

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań	
Egzamin:	Egzamin ósmoklasisty	
Przedmiot:	Matematyka	
	OMAP-100-2506	
	OMAP-200-2506	
	OMAP-400-2506	
Formy orky 1070;	OMAP-500-2506	
Formy arkusza:	OMAP-600-2506	
	OMAP-700-2506	
	OMAP-C00-2506	
	OMAU-C00-2506	
Termin egzaminu:	11 czerwca 2025 r.	
Data publikacji dokumentu:	20 czerwca 2025 r.	

Zadanie 1. (0-1)

Podstawa programowa 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Klasy VII i VIII
reprezentacji.	XIII. Odczytywanie danych i elementy
1. Używanie prostych, dobrze znanych	statystyki opisowej. Uczeń:
obiektów matematycznych,	1) interpretuje dane przedstawione za pomocą
interpretowanie pojęć matematycznych	[] tabel [];
i operowanie obiektami matematycznymi.	3) oblicza średnią arytmetyczną kilku liczb.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 2. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Klasy IV-VI
1. Wykonywanie nieskomplikowanych	V. Działania na ułamkach zwykłych
obliczeń w pamięci lub pisemnie oraz	i dziesiętnych. Uczeń:
wykorzystanie tych umiejętności	1) dodaje, odejmuje, mnoży i dzieli ułamki
w sytuacjach praktycznych.	zwykłe o mianownikach jedno- lub
	dwucyfrowych [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 3. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Klasy IV-VI
1. Wykonywanie nieskomplikowanych	XII. Obliczenia praktyczne. Uczeń:
obliczeń w pamięci lub pisemnie oraz	3) wykonuje proste obliczenia zegarowe na
wykorzystanie tych umiejętności	godzinach, minutach i sekundach.
w sytuacjach praktycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 4. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Klasy VII i VIII
reprezentacji.	I. Potęgi o podstawach wymiernych. Uczeń:
1. Używanie prostych, dobrze znanych	2) mnoży i dzieli potęgi o wykładnikach
obiektów matematycznych,	całkowitych dodatnich;
interpretowanie pojęć matematycznych	3) mnoży potęgi o różnych podstawach
i operowanie obiektami matematycznymi.	i jednakowych wykładnikach;
	4) podnosi potęgę do potęgi.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

FΡ

Zadanie 5. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Klasy IV-VI
reprezentacji.	II. Działania na liczbach naturalnych. Uczeń:
1. Używanie prostych, dobrze znanych	6) rozpoznaje liczby podzielne przez 2, 3, 4,
obiektów matematycznych,	[].
interpretowanie pojęć matematycznych	
i operowanie obiektami matematycznymi.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

PP

Zadanie 6. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Klasy VII i VIII
reprezentacji.	XII. Wprowadzenie do kombinatoryki
1. Używanie prostych, dobrze znanych	i rachunku prawdopodobieństwa. Uczeń:
obiektów matematycznych,	2) przeprowadza proste doświadczenia
interpretowanie pojęć matematycznych	losowe [] i oblicza prawdopodobieństwa
i operowanie obiektami matematycznymi.	zdarzeń w doświadczeniach losowych.
	Klasy IV-VI
	XI. Obliczenia w geometrii. Uczeń:
	2) oblicza obwód wielokąta o danych
	długościach boków.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

BC

Zadanie 7. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Klasy IV-VI
1. Odczytywanie i interpretowanie danych	IV. Ułamki zwykłe i dziesiętne. Uczeń:
przedstawionych w różnej formie oraz ich	opisuje część danej całości za pomocą
przetwarzanie.	ułamka.
	V. Działania na ułamkach zwykłych
	i dziesiętnych. Uczeń:
	4) oblicza ułamek danej liczby całkowitej.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 8. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Klasy VII i VIII
reprezentacji.	VI. Równania z jedną niewiadomą. Uczeń:
1. Używanie prostych, dobrze znanych	2) rozwiązuje równania pierwszego stopnia
obiektów matematycznych,	z jedną niewiadomą metodą równań
interpretowanie pojęć matematycznych	równoważnych.
i operowanie obiektami matematycznymi.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 9. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Klasy IV-VI
reprezentacji.	XI. Obliczenia w geometrii. Uczeń:
1. Używanie prostych, dobrze znanych	3) oblicza pola: […] kwadratu […], rombu […].
obiektów matematycznych,	
interpretowanie pojęć matematycznych	
i operowanie obiektami matematycznymi.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

