1

22.MISCELLANEOUS

ai24btech11014 - Charitha Sri

I. Section A

1) A variable takes value x with frequency $^{n+x-1}C_x$, x = 0, 1, 2, ...n. The mode of the variable is ... (1982 - 2Marks)

II. Section B

2) For real numbers x and y, we write x*y if $x-y+\sqrt{2}$ is an irrational number. Then, the relation * is an equivalence relation. (1981 - 2Marks)

III. Section C

3) If X and Y are two sets, then $X \cap (X \cup Y)^c$ equals.

(1979)

a) X

c) ϕ

b) Y

- d) None of these
- 4) The expression $\frac{12}{3+\sqrt{5}+2\sqrt{2}}$ is equal to (1980)

a) $1 - \sqrt{5} + \sqrt{2} + \sqrt{10}$

- b) $1 + \sqrt{5} + \sqrt{2} \sqrt{10}$
- c) $1 + \sqrt{5} \sqrt{2} + \sqrt{10}$
- d) $1 \sqrt{5} \sqrt{2} + \sqrt{10}$
- 5) Select the correct alternative in each of the following. Indicate your choice by the appropriate letter only.Let S be the standard deviation of n observations. Each of the n observations is multiplied by a constant c. Then the standard deviation of the resulting number is (1980)

a) s

c) s \sqrt{c}

b) cs

- d) none of these
- 6) The standard deviation of 17 numbers is zero. Then

(1980)

- a) The numbers are in geometric progression with common ratio not equal to one.
- b) Eight numbers are positive, eight are negative and one is zero.
- c) either (a) or (b)
- d) none of these
- 7) Consider any set of 201 observations $x_1, x_2, \dots x_{200}, x_{201}$. It is given that $x_1 < x_2 < \dots < x_{200} < \dots < x_{200}$ x_{201} . Then the mean deviation of this set of observations about a point k is minimum when k equals (1981 -2 Marks)

a)
$$(x_1 + x_2 + \cdots + x_{200} + x_{201})/201$$

- b) x_1
- c) x_{101}
- d) x_{201}
- 8) If x_1, x_2, \dots, x_n are any ral numbers and n is any positive integer, then (1982 - 2 Marks)
 - a) $n \sum_{i=1}^{n} x_i^2 < (\sum_{i=1}^{n} x_i)^2$

(1979)

b) $\sum_{i=1}^{n} x_i^2 \ge (\sum_{i=1}^{n} x_i^2)$ (c) $\sum_{i=1}^{n} x_i^2 \ge n$ (d) none of these (9) Let $S = 1, 2, 3, 3$	$\sum_{i=1}^{n} x_i)^2$	nordered pairs of disjoint	subsets of S is equal to	(2010)
a) 25	b) 34	c) 42	d) 41	
10) Let $P = \theta$: sin	$\theta - \cos \theta = \sqrt{2} \cos \theta$ and	$Q = \theta : \sin \theta + \cos \theta = \sqrt{2}$	$2 \sin \theta$ be two sets. Then	(2011)
a) $P \subset QandQ$ b) $Q \not\subset P$	$-P \neq \emptyset$	c) $P \not\subset Q$ d) $P = Q$		
		IV. D		
students. The nua at least 30 b) at most 20 c) exactly 25 d) none of these	imber of newspapers is	dent reads 5 newspapers at each $n \ge 1$, the length of	(1998 –	2Marks)
diagonal of S_{n}	_	e of S_1 is 10cm, then for	which of the following va	_
a) 7	b) 8	c) 9	d) 10	
		5, let N_k be the number of ld. Then $N_1 + N_2 + N_3 + N_4$		ining five Adv.2017)
a) 210	b) 252	c) 125	d) 126	
		V. E		
(M), coffee (C) T;20 had M an only.Using a V 15) (a) Construct a	and tea (T).He reported d C; 30 had C and T;25 enn diagram find how m triangle with base 9cm	that to determine their prefet the following:10 student had M and T; 12 had M hany did not take any of the and altitude 4cm, the ratio	es had all the three drinks only; 5 had C only; and three drinks.	M,C and 1 8 had T (1978) being 2:1

Justify your steps.