= МАТЕМАТИКА =

УДК 517.1

ПРЕДСТАВЛЕНИЕ РЕШЕНИЙ ЭВОЛЮЦИОННЫХ УРАВНЕНИЙ С ОПЕРАТОРОМ ВЛАДИМИРОВА ИНТЕГРАЛАМИ ФЕЙНМАНА ПО ТРАЕКТОРИЯМ

© 2009 г. О.Г. Смолянов, Н.Н. Шамаров

Представлено академиком В.С. Владимировым 06.11.2008 г.

Московский государственный университет им. М.В. Ломоносова

Как известно, решения начально-краевых задач для классических эволюционных уравнений с псевдодифференциальным оператором (ПДО) в правой части могут быть представлены интегралами по пространству траекторий в конфигурационном, импульсном или фазовом пространстве. В первом случае интегрирование ведется по мере Винера или псевдомере Фейнмана (и их обобщениям), во втором случае – по комплексной мере Маслова-Чеботарева (-Пуассона) и в третьем – по гамильтоновой псевдомере Фейнмана или ее аналогам, или по аналогу меры Маслова-Чеботарева.

В работе описаны подобные представления для эволюционных уравнений с ПДО, действующими в пространствах комплекснозначных функций р-адического аргумента.

Как показано в работе [5], такие уравнение, являющиеся p-адическими аналогами обычного уравнения теплопроводности с распределенными источниками тепла, могут использоваться для описания динамики белковой молекулы.

1. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ И ОБОЗНАЧЕНИЯ

Поле \mathfrak{p} -адических чисел $\mathbb{Q}_{\mathfrak{p}}$ [1] (\mathfrak{p} – простое натуральное число) представляет собой пополнение поля рациональных чисел относительно нормирования, определяемого равенствами $|\mathfrak{q}|_{\mathfrak{p}}=1$ при простом \mathfrak{q} , не равном \mathfrak{p} , и $|\mathfrak{p}|\mathfrak{p}=\mathfrak{p}^{-1}$. Каждое \mathfrak{p} -адическое число a допускает однозначное представление в виде (сходящегося в $\mathbb{Q}_{\mathfrak{p}}$) ряда

$$a = \sum_{k \in \mathbb{Z}, k \ge \lg_{\mathfrak{p}}|a|_{\mathfrak{p}}} a_k \cdot \mathfrak{p}^{+k} = [a]_{\mathfrak{p}} + \{a\}_{\mathfrak{p}},$$

где $a_k \in \{0, 1, ..., \mathfrak{p} - 1\}$ для всякого $k \in \mathbb{Z}$, причем $\lg_{\mathfrak{p}} | a|_{\mathfrak{p}} \in \mathbb{Z}$ и $a_{\gamma(a)} \neq 0$ для $a \neq 0$ ($\lg_{\mathfrak{p}} 0 = -\infty, a_{-\infty} = 0$),

Московский государственный университет им. М.В. Ломоносова

$$[a]_{\mathfrak{p}} = \sum_{k \geq 0} a_k \cdot \mathfrak{p}^{+k}, \quad \{a\}_{\mathfrak{p}} = \sum_{\gamma_{\mathfrak{p}}(a) \leq k < 0} a_k \cdot \mathfrak{p}^{+k},$$

$$\{a\}_n \in \mathbb{Q} \cap [0; 1) \cong \mathbb{Q}/\mathbb{Z}.$$

При этом отображение $\{\cdot\}_{\mathfrak{p}}$ является непрерывным гомоморфизмом аддитивной топологической группы нормированного поля $\mathbb{Q}_{\mathfrak{p}}$ в абелеву топологическую группу \mathbb{R}/\mathbb{Z} .

Непрерывный гомоморфизм $\chi_{\mathbb{Q}_p}$ аддитивной группы \mathbb{Q}_p в мультипликативную группу $\{z \in \mathbb{C}: |z|=1\}$, задаваемый формулой $\chi_{\mathbb{Q}_p}(a)=e^{2i\pi\{a\}_p}$, является аддитивным унитарным характером группы \mathbb{Q}_p , причем каждый непрерывный унитарный комплексный аддитивный характер локально-компактной аддитивной группы \mathbb{Q}_p имеет вид (см. [1]) $a\mapsto \chi_y(a)\equiv \chi_{\mathbb{Q}_p}(y\cdot a)$ для некоторого $y\in \mathbb{Q}_p$ и соответствие $y\mapsto \chi_y$ является изоморфизмом аддитивной топологической группы \mathbb{Q}_p и (двойственной ей по Понтрягину) группы характеров на \mathbb{Q}_p .

