Diplomová práce

České vysoké učení technické v Praze

F3

Fakulta elektrotechnická Katedra mikroelektroniky

Reflektometr v časové oblasti

Bc. Petr Polášek

Vedoucí: Ing. Viktor Adler, Ph.D. Obor: Elektronika a komunikace Studijní program: Elektronika

Listopad 2019

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Polášek	Jméno: Petr	Osobní číslo: 4350	28
i illincili.	i Olasek	Jiliello. I eti	Caubili Ciaid. Tabu	_

Fakulta/ústav: Fakulta elektrotechnická

Zadávající katedra/ústav: Katedra mikroelektroniky

Studijní program: Elektronika a komunikace

Studijní obor: Elektronika

•		
ÚDAJE K DIPLOMOVÉ PRÁC	I	
Název diplomové práce:		
Reflektometr v časové oblasti		
Název diplomové práce anglicky:		
Time-Domain Reflectometer		
Pokyny pro vypracování:		
zařízení pracující na principu časové refle ekvivalentním čase. Jako budící signál m nejkratší náběžné hrany. Implementujte z	ektometrie (TDR, Time-Domain Ří věřeného obvodu použijte obdélník pracování změřených vzorků tak, librační metodu využívající předer	ení a zkonstruujte samostatně fungující měřicí eflectometry) a využijte techniku vzorkování v kový signál, u něhož se snažte dosáhnout co aby se dala určit poloha a typ diskontinuity na n známé vlastnosti vhodných mechanických
Seznam doporučené literatury:		
Cataldo Andrea, De Benedetto Egidio, Cataldo Andrea, De Benedetto Egidio, Cataldo Applications, Springer-Verlag Fabien Ndagijimana, Signal Integrity: Fro	annazza Giuseppe, Broadband Ro Berlin Heidelberg, 2011 Im High-speed to Radiofrequency mové práce:	Applications, J.Wiley & Sons, New York, 2014 eflectometry for Enhanced Diagnostics and Applications, J. Wiley&Sons, New York, 2014
Ing. Viktor Adler, Ph.D., katedra	elektromagnetického pole F	EL
Jméno a pracoviště druhé(ho) vedouc	cí(ho) nebo konzultanta(ky) dip	lomové práce:
Datum zadání diplomové práce: 04. Platnost zadání diplomové práce: 3 6		zdání diplomové práce:
Ing. Viktor Adler, Ph.D. podpis vedoucí(ho) práce	podpis vedoucí(ho) ústavu/katedry	prof. Mgr. Petr Páta, Ph.D. podpis děkana(ky)
PŘEVZETÍ ZADÁNÍ		
Diplomant bere na vědomí, že je povinen vypracov Seznam použité literatury, jiných pramenů a jmen k		
Datum převzetí zadání		Podpis studenta
'		·

Poděkování

Děkuji svým rodičům i celé rodině, že mi byli oporou po celou dobu mého studia.

Děkuji Ing. Viktoru Adlerovi, PhD. a prof. Ing. Karlu Hoffmannovi, CSc. za umožnění přístupu k mikrovlnné měřicí technice a možnost konzultování detailů této práce.

Děkuji Ing. Viktoru Adlerovi za významnou pomoc při analýze vysoko-frekvenčních parametrů substrátu použitého pro plošný spoj reflektometru.

Děkuji také studentskému klubu Silicon Hill a projektu "MacGyver - Bastlíři SH" za umožnění přístupu k měřicímu vybavení.

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem č. 1/2009 o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

Dále prohlašuji, že nemám závažný důvod proti užití tohoto školního díla ve smyslu §60 zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon).

V	Praze,	9.	list	top	adu	20)19			
				Be	. Р	etr	Po	าไล์รั	śek	

Abstrakt

Tato práce se zabývá konstrukcí reflektometru v časové doméně, výsledkem je funkční zařízení s ovládacím softwarem. Cílem bylo vyvinout zařízení pro měření odrazů na vedení schopné detekce závad na vedení s přesností detekce polohy závady v řádu jednotek centimetrů. Důraz byl kladen na co nejmenší cenu výsledného zařízení a zároveň co nejjednodušší konstrukci, ovšem se snahou, aby tato kritéria neomezovala použitelnost či funkčnost zařízení.

Výsledné zařízení dokáže měřit ve frekvenčním rozsahu do řádu jednotek GHz, vzorkovací krok měření je 20 ps, ekvivalentní vzorkovací kmitočet je tedy 50 GSa.s⁻¹. Tento vzorkovací krok teoreticky umožňuje rozlišovací schopnost polohy závady na vedení 0,3 cm ve vakuu, v reálném prostředí může být i lepší. Samostatně dokáže zařízení detekovat jednoduché závady, jejich typ a polohu. V součinnosti s počítačem je možné provést i kalibraci pomocí kalibrační sady pro korekci nedokonalostí zařízení.

V práci je popsána vytvořená konstrukce reflektometru a princip jeho funkce. Jednotlivé funkční bloky jsou podrobně popsány, vysvětlen je i postup optimalizace těchto bloků k dosažení co nejlepších parametrů zapojení. Vysvětleny jsou i metody detekce závad na vedení, kalibrace zařízení a autokalibrace.

Práce ze zabývá i případnými možnostmi, jak by bylo možné rozšířit schopnosti tohoto zařízení o funkci transmisometru, která by umožnila používat toto zařízení jako vektorový analyzátor v časové oblasti.

Klíčová slova: reflektometrie, reflektometr, TDR

Vedoucí: Ing. Viktor Adler, Ph.D.

Abstract

This work deals with construction of reflectometer in time domain, which is implemented as functional device along with control software. The goal was to develop a device capable of measuring reflections on transmission lines caused by faults with spatial resolution on the order of units of centimetres. The emphasis was to develop a cheap and simple device while trying not to limit the functionality or capability of the device.

The resulting device is able to measure up to units of GHz, sampling step is 20 ps, resulting in equivalent sampling rate of 50 GSa.s⁻¹. This sampling step theoretically allows spatial resolution of 0,3 cm in vacuum, possibly even less in real environment. The device can detect simple faults on its own, along with their type and position. When used with computer, it is possible to perform calibration using calibration set.

The work contains explanation of the construction and its principles. Each functional block is described in detail as well as the optimalisations which were used to obtain the best possible parameters of the construction. Also explained are methods of detection of faults on the transmission line, calibration and autocalibration of the device.

This work also deals with eventual possibilities of extending the capabilities of the device by implementing a function of transmisometer, which could allow to use the device as a vector network analyzer in time domain.

 $\begin{tabular}{ll} \textbf{Keywords:} & reflectometer, reflectometry, \\ TDR & \\ \end{tabular}$

Title translation: Time-Domain

Reflectometer

Obsa	ah .		F-1
Slovník	1	8.7 Logaritmický detektor	51 51
Seznam zkratek použitých v textu	3	8.9 Komunikace s počítačem	52
1 Zadání a vlastní cíle návrhu	5	9 Popis firmware	55
1.1 Zadání	5	9.1 Technické parametry firmware	55
1.2 Vlastní cíle návrhu	5	9.2 Autokalibrace a autodiagnostika	
2 Princip reflektometrie	7	zařízení9.2.1 Detekce stability fázového	55
3 Budicí signál	11	závěsu	55
3.1 Základní požadavky na vlastnosti budicího signálu		9.2.2 Autokalibrace stejnosměrné složky	56
3.2 Výběr budicího signálu a možnost jeho syntézy	i 12	9.2.3 Kalibrace napěťových úrovní 9.2.4 Odhad šumové úrovně a	56
3.3 Zvolený budicí signál a obvodové řešení	18	průměrování	56 59
4 Vzorkování odraženého signálu	23	9.2.6 Kalibrace polohy roviny měření	
4.1 Obvodové řešení vzorkovače	25	9.3 Postup ovládání firmware	61
5 Separace budicího a odraženého signálu 27		10 Kalibrace	65
_	۲.	10.1 Chybový model	65
6 Rozšíření dynamického rozsahu, potlačování šumu a rušení	31	10.2 Chyby pramenící z nepřesnosti frekvence fázového závěsu	65
7 Navržené blokové zapojení reflektometru	35	10.3 Měření parametrů chybového modelu	65
8 Princip zapojení	37	10.4 Kompenzace chyb	65
8.1 Základní princip zapojení	37	10.5 Omezení plynoucí z omezené šířky pásma zapojení	
8.2 Blokové zapojení	37	11 Detekce závad	67
8.3 Generování potřebných hodinových signálů	h 37	11.1 Princip hledání závad	67
		11.2 Základní typy závad	67
8.4 Tvorba budicího pulzu	41	11.3 Složené závady	67
8.5 Přizpůsobovací obvody a testovac port	1 43	11.4 Výpočet impedančního profilu .	67
8.6 Vzorkovací obvody a oddělovací		12 Změřené parametry	69
zesilovač		12.1 Budicí pulz	69

12.1.1 Průběh budicího pulzu	69
12.1.2 Spektrum budicího pulzu	69
12.2 Parametry fázového závěsu	69
12.2.1 Jitter fázového závěsu v celočíselném režimu	69
12.2.2 Jitter fázového závěsu v racionálním režimu	69
12.2.3 Drift fázového závěsu	69
13 Uživatelské rozhraní a popis ovládání	71
13.1 Chování zařízení v autonomním režimu	72
13.1.1 Autokalibrace	72
13.1.2 Kalibrace pomocí kalibračních standardů	h 72
13.1.3 Měření	72
13.1.4 Vyhodnocení změřených dat	72
13.2 Chování zařízení v režimu s připojeným počítačem	72
13.2.1 Autokalibrace	72
13.2.2 Kalibrace pomocí kalibračních standardů	h 72
13.2.3 Měření	72
13.2.4 Vyhodnocení změřených dat	72
14 Závěr	73
Λ Literatura	75

Obrázky

Obrazky				
2.1 Znázornění jednoho odrazu na	7	6.1 Převodní funkce logaritmického detektoru AD8309 [Ana99]	32	
2.2 Příklad odezvy na komplexní	9	6.2 Chyba převodní funkce logaritmického detektoru AD8309 [Ana99]	33	
3.1 Diracovo delta	13	7.1 Základní blokové schéma navržené		
3.2 Gaussův pulz, variance=0.05 $$ 1	13	architektury reflektometru	36	
3.3 Jehlový generátor s lavinovým generátorem, SRD a zkratovacím		8.1 Blokové zapojení reflektometru	38	
vedením [Tek68]	14	8.2 Vnitřní blokové zapojení obvodu Si5351, převzato z [Sil18]	38	
3.4 Jednotkový skok 1	14	8.3 Zapojení hodinového generátoru		
3.5 Chybová funkce 1	15	Si5351	41	
3.6 Funkce $\operatorname{sinc}(x)$ 1	16	8.4 Zapojení generátoru budicích		
3.7 Diskrétní bílý šum 1	17	pulzů	42	
3.8 Autokorelace diskrétního bílého		8.5 Schéma přizpůsobovacích obvodů.	43	
šumu z 3.7 1	17	8.6 Schéma použité pro simulaci		
3.9 Typické zapojení LVPECL výstupu [Hol02] 1	19	vstupní impedance v programu LTSpice	44	
3.10 Typické zapojení LVDS výstupu		$8.7~\mathrm{Vstupn}$ í impedance reflektometru.	44	
[Hol02] 2	20	8.8 Přizpůsobení vstupní impedance reflektometru	45	
3.11 Typické zapojení CML výstupu [Hol02]	21		46	
3.12 Výstupní průběh SATA redriveru		8.10 Přenos oddělovacího zesilovače.	47	
[Tex16b]	21	8.11 Přenos celého systému		
4.1 Ploková zapojoní DII Si5251		přizpůsobení-vzorkovač-zesilovač	48	
4.1 Blokové zapojení PLL Si5351 [Sil18]	24	8.12 Absolutní chyba linearity oddělovacího zesilovače	49	
4.2 Praktické zapojení vzorkovacího				
můstku do 1 GHz, převzato z [Hou00]	25	1 0 1	49	
		8.14 Zapojení napájecích zdrojů vzorkovacích obvodů	50	
5.1 Směrová odbočnice, převzato z [Tut14]	27	8.15 Přenosová charakteristika aktivních napájecích filtrů	51	
5.2 Odporový směrový můstek, převzato z [DM15]	28	8.16 Schéma sekundárního vzorkovače		
5.3 Časově oddělitelná odezva na jednotkový skok	29	a logaritmického detektoru	52	

8.17 Změřená závislost výstupního napětí na kódovém slově DAC, celkové zobrazení	9.8 Obrazovka s informacemi o stabilitě jednotlivých částí PLL Si535162
8.18 Změřená závislost výstupního napětí na kódovém slově DAC, výřez problematické oblasti 53	9.9 Čekání na zásah uživatele - autokalibrace stejnosměrné složky, kalibrace úrovní a měření úrovně šumu
8.19 Zapojení mikrokontroléru 54	
9.1 Závislost rozptylu na počtu	9.10 Probíhající autokalibrace stejnosměrné složky
provedených průměrů 57	9.11 Probíhající autokalibrace
9.2 Závislost diference rozptylu (červeně) a součinu rozptylu s počtem	napěťových úrovní a měření úrovně šumu 62
průměrů (modře) na počtu provedených průměrů pro výpočet v	9.12 Výsledek autokalibrace napěťových úrovní a měření šumu. 63
plovoucí desetinné řádce	9.13 Hrubé hledání náběžné hrany 63
9.3 Závislost diference rozptylu (červeně) a součinu rozptylu s počtem průměrů (modře) na počtu	9.14 Čekání na zásah uživatele - přesné hledání náběžné hrany 63
provedených průměrů pro celočíselné výpočty	9.15 Přesné hledání náběžné hrany 63
9.4 Budicí pulz při připojeném	9.16 Úspěšné nalezení přesné polohy náběžné hrany 63
standardu "load" přímo k testovacímu portu. Červeně je vyznačena diference při průměrování	9.17 Čekání na zásah uživatele - připojení DUT a začátek měření 63
přes 8 bodů. Maximum diference odpovídá přibližně středu náběžné	9.18 Čekání na proběhnutí prvního měření64
hrany	9.19 Průběh měření, 33. průměr 64
9.5 Odezva v rovině měření při připojeném standardu "open", čáry vyznačují úrovně 20% (tmavě	9.20 Měření dokončeno 64
červená) a 80% (tmavě zelená) náběžné hrany a jejich polohu v čase.	
Délka náběžné hrany v tomto úseku je 180 ps. Při měření mezi body 10%	
a 90% náběžné hrany je tato délka $280 \mathrm{ps}$ 61	
9.6 Uvítací obrazovka s informací o verzi 61	
9.7 Obrazovka zobrazovaná po dobu inicializace fázového závěsu 62	

