Juan Pablo Vielma Shabbir Ahmed George L. Nemhauser

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

> Universidad Adolfo Ibañez Julio - 2008

Outline

- Introduccion
- Optimización de Portafolios
- 3 B&B para Programación Entera No-Lineal
- Resultados Computacionales

Optimización de Portafolios y Programación No-Lineal Entera

- Optimización de Portafolios Tradicional (Markowitz):
 - Problema no-linear quadrático que puede ser resuelto eficientemente.
 - No muy realista.
- Optimización de Portafolios "Realista":
 - Problema no-linear entero difícil de resolver.
 - Requiere el desarrollo de nuevos algoritmos.

Selección de un Portafolio de Inversión

- Opción de invertir en n activos diferentes (e.g. 100 acciones, 3 tipos de bonos y un deposito a plazo).
- Problema: seleccionar fracción de capital a invertir en cada activo.
- Información sobre los activos:
 - Retorno r de un activo: (Valor en periodo t + 1) = (1 + r)(Valor en periodo t).
 - r es una variable aleatoria. Solo información parcial: valor esperado, desviación estándar, covarianza entre activos, etc.
- Objetivo de la selección:
 - Maximizar el retorno esperado del portafolio.
 - Minimizar el riesgo del portafolio.

Selección de un Portafolio de Inversión

- Opción de invertir en n activos diferentes (e.g. 100 acciones, 3 tipos de bonos y un deposito a plazo).
- Problema: seleccionar fracción de capital a invertir en cada activo.
- Información sobre los activos:
 - Retorno r de un activo: (Valor en periodo t + 1) = (1 + r)(Valor en periodo t).
 - r es una variable aleatoria. Solo información parcial: valor esperado, desviación estándar, covarianza entre activos, etc.
- Objetivo de la selección:
 - Maximizar el retorno esperado del portafolio.
 - Minimizar el riesgo del portafolio.

Selección de un Portafolio de Inversión

- Opción de invertir en n activos diferentes (e.g. 100 acciones, 3 tipos de bonos y un deposito a plazo).
- Problema: seleccionar fracción de capital a invertir en cada activo.
- Información sobre los activos:
 - Retorno r de un activo: (Valor en periodo t + 1) = (1 + r)(Valor en periodo t).
 - r es una variable aleatoria. Solo información parcial: valor esperado, desviación estándar, covarianza entre activos, etc.
- Objetivo de la selección:
 - Maximizar el retorno esperado del portafolio.
 - Mantener el riesgo del portafolio controlado.

max y

sujeto a

$$\sum_{j=1}^{n} y_j = 1$$
$$y_j \ge 0 \quad \forall j$$

 y_j fracción de capital invertido en activo j.

$$\max_{y} \qquad \sum_{j=1}^{n} \bar{r}_{j} y_{j}$$

sujeto a

$$\sum_{j=1}^{n} y_j = 1$$
$$y_j \ge 0 \quad \forall j$$

 y_j fracción de capital invertido en activo j.

Resultados Computacionales

 r̄_j: retorno esperado de activo j.

$$\max_{y} \qquad \sum_{j=1}^{n} \bar{r}_{j} y_{j}$$

sujeto a

Introduccion

$$\sum_{j=1}^{n} y_j = 1$$
$$y_j \ge 0 \quad \forall j$$

- y_j fracción de capital invertido en activo j.
- r̄_j: retorno esperado de activo j.
- q_{i,j}: covarianza entre el retorno del activo i y j.

$$\sum_{j=1}^{n} \overline{r}_{j} y_{j}$$
 sujeto a
$$\sum_{j=1}^{n} y_{j} = 1$$
 $y_{j} \geq 0 \quad \forall j$

Introduccion

- y_j fracción de capital invertido en activo j.
- \(\bar{r}_j\): retorno esperado de activo \(j\).
- q_{i,j}: covarianza entre el retorno del activo i y j.
- Limite en la varianza del portafolio (Markowitz).

$$\max_{y}$$
 $\sum_{j=1}^{n} \bar{r}_{j} y_{j}$ sujeto a $\sum_{j=1}^{n} y_{j} = 1$ $y_{j} \geq 0 \quad \forall j \geq 0$

- y_i fracción de capital invertido en activo j.
- \bar{r}_i : retorno esperado de activo i.
- q_{i, j}: covarianza entre el retorno del activo i y j.
- Limite en la varianza del portafolio (Markowitz).
- Problema de Programación Cónica Quadrática que puede ser resuelto eficientemente.

$$\max_{y}$$
 $\sum_{j=1}^{n} \bar{r}_{j} y_{j}$ sujeto a $\sum_{j=1}^{n} y_{j} = 1$ $y_{j} \geq 0 \quad \forall j$

- y_i fracción de capital invertido en activo j.
- \bar{r}_i : retorno esperado de activo i.
- q_{i, j}: covarianza entre el retorno del activo i y j.
- Limite en la varianza del portafolio (Markowitz).
- Problema de Programación Cónica Quadrática que puede ser resuelto eficientemente.

max y

$$\sum_{j=1}^{n} \bar{r}_{j} y_{j}$$

$$\sum_{j=1}^{n} y_j = 1$$

$$y_j \ge 0 \qquad \forall j$$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

- y_j fracción de capital invertido en activo j.
- r̄_j: retorno esperado de activo j.
- q_{i,j}: covarianza entre el retorno del activo i y j.
- Limite en la varianza del portafolio (Markowitz).
- Problema de Programación Cónica Quadrática que puede ser resuelto eficientemente.

