CASO PRÁCTICO 7

MÓDULO PYTHON

Juan Manuel Mendoza Ramos

Contenido:

1. Instrucciones.

2. Descripción del problema o pregunta:

- a. ¿Qué intentas predecir, analizar o investigar con los datos seleccionados?
- b. Describe el contexto del conjunto de datos y por qué es relevante para el análisis.

3. Análisis Exploratorio de Datos (EDA):

- a. Realiza un análisis inicial para comprender la estructura de los datos. Identifica valores faltantes, distribuciones y patrones.
- b. Crea **visualizaciones** (gráficos de barras, histogramas, gráficos de dispersión) que ayuden a visualizar los datos y su distribución.

4. Preparación de los Datos:

- a. Limpiar los datos: Manejar valores faltantes, duplicados o incorrectos.
- b. Normalizar o escalar los datos si es necesario.
- c. Convertir variables categóricas en variables numéricas (si aplica).

5. Modelado Predictivo:

- a. Construir un modelo predictivo utilizando **Scikit-learn**. Ejemplos de modelos que pueden utilizar:
 - i. Regresión lineal para predicción de valores continuos.
 - ii. **Clasificación** (Regresión logística, KNN) si la variable objetivo es categórica.
- b. Explicar brevemente la elección del modelo.

6. Evaluación del Modelo:

- a. Utilizar métricas como **Precisión**, **Recall**, **F1 Score** (si es un problema de clasificación) o **Mean Squared Error** (**MSE**) (si es un problema de regresión).
- b. Mostrar gráficos como la **Curva ROC** (para clasificación) o **gráfico de errores residuales** (para regresión).

7. Visualización de Resultados:

a. Generar visualizaciones que resuman los resultados del análisis predictivo. Estas pueden incluir gráficos de dispersión con las predicciones, gráficos de barras, histogramas, etc.

8. Conclusiones y Recomendaciones:

- a. Responder a la pregunta inicial o problema planteado con base en los resultados obtenidos.
- b. Proporcionar posibles mejoras o recomendaciones para trabajos futuros.

9. Despliegue del Modelo:

a. (Opcional) Explica cómo podrías desplegar el modelo en un entorno productivo, como una API o una aplicación web.

1. Instrucciones.

Aplicación de Ciencia y Analítica de Datos con Python

Título del Proyecto: Análisis Predictivo de un Conjunto de Datos de Interés

Los participantes del curso llevarán a cabo un **proyecto de ciencia y analítica de datos** utilizando **Python**. El objetivo es aplicar los conceptos teóricos y prácticos aprendidos durante el curso, desde la manipulación de datos con **NumPy** y **Pandas**, hasta la creación de visualizaciones, el desarrollo de modelos predictivos básicos, y su posterior evaluación y despliegue.

Objetivo del Proyecto:

El <u>proyecto final</u> tiene como objetivo que los participantes seleccionen un conjunto de datos **propios o de interés**, realicen un análisis exploratorio, construyan un modelo predictivo y desarrollen visualizaciones para comunicar los resultados. Los datos pueden ser de áreas como:

- Ventas o Marketing (ventas por mes, análisis de clientes).
- Salud (análisis de pacientes, diagnósticos, tratamientos).
- **Deportes** (rendimiento de jugadores, resultados de partidos).
- Educación (desempeño académico, tasa de asistencia).

Los participantes deberán crear una solución analítica que responda a una pregunta específica o problema utilizando las herramientas de análisis utilizadas, de manera indivual o en equipo de máximo 4 integrantes, pero TODOS deben entregar.

Entregables del Proyecto:

Cada equipo o participante debe entregar los siguientes elementos:

1. Descripción del problema o pregunta:

- o ¿Qué intentas predecir, analizar o investigar con los datos seleccionados?
- Describe el contexto del conjunto de datos y por qué es relevante para el análisis.

2. Análisis Exploratorio de Datos (EDA):

- Realiza un análisis inicial para comprender la estructura de los datos.
 Identifica valores faltantes, distribuciones y patrones.
- Crea visualizaciones (gráficos de barras, histogramas, gráficos de dispersión) que ayuden a visualizar los datos y su distribución.

3. Preparación de los Datos:

- Limpiar los datos: Manejar valores faltantes, duplicados o incorrectos.
- Normalizar o escalar los datos si es necesario.
- o Convertir variables categóricas en variables numéricas (si aplica).

