Property stolen and recoverd

```
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
import numpy as np
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import os
for dirname, _, filenames in os.walk('/content/drive/MyDrive/Data visualozation/Crime'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
    /content/drive/MyDrive/Data visualozation/Crime/Auto_theft.csv
     /content/drive/MyDrive/Data visualozation/Crime/Complaints_against_police.csv
     /content/drive/MyDrive/Data visualozation/Crime/Property_stolen_and_recovered.csv
     /content/drive/MyDrive/Data visualozation/Crime/Rape_Victims.csv
     /content/drive/MyDrive/Data visualozation/Crime/Murders.csv
    /content/drive/MyDrive/Data visualozation/Crime/Indian map/India States/Indian_states.prj
     content/drive/MyDrive/Data visualozation/Crime/Indian map/India States/Indian_states.shp/
     /content/drive/MyDrive/Data visualozation/Crime/Indian map/India States/Indian_states.dbf
     /content/drive/MyDrive/Data visualozation/Crime/Indian map/India States/Indian_states.shx
     /content/drive/MyDrive/Data visualozation/Crime/Indian map/India Boundary/India_boundary.shx
     /content/drive/MyDrive/Data visualozation/Crime/India map/India Boundary/India_boundary.prj
    /content/drive/MyDrive/Data visualozation/Crime/India map/India Boundary/India_boundary.shp
     /content/drive/MyDrive/Data\ visualozation/Crime/Indian\ map/India\ Boundary/India\_boundary.dbf
     /content/drive/MyDrive/Data visualozation/Crime/Murged_data/output1.csv
     /content/drive/MyDrive/Data visualozation/Crime/Murged_data/output2.csv
```

property=pd.read_csv("/content/drive/MyDrive/Data visualozation/Crime/Property_stolen_and_recovered.csv")
property

	Area_Name	Year	Group_Name	Sub_Group_Name	Cases_Property_Recovered	Cases_Property_Stolen Va
0	Andaman & Nicobar Islands	2001	Burglary - Property	3. Burglary	27	64
1	Andhra Pradesh	2001	Burglary - Property	3. Burglary	3321	7134
2	Arunachal Pradesh	2001	Burglary - Property	3. Burglary	66	248
3	Assam	2001	Burglary - Property	3. Burglary	539	2423
4	Bihar	2001	Burglary - Property	3. Burglary	367	3231

2444	Tamil Nadu	2010	Total Property	7. Total Property Stolen & Recovered	16125	21509
2445	Tripura	2010	Total Property	7. Total Property Stolen & Recovered	192	879
2446	Uttar Pradesh	2010	Total Property	7. Total Property Stolen & Recovered	9130	35068
2447	Uttarakhand	2010	Total Property	7. Total Property Stolen & Recovered	964	2234
2448	West Benaal	2010	Total Property	7. Total Property Stolen &	4548	23759

import pandas as pd
import matplotlib.pyplot as plt

```
# Group the data by year and calculate the mean of each numerical column
grouped = property.groupby('Year').mean()

# Plot each numerical column in the same plot
grouped.plot(kind='line', subplots=True, figsize=(16, 25))

# Set the plot title and labels
plt.suptitle('Numerical data by year')
plt.xlabel('Year')
plt.ylabel('Year')
# Show the plot
plt.show()
```



```
Uttarakhand
                             70
Madhya Pradesh
                             70
Kerala
                             70
Delhi
                             70
Daman & Diu
                             70
Arunachal Pradesh
                             70
Assam
                             70
Bihar
                             70
Chandigarh
                             70
Chhattisgarh
                             70
Dadra & Nagar Haveli
                             70
West Bengal
                             70
Karnataka
                             70
Goa
                             70
Gujarat
                             70
Haryana
                             70
Himachal Pradesh
                             70
Jammu & Kashmir
                             70
Jharkhand
                             70
Lakshadweep
                             69
Name: Area_Name, dtype: int64
```

