CS 2601 Linear and Convex Optimization

3. Convex sets

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Fall 2022

Outline

Convex Sets

Supporting and separating hyperplanes

Lines, line segments and rays

Given $x \neq y \in \mathbb{R}^n$, the line passing through x and y consists of points of the form

$$z = y + \theta(x - y) = \theta x + (1 - \theta)y, \quad \theta \in \mathbb{R}$$

The ray (half-line) with endpoint y and direction x - y consists of points

$$\theta \mathbf{x} + (1 - \theta)\mathbf{y}, \quad \theta \ge 0$$

The line segment between x and y consists of points

$$\theta \mathbf{x} + (1 - \theta)\mathbf{y}, \quad 0 \le \theta \le 1$$

Note. Often use notation $\bar{\theta} = 1 - \theta$.

Convex sets

A set $C \subset \mathbb{R}^n$ is convex if the line segment between any two points $x, y \in C$ lies entirely in C, i.e.

$$x \in C, y \in C, \theta \in [0, 1] \implies \theta x + \bar{\theta} y \in C$$

Note. Only need to check the case that $x \neq y$ and $\theta \in (0, 1)$.

For $\theta \in [0,1]$, $\theta x + \bar{\theta} y$ is called a convex combination of x and y. In a more symmetric form, a convex combination is

$$\theta_1 \mathbf{x} + \theta_2 \mathbf{y}$$
 where $\theta_1 \geq 0, \theta_2 \geq 0, \theta_1 + \theta_2 = 1$

3

Examples of convex sets

Example. Trivial examples of convex sets include empty set, \mathbb{R}^n , singletons (points), lines, line segments and rays.

Example. A hyperplane $P = \{x \in \mathbb{R}^n : w^T x = b\}$ is convex, where $w \in \mathbb{R}^n$, $b \in \mathbb{R}$.

Proof. For $x_1, x_2 \in P$ and $\theta \in [0, 1]$,

$$\mathbf{w}^{T}(\theta \mathbf{x}_{1} + \bar{\theta} \mathbf{x}_{2}) = \theta \mathbf{w}^{T} \mathbf{x}_{1} + \bar{\theta} \mathbf{w}^{T} \mathbf{x}_{2}$$
$$= \theta b + \bar{\theta} b = b$$

1

Example: Halfspaces

A halfspace $H = \{x \in \mathbb{R}^n : w^T x \leq b\}$ is convex.

Note. $H = \{x : f(x) \le b\}$ is the so-called sublevel set of $f(x) = w^T x$. Note $\nabla f(x) = w$, the outward normal to the boundary hyperplane.

Proof. For $x_1, x_2 \in H$ and $\theta \in [0, 1]$,

$$\mathbf{w}^{T}(\theta \mathbf{x}_{1} + \bar{\theta} \mathbf{x}_{2}) = \theta \mathbf{w}^{T} \mathbf{x}_{1} + \bar{\theta} \mathbf{w}^{T} \mathbf{x}_{2}$$
$$\leq \theta b + \bar{\theta} b = b$$

Set intersection preserves convexity

Proposition. The intersection of an arbitrary collection of convex sets is convex.

Proof. Let $\{C_i : i \in I\}$ be an arbitrary collection of convex sets with index set I, and $C = \bigcap_{i \in I} C_i$ their intersection.

- Let $x, y \in C$, $\theta \in [0, 1]$
- $x, y \in C_i$ for any $i \in I$
- By convexity of C_i , $\theta x + \bar{\theta} y \in C_i$
- $\theta x + \bar{\theta} y \in C$

Example: Affine spaces

An affine space $S = \{x \in \mathbb{R}^n : Ax = b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ is convex.

Note. An affine space is a shifted linear space, $S = x_0 + S_0$, where $Ax_0 = b$, and $S_0 = \{x \in \mathbb{R}^n : Ax = 0\}$ is a linear space.

Can verify convexity by definition; here use the intersection property.

