Modelos lineales dinámicos con aplicaciones al pronóstico de la demanda de efectivo en México

Juan Pablo López Escamilla

Asesor:

Dr. Jorge Francisco de la Vega Góngora

Ciudad de México, 2024

Índice

- Introducción
 - Objetivo
 - La demanda de efectivo
- 2 Marco teórico
 - Modelo lineal dinámico
 - Actualización de ecuaciones
 - Intervenciones
- 3 Pronóstico de la demanda de efectivo
 - DLM
 - DLM intervenido
 - VECM
- 4 Selección de modelo y pronósticos
- 5 Conclusiones y limitaciones
- 6 Bibliografía

Tabla de contenidos

Instituto Tecnológico Autónomo de México

Introducción

1 Introducción

- Objetivo
- La demanda de efectivo
- 2 Marco teórico
 - Modelo lineal dinámico
 - Actualización de ecuaciones
 - Intervenciones
- 3 Pronóstico de la demanda de efectivo
 - DLN
 - DLM intervenido
 - VECM
- 4 Selección de modelo y pronósticos
- 5 Conclusiones y limitaciones
- 6 Bibliografía

- Mostrar la utilidad de los modelo lineales dinámicos (DLM) en la realización de pronósticos en contextos complejos.
- Ilustrar las ventajas de los DLM en comparación con otros modelos.
- Aplicarlos en el pronóstico de la demanda de efectivo en México.

Un poco de contexto

Introducción La demanda de efectivo

- Las monedas se han empleado en el actual territorio mexicano por 500 años. Los billetes se han usado sin interrupciones desde hace 100 años.
- El 97 % de la población acostumbra usar a efectivo. El 22 % de los adultos mexicanos nunca ha tenido un producto financiero.
- Durante la pandemia de COVID-19 la demanda de efectivo aumentó a pesar de que la actividad económica disminuyó.

Introducción La demanda de efectivo

Figura: Billetes y monedas en poder del público (miles de millones de pesos).

Función de la demanda de dinero

Introducción La demanda de efectivo

- Instituto Tecnológico Autónomo de México
- La demanda de dinero depende de variables de escala (medidas de actividad económica) y de variables de costo de oportunidad (ganancias de utilizar otros activos).
- Keynes propuso la siguiente función:

$$m^d = f(y, i),$$

donde m^d es el dinero real, y es el ingreso real, mientras que i es la tasa de interés.

- La relación de la demanda de dinero es positiva con el ingreso y negativa con las tasas de interés.
- Otras variables que suelen utilizarse con la inflación, tipo de cambio y factores estacionales.

Tabla de contenidos

Instituto Tecnológico Autónomo de México

Marco teórico

-
- 1 Introducción
 - Objetivo
 - La demanda de efectivo
- 2 Marco teórico
 - Modelo lineal dinámico
 - Actualización de ecuaciones
 - Intervenciones
- 3 Pronóstico de la demanda de efectivo
 - DLN
 - DLM intervenido
 - VECM
- 4 Selección de modelo y pronósticos
- 5 Conclusiones y limitaciones
- 6 Bibliografía

Marco teórico Modelo lineal dinámico

Modelo lineal dinámico univariado

 $Y_t = \mathbf{F}_t^{\mathsf{T}} \mathbf{\theta}_t + \nu_t$ Ecuación de observación: $\nu_t \sim \mathbf{N}[0, V_t].$

 $\theta_t = \mathbf{G}_t \theta_{t-1} + \omega_t$ Ecuación de sistema: $\omega_t \sim \mathsf{N}[\mathsf{0}, W_t].$

Información inicial: $(\theta_0 \mid D_0) \sim N[m_0, C_0].$

- \mathbf{F}_t es la matriz de diseño, contiene el valor de las variables explicativas.
- $m{\theta}_t$ es el vector de estados o de parámetros. El modelo es dinámico porque los valores de este vector cambian.
- **G_t** es la matriz de sistema, define la evolución de los parámetros.
- **F**_t, G_t , W_t y V_t son conocidas.

