| G3          | Frekvenční filtr | 3D2          |
|-------------|------------------|--------------|
| 19. 2. 2018 | riekvenciii inui | Meinlschmidt |

# ZADÁNÍ:

- 1. Vysvětlete, co jsou frekvenční filtry. Jaký je rozdíl mezi pasivním a aktivním filtrem?
- 2. Načrtněte frekvenční charakteristiky jednotlivých filtrů: *horní propust, dolní propust, pásmová propust, pásmová zádrž*
- 3. Z mezních frekvencí zadaných vyučujícím a předložených součástek navrhněte parametry dvou zadaných frekvenčních filtrů
- 4. Sestavte navržené filtry a změřte jejich frekvenční charakteristiku. Během měření udržujte konstantní vstupní napětí, frekvence volte v rozsahu 1,8 kHz až 91 kHz, jednotlivé hodnoty uvádí tabulka v pracovním listu
- 5. Z naměřených hodnot sestrojte frekvenční charakteristiky  $U_2 = f(f)$  obou změřených filtrů. Na vodorovnou osu použijte logaritmické měřítko

## **ODPOVĚDI NA OTÁZKY:**

### Frekvenční filtr

Je elektronický obvod (dvojbran) navržený tak, aby propouštěl signály určitého pásma frekvencí, zatímco signály ostatních frekvencí potlačoval. Pomocí frekvenčního filtru lze z celého kmitočtového spektra odstranit nežádoucí (rušivé) signály.

#### Pasivní filtr

Je realizován pomocí pasivních součástek (rezistory, kondenzátory, cívky).

### Aktivní filtr

Mimo pasivní součástky obsahuje i zesilovací prvek (tranzistor, operační zesilovač atd.)

### **TEORIE:**

Frekvenční filtry využívají závislost impedance pasivních součástek na frekvenci. Např. induktivní reaktance  $X_L$  cívky se s rostou frekvencí zvyšuje.  $X_L = \omega \cdot L$ ; O souvislosti pojednává tzv. Lenzův zákon, zjednodušeně – magnetické pole kolem vodiče působí proti změně magnetického indukčního toku.

Naopak kapacitní reaktance  $X_C$  kondenzátoru s rostoucí frekvencí klesá  $X_C = (\omega \cdot C)^{-1}$ . Frekvenční filtry můžeme rozdělit podle frekvencí, které propouští.

## **Dolní propust:**



### Horní propust:



### Pásmová propust:



### Pásmová zádrž



## Mezní frekvence

Je frekvence, při níž se vyrovná impedance sériově a paralelně zapojených prvků (RC, RL). Při dosažení této frekvence dochází k útlumu přibližně kolem 3 *dB*.



Je nutno dbát na to, že decibel není jednotka SI a že na rozdíl od ostatních jednotek, je decibel jednotka logaritmická. Tudíž útlum o 3 dB se rovná  $\frac{1}{\sqrt{2}} = 0,707 = 70,7\%$ . Impedance jednotlivých prvků se rovnají:

$$R = X_C; R = X_L; X_C = X_L$$

Mezní frekvence  $f_c$  u RC filtru:

$$f_C = (2 \cdot \pi \cdot R \cdot C)^{-1}$$

# SCHÉMA ZAPOJENÍ:



## POUŽITÉ PŘÍSTROJE A POMŮCKY:

| Název              | Typové označení | Inventární číslo |
|--------------------|-----------------|------------------|
| Generátor          | UNIT-T UTG9005C | 947/21           |
| Voltmetr 1         | UNI-T UT803     | 947/17           |
| Voltmetr 2         | UNI-T UT804     | 975/12           |
| Demonstrační panel | PANEL 18        |                  |
| Odporová dekáda    | METRA XL6       | 4491/01          |
| Odporová dekáda 2  |                 | 62013661         |

# **POPIS PRÁCE:**

Před samotným měřením jsme si připravili potřebné pomůcky a součástky – například zdroj elektrické energie, panel s diodami, voltmetr atd. Jejich typové značky, evidenční čísla a jiné nutné údaje jsme řádně zapsali do záznamu o měření.

Nejdříve jsme spočítal velikost elektrického odporu pomocí vzorce, který jsme si odvodil. Jednotlivé velikosti elektrického odporu se odvíjely od zadané mezní frekvence a kapacitou kondenzátoru učitelem.

Následně jsme sestrojili obvod pro dolní propust. Na odporové dekádě jsme nastavili spočítaný odpor pro jednotlivé filtry. Na generátoru jsme nastavili danou frekvenci a museli jsme při každé změně upravit i napětí na 2 V. To je potřeba dorovnat z toho důvodu, že zdroj není ideální napěťový zdroj a s každou změnou zátěže jeho napětí poklesne, což by se projevilo v chybách na měření.

Při spouštění voltmetru bylo potřeba držet tlačítko **RS 232**, jinak by došlo k jeho vypnutí po určitém čase. Zároveň bylo potřeba stisknout tlačítko **SELECT** a voltmetr přepnout do režimu AC (střídavý proud).

# **TABULKY:**

| U <sub>1</sub> [V]    | 2,000 | Horní<br>propust | Dolní<br>propust | Pásmová propust |        |
|-----------------------|-------|------------------|------------------|-----------------|--------|
| Mezní frekvence [kHz] |       | 5                | 14               | 8               | 16     |
| R [Ω]                 |       | 31 830,99        | 3 444,91         | 1 989,43        | 301,43 |
| C [nF]                |       | 1                | 3,3              | 10              | 33     |

| f [kHz] | U <sub>2A</sub> [V] | U <sub>2B</sub> [V] | f [kHz] | U <sub>2A</sub> [V] | U <sub>2B</sub> [V] |
|---------|---------------------|---------------------|---------|---------------------|---------------------|
| 1,8     | 1,975               | 0,300               | 13      | 1,441               | 0,392               |
| 2       | 1,977               | 0,312               | 14,5    | 1,365               | 0,390               |
| 2,2     | 1,972               | 0,324               | 16      | 1,293               | 0,388               |
| 2,4     | 1,966               | 0,333               | 18      | 1,203               | 0,385               |
| 2,7     | 1,955               | 0,346               | 20      | 1,125               | 0,381               |
| 3       | 1,944               | 0,354               | 22      | 1,054               | 0,380               |
| 3,3     | 1,934               | 0,361               | 24      | 0,989               | 0,379               |
| 3,6     | 1,923               | 0,367               | 27      | 0,903               | 0,372               |
| 3,9     | 1,911               | 0,371               | 30      | 0,831               | 0,364               |
| 4,3     | 1,900               | 0,375               | 33      | 0,767               | 0,356               |
| 4,7     | 1,883               | 0,379               | 36      | 0,715               | 0,348               |
| 5,1     | 1,864               | 0,384               | 39      | 0,665               | 0,339               |
| 5,6     | 1,840               | 0,387               | 43      | 0,609               | 0,338               |
| 6,2     | 1,810               | 0,390               | 47      | 0,562               | 0,330               |
| 6,8     | 1,778               | 0,391               | 51      | 0,521               | 0,320               |
| 7,5     | 1,740               | 0,393               | 56      | 0,476               | 0,306               |
| 8,2     | 1,701               | 0,393               | 62      | 0,432               | 0,298               |
| 9,1     | 1,649               | 0,394               | 68      | 0,398               | 0,282               |
| 10      | 1,600               | 0,394               | 75      | 0,361               | 0,269               |
| 11      | 1,548               | 0,394               | 82      | 0,333               | 0,253               |
| 12      | 1,495               | 0,393               | 91      | 0,289               | 0,238               |

# **GRAFY**

0



10

f [kHz]

100



# VÝPOČTY:

Výpočet odporu  $R [\Omega]$  dle požadované mezní frekvence  $f_c [Hz]$ :

$$f_C = (2 \cdot \pi \cdot R \cdot C)^{-1}$$

$$R = (2 \cdot \pi \cdot f_C \cdot C)^{-1}$$

$$R = (2 \cdot \pi \cdot 14 \cdot 10^3 \cdot 3,300 \cdot 10^{-9})^{-1}$$

$$R = 3444,91 \Omega$$

# **SPOLUPRACOVALI:**

Kotek Lubomír

# **ZÁVĚR:**

Všechny úkoly se zadání byly splněny, během měření jsem si nevšiml žádných chyb nebo logických nesrovnalostí. Charakteristiky odpovídají očekávaným průběhům. Jedinou chybou bylo neposlechnutí vyučujícího, a nezvolení kondenzátorů s nejvyšší možnou kapacitou.