MS&E 228: Directed Acyclic Graphs and Non-Linear SEMs

Vasilis Syrgkanis

MS&E, Stanford

Goals for Today

- Learn the "language" of Directed Acyclic Graphs (DAGs) and their associated non-linear structural equation models (SEMs)
- Introduce "intervention" concepts "do" and "fix"
- Introduce d-separation and conditional independence in DAGs
- Proof sketch of fundamental theorem d-separation ⇒ conditional ind.

Next lecture

- Graphical criteria for selection of adjustment set
- Crash course on good and bad "controls"

DAGs

Judea Pearl. 'Causal diagrams for empirical research'. In: *Biometrika* 82.4 (1995), pp. 669–688 (cited on page 30).

Trygve Haavelmo. 'The probability approach in econometrics'. In: *Econometrica: Journal of the Econometric Society* 12 (1944), pp. iii–vi+1–115 (cited on pages 30, 32).

James Heckman and Rodrigo Pinto. 'Causal analysis after Haavelmo'. In: *Econometric Theory* 31.1 (2015 (NBER 2013)), pp. 115–151 (cited on pages 30, 35).

James Robins. 'A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect'. In: *Mathematical modelling* 7.9-12 (1986), pp. 1393–1512 (cited on page 54).

Thomas S. Richardson and James M. Robins. *Single world intervention graphs (SWIGs): A unification of the counterfactual and graphical approaches to causality*. Working Paper

- Last time we looked at linear SEMs
- The language of SEMs does not really rely on the linearity assumption

• For example, the Triangular Structural Equation (TSEM) $Y\coloneqq \delta P+\beta'X+\epsilon_Y$ $P\coloneqq \nu'X+\epsilon_P$ $X\coloneqq \epsilon_X$

- Last time we looked at linear SEMs
- The language of SEMs does not really rely on the linearity assumption
- For example, the Triangular Structural Equation (TSEM)
- Can be made non-linear

$$Y := f_Y(P, X, \epsilon_Y)$$

$$P := f_P(X, \epsilon_P)$$

$$X := f_X(\epsilon_X)$$

• While we still maintain that $\epsilon_Y, \epsilon_P, \epsilon_X$ are independent "exogenous" shocks

Non-Linear Triangular Structural Equation (TSEM)

Exogenously determined "outside" of the model

- ϵ_Y , ϵ_P , ϵ_X are independent "exogenous" shocks
- The functions f_Y , f_P , f_X are deterministic "structural functions"
- Instead of "structural parameters" we now have "structural functions"
- Moreover, the dimension of exogenous shocks is un-restricted
- Note that the TSEM implies: $\epsilon_Y \perp\!\!\!\perp P$, X and $\epsilon_P \perp\!\!\!\perp X$

Non-Linear Triangular Structural Equation (TSEM)

Exogenously determined "outside" of the model

• ϵ_Y , ϵ_P , ϵ_X are independent "exogenous" shocks

Non-Linear Triangular Structural Equation (TSEM)

• ϵ_Y , ϵ_P , ϵ_X are independent "exogenous" shocks; typically omitted from

DAG visualization

Non-Linear Triangular Structural Equation (TSEM)

- ϵ_Y , ϵ_P , ϵ_X are independent "exogenous" shocks; typically omitted from DAG visualization
- A TSEM is simply a statistical "generative" model that determines a distribution over observed random variables (*c.f. Neural-Causal Models in further reading)

Structural Form

- TSEM is "structural" in that it is endowed with the following properties
- Made up of a collection of stochastic potential outcome processes indexed by (p, x)

$$Y(p, x) \coloneqq f_Y(p, x, \epsilon_Y)$$

 $P(x) \coloneqq f_P(x, \epsilon_P)$
 $X \coloneqq f_X(\epsilon_X)$

- Exogeneity: ϵ_P , ϵ_Y , ϵ_X are independent "shock" variables generated outside of the model
- Consistency: endogenous variables (Y, P, X) generated by recursive substitutions $Y \coloneqq Y(P, X), \qquad P \coloneqq P(X), \qquad X \coloneqq \epsilon_X$
- Invariance: structure remains invariant to changes of distributions of shocks

Link to Potential Outcomes

- Consider (for simplicity) binary treatments $p \in \{0,1\}$
- Suppose that potential outcomes are generated wlog as:

$$Y(p) \coloneqq g(p, X, \epsilon_Y(p))$$

- This is equivalent to a SEM where we define $\epsilon_Y = (\epsilon_Y(0), \epsilon_Y(1))$ and $Y(p) \coloneqq f_Y(p, X, \epsilon_Y)$
- where

$$f_Y(p, X, e) = p \cdot g(p, X, e(1)) + (1 - p) \cdot g(p, X, e(0))$$

Identification of Structural Responses

Identification by Regression Revisited

- If we condition on X=x it's as if we're altering the graph and SEM $Y=f_Y(P(x),x,\epsilon_Y), \qquad \epsilon_Y \perp\!\!\!\perp P(x)$
- Notice that remnant variation in P(x), is ϵ_P , which is exogenous
- As if driven by a randomized trial process

