3. The final thing I will do is add a Distributor to my project.

The Distributor task includes operations such as analyze and distributeEnd. It leverages the analyze activity to send work to protocol 1 for static pages (staticPage) or protocol 2 for CGI requests (cgiDrive). This enables the distributor to properly manage and route incoming work according to the type of request. The distributor balances the workload by dividing jobs between protocols 1 and 2 based on the kind of request (static or CGI). This efficiently decreases the resource demands on each protocol while keeping to the Centering Principle which focuses on the software components with the greatest impact on performance by releasing dominating workload functions.

This output file prints out the results after adding the distributor.

Throughputs and	d utilizations pe	er phase:		
Task Name User	Entry Name user	Throughput 2.45146	Phase 1 50	Total 50
Distributor	distributor Activity Name	2.45146	50.0001	50.0001
	analyze	2.45146	2.47327	
	cgiDrive	0.245146	27.8958	
	distributeEnd	2.45146	0	
	staticPage	2.20631	19.631	
Protocol1	protocol1	2.20631	19.6073	19.6073
Protocol2	protocol2	0.245145	26.0549	26.0549
WebServer	webServer	2.2063	19.0171	19.0171
	Activity Name			
	cache	2.2063	2.30783	
	cacheEnd	1.54441	10.9524	
	diskFetch	0.66189	5.75692	
	webServerEnd	2.2063	0	
WebDisk	webRorW	2.14248	0.214248	0.214248
CGIApp	cgiApp	0.245145	25.9894	25.9894
	Activity Name			
	cdPage	0.098058	14.7273	
	cgiAppEnd	0.245145	0	
	cgiStart	0.245145	0	
	procData	0.147087	11.2621	4.5.500.5
WebReply	sendStatic	2.3533	16.6896	16.6896
T (]	sendDynamic	0.0980574	5.21611	5.21611
Total:	101 1	2.45135	21.9057	21.9057
GetObjects	getObjects	0.784465	0.841024	0.841024
ProtocolReply	packet	41.5754	12.5973	12.5973
DBProcess	dbUpdate dbRead	0.250046 0.421647	7.74001 8.70311	7.74001 8.70311
Total:		0.671693	16.4431	16.4431
DBOperation	read	2.18668	0.218668	0.218668
32272. 4620.	write	1.00019	0.100019	0.100019
Total:		3.18687	0.318687	0.318687

Entry execution demands:

		5 1
Task Name	Entry Name	Phase 1
User	user	0
Distributor	Activity Name	_
	analyze	1
	cgiDrive	0
	distributeEnd	0
	staticPage	0
Protocol1	protocol1	0.25
Protocol2	protocol2	0.25
WebServer	Activity Name	
	cache	1
	cacheEnd	0
	diskFetch	1
	webServerEnd	0
WebDisk	webRorW	0.1
CGIApp	Activity Name	
	cdPage	5
	cgiAppEnd	0
	cgiStart	0
	procData	15
WebReply	sendStatic	0.8
	sendDynamic	0.8
GetObjects	get0bjects	1
ProtocolReply	packet	0.25
DBProcess	dbUpdate	30
	dbRead	20
DBOperation	read	0.1
	write	0.1

Service times:

Task Name User Distributor	Entry Name user distributor Activity Name analyze cgiDrive distributeEnd	Phase 1 20.396 20.3961 1.0089 113.793 0 8.89765
Protocol1 Protocol2 WebServer	staticPage protocol1 protocol2 webServer Activity Name cache cacheEnd	8.88695 106.284 8.61947 1.04602 7.09164
WebDisk CGIApp	diskFetch webServerEnd webRorW cgiApp Activity Name cdPage cgiAppEnd cgiStart	8.69769 0 0.1 106.016 150.189 0
WebReply GetObjects ProtocolReply DBProcess DBOperation	procData sendStatic sendDynamic getObjects packet dbUpdate dbRead read	76.5676 7.092 53.1944 1.0721 0.302999 30.9543 20.6408 0.1
	write	0.1

