SBML Model Report

Model name: "Proctor2011_ProteinHomeostasis_NormalCondition"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Carole J Proctor² at July 21st 2011 at 4:40 p.m. and last time modified at April eighth 2016 at 5:01 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	54
events	1	constraints	0
reactions	80	function definitions	0
global parameters	65	unit definitions	1
rules	3	initial assignments	0

Model Notes

This model is from the article:

Modelling the Role of the Hsp70/Hsp90 System in the Maintenance of Protein Homeostasis Proctor CJ, Lorimer IAJ PLoS ONE2011; 6(7): e22038. doi:10.1371/journal.pone.0022038,

¹EMBL-EBI, viji@ebi.ac.uk

²Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, UK, c.j.proctor@newcastle.ac.uk

Abstract:

Neurodegeneration is an age-related disorder which is characterised by the accumulation of aggregated protein and neuronal cell death. There are many different neurodegenerative diseases which are classified according to the specific proteins involved and the regions of the brain which are affected. Despite individual differences, there are common mechanisms at the sub-cellular level leading to loss of protein homeostasis. The two central systems in protein homeostasis are the chaperone system, which promotes correct protein folding, and the cellular proteolytic system, which degrades misfolded or damaged proteins. Since these systems and their interactions are very complex, we use mathematical modelling to aid understanding of the processes involved. The model developed in this study focuses on the role of Hsp70 (IPR00103) and Hsp90 (IPR001404) chaperones in preventing both protein aggregation and cell death. Simulations were performed under three different conditions: no stress; transient stress due to an increase in reactive oxygen species; and high stress due to sustained increases in reactive oxygen species. The model predicts that protein homeostasis can be maintained during short periods of stress. However, under long periods of stress, the chaperone system becomes overwhelmed and the probability of cell death pathways being activated increases. Simulations were also run in which cell death mediated by the JNK (P45983) and p38 (Q16539) pathways was inhibited. The model predicts that inhibiting either or both of these pathways may delay cell death but does not stop the aggregation process and that eventually cells die due to aggregated protein inhibiting proteasomal function. This problem can be overcome if the sequestration of aggregated protein into inclusion bodies is enhanced. This model predicts responses to reactive oxygen speciesmediated stress that are consistent with currently available experimental data. The model can be used to assess specific interventions to reduce cell death due to impaired protein homeostasis.

Note:

Simulations were performed under three different conditions: 1) normal condition (no stress), 2) moderate stress due to an increase in reactive oxygen species (ROS) i.e. ROS levels were increased by a factor of 4 at time=4hours for a period of 1 hour (not 2 hours as mentioned in the figure 5 legend of the reference publication. This is a typo in the paper and is clarified by the author) and 3) high stress due to sustained increase in reactive oxygen species (ROS) (here ROS increases with time).

The model that corresponds to the normal condition is submitted as a main model in the BioModels Database. The other two models, that corresponds to the moderate stress conditions and high stress conditions are available in SBML format as supporting files [go to Curation tab].

Supplementary figures S3 (normal condition), S4 (moderate stress condition) and S6 (high stress condition) are reproduced here.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Definition item

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

			1				
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cytosol		0000290	3	1	litre	$ \mathbf{Z} $	
nucleus		0000290	3	1	litre		

3.1 Compartment cytosol

This is a three dimensional compartment with a constant size of one litre.

SBO:0000290 physical compartment

3.2 Compartment nucleus

This is a three dimensional compartment with a constant size of one litre.

SBO:0000290 physical compartment

4 Species

This model contains 54 species. The boundary condition of four of these species is set to true so that these species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi- tion
NatP		cytosol	item		
MisP		cytosol	item		
Hsp70		cytosol	item		
Hsp90		cytosol	item		
Hsp70_dam		cytosol	item		
Hsp90_dam		cytosol	item		
Hsp90_Proteasom	e	cytosol	item		
Hsp70_Proteasom	е	cytosol	item		
Hsp70Client		cytosol	item		
Hsp90Client		cytosol	item		
Hsp70_Hsp70Clie	nt	cytosol	item		
Hsp90_Hsp90Clie	nt	cytosol	item		
Akt		cytosol	item		
Akt_Hsp90		cytosol	item		
CHIP		cytosol	item		
Akt_CHIP_Hsp90		cytosol	item		
Akt_Proteasome		cytosol	item		
Hsf1		cytosol	item		
Hsf1_Hsp90		cytosol	item		\Box
Hsp90_MisP		cytosol	item		
Hsp70_MisP		cytosol	item		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Hsf1_Hsf1_Hsf1		nucleus	item		
Hsf1_Hsf1_Hsf1_F		nucleus	item		
Hsf1_Hsf1		cytosol	item		
HSEHsp70		nucleus	item	\Box	
HSEHsp90		nucleus	item		
HSEHsp70_Hsf1-		nucleus	item		
_Hsf1_Hsf1					
HSEHsp70_Hsf1-		nucleus	item		
_Hsf1_Hsf1_P					
HSEHsp90_Hsf1-		nucleus	item		
_Hsf1_Hsf1					
HSEHsp90_Hsf1-		nucleus	item		
_Hsf1_Hsf1_P					
Jnk		cytosol	item		
Jnk_P		cytosol	item		
Ррх		cytosol	item		
Mkp1		cytosol	item		
Mkp1_P		cytosol	item		
Mkp1_Proteasome		cytosol	item		
Hsp70_Ppx		cytosol	item		
Pkc		cytosol	item		
p38		cytosol	item		
p38_P		cytosol	item		
Proteasome		cytosol	item		
MisP_Proteasome		cytosol	item		
AggP		cytosol	item		
SeqAggP		cytosol	item		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
AggP_Proteasome		cytosol	item		\Box
ROS		cytosol	item		
ATP		cytosol	item		\square
ADP		cytosol	item		\square
Source		cytosol	item		\square
Sink		cytosol	item		
p38Death		cytosol	item		
JNKDeath		cytosol	item		
PIDeath		cytosol	item		
CellDeath		cytosol	item		\Box

5 Parameters

This model contains 65 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
ksynNatP		0000009	0.042		Ø
kmisfold		0000009	$2 \cdot 10^{-6}$		$\overline{\mathbf{Z}}$
kbinMisPl	Prot	0000009	10^{-7}		$ \overline{\mathbf{Z}} $
kdegMisP		0000009	0.010		
kagg		0000009	10^{-8}		
kseqagg		0000009	$7 \cdot 10^{-7}$		
kbinAggPl	Prot	0000009	10^{-5}		
kbinHspM:	isp	0000009	$8 \cdot 10^{-6}$		
krelHspM:	isp	0000009	$8 \cdot 10^{-5}$		
krefold		0000009	$5.5 \cdot 10^{-4}$		\square
kbinHsf1	Hsp90	0000009	0.020		
krelHsf1	Hsp90	0000009	0.500		\mathbf{Z}
kdimerHs	f1	0000009	$8 \cdot 10^{-5}$		
ktrimerH	sf1	0000009	0.010		\square
kdetrime	rHsf1	0000009	0.500		
kdedimerl	Hsf1	0000009	0.500		
kbinHSEH	sf1	0000009	0.050		
krelHSEH	sf1	0000009	0.080		\square
kupregHsj	p	0000009	0.200		\mathbf{Z}
kbasalsyı	nHsp70	0000009	0.008		\mathbf{Z}
kbasalsyı	nHsp90	0000009	0.008		\square
kbinHsp7	OProt	0000009	$1.2 \cdot 10^{-8}$		
kbinHsp90	OProt	0000009	10^{-8}		
kdegHsp70	0	0000009	0.010		
kdegHsp90	0	0000009	0.010		\checkmark
kgenROS		0000009	0.010		
kremROS		0000009	0.001		\square
kbinHsp7	Oclient	0000009	$2 \cdot 10^{-4}$		\mathbf{Z}
krelHsp70	Oclient	0000009	5.000		\square
kbinHsp90	Oclient	0000009	$2 \cdot 10^{-4}$		
krelHsp90	Oclient	0000009	5.000		
kphosJnk		0000009	0.020		
kdephosJi	nkMkp1	0000009	0.050		
kbinHsp7	0Ppx	0000009	0.200		
krelHsp7	0Ppx	0000009	5.000		$ \overline{\mathbf{Z}} $
kphosHsf	1	0000009	0.030		$ \overline{\checkmark} $
kdephosH	sf1	0000009	0.010		

Id	Name	SBO	Value	Unit	Constant
kbinHSEPhosTr	iН	0000009	0.100		\overline{Z}
krelHSEPhosTr	iH	0000009	0.080		$\overline{\mathbf{Z}}$
kphosp38		0000009	0.020		
kdephosp38Mkp3	1	0000009	0.050		
kgenROSAggP		0000009	10^{-6}		
ksynAkt		0000009	0.002		
kbinAktHsp90		0000009	$3.7 \cdot 10^{-4}$		
krelAktHsp90		0000009	7.000		
kbinAktProt		0000009	$6 \cdot 10^{-8}$		
krelAktProt		0000009	10^{-8}		\square
kdegAkt		0000009	0.010		
kbinCHIP		0000009	$2 \cdot 10^{-7}$		
krelCHIP		0000009	10^{-8}		
ksynMkp1		0000009	10^{-5}		
kbinMkp1Prot		0000009	$9.6 \cdot 10^{-9}$		
kdegMkp1		0000009	0.010		
kphosMkp1		0000009	0.020		
kdephosMkp1		0000009	0.001		\square
kgenROSp38		0000009	10^{-4}		\square
kdamHsp		0000009	10^{-8}		\square
kp38death		0000009	$1.5\cdot 10^{-7}$		
kJnkdeath		0000009	$1.5 \cdot 10^{-7}$		
kPIdeath		0000009	$2 \cdot 10^{-8}$		\square
kp38act		0000009	1.000		
kalive		0000009	1.000		
tot_Hsp90			0.000		
tot_Hsp70			0.000		
tot_MisP			0.000		

6 Rules

This is an overview of three rules.

