

北京航空航天大學BEIHANGUNIVERSITY

深度学习与自然语言处理 第二次大作业

基于 EM 算法的参数估计

院	(系)名	称	自动化科学与电气工程学院					
学	生	学	号	ZY2103810					
学	生	姓	名	游虎杰					

2022年4月

一、问题描述

现有一堆硬币,包括三种硬币,每种硬币的比例分别为 s1, s2, s3,对应的抛硬币正面朝上概率分别为 p, q, r。现在进行 N 次独立实验,每次实验随机从硬币堆中抽取某个硬币并抛掷,记录该硬币是正面朝上(结果记为 1)还是反面朝上(结果记为 0),然后放回硬币,N 次实验后,根据所记录观测结果,利用 EM 算法估计参数 s1, s2, p, q, r。

二、问题表达

算法用到的各项符号与对应参数如表 1 所示:

表 1 相关符号及对应参数

符号	对应参数
$x^{(j)}$	模拟投掷硬币时生成的第j个随机数
$y^{(j)}$	第j次实验结果
$s1_i^{(j)}$	在第i轮迭代的E步中,根据第j次实验结果,对参数sl的期望值
$s2_i^{(j)}$	在第 i 轮迭代中 E 步中,根据第 j 次实验结果,对参数 s2 的期望值
$s1_i$	在第 i 轮迭代的 M 步中, 对参数 s1 的估计值
$s2_i$	在第 i 轮迭代的 M 步中, 对参数 s2 的估计值
p_i	在第 i 轮迭代的 M 步中, 对参数 p 的估计值
q_i	在第 i 轮迭代的 M 步中, 对参数 q 的估计值
r_i	在第 i 轮迭代的 M 步中, 对参数 r 的估计值
$\widehat{s1}_i$	EM 算法收敛时,对 sl 的最终估计值
$\widehat{s2}_i$	EM 算法收敛时,对 s2 的最终估计值
\hat{p}	EM 算法收敛时,对 p 的最终估计值
\widehat{q}	EM 算法收敛时,对 q 的最终估计值

 r
 EM 算法收敛时,对 r 的最终估计值

 m
 模拟抛掷硬币实验中硬币正面出现的频率

 m
 按照参数估计值计算出的硬币证明出现概率

三、具体算法实现

1. 模拟投掷结果生成

经计算可知,每次投掷出证明的概率应当为s1*p+s2*q+s3*r,因此可通过随机生成 N 个随机数来生成实验结果。若生成的第 j 个随机数 $x^{(j)} < s1*p+s2*q+s3*r$,则判断第 j 次实验硬币投掷出证明,否则判断投掷出反面。利用列表记录 N 次模拟投掷的结果。

- 2. 基于 EM 算法的参数估计
- 2.1 对各参数进行初始化设置,并令 i=0。
- 2.2 期望值求解 (E 步)

根据每次实验结果, 计算 s1, s2 的对应期望值, 具体公式如下:

 $s1_i^{(j)}$

$$= \frac{s1_{i}(p_{i})^{y^{(j)}}(1-p_{i})^{(1-y^{(j)})}}{s1_{i}(p_{i})^{y^{(j)}}(1-p_{i})^{(1-y^{(j)})} + s2_{i}(q_{i})^{y^{(j)}}(1-q_{i})^{(1-y^{(j)})} + (1-s1_{i}-s2_{i})(r_{i})^{y^{(j)}}(1-r_{i})^{(1-y^{(j)})}}$$

$$s2_{i}^{(j)}$$

$$= \frac{s2_i(q_i)^{y^{(j)}}(1-q_i)^{(1-y^{(j)})}}{s1_i(p_i)^{y^{(j)}}(1-p_i)^{(1-y^{(j)})}+s2_i(q_i)^{y^{(j)}}(1-q_i)^{(1-y^{(j)})}+(1-s1_i-s2_i)(r_i)^{y^{(j)}}(1-r_i)^{(1-y^{(j)})}}$$

