PHẦN 6. KỸ THUẬT SỐ MŨ ĐÚNG VÀ ĐINH LÝ LTE

Cho số nguyên n và p là số nguyên tố, ký hiệu $k = v_p(n)$ là số mũ đúng của p trong n nếu như n chia hết cho p^k nhưng không chia hết cho p^{k+1} . Quy ước $v_p(0) = +\infty$.

Các tính chất quan trọng:

- $v_p(ab) = v_p(a) + v_p(b), v_p(a^n) = n \cdot v_p(a).$
- $v_p(a) \ge v_p(b), \forall p \text{ khi và chỉ khi } b \mid a.$
- $v_n(a)$ chẵn với mọi p khi và chỉ khi n là số chính phương.
- $v_p(a \pm b) \ge \min\{v_p(a), v_p(b)\}$, đẳng thức xảy ra khi $v_p(a) \ne v_p(b)$.
- (Legendre) $v_p(n!) = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \cdots$
- $v_p(a^n-b^n)=v_p(a-b)$ nếu $p\mid a-b$ và a,b,n không chia hết cho p. (đây là phiên bản dễ của định lý LTE). Nếu n lẻ thì có thể đổi $b\to -b$ và có $v_p(a^n+b^n)=v_p(a+b)$.

 $(\cancel{D}$ ịnh lý LTE cho số p=2) Cho hai số nguyên lẻ x,y thỏa mãn 2|x-y| và n là số nguyên dương chẵn. Khi đó:

$$v_2(x^n - y^n) = v_2(x - y) + v_2(x + y) + v_2(n) - 1.$$

 $(\cancel{D}inh \ lý \ LTE \ cho \ số \ p \ le)$ Cho hai số nguyên x,y;n là số nguyên dương và p là số nguyên tố lẻ thỏa mãn:

$$p \mid x - y$$
; $p \mid x$; $p \mid y$. Ta có $v_p(a^n - b^n) = v_p(a - b) + v_p(n)$.

Nếu n lẻ thì ta cũng có $v_p(a^n + b^n) = v_p(a + b) + v_p(n)$.

Bài 6.1. (Vĩnh Long) Chứng minh rằng tồn tại vô số số nguyên dương n để $n \mid 2^n + 1$.

Lời giải.

Ta chỉ cần chọn $n=3^k$ với $k\in\mathbb{Z}^+$ thì theo định lý LTE

$$v_3(2^n + 1) = v_3(2 + 1) + v_3(n) = k + 1.$$

Suy ra $n = 3^k | 2^n + 1$.

Bài 6.2. (Hà Nam) Cho q là số nguyên tố lẻ và đặt

$$A = (2q)^{2q} + (2q)! + ((2q)!)^{2q}$$
.

Chứng minh rằng A có một ước nguyên tố p > 2q.

Lời giải.

Giả sử ngược lại rằng mọi ước nguyên tố p của Q đều không vượt quá 2q. Khi đó, rõ ràng

$$p|(2q)!, p|((2q)!)^{2q}$$
 nên $p|2q$.

Từ đó suy ra p = 2 hoặc p = q.

Số Q sẽ có dạng $2^m q^n$ với $m, n \in \mathbb{N}$. Theo định lý Legendre thì

$$v_2((2q)!) = \frac{2q}{2} + \frac{2q}{2^2} + \dots \le 2q \left(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots\right) < 2q \text{ và } v_q((2q)!) = 2 \text{ vì } q > 2.$$

Từ đó suy ra $Q < 2^{2q} q^2 < (2q)^{2q}$, vô lý.

Vậy nên Q có ước nguyên tố lớn hơn 2q.

Bài 6.3. (Olympic Gặp gỡ Toán học) Cho a,b,c là các số nguyên dương mà $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \in \mathbb{Z}^+$. Chứng minh rằng abc là một lập phương đúng.

Lời giải.

Theo giả thiết, ta có $abc \mid a^2c + b^2a + c^2b$.

Do bài toán không thay đổi nếu thay $(a,b,c) \rightarrow (ka,kb,kc)$ nên không mất tính tổng quát, có thể giả sử gcd(a,b,c) = 1.

Xét số $p \mid abc$ và đặt $v_p(a) = x$, $v_p(b) = y$, $v_p(c) = z$ thì một trong ba số này phải bằng 0. Ta cũng có thể giả sử x = 0 và y + z > 0. Khi đó $v_p(abc) = y + z$ và

$$v_p(a^2c) = z$$
, $v_p(b^2a) = 2y$, $v_p(c^2b) = 2z + y$.

Nếu z > 2y thì $2y = \min\{z, 2y, 2z + y\}$ nên $y + z \le 2y \rightarrow z \le y$, mâu thuẫn.

Nếu z < 2y thì $z = \min\{z, 2y, 2z + y\}$ nên $y + z \le z$, vô lý.

Do đó z=2y vàa $v_p(abc)=3y$, chia hết cho 3. Điều này đúng với mọi ước nguyên tố của abc nên từ đó suy ra abc phải là một lập phương đúng.

