Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

THINGS TO REMEMBER:

1. **GENERAL DEFINITION:**

If to every value (Considered as real unless other—wise stated) of a variable x, which belongs to some collection (Set) E, there corresponds one and only one finite value of the quantity y, then y is said to be a function (Single valued) of x or a dependent variable defined on the set E; x is the argument or independent variable.

If to every value of x belonging to some set E there corresponds one or several values of the variable y, then y is called a multiple valued function of x defined on E.Conventionally the word "FUNCTION" is used only as the meaning of a single valued function, if not otherwise stated.

Pictorially: $\xrightarrow[\text{input}]{f} \xrightarrow[\text{output}]{f(x)=y}$, y is called the image of x & x is the pre-image of y under f.

Every function from $A \rightarrow B$ satisfies the following conditions.

(i)
$$f \subset A \times B$$

(ii)
$$\forall a \in A$$

$$\forall a \in A \Rightarrow (a, f(a)) \in f$$

(iii)
$$(a, b) \in f \& (a, c) \in f \Rightarrow b = c$$

DOMAIN, CO-DOMAIN & RANGE OF A FUNCTION: 2.

Let $f: A \rightarrow B$, then the set A is known as the domain of f & the set B is known as co-domain of f. The set of all f images of elements of A is known as the range of f. Thus: Domain of $f = \{a \mid a \in A, (a, f(a)) \in f\}$

Range of
$$f = \{f(a) \mid a \in A, f(a) \in B\}$$

It should be noted that range is a subset of co-domain. If only the rule of function is given then the domain of the function is the set of those real numbers, where function is defined. For a continuous function, the interval from minimum to maximum value of a function gives the range.

IMPORTANT TYPES OF FUNCTIONS: 3.

(i) POLYNOMIAL FUNCTION:

Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

If a function f is defined by $f(x) = a_n x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_{n-1} x + a_n$ where n is a non negative integer and $a_0, a_1, a_2, ..., a_n$ are real numbers and $a_0 \neq 0$, then f is called a polynomial function of degree n.

A polynomial of degree one with no constant term is called an odd linear **Note:** (a) function. i.e. f(x) = ax, $a \ne 0$

There are two polynomial functions, satisfying the relation; **(b)**

&

$$f(x).f(1/x) = f(x) + f(1/x)$$
. They are:

(i)
$$f(x) = x^n + 1$$

(ii)
$$f(x) = 1 - x^n$$
, where n is a positive integer.

ALGEBRAIC FUNCTION: (ii)

y is an algebraic function of x, if it is a function that satisfies an algebraic equation of the form

$$P_0(x)$$
 $y^n + P_1(x)$ $y^{n-1} + \dots + P_{n-1}(x)$ $y + P_n(x) = 0$ Where n is a positive integer and $P_0(x)$, $P_1(x)$ are Polynomials in x.

e.g.
$$y = |x|$$
 is an algebraic function, since it satisfies the equation $y^2 - x^2 = 0$.

Note that all polynomial functions are Algebraic but not the converse. A function that is not algebraic is called Transcedental Function.

(iii) FRACTIONAL RATIONAL FUNCTION:

A rational function is a function of the form. $y = f(x) = \frac{g(x)}{h(x)}$, where

g (x) & h (x) are polynomials & h (x) \neq 0.

(IV) **EXPONENTIAL FUNCTION:**

A function $f(x) = a^x = e^{x \ln a}$ (a > 0, a \neq 1, x \in R) is called an exponential function. The inverse of the exponential function is called the logarithmic function . i.e. $g(x) = \log_{a} x$.

Note that f(x) & g(x) are inverse of each other & their graphs are as shown.

(v) Absolute Value Function:

A function y = f(x) = |x| is called the absolute value function or Modulus function. It is defined as

$$: y = |x| = \begin{bmatrix} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{bmatrix}$$

(vi) SIGNUM FUNCTION:

A function y = f(x) = Sgn(x) is defined as follows:

$$y = f(x) = \begin{bmatrix} 1 & \text{for } x > 0 \\ 0 & \text{for } x = 0 \\ -1 & \text{for } x < 0 \end{bmatrix}$$

It is also written as Sgn x = |x|/x;

$$x \neq 0$$
; $f(0) = 0$

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

(vii) Greatest Integer Or Step Up Function:

The function y = f(x) = [x] is called the greatest integer function where [x] denotes the greatest integer less than or equal to x. Note that for :

$$-1 \le x < 0$$
 ; $[x] = -1$
 $1 \le x < 2$; $[x] = 1$

$$0 \le x < 1$$
 ; $[x] = 0$
 $2 \le x < 3$; $[x] = 2$

and so on.

Properties of greatest integer function:

(b)
$$[x+m] = [x]+m$$
 if m is an integer.

(c)
$$[x]+[y] \le [x+y] \le [x]+[y]+1$$

(d)
$$[x] + [-x] = 0$$
 if x is an integer $= -1$ otherwise.

(viii) Fractional Part Function:

It is defined as:

$$g(x) = \{x\} = x - [x].$$

e.g. the fractional part of the no. 2.1 is

2.1-2=0.1 and the fractional part of -3.7 is 0.3.

The period of this function is 1 and graph of this function is as shown.

4. DOMAINS AND RANGES OF COMMON FUNCTION:

FunctionDomainRange(y = f(x))(i.e. values taken by x)(i.e. values taken by f(x))

A. Algebraic Functions

(i) x^n , $(n \in N)$ R = (set of real numbers) R , if n is odd $R^+ \cup \{0\}$, if n is even

(ii)
$$\frac{1}{x^n}$$
, $(n \in N)$ $R - \{0\}$

 $R-\{0\}\;,\quad if\;n\;is\;odd$

(iii)
$$x^{1/n}$$
 , $(n\in N)$ R , if n is odd R , if n is odd
$$R^+\cup\{0\}\,, \ \ \text{if n is even} \qquad R^+\cup\{0\}\,, \ \ \text{if n is even}$$

$$(iv) \qquad \frac{1}{x^{1/n}} \ , (n \in N) \qquad \qquad R - \{0\} \ , \quad \text{if n is odd} \qquad \qquad R - \{0\} \ , \quad \text{if n is odd} \qquad \qquad \\ R^+ \ , \qquad \quad \text{if n is even} \qquad \qquad R^+ \ , \qquad \quad \text{if n is even} \qquad \qquad \\$$

B. Trigonometric Functions

cot x

(vi)

(i)
$$\sin x$$
 R [-1, +1]
(ii) $\cos x$ R [-1, +1]