Para cada t, si $\phi = V^{-1}$, el DLM tiene la siguiente estructura:

Modelo lineal dinámico con V desconocida

Ecuación de observación: $Y_t = \mathbf{F}_t^{\mathsf{T}} \mathbf{\theta}_t + \nu_t, \quad \nu_t \sim \mathbf{N}[0, V].$

Ecuación de sistema: $m{ heta}_t = m{G}_t m{ heta}_{t-1} + m{\omega}_t, \quad m{\omega}_t \sim m{N}[m{0}, V m{W}_t^*].$

Información inicial: $(\boldsymbol{\theta}_0 \mid D_0, \phi) \sim \mathbf{N}[\boldsymbol{m}_0, V \boldsymbol{C}_0^*], \\ (\phi \mid D_0) \sim \mathbf{G} \left[\frac{n_0}{2}, \frac{n_0 S_0}{2} \right].$

- La varianza de observación una constante desconocida, $V_t = V$ para toda t.
- Su recíproco, $\phi = V^{-1}$, tiene una distribución inicial gamma.

Cuando se conoce una nueva observación, el modelo se actualiza. En cualquier t el conjunto de información es $D_t = \{Y_t, D_{t-1}\}$.

Actualización de ecuaciones

A. Posterior en t-1:

Dadas la media m_{t-1} y la matriz de covarianza C_{t-1} ,

$$(\boldsymbol{\theta}_{t-1} \mid D_{t-1}) \sim \mathbf{T}_{n_{t-1}}[\boldsymbol{m}_{t-1}, \boldsymbol{C}_{t-1}].$$

B. Previa en t:

$$(\boldsymbol{\theta}_t \mid D_{t-1}) \sim \mathbf{T}_{n_{t-1}}[\boldsymbol{a}_t, \boldsymbol{R}_t],$$

 $oldsymbol{a}_t = oldsymbol{G}_t oldsymbol{m}_{t-1}$ y $oldsymbol{R}_t = oldsymbol{G}_t oldsymbol{C}_{t-1} oldsymbol{G}_t^\intercal + oldsymbol{W}_t.$ donde

c. Pronóstico para t:

$$(Y_t \mid D_{t-1}) \sim \mathbf{T}_{n_{t-1}}[f_t, Q_t],$$

donde
$$f_t = \mathbf{F}_t^{\mathsf{T}} \mathbf{a}_t$$
 y $Q_t = \mathbf{F}_t^{\mathsf{T}} \mathbf{R}_t \mathbf{F}_t + S_{t-1}$.

D. Posterior en t:

$$(\boldsymbol{\theta}_t \mid D_t) \sim \mathbf{T}_{n_t}[\boldsymbol{m}_t, \boldsymbol{C}_t],$$

$$\begin{aligned} \text{donde} \qquad & \boldsymbol{A}_t = \boldsymbol{R}_t \boldsymbol{F}_t Q_t^{-1} & \text{y} & e_t = Y_t - f_t, \\ & n_t = n_{t-1} + 1 & \text{y} & S_t = S_{t-1} + \frac{S_{t-1}}{n_t} \left(\frac{e_t^2}{Q_t} - 1 \right), \\ & \boldsymbol{m}_t = \boldsymbol{a}_t + \boldsymbol{A}_t e_t & \text{y} & \boldsymbol{C}_t = \frac{S_t}{S_{t-1}} (\boldsymbol{R}_t - \boldsymbol{A}_t \boldsymbol{A}_t^\mathsf{T} Q_t). \end{aligned}$$

Distribuciones de pronóstico

Se tienen las siguientes distribuciones para k > 0 dada la información en t:

$$(\boldsymbol{\theta}_{t+k} \mid D_t) \sim \mathbf{T}_{n_t}[\boldsymbol{a}_t(k), \boldsymbol{R}_t(k)], \\ (Y_{t+k} \mid D_t) \sim \mathbf{T}_{n_t}[f_t(k), Q_t(k)],$$

con $f_t(k) = \mathbf{F}_{t+k}^{\mathsf{T}} \mathbf{a}_t(k)$ y $Q_t(k) = \mathbf{F}_{t+k}^{\mathsf{T}} \mathbf{R}_t(k) \mathbf{F}_{t+k} + S_t$. Esto se calcula recursivamente:

$$oldsymbol{a}_t(k) = oldsymbol{G}_{t+k} oldsymbol{a}_t(k-1), \qquad oldsymbol{R}_t(k) = oldsymbol{G}_{t+k} oldsymbol{R}_t(k-1) oldsymbol{G}_{t+k}^\intercal + oldsymbol{W}_{t+k}.$$

$$a_t(0) = m_t, \qquad R_t(0) = C_t$$

Intervenciones

Instituto Tecnológico Autónomo de México

Marco teórico Intervenciones

- Mecanismo para incluir información relevante externa al modelo que no fue incluida inicialmente.
 - Eventos externos pueden afectar la precisión del modelo.
- Intervenciones hacia adelante: anticipatorias.
- Intervenciones hacia atrás: correctivas
- La forma de intervención empleada se conoce como Intervención subjetiva arbitraria.

