PIC16F62X

Однокристальные 8-разрядные FLASH CMOS микроконтроллеры компании Microchip Technology Incorporated

Перевод основывается на технической документации DS40300B компании Microchip Technology Incorporated, USA.

© ООО "Микро-Чип" Москва - 2001

PIC16F62X

FLASH-Based 8-Bit CMOS Microcontrollers

Trademarks: The Microchip name, logo, PIC, PICmicro, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FlexROM, MPLAB and fuzzy-LAB are trademarks and SQTP is a service mark of Micro-chip in the U.S.A.

All other trademarks mentioned herein are the property of their respective companies.

Микроконтроллеры, описываемые в этом документе:

- PIC16F627
- PIC16F628

Характеристика высокопроизводительного RISC ядра:

- 35 инструкций
- Все команды выполняются за один цикл (200нс), кроме инструкций переходов, выполняющихся за два цикла
- Тактовая частота:
 - DC 20МГц, тактовый сигнал
 - DC 200нс, один машинный цикл

	Память						
Устройство	Программ	Данных	EEPROM				
	(FLASH)	(ОЗУ)	данных				
PIC16F627	1024x14	224x8	128x8				
PIC16F628	2048x14	224x8	128x8				

- Система прерываний
- 16 специальных аппаратных регистров
- 8-уровневый аппаратный стек
- Прямой, косвенный и относительный режим адресации

Характеристика периферийных модулей:

- 15 независимых портов ввода/вывода
- Повышенная нагрузочная способность портов ввода/вывода
- Модуль аналоговых компараторов:
 - два аналоговых компаратора
 - внутренний программируемый источник опорного напряжения (V_{REF})
 - Внешний выход компараторов
- Таймер 0: 8-разрядный таймер/счетчик с 8-разрядным программируемым предделителем
- Таймер 1: 16-разрядный таймер/счетчик с возможностью подключения внешнего пьезоэлектрического резонатора
- Таймер 2: 8-разрядный таймер/счетчик с 8-разрядным программируемым предделителем и выходным делителем
- Модуль сравнения/захвата/ШИМ (ССР):
 - 16-разрядный захват (максимальная разрешающая способность 12.5нс)
 - 16-разрядное сравнение (максимальная разрешающая способность 200нс)
 - 10-разрядный ШИМ
- Последовательный синхронно-асинхронный приемопередатчик USART
- 16 байт памяти данных, доступных из всех банков.

Специальные функции микроконтроллеров:

- Сброс по включению питания (POR)
- Таймер сброса (PWRT) и таймер ожидания запуска генератора (OST) после включения питания
- Детектор пониженного напряжения (BOD)
- Сторожевой таймер WDT с собственным RC генератором
- Мультиплицируемый вывод -MCLR
- Программируемые подтягивающие резисторы на входах PORTB
- Программируемая защита памяти программ
- Низковольтный режим программирования
- Режим энергосбережения SLEEP
- Выбор параметров тактового генератора:
 - FLASH биты выбора параметров тактового генератора
 - ER генератор (внешний резистор)
 - Уменьшение числа внешних компонентов
 - Двухскоростной внутренний RC генератор
 Работа в режиме малого потребления
 - ЕС внешний тактовый сигнал
 - XT режим генератора
 - HS режим генератора
 - LP режим генератора
- Программирование в готовом устройстве (используется два вывода микроконтроллера)
- Программируемые пользователем биты ID

CMOS технология:

- Высокоскоростная, энергосберегающая CMOS FLASH технология (0.7 микрон)
- Полностью статическая архитектура
- Широкий диапазон напряжений питания:
 - PIC16F627 от 3.0 до 5.5B
 - PIC16F628 от 3.0 до 5.5B
 - PIC16LF627 от 2.0 до 5.5B
 - PIC16LF628 от 2.0 до 5.5B
- Коммерческий, индустриальный и расширенный температурные диапазоны
- Малое энергопотребление:
 - < 2мA @ 5.0B, 4.0МГц
 - 15мкA @ 3.0B, 32кГц
 - < 1мкА в режиме энергосбережения @ 3.0В

Расположение выводов

SSOP PDIP, SOIC RA2/AN2/VREF ➤ RA1/AN1 RA2/AN2/VREF RA1/AN1 18 🗖 🚤 RA3/AN3/CMP1 RAO/ANO 19 RA3/AN3/CMP1. 2 3 4 RA0/AN0 PIC16F62X 17 16 RA7/OSC1/CLKIN 2 3 4 5 RA4/TOCKI/CMP2 PIC16F62X RA4/TOCKI/CMP2 18 RA7/OSC1/CLKIN RA6/OSC2/CLKOUT RA5/MCLR/THV 17 15 | 4 RA5/MCLR/THV RA6/OSC2/CLKOUT Vss – Vdd 16 Vpp RB0/INT → Vss 6 15 VDD 6 RB7/T10SI → RB7/T1OSI 14 13 [] **→** 7 8 RB1/RX/DT -RB0/INT 12 ➤ RB6/T1OSO/T1CKI → RB6/T1OSO/T1CKI RB2/TX/CK RB1/RX/DT 9 → RB5 12 RB3/CCP1 RB2/TX/CK → RB4/PGM RB3/CCP1

Содержание

1.0 Введение 1.1 Поддержка разработчиков	
2.0 Обзор семейства микроконтроллеров PIC16F62X	
2.1 FLASH микроконтроллеры	
2.2 Микроконтроллеры, программируемые производителем (QTP)	
2.3 Серийный выпуск продукции (SQTP SM)	
3.0 Обзор архитектуры	10
3.1 Синхронизация выполнения команд	
3.2 Конвейерная выборка и выполнение команд	
4.0 Организация памяти	14
4.1 Организация памяти программ	
4.2 Организация памяти данных	
4.2.1 Регистры общего назначения	
4.2.2 Регистры специального назначения	
4.3 Регистры PCLATH и PCL	
4.3.1 Вычисляемый переход	
4.3.2 Стек	
4.4 Косвенная адресация, регистры INDF и FSR	
5.0 Порты ввода/вывода	27
5.1 Регистры PORTA и TRISA	
5.2 Регистры PORTB и TRISB	
5.3 Программирование портов ввода/вывода	43
5.3.1 Двунаправленные порты ввода/вывода	43
5.3.2 Последовательность операций с портами ввода/вывода	43
6.0 Модуль таймера TMR0	
6.1 Прерывания от TMR0	
6.2 Использование внешнего источника тактового сигнала для TMR0	
6.2.1 Синхронизация внешнего сигнала	
6.2.2 Задержка приращения TMR0	
6.3 Предделитель	
6.3.1 Переключение предделителя	
7.0 Модуль таймера TMR1	
7.1 Работа TMR1 с внутренним тактовым сигналом	
7.2 Работа TMR1 с внешним синхронизированным тактовым сигналом	
7.2.1 Синхронизация внешнего тактового сигнала	
7.3 Работа TMR1 с внешним не синхронизированным тактовым сигналом	
7.3.1 Параметры внешнего не синхронизированного тактового сигнала	
7.3.2 Чтение/запись TMR0 в асинхронном режиме	
7.4 Генератор TMR1	50
7.5 Сброс TMR1 триггером модуля ССР	
7.6 Сброс регистров TMR1 (TMR1H, TMR1L)7.7 Предделитель TMR1	
8.0 Модуль таймера TMR2	
8.1 Предделитель и выходной делитель TMR2	
8.2 Сигнал TMR2	
0.E Omition 1 Mil VE	

9.0 Модуль компараторов	54
9.1 Настройка модуля компараторов	
9.2 Работа модуля компараторов	
9.3 Опорное напряжение для компараторов	
9.3.1 Внешний источник опорного напряжения	
9.3.2 Внутренний источник опорного напряжения	
9.4 Время реакции компараторов	
9.5 Прерывания от компараторов	
9.6 Выходы компараторов	
9.7 Работа модуля компараторов в режиме SLEEP	
9.8 Эффект сброса	
10.0 ССР модуль (захват/сравнение/ШИМ)	60
10.1 Режим захвата	
10.1.1 Настройка вывода модуля ССР	
10.1.2 Настройка таймера ТМR1	
10.1.3 Обработка прерываний	
10.1.4 Предварительный счетчик событий модуля ССР	
10.2 Режим сравнения	62
10.2.1 Настройка вывода модуля ССР	
10.2.2 Настройка таймера ТМR1	
10.2.3 Обработка прерываний	
10.3 ШИМ режим	
10.3.1 Период ШИМ	
10.3.2 Скважность ШИМ	
10.3.3 Последовательность настройки модуля ССР в ШИМ режиме	
·	
11.0 Источник опорного напряжения	
11.1 Настройка источника опорного напряжения	
11.2 Точность источника опорного напряжения	
11.3 Функционирование в SLEEP режиме	
11.4 Эффект сброса11.5 Подключение к источнику опорного напряжения	
12.0 Универсальный синхронно-асинхронный приемопередатчик (USART)	67
12.1 Генератор частоты обмена USART BRG	
12.1.1 Выборка	
12.2 Асинхронный режим USART	
12.2.1 Асинхронный передатчик USART	
12.2.2 Асинхронный приемник USART	
12.3 Функции USART	
12.4 Синхронный ведущий режим USART	
12.4.1 Передача синхронного ведущего	
12.4.2 Прием синхронного ведущего	
12.5 Синхронный ведомый режим USART	
12.5.1 Передача синхронного ведомого	
12.5.2 Прием синхронного ведомого	
•	
13.0 EEPROM память данных	
13.1 Peructp EEADR	
13.2 Регистры EECON1, EECON2	
13.4 Запись в ЕЕРКОМ памяти данных	
13.5 Проверка записи	
13.6 Защита от случайной записи в EEPROM память данных	
13.7 Операции с EEPROM памятью при установленном бите защиты	

14.0 Особенности микроконтроллеров РІС16F62Х	88
14.1 Биты конфигурации	
14.2 Настройка тактового генератора	
14.2.1 Режимы тактового генератора	
14.2.2 Кварцевый/керамический резонатор	
14.2.3 Внешний тактовый генератор	
14.2.4 Внешний тактовый сигнал	91
14.2.5 ER генератор	
14.2.6 Внутренний RC генератор 4МГц	92
14.2.7 CLKOUT	
14.3 Программный выбор частоты тактового генератора	92
14.4 Сброс	93
14.5 POR, PWRT, OST, BOD	94
14.5.1 Сброс по включению питания POR	
14.5.2 Таймер включения питания PWRT	94
14.5.3 Таймер запуска генератора OST	
14.5.4 Детектор пониженного напряжения питания BOD	
14.5.5 Последовательность удержания микроконтроллера в состоянии сброса	
14.5.6 Peaucmp PCON	
14.6 Прерывания	
14.6.1 Внешнее прерывание с входа RB0/INT	
14.6.2 Прерывание по переполнению TMR0	
14.6.3 Прерывание по изменению уровня сигнала на входах RB7:RB4	
14.7 Сохранение контекста при обработке прерываний	
14.8 Сторожевой таймер WDT	
14.8.1 Период WDT	
14.8.2 Рекомендации по работе с WDT	
14.9 Режим энергосбережения SLEEP	103
14.9.1 Выход из режима SLEEP	103
14.10 Защита кода программы	104
14.11 Размещение идентификатора ID	104
14.12 Внутрисхемное программирование ICSP	104
14.13 Режим низковольтного программирования	104
15.0 Система команд	405
15.1 Подробное описание команд	105
16.0 Поддержка разработчиков	124
16.1 Интегрированная среда проектирования MPLAB-IDE	124
16.2 Ассемблер MPASM	125
16.3 С компиляторы MPLAB-C17 и MPLAB-C18	125
16.4 Линкер MPLINK/ Организатор библиотек MPLIB	125
16.5 Программный симулятор MPLAB-SIM	125
16.6 Универсальный эмулятор MPLAB-ICE	125
16.7 PICMASTER/PICMASTER-CE	126
16.8 ICEPIC	
16.9 Внутрисхемный отладчик MPLAB-ICD	126
16.10 Универсальный программатор PRO MATE II	
16.11 Программатор PICSTART	
16.12 Аппаратный модуль SIMICE	126
16.13 Демонстрационная плата PICDEM-1	
16.14 Демонстрационная плата PICDEM-2 для PIC16CXXX	
16.15 Демонстрационная плата PICDEM-3 для PIC16CXXX	127
16.16 Демонстрационная плата PICDEM-17	
16.17 SEEVAL (с функциями программатора)	127
16.18 Keel og (с функциями программатора)	127

17.0 Электрические характеристики	129
17.1 Электрические характеристики: PIC16F62X-04, PIC16F62X-20	
17.2 Электрические характеристики: PIC16LF62X-04, PIC16LF62X-20	
17.3 Электрические характеристики: PIC16F62X, PIC16LF62X	
17.4 Символьное обозначение временных параметров	
17.5 Временные диаграммы и спецификации	136
18.0 Характеристики микроконтроллеров	142
19.0 Корпуса микроконтроллеров	143
19.1 Описание обозначений на корпусах микроконтроллеров	143
19.2 Правила идентификации тила микроконтроллеров PIC16F62X	147

1.0 Введение

18-выводные FLASH микроконтроллеры PIC16F62X входят в состав распространенного семейства PICmicro PIC16CXX. Микроконтроллеры этого семейства имеют 8-разрядную, высокопроизводительную и полностью статическую RISC архитектуру.

PIC16F62X имеют 8-уровневый аппаратный стек и большое количество внутренних и внешних прерываний. В гарвардской архитектуре RISC ядра микроконтроллера разделены 14-разрядная память программ и 8-разрядная память данных. Такой подход позволяет выполнять все инструкции за один машинный цикл, кроме команд ветвления, которые выполняются за два машинных цикла. Ядро микроконтроллеров поддерживает 35 простых в изучении, но очень эффективных инструкций. Дополнительные регистры управления и архитектурные новшества позволяют создавать высокоэффективные устройства.

По сравнению с 8-разрядными микроконтроллерами этого класса, при использовании PIC16F62X выигрыш в эффективности использования памяти программ достигает 2:1, а в производительности 4:1.

Специальные особенности микроконтроллеров PIC16F62X позволяют сократить число внешних компонентов, что в свою очередь снижает стоимость конечного устройства, повышает надежность системы и уменьшает энергопотребление. Дополнительную гибкость в разработках дает широкий выбор режимов работы тактового генератора: ER генератор, наиболее дешевое решение; LP генератор, минимизирует потребляемый ток; XT генератор, для подключения стандартного резонатора; INTRC внутренний RC генератор; HS генератор, для высокоскоростных режимов работы.

Энергосберегающий режим SLEEP, позволяет эффективно использовать микроконтроллеры в устройствах с питанием от батареек или аккумуляторов. Выход из режима SLEEP происходит при возникновении внешних, некоторых внутренних прерываниях и сбросе микроконтроллера. Высоконадежный сторожевой таймер WDT с собственным внутренним RC генератором предотвращает «зависание» программы.

В таблице 1-1 сведены основные характеристики микроконтроллеров PIC16F62X.

На рисунке 3-1 представлена структурная схема микроконтроллеров PIC16F62X.

Микроконтроллеры PIC16F62X удовлетворяют ряду параметров для их использования от зарядных устройств до удаленных датчиков с малым потреблением электроэнергии. FLASH технология и большое количество периферийных модулей, совместимых с предыдущими микроконтроллерами, позволяют быстро и удобно разрабатывать программное обеспечение. Высокая производительность, малая стоимость, легкость в использовании и гибкость портов ввода/вывода – делают PIC16F62X универсальными микроконтроллерами.

1.1 Поддержка разработчиков

Микроконтроллеры PIC16F62X обеспечены полнофункциональным макроассемблером, программным симулятором, эмуляторами, недорогими программаторами. Сторонними организациями разработаны С компиляторы для микроконтроллеров этого семейства.

Таблица 1-1 Основные характеристики микроконтроллеров PIC16F62X

	a sparent production	PIC16F627	PIC16F628	PIC16LF627	PIC16LF628
Быстродействие	Максимальная тактовая частота (МГц)	20	20	20	20
	Flash память программ (слов)	1024	2048	1024	2048
Память	Память данных (байт)	224	224	224	224
TIGHTOTT D	EEPROM память данных (байт)	128	128	128	128
	Таймеры	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
	Компараторов	2	2	2	2
Периферия	Модулей ССР	1	1	1	1
	Последовательный интерфейс	USART	USART	USART	USART
	Программируемый источник опорного напряжения	Есть	Есть	Есть	Есть
	Число источников прерываний	10	10	10	10
	Число портов ввода/вывода	16	16	16	16
	Напряжение питания (В)	3.0 - 5.5	3.0 - 5.5	2.0 - 5.5	2.0 - 5.5
Дополнительные характеристики	Детектор пониженного напряжения питания	Есть	Есть	Есть	Есть
	Корпус	18-выводный DIP, SOIC	18-выводный DIP, SOIC	18-выводный DIP, SOIC	18-выводный DIP, SOIC
	Корпус	20-выводный SSOP	20-выводный SSOP	20-выводный SSOP	20-выводный SSOP

В состав всех микроконтроллеров PICmicro входит: сброс по включению питания PWRT, сторожевой таймер WDT, программируемая защита кода программы и высокая нагрузочная способность портов ввода/вывода. Микроконтроллеры PIC16F62X программируются в последовательном режиме с использованием двух выводов RB6 и RB7.

2.0 Обзор семейства микроконтроллеров PIC16F62X

Тип корпуса, температурный диапазон и максимальная тактовая частота – параметры, которые входят в состав полного наименования микроконтроллеров. В зависимости от того, в каком режиме будет работать микроконтроллеро, необходимо правильно выбрать его тип. Описание правил обозначения микроконтроллеров PIC16F62X смотрите в разделе «Правила идентификации типа микроконтроллеров PIC16F62X».

2.1 FLASH микроконтроллеры

Данный тип микроконтроллеров чаще всего используется при разработке и отладке программного обеспечения, поскольку их память программ может быть стерта и повторно запрограммирована.

Стереть и перепрограммировать микроконтроллеры можно непосредственно в устройстве пользователя, в программаторах PICSTART, PRO MATE II и других.

2.2 Микроконтроллеры, программируемые производителем (QTP)

Компания Microchip предоставляет возможность заказать запрограммированные микроконтроллеры заранее предоставленным кодом. Данный сервис следует использовать при средних и больших объемах закупок микроконтроллеров и отработанном программном обеспечении. Поставляемые микроконтроллеры полностью соответствуют параметрам стандартных FLASH микроконтроллеров, за исключением того, что код программы и биты конфигурации были записаны на заводе изготовителе. Прежде чем микроконтроллеры будут поставлены заказчику, они пройдут серию испытаний на заводе изготовителе. Для получения дополнительной информации обратитесь к региональному представителю Microchip.

2.3 Серийный выпуск продукции (SQTP SM)

Компания Microchip предоставляет оригинальное средство программирования, в котором пользователь может определить место размещения уникального серийного номера генерируемого случайным, псевдослучайным и последовательным методом. Запрограммированный уникальный серийный номер может служить: кодом доступа, паролем или идентификационным номером устройства.

3.0 Обзор архитектуры

Высокая эффективность микроконтроллеров PIC16F62X достигается за счет архитектуры ядра, подобная архитектура обычно используемой в RISC микропроцессорах. В PIC16F62X используется Гарвардская архитектура с раздельными шинами доступа к памяти программ и памяти данных, в отличие от традиционных систем, в которых обращение к памяти программ и данных выполняется по одной шине.

Разделение памяти программ и памяти данных позволяет использовать не 8-разрядные команды или кратные разрядности шины данных. Все команды микроконтроллера 14-разрядные однословные. По 14-разрядной шине доступа к памяти программ выполняется выборка кода за один машинный цикл. Непрерывная работа ядра микроконтроллера по выборке и выполнению кодов программы дает возможность выполнять все команды за один машинный цикл (200нс @ 20МГц), кроме команд ветвления. Ядро микроконтроллеров поддерживает 35 высокоэффективных команд.

В таблице представлен объем FLASH памяти программ, памяти данных (ОЗУ) и EEPROM памяти данных.

	Память						
Микроконтроллер	Программ (FLASH)	Данных (ОЗУ)	EEPROM данных				
PIC16F627	1024x14	224x8	128x8				
PIC16F628	2048x14	224x8	128x8				
PIC16LF627	1024x14	224x8	128x8				
PIC16LF628	2048x14	224x8	128x8				

В PIC16F62X адресовать память данных можно непосредственно или косвенно. Все регистры специального назначения отображаются в памяти данных, включая счетчик программ. PIC16F62X имеет ортогональную систему команд, что дает возможность выполнить любую операцию с любым регистром памяти данных, используя любой метод адресации. Это облегчает написание программ для микроконтроллеров PIC16F62X и снижает общее время разработки устройства.

Микроконтроллеры PIC16F62X содержат 8-разрядное АЛУ (арифметико-логическое устройство) с одним рабочим регистром W. АЛУ выполняет арифметические и булевы операции между рабочим регистром и любым регистром памяти данных. Основными операциями АЛУ являются: сложение, вычитание, сдвиг и логические операции. В командах с двумя операндами один операнд всегда рабочий регистр W, а второй операнд регистр памяти данных или константа. В командах с одним операндом используется регистр W или регистр памяти данных.

Используемый в операциях 8-разрядный рабочий регистр W не отображается на память данных.

В зависимости от выполняемой команды АЛУ может влиять на следующие флаги в регистре STATUS: флаг переноса С, флаг полупереноса DC, флаг нуля Z. Флаги С и DC выполняют роль соответствующих битов заема при выполнении команд вычитания SUBLW и SUBWF.

Упрошенная блок схема микроконтроллеров PIC16F62X показана на рисунке 3-1. Назначение выводов микроконтроллеров сведено в таблицу 3-1.

В микроконтроллерах PIC16F62X существует два типа памяти данных:

- энергонезависимая EEPROM память данных, предусмотрена для хранения калибровочной информации, таблиц или любой другой информации, требующей периодического изменения. Данные, записанные в EEPROM память, не будут потеряны при отключении питания микроконтроллера;
- регулярная память данных (ОЗУ), используется для хранения временной информации во время выполнения программы. Информация в регулярной памяти данных будет потеряна при выключении питания микроконтроллера.

Puc. 3-1. Упрощенная структурная схема микроконтроллеров PIC16F62X

Примечание 1. Старшие биты регистра STATUS.

Обозначение вывода RA0/AN0 RA1/AN1	№ вывода DIP, SOIC 17 18	№ вывода SSOP 19	I/O/P	Тип буфера	Описание
		19	1/0		
RA1/AN1	18		I/O	ST	Двунаправленный порт ввода/вывода, аналоговый вход компаратора
		20	I/O	ST	Двунаправленный порт ввода/вывода, аналоговый вход компаратора
RA2/AN2/V _{REF}	1	1	I/O	ST	Двунаправленный порт ввода/вывода, аналоговый вход компаратора, выход источника опорного напряжения V_{REF}
RA3/AN3/CPM1	2	2	I/O	ST	Двунаправленный порт ввода/вывода, аналоговый вход компаратора, выход компаратора
RA4/T0CKI/CPM2	3	3	I/O	ST	Двунаправленный порт ввода/вывода, может использоваться как ТОСКІ, выход компаратора
RA5/-MCLR/THV	4	4	I	ST	Вход сброса микроконтроллера, вход напряжения программирования. Когда вывод настроен как -MCLR, то по низкому уровню сигнала производится сброс микроконтроллера. При нормальной работе напряжение на -MCLR/THV не должно превышать VDD.
RA6/OSC2/CLKOUT	15	17	I/O	ST	Двунаправленный порт ввода/вывода, выход генератора для подключения резонатора. В режиме ER генератора на выходе CLKOOUT формируется сигнал с частотой 1/4 OSC1, обозначая циклы команд
RA7/OSC1/CLKIN	16	18	I/O	ST	Двунаправленный порт ввода/вывода, вход генератора, вход внешнего тактового сигнала, вывод ER смещения
RB0/INT	6	7	I/O	TTL/ST ⁽¹⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора, вход внешнего прерывания
RB1/RX/DT	7	8	I/O	TTL/ST ⁽³⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора, вход приемника USART, линия данных в синхронном режиме USART
RB2/TX/CK	8	9	I/O	TTL/ST ⁽³⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора, выход передатчика USART, линия тактового сигнала в синхронном режиме
RB3/CCP1	9	10	I/O	TTL/ST ⁽⁴⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора, вывод модуля ССР
RB4/PGM	10	11	I/O	TTL/ST ⁽⁵⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора. Изменение сигнала на входе может вывести микроконтроллер из режима SLEEP. Когда разрешено низковольтное программирование, запрещены прерывания по изменению сигнала на входе, а подтягивающий резистор отключен
RB5	11	12	I/O	TTL	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора. Изменение сигнала на входе может вывести микроконтроллер из режима SLEEP
RB6/T1OSO/T1CKI	12	13	I/O	TTL/ST ⁽²⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора. Изменение сигнала на входе может вывести микроконтроллер из режима SLEEP. Выход генератора таймера 1
RB7/T1OSI	13	14	I/O	TTL/ST ⁽²⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора. Изменение сигнала на входе может вывести микроконтроллер из режима SLEEP. Вход генератора таймера 1
VSS	5	5,6	Р	-	Общий вывод
VDD	14	15,16	Р	-	Положительное напряжение питания

Обозначения: І – вход, О – выход, І/О – вход/выход, Р – питание, - - не используется, TTL – вход/выход ТТЛ, ST – вход с триггером Шмидта.

Примечания:

- Входной буфер с триггером Шмидта при использовании внешних прерываний.
- 2. Входной буфер с триггером Шмидта при работе в режиме последовательного программирования.
- 3. Входной буфер с триггером Шмидта при использовании выводов модулем USART.
- Входной буфер с триггером Шмидта при использовании выводов модулем ССР.
- Входной буфер с триггером Шмидта при использовании выводов модулем С
 Входной буфер с триггером Шмидта при низковольтном программировании.

3.1 Синхронизация выполнения команд

Входной тактовый сигнал (вывод OSC1/CLKIN/RA7) внутренней схемой микроконтроллера разделяется на четыре последовательных неперекрывающихся такта Q1, Q2, Q3 и Q4. Внутренний счетчик команд (PC) увеличивается на единицу в каждом такте Q1, а выборка команды из памяти программ происходит на каждом такте Q4. Декодирование и выполнение команды происходит с такта Q1 по Q4. На рисунке 3-2 показаны циклы выполнения команд.

3.2 Конвейерная выборка и выполнение команд

Цикл выполнения команды состоит из четырех тактов Q1, Q2, Q3 и Q4. Выборка следующей команды и выполнение текущей совмещены по времени, таким образом, выполнение команды происходит за один цикл. Если команда изменяет счетчик команд РС (команды ветвления, например GOTO), то необходимо два машинных цикла для выполнения команды (рисунок 3-3).

Цикл выборки команды начинается с приращения счетчика команд PC в такте Q1.

В цикле выполнения команды, код загруженной команды, помещается в регистр команд IR на такте Q1. Декодирование и выполнение команды происходит в тактах Q2, Q3 и Q4. Операнд из памяти данных читается в такте Q2, а результат выполнения команды записывается в такте Q4.

4.0 Организация памяти

4.1 Организация памяти программ

Микроконтроллеры PIC16F62X имеют 13-разрядный счетчик команд PC, способный адресовать 8K x 14 слов памяти программ. Физически реализовано 1K x 14 (0000h – 03FFh) для PIC16F627 и 2K x 14 (0000h – 7FFFh) для PIC16F628. Обращение к физически не реализованной памяти программ приведет к адресации реализованной памяти в пределах 1K x 14 для PIC16F627 и 2K x 14 для PIC16F628.

Адрес вектора сброса – 0000h. Адрес вектора прерываний – 0004h.

Puc. 4-1 Организация памяти в микроконтроллере PIC16F627

Puc. 4-2 Организация памяти в микроконтроллере PIC16F628

4.2 Организация памяти данных

Память данных (см. рисунок 4-3) разделена на четыре банка, которые содержат регистры общего и специального (SFR) назначения. Регистры специальных функций расположены в первых 32 байтах каждого банка памяти данных. Регистры общего назначения имеют адреса 20h-7Fh, A0h-FFh, 120h-14Fh, 170h-17Fh и 1F0h-1FFh реализованные как статическое ОЗУ.

В таблице показано состояние управляющих битов при обращении к банкам памяти данных.

	RP1	RP0
Банк 0	0	0
Банк 1	0	1
Банк 2	1	0
Банк 3	1	1

Регистры с адресами F0h-FFh, 170h-17Fh и 1F0h-1FFh реализованы как статическое ОЗУ с отображением на регистры 70h-7Fh.

4.2.1 Регистры общего назначения

В микроконтроллерах PIC16F62X организация регистров общего назначения 224x8, обратиться к ним можно непосредственно или косвенно, используя регистр FSR (см. раздел 4.4).

Puc. 4-3 Карта памяти данных микроконтроллеров PIC16F627 и PIC16F628

Doruger	1	Do	1	Derivers	1		Адрес
Регистр	001	Регистр	001	Регистр	4001	Регистр	4001
косвенной	00h	косвенной	80h	косвенной	100h	косвенной	180h
адресации		адресации		адресации		адресации	
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10An	INTCON	18Bh
				INTCON		INTOON	
PIR1	0Ch	PIE1	8Ch		10Ch		18Ch
	0Dh		8Dh		10Dh		18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh		8Fh		10Fh		18Fh
T1CON	10h		90h		110h		190h
TMR2	11h		91h				
T2CON	12h	PR2	92h				
	13h		93h				
	14h		94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG		SPBRG	99h				
	19h						
RCREG	1Ah	EEDATA	9Ah				
	1Bh	EEADR	9Bh				
	1Ch	EECON1	9Ch				
	1Dh	EECON2	9Dh				
	1Eh		9Eh				
CMCON	1Fh	VRCON	9Fh		11Fh		
	20h		A0h	Регистры	120h		
				общего			
		Регистры		назначения			
		общего					
Регистры		назначения		48 байт	14Fh		
общего				. 3 00	150h		
назначения		80 байт			10011		
			EFh		16Fh		1EFh
96 байт							
		_	F0h	_	170h		1F0h
		Доступ к		Доступ к		Доступ к	
		70h-7Fh		70h-7Fh		70h-7Fh	
	7Fh		FFh		17Fh		1FFh
Банк 0		Банк 1		Банк 2		Банк 3	

Закрашенные участки памяти данных не реализованы, значение при чтение 00h

4.2.2 Регистры специального назначения

С помощью регистров специального назначения выполняется управление функциями ядра и периферийными модулями микроконтроллера. Регистры специального назначения реализованы как статическое ОЗУ.

В этом разделе будут описаны регистры, управляющие функциями ядра микроконтроллера. Описание регистров периферийных модулей смотрите в соответствующем разделе документации.

Таблица 4-1 Регистры специального назначения, банк 0

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы ⁽¹⁾
Банк 0			1	I.	ı			ı			
00h	INDF	Обращен	ие к регис	тру, адрес	которого	записан в	FSR (не ф	ризически	й регистр)	xxxx xxxx	xxxx xxxx
01h	TMR0	Регистр	таймера 0)						xxxx xxxx	uuuu uuuu
02h	PCL	Младше	биты счет	гчика кома	анд РС					0000 0000	0000 0000
03h	STATUS	IRP	RP1	RP0	-TO	-PD	Z	DC	С	0001 1xxx	000g q000
04h	FSR	Регистр	адреса пр	и косвенн	ой адреса	ции				XXXX XXXX	uuuu uuuu
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	xxxx 0000
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
07h	HET									-	-
08h	HET									-	-
09h	HET									-	-
0Ah	PCLATH	-	-	-	Старши	е биты сче		анд РС		0 0000	0 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
0Dh	HET									-	-
0Eh	TMR1L	Младши	й байт 16-	разрядног	то таймера	a 1				XXXX XXXX	uuuu uuuu
0Fh	TMR1H	Старший	й байт 16-р							xxxx xxxx	uuuu uuuu
10h	T1CON	-	-	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Регистр	таймера 2	2						0000 0000	0000 0000
12h	T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-uuu uuuu
13h	HET									-	-
14h	HET									-	-
15h	CCPR1L	Младши	й байт зах	вата/срав	нения/ШИ	1M				XXXX XXXX	uuuu uuuu
16h	CCPR1H	Старший	й байт захі	вата/сраві						XXXX XXXX	uuuu uuuu
17h	CCP1CON	-	-	CCP1X		CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x 0000 0000	0000 000x
19h	TXREG	Регистр	Регистр данных передатчика USART								0000 0000
1Ah	RCREG	Регистр данных приемника USART								0000 0000	0000 0000
1Bh	HET									-	1
1Ch	HET									-	-
1Dh	HET									-	-
1Eh	HET									-	-
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000

Обозначения: - - не используется, читается как 0; и – не изменяется; х – не известно; q – зависит от условий.

Примечание 1. Другие типы сбросов микроконтроллера – по низкому уровню сигнала на выводе -MCLR, по срабатыванию детектора пониженного напряжения (BOD), по срабатыванию сторожевого таймера WDT.

Таблица 4-2 Регистры специального назначения, банк 1

Адрес	РМЯ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы ⁽¹⁾
Банк 1				ı				l l			
80h	INDF	Обращен	ие к регис	тру, адрес	которого	записан в	FSR (не ф	ризический	й регистр)	xxxx xxxx	xxxx xxxx
81h	OPTION	-RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Младше	биты счет	тчика кома	анд РС					0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	-TO	-PD	Z	DC	С	0001 1xxx	000g q000
84h	FSR	Регистр	адреса пр	и косвенн	ой адреса	ции				xxxx xxxx	uuuu uuuu
85h	TRISA	TRISA7	TRISA6	-	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11-1 1111	11-1 1111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
87h	HET									-	-
88h	HET									-	-
89h	HET									-	-
8Ah	PCLATH	-	-	-	Старши	е биты сче	тчика ком	анд РС		0 0000	0 0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
8Dh	HET									-	-
8Eh	PCON	-	-	-	-	OSCF	-	-POR	-BOD	1-0X	1-uq
8Fh	HET									-	-
90h	HET									-	-
91h	HET									-	-
92h	PR2	Регистр	периода т	гаймера 2						1111 1111	1111 1111
93h	HET									-	-
94h	HET									-	-
95h	HET									-	1
96h	HET									-	-
97h	HET									-	1
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Регистр	генератор	а скорост	иUSART					0000 0000	0000 0000
9Ah	EEDATA	Регистр	данных Е	EPROM						xxxx xxxx	uuuu uuuu
9Bh	EEADR	-	- Регистр адреса EEPROM						-xxx xxxx	-uuu uuuu	
9Ch	EECON1	-	-	-	-	WRERR	WREN	WR	RD	x000	q000
9Dh	EECON2	Управля	Управляющий регистр 2 EEPROM (физически не реализован)								
9Eh	HET									-	-
9Fh	VRCON	VREN	VROE	VRR	-	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Обозначения: - - не используется, читается как 0; и – не изменяется; х – не известно; q – зависит от условий.

Примечание 1. Другие типы сбросов микроконтроллера – по низкому уровню сигнала на выводе -MCLR, по срабатыванию детектора пониженного напряжения (BOD), по срабатыванию сторожевого таймера WDT.

Таблица 4-3 Регистры специального назначения, банк 2

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы ⁽¹⁾
Банк 2											
100h	INDF	Обращен	ие к регис	тру, адрес	которого	записан в	FSR (не ф	ризически	й регистр)	xxxx xxxx	xxxx xxxx
101h	TMR0	Регистр	таймера 0)						xxxx xxxx	uuuu uuuu
102h	PCL	Младше	биты счет	гчика кома	анд РС					0000 0000	0000 0000
103h	STATUS	IRP	RP1	RP0	-TO	-PD	Z	DC	С	0001 1xxx	000g q000
104h	FSR	Регистр	адреса пр	и косвенн	ой адреса	ции				xxxx xxxx	uuuu uuuu
105h	HET									-	-
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
107h	HET									-	-
108h	HET									-	-
109h	HET									-	-
10Ah	PCLATH	-	-	-	Старши	е биты сче	тчика ком	анд РС		0 0000	0 0000
10Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
10Ch	HET									-	-
	HET									-	-
11Fh	HET									-	-

Обозначения: - - не используется, читается как 0; и – не изменяется; х – не известно; q – зависит от условий.

Примечание 1. Другие типы сбросов микроконтроллера – по низкому уровню сигнала на выводе -MCLR, по срабатыванию детектора пониженного напряжения (BOD), по срабатыванию сторожевого таймера WDT.

Таблица 4-4 Регистры специального назначения, банк 3

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы ⁽¹⁾
Банк 3											
180h	INDF	Обращен	ие к регист	гру, адрес	которого	записан в	FSR (не ф	ризически	й регистр)	xxxx xxxx	xxxx xxxx
181h	OPTION	-RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
182h	PCL	Младше	биты счет	чика кома	нд РС					0000 0000	0000 0000
183h	STATUS	IRP	RP1	RP0	-TO	-PD	Z	DC	С	0001 1xxx	000g q000
184h	FSR	Регистр	адреса пр	и косвенн	ой адреса	ции				xxxx xxxx	uuuu uuuu
185h	HET									-	-
186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
187h	HET									1	-
188h	HET									-	-
189h	HET									-	-
18Ah	PCLATH	-	-	-	Старшие	е биты сче	тчика ком	анд РС		0 0000	0 0000
18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
18Ch	HET									-	_
	HET									-	_
19Fh	HET										=

Обозначения: - - не используется, читается как 0; и – не изменяется; х – не известно; q – зависит от условий.

Примечание 1. Другие типы сбросов микроконтроллера – по низкому уровню сигнала на выводе -MCLR, по срабатыванию детектора пониженного напряжения (BOD), по срабатыванию сторожевого таймера WDT.

4.2.2.1 Perucmp STATUS

В регистре STATUS содержатся флаги состояния АЛУ, флаги причины сброса микроконтроллера и биты управления банками памяти данных.

Регистр STATUS может быть адресован любой командой, как и любой другой регистр памяти данных. Если обращение к регистру STATUS выполняется командой, которая воздействует на флаги Z, DC и C, то изменение этих трех битов командой заблокирована. Эти биты сбрасываются или устанавливаются согласно логике ядра микроконтроллера. Команды изменения регистра STATUS так же не воздействуют на биты -TO и -PD. Поэтому результат выполнения команды с регистром STATUS может отличаться от ожидаемого. Например, команда CLRF STATUS сбросит три старших бита и установит бит Z (состояние регистра STATUS после выполнения команды 000uu1uu. где u-не изменяемый бит).

При изменении битов регистра STATUS рекомендуется использовать команды, не влияющие на флаги АЛУ (SWAPF, MOVWF, BCF и BSF). Описание команд смотрите в разделе 15.0.

Примечание. Флаги С и DC используются как биты заема и десятичного заема соответственно, например, при выполнении команд вычитания SUBLW и SUBWF.

