TEST I

Imię i nazwisko:

Numer indeksu:

Numer grupy:

Test jest testem wielokrotnego wyboru (tzn. wszystkie kombinacje odpowiedzi są możliwe). Pytanie jest uznane za poprawnie rozwiązane wttw, gdy wszystkie podpunkty w pytaniu mają zaznaczone właściwe odpowiedzi. Odpowiedzi "+" oraz "-" proszę zaznaczać przy każdym podpunkcie pytania w stosownym miejscu - wewnątrz nawiasu kwadratowego poprzedzającego treść []. Życzę powodzenia.

- 1. Niech $A_t = \{x \in \mathbb{N} : t|x\}$, wtedy:
 - (a) [+] jeżeli $T = \{2, 3, 5\}$, to $\bigcap_{t \in T} A_t = \{x \in \mathbb{N} : (2 \cdot 3 \cdot 5) | x\}$
 - (b) [-] jeżeli $T=\{2,3,5\},$ to $\bigcup_{t\in T}A_t=\{x\in\mathbb{N}:(2\cdot3\cdot5)\,|x\}$
 - (c) [+] jeżeli $T=\{2,3\},$ to $\bigcap_{t\in T}A_t\setminus\bigcup_{t\in T}A_t=\emptyset$
- 2. Niech $A = \{1, 2, 3\}$ oraz $B = \{x : x \text{ jest liczbą pierwszą}\}$, wtedy:
 - (a) [-] $A \times B = B \times A$
 - (b) $[+] |A \times B| = |B \times A|$
 - (c) [+] $(\{2,3\} \times \{2,3\}) \subset A \times B$
- 3. Niech $A=\emptyset,\,B=\{\emptyset\}$ oraz $C=\{\emptyset,\{\emptyset\}\,,1,2\},$ stąd:
 - (a) $[-] |A \cap B| = 1$
 - (b) $[+] |B \cap C| = 1$
 - (c) $[-] |(C \setminus B) \setminus A| = |(C \cup B) \cup A|$
- 4. Niech A, B oraz C będą zbiorami niepustymi, wtedy:
 - (a) [+] $A \oplus B \oplus C \subset A \cup B \cup C$
 - (b) [-] $(A \cap B) \subset C' \cup (A \cap B)$
 - (c) [-] $C' \setminus (A \cup B) = \emptyset$
- 5. Niech $U = \{0, 1, 2\}$, wtedy:
 - (a) [-] $r = \{(i, j) \in U^2 : i = j\} = \{(0, 0), (0, 1), (0, 2), (1, 1)\}$
 - (b) [+] $r = \{(i, j) \in U^2 : i^2 + j^2 = 2\} = \{(1, 1)\}$
 - (c) [+] $r = \{(i, j) \in U^2 : i = \max(\{1, j\})\} = \{(1, 0), (1, 1), (2, 2)\}$
- 6. Dla dowolnych relacji r_1 oraz r_2 zdefiniowanych nad niepustym uniwersum zachodzi:
 - (a) [-] jeżeli $r_1,\,r_2$ są relacjami symetrycznymi, to relacja $r_1\oplus r_2$ jest zwrotna
 - (b) [+] jeżeli $r_1,\,r_2$ są relacjami zwrotnymi, to relacja $r_1\setminus r_2$ jest przeciwzwrotna
 - (c) [+] jeżeli obie relacje są relacjami pełnymi, to $|r_1 \oplus r_2| < |r_1 \cup r_2|$
- 7. Relacja $r = \{(x, y) \in X^2 : |x| \le |y|\}$ jest częściowym porządkiem, gdy:
 - (a) $[+] X = \mathbb{N}$
 - (b) $[-]X = \mathbb{Z}$
 - (c) $[+] X = \emptyset$

