Complex Analysis II

Minerva

2021-2nd

Contents

1	Cov	vering spaces	3
	1.1	Preliminary	3
		1.1.1 Riemann surface	3
		1.1.2 Fundamental group	6
		1.1.3 Covering maps	7
		1.1.4 Theorem for liftings	8
	1.2	Deck transformation	11
	1.3		18
		1.3.1 Sheaf	18
		1.3.2 Analytic continuation	19
		1.3.3 Algebraic functions	21
	1.4	Linear differential equations	29
2	Cor	npact Riemann surface	32
_	2.1	1	32
	2.2	Finiteness theorem	37
	$\frac{2.2}{2.3}$	The exact cohomology sequence	42
	2.4	Riemann Roch theorem and Serre duality	44
	2.1	2.4.1 Divisor and Riemann Roch	44
		2.4.2 Serre duality	47
		2.4.3 Application	52
	2.5	Mittag-Leffler problem and Weierstrass point	54
	2.6	deRham Hodge theorem	57
	2.7	Abel theorem	58
	2.8	Abel Jacobi map	61
	2.0		01
3		•	65
	3.1	Countable topology	65
	3.2	Weyl's lemma	66
	3.3	Runge approximation	
		3.3.1 Topological vector space	
		~	71
		3.3.3 Runge approximation	74
	3.4	Riemann mapping theorem	78
	3.5	Functions with prescribed summands of automorphy	83
	3.6	The triviality of vector bundles	85
		3.6.1 Proof of finiteness	88
		3.6.2 $H^1(X, \mathcal{O}^*)$	90
	3.7	Riemann Hilbert problem	90

CONTENTS Minerva notes

Mor 4.1	Jacobi variety93emann condition
Hon	vork 97
5.1	97
5.2	
5.3	
5.4	
5.5	
5.6	
5.7	
5.8	
5.9	
5.10	
5.11	
5.12	
5.13	
5.14	
5.15	
5.16	
5.17	
5.18	
5.19	
5.20	
5.21	
5.22	
5.23	
5.24	
	4.1 Ri Homey 5.1 . 5.2 . 5.3 . 5.4 . 5.5 . 5.6 . 5.7 . 5.8 . 5.9 . 5.10 . 5.11 . 5.12 . 5.13 . 5.14 . 5.15 . 5.16 . 5.17 . 5.18 . 5.19 . 5.20 . 5.21 . 5.22 . 5.23 .

Chapter 1

Covering spaces

1.1 Preliminary

1.1.1 Riemann surface

Definition 1.1.1.

- Let X be a Hausdorff topological space X is called a 2-dimension manifold if $\forall p \in X$, $\exists p \in U \subset X \text{ s.t. } U \xrightarrow{\sim} V \subset \mathbb{R}^2 \text{ and } U \text{ is called the chart.}$
- Let X be a 2-dimension manifold. A **complex atlas** on X is a system $\{\varphi_i\}_{i\in I}$ with $\varphi_i: U_i \simeq V_j \subset \mathbb{C}$ s.t. $X = \bigcup_{i\in I} U_i$ and $\varphi_{ij} = \varphi_i \circ \varphi_j^{-1}: \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$ is biholomorphic $\forall i, j$.

- Two complex at lases $\{\varphi_i\}_{i\in I}$, $\{\psi_{\lambda}\}_{\lambda\in\Lambda}$ are **equivalent** if $\varphi_j\psi_{\lambda}^{-1}$, $\psi_{\lambda}\varphi_j^{-1}$ are biholomorphic when and where defined.
- A complex structure on X is an equivalence class of complex at lases on X.
- A Riemann surface is a pair (X, Σ) , where X is connected 2-dimension manifold with complex structure Σ .
 - •• Y is a domain (connected open subset) in $X \rightsquigarrow Y$ is also Riemann surface $(Y, \Sigma|_Y)$.
 - •• Usually, we pick a maximal system $\{U_{\alpha}, z_{\alpha}\}_{{\alpha} \in \Lambda}$ representing Σ on X with $z_{\alpha} : U_{\alpha} \simeq V_{\alpha} \subseteq \mathbb{C}$.

• $Y \subset X$, $f: Y \to \mathbb{C}$ is **holomorphic** if $f \circ z_{\alpha}^{-1}$ is holomorphic $\forall \alpha$. Note that holomorphic is local property, which is independent on choice of atlases. Define $\mathcal{O}(Y)$ be all holomorphic functions on Y, which form a \mathbb{C} -algebra.

• Let X and Y be two Riemann surface. A continuous mapping $f: X \to Y$ is called holomorphic if all $f_{\alpha\beta}$ is holomorphic function in \mathbb{C} .

Theorem 1.1.1 (identity theorem). $f_1, f_2 : X \to Y$ holomorphic. If $f_1|_A = f_2|_A$ with $A \subset X$ having a limit point $a \in X$, then $f_1 \equiv f_2$.

Proof:

- $G := \{x \in X : \exists x \in W \subset X \text{ s.t. } f_1|_W = f_2|_W\}$ which is open.
- Let $b \in \overline{G} \leadsto f_1(b) = f_2(b)$ since f_1, f_2 is continuous. Choose $b \in U \subset X$, $V \subseteq Y$, $f_i(U) \subseteq V$. We may assume U is connected. Write $g_i = w \circ f_i \circ z^{-1} : z(U) \to w(V) \ \forall i = 1, 2$. Since $b \in \overline{G} \cap U$, $U \cap G \neq \emptyset$ and $f_1|_{Z(U \cap G)} = f_2|_{Z(U \cap G)}$. By identity theorem for \mathbb{C} , $g_1 = g_2 \leadsto f_1|_U = f_2|_U \leadsto b \in G$, so G is closed.
- Since X is connected, $G = \emptyset$ or G = X.
- Choose $a \in W \subset X \leadsto f_1|_{A\cap W} = f_2|_{A\cap W}$ and $a \in \overline{A\cap W}$. By identity theorem on \mathbb{C} , $f_1|_W = f_2|_W \implies a \in G \implies G = X$ and thus $f_1 \equiv f_2$.

Example 1.1.1. $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$.

- Topology : {open set} = { $U \subset \mathbb{C}$ } \cup { $V \cup$ { ∞ } : $V = \mathbb{C} \setminus K, K \subset \mathbb{C}$ }
- Charts:

$$\begin{array}{c} U_1 = \mathbb{P}^1 \setminus \{\infty\} = \mathbb{C} \xrightarrow{z_1 = \mathrm{id}} \mathbb{C} \\ U_2 = \mathbb{P}^1 \setminus \{0\} = \mathbb{C} \xrightarrow{z_1 = z^{-1}} \mathbb{C} \end{array} \implies \begin{array}{c} Z_1(U_1 \cap U_2) & \longrightarrow & Z_2(U_1 \cap U_2) \\ z & \longmapsto & z^{-1} \end{array}$$

Definition 1.1.2. f is meromorphic function if $\exists Y' \subseteq Y$.

- $f \in \mathcal{O}(Y')$
- $Y \setminus Y'$ contains only isolated points.

•
$$\forall p \in Y \setminus Y', \lim_{x \to n} |f(x)| = \infty$$

Let $\mathcal{M}(Y)$ be all meromorphic function on Y.

Property 1.1.1. Property for $\mathcal{M}(X)$.

- (1) For $f \in \mathcal{M}(X)$, define $f(p) = \infty \ \forall p$: pole of f. Then $f: X \to \mathbb{P}^1$ is holomorphic:
 - f is continuous : f is already continuous on Y'. For $p \in Y \setminus Y'$, by def, $\lim_{p \to \infty} |f(x)| = \infty$.
 - f is holomorphic: Just need to take care of a neighborhood of p. We can choose $p \in U$ s.t. U doesn't contain others pole (by isolated). Let $z_1: U \simeq V$, $f(p) = \infty \in U' \xrightarrow{z_2 = z^{-1}} V' \ni 0$. Then $g := z_2 \circ f \circ z_1^{-1}$ is holomorphic on $V \setminus z_1(p)$ and g is bounded near $z_1(p) \leadsto z_1(p)$ is a removable singularity $\leadsto g$ is hol. on V.
- (2) If $f: X \xrightarrow{\text{hol.}} \mathbb{P}^1$, then $f \equiv \infty$ or $f \in \mathcal{M}(X)$: If $f \not\equiv \infty$, then by identity theorem, $f^{-1}(\infty)$ consists of isolated points and thus $f \in \mathcal{M}(X)$.
- (3) $\mathcal{M}(X)$ is a field: If $f \not\equiv 0$, then $f^{-1}(0)$ has only isolated points $\leadsto f$ has only isolated zero $\leadsto f^{-1} \in \mathcal{M}(X)$.

Property 1.1.2. Property for $f: X \to Y$ holomorphic.

(1) Let $f: X \to Y$ be non-constant holomorphic. Say $a \in U_1 \subseteq X$ and $b = f(a) \in U' \subseteq Y$. We may assume $z_1: U_1 \xrightarrow{\sim} V_1 \subseteq \mathbb{C}$, $z_2: U' \xrightarrow{\sim} V'$ s.t. $z_1(a) = 0$, $z_2(b) = 0$. Then $f_1 = z_1^{-1} \circ f \circ z_2: V_1 \to V'$ is holomorphic and $f(0) = 0 \leadsto f_1(z) = z^m g(z)$ with $g(z) \in \mathcal{O}(V_1)$ and $g(0) \neq 0$. Then $\exists 0 \in V_2 \subset V_1$ and $g \in \mathcal{O}(V_2)$ s.t. $g = h^m$ on V_2 . Let $z_2(z) = zh(z)$, then

$$\left. \frac{d}{dz} z h(z) \right|_{z=0} = h'(0) \neq 0$$

By inverse function theorem, z_2 is biholmorphic near 0 (may assume V_2 satisfy). Let $U=z_1^{-1}(V_2)$ and $z=g\circ z_1:U\to V$. Then $f_1'=z_2\circ f\circ z^{-1}:(zh(z))\mapsto (zh(z))^m$.

In this case, $U \setminus \{a\} \xrightarrow{f} U'$ is m to 1. The **multiplicity** of a is defined by $v_f(a) = m$ and the **branch number** of f at a is defined by $b_f(a) = m - 1$.

- (2) Non-constant holomorphic map are open mapping since the image of a full circle under the map z^m is again a full circle.
- (3) **Maximal principle**: If $f: X \to \mathbb{C}$ is non-constant holomorphic function, then |f| does not attain it max.

subproof: If not, say $R = |f(a)| = \max\{|f(x)| : x \in X\}$. Then $f(X) \subseteq \overline{B_R(0)}$. Since f(X) is open, $f(X) \subset B_R(0)$ (\rightarrow).

(4) $f: X \xrightarrow{\text{non const.}} Y$ and X is compact, then f is surjective and Y is compact.

subproof: Since f(X) is compact, f(X) is closed. Since f(X) is open and closed and Y is connected, f(X) = Y.

(5) If X is compact, then $\mathcal{O}(X) = \mathbb{C}$.

subproof: By (4) and \mathbb{C} is not compact, $f \in \mathcal{O}(X)$ must be constant.

(6) $\mathscr{M}(\mathbb{P}^1) = \mathbb{C}(z)$.

subproof: For $f \in \mathcal{M}(\mathbb{P}^1)$, f has only finitely many poles (by isolated and \mathbb{P}^1 is compact) $a_1, ..., a_n$. If $a_i = \infty$, consider $\tilde{f} = \frac{1}{f-a}$, then we may assume $a_i \neq \infty$. Write $f(z) = h_1(z) + g_1(z)$, where $h_1(z) = \sum_{j=-m}^{-1} c_j(z-a_1)^j$ and g_1 is hol. at a. Since $\lim_{z\to\infty} h_1(z) = 0$, $h_1 \in \mathcal{M}(\mathbb{P}^1)$ by setting $h(\infty) = 0$. Continue the process by $g_1(z) = h_2(z) + g_2(z) \Longrightarrow h_2(z) \in \mathcal{M}(\mathbb{P}^1)$. We have

$$f - h_1 - h_2 - \dots - h_n \in \mathcal{O}(\mathbb{P}^1) = \mathbb{C} \implies f \in \mathbb{C}(z)$$

Example 1.1.2. Let $\omega_1, \omega \in \mathbb{C}$ is linearly independent over \mathbb{R} , $\Gamma := \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. For $z_1, z_2 \in \mathbb{C}$, $z_1 \sim z_2 \iff z_1 - z_2 \in \Gamma$. Let $\pi : \mathbb{C} \to \mathbb{C}/\Gamma$ be projection.

- Topology : {open sets} = { $U \subset \mathbb{C}/\Gamma : \pi^{-1}(U) \subset_{\text{open}} \mathbb{C}$ } which is Hausdorff, connected, compact. π is open mapping since $\pi^{-1}(\pi(V)) = \bigcup_{\omega \in \Gamma} (\omega + V)$ is open in $\mathbb{C} \implies \pi(V)$ is open in \mathbb{C}/Γ .
- Complex charts: Consider $V \subset_{\text{open}} \mathbb{C}$ s.t. no two points in V are equivalent $\to U = \pi(V)$ is open in \mathbb{C}/Γ . $\varphi_V := (\pi|_V)^{-1}: U \to V \subseteq \mathbb{C}$ is a chart for \mathbb{C}/Γ . Now consider $\varphi_i: U_i \to V_i$ for i=1,2. Consider $\psi=\varphi_2\circ\varphi_1^{-1}:\varphi_1(U_1\cap U_2)\to\varphi_2(U_1\cap U_2)$, then $\pi(z)=\pi(\psi(z))\to z-\psi(z)\in\Gamma$. Since $z-\psi(z)$ is continuous and Γ is discrete, $z-\psi(z)=\omega$ which is holomorphic.
- $\mathcal{O}(\mathbb{C}/\Gamma) = \mathbb{C}$ since \mathbb{C}/Γ is compact.
- $\mathcal{M}(\mathbb{C}/\Gamma) = \{ f \in \mathbb{C} : f(z) = f(z + \omega_1) = f(z + \omega_2) \ \forall z \in \mathbb{C} \}$ with $F \longleftrightarrow f = F \circ \pi : \mathbb{C} \to \mathbb{P}^1$. If $F : \mathbb{C}/\Gamma \to \mathbb{P}^1$, then F is constant or surjective. For the latter, $f : \mathbb{C} \to \mathbb{P}^1$ is also surjective and $f(z) = f(z + \omega_1) = f(z + \omega_2)$.

1.1.2 Fundamental group

Let X be a topological space, a continuous map $u: I = [0,1] \to X$ give a curve from u(0) = a to u(1) = b.

• u and v is **homotopic** (denoted by $u \sim v$) if \exists continuous map $A: I \times I \to X$ s.t.

- " \sim " is equivalent relation :
 - •• $u \sim u : A(t,s) = u(t)$
 - •• $u \underset{A}{\sim} v \implies v \sim u : B(t,s) = A(t,1-s)$

••
$$u \underset{A}{\sim} v, \ v \underset{B}{\sim} w : C(t,s) = \begin{cases} A(t,2s) & 0 \le s \le 1/2 \\ B(t,2s-1) & 1/2 \le s \le 1 \end{cases}$$

• u: from a to b, v: from b to $c \rightsquigarrow u \cdot v(t) :=$ $\begin{cases} u(2t) & 0 \le t \le 1/2 \\ v(2t-1) & 1/2 \le t \le 1 \end{cases}$ from a to b.

••
$$u \underset{A}{\sim} u', v \underset{B}{\sim} v' \implies u \cdot v \sim u' \cdot v' : C(t,s) = \begin{cases} A(2t,s) & 0 \le t \le 1/2 \\ B(2t-1,s) & 1/2 \le t \le 1 \end{cases}$$

••
$$u^{-1} := u(1-t) \ (u \sim u' \implies u^{-1} \sim (u')^{-1} : B(t,s) = A(1-t,s)$$

- a: constant curve via u(t) = a
- $\pi_1(X, a) = \{u : \text{closed curve with } u(0) = u(1) = a\} / \sim \text{ form a group, which is called the }$ fundamental group of X with basis point a.
 - •• $u \cdot u^{-1} \sim a$:

$$A(t,s) = \begin{cases} u(2t) & 0 \le 2t \le s \\ u(s) & s \le 2t \le 2 - s \\ u^{-1}(2t - 1) & 2 - s \le 2t \le 2 \end{cases}$$

•• $u \cdot a \sim u$, $a \cdot u \sim u$:

$$A(t,s) = \begin{cases} u\left(\frac{2t}{s+1}\right) & 0 \le t \le (s+1)/2\\ a & (s+1)/2 \le t \le 1 \end{cases}$$

•• $(u \cdot v) \cdot w = u \cdot (v \cdot w)$:

$$A(t,s) = \begin{cases} u\left(\frac{4t}{s+1}\right) & 0 \le t \le (s+1)/4\\ v(4t-s-1) & (s+1)/4 \le t \le (s+2)/4\\ w\left(\frac{4t-s-2}{2-s}\right) & (s+2)/4 \le t \le 1 \end{cases}$$

Remark 1.1.1. If X is arcwise connected, then $\pi_1(X, a)$ is independent of a up to isomorphism. Indeed, for $a, b \in X$, a curve u from a to b induce the isomorphism

$$\varphi: \ \pi_1(X,a) \longrightarrow \ \pi_1(X,b)$$
$$[v] \longmapsto \ [u^{-1}vu]$$

Definition 1.1.3. An arcwise connected space X is simply connected if $\pi_1(X) = 0$.

Example 1.1.3. $\pi_1(\mathbb{D}) = 0$, since $A(t,s) = sa + (1-s)u(t) \implies u \sim a$.

1.1.3 Covering maps

Definition 1.1.4. Let X and Y be two topological space and $p: Y \to X$ continuous.

• p is called a **local homeomorphism** if $\forall y \in Y, \exists y \in V \subseteq Y \text{ s.t. } U = p(V)$ is open in X and $p|_V : V \simeq U$.

• p is called a **covering map** if $\forall x \in X$, $\exists x \in U \subset X$ s.t. $p^{-1}(U) = \bigsqcup_{j \in J} V_j$ and $p|_{V_j} : V_j \simeq U$.

Example 1.1.4.

• $k \geq 2$, $p_k : \mathbb{C}^{\times} \to \mathbb{C}^{\times}$ defined by $z \mapsto z^k$ is a covering map : $\forall a \in \mathbb{C}^{\times}$, $\exists b \in \mathbb{C}^{\times}$ s.t. $b^k = a$. $\exists a \in U \subset \mathbb{C}^{\times}$ and $b \in V_0 \subset \mathbb{C}^{\times}$ s.t. $\rho_k|_{V_0} : V_0 \simeq U$. Let $\omega = e^{2\pi i/k}$, then

$$p_k^{-1}(U) = V_0 \sqcup \omega V_0 \sqcup \cdots \sqcup \omega^{k-1} V_0$$

• exp : $\mathbb{C} \to \mathbb{C}^{\times}$ is a covering map : Let $a \in U \subseteq \mathbb{C}^{\times}$, $\exists b \in V_0 \subseteq \mathbb{C}$ s.t. $e^b = a$ and $\exp|_{V_0} : V_0 \simeq U$. Then

$$\exp^{-1}(U) = \bigsqcup_{n \in \mathbb{Z}} (2\pi i n + V_0)$$

• $\Gamma \subset \mathbb{C}$: a lattice and $\pi : \mathbb{C} \to \mathbb{C}/\Gamma$ is a covering map : $V \subset_{\text{open}} \mathbb{C}$ s.t. no two points in V are equivalent, $\pi|_V : V \simeq \pi(V) =: U$ and

$$\pi^{-1}(U) = \bigsqcup_{\omega \in \Gamma} (\omega + V)$$

1.1.4 Theorem for liftings

Theorem 1.1.2. Let $p: Y \to X$ be a covering map. Given a curve $u(t) \subset X$, $x_0 = u(0)$ and $y_0 \in p^{-1}(x_0)$, $\exists \widetilde{u}(t) \subset Y$ s.t. $p \circ \widetilde{u} = u$.

Proof: Let

$$J = \left\{t \in [0,1] \middle| \exists \widetilde{u} : [0,1] \to Y \text{ s.t. } \widetilde{u}(0) = y_0 \text{ and } p(\widetilde{u}|_{[0,t]}) = u|_{[0,t]} \right\}$$

- J is open : $t \in J$, $u(t) \in U \subset X$ with $p^{-1}(U) = \bigsqcup_{j \in \Lambda} V_j$. Let $\widetilde{u}(t) \in V_j$ for some j. Since u is continuous, $\exists [t, t + \varepsilon] \subset u^{-1}(U)$. Since $\varphi : U \xrightarrow{\sim} V_j$, $\widetilde{u}|_{[t, t + \varepsilon]} := \varphi \circ u|_{[t, t + \varepsilon]}$ and thus $t + \varepsilon \in J$.
- J is closed: choose $\{t_n\} \subset J$ s.t. $t_n \to t_0 \in [0,1]$. Choose $u(t_0) \in U \subset X$ with $\rho^{-1}(U) = \bigsqcup_{j \in \Lambda} V_j$. Assume that $u([t_n,t]) \subset U$ and $\widetilde{u}(t_n) \in V_j$ for some j. Then $\widetilde{u}|_{[t_n,t_0]} := \varphi \circ u|_{[t_n,t_0]}$ and thus $t_0 \in J$.

Since
$$[0,1]$$
 is connected, $J = [0,1]$.

Theorem 1.1.3 (uniqueness). Given the condition in below s.t. $\widetilde{f}_1(z_0) = \widetilde{f}_2(z_0)$ and $f = p \circ \widetilde{f}_1 = p \circ \widetilde{f}_2$, then $\widetilde{f}_1 \equiv \widetilde{f}_2$.

Proof: Let $G = \{z \in Z : \widetilde{f}_1(z) = \widetilde{f}_2(z)\}.$

• G is closed : Consider

$$(\widetilde{f_1}, \widetilde{f_2}): Z \longrightarrow Y \times Y$$

$$z \longmapsto (\widetilde{f_1}(z), \widetilde{f_2}(z))$$

Since Y is Hausdorff, $\Delta := \{(y,y) \in Y \times Y\}$ is closed in $Y \times Y$ and thus $G = (\widetilde{f}_1, \widetilde{f}_2)^{-1}(\Delta)$ is closed.

• G is open: Let $z \in G$ and $y := \widetilde{f_1}(z_0) = \widetilde{f_2}(z_0)$. Choose $y \in U \subset Y$ s.t. $\varphi : V = p(U) \xrightarrow{\sim} U$. Since $\widetilde{f_1}, \widetilde{f_2}$ are continuous, $\exists z \in W \subset Z$ s.t. $\widetilde{f_i}(W) \subset U \ \forall i$. By definition of liftings, $p \circ \widetilde{f_i} = f$, then $f(W) \subset V$ and $\widetilde{f_i}|_W = \varphi \circ f|_W$ i.e. $\widetilde{f_1}|_W = \widetilde{f_2}|_W \Longrightarrow W \subset G$.

Since Z is connected and $z_0 \in G$, G = Z.

Theorem 1.1.4. Given the condition below and $u \underset{A}{\sim} v$ in X with initial point a and $\widetilde{a} \in p^{-1}(a)$. We can lift the curve to Y by Theorem 1.1.2, then $\widetilde{u} \underset{A}{\sim} \widetilde{v}$.

Proof: For each curve $u_s(t)$, $\exists \widetilde{u_s}(t)$ in Y s.t. $\rho \circ \widetilde{u_s} = u_s$. Define $\widetilde{A}(t,s) = \widetilde{u_s}(t)$, then $p \circ \widetilde{A} = A$.

• \widetilde{A} is continuous on $[0, \varepsilon_0] \times I$: We take $\widetilde{a} \in U \subset Y$ s.t. $\varphi : U = p(V) \xrightarrow{\sim} V$. Since $A(\{0\} \times I) = \{a\}$ and A is continuous, $\exists \varepsilon_0 > 0$ s.t. $A([0, \varepsilon_0] \times I) \subset V$ (by Lebesgue number) i.e. $u_s([0, \varepsilon_0]) \subset V \ \forall s$. By the uniqueness, $\widetilde{u_s}|_{[0,\varepsilon_0]} = \varphi \circ u_s|_{[0,\varepsilon_0]} \ \forall s$. By $\widetilde{A} = \varphi \circ A$ on $[0, \varepsilon_0] \times I$ and A is continuous, \widetilde{A} is continuous on $[0, \varepsilon_0] \times I$.

• \widetilde{A} is continuous on $I \times I$: Suppose not, $\exists (t_0, \sigma) \in I \times I$ at which \widetilde{A} is not continuous. Let

$$\tau = \inf\{t \in [0,1] : \widetilde{A} \text{ is not continuous at } (t,\sigma)\}$$

Then $\tau \geq \varepsilon_0$. Let $x = A(\tau, \sigma)$ and $y = \widetilde{A}(\tau, \sigma)$. There are neighborhoods of y and U of x s.t. $\varphi : U = p(V) \xrightarrow{\sim} V$. Since A is continuous, $\exists \varepsilon > 0$ s.t. $A(I_{\varepsilon}(\tau) \times I_{\varepsilon}(\sigma)) \subset U$, where

$$I_{\varepsilon}(\xi) = \{ t \in I : |t - \xi| < \varepsilon \}$$

In particular $u_{\sigma}(I_{\varepsilon}(\tau)) \subset U$. By uniqueness of lifting,

$$\widetilde{u_{\sigma}}|_{I_{\varepsilon}(\tau)} = \varphi \circ u_{\sigma}|_{I_{\varepsilon}(\tau)}$$

Choose $t_1 \in I_{\varepsilon}(\tau)$ with $t_1 < \tau$. Since \widetilde{A} is continuous at (t_1, σ) , there exists $\delta > 0$, $\delta \leq \varepsilon$ s.t.

$$\widetilde{A}(t_1, s) = \widetilde{u_s}(t_1) \in V \ \forall s \in I_{\delta}(\sigma)$$

By uniqueness of lifting,

$$\widetilde{u_s}|_{I_{\varepsilon}(\tau)} = \varphi \circ u_s|_{I_{\varepsilon}(\tau)} \ \forall s \in I_{\delta}(\sigma)$$

Thus $\widetilde{A} = \varphi \circ A$ on $I_{\varepsilon}(\tau) \times I_{\delta}(\sigma)$. Then \widetilde{A} is continuous in $I_{\varepsilon}(\tau) \times I_{\delta}(\sigma)$ which contradict that τ is infimum.

• The same end point L Since $A(\{1\} \times I) = b$ and $p \circ \widetilde{A} = A$, $\widetilde{A}(\{1\} \times I) \subset p^{-1}(b)$. Since $p^{-1}(b)$ is discrete and $\{1\} \times I$ is connected, $\widetilde{A}(\{1\} \times I)$ consists of a single point.

Remark 1.1.2. The condition of covering map is only for existence of lifting. If we already assume the lifting of $u_s(t)$ exists, then the theorem also holds when p is local homeomorphism.

Theorem 1.1.5. Given $f: Z \to X$ be continuous and Z is simply connected. Let $p: Y \to X$ be the covering map and Y is Hausdorff. Then $\exists \widetilde{f}: Z \to Y \text{ s.t. } f = p \circ \widetilde{f}$.

Proof: Fixed $z_0 \in Z$, let $x_0 \in f(z_0)$ and fixed $y_0 \in p^{-1}(x_0)$. $\forall z \in Z$, let u from z_0 to z, v = f(u) from x_0 to f(z). Then $\exists \widetilde{v}$ in Y with initial point y_0 and end point $\widetilde{f}(z)$.

• \widetilde{f} is well-defined: For another u' from z_0 to z, $u \sim u' \implies f \circ u \sim f \circ u'$. By theorem 1.1.4, $\widetilde{f} \circ u(1) = \widetilde{f} \circ u'(1)$.

Author: Minerva 10

• \widetilde{f} is continuous: Take the neighborhood U of $\widetilde{f}(z)$ and V = p(U) of f(z) s.t. $\varphi : V \xrightarrow{\sim} U$. Since f is continuous and Z is locally pathwise connected, \exists a pathwise connected open subset $W \subset Z$ contained z s.t. $f(W) \subset V$.

Claim : $\widetilde{f}(W) \subset U \ (\leadsto \widetilde{f} \text{ is continuous})$ subproof :

Let $z' \in W$ and u' be a curve from z to z' with $u' \subset W$. Then $v' = f(u') \subset V$ and $\widetilde{v'} = \varphi(v') \subset U$. Hence, $\widetilde{f}(z') = \overbrace{f \circ (u \cdot u')}(1) = \widetilde{v} \cdot \widetilde{v'}(1) \in U$.

Theorem 1.1.6. $p: Y \to X$ is continuous map from Hausdorff space to a manifold. Then "p is local homeo. + curve lifting property" \iff "p is a covering map"

Proof:

- (\Leftarrow) : OK!
- (\Rightarrow): Let $x_0 \in X$ and U be a simply connected open chart contain x_0 , which homeomorphic to $U' \subseteq \mathbb{R}^n$. Consider $p^{-1}(x_0) = \{y_i : j \in J\}$. Choose $f : U \to X$ be identity, by Remark 1.1.2 Theorem 1.1.5, $\exists \widetilde{f_j}$ s.t. $\widetilde{f_j}(x_0) = y_j$ and $f = p \circ \widetilde{f_j}$. Let $V_j = \widetilde{f_j}(U)$. Since $p \circ \widetilde{f_j} : U \xrightarrow{\mathrm{id}} U$ and p is local homeomorphism, $\widetilde{f_j} : U \xrightarrow{\sim} V_j$.
 - •• $\{V_j\}$ is disjoint: If $y \in V_i \cap V_j$, let x = p(y), then $\widetilde{f}_i, \widetilde{f}_j$ are two lifting of f with $\widetilde{f}_i(x) = \widetilde{f}_j(x) = y$ ($\xrightarrow{\times}$).
 - •• $p^{-1}(U) = \bigcup_{j \in J} V_j : \forall y \in p^{-1}(U), \ p(y) = x \in U.$ Choose a curve u from x to x_0 in U and lift u to \widetilde{u} with $\widetilde{u}(0) = y$, then $p \circ \widetilde{u}(1) = u(1) = x_0 \leadsto \widetilde{u}(1) = y_j$ for some j and thus $y \in V_j$.

1.2 Deck transformation

Definition 1.2.1. Denote $p: Y \xrightarrow{\sim} X$ if p is covering map.

Definition 1.2.2. Let X, Y: Hausdorff and $p: Y \to X$ be covering map.

• A deck transformation of p is homeomorphism $f: Y \to Y$ s.t. the diagram below commute.

- $Deck(Y/X) = \{ deck \text{ transformation of } p \} \text{ form a group.}$
- p is Galois if $\forall y_0, y_1 \in Y$, $\exists f \in \text{Deck}(Y/X) \text{ s.t. } f(y_0) = y_1$.

Fact 1.2.1.

(1) If covering map $p: Y \to X$ with $y_0 \mapsto x_0$, then

$$p_*: \pi_1(Y, y_0) \longrightarrow \pi_1(X, x_0)$$
$$[v] \longmapsto [p \circ v]$$

subproof: If $[v] \mapsto [p \circ v] = [x_0]$, then $p \circ v \sim_A x_0 \leadsto v \sim_{\widetilde{A}} y_0 \leadsto [v] = [y_0]$.

- (2) If $[u] \in \pi_1(X, x_0)$ and $\widetilde{u}(0) = y_0$, then $\widetilde{u}(1) = y_0 \iff [u] \in \operatorname{Im} p_*$. $\operatorname{subproof} : (\Rightarrow) : [u] = p_*[\widetilde{u}] \in \operatorname{Im} p_*. \ (\Leftarrow) : \exists [v] \in \pi_1(Y, y_0) \text{ s.t. } p_*[v] = [u] \leadsto p \circ v \underset{A}{\sim} u.$ By lifting the curve and Y is Hausdorff, $v \underset{\widetilde{A}}{\sim} \widetilde{u} \implies \widetilde{u}(1) = v(1) = y_0.$
- (3) Let u_1, u_2 be two curve from x_0 to x_1 . Then $\widetilde{u_1}(1) = \widetilde{u_2}(1) \iff [u_1 \cdot u_2^{-1}] \in \operatorname{Im} p_*$.

Theorem 1.2.1. Let X, Y be connected manifold and a covering map $p: Y \to X$ with $y_0 \mapsto x_0$. If $p_*(\pi_1(Y, y_0)) \triangleleft \pi_1(X, x_0)$, then $\exists \overline{\varphi} : \pi_1(X, x_0) / p_*(\pi_1(Y, y_0)) \simeq \operatorname{Deck}(Y/X)$.

Proof:

• Construct $\varphi : \pi_1(X, x_0) \to \operatorname{Deck}(Y/X) : \text{Given } [u] \in \pi_1(X, x_0) \text{ and } z \in Y,$

Let y be the end point of lifting curve of u with initial point y_0 . Since Y is Hausdorff, y is independent on homotopic. Since Y is connected manifold, Y is path connected. Let v be the curve connected y_0 and z and. Let $\widetilde{p \circ v}$ be the lifting curve of $p \circ v$ with initial point y and define $[u] \cdot z$ be it end point.

•• $[u] \cdot z$ is independent on v: Let v' be another curve from y_0 to z. By Fact 1.2.1,

$$\widetilde{p \circ v}(1) = \widetilde{p \circ v'}(1) \iff \widetilde{u} \cdot \widetilde{p \circ v}(1) = \widetilde{u} \circ \widetilde{p \circ v'}(1)$$

$$\iff [(u \cdot (p \circ v)) \cdot (u \cdot (p \circ v'))^{-1}] \in \operatorname{Im} p_*$$

$$\iff [u] \cdot p_*[(v) \cdot (v')^{-1}] \cdot [u]^{-1} \in \operatorname{Im} p_*$$

$$\iff \operatorname{Im} p_* \leq \pi_1(X, x_0)$$

- •• z and $[u] \cdot z$ lie in the same fiber of p.
- •• $\pi_1(X,x_0) \curvearrowright Y$:

•••
$$([u_1] \cdot [u_2]) \cdot z = [u_1] \cdot ([u_2] \cdot z) : \text{Since } (u_1 \cdot u_2) \cdot (p \circ v) \sim u_1 \cdot (u_2 \cdot (p \circ v)),$$

 $([u_1] \cdot [u_2]) \cdot z = (\widetilde{u_1 \cdot u_2}) \cdot \widetilde{p \circ v}(1) = \widetilde{u_1} \cdot (\widetilde{u_2} \cdot \widetilde{p \circ v})(1) = \widetilde{u_1} \cdot (p \circ (\widetilde{u_2} \cdot \widetilde{p \circ v}))^{\sim}(1)$

Note that $\widetilde{u_2} \cdot \widetilde{p \circ v}$ from y_0 to $[u_2] \cdot z$, then RHS = $[u_1] \cdot ([u_2] \cdot z)$.

- ••• $[x_0] \cdot z = z$: By construction.
- •• $z \mapsto [u] \cdot z$ is continuous: Let $z_0 \in Y$ with $p(z_0) \in U \subseteq X$ and $p^{-1}(U) = \bigsqcup_{i \in \Lambda} V_i$ with

 $p: V_i \stackrel{\sim}{\underset{(Q_i)}{\longleftrightarrow}} U$. Assume $z_0 \in V_0$ and $[u] \cdot z \in V_1$.

Claim : $[u] \cdot V_0 \subset V_1$:

subproof: Given $z \in V_0$, let $\alpha \subset V_0$ from z_0 to z. Then $[u] \cdot z$ is the end point of the lifting curve of $p \circ \alpha$ with initial point z_1 i.e. $[u] \cdot z = \widetilde{p \circ \alpha}(1) = \varphi_1 \circ p \circ \alpha(1) \in V_1$

Hence, $z \mapsto [u] \cdot z$ is a homeomorphism with the inverse $z \mapsto [u^{-1}] \cdot z$.

• Now

$$\varphi: \pi_1(X, x_0) \longrightarrow \operatorname{Deck}(Y/X)$$

$$[u] \longmapsto f_u: z \mapsto [u] \cdot z$$

is a group homomorphism.

•• φ is onto : $\forall f \in \text{Deck}(Y/X), f(y_0) = y_1$. Pick β from y_0 to y_1 . Let $[u] = [p \circ \beta] \in \pi_1(X, x_0)$, then $f_u(y_0) = y_1$. Since f and f_u are both the lifting in below diagram with $f_u(y_0) = f(y_0)$, $f = f_u$ by uniqueness.

$$\begin{array}{ccc}
f_u & Y \\
\downarrow p \\
Y & \longrightarrow X
\end{array}$$

•• $\ker \varphi = p_*(\pi_1(Y, y_0))$: Since Y is connected,

$$f_u(y_0) = y_0 \iff \widetilde{u}(1) = y_0 \iff [u] \in p_*(\pi_1(Y, y_0))$$

Hence, $\widetilde{\varphi}: \pi_1(X, x_0)/p_*(\pi_1(Y, y_0)) \simeq \operatorname{Deck}(Y/X).$

From now on, X and Y are connected manifolds.

Fact 1.2.2.

(1)

$$Y \xrightarrow{y_0 \mapsto y_0'} Y$$

$$p \xrightarrow{f:\text{homeo.}} Y$$

$$X$$

$$p_*(\pi_1(Y, y_0)) = p'_*(\pi_1(Y', y_0'))$$

subproof: Immediately from Homework 5.3.1.

(2)
$$p: Y \to X$$
 with $y_0 \mapsto x_0$, $H = p_*\pi_1(Y, y_0)$, then by proof, $N(H)/H \simeq \operatorname{Deck}(Y/X)$ and p is Galois $\iff H \leq \pi_1(X, x_0)$ i.e. $\operatorname{Deck}(Y/X) \simeq \pi_1(X, x_0)/H$

Definition 1.2.3. For convenience, we denote the curve u from a to b by $u: a \leadsto b$.

Theorem 1.2.2. If $H \leq \pi_1(X, x_0)$, then exists connected manifold Y and covering map $p: Y \to X$ with $y_0 \mapsto x_0$ s.t. $p_*\pi_1(Y, y_0) = H$.

Proof: Let $Y := \{(x, [[u]]) | x \in X, u : x_0 \leadsto x\}$, where [[u]] denoted the equivalent classes defined by $u_1 \simeq u_2 \iff [u_1 \cdot u_2^{-1}] \in H$. Define

$$p: \quad \begin{array}{ccc} Y & \longrightarrow & X \\ (x, [[u]]) & \longmapsto & x \end{array}$$

• Y inherits a manifold structure :

•• For $y = (x, [[u]]) \in Y$, $\exists x \in U_x \subseteq X$ with U_x homeomorphic to a small open ball in \mathbb{R}^n . Let

$$[U_x, y] := \{(z, [[u \cdot v]]) | z \in U_x, \ v : x \leadsto z, \ v \subset U_x\}$$

Since U_x is simply connected, $[[u\cdot v]]$ is independent on v. For $y_0=(z_0,r_0)\in [U_{x_1},y_1]\cap [U_{x_2},y_2]$, say $y_i=(x_i,[[u_i]])$, then $z_0\in W\subseteq U_{x_1}\cap U_{x_2}$ for some W homeomorphic to small ball in \mathbb{R}^n . Say $r_0=[[u_i\cdot v_i]]$ for some $v_i:x_i\leadsto z_0$. Then we have $[W,y_0]\subset [U_{x_1},y_1]\cap [U_{x_2},y_2]$, since $\forall z\in W,W\supset w:z_0\leadsto z\Longrightarrow U_{x_1}\supset v_i\cdot w:x_1\leadsto z_1$ and

$$[U_{x_1}, y_1] \ni (z, [[u_1 \cdot v_1 \cdot w]]) = (z, [[u_2 \cdot v_2 \cdot w]]) \in [U_{x_2}, y_2]$$

Then Y has topological space structure defined by the open base $[U_x, y]$.

•• Let y = (x, [[u]]), then

$$p|_{[U_x,y]}: [U_x,y] \longrightarrow U_x$$

 $(z,[[u\cdot v]]) \longmapsto z$

is a homeomorphism and U_x homeomorphic to open ball in \mathbb{R}^n .

- Y is Hausdorff: Given distinct two points $y_i = (x_i, [[u_i]]) \in Y$.
 - •• If $x_1 \neq x_2$, choose $U_{x_1} \cap U_{x_2} = \emptyset$ by X is Hausdorff.
 - •• If $x_1 = x_2 = x$, then $[[u_1]] \neq [[u_2]]$. If $(z, r) \in [U_x, y_1] \cap [U_x, y_2]$, then $r = [[u_1 \cdot v]] = [[u_2 \cdot v]]$ for some $U_x \supset v : x \leadsto z$. Then

$$[u_1 \cdot u_2^{-1}] = [(u \cdot v)(u_2 \cdot v)^{-1}] \in H \ (\longrightarrow)$$

• $p: Y \to X$ has the curve lifting property ($\leadsto p$ is covering map): Given $u: I \to X$ with $u(0) = x_1$. Fix $(x_1, [[v]]) \in p^{-1}(x_1)$. Let $u_s(t) = u(st): x_1 \leadsto u(s)$. Then

$$\begin{array}{cccc} \widetilde{u}: & I & \longrightarrow & Y \\ & t & \longmapsto & (u(t), [[v \cdot u_t]]) \end{array}$$

is the lifting of curve u with initial point $\widetilde{u}(0) = (x_1, [[v]])$.

- Since X is path connected and have curve lifting property, Y is path connected.
- $p_*\pi_1(Y, y_0) = H$, where $y_0 = (x_0, [[x_0]]) : \text{Let } u : I \to X \text{ be a loop of } x_0. \text{ Then } \widetilde{u} : [0, 1] \to Y \text{ with } t \mapsto (u(t), [[u_t]]).$

$$u \in H \iff (u(1), [[u]]) = (x_0, [[x_0]]) \iff \widetilde{u} \in \pi_1(Y, y_0) \iff u \in p_*\pi_1(Y, y_0)$$

Definition 1.2.4. $p: Y \xrightarrow{\sim} X$ is **universal** if $\forall p': Y' \xrightarrow{\sim} X$ with $y'_0 \mapsto x_0$, $\exists ! f: Y \to Y'$ is continuous fiber preserving map s.t. $f(y_0) = y'_0$, denoted by $p: Y \xrightarrow{\cong} X$.

Fact 1.2.3. If Y is simply connected, then p is universal, Galois and $\pi_1(X) \simeq \operatorname{Deck}(Y/X)$.

Proof: Since Y is simply connected, it immediately from Theorem 1.1.5. \Box

Fact 1.2.4. If $p: Y \to X$ is universal covering, then Y is simply connected.

Proof: If not, $\pi_1(Y, y_0) \neq e$. By theorem 1.2.2, $\exists \widetilde{p} : \widetilde{Y} \hookrightarrow Y$ s.t. $\widetilde{p}_*(\pi_1(\widetilde{Y}, \widetilde{y}_0)) = e \lneq \pi_1(Y, y_0)$. By Fact 1.2.2, $\operatorname{Deck}(\widetilde{Y}/Y) \simeq \pi_1(Y, y_0) \neq e(-\times -)$.

Definition 1.2.5. Suppose X and Y are topological spaces, $p: Y \to X$ is a covering map and $G \leq \operatorname{Deck}(Y/X)$. Two points $y, y' \in Y$ are called **equivalent modulo** G, if $\exists \sigma \in G$ s.t. $\sigma(y) = y'$, and denoted by X = Y/G.

Theorem 1.2.3. If $p:\widetilde{X}\to X$ is universal covering and $q:Y\to X$ is covering map. Let $f:\widetilde{X}\to Y$ be a continuous fiber-preserving mapping by universal property.

$$\widetilde{X} \xrightarrow{p} X \\ \uparrow^q \\ Y$$

Then f is a covering map and exists $G \leq \operatorname{Deck}(\widetilde{X}/X)$ s.t. $Y = \widetilde{X}/G$. Moreover, $G \simeq \pi_1(Y)$.

Proof: To show that f is covering map, we suffice to show f is local homeomorphism and has curve lifting property.

 \bullet f is local homomorphism : Consider following diagram.

• f has curve lifting property:

Note that $q \circ f \circ \widetilde{q \circ u} = p \circ \widetilde{q \circ u} = q \circ u$ i.e. $f \circ \widetilde{q \circ u}$ and u are two lifting curve of $q \circ u$ with same initial point via q. Hence, $u = f \circ \widetilde{q \circ u}$ i.e. $\widetilde{q \circ u}$ is the lifting curve of u via f.

• Let $G = \operatorname{Deck}(\widetilde{X}/Y) \leq \operatorname{Deck}(\widetilde{X}/X)$. Since \widetilde{X} is simply connected, $f : \widetilde{X} \stackrel{\triangle}{\Longrightarrow} Y$ is Galois and $G \simeq \pi_1(Y)/f_*\pi_1(\widetilde{X}) = \pi_1(Y)$.

Definition 1.2.6.

- $p: Y \to X, y \in Y$ is a **branch point** of p if $\not\exists V \ni y$ s.t. $p|_V$ is injective.
- p is **proper** if every preimage of compact set is compact.

Fact 1.2.5.

(1) p has no branch point $\iff p$ is a local homeomorphism.

subproof: (\Leftarrow) : OK! (\Rightarrow) : $\forall y \in Y$, $\exists y \in V \subseteq Y$ s.t. $p|_V$ is injective. Since p is continuous and open, $p|_V$: $V \simeq p(V)$.

- (2) If p is proper, then
 - $\forall x \in X, p^{-1}(x)$ is finite, since $p^{-1}(x)$ is discrete and compact.
 - p is a closed map: for all V closed in X and for all compact subset E of Y,

$$P(V) \cap E = P(\underbrace{V \cap p^{-1}(E)}_{\text{cpt. in } X}) \underset{\text{cpt.}}{\subset} Y$$

Hence, P(V) is closed.

- $\forall x \in X, \ p^{-1}(x) \subseteq V \underset{\text{open}}{\subset} Y$, then $\exists x \in U \underset{\text{open}}{\subset} X$ s.t. $p^{-1}(U) \subset V$: $A := P(Y \setminus V)$ is closed in X. Set $U = X \setminus A \underset{\text{open}}{\subset} X$ and $p^{-1}(A) \subset V$.
- (3) p is proper local homeomorphism, then p is covering map.

subproof: Let $x \in X$ and $p^{-1}(x) = \{y_1, ..., y_n\} \subset Y$, $\exists y_j \in W_j \subset Y$, $U_j \subset X$ s.t. $p: W_j \simeq U_j$. Since Y is Hausdorff, we may assume $\{W_j\}$ pairwise disjoint. Now $V = W_1 \cup \cdots \cup W_n \supset p^{-1}(x) \leadsto \exists U \subset U_1 \cap \cdots \cap U_n \text{ s.t. } p^{-1}(U) \subset V$. If we set $V_j = W_j \cap p^{-1}(U)$, then $p^{-1}(U) = V_1 \sqcup \cdots \sqcup V_n$ and $p: V_i \simeq U_j$.

(4) $A = \{ \text{branch points of } p \}$ is closed and discrete in Y.

subproof: Recall that we may assume the chart map is $z \mapsto z^k$ in the neighborhood U of y_0 to U' of x_0 . Then $p: U \setminus \{y_0\} \to U'$ with $\#\{p^{-1}(x) \cap U\} = k$ for $x \neq x_0$. Hence, if $k > 1 \leadsto y_0$ is branch point. Also, if $k = 1 \leadsto y_0$ is unbranch point, which is open condition.

(5) If p is proper, B = p(A) is closed and discrete is called **critical values** of p. Then

$$p: Y \setminus p^{-1}(B) \to X \setminus B$$

is a unbranch holomorphic covering. Moreover, for any $a_0, a_1 \in X \setminus B$, $u: a_0 \leadsto a_1$, then

$$\varphi: p^{-1}(a_0) \longrightarrow p^{-1}(a_1)$$
$$\widetilde{u}(0) = y_0 \longmapsto \widetilde{u}(1)$$

is injective, where \widetilde{u} is lifting curve of u with initial point y_0 . Then $\#p^{-1}(a_0) \leq \#p^{-1}(a_1)$. By symmetric, $\#p^{-1}(a_1) \leq \#p^{-1}(a_0)$. We call $p: Y \setminus p^{-1}(B) \to X \setminus B$ be n-sheeted covering map if the constant $\#p^{-1}(a_0) = n$.

(6) If p is finite sheeted covering map, then p is proper.

subproof: It is suffices to show that if $p: Y \to X$ is finite sheeted covering map and X is compact, then Y is compact. Given a open cover $\Gamma = \{W_{\alpha}\}$ of Y. For $x \in X$, let $p^{-1}(x) = \{b_1, ..., b_{n(x)}\}$ and exists a neighborhood U_x of x s.t. $p^{-1}(U_x) = \bigsqcup_{v=1}^{n(x)} V_{x,v}$ with $b_v \in V_{x,v} \simeq U_x$. Also say $b_v \in W_{x,v} \in \Gamma$. Since p is open mapping, $p(V_{x,v} \cap W_{x,v})$ is open and thus $U'_x := \bigcap_{v=1}^{n(x)} p(V_{x,v} \cap W_{x,v})$ is open neighborhood of x. By compactness, X can be covered

by finite number of U'_{x_i} , $x \in \Lambda$. Note that $p^{-1}(U'_x) = \bigcup_{v=1}^{n(x)} A_{x,v}$ with $A_{x,v} \subseteq V_{x,v} \cap W_{x,v} \subset W_{x,v}$. Hence, Y has finite subcover $\{W_{x,v} : x \in \Lambda, v = 1, ..., n(x)\}$.

Theorem 1.2.4 (Main theorem). Let X be the Riemann surface, $\mathbb{D} = B_1(0)$, $p: X \to \mathbb{D}$ be proper, non-constant and unbranch over $\mathbb{D}^* = \mathbb{D} \setminus \{0\}$. Then $\exists k > 1$ s.t.

$$X \xrightarrow{\exists \varphi} \mathbb{D}$$

$$p \downarrow p_k$$

$$\mathbb{D}$$

where $p_k: z \mapsto z^k$.

Proof: Let $X^* = p^{-1}(\mathbb{D}^*)$. Then $p: X^* \to \mathbb{D}^*$ is unbranch covering map. Let $H = \{z \in \mathbb{C} : \text{Re}z < 0\}$, then

$$\exp: \ \mathbb{H} \ \stackrel{\frown}{\longrightarrow} \ \mathbb{D}^*$$

$$z \ \longmapsto \ \exp(z)$$

is universal covering, since \mathbb{H} is simply connected. Then $\operatorname{Deck}(\mathbb{H}/\mathbb{D}^*) = \pi_1(\mathbb{D}^*)$ and it is clear that $\operatorname{Deck}(\mathbb{H}/\mathbb{D}^*) = \{\tau_n : z \mapsto z + 2\pi i n | \forall n \in \mathbb{Z}\} \simeq \mathbb{Z}$. By Theorem 1.2.3, $\exists f : \mathbb{H} \widehat{\to} X^*$ s.t. $\exp = p \circ f$ and $\exists G \leq \operatorname{Deck}(H/\mathbb{D}^*)$ s.t. $\pi_1(X^*) = G$.

