Kapitel 3: Anwendungsschicht

- 3.1 Netzanwendungen
- 3.2 Web und HTTP (HyperText Transfer Protocol)
- 3.3 DNS (Domain Name System)
 - 3.3.1 Host Names
 - 3.3.2 DNS Struktur und LookUP
 - 3.3.3 Load-Balancing in Content Delivery Networks (CDN)
- 3.4 Weitere Anwendungsprotokolle: Mail und FTP

Namen und Adressen im Internet

- Host-Name (e.g., www.cs.princeton.edu)
 - mnemonisch (für Menschen lesbar und sinnbehaftet), variable Länge, von Menschen verstanden
 - hierarchisch strukturiert, nach Organisation vergeben
- **IP Adresse** (e.g., 128.112.7.156)
 - numerische 32-Bit Adresse, von Routern verstanden
 - hierarchisch strukturiert, nach Organisation und Topologie vergeben
- MAC Adresse, physikalische Adresse (e.g., 00-15-C5-49-04-A9)
 - numerische 48-Bit Adresse, von Netzwerkadaptern verstanden
 - unstrukturiert, nicht-hierarchisch, kein Bezug zur Netz-Topologie

Zuweisung von Namen und Adressen

- Host-Name: www.cs.princeton.edu
 - Domain: ICANN (Internet Corporation for Assigned Names and Numbers)
 vergibt Top-Level Domains zur Verwaltung an NICs (Network Information
 Center), die wiederum Sub-Domains an Registrare zur Vergabe der Domains an
 Endkunden übergeben
 - .de: DENIC (www.denic.de)
 - Host-Name: lokaler Administrator weißt den Host-Namen innerhalb der Domain zu
- IP Adresse: 128.112.7.156
 - Prefixes: ICANN (IANA, Internet Assigned Numbers Authority), regionale Stellen, und ISPs
 - Hosts: statisch oder mit DHCP konfiguriert (Dynamic Host Configuration Protocol, siehe Kapitel 4)
- MAC Adresse: 00-15-C5-49-04-A9
 - Blöcke: von der IEEE an Hersteller vergeben
 - Netzwerkadapter/Netzwerkkarte: vom Hersteller zugewiesen
 - oft frei konfigurierbar

Kapitel 3: Anwendungsschicht

- 3.1 Netzanwendungen
- 3.2 Web und HTTP (HyperText Transfer Protocol)
- 3.3 DNS (Domain Name System)
 - 3.3.1 Host Names
 - 3.3.2 DNS Struktur und LookUP
 - 3.3.3 Load-Balancing in Content Delivery Networks (CDN)
- 3.4 Weitere Anwendungsprotokolle: Mail und FTP

Host-Name und IP-Adresse

Domain Name System (DNS)

- Domain Name System:
 - Verteilte Datenbank
 - implementiert eine Hierarchie von Nameservern
 - Protokoll der Anwendungsschicht
 - wird von Hosts verwendet, um Namen aufzulösen (Abbildung zwischen Adresse und Name)
 - www.htwg-konstanz.de -> 141.37.20.17
 - bietet auch Auflösung nach Aliasen (anderen Namen)
 - bietet auch Auflösung nach Diensten, z.B. Mail-Exchange-Server
- Expliziter Aufruf
 - nslookup <hostname>

DNS: verteilte hierarchische Datenbank

- Eigenschaften
 - hierarchische Namensstruktur unterteilt in Zonen
 - verteilt über mehrere DNS Servers
- Hierarchie der DNS Server
 - Root Server
 - Top-level Domain (TLD) Server
 - Authoritative DNS Server

- Wer gibt die Antwort?
 - Lokale DNS Server und "Client Resolver"

DNS Root Name Servers

- Es gibt 13 (A-M) Root-Server Domains (Namen)
 - jede Domain wird von einem Unternehmen betrieben
 - der Dienst einer Root-Server-Domain wird von zahlreichen Servern umgesetzt
 - Karte: root-server.org