PF

Zadanie 10. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Klasy IV-VI
2. Interpretowanie i tworzenie tekstów	IX. Wielokąty, koła i okręgi. Uczeń:
o charakterze matematycznym oraz	3) stosuje twierdzenie o sumie kątów
graficzne przedstawianie danych.	wewnętrznych trójkąta.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 11. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Klasy VII i VIII
reprezentacji.	III. Tworzenie wyrażeń algebraicznych z jedną
2. Dobieranie modelu matematycznego	i wieloma zmiennymi. Uczeń:
do prostej sytuacji oraz budowanie go	zapisuje zależności przedstawione
w różnych kontekstach, także	w zadaniach w postaci wyrażeń
w kontekście praktycznym.	algebraicznych jednej lub kilku zmiennych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 12. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Klasy IV-VI
1. Odczytywanie i interpretowanie danych	XI. Obliczenia w geometrii. Uczeń:
przedstawionych w różnej formie oraz ich	3) oblicza pola: [] trapezu []
przetwarzanie.	przedstawion[ego] na rysunku [].
	Klasy VII i VIII
	VIII. Własności figur geometrycznych na
	płaszczyźnie. Uczeń:
	7) zna i stosuje w sytuacjach praktycznych
	twierdzenie Pitagorasa (bez twierdzenia
	odwrotnego).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

AD

Zadanie 13. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Klasy VII i VIII
reprezentacji.	XI. Geometria przestrzenna. Uczeń:
1. Używanie prostych, dobrze znanych	2) oblicza objętości i pola powierzchni
obiektów matematycznych,	graniastosłupów prostych, prawidłowych
interpretowanie pojęć matematycznych	i takie, które nie są prawidłowe [].
i operowanie obiektami matematycznymi.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 14. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Klasy IV-VI
2. Dostrzeganie regularności,	IX. Wielokąty, koła i okręgi. Uczeń:
podobieństw oraz analogii i formułowanie	5) zna najważniejsze własności kwadratu,
wniosków na ich podstawie.	prostokąta, rombu, równoległoboku [].
	Klasy VII i VIII
	X. Oś liczbowa. Układ współrzędnych na
	płaszczyźnie. Uczeń:
	3) rysuje w układzie współrzędnych na
	płaszczyźnie punkty kratowe o danych
	współrzędnych całkowitych (dowolnego
	znaku).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

PF

Zadanie 15. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Klasy IV-VI
reprezentacji.	V. Działania na ułamkach zwykłych
2. Dobieranie modelu matematycznego	i dziesiętnych. Uczeń:
do prostej sytuacji oraz budowanie go	4) oblicza ułamek danej liczby całkowitej.
w różnych kontekstach, także	XI. Obliczenia w geometrii. Uczeń:
w kontekście praktycznym.	6) oblicza objętość i pole powierzchni
	prostopadłościanu przy danych długościach
	krawędzi.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