(iii)
$$\tan x$$
 $R - (2k+1) \frac{\pi}{2}, k \in I$ R

$$(iv) \quad \sec x \qquad \qquad R - (2k+1) \, \frac{\pi}{2} \, , k \in I \qquad \qquad (-\infty \, , -1 \,] \cup [\, 1 \, , \infty \,)$$

$$(v) \quad \csc x \qquad \qquad R - k\pi \, , \, k \, \in \, I \qquad \qquad (-\infty \, , -1 \,] \cup [\, 1 \, , \infty \,)$$

 $R - k\pi$, $k \in I$

C. Inverse Circular Functions (Refer after Inverse is taught)

(i)
$$\sin^{-1} x$$
 [-1, +1] [$-\frac{\pi}{2}, \frac{\pi}{2}$]

(ii) $\cos^{-1} x$ [0, π]

(iii) $\tan^{-1} x$ R [$-\frac{\pi}{2}, \frac{\pi}{2}$]

(iv) $\csc^{-1} x$ ($-\infty, -1$] \cup [$1, \infty$) [$-\frac{\pi}{2}, \frac{\pi}{2}$] $-\{0\}$

(v) $\sec^{-1} x$ ($-\infty, -1$] \cup [$1, \infty$) [$0, \pi$] $-\{\frac{\pi}{2}\}$

 $(0, \pi)$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

Function	Domain	Range
$(\mathbf{v} = \mathbf{f}(\mathbf{x}))$	(i.e. values taken by x)	(i.e. values taken by f(x))

D. Exponential Functions

(vi)

(i)	e^x	R	\mathbb{R}^{+}
(ii)	$e^{1/x}$	$R - \{ 0 \}$	$R^{+}-\{1\}$
(iii)	a^x , $a > 0$	R	\mathbb{R}^{+}
(iv)	$a^{1/x}$ $a > 0$	D (0)	D+ (1)

E. Logarithmic Functions

(i)
$$\log_a x$$
, $(a > 0)$ $(a \ne 1)$ R^+ R

(ii) $\log_x a = \frac{1}{\log_a x}$ $R^+ - \{1\}$ $R - \{0\}$
 $(a > 0)$ $(a \ne 1)$

F. Integral Part Functions Functions

G. **Fractional Part Functions**

(i) { x } R

[0, 1)

(ii)

R - I

 $(1, \infty)$

H. **Modulus Functions**

(i) |X| R

 $R^+ \cup \{0\}$

(ii)

 $R - \{ 0 \}$

 R^{+}

I. **Signum Function**

$$sgn(x) = \frac{|x|}{x}, x \neq 0$$
$$= 0, x = 0$$

R

$$\{-1, 0, 1\}$$

J. **Constant Function**

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

$$say f(x) = c$$

R

EQUAL OR IDENTICAL FUNCTION: 5.

Two functions f & g are said to be equal if:

- (i) The domain of f =the domain of g.
- The range of f =the range of g(ii) and
- f(x) = g(x), for every x belonging to their common domain. eg. (iii)

$$f(x) = \frac{1}{x} & g(x) = \frac{x}{x^2}$$
 are identical functions.

6. **CLASSIFICATION OF FUNCTIONS:**

One-One Function (Injective mapping):

A function $f: A \rightarrow B$ is said to be a one-one function or injective mapping if different elements of A have different f images in B. Thus for $x_1, x_2 \in A \& f(x_1)$,

$$f(x_2) \in B\,, \ f(x_1) = f(x_2) \iff x_1 = x_2 \ \ \text{or} \ \ x_1 \neq \, x_2 \iff f(x_1) \neq \ f(x_2)\,.$$

Diagramatically an injective mapping can be shown as

OR

- Note: (i) Any function which is entirely increasing or decreasing in whole domain, then f(x) is one-one.
 - (ii) If any line parallel to x-axis cuts the graph of the function atmost at one point, then the function is one-one.

Many-one function:

A function $f: A \rightarrow B$ is said to be a many one function if two or more elements of A have the same fimage in B. Thus f: A \rightarrow B is many one if for; $x_1, x_2 \in A$, $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

page 18 of 38

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, Whats App Number 9009 260 559.

- **Note : (i)** Any continuous function which has at least one local maximum or local minimum, then f(x) is many—one. In other words, if a line parallel to x—axis cuts the graph of the function at least at two points, then f is many—one.
 - (ii) If a function is one—one, it cannot be many—one and vice versa.

Onto function (Surjective mapping):

If the function $f\colon A\to B$ is such that each element in B (co-domain) is the fimage of at least one element in A, then we say that f is a function of A 'onto' B. Thus $f\colon A\to B$ is surjective iff $\forall b\in B, \exists$ some $a\in A$ such that f(a)=b.

Diagramatically surjective mapping can be shown as

Note that : if range = co-domain, then f(x) is onto.

Into function:

If $f: A \to B$ is such that there exists at least one element in co-domain which is not the image of any element in domain, then f(x) is into.

Diagramatically into function can be shown as

Note that: If a function is onto, it cannot be into and vice versa. A polynomial of degree even will always be into.

Thus a function can be one of these four types:

- (a) one-one onto (injective & surjective)
- **(b)** one—one into (injective but not surjective)
- (c) many-one onto (surjective but not injective)
- (d) many-one into (neither surjective nor injective)

- **Note:** (i) If f is both injective & surjective, then it is called a **Bijective** mapping. The bijective functions are also named as invertible, non singular or biuniform functions.
 - (ii) If a set A contains n distinct elements then the number of different functions defined from $A \rightarrow A$ is $n^n \&$ out of it n! are one one.

Identity function:

The function $f: A \to A$ defined by $f(x) = x \ \forall \ x \in A$ is called the identity of A and is denoted by I_A . It is easy to observe that identity function is a bijection.

A function $f\colon A\to B$ is said to be a constant function if every element of A has the same f image in B. Thus $f\colon A\to B$; f(x)=c, $\forall x\in A$, $c\in B$ is a constant function. Note that the range of a constant function is a singleton and a constant function may be one-one or many-one, onto or into .

7. ALGEBRAIC OPERATIONS ON FUNCTIONS:

If f & g are real valued functions of x with domain set A, B respectively, then both f & g are defined in $A \cap B$. Now we define f+g, f-g, (f,g) & (f/g) as follows:

- (i) $(f\pm g)(x) = f(x) \pm g(x)$ (ii) $(f \cdot g)(x) = f(x) \cdot g(x)$
- domain in each case is $A \cap B$
- (iii) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

domain is $\{x \mid x \in A \cap B \text{ s.t } g(x) \neq 0\}$.

8. COMPOSITE OF UNIFORMLY & NON-UNIFORMLY DEFINED FUNCTIONS:

Let $f: A \to B \& g: B \to C$ be two functions . Then the function $gof: A \to C$ defined by $(gof)(x) = g(f(x)) \ \forall \ x \in A$ is called the composite of the two functions f & g.