4. Modelado Predictivo:

- Construir un modelo predictivo utilizando Scikit-learn. Ejemplos de modelos que pueden utilizar:
 - Regresión lineal para predicción de valores continuos.
 - Clasificación (Regresión logística, KNN) si la variable objetivo es categórica.
- Explicar brevemente la elección del modelo.

5. Evaluación del Modelo:

- Utilizar métricas como Precisión, Recall, F1 Score (si es un problema de clasificación) o Mean Squared Error (MSE) (si es un problema de regresión).
- Mostrar gráficos como la Curva ROC (para clasificación) o gráfico de errores residuales (para regresión).

6. Visualización de Resultados:

Generar visualizaciones que resuman los resultados del análisis predictivo.
 Estas pueden incluir gráficos de dispersión con las predicciones, gráficos de barras, histogramas, etc.

7. Conclusiones y Recomendaciones:

- Responder a la pregunta inicial o problema planteado con base en los resultados obtenidos.
- o Proporcionar posibles mejoras o recomendaciones para trabajos futuros.

8. Despliegue del Modelo:

 (Opcional) Explica cómo podrías desplegar el modelo en un entorno productivo, como una API o una aplicación web.

Criterio	Puntos	Descripción de la Evidencia Esperada
1. Descripción del Problema	10	- El participante describe claramente la pregunta o problema que el análisis intenta resolver.
i. Descripcion dei Problema		- Explicación de la relevancia del conjunto de datos seleccionado.
		- Se presentan gráficos para visualizar la distribución de los datos.
2. Análisis Exploratorio de Datos	20	- Identificación de valores atípicos o faltantes.
		- Comentarios sobre las relaciones entre variables.
O Donor and the de law Dates	15	- Los datos se limpian adecuadamente, con un enfoque claro en la eliminación de valores faltantes y duplicados.
3. Preparación de los Datos	15	- Variables categóricas convertidas correctamente (si es necesario).
		- Elección justificada del modelo (regresión, clasificación, etc.).
4. Modelado Predictivo	20	- Implementación del modelo de aprendizaje automático correctamente ajustado.
		- Explicación de las variables utilizadas.
E. Erreland Mandala	4-	- Utilización de las métricas adecuadas para evaluar el rendimiento del modelo.
5. Evaluación del Modelo	15	- Explicación clara de los resultados obtenidos y su interpretación.
015 5 17 18 11		- Las visualizaciones son claras y bien explicadas.
6. Visualización de Resultados	10	- Los gráficos respaldan las conclusiones y proporcionan un resumen visual del análisis.
7. Conclusiones y	10	- El análisis responde a la pregunta inicial.
Recomendaciones	10	- Se proporcionan recomendaciones o ideas para mejorar el análisis o seguir trabajando con el conjunto de datos.
8. Despliegue del Modelo	10	- Descripción clara de cómo el modelo podría ser implementado en un entorno productivo, por ejemplo, en una API o
(Opcional)	(Opc.)	aplicación.

Evidencias Esperadas

- Código en Python utilizando Pandas, NumPy, Matplotlib/Seaborn y Scikitlearn para el análisis y modelado predictivo.
- **Informe escrito** en el cual se detalle cada uno de los pasos del proyecto, las decisiones tomadas y las conclusiones alcanzadas.
- Visualizaciones gráficas que respalden el análisis y resumen los resultados.

Comentarios

Este proyecto permite a los participantes aplicar de forma integral lo aprendido durante el curso de **Ciencia y Analítica de Datos con Python**, trabajando con sus propios datos o seleccionando un conjunto de datos de su interés. Esto les brinda la oportunidad de obtener experiencia práctica en la manipulación de datos, construcción de modelos predictivos, evaluación de resultados y presentación de sus hallazgos de manera clara y concisa. Entrega tardía al dia siguiente, misma hora.

2. Descripción del problema o pregunta.

CONTEXTO

"Análisis Predictivo de un Conjunto de Datos de jugadores de liga universitaria de Basketball"

Se dispone de un conjunto de datos que describen Nombre, Universidad de origen, las condiciones físicas, posición en la duela y logros obtenidos durante el último año. Con base a lo anterior, los directivos de la liga, desean aportar información a los equipos de ligas mayores para reforzar la ofensiva y conservar los jugadores que más aportan.

OBJETIVO

Determinar los jugadores que lograron más de 500 puntos durante la temporada y evaluar los resultados para el pronóstico.

