Test di Calcolo Numerico

Ingegneria Informatica 21/07/2010

C	OGNOME NOME	
Μ	ATRICOLA	
RISPOSTE		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate ed i dati dello studente devono essere scritti a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 21/07/2010

1) Dato l'insieme di numeri di macchina $\mathcal{F}(10,2,-2,2)$, i numeri $x_1=1.5,\,x_2=2.3,\,\mathrm{e}\,x_3=0.005$ calcolare le rappresentazioni in \mathcal{F} dei valori

$$x_1, \quad x_2, \quad x_3, \quad x_1 \cdot x_3, \quad x_2 + x_3$$
.

2) La matrice

$$A = \frac{1}{20} \begin{pmatrix} 5i & 2 & -7\\ 3 & 1+2i & -1\\ 6 & -2 & 4 \end{pmatrix}$$

risulta convergente?

3) L'equazione caratteristica di una matrice quadrata di ordine n=3 è

$$\lambda^3 + 3\lambda^2 + 16\lambda + 48 = 0.$$

Calcolare il raggio spettrale della matrice.

4) Due matrici $A \in B$ hanno norma infinito $||A||_{\infty} = 3 \in ||B||_{\infty} = 5$. Delle seguenti affermazioni dire quali si possono verificare e quali no.

$$a) \|A \cdot B\|_{\infty} = 20, \quad b) \|A + B\|_{\infty} = 7, \quad c) \|A - B\|_{\infty} = 2, \quad d) \|B \cdot A\|_{\infty} = 12.$$

- 5) Una formula di quadratura ad n+1 nodi ha l'errore esprimibile nella forma $E_n(f) = Kf^{(IV)}(\theta)$.
 - a) Determinare il grado di precisione m della formula.
 - b) Supponendo che risulti $E_n(x^{m+1}) = -\frac{1}{7}$, calcolare la costante K.

SOLUZIONE

1) Indicando con z^* la rappresentazione del numero z, risulta

$$x_1^* = 0.15 \times 10^1$$
, $x_2^* = 0.23 \times 10^1$, $x_3^* = 0.5 \times 10^{-2}$,

$$(x_1 \cdot x_3)^* = 0.75 \times 10^{-2}$$
, $(x_2 + x_3)^* = 0.23 \times 10^1$.

- 2) Si ha $||A||_{\infty} = \frac{7}{10}$ per cui la matrice risulta convergente.
- 3) La matrice in questione ha autovalori

$$\lambda_1 = -3$$
, $\lambda_2 = -\lambda_3 = 4i$

per cui $\rho(A) = 4$.

- 4) Si ha
 - a) Non possibile
 - b) Possibile
 - c) Possibile
 - d) Possibile
- **5)** Risulta m = 3 da cui $K = -\frac{1}{7} \cdot \frac{1}{4!} = -\frac{1}{168}$.