Using probabilistic methods for hierarchical visualization of single-cell RNA-seq data

Tobias Beers

Universiteit van Amsterdam

July 22nd, 2020

Layout

- Introduction
 - scRNA-seq data and dimensionality reduction
 - Theory behind probabilistic hierarchical visualization
 - Probabilistic programming: Stan
- Methods
 - Data
 - Experiment set-up
- Results
- 4 Conclusions

Gene expression and scRNA-seq

- ullet Gene expression: DNA o mRNA o gene product
- High expression of a gene means more mRNA
- Single-cell RNA sequencing (scRNA-seq) measures relative gene expression by quantifying mRNA transcripts
- ScRNA-seq data may contain thousands of dimensions (genes), but visualization is easier in two dimensions

Dimensionality reduction

- linear techniques
 - PCA
 - PPCA
- non-linear techniques
 - t-SNE
 - UMAP
 - Hierarchical Mixture of PPCAs (HmPPCAs)

Figure has been copied from Bishop & Tipping (1998) [1]

moutational

Innovation and relevance

- HmPPCAs has been used on scRNA-seq data before [2]
- So far, HmPPCAs tree has been built interactively
 - Automatic Clustering
- HmPPCAs is solved through expectation-maximization (EM) algorithm
 - Probabilistic programming

PPCA

- Full data-set **X**, latent data-set **Z**
- Latent data (m dimensions) is transformed into full data-set (d dimensions): $\mathbf{x}_i = \mathbf{W}\mathbf{z}_i + \boldsymbol{\mu} + \boldsymbol{\epsilon}$
 - W: factor loadings, μ : added means, ϵ : noise
- Therefore, $\mathbf{x}|\mathbf{z}$ follows the distribution $\mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z}+\boldsymbol{\mu},\sigma^2\mathbf{I})$

Figure has been copied from Bishop (2006) [3]. m = 1, d = 2

Mixture of PPCAs (MoPPCAs)

- Suppose our data-set is the result of K latent variable models
- Now, $p(\mathbf{x}_i|\boldsymbol{\mu}, \boldsymbol{\sigma}^2, \boldsymbol{\pi}, \boldsymbol{W}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{W}_k \mathbf{z}_k + \boldsymbol{\mu}_k, \sigma_k^2 \boldsymbol{I})$
 - Where the mixture coefficient π_k denotes which proportion of the data comes from mixture component k

Figure has been copied and modified from Bishop (2006) [3]. m = 1, d = 2, K = 2

Hierarchical Mixture of PPCAs (HmPPCAs)

- We can add more levels: suppose mixture component k consists of multiple sub-components m
- As many levels can be added as necessary!

Figure has been copied from Bishop & Tipping (1998) [1]

nnutational

Stan

- Probabilistic Programming Language
- Specify a model, input data and Stan finds posterior distribution of parameters given observed data
- Easy add changes to model
- Two methods of inference:
 - NUTS
 - ADVI/VB


```
int<lower=1.upper=J> ii[N]: // group for individual
corr matrix[K] Omega;
vector<lower=0>[K] tau;
matrix[L,K] gamma;
vector[K] beta[J];
real<lower=0> sigma:
Omega ~ lki corr(2):
to vector(gamma) ~ normal(0, 5);
  beta ~ multi normal(u gamma, quad form diag(Omega, tau));
  v ~ normal(x beta ii, sigma);
                                                            utational
```

NUTS

Metropolis-Hastings

- Convergence takes long due to inefficient pathways
- Hamiltonian Monte Carlo
- NUTS

NUTS

- Metropolis-Hastings
- Hamiltonian Monte Carlo
 - Faster convergence
 - Need to pick values for path-length L and step-size ϵ
- NUTS

NUTS

- Metropolis-Hastings
- Hamiltonian Monte Carlo
- NUTS
 - Automatically tunes path-length L and step-size ϵ

