

Predicting Facebook Check-ins

Divya Rathore

Shruti Tripathi

Instructor: Khasha Dehnad CS-513A

Knowledge Discovery in

Databases

Introduction

Our goal is to predict which place a person would likely check-in.

Facebook created the artificial data consisting of more than 100,000 places located in a 10 km by 10 km square.

This data was fabricated to resemble location signals coming from mobile devices, giving us a flavor of what it takes to work with real data complicated by inaccurate and noisy values

For a given set of coordinates, our goal is to find out the most likely checked in places.

Data

From Kaggle.com

29 million rows and 5 columns

- x & y: coordinates
 - X&Y are bounded between the range from 0 to 10
- accuracy: location accuracy
- time: timestamp
 - Timestamp of check-in's in minutes
- place_id: id of the business, this is the target we are predicting.
 - Place Id are identifiers for approx 100,000 uniques places

Data Preprocessing

We sliced the data for top six Place IDs with most frequent check ins from all the places given in the dataset.

```
> summary(fbData)
     row id
                                                                                       time
                                                                accuracy
                    Min.
                           : 0.00000
                                                                                  Min.
 Min.
                                               : 0.000000
                                                            Min.
                                                                        1.00000
                                                                                               1.0
                                        Min.
 1st Ou.: 7279505
                    1st Ou.: 2.53470
                                       1st Ou.: 2.496700
                                                                                  1st Ou.:203057.0
                                                            1st Qu.:
                                                                      27.00000
Median :14559010
                    Median : 5.00910
                                       Median: 4.988300
                                                            Median:
                                                                      62.00000
                                                                                  Median: 433922.0
                                               : 5.001814
 Mean
        :14559010
                    Mean
                           : 4.99977
                                        Mean
                                                            Mean
                                                                      82.84912
                                                                                  Mean
                                                                                         :417010.4
 3rd Qu.:21838515
                    3rd Qu.: 7.46140
                                        3rd Qu.: 7.510300
                                                            3rd Qu.:
                                                                      75.00000
                                                                                  3rd Qu.:620491.0
        :29118020
                                                                                             239.0
 Max.
                    Max.
                            :10.(
                                                       Normal Q-Q Plot
       place_id
```

```
8772469670:
                 1849
 1623394281:
                 1802
 1308450003:
                 1757
 4823777529:
                 1738
                 1718
 9586338177:
 9129780742:
                 1716
 (Other)
          :29107441
> sum(is.na(fbData))
[1] 0
```



```
minmax \leftarrow function(x)\{(x-min(x))/(max(x)-min(x))\}
```

```
fbCheckinData$trans_X <- minmax(fbCheckinData$x)|
fbCheckinData$trans_Y <- minmax(fbCheckinData$y)
fbCheckinData$trans_accuracy <- minmax(fbCheckinData$accuracy)
fbCheckinData$trans_time <- minmax(fbCheckinData$time)</pre>
```


Time-Density plot

- Interestingly time variable is evenly dispersed.
- There are two big dips in the plot.
- We breakdown time variable to hours, days, weekdays, months and year.

Accuracy Density Plot

- Most check-ins have accuracy between the rage from 0 to 200.
- There are 3 peaks in the plot.
- We might infer that we have different accuracy at different locations.

Time vs Accuracy

- No visible relation between time and accuracy.
- Distribution of accuracy is uniform throughout time range
- Irrespective of time, trend of accuracy stays the same.

accuracy vs x - y

3D Plot

- Accuracy is different for different places.
- Most of the Place IDs have low accuracy, only a selected few have higher accuracies.

3D Plot X-Y with Hour

Place_id's by position and Time of Day

 The Check-ins appears to be evenly dispersed when we are considering a small chunk of time.

X-Y by PlaceID

Place Ids are homogeneously distributed across coordinates.

Frequency

Getting a closer look:

Frequency of placeid by location 1

Frequency of placeid by location 2

Check-Ins with Hour & Weekdays

Analysing hourly and weekly trends.

Checkins for place ids according to hour

Checkins for place ids according to weekday

Classification Models

k nearest Neighbor

Naive Bayes

ANN

Random Forest

k-Nearest Neighbor

K nearest neighbors is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure (e.g., distance functions).

Error with this model taking k=3 is 5.7 Accuracy Rate= 94.3%

```
> table(knn_fb,place_id=testing$place_id)
            place_id
             1308450003 1623394281 4823777529 8772469670 9129780742 9586338177
knn fb
  1308450003
                     491
  1623394281
                                537
  4823777529
                                            525
  8772469670
                                                                    76
                                                       477
  9129780742
                                                         94
                                                                   448
  9586338177
                                                                               512
 knn_error_rate
```

> knn_error_rate
[1] 0.05797101449

Naive Bayes

The probability of a place given its features can be expressed in the form $p(place \mid x, y, time, accuracy) \propto p(x, y, time, accuracy \mid place)p(place)$ We reason that the time, location and accuracy features are independent given the place.

Error rate with this model: 1.2 Accuracy= 98%

> table(NBayes=category,place_id=testing\$place_id)

 place_id

 NBayes
 1308450003
 1623394281
 4823777529
 8772469670
 9129780742
 9586338177

 1308450003
 489
 0
 0
 0
 1
 1

 1623394281
 0
 529
 1
 0
 0
 0

 4823777529
 3
 1
 526
 5
 3
 1

 8772469670
 0
 0
 2
 560
 0
 0

 9129780742
 0
 0
 0
 516
 0

 9586338177
 1
 7
 1
 7
 4
 516

> NB_error_rate [1] 0.01197227473

Neural Network

The neural network algorithm is the backpropagation algorithm. It is modeled loosely after the human brain and is designed to recognize patterns.

Error rate with random forest : 2.6 Accuracy = 97.4%

Error: 475.774807 Steps: 82662

Random Forest

Random forest is a supervised learning algorithm which builds multiple decision trees and merges them together to get a more accurate and stable prediction.

Error rate with random forest: 0.2 Accuracy=99%

> table(actual=testing\$place_id ,Prediction)

 Prediction

 actual
 1308450003
 1623394281
 4823777529
 8772469670
 9129780742
 9586338177

 1308450003
 493
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <td

> error_rate

[1] 0.002520478891

Conclusion

For a given set of coordinates, the places most likely checked in depend not only on location, but on time and accuracy of check in as well

stevens.edu

Thank You!