Aufstellen chemischer Formeln

Teilschritte	■ Aluminiumoxid	
Ermitteln der Symbole der chemischen Elemente, aus denen die chemische Verbindung besteht	Al	0
2. Feststellen der Anzahl der elektrischen Ladungen der Ionen (Ladung = HG-Nr. bei I. – III. HG ; Ladung = 8 – HG-Nr. bei V. – VII. HG)	Al ³⁺	O ²⁻
Berechnen des kleinsten gemeinsamen Vielfachen der Beträge der lonenladungen	3 · 2 = 6	
Dividieren des kleinsten gemeinsamen Vielfachen durch die Beträge der Ionenladungen	6:3=2	6:2=3
5. Angeben des Zahlenverhältnisses, in dem die Ionen vorliegen	2	3
6. Zusammenstellen der chemischen Formel	Al ₂ O ₃	

Aufstellen chemischer Reaktionsgleichungen

Teilschritte	■ Verbrennung von Aluminium		
Ermitteln der chemischen Formeln für die Ausgangsstoffe und Reaktionsprodukte	Al + O ₂	>	Al ₂ O ₃
Ausgleichen durch Auffinden der Stöchiometriezahlen	Sauerstoff 2x O in O ₂		Sauerstoff 3x O in Al ₂ O ₃
		kgV 3 · 2 = 6	
	6 : 2 = 3		6 : 3 = 2
	AI + 3 O ₂	>	2 Al ₂ O ₃
	Aluminium 1x Al in Al		Aluminium 4x Al in 2 Al₂O₃
		kgV 4 · 1 = 4	
	4 : 1 = 4		4:4=1
	4 Al + 3 O ₂	>	1 · 2 Al ₂ O ₃
Zusammenstellen der chemischen Reaktionsgleichung	4 AI + 3 O ₂	>	2 Al ₂ O ₃