Frequent Itemset Mining

My Account •

More v

Cart

ADD TO CART **F** BUY NOW ↑ Back to top

Frequently bought together

ASUS VivoBook Ultra 14 Core i3 11th Gen - (8 GB/512 GB SSD/Window...

₹43,990 ₹56,990 22% off

1 Item 1 Add-on

₹43,990

₹299

₹44,289

Total

Logitech M90 Wired Optical Mouse

4.4 ★ (7,198)

₹299

ADD 2 ITEMS TO CART

Ratings & Reviews

Rate Product

Cooking Essentials -

pantry

Roll over image to zoom in

In Stock.

Sold and fulfilled by Cloudtail Pantry.

Item Form Cream **Brand** Fiama

Special Almond Oil

Ingredients

Scent Almond Skin Type Normal Package Type Bottle

See more

About this item

- Moisturised Skin Contains Skin Conditioners with Moisture Lock that keeps your skin soft
- Soft Skin Enriched with natural extracts of Brahma kamalam flower, milk cream and Almond oil, it works to keep you fresh and your skin soft

Special offers and product promotions

- Prime Savings: 10% Instant Discount up to Rs.1750 with HDFC Bank Debit/Credit Cards (EMI) on Minimum puchase of Rs.5000. Here's how
- Prime Savings: Flat Rs.500 Instant Discount with HDFC Bank Debit Cards (Non-EMI) on Minimum puchase of Rs.5000. Here's how >
- Prime Savings: 10% Instant Discount up to Rs.1250 with HDFC Bank Credit Cards (Non-EMI) on Minimum puchase of Rs.5000. Here's how
- Get GST invoice and save up to 28% on business purchases. Sign up for free Here's how >

Frequently bought together

Total price: ₹328.00 Add all three to Cart

Association Rules Example

Transaction	Items
t_1	Bread, Jelly, Butter
t_2	Bread, Butter
t_3	Bread, Milk, Butter
t_4	Apple, Bread
t_5	Apple, Milk

I = {Apple, Bread, Jelly, Milk, Butter}

Bread => Butter happens pretty frequently

Association rule mining

- Find which item sets are associated
- Association denotes accessing together
- Dataset D is set of transactions T_i
- Each T_i is set of items $I_{ij} \in I$
- \bullet Find itemsets A and B such that accessing A implies accessing B

$$A \implies B$$

- Extremely rare that this will happen always
- Not useful if such itemsets occur rarely

Parameters of an Association Rule

- For both A and B to occur, $A \cup B$ must occur
- Two thresholds or parameters
- Support: A and B should occur in at least s (ratio of) transactions

$$P(A,B) = \frac{|A \cup B|}{|T|} \ge s$$

 Confidence: If A occurs, B should occur in at least c (ratio of) transactions

$$P(B|A) = \frac{|A \cup B|}{|A|} \ge c$$

Transaction Id	Itemsets
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Rule	Support	Confidence
$B \implies E$		
$C \implies E$		
$B,C\impliesE$		
$E \Longrightarrow B$		
$E \implies C$		
$E \implies B, C$		
$A \Longrightarrow D$		
$D \implies A$		

Mining Association Rules

- Given a support threshold s and confidence threshold c
 - Mine all frequent itemsets, i.e., support of the itemset is above s
 - For association rules from frequent itemsets, i.e., each rule has confidence above c

How difficult is the problem?

- What is the naïve approach?
- Generate a candidate itemset
- Test its support
- If frequent, accept
- Else, throw away
- Total number of possible itemsets is $2^n 1$
- Checking each itemset requires scanning the entire transaction database
- Too impractical

Apriori Principle

- Candidate-generation-and-test paradigm
- Apriori principle: If an itemset is frequent, all its subsets must also be frequent
- Conversely, if an itemset X is infrequent, all its supersets are also infrequent
- This is an anti-monotonic property: if a set fails, its supersets fail as well

Apriori Algorithm

- Generates candidate itemsets in order of length
- Tests each such candidate itemset for support threshold
- Uses all frequent itemsets of a particular length to generate candidates having length one more

Transaction Id	Itemsets
0	1, 2, 5
1	2, 4
2	2, 3
3	1, 2, 4
4	1, 3
5	2, 3
6	1, 3
7	1, 2, 3, 5
8	1, 2, 3
9	6

Support threshold s = 2

Candidate set C_1

Itemset	Frequency
1	6
2	7
3	6
4	2
5	2
6	1

Frequent set F_1

	rrequent set r		
	Itemset	Frequency	
	1	6	
>	2	7	-
	3	6	
	4	2	
	5	2	

Candidate set C_2

	2.00	
Itemset	Frequency	
1, 2	4	
1, 3	4	
1, 4	1	
1, 5	2	
2, 3	4	,
2, 4	2	
2, 5	2	
3, 4	0	
3, 5	1	
4, 5	0	

Frequent set F_2

Itemset	Frequency
1, 2	4
1, 3	4
1, 5	2
2, 3	4
2, 4	2
2, 5	2

Candidate set C_3

Itemset	Frequency
1, 2, 3	2
1, 2, 5	2
(1, 3, 5)	subset
(2, 3, 4)	subset
(2, 3, 5)	subset
(2, 4, 5)	subset

Frequent set F_3

Itemset	Frequency
1, 2, 3	2
1, 2, 5	2

Candidate set C_4

Itemset	Frequency
(1, 2, 3, 5)	subset

Do we need to count support of all generated candidates?