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP	RP1	RP0	-TO	-PD	Z	DC	С	R – чтение бита
Бит 7 	7. IDD				~~		Бит 0	W – запись бита U – не реализовано, читается как 0 –n – значение после РО –х – неизвестное значение после РО
бит 7	1 = 6	Бит выбора банк 2, 3 (10 банк 0, 1 (00	0h – 1FFh)	ои адресаці	и		
бить	11 = 10 = 01 =	: RP0 : Биты банк 3 (180 банк 2 (100 банк 1 (080 банк 0 (000	h – 1FFh) h – 17Fh) h – 0FFh)	анка при н	епосредств	енной адре	есации	
бит 4	1 = r	: Флаг перег после POR и после переп	или выпол	нения ком		T, SLEEP		
бит (1 = r	: Флаг включ после POR и после выпол	или выпол	нения ком		'DT		
бит 2	1 = 1		ультат вы	полнения			погической с пи логическо	
бит 1	инве 1 = 6	Флаг десят ерсное значобыл перенос не было пер	ение с из младц	јего полуб	байта	ланд ADDV	WF, ADDWL,	SUBWF, SUBWL), заем им
бит (знач 1 = (олаг перено вение был перенос не было пер	с из старш	его бита		, ADDWL,	SUBWF, SU	JBWL), заем имеет инверс

дополнительного кода второго операнда. При выполнении команд сдвига (RRF, RLF) бит С

загружается старшим или младшим битом сдвигаемого регистра.

значение после POR

4.2.2.2 Pezucmp OPTION

Perистр OPTION доступен для чтения и записи, содержит биты управления:

- предварительным делителем TMR0/WDT;
- активным фронтом внешнего прерывания RB0/INT;
- подтягивающими резисторами на входах PORTB.

Примечание. Если предварительный делитель включен перед WDT, то коэффициент деления тактового сигнала для TMR0 равен 1:1.

Регистр OPTION (адрес 81h или 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
-RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	R – чтение бита
Бит 7							Бит 0	W – запись бита
								U – не реализовано,
								читается как 0
								–n – значение после POR
								-x – неизвестное

бит 7: -RBPU: Включение подтягивающих резисторов на входах PORTB

1 = подтягивающие резисторы отключены 0 = подтягивающие резисторы включены

бит 6: INTEDG: Выбор активного фронта сигнала на входе внешнего прерывания INT

1 = прерывания по переднему фронту сигнала 0 = прерывания по заднему фронту сигнала

бит 5: **Т0СS**: Выбор тактового сигнала для TMR0

1 = внешний тактовый сигнал с вывода RA4/T0CKI

0 = внутренний тактовый сигнал CLKOUT

бит 4: **T0SE**: Выбор фронта приращения TMR0 при внешнем тактовом сигнале

1 = приращение по заднему фронту сигнала (с высокого к низкому уровню) на выводе RA4/T0CKI

0 = приращение по переднему фронту сигнала (с низкого к высокому уровню) на выводе RA4/T0CKI

бит 3: **PSA**: Выбор включения предделителя

1 = предделитель включен перед WDT

0 = предделитель включен перед TMR0

биты 2-0: PS2: PS0: Установка коэффициента деления предделителя

Значение	Для TMR0	Для WDT
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

4.2.2.3 Pezucmp INTCON

Регистр INTCON доступен для чтения и записи, содержит биты разрешений и флагов некоторых источников прерываний. Дополнительно смотрите разделы 4.2.2.4 и 4.2.2.5.

Примечание. Флаги прерываний устанавливаются при возникновении условий прерываний вне зависимости от соответствующих битов разрешения и бита общего разрешения прерываний GIE (INTCON<7>).

Регистр INTCON (адрес 0Bh, 8Bh, 10Bh или 18Bh)

БИЕ 7 PEIE TOIE INTE RBIE TOIF INTF RBIF БИТ 7 RBIE 7 BUT 0 BUT 0 RBIE 7 BUT 0 W - запись бита W - запись бита W - запись бита W - запись бита U - не реализовано, читается как 0 U - не реализовано, читается как 0 I - ле заначение после РОГ - x - неизвестное значение и после РОГ - x - неизвестное значение после РОГ - x -	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
		PEIE	TOIE	INTE	RBIE	TOIF	INTF		
читается как 0 —п. — значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение после РОГ —х. — неизвестное значение значение после РОГ —х. — неизвестное значение	Бит 7							Бит 0	
По значение после РОГ - X — неизвестное значение прерывания от периферийных модулей 1 = разрешены все немаскированные прерывания периферийных модулей 0 = прерывания от периферийных модулей запрещены бит 5:									The state of the s
бит 7: GIE: Глобальное разрешение прерываний 1 = разрешены все немаскированные прерывания 0 = все прерывания запрещены бит 6: PEIE: Разрешение прерываний от периферийных модулей 1 = разрешены все немаскированные прерывания периферийных модулей 0 = прерывания от периферийных модулей запрещены бит 5: TOIE: Разрешение прерывания по переполнению TMR0 1 = прерывание разрешено 0 = прерывание запрещено бит 4: INTE: Разрешение внешнего прерывания INT 1 = прерывание разрешено о = прерывание запрещено бит 3: RBIE: Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание разрешено о = прерывание запрещено бит 2: TOIF: Флаг прерывания по переполнению TMR0 1 = произошло переполнение TMR0 (сбрасывается программно) 0 = переполнения TMR0 не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)									
бит 7: GIE: Глобальное разрешение прерываний 1 = разрешены все немаскированные прерывания 0 = все прерывания запрещены бит 6: PEIE: Разрешение прерываний от периферийных модулей 1 = разрешены все немаскированные прерывания периферийных модулей 0 = прерывания от периферийных модулей запрещены бит 5: TOIE: Разрешение прерывания по переполнению TMR0 1 = прерывание разрешено бит 4: INTE: Разрешение внешнего прерывания INT 1 = прерывание разрешено бит 3: RBIE: Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание запрещено бит 3: RBIE: Разрешение прерывания по изменению тМR0 1 = прерывание запрещено бит 2: TOIF: Флаг прерывания по переполнению TMR0 1 = прерывание запрещено бит 1: INTF: Флаг прерывания INT 1 = выполнения TMR0 не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на входах RB4:RB7 PORTB									
1 = разрешены все немаскированные прерывания 0 = все прерывания запрещены бит 6: РЕІЕ: Разрешение прерываний от периферийных модулей 1 = разрешены все немаскированные прерывания периферийных модулей 0 = прерывания от периферийных модулей запрещены бит 5: ТОІЕ: Разрешение прерывания по переполнению ТМRО 1 = прерывание разрешено 0 = прерывание запрещено бит 4: INTE: Разрешение внешнего прерывания INT 1 = прерывание разрешено 0 = прерывание запрещено бит 3: RBIE: Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание разрешено бит 2: ТОІF: Флаг прерывания по переполнению ТМRО 1 = произошло переполнение ТМR0 (сбрасывается программно) 0 = переполнения ТМRО не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)	бит 7:	GIE:	Гпобапьи	ne nasneule	UMO FINANL	праций			значение после РОК
о = все прерывания запрещены бит 6: РЕІЕ: Разрешение прерываний от периферийных модулей 1 = разрешены все немаскированные прерывания периферийных модулей 0 = прерывания от периферийных модулей запрещены бит 5: ТОІЕ: Разрешение прерывания по переполнению ТМRО 1 = прерывание разрешено 0 = прерывание запрещено бит 4: INTE: Разрешение внешнего прерывания INT 1 = прерывание разрешено 0 = прерывание запрещено бит 3: RBIE: Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание разрешено 0 = прерывание запрещено бит 2: ТОІF: Флаг прерывания по переполнению ТМRО 1 = преоизошло переполнение ТМRО (сбрасывается программно) 0 = переполнения ТМRО не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)	ОИТ 7.						ING		
бит 6: РЕІЕ: Разрешение прерываний от периферийных модулей 1 = разрешены все немаскированные прерывания периферийных модулей 0 = прерывания от периферийных модулей запрещены бит 5: ТОІЕ: Разрешение прерывания по переполнению ТМRО 1 = прерывание разрешено 0 = прерывание запрещено бит 4: INTE: Разрешение внешнего прерывания INT 1 = прерывание разрешено 0 = прерывание запрещено бит 3: RBIE: Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание разрешено 0 = прерывание запрещено бит 2: ТОІF: Флаг прерывания по переполнению ТМR0 1 = прерывание запрещено бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)			•		•	Спрерыва	10121		
1 = разрешены все немаскированные прерывания периферийных модулей 0 = прерывания от периферийных модулей запрещены бит 5: ТОІЕ: Разрешение прерывания по переполнению ТМR0 1 = прерывание разрешено 0 = прерывание запрещено бит 4: INTE: Разрешение внешнего прерывания INT 1 = прерывание разрешено 0 = прерывание запрещено бит 3: RBIE: Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание разрешено 0 = прерывание запрещено бит 2: TOIF: Флаг прерывания по переполнению TMR0 1 = произошло переполнение TMR0 (сбрасывается программно) 0 = переполнения TMR0 не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)		0 -	эсс прорыд	annin danpo	щопы				
0 = прерывания от периферийных модулей запрещены 15: ТОІЕ: Разрешение прерывания по переполнению ТМR0 1 = прерывание разрешено 0 = прерывание запрещено 6ит 4: INTE: Разрешение внешнего прерывания INT 1 = прерывание разрешено 0 = прерывание запрещено 6ит 3: RBIE: Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание разрешено 0 = прерывание запрещено бит 2: ТОІF: Флаг прерывания по переполнению ТМR0 1 = произошло переполнение ТМR0 (сбрасывается программно) 0 = переполнения ТМR0 не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)	бит 6:	PEI	Ξ : Разреше	ние прерыв	ваний от пе	ериферийн	ых модулеі	ĺ	
 бит 5: TollE: Разрешение прерывания по переполнению TMR0 1 = прерывание разрешено 0 = прерывание запрещено бит 4: INTE: Разрешение внешнего прерывания INT 1 = прерывание разрешено 0 = прерывание запрещено бит 3: RBIE: Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание разрешено 0 = прерывание запрещено бит 2: TollF: Флаг прерывания по переполнению TMR0 1 = произошло переполнение TMR0 (сбрасывается программно) 0 = переполнения TMR0 не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно) 								рийных моду	лей
1 = прерывание разрешено 0 = прерывание запрещено бит 4: INTE: Разрешение внешнего прерывания INT 1 = прерывание разрешено 0 = прерывание запрещено бит 3: RBIE: Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание разрешено 0 = прерывание запрещено бит 2: T0IF: Флаг прерывания по переполнению TMR0 1 = произошло переполнение TMR0 (сбрасывается программно) 0 = переполнения TMR0 не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)		0 = г	прерывания	я от перифе	ерийных м	одулей зап	рещены		
1 = прерывание разрешено 0 = прерывание запрещено бит 4: INTE: Разрешение внешнего прерывания INT 1 = прерывание разрешено 0 = прерывание запрещено бит 3: RBIE: Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание разрешено 0 = прерывание запрещено бит 2: T0IF: Флаг прерывания по переполнению TMR0 1 = произошло переполнение TMR0 (сбрасывается программно) 0 = переполнения TMR0 не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)	6 T.	TOIT	. Daana				TMD0		
о = прерывание запрещено бит 4: INTE: Разрешение внешнего прерывания INT	ONT 5:		•			ереполнени	ю IMKU		
 бит 4: INTE: Разрешение внешнего прерывания INT 1 = прерывание разрешено 0 = прерывание запрещено бит 3: RBIE: Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание разрешено 0 = прерывание запрещено бит 2: T0IF: Флаг прерывания по переполнению TMR0 1 = произошло переполнение TMR0 (сбрасывается программно) 0 = переполнения TMR0 не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно) 									
1 = прерывание разрешено 0 = прерывание запрещено бит 3:		0 - 1	ірерыванию	- запрещен	U				
1 = прерывание разрешено 0 = прерывание запрещено бит 3:	бит 4:	INTE	Е : Разреше	ние внешне	его прерыв	вания INT			
бит 3: RBIE : Разрешение прерывания по изменению сигнала на входах RB7:RB4 PORTB 1 = прерывание разрешено 0 = прерывание запрещено бит 2: T0IF : Флаг прерывания по переполнению TMR0 1 = произошло переполнение TMR0 (сбрасывается программно) 0 = переполнения TMR0 не было бит 1: INTF : Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF : Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)									
1 = прерывание разрешено 0 = прерывание запрещено бит 2: ТоіF: Флаг прерывания по переполнению ТМRО 1 = произошло переполнение ТМRО (сбрасывается программно) 0 = переполнения ТМRО не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RBO/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)		0 = г	прерывание	е запрещен	0				
1 = прерывание разрешено 0 = прерывание запрещено бит 2: ТоіF: Флаг прерывания по переполнению ТМRО 1 = произошло переполнение ТМRО (сбрасывается программно) 0 = переполнения ТМRО не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RBO/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)	бит 2:	DRII	E: Daanouic	NIIIAO EDODI II	ייים מייים	240110111410	SMEHOLIO HO	BYORAY DD7:E	
 0 = прерывание запрещено бит 2: ТоІF: Флаг прерывания по переполнению ТМRО 1 = произошло переполнение ТМRО (сбрасывается программно) 0 = переполнения ТМRО не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RBO/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно) 	ОИТ 3.					зменению	инала на	входах КБ7.г	RB4 FORTB
 бит 2: Т0IF: Флаг прерывания по переполнению TMR0 1 = произошло переполнение TMR0 (сбрасывается программно) 0 = переполнения TMR0 не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно) 									
 1 = произошло переполнение TMR0 (сбрасывается программно) 0 = переполнения TMR0 не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTВ 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно) 			.pop2.20	о осиро <u>—</u> о					
 0 = переполнения ТМR0 не было бит 1: INTF: Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTВ 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно) 	бит 2:	T0IF	: Флаг преј	рывания по	переполн	ению TMR()		
бит 1: INTF : Флаг внешнего прерывания INT 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF : Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)						(сбрасывае	ется програ	ммно)	
 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTВ 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно) 		0 = г	тереполнен	ния TMR0 н	е было				
 1 = выполнено условие внешнего прерывания на выводе RB0/INT (сбрасывается программно) 0 = внешнего прерывания не было бит 0: RBIF: Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTВ 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно) 	бит 1.	INITE	E: Фпог г∷о	IIIIIOFO EROS	u ibouita IN	ıT			
0 = внешнего прерывания не было бит 0: RBIF : Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)	оит Г.						IS BPIDOUS [RRO/INT (cha	асывается программно)
бит 0: RBIF : Флаг прерывания по изменению уровня сигнала на входах RB4:RB7 PORTB 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно)						срывания г	и выводе і	COpe	дольно год программию)
 1 = зафиксировано изменение уровня сигнала на одном из входов RB7:RB4 (сбрасывает программно) 		-			020				
программно)	бит 0:								
		1 =			енение ур	овня сигн	ала на од	ном из вход	дов RB7:RB4 (сбрасывает
0 = не было изменения уровня сигнала ни на одном из входов RB7:RB4		_		,					
		0 = 1	не было изм	иенения ур	овня сигна	ла ни на од	цном из вхо	дов RB7:RB4	l .

2.2.2.4 Perucmp PIE1

Регистр PIE1 доступен для чтения и записи, содержит биты разрешения периферийных прерываний.

Примечание. Для разрешения периферийных прерываний необходимо установить в '1' бит PEIE (INTCON<6>).

Регистр PIE1 (адрес 8Ch)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
EEIE	CMIE	RCIE	TXIE	-	CCP1IE	TMR2IE	TMR1IE	R – чтение бита
Бит 7							Бит 0	W – запись бита U – не реализовано.
								читается как 0
								n – значение после POF
								-х – неизвестное
								значение после РОГ
бит 7:	EEI	Е: Разреше	ние прерыв	зания по с	окончанию з	аписи в ЕЕ	PROM даннь	ıΙΧ
		-	е разрешен				- 11-	
	0 = r	трерывание	е запрещен	0				
бит 6:	СМІ	Е : Разреше	ение преры	вания от і	компаратор	ОВ		
	1 = г	трерывание	е разрешен	0				
	0 = г	трерывание	е запрещен	0				
бит 5:	RCII	E : Разреше	ние преры	вания от г	триемника l	JSART		
			е разрешен					
	0 = г	трерывание	е запрещен	0				
бит 4:					ередатчика	USART		
			е разрешен					
	0 = г	трерывание	е запрещен	0				
бит 3:	Не р	реализова	н : читается	как '0'				
бит 2:	CCF	Р1ІЕ : Разре	шение прер	рывания с	от модуля С	CP1		
			е разрешен					
	0 = г	трерывание	е запрещен	0				
бит 1:	TMF	R2IE : Разре	шение преј	рывания г	по переполь	ению TMR2	2	
			е разрешен					
	0 = г	трерывание	е запрещен	0				
бит 0:		•			по переполн	ению TMR1	1	
			е разрешен					
	Λ = Γ	трерывание	22000111011	^				

4.2.2.5 Peaucmp PIR1

Регистр PIR1 доступен для чтения и записи, содержит флаги прерываний периферийных модулей.

Примечание. Флаги прерываний устанавливаются при возникновении условий прерываний вне зависимости от соответствующих битов разрешения и бита общего разрешения прерываний GIE (INTCON<7>). Программное обеспечение пользователя должно сбрасывать соответствующие флаги при обработке прерываний от периферийных модулей.

Регистр PIR1 (адрес 0Ch)

	- 1111 (ap		— • • • • •			-		
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
EEIF	CMIF	RCIF	TXIF	-	CCP1IF	TMR2IF	TMR1IF	R – чтение бита
Бит 7							Бит 0	W – запись бита U – не реализовано,
								читается как 0
								–n – значение после POR
								–х – неизвестное
								значение после POR
бит 7:					ию записи в			
							ірограммно)	
	0 = 3	запись в ЕЕ	∶РКОМ дан	ных не за	вершена ил	и не оыла	начата	
бит 6:	СМІ	F : Флаг пре	-กมหลานต (от компара	TODOR			
OM O.					компаратора	a		
					не изменял			
бит 5:		F : Флаг пре						
		буфер приє			I			
	0 = 0	буфер приє	емника ОБА	ART HYCT				
бит 4:	TXII	F: Флаг пре	рывания о	т передатч	чика USART			
		буфер пере						
	0 = 6	буфер пере	датчика U	SART пол	ОН			
бит 3:	. Ца.	реализова		z vov '0'				
оит э.	пер	реализова	н . читается	н как О				
бит 2:	CCF	Р1ІF : Флаг г	прерывани	я от модуј	ля ССР1			
		им захвата						
					R1 (сбрасыва	ается прогр	аммно)	
	0 =	захвата зна	ачения ТМІ	R1 не прои	исходило			
	Реж	им сравнен	ния					
				ігло указан	ного в реги	страх ССРІ	R1H:CCPR1	L(сбрасывается программно
							CPR1H:CCP	
	11114	11						
		<u>И режим</u> использует	Ca					
	1161	использует	СЯ					
бит 1:	TMF	R2IF : Флаг і	прерывани	я по перег	полнению Т	MR2		
	1 = 1	произошло	переполне	ение TMR2	2 (сбрасыва		аммно)	
	0 = 1	переполнен	ния TMR2 н	не было				
бит 0:	- тм	21IF : ტпаг і		а по п <u>е</u> рег	полнению Т	MR1		
ONI U.					толнению т І (сбрасыва		аммно)	
		переполнен			(sopassiba	5.5/1 nporpo		
		•						

4.2.2.6 Pezucmp PCON

Регистр PCON содержит флаги, с помощью которых можно определить источник сброса микроконтроллера:

- сброс по включению питания;
- сброс по сигналу на выводе -MCLR;
- сброс по переполнению сторожевого таймера WDT;
- сброс по обнаружению снижения напряжения питания BOR.

Примечание. При включении питания бит -BOD имеет непредсказуемое значение и не должен учитываться. Бит -BOD предназначен для обнаружения последующих сбросов микроконтроллера при снижении напряжения питания. Состояние бита -BOD также непредсказуемое, если работа детектора пониженного напряжения заблокирована в битах конфигурации при программировании микроконтроллера (BODEN).

Регистр PCON (адрес 8Eh)

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-q	R/W-q
-	-	-	-	OSCF	•	-POR	-BOD
Бит 7							Бит 0

R – чтение бита

W – запись бита

U – не реализовано, читается как 0

-n - значение после POR

–х – неизвестное

значение после POR

биты 7-4,2:Не реализованы: читаются как '0'

бит 3: **OSCF**: Выбор частоты тактового генератора в режимах INTRC/ER

1 = типовое значение $4M\Gamma \mu^{(1)}$ 0 = типовое значение $32\kappa\Gamma \mu$

бит 1: -POR: Флаг сброса по включению питания

1 = сброса по включению питания не было

0 = произошел сброс микроконтроллера по включению питания

бит 0: -ВОD: Флаг сброса по снижению напряжения питания

1 = сброса по снижению напряжения питания не было

0 = произошел сброс микроконтроллера по снижению напряжения питания

Примечание $^{(1)}$. В режиме ER генератора и OSCF = 1 частота тактового сигнала зависит от внешнего резистора подключенного к выводу RA7/OSC1/CLKIN.

4.3 Регистры PCLATH и PCL

13-разрядный регистр счетчика команд PC указывает адрес выполняемой инструкции. Младший байт счетчика команд PCL доступен для чтения и записи. Старший байт PCH, содержащий <12:8> биты счетчика команд PC, не доступен для чтения и записи. Все операции с регистром PCH происходят через дополнительный регистр PCLATH. При любом виде сброса микроконтроллера счетчик команд PC очищается. На рисунке 4-4 показано две ситуации загрузки значения в счетчик команд PC. Пример сверху, запись в счетчик команд PC происходит при записи значения в регистр PCL (PCLATH <4:0> \rightarrow PCH). Пример снизу, запись значения в счетчик команд PC происходит при выполнении команды CALL или GOTO (PCLATH <4:3> \rightarrow PCH).

4.3.1 Вычисляемый переход

Вычисляемый переход может быть выполнен командой приращения к регистру PCL (например, ADDWF PCL). При выполнении табличного чтения вычисляемым переходом следует заботиться о том, чтобы значение PCL не пересекло границу блока памяти (каждый блок 256 байт). Дополнительную информацию по выполнению вычисляемого перехода смотрите в документации AN556 «Выполнение табличного чтения».

4.3.2 Стек

PIC16F62X имеют 8-уровневый 13-разрядный аппаратный стек (см. рисунки 4-1, 4-2). Стек не имеет отображения на память программ и память данных, нельзя записать или прочитать данные из стека. Значение счетчика команд заносится в вершину стека при выполнении инструкций перехода на подпрограмму (CALL) или обработке прерываний. Чтение из стека и запись в счетчик команд PC происходит при выполнении инструкций возвращения из подпрограммы или обработке прерываний (RETURN, RETLW, RETFIE), при этом значение регистра PCLATH не изменяется.

Стек работает как циклический буфер. После 8 записей в стек, девятая запись запишется на место первой, а десятая запись заменит вторую и так далее.

Примечания:

- 1. В микроконтроллерах не имеется никаких указателей о переполнении стека.
- 2. В микроконтроллерах не предусмотрено команд записи/чтения из стека, кроме команд вызова/возвращения из подпрограмм (CALL, RETURN, RETLW и RETFIE) или условий перехода по вектору прерываний.

4.4 Косвенная адресация, регистры INDF и FSR

Для выполнения косвенной адресации необходимо обратиться к физически нереализованному регистру INDF. Обращение к регистру INDF фактически вызовет действие с регистром, адрес которого указан в FSR. Косвенное чтение регистра INDF (FSR=0) даст результат 00h. Косвенная запись в регистр INDF не вызовет никаких действий (вызывает воздействия на флаги АЛУ в регистре STATUS). 9-бит косвенного адреса IRP сохраняется в регистре STATUS<7>. Пример 9-разрядной косвенной адресации показан на рисунке 4-5.

Puc. 4-5 Прямая/косвенная адресация в PIC16F62X

Карту памяти данных смотрите на рисунке 4-3.

В примере 4-1 показано использование косвенной адресации для очистки памяти данных (диапазон адресов 20h-2Fh).

Пример 4-1 Косвенная адресация

BCF STATUS, IRP ; Установить банк 0,1 MOVLW 0x20 ; Указать первый регистр в ОЗУ MOVWF FSR NEXT: **CLRF INDF** ; Очистить регистр **INCF** FSR,F ; Увеличить адрес BTFSS FSR,4 ; Завершить? GOTO NEXT ; Нет, продолжить очистку

CONTINUE:

; Да

5.0 Порты ввода/вывода

PIC16F62X имеют два порта ввода/вывода, PORTA и PORTB. Некоторые каналы портов мультиплицированы с периферийными модулями микроконтроллера. Когда периферийный модуль включен, вывод не может использоваться как универсальный канал ввода/вывода.

5.1 Регистры PORTA и TRISA

PORTA — 8-разрядный порт ввода вывода. RA4 имеет триггер Шмидта на входе и открытый сток на выходе, мультиплицирован с тактовым входом T0CKI. RA5 имеет триггер Шмидта на входе, без выходного буфера. Все остальные каналы PORTA имеют триггер Шмидта на входе и полнофункциональные выходные КМОП буферы.

Все каналы PORTA имеют соответствующие биты направления в регистре TRISA, позволяющие настраивать канал как вход или выход.

Запись '1' в TRISA переводит соответствующий выходной буфер 3-е состояние. Запись '0' в регистр TRISA определяет соответствующий канал как выход, содержимое защелки PORTA передается на вывод микроконтроллера.

Чтение регистра PORTA возвращает состояние на выводах порта, а запись производится в защелку PORTA. Все операции записи в порт выполняются по принципу «чтение – модификация - запись», т.е. сначала производится чтение состояния выводов порта, затем изменение и запись в защелку.

Каналы PORTA мультиплицированы с модулем компараторов и источником опорного напряжения. Настройка работы этих периферийных модулей определяется битами в регистрах CMCON (управляющий регистр компаратора) и VRCON (управляющий регистр источника опорного напряжения). Когда компаратор включен, чтение состояние выводов PORTA будет давать результат '00'.

Примечания:

- 1. При сбросе микроконтроллера все биты регистра TRISA устанавливаются в '1', настраивая PORTA на вход. Функция цифрового входа заблокирована, т.к. каналы PORTA подключены к модулю компараторов для снижения тока потребления.
- 2. Если вывод RA6/OSC2/CLKOUT настроен как CLKOUT, то соответствующие биты регистров TRISA, PORTA игнорируются и читаются как '0'.

Биты регистра TRISA управляют направлением каналов PORTA при включенном модуле компараторов. Пользователь должен удостовериться, что соответствующие каналы PORTA настроены на вход при использовании их в качестве входов компаратора.

RA2 также функционировать как выход при включенном модуле источника опорного напряжения (V_{REF} находится в режиме высокого импеданса). Пользователь должен установить в '1' бит TRISA<2> для настройки канала на вход.

В одном из режимов (определяется регистром CMCON) RA3 и RA4 становятся выходами компаратора. Биты TRISA<4:3> должны быть сброшены в '0' для работы в этом режиме.

Пример 5-1 Инициализация PORTA

CLRF PORTA ; Инициализация защелок PORTA

MOVLW 0X07 ; Выключить компаратор,

MOVWF CMCON ; каналы PORTA – цифровые входы/выходы

BCF STATUS, RP1

BSF STATUS, RP0 ; Выбрать банк 1

 MOVLW
 0x1F
 ; Значение для инициализации

 ; направления каналов PORTA

 MOVWF
 TRISA
 ; Настроить RA<4:0> как входы

; Биты TRISA<7:5> всегда

; читаются как '0'.

Puc. 5-1 Структурная схема выводов RA0/AN0 и RA1/AN1 Шина данных D Q V_{DD} WR **PORTA** $\overline{\mathsf{q}}$ CK⁻ Вывод порта Защелка данных D Q WR **TRISA** CK $\overline{\mathsf{Q}}$ Защелка TRIS Режим аналогового входа Входной буфер с триггером **RD TRISA** Шмидта Q D EN < **RD PORTA** к компаратору

Puc. 5-2 Структурная схема вывода RA2/V_{REF} Шина данны<u>х</u> D Q VDD WR P<u>ORTA</u> $\overline{\mathsf{Q}}$ CK Вывод порта Защелка данных D Q WR **TRISA** Q CK⁻ Режим Защелка TRIS аналогового входа Входной буфер с триггером **RD TRISA** Шмидта Q D EN < **RD PORTA** к компаратору **V**ROE **V**REF

Шина Режим компаратора = 110 данных D Q Выход компаратора WR P<u>ORTA</u> CK∕~ Q RA4 Защелка данных Q WR TRISA CK∕~ Q Vss Защелка TRIS Входной буфер с триггером Шмидта **RD TRISA** Q D EN < RD PORTA Тактовый вход TMR0

Puc. 5-4 Структурная схема вывода RA4/T0CKI

Puc. 5-6 Структурная схема вывода RA6/OSC2/CLKOUT (Fosc=101,111) OT OSC1 Схема CLKOUT (FOSC/4) генератора Шина данных RA6/OSC2/CLKOUT D V_{DD} Q WR___ PORTA CK∕~ Q Защелка данных D Q WR Ν TRISA CK∕~ Q Защелка TRIS Vss (Fosc=100, 101, 110, 111) **RD TRISA** (Fosc=110, 100) Входной Q D буфер с триггером Шмидта EN < **RD PORTA**

Puc. 5-7 Структурная схема вывода RA7/OSC1/CLKIN OT OSC2 Схема енератора **CLKIN** Шина данных D Q VDD RA7/OSC1/CLKIN Q W<u>R</u> CK⁻ **PORTA** Защелка данных Триггер Шмидта D Q WR Ν **TRISA** CK∕~ Q Защелка TRIS (Fosc=101, 100) Vss (Fosc=101, 100) Входной буфер с **RD TRISA** триггером Шмидта Q D EN < **RD PORTA**

Таблица 5-1 Функциональное назначение выводов PORTA

Обозначение вывода	№ бита	Тип буфера	Описание
RA0/AN0	Бит 0	ST	Двунаправленный порт ввода/вывода, аналоговый вход компаратора
RA1/AN1	Бит 1	ST	Двунаправленный порт ввода/вывода, аналоговый вход компаратора
RA2/AN2/V _{REF}	Бит 2	ST	Двунаправленный порт ввода/вывода, аналоговый вход компаратора, выход источника опорного напряжения V _{REF}
RA3/AN3/CPM1	Бит 3	ST	Двунаправленный порт ввода/вывода, аналоговый вход компаратора, выход компаратора
RA4/T0CKI/CPM2	Бит 4	ST	Двунаправленный порт ввода/вывода, может использоваться как ТОСКІ, выход компаратора
RA5/MCLR/THV	Бит 5	ST	Вход сброса микроконтроллера, вход напряжения программирования. Когда вывод настроен как -MCLR, то по низкому уровню сигнала производиться сброс микроконтроллера. При нормальной работе напряжение на -MCLR/THV не должно превышать VDD.
RA6/OSC2/CLKOUT	Бит 6	ST	Двунаправленный порт ввода/вывода, выход генератора для подключения резонатора. В режиме ER генератора на выходе CLKOOUT формируется сигнал с частотой 1/4 OSC1, обозначая циклы команд
RA7/OSC1/CLKIN	Бит 7	ST	Двунаправленный порт ввода/вывода, вход генератора, вход внешнего тактового сигнала, вывод ER смещения

Обозначение: ST – вход с триггером Шмидта.

Таблица 5-2 Регистры и биты связанные с работой PORTA

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	xxxx 0000
85h	TRISA	TRISA7	TRISA6	-	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11-1 1111	11-1 1111
1Fh	CON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
9Fh	VRCON	VREN	VROE	VRR	-	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу PORTA.

5.2 Регистры PORTB и TRISB

PORTB — 8-разрядный двунаправленный порт ввода/вывода. Биты регистра TRISB определяют направление каналов порта. Установка битва в '1' регистра TRISB переводит выходной буфер в 3-е состояние. Запись '0' в регистр TRISB настраивает соответствующий канал как выход, содержимое защелки PORTB передается на вывод микроконтроллера.

Выводы PORTB мультиплицированы с внешним входом прерываний, USART, ССР модулем и входом тактового сигнала для TMR1. Функциональное назначение выводов PORTB сведено в таблице 5-3.

Чтение регистра PORTB возвращает состояние на выводах порта, а запись производится в защелку PORTB. Все операции записи в порт выполняются по принципу «чтение – модификация - запись», т.е. сначала производится чтение состояния выводов порта, затем изменение и запись в защелку.

К каждому выводу PORTB подключен внутренний подтягивающий резистор (типовое значение тока ≈200мкА). Бит -RBPU в регистре OPTION <7> определяет, подключены (-RBPU=0) или нет (-RBPU=1) подтягивающие резисторы. Подтягивающие резисторы автоматически отключаются, когда каналы порта настраиваются на выход и после сброса по включению питания POR.

Четыре канала PORTB RB7:RB4 настроенные на вход могут генерировать прерывания по изменению логического уровня сигнала на входе. Если один из каналов RB7:RB4 настроен на выход, то он не может быть источником прерываний. Сигнал на выводах RB7:RB4 сравнивается со значением, сохраненным при последнем чтении PORTB. В случае несовпадения одного из значений устанавливается флаг RBIF в регистре INTCON<0>, если разрешено, генерируется прерывание.

Это прерывание может ввести микроконтроллер из режима SLEEP. В подпрограмме обработки прерываний необходимо сделать следующие действия:

- выполнить чтение или запись в PORTB исключив несоответствие:
- сбросить флаг RBIF и'0'.

Несоответствие сохраненного значения с сигналом на входе PORTB всегда устанавливает бит RBIF в '1'. Чтение из PORTB прервет условие несоответствия и позволит сбросить флаг RBIF в '0'.

Прерывания по изменению сигнала на входах PORTB, программа переключения конфигурации этих каналов позволяет реализовать простой интерфейс обслуживания клавиатуры, с выходом из режима SLEEP по нажатию клавиш (см. пример AN552 в книге Microchip *Embedded Control Handbook* или на WEB узлах технической поддержки www.microchip.com и www.microchip.ru).

Примечание. Если изменение сигнала на входе RB7:RB4 происходит на начале цикла Q2 чтения PORTB, флаг RBIF в '1' может не устанавливается.

Прерывания по изменению сигнала на входах рекомендуется использовать для выхода из режима SLEEP по нажатию клавиш, когда PORTB полностью задействован для реализации клавиатуры. Не рекомендуется опрашивать PORTB при использовании прерываний по изменению входного сигнала.

Puc. 5-9 Структурная схема вывода RB1/RX/DT

Примечания:

- Сигнал режима канала вывод используется периферийным модулем или цифровой порт ввода/вывода.
- 2. Сигнал разрешения (ОЕ) от периферийного модуля, настраивать канал как выход.

Puc. 5-10 Структурная схема вывода RB2/TX/CK

Примечания:

- Сигнал режима канала вывод используется периферийным модулем или цифровой порт
- Сигнал разрешения (ОЕ) от периферийного модуля, настраивать канал как выход.

Puc. 5-11 Структурная схема вывода RB3/ССР1

Примечание.

Включение периферийного модуля определяется битами CCP1M3:CCP1M0 (CCP1CON<3:0>).

Puc. 5-12 Структурная схема вывода RB4/PGM

Примечание. Режим низковольтного программирования отключает прерывания по изменению сигнала на входе и подтягивающий резистор для вывода RB4.

Рис. 5-13 Структурная схема вывода RB5 <u>Vdd</u> **RBPU** RB5 Подтяжка Шина данных D Q WR PORTB ск₹∟ Защелка данных D Q WR TRISB **▶**ck**₹**∟ Защелка TRIS Входной буфер ТТЛ **RD TRISB** Q D R<u>D PORTB</u> Q1 EN< **RBIF** Q D От выводов RB7:RB4 RD PORTB EN < Q3

<u>V</u>DD **RBPU** d Iॄ п_{одтяжка} V<u>p</u>p Шина данных D Q RB6/ T10SO/ T1CKI WR PORTB Защелка данных D Q **WR TRISB** ск₹∟д Защелка TRIS Входной RD TRISB буфер ТТЛ T10SCEN RD PORTB Триггер Шмидта Тактовый вход TMR1 OT RB7 Тактовый сигнал Генератор TMR1 программирования Q D Q1 EN< **RBIF** Q D От выводов RB7:RB4 **RD PORTB** ΕN Q3

Puc. 5-14 Структурная схема вывода RB6/T1OSO/T1CKI

Puc. 5-15 Структурная схема вывода RB7/T1OSI <u>Vpd</u> **RBPU** Подтяжка Генератор TMR1 OT RB6 T10SCEN RB7/T1OSI Шина данных D Q WR PORTB ск҇∕∟ҩ Защелка данных Q WR TRISB ск∙⊾д Защелка TRIS Vss RD TRISB T10SCEN Входной буфер ТТЛ RD PORTB Вход последовательного программирования Триггер Шмидта Q D <u>Q1</u> EN< RBIF Q D От выводов RB7:RB4 **RD PORTB** Q3 ΕN

Таблица 5-3 Функциональное назначение выводов PORTB

Обозначение вывода	№ бита	Тип буфера	Описание
RB0/INT	Бит 0	TTL/ST ⁽¹⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора, вход внешнего прерывания
RB1/RX/DT	Бит 1	TTL/ST ⁽³⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора, вход приемника USART, линия данных в синхронном режиме USART
RB2/TX/CK	Бит 2	TTL/ST ⁽³⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора, выход передатчика USART, линия тактового сигнала в синхронном режиме
RB3/CCP1	Бит 3	TTL/ST ⁽⁴⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора, вывод модуля ССР
RB4/PGM	Бит 4	TTL/ST ⁽⁵⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора. Изменение сигнала на входе может вывести микроконтроллер из режима SLEEP. Когда разрешено низковольтное программирование, запрещены прерывания по изменению сигнала на входе, а подтягивающий резистор отключен
RB5	Бит 5	TTL	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора. Изменение сигнала на входе может вывести микроконтроллер из режима SLEEP
RB6/T1OSO/T1CKI	Бит 6	TTL/ST ⁽²⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора. Изменение сигнала на входе может вывести микроконтроллер из режима SLEEP. Выход генератора таймера 1
RB7/T1OSI	Бит 7	TTL/ST ⁽²⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора. Изменение сигнала на входе может вывести микроконтроллер из режима SLEEP. Вход генератора таймера 1

Обозначения: TTL – вход/выход ТТЛ, ST – вход с триггером Шмидта.

Примечания:

- 1. Входной буфер с триггером Шмидта при использовании внешних прерываний.
- 2. Входной буфер с триггером Шмидта при работе в режиме последовательного программирования.
- 3. Входной буфер с триггером Шмидта при использовании выводов модулем USART.
- 4. Входной буфер с триггером Шмидта при использовании выводов модулем ССР.
- 5. Входной буфер с триггером Шмидта при низковольтном программировании.

