Universal Semantic Parsing

Siva Reddy Stanford University

Oscar Täckström

Slav Petrov

Mark Steedman

Mirella Lapata

Google and University of Edinburgh

kotini aratipandu tinindi monkey banana eat

kotini aratipandu tinindi monkey banana eat

Universal Dependencies

Common syntactic representation in 50+ languages

Manning laws:

- Satisfactory linguistic analysis
- Easy to comprehend (e.g., 40 labels)
- Rapid and consistent annotations
- High accuracy parsing [Dozat et al. 2017]

Dependencies lack a formal theory of semantics

Universal Semantic Parsing:
Language-agnostic conversion of
Universal Dependencies to Logical Forms

PART 2: Freebase QA

This Talk: Contributions

Universal Dependencies to **general-purpose** logical forms

A general solution that also works for **Dependency Graphs**

Multilingual evaluation of logical forms on Freebase QA

WebQuestions and GraphQuestions QA datasets in **German** and **Spanish**

Part 1: Universal Semantic Parsing

Principle of Compositionality: the semantics of a complex expression is determined by the semantics of its constituent expressions and the rules used to combine them

Principle of Compositionality: the semantics of a complex expression is determined by the semantics of its constituent expressions and the rules used to combine them

Complex expression is the dependency tree

Principle of Compositionality: the semantics of a complex expression is determined by the semantics of its constituent expressions and the rules used to combine them

Complex expression is the dependency tree

Constituent expressions are subtrees

Principle of Compositionality: the semantics of a complex expression is determined by the semantics of its constituent expressions and the rules used to combine them

Complex expression is the dependency tree

Constituent expressions are subtrees

Rules are the dependency labels

Universal Semantic Parsing: Objectives

Logical form must be built

1. **compositionally** from the dependency tree

- 2. in a language-agnostic manner
 - Dependency labels and postags dictate the semantics, not the words

$$\lambda z. \exists xy. \operatorname{acquired}(z_e) \land \operatorname{Pixar}(y_a) \land \operatorname{Disney}(x_a) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{arg}_2(z_e, y_a)$$

(dobj acquired Pixar)

(nsubj (dobj acquired Pixar) Disney)

(nsubj (dobj acquired Pixar) Disney)

(nsubj (dobj acquired Pixar) Disney)

$$\lambda z. \exists xy. \operatorname{acquired}(z_e) \land \operatorname{Pixar}(y_a) \land \operatorname{Disney}(x_a) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{arg}_2(z_e, y_a)$$

Language-agnostic Conversion

Lambda Expression for words

 $VERB \Rightarrow \lambda x. \operatorname{word}(x_e)$

 $PROPN \Rightarrow \lambda x. \operatorname{word}(x_a)$

Language-agnostic Conversion

Lambda Expression for words

acquired $\Rightarrow \lambda x$. acquired(x_e) Pixar $\Rightarrow \lambda x$. Pixar(x_a)

Language-agnostic Conversion

Composition

Composition

Composition

(nsubj (dobj acquired Pixar) Disney)

$$\lambda f \lambda g \lambda z$$
. $\exists x$. \longrightarrow λx . Disney(x_a)
 $f(z) \wedge g(x) \wedge \lambda z$. $\exists y$. acquired(z_e) \wedge Pixar(y_a)
 $\arg_1(z_e, x_a) \wedge \arg_2(z_e, y_a)$

(dobj

Composition

(nsubj

acquired

 $\lambda z.\exists xy. \text{acquired}(z_e) \land \text{Pixar}(y_a) \land \text{Disney}(x_a) \land \arg_1(z_e, x_a) \land \arg_2(z_e, y_a)$

Pixar)

$$\frac{\lambda f \lambda g \lambda z. \; \exists x.}{f(z) \land g(x) \land \quad \lambda z. \; \exists y. \; \operatorname{acquired}(z_e) \land \operatorname{Pixar}(y_a)}{\operatorname{arg}_1(z_e, x_a) \qquad \quad \land \operatorname{arg}_2(z_e, y_a)}$$

$$\frac{\lambda g \lambda z. \exists x y. \operatorname{acquired}(z_e) \land \operatorname{Pixar}(y_a) \land \operatorname{g}(x) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{arg}_2(z_e, y_a)}{\operatorname{arg}_1(z_e, x_a) \land \operatorname{arg}_2(z_e, y_a)}$$