TLD und Autoritativer Server

- Top-Level-Domain (TLD)-Server:
 - verantwortlich für com, org, net, edu etc. sowie für alle Länder-Domains,
 z.B. de, uk, fr, ca, jp
 - "Network Solutions" ist verantwortlich für den "com" TLD-Server
 - "Denic" ist verantwortlich für den "de" TLD-Server
- Autoritativer DNS-Server:
 - DNS-Server einer Organisation, der eine autorisierte Abbildung der Namen dieser Organisation auf IP-Adressen anbietet
 - gespeichert in einem Zone-File als Resource Records
 - Verwaltet von der entsprechenden Organisation oder einem Service Provider
- Alternative DNS Server:
 - Google bietet mit Public Google DNS (8.8.8.8 und 8.8.4.4) eine eigene öffentliche DNS Infrastruktur an
 - es gibt auch weitere DNS Infrastrukturen, beispielsweise ist mit Quad9 (9.9.9.9) eine "datenschutzfreundliche" Alternative zu Public Google DNS gestartet worden
 - alternative DNS Server werden von ISPs genutzt, die keinen eigenen lokalen DNS Server anbieten oder k\u00f6nnen von Privatpersonen direkt konfiguriert werden

DNS: Iterativer Ablauf einer Anfrage (Query)

- Host an cis.poly.edu erfragt IP-Adresse von gaia.cs.mass.edu
- Rekursive Anfragen:
 - angefragter Name-Server muss
 Anfrage auflösen und mit IP
 Adresse oder Fehler antworten
 - Anfrage des Hosts an den lokalen
 DNS Server
- Iterative Anfragen:
 - angefragter Name-Server antwortet mit nächstem zuständigem Name-Server
 - "Keine Ahnung, frag doch diesen Server"
 - lokaler Name-Server "hangelt" sich durch die Hierarchie

DNS Caching

- Latenz der DNS Anfragen
 - z.B. 1s Latenz vor dem Starten eines Download
 - Cachen verringert Overhead und Verzögerung
 - kleine Anzahl von Top-level
 Servern, die sich selten ändern
 - Populäre Seiten werden oft besucht
- Wo DNS Einträge cachen?
 - Lokaler DNS Server
 - Betriebssystem
 - ipconfig /displaydns
 - ipconfig /flushdns
 - Browser
- Konsistenz der gecachten Einträge
 - Time-to-live (TTL)
 - problematisch bei Änderung einer IP-Adresse während TTL

Namen Auflösen mit DNS

- Lokaler (rekursiver) DNS Server ("Default Name Server")
 - gehört nicht in die DNS-Server-Hierarchie
 - typischerweise in der Nähe des Hosts, der eine Anfrage stellt
 - entweder auf dem Host konfiguriert oder über DHCP (Kapitel 4)
- Anwendung auf dem Client
 - extrahiert den Server-Namen z.B. von der URL
 - nutzt Befehle gethostbyname() oder getaddrinfo() um die Adresse zu erhalten
- Anwendung auf dem Server
 - extrahiert die IP Adresse des Clients vom Socket
 - kann gethostbyaddr() nutzen, um den Host-Namen des Clients festzustellen
- Proxy:
 - extrahiert Server-Namen aus GET-Request und löst diesen auf
- NSLOOKUP
 - Windows: nslookup in cmd
 - im Internet: <u>network-tools.com/nslook/</u>
- Alternative:
 - Google und andere Firmen stellen öffentliche DNS Server zur Verfügung
 - Ziel: aktuellere Einträge, kürzere Delays

DNS Security und Privacy

- DNS ist einer der wichtigsten Angriffsvektoren, über den zahlreiche Angriffe gefahren werden
 - DNS Spoofing oder HiJacking: Übernahme oder Manipulation eines DNS Resolvers (lokaler DNS Server), um Hostnamen auf IP-Adressessen des Angreifers abzubilden, z.B. einer Phishing-Seite
 - https mit Zertifikat hilft
 - ABER: Fallback auf http wird nicht erkannt, Zertifikatfehler wird ignoriert
 - Denial-of-Service (DOS) Angriffe auf DNS-Server
 - DNS Tunneling: Nutzen des DNS-Protokolls, um Daten durch eine Firewall zu schleußen.
 DNS-Verkehr ist kritisch und wird oft nicht (ausreichend) überwacht.

DNS Privacy

- der Betreiber des lokalen DNS Servers weiß, welche Web-Seiten Sie laden
- wenn DNS nicht verschlüsselt ist, kann das auch jeder herausfinden, der im Netz mithört oder in der Lage ist einen Fake-DNS-Server zu betreiben

DNS Maßnahmen

- DNSSEC: überträgt signierte DNS Records
- DNS über HTTPS: Verschlüsselung von DNS Anfragen, normales DNS ist unverschlüsselt und erlaub Man-in-the-Middle Attacken
- Redundante Infrastruktur oder DNS Firewall gegen Denial-of-Service Attacken
- Konfigurieren eines vertrauenswürdigen DNS Servers
 - Vielleicht 9.9.9.9? Aber wie sichergehen?

