Computer Architecture. Week 3

Muhammad Fahim, Alexander Tormasov

Innopolis University

 $m.fahim@innopolis.ru\\ a.tormasov@innopolis.ru$

September 17, 2020

Topic of the lecture

INNOPOLIS

Number Systems

Topic of the tutorial

• FPGA Tutorial (Part II)

- Hands on FPGA board
- Simple example of operations on numbers

Content of the class

- Number System
- The MIPS Number System
- Numbers and Numerals
- Numeric Systems
- Base Conversion
- Finite Precision Numbers
- Positive and Negative Numbers
- Binary and Floating Point Arithmetic Operations
- Standard IEEE 754
- Fractional Representation

Number System

• A set of values used to represent different quantities is known as Number System

Number System for Human

- As humans, we generally count and perform arithmetic using decimal having 10 digits from 0 to 9.
- Historically, it seems that the main reason we usedecimal (i.e., base 10) is that humans have ten fingers
- Numbers may be represented in any base.
 - For example, 123 base 10 = 1111011 base 2.

Number System for Computers

- Numbers are kept in computer hardware as a series of high and low electronic signals
- Computers perform all of their operations using the binary (base
 2) number system.
- All program code and data are stored and manipulated in binary form.
- Calculations are performed using binary arithmetic.
- Each digit in a binary number is known as a bit (for binary digit) and can have only one of two values, 0 or 1.

The MIPS Number System

- Microprocessor without Interlocked Pipeline Stages
- MIPS developed at Stanford by Hennessey and the team.
- MIPS Computer Systems founded 1984.
- MIPS in 1998; spun it out as MIPS Technologies

- A Complex Instruction Set Computer (CISC) is an alternative. Intel's x86 is the most prominent example; also Motorola 68000 and DEC VAX.
- MIPS is a Reduced Instruction Set Computer (RISC). Others include ARM, PowerPC, SPARC, HP-PA, and Alpha.
- RISC's underlying principles are:
 - Simplicity favors regularity
 - Make the common case fast
 - Smaller is faster
 - Good design demands good compromises

The MIPS Number System

• The drawing below shows the numbering of bits within a MIPS word and the placement of the number

31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9 8	7 6 5 4	3 2 1 0
0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 1 1

(32 bits wide)

Example:

Numbers and Numerals

- Number: abstract entity
- Numeral: string of symbols that represent a number in a given system
- The same number can be represented by different numerals in different numeric systems
- Example I
 - 234 in decimal system
 - CCXXXIV using roman system
- Example II

$$(10)_{10} = 10$$

$$(10)_2 = (2)_{10} = 2$$

Numeric Systems -1/5

- To define a Numeric System we need:
 - A set of symbols that we will call digits (E.g. 1,2,3, A,C,...)
 - Some rules to build up numbers
- We can define Positional Numeric System or Non Positional Numeric Systems
- Non Positional Numeric System: the value of digits in the number is position independent
- Example: (Roman Numeric System) the symbol V means 5 always, but $IV \neq VI \dots$

Numeric Systems – 2/5

- Positional Numeric System: digit value depends on its position within the number (weight)
 - Each digit represents the coefficient of a power of the base
 - Exponent is given by the position of the digit within the number

$$base = b$$

$$used symbols = 0 \le a_i \le b-1$$

position
$$m-1$$
 position -1 position $-k$

$$a_{m} a_{m-1} \dots a_{0} \dots a_{-1} a_{-2} \dots a_{-k}$$
position m position 0 comma position -2

$$N = \sum_{i=-k}^{m} a_{i} b^{i}$$

Numeric Systems – 3/5

• Example (The Decimal System)

base =
$$10$$

used symbols = $0, 1, 2, 3, 4, 5, 6, 7, 8, 9$

$$1 \times 10^{2} \xrightarrow{2 \times 10^{1}} 125.42 \xrightarrow{2 \times 10^{-2}} 4 \times 10^{-1}$$

$$125.42 = 1 \times 10^{2} + 2 \times 10^{1} + 5 \times 10^{0} + 4 \times 10^{-1} + 2 \times 10^{-2}$$

