Inhalt der Nachrichtentechnik

Teil 1: Grundlagen Signalübertragung

- Frequenzebenen einer KOM-Hardwareplattform (Transceiver)
- 2 Pegel und Übertragungsmedien
- Funkwellenausbreitung

2.1 Pegel und Pegeldiagramm

- Antennenparameter (Fernfeld)
- 2.2 Einführung in die Übertragungsmedien
- Einfluss auf KOM & Radar-Systeme
- 2.3 Funksysteme: Kugelwelle und Antennenabstrahlung
 - 2.2.1 Charakteristische Parameter von Antennen
 - 2.2.2 Richtfaktor, Gewinn und Wirkfläche einer Antenne
- 2.4 Power Link Budget drahtloser Systeme anhand von TV-Satellitenempfang bei 12 GHz
- 2.5 Entwicklung von neuen Satellitensystemen

Motivation:

Antennen sind Schlüsselkomponenten aller drahtlosen Systeme

⇒ koppeln Wellen ein und strahlen Wellen ab

Antennenparameter gehen entscheidend in Link Budget eines Funksystems ein

→ grundlegendes, physikalisches Verständnis erforderlich!

(keine elektromagnetische Berechnung)

Antennenvorlesung

Frequenzebenen einer Kommunikations-

Hardwareplattform (Transceiver)

Prinzip drahtloser/kabelgebundener Systeme von MHz über THz bis Optik

Verschiebung eines informationstragenden, digitalen Basisbandsignals in einen hochfrequenten Bereich durch (1.) gezielte Veränderung (Modulation) eines analogen Trägersignals (meist im Zwischen-Frequenzbereich) und (2.) einer weiteren Aufwärtsmischung in den Hochfrequenzbereich → Funkwellen, Licht

Funkwellenausbreitung: Was ist eine elektromagnetische Welle?

 f_0 in [GHz] 0.1 1 10 30 100 λ in [cm] 300 30 3 1 0.3

Im elektromagnetischen Feld breiten sich elektrische und magnetische Wechselfelder gemeinsam wellenförmig mit Lichtgeschwindigkeit aus & transportieren dabei Energie.

Die Feldstärke ist ein Maß für die Stärke elektromagnetischer Felder. Sie wird in **Volt pro Meter** (V/m, elektrisches Feld) oder **Ampere pro Meter** (A/m, magnetisches Felder) gemessen.

Spherical Wave and Isotropic Radiator

 $S_i(r) \sim \frac{1}{r^2}$ Gilt für alle elektromagnetische & akustische Strahler

Spherical Wave Propagation (from a Satellite)

Average Power Density (Leistungsdichte)

Spherical TEM Wave Kugelwelle

Nach großer Entfernung

⇒ Quasi-ebene Welle

"Quasi" Plane
TEM Wave

Beispiel einer realen Antenne, z.B. Parabolantenne für Satelliten-TV

Poynting vector,
Average power density:

$$\vec{S}_{av} = \frac{1}{2} \operatorname{Re} \{ \vec{E} \times \vec{H}^* \}$$

$$\vec{S}_{av} = \frac{\hat{u}_r}{2\eta_0} \cdot |E_{\Theta}|^2$$

Fernfeld: $(\vec{E}_{\Theta} \perp \vec{H}_{\Phi}) \perp \hat{u}_r S_{av} \rightarrow \text{TEM Welle}$

$$H_{\Phi} = \frac{E_{\Theta}}{\eta_0}$$
 $\eta_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 376.7\Omega$

Spherical Wave Propagation (from a Satellite)

Average Radiated Power (Abgestrahlte Leistung)

Abgestrahlte Leistung der ANT aus Integral der Leistungsdichte über eine geschlossene Fläche (Kugel)

$$P_{rad} = \iint_{S} \vec{S}_{av} \cdot \hat{n} \cdot ds$$

$$= \int_{\Phi=0}^{2\pi} \int_{\Theta=0}^{\pi} S_{av} \cdot r^2 \sin\Theta d\Theta d\Phi$$

Spherical Wave Propagation (from a Satellite)

 $S_{av}(\Theta,\Phi)$

Kugelwelle

Directivity:

in Hauptstrahlricht.

