

8224 CLOCK GENERATOR AND DRIVER FOR 8080A CPU

- Single Chip Clock Generator/Driver for 8080A CPU
- **■** Power-Up Reset for CPU
- Ready Synchronizing Flip-Flop
- Advanced Status Strobe
- Oscillator Output for External System Timing
- Crystal Controlled for Stable System Operation
- **Reduces System Package Count**
- Available in EXPRESS— Standard Temperature Range
- Available in 16-Lead Cerdip Package (See Packaging Spec, Order #231369)

The Intel 8224 is a single chip clock generator/driver for the 8080A CPU. It is controlled by a crystal, selected by the designer to meet a variety of system speed requirements.

Also included are circuits to provide power-up reset, advance status strobe, and synchronization of ready.

The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing for 8080A.

Figure 1. Block Diagram

RESIN	Reset Input				
RESET	Reset Output				
RDYIN	Ready Input				
READY	Ready Output				
SYNC	Sync Input				
STSTB	Status STB (Active Low)				
ф1) 8080				
φ2	Clocks				

XTAL 1	Connections
XTAL 2	for Crystal
TANK	Used with Overtone XTAL
osc	Oscillator Output
φ ₂ (TTL)	φ ₂ CLK (TTL Level)
Vcc	+5V
V _{DD}	+ 12V
GND	0V

Figure 2. Pin Configuration

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias ()°C to +70°C
Storage Temperature65°	C to + 150°C
Supply Voltage, V _{CC}	0.5V to +7V
Supply Voltage, V _{DD}	6V to +13.5V
Input Voltage –	1.5V to +7V
Output Current	100 mA

NOTICE: This is a production data sheet. The specifications are subject to change without notice.

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

D.C. CHARACTERISTICS

 T_A = 0°C to +70°C, V_{CC} = +5.0V ±5%, V_{DD} = +12V ±5%

Symbol	Parameter	Limits			Units	T4 0 ###
		Min	Тур	Max	Ullits	Test Conditions
lF	Input Current Loading			-0.25	mA	V _F = 0.45V
IR	Input Leakage Current			10	μΑ	V _R = 5.25V
V _C	Input Forward Clamp Voltage			1.0	V	$I_C = -5 \text{mA}$
V _{IL}	Input "Low" Voltage			0.8	V	V _{CC} = 5.0V
V_{IH}	Input "High" Voltage	2.6			٧	Reset Input
		2.0			٧	All Other Inputs
VIH-VIL	RESIN input Hysteresis	0.25			٧	V _{CC} = 5.0V
V _{OL}	Output "Low" Voltage			0.45	V	(ϕ_1, ϕ_2) , Ready, Reset, STSTE $I_{OL} = 2.5 \text{ mA}$
				0.45	V	All Other Outputs
V _{OH}	Output "High" Voltage Φ ₁ , Φ ₂	9.4			٧	l _{OH} = -100 μA
	READY, RESET	3.6		_	٧	I _{OH} = -100 μA
	All Other Outputs	2.4			٧	I _{OH} = -1 mA
Icc	Power Supply Current			115	mA	
1 _{DD}	Power Supply Current		_	12	mA	

NOTE:

Crystal Requirements

Tolerance: 0.005% at 0°C-70°C Resonance: Series (Fundamental)* Load Capacitance: 20 pF-35 pF Equivalent Resistance: 75Ω-20Ω

Power Dissipation (Min): 4 mW

*NOTE:

With tank circuit use 3rd overtone mode.

^{1.} For crystal frequencies of 18 MHz connect 510Ω resistors between the X1 input and ground as well as the X2 input and ground to prevent oscillation at harmonic frequencies.

