

MAXELERATOR FOUNDATION

A Technology Ideation Nursery For Startups

Į,

FUTURENET TECHNOLOGIES INDIA PVT LTD

Artificial Intelligence, Machine Learning & Data Science

At Madurai Kamaraj University on 24th & 25th May 2022

OUR TEAM

Team Members:

- Nanu Swamy (Founder)
- Dr .T.Karthick
- Robin Joseph
- Manaz
- Vijay Balaji
- Dharani
- Tharani

Electricity Forecasting - Dr.T.Karthick

Technology Landscape

Technology Landscape

Students Internship:

https://bit.ly/3yRwmVE

Introduction to Artificial Intelligence, Machine Learning & Data Science

Classification vs Object Detection vs Image Segmentation

Classification

Object Detection

Image Segmentation

Demo 1 - Jetson Classification

Demo 2 - Xavier Detection

Tensors

- In Machine Learning or Deep Learning, we work with multidimensional arrays. For example, an image is often represented as an array of (height, width, number of color channels).
- In scientific computing, these multidimensional arrays are called 'Tensors'. So instead of calling an image a multidimensional array, it is just called a tensor!

https://storage.googleapis.com/nexttpu/index.html

Tensor Processing Unit Designed for fast and affordable Al

Tensor Cores

Youtube Link: https://youtu.be/yyR0ZoCeB08

CPU vs GPU vs TPU

CPU

- Small models
- Small datasets
- Useful for design space exploration

GPU

- Medium-to-large models, datasets
- Image, video processing
- Application on CUDA or OpenCL

TPU

- Matrix computations
- Dense vector processing
- No custom TensorFlow operations

Hands On Session - Python Basics

- Variables, Functions, Lambda Functions
 https://colab.research.google.com/drive/194F9DeHWN2CA8fxg44HAwFZdlkOD4P-G?usp=sharing
- Classes and Object Fetch Data from API
 https://colab.research.google.com/drive/1XyzyEzzoqlM4f6MYX5dRhQpqtQPp4bBp?usp=sharing
- Modules & Packages, Numpy, Pandas
 https://colab.research.google.com/drive/1viX334W0VS_GHL1T_SnG_cSQvfgLCW1B?usp=sharing
- Tensors,Reshaping,squeezing,Un Squeezing
 https://colab.research.google.com/drive/1eqHV9JgUchATI3Fb7BJ99Lsh8EgCgyXB?usp=sharing

Python Basics

Data Types

Python Data Types

Primitive Types Containers

Integer Boolean String List Dictionary

Tuple

Variables

Classes & Objects

Dictionaries

Lists

Loops

Functions

- x input
- f function
- y output

$$y = f(x)$$

f = lambda a:a*a

Demo 3 - Teachable Machine - Image Classification

Teachable Machine is a web-based tool that makes creating machine learning models fast, easy, and

Demo 4 - Teachable Machine - Audio Classification

Teach a model to classify audio by recording short sound samples.

Demo 5 - Teachable Machine - Pose Estimation

Teach a model to classify body positions using files or striking poses in your webcam.

3

Machine Learning Cycle:

The Machine Learning Flywheel

Types

Linear Regression and Logistic Regression

The Linear Regression is used for solving Regression problems whereas Logistic Regression is used for solving the Classification problems.

K- Nearest Neighbor(KNN)

Step-1: Select the number K of the neighbors

Step-2: Calculate the Euclidean distance of K number of neighbors

Step-3: Take the K nearest neighbors as per the calculated Euclidean distance.

Step-4: Among these k neighbors, count the number of the data points in each category.

Step-5: Assign the new data points to that category for which the number of the neighbor is maximum.

Step-6: Our model is ready.

Input value Predicted Output

KNN Classifier

Decision Tree Algorithm

Example:

Suppose there is a candidate who has a job offer and wants to decide whether he should accept the offer or Not. So, to solve this problem, the decision tree starts with the root node (Salary attribute by ASM). The root node splits further into the next decision node (distance from the office) and one leaf node based on the corresponding labels. The next decision node further gets split into one decision node (Cab facility) and one leaf node. Finally, the decision node splits into two leaf nodes (Accepted offers and Declined offer).

