NumPy and Pandas II

2023-10-23

Today's agenda

- We had a quick look into NumPy/Pandas fundamentals
- We will look at key data manipulation/wrangling in Pandas
- Join, concatenate, reshape, aggregate, etc.

- Data may be spread across multiple files or databases
- We often want to combine data sets by linking rows
- We use column(s) to join data sets

Let's create two example data sets

```
import pandas as pd
df1 = pd.DataFrame({
    'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
    'data1': pd.Series(range(7))})
df2 = pd.DataFrame({
    'key': ['a', 'b', 'd'],
    'data2': pd.Series([False, True, True])})
```

• Let's create two example data sets

```
print(df1)
print(df2)
```

```
        key
        data1

        0
        b
        0

        1
        b
        1

        2
        a
        2

        3
        c
        3

        4
        a
        4

        5
        a
        5

        6
        b
        6

        key
        data2

        0
        a
        False

        1
        b
        True

        2
        d
        True
```

- Use pd.merge to join the two dataframes
- Join based on the key column using the on argument
- In this case, we are doing a many-to-one join

```
df_join = pd.merge(df1, df2, on = 'key')
print(df_join)
```

```
data2
     data1
 key
   b
         0 True
   b
         1 True
2
   b
         6 True
3
        2
           False
   a
4
         4 False
   a
5
   а
         5
           False
```

 Without column(s) to join on specified, pd.merge uses overlapping column(s) automatically

```
df_join2 = pd.merge(df1, df2)
print(df_join2)
```

	key	data1	data2
0	b	0	True
1	b	1	True
2	b	6	True
3	a	2	False
4	a	4	False
5	a	5	False

 If the column names are different in each DataFrame, specify them separately (or you can change the name(s) of the column(s))

```
df3 = pd.DataFrame({
   'key_l': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
   'data1': pd.Series(range(7))})
df4 = pd.DataFrame({
   'key_r': ['a', 'b', 'd'],
   'data2': pd.Series(range(3))})
```

• Use the left_on and right_on arguments

```
    key_1
    data1
    key_r
    data2

    0
    b
    0
    b
    1

    1
    b
    1
    b
    1

    2
    b
    6
    b
    1

    3
    a
    2
    a
    0

    4
    a
    4
    a
    0

    5
    a
    5
    a
    0
```

- But, where have 'c's and 'd's gone?
- This is because the argument 'how' is set as 'inner'
- With 'inner' join, the result only contains rows whose keys find a match ('a', 'b')

```
print(df1)
print(df2)
```

```
        key
        data1

        0
        b
        0

        1
        b
        1

        2
        a
        2

        3
        c
        3

        4
        a
        4

        5
        a
        5

        6
        b
        6

        key
        data2

        0
        a
        False

        1
        b
        True

        2
        d
        True
```

- outer join takes the union of the keys
- Rows that do not match on keys in the other DataFrame will get missing values

	key_l	data1	key_r	data2
0	Ъ	0.0	b	1.0
1	Ъ	1.0	b	1.0
2	Ъ	6.0	Ъ	1.0
3	a	2.0	a	0.0
4	a	4.0	a	0.0
5	a	5.0	a	0.0
6	С	3.0	NaN	NaN
7	NaN	NaN	d	2.0

- left join keeps the data frame on the left
- If there's no match for a particular row in the DataFrame on the right, it will be filled with missing values

```
key
       data1 data2
    b
              True
0
    b
               True
              False
    а
3
           3
                NaN
    С
4
              False
    a
5
           5
              False
    a
6
           6
    b
               True
```

Vice versa for right join

```
key
     data1
           data2
   a
     2.0 False
       4.0 False
   a
2
   a 5.0 False
3
   b
       0.0 True
4
   b
       1.0 True
5
       6.0 True
   b
6
   d
       NaN
            True
```

Joining on multiple columns

```
students = pd.DataFrame({
    'student_id': [1, 2, 3, 4],
    'name': ['Alice', 'Bob', 'Charlie', 'David'],
    'class': ['Math', 'History', 'Math', 'Science']})
grades = pd.DataFrame({
    'student_id': [1, 2, 3],
    'class': ['Math', 'History', 'Science'],
    'grade': ['A', 'B', 'A']})
print(students)
print(grades)
```

