MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2011 SOLUTION KEY

Round 2

- A) $x^2 + (6\sqrt{3})^2 = (13\sqrt{2})^2 \implies x^2 = 169(2) 36(3) = 338 108 = 230$. Since $15^2 = 225$ and $16^2 = 256$, we see that 230 is closer to 15^2 than 16^2 . Thus, to the nearest integer, $x = \underline{15}$.
- B) $(25+N)^2+45^2=53^2 \Rightarrow (25+N)^2=53^2-45^2=(53+45)(53-45)=98(8)=49(16)=28^2$. Thus, $25+N=28 \Rightarrow N=\underline{3}$.

<u>FYI</u> - Here's how we know that the original $\triangle ABC$ was obtuse: Let AB = 53, then C is the largest angle. Using the Law of Cosines,

$$c^2 = a^2 + b^2 - 2ab\cos C \Rightarrow \cos C = \frac{a^2 + b^2 - c^2}{2ab} \Rightarrow \cos C = \frac{25^2 + 45^2 - 53^2}{2(25)(45)}$$

Since $25^2 + 45^2 - 53^2 = 625 + 2025 - 2809 < 0$, $\cos C < 0$ and $\triangle ABC$ must be obtuse.

C) Let (a, b, c) = (a, n - 1, n). Then $a^2 = n^2 - (n - 1)^2 = 2n - 1$. Consider these perfect squares $\{9, 25, 49, ...\}$. Since a^2 must be odd, even perfect squares are not considered. a = 1 is rejected, since $a = 1 \Rightarrow n = 1$ and this leaves a leg of length 0.

	(a	$^{-} = 2n - 1$				
а	a^2	N	а	b	С	Per
3	9	5	3	4	5	12
5	25	13	5	12	13	30
7	49	25	7	24	25	56
9	81	41	9	40	41	90
11	121	61	11	60	61	<u>132</u>

Thus, (a, b, c) = (11, 60, 61).