

Universidade do Vale do Itajaí Escola do Mar, Ciência e Tecnologia - EMCT Ciência da Computação

Matemática Computacional

Mapa de Karnaugh

Prof. Thiago Felski Pereira, M.Sc.

Agenda

Mapa de Karnaugh

Mapas de Karnaugh: para que serve?

- Trata-se de um método gráfico usado para obter a forma simplificada de uma expressão booleana
- Quando aplicado manualmente (papel+lápis) é viável para até 4 variáveis
- Sua aplicação parte das informações contidas na tabela verdade que caracteriza o comportamento do sistema
- A aplicação dos Mapas de Karnaugh para obtenção da forma mais simples de uma expressão booleana é feita nas etapas: transferência do conteúdo da tabela verdade para o Mapa da Karnaugh, aplicação das regras de agrupamentos e finalmente a expressão que representa os agrupamentos
- Na sequencia serão apresentados os Mapas de Karnaugh para 2, 3 e 4 variáveis

Mapa de Karnaugh para duas variáveis

REGIÃO ONDE A=0

REGIÕES

REGIÃO ONDE B=1

	\overline{B}	В
\overline{A}		
\overline{A}		

REGIÃO ONDE B=0

Mapeamento das linhas da tabela verdade para o MK

Exemplo:

A	В	S
0	0	0
0	1	1
1	0	1
1	1	1

	\overline{B}	В
\overline{A}	0	1
\overline{A}	1	1

- Simplificação: feita por meio de agrupamentos sobre as posições que contém 1. Os agrupamentos devem ser feitos considerando os maiores agrupamentos possíveis primeiro e que sejam no menor número possível
- Os agrupamentos podem ser feitos somente na horizontal e na vertical (não pode ser feito na diagonal)
- A expressão simplificada é obtida da seguinte forma
 - cada agrupamento gera um termo que corresponde ao produto lógico das regiões à que ele pertence
 - a expressão final é a soma lógica dos agrupamentos

UNIVALI

Aplicando o agrupamento para o exemplo:

Mapa de Karnaugh para tres variáveis

A	В	С	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Mapeamento das linhas da tabela verdade para o MK

Mapeamento das linhas da tabela verdade para o MK

Α	В	С	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

	\overline{C}	C	
\overline{A}			\overline{B}
<i>A</i>			B
\boldsymbol{A}			D
Λ			\overline{B}

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Exemplo

	\overline{B}		ŀ	3
\overline{A}	1	0	0	1
\overline{A}	1	1	1	0
·	$\overline{\overline{C}}$	C	7	\overline{C}

Aplicando o agrupamento para o exemplo

Α	В	C	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Exemplo

	\overline{C}	C	
<u></u>	1	0	\overline{B}
\boldsymbol{A}	1	0	B
Λ	0	1	D
\boldsymbol{A}	1	1	\overline{B}

Mapa de Karnaugh para quatro variáveis

Mapa de Karnaugh para 4 variáveis

UNIVALI

REGIÃO ONDE A=1

REGIÃO ONDE C=1

REGIÃO ONDE A=0

REGIÃO ONDE C=0

REGIÃO ONDE B=1

REGIÃO ONDE D=1

REGIÃO ONDE B=0

REGIÃO ONDE D=0

Mapa de Karnaugh para 4 variáveis

Mapa de Karnaugh para 4 variáveis: exemplo

Α	В	С	D	S
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

	(-		<u> </u>	
$\overline{\overline{A}}$	1	1	1	0	\overline{B}
A	0	0	1	0	D
\overline{A}	0	1	0	1	B
**	1	1	0	1	\overline{B}
	\overline{D}	1	D	\overline{D}	,

Mapa de Karnaugh para 4 variáveis: simplificação