Таблица 5-4 Регистры и биты связанные с работой PORTB

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	-RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу PORTB.

5.3 Программирование портов ввода/вывода

5.3.1 Двунаправленные порты ввода/вывода

Все операции записи в порт выполняются по принципу «чтение - модификация - запись». Например, команды BCF и BSF считывают значение в регистр CPU, выполняют битовую операцию и записывают результат обратно в регистр. Требуется некоторая осторожность при применении подобных команд к регистрам портов ввода/вывода. Например, команда BSF PORTB,5 считывает все восемь битов PORTB в CPU, изменяет состояние бита 5 и записывает результат в выходные защелки PORTB. Если другой канал PORTB (например, RB0) настроен на вход, то сигнал на выводе будет считан в CPU и записан в защелку данных, поверх предыдущего значения. Пока RB0 настроен как вход, никаких проблем не возникает. Однако, если RB0 будет позже настроен как выход, значение в защелке данных может отличаться от требуемого.

При чтении регистра порта, читается текущее состояние порта ввода/вывода. Запись в регистр порта, сохраняет значение в защелке порта ввода/вывода. Когда используются команды «чтение - модификация – запись» (например, BSF, BCF и т.д.) считывается текущее состояние порта ввода/вывода, выполняется требуемая операция и полученное значение записывается в защелку порта.

В примере 5-2 показан эффект последовательного выполнения команд «чтение - модификация - запись» (например, BSF, BCF и т.д.) с регистром порта ввода/вывода.

На активный вывод порта не должны подключаться нагрузки включенные по схемам «монтажное И» или «монтажное ИЛИ». Возможные большие токи могут повредить микроконтроллер.

Пример 5-2 Эффект выполнения команд «чтение - модификация – запись».

Начальные установки порта: PORTB<7:4> входы, PORTB <3:0> выходы.

Выводы RB7:RB6 имеют внешние подтягивающие резисторы и не подключены к другим цепям схеме.

	3	ащелка PORTB	Выводы PORTB
BCF	STATUS,RPO	•	
BCF	PORTB, 7	; 01pp pppp	11pp pppp
BCF	PORTB, 6	; 10pp pppp	11pp pppp
BSF	STATUS,RP0;		
BCF	TRISB, 7	; 10pp pppp	11pp pppp
BCF	TRISB, 6	; 10pp pppp	10pp pppp

Обратите внимание. Возможно, пользователь ожидал, что после выполнения программы на выходах PORTB будет значение 00pp pppp. Однако, 2-я команда BCF установила в '1' RB7.

5.3.2 Последовательность операций с портами ввода/вывода

Запись в порт ввода/вывода фактически происходит в конце машинного цикла, а чтение данных выполняется в начале цикла (см. рисунок 5-16). Поэтому требуется некоторая осторожность при записи в порт ввода/вывода, если перед записью выполняется чтение состояния порта. Последовательность команд должна быть такой, чтобы установилось напряжение на выводе порта прежде, чем будет выполнена команда записи в порт, сопровождаемая чтением состояния выводов (иначе вместо нового значения может быть считано предыдущее). Если возможна описанная ситуация, разделите команды записи инструкциями NOP или любыми другими командами, которые не обращаются к порту ввода/вывода.

Puc. 15-16 Операции с портом ввода/вывода

Примечание к рисунку. На рисунке показан пример чтения из PORTB сразу поле записи в него. Время установления данных на PORTB равно $T = 0.25 T_{CY} - T_{PD}$. Где: $T_{CY} - длительность машинного цикла микроконтроллера,$ T_{PD} – задержка распространения. Следовательно, при высокой тактовой частоте микроконтроллера, чтение с порта ввода/вывода непосредственно после записи может возвращать неверные значения.

6.0 Модуль таймера TMR0

TMR0 – таймер/счетчик, имеет следующие особенности:

- 8-разрядный таймер/счетчик;
- возможность чтения и записи текущего значения счетчика;
- 8-разрядный программируемый предделитель;
- внутренний или внешний источник тактового сигнала;
- выбор активного фронта внешнего тактового сигнала
- прерывания при переполнении (переход от FFh к 00h).

Блок схема модуля TMR0 показана на рисунке 6-1.

Когда бит TOCS сброшен в '0' (OPTION<5>), TMR0 работает от внутреннего тактового сигнала. Приращение счетчика TMR0 происходит в каждом машинном цикле (если предделитель отключен). После записи в TMR0 приращение счетчика запрещено два следующих цикла (см. рисунки 6-2 и 6-3). Пользователь должен скорректировать эту задержку перед записью нового значения в TMR0.

Если бит TOCS установлен в '1' (OPTION<5>), TMR0 работает от внешнего источника тактового сигнала с входа RA4/T0CKI. Активный фронт внешнего тактового сигнала выбирается битом T0SE в регистре OPTION<4> (T0SE=0 – активным является передний фронт сигнала). Работа модуля TMR0 с внешним источником тактового сигнала будет рассмотрена в разделе 6.2.

Предделитель может быть включен перед WDT или TMR0, в зависимости от состояния бита PSA в регистре OPTION<3>. Если бит PSA сброшен в '0', то предделитель включен перед TMR0. Нельзя прочитать или записать новое значение в предделитель. Когда предделитель включен перед TMR0, можно выбрать его коэффициент деления 1:2, 1:4,...,1:256. Подробное описание работы с предделителем смотрите в разделе 6.3.

Примечания.

- 1. Биты управления TOCS, TOSE, PS2, PS1, PS0, PSA расположены в регистре OPTION.
- 2. Схему включения предделителя перед WDT смотрите на рисунке 6-6.

Puc. 6-2 Временная диаграмма работы TMR0 от внутреннего источника тактового сигнала (предделителе выключен)

Puc. 6-3 Временная диаграмма работы TMR0 от внутреннего источника тактового сигнала (предделителем 1:2)

6.1 Прерывания от TMR0

Прерывания от TMR0 возникают при переполнении счетчика, т.е. при переходе его значения от FFh к 00h. При возникновении прерывания устанавливается в '1' бит T0IF. Само прерывание может быть разрешено/запрещено установкой/сбросом бита T0IE в регистре INTCON<5>. Флаг прерывания от TMR0 T0IF (INTCON<2>) должен быть сброшен в подпрограмме обработки прерываний. В SLEEP режиме микроконтроллера модуль TMR0 выключен и не может генерировать прерывания. На рисунке 6-4 показана временная диаграмма возникновения прерывания от TMR0.

Примечания.

- 1. Проверка установки флага T0IF выполняется в каждом цикле Q1.
- 2. Время перехода на обработку прерывания $3T_{CY}$, где T_{CY} машинный цикл.
- СLKOUT доступен только ER и INTRC режиме тактового генератора.

6.2 Использование внешнего источника тактового сигнала для ТМR0

При использовании внешнего тактового сигнала для TMR0 необходимо учитывать некоторые детали работы таймера. Активный фронт внешнего тактового сигнала синхронизируется с внутренней тактовой частотой микроконтроллера, из-за чего возникает задержка от получения активного фронта сигнала до приращения TMR0.

6.2.1 Синхронизация внешнего сигнала

Если предделитель не используется, внешний тактовый сигнал поступает непосредственно на синхронизатор. Синхронизация ТОСКІ с таковым сигналом микроконтроллера усложняется из-за опроса выхода синхронизатора в машинные циклы Q2 и Q4 (см. рисунок 6-5). Поэтому длительность высокого или низкого логического уровня внешнего сигнала должна быть не меньше 2T_{OSC} (плюс небольшая задержка внутренней RC цепи 20нс). Дополнительную информацию смотрите в разделе электрических характеристик.

Если предделитель включен перед TMR0, то на вход синхронизатора поступает сигнал с асинхронного предделителя. Период сигнала ТОСКІ должен быть не менее 4T_{OSC} (плюс небольшая задержка внутренней RC цепи 40нс) деленное на коэффициент предделителя. Дополнительное требование, высокий и низкий логический уровень внешнего сигнала должен быть не менее 10нс. Смотрите параметры 40, 41 и 42 в разделе электрических характеристик.

6.2.2 Задержка приращения TMR0

Поскольку сигнал с выхода предделителя синхронизируется с внутренним тактовым сигналом микроконтроллера, возникает задержка от получения активного фронта сигнала до приращения TMR0 (см. рисунок 6-5).

Puc. 6-5 Временная диаграмма работы TMR0 с внешним источником тактового сигнала

Примечания:

- Задержка от активного фронта тактового сигнала до приращения TMR0 от 3T_{OSC} до 7T_{OSC}. Следовательно, максимальная ошибка измерения интервала между двумя активными фронтами тактового сигнала $\pm 4T_{OSC}$.
- 2. Если предделитель выключен, на вход синхронизатора поступает внешний тактовый сигнал.
- 3. Стрелками указаны точки выборки уровня сигнала.

6.3 Предделитель

8-разрядный счетчик может работать как предделитель TMR0 или выходной делитель WDT (см. рисунок 6-6). Для простоты описания этот счетчик всегда будем называть «предделитель». Обратите внимание, что существует только один предделитель, который может быть включен перед TMR0 или WDT. Использование предделителя пред TMR0 означает, что WDT работает без предделителя, и наоборот.

Коэффициент деления предделителя определяется битами PSA и PS2:PS0 в регистре OPTION<3:0>.

Если предделитель включен перед TMR0, любые команды записи в TMR0 (например, CLRF 1, MOVWF 1, BSF 1, x и т.д.) сбрасывают предделитель. Когда предделитель подключен к WDT, команда CLRWDT сбросит предделитель вместе с WDT. Предделитель также очищается при сбросе микроконтроллера.

Примечание. Биты управления TOCS, TOSE, PS2, PS1, PS0, PSA расположены в регистре OPTION.

6.3.1 Переключение предделителя

Переключение предделителя выполняется программным способом, т.е. переключение можно сделать во время выполнения программы. В примере 6-1 показана рекомендуемая последовательность инструкций переключения предделителя от TMR0 на WDT для предотвращения неожиданного сброса микроконтроллера.

Переключение предделителя от WDT на TMR0 показано в примере 6-2. Меры осторожности должны применяться, даже если сторожевой таймер WDT выключен.

Пример 6-1 Переключения предделителя от TMR0 к WDT

	BCF CLRWDT	STSTUS, PRO	; Выбрать банк 0 ; Сбросить WDT
3.	CLRF BSF	TMR0 STATUS, PRO	; Сбросить WB1 ; Сбросить TMR0 и предделитель ; Выбрать банк 1
6.	MOVLW MOVWF CLRWDT	b'001011111' OPTION_REG	; Три строки (5, 6. 7) должны быть включены в ; текст программы только, если биты ; PS<2:0> равны значению 000 или 001
	MOVLW MOVWF . BCF	b'00101xxx' OPTION_REG STSTUS, PRO	; Переключить предделитель на WDT, ; выбирать коэффициент деления ; Выбрать банк 0

Пример 6-2 Переключения предделителя от WDT к TMR0

CLRWDT		; Сбросить WDT и предделитель
BSF	STATUS, PRO	; Выбрать банк 1

MOVLW b'xxxx0xxx' ; Включить предделитель перед ТМR0 и

MOVWF OPTION_REG ; выбрать новое значение коэффициента деления

BCF STSTUS, PRO ; Выбрать банк 0

Таблица 6-1 Регистры и биты связанные с работой TMR0

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
01h	TMR0	Регистр	Регистр таймера 0								uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	-RBPU	RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0								1111 1111
85h	TRISA	TRISA7	TRISA6	-	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11-1 1111	11-1 1111

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу TMR0.

7.0 Модуль таймера TMR1

TMR1 – 16-разрядный таймер/счетчик, состоящий из двух 8-разрядных регистров (TMR1H и TMR1L) доступных для чтения и записи. Счет выполняется в спаренных регистрах (TMR1H: TMR1L), инкрементируя их значение от 0000h до FFFFh, далее считает с 0000h. При переполнении счетчика устанавливается в '1' флаг прерывания TMR1IF в регистре PIR1<0>. Само прерывание можно разрешить/запретить установкой/сбросом бита TMR1IE в регистре PIE1<0>.

TMR1 может работать в двух режимах:

- таймер:
- счетчик.

Включение модуля TMR1 осуществляется установкой бита TMR1ON в '1' (T1CON<0>).

Битом TMR1CS (T1CON<1>) выбирается источник тактовых импульсов. В режиме таймера TMR1 инкрементируется на каждом машинном цикле. Если TMR1 работает с внешним источником тактового сигнала, то приращение происходит по каждому переднему фронту сигнала.

TMR1 имеет внутренний вход сброса от СРР модуля (см. раздел 10.0).

Для микроконтроллеров PIC16F627/628, когда включен генератор тактовых импульсов (T1OSCEN=1) выводы RB7/T1OSI и RB6/T1OSO/T1CKI настроены как входы. Значение битов TRISB<7:6> игнорируется.

Управляющие биты TMR1 находятся в регистре T1CON.

Регистр T1CON (адрес 10h)

Бит 7 Бит 7 Бит 7 Бит 7 Бит 0 Бит иние после Венение после	١,
U – не реализовано, читается как 0 —п – значение после —х – неизвестное значение после Т1СКРS1:Т1СКРS0: Выбор коэффициента деления предделителя ТМR1 11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1 бит 3: Т1ОSCEN: Включение внутреннего тактового генератора ТМR1 1 = генератор включен 0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: Т1SYNC: Синхронизация внешнего тактового сигнала ТМR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый ТMR1CS = 0 Значение бита игнорируется бит 1: ТMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Госс/4	١,
читается как 0 — п. значение после — х. — неизвестное значение после — х. — неизвестное значение после бит 5-4: Т1СКРS1:Т1СКРS0: Выбор коэффициента деления предделителя ТМR1 11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1 бит 3: Т1ОSCEN: Включение внутреннего тактового генератора ТМR1 1 = генератор включен 0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: T1SYNC: Синхронизация внешнего тактового сигнала ТMR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый ТMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник госос/4	١,
— п — значение после — х — неизвестное значение после — т — неизвестное значение после — т — неизвестное значение после Т1 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1 бит 3: Т10SCEN: Включение внутреннего тактового генератора ТМR1 1 = генератор включен 0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: Т1SYNC: Синхронизация внешнего тактового сигнала ТМR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый ТMR1CS = 0 Значение бита игнорируется бит 1: ТMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
	505
биты 7-6: Не реализованы: читаются как '0' бит 5-4: Т1СКРS1:Т1СКРS0: Выбор коэффициента деления предделителя ТМR1	e POR
биты 7-6: Не реализованы: читаются как '0' бит 5-4: Т1СКРS1:Т1СКРS0: Выбор коэффициента деления предделителя ТМR1 11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1 бит 3: Т1ОSCEN: Включение внутреннего тактового генератора ТМR1 1 = генератор включен 0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: Т1SYNC: Синхронизация внешнего тактового сигнала ТМR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый ТMR1CS = 0 Значение бита игнорируется бит 1: ТMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Госс/4	
бит 5-4: Т1СКРS1:Т1СКРS0: Выбор коэффициента деления предделителя ТМR1 11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1 бит 3: Т1ОSCEN: Включение внутреннего тактового генератора ТМR1 1 = генератор включен 0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: T1SYNC: Синхронизация внешнего тактового сигнала ТМR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый ТMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Госс/4	e POR
11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1 бит 3: T10SCEN: Включение внутреннего тактового генератора ТМR1 1 = генератор включен 0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: T1SYNC: Синхронизация внешнего тактового сигнала TMR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый TMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1 бит 3: T10SCEN: Включение внутреннего тактового генератора ТМR1 1 = генератор включен 0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: T1SYNC: Синхронизация внешнего тактового сигнала TMR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый TMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
01 = 1:2 00 = 1:1 бит 3: T10SCEN: Включение внутреннего тактового генератора ТМR1 1 = генератор включен 0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: T1SYNC: Синхронизация внешнего тактового сигнала TMR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый TMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T10SO/T1CKI 0 = внутренний источник Fosc/4	
бит 3: T1OSCEN: Включение внутреннего тактового генератора TMR1 1 = генератор включен	
бит 3: Т10SCEN: Включение внутреннего тактового генератора TMR1 1 = генератор включен 0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: Т1SYNC: Синхронизация внешнего тактового сигнала ТMR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый ТMR1CS = 0 Значение бита игнорируется бит 1: ТMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T10SO/T1CKI 0 = внутренний источник Fosc/4	
1 = генератор включен 0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: T1SYNC: Синхронизация внешнего тактового сигнала TMR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый TMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
1 = генератор включен 0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: T1SYNC: Синхронизация внешнего тактового сигнала TMR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый TMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
0 = генератор выключен Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: T1SYNC: Синхронизация внешнего тактового сигнала TMR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый TMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода R86/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
Примечание. Инвертирующий элемент и резистивная обратная связь выключены для умень тока потребления. бит 2: T1SYNC: Синхронизация внешнего тактового сигнала TMR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый TMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
тока потребления. бит 2: T1SYNC: Синхронизация внешнего тактового сигнала TMR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый TMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	ышен
ТМR1CS = 1 1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый ТMR1CS = 0 Значение бита игнорируется бит 1: ТMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый TMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
1 = не синхронизировать внешний тактовый 0 = синхронизировать внешний тактовый TMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
0 = синхронизировать внешний тактовый TMR1CS = 0 Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
Значение бита игнорируется бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
бит 1: TMR1CS: Выбор источника тактового сигнала 1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
1 = внешний источник с вывода RB6/T1OSO/T1CKI 0 = внутренний источник Fosc/4	
0 = внутренний источник Fosc/4	
бит 0: TMD10N: Видюнонно молула TMD1	
UVI U TIMIN TUJN. DKIRDERVE MUJIVIS TIVIN I	
1 = включен	
0 = выключен	

7.1 Работа TMR1 с внутренним тактовым сигналом

Приращение таймера происходит от внутреннего сигнала $F_{OSC}/4$, когда бит TMR1CS (T1CON<1>) сброшен в '0'. В этом режиме бит синхронизации T1SYNC (T1CON<2>) игнорируется, потому что внутренний тактовый сигнал всегда синхронизирован.

7.2 Работа TMR1 с внешним синхронизированным тактовым сигналом

Работа TMR1 от внешнего источника тактового сигнала выбирается установкой бита TMR1CS в '1'. В этом режиме приращение таймера происходит по каждому переднему фронту сигнала на выводе RB7/T1OSI (если T1OSCEN=1) или RB6/T1OSO/T1CKI (если T1OSCEN=0).

Если T1SYNC=0, то активный фронт внешнего тактового сигнала синхронизируется с внутренним тактовым сигналом на выходе асинхронного предделителя.

В SLEEP режиме микроконтроллера счетчик не будет инкрементироваться (при наличии тактового сигнала), т.к. синхронизатор выключен (предделитель продолжает счет тактовых импульсов).

7.2.1 Синхронизация внешнего тактового сигнала

Когда используется синхронизация внешнего тактового сигнала, необходимо учитывать ряд требований. Фаза внешнего сигнала синхронизируется с внутренним тактовым сигналом микроконтроллера (период T_{OSC}), из-за чего возникает задержка от получения активного фронта сигнала до приращения TMR1.

Если коэффициент предделителя 1:1, то внешний тактовый сигнал поступает непосредственно на вход синхронизатора. Синхронизация Т1СКІ с таковым сигналом микроконтроллера усложняется из-за опроса выхода синхронизатора в машинные циклы Q2 и Q4. Поэтому длительность высокого или низкого логического уровня внешнего сигнала должна быть не меньше 2T_{OSC} (плюс небольшая задержка внутренней RC цепи 20нс). Дополнительную информацию смотрите в разделе электрических характеристик (параметры 45, 46 и 47).

Если предделитель имеет коэффициент деления отличный от 1:1, то на вход синхронизатора поступает сигнал с асинхронного предделителя. Период сигнала Т1СКІ должен быть не менее 4T_{OSC} (плюс небольшая задержка внутренней RC цепи 40нс) деленное на коэффициент предделителя. Дополнительное требование, высокий и низкий логический уровень внешнего сигнала должен быть не менее 10нс. Смотрите параметры 40, 42, 45, 46 и 47 в разделе электрических характеристик.

Примечание. Если T1OSCEN=0, то инвертирующий элемент и резистивная обратная связь выключены для уменьшения тока потребления.

7.3 Работа TMR1 с внешним не синхронизированным тактовым сигналом

Если бит T1SYNC (T1CON<2>) установлен в '1', внешний тактовый сигнал TMR1 не будет синхронизироваться с внутренним тактовым сигналом микроконтроллера, таймер продолжает работать в режиме SLEEP микроконтроллера. Переполнение таймера вызовет «пробуждение» микроконтроллера, если разрешено прерывание от TMR1. Однако требуется осторожность при записи/чтении TMR1 (см. раздел 7.3.2).

В этом режиме TMR1 не может использоваться для отсчета времени сбора данных и операций сравнения.

7.3.1 Параметры внешнего не синхронизированного тактового сигнала

Если бит T1SYNC=1, то приращение таймера выполняется асинхронно. Минимальная длительность логических уровней внешнего тактового сигнала смотрите в разделе электрических характеристик (параметры 45, 46 и 47).

7.3.2 Чтение/запись TMR1 в асинхронном режиме

Чтение TMR1H или TMR1L, во время счета в асинхронном режиме, гарантирует получение текущего значения счетчика (реализовано аппаратно). Однако пользователь должен иметь в виду, что чтение 16-разрядного значения выполняется по байтно. Это накладывает некоторые ограничения, т.к. таймер может переполниться между чтениями байт.

Запись в TMR1 рекомендуется выполнять после остановки таймера. Запись в регистры TMR1 во время приращения таймера может привести к непредсказуемому значению регистра.

Пример 7-1 Подпрограмма чтения 16-разрядного значения таймера для случая, когда TMR1 не может быть остановлен.

; Выключить	все прерыван	ия	
	MOVF	TMR1H, W	; Чтение старшего байта
	MOVWF	TMPH	•
	MOVF	TMR1L, W	; Чтение младшего байта
	MOVWF	TMPL	•
	MOVF	TMR1H, W	; Чтение старшего байта
	SUBWF	TMPH, W	; Сравнение с предыдущим чтением
	BTFSC	STATUS, Z	•
	GOTO	CONTINUE	; 16-разрядное значение прочитано правильно
			; Возможно между чтениями байтов произошло ; переполнение таймера
			; Прочитать значения заново
	MOVF	TMR1H, W	; Чтение старшего байта
	MOVWF	TMPH	•
	MOVF	TMR1L, W	; Чтение младшего байта
	MOVWF	TMPL	;
	CONTINUE:	,	
; Включить пр	рерывания		

7.4 Генератор TMR1

Резонатор подключается к выводам T1OSI (вход) и T1OSO (выход усилителя). Максимальная частота резонатора 200КГц. Тактовый генератор TMR1 (идентичный LP генератору) в основном предназначен для кварцевого резонатора 32кГц. Включение генератора производиться установкой бита T1OSEN в регистре T1CON<3>, что позволяет работать TMR1 в SLEEP режиме микроконтроллера.

Пользователь должен обеспечить программную задержку, чтобы гарантировать надлежащий запуск генератора. В таблицы 7-1 указаны рекомендуемые значения конденсаторов для генератора TMR1.

Таблица 7-1 Выбор конденсаторов для генератора TMR1

тип генератора	Частота	C1	C2					
	32 кГц	33 пФ	33 пФ					
LP	100 кГц	15 пФ	15 пФ					
	200 кГц	15 пФ	15 пФ					
Ориентировочные значения								

7.5 Сброс TMR1 триггером модуля ССР

Если модуль ССР работает в режиме сравнения с триггером специальных функций (ССР1М3 : CCP1M0=1011), то сигнал триггера сбросит TMR1.

Примечание. Сигнал с триггера специальных функций модуля ССР1 не будет устанавливать флаг TMRIF (PIR<0>) в '1'.

TMR1 должен работать в режиме синхронизированного внешнего тактового сигнала или внутреннего тактового сигнала. В асинхронном режиме эта функция не работает.

Когда запись в TMR1 совпадает с сигналом сброса от триггера специальных событий, приоритет отдается записи в TMR1.

В этом режиме модуля ССР период сброса TMR1 сохраняется в регистрах CCPR1H:CCPR1L.

7.6 Сброс регистров TMR1 (TMR1H, TMR1L)

Регистры TMR1H и TMR1L не сбрасываются в 00h при сбросе по включению питания POR и других видах сброса, кроме сброса по сигналу триггера специальных событий модуля CCP.

Регистр T1CON сбрасывается в 00h при сбросе POR и BOR (TMR1 выключается, коэффициент предделителя равен 1:1). При всех остальных видах сброса значение регистра T1CON не изменяется.

7.7 Предделитель TMR1

Предделитель TMR1 очищается при записи в регистр TMR1L или TMR1H.

Таблица 7-2 Регистры и биты связанные с работой TMR1

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	GIE PEIE TOIE INTE RBIE TOIF INTF RBIF						0000 000x	0000 000u	
0Ch	PIR1	EEIF	EEIF CMIF RCIF TXIF - CCP1F TMR2IF TMR1IF								0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
0Eh	TMR1L	Младши	й байт 16-	разрядног	о таймера	a 1				xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Старший	Старший байт 16-разрядного таймера 1							xxxx xxxx	uuuu uuuu
10h	T1CON	-	- T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON								uu uuuu

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу TMR1.

8.0 Модуль таймера TMR2

TMR2 — 8-разрядный таймер с программируемыми предделителем и выходным делителем, 8-разрядным регистром периода PR2. TMR2 может быть опорным таймером для ССР модуля в ШИМ режиме. Регистры TMR2 доступны для записи/чтения и очищаются при любом виде сброса.

Входной тактовый сигнал (F_{OSC}/4) поступает через предделитель с программируемым коэффициентом деления (1:1, 1:4 или 1:16), определяемый битами T2CKPS1:T2CKPS0 (T2CON<1:0>).

TMR2 считает инкрементируя от 00h до значения в регистре PR2, затем сбрасывается в 00h на следующем машинном цикле. Регистр PR2 доступен для записи и чтения. После сброса значение регистра PR2 равно FFh.

Сигнал переполнения TMR2 проходит через выходной 4-разрядный делитель с программируемым коэффициентом деления (от 1:1 до 1:16 включительно) для установки флага TMR2IF в регистре PIR1<1>.

Для уменьшения энергопотребления таймер TMR2 может быть выключен сбросом бита TMR2ON (T2CON<2>) в '0'.

8.1 Предделитель и выходной делитель TMR2

Счетчик предделителя и выходного делителя сбрасываются в случае:

- записи в регистр TMR2;
- записи в регистр T2CON;
- любого вида сброса микроконтроллера (POR, BOR, сброс WDT или активный сигнал -MCLR).

Регистр TMR2 не очищается при записи в T2CON.

8.2 Сигнал TMR2

Сигнал переполнения TMR2 (до выходного предделителя) поступает в модуль SSP для управления скоростью передачи данных (в микроконтроллерах PIC16F62X модуля SSP нет).

Регистр T2CON (адрес 12h)

```
U-0
         R/W-0
                   R/W-0
                            R/W-0
                                      R/W-0
                                                R/W-0
                                                         R/W-0
                                                                   R/W-0
       TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0
                                                                               R – чтение бита
Бит 7
                                                                   Бит 0
                                                                               W - запись бита
                                                                               U – не реализовано,
                                                                                  читается как 0
                                                                               -n - значение после POR
                                                                               -х - неизвестное
                                                                                   значение после POR
   бит 7:
             Не реализован: читается как '0'
   биты 6-3: TOUTPS3:TOUTPS0: Выбор коэффициента выходного делителя TMR2
               0000 = 1.1
               0001 = 1:2
               1111 = 1:16
             TMR2ON: Включение модуля TMR2
   бит 2:
               1 = включен
               0 = выключен
   биты 1-0: T2CKPS1:T2CKPS0: Выбор коэффициента деления предделителя TMR2
               00 = 1:1
               01 = 1:4
               1x = 1:16
```


Примечание 1. TMR2 может использоваться для программного выбора скорости обмена данными модуля SSP.

Таблица 8-1 Регистры и биты связанные с работой TMR2

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
11h	TMR2	Регистр	таймера 2							0000 0000	0000 0000
12h	T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-uuu uuuu
92h	PR2	Регистр	Регистр периода таймера 2							1111 1111	1111 1111

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу TMR2.

9.0 Модуль компараторов

Модуль компараторов содержит два аналоговых компаратора, выходы которых мультиплицированы с каналами ввода/вывода RA0 и RA3. Выход интегрированного источника опорного напряжения может быть подключен на вход компараторов. В регистре CMCON находятся биты управления модулем компараторов. Структурная схема модуля компараторов показана на рисунке 9-1.

Регистр CMCON (адрес 1Fh)

R-0	R-0)	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
C2OUT	C10		C2INV	C1INV	CIS	CM2	CM1	CM0	R – чтение бита
Бит 7						-		Бит 0	W – запись бита
									U – не реализовано,
									читается как 0
									–n – значение после POR
									-х - неизвестное
	_				•				значение после POR
бит	7:			компарато	pa 2				
			<u>ССЛИ C2INV</u> = C2 V _{IN+} >						
		0	$= C2 V_{IN+} <$ $= C2 V_{IN+} <$	C2 V _{IN-}					
		Ŭ	02 VIIN+	02 VIII-					
		Е	сли C2INV	=1					
			= C2 V _{IN+} >						
		1	= C2 V _{IN+} <	< C2 V _{IN-}					
	•								
бит	6:			компарато	ра 1				
			<u>СЛИ C1INV</u> = C1 V _{IN+} >						
		0	= C1 V _{IN+} <	C1 V _{IN} .					
		Ü	- O1 VIN+	4 O 1 V 114-					
		<u>E</u>	сли C1INV	<u>=1</u>					
			= C1 V _{IN+} >						
		1	= C1 V _{IN+} <	< C1 V _{IN-}					
бит	5.	C2IN	IV: Инверс	ный выход	компарато	nna 2			
	0.	1	= С2 инве	рсный выхо	лоннара г ОД	- PG -			
				версный в					
				·					
бит	4:			ный выход		ра 1			
				рсный выхо					
		U	– Стнеин	нверсный ві	ыход				
бит	3:	CIS:	Полкпюче	ние входов	компарат	оров			
	0.		сли СМ2:С		noill apai	opos			
				одключен н	RA3				
				одключен і					
		_							
			сли СМ2:С		. DAG				
		1		одключен н одключен н					
		Λ		юдключен н юдключен н					
		J		одключен і одключен і					
			1142 11	-17	== = =				
биті	ы 2-0:			им работы	компарато	ров			
		C	Смотрите р	исунок 9-1.					

Puc. 9-1 Структурная схема модуля компараторов в зависимости от битов конфигурации CM2:CM0 (CMCON<2:0>) Компараторы выключены Сброс компараторов (после сброса POR) CM2:CM0 = 000CM2:CM0 = 111 D Α Vin-RAO/ANO RA0/AN0 Выключен Выключен Vin+ D (читается '0') RA3/AN3/C10 RA3/AN3/C10 (читается '0') Vin-D RA1/AN1 RA1/AN1 Выключен Выключен C2 Vin+ RA2/AN2 Vin+ D (читается '0') (читается '0') RA2/AN2 Четыре мультиплицируемых входа для двух компараторов Два независимых компаратора CM2:CM0 = 010CM2:CM0 = 100RA0/AN0 Vin-CIS = 0RA0/AN0 C10UT RA3/AN3/C10 Vin⊦ C10UT RA3/AN3/C10 RA1/AN1 Vin-Vin-RA1/AN1 RA2/AN2 C2OUT C2OUT C2 Vin-RA2/AN2 Из модуля Vref Два компаратора с общим источником опорного напряжения Два компаратора с общим источником опорного напряжения и внешним выходом CM2:CM0 = 011 CM2:CM0 = 110Vin-RAO/ANO Vin-Α RAO/ANO C10UT D C10UT RA3/AN3/C10 Vin+ D RA3/AN3/C10 Vin-RA1/AN1 Vin-RA1/AN1 C2OUT Vin+ C2OUT RA2/AN2 Vin+ RA2/AN2 Открытый сток RA4/T0CKI/C20 Один компаратор Три мультиплицируемых входа для двух компараторов CM2:CM0 = 101CM2:CM0 = 001D Vin-RAO/ANO RA0/AN0 Выключен CIS = 0(читается '0') RA3/AN3/C10 RA3/AN3/C10 C10UT Vin⊦ RA1/AN1 Vin-RA1/AN1 C2OUT C2OUT RA2/AN2 Vin⊦ RA2/AN2

Обозначения:

A = аналоговых вход, канал ввода/вывода читается как '0'; D = цифровой вход; CIS = управляющий бит регистра CMCON<3>

9.1 Настройка модуля компараторов

Существует восемь режимов работы модуля компараторов, устанавливаемые битами CM2:CM0 (сморите рисунок 9-1). Биты регистра TRISA управляют направлением каналов ввода/вывода для каждого режима модуля компараторов. При изменении режима работы модуля компараторов, параметры указанные в таблице 17-1 могут не соблюдаться.

Примечание. Для предотвращения ложных прерываний рекомендуется запретить прерывания от модуля компараторов, а затем изменить режим его работы.

В примере 9-1 показана настройка модуля компараторов (RA3, RA4 – цифровые выходы; RA0, RA1 – входы компараторов V-; RA2 – вход V+обоих компараторов).

Пример 9-1 Инициализация модуля компараторов

BCF	INTCON,GIE	;Глобальное запрещение прерываний
BCF	INTCON,PEIE	;Запретить прерывания от периферийных модулей
CLRF	PORTA	;Инициализация PORTA
MOVLW	0x03	;Установить режим модуля компараторов
MOVWF	CMCON	;CM<2:0> = 011
BSF	STATUS,RP0	;Выбрать банк 1
MOVLW	0x07	;Направление выводов PORTA
MOVWF	TRISA	;RA<2:0> входы
		;RA<4:3> выходы
		;TRISA<7:5> читаются как '0'
BCF	STATUS,RP0	;Выбрать банк 0
CALL	DELAY 10	;Задержка 10мкс
MOVF	CMCON,F	;Чтение CMCON для устранения несоответствия
BCF	PIR1,CMIF	;Сбросить флаг прерываний
BSF	STATUS,RP0	;Выбрать банк 1
BSF	PIE1,CMIE	;Разрешить прерывания от модуля компараторов
BCF	STATUS,RP0	;Выбрать банк 0
BSF	INTCON, PEIE	;Разрешить прерывания от периферийных модулей
BSF	INTCON, GIE	;Глобальное разрешение прерываний

9.2 Работа модуля компараторов

Временная диаграмма работы одного компаратора показана на рисунке 9-2 (соотношение входных аналоговых сигналов и выходного цифрового сигнала).

Когда аналоговый сигнал на входе $V_{\text{IN-}}$ меньше $V_{\text{IN-}}$ на цифровом выходе установлен логический нуль. Если сигнал на входе $V_{\text{IN-}}$ больше $V_{\text{IN-}}$, то на цифровом выходе будет установлена логическая единица. Затененные области на рисунке 9-2 показывают неуверенный уровень цифрового сигнала.

9.3 Опорное напряжение для компараторов

Допускается использование внешнего или внутреннего источника опорного напряжения для компараторов (определяется режимом работы модуля компараторов). Аналоговый сигнал, присутствующий на выводе V_{IN-} сравнивается с сигналом V_{IN+} , по результатам сравнения формируется выходной цифровой сигнал (см. рисунок 9-2).

9.3.1 Внешний источник опорного напряжения

Модуль компараторов может быть настроен таким образом, что внешний источник опорного напряжения подключается на вход обоих компараторов или для каждого компаратора отдельный источник. Напряжение опорного источника должно быть в пределах от V_{SS} до V_{DD} .

9.3.2 Внутренний источник опорного напряжения

Модуль компараторов позволяет использовать внутренний источник опорного напряжения, описанный в разделе 11.0. Сигнал внутреннего источника опорного напряжения подключается к выводам V_{IN+} обоих компараторов, когда биты конфигурации CM<2:0>=010 (см. рисунок 9-1).

9.4 Время реакции компараторов

Время реакции – это гарантированная максимальная задержка изменения выходного цифрового сигнала после изменения входных сигналов. Если изменяется напряжение внутреннего опорного источника подключенного к компараторам, то должна рассматриваться задержка установки напряжения внутреннего опорного источника. Во всех остальных случаях используется максимальная задержка, указанная в таблице 17-1.

9.5 Прерывания от компараторов

Модуль компараторов устанавливает флаг прерывания CMIF (PIR1<6>) в '1' при изменении уровня сигнала на выходе любого компаратора. Пользователь должен проверить, какой компаратор вызвал установку флага CMIF чтением битов CMCON<7:6>. Флаг прерывания от компараторов CMIF должен быть сброшен программно в '0'. Программной установкой бита CMIF в '1' моделируется возникновение прерывания от модуля компараторов.

Примечание. Если изменения в регистре CMCON (бит C1OUT или C2OUT) произошло, когда выполнялась операция чтения (начало такта Q2), флаг прерывания CMIF (PIR1<6>) может не установиться в '1'.

Биты CMIE (PIE1<6>), PEIE (INTCON<6>) и GIE (INTCON<7>) должны быть установлены в '1', чтобы разрешить генерацию прерывания от модуля компараторов. Если любой из битов сброшен в '0' прерывания не генерируются, но флаг CMIF устанавливается в '1' при возникновении условия прерывания.

В подпрограмме обработки прерываний необходимо выполнить следующие действия:

- 1. Произвести запись или чтение регистра СМСОN для устранения условия несоответствия.
- 2. Сбросить флаг СМІГ в '0'.

Флаг CMIF будет аппаратно устанавливаться в '1' до тех пор, пока не будет устранено условие несоответствия. Чтение регистра CMCON устранит условие несоответствия и позволит сбросить флаг CMIF в '0'.

9.6 Выходы компараторов

Состояние выходов компараторов можно прочитать в регистре CMCON (биты выходов компараторов доступны только на чтение). Выводы компараторов также могут быть подключены к каналам портов ввода/вывода RA3 и RA4 (CM<2:0> = 110 или 001). В этом режиме модуля компараторов выводы RA3 и RA4/T0CKI становятся несинхронизированными выходами компараторов. Зона неуверенного сигнала на выходе зависит от источника опорного напряжения и времени реакции компаратора (см. электрические характеристики). На рисунке 9-3 показана структурная схема выхода компаратора.

Соответствующие биты в регистре TRISA определяют подключать или нет выход компараторов к выводам RA3 и RA4/T0CKI (если CM<2:0> = 110 или 001).

Примечания:

- 1. При чтении регистра PORTA, все выводы, настроенные как аналоговые, будут давать результат '0'. Выводы, настроенные как цифровые входы, конвертируют аналоговый сигнал согласно характеристикам входного триггера Шмидта.
- 2. Аналоговые уровни сигналов, подаваемые на цифровые входы, могут быть причиной повышенного энергопотребления.