- let $A^T = (a_1, a_2, \dots, a_m),$ $b = (b_1, \dots, b_m)^T$
- S is intersection of m hyperplanes

$$S = \bigcap_{i=1}^{m} P_i$$

where

$$x_1$$

$$P_i = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}_i^T \boldsymbol{x} = b_i \}$$

Note. An affine space S actually contains the line through any $x,y \in S$.

Example: Polyhedra

A polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ is convex, where vector inequality \leq is interpreted componentwise

- let $A^T = (a_1, a_2, \dots, a_m), b = (b_1, \dots, b_m)^T$
- P is intersection of m halfspaces

$$P = \bigcap_{i=1}^{m} H_i$$

where

$$H_i = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}_i^T \boldsymbol{x} \leq b_i \}$$

Note. An affine space $S = \{x : Ax = b\}$ is a polyhedron

$$Ax = b \iff (Ax \le b \text{ and } -Ax \le -b) \iff \begin{pmatrix} A \\ -A \end{pmatrix} x \le \begin{pmatrix} b \\ -b \end{pmatrix}$$

More generally, $\{x : Ax \leq b, Cx = d\}$ is a polyhedron.

Example: Polyhedra (cont'd)

The set of points satisfying the following inequalities is a polyhedron

$$x_1 + x_2 + x_3 \le 4$$

$$x_1 \le 2$$

$$x_3 \le 3$$

$$3x_2 + x_3 \le 6$$

$$x \ge \mathbf{0}$$

Example: Polyhedra (cont'd)

The 1-norm unit ball is a polyhedron,

$$B_1 = \{x : ||x||_1 \le 1\}$$

In 2d,

$$B_1^{(2)} = \{ \mathbf{x} : x_1 + x_2 \le 1, \\ x_1 - x_2 \le 1, \\ -x_1 + x_2 \le 1, \\ -x_1 - x_2 < 1 \}$$

In 3d,

$$B_1^{(3)} = \{ \boldsymbol{x} : \pm x_1 \pm x_2 \pm x_3 \le 1 \}$$

Example: Norm balls

A closed ball $\bar{B}(x_0, r) = \{x \in \mathbb{R}^n : ||x - x_0|| \le r\}$ is convex.

Proof. For $x_1, x_2 \in \overline{B}(x_0, r)$ and $\theta \in [0, 1]$,

$$\begin{aligned} \|(\theta x_1 + \bar{\theta} x_2) - x_0\| &= \|\theta(x_1 - x_0) + \bar{\theta}(x_2 - x_0)\| \\ &\leq \|\theta(x_1 - x_0)\| + \|\bar{\theta}(x_2 - x_0)\| \\ &= \theta \|x_1 - x_0\| + \bar{\theta}\|x_2 - x_0\| \leq r \end{aligned}$$

Note. True for any norm $\|\cdot\|$.

Note. Open balls are also convex.

Example: Ellipsoids

An ellipsoid

$$\mathcal{E} = \left\{ x \in \mathbb{R}^2 : \frac{x_1^2}{\lambda_1^2} + \frac{x_2^2}{\lambda_2^2} \le 1 \right\}$$

is convex.

Proof. Let $\Lambda = \text{diag}\{\lambda_1, \lambda_2\}$. Note

$$\mathcal{E} = \{ \mathbf{x} : \mathbf{x}^T \mathbf{\Lambda}^{-2} \mathbf{x} \le 1 \} = \{ \mathbf{x} : \| \mathbf{\Lambda}^{-1} \mathbf{x} \|_2 \le 1 \} = \{ \mathbf{\Lambda} \mathbf{u} : \| \mathbf{u} \|_2 \le 1 \}.$$

For $x_i = \Lambda u_i \in \mathcal{E}$, and $\theta \in [0, 1]$,

$$\theta x_1 + \bar{\theta} x_2 = \Lambda (\theta u_1 + \bar{\theta} u_2).$$

Recall the unit ball is convex, so $\|\theta u_1 + \bar{\theta} u_2\|_2 \le 1$ and $\theta x_1 + \bar{\theta} x_2 \in \mathcal{E}$.