Bài 6.4. (Thanh Hóa) Tìm bộ ba các số nguyên dương (p,n,k) thỏa mãn p là số nguyên tố Fermat và

$$p^{n} + n = (n+1)^{k}$$
 (1).

(Số nguyên tố Fermat là số nguyên tố có dạng $2^{2^x} + 1$ với x là số tự nhiên).

Lời giải.

Đặt $\alpha = 2^x$. Ta xét các trường hợp sau:

Nếu n=1 thì (1) viết lại là $p=2^k-1=2^\alpha+1 \Rightarrow k=2; \alpha=1 \Rightarrow p=3.$

Nếu $n \ge 2$. Ta gọi r là một ước nguyên tố của n.

Từ phương trình ta suy ra $p^n \equiv 1 \pmod{n} \Rightarrow p^n \equiv 1 \pmod{r}$. Do đó (b,r) = 1. Đặt $k = \operatorname{ord}_p(r)$ thì $k \mid r-1, n$ nên $k \mid \gcd(r-1,n) = 1 \rightarrow k = 1$. Vì $r \mid p-1 \Rightarrow r \mid 2^{\alpha} \Rightarrow r = 2 \Rightarrow 2 \mid n$.

Ta có $(1) \Leftrightarrow p^n - 1 = (n+1) [(n+1)^{k+1} - 1] \Rightarrow v_2(p^n - 1) = v_2((n+1)^{k-1} - 1)$. Nếu k-1 lẻ thì $v_2((n+1)^{k-1} - 1) = v_2(n) < v_2(p^2 - 1) + v_2(n) - 1 = v_2(p^n - 1)$ mâu thuẫn, vậy k-1 chẵn.

Áp dụng định lý LTE, ta có

$$v_2(p^n-1) = v_2((n+1)^{k-1}-1) \Leftrightarrow v_2(p-1)+v_2(p+1) = v_2(n+2)+v_2(k-1).$$

Nếu $v_2(k-1) \ge v_2(p-1) \Rightarrow p-1 \mid k \Rightarrow (n+1)^k \equiv n+1 \pmod{p}$ (theo định lí *Fermat* nhỏ). Tuy nhiên theo (1) thì $n \equiv (n+1)^k \equiv n+1 \pmod{p}$, vô lý. Do đó

$$v_2(k-1) < v_2(p-1) \Rightarrow 1 \le v_2(p+1) = v_2(2^{\alpha}+2) < v_2(n+2) \Rightarrow n \equiv 2 \pmod{4}$$
.

Nếu p > 5 thì $2^{2^x} + 1 > 5 \Rightarrow x \ge 2 \Rightarrow p \equiv 2 \pmod{5}$ nên

$$p^n \equiv 4 \pmod{5}$$
 và $4 + n \equiv (n+1)^k \pmod{5}$.

 $\text{M\`a } 4+n\not\equiv (n+1)(\bmod 5) \Rightarrow k\not\equiv 1(\bmod 4) \text{ n\'en } k\equiv 3(\bmod 4) \Rightarrow 4+n\equiv (n+1)^3(\bmod 5).$

Với $n \equiv 0 \pmod{5} \Rightarrow 4 + n - (n+1)^3 \equiv 3 \pmod{5}$ mâu thuẫn, tương tự với các trường hợp: $n \equiv 1 \pmod{5}$; $n \equiv 2 \pmod{5}$; $n \equiv 3 \pmod{5}$; $n \equiv 4 \pmod{5}$ đều dẫn đến mâu thuẫn.

Vì thế nên $n+4\not\equiv \left(n+1\right)^3 \pmod{5}$. Ta loại trường hợp p>5. Tiếp theo,

Nếu p=5 thì $\alpha=2$. Khi đó $3=v_2\left(n+2\right)+v_2\left(k-1\right)$. Do

$$v_2(n+2) \ge 2 \Rightarrow v_2(n+2) = 2; v_2(k-1) = 1.$$

Ta cũng có $5^n+n=\left(n+1\right)^k$. Với $n=2\Rightarrow k=3$. Còn với $n\geq 3$, gọi q là ước nguyên tố lẻ của n thì $q\mid 5^{(n,q-1)}-1=5^2-1=24$. $q\mid 3\Rightarrow q=3 \Rightarrow n\equiv 0 \pmod 6$. Kết hợp với

$$n \equiv 2 \pmod{4} \Rightarrow 5^n \equiv -1 \pmod{13} \Rightarrow n-1 \equiv (n+1)^k \pmod{13}.$$

Lại áp dụng định lý LTE, ta có

$$v_3(5^n-1) = v_3((n+1)^{k-1}-1) \Leftrightarrow 1+v_3(\frac{n}{2}) = v_3(k-1)+v_3(n) \Rightarrow 3 \mid k-1.$$

Ta cũng có $k \equiv 3 \pmod{4} \Rightarrow k \equiv 7 \pmod{12}$. Theo định lí *Fermat* nhỏ suy ra:

$$(n+1)^k \equiv (n+1)^7 \equiv \pm (n+1) \pmod{13} \Rightarrow n-1 \equiv -n-1 \pmod{13} \Rightarrow n \equiv \pmod{13}$$
, vô lí.
(vì với $13 \mid n \Rightarrow 5^n \equiv 1 \pmod{13}$, mâu thuẫn do $5^n \equiv 5 \pmod{13}$).

