1.2 Regular Expressions

- □ Regular Expression
- \square RE $\rightarrow \varepsilon$ -NFA
- \square DFA \rightarrow RE

Regular Expressions

- A FA is a "blueprint" for constructing a machine recognizing a regular language.
- A regular expression is a "user-friendly" declarative way of describing a language.
- ☐ Example: 01*+10*
- □ Used in e.g.
 - UNIX grep
 - Perl programming language

Inductive Definition of RE

- R is a regular expression if R is
 - 1. Ø, the empty set
 - 2. ϵ , the empty string
 - 3. a, for some $a \in \Sigma$
 - 4. R_1+R_2 , where R_1 and R_2 are reg. exp.
 - 5. R_1R_2 , where R_1 and R_2 are reg. exp.
 - 6. R₁*, where R₁ is a regular expression

Language of a RE

- A regular expression R describes the language L(R)
 - $L(\emptyset) = \emptyset$

 - $L(a) = \{a\}$

 - $L(R_1R_2) = L(R_1)L(R_2) \qquad \leftarrow \text{concatenation}$

Concatenation of Languages

 \square If L₁ and L₂ are languages, we can define the concatenation

$$L_1L_2 = \{w \mid w = xy, x \in L_1, y \in L_2\}$$

- ☐ Examples:
 - {ab, ba}{cd, dc} =? {abcd, abdc, bacd, badc}
 - Ø{ab} =? Ø

Exponentiation of a Language

- Lⁱ is the language L concatenated with itself i times.
- □ Recursive definition:
 - **B**ase: $L^0 = {ε}$
 - Induction: Lⁱ⁺¹ = LLⁱ
- □ Example:
 - \blacksquare {ab, ba}² =? {abab, abba, baab, baba}
 - $\bigcirc \emptyset^0 = ? \{\varepsilon\}$
 - \bigcirc $\emptyset^2 = ? \{\varepsilon\}$

Kleene Closure

- Examples:
 - \blacksquare {ab, ba}* =? { ε , ab, ba, abab, abba,...}

Example

- □ Order of precedence for operators:
 - () > Closure > Concatenation > Union
- \square L = {w | 0 and 1 alternate in w}, Σ ={0, 1}, how to describe L in a regular expression?
 - \blacksquare (01)*+(10)*+0(10)*+1(01)*
 - Or equivalently, $(\epsilon+1)(01)*(0+\epsilon)$

Exercises

- $\Box \Sigma = \{0, 1\}$
- What is the language for
 - **■** 0*1*
- What is the regular expression for
 - {w | w has at least one 1}
 - {w | w starts and ends with same symbol}
 - $| \{ w \mid |w| \le 5 \}$
 - {w | every 3rd position of w is 1}

 - L? (means an optional L)

Equivalence of RE and FA

1.2 Regular Expressions

- □ Regular Expression
- \square RE $\rightarrow \varepsilon$ -NFA
- \square DFA \rightarrow RE

From RE to ε -NFA

- \square For every regular expression R, we can construct an ε-NFA A, s.t. L(A) = L(R).
- □ Proof by structural induction:

From RE to ε-NFA

Example: (0+1)*1(0+1)

Example 1.31: (a+b)*aba

1.2 Regular Expressions

- □ Regular Expression
- \square RE $\rightarrow \varepsilon$ -NFA
- \square DFA \rightarrow RE

From DFA to RE

- □ For every DFA A=(Q, Σ, δ, q₀, F), there is a regular expression R, s.t. L(R) = L(A).
- ☐ Proof
 - Let $Q = \{1, 2, ...n\}$ and $q_0 = 1$;
 - Let R[i, j]^k be a RE describing the set of all label paths in A from state i to state j going through the states {1,...k} only.
 - Then the union of all R[1, j]ⁿ (j∈F) will be the final RE describing the language of A

From DFA to RE

We computes the R[i, j]k inductively

- \square Initially (k=0):
 - R[i, i] = ε +a+b+..., whenever δ (i, a)= δ (i, b)=i, etc.
 - R[i, j] = a+b+..., if $i\neq j$ and $\delta(i, a)=\delta(i, b)=j$, etc.
 - $R[i, j] = \emptyset$, if $i \neq j$ and there are no direct transitions from state i to state j.
- Induction

From DFA to RE

Proof that R[i, j]k is correctly computed:

- □ A path that goes through the states {1,...k} only either
 - never goes through state k, in which case the path's label is in the language of R[i, j]^{k-1}
 - or goes through k one or more times. In this case:
 - □ R[i, k]^{k-1} contains the portion of the path that goes from i to k for the first time.
 - □ (R[k, k]^{k-1})* contains the portion of the path (possibly empty) from the first k visit to the last.
 - R[k, j]^{k-1} contains the portion of the path from the last k visit to state j.

