Logica e Algebra 17 Febbraio 2017 Parte di Logica

Esercizio 1

• Stabilire sia per via semantica che mediante la risoluzione se i seguenti insiemi di f.b.f.

$$\Delta_1 = \{ A \Rightarrow \neg B, B \Rightarrow \neg C \}$$

$$\Delta_2 = \{ (A \Rightarrow \neg B) \land \neg C, (B \Rightarrow \neg C) \land (\neg C \Rightarrow \neg (A \Rightarrow \neg B)) \}$$

sono insoddisfacibili.

• Trovare una formula F = f(A, B, C), che non sia una contraddizione, tale che, in L, F non si deduca da Δ_1 , ma si deduca da Δ_2 .

Esercizio 2

- a) Tradurre in un opportuno linguaggio del primo ordine la seguente frase "Se una funzione è iniettiva, allora ammette inversa destra".
- b) Si consideri la seguente f.b.f.

$$\mathcal{F} = \left(\forall x \forall y \left(A_1^2(f_1^1(x), f_1^1(y)) \Rightarrow A_1^2(x, y) \right) \right) \Rightarrow \left(\forall x \exists y \left(A_1^2(f_1^1(y), x) \right) \right)$$

- 1. Si dica se la formula è logicamente valida ed in caso contrario si dia una interpretazione in cui è vera ed una in cui è falsa.
- 2. Portare \mathcal{F} in forma di Skolem.

Esercizio 1

1. L'insieme Δ_1 ammette almeno i modelli che assegnano ad A e a B il valore 0, per cui è soddisfacibile. Cerchiamo ora se Δ_2 ha modelli: perché sia soddisfatta la prima delle due formule C deve assumere il valore 0, ma se C assume il valore 0, perché assuma valore 1 il secondo congiunto della seconda formula la sottoformula $\neg(A \Longrightarrow \neg B)$ deve assumere il valore 1, quindi $A \Longrightarrow \neg B$ deve valere 0 ma allora la prima formula di Δ_2 vale 0. Non esistono pertanto modelli di Δ_2 che dunque è insoddisfacibile. Usiamo ora la risoluzione. Δ_1 in forma a clausole è $S = \{\{\neg A, \neg B\}, \{\neg B, \neg C\}\}$ e dato che

$$Ris^*(S) = \{ \{ \neg A, \neg B \}, \{ \neg B, \neg C \} \} = S$$

non contiene la clausola vuota, Δ_1 è soddisfacibile. Δ_2 in forma a clausole è $\{\{\neg A, \neg B\}, \{\neg C\}, \{\neg B, \neg C\}, \{C, A\}, \{C, B\}\}$, per risoluzione da $\{C, A\}$ e $\{\neg C\}$ si ricava $\{A\}$, da $\{\neg A, \neg B\}$ ed $\{A\}$ si ottiene $\{\neg B\}$, da $\{C, B\}$ e $\{\neg C\}$ si ricava $\{B\}$ che con la clausola $\{\neg B\}$ genera la clausola vuota. Dunque Δ_2 è insoddisfacibile.

2. Per il teorema di correttezza e completezza (versione forte) da Δ₁ non si deduce in L una formula F se e solo se F non è conseguenza semantica di Δ₁ e da Δ₂ si deduce in L una formula F se e solo se F è conseguenza semantica di Δ₂. Poiché ogni formula è conseguenza semantica di un insieme insoddisfacibile, dobbiamo quindi trovare una formula F che non sia una contraddizione e che non sia semanticamente deducibile da Δ₁, ovvero che non abbia come modelli tutti i modelli di Δ₁. Scriviamo ad esempio una formula che non abbia il modello v(A) = v(B) = v(C) = 0. La formula ¬A ∧ ¬B ∧ ¬C ha come unico modello v(A) = v(B) = v(C) = 0 e quindi la sua negazione A∨B∨C non ha quel modello e non è conseguenza semantica di Δ₁ e non è una contraddizione perché ogni altra assegnazione di valori alle lettere enunciative è un suo modello

Esercizio 2

a) Formalizziamo la frase "Se una funzione è iniettiva, allora ammette inversa destra", usando un linguaggio del primo ordine con due variabili x,y, una costante i, una lettera funzionale f_1^2 , due lettere predicative \mathcal{A}^1 e \mathcal{E}^2 e scriviamo

$$\forall x (\mathcal{A}^1(x) \implies \exists y (\mathcal{E}^2(f_1^2(x,y),i)))$$

che interpretata nel dominio dato dall'insieme $\{g:X\to X\}$ delle funzioni da un insieme in se stesso con la lettera f_1^2 vista come usuale prodotto di funzioni, i come funzione identica, \mathcal{A}^1 come predicato essere iniettiva e \mathcal{E}^2 come predicato di uguaglianza viene letta come la frase indicata. Notate che in un linguaggio con dominio X, due variabili x,y, due lettere funzionali f_1^1, f_2^1 e una lettera predicativa \mathcal{E}^2 possiamo scrivere le frasi f è una funzione iniettiva e g è inversa destra di f nella forma $\forall x \forall y (\mathcal{E}^2(f_1^1(x), f_1^1(y)) \implies \mathcal{E}^2(x,y)$ e $\forall x \mathcal{E}^2(f_2^1(f_1^1(x)), x)$, ma non possiamo scrivere la frase data perché non possiamo quantificare lettere funzionali.

b) 1. La formula \mathcal{F} quando si interpreti la lettera funzionale f_1^1 come una funzione $f: X \to DX$ e la lettera predicativa \mathcal{A}^2 come predicato di

uguaglianza, dice che se f è una funzione iniettiva allora è anche una funzione suriettiva e questa formula non è sempre vera, è vera nelle interpretazioni in cui la funzione che interpreta f_1^1 è suriettiva o non iniettiva, mentre è falsa nelle interpretazioni in cui la funzione che interpreta f_1^1 è iniettiva ma non biunivoca. Dunque la formula non è logicamente valida. A parte le interpretazioni precedenti è facile osservare che la formula $\mathcal F$ è vera in tutte le interpretazioni in cui $\mathcal A_1^2$ è la relazione universale sul dominio dell'interpretazione, perché in tal caso il conseguente è vero ed è falsa in tutte le interpretazioni in cui $\mathcal A_1^2$ è la relazione vuota, perché in tal caso il conseguente è falso, mentre l'antecedente è vero.

2. Portiamo dapprima \mathcal{F} in forma prenessa

che in forma di Skolem diventa

$$\forall z \left((A_1^2(f_1^1(a_{Sk}), f_1^1(b_{Sk})) \Rightarrow A_1^2(a_{Sk}, b_{Sk})) \Rightarrow A_1^2(f_1^1(f_{Sk}^1(z)), z) \right)$$