isomorphism permutation matrix Similarity

SYSM 6302

CLASS 16

Similarity

Two nodes can be similar because they

Connect to the same nodes

Connect to different nody, but that are similar

Structural Equivalence (aka Revenge of Cocitation)

Cosine Similarity

Similar vectors point in the same direction

$$x \cdot y = |x||y|\cos\theta$$

Let
$$x = i^{th} row of A$$
 $y = j^{th} row of A r$

Connections to

$$A_{ij} \in \{0,1\} \Rightarrow A_{ij} = (A_{ij})^2$$

$$\sigma_{ij} = \cos \theta = \frac{x \cdot y}{|x||y|} = \frac{\sum_{k=1}^{n} A_{ik} A_{kj}}{\sum_{k} A_{ik}^{2} \sqrt{\sum_{k} A_{jk}^{2}}} = \frac{\sum_{k=1}^{n} A_{ik} A_{kj}}{\sqrt{\sum_{k} A_{ik}^{2}} \sqrt{\sum_{k} A_{jk}^{2}}}$$

nde j

Pearson Correlation Coefficient for Similarity Compare nij to the number of common neighbors expected at random $\sigma_{ij} = n_{ij} - \frac{k_i k_j}{n} = \sum_{\ell=1}^{\infty} A_{i\ell} A_{j\ell} - n \frac{k_i}{n} \frac{k_j}{n} = \sum_{\ell=1}^{\infty} \left(A_{i\ell} A_{j\ell} - \langle A_i \rangle \langle A_j \rangle \right)$ $= \sum_{\ell=1}^{n} (A_{i\ell} - \langle A_i \rangle) (A_{j\ell} - \langle A_j \rangle)$ $\langle A_i \rangle \langle A_j \rangle$ i (ki kj Paverage of $\frac{k_1}{n-1} \sim \frac{k_2}{n}$. Probability of connecting node \tilde{i} to any other node at random elements in $= CoV(A_i, A_j)$ rew i

 $\int_{ij} = \frac{\sigma_{ij}}{\sigma_{ii}} \sigma_{ij}$, -15 Gj 51 Kj: number of "tries" to connect à to j

Regular Equivalence $\frac{1}{\sigma_{ij}} = \alpha \sum_{k=1}^{n} A_{ik} \sum_{k=1}^{n} A_{jk} \sigma_{kk} \qquad \Rightarrow \qquad \sigma = \alpha A \sigma A$ Sum over t sum over nodes are not similar to nors of i nors of j $\sigma_{ij} = \alpha \sum_{k=1}^{n} A_{ik} \sum_{l=1}^{n} A_{jl} \sigma_{kl} + \delta_{ij} \Rightarrow \sigma = \alpha A \sigma A + I$

Isomorphism - a out-to-one mapping between graphs.

Graphs G14 G2, $\phi: V(G_1) \rightarrow V(G_2)$ is an isomorphism

if vertices $u, v \in G$, are adjacent $\Rightarrow \phi(u), \phi(v) \in G_z$ are adjacent

- -> Two graphs are Bomorphic if an isomorphism exists
- → \$\P^1\$ is the inverse isomorphism \$P^1: V(G2) -> V(G1)
- -> Necessary conditions: same # nodes, # edges, degree segrence/distribution
- -> Isomorphism of G to itself: automorphism (a strict notion of similarity)

Permutation Matrix - Square matrix formed by swapping rows of

the identity matrix.

The

-> P is orthogonal, i.e., P = PT

 \Rightarrow A permutation matrix before an isomorphism in matrix form (adjacency) L> G1 & G2 are isomorphic \iff there exists a permutation matrix, P, such that $PA_1P^T=A_2$

$$\Pi(1,2,3,4) = (1,3,4,2)
P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$A_{2} = PA_{1}P^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0$$