Diagramatically $\xrightarrow{x} \boxed{f} \xrightarrow{f(x)} \boxed{g} \longrightarrow g(f(x))$.

Thus the image of every $x \in A$ under the function gof is the g-image of the f-image of x.

Note that gof is defined only if $\forall x \in A$, f(x) is an element of the domain of g so that we can take its g-image. Hence for the product gof of two functions f & g, the range of f must be a subset of the domain of g.

PROPERTIES OF COMPOSITE FUNCTIONS:

- (i) The composite of functions is not commutative i.e. $gof \neq fog$.
- (ii) The composite of functions is associative i.e. if f, g, h are three functions such that fo (goh) & (fog) oh are defined, then fo(goh) = (fog) oh.
- (iii) The composite of two bijections is a bijection i.e. if f & g are two bijections such that gof is defined, then gof is also a bijection.

9. HOMOGENEOUS FUNCTIONS:

A function is said to be homogeneous with respect to any set of variables when each of its terms is of the same degree with respect to those variables.

For example $5x^2 + 3y^2 - xy$ is homogeneous in x & y. Symbolically if,

 $f(tx, ty) = t^n \cdot f(x, y)$ then f(x, y) is homogeneous function of degree n.

10. **BOUNDED FUNCTION:**

A function is said to be bounded if $|f(x)| \le M$, where M is a finite quantity.

11. IMPLICIT & EXPLICIT FUNCTION:

A function defined by an equation not solved for the dependent variable is called an **IMPLICIT FUNCTION**. For eg. the equation $x^3 + y^3 = 1$ defines y as an implicit function. If y has been expressed in terms of x alone then it is called an **EXPLICIT FUNCTION**.

12. INVERSE OF A FUNCTION:

Let $f\colon A\to B$ be a one—one & onto function, then their exists a unique function $g\colon B\to A$ such that $f(x)=y\Leftrightarrow g(y)=x,\ \forall\ x\in A\ \&\ y\in B$. Then g is said to be inverse of f. Thus $g=f^{-1}\colon B\to A=\ \{(f(x),x)\ \big|\ (x,\ f(x))\in f\}$.

Properties Of Inverse Function:

- (i) The inverse of a bijection is unique.
- (ii) If $f: A \to B$ is a bijection & $g: B \to A$ is the inverse of f, then $f \circ g = I_B$ and $g \circ f = I_A$, where I_A & I_B are identity functions on the sets A & B respectively. Note that the graphs of f & g are the mirror images of each other in the line y = x. As shown in the figure given below a point (x',y') corresponding to $y = x^2$ $(x \ge 0)$ changes to (y',x') corresponding to $y = +\sqrt{x}$, the changed form of $x = \sqrt{y}$.

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, Whats App Number 9009 260 559.

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

13. ODD & EVEN FUNCTIONS:

(iv)

If f(-x) = f(x) for all x in the domain of 'f' then f is said to be an even function.

e.g. $f(x) = \cos x$; $g(x) = x^2 + 3$.

 $(gof)^{-1} = f^{-1} o g^{-1}$.

If f(-x) = -f(x) for all x in the domain of 'f' then f is said to be an odd function.

e.g. $f(x) = \sin x$; $g(x) = x^3 + x$.

- $f(x) f(-x) = 0 \Rightarrow f(x)$ is even & $f(x) + f(-x) = 0 \Rightarrow f(x)$ is odd. **Note:** (a)
 - A function may neither be odd nor even. **(b)**
 - Inverse of an even function is not defined. (c)
 - Every even function is symmetric about the y-axis & every odd function is symmetric about the origin.
 - Every function can be expressed as the sum of an even & an odd function.

e.g.
$$f(x) = \frac{f(x)+f(-x)}{2} + \frac{f(x)-f(-x)}{2}$$
EVEN ODD

- The only function which is defined on the entire number line & is even and odd at the same time **(f)**
- If f and g both are even or both are odd then the function f.g will be even but if any one of **(g)** them is odd then f.g will be odd.

14. **PERIODIC FUNCTION:**

A function f(x) is called periodic if there exists a positive number T(T>0) called the period of the function such that f(x+T) = f(x), for all values of x within the domain of x.

e.g. The function $\sin x & \cos x$ both are periodic over $2\pi & \tan x$ is periodic over π .

- f(T) = f(0) = f(-T), where 'T' is the period. **Note:** (a)
 - **(b)** Inverse of a periodic function does not exist.
 - Every constant function is always periodic, with no fundamental period. (c)
 - If f(x) has a period T & g(x) also has a period T then it does not mean that (d) f(x)+g(x) must have a period T. e.g. $f(x) = |\sin x| + |\cos x|$.
 - If f(x) has a period p, then $\frac{1}{f(x)}$ and $\sqrt{f(x)}$ also has a period p. **(e)**
 - **(f)** if f(x) has a period T then f(ax + b) has a period T/a (a > 0).

15. **GENERAL:**

If x, y are independent variables, then:

- $f(xy) = f(x) + f(y) \implies f(x) = k \ln x \text{ or } f(x) = 0.$
- $f(xy) = f(x) \cdot f(y) \implies f(x) = x^n, \quad n \in R$ (ii)
- $f(x+y) = f(x) \cdot f(y) \implies f(x) = a^{kx}$. (iii)
- $f(x + y) = f(x) + f(y) \implies f(x) = kx$, where k is a constant. (iv)

EXERCISE-1

Q.1 Find the domains of definitions of the following functions:

(Read the symbols [*] and {*} as greatest integers and fractional part functions respectively.)

(i)
$$f(x) = \sqrt{\cos 2x} + \sqrt{16 - x^2}$$

(ii)
$$f(x) = \log_7 \log_5 \log_3 \log_2 (2x^3 + 5x^2 - 14x)$$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, Whats App Number 9009 260 559.

