Introduction to Wireless & Mobile Systems

Chapter 3 Mobile Radio Propagation

Outline

- Speed, Wavelength, Frequency
- Types of Waves
- Radio Frequency Bands
- Propagation Mechanisms
- Radio Propagation Effects
- Free-Space Propagation
- Land Propagation
- Path Loss
- Fading: Slow Fading / Fast Fading
- Delay Spread
- Doppler Shift
- Co-Channel Interference
- The Near-Far Problem
- Digital Wireless Communication System
- Analog and Digital Signals
- Modulation Techniques

Speed, Wavelength, Frequency

Light speed = Wavelength x Frequency

 $= 3 \times 10^8 \text{ m/s} = 300,000 \text{ km/s}$

	*大線長度率》	女波长	
Y	Wavelengt	h	

System	Frequency	Wavelength
AC current	60 Hz	5,000 km
FM radio	100 MHz	3 m
Cellular	800 MHz	37.5 cm
Ka band satellite	20 GHz	15 mm
Ultraviolet light	$10^{15} \mathrm{Hz}$	10 ⁻⁷ m

Radio Frequency Bands

Classification Band	Initials	Frequency Range	Characteristics
Extremely low	ELF	< 300 Hz	
Infra low	ILF	300 Hz - 3 kHz	Ground wave
Very low	VLF	3 kHz - 30 kHz	
Low	LF	30 kHz - 300 kHz	
Medium	MF	300 kHz - 3 MHz	Ground/Shy wave
High	HF	3 MHz - 30 MHz	Sky wave
Very high	VHF	30 MHz - 300 MHz	
Ultra high	UHF	300 MHz - 3 GHz	
Super high	SHF	3 GHz - 30 GHz	Space wave
Extremely high	EHF	30 GHz - 300 GHz	
Tremendously high	THF	300 GHz - 3000 GHz	

Propagation Mechanisms

- Reflection 反射
 - Propagation wave impinges on an object which is large as compared to wavelength
 - e.g., the surface of the Earth, buildings, walls, etc.
- Diffraction 統身
 - Radio path between transmitter and receiver obstructed by surface with sharp irregular edges
 - Waves bend around the obstacle, even when LOS (line of sight) does not exist
- Scattering
 - Objects smaller than the wavelength of the propagation wave
 - e.g. foliage, street signs, lamp posts

Radio Propagation Effects

• The received signal power at distance d:其效面積

$$P_{r} = \frac{AeGtP_{t}}{4\pi d^{2}} \qquad \frac{P_{r}}{P_{v}} = \frac{Ae \cdot Gv \rightarrow 185}{4\pi d^{2}} \propto \frac{1}{d^{2}}$$

where P_t is transmitting power, A_e is effective area, and G_t is the transmitting antenna gain. Assuming that the radiated power is uniformly distributed over the surface of the sphere.

Antenna Gain

For a circular reflector antenna

Gain
$$G = \eta (\pi D / \lambda)^2$$

 η = net efficiency (depends on the electric field distribution over the antenna aperture, losses, ohmic heating, typically 0.55)

D = diameter

thus, $G = \eta (\pi D f/c)^2$, $c = \lambda f$ (c is speed of light)

Example:

Antenna with diameter = 2 m, frequency = 6 GHz, wavelength = 0.05 m

$$G = 39.4 \text{ dB} \%$$

- Frequency = 14 GHz, same diameter, wavelength = 0.021 m
 G = 46.9 dB
- * Higher the frequency, higher will be the gain for the same size antenna

Land Propagation

The received signal power:

$$P_r = \frac{G_t G_r P_t}{L}$$

where P_r is the received power,

 P_t is the transmitting power,

 G_r is the receiver antenna gain,

 G_t is the transmitter antenna gain,

is the propagation loss in the channel, i.e.,

Path Loss (Free-space)

口理想環境

<u>Path Loss</u>: The signal strength decays exponentially with <u>distance</u>
 <u>d</u> between transmitter and receiver;

The loss could be proportional to somewhere between d^2 and d^4 depending on the environment.

• Definition of path loss L_P :

$$L_{P} = \frac{P_{t}}{P_{r}}, \quad \text{Lindikett$$

Path Loss in Free-space:

$$L_{PF}(dB) = 32.45 + 20 \log_{10} f_c(MHz) + 20 \log_{10} d(km),$$

where f_c is the carrier frequency.

→ This shows greater the f_{c} , more is the loss. \Rightarrow f_{c} \ \ \

Path Loss (Land Propagation)

り真實環境

• Simplest Formula:
$$L_p = A d^{\alpha} \sim d^{\alpha}$$

where

A and α : propagation constants

d: distance between transmitter and receiver

 α : value of 3 ~ 4 in typical urban area

Example of Path Loss (Free-space)

10~10° 無線電頻率(FM)

Path Loss

- Path loss in decreasing order:
 - Urban area (large city)
 - Urban area (medium and small city)
 - Suburban area
 - Open area

Path Loss (Urban, Suburban and Open areas)

• Urban area:

$$L_{PU}(dB) = 69.55 + 26.16 \log_{10} f_c(MHz) - 13.82 \log_{10} h_b(m) - \alpha \left[h_m(m) \right]$$
$$+ \left[44.9 - 6.55 \log_{10} h_b(m) \right] \log_{10} d(km)$$

where

$$\alpha \left[h_{m}(m)\right] = \begin{cases} \left[1.1\log_{10} f_{c}(MHz) - 0.7\right]h_{m}(m) - \left[1.56\log_{10} f_{c}(MHz) - 0.8\right], & \text{for } l \text{ arg } e \text{ city} \\ 8.29\left[\log_{10} 1.54h_{m}(m)\right]^{2} - 1.1, & \text{for } f_{c} \leq 200MHz \\ 3.2\left[\log_{10} 11.75h_{m}(m)\right]^{2} - 4.97, & \text{for } f_{c} \geq 400MHz \end{cases}, & \text{for small & medium city} \end{cases}$$