Example: Ellipsoids (cont'd)

An ellipsoid $\mathcal{E} = \{x_0 + Au : ||u||_2 \le 1\}, A \in \mathbb{R}^{n \times n}, A \succ O$ is convex.

 $m{A}$ has eigendecomposition $m{A}=m{Q}m{\Lambda}m{Q}^T$, where $m{\Lambda}$ is diagonal and $m{Q}$ is orthogonal. With $ilde{m{u}}=m{Q}^Tm{u}$,

$$\mathcal{E} = \{ \boldsymbol{x}_0 + \boldsymbol{Q} \boldsymbol{\Lambda} \tilde{\boldsymbol{u}} : \|\tilde{\boldsymbol{u}}\|_2 \leq 1 \},$$

which is a rotated and shifted version of $\mathcal{E}' = \{\Lambda \tilde{\mathbf{u}} : ||\tilde{\mathbf{u}}||_2 \leq 1\}.$

Note. The lengths of semi-axes are eigenvalues of A

Note. Also often written as $\mathcal{E} = \{ \mathbf{x} : (\mathbf{x} - \mathbf{x}_0)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_0) \le 1 \}, \mathbf{P} = \mathbf{A}^2_{13}$

Affine transformation preserves convexity

$$x = Au + x_0$$
, where $A = \begin{pmatrix} 2 & 0.5 \\ 1 & 0.75 \end{pmatrix}$, $x_0 = (0.5, 0.4)^T$

Affine transformation preserves convexity

Proposition. The image of a convex set under an affine transformation is convex.

Proof. Let $C \subset \mathbb{R}^n$ be a convex set and f(x) = Ax + b an affine transformation from \mathbb{R}^n to \mathbb{R}^m . Given $y_1, y_2 \in f(C) = \{f(x) : x \in C\}$ and $\theta \in [0,1]$, need to show $\theta y_1 + \bar{\theta} y_2 \in f(C)$.

- 1. By definition, $y_i = f(x_i)$ for some $x_i \in C$, i = 1, 2.
- 2. Since f is affine,

$$\theta \mathbf{y}_1 + \bar{\theta} \mathbf{y}_2 = \theta f(\mathbf{x}_1) + \bar{\theta} f(\mathbf{x}_2)$$

$$= \theta (\mathbf{A} \mathbf{x}_1 + \mathbf{b}) + \bar{\theta} (\mathbf{A} \mathbf{x}_2 + \mathbf{b})$$

$$= \mathbf{A} (\theta \mathbf{x}_1 + \bar{\theta}_2 \mathbf{x}_2) + \mathbf{b}$$

3. Since C is convex, $z \triangleq \theta x_1 + \bar{\theta} x_2 \in C$, so $\theta y_1 + \bar{\theta} y_2 = f(z) \in f(C)$.

Proposition. The inverse image of a convex set under an affine transformation is convex.

Example: Positive semidefinite matrices

The set of positive semidefinite matrices

$$\mathcal{S}_{+}^{n} = \{ \boldsymbol{A} \in \mathbb{R}^{n \times n} : \boldsymbol{A} \succeq \boldsymbol{O} \}$$

is convex.

Proof. For arbitrary $A, B \in \mathcal{S}^n_+$ and $\theta \in [0, 1], x \in \mathbb{R}^n$, need to show $\theta A + \bar{\theta} B \in \mathcal{S}^n_+$. Check the definition of positive semidefiniteness.