ZADANIA OTWARTE

Uwagi ogólne

- Akceptowane są wszystkie odpowiedzi merytorycznie poprawne, spełniające warunki zadania.
- Za rozwiązanie zadania na danym etapie uczeń może otrzymać punkty tylko wtedy, gdy przedstawia poprawne sposoby rozwiązania na wszystkich wcześniejszych etapach.
- Jeżeli na dowolnym etapie rozwiązania zadania uczeń popełnia jeden lub więcej błędów rachunkowych (albo błąd przepisania wartości poprawnie zidentyfikowanej danej albo wartości z wcześniejszych etapów rozwiązania), ale stosuje poprawne sposoby rozwiązania i konsekwentnie doprowadza rozwiązanie zadania do końca, to ocenę rozwiązania obniża się o 1 punkt.
- Jeżeli na pewnym etapie rozwiązania zadania uczeń podaje kilka sprzecznych ze sobą rozwiązań i nie wskazuje, które z nich należy uznać za poprawne, to może uzyskać punkty tylko za wcześniejsze poprawne etapy rozwiązania.
- Jeżeli na pewnym etapie rozwiązania zadania uczeń podaje kilka sprzecznych ze sobą rozwiązań i wskazuje, które z nich należy uznać za poprawne, to zapisów w innych rozwiązaniach nie bierze się pod uwagę w ocenianiu.
- Jeżeli w zadaniach 16–21 uczeń podaje tylko poprawny końcowy wynik, to otrzymuje 0 punktów.
- W pracy ucznia uprawnionego do dostosowanych zasad oceniania dopuszcza się:
 - 1. lustrzane zapisywanie cyfr i liter (np. 6–9)
 - 2. gubienie liter, cyfr, nawiasów
 - 3. problemy z zapisywaniem przecinków w liczbach dziesiętnych
 - 4. błędy w zapisie działań pisemnych (dopuszczalne drobne błędy rachunkowe, wynikające np. z graficznego podobieństwa cyfr)
 - 5. luki w zapisie obliczeń obliczenia pamięciowe
 - uproszczony zapis równania i przekształcenie go w pamięci; brak opisu niewiadomych
 - 7. niekończenie wyrazów
 - 8. problemy z zapisywaniem jednostek (np. $^{\circ}$ C OC)
 - 9. błędy w przepisywaniu
 - 10. chaotyczny zapis operacji matematycznych
 - 11. mylenie indeksów górnych i dolnych (np. $x^2 x_2$, $m_2 m^2$).
- Uczeń uprawniony do korzystania z kalkulatora może otrzymać punkty za rozwiązanie zadania na danym etapie tylko wtedy, gdy przedstawi poprawne sposoby rozwiązania.
- Jeżeli uczeń uprawniony do korzystania z kalkulatora zapisze poprawny sposób rozwiązania zadania, ale w wyniku końcowym zapisze błędną wartość liczbową, to traktujemy to jako błąd rachunkowy.

Zadanie 16. (0-2)

Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Klasy VII i VIII
Przeprowadzanie prostego	III. Tworzenie wyrażeń algebraicznych z jedną
rozumowania, podawanie argumentów	i wieloma zmiennymi. Uczeń:
uzasadniających poprawność	zapisuje zależności przedstawione
rozumowania, rozróżnianie dowodu od	w zadaniach w postaci wyrażeń
przykładu.	algebraicznych jednej lub kilku zmiennych.
	V. Obliczenia procentowe. Uczeń:
	5) stosuje obliczenia procentowe do
	rozwiązywania problemów w kontekście
	praktycznym [].

Zasady oceniania

2 punkty – pełne rozwiązanie

zapisanie poprawnego wyrażenia algebraicznego jednej zmiennej, opisującego cenę
hulajnogi w sklepie C w zależności od ceny hulajnogi w sklepie A, prawidłowe obliczenia
oraz poprawny sposób uzasadnienia, że cena hulajnogi w sklepie C jest niższa od ceny
hulajnogi w sklepie A

LUB

graficzne przedstawienie poprawnej zależności między cenami hulajnogi w sklepach A i C
 oraz poprawne uzasadnienie, że cena hulajnogi w sklepie C jest niższa od ceny hulajnogi
 w sklepie A.

1 punkt

 zapisanie poprawnego wyrażenia algebraicznego jednej zmiennej, opisującego cenę hulajnogi w sklepie C w zależności od ceny hulajnogi w sklepie A, np.

$$0.8x \cdot 1.2$$
 albo $\frac{6}{5} \cdot \frac{4}{5}x$ albo $0.8x + 0.16x$ lub zapisy równoważne *LUB*

graficzne przedstawienie poprawnej zależności między cenami hulajnogi w sklepach A i C.

0 punktów

rozwiązanie błędne albo brak rozwiązania.

<u>Uwaga</u>

Jeżeli uczeń uzasadnia prawdziwość stwierdzenia dla wybranych cen hulajnogi, to za rozwiązanie zadania otrzymuje 0 punktów.

Przykładowe rozwiązania ocenione na 2 punkty

I sposób

x – cena hulajnogi w sklepie A 0.8x – cena hulajnogi w sklepie B

Obliczymy, jaką część ceny hulajnogi w sklepie A stanowi cena hulajnogi w sklepie C:

$$1.2 \cdot 0.8x = 0.96x$$

Ponieważ 0.96x < 1x, zatem cena hulajnogi w sklepie C jest niższa od ceny hulajnogi w sklepie A.