Simply provide a list of columns we wnat to join on

	student_id	name	class	grade
0	1	Alice	Math	Α
1	2	Bob	History	В
2	3	Charlie	Math	NaN
3	4	David	Science	NaN

- By concatenating, we put chunks of data together row-wise or column-wise
- Note that, unlike pd.merge, we don't match on values
- With axis taking 0, we are concatenating row-wise (vertically)

```
survey_2022 = pd.DataFrame({
    'respondent_id': [1, 2, 3],
    'opinion': ['agree', 'disagree', 'neutral']})
print(survey_2022)

survey_2023 = pd.DataFrame({
    'respondent_id': [4, 5, 6],
    'opinion': ['neutral', 'agree', 'disagree']})
print(survey_2023)
```

```
respondent_id opinion
0 1 agree
1 2 disagree
2 3 neutral
respondent_id opinion
0 4 neutral
1 5 agree
2 6 disagree
```

- With axis taking 0, we are concatenating row-wise (vertically)
- With the ignore_index argument set True, the index is reset

```
survey_concate_row = pd.concat(
  [survey_2022, survey_2023],
  axis = 0,
  ignore_index = True)
print(survey_concate_row)
```

 With axis taking 1, we are concatenating column-wise (horizontally)

```
demographics = pd.DataFrame({
    'age': [25, 30, 35, 40],
    'gender': ['M', 'F', 'F', 'M']},
    index=[1, 2, 3, 4]) # index is respondent_id
print(demographics)

responses = pd.DataFrame({
    'opinion': ['agree', 'disagree', 'neutral', 'agree']},
    index=[1, 2, 3, 4]) # index is respondent_id
print(responses)
```

```
age gender
1 25 M
2 30 F
3 35 F
4 40 M
opinion
1 agree
2 disagree
3 neutral
4 agree
```

 With axis taking 1, we are concatenating column-wise (horizontally)

```
survey_concat_column = pd.concat(
  [demographics, responses],
  axis = 1)
print(survey_concat_column)
```

opinion	gender	age	
agree	М	25	1
disagree	F	30	2
neutral	F	35	3
agree	M	40	4

• What if the indices on two data source don't match?

```
demographics = pd.DataFrame({
    'age': [25, 30, 35, 40],
    'gender': ['M', 'F', 'F', 'M']},
    index=[1, 2, 6, 8]) # index is respondent_id
print(demographics)

responses = pd.DataFrame({
    'opinion': ['agree', 'disagree', 'neutral', 'agree']},
    index=[0, 1, 2, 3]) # index is respondent_id
print(responses)
```

```
age gender
1 25 M
2 30 F
6 35 F
8 40 M
opinion
0 agree
1 disagree
2 neutral
3 agree
```

• What if the indices on two data sources don't match?

```
survey_concat_column = pd.concat(
  [demographics, responses],
  axis = 1)
print(survey_concat_column)
```

	age	gender	opinion
1	25.0	M	disagree
2	30.0	F	neutral
6	35.0	F	NaN
8	40.0	M	NaN
0	${\tt NaN}$	NaN	agree
3	NaN	NaN	agree

• Use reset_index to assign a new default index

```
survey_concat_column = pd.concat(
  [demographics, responses], axis = 1).reset_index(drop = True)
print(survey_concat_column)
```

opinion	gender	age	
disagree	M	25.0	0
neutral	F	30.0	1
NaN	F	35.0	2
NaN	M	40.0	3
agree	NaN	NaN	4
agree	NaN	NaN	5

If necessary, use the reset_index(drop = True) before concatenating

```
survey_concat_column = pd.concat([
  demographics.reset_index(drop = True),
  responses.reset_index(drop = True)],
  axis = 1)
print(survey_concat_column)
```

opinion	gender	age	
agree	M	25	0
disagree	F	30	1
neutral	F	35	2
agree	M	40	3

 Put 'inner' for the join argument to focus on rows without a missing value

```
survey_concat_column_inner = pd.concat(
  [demographics, responses],
  axis = 1,
  join = 'inner')
print(survey_concat_column_inner)
```

```
age gender opinion
1 25 M disagree
2 30 F neutral
```

