Constructions With Relations

The Clowder Project Authors

July 29, 2025

This chapter contains some material about constructions with relations. Notably, we discuss and explore:

- 1. The existence or non-existence of Kan extensions and Kan lifts in the 2-category **Rel** (??).
- 2. The various kinds of constructions involving relations, such as graphs, domains, ranges, unions, intersections, products, converse relations, composition of relations, and collages (Section 9.2).

This chapter is under revision. TODO:

- 1. Rename range to image
- 2. Co/limits in **Rel**.

Contents

9.1 Co/Limits in the Category of Relations

This section is currently just a stub, and will be properly developed later on.

9.2 More Constructions With Relations

9.2.1 The Domain and Range of a Relation

Let A and B be sets.

DEFINITION 9.2.1.1.1 ► THE DOMAIN AND RANGE OF A RELATION

Let $R: A \to B$ be a relation.^{1,2}

1. The **domain of** R is the subset dom(R) of A defined by

$$\operatorname{dom}(R) \stackrel{\text{\tiny def}}{=} \left\{ a \in A \;\middle|\; \text{there exists some } b \in B \right\}.$$

2. The range of R is the subset range (R) of B defined by

$$\operatorname{range}(R) \stackrel{\text{\tiny def}}{=} \bigg\{ b \in B \ \bigg| \ \text{there exists some } a \in A \\ \text{such that } a \sim_R b \bigg\}.$$

¹Following ??, ??, we may compute the (characteristic functions associated to the) domain and range of a relation using the following colimit formulas:

$$\chi_{\operatorname{dom}(R)}(a) \cong \underset{b \in B}{\operatorname{colim}}(R_a^b) \qquad (a \in A)$$

$$\cong \bigvee_{b \in B} R_a^b,$$

$$\chi_{\operatorname{range}(R)}(b) \cong \underset{a \in A}{\operatorname{colim}}(R_a^b) \qquad (b \in B)$$

$$\cong \bigvee_{a \in A} R_a^b,$$

where the join \bigvee is taken in the poset ($\{\text{true}, \text{false}\}, \preceq$) of Constructions With Sets, Definition 3.2.2.1.3.

²Viewing R as a function $R: A \to \mathcal{P}(B)$, we have

$$\begin{split} \operatorname{dom}(R) &\cong \operatorname*{colim}_{y \in Y}(R(y)) \\ &\cong \bigcup_{y \in Y} R(y), \\ \operatorname{range}(R) &\cong \operatorname*{colim}_{x \in X}(R(x)) \\ &\cong \bigcup_{x \in X} R(x), \end{split}$$

9.2.2 Binary Unions of Relations

Let A and B be sets and let R and S be relations from A to B.

DEFINITION 9.2.2.1.1 ► BINARY UNIONS OF RELATIONS

The **union of** R **and** S^1 is the relation $R \cup S$ from A to B defined as follows:

- Viewing relations from A to B as subsets of $A \times B$, we define² $R \cup S \stackrel{\text{def}}{=} \{(a, b) \in B \times A \mid \text{we have } a \sim_R b \text{ or } a \sim_S b\}.$
- Viewing relations from A to B as functions $A \to \mathcal{P}(B)$, we define

$$[R \cup S](a) \stackrel{\text{def}}{=} R(a) \cup S(a)$$

for each $a \in A$.

PROPOSITION 9.2.2.1.2 ▶ PROPERTIES OF BINARY UNIONS OF RELATIONS

Let R, S, R_1 , and R_2 be relations from A to B, and let S_1 and S_2 be relations from B to C.

1. Interaction With Converses. We have

$$(R \cup S)^{\dagger} = R^{\dagger} \cup S^{\dagger}.$$

2. Interaction With Composition. We have

$$(S_1 \diamond R_1) \cup (S_2 \diamond R_2) \stackrel{\text{poss.}}{\neq} (S_1 \cup S_2) \diamond (R_1 \cup R_2).$$

PROOF 9.2.2.1.3 ▶ PROOF OF PROPOSITION 9.2.2.1.2

Item 1: Interaction With Converses

Clear.

