

QCM DE MATHÉMATIQUES - LILLE

Répondre en cochant la ou les cases correspondant à des assertions vraies (et seulement celles-ci).

Ces questions ont été écrites par Arnaud Bodin, Barnabé Croizat et Christine Sacré de l'université de Lille. Relecture de Pascal Romon.

Ce travail a été effectué en 2021-2022 dans le cadre d'un projet Hilisit porté par Unisciel.

Ce document est diffusé sous la licence *Creative Commons – BY-NC-SA – 4.0 FR*. Sur le site Exo7 vous pouvez récupérer les fichiers sources.

Equations différentielles

Arnaud Bodin, Barnabé Croizat, Christine Sacré

1 Equations différentielles

1.1 Primitive | Facile

Question 1

Quelles sont les affirmations vraies?

- $\Box x^3$ est une primitive de $3x^2 + 3$.
- $\Box x^3 + 3$ est une primitive de $3x^2$.
- \Box $\ln(x^2+1)$ est une primitive de $\frac{1}{x^2+1}$.
- $\Box \sqrt{x}$ est une primitive de $\frac{1}{2\sqrt{x}}$ (sur $]0,+\infty[$).

Question 2

Quelles sont les affirmations vraies?

- \Box cos(x) est une primitive de sin(x).
- \square exp(x) est une primitive de exp(x).
- $\Box x^4 3x^3 + 2x^2 8$ est une primitive de $4x^3 9x^2 + 4x$.
- $\Box 4x^3 + x^2 3x + 6$ est une primitive de $x^4 + 2x 3$.

Question 3

Parmi les phrases suivantes, quelles sont les affirmations correctes?

- ☐ L'opération du calcul de primitives est le contraire de l'opération du calcul de dérivées.
- ☐ L'opération du calcul de dérivées est le contraire de l'opération du calcul de primitives.
- ☐ Deux primitives d'une même fonction sur un intervalle sont égales à une constante près.
- ☐ Si on connaît une primitive d'une fonction, alors on les connaît toutes.

Question 4

Pour chacune des équations différentielles suivantes, la fonction donnée est-elle solution?

- \square Pour $y' = \sin(x)$ la fonction $f(x) = \cos(x)$ est solution.
- \square Pour $y' = e^{2x}$ la fonction $f(x) = e^{2x} + 1$ est solution.
- \square Pour $y' = \ln(x)$ la fonction $f(x) = \frac{1}{x}$ est solution.
- \square Pour $y' = \frac{1}{e^x}$ la fonction $f(x) = 1 e^{-x}$ est solution.

1.2 Primitive | Moyen

Question 5

On considère la fonction $f: x \mapsto 2e^{-2x} - 3$. Quelles sont les affirmations exactes?

- \Box *f* est une primitive de $-e^{-2x} 3x$ sur \mathbb{R} .
- \Box f est une primitive de $-4e^{-2x}$ sur \mathbb{R} .
- \Box f est la primitive de $-4e^{-2x}$ sur \mathbb{R} valant -1 en x = 0.
- \Box f est la dérivée de $x \mapsto -e^{-2x}$

Question 6

Quelles sont les affirmations vraies?

- $\Box x \mapsto \ln(x)$ est une primitive de $x \mapsto 1/x$ sur \mathbb{R} .
- $\Box x \mapsto \ln(x)$ est une primitive de $x \mapsto 1/x$ sur $]-\infty,0[$.
- $\Box x \mapsto \ln(x)$ est une primitive de $x \mapsto 1/x$ sur $]0, +\infty[$.
- $\Box x \mapsto \ln(-x)$ est une primitive de $x \mapsto 1/x$ sur $]-\infty,0[$.

Question 7

Soit F une primitive d'une fonction f et G une primitive d'une fonction g sur un intervalle I. Quelles sont les affirmations vraies?

- \square Si f = g alors F = G.
- \square Si F = G alors f = g.
- \square Si $f = g^2$ alors $F = G^2$.
- \square Si F = G + C (où C est une constante) alors f = g.

