1. Nous pouvons améliorer l'estimation de la borne supérieure en évaluant plus précisément la ligne 4.7 (constante c_5).

L'estimation de la complexité de la constance c_5 lors d'un cas défavorable est de $\frac{n^2-n}{2}$. Prenons le cas de n=5, la complexité vaut 10.

Nous allons travailler sur un ensemble d'exemple afin d'avoir une idée de la fonction à trouver lors des cas défavorables donc on prendra un tableau trié dans l'ordre décroissant.

Rappel de l'algorithme de tri par sélection.

```
Algorithme 4 : Tri_selection(A, n)
    Entrées : A : tableau[1..MAX] d'entier ; n :
                entier;
    Sorties: A: tableau[1..MAX] d'entier;
    Données: i, j, ind: entier;
4.1 début
        pour i \leftarrow 1 à n-1 faire
4.2
            ▷ Recherche valeur min.
4.3
            ind \leftarrow i;
4.4
            pour j \leftarrow i + 1 à n faire
4.5
               si (A[j] < A[ind]) alors
 4.6
                \lfloor ind \leftarrow j ;
 4.7
            ▷ Permutation si nécessaire
4.8
            si (ind \neq i) alors
4.9
             swap(A[i], A[ind]);
4.10
```

Avec **n= 5** et ce tableau de valeur.

10	9	8	7	6

ligne		i	j	ind			
4.2	Pour i allant de	Pour i allant de 1 à 4					
4.4		1		1			
4.5	Pour j allant de	2 à 5					
4.6	Vrai		2				
4.7				2			
4.6	Vrai		3				
4.7				3			
4.6	Vrai		4				
4.7				4			
4.6	Vrai		5				
4.7				5			
4.9	Vrai						
4.10		PERMUTATIO	ON case 1 et 5				

Les lignes surlignées correspondent aux itérations entrant dans la ligne 4.7.

Permutation des valeurs de la case 1 et 5, on obtient le tableau suivant :

6	9	8	7	10

ligne		i	j	ind		
4.2	Pour i allant de	Pour i allant de 1 à 4				
4.4		2		2		
4.5	Pour j allant de	Pour j allant de 3 à 5				
4.6	Vrai		3			
4.7				3		
4.6	Vrai		4			
4.7				4		
4.6	Faux		5			
4.7				4		
4.9	Vrai					
4.10		PERMUTATIO	ON case 2 et 4			

Permutation des valeurs de la case 2 et 4, on obtient le tableau suivant :

	6	7	8	9	10
--	---	---	---	---	----

ligne		i	j	ind		
4.2	Pour i allant de	Pour i allant de 1 à 4				
4.4		3		3		
4.5	Pour j allant de	Pour j allant de 4 à 5				
4.6	Faux		3			
4.6	Faux		4			
4.9	Faux					
4.10		PAS DE PER	RMUTATION			

ligne		i	j	ind		
4.2	Pour i allant de	Pour i allant de 1 à 4				
4.4		4		4		
4.5	Pour j allant de	Pour j allant de 5 à 5				
4.6	Faux		3			
4.9	Faux					
4.10		PAS DE PER	RMUTATION			

n=5, nbltération = 6

Avec **n= 3** et ce tableau de valeur.

3 2 1

ligne		i	j	ind		
4.2	Pour i allant de	Pour i allant de 1 à 3				
4.4		1		1		
4.5	Pour j allant de	Pour j allant de 2 à 3				
4.6	Vrai		2			
4.7				2		
4.6	Vrai		3			
4.7				3		
4.9	Vrai					
4.10		PERMUTATIO	ON case 1 et 3			

Permutation des valeurs de la case 1 et 3, on obtient le tableau suivant :

ligne		i	j	ind	
4.2	Pour i allant de 1 à 3				
4.4		2		2	
4.5	Pour j allant de	Pour j allant de 3 à 3			
4.6	Faux		3		
4.7				3	
4.9	Faux				
4.10		PAS DE PER	RMUTATION		

N=3, nbItération = 2

Avec **n= 4** et ce tableau de valeur.

l _		_	_	
1 /1	2	7	l 1	
4	J	<u> </u>		

ligne		i	j	ind			
4.2	Pour i allant de	Pour i allant de 1 à 3					
4.4		1		1			
4.5	Pour j allant de	2 à 4					
4.6	Vrai		2				
4.7				2			
4.6	Vrai		3				
4.7				3			
4.6	Vrai		4				
4.7				4			
4.9	Vrai						
4.10	PERMUTATION case 1 et 4						

