

ADS AD TO AT P CA CO SOUN

www.aduni.edu.pe

Deducción simple y deducción compuesta l

OBJETIVO

Interpretación adecuada de los conectores lógicos en situaciones cotidianas para la deducción de conclusiones correctas.

DEDUCCIÓN SIMPLE Y DEDUCCIÓN COMPUESTA I

Nociones previas

Problemas contextualizados con conectores lógicos

Nociones previas

Deducción lógica

La deducción lógica es el procedimiento por el cual obtenemos información a través de otra información, es decir, obtenemos conclusiones a partir de premisas.

Premisas Información 1:
Información 2:
:
Información n:
Conclusión:

IMPORTANTE

Se debe considerar que toda información inicial es **VERDADERA**

OBSERVACIÓN:

Silogismo Hipotético Puro

Es una clase o regla de inferencia con la cual se saca conclusiones.

 $p \rightarrow q$

 $q \rightarrow r$

Conclusión: p → r

Por ejemplo:

información 1: Si estudias entonces triunfas

Información 2: Si triunfas entonces eres feliz

Conclusión: Si estudias entonces eres feliz

Nota: se requiere también conocimientos de la lógica

proposicional por ello recordemos el capitulo anterior.

RECORDEMOS

Proposición lógica: Es todo enunciado que se caracteriza por tener un único valor de verdad, es decir que puede ser verdadero (V) o falso (F), pero no ambos a la vez.

La tabla de verdad de los principales conectores lógicos:

- ACADEMIA			Conjunción Disyunción Condicional Bicondicional Inclusiva			Disyunción Exclusiva	
	p	q	p∧q	p v q	$p \rightarrow q$	$p \leftrightarrow q$	pΔq
	V	V	V	V	V		E ACADEMIA
	V	F	A F	V	F	ALENI	V
	F	V	F	V	V	F	V
	F	F	AFUNI	FAD	V		FOUL

Palabras que más se emplean para cada conector lógico:

Conectivo proposicional	Expresión en el lenguaje natural	Símbolo	
NEGACIÓN	NoNo es cierto queNuncaEs falso que	~ p	
CONJUNCIÓN	 y Además Pero Sin embargo Aunque También 	p ^ q	
DISYUNCIÓN INCLUSIVA	OSalvo queO sinoExcepto que	p v q	

CONDICIONAL	 Si p entonces q Si p, q p sólo si q p por lo tanto q p es suficiente para q q, si p q porque p q dado que p q es necesario para p 	p o q
BICONDICIONAL	 Si y sólo si Cuando y sólo cuando Es necesario y suficiente para Es lo mismo que 	p ↔ q
DISYUNCIÓN EXCLUSIVA	Oosalvo que soloO bieno biena menos que solamente	рΔq

Leyes del álgebra de proposicional

1. Idempotencia

$$p \wedge p \equiv p$$
$$p \vee p \equiv p$$

2. Conmutativa

$$p \land q \equiv q \land p$$
$$p \lor q \equiv q \lor p$$
$$p \leftrightarrow q \equiv q \leftrightarrow p$$

3. Asociativa

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

 $p \vee (q \vee r) \equiv (p \vee q) \vee r$

4. Distributiva

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

5. Involutiva o doble negación

$$\sim$$
 (\sim p) \equiv p

6. Del complemento

$$p \land \sim p \equiv F$$
$$p \lor \sim p \equiv V$$

7. Identidad

$$p \land V \equiv p$$

$$p \land F \equiv F$$

$$p \lor V \equiv V$$

$$p \lor F \equiv p$$

8. De D'Morgan

$$\sim (p \land q) \equiv \sim p \lor \sim q$$
$$\sim (p \lor q) \equiv \sim p \land \sim q$$

9. De absorción

$$p \land (p \lor q) \equiv p$$

$$p \lor (p \land q) \equiv p$$

$$p \land (\sim p \lor q) \equiv p \land q$$

$$p \lor (\sim p \land q) \equiv p \lor q$$

10. De la condicional

$$p \rightarrow q \equiv \sim p \lor q$$
$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

11. De la bicondicional

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

 $p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$

Piero le dice a su hermana Camila "es falso que no aprobé el examen de matemática" entonces se concluye que:

- A) Piero desaprobó el examen de matemáticas
- B) Piero no dio el examen.
- Piero aprobó el examen de matemática.
- D) El examen era muy difícil.