Question 8

Quelles sont les affirmations vraies?

- \square Une primitive de x^k est $\frac{x^k}{k}$.
- \Box Une primitive de $\ln(x)$ est $\frac{1}{x}$.
- \Box Une primitive de $\frac{1}{\sqrt{x}}$ est $2\sqrt{x}$.
- \Box Une primitive de e^{ax} est e^{ax} (où a > 0 est une constante).

1.3 Primitive | Difficile

Question 9

Parmi les fonctions suivantes, laquelle est une primitive de \sqrt{x} sur l'intervalle $]0,+\infty[$?

- $\Box 2x\sqrt{x}$
- $\Box \frac{1}{2\sqrt{x}}$
- $\Box x^2 \sqrt{x}$
- $\Box \frac{2}{3}x\sqrt{x}$

Quelles sont les affirmations vraies?

- $\Box x^2 e^{1/x}$ est une primitive de $(2x-1)e^{1/x}$ sur $]-\infty,0[$.
- $\square \ln(|x|)$ est une primitive de 1/x sur \mathbb{R} .
- \Box $\ln(x^2 + x + 1)$ est une primitive de $\frac{2x}{x^2 + x + 1}$ sur \mathbb{R} .
- \Box $e^x \ln(x)$ est une primitive de $e^x \ln(x) + e^x/x$ sur $]0, +\infty[$.

Question 11

Quelles sont les affirmations vraies?

- \Box Une primitive de $\sin(x)e^{\cos(x)}$ est $-e^{\cos(x)}$.
- \Box Une primitive de $\cos(x^3 + x)$ est $\sin(x^3 + x)$.
- \square Une primitive de $\ln(x)$ est $x \ln(x) x$ (sur $]0, +\infty[$).
- \Box Une primitive de $4x^3 + 4x$ est $(x^2 + 1)^2$.

Question 12

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle. Soit F une primitive de f. C désigne une constante. Quelles sont les affirmations vraies?

- \square Si f(x) = 0 sur I alors F(x) = C.
- \square Si f(x) = x alors $F(x) = x^2 + C$.
- \square Si $f(x) \times \cos(x) = 1$ alors $F(x) = \frac{1}{\sin(x)} + C$.
- \square Si $f(\ln(x)) = 0$ alors $F(x) = e^x + C$.

1.4 Notion d'équation différentielle | Facile

Question 13

On considère la fonction $f: x \mapsto 2e^{-x} + 3$. Parmi les équations différentielles suivantes, quelles sont celles dont f est solution?

- $\Box y' = -y + 3$
- $y' = y 4e^{-x} 3$
- $\Box y' = 2y + 3$
- \square $y' = -2e^{-x}$

Question 14

Parmi les fonctions suivantes, quelles sont celles qui sont solutions de l'équation différentielle y' = 2y - 10.

- $\Box f: x \mapsto 4e^{2x} + 5$
- $\Box f: x \mapsto e^{2x} + 5$
- $\Box f: x \mapsto 2e^x + 5$
- $\Box f: x \mapsto 2x + 5$

Parmi les fonctions suivantes quelles sont celles qui sont des solutions de l'équation différentielle y' = xy?

 $\Box f(x) = \exp(x^2)$

- $\Box f(x) = 2\exp(x^2/2)$
- $\Box f(x) = 0$
- $\Box f(x) = 1$

Question 16

Soit la fonction $f(x) = \cos(x)$. De quelle(s) équation(s) différentielle(s) f est-elle solution?

- $\Box y' = y$
- $\Box y'' = -y$
- $\Box y'' = -y'$

1.5 Notion d'équation différentielle | Moyen

Question 17

Soit l'équation différentielle y' = 2x(y + x) - 1. Quelles sont les affirmations vraies?

- ☐ Cette équation différentielle n'a pas de solution constante.
- \Box y = -x est une solution.
- $\Box y = e^{x^2} x + 1$ est une solution.

