M1 CompuPhys 2022-2023 Introduction to Python Language

Network Analysis

Célestin Coquidé PostDoc at UTINAM (Observatory building office n°13)

Table of contents:

I Introduction:

- I.1) Data science
- I.2) Time evolution of data technologies
- I.3) Type of data

II Network Representations

- II.1) History of Graph Theory
- II.2) Random and scale-free networks
- II.3) Other networks

III Centrality Measures:

- III.1) Centrality measures
- III.2) Drawing networks

IV Data and network Analysis with Python:

- IV.1) Packages of interest
- IV.2) Networkx Tutorial
- IV.3) Pokemon types interactome

Lectures and Practical Works

Lectures 26/10 1.5 h 28/10 1.5 h

Practicing 17/11 3h¹ 24/11 3h²

- ¹: Handling of different packages + Exercises
- ²: Preparation for a graded homework

I Introduction

Data science

Becoming A Data Scientist: The Skills That Can Make You The Most Money

SEP 21, 2017 @ 03:45 PM 15,659 ®

listings. The ten skills that appeared most often as prerequisites for the job, and the percentage of job listings in which they appeared, were:

1. Python (72%)

2. **R** (64%)

3. SQL (51%)

4. Hadoop (39%)

5. Java (33%)

Data surge: Demand for data scientists set to rise in the coming years

Craig Guillot CTW Features Sep 17, 2017 Updated Sep 28, 2017

Data science

- A new discipline
- Few amount of book with a global and unified sight

Evolutions in data

Evolutions in data

Evolutions in data

Multidisciplinary research field

Different types of data

- Linear data ex: Correlation matrix between proteins
- Sequential data (implicit time) ex: Geographical itineraries
- Temporal data ex: Wall Street market

Different types of data

- Linear data ex: Correlation matrix between proteins
- Sequential data (implicit time) ex: Geographical itineraries
- Temporal data ex: Wall Street market

Example of sequential data and its analysis through variable-order Markov chains

Different types of data

- Linear data ex: Correlation matrix between proteins
- Sequential data (implicit time) ex: Geographical itineraries
- Temporal data ex: Wall Street market

Example of sequential data and its analysis through variable-order Markov chains

II Network Representations

Graph theory

First paper on graph theory:

The Seven Bridges of Königsberg Euler 1736

Is there a path connecting each territory passing by every bridge (but just once)?

Graph theory

First paper on graph theory:

The Seven Bridges of Königsberg Euler 1736

Is there a path connecting each territory passing by every bridge (but just once) ?
Answer: **No**

2 3 k=3 k=3 k=3 k=3 k=3 k=3

G=(V,E)

V : set of vertices (nodes)

E: set of edges (links)

k : vertex degree

Network representation

Path = sequence of links

$$L_1(A,C) = [(A,D), (D,C)]$$
 Length 2
 $L_2(A,C) = [(A,C)]$ Length 1 = shortest path
 $L_3(A,C) = [(A,B), (B,C)]$ Length 2
 $L_4(A,C) = [(A,B), (B,A), (A,C)]$ Length 3

Network representation

Eulerian path = Sequence of links without duplicates representing a closed loop containing all nodes

A trivial model: Random networks

(Erdös-Rényi random graph model from '59)

Random Network

Model 1:

G=G(n,M)

Graphs with n vertices and M links

Model 2:

G=G(n,p)

Graphs with n vertices and linking probabilit p.

Number of expected links = pn(n-1)/2

 $n \rightarrow \infty$

Bell Curve Distribution of Node Linkages

Properties studied:

Connectedness Graph diameter Subgraphs

. . .

More complex model: Scale-free network

(Barabasi-Albert model from '99)

Scale-Free Network

Preferential attachment:

$$G=G(m_0, \overrightarrow{p})$$

Initial graphs with m_0 vertices and preferential attachment vector \vec{p}

$$p_i = \frac{k_i}{\sum_{j=1}^{m_0} k_j}$$

Where indexes i and j denote vertex "i" and "j" and k is a number of link.

Properties studied:

Connectedness Graph diameter Subgraphs

. . .