16

Disney) λx . Disney (x_a)

Composition

(nsubj (dobj acquired Pixar) Disney)

 $\lambda z. \exists xy. \operatorname{acquired}(z_e) \land \operatorname{Pixar}(y_a) \land \operatorname{Disney}(x_a) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{arg}_2(z_e, y_a)$

$$appos = \lambda f \lambda g \lambda x. f(x) \wedge g(x)$$

$$amod = \lambda f \lambda g \lambda x. \exists z. f(x) \land g(z) \land amod^{i}(z_{e}, x_{a})$$

UD labels are insufficient in few cases

UD may conflate different semantic phenomenon

 DET could mean a determiner or a question word e.g., what vs the

UD labels are insufficient in few cases

UD may conflate different semantic phenomenon

 DET could mean a determiner or a question word e.g., what vs the

UD does not have long-distance dependencies e.g., in control constructions

UD labels are insufficient in few cases

UD may conflate different semantic phenomenon

 DET could mean a determiner or a question word e.g., what vs the

UD does not have long-distance dependencies e.g., in control constructions

Solution: **Enhancement step**, a lightweight preprocessing [Schuster and Manning 2016]

Enhancement Step

Question Words, Long-distance, Language-specific labels, Quantifiers

Dependency Graphs to Logical Forms

Dependency Graphs to Logical Forms

Lambda Expressions

```
BIND = \lambda f \lambda g \lambda x. f(x) \wedge g(x)

xcomp = \lambda f g x. \exists y. f(x) \wedge g(y) \wedge xcomp(x_e, y_e)

\Omega = \lambda x. EQ(x, \omega)
```

Part 2: Question Answering

PART 2: Freebase QA

Knowledge-base Question Answering

[Zelle and Mooney 1996, Berant et al. 2013, Kwiatkowski et al. 2013]

Question

Which company acquired Pixar?

Answer

{The Walt Disney Company}

Knowledge-base Question Answering

[Zelle and Mooney 1996, Berant et al. 2013, Kwiatkowski et al. 2013]

Question

Which company acquired Pixar?

Grounded Logical Form $\lambda x. \exists e. \text{ organization}(x) \land \text{ acquisition}(e) \land \text{ acquiring_company}(e,x) \land \text{ company_acquired}(e, \text{Pixar})$

Answer

{The Walt Disney Company}

What is the name of the company that acquired Pixar?

$$\lambda x$$
. $\exists e_1 e_2 y$. $\mathsf{name}(x) \land \mathsf{name.arg}_0(e_1, x) \land \mathsf{name.of}(e_1, y)$
 $\land \mathsf{company}(y) \land \mathsf{acquired.arg}_1(e_2, y) \land$
 $\mathsf{acquired.arg}_2(e_2, Pixar)$

What is the name of the company that acquired Pixar?

$$\lambda x$$
. $\exists e_1 e_2 y$. $\mathsf{name}(x) \land \mathsf{name.arg}_0(e_1, x) \land \mathsf{name.of}(e_1, y)$
 $\land \mathsf{company}(y) \land \mathsf{acquired.arg}_1(e_2, y) \land$
 $\mathsf{acquired.arg}_2(e_2, Pixar)$

Ungrounded Graph

Ungrounded Graph

Freebase Graph

Ungrounded Graph

Freebase Graph

Ungrounded Graph

Freebase Graph

Multilingual Freebase QA

¿Cual es la lengua de Ghana?

Experimental Setup

69 lambda calculus rules

BiLSTM Parser [Kipperwiser and Goldberg 2016]

Multilingual WebQuestions and GraphQuestions

	WebQuestions
en	What language do the people in Ghana speak?
de	Welche Sprache wird in Ghana gesprochen?
es	¿Cuál es la lengua de Ghana?
GraphQuestions	
en	NASA has how many launch sites?
de	Wie viele Abschussbasen besitzt NASA?
es	¿Cuántos sitios de despegue tiene NASA?