Question 18

Soit l'équation différentielle xy' - 3y = 0. Quelles sont les affirmations vraies?

- $\Box x^3 + 1$ est une solution.
- $\Box x^3$ est une solution.
- \Box e^{3x} est une solution.
- ☐ La fonction nulle est la seule solution constante.

Question 19

Soit f une solution de l'équation différentielle $y'=y^2+1$. Quelles sont les affirmations vraies sur la fonction f?

- \Box *f* est une fonction croissante.
- \Box *f* est une fonction décroissante.
- \Box f' est une fonction positive.
- \Box *f* peut être une fonction constante.

Soit l'équation différentielle y'-2xy=4x. Quelles sont les affirmations vraies concernant les solutions de cette équation?

 \Box y = -2 est une solution.

 \Box y = +2 est une solution.

1.6 Notion d'équation différentielle | Difficile

Ouestion 21

Soit f une solution de l'équation différentielle $y' = 2y - x^3$. On sait que la courbe représentative de f passe par le point A(1,2). Quelle est la pente de sa tangente au point A?

 \Box -1

 \Box 1

 \square 2

□ 3

Question 22

Soit f une solution de l'équation différentielle y' = y + 3x. On sait de plus que la courbe représentative de f passe par le point A(-1,2). Quelles sont les affirmations exactes?

 \square La pente de la tangente à la courbe de f au point A est -1.

 $\hfill\Box$ La pente de la tangente à la courbe de f au point A est 4.

 \square La tangente à la courbe de f au point A admet pour équation : y = -x + 1.

 \square La tangente à la courbe de f au point A admet pour équation : y = 4x + 6.

Question 23

Soit l'équation différentielle xy' = y - x définie pour $x \in]0, +\infty[$. Quelles sont les fonctions solutions de cette équation, quelle que soit la constante C?

 $\Box f(x) = x - C \ln(x)$

 $\Box f(x) = x - \ln(x) + C$

 $\Box f(x) = Cx - x \ln(x)$

 $\Box f(x) = x - C$

Question 24

Soit f une solution de l'équation différentielle $y' = \cos(x)y$, vérifiant $f(\frac{\pi}{3}) = 3$. On considère la courbe représentative de f. Quelles sont les affirmations vraies?

 \square La tangente en $x = \frac{\pi}{3}$ a pour équation $y = \frac{3}{2}x + 3$.

 \square La tangente en $x = \frac{\pi}{3}$ a pour équation $y = \frac{3}{2}(x - \frac{\pi}{3}) + 3$.

 \square La tangente en $x = \frac{\pi}{2}$ est horizontale.

 \square La tangente en $x = \frac{\pi}{3}$ est horizontale.

1.7 y' = ay | Facile

Question 25

Les solutions de l'équation différentielle y' = -y sont :

- $\Box e^{-x} + C$ avec *C* constante réelle.
- \Box $e^x + C$ avec C constante réelle.
- \Box Ce^{-x} avec C constante réelle.
- \Box Ce^x avec C constante réelle.

Question 26

Les solutions de l'équation différentielle y' + 2y = 0 sont :

- $\Box e^{-2x} + C$ avec C constante réelle.
- \Box $e^{2x} + C$ avec C constante réelle.
- \Box Ce^{2x} avec C constante réelle.
- \Box Ce^{-2x} avec C constante réelle.

Question 27

De quelle(s) équation(s) différentielle(s) $4e^{3x}$ est-elle une solution?

- $\Box y' = 3y$
- \square 3y' = y
- $\Box y' = 4y$
- $\Box 4y' = y$

Question 28

Parmi les fonctions suivantes, quelles sont celles solutions de l'équation différentielle y' = 3y?

- $\Box f(x) = 3e^{2x}$
- $\Box f(x) = 2e^{3x}$
- $\Box f(x) = e^{-3x}$
- $\Box f(x) = e^{-2x}$

Question 29

Parmi les fonctions suivantes, quelles sont celles solutions de l'équation différentielle $y' = \frac{1}{e}y$?

