Field-aware Factorization Machines

YuChin Juan, Yong Zhuang, and Wei-Sheng Chin

NTU CSIE MLGroup

Recently, field-aware factorization machines (FFM) have been used to win two click-through rate prediction competitions hosted by Criteo¹ and Avazu². In these slides we introduce the formulation of FFM together with well known linear model, degree-2 polynomial model, and factorization machines.

To use this model, please download LIBFFM at:

http://www.csie.ntu.edu.tw/~r01922136/libffm

¹https://www.kaggle.com/c/criteo-display-ad-challenge

²https://www.kaggle.com/c/avazu-ctr-prediction

Linear Model

The formulation of linear model is:

$$\phi(\mathbf{w}, \mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_{j \in C_1} w_j x_j,^3$$

where \mathbf{w} is the model, \mathbf{x} is a data instance, and C_1 is the non-zero elements in \mathbf{x} .

³The bias term is not included in these slides.

Degree-2 Polynomial Model (Poly2)

The formulation of Poly2 is:

$$\phi(\mathbf{w}, \mathbf{x}) = \sum_{j_1, j_2 \in C_2} w_{j_1, j_2} x_{j_1} x_{j_2},^4$$

where C_2 is the 2-combination of non-zero elements in \mathbf{x} .

⁴The linear terms and the bias term are not included in these slides.

Factorization Machines⁶ (FM)

The formulation of FM is:

$$\phi(\mathbf{w},\mathbf{x}) = \sum_{j_1,j_2 \in C_2} \langle \mathbf{w}_{j_1}, \mathbf{w}_{j_2} \rangle x_{j_1} x_{j_2},^5$$

where \mathbf{w}_{j_1} and \mathbf{w}_{j_2} are two vectors with length k, and k is a user-defined parameter.

⁵The linear terms and the bias term are not included in these slides.

⁶This model is proposed in [Rendle, 2010].

Field-aware Factorization Machines⁸ (FFM)

The formulation of FFM is:

6/18

$$\phi(\mathbf{w},\mathbf{x}) = \sum_{j_1,j_2 \in C_2} \langle \mathbf{w}_{j_1,f_2}, \mathbf{w}_{j_2,f_1} \rangle x_{j_1} x_{j_2},^7$$

where f_1 and f_2 are respectively the fields of j_1 and j_2 , and \mathbf{w}_{j_1,f_2} and \mathbf{w}_{j_2,f_1} are two vectors with length k.

⁷The linear terms and the bias term are not included in these slides.

 $^{^8}$ This model is used in [Jahrer et al., 2012]; a similar model is proposed in [Rendle and Schmidt-Thieme, 2010].

FFM for Logistic Loss

The optimization problem is:

$$\min_{\mathbf{w}} \quad \sum_{i=1}^{L} \Big(\log \big(1 + \exp(-y_i \phi(\mathbf{w}, \mathbf{x}_i) \big) + \frac{\lambda}{2} \|\mathbf{w}\|^2 \Big),$$

where

$$\phi(\mathbf{w},\mathbf{x}) = \sum_{j_1,j_2 \in C_2} \langle \mathbf{w}_{j_1,f_2}, \mathbf{w}_{j_2,f_1} \rangle x_{j_1} x_{j_2},$$

L is the number of instances, and λ is regularization parameter.

Consider the following example:

User (Us)	Movie (Mo)	Genre (Ge)	Pr (Pr)
YuChin (YC)	3ldiots (3l)	Comedy, Drama (Co, Dr)	\$9.99

Note that "User," "Movie," and "Genre" are categorical variables, and "Price" is a numerical variable.

Conceptually, for linear model, $\phi(\mathbf{w}, \mathbf{x})$ is:

$$W_{\mathsf{Us-Yu}} \cdot X_{\mathsf{Us-Yu}} + W_{\mathsf{Mo-3I}} \cdot X_{\mathsf{Mo-3I}} + W_{\mathsf{Ge-Co}} \cdot X_{\mathsf{Ge-Co}} + W_{\mathsf{Ge-Dr}} \cdot X_{\mathsf{Ge-Dr}} + W_{\mathsf{Pr}} \cdot X_{\mathsf{Pr}},$$

where $x_{\text{Us-Yu}} = x_{\text{Mo-3I}} = x_{\text{Ge-Co}} = x_{\text{Ge-Dr}} = 1$ and $x_{\text{Pr}} = 9.99$. Note that because "User," "Movie," and "Genre" are categorical variables, the values are all ones.⁹

9/18

⁹If preprocessing such as instances-wise normalization is conducted, the values may not be ones.