Далее $\sigma_{\mathfrak{p}}$ — сигма-алгебра всех борелевских подмножеств в $\mathbb{Q}_{\mathfrak{p}}$, $\mathcal{M}_{\mathfrak{p}} = \{ \nu \}$ — множество всех счетно-аддитивных комплекснозначных мер ν : $\sigma_{\mathfrak{p}} \to \mathbb{C}$. Сверточную экспоненту элемента $\nu \in \mathcal{M}_{\mathfrak{p}}$, обозначаемую $e^{*\nu}$, определим с помощью ряда 1

$$e^{*v} = \sum_{n=0}^{\infty} \frac{1}{n!} v^{*v}$$
, сходящегося по вариации.

Преобразованием Фурье меры $v \in \mathcal{M}_{\mathfrak{p}}$ называется [1] функция, обозначаемая символом \tilde{v} и задаваемая равенством $\tilde{v}(y) = \int \chi_{y}(-x)v(dx)$; легко

¹ Символом δ_x обозначается вероятностная мера, сосредоточенная в точке x. Сверточные степени v^{*n} меры $v \in \mathcal{M}_p$ определяются так: $v^{*0} = \delta_0$, $v^{*(n+1)} = (v^{*n}) * v$.

проверяются равенства [8] $\widetilde{e^{*v}}(x) = e^{\tilde{v}(x)}, x \in \mathbb{Q}_{\mathfrak{p}}, v \in \mathcal{M}_{\mathfrak{p}}.$

Неотрицательная функция на системе замкнутых шаров в $\mathbb{Q}_{\mathfrak{p}}$ (являющейся полукольцом), равная на каждом шаре его диаметру (совпадающему с радиусом), задает (нормированную единицей на $\mathbb{Z}_{\mathfrak{p}}$) борелевскую меру Хаара на локально-компактной абелевой аддитивной группе $\mathbb{Q}_{\mathfrak{p}}$, далее обозначаемую символом Нааг. Для комплекснозначных функций f класса $L_1 \equiv L_1(\mathbb{Q}_{\mathfrak{p}}, \sigma_{\mathfrak{p}},$ Нааг) определяем меры $\mathbf{v}_f \equiv f \cdot$ Нааг : $\sigma_{\mathfrak{p}} \ni A \mapsto \int_A f(x)$ Нааг(dx) и определяем

преобразования Фурье \tilde{f} функций f равенством $\tilde{f} \equiv \tilde{\mathsf{v}}_f$.

Сужение оператора \mathcal{F}_1 : $L_1 \ni f \mapsto \tilde{f}$ на плотное в комплексном $L_2 \equiv L_2(\mathbb{Q}_{\mathfrak{p}}, \sigma_{\mathfrak{p}},$ Нааг) подпространство $L_1 \cap L_2$ продолжается [1] до унитарного оператора \mathcal{F}_2 : $L_2 \cap L_2$.

2. ОБОБЩЕННЫЕ МЕРЫ НА ФУНКЦИОНАЛЬНЫХ ПРОСТРАНСТВАХ НАД $\mathbb{Q}_{\mathfrak{p}}$ И ИХ ПРЕОБРАЗОВАНИЯ ФУРЬЕ

Пусть $E = \{x\}$ означает некоторое векторное пространство над $\mathbb{Q}_{\mathfrak{p}}$; $E' = \{y\}$ – некоторое множество $\mathbb{Q}_{\mathfrak{p}}$ -линейных отображений y: $E \to \mathbb{Q}_{\mathfrak{p}}$; $F(E, E') = \{\emptyset\}$ – некоторое пространство комплекснозначных отображений \mathfrak{p} : $E \to \mathbb{C}$, содержащее все отображения вида χ_l : $x \mapsto \chi_{\mathbb{Q}_{\mathfrak{p}}}(-l(x))$, где $l \in E'$. Всякое \mathbb{C} -линейное отображение m: $F(E, E') \to \mathbb{C}$ будем называть F(E, E')-обобщенной мерой на E. Если E': E': обобщенной мерой на E': E': обобразованием E': обозначаемое E': E': обозначаемое E': E': обозначаемое E': E': обозначаемое E': E': E': обозначаемое E': E': E': E': обозначаемое E': E'

