AMENDMENTS TO THE SPECIFICATION

Please replace paragraph [00127] as follows

MARKUP VERSION

[00127] Because $I \ll m < n$, it becomes readily apparent that $(m \times n) / J \gg I$. Thus, the (boundary cell) x (boundary cell)(boundary, boundary) component of the computation (sub problem 3) dominates the complexity of the present approach. Therefore, the computational complexity of the present approach is on the order of $(m \times n) / J$ and the "worst case" relative efficiency (with respect to a computational geometry-based approach), E_R , is:

$$E_R = (m \times n)/(m \times n)/J = J = n/n_i$$

CLEAN VERSION

[00127] Because $I \ll m < n$, it becomes readily apparent that $(m \times n) / J \gg I$. Thus, the (boundary, boundary) component of the computation (sub problem 3) dominates the complexity of the present approach. Therefore, the computational complexity of the present approach is on the order of $(m \times n) / J$ and the "worst case" relative efficiency (with respect to a computational geometry-based approach), E_R , is:

$$E_R = (m \times n)/(m \times n)/J = J = n/n_j$$