Por los vértices, A, B, C de un triángulo \widehat{ABC} , se trazan tres rectas de igual dirección que reencuentran a la circunferencia circunscrita Γ en A', B' y C'. Sea P un punto de Γ ; las rectas PA', PB' y PC' vuelven a encontrar a las rectas BC, CA y AB en A^*, B^* y C^* . Demostrar que estos puntos pertenecen a una misma recta ℓ . ¿Cuál es la dirección de esta recta?

SOLUCIÓN:

Problema 358. Laboratorio virtual de triángulos con Cabri II

Procedemos a hacer una demostración análitica, ayudándonos de MATHEMATICA.

La ecuación de la circunferencia circunscrita al triángulo \widehat{ABC} , en coordenadas baricéntricas referidas a dicho triángulo, es:

$$\Gamma \equiv a^2 yz + b^2 zx + c^2 xy = 0.$$

Sea una recta arbitraria por A(1:0:0),

$$\ell_A \equiv qy + rz = 0.$$

La intersección de Γ y ℓ_A , a parte del punto A, es:

$$A'(a^2qr:r(-b^2q+c^2r):q(b^2q-c^2r))$$
.

Si P(u:v:w) es un punto de Γ $(c^2uv+b^2uw+a^2vw=0)$, la recta PA' corta al lado BC en

$$A^* (0: r(-b^2qu + c^2ru - a^2qv): q(b^2qu - c^2ru - a^2rw))$$

La recta por B, paralela a ℓ_A (es decir, con el mismo punto del infinito (q-r:r:-q)), es

$$\ell_B \equiv \left| \begin{array}{ccc} x & y & z \\ 0 & 1 & 0 \\ q - r & r & -q \end{array} \right| = qx + (q - r)z = 0.$$

La intersección de Γ y ℓ_B , a parte del punto B, es:

$$B'\left(-((q-r)(a^2q+c^2(-q+r))):b^2q(q-r):q(a^2q+c^2(-q+r))\right)$$

La recta PB' corta al lado CA en

$$B^* \left(-(q-r)(b^2qu + (a^2q + c^2(-q+r))v) : 0 : q(a^2qv - c^2qv + c^2rv - b^2qw + b^2rw) \right).$$

La recta A^*B^* tiene el mismo punto del infinito que ℓ_A ; es decir, son paralelas. En efecto:

$$= q(q-r)r(b^2q(q-r) + r(a^2q + c^2(-q+r)))(c^2uv + b^2uw + a^2vw) = 0.$$

La recta por C, paralela a ℓ_A , es

$$\ell_C \equiv rx + (r - q)y = 0.$$

La intersección de Γ y ℓ_C , a parte del punto C, es:

$$C'\left(-((q-r)(b^2(q-r)+a^2r)):r(-(a^2r)+b^2(-q+r)):c^2(q-r)r\right)$$

La recta PC' corta al lado AB en

$$C^* \left((q-r)(c^2ru + (b^2(q-r) + a^2r)w) : r(c^2qv - c^2rv + b^2qw + a^2rw - b^2rw) : 0 \right)$$

La recta B^*C^* tiene el mismo punto del infinito que ℓ_A ; es decir, son paralelas. En efecto:

$$\begin{vmatrix} -(q-r)(b^2qu + (a^2q + c^2(-q+r))v) & 0 & q(a^2q - c^2q + c^2r)v + \\ (q-r)(c^2ru + (b^2(q-r) + a^2r)w) & r(c^2q - c^2r)v + \\ q-r & r & -q \end{vmatrix}$$

$$=q(q-r)r(b^2q(q-r)+r(a^2q+c^2(-q+r)))(c^2uv+b^2uw+a^2vw)=0.$$

Se concluye que los puntos A^*, B^* y C^* están en una misma recta ℓ , parlela a ℓ_A .

Tiene que verificarse que la recta A^*C^* tiene el mismo punto del infinito que ℓ ; es decir, son paralelas. En efecto:

$$\begin{vmatrix} 0 & r(-b^2qu + c^2ru - a^2qv) & q(b^2qu - c^2ru - a^2rw) \\ (q-r)(c^2ru + (b^2(q-r) + a^2r)w) & r(c^2qv - c^2rv + b^2qw + a^2rw - b^2rw) & 0 \\ q-r & r & -q \end{vmatrix} = q(q-r)r(b^2q(q-r) + r(a^2q + c^2(-q+r)))(c^2uv + b^2uw + a^2vw) = 0.$$

Podemos comprobar directamente que A^*, B^* y C^* están alineados, calculando el determinante formado por sus coordenadas, cuyo valor es

$$-qr(q-r)(b^2q(q-r)+r(a^2q+c^2(-q+r)))(-c^2(r(u-v)+qv)+a^2(qv-rw)+b^2(q(u-w)+rw))\cdot \\ \cdot (a^2vw+b^2wu+c^2uv)=0.$$

Notas:

- Otra solución, José María Pedret: www.personal.us.es/rbarroso/trianguloscabri/sol/sol358ped.htm
- Cuando se considera P fijo en la circunferencia circunscrita a \widehat{ABC} y se hace variar la recta ℓ_A , por el vértice A, la envolvente de la recta ℓ es una parábola inscrita en \widehat{ABC} con foco en P y directriz pasando por el ortocentro de \widehat{ABC} .

Esta parábola se determina fácilmente, pues la tangente en el vértice es la recta (línea de Wallace-Simson) que contiene los pies de las perpendiculares desde P a los lados de \widehat{ABC} .

Para más información consultar:

Problems related to parabolas:

http://www.math.uoc.gr/~pamfilos/problems/Problems.htm#tri

Triangles and Parabolas:

 $http://jwilson.coe.uga.edu/EMT669/Student.Folders/Giddings.Jemma/Parabo \ las/Parabolas.html$

http://jwilson.coe.uga.edu/EMT669/Student.Folders/Giddings.Jemma/ Parabolas/Parabolas.html

A Tour of Triangle Geometry via the Geometer's Sketchpad (Inscribed parabolas):

http://www.math.fau.edu/yiu/TourOfTriangleGeometry/ Tour_of_Triangle_Geometry.html