Slovník

- T Koeficient prostupu. Je definován jako $\Gamma = \frac{2Z_0}{Z_L + Z_0}.$ Platí, že $T + \Gamma = 1.$ 7
- Γ Koeficient odrazu. Je definován jako $\Gamma=\frac{Z_L-Z_0}{Z_L+Z_0}.$ Z_0 je charakteristická impedance vedení a Z_L je impedance zátěže. 7
- ADC interleaving Technika pro rychlejší vzorkování pomocí n ADC, jejichž hodinové signály jsou fázově posunuté. Jde o možnost, jak zvyšovat vzorkovací frekvenci na n-násobek vzorkovací frekvence samotného ADC. S počtem převodníků však roste cena zařízení, v nejlepším případě lineárně.. 23
- aperturový čas Aperturový čas je doba, po kterou přechází vzorkovač ze stavu, kdy jeho výstup sleduje vstup do stavu, kdy je výstup nezávislý na vstupu. Po tuto dobu se nelineárně mění vlastnosti vzorkovače. Výstupní napětí je tak nelineární funkcí vstupního napětí. Pokud jsou zpracovávány signály, u kterých již není aperturový čas zanedbatelně malý, je omezena jak linearita vzorkovače, tak jeho časová rozlišovací schopnost.. 25
- clipline V překladu zkratovací vedení. Jde o krátký úsek vedení zakončený zkratem, který se používal v lavinových generátorech pro vytvoření ultrakrátkých impulzů.. 12

Seznam zkratek použitých v textu

ADC Analog-Digital Converter. 23, 39, 45, 51

CML Current Mode Logic. ix, 19–21, 35, 40, 41

CMOS Complementary Metal Oxide Semiconductor. 18, 19, 40

DAC Digital-Analog Converter. 48, 51, 56

DDS Direct Digital Synthesis. 16, 24, 40

ECL Emitter Coupled Logic. 18, 40

FDTD finite-difference time-domain. 8

FPGA Field Programmable Gate Array. 40

HCMOS High Speed CMOS. 18

HCSL High-Speed Current Steering Logic. 19

HDMI High-Definition Multimedia Interconnect. 18, 19

LVCMOS Low Voltage CMOS. 18

LVDS Low Voltage Differential Signaling. ix, 19, 20, 40

LVPECL Low Voltage Positive Emitter Coupled Logic. 18, 19

PCI-Express Peripheral Component Interconnect Express. 15, 18

PLL Phase Locked Loop. ix, 24, 35

RAM Random Access Memory. 55

SAS Serial Attached Small Computer System Interface. 15, 18–20

SATA Serial Advanced Technology Attachment. ix, 15, 18–21

SRD step recovery diode. ix, 12, 14

TCXO Temperature Compensated Crystal Oscillator. 40

TDR reflektometrie v časové oblasti. 7, 9

TTL Transistor-Trasistor Logic. 18, 40

USB Universal Serial Bus. 6, 15, 18–20

VCO Voltage Controlled Oscillator. 24, 37, 40, 56

VML Voltage Mode Logic. 19

Kapitola 1

Zadání a vlastní cíle návrhu

1.1 Zadání

Zadání této práce je vytvořit samostatně funkční reflektometr v časové oblasti na principu vzorkování v ekvivalentním čase. Budicí signál by měl být obdélníkového tvaru s co nejkratší náběžnou (či sestupnou) hranou. Zařízení by mělo být schopné samostatné funkce a mělo by být schopné určit polohu a typ základních typů diskontinuit na vedení. Mělo by být též možné provést kalibraci zařízení pomocí mechanických kalibrů.

1.2 Vlastní cíle návrhu

Mimo již zmíněných cílů, které vycházejí ze zadání práce, vznikly další cíle, jejichž dosažení není zadáním nijak vyžadováno, ale které si autor stanovil jako svoje vlastní cíle, kterých by chtěl v rámci této práce dosáhnout. Jejich hlavním společným faktorem je požadavek na minimalismus celé konstrukce, jak z pohledu složitosti zapojení, tak i jeho velikosti a konečně také ceny. Zařízení by mělo být opakovatelně vyrobitelné, poud možno i v amatérských podmínkách. Podmínkou pro dodržení těchto cílů je však to, aby jejich splnění nedegradovalo kvalitu výsledného zařízení na mez použitelnosti.

Jednoduchost zapojení.

Konstrukce by měla být co nejjednodušší a obsahovat co nejméně komponent, aby měla co nejméně stupňů volnosti a bylo ji možné optimalizovat již ve fázi návrhu pomocí simulací a výpočtů. Tím se zmenšuje počet nezbytných cyklů návrhu, výroby a měření, které je nezbytné projít, aby zařízení splňovalo očekávané vlastnosti.

Použití pouze běžně dostupných a nahraditelných komponent. Konstrukce by neměla obsahovat žádné komponenty, které jsou nenahraditelné. Jejich nedostupnost na trhu by pak znamenala, že zařízení již není možné vyrobit. V horším případě by se celá architektura zapojení musela přepracovat. Použité komponenty by navíc měly být pokud možno běžně dostupné - konstrukce by se měla pokud možno vyhnout například zákaznickým obvodům nebo na míru vyrobeným polovodičovým součástkám.

Použití pouze běžných konstrukčních metod.

Konstrukce by se měla vyhnout výrobním postupům, které se používají pouze u specializovaných zařízení a které není možné snadno replikovat. Tím jsou myšleny například polovodičové prvky pájené přímo substrátem na plošný spoj a následně strojově bondované.

Použití pouze technologií nevyžadujících speciální provozní podmínky.

Zařízení by mělo být pokud možno minimálně závislé na podmínkách okolního prostředí. Neměly by být použity například technologie vyžadující kryogenické chlazení, udržování konstantní teploty, speciální atmosféry nebo dokonalé stínění před světlem.

Žádné manuálně nastavované prvky při výrobě.

Konstrukce by neměla obsahovat žádné nastavitelné prvky, které by se musely po vyrobení prvotně nastavit. Všechny takové prvky by měly být řízené elektronicky a nastavované v rámci autokalibrace zařízení.

Jednoduchost ovládání.

Zařízení by mělo uživatele celým procesem autokalibrace a měření co nejjednodušeji provést. Zařízení by mělo samo nalézt možné závady na vedení a oznámit jejich typ a polohu.

Komunikace s počítačem.

Zařízení by mělo být schopné komunikovat s počítačem přes rozhraní Universal Serial Bus (USB) a umožnit uložení změřených dat, rozšířené ovládání a případně složitější metody kalibrace.

Kapitola 2

Princip reflektometrie

Pojmem reflektometrie v časové oblasti (TDR) je v této práci myšleno měření vlastností jednobranu pomocí měření odrazů budicího signálu v časové oblasti. Budicím signálem je myšlen obecně jakýkoli kauzální signál. Tento budicí signál je elektricky zaveden do měřeného objektu, načež se měří odezva tohoto systému v čase. Pokud bychom označili budicí signál jako x(t), měřený signál jako y(t) a impulsní odezvu systému jako h(t), pak pro kauzální lineární časově invariantní systém platí:

$$y(t) = x(t) * h(t).$$
 (2.1)

Cílem takového zařízení je ze známých x(t) a y(t) spočítat nebo odhadnout h(t). Za předpokladu, že měřený systém je elektrické vedení, na kterém se nachází čistě reálný impedanční profil jako na obr. 2.1, dá se tato impulzní odezva vcelku jednoduše analyzovat [CBC11].

Obrázek 2.1: Znázornění jednoho odrazu na vedení [CBC11].

Postupně je možné analyzovat tuto impulzní odezvu tak, že se postupuje od okamžiku budicího signálu, až je nalezen první odraz. Z tohoto odrazu a známého budicího signálu je možné spočítat koeficient odrazu Γ a prostupu T v daném místě. Dále postupuje jen množství energie definované koeficientem

prostupu a energií obsažené v budicím signálu. Při znalosti této energie, koeficientu odrazu dalšího bodu, kde nastává odraz a koeficientu prostupu prvního odrazu (energie odražená od druhé diskontinuity musí opět projít první diskontinuitou). Takto se postupuje až do konce naměřených dat.

Takto jednoduchý postup ovšem zanedbává vliv vícenásobných odrazů. Přesné výsledky dává pouze pro jeden jediný (resp. první) odraz. Čím více diskontinuit na vedení se nachází, tím více se bude nalezené řešení odchylovat od reality. Pro přesnější analýzu je nezbytné, aby byly uvažovány i vícenásobné odrazy. Je možné mezi jednotlivé kroky analýzy impedančního profilu vložit další analytický krok, který zajistí odečtení vlivu vícenásobných odrazů. Tímto krokem je provedení FDTD simulace s použitím již získaného částečného impedančního profilu, který je virtuálně bezodrazně zakončen. Výsledkem takovéto FDTD simulace je odezva takovéhoto úseku vedení (jako průběh odraženého signálu, tak prostupujícího). Nasimulovaný odražený signál je možné odečíst od změřených dat, čímž jsou odstraněny vícenásobné odrazy v již známé části vedení. Dále se pokračuje v analýze tohoto rozdílu měřených a simulovaných dat. Dále se hledá další odraz na vedení a postup se opakuje, dokud není zpracováno celé vedení, nebo dokud energie ve vedení není všechna odražena zpět (platí pro bezeztrátová vedení). Při znalosti fázové rychlosti v daném vedení je možné přepočítat časovou osu na osu prostorovou a odhadnout tedy, kde se nachází diskontinuity.

Dále je možné z těchto odrazů zjišťovat, zda jde o odraz způsobený spojením dvou vedení o rozdílné impedanci (taková diskontinuita se vyznačuje koeficientem odrazu, který se při měření ze dvou stran jeví tak, že má z každé strany koeficient odrazu s jiným znaménkem) nebo o lokální chybu způsobenou například mechanickým poškozením vedení (například navrtaný kabel ve zdi). Taková závada by měla mít z obou stran totožné vlastnosti.

Pro zpracování obecně komplexních koeficientů odrazu (tedy například část vedení, která se chová kapacitně nebo induktivně) by bylo nezbytné vytvořit algoritmus, který by byl schopen rozeznávat v impulsní odezvě nejen čistě reálné odrazy mající v naměřených datech podobu Kroneckerova delta, ale i exponenciální průběhy odpovídající komplexním impedancím, např. na obr. 2.2. Takový algoritmus může být již výrazně náročnější na implementaci, neboť může vyžadovat vícerozměrnou optimalizaci k tomu, aby bylo dosaženo simulací změřené odezvy. Vyvstává také otázka, jak analyzovat, zda jde o přítomnost komplexní impedance na vedení nebo například speciálně zhotovené části vedení, která má spojitý profil impedance, který napodobuje přítomnost komplexní impedance na vedení.

Veškeré tyto úvahy se však týkají převážně bezeztrátových vedení, případně vedení, kde je snadné odhalit ztrátové prvky. Obtížné je například měření útlumu měřeného vedení, nebot samotný útlum vedení nemusí být měřitelný jako odraz. Je-li totiž vedení po celé délce homogenní, nevznikají na něm žádné odrazy, avšak vlivem ztrát dielektrika nebo konečnou vodivostí vodičů se část přenášené energie mění na teplo. Další problém je měření části vedení, která

Obrázek 2.2: Příklad odezvy na komplexní impedanci na vedení [CBC11].

se nachází za ideálním útlumovým článkem nebo nějakým prvkem, který transformuje impedanci. Teoreticky není možné odhalit útlumový článek, pokud není možné různými způsoby zakončit vedení, aby byl odhalen vliv zakončení vedení na celkovou odezvu. I při takovém postupu však není možné určit, kde přesně se takový prvek nachází, protože na něm nevzniká žádný odraz, kterým.

Vzhledem ke značné složitosti této analýzy je zpravidla na reflektometrech a kabelových analyzátorech přítomna pouze funkce detekce první diskontinuity, její polohy a charakteru (zkrat, rozpojení, obecně jiná impedance) [MOH09].

Dalším tématem je měření aktivních prvků, neboť v takovém případě je možné dosáhnout koeficientu odrazu s velikostí větší než 1. V takovém případě je možné analýzou pouze zjistit přítomnost aktivního prvku a jeho odezvu, pro zjištění vlastností takového prvku (například vytvoření modelu tranzistoru) je nezbytné znát vnitřní model takového prvku, což již není úlohou reflektometru. Obecně také může být obtížné analyzovat vedení, na kterém se může nacházet nějaký nelineární prvek (takovým případem může být i například přítomnost vlhkosti ve vedení, která změní impedanci vedení, ovšem nad přibližně 3 GHz kvůli dielektrické relaxaci přestane mít vliv [BB97]).

