Зміст

6	ПО	ЛІЗ, регулярні вирази, і автомати	1
	6.1	Польський інверсний запис для регулярних виразів	1
		6.1.1 Алгоритм	1
	6.2	Інтерпретація ПОЛІЗ регулярного виразу	2
		6.2.1 Алгоритм	2
	6.3	Контрольні запитання	3

6 ПОЛІЗ, регулярні вирази, і автомати

6.1 Польський інверсний запис для регулярних виразів

Польський інверсний запис (ПОЛІЗ) для регулярних виразів будується на основі початкового регулярного виразу на основі наступних правил:

- 1. Порядок операндів в початковому виразі і в перетвореному виразі співпадають.
- 2. Операції в перетвореному виразу йдуть з урахуванням пріоритету безпосередньо за операндами.

Наприклад, Π ОЛІЗ для виразу $(a^*+b)^*c$ має такий вигляд: $a, \star, b, +, \star, c, \cdot$.

В цьому прикладі в стандартному записі регулярного виразу бінарна операція конкатенація · природньо опущена, але в ПОЛІЗ потрібно завжди цю операцію явно вказувати.

Важливою характеристикою $\Pi O \Pi S$ є відсутність дужок в запису виразу, тобто його можна опрацьовувати лінійно.

6.1.1 Алгоритм

Для перетворення виразу в ПОЛІЗ необхідно з кожною операцією зв'язати деяке число, яке будемо називати "пріоритет" (0— найвищий пріоритет присвоїмо дужці '('). Наведемо псевдокод алгоритму:

while lexem <- прочитати поточну лексему: if lexem is операнд: занести її в поле результату

всі елементи із стека перенести в поле результату

6.2 Інтерпретація ПОЛІЗ регулярного виразу

Результат інтерпретації $\Pi O3I3$ — це скінченний автомат M, який розпізнає (сприймає) множину ланцюжків, котрі позначає регулярний вираз.

6.2.1 Алгоритм

Наведемо псевдокод алгоритму:

```
while lexem <- прочитати поточну лексему:
    if lexem is операнд ai:
        M: L(M) = {ai\}

if lexem = '+':
        M1, M2 <- автомати з вершини стеку
        M: L(M) = L(M1) \cup L(M2)

if lexem = '\times':
        M1, M2 <- автомати з вершини стеку
        M: L(M) = L(M2) \times L(M1)

if lexem = '\star':
        M1 <- автомат з вершини стеку
        M: L(M)= L(M1)^\star
```

М занести в стек

вершину стека перенести в поле результату

Якщо досягли кінця регулярного виразу, то на вершині стека знаходиться автомат M, який розпізнає множину слів (ланцюжків), які позначає регулярний вираз.

6.3 Контрольні запитання

- 1. Що таке ПОЛІЗ?
- 2. Чи можна в ПОЛІЗ опускати операції які природнім чином опускаються у класичному записі?
- 3. Яка основна характеристика ПОЛІЗ і яку обчислювальну перевагу вона пропонує?
- 4. Сформулюйте алгоритм перетворення регулярного виразу у ПО-ЛІЗ та оцініть його складність.
- 5. Що є результатом інтерпретації ПОЛІЗ регулярного виразу?
- 6. Сформулюйте алгоритм інтерпретації ПОЛІЗ регулярного виразу.
- 7. Оцініть складність попереднього алгоритму через складності операцій побудови автоматів.
- 8. Для регулярного виразу $(a^* + b)^* \cdot c$ побудуйте скінчений автомат, який розпізнає множину ланцюжків, що позначаються цим виразом.