 $S_{av}(\Theta,\Phi)$ $D_0 = \frac{S_0(\Theta_0,\Phi_0)}{\langle S_{av}(\Theta,\Phi) \rangle}$ Mittlerer W über Kugel

 $S_{av}(\Theta, \Phi)$

 $S_0(\Theta_0,\Phi_0)$

 $\langle S_{av}(\Theta, \Phi) \rangle = \frac{\text{Integral über } S_{av}}{\text{Oberfläche Kugel}}$

Beispiel einer realen Antenne,

z.B. Parabolantenne für

Satelliten-TV

Oberfläche der Kugel

Hauptstrahl-

$$= \frac{1}{4\pi r^2} \iint_{S} \vec{S}_{av} \cdot \hat{n} \cdot ds = \frac{P_{rad}}{4\pi r^2} = S_i$$
Isotro

Isotroper Strahler

 D_0 = "Leistungsverstärkung" in Hauptstrahlrichtung bezogen auf isotropen Strahler in dBi

Parabol 30 dBi → Faktor 1000

Antennendiagramm (Power Pattern)

Radiation Characteristics of Antennas:

Antenna Types	Directivity
	in dBi
Dipole, Loop & Slot Antennas	1.7 – 3
Patch, Dielectric Rod	2.5 – 9
Yagi, Helix, Small Arrays	5 – 17
Horn, Medium Arrays	10 -22
Reflector, Lens, Large Arrays	22 – 70

Antenna Radiation Efficiency:

$$\varepsilon_{rad} = \frac{P_{rad}}{P_{in}} = \frac{P_{rad}}{P_{rad} + P_{L}}$$

Directivity and Gain:

$$G_0 = \varepsilon_{rad} \cdot D_0$$

Antennenklassen (Classes of Antennas)

Wire antennas

Patch antennas

Antennenklassen (Classes of Antennas)

> Antennenvorlesung

Antenna Arrays

Antennenklassen (Classes of Antennas)

> Antennenvorlesung

Effektive Wirkfläche & Gewinn einer Antenne

Herleitung in Antennenvorlesung (hier zu zeitaufwendig)

$$A_e = \frac{\lambda^2}{4\pi} \cdot G_0$$

für alle Antennen

$$A_e = \frac{\lambda^2}{4\pi} \cdot G_0 \quad \text{mit } A_e = \varepsilon_{ap} \cdot A_{phy}$$

$$\varepsilon_{ap} = \varepsilon_{rad} \cdot \varepsilon_t$$

$$\varepsilon_{ap} = 50\%$$
 für Pyramidenhörnern

$$\varepsilon_{ap}=60\%$$
 für Parabolantennen und

$$arepsilon_{ap}=80\%$$
 für Cassegrain-Antennen

1.) Bestimmung des Gewinns aus physikalischer Apertur

$$G_{0} = \frac{4\pi}{\lambda^{2}} \cdot \varepsilon_{ap} \cdot A_{phy} \implies G_{0} = \frac{4\pi}{\lambda^{2}} \cdot \varepsilon_{ap} \cdot (A \cdot B)$$

$$\implies G_{0} = \frac{4\pi}{\lambda^{2}} \cdot \varepsilon_{ap} \cdot (\pi \cdot a^{2}) = \frac{4\pi}{\lambda^{2}} \cdot \varepsilon_{ap} \cdot \left(\pi \cdot \left[\frac{D}{2}\right]^{2}\right) = \varepsilon_{ap} \cdot \left(\frac{\pi D}{\lambda}\right)^{2}$$

für rechteckige Apertur

für runde Apertur

2.) Gewinn und HPBW Erweiterung um $\frac{k_{x,y}}{k_{x,y}}$

Erweiterung um
$$\frac{\kappa}{k}$$

$$G_0 = \varepsilon_{ap} \cdot \pi \cdot \frac{2A}{\lambda} \cdot \frac{2B}{\lambda} = \varepsilon_{ap} \cdot \pi \cdot \frac{2k_x}{k_x \cdot \frac{\lambda}{A}} \cdot \frac{2k_y}{k_y \cdot \frac{\lambda}{B}} = \varepsilon_{ap} \cdot 4\pi \cdot \frac{k_x}{HPBW_x} \cdot \frac{k_y}{HPBW_y}$$
 rechteckige Apertur

Vergleich → HPBW

mit $k = k_x = k_x$ und $HPBW = HPBW_x = HPBW_x$ $G_0 = \varepsilon_{ap} \cdot 4\pi \cdot \frac{k^2}{HPBW^2}$

$$k=$$
 Faktor für unterschiedliche Aperturbelegung

$$G_0 = \varepsilon_{ap} \cdot 4\pi \cdot \frac{k^2}{HPBW^2}$$

runde Apertur

Half-Power BeamWidth (HPBW)

