1 Mass Ratio Distribution

I retried using 19 values of fixed q, running each 1000 times, instead of sampling. I only finished two $a_{\text{out,eff}}$ values. As a reminder:

$$m_{12} = 50 M_{\odot},$$
 $m_3 = 30 M_{\odot},$ $a_0 = 100 \,\mathrm{AU},$ $e_0 = 10^{-3},$ $e_{\mathrm{out},0} \in [0,0.9],$ $\cos I_0 \in [\cos 50^{\circ}, \cos 130^{\circ}].$

The plots are shown in Fig. 1. Recall that e_{os} is defined such that

$$\left\langle \frac{\mathrm{d} \ln a}{\mathrm{d} t} \right\rangle_{\mathrm{LK}} \sim \frac{1}{t_{\mathrm{GW},0} j^6(e_{\mathrm{max}})},$$
 (1)

$$j^{6}(e_{0s}) \equiv j_{0s} = \frac{t_{LK}}{t_{GW.0}},$$
 (2)

$$= \frac{256}{5} \frac{G^3 \mu m_{12}^3}{m_3 c^5 a^4 n} \left(\frac{a_{\text{out,eff}}}{a}\right)^3.$$
 (3)

Figure 1: Merger fraction distribution for $a_{\mathrm{out,eff}} = 3600,5500$ AU respectively, where each q has 1000 trials. Error bars are just \sqrt{N} for N counts. Green dots denote predicted merger fractions if j_{\min} ever dips below $3j(e_{08})$ (I added a small fudge factor, it yields a small but not significant improvement) the one-shot merger criterion. Underprediction of merger rates is expected: once large eccentricities are reached, future coalescence is accelerated.

2 Example of Octupole-Enhanced Mergers

For Bin's example, where $a_0 = 10 \text{ AU}$ and $a_{\text{out,eff}} = 300 \text{ AU}$, I ran the $e_{\text{out}} = 0.4$ case a long time ago. It shows the octupole-enhanced case, see Fig. 2.

3 SRF-free e_{max} Plot

We discussed the possible interest of this, turning off apsidal precession and plotting e_{max} . Very little changes, as seen in Fig. 3.

Figure 2: Example of octupole-enhanced mergers. Prograde orientations do not reach e_{0s} (i.e. blue dots remain above horizontal blue line) but are still able to merge, as their e_{eff} (green dots go below green line).

Figure 3: Two e_{max} distributions for $a_0 = 100 \, \text{AU}$, $a_{\text{out,eff}} = 3600 \, \text{AU}$, q = 0.4 and $e_{\text{out}} = 0.6$. The one on the left has SRF turned off. Very little changes

4 A Signature for the Gap

I have some tentative evidence for why the gap exists. In brief, when $\mathbf{L}_{\rm in}$ is librating, octupole-induced eccentricity cycles are expected to be heavily suppressed, and only long periods of circulation generate substantial eccentricity cycles. Integrating the octupole equations for just a single period compared to their quadrupole counterparts, I found that when moving to the gapped region, most ICs librate, and outside of the gapped region, most circulate, e.g. see Fig. 4. This is a general feature, though it breaks down somewhat for q = 0.2. I may try with a few more ω_1 values at a later date to make this story more robust.

Note that in the test mass, quadrupole limit, $\Delta\Omega=180^\circ$ only at $I_0=90^\circ$, so $\Delta\Omega_{\rm e}=180^\circ$ at $I_0=90^\circ$ for the librating case. Thus, by integrating the quadrupole, finite- η equations, it may be possible to predict where the gap is (or even obtain a leading order expression).

Figure 4: Plot of $\Delta\Omega_{\rm e}\sim\Delta\varpi$, where Δ indicates change over a period, so libration means $\Delta\Omega_{\rm e}\approx180^{\circ}$. Top is quadrupole-only, bottom is with octupole. Vertical black line is the center of the "gap". The detailed parameters used are $a_0=100$ AU, $a_2=3600$ AU, $e_2=0.6$, and q=0.5.