Extensiones del Modelo

- Restricciones Combinatoriales:
 - límites en el numero de activos en el portafolio.
 - Niveles mínimos invertidos en cada activo.
 - Hacen que el problema sea muy difícil de resolver.
 - (Bienstock, 1996; Chang et al., 2000; Maringer and Kellerer, 2003; Bertsimas and Shioda, 2004,...).

Extensiones del Modelo

- Restricciones Combinatoriales:
 - límites en el numero de activos en el portafolio.
 - Niveles mínimos invertidos en cada activo.
 - Hacen que el problema sea muy difícil de resolver.
 - (Bienstock, 1996; Chang et al., 2000; Maringer and Kellerer, 2003; Bertsimas and Shioda, 2004,...).
- Medidas de riesgo más allá de la varianza:
 - límites en la probabilidad de baja rentabilidad (e.g. $Prob(retorno \ge 0.9) \ge 0.8$ y $Prob(retorno \ge 0.7) \ge 0.97$).
 - (Lobo et al. 1998, 2007).

Extensiones del Modelo

- Restricciones Combinatoriales:
 - límites en el numero de activos en el portafolio.
 - Niveles mínimos invertidos en cada activo.
 - Hacen que el problema sea muy difícil de resolver.
 - (Bienstock, 1996; Chang et al., 2000; Maringer and Kellerer, 2003; Bertsimas and Shioda, 2004,...).
- Medidas de riesgo más allá de la varianza:
 - límites en la probabilidad de baja rentabilidad (e.g. $Prob(retorno \ge 0.9) \ge 0.8$ y $Prob(retorno \ge 0.7) \ge 0.97$).
 - (Lobo et al. 1998, 2007).
- **3** Considerar errores en la estimación de los retornos esperados \bar{r}_i :
 - Considerar una versión robusta del objetivo.
 - (Ceria and Stubbs, 2006).

max

$$\sum_{j=1}^{n} \bar{r}_{j} y_{j}$$

Modelo Markowitz.

$$\sum_{j=1}^{n} y_j = 1$$

$$y_j \ge 0 \quad \forall j$$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

max y

$$\sum_{j=1}^{n} \bar{r}_j y_j$$

$$\sum_{j=1}^{n} y_j = 1$$

$$y_j \ge 0 \quad \forall j$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j \le 0.2$$

- Modelo Markowitz.
- Permitimos invertir en a lo mas K activos.

$$\max_{x, y}$$

$$\sum_{j=1}^{n} \bar{r}_j y_j$$

$$\sum_{j=1}^{n} y_j = 1$$

$$y_j \ge 0 \qquad \forall j$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j \le 0.2$$

$$y_j \le x_j \qquad \forall j$$

$$x_j \in \{0, 1\} \quad \forall j$$

- Modelo Markowitz.
- Permitimos invertir en a lo mas K activos.
- Agregamos variables binarias que indican si invertimos en un activo.

 $\max_{x, y}$

$$\sum_{j=1}^{n} \bar{r}_{j} y_{j}$$

$$\sum_{j=1}^{n} y_j = 1$$

$$y_j \geq 0$$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

$$y_j \le x_j \qquad \forall j$$

 $x_j \in \{0, 1\} \quad \forall j$

$$\sum_{i=1}^{n} x_j \le K$$

- Modelo Markowitz.
- Permitimos invertir en a lo mas K activos.
- Agregamos variables binarias que indican si invertimos en un activo.
- Limite es impuesto con una restricción lineal.

$$\max_{x, y}$$

$$\sum_{j=1}^{n} \bar{r}_{j} y_{j}$$

$$\sum_{j=1}^{\infty} y_j = 1$$

$$y_j \ge 0 \qquad \forall j$$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

$$y_j \le x_j \qquad \forall j$$

$$x_j \in \{0, 1\} \quad \forall j$$

$$\sum_{i=1}^{n} x_j \le K$$

- Modelo Markowitz.
- Permitimos invertir en a lo mas K activos.
- Agregamos variables binarias que indican si invertimos en un activo.
- Limite es impuesto con una restricción lineal.
- Problema de Programación Cónica Quadrática Mixta que es difícil de resolver.

