Computer Networks - LEIC-T

https://forms.gle/pewNjDmtceiJ5ibH8
Open link to sign in!

Prof. Luis Pedrosa

A Note on Language

- Class materials will be in <u>English</u>
- I will speak in <u>Portuguese</u>
 - Special arrangements for foreign students
- Most technical terminology is in English
 - Helps with Google searches later on
- Most technical literature is in English
 - Research papers
 - The class book
- Good opportunity to practice
 - You'll likely need English in the workplace

Teachers

- Prof. Luis Pedrosa <luis.pedrosa@tecnico.ulisboa.pt>
 - Lectures
 - 2 Labs
- Prof. Rui Cruz <rui.s.cruz@tecnico.ulisboa.pt>
 - 2 Labs

Scheduling

Time	Mon	Tue	Wed	Thu	Fri	
08:00						
09:00			Lab L3 Zoom		Lab L4 1–3 / Zoom	
10:00				Lecture Zoom		
11:00				20011		
					Lecture Zoom	
12:00						
12.00						
13:00						
14:00				Office Hours (Pedrosa)	Lab L5 1-3 / Zoom	
15:00				Zoom		
					Office Hours	
16:00					(Cruz)	
			1 -1- 1 0		Zoom	Office Hours
17:00			Lab L2 Zoom			(Pedrosa) Zoom

Grading

- Exam (50%)
 - 1st Exam: 2021-01-25
 - 2nd Exam: 2021-02-08
- Lab work / Mini-projects (50%)
 - Individual
 - 2 mini-projects (30%, 15% each)
 - 5 best of 6 lab guides (20%, 4% each)
 - Due the week after the lab
- Check website (Fenix) for extra details

What you'll learn

- Computer Networking Fundamentals
 - Design principles
 - Limitations & trade-offs
- Internet Architecture
- Emerging Networking Technologies
- Overview of common protocols / apps
- Details on select protocols / apps
- Some practical experience

What you won't learn

- Web design, web-services, etc.
 - From our point of view, it's just another app
- Network planning & deployment
 - This could be its own course
- How to configure a Cisco ME3800X
 - Focus on principles, not specific equipment

Textbook

- Computer Networking: A Top-Down Approach (7th Edition)
 J. Kurose, K. Ross 2017
- Don't get older editions
 - They miss material we'll cover
 - Even on the exam

 Also the basis for these slides and some labs

Today's Class

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - packet switching, circuit switching
- Textbook sections 1.1 1.3

What is the Internet?

Show of Hands:

- A: Network of Connected Computers – 20 votes
- B: Network of Networks –12 votes
- C: Data flowing between computers – 2 votes
- D: All the above 27 votes

What do you think?

Introduction

our goal:

- get "feel" and terminology
- more depth, detail later in course
- approach:
 - use Internet as example

What's the Internet: nuts and bolts

- billions of connected computing devices:
 - hosts = end systems
 - running network apps

communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

- packet switches: forward packets (chunks of data)
 - routers and switches

"Fun" Internet-connected devices

IP picture frame http://www.ceiva.com/

Slingbox: watch, control cable TV remotely

Web-enabled toaster + weather forecaster

Tweet-a-watt: monitor energy use

Internet refrigerator

sensorized, bed mattress

Internet phones

What's the Internet: nuts and bolts

- Internet: "network of networks"
 - Interconnected ISPs
- protocols control sending, receiving of messages
 - e.g., TCP, IP, HTTP, Skype, 802.11
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- infrastructure that provides services to applications:
 - Web, VoIP, email, games, ecommerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific messages sent
- ... specific actions taken when messages received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Q: other human protocols?

Today's Class

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - packet switching, circuit switching

A closer look at network structure:

- network edge:
 - hosts: clients and servers
 - servers often in data centers

- access networks, physical media: wired, wireless communication links
- network core:
 - interconnected routers
 - network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Access network: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream rate (typically < 1 Mbps)</p>
- < 24 Mbps downstream rate (typically < 10 Mbps)</p>

Access network: cable network

frequency division multiplexing: different channels transmitted in different frequency bands

Access network: cable network

- asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend
 - unlike DSL, which has dedicated access to central office

Access network: home network

Enterprise access networks (Ethernet)

- typically used in companies, universities, etc.
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft.)
- 802.11b/g/n (WiFi): 11, 54, 450 Mbps transmission rate

wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between 1 and 10 Mbps
- **3**G, 4G: LTE

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- *transmits packet into access network at *transmission rate*
 - link transmission rate, aka link capacity, aka link bandwidth

transmission delay time needed to transmit
$$L$$
-bit packet into link $= \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

<u>Physical media</u>

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10Gbps

Physical media: coax, fiber

coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple channels on cable
 - HFC

fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10's-100's Gbps transmission rate)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - 54 Mbps
- wide-area (e.g., cellular)
 - 4G cellular: ~ 10 Mbps
- satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

Today's Class

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - packet switching, circuit switching

The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - forward packets from one router to the next, across links on path from source to destination
 - each packet transmitted at full link capacity

Packet Switching: store-and-forward

- takes L/R seconds to transmit L-bit packet into link at R bps
- store and forward: entire packet arrives at router before being transmitted on next link
- end-to-end delay = 2L/R
 (assuming zero propagation delay)

one-hop numerical example:

- L = 7.5 Mbits
- R = 1.5 Mbps
- one-hop transmission delay = 5 sec

more on delay shortly ...

Packet Switching: queueing delay, loss

queuing and loss:

- if arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

Two key network-core functions

routing: determines sourcedestination route taken by forwarding: move packets packets from router's input to routing algorithms appropriate router output routing algorithm local forwarding table header value output link 0100 3 0101 0111 1001

destination address in arriving

Introduction 1-35

packet's header

Alternative core: circuit switching

end-end resources allocated to, reserved for "call" between source & dest:

- in diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

Circuit switching: FDM versus TDM

Packet switching versus circuit switching

packet switching allows more users to use network!

example:

- 1 Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time

- circuit-switching:
 - 10 users
- packet switching:
 - with 35 users, probability > 10 active at same time is less than .0004 *

Q: what happens if > 35 users?

Packet switching versus circuit switching

is packet switching a "slam dunk winner?"

- great for bursty data
 - resource sharing
 - simpler, no call setup
- excessive congestion possible: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem (chapter 7)

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?

Summary

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - packet switching, circuit switching

Next Class

- Network core
 - network structure
- Delay, loss, throughput in networks
- Protocol layers

Don't Forget to Sign In!

https://forms.gle/pewNjDmtceiJ5ibH8
Open link to sign in!