Example

 \Box L(A) = {x0y | x \in \{1\}*, y \in \{0, 1\}*}

$$k = 0$$

$$R[1, 1]^{0} \quad \epsilon + 1$$

$$R[1, 2]^{0} \quad 0$$

$$R[2, 1]^{0} \quad \emptyset$$

$$R[2, 2]^{0} \quad \epsilon + 0 + 1$$

- We need the following simplification rules:
 - $(\varepsilon + R)^* = R^*$
 - \blacksquare R+RS* = RS*
 - \blacksquare \emptyset R = R \emptyset = \emptyset (Annihilation)
 - \blacksquare \emptyset +R = R+ \emptyset = R (Identity)

R[1, 1] ⁰	ε+1
R[1, 2] ⁰	0
R[2, 1] ⁰	Ø
R[2, 2] ⁰	ε+0+1

$$k = 1$$

$R[1, 1]^1$	$\varepsilon+1+(\varepsilon+1)(\varepsilon+1)^*(\varepsilon+1)=1^*$
$R[1, 2]^1$	$0+(\epsilon+1)(\epsilon+1)*0 = 1*0$
$R[2, 1]^1$	$\emptyset + \emptyset(\varepsilon + 1)^*(\varepsilon + 1) = \emptyset$
$R[2, 2]^1$	$\varepsilon+0+1+\varnothing(\varepsilon+1)*0 = \varepsilon+0+1$

$R[1, 1]^1$	1*
$R[1, 2]^1$	1*0
$R[2, 1]^1$	Ø
R[2, 2] ¹	ε+0+1

$$k = 2$$

R[1, 1] ²	$1*+ 1*0(\epsilon+0+1)*\emptyset = 1*$
R[1, 2] ²	$1*0+1*0(\epsilon+0+1)*(\epsilon+0+1) = 1*0(0+1)*$
$R[2, 1]^2$	\emptyset +(ϵ +0+1)(ϵ +0+1)* \emptyset = \emptyset
R[2, 2] ²	$\epsilon+0+1+(\epsilon+0+1)(\epsilon+0+1)*(\epsilon+0+1) = 0+1$

☐ The final regular expression for A is $R[1, 2]^2 = 1*0(0+1)*$

Observation

```
for k = 1 to n
    for i = 1 to n
    for j = 1 to n
        B[i, j] = R[i, j] + R[i, k] (R[k, k])* R[k, j]
    end
    end
    R = B (copy all the updates to R).
End
□ n³ expressions R[i, j]<sup>k</sup>, and R[i, j]<sup>k</sup> could
have size 4<sup>n</sup>
```

Alternative approach: state elimination

State Elimination Technique

- □ Label the edges of the FA with regular expressions instead of symbols.
- \square Add a new start state, q_{start} , with an ε edge to the old start state and a new accept state, q_{accept} , with ε arrows from the old accept states.
- eliminate all states except q_{start} and q_{accept}, the regular expression on the label is the answer.

State Elimination Technique

Example 1.35

Example 1.36

Algebraic Laws for RE

- \square Regexs E and F are equivalent: L(E) = L(F).
- \Box (E + F) + G = E + (F + G)
 - Union is associative
- E + F = F + E
 - Union is commutative
- $\square \varnothing + E = E + \varnothing = E$
 - Ø is identity for union
- E + E = E
 - Union is idempotent

Algebraic Laws for RE

- \square (E F) G = E (F G)
 - Concatenation is associative
- \square $\varepsilon E = E \varepsilon = E$
 - \blacksquare ϵ is right and left identity for concatenation
- $\square \varnothing E = E \varnothing = \varnothing$
 - Ø is right and left annihilator for concatenation
- \square E (F + G) = EF + EG
 - Concatenation is left distributive over union
- \Box (F + G) E = F E + G E
 - Concatenation is right distributive over union

Algebraic Laws for RE

- \Box $\epsilon^* = \epsilon$
- \Box (E*)* = E*
 - Closure is idempotent
- \Box E* = EE* + ε