Marco teórico Intervenciones

Instituto Tecnológico Autónomo de México

■ La distribución previa del vector de estados es $(\theta_t \mid D_{t-1}) \sim \mathsf{T}_{n_{t-1}}[a_t, R_t].$

Marco teórico Intervenciones

- La distribución previa del vector de estados es $(\theta_t \mid D_{t-1}) \sim \mathsf{T}_{n_{t-1}}[a_t, R_t].$
- La intervención consiste en cambiar los parámetros de la distribución.

Marco teórico Intervenciones

- La distribución previa del vector de estados es $(\theta_t \mid D_{t-1}) \sim \mathsf{T}_{n_{t-1}}[a_t, R_t].$
- La intervención consiste en cambiar los parámetros de la distribución.
- La información de intervención es $I_t = \{a_t^*, R_t^*\}$, estos valores los determina el modelador.

Marco teórico Intervenciones

- La distribución previa del vector de estados es $(\theta_t \mid D_{t-1}) \sim \mathsf{T}_{n_{t-1}}[a_t, R_t].$
- La intervención consiste en cambiar los parámetros de la distribución.
- La información de intervención es $I_t = \{a_t^*, R_t^*\}$, estos valores los determina el modelador.
- La distribución previa de los parámetros post-intervención es $(\theta_t \mid I_t, D_{t-1}) \sim \mathbf{T}_{n_{t-1}}[\mathbf{a}_t^*, \mathbf{R}_t^*].$

Marco teórico Intervenciones

- La distribución previa del vector de estados es $(\theta_t \mid D_{t-1}) \sim \mathsf{T}_{n_{t-1}}[a_t, R_t].$
- La intervención consiste en cambiar los parámetros de la distribución.
- La información de intervención es $I_t = \{a_t^*, R_t^*\}$, estos valores los determina el modelador.
- La distribución previa de los parámetros post-intervención es $(\theta_t \mid I_t, D_{t-1}) \sim \mathbf{T}_{n_{t-1}}[\mathbf{a}_t^*, \mathbf{R}_t^*].$
- Para obtener los pronósticos se reemplazan a_t y R_t por a_t^* y R_t^* .

Tabla de contenidos

Pronóstico de la demanda de efectivo

- 1 Introducción
 - Objetive
 - La demanda de efectivo
- 2 Marco teórico
 - Modelo lineal dinámico
 - Actualización de ecuaciones
 - Intervenciones
- 3 Pronóstico de la demanda de efectivo
 - DLM
 - DLM intervenido
 - VECM
- 4 Selección de modelo y pronósticos
- 5 Conclusiones y limitaciones
- 6 Bibliografía

- Se modeló el agregado monetario M0 nominal (billetes y monedas en poder del público).
- Las variables explicativas son el PIB real, la inflación y factores trimestrales.
- Se utilizó la siguiente función de demanda de dinero. Es sencilla y adecuada para ilustrar los DLM, pero es criticable en la teoría económica.

$$\ln MO_r = \alpha_r + \beta_r \ln PIB_r + \gamma_r Inflación_r + Ti_r + \nu_r.$$

■ Los datos de 2001 T1 a 2011 T4 se usaron para estimar valores desconocidos. Los datos de 2012 T1 a 2022 T4 se usaron para aplicar el DLM.

Figura: Pronósticos a un paso, $(Y_{t+1} \mid D_t)$.

Figura: Parámetro locacional de $(\theta_t \mid D_t)$, m_t .

Figura: Evolución de S_t .

Intervención en la pandemia

Pronóstico de la demanda de efectivo DLM intervenido

- La demanda de efectivo en 2020 T2 (t=34) fue mucho mayor que la pronosticada. En 2020 T1 (t=33) ya se conocía el efecto de la pandemia.
- Se intervino $(\theta_{34} \mid D_{33}) \sim \mathbf{T}_{77}[\mathbf{a}_{34}, \mathbf{R}_{34}]$. Se aumentó el intercepto y su varianza.
- La distribución intervenida es $(\theta_{34} \mid D_{33}, I_{34}) \sim \mathsf{T}_{77}[a_{34}^*, R_{34}^*]$.