II sposób

x – cena hulajnogi w sklepie A

 $\frac{4}{5}x$ – cena hulajnogi w sklepie B

Obliczymy, jaką część ceny hulajnogi w sklepie A stanowi cena hulajnogi w sklepie C:

$$\frac{6}{5} \cdot \frac{4}{5}x = \frac{24}{25}x$$

Ponieważ

$$\frac{24}{25}x < x$$

Zatem cena hulajnogi w sklepie C jest niższa od ceny hulajnogi w sklepie A.

III sposób

x – cena hulajnogi w sklepie A

0,8x - cena hulajnogi w sklepie B

Obliczymy, o ile wyższa jest cena hulajnogi w sklepie C od ceny hulajnogi w sklepie B:

$$0.8x : 5 = 0.16x$$

Obliczymy, jaką część ceny hulajnogi w sklepie A stanowi cena hulajnogi w sklepie C:

$$0.8x + 0.16x = 0.96x$$

Ponieważ 96% < 100%, zatem cena hulajnogi w sklepie C jest niższa od ceny hulajnogi w sklepie A.

IV sposób

x – cena hulajnogi w sklepie A

0,8x – cena hulajnogi w sklepie B

y – cena hulajnogi w sklepie C

Zapiszemy zależność:

$$0.8x - 100\%$$
$$y - 120\%$$
$$y = \frac{0.8x \cdot 120\%}{100\%} = 0.96x$$

Ponieważ 0.96x < 1x, zatem cena hulajnogi w sklepie C jest niższa od ceny hulajnogi w sklepie A.

V sposób

Sposób graficzny:

Cena hulajnogi w sklepie A:

Cena hulajnogi w sklepie B (stanowi 0,8 ceny hulajnogi w sklepie A):

Cena hulajnogi w sklepie C (stanowi 1,2 ceny hulajnogi w sklepie B):

Cena hulajnogi w sklepie C jest niższa od ceny hulajnogi w sklepie A.

Zadanie 17. (0-3)

Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Klasy IV-VI
1. Wykonywanie nieskomplikowanych	XIV. Zadania tekstowe. Uczeń:
obliczeń w pamięci lub pisemnie oraz	5) do rozwiązywania zadań osadzonych
wykorzystanie tych umiejętności	w kontekście praktycznym stosuje poznaną
w sytuacjach praktycznych.	wiedzę z zakresu arytmetyki [] oraz nabyte
	umiejętności rachunkowe, a także własne
	poprawne metody.

Zasady oceniania

3 punkty – pełne rozwiązanie

poprawny sposób obliczenia kwoty pozostałej po zakupach, prawidłowe obliczenia *oraz* prawidłowy wynik liczbowy (96 zł).

2 punkty

 zapisanie poprawnego wyrażenia arytmetycznego prowadzącego do obliczenia kwoty, którą Kamil zapłacił za torbę, np.

$$\frac{3}{5} \cdot \left[300 - \left(\frac{1}{5} \cdot 300\right)\right] \qquad \text{albo} \qquad \frac{3}{5} \cdot 240$$

$$LUB$$

• poprawny sposób obliczenia ułamka kwoty pozostałej po zakupach, np. zapisanie $1-\left(\frac{1}{5}+\frac{12}{25}\right)$.

1 punkt

 zapisanie poprawnego wyrażenia arytmetycznego prowadzącego do obliczenia kwoty, która została po zakupie koszulki, np.

$$300 - \left(\frac{1}{5} \cdot 300\right)$$
 albo $\frac{4}{5} \cdot 300$ lub zapisy równoważne

LUB

• poprawny sposób obliczenia ułamka kwoty wydanej na zakup torby, np. zapisanie $\frac{3}{5} \cdot \frac{4}{5}$.

0 punktów

rozwiązanie błędne albo brak rozwiązania.

Przykładowe rozwiązania ocenione na 3 punkty

I sposób

Obliczymy koszt zakupu koszulki:

$$\frac{1}{5} \cdot 300 = 60 \text{ (z}$$

Obliczymy kwotę pozostałą po zakupie koszulki:

$$300 - 60 = 240$$
 (zł)

Obliczymy koszt zakupu torby:

$$\frac{3}{5} \cdot 240 = 3 \cdot 48 = 144 \text{ (z}$$

Obliczymy kwotę, która została Kamilowi po zakupach:

$$240 - 144 = 96$$
 (zł)

Odpowiedź: Po zakupach Kamilowi zostało 96 zł.