9.7 Работа модуля компараторов в режиме SLEEP

Если модуль компараторов включен, то при переходе микроконтроллера в режим SLEEP компараторы продолжают работать. Если прерывания от компараторов разрешены, то по возникновению прерывания микроконтроллер выйдет из режима SLEEP.

При включенных компараторах ток потребления микроконтроллера в режиме SLEEP несколько выше, чем указано в спецификации (каждый включенный компаратор потребляет дополнительный ток). Если в режиме SLEEP компараторы не используются, то рекомендуется их выключать (CM<2:0> = 111) перед переходом в режим SLEEP для уменьшения суммарного тока потребления.

9.8 Эффект сброса

При любом виде сброса микроконтроллера все биты регистра CMCON сбрасываются в '0'. Сброс включает оба компаратора (CM2:CM0=000), делая все входы аналоговыми. Настройка каналов ввода/вывода как аналоговые входы при сбросе микроконтроллера позволяет минимизировать потребляемый ток.

9.9 Подключение к аналоговым входам

Упрощенная схема аналогового входа показана на рисунке 9-4. Т.к. аналоговые входы мультиплицированы с цифровыми входами, они имеют пару защитных диодов подключенных к V_{DD} и V_{SS} . Амплитуда аналогового сигнала должна быть в пределах от V_{SS} до V_{DD} . Амплитуда входного сигнала ограничивается в пределах от V_{SS} -0.6B до V_{DD} +0.6B. Внутреннее сопротивление источника аналогового сигнала должно быть меньше 10кОм. Компоненты, подключаемые к аналоговому входу (конденсатор, стабилитрон и т.д.), должны иметь минимальный ток утечки.

Рис. 9-4 Упрощенная схема аналогового входа

VDD

VT = 0.6V

RIC

VA

VT = 0.6V

VT = 0.6V

VT = 0.6V

VT = 0.6V

VSS

Обозначения:

СРІМ – входная емкость;

V_T – напряжение ограничения;

І_{LEAKAGE} – ток утечки вывода;

R_{IC} – сопротивление соединения;

R_S – сопротивление источника;

VA – аналоговый сигнал.

Таблица 9-1 Регистры и биты связанные с работой модуля компараторов

, ,	aonaga 3-1 i	стистры и	I ONLIDE CD	лзаппыс	c pacero	имодула	i kowii iape	поров			
Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
9Fh	VRCON	VREN	VROE	VRR	-	VR3	VR2	VR1	VR0	000- 0000	000- 0000
85h	TRISA	TRISA7	TRISA6	-	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11-1 1111	11-1 1111

Обозначения: - - не используется, читается как 0; u — не изменяется; x — не известно; q — зависит от условий. *Примечание*. Затененные биты не влияют на работу модуля компараторов.

10.0 ССР модуль (захват/сравнение/ШИМ)

Модуль ССР содержит 16-разрядный регистр, который может использоваться в качестве:

- 16-разрядного регистра захвата данных;
- 16-разрядного регистра сравнения;
- 8-разрядные (ведущий и ведомый) регистры ШИМ.

В таблице 10-1 показано использование таймеров в различных режимах модуля ССР.

Регистр ССРR1 модуля ССР состоит из двух 8-разрядных регистров: ССРR1L (младший байт), ССРR1H (старший байт). В регистре ССР1CON находятся управляющие биты модуля ССР1 доступные для записи и чтения. Дополнительную информацию по модулю ССР смотрите в документации DS33023 «PICmicro™ Mid-Range Reference Manual».

Таблица 10-1 Использование таймеров модулем ССР

Режим модуля ССР	Таймер
Захват	TMR1
Сравнение	TMR1
ШИМ	TMR2

Регистр CCP1CON (адрес 17h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0
Бит 7							Бит 0

R – чтение бита

W – запись бита

U – не реализовано, читается как 0

–n – значение после POR

-х - неизвестное

значение после POR

бит 7-6: Не используются: читаются как '0'

биты 5-4: ССР1Х:ССР1Ү: Младшие биты скважности ШИМ

Режим захвата: не используются Режим сравнения: не используются

Режим ШИМ: два младших бита скважности. Восемь старших находятся в CCPR1L.

биты 3-0: ССР1М3:ССР1М0: Режим работы модуля ССР1

0000 = модуль ССР1 выключен (сброс модуля ССР1)

0100 = захвата по каждому заднему фронту сигнала

0101 = захват по каждому переднему фронту сигнала

0110 = захват по каждому 4-му переднему фронту сигнала

0111 = захват по каждому 16-му переднему фронту сигнала

1000 = сравнение, устанавливает выходной сигнал (устанавливается флаг ССР1Г в '1')

1001 = сравнение, сбрасывает выходной сигнал (устанавливается флаг ССР1ІГ в '1')

1010 = сравнение, на выходной сигнал не влияет (устанавливается флаг CCP1IF в '1')

1011 = сравнение, триггер специальных функций (устанавливается флаг CCP1IF в '1'; CCP1

сбрасывает TMR1)

11хх = ШИМ режим

10.1 Режим захвата

При возникновении события захвата 16-разрядное значение счетчика TMR1 переписывается в регистры CCPR1L:CCPR1H модуля CPP1. Событием захвата может быть:

- каждый задний фронт сигнала на входе RB3/CCP1;
- каждый передний фронт сигнала на входе RB3/CCP1;
- каждый 4-й передний фронт сигнала на входе RB3/CCP1;
- каждый 16-й передний фронт сигнала на входе RB3/CCP1.

Тип события захвата устанавливается битами CCP1M3:CCP1M0 в регистре CCP1CON. После выполнения захвата устанавливается флаг прерывания CCP1F (PIR1<2>) в '1', который должен быть сброшен программно. Если происходит события захвата до того как предыдущие данные были прочитаны, старое значение будет потеряно.

Рис. 10-1 Структурная схема модуля ССР1 в режиме захвата **Установить** флаг CCP1IF RB3/CCP1 (PIR1<2>) Преддел. 1, 4, 16 CCPR1H CCPR1L Разрешить **∮**Детект.¹ захват фронта TMR1H TMR1L CCP1CON<3:0>

10.1.1 Настройка вывода модуля ССР

Порт ввода/вывода RB3/CCP1 должен быть настроен на вход установкой бита TRISB<3> в'1'.

Примечание. Если канал порта ввода/вывода настроен на выход, то захват может происходить командой из программы.

10.1.2 Настройка таймера TMR1

TMR1 должен работать в синхронизированном режиме, в случае использования внешнего тактового сигнала с вывода RB7/T1OSI. В асинхронном режиме TMR1 модуль CCP1 работать не будет.

10.1.3 Обработка прерываний

Когда изменяется режим работы модуля ССР необходимо запрещать прерывания сбросом бита ССР1IE (PIE<2>) в '0' для предотвращения ложных прерываний. После изменение режима работы модуля ССР1, перед разрешением прерываний, необходимо сбросить флаг CCP1IF (PIR1<2>) в '0'.

10.1.4 Предварительный счетчик событий модуля ССР

Существует четыре режима работы предварительного счетчика событий (определяется битами CCP1M3:CCP1M0). Включение режима захвата очищает предварительный счетчик событий. Переключение между типами событий не очищает счетчик событий, поэтому результат первого захвата после переключения может быть недостоверным.

В примере 10-1 показано как нужно производить переключение типа события, чтобы не вызвать ложное срабатывание.

Пример 10-1 Переключение типа события

CLRF CCP1CON ; Выключить ССР модуль

MOVLW NEW_CAPT_PS ; Записать W новый тип захвата и режим работы ССР

MOVWF CCP1CON ; Загрузить настройку в регистр CCP1CON

10.2 Режим сравнения

В этом режиме, 16-разрядный регистр CCPR1 сравнивается со значением TMR1. Как только значения в регистрах становятся одинаковые, модуль CCP1 изменяет состояние вывода RB3/CCP1:

- устанавливает высокий уровень сигнала;
- устанавливает низкий уровень сигнала;
- на вывод не воздействует.

Действие при совпадении может быть выбрано битами CCP1M3:CCP1M0 в регистре CCP1CON. В момент изменение состояния вывода устанавливается флаг прерывания CCP1IF в '1'.

Puc. 10-2 Структурная схема модуля ССР1 в режиме сравнения

10.2.1 Настройка вывода модуля ССР

Для изменения состояния вывода RB3/CCP1, он должен быть настроен на выход сбросом бита TRISB<3> в '0'.

Примечание. При очистке регистра CCP1CON на выводе RB3/CCP1 появится сигнал низкого уровня, что не является результатом сравнения.

10.2.2 Настройка таймера TMR1

TMR1 должен работать в синхронизированном режиме, в случае использования внешнего тактового сигнала с вывода RB7/T1OSI. В асинхронном режиме TMR1 модуль CCP1 работать не будет.

10.2.3 Обработка прерываний

Программное изменение уровня сигнала на выходе ССР1 не вызовет генерацию прерывания. Прерывание генерируются только модулем ССР1.

10.2.4 Триггер специального события

В режиме сравнения модуля ССР1 может быть включен триггер специального события.

Триггер специального события сбрасывает значения таймера TMR1 при каждом положительно выполненном сравнении. Регистр ССР1R является 16-разрядным программируемым регистром периода для TMR1.

Таблица 10-2 Регистры и биты связанные с работой модуля ССР1 в режиме захват/сравнение

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	PEIE TOIE INTE RBIE TOIF INTF RBIF							0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
86h	TRISB	Регистр	о направі	пения РС	RTB					1111 1111	1111 1111
0Eh	TMR1L	Младші	ий байт 1	6-разряд	ного тай	мера 1				XXXX XXXX	uuuu uuuu
0Fh	TMR1H	Старши	ій байт 1	6-разряді	ного тайк	лера 1				xxxx xxxx	uuuu uuuu
10h	T1CON	-	1	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Младші	ий байт з	ахвата/с		xxxx xxxx	uuuu uuuu				
16h	CCPR1H	Старши	Старший байт захвата/сравнения/ШИМ								uuuu uuuu
17h	CCP1CON	-	- CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M								00 0000

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу модуля ССР1 в режиме захват/сравнение.

10.3 ШИМ режим

В ШИМ режиме модуля ССР1 вывод RB3/ССР1 используется в качестве выхода 10-разрядного ШИМ. Т.к. вход ССР1 мультиплицирован с цифровым каналом порта ввода/вывода, бит направления TRISB<3> должен быть сброшен в '0'.

Примечание. Очистка регистра ССР1СОN вынудит перевести вывод ССР1 в низкий логический уровень. Низкий логический уровень не является данными из защелки PORTB.

На рисунке 10-3 показана структурная схема модуля ССР1 в ШИМ режиме. Пошаговое описание настройки модуля ССР1 в ШИМ режиме смотрите в разделе 10.3.3.

Puc. 10-3 Структурная схема модуля ССР1 в ШИМ режиме Регистр CCP1CON<5:4> длительности импульса CCPR1L CCPR1H (ведомый) RB3/CCP1 R Сравнение 介 (1)TMR2 S TRISB<3> Сравнение Сброс таймера, $\langle \rangle$ вывода ССР1 PR2 и загрузка нового значения

На рисунке 10-4 показана временная диаграмма одного цикла ШИМ (период ШИМ и длительность высокого уровня сигнала). Частота ШИМ есть обратная величина периоду (1/период).

10.3.1 Период ШИМ

Период ШИМ определяется значением в регистре PR2 и может быть вычислен по формуле: Период ШИМ = [(PR2) + 1] \times 4 \times Tosc \times (коэффициент предделителя TMR2) Частота ШИМ = 1 / Период ШИМ

Когда значение TMR2 сравнивается с PR2, выполняются следующие действия:

- TMR2 сбрасывается в 00h;
- устанавливается высокий уровень сигнал на выводе ССР1 (Если скважность равна 0%, то сигнал в высокий уровень устанавливаться не будет);
- модуль ШИМ начинает новый цикл, загружая значение из регистра CCPR1L в CCPR1H.

Примечание. Выходной делитель TMR2 (см. раздел 8.0) не влияет на частоту ШИМ. Он может использоваться для отсчета времени, когда необходимо изменить скважность ШИМ.

10.3.2 Скважность ШИМ

Скважность ШИМ определяется битами в регистрах CCPR1L и CCP1CON<5:4>. Для 10-разрядного ШИМ старшие восемь бит сохраняются в регистре CCPR1L, а младшие два бита в регистре CCPCON<5:4> (CCPR1L:CCPCON<5:4>). Для вычисления длительности сигнала высокого уровня, воспользуйтесь следующей формулой:

Длительность импульса ШИМ = (CCPR1L:CCPCON<5:4>) x Tosc x (коэффициент предделителя TMR2)

Биты в регистре CCPR1L и CCP1CON<5:4> могут быть изменены в любое время, но значение в регистре CCPR1H не изменяется, пока не произойдет соответствие PR2 и TMR2. В ШИМ режиме регистр CCPR1H доступен только для чтения.

Регистр CCPR1H и внутренняя двух разрядная защелка образуют буфер ШИМ. Эффект буферизации необходим при записи нового значения длительности импульса ШИМ.

Когда значение CCPR1H и 2-разрядной внутренней защелки соответствует значению TMR2 и внутреннему 2-разрядному счетчику, в такте Q2 на выводе CCP1 будет установлен низкий уровень сигнала.

Расчет максимального разрешения ШИМ для данной частоты можно вычислить по формуле (бит):

$$= \frac{\log(\frac{Fosc}{Fpwm})}{\log(2)}$$

Примечание. Если длительность импульса ШИМ больше периода ШИМ, вывод ССР1 не будет иметь низкий уровень сигнала.

Примеры вычисления периода ШИМ, длительности импульса ШИМ и разрядность ШИМ смотрите в документации DS33023 «PICmicro™ Mid-Range Reference Manual».

10.3.3 Последовательность настройки модуля ССР в ШИМ режиме

Рекомендованная последовательность включения модуля ССР в ШИМ режиме:

- 1. Установить период ШИМ в регистре PR2;
- 2. Установить длительность импульса в регистрах CCPR1L и CCP1CON <5:4>;
- 3. Настроить вывод ССР1 как выход, сбросив бит TRISC<2>;
- 4. Настроить предделитель и включить TMR2 в регистре T2CON;
- 5. Включить ССР1 в режиме ШИМ.

Таблица 10-3 Соответствие частоты ШИМ и разрешения ШИМ при тактовой частоте микроконтроллера 20МГц

Частота ШИМ	1.22кГц	4.88кГц	19.53кГц	78.12кГц	156.3кГц	208.3кГц
Коэффициент предделителя TMR2	16	4	1	1	1	1
Значение PR2	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Разрешение ШИМ (бит)	10	10	10	8	7	5.5

Таблица 10-4 Регистры и биты связанные с работой модуля ССР1 в ШИМ режиме

	Tabilada 10 11 cincipsi il cintsi especimiste e pace ton meggini e ci il si serimi ponomie											
Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы	
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000	
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000	
86h	TRISB	Регист	о направл	пения РС	RTB					1111 1111	1111 1111	
11h	TMR2	Регист	р таймер	a 2						0000 0000	0000 0000	
92h	PR2	Регист	о периода	а таймер	a 2					1111 1111	1111 1111	
12h	T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-uuu uuuu	
15h	CCPR1L	Младші	ий байт з	ахвата/с		xxxx xxxx	uuuu uuuu					
16h	CCPR1H	Старши	Старший байт захвата/сравнения/ШИМ								uuuu uuuu	
17h	CCP1CON	-	- CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0								00 0000	

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу модуля ССР1 в ШИМ режиме.

11.0 Источник опорного напряжения

Модуль источника опорного напряжения содержит 16 последовательно включенных резисторов, обеспечивающие выбор нужного напряжения. Резисторы разделены на сегменты для организации двух диапазонов напряжений VREF и имеют возможность выключения для уменьшения тока потребления, когда источник опорного напряжения не используется.

В регистре VCON находятся биты управления источником опорного напряжения. На рисунке 11-1 показана структурная схема источника опорного напряжения.

11.1 Настройка источника опорного напряжения

Источник опорного напряжения может иметь 16 различных уровней напряжения для каждого диапазона. Уравнение вычисления напряжения:

Если VRR = 1: $V_{REF} = (VR < 3:0 > /24) \times V_{DD}$

Если VRR = 0: $V_{REF} = (V_{DD} \times \frac{1}{4}) + (VR < 3.0 > /32) \times V_{DD}$

Время установки напряжения должно определятся по напряжению на выводе V_{REF}. В примере 11-1 показана настройка опорного источника на напряжения 1.25В при напряжении питания 5В.

Регистр VRCON (адрес 9Fh)

	V-0 R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
VREN VR	OE VRR	-	VR3	VR2	VR1	VR0	R – чтение бита				
Бит 7						Бит 0	W – запись бита				
							U – не реализовано,				
							читается как 0				
							–n – значение после POR				
							–х – неизвестное				
							значение после POR				
бит 7: VREN: Включение источника опорного напряжения 1 = источник опорного напряжения включен 0 = источник опорного напряжения выключен и не потребляет тока бит 6: VROE: Включение выхода V _{REF} 1 = выход V _{REF} подключен к RA2											
бит 5:	0 = выход V VRR: Диапазог 1 = нижний 0 = верхний	и _{REF} не подк н выходного диапазон	лючен к RA								
бит 4:	Не используе	тся: читает	ся как '0'								
биты 3-0:	VR3:VR0: Выб Если VRR = Если VRR =	= 1 :	V _{REF} = (VR		V_{DD}						

Пример 11-1 Настройка опорного источника на напряжения 1.25В при напряжении питания 5В

0x02	; 4 аналоговых входа
CMCON	; 2-х компараторов.
STATUS,RP0	; Выбрать Банк 1
0x07	; RA3-RA0 настроить
TRISA	; как выходы
0xA6	; включить V _{REF}
VRCON	; нижний диапазон напряжений
	; установить VR<3:0>=6
STATUS,RP0	; Выбрать Банк 0
DELAY_10	; задержка 10 мкс
	CMCON STATUS,RP0 0x07 TRISA 0xA6 VRCON STATUS,RP0

11.2 Точность источника опорного напряжения

Полный диапазон выходных напряжений (от V_{SS} до V_{DD}) не может быть реализован из-за особенностей схемы источника опорного напряжения. Транзисторы, включенные в начале и конце резистивной цепочки, создают некоторое смешение (см. рисунок 11-1). Выходное напряжение формируется относительно V_{DD} , поэтому может изменяться с колебаниями V_{DD} . Абсолютную точность источника опорного напряжения смотрите в таблице 17-2.

11.3 Функционирование в SLEEP режиме

Когда микроконтроллер выходит из режима SLEEP или происходит переполнение сторожевого таймера WDT, значение регистра VCON не изменяется. Для уменьшения суммарного тока потребления микроконтроллером в режиме SLEEP, модуль источника опорного напряжения следует выключать перед переходом в режим SLEEP.

11.4 Эффект сброса

При сбросе микроконтроллера очищаются биты регистра VCON:

VREN (VRCON<7>) – модуль источника опорного напряжения выключен;

VROE (VRCON<6>) – VREF отсоединен от RA2;

VRR (VRCON<5>) – верхний диапазон напряжений;

VRCON<3:0> - напряжение опорного источника.

11.5 Подключение к источнику опорного напряжения

Модуль источника опорного напряжения работает независимо от модуля компараторов. Вывод источника опорного напряжения может быть подключен к RA2, если биты TRISA<2> и VROE (VRCON<6>) установлены в '1'. Подключение источника опорного напряжения к выводу RA2, с присутствующим на выводе внешним сигналом, может увеличить ток потребления микроконтроллером. Настройка RA2 как цифрового выхода также увеличит ток потребления.

Вывод RA2 может использоваться как простой ЦАП с малой разрешающей способностью. Выход источника опорного напряжения имеет малую нагрузочную способность, поэтому на выходе V_{REF} необходимо устанавливать дополнительный буфер (см. рисунок 11-2).

Рис. 11-2 Подключение внешнего буфера к выводу V_{REF}

Модуль
V_{REF}

Выход
V_{REF}

Примечание 1. Выходное сопротивление R зависит от битов VRCON<5> и VRCON<3:0>.

Таблица 11-1 Регистры и биты связанные с работой источника опорного напряжения

Адрес	РМЯ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
9Fh	VRCON	VREN	VROE	VRR	-	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	-	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11-1 1111	11-1 1111

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу источника опорного напряжения.

12.0 Универсальный синхронно-асинхронный приемопередатчик (USART)

USART — это модуль последовательного ввода/вывода, который может работать в полнодуплексном асинхронном режиме для связи с терминалами, персональными компьютерами или синхронном полудуплексном режиме для связи с микросхемами ЦАП, АЦП, последовательными EEPROM и т.д.

USART может работать в трех режимах:

- асинхронный, полный дуплекс;
- ведущий синхронный, полудуплекс;
- ведомый синхронный, полудуплекс.

Биты SPEN (RCSTA<7>) и TRISB<2:1> должны быть установлены в '1' для использования выводов RB2/TX/СК и RB1/RX/DT в качестве портов универсального синхронно-асинхронного приемопередатчика.

TXSTA (адрес 98h) Регистр управления и статуса передатчика

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	R – чтение бита
Бит 7							Бит 0	W – запись бита
								U – не реализовано,
								читается как 0
								–n – значение после POR
								–х – неизвестное
								значение после POR

бит 7: **CSRC:** Выбор источника тактового сигнала

Синхронный режим

1 = ведущий, внутренний тактовый сигнал от BGR 0 = ведомый, внешний тактовый сигнал с входа СК

<u>Асинхронный режим</u> Не имеет значения

бит 6: ТХ9: Разрешение 9-битной передачи

1 = 9-битная передача 0 = 8-битная передача

бит 5: **ТХЕN:** Разрешение передачи

1 = разрешена0 = запрещена

Примечание. В синхронном режиме биты SREN/CREN отменяют действие бита TXEN.

бит 4: SYNC: Режим работы USART

1 = синхронный0 = асинхронный

бит 3: Не используется: читается как '0'

бит 2: **BRGH:** Выбор высокоскоростного режима

<u>Синхронный режим</u> Не имеет значения

Асинхронный режим

1 = высокоскоростной режим 0 = низкоскоростной режим

бит 1: TRMT: Флаг очистки сдвигового регистра передатчика TSR

1 = TSR пуст 0 = TSR полон

бит 0: ТХ9D: 9-й бит передаваемых данных (может использоваться для программной проверки четности)

RCSTA (адрес 18h) Регистр управления и статуса приемника

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x	
Ì	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	R – чтение бита
	Бит 7							Бит 0	W – запись бита
									U – не реализовано,
									читается как 0
									–n – значение после POR
									-х - неизвестное
									значение после POR

бит 7: **SPEN:** Разрешение работы последовательного порта

(вывод RB1/RX/DT и RB2/TX/CK используются USART когда биты TRISB<2:1> установлены в '1')

1 = модуль последовательного порта включен 0 = модуль последовательного порта выключен

бит 6: **RX9:** Разрешение 9-битного приема

1 = 9-битный прием 0 = 8-битный прием

бит 5: **SREN:** Разрешение одиночного приема

Синхронный режим

1 = разрешен одиночный прием 0 = запрещен одиночный прием

Сбрасывается в '0' по завершению приема.

Примечание. В режиме ведомого не имеет значения

<u>Асинхронный режим</u> Не имеет значения

бит 4: **CREN:** Разрешение приема

Синхронный режим

1 = прием разрешен (при установке бита CREN автоматически сбрасывается бит SREN)

0 = прием запрещен

Асинхронный режим

1 = прием разрешен

0 = прием запрещен

бит 3: ADDEN: Разрешение детектирования адреса

Асинхронный 9-битный прием (RX9=1)

1 = детектирование адреса разрешено. Если бит RSR<8>=1, то генерируется прерывание и загружается приемный буфер.

0 = детектирование адреса запрещено. Принимаются все байты, девятый бит может использоваться для проверки четности.

Асинхронный 8-битный прием (RX9=0)

Не имеет значения

Синхронный режим

Не имеет значения

бит 2: FERR: Ошибка кадра, сбрасывается при чтении регистра RCREG

1 = произошла ошибка кадра 0 = ошибки кадра не было

бит 1: **OERR:** Ошибка переполнения внутреннего буфера, устанавливается в '0' при сбросе бита CREN

1 = произошла ошибка переполнения0 = ошибки переполнения не было

бит 0: **RX9D**: 9-й бит принятых данных (может использоваться для программной проверки четности)

12.1 Генератор частоты обмена USART BRG

BRG используется для работы USART в синхронном ведущем и асинхронном режимах. BRG представляет собой отдельный 8-разрядный генератор скорости обмена в бодах, период которого определяется значением в регистре SPBRG. В асинхронном режиме бит BRGH (TXSTA<2>) тоже влияет на скорость обмена (в синхронном режиме бит BRGH игнорируется). В таблице 12-1 указаны формулы для вычисления скорости обмена в бодах при различных режимах работы модуля USART (относительно внутреннего тактового сигнала микроконтроллера).

Учитывая требуемую скорость и F_{OSC}, выбирается самое близкое целое значение для записи в регистр SPBRG, рассчитанное по формулам приведенным в таблице 12-1. Затем рассчитывается ошибка скорости обмена.

В примере 12-1 показан расчет значения для регистра SPBRG и погрешность скорости обмена для следующих условий:

 F_{OSC} = 16 МГц; Скорость приема/передачи данных 9600 бит/с; BRGH = 0; SYNC = 0.

Пример 12-1 Расчет значения для регистра SPBRG и погрешность скорости обмена

Желаемое значение скорости = F_{OSC} / (64 (X + 1))

 $9600 = 16\,000\,000\,/\,(64\,(X+1))$

X = [25.042] = 25

Вычисленное значение скорости = 16 000 000 / (64 (25 + 1)) = 9615

Ошибка = 100 х (Вычисленное – Желаемое) / Желаемое значение скорости

Ошибка = 100 х (9615 - 9600) / 9600 = 0.16%

В некоторых случаях может быть выгодно использовать высокоскоростной режим работы USART (BRGH=1), поскольку уравнение FOSC / (16 (X + 1)) позволяет уменьшить погрешность скорости. Запись нового значения в регистр SPBRG сбрасывает таймер BRG, гарантируя немедленный переход на новую скорость.

Таблица 12-1 Формулы расчета скорости обмена данными

SYNC	BRGH = 0	BRGH = 1
0	(Асинхронный) Скорость обмена = F _{OSC} / (64 (X + 1))	(Асинхронный) Скорость обмена = F _{OSC} / (16 (X + 1))
1	(Синхронный) Скорость обмена = F _{OSC} / (4 (X + 1))	(Синхронный) Скорость обмена = F _{OSC} / (4 (X + 1))

X = значение регистра SPBRG (от 0 до 255)

Таблица 12-2 Регистры и биты связанные с работой генератора BRG

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
99h	SPBRG	Регистр	Регистр генератора скорости USART							0000 0000	0000 0000

Обозначения: - - не используется, читается как 0; u — не изменяется; x — не известно; q — зависит от условий. *Примечание*. Затененные биты не влияют на работу генератора BRG.

Таблица 12-3 Скорость обмена в синхронном режиме

Скорость	F _{OSC} = 20 M	<u>Г</u> ц	•	F _{OSC} = 16 M	ΙΓц		F _{OSC} = 10 M	1Гц	
обмена (K)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)
0,3	Нет	_	-	Нет	-	-	Нет	-	-
1,2	Нет	-	-	Нет	-	-	Нет	-	-
2,4	Нет	-	-	Нет	-	-	Нет	-	-
9,6	Нет	-	-	Нет	-	-	9,166	+1,73	255
19,2	19,53	+1,73	255	19,23	+0,16	207	19,23	+0,16	129
76,8	76,92	+0,16	64	76,92	+0,16	51	7576	-1,36	32
96	96,15	+0,16	51	95,24	-0,79	41	96,15	+0,16	25
300	294,1	-1,96	16	307,69	+2,56	12	312,5	+4,17	7
500	500	0	9	500	0	7	500	0	4
Максим.	5000	-	0	4000	-	0	2500	-	0
Миним.	19,53	-	255	15,625	-	255	9,766	-	255

Скорость	F _{OSC} = 7,159	909 МГц		F _{OSC} = 5,068	88 МГц		F _{OSC} = 4 MΓ	·ц	
обмена (K)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)
0,3	Нет	-	-	Нет	-	-	Нет	-	-
1,2	Нет	-	-	Нет	-	-	Нет	-	-
2,4	Нет	-	-	Нет	-	-	Нет	-	-
9,6	9,622	+0,23	185	9,6	0	131	9,615	+0,16	103
19,2	19,24	+0,23	92	19,2	0	65	19,231	+0,16	51
76,8	77,82	+1,32	22	79,2	+3,13	15	76,923	+0,16	12
96	94,20	-1,88	18	97,48	+1,54	12	100	+4,17	9
300	298,3	-0,57	5	316,8	+5,60	3	Нет	_	-
500	Нет	_	-	Нет	-	-	Нет	-	-
Максим.	1789,8	-	0	1267	-	0	1000	-	0
Миним.	6,991	-	255	4,950	-	255	3,906	-	255

Скорость	$F_{OSC} = 3,579$	9545 МГц		F _{OSC} = 1 MΓ	`Ц		$F_{OSC} = 32,76$	68 кГц	
обмена (K)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)
0,3	Нет	-	-	Нет	-	-	0,303	+1,14	26
1,2	Нет	-	-	1,202	+0,16	207	1,170	-2,48	6
2,4	Нет	-	-	2,404	+0,16	103	Нет	-	-
9,6	9,622	+0,23	92	9,615	+0,16	25	Нет	-	-
19,2	19,04	-0,83	46	19,24	+0,16	12	Нет	-	-
76,8	74,57	-2,90	11	83,34	+8,51	2	Нет	-	-
96	99,43	+3,57	8	Нет	-	-	Нет	-	-
300	298,3	-0,57	2	Нет	-	-	Нет	-	-
500	Нет	-	-	Нет	-	-	Нет	-	-
Максим.	894,9	-	0	250	-	0	8,192	-	0
Миним.	3,496	-	255	0,9766	-	255	0,032	-	255

Таблица 12-4 Скорость обмена в асинхронном режиме (BRGH=0)

Скорость	F _{OSC} = 20 M	ΙΓц	•	Fosc = 16 N	ІГц		Fosc = 10 N	1Гц	
обмена (К)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)
0,3	Нет	-	-	Нет	-	-	Нет	=	-
1,2	1,221	+1,73	255	1,202	+0,16	207	1,202	+0,16	129
2,4	2,404	+0,16	129	2,404	+0,16	103	2,404	+0,16	64
9,6	9,469	-1,36	32	9,615	+0,16	25	9,615	+1,73	15
19,2	19,53	+1,73	15	19,23	+0,16	12	19,53	+1,73	7
76,8	78,13	+1,73	3	83,33	+8,51	2	78,13	+1,73	1
96	104,2	+8,51	2	Нет	_	-	Нет	_	-
300	312,5	+4,17	0	Нет	-	-	Нет	-	-
500	Нет	-	-	Нет	-	-	Нет	-	-
Максим.	312,5	-	0	250	-	0	156,3	-	0
Миним.	1.221	-	255	0.977	-	255	0.6104	-	255

Скорость	$F_{OSC} = 7,159$	909 МГц		$F_{OSC} = 5,068$	88 МГц		F _{OSC} = 4 MΓ	ц	
обмена (К)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)
0,3	Нет	-	-	0,31	+3,13	255	0,3005	-0,17	207
1,2	1,203	+0,23	92	1,2	Ó	65	1,202	+1,67	51
2,4	2,380	-0,83	46	2,4	0	32	2,404	+1,67	25
9,6	9,322	-2,90	11	9,9	+3,13	7	Нет	-	-
19,2	18,64	-2,90	5	19,8	+3,13	3	Нет	-	-
76,8	Нет	-	-	79,2	+3,13	0	Нет	-	-
96	Нет	-	-	Нет	-	-	Нет	-	-
300	Нет	-	-	Нет	-	-	Нет	-	-
500	Нет	-	-	Нет	-	-	Нет	-	-
Максим.	111,9	-	0	79,2	-	0	62,500	-	0
Миним.	0.437	_	255	0.3094	-	255	3.906	-	255

Скорость	$F_{OSC} = 3,579$	9545 МГц		F _{OSC} = 1 MΓ	ц		$F_{OSC} = 32,70$	38 кГц	
обмена (K)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)
0,3	0,301	+0,23	185	0,300	+0,16	51	0,256	-14,67	1
1,2	1,190	-,083	46	1,202	+0,16	12	Нет	-	-
2,4	2,432	+1,32	22	2,232	-6,99	6	Нет	-	-
9,6	9,322	-2,90	5	Нет	-	-	Нет	-	-
19,2	18,64	-2,90	2	Нет	-	-	Нет	-	-
76,8	Нет	-	-	Нет	-	-	Нет	-	-
96	Нет	-	-	Нет	-	-	Нет	-	-
300	Нет	-	-	Нет	-	-	Нет	-	-
500	Нет	-	-	Нет	-	-	Нет	-	-
Максим.	55,93	-	0	15,63	-	0	0,512	-	0
Миним.	0,2185	-	255	0,0610	-	255	0,0020	-	255

Таблица 12-5 Скорость обмена в асинхронном режиме (BRGH=1)

Скорость	F _{OSC} = 20 M	1Гц	•	F _{OSC} = 16 M	І Гц		F _{OSC} = 10 M	І Гц	
обмена (K)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)
9,6	9,615	+0,16	129	9,615	+0,16	103	9,615	+0,16	64
19,2	19,230	+0,16	64	19,230	+0,16	51	18,939	-1,36	32
38,4	37,878	-1,36	32	38,461	+0,16	25	39,062	+1,7	15
57,6	56,818	-1,36	21	58,823	+2,12	16	56,818	-1,36	10
115,2	113,636	-1,36	10	111,111	-3,55	8	125	+8,51	4
250	250	0	4	250	0	3	Нет	_	-
625	625	0	1	Нет	-	-	625	0	0
1250	1250	0	0	Нет	-	-	Нет	-	-

Скорость	F _{OSC} = 7,16	МГц		F _{OSC} = 5,068	3 МГц		F _{OSC} = 4 МГц		
обмена (K)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)
9,6	9,520	-0,83	46	9,6	0	32	Нет	-	-
19,2	19,454	+1,32	22	18,645	-2,94	16	1,202	+0,17	207
38,4	37,286	-2,90	11	39,6	+3,12	7	2,403	+0,13	103
57,6	55,930	-2,90	7	52,8	-8,33	5	9,615	+0,16	25
115,2	111,860	-2,90	3	105,6	-8,33	2	19,231	+0,16	12
250	Нет	-	-	Нет	-	-	Нет	-	-
625	Нет	-	-	Нет	-	-	Нет	-	-
1250	Нет	-	-	Нет	-	-	Нет	-	-

Скорость	$F_{OSC} = 3,579$	9 МГц		Fosc = 1 MΓ	щ		F _{OSC} = 32,768 кГц		
обмена (K)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)
9,6	9,727	+1,32	22	8,928	-6,99	6	Нет	-	-
19,2	18,643	-2,90	11	20,833	+8,51	2	Нет	-	-
38,4	37,286	-2,90	5	31,25	-18,61	1	Нет	-	-
57,6	55,930	-2,90	3	62,5	+8,51	0	Нет	-	-
115,2	111,860	-2,90	1	Нет	-	-	Нет	-	-
250	223,721	-10,51	0	Нет	-	-	Нет	-	-
625	Нет	-	-	Нет	-	-	Нет	-	-
1250	Нет	-	-	Нет	-	-	Нет	-	-

12.1.1 Выборка

Сигнал с входа RB1/RX/DT опрашивается цепью мажоритарного детектора три раза за такт передачи, чтобы определить высокого или низкого уровня сигнал присутствует на входе. Если выбран низкоскоростной режим (BRRH=0), то выборка производится по седьмому, восьмому и девятому заднему фронту тактового сигнала х16 (см. рисунок 12-1). Если BRGH = 1 (выбран высокоскоростной режим), выборка производится на втором такте сигнала x4 тремя запросами (см. рисунки 12-2, 12-3).

Puc. 12-2 Временная диаграмма выборки (BRGH = 1)

Puc. 12-3 Временная диаграмма выборки (BRGH = 1)

12.2 Асинхронный режим USART

В этом режиме USART использует стандартный формат NRZ: один стартовый бит, восемь или девять битов данных и один стоповый бит. Наиболее часто встречается 8-разрядный формат передачи данных. Интегрированный 8-разрядный генератор BRG позволяет получить стандартные скорости передачи данных. Генератор скорости обмена может работать в одном из двух режимов: высокоскоростной (x16 BRGH=1 TXSTA<2>), низкоскоростной (x64 BRGH=0 TXSTA<2>). Приемник и передатчик последовательного порта работают независимо друг от друга, но используют один и тот же формат данных и одинаковую скорость обмена. Бит четности аппаратно не поддерживается, но может быть реализован программно, применяя 9-разрядный формат данных. Все данные передаются младшим битом вперед. В SLEEP режиме микроконтроллера модуль USART(асинхронный режим) выключен. Выбор асинхронного режима USART выполняется сбросом бита SYNC в '0' (TXSTA<4>).

Модуль USART в асинхронном режиме состоит из следующих элементов:

- генератор скорости обмена;
- цепь опроса;
- асинхронный передатчик;
- асинхронный приемник.

12.2.1 Асинхронный передатчик USART

Структурная схема асинхронного передатчика USART показана на рисунке 12-4. Главным в передатчике является сдвиговый регистр TSR, который получает данные из буфера передатчика TXREG. Данные в регистр TXREG загружаются программно. После передачи стопового бита предыдущего байта, в последнем машинном такте цикла BRG, TSR загружается новым значением из TXREG (если оно присутствует), после чего выставляется флаг прерывания TXIF (PIR1<4>). Прерывание может быть разрешено или запрещено битом TXIE (PIE1<1>). Флаг TXIF устанавливается независимо от состояния бита TXIE и не может быть сброшен в '0' программно. Очистка флага TXIF происходит только после загрузки новых данных в регистр TXREG. Аналогичным образом бит TRMT (TXSTA<1>) отображает состояние регистра TSR. Бит TRMT доступен только на чтение и не может вызвать генерацию прерывания.

Примечания:

- 1. Регистр TSR не отображается на память и не доступен для чтения.
- 2. Флаг TXIF устанавливается в '1' только, когда бит TXEN=1.

Для разрешения передачи необходимо установить бит TXEN (TXSTA<5>) в '1'. Передача данных не начнется до тех пор, пока в TXREG не будут загружены новые данные, не придет очередной тактовый импульс от генератора BRG (см рисунок 12-5). Можно сначала загрузить данные в TXREG, а затем установить бит TXEN. Как правило, после разрешения передачи регистр TSR пуст, таким образом, данные записываемые в TXREG сразу передаются в TSR, а TXREG остается пустым. Это позволяет реализовать слитную передачу данных (см. рисунок 12-6). Сброс бита TXEN в '0' вызовет немедленное прекращение передачи, сброс передатчика и перевод вывода RB2/TX/СК в третье состояние.