1. $\theta A + \bar{\theta} B$ is symmetric,

$$(\theta \mathbf{A} + \bar{\theta} \mathbf{B})^T = \theta \mathbf{A}^T + \bar{\theta} \mathbf{B}^T = \theta \mathbf{A} + \bar{\theta} \mathbf{B}$$

2. $x^T(\theta A + \bar{\theta} B)x \ge 0$ for any x,

$$\mathbf{x}^{T}(\theta \mathbf{A} + \bar{\theta}\mathbf{B})\mathbf{x} = \theta(\mathbf{x}^{T}\mathbf{A}\mathbf{x}) + \bar{\theta}(\mathbf{x}^{T}\mathbf{B}\mathbf{x}) \ge 0$$

Example: Positive semidefinite matrices (cont'd)

For n=2, can identify S^2_+ with a subset of \mathbb{R}^3 . By Sylvester's Theorem,

$$A = \begin{pmatrix} x & z \\ z & y \end{pmatrix} \in \mathcal{S}_{+}^{2} \iff x \ge 0, \ y \ge 0, \ xy \ge z^{2}$$

Boundary $\partial S_{+}^{2} = \{(x, y, z) : x \geq 0, y \geq 0, z^{2} = xy\}$

Convex combination

A convex combination of $x_1, x_2, \dots, x_m \in \mathbb{R}^n$ is a point of the form

$$\sum_{i=1}^{m} \theta_i \mathbf{x}_i = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_m \mathbf{x}_m$$

where $\theta_i \geq 0$ for all i and $\sum_{i=1}^m \theta_i = 1$.

Theorem. If C is convex, and $x_1, x_2, \ldots, x_m \in C$, then any convex combination $\sum_{i=1}^m \theta_i x_i \in C$.

In general, $y_1 = x_1$, and

$$m{y}_k = rac{\sigma_{k-1}}{\sigma_k}m{y}_{k-1} + rac{ heta_k}{\sigma_k}m{x}_k, \quad k \geq 2$$
 where

$$\sigma_k = \sum_{i=1}^k \theta_i$$

Convex hull

The convex hull of a set $S \subset \mathbb{R}^n$, denoted $\operatorname{conv} S$, is the smallest convex set containing S.

Theorem. conv S is the set of all convex combinations of points in S, i.e.

$$\operatorname{conv} S = \left\{ \sum_{i=1}^{m} \theta_{i} \boldsymbol{x}_{i} : m \in \mathbb{N}; \boldsymbol{x}_{i} \in S, \theta_{i} \geq 0, i = 1, \dots, m; \sum_{i=1}^{m} \theta_{i} = 1 \right\}$$

Note. Actually we can replace $m \in \mathbb{N}$ by $m \le n+1$ in the above representation, i.e. each $x \in \operatorname{conv} S$ is the convex combination of at most n+1 points in S.

19

Affinely independent points

m+1 points $x_0, x_1, \ldots, x_m \in \mathbb{R}^n$ are affinely independent if $x_1 - x_0, \ldots, x_m - x_0$ are linearly independent.

affinely independent points in \mathbb{R}^2

affinely dependent points in \mathbb{R}^2

Proposition. $x_0, x_1, \dots, x_m \in \mathbb{R}^n$ are affinely independent iff

$$\sum_{i=0}^m c_i \mathbf{x}_i = \mathbf{0} \text{ and } \sum_{i=0}^m c_i = 0 \implies c_i = 0 \text{ for } i = 0, 1, \dots, m$$

Note. In \mathbb{R}^n , the maximum number of linearly independent vectors is n, so the maximum number of affinely independent points is n + 1.

Simplexes

An m-dimensional simplex, also called an m-simplex, is the convex hull of m+1 affinely independent points. More specifically, the simplex determined by affinely independent points x_0, x_1, \ldots, x_m is

$$\operatorname{conv}\{\boldsymbol{x}_0,\ldots,\boldsymbol{x}_m\} = \{\theta_0\boldsymbol{x}_0 + \theta_1\boldsymbol{x}_1 + \cdots + \theta_m\boldsymbol{x}_m : \boldsymbol{\theta} \geq \boldsymbol{0}, \boldsymbol{1}^T\boldsymbol{\theta} = 1\}$$