II sposób

Kamil na zakup koszulki wydał $\frac{1}{5}$ z 300 złotych, a więc zostało mu $\frac{4}{5}$ z 300 złotych.

Jeżeli z $\frac{4}{5}$ posiadanej kwoty wydał $\frac{3}{5}$ na zakup torby, to na zakup torby wydał:

$$\frac{3}{5} \cdot \frac{4}{5} = \frac{12}{25}$$
 posiadanej kwoty.

Zatem Kamilowi po zakupach zostało:

$$1 - \left(\frac{1}{5} + \frac{12}{25}\right) = \frac{8}{25}$$
 posiadanej kwoty.

Obliczymy, ile złotych zostało Kamilowi po zakupach:

$$\frac{8}{25} \cdot 300 = 8 \cdot 12 = 96 \text{ (z}$$

Odpowiedź: Po zakupach Kamilowi zostało 96 zł.

III sposób

Kamil na zakup koszulki wydał $\frac{1}{5}$ z 300 złotych, a więc zostało mu $\frac{4}{5}$ z 300 złotych.

Obliczymy kwotę pozostałą po zakupie koszulki:

$$\frac{4}{5} \cdot 300 = 240 \text{ (z}$$

Na zakup torby Kamil wydał $\frac{3}{5}$ kwoty, która została po zakupie koszulki, a więc po zakupach zostało $\frac{2}{5}$ tej kwoty:

$$\frac{2}{5} \cdot 240 = 96 \text{ (z}$$

Odpowiedź: Po zakupach Kamilowi zostało 96 zł.

IV sposób

Kwota, którą otrzymał Kamil: 300 złotych.

Kwota, którą Kamil wydał na koszulkę: $\frac{1}{5} \cdot 300$ złotych.

Kwota, którą Kamil wydał na torbę: $\frac{3}{5} \cdot \left[300 - \left(\frac{1}{5} \cdot 300\right)\right]$.

Zapiszemy wyrażenie arytmetyczne prowadzące do obliczenia kwoty, która została Kamilowi po zakupach:

$$300 - \left(\frac{1}{5} \cdot 300\right) - \frac{3}{5} \cdot \left[300 - \left(\frac{1}{5} \cdot 300\right)\right]$$

Obliczymy, ile złotych zostało Kamilowi po zakupach:

$$300 - 60 - \frac{3}{5} \cdot 240 = 240 - 144 = 96 \text{ (z}$$

Odpowiedź: Po zakupach Kamilowi zostało 96 zł.

Zadanie 18. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Klasy IV-VI
reprezentacji.	XII. Obliczenia praktyczne. Uczeń:
2. Dobieranie modelu matematycznego	9) w sytuacji praktycznej oblicza:
do prostej sytuacji oraz budowanie go	[] prędkość przy danej drodze i czasie, czas
w różnych kontekstach, także	przy danej drodze i prędkości oraz stosuje
w kontekście praktycznym.	jednostki prędkości [].

Zasady oceniania

2 punkty - pełne rozwiązanie

- poprawny sposób obliczenia czasów przejazdu skutera i roweru na podanej trasie, porównanie ich, prawidłowe obliczenia, prawidłowe wyniki liczbowe zgodne z zastosowaną jednostką czasu (np. 22 minuty, 25 minut) oraz sformułowanie poprawnego wniosku LUB
- poprawny sposób obliczenia prędkości skutera, porównanie prędkości przejazdu skutera i roweru na podanej trasie, prawidłowe wyniki liczbowe zgodne z zastosowaną jednostką prędkości (18 km/h; 20 5/11 km/h) oraz sformułowanie poprawnego wniosku.