Item 2: Interaction With Composition

Unwinding the definitions, we see that:

• The condition for $(S_1 \diamond R_1) \cup (S_2 \diamond R_2)$ is:

¹Further Terminology: Also called the binary union of R and S, for emphasis.

²This is the same as the union of R and S as subsets of $A \times B$.

– There exists some $b \in B$ such that:

```
* a \sim_{R_1} b and b \sim_{S_1} c;
or
* a \sim_{R_2} b and b \sim_{S_2} c;
```

- The condition for $(S_1 \cup S_2) \diamond (R_1 \cup R_2)$ is:
 - There exists some $b \in B$ such that:

```
* a \sim_{R_1} b or a \sim_{R_2} b;
and
* b \sim_{S_1} c or b \sim_{S_2} c.
```

These two conditions may fail to agree (counterexample omitted), and thus the two resulting relations on $A \times C$ may differ.

9.2.3 Unions of Families of Relations

Let A and B be sets and let $\{R_i\}_{i\in I}$ be a family of relations from A to B.

DEFINITION 9.2.3.1.1 ► THE UNION OF A FAMILY OF RELATIONS

The **union of the family** $\{R_i\}_{i\in I}$ is the relation $\bigcup_{i\in I} R_i$ from A to B defined as follows:

• Viewing relations from A to B as subsets of $A \times B$, we define¹

$$\bigcup_{i \in I} R_i \stackrel{\text{def}}{=} \left\{ (a, b) \in (A \times B)^{\times I} \mid \text{ there exists some } i \in I \right\}.$$

• Viewing relations from A to B as functions $A \to \mathcal{P}(B)$, we define

$$\left[\bigcup_{i\in I} R_i\right](a) \stackrel{\text{def}}{=} \bigcup_{i\in I} R_i(a)$$

for each $a \in A$.

This is the same as the union of $\{R_i\}_{i\in I}$ as a collection of subsets of $A\times B$.

PROPOSITION 9.2.3.1.2 ▶ PROPERTIES OF UNIONS OF FAMILIES OF RELATIONS

Let A and B be sets and let $\{R_i\}_{i\in I}$ be a family of relations from A to B.

1. Interaction With Converses. We have

$$\left(\bigcup_{i\in I} R_i\right)^{\dagger} = \bigcup_{i\in I} R_i^{\dagger}.$$

PROOF 9.2.3.1.3 ▶ PROOF OF PROPOSITION 9.2.3.1.2

Item 1: Interaction With Converses

Clear.

9.2.4 Binary Intersections of Relations

Let A and B be sets and let R and S be relations from A to B.

DEFINITION 9.2.4.1.1 ► BINARY INTERSECTIONS OF RELATIONS

The intersection of R and S^1 is the relation $R \cap S$ from A to B defined as follows:

- Viewing relations from A to B as subsets of $A \times B$, we define² $R \cap S \stackrel{\text{def}}{=} \{(a,b) \in B \times A \mid \text{we have } a \sim_R b \text{ and } a \sim_S b\}.$
- Viewing relations from A to B as functions $A \to \mathcal{P}(B)$, we define

$$[R \cap S](a) \stackrel{\text{def}}{=} R(a) \cap S(a)$$

for each $a \in A$.

 $^{^1}Further\ Terminology:$ Also called the **binary intersection of** R **and** S, for emphasis.

²This is the same as the intersection of R and S as subsets of $A \times B$.

PROPOSITION 9.2.4.1.2 ▶ PROPERTIES OF BINARY INTERSECTIONS OF RELATIONS

Let R, S, R_1 , and R_2 be relations from A to B, and let S_1 and S_2 be relations from B to C.

1. Interaction With Converses. We have

$$(R \cap S)^{\dagger} = R^{\dagger} \cap S^{\dagger}.$$

2. Interaction With Composition. We have

$$(S_1 \diamond R_1) \cap (S_2 \diamond R_2) = (S_1 \cap S_2) \diamond (R_1 \cap R_2).$$

PROOF 9.2.4.1.3 ▶ PROOF OF PROPOSITION 9.2.4.1.2

Item 1: Interaction With Converses

Clear.

