- 1 . Покажите, что если система векторов $u_1, ..., u_k$ линейно независима, то система векторов $u_1, u_1 + u_2, u_2 + u_3, ..., u_{k-1} + u_k$ также линейно независима.
- 2. Докажите линейную независимость системы функций $\sin x,\cos x.$
- 3. Докажите линейную зависимость системы функций $1,\sin x,\cos x,\sin^2 x,\cos^2 x.$
- 4 . Покажите, что пространство $M_n((\mathbb{R}))$ есть прямая сумма $M_n((\mathbb{R})) = R_1 \oplus R_2$ подпространства R_1 симметрических и R_2 кососимметрических матриц. Найдите проекции A_1 и A_2 матрицы

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

на R_1 параллельно R_2 и на R_2 параллельно R_1 .

- 5. Докажите, что всякий линейный оператор любую линейно зависимую систему векторов переводит в линейно зависимую систему.
- 6 . Докажите, что всякий линейный оператор $A:R^1\to R^1$, действующий в одномерном пространстве, имеет вид $A=\lambda I$, т. е. является гомотетией с коэффициентом гомотетии λ .
- 7 . Пусть $A: P_n \to P_n$ оператор, определённый равенством Af(t) = f(t+1) (оператор сдвига по аргументу). Покажите, что A линейный оператор и найдите его матрицу в базисе $1, t, t^2, ..., t^n$.
- 8.