Random graphs

(Erdös-Rényi random graph model from '59)

(Real) complex networks

(A.-L. Barabási, R. Albert '99)

Random Network

Scale-Free Network

Bell Curve Distribution of Node Linkages

Power Law Distribution of Node Linkages

Random graphs

(Real) complex networks

Random Network, Accidental Node Failure

Random graphs

(Real) complex networks

Scale-Free Network, Accidental Node Failure

Scale-Free Network, Attack on Hubs

Real scale-free networks

Examples of Scale-Free Networks

NETWORK	NODES	LINKS
Cellular metabolism	Molecules involved in burning food for energy	Participation in the same biochemical reaction
Hollywood	Actors	Appearance in the same movie
Internet	Routers	Optical and other physical connections
Protein regulatory network	Proteins that help to regulate a cell's activities	Interactions among proteins
Research collaborations	Scientists	Co-authorship of papers
Sexual relationships	People	Sexual contact
World Wide Web	Web pages	URLs

Real scale-free networks

Examples of Scale-Free Networks

NETWORK	NODES	LINKS
Cellular metabolism	Molecules involved in burning food for energy	Participation in the same biochemical reaction
Hollywood	Actors	Appearance in the same movie
Internet	Routers	Optical and other physical connections
Protein regulatory network	Proteins that help to regulate a cell's activities	Interactions among proteins
Research collaborations	Scientists	Co-authorship of papers
Sexual relationships	People	Sexual contact
World Wide Web	Web pages	URLs

Construction property

"The rich get richer"
or
Matthew effect (Mt 25:29 NT)
or
Preferential attachment

Type of links:

Directed
Undirected
Weighted(D/U)

Scale-free networks

Examples of Scale-Free Networks

NE	ETWORK	NODES	LINKS		
Се	ellular metabolism	Molecules involved in burning food for energy	Participation in the same biochemical reaction		
Но	ollywood	Actors	Appearance in the same movie		
In	ternet	Routers	Optical and other physical connections		
2012/03/03/03/03/03	otein regulatory etwork	Proteins that help to regulate a cell's activities	Interactions among proteins		
Re	esearch collaborations	Scientists	Co-authorship of papers		
Se	xual relationships	People	Sexual contact	10^6	
Wo	orld Wide Web	Web pages	URLs	(3) II 10 ⁴	

Construction property

"The rich get richer"
or
Matthew effect (Mt 25:29 NT)
or
Preferential attachment

What about directionality? In fact any network can be

Now there is between node outdegree And node indegree

considered as directed.

FIG. 2 (Color online) Distribution $w_{\rm in,out}(k)$ of number of ingoing (a) and outgoing (b) links k for N=3282257 Wikipedia English articles (Aug 2009) of Fig. 1 with total number of links $N_{\ell}=71012307$. The straight dashed fit line shows the slope with $\mu_{\rm in}=2.09\pm0.04$ (a) and $\mu_{\rm out}=2.76\pm0.06$ (b). After (Zhirov et al., 2010).

Large number of network models

Bipartite networks (ex: election network)
Multi-layer networks (ex: Wikipedia network)
Higher-order networks (Sequential data repr.)
Temporal networks (Time series)
Trees

Multi-layer network

Bipartite network and its projection

III Centrality Measures

Number of Link? Efficiency of path? Number of path?

$$K(i) = \sum_{j \in V} x_{ij}$$

$$x_{ij} = \begin{cases} 1 & \text{if } x_{ij} \in E \\ 0 & \text{else} \end{cases}$$

Closeness

where dist(i, j) is the shortest path distance

Betweeness

$$B(i) = \sum_{s,t \in V} \frac{\sigma_{st}(i)}{\sigma_{st}}$$

where σ_{st} is the number of shortest path between s, t and $\sigma_{st}(i)$ the number of shortest path going through

The method you use depends on what you are investigating

For directed network such that the World Wide Web, the eigenvector centrality is used

Ex: Google's research engine algorithm

Modeling Random Walk on a network

Adjacency matrix:

$$A_{ij} = \begin{cases} 1 & \text{if } j \to i \\ 0 & \text{otherwise} \end{cases}$$

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

The Stochastic Matrix

Stochastic matrix:

$$S_{ij} = \begin{cases} \frac{1}{N} & \text{if } j \text{ is a dangling node} \\ \frac{A_{ij}}{\sum_{i=1}^{N} A_{ij}} & \text{otherwise} \end{cases}$$

$$S = \begin{pmatrix} \frac{0 & 0 & 1/8 & 0 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 1/8 & 1/3 & 0 & 0 & 0 & 0 \\ 1/2 & 1/2 & 1/8 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 1/8 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/8 & 1/3 & 0 & 0 & 1/2 & 0 \\ 0 & 0 & 1/8 & 1/3 & 1/3 & 0 & 0 & 1/2 \\ 0 & 0 & 1/8 & 0 & 1/3 & 1 & 1/2 & 0 \end{pmatrix}$$