- $G = \{id\} : f : \mathbb{H} \to X^* \text{ is biholomorphic and } Card(p^{-1}(x)) = Card(\mathbb{Z}) = \infty \ (-\times -).$
- $G = k\mathbb{Z}$: For $\sigma \in G = \langle \tau_k \rangle$. Define $g : \mathbb{H} \to \mathbb{D}^*$ by $g(z) = \exp(z/k)$. Then g(z) = g(z') precisely if z and z' are equivalent modulo G. Hence there exists a bijective mapping $\varphi : X \to \mathbb{D}^*$ such that $g = \varphi \circ f$. Since f and g are locally biholomorphic, φ is also. We can check that

will commute.

Now we claim that $|p^{-1}(0)| = 1$. To the contrary suppose $f^{-1}(0) = \{b_1, ...b_n\}$ with $n \ge 2$. Then there exists disjoint open neighborhoods V_i of b_i and a disk $D(r) = \{z \in \mathbb{C} : |z| < r\}, 0 < r \le 1$ s.t. (by Fact (2))

$$p^{-1}(D(r)) \subseteq V_1 \cup \dots \cup V_n \tag{*}$$

Let $\mathbb{D}^*(r) = D(r) \setminus \{0\}$. Since

$$p^{-1}(D^*(r)) \simeq p_k^{-1}(D^*(r)) = D^*(\sqrt[k]{r})$$

which is connected and every point b_i is accumulation point of $p^{-1}(D^*(r))$, $p^{-1}(D(r))$ is also connected, which contradicts to (*). Thus $p^{-1}(0)$ consists of a single point $b \in X$. Hence by defining $\varphi(b) = 0$, we can continue the mapping $\varphi : X^* \to \mathbb{D}^*$ to a biholomorphic mapping $\varphi : X \to \mathbb{D}$ s.t. $p = p_k \circ \varphi$ on X.

Remark 1.2.1. In the proof above, we also show that every covering map of \mathbb{D}^* is either isomorphic to the covering given by the logarithm or by the kth root.

1.3 Riemann surface of algebraic function

1.3.1 Sheaf

Definition 1.3.1. Let X be a Riemann surface and $a \in X$.

- \mathcal{O} is the sheaf of holomorphic function :
 - •• $\forall U \subset X, \mathcal{O}(U)$ is the ring of holomorphic function on U.
 - •• for $V \subset U$, $\rho_V^U : \mathcal{O}(U) \xrightarrow{\text{Res}} \mathcal{O}(V)$ with $\rho_U^U = \text{id}$, $\rho_W^V \circ \rho_V^U = \rho_W^U$.
 - •• If $f, g \in \mathcal{O}(U)$ and $U = \bigcup_i U_i$ s.t. $f|_{U_i} = g|_{U_i}$, then f = g.
 - •• If $U = \bigcup_i U_i$ and $f_i \in \mathcal{O}(U_i)$ s.t. $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$, then $\exists f \in \mathcal{O}(U)$ s.t. $f|_{U_i} = f_i$.
- The stalk of \mathcal{O} at a is defined to be

$$\mathcal{O}_a = \left(\bigsqcup_{a \in U} \mathcal{O}(U) \right) / \sim$$

where $f \in \mathcal{O}(U)$, $g \in \mathcal{O}(V)$, $f \sim g \iff \exists a \in W \subseteq U \cap V \text{ s.t. } f|_W = g|_W$.

• $\rho_a: \mathcal{O}(U) \longrightarrow \mathcal{O}_a$ • $f \longmapsto [f], \rho_a(f)$ is called the germ of f at a.

Definition 1.3.2. Suppose X is a topological space and \mathscr{F} is a presheaf on X. Define the topological space associated to a presheaf by

$$|\mathscr{F}| := \bigsqcup_{x \in X} \mathscr{F}_x$$

• Define the topology induces by the open base

$$[U, f] := \{ \rho_x(f) : x \in U \} \ \forall U \subset X, \ f \in \mathscr{F}(U)$$

This form a open base by the definition of stalk.

• $p: |\mathscr{F}| \to X$ send the element in \mathscr{F}_x to x, which is a local homeomorphism since p([U, f]) = U. Hence $|\mathscr{F}|$ inherits a complex structure from X s.t. p is holomorphism.

Definition 1.3.3. A presheaf \mathscr{F} on a topological space X is said to satisfy the **identity theorem** if the following holds. If $Y \subset X$ is a domain and $f, g \in \mathscr{F}(Y)$ s.t. $\rho_a(f) = \rho_a(g)$ for some $a \in Y$, then f = g.

Theorem 1.3.1. Suppose X is a locally connected Hausdorff space and \mathscr{F} is a presheaf on X which satisfies the identity theorem. Then $|\mathscr{F}|$ is Hausdorff.

Proof: Given distinct element $\varphi_1, \varphi_2 \in |\mathscr{F}|$, let $x_i = p(\varphi_i)$.

• If $x_1 \neq x_2$. Since X is Hausdorff, there exists disjoint neighborhood U of x and x_1 of x_2 . Then $p^{-1}(U)$ and $p^{-1}(V)$ are disjoint neighborhood of φ_1 and φ_2 , respectively.

• If $x = x_1 = x_2$. Suppose $\varphi_i = p_x(f_i)$ for some $f_i \in \mathscr{F}(U_i)$, where U_i are open neighborhood of x. Let $U \subset U_1 \cap U_2$ be a connected open neighborhood of x. Then $[U, f_i|_U]$ are open neighborhood of φ_i . Suppose exists $\psi \in [U, f_1|_U] \cap [U, f_2|_U]$, say $y = p(\psi)$, then $\rho_y(f_1) = \psi = \rho_y(f_2)$. By identity theorem, $f_1|_U = f_2|_U$ i.e. $\varphi_1 = \varphi_2$ (\rightarrow). Hence $[U, f_1|_U]$ and $[U, f_2|_U]$ are disjoint.

Remark 1.3.1. In particular, since \mathcal{O} satisfy identity theorem, $|\mathcal{O}|$ is Hausdorff.

1.3.2 Analytic continuation

Definition 1.3.4. Suppose X is a Riemann surface, u be the curve from a to b in X. The holomorphic function germ $\psi \in \mathcal{O}_b$ is said to result from the **analytic continuation** along the curve u if the holomorphic function germ $\varphi \in \mathcal{O}_a$ if the following holds. For $t \in [0,1]$, $\exists \varphi_t \in \mathcal{O}_{u(t)}$ s.t. $\varphi_0 = \varphi_1$ and $\varphi_1 = \psi$ satisfy that $\forall \tau \in [0,1]$, there exists a neighborhood $T \subset [0,1]$ of τ and open subset $U \subset X$ with $u(T) \subset U$ and a function $f \in \mathcal{O}(U)$ s.t.

$$\rho_{u(t)}(f) = \varphi_t$$
 for every $t \in T$

Since [0,1] is compact, this condition is equivalent to exists a partition $\{t_i\}_{i=0}^n$ of [0,1], domains $U_i \subset X$ with $u([t_{i-1},t_i]) \subset U_i$ and $f_i \in \mathcal{O}(U_i)$ for i=1,...,n s.t.

- $\varphi = \rho_a(f_1), \ \psi = \rho_b(f_n)$
- $f_i|_{V_i} = f_{i+1}|_{V_i}$ for i = 1, ..., n-1, where V_i denotes the connected component of $U_i \cap U_{i+1}$ containing the point $u(t_i)$.

Lemma 1.3.1. Suppose X is a Riemann surface and u is a curve from a to b in X. Then a function germ $\psi \in \mathcal{O}_b$ is the analytic continuation of a function germ $\varphi \in \mathcal{O}_a$ along u precisely if there exists a lifting \widetilde{u} of u from φ to ψ in $|\mathcal{O}|$.

Proof:

- (\Rightarrow): Let $\varphi_t \in \mathcal{O}_{u(t)}$ given by definition. Then $\widetilde{u}(t) := \varphi_t$ is continuous by definition and is the lifting of u from φ to ψ .
- (\Leftarrow): For $t \in [0, 1]$, define $\varphi_t = \widetilde{u}(t) \in \mathcal{O}_{u(t)}$. Let $\tau \in [0, 1]$ and suppose $[U, f] \subset |\mathcal{O}|$ is open neighborhood of $\widetilde{u}(\tau)$, then exists a neighborhood of $T \subset [0, 1]$ of τ such that $\widetilde{u}(T) \subset [U, f]$. This implies $u(T) \subset U$ and $\varphi_t = \widetilde{u}(t) = \rho_{u(t)}(f) \ \forall t \in T$, which means ψ is the analytic continuation of φ along u.

Remark 1.3.2. Since $p: |\mathcal{O}| \to X$ is local homeomorphism and $|\mathcal{O}|$ is Hausdorff, by uniqueness of lifting, if the analytic continuation of a function germ exists, then it is unique determined. Also, if u_0, u_1 are homotopic curves from a to b in X and assume $\varphi \in \mathcal{O}_a$ is a function germ which admits an analytic continuation along every deformation curve u_s from φ into ψ . Then by Theorem 1.1.4, the analytic continuations of φ along u_0 and u_0 yield the same function germ $\psi \in \mathcal{O}_b$.

Corollary 1.3.1. Suppose X is a simply connected Riemann surface, $a \in X$ and $\varphi \in \mathcal{O}_a$ admits an analytic continuation along every curve starting at a. Then $\exists f \in \mathcal{O}(X)$ such that $\rho_a(f) = \varphi$.

Author: Minerva 19

Proof: For any $x \in X$, let $\psi_x \in \mathcal{O}_x$ be the function germ from the analytic continuation along any curve from a to x. Since X is simply connected, ψ is well-defined. Set $f(x) := \psi_x(x)$. Then f is holomorphic function on X s.t. $\rho_a(f) = \varphi$.

Suppose X and Y are Riemann surface and \mathcal{O}_X and \mathcal{O}_Y are the sheaves of holomorphic functions on them. Suppose $p:Y\to X$ is an unbranch holomorphic map. Since p is local homeomorphic, for each $y\in Y$ it induces an isomorphism

$$p^*: \mathcal{O}_{X,p(y)} \longrightarrow \mathcal{O}_{Y,y}$$

 $[f \in \mathcal{O}_X(U)] \longmapsto [f \circ p \in \mathcal{O}_Y(p^{-1}(U))]$

and let $p_*: \mathcal{O}_{Y,y} \to \mathcal{O}_{X,p(y)}$ be the inverse of p^* .

Definition 1.3.5. Suppose X is a Riemann surface, $a \in X$ is a point and $\varphi \in \mathcal{O}_a$ is a function germ. A quadrupel (Y, p, f, b) is called an **analytic continuation** of φ if

- Y is a Riemann surface and $p: Y \to X$ is an unbranch holomorphic map.
- f is a holomorphic function on Y.
- $b \in p^{-1}(a)$ s.t. $p_*(\rho_b(f)) = \varphi$.

An analytic continuation (Y, p, f, b) of φ is said to be **maximal** if it has the following universal property. If (Z, q, g, c) is any other analytic continuation of φ , then there exists a fiber-preserving holomorphic mapping $F: Z \to Y$ such that F(c) = b and $F^*(f) = g$.

Remark 1.3.3. A maximal analytic continuation is unique up to isomorphism. If (Y, p, f, b) and (Z, q, g, c) are two maximal analytic continuations of φ , then there exists a fiber-preserving holomorphic map $F: Z \to Y, G: Y \to Z$ s.t. F(c) = b, G(b) = c and $F^*(f) = g, G^*(g) = f$. Then $F \circ G$ is a fiber preserving holomorphic mapping from Y to Y which fixed b. By uniqueness of lifting, $F \circ G = \mathrm{id}_Y$. Similarly, $G \circ F = \mathrm{id}_Z$ and thus $G: Y \to Z$ is biholomorphic.

Lemma 1.3.2. Suppose X is a Riemann surface, $a \in X$, $\varphi \in \mathcal{O}_a$ and (Y, p, f, b) is an analytic continuation of φ . Then if v is a curve from b to y in Y, then the function germ $\psi = p_*(\rho_y(f)) \in \mathcal{O}_{p(y)}$ is an analytic continuation of φ along the curve $u = p \circ v$.

Proof: For $t \in [0,1]$ let $\varphi_t := p_*(\rho_{v(t)}(f)) \in \mathcal{O}_{u(t)}$. Then $\varphi_0 = \varphi$ and $\varphi_1 = p_*(f_y) =: \psi$. Suppose $t_0 \in [0,1]$. Since $p: Y \to X$ is local homeomorphism, there exists neighborhoods

$$V \subset Y$$
 of $v(t_0)$ and $U \subset X$ of $u(t_0)$ s.t. $p|_V : V \stackrel{\sim}{\underset{g}{\rightleftharpoons}} U$. Let $g := q^*(f|_V) \in \mathcal{O}(U)$, then

 $p_*(\rho_{\eta}(f)) = \rho_{p(\eta)}(g) \ \forall \eta \in V$. There exists a neighborhood $T \subset [0,1]$ of t_0 s.t. $v(T) \subset V$ i.e. $u(T) \subset U$. For every $t \in T$,

$$\rho_{u(t)}(g) = p_*(p_{v(t)}(f)) = \varphi_t$$

This prove that ψ is an analytic continuation of φ along u.

Theorem 1.3.2. Suppose X is a Riemann surface, $a \in X$ and $\varphi \in \mathcal{O}_a$. Then there exists a maximal analytic continuation (Y, p, f, b) of φ .

Proof:

• Let Y be the connected component of $|\mathcal{O}|$ containing φ . Let p also denote the restriction of the mapping $p: |\mathcal{O}| \to X$ to Y, then $p: Y \to X$ is local homeomorphism. Then exists a complex structure on Y s.t. it becomes a Riemann surface and $p: Y \to X$ so holomorphic. Define $f: Y \to \mathbb{C}$ by $f(\eta) = \eta(p(\eta))$, then it is clear that f is holomorphic and $p_*(\rho_\eta(f)) = \eta \ \forall \eta \in Y$. If set $b:=\varphi$, then (Y, p, f, b) is an analytic continuation of φ .

• If (Z, q, g, c) is another another analytic continuation of φ . Define the map $F: Z \to Y$ as follows. Suppose $\zeta \in Z$ and $x := q(\zeta)$. By Lemma 1.3.2, $q_*(\rho_{\zeta}(g)) \in \mathcal{O}_{X,x}$ arises by analytic continuation along a some curve from a to x from φ (since Z is path connected). By Lemma 1.3.1, Y consists of all function germs which obtained by the analytic continuation of φ along curves. Hence $q_*(\rho_{\zeta}(g)) \in Y$ and define $F(\zeta) = q_*(\rho_{\zeta}(g))$. Then $F: Z \to Y$ is a fiber-preserving holomorphic map s.t. F(c) = b and

$$F^*(f)(\zeta) = f(F(\zeta)) = f(q_*(\rho_{\zeta}(g))) = q_*(\rho_{\zeta}(g))(q(\zeta)) = g(\zeta)$$

implies $F^*f = g$.

1.3.3 Algebraic functions

Suppose X and Y are Riemann surfaces, $\pi: Y \to X$ is an n-sheeted unbranched holomorphic covering map and f is a meromorphic function on Y. Every point $x \in X$ has an open neigh-

borhood U s.t. $\pi^{-1}(U) = \bigsqcup_{v=1}^{n} V_v$ with $\pi: V_v \rightleftharpoons_{\tau_v} U$. Let $f_v := \tau_v^* f = f \circ \tau_v$. Suppose T is an indeterminate and consider

$$\prod_{v=1}^{n} (T - f_v) = T^n + c_1 T^{n-1} + \dots + c_n$$

Then the c_v are meromorphic functions in U and

$$c_v = (-1)^v s_v(f_1, ..., f_n)$$

where s_v denoted the vth elementary symmetric function in n variables. We can construct c'_v on neighborhood U' of another point x', then c_v and c'_v are compatible on the intersection. So we can glue it to get $c_1, ..., c_n \in \mathcal{M}(X)$, which call the **elementary symmetric functions** of f w.r.t. the covering $Y \to X$.

Theorem 1.3.3. Suppose X and Y are Riemann surfaces and $\pi: Y \to X$ is an n-sheeted branch holomorphic covering map. Suppose $A \subset X$ is a closed discrete subset which contains all the critical values of π and let $B = \pi^{-1}(A)$. Suppose f is a holomorphic (resp meromorphic) function on $Y \setminus B$ and $c_1, ..., c_n \in \mathcal{O}(X \setminus A)$ (resp. $\mathscr{M}(X \setminus A)$) are the elementary symmetric functions of f. Then f may be continued holomorphically (resp. meromorphically) to Y precisely if all the c_v may be continued holomorphically (resp. meromorphically) to X.

Proof: Suppose $a \in A$ and $b_1, ..., b_m$ are the preimages of a. Suppose (U, z) is a relatively compact chart of a with z(a) = 0 and $U \cap A = \{a\}$. Then $V = \pi^{-1}(U)$ is a relatively compact chart of each of b_{μ} .

- (1) If $f \in \mathcal{O}(Y \setminus B)$:
 - (\Rightarrow): Note that f is bounded on $V \setminus \{b_1, ..., b_m\}$, which implies all the c_v are bounded on $U \setminus \{a\}$, and thus a is removable singularity, which can continued holomorphically to a for all c_v .
 - (\Leftarrow): Note that c_v are all bounded on $U \setminus \{a\}$, which implies f is bounded on $V \setminus \{b_1, ..., b_m\}$. Indeed, for $y \in V \setminus \{b_1, ..., b_m\}$ and let $x = \pi(y)$, then

$$f(y)^n + c_1(x)f(y)^{n-1} + \dots + c_n(x) = 0$$

Hence, b_{μ} are removable singularity, which can continued holomorphically to every b_{μ} .

- (2) If $f \in \mathcal{M}(Y \setminus B)$:
 - (\Rightarrow): The function $\varphi := \pi^*z \in \mathcal{O}(V)$ vanishes at all points b_{μ} . Thus $\varphi^k f$ may continued holomorphically to all the point b_{μ} if k is sufficiently large. The elementary symmetric functions of $\varphi^k f$ are $z^{kv}c_v$ and by (1) they may continued holomorphically to a. Thus all the c_v may be continued meromorphically to a.
 - (\Leftarrow): Similarly, $z^{kv}c_v$ admit holomorphic continuations to a as k sufficiently large. Thus $\varphi^k f$ admits a holomorphic continuation to all the points b_μ . This implies that f may be continued meromorphically to all of the points b_μ .

Remark 1.3.4. Note that the proof doesn't use the fact Y is connected. Thus the theorem will also holds when Y is a disjoint union of finitely many Riemann surfaces.

If $\pi: Y \to X$ is a non-constant holomorphic map between Riemann surfaces X and Y, then for any meromorphic function f on X the function π^*f is a meromorphic function on Y. Thus there is a map

$$\pi^*: \mathcal{M}(X) \to \mathcal{M}(Y)$$

which is a monomorphism of fields.

Theorem 1.3.4. Suppose X and Y are Riemann surfaces and $\pi: Y \to X$ is a branched holomorphic n-sheeted covering map. If $f \in \mathcal{M}(Y)$ and $c_1, ..., c_n \in \mathcal{M}(X)$ are the elementary symmetric functions of f, then

$$f^{n} + (\pi^{*}c_{1})f^{n-1} + \dots + (\pi^{*}c_{n-1})f + \pi^{*}c_{n} = 0$$
(*)

The monomorphism $\pi^*: \mathcal{M}(X) \to \mathcal{M}(Y)$ is an algebraic field extension of degree $\leq n$. Moreover, if there exists an $f \in \mathcal{M}(X)$ and an $x \in X$ with preimages $y_1, ..., y_n \in Y$ such that the valued $f(y_v)$ for v = 1, ..., n are all distinct, then the field extension $\pi^*: \mathcal{M}(X) \to \mathcal{M}(Y)$ has degree n.

Proof:

- (*) holds immediately by the definition of elementary symmetric functions of f.
- Let $L = \mathcal{M}(Y)$ and $K = \pi^* \mathcal{M}(X) \subset L$. Then every $f \in L$ is algebraic over K and $\deg m_{f,K} \leq n$. Choose $f_0 \in L$ s.t.

$$n_0 := \max_{f \in L} \deg m_{f,K} = \deg m_{f_0,K}$$

Then $\forall f \in L$, consider the intermediate field $K(f, f_0)$ of L/K. By primitive element theorem, $K(f, f_0) = K(g)$ for some $g \in L$. Then

$$n_0 = [K(f_0) : K] \le [K(f, f_0) : K] = \deg m_{g,K} \le n_0$$

which implies that $K(f, f_0) = K(f_0)$ i.e. $f \in K(f_0)$ and thus $L = K(f_0)$. Hence, $[L:K] \leq n$.

• If deg $m_{f,K} = m \le n$, then f would be able to take at most m different values over every point $x \in X$.

Theorem 1.3.5. Suppose X is a Riemann surface, $A \subset X$ is a closed discrete subset and let $X' = X \setminus A$. Suppose Y' is another Riemann surface and $\pi' : Y' \to X'$ is a proper unbranch holomorphic covering. Then π' extends to a branch covering of X, i.e. there exists a Riemann surface Y, a proper holomorphic mapping $\pi : Y \to X$ and a fiber-preserving biholomorphic mapping

$$\varphi: Y \setminus \pi^{-1}(A) \to Y'$$

Proof:

• For any $a \in A$, choose a coordinate neighborhood (U_a, z_a) on X such that $z_a(a) = 0$, $z_a(U_a)$ is the unit disk in \mathbb{C} and $U_a \cap U_{a'} = \emptyset$ if $a \neq a'$. Let $U_a^* = U_a \setminus \{a\}$. Since $\pi' : Y' \to X'$ is proper, $\pi'^{-1}(U_a^*)$ consists of a finite number of connected components V_{av}^* , v = 1, ..., n(a). For every v the mapping $\pi' : V_{av}^* \to U_a^*$ is an unbranched covering, say k_{av} be the covering number. By Remark 1.2.1, there exists biholomorphic mappings $\zeta_{av} : V_{av}^* \to \mathbb{D}^*$ such that the diagram

$$V_{av}^* \xrightarrow{\zeta_{av}} \mathbb{D}^*$$

$$\pi' \downarrow \qquad \qquad \downarrow \pi_{av}$$

$$U_a^* \xrightarrow{z_a} \mathbb{D}^*$$

is commute, where $\pi_{av}(\zeta) = \zeta^{k_{av}}$.

• Now choose "ideal point" p_{av} and define the topology

$$Y = Y' \cup \{p_{av} : a \in A, v = 1, ..., n(a)\}$$

as follows. If W_i ($i \in I$) is a neighborhood basis of a, then let

$$\{p_{av}\} \cup (\pi'^{-1}(W_i) \cap V_{av}^*) \ i \in I$$

be a neighborhood basis of p_{av} and on Y' induces the given topology. It is clear that Y is Hausdorff. Define $\pi: Y \to X$ by $\pi(y) = \pi'(y)$ for $y \in Y'$ and $\pi(p_{av}) = a$, then it is clear that π is proper.

• In order to make Y into a Riemann surface, it suffices give a complex structure on Y'. Let $V_{av} = V_{av}^* \cup \{p_{av}\}$. By Theorem 1.2.4, we can extend $\zeta_{av}: V_{av}^* \to \mathbb{D}^*$ to $\zeta_{av}: V_{av} \to \mathbb{D}$. Note that $\zeta_{av}: V_{av}^* \to \mathbb{D}$ is biholomorphic w.r.t. the complex structure on Y', the new charts $\zeta_{av}: V_{av} \to D$ are holomorphically compatible with the charts of the complex charts of Y'. Hence, $\pi: Y \to X$ is holomorphic. Since $Y \setminus \pi^{-1}(A) = Y'$ by construction, we may choose $\varphi: Y \setminus \pi^{-1}(A) \to Y'$ to be the identity mapping.

Theorem 1.3.6. Suppose X, Y and Z are Riemann surfaces and $\pi: Y \to X$, $\tau: Z \to X$ are proper holomorphic covering maps. Let $A \subseteq X$ be a closed discrete subset and let $X' := X \setminus A$, $Y' = \pi^{-1}(X')$ and $Z' = \tau^{-1}(X')$. Then every fiber-preserving biholomorphic mapping $\sigma': Y' \to Z'$ can be extended to a fiber-preserving biholomorphic mapping $\sigma: Y \to Z$. In particular, every $\sigma' \in \operatorname{Deck}(Y'/X')$ can be extend to $\sigma \in \operatorname{Deck}(Y/X)$.

Proof:

• Suppose $a \in A$ and (U, z) is a chart of a s.t. z(a) = 0 and $z(U) = \mathbb{D}$. Let $U^* = U \setminus \{a\}$. We may assume that U is small enough s.t. π and τ are unbranched over U^* . Let $V_1, ..., V_n$ (resp. $W_1, ..., W_m$) be the connected components of $\pi^{-1}(U)$ (resp. $\tau^{-1}(U)$). Then $V_v^* = V_v \setminus \pi^{-1}(a)$ (resp. $W_\mu^* := W_\mu \setminus \tau^{-1}(a)$) are connected components of $\pi^{-1}(U^*)$ (rsep. $\tau^{-1}(U^*)$).

Author: Minerva 23

• Since $\sigma': \pi^{-1}(U^*) \to \tau^{-1}(U^*)$ is biholomorphic, n=m and may assume $\sigma'(V_v^*) = W_v^*$. Since $\pi: V_v^* \to U^*$ is finite sheeted unbranched covering, then $V_v \cap \pi^{-1}(a)$ (resp. $W_v \cap \tau^{-1}(a)$) consists exactly one point b_v (resp. c_v) by Theorem 1.2.4. Then we may extend $\sigma': \pi^{-1}(U^*) \to \tau^{-1}(U^*)$ to a bijective mapping $\pi^{-1}(U) \to \tau^{-1}(U)$ by $b_v \mapsto c_v$. It is clear that this map is biholomorphic.

Definition 1.3.6. Suppose X and Y are Riemann surfaces and $\pi: Y \to X$ is a branch holomorphic covering. Let $A \subset X$ be the set of critical values of π and let $X' := X \setminus A$ and $Y' := \pi^{-1}(X')$. Then the covering $Y \to X$ is called **Galois** if the covering $Y' \to X'$ is Galois.

Lemma 1.3.3. Suppose $c_1, ..., c_n$ are holomorphic functions on the disk $D(R) = \{z \in \mathbb{C} : |z| < R\}$. Suppose $w_0 \in \mathbb{C}$ is a simple zero of the polynomial

$$T^{n} + c_{1}(0)T^{n-1} + \dots + c_{n}(0) \in \mathbb{C}[T]$$

Then $\exists r \in (0, R]$ and $\varphi \in \mathcal{O}(D(r))$ s.t. $\varphi(0) = w_0$ and

$$\varphi^n + c_1 \varphi^{n-1} + \dots + c_n = 0$$
 on $D(r)$

Proof: For $z \in D(R)$ and $w \in \mathbb{C}$ let

$$F(z, w) = w^{n} + c_{1}(z)w^{n-1} + \dots + c_{n}(z)$$

Then $\exists \varepsilon > 0$ s.t. $w \mapsto F(0, w)$ has a unique zero w_0 in $\overline{B_{w_0}(\varepsilon)}$. Since F is continuous, $\exists r \in (0, R]$ s.t. F(z, w) is not vanish on

$$\{(z, w) \in \mathbb{C}^2 : |z| < r, |w - w_0| = \varepsilon\}$$

For fixed $z \in D(r)$,

$$n(z) = \frac{1}{2\pi i} \int_{|w-w_0|=\varepsilon} \frac{F_w(z,w)}{F(z,w)} dw$$

is the number of zeros of the function $w \mapsto F(z, w)$ in $B_{\varepsilon}(w_0)$. Since n(0) = 1 and n(z) is continuous w.r.t. z, which shows that n(z) = 1 for every $z \in D(r)$. Define

$$\varphi(z) = \frac{1}{2\pi i} \int_{|w-w_0|=\varepsilon} w \cdot \frac{F_w(z,w)}{F(z,w)} dw$$

By the residue theorem, $\varphi(z)$ is the unique zero of $w\mapsto F(z,w)$. It is clear that $\varphi(z)$ is holomorphic on D(r).

Corollary 1.3.2. Let X be a Riemann surface, $x \in X$ and

$$P(T) = T^n + c_1 T^{n-1} + \dots + c_n \in \mathcal{O}_x[T]$$

Suppose that the polynomial

$$p(T) := T^n + c_1(x)T^{n-1} + \dots + c_n(x) \in \mathbb{C}[T]$$

has n distinct zeros $w_1, ..., w_n$. Then there exist elements $\varphi_1, ..., \varphi_n \in \mathcal{O}_x$ such that $\varphi_v(x) = w_v$ and

$$P(T) = \prod_{v=1}^{n} (T - \varphi_v)$$

Theorem 1.3.7. Suppose X is a Riemann surface and

$$P(T) = T^{n} + c_1 T^{n-1} + \dots + c_n \in \mathcal{M}(X)[T]$$

is an irreducible polynomial. Then exists a Riemann surface Y and a branch holomorphic n-sheeted covering $\pi: Y \to X$ and a meromorphic function $F \in \mathcal{M}(Y)$ s.t. $(\pi^*P)(F) = 0$. The triple (Y, π, F) is uniquely determined in the following sense. If (Z, τ, G) has the corresponding properties, then there exists exactly one fiber-preserving biholomorphic mapping $\sigma: Z \to Y$ s.t. $G = \sigma^*F$. Such (Y, π, F) is called the **algebraic function** defined by the polynomial P(T).

Proof:

• (existence) Let $\Delta \in \mathcal{M}(X)$ be the discriminant of P(T). Then $\Delta \not\equiv 0$ on X, since P is irreducible. Then there exists a closed discrete subset $A \subset X$ s.t. $c_1, ..., c_n$ are holomorphic on $X' := X \setminus A$ and $\Delta(x) \neq 0 \ \forall x \in X'$. Then $\forall x \in X'$, the polynomial

$$p_x(T) := T^n + c_1(x)T^{n-1} + \dots + c_n(x) \in \mathbb{C}[T]$$

has n distinct zeros. Define

$$Y' = \{ \varphi \in \mathcal{O}_x : x \in X', P(\varphi) = 0 \} \subset |\mathcal{O}|$$

and let $\pi': Y' \to X'$ be the canonical projective. For each $x \in X'$, apply Corollary 1.3.2 on $p_x(T)$, exists open neighborhood $U \subset X$ of x and $f_1, ..., f_n \in \mathcal{O}(U)$ s.t.

$$P(T) = \prod_{v=1}^{n} (T - f_v) \text{ on } U$$

Then $\pi'^{-1}(U) = \bigsqcup_{v=1}^{n} [U, f_v]$, which shows that $\pi': Y' \to X'$ is a *n*-sheeted covering map. The connected components of Y' are Riemann surfaces which also admit covering maps over X'. Define $f: Y' \to \mathbb{C}$ by $f(\varphi) = \varphi(\pi'(\varphi))$. Then f is holomorphic and

$$f(y)^n + c_1(\pi'(y))f(y)^{n-1} + \dots + c_n(\pi^{-1}(y)) = 0 \ \forall y \in Y'$$

By Theorem 1.3.6, $\pi': Y' \to X'$ can be extend to a proper holomorphic covering $\pi: Y \to X$, where we identify Y' with $\pi^{-1}(X')$. By Theorem 1.3.3, f may be extended to $F \in \mathcal{M}(Y)$ and thus

$$(\pi^*P)(F) = F^n + (\pi^*c_1)F^{n-1} + \dots + \pi^*c_n = 0$$

Now we will show that Y is connected and thus is Riemann surface. To the contrary, Y has finitely many connected components $Y_1, ..., Y_k$ and $\pi|_{Y_i} : Y_i \to X$ is a proper holomorphic n_i -sheeted covering, where $\sum n_i = n$. Using the elementary symmetric functions of $F|_{Y_i}$ one gets polynomials $P_i(T) \in \mathcal{M}(X)[T]$ of degree n_i s.t.

$$P(T) = P_1(T) \cdots P_k(T)$$

which is contradict to P(T) is irreducible.

• (uniqueness) Let $B \subset Z$ be the union of the poles of G and the branch points of τ . Let $A' := \tau(B)$ and define

$$X'' := X' \setminus A', \ Y'' := \pi^{-1}(X''), \ Z := \tau^{-1}(X'')$$

•• Let $z \in Z''$, then $\tau_* G_z \in \mathcal{O}_{\tau(z)}$. By $(\tau^* P)(G) = 0$, $P(\tau_* G_z) = 0$. By construction of Y'', $\tau_* G_z \in Y''$. Define

$$\sigma'': Z'' \longrightarrow Y''$$

$$z \longmapsto \tau_* G_z$$

•• σ'' is continuous: Given $[U, f] \subset Y''$ with $U \subset X$ ". For $x \in U$, exists neighborhood $U_0 \subset U$ of x s.t. $\tau^{-1}(U_0) = \bigsqcup_{i=1}^n V'_i$. Since and f(x) is zero of

$$T^{n} + c_{1}(x)T^{n-1} + \dots + c_{n}(x) = \prod_{i=1}^{n} (T - \tau_{*}G_{z}(x))$$

 $f(x)=\tau_*G_z(x)$ for some $z\in V_j'$. Then $\exists U_0'\subset U_0$ s.t. $\tau_*G_{z'}=\rho_{\tau(z')}(f)\ \forall z'\in\tau^{-1}(U_0')$. Then

$$\sigma''(\tau^{-1}(U_0') \cap V_j') = [U_0', f|_{U_0'}] \subset [U, f]$$

- •• By definition σ'' is continuous and fiber-preserving and thus is holomorphic. Moreover, σ'' is proper, since $\pi: Y'' \to X''$ is continuous and $\tau: Z'' \to X''$ is proper. Hence σ'' is surjective. Since $Y'' \to X''$ and $Z'' \to X''$ have the same number of sheets, $\sigma'': Z'' \to Y''$ is biholomorphic.
- •• By definition of σ'' , $G|_{Z''} = (\sigma'')^*(F|_{Y''})$. By Theorem 1.3.6, σ'' can be extended to a fiber-preserving biholomorphic mapping $\sigma: Z \to Y$, then $G = \sigma^* F$.
- •• The mapping σ is in fact uniquely determined by the property of $G = \sigma^* F$. Otherwise there would exist id $\neq \alpha \in \text{Deck}(Y/X)$ s.t. $\alpha^* F = F$. But $\forall x \in X'$ and distinct $y_1, y_2 \in \pi^{-1}(x)$, $F(y_1) \neq F(y_2)$.

Example 1.3.1. Suppose $f(z) = (z - a_1) \cdots (z - a_n)$ is a polynomial with distinct roots $a_1, ..., a_n \in \mathbb{C}$. Consider f as a meromorphic function on the Riemann sphere \mathbb{P}^1 . The polynomial $P(T) = T^2 - f$ is irreducible over $\mathcal{M}(\mathbb{P}^1)$ and defines an algebraic function which is usually denoted by $\sqrt{f(z)}$. To describe its Riemann surface $\pi: Y \to X$. Let $A = \{a_1, ..., a_n, \infty\}$, $X' = \mathbb{P}^1 \setminus A$ and $Y' = \pi^{-1}(X')$. Then $\pi: Y' \to X'$ is an unbranched holomorphic 2-sheeted covering. This implies every $\varphi \in \mathcal{O}_x$ with $x \in X'$ s.t. $\varphi^2 = f$ can be analytically continued along every curve lying in X'.

• For each $a_1, ..., a_n$, choose $r_i > 0$ s.t. $B_{r_i}(a_i) \cap A = \{a_i\}$. Since the function $g(z) = \prod_{i \neq j} (z - a_i)$ has no zero in U_j and U_j is simply connected, there exists a holomorphic function $h: U_j \to \mathbb{C}$ s.t. $h^2 = g$. Thus $f(z) = (z - a_j)h(z)^2$ on U_j . Suppose $0 < \rho < r_j$, $\theta \in \mathbb{R}$ and let $\zeta = a_j + \rho e^{i\theta}$. By Lemma 1.3.3, $\exists \varphi_\zeta \in \mathcal{O}_\zeta$ s.t. $\varphi_\zeta^2 = f$ and

$$\varphi_{\zeta}(\zeta) = \sqrt{\rho}e^{i\theta/2}h(\zeta)$$

If one continues this function germ along the closed curve $u(t) = a_j + \rho e^{2\pi i t}$, then one obtain the negative of the original germ. Let $U_j^* = U_j \setminus \{a_j\}$ and $V_j^* = \pi^{-1}(U_j^*)$. Then $\pi: V_j^* \to U_j^*$ is a connected 2-sheeted covering isomorphic to $z \mapsto z^2$. For otherwise $\pi: V_j^* \to U_j^*$ would split into two single-sheeted coverings and the analytic continuation of φ_{ζ} along the curve u(t) will lead back to the same function germ. Hence the Riemann surface Y has exactly one point over the point a_j .

• Suppose $r > \max_i |a_i|$ and let $U^* = \{z \in \mathbb{C} : |z| > r\}$. Then $U^* \cup \{\infty\}$ is a neighborhood of ∞ , which is isomorphic to a disk, and contains no other points of A. On U one can write $f = z^n F$, where F is a holomorphic function having no zeros in U

- (1) If n is odd, then $\exists h \in \mathcal{M}(U) \text{ s.t. } f(z) = zh(z)^2$.
- (2) If n is even, then $\exists h \in \mathcal{M}(U)$ s.t. $f(z) = h(z)^2$.

Let $V^* = \pi^{-1}(U^*)$. Similarly to above, in the case (1), $\pi: V^* \to U^*$ is a connected two-sheeted covering and thus Y has precisely one point over ∞ . But in case (2), $\pi: V^* \to U^*$ splits into two single-sheeted covering and thus when n is even, Y has two point over ∞ .

If X and Y are Riemann surfaces and $\pi: Y \to X$ is a branched holomorphic covering map, then $\operatorname{Deck}(Y/X)$ has a representation into $\operatorname{Aut}(\mathcal{M}(Y))$ defined in the following way. For $\sigma \in \operatorname{Deck}(Y/X)$, let $\sigma f := f \circ \sigma^{-1}$. Clearly $(f \mapsto \sigma f) \in \operatorname{Aut}(\mathcal{M}(Y))$. The mapping

$$\begin{array}{ccc} \mathrm{Deck}(Y/X) & \longrightarrow & \mathrm{Aut}(\mathscr{M}(Y)) \\ \sigma & \longmapsto & (f \mapsto \sigma f) \end{array}$$

is a group homomorphism, since $\forall \sigma, \tau \in \text{Deck}(Y/X)$ and $f \in \mathcal{M}(Y)$

$$(\sigma \tau)f = f \circ \tau^{-1} \circ \sigma^{-1} = \sigma(\tau f)$$

Notice that for $f \in \mathcal{M}(X)$ and $\sigma \in \text{Deck}(Y/X)$,

$$\sigma(\pi^* f) = f \circ \pi \circ \sigma^{-1} = f \circ \pi = \pi^* f$$

which means $\operatorname{Deck}(Y/X)$ leaves invariant the functions of the subfield $\pi^*\mathcal{M}(X) \subset \mathcal{M}(Y)$ and thus is the element of $\operatorname{Aut}(\mathcal{M}(Y)/\pi^*\mathcal{M}(X))$.

Theorem 1.3.8. Suppose X is a Riemann surface, $K = \mathcal{M}(X)$ and $P(T) \in K[T]$ is an irreducible monic polynomial of degree n. Let (Y, π, F) be the algebraic function defined by P(T) and $L = \mathcal{M}(Y)$. Regard K as the subfield of L via $\pi^* : K \to L$. Then L/K is a field extension of degree n and $L \simeq K[T]/(p(T))$ and the group homomorphism

$$\varphi: \operatorname{Deck}(Y/X) \to \operatorname{Aut}(L/K)$$

is isomorphism. The covering $Y \to X$ is Galois precisely if the field extension L/K is Galois.

Proof:

- By Theorem 1.3.4, L/K is field extension of degree n. Since P(F) = 0, there is a homomorphism $K[T]/(P(T)) \to L$. Since both these fields are of degree n over K, this is an isomorphism.
- φ is injective, since $\sigma F \neq F \ \forall \sigma \in \operatorname{Deck}(Y/X) \setminus \{\operatorname{id}\}.$
- φ is surjective : Given $\alpha \in \operatorname{Aut}(L/K)$, $(Y, \pi, \alpha F)$ is also an algebraic function defined by the polynomial P(T). By uniqueness, $\exists \tau \in \operatorname{Deck}(Y/X)$ s.t. $\alpha F = \tau^* F$. If $\sigma = \tau^{-1}$, then

$$\sigma F = F \circ \sigma^{-1} = F \circ \tau = \tau^* F = \alpha F$$

Since L is generated by F over K, α is the map $f \mapsto \sigma f$.

• Y is Galois over X (resp. L/K is Galois) precisely when $\operatorname{Deck}(Y/X)$ (resp. $\operatorname{Aut}(L/K)$) contains n elements.

Author: Minerva 27

Example 1.3.2 (Puiseux expansions). Denote $\mathbb{C}\{\{z\}\}$ be the field of all Laurent series with finite principal part

$$\varphi(z) = \sum_{v=k}^{\infty} c_v z^v, \ k \in \mathbb{Z}, \ c_v \in \mathbb{C}$$

converging in some punctured disk $\{0 < |z| < r\}$, where r > 0 depend on φ . Then $\mathbb{C}\{z\}$ is isomorphic to the stalk \mathcal{M}_0 of the sheaf \mathcal{M} of meromorphic functions in the complex plane and is the quotient field of $\mathbb{C}\{z\}$. Consider an irreducible polynomial

$$F(z, w) = w^{n} + a_{1}(z)w^{n-1} + \dots + a_{n}(z) \in \mathbb{C}\{\{z\}\}[w]$$

of degree n over the field $\mathbb{C}\{\{z\}\}$. Then $\exists r>0$ s.t. all a_v are meromorphic functions on $D(r)=\{z\in\mathbb{C}:|z|< r\}$ and thus F may also be consider as an element of $\mathscr{M}(D(r))[w]$. It is clear that F is also irreducible over the field $\mathscr{M}(D(r))$. Now suppose that r has been chosen small enough s.t. for every $a\in D(r)\setminus\{0\}$ the polynomial $F(a,w)\in\mathbb{C}[w]$ has no multiple roots. Let (Y,π,f) be the algebraic function defined by $F(z.w)\in\mathscr{M}(D(r))[w]$. Then $\pi:Y\to D(r)$ is an n-sheeted proper holomorphic map which is ramified only over the origin. By Theorem 1.2.4, there exists an isomorphism $\alpha:D(\rho)\to Y$, $\rho=\sqrt[n]{r}$ s.t.

$$\pi(\alpha(\xi)) = \xi^n \ \forall \xi \in D(\rho)$$

Since $F(\pi, f) = 0$, it follows that

$$F(\zeta^n, \varphi(\zeta)) = 0$$
, where $\varphi = f \circ \alpha$

This proves the following theorem.

Theorem 1.3.9 (Puiseux). Let

$$F(z, w) = w^{n} + a_{1}(z)w^{n-1} + \dots + a_{n}(z) \in \mathbb{C}\{\{z\}\}[w]$$

be an irreducible polynomial of degree n over the field $\mathbb{C}\{\{z\}\}$. Then there exists a Laurent series

$$\varphi(\zeta) = \sum_{v=k}^{\infty} c_v \zeta^v \in \mathbb{C}\{\{\zeta\}\}\$$

such that

$$F(\zeta^n, \varphi(\zeta)) = 0$$

as an element of $\mathbb{C}\{\{\zeta\}\}\$.

Remark 1.3.5.

- If all a_v are holomorphic, i.e. $a_v \in \mathbb{C}\{z\}$, then $\varphi \in \mathbb{C}\{\zeta\}$ as well. Since f is holomorphic on Y.
- Another way of expressing the assertion of the Theorem is to say that the equation can be solved by a **Puiseux series**

$$w = \varphi(\sqrt[n]{z}) = \sum_{v=k}^{\infty} c_v z^{v/n}$$

• We can interpret the Theorem of Puiseux in the following algebraic way. By means of the map

$$\mathbb{C}\{\{z\}\} \to \mathbb{C}\{\{\zeta\}\}, \quad z \mapsto \zeta^n$$

 $\mathbb{C}\{\{\zeta\}\}\$ becomes an extension field of $\mathbb{C}\{\{z\}\}\$ of degree n. A basis of $\mathbb{C}\{\{\zeta\}\}\$ over $\mathbb{C}\{\{z\}\}\$ is given by $1, \zeta, ..., \zeta^{n-1}$. The series $\varphi(\zeta)$ is a root of F in this extension field. Let ε be a primitive nth root of unity, e.g. $\varepsilon=e^{2\pi i/n}$. Then for k=0,1,...,n-1 we have $(\varepsilon^k\zeta)^n=\zeta^n$ and hence

$$F(\zeta^n, \varphi(\varepsilon^k \zeta)) = 0$$

Thus $\varphi(\varepsilon^k\zeta) \in \mathbb{C}\{\{\zeta\}\}\$ is also a root of the polynomial F. It is easy to see that the series $\varphi(\varepsilon^k\zeta)$, k=0,...,n-1 are distinct. Thus $\mathbb{C}\{\{\zeta\}\}\$ is a splitting field of the polynomial $F \in \mathbb{C}\{\{z\}\}[w]$.

1.4 Linear differential equations

Theorem 1.4.1 (local solution). If $A \in M_n(\mathcal{O}(B_R(0)))$ with $0 < R \le \infty$, then $\forall w_0 \in \mathbb{C}^n$,

$$\exists! w = \begin{pmatrix} w_1(z) \\ \vdots \\ w_n(z) \end{pmatrix} \in M(n \times 1, \mathcal{O}(B_R(0))) \text{ s.t. } \begin{cases} w'(z) = A(z)w(z) \forall z \in B_R(0) \\ w(0) = w_0 \end{cases}$$

Proof:

• By Taylor expansion, $A(z) = \sum_{\nu=0}^{\infty} A_{\nu} z^{\nu}$ with $A_{\nu} = (a_{ij\nu}) \in M_n(\mathbb{C})$ in $B_R(0)$. Suppose the solution $w(z) = \sum_{\nu=0}^{\infty} c_{\nu} z^{\nu}$, where $c_{\nu} = (c_{i\nu}) \in \mathbb{C}^n$. Then

$$w'(z) = A(z)w(z) \iff (k+1)c_{k+1} = \sum_{\nu=0}^{k} A_{k-\nu}c_{\nu} \ \forall k \in \mathbb{N}$$

By $c_0 = w(0) = w_0$, we can determined all c_k recursively, which shows the uniqueness.

• For 0 < r < R, the series $\sum_{\nu=0}^{\infty} |a_{ij\nu}| r^{\nu}$ converge, then $\exists N \in \mathbb{N}$ s.t. $|a_{ij\nu}| \leq \frac{N}{r^{\nu+1}}$. Define $B(z) = (b_{ij}(z))$ with

$$b_{ij}(z) = \frac{N}{r} \left(1 - \frac{z}{r} \right)^{-1} = \frac{N}{r} \sum_{\nu=0}^{\infty} \frac{z^r}{r^{\nu}}$$
 holomorphic on $|z| < r$ i.e. $b_{ij\nu} = \frac{N}{r^{\nu+1}}$

Let $w_0 = (w_{10} \cdots w_{n0})^T$ and $K = \max_{1 \le i \le n} |w_{i0}|$. Define

$$\psi(z) = K \left(1 - \frac{z}{r} \right)^{-nN} = \sum_{\nu=0}^{\infty} f_{\nu} z^{\nu} \implies \psi'(z) = \frac{KnN}{r} \left(1 - \frac{z}{r} \right)^{-nN-1} = n \frac{N}{r} \left(1 - \frac{z}{r} \right)^{-1} \psi(z)$$

Then $v(z) = (\psi(z), ..., \psi(z))^T$ is the solution of

$$\begin{cases} v'(z) = B(z)v(z) \\ v(0) = (K, ..., K)^T \end{cases}$$

Claim: $|c_{ik}| \leq f_k \ \forall k \in \mathbb{Z}_{\geq 0}$.

subproof: We induct on k. k = 0: $|c_{i0}| \le K = f_0$. Notice that $|a_{ij\nu}| \le b_{ij\nu} \ \forall i, j, \nu$.

$$|c_{i1}| = \left| \sum_{j=1}^{n} a_{ij0} c_{j0} \right| \le \sum_{j=1}^{n} |a_{ij0}| |c_{j0}| \le \sum_{j=1}^{n} b_{ij0} \delta_0 = f_1$$

Assume that $|c_{i\nu}| \leq f_{\nu} \ \forall i = 1, ..., n \text{ and } \forall \nu = 0, ..., k.$ Then

$$(k+1)|c_{i,k+1}| = \left| \sum_{\nu=0}^{k} \sum_{j=1}^{n} a_{ij(k-\nu)} c_{j\nu} \right| \le \sum_{\nu=0}^{k} \sum_{j=1}^{n} |a_{ij(k-\nu)}| \cdot |c_{j\nu}| \le \sum_{\nu=0}^{k} \sum_{j=1}^{n} b_{ij(k-\nu)} f_{\mu} = (k+1) f_{k+1}$$

Since $\sum_{k=0}^{\infty} f_k z^k = \psi(z)$ converge for |z| < r, $w_i(z) = \sum_{k=0}^{\infty} c_{ik} z^k$ converge for |z| < r. Then w(z) is converge for all r < R, w(z) converge on $B_R(0)$.

Definition 1.4.1. Define $\Omega(X)$ be the holomorphic 1-forms on X. For $\omega \in \Omega(X)$, exists open cover U_i of X s.t. $\omega|_{U_i} = f_i dz$ with $f_i \in \mathcal{O}(U_i)$.

Theorem 1.4.2 (global solution). Suppose X is a simply connected Riemann surface, $A \in M_n(\Omega(X))$ and $x_0 \in X$. Then $\forall c \in \mathbb{C}^n$, $\exists ! w \in \mathcal{O}(X)^n$ is a solution of dw = Aw with $w(x_0) = c$.

Proof: By Theorem 1.4.1, there exists a connected open neighborhood U_0 of x_0 and a solution $f \in \mathcal{O}(U_0)^n$ of the differential equation df = Af with $f(x_0) = c$. Let $\alpha : [0,1] \to X$ with $\alpha(0) = x_0$. If $\alpha([0,t]) \subset U_0$, $x_1 = \alpha(t_1) \in U_0$. Then exists neighborhood U_1 of x_1 and exists $f_1 \in \mathcal{O}(U_1)^n$ s.t. f_1 is a local solution on U_1 with initial value $f(x_1)$. By uniqueness, exists neighborhood $W \subset U_0 \cap U_1$ s.t. $f|_W = f_1|_W$ and by identity theorem, $f = f_1$ on the connected component of $U_1 \cap U_2$ containing x_1 . Since [0,1] is compact, by finite steps, f can be analytic continuation along α . By Corollary 1.3.1, $\exists w \in \mathcal{O}(X)^n$ s.t. dw = Aw.