Identification by Regression Revisited

- If we condition on X=x it's as if we're altering the graph and SEM $Y=f_Y(P(x),x,\epsilon_Y), \qquad \epsilon_Y \perp \perp P(x)$
- Notice that remnant variation in P(x), is ϵ_P , which is exogenous
- As if driven by a randomized trial process
- If we further condition on P(x) = p, we learn $E[f_Y(p, x, \epsilon_Y)]$

Identification by Regression Revisited

• The conditional expectation function E[Y|P=p,X=x] recovers the conditional average structural response function $E[f_Y(p,x,\epsilon_Y)]$

$$E[Y|P = p, X = x] = E[f_Y(P, X, \epsilon_Y) | P = p, X = x]$$

$$= E[f_Y(p, x, \epsilon_Y) | P = p, X = x]$$

$$= E[f_Y(p, x, \epsilon_Y)]$$

- Average structural response = Expected outcome when P,X are exogenously set (outside of the model) to take values (p,x)
- It is useful for generating counterfactual predictions; what "would happen on average if" we intervene and set $(P,X) \leftarrow (p,x)$
- For TSEM: counterfactual predictions ≡ predictions

Identification by Regression Re-stated

• For TSEM, the conditional average structural causal effect coincides with the conditional average predictive effect

$$E[f_Y(p_1, x, \epsilon_Y)] - E[f_Y(p_0, x, \epsilon_Y)]$$

= $E[Y|P = p_1, X = x] - E[Y|P = p_0, X = x]$

- Left hand side is a structural hypothetical quantity: what would happen if we intervene and change P from p_0 to p_1 , at X=x
- Right hand side is a statistical quantity that can be calculated from observed random variables Y, P, X
- Identification: Mapping of "structural hypothetical quantities" to "measurable quantities" from data

Formalizing the Language of Interventions

Do Interventions: do(P = p)

Original Data Generative Model

$$Y \coloneqq f_Y(P, X, \epsilon_Y)$$

$$P \coloneqq f_P(X, \epsilon_P)$$

$$X \coloneqq \epsilon_X$$

Data Generative Model under do(P = p)

$$\begin{array}{c|c} Y & \coloneqq f_Y(p, X, \epsilon_Y) \\ P & do(P = p) & p \\ X & \coloneqq \epsilon_X \end{array}$$

Interventions

- Do-interventions is only one way of defining counterfactuals
- We can define any type of counterfactual by simply changing one of the equations to something else
- Wright in his seminal work in '28 defined an intervention where the demand equation was replaced by another one that reflects a tax hike
- We can also define "soft-interventions": increase price by 10% of its current value
- Another useful variant of do-interventions does not replace the treatment equation are "fix" interventions

Fix Interventions: fix(P = p)

Original Data Generative Model

$$Y \coloneqq f_Y(P, X, \epsilon_Y)$$

$$P \coloneqq f_P(X, \epsilon_P)$$

$$X \coloneqq \epsilon_X$$

Data Generative Model under fix(P = p)

$$|Y| := f_Y(p, X, \epsilon_Y)$$

$$|P| \text{ fix}(P = p) \quad f_P(X, \epsilon_P)$$

$$|E| := \epsilon_X$$

Fix Interventions

• A fix intervention is a form of "localized" do intervention

We are only fixing the value of P in the structural equation for Y

• The random variables generated by the fix intervention are the triplets (Y(p), P, X)

• The intervention does not affect the P,X equations nor the distribution of the exogenous shock ϵ_Y in the outcome equation

Single World Intervention Graphs

 The graphs that represent the generative model under a fix intervention

• Easy to verify visually that $Y(p) \perp \!\!\!\perp P \mid X$

 Then we can do identification based on conditional ignorability Data Generative Model under fix(P = p)

$$|Y| = f_Y(p, X, \epsilon_Y)$$

$$|P| = fix(P = p) = f_P(X, \epsilon_P)$$

$$|E| = \epsilon_X$$

Single World Intervention Graph

Testable Implications of a DAG

D-Separation and Conditional Independence

DAGs Encode Factorization of Probability

- Graph implies factorization of the probability law p(y,d,x,z) = p(y|x,d)p(d|x,z)p(x)p(z)
- By repeated application of Bayes rule p(y,d,x,z) = p(y|d,x,z)p(d,x,z)
- From graph

$$p(y|d,x,z) = p(y|d,x)$$

- Further Bayes rule p(d,x,z) = p(d|x,z)p(x,z)
- From independence: p(x,z) = p(x)p(z)

General DAGs

For any DAG, we can write the ASEM

$$X_j := f_j(\operatorname{Parents}_j, \epsilon_j) = f_j(\operatorname{Pa}_j, \epsilon_j)$$

