

МИНИСТЕРТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет «Информатика и вычислительная техника»

Кафедра «Программное обеспечение вычислительной техники и автоматизированных систем»

Тема: «Программная реализация математического моделирования развития эпидемиологической ситуации»

Подготовил: студентка группы ВМО41 Волкова Эмилия Юрьевна

Руководитель ВКР: к.т.н., доцент Медведева Татьяна Александровна

Ростов-на-Дону 2025

Актуальность выбранной темы

В 2020 году мир потрясла пандемия COVID-19, из-за которой многим странам пришлось ввести социальные ограничения, с целью замедления распространения заболевания среди населения. В 2025 году Россия столкнулась с ухудшением ситуации по заболеваемостью корью, последняя крупная вспышка которой произошла в 1994 году.

В такие моменты государству необходимо принимать стратегически верные решения, с чем могут помочь математические модели. Некоторые из них рассматривают не только течение эпидемиологической ситуации, но и влияние мер противодействия на распространение инфекции.

Рис. 2. Заболеваемость корью детей и взрослых за 2024 г.* (в абс. цифрах)

^{*} из информационного бюллетеня № 42 Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека ФБУН «Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского» Роспотребнадзора, Национальный научно-методический центр по надзору за корью и краснухой

Цель и задачи работы

Цель работы — разработка программного средства для моделирования развития эпидемиологических ситуаций и анализ математических моделей с целью выявления их эффективности и применимости в различных условиях на основе численных экспериментов.

Задачи

- Провести анализ предметной области и изучить выбранные математические модели.
- Разработать программное средство для моделирования эпидемиологических ситуаций.
- Реализовать вывод результатов, включающий численные решения и графические материалы.
- Протестировать программное средство на реальных данных.
- Провести анализ результатов с последующей оценкой применимости моделей для различных инфекционных заболеваний.

Требования к функциональным характеристикам

- Выбор представленных моделей (от 1 до 4): SIR, SI, SIQR, SEIR, MSEIR, SIRS, Multi-stage (М-модель).
- Ввод соответствующих начальных значений и параметров выбранной модели.
- Ввод реальных данных из файла формата csv.
- Вызов окна теоретической справки по реализованным моделям.
- Ввод даты начала и окончания моделирования.
- Выбор численного метода для решения СДУ.
- Расчет выбранных моделей с помощью численного метода.
- Вывод полученных результатов в графическом виде на экран.
- Экспорт результатов в табличном и графическом виде в файл формата xlsx.

Существующие аналоги

Критерий	Наименование аналога							
	Covasim	AnyLogic	GLEAMviz	Модели ЦЭМИ РАН	FRED	EpidemicModels		
Графический интерфейс	_	+	+	-	+	+		
Простота освоения	-	-	+	-	-	+		
Поддержка классических моделей	±	±	-	+	+	+		
Работа с реальными данными	+	+	+	+	+	+		
Визуализация результатов	±	+	+	-	+	+		
Бесплатность	+	±	+	-	+	+		
Агентное моделирование	+	+	+	+	+	-		
Поддержка русского языка	-	-	-	+	-	+		
Экспорт результатов	±	+	+	-	+	+		

Модель SIR (Susceptible-Infectious-Recovered)

- S(t) (Susceptible) восприимчивые
- I(t) (Infectious) инфицированные
- R(t) (Recovered) выздоровевшие

$$\begin{cases} \frac{dS(t)}{dt} = -\beta \cdot S(t) \cdot I(t) \\ \frac{dI(t)}{dt} = \beta \cdot S(t) \cdot I(t) - \gamma \cdot I(t) \\ \frac{dR(t)}{dt} = \gamma \cdot I(t) \end{cases}$$

где

β – скорость передачи инфекции;

 $S(0) = S_0$, $I(0) = I_0$, $R(0) = R_0$ — начальные условия.

Модель SI (Susceptible-Infectious)

S (Susceptible) – восприимчивые I (Infectious) – инфицированные

$$\begin{cases} \frac{dS(t)}{dt} = -\beta \cdot S(t) \cdot I(t) \\ \frac{dI(t)}{dt} = \beta \cdot S(t) \cdot I(t) \end{cases}$$

где β — скорость передачи инфекции; $S(0) = S_0$, $I(0) = I_0$, $R(0) = R_0$ — начальные условия.