(iii)
$$f(x) = ln\left(\sqrt{x^2 - 5x - 24} - x - 2\right)$$
 (iv) $f(x) = \sqrt{\frac{1 - 5^x}{7^{-x} - 7}}$

(v)
$$y = \log_{10} \sin(x-3) + \sqrt{16-x^2}$$
 (vi) $f(x) = \log_{100x} \left(\frac{2\log_{10} x + 1}{-x}\right)$

(vii)
$$f(x) = \frac{1}{\sqrt{4x^2 - 1}} + \ln x(x^2 - 1)$$

(viii)
$$f(x) = \sqrt{\log_{\frac{1}{2}} \frac{x}{x^2 - 1}}$$

(ix)
$$f(x) = \sqrt{x^2 - |x|} + \frac{1}{\sqrt{9 - x^2}}$$

(x) f(x) =
$$\sqrt{(x^2 - 3x - 10).ln^2(x - 3)}$$

(xi)
$$f(x) = \sqrt{\log_x(\cos 2\pi x)}$$

(xii)
$$f(x) = \frac{\sqrt{\cos x - \frac{1}{2}}}{\sqrt{6 + 35x - 6x^2}}$$

(xiii)
$$f(x) = \sqrt{\log_{1/3} (\log_4 ([x]^2 - 5))}$$

$$(xiii) \ f(x) = \sqrt{ \log_{1/3} \left(\log_4 \left(\left[x \right]^2 - 5 \right) \right) } \qquad (xiv) \ f(x) = \frac{1}{[x]} + \log_{(2\{x\} - 5)} (x^2 - 3x + 10) + \frac{1}{\sqrt{1 - |x|}} \ ,$$

 $(xv) f(x) = \log_{x} \sin x$

(xvi)
$$f(x) = \log_2 \left(-\log_{1/2} \left(1 + \frac{1}{\sin\left(\frac{x^{\circ}}{100}\right)} \right) \right) + \sqrt{\log_{10} \left(\log_{10} x\right) - \log_{10} \left(4 - \log_{10} x\right) - \log_{10} 3}$$

(xvii)
$$f(x) = \frac{1}{[x]} + \log_{1-\{x\}}(x^2 - 3x + 10) + \frac{1}{\sqrt{2-|x|}} + \frac{1}{\sqrt{\sec(\sin x)}}$$

(xviii)
$$f(x) = \sqrt{(5x-6-x^2) \left[\{ ln\{x\} \} \right]} + \sqrt{(7x-5-2x^2)} + \left(ln\left(\frac{7}{2}-x\right) \right)^{-1}$$

(xix) If $f(x) = \sqrt{x^2 - 5x + 4}$ & g(x) = x + 3, then find the domain of $\frac{1}{g}(x)$.

Q.2 Find the domain & range of the following functions.

(Read the symbols [*] and {*} as greatest integers and fractional part functions respectively.)

(i)
$$y = \log_{\sqrt{5}} \left(\sqrt{2} (\sin x - \cos x) + 3 \right)$$

(ii)
$$y = \frac{2x}{1+x^2}$$

(iii)
$$f(x) = \frac{x^2 - 3x + 2}{x^2 + x - 6}$$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

(iv)
$$f(x) = \frac{x}{1 + |x|}$$

(v)
$$y = \sqrt{2-x} + \sqrt{1+x}$$

(iv)
$$f(x) = \frac{x}{1+|x|}$$
 (v) $y = \sqrt{2-x} + \sqrt{1+x}$
(vi) $f(x) = \log_{(\cos x - 1)} (2 - [\sin x] - [\sin x]^2)$ (vii) $f(x) = \frac{\sqrt{x+4} - 3}{x-5}$

(vii)
$$f(x) = \frac{\sqrt{x+4-3}}{x-5}$$

- Draw graphs of the following function, where [] denotes the greatest integer function. Q.3
 - (i) f(x) = x + [x]
 - (ii) $y = (x)^{[x]}$ where $x = [x] + (x) & x > 0 & x \le 3$
 - (iii) $y = \operatorname{sgn}[x]$ (iv) $\operatorname{sgn}(x |x|)$
- Q.4 Classify the following functions f(x) definzed in $R \rightarrow R$ as injective, surjective, both or none.

(a)
$$f(x) = \frac{x^2 + 4x + 30}{x^2 - 8x + 18}$$

(b)
$$f(x) = x^3 - 6x^2 + 11x - 6$$

(a)
$$f(x) = \frac{x^2 + 4x + 30}{x^2 - 8x + 18}$$
 (b) $f(x) = x^3 - 6x^2 + 11x - 6$ (c) $f(x) = (x^2 + x + 5)(x^2 + x - 3)$

- Let $f(x) = \frac{1}{1-x}$. Let $f_2(x)$ denote f[f(x)] and $f_3(x)$ denote f[f(f(x))]. Find $f_{3n}(x)$ where n is a natural Q.5 number. Also state the domain of this composite function.
- If $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right) = 1$, then find (gof)(x). Q.6
- Q.7 The function f(x) is defined on the interval [0,1]. Find the domain of definition of the functions. (a) $f(\sin x)$ (b) f(2x+3)
- Q.8(i) Find whether the following functions are even or odd or none

(a)
$$f(x) = \log \left(x + \sqrt{1 + x^2} \right)$$
 (b) $f(x) = \frac{x(a^x + 1)}{a^x - 1}$

(b)
$$f(x) = \frac{x(a^x + 1)}{a^x - 1}$$

(c)
$$f(x) = \sin x + \cos x$$

(d)
$$f(x) = x \sin^2 x - x^3$$

(e)
$$f(x) = \sin x - \cos x$$

(f)
$$f(x) = \frac{(1+2^x)^2}{2^x}$$

(g)
$$f(x) = \frac{x}{e^x - 1} + \frac{x}{2} + 1$$

(h)
$$f(x) = [(x+1)^2]^{1/3} + [(x-1)^2]^{1/3}$$

- (ii) If f is an even function defined on the interval (-5, 5), then find the 4 real values of x satisfying the equation $f(x) = f\left(\frac{x+1}{x+2}\right)$..
- Q.9 Write explicitly, functions of y defined by the following equations and also find the domains of definition of the given implicit functions:

(a)
$$10^x + 10^y = 10$$

(b)
$$x + |y| = 2y$$

- Show if $f(x) = \sqrt[n]{a x^n}$, x > 0 $n \ge 2$, $n \in \mathbb{N}$, then (fof) f(x) = x. Find also the inverse of f(x). Q.10
- Represent the function $f(x) = 3^x$ as the sum of an even & an odd function. Q.11
 - For what values of $p \in z$, the function $f(x) = \sqrt[n]{x^p}$, $n \in N$ is even. (b)
- A function f defined for all real numbers is defined as follows for $x \ge 0$: $f(x) = \begin{bmatrix} x, 0 \le x \le 1 \\ 1, x > 1 \end{bmatrix}$ Q.12 How is f defined for $x \le 0$ if: (a) f is even (b) f is odd?
- Q.13 If $f(x) = \max\left(x, \frac{1}{x}\right)$ for x > 0 where $\max(a, b)$ denotes the greater of the two real numbers a and b. Define the function g(x) = f(x). $f\left(\frac{1}{x}\right)$ and plot its graph.
- The function f(x) has the property that for each real number x in its domain, 1/x is also in its domain and $f(x) + f\left(\frac{1}{x}\right) = x$. Find the largest set of real numbers that can be in the domain of f(x)?
- Compute the inverse of the functions:

(a)
$$f(x) = ln(x + \sqrt{x^2 + 1})$$
 (b) $f(x) = 2^{\frac{x}{x-1}}$

(b)
$$f(x) = 2^{\frac{x}{x-1}}$$

(c)
$$y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, Whats App Number 9009 260 559.

