Public Comment: Possibilities in Raman Amplification and Compression of High Power Light in Plasma

Nathaniel Fisch Princeton University

High Energy Density Physics Workshop May 24-26, 2004 Gaithersburg, Maryland

- 1. What are some ideas for getting to the next generation of laser power densities?
- 2. What are the recent results?

7th compelling intellectual question: Note: First 6 given by Todd

How can we access the next generation of laser intensities at different frequencies?

Amplification of Pulse by Resonant Raman Backscatter

Plasma as an Amplifier

Representative parameters For Resonant Raman Backscatter Regime

Plasma width 0.7 cm

Pump duration 50 ps

Pump intensity 10¹⁴ W/cm²

Output parameters (unfocused)

Pulse fluence 4 kJ/cm²

Pulse duration 40 fs

Pulse power 10¹⁷ W/cm²

Examples

Wavelength of laser µm	1/40	1/4	1	10
Duration of pump ps	1.25	12.5	50	500
Intensity of pump W/cm ²	1.6×10^{17}	1.6×10^{15}	10^{14}	10^{12}
Pump vector- potential a ₀	0.006	0.006	0.006	0.006
Laser-to-plasma frequency ratio	12	12	12	12
Concentration of plasma cm ⁻³	1.1×10^{22}	1.1×10^{20}	7×10^{18}	7 × 10 ¹⁶
Linear e-times growth length cm	.00043	.0043	.013	.13
Total length of amplification cm	.018	.18	.7	7
Output pulse duration fs	1	10	40	400
Output pulse fluence kJ/cm ²	160	16	4	0.4
Output pulse intensity W/cm ²	1.6×10^{20}	1.6×10^{18}	10^{17}	10^{15}

Modify Chirped Pulse Amplifier

Pulse Compression using Raman Backscattering in Plasma

Raman Amplification in **2mm** Gas Jet Plasma at Three Densities (showing resonant effect)

Ping et al., PRL (March 2004)

Where do we stand today?

A. Key experimental results

- 1. Factor of 400 in energy amplification
- 2. Entering nonlinear regime: pulse intensity greater than pump intensity
- Approaching shorter output pulse than linear broadening
- Validation of mechanisms and technology of RBS
 - Resonant interaction
 - control over density, frequencies and timing
 - Reasonable plasma target

B. Theoretical Understanding

- Understanding Present Experiments
- Consideration of potential Showstoppers
 - a. Precursor or other instabilities of pulse
 - focusability of pulse in noisy plasma
 - Instabilities of pump, including sidescatter

C. Multiplicity of Methods

- Detuning methods
- Multiple pumps and pump frequencies
- 3. Amplification at ionization front
- Utilization of Compton scattering effect