Note. \mathbb{R}^n only has m-simplexes with $m \leq n$

- 0-simplexes are points
- 1-simplexes are line segments
- 2-simplexes are triangles
- 3-simplexes are tetrahedra

Example. The probability *n*-simplex is the *n*-simplex in \mathbb{R}^{n+1} determined by the standard basis vectors e_1, \ldots, e_{n+1} ,

$$\Delta_n = \{ \boldsymbol{\theta} \in \mathbb{R}^{n+1} : \boldsymbol{\theta} \geq \mathbf{0}, \ \mathbf{1}^T \boldsymbol{\theta} = 1 \}$$

Example. The unit *n*-simplex in \mathbb{R}^n is the *n*-simplex determined by $\mathbf{0} \in \mathbb{R}^n$ and the standard basis vectors $\mathbf{e}_1, \dots, \mathbf{e}_n \in \mathbb{R}^n$,

$$\Delta'_n = \{ \boldsymbol{\theta}' \in \mathbb{R}^n : \boldsymbol{\theta}' \ge \mathbf{0}, \ \mathbf{1}^T \boldsymbol{\theta}' \le 1 \}$$

The *m*-simplex in \mathbb{R}^n determined by affinely independent points x_0, x_1, \dots, x_m is the image of Δ_m under a linear transformation

$$oldsymbol{ heta} = \sum_{i=0}^m heta_i oldsymbol{e}_i \mapsto oldsymbol{x} = \sum_{i=0}^m heta_i oldsymbol{x}_i = oldsymbol{X} oldsymbol{ heta}$$

where

$$X = (x_0, x_1, \dots, x_m) \in \mathbb{R}^{n \times (m+1)}, \quad \theta = (\theta_0, \theta_1, \dots, \theta_m)^T \in \Delta_m$$

Note

$$x = \sum_{i=0}^{m} \theta_i x_i = x_0 + \sum_{i=1}^{m} \theta_i (x_i - x_0)$$

and $\boldsymbol{\theta}' = (\theta_1, \dots, \theta_m)^T \in \Delta'_m$.

The simplex $\operatorname{conv}\{x_0,\ldots,x_m\}$ is also the image of Δ_m' under the affine transformation

$$\theta' \mapsto x = x_0 + B\theta'$$

where $\mathbf{\textit{B}} = (\mathbf{\textit{x}}_1 - \mathbf{\textit{x}}_0, \dots, \mathbf{\textit{x}}_m - \mathbf{\textit{x}}_0) \in \mathbb{R}^{n \times m}$.

Example. Let $\mathbf{x}_1 = (1,0,0)^T$, $\mathbf{x}_2 = (0,1,0)^T$ and $\mathbf{x}_3 = (1,1,1)^T$. Points in the 2-simplex determined by $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ are of the form

$$\mathbf{x} = \sum_{i=1}^{3} \theta_i \mathbf{x}_i = (\theta_1 + \theta_3, \theta_2 + \theta_3, \theta_3)^T$$

where $\theta \in \Delta_2$, i.e. $\theta_i \geq 0$, $\theta_1 + \theta_2 + \theta_3 = 1$.

Alternatively,

$$\mathbf{x} = \mathbf{x}_1 + \theta_2(\mathbf{x}_2 - \mathbf{x}_1) + \theta_3(\mathbf{x}_3 - \mathbf{x}_1) = (1 - \theta_2, \theta_2 + \theta_3, \theta_3)^T = \mathbf{x}_1 + \mathbf{B}\mathbf{\theta}',$$

where

$$\mathbf{B} = (\mathbf{x}_2 - \mathbf{x}_1, \mathbf{x}_3 - \mathbf{x}_1) = \begin{pmatrix} -1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \mathbf{\theta'} = (\theta_2, \theta_3)^T \in \Delta_2'$$

Note B has full column rank by the affine independence of the x_i 's.

