

Master's Degree Thesis

Brignone Giovanni

Supervisor: Prof. Lavagno Luciano

October 21, 2021

Politecnico di Torino

High-Level Synthesis

Productivity:

- Functionality
- Debugging
- Design space exploration

Memory management

Scratchpad:

- · Manual memory selection
- HLS state of the art

Cache:

- Automatically exploit whole hierarchy
- · Thesis work objective

Previous work

Architecture:

- · Cache inlined in application
- · One cache per DRAM array

Implementation:

- C++ class
- User friendliness
 - Integrability: operator[] overload
 - Configurability: template parameters
 - · Observability: hit ratio reports
- · Application logic cluttering

Thesis work

Basic architecture

Objective:

· Limit application cluttering

- · Cache: separate process
 - Modeling: threads (SW), dataflow (HW)
 - · Communication: FIFOs
- Application:
 - 1. Send request
 - 2. Receive response

Basic architecture — Implementation

Objective:

Optimally pipeline cache hits (II=1)

Problem:

· Dependencies on DRAM interface

- · Multi-process architecture:
 - Core: cache functionality
 - Memory interface: DRAM accesses (miss only)

Optimizations

Multi-levels architecture

Objective:

· Reduce read latency

- L1 cache inlined in application
 - · Fast: no communication overhead
 - · Simple: direct mapped, write-through

Multi-ports architecture

Objective:

Execute multiple reads in parallel

- Single L2 cache (with multiple ports)
- Multiple L1 caches (one per L2 port)

Results

Matrix multiplication

Algorithm:

$$C = A \times B$$
, $A, B, C \in \mathbb{R}^{32 \times 32}$

Caches configuration:

- A: 1 line of 32 elements
- B: 32 lines of 32 elements
- C: 1 line of 32 elements

Matrix multiplication

Algorithm:

$$C = A \times B$$
, $A, B, C \in \mathbb{R}^{32 \times 32}$

Caches configuration:

- A: 1 line of 32 elements
- B: 32 lines of 32 elements
- C: 1 line of 32 elements

Summary

Summary

Achieved results:

- Multi-process modeling for HLS
- Design space extended by cache

Future work:

- RTL implementation
- Pre-fetching

References

- Ma, L., Lavagno, L., Lazarescu, M., & Arif, A. (2017). Acceleration by inline cache for memory-intensive algorithms on fpga via high-level synthesis. *IEEE Access, PP*, 1–1. https://doi.org/10.1109/ACCESS.2017.2750923
- Xilinx Inc. (2021). Vitis high-level synthesis user guide.
 - $https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug1399-vitis-hls.pdf\\$

Interface issues

Cache process:

Optimal pipeline (II=1)

Interface:

- Scheduler unaware of latency between request and response
- · Workaround: forced clock cycles

Original scheduling

Scheduling with workaround

