분류와 회귀를 이용한 투자모델 설정과 투자모델검증 시각화

월간 데이콘 KOSPI 기반 분석 시각화 경진대회

2022-09-01:2022-10-04

Index

- 1. 데이터개요
- 2. 데이터 시각화
- 3. 분류를 이용한 투자모델
- 4. 회귀를 이용한 투자모델
- 5. 대시보드

1. GIOIEH JHS

1. 团0日 개요

- Date 컬럼의 데이터타입을 변경 해주고 label 컬럼을 추가 했습니다.
- label 기준은 change >= 0 인 경우, 1로 레이블링됩니다.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11024 entries, 0 to 11023
Data columns (total 8 columns):
    Column Non-Null Count Dtype
            11024 non-null
                           datetime64[ns]
    Date
    Close 11024 non-null float64
          11024 non-null float64
    Open
          11024 non-null float64
    High
    Low
            11024 non-null float64
    Volume 11024 non-null float64
    Change 11024 non-null float64
    label 11024 non-null int64
dtypes: datetime64[ns](1), float64(6), int64(1)
memory usage: 689.1 KB
```

- pandas rolling 을 이용한 이동평균선 입니다.
- 데이터 기간을 설정해서 기간을 조정할 수 있습니다.
- grouper 를 이용하여 주간,월간 .. 등으로 변환한 이동평균선도 가능합니다.

이동평균선

```
plt.plot(df['Date'],df['Close'].rolling(window=1).mean())
plt.plot(df['Date'],df['Close'].rolling(window=7).mean())
plt.plot(df['Date'],df['Close'].rolling(window=30).mean())
plt.plot(df['Date'],df['Close'].rolling(window=90).mean())

plt.grid()
plt.xlabel('Date')
plt.ylabel('Close')
plt.title('Moving Average')
plt.legend(['Close','7days','30days','90days'])
```

<matplotlib.legend.Legend at 0x12f39eeb0>

- matplotlib 의 이중축을 이용한 그래프 입니다.
- 마찬가지로 기간조정, grouper 이용 가능합니다.

Close with Volume

```
fig, ax1 = plt.subplots()
ax1.plot(df['Date'], df['Close'])
ax1.set_xlabel('Date')
ax1.set_ylabel('Close')

ax2 = ax1.twinx()
ax2.set_ylabel('Volume')
ax2.bar(df['Date'], df['Volume'],color='red')

plt.title('Daily Close with Volume')
plt.grid()
```


- pandas grouper를 응용합니다.
- 월간 데이터들의 boxplot 을 시각화 하였습니다.
- 추세, 월간 변화폭 등을 체크할 수 있습니다.

Monthly boxplot

• 일,주,월,연 단위 옵션가능

Text(0, 0.5, 'Close')

- scipy 인터폴레이팅을 이용합니다.
- 실제데이터를 보간하고 나머지 부분을 cubic spline 데이터로 채웁니다.
- 채워진 데이터로 부드러운 곡선을 시각화 했습니다.

Spline smoothing

```
def spline(feature):
    y = np.array(df[df['Date'] >= '2022-08-01'][feature])
    x = np.linspace(1., 22., 22)
    sp = interpolate.interpld(x,y,kind='cubic')

# sp = csaps.csaps(x, y, smooth=0.8)
    xs = np.linspace(x[0], x[-1], 120)
    ys = sp(xs)
    return xs,ys
```

```
xc,yc = spline('Close')
xl,yl = spline('Low')
xh,yh = spline('High')

plt.plot(xc,yc)
plt.plot(xl,yl)
plt.plot(xh,yh)

