Data Structures and Abstractions with JavaTM

5th Edition

Chapter 14

Problem Solving with Recursion

Simple Solution to a Difficult Problem

FIGURE 14-1 The initial configuration of the Towers of Hanoi for three disks

Simple Solution to a Difficult Problem

Rules:

- Move one disk at a time. Each disk moved must be the topmost disk.
- No disk may rest on top of a disk smaller than itself.
- You can store disks on the second (extra) pole temporarily, as long as you observe the previous two rules.

Simple Solution to a Difficult Problem (Part 1)

(a) The beginning configuration

© 2019 Pearson Education, Inc.

(b) After moving a disk from pole 1 to pole 3

© 2019 Pearson Education, Inc.

(c) After moving a disk from pole 1 to pole 2

(d) After moving a disk from pole 3 to pole 2

© 2019 Pearson Education, Inc.

© 2019 Pearson Education, Inc.

FIGURE 14-2 Sequence of moves for solving Towers of Hanoi problem with 3 disks

Simple Solution to a Difficult Problem (Part 2)

(e) After moving a disk from pole 1 to pole 3

© 2019 Pearson Education, Inc.

(f) After moving a disk from pole 2 to pole 1

© 2019 Pearson Education, Inc.

(g) After moving a disk from pole 2 to pole 3

© 2019 Pearson Education, Inc.

© 2019 Pearson Education, Inc.

FIGURE 14-2 Sequence of moves for solving Towers of Hanoi problem with 3 disks

A Smaller Problem

solveTowers(number of Disks, startPle, tempPl, endPl)

(a)¹The original configuration

else

(b) After your friend moves three disks from pole 1 to pole 2

(c) After you move one disk from pole 1 to pole 3

(d) After your friend moves three disks from pole 2 to pole 3

© 2019 Pearson Education, Inc.

FIGURE 14-3 The smaller problems in a recursive solution for four disks

Solutions

Recursive algorithm to solve any number of disks. Note: for n disks, solution will be $2^n - 1$ moves

Poor Solution to a Simple Problem

$$F_0 = 1$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$ when $n \ge 2$

```
Algorithm Fibonacci(n) if (n <= 1)
return 1
else
return Fibonacci(n - 1) + Fibonacci(n - 2)</pre>
```

Algorithm to generate Fibonacci numbers. Why is this inefficient?

Poor Solution to a Simple Problem

(a) Recursively F_2 is computed 5 times F_3 is computed 3 times F_4 is computed once F_5 is computed once F_6 is computed once F_6 is computed once F_6 is F_7 F_8 F_9 F_9

© 2019 Pearson Education, Inc.

FIGURE 14-4a The computation of the Fibonacci number F6

Poor Solution to a Simple Problem

(a) Recursively

 F_2 is computed 5 times F_3 is computed 3 times F_4 is computed 2 times F_5 is computed once F_6 is computed once

(b) Iteratively

$$F_0 = 1$$

$$F_1 = 1$$

$$F_2 = F_1 + F_0 = 2$$

$$F_3 = F_2 + F_1 = 3$$

$$F_4 = F_3 + F_2 = 5$$

$$F_5 = F_4 + F_3 = 8$$

$$F_6 = F_5 + F_4 = 13$$

© 2019 Dearson Education In

FIGURE 14-4b The computation of the Fibonacci number F6

Indirect Recursion

- Example
 - Method A calls Method B
 - Method B calls Method C
 - Method C calls Method A

- Difficult to understand and trace
 - But does happen occasionally

Indirect Recursion

- Consider evaluation of validity of an algebraic expression
 - Algebraic expression is either a term or two terms separated by a + or – operator
 - Term is either a factor or two factors separated by a * or / operator
 - Factor is either a variable or an algebraic expression enclosed in parentheses
 - Variable is a single letter

Indirect Recursion

FIGURE 14-5 An example of indirect recursion

Backtracking

FIGURE 14-6 A two-dimensional maze with one entrance and one exit

Backtracking

FIGURE 14-7 A solution to the four-queens problem

Backtracking - Queens Solution (Part 1)

= Can be attacked by existing queens = Can be attacked by the newly placed queen = Rejected during backtracking

(a) The first queen in column 1.

(b) The second queen in column 2. All of column 3 is under attack.

(c) Backtrack to column 2 and try another square for the queen.

(d) The third queen in column 3. All of column 4 is under attack.

(e) Backtrack to column 3, but the queen has no other move.

FIGURE 14-8 Solving the four-queens problem by placing one queen at a time in each column

Backtracking - Queens Solution (Part 2)

= Can be attacked by the newly placed queen = Rejected during backtracking = Can be attacked by existing queens © 2019 Pearson Education, Inc.

(f) Backtrack to column 2, but the queen has

no other move.

(g) Backtrack to column 1 and try another square

for the queen.

multiple choices

keep tracking

if fail, go back

(h) The second queen in column 2.

(i) The third queen in column 3.

(i) The fourth queen in column 4. Solution!

2 3 4

FIGURE 14-8 Solving the four-queens problem by placing one queen at a time in each column

End

Chapter 14