6.1 Rule tot_Hsp90

Rule tot_Hsp90 is an assignment rule for parameter tot_Hsp90:

$$tot_Hsp90 = Hsp90 + Hsp90_dam + Hsp90_Proteasome + Hsp90_Hsp90Client \\ + Akt_Hsp90 + Akt_CHIP_Hsp90 + Hsf1_Hsp90 + Hsp90_MisP$$
 (1)

Derived unit item

6.2 Rule tot_Hsp70

Rule tot_Hsp70 is an assignment rule for parameter tot_Hsp70:

$$tot_Hsp70 = Hsp70 + Hsp70_dam + Hsp70_Proteasome + Hsp70_Hsp70Client + Hsp70_MisP + Hsp70_Ppx$$
 (2)

Derived unit item

6.3 Rule tot_MisP

Rule tot_MisP is an assignment rule for parameter tot_MisP:

$$tot_MisP = MisP + Hsp70_MisP + Hsp90_MisP$$
 (3)

Derived unit item

7 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

7.1 Event DeathOfCell

CellDeath
$$\geq 1$$
 (4)

Assignment

$$kalive = 0 (5)$$

8 Reactions

This model contains 80 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id Name	Reaction Equation	SBO
1	ProteinSynthesis	Source → NatP	0000284
2	Misfolding	$NatP + ROS \longrightarrow MisP + ROS$	0000344
3	Hsp90MisPBinding	$MisP + Hsp90 \longrightarrow Hsp90_MisP$	0000526
4	Hsp90unsuccessulRefolding	$Hsp90_MisP \longrightarrow MisP + Hsp90$	0000180
5	Hsp90refolding	$Hsp90_MisP + ATP \longrightarrow Hsp90 + NatP + ADP$	0000344
6	Hsp70MisPBinding	$MisP + Hsp70 \longrightarrow Hsp70_MisP$	0000526
7	Hsp70unsuccessulRefolding	$Hsp70_MisP \longrightarrow MisP + Hsp70$	0000180
8	Hsp70refolding	$Hsp70_MisP + ATP \longrightarrow Hsp70 + NatP + ADP$	0000344
9	Hsp70ClientBinding	$Hsp70 + Hsp70Client \longrightarrow Hsp70_Hsp70Client$	0000526
10	Hsp70ClientRelease	$Hsp70_Hsp70Client \longrightarrow Hsp70 + Hsp70Client$	0000180
11	Hsp90ClientBinding	$Hsp90 + Hsp90Client \longrightarrow Hsp90_Hsp90Client$	0000526
12	Hsp90ClientRelease	$Hsp90_Hsp90Client \longrightarrow Hsp90 + Hsp90Client$	0000180
13	Hsp90HSF1Binding	$Hsp90 + Hsf1 \longrightarrow Hsf1_Hsp90$	0000526
14	Hsp90HSF1Release	$Hsf1_Hsp90 \longrightarrow Hsp90 + Hsf1$	0000180
15	dimerisation	$2 Hsf1 \longrightarrow Hsf1_Hsf1$	0000526
16	trimerisation	$Hsf1 + Hsf1 _Hsf1 \longrightarrow Hsf1 _Hsf1 _Hsf1$	0000526
17	deTrimerisation	$Hsf1_Hsf1_Hsf1 \longrightarrow Hsf1_Hsf1_Hsf1$	0000180
18	deDimerisation	$Hsf1_Hsf1 \longrightarrow 2 Hsf1$	0000180
19	HSE70TriHBinding	$Hsf1_Hsf1_Hsf1+HSEHsp70\longrightarrow HSEHsp70_Hsf$	1_ H000005 3 76
20	HSE70TriHRelease	The state of the s	+ 0000180
0.1		Hsf1_Hsf1_Hsf1	24 TTOMOREM
21	HSE90TriHBinding	$Hsf1_Hsf1_Hsf1+HSEHsp90 \longrightarrow HSEHsp90_Hsf$	1_H600005526

12	N⁰	Id Name	Reaction Equation	SBO
	22	HSE90TriHRelease	HSEHsp90_Hsf1_Hsf1 → HSEHsp90 + Hsf1_Hsf1_Hsf1	0000180
	23	Hsf1_Hsf1-	$Hsf1_Hsf1_Hsf1 + Pkc \longrightarrow Hsf1_Hsf1_Hsf1_P +$	0000216
		_Hsf1Phosphorylation	Pkc	
	24	Hsf1_Hsf1-	Hsf1_Hsf1_P +	0000330
		_Hsf1DePhosphorylation	$Hsp70_Ppx \longrightarrow Hsf1_Hsf1_Hsf1 + Hsp70_Ppx$	
	25	HSE70PhosTriHBinding	Hsf1_Hsf1_P +	0000526
			$HSEHsp70 \longrightarrow HSEHsp70_Hsf1_Hsf1_P$	
	26	HSE70PhosTriHRelease	$HSEHsp70_Hsf1_Hsf1_Hsf1_P \longrightarrow Hsf1_Hsf1_Hsf1$	P 00 00180
_			HSEHsp70	
Pro	27	HSE90PhosTriHBinding	Hsf1_Hsf1_P +	0000526
			$HSEHsp90 \longrightarrow HSEHsp90_Hsf1_Hsf1_P$	
2	28	HSE90PhosTriHRelease	$HSEHsp90_Hsf1_Hsf1_Hsf1_P \longrightarrow Hsf1_Hsf1_Hsf1$	P 00 00180
Produced by œMI NAT⊏X			HSEHsp90	
3	29	Hsp90BasalSynthesis	Source \longrightarrow Hsp90	0000184
<u>-</u>	30	Hsp90Upregulation	$ \begin{array}{c} HSEHsp90_Hsf1_Hsf1_Hsf1_P \longrightarrow HSEHsp90_Hsf1. \\ Hsp90 \end{array} $	_ HO690OH7 \$₹1_P
, <	31	Hsp90ProteasomeBinding	Hsp90+Proteasome → Hsp90_Proteasome	0000526
	32	Hsp90Degradation	Hsp90_Proteasome + ATP \longrightarrow Proteasome + ADP	0000179
	33	Hsp70BasalSynthesis	Source → Hsp70	0000184
	34	Hsp70Upregulation	HSEHsp70_Hsf1_Hsf1_P → HSEHsp70_Hsf1_	_H069010HT8171_P
			Hsp70	
	35	Hsp70ProteasomeBinding	$Hsp70 + Proteasome \longrightarrow Hsp70 Proteasome$	0000526
	36	Hsp70Degradation	$Hsp70_Proteasome + ATP \longrightarrow Proteasome + ADP$	0000179
	37	MisPProteasomeBinding1	$Hsp70_MisP + Proteasome \longrightarrow MisP_Proteasome +$	0000177
		-	Hsp70	
	38	MisPProteasomeBinding2	$Hsp90_MisP + Proteasome \longrightarrow MisP_Proteasome +$	0000177
			Hsp90	
	39	MisPDegradation	$MisP_Proteasome + ATP \longrightarrow Proteasome + ADP$	0000179

N⁰	Id Name	Reaction Equation	SBO
40	radicalFormation radicalFormation	$Source \longrightarrow ROS$	0000393
41	radicalScavengingradicalScavenging	$ROS \longrightarrow Sink$	0000179
42	Hsp70-	$Hsp70 + Ppx \longrightarrow Hsp70_Ppx$	0000526
	_PpxBinding		
43	Hsp70-	$Hsp70_Ppx \longrightarrow Hsp70 + Ppx$	0000180
	_PPXRelease		
44	JnkPhosphorylation	$ROS + Jnk \longrightarrow ROS + Jnk_P$	0000216
45	JNKDephosphorylatioByMkp1	$Jnk_P + Mkp1_P \longrightarrow Jnk + Mkp1_P$	0000330
46	p38Phosphorylation	$ROS + p38 \longrightarrow ROS + p38 P$	0000216
47	p38DePhosphorylationByMkp1	$p38_P + Mkp1_P \longrightarrow p38 + Mkp1_P$	0000330
48	Aggregation1	$2 \operatorname{MisP} \longrightarrow \operatorname{AggP}$	0000177
49	SequesteringOfAggregate	$MisP + AggP \longrightarrow SeqAggP$	0000177
50	InclusionGrowth	$SeqAggP + MisP \longrightarrow 2 SeqAggP$	0000177
51	ProteasomeInhibtion	$AggP+Proteasome \longrightarrow AggP_Proteasome$	0000177
52	ROSgenerationSmallAggP	$AggP \longrightarrow AggP + ROS$	0000393
53	ROSgenerationAggPProteasome	$AggP_Proteasome \longrightarrow AggP_Proteasome + ROS$	0000393
54	AktSynthesis	Source \longrightarrow Akt	0000184
55	Hsp90AktBinding	$Hsp90 + Akt \longrightarrow Akt_Hsp90$	0000526
56	Hsp90AktRelease	$Akt_Hsp90 \longrightarrow Akt + Hsp90$	0000180
57	CHIPbinding	$CHIP + Akt_Hsp90 \longrightarrow Akt_CHIP_Hsp90$	0000526
58	CHIPrelease	$Akt_CHIP_Hsp90 \longrightarrow CHIP + Akt_Hsp90$	0000526
59	AktProteasomeBinding	Akt_CHIP_Hsp90 +	0000177
		Proteasome \longrightarrow Akt_Proteasome + CHIP + Hsp90	
60	AktProteasomeRelease	$Akt_Proteasome \longrightarrow Akt+Proteasome$	0000180
61	AktDegradation	$Akt_Proteasome + ATP \longrightarrow Proteasome + ADP$	0000179
62	Mkp1Synthesis	Source \longrightarrow Mkp1	0000184
63	Mkp1ProteasomeBinding	$Mkp1 + Proteasome \longrightarrow Mkp1_Proteasome$	0000177
64	Mkp1Degradation	$Mkp1_Proteasome + ATP \longrightarrow Proteasome + ADP$	0000179
65	Mkp1Phosphorylation	$Mkp1 + Hsp70 \longrightarrow Mkp1 P + Hsp70$	0000216

N⁰	Id Name	Reaction Equation	SBO
66	Mkp1Dephosphorylation	$Mkp1-P+ROS \longrightarrow Mkp1+ROS$	0000330
67	p38ROSproduction	$p38_P \longrightarrow p38_P + ROS$	0000393
68	Hsp70Damage	$Hsp70 + ROS \longrightarrow Hsp70_dam + ROS$	0000177
69	Hsp90Damage	$Hsp90 + ROS \longrightarrow Hsp90_dam + ROS$	0000177
70	Hsp70DamProteasomeBinding	$Hsp70_dam + Proteasome \longrightarrow Hsp70_Proteasome$	0000177
71	Hsp90DamProteasomeBinding	$Hsp90_dam + Proteasome \longrightarrow Hsp90_Proteasome$	0000177
72	Hsp70DamAggregation1	$2 \operatorname{Hsp70_dam} \longrightarrow \operatorname{AggP}$	0000177
73	Hsp70DamInclusionFormation	$Hsp70_dam + AggP \longrightarrow SeqAggP$	0000177
74	Hsp90DamAggregation	$2 \operatorname{Hsp}90_{-}\operatorname{dam} \longrightarrow \operatorname{AggP}$	0000177
75	Hsp90DamInclusionFormation	$Hsp90_dam + AggP \longrightarrow SeqAggP$	0000177
76	Hsp70DamSequestering	$Hsp70_dam + SeqAggP \longrightarrow 2 SeqAggP$	0000177
77	Hsp90DamSequestering	$Hsp90_dam + SeqAggP \longrightarrow 2 SeqAggP$	0000177
78	p38CellDeath	$p38_P \longrightarrow p38_P + p38Death + CellDeath$	0000179
79	JnkCellDeath	$Jnk_P \longrightarrow Jnk_P + JNKDeath + CellDeath$	0000179
80	PICellDeath	$AggP_Proteasome \longrightarrow AggP_Proteasome +$	0000179
		PIDeath + CellDeath	

8.1 Reaction ProteinSynthesis

This is an irreversible reaction of one reactant forming one product.

SBO:0000284 transporter

Reaction equation

Source
$$\longrightarrow$$
 NatP (6)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
Source		

Product

Table 7: Properties of each product.

Id	Name	SBO
NatP		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{ksynNatP} \cdot \text{Source} \cdot \text{kalive}$$
 (7)

8.2 Reaction Misfolding

This is an irreversible reaction of two reactants forming two products.

SBO:0000344 molecular interaction

Reaction equation

$$NatP + ROS \longrightarrow MisP + ROS$$
 (8)

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
NatP		
ROS		

Products

Table 9: Properties of each product.

