Enteros - TP 3

1. Demostrar las siguientes propiedades básicas:

(c) Si a|b entonces a|-b; -a|b y -a|-b

 $3.\,$ Analizar si las siguientes afirmaciones son verdaderas o falsas:

(a) a|a

2. Demostrar:

(b) $1|a \ y \ a|0$

(a) $a|b \ y \ b|c$ entonces a|c(b) a|b entonces a|bc

(c) $a|b \ y \ a|c$ entonces a|b+c(d) $a|b+c \ y \ a|b$ entonces a|c

(a) $a|b \ y \ b|a \ \text{entonces} \ |a| = |b|$

	 (b) a bc entonces a b ó a c (c) a b + c entonces a c ó a b (d) a b y b ≠ 0 entonces a ≤ b
4.	Determinar cociente y resto de cada una de las siguientes divisiones enteras: (i) $(-305):13$ (ii) $120:50$ (iii) $(-384):16$ (iv) $3:17$ (v) $(-9):15$ (vi) $254:(-16)$
5.	Un número natural n excede en 35 a un cierto múltiplo de 24. Cuál es el resto de dividirlo por 8 ? Y cuál si lo divido por 6 ?
6.	Si se divide a un entero positivo n por 113 se obtiene resto 11 y si se lo divide por 108 se obtiene el mismo cociente q y resto 36. Hallar n y q
7.	El resto de dividir n por 18 es el doble de su cociente. Hallar ese número n
8.	Hallar un número n tal que el cociente de dividirlo por 15 es el doble de su resto.
9.	Calcular el máximo común divisor entre: (i) $(16,38)$ (ii) $(120,50)$ (iii) $(31,57)$ (iv) $(120,245)$ (v) $(9834,1430)$ (vi) $(-60,45)$ (vii) $(187,77)$ (viii) $(-187,77)$
10.	Escribir (x,y) en la forma $sx+ty$ con $s,t\in Z$ para los primeros cuatro casos del ejercicio anterior.
11.	Un pastelero debe despachar 150 tortas y 315 budines empleando el menor número posible de bandejas que contengan tortas y budines cada una. En cada bandeja debe haber sólo tortas o sólo budines, y todas deben contener el mismo número de unidades. Cuántas unidades debe contener cada bandeja?
12.	Hallar dos números a y b tales que $(a,b)=18$ y los cocientes sucesivos por aplicación del algoritmo de Euclides son : 11, 5, 11, 2
13.	Calcular el mínimo común múltiplos entre: (i) $[16,8]$ (ii) $[2,5]$ (iii) $[36,12]$ (iv) $[32,84]$ (v) $[72,108]$

- 14. Probar que para cualquier a entero se cumple que a y a+1 son coprimos
- 15. Demostrar que: a y b, enteros no simultáneamente nulos, son coprimos si y sólo si existen enteros s y t tales que 1 = sa + tb
- 16. Demostrar:
 - (a) Si (a, b) = d; a|c y b|c entonces ab|cd
 - (b) a + b es coprimo con a
 - (c) a + b y ab son coprimos
 - (d) Sean a y b coprimos y a|c y b|c entonces ab|c
- 17. Si p es primo, entonces a y p son coprimos sí y sólo si p no divide a a.
- 18. Probar que si (a, m) = (b, m) = 1, entonces (ab, m) = 1
- 19. Considerando la relación de congruencia módulo n en Z (con n no nulo)
 - (a) Probar que dos enteros son congruentes módulo n si y sólo si los respectivos restos de su división por n son iguales.
 - (b) Hallar las respectivas clases de 13, 6, 11 y $-49 \ mod \ 4$
 - (c) Hallar las respectivas clases de 2, -1, 13 y $-246 \ mod$ 7
- 20. Probar en Z
 - (a) $a \equiv b$ $(n) \Leftrightarrow a + c \equiv b + c$ (n)
 - (b) $a \equiv b$ $(n) \Leftrightarrow ac \equiv bc$ (n)
 - (c) $a \equiv 0$ $(n) \Leftrightarrow n|a$
- 21. Probar: todo número es congruente, módulo n, con el resto de su división por n
- 22. Resolver:
 - (a) $3x \equiv 2 \pmod{5}$
 - (b) $5x \equiv 4 \pmod{8}$
 - (c) $2x \equiv 1 \pmod{7}$
 - (d) $6x \equiv 3 \pmod{4}$
 - (e) $5x \equiv 9 \pmod{7}$
 - (f) $10x \equiv 2 \pmod{22}$