SIT384 Cyber security analytics

Pass Task 6.1P: kNN classification

Task description:

KNN is a non-parametric learning algorithm. Its purpose is to use a database in which the data points are separated into several classes to predict the classification of a new sample point.

You are given a dataset task6_1_dataset.csv. The first column is index, x1 and x2 can be treated as the coordinates of a point, and y is the class the point (x1,x2) belongs to.

	x1	x2	у
	•		
0	1.68223	7.81035	0
	1		
1	7.20088	9.754777	0
	1		
2	6.47379	10.44102	0
	-		
3	5.98175	8.025655	0
	•		
4	4.52135	9.10985	0
	-		
5	3.94231	9.067026	0

(The above data is for demonstration purposes only. Please download the full version of task6_1_dataset.csv.)

You are asked to:

- train the above dataset with k=1
- test the kNN classifier with [-4, 8] (1st testing point)
- visualize data and the 1st testing point using scatter plot.
 - X axis is x1
 - o Y axis is x2
 - Testing point's marker is "x", with a text label.
 - o plt.subplots(figsize=(7, 5), dpi=100)
 - o scale = 75
 - o alpha = 0.6
 - colors = ['green', 'blue', 'magenta'] representing class 0, 1 and 2; or colors of your choice
 - For a training data point, its color is the y class color; for a testing point, color is the predicted class color
 - $\circ\quad$ set the plot title according to the screenshot below
 - o other settings of your choice

Sample output as shown in the following figure is for demonstration purposes only.

- train the above dataset with k=15
- test the kNN classifier with [-2, 5] (2nd testing point)
- visualize data and the 2nd testing point using scatter plot.
 - Create color maps/decision boundaries cmap_light = ListedColormap(['#AAFFAA', '#AAAAFF', '#FFAAAA'])
 - o X axis is x1
 - Y axis is x2
 - o Testing point's marker is "x", with a text label.
 - o plt.subplots(figsize=(7, 5), dpi=100)
 - For a training data point, its color is the y class color; for a testing point, color is the predicted class color
 - o set the plot title according to the screenshot below
 - o other settings of your choice

3-Class classification (k = 15) the test point is predicted as class magenta

12
10
8
6
4
2
0
-2

-2

0

2

6

Submission:

Submit the following files to OnTrack:

-6

-8

- 1. Your program source code (e.g. task6_1.py)
- 2. A screen shot of your program running

Check the following things before submitting:

1. Add proper comments to your code