Fourier Neural Operator for Parametric PDE

Debjit Hore

Indian Institute of Technology Delhi

Prof. Sitikantha Roy

April 21, 2023

Outline

- Objective
- 2 Data
- 3 Architecture
- 4 Flow of the Code

Fourier Neural Operator for Mapping between Functional Spaces

 The 1-d Burgers' equation is a non-linear PDE with various applications including modeling the one dimensional flow of a viscous fluid. It takes the form:

$$\frac{\partial u(x,t)}{\partial t} + u \frac{\partial u(x,t)}{\partial x} = \nu \frac{\partial^2 u(x,t)}{\partial x^2} \qquad x \in (0,1), t \in (0,1]$$
 (1)

$$u(x,0) = u_o(x) x\epsilon(0,1) (2)$$

• Where u_o is the initial condition and $\nu \in \mathbb{R}_+$ is the viscosity coefficient. Our aim is to learn the **operator mapping the initial condition to the solution at time t=1**, defined by $u_o \to \mathsf{u}(.,1)$

Data

- The data generation schema can be read in section 3.1 of the paper
- An initial condition has been generated $u_o(x)$ has been generated, viscosity $\nu=0.1$ and the equation has been solved on a spatial mesh with resolution $2^{13}=8192$ and use this dataset to subsample other resolutions

FNO Architecture

Channel Width (in_channel, out_channel)	64
Fourier Modes	16
Activation	Gelu
Optimizer	Adam
No. of Epochs	500
Loss	MSE, L2
Number of Fourier Layers	4
Number of Bias layers	4
Uplifting from Spatial to Fourier space	2→64
Downsizing from Fourier to Real Space	64 →128, 128 →1

Flowchart