1 punkt

 poprawny sposób obliczenia czasu przejazdu roweru, czyli zastosowanie poprawnego związku między prędkością a drogą, np. zapisanie

$$t_{roweru} = \frac{7.5 \text{ km}}{18 \frac{\text{km}}{\text{h}}}$$
 lub zapisy równoważne

LUB

 zapisanie poprawnej zależności między prędkością skutera a drogą i czasem oraz poprawny sposób obliczenia czasu przejazdu skutera, np. zapisanie

$$v_{skutera}=rac{7,5 \; \mathrm{km}}{t_{skutera}}$$
 oraz $t_{skutera}=9:06-8:44$ lub zapisy równoważne, LUB

 poprawny sposób obliczenia czasu potrzebnego na przejazd rowerem trasy o długości 7,5 km, gdyby Paweł jechał ze stałą prędkością, czyli zastosowanie poprawnego związku między czasami potrzebnymi na przebycie dróg o długości 7,5 km oraz 18 km, z zastosowaniem własności wielkości proporcjonalnych, np. zapisanie

$$\frac{t}{60 \text{ min}} = \frac{7.5 \text{ km}}{18 \text{ km}}$$
 albo $\frac{t}{7.5 \text{ km}} = \frac{60 \text{ min}}{18 \text{ km}}$ lub zapisy równoważne.

0 punktów

rozwiązanie błędne albo brak rozwiązania.

Przykładowe rozwiązania ocenione na 2 punkty

I sposób

Czas przejazdu Kuby na skuterze od 8:44 do 9:06 to 22 minuty.

Oznaczymy czas przejazdu roweru jako t_{roweru} .

Obliczymy czas przejazdu Pawła na rowerze:

$$t_{roweru} = \frac{7.5 \text{ km}}{18 \text{ km}} = \frac{75}{180} \text{h} = \frac{25}{60} \text{h} = 25 \text{ minut}$$

Porównamy czas przejazdu Pawła na rowerze i czas przejazdu Kuby na skuterze:

25 minut > 22 minut

Odpowiedź: Kuba przejechał tę trasę w krótszym czasie.

II sposób

Czas przejazdu Kuby na skuterze od 8:44 do 9:06 to 22 minuty.

Obliczymy czas przejazdu roweru: 1 h = 60 minut, a zatem:

18 km w 60 minut

6 km w 20 minut

3 km w 10 minut

1,5 km w 5 minut

7,5 km w 25 minut

25 minut > 22 minut

Odpowiedź: Kuba przejechał tę trasę w krótszym czasie.

III sposób

Czas przejazdu Kuby na skuterze od $8:44\,$ do $9:06\,$ to $22\,$ minuty.

Obliczymy prędkość skutera. Skorzystamy ze wzoru na prędkość:

$$v = \frac{s}{t}$$
, gdzie:

$$v$$
 – prędkość

$$s = 7.5 \text{ km} - \text{droga}$$

$$t = 22 \text{ minuty} = 22 \cdot \frac{1}{60} h = \frac{11}{30} h - \text{czas}$$

$$v_{skutera} = \frac{7.5 \text{ km}}{\frac{11}{30} \text{h}} = 75 \text{ km} \cdot \frac{3}{11} \text{h} = 20 \frac{5}{11} \frac{\text{km}}{\text{h}}$$

Porównamy prędkość przejazdu Kuby na skuterze i prędkość przejazdu Pawła na rowerze:

$$20\frac{5}{11}\frac{\text{km}}{\text{h}} > 18\frac{\text{km}}{\text{h}}$$

Kuba jechał na skuterze z większą prędkością.

Odpowiedź: Kuba przejechał tę trasę w krótszym czasie.

IV sposób

Długość trasy jest równa 7,5 km.

Czas przejazdu Kuby na skuterze od 8:44 do 9:06 to 22 minuty.

Prędkość roweru elektrycznego jest równa $18\frac{\mathrm{km}}{\mathrm{h}}$

$$1 h = 60 minut$$

Obliczymy, w jakim czasie Paweł przejechał 7,5 km, jadąc z tą samą prędkością $18 \frac{\mathrm{km}}{\mathrm{h}}$.

18 km w 60 minut

7,5 km w x minut

$$x = \frac{60 \text{ min} \cdot 7,5 \text{ km}}{18 \text{ km}}$$

$$x = 25 \, \text{min}$$

Porównamy czas przejazdu Pawła na rowerze i czas przejazdu Kuby na skuterze:

25 minut > 22 minut

Odpowiedź: Kuba przejechał tę trasę w krótszym czasie.

Zadanie 19. (0-2)

Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Klasy IV-VI
1. Odczytywanie i interpretowanie danych	IV. Ułamki zwykłe i dziesiętne. Uczeń:
przedstawionych w różnej formie oraz ich	7) zaznacza ułamki zwykłe i dziesiętne na osi
przetwarzanie.	liczbowej oraz odczytuje ułamki zwykłe
	i dziesiętne zaznaczone na osi liczbowej.
	V. Działania na ułamkach zwykłych
	i dziesiętnych. Uczeń:
	2) […] mnoży […] ułamki dziesiętne […].