- Q.16 A function $f: \left[\frac{1}{2}, \infty\right) \to \left[\frac{3}{4}, \infty\right)$ defined as, $f(x) = x^2 x + 1$. Then solve the equation $f(x) = f^{-1}(x)$.
- Function f & g are defined by $f(x) = \sin x$, $x \in \mathbb{R}$; $g(x) = \tan x$, $x \in \mathbb{R} \left(K + \frac{1}{2}\right)\pi$ where $K \in I$. Find (i) periods of fog & gof. (ii) range of the function fog & gof.
- 0.18 Find the period for each of the following functions:

(a)
$$f(x) = \sin^4 x + \cos^4 x$$

(b)
$$f(x) = |\cos x|$$

(c)
$$f(x) = |\sin x| + |\cos x|$$

(d)
$$f(x) = \cos \frac{3}{5} x - \sin \frac{2}{7} x$$
.

- Prove that the functions; Q.19
- (a) $f(x) = \cos \sqrt{x}$
- (b) $f(x) = \sin \sqrt{x}$

- (c) $f(x) = x + \sin x$
- (d) $f(x) = \cos x^2$
- are not periodic.
- Q.20 Find out for what integral values of n the number 3π is a period of the function : $f(x) = \cos nx \cdot \sin (5/n) x$.

EXERCISE-2

- Let f be a one—one function with domain $\{x,y,z\}$ and range $\{1,2,3\}$. It is given that exactly one of the Q.1 following statements is true and the remaining two are false.
 - f(x) = 1; $f(y) \neq 1$; $f(z) \neq 2$. Determine f⁻¹(1)
- Q.2 Solve the following problems from (a) to (e) on functional equation.
- The function f(x) defined on the real numbers has the property that $f(f(x)) \cdot (1 + f(x)) = -f(x)$ for all (a) x in the domain of f. If the number 3 is in the domain and range of f, compute the value of f(3).

- (c) f be a function defined from $R^+ \to R^+$. If $[f(xy)]^2 = x(f(y))^2$ for all positive numbers x and y and f(2) = 6, find the value of f(50).
- (d) Let f(x) be a function with two properties
 - (i) for any two real number x and y, f(x + y) = x + f(y) and
 - (ii) f(0) = 2.

Find the value of f(100).

- (e) Let f be a function such that f(3) = 1 and f(3x) = x + f(3x 3) for all x. Then find the value of f(300).
- Q.3(a) A function f is defined for all positive integers and satisfies f(1) = 2005 and $f(1) + f(2) + ... + f(n) = n^2 f(n)$ for all n > 1. Find the value of f(2004).
 - (b) If a, b are positive real numbers such that a b = 2, then find the smallest value of the constant L for which $\sqrt{x^2 + ax} \sqrt{x^2 + bx} < L$ for all x > 0.
 - (c) Let $f(x) = x^2 + kx$; k is a real number. The set of values of k for which the equation f(x) = 0 and f(f(x)) = 0 have same real solution set.
 - (d) If $f(2x+1) = 4x^2 + 14x$, then find the sum of the roots of the equation f(x) = 0.
- Q.4 Let $f(x) = \frac{ax + b}{4x + c}$ for real a, b and c with $a \ne 0$. If the vertical asymptote of y = f(x) is $x = -\frac{5}{4}$ and the vertical asymptote of $y = f^{-1}(x)$ is $x = \frac{3}{4}$, find the value(s) that b can take on.
- Q.5 A function $f: R \to R$ satisfies the condition, $x^2 f(x) + f(1-x) = 2x x^4$. Find f(x) and its domain and range.
- Q.6 Suppose p(x) is a polynomial with integer coefficients. The remainder when p(x) is divided by x-1 is 1 and the remainder when p(x) is divided by x-4 is 10. If r(x) is the remainder when p(x) is divided by (x-1)(x-4), find the value of r(2006).

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, Whats App Number 9009 260 559.

Q.7 Prove that the function defined as , $f(x) = \begin{bmatrix} e^{-\sqrt{|\ln\{x\}|}} - \{x\}^{\sqrt{|\ln\{x\}|}} & \text{where ever it exists} \\ \{x\} & \text{otherwise, then} \end{bmatrix}$

f(x) is odd as well as even. (where $\{x\}$ denotes the fractional part function)

- Q.8 In a function $2 f(x) + x f\left(\frac{1}{x}\right) 2 f\left(\left|\sqrt{2} \sin\left(\pi\left(x + \frac{1}{4}\right)\right)\right|\right) = 4 \cos^2\frac{\pi x}{2} + x \cos\frac{\pi}{x}$ Prove that (i) f(2) + f(1/2) = 1 and (ii) f(2) + f(1) = 0
- Q.9 A function f, defined for all $x, y \in R$ is such that f(1) = 2; f(2) = 8 & $f(x+y) kxy = f(x) + 2y^2$, where k is some constant. Find f(x) & show that :

$$f(x+y) f\left(\frac{1}{x+y}\right) = k \text{ for } x+y \neq 0.$$

- Q.10 Let 'f' be a real valued function defined for all real numbers x such that for some positive constant 'a' the equation $f(x+a) = \frac{1}{2} + \sqrt{f(x) \left(f(x)\right)^2}$ holds for all x. Prove that the function f is periodic.
- Q.11 If f(x) = -1 + |x-2|, $0 \le x \le 4$ g(x) = 2 - |x|, $-1 \le x \le 3$

Then find fog(x) & gof(x). Draw rough sketch of the graphs of fog(x) & gof(x).

Q.12 Find the domain of definition of the implicit function defined by the implicit equation,

$$3^y + 2^{x^4} = 2^{4x^2 - 1}.$$

Q.14 Let
$$f(x) = \frac{9^x}{9^x + 3}$$
 then find the value of the sum $f\left(\frac{1}{2006}\right) + f\left(\frac{2}{2006}\right) + f\left(\frac{3}{2006}\right) + \dots + f\left(\frac{2005}{2006}\right)$

- Q.15 Let f(x) = (x+1)(x+2)(x+3)(x+4) + 5 where $x \in [-6, 6]$. If the range of the function is [a, b] where $a, b \in \mathbb{N}$ then find the value of (a + b).
- Q.16 Find a formula for a function g (x) satisfying the following conditions
 - (a) domain of g is $(-\infty, \infty)$
 - (b) range of g is [-2, 8]
 - (c) g has a period π and
 - (d) g(2) = 3
- Q.17 The set of real values of 'x' satisfying the equality $\left[\frac{3}{x}\right] + \left[\frac{4}{x}\right] = 5$ (where [] denotes the greatest integer function) belongs to the interval $\left(a, \frac{b}{c}\right]$ where $a, b, c \in \mathbb{N}$ and $\frac{b}{c}$ is in its lowest form. Find the value of a + b + c + abc.
- Q.18 Find the set of real x for which the function $f(x) = \frac{1}{\left[\left|x-1\right|\right] + \left[\left|12-x\right|\right] 11}$ is not defined, where [x] denotes the greatest integer function.
- Q.19 A is a point on the circumference of a circle. Chords AB and AC divide the area of the circle into three equal parts. If the angle BAC is the root of the equation, f(x) = 0 then find f(x).
- Q.20 If for all real values of u & v, $2f(u) \cos v = f(u+v) + f(u-v)$, prove that, for all real values of x (i) $f(x) + f(-x) = 2a \cos x$ (ii) $f(\pi x) + f(-x) = 0$ (iii) $f(\pi x) + f(x) = -2b \sin x$. Deduce that $f(x) = a \cos x b \sin x$, a, b are arbitrary constants.