• Example (The Binary System)

$$base = 2$$

$$used symbols = 0, 1$$

$$1 \times 2^2 \longrightarrow 101.01 \longrightarrow 1 \times 2^{-2}$$
 $0 \times 2^1 \longrightarrow 1 \times 2^0 \longrightarrow 0 \times 2^{-1}$

$$101.01 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$

• Other Systems Used

• Octal System Base = 8Symbols used = 0,1,2,3,4,5,6,7

• Hexadecimal System:

 $\begin{aligned} \text{Base} &= 16 \\ \text{Symbols used} &= 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F \end{aligned}$

Base Conversion (decimal to binary)

• It is obtained by repeatedly dividing the number by 2, the remainder of division at each step is the digit of the binary number.

Base Conversion (binary to decimal)

- Generalizing the point, in any number base, the value of ith digit d is d * Baseⁱ
- For example, 1101₂ represents:

$$((1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0))_{10}$$

$$= ((1 \times 8) + (1 \times 4) + (0 \times 2) + (1 \times 1))_{10}$$

$$= (8 + 4 + 0 + 1)_{10}$$

$$= 13_{10}$$

Finite Precision Numbers

- Definition: numbers with a finite number of digits.
- Some properties are lost:
 - Operators closure
 - Distributive and associative properties
 - Holes in the representation of real numbers

Finite Precision Numbers – Example 1

- Let's use integer numbers with 2 decimal digits and sign
 - Interval represented: [-99, +99]
 - Lost closure with respect to operator + 76+30 = ??? (106 is out of the interval)
 - Lost associativity: $25+(90-30) \neq (25+90)-30$

- Let's use consider rational numbers with two decimal digit after the point
 - Interval represented: [-0.99, +0.99]
 - We cannot represent any additional number between 0.05 and 0.06
 - Again lost closure with respect to operator +: 0.90+0.30 = ???(1.20 is out of the interval)
 - Again lost associativity: $0.25+(0.90-0.30) \neq (0.25+0.90)-0.30$

Represented Intervals

- By representing positive integers in binary notation, n digits (bits), cover the interval $[0, 2^n-1]$
- It is easy to note that if the maximum number re-presentable using n bit is

$$X = 2^n - 1$$

then to represent number X, the necessary number of bits is

$$n = Int(\log_2(X) + 1)$$

 \bullet Example: using n = 3 interval [0, 7] is completely represented

0	000	4	100
1	001	5	101
2	010	6	110
3	011	7	111

Signed Number Representation

- In mathematics, positive numbers (including zero) are represented as unsigned numbers. That is we do not put the +ve sign in front of them to show that they are positive numbers.
- However, when dealing with negative numbers we do use a -ve sign in front of the number to show that the number is negative.
- However, in digital circuits there is no provision made to put a plus or even a minus sign to a number, since digital systems operate with binary numbers that are represented in terms of 0's and 1's.

Sign and Magnitude Representation

- Sign and Magnitude is one of the method used to represent signed numbers in binary format
 - The first bit is used for the sign 0 mean + ; 1 mean -
 - \circ n-1 bits are used for the magnitude
 - Represented interval: $\begin{bmatrix} -2^{n-1} + 1, 2^{n-1} 1 \end{bmatrix}$
- Example: Using n=4 interval [-7, 7] is completely represented
 - 5 0101
 - -5 **1**101

Issues with Sign and Magnitude

Example: Using n=4 interval [-7, 7] is completely represented

Pattern	Value Represented
	Sign Magnitude
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-0
1001	-1
1010	-2
1011	-3
1100	-4
1101	-5
1110	-6
1111	-7

- Having two patterns to represent 0 is wasteful.
- The signed magnitude representation has the advantage that it is easy to read the value from the pattern.
- But does it have the binary arithmetic property?
- For instance, what is the result of pattern(-1) + pattern(1)?

