0.1 Overview

- Questions to be addressed
- Metrics to be measured why

This section will discuss the methodology used to search for lower latency models by tweaking pruning parameters.

0.2 Experiment descisions (section to be renamed)

0.2.1 Filter Pruning algorithm

We selected the one-shot pruning algorithm dubbed 'L1RankedStructureParameterPruner' by Distiller, this is based on the algorithm described by Li et al. in Pruning Filters for Efficient Convnets [liPruningFiltersEfficient2017]. We prune the filters that are expected to have the smallest impact on the accuracy of the network, this is determined by computing the sum of the absolute weights in each filter $\Sigma |\mathcal{F}_{i,j}|$, sorting them, and pruning the filters starting with the smallest sum values. Each filter that gets removed results in the corresponding feature map to be removed, along with its corresponding kernel in the next convolutional layer, see Figure ??.

Li et al [liPruningFiltersEfficient2017] defines the procedure for pruning m filters from the ith convolutional layer as follows: Let n_i denote the number of input channels.

- 1. For each filter $\mathcal{F}_{i,j}$, calculate the sum of its absolute kernel weights $s_j = \sum_{l=1}^{n_i} \sum |\mathcal{K}_l|$.
- 2. Sort the filters by s_i .
- 3. Prune m filters with the smallest sum values and their corresponding feature maps. The kernels in the next convolutional layer corresponding to the pruned feature maps are also removed.
- 4. A new kernel matrix is created for both the *i*th and i + 1th layers, and the remaining kernel weights are copied to the new model.

Upon completion of pruning the filters we now retrain the network to regain lost accuracy, in general pruning the more resilient layers once and retraining can result in much of the lost accuracy to be

regained. Once pruning is completed we compensate for the performance degredation by retraining the network,

Figure 1: Pruning a filter results in removal of its corresponding feature map and related kernels in the next layer. [liPruningFiltersEfficient2017]

0.2.2 Model Selection

Pruning CNNs like AlexNet, or VGGNet is fairly straightforward, we can prune filters in any layer without worrying about damaging the fundamental structure of the network, however this is not the case with ResNets (short for Residual Networks), a very popular type of CNN that makes use of what is known as a 'residual block' (Figure ?? shows a residual block) which, from the perspective of pruning, adds additional interdependencies between layers.

We selected ResNet56 as the target network because it is one of the few networks with prebuilt 'off-the-shelf' schedules that also uses residual blocks. Performing this experiemnt on networks using residual blocks is important because the necessity of using compression techniques such as pruning increases as networks get larger, these residual blocks are very common in very large networks today.

The pre-tuned pruning schedule publicly avaliable from Distiller has been hand built by an expert in the field, providing a solid baseline for comparison. It is not a trivial task to improve on the pre-existing hand built schedules manually without extensive understanding of layer sensitivities.

Figure 2: A residual block, note the identity feature map skips the weight layers, this is also known as a 'skip connection'.

Discuss further how residual blocks effect pruning. ResNets were originally proposed to help address a training accuracy degredation problem that can occur in very deep networks, Degredation (or accuracy saturation) occurs when adding more layers to a suitably deep model leads to higher training error [heDeepResidualLearning2016]. The accuracy degredation problem with very deep CNNs is common enough that many new deep networks in research and production make use of them today.

0.2.3 Model Retraining

TBD

0.3 Engineering/implementation details

This section will discuss the specifics of the system engineered to perform the experiments. Rephase needed

0.3.1 High level overview of system

We constructed a pipeline to prune, retrain, benchmark, and record the data from each model, this pipeline consists of 4 separate elements; the systems to prune and retrain, a message queue (for this we used Redis), a benchmarking system, and finally the cloud service used to store the data. Figure ?? shows how each system interacts in the pipeline, pruning is handled by the agent/s marked 'Producer', benchmarking is handled by the 'Consumer' agent, and the wandb system serves the next set of sweep parameters to each of the 'Producer' agents.

Figure 3: Diagram showing agent communication

When pruning begins, the producer agent requests the (initially random) pruning parameters from the Weights and Biases Project server, the producer then applies the pruning algorithm and begins retraining the model. Upon completion of retraining the model is exported into ONNX

format and added to a queue for the consumer (the benchmarking agent) to benchmark and record the results, these results are then logged to weights and biases. As described in Section (TBD) the parameter importance and correlation with the target metric is re-computed each time results are logged this can help determine in what direction to tune the parameter settings to minimise (or maximise) the target metric.

The runtime of a full benchmark for one model on the NCS is usually at most 5 seconds, retraining the network however can take between 20 - 120 mins depending on the network size and number of epochs, the one-shot pruning method utilised in this experiment usually takes less than 5 seconds. To imporve the efficiency of the training we separated the benchmarking system (consumer) from the pruning and retraining systems (producer), this made it easy to add additional pruning and retraining agents to a single experiment or run multiple experiments in parallel.