3.) Half-Power BeamWidth (HPBW) für runde Apertur

$$G_0 = \varepsilon_{ap} \cdot \left(\frac{\pi D}{\lambda}\right)^2 \qquad \qquad G_0 = \varepsilon_{ap} \cdot 4\pi \cdot \frac{k^2}{HPBW^2}$$

$$HPBW = \sqrt{4\pi} \cdot \frac{k}{\left(\frac{\pi D}{\lambda}\right)} = \sqrt{\frac{4}{\pi}} \cdot k \cdot \frac{\lambda}{D}$$

$$\approx 1.128$$

k=0.886 für konstante Belegung k=1.19 für cos-Verteilung k=1.55 für cos²-Verlauf

Parabolantenne mit D/ λ =50: HPBW = 1.15°, 1.54° und 2° für obige Belegungen.

Gewinn G₀ & HPBW einer Antenne sind korreliert:

Große ANT (großer Durchmesser D) \rightarrow hoher G_0 & schmale HPBW

ANT-Belegung <==> Fourier-Transformation <==> Fernfeld

gilt für alle elektromagnetische Strahler (Antennen, Linsen) & akustische Strahler (Mikrofon, Lautsprecher)

Gewinn (Gain G_0) & Keulenbreite (Half-Power BeamWidth, HPBW) einer runden Apertur-ANT

4.) Gewinn G₀ & HPBW für runde Apertur

Parabolantenne für $\varepsilon_{ap}=0.6$ & -10dB Taper k=1.15 über den Durchmesser für verschiedene Frequenzen

$$A_e = \frac{\lambda^2}{4\pi} \cdot G_0$$

Gewinn (Gain G_0) & Keulenbreite (Half-Power BeamWidth, HPBW) einer quadr. Apertur-ANT

4.) Gewinn G₀ & HPBW für quadratische Apertur

Array A=B für $\varepsilon_{ap}=0.4$ und -10dB-Taper k=1.15 über quadratischen Querschnitt für verschiedene Frequenzen

5G-Frequenzen: 2.1, 3.5 & 28 GHz

Size A of a <u>quadratic Aperture</u> vs. Frequency Parameter Gain (related HPBW)

Dimension A = B einer quadratischen Apertur Parameter G_0 & HPBW

für
$$\varepsilon_{ap}=0.4$$
 & k =1.15

$$G_0 = \varepsilon_{ap} \cdot \frac{4\pi}{\lambda^2} \cdot A^2$$

$$HPBW = k \cdot \frac{\lambda}{A}$$

Kap. 2.3: Antennen

Ausleuchtgebiet einer Satellitenantenne Footprint Diameter, Service Area, 3-dB Contour

Ausleuchtzone mit Durchmesser a auf der Erde abhängig von Größe & Belegung der Antenne sowie der Frequenz

Näherungsweise runde Ausleuchtzone mit Durch-messer a auf der Erde für runde Antennenapertur (Parabolspiegel) (Erdkrümmung wird nicht betrachtet)

Inhalt der Nachrichtentechnik

Teil 1: Grundlagen Signalübertragung

- 2 Pegel und Übertragungsmedien
- 2.1 Pegel und Pegeldiagramm
- 2.2 Einführung in die Übertragungsmedien
- 2.3 Funksysteme: Kugelwelle und Antennenabstrahlung
 - 2.2.1 Charakteristische Parameter von Antennen
 - 2.2.2 Richtfaktor, Gewinn und Wirkfläche einer Antenne
- 2.4 Power Link Budget drahtloser Systeme anhand von TV-Satellitenempfang bei 12 GHz
- 2.5 Entwicklung von neuen Satellitensystemen

<u>Übung:</u>

- 1-5 Satelliten-Übertragungsstrecke
- 1-3 Freiraumdämpfung

EXAMPLE 1: Direct-Broadcasting Satellite (DBS) at f = 12 GHz with a GEO Satellite

$$EIRP_{S} = P_{T.S} + G_{0.S} = 52 \text{ dBW}$$

 \Rightarrow **158 490 W** in the direction of the antenna maximum with respect to an isotropic radiator with $P_{T,S}$ = 18 dBW

EXAMPLE 1: Direct-Broadcasting Satellite (DBS) at f = 12 GHz with a GEO Satellite

Average Power Density in W/m² at Point R in front of the ANT?