2.3 似然函数最大化

更新各参数的估计值, 使得似然函数趋于局部最大, 具体公式如下:

$$s1_{i+1} = \frac{1}{N} \sum_{j=1}^{N} s1_{i}^{(j)}$$

$$s2_{i+1} = \frac{1}{N} \sum_{j=1}^{N} s2_{i}^{(j)}$$

$$p_{i+1} = \frac{\sum_{j=1}^{N} s1_{i}^{(j)} y^{(j)}}{\sum_{j=1}^{N} s1_{i}^{(j)}}$$

$$q_{i+1} = \frac{\sum_{j=1}^{N} s2_{i}^{(j)} y^{(j)}}{\sum_{j=1}^{N} s2_{i}^{(j)}}$$

$$r_{i+1} = \frac{\sum_{j=1}^{N} (1 - s1_{i}^{(j)} - s2_{i}^{(j)}) y^{(j)}}{\sum_{j=1}^{N} (1 - s1_{i}^{(j)} - s2_{i}^{(j)})}$$

$$i = i + 1$$

重复步骤 2.2~2.3,直至各参数的绝对误差和小于 0.001,此时 $\hat{p}=p_{i+1}$, $\hat{q}=q_{i+1}$, $\hat{r}=r_{i+1}$

四、运行结果

进行 10 组基于 EM 算法的参数估计实验,每组实验抛掷硬币的次数 N 均为 1000,结果如表 2 所示:

表 2 实验结果

序 号	s1	$\widehat{s1}_i$	s2	$\widehat{s2}_i$	p	ĝ	q	ĝ	r	r̂	m	m
1	0.30	0.30	0.50	0.49	0.40	0.34	0.30	0.34	0.70	0.70	0.416	0.416
2	0.20	0.28	0.20	0.47	0.40	0.50	0.30	0.50	0.70	0.80	0.558	0.558
3	0.20	0.31	0.50	0.5	0.40	0.23	020	0.23	0.30	0.56	0.287	0.287
4	0.20	0.32	0.30	0.54	0.10	0.09	0.20	0.09	0.10	0.30	0.121	0.121
5	0.50	0.31	0.20	0.52	0.30	0.17	0.30	0.17	0.10	0.47	0.216	0.216
6	0.10	0.22	0.20	0.55	0.30	0.64	0.80	0.86	0.90	0.88	0.815	0.815
7	0.40	0.36	0.50	0.36	0.30	0.14	0.10	0.36	0.90	0.41	0.288	0.288

8	0.80	0.24	0.10	0.54	0.90	0.53	0.10	0.80	0.20	0.83	0.743	0.743
9	0.10	0.22	0.90	0.55	0.10	0.67	0.90	0.88	0.10	0.90	0.873	0.873
10	0.20	0.30	0.60	0.50	0.40	0.33	0.60	0.63	0.60	0.68	0.553	0.553

由实验结果可知,每组实验完成后,根据 EM 算法估计的参数计算硬币正面出现概率 n,都和实验过程中硬币抛掷出正面的频率 m相等,但是估计出的参数与真实值往往相差很大,这是因为 EM 算法在迭代过程中会收敛到初始值附近的局部最优值。事实上,最终收敛结果一般在初始值附近。并且,在实验 1~5 中,p 与 q 的估计值完全一致,这是因为在实验 1~5 中,p 与 q 的初始值完全一致。以上实验结果说明,EM 算法对参数的估计值,能够准确计算出实验结果,但是未必与真实值相同,并且很大程度上受初始值的影响,这些在选用 EM 算法进行参数估计时都要充分考虑。

五、个人总结和体会

通过这次作业,我对 EM 算法的理解有了进一步的加深,对 EM 算法的计算过程有了更为熟练的掌握。同时,在编写代码的过程中,我对 python 的应用水平有了进一步提升。

六、作业代码

https://github.com/youlll/DP_NLP2.git