\sqrt{3}\right) = 64 + 32\sqrt{3}$$
.

Ответ: б) $64 + 32\sqrt{3}$.

Содержание критерия			
Имеется верное доказательство утверждения пункта а, и	2		
обоснованно получен верный ответ в пункте δ			
Верно доказан пункт а.	1		
ИЛИ			
Верно решён пункт δ при отсутствии обоснований в пункте a			
Решение не соответствует ни одному из критериев, перечис-	0		
ленных выше			
Максимальный балл	2		

Решите неравенство $\frac{35^{|x|} - 5^{|x|} - 5 \cdot 7^{|x|} + 5}{2^{\sqrt{x+2}} + 1} \ge 0.$

Решение.

Преобразуем неравенство:

$$\frac{\left(7^{|x|}-1\right)\left(5^{|x|}-5\right)}{2^{\sqrt{x+2}}+1} \ge 0.$$

Имеем $2^{\sqrt{x+2}} + 1 > 0$ при любом $x \ge -2$; при x < -2 неравенство решений не имеет.

© СтатГрад 2016-2017 уч. г.

Математика. 11 класс. Вариант МА10609

Если x = 0, то $7^{|x|} - 1 = 0$.

Если $x \neq 0$, то $7^{|x|} - 1 > 0$, тогда

$$5^{|x|} - 5 \ge 0$$
, откуда $|x| \ge 1$.

Otbet: $-2 \le x \le -1$; x = 0; $x \ge 1$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- 16 Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D.
 - а) Докажите, что $\angle ABM = \angle DBC = 30^{\circ}$.
 - б) Найдите расстояние от центра прямоугольника до прямой CM, если BC = 9.

Решение.

а) Обозначим $\angle CBD = \alpha$. Треугольник BMD равнобедренный, поэтому $\angle DBM = \angle BDM = \angle CBD = \alpha$.

Прямоугольные треугольники ACB и BDA равны по катету и гипотенузе, поэтому $\angle ACB = \angle ADB = \alpha$.

Пусть H — точка пересечения BM и AC . Тогда BH — высота прямоугольного треугольника ABC ,

проведённая из вершины прямого угла. Значит, $\angle ABH = \angle ACB = \alpha$.

Следовательно, $\angle ABM = \angle DBM = \angle CBD = \frac{1}{3} \cdot 90^{\circ} = 30^{\circ}$.

б) Имеем
$$AB = BC \operatorname{tg} 30^{\circ} = \frac{9}{\sqrt{3}} = 3\sqrt{3}$$
,

$$AM = AB \operatorname{tg} 30^{\circ} = \frac{3\sqrt{3}}{\sqrt{3}} = 3, MD = AD - AM = 9 - 3 = 6.$$

Из прямоугольного треугольника *СМD* находим

$$MC = \sqrt{CD^2 + MD^2} = \sqrt{(3\sqrt{3})^2 + 6^2} = 3\sqrt{7}$$
.

© СтатГрад 2016-2017 уч. г.

Пусть O — центр прямоугольника ABCD. Расстояние от центра O прямоугольника ABCD до прямой CM равно высоте OP треугольника CMO. Площадь треугольника CMO равна половине площади треугольника ACM:

$$S_{OCM} = \frac{1}{2} S_{ACM} = \frac{1}{4} AM \cdot AB = \frac{1}{2} CM \cdot OP \; ; \quad OP = \frac{AM \cdot AB}{2 \cdot MC} = \frac{3 \cdot 3\sqrt{3}}{2 \cdot 3\sqrt{7}} = \frac{3\sqrt{3}}{2\sqrt{7}} \; .$$

Ответ: $\frac{3\sqrt{3}}{2\sqrt{7}}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и обоснован-	3
но получен верный ответ в пункте δ	
Обоснованно получен верный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

У фермера есть два поля, каждое площадью 8 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 350 ц/га, а на втором — 200 ц/га. Урожайность свёклы на первом поле составляет 250 ц/га, а на втором — 300 ц/га.

Фермер может продавать картофель по цене 2500 руб. за центнер, а свёклу — по цене 3000 руб. за центнер. Какой наибольший доход может получить фермер?

Решение.

17

Заметим, что на первом поле с одного гектара можно собрать либо 350 центнеров картофеля и получить 875 000 рублей, либо 250 центнеров свёклы и получить 750 000 рублей. Таким образом, нужно всё первое поле отдать под картофель. На втором поле с одного гектара можно собрать либо 200 центнеров картофеля и получить 500 000 рублей, либо 300 центнеров свёклы и получить 900 000 рублей. Поэтому второе поле нужно целиком отдать под свёклу.

В этом случае фермер сможет заработать 8 · 350 · 2500 + 8 · 300 · 3000 = = $14\,200\,000$ (рублей).

