ブロックチェーン・暗号通貨の 数理

安永憲司

金沢大学

金沢大学暗号理論勉強会 2017.6.15-16

暗号通貨の歴史

- 1980年代: David Chaum の電子現金
 - 銀行発行の現金を電子的に実現

- 2008年: Satoshi Nakamoto の Bitcoin
- 2011-2013年:シルクロード(闇サイト)事件
- 2013年: Bitcoin への注目

様々な暗号通貨

Crypto-Currency Market Capitalizations

	ì							
^ #	Na	ame	Market Cap	Price	Circulating Supply	Volume (24h)	% Change (24h)	Price Graph (7d)
1	B	Bitcoin	\$44,222,564,865	\$2698.46	16,388,075 BTC	\$2,713,170,000	-9.14%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2	÷	Ethereum	\$36,226,580,229	\$391.90	92,439,270 ETH	\$3,134,760,000	10.20%	
3	•\$	Ripple	\$9,799,864,062	\$0.255695	38,326,381,283 XRP *	\$130,502,000	-7.81%	m
4	\$	Ethereum Classic	\$1,873,091,624	\$20.24	92,549,997 ETC	\$301,845,000	-5.91%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5	&	NEM	\$1,840,122,000	\$0.204458	8,999,999,999 XEM *	\$15,461,000	-13.29%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6	0	Litecoin	\$1,522,938,522	\$29.56	51,524,082 LTC	\$365,955,000	-8.47%	many
7	Ð	Dash	\$1,317,550,159	\$179.03	7,359,341 DASH	\$85,760,900	-7.72%	~~~
8	ь	BitShares	\$984,101,445	\$0.379075	2,596,060,000 BTS *	\$294,081,000	2.33%	
9		Stratis	\$812,481,407	\$8.26	98,422,348 STRAT *	\$16,999,500	-5.78%	my my
10	Ø	Monero	\$751,743,961	\$51.42	14,618,316 XMR	\$25,592,600	-10.83%	M. 3h

ビットコイン (Bitcoin)

■ Satoshi Nakamoto (2008) が提案

- 信頼できる第三者を置かずに実現可能な暗号通貨
 - 非中央集権的に実現

■ 基礎となる技術はブロックチェーン (公開台帳・ 分散台帳) などと呼ばれる

ブロックチェーン・公開台帳・分散台帳

- 非中央集権的に台帳を管理
 - 台帳:追記専用のログ。情報に順序があり、 記録後は内容・順序の変更不可
 - 公開・分散型:誰でも書き込み・読み取り可能
 - 非許可型 (permissionless) と呼ばれることも

Bitcoin の実現方法

- 公開台帳にすべての取引内容を記載
 - 追記の際に、過去の取引を見て、二重支払い 等の不正をチェック
 - 送金者の電子署名が必要なため、送金偽造は 不可
 不可
 - 電子署名の公開鍵(検証鍵) = Bitcoin 上の ID

ブロックチェーンの実現方法

- チェーンにブロックを接続するためにパズルを 解くことを必要とする
 - Proof-of-Work と呼ばれる

チェーンを少しずつ伸ばすことにより、 全員が同じ台帳を共有できる

Proof-of-Work (PoW)

- 仕事の証明 [Dwork, Naor 1992]
 - 解くために少し時間の掛かるパズル (答えの正当性は簡単に確認できる)
 - Bitcoin では、PoW に成功すれば報酬としてコインを受け取れるため採掘 (mining) とも呼ばれる
 - 実際は、ハッシュ関数を使った探索

ナカモトプロトコル [Nakamoto 2008]

■ [Pass, Seeman, shelat 2017] によるモデル化

$$\forall$$
 i = 1, 2, ..., $h_i = H(h_{i-1}, m_i, n_i) < D$
 $h_{-1} = H(0, 0, \bot)$