- Use key argument to create a hierarchical index
- This is useful when you want to keep track of the original data sources

```
manuscript_1 = pd.DataFrame(
    {'text': ['text1a', 'text1b']}
)
manuscript_2 = pd.DataFrame(
    {'text': ['text2a', 'text2b']}
)
print(manuscript_1)
print(manuscript_2)
```

```
text
text1a
text1b
text
text
text
text
text
text2a
text2b
```

- Use key argument to create a hierarchical index
- This is useful when you want to keep track of the original data sources

```
m1 0 text1a
1 text1b
m2 0 text2a
```

1

t.ext.

text2b

stack rotates from the columns to the rows

```
trade_data = pd.DataFrame({
    '2019': [100, 80, 120],
    '2020': [105, 78, 130],
    '2021': [110, 82, 135]},
    index = ['USA', 'UK', 'China']
    )
print(trade_data)
```

```
2019 2020 2021
USA 100 105 110
UK 80 78 82
China 120 130 135
```

- For each entry in the index, the columns were used to generate the rows
- The column names now work as the inner index

```
trade_data_s = trade_data.stack()
print(trade_data_s)
print(type(trade_data_s))
USA
       2019
               100
       2020
              105
       2021
             110
IJK
      2019
             80
       2020
             78
       2021
              82
China
      2019
              120
      2020 130
       2021
              135
dtype: int64
<class 'pandas.core.series.Series'>
```

- unstack does the opposite
- Pick the index level to be used as column names
- The innermost index works as column names (by default)

```
trade_data = trade_data_s.unstack()
print(trade_data)
```

	2019	2020	2021
USA	100	105	110
UK	80	78	82
China	120	130	135

- Use of unstack with level argument (default: -1)
- The outer index works as column names

```
print(trade_data_s.unstack(level = 0))
```

	USA	UK	China
2019	100	80	120
2020	105	78	130
2021	110	82	135

 reset_index() can transform the returned Series into a DataFrame

print(trade_data_s)

USA	2019	100
	2020	105
	2021	110
UK	2019	80
	2020	78
	2021	82
China	2019	120
	2020	130
	2021	135
dtype:	int64	

 reset_index() can transform the returned Series into a dataframe

```
df_trade_data_s = trade_data_s.reset_index()
df_trade_data_s.columns = ['partner', 'year', 'volume']
print(df_trade_data_s)
```

	partner	year	volume
0	USA	2019	100
1	USA	2020	105
2	USA	2021	110
3	UK	2019	80
4	UK	2020	78
5	UK	2021	82
6	China	2019	120
7	China	2020	130
8	China	2021	135

Wide/long data format

 Wide data format provides a quick overview of all variables at a glance

month	Jan	Feb	Mar
state			
CA	30	31	29
NY	25	24	26

Wide/long data format

 Long data format is ideal for time-series data or repeated measures

```
data_long = {
    'state': ['CA', 'CA', 'CA', 'NY', 'NY', 'NY'],
    'month': ['Jan', 'Feb', 'Mar', 'Jan', 'Feb', 'Mar'],
    'usage': [30, 31, 29, 25, 24, 26]
}
df_long = pd.DataFrame(data_long)
print(df_long)
```

```
state month usage
    CA
        Jan
               30
    CA Feb
               31
1
    CA Mar
           29
3
    NY Jan 25
4
    NY Feb
               24
5
    NY Mar
               26
```

From wide to long

Example wide-format data

```
coffee_data = pd.DataFrame({
    'department': ['biology', 'history', 'physics'],
    '0': [5, 2, 10], # not at all
    '1': [7, 3, 16], # sometimes
    '2': [15, 9, 20], # always
    })
print(coffee_data)
```

```
department 0 1 2
0 biology 5 7 15
1 history 2 3 9
2 physics 10 16 20
```

From wide to long

- Use melt method
- Specify id_vars
- (Optionally) var_name and value_name as well

```
long_format_coffee_data = coffee_data.melt(
  id_vars = ['department'],
  var_name = 'consumption',
  value_name = 'num_students'
)
```

From wide to long

print(long_format_coffee_data)

	department	consumption	num_students
0	biology	0	5
1	history	0	2
2	physics	0	10
3	biology	1	7
4	history	1	3
5	physics	1	16
6	biology	2	15
7	history	2	9
8	physics	2	20