Ответ: 14,2 млн рублей.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели, получен неверный ответ из-за	
вычислительной ошибки	
Верно построена математическая модель, и решение сведено	1
к исследованию этой модели, при этом решение не завершено	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	3

18

Найдите все значения a, при которых уравнение

$$(2x+a+1+tg x)^2 = (2x+a-1-tg x)^2$$

имеет единственное решение на отрезке $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

Решение.

Преобразуем уравнение:

$$(2x+a+1+tg x)^{2} - (2x+a-1-tg x)^{2} = 0;$$

(2+2tg x)(4x+2a)=0,

откуда

tg x=-1 или $x=-\frac{a}{2}$ при условии, что $-\frac{a}{2}\neq \frac{\pi}{2}+\pi k$, $k\in\mathbb{Z}$.

Число $\frac{\pi}{2} + \pi k$ принадлежит отрезку $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ при k = -1 и k = 0.

Уравнение $\lg x = -1$ имеет на отрезке $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ единственный корень $-\frac{\pi}{4}$.

Следовательно, данное уравнение имеет единственное решение на отрезке $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, только если число $-\frac{a}{2}$ или находится вне отрезка $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, или

совпадает с $\frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$, или совпадает с $-\frac{\pi}{4}$, то есть $-\frac{a}{2} < -\frac{\pi}{2}$; $-\frac{a}{2} > \frac{\pi}{2}$; $-\frac{a}{2} = -\frac{\pi}{2}$; $-\frac{a}{2} = \frac{\pi}{2}$ или $-\frac{a}{2} = -\frac{\pi}{4}$; откуда $a \le -\pi$; $a = \frac{\pi}{2}$ или $a \ge \pi$.

Ответ: $a \le -\pi$; $a = \frac{\pi}{2}$; $a \ge \pi$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены все значения a , но ответ	3
содержит лишнее значение	
С помощью верного рассуждения получены все решения уравнения	2
Задача верно сведена к исследованию возможного значения корней	1
уравнения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

- **19** Возрастающие арифметические прогрессии a_1, a_2, \dots и b_1, b_2, \dots состоят из натуральных чисел.
 - а) Приведите пример таких прогрессий, для которых $a_1b_1 + a_3b_3 = 3a_2b_2$.
 - б) Существуют ли такие прогрессии, для которых $a_1b_1 + 2a_4b_4 = 3a_3b_3$?
 - в) Какое наибольшее значение может принимать произведение a_3b_3 , если $a_1b_1+2a_4b_4\leq 300$?

Решение.

- а) Подходящим примером являются прогрессии 1, 3, 5, ... и 1, 4, 7, ... Для этих прогрессий имеем $a_1b_1 + a_3b_3 = 1 \cdot 1 + 5 \cdot 7 = 36 = 3 \cdot 3 \cdot 4 = 3a_2b_2$.
- б) Обозначим через c и d разности арифметических прогрессий $\{a_n\}$ и $\{b_n\}$ соответственно. Тогда

$$\begin{split} a_1b_1 + 2a_4b_4 &= a_1b_1 + 2(a_1 + 3c)(b_1 + 3d) = 3a_1b_1 + 6a_1d + 6b_1c + 18cd \;, \\ 3a_3b_3 &= 3(a_1 + 2c)(b_1 + 2d) = 3a_1b_1 + 6a_1d + 6b_1c + 12cd \;\;_{\mathrm{H}} \\ a_1b_1 + 2a_4b_4 - 3a_3b_3 &= 6cd \;. \end{split}$$

Если $a_1b_1+2a_4b_4=3a_3b_3$, то cd=0. Пришли к противоречию, ведь по условию c>0 и d>0.

в) По условию $c \ge 1$ и $d \ge 1$. По доказанному в пункте (б) имеем $a_1b_1 + 2a_4b_4 - 3a_3b_3 = 6cd \ .$

Значит,
$$a_3b_3 = \frac{a_1b_1 + 2a_4b_4 - 6cd}{3} \le \frac{300 - 6}{3} = 98$$
,

то есть $a_3b_3 \le 98$. Покажем, что случай $a_3b_3 = 98$ возможен. Это равенство выполняется, например, для прогрессий 5, 6, 7, 8, ... и 12, 13, 14, 15, Для этих прогрессий $a_1b_1 + 2a_4b_4 = 300$ и $a_3b_3 = 7 \cdot 14 = 98$.

Ответ: а) 1, 3, 5, ... и 1, 4, 7, ...; б) нет; в) 98.

Содержание критерия	Баллы
Получены верные обоснованные ответы в пунктах а, б и в	4
Получены верные обоснованные ответы в пунктах а и б, либо	3
получены верные обоснованные ответы в пунктах а и в	
Получен верный обоснованный ответ в пункте δ , пункты a и b не	2
решены, либо получен верный обоснованный ответ в пункте ϵ ,	
пункты a и δ не решены	
Приведён пример в пункте a , пункты δ и ϵ не решены	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4