- H はランダムオラクルとしてモデル化
- \forall (h, m), $Pr_n[H(h, m, n) < D] = p$

チェーンの枝分かれ

- 枝分かれは存在しうるが、「長いチェーンが正当なもの」というルール
 - 過半数が正しく実行するとき、一定時間経てば書き換えはほぼ不可能
- Bitcoin では深さ 6 で確定とみなすことが多い

ビットコインにおける調整・報酬

- システム全体で PoW が 10 分に 1 回しか成功しないよう困難性パラメータ D を調整
 - 2016 ブロック (約2週間) 毎に再調整
- PoW 実行誘因として成功者にブロック報酬を付与
 - インフレ対策として 210000 ブロック(約4年) 毎に報酬は半減

- 取引をブロックへ取り込む誘因として PoW 成功者に取引報酬を付与
 - 取引の当事者から支払われる

ブロックチェーンの応用

- ■「非中央集権的に維持できる台帳」と考えれば 応用範囲は広い
 - 分散管理のため、安定したシステムが実現
 - 中央組織における情報集約が不要
 - 中央組織を介さずに情報共有可能

ブロックチェーンの活用例

■ ブロックチェーン技術活用のユースケース

金融系	ポイント/リワード	資産管理	商流管理	公共
決済 (SETL、	ギフトカード交換 (GyftBlock)	bitcoinによる資産管理 (Uphold(旧Bitreserve)	サプライチェーン (Skuchain)	市政予算の可視化 (Mayors Chain)
FactoryBanking)	アーティスト向けリワード (PopChest)	土地登記等の公証 (Factom)	トラッキング管理 (Provenance)	投票 (Neutral Voting Bloc)
為替·送金·貯蓄等 (Ripple、Stellar)	プリペイドカード (BuyAnyCoin)	711.50	マーケットプレイス (OpenBazaar)	バーチャル国家/宇宙開発 (BitNation/Spacechain)
証券取引 (Overstock、Symbiont、	リワードトークン (Ribbit Rewards)	ストレージ データの保管 (Stroit BinghainDB)	金保管 (Bitgold)	ベーシックインカム (GroupCurrency)
BitShares、Mirror、 Hedgy)		(Stroj、BigchainDB)	ダイヤモンドの所有権 (Everledger)	医療
bitcoin取引 (itbit、Coinffeine)	資金調達 アーティストエクイティ取引	認証	デジタルアセット管理・移転 (Colu)	医療情報 (BitHealth)
ソーシャルバンキング (ROSCA)	(PeerTracks) クラウドファンディング	デジタルID (ShoCard、OneName)	コンテンツ	(2.0)
	(Swarm)	アート作品所有権/真贋証明 (Ascribe/VeriSart)	ストリーミング (Streamium)	IoT
移民向け送金 (Toast)	72	薬品の真贋証明 (Block Verify)	ゲーム (Spells of Genesis、	IoT (Adept、Filament)
新興国向け送金 (Bitpesa)	コミュニケーション SNS		Voxelnauts)	マイニング電球
イスラム向け送金/シャリア遵法	(Synereo、Reveal) メッセンジャー、取引	シェアリング ライドシェアリング	将来予測	(BitFury) マイニングチップ
(Abra、Blossoms)	(Getgems、Sendchat)	(La'ZooZ)	未来予測、市場予測 (Augur)	(21 Inc,)

出典:経済産業省 商務情報政策局 情報経済課「平成27年度 我が国経済社会の情報化・サービス化に係る基盤整備 (ブロックチェーン技術を利用したサービスに関する国内外動向調査)報告書概要資料」

ブロックチェーン技術の展開が有望な事例とその市場規模

出典:経済産業省 商務情報政策局 情報経済課「平成27年度 我が国経済社会の情報化・サービス化に係る 基盤整備 (ブロックチェーン技術を利用したサービスに関する国内外動向調査)報告書概要資料」

