Package 'rhnerm'

October 14, 2022

Type Package				
Title Random Heteroscedastic Nested Error Regression Version 1.1				
Maintainer Shonosuke Sugasawa <shonosuke622@gmail.com></shonosuke622@gmail.com>				
Description Performs the random heteroscedastic nested error regression model described in Kubokawa, Sugasawa, Ghosh and Chaudhuri (2016) <doi:10.5705 ss.202014.0070="">.</doi:10.5705>				
License GPL (>= 2)				
NeedsCompilation no				
Repository CRAN				
Date/Publication 2016-12-03 13:24:59				
R topics documented:				
cmseRHNERM				
Index				
cmseRHNERM Conditional mean squared error estimation of the empirical Bayes estimators under random heteroscedastic nested error regression models				

Description

Calculates the conditional mean squared error estimates of the empirical Bayes estimators under random heteroscedastic nested error regression models based on the parametric bootstrap.

Usage

```
cmseRHNERM(y, X, ni, C, k=1, maxr=100, B=100)
```

2 cmseRHNERM

Arguments

У	N*1 vector of response values.
X	N^*p matrix containing N^*1 vector of 1 in the first column and vectors of covariates in the rest of columns.
ni	m*1 vector of sample sizes in each area.
С	m*p matrix of area-level covariates included in the area-level parameters.
k	area number in which the conditional mean squared error estimator is calculated. \\
maxr	$maximum \ number \ of \ iteration \ for \ computing \ the \ maximum \ likelihood \ estimates.$
В	number of bootstrap replicates.

Value

conditional mean squared error estimate in the kth area.

Author(s)

Shonosuke Sugasawa

References

Kubokawa, K., Sugasawa, S., Ghosh, M. and Chaudhuri, S. (2016). Prediction in Heteroscedastic nested error regression models with random dispersions. Statistica Sinica, 26, 465-492.

Examples

```
#generate data
set.seed(1234)
beta=c(1,1); la=1; tau=c(8,4)
m=20; ni=rep(3,m); N=sum(ni)
X=cbind(rep(1,N),rnorm(N))
mu=beta[1]+beta[2]*X[,2]
sig=1/rgamma(m,tau[1]/2,tau[2]/2); v=rnorm(m,0,sqrt(la*sig))
y=c()
cum=c(0,cumsum(ni))
for(i in 1:m){
  term=(cum[i]+1):cum[i+1]
  y[term]=mu[term]+v[i]+rnorm(ni[i],0,sqrt(sig[i]))
}
#fit the random heteroscedastic nested error regression
C=cbind(rep(1,m),rnorm(m))
cmse=cmseRHNERM(y,X,ni,C,B=10)
cmse
```

mseRHNERM 3

mseRHNERM	Mean squared error estimation of the empirical Bayes estimators un- der random heteroscedastic nested error regression models

Description

Calculates the mean squared error estimates of the empirical Bayes estimators under random heteroscedastic nested error regression models based on the parametric bootstrap.

Usage

```
mseRHNERM(y, X, ni, C, maxr=100, B=100)
```

Arguments

у	N*1 vector of response values.
X	N*p matrix containing $N*1$ vector of 1 in the first column and vectors of covariates in the rest of columns.
ni	m*1 vector of sample sizes in each area.
С	m*p matrix of area-level covariates included in the area-level parameters.
maxr	maximum number of iteration for computing the maximum likelihood estimates.
В	number of bootstrap replicates.

Value

m*1 vector of mean squared error estimates.

Author(s)

Shonosuke Sugasawa

References

Kubokawa, K., Sugasawa, S., Ghosh, M. and Chaudhuri, S. (2016). Prediction in Heteroscedastic nested error regression models with random dispersions. Statistica Sinica, 26, 465-492.

Examples

```
#generate data
set.seed(1234)
beta=c(1,1); la=1; tau=c(8,4)
m=20; ni=rep(3,m); N=sum(ni)
X=cbind(rep(1,N),rnorm(N))

mu=beta[1]+beta[2]*X[,2]
sig=1/rgamma(m,tau[1]/2,tau[2]/2); v=rnorm(m,0,sqrt(la*sig))
y=c()
```

4 RHNERM

```
cum=c(0,cumsum(ni))
for(i in 1:m){
   term=(cum[i]+1):cum[i+1]
   y[term]=mu[term]+v[i]+rnorm(ni[i],0,sqrt(sig[i]))
}
#fit the random heteroscedastic nested error regression
C=cbind(rep(1,m),rnorm(m))
mse=mseRHNERM(y,X,ni,C,B=10)
mse
```

RHNERM

Estimation of random heteroscedastic nested error regression models

Description

Calculates the maximum likelihood estimates of the model parameters in random heteroscedastic nested error regression models. The empirical Bayes estimates of area-level parameters with random effects are also given.

Usage

```
RHNERM(y, X, ni, C, maxr=100)
```

Arguments

У	N*1 vector of response values.
X	N*p matrix containing $N*1$ vector of 1 in the first column and vectors of covariates in the rest of columns.
ni	m*1 vector of sample sizes in each area.
С	m*p matrix of area-level covariates included in the area-level parameters.
maxr	$maximum \ number \ of \ iteration \ for \ computing \ the \ maximum \ likelihood \ estimates.$

Value

The function returns a list with the following objects:

MLE	(p+3)*1 vector of maximum likelihood estimates of the model parameters.
EB	m*1 vector of empirical Bayes estimates of the area-level parameters.

Author(s)

Shonosuke Sugasawa

References

Kubokawa, K., Sugasawa, S., Ghosh, M. and Chaudhuri, S. (2016). Prediction in Heteroscedastic nested error regression models with random dispersions. Statistica Sinica, 26, 465-492.

RHNERM 5

Examples

```
#generate data
set.seed(1234)
beta=c(1,1); la=1; tau=c(8,4)
m=20; ni=rep(3,m); N=sum(ni)
X=cbind(rep(1,N),rnorm(N))
mu=beta[1]+beta[2]*X[,2]
sig=1/rgamma(m,tau[1]/2,tau[2]/2); v=rnorm(m,0,sqrt(la*sig))
y=c()
cum=c(0,cumsum(ni))
for(i in 1:m){
  term=(cum[i]+1):cum[i+1]
  y[term]=mu[term]+v[i]+rnorm(ni[i],0,sqrt(sig[i]))
}
#fit the random heteroscedastic nested error regression
C=cbind(rep(1,m),rnorm(m))
fit=RHNERM(y,X,ni,C)
fit
```

Index

cmseRHNERM, 1

mseRHNERM, 3

RHNERM, 4