Homework 3

ECE 269: Linear Algebra and Applications
Homework #3-Solution
Instructor: Behrouz Touri

1. A hands on experience!. For the following matrix (over \mathbb{R}),

$$A = \begin{pmatrix} 8 & -1 & 2 \\ 8 & 2 & 0 \\ 0 & 3 & -2 \end{pmatrix},\tag{1}$$

obtain the following.

- (a) Find $\mathcal{R}(A)$.
- (b) Find rank A.
- (c) Find $\mathcal{N}(A)$.
- (d) Perform a rank decomposition A = BC.
- (e) Find the QR decomposition of A.

Solution:

(a) Notice that $(8\ 8\ 0)'$ and $(-1\ 2\ 3)'$ are linearly independent. We try

$$\begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} = a \begin{pmatrix} 8 \\ 8 \\ 0 \end{pmatrix} + b \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}.$$

Calculations show that a = 1/6 and b = -2/3. This implies $(2\ 0\ -2)'$ is contained in the span of the two vectors. Therefore,

$$\mathcal{R}(A) = \operatorname{span} \left\{ \begin{pmatrix} 8 \\ 8 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \right\}$$
$$= \operatorname{span} \left\{ \begin{pmatrix} 8 \\ 8 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \right\}$$
$$= \left\{ (8a - b \ 8a + 2b \ 3b)' \mid a, b \in \mathbb{R} \right\}.$$

We can obtain a simpler form of $\mathcal{R}(A)$ by change of variable x = 8a - b, z = 3b. Then

$$\mathcal{R}(A) = \{ (x \ x + z \ z)' \mid x, z \in \mathbb{R} \} = \{ (x \ y \ z)' \in \mathbb{R}^3 \mid y = x + z \}.$$

(b) Since $\mathcal{R}(A)$ has a basis of two vectors, the dimension of $\mathcal{R}(A)$ is two and rank A=2.

(c) Consider the equation

$$\begin{pmatrix} 8 & -1 & 2 \\ 8 & 2 & 0 \\ 0 & 3 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Observe that $v_1 = 1/6$, $v_2 = -2/3$, $v_3 = -1$ is a solution of this equation. So, we have $(1/6 - 2/3 - 1) \in \mathcal{N}(A)$. On the other hand, by the rank-nullity theorem, the dimension of $\mathcal{N}(A)$ should be $3 - \operatorname{rank} A = 1$. Hence

$$\mathcal{N}(A) = \text{span}\{(1/6 - 2/3 - 1)'\}$$

.

(d) Recall that we have

$$\begin{pmatrix} 8 & -1 \\ 8 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1/6 \\ -2/3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}.$$

Therefore, we have

$$A = \begin{pmatrix} 8 & -1 \\ 8 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1/6 \\ 0 & 1 & -2/3 \end{pmatrix} = BC.$$

(e) For the QR decomposition, we already showed that the first two independent columns are $v_1 = \begin{pmatrix} 8 \\ 8 \\ 0 \end{pmatrix}$ and $v_2 = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$. So, following the procedure in the class, we use the G-S procedure to find the columns of (reduced) Q as follows:

$$q_{1} = \frac{v_{1}}{\|v_{1}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

$$\tilde{q}_{2} = v_{2} - \langle v_{2}, q_{1} \rangle q_{1} = \begin{pmatrix} -1\\2\\3 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} -\frac{3}{2}\\\frac{3}{2}\\3 \end{pmatrix} \Rightarrow q_{2} = \frac{\tilde{q}_{2}}{\|\tilde{q}_{2}\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\1\\2 \end{pmatrix}.$$

Letting $Q = [q_1 \quad q_2] = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{2}{\sqrt{6}} \end{pmatrix}$, the reduced QR decomposition, would be A = QU with

$$U = Q'A = \begin{pmatrix} 8\sqrt{2} & \frac{1}{\sqrt{2}} & \sqrt{2} \\ 0 & \frac{9}{\sqrt{6}} & -\sqrt{6} \end{pmatrix}.$$

For the full QR decomposition, we need to find a vector u that is not in R(A) = R(Q) and continue with the Gram-Schmidt procedure. In this case, $v_3 = e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ is not in

the range (why). Therefore, we have

$$\tilde{q}_3 = e_3 - \langle e_3, q_1 \rangle q_1 - \langle e_3, q_2 \rangle q_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$

$$\Rightarrow q_3 = \frac{\tilde{q}_3}{\|\tilde{q}_3\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

Therefore, the full QR decomposition, would be $A = \tilde{Q} \begin{pmatrix} U \\ 0 \end{pmatrix}$ with

$$\tilde{Q} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

2. Orthogonal complement of a subspace. Suppose that \mathcal{V} is a subspace of \mathbb{F}^n . Let

$$\mathcal{V}^{\perp} = \{ x \in \mathbb{F}^n : x'y = 0, \forall y \in \mathcal{V} \}$$

be the set of vectors orthogonal to every element in \mathcal{V} .

