Pair Selection

Given an N*M matrix A, where each entry A[i][j] of A can either be 0 or be 1. You need to select a set of pairs $\{(a_1,b_1),(a_2,b_2),\ldots(a_k,b_k)\}$ such that size of the set (K) is maximized and the following conditions hold true :-

- ullet $a_i \in [1,N]$, $b_i \in [1,M]$ and $A[a_i][b_i] = 1 \; orall \; i \in [1,K]$
- ALL a_i 's are distinct.
- ALL b_i 's are distinct.
- ullet For every pair (a_i,b_i) , at least one of a_i or b_i should be ${f good}$.

An element $i \in [1,N]$ is good if :-

- ullet $a_p=i$ for some $p\in [1,K]$, i.e. element i is selected in the set as some a_p .
- ullet For every $j\in [1,M]$, if A[i][j]=1 then $b_q=j$ for some $q\in [1,K]$, i.e. every such j should be selected as some b_q in the set.

Similarly an element $j \in [1,M]$ is ${f good}$ if :-

- ullet $b_p=j$ for some $p\in [1,K]$, i.e. element j is selected in the set as some b_p .
- ullet For every $i\in [1,N]$, if A[i][j]=1 then $a_q=i$ for some $q\in [1,K]$, i.e. every such i should be selected as some a_q in the set.

What is the maximum size of the set that we can choose?

Input Format

First line contains two integers **N** and **M** denoting the size of the matrix. Next follow **N** lines each containing a string of length **M** denoting the entries of the matrix. Each character of the string is either **0** or **1**.

Constraints

$$1 \le N \le 500$$
$$1 \le M \le 500$$

Output Format

Output 1 integer depicting the maximum **K** given the constraints in the problem.

Sample Input

Sample Output

3

Explanation

We can chose the following 3 pairs: (1,1),(2,2),(3,3)

a1,a2 and b3 are good. Note that in every pair we want at least one of the ai/bi to be good.