Lecture 5

Avi Herman

9/17/2024

Table of Contents

- Rotational Motion
 - Units
 - Rules
 - Right Hand Rule
 - Angular Velocity
- Torque
- Friction
- Power
- Kinetic Energy
- PollEV Answers

Rotational Motion

Units

Translational Motion	Rotational Motion
Position: $ec{x}$ (m)	Angle : $\vec{ heta}$ (rad)
Velocity: $\vec{v}(rac{m}{s})$	Angular Velocity: $\vec{\omega}$ ($rac{\mathrm{rad}}{\mathrm{s}}$)
Acceleration: \vec{a} $(rac{m}{s^2})$	Angular Acceleration: $ec{lpha}$ ($rac{\mathrm{rad}}{s^2}$)
Force: $ec{F}$ (N)	Torque: $\vec{ au}$ (Nm)
Mass: m (kg)	Rotational Mass/Moment of Inertia: I (kg m^2)

Rules

Translational Motion	Rotational Motion
No outside forces means constant $ec{v}$	No outside torques means constant $\vec{\omega}$
$ec{a}=rac{ec{ ext{Fnet}}}{m}$	$ec{lpha} = rac{ec{ au}_{ m net}}{I}$
$ec{F}_{ m BA} = -ec{F}_{ m AB}$	$ec{ au}_{ m BA} = -ec{ au}_{ m AB}$

Right Hand Rule

- The right hand rule is used to determine the direction of the angular momentum vector $(\vec{\omega})$.
- 1. **Identify the Rotation Axis**: Determine the axis around which the object is rotating.
- 2. **Curl Your Fingers**: Point the fingers of your right hand in the direction of the rotation (the direction in which the object is moving).
- 3. **Thumb Direction**: Extend your thumb perpendicular to your fingers. The direction your thumb points is the direction of the angular momentum vector $(\vec{\omega})$.
- Example
 - If a wheel is rotating counterclockwise when viewed from above, you would:
 - o Point your fingers in the direction of the rotation (counterclockwise).
 - \circ Your thumb will point upwards, indicating that the angular momentum vector $(\vec{\omega})$ is directed upwards.

Visual Example

Angular Velocity

$$ec{\omega} = rac{ec{ heta}_f - ec{ heta}_i}{t_f - t_i}$$

- Example: Find the angular velocity of the second hand on a clock
 - Understanding the Rotation and Angular Velocity
 - The second hand completes one full rotation (360°) in 60 seconds. In radians, a full rotation is 2π radians.
 - Right-Hand Rule
 - For clocks, the second hand rotates clockwise. However, angular velocity and momentum are typically defined using the right-hand rule:
 - Curl the fingers of your right hand in the direction of the second hand's rotation (clockwise).

- Your thumb points in the direction of the angular velocity vector $\vec{\omega}$, which, in this case, points downward (into the clock face).
- Time for One Full Rotation
 - One complete revolution of the second hand takes 60 seconds.
- Calculating Angular Velocity
 - Angular velocity ω is defined as the change in angular displacement over time. For uniform circular motion:

$$\omega = rac{\Delta heta}{\Delta t}$$

- ullet Here, $\Delta heta = 2\pi$ radians (full circle) and $\Delta t = 60~\mathrm{s}.$
- Angular Velocity (in radians per second)

$$\omega = \frac{2\pi \, \mathrm{rad}}{60 \, \mathrm{s}} = \frac{\pi}{30} \, \mathrm{rad/s}$$

Torque

- Torque is the rotational equivalent of force.
- ullet $ec{lpha}=rac{ec{ au}_{
 m net}}{I}$
 - \circ Units of $\vec{ au}$ are Nm
 - \circ Units of \vec{lpha} are $rac{\mathrm{rad}}{s^2}$
- ullet I rotational mass measures $ext{mass} imes ext{distance}^2$
 - \circ Units of I are kg m 2
- ullet $au = |ec{ au}| = ec{r} imes ec{F}_{ot}$
 - \circ \vec{r} is the distance from the axis of rotation

 \circ $ec{F}$ is the force applied

Friction

- Friction is a force that opposes motion.
 - Static friction prevents motion
 - Sliding friction slows motion

ullet $ec{F}_{
m sliding\ friction} = \mu_{
m sliding\ friction} \cdot ec{F}_{
m support}$

 $\circ~\mu$ is the coefficient of friction

 $\circ \; ec{F}_{
m support}$ is the support force

ullet $\hat{F}_{
m sliding\ friction} = -\hat{v}$ if $ec{v}>0$

 $\circ \; \hat{v}$ is the velocity of the object

ullet $F_{
m static\ friction} = F_{
m push}\ {
m if}\ F_{
m push} < \mu_{
m static\ friction}\cdot F_{
m support}$

 $\circ \ F_{
m push}$ is the force applied to the object

 $\circ~\mu_{
m static~friction}$ is the coefficient of static friction

 $\circ~F_{
m support}$ is the support force

Visual Example

ullet Note $ec{F}_{
m support} = ec{F}_{
m normal}$

PollEV Answers

$$D\left(\frac{2\pi}{\mathrm{day}}=0.000727\frac{\mathrm{radians}}{s}\right)$$

• What is the angular speed of Earth around its axis?

To solve for the angular speed of the Earth around its axis, we can use the given information:

The Earth completes one full rotation (2π radians) in one day (24 hours).

First, convert the time period from days to seconds:

$$1 day = 24 hours$$

$$24 \text{ hours} = 24 \times 60 \text{ minutes} = 1440 \text{ minutes}$$

$$1440 \text{ minutes} = 1440 \times 60 \text{ seconds} = 86400 \text{ seconds}$$

Now, the angular speed (ω) is given by:

$$\omega = rac{\Delta heta}{\Delta t}$$

Where:

- $\Delta\theta = 2\pi$ radians
- $\Delta t = 86400$ seconds

$$\omega = \frac{2\pi \ \mathrm{radians}}{86400 \ \mathrm{seconds}}$$

Simplify the expression:

$$\omega = \frac{2\pi}{86400} \approx 0.0000727 \text{ radians/second}$$

Thus, the angular speed of the Earth around its axis is approximately 0.0000727 radians/second.