- $\Box f(x) = C \exp(x/e)$
- $\Box f(x) = C \exp(ex)$
- $\Box f(x) = Ce \exp(x)$
- $\Box f(x) = C \frac{\exp(x)}{e}$

1.8 y' = ay | Moyen

Question 30

Que peut-on dire des solutions de l'équation différentielle y' = ay?

- \square Ce sont toutes des fonctions croissantes sur \mathbb{R} .
- \square Ce sont toutes des fonctions décroissantes sur \mathbb{R} .
- \square Si $a \ge 0$, ce sont des fonctions croissantes sur \mathbb{R} .
- \square Ce sont toutes des fonctions monotones sur \mathbb{R} .

Question 31

Soit $f: x \mapsto -2e^{3x}$. Quelles sont les affirmations vraies?

- \Box *f* est la seule solution de l'équation différentielle y' = 3y dont la courbe représentative passe par le point A(0,3).
- □ f est la seule solution de l'équation différentielle y' = 3y qui tend vers $-\infty$ lorsque x tend vers $+\infty$.
- \Box *f* est la seule solution de l'équation différentielle y' = 3y valant -2 en x = 0.
- \Box f est la seule solution de l'équation différentielle y'=3y dont la dérivée en x=0 est -6.

Question 32

Soit l'équation différentielle y' + 5y = 0. Quelles sont les affirmations vraies?

- \square Les solutions générales sont $y(x) = Ce^{-5x}$.
- \square Les solutions générales sont $y(x) = Ce^{5x}$.
- \square La solution vérifiant v(1) = 0 est $v(x) = e^{-5x}$.
- \square La solution vérifiant y(1) = 0 est $y(x) = e^{5x}$.

Question 33

Pour quelles valeurs de a et b la fonction $y(x) = 7e^{-5x}$ est-elle solution de y' = ay avec y(0) = b?

- \Box a = -5 et b = 7
- \Box a = 5 et b = 7
- \Box a = 5 et b = 0
- \Box a = 0 et b = 7

1.9 y' = ay | Difficile

Question 34

Soit f la solution de l'équation différentielle y' + 3y = 0 telle que f'(0) = -6. Quelles sont les affirmations vraies?

- \square La courbe représentative de f passe par A(0,2).
- \square La courbe représentative de f passe par A(0,-6).
- \Box f est toujours négative.
- \square *f* est une fonction décroissante sur \mathbb{R} .

Question 35 Soit 6 le colution de l'équestion différentielle $y' = 4y$ telle que $f(1) = e^4$
Soit f la solution de l'équation différentielle $y' = 4y$ telle que $f(1) = e^4$.
□ La courbe représentative de f passe par le point $A(1, e^4)$.
\Box La courbe représentative de f passe par le point $B(0,1)$.
□ La pente de la tangente à la courbe de f en $x = 1$ est 4.
\square On n'a pas assez de données pour déterminer la pente de la tangente à la courbe de f en $x=0$
Question 36
Soit l'équation différentielle $y' = ay$ avec $a > 0$. Quelles sont les affirmations vraies?
☐ Il n'y a pas de solutions constantes.
☐ Il y a une seule solution constante.
\square Toute solution vérifie $y(x) \ge 0$.
□ Toute solution $y(x)$ tend vers 0 lorsque x tend vers $-\infty$.
<i>Question 37</i> Soit la solution de l'équation différentielle $y' = 2y$ vérifiant $y(0) = -1$. Quelles sont les affirmation
vraies?
☐ La solution est toujours négative.
☐ La solution est une fonction décroissante.
\square La pente de la tangente en $x = 0$ vaut 1.
□ La pente de la tangente en $x = 1$ vaut $-2e^2$.
1.10 $y' = ay + b$ et $y' = ay + f$ Facile
<i>Question 38</i> Soit l'équation différentielle $2y' + 4y = 3$. Quelles sont les affirmations vraies?
\Box La seule solution constante est $y = 3/2$.
□ La seule solution constante est $y = 3/4$.
□ Les solutions sont $Ce^{-4x} - 3$ avec C constante réelle.
□ Les solutions sont $Ce^{-2x} + 3/4$ avec C constante réelle.
Question 39
Soit l'équation différentielle $3y' = y - 3$. Quelles sont les affirmations vraies?
□ La seule solution constante est $y = 1$.
□ La seule solution constante est $y = 3$.
☐ Les solutions sont $Ce^{3x} + 1$ avec C constante réelle.
\Box Les solutions sont $Ce^{x/3} + 3$ avec C constante réelle.