$$\max_{x, y}$$

$$\sum_{j=1}^{n} \bar{r}_j y_j$$

$$\sum_{j=1}^{n} y_j = 1$$

$$y_j \ge 0 \qquad \forall j$$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

$$y_j \le x_j \qquad \forall j$$

$$x_i \in \{0, 1\} \quad \forall j$$

$$\sum_{i=1}^{n} x_{i} \leq \underline{K}$$

- Modelo Markowitz.
- Permitimos invertir en a lo mas K activos.
- Agregamos variables binarias que indican si invertimos en un activo.
- Limite es impuesto con una restricción lineal.
- Problema de Programación Cónica Quadrática Mixta que es difícil de resolver.

$$\max_{x, y}$$

$$\sum_{j=1}^{n} \bar{r}_j y_j$$

$$\sum_{i=1}^{\infty} y_j = 1$$

$$y_j \ge 0 \qquad \forall j$$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

$$y_j \le x_j \qquad \forall j$$

$$x_i \in \{0, 1\} \quad \forall j$$

$$\sum_{i=1}^n x_j \le 10$$

- Modelo Markowitz.
- Permitimos invertir en a lo mas K activos.
- Agregamos variables binarias que indican si invertimos en un activo.
- Limite es impuesto con una restricción lineal.
- Problema de Programación Cónica Quadrática Mixta que es difícil de resolver.

Medidas de riesgo mas allá de la varianza

- Varianza: $\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le \sigma$.
- Retorno: $\sum_{j=1}^{n} \bar{r}_{j} y_{j}$.
- $\operatorname{Prob}(\operatorname{retorno} \geq w) \geq \eta$ puede ser aproximado por:

$$\Phi^{-1}(\eta) \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_{i} y_{j}} \leq \sum_{j=1}^{n} \bar{r}_{j} y_{j} - w$$

donde $\Phi(\cdot)$ es la distribución de probabilidad de una normal con media 0 y varianza 1.

- También es una restricción de Problema de Programación Cónica Quadrática.
- $\eta_1 = 0.8$, $w_1 = 0.9$ y $\eta_2 = 0.97$, $w_2 = 0.7$.

Considerar errores en retornos esperados \bar{r}_i

max x, y

$$\sum_{j=1}^{n} \bar{r}_{j} y_{j}$$

s.a.

$$\sum_{j=1}^{n} y_j = 1, \quad \sum_{j=1}^{n} x_j \le 10$$

$$y_j \le x_j, \quad x_j \in \{0, 1\}, \quad y_j \ge 0 \quad \forall$$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

 Modelo Markowitz con límites en el numero de activos.

Considerar errores en retornos esperados \bar{r}_j

 $\max_{x, y}$

$$\sum_{j=1}^{n} \bar{r}_{j} y_{j}$$

s.a.

$$\sum_{j=1}^{n} y_j = 1, \quad \sum_{j=1}^{n} x_j \le 10$$

$$y_j \le x_j, \quad x_j \in \{0, 1\}, \quad y_j \ge 0 \quad \forall j \in \{0, 1\}, \quad y_j \ge 0$$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

 Modelo Markowitz con límites en el numero de activos.

Considerar errores en retornos esperados \bar{r}_i

max x, y, r

s.a.

$$\sum_{j=1}^{n} y_j = 1, \quad \sum_{j=1}^{n} x_j \le 10$$

$$y_j \le x_j, \quad x_j \in \{0, 1\}, \quad y_j \ge 0$$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

$$\sum_{j=1}^{n} \bar{r}_j y_j \ge r$$

 Modelo Markowitz con límites en el numero de activos.

Considerar errores en retornos esperados \bar{r}_j

 $\max_{x, y, r}$

•

′

$$\sum_{j=1}^{n} y_{j} = 1, \quad \sum_{j=1}^{n} x_{j} \le 10$$

$$y_{j} \le x_{j}, \quad x_{j} \in \{0, 1\}, \quad y_{j} \ge 0 \quad \forall$$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_{i} y_{j}} \le 0.2$$

$$\sum_{i=1}^{n} \bar{r}_{j} y_{j} \ge r$$

- Modelo Markowitz con límites en el numero de activos.
- Suposición: los retornos esperados \bar{r}_j tienen una distribución normal conjunta. Media es \bar{r}_j y covarianza entre \bar{r}_i y \bar{r}_j es $s_{i,j}$.

r

Considerar errores en retornos esperados \bar{r}_j

 $\max_{x, y, r}$ s.a.

 $\sum_{j=1}^{n} y_j = 1, \quad \sum_{j=1}^{n} x_j \le 10$ $y_j \le x_j, \quad x_j \in \{0, 1\}, \quad y_j \ge 0$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_{i} y_{j}} \le 0.2$$

$$\sum_{j=1}^{n} \bar{r}_j y_j - \alpha \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} s_{i,j} y_i y_j} \ge r$$

- Modelo Markowitz con límites en el numero de activos.
- Suposición: los retornos esperados r̄_j tienen una distribución normal conjunta. Media es r̄_j y covarianza entre r̄_i y r̄_j es s_{i,j}.
- Versión robusta del objetivo.
 α = nivel de seguridad.