> **Direct-Broadcasting** Satellite (DBS) Receiver (Earth Station)

Receiver

From satellite radiated power density in W/m²

in point
$$R$$
 (in front of ANT) $S_R = S_R(d, \Theta_0, \Phi_0) = \frac{P_{T,S} \cdot G_{0,S}}{4\pi d^2}$

EXAMPLE 1: Direct-Broadcasting Satellite (DBS) at f = 12 GHz with a GEO Satellite

Received Power $P_{R,E}$ in W at Point E?

$$P_{R,E} = S_R \cdot A_{e,E} = \frac{P_{T,S} \cdot G_{0,S}}{4\pi \cdot d^2} \cdot \frac{\lambda^2}{4\pi} G_{0,E}$$

Effective aperture

Direct-Broadcasting Satellite (DBS) Receiver (Earth Station)

From satellite radiated power density in W/m²

in point
$$R$$
 (in front of ANT) $S_R = S_R(d, \Theta_0, \Phi_0) = \frac{P_{T,S} \cdot G_{0,S}}{4\pi d^2}$

EXAMPLE 1: Direct-Broadcasting Satellite (DBS) at f = 12 GHz with a GEO Satellite

Received Power $P_{R,E}$ in dBW & a_{fs} ?

$$P_{R,E} = S_R \cdot A_{e,E} = \frac{P_{T,S} \cdot G_{0,S}}{4\pi \cdot d^2} \cdot \frac{\lambda^2}{4\pi} G_{0,E}$$

Effective aperture

$$A_{e,E} = \frac{\lambda^2}{4\pi} \cdot G_{0,E}$$
Direct-Broadcasting
Efficiency ~ 10⁻¹⁵

Direct-Broadcasting

$$P_{R,E} = -118 \text{ dBW} \equiv 1.6 \text{ pW}$$

$$P_{R,E} = P_{T,S} + G_{0,S} + G_{0,E} - 20 \lg \left(4\pi \frac{d}{\lambda}\right) \text{in dBW}$$

Free-space propagation losses for $d = 36\,000 \text{ km} \& f = 12 \text{ GHz}$

$$a_{fs} = 20 \lg \left(4\pi \frac{d}{\lambda} \right) \approx 205 \text{ dB}$$

see next slide

Free-Space Propagation Loss

Übung:

1-3 Freiraumdämpfung

Doppellogarithmisch

$$a_{fs} = 20 \lg \left(4\pi \frac{d}{\lambda} \right) \approx 205 \text{ dB}$$

Freiraumdämpfung steigt um 20 dB pro Dekade im

Abstand (100 → 1000 km) Frequenz (1 → 10 GHz)

Atmosphärische Dämpfung

Zusätz. Dämpfung: Atmosphärische Gase, Nebel, Niederschläge, ...

Fog 100 m visual range

Path Loss a_{path} due to

- > Atmospheric Gas
 - 0.3-10 THz high absorption
- Atmosph. transparent for IR
- > Rain
- Water Vapor (Fog) increases extremely towards IR & optics

Durchlässigkeit der Atmosphäre für EM-Strahlung unterschiedlicher Wellenlängen

Rayleigh Streuung $\sigma(f) \sim f^4$ (Streuque

Streupartikel (z.B. Gasmoleküle) << Wellenlänge

Gestreute/einfallende Intensität

$$\frac{I_s}{I_0} = \frac{E_r^2}{E_0^2} = \frac{\left(\frac{\alpha E_0 4 \pi^2}{r \lambda^2} \sin \Phi\right)^2 \alpha = \text{Polarisierbarkeitstensor}}{E_0^2} = \frac{16 \pi^4 \alpha^2 \sin^2 \Phi}{r^2 \lambda^4} \sim 1/\lambda^4 \sim f^4$$

So entsteht das Himmelsblau

Der blaue Anteil des Sonnenlichts wird von Partikeln in der Luft am meisten gestreut - so wirkt der Himmel blau

https://www.smart-piv.com /de/techniques/mie-rayleighraman/index.php

Streckendämpfung: Kabel oder Funk?

