A estrutura em folha β constitui 20-28% da estrutura secundária das protéinas globulares conhecidas. A conformação extendida da cadeia polipeptídica foi proposta nos anos 30, mas só observada experimental aquando da resolução da estrutura da lysozima por difracção de raios X.

A unidade básica da estrutura β é uma cadeia extendida (semelhante uma hélice de período 2) com ângulos ϕ e ψ aproximadamente iguais a -120, +120. Ao contrario da hélice α , as ligaçãoes de hidrogénio não se forma localmente mas entre cadeias distintas, que podem ser **paralelas** ou **antiparalelas**.

Cadeias β anti-paralelas ϕ = -139, ψ = +125

Cadeias β paralelas ϕ = -119, ψ = +113

Uma cadeia extendida com ângulos ϕ =-180 e ψ =+180 gera uma folha planar ou hélice degenerada de período 2. A folha β , no entanto, possuem ângulos consideravelmente diferentes destes quefazem com que os carbonos α se encontrem alternademente acima e abaixo do plano da folha ("pleating", "pleated β -sheet").

Folha "plissada" (pleated beta sheet ϕ =-120 e ψ =+120)

Cadeia extendida (ϕ =-180 e ψ =+180)

"Twist" das folhas betas

Estrutura da carboxipeptidase, ilustrando o "twist" da folha beta central, no sentido horário ("right-handed twist")

Motivos de ligação de cadeias β

Modos de ligação entre cadeias β adjacentes:

- (a) ligação "hairpin" entre cadeias anti-paralelas
- (b) ligação em "crossover" direito entre cadeias paralelas
- (c) ligação em "crossover" esquerdo entre cadeias paralelas. Esta última topologia observa-se raramente.

Estruturas β anti-paralelas: "Greek key"

A "greek key" é um padrão (ou "motivo") de arranjo de 4 cadeias β anti-paralelas, que é observado em muitas proteínas. O nome resulta da semelhança entre o padrão formado pelas cadeias β e certos motivos ornamentais característicos da cerâmica grega clássica.

"Greek key"

Formação de um "greek key"

Estruturas β anti-paralelas: o barril "up-and-down"

Retinol-binding protein

Esquema de um barril up-and-down

Estruturas β anti-paralelas: o barril "jelly roll"

Cadeias β paralelas: o motivo β - α - β

Este é um motivo encontrado em quase todas as cadeias beta paralelas. Existe um versão "direita" e outra "esquerda", mas esta última é raramente observada.

quase sempre

quase nunca

Estruturas β - α - β : o barril TIM

A estrutura do enzima glicolítico triose fosfato isomerase (TIM) é formada por 8 motivos β - α - β justapostos (a este tipo de estrutura chamase "TIM barrel").

Estrutura $\beta\alpha\beta\alpha\beta$: o "fold" de Rossman

Estruturas α

4-helix bundle

Estruturas α

Estruturas α

"Fold" das globinas

Domínio α da muraminase

Estruturas a

Os ângulos formados por hélices em contacto são determinados pela complementaridade da forma da superfície das duas hélices, existindo duas possibilidades que correspondem a ângulos de 50 ou 20 graus.

Preferências relativas dos 20 aminoácidos para os principais tipos de estrutura secundária

		Preferência	
	Hélice α	Folha β	"Turn"
Resíduo			
Glu	1.59	0.52	1.01
Ala	1.41	0.72	0.82
Leu	1.34	1.22	0.57
Met	1.30	1.14	0.52
Gln	1.27	0.98	0.84
Lys	1.23	0.69	1.07
Arg	1.21	0.84	0.90
His	1.05	0.80	0.81
Val	0.90	1.87	0.41
lle	1.09	1.67	0.47
Tyr	0.74	1.45	0.76
Cys	0.66	1.40	0.54
Trp	1.02	1.35	0.65
Phe	1.16	1.33	0.59
Thr	0.76	1.17	0.90
Gly	0.43	0.58	1.77
Asn	0.76	0.48	1.34
Pro	0.34	0.31	1.32
Ser	0.57	0.96	1.22
Asp	0.99	0.39	1.24

Preferências dos 20 resíduos para os vários tipos de conformação, calculadas a partir de um conjunto de proteínas como o quociente da fracção de resíduos de cada tipo a occorrer nessa conformação e a fracção de todos os resíduos. O valor 1.0 corresponde a preferência neutra.

Níveis de organização da estrutura das proteínas

Classificação estrutural das proteínas

Existem vários sistemas de classificação estrutural de proteínas, propostos por diferentes autores. A base de dados SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/) define 3 níveis de classificação:

Família: relação evolutiva clara entre as proteínas. A identidade de sequência das proteínas é superior a 30%. Geralmente têm função idêntica.

Superfamília: proteínas com uma identidade de sequência baixa, mas cujas características estruturais e funcionais sugerem uma origem evolutiva comum.

Fold: diz-se que duas proteínas têm o mesmo fold quando têm elementos de estrutura secundário ligados entre si de acordo com uma mesma topologia. No entanto os elementos de estrutura secundária podem diferir largamente em tamanho e conformação. As proteínas não têm necessariamente que ter uma origem evolutiva comum.

Tradicionalmente acrescenta-se um nível superior a este, apenas por conveniência de classificação, que em geral não reflecte qualquer relação evolutiva, funcional ou estrutural:

Classe: grupos amplos que dividem as proteínas em termos do seu conteúdo em estrutura secundária. As proteínas podem conter apenas hélices α , apenas cadeias β , combinações dos dois tipos, ou nenhum dos dois.

Classe estruturais de Chothia e Levitt

Em 1976 Chothia e Levitt definiram as seguintes amplas classes estruturais:

Alfa(α) - proteínas contendo exclusivamente hélices α

Beta(β) - Proteínas contendo exclusivamente folhas β

 α/β - Proteínas contendo alternância de estruturas alfa e beta. Contêm principalmente cadeias β paralelas

 α + β - Proteínas contendo regiões α e β separadas. A região β é geralmente constituída por cadeias anti-paralelas.