Considerar errores en retornos esperados \bar{r}_i

r

max x, y, r

$$\sum_{j=1}^{n} y_j = 1, \quad \sum_{j=1}^{n} x_j \le 10$$
$$y_j \le x_j, \quad x_j \in \{0, 1\}, \quad y_j \ge 0$$
$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

$$\sum_{j=1}^{n} \bar{r}_j y_j - \alpha \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} s_{i,j} y_i y_j} \ge r$$

- Modelo Markowitz con límites en el numero de activos.
- Suposición: los retornos esperados \bar{r}_i tienen una distribución normal conjunta. Media es \bar{r}_i y covarianza entre \bar{r}_i y \bar{r}_i es $s_{i,j}$.
 - Versión robusta del objetivo. α = nivel de seguridad.
 - Restricción de Problema de Programación Cónica Quadrática.

Considerar errores en retornos esperados \bar{r}_i

max x, y, r

$$\sum_{j=1}^{n} y_j = 1, \quad \sum_{j=1}^{n} x_j \le 10$$
$$y_j \le x_j, \quad x_j \in \{0, 1\}, \quad y_j \ge 0$$
$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

$$\sum_{j=1}^{n} \overline{r}_{j} y_{j} - \frac{\alpha}{\alpha} \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} s_{i,j} y_{i} y_{j}} \ge r$$

- Modelo Markowitz con límites en el numero de activos.
- Suposición: los retornos esperados \bar{r}_i tienen una distribución normal conjunta. Media es \bar{r}_i y covarianza entre \bar{r}_i y \bar{r}_i es $s_{i,j}$.
 - Versión robusta del objetivo. α = nivel de seguridad.
 - Restricción de Problema de Programación Cónica Quadrática.

Considerar errores en retornos esperados \bar{r}_j

 $\max_{x, y, r}$

1

$$\sum_{j=1}^{n} y_j = 1, \quad \sum_{j=1}^{n} x_j \le 10$$

$$y_j \le x_j, \quad x_j \in \{0, 1\}, \quad y_j \ge 0$$

$$\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} y_i y_j} \le 0.2$$

$$\sum_{j=1}^{n} \bar{r}_{j} y_{j} - 3 \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} s_{i,j} y_{i} y_{j}} \ge r$$

- Modelo Markowitz con límites en el numero de activos.
- Suposición: los retornos esperados r̄_j tienen una distribución normal conjunta. Media es r̄_j y covarianza entre r̄_i y r̄_j es s_{i,j}.
 - Versión robusta del objetivo.
 α = nivel de seguridad.
 - Restricción de Problema de Programación Cónica Quadrática.

B&B para Programación Entera No-Lineal

- Branch-and-Bound básico:
 - Relajación del Problema.
 - Ramificación.
 - Problema Relajado + Ramificación: Subproblema.
- Métodos basados en relajación no-lineal:
 - Relajan restricciones de integralidad.
 - Subproblema es un problema no-lineal convexo.
- Métodos basados en relajaciones polyhedrales:
 - Relajan restricciones de integralidad y no-lineales.
 - Subproblema es un problema lineal.
 - Reutilizan tecnología para Programación lineal entera y aprovechan warm starts de simplex.
 - Dos Tipos:
 - Relajaciones polyhedrales por tangentes.
 - Relajaciones polyhedrales extendidas o por proyección (Nuevo Método).

Métodos Basados en Relajación No-Lineal

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

Métodos Basados en Relajación No-Lineal

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

Subproblema:

$$\max_{x} \quad x_1 + x_2 \\ \sqrt{x_1^2 + x_2^2} \le 2.5$$

- $x_1^* = x_2^* \approx 1.77 \notin \mathbb{Z}$.
- Ramificación: $x_1 < 1 \lor x_1 > 2$

Métodos Basados en Relajación No-Lineal

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

Subproblema:

$$\max_{x} \quad x_1 + x_2 \\ \sqrt{x_1^2 + x_2^2} \le 2.5$$

- $x_1^* = x_2^* \approx 1.77 \notin \mathbb{Z}$.
- Ramificación: $x_1 < 1 \lor x_1 > 2$.

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} \quad x_1 + x_2 \\ \sqrt{x_1^2 + x_2^2} \le 2.5$$

- $x_1^* = x_2^* \approx 1.77 \notin \mathbb{Z}$.
- Ramificación: $x_1 < 1 \lor x_1 > 2$.