3. Análisis Exploratorio de Datos (EDA):

Se preparó la base de datos xls y se convirtió a csv.

	Α	В	C	D	E	F	G	Н	1	J	K	L	M
П	id	player	height	weight	college	age	two_points	two_point_percentage	fta	ast	pts	mayor500	
	0	Cliff Barker	188	83	University of Kentucky	29	102	37%	106	109	279	0	
	1	Ralph Beard	178	79	University of Kentucky	22	340	36%	282	233	895	1	
	2	Charlie Black	196	90	University of Kansas	28	226	28%	321	163	661	1	
	3	Nelson Bobb	183	77	Temple University	25	80	32%	131	46	242	0	
	4	Jake Bornheimer	196	90	Muhlenberg College	22	88	29%	117	40	254	0	
	5	Vince Boryla	196	95	University of Denver	22	204	34%	267	95	612	1	
	6	Don Boven	193	95	Western Michigan University	24	208	37%	349	137	656	1	
	7	Harry Boykoff	208	102	St. John's University	27	288	41%	262	149	779	1	
	8	Joe Bradley	190	79	Oklahoma State University	21	36	27%	38	36	87	0	
	9	Carl Braun	196	81	Colgate University	22	373	36%	374	247	1031	1	
	10	Frankie Brian	185	81	Louisiana State University	26	368	32%	488	189	1138	1	
	11	Price Brookfield	193	83	West Texas A&M University	29	11	48%	13	1	34	0	
	12	Bob Brown	193	92	Miami University	26	276	36%	252	101	724	1	
	13	Walt Budko	196	99	Columbia University	24	198	30%	263	146	595	1	
	14	Tommy Byrnes	190	79	Seton Hall University	26	120	30%	124	88	327	0	
	15	Bill Calhoun	190	81	City College of San Francisco	22	207	38%	203	115	560	1	
	16	Don Carlson	183	77	University of Minnesota	30	99	34%	95	76	267	0	
	17	Leroy Chollet	188	86	Canisius College	24	61	34%	56	37	157	0	
	18	Bill Closs	196	88	Rice University	28	283	32%	259	160	752	1	
	19	Jack Coleman	201	88	University of Louisville	25	250	38%	121	153	590	1	
	20	Jack Cotton	201	90	University of Edulatine University of Wyoming	25	97	29%	161	65	276	0	
	21	Dillard Crocker	193	92	Western Michigan University	25	245	29%	317	85	723	1	
	22	Chink Crossin	185	74	University of Pennsylvania	26	185	32%	101	148	449	0	
	23	Fran Curran	183	79	University of Pennsylvania University of Notre Dame	26	98	42%	241		395	0	
	24	Bob Davies*										1	
	25		185	79	Seton Hall University	30	317	36%	347	294	895 36	0	
		Hook Dillon	190	81	University of North Carolina	26	10	18%	22	5			
	26	Bob Doll	196	88	University of Colorado	30	120	35%	114	108	315	0	
	27	Harry Donovan	188	81	Muhlenberg College	23	90	33%	106	38	253	0	
)	28	Dike Eddleman	190	85	University of Illinois at Urbana-Champaign	27	332	37%	260	142	826	1	
	29	Gene Englund	196	92	University of Wisconsin	32	104	38%	192	41	360	0	
	30	Bob Evans	188	79	Butler University	24	56	28%	44	55	142	0	
	31	Johnny Ezersky	190	79	University of Rhode Island	27	143	29%	183	86	413	0	
	32	Bob Feerick	190	86	Santa Clara University	30	172	34%	174	127	483	0	
	33	Arnie Ferrin	188	81	University of Utah	24	132	33%	109	95	340	0	
	34	Jerry Fleishman	188	86	New York University	27	102	29%	151		297	0	
	35	Joe Fulks*	196	86	Murray State University	28	336	28%	421	56	965	1	
	36	Elmer Gainer	198	88	DePaul University	31	9	26%	8	7	24	0	
	37	Harry Gallatin*	198	95	Truman State University	22	263	40%	366	56	803	1	
)	38	Vern Gardner	196	90	University of Utah	24	313	34%	296	119	853	1	
	39	Bud Grant	190	88	University of Minnesota	22	42	37%	17	19	91	0	
	40	Don Grate	188	83	Ohio State University	26	1	17%	2	3	4	0	
	41	Alex Groza	201	98	University of Kentucky	23	521	48%	623	162	1496	1	
	42	Chick Halbert	206	102	West Texas A&M University	30	108	38%	175	89	328	0	
	43	Bruce Hale	185	77	Santa Clara University	31	217	35%	285	226	657	1	
	44	Alex Hannum*	201	95	University of Southern California	26	177	36%	186	129	482	0	
	45	John Hargis	188	81	University of Texas at Austin	29	223	41%	277	102	643	1	
	46	Bob Harris	201	88	Oklahoma State University	22	168	36%	223	129	476	0	
	47	Bob Harrison	201	88	Oklahoma State University	22	125	36%	74	131	300	0	
	48	Marshall Hawkins	190	92	University of Tennessee	25	55	28%	61	51	152	0	
	49	Bill Henry	206	97	Rice University	25	89	32%	176	48	296	0	
	50	Kleggie Hermsen	206	102	University of Minnesota	26	196	32%	247	98	545	1	