В рассматриваемых далее представлениях решений эволюционных уравнений роль пространств E и E' играют пространства отображений отрезка [0,t] в $Q\in\{\mathbb{Q}_{\mathfrak{p}},\mathbb{Q}_{\mathfrak{p}}\times\mathbb{Q}_{\mathfrak{p}}\}$, называемых траекториями в Q, не имеющих разрывов второго рода (в частности, их образы ограничены) и непрерывны справа; пространство всех таких отображений ξ обозначим $C_R^t(Q)=\{\xi\}$ (или просто $C_R(Q)$, если t известно); его подпространство, состоящее из кусочно-постоянных функций, обладающих лишь конечным числом точек разрыва и обращающихся в конце отрезка в нуль,

обозначим $C_P^t(Q) = \{\eta\}$; при этом под η' понимаем "обобщенную производную", являющуюся Q-значной борелевской мерой на [0;t] с конечным носителем.

В случае
$$Q=\mathbb{Q}_{\mathfrak{p}}$$
 отображение
$$C_R(\mathbb{Q}_{\mathfrak{p}})\times C_P(\mathbb{Q}_{\mathfrak{p}})\ni (\xi,\mathfrak{\eta})\mapsto \langle \xi,\mathfrak{\eta}\rangle_C\equiv$$

$$\equiv \int\limits_{[0,t]} \xi(s)\mathfrak{\eta}'(ds)\in \mathbb{Q}_{\mathfrak{p}}$$

приводит $\mathbb{Q}_{\mathfrak{p}}$ -линейные пространства $C_R(\mathbb{Q}_{\mathfrak{p}})$ и $C_P(\mathbb{Q}_{\mathfrak{p}})$ в двойственность, в силу которой далее мы каждое из этих двух пространств отождествляем с пространством $\mathbb{Q}_{\mathfrak{p}}$ -линейных функционалов на другом. Для $E \in \{C_R(\mathbb{Q}_{\mathfrak{p}}), C_P(\mathbb{Q}_{\mathfrak{p}})\}$ положим: $E \in \{C_R, C_P\}\setminus \{E\}\}$, F(E, E') — множество ограниченных функций, измеримых относительно сигма-алгебры $\sigma(E, E')$ подмножеств E, порожденной семейством функций $\{\bar{\chi}_l \colon l \in E'\}$; при этом используются F(E, E')-обобщенные меры, каждая из которых задается равенством вида $m(f) = \int_E f(x) M_m(dx)$, где M_m — счет-

но-аддитивная комплекснозначная мера на той же сигма-алгебре $\sigma(E,E')$, причем предполагается, что преобразование Фурье \tilde{m} имеет вид $E' \ni$

$$\exists y \mapsto \tilde{m}(y) = \exp\left\{\int_{0}^{t} V(y(ss)ds\right\},$$
где $V: \mathbb{Q}_{p} \to C - C$

непрерывная функция, и интеграл существует в смысле Римана. Именно такой вид имеют преобразования Фурье счетно-аддитивных мер двух типов, построенные в [3] (это доказывается как в [8] и [9]).

В случае траекторий в произведении $\mathbb{Q}_{\mathfrak{p}} \times \mathbb{Q}_{\mathfrak{p}}$ полагаем $E = C_R(\mathbb{Q}_{\mathfrak{p}}) \times C_P(\mathbb{Q}_{\mathfrak{p}})$ и $E' = C_P(\mathbb{Q}_{\mathfrak{p}}) \times C_R(\mathbb{Q}_{\mathfrak{p}})$; двойственность

$$((\xi_1, \eta_1), (\xi_2, \eta_2))_2 \mapsto \int_{[0;t]} \xi_1(s) \eta_2'(ds) -$$

$$-\int_{[0;t]} \xi_2(s) \eta_1'(ds) = \langle \xi_1, \eta_1 \rangle_C - \langle \xi_2, \eta_1 \rangle_C$$