EXERCISE-3

- Q.1 If the functions f, g, h are defined from the set of real numbers R to R such that;
 - $f(x)=x^2-1, g(x)=\sqrt{x^2+1}, h(x)=\begin{bmatrix} 0, & \text{if} & x \leq 0 \\ x, & \text{if} & x \geq 0 \end{bmatrix}; \text{ then find the composite function ho(fog) \& determine}$

whether the function (fog) is invertible & the function h is the identity function. [REE '97, 6]

- Q.2(a) If $g(f(x)) = |\sin x| & f(g(x)) = (\sin \sqrt{x})^2$, then:
 - (A) $f(x) = \sin^2 x$, $g(x) = \sqrt{x}$
- (B) $f(x) = \sin x$, g(x) = |x|
- (C) $f(x) = x^2$, $g(x) = \sin \sqrt{x}$
- (D) f & g cannot be determined

- (b) If f(x) = 3x 5, then $f^{-1}(x)$
 - (A) is given by $\frac{1}{3x-5}$

- (B) is given by $\frac{x+5}{3}$
- (C) does not exist because f is not one—one (D) does not exist because f is not onto

[JEE'98, 2 + 2]

page 24 of 38

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

Q.3 If the functions f & g are defined from the set of real numbers R to R such that $f(x) = e^x$, g(x) = 3x - 2, then find functions fog & gof. Also find the domains of functions $(f \circ g)^{-1}$ & $(g \circ f)^{-1}$.

[REE '98, 6]

Q.4 If the function $f:[1,\infty) \to [1,\infty)$ is defined by $f(x) = 2^{x(x-1)}$, then $f^{-1}(x)$ is:

[JEE '99, 2]

(A)
$$\left(\frac{1}{2}\right)^{x(x-1)}$$
 (B) $\frac{1}{2}\left(1 + \sqrt{1 + 4\log_2 x}\right)$ (C) $\frac{1}{2}\left(1 - \sqrt{1 + 4\log_2 x}\right)$ (D) not defined

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, Whats App Number 9009 260 559.

[JEE 2003 (Scr),3+3]

(D) $f^{-1}(f(a)) = a$, $a \subset x$ [JEE 2005 (Scr.)]

(C) $f(f^{-1}(b)) = b, b \subset y$

FUNCTIONS

ERCISE-1

Q 1. (i)
$$\left[-\frac{5\pi}{4}, \frac{-3\pi}{4} \right] \cup \left[-\frac{\pi}{4}, \frac{\pi}{4} \right] \cup \left[\frac{3\pi}{4}, \frac{5\pi}{4} \right]$$
 (ii) $\left(-4, -\frac{1}{2} \right) \cup (2, \infty)$ (iii) $(-\infty, -3]$

$$(\mathbf{iv}) (-\infty, -1) \cup [0, \infty)$$

(iv) (-∞, -1) ∪ [0, ∞) (v) (3-2π < x < 3-π) U (3 < x ≤ 4) (vi)
$$\left(0, \frac{1}{100}\right)$$
 ∪ $\left(\frac{1}{100}, \frac{1}{\sqrt{10}}\right)$

(x) { 4 }
$$\cup$$
 [5, ∞) (xi) (0,1/4) U (3/4,1) U {x : x \in N, x \ge 2} (xii) $\left(-\frac{1}{6}, \frac{\pi}{3}\right] \cup \left[\frac{5\pi}{3}, 6\right)$

(xii)
$$\left(-\frac{1}{6}, \frac{\pi}{3}\right] \cup \left[\frac{5\pi}{3}, 6\right]$$

page 26 of 38

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

(**xiii**)
$$[-3,-2) \cup [3,4)$$

(xv) $2K\pi < x < (2K+1)\pi$ but $x \ne 1$ where K is non-negative integer

(xvi)
$$\{x \mid 1000 \le x < 10000\}$$
 (xvii) $(-2, -1) \cup (-1, 0) \cup (1, 2)$ (xviii) $(1, 2) \cup \left(2, \frac{5}{2}\right)$

(xix)
$$(-\infty, -3) \cup (-3, 1] \cup [4, \infty)$$

O 2.

- (iv)
- D: R; R: (-1, 1) (v) D: $-1 \le x \le 2$ R: $\sqrt{3}, \sqrt{6}$
- $D: \ x \in (2n\pi, (2n+1)\pi) \left\{2\,n\pi + \frac{\pi}{6}\,, \, 2\,n\pi + \frac{\pi}{2}\,, \, 2\,n\pi + \frac{5\pi}{6}\,, \, n \in I\right\} \ \ \text{and}$

R: $\log_{a} 2$; $a \in (0, \infty) - \{1\} \Rightarrow \text{Range is } (-\infty, \infty) - \{0\}$

(vii) D:
$$[-4, \infty) - \{5\}; R: \left(0, \frac{1}{6}\right) \cup \left(\frac{1}{6}, \frac{1}{3}\right)$$

- **Q.4** (a) neither surjective nor injective
- (b) surjective but not injective
- (c) neither injective nor surjective
- **Q.5** $f_2(x) = x$; Domain = $R - \{0, 1\}$
- **Q.7** (a) $2K\pi \le x \le 2K\pi + \pi$ where $K \in I$ (b) [-3/2, -1]**Q.6**
- **Q.8** (i) (a) odd, (b) even, (c) neither odd nor even, (d) odd, (e) neither odd nor even, (f) even,
 - (g) even,
- (h) even;
- $\frac{-1+\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$, $\frac{-3+\sqrt{5}}{2}$, $\frac{-3-\sqrt{5}}{2}$ (ii)
- **Q.9** (a) $y = log(10-10^x), -\infty < x < 1$
 - **(b)** y = x/3 when $-\infty < x < 0$ & y = x when $0 \le x < +\infty$
- Q.10 $f^{-1}(x) = (a-x^n)^{1/n}$
- (a) f(x) = 1 for x < -1 & -x for $-1 \le x \le 0$; (b) f(x) = -1 for x < -1 and x for $-1 \le x \le 0$