Для разрешения 9-разрядной передачи, необходимо установить бит TX9 (TXSTA<6>) в '1'. Девятый бит данных записывается в бит TX9D (TXSTA<0>). Девятый бит данных должен быть указан до записи в регистр TXREG, потому что данные, записанные в регистр TXREG, могут быть сразу загружены в сдвиговый регистр TSR.

Рекомендованная последовательность действий для передачи данных в асинхронном режиме:

- 1. Установить требуемую скорость передачи с помощью регистра SPBRG и бита BRGH (см. раздел 12.1).
- 2. Выбрать асинхронный режим сбросом бита SYNC в '0' и установкой бита SPEN в '1'.
- 3. Если необходимо, разрешить прерывания установкой бита ТХІЕ в '1'.
- 4. Если передача 9-разрядная, установить бит ТХ9 в '1'.
- 5. Разрешить передачу установкой бита TXEN в '1', автоматически устанавливается флаг TXIF.
- 6. Если передача 9-разрядная, записать 9-й бит данных в ТХ9D.
- Записать данные в регистр TXREG.

Таблица 12-6 Регистры и биты связанные с работой передатчика USART в асинхронном режиме

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 0000	0000 000x
19h	TXREG	Регистр	данных пе	редатчика	USART					0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Регистр	Регистр генератора скорости USART								0000 0000

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу передатчика USART в асинхронном режиме.

регистр пуст)

12.2.2 Асинхронный приемник USART

Структурная схема асинхронного приемника USART показана на рисунке 12-7. Данные подаются на вход RB1/RX/DT в блок восстановления данных, представляющий собой скоростной сдвиговый регистр, работающий на частоте в 16 раз превышающей скорость передачи или F_{OSC}.

Включение приемника производится установкой бита CREN регистра RCSTA в '1'.

Главным в приемнике является сдвиговый регистр RSR. После получения стопового бита данные переписываются в регистр RCREG, если он пуст. После записи в регистр RCREG выставляется флаг прерывания RCIF (PIR1<5>). Прерывание можно разрешить/запретить установкой/сбросом бита RCIE (PIE1<5>). Флаг RCIF доступен только на чтение, сбрасывается аппаратно при чтении из регистра RCREG. Регистр RCREG имеет двойную буферизацию, т.е. представляет собой двухуровневый буфер FIFO. Поэтому можно принять 2 байта данных в FIFO RCREG и третий в регистр RSR. Если FIFO заполнен и обнаружен стоповый бит третьего байта, устанавливается бит переполнения приемника OERR (RCSTA<1>). Байт, принятый в RSR, будет потерян. Для извлечения двух байт из FIFO, необходимо дважды прочитать регистр RCREG. Бит OERR нужно программно очистить сбросом бита CREN, т.е. запрещением приема. В любом случае, если бит OERR установлен, логика приемника выключена.

Бит ошибки кадра FERR (RCSTA<2>) устанавливается в '1', если не обнаружен стоповый бит. FERR и девятый бит принятых данных буферизируются также, как принятые данные. Рекомендуется сначала прочитать регистр RCSTA, затем RCREG, чтобы не потерять информацию RX9D и FERR.

Рекомендованные действия при приеме данных в асинхронном режиме:

- 1. Установить требуемую скорость передачи с помощью регистра SPBRG и бита BRGH (см. раздел 12.1).
- 2. Выбрать асинхронный режим сбросом бита SYNC в '0' и установкой бита SPEN в '1'.
- 3. Если необходимо, разрешить прерывания установкой бита RCIE в '1'.
- 4. Если прием 9-битный, установить бит RX9 в '1'.
- 5. Разрешить прием установкой бита CREN в '1'.
- 6. Ожидать установку бита RCIF, или прерывание, если оно разрешено битом RCIE.
- 7. Считать 9-й бит данных (если разрешен 9-разрядный прием) из регистра RCSTA и проверить возникновение ошибки.
- 8. Считать 8 бит данных из регистра RCREG.
- 9. При возникновении ошибки переполнения сбросить бит CREN в '0'.

Примечание к рисунку. На временной диаграмме показан последовательный прием байта данных и байта адреса. Байт данных не записывается в RCREG, т.к. ADDEN=1, а бит8 = 0.

Примечание к рисунку. На временной диаграмме показан последовательный прием байта адреса и байта данных. Байт данных не записывается в RCREG, т.к. ADDEN не был сброшен в '0' (ADDEN=1), а бит8 = 0.

Примечание к рисунку. На временной диаграмме показан последовательный прием байта адреса и байта данных. Байт данных сохраняется в регистре RCREG, потому что бит ADDEN был сброшен в '0' после совпадения адреса. Содержимое регистра RSR всегда будет передаваться в регистр RCREG независимо от состояния бита 8.

Адрес	Р МИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 0000	0000 000x
1Ah	RCREG	Регистр	данных пр	иемника (JSART					0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Регистр генератора скорости USART								0000 0000	0000 0000

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание*. Затененные биты не влияют на работу приемника USART в асинхронном режиме.

12.3 Функции USART

Функции модуля USART аналогичны модулю в микроконтроллере PIC16C74B, включая высокоскоростной режим (BRGH = 1).

12.3.1 Приемник с детектором 9-разрядного адреса

Если установлен бит RX9 в регистре RCSTA, 9-й бит принимаемых данных сохраняется в бите RX9D регистра RCSTA. Модуль USART имеет функцию детектирование адреса для организации сетевого обмена. Детектирование адреса разрешено, если установлены биты ADDEN(RCSTA<3>) и RX9 (RCSTA<6>) в '1'. В этом режиме принимаемые данные записываются в регистр RCREG (9-бит в RX9D регистра RCSTA), если девятый бит принимаемых данных равен 1.

Для передачи данных в сетевой структуре ведущее устройство должно сначала передать адрес ведомого устройства. В байте адреса 9 бит (RSR<8>) равен 1 (в байте данных RSR<8>=0). Если в регистре RCSTA биты RX9 и ADDEN установлены в '1', то разрешено детектирование адреса, все байты данных будут игнорироваться. Однако если 9 бит принятых данных будет равен 1 (принят адресный байт), содержимое регистра RSR передается в приемный буфер. Это позволяет ведомому устройству обрабатывать только адресные байты. Если принятый адресный байт соответствует адресу ведомого устройства, необходимо сбросить бит ADDEN в '0' для перехода в режим приема данных.

Когда бит ADDEN = 1, все принимаемые байты данных игнорируются. После приема стопового бита, данные не загружаются в приемный буфер, прерывание не генерируется. Если принят следующий байт, предыдущий байт в регистре RSR будет потерян.

Детектирование адреса разрешено, если только включен 9-разрядный прием данных (RX9 = 1). Если детектирование адреса запрещено (ADDEN = 0), девятый бит принимаемых данных может использоваться для контроля четности.

Структурная схема асинхронного приемника USART показана на рисунке 12-7.

Прием разрешен, когда бит CREN (RCSTA<4>) =1.

12.3.1.1 Настройка 9-разрядного асинхронного приема с детектированием адреса

Рекомендованная последовательность действия при использовании детектора адреса:

- 1. Установить требуемую скорость передачи с помощью регистра SPBRG и бита BRGH (см. раздел 12.1).
- 2. Выбрать асинхронный режим сбросом бита SYNC в '0' и установкой бита SPEN в '1'.
- 3. Если необходимо, разрешить прерывания установкой бита RCIE в '1'.
- 4. Установить бит RX9 в '1' для включения 9-разрядного приема.
- 5. Установить бит ADDEN в '1' для разрешения детектирования адреса.
- 6. Разрешить прием установкой бита CREN в '1'.
- 7. Ожидать установку бита RCIF, или прерывание, если оно разрешено битом RCIE.
- 8. Считать 8 бит данных из регистра RCREG для проверки адресации устройства.
- 9. При возникновении ошибки переполнения сбросить бит CREN в '0'.
- 10. Если принятый адрес соответствует адресу устройства, сбросить биты ADDEN и RCIF в '0' для начала приема данных.

Таблица 12-8 Регистры и биты связанные с работой приемника USART в асинхронном режиме

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	Регистр	Регистр данных приемника USART								0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Регистр	Регистр генератора скорости USART							0000 0000	0000 0000

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу приемника USART в асинхронном режиме.

12.4 Синхронный ведущий режим USART

В ведущем синхронном режиме данные передаются полудуплексом, т.е. прием и передача не происходит одновременно. При передаче запрещен прием и наоборот. Синхронный режим включается установкой бита SYNC (TXSTA<4>) в '1'. Также необходимо включить модуль USART, установкой бита SPEN (RCSTA<7>) в '1', для настройки портов ввода вывода RB2/TX/СК и RB1/RX/DT в качестве тактового сигнала СК и линии данных DT соответственно. В режиме ведущего модуль USART формирует тактовый сигнал СК. Выбор режима ведущего производится установкой бита CSRC (TXSTA<7>) в '1'.

12.4.1 Передача синхронного ведущего

Структурная схема передатчика USART показана на рисунке 12-4. Главным в передатчике является сдвиговый регистр TSR. Сдвиговый регистр получает данные из буфера передатчика TXREG. В регистр TSR не загружаются новые данные, пока не будет передан последний бит предыдущего байта. После передачи последнего бита предыдущего байта, TSR загружается новым значением из TXREG (если оно присутствует), и устанавливается флаг прерывания TXIF (PIR1<4>). Это прерывание может быть разрешено/запрещено битом TXIE (PIE<4>). Флаг TXIF устанавливается вне зависимости от состояния бита TXIE и может быть сброшен только загрузкой новых данных в регистр TXREG. Также как TXIF отображает состояние TXREG, бит TRMT (TSTA<1>) показывает состояние регистра TSR. Этот бит не вызывает генерацию прерывания, доступен только на чтение и устанавливается в '1', когда регистр TSR пуст. Регистр TSR не отображается на память и не доступен пользователю.

Передача разрешается установкой бита TXEN (TXSTA<5>), но не начнется до тех пор, пока не будут загружен регистр TXREG. Данные появятся на выходе по первому переднему фронту тактового сигнала СК. Выходные данные стабилизируются к заднему фронту тактового сигнала (см. рисунок 12-11). Можно сначала загрузить данные в TXREG и потом установить бит TXEN в '1' (см. рисунок 12-13). Это полезно при низких скоростях передачи данных, когда генератор BRG остановлен, а биты TXEN, CREN, SREN сброшены в нуль. Установка бита TXEN в '1' запустит генератор BRG, который немедленно начнет формировать тактовый сигнал. Обычно после разрешения передачи регистр TSR пуст, и в результате записи в TXREG данные переписываются в TSR, что позволяет реализовать слитную передачу данных.

Сброс бита ТХЕN в '0' вызовет немедленное прекращение передачи, остановку логики передатчика и переведет выводы СК, DT в третье состояние. Установка бита CREN или SREN во время передачи вызовет ее прекращение и переведет вывод в третье состояние (для приема данных), а вывод СК останется выходом тактового сигнала, если бит CSRC установлен. Логика передатчика не сбрасывается, хотя отключена от вывода, для сброса логики передатчика необходимо очистить бит TXEN. Если бит SREN был установлен в '1', чтобы прервать текущую передачу и принять одиночное слово. Получив слово, бит SREN сбросится в '0', последовательный порт продолжит передачу, если установлен бит TXEN. Линия данных DT переключится из третьего состояния для начала передачи данных. Чтобы это предотвратить, необходимо сбросить бит TXEN в '0'.

Для разрешения 9-разрядной передачи, необходимо установить бит TX9 (TXSTA<6>) в '1'. Девятый бит данных записывается в бит TX9D (TXSTA<0>). Девятый бит данных должен быть указан до записи в регистр TXREG, потому что данные, записанные в регистр TXREG, могут быть сразу загружены в сдвиговый регистр TSR.

Рекомендованная последовательность действий для передачи данных в синхронном ведущем режиме:

- 1. Установить требуемую скорость передачи с помощью регистра SPBRG и бита BRGH (см. раздел 12.1).
- 2. Выбрать синхронный ведущий режим установкой битов SYNC, SPEN и CSRC в '1'.
- 3. Если необходимо, разрешить прерывания установкой бита ТХІЕ в '1'.
- 4. Если передача 9-разрядная, установить бит ТХ9 в '1'.
- 5. Разрешить передачу установкой бита TXEN в '1'.
- 6. Если передача 9-разрядная, записать 9-й бит данных в ТХ9D.
- 7. Записать данные в регистр TXREG.

Puc. 12-11 Временная диаграмма синхронной передачи двух 8-разрядных слов (SPBRG = 0)

Puc. 12-12 Временная диаграмма синхронной передачи (после установки бита ТХЕN в '1')

Таблица 12-9 Регистры и биты связанные с работой передатчика USART в синхронном ведущем режиме

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	Регистр	данных пе	редатчика	a USART					0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Регистр генератора скорости USART								0000 0000	0000 0000

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу передатчика USART в синхронном ведущем режиме.

12.4.2 Прием синхронного ведущего

В синхронном режиме прием разрешается установкой битов CREN (RCSTA<4>) или SREN (RCSTA<5>) в '1'. Линия данных RB1/RX/DT опрашивается по заднему фронту тактового сигнала. Если бит SREN установлен в '1', то принимается одиночное слово. Если бит CREN установлен в '1', то в не зависимости от состояния бита SREN будет производиться поточный прием данных. Получив последний бит очередного слова, данные переписываются из RSR в регистр RCREG (если он пуст). После записи в регистр RCREG выставляется флаг прерывания RCIF (PIR1<5>). Прерывание можно разрешить/запретить установкой/сбросом бита RCIE (PIE1<5>). Флаг RCIF доступен только на чтение, сбрасывается аппаратно при чтении из регистра RCREG. Регистр RCREG имеет двойную буферизацию, т.е. представляет собой двухуровневый FIFO. Поэтому можно принять 2 байта данных в FIFO RCREG и третий в регистр RSR. Если FIFO заполнен и обнаружен последний бит третьего байта, устанавливается бит переполнения приемника OERR (RCSTA<1>) в '1'. Байт принятый в RSR будет потерян. Для извлечения двух байт из FIFO необходимо дважды прочитать из регистра RCREG. Бит OERR нужно программно очистить сбросом бита CREN, т.е. запрещением приема. В любом случае, если бит OERR установлен, логика приема отключена.

Девятый бит принятых данных буферизируются так же, как принятые данные. Рекомендуется сначала прочитать регистр RCSTA, затем RCREG, чтобы не потерять бит записанный в RX9D.

Рекомендованные действия при приеме данных в синхронном ведущем режиме:

- Установить требуемую скорость передачи с помощью регистра SPBRG и бита BRGH (см. раздел 12.1).
- Выбрать синхронный ведущий режим установкой битов SYNC, SPEN и CSRC в '1'.
- Сбросить биты SREN и CREN в '0'.
- Если необходимо, разрешить прерывания установкой бита RCIE в '1'.
- Если прием 9-битный, установить бит RX9 в '1'.
- Если необходимо выполнить одиночный прием установите бит SREN в '1'. Для поточного приема установите бит CREN в '1'.
- 7. Ожидать установку бита RCIF, или прерывание, если оно разрешено битом RCIE.
- Считать 9-й бит данных (если разрешен 9-разрядный прием) из регистра RCSTA и проверить возникновение ошибки.
- Считать 8 бит данных из регистра RCREG.
- 10. При возникновении ошибки переполнения сбросить бит CREN в '0'.

RB1/RX/DT Бит Бит 4 Бит RB2/TX/CK Запись бита SREN Бит SREN **'**0' Бит CREN Флаг RCIF Чтение **RCREG**

Puc. 12-13 временная диаграмма синхронного приема в режиме ведущего (SREN = 1, SPBRG = 0)

Таблица 12-10 Регистры и биты связанные с работой приемника USART в синхронном ведущем режиме

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	Регистр	Регистр данных приемника USART								0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Регистр генератора скорости USART								0000 0000	0000 0000

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу приемника USART в синхронном ведущем режиме.

12.5 Синхронный ведомый режим USART

Режим ведомого отличается от ведущего тем, что микроконтроллер использует тактовый сигнал с входа RB2/TX/CK, а не формирует его самостоятельно. Это позволяет устройству принимать и передавать данные в SLEEP режиме. Выбрать режим ведомого можно сбросом бита CSRC (TXSTA<7>) в '0'.

12.5.1 Передача синхронного ведомого

Работа передатчика в обоих синхронных режимах одинакова, за исключением работы ведомого в SLEEP режиме микроконтроллера.

Если в TXREG были записаны два слова подряд и исполнена команда SLEPP, выполняются следующее действия:

- а) Первое слово сразу записывается в TSR и передается по мере прихода тактового сигнала.
- b) Второе слово остается в TXREG
- с) Флаг TXIF не устанавливается в '1'.
- d) После передачи первого слова, второе слово передается из TXREG в TSR, и устанавливается флаг TXIF в '1'.
- e) Если установлен бит TXIE в '1', микроконтроллер выходит из режима SLEEP, происходит переход по вектору 0004h, если GIE=1.

Рекомендованная последовательность действий для передачи данных в синхронном ведомом режиме:

- 1. Выбрать синхронный ведомый режим установкой битов SYNC, SPEN в '1' и сбросом CSRC в '0'.
- 2. Сбросить биты SREN и CREN в '0'.
- 3. Если необходимо, разрешить прерывания установкой бита ТХІЕ в '1'.
- 4. Если передача 9-разрядная, установить бит ТХ9 в '1'.
- 5. Разрешить передачу установкой бита TXEN в '1'.
- 6. Если передача 9-разрядная, записать 9-й бит данных в ТХ9D.
- 7. Для начала передачи записать данные в регистр TXREG.

Таблица 12-11 Регистры и биты связанные с работой передатчика USART в синхронном ведомом режиме

Адрес	Р МИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	Регистр	Регистр данных передатчика USART								0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. **Примечание.** Затененные биты не влияют на работу передатчика USART в синхронном ведомом режиме.

12.5.2 Прием синхронного ведомого

Работа приемника в обоих синхронных режимах одинакова, кроме работы в режиме SLEEP. В синхронном ведомом режиме не учитывается состояние бита SREN.

Если перед выполнением команды SLEEP был разрешен прием (бит CREN = 1), то модуль USART может принять слово в SLEEP режиме микроконтроллера. По окончанию приема данные передаются из регистра RSR в RCREG, и если бит RCIE = 1, микроконтроллер выйдет из режима SLEEP. Если GIE=1, произойдет переход по адресу вектора прерываний 0004h.

Рекомендованные действия при приеме данных в синхронном ведомом режиме:

- 1. Выбрать синхронный ведомый режим установкой битов SYNC, SPEN в '1' и сбросом CSRC в '0'.
- 2. Если необходимо, разрешить прерывания установкой бита RCIE в '1'.
- 3. Если прием 9-битный, установить бит RX9 в '1'.
- 4. Установите бит CREN в '1' для разрешения приема.
- 5. Ожидать установку бита RCIF, или прерывание, если оно разрешено битом RCIE.
- 6. Считать 9-й бит данных (если разрешен 9-разрядный прием) из регистра RCSTA и проверить возникновение ошибки.
- 7. Считать 8 бит данных из регистра RCREG.
- 8. При возникновении ошибки переполнения сбросить бит CREN в '0'.

Таблица 12-12 Регистры и биты связанные с работой приемника USART в синхронном ведомом режиме

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 0000	0000 000x
1Ah	RCREG	Регистр	данных пр	иемника (0000 0000	0000 0000				
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу приемника USART в синхронном ведомом режиме.

13.0 EEPROM память данных

EEPROM память данных доступна для записи/чтения в нормальном режиме работы микроконтроллера во всем диапазоне рабочего напряжения питания (V_{DD}). EEPROM память не отображается на адресное пространство памяти данных, а доступна через регистры специального назначения. Для доступа к EEPROM памяти данных используются 4 регистра специального назначения:

- EECON1
- EECON2 (не физический регистр)
- EEDATA
- EEADR

В регистре EEDATA сохраняются 8-разрядные данные записи/чтения, регистр EEADR содержит адрес регистра EEPROM памяти данных. В микроконтроллерах PIC16F62X реализовано 128 байт EEPROM памяти данных (адреса 00h-7Fh).

EEPROM память данных позволяет выполнить чтение и запись байта. При записи байта происходит автоматическое стирание ячейки и запись новых данных (стирание перед записью). EEPROM память данных рассчитана на большое количество циклов стирание/запись. Время записи управляется интегрированным таймером и зависит от напряжения питания, температуры (см. раздел «электрические характеристики»).

При установке защиты на доступ к EEPROM памяти данных, программа микроконтроллера имеет возможность выполнить запись/чтение EEPROM памяти данных. Доступ закрыт для записи/чтения программатором.

Дополнительную информацию о работе с EEPROM памятью данных смотрите в документации DS33023 «PICmicro™ Mid-Range Reference Manual».

13.1 Perucmp EEADR

С помощью регистра EEADR можно адресовать 256 байт EEPROM памяти данных. В микроконтроллерах PIC16F62X реализовано только 128 байт EEPROM памяти данных, поэтому в адресации участвуют только 7 бит регистра EEADR<6:0>.

Старший бит регистра EEADR тоже участвует в декодировании адреса, поэтому всегда должен равняться нулю (для гарантированной адресации памяти в 128 байт).

Регистр EEADR (адрес 9Bh)

-	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	R – чтение бита
Бит 7							Бит 0	W – запись бита U – не реализовано, читается как 0 –n – значение после РОГ –x – неизвестное значение после РОГ
бит	7: He и	іспользует	гся: читает	ся как '0'				
бит	ы 6-0: ЕЕА	.DR : Адрес	в EEPROM	1 памяти да	анных для і	выполнени	я операций з	аписи/чтения

13.2 Регистры EECON1, EECON2

Регистр EECON1 содержит 4 (младших) физически реализованных управляющих битов. Четыре старших бита не реализованы и читаются как '0'.

Управляющие биты RD и WR инициализируют соответственно чтение и запись данных. Программно эти биты могут быть только установленные в '1', сброс в '0' происходит аппаратно по завершению операции чтения/записи. Защита от программного сброса этих битов позволяет предотвратить преждевременное завершение операции записи.

Если бит WREN=1, то разрешена запись в EEPROM память данных. После сброса по включению питания (POR) бит WREN сбрасывается в '0'. Бит WRERR устанавливается в '1', если во время выполнения записи в EEPROM память данных произошел сброс по сигналу -MCLR или по переполнению сторожевого таймера WDT. Проверив состояние бита WREER, пользователь может повторить запись (регистры EEDATA и EEADR не изменяют своего значения).

После завершения записи в EEPROM память данных устанавливается флаг EEIF (PIR1<>) в '1' (сбрасывается программно).

Регистр EECON2 не реализован физически, читается как 00h. Он используется в операциях записи в EEPROM память данных.

Регистр EECON1 (адрес 9Ch)

R/S-x U-0 U-0 U-0 U-0 R/W-x R/W-0 R/S-0 WRERR WREN WR RD R – чтение бита W - запись бита Бит 7 Бит 0 U – не реализовано, читается как 0 -n - значение после POR -х - неизвестное значение после POR биты 7-4: Не используются: читаются как '0' бит 3: WRERR: Флаг ошибки записи в EEPROM память данных 1 = запись прервана (произошел один из сбросов: по сигналу -MCLR, по переполнению WDT, по снижению напряжения питания BOR) 0 = запись завершена бит 2: WREN: Разрешение записи в EEPROM память данных 1 = запись разрешена 0 = запись запрещена бит 1: WR: Инициализировать запись в EEPROM память данных (программно может быть только vстановлен в '1') 1 = инициализировать запись (сбрасывается в '0' аппаратно) 0 = запись завершена RD: Инициализировать чтение из EEPROM памяти данных (программно может быть только бит 0: установлен в '1') 1 = инициализировать чтение (сбрасывается в '0' аппаратно)

13.3 Чтение из EEPROM памяти данных

0 = чтение завершено

Для чтения EEPROM памяти данных необходимо записать адрес в регистр EEADR и установить бит RD (EECON1<0>) в '1'. В следующем машинном цикле данные доступны для чтения из регистра EEDATA. Прочитанное значение из EEPROM памяти данных будет храниться в регистре EEDATA до следующего чтения или записи в этот регистр по команде микроконтроллера.

Пример 13-1 Чтение из EEPROM памяти данных

BSF STATUS, RP0 ; Выбрать банк 1

BCF STATUS, RP1

MOVLW CONFIG_ADDR

MOVWF EEADR ; Адрес считываемого регистра

BSF EECON1, RD ; Чтение MOVF EEDATA, W ; W = EEDATA

13.4 Запись в EEPROM память данных

Для записи в EEPROM память данных необходимо записать адрес в регистр EEADR, данные в регистр EEDATA и выполнить последовательность команд, показанных в примере 13-2.

Пример 13-2 Запись в EEPROM память данных

	BSF BSF	STATUS, RP0 EECON1, WREN	; Выбрать банк 1 ; Разрешить запись
Обязательная последовательность	BCF MOVLW MOVWF MOVLW MOVWF BSF	INTCON, GIE 55h EECON2 AAh EECON2 EECON1,WR	; Запретить прерывания ; ; Записать 55h ; ; Записать AAh ; Установить бит WR ; для начала записи
	BSF	INTCON, GIE	; Разрешить прерывания

Запись байта не будет произведена, если не выполнена указанная последовательность (запись 55h в EECON2, запись AAh в EECON2, установка бита WR в '1'). Рекомендуется запрещать прерывания при выполнении обязательной последовательности команд. Если во время выполнения указанной последовательности произойдет переход по вектору прерывания, запись байта выполнена не будет.

Чтобы разрешить запись в EEPROM память данных, необходимо установить бит WREN (EECON1<2>) в '1', защищающий от случайной записи. Пользователь должен установить бит WREN в '1' перед началом записи, а после окончания записи сбросить его в '0' (аппаратно бит WREN в '0' не сбрасывается).

После инициализации записи сброс бита WREN в '0' не повлияет на цикл записи, но установка бита WR в '1' будет запрещена, пока WREN = 0.

По окончанию записи бит WR аппаратно сбрасывается в '0', а флаг прерывания EEIF устанавливается в '1'. Пользователь может использовать прерывания для проверки окончания записи в EEPROM память данных. Флаг EEIF сбрасывается в '0' программно.

13.5 Проверка записи

Рекомендуется после выполнения операции записи в EEPROM память данных произвести контрольное чтение (см. пример 13-3). Основные ошибки возникают при записи отдельных битов равных 1, чтение будет давать результат 0.

Пример 13-3 Проверка записи

BSF :	STATUS, RP0	; Выбрать банк 1 ; Текст программы
MOVF BSF	EEDATA, W EECON1, RD	, ; Чтение записываемых данных ; Инициализация чтения из EEPROM ; записанных данных
		, ; Проверить, равно значение в регистре W ; и прочитанные данные из EEPROM (EEDATA)?
SUBWF BTFSS GOTO :	EEDATA, W STATUS, Z WRITE_ERR	; ; Результат 0? ; НЕТ, данные записаны неправильно ; ДА, данные записаны правильно ; Продолжение программы

13.6 Защита от случайной записи в EEPROM память данных

Существует несколько условий, когда запись байта в EEPROM память данных не выполняется:

- 1. После сброса по включению питания POR бит WREN = 0.
- 2. Таймер включения питания (в течение 72мс) запрещает запись в EEPROM память данных.
- 3. Обязательная последовательность инициализации записи и бит WREN предотвращают случайную запись.

13.7 Операции с EEPROM памятью при установленном бите защиты

При установке защиты на доступ к EEPROM памяти данных, программа микроконтроллера имеет возможность выполнить запись/чтение EEPROM памяти данных. Доступ закрыт для записи/чтения программатором.

Таблица 13-1 Регистры и биты связанные с работой EEPROM памяти данных

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000
9Ah	EEDATA	Регистр	егистр данных EEPROM								uuuu uuuu
9Bh	EEADR	-	Регистр	адреса ЕЕ	PROM					-xxx xxxx	-uuu uuuu
9Ch	EECON1	-	-	-	-	WRERR	WREN	WR	RD	x000	d000
9Dh	EECON2	Управля	Управляющий регистр 2 EEPROM (физически не реализован)								

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу EEPROM память данных.

14.0 Особенности микроконтроллеров PIC16F62X

В настоящее время, устройства работающие в режиме реального времени часто содержат микроконтроллер как основной элемент схемы. PIC16F62X имеют много усовершенствований повышающие надежность системы, снижающие стоимость устройства и число внешних компонентов. Микроконтроллеры PIC16F62X имеют режимы энергосбережения и возможность защиты кода программы.

Основные достоинства:

- 1. Выбор тактового генератора.
- 2. Сброс:
 - сброс по включению питания (POR);
 - таймер включения питания (PWRT);
 - таймер запуска генератора (OSC);
 - сброс по снижению напряжения питания (BOR).
- 3. Прерывания.
- 4. Сторожевой таймер (WDT).
- 5. Режим энергосбережения (SLEEP).
- 6. Защита кода программы.
- 7. Область памяти для идентификатора.
- 8. Внутрисхемное программирование по последовательному порту (ICSP).

В микроконтроллеры PIC16F62X встроен сторожевой таймер WDT, который может быть выключен только в битах конфигурации микроконтроллера. Для повышения надежности сторожевой таймер WDT имеет собственный RC генератор. Дополнительных два таймера выполняют задержку старта работы микроконтроллера. Первый таймер запуска генератора (OST), удерживает микроконтроллер в состоянии сброса, пока не стабилизируется частота тактового генератора. Второй таймер включения питания (PWRT), срабатывает после включения питания и удерживает микроконтроллер в состоянии сброса в течение 72мс (типовое значение), пока не стабилизируется напряжение питания. Также встроена схема сброса микроконтроллера при снижении напряжения питания, удерживая состояние сброса в течение 72 мс (типовое значение). В большинстве приложений эти функции микроконтроллера позволяют исключить внешние схемы сброса.

Режим SLEEP предназначен для обеспечения сверхнизкого энергопотребления. Микроконтроллер может выйти из режима SLEEP по сигналу внешнего сброса, по переполнению сторожевого таймера или при возникновении прерываний. Выбор режима работы тактового генератора позволяет использовать микроконтроллеры в различных приложениях. Режим тактового генератора ER позволяет уменьшить стоимость устройства, а режим LP снизить энергопотребление. Биты конфигурации микроконтроллера используются для указания режима его работы.

14.1 Биты конфигурации

Биты конфигурации расположены в памяти программ по адресу 2007h, они могут быть запрограммированы в '0' или оставленными в '1'. Заметьте, что адрес 2007h расположен за пределами пользовательской памяти программ. Фактически, к конфигурационному регистру (область памяти 2000h – 3FFFh) можно обратиться только в режиме программирования микроконтроллера.

Слово конфигурации (адрес 2007h)

СР1 СР0 СР1 СР0 CPD LVP BODEN MCLRE FOSC2 -PWRTE WDTE FOSC1 FOSC0 Бит 13 Бит 0

биты 13-10:СР1:СР0: Биты защита памяти программ (2)

Микроконтроллеры с памятью программ 2к

- 11 = защита памяти программ выключена
- 10 = защищена память программ с адресами 0400h-07FFh
- 01 = защищена память программ с адресами 0200h-07FFh
- 00 = защищена память программ с адресами 0000h-07FFh

Микроконтроллеры с памятью программ 1к

- 11 = защита памяти программ выключена
- 10 = защита памяти программ выключена
- 01 = защищена память программ с адресами 0200h-03FFh
- 00 = защищена память программ с адресами 0000h-03FFh
- бит 9: Не реализован: читается как '1'
- бит 8: **СРD:** Бит защиты EEPROM памяти данных (3)
 - 1 = защита памяти данных выключена
 - 0 = защита памяти данных включена
- бит 7: LVP: Бит разрешения низковольтного программирования
 - 1 = вывод RB4/PGM работает как PGM, режим низковольтного программирования включен
 - 0 = вывод RB4/PGM работает как цифровой порт ввода/вывода, вывод HV используется для программирования микроконтроллера
- бит 6: **BODEN:** Бит разрешения сброса по снижению напряжения питания (1)
 - 1 = разрешен сброс BOR
 - 0 = запрещен сброс BOR
- бит 5: MCLRE: Бит выбора режима работы вывода RA5/-MCLR
 - 1 = RA5/-MCLR работает как -MCLR
 - 0 = RA5/-MCLR работает как цифровой порт ввода/вывода, используется внутренний сброс -MCLR
- бит 3: -PWRTE: Бит разрешения работы таймера включения питания (1)
 - 1 = PWRT выключен
 - 0 = PWRT включен
- бит 2: WDTE: Бит разрешения работы сторожевого таймера
 - 1 = WDT включен
 - 0 = WDT выключен
- биты 4,1,0:**FOSC2:FOSC0:** Биты выбора режима тактового генератора (4)
 - 111 = ER генератор: вывод RA6/OSC2/CLKUT работает как CLKOUT, резистор подключается к выводу RA7/OSC1/CLKIN
 - 110 = ER генератор: вывод RA6/OSC2/CLKOUT работает как цифровой порт ввода/вывода, резистор подключается к выводу RA7/OSC1/CLKIN
 - 101 = INTRC генератор: вывод RA6/OSC2/CLKOUT работает как CLKOUT, вывод RA7/OSC1/CLKIN работает как цифровой порт ввода/вывода
 - 100 = INTRC генератор: вывод RA6/OSC2/CLKOUT работает как цифровой порт ввода/вывода, вывод RA7/OSC1/CLKIN работает как цифровой порт ввода/вывода
 - 011 = EC генератор: вывод RA6/OSC2/CLKOUT работает как цифровой порт ввода/вывода, вывод RA7/OSC1/CLKIN работает как CLKIN
 - 010 = HS генератор: высокочастотный резонатор подключается к выводам RA6/OSC2/CLKOUT, RA7/OSC1/CLKIN
 - 001 = XT генератор: резонатор подключается к выводам RA6/OSC2/CLKOUT, RA7/OSC1/CLKIN
 - 000 = LP генератор: резонатор подключается к выводам RA6/OSC2/CLKOUT, RA7/OSC1/CLKIN

Примечания:

- 1. При возникновении сброса по снижению напряжения питания (BOR) автоматически запускается таймер PWRT, независимо от состояния бита -PWRTE.
- 2. Чтобы установить защиту памяти программ, все пары CP1:CP0 должны иметь одинаковое значение.
- 3. После выключения защиты EEPROM памяти данных вся информация будет стерта.
- 4. Когда сигнал MCLR удерживается в активном уровне, внутренний тактовый генератор

14.2 Настройка тактового генератора

14.2.1 Режимы тактового генератора

Микроконтроллеры PIC16F62X могут работать в одном из восьми режимов тактового генератора. Указать режим тактового генератора можно при программировании микроконтроллера в битах конфигурации (FOSC2:FOSC0):

- LP низкочастотный резонатор;
- ХТ обычный резонатор;
- HS высокочастотный резонатор;
- ER внешний резистор (2 режима);
- INTRC внутренняя RC цепочка (2 режима);
- EC внешний тактовый сигнал.

14.2.2 Кварцевый/керамический резонатор

В режимах тактового генератора XT, LP и HS кварцевый или керамический резонатор подключается к выводам OSC1, OSC2 (см. рисунок 14-1). Для микроконтроллеров PIC16F62X нужно использовать резонаторы с параллельным резонансом. Использование резонаторов с последовательным резонансом может привести к получению тактовой частоты не соответствующей параметрам резонатора. В режимах XT, LP и HS микроконтроллер может работать от внешнего источника тактового сигнала OSC1 (см. рисунок 14-2).

Рис. 14-1 Подключение кварцевого/керамического резонатора

Примечание. Для некоторых типов резонаторов может потребоваться последовательно включенный резистор.

Puc. 14-2 Подключение внешнего тактового сигнала в HS, XT и LP режиме тактового генератора

Таблица 14-1 Параметры конденсаторов для керамического резонатора

Taoni	ица 14-1 параме	тры конденсато	оов для керамич	еского резонатора
Режим	Частота	OSC1(C1)	OSC2(C2)	Большая емкость увеличивает стабильность
XT	455 кГц 2.0 МГц 4.0 МГц	22-100пФ 15-68пФ 15-68пФ	22-100пФ 15-68пФ 15-68пФ	генератора, но также увеличивается и время запуска. Значения емкости конденсаторов указанные в таблице являются оценочными, т.к. каждый резонатор имеет
HS	8.0 МГц 16.0 МГц	10-68пФ 10-22пФ	10-68пФ 10-22пФ	собственные характеристики. Проконсультируйтесь у производителя резонаторов для правильного подбора внешних компонентов.

Таблица 14-2 Параметры конденсаторов для кварцевого резонатора

Режим	Частота	OSC1(C1)	OSC2(C2)	Большая емкость увеличивает стабильность
LP	32 кГц 200 кГц	68-150пФ 15-30пФ	68-150пФ 15-30пФ	генератора, но также увеличивается и время запуска. Значения емкости конденсаторов указанные в таблице
XT	100 кГц 2 МГц 4 МГц	68-150пФ 15-30пФ 15-30пФ	68-150пФ 15-30пФ 15-30пФ	являются оценочными. Последовательный резистор Rs может потребоваться в HS и XT режиме для предотвращения возбуждения резонатора на низкой
HS	8 МГц 10 МГц 20 МГц	15-30пФ 15-30пФ 15-30пФ	15-30пФ 15-30пФ 15-30пФ	частоте, т.к. каждый резонатор имеет собственные характеристики. Проконсультируйтесь у производителя резонаторов для правильного подбора внешних компонентов.

14.2.3 Внешний тактовый генератор

В качестве внешнего тактового генератора можно использовать готовый генератор, либо собрать простую схемы с ТТЛ выходом. Качественный кварцевый резонатор обеспечивает высокую эффективность ТТЛ схемы. Существует две основных схемы включения кварцевых резонаторов: с параллельным резонансом, с последовательным резонансом.

На рисунке 14-3 показана типовая схема генератора с параллельным резонансом, предназначенная для работы на основной частоте кварцевого резонатора. Инвертор 74AS04 производит необходимый для параллельного резонанса сдвиг фазы на 180°. Для обеспечения стабильности схемы в отрицательной обратной связи включен резистор 47кОм. Потенциометр 10кОМ предназначен для смещения рабочей точки инвертора в линейную область.

На рисунке 14-4 показана типовая схема генератора с последовательным резонансом, тоже предназначенная для работы на основной частоте кварцевого резонатора. Инверторы выполняют сдвиг фазы на 180°. Резисторы 330кОм создают отрицательную обратную связь для смещения рабочих точек инверторов в линейную область.