From wide to long

 This is equivalent to creating an index using set_index and then running stack

```
long_format = coffee_data.set_index('department').stack()
print(long_format)
```

```
department
biology
             0
                   15
history
                    3
                   10
physics
                   16
                   20
```

dtype: int64

From wide to long

print(long_format)

```
department
biology 0 5
1 7
2 15
history 0 2
1 3
2 9
physics 0 10
1 16
2 20
```

dtype: int64

```
product month sales stock
0 A Jan 100 32
1 A Feb 110 53
2 B Jan 90 23
3 B Feb 95 44
```

- Use the pivot method
- Specify index, columns, and values

```
product A B month
Feb 110 95
Jan 100 90
```

Multiple values

```
sales stock
product A B A B
month
Feb 110 95 53 44
Jan 100 90 32 23
<class 'pandas.core.frame.DataFrame'>
```

 This is equivalent to creating a hierarchical index using set_index and then running unstack

```
print(sales_df.set_index(['product', 'month']))
```

		sales	stock
product	month		
Α	Jan	100	32
	Feb	110	53
В	Jan	90	23
	Feb	95	44

```
print(sales_df.set_index(['product', 'month']).unstack(level = 0))
```

	sales		stock	
product	Α	В	Α	В
month				
Feb	110	95	53	44
Jan	100	90	32	23

- pivot will raise an error if the specified index and columns pair is not unique
- pivot_table allows you to reshape data and also aggregate it
- Useful when there are duplicates that need to be aggregated

```
product month sales
0 A Jan 100
1 A Feb 110
2 B Jan 90
3 B Feb 95
4 A Jan 105
```

- aggfunccan take 'sum', 'mean', 'max', etc., or even a custom function
- Also a list of these (e.g., ['min', 'max'])

```
pt_sales = sales_df2.pivot_table(
  index = 'month', columns = 'product', values = 'sales',
  aggfunc = 'mean')
print(pt_sales)
```

```
product A B month Feb 110.0 95.0 Jan 102.5 90.0
```

Group operations and aggregation

Figure 1: Split-Apply-Combine framework

Let's create an example data

```
import numpy as np
df = pd.DataFrame({
  'key1' : ['a', 'a', 'c', 'b', 'b', 'a', 'a'],
  'key2' : pd.Series([2, 2, 1, 2, 1, None, 1]),
  'data1' : np.random.standard_normal(7),
  'data2' : np.random.standard_normal(7)})
print(df)
```

```
        key1
        key2
        data1
        data2

        0
        a
        2.0
        -0.480759
        0.258820

        1
        a
        2.0
        -0.212584
        0.576520

        2
        c
        1.0
        0.871836
        -0.172507

        3
        b
        2.0
        -0.748853
        1.415610

        4
        b
        1.0
        0.032099
        -1.074665

        5
        a
        NaN
        1.026870
        -0.013686

        6
        a
        1.0
        -0.123515
        2.074180
```

• Generate a GroupBy object

```
grouped = df.groupby(df['key1'])
print(type(grouped))
```

<class 'pandas.core.groupby.generic.DataFrameGroupBy'>

We can actually see the keys and groups in a GroupBy object

```
for x, y in df.groupby(['key1']):
 print(x)
 print(y)
('a',)
 key1 key2 data1 data2
    a 2.0 -0.480759 0.258820
  a 2.0 -0.212584 0.576520
5 a NaN 1.026870 -0.013686
 a 1.0 -0.123515 2.074180
('b'.)
 key1 key2 data1
                       data2
  b 2.0 -0.748853 1.415610
   b 1.0 0.032099 -1.074665
('c'.)
 key1
      key2 data1
                       data2
     1.0 0.871836 -0.172507
```

Subset a GroupBy object and do some simple aggregation

```
print(grouped['data1'].mean())
print(grouped[['data1','data2']].mean())
key1
     0.052503
а
b -0.358377
 0.871836
Name: data1, dtype: float64
         data1
                   data2
key1
      0.052503 0.723958
a
h
     -0.358377 0.170472
      0.871836 -0.172507
С
```

• Use the dropna argument to keep missing values

```
grouped2 = df.groupby(
  [df['key1'], df['key2']],
  dropna = False)
for (x, y), z in grouped2:
  print((x, y))
 print(y)
('a', 1.0)
1.0
('a', 2.0)
2.0
('a', nan)
nan
('b', 1.0)
1.0
('b', 2.0)
2.0
('c', 1.0)
1.0
```

- Aggregation refers to any data transformation that produces scalar values from arrays
- With groupby, there are many ways to aggregate
- mean, median, sum, size, min, max, count, etc.

