

1 Rappels de 1G

1.1 Fonction dérivée

Définition : dérivabilité en un point

Soit f une fonction définie sur un intervalle I.

Si pour $a \in I$:

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = l$$

avec l un réel, alors f est **dérivable** en a et f'(a) = l : l est le **nombre dérivé** de f en a.

Définition

On dit que la fonction f est dérivable sur un intervalle I lorsqu'elle est dérivable en tout nombre x de cet intervalle et on note f' la fonction qui a tout nombre x de cet intervalle associe le nombre dérivée de f en x. Cette fonction s'appelle la **fonction dérivée** de f.

Propriétés

Les fonctions dérivées des fonctions usuelles sont données par le tableau suivant :

Fonction f	définie sur	Dérivée f'	définie sur
f(x) = k	\mathbb{R}	f'(x) = 0	\mathbb{R}
f(x) = mx + p	\mathbb{R}	f'(x) = m	\mathbb{R}
$f(x) = x^n, n \in \mathbb{N}^*$	\mathbb{R}	$f'(x) = nx^{n-1}$	\mathbb{R}
$f(x) = \frac{1}{x}$	ℝ*	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*
$f(x) = \frac{1}{x^n}, n \in \mathbb{N}^*$	\mathbb{R}^*	$f'(x) = -\frac{n}{x^{n+1}}$	\mathbb{R}^*
$f(x) = \sqrt{x}$	$\mathbb{R}^+ = [0; +\infty[$	$f'(x) = \frac{1}{2\sqrt{x}}$	$\mathbb{R}^{+*}=]0;+\infty[$
$f(x) = e^x$	\mathbb{R}	$f'(x) = e^x$	\mathbb{R}
$f(x) = e^{kx}, k \in \mathbb{R}$	\mathbb{R}	$f'(x) = ke^{kx}$	\mathbb{R}

1.2 Opérations sur les fonctions

Propriétés

Soient u et v deux fonctions définies et dérivables sur un même intervalle I:

Fonction	Fonction dérivée
ku avec $k \in \mathbb{R}$	ku'
u + v	u' + v'
$u \times v$	$u' \times v + u \times v'$
$\frac{1}{u}$ avec $u(x) \neq 0$	$-\frac{u'}{u^2}$
$\frac{u}{v}$ avec $v(x) \neq 0$	$\frac{u'v-uv'}{v^2}$

Propriétés

Soit f une fonction définie et dérivable sur un intervalle \overline{I} , \overline{a} et \overline{b} deux réels et J l'ensemble des réels tels que $ax + b \in J$. Alors la fonction g(x) = f(ax + b) est définie set dérivable sur J et :

$$g'(x) = af'(ax + b)$$

1.3 Variation d'une fonction

Propriétés

Soit f une fonction définie et dérivable sur un intervalle \overline{I} et f' sa fonction dérivée :

- $f'(x) \ge 0$ pour tout $x \in I \Leftrightarrow f$ est croissante sur I.
- $f'(x) \le 0$ pour tout $x \in I \Leftrightarrow f$ est décroissante sur I.
- f'(x) = 0 pour tout $x \in I \Leftrightarrow f$ est constante sur I.

Propriétés

Soit f une fonction définie et dérivable sur un intervalle \overline{I} et f' sa fonction dérivée.

Si f'(x) > 0 pour tout $x \in I$ (respectivement f'(x) < 0), alors f est strictement croissante sur I (respectivement strictement décroissante)

Propriétés

Soit f une fonction définie et dérivable sur un intervalle \overline{I} contenant \overline{a} et f' sa fonction dérivée. La fonction f' s'annule et change de signe en $a \Leftrightarrow f$ admet un extremum local en a.

1.4 Equation de la tangente en x = a

Propriétés

Soit f une fonction définie et dérivable sur un intervalle \overline{I} contenant \overline{a} et f' sa fonction dérivée.

La tangente à la courbe $\mathscr C$ représentant f au point A est la meilleure approximation de la courbe par une droite au point A. Cette droite a pour coefficient directeur f'(a) et passe par A, son équation réduite est donc :

$$y = f'(a)(x - a) + f(a)$$

2 Dérivées d'une fonction composée

Définition

Soit une fonction u définie sur un intervalle I et prenant ses valeurs dans un intervalle J.

Soit une fonction v définie sur un intervalle K tel que $J \subset K$.