снова позволяет рассматривать E' как пространство некоторых $\mathbb{Q}_{\mathfrak{p}}$ -линейных функционалов на E, и наоборот. Однако в отличие от предыдущего случая теперь интересующая нас обобщенная мера не будет задаваться в виде явного интеграла по какой бы то ни было счетно-аддитивной мере, но счетно-аддитивные меры на E' будут играть важную роль в конструкции (ср. [2, 10]). Пусть аналогично предыдущему $\sigma(E' E)$ — сигма-алгебра подмножеств пространства $E' = \{l\}$, порожденная все-

ми отображениями вида $\varphi_x(l) = \chi_{\mathbb{Q}_p}(l(x)), x \in E$. Пусть $\mathcal{M} = \{\mu\}$ – пространство счетно-аддитивных комплекснозначных мер μ , определенных на $\sigma(E', E)$. Преобразованием Фурье меры $\mu \in \mathcal{M}$ назовем функцию $\tilde{\mu}: E \to \mathbb{C}$, определенную равенством $\tilde{\mu}(x) = \int_E \varphi_x(-l)\mu(dl)$. Далее полагаем $l \equiv (\eta_l, \xi_l)$ и $\mu(dl) = \mu(d\eta_l, d\xi_l)$. Наконец, в качестве пространства F(E, E') из определения обобщенных мер возьмем пространство $\tilde{\mathcal{M}}$ преобразований Фурье всевозможных мер из \mathcal{M} .

Определение 1. Симплектической, или гамильтоновой (псевдо)мерой Φ ейнмана на пространстве $E=C_R^t(\mathbb{Q}_\mathfrak{p})\times C_P^t(\mathbb{Q}_\mathfrak{p})$ назовем линейный функционал $\tilde{\mathcal{M}}\to\mathbb{C}$, обозначаемый далее символом Φ^t и определяемый формулой

$$\tilde{\mu} \mapsto \int_{E_i} \chi_{\mathbb{Q}_p}(\langle \xi_l, \eta_l \rangle_C) \mu(d\eta_l, d\xi_l)$$

или, более подробно,

$$\tilde{\mu} \mapsto \iint_{C_P'(\mathbb{Q}_{\mathfrak{p}})_{\eta} \times C_R'(\mathbb{Q}_{\mathfrak{p}})_{\xi}} \exp \left[2\pi i \left\{ \int_{[0;\,t]} \xi(s) \eta'(ds) \right\}_{\mathfrak{p}} \right] \cdot \mu(d\eta, d\xi),$$

где нижний индекс около каждого множителя в области интегрирования указывает на пробегающую это пространство переменную.

Значение такой меры Фейнмана на элемента $\phi \in \tilde{\mathcal{M}}$ обозначим, следуя традиции, интегралом $\int_{E} \phi(x) \Phi^t(dx)$, называемым симплектическим, или гамильтоновым, интегралом Фейнмана.

Поскольку в случае $\phi = \tilde{\mu}$ это значение по определению удовлетворяет равенству

$$\int_{E} \tilde{\mu}(x) \Phi^{t}(dx) = \int_{E} \Psi^{t}(l) \mu(dl),$$

где $\Psi^t(l) = \chi_{\mathbb{Q}_p}(\langle \xi_l, \eta_l \rangle_C)$, то, подставляя вместо μ вероятностные дираковские меры $\mu_z = \delta_z$, сосредоточенные в точках $z \in E$, для которых обратное преобразование Фурье легко вычисляется по

определению
$$\left(\tilde{\mu}_z(x) \equiv \int_E \chi_{\mathbb{Q}_\mathfrak{p}}(-l(x))\mu_x(dl) = \chi_{\mathbb{Q}_\mathfrak{p}}(-l(x))\right)$$
, найдем, что
$$\int_E \chi_{\mathbb{Q}_\mathfrak{p}}(-z(x))\Phi^t(dx) = \int_E \hat{\mu}_z(x)\Phi^t(dx) = \int_E \Psi^t(l)\mu_z(dl) = \Psi^t(z),$$

