Classroom Exercises

The symbol 2^{-1} stands for the multiplicative inverse of 2, or $\frac{1}{2}$. Give the value of each of the following.

- 1. 3-1
- 2 7-1
- 3. $(\frac{4}{5})^{-1}$
- 4. $(2^{-1})^{-1}$

The translation T maps all points five units to the right. Describe each of the following transformations.

5. T^2

6. T^3

8. T-2

- 9. $T \circ T^{-1}$

The rotation \mathcal{R} maps all points 120° about G, the center of equilateral $\triangle ABC$. Give the image of A under each rotation.

11. %

12. R2

13. R3

14. R6

15. \mathcal{R}^{-1}

16. R-2

- 17. $\mathcal{R}^2 \circ \mathcal{R}^{-2}$
- 18. $\mathcal{R}^2 \circ \mathcal{R}^{-3}$
- 19. R100

- 20. What number is the identity for multiplication?
- 21. The product of any number t and the identity for multiplication is $\frac{1}{2}$.
- 22. The product of any transformation T and the identity is $\frac{?}{}$.
- 23. State the inverse of each transformation.
- **b.** $\mathcal{R}_{0.30}$
- c. $T:(x, y) \to (x 4, y + 1)$
- **d.** $D_{0,-1}$
- 24. Name an important difference between products of numbers and products of transformations.

Written Exercises

Give the value of each of the following.

- 1. 4-1
- 2.9^{-1}
- 3. $(\frac{2}{3})^{-1}$
- 4. $(5^{-1})^{-1}$

The rotation \mathcal{R} maps all points 90° about O, the center of square ABCD. Give the image of A under each rotation.

6. R3

8. R-1

9. 97-2

10. \mathcal{R}^{-3}

11. $\mathcal{R}^{-3} \circ \mathcal{R}^3$

12. R5

13. R⁵⁰

Complete.

- 14. By definition, the identity mapping I maps every point P to $\frac{?}{}$.
- 15. H_0^2 is the same as the mapping $\frac{?}{}$.
- 16. The inverse of H_0 is $\frac{?}{}$.
- 17. H_0^3 is the same as the mapping $\frac{?}{}$.