A.C. CHARACTERISTICS

Symbol	Parameter		Limits		l famile -	Test
		Min	Тур	Max	Units	Conditions
t _{φ1}	φ ₁ Pulse Width	2tcy 9 - 20 ns				C _L = 20 pF to 50 pF
t _{ф2}	φ ₂ Pulse Width	5tcy 9 - 35 ns				
t _{D1}	φ ₁ to φ ₂ Delay	0				
t _{D2}	φ ₂ to φ ₁ Delay	$\frac{2\text{tcy}}{9} - 14 \text{ ns}$			ns	
t _{D3}	φ ₁ to φ ₂ Delay	2tcy 9		$\frac{2tcy}{9} + 20 ns$		
t _R	φ ₁ and φ ₂ Rise Time			20		
t _F	φ ₁ and φ ₂ Fall Time			20		
t _{D∲2}	φ ₂ to φ ₂ (TTL) Delay	-5		+ 15	ns	$φ_2$ TTL, CL = 30 $R_1 = 300Ω$ $R_2 = 600Ω$
t _{DSS}	φ ₂ to STSTB Delay	$\frac{6\text{tcy}}{9} - 30 \text{ ns}$		6tcy 9	ns	
t _{PW}	STSTB Pulse Width	tcy - 15 ns			ns	$\overline{\text{STSTB}}$, $C_L = 15 \text{ pF}$ $R_1 = 2K$ $R_2 = 4K$
t _{DRS}	RDYIN Setup Time to Status Strobe	$50 \text{ ns} - \frac{4\text{tcy}}{9}$				
t _{DRH}	RDYIN Hold Time after STSTB	4tcy 9				
t _{DR}	RDYIN or RESIN to \$\phi_2\$ Delay	4tcy 9 - 25 ns			ns	Ready & Reset $C_L = 10 \text{ pF}$ $R_1 = 2K$ $R_2 = 4K$
t _{CLK}	CLK Period		tcy 9		ns	
f _{max}	Maximum Oscillating Frequency			27	MHz	
C _{in}	Input Capacitance			8	pF	$V_{CC} = +5.0V$ $V_{DD} = +12V$ $V_{BIAS} = 2.5V$ $f = 1 \text{ MHz}$

NOTE:

These formulas are based on the internal workings of the part and intended for customer convenience. Actual testing of the part is done at $t_{cy} = 488.28$ ns.

A.C. CHARACTERISTICS (Continued)

For $t_{CY} = 488.28$ ns; $T_A = 0^{\circ}$ C to 70° C, $V_{CC} = +5V \pm 5\%$, $V_{DD} = +12V \pm 5\%$

Symbol	Parameter		Limite	3	Units	Test Conditions
		Min	Тур	Max	Oints	
t _{ø1}	φ ₁ Pulse Width	89			ns 🛶	t _{CY} = 488.28 ns
$t_{\phi 2}$	φ ₂ Pulse Width	236			ns	
t _{D1}	Delay φ ₁ to φ ₂	0			ns	
t _{D2}	Delay φ ₂ to φ ₁	95			ns	φ ₁ & φ ₂ Loaded to
t _{D3}	Delay ϕ_1 to ϕ_2 Leading Edges	109		129	ns	C _L = 20 pF to 50 pF
t _r	Output Rise Time			20	ns	
t _f	Output Fall Time			20	ns 🔳	
t _{DSS}	φ ₂ to STSTB Delay	296		326	ns	
t _{Dφ2}	φ ₂ to φ ₂ (TTL) Delay	-5		+15	ns	
tpW	Status Strobe Pulse Width	40			ns	Ready & Reset Loaded
t _{DRS}	RDYIN Setup Time to STSTB	-167			ns	to 2 mA/10 pF All measurements
tDRH	RDYIN Hold Time after STSTB	217			ns	referenced to 1.5V
t _{DR}	READY or RESET to ϕ_2 Delay	192			ns	unless specified otherwise.
f _{MAX}	Oscillator Frequency			18.432	MHz	

A.C. TESTING, INPUT, OUTPUT WAVEFORM

A.C. TESTING LOAD CIRCUIT

WAVEFORMS

CLOCK HIGH AND LOW TIME (USING X1, X2)

