

Método de Ordenamiento Shell Sort

Matías Astorga Maximiliano Meza Romina Navarrete

Julio 26, 2013

Análisis de Algoritmos Universidad Tecnológica Metropolitana

- Objetivos
- 2 Introducción
- 3 El Algoritmo
- 4 Características
- Complejidad
- 6 Conclusiones

- Objetivos
- 2 Introducción
- 3 El Algoritmo
- 4 Características
- Complejidad
- 6 Conclusiones

- Objetivos
- 2 Introducción
- 3 El Algoritmo
- 4 Características
- Complejidad
- 6 Conclusiones

- Objetivos
- 2 Introducción
- 3 El Algoritmo
- Características
- Complejidad
- 6 Conclusiones

- Objetivos
- 2 Introducción
- 3 El Algoritmo
- Características
- Complejidad
- 6 Conclusiones

- Objetivos
- 2 Introducción
- 3 El Algoritmo
- Características
- Complejidad
- 6 Conclusiones

Objetivos

General

Exponer sobre el método de Shell Sort

Secundarios

- Listar las características más importantes para comprender este método de ordenamiento.
- Mostrar en detalle el funcionamiento de este método con un programa y video explicativo.

Introducción

- Shell Sort es un algoritmo de ordenamiento, propuesto en 1959 por Donald Shell.
- Basado en comparaciones e intercambios.
- Algoritmo sencillo, y con mejores resultados que otros algoritmos de ordenamiento.

Introducción

- Shell Sort es un algoritmo de ordenamiento, propuesto en 1959 por Donald Shell.
- Basado en comparaciones e intercambios.
- Algoritmo sencillo, y con mejores resultados que otros algoritmos de ordenamiento.

Introducción

- Shell Sort es un algoritmo de ordenamiento, propuesto en 1959 por Donald Shell.
- Basado en comparaciones e intercambios.
- Algoritmo sencillo, y con mejores resultados que otros algoritmos de ordenamiento.

El Algoritmo

- Shell Sort mejora el ordenamiento por inserción, comparando los elementos separados por varias posiciones (Saltos o gap).
- Por ejemplo, Salto = 5.

¿Cuál es el criterio para calcular los saltos?

Existen varios, pero el usado por Donald Shell fue:

$$k = \frac{N}{2}$$
 $N = \text{Largo del arreglo}$

• Entonces si tenemos un arreglo de 10 casillas, nuestros saltos serian:

•
$$k = \frac{10}{2} = 5$$

• Las primeras comparaciones serán de saltos de 5.

• Entonces si tenemos un arreglo de 10 casillas, nuestros saltos serian:

•
$$k = \frac{10}{2} = 5$$

- Entonces si tenemos un arreglo de 10 casillas, nuestros saltos serian:
- $k = \frac{10}{2} = 5$
- Las primeras comparaciones serán de saltos de 5.

- Entonces si tenemos un arreglo de 10 casillas, nuestros saltos serian:
- $k = \frac{10}{2} = 5$
- Las primeras comparaciones serán de saltos de 5.

 Entonces si tenemos un arreglo de 10 casillas, nuestros saltos serian:

•
$$k = \frac{10}{2} = 5$$

• Las primeras comparaciones serán de saltos de 5.

Una vez que los datos están ordenados, volvemos a calcular el nuevo salto a usar:

•
$$K = \frac{5}{2} = 2, 5 = 2$$

Ahora las comparaciones serán de saltos de 2.

 Una vez que los datos están ordenados, volvemos a calcular el nuevo salto a usar:

•
$$K = \frac{5}{2} = 2, 5 = 2$$

Ahora las comparaciones serán de saltos de 2.

 Una vez que los datos están ordenados, volvemos a calcular el nuevo salto a usar:

•
$$K = \frac{5}{2} = 2, 5 = 2$$

• Ahora las comparaciones serán de saltos de 2.

 Una vez que los datos están ordenados, volvemos a calcular el nuevo salto a usar:

•
$$K = \frac{5}{2} = 2, 5 = 2$$

• Ahora las comparaciones serán de saltos de 2.

 Una vez que los datos están ordenados, volvemos a calcular el nuevo salto a usar:

•
$$K = \frac{5}{2} = 2, 5 = 2$$

• Ahora las comparaciones serán de saltos de 2.