Závěrem této části práce může být tedy konstatování, že je jednoduché odhalit první diskontinuitu (nebo největší, jsou-li ostatní dostatečně malé). Obtížnější je charakterizovat ji, má-li komplexní imepdanci. Mnohem obtížnější je analýza celého vedení, v případě uvažování obecně komplexní impedance může být nemožné získat jednoznačnou analýzu takového vedení, protože může být způsobena jak komplexní impedancí na vedení, tak zvláštně vytvořenému vedení. Přítomnost nelinearit na vedení může zcela znemožnit jakoukoli analýzu nebo způsobit celkovou nesprávnost takové analýzy.

V dalších kapitolách budou rozebrány jednotlivé stavební bloky nezbytné pro konstrukci TDR a možnosti jejich implementace s přihlédnutím k jednoduchosti fyzické implementace a možností následného zpracovaní naměřených dat.

Kapitola 3

Budicí signál

3.1 Základní požadavky na vlastnosti budicího signálu

Budicí signál musí splňovat jisté podmínky, aby jej bylo možné použít pro charakterizaci měřeného systému. Následuje formulace základních kritérií pro výběr vhodného budicího signálu.

Fyzikální realizovatelnost

Vzhledem k tomu, že navrhované zařízení musí být realizovatelné, je nezbytné, aby i budicí signál byl fyzikálně realizovatelný. Vzhledem k fyzikálním a praktickým omezením (existence materiálové disperze, nemožnost vytvoření nekonečně velkého proudu, neexistuje bezkapacitní prostředí, neexistuje bezindukční vedení, neexistuje zdroj schopný dodat nekonečné množství energie) není možné vytvořit nespojitý signál. Derivace napětí takovéhoto signálu tedy nemůže být nekonečná. Nespojité signály je tak možné pouze aproximovat spojitými signály, což omezuje například délku a strmost náběžných hran v těchto aproximovaných nespojitostech. Toto fyzikální omezení tedy omezuje frekvenční spektrum takového budicího signálu, zejména jeho šířku.

Spektrální požadavky

Spektrum budicího signálu by mělo být pokud možno rovné a co nejširší. Neobsahuje-li budicí signál nějakou část spektra, není možné otestovat odezvu systému na tuto část spektra a plně tedy charakterizovat měřený systém. Důvod pro požadavek na rovné spektrum vyplývá z omezeného dynamického rozsahu reflektometru - pokud by část spektra měla příliš malou úroveň, bylo by měření v této části spektra buď více zatížené šumem, případně až neměřitelné. V případě měření některých systémů může být výhodné používat úzkopásmový signál, například při měření části systému nacházející se za pásmovou propustí. V takovém případě by mohla být odezva od části systému za pásmovou propustí maskována

mnohem silnějším odrazem od propusti. Jedná se však o specifický případ, který je možné vyřešit i jinými metodami, například redukcí odrazu v nechtěném pásmu [MP74]. Pro zcela obecné použití by měl být širokopásmový signál vhodnější.

Jednoduchost

Zvolený budicí signál by měl být jednoduchý na vytvoření. Se složitostí signálu může růst složitost zapojení, které by ho mělo generovat, jeho fyzická velikost, případně i náklady na takové zařízení.

Rozlišitelnost budicího signálu od odrazů

Budicí signál musí být rozlišitelný od odrazů. Kupříkladu pro buzení periodickým signálem by mělo platit, že odezva měřeného systému na budicí signál musí být kratší než perioda budicího signálu. V opačném případě by se překrývala část odezvy s odezvou od další periody budicího signálu.

3.2 Výběr budicího signálu a možnosti jeho syntézy

V této části jsou uvedeny možné podoby budicích signálů a obecné možnosti jejich syntézy. Zároveň jsou zde diskutovány jejich vlastnosti a možnosti následného zpracování. U signálů jsou uvedeny i již existující implementace reflektometrů s těmito budicími signály.

Diracovo delta

Diracovo delta (na obr. 3.1) je velice jednoduchý signál, který je jedním z ideálních budicích signálů, jeho spektrum je konstanta, má tedy neomezenou šířku frekvenčního pásma. Odezva na Diracovo delta odpovídá impulzní odezvě systému. Bohužel není fyzikálně realizovatelný, jak je shrnuto v předchozí části textu, neboť je nespojitý a vyžaduje nekonečně rychlé změny napětí a proudu v obvodu. Je tedy možné pouze jej aproximovat, čímž se změní jeho spektrum. Výsledný signál bude mít spektrum odpovídající spektru Diracova delta filtrovaného dolní propustí, čímž se jeho šířka pásma omezí na konečnou velikost. Možná podoba takového signálu je Gaussův pulz na obr. 3.2.

Aproximaci Diracova delta je možné vytvořit pomocí lavinových generátorů impulzů [Wil98], [Wil03]. Pro dosažení impulzu o délce menší než stovky pikosekund je možné použít kombinaci lavinového generátoru impulzů, step recovery diode (SRD) a takzvané clipline podle obr. 3.3 [Tek85] [Tek68]. Takové řešení je však již prostorově náročné, protože vyžaduje zdroj lavinového napětí, transformátory a zkratovací vedení.

Jednotkový skok

Jednotkový skok na obr. 3.4 odpovídá časovému integrálu Diracova delta

Obrázek 3.1: Diracovo delta.

Obrázek 3.2: Gaussův pulz, variance=0.05.

 $\mbox{\sc Obrázek 3.3:}$ Jehlový generátor s lavinovým generátorem, SRD a zkratovacím vedením [Tek68].

Obrázek 3.4: Jednotkový skok.

$$H(x) = \int_{-\infty}^{x} \delta(t)dt. \tag{3.1}$$

Opět se jedná o nespojitý signál, který nejde realizovat, jen aproximovat. Reálná aproximace jednotkového skoku je například chybová funkce $\operatorname{erf}(x)$ na obr. 3.5.

Obrázek 3.5: Chybová funkce.

Tento budicí signál je možné jednoduše generovat pomocí rychlých logických obvodů. Moderní logické obvody používané pro vysokorychlostní spoje (SATA, SAS, USB 3, PCI-Express) v řádu jednotek Gbit s⁻¹ již mají náběžné hrany o délce kratší než 100 ps [Mic08], [Tex16a], [Tex12], [Tex18]. Vzhledem k tomu, že pro převod skokové odezvy na impulsní je možné použít jednoduchý vztah

$$h(t) = \frac{\mathrm{d}a(t)}{\mathrm{d}t},\tag{3.2}$$

a že je syntéza jednotkového skoku možná přímo pomocí logického obvodu, je výhodnější použít jednotkový skok než Diracovo delta. Pravděpodobně z těchto důvodů se u běžných reflektometrů používá právě jednotkový skok jako budicí signál.

• Funkce sinc(x)

Další možný budicí signál je funkce sinc(x) na obr. 3.6. Tato je již fyzikálně proveditelná, spektrum funkce je konstanta až do mezní frekvence, 3. Budicí signál

Obrázek 3.6: Funkce sinc(x).

dále je nulové. Vzhledem k ostrému omezení spektra bohužel není možné změřenou odezvu převést na impulsní odezvu, což komplikuje další zpracování. Autokorelace této funkce je opět $\mathrm{sinc}(x)$, není tedy možné takto jednoduše takovouto odezvu analyzovat.

Pro vytvoření průběhu funkce $\operatorname{sinc}(x)$ je možné modulovat harmonický signál obálkou [MP74], ovšem taková obálka by musela být přesně synchronizována s nosným harmonickým signálem, aby nedocházelo ke zkreslení spektra. Jedna z možností, jak přesně simulovat tuto funkci je přímá digitální syntéza, pro tu by ovšem bylo nezbytné použít obvod DDS s hodinovou frekvencí nejméně dvakrát větší než požadované pásmo, tedy vyšší jednotky GHz. Tento signál tedy nevypadá jako vhodný pro použití jako buzení.

Bílý šum

Při použití bílého šumu (obr. 3.7) je možné získat impulsní odezvu pomocí autokorelace odezvy soustavy. Taková operace zároveň může potlačit nežádaný šum. Pro použití bílého šumu by ale bylo nezbytné, aby budicí šum byl rozlišitelný od šumu nežádaného. Toho lze dosáhnout například zapínáním a vypínáním budicího šumu.

Širokopásmový šum je také možné jednoduše vytvořit, například pomocí šumových diod. Modulaci tohoto šumu je možné provádět například pomocí polovodičových mikrovlnných přepínačů. Takový budicí signál je tedy možné jednoduše vytvořit i zpracovávat. Podstatná nevýhoda bílého

Obrázek 3.7: Diskrétní bílý šum.

Obrázek 3.8: Autokorelace diskrétního bílého šumu z 3.7.

3. Budicí signál

šumu spočívá v náhodnosti, a z toho vyplývající neperiodicity, kvůli které není možné odezvu systému na takový signál měřit v ekvivalentním čase, jen v reálném čase. Je možné ovšem rovnou měřit autokorelaci, tedy násobením odezvy systému se zpožděnou kopií, kterou je možné vzorkovat pomalu. Autokorelace diskrétního bílého šumu se nachází na obr. 3.8. Bohužel takový přístup vyžaduje použití zpožďovacího vedení s proměnnou délkou, které musí být buď vytvořeno jako mechanický pohyblivý díl nebo jako vedení s velkým množstvím odboček, pak ale je časový krok měření omezen polohou odboček a celková délka měření je omezena délkou vedení [CF05]. Tuto metodu měření je možné použít pro měření na vedení, na kterém se nachází aktivní zařízení, protože nežádané signály je možné do velké míry odfiltrovat autokorelací. Tato metoda může být tedy výhodná pro měření na předem známých systémech (pevná nehybná vedení), například ve strojích, továrnách, dopravních prostředcích, pro obecné použití se však nezdá být praktická.

Deterministický šum

Za deterministický šum je možné považovat například vedení, které slouží k digitální komunikaci, přičemž obsah posílaných zpráv je známý nebo se tyto zprávy opakují. Pro měření touto metodou je však nezbytná znalost konkrétního měřeného systému [CF05], nejde tedy o všeobecně použitelou metodu.

3.3 Zvolený budicí signál a obvodové řešení

Pro jednoduchost syntézy a dobré vlastnosti byl vybrán jednotkový skok. Kvůli rychlostním požadavkům není možné použít klasické logické obvody z řad TTL, CMOS, LVCMOS, HCMOS, ECL apod. kvůli velké délce náběžné hrany [DDGC11]. U těchto technologií je náběžná hrana zpravidla delší než 1 ns. Vzhledem k vývoji dnešní techniky, zejména v oblasti vysokorychlostních digitálních přenosů, však již existují velice rychlé logické obvody schopné dosahovat náběžných hran o délce kratší než 100 ps. Ve všech dnešních počítačích se již nacházejí technologie jako USB 3, HDMI nebo Display Port, PCI-Express, SATA nebo SAS (v serverech), které právě takové obvody vyžadují, díky čemuž jsou dnes již tyto obvody velmi levné. Tyto technologie jsou zpravidla pevně spojeny s metodou signalizace. Používané metody jsou vždy symetrické kvůli šumové odolnosti, používají signalizaci o rozkmitu řádově stovek milivoltů kvůli rychlosti a vyzařování do okolí.

Běžně používané signalizační technologie:

LVPECL

Nízkonapěťová varianta dřívějšího ECL, která je navíc referencovaná vůči kladnému napájecímu pólu. Jsou navrženy pro připojení k impedanci $50\,\Omega$, bohužel výstupní budiče jsou zapojeny jako emitorové sledovače [Hol02], jsou tedy silně nelineární, nemají definovanou impedanci a nejsou

tedy vhodné jako budicí obvod do reflektometru, neboť v reflektometru se vyžaduje dobré přizpůsobení měřicího portu, tedy jeho impedance musí být přesně definovaná a konstantní, navíc není možné, aby se měřicí port choval nelineárně.

Obrázek 3.9: Typické zapojení LVPECL výstupu [Hol02].

LVDS

Tato signalizace se běžně používá pro přenos obrazu po HDMI nebo Display Port. Se zmenšeným rozkmitem (250 mV) se používá i pro SATA a SAS. Výstupní budiče jsou zapojeny jako CMOS push-pull budiče [Hol02] zapojené do drainů tranzistorů, velice podobné jsou i budiče technologie VML [Hol02] a HCSL, očekává se diferenciální zakončení přibližně $100\,\Omega$, případně $2\times50\,\Omega$ s pevným středem. Tyto budiče by měly být lépe přizpůsobené a méně nelineární než LVPECL, ovšem zpravidla není výstupní impedance garantována.

CML

CML je signalizační standard používaný zejména pro přenos hodinových signálů. Výstupní budiče jsou zapojeny do kolektoru resp. drainu tranzistoru [Hol02], jsou terminovány na $50\,\Omega$, tato hodnota a její tolerance bývá garantována [Mic08]. Vzhledem k zapojení do kolektoru a interní terminaci je takovýto budič velice dobře přizpůsobený k $50\,\Omega$.

USB

Další signalizační standard používá například USB, ovšem standard USB 3.0 [Hew08] nespecifikuje přímo technologii, jak této signalizace dosáhnout. Vzhledem k této nejasnosti byly USB redrivery vyřazeny z výběru.

