EXERCISES WITH THEIR CORRECTIONS

Exercice 1 Adjoint operator of a symmetrical second-order operator

Let V be a subspace of $H^1(\Omega)$, let A be the linear operator defined from V into V' as follows:

$$A(y) = -div(\lambda \nabla y) + c y$$

with λ and c given in $L^{\infty}(\Omega)$.

Question I) Write the expression of A^* in weak form, in the following cases.

Case 1) With Dirichlet B.C.. Homogeneous Dirichlet conditions are imposed on the whole boundary $\partial\Omega$. In this case, we set $V = H_0^1(\Omega)$.

Show that in this case the operator is self-adjoint, i.e. $A^* = A$.

Case 2) With mixed B.C..

Considering mixed B.C., we set $\partial\Omega = \Gamma_0 \cup \Gamma_1$ and:

$$V = H^1_{\Gamma_0}(\Omega) = \{ z \in H^1(\Omega), \ z = 0 \text{ on } \Gamma_0 \}$$

Question II)

Write the expression of A^* in weak form, next in classical form, in the following cases.

We consider the mixed BC as previously, with:

Case 1)
$$(-\lambda \nabla y \cdot n) = \varphi$$
 given on Γ_1 ,

Case 2)
$$(-\lambda \nabla y \cdot n) = \varphi(y)$$
 given on Γ_1 .

Correction. Recall that by definition, given A a linear operator, its adjoint operator A^* satisfies:

$$\langle Ay, z \rangle_{V' \times V} = \langle y, A^*z \rangle_{V \times V'} \ \forall (y, z) \in V \times V$$

Question I)

Case 1)

Let
$$(y, z) \in V \times V$$
; $V = H_0^1(\Omega)$.

The operator $A(y) = -div(\lambda \nabla y) + c y$ is linear.

By definition, we have: $\langle A(y), z \rangle_{V' \times V} = \int_{\Omega} [-div(\lambda \nabla y) + c y] z dx$

By applying Green's formulae, we obtain:

$$< A(y), z>_{V'\times V} = \int_{\Omega} (\lambda \nabla y \nabla z + c \ y \ z) \ dx \text{ since } z \in H^1_0(\Omega)$$

By applying Green's formulae again, we obtain:

$$\begin{array}{lcl} < A(y), z>_{V'\times V} & = & \int_{\Omega} [-div(\lambda\nabla z) + c\ z]\ y\ dx + \int_{\partial\Omega} \lambda\nabla z \cdot n\ y\ ds \\ & = & \int_{\Omega} [-div(\lambda\nabla z) + c\ z]\ y\ dx\ \ \text{since}\ y\in H^1_0(\Omega) \\ & = & < y, A^*z>_{V\times V'} \end{array}$$

Therefore: $A(z) \equiv Az = A^*z$ for all $z \in V$. In other words: $A = A^*$.

Case 2)

Case of mixed BCs with $V = H_{\Gamma_0}^1(\Omega)$.

Let $(y, z) \in V \times V$. By applying Green's formulae, we obtain:

$$\langle A(y), z \rangle_{V' \times V} = \int_{\Omega} (\lambda \nabla y \nabla z + c y z) dx - \int_{\Gamma_1} \lambda \nabla y \cdot n z ds$$

By applying Green's formulae again, it follows:

$$\begin{array}{lcl} < A(y), z>_{V'\times V} & = & \int_{\Omega} [-div(\lambda\nabla z) + c\ z]\ y\ dx + \int_{\Gamma_1} \lambda\nabla z \cdot n\ y\ ds - \int_{\Gamma_1} \lambda\nabla y \cdot n\ z\ ds \\ & = & < y, A^*z>_{V\times V'} \ \ \text{by definition.} \end{array}$$

We obtained the adjoint operator expression.

For $(p, z) \in V \times V$,

$$< A^*p, z>_{V'\times V} = \int_{\Omega} (\lambda \nabla p \nabla z + c \ p \ z) \ dx - \int_{\Gamma_1} \lambda \nabla z \cdot n \ p \ ds$$

Therefore:

$$< A^*p, z>_{V'\times V} = \int_{\Omega} \left[-div(\lambda \nabla p) + c\ p \right] \ z \ dx + \int_{\Gamma_1} \lambda \ \nabla p \cdot n \ z \ ds - \int_{\Gamma_1} \lambda \ \nabla z \cdot n \ p \ ds$$

Note that we have:

$$<(Ay-A^*y),z>_{V'\times V}=-\int_{\Gamma_1}\lambda\nabla y\cdot n\ z\ ds+\int_{\Gamma_1}\lambda\nabla z\cdot n\ y\ ds$$

As a consequence, because of the mixed BCs, the operator A is a-priori not self-adjoint in $V = H^1_{\Gamma_0}(\Omega)$. However... see next question!

