

ECE 364 Software Engineering Tools Laboratory

Project Description Homography

Motivation

Setup

You need to update your account with 3 modules:

- numpy
- scipy
- Pillow

Demo!

Project Stages

Three "conceptual" parts:

- 1. Apply a given homography.
- 2. Compute and apply a homography.
- 3. Apply transformation effects.

Start with grayscale images. Extend to color images.

Extra credit section: Composite Effects

You will use: classes, inheritance, Enum

Accessing Image Data

Note that:

x = column, y = row

Depending on the library function we can access data:

- image(row, column)
- f(x, y)

Data outside limits is undefined

Using (x, y) we can access:

• f(1.653, 45.95)

This is called 2-D interpolation:

- Create your own function
- scipy.interpolate.iterp2d
- scipy.interpolate.
 RectBivariateSpline

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

Inverse Homography H^{-1}

How do we perform a homography operation?

Homography Matrix

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

• Use homogeneous Coordinates:

$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} / c = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

We will an assignment problem!!!
 (We can read from fractional indices, but not assign!)

(x, y)

(x, y)

Inverse Homography H^{-1}

• Instead of: We do:

where do I assign (x, y) to? where do get (x', y') from?

$$H^{-1} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} / c = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Fractions are OK this way!

But we have another issue: Iteration Range!!

- Homography has been generated from point correspondences.
- Start by getting the bounding box, and iterating over all elements.
- Points inside target range will back project into the source image.
- Points outside target range will back project outside the source image!

But we have another issue: Iteration Range!!

Computing Homography

x_n	y_n	1	0	0	0	$-x'_nx_n$	$-x'_n y_n$
0	0	0	x_n	y_n	1	$-y_n'x_n$	$-y'_ny_n$

$$y'_n$$

- From each correspondence pair, we will create two matrices.
- Stack all equations to get: $[8 \times 8].[8 \times 1] = [8 \times 1]$
- This gives the linear system Ah = b, where $h = [h_{11} ... h_{32}]^T$

$$(h_{33} = 1)$$

Use: h = numpy.linalg.solve(A, b)

Apply Transformation Effects

Manipulating the pair assignment can give us the following options:

No Effect 270° Rotation

90° Rotation Horizontal Flip Transpose

180° Rotation Vertical Flip

Apply Transformation Effects

Apply Transformation Effects

We will store the effect in an Enum (new feature in 3.4)

```
nothing
rotate90
rotate180
rotate270
flipHorizontally
flipVertically
transponse
```


Homography on Color

Extra Credit

Extra Credit

