Trigonometric integrals (7.2)

Integral	u =	du =	Identity to use	Works when
$\int \sin^m x \cos^n x dx$	$\sin x$	$\cos x dx$	$\sin^2 x + \cos^2 x = 1$	n is odd
	$\cos x$	$-\sin x dx$		m is odd
$\int \tan^m x \sec^n x dx$	$\tan x$	$\sec^2 x dx$	$\tan^2 x + 1 = \sec^2 x$	n is even
	$\sec x$	$\sec x \tan x dx$		m is odd

If both $\sin x$ and $\cos x$ appear with even exponents, use

$\sin^2 x = \frac{1 - \cos 2x}{2} \cos^2 x = \frac{1 + \cos 2x}{2} \sin x \cos x$	$\operatorname{ss} x = \frac{\sin 2x}{2}$
---	---

Trigonometric substitutions (7.3)

Integral has	x =	$\sqrt{\cdots} =$	dx =
$\sqrt{a^2-x^2}$	$a\sin\theta$	$a\cos\theta$	$a\cos\theta d\theta$
$\sqrt{a^2 + x^2}$	$a \tan \theta$	$a \sec \theta$	$a \sec^2 \theta d\theta$
$\sqrt{x^2-a^2}$	$a \sec \theta$	$a \tan \theta$	$a \sec \theta \tan \theta d\theta$

If $\sqrt{\cdots}$ is multiplied by x to an odd power, use $u = \cdots$ instead of trig sub.

HOW TO COMPLETE THE SQUARE

- Given: $x^2 + 6x + 5$
- Let b be the coefficient of x divided by 2. In this example b = 6/2 = 3.
- Replace the two terms with x by $(x+b)^2 b^2$. Here I replace $x^2 + 6x$ with $(x+3)^2 9$.
- The result: $(x+3)^2 9 + 5$, which simplifies to $(x+3)^2 4$. The square is complete!
- (if given $3x^2 + 18x + 15$, factor out 3 to get $3(x^2 + 6x + 5)$, then proceed as above)

If this was a trig substitution problem, you would sub $x + 3 = 2 \sec \theta$.

In a partial fraction problem you want to know if the quadratic is reducible or not. If after completing the square you have a sum, then the quadratic is irreducible. If you have a difference, like $(x+3)^2 - 4$ in my example, then it's reducible. Use the formula $a^2 - b^2 = (a-b)(a+b)$ to reduce it: $(x+3)^2 - 4 = (x+3-2)(x+3+2) = (x+1)(x+5)$.