- 8. Niech $r \subseteq \mathbb{N} \times \mathbb{N}$ będzie relacją równoważności. Które z poniższych zdań może być prawdziwe:
 - (a) [-] |r| = c, gdzie c jest pewną stałą naturalną
 - (b) $[+] r = \mathbb{N} \times \mathbb{N}$
 - (c) $[+] r = r^{-1}$
- 9. Niech r_1 oraz r_2 będą dowolnymi relacjami równoważności nad niepustym uniwersum, wtedy:
 - (a) [+] relacja $r_1 \oplus r_2$ nie jest relacją równoważności
 - (b) [-] relacja $r_1 \cup r_2$ nie jest relacją równoważności
 - (c) [+] jeżeli $r_1 \cap r_2 = \emptyset$, to $r_1 \setminus r_2$ jest relacją równoważności
- 10. Istnieją skończony niepusty zbiór X oraz relacja równoważności r nad zbiorem X takie, że:
 - (a) [-] relacja r dzieli zbiór X na dwie klasy abstrakcji A oraz B takie, że $A \cap B \neq \emptyset$,
 - (b) [+] relacja r dzieli zbiór X na $\left|\sqrt{|X|}\right|$ klas abstrakcji
 - (c) [+] relacja r oraz r^{-1} generują identyczne podziały zbioru X
- 11. Niech r będzie relacją taką, że $r = \{(a, b) \in U : a \mod 5 = b \mod 5\}$, gdzie $U = \{0, 1, 2, \dots, 10\}^2$, wtedy:
 - (a) [+] r jest relacją równoważności w zbiorze $\{0, 1, 2, \dots, 10\}$
 - (b) [-] $|[1]| \neq |[4]|$
 - (c) [-] $\bigcup_{i=0}^{3} [i] = \{0, 1, 2, \dots, 10\}$
- 12. Załóżmy, że graf pewnej relacji równoważności r w zbiorze $\mathbb N$ składa się z 5-ciu rozłącznych podgrafów, wtedy:
 - (a) [-] liczba klas abstrakcji, na jakie relacja r dzieli zbór $\mathbb N$ jest nieokreślona
 - (b) [+] relacja r dzieli zbiór \mathbb{N} na co najwyżej 5 klas abstrakcji
 - (c) [-] relacja rdzieli zbi
ór $\mathbb N$ na 5 klas abstrakcji, z których każda zawiera skończoną liczbę elementów
- 13. Rozważmy zbiór $X=\{a,c,d,f,g,k,s,x,z\}$ uporządkowany relacją r zgodnie z poniższym diagramem Hassego, wtedy:

- (a) [+] ograniczeniem dolnym zbioru $\{z, s, d\}$ względem relacji r jest element c
- (b) [-] ograniczeniem górnym zbioru $\{c, x, k\}$ względem relacji r jest element d albo f
- (c) [+] $\sup \{s, d\} = f \text{ lub inf } \{s, d\} = c$

14. Rozważ zbiory uporządkowane pewnymi relacjami zgodnie z diagramami Hassego przedstawionymi na poniższym rysunku. Które ze zdań jest prawdziwe:

- (a) [-] w zbiorze (a) istnieje element największy
- (b) [-] w zbiorze (b) nie istnieje element maksymalny
- (c) [-] w zbiorze (c) lub (d) można wyróżnić element najmniejszy
- 15. Rozważ zbiór uporządkowany pewną relacją zgodnie z diagramem Hassego przedstawionym na poniższym rysunku. Które ze zdań jest prawdziwe:

- (a) $[-] \sup (\{a, b, c, d\}) = e$
- (b) $[+] \inf (\{f, g, h, i\}) = a$
- (c) $[+] \sup (\{a, b, c, e\}) \neq h$
- 16. Niech r będzie relacją taką, że $r = \{(A, B) \in P(\{a, b, c, d\})^2 : B \supseteq A\}$, wtedy:
 - (a) [+] element maksymalny względem relacji r w zbiorze $P(\{a,b,c,d\})$, to $\{a,b,c,d\}$
 - (b) [+] relacja r wyznacza element najmniejszy w zbiorze $P(\{a,b,c,d\})$
 - (c) [+] relacja r wyznacza element największy w zbiorze $P(\{a,b,c,d\})$
- 17. Relacja $\{(a,a),(a,b),(a,c),(b,b),(b,c),(c,c)\}$ jest w zbiorze $\{a,b,c\}$ relacją porządku:
 - (a) [+] częściowego
 - (b) [+] liniowego
 - (c) [+] dobrego

- 18. Porządkiem liniowym w zbiorze $W=\{w_1,w_2,w_3,\ldots\}$ wielokątów wypukłych na płaszczyźnie euklidesowej jest relacja r taka, że:
 - (a) [-] $(w_i, w_j) \in r$ wttw wielokąt w_i zawiera się w wielokącie w_j
 - (b) [-] $(w_i, w_j) \in r$ wttw pole powierzchni wielokąta w_i jest nie większe niż pole wielokąta w_j
 - (c) [-] $(w_i, w_j) \in r$ wttw wielokąt w_i ma tyle samo wierzchołków co wielokąt w_j
- 19. Jeżeli $(p \lor q) \to r$ oraz $\neg r$ są zdaniami prawdziwymi, to dla dowolnego t zachodzi:
 - (a) $[+] q \rightarrow t$
 - (b) [-] $t \rightarrow q$
 - (c) [+] $(t \wedge r) \rightarrow q$
- 20. Które z poniższych stwierdzeń jest tautologią rachunku zdań:
 - (a) [+] $(p \land \neg p) \lor (q \oplus \neg q)$
 - (b) $[+] \neg (p \land \neg q) \leftrightarrow \neg p \lor q$
 - (c) [-] $(p \rightarrow q) \leftrightarrow ((p \land \neg q) \rightarrow p)$