14.2.4 Внешний тактовый сигнал

Если в устройстве генерируется тактовый сигнал, он может использоваться для управления PIC16F62X при условии, что внешний тактовый сигнал удовлетворяет требованиям раздела 17.4. На рисунке 14-5 показана схема подключения внешнего источника тактового сигнала.

14.2.5 ER генератор

В приложениях, не требующих высокостабильной тактовой частоты, возможно использовать ER режим генератора уменьшающего стоимость устройства. Для выбора тактовой частоты генератора к выводу CLKIN подключается только один резистор, создающий постоянный ток смещения. На частоту тактового генератора также влияет напряжение питания и температура. Т.к. частота тактового генератора управляется постоянным током, то тип резистора, паразитная емкость и топология проводника не влияют на частоту генератора.

На рисунке 14-6 показана схема подключения резистора к PIC16F62X. Для сопротивления резистора меньше 38кОм частота тактового генератора может быть нестабильна или генерация может прекратиться. Для очень большого сопротивления (больше 1МОм) генератор тактового сигнала становится чувствителен к внешним помехам, токам утечки и влажности. Рекомендуется выбирать сопротивления резисторов от 38кОм до 1МОм.

Рис. 14-6 Схема подключения резистора к PIC16F62X

В разделе «электрические характеристики» приводятся соотношения частоты тактового генератора и рабочей температуры для различных значений R и напряжения питания V_{DD}.

В ER режиме тактового генератора вывод OSC2 может работать как цифровой порт ввода/вывода или выход тактового сигнала F_{OSC}/4 для испытаний (синхронизации).

Ориентировочное значение частоты тактового генератора (V_{DD}=5B @ 25°C)

R	Fosc
40кОм	3708кГц
60кОм	2620кГц
100кОм	1696кГц
220кОм	816кГц

R	Fosc
360кОм	512кГц
470кОм	400кГц
680кОм	284кГц
1МОм	192кГц

14.2.6 Внутренний RC генератор 4МГц

Внутренний тактовый генератор формирует тактовый сигнал с частотой 4МГц (номинальное значение) при напряжении питания V_{DD} =5В и температуре 25°С. Графики зависимости частоты внутреннего RC генератора от температуры и напряжения питания смотрите в разделе «электрические характеристики».

14.2.7 CLKOUT

В микроконтроллерах PIC16F62X на вывод CLKOUT может выдаваться частота тактового сигнала F_{OSC}/4 (устанавливается в битах конфигурации) для испытательных целей или синхронизации внешней логики.

14.3 Программный выбор частоты тактового генератора

Программный выбор частоты тактового генератора доступен в режимах ER или INTRC микроконтроллеров PIC16F62X. Эта особенность позволят динамически переключать частоту тактового генератора между 4МГц и 37кГц. В ER режиме генератора частота будет зависеть от значения внешнего резистора при выборе 4МГц, а при выборе 37кГц значение внешнего резистора не влияет на частоту. Программный выбор частоты тактового генератора подходит для приложений, использующие режим энергосбережения без перехода в режим SLEEP. Бит OSCF в регистре PCON управляет работой тактового генератора (см. раздел 4.2.2.6).

14.4 Сброс

PIC16F62X различает следующие виды сбросов:

- а) сброс по включению питания POR;
- b) сброс по сигналу -MCLR в нормальном режиме работы;
- с) сброс по сигналу -MCLR в SLEEP режиме;
- d) сброс от WDT в нормальном режиме работы;
- e) сброс от WDT в режиме SLEEP;
- f) сброс по снижению напряжения питания BOR.

Некоторые регистры не изменяются после любого вида сброса, но после сброса по включению питания POR они содержат неизвестное значение. Большинство регистров сбрасываются в начальное состояние при сбросах POR, -MCLR и WDT в нормальном режиме, -MCLR в режиме SLEEP. Сброс WDT в SLEEP режиме рассматривается как возобновление нормальной работы и на значение регистров не влияет. Биты -TO и -PD принимают определенные значения при различных видах сброса (см. таблицу 14-4). Программное обеспечение может использовать эти биты для детектирования вида сброса микроконтроллера. Состояние регистров специально назначения после сброса смотрите в таблице 14-7.

Упрощенная структурная схема сброса показана на рисунке 14-7.

На входе -MCLR есть внутренний фильтр, не пропускающий короткие импульсы.

Примечание 1. Отдельный генератор для INTRC/ER режима.

14.5 POR, PWRT, OST, BOD

14.5.1 Сброс по включению питания POR

Интегрированная схема POR удерживает микроконтроллер в состоянии сброса, пока напряжение V_{DD} не достигнет требуемого уровня. Для включения схемы POR необходимо соединить вывод -MCLR с V_{DD} через резистор, не требуя внешней RC цепочки, обычно используемой для сброса. Максимальное время нарастания V_{DD} смотрите в разделе «электрические характеристики». Схема POR не выполняет сброс микроконтроллера при снижении напряжения V_{DD} .

Когда микроконтроллер переходит в режим нормальной работы из состояния сброса, рабочие параметры (напряжение питания, частота, температура и т.д.) должны соответствовать указанным в разделе «электрические характеристики». Если рабочие параметры не удовлетворяют требованиям, микроконтроллер должен находиться в состоянии сброса.

Дополнительную информацию смотрите в документации AN607 «Power-up Trouble Shooting».

14.5.2 Таймер включения питания PWRT

Таймер включения питания обеспечивает задержку в 72мс по сигналу схемы сброса POR или BOD. Таймер включения питания работает от внутреннего RC генератора и удерживает микроконтроллер в состоянии сброса по активному сигналу от PWRT. Задержка PWRT позволяет достигнуть напряжению V_{DD} номинального значения.

Битом -PWRTE в слове конфигурации можно выключить (-PWRTE=1) или включить (-PWRTE=0) таймер включения питания. Время задержки PWRT варьируется в каждом микроконтроллере и зависит от напряжения питания и температуры (см. раздел «электрические характеристики»).

14.5.3 Таймер запуска генератора OST

Таймер запуска генератора обеспечивает задержку в 1024 такта генератора (вход OSC1) после окончания задержки от PWRT. Это гарантирует, что частота кварцевого/керамического резонатора стабилизировалась. Задержка OST включается только в режимах HS, XT и LP тактового генератора после сброса POR или выхода микроконтроллера из режима SLEEP.

14.5.4 Детектор пониженного напряжения питания BOD

В микроконтроллеры PIC16F62X встроена схема детектора снижения напряжения питания. Битом BODEN в слове конфигурации можно выключить (BODEN = 0) или включить (BODEN = 1) детектор снижения напряжения питания. Если напряжение V_{DD} опускается ниже 4.0B (см. параметр D005 V_{BOD} в таблице 17-1) на время больше(или равное) T_{BOD} , произойдет сброс по снижению напряжения питания. Если длительность снижения напряжения питания меньше T_{BOD} , сброс микроконтроллера не произойдет.

При любом виде сброса (POR, -MCLR, WDT и т.д.) микроконтроллер находится в состоянии сброса, пока напряжение V_{DD} не будет выше V_{BOD} . После нормализации напряжения питания микроконтроллер находится в состоянии сброса еще 72мс.

Если напряжение питание V_{DD} стало ниже V_{BOD} во время работы таймера по включению питания, микроконтроллер возвращается в состояние сброса BOR, а таймер инициализируется заново. Каждый переход напряжения питания V_{DD} через границу V_{BOD} инициализирует PWRT, создавая задержку в 72мс. При включении схемы BOD всегда нужно включать таймер PWRT. На рисунки 14-8 показаны типовые ситуации сброса BOR.

14.5.5 Последовательность удержания микроконтроллера в состоянии сброса

При включении питания выполняется следующая последовательность удержание микроконтроллера в состоянии сброса: сброс POR, задержка PWRT, задержка OST. Полное время задержки изменяется в зависимости от режима работы тактового генератора и состояния бита -PWRTE. Например, в режиме ER генератора и при -PWRT=0 задержка будет отсутствовать. На рисунках 14-9, 14-10 и 14-11 показаны последовательности удержания микроконтроллера в состоянии сброса. Удержание микроконтроллера в состоянии сброса происходит после сброса POR. Если сигнал -MCLR удерживается в низком уровне достаточно долго (дольше времени всех задержек), после перехода -MCLR в высокий уровень программа начнет выполняться немедленно (см. рисунок 14-10). Это может быть полезно при одновременном запуске нескольких микроконтроллеров, работающих параллельно.

В таблице 14-6 показано состояние некоторых регистров специального назначения, а в таблице 14-7 состояние всех регистров после сбросов.

14.5.6 Регистр РСОN

Регистр PCON (адрес 8Eh) содержит два бита статуса питания.

Бит 0 – -BOD (детектор пониженного напряжения питания)

Бит -BOD имеет неопределенное значение после сброса POR. Пользователь должен программно установить бит -BOD в '1' и проверять его состояние при возникающих сбросах микроконтроллера. Если -BOD =0, то произошел сброс по снижению напряжения питания (BOR). Бит -BOD не устанавливается в '1' аппаратно и имеет непредсказуемое значение, если детектор пониженного напряжения питания выключен (BODEN=0).

Бит 1 – -POR (сброс по включению питания)

Бит сбрасывается в '0' при возникновении сброса POR. Пользователь должен программно установить этот бит в '1' после сброса по включению питания. При последующих сбросах, если -POR=0, то произошел сброс по включению питания (или напряжение V_{DD} стало слишком низким).

Таблица 14-3 Время задержки при различных видах сброса

Режим	Сбро	c POR	Сброс BOR	Выход из режима
генератора	PWRTE=0	PWRTE=1	сорос вок	SLEEP
XT, HS, LP	72мс + 1024 T _{OSC}	1024 T _{OSC}	72мс + 1024 T _{OSC}	1024 T _{OSC}
ER	72мс	-	72мс	-

Таблица 14-4 Состояние некоторых битов регистров STATUS/PCON

-POR	-BOD	-TO	-PD				
0	Х	1	1	Сброс по включению питания			
0	Х	0	х	Недействительный -TO, если установлен -POR			
0	Х	Х	0	Недействительный -PD, если установлен -POR			
1	0	Х	х	Сброс по снижению напряжения питания			
1	1	0	u	Сброс от WDT			
1	1	0	0	Выход из режима SLEEP от WDT			
1	1	u	u	Сброс -MCLR при нормальном режиме работы			
1	1	1	0	Сброс -MCLR в SLEEP режиме			

Обозначения: и = не изменяется; х = неопределенное значение

Таблица 14-5 Регистры и биты связанные с детектированием сброса микроконтроллера

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
03h	STATUS	IRP	RP1	RP0	-TO	-PD	Z	DC	С	0001 1xxx	000q q000
8Eh	PCON	-	-	-	-	OSCF	-	-POR	-BOD	1-0X	1-uq

Обозначения: - - не используется, читается как 0; и – не изменяется; х – не известно; q – зависит от условий.

Примечания

- 1. Затененные биты не используются при детектировании сброса микроконтроллера.
- 2. Другие сбросы: -MCLR, BOR, переполнение WDT в нормальном режиме работы.

Таблица 14-6 Состояние особых регистров после сброса

Вид сброса	Счетчик команд РС	Регистр STATUS	Регистр PCON
Сброс по включению питания	000h	0001 1xxx	1-0x
Сброс по сигналу -MCLR в нормальном режиме	000h	000u uuuu	1-uu
Сброс по сигналу -MCLR в SLEEP режиме	000h	0001 0uuu	1-uu
Сброс от WDT	000h	0000 uuuu	1-uu
Выход из режима SLEEP от WDT	PC + 1	uuu0 0uuu	u-uu
Сброс по снижению напряжения питания	000h	000x xuuu	1-u0
Выход из режима SLEEP от прерываний	PC + 1 ⁽¹⁾	uuu1 0uuu	u-uu

Обозначения: - - не используется, читается как 0; и – не изменяется; х – не известно.

Примечание 1. При выходе из режима SLEEP по возникновению прерывания, если GIE=1, в счетчик команд PC загружается вектор прерываний (0004h) после выполнения PC+1.

Таблица 14-7 Состояние регистров специального назначения после сброса

таолица 14	-7 COCTOSI	ние регистров специального				
Регистр	Адрес	Сброс по включению питания	- Сброс по сигналу -MCLR в нормальном режиме - Сброс по сигналу -MCLR в SLEEP режиме - Сброс от WDT - Сброс по снижению напряжения питания	- Выход из режима SLEEP от прерываний - Выход из режима SLEEP от WDT		
W	-	xxxx xxxx	uuuu uuuu	uuuu uuuu		
INDF	00h	-	-	-		
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PCL	02h	0000 0000	0000 0000	PC+1 ⁽³⁾		
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾		
FSR	04h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PORTA	05h	xxxx 0000	xxxx 0000	uuuu uuuu		
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
T1CON	10h	00 0000	uu uuuu	uu uuuu		
T2CON	12h	-000 0000	-000 0000	-uuu uuuu		
CCP1CON	17h	00 0000	00 0000	uu uuuu		
RCSTA	18h	0000 000x	0000 000x	uuuu uuuu		
CMCON	1Fh	0000 0000	0000 0000	uuuu uuuu		
PCLATH	0Ah	0 0000	0 0000	u uuuu		
INTCON	0Bh	0000 000x	0000 000u	uuuu uqqq ⁽²⁾		
PIR1	0Ch	0000 -000	0000 -000	uuuu –uuu ^(2,5)		
OPTION	81h	1111 1111	1111 1111	uuuu uuuu		
TRISA	85h	11-1 1111	11-1 1111	uu-u uuu		
TRISB	86h	1111 1111	1111 1111	uuuu uuuu		
PIE1	8Ch	0000 -000	0000 -000	uuuu -uuu		
PCON	8Eh	1-0x	1-uq ^(1,6)	u-uu		
TXSTA	98h	0000 -010	0000 -010	uuuu -uuu		
EECON1	9Ch	x000	d000	uuuu		
VRCON	9Fh	000- 0000	000- 0000	uuu- uuuu		
06						

Обозначения: - - не используется, читается как 0; и – не изменяется; х – не известно; q – зависит от условий.

Примечания:

- 1. Если напряжение V_{DD} будет слишком низкое, то возникнет сброс по включению питания POR и регистры будут инициализированы иначе.
- Один или несколько битов INTCON, PIR1 будут изменены при выходе из режима SLEEP.
 Если бит GIE=1 при выходе из режима SLEEP, в счетчик команд будет загружен вектор прерываний (0004h).
- 4. Смотрите в таблице 14-6 состояние битов регистра STATUS.
- 5. Если выход из режима SLEEP возник по изменению уровня на выходе компаратора, бит 6 = 1, иначе бит 6 = u.
- 6. Если произошел сброс по снижению напряжения питания, то бит 0 = 0, иначе бит 0 = u.

Puc. 14-12 Схема внешнего сброса по включению питания (для медленного нарастания напряжения питания)

Примечания:

- Схема внешнего сброса требуется только, если очень большое время нарастания напряжения питания. Диод D предназначен для быстрой разрядки конденсатора при снижении напряжения питания.
- 2. Сопротивление резистора R рекомендуется выбирать меньше 40кОм.
- 3. Резистор R1 от 100Ом до 1кОм ограничивает ток вывода MCLR в случае его разрушения от электростатического разряда (ESD) или перенапряжения (EOS).

Рис. 14-13 Схема внешнего сброса по снижению напряжения питания (1 вариант)

Примечания:

- 1. Эта схема будет сбрасывать микроконтроллер, когда V_{DD} будет ниже V_Z + 0.7B, где V_Z -напряжение стабилизации стабилитрона.
- 2. Внутренняя схема сброса по снижению напряжения питания должна быть выключена.

Рис. 14-14 Схема внешнего сброса по снижению напряжения питания (2 вариант)

Примечания:

1. Недорогая схема сброса, но менее точная по сравнению с 1 вариантом. Транзистор Q1 закрывается, когда напряжение питания ниже определенного порога.

$$Vdd \bullet \frac{R1}{R1 + R2} = 0.7$$

- 2. Внутренняя схема сброса по снижению напряжения питания должна быть выключена.
- 3. Номиналы резисторов должны быть выбраны с учетом типа транзистора.

14.6 Прерывания

PIC16F62X имеют 10 источников прерываний:

- внешнее прерывание с входа RB0/INT;
- прерывание по переполнению TMR0;
- прерывание по изменению уровня сигнала на входах RB7:RB4;
- прерывание от модуля компараторов;
- прерывания от USART;
- прерывания от ССР;
- прерывание по переполнению TMR1;
- прерывание от TMR2.

Регистр INTCON содержит флаги отдельных прерываний, биты разрешения этих прерываний и бит глобального разрешения прерываний.

Если бит GIE (INTCON<7>) установлен в '1', разрешены все немаскированные прерывания. Если GIE=0, то все прерывания запрещены. Каждое прерывание в отдельности может быть разрешено/запрещено установкой/сбросом соответствующего бита в регистрах INTCON и РІЕ1. При сбросе микроконтроллера бит GIE сбрасывается в '0'.

При возвращении из подпрограммы обработки прерывания, по команде RETFIE, бит GIE аппаратно устанавливается в '1' разрешая все немаскированные прерывания.

В регистре INTCON находятся флаги следующих прерываний: внешнего сигнала INT, изменения уровня сигнала на входах RB7:RB4, переполнения TMR0.

В регистре PIR1 содержатся флаги прерываний периферийных модулей микроконтроллера, а в регистре PIE1 соответствующие биты разрешения прерываний.

При переходе на подпрограмму обработки прерываний бит GIE аппаратно сбрасывается в '0' запрещая прерывания, адрес возврата из подпрограммы обработки прерываний помещается в стек, а в счетчик команд РС загружается вектор прерывания 0004h. Источник прерываний может быть определен проверкой флагов прерываний, которые должны быть сброшены программно перед разрешением прерываний, чтобы избежать повторного вызова.

Для внешних источников прерываний (сигнал INT, изменения уровня сигнала на входах RB7:RB4) время перехода на подпрограмму обработки прерываний будет составлять 3-4 машинных цикла. Точное время перехода зависит от конкретного случая (см. рисунок 14-16), оно одинаково для 1 и 2-х цикловых команд. Флаги прерываний устанавливаются независимо от состояния соответствующих битов маски и бита GIE.

Примечания:

- Индивидуальные флаги прерываний устанавливаются независимо ΩТ СОСТОЯНИЯ соответствующих битов маски и бита GIE.
- Если выполнена команда, сбрасывающая бит GIE в '0', то любое прерывание, ожидаемое выполнения в следующем машинном цикле, игнорируется. Микроконтроллер выполнит пустой цикл NOP следом за командой сброса бита GIE. Прерывание будет ожидать установку бита GIE B'1'.

14.6.1 Внешнее прерывание с входа RB0/INT

Внешнее прерывание с входа RB0/INT происходит: по переднему фронту сигнала, если бит INTEDG (OPTION<6>) установлен в '1'; по заднему фронту сигнала, если бит INTEDG сброшен в '0'. Когда активный фронт сигнала появляется на входе RB0/INT, бит INTF (INTCON<1>) устанавливается в '1'. Прерывание может быть запрещено сбросом бита INTE (INTCON<4>) в '0'. Флаг прерывания INTF должен быть сброшен программно в подпрограмме обработки прерываний. Прерывание INT может вывести микроконтроллер из режима SLEEP, если бит INTE=1 до перехода в режим SLEEP. Состояние бита GIE определяет: переходить ли на подпрограмму обработки прерываний после выхода из режима SLEEP. На рисунке 14-18 показана временная диаграмма выхода микроконтроллера из режима SLEEP по прерыванию с входа RB0/INT.

14.6.2 Прерывание по переполнению TMR0

Переполнение таймера TMR0 (FFh \rightarrow 00h) устанавливает флаг T0IF (INTCON<2>) в '1'. Прерывание от TMR0 можно разрешить/запретить установкой/сбросом бита T0IE(INTCON<5>). Описание работы модуля TMR0 смотрите в разделе 6.0.

14.6.3 Прерывание по изменению уровня сигнала на входах RB7:RB4

Изменение уровня сигнала на входах RB7:RB4 вызывает установку флага RBIF(INTCON<0>). Прерывание можно разрешить/запретить установкой/сбросом бита RBIE(INTCON<4>). Описание работы PORTB смотрите в разделе 5.2.

Примечание. Если изменение сигнала на входе RB7:RB4 происходит на начале цикла Q2 чтения PORTB, флаг RBIF в '1' может не устанавливается.

Примечания:

- 1. Флаг INTF проверяется в такте Q1.
- 2. Время переход на обработку прерываний: не синхронизированный сигнал 3-4T_{CY}; синхронизированный сигнал 3T_{CY}. Время перехода не зависит от выполняемой инструкции (одно или двух цикловая команда).
- 3. CLKOUT доступен только в ER и INTRC режиме генератора.
- 4. Минимальную длительность импульса INT смотрите в разделе электрические характеристики.
- 5. Флаг INTF может быть установлен в любой момент.

Таблица 14-8 Регистры и биты связанные с обработкой прерываний

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	-	CCP1F	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	-	CCP1E	TMR2IE	TMR1IE	0000 -000	0000 -000

Обозначения: - - не используется, читается как 0; u — не изменяется; x — не известно; q — зависит от условий. *Примечания*

- 1. Затененные биты не используются при обработке прерываний.
- 2. Другие сбросы: -MCLR, BOR, переполнение WDT в нормальном режиме работы.

14.7 Сохранение контекста при обработке прерываний

При переходе на подпрограмму обработки прерываний в стеке сохраняется только адрес возврата. Как правило, необходимо сохранять значения ключевых регистров при обработки прерываний (например, регистр W и STATUS), что выполняется программным способом. В примере 14-1 показано сохранение и восстановление регистров STATUS и W. Регистр W_TEMP должен располагаться в области памяти, доступной во всех банках (70h-7Fh). Регистр STATUS_TEMP размещается в банке 0. Последовательность операций в примере 14-1:

- сохранить регистр W;
- сохранить регистр STATUS в банке памяти 0;
- выполнить код обработки прерываний;
- восстановить регистр STATUS (с восстановлением текущего банка);
- восстановить регистр W.

Пример 14-1 Сохранение и восстановление регистров STATUS и W

MOVWF	W_TEMP	;Сохранить W в регистре ;текущего банка
SWAPF CLRF	STATUS,W STATUS	;Обменять местами полубайты и сохранить в W ;Выбрать банк 0
MOVWF	STATUS_TEMP	;Coxpанить регистр STATUS
:		; Код программы обработки прерываний
SWAPF	STATUS_TEMP,W	;Прочитать регистр STATUS_TEMP
MOVWF	STATUS	;в W, восстанавливая банк памяти программ :Переписать W в регистр STATUS
SWAPF	W TEMP,F	; Обменять местами полубайты в W TEMP
SWAPF	W_TEMP,W	; Обменять местами полубайты в W_TEMP и записать в W

В конкретных приложениях может потребоваться сохранять и другие специальные регистры (например, FSR, PCLATH).

14.8 Сторожевой таймер WDT

Встроенный сторожевой таймер WDT работает от отдельного RC генератора, не требующего внешних компонентов. Это позволяет работать сторожевому таймеру WDT при выключенном тактовом генератора (выводы OSC1, OSC2) в SLEEP режиме микроконтроллера. В нормальном режиме работы при переполнении WDT происходит сброс микроконтроллера. Если микроконтроллер находится в SLEEP режиме, переполнение WDT выводит его из режима SLEEP с продолжением нормальной работы. WDT выключен, если WDTE = 0 в слове конфигурации.

14.8.1 Период WDT

WDT имеет номинальное время переполнения 18мс (без предделителя). Время переполнения зависит от температуры, напряжения питания V_{DD} и разброса технологических параметров микроконтроллера (см. раздел "электрические характеристики"). Если требуется большее время переполнения WDT, необходимо программно подключить предделитель в регистре OPTION с максимальным коэффициентом деления 1:128. С включенным предделителем время переполнения может достигать 2.3с.

Команды CLRWDT и SLEEP сбрасывают сторожевой таймер и предделитель, если он подключен к WDT, откладывая сброс устройства. В регистре STATUS бит -TO=0, если произошел сброс по переполнению WDT.

14.8.2 Рекомендации по работе с WDT

Даже в самих плохих условиях работы требуется несколько секунд для переполнения WDT (минимальное напряжение питания V_{DD} , максимальная температура, максимальный коэффициент предделителя подключенного к WDT).

Примечание. Биты PSA, PS2:PS0 находятся в регистре OPTION.

Таблица 14-9 Регистры и биты связанные с работой WDT

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
2007h	Слово конф.	LVP	BOREN	MCLRE	FOSC2	-PWRTE	WDTE	FOSC1	FOSC0	uuuu uuuu	uuuu uuuu
03h	STATUS	IRP	RP1	RP0	-TO	-PD	Z	DC	С	0001 1xxx	000q q000
81h	OPTION	-RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Обозначения: - - не используется, читается как 0; u – не изменяется; x – не известно; q – зависит от условий. *Примечание.* Затененные биты не влияют на работу WDT.

14.9 Режим энергосбережения SLEEP

Переход в режим энергосбережения происходит по команде SLEEP. При переходе в режим SLEEP сторожевой таймер WDT сбрасывается, но продолжает работать. В регистре STATUS бит -TO сбрасывается в '0', бит -PD устанавливается в '1', тактовый генератор микроконтроллера выключен. Порты ввода/вывода остаются в том же состоянии, что и до выполнения команды SLEEP (высокий уровень, низкий уровень, третье состояние). Для снижения энергопотребления в SLEEP режиме все каналы ввода/вывода должны быть подключены к V_{DD} или V_{SS} при отсутствии токов из внешней схемы через выводы портов, выходы модуля компараторов и источника опорного напряжения выключены. Выводы находящиеся в третьем состоянии должны иметь высокий или низкий уровень сигнала, чтобы избежать токов переключения входных буферов. Вход T0CKI должен быть подключен к V_{DD} или V_{SS} для снижения энергопотребления. Должны учитываться внутренние подтягивающие резисторы, включенные на входах PORTB. На входе -MCLR должен быть высокий уровень сигнала.

Примечание. Сброс сгенерированный при переполнении WDT не переводит сигнал на входе -MCLR в низкий логический уровень.

14.9.1 Выход из режима SLEEP

Микроконтроллер выйдет из режима SLEEP по одному из следующих событий:

- 1. внешний сброс по сигналу на входе -MCLR;
- 2. переполнение сторожевого таймера WDT (если он разрешен);
- 3. периферийное прерывание (по сигналу INT, изменение уровня сигнала на входах RB7:RB4 и др.).

Внешний сброс по сигналу -MCLR вызывает сброс микроконтроллера. Два других события вызывают продолжение выполнения программы.

Биты -TO и -PD в регистре STATUS могут использоваться для определения причины сброса микроконтроллера. Бит -PD сбрасывается в '0' при переходе в режим SLEEP. Бит -TO сбрасывается в '0', если произошло переполнение WDT.

При выполнении команды SLEEP происходит предвыборка следующей (PC+1). Если прерывание должно выводить микроконтроллер из режима SLEEP, соответствующий бит разрешения прерывания устанавливается в '1'. Микроконтроллер выходит из режима SLEEP независимо от состояния бита GIE. Если GIE=0, выполняется следующая инструкция после SLEEP без перехода по вектору прерываний. Если GIE=1, исполняется следующая инструкция после SLEEP и происходит переход на подпрограмму обработки прерываний (адрес 0004h). Когда выполнение какой-либо команды при выходе из режима SLEEP нежелательно, необходимо поле команды SLEEP использовать инструкцию NOP.

Примечание. Если выполнена команда, сбрасывающая бит GIE в '0', то любое прерывание ожидаемое выполнения в следующем машинном цикле игнорируется. Микроконтроллер выполнит пустой цикл NOP следом за командой сброса бита GIE. Прерывание будет ожидать установку бита GIE в'1'.

При выходе из режима SLEEP сторожевой таймер WDT сбрасывается, независимо от источника "пробуждения".

Примечания:

- 1. Режим генератора XT, HS или LP.
- 2. T_{OST} = 1024 T_{OSC} (не масштабный рисунок). Приблизительное время задержки для ER режима генератора 1 мс.
- 3. Предполагается, что GIE=1. После выхода из режима SLEEP произойдет переход по вектору прерывания.
- 4. CLKOUT не доступен для этих режимов генератора, но показан для пояснения диаграммы.

14.10 Защита кода программы

Если защита кода программы (EEPROM памяти данных) не была включена, то память программ (EEPROM память данных) может быть прочитана для проверки программирования.

Примечание. При выключении защиты память программ и EEPROM память данных будет полностью стерта, кроме калибровочной информации внутреннего генератора INTRC.

14.11 Размещение идентификатора ID

Четыре ячейки памяти программ (2000h-2003h) предназначены для размещения идентификатора, которые могут использоваться для сохранения контрольной суммы или другой информации. Эти ячейки недоступны программе микроконтроллера, но могут быть прочитаны и изменены при программировании. Используются только 4 младших бита каждой ячейки.

14.12 Внутрисхемное программирование ICSP

Puc. 14-9 Типовая схема включения микроконтроллера для внутрисхемного программирования

PIC16F62X Микроконтроллеры могут быть запрограммированы по последовательному интерфейсу в готовом изделии. Программирование выполняется по двум линиям последовательно интерфейса (данные, синхронизация) и трем дополнительным линиям: напряжение питания, общий провод, напряжение программирования. Это позволяет изготавливать платы С He запрограммированными микроконтроллерами, а затем загружать в них программу перед поставкой изделия. Данная функция также позволяет обновлять программное обеспечение микроконтроллеров.

Микроконтроллер переходит в режим программирования/проверки при удержании на выводах RB6, RB7 низкого уровня во время перехода сигнала на входе -MCLR от $V_{\rm IL}$ к $V_{\rm IHH}$ (см. спецификацию программирования микроконтроллера). После этого RB6 становится тактовым входом, RB7 входом данных. Оба вывода имеют входные триггеры Шмидта.

После перехода в режим программирования/проверки (счетчик команд РС сбрасывается в 000h) можно передать 6-разрядную команду. В зависимости от типа команды можно записать/прочитать 14-разрядные данные из микроконтроллера.

Дополнительную информацию смотрите в спецификации программирования. На рисунке 14-19 показана типовая схема включения микроконтроллера для внутрисхемного программирования.

14.13 Режим низковольтного программирования

Бит LVP в слове конфигурации используется для разрешения режима низковольтного программирования. Этот режим позволяет запрограммировать микроконтроллер по интерфейсу ICSP при одном источники питания +5В (не требуется подавать напряжение V_{IHH} на вывод -MCLR). По умолчанию LVP=1, разрешая низковольтное программирование. При этом вывод RB4/PGH используется для низковольтного программирования и перестает быть цифровым портом ввода/вывода. Микроконтроллер переходит в режим программирования, когда на выводе RB4/PGM высокий уровень сигнала. Режим стандартного программирования по прежнему доступен (когда на выводе -MCLR напряжение V_{IHH}).

Примечания:

- 1. В режиме низковольтного программирования вывод RB4/PGM не может использоваться как цифровой порт ввода/вывода.
- 2. Напряжение питания V_{DD} должно быть $+5B\pm10\%$ в течение всего процесса программирования/проверки.

Если режим низковольтного программирования не используется, бит LVP должен быть сброшен в '0', вывод RB4/PGM становится цифровым портом ввода/вывода. Бит LVP может быть изменен только в стандартном режиме программирования (когда на выводе -MCLR напряжение V_{IHH}). Когда бит LVP=0, возможен только стандартный режим программирования/проверки микроконтроллера.

15.0 Система команд

Каждая команда микроконтроллеров PIC16F62X состоит из одного 14-разрядного слова, разделенного на код операции (OPCODE), определяющий тип команды и один или несколько операндов, определяющие операцию команды. Полный список команд смотрите в таблице 15-2. Команды разделены на следующие группы: байт ориентированные команды, бит ориентированные команды управления и операций с константами. Описание полей кода операции смотрите в таблице 15-1.

Для байт ориентированных команд 'f' является указателем регистра, а 'd' указателем адресата результата. Указатель регистра определяет, какой регистр должен использоваться в команде. Указатель адресата определяет, где будет сохранен результат. Если 'd'=0, результат сохраняется в регистре W. Если 'd'=1, результат сохраняется в регистре, который используется в команде.

В бит ориентированных командах 'b' определяет номер бита участвующего в операции, а 'f' - указатель регистра, который содержит этот бит.

В командах управления или операциях с константами 'k' представляет восемь или одиннадцать бит константы или значения литералов.

Система команд аккумуляторного типа, ортогональна и разделена на три основных группы:

- байт ориентированные команды;
- бит ориентированные команды;
- команды управления и операций с константами.

Все команды выполняются за один машинный цикл, кроме команд условия, в которых получен ложный результат и инструкций изменяющих значение счетчика команд PC. В случае выполнения команды за два машинных цикла, во втором цикле выполняется инструкция NOP. Один машинный цикл состоит из четырех тактов генератора. Для тактового генератора с частотой 4 МГц все команды выполняются за 1мкс, если условие истинно или изменяется счетчик команд PC, команда выполняется за 2мкс.

Мнемоника команд, поддерживаемая ассемблером MPASM, показана в таблице 15-2. На рисунке 15-1 показан форма команд трех основных групп.

Примечание. Для совместимости программного обеспечения со следующими версиями микроконтроллеров PICmicro не используйте команды TRIS и OPTION.

Во всех примерах используется следующий формат шестнадцатеричных чисел: 0xhh, где h - шестнадцатеричная цифра.

Таблица 15-1 Описание полей кода операции

Поле	Описание				
f	Адрес регистра (от 0х00 до 0х7F)				
W	Рабочий регистр (аккумулятор)				
b	Номер бита в 8-разрядном регистре				
k	Константа (данные или метка)				
Х	Не имеет значения (0 или 1). Ассемблер				
	генерирует х=0 для совместимости				
	программы микроконтроллера с				
	инструментальными средствами				
d	Указатель адресата результата операции:				
	d = 0 - результат сохраняется в регистре w				
	d = 1 - результат сохраняется в регистре f				
	По умолчанию d = 1				
label	Имя метки				
TOS	Вершина стека				
PC	Счетчик команд				
PCLATH	Буфер старшего байта счетчика команд				
GIE	Бит глобального разрешения прерываний				
WDT	Сторожевой таймер				
-TO	Флаг переполнения WDT				
-PD	Флаг сброса по включению питания				
dest	Приемник, регистр w или регистр памяти				
[]	Дополнительные параметры				
()	Содержимое				
\rightarrow	Присвоение				
<>	Битовое поле				
€	Из набора				
Курсив	Термин, определяемый пользователем				

Рис 15-1 Форма команд трех основных групп

Таблица 15-2 Список команд микроконтроллеров PIC16F62X

Мнемоника		Описание		14-разрядный код		Изм.	_
команды				Бит 13	Бит 0	флаги	Прим.
Байт орие	нтиров	анные команды		•		1	
ADDWF	f,d	Сложение W и f	1	00 0111 dfff	ffff	C,DC,Z	1,2
ANDWF	f,d	Побитное 'И' W и f	1	00 0101 dfff		Z	1,2
CLRF	f	Очистить f	1	00 0001 1fff	ffff	Ζ	2
CLRW	-	Очистить W	1	00 0001 0000	0011	Ζ	
COMF	f,d	Инвертировать f	1	00 1001 dfff	ffff	Z	1,2
DECF	f,d	Вычесть 1 из f	1	00 0011 dfff	ffff	Ζ	1,2
DECFSZ	f,d	Вычесть 1 из f и пропустить если 0	1(2)	00 1011 dfff	ffff		1,2,3
INCF	f,d	Прибавить 1 к f	1	00 1010 dfff	ffff	Z	1,2
INCFSZ	f,d	Прибавить 1 к f и пропустить если 0	1(2)	00 1111 dfff	ffff		1,2,3
IORWF	f,d	Побитное 'ИЛИ' W и f	1	00 0100 dfff	ffff	Z	1,2
MOVF	f,d	Переслать f	1	00 1000 dfff		Z	1,2
MOVWF	f	Переслать W в f	1	00 0000 1fff			
NOP	-	Нет операции	1	00 0000 0xx0	0000		
RLF	f,d	Циклический сдвиг f влево через перенос	1		ffff	С	1,2
RRF	f,d	Циклический сдвиг f вправо через перенос	1	00 1100 dfff	ffff	С	1,2
SUBWF	f,d	Вычесть W из f	1	00 0010 dfff		C,DC,Z	1,2
SWAPF	f,d	Поменять местами полубайты в регистре f	1	00 1110 dfff	ffff		1,2
XORWF	f,d	Побитное 'исключающее ИЛИ' W и f	1	00 0110 dfff	ffff	Z	1,2
	тирова	нные команды					
BCF	f,b	Очистить бит b в регистре f	1	01 00bb bfff	ffff		1,2
BSF	f,b	Установить бит b в регистре f	1	01 01bb bfff	ffff		1,2
BTFSC	f,b	Проверить бит b в регистре f, пропустить если 0	1(2)	01 10bb bfff	ffff		3
BTFSS	f,b	Проверить бит b в регистре f, пропустить если 1	1(2)	01 11bb bfff	ffff		3
	/правл	ения и операций с константами					
ADDLW	k	Сложить константу с W	1	11 111x kkkk	kkkk	C,DC,Z	
ANDLW	k	Побитное 'И' константы и W	1	11 1001 kkkk	kkkk	Z	
CALL	k	Вызов подпрограммы	2	10 0kkk kkkk			
CLRWDT	-	Очистить WDT	1	00 0000 0110		-TO,-PD	
GOTO	k	Безусловный переход	2	10 1kkk kkkk			
IORLW	k	Побитное 'ИЛИ' константы и W	1	11 1000 kkkk		Z	
MOVLW	k	Переслать константу в W	1	11 00xx kkkk	kkkk		
RETFIE	-	Возврат из подпрограммы с разрешением прерываний	2	00 0000 0000	1001		
RETLW	k	Возврат из подпрограммы с загрузкой константы в W	2	11 01xx kkkk	kkkk		
RETURN	-	Возврат из подпрограммы	2	00 0000 0000			
SLEEP	-	Перейти в режим SLEEP	1	00 0000 0110	0011	-TO,-PD	
SUBLW	k	Вычесть W из константы	1	11 110x kkkk	kkkk	C,DC,Z	
XORLW	k	Побитное 'исключающее ИЛИ' константы и W	1	11 1010 kkkk	kkkk	Z	

Примечания:

- 1. При выполнении операции "чтение модификация запись" с портом ввода/вывода исходные значения считываются с выводов порта, а не из выходных защелок. Например, если в выходной защелке было записана '1', а на соответствующем выходе низкий уровень сигнала, то обратно будет записано значение '0'.
- 2. При выполнении записи в TMR0 (и d=1) предделитель TMR0 сбрасывается, если он подключен к модулю TMR0.
- 3. Если условие истинно или изменяется значение счетчика команд PC, то инструкция выполняется за два цикла. Во втором цикле выполняется команда NOP.