Resolución:

Nos piden determinar la conclusión.

Simbolizamos para que el análisis sea más sencillo:

∴ Se concluye que Piero aprobó el examen de matemáticas.

Un estudiante escucho a su profesor decir: "Si los alumnos realizan preguntas, entonces aprenderán bastante y Si los alumnos leen a menudo, ellos realizarán preguntas". Indique la conclusión de los argumentos lógicos

- A) Si los alumnos aprenden, entonces realizan preguntas.
- B) Si los alumnos aprenden bastante, entonces leen a menudo.
- C) Los alumnos no leen a menudo.
- Si los alumnos leen a menudo, entonces aprenderán bastante.

Resolución:

Nos piden determinar la conclusión.

Simbolizamos para que el análisis sea más sencillo:

- Si)los alumnos leen a menudo entonces ellos realizarán preguntas p o q
- Si)los alumnos realizan preguntas, entonces aprenderán bastante $q \longrightarrow r$

Si los alumnos leen a menudo entonces aprenderán bastante

 $p \rightarrow$

∴ se concluye "Si los alumnos leen a menudo entonces aprenderán bastante"

Un joven reflexiona con su amigo recordando lo siguiente :

"Si tienes gripe, te enfermas. Si te enfermas, no irás a la fiesta. Fuiste a la fiesta".

Entonces que se deduce:

- A) Tomaste la medicina
- B) Te enfermaste, pero no de gripe.
- C) Fuiste enfermo.
- No tienes gripe.

Resolución:

Nos piden determinar que se deduce.

Se tiene las siguiente información:

• Si tienes gripe , te enfermas ≡ V

• Si te enfermas, no irás a la fiesta ≡ V

Conclusión: Es falso que tienes gripe

∴ Se deduce que no tienes gripe

Se considera que toda información inicial es VERDADERA

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Jorge razonaba toda la noche de la siguiente manera:

"Aprobaré mi examen, si el profesor quiere que apruebe. Sin embargo no aprobé el examen."

Luego es un hecho que:

- A) El profesor quiere que apruebe el examen
- B) Estudio para aprobar el examen.
- El profesor no quiere que apruebe el examen.
- D) Aprobaré mi examen.

Resolución:

Nos piden determinar que se deduce.

Se tiene las siguiente información:

Recordemos: $si p, q \equiv q, si p$

• <u>Aprobaré mi examen</u>, si <u>el profesor quiere que apruebe</u>.

σ

• Si <mark>el profesor quiere que apruebe</mark> , <u>Aprobaré mi examen</u>. ≡ **V**

F)

🔻 no aprobé el examen \equiv 🗸

Conclusión: Es falso que que el profesor quiere que apruebe Se considera que toda información inicial es VERDADERA

р	q	$p \rightarrow q$	
V	V	V	
V	F	F	
F	V	V	
F	F	V	

∴ Se deduce que que el profesor no quiere que apruebe el examen

Las siguientes proposiciones son verdaderas:

- Juan estudia RM o estudia RV, pero no ambos.
- Si Juan estudia RM, entonces estudia RV.

¿Cuáles de las siguientes afirmaciones son verdaderas?

- I. Juan estudia RM.
- II. Juan estudia RV.
- III. Juan estudia RM y RV.
- A) I, II y III
- B) solo I
- solo II
- D) I y III

Resolución:

Nos piden determinar las afirmaciones verdaderas.

Se tiene las siguiente información:

No cumple

р	q	р∆q	р	q	$p \rightarrow q$
V	V	F	V	V	V
V	F	V	V	F	F
F	V	V	F	V	V
F	F	F	F	F	V

Se considera que toda información inicial es VERDADERA

CASO 2

: Es verdadera la afirmacion II

www.aduni.edu.pe

