When the data is **linearly separable**, Hard SVM finds the linear separator with maximum margin.

Suppose $\{(x_1, y_1), ..., (x_m, y_m)\}$ is a set of labeled vectors that are **linearly separable**.

Suppose $\{(x_1, y_1), ..., (x_m, y_m)\}$ is a set of labeled vectors that are **linearly separable**.

Hard SVM is equivalent to:

$$\max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j) \right\}$$

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x_i}$$

Definition: Kernel

The function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if it can be written as an inner product:

• There exists a mapping $\Phi: \mathcal{X} \to \mathbb{R}^d$ such that $K(x,y) = \Phi(x)^T \Phi(y)$ for all $x,y \in \mathcal{X}$.

$$\max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j) \right\}$$

$$\max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j \left(\Phi(\mathbf{x_i})^T \Phi(\mathbf{x_j}) \right) \right\}$$

$$\max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j \left(\Phi(\mathbf{x_i})^T \Phi(\mathbf{x_j}) \right) \right\}$$

$$= \max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) \right\}$$

To classify a new example x: $\mathbf{w}^T \Phi(\mathbf{x})$

To classify a new example x:

$$\mathbf{w}^T \Phi(\mathbf{x})$$

$$= \left(\sum_{i=1}^{m} \alpha_i y_i \Phi(\mathbf{x}_i)\right)^T \Phi(\mathbf{x})$$

To classify a new example x:

$$\mathbf{w}^T \Phi(\mathbf{x})$$

$$= \left(\sum_{i=1}^{m} \alpha_i y_i \Phi(\mathbf{x}_i)\right)^T \Phi(\mathbf{x})$$

$$= \sum_{i=1}^{m} \alpha_i y_i \, \Phi(\mathbf{x_i})^T \Phi(\mathbf{x})$$

To classify a new example x:

$$\mathbf{w}^T \Phi(\mathbf{x})$$

$$= \left(\sum_{i=1}^{m} \alpha_i y_i \Phi(\mathbf{x}_i)\right)^T \Phi(\mathbf{x})$$

$$= \sum_{i=1}^{m} \alpha_i y_i \, \Phi(\mathbf{x_i})^T \Phi(\mathbf{x})$$

$$= \sum_{i=1}^{m} \alpha_i y_i K(\mathbf{x_i}, \mathbf{x})$$

Question.

Let A be a positive semidefinite matrix.

 $(A = UU^T \text{ for some matrix } U.)$

Why is $K(x, x') = x^T A x'$ is a legal kernel?

Question.

Let A be a positive semidefinite matrix.

 $(A = U^T U \text{ for some matrix } U.)$

Why is $K(x, x') = x^T A x'$ is a legal kernel?

Answer.

Let $\Phi(x) = Ux$. Then $\Phi(x)^T \Phi(x') = x^T U^T Ux' = x^T Ax' = K(x, x')$.

Theorem

A symmetric function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if and only if it is positive semidefinite.

In other words, K is a kernel if and only if for all $x_1, ..., x_m \in \mathcal{X}$, the matrix $G_{i,j} = K(x_i, x_j)$ is a positive semidefinite matrix.