0.3.2 Defining parameters to prune

```
pruners:
                layer_1_conv_pruner:
2
                     class: 'L1RankedStructureParameterPruner'
3
                     group_type: Filters
                     desired_sparsity: 0.9
5
                     weights: [
6
                         module.layer1.0.conv1.weight,
7
                         module.layer1.1.conv1.weight
8
                     ]
9
            lr_schedulers:
10
                exp_finetuning_lr:
11
                     class: ExponentialLR
12
                gamma: 0.95
13
14
            policies:
15
                 - pruner:
16
                     instance_name: layer_1_conv_pruner
                     epochs: [0]
18
19
                - lr_scheduler:
20
                         instance_name: exp_finetuning_lr
21
                     starting_epoch: 10
22
                     ending_epoch: 300
23
                     frequency: 1
24
```

Figure 4: Example distiller schedule file, showing the pruning algorithm selected, and that algorithms parameters

Distiller uses a 'compression schedule' file to define the behaviour of the compression algorithms used, Figure ?? shows a simple example compression schedule, with a definition for a single 'pruner' instance (line 2 - 'layer_1_conv_pruner'), a single 'lr_scheduler' instance (line 11 - 'exp_fine_tuning_lr'), and their respective policies (explained below).

The pruning schedule is composed of lists of sections that describe 'pruners', 'lr-schedulers', and 'policies'. A 'pruner' defines a pruning algorithm and the layers on which that pruning algorithm will be applied, 'LR-schedulers' define the **learning-rate decay(Definition required)** algorithm. Finally each policy references an instance of a pruner or LR-scheduler, and controls when the respective algorithm will be applied, such as the start and end epoch, and the frequency

of application.

The example compression schedule shown in Figure ?? provides instructions to Distiller to use the 'L1RankedStructureParameterPruner' algorithm (as described in Section ??) to prune the weights in each of the convolutions described by the 'weights' array, in this case 'group_type' specifies filter pruning and 'desired_sparsity' indicates how many tensors it will aim to remove (0.9 indicates the algorithm will attempt to remove 90% of the tensors), desired sparsity should not be confused with an actual change in sparsity — note that filter and channel pruning will always result in a dense layer with an actual sparsity of 0 because this is a form of coarse-grained pruning (see section ??).

Figure 5: Resnet56 fragment showing first 2 residual block with the corresponding weights matrices labelled. (TODO: rescale and redraw to highlight pertinent information)

Each grouping of weights in the network has labels (see figure ??), distiller uses these labels to identify which weight matricies are being referenced by the compression schedule. Lines 7 and 8 in the schedule in Figure ?? reference the weights we wish to prune from the model in Figure ??.

0.3.3 WandB API

```
program: pipeline.py
method: bayes
metric:
    goal: minimize
    name: Latency
parameters:
    layer_1_conv_pruner_desired_sparsity:
        min: 0.01
        max: 0.99
    layer_1_conv_pruner_group_type:
        values: [Channels, Filters]
```

Figure 6: WandB sweep configuration file

To explore the space of pruning paramater values the hyperparameter optimisation framework exposed by WandB called 'Sweeps' was leveraged. This involves writing a python script that can run the entire pipeline (pruning, training & benchmarking) and record the results, to accomplish this each sweep needs a configuration file (see Figure ??), table ?? shows a desciption of each key in the wandb configuration file with a summary of appropriate arguments.

Key	Description	Value
program	Script to be run	Path to script
method	Search strategy	grid, random, or bayse
metric	The metric to optimise	Name and direction of metric to optimise
parameters	The parameter bounds to search	Name and min/max or array of fixed values

Table 1: Configuration setting keys, descriptions and values

The sweep configuration file tells wandb the names of the parameters to pass as arguments to the pipeline script with their expected value ranges, such as a list of strings or a min and max number. The pipeline script that receives the arguments from wandb contains a mapping from the wandb arguments to a corresponding value in a distiller compression schedule. This is accomplished by parsing a base schedule file and identifying which values will be changed, then a new schedule is written with the paramaters from wandb, this new schedule is then provided to Distiller as the compression schedule to use.

0.3.4 Benchmarking

Figure 7: Workflow for deploying trained model onto NCS [ModelOptimizerDeveloper]

To pass the pruned and trained model to the Neural Compute stick OpenVino was used, it is a toolkit providing a high level inference engine(Definition needed) API, this facilitates the process of optimising the model for specialised hardware (in this case the NCS), and loading the optimised model into the hardware. OpenVino itself has a benchmarking tool that we leveraged to access detailed latency and throughput metrics; from end to end latency all the way down to the latency of each instruction used for inference on the VPU link to example table of HW operations and latency in appendix. Before starting the benchmark we convert the ONNX model into an Intermediate Representation (IR) format by running it through the model optimizer, the IR is then read by the Inference Engine and loaded into VPU memory. Once the model is ready we load the images that will be used for benchmarking into the VPU memory. We observe three measurements for every model, the end-to-end latency (from loading an image into the model until getting a result), the sum of latency for each instruction executed by the VPU once the image is loaded into memory, and finally we also measure the throughput (the number of images (frames) that can be processed per second or FPS).