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} x_1 + x_2 \sqrt{x_1^2 + x_2^2} \le 2.5 x_1 \le 1$$

- $x_1^* = 1, x_2^* \approx 2.29 \notin \mathbb{Z}$.
- Ramificación:

$$x_2 \leq 2 \lor x_2 \geq 3.$$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} x_1 + x_2 \sqrt{x_1^2 + x_2^2} \le 2.5 x_1 < 1$$

- $x_1^* = 1, x_2^* \approx 2.29 \notin \mathbb{Z}.$
- Ramificación:

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} x_{1} + x_{2}$$

$$\sqrt{x_{1}^{2} + x_{2}^{2}} \le 2.5$$

$$x_{1} \le 1$$

- $x_1^* = 1, x_2^* \approx 2.29 \notin \mathbb{Z}$.
- Ramificación:

$$x_2 \leq 2 \bigvee_{\alpha \in A} x_2 \geq 3.$$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} x_{1} + x_{2}$$

$$\sqrt{x_{1}^{2} + x_{2}^{2}} \le 2.5$$

$$x_{1} \le 1$$

$$x_{2} \le 2$$

•
$$x_1^* = 1, x_2^* = 2.$$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1 \le 1$$

$$x_2 < 2$$

•
$$x_1^* = 1, x_2^* = 2.$$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} \quad x_1 + x_2$$
$$-2.5 \le x_i \le 2.5$$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

Subproblema:

$$\max_{x} \quad x_1 + x_2$$
$$-2.5 \le x_i \le 2.5$$

•
$$x_1^* = x_2^* = 2.5 \notin \mathbb{Z}$$
.

• Cortes: $x_i \leq |2.5|$.

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} \quad x_1 + x_2$$
$$-2.5 \le x_i \le 2.5$$

•
$$x_1^* = x_2^* = 2.5 \notin \mathbb{Z}$$
.

• Cortes:
$$x_i \leq |2.5|$$
.

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} \quad x_1 + x_2$$
$$-2.5 \le x_i \le 2$$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} \quad x_1 + x_2$$
$$-2.5 \le x_i \le 2$$

•
$$x_1^* = x_2^* = 2$$
,
 $\sqrt{x_1^{*2} + x_2^{*2}} > 2.5$.

• Corte:
$$x_1 + x_2 \le 2.5\sqrt{2}$$
.

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} \quad x_1 + x_2$$
$$-2.5 \le x_i \le 2$$

•
$$x_1^* = x_2^* = 2$$
,
 $\sqrt{x_1^{*2} + x_2^{*2}} > 2.5$.

• Corte:
$$x_1 + x_2 \le 2.5\sqrt{2}$$
.

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

Subproblema:

$$\max_{x} x_1 + x_2 -2.5 \le x_i \le 2$$
$$x_1 + x_2 < 2.5\sqrt{2}$$

•
$$x_2^* = 2, x_1^* \approx 1.53 \notin \mathbb{Z},$$

 $\sqrt{x_1^{*2} + x_2^{*2}} > 2.5.$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

Subproblema:

$$\max_{x} x_{1} + x_{2}$$

$$-2.5 \le x_{i} \le 2$$

$$x_{1} + x_{2} \le 2.5\sqrt{2}$$

•
$$x_2^* = 2, x_1^* \approx 1.53 \notin \mathbb{Z},$$

 $\sqrt{x_1^{*2} + x_2^{*2}} > 2.5.$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

Subproblema:

$$\max_{x} x_{1} + x_{2}$$

$$-2.5 \le x_{i} \le 2$$

$$x_{1} + x_{2} \le 2.5\sqrt{2}$$

•
$$x_2^* = 2, x_1^* \approx 1.53 \notin \mathbb{Z},$$

 $\sqrt{x_1^{*2} + x_2^{*2}} > 2.5.$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

Subproblema:

$$\max_{x} x_1 + x_2 -2.5 \le x_i \le 2$$
$$x_1 + x_2 \le 2.5\sqrt{2}$$

•
$$x_2^* = 2, x_1^* \approx 1.53 \notin \mathbb{Z},$$

 $\sqrt{x_1^{*2} + x_2^{*2}} > 2.5.$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max_{x} \quad x_1 + x_2$$

$$-2.5 \le x_i \le 2$$

$$x_1 + x_2 \le 2.5\sqrt{2}$$

$$x_1 \le 1$$

•
$$x_1^* = 1, x_2^* = 2.$$

$$\max_{x} \quad x_1 + x_2$$

$$\sqrt{x_1^2 + x_2^2} \le 2.5$$

$$x_1, x_2 \in \mathbb{Z}$$

Subproblema:

$$\max_{x} \quad x_1 + x_2$$

$$-2.5 \le x_i \le 2$$

$$x_1 + x_2 \le 2.5\sqrt{2}$$

$$x_1 \le 1$$

• $x_1^* = 1, x_2^* = 2.$

Características de Relajaciones Polyhedrales Tangentes

- Restricciones no lineales aproximada por cortes de primer orden (gradiente, tangente, benders).
- Cortes construidos en espacio original.
- Usualmente pocos cortes son suficientes.
- Convergencia puede ser lenta (e.g. Restricciones cuadráticas).
 - Solución: usar una aproximación polyhedral global y fija.