• Finalmente calculamos el último salto:

•
$$k = \frac{2}{2} = 1$$

• Finalmente calculamos el último salto:

•
$$k = \frac{2}{2} = 1$$

• Finalmente calculamos el último salto:

•
$$k = \frac{2}{2} = 1$$

• Finalmente calculamos el último salto:

•
$$k = \frac{2}{2} = 1$$

Código

```
for(inc = n/2; inc > 0; inc /= 2) {
       for(i = inc; i<n; i++) {
            temp = arreglo[i];
            for(j = i; j \ge inc; j = inc) {
                   if(temp < arreglo[j-inc])</pre>
                   arreglo[j] = arreglo[j-inc];
                   else
                   break:
             }
            arreglo[j] = temp;
        }
```

- La idea principal es disminuir el movimiento de datos.
- Algoritmo de Ordenación Interna.
- Shell Sort inicia una comparación de los elementos más alejados (que distan entre sí un intervalo h_1).
- Luego se van disminuyendo los intervalos, para poder comparar elementos más cercanos.
- Hasta reducirse al método de ordenación por insercion.
- En sus primeros saltos trata de desplazar los elementos más chicos al inicio y los más grandes al final.

- La idea principal es disminuir el movimiento de datos.
- Algoritmo de Ordenación Interna.
- Shell Sort inicia una comparación de los elementos más alejados (que distan entre sí un intervalo h_1).
- Luego se van disminuyendo los intervalos, para poder comparar elementos más cercanos.
- Hasta reducirse al método de ordenación por insercion.
- En sus primeros saltos trata de desplazar los elementos más chicos al inicio y los más grandes al final.

- La idea principal es disminuir el movimiento de datos.
- Algoritmo de Ordenación Interna.
- Shell Sort inicia una comparación de los elementos más alejados (que distan entre sí un intervalo h_1).
- Luego se van disminuyendo los intervalos, para poder comparar elementos más cercanos.
- Hasta reducirse al método de ordenación por insercion.
- En sus primeros saltos trata de desplazar los elementos más chicos al inicio y los más grandes al final.

- La idea principal es disminuir el movimiento de datos.
- Algoritmo de Ordenación Interna.
- Shell Sort inicia una comparación de los elementos más alejados (que distan entre sí un intervalo h_1).
- Luego se van disminuyendo los intervalos, para poder comparar elementos más cercanos.
- Hasta reducirse al método de ordenación por insercion.
- En sus primeros saltos trata de desplazar los elementos más chicos al inicio y los más grandes al final.

- La idea principal es disminuir el movimiento de datos.
- Algoritmo de Ordenación Interna.
- Shell Sort inicia una comparación de los elementos más alejados (que distan entre sí un intervalo h_1).
- Luego se van disminuyendo los intervalos, para poder comparar elementos más cercanos.
- Hasta reducirse al método de ordenación por insercion.
- En sus primeros saltos trata de desplazar los elementos más chicos al inicio y los más grandes al final.

- La idea principal es disminuir el movimiento de datos.
- Algoritmo de Ordenación Interna.
- Shell Sort inicia una comparación de los elementos más alejados (que distan entre sí un intervalo h_1).
- Luego se van disminuyendo los intervalos, para poder comparar elementos más cercanos.
- Hasta reducirse al método de ordenación por insercion.
- En sus primeros saltos trata de desplazar los elementos más chicos al inicio y los más grandes al final.

- También llamado Ordenación por disminución de Intervalos
- Los intervalos escogidos $h_1, h_2, h_4, ...$, se denominan secuencia de incrementos.
- h_k ordenado, elementos ordenados y que distan entre sí un intervalo h_k
- Un array h_k ordenado lo sigue estando después de h_{k-1} ordenacion.

- También llamado Ordenación por disminución de Intervalos
- Los intervalos escogidos $h_1, h_2, h_4, ...$, se denominan secuencia de incrementos.
- h_k ordenado, elementos ordenados y que distan entre sí un intervalo h_k
- Un array h_k ordenado lo sigue estando después de h_{k-1} ordenacion.

- También llamado Ordenación por disminución de Intervalos
- Los intervalos escogidos $h_1, h_2, h_4, ...$, se denominan secuencia de incrementos.
- h_k ordenado, elementos ordenados y que distan entre sí un intervalo h_k
- Un array h_k ordenado lo sigue estando después de h_{k-1} ordenacion.

Características

- También llamado Ordenación por disminución de Intervalos
- Los intervalos escogidos $h_1, h_2, h_4, ...$, se denominan secuencia de incrementos.
- h_k ordenado, elementos ordenados y que distan entre sí un intervalo h_k
- Un array h_k ordenado lo sigue estando después de h_{k-1} ordenacion.

Secuencias de Incrementos

Es válida cualquier secuencia que cumpla:

- Los intervalos van disminuyendo

$$\frac{N}{2}, \frac{N}{4}, \frac{N}{8}, ... \frac{N}{2^k}, ..., 1$$

$$1, 3, 7, ..., 2^k - 1$$

Es válida cualquier secuencia que cumpla:

- Los intervalos van disminuyendo
- El último intervalo es de tamaño 1

Shell

$$\frac{N}{2}, \frac{N}{4}, \frac{N}{8}, ... \frac{N}{2^k}, ..., 1$$

Hibbard

$$1, 3, 7, ..., 2^k - 1$$

Secuencias de Incrementos

Knuth

$$1, 4, 13, ..., \frac{3^k - 1}{2}$$

Sedgewick

$$1, 5, 19, 41, 109,, 9 * 4^{k} - 9 * 2^{k} + 1$$
 0
 $1, 5, 19, 41, 109,, 4^{k} - 3 * 2^{k} + 1$

- La complejidad de este algoritmo es variable, ya que existen diferentes formas de calcular los saltos.
- Inicialmente, por el salto $K = \frac{N}{2}$ propuesto por Shell, su complejidad es:

Complejidad Shel

- Mejor Caso: $O(n \log n)$
- Caso Promedio: $O(n^2)$
- Peor Caso: $O(n^2)$

Complejidad

- La complejidad de este algoritmo es variable, ya que existen diferentes formas de calcular los saltos
- Inicialmente, por el salto $K = \frac{N}{2}$ propuesto por Shell, su complejidad es:

Complejidad Shell

- Mejor Caso: O(n log n)
- Caso Promedio: $O(n^2)$
- Peor Caso: $O(n^2)$

Complejidad - Mejoras

Caso Promedio

• Shell: $O(n^2)$

• Hibbard: $O(n^{5/4})$

• Sedgewick: $O(n^{7/6})$

Complejidad - Mejoras

Peor de los Casos

Cuando N es una potencia de 2 y además:

- 1. Los elementos grandes en posiciones pares
- 2. Los pequeños en posiciones impares
 - Shell: $O(n^2)$
 - Hibbard: $O(n^{4/3})$
 - Sedgewick: $O(n \log^2 n)$

Complejidad Empírica

Objetivos

Tiempo de ejecución en ms para InsertionSort y ShellSort.

N	Ordenación por	ShellSort (con distintas secuencias de intervalos)		
	inserción	Secuencia de shell	Sólo intervalos impares	Dividiendo por 2,2
1.000	122	11	11	9
2.000	483	26	21	23
4.000	1.936	61	59	54
8.000	7.950	153	141	114
16.000	32.560	358	322	269
32.000	131.911	869	752	575
64.000	520.000	2.091	1.705	1.249

- La ventaja de Shell Sort es que es eficiente en listas de tamaño medio. Para listas mas grandes, no es la mejor opción.
- Es hasta 5 veces más rápido que Bubble Sort y hasta 2 veces más rápido que Insertion Sort.
- Es menos eficiente que Merge, Heap y Quick Sorts.

- La ventaja de Shell Sort es que es eficiente en listas de tamaño medio. Para listas mas grandes, no es la mejor opción.
- Es hasta 5 veces más rápido que Bubble Sort y hasta 2 veces más rápido que Insertion Sort.
- Es menos eficiente que Merge, Heap y Quick Sorts.

- La ventaja de Shell Sort es que es eficiente en listas de tamaño medio. Para listas mas grandes, no es la mejor opción.
- Es hasta 5 veces más rápido que Bubble Sort y hasta 2 veces más rápido que Insertion Sort.
- Es menos eficiente que Merge, Heap y Quick Sorts.

Conclusiones

- Existen algoritmos más eficientes
- La gran ventaja de shellsort es que pertenece a los denominados algoritmos "in place".
- Actualmente existen mejoras de este algoritmo con una complejidad de $O(n \log^2 n)$

Conclusiones

- Existen algoritmos más eficientes
- La gran ventaja de shellsort es que pertenece a los denominados algoritmos "in place".
- Actualmente existen mejoras de este algoritmo con una complejidad de $O(n \log^2 n)$

Conclusiones

- Existen algoritmos más eficientes
- La gran ventaja de shellsort es que pertenece a los denominados algoritmos "in place".
- Actualmente existen mejoras de este algoritmo con una complejidad de $O(n \log^2 n)$