Модель SIRS (Susceptible-Infectious-Recovered-Susceptible)

$$\begin{cases} \frac{dS}{dt} = -\beta * S * I + \delta * R \\ \frac{dI}{dt} = \beta * S * I - \gamma * I \\ \frac{dR}{dt} = \gamma * I - \delta * R \end{cases}$$

где

β – скорость передачи инфекции;

у – скорость выздоровления;

 δ – скорость потери иммунитета;

$$S(0) = S_0, I(0) = I_0, R(0) = R_0 -$$

начальные условия.

SIQR-модель (Susceptible-Infectious-Quarantined-Recovered)

S (Susceptible) – восприимчивые

I (Infectious) – инфицированные

Q (Quarantined) – зараженные, находящиеся на карантине

R (Recovered) – выздоровевшие

$$\begin{cases} \frac{dS}{dt} = -\beta SI \\ \frac{dI}{dt} = \beta SI - \gamma I - \delta I \\ \frac{dQ}{dt} = \delta I - \mu Q \\ \frac{dR}{dt} = \gamma I + \mu Q \end{cases}$$
 где
$$\begin{cases} \beta - \text{скорость заражения;} \\ \gamma - \text{скорость выздоровления;} \\ \delta - \text{скорость выздоровления в карантин;} \\ \mu - \text{скорость выздоровления людей,} \\ \text{находящихся на карантине.} \end{cases}$$

Модель SEIR (Susceptible-Exposed-Infectious-Recovered)

- S(t) (Susceptible) восприимчивые
- E(t) (Exposed)— инфицированные, находящиеся в латентной фазе
- I(t) (Infectious) инфицированные
- R(t) (Recovered) выздоровевшие

$$\frac{dS(t)}{dt} = -\beta * S(t) * I(t)$$

$$\frac{dE(t)}{dt} = \beta * S(t) * I(t) - \sigma * E(t)$$

$$\frac{dI(t)}{dt} = \sigma * E(t) - \gamma * I(t)$$

$$\frac{dR(t)}{dt} = \gamma * I(t)$$

 σ – обратная величина инкубационного периода.

Модель MSEIR (Maternally Susceptible-Exposed-Infectious-Recovered)

- M (Maternally) временно иммунные новорожденные
- S (Susceptible) восприимчивые
- Е (Exposed) инфицированные (не заразные)
- I (Infectious) инфицированные (заразные)
- R (Recovered) выздоровевшие (имеющие иммунитет)

$$\begin{cases} \frac{dM}{dt} = \mu N - \delta M - \mu M \\ \frac{dS}{dt} = \delta M - \beta SI - \mu S \\ \frac{dE}{dt} = \beta SI - \sigma E - \mu E \\ \frac{dI}{dt} = \sigma E - \gamma I - \nu I - \mu I \\ \frac{dR}{dt} = \gamma I - \mu R \end{cases}$$

где

- β скорость заражения (инфекционность);
- σ скорость перехода из инкубационного периода в инфекционный;
- ү скорость выздоровления (иммунитет);
- $\mu-\,$ естественная смертность/рождаемость;
- δ скорость потери материнского иммунитета;
- N общее количество людей в популяции:

$$N = M + S + E + I + R.$$

М-модель (Multi-stage)

S (Susceptible) — восприимчивые $I_1, I_2, ..., I_n$ (Infectious) — инфицированные R (Recovered) — выздоровевшие

$$\begin{cases} \frac{dS}{dt} = -\beta SI_1 \\ \frac{dI_1}{dt} = \beta SI_1 - k_1I_1 \\ \frac{dI_2}{dt} = k_1I_1 - k_2I_2 \\ \dots \\ \frac{dI_n}{dt} = k_{n-1}I_{n-1} - k_nI_n \\ \frac{dR}{dt} = k_nI_n - \gamma R \end{cases}$$

где β — скорость заражения; k_i — скорость перехода между стадиями инфекции; γ — скорость потери иммунитета.