Item 2: Interaction With Composition

Unwinding the definitions, we see that:

- The condition for $(S_1 \diamond R_1) \cap (S_2 \diamond R_2)$ is:
 - There exists some $b \in B$ such that:
 - * $a \sim_{R_1} b$ and $b \sim_{S_1} c$;

and

- * $a \sim_{R_2} b$ and $b \sim_{S_2} c$;
- The condition for $(S_1 \cap S_2) \diamond (R_1 \cap R_2)$ is:
 - There exists some $b \in B$ such that:
 - * $a \sim_{R_1} b$ and $a \sim_{R_2} b$;

and

* $b \sim_{S_1} c$ and $b \sim_{S_2} c$.

These two conditions agree, and thus so do the two resulting relations on $A \times C$.

9.2.5 Intersections of Families of Relations

Let A and B be sets and let $\{R_i\}_{i\in I}$ be a family of relations from A to B.

DEFINITION 9.2.5.1.1 ► THE INTERSECTION OF A FAMILY OF RELATIONS

The intersection of the family $\{R_i\}_{i\in I}$ is the relation $\bigcup_{i\in I} R_i$ defined as follows:

• Viewing relations from A to B as subsets of $A \times B$, we define¹

$$\bigcup_{i \in I} R_i \stackrel{\text{def}}{=} \left\{ (a, b) \in (A \times B)^{\times I} \mid \text{for each } i \in I, \\ \text{we have } a \sim_{R_i} b \right\}.$$

• Viewing relations from A to B as functions $A \to \mathcal{P}(B)$, we define

$$\left[\bigcap_{i\in I} R_i\right](a) \stackrel{\text{def}}{=} \bigcap_{i\in I} R_i(a)$$

for each $a \in A$.

¹This is the same as the intersection of $\{R_i\}_{i\in I}$ as a collection of subsets of $A\times B$.

PROPOSITION 9.2.5.1.2 ▶ Properties of Intersections of Families of Relations

Let A and B be sets and let $\{R_i\}_{i\in I}$ be a family of relations from A to B.

1. Interaction With Converses. We have

$$\left(\bigcap_{i\in I} R_i\right)^{\dagger} = \bigcap_{i\in I} R_i^{\dagger}.$$

PROOF 9.2.5.1.3 ▶ PROOF OF PROPOSITION 9.2.5.1.2

Item 1: Interaction With Converses

Clear.

9.2.6 Binary Products of Relations

Let A, B, X, and Y be sets, let $R: A \rightarrow B$ be a relation from A to B, and let $S: X \rightarrow Y$ be a relation from X to Y.

DEFINITION 9.2.6.1.1 ► BINARY PRODUCTS OF RELATIONS

The **product of** R and S^1 is the relation $R \times S$ from $A \times X$ to $B \times Y$ defined as follows:

- Viewing relations from $A \times X$ to $B \times Y$ as subsets of $(A \times X) \times (B \times Y)$, we define $R \times S$ as the Cartesian product of R and S as subsets of $A \times X$ and $B \times Y$.²
- Viewing relations from $A \times X$ to $B \times Y$ as functions $A \times X \to \mathcal{P}(B \times Y)$, we define $R \times S$ as the composition

$$A\times X \xrightarrow{R\times S} \mathcal{P}(B)\times \mathcal{P}(Y) \overset{\mathcal{P}_{B,Y}^{\otimes}}{\hookrightarrow} \mathcal{P}(B\times Y)$$

in Sets, i.e. by

$$[R \times S](a, x) \stackrel{\text{def}}{=} R(a) \times S(x)$$

for each $(a, x) \in A \times X$.

¹ Earther Terminology: Also called the **binary product of** R and S, for emphasis and S and S is the relation given by declaring $(a,x) \stackrel{\sim}{\sim}_{R \times S} (S,y)$ iff $a \stackrel{\sim}{\sim}_R b$ and $x \sim_S y$.

PROPOSITION 9.2.6.1.2 ▶ PROPERTIES OF BINARY PRODUCTS OF RELATIONS

Let A, B, X, and Y be sets.