• Suburban area:

$$L_{PS}(dB) = L_{PU}(dB) - 2 \left[\log_{10} \frac{f_c(MHz)}{28} \right]^2 - 5.4$$

Open area:

$$L_{PO}(dB) = L_{PU}(dB) - 4.78 \left[\log_{10} f_c(MHz) \right]^2 + 18.33 \log_{10} f_c(MHz) - 40.94$$

Example of Path Loss (Urban Area: Large City)

072

Example of Path Loss (Urban Area: Medium and Small Cities)

Example of Path Loss (Suburban Area)

Example of Path Loss (Open Area)

Fading

Slow Fading 同国国上的强度不同

- Slow fading is caused by movement over distances large enough to produce gross variations in the overall path between transmitter and receiver.
- The long-term variation in the mean level is known as slow fading (shadowing or log-normal fading). This fading caused by shadowing. 4 log normal disc.

Shadowing

- Shadowing: Often there are millions of tiny obstructions in the channel, such as water droplets if it is raining or the individual leaves of trees. Because it is too cumbersome to take into account all the obstructions in the channel, these effects are typically lumped together into a random power loss.
- Log-normal distribution:
 - The pdf of the received signal level is given in decibels by

$$p(M) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(M-\overline{M})^2}{2\sigma^2}},$$

where M is the true received signal level m in decibels, i.e., $10\log_{10}m$, M is the area average signal level, i.e., the mean of M, σ is the standard deviation in decibels

Log-normal Distribution

The pdf of the received signal level

Fast Fading 。以著不動

- The signal from the transmitter may be reflected from objects such as hills, buildings, or vehicles. <u>Fast fading</u> is due to scattering of the signal by object near transmitter.
 - When MS far from BS, the envelope distribution of received signal is Rayleigh distribution with β =0. The pdf is

$$p(r) = \frac{r}{\sigma^2} e^{-\frac{r^2 + \beta^2}{2\sigma^2}} I_0(\frac{\beta r}{\sigma^2}), \quad r > 0$$

where σ is the standard deviation, r is the envelope of fading signal, β is the amplitude of direct signal, and I_0 is the zero order Basel Function.

- Middle value r_m of envelope signal within sample range to be satisfied by $P(r \le r_m) = 0.5$.
- We have $r_m = 1.777$ •

Rayleigh Distribution

The pdf of the envelope variation

Fast Fading (Continued)

• When MS is far from BS, the envelope distribution of received signal is called a <u>Rician</u> distribution. The pdf is

$$p(r) = \frac{r}{\sigma^2} e^{-\frac{r^2 + \alpha^2}{2\sigma^2}} I_0\left(\frac{r\alpha}{\sigma}\right), \quad r \ge 0$$

where

 σ is the standard deviation,

 $I_0(x)$ is the zero-order Bessel function of the first kind, α is the amplitude of the direct signal

Rician Distribution

The pdf of the envelope variation

Characteristics of Instantaneous Amplitude

- Level Crossing Rate:
 - Average number of times per second that the signal envelope crosses the level in positive going direction.
- Fading Rate:
 - Number of times signal envelope crosses middle value in positive going direction per unit time.
- Depth of Fading:
 - Ratio of mean square value and minimum value of fading signal.
- Fading Duration:
 - Time for which signal is below given threshold.

Doppler Shift

都卜勒效應

- **Doppler Effect**: When a wave source and a receiver are moving towards each other, the frequency of the received signal will not be the same as the source.
 - When they are moving toward each other, the frequency of the received signal is higher than the source.
 - When they are opposing each other, the frequency decreases.

Thus, the frequency of the received signal is

$$f_R = f_C - f_D$$

where f_C is the frequency of source carrier, f_D is the Doppler frequency.

• **Doppler Shift** in frequency:

$$f_D = \frac{v}{\lambda} \cos \theta \quad \forall = f \quad \Rightarrow f = \frac{\sqrt{v}}{\lambda}$$

where v is the moving speed,

 λ is the wavelength of carrier.

Moving Speed Effect

Delay Spread

- When a signal propagates from a transmitter to a receiver, signal suffers one or more reflections.
- This forces signal to follow different paths. * [FI]
- Each path has different path length, so the time of arrival for each path is different.
- This effect which spreads out the signal is called "Delay Spread".

Delay Spread

Inter-Symbol Interference (ISI)

Inter-Symbol Interference (ISI)

- Caused by time delayed multipath signals
- Has impact on the burst error rate of channel
- Second multipath is delayed and is received during next symbol
- For low bit-error-rate (BER)

$$R < \frac{1}{2\tau_d}$$
 $\tau_d < \frac{1}{\nu} \tau$

• R (digital transmission rate) limited by delay spread τ_d .

Coherence Bandwidth

- Coherence bandwidth B_c:
 - Represents correlation between two fading signal envelopes at frequencies f₁ and f₂.
 - Is a function of delay spread.
 - Two frequencies that are larger than coherence bandwidth fade independently.
 - Concept useful in diversity reception
 - Multiple copies of the same message are sent using different frequencies.

Cochannel Interference

- Cells having the same frequency interfere with each other.
- r_d is the desired signal
- r_u is the interfering undesired signal
- β is the protection ratio for which $r_d \le \beta r_u$ (so that the signals interfere the least)
- If $P(r_d \le \beta r_u)$ is the probability that $r_d \le \beta r_u$, Cochannel probability $P_{co} = P(r_d \le \beta r_u)$