Tribus, Fonctions Mesurables

Exercice 1 (Réunion et intersection dénombrables). 1. Déterminer les ensembles suivants :

$$\bigcup_{n\in\mathbb{N}^*} \left[0,1-\frac{1}{n}\right], \quad \bigcap_{n\in\mathbb{N}^*} \left[0,\frac{1}{n}\right[, \quad \bigcup_{n\in\mathbb{N}^*} \left[\frac{1}{n},1+\frac{1}{n}\right[, \quad \bigcup_{k\in\mathbb{N}^*} \bigcap_{n=1}^{\infty} \left[k-\frac{1}{n+1},k+\frac{1}{n}\right[.$$

2. Soit (f_n) et f des applications de E dans \mathbb{R} . Interpréter l'ensemble suivant :

$$\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{i>k}^{\infty} \left\{ x \in E, |f_i(x) - f(x)| \leq \frac{1}{n} \right\}.$$

Exercice 2. Soient X un ensemble non vide et $(A_n)_{n\in\mathbb{N}}$ une suite de parties de X. On définit

$$\limsup A_n = \bigcap_{n} \bigcup_{k \geqslant n} A_k, \quad \text{ et, } \quad \liminf A_n = \bigcup_n \bigcap_{k \geqslant n} A_k.$$

- 1. Montrer que $\liminf A_n \subset \limsup A_n$.
- 2. Déterminer $\limsup A_n$ et $\liminf A_n$ dans les exemples suivants :
 - la suite $(A_n)_{n\in\mathbb{N}}$ est croissante;
 - la suite $(A_n)_{n\in\mathbb{N}}$ est décroissante;
 - $\forall n \in \mathbb{N}, A_{2n} = A \text{ et } A_{2n+1} = B \text{ où } A \subset X, B \subset X;$
 - $X = \mathbb{R}$ et pour tout $n, A_n = \left[2 + (-1)^{n+1}, 3 + \frac{1}{n+1}\right]$.

Exercice 3 (Points de discontinuité d'une fonction croissante). Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction croissante.

- 1. Montrer que f admet des limites à gauche $\lim_{y\to x^-} f(y)$ et à droite $\lim_{y\to x^+} f(y)$ finies en tout point.
- 2. Montrer que l'ensemble des points de discontinuité de f est dénombrable.

$$\text{Indication: considérer, pour } n \geqslant 1 \text{, les ensembles } A_n = \bigg\{ x \in [-n;n] \; ; \; \lim_{y \to x^+} f(y) - \lim_{y \to x^-} f(y) \geqslant \frac{1}{n} \bigg\}.$$

Exercice 4 (Limite supérieure de suites). Soient (a_n) et (b_n) des suites de \mathbb{R} minorées par une constante. Montrer que $\limsup (a_n + b_n) \leq \limsup a_n + \limsup b_n$. Donner un exemple de suites bornées pour lesquelles l'inégalité ci-dessus est stricte. Que dire de $\limsup (a_n - b_n)$?

Exercice 5 (Ensemble de convergence). Soit (E, A) un espace mesurable et (f_n) une suite de fonctions mesurables de E dans \mathbb{R} . Montrer que l'ensemble

$$A = \{x \in E, \text{ la suite } (f_n(x))_n \text{ est convergente}\}\$$

est un élément de \mathcal{A} . Indication : \mathbb{R} est c----t ou alors \limsup

Exercice 6. Donner un exemple de suite décroissante d'ensembles $(A_n)_{n\in\mathbb{N}}$ telle que pour tout n, A_n est (de cardinal) infini et $\cap_n A_n = \emptyset$.

Exercice 7 (Image et image réciproque). Soient E et F deux ensembles, f une application de E dans F.

- 1. Montrer que pour toute partie Y de F, on a $f^{-1}(Y^c) = (f^{-1}(Y))^c$. Donner des exemples d'applications $f: E \to F$ et de partie X de E telles que
 - (i) $f(X^c) \subset f(X)^c$, (ii) $f(X^c) \supset f(X)^c$, (iii) aucune inclusion n'est satisfaite.

2. Soient $(X_i)_{i\in I}$ (resp. $(Y_i)_{i\in I}$) une famille de partie de E (resp. F). Montrer que

$$f^{-1}\left(\bigcup_{i\in I}Y_i\right)=\bigcup_{i\in I}f^{-1}(Y_i),\quad f^{-1}\left(\bigcap_{i\in I}Y_i\right)=\bigcap_{i\in I}f^{-1}(Y_i),\quad f\left(\bigcup_{i\in I}Y_i\right)=\bigcup_{i\in I}f(Y_i).$$

Montrer également que

$$f\left(\bigcap_{i\in I}Y_i\right)\subset\bigcap_{i\in I}f(Y_i).$$

et que cette dernière inclusion est en général stricte et qu'il y a égalité si f est injective.

Exercice 8 (Fonction indicatrice). Soit E un ensemble, $A,B, (A_i)_{i\in I}$ des parties de E.

- 1. Déterminer $\mathbf{1}_{\emptyset}$, $\mathbf{1}_{E}$ et calculer $\mathbf{1}_{A}^{-1}(J)$ pour $J \subset \mathbb{R}$.
- 2. Montrer que

(i)
$$A \subset B \Leftrightarrow \mathbf{1}_A \leqslant \mathbf{1}_B$$
 et $A = B \Leftrightarrow \mathbf{1}_A = \mathbf{1}_B$, (ii) $\mathbf{1}_{A \cap B} = \mathbf{1}_A \mathbf{1}_B$ et $\mathbf{1}_{A^c} = 1 - \mathbf{1}_A$,
(iii) $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B$, (iv) $\mathbf{1}_{A \Delta B} = |\mathbf{1}_A - \mathbf{1}_B|$.

3. Montrer que $\mathbf{1}_{\bigcup_{i\in I}A_i}=\sup_{i\in I}\mathbf{1}_{A_i}$ et $\mathbf{1}_{\bigcap_{i\in I}A_i}=\inf_{i\in I}\mathbf{1}_{A_i}.$

Exercice 9 (Exemples de tribu). Si $A \subset \mathbb{R}$, on note -A l'ensemble $\{-a ; a \in A\}$.

- 1. Montrer que $A = \{A \in \mathcal{P}(\mathbb{R}) ; A = -A\}$ est une tribu sur \mathbb{R} .
- 2. Soit $f: \mathbb{R} \to (\mathbb{R}, \mathcal{P}(\mathbb{R}))$ définie par $f(x) = x^2$. Montrer que la tribu image-réciproque est \mathcal{A} .
- 3. Caractériser les fonctions mesurables de $(\mathbb{R}, \mathcal{A})$ dans $(\mathbb{R}, \mathcal{A})$ et les fonctions mesurables de $(\mathbb{R}, \mathcal{A})$ dans $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$.

Exercice 10 (Tribu trace). Soit (E, A) un espace mesurable et $B \subset E$. Montrer que $A_B = \{B \cap A ; A \in A\}$ est une tribu sur B rendant l'injection canonique mesurable. Montrer que si $B \in A$, $A_B = \{A \in A; A \subset B\}$.

Exercice 11 (Tribu produit engendrée). Soit (E, A) et (F, B) deux espaces mesurables. On suppose que A est engendrée par \mathcal{E} ($\sigma(\mathcal{E}) = A$) et \mathcal{B} est engendrée par \mathcal{F} ($\sigma(\mathcal{F}) = \mathcal{B}$). On suppose de plus que $E \in \mathcal{E}$ et $F \in \mathcal{F}$. Montrer que la tribu produit $A \otimes \mathcal{B}$ sur $E \times F$ est engendrée par les ensembles qui s'écrivent $A \times B$ avec $A \in \mathcal{E}$ et $B \in \mathcal{F}$.

Exercice 12. Soit (E, \mathcal{A}) un espace mesurable et f, g des applications mesurables de E dans \mathbb{R}_+ muni de la tribu borélienne. On souhaite montrer que les ensembles suivants appartiennent à \mathcal{A} :

$$A = \{x \in E, \ f(x) < g(x)\}, \quad B = \{x \in E, \ f(x) \le g(x)\}, \quad C = \{x \in E, \ f(x) = g(x)\}.$$

- 1. Montrer que $A = A = \bigcup_{q \in \mathbb{Q}} \{x \in E \; ; \; f(x) < q < g(x)\}$. En déduire que la tribu \mathcal{A} contient A.
- 2. En déduire que B et C appartiennent également à A.

Exercice 13. Montrer que la fonction suivante est discontinue sur \mathbb{Q} est continue sur \mathbb{Q}^c :

$$f(x) = \begin{cases} 1 & \text{si } x = 0, \\ 1/q & \text{si } x = p/q, \ p \in \mathbb{Z}, \ q \in \mathbb{N}^* \text{ premiers entre eux,} \\ 0 & \text{si } x \text{ irrationnel.} \end{cases}$$

Exercice 14 (Algèbre des fonctions étagées). Montrer que l'ensemble des fonctions étagées de (E, A) dans $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ est une algèbre. On écrira notamment la stablilité par addition et multiplication.