My abstract algebra exercises

Evgeny Markin

2023

Contents

1	Gro	ups
	1.1	Symmetries of a Regular Polygon
	1.2	Introduction to Groups
		1.2.1
		1.2.2
		1.2.3
		1.2.4
	1.3	Properties of Group Elements
		1.3.1
		1.3.2
		1.3.3
		1.3.4
	1.4	Concept of a Classification Theorem
		1.4.1 7
		1.4.2
		1.4.3
		1.4.4
		1.4.5
		1.4.6
		1.4.7
		1.4.8
		1.4.9
		1 4 10

Chapter 1

Groups

1.1 Symmetries of a Regular Polygon

Content of this section was pretty much taken care of in a previous try at an abstract algebra coutse

1.2 Introduction to Groups

For the next 14 exercises decide whether or not hie given pair forms a group.

1.2.1

The pair (N, +)

No, since there are no inverses for nonzero elements

1.2.2

The pair $(Q \setminus \{-1\}, \star)$, where $a \star b = a + b + ab$

$$a\star(b\star c) = a\star(b+c+bc) = a+(b+c+bc)+ab+ac+abc$$

so associativity checks out.

We can follow that 0 is an identity, since

$$a \star 0 = a + 0 + a0 = a$$

Suppose that $a \in Q \setminus \{-1\}$. We follow that

$$a + b + ab = 0$$

$$b = -a(1+b)$$

$$b/(1+b) = -a$$
$$-b/(1+b) = a$$

since $b \in Q \setminus \{-1\}$, we follow that b = m/n, and thus

$$-\frac{m/n}{1+m/n} = a$$
$$-\frac{m/n}{(n+m)/n} = a$$
$$-\frac{m}{n+m} = a$$

since $a \in Q \setminus \{-1\}$ we follow that a = k/l, and thus

$$-\frac{m}{n+m} = k/l$$
$$\frac{-m}{n+m} = \frac{k}{l}$$
$$\begin{cases} m = -k\\ n = l+k \end{cases}$$

thus we follow that as long as $n \neq 0$, a will have an inverse. $n = 0 \iff l = -k \iff a = -1$, and since $a \neq -1$, we conclude that any given element in the given set is an inverse, and thus the given set satisfies all the axioms of a group.

1.2.3

The pair $\langle Q \setminus \{0\}, / \rangle$

We follow that if $a \in lhs$, then a = m/n, and thus n/m is the inverse, thus every element got an inverse $(a \neq 0$, thus $m \neq 0)$.

$$a/(b/c) = a/\frac{b}{c} = a\frac{c}{b} = \frac{ac}{b}$$
$$(a/b)/c = \frac{a}{b}/c = \frac{a}{b}\frac{1}{c} = \frac{a}{bc}$$

nonzero a, b, c ($\langle 1, 2, 3 \rangle$ should do the trick) will give us a concrete proof that / is not associative, which means that there's no group

1.2.4

The pair $\langle A, + \rangle$ where $A = \{x \in Q : |x| < 1\}$

Assuming that $|\star|$ means absolute value, we follow that + won't be a binary operation on A.

The rest of the exercises are left for better times

1.3 Properties of Group Elements

Notes

Order of a group is defined as cardinality of G, which is a functional and not a function. This is not that big of a deal, all things considered. Order of an element is a separate entity altogether, that is defined as a function from a set G, to an extended natural line with excluded 0 (i.e. $\omega \setminus 0 \cup \{\infty\}$), where we define order in the latter by obvious means.

1.3.1

Find the orders of $\overline{5}$ and $\overline{6}$ in (Z/21Z, +)We follow that order of $\overline{5}$ is 21 and 7 for $\overline{6}$.

1.3.2

Find the orders of $\overline{21}$ in Z/52 It's' 13

1.3.3

Calculate the order of $\overline{285}$ in the group Z/360Z

$$(285 * 24)/360 = 19$$

thus the order is 19

1.3.4

Calculate the order of r^{16} in D_{24} We follow that |r| = 24, and thus

$$|r^{16}| = \frac{24}{\gcd(16, 24)} = \frac{24}{\gcd(16, 24)} = 3$$

 $(r^{16})^3 = r^{48} = (r^{24})^2 = e^2 = e$

1.3.11

Prove 1.2.12

The definition of powers in the book as not as rigorous, as one might want. We can rigorously a function $f_x : \omega \to G$ for an arbitrary group G and arbitrary $x \in G$ by setting

$$f_x(0) = e$$

and

$$f_x(n^+) = xf(n)$$

which will give us a proper function by recursive definition. Thus we can create a function from G to a set of functions, defined this way, and then can expand the domains to Z of resulting function by setting

$$f_x(-n) = f_{x^{-1}}(n)$$

to then get a function $\mathcal{P}: G \times Z \to G$, which we're gonna call the power function. That way we don't have to prove that the power function is indeed a function and all that nonsense.