Q.13
$$g(x) = \begin{bmatrix} \frac{1}{x^2} & \text{if } 0 < x \le 1 \\ x^2 & \text{if } x > 1 \end{bmatrix}$$
 Q.14 $\{-1, 1\}$

- **Q.15** (a) $\frac{e^x e^{-x}}{2}$; (b) $\frac{\log_2 x}{\log_2 x 1}$; (c) $\frac{1}{2} \log \frac{1 + x}{1 x}$
- **Q.17** (i) period of fog is π , period of gof is 2π ; (ii) range of fog is [-1,1], range of gof is $[-\tan 1, \tan 1]$

EXERCISE-2

- **Q 1.** $f^{-1}(1) = y$
- (a) 3/4, (b) 64, (c) 30, (d) 102, (e) 5050**Q.2**
- (a) $\frac{1}{1002}$, (b) 1, (c) [0, 4), (d) 5
- b can be any real number except $\frac{15}{4}$ **Q5.** $f(x) = 1 x^2$, $D = x \in \mathbb{R}$; range $=(-\infty, 1]$
- **Q.6** 6016
- **Q 9.** $f(x) = 2x^2$
- **Q 11.** $fog(x) = {-(1+x) \choose x-1}$, ${-1 \le x \le 0 \choose x-1}$; $gof(x) = {3-x \choose x-1}$, ${1 \le x \le 2 \choose x-1}$

- **Q 12.** $\left(-\frac{\sqrt{3}+1}{\sqrt{2}}, \frac{1-\sqrt{3}}{\sqrt{2}}\right) \cup \left(\frac{\sqrt{3}-1}{\sqrt{2}}, \frac{\sqrt{3}+1}{\sqrt{2}}\right)$ **Q.13** x = 0 or 5/3

- 1002.5

- Q.17 20
- **Q 18.** $(0,1) \cup \{1,2,....,12\} \cup (12,13)$ **Q 19.** $f(x) = \sin x + x 1$

page 27 of 38

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

EXERCISE-3

- **Q.1** (hofog)(x) = $h(x^2) = x^2$ for $x \in \mathbb{R}$, Hence h is not an identity function, fog is not invertible
- Q.2(a) A, (b) B
- $(fog)(x) = e^{3x-2}; (gof)(x) = 3e^x-2;$

Domain of $(f \circ g)^{-1}$ = range of $f \circ g = (0, \infty)$; Domain of $(g \circ f)^{-1}$ = range of $g \circ f = (-2, \infty)$

- **O.4** B
- Q.5 D
- $\{(1, 1), (2, 3), (3, 4), (4, 2)\}; \{(1, 1), (2, 4), (3, 2), (4, 3)\}$ and $\{(1, 1), (2, 4), (3, 3), (4, 2)\}$
- Q.7 (a) B, (b) A, (c) D, (d) A, (e) D
- **Q.8** (a) D; (b) A

- (a) D, (b) A
- **O.10** C
- 0.11 (a) A; (b) D

Exercise-4

Part: (A) Only one correct option

- The domain of the function $f(x) = \frac{\sqrt{-\log_{0.3}(x-1)}}{\sqrt{x^2 + 2x + 8}}$ 1.
- (C)(2,4)
- (D) [2, ∞)
- The function $f(x) = \cot^{-1} \sqrt{(x+3)x} + \cos^{-1} \sqrt{x^2+3x+1}$ is defined on the set S, where S is equal to: (A) $\{0,3\}$ (B) $\{0,3\}$ (C) $\{0,-3\}$ (D) [-3,0]2.
- The range of the function f (x) = $\sin^{-1}\left[x^2 + \frac{1}{2}\right] + \cos^{-1}\left[x^2 \frac{1}{2}\right]$, where [] is the greatest integer 3. function, is:
- (C) { π}

- Range of $f(x) = \log_{\sqrt{5}} \{\sqrt{2} (\sin x \cos x) + 3\}$ is 4.
 - (A)[0,1]
- (B)[0, 2]
- (C) $\left[0, \frac{3}{2}\right]$
- (D) none of these

Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

FREE

- 26. is symmetric about y-axis, then n is equal to:
 - (A)2

27.

- (B) 2 / 3

page 29 of 38

Feko Classes, Maths: Suhag R. Kariya (S.

- \rightarrow R. Then the range of the function f(g(x)) wherever define is and $g(x) = 2x - x^2$

If $f(x) = \cot^{-1}x$

28. Let $f: (e^2, \infty) \to R$ be (A) f is one one but not onto **29.** Let $f: (e, \infty) \to R$ be Let f: $(e^2, \infty) \to R$ be defined by $f(x) = \ell n (\ell n(\ell n x))$, then one one but not onto (B) f is on to but not one - one Let $f: (e, \infty) \to R$ be defined by $f(x) = \ell n (\ell n(\ell n x))$, then

- is one one but not onto
- f is one-one and onto Let $f(x) = \sin x$ and $g(x) = |\ell n| x|$ if composite functions f(x) and g(x) are defined and have ranges R, R respectively then. (A) R = $\{u: -1 < u < 1\}$ R = $\{v: 0 < v < \infty\}$ 30.

 $= \{u: 0 \le u < \overline{\infty}\}$

 $R'_{1} = \{u: -1 \le u \le 1\}$

- Function f: $(-\infty, 1) \rightarrow (0, e^5]$ defined by $f(x) = e^5$
- (A) many one and onto (B) many one and into (C) one one and onto (D) one one and into The number of solutions of the equation $[\sin^{-1} x] = x [x]$, where [.] denotes the greatest integer function is (A) 0 (B) 1 (C) 2 (D) infinitely many 32.
- 33. The function f(x) =
 - neither an odd nor an even function
- Part: (B) May have more than one options correct
- 34. For the function $f(x) = \ell n$ $(\sin^{-1} \ell \log_2 x)$
 - (A) Domain is

- 35. A function 'f' from the set of natural numbers to integers defined by,
 - when n is even
 - (A) one-one
- (B) many-one

- Domain of $f(x) = \sin^{-1} [2 4x^2]$ where [x] denotes greatest integer function is: 36.

