

Daffodil International University

Department of Computer Science & Engineering Faculty of Science & Information Technology Mid Term Examination Semester: Fall 2019

Course Code: CSE 212 Course Title: Digital Electronics

Section: ALL

	Section: ALL		
Time: 1.	5 hours	Full Marks: 2	5
	Answer any five from the following questions		
QUEST	ION 1:		[5.0]
	express the following number in 1's complement, 2's complement form and in agnitude form (use 8 bits):	n sign	[3.0]
	i46		
	ii. 120		
b) S	subtract 14 from 67 in 2's complement method using 16 bits.		[2.0]
QUEST	TION 2:		[5.0]
p p	uppose there is a chemical processing plan, a liquid chemical is used in m rocess. The chemical is stored in three different tanks A, B and C. A sensor roduces LOW when the chemical drops at a particular point in the tank as larm P beeps or lightens.	in each tank	
C	construct a circuit which will act according to the mentioned condition.		
QUEST	TION 3:		[5.0]
D	Derive the expressions of a Full adder and draw a it's circuit diagram using ha	lf adders.	
QUEST	TION 4:		[5.0]
	Find out the corresponding SOP expression of the following POS expression: $A+B+C$ ($A+B'+C'+D$)($A'+B'+C'+D'$)		[2.5]
	Jse K map to minimize the following expression: A+B+C)(A+B+C')(A+B'+C)(A+B'+C')(A'+B'+C)		[2.5]

QUE	QUESTION 5:		
a)	Prove the following theorem: (A+B)(A+C)=A+BC	[2 0]	
b)	Minimize the following expression and draw its logic circuit:	[2.0]	
	[A'B(C+D')+E]'	[3.0]	
QUE	STION 6:	[5.0]	
a)	Determine the sum generated by a 3-bit Ripple Carry Adder when the given numbers are 101 and 001. Draw the circuit and show the intermediate carries.	[3.0]	
b)	Convert the binary number 10101111 to Gray code.	[1.0]	
c)	Add even parity to "MA" that you want to send to your brother.	[1.0]	