

Royal Institute of Technology

MACHINE LEARNING 2 - THE EM ALGORITHM CONT.

LAST LECTURE

- * Slicing
- Sampling
- K-means (inspiration)
- **★** EM for GMM

$$p(Z_t = k, Z_{t+1} = l | x_{1:T})$$

THIS LECTURE

- ★ EM algorithm for GMM
- ★ Baum-Welch EM algorithm for training an HMM
- ★ Intuitive derivation of EM

RELATIONS BETWEEN LOG-LIKELIHOODS AND Q-TERMS

Q-term or expected complete log-likelihood (ECLL)

$$Q(\theta, \theta^{i}) = \sum_{n} E_{p(Z_{n}|x_{n}, \theta^{i})} \left[l(\theta; Z_{n}, x_{n}) \right]$$

log-likelihood

Theorem: by increasing the ECLL (Q-term), we increase the likelihood.

The ECLL may not increase in every step!

EM-ALGORITHM IN GENERAL

- E-step: compute $E_{p(Z_n|x_n,\theta^i)}\left[l(\theta;Z_n,x_n)\right]$
- M-Step:

$$\theta^{i} = \operatorname{argmax}_{\theta} \sum_{n} E_{p(Z_{n}|x_{n},\theta^{i})} \left[l(\theta; Z_{n}, x_{n}) \right]$$

Stop when solution or likelihood hardly change otherwise repeat

- ★ Starting points
- ★ Number of starting points
- ★ Sieving starting points
- ★ The competition
 - The first iterations of EM show huge improvement in the likelihood. These are then followed by many iterations that slowly increase the likelihood. Conjugate gradient shows the opposite behaviour.

PRACTICAL ISSUES

GAUSSIAN MIXTURE MODEL

$$\mathcal{D} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_N)$$
 Each a vector

$$p(Z=c)=\pi_c$$

$$p(X|Z=c) = \mathcal{N}(X|\mu_c, \sigma_c)$$

$$\boldsymbol{\theta}_c = (\boldsymbol{\mu}_c, \sigma_c)$$

z_n is red with probability 1/2, green with probability 3/10, blue with probability 1/5

The three gaussian distributions in our mixture

z_n is generated as above

x_n is generated from the Gaussian indicated by z_n

We get x_1, \dots, x_N

GMM EM-ALGORITHM

- E-step: compute $r_{nc} = p(Z_n = c|x_n, \theta^i)$
- M-Step: maximize (1) mixture coefficients and (2) each

$$\sum_{n} r_{nc} \log \frac{1}{\sqrt{2\pi\sigma_c^2}} \exp\left(-\frac{1}{2\sigma_c^2} (x_n - \mu_c)^2\right)$$

by setting

$$\mu_c = \frac{\sum_n r_{nc} x_n}{r_c} \qquad \text{and} \qquad \sigma_c^2 = \frac{1}{\tau_c^2} = \sum_n r_{nc} (x_n - \mu_c)^2 / r_c$$

- set $\theta^{i+1} = \theta$
- Stop when solution or likelihood hardly change otherwise repeat

X X . . . X A G - - C bat A - A G - C rat A G - A A cat - - A A A C gnat A G - - C goat 1 2 . . . 3

- Probability of data: $p(x_{1:T})$
- Viterbi (MAP) argmax $p(z_{1:T}|x_{1:T})$
- Posterior samples:

 $\sim p(Z_{1:T}|X_{1:T})$

- Parameters: given D & struct.
- Structure and param.: given D

Given observable (emissions) Rolls: and also given structure Bia sed/loaded learn probabilities