Outline

Convex Sets

Supporting and separating hyperplanes

Projection onto convex set

Given a set $C \subset \mathbb{R}^n$, the distance between a point x and C is

$$\operatorname{dist}(\boldsymbol{x},C) = \inf_{\boldsymbol{z} \in C} \|\boldsymbol{x} - \boldsymbol{z}\|$$

Theorem. If $C \subset \mathbb{R}^n$ is nonempty, closed and convex, then for any x, there is a unique $\hat{x} \in C$ s.t.

$$\operatorname{dist}(\boldsymbol{x}, C) = \|\boldsymbol{x} - \hat{\boldsymbol{x}}\|$$

 \hat{x} is called the projection of x onto C and denoted by $\hat{x} = \mathcal{P}_{C}(x)$.

Note.
$$\mathcal{P}_C(x) = x$$
 iff $x \in C$.

Proof. First show existence.

- Let $z_0 \in C$. Then $\operatorname{dist}(x, C) \leq ||x z_0||$.
- Let $K = \{z \in C : \|x z\| \le \|x z_0\|\} = C \cap \bar{B}(x, \|x z_0\|).$
- ||x-z|| is continuous in z, K compact $\implies \exists \hat{x} \in K$ such that $\operatorname{dist}(x,C) = ||x-\hat{x}||$

Proof (cont'd). Now show uniqueness. Suppose $\hat{x}_1, \hat{x}_2 \in C$ satisfy $\operatorname{dist}(x, C) = ||x - \hat{x}_1|| = ||x - \hat{x}_2||$.

• $\hat{\pmb{x}}_c:=rac{\hat{\pmb{x}}_1+\hat{\pmb{x}}_2}{2}\in C$ by the convexity of C, so

$$\|\boldsymbol{x} - \hat{\boldsymbol{x}}_c\| \ge \operatorname{dist}(\boldsymbol{x}, C)$$

By the polarization identity

$$||y + z||^2 + ||y - z||^2 = 2||y||^2 + 2||z||^2$$

we obtain

$$\|\hat{\mathbf{x}}_1 - \hat{\mathbf{x}}_2\|^2 = 2\|\mathbf{x} - \hat{\mathbf{x}}_1\|^2 + 2\|\mathbf{x} - \hat{\mathbf{x}}_2\|^2 - \|2\mathbf{x} - (\hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2)\|^2$$
$$= 4[\operatorname{dist}(\mathbf{x}, C)]^2 - 4\|\mathbf{x} - \hat{\mathbf{x}}_c\|^2 \le 0$$

so
$$\hat{x}_1 = \hat{x}_2$$
.

Proposition. Let $C \subset \mathbb{R}^n$ be nonempty, closed and convex. Given $\hat{x} \in C$, $\hat{x} = \mathcal{P}_C(x)$ iff

$$\langle x - \hat{x}, z - \hat{x} \rangle \le 0, \quad \forall z \in C$$

Proof. Note $\hat{x} + t(z - \hat{x}) \in C$, $\forall z \in C, t \in [0, 1]$.

$$\hat{\mathbf{x}} = \mathcal{P}_C(\mathbf{x}) \iff \|\mathbf{x} - \hat{\mathbf{x}} - t(\mathbf{z} - \hat{\mathbf{x}})\|^2 \ge \|\mathbf{x} - \hat{\mathbf{x}}\|^2, \quad \forall \mathbf{z} \in C, t \in [0, 1]$$

$$\iff -2t\langle \mathbf{x} - \hat{\mathbf{x}}, \mathbf{z} - \hat{\mathbf{x}}\rangle + t^2 \|\mathbf{z} - \hat{\mathbf{x}}\|^2 \ge 0, \quad \forall \mathbf{z} \in C, t \in [0, 1]$$

$$\iff \langle \mathbf{x} - \hat{\mathbf{x}}, \mathbf{z} - \hat{\mathbf{x}}\rangle \le 0, \quad \forall \mathbf{z} \in C$$

Corollary. The projection operator is nonexpansive, i.e.

$$\|\mathcal{P}_C(\mathbf{x}) - \mathcal{P}_C(\mathbf{y})\| \le \|\mathbf{x} - \mathbf{y}\|.$$

Proof. Let $\hat{x} = \mathcal{P}_C(x), \hat{y} = \mathcal{P}_C(y)$. By the proposition on slide 30,

$$||x - y||^{2} = ||\hat{x} - \hat{y}||^{2} + ||x - y - (\hat{x} - \hat{y})||^{2} + 2\langle x - y - (\hat{x} - \hat{y}), \hat{x} - \hat{y}\rangle$$

$$\geq ||\hat{x} - \hat{y}||^{2} - 2\underbrace{\langle y - \hat{y}, \hat{x} - \hat{y}\rangle}_{\leq 0} - 2\underbrace{\langle x - \hat{x}, \hat{y} - \hat{x}\rangle}_{\leq 0} \geq ||\hat{x} - \hat{y}||^{2}$$

Corollary. Let $C \subset \mathbb{R}^n$ be nonempty, closed and convex. For $x_0 \notin C$, there exists a $w \in \mathbb{R}^n \setminus \{0\}$ s.t.

$$\sup_{\mathbf{x}\in C}\langle \mathbf{w},\mathbf{x}\rangle < \langle \mathbf{w},\mathbf{x}_0\rangle.$$

Note. Special case of the separating hyperplane theorem on slide 36.

Proof. Let $\hat{x}_0 = \mathcal{P}_C(x_0)$ and $w = x_0 - \hat{x}_0$. Since $x_0 \notin C$ and $\hat{x}_0 \in C$, $w \neq 0$. By the proposition on slide 30, for any $x \in C$,

$$\langle \boldsymbol{w}, \boldsymbol{x} - \hat{\boldsymbol{x}}_0 \rangle \leq 0$$

SO

$$\langle w, x \rangle \leq \langle w, \hat{x}_0 \rangle = \langle w, x_0 \rangle - \langle w, w \rangle$$

Taking supremum over C,

$$\sup_{\boldsymbol{x}\in C}\langle \boldsymbol{w},\boldsymbol{x}\rangle \leq \langle \boldsymbol{w},\boldsymbol{x}_0\rangle - \langle \boldsymbol{w},\boldsymbol{w}\rangle < \langle \boldsymbol{w},\boldsymbol{x}_0\rangle$$

Supporting hyperplane

The boundary of a set *C* is $\partial C = \overline{C} \setminus \operatorname{int} C$.

Supporting hyperplane theorem. If C is a nonempty, convex set in \mathbb{R}^n and $\mathbf{x}_0 \in \partial C$, then there exists $\mathbf{w} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ s.t.

$$\langle w, x \rangle \leq \langle w, x_0 \rangle, \quad \forall x \in C$$

 $P = \{x : w^T x = w^T x_0\}$ is called a supporting hyperplane to C at x_0 .

Supporting hyperplane (cont'd)

Lemma. If C is convex, then int $C = \operatorname{int} \overline{C}$ and $\partial C = \partial \overline{C}$.

Proof sketch for 2D. First show int $C = \operatorname{int} \overline{C}$. Let $x_0 \in \operatorname{int} \overline{C}$. Show $x_0 \in \operatorname{int} C$. WLOG, assume $x_0 = 0$. Let $\overline{B}(r) = \{x : ||x||_{\infty} \le r\}$.

