State Regulation

First goal is to design a control objective to drive all states to 0, $x(t)\underset{n\to\infty}{\to}0$ - closed loop system is stable

This is called state regulation - different from Reference Tracking where we wish to drive the output to a known function of time $y(t) \underset{t \to \infty}{\to} y_r(t)$

FSFB Control law:

$$u(t) = -Kx(t), K \in \mathbb{R}^{n \cdot m}$$

Or

$$u_1 = -k_{11}x_1 - k_{12}x_2 + \cdots - k_{1n}x_n \ \cdots \ u_m = -k_{m1}x_1 - k_{m2}x_2 + \cdots - k_{mn}x_n$$

The closed loop state equation is then

where A-BK is a new matrix which can be modified to change poles, transient response etc. and is a new $n \cdot m$ state matrix of the CL system

Arbitrary pole placement:

Find $K \in \mathbb{R}^{m \cdot n} \ni \det(\lambda I - (A - BK)) = (\lambda - \lambda_1^d)(\lambda - \lambda_n^d) \dots (\lambda - \lambda_n^d)$ where $\lambda_1^D, \lambda_2^D, \lambda_n^D$ are the desired pole locations of the CL system. Allowing for complex conjugate pairs

To move poles from (x_1, x_2) to (y_1, y_2) solve A - BK where A = matrix which (x_1, x_2) is the eigenvalues of,

$$B = egin{bmatrix} y_1 \ y_2 \end{bmatrix}$$

and $K = [k_1, k_2]$ (gains) and solve $K \in \mathbb{R}^{m \cdot n} \ni \dots$

Cannot always place poles where desired. There needs to be $K \in u - K\underline{x}$ to be possible.

DEF:

The linear system $\underline{\dot{x}}=A\underline{x}+B\underline{u}$ is *Controllable* means that there exists a control signal $\underline{u}(t)$ to drive the system from any initial state \underline{x}_0 to any final state \underline{x}_f in finite time Abbreviated as (A,B) Controllable

To test for controllability can use the rank test $(A_{n\cdot n},B_{n\cdot m})$ controllable $\equiv \mathrm{rank}(M_c)=n$ where $M_c=[B,AB,A^2B,\ldots,A^{n-1}B]$ For single input, B is a column vector and M_c is square so we can use $\det(M_c)$ to test $\mathrm{rank}(M_c)=n$

See relevant MATLAB Functions for methods of solving

Notes

- 1. If a system is controllable, we are able to arbitrarily place poles when $\underline{u}=0K\underline{x}$. However if a system is uncontrollable, we are still able to move the poles, the location just cannot be arbitrary
- 2. Controlling <u>Nonlinear Systems</u> with a linear controller requires consideration of the <u>Equilibrium Point</u> about which the linear model is defined.