CSCl 112 Introduction to computer Science - I

Instructor: Santanu Banerjee

Number Systems

Number Systems

- Binary (0,1)
- Octal (0-7)
- Decimal (0-9)
- Hexadecimal (0-9, A-F)

Decimal Numbers

```
Base or Radix: 10
4053 = 3 \times 1 + 5 \times 10 + 0 \times 10^{2} + 4 \times 10^{3}
        1s (10<sup>0</sup>)
      10s (10<sup>1</sup>)
   100s (10<sup>2</sup>)
1000s (10<sup>3</sup>)
```

General Rule

Base or Radix: N

If positions are 0,1,2,3...

Value at position p : Np-1

Binary Numbers

```
Base or radix : 2
10111 = 1 \times 1 + 1 \times 2 + 1 \times 2^2 + 0 \times 2^3 + 1 \times 2^4
                    10111_2 = 23_{10}
               Numbers are: o and 1
               Called bits (binary digits)
16s
```

Octal Numbers

```
Base or radix: 8
10607 = 7 \times 1 + 0 \times 8 + 6 \times 8^2 + 0 \times 8^3 + 1 \times 8^4
                     10607_8 = 4487_{10}
               Numbers are: 0, 1,2,...,7
4096s
```

Hexadecimal Numbers

```
Base or radix: 16
10607 = 7 \times 1 + 0 \times 16 + 6 \times 16^2 + 0 \times 16^3 + 1 \times 16^4
                10607_{16} = 67079_{10}
            Numbers are : 0, 1,2,...,9 and A,..,F
            A is 10(decimal), B is 11(decimal)
            65536s
```

Hexadecimal to Decimal

```
Base 16
   AB = 11 \times 1 + 12 \times 16 + 5 \times 16^{2}
                          5CB_{16} = 1483_{10}
256s
```

Converting decimal to base-X

Algorithm

```
repeat
```

```
Divide DecimalNumber by X;
Get Quotient and Remainder;
Remainder (in base-X) is the next digit (right to left);
DecimalNumber := Quotient;
```

until DecimalNumber = 0;

Example: $190_{10} = 21001_3$

```
3 | 190 | 1
```

Why do we convert?

- The binary numbering system is the most important radix system for digital computers.
- However, it is difficult to read long strings of binary numbers -- and even a modestly-sized decimal number becomes a very long binary number.
 - For example: 110101000110112 = 1359510
- For compactness and ease of reading, binary values are usually expressed using the hexadecimal, or base-16, numbering system.

Conversion table

Decimal	Binary	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversion($B \leftarrow \rightarrow H$)

Binary to Hexadecimal

- Group binary digits in sets of 4 bits(add zeroes to the left, as needed)
- Convert each set of 4 binary digits into a single hexadecimal digit
- Example: 10100011 => 1010|0011 => A|3 => A3

Hexadecimal to Binary

- Convert each hexadecimal digit into 4 bits(add zeroes to the left, as needed)
- Concatenate the sets of 4 binary digits into a single set of binary digits(preserve the order)
- Example: 2C => 2|C => 0010|1100 => 00101100

Conversion($B \leftarrow \rightarrow O$)

Binary to Octal

- Group binary digits in sets of 3 bits(add zeroes to the left, as needed)
- Convert each set of 3 binary digits into a single octal digit
- Example: 10100011 => 010|100|011 => 2|4|3 => 243

Octal to Binary

- Convert each octal digit into 3 bits(add zeroes to the left, as needed)
- Concatenate the sets of 3 binary digits into a single set of binary digits(preserve the order)
- Example: 327 => 3|2|7 => 011|010|111 => 011010111

Conversion($H \leftarrow \rightarrow O$)

Hexadecimal to Octal

- Use either of
- (i) Hexadecimal to Binary and then Binary to Octal
- (il)Hexadecimal to Decimal and then Decimal to Octal

Octal to Hexadecimal

- Use either of
- (i) Octal to Binary and then Binary to Hexadecimal
- (il) Octal to Decimal and then Decimal to Hexadecimal

Converting between bases

You can use a programmer calculator

- Or use online tools
- Or by yourself

Higher order units for bits

- Byte
 - is a group of eight bits.
 - is the smallest possible addressable unit of computer storage.
- The term, "addressable," means that a particular byte can be retrieved by specifying its location in memory.

Higher order units for bits

- A word is a contiguous group of bytes.
 - Word sizes : 16, 32, or 64 bits depending on the architecture
 - In a word-addressable system, a word is the smallest addressable unit of storage.
- A group of four bits is called a nibble.
 - Bytes, therefore, consist of two nibbles:
 - a high-order nibble
 - a low-order nibble

Prefix/levels for byte units

• Like metric system, each level is 210 times higher or lower than the next level.

File Storage Capacity by Powers of Two (Base 2)											
	bit	byte	Kilobyte	Megabyte	Gigabyte	Terabyte	Petabyte	Exabyte	Zettabyte	Yottabyte	
bit	2^0	2^3	2^13	2^23	2^33	2^43	2^53	2^63	2^73	2^83	
byte	2^3	2^0	2 [^] 10	2^20	2^30	2^40	2^50	2^60	2^70	2^80	
Kilobyte	2^13	2 [^] 10	2^0	2 [^] 10	2^20	2^30	2^40	2^50	2^60	2^70	
Megabyte	2^23	2^20	2 [^] 10	2^0	2^10	2 [^] 20	2^30	2^40	2^50	2^60	
Gigabyte	2^33	2^30	2^20	2 [^] 10	2^0	2 [^] 10	2^20	2^30	2^40	2^50	
Terabyte	2^43	2^40	2^30	2^20	2^10	2^0	2^10	2^20	2^30	2^40	
Petabyte	2^53	2^50	2^40	2^30	2^20	2 [^] 10	2^0	2 [^] 10	2^20	2^30	
Exabyte	2^63	2^60	2^50	2^40	2^30	2 [^] 20	2^10	2^0	2^10	2^20	
Zettabyte	2^73	2^70	2^60	2^50	2 [^] 40	2^30	2^20	2^10	2^0	2^10	
Yottabyte	2^83	2^80	2 [^] 70	2^60	2^50	2^40	2^30	2 [^] 20	2^10	2^0	