Assignment 3

Adithya Bhat, Aparna Subramanian

ML on Spark vs TensorFLow

Spark:

- Iterative training is not a natural fit. RDD lineage chains will become extremely long.
 - Checkpointing alleviates this, but is again a costly activity
- Hence, error recovery can be potentially a bottleneck
- Experimentation is restricted, due to the rigidity of RDDs
- + Performance is much better
- + Integration with the Spark Ecosystem, other parts of the Apache Ecosystem
 - + Easier to tie into an entire application
- + Targeted for general computation, MLLib provides ML specific support
- + Core programming abstraction : RDDs
 - + RDDs themselves are distributed across the cluster

TensorFlow:

- Low level operations/API
- Practical usage downside : in development, in case of errors, sometimes freezes without error output
- Performance worse than alternatives
- + Iterative execution supported
- + Variety of devices supported
 - + Kernels allow the same high-level code to work optimally across different devices
- + Greater flexibility
 - + Subgraph execution
 - + Conditional execution
 - + Looping
- + Same code can work optimally on different machines thanks to different kernels
- + Good documentation / TensorBoard is useful
- + Designed specifically with ML in mind
- + The core programming abstraction is a Tensor
 - + Optimizations for distribution, such as gather, Sparse Tensors in developers control
 - + Tensors themselves are not distributed.

Bottleneck Analysis

Measurements

- Network bandwidth: 1.8 Gbps between vm-1 and vm-2
- Network upload bandwidth max ever observed for vm-1: 2.63Gbps
- Network RTT : order of 1ms
- Size per record read : 300 Bytes
- I used dstat to gather data as 30 second delayed snapshots, (tabulated below), but this wasn't my only source of analysis.
 - Issues usually one core is used for a TensorFlow job.
 - Dstat reports utilization across cores, however.
 - Hence top, that shows per core utilization, is more useful.
 - o That said, dstat numbers also support the pattern observed.
- The utilization of various resources followed a periodic pattern, depending on the code running
 - o E.g. testing only one machine no n/w utilization, maxed out CPU utilization
 - Training max n/w utilization
- Hence, i used top and iftop to view the utilization live during execution.

Synchronous

V1 - Dense Tensors

- Took 7-8 seconds per iteration
- Issue: Model is a tensor of 33 million, each a float
- Additionally, the local gradient passed back also has the same shape
- It looks like one TF operation is assigned to one 'device' (CPU core in this case)
- This core sees high utilization during the multiplication and other processing operations.
 - Used 'top' and 'iftop' to monitor utilization patterns within a run
- Network bandwidth is the primary bottleneck, CPU utilization is high during certain operations

V2 - Sparse Tensors, Gather, etc

- Down to 3-4 seconds per iteration
- Changes: using gather to selectively transfer the W (model) tensor

- Potentially, network latency could be a bottleneck
 - However, RTT = order of 1-2ms, hence probably not the case
- Potentially, disk bandwidth could be a bottleneck
 - However, each file has 2M entries, and has size ~600MB
 - le, one entry has ~300 Bytes, seguential read
 - Hence, disk read is not likely to be the bottleneck
- CPU and memory utilization are well below 100%
- Based on iperf, and iftop analysis, bandwidth is the order of 1.7-1.8 Gbps
- This bandwidth is often reached on vm-1 on synchronous execution
- Further, the iteration time is upper-bound by the slowest executor
- Hence, it appears that network bandwidth is still the bottleneck.

Asynchronous

V2 - Sparse Tensors, Gather, etc

- No cooperation necessary between the different tasks
- CPU utilization higher than synchronous
- Please refer to the disk and network latency explanations under synchronous too.
- On vm-1, where the model tensor is, 1-1.5s / iteration
 - High CPU utilization
- On other vms, 3-3.5 s / iteration
 - CPU utilization not as high as vm-1
 - o Network transfer of model and gradient
 - Some contention possible on updating w (model).
- NOTE: even if the sessions and operations are on another machine/task, if the process is kicked off from vm-1, there is some CPU utilization on vm-1, of the order of 5-20%.
 - o Perhaps coordination is still run from this machine.
 - Hence, i'm using pdsh to scp and kick off the task from the different vms
 - This improved speed of execution
- Overall, i see roughly 100 iterations per minute (1.5 iterations per second)

Data

- Remember that this is CPU utilization across cores, and out program doesn't have much scope for parallelism, and hence usually runs only on one core.
- Testing is done only on vm-1, where the model is local. Hence, for those brief periods (20-ish seconds), network utilization is zero, and cpu utilization is the bottleneck.