Hyperledger プロジェクト

- Linux Foundation がオープンソースソフトウェアによる ブロックチェーン技術の整備を目指したもの
 - IBM, Intel, Fujitsu, Hitachi, NTT Data, NEC 等参加
- 現在3つのフレームワーク
 - Fabric (IBM), Swatooth Lake (Intel), Iroha (ソラミツ)
- 3つともプライベート・コンソーシアム型ブロック チェーンであり、パブリック型でない
 - Byzantine fault-tolerant プロトコルベース (非許可型ではない分散計算プロトコル)

■ 企業受けがいいので、これらが利用されるかも

ビットコイン・ブロックチェーンの課題 (1/3)

- 51%攻撃(過半数正直者ハッシュパワーが必要)
 - 計算資源の半数を不正者が占めると破綻の可能性
 - 不正者に都合のよい分岐が正しいチェーンとなる

マイニングの専門化(専用ハードウェア等)

- マイニングのためのエネルギー消費が膨大
 - Proof of Useful Work
 - 代替パズル: Proof of Stake, Proof of Space 等

ビットコイン・ブロックチェーンの課題 (2/3)

- マイニングプールの構成
 - 単独マイニングでは報酬を獲得しにくいため
 - プール管理者が力を持ち非中央集権化に逆行

- 取り引きの最終が確率的であり、時間がかかる
 - 分岐が正しくなる可能性が常に残る

- 匿名性の確保
 - ビットコインは取引内容をすべて公開・共有
 - 匿名性の高い暗号通貨: Zerocoin, Zerocash

ビットコイン・ブロックチェーンの課題 (3/3)

- インセンティブ設計
 - ビットコインでは、ブロック報酬と取引報酬
 - 報酬の設定方法・妥当性は?
 - 暗号通貨以外で利用するときの報酬は?

- 様々な暗号通貨をどのように選択すべきか
 - 800以上存在
 - 機能性・安全性の指標

暗号周辺における研究動向

以降で紹介する内容

- 暗号技術としての Nakamoto プロトコルの分析
 - Garay, Kiayias, Leonardos (Eurocrypt 2015)
 - Pass, Seeman, shelat (Eurocrypt 2017)
 - Bentov, Pass, Shi (ePrint 2016)
- 公開台帳の安全性モデル・不可能性
 - Pass, Shi (ePrint 2016) のモデル
- 望ましい性質をもつプロトコルの提案
 - 反応性 (responsivness): Pass, Shi (ePrint 2016)
 - 公平性 (fairness): Pass, Shi (PODC 2017)
- マイニングプールの報酬関数の考察
 - Schrijvers, Bonneau, Boneh, Roughgarden (FC'16)

Garay, Kiayias, Leonardos (Eurocrypt 2015)

- The Bitcoin Backbone Protocol: Analysis and Applications
- ブロックチェーンと公開台帳の機能を定式化
 - ブロックチェーン: (1) common prefix (2) chain quality
 - 公開台帳: (1) persistency (2) liveness
- Nakamoto プロトコルが、ブロックチェーンの機能を 満たし、公開台帳を実現できることを証明
 - 敵対者のハッシュパワーρ<1/2のとき
 - 通信モデル:同期ネットワーク

Pass, Seeman, shelat (Eurocrypt 2017)

- Analysis of Blockchain Protocol in Asynchronous Networks
- 部分的同期ネットワークにおける、Nakamoto の分析
 - 通信遅延の上限が所与
- 通信遅延の上限がない場合の Nakamoto への攻撃
 - ハッシュパワーρに関して安全な領域との差が緊密
- ブロックチェーンの機能に対する別の定式化
 - ブロックチェーン: (1) consistency (2) chain quality(3) chain growth
 - (1),(2),(3) を満たせば公開台帳を満たす

Bentov, Pass, Shi (ePrint 2016)

- The Sleepy Model of Concensus
- 正直・不正ノード以外に offline ノードがいる合意問題
 - 既存プロトコルでは「offline = 不正」扱い
- Sleepy モデルにおける合意プロトコルの提案
 - 公開台帳の機能 = state machine replication 問題
 - 設定・仮定
 - online の過半数は正直(ただし permissioned 設定)
 - 部分的同期ネットワーク
 - weakly-synchronized clock, PKI, CRS (common reference string), CRH (collision-resistant hash)
 - アプローチ: Nakamoto の PoW を暗号技術で

公開台帳の安全性モデル

- Pass, Shi (ePrint 2016) によるモデル化
 - Proof-of-Work ベースを対象
- 公開台帳は以下の性質を満たす
 - 一貫性 (consistency): 正直ノードは同じ台帳を管理
 - 生存性 (liveness):正直ノードは台帳に記録可能
- 設定
 - 環境 Z と敵対者 A が攻撃を実行
 - 部分的同期ネットワーク
 - Proof-of-Work をランダムオラクルを利用してモデル化
 - 正直ノードを敵対者 A が制御するまでに遅延発生 (delayed corruption)

安全性モデル [PS16]

Z

■ 環境 Z は、自由にノードを生成

不正ノード割合は常にρ以下

0 0

■ 正直ノードは、プロトコルに従う

0

- 各タイムステップで正直ノード i は
 - 1度だけランダムオラクルを利用
 - LOG_iを出力

〇:正直ノード

●: 不正ノード

LOG_i: ノード i が承認した取引の系列

安全性モデル [PS16]

環境 Z は、不正ノードといつでも 通信可能

■ 不正ノードは敵対者 A に制御され、 任意の振る舞いが可能

- ノード間のメッセージ伝達は A が行う
 - 遅延を発生可能
 - メッセージに id はなく、 遅延上限 Δ 以内に すべての正直ノードへ送付

〇:正直ノード

●: 不正ノード

公開台帳の性質

- 一貫性 (consistency)
 - 共通の語頭 (common prefix):
 正直ノード i と j が、時刻 t, t' で LOG, LOG' を出力
 - → LOG < LOG' または LOG' < LOG

LOG	LOG'	LOG'	LOG
tx1	tx'1	tx'1	tx1
tx2	tx'2	tx'2	tx2
	tx'3		tx3
	:		:

自己一貫性 (self-consistency):
 正直ノード i が、時刻 t, t' (t < t')で LOG, LOG' を出力

27

公開台帳の性質

■ 生存性 (liveness):

時刻 t ≥ T_{warmup} に正直なノードが tx を入力

→ 時刻 t' ≥ t + T_{confirm} の正直ノードは tx を LOG に含む

公開台帳に関する不可能性

- 敵対者ハッシュパワー ρ > 1/2 では構成不可能
 - [稲澤, 越中谷, 安永, 満保 (2017)]

- 正直ノードは計算を止めることができない
 - [Pass, Shi (2016)]

- 敵対者ハッシュパワーρ>1/3のとき 反応的プロトコルは構成不可能
 - 反応的 (responsive):T_{confirm} が実際の遅延に依存
 - [Pass, Shi (2016)]

敵対者ハッシュパワー > 1/2 での構成不可能

- ・Z は正直ノードにランダム tx を入力
- ・敵対者 A は半分のノードを制御し、 不正ノード間だけでランダム tx' を入力

敵対者ハッシュパワー > 1/2 での構成不可能

○:正直ノードZ●:不正ノード不正ノード間

tx' ∈ LOGを出力

- ・新規ノードを生成し、不正ノードは正直に振る舞う
- ・新規ノードはどちらが正しいか区別できない

敵対者ハッシュパワー > 1/2 での構成不可能

■ 証明概要

- n/2 正直ノードがランダムな tx を入力
- 同時に n/2 不正ノードだけでランダム tx' を入力
 - 正直ノードの通信は無視し、不正ノード間だけで実行
- 新規正直ノードを生成
- 不正ノードも正直に振る舞う
- 十分時間が経つと、新規ノードのログの先頭には tx/tx' のいずれか
 - 新規ノードはどちらが正しいか区別できない
- 確率 1/2 で tx は先頭になく、一貫性を満たさない

正直ノードは計算を止めることができない

- ・正直ノードは tx 入力後、計算をやめる(と仮定)
- ・A は正直に振る舞い、頭の中で、同様の実行をシミュレート
- ・新規ノード生成後、シミュレート実行の通信を行うと、 新規ノードはどちらが正しいか区別できない

正直ノードは計算を止めることができない

■証明概要

- 正直ノードがランダム tx を入力
 - その後、新規入力がないため計算を止めてもよい
- 敵対者 A は、頭の中で、正直ノードの実行をシミュレートし、ランダム tx' を入力
 - 外とは通信を行わない
- 新規正直ノードを生成
- A は不正ノードを利用して、シミュレートしているノードの通信を全体へ行う
- 十分時間が経つと、 新規ノードのログの先頭に tx/tx' のいずれか → 確率 1/2 で一貫性を満たさない

敵対者ハッシュパワー > 1/3 での対応的プロトコルの構成不可能

- プロトコルが反応的 (responsive) ⇔ T_{confirm}が遅延上限 Δ でなく実際の遅延 δ に依存
- 証明概要
 - n/3 人ずつのグループ A, B, C に分割
 - Aはcorruptされ,B,Cはhonest
 - 1/3-ハッシュパワー耐性 → 2 グループ実行で合意可能
 - Aは、Bに対して正直に振る舞い、 Cに対して時間遅れで正直に振る舞う
 - PoW のため、A は B, C と同時に対応できない
 - B-C 間は遅延が発生して通信できない
 - A-B 間で tx, A-C 間で tx' を合意 → 矛盾

Pass, Shi (ePrint 2016)

Hybrid consensus: Efficient Consensus in the Permissionless Model

- 公開台帳の定式化・反応性 (responsivness) の導入
- 反応的公開台帳をハッシュパワー p < 1/3 で構成
 - ブロックチェーン + byzantine fault tolerance (BFT) で実現
 - ブロックチェーンで委員を選び、そのメンバで BFT
 - Nakamoto だと 3/4-honest、
 Fruitchain [PS2017] だと 2/3-honest が必要
- 不可能性に関する考察

利己的マイニング (selfish-mining)

- Nakamoto に対する利己的マイニング攻撃
 - 新しいブロックを採掘 → 出さずに取っておく
 - 他の正直プレイヤーが採掘 → それを出す

- 正直プレイヤーの計算を無駄にできる
 - 敵対者がρハッシュパワーを持つとき、 Tブロックのうち、期待値はρT個だが、 成長割合が (1 – ρ)T であるためρ/(1 – ρ) 貢献可能
 - pが 1/2 に近い → ほとんどすべての割合貢献

Pass, Shi (PODC 2017)

- Fruitchains: A Fair Blockchain
- 公平性をもつブロックチェーンの提案
 - 公平性:β割合ハッシュパワー → β割合ブロック貢献
 - 利己的マイニングへの対策
- アイディア:情報一貫性のためのマイニングと同時に、 データを保存するフルーツマイニングを実行
- 「取引手数料報酬」を利得と考えるとき n/2-結託耐性 ナッシュ均衡を実現
 - 結託しても期待報酬が増えないため
- 報酬の分散の低減化(マイニングプール対策)
 - 難しさの異なる2種類のマイニングを利用できる

Fruitchain の概要

- データはフルーツマイニングで入れる (→フルーツ)
- Nakamoto ブロックチェーンにはフルーツを入れる
 - 2-for-1 trick [GKL15] で同時に実行可能
 - 受け取った古くないフルーツをすべて入れる
 - → ブロック貢献 = フルーツ貢献 ≈ ハッシュパワー

マイニングプール

- ビットコインマイニングは報酬は高いが難しい
 - 25 BTC = 6,000 USD, 数年に一回成功
 - 専用ハードウェアでも3ヶ月に一回程度
 - 無記憶過程であり、1年費やしても成功率は不変
- 多くのマイナーはマイニングプールに参加して 安定した報酬を受け取ることを望む
 - 参加者はブロック(=解)とともにシェア(=解 に近いもの)を提出し、その内容を元に報酬分割
- 報酬の分け方はプール毎に様々
 - 報酬の分け方は「誘因両立」であるか?

Schrijvers, Bonneau, Boneh, Roughgarden (FC'16)

Incentive Compatibility of Bitcoin Mining Pool Reward Functions

- マイニングプール内の報酬関数のための ゲーム理論的モデル
 - プールは1つだけ
 - 他のプール・単独マイニングへの変更は考えない
 - 誘因両立性 (Incentive Compatibility) を定義
 - 比例報酬は誘因両立でない,
 誘因両立性を満たす新しい関数を導入,
 pay-per-last-N-shares (PPLNS) は 誘因両立

設定

- 採掘者 n 人で固定
- 採掘者 i の採掘力 α_i , $\sum_{i=1}^n \alpha_i = 1$
- 採掘者がシェアを見つけるまでの時間 = パラメータ α_i の指数分布
 - 期待値 1/α_i
 - 各シェアは確率 1/D でブロック (解)

報酬関数、履歴、採掘者戦略

- 報酬関数 $R: H \rightarrow [0,1]^n$
 - 履歴から割り当て $\{a_i\}_{i=1}^n, \sum_{i=1}^n a_i = 1$ を決定
- 順序なし履歴 $\vec{b} = (b_1, ..., b_n) \in \mathbb{N}^n$ を利用
 - \bullet 当該ラウンドで採掘者 i は b_i 個シェアを報告
 - 実際には、報告順や過去ラウンドの報告などを 利用する場合も
- 採掘者戦略 σ
 - 報酬関数 R に対し、採掘者は戦略 $\sigma(R)$ を選択

•
$$\sigma(R) = \max_{\sigma} \lim_{t \to \infty} \frac{\sum_{j=1}^{T} R_i(\overrightarrow{b_j})}{t}$$

• \underline{t} : 採掘者 i の採掘時間, T: 時間 t までのラウンド数, $\overline{b_j}$: ラウンド j における採掘者の提出シェア数

報酬関数に求められる性質

- 性質 1:報酬関数 *R* が誘因両立

 ⇔ 採掘者の最適反応戦略 σ(*R*) は解をすぐに報告
 - 厳密な定義は後で
- 性質 2:報酬関数 R が比例支払い ⇔ 各採掘者 I に対し $\mathbb{E}_b[R_i(\vec{b})] = \alpha_i$
 - 現実には、小さい割合 f の手数料徴収なども
- 性質3:報酬関数 R が (γ, δ) -予算均衡 $\Leftrightarrow \forall \vec{b}, \gamma \leq \sum_{i=1}^{n} R_i(\vec{b}) \leq \delta$
 - γ < 1 のとき分配されない額が存在

誘因両立性

- 採掘者は解を見つけたとき、すぐに報告するか、 さらに d 個シェアが見つかるまで待つか
- 時刻 t に採掘者 i が解を見つけ、 それまでに \vec{b}_t のシェアが報告されていたとき
 - d 個分待ったときの期待報酬 (1)

$$\mathbb{E}_{\vec{b} \, s.t. \, \|\vec{b}\|_{1} = d} \left[R_{i} (\vec{b}_{t} + \vec{b}) \right] = \sum_{\vec{b} \, s.t. \, \|\vec{b}\|_{1} = d} \Pr[\vec{b}] R_{i} (\vec{b}_{t} + \vec{b})$$

すぐに報告したときの期待報酬(2)(すぐに報告し、 次のラウンド開始により、dシェア分の報酬獲得)

$$R_{i}(\vec{b}_{t}) + d \frac{\mathbb{E}_{\vec{b}}[R_{i}(\vec{b})]}{\mathbb{E}_{\vec{b}}[\|\vec{b}\|_{1}]} = R_{i}(\vec{b}_{t}) + \frac{d}{D} \mathbb{E}_{\vec{b}}[R_{i}(\vec{b})]$$

(1) ≤ (2) のとき、R は誘因両立

既存の報酬関数

- **上** 比例報酬 (proportional) $R_i^{(prop)}(\vec{b}) = \frac{b_i}{\|\vec{b}\|_1}$
 - 誘因両立でない。 期待値よりも少ないシェアしか見つかっていない 場合、解が見つかっても、期待値通りのシェアが 見つかるまで待つ
- シェア毎支払い (pay-per-share) $R_i^{(pps)}(\vec{b}) = \frac{b_i}{D}$
 - 誘因両立であるが $(1/D, \infty)$ -予算均衡。 解を出しても出さなくても同額なので出したほう が良い。一方、見つかるシェア数に制限がない

新しい報酬関数

■ シェア数だけでなく解の発見者を考慮した関数

$$R_i^{(ic)}(\vec{b}, s) = \frac{b_i}{\max\{\|\vec{b}\|_{1}, D\}} + I\{i = s\} \left(1 - \frac{\|\vec{b}\|_1}{\max\{\|\vec{b}\|_{1}, D\}}\right)$$

- $\|\vec{b}\|_1 \ge D$ のとき、第2項は 0 で、比例報酬に一致
- $\|\vec{b}\|_1 < D$ のとき、各シェアに $\frac{b_i}{D}$ 割り当て、残りを解の発見者に
- 比例支払い、誘因両立、(1,1)-予算均衡である
- 報酬 63% (≈ 1 e⁻¹) はシェア提出者へ支払われる
- 分散は単独採掘と同等だが、目標額を得るための時間は比例報酬の定数倍程度 ←分散だけでは見えない

より多くの情報を必要とする報酬関数

■ 最終 N シェア毎支払い (pay-per-last-N-shares)

$$R_i^{(pplns)}(\vec{s}) = \frac{\#\{s_j: s_j \in \vec{s} \land s_j = i\}}{N}$$

- すぐに解を提出するか、次のシェアが見つかるまで待つか、を比較(先ほどより弱い)
- $\alpha_i < 1 \frac{D}{N}$ のとき、すぐに解を提出
- $N \ge D$ のとき、すぐに解を提出

その他の研究動向

- ブロック報酬がなくなったときの問題
 - Carlsten, Kalodner, Weinberg, Narayanan, "On the Instability of Bitcoin Without the Block Reward" (CCS 2016)
- Proof of Stake ベースのプロトコル
 - Daian, Pass, Shi, "Snow white: Provably secure proofs of stake" (ePrint 2016)
 - Kiayias, Russell, David, Oliynykov, "Ouroboros: A provably secure proof-ofstake blockchain protocol" (Crypto 2017)
- Proof of Work の困難性変化を考慮した分析
 - Garay, Kiayias, Leonardos, "The Bitcoin Backbone Protocol with Chains of Variable Difficulty" (Crypto 2017)
- 汎用的結合可能なブロックチェーン
 - Badertscher, Maurer, Tschudi, Zikas, "Bitcoin as a Transaction Ledger: A Composable Treatment" (Crypto 2017)
- Proof of Useful Work 関係
 - Ball, Rosen, Sabin, Vasudevan, "Proofs of Useful Work" (ePring 2017)
 - Ball, Rosen, Sabin, Vasudevan, "Average-Case Fine-Grained Hardness" (STOC 2017)

Carlsten, Kalodner, Weinberg, Narayanan (CCS 2016)

- On the Instability of Bitcoin Without the Block Reward
- ブロック報酬と取引報酬
 - 初期はブロック報酬がメインだが4年で半減
 - 「取引の差額 = 取引手数料」としてマイナーが入手
- 取引報酬だけになったときの問題点
 - 取引手数料 100 BTC 分がマイニングされ、5 BTC 分の取引が残っているとき、
 - (1) 最長チェーンをマイニングして 5 BTC を受け取り、 残り 0 BTC とするか
 - (2) 1 つ前に戻って枝分かれマイニングして 105 BTC のうち 55 BTC を受け取り、残り 50 BTC とするか
 - マイナーにとって様々な戦略が存在
 - 取引手数料が時間により変わることが原因