Question II)

Case 1) We have: $-(\lambda \nabla y \cdot n) = \varphi$ given on Γ_1 . Therefore, for all $(y, z) \in V \times V$,

$$(0.1) \langle Ay, z \rangle_{V' \times V} = \int_{\Omega} (\lambda \nabla y \nabla z + c \ y \ z) \ dx + \int_{\Gamma_1} \varphi \ z \ ds$$

In the case $\varphi \neq 0$, the linear part of the operator is the map $y \mapsto \int_{\Omega} (\lambda \nabla y \nabla z + c y z) dx$ only.

Indeed the term $\int_{\Gamma_1} \varphi z \, ds$ does not depends on y (it is constant wrt y).

As a consequence, the linear part of the operator is self-adjoint again.

In the case $\varphi = 0$, the operator A is self-adjoint.

Case 2) We have:
$$-(\lambda \nabla y \cdot n) = \varphi(u)$$
.

In the case $\varphi(\cdot)$ not linear, the question does not apply. Indeed, the operator must be linear to define its adjoint.

In the case $\varphi(\cdot)$ linear, we have: $-(\lambda \nabla y \cdot n) = \alpha y$ on Γ_1 , α given. In this case, we have for all $(y, z) \in V \times V$,

$$(0.2) \langle Ay, z \rangle_{V' \times V} = \int_{\Omega} (\lambda \nabla y \nabla z + c \ y \ z) \ dx + \int_{\Gamma_1} \alpha \ y \ z \ ds$$

$$(0.3) = \langle y, A^*z \rangle_{V \times V'} \text{ by definition.}$$

The (linear) operator A is self-adjoint.

For $(p, z) \in V \times V$,

$$< A^*p, z>_{V'\times V} = \int_{\Omega} (\lambda \nabla p \nabla z + c \ p \ z) \ dx + \int_{\Gamma_*} \alpha \ p \ z \ ds$$

In the classical form, the operators read in Ω : $Ay = A^*y = -div(\lambda \nabla y) + c y$.

Recall the mixed BC on y: y = 0 on Γ_0 , $-(\lambda \nabla y \cdot n) = \alpha y$ on Γ_1 .

These BCs are the same for the adjoint operator: p = 0 on Γ_0 , $-(\lambda \nabla p \cdot n) = \alpha p$ on Γ_1 .

EXERCISE 2: ADJOINT OPERATOR OF THE ADVECTION-DIFFUSION EQUATION

Let V be a subspace of $H^1(\Omega)$. Let y(x) be a scalar function defined in V. We consider the PDE operator A defined from V into V' as:

$$A(y) = -div(\lambda \nabla y) + \mathbf{w} \cdot \nabla y$$

with λ given in $L^{\infty}(\Omega)$, $\lambda > 0$, the vector field **w** given in $(L^{\infty}(\Omega))^d$.

Assumption. The vector field **w** satisfies the following properties: $div(\mathbf{w}) = 0$ in Ω and $\mathbf{w} \cdot n \geq 0$ on Γ_1 . In the case **w** represents a velocity field, the velocity field is incompressible and incoming where the solution value is given (i.e. on Γ_0).

Case 1) Homogeneous Dirichlet conditions. Homogeneous Dirichlet conditions are imposed everywhere on $\partial\Omega$. In this case, we have $V=H_0^1(\Omega)$.

a) Existence and uniqueness.

Let $f \in L^2(\Omega)$ be given. Prove that the BVP,

A(y)=f accompanied with homogeneous Dirichlet B.C. on $\partial\Omega,$ admits an unique weak solution u in V.

b) Adjoint operator.

Write an expression of A^* in weak form, next in its classical form.

Correction.

a) Existence and uniqueness.

The weak form of the model reads as follows.

Find $y \in V = H_0^1(\Omega)$ such that a(y, z) = l(z) with

$$a(y,z) = \int_{\Omega} \lambda \nabla y \nabla z \ dx + \int_{\Omega} \mathbf{w} \cdot \nabla y \ z \ dx \text{ and } l(z) = \int_{\Omega} f \ z \ dx$$

When applying the Lax-Milgram theorem, the most critical property to verify is the coercivity in $V = H_0^1(\Omega)$. Here, for all $y \in V = H_0^1(\Omega)$,

$$\int_{\Omega} \mathbf{w} \cdot \nabla y \ y \ dx = \frac{1}{2} \sum_{i} \int_{\Omega} \mathbf{w}_{i} \partial_{i}(y^{2}) \ dx = -\frac{1}{2} \sum_{i} \int_{\Omega} (y^{2}) \ \partial_{i} \mathbf{w}_{i} \ dx + \int_{\partial \Omega} \mathbf{w}_{i} n_{i} \ y^{2} \ dx$$

Therefore:

$$\int_{\Omega} \mathbf{w} \cdot \nabla y \ y \ dx = 0$$

Hence the bilinear form a(y,z) is coercitive in $V=H_0^1(\Omega)$.