The Google Matrix

Google matrix:

$$G_{ij} = \alpha S_{ij} + (1-\alpha)/N$$

$$\alpha \in [0,1] \text{ is the } \underline{\text{damping factor}}$$

$$G = \begin{pmatrix} 1/40 & 1/40 & 1/8 & 1/40 & 1/40 & 1/40 & 1/40 & 1/40 \\ 17/40 & 1/40 & 1/8 & 7/24 & 1/40 & 1/40 & 1/40 & 1/40 \\ 17/40 & 17/40 & 1/8 & 1/40 & 1/40 & 1/40 & 1/40 & 1/40 \\ 1/40 & 17/40 & 1/8 & 1/40 & 1/40 & 1/40 & 1/40 & 1/40 \\ 1/40 & 1/40 & 1/8 & 7/24 & 1/40 & 1/40 & 17/40 & 1/40 \\ 1/40 & 1/40 & 1/8 & 7/24 & 7/24 & 1/40 & 1/40 & 17/40 \\ 1/40 & 1/40 & 1/8 & 1/40 & 7/24 & 1/40 & 1/40 & 17/40 \\ 1/40 & 1/40 & 1/8 & 1/40 & 7/24 & 33/40 & 17/40 & 1/40 \end{pmatrix}$$

The Google matrix

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

$$S = \begin{pmatrix} 0 & 0 & 1/8 & 0 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 1/8 & 1/3 & 0 & 0 & 0 & 0 \\ 1/2 & 1/2 & 1/8 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 1/8 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/8 & 1/3 & 0 & 0 & 1/2 & 0 \\ 0 & 0 & 1/8 & 1/3 & 1/3 & 0 & 0 & 1/2 \\ 0 & 0 & 1/8 & 0 & 1/3 & 0 & 0 & 1/2 \\ 0 & 0 & 1/8 & 0 & 1/3 & 1 & 1/2 & 0 \end{pmatrix}$$

 $\alpha = 0.8$

Fundamentals of Google research engine

$$G = \alpha S + \frac{1 - \alpha}{N} e e^T \qquad e^T = (1, 1, \dots, 1)$$

If the spectrum of the stochastic matrix S is $\{1, \lambda_1, \lambda_2, ..., \lambda_N\}$, then the spectrum of the Google matrix $G = \alpha S + (1 - \alpha) \mathbf{e} \mathbf{v}^T$ is $\{1, \alpha \lambda_1, \alpha \lambda_2, ..., \alpha \lambda_N\}$, where \mathbf{v}^T is a probability vector.

PageRank probability vector P

$$P = GP$$

P is the eigenvector associated to the largest eigenvalue, ie 1

For very large network (such as WWW), no way to directly diagonalize $G \rightarrow \mathbf{Powermethod}$

$$P = \lim_{n \to \infty} G^n v_0 \qquad \forall v_0$$

Interpretation

$$P_i = \sum_{j \in B_i} \frac{P_j}{k_{out}(j)}$$

The more a node is pointed by important node, the more it is important

Algorithm at the hearth of Google TM search engine.

(Brin & Page cofounders)

PageRank – Measure of nodes centrality

PageRank

Measures the <u>importance</u> of a node as the property to be pointed by other important nodes (influent node).

CheiRank

Same as PageRank but considering the adjacency matrix of the <u>inverted network</u>.

Measures the importance of a node as the property to point to other important nodes = <u>communicability</u>

P : PageRank vector

K : PageRank

P*: CheiRank vector

K*: CheiRank

2DRank

Mix *PageRank* and CheiRank, measures the propension of a node to be pointed and to point towards other nodes.

Plenty of applications in scientific research

Non exhaustive list of applications :

- Linux Kernel networks
- Wikipedia networks
- Twitter network
- World trade network
- Brain neural network
- DNA sequences
- Networks of Game Go moves

math (function, geometry, surface, logic-circuit)

football

DNA

Bible

muscle-artery

muscle-artery

aircraft

England

Iceland Kuwait / • /

poetry

Bangladesh

muscle-artery

New Zeland

Austria

Poland

Crisis contagion on World trade network

IV Data and Network analysis with Python

Networkx and Pandas

Creation and modification of network objects From generative models From data

Algorithm ready to use Clustering Centrality

Network visualization

Documentation and guide available at https://networkx.org/

Installing with pip install networkx

Using with import networkx as nx

Networkx and Pandas

Data manipulation tools CSV to Python Dictionary

Data visualization and analysis tools

Documentations and guide available at https://pandas.pydata.org/

Installing with pip install pandas

Using with import pandas as pd

Numpy

Scientific computing for Python

Linear algebra

Documentations and guide available at http://numpy.org/

Installing with pip install numpy

Using with import numpy as np

Pyplot

Powerful Matplotlib object t generate graphics

PDF, SVG, JPG, GIF and other output formats

Documentations and guide available at https://matplotlib.org/

Installing with pip install matplotlib

Using with import matplotlib.pyplot as plt

Tutorial

Create a python script taking as input: links.dat and nodes.dat

Generate outputs A and B

A: Network representation in PDF

B: File consisting in the list of nodes with: degree, closeness and betweeness

In case of B, try you own function for degree, betweeness and closeness, before using networkx's ones