Expectation & Variance

อ.ปรัชญ์ ปิยะวงศ์วิศาล

Probability and Statistics for Engineering @ RMUTL อ.ปรัชญ์

Topics

- Expectation
 - Law of Large Numbers
 - Properties of E[X]
- Variance
 - 2 ways to compute Var(X)
 - Properties of Var(X)
 - Standard Deviation

Probability and Statistics for Engineering @ RMUTL പിഴ്ബ്

Random Variable Review

- Random Variables
- PMF
- Random Sampling
- Function of RV
- CDF

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

Expectation

- E[X] คือ ค่าคาดหมาย (Expected Value/Expectation) ของตัวแปรสุ่ม X เป็นค่าของ X ที่ได้โดยเฉลี่ยจากการชักตัวอย่างซ้ำๆ หลายครั้ง พูดง่ายๆ: E[X] คือค่าเฉลี่ยของ X
- การคำนวณ: หาก X เป็นตัวแปรสุ่ม<u>วิยุต</u> ที่มี PMF เป็น $P_X(x)$ จะได้ว่า

$$E[X] = \sum_{x \in S_X} x \cdot P_X(x)$$

สำคัญมาก

Probability and Statistics for Engineering @ RMUTL പിഴ്ബ്

Expectation

• Ex: เล่นเกมที่มีโอกาสได้รางวัล 3 แบบคือ 1, 2, 4 บาทโดยสุ่ม โดยที่ X เป็นตัวแปรสุ่มที่เป็นเงินที่ได้จากการเล่น 1 ครั้ง หาก X มีการแจกแจงดัง PMF ต่อไปนี้

คำถาม: หากเล่นเกมไป 100,000 ครั้ง จะได้รางวัลโดย เฉลี่ยครั้งละกี่บาท

วิธีที่ 1:

Probability and Statistics for Engineering @ RMUTL a.1990

Expectation

• Ex: เล่นเกมที่มีโอกาสได้รางวัล 3 แบบคือ 1, 2, 4 บาทโดยสุ่ม โดยที่ X เป็นตัวแปรสุ่มที่เป็นเงินที่ได้จากการเล่น 1 ครั้ง หาก X มีการแจกแจงดัง PMF ต่อไปนี้

คำถาม: หากเล่นเกมไป 100,000 ครั้ง จะได้รางวัลโดย เฉลี่ยครั้งละกี่บาท

วิธีที่ 2:

Probability and Statistics for Engineering @ RMUTL വിഷ്ണൂ

Exercise – วิธีหา E[X] แบบคร่าวๆ โดยดูจากภาพกราฟ PMF

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

Law of Large Numbers

ค่าเฉลี่ยของการซักตัวอย่างตัวแปรสุ่ม ${\sf X}$ จะต้องลู่เข้าสู่ ${\sf E}[X]$ หากจำนวนครั้งที่ทำ $n o\infty$

Probability and Statistics for Engineering @ RMUTL പിഷ്ബ്

Properties of E[X] – Part 1

- E[g(X)] =
 - າະวัง:
- E[a] =
- E[aX] =
- E[aX + b] =

Probability and Statistics for Engineering @ RMUTL പിഷ്ബ്

Properties of E[X] – Part 2

- E[X + Y] =
- E[E[X]] =
- E[X E[X]] =

Probability and Statistics for Engineering @ RMUTL പിഴ്ബ്

Variance

• Var(X) คือ ค่าความแปรปรวน (Variance) ของตัวแปรสุ่ม X เป็นซึ่งบ่งบอกถึงการกระจายตัวมาก/น้อยของข้อมูล

Dataset
1
Dataset
2

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

Variance

• นิยาม:
$$Var(X) = E[(X - E[X])^2]$$

• ทำความเข้าใจสูตร

Probability and Statistics for Engineering @ RMUTL อ.ปรัชญ์

Variance

• วิธีคำนวณ

(1)
$$Var(X) = E[(X - E[X])^2]$$

(2)
$$Var(X) = E[X^2] - E[X]^2$$

• พิสูจน์ (2):

Probability and Statistics for Engineering @ RMUTL อ.ปรัชญ์

Variance

ullet หาก ${\sf X}$ เป็นตัวแปรสุ่ม<u>วิยุต</u> ที่มี ${\sf PMF}$ เป็น $P_X(x)$ จะได้ว่า

$$Var(X) =$$

Probability and Statistics for Engineering @ RMUTL പഴ്ചറ്റി

Exercise

• กำหนดให้ตัวแปรสุ่ม X มี PMF ดังตาราง จงคำนวณหา Var(X)

x	1	2	3	4
$P_X(x)$	0.2	0.4	0.3	0.1

วิธีที่ 1

Probability and Statistics for Engineering @ RMUTL ช.ปรัชญ์

Exercise

• กำหนดให้ตัวแปรสุ่ม X มี PMF ดังตาราง จงคำนวณหา Var(X)

х	1	2	3	4
$P_X(x)$	0.2	0.4	0.3	0.1

• วิธีที่ 2

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

Properties of Var(X)

- $Var(X) \ge 0$
- Var(a) =
- Var(aX) =
- Var(aX + b) =
- ระวัง: Var(X + Y) =

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

Standard Deviation

- ค่าเบี่ยงเบนมาตรฐาน (Standard Deviation: S.D. หรือ σ_X) สามารถบ่งบอกถึงการกระจายตัวมาก/น้อยของข้อมูลได้เช่นเดียวกันกับ variance
- ullet ความสัมพันธ์ระหว่าง $\sigma_{\!X}$ กับ Var(X) :

$$\sigma_X^2 = Var(X)$$

$$\sigma_X = \sqrt{Var(X)}$$

• ค่า S.D. จะมีประโยชน์ชัดขึ้นเมื่อเราเรียนถึงเรื่อง Normal Distribution

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

More Expectation Exercise

- ขับรถจากเมือง A ไป B ซึ่งมีระยะทาง 400 km โดยเลือกความเร็วรถโดยสุ่มไม่ 1 km/hr ก็ 200 km/hr ด้วยความน่าจะเป็นเท่าๆ กัน เมื่อเลือกแล้วก็จะขับด้วยความเร็วคงที่ตลอดทาง ให้ V คือตัวแปรสุ่มที่เป็นความเร็วของรถ และ T เป็นเวลาที่ใช้ในการเดินทาง จงหา:
 - 1. E[V]
 - 2. E[T]

Probability and Statistics for Engineering @ RMUTL പിഷ്ടൂ

More Expectation Exercise

- ขับรถจากเมือง A ไป B ซึ่งมีระยะทาง 400 km โดยเลือกความเร็วรถโดยสุ่มไม่ 1 km/hr ก็ 200 km/hr ด้วยความน่าจะเป็นเท่าๆ กัน เมื่อเลือกแล้วก็จะขับด้วยความเร็วคงที่ตลอดทาง ให้ V คือตัวแปรสุ่มที่เป็นความเร็วของรถ และ T เป็นเวลาที่ใช้ในการเดินทาง จงหา:
 - 3. E[TV]

Probability and Statistics for Engineering @ RMUTL പിഴ്എ