- 1. $\exists \epsilon > 0$ s.t. $\bar{B}(2\epsilon) \subset \overline{C}$
- 2. Let a_i denote the vertices of $\bar{B}(2\epsilon)$
- 3. $\boldsymbol{a}_i \in \overline{C} \implies \exists \boldsymbol{b}_i \in C \text{ s.t. } \|\boldsymbol{a}_i \boldsymbol{b}_i\|_{\infty} < \epsilon$
- 4. Show $\bar{B}(\epsilon) \subset \text{conv}\{\pmb{b}_0,\pmb{b}_1,\pmb{b}_2,\pmb{b}_3\}$ and hence $\pmb{x}_0 \in \text{int } C$
 - ▶ Let $x \in \bar{B}(\epsilon)$
 - Find θ_i s.t. $x^1 = \theta_0 b_0^1 + \theta_2 b_2^1 = \theta_1 b_1^1 + \theta_3 b_2^1$
 - Let $y_0 = \theta_0 b_0 + \theta_2 b_2$, $y_1 = \theta_1 b_1 + \theta_3 b_3$
 - Find α s.t. $x^2 = \alpha y_0^2 + \bar{\alpha} y_1^2$
 - $x = \alpha y_0 + \bar{\alpha} y_1 \in \text{conv}\{b_0, b_1, b_2, b_3\}$

Then $\partial C = \overline{C} \setminus \operatorname{int} C = \overline{C} \setminus \operatorname{int} \overline{C} = \partial \overline{C}$.

Supporting hyperplane (cont'd)

Proof of theorem.

- $x_0 \in \partial C \implies x_0 \in \partial \overline{C}$ by the previous lemma.
- There exists a sequence $\{x_k\}$ s.t. $x_k \notin \overline{C}$ and $x_k \to x_0$ as $k \to \infty$.
- By the corollary on slide 32, there exists $w_k \neq 0$ s.t.

$$\langle w_k, x \rangle < \langle w_k, x_k \rangle, \quad \forall x \in C$$

By rescaling, we can assume $\|\mathbf{w}_k\| = 1$.

- By the Bolzano-Weierstrass Theorem, $\{w_k\}$ has a convergent subsequence $w_{k_i} \to w$.
- Taking the limit $i \to \infty$ along the subsequence,

$$\langle w_{k_i}, x \rangle < \langle w_{k_i}, x_{k_i} \rangle, \quad \forall x \in C \implies \langle w, x \rangle \le \langle w, x_0 \rangle, \quad \forall x \in C$$

$$\|w_{k_i}\| = 1 \implies \|w\| = 1$$

Separating hyperplane

Separating hyperplane theorem. If C_1, C_2 are nonempty, convex sets in \mathbb{R}^n with $C_1 \cap C_2 = \emptyset$, then C_1 and C_2 can be separated by a hyperplane, i.e. there exists $w \in \mathbb{R}^n \setminus \{\mathbf{0}\}$, $b \in \mathbb{R}$ s.t.

$$w^T x \le b, \quad \forall x \in C_1$$

 $w^T x \ge b, \quad \forall x \in C_2$

 $P = \{x : w^T x = b\}$ is called a separating hyperplane for C_1 and C_2 .

Separating hyperplane (cont'd)

Lemma. If C_1, C_2 are two nonempty convex sets s.t. $C_1 \cap C_2 = \emptyset$, then $C = C_1 - C_2 = \{x_1 - x_2 : x_1 \in C_1, x_2 \in C_2\}$ is a nonempty convex set and $\mathbf{0} \notin C$.

Proof of theorem.

• It suffices to show there exists a $w \neq 0$ s.t.

$$\mathbf{w}^T \mathbf{x}_1 \le \mathbf{w}^T \mathbf{x}_2, \quad \forall \mathbf{x}_1 \in C_1, \mathbf{x}_2 \in C_2. \tag{\dagger}$$

Then we can take $b = \sup_{x_1 \in C_1} w^T x_1 \in \mathbb{R}$.

• Let $C = C_1 - C_2$. Then (†) is equivalent to

$$\langle w, x \rangle \leq 0, \quad \forall x \in C.$$
 (‡)

- Since $0 \notin C$, there are two cases. 0不在闭包内,取x0=0
 - If $0 \notin \overline{C}$, (‡) will follow from the corollary on slide 32.
 - ▶ If $0 \in \partial C$, (‡) will follow from the supporting hyperplane theorem.