Id	Name	SBO
MisP		
ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{kmisfold} \cdot \text{NatP} \cdot \text{ROS} \cdot \text{kalive} \tag{9}$$

8.3 Reaction Hsp90MisPBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$MisP + Hsp90 \longrightarrow Hsp90_MisP \tag{10}$$

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
MisP		
Hsp90		

Product

Table 11: Properties of each product.

Id	Name	SBO
Hsp90_MisP		

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{kbinHspMisp} \cdot \text{MisP} \cdot \text{Hsp90} \cdot \text{kalive}$$
 (11)

8.4 Reaction Hsp90unsuccessulRefolding

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$Hsp90_MisP \longrightarrow MisP + Hsp90$$
 (12)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
Hsp90_MisP		

Products

Table 13: Properties of each product.

Id	Name	SBO
MisP		
Hsp90		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{krelHspMisp} \cdot \text{Hsp90_MisP} \cdot \text{kalive}$$
 (13)

8.5 Reaction Hsp90refolding

This is an irreversible reaction of two reactants forming three products.

SBO:0000344 molecular interaction

Reaction equation

$$Hsp90_MisP + ATP \longrightarrow Hsp90 + NatP + ADP$$
 (14)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
Hsp90_MisP ATP		

Products

Table 15: Properties of each product.

Id	Name	SBO
Hsp90		
NatP		
ADP		

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \frac{\text{krefold} \cdot \text{Hsp}90_\text{MisP} \cdot \text{kalive} \cdot \text{ATP}}{5000 + \text{ATP}}$$
 (15)

8.6 Reaction Hsp70MisPBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$MisP + Hsp70 \longrightarrow Hsp70_MisP \tag{16}$$

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO
MisP		
Hsp70		

Product

Table 17: Properties of each product.

Id	Name	SBO
Hsp70_MisP		

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{kbinHspMisp} \cdot \text{MisP} \cdot \text{Hsp70} \cdot \text{kalive}$$
 (17)

8.7 Reaction Hsp70unsuccessulRefolding

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$Hsp70_MisP \longrightarrow MisP + Hsp70$$
 (18)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
Hsp70_MisP		

Products

Table 19: Properties of each product.

Id	Name	SBO
MisP		

Id	Name	SBO
Hsp70		

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{krelHspMisp} \cdot \text{Hsp70_MisP} \cdot \text{kalive}$$
 (19)

8.8 Reaction Hsp70refolding

This is an irreversible reaction of two reactants forming three products.

SBO:0000344 molecular interaction

Reaction equation

$$Hsp70_MisP + ATP \longrightarrow Hsp70 + NatP + ADP$$
 (20)

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
Hsp70_MisP		
ATP		

Products

Table 21: Properties of each product.

Id	Name	SBO
Hsp70		
NatP		
ADP		

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \frac{\text{krefold} \cdot \text{Hsp70_MisP} \cdot \text{kalive} \cdot \text{ATP}}{5000 + \text{ATP}}$$
 (21)

8.9 Reaction Hsp70ClientBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsp70 + Hsp70Client \longrightarrow Hsp70_Hsp70Client$$
 (22)

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
Hsp70		
Hsp70Client		

Product

Table 23: Properties of each product.

Id	Name	SBO
Hsp70_Hsp70Client		

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{kbinHsp70client} \cdot \text{Hsp70Client} \cdot \text{kalive}$$
 (23)

8.10 Reaction Hsp70ClientRelease

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$Hsp70_Hsp70Client \longrightarrow Hsp70 + Hsp70Client$$
 (24)

Reactant

Table 24: Properties of each reactant.

Tueste 2 Treperines es		
Id	Name	SBO
Hsp70_Hsp70Client		

Products

Table 25: Properties of each product.

Id	Name	SBO
Hsp70 Hsp70Client		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{krelHsp70client} \cdot \text{Hsp70_Hsp70Client} \cdot \text{kalive}$$
 (25)

8.11 Reaction Hsp90ClientBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsp90 + Hsp90Client \longrightarrow Hsp90_Hsp90Client$$
 (26)

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
Hsp90		
Hsp90Client		

Product

Table 27	: Properties	of each	product.
racic 27	. I reperties	or cacin	product.

Tueste 27: Treperties es	r cacii pro	
Id	Name	SBO
Hsp90_Hsp90Client		

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{kbinHsp90client} \cdot \text{Hsp90} \cdot \text{Hsp90Client} \cdot \text{kalive}$$
 (27)

8.12 Reaction Hsp90ClientRelease

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$Hsp90_Hsp90Client \longrightarrow Hsp90+Hsp90Client$$
 (28)

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
Hsp90_Hsp90Client		

Products

Table 29: Properties of each product.

Id	Name	SBO
Hsp90 Hsp90Client		

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{krelHsp90client} \cdot \text{Hsp90_Hsp90Client} \cdot \text{kalive}$$
 (29)

8.13 Reaction Hsp90HSF1Binding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsp90 + Hsf1 \longrightarrow Hsf1 _ Hsp90$$
 (30)

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
Hsp90 Hsf1		

Product

Table 31: Properties of each product.

Id	Name	SBO
Hsf1_Hsp90		

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{kbinHsf1Hsp90} \cdot \text{Hsp90} \cdot \text{Hsf1} \cdot \text{kalive}$$
 (31)

8.14 Reaction Hsp90HSF1Release

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$Hsf1_Hsp90 \longrightarrow Hsp90 + Hsf1$$
 (32)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
Hsf1_Hsp90		

Products

Table 33: Properties of each product.

Id	Name	SBO
Hsp90 Hsf1		

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{krelHsf1Hsp90} \cdot \text{Hsf1_Hsp90} \cdot \text{kalive}$$
 (33)

8.15 Reaction dimerisation

This is an irreversible reaction of one reactant forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$2Hsf1 \longrightarrow Hsf1_Hsf1$$
 (34)

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
Hsf1		

Product

Table 35: Properties of each product.

Id	Name	SBO
Hsf1_Hsf1		

Id	Name	SBO

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \frac{(\text{Hsf1} - 1) \cdot \text{kdimerHsf1} \cdot \text{kalive} \cdot \text{Hsf1}}{2}$$
 (35)

8.16 Reaction trimerisation

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsf1 + Hsf1 _Hsf1 \longrightarrow Hsf1 _Hsf1 _Hsf1$$
 (36)

Reactants

Table 36: Properties of each reactant.

Id	Name	SBO
Hsf1		
Hsf1_Hsf1		

Product

Table 37: Properties of each product.

Id	Name	SBO
Hsf1_Hsf1_Hsf1		

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{ktrimerHsf1} \cdot \text{Hsf1} \cdot \text{Hsf1} \cdot \text{kalive}$$
 (37)

8.17 Reaction deTrimerisation

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$Hsf1_Hsf1_Hsf1 \longrightarrow Hsf1+Hsf1_Hsf1$$
 (38)

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
Hsf1_Hsf1_Hsf1		

Products

Table 39: Properties of each product.

Id	Name	SBO
Hsf1		
Hsf1_Hsf1		

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{kdetrimerHsf1} \cdot \text{Hsf1} \cdot \text{Hsf1} \cdot \text{kalive}$$
 (39)

8.18 Reaction deDimerisation

This is an irreversible reaction of one reactant forming one product.

SBO:0000180 dissociation

Reaction equation

$$Hsf1_Hsf1 \longrightarrow 2Hsf1$$
 (40)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
Hsf1_Hsf1		

Product

Table 41: Properties of each product.

Id	Name	SBO
Hsf1		

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{kdedimerHsf1} \cdot \text{Hsf1} \cdot \text{Hsf1} \cdot \text{kalive}$$
 (41)

8.19 Reaction HSE70TriHBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsf1_Hsf1_Hsf1 + HSEHsp70 \longrightarrow HSEHsp70_Hsf1_Hsf1_Hsf1$$
 (42)

Reactants

Table 42: Properties of each reactant.

Name	SBO
	Name

Product

Table 43: Properties of each product.

	•	
Id	Name	SBO
HSEHsp70_Hsf1_Hsf1_Hsf1		

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{kbinHSEHsf1} \cdot \text{HSEHsp70} \cdot \text{Hsf1_Hsf1_Hsf1} \cdot \text{kalive}$$
 (43)

8.20 Reaction HSE70TriHRelease

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

Reactant

Table 44: Properties of each reactant.

Tuble 11: 11operties of each reactant.		
Id	Name	SBO
HSEHsp70_Hsf1_Hsf1_Hsf1		

Products

Table 45: Properties of each product.

Id	Name	SBO
HSEHsp70 Hsf1_Hsf1_Hsf1		

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{krelHSEHsf1} \cdot \text{HSEHsp70_Hsf1_Hsf1_Hsf1} \cdot \text{kalive}$$
 (45)

8.21 Reaction HSE90TriHBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsf1_Hsf1_Hsf1+HSEHsp90\longrightarrow HSEHsp90_Hsf1_Hsf1_Hsf1 \qquad \qquad (46)$$

Reactants

Table 40. I roperties of each reactant.			
Id	Name	SBO	
Hsf1_Hsf1_Hsf1 HSEHsp90			

Product

Table 47: Properties of each product.

Id	Name	SBO
HSEHsp90_Hsf1_Hsf1_Hsf1		

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{kbinHSEHsf1} \cdot \text{HSEHsp90} \cdot \text{Hsf1_Hsf1_Hsf1} \cdot \text{kalive}$$
 (47)

8.22 Reaction HSE90TriHRelease

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$HSEHsp90_Hsf1_Hsf1_Hsf1_Hsf1_Hsf1_Hsf1_Hsf1$$
 (48)

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
HSEHsp90_Hsf1_Hsf1_Hsf1		

Products

Table 49: Properties of each product.

Id	Name	SBO
HSEHsp90		

Id	Name	SBO
Hsf1_Hsf1_Hsf1		

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{krelHSEHsf1} \cdot \text{HSEHsp90_Hsf1_Hsf1_Hsf1} \cdot \text{kalive}$$
 (49)

8.23 Reaction Hsf1_Hsf1_Hsf1Phosphorylation

This is an irreversible reaction of two reactants forming two products.

SBO:0000216 phosphorylation

Reaction equation

$$Hsf1_Hsf1_Hsf1_P+Pkc \longrightarrow Hsf1_Hsf1_P+Pkc$$
 (50)

Reactants

Table 50: Properties of each reactant.

Id Name SBO

Hsf1_Hsf1_Hsf1
Pkc

Products

Table 51: Properties of each product.

Id	Name	SBO
Hsf1_Hsf1_Hsf1_P		
Pkc		

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{kphosHsf1} \cdot \text{Hsf1} \cdot \text{Hsf1} \cdot \text{Pkc} \cdot \text{kalive}$$
 (51)

8.24 Reaction Hsf1_Hsf1_Hsf1DePhosphorylation

This is an irreversible reaction of two reactants forming two products.

SBO:0000330 dephosphorylation

Reaction equation

$$Hsf1_Hsf1_Hsf1_P + Hsp70_Ppx \longrightarrow Hsf1_Hsf1_Hsf1 + Hsp70_Ppx$$
 (52)

Reactants

Table 52: Properties of each reactant.