- Shocks ϵ_j are jointly independent and independent of $\{X_j\}$
- And the corresponding structural response functions

$$X_j(pa_j) \coloneqq f_j(pa_j, \epsilon_j)$$

- Where pa_j are potential values of the parent nodes that index the stochastic potential outcome processes
- Consistency: variables X_j are generated by generating the shocks and then solving repeatedly the structural response functions

General DAGs and Factorization

• The probability law factorizes as:

$$p(\{x_{\ell}\}_{\ell\in V}) = \prod_{\ell\in V} p(x_{\ell}|pa_{\ell})$$

DAGs Encode Conditional Independencies

 Any two variables X, Y are independent conditional on a set S if they are D(irected)separated in the graph

$$(X \perp \!\!\!\perp_{\underline{d}} Y \mid S)_{G} \Rightarrow X \perp \!\!\!\perp Y \mid S$$

Need to define the concept of D-separation

Some Graph Definitions

- ullet A path π in a graph is blocked by a set of nodes S if
 - Either π contains a chain $i \to m \to j$ or a fork $i \leftarrow m \to j$ and $m \in S$
 - Or π contains a collider $i \to m \leftarrow j$ and neither m nor its descendants are in S

$$Z_{2} \xrightarrow{X_{3}} X_{3} \xrightarrow{Y} X_{1} \xrightarrow{X_{2}} X_{1} \xrightarrow{X_{1}} D$$

D-Separation

• In a DAG G, two nodes X,Y are D-separated by s set of nodes S if S blocks all paths between X and Y

We denote it as:

$$(X \perp \!\!\!\perp_{\underline{d}} Y \mid S)_G$$

D-separation implies conditional independency

$$(X \coprod_{\underline{d}} Y \mid S)_{G} \Rightarrow X \coprod Y \mid S,$$
(Verma, Pearl, '88)

Examples

• By factorization property and Bayes rule $p(y,x|z,u) = p(y|x,z,u) \ p(x|z,u) = p(y|z,u) \ p(x|z,u)$

Examples

• By factorization property and Bayes rule

$$p(y,x|z) = p(y|x,z) p(x|z) = p(y|z) p(x|z)$$

• If we had included u, then

$$p(y,x|z,u) = \frac{p(y,x,u|z)}{p(u|z)} = \frac{p(u|x,y,z)p(y|x,z)p(x|z)}{p(u|z)}$$
$$= \frac{p(u|x,y)p(y|z)p(x|z)}{p(u|z)}$$

We cannot write it as the product of two functions

$$p(y,x|z,u) = f(x,z,u) \cdot g(y,z,u)$$

Proving the Main Theorem!

ullet A set of nodes $oldsymbol{X}$ is called ancestral if all ancestors of $oldsymbol{X}$ are in $oldsymbol{X}$

• Removing all nodes outside of an ancestral set and looking at the resulting graph and ASEM, the probability law is the same as the probability law of \boldsymbol{X} in the original graph (exercise)

- Suppose that a set of nodes $m{X}$ is D-separated from a set of nodes $m{Y}$ by a set of nodes $m{S}$
- And that $\boldsymbol{X} \cup \boldsymbol{Y} \cup \boldsymbol{S}$ is the set of all nodes

- Let S_1 the subset of S that has a parent in X. Let S_2 the remainder.
- It has to be that $Pa(X \cup S_1) \in X \cup S$
- It has to be that $Pa(Y \cup S_2) \in Y \cup S$

• We can factorize:

$$p(x, y, s) = \prod_{W \in X \cup S_1} p(w|pa_W) \prod_{W \in Y \cup S_2} p(w|pa_W) = f(x, s_1)g(y, s_2)$$

We can factorize:

$$p(x, y, s) = \prod_{W \in X \cup S_1} p(w|pa_W) \prod_{W \in Y \cup S_2} p(w|pa_W) = f(x, s_1)g(y, s_2)$$

• Implies that:

$$X \perp \!\!\!\perp Y \mid S$$

Final Step

- By first step, we can restrict to ancestral set of $X \cup Y \cup S$
- Does not change conditional independence relations (exercise)
- Does not change d-separation relations (exercise)
- Define X nodes in ancestral set of $X \cup Y \cup S$ not d-separated from X
- Define **Y** the remainder of nodes in ancestral set not in **X**, **S**.

Final Step

- By definition of d-separation, S must d-separate X from Y (exercise)
- We can invoke previous critical lemma

Final Step

By marginalization

$$p(x, y, s) = \int \int p(x, x', y, y', s) dx' dy'$$

By step 2

$$p(x, y, s) = \int \int f(x, x', s) g(y, y', s) dx' dy'$$

We can split integrals

$$p(x, y, s) = \int f(x, x', s) dx' \int g(y, y', s) dy'$$

Thus

$$p(x, y, s) = \bar{f}(x, s)\bar{g}(y, s) \Rightarrow X \perp \!\!\!\perp Y \mid S$$