A	В	C	D	E	F	G	Н	- 1	J	K	L
id	player	height	weight	college	age	two_points	two_point_p ft	a	ast	pts	mayor500
	0 Cliff Barker	188	83	University of Kentucky	29	102	37%	106	109	279	0
	1 Ralph Beard	178	79	University of Kentucky	22	340	36%	282	233	895	1
	2 Charlie Black	196	90	University of Kansas	28	226	28%	321	163	661	1
	3 Nelson Bobb	183	77	Temple University	25	80	32%	131	46	242	0
	4 Jake Bornheimer	196	90	Muhlenberg College	22	88	29%	117	40	254	0
	5 Vince Boryla	196	95	University of Denver	22	204	34%	267	95	612	1
	6 Don Boven	193	95	Western Michigan University	24	208	37%	349	137	656	1
	7 Harry Boykoff	208	102	St. John's University	27	288	41%	262	149	779	1
	8 Joe Bradley	190	79	Oklahoma State University	21	36	27%	38	36	87	0
	9 Carl Braun	196	81	Colgate University	22	373	36%	374	247	1031	1
	10 Frankie Brian	185	81	Louisiana State University	26	368	32%	488	189	1138	1
	11 Price Brookfield	193	83	West Texas A&M University	29	11	48%	13	1	34	0
	12 Bob Brown	193	92	Miami University	26	276	36%	252	101	724	1
	13 Walt Budko	196	99	Columbia University	24	198	30%	263	146	595	1
	14 Tommy Byrnes	190	79	Seton Hall University	26	120	30%	124	88	327	0
	15 Bill Calhoun	190	81	City College of San Francisco	22	207	38%	203	115	560	1
	16 Don Carlson	183	77	University of Minnesota	30	99	34%	95	76	267	0
	17 Leroy Chollet	188	86	Canisius College	24	61	34%	56	37	157	0
	18 Bill Closs	196	88	Rice University	28	283	32%	259	160	752	1
	19 Jack Coleman	201	88	University of Louisville	25	250	38%	121	153	590	1
	20 Jack Cotton	201	90	University of Wyoming	25	97	29%	161	65	276	0
	21 Dillard Crocker	193	92	Western Michigan University	25	245	29%	317	85	723	1
	22 Chink Crossin	185	74	University of Pennsylvania	26	185	32%	101	148	449	0
	23 Fran Curran	183	79	University of Notre Dame	27	98	42%	241	71	395	0
	24 Bob Davies*	185	79	Seton Hall University	30	317	36%	347	294	895	1
	25 Hook Dillon	190	81	University of North Carolina	26	10	18%	22	5	36	0
	26 Bob Doll	196	88	University of Colorado	30	120	35%	114	108	315	0
	27 Harry Donovan	188		Muhlenberg College	23	90	33%	106	38	253	0
	28 Dike Eddleman	190		University of Illinois at Urbana-Champaign	27	332	37%	260	142	826	1
	29 Gene Englund	196		University of Wisconsin	32	104	38%	192	41	360	0
	30 Bob Evans	188		Butler University	24	56	28%	44	55	142	0
	31 Johnny Ezersky	190		University of Rhode Island	27	143	29%	183	86	413	0
	32 Bob Feerick	190		Santa Clara University	30	172	34%	174	127	483	0
	33 Arnie Ferrin	188		University of Utah	24	132		109	95	340	0
	34 Jerry Fleishman	188		New York University	27	102	29%	151	118	297	0
	35 Joe Fulks*	196		Murray State University	28	336		421	56	965	1
	36 Elmer Gainer	198		DePaul University	31	9		8	7	24	0
	37 Harry Gallatin*	198		Truman State University	22	263		366	56	803	1
	38 Vern Gardner	196		University of Utah	24	313		296	119	853	1
	39 Bud Grant	190		University of Minnesota	22	42		17	19	91	0
	40 Don Grate	188		Ohio State University	26	1		2	3	4	0
	41 Alex Groza	201		University of Kentucky	23	521		623	162	1496	1
	42 Chick Halbert	206		West Texas A&M University	30	108		175	89	328	0
	43 Bruce Hale	185		Santa Clara University	31	217		285	226	657	1
	44 Alex Hannum*	201		University of Southern California	26	177		186	129	482	0
	45 John Hargis	188		University of Texas at Austin	29	223		277	102	643	1
	46 Bob Harris	201		Oklahoma State University	22	168		223	129	476	0
	47 Bob Harrison	201		Oklahoma State University	22	125		74	131	300	0
	48 Marshall Hawkins	190		University of Tennessee	25	55		61	51	152	0
	49 Bill Henry	206		Rice University	25	89		176	48	296	0
	50 Kleggie Hermsen	206		University of Minnesota	26	196		247	98	545	1
	51 Sonny Hertzberg	178		City College of New York	27	275		191	200	693	1