Pronóstico de la demanda de efectivo DLM intervenido

$$\mathbf{a}_{34} = \begin{bmatrix} -0.0015\\ 0.5182\\ 7.8e - 08\\ 2.2844\\ 2.2593\\ 2.3307\\ 2.3090 \end{bmatrix}, \qquad \mathbf{R}_{34} = \begin{bmatrix} 7.58e - 05 & \dots\\ \vdots & \ddots \end{bmatrix}.$$

$$\begin{bmatrix} 0.0629\\ 0.5182 \end{bmatrix}$$

$$\mathbf{a}_{34}^* = \begin{bmatrix} 0.0629\\0.5182\\7.8e-08\\2.2844\\2.2593\\2.3307\\2.3090 \end{bmatrix}, \qquad \mathbf{R}_{34}^* = \begin{bmatrix} 7.58e-04& \dots\\ \vdots & \ddots \end{bmatrix}.$$

$$\textit{\textbf{R}}^*_{34} = \begin{bmatrix} 7.58\mathrm{e}{-04} & \dots \\ \vdots & \ddots \end{bmatrix}$$

Figura: Pronósticos a un paso, $(Y_{t+1} \mid D_t)$, con intervención.

Evolución de $(\theta_t \mid D_t)$ con intervención

Pronóstico de la demanda de efectivo DLM intervenido

Figura: Parámetro locacional de $(\theta_t \mid D_t)$, m_t , con intervención.

Evolución de S_t con intervención

Pronóstico de la demanda de efectivo DLM intervenido

Figura: Evolución de S_t con intervención.

- Ampliamente utilizados para modelar agregados monetarios. Es un modelo multivariado.
- Las variables tienen que ser I(1) para que su relación de cointegración, $\beta^{T} \mathbf{Y}_{t-1}$, sea estacionaria. En los DLM esto no es necesario.
- El logaritmo del PIB, logaritmo del M0 y la inflación son I(1). El logaritmo de la TIIE no es I(0) ni I(1).

$$\Delta \textbf{\textit{Y}}_t = \alpha \beta^\intercal \textbf{\textit{Y}}_{t-1} + \Gamma_1 \Delta \textbf{\textit{Y}}_{t-1} + \textbf{\textit{Cd}}_t + \textbf{\textit{u}}_t,$$

con

$$\mathbf{Y}_t = \begin{bmatrix} \operatorname{In} \operatorname{Efectivo}_t \\ \operatorname{In} \operatorname{PIB}_t \\ \operatorname{Inflación}_t \end{bmatrix}, \qquad \mathbf{d}_t = \begin{bmatrix} 1 \\ Q1_t \\ Q2_t \\ Q3_t \end{bmatrix}.$$

- Β Es el vector de cointegración.
- Los valores α , β , Γ_1 y \boldsymbol{C} se reestimaron por máxima verosimilitud en todos los periodos. En los DLM esto no es necesario, se actualizan recursivamente.

Selección de modelo y pronósticos

- 1 Introducción
 - Objetive
 - La demanda de efectivo
- 2 Marco teórico
 - Modelo lineal dinámico
 - Actualización de ecuaciones
 - Intervenciones
- 3 Pronóstico de la demanda de efectivo
 - DLN
 - DLM intervenido
 - VECM
- 4 Selección de modelo y pronósticos
- 5 Conclusiones y limitaciones
- 6 Bibliografía

Selección de modelo y pronósticos

- Se calcularon medidas de precisión para los pronósticos desde un paso hasta ocho pasos.
- Se comparó el error cuadrático medio (MSE por sus siglas en inglés), error absoluto medio (MAE), error de porcentaje medio absoluto (MAPE) y U de Theil.
- En general el DLM intervenido fue el mejor modelo. Ambos DLM fueron más precisos que el VECM.

 Se realizaron pronósticos para 2023 y 2024 con el DLM intervenido, dada la información hasta 2022 T4.

Trimestre	Pronóstico	Límite inf.	Límite sup.	Observado
2023 T1	2536.62	2400.15	2680.84	2455.99
2023 T2	2560.11	2397.55	2733.71	2470.42
2023 T3	2573.11	2392.80	2767.01	2485.75
2023 T4	2857.08	2626.44	3107.97	2708.85
2024 T1	2877.38	2625.24	3153.75	2794.82
2024 T2	2919.79	2644.73	3223.46	
2024 T3	2943.37	2652.84	3265.72	
2024 T4	3277.84	2928.38	3669.00	

Cuadro: Pronósticos 2023 y 2024 (miles de millones de pesos).