On appelle fonction composée de u par v la fonction notée $v \circ u$ définie sur l'intervalle I par :

$$(v \circ u)(x) = v(u(x))$$

Propriétés

Soit u une fonction définie et dérivable sur un intervalle \overline{I} et f une fonction définie et dérivable sur l'intervalle u(I). La fonction g(x) = f(u(x)) est définie et dérivable sur I et :

$$g'(x) = u'(x)f'(u(x))$$

Exemple 1 Calculer la dérivée des fonctions composées suivantes :

1.
$$f(x) = \sqrt{x-3}$$
.

La fonction $x \to \sqrt{x-3}$ est la composée de deux fonctions :

$$f(x) = (u \circ v)(x)$$

$$v(x) = x - 3 \quad v'(x) = 1$$

$$u(x) = \sqrt{x} \quad u'(x) = \frac{1}{2\sqrt{x}}$$

$$f'(x) = v'(x) \times u'(v(x))$$

$$= 1 \times \frac{1}{2\sqrt{x - 3}}$$

$$= \frac{1}{2\sqrt{x - 3}}$$

2.
$$f(x) = v \circ u$$
 et $g(x) = u \circ v$ avec :

$$u(x) = \frac{1}{x}$$
$$v(x) = \sqrt{x}$$

On a:

$$u'(x) = -\frac{1}{x^2}$$

$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$f'(x) = u'(x) \times v'(u(x)) = -\frac{1}{x^2} \times \frac{1}{2\sqrt{\frac{1}{x}}} = -\frac{1}{2x^{\frac{3}{2}}}$$

$$g'(x) = v'(x) \times u'(v(x)) = \frac{1}{2\sqrt{x}} \times \left(-\frac{1}{\sqrt{x^2}}\right) = -\frac{1}{2x^{\frac{3}{2}}}$$

3.
$$f(x) = v \circ u \text{ et } g(x) = u \circ v \text{ avec}$$
:

$$u(x) = x^2 + x$$
$$v(x) = \frac{x}{x+1}$$

On a:

$$u'(x) = 2x + 1$$

$$v'(x) = \left(\frac{x}{x+1}\right)' = \frac{x' \times (x+1) - x \times (x+1)'}{(x+1)^2} = \frac{(x+1) - x}{(x+1)^2} = \frac{1}{(x+1)^2}$$

$$f'(x) = u'(x) \times v'(u(x)) = (2x+1) \times \frac{1}{(x^2+x)^2}$$

$$g'(x) = v'(x) \times u'(v(x)) = \frac{1}{(x+1)^2} \times \left(2\frac{x}{x+1} + 1\right)$$

3

4. $f(x) = e^{x^2 + 1}$.

La fonction $x \to e^{x^2+1}$ est la composée de deux fonctions :

$$f(x) = (u \circ v)(x)$$

$$v(x) = x^2 + 1 \quad v'(x) = 2x$$

$$u(x) = e^x \quad u'(x) = e^x$$

$$f'(x) = v'(x) \times u'(v(x))$$

$$= 2xe^{x^2 + 1}$$

2	7		Cas particuliers		
		Fonction <i>f</i>	définie sur	Dérivée f'	définie sur
		\sqrt{u}	$u(x) \ge 0$	$\frac{u'}{2\sqrt{u}}$	u(x) > 0
		u^n	\mathbb{R} si $n \in \mathbb{N}^*$	$nu'(x)u^{n-1}$	R
		$u^{-n} = \frac{1}{u^n}$	$u(x) \neq 0 \text{ si } n \in \mathbb{N}^*$	$-nu'(x)u(x)^{-n-1} = \frac{-nu'(x)}{u^{n+1}}$	$u(x) \neq 0$
		$f(x) = \rho^{\mathcal{U}}$	R	$f'(x) = u'e^{u}$	IR.

Exemple 2 Déterminer la dérivée des fonctions définies par :

$$f(x) = \sqrt{3x^2 + 4x - 1}$$
$$g(x) = (2x^2 + 3x - 3)^4$$
$$h(x) = 2e^{\frac{1}{x}}$$