Figure has been copied from Hoffman & Gelman (2014) [4]

moutational

ADVI

- Variational inference
 - Approach $P(\theta|\mathbf{X})$ by initializing $Q(\zeta)$ and minimize $D_{KL}(Q||P)$
 - $D_{KL}(Q||P) = \text{evidence} \text{ELBO}$
 - Evidence is independent of Q
- ADVI automatizes this process

Data

- Simulated
 - 10 Splatter data-sets varying in complexity and number of genes
 - 5 250 genes
- Experimental
 - Darmanis et al. [5]
 - Nestorowa et al. [6]
 - Both were filtered to include only 500 genes with largest variance

Experiment set-up

- HmPPCAs was compared with PPCA, t-SNE and UMAP
- Visualization performance was scored on cell type separability
 - Multinomial logistic regression on latent data-sets using 5-fold cross-validation

(a) Well separated, easy to predict cell type of new data-points

(b) Badly separated, difficult to predict cell type of new data-points

Example of HmPPCAs on a Splatter data-set

Results

- HmPPCAs almost always scored higher than PPCA
- t-SNE and UMAP consistently outperformed HmPPCAs

Conclusions

- HmPPCAs not as accurate as UMAP or t-SNE
- Adding hierarchy did improve on a standard PPCA
- HmPPCAs outperfored UMAP and t-SNE in earlier literature
 - Errors in automatic clustering
 - Incorrect initialization MoPPCAs
- Easy to incorporate more elements in the model due to probabilistic programming (e.g. zero-inflation)

Thank you!

References:

- Christopher M Bishop and Michael E Tipping. A hierarchical latent variable model for data visualization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3):281–293, 1998.
- [2] Philip van Kuiken. Hierarchical visualization of single cell RNA-seq data. Master's thesis, Vrije Universiteit Amsterdam. the Netherlands. 2017.
- [3] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.
- [4] Matthew D Hoffman and Andrew Gelman. The no-U-turn sampler: adaptively setting path lengths in hamiltonian monte carlo. *Journal of Machine Learning Research*, 15(1):1593–1623, 2014.
- [5] Spyros Darmanis, Steven A Sloan, Ye Zhang, Martin Enge, Christine Caneda, Lawrence M Shuer, Melanie G Hayden Gephart, Ben A Barres, and Stephen R Quake. A survey of human brain transcriptome diversity at the single cell level. *Proceedings of the National Academy of Sciences*, 112(23):7285–7290, 2015.
- [6] Sonia Nestorowa, Fiona K Hamey, Blanca Pijuan Sala, Evangelia Diamanti, Mairi Shepherd, Elisa Laurenti, Nicola K Wilson, David G Kent, and Berthold Göttgens. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. *Blood, The Journal of the American Society of Hematology*, 128(8):e20–e31, 2016.

Accuracy on the Splatter data-sets

Results - accuracy

Results - accuracy

Table: Accuracy of multinomial logistic regressions on the latent data-sets found by each model in a 5-fold cross-validation scheme

	Splatter simple							Splatter complex			Darmanis	Nestorowa
genes	5	25	50	150	250	5	25	50	150	250	500	500
PPCA (NUTS)	1.00	0.88	0.99	0.97	0.94	0.80	0.68	0.82	0.81	0.77	0.60	0.73
HmPPCÁs (NUTS)	1.00	1.00	1.00	0.97	1.00	0.90	0.82	0.89	0.82	0.69	0.70	0.79
PPCA (VB)	1.00	0.88	0.99	0.96	0.94	0.80	0.69	0.81	0.82	0.76	0.73	0.73
HmPPCAs (VB)	1.00	1.00	1.00	0.98	1.00	0.90	0.91	0.90	0.94	0.79	0.73	0.79
UMAP t-SNE	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	0.95 0.95	0.98 0.94	0.98 1.00	1.00 1.00	1.00 1.00	0.82 0.76	0.82 0.80

Automatic clustering

- Fit GMM models on latent data, while varying the number of clusters
- Compute BIC: $BIC = k \ln n 2 \ln \mathcal{L}$,
 - n: number of data-points, k: number of clusters, \mathcal{L} : likelihood of model
- Choose model with lowest BIC for the intialization of MoPPCAs