Corollary 1.4.1. Suppose X is a Riemann surface, $p: \widetilde{X} \to X$ is its universal covering with $y_0 \mapsto x_0$. Suppose $A \in M_n(\Omega(X))$ and $c \in \mathbb{C}^n$. Then $\exists ! w \in \mathcal{O}(\widetilde{X})^n$ is a solution of $dw = (p^*A)w$ satisfying $w(y_0) = c$.

Example 1.4.1. Under the assumption in above. Define

$$L_A = \left\{ w \in \mathcal{O}(\widetilde{X})^n : dw = (p^*A)w \right\}$$

As the theory of ODE, one can show that L_A is an n-dimensional vector space over \mathbb{C} and that $w_1, ..., w_n \in L_A$ are linearly independent precisely if for any arbitrary point $a \in \widetilde{X}$ the vectors $w_1(a), ..., w_n(a) \in \mathbb{C}^n$ are linearly independent. Therefore a basis $w_1, ..., w_n$ of L_A defines an invertible matrix

$$\Phi = (w_1, ..., w_n) \in \mathrm{GL}_n(\mathcal{O}(\widetilde{X}))$$

such that $d\Phi = (p^*A)\Phi$. Such a matrix is called a **fundamental system of solutions** of the differential equation dw = Aw.

• Let $G = \operatorname{Deck}(\widetilde{X}/X) \simeq \pi_1(X)$. $\forall \sigma \in G$, define the action $\sigma \Phi := \Phi \circ \sigma^{-1}$, then $d(\sigma \Phi) = (p^*A)(\sigma \Phi)$. Hence, $\exists T_{\sigma} \in \operatorname{GL}_n(\mathbb{C})$ s.t. $\sigma \Phi = \Phi T_{\sigma}$, this matrix is called the **factor of automorphy** of Φ . Then

$$\begin{array}{ccc} \operatorname{Deck}(\widetilde{X}/X) & \longrightarrow & \operatorname{GL}_n(\mathbb{C}) \\ \sigma & \longmapsto & T_{\sigma} \end{array}$$

is a group homomorphism, since

$$\Phi T_{\tau\sigma} = \tau \sigma \Phi = \tau (\Phi T_{\sigma}) = (\tau \Phi) T_{\sigma} = \Phi T_{\tau} T_{\sigma} \implies T_{\tau\sigma} = T_{\tau} T_{\sigma}$$

Author: Minerva 30

• Conversely, if $T: \operatorname{Deck}(\widetilde{X}/X) \to \operatorname{GL}_n(\mathbb{C})$ is a group homomorphism and $\Phi: \widetilde{X} \to \operatorname{GL}_n(\mathbb{C})$ s.t. $\sigma\Phi = \Phi T_{\sigma} \ \forall \sigma \in \operatorname{Deck}(\widetilde{X}/X)$. The matrix $(d\Phi)\Phi^{-1} \in M_n(\Omega(\widetilde{X}))$ is the invariant under $\operatorname{Deck}(\widetilde{X}/X)$, since

$$\sigma(d\Phi \cdot \Phi^{-1}) = (d\Phi \cdot T_{\sigma})(\Phi T_{\sigma})^{-1} = d\Phi \cdot \Phi^{-1}$$

By Galois correspondent, $\exists A \in M_n(\Omega(\widetilde{X}))$ s.t. $p*A = d\Phi \cdot \Phi^{-1}$ and thus Φ is a fundamental system of solution of differential equation dw = (p*A)w.

Example 1.4.2.

Chapter 2

Compact Riemann surface

2.1 Vanishing theorems

Definition 2.1.1. For a open covering $\mathfrak{U} = \{U_i\}_{i \in I}$ of X and \mathscr{F} be a sheaf of abelian group.

- 0th cochain group of $\mathscr{F}:C^0(\mathfrak{U},\mathscr{F})=\prod_{i\in I}\mathscr{F}(U_i)$
- 1st cochain group of $\mathscr{F}:C^1(\mathfrak{UF})=\prod_{i,j}\mathscr{F}(U_i\cap U_j)$
- 2nd cochain group of $\mathscr{F}: C^2(\mathfrak{UF}) = \prod_{i,j,k} \mathscr{F}(U_i \cap U_j \cap U_k)$
- boundary map:

• 1-cocycle : $Z^1(\mathfrak{U}, \mathscr{F}) = \ker(C^1(\mathfrak{U}, \mathscr{F}) \to C^2(\mathfrak{U}, \mathscr{F}))$

1-coboundary : $B^1(\mathfrak{V}, \mathscr{F}) = \operatorname{Im}(C^0(\mathfrak{U}, \mathscr{F}) \to C^1(\mathfrak{U}, \mathscr{F}))$

- •• $(f_{ij}) \in Z^1(\mathfrak{U}, \mathscr{F}) \iff f_{ij} + f_{jk} = f_{ik} \text{ on } U_i \cap U_j \cap U_k \implies f_{ii} = 0, f_{ij} = -f_{ij}.$
- •• $(f_{ij}) \in B^1(\mathfrak{U}, \mathscr{F}) \iff \exists (g_i) \in C^0 \text{ s.t. } f_{ij} = g_i g_j \text{ on } U_i \cap U_j.$
- 1st cohomology group $H^1(X, \mathscr{F})$:
 - •• Define $H^1(\mathfrak{U},\mathscr{F})=Z^1(\mathfrak{U},\mathscr{F})/B^1(\mathfrak{U},\mathscr{F})$.
 - Directed partial order on open cover $\{\mathfrak{U}\}$:
 - ••• $\mathfrak{V} = (V_k)_{k \in K} < \mathfrak{U} = (U_i)_{i \in I} \iff \exists \tau : K \to I \text{ s.t. } V_k \subset U_{\tau(k)}.$
 - ••• $\mathfrak{U} = (U_k)_{k \in K}$, $\mathfrak{U}' = (V_{k'})_{k' \in K'}$. Define the open covering \mathfrak{V} by $I = K \times K'$ and $W_{(k,k')} = U_k \cap V_{k'}$. Then $\mathfrak{V} < \mathfrak{U}, \mathfrak{U}'$
 - ••• For $\mathfrak{V} < \mathfrak{U}$, define

$$\begin{array}{cccc} t^{\mathfrak{U}}_{\mathfrak{V}}: & H^{1}(\mathfrak{U},\mathscr{F}) & \longrightarrow & H^{1}(\mathfrak{V},\mathscr{F}) \\ & (\overline{f_{ij}}) & \longrightarrow & \left(\overline{f_{\tau(k)\tau(\ell)}|_{V_{k}\cap V_{\ell}}}\right) \end{array}$$

•••• independent on τ : For another $\tau': K \to I$: On $V_k \cap V_\ell$,

$$f_{\tau(k)\tau(\ell)} - f_{\tau'(k)\tau'(\ell)} = f_{\tau(k)\tau(\ell)} + f_{\tau(\ell)\tau'(k)} - f_{\tau(\ell)\tau'(k)} - f_{\tau'(k)\tau'(\ell)}$$

$$= \underbrace{f_{\tau(k)\tau'(k)}}_{=:h_k \in \mathscr{F}(V_k)} - \underbrace{f_{\tau(\ell)\tau'(\ell)}}_{=:h_\ell \in \mathscr{F}(V_\ell)}$$

•••• injective : Suppose $(f_{\tau(k)\tau(\ell)}) = (g_k - g_\ell) \in B^1(\mathfrak{V}, \mathscr{F})$. Note that $(U_i \cap V_k)_{k \in K}$ is an open covering of U_i and on $U_i \cap V_k \cap V_\ell$

$$g_k - g_\ell = f_{\tau(k)\tau(\ell)} = f_{\tau(k)i} + f_{i\tau(\ell)} = f_{i\tau(\ell)} - f_{i\tau(k)}$$

$$\implies g_k + f_{i\tau(k)} = g_\ell + f_{i\tau(\ell)} \implies \exists h_i \in \mathscr{F}(U_i) \text{ s.t. } h_i|_{U_i \cap V_k} = g_k + f_{j\tau(k)}$$
and on $U_i \cap U_j \cap V_k$,

$$f_{ij} = f_{i\tau(k)} + g_k - g_k - f_{i\tau(k)} = h_i - h_j \ \forall k$$

Hence, $f_{ij} = h_i - h_j$ on $U_i \cap U_j$ and thus $(f_{ij}) \in B^1(\mathfrak{U}, \mathscr{F})$.

••• $\mathcal{W} < \mathfrak{V} < \mathfrak{U} \implies t_{\mathcal{W}}^{\mathfrak{V}} \circ t_{\mathfrak{V}}^{\mathfrak{U}} = t_{\mathcal{W}}^{\mathfrak{U}}$ since we can use

$$J \xrightarrow{\rho} K \xrightarrow{\tau} I$$

Define
$$H^1(X,\mathscr{F}) = \varinjlim_{\mathfrak{U}} H^1(\mathfrak{U},\mathscr{F}) = \varinjlim_{\mathfrak{U}} H^1(\mathfrak{U},\mathscr{F}) /_{\sim}$$
, where
$$\xi \in H^1(\mathfrak{U},\mathscr{F}), \ \xi' \in H^1(\mathfrak{U}',\mathscr{F}), \ \xi \sim \xi' \iff \exists \mathfrak{V} < \mathfrak{U}, \mathfrak{U}' \text{ s.t. } t^{\mathfrak{U}}_{\mathfrak{V}}(\xi) = t^{\mathfrak{U}'}_{\mathfrak{V}}(\xi')$$

$$x = [\xi], \ y = [\xi'], \ \text{define } x + y = \left[t^{\mathfrak{U}}_{\mathfrak{V}}(\xi) + t^{\mathfrak{U}'}_{\mathfrak{V}}(\xi')\right].$$

$$H^1(\mathfrak{U},\mathscr{F}) \iff H^1(X,\mathscr{F}), \ \text{so} \ H^1(X,\mathscr{F}) = 0 \iff H^1(\mathfrak{U},\mathscr{F}) = 0 \ \forall \mathfrak{U}.$$

$$\bullet \quad H^0(X,\mathscr{F}):$$

$$Z^0(\mathfrak{U},\mathscr{F}) = \ker \left(C^0(\mathfrak{U},\mathscr{F}) \stackrel{\delta}{\to} C^1(\mathfrak{U},\mathscr{F})\right) \simeq \mathscr{F}(X)$$

Hence, we define $H^0(X, \mathscr{F}) = \mathscr{F}(X)$.

Theorem 2.1.1. Suppose X is a Riemann surface, then $H^1(X, \mathcal{E}) = 0$ also

$$H^1(X, \mathscr{E}^{(1)}) = H^1(X, \mathscr{E}^{1,0}) = H^1(X, \mathscr{E}^{0,1}) = H^1(X, \mathscr{E}^2) = 0$$

Proof: For an open covering $\mathfrak{U} = (U_i)_{i \in I}$ of X, $\exists \psi_i \in \mathscr{E}(X) \ \forall i \in I \text{ s.t.}$

- $\operatorname{supp}(\psi_i) \subset U_i$
- $\forall x \in X, \exists x \in W \subset X \text{ s.t. } W \cap \text{supp}(\psi_i) \neq \emptyset \text{ only for finitely many } \psi_i.$
- $\bullet \ \sum_{i \in I} \psi_i = 1.$

Now, given $(f_{ij}) \in Z^1(\mathfrak{U}, \mathscr{E})$. On $U_i \cap U_j$,

$$f_{ij} = \sum_{k} \psi_k f_{ij} = \sum_{k} \psi_k (f_{ik} + f_{kj}) = \sum_{\substack{k \\ := q_i \in \mathscr{E}(U_i)}} \psi_k f_{ik} - \sum_{k} \psi_k f_{jk}$$

Hence, $(f_{ij}) \in B^1(\mathfrak{U}, \mathscr{E})$.

Proposition 2.1.1. Suppose X is a Riemann surface, $\omega \in \mathscr{E}^{(1)}(X)$ is closed. Then $\exists p : \widehat{X} \xrightarrow{\sim} X$ with Riemann surface \widehat{X} and $F \in \mathscr{E}(\widehat{X})$ s.t. $dF = p^*\omega$.

Proof:

- For $U \subset X$, define $\mathscr{F}(U) = \{f \in \mathscr{E}(U) : df = \omega\}$. $\forall a \in X, \ \rho_a : \mathscr{F}(U) \to \mathscr{F}_a$. Then \mathscr{F} satisfy identity theorem, since any two elements $f_1, f_2 \in \mathscr{F}(U)$ differ by a constant, where U is a domain in X. By Theorem 1.3.1, $|\mathscr{F}|$ is Hausdorff. For $a \in X$, there exists a connected open neighborhood U and a primitive $f \in \mathscr{F}(U)$ of ω , since ω is closed. Then $p^{-1}(U) = \bigsqcup_{c \in \mathbb{C}} [U, f + c] \leadsto p$ is covering map.
- Let \widehat{X} be a connected component of $|\mathscr{F}|$ and $p|_{\widehat{X}}:\widehat{X}\to X$ is also the covering map. Define $F(\varphi)=\varphi(p(\varphi))\ \forall \varphi\in\widehat{X}\implies F\in\mathcal{E}(\widehat{X})$ is a primitive of $p^*\omega$.

Corollary 2.1.1. If X is simply connected Riemann surface, then every closed form is exact.

Theorem 2.1.2. Suppose X is simply connected Riemann surface, then $H^1(X,\mathbb{C})=0$.

Proof: For $\mathfrak{U} = (U_i)_{i \in I}$ and $(c_{ij}) \in Z^1(\mathfrak{U}, \mathbb{C}) \subset Z^1(\mathfrak{U}, \mathscr{E})$. By theorem 2.1.1, $\exists (f_i) \in C^0(\mathfrak{U}, \mathscr{E})$ s.t. $c_{ij} = f_i - f_j$ on $U_i \cap U_j$. Then

$$0 = dc_{ij} = df_i - df_j$$
 on $U_i \cap U_j \implies df_i = df_j$ on $U_i \cap U_j$

Then $\exists \omega \in \mathscr{E}^{(1)}(X)$ s.t. $\omega|_{U_i} = df_i$ and $d\omega|_{U_i} = ddf_i = 0 \ \forall i \implies d\omega = 0 \text{ on } X$. Since X is simply connected, $\exists f \in \mathscr{E}(X)$ s.t. $\omega = df$. Then $c_{ij} = (f_i - f) - (f_j - f)$, where $c_i := f_i - f \in \mathbb{C}$ since $d(f_i - f) = 0$. Hence, $(c_{ij}) \in B^1(\mathfrak{U}, \mathbb{C})$.

Theorem 2.1.3. Suppose X is simply connected Riemann surface, then $H^1(X, \mathbb{Z}) = 0$.

Proof: For $\mathfrak{U} = (U_i)_{i \in I}$ and $(a_{ij}) \in Z^1(\mathfrak{U}, \mathbb{Z}) \subset Z^1(\mathfrak{U}, \mathbb{C})$. By Theorem 2.1.2, $a_{ij} = c_i - c_j$ on $U_i \cap U_j$.

$$1 = e^{2\pi i a_i} = e^{2\pi i (c_i - c_j)} \implies e^{2\pi i c_i} = e^{2\pi i e_j} \text{ on } U_i \cap U_j$$

Since X is connected, $\exists b \in \mathbb{C}^{\times}$ s.t. $b = e^{2\pi i c_i} \ \forall i$. Then exists $b = e^{2\pi i c}$ for some c and thus

$$a_{ij} = \underbrace{(c_i - c)}_{:=a_i \in \mathbb{Z}} - (c_j - c)$$

since $e^{2\pi i(c_i-c)}=0$. Hence, $(a_{ij})\in B^1(\mathfrak{U},\mathbb{Z})$.

Theorem 2.1.4. Let $X = B_R(0)$ with $0 < R \le \infty$, then $H^1(X, \mathcal{O}) = 0$.

Proof: For $\mathfrak{U} = (U_i)_{i \in I}$ and $(f_{ij}) \in Z^1(\mathfrak{U}, \mathcal{O}) \subset Z^1(\mathfrak{U}, \mathscr{E})$. By Theorem 2.1.1, $\exists (f_i) \in C^0(\mathfrak{U}, \mathscr{E})$ s.t. $f_{ij} = f_i - f_j$ on $U_i \cap U_j$. Let $\overline{\partial} = \frac{\partial}{\partial \overline{z}}$, then

$$0 = \overline{\partial} f_{ij} = \overline{\partial} f_i - \overline{\partial} f_j \implies \overline{\partial} f_i = \overline{\partial} f_j \text{ on } U_i \cap U_j$$

Then $\exists h \in \mathscr{E}(X)$ s.t. $h|_{U_i} = \overline{\partial} f_i$. By below lemma, $\exists g \in \mathscr{E}(X)$ s.t. $h = \overline{\partial} g$ and thus

$$f_{ij} = \underbrace{(f_i - g)}_{\in \mathcal{O}(U_i)} - (f_j - g) \implies (f_{ij}) \in B^1(\mathfrak{U}, \mathcal{O})$$

Author: Minerva 34

Lemma 2.1.1 (Dolbeault's lemma). Suppose $X = B_R(0)$ with $0 \le R \le \infty$ and $g \in \mathscr{E}(X)$. Then $\exists f \in \mathscr{E}(X)$ s.t $\overline{\partial} f = g$.

Proof:

• Case 1.g has compact support. We may assume $X = \mathbb{C}$. For $\xi \in \mathbb{C}$,

$$f(\xi) = \frac{1}{2\pi i} \iint_{\mathbb{C}} \frac{g(z)}{z - \xi} dz \wedge d\overline{z}$$

Since supp(g) is compact,

$$f(\xi) = \frac{1}{2\pi i} \iint_{\substack{0 \le r \le K \\ 0 \le \theta \le 2\pi}} \frac{g(\xi + re^{i\theta})}{re^{i\theta}} (-2ir) dr \wedge d\theta = \frac{-1}{\pi} \iint g(\xi + re^{i\theta}) e^{-i\theta} dr \wedge d\theta$$

for some $K < \infty$ sufficiently large and $g|_{B_K(0)} \equiv 0$. This implies $f \in \mathscr{E}(\mathbb{C})$.

$$\frac{\partial f(\xi)}{d\overline{\xi}} = \frac{-1}{\pi} \iint \frac{\partial g(\xi + re^{i\theta})}{\partial \overline{\xi}} e^{-i\theta} dr d\theta = \frac{1}{2\pi i} \lim_{\varepsilon \to 0} \iint_{\varepsilon \le |z| \le K} \frac{\partial g(\xi + z)}{\partial \overline{\xi}} \frac{1}{z} dz \wedge d\overline{z}$$

Let
$$\omega(z) = \frac{1}{2\pi i} \frac{g(\xi+z)}{z} dz$$
 and thus
$$= -\lim_{\varepsilon \to 0} \iint_{\varepsilon \le |z| \le K} d\omega$$

By Stoke's theorem,

$$= -\lim_{\varepsilon \to 0} \left(\int_{|z|=K} \omega - \int_{|z|=\varepsilon} \omega \right) = \lim_{\varepsilon \to 0} \int_{B_{\varepsilon}(0)} \omega$$
$$= \frac{1}{2\pi i} \lim_{\varepsilon \to 0} \int_{0}^{2\pi} g(\xi + \varepsilon e^{i\theta}) d\theta = g(\xi)$$

Then $f(\xi)$ as desired.

• Case 2. Arbitrary g: Let $0 < R_0 < \cdots < R_n < \cdots$ s.t. $\lim_{n \to \infty} R_n = R$. Let $X_n = B_{R_n}(0)$. $\forall n, \exists \psi_n \in \mathscr{E}(X)$ with $\operatorname{supp}(\psi_n) \subset B_{R_{n+1}(0)}$ and $\psi_n|_{B_{R_n}(0)} = 1$. Then $\psi_n g$ is compact support. By Case 1. $\forall n \in \mathbb{N}, \exists f_n \in \mathscr{E}(X)$ s.t. $\overline{\partial} f_n = \psi_n g$ on X. Now we construct $\{\widetilde{f}_n\}_{n=1}^{\infty}$ by induction which satisfies

$$\begin{cases} \overline{\partial} \widetilde{f}_n = g \text{ on } X_n \\ \|\widetilde{f}_{n+1} - \widetilde{f}_n\|_{X_n} \le 2^{-n} \end{cases}$$

where $||f||_K = \sup_{x \in K} |f(x)|$. Set $\widetilde{f}_1 = f_1$. Suppose $\widetilde{f}_1, ..., \widetilde{f}_n$ are already constructed. Then

$$\overline{\partial}(f_{n+1} - \widetilde{f}_n) = 0 \text{ on } X_n$$

and thus $(f_{n+1} - \widetilde{f}_n) \in \mathcal{O}(X_n)$. Hence exists a Taylor polynomial P s.t. $||f_{n+1} - \widetilde{f}_n - P||_{X_n} \le 2^{-n}$. If we set $\widetilde{f}_{n+1} = f_{n+1} - P$, then

$$\overline{\partial} \widetilde{f}_{n+1} = \overline{\partial} f_{n+1} = \psi_n g = g \text{ on } X_{n+1}$$

Define $f(z) := \lim_{n \to \infty} \widetilde{f}_n(z) \ \forall z \in X$. On X_n ,

$$f(z) = \widetilde{f}_n(z) + \sum_{k=n}^{\infty} (\widetilde{f}_{k+1}(z) - \widetilde{f}_k(z))$$

Note that $(\widetilde{f}_{k+1}(z) - \widetilde{f}_k(z)) \in \mathcal{O}(X_n)$ and converge uniformly, $\sum_{k=n}^{\infty} (\widetilde{f}_{k+1}(z) - \widetilde{f}_k(z)) \in \mathcal{O}(X_n)$ and thus $f \in \mathcal{O}(X_n)$ $\forall n$. Hence, $f \in \mathcal{O}(X)$ which satisfies $\overline{\partial} f = g$ on X.

Theorem 2.1.5 (Leray theorem). Suppose \mathscr{F} is a sheaf of abelian groups on topological space X and $\mathfrak{U} = (U_i)_{i \in I}$ is an open covering of X s.t. $H^1(U_i, \mathscr{F}) = 0 \ \forall i \in I$. Then

$$H^1(X,\mathscr{F}) = H^1(\mathfrak{U},\mathscr{F})$$

Such \mathfrak{U} is called **Leray covering**.

Proof:

• Claim : $\forall \mathfrak{V} < \mathfrak{U}$ via $\tau : K \to I$, then $t_{\mathfrak{V}}^{\mathfrak{U}} : H^1(\mathfrak{U}, \mathscr{F}) \xrightarrow{\sim} H^1(\mathfrak{V}, \mathscr{F})$. subproof : It suffices to show surjective. For $(f_{k\ell}) \in Z^1(\mathfrak{V}, \mathscr{F})$. $(U_i \cap V_k)_{k \in K}$ is an open covering of U_i . By assumption, $H^1(U_i \cap \mathfrak{V}, \mathscr{F}) = 0$ and thus

$$f_{k\ell} = g_{ik} - g_{i\ell}$$
 on $U_i \cap V_k \cap V_\ell$ with $g_{ik} \in \mathscr{F}(U_i \cap V_k) \ \forall i \in I$

On $U_i \cap U_i \cap V_k \cap V_\ell$,

$$g_{ik} - g_{i\ell} = f_{k\ell} = g_{jk} - g_{j\ell} \implies \underbrace{g_{ik} - g_{jk}}_{\in U_i \cap U_j \cap V_k} = g_{i\ell} - g_{j\ell}$$

Then $\exists F_{ij} \in \mathscr{F}(U_i \cap U_j)$ s.t. $F_{ij}|_{U_i \cap U_j \cap V_k} = g_{jk} - g_{ik} \ \forall k$. On $U_i \cap U_j \cap V_k \cap V_\ell$,

$$F_{ij} + F_{jt} = g_{jk} - g_{ik} + g_{tk} - g_{jk} = F_{it} \implies (F_{ij}) \in Z^1(\mathfrak{U}, \mathscr{F})$$

Now on $V_k \cap V_\ell$,

$$F_{\tau(k)\tau(\ell)} - f_{k\ell} = \left(g_{\tau(\ell)\ell} - g_{\tau(k)\ell}\right) - \left(g_{\tau(k)k} - g_{\tau(k)\ell}\right) = \underbrace{g_{\tau(\ell)\ell}}_{\in \mathscr{F}(V_{\ell})} - g_{\tau(k)k} \in B^{1}(\mathfrak{V}, \mathscr{F})$$

Hence, $(f_{k\ell}) = (F_{\tau(k)\tau(\ell)}) - (g_{\tau(\ell)\ell} - g_{\tau(k)k}).$

Example 2.1.1. $H^1(\mathbb{C}^{\times}, \mathbb{Z}) = \mathbb{Z}, H^1(\mathbb{C}^{\times}, \mathbb{C}) = \mathbb{C}.$

Proof:

- Let $U_1 = \mathbb{C}^{\times} \setminus \mathbb{R}^-$ and $\mathbb{C}^{\times} \setminus \mathbb{R}^+$. Since U_1, U_2 are simply connected, $H^1(U_i, \mathbb{Z}) = 0$ by Theorem 2.1.3. Then $\mathfrak{U} = \{U_1, U_2\}$ is a Leray covering of \mathbb{C}^{\times} . By Leray theorem, $H^1(X, \mathbb{Z}) = H^1(\mathfrak{U}, \mathbb{Z})$.
- For $(a_{ij}) \in Z^1(U_1, \mathbb{Z})$, say $(a_{ij}) = (0, a_{12}, -a_{12}, 0) \rightsquigarrow Z^1(\mathfrak{U}, \mathbb{Z}) \simeq \mathbb{Z}(U_1 \cap U_2) \simeq \mathbb{Z} \times \mathbb{Z}$ since $U_1 \cap U_2$ has two connected components. Also, $C^0(\mathfrak{U}, \mathbb{Z}) = \mathbb{Z}(U_1) \times \mathbb{Z}(U_2) \simeq \mathbb{Z} \times \mathbb{Z}$.

$$\delta: C^0(\mathfrak{U}, \mathbb{Z}) \longrightarrow Z^1(\mathfrak{U}, \mathbb{Z}) (b_1, b_2) \longrightarrow (b_2 - b_1, b_1 - b_2)$$

Then $\operatorname{Im} \delta = \mathbb{Z}(1,-1) \simeq \mathbb{Z} \implies H^1(\mathfrak{U},\mathbb{Z}) \simeq \mathbb{Z}(1,-1) \times \mathbb{Z}/\mathbb{Z} \simeq \mathbb{Z}.$

• Similarly, $H^1(\mathbb{C}^{\times}, \mathbb{C}) = \mathbb{C}$.

Example 2.1.2. $H^1(\mathbb{P}, \mathcal{O}) = 0$.

Proof:

• Let $U_1 = \mathbb{P}^1 \setminus \{\infty\} \simeq \mathbb{C}$ and $U_2 = \mathbb{P}^1 \setminus \{0\} \simeq \mathbb{C}$. By theorem 2.1.4, $H^1(U_i, \mathcal{O}) = 0$. Then $\mathfrak{U} = \{U_1, U_2\}$ is Leray covering and thus $H^1(X, \mathscr{F}) \simeq H^1(\mathfrak{U}, \mathscr{F})$.

• For $(f_{ij}) \in Z^1(\mathfrak{U}, \mathbb{P})$, $U_1 \cap U_2 = \mathbb{C}^{\times}$. Let $f_{1,2}(z) = \sum_{n=-\infty}^{\infty} c_n z^n$ on \mathbb{C}^{\times} . Let $f_1(z) = \sum_{n=0}^{\infty} c_n z^n \in \mathcal{O}(U_1)$ and $f_2(z) := -\sum_{n=-\infty}^{-1} c_n z^n \in \mathcal{O}(U_2)$. $f_{12} = f_1 - f_2$ on $U_1 \cap U_2 \implies (f_{ij}) \in B^1(\mathfrak{U}, \mathcal{O})$.

2.2 Finiteness theorem

Definition 2.2.1. Suppose $D \subset \mathbb{C}$ is an open set. Given a holomorphic function $f \in \mathcal{O}(D)$ define its L^2 -norm by

$$||f||_{L^2(D)} := \left(\iint_D |f(x+iy)|^2 dx dy \right)^{1/2} \in \mathbb{R}_{\geq 0} \cup \{\infty\}$$

If $||f||_{L^2(D)} < \infty$, then f is called **square integrable**, and denoted $L^2(D, \mathcal{O})$ be the vector space of all square integrable holomorphic functions on D. If

$$Vol(D) := \iint_D dx dy < \infty$$

then for every bounded function $f \in \mathcal{O}(D)$ we has

$$||f||_{L^2(D)} \le \sqrt{\text{Vol}(D)} ||f||_{L^{\infty}(D)}$$

Define the inner product on $L^2(D, \mathcal{O})$ by

$$\langle f, g \rangle = \iint_D f \overline{g} dx dy$$

Note that the integral exists since

$$|f(z)\overline{g(x)}| \le \frac{1}{2} (|f(z)|^2 + |g(x)|^2)$$

Suppose $D = B_r(a)$, then $\{\psi_n(z) = (z-a)^n\}_{n \in \mathbb{N}}$ form a orthogonal system in $L^2(B_r(a), \mathcal{O})$.

$$\langle \psi_n, \psi_m \rangle = \int_0^{2\pi} \int_0^r r^n e^{ni\theta} r^m e^{-mi\theta} r dr d\theta = \begin{cases} 0 & \text{if } n \neq m \\ \frac{\pi r^{2n+2}}{n+1} & \text{if } n = m \end{cases}$$

If $f \in L^2(B_r(a), \mathcal{O})$ and $f(z) = \sum_{n=0}^{\infty} c_n(z-a)^n$, then

$$||f||_{L^2(B_r(a))}^2 = \sum_{n=0}^{\infty} \frac{\pi r^{2n+2}}{n+1} |c_n|^2$$

Author: Minerva 37

Definition 2.2.2. Suppose X is a Riemann surface and $\mathfrak{U}' = (U'_i, z_i)_{i=1}^n$ is a finite set of charts on X s.t. $z_i(U'_i) \simeq B_R(0) \subset \mathbb{C}$. Suppose $U_i \subset U'_i$ and $\mathfrak{U} = (U_i)_{i=1}^n$. Define $|\mathfrak{U}| = \bigcup_{i=1}^n U_i$ and

• For $\eta = (f_i) \in C^0(\mathfrak{U}, \mathcal{O})$, define

$$\|\eta\|_{L^2(\mathfrak{U})}^2 = \sum_{i=1}^n \|f_i\|_{L^2(U_i)}^2 \text{ where } \|f_i\|_{L^2(U_i)} := \|f_i \circ z_i^{-1}\|_{L^2(z_i(U_i))}$$

• For $\xi = (f_{ij}) \in C^1(\mathfrak{U}, \mathcal{O})$, define

$$\|\xi\|_{L^2(\mathfrak{U})}^2 = \sum_{i,j} \|f_{ij}\|_{L^2(U_i \cap U_j)}^2 \text{ where } \|f_{ij}\|_{L^2(U_i \cap U_j)} := \|f_{ij} \circ z_i^{-1}\|_{L^2(z_i(U_i \cap U_j))}$$

• Let $C_{L^2}^i(\mathfrak{U},\mathcal{O})$ be the set of cochain having finite L^2 -norm contain in $C^i(\mathfrak{U},\mathcal{O})$ (i=1,2), which is a Hilbert space. Indeed, let $D_r = \{z \in D : B_r(z) \subset D\}$ and for all $a \in D_r$, $f(z) = \sum c_n(z-a)^n$. Then

$$|f(a)| = |c_0| \le \frac{1}{\sqrt{\pi r}} ||f||_{L^2(B_r(0))} \le \frac{1}{\sqrt{\pi r}} ||f||_{L^2(D)} \implies ||f||_{L^\infty(D_r)} \le \frac{1}{\sqrt{\pi r}} ||f||_{L^2(D)}$$

This shows that every Cauchy sequence $\{f_i\} \subseteq L^2(D, \mathcal{O})$ converge uniformly on each compact subset of D, so the limit function is holomorphic on D. Hence $L^2(D, \mathcal{O})$ is complete.

• We denote $\mathfrak{V} \ll \mathfrak{U}$ if $\mathfrak{V} = (V_i)_{i=1}^n$ with $V_i \in U_i$.

Fact 2.2.1 (key fact). If $\mathfrak{V} \ll \mathfrak{U}$, then $\forall \xi \in C^1(\mathfrak{U}, \mathcal{O})$, $\|\xi\|_{L^2(\mathfrak{V})} < \infty$. $\forall \varepsilon > 0$, there exists a closed vector subspace $A \subset Z^1_{L^2}(\mathfrak{U}, \mathcal{O})$ of finite codimension s.t.

$$\|\xi\|_{L^2(\mathfrak{V})} \le \varepsilon \|\xi\|_{L^2(\mathfrak{U})} \ \forall \xi \in A$$

Proof:

• Since $\operatorname{Vol}(V_i \cap V_j) := \iint_{z_i(V_i \cap V_j)} dx dy < \infty$ and f_{ij} is bounded on $\overline{V_i \cap V_j}$,

$$||f_{ij}||_{L^2(V_i \cap V_j)}^2 \le \operatorname{Vol}(V_i \cap V_j) \cdot ||f_{ij}||_{V_i \cap V_j} < \infty$$

- We do the case for $D' \subseteq D$ first. Since $\overline{D'}$ is compact, $\exists r > 0$ and $a_1, ..., a_k \in D'$ s.t.
 - •• $B_r(a_i) \subset D$
 - $D' \subset \bigcup_{j=1}^k B_{r/2}(a_j)$

Pick n s.t. $2^{-n-1}k \leq \varepsilon$. Let A be the set of all functions $f \in L^2(D, \mathcal{O})$ which vanish at every point a_j at least of order n. Then A is a closed vector subspace of $L^2(D, \mathcal{O})$ of codimension $\leq kn$. Consider the Taylor series of f at a_j , $f(z) = \sum_{i=n}^{\infty} c_{ij}(z-a_j)^i$. For every $\rho \leq r$, we have

$$||f||_{L^{2}(B_{\rho}(a_{j}))}^{2} = \sum_{i=n}^{\infty} \frac{\pi \rho^{2i+2}}{i+1} |c_{ij}|^{2}$$

from which it follows that

$$||f||_{L^{2}(B_{r/2}(a_{j}))}^{2} = \sum_{i=n}^{\infty} \frac{\pi r^{2i+2}}{i+1} \frac{1}{2^{2i+2}} |c_{ij}|^{2} \le \frac{1}{2^{2n+2}} ||f||_{L^{2}(B_{r}(a_{j}))}^{2} \le \frac{1}{2^{2n+2}} ||f||_{L^{2}(D)}^{2}$$

$$\implies ||f||_{L^{2}(D')} \le \sum_{j=1}^{k} ||f||_{L^{2}(B_{r/2}(a_{j}))} \le \frac{k}{2^{n+1}} ||f||_{L^{2}(D)} \le \varepsilon ||f||_{L^{2}(D)}$$

• Fixed $\varepsilon > 0$, $\forall i, j, \ \overline{V_i \cap V_j} \subset \overline{V_i} \cap \overline{V_j} \subset U_i \cap U_j$. By above exists closed subspace $A_{ij} \subseteq Z^1_{L^2}(U_i \cap U_j, \mathcal{O})$ of finite codimension s.t.

$$\|\xi\|_{L^2(V_i\cap V_j)} \le \varepsilon \|\xi\|_{L^2(U_i\cap U_j)}$$

Choose

$$A = \left(\prod_{1 \le i, j \le n} A_{ij}\right) \cap Z_{L^2}^1(\mathfrak{U}, \mathcal{O})$$

then A is closed finite codimension subspace of $Z_{L^2}^1(\mathfrak{U},\mathcal{O})$. So $\forall \xi \in A$,

$$\|\xi\|_{L^2(\mathfrak{V})}^2 = \sum_{i,j} \|f_{ij}\|_{L^2(V_i \cap V_j)} \le \varepsilon^2 \sum_{i,j} \|f_{ij}\|_{L^2(U_i \cap U_j)} = \varepsilon^2 \|\xi\|_{L^2(\mathfrak{U})}^2$$

Definition 2.2.3. Given $f \in \mathcal{E}(X)$, define $d'f = \frac{\partial f}{\partial z}dz$ and $d''f = \frac{\partial f}{\partial \overline{z}}d\overline{z}$ i.e. df = d'f + d''f.

Lemma 2.2.1 (key lemma). For $\mathfrak{W} \ll \mathfrak{V} \ll \mathfrak{U} \ll \mathfrak{U}'$, $\exists c > 0$ s.t. $\forall \xi \in Z_{L^2}^1(\mathfrak{V}, \mathcal{O})$, $\exists \zeta \in Z_{L^2}^1(\mathfrak{U}, \mathcal{O})$, $\eta \in C_{L^2}^0(\mathfrak{W}, \mathcal{O})$ s.t. $\zeta = \xi + \delta \eta$ and

$$\max \left\{ \|\zeta\|_{L^{2}(\mathfrak{U})}, \|\eta\|_{L^{2}(\mathfrak{W})} \right\} \le c \|\xi\|_{L^{2}(\mathfrak{V})}$$

Proof: By the fact $H^1(|\mathfrak{V}|,\mathscr{E})=0$, $\exists g_i\in C^0(|\mathfrak{V}|,\mathscr{E})$ s.t. $f_{ij}=g_j-g_i$ on $V_i\cap V_j$. $d''f_{ij}=0 \rightsquigarrow d''g_i=d''g_j$ on $V_i\cap V_j$. $\exists w\in \mathscr{E}^{(0,1)}(|\mathfrak{V}|)$ s.t. $w|_{V_i}=d''g_i$. Since $|\mathfrak{W}|\in |\mathfrak{V}|$, $\exists \psi\in \mathscr{E}(X)$ s.t. $\sup(\psi)\subset |\mathfrak{V}|$ and $\psi|_{|\mathfrak{W}|}\equiv 1 \rightsquigarrow \psi w\in \mathscr{E}(|\mathfrak{U}'|)$. By Dolbeault's lemma, $\exists h_j\in \mathscr{E}(U_i')$ s.t. $d''h_i=\psi w$ on U_i' . Since $d''(h_i-h_j)=0$ on $U_i'\cap U_j'$, $F_{ij}=(h_j-h_i)\in \mathcal{O}(U_i'\cap U_j')\rightsquigarrow (F_{ij})\in Z^1(\mathfrak{U},\mathcal{O})$ and $\xi:=(F_{ij}|_{U_i\cap U_j})\in Z^1_{L^2}(\mathfrak{U},\mathcal{O})$. On W_i , $d''h_i=\psi w=w=d''g_i$ i.e. $(h_i-g_i)\in \mathcal{O}(W_i)\rightsquigarrow \eta=(h_i-g_i)_i\in C^0_{L^2}(\mathfrak{W},\mathcal{O})$, then

$$F_{ij} - f_{ij} = (h_j - g_j) - (h_i - g_i)$$
 on $W_{ij} \implies \zeta - \xi = \delta \eta$ on \mathfrak{W}

Consider the Hilbert space $H := Z_{L^2}^1(\mathfrak{U}, \mathcal{O}) \times Z_{L^2}^1(\mathfrak{V}, \mathcal{O}) \times C_{L^2}^0(\mathfrak{W}, \mathcal{O})$ with

$$\|(\cdots)\|_H = \left(\|\cdot\|_{L^2(\mathfrak{U})}^2 + \|\cdot\|_{L^2(\mathfrak{V})}^2 + \|\cdot\|_{L^2(\mathfrak{W})}^2\right)^{1/2}$$

Let $L := \{(\zeta, \xi, \eta) \in H : \zeta = \xi + \delta \eta \text{ on } \mathfrak{W}\}$ which is a closed Hilbert subspace of H. By Banach-Schauder theorem, $\pi : (\zeta, \xi, \eta) \mapsto \xi$ is surjective $\Longrightarrow \pi$ is open mapping. Let $U = \{x \in H : ||x||_H < 1\}$, $\exists \varepsilon > 0$ s.t. $\pi(U) \supset V = \{\xi \in Z_{L^2}^1(\mathfrak{V}, \mathcal{O}) : ||\xi||_{L^2(\mathfrak{V})} < \varepsilon\}$. Let $c = 2/\varepsilon$. If $\xi = 0$, choose x = 0, otherwise $\lambda := ||\xi|| > 0$, $\xi_1 = \frac{1}{\lambda c} \xi \in V$ since $||\xi_1|| = \frac{1}{\lambda c} \cdot \lambda = \frac{\varepsilon}{2}$. Then $\exists x_1 \in U$ s.t. $\pi(x_1) = \xi_1$. Then $\pi(\lambda cx_1) = \xi$ and

$$\|\lambda cx_1\|_H = \lambda c\|x_1\| \le \lambda c = c\|\xi\|_{L^2(\mathfrak{V})}$$

Hence,

$$\max \left\{ \|\zeta\|_{L^{2}(\mathfrak{U})}, \|\eta\|_{L^{2}(\mathfrak{W})} \right\} \le c \|\xi\|_{L^{2}(\mathfrak{V})}$$

Author: Minerva 39

Proposition 2.2.1 (key prop.). \exists finite dimensional vector space $S \subset Z^1(\mathfrak{U}, \mathcal{O})$ s.t. $\forall \xi \in Z^1(\mathfrak{U}, \mathcal{O}), \exists \sigma \in S, \eta \in C(w, \mathcal{O})$ s.t. $\sigma = \xi + \delta \eta$ on \mathfrak{W} .

Proof: Let c be given in key lemma, and $\varepsilon = (2c)^{-1}$. By key fact, exists a finite codimension closed vector space $A \subset Z_{L^2}^1(\mathfrak{U}, \mathcal{O})$ s.t. $\|\xi\|_{L^2(\mathfrak{V})} \leq \varepsilon \|\xi\|_{L^2(\mathfrak{U})} \ \forall \xi \in A$. Pick S s.t. $A \oplus S = Z_{L^2}^1(\mathfrak{U}, \mathcal{O}) \rightsquigarrow \dim S < \infty$.

- For $\xi \in Z^1(\mathfrak{U}, \mathcal{O})$, $M := \|\xi\|_{L^2(\mathfrak{V})} < \infty$ since $\mathfrak{V} \ll \mathfrak{U}$. By key lemma, $\exists \zeta_0 \in Z^1(\mathfrak{U}, \mathcal{O})$, $\eta_0 \in C^0(\mathfrak{W}, \mathcal{O})$ s.t. $\zeta_0 = \xi + \delta \eta_0$ on W and $\|\zeta_0\|_{L^2(\mathfrak{U})}, \|\eta_0\|_{L^2(\mathfrak{W})} \leq cM$. Suppose $\zeta_0 = \xi_0 + \sigma_0$ for $\xi_0 \in A$, $\sigma_0 \in S$ (by $Z^1(\mathfrak{U}, \mathcal{O}) = A \oplus S$).
- We now construct the element by induction,

$$\zeta_n \in Z_{L^2}^1(\mathfrak{U}, \mathcal{O}), \ \eta_n \in C_{L^2}^0(\mathfrak{W}, \mathcal{O}), \ \xi_n \in A, \ \sigma_n \in S$$

with the following properties:

- (1) $\zeta_n = \xi_{n-1} + \delta \eta_n$ on \mathfrak{W}
- (2) $\zeta_n = \xi_n + \sigma_n$
- (3) $\|\zeta_n\|_{L^2(\mathfrak{U})} \leq 2^{-n}cM, \|\eta_n\|_{L^2(\mathfrak{W})} \leq 2^{-n}cM$

Consider the induction step from n to n+1. Since $\zeta_n = \xi_n + \sigma_n$ is an orthogonal decomposition,

$$\|\xi_n\|_{L^2(\mathfrak{U})} \le \|\zeta_n\|_{L^2(\mathfrak{U})} \le 2^{-n}cM$$

Since $\xi_n \in A$,

$$\|\xi_n\|_{L^2(\mathfrak{B})} \le \varepsilon \|\xi_n\|_{L^2(\mathfrak{U})} \le \varepsilon \cdot 2^{-n} cM = 2^{-n-1} M$$

By key Lemma, $\exists \zeta_{n+1} \in Z^1_{L^2}(\mathfrak{U}, \mathcal{O}), \ \eta_{n+1} \in C^0_{L^2}(\mathfrak{W}, \mathcal{O}) \text{ s.t. } \zeta_{n+1} = \xi_n + \delta \eta_{n+1} \text{ on } \mathfrak{W} \text{ and } \zeta_{n+1} = \zeta_n + \delta \eta_{n+1} \text{ on } \mathfrak{W} \text{ and } \zeta_{n+1} = \zeta_n + \delta \eta_{n+1} \text{ on } \mathfrak{W} \text{ and } \zeta_{n+1} = \zeta_n + \delta \eta_{n+1} \text{ on } \mathfrak{W} \text{ and } \zeta_{n+1} = \zeta_n + \delta \eta_{n+1} \text{ on } \mathfrak{W} \text{ and } \zeta_{n+1} = \zeta_n + \delta \eta_{n+1} \text{ on } \mathfrak{W} \text{ and } \zeta_{n+1} = \zeta_n + \delta \eta_{n+1} \text{ on } \mathfrak{W} \text{ and } \zeta_{n+1} = \zeta_n + \delta \eta_{n+1} \text{ on } \mathfrak{W} \text{ and } \zeta_{n+1} = \zeta_n + \delta \eta_{n+1} \text{ on } \zeta_{$

$$\max(\|\zeta_{n+1}\|_{L^2(\mathfrak{U})}, \|\eta_{n+1}\|_{L^2(\mathfrak{W})}) \le c\|\xi_n\|_{L^2(\mathfrak{V})} \le 2^{-(n+1)}cM$$

Since $Z_{L^2}^1(\mathfrak{U},\mathcal{O})=A\oplus S$, $\zeta_{n+1}=\xi_{n+1}+\sigma_{n+1}$, where $\xi_{n+1}\in A$, $\sigma_{n+1}\in S$ and thus the induction is complete.

• Note that

$$\sum_{n=1}^{k} (\xi_n + \sigma_n) = \sum_{n=1}^{k} \zeta_n = \sum_{n=1}^{k} (\xi_{n-1} + \delta \eta_n) \implies \xi_k + \sum_{n=1}^{k} \sigma_n = \xi_{-1} + \delta \left(\sum_{n=1}^{k} \eta_n\right)$$
(*)

where $\xi_{-1} = \xi$. By (2), (3), we have

$$\max (\|\xi_n\|_{L^2(\mathfrak{U})}, \|\sigma_n\|_{L^2(\mathfrak{U})}, \|\eta_n\|_{L^2(\mathfrak{B})}) \le 2^{-n} cM$$

Then we have $\lim_{n\to\infty} \xi_n = 0$ and the series

$$\sigma := \sum_{n=0}^{\infty} \sigma_n \in S, \ \eta := \sum_{n=1}^{\infty} \eta_n \in C_{L^2}^0(\mathfrak{W}, \mathcal{O})$$

converge. Combine with (*), we have $\sigma = \xi + \delta \eta$.

Remark 2.2.1. We have

$$\dim\operatorname{Im}\left(H^1(\mathfrak{U},\mathcal{O})\to H^1(\mathfrak{W},\mathcal{O})\right)<\infty$$

Indeed, given $\xi \in Z^1(\mathfrak{U}, \mathcal{O})$, let σ and η be given in above. Then $\overline{\xi} = \overline{\sigma}$ on \mathfrak{W} . Hence the image can be presented by S.

Theorem 2.2.1 (Main theorem). Suppose X is a Riemann surface. $Y_1 \subseteq Y_2 \subset X$. Then

$$\dim \operatorname{Im} \left(H^1(Y_2, \mathcal{O}) \to H^1(Y_1, \mathcal{O}) \right) < \infty$$

In particular, if X is a compact Riemann surface, then dim $H^1(X, \mathcal{O}) < \infty$.

Proof: Choose charts $(U'_i, z_i)_{i=1}^n$ on X and $W_i \in U_i \in U'_i$ s.t. $z_i(W_i)$, $z_i(U_i)$, $z_i(U'_i)$ are disks in \mathbb{C} and

$$Y_1 \subset \bigcup_{\substack{i=1 \ :=Y'}}^n W_i \subset \bigcup_{\substack{i=1 \ :=Y''}}^n U_i \subset Y_2$$

By Theorem 2.1.4, $H^1(W_i, \mathcal{O}) = H^1(U_i, \mathcal{O}) = 0$. By Leray theorem, $H^1(Y', \mathcal{O}) = H^1(\mathfrak{W}, \mathcal{O})$, $H^1(Y'', \mathcal{O}) = H^1(\mathfrak{U}, \mathcal{O})$. Then we can split the map $H^1(Y_2, \mathcal{O}) \to H^1(Y_2, \mathcal{O})$ to

$$H^{1}(Y_{2},\mathcal{O}) \longrightarrow H^{1}(Y'',\mathcal{O}) \longrightarrow H^{1}(Y',\mathcal{O}) \longrightarrow H^{1}(Y_{1},\mathcal{O})$$

$$\parallel \qquad \qquad \parallel$$

$$H^{1}(\mathfrak{U},\mathcal{O}) \xrightarrow{\text{finite image}} H^{1}(\mathfrak{W},\mathcal{O})$$

and thus have finite dimensional image.

Corollary 2.2.1. Suppose X is a Riemann surface, $Y \subseteq X$ and $a \in Y \leadsto \exists f \in \mathcal{M}(Y)$ has a pole at a and $f \in \mathcal{O}(Y \setminus \{a\})$.

Proof: Let $z: U_1 \xrightarrow{\sim} B_1(0) \subset \mathbb{C}$ and $U_2 = X \setminus \{a\}$. Let $\mathfrak{U} = \{U_1, U_2\}$. Consider

$$\dim (H^{1}(X, \mathcal{O}) \longrightarrow H^{1}(Y, \mathcal{O})) = k$$

$$\uparrow \qquad \qquad \uparrow$$

$$\dim (H^{1}(\mathfrak{U}, \mathcal{O}) \longrightarrow H^{1}(\mathfrak{U} \cap Y, \mathcal{O})) < k + 1$$

Observe that $z^{-j} \in \mathcal{O}(U_1 \cap U_2) \leadsto \xi_j \in H^1(\mathfrak{U}, \mathcal{O})$. Then $\xi_j|_Y \in H^1(\mathfrak{U} \cap Y, \mathcal{O})$ (j = 1, ..., k + 1) are linearly dependent, then $\exists c_1, ..., c_{k+1}$ are not all zero and $\eta = (f_1, f_2) \in C^0(\mathfrak{U} \cap Y, \mathcal{O})$ s.t. $\sum_{i=1}^{k+1} c_j z^{-j} = f_2 - f_1$ on $U_1 \cap U_2 \cap Y$, then

$$\mathcal{O}(U_2) \ni f_2 = f_1 + \sum_{j=1}^{k+1} c_j z^{-j} \in \mathcal{O}(U_1)$$

Hence, $\exists f \in \mathcal{M}(Y) \text{ s.t. } f|_{U_1 \cap Y} = f_1 + \sum_{j=1}^{k+1} c_j z^{-j} \text{ has a pole at } a, f|_{U_2 \cap Y} = f_2 \in \mathcal{O}(Y \setminus \{a\}). \quad \Box$

Corollary 2.2.2. Suppose X is compact Riemann surface, $a_1, ..., a_n \in X$, $c_1, ..., c_n \in \mathbb{R}$. Then $\exists f \in \mathcal{M}(X) \text{ s.t. } f(a_i) = c_i$.