.CSV

```
id INT,
player VARCHAR,
height INT,
weight INT,
college VARCHAR,
born INT,
born INI,
birth_city VARCHAR,
birth_state VARCHAR
player_id INT,
year DEC,
position VARCHAR,
age DEC,
Tm VARCHAR,
G VARCHAR,
TS_Percentage DEC,
OWS DEC,
DWS DEC,
WS DEC,
FG DEC,
FGA DEC,
FG_Percentage DEC,
Two_Points DEC,
Two_PA DEC,
Two_Point_Percentage DEC,
eFG_Percentage DEC,
FT DEC,
FTA DEC,
FT_Percentage DEC,
AST DEC,
PF DEC,
```

- 3. al 8. Posteriormente utilizando COLAB se cargó dicha base de datos y tomando como referencia el EJERCICIO 7 (gracias por compartir), se ejecutó de la siguiente forma.
- 1. Importar base de datos y librerías.

- 2. Revisar base de datos, 12 columnas y 3070 filas.
- 3. Revisar el tipo de columnas, 3 object y 9 int64.
- 4. Obtener datos estadísticos de la base de datos, como son, valores min y max, mediana, desviación estándar, quartíles.
- 5. Eliminar columnas object.

- 6. Visualización con histogramas de las 9 columnas.
- 7. Mostrar mediante un gráfico circular jugadores con y sin 500 pts anotados.
- 8. Obtener matríz de correlaciones de jugadores.

- 9. Seleccionar y eliminar columna mayor500, asimismo, eliminar columna id.
- 10. División y entrenamiento, Xtrain, Xtest, ytrain, ytest. Test size del 40%.

11. Con randomForest, se calculan y grafican 7 variables.

12. Utilizando clasificador regresión logística. Importamos librería, modelos, ypredict y son 1228 pruebas arroja una exactitud de 0.99. Asimismo, se obtiene y muestra matríz de confusión.

```
183] from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, confusion_matrix
           modelo_LR = LogisticRegression()
          modelo_LR.fit(X_train, y_train)
    /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:469: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
          Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(

    LogisticRegression

           LogisticRegression()

  [184] y_predict = modelo_LR.predict(X_test)
  [187] print(classification_report(y_test, y_predict))
# La precisión es la relación TP/(TP+FP)
           # TP = Verdaderos Positivos
# FP = Falsos Positivos
                  FN = Falsos Negativos
           # El recall (recuperación) es la relación entre TP/(TP+FN)
          # La puntuación F-beta puede interpretarse como una media armónica ponderada de la precisión y la recuperación.
# donde una puntuación F-beta alcanza su mejor valor en 1 y su peor puntuación en 0.
                               precision recall f1-score support
     ₹
                                                                                        1228
                                                                        0.99
                 accuracy
          macro avg
weighted avg
                                                                                         1228
```

· Imprime la matriz de confusión y comenta los resultados

13. Utilizando maquina soporte vectorial. Importamos librería, modelos, ypredict y son 1228 pruebas arroja una exactitud de 0.99. Asimismo, se obtiene y muestra matríz de confusión.

