Lab 3 - Hints

Low-level drive functionality

- In this lab, we ask you to use only the drive_wheels command for navigation
- Do not use drive_straight, GoToPose, GoToObject or any other high-level commands

```
Tell Cozmo to move his wheels / treads at a given speed, and optionally stop them after a given duration.

If duration is None then this is equivalent to the non-async drive_wheel_motors() method.

Parameters:

I_wheel_speed (float) - Speed of the left tread (in millimeters per second).

r_wheel_speed (float) - Speed of the right tread (in millimeters per second).

I_wheel_acc (float) - Acceleration of left tread (in millimeters per second squared). None value defaults this to the same as I_wheel_speed.

r_wheel_acc (float) - Acceleration of right tread (in millimeters per second squared). None value defaults this to the same as r_wheel_speed.

duration (float) - Time for the robot to drive. Will call stop_all_motors() after this duration has passed.
```

AR Markers

- AR markers are used in robotics for fast and reliable object detection
- Instead of color markers, in this lab, you will use AR markers.

AR Markers on Cozmo cubes

• Each cube has its own unique AR marker

Object detection using AR markers is much more robust to change in

light condition and to noise.

Customized AR Markers on Cozmo cubes

- From Cozmo's SDK
- Each one is unique
- They could be printed in different scales depending on the application

AR Markers for Lab 3

As mentioned in instruction file, to generate a customized marker, use one of the following options:

Pre-defined custom markers

http://cozmosdk.anki.com/docs/generated/cozmo.objects.html#cozmo.objects.CustomObject

AR markers

https://pypi.org/project/ar-markers/ (not available anymore)

- Opency ArUco
- 1. https://www.pyimagesearch.com/2020/12/14/generating-aruco-markers-with-opency-and-python/
- 2. https://www.pyimagesearch.com/2020/12/21/detecting-aruco-markers-with-opencv-and-python/
- 3. https://www.pyimagesearch.com/2020/12/28/determining-aruco-marker-type-with-opency-and-python/
- 4. https://mecaruco2.readthedocs.io/en/latest/notebooks_rst/Aruco/aruco_basics.html

You will need two different markers for this lab.

Coordinate Transformation

- The pose (position + orientation) of a cube (and the robot) are reported in a fixed coordinate system (i.e., robot is not always (0,0))
- You need to perform coordinate transformation to find the relative pose of the cube w.r.t the robot
- Use this information for navigating towards the cube

Finite State Machine

 You can use an existing python library
 There exist several implementations and tutorials: https://pypi.org/project/python-statemachine/

Install it using: pip install python-statemachine

There are others that we do not recommend:

https://pypi.org/project/fsmpy/

https://pythonspot.com/python-finite-state-machine/

https://www.python-course.eu/finite_state_machine.php

https://python-3-patterns-idioms-test.readthedocs.io/en/latest/StateMachine.html