Id Name SBO

Hsf1_Hsf1_P
Hsp70_Ppx

Products

Table 53: Properties of each product.

Id	Name	SBO
Hsf1_Hsf1_Hsf1		
Hsp70_Ppx		

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{kdephosHsf1} \cdot \text{Hsf1} \cdot \text{Hsf1} \cdot \text{Hsp70} \cdot \text{Ppx} \cdot \text{kalive}$$
 (53)

8.25 Reaction HSE70PhosTriHBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsf1_Hsf1_Hsf1_P + HSEHsp70 \longrightarrow HSEHsp70_Hsf1_Hsf1_Hsf1_P \tag{54}$$

Reactants

ВО

Product

Table 55: Properties of each product.

	1	
Id	Name	SBO
HSEHsp70_Hsf1_Hsf1_Hsf1_P		

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{kbinHSEPhosTriH} \cdot \text{HSEHsp70} \cdot \text{Hsf1_Hsf1_P} \cdot \text{kalive}$$
 (55)

8.26 Reaction HSE70PhosTriHRelease

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$HSEHsp70_Hsf1_Hsf1_Hsf1_P \longrightarrow Hsf1_Hsf1_Hsf1_P + HSEHsp70$$
 (56)

Reactant

Table 56: Properties of each reactant.

Id	Name	SBO
HSEHsp70_Hsf1_Hsf1_Hsf1_P		

Products

Table 57: Properties of each product.

Id	Name	SBO
Hsf1_Hsf1_Hsf1_P		

Id	Name	SBO
HSEHsp70		

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{krelHSEPhosTriH} \cdot \text{HSEHsp70_Hsf1_Hsf1_Hsf1_P} \cdot \text{kalive}$$
 (57)

8.27 Reaction HSE90PhosTriHBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsf1_Hsf1_Hsf1_P + HSEHsp90 \longrightarrow HSEHsp90_Hsf1_Hsf1_Hsf1_P$$
 (58)

Reactants

Table 58: Properties of each reactant.		
Id	Name	SBO
Hsf1_Hsf1_Hsf1_P		_
HSEHsp90		

Product

Table 59: Properties of each product.

Id	Name	SBO
HSEHsp90_Hsf1_Hsf1_Hsf1_P		

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{kbinHSEPhosTriH} \cdot \text{HSEHsp90} \cdot \text{Hsf1_Hsf1_P} \cdot \text{kalive}$$
 (59)

8.28 Reaction HSE90PhosTriHRelease

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$HSEHsp90_Hsf1_Hsf1_Hsf1_P \longrightarrow Hsf1_Hsf1_P + HSEHsp90$$
 (60)

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
HSEHsp90_Hsf1_Hsf1_Hsf1_P		

Products

Table 61: Properties of each product.

	F	
Id	Name	SBO
Hsf1_Hsf1_Hsf1_P		
HSEHsp90		

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{krelHSEPhosTriH} \cdot \text{HSEHsp90_Hsf1_Hsf1_Hsf1_P} \cdot \text{kalive}$$
 (61)

8.29 Reaction Hsp90BasalSynthesis

This is an irreversible reaction of one reactant forming one product.

SBO:0000184 translation

Reaction equation

$$Source \longrightarrow Hsp90 \tag{62}$$

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
Source		

Product

Table 63: Properties of each product.

Id	Name	SBO
Hsp90		

Kinetic Law

Derived unit not available

$$v_{29} = \text{kbasalsynHsp}90 \cdot \text{kalive}$$
 (63)

8.30 Reaction Hsp90Upregulation

This is an irreversible reaction of one reactant forming two products.

SBO:0000177 non-covalent binding

Reaction equation

$$HSEHsp90_Hsf1_Hsf1_Hsf1_P \longrightarrow HSEHsp90_Hsf1_Hsf1_Hsf1_P + Hsp90 \tag{64}$$

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
HSEHsp90_Hsf1_Hsf1_Hsf1_P		

Products

Table 65: Properties of each product.

Id	Name	SBO
HSEHsp90_Hsf1_Hsf1_Hsf1_P Hsp90		

Kinetic Law

$$v_{30} = \text{kupregHsp} \cdot \text{HSEHsp90_Hsf1_Hsf1_P} \cdot \text{kalive}$$
 (65)

8.31 Reaction Hsp90ProteasomeBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsp90 + Proteasome \longrightarrow Hsp90 Proteasome$$
 (66)

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
Hsp90		
Proteasome		

Product

Table 67: Properties of each product.

Id	Name	SBO
Hsp90_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{kbinHsp90Prot} \cdot \text{Hsp90} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (67)

8.32 Reaction Hsp90Degradation

This is an irreversible reaction of two reactants forming two products.

SBO:0000179 degradation

Reaction equation

$$Hsp90$$
_Proteasome + ATP \longrightarrow Proteasome + ADP (68)

Reactants

Table 68: Properties of each reactant.

Table 08. Properties of each feactant.			
Id	Name	SBO	
Hsp90_Proteasome			

Products

Table 69: Properties of each product.

Id	Name	SBO
Proteasome		
ADP		

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = \frac{\text{kdegHsp90} \cdot \text{Hsp90_Proteasome} \cdot \text{kalive} \cdot \text{ATP}}{5000 + \text{ATP}}$$
(69)

8.33 Reaction Hsp70BasalSynthesis

This is an irreversible reaction of one reactant forming one product.

SBO:0000184 translation

Reaction equation

Source
$$\longrightarrow$$
 Hsp70 (70)

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
Source		

Product

Table 71: Properties of each product.

Id	Name	SBO
Hsp70		

Derived unit not available

$$v_{33} = \text{kbasalsynHsp70} \cdot \text{kalive}$$
 (71)

8.34 Reaction Hsp70Upregulation

This is an irreversible reaction of one reactant forming two products.

SBO:0000177 non-covalent binding

Reaction equation

$$HSEHsp70_Hsf1_Hsf1_Hsf1_P \longrightarrow HSEHsp70_Hsf1_Hsf1_Hsf1_P + Hsp70 \tag{72}$$

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
HSEHsp70_Hsf1_Hsf1_Hsf1_P		

Products

Table 73: Properties of each product.

Id	Name	SBO
HSEHsp70_Hsf1_Hsf1_Hsf1_P		
Hsp70		

Kinetic Law

$$v_{34} = \text{kupregHsp} \cdot \text{HSEHsp70_Hsf1_Hsf1_P} \cdot \text{kalive}$$
 (73)

8.35 Reaction Hsp70ProteasomeBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsp70 + Proteasome \longrightarrow Hsp70 Proteasome$$
 (74)

Reactants

Table 74: Properties of each reactant.

Id	Name	SBO
Hsp70		
Proteasome		

Product

Table 75: Properties of each product.

Id	Name	SBO
Hsp70_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{kbinHsp70Prot} \cdot \text{Hsp70} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (75)

8.36 Reaction Hsp70Degradation

This is an irreversible reaction of two reactants forming two products.

SBO:0000179 degradation

Reaction equation

$$Hsp70$$
_Proteasome + ATP \longrightarrow Proteasome + ADP (76)

Reactants

Table 76: Pr	operties of	each reactant.
--------------	-------------	----------------

Table 70. I Toperties of Cacil Teactaint.		
Id	Name	SBO
Hsp70_Proteasome		

Products

Table 77: Properties of each product.

Id	Name	SBO
Proteasome		
ADP		

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \frac{\text{kdegHsp70} \cdot \text{Hsp70_Proteasome} \cdot \text{kalive} \cdot \text{ATP}}{5000 + \text{ATP}}$$
(77)

8.37 Reaction MisPProteasomeBinding1

This is an irreversible reaction of two reactants forming two products.

SBO:0000177 non-covalent binding

Reaction equation

$$Hsp70_MisP + Proteasome \longrightarrow MisP_Proteasome + Hsp70$$
 (78)

Reactants

Table 78: Properties of each reactant.

Id	Name	SBO
Hsp70_MisP		
Proteasome		

Products

Table 79:	Properties	of each	product.

Table 79. Properties of each product.		
Id	Name	SBO
MisP_Proteasome Hsp70		

Derived unit contains undeclared units

$$v_{37} = \text{kbinMisPProt} \cdot \text{Hsp70_MisP} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (79)

8.38 Reaction MisPProteasomeBinding2

This is an irreversible reaction of two reactants forming two products.

SBO:0000177 non-covalent binding

Reaction equation

$$Hsp90_MisP + Proteasome \longrightarrow MisP_Proteasome + Hsp90$$
 (80)

Reactants

Table 80: Properties of each reactant.

Id	Name	SBO
Hsp90_MisP		
Proteasome		

Products

Table 81: Properties of each product.

Id	Name	SBO
MisP_Proteasome		
Hsp90		

Kinetic Law

$$v_{38} = \text{kbinMisPProt} \cdot \text{Hsp90_MisP} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (81)

8.39 Reaction MisPDegradation

This is an irreversible reaction of two reactants forming two products.

SBO:0000179 degradation

Reaction equation

$$MisP_Proteasome + ATP \longrightarrow Proteasome + ADP$$
 (82)

Reactants

Table 82: Properties of each reactant.

Id Name SBO

MisP_Proteasome ATP

Products

Table 83: Properties of each product.

Id	Name	SBO
Proteasome		
ADP		

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \frac{\text{kdegMisP} \cdot \text{MisP_Proteasome} \cdot \text{kalive} \cdot \text{ATP}}{5000 + \text{ATP}}$$
(83)

8.40 Reaction radicalFormation

This is an irreversible reaction of one reactant forming one product.

Name radicalFormation

SBO:0000393 production

Reaction equation

Source
$$\longrightarrow$$
 ROS (84)

Reactant

Table 84: Properties of each reactant.

Id	Name	SBO
Source		

Product

Table 85: Properties of each product.

Id	Name	SBO
ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{kgenROS} \cdot \text{Source} \cdot \text{kalive}$$
 (85)

8.41 Reaction radicalScavenging

This is an irreversible reaction of one reactant forming one product.

Name radicalScavenging

SBO:0000179 degradation

Reaction equation

$$ROS \longrightarrow Sink$$
 (86)

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
ROS		

Product

Table 87: Properties of each product.

Id	Name	SBO
Sink		

Derived unit contains undeclared units

$$v_{41} = \text{kremROS} \cdot \text{ROS} \cdot \text{kalive}$$
 (87)

8.42 Reaction Hsp70_PpxBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsp70 + Ppx \longrightarrow Hsp70_Ppx$$
 (88)

Reactants

Table 88: Properties of each reactant.

Id	Name	SBO
Hsp70		
Ppx		

Product

Table 89: Properties of each product.

Id	Name	SBO
Hsp70_Ppx		

Kinetic Law

$$v_{42} = \text{kbinHsp70Ppx} \cdot \text{Hsp70} \cdot \text{Ppx} \cdot \text{kalive}$$
 (89)

8.43 Reaction Hsp70_PPXRelease

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$Hsp70_Ppx \longrightarrow Hsp70 + Ppx \tag{90}$$

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
Hsp70_Ppx		

Products

Table 91: Properties of each product.

lame	SBO
	Name

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = \text{krelHsp70Ppx} \cdot \text{Hsp70_Ppx} \cdot \text{kalive}$$
 (91)

8.44 Reaction JnkPhosphorylation

This is an irreversible reaction of two reactants forming two products.