Vậy nên tất cả các bộ số cần tìm là (p,n,k) = (3,1,2); (p,n,k) = (5,2,3).

Bài 6.5. (Kiểm tra đội tuyển Vĩnh Phúc) Tìm tất cả các số nguyên dương n sao cho $(n!)^n$ chia hết $(n^2-1)!$.

Lời giải. Với mỗi số nguyên tố p và mỗi số nguyên dương q ký hiệu $v_p(q)$ là số mũ đúng của p trong phân tích tiêu chuẩn ra thừa số nguyên tố của q!.

Đầu tiên ta chứng minh rằng n = 4 và n = p là số nguyên tố thì $(n!)^n \nmid (n^2 - 1)!$.

Thật vậy,

• Nếu
$$n = 4$$
 thì $v_2(4!)^4 = 4v_2(24) = 4.3 = 12 > 11 = v_2(4^2 - 1)!$, vì vậy $(n!)^n \nmid (n^2 - 1)!$

• Nếu
$$n = p$$
 thì $v_n(n!)^n = n \cdot v_2(n!) = n > n - 1 = v_n(n^2 - 1)!$ vì vậy $(n!)^n \nmid (n^2 - 1)!$

Tiếp theo, ta chứng minh rằng khi $n \neq 4$ và $n \neq p \in \wp$ thì $(n!)^n | (n^2 - 1)!$

Gọi p là một ước nguyên tố bất kỳ của n. Ta sẽ chứng minh rằng $n.v_p(n!) \le v_p(n^2-1)!$

Gọi
$$n = p^d$$
. k với $k, d \in N^*, (k, p) = 1$ đưa về

$$n.\nu_{p}(n!) \leq \nu_{p}(n^{2}-1)! \Leftrightarrow n.\nu_{p}(n!) \leq \nu_{p}(n^{2}!) - \nu_{p}(n^{2}!) - \nu_{p}(n^{2}!) - 2d$$

$$\Leftrightarrow 2d + p^{d}.k. \sum_{j \in \mathbb{N}^{*}} \left[\frac{p^{d}k}{p^{j}} \right] \leq \sum_{j \in \mathbb{N}^{*}} \left[\frac{p^{2d}k^{2}}{p^{j}} \right]$$

Nhưng ta cũng có

$$\sum_{j \in \mathbb{N}^*} \left\lceil \frac{p^{2d} k^2}{p^j} \right\rceil = \sum_{j \in \mathbb{N}^*} \left\lceil p^d \cdot k \cdot \frac{p^d k}{p^j} \right\rceil = p^d \cdot k \sum_{j \in \mathbb{N}^*} \left\lceil \frac{p^d k}{p^j} \right\rceil + \sum_{j \in \mathbb{N}^*} \left\lceil p^d \cdot k \cdot \left\{ \frac{p^d k}{p^j} \right\} \right\rceil.$$

Bất đẳng thức cần chứng minh tương đương với

$$\sum_{j\in N} \left[p^d \cdot k \cdot \left\{ \frac{p^d k}{p^j} \right\} \right] \ge 2d.$$

Hay cần chứng minh rằng
$$\sum_{j=d+1}^{2d} \left[p^d \cdot k \cdot \left\{ \frac{p^d k}{p^j} \right\} \right] \ge 2d$$
 hoặc $\sum_{j=1}^d \left[p^d \cdot k \cdot \left\{ \frac{k}{p^j} \right\} \right] \ge 2d$

Nhận xét: nếu $x, y \in N^*$ và x không chia hết cho y thì $\left\{\frac{y}{x}\right\} \ge \frac{1}{x}$.

Từ đó, ta có

$$\sum_{j=1}^{d} \left[p^{d} \cdot k \cdot \left\{ \frac{k}{p^{j}} \right\} \right] \geq \sum_{j=1}^{d} \left[p^{d} \cdot k \cdot \frac{1}{p^{j}} \right] = \sum_{s=0}^{d-1} \left[p^{s} \cdot k \right] = \sum_{s=0}^{d-1} p^{s} \cdot k = k \left(1 + p + p^{2} + \dots + p^{d-1} \right).$$

Cuối cùng, dễ dàng chứng minh: $k(1+p+p^2+\cdots+p^{d-1}) \ge 2d$ bằng quy nạp.

- Nếu d = 0 thì bất đẳng thức trên đúng
- Nếu d=1, chúng ta phải có $k \ge 2$ (ngược lại n là số nguyên tố) và BĐT đúng.
- Nếu d=2, ta cần chứng minh rằng $k(1+p) \ge 4$. Nếu p=2 thì $k \ge 2$ (ngược lại thì n=4) và bất đẳng thức đúng, trong khi $p \ge 3$.
- Nếu $d \ge 3$, thì $k(1+p+p^2+\cdots+p^{d-1}) \ge 1+2+2^2+\cdots+2^{d-1}=2^d-1 \ge 2d$.

Bài toán được giải quyết hoàn toàn.