- , then F(x) is: 37.
 - periodic with fundamental period 1 (A) (C) range is singleton
- The range of the function f(g(x)) wherever define is $f(x) = \frac{1}{4} \cdot \frac{\pi}{2}$ and $f(x) = \frac{\pi}{4} \cdot \frac{\pi}{2}$ and $f(x) = \frac{\pi}{4} \cdot \frac{\pi}{2}$ by $f(x) = \frac{\pi}{4} \cdot \frac{\pi}{4}$ by f(x) =(D) identical to sgn | sgn integer function and sgn (x) is a signum function.
- $D \equiv [-1, 1]$ is the domain of the following functions, state which of them are injective. (B) $g(x) = x^3$ (C) $h(x) = \sin 2x$ $(A) f(x) = x^2$ (D) $k(x) = \sin(\pi x/2)$

Exercise-5

- Find the domain of the function $f(x) = \frac{1}{\log_{10}(1-x)} +$
- Find the domain of the function $f(x) = \sqrt{1-2x} + 3 \sin^{-1} \left(\frac{3x-1}{2} \right)$
- Find the inverse of the following functions. $f(x) = \ln (x + \sqrt{1 + x^2})$
- B defined by f (x) = $2 \cos^2 x + \sqrt{3} \sin 2x + 1$. Find the B such that f⁻¹ exists. Also find
- 5. Find for what values of x, the following functions would be identical.

$$f(x) = \log(x - 1) - \log(x - 2)$$
 and $g(x) = \log\left(\frac{x - 1}{x - 2}\right)$.

- If $f(x) = \frac{4^x}{4^x + 2}$, then show that f(x) + f(1 x) = 1
- FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com Let f(x) be a polynomial function satisfying the relation f(x). $f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \ \forall \ x \in R - \{0\}$ and f(3) = -26. Determine f'(1).
 - Find the domain of definitions of the following functions.
 - $f(x) = \sqrt{3-2^x-2^{1-x}}$

- $f(x) = \sqrt{\frac{x-2}{x+2}} + \sqrt{\frac{1-x}{1+x}}$
- $f(x) = log_{10} (1 log_{10}(x^2 5x + 16))$ (iii)
- Find the range of the following functions.
 - $f(x) = \frac{x^2 2x + 4}{x^2 + 2x + 4}$

(ii) $f(x) = \sin log \left| \frac{\sqrt{4 - x^2}}{1 - x} \right|$

- Solve the following equation for x (where [x] & {x} denotes integral and fractional part of x) $2x + 3[x] 4\{-x\} = 4$
- Draw the graph of following functions where [.] denotes greatest integer function and { .} denotes fractional part
 - (i) $y = \{\sin x\}$
- (ii) $y = [x] + \sqrt{x}$
- Draw the graph of the function $f(x) = |x^2 4|x| + 3$ and also find the set of values of 'a' for which the equation $f(x) = |x^2 4|x| + 3$ a has exactly four distinct real roots
- Examine whether the following functions are even or odd or none.
 - (i)

- $f(x) = \frac{2x \left(\sin x + \tan x \right)}{2 \left\lceil \frac{x + 2\pi}{\pi} \right\rceil 3}, \text{ where [] denotes greatest integer function.}$
- Find the period of the following functions.

 - f (x) = $\tan \frac{\pi}{2}$ [x], where [.] denotes greatest integer function.
- (iv) $f(x) = \frac{\sin x + \sin 3x}{\cos x + \cos 3x}$
- Find the set of real x for which the function, $f(x) = \frac{1}{[|x-1|] + [|12-x|] 11}$ is not defined, where [x] denotes the greatest integer not greater than x.
- Given the functions $f(x) = e^{\cos^{-1}\left(\sin\left(x + \frac{\pi}{3}\right)\right)}$, $g(x) = \csc^{-1}\left(\frac{4 2\cos x}{3}\right)$ & the function
 - h(x) = f(x) defined only for those values of x, which are common to the domains of the functions f(x) and g(x). Calculate the range of the function h(x).
- Let 'f' be a real valued function defined for all real numbers x such that for some positive constant 'a' the
- equation $f(x+a) = \frac{1}{2} + \sqrt{f(x) \left(f(x)\right)^2}$ holds for all x. Prove that the function f is periodic. If $f(x) = -1 + \left| \begin{array}{c} x 2 \\ y 1 \end{array} \right|, \ 0 \le x \le 4$ $g(x) = 2 \left| \begin{array}{c} x \\ y \end{array} \right|, \ -1 \le x \le 3$

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Exercise-4

20.

- 1. D 2. C 3. C 4. B 5. B 6. C 7. B
- 15. B 16. D 17. C 18. B 19. D 20. D 21. D
- 22. D 23. D 24. C 25. D 26. D 27. C 28. A
- **29.** C **30.** D **31.** D **32.** B **33.** B **34.** BC
- **35.** AC **36.** B **37.** ABCD **38.** BD

Exercise-5

2.
$$\left[-\frac{1}{3}, \frac{1}{2}\right]$$

3.
$$f^{-1} = \frac{e^x - e^{-x}}{2}$$

4. B = [0, 4];
$$f^{-1}(x) = \frac{1}{2} \left(\sin^{-1} \left(\frac{x-2}{2} \right) - \frac{\pi}{6} \right)$$

5.
$$(2, \infty)$$
 7. -3 **8.** (i) $[0, 1]$ (ii) ϕ (iii) $(2, 3)$

9. (i)
$$\left[\frac{1}{3}, 3\right]$$
 (ii) $[-1, 1]$ (iii) $[4, \infty)$ (iv) $\left[\frac{3}{4}, 1\right]$

- 13. (i) neither even nor odd (ii) even (iii) odd
- **14.** (i) π (ii) 2 (iii) 2π (iv) π

15.
$$f(g(x)) = \begin{bmatrix} 2-2x+x^2 & 0 \le x \le 1 \\ 2-x & -1 \le x < 0 \end{bmatrix}$$

- **16.** (0, 1) U {1, 2,....., 12} U (12, 13) **17.** $e^{\frac{\pi}{6}}, e^{\pi}$
- 18. Period 2 a

19. fog (x) =
$$\begin{cases} -(1+x) & , & -1 \le x \le 0 \\ x-1 & , & 0 < x \le 2 \end{cases}$$

$$gof(x) = \begin{cases} x+1 & , & 0 \le x < 1 \\ 3-x & , & 1 \le x \le 2 \\ x-1 & , & 2 < x \le 3 \\ 5-x & , & 3 < x \le 4 \end{cases}$$

fof (x) =
$$\begin{cases} x & , & 0 \le x \le 2 \\ 4 - x & , & 2 < x \le 2 \end{cases}$$

$$gog(x) = \begin{cases} -x & , & -1 \le x \le 0 \\ x & , & 0 < x \le 2 \\ 4 - x & , & 2 < x \le 3 \end{cases}$$

20. Integral solution (0, 0); (2, 2). x + y = 6, x + y = 0

Teko Classes, Maths: Suhag R. Kariya (S. Å. K. Sir), Bhopa.I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

For 38 Years Que. from IIT-JEE(Advanced) & 14 Years Que. from AIEEE (JEE Main) we distributed a book in class room