Now we can follow that

$$\mathcal{P}(x,0) = e$$

$$\mathcal{P}(x,n+1) = \mathcal{P}(x,n+1) = \mathcal{P}(x,n) \\ n = \mathcal{P}(x,n-1) \\ n = n \\ \mathcal{P}(x,n-1) \\ n = nn \\ \mathcal{P}(x,n-1) = \mathcal{P}(x,n+1) \\ n = nn \\ \mathcal{P}(x,n-1) \\ n = nn \\ \mathcal{P}(x,n-$$

and the same thing for negative numbers, which by induction will give us that

$$\mathcal{P}(x,n)x = x\,\mathcal{P}(x,n)$$

for arbitrary $x \in G$ and $n \in Z$.

Now we want to prove that

$$x^m x^n = x^{m+n}$$

with a functional notation, we want to prove that

$$\mathcal{P}(x,m)\,\mathcal{P}(x,n) = \mathcal{P}(x,m+n)$$

We firstly can follow that

$$\mathcal{P}(x,m)\,\mathcal{P}(x,0) = \mathcal{P}(x,m)e = \mathcal{P}(x,m) = \mathcal{P}(x,m+0)$$

then we follow that

$$\mathcal{P}(x,m)\,\mathcal{P}(x,n^+) = \mathcal{P}(x,m)x\,\mathcal{P}(x,n) = \mathcal{P}(x,m)\,\mathcal{P}(x,n)x = \mathcal{P}(x,m+n)x = \mathcal{P}(x,m+n^+)$$

and this will give us an inductive proof that $x^mx^n = x^{m+n}$ for arbitrary $m \in Z$ and $n \in \omega$. Some burocracy with regards to domains, maybe a trivial proof of the fact that $\mathcal{P}(x,m)x^{-1} = \mathcal{P}(x,m-1)$ and whatnot will give us inductive proof for arbitrary pairs of $m, n \in Z$. Same kind of reasoning (i.e. setting arbitrary m and then do the inductive proof over n) can be applied to the latter part of the theorem, which is gonna be as boring as this one.

1.3.18

Prove that (Q, +) is not a cyclic group.

We can follow that $q \in Q$ is either positive, negative or zero. Thus q^n is either positive, negative or zero respectively for all $n \in \omega$, thus proving that no element of Q can be a generator, which means that Q has no generator.

1.3.19

Prove 1.3.5

1.3.5 states that $|x^{-1}| = |x|$. Let n = |x|. Assume that $|x| \in \omega$. If $|x^{-1}| = m \neq n$, then we follow that if m < n then

$$x^n(x^{-1})^m = x^{n-m}$$

which gives us that either $|x| \neq n$ or that our properties of powers don't work, both of which are contraciction. Same logic (with some obvious handling of a case when $|x^{-1}| = \infty$) can be applied for m > n, thus giving us the desired conclusion for $|x| \in \omega$. If $|x| = \infty$ and $|x^{-1}| = n$ for $n \in \omega$ we follow practically the same thing: $x^n(x^{-1})^n$ is either not equal to e, or equal to it, both of which aren't good for not having contradictions.

1.3.23

Let $x \in G$ be an element of finite order n. Prove that $e, x, x^2, ..., x^n - 1$ are all distict. Deduce that $|x| \leq |G|$

The premise of the given exercise should be given as a proposition in the book. Don't put the theorems in exercises, it doesn't help anyone

If 0 < i < j < n are such that $x^i = x^j$, then $n - i \neq n - j$ but

$$e = x^n = x^{n-i}x^i$$

$$e = x^n = x^{n-j}x^j$$

and thus

$$e = x^{n-j}x^j = x^{n-j}x^i = x^{n-j+i}$$

since i < j we follow that -j + i < 0 thus n - j + i < n and therefore n is not an order of |x|, as desired.

1.3.29

Using a CAS find all the orders of all the elements in $GL_2(F_3)$

We can use

for i in GL(2, GF(3)):
 print(i.order())

in SAGE to ge the desired result

The rest of the exercises (or exercises similar to those given in a book) were taken care of previously in previous books

1.4 Concept of a Classification Theorem

Notes

An obvious remark: if G and H are finite, then $|G \oplus H| = |G \times H| = |G||H|$.