т.е. что функция Ψ^t : $E' \ni z \mapsto \chi_{\mathbb{Q}_p}(\langle \xi_z, \eta_z \rangle_C)$ является не чем иным, как E-преобразованием Фурье $\tilde{\Phi}^t$ симплектической меры Фейнмана. Таким образом, приведенное определение симплектической меры Фейнмана фактически означает справедливость равенства Парсеваля—Планшереля (ср. [2]), в котором участвуют не только счетноаддитивные меры:

$$\int_{E} \tilde{\mu}(x) \Phi^{t}(dx) = \int_{E} \tilde{\Phi}^{t}(l) \mu(dl).$$

3. ЭВОЛЮЦИОННЫЕ УРАВНЕНИЯ С ОПЕРАТОРОМ ВЛАДИМИРОВА

Псевдодифференциальный оператор Владимирова D^{α} порядка $\alpha > 0$ определяется так.

Пусть $S_{\mathfrak{p}}$ — пространство всех тех локально постоянных функций $\mathbb{Q}_{\mathfrak{p}} \to \mathbb{C}$, которые принимают лишь конечное число различных значений и имеют компактный носитель. Известно [1], что $S_{\mathfrak{p}} \subset L_2$ плотно и $\mathscr{F}_2(S_{\mathfrak{p}}) = S_{\mathfrak{p}}$. Пусть $f \colon \mathbb{Q}_{\mathfrak{p}} \ni x \mapsto -(|x|_{\mathfrak{p}})^{\alpha}$ и пусть M_f — неограниченный самосопряженный положительно-определенный в L_2 оператор $\mathfrak{p} \mapsto f \cdot \mathfrak{p}$ поточечного умножения на функцию f с естественной областью определения $\{\mathfrak{p} \in L_2 \colon f \cdot \mathfrak{p} \in E_2\} \supset S_{\mathfrak{p}}$. Оператором Владимирова порядка \mathfrak{q} называется неограниченный самосопряженный неположительный в L_2 оператор $(\mathscr{F}_2)^{-1} \circ M_f \circ \mathscr{F}_2$, обозначаемый далее символом D^{α} , область определения которого обозначим D_{α} (очевидно, $D_{\alpha} \supset S_{\mathfrak{p}}$).

Кроме того, пусть далее v — фиксированная мера из класса $\mathcal{M}_{\mathfrak{p}}, B_{\tilde{\mathfrak{v}}}$ — ограниченный нормальный всюду определенный в гильбертовом пространстве L_2 оператор поточечного умножения на ограниченную функцию $\tilde{\mathfrak{v}}$, и пусть $N=(\mathcal{F}_2)^{-1}\circ M_{\mathfrak{v}}\circ \mathcal{F}_2$; другими словами, N — это ограниченный всюду определенный в L_2 оператор свертки с мерой v, получаемый замыканием естественно определяемого оператора свертки с элементами из $S_{\mathfrak{p}}$ или из $L_1 \cap L_2$,

Под задачей Коши для уравнения теплопроводности с оператором Владимирова далее будем понимать задачу отыскания непрерывной функции Ψ аргумента t, определенной на неотрицательной вещественной полуоси, принимающей значения в нормированном подпространстве $D_{\alpha} \subset L_2$ и удовлетворяющей условиям

$$\left(\frac{d}{dt}\right)\Psi(t) = (-D^{\alpha} + M_{v})\Psi(t),$$

$$\Psi(0) = \Psi_{0},$$
(1)

где $\frac{d}{dt}\Psi(t)$ при каждом $t\geq 0$ вычисляется как предел в L_2 -норме функции $[-t,+\infty]\ni \tau\mapsto \tau^{-1}(\Psi(t+\tau)=\Psi(t))\in D_\alpha$ при $\tau\to 0$ (для t=0 предел понимается как правый). Эту задачу Коши далее называем задачей (1), а описанную в ней функцию Ψ – ее решением. Однозначная разрешимость задачи (1) при произвольном начальном условии (н.у.) $\psi_0\in D_\alpha$ вытекает из общей теории однопараметрических операторных полугрупп, так как сумма самосопряженного оператора $-D^\alpha$ и ограниченного M_ν является генератором сильно непрерывной полугруппы $\{G_s\}_{s\geq 0}$ с пространством D_α векторов дифференцируемости.