- (a) Verify that \mathcal{V}^{\perp} is a subspace of \mathbb{F}^n .
- (b) Suppose that $\mathcal{V} = \operatorname{span}(v_1, v_2, \dots, v_k)$ for some $v_1, v_2, \dots, v_k \in \mathbb{F}^n$. Express \mathcal{V} and \mathcal{V}^{\perp} as subspaces induced by the matrix $A = \begin{pmatrix} v_1 & v_2 & \cdots & v_k \end{pmatrix} \in \mathbb{F}^{n \times k}$ and its transpose A'.
- (c) Show that $(\mathcal{V}^{\perp})^{\perp} = \mathcal{V}$.
- (d) Show that $\dim(\mathcal{V}) + \dim(\mathcal{V}^{\perp}) = n$.
- (e) Show that $\mathcal{V} \subseteq \mathcal{W}$ for another subspace \mathcal{W} implies $\mathcal{W}^{\perp} \subseteq \mathcal{V}^{\perp}$.
- (f) Suppose that $\mathbb{F} = \mathbb{R}$. Show that every $x \in \mathbb{F}^n$ can be expressed uniquely as $x = v + v^{\perp}$, where $v \in \mathcal{V}$ and $v^{\perp} \in \mathcal{V}^{\perp}$. (Hint: Let v be the projection of x on \mathcal{V} .)

Solution:

(a) We have, for all $y \in \mathcal{V}$, 0'y = 0 and therefore, $0 \in \mathcal{V}^{\perp}$. Now, let $a, b \in \mathbb{F}$ and $u_1, u_2 \in \mathcal{V}^{\perp}$. Then, we have, for all $y \in \mathcal{V}$,

$$(au_1 + bu_2)'y = au_1'y + bu_2'y$$

= 0,

since $u'_1y = u'_2y = 0$. Thus, \mathcal{V}^{\perp} is a subspace of \mathbb{F}^n .

(b) We have

$$\mathcal{V} = \{x_1 v_1 + \dots + x_k v_k : x_1, x_2, \dots, x_k \in \mathbb{F}\}$$

$$= \left\{ A \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix} : x_1, x_2, \dots, x_k \in \mathbb{F} \right\}$$

$$= \{Ax : x \in \mathbb{F}^k\}$$

$$= \mathcal{R}(A),$$

and

$$\mathcal{V}^{\perp} = \{ y \in \mathbb{F}^n : y'(x_1v_1 + x_2v_2 + \dots + x_kv_k) = 0, \forall x_1, \dots, x_k \in \mathbb{F} \}$$

$$= \{ y \in \mathbb{F}^n : (x_1v'_1 + x_2v'_2 + \dots + x_kv'_k)y = 0, \forall x_1, \dots, x_k \in \mathbb{F} \}$$

$$= \{ y \in \mathbb{F}^n : x'A'y = 0, \forall x \in \mathbb{F}^k \}$$

$$= \{ y \in \mathbb{F}^n : A'y = 0 \}$$

$$= \mathcal{N}(A').$$

- (c) We will first show that $\mathcal{V} \subseteq (\mathcal{V}^{\perp})^{\perp}$. Let $x \in \mathcal{V}$. Then, by the definition of \mathcal{V}^{\perp} , x'y = 0 for all $y \in \mathcal{V}^{\perp}$ and therefore, $x \in (\mathcal{V}^{\perp})^{\perp}$. Thus, $\mathcal{V} \subseteq (\mathcal{V}^{\perp})^{\perp}$. Now, by part (d), $(\mathcal{V}^{\perp})^{\perp}$ has dimension $\dim(\mathcal{V})$ and by what we just proved, includes \mathcal{V} . This implies that $(\mathcal{V}^{\perp})^{\perp} = \mathcal{V}$.
- (d) From part (b), we have

$$dim(\mathcal{V}) = dim(\mathcal{R}(A))$$
$$= rank(A)$$
$$= rank(A').$$

Also,

$$\dim(\mathcal{V}^{\perp}) = \dim(\mathcal{N}(A'))$$

= nullity(A').

