Supervised Machine Learning

- Used to solve problems where we want to make predictions
- Always need labelled business data
- Supervised ML algorithms learn from data, a trained supervised model does not carry the training data, it carries the patterns in some mathematical format.
- A trained supervised model when deployed to production, it does not learn in production, it stays static in production. It only takes real data and makes predictions in production.

Accuracy

	Actual	Prediction	
1	0	0	\vdash
l	0	0	V
3	<u> </u>	0	
	0	1	
	1	1) 1/	\checkmark
•	(i)	1)~	~
٦ (1	0	
2 (1	0	
9	D	0	
	0	0	
•	0	1	
	①	0	
רו (1	0	
17	0	0	V
ک	0	0	
	0	0	~
-	0	0	V
٠	0	0	
l,	0	0	~
杪	1	0	

Accuracy =
$$11/20 = 0.55$$

Recall = $2/9=0.2222$
Precision = $2/4 = 0.5$

$$f_1$$
 score = $\frac{2}{\frac{1}{R} + \frac{1}{P}}$

Performance analysis Test data - 100 customers Acutal 90 - 0 - not leave 10 - 1 - left

Prediction 95 - 0 - not leave - 90 05 - 1 - left - 05

Accuracy = 95/100 = 0.95Relevant accuracy (recall - accuracy in class 1) = 5/10 = 0.5 Prediction - model2 80 - 0 - not leave - 80 20 - 1 - leave - 10

Accuracy = 90/100 = 0.9Recall = 10/10 = 1

Journey of any organization with data

1. Step 1

- a. Question what has happened in past?, what is happening now?
- b. These questions are usually permanent and continuous.
- c. Descriptive Analytics Business Intelligence
- d. We build dashboards which show important KPIs answering business questions
- e. Tools: Power BI / Tableau
- f. Technology: Data Visualization, Statistics

2. Step 2

- a. Question why it has happened in the past?
- b. These questions are occasional, may occur less often.

- c. Exploratory Analytics / Root Cause Analytics
- d. Based on need, we perform detailed EDA and create a report
- e. Tools: Python, R, Hadoop, spark
- f. Technology: Data Visualization, Statistics

3. Step 3

- a. Question: What will happen tomorrow?
- b. These question rise with growth of business, once raised, these question become permanent need of the business.
- c. Predictive Analytics Predictive Modelling
- d. We build predictive models and deploy in production
- e. Tools: Python, R, spark
- f. Technology: Supervised Machine Learning algorithm

4. Step 4

- a. Questions: How can we make it happen?
- b. These questions are more aspiring ones, but less realizable with less data
- c. Prescriptive Analytics
- d. We build prescriptive models
- e. Tools: Spark, hadoop
- f. Technology: Unsupervised ML