ПРЕОБРАЗОВАНИЕ ХАФА Лекция 8.

Преподаватель: Сибирцева Елена elsibirtseva@gmail.com

В следующий раз отдыхаем. Встречаемся 21 марта

Пригашаю посмотреть на Imagine Cup Moscow...

Фичи изображения

- Края
 - Собель, Робертс, Прьюит
 - Лапласиан Гауссиана
 - (они убили) Кенни
- Характеристические точки
 - Харрис
 - SIFT
- Дескрипторы
 - SIFT
 - HOG

Фичи фигур

- ОПрямая ∧иния
- Окружности и эллипсы
- ОПроизвольная форма

Преобразование Хафа

- Hough transform
 - Дискретизируем пространство параметров модели (разделим его на ячейки)
 - Для каждого точки из данных, голосуем за все ячейки в пространстве параметров, которые соответствуют моделям, которым эта точка удовлетворяет
 - Найдем ячейки с максимум голосов

Фазовое пространство

- Пространство параметров называют фазовым пространством
- Рассмотрим пример для линий
- Каждая линия на изображении соответствует точке в фазовом пространстве
- Необходимо, что всевозможные линии на изображении соответствовали ограниченной области в фазовом пространстве

Уравнение прямой

- Выберем такую параметризацию модели, в которой параметры изменяются в ограниченных пределах.
- Πp : $x \cos\theta + y \sin\theta = R$
 - R длина перпендикуляра опущенного на прямую из начала координат
 - R ограничено размерами входного изображения.
 - θ угол между перпендикуляром к прямой и осью ОХ
 - θ изменяется в пределах от 0 до 2π

Фазовое пространство

Через одну точку можно провести несколько прямых. Учитывая дискретность их будет конечное число.

Каждой прямой пространства (x, y) соответствует точка фазового пространства (R, 0). Прямые с левого рисунка образуют синусоиду.

- Дискретизируем фазовое пространство
- Счетчик ставится в соответствие каждой ячейке сетки [R_i, R_{i+1}] x [θ_i,θ_{i+1}]
- За эту ячейку «голосуют» точки (x, y), удовлетворяющие:
 x cosθ + y sinθ = R, где θ_i ≤ θ ≤ θ_{i+1}, R_i ≤ R ≤ R_{i+1}

Схема алгоритма для линий

- Инициализируем аккумулятор Н нулями

- Найти значения (θ, ρ) где Н(θ, ρ) достигает локального максимума
 - Найденные линии задаются формулой ρ = x cos θ + y sin θ

Пример

Пример

Исходное изображение

Выделенные края

Найденные прямые

Фазовое пространство

Влияние шума

Шум приводит к «размытию» максимумов

Влияние шума

Количество голосов за линию из 20 точек с увеличением шума:

Случайные точки (выбросы)

Равномерно распределенные точки могут приводит к случайным пикам в аккумуляторе

Неполнота данных

Пропущенные данные также приводят к размытию значений в аккумуляторе

Hot Tips

- Выбор правильной сетки
 - Слишком грубая: несколько близких линий будут голосовать за одну ячейку
 - Слишком мелкая: можно пропустить линии, т.к.
 зашумленные точки будут голосовать за разные ячейки
- Для поиска максимумов можно сглаживать значения в аккумуляторе
- Какая точка соответствует какой линии?
 - Помечаем голоса
- Отфильтроваить лишние признаки
 - Для линий, стоит брать точки на краях только с большим градиентом

Учет градиента

- Когда мы находим края, мы знаем также градиент
- Это значит, что направление линии уже определено!

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• Усовершенствованный метод:

```
For each edge point (x,y)

\theta = gradient orientation at (x,y)

\rho = x \cos \theta + y \sin \theta

H(\theta, \rho) = H(\theta, \rho) + 1

end
```

http://liquify.eu/project/HoughTransform/

В следующих сериях...

