

ECEN 4013 Design of Engineering Systems

Agenda

Electrical Safety
Project 1 Introduction
Project 1 Team Assignments

Electrical Safety Review

This electrical safety review is prepared for engineering students in ECEN 4013, ECEN 4024, and Interdisciplinary projects.

A quiz on this material is on Canvas. ECE students <u>must</u> pass with a score of 100% in a maximum of three attempts.

Electrical Safety Review

This review will cover only 120V_{rms} domestic wall power. Any other project power sources may require specialized safety training.

120V_{rms} wall outlets in ENDEAVOR and other campus buildings are fundamentally the same as a domestic power arrangement.

15 Amp Duplex Receptacle

20 Amp Duplex Receptacle

Receptacle Wiring Nomenclature

Receptacle Face

Receptacle Back

Receptacle Neutral Side

Receptacle Hot Side

Receptacle Ground

Typical Domestic Power Panel

Typical US domestic color conventions (receptacle and plug wiring):

Hot Black or Red

Neutral White

Ground Green or bare copper;

possibly green with yellow stripe

European and some purchased cord set color conventions are different.

Typical Domestic Power Panel

Using AC power in the lab

Do not work on energized equipment – disconnect from the outlet.

Open and lock out the breaker when possible.

After working on equipment, confirm all voltages using a voltmeter.

Using AC power in the lab

Confirm correct power switch operation using a voltmeter.

Remove rings and other jewelry in the laboratory – they are conductors!

Keep one hand in a pocket when making AC voltage measurements.

Using AC power in the lab

Breakers, switches, and equipment can be wired incorrectly – take nothing for granted. Check it yourself.

Ask for help – take no risks.

No horseplay or practical jokes – lab work is serious business.

How is single-phase power specified?

There are three different ways:

Amplitude of a sine wave (V)

Peak-to-peak voltage (V_{p-p})

Rms voltage (V_{rms})

US domestic single-phase power

Root-mean-square (rms) calculation

Single-phase AC voltage amplitude

Domestic distribution line voltage is nominally 120 V_{ac} . 120 V_{ac} is really 120 V_{rms} : the root mean square voltage of an assumed undistorted sinusoid.

Nominal means "in name only." In reality, the common AC power line can be anywhere between 105 V_{ac} to 125 V_{ac} .

Single phase AC voltage amplitude

A single-phase sinusoid is commonly specified in three different ways.

120
$$V_{rms} = 170 \sin(2\pi f t) \text{ Volts}$$

= 340 V_{p-p}

You must understand these relationships when selecting component voltage ratings.

- In normal operation, the hot and neutral conductors to a load must carry the same current.
- If hot and neutral currents aren't the same, the difference current has to be going somewhere. This is called a ground fault. The missing current is assumed to be going to ground somewhere.

 The National Electric Code mandates use of GFCIs in specific locations, particularly within six feet of water – typically, kitchens and bathrooms.

What current difference is required to trip?

Class A: 5 mA (common use)

Class B: 20 mA (pools)

Project 1

4-bit Successive Approximation A to D Converter Major elements:

- Sample/hold amplifier (S/H)
- D/A converter
- Comparator (Schmitt trigger recommended)
- Storage register
- Clock
- Control and sequencing logic

Project 1

Initial Specifications: Project #1

Create a 4-bit unipolar input SAR A/D converter which will

(1)Initiate a conversion sequence on command

(2)Present a digital parallel 4-bit conversion result (nibble) when data ready.

Initial Specifications: Project #1

- 3. Have an input range of 0-5 VDC.
- 4. Have a data conversion of at least 100 samples/second (sps). Conversion rate in excess of 1 ksps is desired.
- 5. No missing codes.

Initial Specifications: Project #1

- (6) Have a unipolar power source or bipolar supply connections from bench power supply.
- (7) Have an adequate associated test plan in which all tests pass.

Your design must not use any modern processors with the following exceptions:

- Act as control for your AD converter.
- to transfer data and display the result.

Anything that is part of the 4000-series CMOS family or equivalent is fair game. You have a budget of \$100 for parts that cannot be found in the part store.