Synchronous

Synchronous	vm-1	vm-2	vm-3	vm-4	vm-5
avg_idle_cpu (%)	73.9946	93.8766	95.7151	94.7432	94.4365
avg_mem_used GB	11.5221	2.2254	1.4805	1.9703	2.1774
avg_mem_free GB	7.4683	17.0797	17.8120	17.3103	17.1183
avg nw_rec MBps	1.3900	40.6234	40.6697	40.6633	40.6706
avg nw_send MBps	156.1833	0.0789	0.6525	0.5889	0.0717
avg disk_read MBps	0.0134	0.0058	0.0058	0.0059	0.0059
avg disk_write MBps	0.0218	0.0047	0.0048	0.0046	0.0047

- CPU utilization is low, memory is not under strain.
- Note that since the straggler limits the operation, **average** bandwidth is less than bandwidth cap.
- Point to note is that this is bursty.. Please refer to the analysis above. Stragglers, etc.

Asynchronous

Asynchronous	vm-1	vm-2	vm-3	vm-4	vm-5
avg_idle_cpu (%)	46.2315	77.3645	77.3645	78.9952	79.6714
avg_mem_used GB	15.6286	2.6168	1.8753	2.3535	2.5317
avg_mem_free GB	3.7590	16.8108	17.5355	17.0552	16.8795
avg nw_rec MBps	0.5336	78.7882	77.4975	69.8809	71.0476
avg nw_send MBps	288.1872	0.1453	0.1324	0.0883	0.1605
avg disk_read MBps	0.0082	0.0037	0.0042	0.0045	0.0046
avg disk_write MBps	0.0169	0.0020	0.0022	0.0020	0.0021

- CPU utilization is higher
- Note that there is no straggler issue here.
- Average n/w bandwidth = 288MBps = 2.304Gbps appears to be near or at the maximum transmission bandwidth possible (2.5Gbps)

Graphs

- Note: I initialized with values between -10 and +10, which is very different from the all-ones model / random between -1 and +1 used by most people. Further, due to bug fixes, didn't have the time to run for many iterations...
 - For synchronous, reporting values with a much tinier eta (multiplied twice)
- I'm plotting accuracy, which is (num_correct / num_tested)

Synchronous

Synchronous: Accuracy vs. Iteration

Asynchronous

README

 Before running any application, please do source ~/gitRepository/TensorFlow/uploaded-scripts/tfdefs.sh

BigMatrixMultiplication.py:

Running:

- Start cluster
- python bigmatrixmultiplication.py

Discussion:

- Changes on top of exampleMatmulSingle.py
 - Break up into individual block sub-matrices
 - Compute intermediate traces performing matmul on individual blocks
 - Aggregate the traces.
- Key Idea 1 :
 - Distribute the individual blocks over the different machines
 - Distribute the intermediate trace computations
 - Finally aggregate and add on one device
- Key idea 2 :
 - o Intermediate trace computation involves block matrix multiplication
 - Optimize placement such that both the matrices to be multiplied are placed on the same machine
 - with tf.device("/job:worker/task:%d" % int((i+j)%5)):

SGD:

Running:

- Start cluster
- python synchronoussgd.py
- ./launch asyncsgd.sh

Discussion:

- Please also see the discussion on bottlenecks in the pdf.
- Model (w) tensor is on vm-1 (task 0)
- Input files distributed across all VMs (lesser on vm-5)
 - Each vm processes its input
- Testing done only on vm-1
 - Reason co-location with model to speed it up
 - No network usage.
- Initially, passed the dense w tensor to each task for processing each input
 - This is a 33M long float tensor
 - Huge bandwidth utilization, this is the bottleneck
- Optimization
 - Using tf.gather(input_example.indices())
 - Key idea: not all the fields are set in the input example
 - Hence, gather only the necessary indices
 - Similarly, send only the indices to be updated back to vm-1 for updating the model
 - o Improvement in run time

Synchronous:

- Updates are coordinated centrally by vm-1
 - In one session.run, all the tasks process one (batch) of the inputs and computes the local gradient
 - Local gradients are aggregated and added to the W vector on vm-1

Asynchronous:

- W is initialized on vm-1
- Each task/vm runs its own session, updates W independently
- Also, we are keeping a shared count variable on vm-1 to keep track of how many training examples have been processed totally.
- All the different tasks to run on different machines can be launched from the same vm-1

- o Thanks to the 'with tf.device()' option for task placement
- However, I noticed that the each of individual tasks still utilize a non-insignificant amount of CPU on vm-1 (5-20% each)
- This appears odd, since only coordination, if that, should be done on this vm, core updating logic is executed on the individual vms
- Hence, i'm scp-ing and executing the individual clients remotely
 - o Saw a slight performance benefit in doing this