$$\sqrt{\sum_{j=1}^{d} x_j^2} \le r, \ d = 2, \ \varepsilon = 0.41$$

- Se necesitan a lo menos $\exp(d/(2(1+\varepsilon))^2)$ restricciones lineales en e espacio original.
- Ben-Tal and Nemirovski (2001) dan relajación como la proyección de un polyhedro con $O(d \log(1/\varepsilon))$ variables y restricciones.
- Glineur (2000) refina la aproximación y muestra que no es "práctica" para Programación no-lineal continua

$$\sqrt{\sum_{j=1}^{d} x_j^2} \le r, d = 2, \varepsilon = 0.08$$

- Se necesitan a lo menos $\exp(d/(2(1+\varepsilon))^2)$ restricciones lineales en el espacio original.
- Ben-Tal and Nemirovski (2001) dan relajación como la proyección de un polyhedro con $O(d \log(1/\varepsilon))$ variables y restricciones.
- Glineur (2000) refina la aproximación y muestra que no es "práctica" para Programación no-lineal continua

$$\sqrt{\sum_{j=1}^{d} x_j^2} \le r, d = 2, \varepsilon = 0.08$$

- Se necesitan a lo menos $\exp(d/(2(1+\varepsilon))^2)$ restricciones lineales en el espacio original.
- Ben-Tal and Nemirovski (2001) dan relajación como la proyección de un polyhedro con $O(d \log(1/\varepsilon))$ variables y restricciones.
- Glineur (2000) refina la

$$\sqrt{\sum_{j=1}^{d} x_j^2} \le r, d = 2, \varepsilon = 0.08$$

- Se necesitan a lo menos $\exp(d/(2(1+\varepsilon))^2)$ restricciones lineales en el espacio original.
- Ben-Tal and Nemirovski (2001) dan relajación como la proyección de un polyhedro con $O(d \log(1/\varepsilon))$ variables y restricciones.
- Glineur (2000) refina la aproximación y muestra que no es "práctica" para Programación no-lineal continua.

B&B Usando Relajación Polyhedral Extendida (proyección).

Introduccion

- Reemplazar restricciones no-lineales por relajaciones polyhedrales extendidas para precisión ε .
- Obtenemos problema de Programación lineal entera que puede ser resuelto por software comercial (e.g. CPLEX).
- Pequeñas modificaciones al software comercial aseguran obtener solución exacta.
- Obtención de solución exacta es independiente de precisión ε .
- Elección de precisión ε puede afectar velocidad.
- Vielma, et. al, "A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs", IJOC.

Experimentos Computacionales

- 3 tipos de problemas de Optimización de portafolios:
 - Numero de activos disponibles: 20 y 30 (limite de inversión el 10 activos).
 - Retornos estimados de acciones de S&P 500.
 - 200 instancias en total.
- Computador: Dual 2.4GHz Xeon Linux workstation with 2GB of RAM.
- Solvers:
 - CPLEX 11 B&B de relajación no-lineal (CPLEX QCP).
 - CPLEX 11 B&B de relajación polyedral tangente (CPLEX LP).
 - Algoritmo B&B de relajación polyedral extendida basado en CPLEX 11 ($LP(\varepsilon)$ -BB).

Tiempos de Solución Promedio [s]

Tiempos de Solución (Desviación Estándar) [s]

Using Ben-Tal Nemirovski Approximation to Exploit Mixed Integer Linear Programming Solver Technology

• Lifted linear programming relaxation: Polyhedron $\mathcal{P} \subset \mathbb{R}^{n+p+q}$ such that

$$\mathcal{C} \subset \{(x,y) \in \mathbb{R}^{n+p} : \exists \mathbf{v} \in \mathbb{R}^q \text{ s.t. } (x,y,\mathbf{v}) \in \mathcal{P}\} \approx \mathcal{C}$$

Use a state of the art MILP solver to solve

$$\max_{x,y,v} cx + dy$$

$$s.t. (x, y, v) \in \mathcal{P}$$

$$x \in \mathbb{Z}^{n}$$
(MILP)

- Problem: Obtained solution might not even be feasible for MINLP
- Solution: Modify Solve of MILP

Idea: Simulate NLP Branch-and-Bound

• Problem solved in NLP B&B node $(l^k, u^k) \in \mathbb{Z}^{2n}$ is:

$$z_{\mathsf{NLP}(l^k,u^k)} := \max_{x,y} \quad cx + dy$$

$$s.t. \qquad (x,y) \in \mathcal{C} \subset \mathbb{R}^{n+p} \qquad (\mathsf{NLP}(l^k,u^k))$$

$$l^k \le x \le u^k$$

Problem solved by state of the art MILP solver is:

$$z_{\mathsf{LP}(l^k, u^k)} := \max_{x, y, v} cx + dy$$

$$s.t. \quad (x, y, v) \in \mathcal{P} \qquad (\mathsf{LP}(l^k, u^k))$$

$$l^k < x < u^k$$

Idea: Simulate NLP Branch-and-Bound

• Problem solved in NLP B&B node $(l^k, u^k) \in \mathbb{Z}^{2n}$ is:

$$z_{\mathsf{NLP}(l^k,u^k)} := \max_{x,y} \quad cx + dy$$

$$s.t. \qquad (x,y) \in \mathcal{C} \subset \mathbb{R}^{n+p} \qquad (\mathsf{NLP}(l^k,u^k))$$

$$l^k \le x \le u^k$$

Problem solved by state of the art MILP solver is:

$$z_{\mathsf{LP}(l^k,u^k)} := \max_{x,y,v} \quad cx + dy$$

$$s.t. \quad (x,y,v) \in \mathcal{P} \qquad (\mathsf{LP}(l^k,u^k))$$

$$l^k \le x \le u^k$$

- Advantages of second subproblem:
 - Algorithmic Advantage: Simplex has warm starts.
 - Computational Advantage: Use MILP solver's technology.

