EXTRA R EXERCISES – R FROM SCRATCH – R – LADIES

R contains thousands of packages, each of them offering functions that do something useful. The package that is most commonly used (by far!) for data manipulation is called **dplyr** (pronounced *di-pl-a-yer*). Every package first has to be installed to your local machine (only once) and then loaded to your workspace (every time you open R). Let's install and load dplyr.

DPLYR PACKAGE

```
install.packages("dplyr")
library(dplyr)
```

LOADING DATA

Now, before we practice using dplyr, let's load the data we're going to work with:

- 1. Read about one of the most popular R's in-built datasets mtcars, using help() function or ?
- 2. Explore dataset's structure and summary statistics. Pay attention to data types.

```
?mtcars
data("mtcars")
str(mtcars)
summary(mtcars)
```

DATA MANIPULATION

Let's learn about some of the most useful dplyr's functions:

- 1. Find out about the following dplyr's functions: mutate() and filter() (try looking up e.g. ?dplyr::mutate, etc.). What do they do? How do they work? What's the syntax?
- 2. Create a new data.frame (new_mtcars) that contains only observations where number of cylinders is greater or equal 6.
- 3. We're going to create a new variable, cyl_desc, that will put cyl in three buckets dependent on the value of cyl: low, medium and high (greater or equal 2, between 3 and 5 and greater or equal 6, respectively). For this reason let's learn a bit about ifelse() statement (use R's available help tools).
- Create cyl_desc using mutate().

5. Check the structure of new_mtcars – what's the class of the new variable? Turn it to factor.

JOINING DATASETS

It's time to join the new dataset to the original mtcars. However, there are many ways to do it!

- 1. Read about available joins in dplyr (e.g. try ?dplyr::join)
- 2. Create a new dataset inner_df where you use inner_join() to join mtcars and new_mtcars together.
- 3. Check the structure of inner_df how many variables and observations are there? What variables can you see? Are there any missing values?
- 4. Create a new dataset left_df where you use left_join() to join mtcars and new_mtcars together.
- 5. Check the structure of left_df how many variables and observations are there? What variables can you see? Are there any missing values?
- 6. Create a new dataset right_df where you use right_join() to join mtcars and new_mtcars together.
- 7. Check the structure of right_df how many variables and observations are there? What variables can you see? Are there any missing values?
- 8. Create a new dataset anti_df where you use anti_join() to join mtcars and new_mtcars together.
- 9. Check the structure of anti_df how many variables and observations are there? What variables can you see? Are there any missing values?

```
inner_df <- inner_join(mtcars, new_mtcars)
str(inner_df)</pre>
```

```
left_df <- left_join(mtcars, new_mtcars)
str(left_df)
summary(left_df)
head(left_df)

right_df <- right_join(mtcars, new_mtcars)
str(right_df)

?dplyr::anti_join
anti_df <- anti_join(mtcars, new_mtcars)
str(anti_df)</pre>
```