Models

SIMPLEGRAPH: All entities connected to a single event bag of words

DEPTREE: Transduce a dependency tree to target graph

UDEPLAMBDA: Logical forms from Universal Dependencies

German

Spanish

Spanish

German

Error Analysis / Limitations

Context-sensitive semantics of dependency labels, e.g., *nsubj* is **not** always agent (arg₁)

- ▶ John broke the window ✓
- The window broke X

Solution: Semantic Role labeling [Palmer et al. 2010]

Summary

Language-agnostic method for converting Universal Dependencies to Logical forms

New Freebase evaluation datasets in German and Spanish

Ongoing Work: Richer Type System and Scoped Semantics

Code: github.com/sivareddyg/UDepLambda

Demo: sivareddy.in/udeplambda.html

Thank You!

Experimental Setup

69 lambda calculus rules

BiLSTM Parser [Kipperwiser and Goldberg 2016]

English: 81.8

German: 74.7

Spanish: 82.2

(Fancellu et al. 2017, Reddy et al. 2017)

Higher-order type system

Fine-grained dependency labels

Fancellu et al. 2017, Reddy et al. 2017

Type System

everybody =
$$\lambda x$$
.everybody(x_a) [Old Type]
= λf . $\forall x$. person(x) $\rightarrow f(x)$ [New Type]

wants =
$$\lambda x$$
. wants (x_e) [Old Type]
= λf . $\exists x$. wants $(x_e) \land f(x)$ [New Type]

Type System

nsubj =
$$\lambda fgx$$
. $\exists y. f(x) \land g(y) \land \arg_1(x_e, y_a)$ [Old] nsubj:univ = λPQf . $Q(\lambda y. P(\lambda x. f(x) \land \arg_1(x_e, y_a)))$ [New]

dobj =
$$\lambda fgx$$
. $\exists y. f(x) \land g(y) \land \arg_2(x_e, y_a)$ [Old]
= λPQf . $P(\lambda x. f(x) \land Q(\lambda y. \arg_2(x_e, y_a)))$ [New]

Old Expression:

(3)
$$\lambda z$$
. $\exists xyw$. wants $(z_e) \land \text{everybody}(x_a) \land \arg_1(z_e, x_a)$
 $\land \text{buy}(y_e) \land \text{xcomp}(z_e, y_e) \land \arg_1(y_e, x_a)$
 $\land \arg_1(x_e, y_a) \land \text{house}(w_a) \land \arg_2(y_e, w_a)$.

New Expression:

(6)
$$\lambda f. \forall x . \operatorname{person}(x_a) \rightarrow [\exists z y w. f(z) \land \operatorname{wants}(z_e) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{buy}(y_e) \land \operatorname{xcomp}(z_e, y_e) \land \operatorname{house}(w_a) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{arg}_2(z_e, w_a)].$$

Single Type System

All constituents are of the same lambda expression type

TYPE[acquired] = TYPE[Pixar] = TYPE[(dobj acquired Pixar)]

All **words** have a *lambda expression* of type η

- ▶ TYPE[acquired] = η
- ► TYPE[Pixar] = η

All **constituents** have a *lambda expression* of type η

- TYPE[acquired] = η
- ▶ **TYPE**[Pixar] = η
- TYPE[(dobj acquired Pixar)] = η

All **constituents** have a *lambda expression* of type η

- ► TYPE[acquired] = η
- ► **TYPE**[Pixar] = η
- ► TYPE[(dobj acquired Pixar)] = η
- \implies TYPE[dobj] = $\eta \rightarrow \eta \rightarrow \eta$

Lambda Expression for words

$$\operatorname{acquired} \Rightarrow \lambda x_e. \operatorname{acquired}(x_e)$$

 $\operatorname{Pixar} \Rightarrow \lambda x_a. \operatorname{Pixar}(x_a)$

Lambda Expression for words

$$\begin{array}{ll} \operatorname{acquired} \Rightarrow \lambda x_e. \operatorname{acquired}(x_e) & \Rightarrow \mathsf{TYPE} = \mathbf{Event} \to \mathbf{Bool} \\ \operatorname{Pixar} \Rightarrow \lambda x_a. \operatorname{Pixar}(x_a) & \Rightarrow \mathsf{TYPE} = \mathbf{Ind} \to \mathbf{Bool} \end{array}$$