0.4 Experiment metrics and parameters

We conducted three experiments using a Resnet56 model with pretrained weights for the CIFAR10 dataset. The following section describes the parameters and metrics that will be either set or

observed during the experiments.

Parameters:

- **Desired Sparsity** Specified on a per-pruner basis, this lets us set a tell the pruning algorithm what proportion of the weights to try and prune (See Section ?? for more details).
- **Epochs** The number of epochs used for retraining, one epoch refers to a single cycle of training through the entire training dataset.
- Learning Rate Used to scale how much the retraining process will adjust the weights

Experiment set the retraining epochs to 0, so we could prune and benchmark rapidly, we set minimisation of latency to be the target. For the second experiment we set the target to minimise latency, but this time allowed retraining up to 300 epochs. The final (third) experiment was the same as the second but we set the target metric to maximise Top1 accuracy.

Observed metrics:

- Latency Computed by calculating the sum of CPU time for hardware operations inside the NCS after the model and images have been loaded into memory.
- Total_Latency Measures the full latency to perform inference on an image once a model is optimised and loaded into the NCS, inleuding loading the image into the stick memory, this is more indicative of real world requirements.
- **Throughput** Shows the number of images per second that can be processed by the NCS (Frames Per Second).
- Top1 The % accuracy of the first class predicted by the model.
- Top5 The % accuracy of the first 5 classes the model predicted for a given image.

0.4.1 Schedules

Table ?? shows how the weights are grouped and labeled for pruning in the selected Resnet56 model, the 4 labelled pruners and their corresponding weights were used in all resnet56 experiments. Layers with a similar degree of sensitivity to pruning are grouped together, layers that are omitted from the table have a much higher sensitivity to pruning and are not pruned at all, pruning more sensitive layers can result in a significantly higher probability that pruned neural networks that lose all predictive ability (in other words the network will predict a single class 100% of the time). Grouping layers in this way helps us avoid having to use 56 pruning parameters (one for each layer per residual block) and significantly reduces the complexity of the parameter search.

Note that only the first convolution in each residual block is being pruned (denoted by 'conv1' inside the weight name), because the convolutions following this will also have the kernels removed following the removed feature maps (See Section ??).

Label	Weights		
filter_pruner_layer_1	 module.layer1.0.conv1.weight module.layer1.1.conv1.weight module.layer1.2.conv1.weight module.layer1.3.conv1.weight module.layer1.4.conv1.weight module.layer1.5.conv1.weight module.layer1.6.conv1.weight module.layer1.7.conv1.weight module.layer1.7.conv1.weight module.layer1.8.conv1.weight 		
filter_pruner_layer_2	 module.layer2.1.conv1.weight module.layer2.2.conv1.weight module.layer2.3.conv1.weight module.layer2.4.conv1.weight module.layer2.6.conv1.weight module.layer2.7.conv1.weight 		
filter_pruner_layer_3.1	• module.layer3.1.conv1.weight		
filter_pruner_layer_3.2	 module.layer3.2.conv1.weight module.layer3.3.conv1.weight module.layer3.5.conv1.weight module.layer3.6.conv1.weight module.layer3.7.conv1.weight module.layer3.8.conv1.weight 		

Table 2: Mapping of pruners labels to resnet56 weights

0.4.2 Passing pruned/trained networks to benchmarker

Discuss reading/writing yaml files, outputting .onnx files, redis to pass messages between agents

0.4.3 Baseline data

For the purposes of all experiments we compare our results to two baseline sets of data, first the basic ResNets56 network with pretrained weights for CIFAR10 no pruning, and second an 'off-the-shelf' version of ResNet56 with pruning parameters hand picked by an expert in the field (qualify this?) [liPruningFiltersEfficient2017].

Model	Top1	Top5	Throughput (FPS)	Latency (ms)	Total Latency (ms)
Baseline - no pruning	92.58	99.78	294.08	4.375	13.19
Off the shelf - no retraining	11.19	51.02	303.98	3.947	12.89
Off the shelf - retrained					

0.4.4 Experiment 1: Rapid pruning, no retraining

Targeting the weights described in table ?? (the full schedule is listed in appendix ??) we repeatedly pruned networks without performing any training to regain accuracy, we set the target metric to minimize Latency, the number of epochs to 0, and the learning rate to 0.1. The goal at this stage was to observe any reduction in latency, with the added benefit of allowing us to gather a large volume of data very quickly. Figure ?? shows the wandb configuration file used for this experiement, this configuration looks for optimal desired sparsity settings for each of the 4 pruners.

Figure 8: Targeting Latency sweep config

0.4.5 Experiment 2: Target latency, with retraining

Using the same wandb configuration file as in the first experiment (Figure ??), we again target minimizing latency but this time retrain for a fixed 70 epochs, and set the learning rate to 0.1. This experiment targeted pure inference latency, no information regarding accuracy was encoded in the optimisation metric.

0.4.6 Experiment 3: Target Top1, with retraining