

2D boundary integral equations and the Nyström method

Alex Barnett¹ and Fruzsina Agocs¹

Computational Tools 2024 BIE workshop. Day 1, 6/10/24

¹Center for Computational Mathematics, Flatiron Institute, Simons Foundation

Given: i) function $\sigma(t)$ defined on interval $[0,2\pi)$, periodic: $\sigma(2\pi)=\sigma(0)$, etc ii) "kernel" function k(t,s) defined on square $[0,2\pi)^2$,

Integral operator K acts on σ to give another function $K\sigma$:

$$(K\sigma)(t):=\int_0^{2\pi}k(t,s)\sigma(s)ds, \quad t\in[0,2\pi)$$
 continuous analog of matrix-vector prod. Ax

Given: i) function $\sigma(t)$ defined on interval $[0, 2\pi)$, periodic: $\sigma(2\pi) = \sigma(0)$, etc ii) "kernel" function k(t, s) defined on square $[0, 2\pi)^2$,

Integral operator K acts on σ to give another function $K\sigma$:

$$(K\sigma)(t) := \int_0^{2\pi} k(t,s)\sigma(s)ds, \quad t \in [0,2\pi)$$

continuous analog of matrix-vector prod. Ax

$$\sigma(t)+\int_0^{2\pi}k(t,s)\sigma(s)ds=f(t),\;\;t\in[0,2\pi)$$

Given: i) function $\sigma(t)$ defined on interval $[0, 2\pi)$, periodic: $\sigma(2\pi) = \sigma(0)$, etc ii) "kernel" function k(t, s) defined on square $[0, 2\pi)^2$,

Integral operator K acts on σ to give another function $K\sigma$:

$$(K\sigma)(t) := \int_0^{2\pi} k(t,s)\sigma(s)ds, \quad t \in [0,2\pi)$$

continuous analog of matrix-vector prod. Ax

Integral equation: $(I + K)\sigma = f$, ie

$$\sigma(t)+\int_0^{2\pi}k(t,s)\sigma(s)ds=f(t),\;\;t\in[0,2\pi)$$

If kernel continuous, or "weakly" singular (integrable), K is compact:

- eigenvalues $(K\phi_k = \lambda_k \phi_k)$ discrete, with $\lim_{k \to \infty} \lambda_k = 0$ unless some $\lambda_k = -1$, 2nd kind IE has at most one soln: Nul $(I + K) = \{0\}$
- Nul $(I + K) = \{0\}$ \Rightarrow existence of solution for any f Fredholm Alternative like square matrix (finite-dim), recall: uniqueness ⇒ consistent for any RHS

Given: i) function $\sigma(t)$ defined on interval $[0, 2\pi)$, periodic: $\sigma(2\pi) = \sigma(0)$, etc ii) "kernel" function k(t, s) defined on square $[0, 2\pi)^2$,

Integral operator K acts on σ to give another function $K\sigma$:

$$(K\sigma)(t):=\int_0^{2\pi}k(t,s)\sigma(s)ds, \quad t\in[0,2\pi)$$
 continuous analog of matrix-vector prod. Ax

Integral equation: $(I + K)\sigma = f$, ie

$$\sigma(t)+\int_0^{2\pi}k(t,s)\sigma(s)ds=f(t),\;\;t\in[0,2\pi)$$

If kernel continuous, or "weakly" singular (integrable), K is compact:

- eigenvalues $(K\phi_k = \lambda_k \phi_k)$ discrete, with $\lim_{k \to \infty} \lambda_k = 0$ unless some $\lambda_k = -1$, 2nd kind IE has at most one soln: Nul $(I + K) = \{0\}$
- Nul $(I + K) = \{0\}$ \Rightarrow existence of solution for any f Fredholm Alternative like square matrix (finite-dim), recall: uniqueness ⇒ consistent for any RHS

Contrast 1st kind IE $K\sigma = f$ is ill-posed problem (unstable)!

Simplest quadrature for periodic funcs: periodic trapezoid rule (PTR)

$$\int_0^{2\pi} f(t) dt pprox \sum_{j=1}^N rac{2\pi j}{N} f\left(rac{2\pi j}{N}
ight) = \sum_{j=1}^N w_j f(t_j)$$
 $w_j = weights, t_j = nodes$

For f smooth, superalgebraically convergent ("spectral"): error $= \mathcal{O}(N^{-p})$ for any p

Simplest quadrature for periodic funcs: periodic trapezoid rule (PTR)

$$\int_0^{2\pi} f(t)dt pprox \sum_{j=1}^N rac{2\pi j}{N} f\left(rac{2\pi j}{N}
ight) = \sum_{j=1}^N w_j f(t_j)$$
 w_j =weights, t_j =nodes

For f smooth, superalgebraically convergent ("spectral"): error $= \mathcal{O}(N^{-p})$ for any p

Apply quadr. to integral in 2nd kind IE: call the resulting approx soln $\tilde{\sigma}$

$$\tilde{\sigma}(t) + \sum_{j=1}^{N} k(t, t_j) w_j \tilde{\sigma}(t_j) = f(t), \quad t \in [0, 2\pi)$$
 (*)

Simplest quadrature for periodic funcs: periodic trapezoid rule (PTR)

$$\int_0^{2\pi} f(t)dt \approx \sum_{j=1}^N \frac{2\pi}{N} f\left(\frac{2\pi j}{N}\right) = \sum_{j=1}^N w_j f(t_j) \qquad w_j = \text{weights}, \quad t_j = \text{nodes}$$

For f smooth, superalgebraically convergent ("spectral"): error $= \mathcal{O}(N^{-p})$ for any p

Apply quadr. to integral in 2nd kind IE: call the resulting approx soln $\tilde{\sigma}$

$$\tilde{\sigma}(t) + \sum_{j=1}^{N} k(t, t_j) w_j \tilde{\sigma}(t_j) = f(t), \quad t \in [0, 2\pi)$$
 (*)

Holds for all t; in particular, holds at each t_i , i = 1, ..., N, giving:

$$\sigma_i + \sum_{j=1}^{N} k(t_i, t_j) w_j \sigma_j = f(t_i), \quad i = 1, \dots, N$$
 where $\sigma_i \coloneqq \tilde{\sigma}(t_i)$

Simplest quadrature for periodic funcs: periodic trapezoid rule (PTR)

$$\int_0^{2\pi} f(t) dt \approx \sum_{j=1}^N \frac{2\pi}{N} f\left(\frac{2\pi j}{N}\right) = \sum_{j=1}^N w_j f(t_j) \qquad w_j = \text{weights}, \quad t_j = \text{nodes}$$
 For f smooth, superalgebraically convergent ("spectral"): error $= \mathcal{O}(N^{-p})$ for any p

