Homework 9

Study Sections 3.3 - 3.5 and 4.4.

- 1. Carry out substitution while avoiding variable capture. For instance, when you compute $\phi\theta$ for $\phi = \exists x(x \doteq y)$ and $\theta = [s(x)/y]$, rename ϕ to $\phi' = \exists z(z \doteq y)$ and then compute $\phi'\theta$.
 - (1) $(x \doteq x)[x/x]$
 - $(2) \ (x \doteq x)[y/x]$
 - (3) $(z \doteq 0)[f(x,y)/y]$
 - (4) $(\exists x(y \doteq x))[f(0,y)/y]$
 - (5) $(\exists w(f(w,x) \doteq 0))[f(x,y)/z]$
 - (6) $(\forall w(f(x,z) \doteq 0))[f(x,w)/z]$
 - (7) $(\forall w(f(x,z) \doteq 0) \land \exists y(z \doteq x))[f(x,y)/z]$
 - (8) $(\forall u(u \doteq v) \rightarrow \forall z(z \doteq y))[f(x,y)/z]$
- 2. For each formula, compute a logically equivalent prenex normal form, and then convert it into a satisfiability equivalent Skolem normal form via Skolemization.
 - (1) $\forall x P(x) \leftrightarrow \exists x Q(x)$
 - (2) $\neg \forall x \mathsf{P}(x,y) \lor \forall x \mathsf{R}(x,y)$
 - (3) $\forall x (P(x) \rightarrow \neg \exists y R(x, y))$
 - (4) $\exists x \forall y \mathsf{P}(x,y) \land \forall y \exists x \mathsf{P}(y,x)$
 - (5) $\neg(\forall x P(x) \lor \exists y \neg Q(y)) \lor (\forall z P(z) \lor \exists w \neg Q(w))$
 - (6) $\neg \forall x (P(x) \lor \exists y \neg Q(y)) \lor (\forall z P(z) \lor \exists w \neg Q(w))$
 - (7) $\neg ((\neg \forall x \mathsf{P}(x) \land \forall x \mathsf{Q}(x)) \land (\exists x \mathsf{R}(x) \to \forall x \mathsf{S}(x)))$
 - (8) $\neg(\exists x P(x,y) \land (\forall y Q(y) \rightarrow P(x,x))) \rightarrow \forall x \exists y R(x,y)$
 - (9) $((\forall x P(x) \to \exists y Q(x,y)) \to Q(x,x)) \to \forall x \exists y R(x,y)$
 - (10) $\neg \forall x \neg \forall y \neg \forall z P(x, y) \lor \neg \exists x \neg \exists y (\neg \exists z Q(x, y, z) \rightarrow R(x, y))$