1. Interaction With Converses. Let

$$R: A \to A,$$

 $S: X \to X$

We have

$$(R \times S)^{\dagger} = R^{\dagger} \times S^{\dagger}.$$

2. Interaction With Composition. Let

$$R_1: A \to B,$$

 $S_1: B \to C,$
 $R_2: X \to Y,$
 $S_2: Y \to Z$

be relations. We have

$$(S_1 \diamond R_1) \times (S_2 \diamond R_2) = (S_1 \times S_2) \diamond (R_1 \times R_2).$$

PROOF 9.2.6.1.3 ▶ PROOF OF PROPOSITION 9.2.6.1.2

Item 1: Interaction With Converses

Unwinding the definitions, we see that:

- We have $(a, x) \sim_{(R \times S)^{\dagger}} (b, y)$ iff:
 - We have $(b, y) \sim_{R \times S} (a, x)$, i.e. iff:
 - * We have $b \sim_R a$;
 - * We have $y \sim_S x$;
- We have $(a, x) \sim_{R^{\dagger} \times S^{\dagger}} (b, y)$ iff:
 - We have $a \sim_{R^{\dagger}} b$ and $x \sim_{S^{\dagger}} y$, i.e. iff:
 - * We have $b \sim_R a$;
 - * We have $y \sim_S x$.

These two conditions agree, and thus the two resulting relations on $A \times X$ are equal.

Item 2: Interaction With Composition

Unwinding the definitions, we see that:

- We have $(a, x) \sim_{(S_1 \diamond R_1) \times (S_2 \diamond R_2)} (c, z)$ iff:
 - We have $a \sim_{S_1 \diamond R_1} c$ and $x \sim_{S_2 \diamond R_2} z$, i.e. iff:
 - * There exists some $b \in B$ such that $a \sim_{R_1} b$ and $b \sim_{S_1} c$;
 - * There exists some $y \in Y$ such that $x \sim_{R_2} y$ and $y \sim_{S_2} z$;
- We have $(a, x) \sim_{(S_1 \times S_2) \diamond (R_1 \times R_2)} (c, z)$ iff:
 - There exists some $(b, y) \in B \times Y$ such that $(a, x) \sim_{R_1 \times R_2} (b, y)$ and $(b, y) \sim_{S_1 \times S_2} (c, z)$, i.e. such that:

- * We have $a \sim_{R_1} b$ and $x \sim_{R_2} y$;
- * We have $b \sim_{S_1} c$ and $y \sim_{S_2} z$.

These two conditions agree, and thus the two resulting relations from $A \times X$ to $C \times Z$ are equal.

9.2.7 Products of Families of Relations

Let $\{A_i\}_{i\in I}$ and $\{B_i\}_{i\in I}$ be families of sets, and let $\{R_i\colon A_i\to B_i\}_{i\in I}$ be a family of relations.

DEFINITION 9.2.7.1.1 ► THE PRODUCT OF A FAMILY OF RELATIONS

The **product of the family** $\{R_i\}_{i\in I}$ is the relation $\prod_{i\in I} R_i$ from $\prod_{i\in I} A_i$ to $\prod_{i\in I} B_i$ defined as follows:

• Viewing relations as subsets, we define $\prod_{i \in I} R_i$ as its product as a family of sets, i.e. we have

$$\prod_{i \in I} R_i \stackrel{\text{def}}{=} \left\{ (a_i, b_i)_{i \in I} \in \prod_{i \in I} (A_i \times B_i) \middle| \begin{array}{l} \text{for each } i \in I, \\ \text{we have } a_i \sim_{R_i} b_i \end{array} \right\}.$$

• Viewing relations as functions to powersets, we define

$$\left[\prod_{i\in I} R_i\right] \left(\left(a_i\right)_{i\in I}\right) \stackrel{\text{def}}{=} \prod_{i\in I} R_i(a_i)$$

for each $(a_i)_{i \in I} \in \prod_{i \in I} R_i$.

9.2.8 The Collage of a Relation

Let A and B be sets and let $R: A \to B$ be a relation from A to B.

