Chapitre 4 Algorithmes glouton

HLIN401 : Algorithmique et Complexité

Université de Montpellier 2018 – 2019

1. Premier exemple : choix de cours

2. Qu'est qu'un algorithme glouton?

3. Exemple 2 : le sac-à-dos (fractionnaire)

4. Exemple spécial : approximation pour SETCOVER dans le plan

Définition du problème

Entrée un ensemble C de cours $C_i = (d_i, f_i)$ [début, fin] Sortie un ensemble ordonné maximal de cours $(C_{i_1}, \ldots, C_{i_k})$ tels que pour tout j < k, $f_{i_j} \le d_{i_{j+1}} \leadsto$ cours compatibles

modifié d'après Algorithms de J. Erickson

Définition du problème

Entrée un ensemble C de cours $C_i = (d_i, f_i)$ [début, fin] Sortie un ensemble ordonné maximal de cours $(C_{i_1}, \ldots, C_{i_k})$ tels que pour tout j < k, $f_{i_j} \le d_{i_{j+1}} \rightsquigarrow$ cours compatibles

modifié d'après Algorithms de J. Erickson

► Tri des cours par dates de fin croissantes

- ► Tri des cours par dates de fin croissantes
- Choix glouton : sélectionner le cours qui finit le plus tôt

- ► Tri des cours par dates de fin croissantes
- Choix glouton : sélectionner le cours qui finit le plus tôt

- ► Tri des cours par dates de fin croissantes
- Choix glouton : sélectionner le cours qui finit le plus tôt

- ► Tri des cours par dates de fin croissantes
- Choix glouton : sélectionner le cours qui finit le plus tôt

- ► Tri des cours par dates de fin croissantes
- Choix glouton : sélectionner le cours qui finit le plus tôt

- ► Tri des cours par dates de fin croissantes
- Choix glouton : sélectionner le cours qui finit le plus tôt

Algorithme glouton

```
Algorithme: CHOIXCOURSGLOUTON(C)
Trier C en fonction des fins
I \leftarrow \{1\}
                                        // Indices des cours choisis
f \leftarrow Fin(C[1])
                                      // Fin du dernier cours choisi
pour i = 2 \ a n faire
    si DÉBUT(C[i]) \ge f alors

\begin{array}{c}
I \leftarrow I \cup \{i\} \\
f \leftarrow \mathsf{Fin}(C[i])
\end{array}

retourner /
```

Algorithme glouton

```
Algorithme: ChoixCoursGlouton(C)
Trier C en fonction des fins
I \leftarrow \{1\}
                                         // Indices des cours choisis
f \leftarrow Fin(C[1])
                                      // Fin du dernier cours choisi
pour i = 2 \ a n faire
    si DÉBUT(C[i]) \ge f alors

\begin{array}{c}
I \leftarrow I \cup \{i\} \\
f \leftarrow \mathsf{Fin}(C[i])
\end{array}

retourner /
```

Question

Quelle est la complexité de CHOIXCOURSGLOUTON?

Algorithme glouton

```
Algorithme: ChoixCoursGlouton(C)
Trier C en fonction des fins
I \leftarrow \{1\}
                                    // Indices des cours choisis
f \leftarrow Fin(C[1])
                                  // Fin du dernier cours choisi
pour i = 2 \ a n faire
    si DÉBUT(C[i]) \ge f alors
     I \leftarrow I \cup \{i\}f \leftarrow \mathsf{Fin}(C[i])
retourner /
```

Question

Quelle est la complexité de CHOIXCOURSGLOUTON ? $\rightsquigarrow O(n \log n)$

Validité de l'algorithme

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal (d'indices) de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve au tableau

1. Premier exemple : choix de cours

2. Qu'est qu'un algorithme glouton?

3. Exemple 2 : le sac-à-dos (fractionnaire)

4. Exemple spécial : approximation pour SETCOVER dans le plan

Idée générale

Un algorithme glouton fait à chaque étape un choix localement optimal dans le but d'obtenir à la fin un optimum global.

Idée générale

Un algorithme glouton fait à chaque étape un choix localement optimal dans le but d'obtenir à la fin un optimum global.