Kvůli dobrému přizpůsobení, linearitě a vysoké rychlosti byla zvolena technologie CML. Další výhodou je, že některým CML logickým členům je možné měnit napájecí napětí výstupních budičů [Mic09]. Nejrychlejší dostupné CML budiče mají typickou délku náběžné hrany 60 ps (garantovaný

Obrázek 3.10: Typické zapojení LVDS výstupu [Hol02].

rozsah 30 ps–95 ps, uvádí se pro 20 %–80 % konečného napětí) [Mic09], [Mic08]. Jsou přímo určeny pro digitální přenosy o rychlostech v řádu Gb.s⁻¹. Tyto budiče tedy splňují požadavek na šířku pásma budicího signálu. Další důvod pro použití technologie CML je ten, že SATA/SAS/USB redrivery obvykle obsahují i logiku, která detekuje, zda je přítomen validní signál odpovídající danému přenosovému médiu a v případě, že jej nedetekují, přejdou do úsporného režimu. Přesná metoda, jak je toto spojení detekováno, není zpravidla popsána, hrozilo by tedy, že by se mohl redriver chovat nedefinovaně. Další problém těchto redriverů je to, že jsou určeny pro kompenzaci vlivu frekvenční charakteristiky a ztrát na FR-4 substrátu, takže výsledný signál není prostý obdélníkový průběh, ale složitější stupňovitý průběh jako na obr. 3.12 [Tex16b].

Obrázek 3.11: Typické zapojení CML výstupu [Hol02].

Obrázek 3.12: Výstupní průběh SATA redriveru [Tex16b].

Kapitola 4

Vzorkování odraženého signálu

Má-li být doržen Nyquistův vzorkovací teorém, je nezbytné vzorkovat budicí a odražený signál na nejméně dvakrát větší frekvenci, než se nachází nejvyšší frekvenční složka měřených signálů. Vybraný zdroj budicího signálu má šířku frekvenčního pásma až 9 GHz, je tedy nezbytné, aby vzorkovač byl schopen vzorkovat alespoň na 18 GSa.s⁻¹. Tento vztah platí při zanedbání frekvenční charakteristiky vzorkovače, který se může chovat jako dolní propust, a tedy minimální vzorkovací frekvence může být nižší. Takovýmto vzorkovacím frekvencím se však blíží jen Flash ADC, které však při takovýchto rychlostech jsou nanejvýš osmibitové, tedy nabízejí dynamický rozsah nanejvýš 48 dB. Nejrychlejší převodníky zatím (v roce 2019) nedosahují vzorkovacích frekvencí 10 GHz. Pro rychlejší vzorkování se používá tzv. ADC interleaving, tedy prokládání většího počtu převodníků. Pro přenos a zpracování dat z takto rychlých převodníků jsou potřeba i velmi rychlá FPGA, případně ještě signálové procesory. Tato metoda je ve výsledku v současné době velmi nákladná, navíc má malý dynamický rozsah.

Od doby prvních digitálních osciloskopů se používá technika známá jako vzorkování v "ekvivalentním čase" Tato metoda spočívá ve vzorkování periodického signálu přes větší množství jeho period, přičemž postupně se doplňují změřené body, dokud nejsou nalezeny všechny body měřeného průběhu. Hlavní nevýhoda tohoto postupu je nemožnost vzorkování jednorázových signálů (např. šum). Zásadní výhoda tohoto postupu je ovšem možnost částečně potlačit rušení z okolí, jsou-li asynchronní vůči vzorkování. Případně je možné i zvětšit dynamický rozsah, je-li použit rychlý vzorkovač pro navzorkování signálu pro pomalejší vícebitový ADC. Existují dva základní přístupy, jak provádět toto vzorkování:

Náhodné vzorkování

Vzorky jsou odebírány neustále, je zaznamenáván časový rozdíl mezi spouštěcí událostí (zde začátek budicího signálu) a nejbližší následující periodou vzorkovacího hodinového signálu. Postupně se tak náhodně doplňují naměřené body, až vznikne dostatečně přesný obraz měřeného signálu. Tato metoda je vhodná například pro osciloskopy, protože zpra-

vidla není možné synchronizovat přesně vzorkovací hodinový signál se spouštěcí událostí.

Postupné vzorkování

Vzorky jsou odebírány při každé periodě měřeného průběhu tak, že jednotlivé odebrané vzorky jsou časově seřazeny. Toho se dá dosáhnout fázovým posouváním vzorkovacího hodinového signálu oproti spouštěcí události, což je možné udělat pomocí digitálních zpožďovacích linek nebo tak, že vzorkovací hodinový signál a budicí signál budou mít nepatrně jinou frekvenci [DJJ03]. První řešení může být jednodušší na implementaci, ale zpožďovací linka omezuje krok měření a maximální počet odebraných vzorků [BCL⁺13], [NR09]. Druhé řešení se dá vytvořit pomocí DDS [TKF⁺13] nebo fázového závěsu, který podporuje násobení nebo dělení frekvencí neceločíselným násobkem. Do nedávné doby nebylo řešení pomocí fázových závěsů praktické, protože vyžadovalo fázový závěs pro vytvoření vysokofrekvenční reference a další dva fázové závěsy pro vytvoření dvou rozdílných frekvencí. V posledních letech se však objevily fázové závěsy, které všechny tyto funkce (včetně VCO) integrují do jediného integrovaného obvodu a prakticky vyžadují pouze kmitočtovou referenci v podobě krystalu nebo krystalového oscilátoru [Ana08] [Sil18].

Obrázek 4.1: Blokové zapojení PLL Si5351 [Sil18].

Vzhledem k existenci dostupných fázových závěsů umožňujících velkou integraci a miniaturizaci zapojení bylo zvoleno postupné vzorkování pomocí fázového závěsu. Vybraný fázový závěs Si5351 obsahuje v jednom pouzdře dva neceločíselné fázové závěsy [Sil18], dva vysokofrekvenční VCO a osm výstupních neceločíselných děliček. Díky tomuto vývoji v integraci je možné celý hodinový generátor zmenšit do podoby jednoho integrovaného obvodu,

jedinou potřebnou externí součástkou je krystal nebo krystalový oscilátor. Neceločíselná část násobiče frekvence umožňuje krok po 2^{-20} referenční frekvence, je tedy možné měnit podíl frekvencí hodinových signálů s krokem menším než 1 ppm. Při rozdílu frekvencí 1 ppm je počet vzorkovaných bodů celkem $1\,000\,000$, což je počet bodů, který je prakticky nedosažitelný se zpožďovacími linkami.

4.1 Obvodové řešení vzorkovače

Pro měření je potřeba vzorkovač s velkou šířkou pásma, nezbytný je i malý aperturový čas. Historicky se pro tyto účely používaly diodové vzorkovače [Tek68] [Tek85], příklad takového zapojení na obr. 4.2. V dnešní době existují již dostatečně rychlé track-and-hold zesilovače, tedy zesilovače, které je možné řízeně zastavit, přičemž na jejich výstupu zůstane napětí, které se tam nacházelo v okamžiku vypnutí zesilovače. Jejich mezní kmitočet se pohybuje v současné době okolo 8 GHz. Bohužel jsou oproti diodovým vzorkovačům velice nákladné.

Obrázek 4.2: Praktické zapojení vzorkovacího můstku do 1 GHz, převzato z [Hou00].

Diodové vzorkovače se používaly již v prvních digitálních osciloskopech a reflektometrech, protože jejich šířka použitelného frekvenčního pásma je omezena téměř výhradně sériovým dynamickým odporem diodového vzorkovače, velikostí vzorkovacího kondenzátoru a aperturovým časem. Aperturový čas je doba, po kterou trvá rozepnout vzorkovač, závisí zejména na kapacitě diody (bariérové i difuzní) a zapojení budiče, který diody rozepíná. Pro toto použití jsou zejména vhodné Schottkyho diody kvůli malé paralelní kapacitě a možnosti velice rychle diody rozepnout. Speciálně pro použití ve vzorkovačích se

vyrábí přesné vyvážené diodové čtveřice [Ava18], které umožňují silně potlačit průnik vzorkovacího buzení do vzorkovaného signálu, což umožňuje použití velmi malých vzorkovacích kondenzátorů, a tedy velkou šířku užitečného frekvenčního pásma takového vzorkovače.

Kapitola 5

Separace budicího a odraženého signálu

Pro potřeby zpracování změřených dat je nezbytné separovat budicí signál od jeho odrazů. Takovou separaci je možné provádět buď hardwarově v době měření nebo až během zpracování změřených dat. Cílem je dosáhnout toho, aby byly tyto dva signály zcela oddělené (či oddělitelné při zpracování). Možné metody separace:

■ Směrová odbočnice

Obrázek 5.1: Směrová odbočnice, převzato z [Tut14].

Pomocí tradičních odbočnic jako na obr. 5.1 je možné provádět separaci s velkou izolací nechtěného signálu, ovšem nesplňují požadavek na šířku zpracovávaného pásma [Tut14]. Problematická je také skutečnost, že s rostoucí šířkou použitelného pásma odbočnice obvykle klesá směrovost odbočnice. Dochází tedy pouze k částečné separaci, další separační krok by byl nezbytný během zpracování naměřených dat.

Odporový můstek

Pomocí odporových můstků je možné provádět separaci signálů s velmi velkou šířkou pásma, např. v [DM15] a obr. 5.2 uveden můstek pro pásmo 300 kHz–13,5 GHz. Opět ovšem nejsou signály plně separovány, je nezbytný další separační krok během zpracování.

Obrázek 5.2: Odporový směrový můstek, převzato z [DM15].

Časové oddělení

Pokud má budicí signál tu vlastnost, že má omezenou délku, po kterou se mění a mimo ni je konstantní (vybraný jednotkový skok tuto vlastnost splňuje), je možné jej od odrazů separovat tak, že je časově posunut vůči odezvě systému. Toho je možné dosáhnout například použitím dokonalého vedení bez odrazů, které se zapojí mezi bod měření a měřený systém. Jeho délka musí být minimálně taková, aby se nemohla nikdy překrývat nekonstantní část budicího signálu s odrazy. Pokud je v naměřených datech známá poloha budicího pulzu (nebo je-li možné jej spolehlivě identifikovat), je možné naměřená data rozdělit na část buzení a část odpovědi měřeného systému. První část pak může sloužit ke korekci frekvenční charakteristiky změřené odezvy systému a odhadu šumového spektra. Známe-li i přesnou délku prodlužovacího vedení (hrubě z návrhu zařízení, přesně pomocí kalibrace), je možné provést kalibraci měřicí roviny. Při použití této metody separace stačí vzorkování pouze jednoho průběhu, snižuje tedy počet potřebných vzorkovačů ze dvou (nebo více) na jeden. Z toho také vyplývá, že měřená data nejsou zatížena chybou, která by mohla vzniknout vzhledem k rozdílným vlastnostem jednotlivých vzorkovačů.

Na obrázku 5.3 je znázorněna odezva na chybovou funkci. Buzení se nachází v čase t=0, odezva v čase t=0.5. Průběh budicí funkce je předem známý, nekonstantní část průběhu se nepřekrývá s odezvou, je tedy možné je v časové oblasti $t\in(0;0.5)$ rozdělit na dva samostatné průběhy.

Pro vybraný budicí signál (jednotkový skok) je tedy možné provést separaci od odrazů zpožďovacím vedením a vhodným rozdělením naměřených dat na dvě části. Toto řešení se jeví jako obvodově i výpočetně nejjednodušší z uvažovaných metod separace.

Obrázek 5.3: Časově oddělitelná odezva na jednotkový skok.

Kapitola 6

Rozšíření dynamického rozsahu, potlačování šumu a rušení

Pro co nejpřesnější měření je nezbytné dosáhnout co největšího SNR (signal to noise ratio). Prvním limitujícím faktorem je dynamický rozsah ADC. V případě měření v reálném čase by bylo možné použít nanejvýš osmibitové převodníky, které mají dynamiku přibližně 48 dB podle vztahu

$$DR = 20log\left(\frac{2^n - 1}{1}\right) \tag{6.1}$$

Pro nižší rychlosti jsou dostupné již ADC s vyšší přesností, někdy již integrované přímo do mikrokontrolérů. Běžně se integrují převodníky až do 1 MSa.s⁻¹ při rozlišení 12 bitů, tedy s dynamickým rozsahem přibližně

$$DR = 20log\left(\frac{2^{12} - 1}{1}\right) \doteq 72 \,\mathrm{dB}$$
 (6.2)

Pro aplikace ve zvukové technice jsou pak dostupné šestnáctibitové až dvacetičtyřbitové převodníky (obvykle do 96 kSa/s) s dynamikou od

$$DR = 20log\left(\frac{2^{16} - 1}{1}\right) \doteq 96 \,\mathrm{dB}$$
 (6.3)

až do

$$DR = 20log\left(\frac{2^{24} - 1}{1}\right) \doteq 144 \,\mathrm{dB}$$
 (6.4)

Druhý údaj je však pouze teoretický, převodníky sice nabízejí tento počet bitů, ovšem jejich vlastní šum zpravidla omezuje použitelný rozsah na méně než 100 dB. Přesné 24 bit převodníky, které mají skutečně dynamický rozsah odpovídající počtu bitů, vzorkují zpravidla nanejvýš na desítkách Hz. Takové rychlosti jsou však pro použití v reflektometru příliš pomalé, nebot změření odezvy systému by bylo velice zdlouhavé.

Vzhledem k rychlosti se zdají být použitelné nanejvýš 12 bitové–16 bitové převodníky. Existují ovšem metody rozšíření dynamického rozsahu, zpravidla spoléhající na zkreslení měřených dat nelineární funkcí, která umožní

navzorkovaná data inverzní funkcí převést zpět na původní signál, přičemž ale nedojde ke ztrátě přesnosti, nýbrž k jejímu zlepšení v určité části převodní charakteristiky. Pro účely telefonie se v minulosti používaly například komprese definované ve standardu G.711 od ITU-T. Tyto komprese umožňovaly komprimovat logaritmicky enkódovaná data z 14 bitů na 8, přičemž uživatel po dekompresi pozoroval výrazně menší zkreslení, než k jakému by došlo, pokud by bylo použita přímo osmibitová kvantizace.