Same goes for the Year column

```
property.Year.value_counts()
```

```
2001
        245
2002
        245
2003
        245
2004
        245
2005
        245
2006
        245
2008
        245
2009
        245
2010
        245
        244
```

Name: Year, dtype: int64

property.Group_Name.value_counts()

```
Burglary - Property 350
Criminal Breach of Trust - Property 350
Dacoity - Property 350
Other heads of Property 350
Robbery - Property 350
Theft - Property 350
Total Property 349
Name: Group_Name, dtype: int64
```

Group Name and Sub Group Name have the same number of instances per value type so they can be eliminated

property.Sub_Group_Name.value_counts()

```
3. Burglary 350
5. Criminal Breach of Trust 350
1. Dacoity 350
6. Other Property 350
2. Robbery 350
4. Theft 350
7. Total Property Stolen & Recovered 349
Name: Sub_Group_Name, dtype: int64
```

This groupby function further concretize our notion about Group Name and Sub Group Name

```
a=property.groupby(['Group_Name']).get_group('Robbery - Property')
a.Sub_Group_Name.value_counts()

2. Robbery 350
Name: Sub_Group_Name, dtype: int64
```

Since all the values of Sub Group Name from the Group Name ='Robbery - Property' are '2. Robbery' we can safely delete Sub_Group_Name from the dataset

```
a=property.groupby(['Group_Name']).get_group('Total Property')
a.Sub_Group_Name.value_counts()

7. Total Property Stolen & Recovered 349
```

Name: Sub_Group_Name, dtype: int64

Checked the Group Name and Sub Group Name similarity for all the values of Group Name

#Since Sub_Group_Name is an irrelevant variable as previously proven ,we will use property1 as the base dataset property1=property.drop(['Sub_Group_Name'],axis=1)

Lets group the dataset based on the Area_Name(States) and drop the Year column Adjusting the Plot Size Using Seaborn to plot the Bar Plot Graph for Area_Name and Cases_Property_Stolen Rotating the labels of the graph for better visibility

```
property_bystate=property1.groupby(['Area_Name'],as_index=False).sum()
property_bystate.drop("Year",axis=1,inplace=True)
plt.figure(figsize = (20, 10))
chart=sns.barplot(x=property_bystate.Area_Name,y=property_bystate.Cases_Property_Stolen)
chart.set_xticklabels(chart.get_xticklabels(), rotation=45)
chart
```

<ipython-input-12-dbb5afe8a853>:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy
property_bystate=property1.groupby(['Area_Name'],as_index=False).sum()
<Axes: xlabel='Area_Name', ylabel='Cases_Property_Stolen'>


```
sortbyyear
plt.figure(figsize = (20, 10))
chart=sns.barplot(x=sortbyyear.Year,y=sortbyyear.Cases_Property_Stolen)
chart.set_xticklabels(chart.get_xticklabels(), rotation=45)
chart
```

<ipython-input-13-f655575becb2>:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy
 sortbyyear=property1.groupby(['Year'],as_index=False).sum()

#Value of Property Stolen across the year of all the States

```
plt.figure(figsize = (20, 10))
chart=sns.barplot(x=sortbyyear.Year,y=sortbyyear.Value_of_Property_Stolen)
chart.set_xticklabels(chart.get_xticklabels(), rotation=45)
chart
```


plt.figure(figsize = (20, 10))
chart=sns.barplot(x=property_bystate.Area_Name,y=property_bystate.Value_of_Property_Stolen)
chart.set_xticklabels(chart.get_xticklabels(), rotation=45)

Double-click (or enter) to edit

From the Graph and the crosstab above ,we can see that Maharashtra has the most number of cases of stolen property and the value of the property stolen by a big margin So lets find out more about Maharashtra from the original dataset

```
a=property1.groupby(['Area_Name']).get_group('Maharashtra')
plt.figure(figsize = (20, 10))
chart=sns.barplot(x=a.Year,y=a.Value_of_Property_Stolen)
chart.set_xticklabels(chart.get_xticklabels(), rotation=45)
chart
```



```
a=property1.groupby(['Area_Name']).get_group('Maharashtra')
plt.figure(figsize = (20, 10))
chart=sns.barplot(x=a.Year,y=a.Cases_Property_Stolen)
chart.set_xticklabels(chart.get_xticklabels(), rotation=45)
```


property.groupby(['Group_Name']).get_group('Robbery - Property')