15.1 Подробное описание команд

ADDLW	Сложить константу с W							
Синтаксис:	[/abe/] ADDLW k							
Операнды:	0 ≤ k ≤ 255							
Операция:	$(W) + k \rightarrow (W)$							
Измен. флаги:	C, DC, Z							
Код:	11 111x kkkk kkkk							
Описание:	Содержимое регистра W складывается с 8-разрядной константой 'k'. Результат сохраняется в регистре W.							
Слов:	1							
Циклов:	1							
Пример:	ADDLW 0x15							
	До выполнения команды							
	W = 0x10							
	После выполнения команды							
	W = 0x25							
ADDIAG	Casusanus W f							
ADDWF	Сложение W и f							
Синтаксис:	[/abe/] ADDWF f,d 0 ≤ f ≤ 127							
Операнды:	$d \in [0,1]$							
Операция:	$(W) + (f) \rightarrow (dest)$							
Измен. флаги:	C, DC, Z							
Код:	00 0111 dfff ffff							
Описание:	Сложить содержимое регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.							
Слов:	1							
Циклов:	1							
Пример:	ADDWF FSR,0							
	До выполнения команды							
	W = 0x17 FSR = 0xC2							
	После выполнения команды							
	W = 0xD9 $FSR = 0xC2$							
ANDLW	Побитное 'И' константы и W							
Синтаксис:	[/abe/] ANDLW k							
Операнды:	0 ≤ k ≤ 255							
	(W) .AND. $k \rightarrow (W)$							
Операция:	(W) .AND. $k \rightarrow (W)$							
Операция: Измен. флаги:	(W) .AND. $k \rightarrow (W)$							
•	·							
Измен. флаги:	Z 11 1001 kkkk kkkk Выполняется побитное 'И' содержимого регистра W и							
Измен. флаги: Код:	Z 11 1001 kkkk kkkk							
Измен. флаги: Код:	Z 11 1001 kkkk kkkk Выполняется побитное 'И' содержимого регистра W и 8-разрядной константы 'k'. Результат сохраняется в							

ANDLW

0x5F

W = 0xA3

W = 0x03

До выполнения команды

После выполнения команды

Циклов: Пример:

ANDWF	Побитное 'И' W и f						
Синтаксис:	[/abe/] ANDWF f,d						
Операнды:	$0 \le f \le 127$ $d \in [0,1]$						
Операция:	G(V) (W) .AND. $G(V)$ (dest)						
Измен. флаги:	Z						
Код:	00	0101	dfff	ffff			
Описание:	Выполняется побитное 'И' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.						
Слов:	1						
Циклов:	1						
Пример:	ANDWF FSR,1						
	До выполнени	ия команды W = 0x17 FSR = 0xC2 нения команды W = 0x17 FSR = 0x02					
BCF	Очистить би	т b в регистре 1	F				
Синтаксис:	[label] BC	CF f,b					
Операнды:	$0 \le f \le 127$ $0 \le b \le 7$						
Операция:	$0 \rightarrow (f < b >)$						
Измен. флаги:	Нет						
Код:	01	00bb	bfff	ffff			
Описание:	Очистить бит	'b' в регистре 'f'					
Слов:	1						
Циклов:	1						
Пример:	BCF FLAG_REG,7						
		FLAG_REG = 0	xC7				
	После выполнения команды						
		FLAG_REG = 0	x47				
BSF	Установить б	бит b в регистр	e f				
Синтаксис:	[label] BS	SF f,b					
Операнды:	$0 \leq f \leq 127$						
-	$0 \le b \le 7$						
Операция:	1 → (f)						
Измен. флаги:	Нет	1		Π			
Код:	01	01bb	bfff	ffff			
Описание:	Установить бит 'b' в регистре 'f'.						
Слов:	1						
Циклов:	1						
Пример:	BSF FLAG_REG,7						
	До выполнения команды						
	FLAG_REG = 0x0A						
	После выполнения команды						
	FLAG_REG = 0x8A						

BTFSC	Проверить бит b в регистре f, пропустить если 0				
Синтаксис:	[label] B	TFSC f	,b		
Операнды:	$0 \le f \le 127$ $0 \le b \le 7$				
Операция:	пропустить е	если (f) = 0			
Измен. флаги:	Нет				
Код:	01	10bb	bfff	ffff	
Описание:	следующая и Если бит 'b' в инструкция н	инструкция. в регистре 'f' ра не выполняется	авен '1' , то испол авен '0' , то следу а, команда выпол полняется NOP.	ющая	
Слов:	1				
Циклов:	1(2)				
Пример:	HERE	BTFSC	FLAG,1		
	FALSE	GOTO	PROCESS_COD	E	
	TRUE	•			
		•			
	До выполнения команды				
	PC = адрес HERE				
	После выполнения команды Если FLAG<1> = 0, PC = адрес TRUE Если FLAG<1> = 1, PC = адрес FALSE				

BTFSS	Проверить б	ит b в регистре	e f, пропустить	если 1
Синтаксис:	[label] B1	TFSS f,b		
Операнды:	$0 \le f \le 127$ $0 \le b \le 7$			
Операция:	пропустить ес	сли (f) = 1		
Измен. флаги:	Нет			
Код:	01	11bb	bfff	ffff
Описание:	следующая и Если бит 'b' в инструкция не	регистре 'f' рав нструкция. регистре 'f' рав в выполняется, ром цикле выпо	ен '1' , то следу команда выпол	ющая
Слов:	цикла. во вто 1	ром цикле выпс	лияется пог.	
Циклов:	1(2)			
Пример:	HERE	BTFSS F	LAG,1	
	FALSE	GOTO F	PROCESS_COD	E
	TRUE	•		
		•		
	До выполнения команды			
	PC = адрес HERE			
	После выполнения команды			
	Если FLAG<1> = 0, PC = адрес FALSE Если FLAG<1> = 1, PC = адрес TRUE			

CALL	Вызов подпрограммы					
Синтаксис:	[/abe/] CA	ALL k				
Операнды:	$0 \le k \le 2047$					
Операция:	$(PC) + 1 \rightarrow TC$ $k \rightarrow PC < 10:0 > (PCLATH < 4:3)$	•	>			
Измен. флаги:	Нет	,				
Код:	10	0kkk	kkkk	Kkkk		
Описание:	Вызов подпрограммы. Адрес следующей инструкции (PC+1) помещается в вершину стека. Одиннадцать бит адреса загружаются из кода команды в счетчик команд PC<10:0>. Два старших бита загружаются в счетчик команд PC<12:11> из регистра PCLATH. Команда CALL выполняется за два цикла.					
Слов:	1					
Циклов:	2					
Пример:	HERE	CALL	THERE			
	До выполнения команды					
	PC = адрес HERE					
	После выполнения команды PC = адрес THERE TOS = адрес HERE + 1					

CLRF Очистить f

Синтаксис:	[label] Cl	LRF f		
Операнды:	$0 \le f \le 127$			
Операция:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$			
Измен. флаги:	Z			
Код:	00	0001	1fff	ffff
Описание:	Очистить сод	ержимое регист	ра 'f' и установі	ить флаг Z
Слов:	1			
Циклов:	1			
Пример:	CLRF	FLAG_REG		
	До выполнения команды			

 $FLAG_REG = 0x5A$

После выполнения команды

 $FLAG_REG = 0x00$

Z = 1

CLRW	Очистить W
Синтаксис:	[label] CLRW
Операнды:	Нет
Операция:	$00h \rightarrow (W)$ $1 \rightarrow Z$
Измен. флаги:	Z
Код:	00 0001 0xxx xxxx
Описание:	Очистить содержимое регистра W и установить флаг Z
Слов:	1
Циклов:	1
Пример:	CLRW
	До выполнения команды
	W = 0x5A
	После выполнения команды W = 0x00 Z = 1
OLDWDT	O WDT

CLRWDT	Очистить WD	T			
Синтаксис:	[label] CL	RWDT		_	
Операнды:	Нет				
Операция:	$00h o WDT, \ 00h o предделитель WDT, \ 1 o -TO \ 1 o -PD$				
Измен. флаги:	-TO, -PD				
Код:	0.0	0000	0110	0100	
Описание:	если он подкл	LRWDT сбрасы ючен к WDT. В т биты -TO и -Р	регистре STAT		
Слов:	1				
Циклов:	1				
Пример:	CLRWDT				
	До выполнени	ія команды			
		Счетчик WDT =	?		
	После выполн	нения команды Счетчик WDT =	0		

		- PD = 1		
COMF	Инвертирова	ть f		
Синтаксис:	[label] CC	OMF f,d		
Операнды:	$0 \le f \le 127$ d $\in [0,1]$			
Операция:	$(-f) \rightarrow (dest)$			
Измен. флаги:	Z			
Код:	0.0	1101	dfff	ffff

-TO = 1

Предделитель WDT = 0

	Инвертироват	ъ все биты в ре	гистре 'f'. Если	d=0,
Описание:	результат сох	раняется в реги	істре W. Если d	=1, результат

сохраняется в регистре 'f'.

 Слов:
 1

 Циклов:
 1

Пример: COMF REG1,0

До выполнения команды

REG1 = 0x13

После выполнения команды REG1 = 0x13

W = 0xEC

DECF	Вычесть 1 из f
Синтаксис:	[/abe/] DECF f,d
Операнды:	$0 \le f \le 127$ $d \in [0,1]$
Операция:	(f) - 1 \rightarrow (dest)
Измен. флаги:	Z
Код:	00 0011 dfff ffff
Описание:	Декрементировать содержимое регистра 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.
Слов:	1
Циклов:	1
Пример:	DECF CNT,1
	До выполнения команды CNT = 0x01 Z = 0
	После выполнения команды CNT = 0x00 Z = 1

DECFSZ Вычесть 1 из f и пропустить если 0

	BBI 1001B 1 7	этипропусти	15 00,111 0	
Синтаксис:	[label] D	ECFSZ f,d	d	
Операнды:	0 ≤ f ≤ 127			
	d ∈ [0,1]			
Операция:	(f) - 1 \rightarrow (desi	і); пропустить е	сли результат ра	авен 0
Измен. флаги:	Нет			
Код:	0.0	1011	dfff	ffff
Описание:	результат со сохраняется Если результ инструкция. В инструкция н	храняется в рег в регистре 'f'. гат не равен '0' Если результат е выполняется	мое регистра 'f'. чистре W. Если с , то исполняется равен '0', то сле команда выпол олняется NOP.	d=1, результат в следующая едующая
Слов:	1			
Циклов:	1(2)			
Пример:	HERE	DECFSZ	CNT,1	
		GOTO	LOOP	
	CONTINUE	•		
		•		
	До выполнен	ия команды		
	PC = адрес HERE			
	После выполнения команды CNT = CNT - 1 Eсли CNT = 0, PC = адрес CONTINUE Eсли CNT ≠ 0, PC = адрес HERE + 1			

GOTO	Безусловный переход				
Синтаксис:	[label] G0	OTO k			
Операнды:	$0 \le k \le 2047$				
Операция:	$k \rightarrow PC<10:0>$ (PCLATH<4:3	>, >) → PC<12:11>			
Измен. флаги:	Нет				
Код:	10	1kkk	kkkk	kkkk	
Описание:	адреса загрух PC<10:0>. Дв	езусловный пере каются из кода н а старших бита 2:11> из регистр за два цикла.	команды в счет загружаются в	чик команд счетчик	
Слов:	1				
Циклов:	2				
Пример:	GOTO	THERE			
	После выполі	нения команды			
		PC = адрес TH	ERE		

Прибавить 1	кf		
[/abe/] INC	CF f,d		
$0 \le f \le 127$ $d \in [0,1]$			
(f) + 1 \rightarrow (dest))		
Z			
00	1010	dfff	ffff
результат сох	раняется в реги		
1			
1			
INCF	CNT,1		
До выполнения команды			
	[/abe/] INC 0 ≤ f ≤ 127 d ∈ [0,1] (f) + 1 → (dest) Z 00 Инкрементиро результат сох сохраняется в 1 1 INCF До выполнени	0 ≤ f ≤ 127 d ∈ [0,1] (f) + 1 → (dest) Z 00 1010 Инкрементировать содержим результат сохраняется в реги сохраняется в регистре 'f'. 1 1 INCF CNT,1	[label] INCF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) + 1 \to (dest)$ Z

Z = 1

INCFSZ	Прибавить ′	1 к f и пропус [.]	тить если 0	
Синтаксис:	[label] IN	NCFSZ f	f,d	
Операнды:	$0 \le f \le 127$ $d \in [0,1]$			
Операция:	(f) + 1 \rightarrow (des	st); пропустить	если результат р	авен 0
Измен. флаги:	Нет			
Код:	00	1111	dfff	ffff
Описание:	результат со сохраняется Если резульинструкция инструкция н	храняется в ри в регистре 'f'. тат не равен '0 Если результа не выполняетс	имое регистра 'f'. егистре W. Если с)' , то исполняется т равен '0' , то слю я, команда выпол полняется NOP.	d=1, результат пследующая едующая
Слов:	1	•		
Циклов:	1(2)			
Пример:	HERE	INCFSZ	CNT,1	
		GOTO	LOOP	
	CONTINUE	•		
		•		
	До выполнен	ния команды		
		РС = адрес Н	HERE	
	После выполнения команды CNT = CNT - 1 Если CNT = 0, PC = адрес CONTINUE Если CNT ≠ 0, PC = адрес HERE + 1			

IORLW	Побитное 'ИЛИ' константы и W			
Синтаксис:	[label] IOF	RLW k		_
Операнды:	$0 \le k \le 255$			
Операция:	(W) .OR. $k \rightarrow ($	W)		
Измен. флаги:	Z			
Код:	11	1000	kkkk	kkkk
Описание:			содержимого р зультат сохран	
Слов:	1			
Циклов:	1			
Пример:	IORLW	0x35		
	До выполнения команды			
		W = 0x9A		
	После выполнения команды			
		W = 0xBF		

IORWF	Побитное 'ИЛ	lИ' W и f		
Синтаксис:	[/abe/] IOI	RWF f,d		_
Операнды:	$0 \le f \le 127$ $d \in [0,1]$			
Операция:	(W) .OR. (f) \rightarrow	(dest)		
Измен. флаги:	Z			
Код:	0.0	0100	dfff	ffff
Описание:	'f'. Если d=0, р	побитное 'ИЛИ' результат сохра т сохраняется в	няется в регист	•
Циклов:	1			
Пример:	IORWF	RESULT,0		
	После выполн	ия команды RESULT = 0x13 W = 0x91 нения команды RESULT = 0x13 W = 0x93		

MOVE	переслать і		
Синтаксис:	[label]	MOVF	
	0 < f < 127		

 $0 \le f \le 127$ Операнды: $d \in [0,1]$ Операция: $(f) \rightarrow (dest)$

Измен. флаги: Ζ

Код: 00 1000 dfff ffff

Содержимое регистра 'f' пересылается в регистр

f,d

адресата. Если d=0, значение сохраняется в регистре W. Описание:

Если d=1, значение сохраняется в регистре 'f'. d=1

используется для проверки содержимого регистра 'f' на

ноль.

Слов: 1 1 Циклов:

Пример: **MOVF** FSR,0

После выполнения команды

W = значение регистра FSR

MOVLW Переслать константу в W

MOVLW Синтаксис: [label] $0 \le k \le 255$ Операнды: Операция: $k \rightarrow (W)$ Измен. флаги: Нет Код: 11 00xxkkkk kkkk

Переслать константу 'k' в регистр W. В неиспользуемых

Описание: битах ассемблер устанавливает '0'.

Слов: 1 Циклов: 1

MOVLW 0x5A Пример:

После выполнения команды

W = 0x5A

MOVWF	Переслать W	Вf		
Синтаксис:	[/abe/] MC	DVWF f		_
Операнды:	$0 \le f \le 127$			
Операция:	$(W) \to (f)$			
Измен. флаги:	Нет			
Код:	00	0000	1fff	ffff
Описание:	Переслать со,	держимое регис	тра W в регист	p 'f'.
Слов:	1			
Циклов:	1			
Пример:	MOVWF	OPTION_REG		
	До выполнени	ıя команды OPTION = 0xFF W = 0x4F		
	После выполн	нения команды OPTION = 0x4F W = 0x4F		

NOP	Нет операциі	1			
Синтаксис:	[/abe/] NC)P			
Операнды:	Нет				
Операция:	Нет операции				
Измен. флаги:	Нет				
Код:	0.0	0000	0xx0	0000	
Описание:	Нет операции				
Слов:	1				
Циклов:	1				
Пример:	NOP				

OPTION	Загрузить регистр OPTION				
Синтаксис:	[label] OF	PTION			
Операнды:	Нет				
Операция:	$(W) \rightarrow OPTIOI$	N			
Измен. флаги:	Нет				
Код:	00	0000	0110	0010	
Описание:	Переслать содержимое регистра W в регистр OPTION. Инструкция поддерживается для совместимости программы с семейством микроконтроллеров PIC16C5X. Запись/чтение регистра OPTION можно выполнить прямой или косвенной адресацией.				
Слов:	1				
Циклов: _	1				
Пример:	последующим	и выпускаем	•	еспечения с онтроллерами ользовать эту	

RETFIE	Возврат из по	дпрограммы с	разрешением	прерываний
Синтаксис:	[label] RE	TFIE		_
Операнды:	Нет			
Операция:	$TOS \to PC$ $1 \to GIE$			
Измен. флаги:	Нет			
Код:	00	0000	0000	1001
Описание:	Вершина стека Устанавливает	программы обра TOS загружаето ся в '1' флаг гло E(INTCON<7>).	ся в счетчик ком бального разре	ианд РС. шения
Слов:	1			
Циклов:	2			
Пример:	RETFIE			
	До выполнения	команды		
	После выполне	ния команды PC = TOS GIE = 1		

RETLW	Возврат из п	одпрограммы	і с загрузкой кон	станты в W
Синтаксис:	[label] l	RETLW I	k	
Операнды:	$0 \le k \le 255$			
Операция:	$\begin{array}{l} k \rightarrow (W) \\ TOS \rightarrow PC \end{array}$			
Измен. флаги:	Нет			
Код:	11	01xx	kkkk	kkkk
Описание:		гружается в сче	разрядная констан етчик команд РС. І	
Слов:	1			
Циклов:	2			
Пример:		CALL	TABLE	
		•		
		•		
	TABLE	ADDWF	PCL,f	
		RETLW	k1	
		RETLW	k2	
		•		
		•		
		RETLW	kn	
	До выполнен	ия команды		
		W = 0x07		
	После выпол	нения команды		
		W = значени	e k8	

RETURN	Возврат из по	одпрограммы		
Синтаксис:	[label] RE	TURN		
Операнды:	Нет			
Операция:	$TOS \to PC$			
Измен. флаги:	Нет			
Код:	00	0000	0000	1000
Описание:		счетчик команд	ершина стека Т ц РС. Инструкці	
Слов:	1			
Циклов:	2			
Пример:	RETURN			
	После выполнения команды			
		PC = TOS		

RLF Циклический сдвиг f влево через перенос

RLF Синтаксис: [label] f,d $0 \le f \le 127$ Операнды: $d\in \left[0,1\right]$ Операция: См. описание Измен. флаги: С 00 Код: 1101 dfff ffff

Выполняется циклический сдвиг влево содержимого регистра 'f' через бит С регистра STATUS. Если d=0, результат сохраняется в регистре W. Если d=1, результат

сохраняется в регистре 'f'.

Слов: 1 Циклов: 1

Описание:

Пример: RLF REG1,0

До выполнения команды

REG1 = 1110 0110

C = 0

После выполнения команды

REG1 = 1110 0110 W = 1100 1100

C = 1

RRF Циклический сдвиг f вправо через перенос

Синтаксис: [/abe/] RRF f,d

 Операнды:
 $0 \le f \le 127$
 $d \in [0,1]$

 Операция:
 См. описание

Измен. флаги: С

Код: 00 1100 dfff ffff

Выполняется циклический сдвиг вправо содержимого регистра 'f' через бит С регистра STATUS. Если d=0,

Описание: результат сохраняется в регистре W. Если d=1, результат

сохраняется в регистре 'f'.

С Регистр 'f'

Слов: 1 Циклов: 1

Пример: RRF REG1,0

До выполнения команды

REG1 = 1110 0110

C = 0

После выполнения команды

REG1 = 1110 0110 W = 0111 0011

C = 0

SLEEP Перейти в режим SLEEP

Синтаксис: [/abe/] SLEEP

Операнды: Нет

 $00h \to WDT$

Операция: 00h \rightarrow предделитель WDT

 $\begin{array}{c} 1 \rightarrow \text{- TO} \\ 0 \rightarrow \text{- PD} \end{array}$

Измен. флаги: -TO, -PD

Код: 00 0000 0110 0011

Сбросить флаг включения питания -PD в '0'. Установить флаг переполнения WDT -TO в '1'. Очистить таймер WDT

Описание: и его предделитель. Перевести микроконтроллер в

режим SLEEP и выключить тактовый генератор. Подробное описание смотрите в разделе 14.9.

Слов: 1 Циклов: 1

Пример: SLEEP

SUBLW	Вычесть W из константы				
Синтаксис:	[/abe/] SUBLW k				
Операнды:	$0 \le k \le 255$				
Операция:	$k - (W) \rightarrow (W)$				
Измен. флаги:	C, DC, Z				
Код:	11 110x kkkk kkkk				
Описание:	Вычесть содержимое регистра W из 8-разрядной константы 'k'. Результат сохраняется в регистре W.				
Слов:	1				
Циклов:	1				
Пример 1:	SUBLW 0x02				
	До выполнения команды				
	W = 1 C = ? Z = ?				
	После выполнения команды				
	W = 1 C = 1 ; результат положительный Z = 0				
Пример 2:	До выполнения команды				
, ,	W = 2 C = ? Z = ?				
	После выполнения команды				
	W = 0 C = 1 ; результат нулевой Z = 1				
Пример 3:	До выполнения команды				
	W = 3 C = ? Z = ?				
	После выполнения команды $W = 0xFF$ $C = 0$; результат отрицательный $Z = 0$				

SUBWF	Вычесть W из f	
Синтаксис:	[/abe/] SUBWF f,d	
Операнды:	$0 \le f \le 127$ $d \in [0,1]$	
Операция:	(f) - (W) \rightarrow (dest)	
Измен. флаги:	C, DC, Z	
Код:	00 0010 dfff	ffff
Описание:	Вычесть содержимое регистра W из регистра результат сохраняется в регистре W. Если d=сохраняется в регистре 'f'.	
Слов:	1	
Циклов:	1	
Пример 1:	SUBWF REG1,1	
	До выполнения команды	й
Пример 2:	До выполнения команды REG1 = 2 W = 2 C = ? Z = ?	
	После выполнения команды REG1 = 0 W = 2 C =1; результат нулевой Z = 1	
Пример 3:	До выполнения команды REG1 = 1 W = 2 C = ? Z = ?	
	После выполнения команды	ă

SWAPF	Поменять ме	стами полубай	ты в регистре	f
Синтаксис:	[/abe/] SW	/APF f,d		
Операнды:	$0 \le f \le 127$ $d \in [0,1]$			
Операция:	$(f<3:0>) \rightarrow (de)$ $(f<7:4>) \rightarrow (de)$	·		
Измен. флаги:	Нет			
Код:	00	1110	dfff	ffff
Описание:	регистра 'f'. Ес	тами старший и сли d=0, резуль результат сохра	тат сохраняется	я в регистре
Слов:	1			
Циклов:	1			
Пример:	SWAPF	REG,0		
	До выполнени	я команды		
		REG = 0xA5		
		ения команды REG = 0xA5 W = 0x5A		

TRIS	Загрузить ре	гистр TRIS								
Синтаксис:	[label] TR	dis f								
Операнды:	$5 \le f \le 7$									
Операция:	$(W) \rightarrow TRIS per (W)$	егистр f								
Измен. флаги:	Нет									
Код:	00	0000	0110	Offf						
Описание:	Переслать содержимое W в регистр TRIS. Инструкция поддерживается для совместимости программы с семейством микроконтроллеров PIC16C5X. Запись/чтение регистра OPTION можно выполнить прямой или косвенной адресацией.									
Слов:										
Циклов:										
Пример:										
	последующим	•	ыми микроко	еспечения с онтроллерами ользовать эту						

Побитное '	исключающее И.	ЛИ' константы	иW
[label]	IORLW k		
$0 \le k \le 255$			
(W) .XOR. k	$x \to (W)$		
Z			
11	1010	kkkk	kkkk
регистра W	и 8-разрядной ко		
1			
1			
XORLW	0x35		
До выполне	ения команды		
	W = 0xAF		
После выпо	олнения команды		
	W = 0x1A		
	[label] 0 ≤ k ≤ 255 (W) .XOR. k Z 11 Выполняето регистра W сохраняето 1 1 XORLW До выполне	[label] IORLW k $0 \le k \le 255$ (W) .XOR. $k \to (W)$ Z $11 $	$0 \le k \le 255$ (W) .XOR. $k \to (W)$ Z 11 1010

XORWF	Побитное 'исключающее ИПИ' W и f

XOIXVI	HOOM HOO	жио чающее и	** *	
Синтаксис:	[/abe/] XC	ORWF f,d		
Операнды:	$0 \le f \le 127$ $d \in [0,1]$			
Операция:	(W) .XOR. (f) -	→ (dest)		
Измен. флаги:	Z			
Код:	00	0100	dfff	ffff
Описание:	регистров W і	побитное 'исклі и 'f'. Если d=0, р Если d=1, резуль	езультат сохраі	няется в
Слов:	1			
Циклов:	1			
Пример:	XORWF	REG,1		
	До выполнен	ия команды REG = 0xAF W = 0xB5		
	После выполн	нения команды REG = 0x1A W = 0xB5		

16.0 Поддержка разработчиков

Микроконтроллеры PICmicro обеспечены большим спектром аппаратных и программных инструментальных средств проектирования:

- Интегрированная среда проектирования:
 - Программное обеспечение MPLAB IDE.
- Ассемблер/Компилятор/Линкер:
 - Ассемблер MPASM;
 - Компиляторы MLAB-C17 и MPLAB-C18;
 - Линкер MPLINK/ Организатор библиотек MPLIB.
- Симулятор:
 - Программный симулятор MLAB-SIM.
- Эмуляторы:
 - Внутрисхемный эмулятор реального времени MPLAB-ICE:
 - Внутрисхемный эмулятор PICMASTER/PICMASTER-CE;
 - ICEPIC.
- Внутрисхемный отладчик:
 - MLAB-ICD для микроконтроллеров семейства PIC16F87X.
- Программаторы:
 - Универсальный программатор PRO MATE II;
 - Недорогой программатор PICSTART для начала работы.
- Недорогие демонстрационные платы:
 - SIMICE:
 - PICDEM-1;
 - PICDEM-2;
 - PICDEM-3;
 - PICDEM-17;
 - SEEVAL;
 - KeeLog.

16.1 Интегрированная среда проектирования MPLAB-IDE

Программное обеспечение MPLAB-IDE предназначено для разработки программного обеспечения 8-разрядных микроконтроллеров PICmicro, работающее под управлением операционной системы Windows.

Основные характеристики MPLAB-IDE:

- Многофункциональные возможности:
 - Редактор;
 - Симулятор;
 - Программатор (приобретается отдельно);
 - Эмулятор (приобретается отдельно).
- Полнофункциональный редактор.
- Организатор проекта.
- Настройка панелей инструментов и параметров отображения.
- Строка состояния.
- Интерактивная помощь.

MPLAB-IDE позволяет Вам:

- Редактировать исходные файлы написанные на языке ассемблера или С.
- Быстро выполнять трансляцию и компиляцию проекта автоматически загружая параметры используемого микроконтроллера PICmicro.
- Выполнять отладку программы с использованием:
 - Исходных файлов;
 - Листинга программы;
 - Объектного кода.

Однотипная работа инструментальных модулей интегрированной среды проектирования MPLAB-IDE позволяет легко перейти от программного симулятора MPLAB-SIM к использованию полнофункционального эмулятора.

16.2 Ассемблер MPASM

MPASM - полнофункциональный универсальный макроассемблер для всех семейств микроконтроллеров PICmicro. Ассемблер может генерировать шестнадцатиразрядный файл пригодный для записи в микроконтроллер или формировать перемещаемые объектные файлы для линкера MPLINK.

MPASM имеет интерфейс командной строки и оконный интерфейс, работает под управлением операционной системы Windows 3.X и выше, может работать как автономное приложение. MPASM генерирует объектные файлы, шестнадцатеричные HEX файлы в стандарте Intel, файл карты памяти (для детализации использования памяти микроконтроллера), файл листинга программы (текст программы совмещен с кодами микроконтроллера) и файл отладки для MPLAB-IDE.

Особенности MPASM:

- MPASM и MPLINK интегрированы в MPLAB-IDE;
- МРАЅМ поддерживает систему макрокоманд, упрощающих написание текста программы;
- Позволяет выполнять компиляцию условных блоков текста программы;
- Директивы MPASM дают возможность управлять компиляцией исходного текста программы.

16.3 C компиляторы MPLAB-C17 и MPLAB-C18

MPLAB-C17 и MPLAB-C18 - полнофункциональные ANSI 'C' компиляторы с интегрированной средой обработки для микроконтроллеров семейств PIC17CXXX и PIC18CXXX соответственно. Для упрощения отладки текста программы компиляторы обеспечивают интеграцию в средства проектирования с передачей информации об используемых переменных в формате совместимом с MPLAB-IDE.

16.4 Линкер MPLINK/ Организатор библиотек MPLIB

MPLINK - линкер перемещаемых объектных файлов сгенерированных программами MPASM, MPLAB-C17 и MPLAB-C18. Линкер выполняет связь объектных файлов с предварительно компилированными файлами библиотек и файлами сценария.

MPLIB - организатор библиотек предварительно откомпилированных исходных файлов, которые нужно использовать с MPLNK. Когда подпрограмма библиотечного файла вызывается из исходного файла, в приложение будет включена только необходимый модуль. Это позволяет эффективно использовать большие библиотеки в различных приложениях. MPLIB управляет созданием и изменением библиотечных файлов.

Особенности MPLINK:

- MPLINK работает совместно с MPASM, MPLAB-C17 и MPLAB-C18;
- MPLINK позволяет разбивать память микроконтроллера на разделы.

Особенности MPLIB:

- MPLIB упрощает подключение дополнительных файлов потому, что позволяет подключить одну библиотеку вместо множества мелких файлов;
- MPLIВ группирует связанные модули;
- MPLIB позволяет добавлять, изменять, удалять и заменять модули в библиотечных файлах.

16.5 Программный симулятор MPLAB-SIM

Симулятор MPLAB-SIM позволяет проследить выполнение программы микроконтроллеров PICmicro на уровне команд по шагам или в режиме анимации. На любой команде выполнение программы может быть остановлено для проверки и изменения памяти. Функции стимула позволяют моделировать сигнал с логическими уровнями на входах микроконтроллера. MPLAB-SIM полностью поддерживает символьную отладку, используя MPLAB-C17, MPLAB-C18 и MPASM. MPLAB-SIM является доступным и удобным средством отладки программ микроконтроллеров PICmicro.

16.6 Универсальный эмулятор MPLAB-ICE

Универсальный эмулятор MPLAB-CE обеспечивает разработчиков полным набором инструментальных средств для проектирования устройств с применением микроконтроллеров PICmicro. Управление работой эмулятора выполняется из интегрированной среды проектирования MPLAB-IDE с возможностью редактирования, компиляции, загрузки и выполнения программы.

Заменяемые поды позволяют быстро перенастроить эмулятор для работы с другим типом микроконтроллеров. Универсальная архитектура MPLAB-ICE дает возможность поддерживать новые типы микроконтроллеров PICmicro.

Эмулятор MPLAB-ICE был разработан как система эмуляции (анимации) в реальном масштабе времени с дополнительными возможностями, присутствующих в дорогих инструментальных средствах. Эмулятор работает под управлением распространенной операционной системы Microsoft Windows 3.x/95/98.

MPLAB-ICE 2000 - полнофункциональная система эмуляции с усовершенствованными функциями трассировки, триггеров и управляющих особенностей. Оба эмулятора используют одинаковые поды и работают во всех допустимых режимах микроконтроллеров PICmicro.

16.7 PICMASTER/PICMASTER-CE

PICMASTE эмулятор компании Microchip для профессиональных разработчиков. Этот эмулятор представляет собой высококачественную универсальную платформу для эмуляции 8-разрядных микроконтроллеров PICmicro. Эмуляторы PICMASTER продаются во всем мире, эмуляторы с префиксом СЕ предназначены для стран EC.

16.8 ICEPIC

ICEPIC - недорогой эмулятор, предназначенный для однократно программируемых (ОТР) 8-разрядных микроконтроллеров семейств PIC16C5X, PIC16C6X, PIC16C7X и PIC16CXXX. Модульная структура позволяет поддерживать все типы микроконтроллеров семейства PIC16C5X и PIC16CXXX за счет сменных подов.

16.9 Внутрисхемный отладчик MPLAB-ICD

Внутрисхемный отладчик MPLAB-ICD является мощным недорогим инструментом отладки программы. Работа MPLAB-ICD основана на функции внутрисхемной отладки Flash микроконтроллеров семейства PIC16F87X. Эта особенность, совместно с функцией внутрисхемного последовательного программирования, позволяет запрограммировать микроконтроллер непосредственно из среды проектирования MPLAB IDE. MPLAB-ICD позволяет быстро выполнить отладку программы, выполняя ее по шагам, в режиме анимации или в режиме реального времени.

16.10 Универсальный программатор PRO MATE II

Универсальный программатор PRO MATE II может работать автономно и под управлением PC совместимого компьютера. Для максимальной надежности программирования в программаторе PRO MATE II можно указать напряжения V_{DD} и V_{PP} . В программатор встроен ЖКИ дисплей для вывода сообщений об ошибках и клавиатура для ввода команд. Модульная колодка позволяет программировать микросхемы в различных корпусах. В автономном режиме программатор PRO MATE II может проверять микроконтроллер и устанавливать биты защиты.

16.11 Программатор PICSTART

Недорогой программатор PICSTART (PICSTART+CE) предназначен для начала работы с микроконтроллерами PICmicro, подключается к PC совместимому компьютеру через COM (RS-232) порт и работает под управлением интегрированной среды проектирования MPLAB IDE. PICSTART поддерживает все микроконтроллеры PICmicro в корпусах до 40 выводов. Микроконтроллеры с большим числом выводов (PIC16C92X, PIC17C76X) поддерживаются при использовании адаптеров.

16.12 Аппаратный модуль SIMICE

SIMICE предназначен для работы совместно с симулятором MPLAB-SIM. SIMICE и MPLAB-SIM работают под управлением интегрированной среды проектирования MPLAB-IDE. SIMICE поддерживает работу микроконтроллеров PIC12C5XX, PIC12CE5XX и PIC16C5X с эмуляцией портов ввода/вывода не в реальном масштабе времени. SIMICE позволяет разработчику выполнить код программы непосредственно в устройстве, что освобождает от необходимости написания файлов стимула. SIMICE ценный инструмент отладки программного обеспечения при начале работы с микроконтроллерами PICmicro.

16.13 Демонстрационная плата PICDEM-1

Демонстрационная плата PICDEM-1 предназначена для микроконтроллеров PIC16C5X (PIC26C54, PIC16C58A), PIC16C61, PIC16C62X, PIC16C671, PIC16C8X, PIC17C42, PIC17C43 и PIC17C44. В комплект поставки входят необходимые аппаратные модули, программное обеспечение и демонстрационные программы. Записать демонстрационные программы в микроконтроллер можно с помощью программатора PRO MATE II или PICSTART. Пользователь может подключить к демонстрационной плате эмулятор MPLAB-ICE и выполнять отладку программы. На демонстрационной плате имеется полигон для установки дополнительных элементов пользователя. В состав демонстрационной платы входит: драйвер интерфейса RS-232, потенциометр для моделирования аналогового входа, выключатели и восемь светодиодов подключенных к PORTB.

16.14 Демонстрационная плата PICDEM-2 для PIC16CXXX

Демонстрационная плата PICDEM-2 предназначена для микроконтроллеров PIC16C62, PIC16C64, PIC16C65, PIC16C73 и PIC16C74. В комплект поставки входят необходимые аппаратные модули, программное обеспечение и демонстрационные программы. Записать демонстрационные программы в микроконтроллер можно с помощью программатора PRO MATE II или PICSTART. Пользователь может подключить к демонстрационной плате эмулятор MPLAB-ICE и выполнять отладку программы. На демонстрационной плате имеется полигон для установки дополнительных элементов пользователя. В состав демонстрационной платы входит: драйвер интерфейса RS-232, потенциометр для моделирования аналогового входа, последовательная EEPROM для демонстрации работы шины I2C, выводы для подключения ЖКИ и дополнительной клавиатуры.

16.15 Демонстрационная плата PICDEM-3 для PIC16CXXX

Демонстрационная плата PICDEM-3 предназначена для микроконтроллеров PIC16C923 и PIC16C924 выполненных в 44-выводном PLCC корпусе с интегрированным ЖКИ модулем. В комплект поставки входят необходимые аппаратные модули, программное обеспечение и демонстрационные программы. Записать демонстрационные программы в микроконтроллер можно с помощью программатора PRO MATE II или PICSTART. Пользователь может подключить к демонстрационной плате эмулятор MPLAB-ICE и выполнять отладку программы. На демонстрационной плате имеется полигон для установки дополнительных элементов пользователя. В состав демонстрационной платы входит: драйвер интерфейса RS-232, выключатели; потенциометр для моделирования аналогового входа; термистор; выводы для подключения ЖКИ и дополнительной клавиатуры; 12-разрядный ЖКИ для отображения времени, даты и температуры; дополнительный интерфейс RS-232; программное обеспечение работающее под управлением операционной системы Windows 3.х для передачи данных на PC совместимый компьютер.

16.16 Демонстрационная плата PICDEM-17

Демонстрационная плата PICDEM-17 предназначена для микроконтроллеров PIC17C752, PIC17C756, PIC17C762 и PIC17C766. В комплект поставки входят необходимые аппаратные модули, программное обеспечение и демонстрационные программы. Записать демонстрационные программы в микроконтроллер можно с помощью программатора PRO MATE II или PICSTART. Пользователь может подключить к демонстрационной плате эмулятор MPLAB-ICE и выполнять отладку программы. На демонстрационной плате имеется полигон для установки дополнительных элементов пользователя.

16.17 SEEVAL (с функциями программатора)

Комплект SEEVAL SEEPROM поддерживает весь спектр 2-х/3-х проводных последовательных микросхем EEPROM фирмы Microchip. Комплект позволяет выполнять чтение, стирание и запись любой микросхемы последовательного EEPROM фирмы Microchip. Система позволяет сделать анализ обмена данных, число циклов и надежность записи. Полный комплект SEEVAL позволяет уменьшить время проектирование устройства.