$$f(x) = (u \circ v)(x)$$

$$u(x) = \sqrt{x} \quad u'(x) = \frac{1}{2\sqrt{x}}$$

$$v(x) = 3x^2 + 4x - 1 \quad v'(x) = 6x + 4$$

$$f'(x) = v'(x) \times u'(v(x))$$

$$= (6x + 4) \times \frac{1}{2\sqrt{3x^2 + 4x - 1}}$$

$$= \frac{3x + 2}{\sqrt{3x^2 + 4x - 1}}$$

$$g(x) = (m \circ n)(x)$$

$$m(x) = x^4 \quad m'(x) = 4x^3$$

$$n(x) = 2x^2 + 3x - 3 \quad n'(x) = 4x + 3$$

$$g'(x) = n'(x) \times m'(n(x))$$

$$= (4x + 3) \times 4 \times (2x^2 + 3x - 3)^3$$

$$= 4(4x + 3)(2x^2 + 3x - 3)^3$$

$$h(x) = (a \circ b)(x)$$

$$a(x) = 2e^x \quad a'(x) = 2e^x$$

$$b(x) = \frac{1}{x} \quad b'(x) = -\frac{1}{x^2}$$

$$h'(x) = b'(x) \times a'(b(x))$$

$$= -\frac{1}{x^2} \times 2e^{\frac{1}{x}}$$

$$= -\frac{2e^{\frac{1}{x}}}{x^2}$$

3 Etude d'une fonction composée

Exemple 3 Soit $f(x) = \sqrt{\frac{2x}{3x+1}}$ et \mathscr{C} sa courbe représentative.

1. Déterminer l'ensemble de définition de f. La fonction f est la composé de deux fonctions :

$$f(x) = (u \circ v)$$

$$u(x) = \sqrt{x} \quad u'(x) = \frac{1}{2\sqrt{x}}$$

$$v(x) = \frac{2x}{3x+1} \quad v'(x) = \left(\frac{2x}{3x+1}\right)' = \frac{(2x)' \times (3x+1) - 2x \times (3x+1)'}{(3x+1)^2} = \frac{6x+2-6x}{(3x+1)^2} = \frac{2}{(3x+1)^2}$$

La fonction u est définie pour $x \ge 0$ et dérivable pour x > 0 : la fonction f est donc définie pour $\frac{2x}{3x+1} \ge 0$, il est nécessaire de faire une tableau de signes :

х	-∞	$-\frac{1}{3}$	0	+∞
2 <i>x</i>		-	0	+
3x+1	_	Ó		+
v(x)	+		- 0	+
f(x)	+		P	+

Finalement, l'ensemble de définition de f est $]-\infty; -\frac{1}{3}[\cup[0;+\infty[$ et son ensemble de dérivation est $]-\infty; -\frac{1}{3}[\cup]0; +\infty[$

2. Étudier les limites de f au bornes de son ensemble de définition et en déduire les équations des asymptotes à la courbe \mathscr{C} . On doit déterminer les limites en $-\infty$, $-\frac{1}{3}$, 0 et $+\infty$.

$$\lim_{x \to +\infty} \frac{2x}{3x+1} \text{ est une FI du type } \frac{+\infty}{+\infty} \text{ on doit factoriser pour lever l'indétermination}$$

$$\lim_{x \to +\infty} \frac{2x}{3x+1} = \lim_{x \to +\infty} \frac{2x}{x\left(3+\frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{2}{3+\frac{1}{x}} = \frac{2}{3}$$

La limite de f en $+\infty$ est donc $\sqrt{\frac{2}{3}}$ par composition de limites : on en déduit alors l'existence d'une asymptote d'équation $y = \sqrt{\frac{2}{3}}$ en $+\infty$ à la courbe $\mathscr C$.

$$\lim_{x \to -\infty} \frac{2x}{3x+1} \text{ est une FI du type } \frac{-\infty}{-\infty} \text{ on doit factoriser pour lever l'indétermination}$$

$$\lim_{x \to -\infty} \frac{2x}{3x+1} = \lim_{x \to -\infty} \frac{2x}{x\left(3+\frac{1}{x}\right)} = \lim_{x \to -\infty} \frac{2}{3+\frac{1}{x}} = \frac{2}{3}$$

La limite de f en $-\infty$ est donc $\sqrt{\frac{2}{3}}$ par composition de limites : on en déduit alors l'existence d'une asymptote d'équation $y = \sqrt{\frac{2}{3}}$ en $-\infty$ à la courbe $\mathscr C$.

$$\lim_{x \to -\frac{1}{3}^{-}} \frac{2x}{3x+1} = \frac{-\frac{2}{3}}{0^{-}} = +\infty$$

La limite à gauche en $-\frac{1}{3}$ de f est $+\infty$: on en déduit alors l'existence d'une asymptote d'équation $x=-\frac{1}{3}$ à la courbe $\mathscr C$.

$$\lim_{x \to 0^+} \frac{2x}{3x+1} = \frac{0}{0+1} = 0$$

La limite à droite en 0 de f est 0

3. Étudier les variations de f.