Here $TYPE[acquired] \neq TYPE[Pixar] X$

Lambda Expression for dependency labels

$$\text{dobj} \Rightarrow \lambda f \ \lambda g \ \lambda z \, . \, \, \exists x \, . \, \, f(z) \quad \wedge \quad g(x) \quad \wedge \quad arg_2(z_e, x_a)$$

Lambda Expression for dependency labels

$$\text{dobj} \Rightarrow \lambda f \ \lambda g \ \lambda z \, . \, \, \exists x \, . \, \, f(z) \quad \wedge \quad g(x) \quad \wedge \quad arg_2(z_e, x_a)$$

This operation mirrors the tree structure

Lambda Expression for words

 $\operatorname{acquired} \Rightarrow \lambda \mathbf{x_a} x_e$. $\operatorname{acquired}(x_e)$

 $Pixar \Rightarrow \lambda x_a \mathbf{x_e}$. $Pixar(x_a)$

Lambda Expression for words

```
\begin{array}{ll} \operatorname{acquired} \Rightarrow \lambda \mathbf{x_a} x_e. \operatorname{acquired}(x_e) & \Rightarrow \mathsf{TYPE} = \mathbf{Ind} \times \mathbf{Event} \to \mathbf{Bool} \\ \operatorname{Pixar} \Rightarrow \lambda x_a \mathbf{x_e}. \operatorname{Pixar}(x_a) & \Rightarrow \mathsf{TYPE} = \mathbf{Ind} \times \mathbf{Event} \to \mathbf{Bool} \\ \end{array}
```

Here $\eta = \text{TYPE}[\text{acquired}] = \text{TYPE}[\text{Pixar}] \checkmark$

Conjunctions

Sentence:

Eminem signed to Interscope and discovered 50 Cent.

Binarized tree:

(nsubj (conj-vp (cc s_to_l and) d_50) Eminem)

Conjunctions

Sentence:

Eminem signed to Interscope and discovered 50 Cent.

Binarized tree:

(nsubj (conj-vp (cc s_to_I and) d_50) Eminem)

Substitution:

$$conj-vp \Rightarrow \lambda fgx. \exists yz. f(y) \land g(z) \land coord(x,y,z)$$

Logical Expression:

$$\lambda w$$
. $\exists xyz$. Eminem $(x_a) \wedge \text{coord}(w, y, z)$
 $\wedge \arg_1(w_e, x_a) \wedge \text{s_to_I}(y) \wedge \text{d_50}(z)$

Conjunctions

Sentence:

Eminem signed to Interscope and discovered 50 Cent.

Binarized tree:

(nsubj (conj-vp (cc s_to_I and) d_50) Eminem)

Substitution:

$$conj-vp \Rightarrow \lambda fgx. \exists yz. f(y) \land g(z) \land coord(x,y,z)$$

Logical Expression:

$$\lambda w. \exists xyz. \text{Eminem}(x_a) \wedge \text{coord}(w, y, z)$$

 $\wedge \arg_1(w_e, x_a) \wedge \text{s_to_I}(y) \wedge \text{d_50}(z)$

Post processing:

$$\lambda e. \exists xyz. \text{Eminem}(x_a) \land \arg_1(y_e, x_a) \\ \land \arg_1(z_e, x_a) \land \text{s_to_I}(y) \land \text{d_50}(z)$$

Graph Transformation: CONTRACT operation

What language do the people in Ghana speak?

Ungrounded graph

Grounded graph

Graph Mismatch: EXPAND operation

What to do Washington DC December?

Before EXPAND

▶ λz . $\exists xyw$. TARGET $(x_a) \land do(z_e) \land arg_1(z_e, x_a) \land$ Washington_DC $(y_a) \land$ December (w_a)

After EXPAND

▶ λz . $\exists xyw$. TARGET $(x_a) \land \operatorname{do}(z_e) \land \operatorname{arg}_1(z_e, x_a) \land$ Washington $\operatorname{DC}(y_a) \land \operatorname{dep}(z_e, y_a) \land \operatorname{December}(w_a) \land \operatorname{dep}(z_e, w_a)$