"Virtuelle" Verbindung von der Erde zum Geostationären Satelliten und zum Mond

Was hat die geringere Streckendämpfung: Optische Glasfaserkabel mit nur 0.2 dB/km oder eine Funkverbindung bei 6 GHz mit hoher Freiraumdämpfung?

Streckendämpfung: Kabel oder Funk

Streckendämpfung

a) Koaxialkabel (Typ RGU221: ∅=3 cm, 30 dB/km bei 100 MHz),

- b) optische Glasfaser (0.2 dB/km),
- c) Funkstrecke (6 GHz, Sendeantenne \varnothing =2 m, Empfangsantenne \varnothing =2 m) und
- d) Funkstrecke (6 GHz, Sendeantenne \varnothing =30 m, Empfangsantenne \varnothing =2 m).

Signallaufzeit

$$\tau = d/(c_0/\sqrt{\varepsilon_r})$$

$$\tau = d/c_0$$

Kap. 1: Einführung

Wellenlänge in nm

Warum immer höhere Frequenzen?

Mobilfunksysteme (2.1, 3.5, 28 ... 240 GHz):

Verdichtung bestehender Netze Je höher Frequenz, desto geringer Reichweite, aber desto höher Datenrate

Macro Micro typ. < 30km Pico < 2km Femto < 200m few 10m Fiber **MIMO** Backbone Sector **V** BS **Antennas** Fiber Backbone MS MS

Base Station (BS)

Glasfaser-Netz

(1.5μm, 200 THz): Extrem hohe Datenraten

(Datenautobahnen)

<u>Laser Link (1.5µm):</u>

Sehr begrenzte Reichweite wegen Nebel & eingeschränkter Leistung

Transmitter optical channel Receiver (Laser-diode)

Optische
Übertragung

Analog-to-

Digital-

Converter

Viterbi

Equalizer

Mobile Station (MS)

Kap. 1: Einführung

Warum immer höhere Frequenzen?

 $\varepsilon_s = 1$ 2-wertige $\varepsilon_s > 1$ Höherwertige MOD

Digitale Modulation hochfrequenter Signale zur Übertragung von Daten

Hohe Datenraten $R_b = \varepsilon_s \cdot B_{RF}$ erfordern

- \rightarrow große absolute RF-Bandbreiten B_{RF}
 - \rightarrow hohe Trägerfrequenzen f_c
- ightharpoonup Höhere spektrale Effizienz $arepsilon_s>1$
 - → Erhöhung der Datenraten bei gleicher Bandbreite

Datendurchsatz steigt gegenwärtig exponentiell; Wie hält man Schritt?

- 1. Existente Kommunikationskanäle: Übertragungsraten R_b / Datenkapazität C erhöhen durch spektrale Effizienz ε_s der Modulationsverfahren
- 2. Neue Frequenzbänder bei höheren Trägerfrequenzen f_c mit höherer absoluter Bandbreite B_{RF} erschließen \rightarrow Millimeterwellen- & THz-Bereich f_c > 26 GHz

Verdichtung/Erweiterung der bestehenden Netze mittels kleinerer Zellen & Kleinstzellen

- Große Zellen (Macro) zur Flächendeckung (geringe Kapazität, typ. GSM, UMTS, LTE), Verwendung hoch-angebrachter Sektorantennen
- ➤ Kleinere Zellen (Micro, Pico) für zusätzliche Kapazität & Netzabdeckung (große Kapazität, LTE, 5G Phase I (3.5 7 GHz) → niedrige Antennen, Mehrantennentechnik
- Kleinstzellen (Femto: Outdoor & Indoor) für extrem hohe Übertragungsraten
 - → 5G Phase II (24 80 GHz) & 6G (100 240 GHz)

Warum immer höhere Frequenzen (> 10 GHz)?

TECHNISCHE UNIVERSITÄT DARMSTADT

Nachteile / Herausforderungen

- ➤ Kleinere Zellen (Micro, Pico) für zusätzliche Kapazität & Netzabdeckung → 5G Phase I
 (3.5 7 GHz) → niedrige Antennen, Mehrantennentechnik
- ➤ Kleinstzellen (Femto: Outdoor & Indoor) für extrem hohe Übertragungsraten → 5G Phase II (24 – 80 GHz) & 6G (100 – 240 GHz)
- höhere Penetrationsverluste (z.B. durch Mauerwerk)
 - → Welle dringt nicht durch die Mauer
- geringerer Beugungsbereich $\sim \lambda \rightarrow$ starke Abschattung
 - → Sichtverbindung (Line-of-Sight, LOS) erforderlich!
- ± höhere Ausbreitungsdämpfung → Wellenausbreitung begrenzt!
 - nur sehr kleine Funkzellen (Kleinst-/Femtozellen) möglich!
- Mehr Standorte / höhere Infrastrukturkosten

Kap. 2.3: Antennen

Warum immer höhere Frequenzen?