1.4.1

Find all orders of all elements in $Z_4 \oplus Z_2$

We can follow that

$$\begin{aligned} |\langle 0, 0 \rangle| &= 1 \\ |\langle 1, 0 \rangle| &= 4 \\ |\langle 2, 0 \rangle| &= 2 \\ |\langle 3, 0 \rangle| &= 4 \\ |\langle 0, 1 \rangle| &= 2 \\ |\langle 1, 1 \rangle| &= 4 \\ |\langle 2, 1 \rangle| &= 2 \\ |\langle 3, 1 \rangle| &= 4 \end{aligned}$$

1.4.2

What is the largest order of an element in $Z_{75} \oplus Z_{100}$? Illustrate with a specific element We follow that for $\langle x, y \rangle \in Z_{75} \oplus Z_{100}$ we've got that

$$|\langle x, y \rangle| = lcm(|x|, |y|)$$

we thus want to maximize the desired value of lcm. Both Z_{75} and Z_{100} are cyclic, and thus

$$|n| = \frac{75}{\gcd(n,75)}$$

for $n \in \mathbb{Z}_{75}$ and it's simular for a \mathbb{Z}_{100} . We thus want to maximize the function

fundamental theorem of arithmetics essentially states that eny given positive number greater than 2 can be destructed to a multiset of primes, whose product is gonna be that number. lcm in that matter presents some sort of a uniom of multisets, that are connected to a given number, and thus we can practically follow that we want n and m such that

$$n*m = lcm(75, 100)$$

since

$$75 = 3 * 5^2$$

and

$$100 = 2^2 * 5^2$$

let's take $n=5^2=25$ so that |n|=3 and let us take m=1 so that $|m|=2^2*5^2$. this way we'll have that

$$lcm(n,m) = 3 * 2^2 * 5^2 = 300$$

Since we were'nt required to present a proper proof that a given number is an absolute maximum, I'm gonna leave this exercisee at that.

1.4.3

Show that $Z_5 \oplus Z_2$ is cyclic

We follow that $|Z_5 \oplus Z_2| = 5 * 2 = 10$ and that

$$|\langle 1, 1 \rangle| = 10$$

1.4.4

Show that $Z_4 \oplus Z_2$ is not cyclic

We've seen the orders of elements of those groups previously, and none of them are 8.

1.4.5

Skip

1.4.6

Let A and B be groups. Prove that the direct sum $A \oplus B$ is abelian of and only if A and B are both abelian

Let's start with reverse implication: if A and B are abelian, then

$$\langle a, b \rangle \langle c, d \rangle = \langle ac, bd \rangle = \langle ca, db \rangle = \langle c, d \rangle \langle a, b \rangle$$

for arbitatry blah-blah and thus as desired.

If $A \oplus B$ is abelian, then assume that e is an identity for B and $a, b \in A$ are such that $ab \neq ba$. We follow then that $\langle ab, e \rangle \neq \langle ba, e \rangle$ but we've got that

$$\langle a, e \rangle \langle b, e \rangle = eangleab, e = \langle b, e \rangle \langle a, e \rangle$$

which contradicts. Thus we conclude that A is abelian, and the same can be followed by the same thread of logic for B and in general for arbitrary (but finite) direct sum of groups.

1.4.7

Let G and H be two finite groups. Prove that $G \oplus H$ is cyclic if and only if G and H are both cyclic with gcd(|G|, |H|) = 1

if G, H are cyclic and gcd(|G|, |H|) = 1, then we can take generators a, b of both groups to get

$$|\langle a,b\rangle| = lcm(|a|,|b|) = lcm(|G|,|H|) = |G||H|$$

thus making the direct sum cycic, as desired.

 $G \oplus H$ is cyclic if and only if there's an element $\langle a, b \rangle \in G \oplus H$ such that

$$|\langle a, b \rangle| = |G \oplus H|$$

i.e.

$$|\langle a, b \rangle| = |G||H|$$

we know that $|\langle a,b\rangle| = lcm(|a|,|b|)$ and therefore $|\langle a,b\rangle| = |G||H|$ iff

$$lcm(|a|,|b|) = |G||H|$$

for all elements k of an arbitrary finite group K we've got that $|k| \leq |K|$ and thus if |G| is not cycic, then |a| < |G|, and thus this equality won't hold. Same goes for |H|, thus we follow that both G, H are cyclic. We also follow that the equality won't hold if $gcd(|G|, |H|) \neq 1$, which gives the desired conclusion.