Apply quadr. to integral in 2nd kind IE:

call the resulting approx soln $\tilde{\sigma}$

$$\tilde{\sigma}(t) + \sum_{j=1}^{N} k(t, t_j) w_j \tilde{\sigma}(t_j) = f(t), \quad t \in [0, 2\pi)$$
 (*)

Holds for all t; in particular, holds at each t_i , i = 1, ..., N, giving:

$$\sigma_i + \sum_{j=1}^N k(t_i, t_j) w_j \sigma_j = f(t_i), \quad i = 1, \dots, N$$
 where $\sigma_i := \tilde{\sigma}(t_i)$

Write as:
$$A\sigma = \mathbf{f}$$
 $N \times N$ lin sys, entries $a_{ij} = \delta_{ij} + k(t_i, t_j)w_j$, and $f_j := f(t_j)$

solve? dense direct $\mathcal{O}(N^3)$; dense iter. $\mathcal{O}(N^2)$; fast iter. $\approx \mathcal{O}(N)$; fast direct $\approx \mathcal{O}(N^{(d+1)/2})$

Why want 2nd kind? eigs(A) accumulate only at $+1 \Rightarrow$ iterative converges fast

Simplest quadrature for periodic funcs: periodic trapezoid rule (PTR)

$$\int_0^{2\pi} f(t) dt \approx \sum_{j=1}^N \frac{2\pi}{N} f\left(\frac{2\pi j}{N}\right) = \sum_{j=1}^N w_j f(t_j) \qquad w_j = \text{weights}, \quad t_j = \text{nodes}$$
 For f smooth, superalgebraically convergent ("spectral"): error = $\mathcal{O}(N^{-p})$ for any p

Apply quadr. to integral in 2nd kind IE:

call the resulting approx soln $\tilde{\sigma}$

$$\tilde{\sigma}(t) + \sum_{j=1}^{N} k(t, t_j) w_j \tilde{\sigma}(t_j) = f(t), \quad t \in [0, 2\pi)$$
 (*)

Holds for all t; in particular, holds at each t_i , i = 1, ..., N, giving:

$$\sigma_i + \sum_{j=1}^{N} k(t_i, t_j) w_j \sigma_j = f(t_i), \quad i = 1, \dots, N$$
 where $\sigma_i := \tilde{\sigma}(t_i)$

Write as:
$$A\sigma = \mathbf{f}$$
 $N \times N$ lin sys, entries $a_{ij} = \delta_{ij} + k(t_i, t_j)w_j$, and $f_j := f(t_j)$

solve? dense direct $\mathcal{O}(N^3)$; dense iter. $\mathcal{O}(N^2)$; fast iter. $\approx \mathcal{O}(N)$; fast direct $\approx \mathcal{O}(N^{(d+1)/2})$

Why want 2nd kind? eigs(A) accumulate only at $+1 \Rightarrow$ iterative converges fast

Sometimes for BIE (eg, far-field eval), node values $\{\sigma_i\}_{i=1}^N$ suffice. If not, interpolate from them to any $t \in [0, 2\pi)$. Two approaches:

- either: rearrange (*) to give $\tilde{\sigma}(t) = \ldots$, called "Nyström interpolant" (rare)
 or (common): use local high-order Lagrange (or global spectral) interpolation:

Demo Nyström on interval (1D)

```
kfun = Q(t,s) exp(3*cos(t-s)):
                                                    % smooth convolutional kernel, periodic domain [0.2pi)
 ffun = Q(t) cos(5*t+1):
                                                    % smooth data (RHS) func
 N = 30:
                                                    % number of unknowns: should study convergence as N grows...
 t = 2*pi/N*(1:N): w = 2*pi/N*ones(1.N):
                                                    % PTR nodes and weights, row vecs
 A = eye(N) + bsxfun(kfun,t',t)*diag(w);
                                                    % identity plus fill k(t_i, t_j)w_j for i, j=1..N
 rhs = ffun(t');
                                                    % col vec
                                                    % dense direct square solve (pivoted LU), gives col vec
 sigmaj = A\rhs;
   system matrix A
                                                                             - self-con
                                                                                          "self-convergence":
                                                                              true er
                             0.5
                                                           10 -5
10
                                                                                         use N=40 as "true"
                                                        00° ui 10<sup>-10</sup>
                           funcs
20
                                                                                          f and k smooth
30
                             -0.5
                                                                                             \sigma smooth
40
        20
           30 40
                                                          10 -15
                                                                                          ⇒ spectral conv?
                                                                     20
```

Thm. (Anselone, Kress,...): error at node values (and Nyström interpolant) same order as that of quadrature rule applied to integrand $k(t,\cdot)\sigma$.

Demo Nyström on interval (1D)

```
 kfun = \textbf{0(t,s)} \exp(3*\cos(t-s)); & \textit{x mooth convolutional kernel, periodic domain } [0,2pi) \\ ffun = \textbf{0(t)} \cos(5*t+1); & \textit{x mooth data } (RHS) \textit{ func} \\ \textbf{N} = 30; & \textit{x number of unknowns: should study convergence as N grows...} \\ \textbf{t} = 2*pi/N*(1:N); & \textbf{w} = 2*pi/N*ones(1,N); & \textit{PTR nodes and weights, row vecs} \\ \textbf{A} = eye(\textbf{N}) + bsxfun(kfun,t',t)*diag(\textbf{w}); & \textit{x identity plus fill } k(t_i,t_j)w_j \textit{ for } i,j=1..N \\ \textbf{rhs} = ffun(t'); & \textit{x col vec} \\ \textbf{sigmaj} = \textbf{A}\textbf{rhs}; & \textit{x dense direct square solve } (pivoted LU), \textit{ gives col vec} \\ \end{aligned}
```


"self-convergence": use N=40 as "true"

f and k smooth $\Rightarrow \sigma$ smooth \Rightarrow spectral conv?

Thm. (Anselone, Kress,...): error at node values (and Nyström interpolant) same order as that of quadrature rule applied to integrand $k(t,\cdot)\sigma$.

• Then, f or k nonsmooth? worse (here algebraic) convergence using plain PTR rule:

Qu: why does order appear to improve at end?