On doit commencer par calculer la dérivée de f sur son ensemble de dérivation :

$$f'(x) = v'(x) \times u'(v(x)) = \frac{2}{(3x+1)^2} \times \frac{1}{2\sqrt{\frac{2x}{3x+1}}} = \frac{1}{(3x+1)^{\frac{3}{2}}} > 0$$

Par conséquent, la fonction f est croissante sur son ensemble de définition.

4. Tracer les asymptotes à la courbe \mathscr{C} puis la courbe \mathscr{C} .

Exemple 4 Soit $f(x) = xe^{-\frac{x}{2}}$ une fonction définie sur \mathbb{R} .

1. Étudier les limites de f à l'infini.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x e^{-\frac{x}{2}} = \lim_{X \to +\infty} \frac{1}{2} \frac{X}{e^X} = 0 \ par \ comparaison \ de \ limites \ en \ posant \ X = \frac{x}{2}$$

On en déduit une asymptote d'équation y = 0 à la courbe représentant f en $+\infty$.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x e^{-\frac{x}{2}} = \lim_{X \to +\infty} -\frac{1}{2} \frac{X}{e^X} = -\infty \ en \ posant \ X = -\frac{x}{2}$$

2. Calculer la dérivée de f.

On va à la fois utiliser la dérivée d'un produit et la dérivée d'une fonction composée :

$$f'(x) = \left(xe^{-\frac{x}{2}}\right)'$$

$$= x' \times \left(e^{-\frac{x}{2}}\right) + x \times \left(e^{-\frac{x}{2}}\right)'$$

$$= e^{-\frac{x}{2}} + x \times \left(-\frac{x}{2}\right)' e^{-\frac{x}{2}}$$

$$= e^{-\frac{x}{2}} + x \times \left(-\frac{1}{2}\right) e^{-\frac{x}{2}}$$

$$= e^{-\frac{x}{2}} \left(1 - \frac{x}{2}\right)$$

7

3. Dresser le tableau de variations de la fonction f. Pour établir le tableau de variations, il reste à déterminer le signe de f'(x):

$$1 - \frac{x}{2} \ge 0 \Leftrightarrow x \le 2$$

x	-∞		2		+∞
$e^{-\frac{x}{2}}$			+		
$1-\frac{x}{2}$		-	0	+	
f'(x)		-	0	+	
f(x)	+∞		2e ⁻¹		0

4. Tracer la courbe représentative de f.

4 Dérivée seconde

Définition

Soit une fonction f dérivable sur un intervalle I dont la dérivée f' est dérivable sur I. On appelle fonction dérivée seconde de f sur I la dérivée de f' et on note :

$$f''(x) = (f'(x))'$$

8

Exemple 5 On considère la fonction définie sur \mathbb{R} par $f(x) = 2x^3 - 5x^2 + 2x - 7$, on a :

$$f'(x) = 2 \times 3x^2 - 5 \times 2x + 2 = 6x^2 - 10x + 2$$

$$f''(x) = (f'(x))' = (6x^2 - 10x + 2)' = 12x - 10$$

5 Fonctions convexes et fonctions concave

Définition

Une corde est un segment reliant deux points d'une courbe.

Définitions

Soit f une fonction définie sur un intervalle I.

- В La fonction f est concave sur I si, sur l'intervalle [a;b] ⊆ I, sa courbe représentative est entièrement située au-dessus de chacune de ses cordes construites [a;b].

Définitions avec les tangentes

Soit f une fonction définie sur un intervalle \overline{I} .

- ➡ La fonction f est convexe sur I si, sur l'intervalle I, sa courbe représentative est entièrement située au dessus de chacune de ses tangentes.
- La fonction f est concave sur I si, sur l'intervalle I, sa courbe représentative est entièrement située en dessous de chacune de ses tangentes.

Propriétés

- \implies La fonction carré $x \to x^2$ est convexe sur \mathbb{R} .
- La fonction cube $x \to x^3$ est concave sur $]-\infty;0]$ et convexe sur $]0;+\infty[$.
- \implies La fonction inverse $x \to \frac{1}{x}$ est concave sur] −∞;0] et convexe sur]0; +∞[.
- \implies La fonction racine carré $x \to \frac{1}{x}$ est sur $[0; +\infty[$.

Propriétés

Soit I une fonction définie et dérivable sur un intervalle \overline{I} .