Therefore, since $A' \in \mathbb{F}^{k \times n}$, we have, by the rank-nullity theorem, $\dim(\mathcal{V}) + \dim(\mathcal{V}^{\perp}) = n$.

(e) Let $\mathcal{V} \subseteq \mathcal{W}$. We have

$$x \in \mathcal{W}^{\perp} \implies x'w = 0 \text{ for all } w \in \mathcal{W}$$

$$\stackrel{(a)}{\Longrightarrow} x'w = 0 \text{ for all } w \in \mathcal{V}$$

$$\implies x \in \mathcal{V}^{\perp}.$$

Here, implication (a) follows since every $w \in \mathcal{V}$ is also included in \mathcal{W} , by assumption.

(f) Consider v, the projection of x on \mathcal{V} . Then, by the property of a projection, $v^{\perp} := x - v$ is orthogonal to \mathcal{V} and hence to all vectors in \mathcal{V} . Therefore, $v^{\perp} \in \mathcal{V}^{\perp}$. Now, suppose $x = v + v^{\perp} = \tilde{v} + \tilde{v}^{\perp}$, where $v, \tilde{v} \in \mathcal{V}$ and $v^{\perp}, \tilde{v}^{\perp} \in \mathcal{V}^{\perp}$. Then, we have $v - \tilde{v} = \tilde{v}^{\perp} - v^{\perp}$. But $v - \tilde{v} \in \mathcal{V}$ and $\tilde{v}^{\perp} - v^{\perp} \in \mathcal{V}^{\perp}$, therefore $v - \tilde{v} \in \mathcal{V} \cap \mathcal{V}^{\perp} = \{0\}$, implying that $v = \tilde{v}$, demonstrating the uniqueness of the representation.

Note that $\mathcal{V} \cap \mathcal{V}^{\perp} = \{0\}$ may not hold for subspaces over all fields \mathbb{F} . Consider, for example, the subspace \mathcal{V} of \mathbb{F}_2^4 spanned by $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}'$. Then,

$$\mathcal{V} = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\},\,$$

and as can be verified easily,

$$\mathcal{V}^{\perp} = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Now consider the vector $(1 \ 1 \ 0 \ 0)'$. We have

$$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix},$$

demonstrating the non-uniqueness of the representation.

3. Halfspace. Suppose that $a, b \in \mathbb{R}^n$ are two given points. Show that the set of points in \mathbb{R}^n that are closer to a than b is a halfspace, i.e.,

$$\{x: ||x - a|| \le ||x - b||\} = \{x: c'x \le d\}$$

for appropriate $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$.

- (a) Find c and d explicitly in terms of a and b.
- (b) Draw a picture showing a, b, c, and the halfspace.

Solution:

(a) We have

$$\{x : ||x - a|| \le ||x - b||\} = \{x : ||x - a||^2 \le ||x - b||^2\}$$

$$= \{x : (x - a)'(x - a) \le (x - b)'(x - b)\}$$

$$= \{x : x'x - a'x - x'a + a'a \le x'x - b'x - x'b + b'b\}$$

$$= \{x : -2a'x + a'a \le -2b'x + b'b\}$$

$$= \{x : 2(b - a)'x \le b'b - a'a\}$$

$$= \{x : c'x \le d\},$$

where c := b - a and $d := (|b|^2 - |a|^2)/2$.

(b)

4. Inner product of polynomials. Let \mathcal{P}_3 be the vector space of all polynomials of degree ≤ 3 with real coefficients, that is,

$$\mathcal{P}_3 = \{ \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 : \alpha_0, \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R} \}.$$

Let $K: \mathcal{P}_3 \times \mathcal{P}_3 \to \mathbb{R}$ be defined as

$$K(p,q) = \int_{-1}^{1} p(x)q(x)dx.$$

- (a) Show that $K(\cdot,\cdot)$ represents an inner product for \mathcal{P}_3 .
- (b) Find an orthogonal basis for \mathcal{P}_3 using Gram-Schmidt orthogonalization.