Eg PDE: Poisson eqn $\Delta u = g$ $\Delta := (\partial/\partial x_1)^2 + (\partial/\partial x_2)^2$ Laplacian notation: $\mathbf{x} := (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ is a point. This frees up $\mathbf{y} \in \mathbb{R}^2$ as another point (not y-coord!) not well-posed unless add BC! BIEs are good for homogeneous PDEs (driving $g \equiv 0$)

Eg PDE: Poisson eqn
$$\Delta u = g$$
 $\Delta := (\partial/\partial x_1)^2 + (\partial/\partial x_2)^2$ Laplacian notation: $\mathbf{x} := (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ is a point. This frees up $\mathbf{y} \in \mathbb{R}^2$ as another point (not y-coord!) not well-posed unless add BC! BIEs are good for homogeneous PDEs (driving $g \equiv 0$)

A well-posed* BVP:

*exists, unique, continuous w.r.t. data $\Delta u = 0 \text{ in } \Omega$ PDE (u harmonic) $u = f \text{ on } \Gamma$ Dirichlet BC

Eg PDE: Poisson eqn
$$\Delta u = g$$
 $\Delta := (\partial/\partial x_1)^2 + (\partial/\partial x_2)^2$ Laplacian notation: $\mathbf{x} := (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ is a point. This frees up $\mathbf{y} \in \mathbb{R}^2$ as another point (not y-coord!) not well-posed unless add BC! BIEs are good for homogeneous PDEs (driving $g \equiv 0$)

A well-posed* BVP:

*exists, unique, continuous w.r.t. data $\Delta u = 0 \text{ in } \Omega$ PDE (u harmonic) $u = f \text{ on } \Gamma$ Dirichlet BC

Laplace fundamental soln: $\Phi(x, y) = \frac{1}{2\pi} \log \frac{1}{r}$ where $r := \|x - y\|$ obeys $-\Delta_x \Phi = -\Delta_y \Phi = \delta_x$ Φ harmonic except unit point-mass at 0

notation: \mathbf{n} points outwards, $\|\mathbf{n}\| = 1$, $u_n := \mathbf{n} \cdot \nabla u$

Green's 2nd identity:
$$\int_{\Gamma} v u_n - v_n u \, ds = \int_{\Omega} v \Delta u - (\Delta v) u \, dy$$

calculus

 $\Phi(\mathbf{x}, \mathbf{y})$

Eg PDE: Poisson eqn
$$\Delta u = g$$

$$\Delta:=(\partial/\partial x_1)^2+(\partial/\partial x_2)^2$$
 Laplacian

notation: $\mathbf{x} := (x_1, x_2) \in \mathbb{R}^2$ is a point. This frees up $\mathbf{y} \in \mathbb{R}^2$ as another point (not y-coord!) not well-posed unless add BC! BIEs are good for homogeneous PDEs (driving $g \equiv 0$)

A well-posed* BVP:

 $\Delta u = 0 \text{ in } \Omega$ PDE (u harmonic) $u = f \text{ on } \Gamma$ Dirichlet BC

 $\Phi(\mathbf{x}, \mathbf{y})$

Laplace fundamental soln:
$$\Phi(x, y) = \frac{1}{2\pi} \log \frac{1}{r}$$
 where $r := \|x - y\|$

obeys $-\Delta_{\mathbf{x}}\Phi = -\Delta_{\mathbf{v}}\Phi = \delta_{\mathbf{x}}$ Φ harmonic except unit point-mass at $\mathbf{0}$

notation: **n** points outwards, $\|\mathbf{n}\| = 1$, $u_n := \mathbf{n} \cdot \nabla u$

Green's 2nd identity:
$$\int_{\Gamma} v u_n - v_n u \, ds = \int_{\Omega} v \Delta u - (\Delta v) u \, dy$$
 calculus

warm-up: set u = BVP soln, $v \equiv 1$, G2I becomes $\int_{\Gamma} u_n ds - 0 = 0 - 0$: so u has zero flux

Eg PDE: Poisson eqn
$$\Delta u = g$$

$$\Delta:=(\partial/\partial x_1)^2+(\partial/\partial x_2)^2$$
 Laplacian

notation: $\mathbf{x} := (x_1, x_2) \in \mathbb{R}^2$ is a point. This frees up $\mathbf{y} \in \mathbb{R}^2$ as another point (not y-coord!) not well-posed unless add BC! BIEs are good for homogeneous PDEs (driving $g \equiv 0$)

A well-posed* BVP:

$$\Delta u = 0 \text{ in } \Omega$$
 PDE ($u \text{ harmonic}$)
 $u = f \text{ on } \Gamma$ Dirichlet BC

*exists. unique. continuous w.r.t. data $\Phi(\mathbf{x}, \mathbf{y})$

Laplace fundamental soln:
$$\Phi(\pmb{x}, \pmb{y}) = \frac{1}{2\pi} \log \frac{1}{r}$$
 where $r := \|\pmb{x} - \pmb{y}\|$ &

notation: **n** points outwards, $\|\mathbf{n}\| = 1$, $u_n := \mathbf{n} \cdot \nabla u$

Green's 2nd identity:
$$\int_{\Gamma} v u_n - v_n u \, ds = \int_{\Omega} v \Delta u - (\Delta v) u \, dy$$

calculus

warm-up: set u = BVP soln, $v \equiv 1$, G2I becomes $\int_{\Gamma} u_n ds - 0 = 0 - 0$: so u has zero flux

Now some fun: fix "target" $\mathbf{x} \in \Omega$, let $\mathbf{v} = \Phi(\mathbf{x}, \cdot)$, G2I gives: $\partial \Phi(\mathbf{x}, \mathbf{y}) / \partial n_{\mathbf{v}}$

Green's representation formula:

$$\int_{\Gamma} \Phi(x, y) u_n(y) - \frac{\partial \Phi(x, y)}{\partial n_y} u(y) \, ds_y = u(x) \quad \text{for } x \in \Omega$$

recovers soln from "Cauchy data" $(u, u_n)|_{\Gamma}$ also versions for Helmholtz, Stokes, Maxwell,...

 x_1

Layer potentials and their jump relations

Representations of harmonic functions off a curve Γ : "density" σ Single-layer potential $(\mathcal{S}\sigma)(\mathbf{x}) := \int_{\Gamma} \Phi(\mathbf{x},\mathbf{y}) \sigma(\mathbf{y}) d\mathbf{s}_{\mathbf{y}}$ charge sheet

Double-layer potential $(\mathcal{D}\sigma)(x) := \int_{\Gamma} \frac{\partial \Phi(x,y)}{\partial n_y} \sigma(y) ds_y$ dipole sheet

Layer potentials and their jump relations

Representations of harmonic functions off a curve Γ : "density" σ Single-layer potential $(S\sigma)(x) := \int_{\Gamma} \Phi(x,y) \sigma(y) ds_y$ charge sheet

Double-layer potential $(\mathcal{D}\sigma)(x) := \int_{\Gamma} \frac{\partial \Phi(x,y)}{\partial n_y} \sigma(y) ds_y$ dipole sheet

$$u^{\pm}(\mathbf{x}) := \lim_{h \to 0^{+}} u(\mathbf{x} \pm h\mathbf{n}_{\mathbf{x}})$$

$$u^{\pm}_{n}(\mathbf{x}) := \lim_{h \to 0^{+}} \mathbf{n}_{\mathbf{x}} \cdot \nabla u(\mathbf{x} \pm h\mathbf{n}_{\mathbf{x}})$$

Jump relations:

$$(S\sigma)^{\pm}=S\sigma$$
 S (Roman font) means *restriction* of S to Γ : a bdry int. op. $(\mathcal{D}\sigma)^{\pm}=(D\pm I/2)\sigma$ jump in potential equal to σ ; D restriction to Γ in P.V. sense $(S\sigma)^{\pm}_n=(D^T\mp I/2)\sigma$ jump in normal derivative $(\mathcal{D}\sigma)^{\pm}_n=T\sigma$ T hypersingular, kernel $\partial^2\Phi(\mathbf{x},\mathbf{y})/\partial\mathbf{n}_{\mathbf{x}}\partial\mathbf{n}_{\mathbf{y}}\sim 1/r^2$

• D smooth kernel on smooth Γ , while S always log (weakly) singular

Layer potentials and their jump relations

Representations of harmonic functions off a curve Γ : "density" σ Single-layer potential $(S\sigma)(x) := \int_{\Gamma} \Phi(x, y) \sigma(y) ds_y$ charge sheet

Double-layer potential $(\mathcal{D}\sigma)(\mathbf{x}) := \int_{\Gamma} \frac{\partial \Phi(\mathbf{x},\mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} \sigma(\mathbf{y}) ds_{\mathbf{y}}$ dipole sheet

$$u^{\pm}(\mathbf{x}) := \lim_{h \to 0^{+}} u(\mathbf{x} \pm h\mathbf{n}_{\mathbf{x}})$$

$$u^{\pm}_{n}(\mathbf{x}) := \lim_{h \to 0^{+}} \mathbf{n}_{\mathbf{x}} \cdot \nabla u(\mathbf{x} \pm h\mathbf{n}_{\mathbf{x}})$$

Jump relations:

$$(\mathcal{S}\sigma)^{\pm}=$$
 $\mathcal{S}\sigma$ \mathcal{S} (Roman font) means *restriction* of \mathcal{S} to Γ : a bdry int. op. $(\mathcal{D}\sigma)^{\pm}=$ $(D\pm I/2)\sigma$ jump in potential equal to σ ; D restriction to Γ in P.V. sense $(\mathcal{S}\sigma)^{\pm}_n=$ $(D^T\mp I/2)\sigma$ jump in normal derivative $(\mathcal{D}\sigma)^{\pm}_n=$ $T\sigma$ T hypersingular, kernel $\partial^2\Phi(\mathbf{x},\mathbf{y})/\partial\mathbf{n}_{\mathbf{x}}\partial\mathbf{n}_{\mathbf{y}}\sim 1/r^2$

• D smooth kernel on smooth Γ , while S always log (weakly) singular

Recap GRF in LP notation: u harmonic in $\Omega \Rightarrow \mathcal{S}u_n^- - \mathcal{D}u^- = u$ in Ω

Say wish to solve interior Dirichlet Laplace BVP:

or
$$\Delta u = 0$$
 in Ω PDE $u^- = f$ on Γ BC

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0 \text{ in } \Omega$$

Pick **representation**:
$$u = \mathcal{D}\sigma$$
, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE:
$$(I-2D)\sigma = -2f$$
 scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form?

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0 \text{ in } \Omega$$

Pick **representation**:
$$u = \mathcal{D}\sigma$$
, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE: $(I-2D)\sigma = -2f$ scaled to 2nd kind form

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent \odot

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Say wish to solve interior $\Delta u = 0$ in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0 \text{ in } \Omega$$

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE: $(I-2D)\sigma = -2f$ scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent \odot

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on Γ using arc-length measure ds_v . Usually not how Γ described...

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0 \text{ in } \Omega$$

Pick **representation**:
$$u = \mathcal{D}\sigma$$
, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE:
$$(I-2D)\sigma = -2f$$
 scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent ©

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on Γ using arc-length measure ds_v . Usually not how Γ described...

Parameterize the bdry
$$y(t)$$

Parameterize the bdry
$$y(t)$$
 $y: \mathbb{R} \to \mathbb{R}^2$, 2π -periodic, $\Gamma = \{y(t): t \in [0, 2\pi)\}$

change variable $ds_v = ||y'(t)|| dt$ abuse notation $\sigma(t) = \sigma(y(t))$

Say wish to solve interior Dirichlet Laplace BVP:

or
$$\Delta u = 0$$
 in Ω PDE $u^- = f$ on Γ BC

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE: $(I-2D)\sigma = -2f$ scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent \odot

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on Γ using arc-length measure ds_v . Usually not how Γ described...

Parameterize the bdry
$$y(t)$$
 $y: \mathbb{R} \to \mathbb{R}^2$, 2π -periodic, $\Gamma = \{y(t): t \in [0, 2\pi)\}$

change variable $ds_v = ||y'(t)|| dt$ abuse notation $\sigma(t) = \sigma(y(t))$

Get 1D IE:
$$\sigma(t) - 2\int_0^{2\pi} \frac{\partial \Phi(\boldsymbol{y}(t), \boldsymbol{y}(s))}{\partial \boldsymbol{n}_{\boldsymbol{y}(s)}} \sigma(s) \|\boldsymbol{y}'(s)\| ds = -2f(t), \ \ t \in [0, 2\pi)$$

familiar form $(I+K)\sigma=-2f$, with kernel $k(s,t)=\frac{-2}{2\pi}\frac{n_{y(s)}\cdot(y(t)-y(s))}{\|y(t)-y(s)\|^2}\|y'(s)\|$

formula on diagonal: $k(t,t) = \lim_{s \to t} k(t,s) = \kappa(t)/2\pi$, κ curvature of Γ (check!)

$$\Delta u = 0 \text{ in } \Omega$$
 PDE $u^- = f \text{ on } \Gamma$ BC

$$\Omega$$
 $y(t)$

Pick **representation**:
$$u = \mathcal{D}\sigma$$
, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE:
$$(I-2D)\sigma=-2f$$
 scaled to 2nd kind form

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns
$$u$$
 of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent \odot

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on
$$\Gamma$$
 using arc-length measure ds_y . Usually not how Γ described...
Parameterize the bdry $y(t)$ $y: \mathbb{R} \to \mathbb{R}^2$, 2π -periodic, $\Gamma = \{y(t): t \in [0, 2\pi)\}$

change variable $ds_v = ||y'(t)|| dt$ abuse notation $\sigma(t) = \sigma(y(t))$

Get 1D IE:
$$\sigma(t) - 2\int_0^{2\pi} \frac{\partial \Phi(y(t), y(s))}{\partial n_{y(s)}} \sigma(s) ||y'(s)|| ds = -2f(t), \ t \in [0, 2\pi)$$

familiar form
$$(I+K)\sigma=-2f$$
, with kernel $k(s,t)=\frac{-2}{2\pi}\frac{n_{\mathbf{y}(s)}\cdot(\mathbf{y}(t)-\mathbf{y}(s))}{\|\mathbf{y}(t)-\mathbf{y}(s)\|^2}\|\mathbf{y}'(s)\|$ formula on diagonal: $k(t,t)=\lim_{s\to t}k(t,s)=\kappa(t)/2\pi$, κ curvature of Γ (check!)

Now Nyström discretize with PTR, solve lin. sys. for $\sigma := \{\sigma_j\}_{j=1}^N$

Finally evaluate soln: $u(\mathbf{x}) = (\mathcal{D}\sigma)(\mathbf{x}) \stackrel{\text{PTR}}{\approx} \sum_{i=1}^{N} \frac{\mathbf{n}_{\mathbf{y}(t_i)} \cdot (\mathbf{x} - \mathbf{y}(t_i))}{2\pi \|\mathbf{x} - \mathbf{y}(t_i)\|^2} \|\mathbf{y}'(t_i)\|^2$

Interior Laplace Dirichlet BVP solve demo

```
a=0.7: b=1.0:
                                                                   % shape params (note a=1.b=0 unit circle)
Y = Q(t) \left[a*\cos(t)+b*\cos(2*t): \sin(t)\right]:
                                                                  % kite parameterization u(t)
Yp = Q(t) [-a*sin(t)-2*b*sin(2*t); cos(t)];
                                                                  % y', analytic
Y_{DD} = Q(t) [-a*cos(t)-4*b*cos(2*t); -sin(t)];
                                                                  % u'', analutic
N = 100:
t = 2*pi/N*(1:N); w = 2*pi/N*ones(1,N);
                                                                   % PTR nodes & weights
                                                                   % bdry nodes, 2-by-N
v = Y(t);
n = [0 \ 1; -1 \ 0] *Yp(t); speed = sqrt(sum(n.^2,1)); n = n./speed;
                                                                  % bdru normals
kappa = -sum(Ypp(t) .* n,1)./speed.^2;
                                                                   % bdry curvatures
r1 = y(1,:)'-y(1,:); r2 = y(2,:)'-y(2,:);
                                                                   % matrix of r=x-y (two vec cmpnts)
A = (-1/pi)*(n(1,:).*r1 + n(2,:).*r2) ./ (r1.^2+r2.^2):
                                                                   % off-diag (-1/pi) n.r/r^2
A(diagind(A)) = kappa/(2*pi);
                                                                   % overwrite diag elements
A = eye(N) + A*diag(speed.*w);
                                                                   % note Id gets no "speed weights"
uex = Q(x) ([1 0]*x) .* ([0 1]*x-0.3);
                                                                   % test u(x) = x 1(x 2-0.3), not summetric!
f = Q(t) uex(Y(t)):
                                                                   % read off its Dirichlet data
rhs = -2*f(t)';
                                                                   % solve. Leave u = D. sigma eval to reader
sigma = A\rhs;
```


demo_lapintdir.m

Interior Laplace Dirichlet BVP solve demo

```
a=0.7: b=1.0:
                                                                   % shape params (note a=1.b=0 unit circle)
Y = Q(t) \left[a*\cos(t)+b*\cos(2*t): \sin(t)\right]:
                                                                   % kite parameterization u(t)
Yp = Q(t) [-a*sin(t)-2*b*sin(2*t); cos(t)];
                                                                  % y', analytic
Ypp = Q(t) [-a*cos(t)-4*b*cos(2*t); -sin(t)];
                                                                   % u'', analutic
N = 100:
t = 2*pi/N*(1:N); w = 2*pi/N*ones(1,N);
                                                                   % PTR nodes & weights
                                                                   % bdry nodes, 2-by-N
v = Y(t);
n = [0 \ 1; -1 \ 0] *Yp(t); speed = sqrt(sum(n.^2,1)); n = n./speed;
                                                                  % bdru normals
kappa = -sum(Ypp(t) .* n,1)./speed.^2;
                                                                   % bdry curvatures
r1 = y(1,:)'-y(1,:); r2 = y(2,:)'-y(2,:);
                                                                   % matrix of r=x-y (two vec cmpnts)
A = (-1/pi)*(n(1,:).*r1 + n(2,:).*r2) ./ (r1.^2+r2.^2);
                                                                   % off-diag (-1/pi) n.r/r^2
A(diagind(A)) = kappa/(2*pi);
                                                                   % overwrite diag elements
A = eye(N) + A*diag(speed.*w);
                                                                   % note Id gets no "speed weights"
uex = Q(x) ([1 0]*x) .* ([0 1]*x-0.3);
                                                                   % test u(x) = x 1(x 2-0.3), not summetric!
f = Q(t) uex(Y(t)):
                                                                   % read off its Dirichlet data
rhs = -2*f(t)';
sigma = A\rhs;
                                                                   % solve. Leave u = D. sigma eval to reader
```


Interior Laplace Dirichlet BVP solve demo

```
a=0.7: b=1.0:
                                                                   % shape params (note a=1.b=0 unit circle)
Y = Q(t) \left[a*\cos(t)+b*\cos(2*t): \sin(t)\right]:
                                                                   % kite parameterization u(t)
Yp = Q(t) [-a*sin(t)-2*b*sin(2*t); cos(t)];
                                                                   % y', analytic
Y_{DD} = Q(t) [-a*cos(t)-4*b*cos(2*t); -sin(t)];
                                                                   % u'', analytic
N = 100:
t = 2*pi/N*(1:N); w = 2*pi/N*ones(1,N);
                                                                   % PTR nodes & weights
                                                                   % bdry nodes, 2-by-N
v = Y(t);
n = [0 \ 1; -1 \ 0] *Yp(t); speed = sqrt(sum(n.^2,1)); n = n./speed;
                                                                   % bdru normals
kappa = -sum(Ypp(t) .* n,1)./speed.^2;
                                                                   % bdry curvatures
r1 = y(1,:)'-y(1,:); r2 = y(2,:)'-y(2,:);
                                                                   % matrix of r=x-y (two vec cmpnts)
A = (-1/pi)*(n(1,:).*r1 + n(2,:).*r2) ./ (r1.^2+r2.^2);
                                                                   % off-diag (-1/pi) n.r/r^2
A(diagind(A)) = kappa/(2*pi);
                                                                   % overwrite diag elements
A = eve(N) + A*diag(speed.*w);
                                                                   % note Id gets no "speed weights"
uex = Q(x) ([1 0]*x) .* ([0 1]*x-0.3);
                                                                   % test u(x) = x 1(x 2-0.3), not summetric!
f = Q(t) uex(Y(t)):
                                                                   % read off its Dirichlet data
rhs = -2*f(t)';
sigma = A\rhs;
                                                                   % solve. Leave u = D. sigma eval to reader
```


Interior Laplace Dirichlet BVP solve demo

```
a=0.7: b=1.0:
                                                                   % shape params (note a=1.b=0 unit circle)
Y = Q(t) \left[a*\cos(t)+b*\cos(2*t): \sin(t)\right]:
                                                                   % kite parameterization u(t)
Yp = Q(t) [-a*sin(t)-2*b*sin(2*t); cos(t)];
                                                                   % y', analytic
Y_{DD} = Q(t) [-a*cos(t)-4*b*cos(2*t); -sin(t)];
                                                                   % v''. analytic
N = 100:
t = 2*pi/N*(1:N); w = 2*pi/N*ones(1,N);
                                                                   % PTR nodes & weights
                                                                   % bdry nodes, 2-by-N
v = Y(t);
n = [0 \ 1; -1 \ 0] *Yp(t); speed = sqrt(sum(n.^2,1)); n = n./speed;
                                                                   % bdru normals
kappa = -sum(Ypp(t) .* n,1)./speed.^2;
                                                                   % bdry curvatures
r1 = y(1,:)'-y(1,:); r2 = y(2,:)'-y(2,:);
                                                                   % matrix of r=x-y (two vec cmpnts)
A = (-1/pi)*(n(1,:).*r1 + n(2,:).*r2) ./ (r1.^2+r2.^2);
                                                                   % off-diag (-1/pi) n.r/r^2
A(diagind(A)) = kappa/(2*pi);
                                                                   % overwrite diag elements
A = eve(N) + A*diag(speed.*w);
                                                                   % note Id gets no "speed weights"
uex = Q(x) ([1 0]*x) .* ([0 1]*x-0.3);
                                                                   % test u(x) = x 1(x 2-0.3), not summetric!
f = Q(t) uex(Y(t)):
                                                                   % read off its Dirichlet data
rhs = -2*f(t)';
                                                                   % solve. Leave u = D. sigma eval to reader
sigma = A\rhs;
```


Note: special quadratures can fix near Γ -12 (Helsing, QBX...)

Debug: $\sigma \equiv -1 \implies u \equiv 1$, then test data from (generic!) soln u, and...

- **1** check/plot \mathbf{n} , κ . First test unit circle!
- 2 check Nyström matrix smooth at diag (before add I)

Indirect vs direct formulations

using Laplace interior Dirichlet BVP

So far "indirect" BIE: pick representation (eg $u=\mathcal{D}\sigma$), get BIE from JRs

So far "indirect" BIE: pick representation (eg $u = \mathcal{D}\sigma$), get BIE from JRs Alternative is "direct": take limit of GRF on Γ , rearrange to get BIE:

GRF
$$u = \mathcal{S}u^- - \mathcal{D}u_n^- \xrightarrow{\mathsf{JRs}} u_n^- = (D^T + I/2)u_n^- - Tu^- \xrightarrow{\mathsf{BC}} (D^T - I/2)u_n^- = Tf$$

Needs hypersingular apply ③. Then solve BIE for u_n^- , eval u via GRF (needs two LP evals)

So far "indirect" BIE: pick representation (eg $u=\mathcal{D}\sigma$), get BIE from JRs

GRF
$$u = \mathcal{S}u^{-} - \mathcal{D}u_{n}^{-} \xrightarrow{\mathsf{JRs}} u_{n}^{-} = (D^{T} + I/2)u_{n}^{-} - Tu^{-} \xrightarrow{\mathsf{BC}} (D^{T} - I/2)u_{n}^{-} = Tf$$

Alternative is "direct": take limit of GRF on Γ , rearrange to get BIE:

Needs hypersingular apply \odot . Then solve BIE for u_n^- , eval u via GRF (needs two LP evals)

Notice BIO $(D^T - I/2)$ adjoint of that for indirect (D - I/2) generally true. So, spectra the same, thus iterative convergence rates too

So far "indirect" BIE: pick representation (eg $u=\mathcal{D}\sigma$), get BIE from JRs

Alternative is "direct": take limit of GRF on Γ , rearrange to get BIE:

GRF
$$u = \mathcal{S}u^- - \mathcal{D}u_n^- \xrightarrow{\text{JRs}} u_n^- = (D^T + I/2)u_n^- - Tu^- \xrightarrow{\text{BC}} (D^T - I/2)u_n^- = Tf$$

Needs hypersingular apply \odot . Then solve BIE for u_n^- , eval u via GRF (needs two LP evals)

Notice BIO $(D^T - I/2)$ adjoint of that for indirect (D - I/2)

generally true. So, spectra the same, thus iterative convergence rates too

Indirect BIE	Direct BIE
unknown density (unphysical)	unknown is physical
RHS is plain data	RHS needs BIO apply to data
eval the representation (may be simpler)	eval the GRF

- indirect: more flexibility, but need math to prove equivalence to BVP
- accuracy differences for domains with corners (Hoskins–Rachh...)

recap: Laplace int. Dir.

$$\Delta u = 0$$
 in Ω $u^- = f$ on Γ uniqueness, existence $\forall f$

•
$$u = \mathcal{D}\sigma$$
 rep. $(D - I/2)\sigma = f$ BIE: well-cond.

Laplace int. Neu.

$$\Delta u = 0$$
 in Ω
 $u_n^- = g$ on Γ
require $\int_{\Gamma} g ds = 0$
unique only up to a const.

•
$$u = \mathcal{S}\sigma$$
 kernel $\equiv 1$, kills nullspace $(D^T + I/2 + 11^T)\sigma = g$ well-cond.

recap: Laplace int. Dir.

$$\Delta u = 0$$
 in Ω
 $u^- = f$ on Γ
uniqueness, existence $\forall f$

•
$$u = \mathcal{D}\sigma$$
 rep. $(D - I/2)\sigma = f$ BIE: well-cond.

Laplace ext. Dir.

$$\begin{array}{l} \Delta u = 0 \text{ in } \mathbb{R}^2 \backslash \overline{\Omega} \\ u^+ = f \text{ on } \Gamma \\ u_\infty := \lim_{\|\mathbf{x}\| \to \infty} u(\mathbf{x}) \text{ exists} \\ \text{uniqueness, existence } \forall f \end{array}$$

•
$$u = \mathcal{D}\sigma + \int_{\Gamma} \sigma ds$$
 modified rep. $(D + I/2 + 11^T)\sigma = f$ well-cond.

Laplace int. Neu.

$$\Delta u=0$$
 in Ω
$$u_n^-=g \ {\rm on} \ \Gamma$$
 require $\int_\Gamma g ds=0$ unique only up to a const.

•
$$u = \mathcal{S}\sigma$$
 kernel \equiv 1, kills nullspace $(D^T + I/2 + 11^T)\sigma = g$ well-cond.

Laplace ext. Neu.

$$\Delta u=0$$
 in $\mathbb{R}^2\backslash\overline{\Omega}$ $u_n^+=g$ on Γ require $\int_\Gamma g ds=0$ and $u_\infty=0$ unique

•
$$u = S\sigma$$

 $(D^T - I/2)\sigma = g$ well-cond.

recap: Laplace int. Dir.

$$\Delta u = 0$$
 in Ω $u^- = f$ on Γ uniqueness, existence $\forall f$

•
$$u=\mathcal{D}\sigma$$
 rep. $(D-I/2)\sigma=f$ BIE: well-cond.

Laplace ext. Dir.

$$\Delta u = 0$$
 in $\mathbb{R}^2 \backslash \overline{\Omega}$
 $u^+ = f$ on Γ
 $u_{\infty} := \lim_{\|\mathbf{x}\| \to \infty} u(\mathbf{x})$
uniqueness, existence $\forall f$

•
$$u = \mathcal{D}\sigma + \int_{\Gamma} \sigma ds$$
 modified rep. $(D + I/2 + 11^T)\sigma = f$ well-cond.

Laplace int. Neu.

$$\Delta u = 0 \text{ in } \Omega$$

$$u_n^- = g - \Gamma$$

$$\text{requir} \quad \text{rds} = 0$$

$$\text{unit} \quad \text{sonly up to a const.}$$

$$= S\sigma \quad \text{kernel} \equiv 1, \text{kills nullspace}$$

$$\text{Example } T + I/2 + 11^T)\sigma = g \quad \text{well-cond.}$$

$$\text{Dir.} \quad \text{Laplace ext. Neu.}$$

$$\Delta u = 0 \text{ in } \mathbb{R}^2 \backslash \overline{\Omega}$$

$$\Delta u=0$$
 in $\mathbb{R}^2\backslash\overline{\Omega}$ $u_n^+=g$ on Γ require $\int_\Gamma g ds=0$ and $u_\infty=0$ unique

•
$$u = S\sigma$$

 $(D^T - I/2)\sigma = g$ well-cond.

recap: Laplace int. Dir.

$$\Delta u = 0$$
 in Ω
 $u^- = f$ on Γ
uniqueness, existence $\forall f$

•
$$u = \mathcal{D}\sigma$$
 rep.

$$(D-I/2)\sigma = f$$
 BIE: well-con σ

Laplace ext. Dir.

Laplace ext. Dir.
$$\Delta u = 0 \text{ in } \mathbb{R}^2 \backslash \overline{\Omega}$$

$$u^+ = f \text{ on } \Gamma$$

$$u_\infty := \lim_{\|\mathbf{x}\| \to \infty} u(\mathbf{x})$$
 uniqueness, existence $\forall f$

•
$$u = \mathcal{D}\sigma + \int_{\Gamma} \sigma ds$$
 modified rep.
 $(D + I/2 + 11^T)\sigma = f$ well-cond.

Laplace int. Neu.

$$\Delta u = 0 \text{ in } \Omega$$

$$u_n^- = g \qquad \Gamma$$

$$requir \qquad rds = 0$$

$$uni \qquad g \qquad \text{only up to a const.}$$

$$\mathcal{S} = \mathcal{S}\sigma \qquad \text{kernel} \equiv 1, \text{ kills nullspace}$$

$$\mathcal{S} = \mathcal{S}\sigma \qquad \text{kernel} \equiv 1, \text{ kills nullspace}$$

$$\mathcal{S} = \mathcal{S}\sigma \qquad \text{kernel} \equiv 1, \text{ kills nullspace}$$

 $T + I/2 + 11^T)\sigma = g$ well-cond. Laplace ext. Neu.

Laplace ext. Neu.
$$u_n = 0 \text{ in } \mathbb{R}^2 \backslash \overline{\Omega}$$

$$u_n = 0 \text{ on } \Gamma$$

$$\text{required} \quad ds = 0 \text{ and } u_\infty = 0$$

$$\text{unique}$$

•
$$u = S\sigma$$

 $(D^T - I/2)\sigma = g$ well-cond.

recap: Laplace int. Dir.

$$\Delta u = 0$$
 in Ω $u^- = f$ on Γ uniqueness, existence $\forall f$

•
$$u = \mathcal{D}\sigma$$
 rep.

$$(D-I/2)\sigma = f$$
 BIE: well-con

Laplace ext. Dir.

Laplace ext. Dir.
$$\Delta u = 0 \text{ in } \mathbb{R}^2 \backslash \overline{\Omega}$$

$$u^+ = f \text{ on } \Gamma$$

$$u_\infty := \lim_{\|\mathbf{x}\| \to \infty} u(\mathbf{x})$$
 uniqueness, existence $\forall f$

•
$$u = \mathcal{D}\sigma + \int_{\Gamma} \sigma ds$$
 modified rep. $(D + I/2 + 11^T)\sigma = f$ well-cond.

Laplace int. Neu.

$$\Delta u = 0 \text{ in } \Omega$$

$$u_n^- = g \text{ or } \Gamma$$

$$\text{requir} \qquad \forall ds = 0$$

$$\text{unions only up to a const.}$$

$$\mathcal{S} = \mathcal{S}\sigma \qquad \text{kernel} \equiv 1, \text{ kills nullspace}$$

$$\mathcal{S}^T + I/2 + 11^T)\sigma = g \text{ well-cond.}$$

kernel
$$\equiv 1$$
, kills nullsp $^T + I/2 + 11^T$) $\sigma = g$ well-cond.