Preuve

- La dernière équivalence vient des propriétées sur les dérivées, nous allons donc montrer que : la fonction est convexe sur *I* ⇔ *f'* est croissante sur *I*.
 - \emptyset f convexe implique f' croissante

On rappelle l'expression de la tangente à la courbe \mathscr{C}_f au point a:

$$T_a(t) = f'(a)(t-a) + f(a)$$

Comme la fonction est convexe, elle est au dessus de chacune de ses tangentes :

$$f(x) \ge T_a(t) \quad \forall x, t, a \in I$$

Soit x et y deux point de I, avec x < y; la propriété précédente nous permet d'écrire :

$$f(x) \ge T_x(y) \Leftrightarrow f(x) \ge f'(y)(x-y) + f(y) \Leftrightarrow f(x) - f(y) \ge f'(y)(x-y) \Leftrightarrow \frac{f(x) - f(y)}{x-y} \le f'(y)$$

$$\operatorname{car} x - y < 0$$

$$f(y) \ge T_y(x) \Leftrightarrow f(y) \ge f'(x)(y-x) + f(x) \Leftrightarrow f(y) - f(x) \ge f'(x)(y-x) \Leftrightarrow \frac{f(y) - f(x)}{y-x} \ge f'(x)$$

$$\operatorname{car} y - x < 0$$

On vient donc de montrer que:

$$f'(x) \le \frac{f(x) - f(y)}{x - y} = \frac{f(y) - f(x)}{y - x} \le f'(y)$$

en particulier $f'(x) \le f'(y)$ ce qui signifie que f est croissante.

 \mathscr{O} f' croissante implique f convexe Soit $a \in I$, on pose :

$$h_a(x) = f(x) - ((x-a)f'(a) + f(a))$$

Cette fonction est dérivable par somme et produit de fonctions dérivables :

$$h'_{a}(x) = f'(x) - f'(a) \begin{cases} \geq 0 & \forall x \geq a \\ \leq 0 & \forall x \leq a \end{cases}$$

On obtient ces résultats grâce au fait que la fonction f est croissante. On déduit le tableau de variations suivants :

x	Inf(I)		а		Sup(I)
$h'_a(x)$		-	0	+	
$h_a(x)$		h_a	(a) = 0		

On vient donc de montrer que $h_a(x) \ge 0$ pour $x \in I$, autrement dit :

$$\forall a \in I, \ \forall x \in I \ f(x) - ((x-a)f'(a) + f(a)) \ge 0 \Leftrightarrow f(x) \ge (x-a)f'(a) + f(a)$$

Cela signifie que f est au dessus de chacune de ses tangentes : f est donc convexe.

2. \emptyset f concave implique f' décroissante

On rappelle l'expression de la tangente à la courbe \mathscr{C}_f au point a:

$$T_a(t) = f'(a)(t-a) + f(a)$$

Comme la fonction est concave, elle est en dessous de chacune de ses tangentes :

$$f(x) \le T_a(t) \quad \forall x, t, a \in I$$

Soit x et y deux point de I, avec x < y; la propriété précédente nous permet d'écrire :

$$f(x) \leq T_x(y) \Leftrightarrow f(x) \leq f'(y)(x-y) + f(y) \Leftrightarrow f(x) - f(y) \leq f'(y)(x-y) \Leftrightarrow \frac{f(x) - f(y)}{x-y} \geq f'(y)$$

$$\operatorname{car} x - y < 0$$

$$f(y) \leq T_y(x) \Leftrightarrow f(y) \leq f'(x)(y-x) + f(x) \Leftrightarrow f(y) - f(x) \leq f'(x)(y-x) \Leftrightarrow \frac{f(y) - f(x)}{y-x} \leq f'(x)$$

$$\operatorname{car} y - x < 0$$

On vient donc de montrer que :

$$f'(y) \le \frac{f(x) - f(y)}{x - y} = \frac{f(y) - f(x)}{y - x} \le f'(x)$$

en particulier $f'(x) \ge f'(y)$ ce qui signifie que f est croissante.

 \mathscr{O} f' décroissante implique f concave

Soit $a \in I$, on pose :

$$h_a(x) = f(x) - ((x-a)f'(a) + f(a))$$

Cette fonction est dérivable par somme et produit de fonctions dérivables :

$$h'_a(x) = f'(x) - f'(a) \begin{cases} \le 0 & \forall x \ge a \\ \ge 0 & \forall x \le a \end{cases}$$

On obtient ces résultats grâce au fait que la fonction f est croissante.

On déduit le tableau de variations suivants :

x	Inf(I)	a	Sup(I)
$h'_a(x)$	+	0	-
$h_a(x)$		$h_a(a) = 0$	

On vient donc de montrer que $h_a(x) \le 0$ pour $x \in I$, autrement dit :

$$\forall a \in I, \ \forall x \in I \ f(x) - ((x-a)f'(a) + f(a)) \le 0 \Leftrightarrow f(x) \le (x-a)f'(a) + f(a)$$

Cela signifie que f est en dessouss de chacune de ses tangentes : f est donc concave.

Exemple 6 Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{3}x^3 - 9x^2 + 4$. Étudier la convexité de la fonction f.

On va calculer la dérivée seconde de cette fonction :

$$f''(x) = \left(\frac{1}{3}x^3 - 9x^2 + 4\right)'' = \left(\frac{1}{3} \times 3x^2 - 9 \times 2x\right)' = 2x - 18\begin{cases} convex e \ pour \ x \ge 9\\ concave \ pour \ x \le 9 \end{cases}$$

6 Point d'inflexion

Définition

Soit *f* une fonction dérivable sur un intervalle *I*.

Un point d'inflexion est un point où la courbe traverse sa tangente en ce point.

Remarque 1 Au point d'inflexion, la fonction change de convexité.

Exemple 7 Une entreprise fabrique des clés USB avec un maximum de 10000 par mois. Le coût de fabrication C (en milliers d'euros) de x milliers de clés produites s'exprime par :

$$C(x) = 0.05x^3 - 1.05x^2 + 8x + 4$$

1. A l'aide de la calculatrice, conjecturer quant à la convexité de la fonction C. En déduire si la courbe possède un point d'inflexion. La courbe représentant la fonction f est:

La courbe representant la jonction j'est.

En recadrant la fenêtre graphique convenablement, on se rend compte que la courbe est concave puis convexe, elle possède un point d'inflexion en $x \approx 7$; si on ne recadre pas la fenêtre graphique, on peut passer à côté de points d'inflexion et croire que la courbe est concave pour tout x.

2. Démontrer ces résultats.

On va calculer la dérivée seconde de f:

$$f''(x) = (f'(x))' = ((0.05x^3 - 1.05x^2 + 8x + 4)')' = (0.15x^2 - 2.1x + 8)' = 0.3x - 2.1$$

On détermine ensuite son signe :

$$\begin{cases} 0.3x - 2.1 \ge 0 \Leftrightarrow x \ge 7 \\ 0.3x - 2.1 \le 0 \Leftrightarrow x \le 7 \end{cases}$$

Donc la fonction f est concave pour $x \le 7$ et convexe pour $x \ge 7$: le changement de convexité a lieu en x = 7 qui est alors l'abscisse du point d'inflexion de la courbe.

3. Interpréter ces résultats dans cadre du contexte modélisé par l'exercice.

La croissance du coût de fabrication ralentit pour tant que moins de 7000 clées USB sont produites et à partir de 7000 clés USB la croissance du coût de fabrication s'accélère.

Exemple 8 Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 2x^2$.

1. Étudier la convexité de la fonction f.

On va calculer la dérivée seconde de la fonction f:

$$f''(x) = \left(\left(x^3 - 2x^2 \right)' \right)' = \left(3x^2 - 4x \right)' = 6x - 4$$

On détermine ensuite son signe :

$$\begin{cases} 6x - 4 \ge 0 \Leftrightarrow x \ge \frac{3}{3} \\ 6x - 4 \le 0 \Leftrightarrow x \le \frac{2}{3} \end{cases}$$

Donc la fonction f est concave pour $x \le \frac{2}{3}$ et convexe pour $x \ge \frac{2}{3}$: le changement de convexité a lieu en $x = \frac{2}{3}$ qui est alors l'abscisse du point d'inflexion de la courbe.

2. Déterminer l'équation de la tangente à la fonction en x = -1. L'équation de la tangente à la courbe en x = -1 est :

$$y = f'(-1)(x - (-1)) + f(-1) = 7(x + 1) - 3 = 7x + 4$$

3. En déduire que pour tout réel x négatif, on a :

$$x^3 - 2x^2 \le 7x + 4$$

Comme la fonction est concave pour $x \le \frac{2}{3}$, elle est concave en x = -1. Cela signifie que la courbe est sous sa tangente en x = -1, c'est-à-dire:

$$x^3 - 2x^2 \le 7x + 4$$