For Poly2, $\phi(\mathbf{w}, \mathbf{x})$ is:

$$\begin{aligned} w_{\text{Us-Yu-Mo-3I}} \cdot x_{\text{Us-Yu}} \cdot x_{\text{Mo-3I}} + w_{\text{Us-Yu-Ge-Co}} \cdot x_{\text{Us-Yu}} \cdot x_{\text{Ge-Co}} + w_{\text{Us-Yu-Ge-Dr}} \cdot x_{\text{Us-Yu}} \cdot x_{\text{Ge-Dr}} &+ w_{\text{Us-Yu-Pr}} \cdot x_{\text{Us-Yu}} \cdot x_{\text{Pr}} \\ &+ w_{\text{Mo-3I-Ge-Co}} \cdot x_{\text{Mo-3I}} \cdot x_{\text{Ge-Co}} + w_{\text{Mo-3I-Ge-Dr}} \cdot x_{\text{Mo-3I}} \cdot x_{\text{Ge-Dr}} &+ w_{\text{Mo-3I-Pr}} \cdot x_{\text{Mo-3I}} \cdot x_{\text{Pr}} \\ &+ w_{\text{Ge-Co-Ge-Dr}} \cdot x_{\text{Ge-Co}} \cdot x_{\text{Ge-Dr}} &+ w_{\text{Ge-Co-Pr}} \cdot x_{\text{Ge-Co}} \cdot x_{\text{Pr}} \\ &+ w_{\text{Ge-Dr-Pr}} \cdot x_{\text{Ge-Dr}} \cdot x_{\text{Pr}} \end{aligned}$$

For FM, $\phi(\mathbf{w}, \mathbf{x})$ is:

$$\begin{split} \left\langle \boldsymbol{w}_{\text{Us-Yu}}, \boldsymbol{w}_{\text{Mo-3I}} \right\rangle \cdot x_{\text{Us-Yu}} \cdot x_{\text{Mo-3I}} + \left\langle \boldsymbol{w}_{\text{Us-Yu}}, \boldsymbol{w}_{\text{Ge-Co}} \right\rangle \cdot x_{\text{Us-Yu}} \cdot x_{\text{Ge-Co}} + \left\langle \boldsymbol{w}_{\text{Us-Yu}}, \boldsymbol{w}_{\text{Ge-Dr}} \right\rangle \cdot x_{\text{Us-Yu}} \cdot x_{\text{Ge-Dr}} \\ + \left\langle \boldsymbol{w}_{\text{Mo-3I}}, \boldsymbol{w}_{\text{Ge-Co}} \right\rangle \cdot x_{\text{Mo-3I}} \cdot x_{\text{Ge-Co}} + \left\langle \boldsymbol{w}_{\text{Mo-3I}}, \boldsymbol{w}_{\text{Ge-Dr}} \right\rangle \cdot x_{\text{Mo-3I}} \cdot x_{\text{Ge-Dr}} \\ + \left\langle \boldsymbol{w}_{\text{Ge-Co}}, \boldsymbol{w}_{\text{Ge-Dr}} \right\rangle \cdot x_{\text{Ge-Co}} \cdot x_{\text{Ge-Dr}} \\ + \left\langle \boldsymbol{w}_{\text{Ge-Co}}, \boldsymbol{w}_{\text{Pr}} \right\rangle \cdot x_{\text{Ge-Co}} \cdot x_{\text{Pr}} \\ + \left\langle \boldsymbol{w}_{\text{Ge-Dr}}, \boldsymbol{w}_{\text{Pr}} \right\rangle \cdot x_{\text{Ge-Dr}} \cdot x_{\text{Pr}} \end{split}$$

For FFM, $\phi(\mathbf{w}, \mathbf{x})$ is:

$$\langle \boldsymbol{w}_{\text{Us-Yu,Mo}}, \boldsymbol{w}_{\text{Mo-3I,Us}} \rangle \cdot x_{\text{Us-Yu}} \cdot x_{\text{Mo-3I}} + \langle \boldsymbol{w}_{\text{Us-Yu,Ge}}, \boldsymbol{w}_{\text{Ge-Co,Us}} \rangle \cdot x_{\text{Us-Yu}} \cdot x_{\text{Ge-Co}} + \langle \boldsymbol{w}_{\text{Us-Yu,Ge}}, \boldsymbol{w}_{\text{Ge-Dr,Us}} \rangle \cdot x_{\text{Us-Yu}} \cdot x_{\text{Ge-Dr}} \\ + \langle \boldsymbol{w}_{\text{Mo-3I,Ge}}, \boldsymbol{w}_{\text{Ge-Co,Mo}} \rangle \cdot x_{\text{Mo-3I}} \cdot x_{\text{Ge-Co}} + \langle \boldsymbol{w}_{\text{Mo-3I,Ge}}, \boldsymbol{w}_{\text{Ge-Dr,Mo}} \rangle \cdot x_{\text{Mo-3I}} \cdot x_{\text{Ge-Dr}} \\ + \langle \boldsymbol{w}_{\text{Mo-3I,Pr}}, \boldsymbol{w}_{\text{Pr,Mo}} \rangle \cdot x_{\text{Mo-3I}} \cdot x_{\text{Pr}} \\ + \langle \boldsymbol{w}_{\text{Ge-Co,Pr}}, \boldsymbol{w}_{\text{Pr,Ge}} \rangle \cdot x_{\text{Ge-Co}} \cdot x_{\text{Pr}} \\ + \langle \boldsymbol{w}_{\text{Ge-Dr,Pr}}, \boldsymbol{w}_{\text{Pr,Ge}} \rangle \cdot x_{\text{Ge-Dr}} \cdot x_{\text{Pr}}$$

