PHYS 360A/B

Experiment 20: Nuclear Magnetic Resonance

Mikhail Roslikov

Kamalesh Paluru

October 17, 2023

Contents

1	Introduction	4		
2	Theoretical Background			
3		6		
4	Analysis 4.1 The Free Induction Decay and T_2			
5	Conclusion	12		

Abstract

1 Introduction

Hello World!

2 Theoretical Background

3 Experimental Design and Procedure

3.1 Finding Resonance

Figure 1: Free Induction Decay NMR signals for 90° , 180° , and 270° pulses

3.1.1 Voltage at t = 0s

90° Pulse

• A 90° pulse is a pulse that is applied long enough to tip the magnetization vector by 90° from its initial direction (at a small angle with the positive z-axis) in the rotating frame:

- Now, nearly half the spins are in the "up" state and the other half are in the "down" state.
- Since \vec{M} is in the x-y plane, the z component of the magnetization vector vanishes:

$$M_z = 0$$

- This is a higher energy state than the equilibrium state with the magnetization vector, \vec{M} , pointing along the positive z-axis.
- The receiver gain was adjusted so that the precessing \vec{M} induced¹ a current in the coil as shown in the 90° trace of Figure 1.

180° Pulse

• If we apply the pulse for twice as long (increase the pulse width to twice that of the 90° pulse), we rotate the magnetization vector by 180° :

- Most of the spin are now in the "down" state.
- However, this magnetization vector doesn't induce current in the coils since the component in the x-y plane is nearly 0.

270° Pulse

• This time, the pulse is applied long enough to rotate \vec{M} by an additional 180° from the 90° case:

• That is, \vec{M} returns to the x-y plane but is anti-parallel to \vec{M} in the 90° pulse case:

$$\vec{M}_{270^{\circ}}=-\vec{M}_{90^{\circ}}$$

• It hence precesses in the opposite sense of rotation as the 90° case².

¹According to Faraday's law.

²And vice versa.

- According to Faraday's law, the direction of the current $\vec{M}_{180^{\circ}}$ induces in the coil is opposite to that of $\vec{M}_{90^{\circ}}$.
- This is why we see a current that is $-I_{90^{\circ}}$ induced in the 270° case in Figure 1.

3.1.2 Free Induction Decay

- For all three pulses, we see that the signal vanishes over time.
- Recall that for the 90° and 270° pulses, the magnetization vector is in the x-y plane.
- Because of small variations in the magnetic field that the magnetic moments, $\vec{\mu}$, for each particle experience, the magnetic moments being to randomly dephase.
- They spread out in the x-y plane causing the magnetization vector and hence the induced current to vanish as a whole.

4 Analysis

4.1 The Free Induction Decay and T_2

- In this section, we take a closer look at the FID observed in the 90° and 270° traces of Figure 1 (for different samples).
- For the same 90° pulse, we have the following FID traces:

Figure 2: FID for the 90° pulse in water doped with CuSO₄, ethanol, and rubber

4.1.1 Finding T_2

Analytically

- On plotting the traces in Figure 2 on a semi-log graph (along with the best fit lines), we get:
- We can find T_2^* using the following equation:

$$M_{xy}(t) = M_0 e^{-\frac{t}{T_2^*}}$$

Here, $M_{xy}(t)$ is the trace seen in Figure 2, M_0 is the magnetization at t = 0, t is the time.

• We can take the ln of both sides to get:

$$\ln(M_{xy}) = \ln(M_0) + \ln\left(e^{-\frac{t}{T_2^*}}\right)$$
$$\ln(M_{xy}) = -\frac{t}{T_2^*} + \ln(M_0)$$

Figure 3: $\ln(M_{xy}) = -\frac{t}{T_2^*} + \ln(M_0)$ plotted for the three traces in Figure 2

• Comparing this to y = mx + c, we see that the slope, m, is given by:

$$m = -\frac{1}{T_2^*}$$

$$\implies T_2^* = -\frac{1}{m}$$

Sample Calculation

• Consider $m = -328.236 \text{s}^{-1}$ for Doped Water in Table 1:

$$T_2^* = -\frac{1}{-328.236 \mathrm{s}^{-1}}$$

$$T_2^* = -\frac{1}{-328.236}$$

$$T_2^* = 0.003047$$
s

ullet We can hence find T_2^* from the slopes of the best fit lines in Figure 3 for the other samples:

	Slope	T ₂ (s)
Doped Water	-328.236	0.003047
Ethanol	-264.426	0.003782
Rubber	-211.89	0.004719

Table 1: Slopes of best fit lines and calculated T_2^*

Estimation

 \bullet We can find an estimation for T_2^* directly from the FID traces.

• For $t = T_2^*$, we have:

$$M_{xy}(T_2^*) = M_0 e^{-1}$$

 $\frac{M_{xy}(T_2^*)}{M_0} \approx 0.37$
 $M_{xy}(T_2^*) \approx 0.37 M_0$

• We can estimate the time at which $M_{xy}(T_2^*)$ is approximately $0.37 \cdot M_0$:

	Mo	0.37 M ₀	T ₂ (s)
Doped Water	1.46	0.540	0.00112
Ethanol	1.40	0.518	0.00122
Rubber	2.40	0.888	0.00089

Table 2: Estimate of T_2^{\ast} using the initial magnetization

5 Conclusion