Proof: Let $f_i \in \mathcal{M}(X)$ has a pole at a_i and $f_i \in \mathcal{O}(X \setminus \{a_i\})$. Choose $\lambda_{ij} \in \mathbb{C}^{\times}$ s.t. $\lambda_{ij} \neq f_i(a_j) - f_i(a_k) \ \forall k = 1, ..., n$. Define

$$g_{ij} = \frac{f_i - f_i(a_j)}{f_i - f_i(a_j) + \lambda_{ij}} \in \mathcal{M}(X) \implies \begin{cases} g_{ij} \text{ is hol. at } a_k \\ g_{ij}(a_i) = 1 \\ g_{ij}(a_j) = 0 \end{cases}$$

Set
$$h_i = \prod_{j \neq i} g_{ij} \rightsquigarrow h_i(a_j) = \delta_{ij}$$
 and let $f = \sum_{i=1}^n c_i h_i$.

Fact 2.2.2. Suppose X is a non-compact Riemann surface and $Y \in X$. Then $\exists f \in \mathcal{O}(Y)$ s.t. f is not constant on each connected component of Y.

Proof: Choose a domain Y_1 s.t. $Y \in Y_1 \in X$ and $a \in Y_1 \setminus Y$ (since X is non-compact) $\rightarrow \exists f \in \mathcal{O}(Y \setminus \{a\})$ and f_1 has a pole at $a \rightarrow f = f_1|_Y$ (see the singular part).

Lemma 2.2.2 (General Dolbeault lemma). Suppose X is a non-compact Riemann surface and $Y \in Y' \in X$. $\omega \in \mathscr{E}^{0,1}(Y')$, $\exists g \in \mathscr{E}(Y)$ s.t. $d''g = \omega|_Y$.

Proof:

• $\operatorname{Im}(H^1(Y',\mathcal{O}) \to H^1(Y,\mathcal{O})) = 0$: By Theorem 2.2.1,

$$L = \operatorname{Im}\left(H^1(Y', \mathcal{O}) \to H^1(Y, \mathcal{O})\right)$$

is finite dimensional. Let $\xi_1, ..., \xi_n \in H^1(Y', \mathcal{O})$ s.t. $\langle \xi_1|_Y, ..., \xi_n|_Y \rangle = L$. Let $f \in \mathcal{O}(Y')$ in the above fact, then $f\xi_i|_Y \in L$ (i = 1, ..., n). Say

$$f\xi_i = \sum_{j=1}^n c_{ij}\xi_j$$
 on $Y \ \forall i = 1, ..., n$

By the determinant trick, $F\xi_i|_Y = 0 \ \forall i = 1, ..., n$, where $F = \det(f\delta_{ij} - c_{ij}) \in \mathcal{O}(Y')$. Since f is non-constant on each connected component of Y, F also. For any $\zeta \in H^1(Y', \mathcal{O})$, say $(f_{ij}) \in H^1(\mathfrak{U}, \mathcal{O})$, \mathfrak{U} can be refined s.t. each zero of F is contained at most on one U_i . Then $F|_{U_i \cap U_j} \in \mathcal{O}^*(U_i \cap U_j)$. Define $g_{ij} = F^{-1}|_{U_i \cap U_j} f_{ij} \in \mathcal{O}(U_i \cap U_j)$, let $\xi = (g_{ij}) \in H^1(\mathfrak{U}, \mathcal{O}) \hookrightarrow H^1(Y', \mathcal{O})$, then $\zeta|_Y = F\xi|_Y = 0$.

• By Dolbeault's lemma, $\exists \mathfrak{U} = (U_{ij})$ cover Y' and $f_i \in \mathscr{E}(U_i)$ s.t. $d''f_i = \omega|_{U_i} \leadsto (f_j - f_i) \in \mathscr{O}(U_i \cap U_j) \leadsto (f_j - f_i) \in Z^1(\mathfrak{U}, \mathscr{O})$. As above, $\exists g_i \in \mathscr{O}(U_i \cap Y)$ s.t. $f_j - f_i = g_j - g_i$ on $U_i \cap U_j \cap Y \implies f_i - g_i = f_j - g_j \leadsto \exists g \in \mathscr{E}(Y)$ s.t. $g|_{U_i \cap Y} = f_i - g_i$. Then

$$d''g|_{U_i\cap Y} = d''f_i|_{U_i\cap Y} = \omega|_{U_i\cap Y} \implies d''g = \omega|_Y$$

2.3 The exact cohomology sequence

Suppose

$$0 \to \mathscr{F} \xrightarrow{\alpha} \mathscr{G} \xrightarrow{\beta} \mathscr{H} \to 0$$

is an exact sequence of sheaves on the topological space X. A connecting homomorphism

$$\delta^*: H^0(X, \mathscr{H}) \to H^1(X, \mathscr{F})$$

is defined as follows. Suppose $h \in H^0(X, \mathcal{H})$. Since $\mathscr{G}_x \xrightarrow{\beta_x} \mathscr{H}_x$ are surjective $\forall x$, there exists an open covering $\mathfrak{U} = (U_i)_{i \in I}$ of X and a cochain $(g_i) \in C^0(\mathfrak{U}, \mathscr{F})$ such that $\beta(g_i) = h|_{U_i}$. Hence, $\beta(g_i - g_i) = 0$ on $U_i \cap U_j \rightsquigarrow \exists f_{ij} \in \mathscr{F}(U_i \cap U_j)$ s.t. $\alpha(f_{ij}) = g_j - g_i$. On $U_i \cap U_j \cap U_k$,

$$\alpha(f_{ij} + f_{jk} - f_{ki}) = 0 \implies f_{ij} + f_{jk} = f_{ik} \implies (f_{ij}) \in Z^1(\mathfrak{U}, \mathscr{F})$$

Define $\delta^* h = \overline{(f_{ij})} \in H^1(X, \mathscr{F})$. It is clear that the definition is independent on the choice.

Now we check that the short exact sequence of sheave induces the exact sequence of cohomology groups :

$$0 \longrightarrow H^0(X, \mathscr{F}) \xrightarrow{\alpha^0} H^0(X, \mathscr{G}) \xrightarrow{\beta^0} H^0(X, \mathscr{H})$$
$$\xrightarrow{\delta^*} H^1(X, \mathscr{F}) \xrightarrow{\alpha^1} H^1(X, \mathscr{G}) \xrightarrow{\beta^1} H^1(X, \mathscr{H})$$

- It is clear that α^0 is injective and Im $\alpha^0 = \ker \beta^0$.
- Im $\beta^0 \subset \ker \delta^*$: Suppose $g \in H^0(X, \mathcal{G})$ and $h = \beta^0(g)$, we may choose $g_i = g|_{U_i}$ and thus $f_{ij} = 0 \rightsquigarrow \delta^* h = 0$.
- $\ker \delta^* \subset \operatorname{Im} \beta^0$: Suppose $h \in \ker \delta^*$, say $\delta^* h = (f_{ij})$ as we say in above. Then $\exists f_i \in \mathscr{F}(U_i)$ s.t. $f_{ij} = f_j f_i$ on $U_i \cap U_j$. Then

$$g_j - g_i = \alpha(f_{ij}) = \alpha(f_j) - \alpha(f_i) \implies g_j - \alpha(f_j) = g_i - \alpha(f_i) \text{ on } U_i \cap U_j$$

Then $\exists g \in \mathcal{G}(X)$ s.t. $g|_{U_i} = g_i - \alpha(f_i)$. Then we have

$$\beta(g) = \beta(g_i - \alpha(f_i)) = \beta(g_i) = h|_{U_i} \text{ on } U_i \implies h \in \text{Im } \beta^0$$

- Im $\delta^* \subset \ker \alpha^1$: By construction.
- $\ker \alpha^1 \subset \operatorname{Im} \delta^*$: Suppose $\xi \in \ker \alpha^1$ and $\xi = (f_{ij}) \in H^1(\mathfrak{U}, \mathscr{F})$. Since $\alpha(\xi) = 0$, $\exists (g_i) \in C^0(\mathfrak{U}, \mathscr{G})$ s.t. $\alpha(f_{ij}) = g_i g_i$ on $U_i \cap U_j$. This implies

$$0 = \beta(\alpha(f_{ij})) = \beta(g_j) - \beta(g_i) \implies \exists h \in \mathcal{H}(X) \text{ s.t. } h|_{U_i} = \beta(g_i)$$

Then $\xi = \delta^* h$ by construction.

• Im $\alpha^1 \subset \ker \beta^1$: This follows from the fact that

$$\mathscr{F}(U_i \cap U_j) \xrightarrow{\alpha} \mathscr{G}(U_i \cap U_j) \xrightarrow{\beta} \mathscr{H}(U_i \cap U_j)$$

is exact.

• $\ker \beta^1 \subset \operatorname{Im} \alpha^1$: Suppose $\eta \in \ker \beta^1$, say $\eta = (g_{ij}) \in Z^1(\mathfrak{U}, \mathscr{G})$. Then $\exists (h_i) \in C^0(\mathfrak{U}, \mathscr{H})$ s.t. $\beta(g_{ij}) = h_j - h_i$. For every $x \in X$, say $x \in U_{\tau x}$. Since $\beta_x : \mathscr{G}_x \to \mathscr{H}_x$ is surjective, $\exists V_x \subset U_{\tau x}$ and $g_x \in \mathscr{G}(V_x)$ s.t. $\beta(g_x) = h_{\tau x}|_{V_x}$. Let $\mathfrak{V} = (V_x)_{x \in X}$ and $\widetilde{g}_{xy} = g_{\tau x, \tau y}|_{V_x \cap V_y} \leadsto (\widetilde{g}_{xy}) \in Z^1(\mathfrak{V}, \mathscr{G})$ and let $\eta = \overline{(\widetilde{g}_{xy})} \in H^1(X, \mathscr{G})$. Let $\psi_{xy} := \widetilde{g}_{xy} - g_y + g_x$, then $\eta = \overline{(\psi_{xy})} \in H^1(X, \mathscr{G})$ and

$$\beta(\psi_{xy}) = h_{\tau y} - h_{\tau x} - (h_{\tau y} - h_{\tau x}) = 0 \text{ on } V_x \cap V_y$$

Thus $\exists f_{xy} \in \mathscr{F}(V_x \cap V_y)$ s.t. $\alpha(f_{xy}) = \psi_{xy}$. Since

$$\alpha: \mathscr{F}(V_x \cap V_y \cap V_z) \to \mathscr{G}(V_x \cap V_y \cap V_z)$$

is injective, $(f_{xy}) \in Z^1(\mathfrak{V}, \mathscr{F})$. Let $\zeta = \overline{(f_{xy})} \in H^1(X, \mathscr{F})$, then $\alpha^1(\zeta) = \eta$.

Example 2.3.1.

• $0 \to \mathcal{O} \to \mathscr{E} \xrightarrow{d''} \mathscr{E}^{0,1} \to 0$: is a exact sequence, since the surjective part holds by Doblault's lemma in the local chart which homeomorphic to a disk. Then we have

$$0 \to H^0(X, \mathcal{O}) \to H^0(X, \mathscr{E}) \to H^0(X, \mathscr{E}^{0,1}) \xrightarrow{\delta^*} H^1(X, \mathcal{O}) \to \underbrace{H^1(X, \mathscr{E})}_{=0} \to \underbrace{H^1(X, \mathscr{E}^{0,1})}_{=0}$$

Then we have **Dolbeault theorem**:

$$H^1(X,\mathcal{O})\simeq \mathscr{E}^{0,1}(X)/d''\mathscr{E}(X)$$

• $0 \to \mathbb{C} \to \mathcal{O} \xrightarrow{d} \Omega \to 0$ is exact, since X is locally simply connected, every closed form have primitive. Then

$$0 \to H^0(X, \mathbb{C}) \to H^0(X, \mathcal{O}) \to H^0(X, \Omega) \xrightarrow{\delta^*} H^1(X, \mathbb{C}) \to H^1(X, \mathcal{O}) \to H^1(X, \Omega)$$

If X is simply connected, $H^1(X,\mathbb{C}) = 0$. Then we have

$$H^0(X,\mathcal{O}) \twoheadrightarrow H^0(X,\Omega) \implies$$
 every global closed form is exact form

and
$$H^1(X, \mathcal{O}) \hookrightarrow H^1(X, \Omega)$$
.

• 0 \to Ω \to $\mathscr{E}^{1,0}$ \xrightarrow{d} $\mathscr{E}^{(2)}$ \to 0 is exact sequence, since Dolbeault's lemma guarantee the surjective. Then

$$0 \to H^0(X,\Omega) \to H^0(X,\mathscr{E}^{1,0}) \to H^0(X,\mathscr{E}^{(2)}) \xrightarrow{\delta^*} H^1(X,\Omega) \to \underbrace{H^1(X,\mathscr{E}^{1,0})}_{=0} \to \underbrace{H^1(X,\mathscr{E}^{(2)})}_{=0}$$

Then we have **Dolbeault theorem**:

$$H^1(X,\Omega) \simeq \mathscr{E}^{(2)}(X) / d\mathscr{E}^{(1,0)}(X)$$

• $0 \to \mathbb{C} \to \mathscr{E} \xrightarrow{d} \mathscr{E}^{(1)} \xrightarrow{d} \mathscr{E}^{(2)}$ is a complex. Let $L = \ker(\mathscr{E}^{(1)} \to \mathscr{E}^{(2)})$, then

$$0 \to \mathbb{C} \to \mathscr{E} \to L \to 0$$

since locally closed differential 1-form has a primitive. Then

$$0 \to H^0(X,\mathbb{C}) \to H^0(X,\mathscr{E}) \to H^0(X,L) \to H^1(X,\mathbb{C}) \to \underbrace{H^1(X,\mathscr{E})}_{=0} \to H^1(X,L)$$

Then we have de Rham theorem

$$H^1(X,\mathbb{C}) \simeq L(X)/d\mathscr{E}(X) = \text{closed 1 form}/\text{exact 1 form} \simeq \text{Rh}^1(X)$$

2.4 Riemann Roch theorem and Serre duality

2.4.1 Divisor and Riemann Roch

Suppose X is compact Riemann surface,

• Define the **group of divisor** be $\mathrm{Div}(X) = \bigoplus_{P \in X} \mathbb{Z}P$ be an free abelian group. We can regard

$$D = \sum_{i=1}^{n} k_i P_i \in \operatorname{Div}(X)$$
 as the map

$$\begin{array}{cccc} D: & X & \longrightarrow & \mathbb{Z} \\ & P_i & \longmapsto & k_i \\ & \text{other point} & \longmapsto & 0 \end{array}$$

Define the degree of divisor D by $\deg D = \sum_{i=1}^{n} k_i$, and $\operatorname{Div}_0(X) := \{D \in \operatorname{Div}(X) : \deg D = 0\}$.

- For $D_1, D_2 \in Div(X), D_1 \ge D_2$ if $D_1(x) \ge D_2(x) \ \forall x \in X$.
- For $f \in \mathcal{M}(X)$, define the **principal divisor** $(f) := \sum \operatorname{ord}_x(f)x$. By argument principle and triangulation, we can show that $\operatorname{deg}(f) = 0$. Let $\operatorname{Div}_p(X)$ be the group of all principal divisor on X, and $\operatorname{Pic}(X) = \operatorname{Div}(X)/\operatorname{Div}_p(X)$ is called **Picard group** of X.
- We say D_1, D_2 are linearly equivalent $(D_1 \sim D_2)$ if $D_1 = (f) + D_2$ for some $f \in \mathcal{M}(X)$.
- For $\omega \in \mathcal{M}^{(1)}(X)$, $\forall x \in X$, $\exists x \in U \subset X$ s.t. $\omega|_U = fdz$ with $f \in \mathcal{M}(U)$. Define $\operatorname{ord}_x(\omega) = \operatorname{ord}_x(f)$, if $\omega|_{U'} = f'dz$, then $f/f' \in \mathcal{O}^*(U \cap U')$ and thus the $\operatorname{ord}_x(\omega)$ is independent on chart. Define $(\omega) = \sum (\operatorname{ord}_x(\omega))x$.
- For $\omega_1, \omega_2 \in \mathcal{M}^{(1)}(X) \setminus \{0\}$, $\omega_i|_U = f_i dz$, then $f_U := f_1/f_2 \in \mathcal{M}(U) \setminus \{0\} \implies \omega_1|_U = f_U \omega_2|_U$. We can glue all f_U to a global section $f \in \mathcal{M}(X) \setminus \{0\}$ s.t. $\omega_1 = f\omega_2$ and thus $(\omega_1) = (f) + (\omega_2)$. This shows that every principle divisor of differential 1-form are linearly equivalent. Define the **Canonical divisor** be (ω) for any $\omega \in \mathcal{M}^{(1)}(X)$.
- For $D \in \text{Div}(X)$, $U \subset X$, define

$$\mathcal{O}_D(U) = \{ f \in \mathcal{M}(U) : \operatorname{ord}_x(f) + D(x) \ge 0 \ \forall x \in U \}$$

Then \mathcal{O}_D is a sheaf. Similarly, define a sheaf Ω_D by

$$\Omega_D(U) = \{ \omega \in \mathscr{M}^{(1)}(U) : \operatorname{ord}_x(\omega) + D(x) \ge 0 \ \forall x \in U \}$$

If $K = (\omega_0)$ be the Canonical divisor. For $\omega \in \mathcal{M}^{(1)}(U)$, say $\omega = f_U \omega_0$ for some $f_U \in \mathcal{M}(U)$, then

$$0 \le \operatorname{ord}_x(\omega) + D(x) = \operatorname{ord}_x(f_U) + K(x) + D(x) \implies f_U \in \mathcal{O}_{K+D}(U)$$

Hence, $\Omega_D \simeq \mathcal{O}_{K+D}(U)$.

• $D_1 \sim D_2 \implies D_1 = D_2 + (g)$ induces a isomorphism

$$\begin{array}{ccc}
\mathcal{O}_{D_1}(U) & \longrightarrow & \mathcal{O}_{D_2}(U) \\
f & \longmapsto & fq
\end{array}$$

Note that $f \in \mathcal{O}_{D_1}(U) \leadsto 0 \le (f) + D_1 = (fg) + D_2$, so the map is well defined.

Definition 2.4.1 (skyscraper sheaf). For $P \in X$, define the skyscraper sheaf

$$\mathbb{C}_P(U) = \begin{cases} \mathbb{C} & \text{if } P \in U \\ 0 & \text{if } P \notin U \end{cases}$$

Then we have following properties.

- $(\mathbb{C}_P)_P = \mathbb{C}$ and $(\mathbb{C}_P)_Q = 0$ for $Q \neq P$.
- $H^0(X, \mathbb{C}_P) = \mathbb{C}$
- $H^1(X, \mathbb{C}_P) = 0 : \forall \xi = \overline{(f_{ij})} \in H^1(X, \mathbb{C}_P)$ with $(f_{ij}) \in Z^1(\mathfrak{U}, \mathbb{C}_P)$. We can find a refinement \mathfrak{V} of \mathfrak{U} s.t. $\exists ! V_{\ell_0}$ s.t. $P \in V_{\ell_0}$. Then $p \notin V_k \cap V_\ell$ for $k \neq \ell$. Then

$$\begin{array}{ccc} Z^1(\mathfrak{U}, \mathbb{C}_P) & \longrightarrow & Z^1(\mathfrak{V}, \mathbb{C}_P) \\ (f_{ij}) & \longmapsto & 0 \end{array}$$

this implies $\xi = 0$.

Now given $D \in \text{Div}(X)$ and $P \in X$, define the morphism $\beta : \mathcal{O}_{D+P} \to \mathbb{C}_P$ as follows.

- $U \subset X$, $P \notin U$, $\beta_U : \mathcal{O}_{D+P}(U) \to \mathbb{C}_P(U) = 0$ be zero morphism.
- $U \subset X$, $P \in U$, say (U_0, z) be the chart s.t. $z : U_0 \xrightarrow{\sim} B_R(0)$ and z(P) = 0. Given $f \in \mathcal{O}_{D+P}(U)$, say $f|_{U_0} = \sum_{n=-k-1}^{\infty} c_n z^n$, where k = D(P), since $(f) + D + P \geq 0$. Define

$$\beta_U: \mathcal{O}_{D+P}(U) \longrightarrow \mathbb{C}_P(U) = \mathbb{C}$$

$$f \longmapsto c_{-k-1}$$

- $\ker \beta = \mathcal{O}_D$: If $P \notin U$, then $\ker \beta_U = \mathcal{O}_{D+P}(U) = \mathcal{O}_D(U)$. If $P \in U$, then $\ker \beta_U = \{ f \in \mathcal{O}_{D+P}(U) : \operatorname{ord}_P(f) \ge -k \} = \mathcal{O}_D(U)$.
- Then we have the exact sequence

$$0 \to \mathcal{O}_D \to \mathcal{O}_{D+P} \xrightarrow{\beta} \mathbb{C}_P$$

Choose U small enough s.t. $P \in U$ and $D|_{U \setminus \{P\}} = 0$, then $cz^{-k-1} \mapsto c$, which shows that β is surjective. Hence,

$$0 \to \mathcal{O}_D \to \mathcal{O}_{D+P} \xrightarrow{\beta} \mathbb{C}_P \to 0$$

Theorem 2.4.1 (Riemann Roch theorem). Suppose X is compact Riemann surface of genus $g (= \dim H^1(X, \mathcal{O})), D \in \text{Div}(X)$. Then $\dim H^0(X, \mathcal{O}_D), \dim H^1(X, \mathcal{O}_D) < \infty$ and satisfy

$$\dim H^1(X, \mathcal{O}_D) - \dim H^1(X, \mathcal{O}_D) = 1 - g + \deg D \tag{*}$$

Proof:

- For D=0, $\dim H^0(X,\mathcal{O})=\dim \mathbb{C}=1$, $\dim H^1(X,\mathcal{O})=g<\infty$, $\deg D=0$. Then (*) holds.
- Consider the relation between D and D' = D + P. By $0 \to \mathcal{O}_D \to \mathcal{O}_{D'} \to \mathbb{C}_P \to 0$,

$$0 \to \mathcal{O}_D(X) \to \mathcal{O}_{D'}(X) \xrightarrow{\beta_X} \underbrace{\mathbb{C}_P(X)}_{=\mathbb{C}} \xrightarrow{\delta^*} H^1(X, \mathcal{O}_D) \to H^1(X, \mathcal{O}_{D'}) \to H^1(\mathbb{C}_P, X) = 0$$

Split it to three exact sequences of \mathbb{C} vector space in below.

$$\begin{cases} 0 \to \mathcal{O}_D(X) \to \mathcal{O}_{D'}(X) \to \operatorname{Im} \beta_X \to 0 \\ 0 \to \operatorname{Im} \delta^* \to H^1(X, \mathcal{O}_D) \to H^1(X, \mathcal{O}_{D'}) \to 0 \\ 0 \to \operatorname{Im} \beta_X \to \mathbb{C} \to \operatorname{Im} \delta^* \to 0 \end{cases}$$

$$\implies \begin{cases} \dim \mathcal{O}_{D'}(X) = \dim \mathcal{O}_D(X) + \dim \operatorname{Im} \beta_X \\ \dim H^1(X, \mathcal{O}_D) = \dim H^1(X, \mathcal{O}_{D'}) + \dim \operatorname{Im} \delta^* \\ 1 = \dim \operatorname{Im} \beta_X + \dim \operatorname{Im} \delta^* \end{cases}$$

This show that

$$\dim H^i(X, \mathcal{O}_{D'}) < \infty \iff \dim H^i(X, \mathcal{O}_D) < \infty \text{ for } i = 0, 1$$

and

$$\dim H^0(X, \mathcal{O}_{D'}) - \dim H^1(X, \mathcal{O}_{D'}) = \dim H^0(X, \mathcal{O}_D) - \dim H^1(X, \mathcal{O}_D) + 1$$

Hence, D satisfies $(*) \iff D'$ satisfies (*). By induction, for all $D \in Div(X)$ satisfy (*).

Corollary 2.4.1. Suppose X is a compact Riemann surface of genus g and $P \in X$. Let D = (g+1)P. By Riemann Roch,

$$\dim H^0(X, \mathcal{O}_D) \ge 1 - g + (1 + g) = 2$$

So $\mathcal{O}_D(X)$ contain a non-constant function f. Then f has a pole at P of order $\leq g+1$ and holomorphic on $X \setminus \{P\} \leadsto f: X \to \mathbb{P}^1$ is surjective since X is compact and is a holomorphic covering with at most g+1 sheets. In particular, if g=0, then $f: X \xrightarrow{\sim} \mathbb{P}^1$.

2.4.2 Serre duality

Theorem 2.4.2 (Serre duality). Let X be a compact Riemann surface and $D \in Div(X)$, then

$$\exists \iota_D: H^0(X, \Omega_{-D}) \xrightarrow{\sim} H^1(X, \mathcal{O}_D)^{\vee}$$

First, we construct dual pairing

$$\langle , \rangle : H^0(X, \Omega_{-D}) \times H^1(X, \mathcal{O}_D) \longrightarrow H^1(X, \Omega) \xrightarrow{\operatorname{Res}} \mathbb{C}$$

• For $\omega \in H^0(X, \Omega_{-D})$, $\xi = [\overline{(f_{ij})}]$ with $(f_{ij}) \in Z^1(\mathfrak{U}, \mathcal{O}_D)$, $[\overline{(f_{ij}\omega|_{U_i \cap U_j})}] \in H^1(X, \Omega)$ since

$$(f_{ij}\omega|_{U_i\cap U_j}) = (\omega|_{U_i\cap U_j}) - D|_{U_i\cap U_j} + (f_{ij}) + D|_{U_i\cap U_j} \ge 0$$

It is clear that the map $(\omega, \xi) \mapsto [\overline{f_{ij}\omega|_{U_i \cap U_j}}]$ is well-defined and is bilinear form.

• By Dolbeault theorem,

$$\begin{array}{ccc} H^1(X,\Omega) & \xrightarrow{\sim} & \mathscr{E}^{(2)}(X)/d\mathscr{E}^{1,0}(X) \\ \eta & \longmapsto & \overline{\omega} \end{array}$$

Define $\operatorname{Res}(\eta) := \frac{1}{2\pi i} \iint_X \omega = \frac{1}{2\pi i} \sum_{k=1}^n \iint_X f_k \omega$, where $\{f_k\}_{k=1}^n \subset \mathscr{E}(X)$ is the partition of unity on chart $\{U_k\}_{k=1}^n$. Note that Res is well defined since

$$\iint_X d\omega = \sum_{k=1}^n \iint_X d\omega_k = \sum_{k=1}^n \iint_{\partial U_k} \omega_k = 0$$

where $\omega_k = f_k \omega$ and supp $(f_k) \subset U_k$.

• This pairing is non-degenerate: Given $\omega \in H^0(X, \Omega_{-D})$, we need find ξ s.t. $\langle \omega, \xi \rangle \neq 0$. For $a \in X$ with D(a) = 0, choose the chart (U_0, z) s.t. $z : U_0 \xrightarrow{\sim} B_{\varepsilon}(0) \subset \mathbb{C}$, z(a) = 0 and

$$\begin{cases} D|_{U_0} = 0 \implies (\omega)|_{U_0} \ge 0 \\ \omega|_{U_0} = fdz \text{ s.t. } f \in \mathcal{O}(U_0) \text{ has no zero in } U_0 \setminus \{a\} \end{cases}$$

Consider $\mathfrak{U} = \{U_0, U_1\}$ with $U_1 = X \setminus \{a\}$ and $\eta = (f_0, f_1) = ((zf)^{-1}, 0) \in C^0(\mathfrak{U}, \mathscr{M})$. Then $\delta \eta \in Z^1(\mathfrak{U}, \mathcal{O}_D)$ and let $\xi = [\overline{\delta \eta}] \in H^1(X, \mathcal{O}_D)$. Also

$$\omega \eta = \left(\frac{dz}{z}, 0\right) \in C^0(\mathfrak{U}, \mathscr{M}^{(1)})$$

On $U_0 \cap U_1$, $\frac{dz}{z} - 0$ is holomorphic 1 form, then $\delta(\omega \eta) \in Z^1(\mathfrak{U}, \Omega) \rightsquigarrow [\overline{\delta(\omega \eta)}] \in H^1(X, \Omega)$. Hence, $\omega \xi = [\overline{\delta(\omega \eta)}]$. By the Lemma 2.4.1 in below, we have

$$\langle \omega, \xi \rangle = \operatorname{Res}([\overline{\delta(\omega\eta)}]) = \operatorname{Res}(\omega\eta) = \operatorname{Res}_a(dz/z) = 1$$

By non-degenerate bilinear form, we have

$$\iota_D: H^0(X, \Omega_{-D}) \hookrightarrow H^1(X, \mathcal{O}_D)^{\vee}$$

Definition 2.4.2. Suppose X is a Riemann surface with open covering $\mathfrak{U} = \{U_i\}_{i \in I}$. A cochain $\mu = (\omega_i) \in C^0(\mathfrak{U}, \mathscr{M}^{(1)})$ is called a **Mittag-Leffler distribution** if $\omega_j - \omega_i \in \Omega(U_i \cap U_j)$ i.e. $\delta \mu \in Z^1(\mathfrak{U}, \Omega)$.

• For $a \in X$, define

$$\operatorname{Res}_a(\mu) = \operatorname{Res}_a(\omega_i)$$

for $a \in U_i$, which is independent of choice of i since $\omega_i - \omega_i$ is holomorphic on $U_i \cap U_j$.

• Moreover, if X is compact, then $\operatorname{Res}_a(\mu) \neq 0$ for only finite many points a. Then we can define

$$\operatorname{Res}(\mu) = \sum_{a \in X} \operatorname{Res}_a(\omega)$$

Lemma 2.4.1. Continuing the notation of Definition in above,

$$\operatorname{Res}(\mu) = \operatorname{Res}[\overline{\delta\mu}]$$

where $[\overline{\delta\mu}] \in H^1(X,\Omega)$.

Proof:

• First we find $\tau \in \mathscr{E}^{(2)}(X)$ correspond to $[\overline{\delta\mu}]$ via $H^1(X,\Omega) \simeq \mathscr{E}^{(2)}(X)/d\mathscr{E}^{1,0}(X)$. Note that

$$(\omega_i - \omega_i) \in Z^1(\mathfrak{U}, \Omega) \subset Z^1(\mathfrak{U}, \mathscr{E}^{1,0}) = B^1(\mathfrak{U}, \mathscr{E}^{1,0})$$

$$\exists (\sigma_i) \in C^0(\mathfrak{U}, \mathscr{E}^{1,0}) \text{ s.t. } \omega_j - \omega_i = \sigma_j - \sigma_i.$$

$$d(\omega_j - \omega_i) = d''(\omega_j - \omega_i) = 0 \implies d\sigma_j = d\sigma_i \implies \exists \tau \in \mathscr{E}^{(2)}(X) \text{ s.t. } \tau|_{U_i} = d\sigma_i$$

Hence,
$$\operatorname{Res}[\overline{\delta\mu}] = \frac{1}{2\pi i} \iint_X \tau$$
.

• Suppose $a_1, ..., a_n$ are poles of μ and $X' = X \setminus \{a_1, ..., a_n\}$. Since $\sigma_j - \omega_j = \sigma_i - \omega_i$ on $X' \cap U_i \cap U_j$, $\exists \sigma \in \mathscr{E}^{1,0}(X')$ s.t. $\sigma|_{X' \cap U_i} = \sigma_i - \omega_i$. On $X' \cap U_i$,

$$d\sigma = d\sigma_i - d\omega_i = \tau$$

since $\omega_i \in \Omega(X' \cap U_i)$. Hence, $\tau = d\sigma$ on X'.

• For each a_k , say $a_k \in U_{i(k)}$. Let (z_k, V_k) be the chart s.t. $V_k \subset U_{i(k)}$, $z_k(V_k) = B_R(0)$, $z_k(a_k) = 0$ and $\{V_k\}$ are disjoint. Then $\exists f_i \in \mathscr{E}(X)$ s.t.

$$\begin{cases} \operatorname{supp}(f_i) \subset V_k \\ f_k|_{V_k'} = 1 \text{ with } V_k' \subset V_k \end{cases}$$

Since $d(f_k\sigma) = d\sigma = d(\sigma_{i(k)} - \omega_{i(k)}) = d\sigma_{i(k)}$ on $V'_k \setminus \{a\}$ and vanish on $X \setminus V_k$, we can extend it to X. Hence $d(f_k\sigma) \in \mathscr{E}^{(2)}(X)$ and we have

$$\iint_{X} d(f_{k}\sigma) = \iint_{V_{k}} d(f_{k}\sigma) = \lim_{\varepsilon \to 0} \iint_{\varepsilon \le |z| \le R} d(f_{k}\sigma_{i(k)} - f_{k}\omega_{i(k)})$$

$$= -\lim_{\varepsilon \to 0} \iint_{\varepsilon \le |z| \le R} d(f_{k}\omega_{i(k)}) \qquad (f_{k}\sigma_{i(k)} \in \mathscr{E}^{1,0}(U_{i(k)}))$$

By Stokes' theorem.

$$= \lim_{\varepsilon \to 0} \left(\int_{|z| = \varepsilon} - \int_{|z| = R} \right) f_k \omega_{i(k)} = \lim_{\varepsilon \to 0} \int_{|z| = \varepsilon} \omega_{i(k)} = 2\pi i \operatorname{Res}_{a_k} \omega_{i(k)}$$

• Set $g = 1 - \sum_{k=1}^n f_k$. Since $g|_{V'_k} = 0 \ \forall k, g\sigma \in \mathcal{E}^{1,0}(X)$. Then $\iint_X d(g\sigma) = 0$ and

$$d\sigma = dg + \sum_{k=1}^{n} d(f_k \sigma) \in \mathscr{E}^{(2)}(X) \implies \tau = dg + \sum_{k=1}^{n} d(f_k \sigma) \text{ on } X$$

Hence,

$$\operatorname{Res}[\overline{\delta\mu}] = \frac{1}{2\pi i} \iint_X \tau = \frac{1}{2\pi i} \iint_X d(g\sigma) + \frac{1}{2\pi i} \sum_{k=1}^n \iint_X d(f_k\sigma) = \sum_{k=1}^n \operatorname{Res}_{a_k} \omega_{i(k)} = \operatorname{Res}(\mu)$$

Lemma 2.4.2. Let $D' \leq D$ be divisors on a compact Riemann surface X. Then the inclusion map $\mathcal{O}_{D'} \to \mathcal{O}_D$ induces an epimorphism

$$H^1(X, \mathcal{O}_{D'}) \to H^1(X, \mathcal{O}_D) \to 0$$

Proof: If D = D' + P, then it hold immediately by the map induced by $0 \to \mathcal{O}_{D'} \to \mathcal{O}_D \to \mathbb{C}_P \to 0$. In general, $D = D' + P_1 + \cdots + P_m$ and holds by induction.

Remark 2.4.1. If $D' \leq D$, the map of cohomology group induces

$$0 \to H^1(X, \mathcal{O}_D)^{\vee} \to H^1(X, \mathcal{O}_{D'})^{\vee}$$

It is clear clear that the diagram

$$0 \longrightarrow H^{1}(X, \mathcal{O}_{D})^{\vee} \xrightarrow{i_{D'}^{D}} H^{1}(X, \mathcal{O}_{D'})^{\vee}$$

$$\uparrow^{\iota_{D}} \qquad \uparrow^{\iota_{D'}}$$

$$0 \longrightarrow H^{0}(X, \Omega_{-D}) \longrightarrow H^{0}(X, \Omega_{-D'})$$

commute.

Lemma 2.4.3. Using the notation same above. Suppose $\lambda \in H^1(X, \mathcal{O}_D)^{\vee}$ and $\omega \in H^0(X, \Omega_{-D'})$ satisfy

$$i_{D'}^D(\lambda) = \iota_{D'}(\omega)$$

Then $\omega \in H^0(X, \Omega_{-D})$ and $\lambda = \iota_D(\omega)$.

Proof: If $\omega \notin H^0(X, \Omega_{-D})$, then $\exists a \in X \text{ s.t. } \operatorname{ord}_a(\omega) < D(a)$. Let (U_0, z) be the chart of a s.t. $z(U_0)$ is a disk in \mathbb{C} , z(a) = 0 and

$$\begin{cases} D|_{U_0 \setminus \{a\}} = 0, \ D'|_{U_0 \setminus \{a\}} = 0 \\ \omega|_{U_0} = f dz \text{ with } f \in \mathscr{M}(U_0) \text{ s.t. } (f)|_{U_0 \setminus \{a\}} = 0 \end{cases}$$

Set $U_1 = X \setminus \{a\}$, $\mathfrak{U} = \{U_0, U_1\}$ and $\eta = ((zf)^{-1}, 0) \in C^0(\mathfrak{U}, \mathscr{M})$. Note that

$$\operatorname{ord}_{a}((zf)^{-1}) = -1 - \operatorname{ord}_{a}(\omega) \ge -D(a) \implies \eta \in C^{0}(\mathfrak{U}, \mathcal{O}_{D})$$
$$\implies \delta \eta \in Z^{1}(\mathfrak{U}, \mathcal{O}_{D}) = Z^{1}(\mathfrak{U}, \mathcal{O}) = Z^{1}(\mathfrak{U}, \mathcal{O}_{D'})$$

Let ξ, ξ' be the cohomology class of $\delta \eta$ in $H^1(X, \mathcal{O}_D)$ and $H^1(X, \mathcal{O}_{D'})$, then $\xi = 0$. By assumption,

$$\langle \omega, \xi' \rangle = \iota_{D'}(\omega)(\xi') = i_{D'}^D(\lambda)(\xi') = \lambda(\xi) = 0$$

On the other hand, since $\omega \eta = (dz/z, 0)$, by Lemma 2.4.1 we have

Fact 2.4.1. If $D, B \in \text{Div}(X)$, then $\psi \in H^0(X, \mathcal{O}_B)$ induces the map

$$\begin{array}{ccc} \mathcal{O}_{D-B} & \xrightarrow{\psi} & \mathcal{O}_D \\ f & \longrightarrow & f\psi \end{array}$$

If $\psi \neq 0$, then $H^1(X, \mathcal{O}_D)^{\vee} \hookrightarrow H^1(X, \mathcal{O}_{D-B})^{\vee}$.

Proof: Let $A = (\psi) \rightsquigarrow A + B \ge 0$, then $\mathcal{O}_{D-B} \xrightarrow{\psi} \mathcal{O}_D$ factor thought \mathcal{O}_{D+A}

$$\mathcal{O}_{D-B} \hookrightarrow \mathcal{O}_{D+A} \xrightarrow{\psi} \mathcal{O}_D$$

By Lemma 2.4.2,

$$H^1(X, \mathcal{O}_D)^{\vee} \xrightarrow{\psi} H^1(X, \mathcal{O}_{D+A})^{\vee} \hookrightarrow H^1(X, \mathcal{O}_{D-B})^{\vee}$$

Back to the proof of surjective in Serre duality.

• Now, given $0 \neq \lambda \in H^1(X, \mathcal{O}_D)^{\vee}$. For P fixed in X, let $D_n := D - nP$. Let

$$\Lambda = \{ \psi \lambda : \psi \in H^0(X, \mathcal{O}_{nP}) \}$$

be the subspace of $H^1(X, \mathcal{O}_{D_n})^{\vee}$. If $\psi \lambda = 0$ and $\psi \neq 0$. By Fact 2.4.1, $\lambda = 0$ ($\rightarrow \leftarrow$). Hence, $\Lambda \simeq H^0(X, \mathcal{O}_{nP})$. By Riemann Roch theorem,

$$\dim \Lambda = \dim H^0(X, \mathcal{O}_{nP}) \ge 1 - g + n$$

Author: Minerva 50

On the other hand, $\operatorname{Im}(\iota_{D_n}) \subset H^1(X, \mathcal{O}_{D_n})^{\vee}$. Since ι_{D_n} is injective,

$$\dim \operatorname{Im}(\iota_{D_n}) = \dim H^0(X, \Omega_{-D_n}) = \dim H^0(X, \mathcal{O}_{K-D_n})$$

 $\geq 1 - g + \deg(K - D_n) = n + (1 - g + \deg(K - D))$

For $n > \deg D$, $H^0(X, \mathcal{O}_{D_n}) = 0$. Indeed, if $(f) + D_n \ge 0$, then $0 \le \deg(f) + \deg D_n = \deg D_n$ ($\xrightarrow{}$). By Riemann Roch theorem again,

$$\dim H^1(X, \mathcal{O}_{D_n})^{\vee} = -(1 - g + \deg D_n) = n + (g - 1 - \deg D)$$

We can pick $n \gg 0$ s.t.

$$\dim \Lambda + \dim \operatorname{Im}(\iota_{D_n}) > \dim H^1(X, \mathcal{O}_{D_n})^{\vee}$$

Then $\Lambda \cap \operatorname{Im}(\iota_{D_n}) \neq 0 \implies \exists \psi \lambda = \iota_{D_n}(\omega_n) \text{ with } \omega_n \in H^0(X, \Omega_{D_n}).$

• Let $A = (\psi)$ and $D' = D_n - A \leadsto \psi^{-1} \in H^0(X, \mathcal{O}_A)$. Since $\psi \in H^0(X, \mathcal{O}_{nP})$, $A + nP \ge 0 \leadsto D' \le D$. By Fact 2.4.1 and Remark 2.4.1, we have

$$0 \longrightarrow H^{1}(X, \mathcal{O}_{D})^{\vee} \xrightarrow{i_{D'}^{D}} H^{1}(X, \mathcal{O}_{D'})^{\vee} \xrightarrow{\psi} H^{1}(X, \mathcal{O}_{D_{n}})^{\vee}$$

$$\downarrow_{D} \uparrow \qquad \qquad \downarrow_{D'} \uparrow \qquad \qquad \uparrow_{\iota_{D_{n}}}$$

$$0 \longrightarrow H^{0}(X, \Omega_{-D}) \longrightarrow H^{0}(X, \Omega_{-D'}) \longrightarrow H^{0}(X, \Omega_{-D_{n}})$$

Then

$$i_{D'}^{D}(\lambda) = \frac{1}{\psi}(\psi\lambda) = \frac{1}{\psi}\iota_{D_n}(\omega_n) = \iota_{D'}(\omega_n/\psi)$$

From Lemma 2.4.3, $\omega_n/\psi \in H^0(X, \mathcal{O}_{-D})$ and $\iota_D(\omega_n/\psi) = \lambda$. Hence, ι_D is surjective.

Corollary 2.4.2.

• $H^0(X, \mathcal{O}_{-D}) \simeq H^1(X, \Omega_D)^{\vee}$: Let K be canonical divisor, then $\Omega_D \simeq \mathcal{O}_{K+D}$. Hence,

$$H^1(X,\Omega_D)^{\vee} \simeq H^1(X,\mathcal{O}_{K+D})^{\vee} \simeq H^0(X,\Omega_{-(K+D)}) \simeq H^0(X,\mathcal{O}_{-D})$$

The second isomorphism is by Serre duality.

• The Residue map Res : $H^1(X,\Omega) \to \mathbb{C}$ is isomorphism, since

$$\dim H^1(X,\Omega) = \dim H^0(X,\mathcal{O}) = 1$$

• Let K be canonical divisor. Then

$$1 - g + \deg K = \dim H^0(X, \mathcal{O}_K) - \dim H^1(X, \mathcal{O}_K)$$
(Riemann Roch)
$$= \dim H^0(X, \Omega) - \dim H^1(X, \Omega)$$

$$= \dim H^1(X, \mathcal{O})^{\vee} - \dim H^0(X, \mathcal{O})^{\vee} = g - 1$$
(Serre duality)

Hence, $\deg K = 2g - 2$.

• If $X = \mathbb{C}/\Gamma$, then $\pi : \mathbb{C} \to X$ is a universal covering map. Note that dz is invariant under $\mathrm{Deck}(\mathbb{C}/X) \simeq \mathbb{Z} \times \mathbb{Z}$, dz can be regard as 1-form on X. Then K = (dz) = 0. Hence,

$$0 = \deg K = 2q - 2 \implies q = 1$$

2.4.3 Application

Theorem 2.4.3 (Riemann Hurwitz formula). Let X, Y be the compact Riemann surface with genus g, g' respective. If $f: X \to Y$ is n-sheeted holomorphic covering map, then

$$g = \frac{b}{2} + n(g' - 1) + 1$$

where $b = b(f) = \sum_{x \in X} b_f(x)$ is **total branch order** of f.

Proof: For fixed $\omega \in \mathcal{M}^{(1)}(X)$. For $x \in X$, $y = f(x) \in Y$. Let (U, z), (V, z') be the chart of x, y s.t. $z(U) \to z'(V)$ is w^k . Say $\omega|_V = g(z')dz'$, then

$$f^*\omega = g(z^k) = kz^{k-1}g(z^k)dz \implies \operatorname{ord}_x(f^*\omega) = k - 1 + k \cdot \operatorname{ord}_y(\omega) = b_f(x) + v_f(x) \cdot \operatorname{ord}_y(\omega)$$

Sum over $x \in f^{-1}(y)$, note that $\sum_{x \in f^{-1}(y)} v_f(x) = n$ and thus

$$\implies \sum_{x \in f^{-1}(y)} \operatorname{ord}_x(f^*\omega) = \sum_{x \in f^{-1}(y)} b_f(x) + n\operatorname{ord}_y(\omega)$$

Sum over $y \in Y$, we have

$$\deg(f^*\omega) = \sum_{y \in Y} \sum_{x \in f^{-1}(y)} \operatorname{ord}_x(f^*\omega) = \sum_{y \in Y} \sum_{x \in f^{-1}} b_f(y) + n \sum_{y \in Y} \operatorname{ord}_y(\omega) = b + n \deg \omega$$

$$2g - 2 = b + n(2g' - 2) \implies g = \frac{b}{2} + n(g - 1) + 1$$

Property 2.4.1.

• $\deg D > 2g - 2 \leadsto H^1(X, \mathcal{O}_D) = 0 : H^1(X, \mathcal{O}_D) \simeq H^0(X, \mathcal{O}_{K-D})^{\vee} = 0 \text{ since } \deg(K - D) < 0.$

- $H^1(X, \mathscr{M}) = 0$: For $(f_{ij}) \in Z^1(\mathfrak{U}, \mathscr{M})$ (since X is compact, we may assume \mathfrak{U} is finite cover), then $\{f_{ij}\}$ involves finite numbers of pole, then $\exists D \in \operatorname{Div}(X)$ s.t. $\deg D > 2g 2$ and $(f_{ij}) \in Z^1(\mathfrak{U}, \mathcal{O}_D) \hookrightarrow Z^1(\mathfrak{V}, \mathcal{O}_D) = B^1(\mathfrak{V}, \mathcal{O}_D)$. Hence $\overline{[(f_{ij})]} = 0$ in $H^1(X, \mathcal{O}_D) \hookrightarrow H^1(X, \mathscr{M})$.
- $H^1(X, \mathcal{M}^{(1)}) = 0$: For fixed $\omega \in \mathcal{M}^{(1)}(X)$, we have the corresponding $(f_{ij}) \longleftrightarrow (f_{ij}\omega|_{U_i \cap U_j})$ and by $H^1(X, \mathcal{M}) = 0$.
- Consider Res : $H^1(X,\Omega) \to \mathbb{C}$ and $\xi = (\omega_{ij}) \in Z^1(\mathfrak{U},\Omega) \subset Z^1(\mathfrak{U},\mathscr{M}^{(1)}) = B^1(\mathfrak{U},\mathscr{M}^{(1)})$, there exists Mittag-Leffler distribution $\mu \in C^0(\mathfrak{U},\mathscr{M}^{(1)})$ s.t. $\delta \mu = \xi$. Then

$$\operatorname{Res}(\xi) = \operatorname{Res}(\delta\mu) = \operatorname{Res}(\mu)$$

Definition 2.4.3. $\mathcal{O}(D)$ is called **globally generated** (or called **generated by global section**, g.b.g.s.) if $\forall x \in X$, $\exists f \in H^0(X, \mathcal{O}(D))$ s.t. $\mathcal{O}(D)_x = \mathcal{O}_X \cdot f \iff \operatorname{ord}_x(f) = -D(x)$.

Lemma 2.4.4. deg $D \ge 2g$, then $\mathcal{O}(D)$ is globally generated.

Proof: $\forall x \in X$, consider D' = D - x. Since $\deg D' = \deg D - 1 > 2g - 2$, $H^1(X, \mathcal{O}_D) = H^1(X, \mathcal{O}_{D'}) = 0$. By Riemann Roch theorem, $\dim H^0(X, \mathcal{O}_D) > \dim H^0(X, \mathcal{O}_{D'})$. $\exists f \in H^0(X, \mathcal{O}_D) \setminus H^0(X, \mathcal{O}_{D'})$, then

$$\begin{cases} \operatorname{ord}_x(f) + D(x) \ge 0\\ \operatorname{ord}_x(f) + D(x) - 1 < 0 \end{cases} \implies \operatorname{ord}_x(f) = -D(x)$$

Definition 2.4.4. If X is compact Riemann surface and $F: X \to \mathbb{P}^N$ is a continuous map. Let $U_j = \{x_j \neq 0\} \subseteq \mathbb{P}^N$ and $W_j = F^{-1}(U_j)$. Let $\varphi_j : U_j \simeq \mathbb{C}^N$ as usual. Consider the map $F_j = \varphi_j \circ F: W_j \to \mathbb{C}^N$, say $F_j = (F_{j1}, ..., F_{jN})$.

- F is called a **holomorphic** if F_{jn} are all holomorphic.
- F is called an **immersion** if it is holomorphic and $\forall x \in X, \exists F_{jn} \text{ s.t. } x \in W_j \text{ and } dF_{jn}(x) \neq 0.$
- F is called an **embedding** if inclusion immersion.

Theorem 2.4.4 (Embedding theorem). If deg $D \ge 2g + 1$ and $f_1, ..., f_N \in H^0(X, \mathcal{O}_D)$ form a basis, then $F = (f_0 : \cdots : f_N) : X \to \mathbb{P}^N$ is a embedding.

Proof:

• Separate points: For $x_1 \neq x_2$ in X, consider $D' = D - x_2$. Since $\deg D' = \deg D - 1 \geq 2g$, $\mathcal{O}_{D'}, \mathcal{O}_D$ are g.b.g.s. $\leadsto \exists f \in H^0(X, \mathcal{O}_{D'}) \setminus H^0(X, \mathcal{O}_D)$ s.t.

$$\begin{cases} \operatorname{ord}_{x_1}(f) = -D'(x_1) = -D(x_1) \\ \operatorname{ord}_{x_2}(f) \ge -D'(x_2) = -D(x_2) + 1 \end{cases}$$

Say $f = \sum_{i=0}^{N} \lambda_i f_i$ and let

$$\begin{cases} k_1 = \min_{j} \operatorname{ord}_{x_1}(f_j) = -D(x_1) \\ k_2 = \min_{j} \operatorname{ord}_{x_2}(f_j) = -D(x_2) \end{cases}$$

since \mathcal{O}_D is g.b.g.s. Write $f_j = z_j^{k_i} g_{ij}$ (i = 1, 2) and $\sum_{j=0}^N \lambda_j g_{ij} = g_i$ i.e. $f = z_j^{k_i} g_i$. Then $g_1(x_1) \neq 0$ and $g_2(x_2) = 0 \leadsto F(x_1) \neq F(x_2)$.