In practice we need to map these features into numbers. Say we have the following mapping.

Field name		Field index	Feature name		Feature index
User	\rightarrow	field 1	User-YuChin	\rightarrow	feature 1
Movie	\rightarrow	field 2	Movie-3Idiots	\rightarrow	feature 2
Genre	\rightarrow	field 3	Genre-Comedy	\rightarrow	feature 3
Price	\rightarrow	field 4	Genre-Drama	\rightarrow	feature 4
			Price	\rightarrow	feature 5

After transforming to the LIBFFM format, the data becomes:

Here a red number is an index of field, a blue number is an index of feature, and a green number is the value of the corresponding feature.

Now, for linear model, $\phi(\mathbf{w}, \mathbf{x})$ is:

$$w_1 \cdot 1 + w_2 \cdot 1 + w_3 \cdot 1 + w_4 \cdot 1 + w_5 \cdot 9.99$$

For Poly2, $\phi(\mathbf{w}, \mathbf{x})$ is:

```
w_{1,2} \cdot 1 \cdot 1 + w_{1,3} \cdot 1 \cdot 1 + w_{1,4} \cdot 1 \cdot 1 + w_{1,5} \cdot 1 \cdot 9.99
+ w_{2,3} \cdot 1 \cdot 1 + w_{2,4} \cdot 1 \cdot 1 + w_{2,5} \cdot 1 \cdot 9.99
+ w_{3,4} \cdot 1 \cdot 1 + w_{3,5} \cdot 1 \cdot 9.99
+ w_{4,5} \cdot 1 \cdot 9.99
```

For FM, $\phi(\mathbf{w}, \mathbf{x})$ is:

```
 \langle \mathbf{w}_{1}, \mathbf{w}_{2} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1}, \mathbf{w}_{3} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1}, \mathbf{w}_{4} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1}, \mathbf{w}_{5} \rangle \cdot 1 \cdot 9.99 
 + \langle \mathbf{w}_{2}, \mathbf{w}_{3} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{2}, \mathbf{w}_{4} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{2}, \mathbf{w}_{5} \rangle \cdot 1 \cdot 9.99 
 + \langle \mathbf{w}_{3}, \mathbf{w}_{4} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{3}, \mathbf{w}_{5} \rangle \cdot 1 \cdot 9.99 
 + \langle \mathbf{w}_{4}, \mathbf{w}_{5} \rangle \cdot 1 \cdot 9.99
```

For FFM, $\phi(\mathbf{w}, \mathbf{x})$ is:

```
 \langle \mathbf{w}_{1,2}, \mathbf{w}_{2,1} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1,3}, \mathbf{w}_{3,1} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1,3}, \mathbf{w}_{4,1} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1,4}, \mathbf{w}_{5,1} \rangle \cdot 1 \cdot 9.99 
 + \langle \mathbf{w}_{2,3}, \mathbf{w}_{3,2} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{2,3}, \mathbf{w}_{4,2} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{2,4}, \mathbf{w}_{5,2} \rangle \cdot 1 \cdot 9.99 
 + \langle \mathbf{w}_{3,3}, \mathbf{w}_{4,3} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{3,4}, \mathbf{w}_{5,3} \rangle \cdot 1 \cdot 9.99 
 + \langle \mathbf{w}_{4,4}, \mathbf{w}_{5,3} \rangle \cdot 1 \cdot 9.99
```

Jahrer, M., Tscher, A., Lee, J.-Y., Deng, J., Zhang, H., and Spoelstra, J. (2012).

Ensemble of collaborative filtering and feature engineered models for click through rate prediction.

- Rendle, S. (2010). Factorization machines.
- Rendle, S. and Schmidt-Thieme, L. (2010).

 Pairwise interaction tensor factorization for personalized tag recommendation.