BAUM-WELCH: LEARNING HMM PARAMETERS

- ★ Starts in the state z₁
- ★ When in state z_t
 - outputs $p(x_t|z_t)$

 B_{x_t,z_t}

• moves to $p(z_{t+1}|z_t)$

 A_{z_{t+1},z_t}

★ Stops after a fixed number of steps or when reaching a stop step

The parameters we now want to learn

LEARNING TRANSITION AND EMISSION PARAMETERS - FULLY OBSERVED DATA

- Parameters
 - transition $A_{lk} = p(Z_t = l | Z_{t-1} = k)$
 - emission $B_{sk} = p(X_t = s | Z_t = k)$
- ⋆ Data

$$\mathcal{D} = \{(x_{1:T}^1, z_{1:T+1}^1), \dots, (x_{1:T}^N, z_{1:T+1}^N)\}$$

USEFUL INFORMATION THEORY CONCEPTS

Entropy

$$H(p) = -\int p(x)\log p(x)dx$$

 $\bigotimes_{\mathbf{H}} 0.5$ 0 0 0 0.5 $\Pr(X = 1)$

Use Kullback-Leibler (KL) "distance"

$$KL(p \mid \mid q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$

$$\log p(X | \theta^i) = \mathcal{L}(q(Z), \theta^i) + \mathrm{KL}(q(Z) | | p(Z | X, \theta^i))$$

$$\log p(X | \theta^i) = \mathcal{L}(q(Z), \theta^i) + \mathrm{KL}(q(Z) | | p(Z | X, \theta^i))$$

$$\log p(X | \theta^i) = \mathcal{L}(q(Z), \theta^i) + \mathrm{KL}(q(Z) | | p(Z | X, \theta^i))$$

 $\log p(X | \theta^i) = \mathcal{L}(q(Z), \theta^i) + \mathrm{KL}(q(Z) | | p(Z | X, \theta^i))$

$$\log p(X | \theta^i) = \mathcal{L}(q(Z), \theta^i) + \mathrm{KL}(q(Z) | | p(Z | X, \theta^i))$$

$$\log p(X | \theta^i) = \mathcal{L}(q(Z), \theta^i) + \mathrm{KL}(q(Z) | | p(Z | X, \theta^i))$$

$$q(z) = p(Z|X, \theta^i) \text{ makes } become 0$$

Hardwire θ^i in q(Z)

 $\log p(X | \theta^i) = \mathcal{L}(q(Z), \theta^i)$

$$\mathcal{L}(q(Z), \theta^i) \stackrel{\blacktriangleleft}{q(Z) = p(Z|X, \theta^i)}$$

$$\log p(X | \theta^i) = \mathcal{L}(q(Z), \theta^i)$$

For any θ ,

 $\log p(X|\theta) = \mathcal{L}(q(Z), \theta) + \text{KL}(q(Z)||p(Z|X, \theta))$

$$\log p(X | \theta^i) = \mathcal{L}(q(Z), \theta^i)$$

For
$$\max \theta \wedge I \leftarrow \wedge I$$

$$\log p(X|\theta) = \mathcal{L}(q(Z), \theta) + \mathrm{KL}(q(Z)||p(Z|X, \theta))$$

Depends on
$$q(z)$$

$$\mathcal{L}(q(Z),\theta) = E_{q(Z)}[\log \frac{p(X,Z|\theta)}{q(Z)}] = E_{q(Z)}[\log p(X,Z|\theta)] + C$$

Depends on
$$q(z)$$

$$\mathcal{L}(q(Z),\theta) = E_{q(Z)}[\log \frac{p(X,Z|\theta)}{q(Z)}] = E_{q(Z)}[\log p(X,Z|\theta)] + C$$

- * Initialize θ^0
- Iterate
 - Min KL by setting $q(Z) = p(Z \mid x, \theta^i)$ so $\log p(x \mid \theta^i) = \mathcal{L}(q(Z), \theta^i)$
 - Max $\mathscr{L}(q(Z),\theta)$ w.r.t the θ , notice θ^i is "locked" in q(Z), i.e., ECLL
 - * $p(x \mid \theta) > p(x \mid \theta^i)$ and KL may increase in the eq for this new θ
 - Set θ^{i+1} to θ