

Big Data e Inteligencia Artificial

Module 5

Data Analytics

Lesson 0: Introduction to Data Warehouses

Juan Carlos Trujillo - Lucentia (jtrujillo@dlsi.ua.es) Alejandro Maté - Lucentia (amate@dlsi.ua.es)

1

Master en

Big Data e Inteligencia Artificial

Table of contents

- Introduction to Data Warehouses
 - What are Data Warehouses and how do they arise?
 - Evolution of Data Warehouse technologies
 - · Architecture and data flow in Data Warehouses
 - Data Warehouse design techniques

Universitat d'Alacant Universidad de Alicante

Module 5. Data Analytics

Big Data e Inteligencia Artificial

Introduction to Datawarehouses

- What are Data Warehouses and how do they arise?
- Evolution of Data Warehouse technologies
- Architecture and data flow in Data Warehouses
- Data Warehouse design techniques

Module 5. Data Analytics

3

Master en

Big Data e Inteligencia Artificial

What are Data Warehouses and how they arise?

- Development/evolution of data warehouse systems
 - From first file Management Systems (70's) to the current DataBase Management Systems (DBMS)
 - Efficient DBMS
 - **Robust DBMS**
 - Great variety of tools that faciliate their use
 - Servers
 - Back-end and Front-end tools

Big Data e Inteligencia Artificial

What are Data Warehouses and how they arise?

- Typical query on RDBMS
 - How many shoes did we sell last month?
- Highly competitive environments
 - Companies need to adopt strategy decisions
 - How many red shoes were sold in the northern zone, east and southern last month;
 compared to those sold in the same month last year?
 - What kind of client has been buying the model BMW 320i during the last 10 years?
 - Manager, Professor, operate worker, etc.?

Module 5. Data Analytics

came

5

Master en

Big Data e Inteligencia Artificial

What are Data Warehouses and how they arise?

- Req. 1. Vast volume of data (several years, clients, products, stores etc.)
 - Historical and normally from heterogeneous sources
- Req. 2. Have to be presented in a friendly and easy to use framework
 - · Understanding strategic questions

Universitat d'Alacant Universidad de Alicante

Module 5. Data Analytics

6

Big Data e Inteligencia Artificial

What are Data Warehouses and how they arise?

- Are OLTP systems suitable for those decisions?
 - **Problems**
 - Historical data cannot be obtained from daily OLTP systems
 - Normally in different data sources
 - Suppliers, Clients, Components, Suppliers, components, faulty products, etc.
 - Managers cannot query those OLTP systems

And some more...

Module 5. Data Analytics

Big Data e Inteligencia Artificial

What are Data Warehouses and how they arise?

- Using OLTP systems would require:
 - Integrating data -> Time consuming (req. 1)
 - Could a Manager query those systems ? (req. 2)
 - Impossible!!!!!

Debido al volumen de los sistemas transaccionales es imposible hacer muchas queries, aparece el concepto de data warehouse

 Let us go back in history and make a brief summary on the I.T. solutions used to manage historical data

Universitat d'Alacant Universidad de Alicante

Module 5. Data Analytics

Big Data e Inteligencia Artificial

Introduction to Data Warehouses

- What are Data Warehouses and how do they arise?
- Evolution of Data Warehouse technologies
- Architecture and data flow in Data Warehouses
- Data Warehouse design techniques

Module 5. Data Analytics

9

Big Data e Inteligencia Artificial

Evolution of Data Warehouses technologies

- Data from legacy systems
 - 1970's we used huge mainframes (IBM)
 - · Cobol, CICS, IMS, DB2, etc
 - 1980's platforms such as AS/400 y VAX/VMS
 - Nowadays, many business applications "run" on these systems
 - · Gathering data and business rules for many years à difficult to take them to another system

