CS557: Cryptography

Elementary Number Theory-VI

S. Tripathy IIT Patna

Finite Fields

- · finite fields play a key role in cryptography
- The number of elements in a finite field must be a power of a prime P (pⁿ)
 - known as Galois field
 - denoted GF(pⁿ)
- in particular often use the fields:
 - -GF(p)
 - $-GF(2^{n})$

Summary- Fields

Def (field): A set F with two binary operations + (addition)
and · (multiplication) is called a field if

- 11 \forall a,b,c \in F,a \cdot (b+c)=a \cdot b+a \cdot c
- Equivalently, (F,+) is a commutative (additive) group and $(F \setminus \{0\}, \cdot)$ is a commutative (multiplicative) group.
- A field is a commutative ring with identity where each non-zero element has a multiplicative inverse.

Polynomials over Fields

Dalynamiala

Finite field): A field (F,+,·) is called a finite field if the set F is finite.

Example: Z_p denotes $\{0,1,...,p-1\}$. We define + and · as addition and multiplication modulo p, respectively.

One can prove that $(Z_p,+,\cdot)$ is a field iff p is prime.

Theorem: There is a unique polynomial r(x) of degree < m over F such that

$$f(x) = h(x) \cdot g(x) + r(x).$$

where, r(x) is called the remainder of f(x) modulo g(x).

Galois Fields GF(p^k)

Theorem: For every prime power p^k (k=1,2,...) there is a unique finite field containing p^k elements. These fields are denoted by $GF(p^k)$.

There are no finite fields with other cardinalities.

Remarks:

1. For $F=GF(p^k)$, char(F)=p.

2. $GF(p^k)$ and Z_{pk} are not the same!

NB>: Operations (+, x) require Évariste Galois (1811-1832) additional steps in Galois field

Galois Fields GF(p)

- GF(p) is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p
- these form a finite field
 - since have multiplicative inverses

Multiplication in GF(7)

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Polynomial Arithmetic

can compute using polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = \sum a_i x^i$$

- not interested in any specific value of x
- Ordinary Polynomial Arithmetic
 - add or subtract corresponding coefficients
 - multiply all terms by each other

- Eg:
$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$
 $f(x) + g(x) = x^3 + 2x^2 - x + 3$
 $f(x) - g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

Polynomial Arithmetic with Modulo Coefficients

- when computing value of each coefficient
 - do calculation modulo some value
 - forms a polynomial ring
 - could be modulo any prime
- but we are most interested in mod 2
 - i.e all coefficients are 0 or 1

- eg. let
$$f(x) = x^3 + x^2$$
 and $g(x) = x^2 + x + 1$
 $f(x) + g(x) = x^3 + x + 1$

$$f(x) \times g(x) = x^5 + x^2$$

Polynomial Division

- can write any polynomial in the form:
 - -f(x) = q(x) g(x) + r(x)
 - can interpret r(x) as being a remainder
 - $-r(x) = f(x) \bmod g(x)$
- if no remainder, we say g(x) divides f(x)
- if f(x) has no divisors other than itself & 1 we say it is **irreducible** polynomial
- Arithmetic modulo an irreducible polynomial forms a field

Polynomial GCD

- can find greatest common divisor for polys
 - c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)
- can adapt Euclid's Algorithm to find it:

- 1. A(x) = a(x); B(x) = b(x)
- 2. if B(x) = 0 return A(x) = gcd[a(x), b(x)]
- 3. $R(x) = A(x) \mod B(x)$
- 4. $A(x) \leftarrow B(x)$
- 5. $B(x) \leftarrow R(x)$
- 6. goto 2

Computational Consideration

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)

Computational Example

- in GF(23) have (x^2+1) is $101_2 & (x^2+x+1)$ is 111_2
- so addition is
 - $-(x^2+1)+(x^2+x+1)=x$
 - $-101 \text{ XOR } 111 = 010_2$
- and multiplication is
 - $(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$ $= x^3+x+x^2+1 = x^3+x^2+x+1$
 - 011.101 = (101)<<1 XOR (101)<<0 = 1010 XOR 101 = 1111₂
- polynomial modulo reduction is
 - $(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
 - 1111 mod 1011 = 1111 XOR 1011 = 0100_2

Galois Field (polynomial)

- The field defined over the set of residues F[x]/p(x) with the addition and multiplication modulo p(x), where p(x) is irreducible, is called Galois filed GF.
- If the field F is Z_N (N is prime) then the corresponding galois field $Z_N[x]/p(x)$ is denoted by $GF(N^n)$ (n=degree(p(x)))
- GF(N) is the set of integers $\{0,1,...,N-1\}$ with arithmetic operations modulo prime N
 - these form a finite field
 - since have multiplicative inverses
 - Most General use GFs are GF(2ⁿ) and GF(N)| N is prime

Example GF(7): GF(N: N is prime)

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

W	-w	w^{-1}
0	0	
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

((a)	Addition	modulo '	7
٩	α	/ Audition	modulo	/

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

(c) Additive and multiplicative inverses modulo 7

(b) Multiplication modulo 7

Example $GF(2^3)$: $p(x) = x^3 + x + 1$

		000	001	010	011	100	101	110	111
	+	0	1	2	3	4	5	6	7
000	0	0	1	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	6
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	6	5	4
100	4	4	5	6	7	0	1	2	3
101	5	5	4	7	6	1	0	3	2
110	6	6	7	4	5	2	3	0	1
111	7	7	6	5	4	3	2	1	0

w	-w	W^{-1}
0	0	1
1	1	1
2	2	5
3	3	6
4	4	7
5	5	2
6	6	3
7	7	4

(a) Addition								(c) Additive and multiplicative
×	0	1	2	3	4	5	6	7	inverses
0	0	0	0	0	0	0	0	0	
1	0	1	2	3	4	5	6	7	
2	0	2	4	6	3	1	7	5	
3	0	3	6	5	7	4	1	2	
4	0	4	3	7	6	2	5	1	
5	0	5	1	4	2	7	3	6	
6	0	6	7	1	5	3	2	4	
7	0	7	5	2	1	6	4	3	

(b) Multiplication

Thanks