Задания

20 января 2020 г.

Если M – моноид, то мы будем обозначать \mathbf{C}_M категорию с одним объектом * и множеством морфизмов $Hom_{\mathbf{C}_M}(*,*)=M$, операция композиции и тождественный морфизм в которой определяются как соответствующие операции в M.

Предпорядок (X, \leq) – это множество X с рефлексивным и транзитивным бинарным отношением \leq . Задать структуру предпорядка на множестве – это то же самое, что и задать на нем структуру категории, в которой между любой парой объектов существует максимум один морфизм. Если (X, \leq) – предпорядок, то мы будем обозначать соответствующую ему категорию как $\mathbf{C}_{(X,\leq)}$. Множество объектов этой ктаегории равно X, а множество морфизмов $Hom_{\mathbf{C}_{(X,\leq)}}(x,y)$ состоит из одного элемента, если $x\leq y$, и пусто в противном случае.

- 1. Изоморфны ли следующие объекты категории **Hask**? Если да, напишите функции, устанавливающие изоморфизм.
 - (a) Bool и Maybe Bool.
 - (b) Either Bool Bool и (Bool, Bool).
 - (c) Integer и Maybe Integer.
 - (d) Integer и [()].
- 2. Пусть M некоторый моноид. Определим тогда категорию \mathbf{C}_M как категорию с одним объектом и множеством морфизмов равным M. Композиции и тождественный морфизм определяются из структуры моноида. Какие морфизмы являются изоморфизмами в следующих категориях?
 - (a) $\mathbf{C}_{(\mathbb{N},+)}$.
 - (b) $\mathbf{C}_{(\mathbb{N},*)}$.
 - (c) $\mathbf{C}_{(\mathbb{Z},+)}$.
 - (d) $\mathbf{C}_{(\mathbb{Z},*)}$.
 - (e) $C_{(\mathbb{Q},+)}$.
 - (f) **C**_(0,*).

- 3. Предпорядок называется частичным порядком, если из условия, что $x \leq y$ и $y \leq x$, следует, что x = y. Чему в категориальных терминах соотвествует это свойство?
- 4. Опишите следующие моноиды и группы:
 - (a) $Aut_{Set}(A)$, где A множество букв русского алфавита.
 - (b) $Aut_{\mathbf{FinSet}}(A)$, где A множество букв русского алфавита.
 - (c) $Endo_{\mathbf{C}_{M}}(*)$, где M некоторый моноид.
 - (d) $Endo_{\mathbf{Grp}}(\mathbb{Z})$.
 - (e) $Aut_{\mathbf{Grp}}(\mathbb{Z})$.
 - (f) $Endo_{\mathbf{Ring}}(\mathbb{Z})$, где \mathbf{Ring} категория колец с единицей.
 - (g) $Aut_{\mathbf{C}}(X)$, где \mathbf{C} скелетная категория, и X произвольный объект \mathbf{C} .
 - (h) $Endo_{\mathbf{Vec}}(\mathbb{R}^n)$.
 - (i) $Aut_{\mathbf{Num}}(n)$.
 - (j) $Endo_{\mathbf{C}_{(X,<)}}(x)$, где x произвольный элемент X.
- 5. Какие из следующих категорий являются скелетными: Set, FinSet, Grp, Vec, Hask, Mat, Num?
- 6. Какие из следующих категорий являются группоидами: Set, FinSet, Grp, Vec, Hask, Mat, Num?
- 7. Какие из следующих категорий могут быть скелетными и в каких случаях?
 - (а) Дискретные категории.
 - (b) Категории вида \mathbf{C}_M .
 - (с) Категории предпорядка.
 - (d) Группоиды.
- 8. Какие из следующих категорий могут быть группоидами и в каких случаях?
 - (а) Дискретные категории.
 - (b) Категории вида \mathbf{C}_M .
 - (с) Категории предпорядка.
 - (d) Скелетные категории.

9. Пусть $f, f': X \to Y$ и $g, g': Y \to X$ – морфизмы в некоторой категории С. Докажите, что если диаграммы

коммутируют и f = f', то X и Y изоморфны.

- 10. Приведите пример, показывающий, что условие f=f' в предыдущем задании является необходимым.
- 11. Какие из следующих категорий являются малыми: Set, FinSet, Grp, Vec, Hask, Mat, Num, \mathbf{C}_M , $\mathbf{C}_{(X,\leq)}$?
- 12. Какие из следующих категорий являются локально малыми: Set, FinSet, Grp, Vec, Hask, Mat, Num, \mathbf{C}_M , $\mathbf{C}_{(X,\leq)}$?