The existence and uniqueness of the weak solution follows from the Lax-Milgram theorem.

b) Adjoint operator.

By integrating by part, we get:

$$\int_{\Omega} \mathbf{w} \cdot \nabla y \ z \ dx = -\int_{\Omega} div(z\mathbf{w}) \ y \ dx + \int_{\partial \Omega} \mathbf{w} \cdot n \ z \ y \ dx = -\int_{\Omega} div(z\mathbf{w}) \ y \ dx$$

For A linear, we have by definition:

$$a(y,z) = \langle Ay, z \rangle_{V' \times V} = \langle A^*z, y \rangle_{V' \times V}$$

with here $V = H_0^1(\Omega)$.

Using div(w)=0 and the Dirichlet B.C., we get:

$$< A^*z, y>_{V'\times V} = \int_{\Omega} \lambda \nabla z \nabla y \ dx - \int_{\Omega} \mathbf{w} \cdot \nabla z \ y \ dx$$

Therefore the adjoint of the advection term $(\mathbf{w} \cdot \nabla z)$ is $-(\mathbf{w} \cdot \nabla z)$.

PDE model operators containing the 1st order non symmetrical advective term $(\mathbf{w} \cdot \nabla y)$ are not self-adjoint. However, the advection term $(\mathbf{w} \cdot \nabla y)$ simply transforms as $-(\mathbf{w} \cdot \nabla p)$.

Case 2) Mixed boundary conditions.

Let us set $\partial\Omega = \Gamma_0 \cup \Gamma_1$ and $V = H^1_{\Gamma_0}(\Omega) = \{z \in H^1(\Omega), z = 0 \text{ on } \Gamma_0\}.$

a) Existence and uniqueness.

Let $f \in L^2(\Omega)$ be given. Prove that the BVP

A(y) = f with mixed homogeneous BCs (Dirichlet / Neumann) on Γ_0 , Γ_1 respectively, admits an unique weak solution in V.

b) Adjoint operator.

Write an expression of A^* in weak form.

a) Existence and uniqueness using the Lax-Milgram theorem.

The analysis is similar to the one in the previous case. We write:

$$\int_{\Omega} \mathbf{w} \cdot \nabla y \ y \ dx = \frac{1}{2} \sum_{i} \int_{\Omega} \mathbf{w}_{i} \partial_{i}(y^{2}) \ dx = -\frac{1}{2} \sum_{i} \int_{\Omega} (y^{2}) \partial_{i} \mathbf{w}_{i} \ dx + \int_{\partial \Omega} \mathbf{w}_{i} n_{i} \ y^{2} \ dx$$

Therefore:

$$\int_{\Omega} \mathbf{w} \cdot \nabla y \ y \ dx = \int_{\Gamma_1} \mathbf{w}_i n_i \ y^2 \ dx \ge 0 \quad \text{by assumption.}$$

Therefore the bilinear form a(y, z) is coercitive in V.

The existence and uniqueness of the weak solution follows from the Lax-Milgram theorem.

In other words, in the advection-diffusion equation with an incompressible velocity field \mathbf{w} , the flow must be outgoing on the boundary part where the solution is not imposed.

b) Adjoint operator.

We have for all $(y, z) \in V \times V$,

$$a(y,z) = \langle Ay, z \rangle_{V' \times V} = \int_{\Omega} \lambda \nabla y \nabla z \ dx - \int_{\Omega} div(z\mathbf{w}) \ y \ dx + \int_{\Gamma_1} \mathbf{w} \cdot n \ z \ y \ ds - \int_{\Gamma_1} \lambda \nabla y \cdot n \ z \ ds$$

Using the incompressibility assumption $div(\mathbf{w}) = 0$, we get: $\int_{\Omega} div(z\mathbf{w}) \ y \ dx = \int_{\Omega} \mathbf{w} \cdot \nabla z \ y \ dx$. Recall that by definition: $\langle Ay, z \rangle_{V' \times V} = \langle A^*z, y \rangle_{V' \times V}$.

Let us write the adjoint equation LHS term $\langle A^*p, z \rangle_{V' \times V}$.

For all $(p, z) \in V \times V$,

$$< A^*p, z>_{V'\times V} = \int_{\Omega} \lambda \nabla p \nabla z \ dx - \int_{\Omega} \mathbf{w} \cdot \nabla p \ z \ dx + \int_{\Gamma_1} \mathbf{w} \cdot n \ p \ z \ ds - \int_{\Gamma_1} \lambda \nabla z \cdot n \ p \ ds$$

Because of the non-symmetrical 1st order term, A is not self-adjoint.

The boundary terms on Γ_1 have to be clarified from Neumann type BCs.