One's Complement Representation

- One's complement number representation is used for signed numbers in binary format
 - The leftmost bit defines the sign of the number (0 for +; 1 for -)
 - The integer is changed to binary (the sign is ignored).
 - 0s are added to the left of the number to make a total of N bits
 - If the sign is positive, no more action is needed. If the sign is negative, every bit is inverted
 - Represented interval: $[-2^{n-1} +1, 2^{n-1} -1]$

Example: using n=4 interval [-7, 7] is completely represented

- 5 0101
- -5 1010

Issues with One's Complement

Pattern	Value Represented		
	Sign Magnitude	1's complement	
0000	0	0	
0001	1	1	
0010	2	2	
0011	3	3	
0100	4	4	
0101	5	5	
0110	6	6	
0111	7	7	
1000	-0	-7	
1001	-1	-6	
1010	-2	-5	
1011	-3	-4	
1100	-4	-3	
1101	-5	-2	
1110	-6	-1	
1111	-7	-0	

- A negative number is represented by flipping all the bits of a positive number.
- We still have 2 patterns for 0.
- It is still easy to read a value from a given pattern.
- How about the arithmetic property?
- Suggestion: try the following

$$-1 + 1 = ??$$

$$-0 + 1 = ??$$

$$0 + 1 = ??$$

Two's Complement Representation (1/2)

- It is most common and widely used representation today.
 - \circ The leftmost bit defines the sign of the number (0 for +; 1 for -)
 - The integer is changed to binary, (the sign is ignored).
 - 0s are added to the left of the number to make a total of N bits
 - If the sign is positive, no more action is needed. If the sign is negative, every bit is complemented and 1 is added.
 - Represented interval: $[-2^{n-1}, 2^{n-1}]$

Example

using n=4 interval [-8, 7] is completely represented

- 5 0101
- -5 1011

Two's Complement Representation (2/2)

- Example: We want to find how -28 would be expressed in two's complement notation (8-bit representation)
- Solution
 - The integer is changed to binary 00011100
 - Invert the bits 11100011
 - Add 1
 - Number representation is 11100100

Signed Number Representation (Summary)

Pattern	Value Represented				
	Sign Magnitude	1's complement			
0000	0	0	0		
0001	1	1	1		
0010	2	2	2		
0011	3	3	3		
0100	4	4	4		
0101	5	5	5		
0110	6	6	6		
0111	7	7	7		
1000	-0	-7	-8		
1001	-1	-6	-7		
1010	-2	-5	-6		
1011	-3	-4	-5		
1100	-4	-3	-4		
1101	-5	-2	-3		
1110	-6	-1	-2		
1111	-7	-0	-1		

Note: we do not "lose" any more a number: 0 has exactly one representation.

It holds the arithmetic property, but the reading of a negative pattern is not trivial.

Excess Notation

- Excess 8 notation indicates that the value for zero is the bit pattern for 8, that is 1000
- The bit patterns are 4 bits long
- Positive numbers are above it in order and negative numbers are below it in order.

An Excess Eight Conversion Table

Bit pattern	Value represented
1111	7
1110	6
1101	5
1100	4
1011	3
1010	2
1001	1
1000	o]
0111	-1
0110	-2
0101	-3
0100	-4
0011	- 5
0010	-6
0001	- 7
0000	-8

Excess Notation (Continue)

- That is the zero point for Excess 128 notation is 128; the zero point for excess 64 notation is 64; and so forth.
- For example, let's say we want to determine the pattern for 15 in Excess 128 notation.
- The decimal number would be 128+15, or 143. Therefore, the bit pattern would be 10001111

Excess Notation (Continue)

- Example: Represent -25 in Excess 127 using an 8-bit allocation.
- Solution:
 - 127 + (-25) = 102
 - 102 in binary 1100110
 - Add 0's to the left to make it 8 bit 01100110

Note: again we do not "lose" any more a number: 0 has exactly one representation

Binary Arithmetic: Sum

• Sum in binary notation is performed bit by bit carrying the rest to next digit

$$0+0=0$$

 $0+1=1$
 $1+0=1$
 $1+1=0$ carry 1

Example

$$\begin{array}{ccc}
3+ & 0011+ \\
2 & 0010 \\
\hline
5 & 0101
\end{array}$$

Binary Arithmetic: Sum in 2's C

• In 2's C sum and subtraction are managed in the same way, just throw away carry.