Pro účely měření vysokofrekvenčních signálů se vyrábí logaritmické detektory s rozsahem až 100 dB [Ana99] 6.1. Pro nízké frekvence poskytuje např. detektor AD8309 85 dB dynamického rozsahu při toleranci ±1 dB. Logaritmus je prostá funkce, je tedy možné spočítat její inverzní funkci. Podle 6.1 odpovídá vstupnímu rozsahu $-70 \, \text{dBm}-10 \, \text{dBm}$ výstupní rozsah o velikosti 1,5 V. Při uvažování převodníku s referencí 3,3 V a rozlišení 12 bitů odpovídá nejmenší měřitelný rozdíl napětí převodníkem 0,8 mV, což s detektorem odpovídá vstupnímu rozlišení přibližně 0,043 dB. Kombinací takového detektoru s dvanáctibitovým převodníkem a proložením dat získaných z lineárního a logaritmického měření je možné vytvořit převodník, který se přesností blíží rychlému šestnáctibitovému převodníku.

Obrázek 6.1: Převodní funkce logaritmického detektoru AD8309 [Ana99]

Pro potlačení šumu v měřeném průběhu je možné použít velké převzorkování signálu a aplikovat na tato data filtr pro potlačení šumu mimo užitečné pásmo. Dále je možné měřený průběh opakovaně měřit a statisticky zpracovávat (buď jednoduchým průměrem nebo např. Kalmanovými filtry).

Použitím měření v ekvivalentním čase je také možné redukovat rušení z okolí za předpokladu, že žádný násobek tohoto rušivého signálu není přesně roven vzorkovacímu kmitočtu. Pak se toto rušení projeví jako šum, který

Obrázek 6.2: Chyba převodní funkce logaritmického detektoru AD8309 [Ana99]

je možné odstranit či alespoň potlačit metodami zmíněnými v předchozím odstavci. V opačném případě je možné rušení potlačit pouze tak, že se provede měření s jinou vzorkovací frekvencí.

Kapitola 7

Navržené blokové zapojení reflektometru

V předchozích kapitolách byly vysvětleny technologie, které byly uvažovány pro návrh architektury jednoduchého reflektometru a následně byly z nich vybrány ty nejvhodnější nebo nejjednodušší na implementaci. Pro jednotlivé části reflektometru tedy budou použity tyto stavební bloky:

Buzení

Pro buzení bude použito buzení aproximovaným jednotkovým skokem pomocí budiče technologie CML, kterým je možné dosáhnout aproximace s náběžnou hranou o délce kratší než 100 ps, typicky okolo 60 ps, tedy s užitečnou šířkou pásma v jednotkách GHz. Výstup je dobře přizpůsoben pro použití v $50\,\Omega$ systémech.

Separace budicího a odraženého signálu

Pro separaci buzení od odezvy systému bude použito prodlužovací vedení jako metoda pro dosažení časového posunu. Samotná separace bude probíhat až z navzorkovaných dat během zpracování.

Vzorkování

Data budou sbírána pomocí postupného vzorkování v ekvivalentním čase pomocí vyvážených diodových můstků. Touto metodou je možné vzorkovat měřený signál pomocí pomalých převodníků s větším dynamickým rozsahem a přesností, je také možné potlačit ruchy z okolí. Byla navržena metoda pro měření s dynamickým rozsahem nejméně 80 dB.

Generování signálů pro řízení reflektometru

Pro řízení jednotlivých částí reflektometru bude použita PLL Si5351, která disponuje 8 výstupy, které je možné konfigurovat jako diferenciální výstupy. Jednotlivé výstupy mohou mít neceločíselné vzájemné poměry frekvencí (krok nastavení je menší než 1 ppm), je možné dosáhnout vzorkování s krokem menším než 100 ps, tedy ekvivalentní vzorkovací frekvence větší než 10 GSa.s⁻¹. Díky proudovým výstupům je možné ji přímo propojit jak se vstupy CML logických prvků, tak ji použít pro spínání diodových vzorkovačů. Je možné i vygenerovat synchronizační

hodinový signál pro mikrokontrolér, aby se provádělo vzorkování v přesně stanovený čas.

Z těchto jednotlivých prvků je tedy již možné navrhnout základní blokové zapojení navrhované architektury.

Obrázek 7.1: Základní blokové schéma navržené architektury reflektometru.

Kapitola 8

Princip zapojení

8.1 Základní princip zapojení

Zapojení se skládá z generátoru impulsů, vzorkovacích obvodů a řídicího fázového závěsu, který tyto dvě části synchronizuje. Generátor impulzů se používá pro tvorbu budicího signálu, který je zaveden do měřeného systému. Pomocí vzorkovacího můstku se pak provádí měření odezvy měřeného systému. Fázový závěs časuje spouštění generátoru a vzorkovače asynchronně tak, aby se postupně spouštěcí událost obou části vzájemně posouvala. Tím dochází k tomu, že každý vzorek odpovídá jinému bodu měřené odezvy. Zařízení tedy pracuje v režimu měření v ekvivalentním čase. To znamená, že měřená odezva není změřena v reálném čase, ale je pomalu sbírána. V navrženém zapojení dojde při každé periodě budicího signálu ke změření jednoho vzorku odezvy systému.

8.2 Blokové zapojení

Blokové zapojení reflektometru je znázorněno na obrázku 8.1. V dalších částech této kapitoly jsou jenotlivé bloky popsány do hloubky.

8.3 Generování potřebných hodinových signálů

Hlavním prvkem celého zapojení je vícekanálový digitální fázový závěs, který je postaven na obvodu Si5351C-B [Sil18]. Tento obvod obsahuje krystalový oscilátor, na nějž jsou zavěšeny dva interní oscilátory VCO. Vnitřní blokové schéma je možné vidět na obrázku 8.2.

Frekvenci těchto oscilátorů je možné nezávisle nastavit. Jejich frekvence f_{VCO} může být neceločíselným násobkem frekvence krystalového oscilátoru

Obrázek 8.1: Blokové zapojení reflektometru.

Obrázek 8.2: Vnitřní blokové zapojení obvodu Si5351, převzato z [Sil18].

 f_{XTAL} .

$$f_{VCO} = f_{XTAL} \left(a + \frac{b}{c} \right) \tag{8.1}$$

Koeficient a může nabývat hodnot $\langle 15,90 \rangle$. V neceločíselném režimu může koeficient c nabývat hodnot $\langle 0,1048575 \rangle$, koeficient b pak $\langle 0,c \rangle$. Je tedy možné nastavit frekvenci oscilátorů tak, že se liší o méně než 1 ppm. Při použití těchto dvou frekvencí jako časovacích signálů pro buzení a vzorkování je tedy možné odebírat až 1048576 vzorků. Dochází totiž k tomu, že s každou periodou se postupně hrany těchto obdélníkových signálů vůči sobě časově posunou o fixní časový krok. Tento krok je možné spočítat z nastavených frekvencí oscilátorů.

$$f_{VCO1} = f_{XTAL} \left(a_1 + \frac{b_1}{c_1} \right)$$

$$f_{VCO2} = f_{XTAL} \left(a_2 + \frac{b_2}{c_2} \right)$$
(8.2)

Za těmito oscilátory ještě následují děličky. Ty také umožňují neceločíselné dělení, které je ovšem nevýhodné, protože může zvyšovat fázové chvění výstupního signálu. Proto jsou použity pouze v celočíselném režimu. Děličky jsou použity kvůli omezenému vzorkovacímu kmitočtu použitého ADC. Výsledkem jsou tedy dvě frekvence f_{OUT1} a f_{OUT2} . Označíme-li společný dělicí poměr d a za předpokladu, že $a_1=a_2=a,\ c_1=c_2=c$ a $b_2=0$:

$$f_{OUT1} = \frac{f_{VCO1}}{d} = f_{XTAL} \left(\frac{a + \frac{b_1}{c}}{d} \right)$$

$$f_{OUT2} = \frac{f_{VCO2}}{d} = f_{XTAL} \left(\frac{a}{d} \right)$$
(8.3)

Pak se během jedné periody oscilátory vůči sobě posunou o čas T_{SHIFT} :

$$T_{SHIFT} = T_{OUT2} - T_{OUT1} = \frac{1}{f_{OUT2}} - \frac{1}{f_{OUT1}}$$

$$T_{SHIFT} = \frac{d}{f_{XTAL}} \left(\frac{1}{a} - \frac{1}{a + \frac{b_1}{c}} \right) = \frac{d}{a f_{XTAL}} \left(\frac{1}{1 + a \frac{c}{b_1}} \right)$$
(8.4)

Pro minimalizaci fázového chvění je podle [Sil18] a [Sil15] vhodné preferovat celočíselné násobení i dělení, je-li to možné. Dále může fázové chvění zmenšit i použití sudých násobitelů a dělitelů. V navrženém zapojení je tedy fázový závěs nastaven takto:

$$f_{XTAL} = 25 \text{ MHz}$$

$$a = 24 \quad b_1 = 24/8 = 3$$

$$c = 500000/8 = 62500 \quad d = 128 \cdot 46 = 5888$$

$$f_{OUT1} \doteq 101\,902\,\text{kHz} \doteq f_{OUT2}$$

$$T_{SHIFT} = \frac{46 \cdot 128}{24 \cdot 25000000} \left(\frac{1}{1 + 24 \cdot \frac{500000}{24}}\right) \doteq 19,627\,\text{ps}$$

$$(8.5)$$

Podobný princip měření pomocí dvou oscilátorů o podobné frekvenci se již v literatuře objevil, avšak zatím nebyl implementován přímo pomocí fázového závěsu. V [DJJ03] byly použity dva nezávislé oscilátory. Toto řešení je sice jednodušší, avšak není možné zajistit, jak velký bude časový krok měření. Vzhledem ke skutečnosti, že oscilátory jsou závislé na teplotě a dalších vnějších vlivech, není možné zajistit ani dlouhodobou stabilitu. Při použití dvojitého fázového závěsu s neceločíselným násobitelem však je možné tuto dlouhodobou stabilitu zajistit. Krok měření je pak závislý pouze na frekvenci jediného krystalového oscilátoru. Při použití TCXO může být tato stabilita velmi dobrá, na úrovni jednotek ppm.

Další podobný způsob časování vzorkování je použit v [TKF⁺13], kde je využito FPGA jako DDS. Výstup z této DDS je filtrován dolní propustí a následně zaveden do komparátoru, římž je získáván obdélníkový řídicí signál. Řízení vzájemné polohy budicího pulzu a vzorkování je pak dosaženo nastavováním fáze sinusového signálu, který je generován DDS. Tento systém umožňuje krok vzorkování v jednotkách pikosekund. Je tedy podobný vlastnostmi konstrukci popsané v této práci. Něvýhodou je však to, že autoři se příliš nezabývali generátorem impulzů, náběžná hrana použitého generátoru činí přibližně 2 ns. Důvod, proč tak autoři učinili, je možná omezení vyplývající ze zvoleného způsobu vzorkování pomocí komparátoru a digitálního integrátoru.

Zapojení hodinového generátoru s fázovým závěsem Si5351 je zobrazeno na 8.3. Symbol obvodu je rozdělený na dvě části, U207A a U207B. Kromě samotného obvodu Si5351 je potřeba pouze referenční krystal a napájecí obvody. Napájení je rozděleno na dvě domény. První je jádro fázového závěsu, které napájí interní logické obvody a VCO. Druhá napájí výstupní budiče. Toto rozdělení by mělo omezit fázový šum generovaných hodinových signálů způsobený rušením na napájení VCO [Sil15]. Pro krystalový oscilátor není potřeba používat zatěžovací kondenzátory, jsou obsaženy uvnitř obvodu Si5351, je možné je nastavit v rozsahu 4 pF–10 pF.

Výstupní budiče obvodu Si5351 jsou slučitelné jak s CMOS obvody a jejich modernějšími variantami, tak i s obvody rodin TTL, ECL, CML, LVDS a podobnými. Budiče jsou proudové, proud je možné nastavit ve čtyřech krocích v rozsahu 2 mA–8 mA [Sil18]. Tohoto faktu je využito v zapojení, 4 výstupy jsou použity přímo pro proudové buzení vzorkovacích můstků, 2 výstupy pro

Obrázek 8.3: Zapojení hodinového generátoru Si5351.

buzení CML bufferu, jeden výstup pro synchronizaci vzorkování použitého mikrokontroléru a jeden výstup pro řízení stavu CML bufferu.

Dle katalogových údajů by tento fázový závěs měl typicky dosahovat mezivrcholového fázového šumu 70 ps, maximálně 155 ps. Dle výrobce by mělo jít o parametry v "nejhorším možném případě v reálné aplikaci ... skutečné vlastnosti mohou být výrazně lepší" [Sil18]. Bohužel není uvedeno, jak se tento parametr mění v závislosti na nastavení násobicích a dělicích sekcí. Není uveden ani histogram šumu, jeho frekvenční spektrum, ani efektivní hodnota. Spektrum fázového šumu je možné najít v [JMN14], bohužel se nejedná o ověřený zdroj.

