

Casamento de Impedâncias por Elementos Mistos

Meios de Transmisão Guiados

Arthur Cadore Matuella Barcella

12 de Abril de 2024

Engenharia de Telecomunicações - IFSC-SJ

Sumário

1. Introdução	3
2. Desenvolvimento teórico	3
2.1.1. Linha Original:	. 3
2.1.2. Linha Casada:	. 3
2.2. Representação na carta	. 4
3. Conclusão	5
3.1.1. Linha de Transmissão adicionada:	. 5
3.1.2. Componente de Casamento Reativo:	. 5
3.2. Circuito resultante:	. 5
4. Referências	5

1. Introdução

Neste relatório o objetivo é apresentar o casamento de impedâncias por elementos mistos, utilizando a carta de Smith. A carta de Smith é uma ferramenta gráfica utilizada para a análise de circuitos de RF, sendo útil para a análise de casamento de impedâncias em a necessidade de transformadas de impedância por expressões matemáticas.

2. Desenvolvimento teórico

2.1.1. Linha Original:

Para o casamento por elementos mistos, é necessário a adição de uma linha de transmissão de comprimento variavél (de acordo com a impedância imaginária da carga), bem como a adição de um componente reativo (indutor ou capacitor) para o casamento da parte imaginária da impedância.

- **Zin** é a impedância de entrada
- Z0 é a impedância da linha de transmissão
- ZL é a impedância da carga.

2.1.2. Linha Casada:

Sendo assim, o circuito final após o casamento por elementos mistos é composto por uma linha de transmissão de comprimento variável e um componente reativo, que juntos, casam a impedância da carga, desta forma, na entrada do circuito, a impedância imaginária é cancelada e a impedância real (normalizada) é igual a 1, ou seja, casada com a linha.

- **Zin** é a impedância de entrada
- **Z0** é a impedância da linha de transmissão
- LTC é a linha de transmissão para o casamento
- ZL é a impedância da carga.
- XLC é a impedância da linha XL ou XC correspondente ao casamento.

	Impedância da linha (Ω)	Impedância da Carga (Ω)
Valor Real	50	11 + 25j
Valor Normalizado	1	0,22+0,5j

2.2. Representação na carta

Figure 1: Carta de Smith (Importada)

The Complete Smith Chart

Black Magic Design

Representação (SmithChart) - Casamento por elementos mistos

3. Conclusão

Desta forma, podemos concluir que os valores necessários para o casamento misto são os seguintes:

3.1.1. Linha de Transmissão adicionada:

	Impedância vista na LTC (Ω)	Comprimento da LTC (λ)
Valor Normalizado	1 + 1,9j	$0,\!11\lambda$
Valor Real	50 + 95j	$0,\!11\lambda$

3.1.2. Componente de Casamento Reativo:

Com a parte real da impedância casada, podemos calcular o valor do componente reativo a ser adicionado ao circuito para casar a parte imaginária da impedância

	Impedância do componente(Ω)	
Valor Normalizado	1,9j	
Impedância Real	95j	

Realizando o calculo de da impedância indutiva, obtemos o seguinte valor do componente a ser adicionado a posição "XLC" do circuito de linha casada. Para realizar o calculo, podemos aplicar a equação apresentada abaixo:

XL =
$$2 * \pi * f * L \rightarrow 0.1 = 2 * \pi * f * L \rightarrow L = \frac{0.1}{2 * \pi * f}$$

 $L = 0.000000000015915494309188486$

3.2. Circuito resultante:

O circuito resultante ficará da seguinte forma apresentada abaixo, onde os componentes adicionados fazem o casamento da impedância da carga, desta forma, a impedância de entrada do circuito é casada com a linha de transmissão:

4. Referências

• Smith Chart - Original Paper