Module 5. Data Analytics

Big Data e Inteligencia Artificial

Evolution of Data Warehouses technologies

- Information served at the desktop (1990's)
 - Reducing distance between final user and programmer
 - · PC with spreadsheet, Analysis tools, etc.
 - Analysis tools to access data produced by legacy systems
 - Problem: data remain spread and are oriented to specific needs for certain final users
 - Partial solutions
 - No all users have the same "domain" on computers

Module 5. Data Analytics

11

Big Data e Inteligencia Artificial

Evolution of Data Warehouses technologies

- Decision Support Systems (DSS) and Executive Information Systems (EIS):
 - DSS: detailed information. Medium and low managers
 - EIS: consolidated information. High executives
 - More oriented to the Multidimensional view of data
 - They are similar and overlap functionalities
 - They are the Data warehouses predecessors
 - Still expensive and partial solutions for specific needs instead of a global solution

Universitat d'Alacant Universidad de Alicante

Big Data e Inteligencia Artificial

Evolution of Data Warehouses technologies

- Summary: common features for DSS and EIS:
 - Data described in standard business terms, instead of technical terms such as tuple, file or relational table.
 - · Systems focused on non-technical users
 - Pre-processed data following business rule patterns
 - · Benefits of purchased products in different stores
 - Consolidated and summary data views
 - Although they allow us to see data in detail, they rarely allow us to do it

Universitat d'Alacant Universidad de Alicant

Module 5. Data Analytics

13

Big Data e Inteligencia Artificial

Evolution of Data Warehouses technologies

- Data warehouse techniques and systems provide analytical tools provided by their forerunners
- Provide global solutions for an organization, instead of partial solutions
 - Data oriented to satisfy to the whole organization

Universitat d'Alacant Universidad de Alicante

Big Data e Inteligencia Artificial

Evolution of Data Warehouses technologies

- The Data Warehouse (DW)
 - Systems that store historical data to be used by Decision Support Systems
 - · Basically, they are query systems focused on extracting knowledge from the stored historical data
 - The data analysis -> On-Line Analytical Processing (OLAP)
 - Using the multidimensional modeling (cubes, hypercubes, etc)

Module 5. Data Analytics

15

Big Data e Inteligencia Artificial

Evolution of Data Warehouses technologies

Definition by W. Inmon (the "father", 1992)

"A subject-oriented, integrated, time-variant, and non-volatile collection of data used in support of management's decisions"

Universitat d'Alacant Universidad de Alicante

Big Data e Inteligencia Artificial

Evolution of Data Warehouses technologies

- Subject oriented
 - The data warehouse is organized by "data subjects" that are relevant to the organization.
 - Subjects: Sales, Purchases, shipments, etc.
 - Context of analysis: clients, suppliers, products, etc...
 - Multidimensional Modeling (First approach)

· Facts -> Activities of a high interest

Dimensions -> context of analysis

Module 5. Data Analytics

17

17

Master en

Big Data e Inteligencia Artificial

Evolution of Data Warehouses technologies

- Integrated
 - Data integrated from different data sources to provide a comprehensive view
- Time variant
 - Historical data: related to a time period and incremented periodically
- Non-volatile

Data are not updated or erased by users. New data is alwayes added.

Universitat d'Alacant Universidad de Alicante

Module 5. Data Analytics

19

Module 5. Data Analytics

Universitat d'Alacant Universidad de Alicante

Big Data e Inteligencia Artificial

Architecture and data flow in Data Warehouses

- There are different variants of the architecture of DWs according to the needs of the business
- · Some of them:
 - Traditional architecture: Designed for analysis of large amounts of structured data
 - Real-time: When decisions require data as soon as they are generated
 - For "Big Data": When the information to be treated includes unstructured information (social networks!)

