Energy in space

Dot product

Vector multiplication

$$\vec{a} \times \vec{b} = \vec{c}$$
 cross produce $|\vec{c}| = |\vec{a}| |\vec{b}| \sin(\theta)$

A cross product, represented as "x", multiplies two vectors and gives a new, perpendicular, vector as a result.

A dot product, represented as "*" or ".", multiplies two vectors, but gives a scalar as a result.

Dot product

$$\vec{a} = \langle a_{1}, a_{2}, a_{3} \rangle$$
 $\vec{b} = \langle b_{1}, b_{2}, b_{3} \rangle$
 $\vec{a} \cdot \vec{b} = a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3}$

Unlike a cross product which only works for 2, 3, 7 dimensions, dot products apply to every dimension.

Vectors <a, b, c> and <x, y, z> have a dot product of ax+by+cz, where you sum the product of each matching term in the vectors.

Magnitude approach

Another way to take the dot product of $\mathbf{a} * \mathbf{b}$ for vectors \mathbf{a} , \mathbf{b} is to do $|\mathbf{a}||\mathbf{b}|\cos(\theta)$.

This is equivalent to multiplying the magnitude of vector components parallel to each other.

Both approaches give the same thing

$$\frac{1}{3} - \frac{1}{6} = \frac{$$

Conservative forces

What are they

These are forces that decrease potential energy of a system.

Since potential energy is about the position and structure of a system, the work done by a conservative force from point a to point b is the same no matter what path is taken.

Examples

The restoring force of a spring reduces the spring potential energy and depends only on how far you stretch it out.

Gravitational force reduces gravitational potential energy and depends on how far you are from a mass.

Non-examples

Friction does more work the more you travel: if you travel from a to b to a to b, the work done is different than just going from a to b despite the overall change being from point a to point b for both.

Non-conservative forces like friction generally increase the internal energy of a system (produce heat).

Energy relationship

As conservative forces decrease the potential energy of a system, $\int F(x)dx = -U(x)$ for some conservative force F(x) and some potential energy U(x).

Spring potential example

$$U_{s} = \frac{1}{2}KX^{2}$$

$$-\frac{dU_{s}}{dx} = -\frac{d(\frac{1}{2}KX^{2})}{dx}$$

$$F_{s} = -KX \rightarrow Hoolce's$$

Taking the negative of the derivative of spring potential energy gives the formula for the spring restoring force, Hooke's law.

Gravitational potential

Derivation of gravitational potential

For
$$\frac{GMm}{r^2}$$
 Because "down" is negative

$$-\int Fdr = \int \frac{GMm}{r^2} dr$$

$$U = -\frac{GMm}{r^2} + \frac{G}{r^2}$$

$$= -\frac{GMm}{r^2} = \frac{G}{r^2}$$

You take newton's law of gravitation: $F = -GmM/r^2$ and integrate it by r, since the integral of force with respect to distance is work.

This gives U = -GmM/r, where U represents gravitational potential energy.

Bounds

In U = -GmM/r, note that G, m, M, and r are all positive, so U is never positive.

An object infinite distance away from a mass has 0 gravitational potential energy while an object 0 distance away from the center of a mass has negative infinity gravitational potential energy.

Relative vs. absolute potential

Absolute gravitational potential energy is given by the formula U=-GmM/r.

However, I can also ask for the potential energy difference relative to, say, the floor, which would be non-absolute.

Just saying "potential energy" could refer to either, so use context to find which one.

Relative potential equation

Let's say we're on a cliff h meters higher from the surface of the earth with radius r.

 $U_{\text{surface}} = -GmM/r \text{ and } U_{\text{cliff}} = -GmM/(r+h), \text{ so } \Delta U = GmMh/(r^2+rh).$

Since h is small compared to r, rh is approximately zero.

Thus, we can say $\Delta U = GmMh/r^2$.

We know $g = GM/r^2$, and $mgh = GmMh/r^2 = \Delta U$.

This is why we can say relative potential energy has the equation mgh.

Escape velocity

Overcoming potential

We know U = -GmM/r, so to overcome this potential energy, we need KE = +GmM/r = $\frac{1}{2}$ mv².

Thus, v = sqrt(2GM/r) is enough velocity for a mass to overcome gravitational potential energy.

This is called the escape velocity.

Orbital kinetic energy

Velocity in orbit

Unlike escape velocity, this KE comes from an object having velocity in orbit.

Since $F_{centripetal} = GmM/r^2 = mv^2/r$, v = sqrt(GM/r).

KE = $\frac{1}{2}$ mv² = GmM/(2r), which is orbital kinetic energy.

Total orbital energy

Gravitational mechanical energy

We know TME = U + KE.

As U = -GmM/r and KE = +GmM/(2r), the sum of the two is -GmM/(2r) = TME in orbit.

Notice that TME = $\frac{1}{2}$ U = -KE.

Rotational kinetic energy

Formula

$$KE = \frac{1}{2} \text{ Tw}^{2}$$

$$RKE = \frac{1}{2} \text{ Tw}^{2}$$

$$depends = \frac{1}{2} \text{ Cmr}^{2} \text{ w}^{2}$$

$$= \frac{1}{2} \text{ mv}^{2}$$

KE = $\frac{1}{2}$ mv² for linear motion, so KE = $\frac{1}{2}$ I ω ² for rotational motion.

Since I is usually cmr² for some constant c and $\omega = v/r$, rotational KE = $\frac{1}{2}$ cmv².

Total KE is the sum of the two, which is usually $\frac{1}{2}$ mv² + $\frac{1}{2}$ cmv² = kmv² for some constant k.

Total energy of rolling objects

Objects rolling down a ramp will convert U to KE.

Objects with larger I have larger rotational KE, meaning they have less linear KE.

Thus, objects with larger I take longer to get down a ramp (move slower linearly).

Rolling

Friction as torque

Friction acts perpendicular to the axis of rotation of an object, causing them to roll.

Rolling without slipping means that $v/r = \omega$, but an object that is slipping will have less ω than v/r.

Note objects that slip will have less rotational KE, so will have more linear KE and go down ramps faster.