Idea: Simulate NLP Branch-and-Bound

• Problem solved in NLP B&B node $(l^k, u^k) \in \mathbb{Z}^{2n}$ is:

$$z_{\mathsf{NLP}(l^k,u^k)} := \max_{x,y} \quad cx + dy$$

$$s.t. \qquad (x,y) \in \mathcal{C} \subset \mathbb{R}^{n+p} \qquad (\mathsf{NLP}(l^k,u^k))$$

$$l^k \le x \le u^k$$

Problem solved by state of the art MILP solver is:

$$z_{\mathsf{LP}(l^k,u^k)} := \max_{x,y,v} \quad cx + dy$$

$$s.t. \quad (x,y,v) \in \mathcal{P} \qquad (\mathsf{LP}(l^k,u^k))$$

$$l^k \le x \le u^k$$

- Issues:
 - 1 Integer feasible solutions may be infeasible for C.
 - Need to be careful when fathoming by integrality.

First Issue: Correcting Integer Feasible Solutions

- Let $(x^*, y^*, v^*) \in \mathcal{P}$ such that $x^* \in \mathbb{Z}^n$, but $(x^*, y^*) \notin \mathcal{C}$.
- We reject (x^*, y^*, v^*) and try to correct it using:

$$z_{\mathsf{NLP}(x^*)} := \max_{\mathbf{y}} cx^* + d\mathbf{y}$$

$$s.t.$$

$$(x^*, \mathbf{y}) \in \mathcal{C} \subset \mathbb{R}^{n+p}. \qquad (\mathsf{NLP}(x^*))$$

 This can be done for solutions found by heuristics, at integer feasible nodes, etc.

Second Issue: Correct Fathoming by Integrality

- Suppose that for a node (l^k, u^k) with $l^k \neq u^k$ we have that the solution (x^*, y^*, v^*) of $LP(l^k, u^k)$ is such that $x^* \in \mathbb{Z}^n$
- If $(x^*, y^*) \in \mathcal{C}$ then (x^*, y^*) is also the optimal for $NLP(l^k, u^k)$ and we can fathom by integrality.
- If $(x^*, y^*) \notin C$ it is not sufficient to solve NLP (x^*) :
 - Problem: Corrected solution is not necessarily optimal for NLP(l^k, u^k).
 - Solution: Solve $NLP(l^k, u^k)$ and process node according to its solution.

Second Issue: Correct Fathoming by Integrality

- Suppose that for a node (l^k, u^k) with $l^k \neq u^k$ we have that the solution (x^*, y^*, v^*) of $LP(l^k, u^k)$ is such that $x^* \in \mathbb{Z}^n$
- If $(x^*, y^*) \in \mathcal{C}$ then (x^*, y^*) is also the optimal for $\mathsf{NLP}(l^k, u^k)$ and we can fathom by integrality.
- If $(x^*, y^*) \notin \mathcal{C}$ it is not sufficient to solve NLP (x^*) :
 - Problem: Corrected solution is not necessarily optimal for NLP(l^k, u^k).
 - Solution: Solve $NLP(l^k, u^k)$ and process node according to its solution.

Second Issue: Correct Fathoming by Integrality

- Suppose that for a node (l^k, u^k) with $l^k \neq u^k$ we have that the solution (x^*, y^*, v^*) of $LP(l^k, u^k)$ is such that $x^* \in \mathbb{Z}^n$
- If $(x^*, y^*) \in \mathcal{C}$ then (x^*, y^*) is also the optimal for $\mathsf{NLP}(l^k, u^k)$ and we can fathom by integrality.
- If $(x^*, y^*) \notin \mathcal{C}$ it is not sufficient to solve NLP (x^*) :
 - Problem: Corrected solution is not necessarily optimal for NLP(l^k, u^k).
 - Solution: Solve $NLP(l^k, u^k)$ and process node according to its solution.

$$\max_{x,y} \quad \mathbf{y}$$
$$(x,y) \in \mathcal{B}^2(\mathbf{2}) \text{ (MINLP)}$$
$$x \in \mathbb{Z}$$

$$\max_{x,y} y$$
 $(x,y) \in [-2,2]^2$ (LP)

$$LP(-\infty, 1)$$
:

- $x^* = 1, y^* = 2,$
- \bullet NLP $(x^*) \rightarrow (x^{cor}, y^{cor}).$
- If we fathom we loose

$$\max_{x,y} \quad y$$
$$(x,y) \in \mathcal{B}^2(2) \text{ (MINLP)}$$
$$x \in \mathbb{Z}$$

$$\max_{x,y} y$$
 $(x,y) \in [-2,2]^2$ (LP)

$$\mathsf{LP}(-\infty,1)$$
:

•
$$x^* = 1, y^* = 2,$$

 $(x, y) \notin \mathcal{B}^2(2).$

• NLP
$$(x^*) \rightarrow (x^{cor}, y^{cor})$$
.