Exemple du choix de cours

- Optimum local : cours qui minimise les incompatibilités
- Optimum global : maximum de cours compatibles

Idée générale

Un algorithme glouton fait à chaque étape un choix localement optimal dans le but d'obtenir à la fin un optimum global.

Exemple du choix de cours

- Optimum local : cours qui minimise les incompatibilités
- Optimum global : maximum de cours compatibles

Remarques

- Construction pas-à-pas d'une solution
- Algorithmes simples à concevoir... mais pas toujours parfaits!
- Nésolution exacte, approximation, heuristique

1. Décider d'un choix glouton

- Ajout d'un nouvel élément à la solution en construction
- Recommencer sur le sous-problème restant

- 1. Décider d'un choix glouton
 - Ajout d'un nouvel élément à la solution en construction
 - Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - Si on en trouve, retourner en 1.
 - Sinon, continuer en 3.

Tri par durées croissantes $\{(8,11),(0,9),(10,19)\}$

- 1. Décider d'un choix glouton
 - Ajout d'un nouvel élément à la solution en construction
 - Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - Si on en trouve, retourner en 1.
 - Sinon, continuer en 3.

Tri par durées croissantes $\{(8,11),(0,9),(10,19)\}$

- 1. Décider d'un choix glouton
 - Ajout d'un nouvel élément à la solution en construction
 - Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - Si on en trouve, retourner en 1.
 - Sinon, continuer en 3.
- 3. Démontrer que l'algorithme est correct
 - ▶ Il existe une solution optimale contenant le choix local
 - Choix local + glouton pour le reste → solution optimale

Tri par durées croissantes $\{(8,11), (0,9), (10,19)\}$

- 1. Décider d'un choix glouton
 - Ajout d'un nouvel élément à la solution en construction
 - ► Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - Si on en trouve, retourner en 1.
 - Sinon, continuer en 3.
- 3. Démontrer que l'algorithme est correct
 - ▶ Il existe une solution optimale contenant le choix local
 - Choix local + glouton pour le reste → solution optimale
- 4. Étudier la **complexité** de l'algorithme

Algorithme glouton générique

Problème générique

Entrée Un ensemble fini X, avec une valeur v_x pour tout $x \in X$ Un ensemble $\mathcal I$ de solutions acceptables $A \subset X$ Hyp. Une sous-solution reste acceptable : si $A \in \mathcal I$ et $B \subset A$, $B \in \mathcal I$ Sortie Une solution acceptable $A \in \mathcal I$ qui maximise $v_A = \sum_{x \in A} v_x$

Algorithme glouton générique

Problème générique

Entrée Un ensemble fini X, avec une valeur v_x pour tout $x \in X$ Un ensemble $\mathcal I$ de solutions acceptables $A \subset X$

Hyp. Une sous-solution reste acceptable : si $A \in \mathcal{I}$ et $B \subset A$, $B \in \mathcal{I}$ Sortie Une solution acceptable $A \in \mathcal{I}$ qui maximise $v_A = \sum_{x \in A} v_x$

Théorème des algorithmes gloutons

Théorème

Si pour toute entrée (X, \mathcal{I}) , il existe une solution optimale S tq

- ▶ le premier élément x₀ de X appartienne à S
- ▶ $S \setminus \{x_0\}$ soit une solution optimale de $(X \setminus \{x_0\}, \mathcal{I}')$ où $\mathcal{I}' = \{A \setminus \{x_0\} : A \in \mathcal{I}, x_0 \in A\}$

Alors GLOUTONGÉNÉRIQUE est optimal.

Théorème des algorithmes gloutons

Théorème

Si pour toute entrée (X,\mathcal{I}) , il existe une solution optimale S tq

- ▶ le premier élément x₀ de X appartienne à S
- ▶ $S \setminus \{x_0\}$ soit une solution optimale de $(X \setminus \{x_0\}, \mathcal{I}')$ où $\mathcal{I}' = \{A \setminus \{x_0\} : A \in \mathcal{I}, x_0 \in A\}$

Alors GLOUTONGÉNÉRIQUE est optimal.