Solution:

- (a) We will show that the three properties that an inner product is required to satisfy hold for $K(\cdot,\cdot)$.
 - Linearity in the first argument.

$$K(\alpha p_1 + \beta p_2, q) = \int_{-1}^{1} (\alpha p_1(x) + \beta p_2(x)) q(x) dx$$

$$= \int_{-1}^{1} (\alpha p_1(x) q(x) + \beta p_2(x) q(x)) d(x)$$

$$= \int_{-1}^{1} \alpha p_1(x) q(x) dx + \int_{-1}^{1} \beta p_2(x) q(x) dx$$

$$= \alpha \int_{-1}^{1} p_1(x) q(x) dx + \beta \int_{-1}^{1} p_2(x) q(x) dx$$

$$= \alpha K(p_1, q) + \beta K(p_2, q).$$

• Conjugate symmetry.

$$K(q,p) = \int_{-1}^{1} q(x)p(x)dx$$
$$= \int_{-1}^{1} \overline{q(x)p(x)}dx$$
$$= \int_{-1}^{1} \overline{p(x)q(x)}dx$$
$$= \overline{\int_{-1}^{1} p(x)q(x)dx}$$
$$= \overline{K(p,q)}.$$

• Positive definiteness. Note that $p(x)^2 \ge 0 \ \forall p \in \mathcal{P}_3, x \in [-1, 1]$. Therefore,

$$K(p,p) = \int_{-1}^{1} p(x)p(x)dx = \int_{-1}^{1} p(x)^{2}dx \ge 0.$$

Moreover, if we have $K(p,p) = \int_{-1}^{1} p(x)^2 dx = 0$, since $p(x)^2$ is non-negative, we necessarily need p(x) to be identically 0.

(b) First of all, recall that $1, x, x^2, x^3$ form a basis for \mathcal{P}_3 (cf. HW 1, Problem 8(a)). We will use this basis to construct an orthonormal basis using Gram-Schmidt orthogonalization.

$$\begin{split} \tilde{p}_0(x) &= 1, \\ p_0(x) &= \frac{1}{\|1\|} = \boxed{\frac{1}{\sqrt{2}}} \\ \tilde{p}_1(x) &= x - \left(\int_{-1}^1 \frac{x}{\sqrt{2}} dx \right) \cdot \frac{1}{\sqrt{2}} = x, \\ p_1(x) &= \frac{x}{\|x\|} = \boxed{\sqrt{\frac{3}{2}}x} \\ \tilde{p}_2(x) &= x^2 - \left(\int_{-1}^1 \sqrt{\frac{3}{2}} x^3 dx \right) \cdot \sqrt{\frac{3}{2}} x - \left(\int_{-1}^1 \frac{x^2}{\sqrt{2}} dx \right) \cdot \frac{1}{\sqrt{2}} = x^2 - \frac{1}{3}, \\ p_2(x) &= \frac{x^2 - 1/3}{\|x^2 - 1/3\|} = \boxed{\sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3} \right)} \\ \tilde{p}_3(x) &= x^3 - \left(\int_{-1}^1 \sqrt{\frac{45}{8}} x^5 dx \right) \cdot \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3} \right) - \left(\int_{-1}^1 \sqrt{\frac{3}{2}} x^4 dx \right) \cdot \sqrt{\frac{3}{2}} x \\ &- \left(\int_{-1}^1 \frac{x^3}{\sqrt{2}} dx \right) \cdot \frac{1}{\sqrt{2}} \\ &= x^3 - \frac{3}{5} x, \\ p_3(x) &= \frac{x^3 - (3/5)x}{\|x^3 - (3/5)x\|} = \boxed{\sqrt{\frac{175}{8}} \left(x^3 - \frac{3}{5} x \right)}. \end{split}$$

5. Bessel's inequality. Suppose that the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal. Show that

$$||U'x|| \le ||x||.$$

Solution: Let u_1, u_2, \ldots, u_k denote the columns of U, and let

$$\tilde{x} := \sum_{j=1}^{k} (u_j' x) u_j = U U' x$$

be the projection of x onto $\mathcal{R}(U)$. Then

$$0 \le \|x - \tilde{x}\|^{2}$$

$$= \|(I - UU')x\|^{2}$$

$$= x'(I - UU')'(I - UU')x$$

$$= x'(I - UU')(I - UU')x$$

$$= x'(I - UU')x$$

$$= x'x - x'UU'x$$

$$= \|x\|^{2} - \|U'x\|^{2}.$$

- 6. Wonders of Infinite Dimensional Spaces.
 - (a) Recall that $C^0([a,b])$ is the set of continuous functions $f:[a,b]\to\mathbb{R}$. Let [a,b]=[0,2].
 - i. Show that $||f||_2 = (\int_0^2 |f(x)|^2 dx)^{1/2}$ is well-defined, i.e., $||f||_2 < \infty$ for all $f \in C^0([0,2])$. As a result of this, $C^0([0,2]) \subset L_2([0,2])$ and $(C^0([0,2]), ||\cdot||_2)$ is a normed-vector space.
 - ii. Show that this normed-vector space is not complete/Banach. **hint:** Show that the sequence $\{f_k\}$ in $C^0([0,2])$ defined by

$$f_k(x) = \begin{cases} x^k & x \in [0, 1] \\ 1 & x \in (1, 2] \end{cases}$$

is a Cauchy sequence, but the sequence does not have a limit in $C^0([0,2])$.

- (b) We defined the space $\ell_{\infty}(\mathbb{N})$ to be the space of all sequences $(x_n)_{n\geq 1}$ with $x_n \in \mathbb{R}$ such that $\sup_{n\geq 1}|x_n|<\infty$, and we defined the norm $\|\cdot\|_{\infty}$ in this space by $\|(x_n)_{n\geq 1}\|_{\infty}=\sup_{n\geq 1}|x_n|<\infty$.
 - i. For a normed-vector space $(V, \|\cdot\|)$, we can define the ball of radius r > 0 around a point $x \in V$, to be $B_r(x) = \{y \mid \|y x\| < r\}$. Identify, the unite ball $B_1(\mathbf{0})$ in $\ell_{\infty}(\mathbb{N})$ where $\mathbf{0}$ is the zero of $\ell_{\infty}(\mathbb{N})$.
 - ii. Construct a sequence of vectors $\{v_n\}_{n\geq 1}$ in $B_1(\mathbf{0})$ such that the distance of any two points is greater than or equal to one. In other words, not only $\{v_n\}_{n\geq 1}$ is not Cauchy, but none of its subsequences is Cauchy.

Solution:

(a) i. Since [0,2] is a bounded closed interval and $f \in C^0([0,2])$ is continuous, there exists $c \in \mathbb{R}$ such that |f(x)| < c for all $x \in [0,2]$. Therefore, $||f||_2 = (\int_0^2 |f(x)|^2 dx)^{1/2} < (\int_0^2 c^2 dx)^{1/2} = (2c^2)^{1/2} = \sqrt{2}c < \infty$.

ii. For any ϵ , let $N = \lceil \frac{2}{\epsilon^2} \rceil$. For any n, m > N,

$$||f_n - f_m||_2 = \left(\int_0^2 |f_n(x) - f_m(x)|^2 dx\right)^{1/2}$$

$$= \left(\int_0^1 |x^n - x^m|^2 dx\right)^{1/2}$$

$$\leq \left(\int_0^1 (x^{2n} + 2x^{n+m} + x^{2m}) dx\right)^{1/2}$$

$$= \left(\frac{1}{2n+1} + \frac{2}{n+m+1} + \frac{1}{2m+1}\right)^{1/2}$$

$$< \left(\frac{1}{2N} + \frac{2}{2N} + \frac{1}{2N}\right)^{1/2}$$

$$= \left(\frac{2}{N}\right)^{1/2}$$

$$< \epsilon.$$

Hence, f_k is a Cauchy sequence.

From this point on, we essentially argue that if the limit function exists, it cannot be continuous at x = 1, as one would expect the limit have the form of:

$$\lim_{k \to \infty} f_k(x) = \begin{cases} 0 & x \in [0, 1) \\ 1 & x \in [1, 2] \end{cases}.$$

To formally show this, suppose that $f_k \to g(x)$ in L_2 for some $g(x) \in C^0([0,2])$ and assume $g(1) = \alpha$. One can argue that we need to have $\alpha \in [0,1]$. If $\alpha > 0$, then by the right continuity of g(x) at x = 1, there exists some $\delta > 0$ such that $0 < \frac{\alpha}{2} \le g(x) \le \alpha$ for $x \in (1 - \delta, 1]$. Therefore, for large enough n (more precisely, when $(1 - \delta/2)^n < \alpha/4$),

$$||g(x) - f_n(x)||^2 = \int_0^2 |g(x) - f_n(x)|^2 dx \ge \int_{1-\delta}^{1-\delta/2} |g(x) - x^n|^2 dx$$
$$\ge \int_{1-\delta}^{1-\delta/2} (\frac{\alpha}{4})^2 dx = (\frac{\alpha}{4})^2 \frac{\delta}{2} = \frac{\alpha^2 \delta}{32}.$$

Therefore, the distance does not go to zero and hence, f_n does not converge to g. Therefore, we need to have $\alpha = 0$. But if $\alpha = 0$, then using a similar argument, and the right continuity of g, you can show that

$$||g(x) - f_n(x)||^2 = \int_0^2 |g(x) - f_n(x)|^2 dx \ge \int_{1+\delta/2}^{1+\delta} |g(x) - x^n|^2 dx \ge \frac{\delta}{32},$$

for large enough n and hence, we cannot have convergence.

(b) i.
$$B_1(\mathbf{0}) = \{(x_n)_{n \ge 1} \in V \mid ||(x_n)_{n \ge 1}||_{\infty} < 1\} = \{(x_n)_{n \ge 1} \in V \mid \sup_{n \ge 1} |x_n| < 1\}.$$

ii. For example, we have $\{v_n\}_{n\geq 1}$ in $B_1(\mathbf{0})$ such that

$$v_1 = (-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \cdots),$$

$$v_2 = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \cdots),$$

$$v_3 = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \cdots),$$

$$\vdots$$

The distance of any two points in this sequence is equal to one.

- 7. Projection matrices. A symmetric matrix $P = P' \in \mathbb{R}^{n \times n}$ is said to be a projection matrix if $P = P^2$.
 - (a) Show that if P is a projection matrix, then so is I P.
 - (b) Suppose that the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal. Show that UU' is a projection matrix.
 - (c) Suppose that $A \in \mathbb{R}^{n \times k}$ is full-rank with $k \leq n$. Show that $A(A'A)^{-1}A'$ is a projection matrix.
 - (d) The point $y \in \mathcal{S} \subseteq \mathbb{R}^n$ closest to $x \in \mathbb{R}^n$ is said to be the *orthogonal projection* (or *projection* in short) of x onto \mathcal{S} . Show that if P is a projection matrix, then y = Px is the projection of x onto $\mathcal{R}(P)$.
 - (e) Let u be a unit vector. Find the projection matrix P such that y = Px is the projection of x onto $\operatorname{span}(u)$.

Solution:

- (a) Note that (I-P)' = I P' = I P and so I-P is symmetric. Also, $(I-P)^2 = (I-P)(I-P) = I P P + P^2 = I 2P + P = I P$. Hence, I-P is symmetric and $(I-P)^2 = (I-P)$, thus it is a projection matrix.
- (b) Note that (UU')' = (U')'U = UU' and

$$(UU')^2 = UU'UU'$$
$$= UIU'$$
$$= UU'.$$

(c) First of all, (A'A) is invertible for a full-rank tall matrix A. For symmetry, consider

$$(A(A'A)^{-1}A')' = (A')'((A'A)^{-1})'A'$$

$$= A((A'A)^{-1})'A'$$

$$= A((A'A)')^{-1}A'$$

$$= A(A'A)^{-1}A'.$$

Also, consider

$$(A(A'A)^{-1}A')^{2} = A(A'A)^{-1}(A'A)(A'A)^{-1}A'$$
$$= A(A'A)^{-1}A'.$$

(d) It suffices to show that ||x - v|| is minimized over all $v \in \mathcal{R}(P)$ by $v^* = Px$. For any $v \in \mathcal{R}(P)$,

$$||x - v||^{2} = ||x - Px + Px - v||^{2}$$

$$= ||x - Px||^{2} + ||Px - v||^{2} + 2(x - Px)'(Px - v)$$

$$= ||x - Px||^{2} + ||Px - v||^{2} + 2(x' - x'P)(Px - v)$$

$$= ||x - Px||^{2} + ||Px - v||^{2} + 2(x'Px - x'v - x'P^{2}x + x'Pv)$$

$$\stackrel{(1)}{=} ||x - Px||^{2} + ||Px - v||^{2} + 2(x'Px - x'v - x'Px + x'v)$$

$$= ||x - Px||^{2} + ||Px - v||^{2}$$

$$\stackrel{(2)}{\leq} ||x - Px||^{2},$$

where (1) follows using $P^2 = P$ and $Pv = v \ \forall v \in \mathcal{R}(P)$. To achieve equality in (2), we need $||Px - v||^2 = 0 \implies v = Px$. Thus, $\arg\min_{v \in \mathcal{R}(P)} ||x - v|| = Px$.