14. Utilizando clasificador bosque aleatorio. Importamos librería, modelos, ypredict y son 1228 pruebas arroja una exactitud de 1.0. Asimismo, se obtiene y muestra matríz de confusión.

15. Utilizando K-nearest Neighbour (KNN). Importamos librería, modelos, ypredict y son 1228 pruebas arroja una exactitud de 0.98. Asimismo, se obtiene y muestra matríz de confusión.

16. Utilizando Naive Bayes Gaussian. Importamos librería, modelos, ypredict y son 1228 pruebas arroja una exactitud de 0.97. Asimismo, se obtiene y muestra matríz de confusión.

- 17. Se importan librerías y se obtienen curvas ROC y puntuación AUC
- 18. Comparación de modelos:

a) Regresión Logística: 0.999785047249799

b) Máquina de Soporte Vectorial: 0.999745241184947

c) Bosque Aleatorio: 1.0

d) K-Nearest Neighbors: 0.9972268441486412

e) Naive Bayes: 0.9966483293394581

- 19. Se muestran las curvas ROC.
- 20. Conclusiones.

```
from sklearn.metrics import roc_auc_score

auc_score1 = roc_auc_score(y_test, modelo_LR.predict_proba(X_test)[:, 1])
auc_score2 = roc_auc_score(y_test, modelo_svm.predict_proba(X_test)[:, 1])
auc_score3 = roc_auc_score(y_test, modelo_svm.predict_proba(X_test)[:, 1])
auc_score4 = roc_auc_score(y_test, modelo_knn.predict_proba(X_test)[:, 1])
auc_score5 = roc_auc_score(y_test, modelo_knn.predict_proba(X_test)[:, 1])

print("Regresión Logística: ", auc_score1) # Regresión Logística
print("Máquina de Soporte Vectorial: ", auc_score2) # Máquina de Soporte Vectorial
print("K-Nearest Neighbors: ", auc_score3) # Bosque Aleatorio
print("Naive Bayes: ", auc_score5) # Naive Bayes

Regresión Logística: 0.999785047249799
Máquina de Soporte Vectorial: 0.999745241184947
Bosque Aleatorio: 1.0
K-Nearest Neighbors: 0.9972268441486412
Naive Bayes: 0.9966483293394581

[215] plt.plot(fpr1, tpr1, linestyle = "--", color = "orange", label = "Regresión Logística")
plt.plot(fpr2, tpr2, linestyle = "--", color = "red", label = "SVM")
plt.plot(fpr3, tpr3, linestyle = "--", color = "green", label = "Bosque Aleatorio")
plt.plot(fpr4, tpr4, linestyle = "--", color = "green", label = "Respective plt.title('Características del operador receptor (ROC)')
plt.title('Características del operador receptor (ROC)')
plt.title('Tasa de verdaderos positivos')
plt.legend(loc = 'best')
plt.slow('Tasa de verdaderos positivos')
plt.slow('Tasa de verdaderos positivos')
plt.slow('Tasa de verdaderos positivos')
```


CONCLUSIONES

El gráfico muestra que el algoritmo Random Forest obtuvo el mejor AUC. Por lo tanto, está claro que este modelo realizo un mejor trabajo a la hora de clasificar a jugadores con más de 500 pts.

```
y_predict = modelo_rf.predict(X_test)
       print(classification_report(y_test, y_predict))
   ₹
                     precision
                                  recall f1-score support
                          1.00
                                    1.00
                                              1.00
                                    1.00
                                              1.00
                                                         627
                                              1.00
1.00
1.00
           accuracy
                                                         1228
          macro avo
                                    1.00
                                                         1228
       weighted avg
                          1.00
                                    1.00
                                                         1228
```

CONCLUSIONES Y RECOMENDACIONES

Como resultado de la ejecución de 5 modelos para el análisis de la base de datos de jugadores de una liga universitaria de basketball.

a) Regresión Logística: 0.999785047249799

b) Máquina de Soporte Vectorial: 0.999745241184947

c) Bosque Aleatorio: 1.0

d) K-Nearest Neighbors: 0.9972268441486412

e) Naive Bayes: 0.9966483293394581

Se concluye que el modelo de bosque aleatorio es el que mejor describe este análisis. Los jugadores que logran más de 500 pts.