

VARIATIONAL AUTOENCODERS

Why

1

Definition

A deep conditional family is family of probabilistic generating pairs which are parameterized by a neural network (see Parameterized Distributions and Neural Networks). A deep generative family (or deep latent variable model, DLVM) is a neural network parameterized generative conditional family.

A variational autoencoder (or VAE) on observations X and latents Z is an ordered pair $(\{(p_z^{(\theta)}, p_{x|z}^{(\theta)})\}_{\theta \in \Theta}, \{q_{z|x}^{(\phi)}\}_{\phi \in \Phi})$ whose first coordinate is a deep generative family from Z to X and whose second coordinate is deep conditional family from X to Z.

We call

with latent distribution (density) $p_z: Z \to \mathbf{R}$ and observation distribution (density) $p_x: X \to \mathbf{R}$ is a ordered pair () discrete (continuous) latent set Z and discrete (continuous) observation set X is a tuple

¹Future editions will include. Future editions may also change the name of this sheet. It is also likely that there will be added prerequisite sheets on variational inference.

Parameterizing distributions

Definition

where (a) ν is an autoencoder (which need not be regular, see Autoencoders), (b) $q_{z|x}: Z \times X \to \mathbf{R}$ is a conditional distribution (density) called the recognition distribution (recognition density), (c) $p_z: Z \to \mathbf{R}$ is a distribution (density) called the latent prior model, and (d) $p_{x|z}: X \times Z \to \mathbf{R}$ is a conditional distribution (density) called the generating model.

In other words, for (a) $q_{z|x}(\cdot,\xi): Z \to \mathbf{R}$ is a distribution (density) for each $\xi \in X$ and for (d) $p_{x|z}(\cdot,\zeta): X \to \mathbf{R}$ is a distribution (density) on X for each $\zeta \in Z$.

If the model has discrete latent set and discrete observation set (or continuous latent set and continuous observation set), the joint distribution (joint density) $p_{zx}: Z \times X \to \mathbf{R}$ is defined by $p_{zx} = p_z p_{x|z}$. The observation distribution

A continuous-continuous variational autoencoder family (discretediscrete, discrete-continuous, continuous-discrete) is a tuple

$$(\nu, \{(q^{(\theta)}, p_z^{(\theta)}, p_{x|z}^{(\theta)})\}_{\theta \in \Theta}),$$

where:

- ν is an autoencoder with encoder $f: \mathbb{R}^d \to \mathbb{R}^k$ and decoder $g: \mathbb{R}^\ell \to \mathbb{R}^m$. The autoencoder need not be regular, see Autoencoders).
- $\Theta \subset \mathbb{R}^p$. The parameter set (or parameter space).

- $q^{(\theta)}: \mathbb{R}^h \to \mathbb{R}$ is a density (distribution, density, distribution), for each $\theta \in \Theta$. We call $\{q^{(\theta)}\}_{\theta \in \Theta}$ the recognition model family.
- $p_z^{\theta}: \mathbb{R}^h \to \mathbb{R}$ is a density (distribution, distribution, density), for each $\theta \in \Theta$. We call $\{p_z^{(\theta)}\}_{\theta}$ the *latent prior model family*.
- $p_{x|z}^{(\theta)}: \mathbf{R}^d \times \mathbf{R}^h \to \mathbf{R}$ is a conditional density (distribution, density, distribution). In other words, $p_{x|z}^{(\theta)}(\cdot,\zeta): \mathbf{R}^d \to \mathbf{R}$ is a density (distribution, density, distribution) for every $\zeta \in \mathbf{R}^d$. We call $\{p_{x|z}^{(\theta)}\}_{\theta \in \Theta}$ the observation model family.

A variational autoencoder (or VAE) may refer to any of the above. The convention we have adopted is "latent type"-"observation type".

