POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI

KIERUNEK: AUTOMATYKA I ROBOTYKA (AIR)

SPECJALNOŚĆ: TECHNOLOGIE INF. W SYS. AUTOMATYKI (ART)

PRACA DYPLOMOWA INŻYNIERSKA

Aplikacja mobilna do sterowania robotem minisumo

Mobile application for controlling a minisumo robot

AUTOR:

Łukasz Miłaszewski

PROWADZĄCY PRACĘ:

dr inż. Łukasz Jeleń

OCENA PRACY:

Spis treści

1.	Wst	ęp	6						
	1.1.	Cel projektu	6						
	1.2.	Minisumo	6						
	1.3.	Założenia	6						
2.	Uży	te technologie	7						
	2.1.	Arduino	7						
	2.2.	$C \ \dots $	7						
	2.3.	Swift	7						
		2.3.1. UIKit	7						
		2.3.2. CoreBluetooth	7						
		2.3.3. CoreGraphics	7						
		2.3.4. CoreMotions	7						
3.	Wy]	korzystane środowiska	8						
	3.1.	Inventor	8						
	3.2.	KiCad	8						
	3.3.	Xcode	8						
4.	Komunikacja								
		Moduł bluetooth	9						
	4.2.	Logika	9						
5.	Robot minisumo								
	5.1.	Konstrukcja	10						
		5.1.1. Nadwozie	10						
		5.1.2. Podwozie	10						
		5.1.3. Napęd	10						
	5.2.	Elektronika	10						
		5.2.1. Założenia	10						
		5.2.2. Źródło zasilania	10						
		5.2.2 Progasor	10						

		5.2.4.	Sensoryka						
		5.2.5.	Sterownik silników	. 10					
		5.2.6.	Schemat płytki z interfejsem	. 10					
		5.2.7.	Schemat płytki głównej	. 10					
	5.3.	Oprogr	ramowanie	. 10					
		5.3.1.	Transmisja danych	. 10					
		5.3.2.	Obsługa przychodzących wiadomości	. 10					
		5.3.3.	Algorytmy walki	. 10					
6.	Aplikacja mobilna								
	_	-	ma						
	6.2.		atybilność						
	6.3	ec MVC							
			nikacja						
	6.5.		ura aplikacji						
	0.5.	6.5.1.	Widok główny						
		6.5.2.	Widok sterowania automatycznego						
		6.5.3.	Widok sterowania zdalnego						
		6.5.4.							
		0.3.4.	Widok diagnostyki	. 11					
7.	Implementacja								
	7.1.	Kompi	ilacja projektu	. 12					
8.	Podsumowanie								
	8.1.	Zrealiz	zowane założenia	. 13					
	8.2.	Dalszy	rozwój projektu	. 13					
	8.3.	Uwagi		. 13					
Inc	deks 1	rzeczow	y	. 14					
T 24	L 4			1.4					

Spis rysunków

Spis listingów

Wstęp

1.1. Cel projektu

Celem niniejszej pracy jest implementacja aplikacji mobilnej służącej do sterowania robotem minisumo. W ramach pracy dyplomowej powstał samodzielnie wykonany dwukołowy robot w pełni spełniający wymagania do startu w zawodach minisumo. Dodatkowo powstała aplikacja mobilna na platformę iOS, która daje możliwość obsługi oraz konfiguracji wyżej wspomnianego robota. Dzięki niej użytkownik może wybrać jedną z wielu strategii walki, ustalić maksymalną moc silników oraz uwzględnić oczekiwanie na start za pomocą odbiornika fal podczerwonych. Dodatkowo aplikacja oferuje możliwość zdalnego sterowania robotem za pomocą akcelerometru lub wirtualnego dżojstiku oraz sprawdzenia poprawności działania sensorów i silników. Kod źródłowy aplikacji mobilnej można znaleźć pod adresem https://github.com/LukaszMilaszewski/MinisumoApp, natomiast aplikacji sterującej robotem https://github.com/LukaszMilaszewski/MinisumoSTM.

1.2. Minisumo

1.3. Założenia

Użyte technologie

- 2.1. Arduino
- 2.2. C
- **2.3.** Swift
- 2.3.1. UIKit
- 2.3.2. CoreBluetooth
- 2.3.3. CoreGraphics
- 2.3.4. CoreMotions

Wykorzystane środowiska

- 3.1. Inventor
- **3.2. KiCad**
- 3.3. Xcode

Komunikacja

- 4.1. Moduł bluetooth
- 4.2. Logika

Robot minisumo

5.1.	Konstru	kcja

- 5.1.1. Nadwozie
- 5.1.2. Podwozie
- **5.1.3.** Napęd

5.2. Elektronika

- 5.2.1. Założenia
- 5.2.2. Źródło zasilania
- 5.2.3. Procesor
- 5.2.4. Sensoryka
- 5.2.5. Sterownik silników
- 5.2.6. Schemat płytki z interfejsem
- 5.2.7. Schemat płytki głównej

5.3. Oprogramowanie

- 5.3.1. Transmisja danych
- 5.3.2. Obsługa przychodzących wiadomości
- 5.3.3. Algorytmy walki

Aplikacja mobilna

- 6.1. Platforma
- 6.2. Kompatybilność
- 6.3. Wzorzec MVC
- 6.4. Komunikacja
- 6.5. Struktura aplikacji
- 6.5.1. Widok główny
- **6.5.2.** Widok sterowania automatycznego
- 6.5.3. Widok sterowania zdalnego
- 6.5.4. Widok diagnostyki

Implementacja

7.1. Kompilacja projektu

Podsumowanie

- 8.1. Zrealizowane założenia
- 8.2. Dalszy rozwój projektu
- 8.3. Uwagi

Literatura