• If we fathom we loose optimum (0, 2)!

$$\max_{x,y} \quad y$$
$$(x,y) \in \mathcal{B}^2(2) \text{ (MINLP)}$$
$$x \in \mathbb{Z}$$

$$\max_{x,y} y$$
 $(x,y) \in [-2,2]^2$ (LP)

$$LP(-\infty, 1)$$
:

•
$$x^* = 1, y^* = 2,$$

 $(x, y) \notin \mathcal{B}^2(2).$

• NLP
$$(x^*) \rightarrow (x^{cor}, y^{cor})$$
.

If we fathom we loose

$$\max_{x,y} \quad y$$
 $(x,y) \in \mathcal{B}^2(2) \text{ (MINLP)}$
 $x \in \mathbb{Z}$

$$\max_{x,y} y$$
 $(x,y) \in [-2,2]^2$ (LP)

$$\mathsf{LP}(-\infty,1)$$
:

•
$$x^* = 1, y^* = 2,$$

 $(x, y) \notin \mathcal{B}^2(2).$

• NLP
$$(x^*) \rightarrow (x^{cor}, y^{cor})$$
.

 If we fathom we loose optimum (0,2)!

$$\max_{x,y} \quad y$$
$$(x,y) \in \mathcal{B}^2(2) \text{ (MINLP)}$$
$$x \in \mathbb{Z}$$

$$\max_{x,y} y$$
 $(x,y) \in [-2,2]^2$ (LP)

- Branch: $x \le 0 \lor x \ge 1$.
- Solve LP $(-\infty,0)$.
- We get optimum (0,2).

$$\max_{x,y} \quad y$$
$$(x,y) \in \mathcal{B}^2(2) \text{ (MINLP)}$$
$$x \in \mathbb{Z}$$

$$\max_{x,y} y$$
 $(x,y) \in [-2,2]^2$ (LP)

- Branch: $x \le 0 \lor x \ge 1$.
- Solve LP $(-\infty,0)$.
- We get optimum (0,2).

$$\max_{x,y} \quad y$$
$$(x,y) \in \mathcal{B}^2(2) \text{ (MINLP)}$$
$$x \in \mathbb{Z}$$

$$\max_{x,y} y$$
 $(x,y) \in [-2,2]^2$ (LP)

- Branch: $x \le 0 \lor x \ge 1$.
- Solve LP $(-\infty, 0)$.
- We get optimum (0,2).

$$\max_{x,y} \quad y$$
$$(x,y) \in \mathcal{B}^2(2) \text{ (MINLP)}$$
$$x \in \mathbb{Z}$$

$$\max_{x,y} y$$
 $(x,y) \in [-2,2]^2$ (LP)

- Branch: $x \le 0 \lor x \ge 1$.
- Solve LP $(-\infty,0)$.
- We get optimum (0, 2).

$$\max_{x,y} \quad y$$
$$(x,y) \in \mathcal{B}^2(2) \text{ (MINLP)}$$
$$x \in \mathbb{Z}$$

$$\max_{x,y} y$$
 $(x,y) \in [-2,2]^2$ (LP)

- Solve NLP $(-\infty, 1)$.
- We get optimum (0,2).

$$\max_{x,y} \quad y$$
$$(x,y) \in \mathcal{B}^2(2) \text{ (MINLP)}$$
$$x \in \mathbb{Z}$$

$$\max_{x,y} y$$
 $(x,y) \in [-2,2]^2$ (LP)

- Solve NLP $(-\infty, 1)$.
- We get optimum (0,2).

Instance Data

- Maximum number of stocks K = 10.
- Maximum risk $\sigma = 0.2$.
- Shortfall constraints: $\eta_1 = 80\%$, $W_1^{low} = 0.9$, $\eta_2 = 97\%$, $W_2^{low} = 0.7$ (Lobo et al., 1998, 2007).
- Data generation for Classical and Shortfall from S&P 500 data following Lobo et al. (1998), (2007).
- Data generation for Robust from S&P 500 data following Ceria and Stubbs (2006).
- Riskless asset included for Shortfall.
- Random selection of *n* stocks out of 462.
- 100 instances for $n \in \{20, 30, 40, 50\}$, 10 for $n \in \{100, 200\}$.

Average Solve Times [s] for $n \in \{20, 30\}$

Performance Profile for $n \in \{20, 30\}$

Average Solve Times [s] for $n \in \{40, 50\}$

Performance Profile for $n \in \{40, 50\}$

Average Solve Times [s] for $n \in \{100, 200\}$

Performance Profile for $n \in \{100, 200\}$