LUCENTIA 3

Universitat d'Alacant Universidad de Alicante

Module 5. Data Analytics

21

Big Data e Inteligencia Artificial

Architecture and data flow in Data Warehouses

- Three layer architecture
 - Repository server or Data Warehouse database
 - Almost always a Relational DBMS
 - OLAP Servers
 - Relational OLAP (ROLAP)
 - · Extend relational DBMS to allow MD operations
 - Multidimensional OLAP (MOLAP)
 - Directly implements the MD model in vectors

Universitat d'Alacant Universidad de Alicante

Module 5. Data Analytics

23

Master en

Big Data e Inteligencia Artificial

Architecture and data flow in Data Warehouses

- Three Layer Architecture (II)
 - Customers -> Tools
 - Reports and consultations
 - OLAP (On-Line Analytical Processing)
 - · Data Mining

Universitat d'Alacant Universidad de Alicante

Module 5. Data Analytics

24

Big Data e Inteligencia Artificial

Architecture and data flow in Data Warehouses

- Why Separate Data Warehouse?
 - Performance
 - Complex OLAP queries -> Server deceleration
 - Methods of implementation, access, etc. Different
 - Functionality
 - Data not available -> Historical
 - Consolidated data (aggregates, sums, summaries, etc.) from different sources

Quality of data

• Different sources -> different representations, etc .

Module 5. Data Analytics

25

25

Master en

Big Data e Inteligencia Artificial

Architecture and data flow in Data Warehouses

- Traditional architecture: more in detail in the following section
- In real time:

Module 5. Data Analytics

Universitat d'Alacant Universidad de Alicante

Big Data e Inteligencia Artificial

Introduction to Data Warehouses

- What are Data Warehouses and how do they arise?
- Evolution of Data Warehouse technologies
- Architecture and data flow in Data Warehouses
- Data Warehouse design techniques

Universitat d'Alacant Universidad de Alicante

Module 5. Data Analytics

28

Big Data e Inteligencia Artificial

Data Warehouse design techniques

- Data Warehousing techniques
 - Efficiently integrate database technologies with data analysis technologies
 - Databases: A DBMS that supports the DW repository
 - Data Analysis: Tools that allow us to accomplish an easy data analysis
 - The more extended ones: OLAP tools

Multidimensional Analysis based on the multimodel

Universitat d'Alacant Universidad de Alicante

Module 5. Data Analytics

20

29

Master en

Big Data e Inteligencia Artificial

Data Warehouse design techniques

 Example: show product sales grouped by sold products, stores where they were sold and time

Universitat d'Alacant Universidad de Alicante

Module 5. Data Analytics

30

Big Data e Inteligencia Artificial

Data Warehouse design techniques

- · Advantages for companies
 - Decisions supported by reliable data
 - Profitability of investments
 - Increasing competitiveness in hostile environments
 - Friendly frameworks -> managers analyze data by themselves
- UCENTIA S

 At last managers can understand computers -> We have achieved it
 !!!

- Disadvantages
 - Underestimate the required resources to populate the DA from the operational data
 - Bad planning of the needed effort to achieve a good DW design
 - Never ended -> continuous increasing of ad-hoc requirements
 - iiii Be careful !!!! The more data we have -> The more security we need

Module 5. Data Analytics

31

Master en

Big Data e Inteligencia Artificial

Data Warehouse design techniques

- First Methodological approach for data warehouse design
 - Top-down
 - Design and modeling the DW based on user's requirements.
 - · Gather data to populate the DW from data sources.
 - Design ETL processes
 - · It is normally the most used approach
 - · Only applicable to very simple projects

Module 5. Data Analytics

Big Data e Inteligencia Artificial

Data Warehouse design techniques

- Bottom-up
 - Design and modeling the DW based on the data already existing in the operational data sources of the Enterprise.
 - · Design ETL processes
 - The final user analysis has to be based on the design instead of guiding the whole design process
- Hybrid (combining both approaches)

Universitat d'Alacant Universidad de Alicante

ileunice

Module 5. Data Analytics

33

Master en

Big Data e Inteligencia Artificial

Module 5

Data Analytics

Lesson 0: Introduction to Data Warehouses

Juan Carlos Trujillo - Lucentia (jtrujillo@dlsi.ua.es) Alejandro Maté - Lucentia (amate@dlsi.ua.es)