SBO:0000216 phosphorylation

Reaction equation

$$ROS + Jnk \longrightarrow ROS + Jnk_P \tag{92}$$

Reactants

Table 92: Properties of each reactant.

Id	Name	SBO
ROS		
Jnk		

Products

Table 93: Properties of each product.

Id	Name	SBO
ROS		
${\tt Jnk_P}$		

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = \text{kphosJnk} \cdot \text{Jnk} \cdot \text{ROS} \cdot \text{kalive}$$
 (93)

$\textbf{8.45 Reaction} \ \texttt{JNKDephosphorylatioByMkp1}$

This is an irreversible reaction of two reactants forming two products.

SBO:0000330 dephosphorylation

Reaction equation

$$Jnk_P + Mkp1_P \longrightarrow Jnk + Mkp1_P$$
 (94)

Reactants

Table 94: Properties of each reactant.

Id	Name	SBO
Jnk_P		
Mkp1_P		

Products

Table 95: Properties of each product.

Id	Name	SBO
Jnk		
Mkp1_P		

Derived unit contains undeclared units

$$v_{45} = kdephosJnkMkp1 \cdot Jnk_P \cdot Mkp1_P \cdot kalive$$
 (95)

8.46 Reaction p38Phosphorylation

This is an irreversible reaction of two reactants forming two products.

SBO:0000216 phosphorylation

Reaction equation

$$ROS + p38 \longrightarrow ROS + p38 P$$
 (96)

Reactants

Table 96: Properties of each reactant.

Id	Name	SBO
ROS		
p38		

Products

Table 97: Properties of each product.

Id	Name	SBO
ROS		
p38_P		

Kinetic Law

$$v_{46} = \text{kphosp38} \cdot \text{ROS} \cdot \text{p38} \cdot \text{kalive}$$
 (97)

8.47 Reaction p38DePhosphorylationByMkp1

This is an irreversible reaction of two reactants forming two products.

SBO:0000330 dephosphorylation

Reaction equation

$$p38_P + Mkp1_P \longrightarrow p38 + Mkp1_P$$
 (98)

Reactants

Table 98: Properties of each reactant.

Id	Name	SBO
p38_P Mkp1_P		

Products

Table 99: Properties of each product.

Id	Name	SBO
p38		
Mkp1_P		

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = \text{kdephosp38Mkp1} \cdot \text{p38} \cdot \text{P} \cdot \text{Mkp1} \cdot \text{P} \cdot \text{kalive}$$
 (99)

8.48 Reaction Aggregation1

This is an irreversible reaction of one reactant forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$2 \text{MisP} \longrightarrow \text{AggP}$$
 (100)

Reactant

Table 100: Properties of each reactant.

Id	Name	SBO
MisP		

Product

Table 101: Properties of each product.

Id	Name	SBO
AggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = \text{kagg} \cdot \text{MisP} \cdot (\text{MisP} - 1) \cdot 0.5 \cdot \text{kalive}$$
 (101)

8.49 Reaction SequesteringOfAggregate

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$MisP + AggP \longrightarrow SeqAggP$$
 (102)

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
MisP		
AggP		

Product

Table 103: Properties of each product.

Id	Name	SBO
SeqAggP		

Id	Name	SBO

Derived unit contains undeclared units

$$v_{49} = \text{kagg} \cdot \text{MisP} \cdot \text{AggP} \cdot \text{kalive}$$
 (103)

8.50 Reaction InclusionGrowth

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$SeqAggP + MisP \longrightarrow 2 SeqAggP \tag{104}$$

Reactants

Table 104: Properties of each reactant.

Id	Name	SBO
SeqAggP		
MisP		

Product

Table 105: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{50} = \text{kseqagg} \cdot \text{SeqAggP} \cdot \text{MisP} \cdot \text{kalive}$$
 (105)

8.51 Reaction ProteasomeInhibtion

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$AggP + Proteasome \longrightarrow AggP Proteasome$$
 (106)

Reactants

Table 106: Properties of each reactant.

Id	Name	SBO
AggP Proteasome		

Product

Table 107: Properties of each product.

Id	Name	SBO
AggP_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \text{kbinAggPProt} \cdot \text{AggP} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (107)

8.52 Reaction ROSgenerationSmallAggP

This is an irreversible reaction of one reactant forming two products.

SBO:0000393 production

Reaction equation

$$AggP \longrightarrow AggP + ROS \tag{108}$$

Reactant

Table 108: Properties of each reactant.

Id	Name	SBO
AggP		

Products

Table 109: Properties of each product.

Id	Name	SBO
AggP ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = \text{kgenROSAggP} \cdot \text{AggP} \cdot \text{kalive}$$
 (109)

8.53 Reaction ROSgenerationAggPProteasome

This is an irreversible reaction of one reactant forming two products.

SBO:0000393 production

Reaction equation

$$AggP_Proteasome \longrightarrow AggP_Proteasome + ROS$$
 (110)

Reactant

Table 110: Properties of each reactant.

Id	Name	SBO
AggP_Proteasome		

Products

Table 111: Properties of each product.

Id	Name	SBO
AggP_Proteasome ROS		

Kinetic Law

$$v_{53} = \text{kgenROSAggP} \cdot \text{AggP_Proteasome} \cdot \text{kalive}$$
 (111)

8.54 Reaction AktSynthesis

This is an irreversible reaction of one reactant forming one product.

SBO:0000184 translation

Reaction equation

Source
$$\longrightarrow$$
 Akt (112)

Reactant

Table 112: Properties of each reactant.

Id	Name	SBO
Source		

Product

Table 113: Properties of each product.

Id	Name	SBO
Akt		

Kinetic Law

Derived unit contains undeclared units

$$v_{54} = \text{ksynAkt} \cdot \text{Source} \cdot \text{kalive}$$
 (113)

8.55 Reaction Hsp90AktBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$Hsp90 + Akt \longrightarrow Akt_Hsp90$$
 (114)

Reactants

Table 114: Properties of each reactant.

Id	Name	SBO
Hsp90 Akt		

Product

Table 115: Properties of each product.

Id	Name	SBO
Akt_Hsp90		

Kinetic Law

Derived unit contains undeclared units

$$v_{55} = \text{kbinAktHsp90} \cdot \text{Hsp90} \cdot \text{Akt} \cdot \text{kalive}$$
 (115)

8.56 Reaction Hsp90AktRelease

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

$$Akt_Hsp90 \longrightarrow Akt + Hsp90 \tag{116}$$

Reactant

Table 116: Properties of each reactant.

Id	Name	SBO
Akt_Hsp90		

Products

Table 117: Properties of each product.

Id	Name	SBO
Akt		

Id	Name	SBO
Hsp90		

Derived unit contains undeclared units

$$v_{56} = \text{krelAktHsp}90 \cdot \text{Akt_Hsp}90 \cdot \text{kalive}$$
 (117)

8.57 Reaction CHIPbinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$CHIP + Akt_Hsp90 \longrightarrow Akt_CHIP_Hsp90$$
 (118)

Reactants

Table 118: Properties of each reactant.

Id	Name	SBO
CHIP		
Akt_Hsp90		

Product

Table 119: Properties of each product.

Id	Name	SBO
Akt_CHIP_Hsp90		

Kinetic Law

Derived unit contains undeclared units

$$v_{57} = \text{kbinCHIP} \cdot \text{CHIP} \cdot \text{Akt_Hsp90} \cdot \text{kalive}$$
 (119)

8.58 Reaction CHIPrelease

This is an irreversible reaction of one reactant forming two products.

SBO:0000526 protein complex formation

Reaction equation

$$Akt_CHIP_Hsp90 \longrightarrow CHIP + Akt_Hsp90$$
 (120)

Reactant

Table 120: Properties of each reactant.

Id	Name	SBO
Akt_CHIP_Hsp90		

Products

Table 121: Properties of each product.

Id	Name	SBO
CHIP		
Akt_Hsp90		

Kinetic Law

Derived unit contains undeclared units

$$v_{58} = \text{krelCHIP} \cdot \text{Akt_CHIP_Hsp}90 \cdot \text{kalive}$$
 (121)

8.59 Reaction AktProteasomeBinding

This is an irreversible reaction of two reactants forming three products.

SBO:0000177 non-covalent binding

Reaction equation

$$Akt_CHIP_Hsp90 + Proteasome \longrightarrow Akt_Proteasome + CHIP + Hsp90 \tag{122}$$

Reactants

Table 122: Properties of each reactant.

Id	Name	SBO
Akt_CHIP_Hsp90		
Proteasome		

Products

Table 123: Properties of each product.

I		1
Id	Name	SBO
Akt_Proteasome		_
CHIP		
Hsp90		

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = \text{kbinAktProt} \cdot \text{Akt_CHIP_Hsp}90 \cdot \text{Proteasome} \cdot \text{kalive}$$
 (123)

8.60 Reaction AktProteasomeRelease

This is an irreversible reaction of one reactant forming two products.

SBO:0000180 dissociation

Reaction equation

Akt_Proteasome
$$\longrightarrow$$
 Akt + Proteasome (124)

Reactant

Table 124: Properties of each reactant.

Id	Name	SBO
Akt_Proteasome		

Products

Table 125: Properties of each product.

Id	Name	SBO
Akt		
Proteasome		

Derived unit contains undeclared units

$$v_{60} = \text{krelAktProt} \cdot \text{Akt_Proteasome} \cdot \text{kalive}$$
 (125)

8.61 Reaction AktDegradation

This is an irreversible reaction of two reactants forming two products.

SBO:0000179 degradation

Reaction equation

$$Akt_Proteasome + ATP \longrightarrow Proteasome + ADP$$
 (126)

Reactants

Table 126: Properties of each reactant.

SBO	Name	Id
		Akt_Proteasome
		ATP

Products

Table 127: Properties of each product.

Id	Name	SBO
Proteasome		
ADP		

Kinetic Law

Derived unit contains undeclared units

$$v_{61} = \frac{\text{kdegAkt} \cdot \text{Akt_Proteasome} \cdot \text{kalive} \cdot \text{ATP}}{5000 + \text{ATP}}$$
 (127)

8.62 Reaction Mkp1Synthesis

This is an irreversible reaction of one reactant forming one product.

SBO:0000184 translation

Reaction equation

$$Source \longrightarrow Mkp1 \tag{128}$$

Reactant

Table 128: Properties of each reactant.

Id	Name	SBO
Source		

Product

Table 129: Properties of each product.

Id	Name	SBO
Mkp1		

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = \text{ksynMkp1} \cdot \text{Source} \cdot \text{kalive}$$
 (129)

8.63 Reaction Mkp1ProteasomeBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$Mkp1 + Proteasome \longrightarrow Mkp1 _Proteasome$$
 (130)

Reactants

Table 130: Properties of each reactant.

Id	Name	SBO
Mkp1		
Proteasome		

Product

Table 131: Properties of each product.

Twell It II I I op of the	01 000011 [
Id	Name	SBO
Mkp1_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{63} = \text{kbinMkp1Prot} \cdot \text{Mkp1} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (131)

8.64 Reaction Mkp1Degradation

This is an irreversible reaction of two reactants forming two products.

SBO:0000179 degradation

Reaction equation

$$Mkp1$$
_Proteasome + ATP \longrightarrow Proteasome + ADP (132)

Reactants

Table 132: Properties of each reactant.