Soit $f(x) = e^x + 3$. De quelle(s) équations(s) différentielle(s) cette fonction est-elle solution?

- $\Box y' y = e^x$
- $\Box y' = y 3$
- $\Box 3y' y = 0$
- y'-3y=0

Soit l'équation différentielle $y' = 2y + \cos(x)$. Quelles sont les affirmations vraies?

- \square Les solutions de l'équation homogène associée sont les $y(x) = C \sin(x)$.
- \square Les solutions de l'équation homogène associée sont les $y(x) = C \cos(x)$.
- \Box Une solution particulière est $y(x) = \frac{1}{5}\sin(x) \frac{2}{5}\cos(x)$.
- \square Une solution particulière est $y(x) = e^{2x}$.

Question 42

Soit l'équation différentielle y' = 2y - 2x + 1. Quelles sont les affirmations vraies?

- \square La seule solution constante est $y(x) = x \frac{1}{2}$.
- $\Box y(x) = x$ est une solution particulière.
- $\Box y(x) = 3e^{2x} + x$ est une solution particulière.
- $\Box y(x) = x^2$ est une solution particulière.

1.11
$$y' = ay + b$$
 et $y' = ay + f$ | Moyen

Question 43

Quelles sont les valeurs de a, b et c telles que $f: x \mapsto ax^2 + bx + c$ soit solution de l'équation différentielle $y' + 2y = 4x^2 + 2x - 1$?

- \Box *a* = 4, *b* = 2, *c* = -1
- $\Box a = 2, b = -1, c = 0$
- $\Box a = 2, b = -1, c = -1$
- \Box *a* = 4, *b* = -3, *c* = 1

Question 44

Parmi les fonctions suivantes, quelles sont celles qui sont solutions sur $\mathbb R$ de l'équation différentielle $y'=2y+e^{2x}$ et qui valent 2 en x=0:

- $\Box x \mapsto 2e^{2x}$
- $\Box x \mapsto xe^{2x}$
- $\Box x \mapsto xe^{2x} + 2$
- $\Box x \mapsto (x+2)e^{2x}$

Question 45

Le graphique ci-dessous représente plusieurs solutions de l'équation différentielle y' + 2y = b, où b est un réel. Quelle est la valeur de b?

- \Box b=-2
- \Box b=-1
- $\Box b = 1/2$
- \Box b=1

Soit l'équation différentielle $y' + y = e^x$. Quelles sont les affirmations vraies?

- \square Les solutions de l'équation homogène associée sont $y(x) = Ce^x$.
- \Box Une solution particulière est $y(x) = e^{-x}$.
- \Box La solution vérifiant y(0) = 1 est $y(x) = \frac{e^x + e^{-x}}{2}$.
- \square La solution vérifiant y(1) = 1 est $y(x) = e \cdot e^{-x}$.

Question 47

Soit l'équation différentielle $y' = y + x^2 - 1$. Quelles sont les affirmations vraies?

- \square Les solutions de l'équation homogène associée sont $y(x) = \frac{1}{3}x^3 x + C$.
- \square Les solutions de l'équation homogène associée sont $y(x) = Ce^{x^2-1}$.
- \Box Une solution particulière est $y(x) = e^x$.
- \Box Une solution particulière est $y(x) = -x^2 2x 1$.