SNIIPPETS OF THE CODE WILL BE DISPLAYED TO EXPLAIN HOW PERFORMANCE PATTERNS AND PRINCIPLES WILL BE APPLIED.

```
#============ Variables ============
$\[ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50] $\[ DistributorThread=60 \]
$Prot1Thread=30
$Prot2Thread=30
$WSThread=30
$WReplyThread=40
$CGIAppThread=30
$WSPThread=7
$CGIPThread=4
$PRThread=15
$DBProcessThread=25
$DBPThread=20
$ProtP1Thread=6
$ProtP2Thread=12
$PS=0.9
$1 PS=0.1
$1 PCM=0.7
$PR=0.6
$1_PR=0.4
G "Layers: 1, Customers: 1, Clients: 1, Tasks: 1, (Delay: 0), Processors: 1"
                                                                        # Model comment
     # Convergence test value.
# Maximum number of iterations.
# Print intermediate results (see manual pages)
1e-05
10
                 # Model under-relaxation ( 0.0 < x <= 1.0)
        p UP i
        p WSP f m $WSPThread
        p CGIP f m $CGIPThread
        p WSDisk f
        p DBP f m $DBPThread
        p DBDisk f
        p ProtocolP1 f m $ProtP1Thread
        p ProtocolP2 f m $ProtP2Thread
   -1
```

```
#======= Tasks ===========
# SYNTAX: t TaskName TaskType EntryList -1 ProcessorName [flags]
   TaskName is any string, globally unique among tasks.
   TaskType = r {reference or user task}
           n {other}
  flags = m <int> {multithreaded}
          | i {infinite or delay server}
#
          | z <real> {think time}
          | <int> {task priority}
#
 t User r user -1 UP m $N
 t Distributor n distributor -1 ProtocolP1 m $DistributorThread
 t Protocol1 n protocol1 -1 ProtocolP1 m $Prot1Thread %f $thruProtocol %u $uProtocol
 t Protocol2 n protocol2 -1 ProtocolP1 m $Prot2Thread
 t WebServer n webServer -1 WSP m $WSThread %f $thruWebServer %u $uWebServer
 t WebDisk n webRorW -1 WSDisk %f $thruWDisk %u $uWDisk
 t CGIApp n cgiApp -1 CGIP m $CGIAppThread %f $thruCGIAPP %u $uCGIAPP
 t WebReply n sendStatic sendDynamic -1 WSP m $WReplyThread %f $thruWebReply %u $uWebReply
 t GetObjects n getObjects -1 WSP %f $thruGetObjects %u $uGetObjects
 t ProtocolReply n packet -1 ProtocolP2 m $PRThread %f $thruProtReply %u $uProtReplly
 t DBProcess n dbUpdate dbRead -1 DBP m $DBProcessThread %f $thruDBProcess %u $uDBProcess
 t DBOperation n read write -1 DBDisk %f $thruDBOpt %u $uDBOpt
-1
```

```
#========= Entries ============
E 0
# SYNTAX-FORM-A: Token EntryName Value1 [Value2] [Value3] -1
   EntryName is a string, globally unique over all entries
   Values are for phase 1, 2 and 3 {phase 1 is before the reply}
#
   Token indicate the significance of the Value:
       s - HostServiceDemand for EntryName
#
       c - HostServiceCoefficientofVariation
#
       f - PhaseTypeFlag
# SYNTAX-FORM-B: Token FromEntry ToEntry Value1 [Value2] [Value3] -1
   Token indicate the Value Definitions:
#
       y - SynchronousCalls {no. of rendezvous}
#
       F - ProbForwarding {forward to ToEntry rather than replying}
       z - AsynchronousCalls {no. of send-no-reply messages}
# ----- user ------
 s user 0 -1
 y user distributor 1 -1 %w1 $wUser
# ----- distributor -----
 A distributor analyze
# ----- protocol1 -----
 s protocol1 0.25 -1
 y protocol1 webServer 1 -1 %w1 $wProtocol1
# ----- protocol2 -----
 s protocol2 0.25 -1
 y protocol2 cgiApp 1 -1 %w1 $wProtocol2
# ----- webserver -----
 A webServer cache
# ----- webDisk -----
 s webRorW 0.1 -1
# ----- sendPage -----
 s sendStatic 0.8 -1
 y sendStatic packet 16 -1 %w1 $wSendStatic
 s sendDynamic 0.8 -1
 y sendDynamic getObjects 8 -1
 y sendDynamic packet 40 -1
 s getObjects 1 -1
 y getObjects webRorW 0.2 -1
# ----- protocol Reply -----
 s packet 0.25 -1
# ----- CGI Application -----
 A cgiApp cgiStart
# ----- CGI Application Database ------
 s dbUpdate 30 -1
 y dbUpdate read 2 -1
 y dbUpdate write 4 -1
 s dbRead 20 -1
 y dbRead read 4 -1
 s read 0.1 -1
 s write 0.1 -1
-1
```

```
#======= Activities ===========
A Distributor
        s analyze 1
        s staticPage 0
       y staticPage protocol1 1
        s cgiDrive 0
        y cgiDrive protocol2 1
        s distributeEnd 0
        analyze -> (0.9)staticPage + (0.1)cgiDrive;
        staticPage + cgiDrive -> distributeEnd;
        distributeEnd[distributor]
-1
A WebServer
        s cache 1
        s diskFetch 1
        y diskFetch webRorW 3
       y diskFetch sendStatic 1
        s cacheEnd 0
        y cacheEnd sendStatic 1
        s webServerEnd 0
        cache -> (0.3)diskFetch + (0.7)cacheEnd;
        cacheEnd + diskFetch -> webServerEnd;
        webServerEnd[webServer]
-1
A CGIApp
        s cgiStart 0
        s procData 15
        y procData dbUpdate 1.7
        y procData sendStatic 1
        s cdPage 5
        y cdPage dbRead 4.3
        y cdPage sendDynamic 1
        s cgiAppEnd 0
        #s cgiEnd 0
        #y cgiEnd sendStatic 1
        cgiStart -> (0.6)procData + (0.4)cdPage;
        procData + cdPage -> cgiAppEnd;
        cgiAppEnd[cgiApp]
-1
```