Exemple du choix de cours

- ▶ X : ensemble des cours, avec $v_x = 1$ pour tout x
- $ightharpoonup \mathcal{I}$: ensembles de cours compatibles
- Tri : dates de fin croissantes
- Preuve:
 - ▶ Il existe un ensemble de cours optimal contenant le 1^{er} cours
 - ► En enlevant le 1^{er} cours, il reste un ensemble optimal pour les cours commençant après la fin du 1^{er} cours

Théorème des algorithmes gloutons

Théorème

Si pour toute entrée (X,\mathcal{I}) , il existe une solution optimale S tq

- ▶ le premier élément x₀ de X appartienne à S
- ▶ $S \setminus \{x_0\}$ soit une solution optimale de $(X \setminus \{x_0\}, \mathcal{I}')$ où $\mathcal{I}' = \{A \setminus \{x_0\} : A \in \mathcal{I}, x_0 \in A\}$

Alors GLOUTONGÉNÉRIQUE est optimal.

Preuve par récurrence sur |X|

- ▶ Si |X| = 0, la solution optimale est \emptyset
- ▶ Soit (X, \mathcal{I}) une entrée avec |X| > 0. Par hyp. de récurrence, GLOUTONGÉNÉRIQUE trouve une solution optimale S' pour $(X \setminus \{x_0\}, \mathcal{I}')$. Donc $S' \cup \{x_0\}$ est optimale pour (X, \mathcal{I}) .

En pratique

- ► Il existe une théorie générale des algorithmes gloutons
 - basée sur la notion de matroïde
 - mais certains algorithmes « type glouton » ne rentrent pas exactement dans le moule

En pratique

- Il existe une théorie générale des algorithmes gloutons
 - basée sur la notion de matroïde
 - mais certains algorithmes « type glouton » ne rentrent pas exactement dans le moule
- Dans ce cours : étude de plusieurs exemples
 - utilisation du théorème pour faciliter les preuves

En pratique

- Il existe une théorie générale des algorithmes gloutons
 - basée sur la notion de matroïde
 - mais certains algorithmes « type glouton » ne rentrent pas exactement dans le moule
- Dans ce cours : étude de plusieurs exemples
 - utilisation du théorème pour faciliter les preuves

Objectifs:

- Savoir tenter une stratégie gloutonne
- Savoir détecter si elle marche ou non
- Savoir l'analyser (validité et complexité)

1. Premier exemple : choix de cours

2. Qu'est qu'un algorithme glouton?

3. Exemple 2 : le sac-à-dos (fractionnaire)

4. Exemple spécial : approximation pour SETCOVER dans le plan

Problème du sac-à-dos

Définition du problème

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble des objets qui rentrent dans le sac $(\sum_i t_i \leq T)$ et qui maximise la valeur totale $(V = \sum_i v_i)$

Problème du sac-à-dos

Définition du problème

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble des objets qui rentrent dans le sac $(\sum_i t_i \leq T)$ et qui maximise la valeur totale $(V = \sum_i v_i)$

- Problème célèbre car utile
 - en théorie
 - en pratique
 - en cryptographie
- ▶ Difficile (NP-complet → HLIN612)

16

Définition du problème

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble des objets qui rentrent dans le sac $(\sum_i t_i \leq T)$ et qui maximise la valeur totale $(V = \sum_i v_i)$

- Problème célèbre car utile
 - en théorie
 - en pratique
 - en cryptographie
- ▶ Difficile (NP-complet → HLIN612)

Problème du sac-à-dos fractionnaire

Objets fractionnables : on peut n'en prendre qu'une partie

24 13 15 23 16

Définition

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie une fraction $x_i \in [0,1]$ pour chaque objet, telle que

- le total ne dépasse pas la taille du sac : $\sum_i x_i t_i \leq T$
- la valeur totale est maximale : $V = \sum_i x_i v_i$

Problème du sac-à-dos fractionnaire

24 13 15 23 16

Objets *fractionnables* : on peut n'en prendre qu'une partie

Définition

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie une fraction $x_i \in [0,1]$ pour chaque objet, telle que

- le total ne dépasse pas la taille du sac : $\sum_i x_i t_i \leq T$
- la valeur totale est maximale : $V = \sum_i x_i v_i$
- Problème simplifié!
- Approche pour résoudre le sac-à-dos

Problème du sac-à-dos fractionnaire

24

9, 375

16

Objets *fractionnables* : on peut n'en prendre qu'une partie

Définition

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie une fraction $x_i \in [0,1]$ pour chaque objet, telle que