Id	Name	SBO
Mkp1_Proteasome		

Products

Table 133: Properties of each product.

Id	Name	SBO
Proteasome		
ADP		

Kinetic Law

$$v_{64} = \frac{\text{kdegMkp1} \cdot \text{Mkp1_Proteasome} \cdot \text{kalive} \cdot \text{ATP}}{5000 + \text{ATP}}$$
(133)

8.65 Reaction Mkp1Phosphorylation

This is an irreversible reaction of two reactants forming two products.

SBO:0000216 phosphorylation

Reaction equation

$$Mkp1 + Hsp70 \longrightarrow Mkp1 - P + Hsp70$$
 (134)

Reactants

Table 134: Properties of each reactant.

Id	Name	SBO
Mkp1 Hsp70		

Products

Table 135: Properties of each product.

Id	Name	SBO
Mkp1_P		
Hsp70		

Kinetic Law

Derived unit contains undeclared units

$$v_{65} = \text{kphosMkp1} \cdot \text{Mkp1} \cdot \text{Hsp70} \cdot \text{kalive}$$
 (135)

8.66 Reaction Mkp1Dephosphorylation

This is an irreversible reaction of two reactants forming two products.

SBO:0000330 dephosphorylation

Reaction equation

$$Mkp1_P + ROS \longrightarrow Mkp1 + ROS$$
 (136)

Reactants

Table 136: Properties of each reactant.

Id	Name	SBO
Mkp1_P ROS		

Products

Table 137: Properties of each product.

Id	Name	SBO
Mkp1 ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{66} = kdephosMkp1 \cdot Mkp1P \cdot ROS \cdot kalive$$
 (137)

8.67 Reaction p38ROSproduction

This is an irreversible reaction of one reactant forming two products.

SBO:0000393 production

Reaction equation

$$p38_P \longrightarrow p38_P + ROS \tag{138}$$

Reactant

Table 138: Properties of each reactant.

Id	Name	SBO
p38_P		

Products

Table 139: Properties of each product.

Id	Name	SBO
p38_P ROS		

Derived unit contains undeclared units

$$v_{67} = \text{kgenROSp38} \cdot \text{p38_P} \cdot \text{kalive} \cdot \text{kp38act}$$
 (139)

8.68 Reaction Hsp70Damage

This is an irreversible reaction of two reactants forming two products.

SBO:0000177 non-covalent binding

Reaction equation

$$Hsp70 + ROS \longrightarrow Hsp70_dam + ROS$$
 (140)

Reactants

Table 140: Properties of each reactant.

Id	Name	SBO
Hsp70 ROS		

Products

Table 141: Properties of each product.

Id	Name	SBO
Hsp70_dam		
ROS		

Kinetic Law

$$v_{68} = \text{kdamHsp} \cdot \text{Hsp70} \cdot \text{ROS} \cdot \text{kalive}$$
 (141)

8.69 Reaction Hsp90Damage

This is an irreversible reaction of two reactants forming two products.

SBO:0000177 non-covalent binding

Reaction equation

$$Hsp90 + ROS \longrightarrow Hsp90_dam + ROS$$
 (142)

Reactants

Table 142: Properties of each reactant.

Id	Name	SBO
Hsp90 ROS		

Products

Table 143: Properties of each product.

Id	Name	SBO
Hsp90_dam ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{69} = \text{kdamHsp} \cdot \text{Hsp}90 \cdot \text{ROS} \cdot \text{kalive}$$
 (143)

8.70 Reaction Hsp70DamProteasomeBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$Hsp70_dam + Proteasome \longrightarrow Hsp70_Proteasome$$
 (144)

Reactants

Table 144: Properties of each reactant.

Id	Name	SBO
Hsp70_dam		
Proteasome		

Product

Table 145: Properties of each product.

Id	Name	SBO
Hsp70_Proteasome		

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = \text{kbinHsp70Prot} \cdot \text{Hsp70_dam} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (145)

8.71 Reaction Hsp90DamProteasomeBinding

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$Hsp90_dam + Proteasome \longrightarrow Hsp90_Proteasome$$
 (146)

Reactants

Table 146: Properties of each reactant.

Id	Name	SBO
Hsp90_dam		
Proteasome		

Product

Table 147:	Properties	of each	product.

Table 147. I Toperties of each product.		
Id	Name	SBO
Hsp90_Proteasome		

Derived unit contains undeclared units

$$v_{71} = \text{kbinHsp90Prot} \cdot \text{Hsp90_dam} \cdot \text{Proteasome} \cdot \text{kalive}$$
 (147)

8.72 Reaction Hsp70DamAggregation1

This is an irreversible reaction of one reactant forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$2Hsp70_dam \longrightarrow AggP$$
 (148)

Reactant

Table 148: Properties of each reactant.

Id	Name	SBO
Hsp70_dam		

Product

Table 149: Properties of each product.

Id	Name	SBO
AggP		

Kinetic Law

$$v_{72} = \text{kagg} \cdot \text{Hsp70_dam} \cdot (\text{Hsp70_dam} - 1) \cdot 0.5 \cdot \text{kalive}$$
 (149)

8.73 Reaction Hsp70DamInclusionFormation

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$Hsp70_dam + AggP \longrightarrow SeqAggP$$
 (150)

Reactants

Table 150: Properties of each reactant.

Id	Name	SBO
Hsp70_dam AggP		

Product

Table 151: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{73} = \text{kagg} \cdot \text{Hsp70_dam} \cdot \text{AggP} \cdot \text{kalive}$$
 (151)

8.74 Reaction Hsp90DamAggregation

This is an irreversible reaction of one reactant forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$2 Hsp90_dam \longrightarrow AggP$$
 (152)

Reactant

Table 152: Properties of each reactant.

Id	Name	SBO
Hsp90_dam		

Product

Table 153: Properties of each product.

Id	Name	SBO
AggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{74} = \text{kagg} \cdot \text{Hsp90_dam} \cdot (\text{Hsp90_dam} - 1) \cdot 0.5 \cdot \text{kalive}$$
 (153)

8.75 Reaction Hsp90DamInclusionFormation

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$Hsp90_dam + AggP \longrightarrow SeqAggP$$
 (154)

Reactants

Table 154: Properties of each reactant.

Id	Name	SBO
Hsp90_dam		
AggP		

Product

Table 155: Properties of each product.

Id	Name	SBO
SeqAggP		

	Id	Name	SBO
--	----	------	-----

Derived unit contains undeclared units

$$v_{75} = \text{kagg} \cdot \text{Hsp}90_\text{dam} \cdot \text{AggP} \cdot \text{kalive}$$
 (155)

8.76 Reaction Hsp70DamSequestering

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$Hsp70_dam + SeqAggP \longrightarrow 2SeqAggP$$
 (156)

Reactants

Table 156: Properties of each reactant.

Id	Name	SBO
Hsp70_dam		
SeqAggP		

Product

Table 157: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{76} = \text{kseqagg} \cdot \text{Hsp70_dam} \cdot \text{SeqAggP} \cdot \text{kalive}$$
 (157)

8.77 Reaction Hsp90DamSequestering

This is an irreversible reaction of two reactants forming one product.

SBO:0000177 non-covalent binding

Reaction equation

$$Hsp90_dam + SeqAggP \longrightarrow 2SeqAggP$$
 (158)

Reactants

Table 158: Properties of each reactant.

Id	Name	SBO
Hsp90_dam		
SeqAggP		

Product

Table 159: Properties of each product.

Id	Name	SBO
SeqAggP		

Kinetic Law

Derived unit contains undeclared units

$$v_{77} = \text{kseqagg} \cdot \text{Hsp}90_\text{dam} \cdot \text{SeqAggP} \cdot \text{kalive}$$
 (159)

8.78 Reaction p38CellDeath

This is an irreversible reaction of one reactant forming three products.

SBO:0000179 degradation

Reaction equation

$$p38.P \longrightarrow p38.P + p38Death + CellDeath$$
 (160)

Reactant

Table 160: Properties of each reactant.

Id	Name	SBO
p38_P		

Products

Table 161: Properties of each product.

Id	Name	SBO
p38_P p38Death CellDeath		

Kinetic Law

Derived unit contains undeclared units

$$v_{78} = \text{kp38death} \cdot \text{p38} \cdot \text{P} \cdot \text{kalive} \cdot \text{kp38act}$$
 (161)

8.79 Reaction JnkCellDeath

This is an irreversible reaction of one reactant forming three products.

SBO:0000179 degradation

Reaction equation

$$Jnk_P \longrightarrow Jnk_P + JNKDeath + CellDeath$$
 (162)

Reactant

Table 162: Properties of each reactant.

Id	Name	SBO
Jnk_P		

Products

Table 163: Properties of each product.

Id	Name	SBO
Jnk_P		
JNKDeath		
CellDeath		

Kinetic Law

Derived unit contains undeclared units

$$v_{79} = kJnkdeath \cdot Jnk P \cdot kalive$$
 (163)

8.80 Reaction PICellDeath

This is an irreversible reaction of one reactant forming three products.

SBO:0000179 degradation

Reaction equation

$$AggP_Proteasome \longrightarrow AggP_Proteasome + PIDeath + CellDeath$$
 (164)

Reactant

 $\frac{ \begin{array}{c|cccc} \hline{ \textbf{Table 164: Properties of each reactant.}} \\ \hline \textbf{Id} & \textbf{Name} & \textbf{SBO} \\ \hline \\ \hline \textbf{AggP_Proteasome} \\ \end{array}$

Products

Table 165: Properties of each product.

Id	Name	SBO
AggP_Proteasome PIDeath		
CellDeath		

Kinetic Law

Derived unit contains undeclared units

$$v_{80} = \text{kPIdeath} \cdot \text{AggP_Proteasome} \cdot \text{kalive}$$
 (165)

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

9.1 Species NatP

SBO:0000252 polypeptide chain

Initial amount 17600 item

This species takes part in four reactions (as a reactant in Misfolding and as a product in ProteinSynthesis, Hsp90refolding, Hsp70refolding).

$$\frac{d}{dt}NatP = |v_1| + |v_5| + |v_8| - |v_2| \tag{166}$$

9.2 Species MisP

SBO:0000252 polypeptide chain

Initial amount 0 item

This species takes part in eight reactions (as a reactant in Hsp90MisPBinding, Hsp70MisPBinding, Aggregation1, SequesteringOfAggregate, InclusionGrowth and as a product in Misfolding, Hsp90unsuccessulRefolding, Hsp70unsuccessulRefolding).

$$\frac{d}{dt}MisP = v_2 + v_4 + v_7 - v_3 - v_6 - 2v_{48} - v_{49} - v_{50}$$
(167)

9.3 Species Hsp70

SBO:0000252 polypeptide chain

Initial amount 1400 item

This species takes part in 14 reactions (as a reactant in Hsp70MisPBinding, Hsp70ClientBinding, Hsp70ProteasomeBinding, Hsp70_PpxBinding, Mkp1Phosphorylation, Hsp70Damage and as a product in Hsp70unsuccessulRefolding, Hsp70refolding, Hsp70ClientRelease, Hsp70BasalSynthesis, Hsp70Upregulation, MisPProteasomeBinding1, Hsp70_PPXRelease, Mkp1Phosphorylation).