Kapitel 3: Anwendungsschicht

- 3.1 Netzanwendungen
- 3.2 Web und HTTP (HyperText Transfer Protocol)
- 3.3 DNS (Domain Name System)
 - 3.3.1 Host Names
 - 3.3.2 DNS Struktur und LookUP
 - 3.3.3 Load-Balancing in Content Delivery Networks (CDN)
- 3.4 Weitere Anwendungsprotokolle: Mail und FTP

Content Distribution Network (CDN)

- Proaktive Content Replikation
 - Content-Provider (e.g., CNN) hat einen Vertrag mit einem CDN
- CDN repliziert Content
 - auf vielen Serverfarmen in den verschiedenen Regionen des Internets
- Updaten der Replikas
 - Updates werden gepusht, wenn sich der Inhalt ändert (proaktiv)
- Unterschied Cache / CDN
 - Cache: reaktiv
 - CDN: proaktiv

Strategien und Verfahren zur Auswahl des Servers

- Ziele:
 - hohe Verfügbarkeit, Load-Balancing, Performance, Kostenreduktion
- Strategien:
 - Live-Server, niedrigste Last, nächster Server, günstigste Serverfarm
- Mechanismen:
 - HTTP redirect
 - DNS basierte Serverauswahl
- DNS wird von CDNs genutzt,
 - um Lokalität zu erzielen, indem weltweiter Host-Name wird auf IP-Adresse des besten lokalen Servers abgebildet
 - Beobachtung aus dem Labor: die Ping-Zeiten vieler Web-Seiten liegen bei 10-20ms. Der Hostame wird von DNS auf die IP-Adresse eines lokalen CDN-Datacenters abgebildet
 - um Load Balancing (Lastausgleich) zwischen Servern zu erzielen

HTTP Redirection

Prinzip

 Server antwortet mit HTTP Redirect Statuscode (3xx) und teilt die Adresse mit, unter der die Ressource zu finden ist

Vorteil

- präzise Kontrolle
- Serverwahl nach Client-IP

Nachteil

- zusätzliche RTTs für TCP Verbindungsaufbau
- Overhead für den Server

DNS-basierte Serverauswahl

Prinzip:

 DNS liefert den vom CDN bevorzugten Server

Vorteil

- keine zusätzlichen TCP-Verbindungen
- DNS Caching reduziert
 Overhead

Nachteil

- Auswahl aufgrund der IP des lokalen DNS Servers
- kleine TTL notwendig

Akamai

Servers

- Servers: ~100,000
- Networks: ~1,000
- Countries: ~70

Kunden

Apple, BBC, FOX, GM IBM,
 MTV, NASA, NBC, NFL,
 NPR, Puma, Red Bull,
 Rutgers, SAP, ...

Anfragen

- Milliarden pro Tag
- 50% in den Top45 Netzen
- 15-20% des weltweiten
 Netzverkehrs

Akamai

- DNS Eintrag im autoritativen Name Server enthält nur ein Alias, keine IP-Adresse
- Lokaler Name Server kontaktiert Akamai Name Server, um die IP-Adresse zu erhalten
- Akamai entscheidet aufgrund interner Strategie, welcher Web-Server der geschickteste ist
 - Akamai betreibt auch eine Hierarchie von DNS Servers

Zusammenfassung DNS

- mit DNS werden Hostnamen auf IP-Adressen abgebildet
- der lokale (rekursive) DNS Server stellt die Anfrage, die der autoritative DNS Server für seine Domäne beantwortet
 - der lokale DNS Server findet den richtigen autoritativen DNS Server über die DNS Hierarchie
- DNS Anfragen werden von Browser, Betriebssystem und lokalem DNS Server gecacht
- DNS wird von CDNs genutzt, um Anfragen zu lenken
 - zu lokalen, wenig ausgelasteten oder aus sonstigen Gründen favorisierten
 Datenzentren/Servern
- DNS ist kritisch hinsichtlich Privacy und Sicherheit
 - Augen auf bei der Auswahl des DNS Servers
 - https://avoidthehack.com/best-dns-privacy (nicht geprüft)