Example data on voter turnout by region and district

```
dict_to = {
   'region': ['R1', 'R1', 'R2', 'R2', 'R3', 'R3'],
   'district': ['A', 'B', 'C', 'D', 'E', 'F'],
   'turnout': [0.61, 0.46, 0.64, 0.75, 0.63, 0.55]
   }
df_to = pd.DataFrame(dict_to)
print(df_to)
```

	region	${\tt district}$	turnout
0	R1	A	0.61
1	R1	В	0.46
2	R2	C	0.64
3	R2	D	0.75
4	R3	Е	0.63
5	R3	F	0.55

 For instance, get the minimum and maximum values for each region

```
print(
  df_to.groupby('region')['turnout'].agg(
  ['min', 'max'])
)
```

```
min max
region
R1 0.46 0.61
R2 0.64 0.75
R3 0.55 0.63
```

We can also use our own aggregation functions

```
def min_max_diff(arr):
    return arr.max() - arr.min()
df_to_agg = df_to.groupby('region')['turnout'].agg(
        [min_max_diff, 'min', 'max']
      )
print(df_to_agg)
```

	min_max_diff	min	max
region			
R1	0.15	0.46	0.61
R2	0.11	0.64	0.75
R3	0.08	0.55	0.63

Index as a column

```
df_to_agg_index_col = df_to.groupby(
  'region', as_index = False)['turnout'].agg(
     [min_max_diff, 'min', 'max']
    )
print(df_to_agg_index_col)
```

```
region min_max_diff min max
0 R1 0.15 0.46 0.61
1 R2 0.11 0.64 0.75
2 R3 0.08 0.55 0.63
```

Apply a function along an axis of a DataFrame or Series

```
df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
print(df)
```

```
A L
```

- 0 4 9
- 1 4 9
- 2 4 9

Apply a function along an axis of a DataFrame or Series

```
print(df.apply(np.sqrt))
```

```
A B
0 2.0 3.0
1 2.0 3.0
2 2.0 3.0
```

Apply a function along an axis of a DataFrame or Series

```
print(df.apply(np.sum, axis = 0))
print(df.apply(np.sum, axis = 1))
```

```
A 12
B 27
dtype: int64
0 13
1 13
2 13
dtype: int64
```

```
dict_sales = {
    'salesperson': ['Alice', 'Alice', 'Bob', 'Bob'],
    'month': ['Jan', 'Feb', 'Jan', 'Feb'],
    'sales': [100, 120, 110, 105]
    }
df_sales = pd.DataFrame(dict_sales)
print(df_sales)
```

```
salesperson month sales
0 Alice Jan 100
1 Alice Feb 120
2 Bob Jan 110
3 Bob Feb 105
```

```
def top_month(group):
   best_row = group[group['sales'] == group['sales'].max()]
   return best_row[['month', 'sales']]
```

```
df_sales_aply = df_sales.groupby('salesperson').apply(top_month)
print(df_sales_aply)
```

		month	sales
salesperson			
Alice	1	Feb	120
Bob	2	Jan	110

```
students = pd.DataFrame({
    'name': ['a', 'b', 'c', 'd', 'e', 'f'],
    'score': [85, 90, 78, 88, 92, 74],
    'age': [12, 14, 16, 13, 15, 24]})
print(students)
```

	name	score	age
0	a	85	12
1	b	90	14
2	С	78	16
3	d	88	13
4	е	92	15
5	f	74	24

```
def stage(age):
    if age < 13:
        return 'child'
    elif 13 <= age < 20:
        return 'teen'
    else:
        return 'adult'</pre>
```

```
students.groupby(students['age'].apply(stage))['score'].agg('mean')
```

age

adult 74.0 child 85.0

teen 87.0

Name: score, dtype: float64