Laplace ext. Neu.

Laplace ext. Neu.
$$u_n = 0 \text{ in } \mathbb{R}^2 \backslash \overline{\Omega}$$

$$u_n = 0 \text{ on } \Gamma$$
 require
$$u_n = 0 \text{ and } u_\infty = 0$$

$$u_n = 0$$

$$u_n = 0$$

•
$$u = S\sigma$$

 $(D^T - I/2)\sigma = g$ well-cond.

Exterior: don't test with $u = \log r!$ why not? BVPs enforce zero net charge

Helmholtz — introduction and connection to Maxwell

$$(\Delta + \omega^2)u = 0$$

time-harmonic scalar waves

comes from scalar wave equation $\Delta u - u_{tt} = 0$ when $u(x,t) = u(x)e^{-i\omega t}$ ω is the wavenumber spatial frequency, related to wavelength via $\lambda = 2\pi/\omega$

Also used for Maxwell's equations in cylindrical symm (z-invariance):

- 1. Assume $\mathbf{E}, \mathbf{H}(x, y, z) = \mathbf{E}, \mathbf{H}(x, y)$
- 2. Write Maxwell's eqs: $\nabla \times \mathbf{E} = i\omega \mu \mathbf{H}$, $\nabla \times \mathbf{H} = -i\omega \varepsilon \mathbf{E}$,
- 3. Notice only E_z , H_z are indep \rightarrow 2 polarizations, TE or TM: $E_z=0$, $H_z=0$ resp.
 - 4. Choose TE and let $u := H_z$, then: $\mathbf{H} = (0, 0, u)$,

$$\mathbf{E}=rac{1}{i\omegaarepsilon}(\partial_{\mathbf{x}}u,-\partial_{\mathbf{y}}u,0)$$
, and $(\Delta+n^{2}\omega^{2})u=0$ with $n^{2}=arepsilon\mu$

Dirichlet BC in TE formalism = PEC

perfect electric conductor; **E** || to surface

Helmholtz — scattering formalism

Split total potential into incident (known) and scattered (unknown) parts, $u^{\text{tot}} = u^{\text{inc}} + u$

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^d \setminus \bar{\Omega}$ PDE $u = -u_i$ on Γ Dirichlet BC, $u_n = -(u_i)_n$ for Neumann

 $\lim_{r\to\infty}\left(\frac{\partial u}{\partial r}-iku\right)=0$ r:=|x-y|, Sommerfeld radiation condition for uniqueness

Fundamental solution
$$\Phi(\mathbf{x}, \mathbf{y}) = \frac{i}{4}H_0^{(1)}(\omega|\mathbf{x} - \mathbf{y}|)$$

Asymptotics:
$$\lim_{r\to 0} \Phi(r) = \frac{1}{2\pi} \log \frac{1}{r} + \mathcal{O}(1)$$

 $\lim_{r\to \infty} \Phi(r) = \sqrt{\frac{2}{\pi r}} e^{i(r-\nu\pi/2-\pi/4)} + \mathcal{O}(r^{-1})$

Same singularity as Laplace \rightarrow same JRs!

Layer potentials

Helmholtz — interior resonances and how to avoid them

 $u=\mathcal{D}\sigma$ has interior res prob (Leslie will have covered for the disk case) CFIE: $u=(\mathcal{D}+i\eta\mathcal{S})\sigma$ no more unknowns, new kernel can prove equivalence (no spurious resonances)

Helmholtz — Dirichlet demo

Dirichlet demo, plots only: Solve BVP for u via PTR + Nyström, with new diag limit for k(t,t), show $1/N^3$ convergence if use naive PTR with correct diag limit (see M126 HW?)

4 debug BVP with known data from a radiative soln sources inside Ω (don't demo CFIE since requires S w/ log-singularity).

Helmholtz transmission BVP

refractive indices in Ω vs exterior Matching? (more effort, needs $\mathcal{S}\sigma + \mathcal{D}\tau$...) difference kernels at most log-singular.

Helmholtz

Getting spectral-acc Nyström for log-singular kernels: beyond today. eg kernel-split or product quadratures (Kress, Helsing,...)

close-eval: kernel-split, QBX, etc.

see libraries: chunkie, BIE2D, etc

More debug ideas

TO DISCARD

Other tests:

 ${\bf 6}$ Test SLP & DLP evaluators via GRF for any harmonic u in Ω

Summary

Covered BIE basics for smooth curves with global quadrature:

- Well-posed Laplace & Helmholtz BVPs exterior need condition as $||x|| \to \infty$
- Choosing representation to get 2nd kind BIE if poss., equivalent to BVP if poss.
 Can switch interior/exterior, Laplace/Helmholtz/etc, via simple code changes
- Nyström discretization
 high-order/spectral convergence, if poss.
- Build/debug codes via well-chosen sequence of test cases also for libraries

practise! write out theory yourself + try HW exer. in repo + run demos

Summary

Covered BIE basics for smooth curves with global quadrature:

- Well-posed Laplace & Helmholtz BVPs exterior need condition as $||x|| \to \infty$
- Choosing representation to get 2nd kind BIE if poss., equivalent to BVP if poss.
 Can switch interior/exterior, Laplace/Helmholtz/etc, via simple code changes
- Nyström discretization high-order/spectral convergence, if poss.
- Build/debug codes via well-chosen sequence of test cases also for libraries

practise! write out theory yourself $+\ try\ HW\ exer.$ in repo $+\ run\ demos$

Useful 2D tools we did not yet cover:

in libraries, eg chunkie, BIE2D

essential for adaptivity

SLP. Helmholtz. etc

- panel (composite) quadratures
- high-order quadratures for log-singular kernel
- high-order quadratures for log-singular kernel
 special quadratures for evaluation close to the curve
 - some need interpolation of $\sigma(t)$ off the nodes t_j , some not
- corners, open arcs, slits, multi-material junctions

Resources

Many numerical analysis (mathematics heavy). Somewhat accessible:

- Linear Integral Equations, R. Kress, (1999, Springer). Ch. 6 & 12.
- The Numerical Solution of Integral Equations of the Second Kind, K. E. Atkinson, (1997, CUP).

Fewer on the practical/tutorial side, few with modern devels:

• "High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane", S Hao, AH Barnett, PG Martinsson, P Young. *Adv. Comput. Math.* **40**, 245–272 (2014).

focuses on quadrature for logarithmic singularities, eg SLP, Helmholtz

- https://users.flatironinstitute.org/~ahb/BIE/
- https://github.com/ahbarnett/BIEbook in progress...