plt.legend(['Close','Low','High'])
plt.title('2022-08 cubic spline')
plt.ylabel('Price')
plt.xlabel('day')
plt.grid()
```


- 사용데이터는 2000 이후 데이터 입니다.
- 전일 상승 했을 경우, 다음날도 오를것으로 기대하는 클래식한 투자방법이 있습니다.
- 위투자방법의 승률을보고 분류를 적용한 투자모델을 정의했습니다.

	Date	Close	Open	High	Low	Volume	Change	label	df_split
0	2000-01-04	1059.04	1028.33	1066.18	1016.59	195900000.0	0.0301	1	1
1	2000-01-05	986.31	1006.87	1026.52	984.05	257700000.0	-0.0687	0	1
2	2000-01-06	960.79	1013.95	1014.90	953.50	203520000.0	-0.0259	0	0
3	2000-01-07	948.65	949.17	970.16	930.84	215660000.0	-0.0126	0	0
4	2000-01-10	987.24	979.67	994.94	965.02	240180000.0	0.0407	1	0
	•••		***		•••		•••	••••	
5592	2022-08-25	2477.26	2459.79	2477.26	2455.32	426230000.0	0.0122	1	1
5593	2022-08-26	2481.03	2489.14	2497.76	2476.75	520090000.0	0.0015	1	1
5594	2022-08-29	2426.89	2432.06	2432.89	2417.01	448750000.0	-0.0218	0	1
5595	2022-08-30	2450.93	2441.21	2453.91	2433.48	327210.0	0.0099	1	0
5596	2022-08-31	2472.05	2433.47	2473.75	2426.14	397290.0	0.0086	1	1

5597 rows × 9 columns

- 2차원 ndarray 형식의 arr 변수를 만들어 맵핑 해보았습니다.
- 실제로 전날 상승한 경우, 현재도 상승하는 경우의 수가 가장 많았습니다.
- 투자방법은 sp_label 이 1로 판단되는 경우 투자를 해야하고 label 이 1인경우가 가장많아야 승률이 높기 때문에 metric을 정밀도로 설정합니다.

<AxesSubplot:>

- 각 method 별로 튜닝을 통해 모델을 찾습니다.
- dtc 를 예제형식으로 Parms 구성품 맵핑을 합니다.
- 가장높은 정밀도를 보인 grad method 를 채택합니다.

2	Method	Parms	Precision
0	dtc	[8, 6, 2, [Volume, Open, High, Low]]	56.73
1	logi	[0, [Volume, Open, High, Low]]	53.37
2	knn	[8, [Volume, Open, High, Low]]	57.00
3	vote	[[Volume, Open, High, Low]]	52.42
4	ranf	[8, 1, 3, 30, [Volume, Open, High, Low]]	55.80
5	grad	[9, 4, 9, 0.1, [Volume, Open, High, Low]]	58.38
6	xgb	[[Volume, Open, High, Low]]	53.57

- 1000개의 데이터로 모델검증을 진행했습니다. (약 18%의 데이터)
- 해당모델의 경우 승률은 54.1% 입니다.
- pr_label 이 1인 경우 투자를 해야하므로 해당경우 데이터를 모읍니다.

```
array([[128, 323], [169, 380]])
```

<AxesSubplot:>

- pr_label 이 1인 경우 투자를 해야하므로 해당경우 데이터를 모읍니다.
- 장이 시작할때 구매하고 장이 종료되는 시점에 판다고 가정합니다.
- 총 703회의 투자가 일어납니다.
- 투자케이스의 손실합은 -388 이고 평균 구매가는 2594 입니다.
- metric 으로서 역할을할 수 있습니다.

	Date	Close	Open	High	Low	Volume	Change	Inv_case
0	2018-08-10	2282.79	2295.21	2295.62	2277.89	286160000.0	-0.0091	1
7	2018-08-22	2273.33	2273.68	2280.31	2268.91	269270000.0	0.0014	1
9	2018-08-24	2293.21	2276.16	2295.22	2271.35	347290000.0	0.0046	1
10	2018-08-27	2299.30	2297.32	2302.87	2289.41	307040000.0	0.0027	1
11	2018-08-28	2303.12	2312.14	2314.60	2299.45	276890000.0	0.0017	1
•••	(***		***	***	•	***		***
990	2022-08-18	2508.05	2499.30	2515.37	2488.09	381630000.0	-0.0033	1
991	2022-08-19	2492.69	2510.72	2510.72	2492.69	459830000.0	-0.0061	1
992	2022-08-22	2462.50	2467.38	2475.77	2457.08	422550000.0	-0.0121	1
995	2022-08-25	2477.26	2459.79	2477.26	2455.32	426230000.0	0.0122	1
997	2022-08-29	2426.89	2432.06	2432.89	2417.01	448750000.0	-0.0218	1

703 rows × 8 columns

- 투자케이스에 대한 결과 시각화입니다.
- 결과분포가 0에 근접하여 형성됩니다.
- 좋은 투자모델은 그래프 분포가 0위로 형성되게 됩니다.