•
$$F_3 = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{1, 3, 5\}, \{2, 3, 4\}\}$$

- After join
 - $C_4 = \{\{1, 2, 3, 4\}, \{1, 3, 4, 5\}, \{1,2,3,5\}\}$
- After pruning:
 - $C_4 = \{\{1, 2, 3, 4\}\}$ because $\{1, 4, 5\}$ and $\{1, 2, 5\}$ are not in F_3 ($\{1, 3, 4, 5\}$ and $\{1, 2, 3, 5\}$ are removed)

Ordering Itemsets

- The items in I are sorted in lexicographic order (which is a total order).
- The order is used throughout the algorithm in each itemset.
- $\{w[1], w[2], ..., w[k]\}$ represents a k-itemset w consisting of items w[1], w[2], ..., w[k], where w[1] < w[2] < ... < w[k] according to the total order.

Details: the algorithm

```
Algorithm Apriori(T)
   C_1 \leftarrow \text{init-pass}(T);
   F_1 \leftarrow \{f \mid f \in C_1, f.\text{count}/n \ge minsup\}; // \text{n: no. of transactions in T}
   for (k = 2; F_{k-1} \neq \emptyset; k++) do
             C_k \leftarrow \text{candidate-gen}(F_{k-1});
             for each transaction t \in T do
                for each candidate c \in C_k do
                          if c is contained in t then
                             c.count++;
                end
             end
        F_k \leftarrow \{c \in C_k \mid c.count/n \ge minsup\}
   end
return F \leftarrow \bigcup_{k} F_{k};
```

Candidate-gen function

```
Function candidate-gen(F_{k-1})
  C_k \leftarrow \emptyset;
  forall f_1, f_2 \in F_{k-1}
           with f_1 = \{i_1, \dots, i_{k-2}, i_{k-1}\}
           and f_2 = \{i_1, \dots, i_{k-2}, i'_{k-1}\}
           and i_{k-1} < i'_{k-1} do
      c \leftarrow \{i_1, ..., i_{k-1}, i'_{k-1}\};
                                                         // join f_1 and f_2
      C_{k} \leftarrow C_{k} \cup \{c\};
      for each (k-1)-subset s of c do
           if (s \notin F_{k-1}) then
              delete c from C_k;
                                                         // prune
      end
   end
   return C_k;
```

Step 2: Generating rules from frequent itemsets

- Frequent itemsets ≠ association rules
- One more step is needed to generate association rules
- For each frequent itemset X,
 For each proper nonempty subset A of X,
 - Let B = X A
 - A \rightarrow B is an association rule if
 - Confidence(A → B) ≥ minconf,
 support(A → B) = support(A∪B) = support(X)
 confidence(A → B) = support(A ∪ B) / support(A)

Generating rules: an example

- Suppose {2,3,4} is frequent
- Proper nonempty subsets:
 - {2,3}, {2,4}, {3,4}, {2}, {3}, {4}
- These generate these association rules:
 - $2,3 \rightarrow 4$,
 - $2,4 \rightarrow 3$,
 - $3,4 \rightarrow 2$,
 - $2 \to 3,4$,
 - $3 \rightarrow 2,4$,
 - $4 \rightarrow 2,3$,

Frequent Pattern Tree

- Frequent pattern (FP)-growth
- Compact representation of entire transaction database as a tree
- FP-tree
- Resembles a prefix tree

Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without candidate generation. In *Proceedings of the 2000 ACM SIGMOD*. [Citations: 9670]

Algorithm

- First finds support of all 1-itemsets
- Items in descending order of support forms flist order
- Re-arranges items in every transaction in flist order
- Root is "null"
- Nodes are items with corresponding count
- Each transaction is added as a path in the tree
- Count of common prefixes are incremented
- Nodes of same item are linked using node links
- Two database scans

FP-Tree Construction

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	{B,C,E}

FP-Tree Construction

Header table

Item	Pointer
Α	
В	
С	
D	
Е	

Transaction Database

Pointers are used to assist frequent itemset generation

To mine frequent itemsets containing E (starts with the least frequent item)

- Identify paths containing E
- 2. Build conditional pattern base

Build conditional pattern base for E:

Recursively apply FP-growth on P

Conditional tree for E:

Assume minSup=2

Conditional Pattern base for E:

```
P = {(A:1,C:1,D:1,E:1),
(A:1,D:1,E:1),
(B:1,C:1,E:1)}
```

Count for E is 3: {E} is frequent itemset

Recursively apply FP-growth on P

Conditional tree for D within conditional tree for E:

Conditional pattern base for D within conditional base for E:

Count for D is 2: {D,E} is frequent itemset

Recursively apply FP-growth on P

Conditional tree for A within D within E:

null (

Count for A is 2: {A,D,E} is frequent itemset

Next step:

This recursion stops

Construct conditional tree C within conditional tree E

Continue until exploring conditional tree for A (which has only node A)

Conditional tree for C within E:

Assume minSup=2

null (

Conditional Pattern base for CE:

Output 2:{C,E}

Return since no further recursion

Conditional tree for A within conditional of E:

Assume minSup=2

null (

Conditional Pattern base for

E:

Output 2:{A,E}

No further recursion.