Vedant Milind Athavale TY Brech EXTC 14000071 EWE -MST $A = \chi^2 y a_{\chi} + y^2 \chi a_{\chi} - 5yz^2 a_{\chi} Wb/m$ 017 (Given) a) Hove, we need to calculate B at (-2,3,5) We know that B = VXA $B = \begin{cases} a_{x} & a_{y} & a_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x_{y}^{2} & y_{x}^{2} & -5yz^{2} \end{cases}$ By solving the determinant, we got $B = ax(-5z^2-0) - ay(0-0) + a_2(y^2-2^2)$ hb/m² $\frac{\partial}{\partial z} (y^2 x) = 0$, $\frac{\partial}{\partial x} (-5yz^2) = 0$, $\frac{\partial}{\partial z} (x^2 y) = 0$ Hence, B = ax (-5(5)2) - ay (0) + az (9-4) wb/m $B = -125 a_2 + 5 a_z \quad Wb/m^2$

b) Here, we need.	to calculate -	the flux thus	yoh the
b.) Here, we need. Surface defined	by Z=1	0 5 x 5 1	, -1 ≤ y ≤ 4

$$= \oint \vec{B} \cdot \vec{ds} \qquad (\forall denotes flux)$$

$$= \int_{-1}^{4} \int_{0}^{1} 0 + 0 + (y^{2} - x^{2}) \partial_{x} \partial_{y}$$

$$= \int_{-1}^{4} y^2 \, dy - \int_{0}^{2} n^2 \, dx$$

$$\frac{2}{3} + \frac{64}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$$

$$=) \qquad \qquad \forall = 64 \text{ Wb}$$

alle

02]

a.) Here, $\eta_1 - \eta_0$

Maw, Et = Eto Sin (wt -4x) as

Eto = Hto . M = 6×120TT = 720TT

= aEXaH = ak

 $\therefore \alpha_{E} \times \alpha_{Y} = \alpha_{X}$

Hence, a= -az

: $E_{+} = -720\pi \sin(\omega t - 4x) a_{z}$ (: $a_{\varepsilon} = -a_{z}$)

 $\eta = \frac{11}{2} = \frac{10\pi}{12} = 60\pi$ $\frac{1}{2} = \frac{1}{4} = \frac{10\pi}{14} = 60\pi$

 $T = 1+\sqrt{2}$

 $E_{10} = \int E_{10} = -1 \times -720\pi = 240\pi$

: Er = 240 m sin (wt +4x) az