$$\frac{d}{dt}Hsp70 = v_7 + v_8 + v_{10} + v_{33} + v_{34} + v_{37} + v_{43}
+ v_{65} - v_6 - v_9 - v_{35} - v_{42} - v_{65} - v_{68}$$
(168)

9.4 Species Hsp90

SBO:0000252 polypeptide chain

Initial amount 1850 item

This species takes part in 15 reactions (as a reactant in Hsp90MisPBinding, Hsp90ClientBinding, Hsp90HSF1Binding, Hsp90ProteasomeBinding, Hsp90AktBinding, Hsp90Damage and as a product in Hsp90UnsuccessulRefolding, Hsp90refolding, Hsp90ClientRelease, Hsp90HSF1Release, Hsp90BasalSynthesis, Hsp90Upregulation, MisPProteasomeBinding2, Hsp90AktRelease, AktProteasomeBinding).

$$\frac{d}{dt}Hsp90 = v_4 + v_5 + v_{12} + v_{14} + v_{29} + v_{30} + v_{38} + v_{56}
+ v_{59} - v_3 - v_{11} - v_{13} - v_{31} - v_{55} - v_{69}$$
(169)

9.5 Species Hsp70_dam

SBO:0000252 polypeptide chain

Initial amount 0 item

This species takes part in five reactions (as a reactant in Hsp70DamProteasomeBinding, Hsp70DamAggregation1, Hsp70DamInclusionFormation, Hsp70DamSequestering and as a product in Hsp70Damage).

$$\frac{d}{dt} Hsp70_dam = |v_{68}| - |v_{70}| - 2|v_{72}| - |v_{73}| - |v_{76}|$$
(170)

9.6 Species Hsp90_dam

SBO:0000252 polypeptide chain

Initial amount 0 item

This species takes part in five reactions (as a reactant in Hsp90DamProteasomeBinding, Hsp90DamAggregation, Hsp90DamInclusionFormation, Hsp90DamSequestering and as a product in Hsp90Damage).

$$\frac{d}{dt} Hsp90_dam = |v_{69}| - |v_{71}| - 2|v_{74}| - |v_{75}| - |v_{77}|$$
(171)

9.7 Species Hsp90_Proteasome

Initial amount 0 item

This species takes part in three reactions (as a reactant in Hsp90Degradation and as a product in Hsp90ProteasomeBinding, Hsp90DamProteasomeBinding).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Hsp}90 \text{_Proteasome} = |v_{31}| + |v_{71}| - |v_{32}| \tag{172}$$

9.8 Species Hsp70_Proteasome

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in three reactions (as a reactant in Hsp70Degradation and as a product in Hsp70ProteasomeBinding, Hsp70DamProteasomeBinding).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Hsp70_Proteasome} = |v_{35}| + |v_{70}| - |v_{36}| \tag{173}$$

9.9 Species Hsp70Client

SBO:0000252 polypeptide chain

Initial amount 490 item

This species takes part in two reactions (as a reactant in Hsp70ClientBinding and as a product in Hsp70ClientRelease).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Hsp70Client} = |v_{10}| - |v_{9}| \tag{174}$$

9.10 Species Hsp90Client

SBO:0000252 polypeptide chain

Initial amount 590 item

This species takes part in two reactions (as a reactant in Hsp90ClientBinding and as a product in Hsp90ClientRelease).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Hsp} 90 \mathrm{Client} = |v_{12}| - |v_{11}| \tag{175}$$

9.11 Species Hsp70_Hsp70Client

SBO:0000297 protein complex

Initial amount 10 item

This species takes part in two reactions (as a reactant in Hsp70ClientRelease and as a product in Hsp70ClientBinding).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Hsp70_Hsp70Client} = v_9 - v_{10} \tag{176}$$

9.12 Species Hsp90_Hsp90Client

SBO:0000297 protein complex

Initial amount 10 item

This species takes part in two reactions (as a reactant in Hsp90ClientRelease and as a product in Hsp90ClientBinding).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Hsp}90 \mathrm{LHsp}90 \mathrm{Client} = v_{11} - v_{12} \tag{177}$$

9.13 Species Akt

SBO:0000252 polypeptide chain

Initial amount 340 item

This species takes part in four reactions (as a reactant in Hsp90AktBinding and as a product in AktSynthesis, Hsp90AktRelease, AktProteasomeRelease).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Akt} = |v_{54}| + |v_{56}| + |v_{60}| - |v_{55}| \tag{178}$$

9.14 Species Akt_Hsp90

SBO:0000297 protein complex

Initial amount 30 item

This species takes part in four reactions (as a reactant in Hsp90AktRelease, CHIPbinding and as a product in Hsp90AktBinding, CHIPrelease).

$$\frac{d}{dt}Akt_Hsp90 = |v_{55}| + |v_{58}| - |v_{56}| - |v_{57}|$$
(179)

9.15 Species CHIP

SBO:0000252 polypeptide chain

Initial amount 255 item

This species takes part in three reactions (as a reactant in CHIPbinding and as a product in CHIPrelease, AktProteasomeBinding).

$$\frac{d}{dt}CHIP = |v_{58}| + |v_{59}| - |v_{57}| \tag{180}$$

9.16 Species Akt_CHIP_Hsp90

SBO:0000297 protein complex

Initial amount 80 item

This species takes part in three reactions (as a reactant in CHIPrelease, AktProteasomeBinding and as a product in CHIPbinding).

$$\frac{d}{dt}Akt_CHIP_Hsp90 = |v_{57}| - |v_{58}| - |v_{59}|$$
 (181)

9.17 Species Akt_Proteasome

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in three reactions (as a reactant in AktProteasomeRelease, AktDegradation and as a product in AktProteasomeBinding).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Akt.Proteasome} = v_{59} - v_{60} - v_{61}$$
 (182)

9.18 Species Hsf1

SBO:0000252 polypeptide chain

Initial amount 5 item

This species takes part in six reactions (as a reactant in Hsp90HSF1Binding, dimerisation, trimerisation and as a product in Hsp90HSF1Release, deTrimerisation, deDimerisation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Hsf1} = |v_{14}| + |v_{17}| + 2|v_{18}| - |v_{13}| - 2|v_{15}| - |v_{16}| \tag{183}$$

9.19 Species Hsf1_Hsp90

SBO:0000297 protein complex

Initial amount 95 item

This species takes part in two reactions (as a reactant in Hsp90HSF1Release and as a product in Hsp90HSF1Binding).

$$\frac{d}{dt}Hsf1_Hsp90 = |v_{13}| - |v_{14}|$$
 (184)

9.20 Species Hsp90_MisP

SBO:0000297 protein complex

Initial amount 470 item

This species takes part in four reactions (as a reactant in Hsp90unsuccessulRefolding, Hsp90refolding, MisPProteasomeBinding2 and as a product in Hsp90MisPBinding).

$$\frac{d}{dt} Hsp90_MisP = |v_3| - |v_4| - |v_5| - |v_{38}|$$
(185)

9.21 Species Hsp70_MisP

SBO:0000297 protein complex

Initial amount 410 item

This species takes part in four reactions (as a reactant in Hsp70unsuccessulRefolding, Hsp70refolding, MisPProteasomeBinding1 and as a product in Hsp70MisPBinding).

$$\frac{d}{dt} Hsp70_MisP = |v_6| - |v_7| - |v_8| - |v_{37}|$$
 (186)

9.22 Species Hsf1_Hsf1_Hsf1

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in eight reactions (as a reactant in deTrimerisation, HSE70TriHBinding, HSE90TriHBinding, Hsf1_Hsf1_Hsf1Phosphorylation and as a product in trimerisation, HSE70TriHRelease, HSE90TriHRelease, Hsf1_Hsf1_Hsf1DePhosphorylation).

$$\frac{d}{dt}Hsf1_Hsf1_Hsf1 = v_{16} + v_{20} + v_{22} + v_{24} - v_{17} - v_{19} - v_{21} - v_{23}$$
 (187)

9.23 Species Hsf1_Hsf1_Hsf1_P

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in six reactions (as a reactant in Hsf1_Hsf1_Hsf1DePhosphorylation, HSE70PhosTriHBinding, HSE90PhosTriHBinding and as a product in Hsf1_Hsf1_Hsf1Phosphorylation, HSE70PhosTriHRelease, HSE90PhosTriHRelease).

$$\frac{d}{dt}Hsf1_Hsf1_Hsf1_P = |v_{23}| + |v_{26}| + |v_{28}| - |v_{24}| - |v_{25}| - |v_{27}|$$
(188)

9.24 Species Hsf1_Hsf1

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in four reactions (as a reactant in trimerisation, deDimerisation and as a product in dimerisation, deTrimerisation).

$$\frac{d}{dt}Hsf1_Hsf1 = |v_{15}| + |v_{17}| - |v_{16}| - |v_{18}|$$
(189)

9.25 Species HSEHsp70

SBO:0000369 gene regulatory region

Initial amount 2 item

This species takes part in four reactions (as a reactant in HSE70TriHBinding, HSE70PhosTriHBinding and as a product in HSE70TriHRelease, HSE70PhosTriHRelease).

$$\frac{d}{dt}HSEHsp70 = v_{20} + v_{26} - v_{19} - v_{25}$$
 (190)

9.26 Species HSEHsp90

SBO:0000369 gene regulatory region

Initial amount 2 item

This species takes part in four reactions (as a reactant in HSE90TriHBinding, HSE90PhosTriHBinding and as a product in HSE90TriHRelease, HSE90PhosTriHRelease).

$$\frac{d}{dt}HSEHsp90 = |v_{22}| + |v_{28}| - |v_{21}| - |v_{27}|$$
(191)

9.27 Species HSEHsp70_Hsf1_Hsf1_Hsf1

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in two reactions (as a reactant in HSE70TriHRelease and as a product in HSE70TriHBinding).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{HSEHsp70_Hsf1_Hsf1_Hsf1} = v_{19} - v_{20} \tag{192}$$

9.28 Species HSEHsp70_Hsf1_Hsf1_Hsf1_P

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in four reactions (as a reactant in HSE70PhosTriHRelease, Hsp70Upregulation and as a product in HSE70PhosTriHBinding, Hsp70Upregulation).

$$\frac{d}{dt} HSEHsp70_Hsf1_Hsf1_Hsf1_P = |v_{25}| + |v_{34}| - |v_{26}| - |v_{34}|$$
(193)

9.29 Species HSEHsp90_Hsf1_Hsf1_Hsf1

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in two reactions (as a reactant in HSE90TriHRelease and as a product in HSE90TriHBinding).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{HSEHsp90_Hsf1_Hsf1_Hsf1} = |v_{21}| - |v_{22}| \tag{194}$$

9.30 Species HSEHsp90_Hsf1_Hsf1_Hsf1_P

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in four reactions (as a reactant in HSE90PhosTriHRelease, Hsp90Upregulation and as a product in HSE90PhosTriHBinding, Hsp90Upregulation).

$$\frac{d}{dt} HSEHsp90_Hsf1_Hsf1_Hsf1_P = |v_{27}| + |v_{30}| - |v_{28}| - |v_{30}|$$
(195)

9.31 Species Jnk

SBO:0000252 polypeptide chain

Initial amount 100 item

This species takes part in two reactions (as a reactant in JnkPhosphorylation and as a product in JNKDephosphorylatioByMkp1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Jnk} = |v_{45}| - |v_{44}| \tag{196}$$