DEFINITION 9.2.8.1.1 ► THE COLLAGE OF A RELATION

The **collage of** R^1 is the poset $\mathbf{Coll}(R) \stackrel{\text{def}}{=} \left(\operatorname{Coll}(R), \preceq_{\mathbf{Coll}(R)} \right)$ consisting of:

• The Underlying Set. The set Coll(R) defined by

$$\operatorname{Coll}(R) \stackrel{\text{def}}{=} A \coprod B.$$

• The Partial Order. The partial order

$$\preceq_{\mathbf{Coll}(R)} \colon \mathrm{Coll}(R) \times \mathrm{Coll}(R) \to \{\mathsf{true}, \mathsf{false}\}$$

on Coll(R) defined by

$$\preceq (a, b) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } a = b \text{ or } a \sim_R b, \\ \text{false} & \text{otherwise.} \end{cases}$$

NOTATION 9.2.8.1.2 NOTATION: $Pos_{/\Delta^1}(A, B)$

We write $\mathsf{Pos}_{/\Delta^1}(A,B)$ for the category defined as the pullback

$$\mathsf{Pos}_{/\Delta^1}(A,B) \stackrel{\scriptscriptstyle\rm def}{=} \mathsf{pt} \underset{[A],\mathsf{Pos},\mathsf{ev}_0}{\times} \mathsf{Pos}_{/\Delta^1} \underset{\mathsf{ev}_1,\mathsf{Pos},[B]}{\times} \mathsf{pt},$$

as in the diagram

REMARK 9.2.8.1.3 ► UNWINDING NOTATION 9.2.8.1.2

In detail, $Pos_{/\Delta^1}(A, B)$ is the category where:

• Objects. An object of $\mathsf{Pos}_{/\Delta^1}(A,B)$ is a pair (X,ϕ_X) consisting of

¹ Further Terminology: Also called the **cograph of** R.

- A poset X;
- A morphism $\phi_X \colon X \to \Delta^1$;

such that we have

$$\phi_X^{-1}(0) = A,$$

 $\phi_X^{-1}(1) = B.$

• Morphisms. A morphism of $\mathsf{Pos}_{/\Delta^1}(A,B)$ from (X,ϕ_X) to (Y,ϕ_Y) is a morphism of posets $f\colon X\to Y$ making the diagram

commute.

PROPOSITION 9.2.8.1.4 ▶ PROPERTIES OF COLLAGES OF RELATIONS

Let A and B be sets and let $R: A \to B$ be a relation from A to B.

1. Functoriality. The assignment $R \mapsto \operatorname{Coll}(R)$ defines a functor

Coll:
$$\operatorname{Rel}(A, B) \to \operatorname{Pos}_{/\Delta^1}(A, B)$$
,

where

• Action on Objects. For each $R \in \text{Obj}(\mathbf{Rel}(A, B))$, we have $[\mathbf{Coll}](R) \stackrel{\text{def}}{=} (\mathbf{Coll}(R), \phi_R)$

for each $R \in \mathbf{Rel}(A, B)$, where

- The poset Coll(R) is the collage of R of Definition 9.2.8.1.1.
- The morphism $\phi_R \colon \mathbf{Coll}(R) \to \Delta^1$ is given by

$$\phi_R(x) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } x \in A, \\ 1 & \text{if } x \in B \end{cases}$$

for each $x \in \mathbf{Coll}(R)$.

Action on Morphisms. For each R, S ∈ Obj(Rel(A, B)), the action on Hom-sets
Coll_{R,S}: Hom_{Rel(A,B)}(R, S) → Pos(Coll(R), Coll(S))
of Coll at (R, S) is given by sending an inclusion
ι: R ⊂ S
to the morphism
Coll(ι): Coll(R) → Coll(S)
of posets over Δ¹ defined by
[Coll(ι)](x) ^{def} = x
for each x ∈ Coll(R).¹
2. Equivalence. The functor of Item 1 is an equivalence of categories.
¬¹Note that this is indeed a morphism of posets: if x ≤_{Coll(R)} y, then x = y or

 $x \sim_R y$, so we have either x = y or $x \sim_S y$ (as $R \subset S$), and thus $x \preceq_{\mathbf{Coll}(S)} y$.

Appendices

A Other Chapters

Preliminaries

- 1. Introduction
- 2. A Guide to the Literature

Sets

- 3. Sets
- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

Relations

- 8. Relations
- 9. Constructions With Relations

10. Conditions on Relations

Categories

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

Monoidal Categories

13. Constructions With Monoidal Categories

Bicategories

14. Types of Morphisms in Bicategories

Extra Part

15. Notes