Was bedeutet das für die Antennen?

+ kompaktere Antennen (z.B. für $\lambda/2$ -Dipol / Patch)

Beispiel: 6×6 Patch-Array ($A=B\approx6\cdot\lambda/2$) quadratische Apertur

$$f_0 = 3 \text{ GHz}$$
, $\lambda = 10 \text{ cm}$ $\rightarrow A = 30 \text{ cm}$

$$f_0$$
 = 300 GHz, λ =1 mm \rightarrow A=3 mm

Antennengewinn (Gain, G) in dBi $G = \varepsilon_{ap} \cdot \frac{4\pi}{\lambda^2} \cdot A^2$

3dB-Keulenbreite (Half-Power Beamwidth) $HPBW = k \cdot \frac{\pi}{4}$

-10dB-Taper *k*=1.15

Kap. 2.3: Antennen

Warum immer höhere Frequenzen?

TECHNISCHE UNIVERSITÄT DARMSTADT

Was bedeutet das für die Antennen?

→ kompaktere Antennen mit hohem Gewinn & schmalen Keulen realisierbar

Antennengewinn (Gain, G) in dBi $G = \varepsilon_{ap} \cdot \frac{4\pi}{\lambda^2} \cdot A^2$

3dB-Keulenbreite (Half-Power Beamwidth) $\frac{R}{A}$

 $a \approx d \cdot HPBW \approx \frac{a}{A/A}$

3-dB Kontur (Footprint)

Ausleuchtzone mit Durchmesser a

~ Entfernung d

 $\sim \lambda/A$ 1/ANTabm., 1/Frequenz

Was bedeutet das für die Antennen?

→ kompaktere Antennen mit hohem Gewinn & schmalen Keulen realisierbar

Antennengewinn (Gain, G) in dBi $G = \varepsilon_{ap} \cdot \frac{4\pi}{\lambda^2} \cdot A^2$

3dB-Keulenbreite (Half-Power Beamwidth) $HPBW = k \cdot -$

- elektronische Strahlschwenkung zur genauen Ausrichtung erforderlich!
 - → Gilt insbesondere für portable/ mobile Teilnehmer-Terminals

Analog/Digital Beamsteering

Multibeam-Subarrays & Multiple Input Multiple Output (MIMO):

Flexible Adressierung unterschiedlicher Raumsegmente (Raummultiplex) → Erhöhung der Kapazität

$$N_b$$
 = Anzahl der Antennenkeulen pro Basisstation (BS)

$$C = \varepsilon_{s} \cdot B_{tot} = \varepsilon_{s} \cdot \frac{N_{b}}{N_{c}} \cdot B_{RF}$$

 N_c = 3 Clustergröße bei 120°-Sektorantennen

- deutlich höherer Hardwareaufwand / Kosten
- Leistungsverbrauch kritisch!

Multibeam-Multimode Antenna Concept High-Throughput Satellites (HTS)

$$B_{tot} = \frac{P \cdot N_b}{N_c} \cdot B_w$$
 and $C_{sat} = \eta_s \cdot B_{tot}$, where

Tens of Gbit/s to several Tbit/s total throughput capacity of HTS

P=1 if polarization diversity is not employed and P=2 for dual-pol. frequency reuse N_b is the number of beams of the satellite; N_c is the cluster size $F_r = P \cdot N_b / N_c$ is the frequency reuse factor B_w is the bandwidth allocate to the satellite in Hz η_s is the spectral efficiency in bit/s/Hz of the modulation and coding scheme

Auflösung(svermögen)

Sicherheitstechnik (Körperscanner, Radar), Bildgebung (Imaging), Radioastronomie...