1.4.8

This one is trivial, skip.

1.4.9

Find all groups of order 5

Cyclic group is one of those.

If |x| = 4 then e, x, x^2, x^3 are all distinct. We follow that $|x^2| = 4/2 = 2$ and $|x^3| = 4$. We then follow that $x^{-1} = x^3$ and x^2 is an inverse of itself. Thus we follow that the last element k is an inverse of itself, and thus has order of 2. We then follow that if xk = k, then x = e, which is not the case. Thus $xk = x^n$, which means that $k = x^{n-1}$, which is also not the case, thus giving us a contradiction.

If |x|=3 and the group is not cyclic, then $\langle e,x,x^2\rangle$ are all distinct. Let's name the other elements as a,b and thus we'll have a group $\{e,x,x^2,a,b\}$. We follow that $ax \neq x^2$ since that would imply that a=x. We also follow that $ax=a\Rightarrow x=e$, $ax=x\Rightarrow a=e$ and $ax=e\Rightarrow x^{-1}=a\Rightarrow a=x^2$, all of which are contradictions. Thus we conclude that ax=b. Same reasoning leads us to a conclusion that bx=a. Thus $bx^2=ax=b$, and

thus $bx^2 = b$, which implies that $x^2 = e$, which is a contradiction. Thus we conclude that there's no element of order 3.

If |x| = 2 and the group is not cyclic, then e, x are distinct. This means that we've got a group $\{e, x, a, b, c\}$. We follow from previous paragraph that there are no elements of order 3 or 4, which implies that |x| = |a| = |b| = |c| = 2. We now can follow that since all of the elements are equal to their inverses

$$ab = (ab)^{-1} = b^{-1} a^{-1} = ba$$

thus making the group abelian. We can also follow without loss of generality that $ab = e \Rightarrow a = b^{-1} \Rightarrow a = b$, which gives us a contradiction, thus proving that $ab \notin seta, b$. If x = ab, then xc = abc, therefore $x \neq abc$, and thus $abc \in \{a, b, c\}$. If abc = a, then bc = e and therefore b = c, which is a contradiction. In general we follow that $abc \notin \{a, b, c\}$, and thus abc = e. This implies that xc = e, which is a contradiction. Thus we conclude that xc is cannot be equal to non of the elements, which implies that there's no element, whose order is equal to 2 and the group is not cyclic, as desired.

1.4.10

We consider groups of order 6. We know that Z_6 is a group of order 6. We now look for all the others. Let G be any group of order 6 that is not cyclic.

(a) Show that G cannot have an element of order 7 or higher

Order of an element of a group is less than the order of the group, in which it is located. There's an exercise that proves it.

(b) Show that G cannot have an element of order 5

If |x| = 5 then $G = \{e, x, x^2, x^3, x^4, a\}$, therefore $ax = x^n$, which gives us a countradiction.

(c) Show that G cannot have an element of order 4.

Let $G = \{e, x, x^2, x^3, a, b\}$. We follow that

$$xa = e \Rightarrow a = x^{3}$$

$$xa = x \Rightarrow a = e$$

$$xa = x^{2} \Rightarrow a = x$$

$$xa = x^{3} \Rightarrow a = x^{2}$$

$$xa = a \Rightarrow x = e$$

thus xa = b. We then follow for the same reason that $xb \notin \{e, x, x^2, x^3, b\}$, thus xb = a. Therefore $xa = xxb = x^2b = b$, thus $x^2 = e$, which gives us a contradiction.

(d) Show that the nonidentity elements of G have order 2 or 3

We follow that it's got to be either 2, 3, or 6. 6 is not an option since G is not cyclic.

(e) Conclude that there exist only two subgroups of order 6. In particular, there exists one abelian group of order 6 (cyclic) and one nonabelian group of order 6 (D₃ is such a group)

We follow that

$$|0| = 1, |1| = 6, |2| = 3, |3| = 2, |4| = 3, |5| = 6$$

for the cyclic group and

$$|e| = 1, |r| = 3, |r^2| = 3, |s| = 2, |sr| = 2, |sr^2| = 2$$

for the dihedral group.

We follow that order of all nonidentity elements cannot be equal to 3, since there are 5 of those and none of them are equal to their inverses.

If all of the orders are equal to 2