Random Forest Algorithm

K-Means Clustering

Hands On Session

- Linear Regression Per Capita Income:
 - https://colab.research.google.com/drive/1wjvAPV_WiiRhVd5o36HX8YU-CmzCnqcg?usp=sharing
- Linear Regression BMI Prediction:
 - https://colab.research.google.com/drive/1AN7bpxptWwlyBFHe-dwtZe_br46xkj-W?usp=sharing
- Support Vector Machine Digit Recognition :
 - https://colab.research.google.com/drive/149w88j03vnvbUnKWoteSTTHZdd7PjCBn?usp=sharing

Pytorch as Deep Learning Framework

- Define a model using the Sequential
- Compile the model using model.compile()
- Use the model.fit()
- After training, calculate various evaluation metrics like accuracy, loss, etc.
- Use the final model to predict data for the task given in an actual scenario.

Run Prediction

Perceptron

create a very simple neural network with one input layer and one output layer. Such a neural network is called a perceptron.

- Forward Pass
- Backward Pass

Building Perceptron From Scratch

Person	Smoking	Obesity	Exercise	Diabetic
Person 1	0	1	0	1
Person 2	0	0	1	0
Person 3	1	0	0	0
Person 4	1	1	0	1
Person 5	1	1	1	1

Colab Link:

https://colab.research.google.com/drive/1KybyqKePSsL0TgdCMjjXdqwDb5JCUxBb?usp=sharing

Neural Networks

Forward Pass

Hands On Session

• Perceptron Example - Diabetic or not:

https://colab.research.google.com/drive/1KybyqKePSsL0TgdCMjjXdqwDb5JCUxBb?usp=sharing

Fashion MNIST with UI:

https://colab.research.google.com/drive/1hNiZWcK-YxMAHX2e_DRH8nttKolyLWw 5?usp=sharing

Convolutional Neural Network

Artificial Neural Network

Transfer Learning Techniques

Pruning

https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/ downloads/f40ae04715cdb214 ecba048c12f8dddf/pruning_tutorial.ipynb

Hands On Session

• Transfer Learning - Fine Tuning:

https://colab.research.google.com/drive/1YQhS1vXOXPdTEP0XSXpQ7PRvYYLgKH6K?usp=sharing

Transfer Learning Fixed Feature Extractor:

https://colab.research.google.com/drive/1d0T00Dfdg-frLnI5s2vlcLw2iXNWizH0?usp=sharing

Pre-Trained VGG Model to Classify Objects:

https://colab.research.google.com/drive/13V0gWOc2ImOBRInig-hC_o56veJHhee0?usp=sharing

Pruning Example:

https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/_downloads/f40ae04715cdb214ecba048c12f8dddf/pruning_tutorial.jpynb

NLP UseCases

Recurrent Neural Network

- RNN captures the sequential information present in the input data i.e. dependency between the words in the text while making predictions
- We can use recurrent neural networks to solve the problems
 - 1. Text Series Data
 - 2. Text Data
 - 3. Audio Data

Naive Bayes Classifier

- It is a probabilistic classifier, which means it predicts on the basis of the probability of an object.
- Some popular examples of Naïve Bayes Algorithm are
 - a. Spam Filtration
 - b. Sentimental Analysis
 - c. classifying articles.

Document Summarization

Hands On Session - NLP

Text Classification :

https://colab.research.google.com/drive/1XFOKQrLRQccOQqM9U6EOfu0lhMH-jGia

• Supervised Classification:

https://colab.research.google.com/drive/1-xP3cfve_WB1VF4gv03Eu4hJOs9rs8pk?usp=sharing#scrollTo=p4sMTQMYe93N

Document Summarization :

https://colab.research.google.com/drive/1e63vED6sIXd2njFnWhgLo05uW8-CzvG8#scrollTo=nlc2xSt-GadN

Language Detection :

https://colab.research.google.com/drive/1S5xolB8NNFnwEHvvoRP2YWy2i3nUHLFO

Sentence Similarity :

https://colab.research.google.com/drive/1R-Xh8XPMq7fBrWnySPejsHJ6pYwLXBsz?usp=sharing

Question Answering :

https://colab.research.google.com/drive/1uY6LgbCYQqVBEg-8xDTZZNYx-GnYCrim

Applications

**PEOPLE COME UP WITH IDEAS AND DISCUSS HOW MAXELERATOR CAN HELP