8.4 Tvorba budicího pulzu

Pro tvorbu budicích pulzů byl vybrán obvod SY54020, který je původně určen jako CML buffer. Logické obvody CML používají logické úrovně referencované vůči kladnému pólu napájení, výstupy i vstupy těchto obvodů jsou přizpůsobené impedanci $50\,\Omega$. Podle katalogových údajů [Mic09] by měla

výstupní impedance ležet v rozsahu $45\,\Omega$ – $55\,\Omega$. Hlavní důvod pro použití tohoto bufferu je vysoká rychlost, dle katalogových údajů by měla délka náběžných a sestupných hran spadat do rozsahu $35\,\mathrm{ps}$ – $100\,\mathrm{ps}$, typicky $60\,\mathrm{ps}$. Tento údaj je udáván pro body, kde prochází náběžná hrana $20\,\%$ a $80\,\%$ mezi původním a konečným napětím. U obvodu Si5351 by podle katalogových údajů měl tento parametr být typicky $1\,\mathrm{ns}$, maximálně $1,5\,\mathrm{ns}$. Použitím obvodu SY54020 by tedy mělo být možné zkrátit náběžné hrany o $90\,\%$ – $98\,\%$ oproti přímému použití výstupu z obvodu Si5351 jako zdroje budicích pulzů. Dle katalogových údajů by špičkový aditivný fázové chvění mělo být přibližně $1\,\mathrm{ps}$, tedy přibližně o dva řády lepší, než fázové chvění obvodu Si5351. Použití budiče SY54020 by tedy mělo mít zcela minimální vliv na celkovou úroveň fázového chvění.

Obrázek 8.4: Zapojení generátoru budicích pulzů

Postatná výhoda obvodu SY54020 spočívá v oddělení napájecích úrovní vstupů a výstupů tohoto obvodu. V zapojení je vstupní část obvodu napájena 3,3 V, výstupní část 1,65 V, tedy přesně polovičním napájecím napětím. Tato napájecí hladina označená jako VCC, a zároveň jako GNDS, je použita jako virtuální analogová země. Všechny následující obvody jsou vztažené k této virtuální zemi. Zapojení generátoru budicích impulzů je na obrázku 8.4.

8.5 Přizpůsobovací obvody a testovací port

Generátor budicích impulzů z předchozího bodu je nezbytné připojit k měřicímu portu. K tomuto portu však musí být zároveň připojeny vzorkovací obvody. Proto jsou nezbytné přizpůsobovací obvody, které umožňují připojit k testovacímu portu obě tyto části při dodržení vstupní impedance. Jejich zapojení je uvedeno na obrázku 8.5.

Obrázek 8.5: Schéma přizpůsobovacích obvodů.

Přizpůsobovací obvody jsou navrženy tak, aby bylo dosaženo co nejlepšího impedančního přizpůsobení na testovacím konektoru. Problematická je impedance vzorkovacího můstku, neboť na jeho výstupu je připojen vzorkovací kondenzátor, který způsobuje rezonanci pouzdra vzorkovacího můstku na frekvenci přibližně 1,7 GHz. Vliv této rezonance na vstupní impedanci reflektometru je částečně potlačen použitím děliče sestaveného z odporů R220, R224 a R229 a cívky L201 (označení podle obrázku 8.5). Výsledná impedance je zakreslena v grafu 8.7, parametr S_{11} pak v grafu 8.8. Simulace byla provedena bez vední T1, které se nachází na schématu 8.6. Hodnoty použitých součástek v děliči se mezi schématy liší, protože během vývoje zařízení byly použité diodové můstky HSMS-282P vyřazeny z výroby. Jako náhrada byly vybrány diodové můstky SMS3923-081LF. Díky podrobnějšímu SPICE modelu bylo možné do simulace zahrnout i vliv parazitních vlastností pouzdra tohoto můstku, což umožnilo další optimalizace. Konečné hodnoty použitých součástek se nachází ve schématu použitém v simulaci.

Vstupní impedance byla simulována do 10 GHz. V celém simulovaném

 $\mbox{\sc Obrázek 8.6:}$ Schéma použité pro simulaci vstupní impedance v programu LTSpice.

Obrázek 8.7: Vstupní impedance reflektometru.

Obrázek 8.8: Přizpůsobení vstupní impedance reflektometru.

pásmu se vstupní impedance odchyluje od nominálních 50 Ω o méně než ±2 Ω . Parametr $|S_{11}|$ je vykreslen v grafu 8.8. V celém rozsahu je menší než $-33\,\mathrm{dB}$, což odpovídá koeficientu odrazu $\Gamma <= 0.023$. Navržené přizpůsobení by tedy mělo být velmi dobré. Vzhledem k tomu, že konektory obvykle způsobují odraz větší, než je odraz vycházející ze simulace, měl by být klíčovým prvkem pro dosažení malého odrazu na testovacím portu kvalitní konektor a připojovací vedení. Při uvažování tolerance impedance budiče SY54020, která se pohybuje v rozsahu $45\,\Omega$ – $55\,\Omega$, se přizpůsobení zhorší, nicméně v celém rozsahu je lepší než $-30\,\mathrm{dB}$.

8.6 Vzorkovací obvody a oddělovací zesilovač

Vzorkování je v reflektometru prováděno ve třech stupních. První stupeň je tvořený diodovým můstkem U208 (na obrázku 8.9) a kondenzátorem C230. Druhý stupeň vzorkování je tvořen diodovým můstkem U209 a kondenzátorem C233. Třetí stupeň probíhá uvnitř mikrokontroléru v ADC.

První vzorkovací stupeň je připojen k obvodu Si5351, který proudově napájí vzorkovací můstek. Proud nastavený na budičích tohoto obvodu je 8 mA. V době, kdy vzorkovač sleduje vstupní signál, jsou diody sepnuty v propustné oblasti, můstek se pak chová přibližně jako rezistor o odporu jednotek Ω zapojený mezi vstupem a vzorkovacím kondenzátorem. V okamžiku, kdy má být odebrán vzorek měřeného napětí, se obrátí směr proudu tekoucí skrz můstek,

čímž se můstek rozepne. Po rozepnutí má můstek charakter kondenzátoru o kapacitě desetin pikofaradu. Aby můstek co nejméně ovlivňoval vstupní impedanci reflektometru, je připojen přes přizpůsobovací obvody. Kondenzátor C230 musí mít co nejmenší kapacitu, aby příliš kapacitně nezatěžoval vzorkovací můstek. Při použití většího kondenzátoru klesá šířka propustného pásma vzorkovače a zvětšuje se vliv vzorkovače na vstupní impedanci reflektometru. Pro potlačení kapacitního charakteru vzorkovače je v přizpůsobovacím obvodu použita kombinace R229 a L201, které částečně na vysokých frekvencích stáčí impedanci zpět k reálným hodnotám. Při použití příliš malého kondenzátoru je problematická parazitní kapacita diodového můstku v rozepnutém stavu, měřený signál pak výrazně "prosakuje" do navzorkovaného signálu i v okamžiku, kdy je diodový můstek rozepnutý.

Obrázek 8.9: Zapojení vzorkovacích obvodů.

Vzhledem k velice malé kapacitě vzorkovacího kondenzátoru je nezbytné, aby obvody připojené k němu měly minimální vstupní proud. To by bylo možné zajistit přímo unipolárním operačním zesilovačem U205, avšak má velkou vstupní kapacitu, přibližně 27 pF [Hou00]. Proto je použit oddělovací zesilovač s unipolárním dvouhradlovým tranzistorem BF998 s malou kapacitou hradla. Vstupní impedance oddělovacího zesilovače je přibližně do 900 MHz takřka čistě imaginární, kapacita odpovídající této impedanci je přibližně 0,6 pF na 10 MHz a 0,9 pF na 1 GHz. Zesilovač je zapojen jako sledovač signálu s jednotkovým ziskem. V source tranzistoru je zapojen proudový zdroj kvůli minimalizaci zkreslení. Dle simulace by stejnosměrné zkreslení zesilovače mělo být lepší než 0,0005 %, absolutní chyba výstupního napětí je uvedena v grafu 8.12. Rozkmit měřeného napětí je podle simulací 20 mV.

Při návrhu zapojení byly uvažovány i varianty s jinými tranzistory. Bohužel nebyl nalezen žádný tranzistor, který by byl schopen pracovat do vyšších frekvencí a přitom měl nízký vstupní proudl hradla. Moderní tranzistory HEMT bohužel zpravidla mají vstupní proud v řádu mikroampérů. Rychlejší

tranzistory typů MOSFET nebo MESFET se vyrábí pouze pro výkonové aplikace. Ke vhodným tranzistorům typu JFET se bohužel dodávají pouze S-parametry a nejsou dostupné parametry pro SPICE modely. Nakonec tedy byl zvolen tranzistor BF998.

Maximální hodnotu kapacity kondenzátoru C230 určuje i oddělovací zesilovač. Při kapacitě větší než 1,5 pF by se oddělovací zesilovač rozkmital, což bylo zjištěno v zapojení během testování. Následně byla tato skutečnost potvrzena simulací a opravena. Proto jsou v zesilovači použity odpory R249, R250 a R251. R251 omezuje kladnou zpětnou vazbu a tlumí rezonanci páru U208 – C230, čímž je zabráněno rozkmitání zesilovače. Odpor R249 nadále zeslabuje tuto kladnou zpětnou vazbu. Odpor R250 zvětšuje vstupní impedanci zesilovače a zvětšuje šířku pásma tohoto oddělovacího stupně. Kondenzátor C231 není v konečném zapojení použit, neboť zmenšoval použitelnou šířku pásma zesilovače a zhoršoval stabilitu zapojení. Přenosová charakteristika oddělovacího zesilovače je uvedena v grafu 8.10.Podle těchto odsimulovaných výsledků by měla být 6dB šířka pásma přibližně 5,9 GHz.

Obrázek 8.10: Přenos oddělovacího zesilovače.

Celková přenosová charakteristika od testovacího portu až k výstupu oddělovacího zesilovače je uvedena v grafu 8.11. 6dB šířka pásma pak činí přibližně 1,93 GHz.

Simulace nebyla provedena s idealizovaným proudovým zdrojem, ale již v zapojení, které je uvedeno na schématu 8.9. Simulovaná data by tak měla lépe odpovídat realitě. Důvod, proč na schématu 8.6 není uvedeno celé zapojení

Obrázek 8.11: Přenos celého systému přizpůsobení-vzorkovač-zesilovač.

proudového zdroje, ale jen idealizovaného zdroje, je časová náročnost výpočtů. Při simulacích vstupní impedance má tato část minimální vliv na výsledky, ale výrazně zpomaluje výpočty, proto byla ze simulací týkajících se vstupní impedance a tranzientních simulací oddělovacího zesilovače vynechána. Celé zapojení proudového zdroje je vidět na schématu 8.13.

Proudový zdroj na schématu 8.13 napájí oddělovací zesilovač. Zdroj je řízen DAC, je možné jej nastavit v rozsahu 0 mA-15,9 mA v 4096 krocích po přibližně 3,88 µA. Zroj je určen k autokalibraci reflektometru, umožňuje stejnosměrné posunutí měřeného signálu. Tento autokalibrační proces je nezbytný kvůli výrobním tolerancím a teplotní závislosti unipolárního dvouhradlového tranzistoru BF998. Proudový zdroj je zapojen jako kaskodové proudové zrcadlo. Odpor R235 spolu s tranzistory Q203 a Q204 slouží jako převodník z napětí na proud. Tranzistory Q202, Q205, Q206 a Q207 tvoří proudové zrcadlo. V emitorech tranzistorů jsou zapojeny odpory, čímž se zrcadlo podobá Widlarově proudovému zrcadlu se zesilovacím poměrem přibližně 60. Tranzistor Q202 je vysokofrekvenční typ s $f_T = 6 \,\mathrm{GHz}$ při 8 mA a nízkou výstupní kapacitou kolektoru, $C_o b < 1.8 \,\mathrm{mA}$. Pro ochranu tranzistoru Q202 před lavinovým průrazem během zapínání reflektometru a autokalibrace je použita dioda D201, která omezuje napětí kolektor-emitor na tranzistoru Q202 na přibližně 4 V, průrazné napětí tranzistoru je dle katalogových údajů 6 V. Proudový zdroj je navržen tak, že není možné nastavit proud emitorem tranzistoru Q202 větší než 15 mA, přičemž povolený trvalý proud je 50 mA. Tranzistor by tedy měl být kompletně ochráněn před poškozením. Pro potla-

Obrázek 8.12: Absolutní chyba linearity oddělovacího zesilovače.

Obrázek 8.13: Zapojení proudového zdroje.

čení vlivu kapacity diody D201 na přenos oddělovacího zesilovače na vysokých frekvencích je použita cívka L203.

Obrázek 8.14: Zapojení napájecích zdrojů vzorkovacích obvodů.

Napájecí zdroj operačních zesilovačů, proudového zdroje a oddělovacího zesilovače je na schématu 8.14. Zdroj je napájen z 5 V získávaných z USB. Jádrem je spínaný zdroj MT3608 pracující na frekvenci 2 MHz, který je nastaven na napětí 12,6 V. Tato napájecí větev je filtrována aktivním filtrem s tranzistorem Q208. Napájecí hladina 12,6 V je filtrována RC článkem R244-C264. Toto vyfiltrované napětí je zapojeno do gate tranzistoru Q208, který je zapojen jako sledovač. Teoreticky je tak možné zajistit značné potlačení zvlnění napětí na napájecí větvi. Výsledkem je vyfiltrované nestabilizované napětí přibližně 10 V. Potlačení zvlnění by dle simulace mělo být přibližně –128 dB na frekvenci 2 MHz, kde pracuje spínaný zdroj. Přenosová charakteristika tohoto aktivního filtru je na grafu 8.15, je vyznačená modře.

