Στοχαστικές Ανελίξεις Εξετάσεις Φεβρουαρίου 2004 ΣΕΜΦΕ

0.5

Ζήτημα 1° . Έστω N διακριτή τ.μ. με σ.μ.π. $p_n = P[N = n]$ (n = 0, 1, ...) και με γεννήτρια πιθανοτήτων $\pi(s)$. Έστω $\{Y_i : i = 1, 2, ...\}$ ακολουθία ανεξάρτητων και ισόνομων τ.μ. με ροπογεννήτρια συνάστηση $g_Y(s)$.

(α) Να δειχθεί ότι η ροπογεννήτρια συνάρτηση του αθροίσματος $X = \sum_{i=1}^{N} Y_{i}$ με τυχαίο αριθμό όρων N_{i} είναι:

 $g_{x}(s) = \pi(g_{y}(s)).$

(β) Αν οι ανεξάρτητες τ.μ. {Υ_i : i = 1, 2, ...} ακολουθούν Εκθετική κατανομή παραμέτρου θ και η τ.μ. Ν ακολουθεί Γεωμετρική κατανομή παραμέτρου p, ποια η κατανομή της τ.μ. Χ;

Ζήτημα 2^n . Θεωρούμε το συμμετρικό απλό τυχαίο περίπατο $\{X_n = \sum_i Y_i : n = 1, 2, ...\}$ $\{p = q = \frac{1}{2}\}$ με απορροφητικά φράγματα -a και b και πιθανότητες απορρόφησης α και b αντίστοιχα. Έστω b αχρόνος απορρόφησης και b b απορρόφησης. Με εφαρμογή της ταυτότητας του Wald να δείξετε ότι ισχύουν τα παρακάτω:

(a) $E[X_T] = 0$, (b) $\alpha = b/(a+b)$ kal (c) $E[X_T^2] = E[T]$.

- Ζήτημα 3°. Παίκτης κερδίζει ή χάνει μία μονάδα με ίσες πιθανότητες. Έστω ότι ξεκινά με το ποσό A και σταματά να παίζει όταν το χρήματά του γίνονται B ή 0. Να δειχθεί ότι η αναμενόμενη διάρκεια του παιχνιδιού είναι: E[T] = A(B A).
 - **Σήτημα 4°.** Θεωρούμε τη Μαρκοβιανή αλυσίδα $\{X_n:n=0,1,2,...\}$ με χώρο καταστάσεων $S=\{0,1,2,...\}$ και πιθανότητες μετάβασης $p_{i,i+1}=p_i$ και $p_{i,0}=q_i$ $i=1-p_i$ $(0< p_i<1)$. Να δείξετε ότι πρόκειται για μη υποβιβάσιμη απεριοδική Μ.Α. και ότι υπάρχει κατανομή ισορροπίας $\pi=(\pi_0,\,\pi_1,\,\pi_2,\,\ldots)$ αν και μόνο εάν $\sum_i^\infty d_k < \infty$, όπου $d_k=\prod_i^{k-l} p_i$ $(k\geq 1)$.

Τα θέματα είναι ισοδύναμα

Διάρκεια: 2 1/2 ώρες Καλή επιτυχία