A few notes on A/D converters

- Convert an analog voltage into a digital representation
 - -e.g., 2.45v 0110
 - This conversion is dependent on the range of voltages to be converted and the number of bits used to represent the voltage

Resolution: the smallest possible change that can be identified (resolved). Also called Least Significant Bit (LSB).

The term "LSB" or "counts" is used in several different ways. For example, a signal may have "five counts of noise." This means the observed noise is equivalent to five times the value of the LSB.

Bits of resolution	Number distinct values	Theoretical resolution
4	16	6.25%
8	256	0.39% = 3906 ppm
10	1024	977 ppm
12	4096	244 ppm
14	16384	61 ppm
16	65536	15 ppm
20	1048576	1 ppm

Resolution and reference voltage are related, because sampled signal values are interpreted as a binary fraction of the reference voltage.

If V_{ref} = 5.00 V_{DC} and we are doing an 8-bit conversion,

Resolution = 5V/(256 values) = 19.5 mV/value

If V_{ref} = 4.096 V_{DC} and we are doing a 12-bit conversion,

Resolution = 4.096V/(4096 values) = 1mV/value

The digitized signal value is equal to the number of counts (binary value) multiplied by the resolution. Any error from the original signal is called digitization noise.

▼ Group1				4 students	:
Brent Bertaux	:	Jacob Erwin	:	∷ Katilynn Mar	:
Johnny Williamson	:				
▼ Group2				4 students	i
Connor Collins (He/Him)	:	Koby Goree	:	∷ Sam Myers	:
Reid Wilson	:				
▼ Group3				4 students	:
	:	Gavin McKee	:	∷ Cody Myers	:
Emerson Pummill	:				
▼ Group4				4 students	:
:: Brendan Bovenschen	:	Brandon Collings	:	:: Luke McIntyre	:
John Terzian	:				
▼ Group5				4 students	:
:: Kaci Anderson	:	Nathan Johnson	:	:: Jarett Woodard	:
: Karson Younger	:				

▼ Group6				4 students	:
:: Ashley Holland (She/Her)	:		:	:: Amelia Neumeyer (She/Her)	:
Angel Trujillo	:				
▼ Group7				4 students	:
:: Curtis Fodor	:	⊞ Benjamin Page	:		:
	:				
▼ Group8				4 students	:
	:		:	Joey Goller	:
iii Miguel Vergara	:				
▼ Group9				4 students	:
	:		:	:: Gaurav Das	:
iii Kali Henry	:				
▼ Group10				4 students	:
	:	: Phillip Farris	:	Dylan Saltos	:
:: Trenton Strawderman	:				

▼ Group11			4 students	
	:	:		:
iii Titus Teague	:			
▼ Group12			4 students	:
iii Landon Fox	:	:	iii Zachary Oyer	:
iii Juliette Reeder	:			
▼ Group13			4 students	:
iii Karsen Madole	:	:		:
E Cory Thrutchley	:			
▼ Group14			4 students	:
Evan Burk	:	:	E Colin Rockholt	:
∰ Greg Shildt	:			
▼ Group15			4 students	:
Jordan Andrews	:	:	:: Bryan Struble	:
Evelyn Wilson (She/Her)	:			

▼ Group16		4 students	:
iii Sivan Auerbach iii Forrest Tuschhoff iii ii	Hagen Patterson :	⊞ Ben Pons	:
▼ Group17		4 students	:
	iii Aidan Hamm	∷ Yosep Lazar	:
iii Jake Witcher			
▼ Group18		3 students	:
	iii Soren Petersen	Philip Strachan	:

Your Homework Assignments due before next class

Take the electrical safety quiz (on Canvas).

Upload survey with your picture so that I can get to know you.

Download MultiSim and KiCad and run the tutorials. Instructions are found on Canvas (use new instructions I sent for MultiSim found in Canvas Announcements).

Create a user for icescrum on http://daleksec.es-private.okstate.edu:8080/icescrum/ (do not use icescrum.com, we have our own private server so that we can have teams larger than 2)

Get with your groups and assign roles

- POC You will be in charge of contacting your TAs when you have questions and need to order parts
- Scrum Master We will go over creating a project in iceScrum on Monday