Question 48

On considère l'équation différentielle $y' + y = 2x^2(x + 3)$. Quelles sont les affirmations vraies?

- \square Il existe un nombre réel r tel que $y(x) = e^{rx}$ soit une solution particulière.
- \square Il existe deux nombres entiers k et n tels que $y(x) = kx^n$ soit une solution particulière.
- $\Box y(x) = e^{-x} + 2x^3$ est une solution particulière vérifiant y(0) = 0.
- $\Box y(x) = -2e^{-x} + 2x^3$ est une solution particulière vérifiant y(0) = 0.

Question 49

Soit (*E*) l'équation différentielle $y' + 5y = 5x^2 + 2x$. Alors :

- □ Si f est solution de (E), alors la fonction $x \mapsto f(x) 5x^2 2x$ est solution de l'équation différentielle (H): y' + 5y = 0.
- □ Si f est solution de (E), alors la fonction $x \mapsto f(x) x^2$ est solution de l'équation différentielle (H): y' + 5y = 0.
- □ Si f est solution de (E), alors la fonction $x \mapsto f(x) e^{-5x}$ est solution de l'équation différentielle (H): y' + 5y = 0.
- □ Si f est solution de (E), alors la fonction $x \mapsto f(x) 2x$ est solution de l'équation différentielle (H): y' + 5y = 0.

Soit l'équation différentielle $y' = y + 2e^{3x} + 4xe^{3x}$. On recherche une solution particulière sous la forme $f(x) = axe^{bx}$. Quelles doivent être les valeurs de a et b?

- $\Box a = 4, b = 3$
- $\Box \ a = 2, b = 3$
- $\Box \ a = 1, b = 3$
- $\Box \ a = 1, b = 4$

1.12
$$y' = ay + b$$
 et $y' = ay + f$ | Difficile

Question 51

Le graphique ci-dessous représente la courbe représentative d'une fonction f ainsi que sa tangente en un point A. Cette fonction f est solution d'une des équations différentielles suivantes ; laquelle ?

- $\Box y' = 2x$
- $\Box y' = y + 1$
- $\square \ y' = 2y + 2$
- y' = 2y 2

Soit f une fonction dont la courbe représentative admet pour tangente en x=-1 la droite d'équation y=2x-2. Parmi les équations différentielles suivantes, quelle est la seule dont f peut être une solution?

- $\Box y' = y + e^x$
- $\Box y' = -y + 2x$
- $\Box y' = 2y + 3x^3$
- $\square 2y'-y=2$

Question 53

Soit l'équation différentielle 2y' = 3y + 1. Quelles sont les affirmations vraies?

- \square Il y a au moins une solution dont la limite en $-\infty$ est 0.
- \square La solution vérifiant y(0) = 0 est $y(x) = \frac{1}{3}(e^{\frac{3}{2}x} 1)$.
- \square La solution vérifiant y(0) = 0 est y(x) = 0.
- \square La solution vérifiant y(0) = 0 est $y(x) = e^{\frac{3}{2}x} 1$.

Question 54

Soit l'équation différentielle y' = y + 3x - 2. Quelles sont les affirmations vraies?

- \square Une solution particulière est y(x) = -3x 1.
- \square Une solution particulière est y(x) = 3x 2.
- \Box La solution vérifiant y(0) = 1 est $y(x) = 2e^x 3x 1$.
- \Box La solution vérifiant y(0) = 1 est $y(x) = 3e^x + 3x 2$.

Question 55

Soit f une solution de l'équation différentielle (H): y' = 4y. De quelle équation différentielle la fonction $g: x \mapsto f(x) + e^{2x}$ sera-t-elle solution?

- $\Box \ y' = 4y + e^{2x}$
- $\Box y' = 4y 2e^{2x}$
- $\Box y' = 2y$