Справедливы следующие теоремы.

Теорема 1 [3]. Задача (1) с начальным условием $\psi_0 \in S_p$ имеет единственное решение, при каждом $t \in (0; +\infty)$ определяемое равенством

$$\Psi(t)(x) = \Psi(t,x) = \int_{C_R^t \ni \gamma} \exp\left\{\int_0^t v(x - \gamma(s))ds\right\} \cdot (2)$$

$$\cdot \Psi_0(x - \gamma(t))M_a^t(d\gamma),$$

где $v = \tilde{v}$ и M_a^t – некоторая счетно-аддитивная вероятностная мера на сигма-алгебре в C_R^t , порожденной всеми "отображениями вычисления" вида δ_s : $\xi \mapsto \xi(s)$, $C_R^t(\mathbb{Q}_p) \in \mathbb{Q}_p$.

Пусть
$$C_P^t = \{ \eta \in C_R^t : Card\eta([0; t]) < \infty, \eta(t) = 0 \}.$$

Теорема 2. В условиях предыдущей теоремы при каждом $t \in (0; +\infty)$ справедливо равенство

$$\widetilde{\Psi(t)}(y) = \varphi(t, y) = \int_{C_P' \ni \eta} \exp\left\{-\int_0^t (|y - \eta(s)|_p)^a ds\right\} \cdot \varphi_0(y - \eta(t)) M_v^t) (d\eta),$$
(3)

где $\phi_0 = \tilde{\psi}_0 \ u \ M_{\nu}^t$ – некоторая счетно-аддитивная комплексная мера на сигма-алгебре в C_P^t , порожденной всеми "отображениями вычисления" вида δ_s : $\eta \mapsto \eta(s)$, $C_p^t(\mathbb{Q}_p) \to \mathbb{Q}_p$.

Знаки минус в формуле (2) в силу симметричности меры M_a^t могут быть заменены на знаки плюс, и тогда эта формула не будет отличаться от стандартной формулы Фейнмана—Каца для решения обычного уравнения теплопроводности с помощью интеграла по винеровской мере; когда мера интегрирования не является симметричной, необходимо использовать знак минус. Таким образом, формула (3) аналогична формуле (2); в правых частях этих формул находятся свертки функций и мер (которые естественно называть функциональными мерами Грина соответствующих уравнений).

Отметим еще, что в формуле (2) теоремы 1 в отличие от классической формулы Фейнмана—Каца интегрирование ведется по пространству разрывных траекторий, так как не существует непостоянных непрерывных отображений отрезка вещественной прямой во вполне несвязное пространство, которым является $\mathbb{Q}_{\mathbf{p}}$.

В отличие от теоремы 1 теорема 2 вполне аналогична подобной теореме для вещественных пространств. Ее доказательство может быть проведено двумя способами: с помощью представления некоторых экспонент рядами (подход Дайсона) и с помощью представления тех же экспонент пределами произведений (подход Фейнмана).

Теорема 3. В условиях предыдущих теорем при каждом $t \in (0; +\infty)$ справедливы равенства

$$\Psi(t)(q) =$$

$$= \int_{C_P' \times C_R'} \chi(\int \gamma d\eta) \Psi_0(q - \gamma(t)) M_a^t(d\gamma) M_v^t(d\eta), \qquad (4)$$

$$\epsilon \partial e \int \gamma d\eta = \sum_{s: \eta_s \neq \eta_{s-0}} \gamma_s \cdot (\eta_s - \eta_{s-0}), \mathbf{M}$$

$$\Psi(t)(q) = \int_{\mathbb{Q}_p} dy \int_{C_P' \times C_R'} \Phi^t(d\eta, d\gamma) \times$$

$$\times \chi \left(\int_0^t G(\gamma(s), y - \eta(s)) ds - y \cdot \gamma(t) \right) \phi_0(y), \qquad (5)$$

где $H(x, y) = -(|y|_p)^a + \tilde{v}(x)$, — символ псевдодифференциального оператора ($-D^a + B_v$), задающего правую часть уравнения решаемой задачи Коши (1), и Φ^t — симплектическая псевдомера Фейнмана.

Отметим, что в формуле (5) псевдомера интегрирования не зависит от параметра α и меры ν , определяющих правую часть уравнения (1).

Схема доказательства. Формула (4) является результатом подстановки в формулу

Фейнмана–Каца (2)вместо подынтегральной экспоненты ее представления интегралом Фурье по некоторой мере M_{ν}^{t} :

$$\exp\left\{\int_{0}^{t} \tilde{\mathbf{v}}(\gamma(s))ds\right\} = \int_{C_{v}^{T}} \chi\left(\int_{0}^{t} \gamma(s)d\eta(s)\right) M_{v}^{t}(d\eta),$$

где конечномерные (над $\mathbb{Q}_{\mathfrak{p}}$) распределения меры $M'_{\mathfrak{p}}$ могут быть вычислены так же, как в первом разделе работы [9] это сделано для мер типа Маслова–Чеботарева (в пространствах над вещественным полем).

Для получения из формулы (4) формулы (5) достаточно вычислить интеграл Фурье от произведения функционала $C_R^t \times C_P^t \ni (\gamma, \eta) \mapsto \psi_0(q - \gamma(t)) \in \mathbb{C}$ на меру интегрирования $M_a^t(d\gamma) \times M_v^t(d\eta)$ в (4), используя аналогичное предыдущему равенство

$$\exp\left\{-\int_{0}^{t}|\eta(s)|_{\mathfrak{p}}^{a}ds\right\} = \int_{C_{R}^{T}}\chi\left(\int_{0}^{t}\gamma(s)d\eta(s)\right)M_{\mathfrak{p}}^{a}(d\eta),$$

доказанное в [3].

Замечание 1. Описанный выше способ получения представления решения уравнения с оператором Владимирова в терминах симплектической меры Фейнмана опирается на формулу Фейнмана-Каца (2), полученную с помощью формулы Троттера—Ли для однопараметрических полугрупп. Однако в аналогичной ситуации с вещественными переменными исходный метод Фейнмана для получения представления в виде интеграла, называемого теперь гамильтоновым интегралом Фейнмана, опирается фактически на обобщение упомянутой теоремы Троттера—Ли — на теорему Чернова для

однопараметрических полугрупп. При этом подынтегральное выражение становится проще, однако соответствующая псевдомера интегрирования выражается через аналог использованной в (5) псевдомеры Φ^t с помощью частичного преобразования Φ урье. Аналогичная связь существует и в случае задачи (1) с p-адическим аргументом.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (грант 06–01–00761).

СПИСОК ЛИТЕРАТУРЫ

- 1. Владимиров В.С., Волович И.В., Зеленов Е.И. р-Адический анализ и математическая физика. М.: Наука; Физматлит, 1994.
- 2. *Смолянов О.Г., Шавгулидзе Е.Т.* Континуальные интегралы. М.: Изд-во МГУ, 1990.
- 3. *Смолянов О.Г., Шамаров Н.Н. //* ДАН, 2008. Т. 420. № 1. С. 37–32.
- 4. *Козырев С.В.* // Мат. сб. 2007. Т. 2948. № 1. Р. 103–126.
- 5. *Аветисов В.А., Бикулов А.Х., Осипов В.Ал.* // Тр. Мат. ин-та РАН. 2004. Т. 245. С. 55–64.
- 6. *Хренников А.Ю*. Неархимедов анализ и его приложения. М.: Физматлит, 2003.
- 7. *Chernoff R.* // J. Funct. Anal. 1968. № 2. P. 238–242.
- 8. *Шамаров Н.Н.* // Фундам. и прикл. математика. 2006. Т. 12. В. 6. С. 193–211.
- 9. *Shamarov N.N.* // Rus. J. Math. Phys. 2003. V. 10. № 3. P. 1–16.
- Маслов В.П. Комплексные марковские цепи и континуальный интеграл Фейнмана для нелинейных уравнений. М.: Наука, 1976.
- 11. Гихман И.И., Скороход А.В. Теория случайных процессов. М.: Наука, 1971. Т. 1.
- 12. *Varadarajan V.S.* // Lett. Math. Phys. 1997. V. 39. № 2. P. 97–106.