• Separate tangents: Let $x_0 \in X$, consider $D' = D - x_0$. Since $\mathcal{O}_{D'}$ is g.b.g.s., $\exists f \in H^0(X, \mathcal{O}_{D'})$ s.t. $\operatorname{ord}_{x_0}(f) = -D(x_0) + 1$. As before, $f = \sum \lambda_j f_j$ and let $k = \min_J \operatorname{ord}_{x_0}(f_j) = -D(x_0)$. We may assume $k = \operatorname{ord}_{x_0}(f_0)$. Let $f_j = z^k g_j$ and $f = z^k g$.

$$F(x_0) = (g_0(x_0) : \dots : g_N(x_0)) = \left(1 : \frac{g_1(x_0)}{g_0(x_0)} : \dots : \frac{g_N(x_0)}{g_0(x_0)}\right) \in U_0$$

Then $F_0: W_0 = F^{-1}(U_0) \to \mathbb{C}^N$ and

$$\sum_{j=1}^{N} \lambda_j \cdot \frac{g_j}{g_0} = \frac{g}{g_0} - \lambda_0 \implies \sum_{j=1}^{N} \lambda_j \cdot d\left(\frac{g_j}{g_0}\right) = d\left(\frac{g}{g_0}\right)$$

Since $g_0(x_0) \neq 0$ and $\operatorname{ord}_{x_0}(g) = 1$, $d\left(\frac{g}{g_0}\right)(x_0) \neq 0$, then $\exists j \text{ s.t. } d\left(\frac{g_j}{g_0}\right)(x_0) \neq 0$. Hence F is embedding.

53

2.5 Mittag-Leffler problem and Weierstrass point

Definition 2.5.1. Let X be a Riemann surface and \mathfrak{U} be the open covering of X. Given a Mittag-Leffler distribution of meromorphic function $\mu = (f_i) \in C^0(\mathfrak{U}, \mathscr{M})$. f is called a solution of μ if $f|_{U_i} - f_i \in \mathcal{O}(U_i) \ \forall i \in I$. Similarly, we can define the solution of Mittag-Leffler distribution of 1-form $\mu \in C(\mathfrak{U}, \mathscr{M}^{(1)})$.

Theorem 2.5.1.

- (1) $\mu \in C^0(\mathfrak{U}, \mathscr{M})$ has a solution $\iff [\overline{\delta\mu}] = 0$ in $H^0(X, \mathcal{O})$
- (2) If X is compact Riemann surface, then $\mu \in C^0(\mathfrak{U}, \mathcal{M}^{(1)})$ has a solution $\iff \operatorname{Res}(\mu) = 0$.

Proof:

- (1) (\Rightarrow): Set $g_i = f_i f \in \mathcal{O}(U_i)$. On $U_i \cap U_j$, $f_j f_i = g_j g_i \implies \delta \mu \in B^1(\mathfrak{U}, \mathcal{O})$. • (\Leftarrow): $\exists g_i \in \mathcal{O}(U_i)$ s.t. $f_j - f_i = g_j - g_i$ on $U_i \cap U_j \rightsquigarrow f_j - g_j = f_i - g_i$ on $U_i \cap U_j \implies \exists f \in \mathscr{M}(X)$ s.t. $f|_{U_i} = f_i - g_i$. Then $f|_{U_i} - f_i = -g_i \in \mathcal{O}(U_i)$.
- (2) Since X is compact Riemann surface, $\operatorname{Res}(\mu) = \operatorname{Res}[\overline{\delta\mu}]$. Since $\operatorname{Res}: H^1(X,\Omega) \to \mathbb{C}$, $\operatorname{Res}[\overline{\delta\mu}] = 0 \iff \overline{\delta\mu} = 0$.

Example 2.5.1.

- Since $H^1(\mathbb{P}^1, \mathcal{O}) = 0$, for each Mittag-Leffler distribution $\mu \in C^0(\mathfrak{U}, \mathscr{M})$ has a solution.
- Recall that $H^1(X, \mathcal{M}) = 0$ when X is compact Riemann surface. If $g \ge 1$, $\forall \xi \in H^1(X, \mathcal{O}) \setminus 0$, say $\xi = (g_{ij}) \in Z^1(\mathfrak{U}, \mathcal{O}) \subset Z^1(\mathfrak{U}, \mathcal{M}) = B^1(\mathfrak{U}, \mathcal{M}) \implies \exists \mu = (f_i) \in C^0(\mathfrak{U}, \mathcal{M}) \text{ s.t. } \delta\mu = \xi$. Then μ is Mittag-Leffler distribution and $\xi = [\overline{\delta\mu}] \neq 0 \rightsquigarrow \mu$ has no solution.

Definition 2.5.2.

- $W(f_1,...,f_g)=\det(f_j^{(i-1)})_{g\times g}$ is called **Wronskian determinant** of $f_1,...,f_g$.
- If X is compact Riemann surface of genus $g \geq 1$, $\omega_1, ..., \omega_g \in \Omega(X)$ form a basis. Let (U, z) be the chart of X and $\omega_k = f_k dz$ on U, define $W_z(\omega_1, ..., \omega_g) := W(f_1, ..., f_g)$.

Fact 2.5.1. If $f_1, ..., f_g \in \mathcal{O}(U)$ are linearly independent over \mathbb{C} . Then $W(f_1, ..., f_g) \not\equiv 0$.

Proof: By induction on g. For $g=1, f_1 \neq 0 \rightsquigarrow W(f_1) \not\equiv 0$. Assume $W(f_1,...,f_{g-1}) \not\equiv 0$. Consider the linear differential equation

$$W(f_1, ..., f_{g-1}, w) = \det \begin{pmatrix} f_1 & \cdots & f_{g-1} & w \\ f_1^{(1)} & & w^{(1)} \\ \vdots & & \vdots \\ f_1^{(g-1)} & \cdots & f_{g-1}^{(g-1)} & w^{(g-1)} \end{pmatrix} = W(f_1, ..., f_{g-1})w^{(g-1)} + \cdots + c_{g-1}w$$

has solution $f_1, ..., f_{g-1}$. If $W(f_1, ..., f_g) \equiv 0$, then f_g is another solution for ODE, then

$$f_g = \sum_{i=1}^{g-1} a_i f_i \text{ on } U' = \{ z \in U : W(f_1, ..., f_{g-1}) \neq 0 \} \underset{\text{open}}{\subset} U$$

By identity theorem,
$$f_g = \sum_{i=1}^{g-1} a_i f_i$$
 on $U (\longrightarrow)$.

Fact 2.5.2. If (U, z), $(\widetilde{U}, \widetilde{z})$ are two charts, then on $U \cap \widetilde{U}$

$$W_z(\omega_1, ..., \omega_g) = \left(\frac{d\widetilde{z}}{dz}\right)^N W_{\widetilde{z}}(\omega_1, ..., \omega_g)$$

where $N = \frac{g(g+1)}{2}$.

Proof: On $U \cap \widetilde{U}$, $\omega_k = f_k dz = \widetilde{f}_k d\widetilde{z} \rightsquigarrow f_k = \psi \widetilde{f}_k$ with $\psi = \frac{d\widetilde{z}}{dz} \in \mathcal{O}^*(U \cap \widetilde{U})$. Then

$$\frac{df_k}{dz} = \psi^2 \frac{d\widetilde{f}_k}{d\widetilde{z}} + \frac{d\psi}{dz} \widetilde{f}_k \implies \frac{d^m f_k}{dz^m} = \psi^{m+1} \frac{d^m \widetilde{f}_k}{d\widetilde{z}^m} + \sum_{j=0}^{m-1} \varphi_{mj} \frac{d^j \widetilde{f}_k}{d\widetilde{z}^j}$$

for some $\varphi_{mj} \in \mathcal{O}(U \cap \widetilde{U})$ independent of k. Then

$$W_z(f_1,...,f_g) = \psi^{1+\cdots+g} W_{\widetilde{z}}(\widetilde{f}_1,...,\widetilde{f}_g)$$

Fact 2.5.3. If $\widetilde{\omega}_1,...,\widetilde{\omega}_g$ is another basis of $\Omega(X)$, then $\exists c \in \mathbb{C}^{\times}$ s.t.

$$W_z(\omega_1, ..., \omega_g) = cW(\widetilde{w}_1, ..., \widetilde{\omega}_g)$$

Proof: Write $\omega_j = \sum_{k=1}^g c_{jk} \widetilde{\omega}_k$. On (U, z), $f_j dz = \sum_{k=1}^g c_{jk} \widetilde{f}_k dz \rightsquigarrow f_j^{(m)} = \sum_{k=1}^g c_{jk} \widetilde{f}_k^{(m)}$. Then

$$W_z(\omega_1, ..., \omega_g) = W(f_1, ..., f_g) = \det(c_{jk})W(\widetilde{f}_1, ..., \widetilde{f}_g) = \det(c_{jk})W_z(\widetilde{\omega}_1, ..., \widetilde{\omega}_g)$$

Definition 2.5.3. Suppose X is compact Riemann surface of genus $g \geq 1$. A point $p \in X$ is called **Weierstrass point** if for a basis $\omega_1,...,\omega_g \in \Omega(X)$ and a chart (U,z) of p, $W_z(\omega_1,...,\omega_g)=0$. The order of zero is called the **weight** of the Weierstrass point.

Remark 2.5.1. By fact, the definition of Weierstrass point and weight are independent of the choice of basis and coordinate.

Theorem 2.5.2. Suppose X is compact Riemann surface of genus $g \ge 1$ and $p \in X$. Then $\dim H^0(X, \mathcal{O}_{qp}) > 1 \iff p$ is Weierstrass point.

Proof: Suppose (U, z) is chart of p s.t. z(p) = 0 and z(U) is a disk in \mathbb{C} . The non-constant function $f \in H^0(X, \mathcal{O}_{gp})$ has the principal part at p of the form $h = \sum_{i=0}^{g-1} \frac{c_i}{z^{i+1}}$ with $(c_0, ..., c_{g-1}) \neq (0, ..., 0)$, and thus is a solution of M-L distribution

$$\mu=(h,0)\in C^0(\mathfrak{U},\mathscr{M})$$
 where $\mathfrak{U}=(U,X\setminus\{p\})$

By Theorem 2.5.1 and Serre duality.

$$\mu$$
 has a solution $\iff \delta\mu = 0$ in $H^1(X, \mathcal{O})$
 $\iff \lambda(\delta\mu) = 0 \ \forall \lambda \in H^1(X, \mathcal{O})^{\vee}$
 $\iff 0 = \langle \omega, [\overline{\delta\mu}] \rangle = \operatorname{Res}([\overline{\delta\omega\mu}]) = \operatorname{Res}(\omega\mu) \ \forall \omega \in H^0(X, \Omega)$

Now let $\omega_1, ..., \omega_g \in \Omega(X)$ form a basis. Choose U smaller if necessary, $\omega_k = f_k dz = \left(\sum_{i=0}^{\infty} a_{ki} z^i\right) dz$ on U. Now

$$\operatorname{Res}(\omega_k \mu) = \operatorname{Res}_p(\omega_k h) = \sum_{i=0}^{g-1} a_{ki} c_i \ \forall k$$

Thus $\operatorname{Res}(\omega\mu) = 0 \ \forall \omega \in H^0(X,\Omega) \iff (a_{ki})_{g\times g} \text{ has nontrivial solution } (c_0,...,c_{g-1}) \iff W_z(\omega_1,...,\omega_g)(p) = 0.$

Theorem 2.5.3. On a compact Riemann surface X of $g \ge 1$. The total weight of Weierstrass points is g(g-1)(g+1).

Proof: Let $(U_i, z_i)_{i \in I}$ be a covering of X and $\psi_{ij} = \frac{dz_j}{dz_i} \in \mathcal{O}^*(U_i \cap U_j)$. Fixed a basis $\omega_1, ..., \omega_g$ of $\Omega(X)$. Let $W_i = W_{z_i}(\omega_1, ..., \omega_g) \in \mathcal{O}(U_i)$. By Fact 2.5.2, on $U_i \cap U_j$, $W_i = \psi_{ij}^N W_j$, where N = g(g+1)/2. Set $D(x) = \operatorname{ord}_x(W_i)$ for $x \in U_i \leadsto D \in \operatorname{Div}(X)$. If $\omega_1 = f_{1i}dz_i$ on U_i , then $f_{1i} = \psi_{ij}f_{1j}$ on $U_i \cap U_j$ and thus

$$W_i f_{1i}^{-N} = W_j f_{1j}^{-N} \text{ on } U_i \cap U_j \implies \exists f \in \mathscr{M}(X) \text{ s.t. } f|_{U_i} = W_i f_{1i}^{-N}$$

So
$$D - NK = (f)$$
 and thus $\deg D = (2g - 2)N = g(g - 1)(g + 1)$.

Corollary 2.5.1. Every compact Riemann surface X of genus $g \geq 2$ admits a holomorphic covering mapping $f: X \to \mathbb{P}^1$ having at most g sheets. In particular every compact Riemann surface of genus 2 is hyperelliptic.

Property 2.5.1.

• Let X be a compact Riemann surface, $p \in X$ and $n \ge 2$. Then $\exists \omega \in \mathcal{M}^{(1)}(X)$ s.t. $\operatorname{ord}_p(\omega) = -n$ and $\omega \in \Omega(X \setminus \{p\})$.

subproof: Let (U, z) be the chart of p s.t. p(z) = 0 and p(U) be the disk in \mathbb{C} . Then $\mu = (z^{-n}dz, 0)$ is M-L distribution and $\operatorname{Res}(\mu) = 0$.

• Let X be a compact Riemann surface and distinct point $p_1, p_2 \in X$. Then exists $\omega \in \mathcal{M}^{(1)}(X)$ s.t. ω has pole of first order at p_1 and p_2 with residues 1 and -1.

subproof: Let $(U_1, z_1), (U_2, z_2)$ be the chart of p_1, p_2 as usual with $U_1 \cap U_2 = \emptyset$. Let $\mathfrak{U} = (U_1, U_2, X \setminus \{p_1, p_2\})$, then $\mu = (z_1^{-1}dz_1, -z_2^{-1}dz_2, 0)$ is M-L distribution with $\operatorname{Res}(\mu) = 0$. \square

• Let $r_1, r_2 \in \mathbb{C}$ are linearly indep. over \mathbb{R} . Let $\mathcal{P} = \{t_1r_1 + t_2r_2 : 0 \le r_1, r_2 < 1\}, \Gamma = \mathbb{Z}r_1 + \mathbb{Z}r_2$. Let $a_1, ..., a_n \in \mathcal{P}$, $h_j(z) = \sum_{k=-r_j}^{-1} c_{kj}(z-a_j)^k \ \forall j$. Then $\exists f \in \mathscr{M}(\mathbb{C})$ is doubly periodic w.r.t.

 Γ with the prescribed principal points at $a_1, ..., a_n \iff \sum_{j=1}^n c_{-1j} = 0$.

subproof: Note that $\omega = dz$ is a basis of $\Omega(\mathbb{C}/\Gamma)$, then $\operatorname{Res}(\omega \mu) = \sum_{j=-1}^{n} c_{-1j} = 0$, where

$$\mu = (h_1, ..., h_n, 0) \in C^0(\mathfrak{U}, \mathscr{M}) \text{ with } \mathfrak{U} = (U_1, ..., U_n, X \setminus \{a_1, ..., a_n\})$$

and
$$U_i \cap U_j = \varnothing$$
.

Definition 2.5.4. Suppose X is compact Riemann surface of genus $g \ge 1$. The **Weierstrass** gap for $p \in X$ is a value of k s.t. no function has exactly k pole at p only.

Fact 2.5.4.

- Every point has exactly g gap numbers.
- p is not Weierstrass point $\iff 1, ..., g$ are gap number.

Theorem 2.5.4. If $n_1, ..., n_g$ are the gap number of Weierstrass points $p \in X$. Then the weight of p is

$$\sum_{i=1}^{g} (n_i - i)$$

Proof: By definition, for each i, $H^0(X, \mathcal{O}_{n_i p}) = H^0(X, \mathcal{O}_{(n_i-1)p})$. By Serre duality and Riemann Roch theorem,

$$H^{1}(X, \Omega_{-n_{i}p}) = H^{1}(X, \Omega_{-(n_{i}-1)p}) \implies H^{0}(X, \Omega_{-(n_{i}-1)p}) \supseteq H^{0}(X, \Omega_{-n_{i}p})$$

Let $\omega_i \in H^0(X, \Omega_{-(n_i-1)p}) \setminus H^0(X, \Omega_{-n_ip})$ and (U, z) be the chart of p as usual s.t. $\omega_i = z^{n_i-1}f_i(z)dz$ for some $f_i \in \mathcal{O}(U)$ with $f_i(0) \neq 0$. To calculate the order of Wronskian, we only need take cure the leading term u_{ij} of each entry. Then

$$u_{ij} = \begin{cases} P_{i-1}^{n_i - 1} z^{n_j - 1 - (i-1)} h_j(0) & \text{if } i \le n_j \\ (n_i - 1)! h_j^{(i-1 - (n_j - 1))}(0) & \text{if } i > n_j \end{cases}$$

where $P_m^n = \frac{n!}{(n-m)!}$. Then

$$W_z(\omega_1, ..., \omega_n) = \det u_{ij} = z^{\sum (n_i - i)} \det(u_{ij} \cdot z^{i - n_j})$$

We claim that $\det(u_{ij})|_{z=0} \neq 0$ i.e. $\det(P_{i-1}^{n_{j-1}}) \neq 0$. Consider the polynomial of g variables with degree g(g-1)/2

$$D(x_1, ..., x_g) = \det(P_{i-1}^{x_j})$$

Then $D(x_1, ..., x_k, ..., x_k, ..., x_n) = 0 \implies (x_i - x_j) |D(x_1, ..., x_n)|$ and thus $\prod_{i < j} (x_i - x_j) |D(x_1, ..., x_n)|$.

Counting degree we have

$$D(x_1, ..., x_n) = C \prod_{i < j} (x_i - x_j)$$

for some constant C. Note that $D(0,...,g-1)=\prod_{i=1}^g i!\neq 0 \implies C\neq 0$. Hence $\det(P_{i-1}^{n_j-1})\neq 0$ and thus W_z has zero of order $\sum (n_i-i)$.

2.6 deRham Hodge theorem

Definition 2.6.1.

- For $\omega \in \mathscr{E}^{(1)}(X)$, locally $\omega|_U = fdz + gd\overline{z}$, define $\overline{\omega}|_U = \overline{f}d\overline{z} + \overline{g}dz \rightsquigarrow \overline{\omega} \in \mathscr{E}^{(1)}(X)$.
- $\omega \in \Omega(X) \leadsto \overline{\omega} \in \overline{\Omega}(X)$.

2.7. ABEL THEOREM Minerva notes

• Define Hodge star operator

$$*: \mathscr{E}^{(1)}(X) \longrightarrow \mathscr{E}^{(1)}(X)$$

$$f = \underbrace{\omega_1}_{\in \mathscr{E}^{\overline{1,0}}(X)} + \underbrace{\omega_2}_{\in \mathscr{E}^{0,1}(X)} \longmapsto i(\overline{\omega_1} - \overline{\omega_2})$$

• If X is compact Riemann surface, define inner product on $\mathscr{E}^{(1)}(X)$ by

$$\langle \omega_1, \omega_2 \rangle = \iint_X \omega_1 \wedge *\omega_2$$

Locally, $\omega = f dz + g d\overline{z} \rightsquigarrow \omega \wedge *\omega = 2(|f|^2 + |g|^2) dx \wedge dy$.

• ω is harmonic ($\omega \in \text{Harm}^1(X)$) if $d\omega = d(*\omega) = 0$. Locally $\omega = fdz + gd\overline{z}$ and thus

$$\omega \in \operatorname{Harm}^{1}(X) \iff \begin{cases} \left(-\frac{\partial f}{\partial \overline{z}} + \frac{\partial g}{\partial z}\right) dz \wedge d\overline{z} = 0 \\ i\left(-\frac{\partial \overline{f}}{\partial z} - \frac{\partial \overline{g}}{\partial \overline{z}}\right) dz \wedge d\overline{z} = 0 \end{cases} \iff \begin{cases} \overline{\partial} f = \partial g \\ \partial \overline{f} = -\overline{\partial} \overline{g} \end{cases} \iff \overline{\partial} f = \partial g = 0$$

Property 2.6.1. TFAE

- (1) $\omega \in \operatorname{Harm}^1(X)$
- (2) $d'\omega = d''\omega = 0$
- (3) $\omega = \omega_1 + \omega_2$ for some $\omega_1 \in \Omega(X)$, $\omega_2 \in \overline{\Omega}(X)$.
- (4) $\forall a, \exists U_a \subset X \text{ s.t. } \omega = df \text{ for some harmonic function } f \text{ on } U_a.$

2.7 Abel theorem

Definition 2.7.1. Suppose X is compact Riemann surface and $D \in Div(X)$, define

$$X_D = \{ x \in X : D(X) \ge 0 \}$$

 $f \in \mathscr{E}(X_D)$ is a **weak solution** of D if $\forall a \in X$, $\exists (U, z)$ with z(a) = 0 and $\psi \in \mathscr{E}(U)$ with $\psi(a) \neq 0$ s.t. $f = \psi z^k$ on $U \cap X_D$ with k = D(a).

Lemma 2.7.1 (key formula). Let $D = \sum k_i a_i \in \text{Div}(X)$. If f is a weak solution of D, then $\forall g \in \mathscr{E}(X)$ with compact support,

$$\frac{1}{2\pi i} \iint_X \frac{df}{f} \wedge dg = \sum_{i=1}^n k_i g(a_i)$$

Proof: Choose disjoint $(U_j, z_j)_{j=1}^n$ with $z_j(a_j) = 0$, $z_j(U_j) = D \subset \mathbb{C}$ s.t. $f = \psi_j z_j^{k_j}$ with $\psi_j \in \mathscr{E}(U_j)$ and $\psi_j(x) \neq 0 \forall x \in U_j$. Suppose 0 < r < r' < 1, $\exists \varphi_j \in \mathscr{E}(X)$ s.t. $\operatorname{supp}(\varphi_j) \subset \{|z_j| < r'\}$ and $\varphi_j|_{\{|z_j| < r\}} = 1$. Let $g_j = \varphi_j g \in \mathscr{E}(X)$ and $g_0 = g - \sum_{j=1}^n g_j$. Then $g_0|_{\{|z_j| \le r\}} = 0 \rightsquigarrow \operatorname{supp}(g_0)$ is compact in $X' = X \setminus \{a_1, ..., a_n\}$. Then

$$\frac{1}{2\pi i} \iint_X \frac{df}{f} \wedge dg_0 = -\frac{1}{2\pi i} \iint_{X'} d\left(g_0 \frac{df}{f}\right) = 0$$

2.7. ABEL THEOREM Minerva notes

and thus

$$\frac{1}{2\pi i} \iint_X \frac{df}{f} \wedge dg = \frac{1}{2\pi i} \sum_{j=1}^n \iint_{U_j} \frac{df}{f} \wedge dg_j = \frac{1}{2\pi i} \sum_{j=1}^n k_j \iint_{U_j} \frac{dz_j}{z_j} \wedge dg_j$$

since $\frac{d\psi_j}{\psi_j} \wedge dg_j = -d\left(g_j \frac{d\psi_j}{\psi_j}\right)$ on U_j . By Stoke theorem and $g_j \in \mathscr{E}(U_j)$,

$$\iint_{U_j} \frac{dz_j}{z_j} = -\lim_{\varepsilon \to 0} \iint_{\varepsilon \le |z| \le r'} d\left(g_j \frac{dz_j}{z_j}\right) = \lim_{\varepsilon \to 0} \int_{|z| = \varepsilon} g_j \frac{dz_j}{z_j} = 2\pi i g_j(a_j) = 2\pi i g(a_j)$$

Lemma 2.7.2 (key lemma). If $c:[0,1]\to X$ and $U\subseteq X$ with $c([0,1])\subset U$, then exists a weak solution of ∂C with $f|_{X\setminus U}=1$ s.t. $\forall \omega\in\mathscr{E}^{(1)}(X)$ with $d\omega=0$ we have

$$\int_{c} \omega = \frac{1}{2\pi i} \iint_{X} \frac{df}{f} \wedge \omega$$

Proof:

• Case 1. $U \simeq D \subset \mathbb{C}$: Assume a = c(0), b = c(1), $c([0,1]) \subset B_r(0)$ with 0 < r < 1. Then $\frac{z-b}{z-a}$ is a nowhere vanishing holomorphic function on $\{r < |z| < 1\}$ and $\log\left(\frac{z-b}{z-a}\right)$ has a well-defined branch on $\{r < |z| < 1\}$ since $\frac{z-b}{z-a} \notin \mathbb{R}_{\leq 0}$. Choose $\psi \in \mathscr{E}(U)$ s.t. $\psi|_{\{|z| \leq r\}} = 1$ and $\sup \psi \subset \{|z| < r'\}$ with r < r' < 1. Define

$$f_0(z) := \begin{cases} \exp\left(\psi \log \frac{z-b}{z-a}\right) & \text{if } r < |z| < 1\\ \frac{z-b}{z-a} & \text{if } |z| \le r \end{cases}$$

Then $f_0 \equiv 1$ on r' < |z| < 1. Extend f_0 to f by 1 outside U, then f is a weak solution of ∂C with $f|_{X\setminus U} = 1$. For $\omega \in \mathscr{E}^{(1)}(X)$ with $d\omega = 0$, let ω , let $\omega|_U = dh$ with $h \in \mathscr{E}(U)$. Choose $\varphi \in \mathscr{E}(X)$ s.t. $\varphi|_{\{|z| < r'\}} = 1$ and $\operatorname{supp} \varphi \subseteq \{|z| < r''\}$ with r' < r'' < 1. Then $g = \varphi h \in \mathscr{E}(X)$ with compact support $\subset U$ and g = h on $\{|z| \le r'\} \leadsto \omega = dg$ on $\{|z| \le r'\}$. Since $\operatorname{supp}(df/f) \subseteq \{|z| \le r\}$, we have

$$\frac{1}{2\pi i} \iint_X \frac{df}{f} \wedge \omega = \frac{1}{2\pi i} \iint_{|z| \le r'} \frac{df}{f} \wedge dg = g(b) - g(a) = \int_c \omega$$

• Case 2. In general case, exists a partition $0 = t_0 < t_1 < \cdots < t_n = 1$ s.t. $c([t_{j-1}, t_j]) \subset U_j \subset U$ with $z_j(U_j) = D \subset \mathbb{C}$. Let $c_j = c|_{[t_{j-1}, t_j]}$. By Case 1, \exists a weak solution f_j of ∂c_j s.t. $f_j|_{X\setminus U_j} = 1$ and

$$\int_{c_i} \omega = \frac{1}{2\pi i} \iint_X \frac{df_j}{f_j} \wedge \omega \,\,\forall \omega \in \mathscr{E}^{(1)}(X) \,\, \text{with} \,\, d\omega = 0$$

Then $f = f_1 f_2 \cdots f_n$ is a weak solution of $\sum_{i=1}^n \partial c_i = c$ and

$$\frac{1}{2\pi i} \iint_X \frac{df}{f} \wedge \omega = \frac{1}{2\pi i} \sum_{j=1}^n \int \frac{df_j}{f_j} \wedge \omega = \sum_{j=1}^n \int_{c_j} \omega = \int_c \omega$$

Author: Minerva 59

2.7. ABEL THEOREM Minerva notes

Theorem 2.7.1 (Abel theorem). Suppose X is compact Riemann surface and $D \in \text{Div}(X)$ with deg D = 0. Then D has a solution (i.e. $\exists f \in \mathcal{M}(X)$ s.t. D = (f)) $\iff \exists$ 1-chain $c = \sum n_i c_i \in C_1(X) = \bigoplus_{\gamma:\text{curve}} \mathbb{Z}\gamma$ with $\partial C = D$ s.t.

$$\int_{\mathcal{C}} \omega = 0 \ \forall \omega \in \Omega(X)$$

Proof:

• (\Leftarrow): By key lemma, \exists a weak solution f_j of ∂c_j s.t.

$$\int_{C_i} \omega = \frac{1}{2\pi i} \iint_X \frac{df_j}{f_j} \wedge \omega \ \forall \omega \in \mathscr{E}^{(1)}(X) \text{ with } d\omega = 0$$

Set $f = \prod_{j=1}^{m} f_j^{n_j}$, then f is a weak solution of ∂c and

$$\frac{df}{f} = \sum_{j=1}^{m} n_j \frac{df_j}{f_j} \implies \int_c \omega = \sum_{j=1}^{m} n_j \int_{c_j} \omega = \frac{1}{2\pi i} \iint_X \frac{df}{f} \wedge \omega$$

By assumption, $\forall \omega \in \Omega(X)$,

$$0 = \iint_X \frac{df}{f} \wedge \omega = \iint_X \frac{d''f}{f} \wedge *(-i\omega)$$

Note that $\mathscr{E}^{0,1}(X) = d''\mathscr{E}(X) \oplus \overline{\Omega}(X) \implies \frac{d''f}{f} = d''g$ for some $g \in \mathscr{E}(X)$. Consider $e^{-g}f$, which is also a weak solution of ∂C (since e^{-g} is nowhere vanish) and

$$d''(e^{-g}f) = e^{-g}(d''f - fd''g) = 0 \implies e^{-g}f \in \mathcal{O}(X)$$

• (\Rightarrow) : If D=0, then for all closed curve c, $\partial c=0 \Rightarrow \int_c \omega=0 \ \forall \omega \in \Omega(X)$.

If $D \neq 0$ and $f \in \mathcal{M}(X)$ s.t. $(f) = D \leadsto f : X \to \mathbb{P}^1$ is a branch *n*-sheeted covering map for some $n \geq 1$. For $\omega \in \Omega(X)$, we define $\operatorname{trace}(\omega) \in \Omega(\mathbb{P}^1)$ as follows. Let Y be the regular value

of
$$f$$
. $\forall y \in Y$, $\exists y \in V \subset Y$ s.t. $f^{-1}(V) = \bigcup_{i=1}^{n} U_i$ with $\{U_j\}$ disjoint and $U_j \stackrel{f}{\longleftrightarrow} V$. Define

$$\operatorname{trace}(\omega)|_{V} = \varphi_{1}^{*}\omega + \dots + \varphi_{n}^{*}\omega$$

Then we can glue it to holomorphic 1-form $\operatorname{trace}(\omega)$ on Y as y run though all point in Y. Similarly to Theorem 1.3.3, we may extend $\operatorname{trace}(\omega)$ to \mathbb{P}^1 . Since $\Omega(\mathbb{P}^1) = 0$, $\operatorname{trace}(\omega) = 0$. Now choose $\gamma : 0 \leadsto \infty$ s.t. $\gamma \setminus \partial \gamma \subset Y$. Then $f^{-1}\gamma$ is the union of n curves, $c_1, ..., c_n$, from the zero of f to the pole of f. Set $c := c_1 + \cdots + c_n$, then $\partial c = D$ and

$$\int_{c} \omega = \int_{\gamma} \operatorname{trace}(\omega) = 0$$

2.8. ABEL JACOBI MAP Minerva notes

2.8 Abel Jacobi map

Let X be compact Riemann surface of genus $g \ge 1$ and $\omega_1, ..., \omega_g$ be a basis of $\Omega(X)$.

• Define $C_1(X) = \bigoplus_{c_i:\text{curve}} \mathbb{Z}c_i$. Consider

$$\partial: C_1(X) \longrightarrow \operatorname{Div}(X)$$

 $\sum n_i c_i \longmapsto \sum n_i \partial c_i$

where $\partial c_i = c_i(1) - c_i(0)$. Let $Z_1(X) = \ker(C_1(X) \to \operatorname{Div}(X))$ and $H_1(X) = Z_1(X) /_{\sim}$, where equivalent relation on $Z_1(X)$ is defined by

$$c \sim c' \iff \int_{\mathcal{C}} \omega = \int_{\mathcal{C}'} \omega \ \forall \omega \in \mathscr{E}^{(1)}(X) \text{ with } d\omega = 0$$

If
$$c - c' = \partial S$$
, then $\int_{\partial S} \omega = \int_{S} d\omega = 0$.

• The **period lattice** of X w.r.t. $\omega_1, ..., \omega_q$ is

$$\operatorname{Per}(\omega_1, ..., \omega_g) = \left\{ \left(\int_{\alpha} \omega_1, \cdots, \int_{\alpha} \omega_g \right) : \alpha \in H_1(X) \right\}$$

Theorem 2.8.1. $\Lambda := \operatorname{Per}(\omega_1, ..., \omega_g)$ is a lattice in $\mathbb{C}^g \simeq \mathbb{R}^{2g}$.

To prove Λ is lattice, we need the following lemma.

Lemma 2.8.1 (Lattice criterion). Let V be n-dimensional vector space over \mathbb{R} and an additive group $\Gamma \subseteq V$. Then $\Gamma = \mathbb{Z}r_1 + \cdots + \mathbb{Z}r_n$, where $r_1, ..., r_n$ linearly independent over $\mathbb{R} \iff$

- (1) exists a neighborhood of 0 s.t. $\Gamma \cap U = \{0\}$
- (2) $\Gamma \not\subseteq W \subsetneq V$ for any proper subspace V of W.

Proof:

- (\Rightarrow) : Consider the coordinate change to $e_1, ..., e_n$, then it is clear.
- (\Leftarrow): By induction on n. n=0: trivial. Now for n>0, by (2), $\exists x_1,...,x_n \in \Gamma$ which are linearly independent. Let $V_1=\langle v_1,...,v_{n-1}\rangle_{\mathbb{R}}$ and $\Gamma_1=\Gamma\cap V_1$. Then Γ_1 satisfy conditions (1), (2). By induction hypothesis, $\exists r_1,...,r_{n-1}\in\Gamma$ are linearly independent over \mathbb{R} s.t. $\Gamma_1=\mathbb{Z}r_1+\cdots+\mathbb{Z}r_{n-1}\leadsto r_1,...,r_{n-1},x$ are linearly independent over \mathbb{R} . $\forall x\in V$, say

$$x = c_1(x)r_1 + \dots + c_{n-1}(x)r_{n-1} + c(x)x_n$$

for some $c_i(x) \in \mathbb{R}$. Consider

$$\mathcal{P} = \{ \lambda_1 r_1 + \dots + \lambda_{n-1} r_{n-1} + \lambda x_n : \lambda \in [0, 1] \}$$

By (1), $\exists r_n \in \Gamma \cap \mathcal{P} \setminus V_1$ s.t. $c(r_n) = \min\{c(x) : x \in (\Gamma \cap \mathcal{P}) \setminus V_1\} \in (0,1]$. We claim that

$$\Gamma = \mathbb{Z}r_1 + \dots + \mathbb{Z}r_{n-1} + \mathbb{Z}r_n$$

For $x \in \Gamma$, $\exists n, \lambda$ s.t. $c(x) = nc(r_n) + \lambda$ with $0 \le \lambda < c(r_n)$. Say $c_i(x) - nc_i(r_n) = n_i + \lambda_i$, where $n_i \in \mathbb{Z}$ and $\lambda_i \in [0, 1)$. Then

$$x - nr_n - \sum_{i=1}^{n-1} n_i r_i = \sum_{i=1}^{n-1} \lambda_i r_i + \lambda r_n \in \Gamma \cap \mathcal{P}$$

Since $\lambda < c(r_n)$, $\lambda = 0$ and thus $x - nr_n - \sum_{i=1}^{n-1} n_i r_i \in V_1 \implies x \in \bigoplus_{i=1}^n \mathbb{Z}r_i$.

Proof: (Theorem 2.8.1)

• $\exists a_1, ..., a_g$ distinct in X s.t. if $\omega \in \Omega(X)$ with $\omega(a_i) = 0 \ \forall i$, then $\omega = 0$: **subproof**: For $a \in X$, $H_a := \{\omega \in \Omega(X) : \omega(a) = 0\}$, then $\operatorname{codim}_{\Omega(X)} H_a \leq 1$. Since $\bigcap_{a \in X} H_a = 0, \ \exists a_1 \in X \text{ s.t. } \operatorname{codim}_{\Omega(X)} Ha_1 = 1 \leadsto \exists a_2 \text{ s.t. } \operatorname{codim}_{Ha_1} Ha_1 \cap Ha_2 = 1$. Choose a_i similarly, we may find $a_1, ..., a_g$ s.t. $Ha_1 \cap \cdots \cap Ha_g = 0$.

• Let $a_i \in (U_i, z_i)$ s.t. $z_i(U_i) = D \subset \mathbb{C}$, $U_i \cap U_j = \emptyset \ \forall i \neq j$, and $\omega_i|_{U_j} = \varphi_{ij}dz_j$ with $\varphi_{ij} \in \mathcal{O}(U_{ij})$. Then $(\varphi_{ij}(a_j))_{1 \leq i,j \leq g}$ is invertible. If not, $\exists r_1, ..., r_g \in \mathbb{C}$ not all zero s.t.

$$\sum_{i=1}^{g} r_i \varphi_{ij}(a_j) = 0 \ \forall j \implies \underbrace{\left(\sum_{i=1}^{g} r_i \omega_i\right)}_{\neq 0} (a_j) = 0 \ \forall j \ (\longrightarrow)$$

• Define

$$(F_1, ..., F_g) = F: U_1 \times \cdots U_g \longrightarrow \mathbb{C}^g$$

$$(x_1, ..., x_g) \longmapsto \left(\sum_{j=1}^g \int_{a_j}^{x_j} \omega_1, ..., \sum_{j=1}^g \int_{a_j}^{x_j} \omega_g\right)$$

which is well-defined since U_i are simply connected. Then

$$J_F(x) = \left(\frac{\partial F_i}{\partial z_j}(x)\right) = (\varphi_{ij}) \implies \det J_F(a) = \det(\varphi_{ij}(a_j)) \neq 0$$

where $a=(a_1,...,a_g)$. Hence we can choose U_j smaller s.t. $U=F(U_1\times\cdots\times U_g)\underset{\text{open}}{\subset}\mathbb{C}^g$ is neighborhood of 0.

• $\Gamma \cap U = \emptyset$: If not, say $F(x_1, ..., x_g) \in \Gamma \cap (U \setminus 0)$ with $x_j \neq a_j \ \forall j = 1, ..., k$ and $x_j = a_j \ \forall j = k+1, ..., g$. By Abel theorem, $\exists f \in \mathcal{M}(X)$ s.t. $(f) = \sum_{j=1}^k (x_j - a_j)$. Then $\operatorname{Res}_{a_j} f = c_j \neq 0 \ \forall j = 1, ..., k$. By Residue theorem,

$$0 = \operatorname{Res}(f\omega_i) = \sum_{i=1}^k c_i \varphi_{ij}(a_j) \implies \operatorname{rank}(\varphi_{ij}(a_j)) < g \ (\longrightarrow)$$

• Now we show that Γ will not contain in any proper subspace. If not,

$$\Gamma \subseteq \left\{ (x_1, y_1, ..., x_g, y_g) \subseteq \mathbb{R}^{2g} : \sum_{j=1}^g r_j x_j + \sum_{j=1}^g r_j y_j' = 0 \right\}$$

2.8. ABEL JACOBI MAP Minerva notes

for some $r_1, ..., r_g, r'_1, ..., r'_g$ not all zero. Let $c_j = r_j - ir'_j$, then the condition becomes to

$$0 = \operatorname{Re} \sum_{j=1}^{g} c_j(x_j + iy_j) = \operatorname{Re} \left(\sum_{j=1}^{g} c_j \int_{\alpha} \omega_j \right) = \int_{\alpha} \operatorname{Re} \left(\sum_{j=1}^{g} c_j \omega_j \right) \ \forall \alpha \in H_1(X)$$

Let $\omega = \sum_{j=1}^{g} c_j \omega_j$, then Re ω is harmonic and Re ω is exact \Longrightarrow Re $\omega = 0$. Locally, $\omega = f dz = df$ for some $f \in \mathcal{O}(U)$. By Re $\omega = 0$, $d(f + \overline{f}) = 0 \Longrightarrow f + \overline{f} = c$. Then Ref = c/2 and $f \in \mathcal{O}(U) \Longrightarrow f$ is constant on $U \leadsto \omega = df = 0$. Hence $\sum c_j \omega_j = 0 \leadsto c_j = 0 \ \forall j \ (\Longrightarrow)$.

Definition 2.8.1. Jac(X) := \mathbb{C}^g/Λ is called the **Jacobi variety** of X.

• $0 \to \operatorname{Div}_0(X) \to \operatorname{Div}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z} \to 0$. Since $\operatorname{Div}_p(X) \subset \operatorname{Div}_0(X)$, we have

$$0 \to \operatorname{Pic}_0(X) \to \operatorname{Pic}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z} \to 0$$

where $\operatorname{Pic}_0(X) = \operatorname{Div}_0(X) / \operatorname{Div}_p(X)$.

• Define

$$\phi: \operatorname{Div}_0(X) \longrightarrow \operatorname{Jac}(X)$$

$$D \longrightarrow \left(\int_c \omega_1, ..., \int_c \omega_g\right) + \Lambda$$

where $\partial c = D$. If $\partial c' = D$, then $\partial (c - c') = 0 \leadsto [c - c'] \in H_1(X)$. Hence ϕ is well-defined.

$$D \in \ker \phi \iff \left(\int_{c} \omega_{1}, ..., \int_{c} \omega_{g} \right) = \left(\int_{\alpha} \omega_{1}, ..., \int_{\alpha} \omega_{g} \right) \text{ for some } \alpha = [c_{0}] \in H_{1}(X)$$

$$\iff \int_{c-c_{0}} \omega = 0 \ \forall \omega \in \Omega(X)$$

$$\iff \exists f \in \mathscr{M}(X) \text{ s.t. } (f) = \partial(c - c_{0}) = \partial c = D \qquad \text{(Abel theorem)}$$

$$\iff D \in \operatorname{Div}_{p}(X)$$

Hence $j: \operatorname{Pic}_0(X) \hookrightarrow \operatorname{Jac}(X)$.

Now our goal is surjective of j, i.e. $j: \operatorname{Pic}_0(X) \xrightarrow{\sim} \operatorname{Jac}(X)$.

• Let $a_1, ..., a_g$ be chosen in the proof of Λ is lattice. Consider

$$\psi: X^g \longrightarrow \operatorname{Pic}_0(X)$$

$$(x_1, ..., x_g) \longrightarrow \sum_{j=1}^g (x_j - a_j) + \operatorname{Pic}_0(X)$$

and $J = j \circ \psi$.

• In particular for g = 1, pick $a \in X$, $\omega \in \Omega(X) \setminus \{0\}$, and $\Gamma = \operatorname{Per}(\omega)$. Then

$$J: X \longrightarrow \mathbb{C}/\Gamma$$
$$x \longmapsto \int_{a}^{x} \omega + \Gamma$$

is holomorphic. Since X is compact and J is non-constant, J is surjective.

Author: Minerva 63

2.8. ABEL JACOBI MAP Minerva notes

Theorem 2.8.2. $j : \operatorname{Pic}_0(x) \xrightarrow{\sim} \operatorname{Jac}(X)$.

Proof: Continue the proof of Λ is a lattice. For $p = [\xi] \in \operatorname{Jac}(X)$, let $N \gg 0$ s.t. $\frac{1}{N}\xi \in F(U_1 \times \cdots \times U_g)$. Then $\exists x_j \in U_j \ \forall j \ \text{s.t.}$

$$\left(\int_{c}\omega_{1},...,\int_{c}\omega_{g}\right)=\frac{1}{N}\xi$$

where $\gamma_j: a_j \rightsquigarrow x_j$ and $c = r_1 + \cdots + r_g$. Let $D = \partial C$, then $\phi(D) = \frac{1}{N}\xi$. Take $\theta = ND + \operatorname{Pic}_p(X)$, then $j(\theta) = p$.

Corollary 2.8.1. $J: X^g \to \operatorname{Jac}(X)$ is surjective.

Proof: It suffices to show $\psi: X^g \to \operatorname{Pic}_0(X)$ is surjective. Let $D \in \operatorname{Pic}_0(X)$, let $D' = D + \sum_{i=1}^g a_i \leadsto \deg D' = g$ and thus $\dim H^0(X, \mathcal{O}_{D'}) \ge 1$. Then $\exists f \in \mathcal{M}(X)$ s.t. $(f) + D' \ge 0$.

Also deg((f) + D') = g, say $(f) + D' = \sum_{i=1}^{n} x_i$. Then

$$D + (f) = \sum_{i=1}^{n} (x_i - a_i) \implies \psi(x_1, ..., x_g) = D + \text{Pic}_p(X)$$

Author: Minerva 64

Chapter 3

Non-compact Riemann surface

3.1 Countable topology

Theorem 3.1.1 (Radó). Every Riemann surface has a countable topology.

Proof: Let $(U, z) \subset X$ and K_0, K_1 be two compact disks in U with $K_0 \cap K_1 = \emptyset$. Set $Y = X \setminus (K_0 \cup K_1)$. Then via Dirichlet boundary value problem for K_0, K_1 ,

$$\exists u : \overline{Y} \to \mathbb{R} \text{ s.t. } \begin{cases} u|_Y \text{ is harmonic} \\ u|_{\partial K_0} = 0, \ u|_{\partial K_1} = 1 \end{cases}$$

Then $\omega := du$ is a nontrivial holomorphic 1-form on Y $(d''\omega = d''d'u + d''d''u = 0)$. Consider $p:\widetilde{Y} \xrightarrow{\sim} Y$. Then $\exists f \in \mathcal{O}(\widetilde{Y})$ s.t. $df = p^*\omega$. Then $f:\widetilde{Y} \to \mathbb{C}$ is non-constant. Now we need the following two lemmas.

Lemma 3.1.1 (Poincaré-Volterra). If $f: Z' \to Z$ is discrete (i.e. fiber of singleton is discrete). If Z is Hausdorff with countable topology, Z' is connected manifold. Then Z' has a countable topology.

Proof: Let \mathfrak{U} be a countable basis for the topology on Z. Set

 $\mathfrak{B} = \{ V \subset Z' : V \text{ is a connected component of } f^{-1}U \text{ with } U \in \mathfrak{U} \text{ with } V \text{ has countable topology} \}$

- ${\mathfrak B}$ is a basis for the topology on Z' and ${\mathfrak B}$ is non-empty :
 - Let $x \in D \subset Z'$. Since $f^{-1}(f(x))$ is discrete, $\exists x \in W \in D$ s.t. $\partial W \cap f^{-1}(f(x)) = \varnothing$. Also $f(\partial W)$ is compact on Z with $f(x) \notin f(\partial W)$, $\exists U \in \mathfrak{U}$ s.t. $f(x) \in U$ and $U \cap f(\partial W) = \varnothing$. Let V be the connected component of $f^{-1}(U)$ containing x. Then $V \cap \partial W = \varnothing \leadsto V \subset W$. Since \overline{W} is compact, W has a countable topology, so does V and $V \in \mathfrak{B}$, $V \subset D$.
- B is countable :

Fixed $V^* \in \mathfrak{B}$ and $\forall n \in \mathbb{N}$, define

$$\beta_n = \{V \in \mathfrak{B} : \exists V^* = V_0, V_1, ..., V_n = V \text{ distinct in } \mathfrak{B} \text{ s.t. } V_{k-1} \cap V_k = \emptyset \ \forall k\}$$

Claim : $\mathfrak{B} = \bigcup_{n \in \mathbb{N}} \beta_n$.

subproof: Fix $x_0 \in V^*$, for $V \in \mathfrak{B}$ and $x \in V$. By connectedness, let $c: x_0 \leadsto x$ which is compact and thus can cover by finite element in \mathfrak{B}

3.2. WEYL'S LEMMA Minerva notes

Claim: $\forall V' \in \mathfrak{B}$, exists at most countable many $V \in \mathfrak{B}$ with $V' \cap V \neq \emptyset$.

subproof: $\forall U \in \mathfrak{U}$, the connected component of $f^{-1}(U)$ are disjoint. Since V' has countable topology, exists at most countably many V which are connected components of $f^{-1}(U)$ with $V' \cap V \neq \emptyset$. Then the claim holds by \mathfrak{U} is countable.

Now we can prove by induction that β_n are countable and thus \mathfrak{B} is countable.

Lemma 3.1.2. If $f: Z' \to Z$ is continuous open surjective, then Z' has a countable topology implies Z has a countable topology.

Proof: Let \mathfrak{U} be a countable basis for the topology on Z', then $\mathfrak{B} = \{f(U) : U \in \mathfrak{U}\}$ is a countable topology on Z. Indeed, for $x \in D \subset Z$, let $y \in f^{-1}(x)$, $\exists U \in \mathfrak{U}$ s.t. $y \in U \subset f^{-1}(D)$, then $x \in f(U) \subset D$.

Now back to the proof of Radó. By identity theorem, f is discrete. By Lemma 3.1.1, \widetilde{Y} has a countable topology. By Lemma 3.1.2, Y has a countable topology. Since $K_0 \cup K_1$ is compact, $K_0 \cup K_1$ has countable topology, and so does X.

3.2 Weyl's lemma

Definition 3.2.1.

• $X \subset \mathbb{C}$, define

$$\mathcal{D}(X) = \{ f \in \mathcal{E}(X) : f \text{ has compact support} \}$$

- For $(f_n)_{n\in\mathbb{N}}\subset\mathcal{D}, f_n\xrightarrow{\mathscr{D}} f$ if
 - •• $\exists K \subset X \text{ s.t. } \operatorname{supp}(f_n) \subset K \ \forall n \text{ and } \operatorname{supp}(f) \subset K$
 - •• $\forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{Z}^2_{\geq 0}$, define $D^{\alpha} = \frac{\partial^{\alpha_1 + \alpha_2}}{\partial x^{\alpha_1} \partial y^{\alpha_2}}$. Then

$$D^{\alpha}f_n \to D^{\alpha}f$$
 uniformly on K

• A distribution on X is a continuous linear mapping

$$\begin{array}{cccc} T: & \mathscr{D}(X) & \longrightarrow & \mathbb{C} \\ & f & \longmapsto & T[f] \end{array}$$

By continuous, $f_n \xrightarrow{g} f \implies T[f_n] \to T[f]$.

•• $\mathcal{D}'(X) = \{\text{all distribution on } X\}$

Remark 3.2.1.