Winkelauflösungsvermögen (spatial or angular resolution)

$$\Delta \Theta \ge 2 \cdot r \cdot \sin\left(\frac{\Theta}{2}\right) \approx 2 \cdot r \cdot \left(\frac{\Theta}{2}\right) = r \cdot \Theta$$

$$\Delta \Theta \ge r \cdot k \cdot \frac{\lambda}{A}$$

Half-Power BeamWidth of an antenna

$$HPBW = \mathbf{\Theta} = k \cdot \frac{\lambda}{A}$$

Antenne mit A=30 mm

f	10	100	1	193	600
	GHz	GHz	THz	THz	THz
λ	30	3	0.3	1.55	0.5
	mm	mm	mm	μm	μm
Δ <i>Θ</i> ~ λ/A	1	0.1	0.01	51.6· 10 ⁻⁶	16.6· 10 ⁻⁶

Je größer die Antenne/Linse bezogen auf die Wellenlänge A/λ (für gleiche Entfernung r und Antennenbelegung k), desto besser das Winkelauflösungsvermögen $\Delta \Theta$

im optischen Bereich (600 THz) a priori 6000 × besser (schmäler) als bei 100 GHz

Auflösung(svermögen)

Sicherheitstechnik (Körperscanner, Radar), Bildgebung (Imaging), Radioastronomie...

Entfernungsauflösungsvermögen (range resolution)

$$\Delta r \ge \frac{c_0}{2 \cdot B_{RF}} = \frac{\lambda_0}{2} \cdot \frac{f_0}{B_{RF}}$$

$$B_{RF}/f_0 = 1 \dots \%$$
 $\Delta r = \lambda_0/2 \dots 2 \cdot \lambda_0$

f	10	100	1	193	600
	GHz	GHz	THz	THz	THz
λ	30	3	0.3	1.55	0.5
	mm	mm	mm	μm	μm

Je höher die Frequenz (bei gleicher relativer Bandbreite B_{RF}/f_0), desto besser das Entfernungsauflösungsvermögen (Tiefenschärfe)

Autonome Fahrzeuge: Sicherheitstechnik

Lidar: Light detection and ranging

Radar: Radio detection and ranging

Auflösung Δr im optischen Bereich a priori 6000 × besser als bei 100 GHz

Räumliche Auflösung ist im Bereich der Wellenlänge: mmW zeigen deutlich schlechtere Auflösung als Optik, durchdringen aber Nebel und Schmutz!

Zusammenfassung

Kommunikation: 5G/6G und Satelliten

höhere Trägerfrequenzen f_0 oder f_c

- + große absolute RF-Bandbreiten B_{RF}
- + hohe Datenraten $R_b = \varepsilon_{\scriptscriptstyle S} \cdot B_{RF}$
- hohe Freiraumausbreitungsdämpfung
- hohe Dämpfung (Atmosphäre, Regen, ...)
- höhere Infrastruktur(kosten)

- + kompaktere Antennen (z.B. für Patch)
- + hoher Antennengewinn (Gain, G)
- + schmale 3dB-Keulenbreite (HPBW)
- + Ausleuchtzone mit Durchmesser a ~ Entfernung d und ~ λ/A

Zusammenfassung

Bildgebung & Radar Radioastronomie

höhere Trägerfrequenzen f_0 oder f_c

- + große absolute RF-Bandbreiten $oldsymbol{B_{RF}}$
- + hohe Datenraten $R_b = \varepsilon_{\scriptscriptstyle S} \cdot B_{RF}$
- hohe Freiraumausbreitungsdämpfung
- hohe Dämpfung (Atmosphäre, Regen, ...)
- höhere Infrastruktur(kosten)
- + hohe Entfernungsauflösung (range resolution) $\Delta r \geq \frac{c_0}{2 \cdot B_{RF}} = \frac{\lambda_0}{2} \cdot \frac{f_0}{B_{RF}}$

- + kompaktere Antennen (z.B. für Patch)
- + hoher Antennengewinn (Gain, G)
- + schmale 3dB-Keulenbreite (HPBW)
- + Ausleuchtzone mit Durchmesser a
 ~ Entfernung d und ~ λ/A
- + hohe Winkelauflösungsvermögen (spatial or angular resolution)

$$\Delta \Theta \geq r \cdot \Theta = r \cdot k \cdot \lambda / A$$
 in IMP.

Danke für die Aufmerksamkeit

Technische Universität Darmstadt (TUD)

Mikrowellentechnik (MWT)

Institut für Mikrowellentechnik und Photonik (IMP)

Merckstrasse 25, 64283 Darmstadt, Tel.: +49 6151-16-28460, E-Mail: rolf.jakoby@tu-darmstadt.de