Záporná napájecí větev je získávána z téhož zdroje pomocí nábojové pumpy tvořené kondenzátory C266 – C268 a diodami D205 a D206. Výsledné napětí je přibližně $-12\,\mathrm{V}$. Tranzistor Q209 opět tvoří aktivní filtr. Odporovým děličem je nastaveno výstupní napětí přibližně $-5\,\mathrm{V}$. Potlačení zvlnění by dle simulace mělo být přibližně $-134\,\mathrm{dB}$ na frekvenci $2\,\mathrm{MHz}$, kde pracuje spínaný zdroj. Přenosová charakteristika tohoto aktivního filtru je na grafu 8.15, je vyznačená oranžově.

Za předpokladu, že simulace odpovídají reálnému chování navržených obvodů, mělo by být zvlnění na napájecích větvích způsobené spínaným zdrojem potlačeno aktivními filtry natolik, že by nemělo být měřitelné a nemělo by nijak ovlivňovat měření.

Za oddělovacím zesilovačem následuje jednotkový sledovač s operačním zesilovačem TL072, který slouží ke snížení výstupní impedance oddělovacího zesilovače. Výstup tohoto zesilovače je opět vzorkován pomocí vzorkovacího můstku U209 do 1 nF kondenzátoru. Oddělovací zesilovač má sice vysokou impedanci, takže téměř nezpůsobuje drift napětí na vzorkovacím kondenzátoru

Obrázek 8.15: Přenosová charakteristika aktivních napájecích filtrů.

C230, nicméně vzhledem ke svodovému proudu vzorkovacího můstku U208 je tento drift nenulový. Proto těsně před sepnutím můstku U208 se rozepne můstek U209. Vzhledem k tomu, že kapacita kondenzátoru C233 je o 3 řády větší, než kapacita kondenzátoru C230, je i výsledný drift o 3 řády menší. Napětí po tomto sekundárním vzorkování je zesíleno v zesilovači U205 na schématu 8.16.

8.7 Logaritmický detektor

Toto navzorkované napětí je převáděno na logaritmickou podobu pomocí logaritmického detektoru AD8307. Logaritmický detektor byl použit pro rozšíření dynamického rozsahu měření dvanáctibitového ADC. Bohužel, v rámci testování se ukázalo, že šum vzorkovacích obvodů je příliš velký a logaritmický detektor nepřinášel žádné zpřesnění měřených hodnot. Změřená závislost výstupního napětí logaritmického detektoru na kódovém slově DAC je v grafu 8.17, přiblížená problematická oblast v grafu 8.18.

8.8 Digitalizace měřeného průběhu

Navzorkovaný průběh je třeba pro zpracování zdigitalizovat. K tomuto účelu je použit interní ADC použitého mikrokontroléru STM32F103. Tento převodník

Obrázek 8.16: Schéma sekundárního vzorkovače a logaritmického detektoru.

má rozlišení 12 bitů a maximální vzorkovací kmitočet 1 MSa.s⁻¹. Podstatná výhoda interního převodníku je automatizace obsluhy měření. Digitalizace je synchronizována se vzorkováním, obvod Si5351 generuje synchronizační signál, kterým se digitalizace spouští. Ihned po dokončení digitalizace se vyvolává přerušení, které změřený vzorek zpracuje. Tento proces by bylo možné ještě zjednodušit použitím DMA v procesoru, avšak bylo zvoleno řešení s přerušením, protože přerušení řeší i průměrování a další úkony. Zapojení mikrokontroléru je vyobrazeno na schématu 8.19.

8.9 Komunikace s počítačem

Komunikace reflektometru s počítačem je zajištěna pomocí virtuálního sériového portu. Ten je tvořen převodníkem CH340G, který podporuje standardní přenosové rychlosti, navíc nabízí i nestandardní rychlosti až do 2 MBd.

Obrázek 8.17: Změřená závislost výstupního napětí na kódovém slově DAC, celkové zobrazení.

Obrázek 8.18: Změřená závislost výstupního napětí na kódovém slově DAC, výřez problematické oblasti.

Obrázek 8.19: Zapojení mikrokontroléru.

Kapitola 9

Popis firmware

Pojmem firmware je v této kapitole myšlen program, který běží v mikrokontroléru a obsluhuje všechny části reflektometru a poskytuje uživatelské rozhraní a zajišťuje měření, vyhodnocování měření a komunikaci s počítačem.

9.1 Technické parametry firmware

Použitý mikrokontrolér disponuje $20\,\mathrm{kB}$ RAM. Jeden měřený vzorek zabírá $12\,\mathrm{bitu}$, bez použití komprese dat je možné do RAM uložit $10000\,\mathrm{vzorku}$. Parametr $\frac{ab}{c}$ v rovnici $8.4\,\mathrm{určuje}$ délku měřeného souboru dat. Vzledem k použitým hodnotám má měřený soubor dat $500000\,\mathrm{bodu}$ s časovým krokem přibližně $19,62\,\mathrm{ps}$. Část RAM ovšem zabírá program pro svuj chod, délka měřicího okna byla nakonec zvolena $4096\,\mathrm{bodu}$, což umožňuje v rámci jednoho okna změřit interval o délce přes $80\,\mathrm{ns}$. Ve vakuu tento interval odpovídá délce měřeného úseku $12\,\mathrm{m}$. Pro koaxiální kabely odpovídá měřený úsek přibližně $7,9\,\mathrm{m}{-}10,2\,\mathrm{m}$ při uvažování typického rozsahu zkracovacího činitele $0,66{-}0,85.\,\mathrm{V}$ případě potřeby měřit delší vedení se může měřicí okno posunout a měřit další úsek vedení. Tento nedostatek tedy nebrání měřit libovolně dlouhá vedení, pouze znamená, že pro delší vedení je nezbytné provádět měření po částech.

9.2 Autokalibrace a autodiagnostika zařízení

9.2.1 Detekce stability fázového závěsu

Po zapnutí mikrokontrolér zapne všechny svoje interní periferie, načež začne komunikovat s fázovým závěsem Si5351. Nejprve je kontrolován indikátor úspěšného startu fázového závěsu, firmware čeká, dokud není fázový závěs připraven. Firmware pak nakonfiguruje všechny registry fázového závěsu, ovšem prozatím je nastaven tak, aby negeneroval žádné řídicí signály. Následně

9. Popis firmware

kontroluje firmware diagnostické registry fázového závěsu pro zjištění, zda je stabilní krystalový oscilátor. Fázový závěs je schopen indikovat stav, kdy vysazuje krystalový oscilátor [Sil18], například kvůli nedostatečnému zisku oscilátoru. Dále jsou kontrolovány indikátory nestability fázového závěsu, která může být způsobena například špatně navrženým napájením obvodu, které má na pracovních frekvencích VCO pak příliš vysokou impedanci (interní VCO pracují ve frekvenčním rozsahu 600 MHz–900 MHz). Pokud během fáze testování nenastane žádná z popsaných chyb, pokračuje program dále, jinak se zastaví a informuje uživatele o chybě.

9.2.2 Autokalibrace stejnosměrné složky

Dalším krokem autokalibrace je nastavení stejnosměrného posuvu měřeného signálu. Tento krok je nezbytný kvůli rozptylu parametrů tranzistoru BF998 použitého v oddělovacím zesilovači, testuje se při odpojeném měřeném vedení. Fázovému závěsu se nyní zapnou všechny výstupy, není však generován budicí impulz, výstup obvodu je ovládán firmwarem. Nejprve je nastavena logická úroveň 1, firmware postupně inkrementuje kódové slovo DAC, dokud se nedostane měřené napětí do měřitelného rozsahu. Pokud tento test selže, je opět indikována chyba. Výstup pro budicí impulz se přepne do logické úrovně 0. Ze změřených napětí se spočítá, jak je nezbytné dále posunout měřený signál tak, aby průměr napětí v obou stavech ležel uprostřed rozsahu ADC. Podle tohoto výsledku je kódové slovo DAC inkrementováno nebo dekrementováno, dokud není dosaženo požadovaného stavu.

9.2.3 Kalibrace napěťových úrovní

V dalším kroku se provede kalibrace logických úrovní a zjištění úrovně šumu v měřeném signálu. V obou logických úrovních budicího pulzu je nejprve změřeno 4096 vzorků, ze kterých se spočítá průměr. Potom se změří dalších 4096 vzorků, které jsou použity pro spočítání rozptylu měřených hodnot. Tím se získá informace o statických napěťových úrovních pro stavy odpovídající vedení zakončenému otevřeným koncem a zkratem, tedy pro koeficienty odrazu -1 a +1, čímž je získán teoretický rozsah měřených hodnot. Rozptyl hodnot je podstatný pro odhad vhodného počtu průměrování. Vhodný počet průměrování byl uvažován jako počet průměrů, při kterých již byl šum podstatně potlačen, avšak dále by jeho úroveň klesala již pomalu.

9.2.4 Odhad šumové úrovně a průměrování

Pro průměrování je použit algoritmus, který se v minulosti objevil např. v osciloskopech značky Hewlett-Packard [Sch86]. Tento algoritmus je počítán celočíselně a pro svůj chod potřebuje množství paměti odpovídající pouze

jedinému zaznamenanému průběhu. Pro algoritmus je potřeba jen soubor předchozích změřených dat y_{i-1} , nový změřený vzorek x a proměnná i vyjadřující, kolikátý průměr je právě měřen.

$$y_i[n] = \frac{x + i \cdot y_{i-1}[n]}{i+1} \tag{9.1}$$

Tento algoritmus byl numericky simulován, nejprve v přesné podobě v plovoucí desetinné čárce a poté v celočíselné podobě. Pro simulaci byla použita náhodná data s rozptylem 1024, a tedy směrodatnou odchylkou 32. Tato hodnota je blízká reálně měřeným hodnotám v realizovaném zapojení reflektometru. Graf 9.1 vychází z dat simulovaných v plovoucí desetinné čárce, pro celočíselnou variantu není graf uveden, neboť rozdíl mezi nimi není rozpoznatelný. Rozdíly jsou znázorněny na následujících grafech. Výpočty byly provedeny 256×, výsledky byly zprůměrovány, aby byly křivky v grafech hladké. Bez průměrování jsou křivky lehce zatížené šumem.

Obrázek 9.1: Závislost rozptylu na počtu provedených průměrů.

Průběh této závislosti odpovídá funkci $\frac{1}{N}$, což je možné dokázat tak, že se rozptyl ve všech bodech pronásobí počtem průměrů, který danému bodu odpovídá. Na grafu 9.2 je vidět, že součin rozptylu s počtem průměrů je přibližně konstantní a odpovídá počátečnímu rozptylu. Diference rozptylu se pro větší počet průměrů než 16 blíží nule. Pro více než 16 průměrů, tedy polovinu směrodatné odchylky, tedy již úroveň šumu výrazně neklesá.

V případě celočíselných výpočtů vypadá diference rozptylu podobně, ovšem

9. Popis firmware

Obrázek 9.2: Závislost diference rozptylu (červeně) a součinu rozptylu s počtem průměrů (modře) na počtu provedených průměrů pro výpočet v plovoucí desetinné řádce.

Obrázek 9.3: Závislost diference rozptylu (červeně) a součinu rozptylu s počtem průměrů (modře) na počtu provedených průměrů pro celočíselné výpočty.

ze součinu počtu průměrů a rozptylu je vidět, že závislost rozptylu na počtu průměrů neodpovídá již přesně hyperbolické funkci. Jde o vliv numerických chyb způsobovaných zaokrouhlováním výsledků. Pro větší počet průměrů než je směrodatná odchylka měřeného signálu, již znatelně stoupají numerické chyby. Význam tohoto faktu spočívá v tom, že již nestoupá odstup užitečného signálu od šumu, protože dominantním zdrojem šumu jsou chyby zaokrouhlování.

Výsledkem těchto simulací je odhad vhodného počtu průměru. Optimální počet průměrů N tedy leží v rozsahu $\langle \frac{\sigma}{2}, \sigma \rangle$, kde σ je směrodatná odchylka měřeného signálu. Po změření rozptylu měřeného signálu je tedy možné přímo odhadnout vhodný počet průměrování.

9.2.5 Autokalibrace polohy budicího pulzu

Při zapnutí fázového závěsu je fázový rozdíl mezi budicím signálem a vzorkovacím signálem náhodný. Proto je potřeba nejprve najít polohu budicího pulzu v měřených datech. Vzhledem k tomu, že není pro nedostatek RAM možné uložit celé měření a v uložených datech hledat budicí impulz, je využito přímého hledání náběžné hrany, kdy se ukládá pouze posledních 8 vzorků. Ta probíhá tak, že v obslužném přerušení se ukládá posledních 8 měřených vzorků, ze kterých se počítá průměr diferencí přes těchto 8 vzorků kvůli zvýšení imunity vůči šumu. Výpočet této průměrné diference je možné zjednodušit podle vzorce 9.2.

$$diff_{AVG8}[n] = \frac{1}{8} \sum_{k=0}^{7} \frac{x[n-k] - x[n-(k+1)]}{2} = \frac{x[n] - x[n-8]}{16}$$
(9.2)

Pak platí, že pro průměr n diferencí je potřeba spočítat jen diferenci ze dvou vzorků vzdálených o n prvků. Tato operace tedy pro každý změřený vzorek vyžaduje jedinou matematickou operaci, a tedy zabere malé množství výpočetního času, díky čemuž je možné tento výpočet umístit do obslužného přerušení. Z tohoto spočteného průměru diferencí se hledá maximum, tedy oblast s nejvyšší strmostí. Během fáze hledání náběžné hrany je mimo přerušení sledována odhadnutá poloha náběžné hrany. Pokud se tato poloha čtyřikrát v řadě ocitne v tolerančním poli ± 256 bodů, je tato poloha uznána jako skutečná poloha náběžné hrany. Celá tato autokalibrační fáze probíhá s odpojeným měřeným systémem.