	Area_Name	Year	Group_Name	Sub_Group_Name	Cases_Property_Recovered	Cases_Property_Stolen	Va
1400	Andaman & Nicobar Islands	2001	Robbery - Property	2. Robbery	2	4	
1401	Andhra Pradesh	2001	Robbery - Property	2. Robbery	293	622	
1402	Arunachal Pradesh	2001	Robbery - Property	2. Robbery	30	84	
1403	Assam	2001	Robbery - Property	2. Robbery	146	687	
1404	Bihar	2001	Robbery - Property	2. Robbery	441	2201	
1745	Tamil Nadu	2010	Robbery - Property	2. Robbery	1326	1817	
1746	Tripura	2010	Robbery - Property	2. Robbery	16	63	

Scatter Plot between Cases of Property Recovered and Stolen

sns.scatterplot(x=property_Cases_Property_Recovered,y=property_Cases_Property_Stolen)

```
<Axes: xlabel='Cases_Property_Recovered', ylabel='Cases_Property_Stolen'>
80000 -
```

The following code below gives us a difference of the Cases of Property Recovered from Total Cases of Property Stolen

property_bystate['Difference']=property_bystate["Cases_Property_Stolen"]- property_bystate["Cases_Property_Recovered"]
property_bystate

1	Andhra Pradesh	332510	642822	8320971694	•
2	Arunachal Pradesh	6048	16632	646754238	
3	Assam	54784	245560	1521007674	
4	Bihar	63876	411840	1098784766	- 1
5	Chandigarh	15188	39720	625548682	- 1
6	Chhattisgarh	68912	199712	1932428432	- 1
7	Dadra & Nagar Haveli	1170	2642	225144198	
8	Daman & Diu	534	2056	81535334	- 1
9	Delhi	157858	490694	2777898238	- 1
10	Goa	5884	19788	322047336	- 1
11	Gujarat	166644	534060	6902107076	- 1
12	Haryana	133320	303336	9005055364	- 1
13	Himachal Pradesh	9798	34000	708580140	
14	Jammu & Kashmir	22718	74906	1190983796	
15	Jharkhand	35368	176868	688336780	- 1
16	Karnataka	160806	494968	9012218484	- 1
17	Kerala	73066	221652	3070699020	- 1
18	Lakshadweep	101	342	1591327	- 1
19	Madhya Pradesh	254106	733524	20338284748	
20	Maharashtra	473186	1376814	24278687606	- 1
21	Manipur	656	11584	136829326	- 1
22	Meghalaya	3924	16724	151165908	- 1
23	Mizoram	18896	26892	345128278	- 1
24	Nagaland	2666	10814	227911296	- 1
25	Odisha	104076	224280	2761739566	- 1
26	Puducherry	7274	14236	249050464	- 1
27	Punjab	85530	151182	8637846488	- 1
28	Rajasthan	141114	469468	10094937386	- 1
29	Sikkim	966	3314	40014540	
30	Tamil Nadu	342148	431864	8731172288	
31	Tripura	3326	14480	88223078	
32	Uttar Pradesh	171046	559970	13879052340	
33	Uttarakhand	14562	41530	501626720	

```
import geopandas as gpd
g7 = pd.DataFrame(property.groupby(['Area_Name'])['Cases_Property_Stolen'].sum().reset_index())
g7.columns = ['State/UT','Cases Reported']
g7.replace(to_replace='Arunachal Pradesh',value='Arunanchal Pradesh',inplace=True)
```


Year-wise Value of Property Stolen and Recovered

Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated