MPI scatter

Paolo Burgio paolo.burgio@unimore.it

MPI_Scatter

- > Takes an array of elements and distributes the element in the order of processor rank
- > Collective one-to-many

MPI_Scatter

mpi.h

```
/* Takes an array of elements and distributes the element in the
order of processor rank */

MPI_Scatter(
    void* send_data,
    int send_count,
    MPI_Datatype send_datatype,
    void* recv_data,
    int recv_count,
    MPI_Datatype recv_datatype,
    int root,
    MPI_Comm communicator)
```

Parameters

- > In/out buf => send_data, recv_data
- > Number of elements => send_count, recv_count
- > Data type (for size) => send_datatype, recv_datatype
- > Sender, context => root, communicator

How to run the examples

> Download the Code/MPI folder from the course website

Compile

> \$ mpicc code.c -o code

Run

\$ mpirun -np <NUM> ./code

References

- > "Calcolo parallelo" website
 - http://hipert.unimore.it/people/paolob/pub/Calcolo_Parallelo/
- > My contacts
 - paolo.burgio@unimore.it
 - http://hipert.mat.unimore.it/people/paolob/
- > Useful links
 - https://mpitutorial.com/

- > A "small blog"
 - http://www.google.com