PERFORMANCE PRINCIPLES

My new model incorporates these new principles and so I believe can be applied to the original model.

1. Centering Principle:

The Distributor task in LQN code distributes work to protocol tasks (Protocol1 and Protocol2) and the WebServer. This emphasis on the Distributor task as a dominating workload function exemplifies the centering concept, which involves improving system performance by focusing on the most important tasks.

- 2. Locality Principle: The LQN code prioritizes keeping actions and functions near to the resources they use. For example, the WebServer and CGIApp tasks contact other tasks (such as webRorW and dbUpdate) for data processing and retrieval, ensuring that the activities are local to the resources being used.
 - 3. Parallel Processing Principle: The code uses many threads (e.g., m \$DistributorThread, m \$Prot1Thread, m \$Prot2Thread) to handle requests simultaneously. This can speed computer processing by dividing work into multiple concurrent processes.

4. Spread the Load Principle

The LQN code distributes workload among jobs and processors, such as between Protocol1 and Protocol2. This can help to balance the workload and prevent contention delays.

Performance patterns:

Batching:

The model includes tasks for batching requests, such as dbUpdate, which combines numerous reads and writes into batch operations. This is consistent with the "Processing Versus Frequency" theory and can increase efficiency.

Flex Time: The model distributes tasks across processors (p UP i, p WSP f m \$WSPThread, p DBP f m \$DBPThread) to manage load over time.

Locality: Tasks are aligned with their most frequent uses, such as webServer, webRorW, and sendStatic. This demonstrates a focus on locality and efficient processing.

Performance Antipatterns:

"God" Class: The Distributor and User jobs handle a substantial percentage of the work, which can lead to excessive traffic and decreased performance if they become highly centralized.

Circuitous Treasure Hunt:

The procData activity in CGIApp interacts with several activities, including dbUpdate, sendStatic, and dbRead, which may require many search operations to obtain data.

One-Lane Bridge: Some tasks run on single processors (e.g., p DBP f m \$DBPThread), which might cause bottlenecks if only one process can run at a time.

Traffic Jam:

Inadequate management of task interactions (e.g., User, Distributor, Protocol1, Protocol2, and WebServer) can result in backlogs and unpredictable response times.

CONCLUSION:

In conclusion, this layered queuing network model of a web server system helps us understand how various tasks entries and activities have a major impact in our system. To ensure we are designing a high performance software continuous monitoring and evaluation is needed to spot out any errors or bottlenecks can damage the software.