

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6677/01)

January 2008 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1(a) .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	I = 4(5-1) = 16 Ns	M1 A1 (2)
(b)	CLM: $4 \times 5 - m \times 3 = 4 \times 1 + m \times 2$	M1 A1
	$\Rightarrow m = \underline{3.2}$ or	DM1 A1 (4) or
	$16 = m\left(3+2\right)$	M1 A1
	$\Rightarrow m = 3.2$	DM1 A1 (4) 6
2.(a)	$27 = 0 + \frac{1}{2}a \cdot 3^2 \Rightarrow a = \underline{6}$	M1 A1 (2)
(b)	$v = 6 \times 3 = 18 \text{ m s}^{-1}$	M1 A1 f.t. (2)
(c)	From $t = 3$ to $t = 5$, $s = 18 \times 2 - \frac{1}{2} \times 9.8 \times 2^2$	M1 A1 f.t.
	Total ht. = $s + 27 = 43.4 \text{ m}, 43 \text{ m}$	M1 A1 (4)
		8

Question Number	Scheme	Marks
3.(a)	Shape 'V' Shape for last 22s (with $V > 15$) Figures	B1 B1 B1 (3)
(b)	$\frac{1}{2}(15+5) \times t = 120$ $\Rightarrow t = 12 \rightarrow T = 12 + 16 + 22 = \underline{50 \text{ s}}$	M1 M1 A1 (3)
(c)	$120 + \frac{1}{2}(V + 5).16 + 22V = 1000$ Solve: $30V = 840 \implies V = 28$	M1 <u>B1</u> A1 DM1 A1 (5) 11
4.(a)	R (// plane): $49 \cos \theta = 6g \sin 30$	M1 A1
(b)	$\Rightarrow \cos \theta = 3/5 *$ R (perp to plane): $R = 6g \cos 30 + 49 \sin \theta$ $R \approx 90.1 \text{ or } 90 \text{ N}$	M1 A1 DM1 A1 (4)
(c)	R (// to plane): $49 \cos 30 - 6g \sin 30 = 6a$ $\Rightarrow a \approx 2.17 \text{ or } 2.2 \text{ m s}^{-2}$	M1 A2,1,0 A1 (4)

Question Number	Scheme	Marks
5.(a)	$S \bigwedge_{A} \frac{\uparrow}{C} T \qquad M(A): T \times 4 = 12g \times 2.5$	M1 A1
5.(a)	$A = \frac{7.5g \text{ or } 73.5 \text{ N}}{C}$	A1
	$R(\uparrow) S + T = 12g$	M1
	$\Rightarrow S = \underline{4.5g \text{ or } 44.1 \text{ N}}$	A1 (5)
	$\begin{array}{c cccc} U & & & & V \\ \hline A & & & C & B \end{array}$	
(b)	16g $M(A)$ $V \times 4 = 16g \times y + 12g \times 2.5$	M1 A1
	V = 4gy + 7.5g or 39.2y + 73.5 N	A1 (3)
	$V \le 98 \implies 39.2y + 73.5 \le 98$	M1
(c)	$\Rightarrow y \le 0.625 = 5/8$	DM1
	Hence "load must be no more than $5/8$ m from A " (o.e.)	A1 (3)
		11
6.(a)	Speed = $\sqrt{(5^2 + 8^2)} \approx 9.43 \text{ m s}^{-1}$	M1 A1 (2)
(b)	Forming arctan 8/5 or arctan 5/8 oe	M1
	Bearing = $360 - \arctan 5/8$ or $270 + \arctan 8/5 = 328$	DM1 A1 (3)
(c)	At $t = 3$, p.v. of $P = (7 - 15)\mathbf{i} + (-10 + 24)\mathbf{j} = -8\mathbf{i} + 14\mathbf{j}$	M1 A1
	Hence $-8\mathbf{i} + 14\mathbf{j} + 4(u\mathbf{i} + v\mathbf{j}) = 0$	M1
	$\Rightarrow \underline{u=2, v=-3.5}$	DM1 A1 (5)
(d)	p.v. of P t secs after changing course = $(-8\mathbf{i} + 14\mathbf{j}) + t(2\mathbf{i} - 3.5\mathbf{j})$	M1
	$= 7\mathbf{i} + \dots$	DM1
	Hence total time = $\underline{10.5 \text{ s}}$	A1 (3)
		, ,
		13

Question Number	Scheme	Marks
7.(a)	$B: \qquad 2mg - T = 2m \times 4g/9$	M1 A1
	$\Rightarrow T = \underline{10mg/9}$	A1 (3)
(b)	$A: T - \mu \underline{mg} = m \times 4g/9$	M1 <u>B1</u> A1
	Sub for T and solve: $\mu = 2/3 *$	DM1 A1 (5)
(c)	When B hits: $v^2 = 2 \times 4g/9 \times h$	M1 A1
	Deceleration of A after B hits: $ma = \mu mg \implies a = 2g/3$	M1 A1 f.t.
	Speed of <i>A</i> at <i>P</i> : $V^2 = 8gh/9 - 2 \times 2g/3 \times h/3$	DM1
	$\Rightarrow V = \frac{2}{3}\sqrt{(gh)}$	A1 (6)
(d)	Same tension on A and B	B1 (1) 15