- le total ne dépasse pas la taille du sac : $\sum_i x_i t_i \leq T$
- ▶ la valeur totale est maximale : $V = \sum_i x_i v_i$
- Problème simplifié!
- Approche pour résoudre le sac-à-dos

Algorithme glouton

Choix glouton : choisir l'objet de meilleur rapport qualité - prix

Algorithme glouton

Choix glouton : choisir l'objet de meilleur rapport qualité - prix

```
Algorithme: SADFRACGLOUTON(O, T)
Trier les objets O_i = (t_i, v_i) par v_i/t_i décroissant
R \leftarrow T // Reste libre dans le sac-à-dos
pour i = 1 à n (dans l'ordre du tri) faire
    si t_i < R alors
     x_i \leftarrow 1
R \leftarrow R - t_i
    sinon
retourner (x_1, \ldots, x_n)
```

Algorithme glouton

Choix glouton : choisir l'objet de meilleur rapport qualité - prix

```
Algorithme: SADFRACGLOUTON(O, T)
Trier les objets O_i = (t_i, v_i) par v_i/t_i décroissant
R \leftarrow T // Reste libre dans le sac-à-dos
pour i = 1 à n (dans l'ordre du tri) faire
   si t_i < R alors
     x_i \leftarrow 1
R \leftarrow R - t_i
   sinon
    retourner (x_1, \ldots, x_n)
```

Lemme

La complexité de SADFRACGLOUTON est $O(n \log n)$.

Validité de l'algorithme

Lemme

Soit $O = \{(t_1, v_1), \dots, (t_n, v_n)\}$ un ensemble d'objets et T une taille de sac-à-dos, où $v_1/t_1 \geq v_2/t_2 \geq \dots \geq v_n/t_n$. Alors il existe une solution optimale (x_1, \dots, x_n) sur l'entrée (O, T) telle que

 $(x_2, ..., x_n)$ est solution optimale sur l'entrée $\{(t_2, v_2), ..., (t_n, v_n)\}$ et $T - t_1$

Preuve du lemme au tableau

→ Optimalité de SàdFRACGLOUTON d'après le théorème des algorithmes gloutons!

1. Premier exemple : choix de cours

2. Qu'est qu'un algorithme glouton?

3. Exemple 2 : le sac-à-dos (fractionnaire)

4. Exemple spécial : approximation pour SETCOVER dans le plan

Le problème

SETCOVER

Entrée n maisons placées dans le plan

Sortie un ensemble minimal de maisons où placer une antenne Wifi :

- ► chaque antenne a une portée de 500 m
- toutes les maisons doivent être couvertes

Le problème

SETCOVER

Entrée n maisons placées dans le plan

Sortie un ensemble minimal de maisons où placer une antenne Wifi :

- ► chaque antenne a une portée de 500 m
- ▶ toutes les maisons doivent être couvertes

Le problème

SETCOVER

Entrée n maisons placées dans le plan

Sortie un ensemble minimal de maisons où placer une antenne Wifi :

- ► chaque antenne a une portée de 500 m
- ► toutes les maisons doivent être couvertes

- •
- •

Propriétés du choix glouton

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$ Preuve en TD

Propriétés du choix glouton

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve en TD

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k \log n$ antennes

Preuve au tableau

Propriétés du choix glouton

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve en TD

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k \log n$ antennes

Preuve au tableau

Remarque

On ne connaît pas d'algorithme polynomial qui fasse mieux... et il est (très) probable qu'il n'en existe pas!

Conclusion

Bilan

Pourquoi des algorithmes gloutons?

- Algorithmes souvent simples et rapides...
- ... parfois optimaux
- ... parfois avec de bonnes propriétés
- ... parfois qui marchent en pratique
- ... parfois parfaitement inutiles!

Bilan

Pourquoi des algorithmes gloutons?

- Algorithmes souvent simples et rapides...
- ... parfois optimaux
- ... parfois avec de bonnes propriétés
- ... parfois qui marchent en pratique
- ... parfois parfaitement inutiles!

Comment les utiliser?

- 1. Chercher un choix glouton
- 2. Démontrer que c'est un bon choix (en théorie ou pratique)
- 3. Étudier la complexité obtenue