9.32 Species Jnk_P

SBO:0000252 polypeptide chain

Initial amount 0 item

This species takes part in four reactions (as a reactant in JNKDephosphorylatioByMkp1, JnkCellDeath and as a product in JnkPhosphorylation, JnkCellDeath).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Jnk} \cdot \mathbf{P} = |v_{44}| + |v_{79}| - |v_{45}| - |v_{79}| \tag{197}$$

9.33 Species Ppx

SBO:0000252 polypeptide chain

Initial amount 0 item

This species takes part in two reactions (as a reactant in Hsp70_PpxBinding and as a product in Hsp70_PpxRelease).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ppx} = |v_{43}| - |v_{42}| \tag{198}$$

9.34 Species Mkp1

SBO:0000252 polypeptide chain

Initial amount 0 item

This species takes part in four reactions (as a reactant in Mkp1ProteasomeBinding, Mkp1Phosphorylation and as a product in Mkp1Synthesis, Mkp1Dephosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mkp1} = |v_{62}| + |v_{66}| - |v_{63}| - |v_{65}| \tag{199}$$

9.35 Species Mkp1_P

SBO:0000252 polypeptide chain

Initial amount 100 item

This species takes part in six reactions (as a reactant in JNKDephosphorylatioByMkp1, p38DePhosphorylationByMkp1Dephosphorylation and as a product in JNKDephosphorylatioByMkp1, p38DePhosphorylationByMkp1, Mkp1Phosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Mkp1.P} = |v_{45}| + |v_{47}| + |v_{65}| - |v_{45}| - |v_{47}| - |v_{66}|$$
(200)

9.36 Species Mkp1_Proteasome

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in two reactions (as a reactant in Mkp1Degradation and as a product in Mkp1ProteasomeBinding).

$$\frac{d}{dt}Mkp1 Proteasome = v_{63} - v_{64}$$
 (201)

9.37 Species Hsp70_Ppx

SBO:0000297 protein complex

Initial amount 100 item

This species takes part in four reactions (as a reactant in Hsf1_Hsf1_Hsf1DePhosphorylation, Hsp70_PPXRelease and as a product in Hsf1_Hsf1DePhosphorylation, Hsp70_PpxBinding).

$$\frac{d}{dt} Hsp70_Ppx = |v_{24}| + |v_{42}| - |v_{24}| - |v_{43}|$$
(202)

9.38 Species Pkc

SBO:0000252 polypeptide chain

Initial amount 100 item

This species takes part in two reactions (as a reactant in Hsf1_Hsf1_Hsf1Phosphorylation and as a product in Hsf1_Hsf1_Hsf1Phosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Pkc} = |v_{23}| - |v_{23}| \tag{203}$$

9.39 Species p38

SBO:0000252 polypeptide chain

Initial amount 100 item

This species takes part in two reactions (as a reactant in p38Phosphorylation and as a product in p38DePhosphorylationByMkp1).

$$\frac{\mathrm{d}}{\mathrm{d}t} p38 = |v_{47}| - |v_{46}| \tag{204}$$

9.40 Species p38_P

SBO:0000252 polypeptide chain

Initial amount 0 item

This species takes part in six reactions (as a reactant in p38DePhosphorylationByMkp1, p38ROSproduction, p38CellDeath and as a product in p38Phosphorylation, p38ROSproduction, p38CellDeath).

$$\frac{\mathrm{d}}{\mathrm{d}t}p38P = v_{46} + v_{67} + v_{78} - v_{47} - v_{67} - v_{78}$$
 (205)

9.41 Species Proteasome

SBO:0000297 protein complex

Initial amount 500 item

This species takes part in 15 reactions (as a reactant in Hsp90ProteasomeBinding, Hsp70ProteasomeBinding, MisPProteasomeBinding2, ProteasomeInhibtion, AktProteasomeBinding, Mkp1ProteasomeBinding, Hsp70DamProteasomeBinding, Hsp90DamProteasomeBinding and as a product in Hsp90Degradation, Hsp70Degradation, MisPDegradation, AktProteasomeRelease, AktDegradation, Mkp1Degradation).

$$\frac{d}{dt} \text{Proteasome} = v_{32} + v_{36} + v_{39} + v_{60} + v_{61} + v_{64} - v_{31} - v_{35} - v_{37} - v_{38} - v_{51} - v_{59} - v_{63} - v_{70} - v_{71}$$
(206)

9.42 Species MisP_Proteasome

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in three reactions (as a reactant in MisPDegradation and as a product in MisPProteasomeBinding1, MisPProteasomeBinding2).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{MisP_Proteasome} = |v_{37}| + |v_{38}| - |v_{39}| \tag{207}$$

9.43 Species AggP

SBO:0000252 polypeptide chain

Initial amount 0 item

This species takes part in nine reactions (as a reactant in SequesteringOfAggregate, ProteasomeInhibtion, ROSgenerationSmallAggP, Hsp70DamInclusionFormation, Hsp90DamInclusionFormation and as a product in Aggregation1, ROSgenerationSmallAggP, Hsp70DamAggregation1, Hsp90DamAggregation).

$$\frac{d}{dt}AggP = v_{48} + v_{52} + v_{72} + v_{74} - v_{49} - v_{51} - v_{52} - v_{73} - v_{75}$$
 (208)

9.44 Species SeqAggP

SBO:0000252 polypeptide chain

Initial amount 0 item

This species takes part in nine reactions (as a reactant in InclusionGrowth, Hsp70DamSequestering, Hsp90DamSequestering and as a product in SequesteringOfAggregate, InclusionGrowth, Hsp70DamInclusionFormation, Hsp90DamInclusionFormation, Hsp70DamSequestering, Hsp90DamSequestering).

$$\frac{d}{dt} SeqAggP = |v_{49}| + 2|v_{50}| + |v_{73}| + |v_{75}| + 2|v_{76}| + 2|v_{77}| - |v_{50}| - |v_{76}| - |v_{77}|$$
(209)

9.45 Species AggP_Proteasome

SBO:0000297 protein complex

Initial amount 0 item

This species takes part in five reactions (as a reactant in ROSgenerationAggPProteasome, PICellDeath and as a product in ProteasomeInhibtion, ROSgenerationAggPProteasome, PICellDeath).

$$\frac{d}{dt} AggP_Proteasome = |v_{51}| + |v_{53}| + |v_{80}| - |v_{53}| - |v_{80}|$$
(210)

9.46 Species ROS

SBO:0000247 simple chemical

Initial amount 10 item

This species takes part in 17 reactions (as a reactant in Misfolding, radicalScavenging, JnkPhosphorylation, p38Phosphorylation, Mkp1Dephosphorylation, Hsp70Damage, Hsp90Damage and as a product in Misfolding, radicalFormation, JnkPhosphorylation, p38Phosphorylation, ROSgenerationSmallAggP, ROSgenerationAggPProteasome, Mkp1Dephosphorylation, p38ROSproduction, Hsp70Damage, Hsp90Damage).

$$\frac{d}{dt}ROS = v_2 + v_{40} + v_{44} + v_{46} + v_{52} + v_{53} + v_{66} + v_{67} + v_{68} + v_{69} - v_2 - v_{41} - v_{44} - v_{46} - v_{66} - v_{68} - v_{69}$$
(211)

9.47 Species ATP

SBO:0000247 simple chemical

Initial amount 10000 item

This species takes part in seven reactions (as a reactant in Hsp90refolding, Hsp70refolding, Hsp90Degradation, Hsp70Degradation, MisPDegradation, AktDegradation, Mkp1Degradation), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}ATP = 0 \tag{212}$$

9.48 Species ADP

SBO:0000247 simple chemical

Initial amount 1000 item

This species takes part in seven reactions (as a product in Hsp90refolding, Hsp70refolding, Hsp90Degradation, Hsp70Degradation, MisPDegradation, AktDegradation, Mkp1Degradation), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ADP} = 0\tag{213}$$

9.49 Species Source

SBO:0000291 empty set

Initial amount 1 item

This species takes part in six reactions (as a reactant in ProteinSynthesis, Hsp90BasalSynthesis, Hsp70BasalSynthesis, radicalFormation, AktSynthesis, Mkp1Synthesis), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{d}{dt} Source = 0 \tag{214}$$

9.50 Species Sink

SBO:0000291 empty set

Initial amount 1 item

This species takes part in one reaction (as a product in radicalScavenging), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Sink} = 0\tag{215}$$

9.51 Species p38Death

SBO:0000236 physical entity representation

Initial amount 0 item

This species takes part in one reaction (as a product in p38CellDeath).

$$\frac{\mathrm{d}}{\mathrm{d}t} p38 \text{Death} = v_{78} \tag{216}$$

9.52 Species JNKDeath

SBO:0000236 physical entity representation

Initial amount 0 item

This species takes part in one reaction (as a product in JnkCellDeath).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{JNKDeath} = v_{79} \tag{217}$$

9.53 Species PIDeath

SBO:0000236 physical entity representation

Initial amount 0 item

This species takes part in one reaction (as a product in PICellDeath).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PIDeath} = v_{80} \tag{218}$$

9.54 Species CellDeath

SBO:0000236 physical entity representation

Initial amount 0 item

This species takes part in three reactions (as a product in p38CellDeath, JnkCellDeath, PICellDeath).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{CellDeath} = |v_{78}| + |v_{79}| + |v_{80}| \tag{219}$$

A Glossary of Systems Biology Ontology Terms

- **SBO:000009 kinetic constant:** Numerical parameter that quantifies the velocity of a chemical reaction
- **SBO:0000177 non-covalent binding:** Interaction between several biochemical entities that results in the formation of a non-covalent comple
- SBO:0000179 degradation: Complete disappearance of a physical entity
- **SBO:0000180 dissociation:** Transformation of a non-covalent complex that results in the formation of several independent biochemical entitie
- **SBO:0000184 translation:** Process in which a polypeptide chain is produced from a messenger RNA
- **SBO:0000216 phosphorylation:** Addition of a phosphate group (-H2PO4) to a chemical entity
- **SBO:0000236 physical entity representation:** Representation of an entity that may participate in an interaction, a process or relationship of significance.
- SBO:0000247 simple chemical: Simple, non-repetitive chemical entity
- **SBO:0000252 polypeptide chain:** Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654
- **SBO:0000284 transporter:** Participating entity that facilitates the movement of another physical entity from a defined subset of the physical environment (for instance a cellular compartment) to another.
- **SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000291 empty set:** Entity defined by the absence of any actual object. An empty set is often used to represent the source of a creation process or the result of a degradation process.
- **SBO:0000297 protein complex:** Macromolecular complex containing one or more polypeptide chains possibly associated with simple chemicals. CHEBI:3608
- **SBO:0000330 dephosphorylation:** Removal of a phosphate group (-H2PO4) from a chemical entity.
- **SBO:0000344 molecular interaction:** Relationship between molecular entities, based on contacts, direct or indirect.

SBO:0000369 gene regulatory region: Region of a gene that is involved in the modulation of the expression of the gene.

SBO:0000393 production: Generation of a material or conceptual entity.

SBO:0000526 protein complex formation: The process by which two or more proteins interact non-covalently to form a protein complex (SBO:0000297)

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany