Contrôle 3 - Application des Mathématiques

Durée : 1 heure 45 minutes - Barème sur 10 points

NOM:	PRENOM:
INOINI.	I ILLINOM .

Problème	1	2	3	Bonus	Total
Points	3 pts	3 pts	4 pts	1 pts	11 pts
Obtenus					

- **1.** Soit la suite récurrente définie par $0 \neq x_0 \in \mathbb{R}$ et $x_{n+1} = 1 + \frac{1}{x_n}$.
 - a) Trouvez le plus grand ss-sensemble D de \mathbb{R} et une fonction $g:D\to D$ tels que $x_{n+1}=g(x_n)$ soit bien définie en tant que suite récurrente. Trouvez les points fixes de g.
 - b) Dessinez sur un graphique les premières itérations de x_n partant de $x_0 = \frac{1}{2}$.
 - c) Trouvez un nombre positif a > 0 tel que $x_n \in (0, a) \Rightarrow x_{n+1} \in (a, \infty)$ et $x_n \in (a, \infty) \Rightarrow x_{n+1} \in (0, a)$.
 - d) Montrez que si $x_0 > 0$, alors x_n converge.
- **2.** Le nombre d'or Φ est défini comme étant le nombre positif tel que si on lui soustrait 1 on trouve son inverse. Utilisez une méthode de Newton pour calculer cinq décimales significatives. Combien d'itérations vous faut-il pour en calculer 18?
- **3.** On considère la fonction $f:[0,1]\to [0,1]$ définie comme suit:
 - 1: On exprime $x \in [0,1]$ en base 3.
 - 2: La première décimale de x qui est égale à 1, si elle existe, est changée en 0 et on pose toutes les décimales suivantes à 1.
 - 3 : On remplace toutes les décimales de x qui sont égales à 2 par 1.
 - 4: On interprète la suite de 0 et de 1 obtenue comme un nombre $y \in [0,1]$ en base 2 et on pose y=f(x).

Cette fonction est appelée "l'escalier du diable".

- a) Calculez $f(\frac{1}{2}), f(\frac{1}{5})$ et $f(\frac{5}{7})$
- b) Quels sont les images par f des intervalles $I_1:=[\frac{1}{3},\frac{2}{3}]$, $I_2:=[\frac{1}{9},\frac{2}{9}]$ et $I_3:=[\frac{7}{9},\frac{8}{9}]$? Faites un graphe qui illustre la fonction sur $I_1\cup I_2\cup I_3$.
- c) Montrez que l'image de f est [0,1].
- d) Montrez que f est monotone croissante.

Bonus: Soit $f:[a,b] \to \mathbb{R}$ une fonction n+1 fois dérivable. Montrez que pour tout $a \le x < y \le b$, il existe un $\xi \in (x,y)$ tel que

$$f(y) = f(x) + f'(x)(y - x) + \dots + f^{(n)}(x)\frac{(y - x)^n}{n!} + f^{(n+1)}(\xi)\frac{(y - x)^{n+1}}{(n+1)!}.$$

Indication: Adaptez à vos besoins la fonction auxiliaire $F(z) = f(y) - f(z) - f'(z)(y-z) - c(y-z)^2$ avec $c = (f(y) - f(x) - f'(x)(y-x)) \frac{1}{(y-x)^2}$.