Zasady oceniania

2 punkty - pełne rozwiązanie

poprawny sposób obliczenia iloczynu współrzędnych punktów M i R, prawidłowe obliczenia oraz prawidłowy wynik liczbowy (135).

1 punkt

- poprawny sposób wyznaczenia współrzędnej punktu M LUB
- poprawny sposób wyznaczenia współrzędnej punktu R, LUB
- poprawne ustalenie długości odcinków jednostkowych na obu osiach (2,5 na pierwszej osi *oraz* 2 na drugiej osi).

0 punktów

rozwiązanie błędne albo brak rozwiązania.

Przykładowe rozwiązania ocenione na 2 punkty

I sposób

x – współrzędna punktu M:

$$x = \frac{5}{2} \cdot 9 = 22,5$$

y – współrzędna punktu R:

$$y = \frac{18}{9} \cdot 3 = 6$$

Obliczymy iloczyn liczb $x \cdot y$:

$$x \cdot y = 22.5 \cdot 6 = 135$$

Odpowiedź: Iloczyn liczb $x \cdot y$ jest równy 135.

II sposób

Obliczymy długość odcinka jednostkowego na pierwszej osi:

$$5:2=2.5$$

Obliczymy współrzędną x punktu M:

$$x = 2.5 \cdot 9 = 22.5$$

Obliczymy długość odcinka jednostkowego na drugiej osi:

$$18:9=2$$

Obliczymy współrzędną y punktu R:

$$y = 2 \cdot 3 = 6$$

Obliczymy iloczyn liczb $x \cdot y$:

$$x \cdot y = 22,5 \cdot 6 = 135$$

Odpowiedź: Iloczyn liczb $x \cdot y$ jest równy 135.

Zadanie 20. (0-3)

Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Klasy VII i VIII
3. Stosowanie strategii wynikającej	VIII. Własności figur geometrycznych na
z treści zadania, tworzenie strategii	płaszczyźnie. Uczeń:
rozwiązania problemu, również	6) wykonuje proste obliczenia geometryczne,
w rozwiązaniach wieloetapowych oraz	wykorzystując sumę kątów wewnętrznych
w takich, które wymagają umiejętności	trójkąta i własności trójkątów
łączenia wiedzy z różnych działów	równoramiennych;
matematyki.	7) zna i stosuje w sytuacjach praktycznych
	twierdzenie Pitagorasa (bez twierdzenia
	odwrotnego).

3 punkty - pełne rozwiązanie

poprawny sposób obliczenia pola trójkąta, prawidłowe obliczenia *oraz* prawidłowy wynik liczbowy zgodny z zastosowaną jednostką (60 cm^2) .

2 punkty

 poprawny sposób obliczenia długości boków trójkąta oraz poprawny sposób obliczenia wysokości trójkąta z zastosowaniem twierdzenia Pitagorasa, czyli zapisanie zgodnie z przyjętymi oznaczeniami poprawnej zależności między wysokością trójkąta, połową długości jego podstawy a długością ramienia trójkąta, np.

$$2(x+3) + x = 36$$
 oraz $h^2 + \left(\frac{1}{2}x\right)^2 = (x+3)^2$

gdzie: h jest wysokością trójkąta,

x jest długością podstawy trójkąta,

x + 3 jest długością ramienia trójkąta

(lub zapisy równoważne),

LUB

 poprawny sposób obliczenia pola trójkąta z uwzględnieniem poprawnie obliczonej długości podstawy (10), zgodnie z przyjętymi oznaczeniami, np. zapisanie

$$P_{\Delta} = \frac{10 \cdot h}{2}$$
, gdzie: h jest wysokością trójkąta (lub zapisy równoważne).

1 punkt

 zapisanie poprawnego równania z jedną niewiadomą prowadzącego do obliczenia długości podstawy trójkąta, np.

$$2(x+3) + x = 36$$
 lub zapisy równoważne *LUB*

 zapisanie poprawnego równania z jedną niewiadomą prowadzącego do obliczenia długości ramienia trójkąta, np.

$$2x + x - 3 = 36$$
 lub zapisy równoważne, *LUB*

 zapisanie poprawnych wyrażeń arytmetycznych prowadzących do obliczenia długości jednego z boków trójkąta.