Permutation des valeurs de la case 1 et 4, on obtient le tableau suivant :

1	3	2	4
-		_	

ligne		i	j	ind
4.2	Pour i allant de	1 à 3		
4.4		2		2
4.5	Pour j allant de	3 à 4		
4.6	Vrai		3	
4.7				3
4.6	Faux		4	
4.7				3
4.9	Vrai			
4.10	PERMUTATION case 2 et 3			

Permutation des valeurs de la case 2 et 3, on obtient le tableau suivant :

	_	_	
1 1	l ')	3	/
 	<u> </u>	3	4

ligne		i	j	ind		
4.2	Pour i allant de	1 à 3				
4.4		3		3		
4.5	Pour j allant de	Pour j allant de 4 à 4				
4.6	Faux		4			
4.9	Faux					
4.10	PAS DE PERMUTATION					

n=4, nbltération = 4

Avec **n= 7** et ce tableau de valeur.

10	9	8	7	6	5	4

ligne		i	j	ind		
4.2	Pour i allant de 1 à 6					
4.4		1		1		
4.5	Pour j allant de	2 à 7				
4.6	Vrai		2			
4.7				2		
4.6	Vrai		3			
4.7				3		
4.6	Vrai		4			
4.7				4		
4.6	Vrai		5			
4.7				5		
4.6	Vrai		6			
4.7				6		
4.6	Vrai		7			
4.7				7		
4.9	Vrai					
4.10	PERMUTATION case 1 et 7					

Permutation des valeurs de la case 1 et 7, on obtient le tableau suivant :

4	9	8	7	6	5	10

ligne		i	j	ind		
4.2	Pour i allant de 1 à 6					
4.4		2		1		
4.5	Pour j allant de	3 à 7				
4.6	Vrai		3			
4.7				3		
4.6	Vrai		4			
4.7				4		
4.6	Vrai		5			
4.7				5		
4.6	Vrai		6			
4.7				6		
4.6	Faux		7			
4.7				7		
4.9	Vrai					
4.10	PERMUTATION case 2 et 6					

Permutation des valeurs de la case 2 et 6, on obtient le tableau suivant :

4	5	8	7	6	9	10

ligne		i	j	ind			
4.2	Pour i allant de	Pour i allant de 1 à 6					
4.4		3		1			
4.5	Pour j allant de	4 à 7					
4.6	Vrai		4				
4.7				4			
4.6	Vrai		5				
4.7				5			
4.6	Faux		6				
4.7				6			
4.6	Faux		7				
4.7				7			
4.9	Vrai						
4.10	PERMUTATION case 3 et 5						

Permutation des valeurs de la case 3 et 5, on obtient le tableau suivant :

4	5	6	7	8	9	10

Le tableau est trié, il n'y a pas d'autre permutation à réaliser, la suite de l'algorithme ne modifiera pas le nombre d'itérations dans la ligne 4.7

n=7, nbltération = 12

Pour résumer lors des cas défavorables, on a :

n=1 nbltération = 0

n=2 nbltération = 1

n=3 nbltération = 2

n=4 nbltération = 4

n=5 nbltération = 6

n=7 nbltération = 12

Pour rapport à la méthode de calcul, nous en avons déduit d'autres :

n=6 nbltération = 9

n=8 nbltération = 16

n=9 nbltération = 20

Après énormément de recherches, nous sommes arrivés à la formule suivante : $\frac{n^2-n\%2}{4}$. Cela diminue clairement l'estimation de la borne supérieure de c_5 .

2. Comparer avec la version récursive

Il est clair que la version itérative et récursive veulent le même but, c'est ç dire trier un tableau en utilisation la méthode par sélection. L'algorithme de sélection fonctionne sur ce principe :

- Trouver la valeur minimale dans le tableau
 - o II va parcourir le tableau et comparer les valeurs 2 à 2
 - o Si la valeur de i est inférieure à ind, on va affecter la valeur de i à ind.
- Effectuer la permutation
- Et ainsi de suite, jusqu'à n-1

Ainsi, la version itératif et récursif vont effectuer autant d'itération pour l'affectation de i à ind et donc les 2 versions ont la même complexité.