- (e) Consider P = uu'. Since P = P' and $P = P^2$, P is a projection matrix. Since $\mathcal{R}(P) = \mathrm{span}(u)$, by part (d) Px is the projection of x onto $\mathrm{span}(u)$. This can be also directly verified since (u'x)u = uu'x = Px is the component of x in the direction of the unit vector u.
- 8. Reflection and projection with an affine hyperplane. Let a be a nonzero vector in \mathbb{R}^n , $b \in \mathbb{R}$, and

$$\mathcal{A} = \{ x \in \mathbb{R}^n : a'x = b \}.$$

be an affine hyperplane, namely, a shifted version of the hyperplane $\mathcal{H} = \{x : a'x = 0\}$ by b, with the same normal vector a.

- (a) Find the projection of the zero vector 0 onto \mathcal{A} .
- (b) Find the reflection of 0 through A.
- (c) Find the projection of x onto A.
- (d) Find the reflection of x through A.

Solution: If we have an affine hyperplane \mathcal{A} , $p_{\mathcal{A}}(x)$ for any x will be such that the vector $p_{\mathcal{A}}(x) - x$ is perpendicular to the plane \mathcal{A} . This can be seen by elementary geometric arguments—there always exists a point $y \in \mathcal{A}$ such that $y - x \perp \mathcal{A}$. If $p_{\mathcal{A}}(x) = z \neq y$, then the vectors y - x, z - y, x - z form a right-angled triangle with z - x as the hypotenuse and we have $||x - y|| \leq ||x - z||$ contradicting the minimality in distance from x, that is implicit in a projection. Similarly, the reflection of x, $r_{\mathcal{A}}(x)$ is equidistant from $p_{\mathcal{A}}(x)$ as x, but in the exact opposite direction.

- (a) The vector $(p_{\mathcal{A}}(0) 0)$ must be in the direction of a. Thus, $p_{\mathcal{A}}(0) = \alpha a$. But, we also know that $p_{\mathcal{A}}(0)$ lies on the affine hyperplane \mathcal{A} . Thus, $a'p_{\mathcal{A}}(0) = b$. Putting these two together, we get that $a'\alpha a = b \implies \alpha = \frac{b}{a'a}$. Thus, $p_{\mathcal{A}}(0) = \frac{b}{a'a}a$.
- (b) Through geometric arguments, we can see that the reflection of 0 through \mathcal{A} will be such that the vector $r_{\mathcal{A}}(0) p_{\mathcal{A}}(0) = (p_{\mathcal{A}}(0) 0)$. Thus $r_{\mathcal{A}} = 2p_{\mathcal{A}}(0) = 2\frac{b}{a'a}a$.
- (c) We follow the same reasoning as in (a) to argue that $(p_{\mathcal{A}}(x) x)$ must be in the direction of a, and $p_{\mathcal{A}}(x)$ must lie on the affine hyperplane \mathcal{A} . Thus,

$$p_{\mathcal{A}}(x) - x = \alpha a$$

and

$$a'p_{\mathcal{A}}(x) = b,$$

which implies that $a'(\alpha a + x) = b$, or equivalently, $\alpha = \frac{b - a'x}{a'a}$. Therefore,

$$p_{\mathcal{A}}(x) = x - \frac{1}{\|a\|^2} (a'x - b)a.$$

(d) Again, we use the same reasoning as in (b) to argue that the reflection $r_{\mathcal{A}}(x)$ of x must satisfy $r_{\mathcal{A}}(x) - p_{\mathcal{A}}(x) = p_{\mathcal{A}}(x) - x$, which implies that

$$r_{\mathcal{A}}(x) = 2p_{\mathcal{A}}(x) - x = x - 2\frac{1}{\|a\|^2}(a'x - b)a.$$