0 punktów

rozwiązanie błędne albo brak rozwiązania.

Uwaga

Nie ocenia się stosowania jednostki.

Przykładowe rozwiązania ocenione na 3 punkty

I sposób

Oznaczymy jako:

x – długość podstawy trójkata

x + 3 – długość ramienia trójkąta

Obliczymy długości boków trójkąta:

$$2(x + 3) + x = 36$$

 $3x = 36 - 6$
 $x = 10$
 $x + 3 = 13$

Obliczymy wysokość trójkąta z twierdzenia Pitagorasa:

$$h^2 + 5^2 = 13^2$$

 $h^2 = 169 - 25 = 144$
 $h = 12$

Obliczymy pole trójkata:

$$P_{\Delta} = \frac{10 \cdot 12}{2} = 60 \text{ (cm}^2)$$

Odpowiedź: Pole trójkąta jest równe 60 cm².

II sposób

Oznaczymy jako:

x – długość ramienia trójkąta

x-3 – długość podstawy trójkąta

Obliczymy długości boków trójkąta:

$$2x + x - 3 = 36$$

$$3x = 36 + 3$$

$$x = 13$$

$$x - 3 = 10$$

Obliczymy wysokość trójkąta z twierdzenia Pitagorasa:

$$h^2 + 5^2 = 13^2$$

$$h^2 = 169 - 25 = 144$$

$$h = 12$$

Obliczymy pole trójkąta:

$$P_{\Delta} = \frac{10 \cdot 12}{2} = 60 \text{ (cm}^2)$$

Odpowiedź: Pole trójkąta jest równe 60 cm².

III sposób

Obliczymy długości boków trójkąta:

$$36 - 6 = 30$$
 (cm)

$$30:3=10$$

10 – długość podstawy trójkata

13 – długość ramienia trójkąta

Obliczymy wysokość trójkąta z twierdzenia Pitagorasa:

$$h^2 + 5^2 = 13^2$$

$$h^2 = 169 - 25 = 144$$

$$h = 12$$

Obliczymy pole trójkąta:

$$P_{\Delta} = \frac{10 \cdot 12}{2} = 60 \text{ (cm}^2\text{)}$$

Odpowiedź: Pole trójkąta jest równe 60 cm².

Zadanie 21. (0-3)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Klasy VII i VIII
reprezentacji.	XI. Geometria przestrzenna. Uczeń:
1. Używanie prostych, dobrze znanych	3) oblicza objętości ostrosłupów i pola
obiektów matematycznych,	powierzchni ostrosłupów prawidłowych [].
interpretowanie pojęć matematycznych	
i operowanie obiektami matematycznymi.	

Zasady oceniania

3 punkty - pełne rozwiązanie

poprawny sposób obliczenia objętości ostrosłupa, prawidłowe obliczenia *oraz* prawidłowy wynik liczbowy zgodny z zastosowaną jednostką objętości (24,5 cm³).

2 punkty

poprawny sposób obliczenia pola podstawy ostrosłupa *oraz* poprawny sposób obliczenia wysokości ostrosłupa.

1 punkt

- poprawny sposób obliczenia pola podstawy ostrosłupa
 LUB
- poprawny sposób obliczenia wysokości ostrosłupa.

0 punktów

rozwiązanie błędne albo brak rozwiązania.

Uwaga

Brak jednostki lub zapisanie niewłaściwej jednostki w wyniku końcowym traktuje się jako błąd rachunkowy.

Przykładowe rozwiązanie ocenione na 3 punkty

Obliczymy pole kwadratu, który jest podstawą ostrosłupa:

$$P = (3.5)^2 = 12.25 \text{ (cm}^2\text{)}$$

Obliczymy wysokość ostrosłupa:

$$H = 4 \cdot 3.5 - 8 = 14 - 8 = 6$$
 (cm)

Obliczymy objętość ostrosłupa:

$$V = \frac{1}{3} \cdot 12,25 \cdot 6 = 24,5 \text{ (cm}^3)$$

Odpowiedź: Objętość ostrosłupa jest równa 24,5 cm³.