```
plt.plot(range(len(df)),df['Close'] - df['Open'])
plt.grid()
plt.title('Invest Case')
plt.ylabel('Profit')
plt.xlabel('Case')
```

Text(0.5, 0, 'Case')

4. 회귀를 이용한 투자모델

4. 회귀를 이용한 투자모델

- 마찬가지로 2000년 이후 데이터를 사용합니다.
- 회귀를 이용했을때, 너무 좋은 rmse가 나오는 경우는 지양해야 된다고 생각합니다. (이익 혹은 손실이 너무 작아 지는현상)
- 1000개의 데이터는 컷팅 해두고 test rmse를 확인했습니다.

```
X = df.loc[:len(df)-1001,features]
y = df.loc[1:len(df)-1000,'Close']
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)
print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)

(3677, 4) (920, 4) (3677,) (920,)

from sklearn.metrics import mean_squared_error,r2_score
lr.fit(x_train,y_train)
pred = lr.predict(x_test)
mse = mean_squared_error(pred,y_test)
rmse = np.sqrt(mse)

rmse

18.96481764512902
```

4. 회귀를 이용한투자모델

- 당일 Open 가격보다 예측가격이 높게 측정되는 경우 투자를한다고 가정합니다.
- 장이 시작할때 구매하고 장이 종료되는 시점에 판다고 가정합니다.
- 총 452회의 투자가 발생합니다.
- 시뮬레이션 실제 손실합은 -294로 측정되고, 평균 구매가는 2471 입니다.
- 분류와 마찬가지로 위 정보를 metric으로 설정할 수 있습니다.

	Date	Volume	Open	High	Low	Close	pred
0	2018-08-10	286160000.0	2295.21	2295.62	2277.89	2282.79	2295.369908
1	2018-08-13	335380000.0	2266.43	2271.82	2238.55	2248.45	2282.542599
2	2018-08-14	255220000.0	2249.86	2262.52	2247.37	2258.91	2250.020383
3	2018-08-16	312520000.0	2233.05	2244.08	2218.09	2240.80	2259.422372
6	2018-08-21	294340000.0	2248.04	2272.86	2244.59	2270.06	2254.431407
	••••	···		•••	••••	•••	
990	2022-08-18	381630000.0	2499.30	2515.37	2488.09	2508.05	2523.779718
992	2022-08-22	422550000.0	2467.38	2475.77	2457.08	2462.50	2497.157119
993	2022-08-23	471170000.0	2449.31	2454.55	2431.83	2435.34	2467.171299
997	2022-08-29	448750000.0	2432.06	2432.89	2417.01	2426.89	2487.528186
999	2022-08-31	397290.0	2433.47	2473.75	2426.14	2472.05	2446.767072

452 rows × 7 columns

```
print((conf['pred'] - conf['Open']).sum()) # 예상
print((conf['Close'] - conf['Open']).sum()) # 실제
```

conf['Open'].mean()
2470.9779867256634

6214.088573157267 -294.9299999999914

4. 회귀를 이용한투자모델

- 투자케이스에 대한 결과 시각화입니다.
- 결과분포가 0에 근접하여 형성됩니다.
- 좋은 투자모델은 그래프 분포가 0위로 형성되게 됩니다.
- Istm, gru 등 딥러닝 모델에도 같은규칙을 이용할 수 있습니다.

```
plt.plot(range(len(conf)),conf['Close'] - conf['Open'])
plt.grid()
plt.title('Invest Case')
plt.ylabel('Profit')
plt.xlabel('Case')
```

Text(0.5, 0, 'Case')

5. 叶从显显

- 각 단계의 데이터프레임을 뽑아 대시보드를 구성했습니다.
- 대시보드는 태블로로 작성되었습니다.
- 참고용으로 png 파일만 슬라이드에 삽입하였습니다.

연간 등락률 Boxplot

회귀를 이용한 투자모델

마치며..

- 분류의 경우 투자 성공케이스가 많이 생성되게 만든 모델이여서 좋은모델을 찾기는 쉽지않다고 판단됩니다.
- 그러나 아직 시도해볼방법은 많습니다. 기간과 피쳐를 추가하고 방법을 추가할 수 있습니다.
- 회귀의 경우 노이즈삽입의 정도에따라 좋은모델을 찾을 수 있을것으로 판단됩니다. 피쳐를 추가하고 피쳐에대한 가중치를 설정하여 모델서치를하고 투자케이스 이익평균을 metric으로 베스트모델을 찾는방식을 생각할 수 있습니다.
- 회귀, Istm, gru 등의 딥러닝방식에서 사용할 수 있습니다.
- 투자규칙에 따라 승률이나 이익이 달라질 수 있습니다.
- AI 투자자동화 모델생성시 꼭 선행되어 검증되어야할 부분이라 생각합니다.