Fundamentos de Cálculo Aplicado

Fundamentos gerais sobre cálculo diferencial e integral

Profa. Ma. Alessandra Negrini

Regras de derivação

$$\frac{1}{2} \left(\frac{2}{x} + \frac{x}{2} - \frac{3}{10} x^{5} \right) \left(\frac{2}{7} + \frac{x^{2}}{4} - \frac{3}{10} x^{5} \right) \left(\frac{2}{7} + \frac$$

Regra do produto

Sejam duas funções e deriváveis, então o produto entre e é uma função derivável tal que:

Regra do quociente

Sejam duas funções e deriváveis, então o quociente entre e é uma função derivável tal que:

desde que não tenhamos divisões por zero.

Regra da cadeia

Se for derivável eme for derivável em , então a função composta definida por é derivável em e é dada pelo produto

Essa regra também pode ser descrita na seguinte notação: se e temos

Regras de derivação

Função	Derivada

Derivadas das principais funções

Função	Derivada

Função	Derivada