Оценка математических моделей для различных эпидемиологических ситуаций

Название модели	Наиболее подходящие инфекции для моделирования				
SIR	Грипп, ветряная оспа, корь, эпидемический паротит				
SI	ВИЧ, гепатит В/С и другие хронические вирусные инфекции				
SIRS	Риновирусы, ротавирусные инфекции, стрептококк группы А				
SIQR	COVID-19, туберкулез, Эбола, другие инфекции с жесткими карантинными мерами				
SEIR	COVID-19, туберкулез, корь, ветряная оспа				
MSEIR	Краснуха, корь, ветряная оспа, инфекции с пассивным материнским иммунитетом				
М-модель	Туберкулез, ВИЧ-инфекция, малярия, гепатит В/С, коронавирусные и герпетические инфекции				

Схема алгоритма работы программного средства

Схема алгоритма ввода данных из файла csv

1	A B		С	D	E	F	G	Н		J
	Province/State,		_						e,WHO Reg	ion
2	,Afghanistan,33	93911,67	709953	,2020-01	L-22,0,0,0,0,	Eastern Me	editerrane	an		
3	,Albania,41.1533									
4	,Algeria,28.0339	,1.6596,20	020-01-2	22,0,0,0,	0,Africa					
5	,Andorra,42.506									
5	,Angola,-11.202									
7	,Antigua and Ba	rbuda,17.	0608,-6	1.7964,2	020-01-22,0	,0,0,0,Ame	ericas			
8	,Argentina,-38.4	161,-63.6	167,202	0-01-22,	,0,0,0,0,Ame	ericas				
9	,Armenia,40.069	1,45.0382	,2020-0	1-22,0,0),0,0,Europe	•				
0	Australian Capit	al Territo	ry,Aust	ralia,-35	.4735,149.0	124,2020-0	1-22,0,0,0,	,0,Western	Pacific	
1	New South Wales, Australia, -33.8688, 151.2093, 2020-01-22, 0, 0, 0, 0, Western Pacific									
2	Northern Territory, Australia, -12.4634,130.8456,2020-01-22,0,0,0,0,Western Pacific									
3	Queensland, Australia, -27.4698, 153.0251, 2020-01-22, 0, 0, 0, 0, Western Pacific									
4	South Australia,	Australia,	-34.928	5,138.60	007,2020-01	-22,0,0,0,0,	Western R	Pacific		
5	Tasmania, Austra	alia,-42.88	321,147.	3272,20	20-01-22,0,0	0,0,0,West	ern Pacific	;		
6	Victoria, Austral	a,-37.813	6,144.9	531,2020	0-01-22,0,0,0	0,0,Wester	n Pacific			
7	Western Austra	ia, Austra	lia,-31.9	9505,115	.8605,2020-	-01-22,0,0,0	0,0,Wester	rn Pacific		
8	,Austria,47.5162	,14.5501,2	2020-01	-22,0,0,0	0,0,Europe					
9	,Azerbaijan,40.1	431,47.57	69,2020	-01-22,0	0,0,0,0,Euro	pe				
0.0	,Bahamas,25.02	885,-78.0	35889,2	2020-01-	22,0,0,0,0,A	mericas				
1	,Bahrain,26.0275	,50.55,20	20-01-2	2,0,0,0,0),Eastern M	editerrane	an			
2	,Bangladesh,23.	685,90.35	63,2020	-01-22,0	,0,0,0,Soutl	h-East Asia				

Схема алгоритма экспорта результатов моделирования

Инструменты разработки

UML-диаграмма классов программного средства

EpidemicApp -root: tk.Tk -model: EpidemicModels -result data: Dict[str, pd.DataFrame] -country population: Dict[str, int] -model vars: Dict[str, tk.BooleanVar] -method var: tk.StringVar +create widgets(): None +create models tab(parent): None +create params tab(parent): None +create data tab(parent): None +create graphs(parent): None +create_model_params_tab(model_code): None +validate sum(entries dict, max sum = 1.0) +create validate func(min val. max val)= +set default values(): None +update model selection(): None +run simulation(): None +load csv data(): None +process csv data(): None

+export_results(): None +open_model_docs(): None

Главное окно

Загрузка данных из файла csv

Выгрузка результатов моделирования в Excel файл

Заключение

В ходе выполнения выпускной квалификационной работы создано программное средство, отвечающее всем заявленным функциональным требованиям.

Разработанное программное средство может быть использовано как для научных исследований в медицинской сфере, так и в качестве вспомогательного средства для принятия решений в сфере управления при возникновении реальной эпидемической угрозы. Оно может также применяться в учебных целях в предметах, связанных с математическим моделированием и вычислительной математикой.

В качестве дальнейшего направления развития проекта функциональные возможности программного средства можно расширить, благодаря внедрению других моделей и численных методов.

Разработанное программное средство и результаты исследования представлены на конференции «Актуальные проблемы науки и техники – 2025».

Спасибо за внимание!