• $\forall h \in C(X)$, we can define $T_h \in \mathscr{D}'(X) : \forall f \in \mathscr{D}(X)$,

$$T_h[f] = \iint_X h(z)f(z)dxdy$$
 with $z = x + iy$

3.2. WEYL'S LEMMA Minerva notes

• $C(X) \hookrightarrow \mathcal{D}'(X)$ by $h \mapsto T_h$: If $h \neq 0$ and satisfy

$$\iint_X h(z)f(z)dxdy = 0 \ \forall f \in \mathscr{D}(X) \ \text{then} \ h(z) = 0$$

Say $h(a) \neq 0$ and $\exists a \in U \subset X$ s.t. Re $h(z) > 0 \ \forall z \in U$. Let $\varphi \in \mathcal{D}(X)$ with supp $\varphi \subset U$. Let $\varphi \in \mathcal{D}(X)$ with supp $\varphi \subset U$ and $\varphi|_A = 1$, $\varphi \geq 0$ on U, then

$$\iint_X h(z)\varphi(z)dxdy > 0 \ (\longrightarrow -)$$

For $h \in \mathcal{E}(X)$, $f \in \mathcal{D}(X)$,

$$d(hfdy) = d(hf) \wedge dy = \frac{\partial h}{\partial x} f dx \wedge dy + h \frac{\partial f}{\partial x} dx \wedge dy$$

Then we have the integration by part,

$$0 = \iint_X d(hfdy) \implies \iint_X h \frac{\partial f}{\partial x} dx dy = -\iint_X f \frac{\partial h}{\partial x} dx dy$$

Apply more times, we have

$$\iint_X h(z)D^{\alpha}f(z)dxdy = (-1)^{\alpha_1+\alpha_2}\iint_X f(x)D^{\alpha}h(z)dxdy$$

By imitating the above conclusion, we can define the differential of $T \in \mathcal{D}'$.

Definition 3.2.2. For $T \in \mathcal{D}'(X)$

$$(D^{\alpha}T)[f] = (-1)^{|\alpha|}T[D^{\alpha}f] \; \forall f \in \mathscr{D}(X)$$

Now we choose $\rho \in \mathcal{D}(X)$ s.t.

- supp $(\rho) \subset B_1(0)$
- $\rho(z) = \rho(|z|) \ \forall z \in \mathbb{C}$
- $\iint_{\mathbb{C}} \rho(z) dx dy = 1$

For $\varepsilon > 0$, construct the approximation to identity $\rho_{\varepsilon}(z) = \frac{1}{\varepsilon^2} \rho(z/\varepsilon)$, then

- supp $(\rho_{\varepsilon}) \subset B_{\varepsilon}(0)$
- $\iint_X \rho_{\varepsilon}(z) dx dy = \iint_{\mathbb{C}} \rho_{\varepsilon}(z/\varepsilon) d(d/\varepsilon) d(y/\varepsilon) = \iint_{\mathbb{C}} \rho(z) dx dy = 1$

Define

$$X^{(\varepsilon)} := \{z \in X | \overline{B_{\varepsilon}(z)} \subset X\} \underset{\text{\tiny open}}{\subset} X$$

For $f \in C(X)$ and $z \in X^{(\varepsilon)}$, we can define

$$(\operatorname{sm}_{\varepsilon} f)(z) := \iint_{X} \rho_{\varepsilon}(z - \zeta) f(\zeta) d\xi d\eta$$

3.2. WEYL'S LEMMA Minerva notes

• $\operatorname{sm}_{\varepsilon} f \in \mathscr{E}(X)$:

$$\frac{d}{dz}\operatorname{sm}_{\varepsilon} f = \iint_{X} \frac{d\rho_{\varepsilon}(z-\zeta)}{dz} f(\zeta) d\xi d\eta$$

• $f \in \mathscr{E}(X), \ \alpha \in \mathbb{Z}^2_{\geq 0}, \ D^{\alpha}(\operatorname{sm}_{\varepsilon} f) = \operatorname{sm}_{\varepsilon}(D^{\alpha} f)$:

subproof : For $z \in X^{(\varepsilon)}$,

$$(\operatorname{sm}_{\varepsilon} f)(z) = \iint_{B_{\varepsilon}(z)} \rho_{\varepsilon}(\zeta - z) f(\zeta) d\xi d\eta = \iint_{|w| < \varepsilon} \rho_{\varepsilon}(w) f(z + w) du dv$$

$$D^{\alpha}(\operatorname{sm}_{\varepsilon} f)(z) = \iint_{|w| < \varepsilon} \rho_{\varepsilon}(w) D^{\alpha} f(z+w) du dv = \iint_{|\zeta-z| < \varepsilon} \rho_{\varepsilon}(\zeta-z) D^{\alpha}(\zeta) d\xi d\eta = \operatorname{sm}_{\varepsilon}(D^{\alpha} f)$$

• For $z \in X^{(\varepsilon)}$, f: harmonic on $B_{\varepsilon}(z)$, then $(\operatorname{sm}_{\varepsilon} f)(z) = f(z)$:

subproof: For $0 \le r < \varepsilon$, by mean value property,

$$f(z) = \frac{1}{2\pi} \int_0^r f(z + re^{i\theta}) d\theta$$

Then

$$(\operatorname{sm}_{\varepsilon} f)(z) = \iint_{|w| < \varepsilon} \rho_{\varepsilon}(w) f(z+w) du dv = \int_{0}^{\varepsilon} \int_{0}^{2\pi} \rho_{\varepsilon}(w) f(z+re^{i\theta}) r d\theta dr$$

$$= \int_{0}^{\varepsilon} r \rho_{\varepsilon}(r) \int_{0}^{2\pi} f(z+re^{i\theta}) d\theta dr = 2\pi \int_{0}^{\varepsilon} r \rho_{\varepsilon}(r) f(z) dr$$

$$= f(z) \int_{0}^{2\pi} \int_{0}^{\varepsilon} \rho_{\varepsilon}(r) r dr d\theta = f(z) \iint_{B_{\varepsilon}(0)} \rho_{\varepsilon}(\zeta) d\xi d\eta = f(z)$$

Theorem 3.2.1 (Weyl's lemma). If $T \in \mathcal{D}'(X)$ and $\Delta T = 0$, then T is a smooth function.

Proof:

• For $\varepsilon > 0$ and $z \in X^{(\varepsilon)}$, $\operatorname{supp}(\rho_{\varepsilon}(\zeta - z)) \subseteq B_{\varepsilon}(z) \subset X \leadsto \rho_{\varepsilon}(\zeta - z) \in \mathscr{D}(X)$. Set $h(z) = T[\rho_{\varepsilon}(\zeta - z)]$

where T is a distribution with ζ as a variable. For convenience, say $\rho_{\varepsilon}(\zeta - z) = g(\zeta, z)$.

• Claim : $h(z) \in \mathscr{E}(X^{(\varepsilon)})$: subproof :

$$\frac{\partial h}{\partial x}(z) = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left(T[g(\zeta, x + \Delta x + iy)] - T[g(\zeta, x + iy)] \right)$$

$$= \lim_{\Delta x \to 0} T \underbrace{\left[\frac{g(\zeta, x + \Delta x + iy) - g(\zeta, x + iy)}{\Delta x} \right]}_{:=f_{\lambda}(\zeta)}$$

Then $f_{\Delta x}(\zeta) \in \mathcal{D}(X)$ and $f_{\Delta x} \xrightarrow{\mathscr{D}} \frac{\partial g}{\partial x}(\zeta, x + iy)$. Since T is continuous,

$$\lim_{\Delta x \to 0} T[f_{\Delta x}(\zeta)] = T\left[\frac{\partial g(\zeta, x + iy)}{\partial x}\right]$$

Hence $h \in \mathscr{E}(X^{(\varepsilon)})$.

• $T[\operatorname{sm}_{\varepsilon} f] = \iint_{X^{(\varepsilon)}} h(z)f(z)dxdy$: By definition, it suffices to show

$$T\left[\iint_X \rho_{\varepsilon}(\zeta-z)f(z)dxdy\right] = \iint_{X^{(\varepsilon)}} T[\rho_{\varepsilon}(\zeta-z)]f(z)dxdy$$

Let

$$G_n(\zeta) = \frac{\operatorname{Area}(R)}{n^2} \sum_{i=1}^{n^2} \rho_{\varepsilon}(\zeta - z_i) f(z_i)$$

be the Riemann sum of $\iint_X \rho_{\varepsilon}(\zeta - z) f(z) dx dy$, where $\sup(\rho_{\varepsilon}(\zeta - z) f(z))$ contain in a rectangle R and we partition R into n^2 sub-rectangle with $z_i \in R_i$. Then

$$G_n(\zeta) \to \iint_X \rho_{\varepsilon}(\zeta - z) f(z) dx dy \text{ as } n \to \infty$$

Since T is continuous,

$$T[G_n(\xi)] \to T\left[\iint_X \rho_{\varepsilon}(\zeta - z) f(z) dx dy\right]$$

On the other hand,

$$TG_n(\zeta) = \frac{\operatorname{Area}(R)}{n^2} \sum_{i=1}^{n^2} T[\rho_{\varepsilon}(\zeta - z)] f(z_i) \to \iint_{X^{(\varepsilon)}} T[\rho_{\varepsilon}(\zeta - z)] f(z) dx dy$$

where $\varepsilon < \operatorname{dist}(\operatorname{supp} f, \partial X)$.

• $T[f] = T[\operatorname{sm}_{\varepsilon} f]$: By Dolbeault's lemma two times, $\exists \psi \in \mathscr{E}(\mathbb{C})$ s.t. $\Delta \psi = f$. Then ψ is harmonic on $V = \mathbb{C} \setminus \operatorname{supp} f$. By above, $\psi = \operatorname{sm}_{\varepsilon} \psi$ on $V^{(\varepsilon)} \leadsto \varphi = \psi - \operatorname{sm}_{\varepsilon} \psi \in \mathscr{D}(X)$. Hence

$$0 = \Delta T(\varepsilon) = T(\Delta \varepsilon) = T[\Delta \psi - \Delta \operatorname{sm}_{\varepsilon} \psi]$$

and thus

$$T[f] = T[\Delta \psi] = T[\Delta \operatorname{sm}_{\varepsilon} \psi] = T[\operatorname{sm}_{\varepsilon}(\Delta \psi)] = T[\operatorname{sm}_{\varepsilon} f]$$

• Finally,

$$T[f] = \iint_{X^{(\varepsilon)}} h(z)f(z)dxdy \to \iint_{X} h(z)f(z)dxdy$$

and thus $T = T_h$.

Corollary 3.2.1. If $\frac{\partial T}{\partial \overline{z}} = 0$, then T is holomorphic function on X.

Proof: Since
$$\Delta T = 4 \frac{\partial}{\partial z} \frac{\partial T}{\partial \overline{z}} = 0$$
, $T \in \mathscr{E}(X)$. Combine with $\frac{\partial T}{\partial z} = 0$, $T \in \mathcal{O}(X)$.

3.3 Runge approximation

In this section, we need assume some knowledge in functional analysis to proof our main theorem.

Author: Minerva 69

3.3.1 Topological vector space

In this subsection, all vector space is over \mathbb{C} .

Definition 3.3.1. A **topological vector space** is a vector space E with a topology s.t. addition and scalar multiplication are continuous map.

Remark 3.3.1. For $a \in E$, the translation $E \to E$ is a homeomorphism. Thus the topology of E can be determined by the neighborhood basis of zero. If \mathfrak{B} is a neighborhood basis of zero, then $a + \mathfrak{B}$ form a neighborhood basis of a.

Definition 3.3.2. The **semi-norm** on a vector space is a mapping $p: E \to \mathbb{R}$ s.t.

- $p(x+y) \le p(x) + p(y) \ \forall x, y \in E$
- $p(\lambda x) = |\lambda| p(x)$ for all $\lambda \in \mathbb{C}$, $x \in E$

By those condition we have $p(x) \ge 0 \ \forall x \in E$. p is called a **norm** if $p(x) = 0 \iff x = 0$.

A family of semi-norm $\{p_i\}_{i\in I}$ on a vector space E induces a topology on E. Define the open neighborhood basis of zero by the set of form

$$U(p_{i_1},...,p_{i_m},\varepsilon) := B(p_{i_1},\varepsilon) \cap \cdots \cap B(p_{i_m}) \text{ where } B(p_i,\varepsilon) = \{x \in E : p_i(x) < \varepsilon\}$$

with $m \in \mathbb{N}$, $i_1, ..., i_m \in I$. Note that this topology is Hausdorff if

$$p_i(x) = 0 \ \forall i \in I \implies x = 0$$

Definition 3.3.3. A sequence $\{x_n\}_{n\in\mathbb{N}}$ of elements in a topological vector space is called a **Cauchy sequence** if for every neighborhood U of zero there exists an $n_0 \in \mathbb{N}$ s.t.

$$x_n - x_m \in U$$
 for every $n, m \geq n_0$

A topological vector space E is called a **Fréchet space** if the following hold:

- The topological of E is Hausdorff and can be defined by a countable family of semi-norms.
- E is complete i.e. every Cauchy sequence in E is convergent.

Remark 3.3.2. A Fr echet space E is metrizable. Suppose $p_n \in \mathbb{Z}_{\geq 0}$ is a family of semi-norms which defines the topology on E. If for $x, y \in E$ one sets

$$d(x,y) := \sum_{n=0}^{\infty} 2^{-n} \frac{p_n(x-y)}{1 + p_n(x-y)}$$

Then $d: E \times E \to \mathbb{R}$ is a metric on E which induces the same topology as the semi-norm p_n , $n \in \mathbb{Z}_{\geq 0}$.

Definition 3.3.4. A **Banach space** is a complete normed vector space.

Example 3.3.1.

• $C_{\mathbb{R}}([0,1])$ is a Banach space with

$$||f||_0 = \sup_{x \in [0,1]} |f(x)|$$

• $C^k_{\mathbb{R}}([0,1])$ is a Banach space with

$$||f|| = ||f||_0 + \dots + ||f||_k \text{ where } ||f||_k = \sup_{x \in [0,1]} |f^{(k)}(x)|$$

Theorem 3.3.1 (Theorem of Banach). Suppose E and F are Fréchet spaces and $f: E \to F$ is a continuous linear surjective mapping. Then f is open.

Corollary 3.3.1. Suppose E and F are Banach spaces and $f: E \to F$ is a continuous linear surjective mapping. Then $\exists C > 0$ s.t. $\forall y \in F, \exists x \in f^{-1}(y)$ s.t.

$$||x|| \le C||y||$$

Proof: Already proof in the proof of Lemma 2.2.1.

Theorem 3.3.2 (Hahn-Banach). Suppose E is a locally convex topological vector space, $E_0 \subset E$ is a vector subspace and $\varphi_0 : E_0 \to \mathbb{C}$ is a continuous linear functional. Then there exists a continuous linear functional $\varphi : E \to \mathbb{C}$ such that $\varphi|_{E_0} = \varphi_0$.

Corollary 3.3.2. Suppose E is a locally convex topological vector space and $A \subset B \subset E$ are vector subspaces. If every continuous linear functional $\varphi : E \to \mathbb{C}$ s.t. $\varphi|_A = 0$ satisfies $\varphi|_B = 0$, then A is dense in B.

Proof: Suppose A is not dense in B. Then there exists $b_0 \in B$ s.t. $b_0 \notin \overline{A}$. Let $E_0 := \overline{A} \oplus \mathbb{C}b_0$ and define a linear functional

$$\varphi_0: E_0 \longrightarrow \mathbb{C}$$
 $a + \lambda b_0 \longmapsto \lambda \text{ for } a \in \overline{A}, \lambda \in \mathbb{C}$

It is clear that φ_0 is continuous. By Hahn-Banach theorem, φ_0 can extend to $\varphi: E \to \mathbb{C}$. Then $\varphi|_A = 0$, but $\varphi|_B \not\equiv 0$ ($\xrightarrow{\times}$).

Definition 3.3.5. A linear mapping $\psi : E \to F$ between two topological space vector E and F is called **compact** or **completely continuous**, if there exists a neighborhood U of zero in E s.t. $\psi(U)$ is relatively compact in F. In particular, a compact linear mapping is continuous.

Theorem 3.3.3 (Schwartz). Suppose E and F are Fréhet spaces and φ , $\psi: E \to F$ are continuous linear mapping s.t. φ is surjective and ψ is compact. Then the image of the mapping $\varphi - \psi: E \to F$ has finite codimension in F.

3.3.2 Runge approximation

Given a Riemann surface X and $Y \subset X$, we intend to a Fréchet space structure on $\mathscr{E}(Y)$. Since Y has a countable topology, we may choose countable family of compact subset $K_j \subset Y$, $j \in J$, with $\bigcup K_j^{\circ} = Y$ and each K_j is contained in some chart (U_j, z_j) . For $j \in J$ and $\alpha \in \mathbb{Z}_{\geq 0}^2$, define a semi-norm $p_{j\alpha} : \mathscr{E}(Y) \to \mathbb{R}$ by

$$p_{j\alpha} := \sup_{a \in K_j} |D_j^{\alpha} f(a)| \text{ where } D_j^{\alpha} = \left(\frac{\partial}{\partial x_j}\right)^{\alpha_1} \left(\frac{\partial}{\partial y_j}\right)^{\alpha_2} \text{ and } z_j = x_j + iy_j$$

These countable many semi-norm $p_{j\alpha}$ define a topology on $\mathcal{E}(Y)$. Then the convergence $f_n \to f$ w.r.t. this topology means uniform convergence of the functions and all of their derivatives on

72

every K_j . This show that $\mathscr{E}(Y)$ is a Fréchet space. One can check that this topology is independent of the choice of K_j and (U_j, z_j) . Similarly, we can define the structure of a Fréchet space on $\mathscr{E}^{0,1}(Y)$. For $\omega \in \mathscr{E}^{0,1}(Y)$, say $\omega = f_j d\overline{z_j}$, where $f_j \in \mathscr{E}(U_i \cap Y)$. Define semi-norm by

$$p_{j\alpha}(\omega) := \sup_{a \in K_j} |D_j^{\alpha} f_j(a)|$$

Then $\mathscr{E}^{0,1}(Y)$ is a Fréchet space define by semi-norm $\{p_{j\alpha}: j \in J, \alpha \in \mathbb{Z}^2_{\geq 0}\}$.

Lemma 3.3.1. Suppose Y is an open subset of a Riemann surface X. Then every continuous linear map $T: \mathscr{E}(Y) \to \mathbb{C}$ has compact support, i.e. $\exists K \subset Y$ s.t.

$$T[f] = 0 \ \forall f \in \mathscr{E}(Y) \ \text{with } \sup(f) \subset Y \setminus K$$

An analogous result is also true for $\mathcal{E}^{0,1}(Y)$.

Proof: Since T is continuous, $\exists j_1,...,j_m \in J, \alpha_1,...,\alpha_m \in \mathbb{Z}^2_{>0}$ and $\varepsilon > 0$ s.t

$$|T[f]| < 1 \ \forall f \in B(p_{j_1\alpha_1}, \varepsilon) \cap \cdots \cap B(p_{j_m\alpha_m}, \varepsilon)$$

Let $K = K_{j_1} \cup \cdots \cup K_{j_m}$. Given $f \in \mathcal{E}(Y)$ with $\mathrm{supp}(f) \subset Y \setminus K$, then $f \equiv 0$ on K and thus $nf \equiv 0$ on K. Thus

$$nf \in B(p_{j_1\alpha_1}, \varepsilon) \cap \cdots \cap B(p_{j_m\alpha_m}, \varepsilon) \implies |T[nf]| < 1 \ \forall n \implies T[f] = 0$$

Lemma 3.3.2. If $S: \mathscr{E}^{0,1}(X) \to \mathbb{C}$ is a continuous linear map s.t. $S[d''g] = 0 \ \forall g \in \mathscr{E}(X)$ with $\operatorname{supp}(g) \subseteq Y$. Then $\exists \sigma \in \Omega(X)$ s.t.

$$S[\omega] = \int_Y \sigma \wedge \omega \ \forall \omega \in \mathscr{E}^{0,1}(Y) \text{ with } \operatorname{supp}(\omega) \subset Y$$

Proof:

• Let $(U, z) \subset Y$. For $\varphi \in \mathcal{D}(U)$, define

$$\widetilde{\varphi} := \begin{cases} \varphi d\overline{z} & \text{on } U \\ 0 & \text{on } X \setminus U \end{cases}$$

Then $\overline{\varphi} \in \mathscr{E}^{0,1}(X)$. Define a distribution on U by

$$S_U: \ \mathscr{D}(U) \ \longrightarrow \ \mathbb{C}$$
$$\varphi \ \longmapsto \ S[\widetilde{\varphi}]$$

By assumption,

$$0 = S[d''g] = S\left[\frac{\partial g}{\partial \overline{z}}dz\right] = S_U\left(\frac{\partial g}{\partial \overline{z}}\right) = \frac{\partial S_U}{\partial \overline{z}}(g) \ \forall g \in \mathscr{D}(U)$$

Hence $\frac{\partial S_U}{\partial \overline{z}} = 0 \rightsquigarrow \Delta S_U = 0$. By Weyl's lemma, $\exists h \in \mathcal{O}(U)$ s.t.

$$S[\widetilde{\varphi}] = S_U[\varphi] = \iint_U h(z)\varphi(z)dz \wedge d\overline{z} \ \forall \varphi \in \mathscr{D}(U)$$

Setting $hdz = \varphi_U$, we get

$$S[\omega] = \iint_U \sigma_U \wedge \omega \ \forall \omega \in \mathscr{E}^{0,1}(U) \text{ with } \operatorname{supp}(\omega) \subseteq U$$

• For another $(U', z') \subset Y$, $\exists \sigma_{U'} \in \Omega(U')$. Since

$$\iint_{U} \sigma_{U} \wedge \omega = \iint_{U'} \sigma_{U'} \wedge \omega \ \forall \omega \in \mathscr{E}^{0,1}(X) \text{ with } \operatorname{supp}(\omega) \subseteq U \cap U'$$

Then $\sigma_U = \sigma_{U'}$ on $U \cap U'$. We can glue $\{\sigma_U\}$ to get $\sigma \in \Omega(Y)$ s.t. $\sigma|_U = \sigma_U$. $\forall \omega \in \mathscr{E}^{0,1}(X)$ with $\operatorname{supp}(\omega) \subseteq Y$. By partition of unity, $\omega = \omega_1 + \cdots + \omega_n$ for $\operatorname{supp}(\omega_j) \subseteq U_j$. Hence

$$S[\omega] = \sum_{j=1}^{n} S[\omega_j] = \sum_{j=1}^{n} \iint_{Y} \sigma \wedge \omega_j = \iint_{Y} \sigma \wedge \omega$$

Definition 3.3.6. Let X be a Riemann surface.

• If Y is a subset of X, define

$$h_X(Y) := Y \cup \left(\bigcup D\right)$$

where the union is run thought all compact connected component D of (X/Y).

• $Y \subset X$ is called **Runge** if $h_X(Y) = Y$.

Proposition 3.3.1. Let X is non-compact Riemann surface and $Y \in X$ is Runge. Then $\forall Y'$ with $Y' \subset Y' \subset X$, the image of restriction map $\beta : \mathcal{O}(Y') \to \mathcal{O}(Y)$ is dense, where the topology is uniform convergence on each compact subset.

Proof: By Corollary 3.3.2, reduction to the following statement:

"
$$\forall$$
 continuous map $T: \mathscr{E}(X) \to \mathbb{C}$ with $T|_{\beta(\mathcal{O}(Y'))} \implies T|_{\mathcal{O}(Y)} = 0$ "

• By general Dolbeault lemma on $Y \in Y \in X$, $\forall \omega \in \mathscr{E}^{0,1}(X)$, $\exists f \in \mathscr{E}(Y')$ s.t. $\omega|_{Y'} = d''f$. Define

$$S: \mathscr{E}^{0,1}(X) \longrightarrow \mathbb{C}$$

$$\omega \longrightarrow T[f|_Y]$$

which is independent of the choice of f. Indeed, if d''f = d''g on $Y' \leadsto f - g \in \mathcal{O}(Y')$ and thus

$$S[(f-g)|_Y] = S[\beta(f-g)] = 0 \implies S[f|_Y] = S[g|_Y]$$

Now we show that S is continuous. Consider the vector space

$$V = \{(\omega, f) \in \mathscr{E}^{0.1}(X) \times \mathscr{E}(Y') : d''f = \omega|_{Y'}\}$$

Since $d'': \mathscr{E}(Y') \to \mathscr{E}^{0,1}(Y')$ is continuous, V is closed subspace of $\mathscr{E}^{0,1}(X) \times \mathscr{E}(Y')$ and thus is Fréchet space. By construction, the following diagram commute.

$$V \xrightarrow{\beta \circ \pi_2} \mathscr{E}(Y)$$

$$\downarrow^T$$

$$\mathscr{E}^{0,1}(X) \xrightarrow{S} \mathbb{C}$$

where π_1, π_2 be the projection map. Since π_1 is surjective and by Theorem of Banach, it is open. Then S is continuous, since $\beta \circ \pi_2$ and T are continuous.

• By Lemma 3.3.1, $\exists K \subset Y$ and $L \subset X$ s.t.

$$T[f] = 0 \forall f \in \mathcal{E}(Y) \text{ with } \operatorname{supp}(f) \subset Y \setminus K \tag{1}$$

$$S[\omega] = 0 \forall \omega \in \mathscr{E}^{0,1}(X) \text{ with } \operatorname{supp}(\omega) \subset X \setminus L$$
 (2)

Claim: $S[\omega] = 0 \ \forall \omega \in \mathcal{E}^{0,1}(X) \text{ with } \operatorname{supp}(\omega) \subseteq X \setminus h(K).$

subproof: If $f \in \mathcal{E}(X)$ with supp $(f) \in X \setminus K$, then $S[d''f] = T[f|_Y] = 0$ by (1). By Lemma 3.3.2, $\exists \sigma \in \Omega(X \setminus K)$ s.t.

$$S[\omega] = \iint_{X \setminus K} \sigma \wedge \omega \,\, \forall \omega \in \mathscr{E}^{0,1}(X) \,\, \text{with } \, \operatorname{supp}(\omega) \subseteq X \setminus K$$

By (2), $\sigma|_{X\setminus (K\cup L)} = 0$. For any connected component U of $X\setminus h(K)$ is not relative compact, $U\cap (X\setminus (K\cup L))\neq \varnothing$. Otherwise, $U\subset K\cup L$, but $K\cup L$ is compact (\longrightarrow). Thus by identity theorem, $\sigma|_U=0$ and thus $\sigma|_{X\setminus h(K)}=0$.

• Now suppose $f \in \mathcal{O}(Y)$. Since Y is Runge, $h(K) \subset h(Y) = Y$. Hence $\exists g \in \mathcal{E}(X)$ with f = g in a neighborhood of h(K) and $\operatorname{supp}(g) \subseteq Y$. Since $\operatorname{supp}(f - g) \subset Y \setminus K$, by (1) we have

$$T[f] = T[g|_Y] = S[d''g] = 0$$

the last equality is by (2), since $d''g = d''f = 0 \rightsquigarrow \operatorname{supp}(d''g) \subseteq X \setminus h(K)$.

3.3.3 Runge approximation

Observation:

- If K is closed, then h(K) is closed: Let C_j , $j \in J$ be the connected component of $X \setminus K \leadsto C_j$ are open. Let $J_0 = \{j \in J : c_j \in \overline{X \setminus K}\} \leadsto X \setminus h(K) = \bigcup_{j \in J \setminus J_0} C_j$ is open $\leadsto h(K)$ is closed.
- If K is compact, then h(K) is compact: Let C_j be as above and $K \subset U \subseteq X$.
 - •• $C_j \cap \overline{U} = \emptyset \ \forall j : \text{If } \exists C_\ell \subset X \setminus \overline{U}, \text{ then } C_\ell \subset \overline{C_\ell} \subset X \setminus U \subset X \setminus K \leadsto C_\ell = \overline{C_\ell}.$ Then C_ℓ is clopen, which contradict to X is connected.
 - •• Only finitely many C_j meet ∂U , since ∂U is compact and $\{C_j\}$ disjoint.
 - •• Let $\{C_{j_1},..,C_{j_n}\}\subset\{C_j:j\in J_0\}$ s.t. $C_{j_t}\cap\partial U\neq\emptyset$. Then

$$h(K) = K \cup \left(\bigcup_{j \in J_0} C_j\right) \subset U \cup \left(\bigcup_{i=1}^m C_{j_i}\right)$$

is relative compact. By above, h(K) is closed and thus compact.

• Since X has countable topology, $\{K'_n\}_{n=0}^{\infty}$ be the ascending chain of compact subset s.t. $\bigcup_{i=0}^{\infty} K'_i = X$. Now we define K_n by induction as follows. Let $K_0 = h(K'_0)$. Now suppose we have $K_0, ..., K_n$. Choose a compact set M s.t. $K_n \cup K'_n \subset M^\circ$ and let $K_{n+1} = h(M)$. Then $\{K_n\}_{n=0}^{\infty}$ satisfy

(1)
$$K_n = h(K_n)$$
 (2) $K_n \nearrow X$ (3) $K_n \subset K_{n+1}^{\circ}$

Theorem 3.3.4 (Existence of special exhaustion). Let X be a non-compact Riemann surface. Then $\exists Y_0 \in Y_1 \in \cdots$ with Y_i are Runge domain s.t. $X = \bigcup_{i=0}^{\infty} Y_i$ and each Y_i has a regular boundary, i.e. can solve Dirichlet problem.

Proof: It suffices to show $\forall K \subset X$, exists Runge domain $Y \subseteq X$ s.t. $K \subset Y$ and Y has regular boundary.

• Choose a connected compact set $K_1 \supset K$ and a compact set K_2 with $K_1 \subseteq K_2^{\circ}$. Let $K_2' = h(K_2)$. $\forall x \in \partial K_2'$, choose the chart (U, z) near x s.t. $U \cap K_1 = \emptyset$ and $D_x = \overline{B_{r_x}(x)} \subset U$. Since $\partial K_2'$ is compact, $\exists D_{x_1}, ..., D_{x_k}$ cover $\partial K_2'$. Set

$$Y_1 = K_2' \setminus (D_{x_1} \cup \dots \cup D_{x_k})$$

which is open and has regular boundary, $K_1 \subset Y_1 \subset K_2'$. Let C_j , $j \in J$ be the connected component of $X \setminus K_2'$. Since $h(K_2') = K_2'$, $C_j \not\in X \setminus K_2'$. Each connected component C of $X \setminus Y_1$, $C \cap D_{x_j} \neq \emptyset$ for some j. Since C is connected component, $D_{x_j} \subset C$. Note that $D_{x_j} \cap C_i \neq \emptyset$ for some $i \leadsto C_i \cap C \neq \emptyset \leadsto C_i \subset C$. Then C is not relative compact. Hence $h(Y_1) = Y_1$.

• Claim: The connected component of Runge open set Y is also Runge.

subproof: Suppose Y_i $(i \in I)$ are the connected components of Y, which are open. Let $A = X \setminus Y$ and A_k $(k \in K)$ are the connected components of A, which is closed but not compact by assumption. Then $\overline{Y_i} \cap A \neq \emptyset \ \forall i \in I$. Otherwise $\overline{Y_i} \subset Y$. Then

$$\overline{Y_i} \cap \bigcup_{j \neq i} Y_j = \varnothing \implies \overline{Y_i} = Y_i$$

which contradict to X is connected. Next we claim that $C \cap A \neq \emptyset$ for every connected component C of $X \setminus Y_i$. Otherwise $\exists j \neq i$ s.t. $C \cap Y_j \neq \emptyset$. Since C is closed connected component of $X \setminus Y_i$ and Y_j is connected, $\overline{Y_j} \subset C$. As above, this show that $\overline{Y_j} = Y_j$ ($\xrightarrow{}$). Finally, say $C \cap A_k \neq \emptyset$ for some $k \in K \leadsto C \supset A_k$. Since A_k is not compact, C is also not compact. Hence Y_i is Runge.

• Let Y be the connected component of Y_1 which contain K_1 . Then by Claim, Y is the desired Runge domain.

Theorem 3.3.5 (Runge Approximation). Suppose X is non-compact Riemann surface, Y is Runge open subset of X. Then $\forall f \in \mathcal{O}(Y), \ \forall K \subset Y, \ \forall \varepsilon > 0, \ \exists g \in \mathcal{O}(X) \text{ s.t. } \|g - f\|_K < \varepsilon$.

Proof: By replacing f by $f|_V$ with $K \subset V \subseteq X$, we may assume that $Y \subseteq X$. Let $Y = Y_0 \subseteq Y_1 \subseteq \cdots$ be a special exhaustion of X by Runge domain. By Proposition 3.3.1, $\exists f_1 \in \mathcal{O}(Y_1)$ s.t. $||f_1 - f||_K < \varepsilon/2$, $\overline{Y_{-1}} = K \subset Y_0$. By induction (note that $Y_{n-2} \subseteq Y_{n-1}$.), we get $f_n \in \mathcal{O}(Y_n)$ s.t.

$$||f_n - f_{n-1}||_{\overline{Y_{n-2}}} \le 2^{-n} \varepsilon \ \forall n \ge 2$$

Then $\forall n \in \mathbb{N}, (f_j)_{j \geq n} \to g_n \in \mathcal{O}(Y_n)$ uniformly on $\overline{Y_{n-1}}$ and thus $g_{n+1}|_{Y_n} = g_n$. Then $\exists g \in \mathcal{O}(X)$ s.t. $g|_{Y_n} = g_n$. Then $g|_k = g_{-1} = \lim_{n \to \infty} f_n$ and thus

$$\|g - f\|_{K} = \|(g - f_{N}) + (f_{N} - f_{N-1}) + \dots + (f_{1} - f)\| \le \|g - f_{N}\| + \sum_{k=1}^{N} 2^{-k} \varepsilon \xrightarrow{N \to \infty} \varepsilon$$

Author: Minerva 75

We have followed promotion theorem by the same trick in the proof of Dolbeault lemma.

Theorem 3.3.6 (General form (II) for Dolbeault lemma). Suppose X is non-compact Riemann surface. $\forall \omega \in \mathscr{E}^{0,1}(X), \exists f \in \mathscr{E}(X) \text{ s.t. } d''f = \omega.$

Proof: Let $Y_0 \in Y_1 \in \cdots$ be a special exhaustion by Runge domains. By induction on n, we will construct $f_n \in \mathscr{E}(Y_n)$ s.t.

$$\begin{cases} d'' f_n = \omega|_{Y_n} \\ ||f_{n+1} - f_n||_{\overline{Y_{n-1}}} \le 2^{-n} \end{cases}$$

n=0: By General Dolbeault lemma (I), $\exists f_0 \in \mathscr{E}(Y_0)$ s.t. $d''f_0 = \omega|_{Y_0}$. Suppose that $f_0, ..., f_n$ have been constructed. By (I) again, $\exists g \in \mathscr{E}(Y_{n+1})$ s.t. $d''g = \omega|_{Y_{n+1}}$. On Y_n ,

$$d''q = d''f_n \implies q - f_n \in \mathcal{O}(Y_n)$$

By Runge approximation, $\exists h \in \mathcal{O}(Y_{n+1})$ s.t. $\|(g - f_n) - h\|_{\overline{Y_{n-1}}} \leq 2^{-n}$. Set $f_{n+1} = g - h \in \mathscr{E}(Y_{n+1})$. Then

$$d'' f_{n+1} = d'' g = \omega|_{Y_{n+1}}$$
 and $||f_{n+1} - f_n||_{\overline{Y_{n-1}}} \le 2^{-n}$

Define $f(x) = \lim_{n \to \infty} f_n(x)$. Then

$$f = \underbrace{f_n}_{\in \mathscr{E}(Y_n)} + \sum_{k=n}^{\infty} \underbrace{(f_{k+1} - f_k)}_{\in \mathscr{O}(Y_n)} \implies f \in \mathscr{E}(Y_n) \ \forall n \implies f \in \mathscr{E}(X)$$

and

$$d''f = d''f_n + \sum_{k=n}^{\infty} d''(f_{k+1} - f_k) = \omega|_{Y_n} \ \forall n \implies d''f = \omega$$

Problem 3.3.1. Suppose X is non-compact Riemann surface. The divisor D on X is the infinite formal sum s.t. $D|_K$ is finite sum for $K \subset X$. The group of divisor is denoted by Div(X).

Theorem 3.3.7 (Weierstrass product theorem). Suppose X is non-compact Riemann surface, $D \in \text{Div } X \leadsto \exists f \in \mathscr{M}^*(X) \text{ s.t. } (f) = D. \text{ Hence } \text{Div}_p(X) = \text{Div}(X).$

Proof: Let $K_0 \subset K_1 \subset \cdots$ be a sequence of compact subset s.t.

(1)
$$K_j = h(K_j)$$
 (2) $K_{j-1} \subset K_j^{\circ}$ (3) $K_j \nearrow X$

• For $a_0 \in X \setminus K_{j_0}$, exists a weak solution f of a_0 with $f|_{K_{j_0}} = 1$: Since $K_{j_0} = h(K_{j_0})$, $\exists U$: connected component of $X \setminus K_{j_0}$ contain a with $U \not\in X \setminus K_{j_0}$. $\exists a_1 \in U \setminus K_{j_0+1}$ and a curve $c_0 : a_1 \leadsto a_0$ in U. By the proof in key lemma in Abel theorem, \exists a weak solution f_0 of ∂c_0 with $f_0|_{X \setminus U} = 1 \implies f_0|_{K_{j_0}} = 1$. Similarly, for $a_\ell \in X \setminus K_{j_0+\ell}$, $c_\ell : a_{\ell+1} \leadsto a_\ell$, there exists a weak solution f_ℓ of ∂c_ℓ with $f_\ell|_{K_{j_0+\ell}} = 1$. Then $f_0 f_1 \cdots f_n$ is a weak solution of $\sum_{\ell=0}^n \partial c_\ell = a_0 - a_{n+1}$. Let $f = \prod_{\ell=0}^\infty f_\ell$, which is well-defined, since it is finite product on each compact subset. Then f is a weak solution of a.

Author: Minerva 76

• For $D \in \text{Div}(X)$, $j \in \mathbb{Z}_{>0}$, define

$$D_j(x) := \begin{cases} D(x) & \text{if } x \in K_j \setminus K_{j-1} \\ 0 & \text{otherwise} \end{cases} \text{ where } K_{-1} = \varnothing$$

Since K_j is compact, $D_j(x) = \sum_{i=1}^n a_i - \sum_{j=1}^m b_j$. Let f_i, f'_j be the weak solution of a_i, b_j in above.

Then $g_j := \prod f_j / \prod f_j'$ is a weak solution of $D_j(x)$ s.t. $g_j|_{K_{j-1}} = 1$. Since $D(x) = \sum_{j=0}^{\infty} D_j(x)$, $g = \prod_{j=0}^{\infty} g_j$ is a weak solution of D.

• $\exists f \in \mathscr{M}^*(X) \text{ s.t. } (f) = D$:

 $\forall x \in X, \exists U_x \in X \text{ s.t. } U_x \text{ homeomorphic to the unit disk in } \mathbb{C} \text{ and } D|_{U_x} \text{ is finite, say}$ $D|_{U_x} = \sum_{i=1}^n r_i a_i \text{ with } a_i \in \mathbb{Z}. \text{ Define } f_x(z) := \prod_{i=1}^n (z - a_i)^{r_i} \in \mathscr{M}^*(U_x) \rightsquigarrow (f_x) = D|_{U_x}. \text{ Then}$

$$(f_x)|_{U_x \cap U_y} = D|_{U_x \cap U_y} = (f_y)|_{U_x \cap U_y} \implies f_x/f_y \in \mathcal{O}^*(U_x \cap U_y)$$

Let $\psi \in \mathscr{E}(X_D)$ be a weak solution of $D \rightsquigarrow \psi|_{U_x} = f_x \psi_x$ for some $\psi_x \in \mathscr{E}(U_x)$ having no zeros. Since U_x is simply connected, $\exists \varphi_x \in \mathscr{E}(U_x)$ s.t. $\varphi_x = \log \psi_x$. Then

$$f_x e^{\varphi_x} = \psi = f_y e^{\varphi_y} \text{ on } U_x \cap U_y$$

$$\implies e^{\varphi_y-\varphi_c} = \frac{f_x}{f_y} \in \mathcal{O}^*(U_x \cap U_y) \leadsto \varphi_{xy} := \varphi_y - \varphi_x \in \mathcal{O}(U_x \cap U_y) \leadsto (\varphi_{xy}) \in Z^1(\mathfrak{U},\mathcal{O}) = B^1(\mathfrak{U},\mathcal{O})$$

Then $\exists g_x \in \mathcal{O}(U_x)$ s.t. $\varphi_{xy} = g_y - g_x$ on $U_x \cap U_y$. Then

$$e^{g_y - g_x} = \frac{f_x}{f_y}$$
 on $U_x \cap U_y \implies f_x e^{g_x} = f_y e^{g_y}$ on $U_x \cap U_y$

and thus $\exists f \in \mathscr{M}^*(X)$ s.t. $f|_{U_x} = f_x e^{g_x} \leadsto (f) = (f_x) = D|_{U_x}$ on $U_x \implies (f) = D$.

Corollary 3.3.3. If X is a non-compact Riemann surface, then $\exists \omega \in \Omega(X)$ nowhere vanish.

Proof: Take $g \in \mathcal{M}(X) \setminus \mathbb{C}$, $\exists g \in \mathcal{M}^*(X)$ s.t. (f) = -(dg). Define $\omega = fdg \in \Omega(X) \leadsto (\omega) = 0$

Corollary 3.3.4. If $(a_i)_{i\in\mathbb{Z}}$ is discrete, $(c_i)_{i\in\mathbb{N}}\subset\mathbb{C} \implies \exists f\in\mathcal{O}(X) \text{ s.t. } f(a_i)=c_i$.

Proof: $\exists h \in \mathcal{O}(X) \text{ s.t. } (h) = \sum_{j=1}^{\infty} a_j.$ Let $U_j = X \setminus \{a_\ell : \ell \neq j\}$, then $\{U_j\}$ is a cover of X. Define $g_j = c_j/h \in \mathcal{M}(U_j) \leadsto g_j - g_i = \frac{c_j - c_i}{h} \in \mathcal{O}(U_i \cap U_j).$ By $H^1(X, \mathcal{O}) = 0$, $\exists g \text{ s.t. } g|_{U_i} - g_i \in \mathcal{O}(U_i).$ Let f = gh. On U_j ,

$$f = g_i h + (g - g_i)h = c_i + (g - g_i)h \in \mathcal{O}(U_i)$$

Hence $f \in \mathcal{O}(X)$ and $f(a_i) = c_i$.

Author: Minerva 77

3.4 Riemann mapping theorem

Theorem 3.4.1 (Riemann mapping theorem). If X is Riemann surface with $Rh^1_{\mathcal{O}}(X) = 0$, then X homeomorphic to one of \mathbb{P}^1 , \mathbb{C} , \mathbb{D} .

Observation: Any simply connected Riemann surface X, $Rh_{\mathcal{O}}^1(X) := \Omega(X) / d\mathcal{O}(X) = 0$.

- $\forall f \in \mathcal{O}^*(X) \leadsto \exists g, h \in \mathcal{O}(X) \text{ s.t. } e^g = h^2 = f :$ subproof: $\frac{df}{f} \in \Omega(X) \leadsto \exists g_1 \in \mathcal{O}(X) \text{ s.t. } dg_1 = \frac{df}{f} \leadsto d(fe^{-g}) = 0. \text{ Hence } f = ce^{g_1} = e^g$ for some $c \in \mathbb{C}^{\times}$. Let $h = e^{g/2} \leadsto h^2 = f$.
- \forall harmonic function $u: X \to \mathbb{R}$, $\exists f \in \mathcal{O}(X)$ s.t. $u \in \operatorname{Re} f$.

 subproof: $\exists \omega \in \Omega(X)$ s.t. $\operatorname{Re} \omega = du \leadsto \exists g \in \mathcal{O}(X)$ s.t. $\omega = dg \leadsto u = \operatorname{Re} g + c = \operatorname{Re} (g + c)$ for some $c \in \mathbb{C}$.

Definition 3.4.1. Let \widetilde{X} is the universal cover of Riemann surface X.

- X is called **elliptic** if $\widetilde{X} \simeq \mathbb{P}^1$.
- X is called **parabolic** if $\widetilde{X} \simeq \mathbb{C}$.
- X is called **hyperbolic** if $\widetilde{X} \simeq \mathbb{D}$.

Theorem 3.4.2 (Classification).

- elliptic : \mathbb{P}^1
- parabolic : \mathbb{C}^{\times} , \mathbb{C} , \mathbb{C}/Γ
- hyperbolic : others.

Proof: If X is not hyperbolic.

• If X is elliptic. Recall since $p:\widetilde{X}\to X$ is Galois, $G=\mathrm{Deck}(\widetilde{X}/X)\curvearrowright\widetilde{X}$ and by uniqueness, $\forall \varphi\neq\mathrm{id},\ \varphi$ has no fixed point. Also $X\simeq\widetilde{X}/G$. However

$$\operatorname{Deck}(\widetilde{X}/X) \leq \operatorname{Aut}(\mathbb{P}^1) = \left\{ z \mapsto \frac{az+b}{cz+d} : ad-bc \neq 0 \right\}$$

and $\frac{az+b}{cz+d}=z$ always have solution when $(a,b,c,d)\neq (a,b,0,a)$. But $z+b\notin G$ since ∞ is a fixed point. Hence $G=\{\mathrm{id}\}$ and thus $X\simeq\widetilde{X}=\mathbb{P}^1$.

• If X is parabolic. Similarly

$$\operatorname{Deck}(\widetilde{X}/X) \leq \operatorname{Aut}(\mathbb{C}) = \{az + b : a \in \mathbb{C}^{\times}, b \in \mathbb{C}\}\$$

 $\Longrightarrow G \leq \{z+b: b \in \mathbb{Z}\}$ and $X \simeq \widetilde{X}/G$. Let Γ be the orbit of 0 under G. Then Γ is discrete additive subgroup of \mathbb{C} , since $p: \widetilde{X} \to X$ is a covering. Let $V = \Gamma \otimes_{\mathbb{Z}} \mathbb{R}$ be the smallest real vector space in \mathbb{C} containing Γ .

• If dim $V = 0 \leadsto G = \{id\} \leadsto X \simeq \mathbb{C}$.

• If dim $V = 1 \leadsto G = \{z \mapsto z + b : b \in \langle \eta \rangle_{\mathbb{Z}}\} \leadsto X \simeq \mathbb{C}/\mathbb{Z} \simeq \mathbb{C}^{\times}$ since

$$\pi: \mathbb{C} \longrightarrow \mathbb{C}^{\times}$$

$$z \longmapsto \exp\left(\frac{2\pi iz}{\eta}\right) \text{ with } \pi^{-1}(0) = \langle \eta \rangle_{\mathbb{Z}} \simeq \mathbb{Z}$$

• If dim $V = 2 \rightsquigarrow G = \{z \mapsto z + b : b \in \langle \omega_1, \omega \rangle_{\mathbb{Z}} \}$ with $\omega_1/\omega \notin \mathbb{R} \rightsquigarrow X \simeq \mathbb{C}/\Gamma$.

Theorem 3.4.3 (simple form). Suppose X is non-compact Riemann surface and $Y \in X$ with $\mathrm{Rh}^1_{\mathcal{O}}(Y) = 0$ and having regular boundary, then $Y \simeq \mathbb{D}$.

Proof: For $a \in Y$, by Weierstrass theorem, $\exists g \in \mathcal{O}(X)$ s.t. (g) = a. $\exists u \in C(\overline{Y})$ s.t.

$$\begin{cases} u|_{Y} \text{ is harmonic} \\ u|_{\partial Y} = \log|g| \end{cases} \implies u = \operatorname{Re}h \text{ for some } h \in \mathcal{O}(Y)$$

Claim : Set $f = e^{-h}g \in \mathcal{O}(Y)$, then $f : Y \xrightarrow{\sim} \mathbb{D}$. subproof :

• $f(Y) \subset \mathbb{D}$: Note that |f| can define on ∂Y and

$$|f| = |e^{-h + \log|g|}| = \exp(-u + \log|g|) = 1 \text{ on } \partial Y$$

By maximal principle, |f| < 1 on Y

- r < 1, $f^{-1}(\overline{B_r(0)}) = \{y \in Y : |f(y)| \le r\} = \{y \in \overline{Y} : |f(y)| \le r\}$ which is closed in \overline{Y} and thus compact. Hence f is proper.
- Since f has a zero at a of order 1, f is 1-sheeted covering map.

Recall: If X is compact, $\forall f \in \mathcal{O}(X)$, f is constant and thus df = 0. So $\mathrm{Rh}^1_{\mathcal{O}}(X) = 0 \Longrightarrow \Omega(X) = 0$. Then g = 0 and thus $X = \mathbb{P}^1$. From now on, we assume that X is non-compact and $\mathrm{Rh}^1_{\mathcal{O}}(X) = 0$. Notice that $Y \subset X$, $\mathcal{O}(Y)$ is metrizable Fréchet space and thus sequential compactness \iff compactness.

Lemma 3.4.1. If Y is a Runge domain in X, then $Rh_{\mathcal{O}}^1(Y) = 0$.

Proof: Let $\omega_0 \in \Omega(X)$ and ω_0 never vanish. $\forall \omega \in \Omega(Y)$, $\exists h \in \mathcal{M}(Y)$ s.t. $\omega = h\omega_0|_Y$. Then

$$0 \le (\omega) = (h) + (\omega_0) = (h)$$
 on $Y \implies h \in \mathcal{O}(Y)$

Let γ be a closed curve in Y. By Runge approximation theorem, $\forall \gamma \subset K \subset Y$, $\exists \{h_n\} \in \mathcal{O}(X)$ s.t. $h_n \to h$ uniformly on K. Then $h_n \omega_0 \in \Omega(X) = d\mathcal{O}(X)$ and thus

$$0 = \int_{\gamma} h_n \omega_0 \to \int_{\gamma} h \omega_0 = \int_{\gamma} \omega \implies \int_{\gamma} \omega = 0$$

So ω has a primitive on Y. Hence $\Omega(Y) = d\mathcal{O}(Y) \rightsquigarrow \mathrm{Rh}^1_{\mathcal{O}}(Y) = 0$

Lemma 3.4.2. If $0 \in Y \subsetneq B_R(0)$ with $0 < R \le \infty$ and $Rh^1_{\mathcal{O}}(Y) = 0$, then $\exists r < R$, $f: Y \xrightarrow{\text{hol.}} B_r(0), f(0) = 0, f'(0) = 1$.

Author: Minerva 79

Proof:

• $R = \infty$: Let $a \in \mathbb{C} \setminus Y$ and

$$\varphi: \ \mathbb{C} \ \longrightarrow \ \mathbb{C} \\ z \ \longmapsto \ z - a \ \Longrightarrow \ 0 \notin \varphi(Y)$$

Since $\operatorname{Rh}^1_{\mathcal{O}}(Y) = 0$, $\exists g \in \mathcal{O}(Y)$ s.t. $g^2 = \varphi|_Y$. Let $g(0) = b \neq 0$ and $\psi(z) = \frac{z-b}{z-\overline{b}}$. Set $h = \psi \circ g$, then h(0) = 0 and

$$h'(0) = \psi'(b)g'(0) = \frac{1}{b - \bar{b}} \cdot \frac{1}{b} \neq 0$$

Define $f = h/h'(0) \rightsquigarrow f(0) = 0$, f'(0) = 1 and $r = |h'(0)|^{-1}$.

• $R < \infty$: We may assume R = 1 i.e. $Y \subsetneq \mathbb{D} \leadsto \exists a \in \mathbb{D} \setminus Y$. Consider $T_a(z) = \frac{z - a}{1 - \overline{a}z} \leadsto 0 \notin T_a(Y) \leadsto \exists g \in \mathcal{O}(Y) \text{ s.t. } g^2 = T_a|_Y \leadsto g(Y) \subset \mathbb{D}$. If $g(0) = b \neq 0$, consider $T_b = \frac{z - b}{1 - \overline{b}z}$ and $h = T_b \circ g \leadsto h(0) = 0$ and $T_b'(z) = \frac{1 - |b|^2}{(1 - \overline{b}z)^2} \Longrightarrow T_b'(b) = \frac{1}{1 - |b|^2}$. Then

$$h'(0) = T'_b(b)g'(0) = \frac{1}{1 - |b|^2} \cdot \frac{1 - |a|^2}{2b} = \frac{1 + |b|^2}{2b}$$
 since $b^2 = -a$

Hence |h'(0)| > 1. Set $f = h/h'(0) \rightsquigarrow f(0) = 0$, f'(0) = 1 and $r = |h'(0)|^{-1} < 1$.

Lemma 3.4.3. Let Z be the domain of \mathbb{C} s.t. $(\mathbb{C} \setminus Z)^{\circ} \neq \emptyset$, $\omega_0 \in Z$. Then

$$\mathcal{F} = \{ f \in \mathcal{O}(D) : f(D) \subset Z, f(0) = \omega_0 \}$$

is compact in $\mathcal{O}(D)$.

Proof: Recall Montel's theorem show that any locally bounded sequence $\{f_n\} \subset \mathcal{O}(D)$ has a subsequence which converges on each compact subset on D to some $f \in \mathcal{O}(D)$. Let $a \in \mathbb{C} \setminus Z$ and $B_r(a) \subset \mathbb{C} \setminus Z$ with some r > 0. Consider

$$\varphi: Z \longrightarrow \mathbb{C}$$
 $z \longmapsto (z-a)^{-1} \Longrightarrow Z \stackrel{\sim}{\to} \varphi(Z) \subset B_{1/r}(0)$

Hence $f(D) \subset Z$ is bounded $\forall f \in \mathcal{F}$.

Fact 3.4.1. If $f: B_r(0) \to B_{r'}(0)$ is holomorphic, then

$$|f'(0)| \le \frac{r'}{r}$$

Proof: By Cauchy's integral formula,

$$f'(0) = \frac{1}{2\pi i} \int_{\partial B_{r-\varepsilon}(0)} \frac{f(z)}{z^2} dz$$

Then

$$|f'(0)| \le \frac{1}{2\pi} \int_{\partial B_{r-\varepsilon}} \frac{|f(z)|}{|z|^2} dz \le \frac{1}{2\pi} \frac{r'}{(r-\varepsilon)^2} \cdot 2\pi (r-\varepsilon) = \frac{r'}{r-\varepsilon}$$

as desired when $\varepsilon \to 0$.

Proposition 3.4.1 (key prop.).

$$\mathcal{F} := \{ f \in \mathcal{O}(D) : f \text{ is injective, } f(0) = 0, f'(0) = 1 \}$$

is compact in $\mathcal{O}(D)$.

Proof: Let $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}$.

• If $B_r(0) \subset f_n(D)$ and $\varphi = f_n^{-1}|_{B_r(0)} : B_r(0) \to D$. By Fact 3.4.1, $1 = |\varphi'(0)| \leq \frac{1}{r} \implies r \leq 1$. Let $r_n = \sup\{r : B_r(0) \subset f_n(D)\} \ \forall n \in \mathbb{N} \leadsto r_n \leq 1$. Since it is open condition, we may choose $a_n \in \partial B_{r_n}(0)$ s.t. $a_n \notin f_n(D)$. Set $g_n = f_n/a_n$. Then $\forall |z| < 1$,

$$|a_n z| < r_n \implies a_n z = f_n(\omega) \text{ for some } \omega \in D \rightsquigarrow z = \frac{f_n(\omega)}{a_n} = g_n(\omega) \in g_n(D)$$

That is $D \subset g_n(D)$ and $1 \notin g_n(D)$, since $a_n \notin f_n(D)$.

• Since $g_n(D) \simeq D$ is simply connected, $\exists \psi \in \mathcal{O}^*(g_n(D))$ s.t.

$$\begin{cases} \psi^2 = z - 1 \\ \psi(0) = i \end{cases}$$

Set $h_n = \psi \circ g_n$ i.e. $h_n^2 = g_n - 1$.

Claim: If $\omega \in h_n(D)$, then $-\omega \notin h_n(D)$.

subproof: If not, $\exists z_1, z_2 \in D$ s.t. $h_n(z_1) = \omega$, $h_n(z_2) = -\omega$.

$$\implies g_n(z_1) = \omega^2 + 1 = g_n(z_2) \implies z_1 = z_2 \implies \omega = -\omega \implies \omega = 0$$

i.e.
$$1 \in g_n(D)$$
 (\longrightarrow)

• Since $D \subset g_n(D)$, $U := \psi(D) \subset h_n(D)$. By Claim, $(-U) \cap h_n(D) = \emptyset$.

$$\implies -U \subset \mathbb{C} \setminus h_n(D)$$

By Lemma 3.4.3, we may assume (h_n) is compactly convergence sequence. Since

$$f_n = a_n(1 + h_n^2)$$
 with $|a_n| \le 1 \ \forall n$

 f_n is locally bounded. Hence (f_n) has a compactly convergence subsequence $\{f_{n_k}\}$ and $f_{n_k} \xrightarrow{\overline{\text{unif}}} f \in \mathcal{O}(D) \rightsquigarrow 1 = f'_{n_k} \to f'$. So f(0) = 0, f'(0) = 1.

• f is injective: If not, $\exists a \in \mathbb{C}$ s.t. f-a has a t least two zeros in $D \rightsquigarrow \exists r < 1$ s.t. f-a, $f_{n_k} - a$ does not vanish on $\partial B_r(0) \ \forall k$, then

$$\frac{1}{2\pi i} \int_{|z|=r} \frac{f'(z)}{z-a} dz \ge 2$$

$$\implies \frac{1}{2\pi i} \int_{|z|=r} \frac{f'_{n_k}(z)}{f_{n_k}(z) - a} dz \ge 2 \text{ when } n_k \gg 0$$

which contradict f_{n_k} is injective.

81

Proof: (Riemann mapping theorem)

• Let $Y_0 \in Y_1 \in \cdots$ be a special exhaustion of X. By Lemma 3.4.1 and Y_i are Runge domain, $Rh^1_{\mathcal{O}}(Y_i) = 0$. Since $Rh^1_{\mathcal{O}}(Y_i) = 0$ and Y_i has regular boundary, by 3.4.3, each Y_i is homeomorphic to open disk $\forall i$. Choose $a \in Y_0$, $\exists f_i \in \mathcal{O}(Y_i)$ s.t.

$$f_i(a) = 0, \ f'_i(a) = 1, \ f_i : Y_i \xrightarrow{\sim} B_{r_i}(0) \text{ for some } r_i > 0$$

• Claim : $r_n \leq r_{n+1} \ \forall n$.

subproof: Consider the diagram

$$Y_n \xrightarrow{f_n} B_{r_n}(0)$$

$$\downarrow h = f_{n+1} \circ f_n^{-1}$$

$$Y_{n+1} \xrightarrow{f_{n+1}} B_{r_{n+1}}(0)$$

Then h(0) = 0 and $h'(0) = f'_{n+1}(a)(f_n^{-1})'(0) = 1$. By Fact 3.4.1, $1 = |h'(0)| \le \frac{r_{n+1}}{r_n}$.

• Define $R = \lim_{n \to \infty} r_n \in (0, \infty]$. Now we want to show that $X \simeq B_R(0)$. $\begin{pmatrix} R = \infty \implies X \simeq \mathbb{C} \\ R < \infty \implies X \simeq D \end{pmatrix}$.

Define \widetilde{g}_n as above. Then $\widetilde{g}_n(0) = 0$ and

$$\widetilde{g}_n'(0) = f_n'(a) \cdot \left(\frac{df_0(z)}{dz} \Big|_{z=0} \right)^{-1} \cdot r_0 = r_0$$

Set $g_n = \widetilde{g}_n/r_0$. Then $g_n(0) = 0$, $g'_n(0) = 1$ and g_n is injective. By Proposition 3.4.1, \exists a compactly convergent subsequence $(g_{n_{0k}}) \longleftrightarrow (f_{n_{0k}})$. By induction on ℓ , apply similarly argument by replace Y_0 to Y_ℓ and $f_n|_{Y_0}$ to $f_{n_{(\ell-1)k}}|_{Y_\ell}$, there exists a compactly convergent subsequence $(f_{n_{\ell k}})$. Set $f_{n_k} = f_{n_{kk}}$ and $f = \lim f_{n_k}$. By uniformly convergence, f(a) = 0, f'(a) = 0 and f is injective.

- $f: X \xrightarrow{\sim} B_R(0)$.
 - •• $\forall x \in X, x \in Y_i \text{ for some } i, f(x) = \lim_{k > i} f_{n_i}(x) \in B_{r_i}(0) \subset B_R(0).$
 - •• f is surjective: Notice that $Rh^1_{\mathcal{O}}(f(X)) = 0$, since $f: X \xrightarrow{\sim} f(X)$ and $Rh^1_{\mathcal{O}}(X) = 0$. If f is not surjective, by Lemma 3.4.2, $\exists r < R$ and $g: f(X) \to B_r(0)$, g(0) = 0, g'(0) = 1. Choose n s.t. $r_n > r$ and set $h = g \circ f \circ f_n^{-1}: B_{r_n}(0) \to B_r(0)$, h(0) = 0, h'(0) = 1. By Fact 3.4.1,

$$1 = h'(0) \le \frac{r}{r_n} \implies r_n \le r \; (\longrightarrow)$$

Corollary 3.4.1 (little Picard theorem). If $f: \mathbb{C} \to \mathbb{C}$ is non-constant holomorphic map, then f takes every value $c \in \mathbb{C}$ with at most one exception.

Author: Minerva 82

Proof: Suppose $a \neq b$ and $a, b \notin \text{Im } f$. Then $X = \mathbb{C} \setminus \{a, b\}$ is hyperbolic.

$$\widetilde{X} = D$$

$$D \xrightarrow{\exists \widetilde{f}} X \downarrow_{\pi}$$

$$D \xrightarrow{f} Y_{0}$$

Then \widetilde{f} is bounded. By Liouville theorem, \widetilde{f} is constant and thus f is constant $(-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-)$.

3.5 Functions with prescribed summands of automorphy

If $\varphi : \pi_1(X) \to \mathbb{C}$, $\sigma \mapsto a_{\sigma}$ is a group homomorphism i.e.

$$a_{\sigma\tau} = a_{\sigma} + a_{\tau} \tag{*}$$

Now we consider $\pi_1(X) \curvearrowright \mathbb{C}$ trivially i.e. $\sigma \cdot a = a$, then (*) can be written to

$$a_{\sigma\tau} = a_{\sigma} + \sigma a_{\tau}$$

If φ satisfy above equality, then φ is called a **crossed homomorphism**.

Theorem 3.5.1. If $p: Y \to X$ is holomorphic unbranched Galois covering with X, Y are non-compact Riemann surface. Let G = Deck(Y/X). Given any crossed homomorphism

$$\varphi: G \longrightarrow \mathcal{O}(Y)$$

$$\sigma \longmapsto f_{\sigma}$$

 $\exists f \in \mathcal{O}(Y) \text{ s.t. } f - \sigma f = f_{\sigma} \ \forall \sigma \in G, \text{ where } G \curvearrowright \mathcal{O}(Y) \text{ by } \sigma \cdot f = f \circ \sigma^{-1}.$

Before proof the theorem, we introduce a convenient notation. Let $\mathfrak{U} = \{U_i\}_{i \in I}$ be the cover of X s.t. $Y_i := p^{-1}(U_i) = \bigsqcup_{j \in \Lambda} V_{ij}$ with $p : V_{ij} \stackrel{\sim}{\leftarrow} U_i$. For fixed V_{ij_0} . Since p is Galois, $\forall V_{ij}$,

 $\exists ! \sigma \in G \text{ s.t. } \sigma(V_{ij_0}) = V_{ij}.$ Then we denote $\eta_i(V_{ij}) = \sigma$. Then

$$\psi = (p, \eta_i): p^{-1}(U_i) \longrightarrow U_i \times G$$
$$y \longmapsto (p(y), \eta_i(y))$$

is a homeomorphism, where G is discrete topology. Indeed, $V_{ij} \mapsto V_{ij} \times \sigma$ shows that is homeomorphism. Moreover, ψ is compatible with the action G i.e.

$$\psi(\tau y) = (x, \tau \sigma)$$

Proof: (Theorem 3.5.1)

• Define $f_i: Y_i \to \mathbb{C}$ by $y \mapsto f_{\eta_i(y)}(y) \leadsto f_i \in \mathcal{O}(Y_i)$.

Claim: $f_i - \sigma f_i = f_\sigma \text{ on } Y_i \ \forall \sigma \in G.$

 $\mathbf{subproof}: \forall y \in Y_i,$

$$(\sigma f_i)(y) = f_i(\sigma^{-1}y) = f_{\eta_i(\sigma^{-1}(y))}(\sigma^{-1}(y)) = f_{\sigma^{-1}\eta_i(y)}(\sigma^{-1}(y)) = \sigma f_{\sigma^{-1}\eta_i(y)}(y)$$

Since φ is crossed homomorphism,

$$f_i(y) = f_{\eta_i(y)}(y) = f_{\sigma}(y) + \sigma f_{\sigma^{-1}\eta_i(y)}(y) \implies f_i - \sigma f_i = f_{\sigma}$$

Author: Minerva 83

• Let $g_{ij} := f_j - f_i = (\sigma f_j + f_\sigma) - (\sigma f_i + f_\sigma) = \sigma(f_j - f_i) \in \mathcal{O}(Y_i \cap Y_j) \ \forall \sigma \in G$. Then g_{ij} is G-invariant on $Y_i \cap Y_j \leadsto g_{ij} \in \mathcal{O}(U_i \cap U_j)$ and $g_{ij} + g_{jk} = g_{ik}$. So $(g_{ij}) \in Z^1(\mathfrak{U}, \mathcal{O}) = B^1(\mathfrak{U}, \mathcal{O})$, since $H^1(X, \mathcal{O}) = 0 \leadsto \exists g_i \in \mathcal{O}(U_i) \text{ s.t. } g_{ij} = g_j - g_i$. Let $\widetilde{f}_i = f_i - g_i \in \mathcal{O}(Y_i)$ (where g_i regard as p^*g_i). Then

$$\widetilde{f}_i - \sigma \widetilde{f}_i = f_i - \sigma f_i \underline{-g_i + \sigma g_i} = f_\sigma \ \forall \sigma \in G$$

since $p \circ \sigma = p$. On $Y_i \cap Y_j$,

$$\widetilde{f}_i - \widetilde{f}_j = (f_i - f_j) - (g_i - g_j) = g_{ij} - g_{ij} = 0$$

 $\implies \exists f \in \mathcal{O}(Y) \text{ s.t. } f|_{Y_i} = \widetilde{f_i} \ \forall i \in I \text{ and } f - \sigma f = f_\sigma \ \forall \sigma \in G.$

Theorem 3.5.2 (Behnke-Stein). If X is non-compact Riemann surface, $\varphi : \pi_1(X) \to \mathbb{C}$, $\sigma \mapsto a_{\sigma}$ is a group homomorphism, then $\exists \omega \in \Omega(X)$ s.t.

$$\int_{\sigma} \omega = a_{\sigma} \ \forall \sigma \in \pi_1(X)$$

Proof: Let $p:\widetilde{X}\to X$ be the universal covering of X, then $\mathrm{Deck}(\widetilde{X}/X)=\pi_1(X)$. Let $\pi_1(X)\curvearrowright \mathbb{C}$ trivially, then φ is crossed homomorphism. By Theorem 3.5.1, $\exists F\in\mathcal{O}(\widetilde{X})$ s.t. $F-\sigma F=a_\sigma\ \forall \pi_1(X)$. Then

$$dF - \sigma(dF) = 0 \implies dF \in \Omega(X)$$

For $\sigma \in \pi_1(X)$ represented by closed curve u. Let v be the lifting of u, then $\sigma(v(0)) = v(1)$ and

$$\int_{\sigma} dF = \int_{v} dF = F(v(1)) - F(v(0)) = F(v(1)) - F(\sigma^{-1}(v(1))) = a_{\sigma}$$

Theorem 3.5.3. If X is compact Riemann surface, $\pi_1(X) \to \mathbb{C}$, $\sigma \mapsto a_{\sigma}$ is a group homomorphism, then $\exists! \omega \in \operatorname{Harm}^1(X)$ s.t.

$$\int_{\sigma} \omega = a_{\sigma} \ \forall \sigma \in \pi_1(X)$$

Proof: Modify Theorem 3.5.1 for general Riemann surface X by replace $\mathcal{O}(Y)$ to $\mathscr{E}(Y)$. Since $H^1(X,\mathscr{E})=0$, it also work. So $\exists \widetilde{\omega} \in \mathscr{E}^{(1)}(X)$ s.t.

$$\int_{\gamma} \widetilde{\omega} = a_{\sigma} \ \forall \sigma \in \pi_1(X)$$

Write $\widetilde{\omega} = \omega + df$, where $\omega \in \operatorname{Harm}^1(X)$ and $f \in \mathscr{E}(X)$, then

$$\int_{\sigma} \omega = \int_{\sigma} \widetilde{\omega} - \int_{\sigma} df = a_{\sigma}$$

For another $\omega' \in \operatorname{Harm}^1(X)$ satisfy condition, then

$$\int_{\sigma} (\omega - \omega') = a_{\sigma} - a_{\sigma} = 0 \ \forall \sigma \in \pi_1(X)$$

Hence $\sigma = \sigma'$.

3.6 The triviality of vector bundles

Definition 3.6.1. Suppose X is a Riemann surface.

• $p: E \to X$ is a **holomorphic vector bundle** of rank n if $\exists \mathfrak{U} = (U_i)_{i \in I}$: an open cover of X and a **local trivialization** φ_i of E over U_i s.t.

$$p^{-1}(U_i) \xrightarrow{\varphi_i} U_i \times \mathbb{C}^n$$

$$U_i \qquad U_i$$

In particular, $\forall x \in X, p^{-1}(X) \simeq \mathbb{C}^n$. On $U_i \cap U_j$,

where $g_{ij} \in GL_n(\mathcal{O}(U_i \cap U_j))$ is called **transition function**, which satisfy

$$g_{ij}g_{jk} = g_{ik}$$
 on $U_i \cap U_j \cap U_k$

Then $(g_{ij}) \in Z^1(\mathfrak{U}, \operatorname{GL}_n(\mathcal{O}))$. Hence

 $Z^1(\mathfrak{U},\mathrm{GL}_n(\mathcal{O})) \iff p:E \to X$ a holomorphic vector bundle of rank n

• A holomorphic section f of E if $p \circ f = id_X$ and

$$f|_{U_i}: U_i \longrightarrow U_i \times \mathbb{C}^n$$

$$x \longmapsto (x, f_i(x))$$

where $f_i \in \mathcal{O}(U_i)^n$ s.t.

$$f|_{U_{j}} (U_{i} \cap U_{j}) \times \mathbb{C}^{n} \supset \{x\} \times \mathbb{C}$$

$$U_{i} \cap U_{j} \qquad \qquad \Big| g_{ij} \qquad \qquad \Big| g_{ij}(x)$$

$$f|_{U_{i}} \qquad (U_{i} \cap U_{j}) \times \mathbb{C}^{n} \supset \{x\} \times \mathbb{C}$$

i.e. $f_i = g_{ij}f_j$ on $U_i \cap U_j$. Define \mathcal{O}_E , the sheaf of holomorphic sections of E

$$\mathcal{O}_E(U) = \{ f|_U : U \to p^{-1}(U) \text{ is holomorphic section} \}$$

• A meromorphic section of E having a pole at a of order m if $p \circ f = id$ and

$$f|_{U_i}: U_i \longrightarrow U_i \times \mathbb{C}^n$$

 $x \longmapsto (x, f_i(x))$

s.t. $f_i = g_{ij}f_j$, where $f_i = (f_{i1}, ..., f_{in}) \in \mathcal{O}(U_i \setminus \{a\})^n$ s.t. $\min_{1 \le j \le n} \operatorname{ord}_a f_{ij} = -m$.

Proposition 3.6.1. Let $p: E \to X$ be a holomorphic vector bundle of rank n and $Y \subseteq X$. Then dim $H^1(X, \mathcal{O}_E) < \infty$.

Application: $\forall a \in Y$, let U_1 be the trivialization near a which homeomorphic to disk, and let $U_2 = X \setminus \{a\}$. Then $\mathfrak{U} = \{U_1, U_2\}$ is a open cover of X. Define

$$g_{1i}(z) = \underbrace{(z^{-1}, ..., z^{-i})}_{n \text{ times}} \text{ on } U_1 \text{ and } g_{2i}(z) = \underbrace{(0, ..., 0)}_{n \text{ times}} \text{ on } U_2$$

Then $f_i(z) := g_{1i}(z) - g_{2i}(z) \in \mathcal{O}_E(U_1 \cap U_2) \implies f_i|_Y \in Z^1(\mathfrak{U} \cap Y, \mathcal{O}_E)$. Let dim $H^1(Y, \mathcal{O}_E) = k$, then $\exists a_1, ..., a_{k+1}$ are not all zero s.t. $\sum_{i=1}^{k+1} a_i f_i = 0$ in $H^1(Y, \mathcal{O}_E)$ i.e. $\exists h_i \in \mathcal{O}_E(U_i \cap Y)$ s.t.

$$\sum_{i=1}^{k+1} a_i f_i = h_2 - h_1 \text{ on } U_1 \cap U_2 \cap Y$$

Then exists $f \in \mathcal{O}_E(Y)$ s.t. $f|_{U_1 \cap Y} = \sum_{i=1}^{k+1} a_i z^i + h_1$ and $f|_{U_2 \cap Y} = h_2$. Then f is a non-trivial meromorphic section of E over Y with a pole at a. In particular, if X is compact Riemann surface, then exists a global meromorphic section which does not vanish identically.

Definition 3.6.2. *E* is **trivial** if $E \simeq X \times \mathbb{C}^n$.

Theorem 3.6.1 (Criterion). T.F.A.E.

- (1) E is trivial, $\exists n$ holomorphic sections $f_1, ..., f_n$ of E s.t. $\forall x \in X, f_1(x), ..., f_n(x)$ are linearly independent over \mathbb{C} .
- (2) For the transition functions $(g_{ij}) \in Z^1(\mathfrak{U}, \operatorname{GL}_n(\mathcal{O})), \exists (g_i) \in C^0(\mathfrak{U}, \operatorname{GL}_n(\mathcal{O})) \text{ s.t. } g_{ij} = g_i g_j^{-1}$ on $U_i \cap U_j$.

Proof:

- (1) \Longrightarrow (2): Define $X \to X \times \mathbb{C}^n$ by $f_i : x \mapsto (x, e_i)$, then f_i as desired.
- (2) \Longrightarrow (3): Let $\{(U_i, \varphi_i)\}$ be the trivialization of E and $f_s|_{U_i} = (f_{s1}^i, ..., f_{sn}^i)$. By assumption, $g_i := (f_{st}^i)_{s,t=1,...,n} \in \mathrm{GL}_n(\mathcal{O}(U_i))$. Note that $f_s^i = g_{ij}f_s^j \ \forall s = 1,...,n$, which implies

$$\begin{pmatrix} f_{s1}^i \\ \vdots \\ f_{sn}^i \end{pmatrix} = g_{ij} \begin{pmatrix} f_{s1}^j \\ \vdots \\ f_{sn}^j \end{pmatrix} \implies g_i = g_{ij}g_j$$

• Suppose $\varphi_i : p^{-1}(U_i) \simeq U_i \times \mathbb{C}^n \ \forall i$. If $y \in E$, say x = p(y), let $\varphi_i(y) = (x, v_i)$ if $y \in p^{-1}(U_i)$. By compatible on intersection,

$$v_i = g_{ij}v_j = g_ig_j^{-1}v_j \implies g_i^{-1}v_i = g_j^{-1}v_j$$

Then we have

$$\varphi: E \xrightarrow{\sim} X \times \mathbb{C}^n$$

$$y \longmapsto (x, g_i^{-1} v_i)$$

Author: Minerva 86

Theorem 3.6.2 (Main theorem). Every holomorphic vector bundle E on a non-compact Riemann surface X is trivial.

Proof: By induction on the rank n of E.

- n = 1, i.e. E is a line bundle : Let $\emptyset \neq V_0 \subseteq V_1 \subseteq \cdots$ be a special exhaustion of X by Runge domains. Over Y_i ($\forall i$), let f_i be a non-trivial meromorphic section of E.
 - •• E is trivial on $Y_i \, \forall i \in I$: By Criterion in above, our goal is to find a holomorphic section on Y_i has no zero on Y_i . Let A_i be the discrete subset of Y_i consists of zeros and poles of f_i . For $a \in A_i$ and the $a \in U \subset Y_i$ s.t. (U, φ) is a trivialization. Say

$$\varphi \circ f_i|_U: \longrightarrow U \times \mathbb{C} \quad x \mapsto (x, h_i(x)) \text{ where } h_i \in \mathscr{M}(U)$$

By Weierstrass theorem, $\exists g \in \mathcal{M}(Y_i)$ s.t.

$$(g_i) = -\sum_{a \in A_i} \operatorname{ord}_a(h_i)a \implies (f_i g_i) = 0$$

i.e. $f_i g_i \in \mathcal{O}_E(Y_i)$ and $f_i g_i$ has no zeros i.e. $f_i g_i(x)$ are linearly independent $\forall x \in Y_i$.

•• E is trivial over X: Since E is trivial over $Y_i \, \forall i, \, \mathcal{O}_E(Y_i) \simeq \mathcal{O}(Y_i) \, \forall i$. For $a \in Y_0$, $g_0 \in \mathcal{O}(Y_0)$ with $g_0(a) \neq 0$. Let $Y_{-1} := K \underset{\text{cpt.}}{\subset} Y_0$. By Proposition $??, \, \exists g_i \in \mathcal{O}(Y_i) \, \text{s.t.}$ $\|g_i - g_{i-1}\|_{\overline{Y_{i-2}}} \leq 2^{-i}\varepsilon$. Then

$$(g_j)_{j\geq n} \to f_n \in \mathcal{O}(Y_n)$$
 uniformly on $\overline{Y_{n-1}} \implies f_{n+1}|_{Y_n} = f_n$ and $f_n(a) = \lim_{j\to\infty} g_j(a) \neq 0$

Then $\exists f \in \mathcal{O}(X)$ s.t. $f|_{Y_n} = f_n \rightsquigarrow f(a) \neq 0$ i.e. $f \not\equiv 0$. By Weierstrass theorem, $\exists \widetilde{f} \in \mathcal{M}(X)$ s.t.

$$(\widetilde{f}) = -(f) \implies (\widetilde{f}f) = 0$$

Then $\widetilde{f}f \in \mathcal{O}(X)$ and has no zeros.

- n > 1:
 - •• Case 1. \exists a global holomorphic section $F_n \in \mathcal{O}_E(X)$ does not vanish anywhere : Since E is locally trivial, exists the trivialization $\{(U_i, \varphi_i)\}_{i \in I}$ and local frames $F_1^i, ..., F_{n-1}^i \in \mathcal{O}_E(U_i)$ s.t. $F_1^i(x), ..., F_{n-1}^i(x), F_n(x)$ are linearly independent over \mathbb{C} . On $U_i \cap U_j$,

$$\begin{pmatrix} F_1^i \\ \vdots \\ F_{n-1}^i \\ F_n \end{pmatrix} = \begin{pmatrix} G^{ij} & a^{ij} \\ \hline 0 & 1 \end{pmatrix} \begin{pmatrix} F_1^j \\ \vdots \\ F_{n-1}^j \\ F_n \end{pmatrix}$$

where $G^{ij} \in GL_{n-1}(\mathcal{O}(U_i \cap U_j))$ and $a^{ij} \in \mathcal{O}(U_i \cap U_j)^{n-1}$ is column vectors. On $U_i \cap U_j \cap U_k$, we have

$$\begin{pmatrix} G^{ik} & a^{ik} \\ \hline 0 & 1 \end{pmatrix} \begin{pmatrix} F_1^k \\ \vdots \\ F_{n-1}^k \\ F_n \end{pmatrix} = \begin{pmatrix} F_1^i \\ \vdots \\ F_{n-1}^i \\ F_n \end{pmatrix} = \begin{pmatrix} G^{ij} & a^{ij} \\ \hline 0 & 1 \end{pmatrix} \begin{pmatrix} G^{jk} & a^{jk} \\ \hline 0 & 1 \end{pmatrix} \begin{pmatrix} F_1^k \\ \vdots \\ F_{n-1}^k \\ F_n \end{pmatrix}$$

Then $G^{ij}G^{jk} = G^{ik} \rightsquigarrow (G^{ij}) \in Z^1(\mathfrak{U}, \operatorname{GL}_{nn-1}(\mathcal{O}))) \longleftrightarrow$ a holomorphic vector bundle of rank n-1. By induction hypothesis, it is trivial. By Criterion of triviality, $\exists G^i \in \operatorname{GL}_{n-1}(\mathcal{O}(U_i))$ s.t. $G^{ij} = G^i(G^j)^{-1}$ on $U_i \cap U_j$. Set

$$\begin{pmatrix} \widetilde{F}_1^i \\ \vdots \\ \widetilde{F}_{n-1}^i \end{pmatrix} = (G^i)^{-1} \begin{pmatrix} F_1^i \\ \vdots \\ F_{n-1}^i \end{pmatrix} \implies \begin{pmatrix} \widetilde{F}_1^i \\ \vdots \\ \widetilde{F}_{n-1}^i \end{pmatrix} = \begin{pmatrix} I_{n-1} & b^{jk} \\ \vdots \\ \widetilde{F}_{n-1}^j \end{pmatrix} \begin{pmatrix} \widetilde{F}_1^j \\ \vdots \\ \widetilde{F}_{n-1}^j \end{pmatrix}$$

for some $b^{ij} \in \mathcal{O}(U_i \cap U_j)^{n-1}$. Then

$$\begin{pmatrix} \widetilde{F}_1^i \\ \vdots \\ \widetilde{F}_{n-1}^i \end{pmatrix} = \begin{pmatrix} \widetilde{F}_1^j \\ \vdots \\ \widetilde{F}_{n-1}^j \end{pmatrix} + \begin{pmatrix} b_1^{ij} \\ \vdots \\ b_{n-1}^{ij} \end{pmatrix} F_n \implies b^{ij} + b^{jk} = b^{ik} \rightsquigarrow (b^{ij}) \in Z^1(\mathfrak{U}, \mathcal{O}^{n-1})$$

Since $H^1(X, \mathcal{O}^{n-1}) = H^1(X, \mathcal{O})^{\oplus (n-1)} = 0$, $\exists b^i \in \mathcal{O}(U_i)^{n-1}$ s.t. $b^{ij} = b^i - b^j$ on $U_i \cap U_j$. Set

$$\begin{pmatrix} \overline{F}_{1}^{i} \\ \vdots \\ \overline{F}_{n-1}^{i} \end{pmatrix} = \begin{pmatrix} F_{1}^{i} \\ \vdots \\ F_{n-1}^{i} \end{pmatrix} - \begin{pmatrix} b_{1}^{i} \\ \vdots \\ b_{n-1}^{i} \end{pmatrix} F_{n} \rightsquigarrow \begin{pmatrix} \overline{F}_{1}^{i} \\ \vdots \\ \overline{F}_{n-1}^{i} \end{pmatrix} = \begin{pmatrix} \overline{F}_{1}^{j} \\ \vdots \\ \overline{F}_{n-1}^{j} \end{pmatrix} \text{ on } U_{i} \cap U_{j}$$

Then $\exists F_1, ..., F_{n-1} \in \mathcal{O}_E(X)$ s.t. $F_k|_{U_i} = \overline{F}_k^i$. Hence E is trivial.

• Case 2. Recall that

 $Y \subseteq X \implies \exists$ a non-trivial meromorphic section of E over Y

 $\implies \exists$ a holomorphic section of E over Y which has no zeros. (By Weierstrass thm.)

 $\Longrightarrow E$ is trivial over Y (By Case 1.)

Suppose $Y_0 \in Y_1 \in Y_2 \in \cdots$ is a special exhaustion, then E is trivial on $Y_i \forall i \rightsquigarrow \mathcal{O}_E(Y_i) \simeq \mathcal{O}(Y_i)^n$. By using the similar argument for the case of n = 1, by Proposition 3.3.1, \exists a non-trivial holomorphic section of E over X. By Weierstrass theorem, \exists a global holomorphic section does not vanish anywhere. By Case 1, E is trivial.

Corollary 3.6.1. If X is non-compact Riemann surface, then $H^1(X, GL_n(\mathcal{O})) = 0$. In particular, $n = 0 \implies H^1(X, \mathcal{O}^*) = 0$.

3.6.1 Proof of finiteness

Lemma 3.6.1. If $Y_0 \subset Y$, then the restriction map $H^1(Y, \mathcal{O}_E) \to H^1(Y_0, \mathcal{O}_E)$.

Proof: Let $\{(U_i, \varphi_i)\}_{i=1}^m$ be the trivialization over Y s.t. U_i homeomorphic to open disk in \mathbb{C} . Note that $\forall V \subset U_i$, $\mathcal{O}_E|_V \simeq \mathcal{O}_V^{\oplus n}$ and thus $H^1(V, \mathcal{O}_E) \simeq H^1(V, \mathcal{O}_V)^{\oplus n} = 0$.

Claim: Let $Y_k = Y_0 \cup \bigcup_{i=1}^k U_i$, then $H^1(Y_k, \mathcal{O}_E) \twoheadrightarrow H^1(Y_{k-1}, \mathcal{O}_E) \ \forall k = 1, ..., m$.

subproof: Fix k, we construct the Leray cover of Y_{k-1} , Y_k by

$$\begin{cases} V_i = U_i \cap Y_{k-1}, \ i = 1, ..., m & \Longrightarrow \mathfrak{V} = \{V_i\} \text{ is a Leray cover of } Y_{k-1} \\ V'_i = Y_i \text{ for } i \neq k, \ V'_k = U_k & \Longrightarrow \mathfrak{V}' = \{V'_i\} \text{ is a Leray cover of } Y_k \end{cases}$$

We find $V_i \cap V_j = V_i \cap V_i' \ \forall i \neq j$, since

$$V_i \cap V_k = V_i \cap U_k \cap Y_{k-1} = V_i \cap V_k' = V_i' \cap V_k'$$

Hence $Z^1(\mathfrak{V}, \mathcal{O}_E) = Z^1(\mathfrak{V}', \mathcal{O}_E)$. Then

$$C^{0}(\mathfrak{V}', \mathcal{O}_{E}) \longrightarrow C^{0}(\mathfrak{V}, \mathcal{O}_{E})$$

$$\downarrow_{\delta} \qquad \qquad \downarrow_{\delta} \qquad \Longrightarrow B^{1}(\mathfrak{V}', \mathcal{O}_{E}) \hookrightarrow B^{1}(\mathfrak{B}, \mathcal{O}_{E})$$

$$C^{1}(\mathfrak{V}', \mathcal{O}_{E}) \longrightarrow C^{1}(\mathfrak{V}, \mathcal{O}_{E})$$

Hence

$$H^{1}(Y_{k}, \mathcal{O}_{E}) = H^{1}(\mathfrak{V}', \mathcal{O}_{E}) = Z^{1}(\mathfrak{V}', \mathcal{O}_{E}) / B^{1}(\mathfrak{V}', \mathcal{O}_{E})$$

$$\longrightarrow Z^{1}(\mathfrak{V}, \mathcal{O}_{E}) / B^{1}(\mathfrak{V}, \mathcal{O}_{E}) = H^{1}(\mathfrak{V}, \mathcal{O}_{E}) = H^{1}(Y_{k-1}, \mathcal{O}_{E})$$

Hence by Claim, we have

$$H^1(Y, \mathcal{O}_E) = H^1(Y_m, \mathcal{O}_E) \twoheadrightarrow H^1(Y_{m-1}, \mathcal{O}_E) \twoheadrightarrow \cdots \twoheadrightarrow H^1(Y_1, \mathcal{O}_E) \twoheadrightarrow H^1(Y_0, \mathcal{O}_E)$$

Proposition 3.6.2. Let $p: E \to X$ be a holomorphic vector bundle of rank n and $Y \subseteq X$. Then dim $H^1(X, \mathcal{O}_E) < \infty$.

Proof:

• Choose $Y' \in X$ s.t. $Y \in Y'$ and $Y = \bigcup_{i=1}^{m} V_i$, $Y' = \bigcup_{i=1}^{m} U_i$ s.t. $\{(U_i, \varphi_i)\}_{i=1}^{m}$ is trivialization over Y', $V_i \in U_i$ and $U_i \simeq D \subset \mathbb{C}$. Since $H^1(V_i, \mathcal{O}_E) = 0$ and $H^1(U_i, \mathcal{O}_E) = 0$, $\mathfrak{V} = \{V_i\}$ and $\mathfrak{U} = \{U_i\}$ is a Leray cover of Y and Y' respectively. By Lemma,

$$H^1(Y', \mathcal{O}_E) = H^1(\mathfrak{U}, \mathcal{O}_E) \twoheadrightarrow H^1(\mathfrak{V}, \mathcal{O}_E) = H^1(Y, \mathcal{O}_E)$$

Note that $\mathcal{O}(U_i)$, $\mathcal{O}(U_i \cap U_j)$ are Fréchet space $\implies \mathcal{O}_E(U) \simeq \mathcal{O}(U_i)^{\oplus n}$, $\mathcal{O}_E(U_i \cap U_j)$ are Fréchet space. Also

$$C^0(\mathfrak{U}, \mathcal{O}_E) = \prod_i \mathcal{O}_E(U_i), \ C^1(\mathfrak{U}, \mathcal{O}_E) = \prod_{i,j} \mathcal{O}_E(U_i \cap U_j)$$

are all Fréchet space. $Z^1(\mathfrak{U}, \mathcal{O}_E)$ is also Fréchet space, since it is closed subset of $C^1(\mathfrak{U}, \mathcal{O}_E)$. It is clear that

$$\delta: C^0(\mathfrak{V}, \mathcal{O}_E) \to C^1(\mathfrak{B}, \mathcal{O}_E)$$
 and $\beta: Z^1(\mathfrak{U}, \mathcal{O}_E) \to Z^1(\mathfrak{V}, \mathcal{O}_E)$

are continuous map.

• If $V \subseteq U$, then $\beta : \mathcal{O}(U) \to \mathcal{O}(V)$ is compact : Since $\overline{V} \subset U$,

$$W:=\{f\in\mathcal{O}(U):\sup_{x\in\overline{V}}|f(x)|<1\}$$

is a neighborhood of zero in $\mathcal{O}(U)$. By Montel's theorem,

$$W' := \{g \in \mathcal{O}(V) : \sup_{y \in V} |g(y)| \le 1\}$$

is compact in $\mathcal{O}(V)$ and $\beta(W) \subset W'$. Hence β is compact.

• By above, we get $\beta: Z^1(\mathfrak{U}, \mathcal{O}_E) \to Z^1(\mathfrak{V}, \mathcal{O}_{\mathfrak{E}})$ is a compact map. Consider to map

$$\varphi: C^{0}(\mathfrak{V}, \mathcal{O}_{E}) \times Z^{1}(\mathfrak{U}, \mathcal{O}_{E}) \longrightarrow Z^{1}(\mathfrak{V}, \mathcal{O}_{E})$$

$$(\eta, \xi) \longmapsto \delta \eta + \beta(\xi)$$

$$\psi: C^{0}(\mathfrak{V}, \mathcal{O}_{E}) \times Z^{1}(\mathfrak{U}, \mathcal{O}_{E}) \longrightarrow Z^{1}(\mathfrak{V}, \mathcal{O}_{E})$$

$$(\eta, \xi) \longmapsto \beta(\xi)$$

Then by Lemma 3.6.1, φ is surjective. By β is compact, ψ is also compact. By Schwartz theorem, the image of $\varphi - \psi$ (= $B^1(\mathfrak{V}, \mathcal{O}_E)$) has finite codimension in $Z^1(\mathfrak{V}, \mathcal{O}_E)$. Hence $H^1(\mathfrak{V}, \mathcal{O}_E)$ has finite dimension.

3.6.2 $H^1(X, \mathcal{O}^*)$

Recall that if X is non-comapct Riemann surface, $H^1(X, \mathcal{O}^*) = 0$.

Theorem 3.6.3. If X is compact Riemann surface, then $H^1(X, \mathcal{O}^*) \simeq \operatorname{Pic}(X) = \operatorname{Div}(X) / \operatorname{Div}_p(X)$.

Proof:

- Define $\varphi: H^1(X, \mathcal{O}^*) \to \operatorname{Pic}(X)$ as follows. Given $\xi = [(g_{ij})] \in H^1(X, \mathcal{O}^*)$ with $(g_{ij}) \in Z^1(\mathfrak{U}, \mathcal{O}^*)$, then it associate a line bundle $p: L \to X \to \exists$ a non-trivial meromorphic section of L, say $f_i \in \mathscr{M}^*(U_i)$, $f_I = g_{ij}f_j$ on $U_i \cap U_j$. Let $D \in \operatorname{Div}(X)$ s.t. $\forall x \in X$, $D(x) = \operatorname{ord}_x(f_i)$ if $x \in U_i$, which is well-define, since $f_i/f_j = g_{ij} \in \mathcal{O}^*(U_i \cap U_j)$. Then define $\varphi(\xi) = D + \operatorname{Div}_p(X)$.
- Now we check that φ is well-defined: For another $\widetilde{f}_i \in \mathscr{M}^*(U_i)$ with $\widetilde{f}_i = g_{ij}\widetilde{f}_j$. Then

$$\frac{\widetilde{f_i}}{\widetilde{f_j}} = g_{ij} = \frac{f_i}{f_j} \implies \frac{\widetilde{f_i}}{f_i} = \frac{\widetilde{f_j}}{f_j} \text{ on } U_i \cap U_j$$

Then $\exists F \in \mathscr{M}^*(X) \text{ s.t. } F|_{U_i} = \widetilde{f_i}/f_i \implies \widetilde{D} = D + (F) \text{ and thus } \widetilde{D} + \mathrm{Div}_p(X) = D + \mathrm{Div}_p(X).$ If $\xi = [(g'_{st})]$ with $(g'_{st}) \in Z^1(\mathfrak{U}', \mathcal{O}^*)$, where \mathfrak{U}' is refinement of \mathfrak{U} , then...

- It is clear that φ is group homomorphism.
- φ is surjective: Given $D \in \text{Div}(X)$, $\exists \mathscr{U} = \{U_i\}_{i \in I}$ and $f_i \in \mathscr{M}(U_i)$ s.t. $(f_i) = D|_{U_i} \leadsto g_{ij} = f_i/f_j \in \mathcal{O}^*(U_i \cap U_j) \leadsto (g_{ij}) \in Z^1(\mathfrak{U}, \mathcal{O}^*)$.
- φ is injective: Let $\varphi(\xi) \in \text{Div}_p(X)$, i.e. $(f_i)_{i \in I} = (f)$ for some $f \in \mathcal{M}(X)$. Then $g_i = f_i/f \in \mathcal{O}^*(U_i)$. Hence

$$g_{ij} = \frac{f_i}{f_j} = \frac{g_i}{g_j} \implies (g_{ij}) \in B^1(\mathfrak{U}, \mathcal{O}^*)$$

3.7 Riemann Hilbert problem

Recall: $p: \widetilde{X} \to X$, $A \in M_{n \times n}(\Omega(X))$, $G = \operatorname{Deck}(\widetilde{X}/X) = \pi_1(X)$, $\Psi = (\omega_1 \cdots \omega_n) \in \operatorname{GL}_n(\mathcal{O}(\widetilde{X}))$ with $d\Phi = (p^*A)\Phi$. $\forall \sigma \in G$, $\sigma\Phi = \Psi(\sigma^{-1})$ is another fundamental system of solution. So $\exists T_{\sigma} \in \operatorname{GL}_n(\mathbb{C})$ s.t. $\sigma\Phi = \Phi T_{\sigma}$ and

$$\begin{array}{ccc} G & \longrightarrow & \mathrm{GL}_n(\mathbb{C}) \\ \sigma & \longmapsto & T_{\sigma} \end{array}$$

is a group homomorphism. How about converse statement.

Author: Minerva 90

Theorem 3.7.1 (Riemann Hilbert problem). Suppose X is a non-compact Riemann surface, S be the discrete subset of X and $X' = X \setminus S$. $T : \pi_1(X') \to \operatorname{GL}_n(\mathbb{C}), \ \sigma \mapsto T_{\sigma}$ is a group homomorphism. Then $\exists A \in M_n(\Omega(X'))$ s.t. $d\omega = A\omega$ has a regular singular point at each $a \in S$ and a fundamental system Φ of solution with $\sigma \Phi = \Phi T_{\sigma} \ \forall \sigma \in \pi_1(X')$.

Proof of $S = \emptyset$:

First we improve the Theorem 3.5.1.

Lemma 3.7.1. Let X, Y are non-compact Riemann surface, $p: Y \to X$ holomorphic unbranch Galois covering, $G = \operatorname{Deck}(Y/X)$. If $T: G \to \operatorname{GL}_n(\mathbb{C})$, $\sigma \mapsto T_{\sigma}$ is a group homomorphism, then $\exists \Phi \in \operatorname{GL}_n(\mathcal{O}(Y))$ s.t. $\sigma \Phi = \Phi T_{\sigma} \ \forall \sigma \in G$.

Proof:

• Local solutions: Choose $\mathcal{U} = (U_i)_{i \in I}$ be a cover of X s.t. $Y_i := p^{-1}(U_i) = \bigsqcup_{j \in \Lambda} V_{ij}, \ p|_{V_{ij}} : V_{ij} \xrightarrow{\sim} U_i$. Fix V_{ij_0} , then $\forall V_{ij}, \ \exists ! \sigma_j \in G$ s.t. $\sigma_j(V_{ij_0}) = V_{ij}$. Consider

$$(p, \eta_i): Y_i \xrightarrow{\sim} U_i \times G$$

 $y \longmapsto (p(y), \sigma_i)$ if $y \in V_{ij}$

Define

$$\Psi_i \quad Y_i \quad \longrightarrow \quad \mathrm{GL}_n(\mathbb{C}) \\
y \quad \longmapsto \quad T_{\eta_i(y)^{-1}}$$

Then Ψ_i is constant on each V_{ij} and thus $\Psi_i \in \mathrm{GL}_n(\mathcal{O}(Y_i))$. $\forall y \in Y_i, \sigma \in G$,

$$\sigma \Psi_i(y) = \Psi_i(\sigma^{-1}(y)) = T_{\eta_i(\sigma^{-1}(y))^{-1}} = T_{(\sigma^{-1}\eta_i(y))^{-1}} = T_{\eta_i(y)^{-1}\sigma} = \Psi_i(y)T_{\sigma}$$

• Global solution: Define $F_{ij} = \Psi_i \Psi_j^{-1} \in GL_n(\mathcal{O}(Y_i \cap Y_j))$, then

$$\sigma(F_{ij}) = (\sigma \Psi_i)(\sigma \Psi_j)^{-1} = \Psi_i T_{\sigma} T_{\sigma}^{-1} \Psi_j^{-1} = \Psi_i \Psi_j^{-1} = F_{ij}$$

i.e. F_{ij} is G-invariant $\rightsquigarrow F_{ij}$ can be regard as $\operatorname{GL}_n(\mathcal{O}(U_i \cap U_j))$. Since $(F_{ij}) \in Z^1(\mathfrak{U}, \operatorname{GL}_n(\mathcal{O}))$ and $H^1(X, \operatorname{GL}_n(\mathcal{O})) = 0$, $\exists F_i \in \operatorname{GL}_n(\mathcal{O}(U_i))$ s.t. $F_{ij} = F_i F_j^{-1}$ on $U_i \cap U_j$. Consider $\Phi_i = (p^*F_i)^{-1}\Psi_i \in \operatorname{GL}_n(\mathcal{O}(Y_i))$, then

$$\sigma \Phi_i = (\sigma F_i)^{-1} (\sigma \Psi_i) = F_i^{-1} \Psi_i T_\sigma = \Psi_i T_\sigma$$

$$\Phi_i^{-1}\Phi_j = \Psi_i^{-1}(p^*F_i)(p^*F_j)^{-1}\Psi_j = \Psi_i^{-1}F_{ij}\Psi_j = I$$

Hence $\exists \Phi \in GL_n(\mathcal{O}(Y))$ s.t. $\Phi|_{Y_i} = \Phi_i$.

Applying lemma 1 to $p: \widetilde{X} \to X$, we get $\Phi \in \mathrm{GL}_n(\mathcal{O}(\widetilde{X}))$ with $\sigma \Phi = \Phi T_{\sigma}$. Since

$$\sigma(d\Phi \cdot \Phi^{-1}) = d(\sigma\Phi) \cdot (\sigma\Phi)^{-1} = d\Phi \cdot T_{\sigma}(T_{\sigma}^{-1}\Phi) = d\Phi \cdot \Phi^{-1}$$

Then $d\Phi \cdot \Phi^{-1}$ is $\operatorname{Deck}(\widetilde{X}/X)$ invariant. Hence $\exists A \in M_{n \times n}(\Omega(X))$ s.t. $p^*A = d\Phi \cdot \Phi^{-1}$ and thus $d\Phi = (p^*A)\Phi$.

Author: Minerva 91

Proof of $S \neq \emptyset$:

Lemma 3.7.2. Let $p': \widetilde{X'} \to X'$ is the universal covering of X'. For $a \in S$, let $a \in (U, z) \subset X' \cup \{a\}$ with $z(U) = D \subset \mathbb{C}$ and z(a) = 0. If z is any connected component of $p'^{-1}(U \setminus \{a\})$, then $p': Z \to U \setminus \{a\}$ is the universal covering.

Proof: If $p'|_Z$ is not the universal covering, by Remark 1.2.1,

with $k \geq 1$. By Weierstrass product theorem, $\exists h \in \mathcal{O}(X)$ s.t. $(h) = a \in \text{Div}(X)$, then $\omega = dh/h \in \Omega(X')$. Let $\gamma : |z| = 1/2$ in D^* , we can lift the curve γ to $\gamma_1 : z_1 \leadsto z_2$ in Z, and by induction we can lift γ to $\gamma_i : z_i \leadsto z_{i+1}$ in Z with $z_{k+1} = z_1$. Then $c = \gamma_1 \cdots \gamma_k$ is a closed curve in Z. Since $\widetilde{X'}$ is simply connected, $p^*\omega$ has primitive on $\widetilde{X'}$. Hence

$$0 = \int_{c} p^{*}\omega = \sum_{i=1}^{k} \int_{\gamma_{i}} p^{*}\omega = \sum_{j=1}^{k} \int_{\gamma} \omega = 2\pi i k \implies k = 0 \ (\longrightarrow)$$

Proof:

- Suppose $S = \{a_i : i \in I\}$ with $0 \notin I$. Choose $a_i \in (U_i, z_i) \subset X' \cup \{a_i\}$ with $z_i(U_i) = D \subset \mathbb{C}$ and $z_i(a_i) = 0$. Let $J = I \cup \{0\}$ and $U_0 = X' \leadsto \mathfrak{U} = (U_j)_{j \in J}$ is a cover of X. Let $Y_0 = \widetilde{X'}$ and $Y_i = p'^{-1}(U_i \setminus \{a_i\}) \ \forall i \in I$.
- By the case of $S = \emptyset$, $\exists \Psi_0 \in GL_n(\mathcal{O}(Y_0))$ s.t. $\sigma \Psi_0 = \Psi_0 T_\sigma \ \forall \sigma \in \pi_1(X')$.
- $\forall j \in I$, for any connected component Z of Y_j , $p': Z \to U_i \setminus \{a_i\} \simeq D^*$ is the universal covering of D^* and $\operatorname{Deck}(Z/D^*) \simeq \pi^*(D^*) \simeq \mathbb{Z} = \langle \tau \rangle \subset \pi_1(X')$, where $\tau \log = \log + 2\pi i$. Let $B \in M_{n \times n}()$ s.t. $\exp(2\pi i B) = T_{\tau}$. Then $\Psi_j := \exp(B \log) \in \operatorname{GL}_n(\mathcal{O}(Z))$ be a fundamental system of solution of $w = \frac{1}{z} Bw$ s.t. $\tau \Psi_j = \Psi_j T_{\tau}$. $\forall \sigma \in \operatorname{Deck}(Z/D^*)$, say $\sigma = \tau^k$ and thus

$$\sigma \Psi_j = \tau^k \Psi_j = \Psi_j T_\tau^k = \Psi_j T_\sigma$$

Since Y_j is disjoint union of connected component, there exists $\Psi_j \in GL_n(\mathcal{O}(Y_j))$ s.t. $\Psi_j|_Z$ is want we find in above.

• Note that $F_{ij} := \Psi_i \Psi_j^{-1} \in \operatorname{GL}_n(\mathcal{O}(Y_i \cap Y_j))$ is invariant under covering transformation. So $F_{ij} \in \operatorname{GL}_n(\mathcal{O}(U_i \cap U_j))$. Then $(F_{ij}) \in Z^1(\mathfrak{U}, \operatorname{GL}_n(\mathcal{O}))$. By $H^1(X, \operatorname{GL}_n(\mathcal{O})) = 0$, $\exists F_i \in \operatorname{GL}_n(\mathcal{O}(U_i))$ s.t. $F_{ij} = F_i F_j^{-1} \ \forall i, j$. Then we can glue Φ_j to $\Phi \in \operatorname{GL}_n(\mathcal{O}(Y))$ and $\sigma \Phi = \Phi T_\sigma \ \forall \sigma \in \pi_1(X)$. On $U_i \setminus \{a_i\}$ one has $\Phi = F_i^{-1} \Psi_i$. Since Ψ_i has regular singular points and F_i^{-1} is holomorphic on all of U_i , it follows that Φ also has regular singular points. Since Φ is a fundamental system of solution of dw = Aw, where $A := d\Phi \cdot \Phi^{-1} \in M_{n \times n}(\Omega(X'))$, since it is invariant under covering transformation.

Chapter 4

More Jacobi variety

4.1 Riemann condition

Recall the Jacobi variety is $X = \mathbb{C}^n/\Lambda$, where $\Lambda = \bigoplus_{i=1}^n \mathbb{Z}\lambda_i$ is a lattice. Let $x^1, ..., x^{2n}$ be the real coordinate on X.

- Let $p: \mathbb{C}^n \to X$ be the universal cover of X, then $\Lambda = \operatorname{Deck}(\mathbb{C}^n/X) \simeq \pi_1(X) \simeq H_1(X)$, since H_1 is abelianization of $\pi_1(X)$ and Λ is abelian.
- $dz^1,...,dz^n,d\overline{z}^1,...,d\overline{z}^n$ are Λ -invariant \leadsto global 1-form on X.
- $H^1(X, \mathbb{Z}) = \mathbb{Z}\{dx^1, ..., dx^{2n}\}$ via

$$\int_{\lambda_i} dx^j = \delta_{ij}$$

where λ_i is regard as the element in $H_1(X)$. By basis change,

$$H^1(X,\mathbb{Z})\simeq \mathbb{Z}\{dz^1,...,dz^n,d\overline{z}^1,...,d\overline{z}^n\}$$

- $H^k(X,\mathbb{Z})=Z(dx^I)_{|I|=k}$: Since $X\simeq (S^1)^n,$ by Künneth formula,

$$H^k(X,\mathbb{Z}) \simeq \bigwedge^k (\Lambda^*) = \bigwedge^k (H^1(X,\mathbb{Z}))$$

Theorem 4.1.1 (Kodaira embedding theorem). Suppose X is complex manifold. X is algebraic $\iff \exists$ an integral closed positive (1,1)-form.

In general, the (1,1)-form on X is

$$\omega = \frac{\sqrt{-1}}{2} \sum h_{\alpha \overline{\beta}} dz^{\alpha} \wedge d\overline{z}^{\beta}$$

Let $dx = \pi dz + \overline{\pi} d\overline{z}$ (since dx is real), where

$$dx = \begin{pmatrix} dx^1 \\ \vdots \\ dx^{2n} \end{pmatrix}, dz = \begin{pmatrix} dz^1 \\ \vdots \\ dz^n \end{pmatrix} \text{ and } \pi \in M_{2n \times n}(\mathbb{C})$$

and let $\widetilde{\pi} = (\pi, \overline{\pi}) \in M_{2n \times 2n}(\mathbb{C})$.

Definition 4.1.1. $\omega = \frac{1}{2} \sum q_{ij} dx^i \wedge dx^j$ is **integral** if $q_{ij} \in \mathbb{Z}$. If ω is integral, then $Q = (q_{ij})$ is an integral skew-symmetric $2n \times 2n$ matrix.

Represent dx^i as dz^{α} , $d\overline{z}^{\alpha}$ and omit the summation symbol if the index appear in both superscript and subscript, we have

$$\omega = \frac{1}{2} \sum q_{ij} \left(\pi_{i\alpha} dz^{\alpha} + \overline{\pi_{i\alpha}} d\overline{z}^{\alpha} \right) \wedge \left(\pi_{j\beta} dz^{\beta} + \overline{\pi_{j\beta}} d\overline{z}^{\beta} \right)$$

$$= \frac{1}{2} \sum q_{ij} \left(\pi_{i\alpha} \pi_{j\beta} dz^{\alpha} \wedge dz^{\beta} + \pi_{i\alpha} \overline{\pi_{j\beta}} dz^{\alpha} \wedge d\overline{z}^{\beta} + \overline{\pi_{i\alpha}} \pi_{j\beta} d\overline{z}^{\alpha} \wedge dz^{\beta} + \overline{\pi_{i\alpha}} \pi_{j\beta} d\overline{z}^{\alpha} \wedge d\overline{z}^{\beta} \right)$$

Then

$$\omega$$
 is (1,1)-type $\iff 0 = \left(\sum q_{ij}\pi_{i\alpha}\pi_{j\beta}\right)_{\alpha,\beta} = {}^t\pi Q\pi = 0$

$$\omega \text{ is positive-type} \iff 0 < \frac{1}{2\sqrt{-1}} \left(\sum q_{ij} \left(\pi_{i\alpha}\overline{\pi_{j\beta}} - \overline{\pi_{i\beta}\pi_{j\alpha}}\right)\right)_{\alpha,\beta} = -\sqrt{-1} {}^t\pi Q\overline{\pi}$$

Those two condition are called **1st-Riemann condition**. Now if we write $dz^{\alpha} = \omega_{\alpha i} dx^{i}$, then $d\overline{z}^{\alpha} = \overline{\omega_{\alpha i}} dx^{i}$. Let $\Omega = (\omega_{\alpha i}) \leadsto \widetilde{\Omega} = \left(\frac{\Omega}{\Omega}\right)$ is the inverse of $\widetilde{\pi}$. Then the 1st-Riemann condition equivalent to

$$-\sqrt{-1} {}^{t}\widetilde{\pi} Q \overline{\widetilde{\pi}} = -\sqrt{-1} \begin{pmatrix} {}^{t}\pi Q \overline{\pi} & {}^{t}\pi Q \pi \\ {}^{t}\overline{\pi} Q \overline{\pi} & {}^{t}\overline{\pi} Q \pi \end{pmatrix} = \begin{pmatrix} H & O \\ O & -{}^{t}H \end{pmatrix} \text{ with } H > 0$$

$$\iff \sqrt{-1} \widetilde{\widetilde{\Omega}} Q^{-1} {}^{t}\widetilde{\Omega} = \begin{pmatrix} H^{-1} & O \\ O & -{}^{t}H^{-1} \end{pmatrix} \text{ with } H > 0$$

By Kodaira embedding theorem, X is algebraic $\iff \exists$ skew-symmetric integral $2n \times 2n$ matrix s.t.

$$\Omega Q^{-1} {}^t \Omega = 0 \text{ and } -\sqrt{-1}\Omega Q^{-1} {}^t \overline{\Omega} > 0 > 0$$

This is called **2nd Riemann condition**.

Lemma 4.1.1. If Q is integral skew-symmetric quadratic form on $\Lambda \simeq \mathbb{Z}^{2n}$, then there exists a basis $\lambda_1, ..., \lambda_{2n}$ for Λ in terms of which Q is given by the matrix

$$Q = \begin{pmatrix} O & \Delta_{\delta} \\ -\Delta_{\delta} & O \end{pmatrix} \text{ with } \Delta_{\delta} = \begin{pmatrix} \delta_{1} & 0 \\ & \ddots & \\ 0 & \delta_{n} \end{pmatrix} \in M_{n \times n}(\mathbb{Z})$$

with $\delta_1 | \cdots | \delta_n$.

Proof: For fixed $\lambda \in \Lambda$, $\{Q(\lambda, \lambda') : \lambda' \in \Lambda\}$ is a principal ideal $d_{\lambda}\mathbb{Z}$ in \mathbb{Z} for some $d_{\lambda} \geq 0$. Let $\delta_1 = \min(d_{\lambda} : \lambda \in \Lambda, d_{\lambda} \neq 0)$, and take λ_1 and λ_{n+1} s.t. $Q(\lambda_1, \lambda_{n+1}) = \delta_1$. Then $\forall \lambda \in \Lambda$,

$$\delta_1 | Q(\lambda, \lambda_1), Q(\lambda, \lambda_{n+1})$$

Then we have

$$\lambda + \frac{Q(\lambda, \lambda_1)}{\delta_1} \lambda_{n+1} - \frac{Q(\lambda, \lambda_{n+1})}{\delta_1} \lambda_1 \in \mathbb{Z} \{\lambda_1, \lambda_{n+1}\}^{\perp}$$

i.e.

$$\Lambda = \mathbb{Z}\{\lambda_1, \lambda_{n+1}\} \oplus \mathbb{Z}\{\lambda_1, \lambda_{n+1}\}^{\perp}$$

By induction, we may find $\lambda_1, ..., \lambda_{2n}$ s.t.

$$\Lambda = Z\{\lambda_1, \lambda_{n+1}\} \oplus \cdots \oplus \mathbb{Z}\{\lambda_n, \lambda_{2n}\}\$$

with $\delta_i = Q(\lambda_i, \lambda_{n+i})$. It remains to show that $\delta_1 | \delta_2$. If not, $\exists k \in \mathbb{Z}$ s.t.

$$0 < Q(k\lambda_1 + \lambda_2, \lambda_{n+1} + \lambda_{n+2}) < \delta_1$$

contradict with the definition of δ_1 .

By lemma, in terms of the new basis,

$$\omega = \sum_{i=1}^{n} \delta_i dx^i \wedge dx^{n+i}$$

If ω is non-degenerate, then $\delta_i \neq 0 \ \forall i$, and we can take $e_{\alpha} = \delta^{-1} \lambda_{\alpha}$, $\alpha = 1, ..., n$ be the basis of \mathbb{C}^n . Then period matrix of $\Lambda \subset X$ will then be of the form

$$\Omega = (\Delta_{\delta}, Z)$$

which is called **normalized**. Then 2nd Riemann condition becomes to

$$\Omega Q^{-1} {}^t \Omega = 0 \iff 0 = \begin{pmatrix} \Delta_{\delta} & Z \end{pmatrix} \begin{pmatrix} O & -\Delta^{-1} \\ \Delta^{-1} & O \end{pmatrix} \begin{pmatrix} \Delta_{\delta} \\ {}^t Z \end{pmatrix} = Z - {}^t Z \iff Z \text{ is symmetric}$$
$$-\sqrt{-1}\Omega Q^{-1} {}^t \overline{\Omega} > 0 \iff 0 < -\sqrt{-1} \begin{pmatrix} \Delta_{\delta} & Z \end{pmatrix} \begin{pmatrix} O & -\Delta_{\delta}^{-1} \\ \Delta_{\delta}^{-1} & O \end{pmatrix} \begin{pmatrix} \Delta_{\delta} \\ {}^t \overline{Z} \end{pmatrix} = -\sqrt{-1}(Z - {}^t \overline{Z}) = 2 \operatorname{Im} Z$$

the last equation need Z is symmetric. This is called **3nd Riemann condition**.

Theorem 4.1.2. S is compact Riemann surface of $g \ge 1$, then Jac(S) is a variety.

Proof: Consider the fundamental region Δ with boundary labeled by $\alpha_1\beta_1\alpha_1^{-1}\beta_1^{-1}\cdots\alpha_g\beta_g\alpha_g^{-1}\beta_g^{-1}$. We may normalize a basis $\Omega_1,...,\Omega_g$ of $\Omega^1(X)$ s.t.

$$\int_{\alpha_j} \omega_i = \delta_{ij}$$

Let ω be holomorphic 1-form, since Δ is simply connected, $\omega = d\varphi$ with holomorphic function

$$\varphi(z) = \int_{p_0}^z \omega$$

Let p, p' be the point on α_i, α_i^{-1} be the same point on S, then

$$\varphi(p') - \varphi(p) = \int_{p}^{p'} \omega = \left(\int_{p}^{\beta_1(0)} + \int_{\beta_1(0)}^{\beta_1(1)} + \int_{\beta_1(1)}^{p'} \right) \omega = \int_{\beta_1} \omega$$

Similarly, if q, q' be the point on β_i, β_i^{-1} be the same point on S, then

$$\varphi(q') - \varphi(q) = -\int_{\alpha_1} \omega$$

For any closed 1-form η ,

$$\int_{S} \omega \wedge \eta = \int_{\Delta} (d\varphi \wedge \eta - \varphi \wedge d\eta) = \int_{\Delta} d(\varphi \wedge \eta) = \int_{\partial \Delta} \varphi \eta = \sum_{i=1}^{g} \left(\int_{\alpha_{i} + \alpha_{i}^{-1}} \varphi \eta + \int_{\beta_{i} + \beta_{i}^{-1}} \varphi \eta \right)$$

Let $s:[0,1]\to \alpha_i$, then

$$\int_{\alpha_i + \alpha_i^{-1}} \varphi \eta = \int_{\alpha_i} \varphi \eta - \int_{(\alpha_i^{-1})^{-1}} \varphi \eta = \int_0^1 \left(\varphi(s(t)) - \varphi(s(t)') \right) \eta(s(t)) dt = \int_{\alpha_i} \left(- \int_{\beta_i} \omega \right) \eta dt$$

Similarly, we have

$$\int_{\beta_i + \beta_i^{-1}} \varphi \eta = \int_{\beta_i} \left(\int_{\alpha_i} \omega \right) \eta$$

Recall the entry of Ω is the coefficient of base change form dual basis of $\{\alpha_1, ..., \alpha_g, \beta_1, ..., \beta_g\}$ to $\omega_1, ..., \omega_g$, we have $\Omega = (I_g Z)$ with

$$z_{ij} = \int_{\beta_i} \omega_j$$

Since $\omega_i \wedge \omega_j = 0$,

$$0 = \int_{S} \omega_{i} \wedge \omega_{j} = \sum_{k=1}^{g} \left(-\int_{\alpha_{k}} \omega_{j} \int_{\beta_{k}} \omega_{i} + \int_{\alpha_{k}} \omega_{i} \int_{\beta_{k}} \omega_{j} \right) = z_{ij} - z_{ji}$$

which shows that Z is symmetric. Moreover, since $i \int_{S} \omega \wedge \overline{\omega} > 0$,

$$0 < \left(i \int_{S} \omega_{i} \wedge \overline{\omega_{j}}\right)_{i,j} = \left(i\left(-z_{ji} + \overline{z_{ij}}\right)\right) = \left(\frac{z_{ij} - \overline{z_{ij}}}{2}\right) = 2 \operatorname{Im} Z$$

Hence Z satisfy 3nd Riemann condition and thus $\operatorname{Jac}(S)$ is algebraic.

Chapter 5

Homework

5.1

Problem 5.1.1.

- (a) One point compactification of \mathbb{R}^n . For $n \geq 1$ let ∞ be a symbol not belonging to \mathbb{R}^n . Introduce the following topology on the set $X := \mathbb{R} \cup \{\infty\}$. A set $U \subset X$ is open. By definition, if one of the following two condition is satisfied:
 - (1) $\infty \notin U$ and U is open in \mathbb{R}^n with respect to the usual topology on \mathbb{R}^n .
 - (2) $\infty \in U$ and $K := X \setminus U$ is compact in \mathbb{R}^n with respect to the usual topology on \mathbb{R}^n .

Show that X is a compact Hausdorff topological space.

(b) **Stereographic projection**. Consider the unit *n*-sphere

$$S^n = \{(x_1, ..., x_{n+1}) \in \mathbb{R}^{n+1} : x_1^2 + \dots + x_{n+1}^2 = 1\}$$

and the stereographic projection

$$\sigma: S^n \to \mathbb{R}^n \cup \{\infty\}$$

given by

$$\sigma(x_1, ..., x_{n+1}) := \begin{cases} \frac{1}{1 - x_{n+1}} (x_1, ..., x_n) & \text{if } x_{n+1} \neq 1\\ \infty & \text{if } x_{n+1} = 1 \end{cases}$$

Show that σ is a homeomorphism of S^n onto X.

Problem 5.1.2. Identify \mathbb{P}^1 with the unit sphere in \mathbb{R}^3 using the stereographic projection

$$\sigma:S^2\to\mathbb{C}\cup\{\infty\}\simeq\mathbb{P}^1$$

Let SO(3) be the group of orthogonal 3×3 matrices having determinant 1, i.e.

$$\mathrm{SO}(3) = \{A \in \mathrm{GL}(3,\mathbb{R}) : A^T A = I, \det A = 1\}.$$

For every $A \in SO(3)$, show that the map

$$\sigma \circ A \circ \sigma^{-1} : \mathbb{P}^1 \to \mathbb{P}^1$$

is biholomorphic.

5.2. Minerva notes

Problem 5.1.3. Suppose X is a Riemann surface and $f: X \to \mathbb{C}$ is non-constant holomorphic function. Show that Re(f) does not attain its maximum.

Problem 5.1.4. Suppose $f: \mathbb{C} \to \mathbb{C}$ is a holomorphic function, whose real part is bounded from above. Then f is constant.

Problem 5.1.5. Suppose $f: X \to Y$ is a non-constant holomorphic map and

$$\begin{array}{ccc} f^*: & \mathcal{O}(Y) & \longrightarrow & \mathcal{O}(X) \\ \varphi & \longmapsto & \varphi \circ f \end{array}$$

Show that f^* is a ring monomorphism.

5.2

Problem 5.2.1.

- (a) Suppose X is a manifold and $U_1, U_2 \subset X$ are two open, connected and simply connected subsets such that $U_1 \cap U_2$ is connected. Show that $U_1 \cup U_2$ is simply connected.
- (b) Using (a) show that S^n for $n \geq 2$ is simply connected.

Problem 5.2.2. Suppose X and Y are arcwise connected topological spaces. Prove $\pi_1(X \times Y) \simeq \pi_1(X) \times \pi_1(Y)$.

Problem 5.2.3. Let (X, a) and (Y, b) be topological spaces with base points $a \in X$ and $b \in Y$. Let $f, g : X \to Y$ be two continuous map with f(a) = g(a) = b. Then f and g are called homotopic if there exists a continuous map

$$F: X \times [0,1] \to Y$$

such that F(x,0) = f(x) and F(x,1) = g(x) for every $x \in X$ and F(a,t) = b for every $t \in [0,1]$. Consider the induced maps

$$f_*, g_* : \pi_1(X, a) \to \pi_1(Y, b)$$

Show that $f_* = g_*$ if f and g are homotopic.

Problem 5.2.4. Let $X := \mathbb{C} \setminus \{\pm 1\}$, $Y := \mathbb{C} \setminus \{(\pi/2) + k\pi : k \in \mathbb{Z}\}$. Show that

$$\sin: Y \to X$$

is a topological covering map. Consider the following curves in X.

$$u: [0,1] \to X, \ u(t) := 1 - e^{2\pi it}$$

 $v: [0,1] \to X, \ v(t) := -1 + e^{2\pi it}$

Let $w_1:[0,1]\to Y$ be the lifting of $u\cdot v$ with $w_1(0)=0$ and $w_2:[0,1]\to Y$ be the lifting of $v\cdot u$ with $w_2(0)=0$. Show that

$$w_1(1) = 2\pi$$

 $w_1(1) = -2\pi$

Conclude that $\pi_1(X)$ is not abelian.

5.3. Minerva notes

Problem 5.2.5. Let X and Y be arcwise connected Hausdorff topological spaces and $f: Y \to X$ be a covering map. Show that the induced map

$$f_*: \pi_1(Y) \to \pi_1(X)$$

is injective.

5.3

Problem 5.3.1. Let X and Y be Hausdorff space and $p: Y \to X$ be a covering map. Let Z be a connected, locally arcwise connected topological space and $f: Z \to X$ a continuous map. Let $c \in Z$, a := f(c) and $b \in Y$ such that p(b) = a. Prove that there exists a lifting $\widetilde{f}: Z \to Y$ of f with $\widetilde{f}(c) = b$ if and only if $f_*\pi_1(Z, c) \subset p_*\pi_1(Y, b)$.

Problem 5.3.2.

(a) Show that

$$\tan:\mathbb{C}\to\mathbb{P}^1$$

is a local homeomorphism.

(b) Show that $\tan(\mathbb{C}) = \mathbb{P}^1 \setminus \{\pm i\}$. Show that for every $k \in \mathbb{Z}$ there exists a unique holomorphic function $\operatorname{arctan}_k : X \to \mathbb{C}$ with

$$\tan \circ \arctan_k = \mathrm{id}_X$$

and

$$\operatorname{arctan}_{k}(0) = k$$

the kth branch of arctan.

Problem 5.3.3. Let $X = \mathbb{C} \setminus \{\pm 1\}$, and $Y = \mathbb{C} \setminus \{\pi/2 + k\pi : k \in \mathbb{Z}\}$. Prove that Deck $(Y \xrightarrow{\sin} X)$ consists of the following transformations

- (i) $f_k(z) = z + 2k\pi, k \in \mathbb{Z}$
- (ii) $g_k(z) = -z + (2k+z)\pi, k \in \mathbb{Z}$

Calculate the products $f_k \circ f_\ell$, $f_k \circ g_\ell$, $g_\ell \circ f_k$, $g_k \circ g_\ell$.

Problem 5.3.4. Determine the covering transformations of

$$\tan: \mathbb{C} \to \mathbb{P}^1 \setminus \{i, -i\}$$

5.4

Problem 5.4.1. Let $\Gamma, \Gamma' \subset \mathbb{C}$ be lattices and

$$f: \mathbb{C} \setminus \Gamma \to \mathbb{C} \setminus \Gamma'$$

a non-constant holomorphic map with f(0) = 0 and the following diagram is commutative

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{F} & \mathbb{C} \\
\pi \downarrow & & \downarrow \pi \\
\mathbb{C}/\Gamma & \xrightarrow{f} & \mathbb{C}/\Gamma'
\end{array}$$

5.5. Minerva notes

where $F(z) = \alpha z$ and π and π' are the canonical projection. Prove that f is an unbranched covering map and

$$\operatorname{Deck}(\mathbb{C} \setminus \Gamma \xrightarrow{f} \mathbb{C}/\Gamma') \simeq \Gamma'/\alpha\Gamma$$

Problem 5.4.2. Let $X := \mathbb{C} \setminus \{\pm 2\}$, $Y = \mathbb{C} \setminus \{\pm 1, \pm 2\}$, and let $p : Y \to X$ be the map

$$p(z) := z^3 - 3z$$

Prove that p is an unbranched 3-sheeted holomorphic covering map. Calculate $\operatorname{Deck}(Y/X)$ and show that the covering $Y \to X$ is not Galois.

Problem 5.4.3. Let $X := \mathbb{C} \setminus \{0,1\}, Y := \mathbb{C} \setminus \{0,\pm i,\pm i\sqrt{2}\}$ and let $p:Y \to X$ be the map

$$p(z) := (z^2 + 1)^2$$

Prove that p is an unbranched 4-sheeted covering map, which is not Galois and that

$$\operatorname{Deck}(Y/X) = \{ \operatorname{id}, \varphi \}$$

where $\varphi(z) := -z$.

Problem 5.4.4. Suppose X and Y are connected Hausdorff spaces. Show that every 2-sheeted covering map $p: Y \to X$ is Galois.

5.5

Problem 5.5.1. Suppose X is a Riemann surface and $a \in X$. Suppose $\varphi \in \mathcal{O}_a$ admits an analytic continuation along every curve in X which starts at a. Let (Y, p, f, b) be the maximal analytic continuation of φ . Prove that $p: Y \to X$ is a covering map.

5.6

Problem 5.6.1. Suppose $p: Y \to X$ is a holomorphic mapping of Riemann surfaces, $a \in X$, $b \in p^{-1}(a)$ and k is the multiplicity of p ar b. Given any holomorphic 1-form ω on $X \setminus \{a\}$ show that

$$\operatorname{Res}_b(p^*\omega) = k \operatorname{Res}_a(\omega)$$

5.7

Problem 5.7.1. Let X be a Riemann surface and ω be a holomorphic 1-form on X. Suppose φ is a primitive of ω on a neighborhood of a point $a \in X$ and (Y, p, f, b) is a maximal analytic continuation of φ . Prove

- (a) $p: Y \to X$ is a covering map.
- (b) f is a primitive of $p^*\omega$.
- (c) The covering $p: Y \to X$ is a Galois and $\operatorname{Deck}(Y/X)$ is abelian.

5.8. Minerva notes

Problem 5.7.2. Suppose X is a Riemann surface and $\omega \in \mathfrak{M}^{(1)}(X)$ is a meromorphic 1-form on X which has residue zero at every pole. Show that there is a covering $p: Y \to X$ and a meromorphic function $F \in \mathfrak{M}(X)$ such that $dF = p^*\omega$.

Problem 5.7.3.

- (a) Let X be a manifold, $U \subset X$ open and $V \subseteq U$. Show that V meets only a finite number of connected components of U.
- (b) Let X be a compact manifold and $\mathcal{U} = (U_i)_{i \in I}$, $\mathcal{B} = (V_i)_{i \in I}$ be two finite open coverings of X such that $V_i \subseteq U_i$ for every $i \in I$. Prove that

$$\operatorname{Im}(Z^1(\mathcal{B},\mathbb{C}) \to Z^1(\mathcal{B},\mathbb{C}))$$

is a finite-dimensional vector space.

(c) Let X be a compact Riemann surface. Prove that $H^1(X,\mathbb{C})$ is a finite-dimensional vector space.

5.8

Problem 5.8.1.

(a) Let X be a compact Riemann surface. Prove that the map

$$H^1(X,\mathbb{Z}) \to H^1(X,\mathbb{C})$$

induced by the inclusion $\mathbb{Z} \subset \mathbb{C}$ is injective.

(b) Let X be a compact Riemann surface. Show that $H^1(X,\mathbb{Z})$ is a finitely generated free \mathbb{Z} -module.

Problem 5.8.2. Let $X = \{z \in \mathbb{C} : |z| < R\}$, where $0 < R \le \infty$. Denoted by \mathcal{H} the sheaf of harmonic function on X, i.e.

$$\mathcal{H}(U) = \{ f : U \to \mathbb{C} : f \text{ is harmonic} \}$$

for $U \subset X$ open. Prove

$$H^1(X, \mathcal{H}) = 0.$$

Problem 5.8.3.

- (a) Show that $\mathcal{U} = (\mathbb{P}^1 \setminus \infty, \mathbb{P}^1 \setminus 0)$ is a Leray covering for the sheaf Ω of holomorphic 1-forms on \mathbb{P}^1 .
- (b) Prove that

$$H^1(\mathbb{P}^1,\Omega) \simeq H^1(\mathcal{U},\Omega) \simeq \mathbb{C}$$

and that the cohomology class of

$$\frac{dz}{z} \in \Omega(U_1 \cap U_2) \simeq Z^1(\mathcal{U}, \Omega)$$

is a basis of $H^1(\mathbb{P}^1,\Omega)$.

5.9. Minerva notes

Problem 5.8.4. Suppose $g \in \mathscr{E}(\mathbb{C})$ is a function with compact support. Prove that there is a solution $f \in \mathscr{E}(\mathbb{C})$ of the equation

$$\frac{\partial f}{\partial \overline{z}} = g$$

having compact suppoet if and only if

$$\iint_{\mathbb{C}} z^n g(z) dz \wedge d\overline{z} = 0 \text{ for every } n \in \mathbb{N}.$$

5.9

Problem 5.9.1. Let $X = \{z \in \mathbb{C} : r < |z| < R\}$, where $0 < r < R < \infty$. Determine an orthonormal basis of $L^2(X, \mathcal{O})$ consisting of function of the form

$$\varphi_n(z) = c_n z^n, \ n \in \mathbb{N}$$

Problem 5.9.2. Let $X \subset \mathbb{C}$ be a bounded open subset, $p_1, ..., p_k \in X$ and $X' = X \setminus \{p_1, ..., p_k\}$. Show that the restriction map

$$L^2(X,\mathcal{O}) \to L^2(X',\mathcal{O})$$

is an isomorphism.

5.10

Problem 5.10.1. Let X be a Riemann surface and \mathcal{H} be the sheaf of harmonic functions on X. Verify that the sequence

$$0 \to \mathscr{H} \to \mathscr{E} \xrightarrow{d'd''} \mathscr{E}^{(2)} \to 0$$

is exact.

Problem 5.10.2. Show that on any Riemann surface the sequence

$$0 \to \mathbb{C}^* \to \mathcal{O}^* \xrightarrow{d \log} \Omega \to 0$$

is exact, where $(d \log) f := f^{-1} df$.

Problem 5.10.3. On a Riemann surface X let $\mathcal{L} \subset \mathcal{M}^{(1)}$ be the sheaf of meromorphic 1-forms which have residue 0 at every point. Show that the sequence

$$0 \to \mathbb{C} \to \mathscr{M} \xrightarrow{d} \mathscr{L} \to 0$$

is exact.

Problem 5.10.4. Let $X = \mathbb{C}/\Gamma$ be a tours. Prove that

$$H^1(X,\mathbb{C}) \simeq \mathrm{Rh}^1(X) \simeq \mathbb{C}^2$$

and that the classes of dz and $d\overline{z}$ form a basis of $Rh^1(X)$.

5.11. Minerva notes

5.11

Problem 5.11.1. Let $X \to \mathbb{P}^1$ be the Riemann surface of the algebraic function $\sqrt[n]{1-z^n}$ i.e. the algebraic function defined by the polynomial

$$P(T) = T^n + z^n - 1 \in \mathscr{M}(\mathbb{P}^1)[T]$$

where $z \in \mathcal{M}(\mathbb{P}^1)$ is the canonical coordinate function. Show that the genus of X is

$$g = \frac{(n-1)(n-2)}{2}$$

Problem 5.11.2. Let X be a compact Riemann surface. Let $\mathcal{Q}(X) \subset \mathcal{M}^{(1)}(X)$ be the space of all meromorphic 1-forms on X whose residues vanish at every point. Show that

$$H^1(X,\mathbb{C}) \simeq \mathcal{Q}(X)/d\mathcal{M}(X)$$

Problem 5.11.3. Let $X = \mathbb{C}/\Gamma$ be a torus. Show that the classes of dz and $\wp_{\Gamma}dz$ form a basis of $\mathcal{Q}(X)$ mod $d\mathcal{M}(X)$.

Problem 5.11.4. Let D be a divisor on the compact Riemann surface X of genus g. Show

$$\begin{cases} \dim H^0(X, \mathcal{O}_D) = 0 & \text{for } \deg D \le -1 \\ 0 \le \dim H^0(X, \mathcal{O}_D) \le 1 + \deg D & \text{for } -1 \le \deg D \le g - 1 \\ 1 - g + \deg D \le \dim H^0(X, \mathcal{O}_D) \le g & \text{for } g - 1 \le \deg D \le 2g - 1 \\ \dim H^0(X, \mathcal{O}_D) = 1 - g + \deg D & \text{for } \deg D \ge 2g - 1 \end{cases}$$

5.12

Problem 5.12.1. Let D be a divisor on the Riemann sphere \mathbb{P}^1 . Prove

- (a) dim $H^0(\mathbb{P}^1, \mathcal{O}_D) = \max(0, 1 + \deg D)$
- (b) $\dim H^1(\mathbb{P}^1, \mathcal{O}_D) = \max(0, -1 \deg D)$

Problem 5.12.2. Let $X = \mathbb{C}/\Gamma$ be a torus, $x_0 \in X$ be a point and P be the divisor

$$P(x) = \begin{cases} 1 & \text{if } x = x_0 \\ 0 & \text{if } x \neq x_0 \end{cases}$$

Show

$$\dim H^0(X, \mathcal{O}_{nP}) = \begin{cases} 0 & \text{for } n < 0 \\ 1 & \text{for } n = 0 \\ n & \text{for } n \ge 1 \end{cases}$$

Problem 5.12.3. Let X be a compact Riemann surface, D be a divisor on X and $\mathfrak{U} = (U_i)$ be an open covering of X such that every U_i is isomorphic to a disk. Show that \mathfrak{U} is a Leray covering for the sheaf \mathcal{O}_D .

Problem 5.12.4.

5.13. Minerva notes

(a) On a Riemann surface X let $\mathfrak D$ be the sheaf of divisors, i.e., for $U \subset X$ open $\mathfrak D(U)$ consists of all maps

$$D:U\to\mathbb{Z}$$

such that for every compact set $K \subset U$ there are only finitely many $x \in K$ with $D(x) \neq 0$. Show that \mathfrak{D} together with the natural restriction morphisms is actually a sheaf and that

$$H^1(X,\mathfrak{D})=0$$

(b) Let $\beta: \mathscr{M}^* \to \mathfrak{D}$ be the map which assigns to every meromorphic function $f \in \mathscr{M}^*(U)$ its divisor $(f) \in \mathfrak{D}(U)$ and let $\alpha: \mathcal{O}^* \to \mathscr{M}^*$ be the natural inclusion map. Show that

$$0 \to \mathcal{O}^* \xrightarrow{\alpha} \mathscr{M}^* \xrightarrow{\beta} \mathfrak{D} \to 0$$

is an exact sequence of sheaves and thus that there is an exact sequence of groups

$$0 \to H^0(X, \mathcal{O}^*) \to H^0(X, \mathcal{M}^*) \to \operatorname{Div}(X) \to H^1(X, \mathcal{O}^*) \to H^1(X, \mathcal{M}^*) \to 0$$

5.13

Problem 5.13.1. Let K be a canonical divisor on a compact Riemann surface X of genus > 0, and let $D \ge K$ be a divisor with deg $D = \deg K + 1$. Show that the sheaf \mathcal{O}_K is globally generated, but \mathcal{O}_D is not.

Problem 5.13.2. Let $\Gamma \subset \mathbb{C}$ be a lattice and let \wp be the Weierstrass \wp -function with respect to Γ . Interpret \wp and its derivative \wp' as meromorphic functions on \mathbb{C}/Γ . Show that

$$(1:\wp,\wp'):\mathbb{C}/\Gamma\to\mathbb{P}^2$$

is an embedding.

Problem 5.13.3. Let X be a compact Riemann surface of genus two. Suppose ω_1 and ω_2 form a basis of $H^0(X,\Omega)$ and define $f \in \mathcal{M}(X)$ by $\omega_1 = f\omega_2$. Show that $f: X \to \mathbb{P}^1$ is a 2-sheeted (branched) covering map.

5.14

Problem 5.14.1. Let $U := \{z \in \mathbb{C} : |z| < r\}, r > 0$, and let $f : U \to \mathbb{C}$ be a holomorphic function with $f(0) \neq 0$.

- (a) Define $f_j(z) = z^{j-1}f(z)$ for j = 1, ..., g. Prove that the Wronskian determinant $W(f_1, ..., f_g)$ does not vanish at the origin.
- (b) Define $\varphi_j(z) := z^{2j-2} f(z)$ for j = 1, ..., g. Prove that the Wronskian determinant $W(\varphi_1, ..., \varphi_g)$ has a zero of order g(g-1)/2 at the origin.

Problem 5.14.2. Let $\pi: X \to \mathbb{P}^1$ be a hyperelliptic Riemann surface of genus $g \geq 2$.

- (a) Show that all the ramification points $p_1, ..., p_{2g+2} \in X$ of π are Weierstrass points of X.
- (b) Prove that there are no other Weierstrass points and that every Weierstrass point p_j has weight g(g-1)/2.

5.15. Minerva notes

Problem 5.14.3. Let X be a compact Riemann surface of genus $g \geq 1$ and suppose $\omega_1, ..., \omega_g$ os a basis of $\Omega(X)$. Let $D \geq 0$ be a non-negative divisor on X. Denote by M_D the of all Mittag-Leffler distributions $\mu \geq -D$ on X, i.e. the set of all Mittag-Leffler distributions lying in $C^0(\mathfrak{U}, \mathcal{O}_D)$ for some open covering \mathfrak{U} of X. Define a linear map

$$R: M_D \to \mathbb{C}^g$$

by

$$R(\mu) = (\operatorname{Res}(\mu\omega_1), ..., \operatorname{Res}(\mu\omega_q))$$

Prove

$$\dim H^1(X, \mathcal{O}_D) = g - \dim R(M_D)$$

5.15

Problem 5.15.1. Let X be a compact Riemann surface. Prove

- (a) $d\mathscr{E}^{0,1}(X) = d'd''\mathscr{E}(X) \subset \mathscr{E}^{(2)}(X)$.
- (b) Let \mathcal{H} be the sheaf of harmonic functions on X. Then

$$H^1(X, \mathscr{H} \simeq \mathscr{E}^{(2)}(X)/d'd''\mathscr{E}(X) \simeq \mathbb{C}$$

(c) Let $\omega \in \mathscr{E}^{(2)}(X)$. Prove that there exists a function $f \in \mathscr{E}(X)$ such that

$$d'd''f = \omega$$

if and only if

$$\iint_{X} \omega = 0$$

Problem 5.15.2. Let $X = \mathbb{C}/\Gamma$ be a tours. For a function $f \in \mathscr{E}(X)$ define its mean value M(f) by

$$M(f) = \left(\iint_X f dz \wedge d\overline{z}\right) \left(\iint_X dz \wedge d\overline{z}\right)^{-1}$$

For $\omega = f dz + g d\overline{z} \in \mathscr{E}^{(1)}(X)$ let $M(\omega) := M(f) dz + M(g) d\overline{z}$. Show

- (a) If $\omega \in \mathcal{L}(X) := \ker(\mathcal{E}^{(1)}(X) \xrightarrow{d} \mathcal{E}^{(2)}(X))$, then ω and $M(\omega)$ are cohomologus.
- (b) The mapping

$$M: \mathscr{L}(X) \to \mathrm{Harm}^1(X)$$

induces an isomorphism

$$\operatorname{Rh}^1(X) \xrightarrow{\sim} \operatorname{Harm}^1(X)$$

5.16

Problem 5.16.1. Let X be a compact Riemann surface and $Y \subset X$ be an open subset such that $X \setminus Y$ has non-empty interior. Let D be a divisor on X. Show that there exists a function $f \in \mathcal{M}^*(X)$ such that

$$\operatorname{ord}_x(f) = D(x)$$
 for every $x \in Y$

5.17. Minerva notes

Problem 5.16.2.

(a) Show that the polynomial

$$F(z) := 4z^3 - g_2z - g_3, \ g_2, g_3 \in \mathbb{C}$$

has 3 distinct roots if and only if

$$g_2^3 - 27g_3^2 \neq 0$$

(b) Let $\Gamma \subset \mathbb{C}$ be a lattice and

$$\wp(z) = \frac{1}{z^3} + \sum_{\omega \in \Gamma \setminus 0} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right)$$

be the associated Weierstrass \wp -function. Show that \wp satisfies the differential equation

$$\wp'^2 = 4\wp^3 - g_2\wp - g_3,$$

where

$$g_2 = 60 \sum_{\omega \in \Gamma \setminus 0} \frac{1}{\omega^4}$$
 and $g_3 = 140 \sum_{\omega \in \Gamma \setminus 0} \frac{1}{\omega^6}$

and that the tours \mathbb{C}/Γ is isomorphic to the Riemann surface $X \to \mathbb{P}^1$ of the algebraic function $\sqrt{4z^3 - g_2z - g_3}$.

(c) Given $g_2, g_3 \in \mathbb{C}$ with $g_2^3 \neq 27g_3^2$, show that there is a lattice $\Gamma \subset \mathbb{C}$ such that

$$g_2 = \sum_{\omega \in \Gamma \setminus 0} \frac{1}{\omega^4}$$
 and $g_3 = 140 \sum_{\omega \in \Gamma \setminus 0} \frac{1}{\omega^6}$

5.17

Problem 5.17.1. Let X be a compact Riemann surface, α and β be closed curves in X and σ_{α} and σ_{β} be the harmonic 1-forms associated to α and β according Corollary. Show that

$$\iint_X \sigma_\alpha \wedge \sigma_\beta$$

is an integer.

Problem 5.17.2. Let $\Gamma = \mathbb{Z}\gamma_1 + \mathbb{Z}\gamma_2 \subset \mathbb{C}$ be a lattice, $X = \mathbb{C}/\Gamma$ and

$$\alpha_j:[0,1]\to X$$

be the closed curves defined by

$$\alpha_i(t) := \pi(t\gamma_i)$$

where $\pi: \mathbb{C} \to \mathbb{C}/\Gamma$ is the canonical projection. Find the harmonic forms σ_{α_i} .

Problem 5.17.3. Let X be a compact Riemann surface of genus g. Show that there exists closed curves $\alpha_1, ..., \alpha_{2g}$ on X such that

$$\operatorname{Harm}^{1}(X) = \sum_{j=1}^{2g} \mathbb{C}\sigma_{\alpha_{j}}$$

5.18. Minerva notes

5.18

Problem 5.18.1. Let X be an open subset of \mathbb{C} and $T_v \in \mathscr{D}'(X)$, $v \in \mathbb{Z}_{\geq 0}$, a sequence of distributions in X. A sequence $(T_v)_{v \in \mathbb{Z}_{\geq 0}}$ is said to converge to a distribution $T \in \mathscr{D}'(X)$ if

$$T_v[\varphi] \to T[\varphi]$$
 for every $\varphi \in \mathscr{D}(X)$

Denote this by $T_v \xrightarrow{\mathscr{Q}} T$. Show that if $T_v \xrightarrow{\mathscr{Q}} T$, then

$$D^{\alpha}T_{v} \xrightarrow{\mathscr{D}} D^{\alpha}T$$

for every differential operator

$$D^{\alpha} = \left(\frac{\partial}{\partial x}\right)^{\alpha_1} \left(\frac{\partial}{\partial y}\right)^{\alpha_2}$$

Problem 5.18.2. Let $Y \subset \mathbb{C}$ be open. A sequence of continuous function $f_v : Y \to \mathbb{C}$ is said to converge weakly to a continuous function $f : Y \to \mathbb{C}$ if

$$\iint_{Y} f_{v}\varphi dxdy \to \iint_{Y} f\varphi \text{ for every } \varphi \in \mathscr{D}(X)$$

Show that if all the f_v are harmonic (resp. holomorphic) and converge weakly to f, then f is also harmonic (resp. holomorphic).

5.19

Problem 5.19.1. Suppose X is a Riemann surface and $\widetilde{X} \to X$ is its universal covering. Show that $\operatorname{Deck}(\widetilde{X}/X)$ is countable.

Problem 5.19.2. Let $Y \subset \mathbb{C}$ be open and K a compact connected component of $\mathbb{C} \setminus Y$. Let $(f_v)_{v \in \mathbb{Z}_{\geq 0}}$ be a sequence of polynomials which converges uniformly on every compact subset of Y. Show that (f_v) converges uniformly on K.

Problem 5.19.3. Suppose $Y \subset \mathbb{C}$ is an open subset such that every holomorphic function $f \in \mathcal{O}(Y)$ can be approximated uniformly on every compact subset of Y by polynomials. Conclude that $Y = h_{\mathbb{C}}(Y)$.

5.20

Problem 5.20.1. Let X be a non-compact Riemann surface. Prove

$$H^1(X,\Omega)=0$$

Problem 5.20.2. Let X be a non-compact Riemann surface.

(a) Given any $\omega \in \mathscr{E}^{(2)}(X)$ show that there exists $f \in \mathscr{E}(X)$ with

$$d'd''f = \omega$$

(b) Let \mathcal{H} be the sheaf of harmonic functions on X. Show that

$$H^1(X, \mathcal{H}) = 0$$

5.21. Minerva notes

Problem 5.20.3. Let X be a non-compact Riemann surface and suppose $f, g \in \mathcal{O}(X)$ are holomorphic function which have no common zero.

(a) Show that the following sequence of sheaves is exact

$$0 \to \mathcal{O} \xrightarrow{\alpha} \mathcal{O}^2 \xrightarrow{\beta} \mathcal{O} \to 0$$

where

$$\alpha(\psi) := (\psi g, -\psi f)$$
$$\beta(\varphi_1, \varphi_2) := \varphi_1 f + \varphi_2 g$$

(b) Show that there exists holomorphic function $\Phi, \Psi \in \mathcal{O}(X)$ such that

$$\Phi f + \Psi g = 1$$

Problem 5.20.4. Let X be a non-compact Riemann surface and let

$$\mathfrak{U} = \sum_{j=1}^{k} \mathcal{O}(X) f_j, \ f_j \in \mathcal{O}(X)$$

be a finitely generated ideal in $\mathcal{O}(X)$. Prove that \mathfrak{U} is a principal ideal.

5.21

Problem 5.21.1. Let X be a Riemann surface. Prove

$$H^1(X,\mathbb{C}) \simeq \operatorname{Hom}(\pi_1(X),\mathbb{C})$$

Problem 5.21.2. Let X be a non-compact Riemann surface and let

$$Rh^1_{\mathcal{O}}(X) := \Omega(X) / d\mathcal{O}(X)$$

be the "holomorphic" deRham group. Prove

$$H^1(X,\mathbb{C}) \simeq \mathrm{Rh}^1_{\mathcal{O}}(X)$$

5.22

Problem 5.22.1. Let X be a Riemann surface and

$$f_v: X \to \mathbb{C} \setminus \{0,1\}$$

be a sequence of holomorphic function which do not take the values 0 and 1. Suppose there exists a point $x_0 \in X$ such that $\{f_v(x_0)\}_{v \in \mathbb{N}}$ converges to a point $c \in \mathbb{C} \setminus \{0, 1\}$. Prove that there exists a subsequence $(f_{v_k})_{k \in \mathbb{N}}$ which converges uniformly on every compact subset of X to a holomorphic function

$$f: X \to \mathbb{C} \setminus \{0, 1\}$$

Problem 5.22.2. Prove the "Big theorem of Picard": Let

$$U = \{z \in \mathbb{C} : 0 < |z| < r\} \text{ where } r > 0$$

and

$$f:U\to\mathbb{C}$$

a holomorphic function having an essential singularity at the origin. Then f attains every value $c \in \mathbb{C}$ with at most one exception.

5.23. Minerva notes

5.23

Problem 5.23.1. Show that on any Riemann surface X (compact or not) one has $H^1(X, \mathcal{M}^*) = 0$.

Problem 5.23.2. Let X be a Riemann surface. For $U \subset X$ open, let $\mathrm{SL}_n(\mathcal{O}(U))$ be the group of all $n \times n$ matrices of determinant 1 with coefficients in $\mathcal{O}(U)$. Together with the natural restriction maps this defines a sheaf $\mathrm{SL}_n(\mathcal{O})$ on X. Prove that on a non-compact Riemann surface X

$$H^1(X, \mathrm{SL}_n(\mathcal{O})) = 0$$

5.24

Problem 5.24.1. Let X be a Riemann surface and $\pi: E \to X$ be a holomorphic vector bundle of rank n on X. A holomorphic subbundle $F \subset D$ of rank k is a subset such that the following holds. For every $x \in X$, there exists a holomorphic local trivialization

$$h; E_U \to U \times \mathbb{C}^n, \ E_U = \pi^{-1}(U)$$

of E with $x \in U$ such that

$$h(F_U) = U \times (\mathbb{C}^k \times 0)$$

where $F_U = E_U \cap F$.

(a) Let $f: X \to E$ be a holomorphic section of E which never vanishes. For $x \in X$ define $F_x := \mathbb{C} \cdot f(x) \subset E_x$. Show that

$$F := \bigcup_{x \in X} F_x \subset E$$

is a holomorphic subbundle of E of rank 1.

(b) Let f be a meromorphic section of E over X. Show that there exists a unique subbundle $F \subset E$ of rank 1 such that f is a meromorphic section of F.

Problem 5.24.2. Let $L \to X$ be a line bundle on a compact Riemann surface X. Then degree of L is defined as $\deg(L) := \deg(D)$, where D is the divisor of a meromorphic section s of L over X.

- (a) Show that $\deg L$ is well-defined, i.e. it is independent of the choice of the meromorphic section s.
- (b) On \mathbb{P}^1 let $\mathfrak{U} = (U_1, U_2)$ be the covering given by

$$U_1 := \{ z \in \mathbb{C} : |z| < 1 + \varepsilon \}, \ U_2 := \{ z \in \mathbb{P}^1 : |z| > 1 - \varepsilon \}, \ 0 < \varepsilon < 1 \}$$

Let L be the holomorphic line bundle on \mathbb{P}^1 defined by some given transition function

$$g_{12}:U_1\cap U_2\to\mathbb{C}^\times$$

Prove that

$$\deg L = \frac{1}{2\pi i} \int_{|z|=1} \frac{g'_{12}(z)}{g_{12}(z)} dz$$