Filter Fundamentals

I.Nelson
SSN College of Engineering

Why We Need Filters

In order to eliminate the unwanted interference that accompanies a signal, a filter is needed.

Filter Characteristics

- Ideally, a filter needs to have a flat pass band and a sharp roll-off in its transition band.
- Realistically, it has a rippling pass/stop band and a transition band.

Classification of Filters I

Classification of Filters II

Continuous-time

Discrete-time

Classification of Filters III

 V_{in}

Passive

Active

Filter Transfer Function

- Filter (a) has a transfer function with -20dB/dec roll-off
- Filter (b) has a transfer function with -40dB/dec roll-off, better selectivity.

General Transfer Function

$$H(s) = \alpha \frac{(s-Z_1)(s-Z_2)\cdots(s-Z_m)}{(s-P_1)(s-P_2)\cdots(s-P_m)}$$
 Z_m=m'th zero P_n =n'th pole

Pole-Zero Diagram

(b)

(a)

(c)

Position of the Poles

Poles on the RHP Unstable (no good)

Poles on the jω axis Oscillatory (no good) Poles on the LHP Decaying (good)

First-Order Filters

- First-order filters are represented by the transfer function shown above.
- Low/high pass filters can be realized by changing the relative positions of poles and zeros.

Frequency Response Template

With all the specifications on pass/stop band ripples and transition band slope, one can create a filter template that will lend itself to transfer function approximation.

Butterworth Response

The Butterworth response completely avoids ripples in the pass/stop bands at the expense of the transition band slope.

Poles of the Butterworth Response

Chebyshev Response

Chebyshev Polynomial

The Chebyshev response provides an "equiripple" pass/stop band response.

Chebyshev Polynomial

Chebyshev Polynomial for n=1,2,3

Resulting Transfer function for n=2,3

$$C_{n}\left(\frac{\omega}{\omega_{0}}\right) = \cos\left(n\cos^{-1}\frac{\omega}{\omega_{0}}\right), \omega < \omega_{0}$$

$$= \cosh\left(n\cosh^{-1}\frac{\omega}{\omega_{0}}\right), \omega > \omega_{0}$$