Figura: Pronósticos 2023 y 2024 (miles de millones de pesos).

Tabla de contenidos

Conclusiones y limitaciones

- 1 Introducción
 - Objetive
 - La demanda de efectivo
- 2 Marco teórico
 - Modelo lineal dinámico
 - Actualización de ecuaciones
 - Intervenciones
- 3 Pronóstico de la demanda de efectivo

 - DLM intervenido
 - VECM
- 4 Selección de modelo y pronósticos
- 5 Conclusiones y limitaciones
- 6 Bibliografía

Conclusiones y limitaciones

Conclusiones y limitaciones

- Los DLM tienen características que los hacen muy útiles para realizar pronósticos.
- Usa pronósticos externos de las otras variables. Sus varianzas no se incluyen en el modelo.
- Se mostró la utilidad de los DLM en problemas complejos, pero en la realidad se necesita obtener una función de demanda de dinero coherente con la teoría económica.
- La demanda de dinero es mucho más compleja que el agregado total. Se tienen que considerar las diferentes denominaciones y áreas geográficas.

- 1 Introducción
 - Objetive
 - La demanda de efectivo
- 2 Marco teórico
 - Modelo lineal dinámico
 - Actualización de ecuaciones
 - Intervenciones
- 3 Pronóstico de la demanda de efectivo

 - DLM intervenido
 - VECM
- 4 Selección de modelo y pronósticos
- 5 Conclusiones y limitaciones
- 6 Bibliografía

- Historia de la moneda y del billete en México. Banco de México.
- Resultados de estudios cuantitativos y cualitativos sobre efectivo 2020. Informe técnico, Dirección General de Emisión. Banco de México, 2020.
- Encuesta Nacional de Inclusión Financiera 2021. Informe técnico, Comisión Nacional Bancaria y de Valores, 2022.
- B. Fisher, P. Köhler, F. Seitz: The demand for Euro area currencies: past, present and future. Informe técnico, European Central Bank, 2004.
- Informe Trimestral Abril-Junio 2021. Informe técnico, Banco de México, 2021.
- Agregados monetarios (metodología 2018) (CF807). Sistema de Información Económica. Banco de México.
- Importancia de los billetes y monedas en la vida diaria. Banco de México.

- Sriram, Subramanian: Demand for M2 in an Emerging-Market Economy: An Error-Correction Model for Malaysia. IMF Working Paper No. 99/173, 1999.
- Sriram, Subramanian: Survey of Literature on Demand for Money: Theoretical and Empirical Work with Special Reference to Error-Correction Models. IMF Working Paper No. 99/64, 1999.
- Ibarra, Raul: The Demand for Money in Mexico. American Journal of Economics, 4(2A):73-80, 2014.
- Noriega-Muro, Antonio E.; Ramos-Francia, Manuel; Rodríguez-Pérez, Cid Alonso: Estimaciones de la demanda de dinero en México y de su estabilidad 1986-2010, así como algunos ejemplos de sus usos. Banco de México, Working Papers, No. 2015-13, 2015.
- M. West, J. Harrison: Bayesian Forecasting and Dynamic Models. Springer, Nueva York, segunda edición, 1997, ISBN 0-387-94725-6.

- J. Durbin, S.J. Koopman: Time Series Analysis by State Space Methods. Oxford University Press, primera edición, 2005, ISBN 0-19-852354-8.
- Sriram, Subramanian: A Survey of Recent Empirical Money Demand Studies. IMF Staff Papers Vol. 47, No. 3, 2001.
- Elizabeth Eli Holmes, Eric J. Ward, Mark D. Scheuerell Kellie Wills: MARSS: Multivariate Autoregressive State-Space Modeling, 2023. https://CRAN.R-project.org/package=MARSS, R package version 3.11.8.
- Elizabeth Eli Holmes, Eric J. Ward, Mark D. Scheuerell: Applied Time Series Analysis for Fisheries and Environmental Sciences. 2021.
- Informe Trimestral Enero-Marzo 2020. Informe técnico, Banco de México, 2020.
- Spyros G. Makridakis, Steven C. Wheelwright, Rob J. Hyndman: Forecasting: Methods and Applications. John Wiley Sons, Inc., tercera edición, 1998, ISBN 978-0-471-53233-0.

Bibliografía

■ Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer, primera edición, 2005, ISBN 3-540-40172-5.