16.18 KeeLog (с функциями программатора)

Оценочная система KeeLoq предназначена для микросхем HCS фирмы Microchip. В состав комплекта входит: ЖКИ дисплей для отображения изменяющихся кодов, декодер, интерфейс программирования.

Табли	ца 1	6-1 V	1нстр	уме	нтал	ьные	е сре	ДСТЕ	за пр	оект	иров	зания	TO F	КОМП	ании	1 Mic	rochi	p					
MCP2510																							>
MCRFXXX																			>	>	\nearrow	\wedge	
HCSXXX				>						>							>	>					
24CXX/ 25CXX/ 93CXX				٨						>													
PIC18CXX2	~		>	>	\wedge				>	>			\wedge										
PIC17C7XX	^	>		٨	٨	٨			>	>						>							
PIC17C4X	Λ	Λ		٨	Λ	\wedge			^	^		Λ											
PIC16C9XX	٨			٨	٨	\wedge	^		٨	^				>									
PIC16F8XX	>			>	>			>	>	>													
PIC16C8X	>			٨	٨	٨	>		>	>		>											
PIC16C7XX	^			٨	٨	\wedge	^		\nearrow	^													
PIC16C7X	>			^	٧	^	^	*	^	>		+ /	/+										
PIC16F62X	Λ			٨	**/\				**/\	**/\													
PIC16CXXX	^			٨	٨	\wedge	^		٨	^		٨											
PIC16C6X	>			٨	٨	\wedge	>	*^	>	>			+/										
PIC16C5X	^			>	>	\nearrow	>		>	>	>	>											
PIC14000	7			>	\wedge	\wedge			>	>					>								
PIC12CXXX	٨			٨	٨	٨	>		>	>	>												
	MPLAB-IDE	MPLAB-C17	MPLAB-C18	MPASM/MPLINK	MPLAB-ICE	PICMASTER	ICEPIC	MPLAB-ICD	PICSTART	PRO MATE II	SIMICE	PICDEM-1	PICDEM-2	PICDEM-3	PICDEM-14A	PICDEM-17	KeeLoq	КееLод транспондеры	Программатор microID	DEMO microlD 125kFų	Проверка коллизий microlD 125кГц	Проверка коллизий microID 13.56МГц	DEMO MCP2510 CAN
	Пр 06	огра беспа	іммн ечені	ое		Эмуляторы		Отладчик	рограмма	নু এ Демонстрационные и отладочные платы													

* Обратитесь в представительства компании Microchip для получения дополнительной информации по использованию MPLAB-ICD с PIC16C62, 63, 64, 65, 72, 73, 74, 76, 77 ** Обратитесь в представительства компании Microchip для уточнения времени доступности к заказу. + Инструментальное средство доступно для некоторых устройств.

17.0 Электрические характеристики

Максимально допустимые значения (*)

Предельная рабочая температура	от -40°C до +125°C
Температура хранения	
Напряжение V _{DD} относительно V _{SS}	
Напряжение -MCLR и RA4 относительно V _{SS}	от -0.3В до +14В
Напряжение на остальных выводах относительно V _{SS}	
Рассеиваемая мощность (1)	800мВт
Максимальный ток вывода V _{SS}	300мА
Максимальный ток вывода V _{DD}	250мА
Входной запирающий ток I_{IK} ($V_I < 0$ или $V_I > V_{DD}$)	±20мА
Выходной запирающий ток I_{OK} ($V_O < 0$ или $V_O > V_{DD}$)	±20мА
Максимальный выходной ток стока канала ввода/вывода	25мА
Максимальный выходной ток истока канала ввода/вывода	25мА
Максимальный выходной ток стока портов ввода/вывода PORTA и PORTB	200мА
Максимальный выходной ток истока портов ввода/вывода PORTA и PORTB	

Примечание 1. Потребляемая мощность рассчитывается по формуле: $P = V_{DD} \times \{I_{DD} - \Sigma I_{OH}\} + \Sigma \{(V_{DD} - V_{OH}) \times I_{OH}\} + \Sigma (V_{OL} \times I_{OL})$

Примечание *. Выход за указанные значения может привести к необратимым повреждениям микроконтроллера. Не предусмотрена работа микроконтроллера в предельном режиме в течении длительного времени. Длительная эксплуатация микроконтроллера в допустимых условиях может повлиять на его надежность.

Примечание. Броски напряжения на выводе -MCLR ниже V_{SS} приводят к появлению больших токов (около 80мA), что может привести к срабатыванию защелки. Поэтому рекомендуется последовательно включать резистор сопротивлением от 50ОМ до 100Ом для подачи низкого уровня на этот вывод вместо непосредственного подключения к V_{SS} .

Puc. 17-1 График рекомендованных комбинаций значений напряжения питания и тактовой частоты для PIC16F62X, 0° C ≤ T_A ≤ +70°C (рекомендованная комбинация отмечена затененной областью)

Puc. 17-2 График рекомендованных комбинаций значений напряжения питания и тактовой частоты для PIC16F62X, -40°C \leq T_A < 0°C, +70°C < T_A \leq +85°C (рекомендованная комбинация отмечена затененной областью)

Puc. 17-3 График рекомендованных комбинаций значений напряжения питания и тактовой частоты для PIC16LF62X, 0° C ≤ T_A ≤ +70°C (рекомендованная комбинация отмечена затененной областью)

Рис. 17-4 График рекомендованных комбинаций значений напряжения питания и тактовой частоты для PIC16LF62X, $-40^{\circ}C \le T_A < 0^{\circ}C$, $+70^{\circ}C < T_A \le +85^{\circ}C$ (рекомендованная комбинация отмечена затененной областью)

17.1 Электрические характеристики:

PIC16F62X-04 (Коммерческий, Промышленный, Расширенный) PIC16F62X-20 (Коммерческий, Промышленный, Расширенный)

Стандартные рабочие условия (если не указано иное)											
	Темпера	атурный диапазон:									
		Коммерческий	$0^{\circ}C \leq T$	_A ≤ +70°C							
		Промышленный	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$								
		Расширенный	-40 °C $\leq T_A \leq +125$ °C								
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание				
D001	V_{DD}	Напряжение питания	3.0	-	5.5	В					
D002	V_{DR}	Напряжение сохранения данных в ОЗУ ⁽¹⁾	ı	1.5*	-	В	В SLEEP режиме				
D003	V _{POR}	Стартовое напряжение V _{DD} для формирования POR	ı	V _{SS}	-	В	Смотрите раздел "сброс POR"				
D004	S _{VDD}	Скорость нарастания V _{DD} для формирования POR	0.05*	ı	-	В/мс	Смотрите раздел "сброс POR"				
D005	V_{BOD}	Напряжение детектора BOD	3.65	4.0	4.35	В	Бит BODEN = 0				
D010	I_{DD}	Ток потребления ^(2,5)	-	-	0.7	мА	F _{OSC} =4.0МГц, V _{DD} =3.0В				
			-	-	2.0	мА	F _{OSC} =4.0МГц, V _{DD} =5.5В*				
D013			-	4.0	7.0	мА	F _{OSC} =20.0МГц, V _{DD} =5.5В*				
			-	-	6.0	мА	F _{OSC} =20.0МГц, V _{DD} =4.5В				
			-	-	2.0	мА	F_{OSC} =10.0МГц, V_{DD} =3.0В ⁽⁶⁾				
D014			-	-	10	мкА	F _{OSC} =32кГц, V _{DD} =3.0В				
D020	I_{PD}	Ток потребления в SLEEP	-	-	2.2	мкА	V _{DD} =3.0B				
		режиме (3)	-	-	5.0	мкА	V _{DD} =4.5B				
			-	-	9.0	мкА	V _{DD} =5.5B*				
			-	-	15.0	мкА	V _{DD} =5.5B* (расширенный)				
D022	ΔI_{WDT}	Ток потребления WDT ⁽⁴⁾	-	6.0	20	мкА	V _{DD} =4.0B				
D0004		T 500(4)			25	мкА	(125°C)				
D022A	ΔI_{BOD}	Ток потребления BOD ⁽⁴⁾	-	75	125	мкА	BOD включен, V _{DD} =5.0B				
D023	ΔI_{COMP}	Ток потребления каждого компаратора ⁽⁴⁾	-	30	50	мкА	V _{DD} =4.0B				
D023A	$\Delta I_{ m VREF}$	Ток потребления V _{REF} ⁽⁴⁾	-	-	135	мкА	V _{DD} =4.0B				
1A	Fosc	LP генератор	0	-	200	кГц	Любая температура				
		XT генератор	0	-	4	МГц	Любая температура				
	1	HS генератор	0	_	20	МГц	Любая температура				

^{* -} Эти параметры определены, но не протестированы.

Примечания:

- 1. Предел, до которого может быть понижено напряжение питания V_{DD} в SLEEP режиме без потери данных в ОЗУ.
- 2. Ток потребления в основном зависит от напряжения питания и тактовой частоты. Другие факторы влияющие на ток потребления: выходная нагрузка и частота переключения каналов ввода/вывода; тип тактового генератора; температура и выполняемая программа. Измерения Ірр проводилось в следующих условиях: внешний тактовый сигнал (меандр); каналы портов ввода/вывода в третьем состоянии и подтянуты к VDD; -MCLR = VDD; WDT выключен.
- 3. Потребляемый ток в SLEEP режиме не зависит от типа тактового генератора. При измерении тока все каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{DD} или V_{SS} .
- 4. Δ ток дополнительный потребляемый ток, если периферийный модуль включен. Этот ток должен быть добавлен к I_{DD} или I_{PD} .
- 5. В ER режиме генератора ток через внешний резистор не учитывается. Ток протекающий через внешний резистор может быть рассчитан по формуле Ir = V_{DD}/2R_{EXT} (мA), где R_{EXT} в кОм.
- 6. Только для коммерческого диапазона температур.

^{** -} В столбце "Тип." приведены параметры при V_{DD} =5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

17.2 Электрические характеристики:

PIC16LF62X-04 (Коммерческий, Промышленный, Расширенный) PIC16LF62X-20 (Коммерческий, Промышленный, Расширенный)

	Станлаг	отные рабочие условия (если не у	AKASAHU N	IHOB)								
		атурный диапазон:	y nasarro v									
		Коммерческий	0°C ≤ T	_A ≤ +70°C								
		Промышленный	-40°C ≤	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$								
		Расширенный		-40°C ≤ T _A ≤ +125°C								
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание					
D001	V_{DD}	Напряжение питания	2.0	-	5.5	В						
D002	V_{DR}	Напряжение сохранения данных в ОЗУ ⁽¹⁾	1	1.5*	-	В	В SLEEP режиме					
D003	V _{POR}	Стартовое напряжение V _{DD} для формирования POR	ı	V _{SS}	-	В	Смотрите раздел "сброс POR"					
D004	S _{VDD}	Скорость нарастания V _{DD} для формирования POR	0.05*	-	-	В/мс	Смотрите раздел "сброс POR"					
D005	V_{BOD}	Напряжение детектора BOD	3.65	4.0	4.35	В	Бит BODEN = 0					
D010	I_{DD}	Ток потребления ^(2,5)	-	-	0.6	мА	F _{OSC} =4.0МГц, V _{DD} =2.0В ⁽⁵⁾					
			-	-	0.7	мА	F _{OSC} =4.0МГц, V _{DD} =5.5В*					
D013			-	4.0	7.0	мА	F_{OSC} =20.0МГц, V_{DD} =4.5В					
			-	-	6.0	мА	F _{OSC} =10.0МГц, V _{DD} =3.0В ⁽⁶⁾					
			-	-	2.0	мА	F _{OSC} =32кГц, V _{DD} =3.0В					
D014		T 6 01555	-	-	TBD		\(\(\chi_0\) 5 D*					
D020	I _{PD}	Ток потребления в SLEEP	-	-	2.0	мкА	V _{DD} =2.5B*					
		режиме (3)	-	-	2.2	мкА	V _{DD} =3.3B*					
			-	-	9.0 15.0	мкА мкА	V _{DD} =5.5B					
D022	A I	Ток потребления WDT ⁽⁴⁾	-	6.0	15.0	мкА	V _{DD} =5.5B* (расширенный) V _{DD} =3.0B					
D022A	ΔI_{WDT}	Ток потреоления WD1 Ток потребления BOD ⁽⁴⁾	_	75	125	мкА	ВОD включен, V _{DD} =5.0B					
D022A	ΔI_{BOD}	Ток потреоления вов	_	30	50	мкА	V _{DD} =3.0B					
5020	ΔI_{COMP}	компаратора ⁽⁴⁾				IVIIV (0.00					
D023A	ΔI_{VREF}	Ток потребления V _{REF} ⁽⁴⁾	-	-	135	мкА	V _{DD} =3.0B					
1A	Fosc	LP генератор	0	-	200	кГц	Любая температура					
		XT генератор	0	-	4	МГц	Любая температура					
		HS генератор	0	-	20	МГц	Любая температура					

^{* -} Эти параметры определены, но не протестированы.

Примечания:

- 1. Предел, до которого может быть понижено напряжение питания V_{DD} в SLEEP режиме без потери данных в ОЗУ.
- 2. Ток потребления в основном зависит от напряжения питания и тактовой частоты. Другие факторы влияющие на ток потребления: выходная нагрузка и частота переключения каналов ввода/вывода; тип тактового генератора; температура и выполняемая программа. Измерения I_{DD} проводилось в следующих условиях: внешний тактовый сигнал (меандр); каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{DD}; -MCLR = V_{DD}; WDT выключен.
- 3. Потребляемый ток в SLEEP режиме не зависит от типа тактового генератора. При измерении тока все каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{DD} или V_{SS} .
- 4. Δ ток дополнительный потребляемый ток, если периферийный модуль включен. Этот ток должен быть добавлен к I_{DD} или I_{PD} .
- 5. В ER режиме генератора ток через внешний резистор не учитывается. Ток протекающий через внешний резистор может быть рассчитан по формуле Ir = V_{DD}/2R_{EXT} (мA), где R_{EXT} в кОм.
- 6. Только для коммерческого диапазона температур.

^{** -} В столбце "Тип." приведены параметры при V_{DD} =5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

CTOURGETUU IS DOFOUNG VORDENG (SORIE US VICESCUS MUSS

17.3 Электрические характеристики:

PIC16F62X (Коммерческий, Промышленный, Расширенный) PIC16LF62X (Коммерческий, Промышленный, Расширенный)

		ртные рабочие условия (если не ј атурный диапазон:	указано иное	·)			
	· Oiliiiope	Коммерческий	$0^{\circ}C \leq T_A \leq +$	·70°C			
		Промышленный					
		Расширенный	$-40^{\circ}C \leq T_A \leq$				
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
	V _{IL}	Входное напряжение низкого					
		уровня					
	V_{IL}	Канал порта ввода/вывода					
D030		ТТЛ буфер	V_{SS}	-	8.0	В	V _{DD} = от 4.5B до 5.5B
			V_{SS}	-	$0.15V_{DD}$	В	иначе
D031		Триггер Шмидта	V_{SS}	-	$0.2V_{DD}$	В	
D032		-MCLR, RA4/T0CKI, OSC1 (ER) ⁽¹⁾	V_{SS}	-	$0.2V_{DD}$	В	
D033		OSC1 (XT,HS)	V_{SS}	-	$0.3V_{DD}$	В	
		OSC1 (LP)	V_{SS}	-	0.6V _{DD} -1	В	
	V_{IH}	Входное напряжение высокого					
		уровня					
		Канал порта ввода/вывода					
D040		ТТЛ буфер	2.0	-	V_{DD}	В	V _{DD} = от 4.5B до 5.5B
			$0.25V_{DD}+0.8$	-	V_{DD}	В	иначе
D041		Триггер Шмидта	$0.8V_{DD}$	-	V_{DD}	В	
D042		-MCLR, RA4/T0CKI	$0.8V_{DD}$	-	V_{DD}	В	
D043		OSC1 (XT,HS, LP)	$0.7V_{DD}$	-	V_{DD}	В	
D043A		OSC1 (ER) ⁽¹⁾	$0.9V_{DD}$	-	V_{DD}	В	
D070	I _{PURB}	Ток через подтягивающие	50	200	400	мкА	$V_{DD} = 5.0B$, $V_{PIN} = V_{SS}$
		резисторы PORTB					
	I₁∟	Входной ток утечки (2,3)			14.0	B 414 A	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
DOCO		Порт ввода/вывода (искл.PORTA)	-	-	±1.0	мкА	$V_{SS} \le V_{PIN} \le V_{DD}$, 3-e coct.
D060		PORTA	-	-	±0.5	мкА	$V_{SS} \le V_{PIN} \le V_{DD}$, 3-e coct.
D061		RA4/T0CKI	-	-	±1.0	мкА	$V_{SS} \le V_{PIN} \le V_{DD}$

Емкостная нагрузка на выходах

Все каналы ввода/вывода и

OSC1/-MCLR

уровня ⁽³⁾

Канал ввода/вывода

OSC2/CLKOUT (ER)

OSC2/CLKOUT (ER)

открытым стоком

OSC2 в ER режиме

Вывод OSC2

Напряжение на выходе с

Выходное напряжение низкого

Выходное напряжение высокого

Канал ввода/вывода (кроме RA4)

 $V_{DD} - 0.7$

 $V_{DD} - 0.7$

V_{DD} - 0.7

V_{DD} - 0.7

Примечания:

D063

D080

D083

D090

D092

D150*

D100

D101

 V_{OL}

 V_{OH}

 V_{OD}

Cosc₂

 C_{10}

1. В ER режиме генератора на входе OSC1 включен триггер Шмидта. Не рекомендуется использовать внешний тактовый сигнал для PIC16F62X в ER режиме тактового генератора.

±5.0

0.6

0.6

0.6

0.6

8.5*

15

50

мкА

В

В

В

В

В

В

В

В

В

пΦ

пΦ

 $V_{SS}\!\leq V_{PIN}\!\leq V_{DD},~XT,~HS,~LP$

 I_{OL} =8.5 мА, -40°С до +85°С

I_{OL}=1.6 мА, -40°С до +85°С

I_{OH}=-3.0 мА,-40°С до +85°С

 I_{OH} =-1.3 мА,-40°С до +85°С

 I_{OL} =7.0 MA, +125°C

I_{OL}=1.2 MA, +125°C

 I_{OH} =-2.5 MA, +125°C

I_{OH}=-1.0 мА, +125°C RA4 для PIC16F62X,

 $V_{DD} = 4.5B$

 $V_{DD} = 4.5B$

PIC16LF62X

XT, HS, LP

- 2. Ток утечки на выводе -MCLR зависит от приложенного напряжения. Параметры указаны для нормального режима работы. В других режимах может возникнуть больший ток утечки.
- 3. Отрицательный ток показывает, что он вытекает из вывода.

^{* -} Эти параметры определены, но не протестированы.

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Таблица 17-1 Параметры компараторов

	Рабочие условия: $3.0B \le V_{DD} \le 5.5B$, -40 °C ≤ $T_A \le +125$ °C (если не указано иное)									
№ пар.	Обоз.	Описание	Мин.	Тип.	Макс.	Ед.	Примечание			
D300	V_{IOFF}	Входное напряжение смещения	-	±5.0	±10	мВ				
D301	V _{ICM}	Входное напряжение*	0	-	V _{DD} -1.5	В				
D302	CMRR	Коэффициент отражения*	55	-	-	db				
300	T _{RESP}	Время реакции ⁽¹⁾	-	150	400	HC	PIC16F62X			
300A					600	HC	PIC16LF62X			
301	T_{MC2OV}	Время смены режима*	-	-	10	МКС				

^{* -} Эти параметры определены, но не протестированы.

Примечание 1. Время реакции измерялось при напряжении на одном из входов $(V_{DD}$ -1.5)/2 , а на другом был сформирован переход от V_{SS} к V_{DD} .

Таблица 17-2 Параметры источника опорного напряжения

	Рабочие условия: $3.0B \le V_{DD} \le 5.5B$, $-40^{\circ}C \le T_A \le +125^{\circ}C$ (если не указано иное)									
№ пар.	Обоз.	Описание	Мин.	Тип.	Макс.	Ед.	Примечание			
D310	V _{RES}	Разрешающая способность	V _{DD} /24	ı	V _{DD} /32	Lsb				
D311	VR_{AA}	Абсолютная точность	-	-	1/4	Lsb	VRR=1			
			-	-	1/2	Lsb	VRR=0			
D312	VR _{UR}	Сопротивление резистора R*	-	2	•	кОм				
310	T _{SET}	Время установки* ⁽¹⁾	-	1	10	МКС				

^{* -} Эти параметры определены, но не протестированы.

Примечание 1. Время измерено при VRR=1 и переходе VR<3:0> от 0000 к 1111.

17.4 Символьное обозначение временных параметров

Символьное обозначение временных параметров имеет один из следующих форматов:

- TppS2ppS
- 2. TppS

T				
F	Частота	Т	Время	

Строчные символы (рр) и их значение

pp				
ck	CLKOUT	osc	OSC1	
io	Канал ввода/вывода	t0	T0CKI	
mc	-MCLR			

Прописные символы и их значение

S				
F	Задний фронт	Р	Период	
Н	Высокий уровень	R	Передний фронт	
1	Неверный (3-е состояние)	V	Верный	
L	Низкий уровень	Z	3-е состояние	

Puc. 17-5 Нагрузочные параметры

 $R_{L} = 4640 M$

 C_L = 50пФ (для всех выводов, кроме OSC2)

 $C_L = 15 \pi \Phi$ (для вывода OSC2)

Таблица 17-3 Электрические параметры PIC16F62X, PIC16LF62X

•	Стандар	тные рабочие условия (если не указано иное	e)		•		
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
		EEPROM память данных					
D120	Ed	Число циклов стирание/запись	1M*	10M	-	C/3	5B @ 25°C
D121	Vdrw	Напряжение питания для записи/чтения	V_{MIN}	-	5.5	В	
D122	Tdew	Время цикла стирание/запись	-	4	8*	мс	
		FLASH память программ					
D130	Ep	Число циклов стирание/запись	1000*	10 ⁵	-		
D131	Vpr	Напряжение питания для чтения	V_{MIN}	-	5.5		
D132	Vpew	Напряжение питания для стирания/записи	4.5	-	5.5		
D133	Tpew	Время цикла стирание/запись	-	4	8*		

^{* -} Эти параметры определены, но не протестированы.

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

17.5 Временные диаграммы и спецификации

Рис. 17-6 Временная диаграмма внешнего тактового сигнала

Таблица 17-4 Параметры внешнего тактового сигнала

		77-4 Параметры внешнего тактового сигнала		- 44		_	-
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
	Fosc	Частота внешнего тактового сигнала ⁽¹⁾	DC	-	4	МГц	XT, ER режим V _{DD} =5B
			DC	-	20	МГц	HS режим
			Dc	-	200	кГц	LP режим
		Частота генератора ⁽¹⁾		-	4	МГц	ER режим V _{DD} =5B
			0.1	-	4	МГц	XT режим
			1	-	20	МГц	HS режим
				-	200	кГц	LP режим
				4		МГц	INTRC режим (быстрый)
1	Tosc	Период внешнего тактового сигнала ⁽¹⁾	250	-	-	HC	XT, ER режим
			50	-	-	HC	HS режим
			5	-	-	МКС	LP режим
		Период генератора ⁽¹⁾	250	-	-	HC	ER режим
			250	-	10000	HC	XT режим
			50	-	1000	HC	HS режим
			5			МКС	LP режим
				250		HC	INTRC режим (быстрый)
				27		МКС	INTRC режим (медл.)
2	T _{CY}	Время выполнения инструкции ⁽¹⁾	1.0	T _{CY}	DC	HC	$T_{CY} = 4/F_{OSC}$
3	T _{OSL} ,	Длительность высокого/низкого уровня	100*	-	-	HC	XT режим
	Tosh	CLKIN (OSC1)					
4	INTRC	Внутренняя калибровка ER	3.65	4.00	4.28	МГц	$V_{DD} = 5B$
5	ER	Внешняя установка частоты ER	10кГц		8МГц		$V_{DD} = 5B$

^{* -} Эти параметры определены, но не протестированы.

Примечание 1. Машинный цикл микроконтроллера равняется 4 периодам тактового сигнала. Все приведенные значения основываются на характеристиках конкретного типа генератора в стандартных условиях при выполнении программы. Выход за указанные пределы может привести к нестабильной работе генератора и/или к большему потребляемому току.

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

		Параметры CLKOUT и каналов ввода/вывод					
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
	TosH2ckL	От OSC1 ↑ до CLKOUT ↓					
10		16F62X	-	75	200	нс	
10A		16LF62X	-	-	400	нс	
	TosH2ckH	От OSC1 ↑ до CLKOUT ↑					
11		16F62X	-	75	200	HC	
11A		16LF62X	-	-	400	HC	
	TckR	CLKOUT длит. переднего фронта					
12		16F62X	-	35	100	HC	
12A		16LF62X	-	-	200	HC	
	TckF	CLKOUT длит. заднего фронта					
13		16F62X	-	35	100	HC	
13A		16LF62X	-	-	200	HC	
14	TckL2ioV	От CLKOUT ↓ до установл. выхода	-	-	20	HC	
15	TioV2ckH	От установл. входа до CLKOUT ↑					
		16F62X	T _{OSC} +200Hc	-	-	нс	
		16LF62X	Tosc+400Hc	-	-	HC	
16	TckH2iol	Удержание входа после CLKOUT ↑	0	-	-	НС	
17	TosH2ioV	От OSC1 ↑ до установл. выхода					
		16F62X	-	50	150*	нс	
		16LF62X	-	-	300	нс	
18	TosH2iol	Удержание входа после OSC1 ↑	200	-	-	нс	

^{* -} Эти параметры определены, но не протестированы.

^{** -} В столбце "Тип." приведены параметры при V_{DD} =5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Puc. 17-8 Временная диаграмма сброса, WDT, OST, PWRT **V**DD **MCLR** POR 33 -**PWRT** 32 **OSC** Внутренний сброс Сброс от WDT 34 Канал ввода/вывода

Puc. 17-9 Временная диаграмма работы BOD BVDD - - - -**V**DD – 35 **–**

Таблица 17-6 Параметры сброса, WDT, OST, PWRT, BOD

№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
30	T _{MCLR}	Длительность импульса -MCLR	2000	-	-	нс	V _{DD} =5B,-40°С до +85°С
			TBD	TBD	TBD	MC	Расшир.темпер.диап.
31	T_{WDT}	Период переполнения WDT	7	18	33	МС	V _{DD} =5B,-40°C до +85°C
		(без предделителя)	TBD	TBD	TBD	МС	Расшир.темпер.диап.
32	Tost	Период OST	-	1024Tosc		-	T _{OSC} = периоду OSC1
33*	T _{PWRT}	Период PWRT	28	72	132	МС	V _{DD} =5B,-40°C до +85°C
			TBD	TBD	TBD	МС	
34	T _{IOZ}	От сброса -MCLR или WDT до перевода	-	-	2.0	МКС	
		каналов ввода/вывода 3-е состояние					
35	T _{BOD}	Длительность импульса BOD	100	-	-	МКС	$V_{DD} \le B_{VDD} (D005)$

^{* -} Эти параметры определены, но не протестированы. ** - В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Таблица 17-7 Параметры внешнего тактового сигнала для TMR0 и TMR1

№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
						-n·	
40*	Tt0H	Длительность высокого <u>у</u> ровня ТОСКІ					
		Без предделителя	0.5T _{CY} +20	-	-	HC	
		С предделителем	10	-	-	HC	
41*	Tt0L	Длительность низкого уровня T0CKI					
		Без предделителя	0.5T _{CY} +20	-	-	HC	
		С предделителем	10	-	-	HC	
42*	Tt0P	Период ТОСКІ	(T _{CY} +40)/N	-	-	HC	N = коэфф.предд.
45*	Tt1H	Длительность высокого уровня T1CKI					
		Синхр.реж. без предделителя	0.5T _{CY} +20	-	-	нс	
		Синхр.реж. с преддел. 16F62X	15	-	-	нс	
		Синхр.реж. с преддел. 16LF62X	25	-	-	нс	
		Асинхронный режим 16F62X	30	-	-	нс	
		Асинхронный режим 16LF62X	50	-	-	нс	
46*	Tt1L	Длительность низкого уровня T1CKI					
		Синхр.реж. без предделителя	0.5T _{CY} +20	-	-	нс	
		Синхр.реж. с преддел. 16F62X	15	-	-	нс	
		Синхр.реж. с преддел. 16LF62X	25	-	_	нс	
		Асинхронный режим 16F62X	30	-	_	нс	
		Асинхронный режим 16LF62X	50	-	_	нс	
47*	Tt1P	Период T1CKI					N = коэфф.предд.
		Синхронный режим 16F62	(T _{CY} +40)/N	-	_	нс	
		Синхронный режим 16LF62	(T _{CY} +40)/N	-	_	нс	
		Асинхронный режим 16F62X	60	_	_	нс	
		Асинхронный режим 16LF62X	100	_	_	нс	
	Ft1	Частота резонатора для TMR1	DC	-	200	кГц	
		(T10SCEN=1)				4	
48	TCKE1	Задержка от активного фронта тактового	2T _{OSC}	-	7Tosc	-	
		сигнала до приращения TMR1					

^{* -} Эти параметры определены, но не протестированы.

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

RB3/CCP1 (Режим захвата) 50 52 RB3/CCP1 (Режим сравнения или ШИМ)

Рис. 17-11 Временная диаграмма захват/сравнение/ШИМ

№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
50*	TccL	Сигнал низкого уровня ССР					
		Без предделителя	0.5T _{CY} +20	-	_	нс	
		С предделителем 16F62X	10	-	-	нс	
		С предделителем 16LF62X	20	-	-	нс	
51*	TccH	Сигнал высокого уровня ССР					
		Без предделителя	0.5T _{CY} +20	-	_	нс	
		С предделителем 16F62X	10	-	-	нс	
		С предделителем 16LF62X	20	-	-	нс	
52*	TccP	Период входного сигнала ССР	(3T _{CY} +40)/N	-	-	HC	N = коэфф.предд.
53*	TccR	Время установление высокого уровня					
		сигнала на выходе ССР					
		16F62X		10	25	HC	
		16LF62X		25	45	HC	
54*	TccF	Время установление низкого уровня					
		сигнала на выходе ССР					
		16F62X		10	25	HC	
		16LF62X		25	45	HC	

^{* -} Эти параметры определены, но не протестированы.

^{** -} В столбце "Тип." приведены параметры при V_{DD} =5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

RA4/T0CKI TMR0

Puc. 17-12 Временная диаграмма внешнего тактового сигнала TMR0

Таблица 17-9 Параметры внешнего тактового сигнала TMR0

№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
40	Tt0H	Длительность высокого уровня T0CKI					
		Без предделителя	0.5T _{CY} +20*	-	-	HC	
		С предделителем	10	-	-	нс	
41	Tt0L	Длительность низкого уровня T0CKI					
		Без предделителя	0.5T _{CY} +20*	-	-	HC	
		С предделителем	10	-	-	HC	
42	Tt0P	Период T0CKI	(T _{CY} +40*)/N	-	-	нс	N = коэфф.предд

^{* -} Эти параметры определены, но не протестированы.

^{** -} В столбце "Тип." приведены параметры при V_{DD} =5.0В @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

18.0 Характеристики микроконтроллеров

На момент выполнения перевода данный раздел отсутствовал в оригинальной технической документации.

19.0 Корпуса микроконтроллеров

19.1 Описание обозначений на корпусах микроконтроллеров

Обозначения:

XXX	Тип микроконтроллера*
AA	Две цифры даты изготовления
BB	Две цифры номера недели изготовления считая с 1 января.
С	Код завода изготовителя
	О = внешний представитель
	C = 5"
	S = 6"
	H = 8"
D	Номер версии
E	Код завода или страны, в которой кристалл был упакован в корпус
Примечани	е. Если тип микроконтроллера не помещается в одну строку, то он будет
перемещен	на другую строку, ограничивая число доступных символов для
информации	и заказчика.

^{*} Стандартная маркировка ОТР микросхем состоит из: типа микроконтроллера, код года, код недели, код завода изготовителя, код упаковщика кристалла в корпус. Изменение маркировки микросхемы выполняется за отдельную плату. Для QTР микроконтроллеров стоимость маркировки входит в цену микросхем QTP.

Тип корпуса: 18-выводный PDIP K04-007

Единицы измерения			Дюймы*		N	Л иллиметрь	ol
Пределы размеров		Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		18			18	
Расстояние между выводами	р		0.100			2.54	
Ширина нижней части вывода	В	0.013	0.018	0.023	0.33	0.46	0.58
Ширина верхней части вывода	B1**	0.055	0.060	0.065	1.40	1.52	1.65
Радиус сгиба вывода	R	0.000	0.005	0.010	0.00	0.13	0.25
Толщина вывода	С	0.005	0.010	0.015	0.13	0.25	0.38
Толщина корпуса	Α	0.110	0.155	0.155	2.79	3.94	3.94
Толщина нижней части корпуса	A1	0.075	0.095	0.115	1.91	2.41	2.92
Расстояние между корпусом и платой	A2	0.000	0.020	0.020	0.00	0.51	0.51
Длина нижней части вывода	L	0.125	0.130	0.135	3.18	3.30	3.43
Длина корпуса	D***	0.890	0.895	0.900	22.61	22.73	22.86
Ширина корпуса	E***	0.245	0.255	0.265	6.22	6.48	6.73
Ширина корпуса без фаски	E1	0.230	0.250	0.270	5.84	6.35	6.86
Полная ширина корпуса с выводами	eВ	0.310	0.349	0.387	7.87	8.85	9.83
Угол фаски верхней части корпуса	α	5	10	15	5	10	15
Угол фаски нижней части корпуса	β	5	10	15	5	10	15

^{*} Основные размеры.

^{**} Параметр В1 не включает в себя возможные выступы. Выступ в сторону не должен превышать 0.003"(0.076мм) или не более 0.006"(0.152мм) параметра В1.

^{***} Параметры D и E не включают выступы. Выступы в сторону не должны превышать 0.010"(0.254мм) или не более 0.020"(0.508мм) параметров D и E.

Тип корпуса: 18-выводный SOIC K04-051 - 300mil.

Единицы измерения		Дюймы*			Миллиметры		
Пределы размеров		Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		18			18	
Расстояние между выводами	р		0.050			1.27	
Толщина корпуса	Α	0.093	0.099	0.104	2.36	2.50	2.64
Толщина нижней части корпуса	A1	0.048	0.058	0.068	1.22	1.47	1.73
Расстояние между корпусом и платой	A2	0.004	0.008	0.011	0.10	0.19	0.28
Длина корпуса	D***	0.450	0.456	0.462	11.43	11.58	11.73
Ширина корпуса	E***	0.292	0.296	0.299	7.42	7.51	7.59
Ширина корпуса с выводами	E1	0.394	0.407	0.419	10.01	10.33	10.64
Размер ориентирующей фаски	Χ	0.010	0.020	0.029	0.25	0.50	0.74
Радиус изгиба верхней части вывода	R1	0.005	0.005	0.010	0.13	0.13	0.25
Радиус изгиба нижней части вывода	R2	0.005	0.005	0.010	0.13	0.13	0.25
Длина нижней части вывода	L	0.011	0.016	0.021	0.28	0.41	0.53
Угол наклона нижней части вывода	φ	0	4	8	0	4	8
Длина верхней части вывода	L1	0.010	0.015	0.020	0.25	0.38	0.51
Толщина вывода	С	0.009	0.011	0.012	0.23	0.27	0.30
Ширина вывода	B**	0.014	0.017	0.019	0.36	0.42	0.48
Угол фаски верхней части корпуса	α	0	12	15	0	12	15
Угол фаски нижней части корпуса	β	0	12	15	0	12	15

^{*} Основные размеры.
** Параметр В не включает в себя возможные выступы. Выступ в сторону не должен превышать 0.003"(0.076мм) или не более 0.006"(0.152мм) параметра В.

*** Параметры D и E не включают выступы. Выступы в сторону не должны превышать 0.010"(0.254мм) или не

более 0.020"(0.508мм) параметров D и E.

Тип корпуса: 20-выводный SSOP K04-072 - 5.30mm.

Единицы измерения		Дюймы			Миллиметры*		
Пределы размеров		Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		20			20	
Расстояние между выводами	р		0.026			0.65	
Толщина корпуса	Α	0.068	0.073	0.078	1.73	1.86	1.99
Толщина нижней части корпуса	A1	0.026	0.036	0.046	0.66	0.91	1.17
Расстояние между корпусом и платой	A2	0.002	0.005	0.008	0.05	0.13	0.21
Длина корпуса	D***	0.278	0.283	0.289	7.07	7.20	7.33
Ширина корпуса	E***	0.205	0.208	0.212	5.20	5.29	5.38
Ширина корпуса с выводами	E1	0.301	0.306	0.311	7.65	7.78	7.90
Радиус изгиба верхней части вывода	R1	0.005	0.005	0.010	0.13	0.13	0.25
Радиус изгиба нижней части вывода	R2	0.005	0.005	0.010	0.13	0.13	0.25
Длина нижней части вывода	L	0.015	0.020	0.025	0.38	0.51	0.64
Угол наклона нижней части вывода	φ	0	4	8	0	4	8
Длина верхней части вывода	L1	0.000	0.005	0.010	0.00	0.13	0.25
Толщина вывода	С	0.005	0.007	0.009	0.13	0.18	0.22
Ширина вывода	B**	0.010	0.012	0.015	0.25	0.32	0.38
Угол фаски верхней части корпуса	α	0	5	10	0	5	10
Угол фаски нижней части корпуса	β	0	5	10	0	5	10

^{*} Основные размеры.

^{**} Параметр В не включает в себя возможные выступы. Выступ в сторону не должен превышать 0.003"(0.076мм)

или не более 0.006"(0.152мм) параметра В.
*** Параметры D и E не включают выступы. Выступы в сторону не должны превышать 0.010"(0.254мм) или не более 0.020"(0.508мм) параметров D и E.

19.2 Правила идентификации типа микроконтроллеров PIC16F62X

Чтобы определить параметры микроконтроллеров воспользуйтесь ниже описанным правилом.

Пример 19-1

PİC16F627-04/P 301 = коммерческий температурный диапазон, корпус PDIP, 4МГц, нормальный диапазон напряжения питания, код QTP 301.

Пример 19-2

PiC16LF627-04I/SO = промышленный температурный диапазон, корпус SOIC, 200кГц, расширенный диапазон напряжения питания.

Уважаемые господа!

OOO «Микро-Чип» поставляет полную номенклатуру комплектующих фирмы Microchip Technology Inc

и осуществляет качественную техническую поддержку на русском языке.

С техническими вопросами Вы можете обращаться по адресу support@microchip.ru

По вопросам поставок комплектующих Вы можете обращаться к нам по телефонам:

(095) 963-9601 (095) 737-7545

и адресу sales@microchip.ru

На сайте www.microchip.ru

Вы можете узнать последние новости нашей фирмы, найти техническую документацию и информацию по наличию комплектующих на складе.