- If two terms have different sign the result is always correct.
- If two terms have the same sign but the result has a different one... we have an ERROR
- The sum 100 + 100 using 2 bit representation

What will be the output of the following program?

```
#include <stdio.h>
#include <limits.h>

int main()
{
   int count;
   count = INT_MAX;  //2147483647
   count = count +1;
   printf("%d", count);
}
```

Output: -2147483648

Binary Arithmetic: Multiplication

Binary Arithmetic: Division

Floating-Point Number Representation

- Representation of floating point number is not unique.
- For example: The number 55.66 can be represented as 5.566×10^1 0.5566×10^2 0.05566×10^3 and so on..
- It is important to note that floating-point numbers suffer from loss of precision when represented with a fixed number of bits (e.g., 32-bit or 64-bit).
- Reason: This is because there are infinite number of real numbers (even within a small range of says 0.0 to 0.1).

Floating-Point Number Representation

- On the other hand, a n bit binary pattern can represent a finite 2^n distinct numbers.
- Hence, not all the real numbers can be represented. The nearest approximation will be used instead, resulted in loss of accuracy.
- Modern computers adopt IEEE 754 standard for representing floating-point numbers.
- IEEE Standard 754 floating point is the most common representation today for real numbers on computers, including Intel-based PC's, Macs, and most Unix platforms.
- There are two representation schemes:
 - 32-bit single-precision
 - 64-bit double-precision.

Floating Point Notation

- Example: Using Base 10
- \bullet Using numerals with 5 digits of the kind \pm .XXX \pm EE
- \bullet Mantissa = \pm .XXX three signed digits 0.001 \leq m < 1
- Exponent = $\pm \text{EE}$ two signed digits $-99 \le e \le 99$
- Represented numbers are:

Represented interval is

$$-.999 \cdot 10^{99} \le N \le -.001 \cdot 10^{-99}; \quad .001 \cdot 10^{-99} \le N \le .999 \cdot 10^{99}$$

Standard IEEE 754 (1985)

- Standard definition (i.e., architecture independent)
- Single precision (uses 32 bits to represent sign, exponent and mantissa

• Double precision (uses 64 bits)

 Some configurations of the exponent are reserved (i.e. not standardized)

Unum (Number Format)

- The unum (universal number) format is a format similar to floating point, proposed by John Gustafson.
- It is an alternative to the now ubiquitous IEEE 754 format.
- Unum implementations have been explored in Julia.
 - Julia is a high-level, high-performance dynamic programming language for numerical computing.

Ternary Number System

- The ternary numeral system also called base-3.
- Analogous to a bit, a ternary digit is a trit (**tr**inary dig**it**).
- One trit is equivalent to log_23 (about 1.58496) bits of information.
- The ternary numeral system has three possible values:
 - Standard (unbalanced) system: Which uses the values 0, 1 and 2
 - Balanced system: Which uses the values -1, 0, 1

Ternary Number System

• The first modern electronic ternary computer **Setun** was built in 1958 in the Soviet Union at the Moscow State University by Nikolav Brusentsov.

- Why not famous as binary system?
 - It is much harder to build components that use more than two states.
 - If you use more than two states you need to be compatible to binary, because the rest of the world uses it.

Saturation Arithmetic – 1/2

- It is a version of arithmetic in which all operations such as addition and multiplication are limited to a fixed range between a minimum and maximum value.
- If the result of an operation is greater than the maximum, it is clamped to the maximum.
- If it is below the minimum, it is clamped to the minimum
 - For example, if the valid range of values is from -100 to 100

$$60 + 30 = 90$$

$$60 + 43 = 100$$

$$(60 + 43) - (75 + 75) = 0$$

$$99 \times 99 = 100$$

$$30 \times (5 - 1) = 100$$

Saturation Arithmetic -2/2

- Saturation arithmetic enables efficient algorithms for many problems, particularly in digital signal processing.
- For example:
 - Adjusting the volume level of a sound signal can result in overflow, and saturation causes significantly less distortion to the sound than wrap-around.

Summary

- The MIPS Number System
- Numeric Systems
- Base Conversion
- Finite Precision Numbers
- Positive and Negative Numbers
- Binary and Floating Point Arithmetic Operations
- Standard IEEE 754 (Floating point)
- Ternary Number System
- Unum (Universal Number)
- Saturation Arithmetic

Acknowledgements

• This lecture was created and maintained by Muhammad Fahim, Giancarlo Succi and Alexander Tormasov