9. Popis firmware

Obrázek 9.4: Budicí pulz při připojeném standardu "load" přímo k testovacímu portu. Červeně je vyznačena diference při průměrování přes 8 bodů. Maximum diference odpovídá přibližně středu náběžné hrany.

9.2.6 Kalibrace polohy roviny měření

Následně je poloha měřicího okna nastavena 512 bodů před detekovanou hranu budicího pulzu. Reflektometr čeká na zásah uživatele, je vyžadováno připojení vedení, na jehož konec se později bude připojovat měřený systém. Na konec vedení je při tomto kalibračním kroku připojený kalibr typu "open". Průběh v okolí budicího pulzu je osmkrát změřen a zprůměrován. Ve změřeném průběhu je v oblasti odhadnuté náběžné hrany v rovině měření změřena počáteční napětí před náběžnou hranou a konečné napětí po náběžné hraně, odhad probíhá na základě maxima, ke kterému dochází na náběžné hraně v rámci překmitu. Následně proběhne hledání bodů, kde náběžná hrana prochází 20 % a 80 % mezi počátečním a konečným napětím. Z polohy těchto bodů je lineárně extrapolován počátek odezvy v rovině měření tak, aby při měření již nebyla měřena část sytému před rovinou měření. Budicí impulz je tedy po tomto kroku již mimo okno měření a nadále již v měření nijak nevystupuje. Ukázková odezva kalibru "open" společně s vyznačenými význačnými body je na grafu 9.5.

Obrázek 9.5: Odezva v rovině měření při připojeném standardu "open", čáry vyznačují úrovně $20\,\%$ (tmavě červená) a $80\,\%$ (tmavě zelená) náběžné hrany a jejich polohu v čase. Délka náběžné hrany v tomto úseku je $180\,\mathrm{ps}$. Při měření mezi body $10\,\%$ a $90\,\%$ náběžné hrany je tato délka $280\,\mathrm{ps}$.

9.3 Postup ovládání firmware

Po zapnutí se zobrazí obrazovka s informací o verzi firmware, datu a času jeho kompilace. Její podoba je vidět na obrázku 9.6.

Obrázek 9.6: Uvítací obrazovka s informací o verzi.

Prozatím není zařízení interaktivní, pouze oznamuje stav autokalibračních postupů. Následuje detekce stability fázového závěsu, tuto část ukazují obrázky 9.7 a 9.8. Ukazatel ve spodní části je běžící, aby uživateli signalizoval, že zařízení běží a nezastavilo se například z důvodu nějaké chyby.

Obrázek 9.7: Obrazovka zobrazovaná po dobu inicializace fázového závěsu.

Po inicializaci následuje indikace stability jednotlivých částí PLL podle obrázku 9.8. V případě, že je vše v pořádku, zobrazí se hlášení "PLL Startup complete" a program pokračuje dále. V případě, že dojde k chybě, program se zde zastaví s indikací chyby "PLL Startup error".

Obrázek 9.8: Obrazovka s informacemi o stabilitě jednotlivých částí PLL Si5351.

Obrázek 9.9: Čekání na zásah uživatele - autokalibrace stejnosměrné složky, kalibrace úrovní a měření úrovně šumu.

Obrázek 9.10: Probíhající autokalibrace stejnosměrné složky.

Obrázek 9.11: Probíhající autokalibrace napěťových úrovní a měření úrovně šumu.

Obrázek 9.12: Výsledek autokalibrace napěťových úrovní a měření šumu.

Obrázek 9.13: Hrubé hledání náběžné hrany.

Obrázek 9.14: Čekání na zásah uživatele - přesné hledání náběžné hrany.

Obrázek 9.15: Přesné hledání náběžné hrany.

Obrázek 9.16: Úspěšné nalezení přesné polohy náběžné hrany.

Obrázek 9.17: Čekání na zásah uživatele - připojení DUT a začátek měření.

Obrázek 9.18: Čekání na proběhnutí prvního měření.

Obrázek 9.19: Průběh měření, 33. průměr.

Obrázek 9.20: Měření dokončeno.

Kalibrace

- 10.1 Chybový model
- 10.2 Chyby pramenící z nepřesnosti frekvence fázového závěsu
- 10.3 Měření parametrů chybového modelu
- 10.4 Kompenzace chyb
- 10.5 Omezení plynoucí z omezené šířky pásma zapojení

Změřenou odezvu y(t) je nezbytné dále zpracovávat. Uvedená impulzní odezva je zatížena několika různými zdroji chyb. Prvním zdrojem chyb je samotný budicí pulz, jenž není ideální a je nezbytné nejprve provést kalibrační měření pro odstranění tohoto zdroje chyb. Jednou z možností, jak odstranit tento zdroj chyb, je změřit ideálně zakončený testovací port. Pro tento typ zakončení by mělo platit, že nedochází k žádným odrazům, a tedy by pro impulzní odezvu takového kalibračního standardu mělo platit následující tvrzení.

$$h(t) = \begin{cases} 1 & t = 0; \\ 0 & t \neq 0; \end{cases}$$
 (10.1)

Pak platí tedy, že:

$$y(t) = x(t). (10.2)$$

Takto je možné zjistit podobu budicího pulzu. Takováto metoda kalibrace však pokrývá jen jeden zdroj chyb. Mezi další zdroje chyb 10. Kalibrace

Pomocí kalibračních metod je možné data získaná jako odezvu na tento budicí signál transformovat do podoby, která je vhodnější pro další zpracování. Pro plné odstranění vlivu průběhu budicího signálu na odezvě je vhodné měřenou odezvu transformovat do podoby impulzní nebo skokové odezvy. Tuto korekci měřených dat je možné provést buď v časové oblasti např. Wienerovou dekonvolucí nebo ve frekvenční oblasti. Pouhá korekce do podoby impulsní odezvy je však nedostačující pro korekci měřených dat, neboť Kalibrací je možné také zároveň odstranit vliv nedokonalostí reflektometru a připojeného vedení, např. přeslechy, útlum vedení a odrazy na konektorech [RR08].

Z této impulzní odezvy je možné nadále analyzovat měřený systém. V případě reflektometrie je typicky požadován jako výstup měření impedanční profil měřeného systému.

Detekce závad

- 11.1 Princip hledání závad
- 11.2 Základní typy závad
- 11.3 Složené závady
- 11.4 Výpočet impedančního profilu

Změřené parametry

- 12.1 Budicí pulz
- 12.1.1 Průběh budicího pulzu
- 12.1.2 Spektrum budicího pulzu
- 12.2 Parametry fázového závěsu
- 12.2.1 Jitter fázového závěsu v celočíselném režimu
- Histogram jitteru
- Frekvenční spektrum jitteru
- Chování jitteru při průměrování
- 12.2.2 Jitter fázového závěsu v racionálním režimu
- Histogram jitteru
- Frekvenční spektrum jitteru
- Chování jitteru při průměrování
- 12.2.3 Drift fázového závěsu

Uživatelské rozhraní a popis ovládání

- 13.1 Chování zařízení v autonomním režimu
- 13.1.1 Autokalibrace
- Kalibrace polohy budicího pulzu
- Kalibrace polohy měřicí roviny
- Kalibrace vzorkovacího kmitočtu
- 13.1.2 Kalibrace pomocí kalibračních standardů
- 13.1.3 Měření
- 13.1.4 Vyhodnocení změřených dat
- 13.2 Chování zařízení v režimu s připojeným počítačem
- 13.2.1 Autokalibrace
- 13.2.2 Kalibrace pomocí kalibračních standardů
- 13.2.3 Měření
- 13.2.4 Vyhodnocení změřených dat

Kapitola 14 Závěr

Příloha A

Literatura

- [Ana99] Analog Devices Inc., Norwood, AD8309 Datasheet, 1999.
- [Ana08] Analog Devices Inc., Norwood, ADF4350 Wideband Synthesizer with Integrated VCO, 2008.
- [Ava18] Avago Technologies, Austin, HSMS282x datasheet, 2018.
- [BB97] R. Buchner and J. Barthel, A Time Domain Reflectometer for Dielectric Relaxation Spectroscopy of Electrolyte Solutions, Berichte der Bunsengesellschaft für physikalische Chemie **101** (1997), no. 10, 1509–1516.
- [BCL+13] G. Bencivenni, E. Czerwinski, E. De Lucia, G. De Robertis, D. Domenici, O. Erriquez, G. Fanizzi, G. Felici, R. Liuzzi, F. Loddo, M. Mongelli, G. Morello, A. Ranieri, and V. Valentino, A Time Domain Reflectometer with 100 ps precision implemented in a cost-effective FPGA for the test of the KLOE-2 Inner Tracker readout anodes, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 698 (2013), 185 191.
- [CBC11] Andrea Cataldo, Egidio De Benedetto, and Giuseppe Cannazza, Broadband Reflectometry for Enhanced Diagnostics and Monitoring Applications (Lecture Notes in Electrical Engineering), Springer, Berlin, 2011.
- [CF05] Chet Lo and C. Furse, Noise-domain reflectometry for locating wiring faults, IEEE Transactions on Electromagnetic Compatibility 47 (2005), no. 1, 97–104.
- [DDGC11] A. De Angelis, M. Dionigi, R. Giglietti, and P. Carbone, Experimental Comparison of Low-Cost Sub-Nanosecond Pulse Generators, IEEE Transactions on Instrumentation and Measurement 60 (2011), no. 1, 310–318.

A. Literatura

[DJJ03] Donghwan Lee, Jinho Sung, and Jaehong Park, A 16 ps-resolution Random Equivalent Sampling circuit for TDR utilizing a Vernier time delay generation, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515), vol. 2, Oct 2003, pp. 1219–1223 Vol.2.

- [DM15] N. Drobotun and P. Mikheev, A 300 kHz-13.5 GHz directional bridge, 2015 European Microwave Conference (EuMC), Sep. 2015, pp. 287–290.
- [Hew08] Hewlett-Packard Company and Intel Corporation and Microsoft Corporation and NEC Corporation and ST-NXP Wireless and Texas Instruments, *Universal Serial Bus 3.0 Specification*, 11 2008.
- [Hol02] Nick Holland, Interfacing between LVPECL, VML, CML, and LVDS Levels, Tech. report, Texas Instruments, Dallas, 11 2002.
- [Hou00] Hubert Houtman, 1-GHz sampling oscilloscope front end is easily modified, Electronic Design 48 (2000), no. 19, 175 (English), Copyright Copyright Penton Media, Inc. Sep 18, 2000; Last updated 2012-02-25; CODEN ELODAW.
- [JMN14] John Miles (KE5FX) Jason Mildrum (NT7S), Si5351 Investigations Part 7, 11 2014, https://nt7s.com/2014/11/si5351a-investigations-part-7/.
- [Mic08] Micrel, Inc., San Jose, SY54017 datasheet, 5 2008.
- [Mic09] Micrel, Inc., San Jose, SY54020AR datasheet, 4 2009.
- [MOH09] MOHR Test and Measurement LLC, CT-100B Datasheet, 2009.
- [MP74] N. A. M. Mackay and S. R. Penstone, A High-Sensitivity Narrow-Band Time-Domain Reflectometer, IEEE Transactions on Instrumentation and Measurement 23 (1974), no. 2, 155–158.
- [NR09] C. Negrea and M. Rangu, Sequential sampling time domain reflectometer, 2009 15th International Symposium for Design and Technology of Electronics Packages (SIITME), Sep. 2009, pp. 367–371.
- [RR08] A. Rumiantsev and N. Ridler, *Vna calibration*, IEEE Microwave Magazine **9** (2008), no. 3, 86–99.
- [Sch86] Rodney T. Schlater, Waveform Graphics for a 1-Ghz Digitizing Oscillosocpe, Hewlett-Packard Journal 37 (1986), no. 4, 20-25, https://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1986-04.pdf.
- [Sil15] Silicon Laboratories Inc., Austin, AN619: Manually Generating an Si5351 Register Map, 2015.
- [Sil18] Silicon Laboratories Inc., Austin, Si5351 datasheet, 2018.

A. Literatura

- [Tek68] Tektronix, Inc., Beaverton, Oregon, Type S-1 Sampling Head Instruction Manual, 1968.
- [Tek85] Tektronix, Inc., Beaverton, Oregon, S-4 Sampling Head Instruction Manual, 3 1985.
- [Tex12] Texas Instruments, Dallas, SN65LVPE501 datasheet, 5 2012.
- [Tex16a] Texas Instruments, Dallas, SN75LVCP600S datasheet, 3 2016.
- [Tex16b] Texas Instruments, Dallas, SN75LVCP601 datasheet, 3 2016.
- [Tex18] Texas Instruments, Dallas, TUSB1002 datasheet, 11 2018.
- [TKF+13] D. Trebbels, A. Kern, F. Fellhauer, C. Huebner, and R. Zengerle, Miniaturized FPGA-Based High-Resolution Time-Domain Reflectometer, IEEE Transactions on Instrumentation and Measurement 62 (2013), no. 7, 2101–2113.
- [Tut14] Elmin Tutkur, Wideband Directional Couplers and Power Splitters, Master's thesis, Chalmers University of Technology, Gothenburg, 2014.
- [Wil98] Jim Williams, AN72: A Seven-Nanosecond Comparator for Single Supply Operation: Guidance for Putting Civilized Speed to Work, Tech. report, Linear Technology Co., Milpitas, 5 1998.
- [Wil03] _____, AN94: Slew Rate Verification for Wideband Amplifiers: The Taming of the Slew, Tech. report, Linear Technology Co., Milpitas, 5 2003.