.1 Free modules revisited

Problem .1.1. Prove that \mathbb{R} and \mathbb{C} are isomorphic as \mathbb{Q} -vector spaces. (In particular, $(\mathbb{R}, +)$ and $(\mathbb{C}, +)$ are isomorphic as groups.)

Solution. Observe that $\dim_{\mathbb{Q}} \mathbb{R}$ is uncountable (and in particular, is the cardinality of the continuum). This is equal to $\dim_{\mathbb{Q}} \mathbb{C}$. Since the two vector spaces have equal dimension, they are isomorphic as \mathbb{Q} -vector spaces and hence are isomorphic as groups.

Problem .1.2. Prove that the sets listed in Exercise III.1.4 are all \mathbb{R} -vector spaces, and compute their dimensions.

Solution. Recall that we only need to show that each set is a module over \mathbb{R} . We start with $\mathfrak{sl}_n(\mathbb{R}) = \{M \in \mathfrak{gl}_n(\mathbb{R}) \mid \operatorname{tr}(M) = 0\}$ and define the action of \mathbb{R} on a matrix as multiplication by each entry. Given $A, B \in \mathfrak{sl}_n(\mathbb{R})$, $r_1, r_2 \in \mathbb{R}$, we have

- \bullet $(r_1 + r_2)A = r_1A + r_2A$
- 1A = A and $(r_1r_2)A = r_1(r_2A)$
- $r_1(A+B) = r_1A + r_1B$

so $\mathfrak{sl}_n(\mathbb{R})$ is a \mathbb{R} -vector space. To find its dimension, we are tasked with finding a basis. First note that the elementary matrices $e_{i,j}$ for $i \neq j$ all have zero trace so they are in $\mathfrak{sl}_n(\mathbb{R})$. For $e_{i,i}$, we require another element on the diagonal to force the trace to be zero. The most convenient choice is to let $h_i = e_{i,i} - e_{i+1,i+1}$. Certainly, this set of matrices generates $\mathfrak{sl}_n(\mathbb{R})$ and it contains $n^2 - n + (n-1) = n^2 - 1$ elements so the dimension of this vector space is $n^2 - 1$. Presumably, we use a similar, if not the same, basis for $\mathfrak{sl}_n(\mathbb{C})$.

We define the action of \mathbb{R} on $\mathfrak{so}_n(\mathbb{R}) = \{M \in \mathfrak{sl}_n(\mathbb{R}) \mid M + M^t = 0\}$ in exactly the same manner as above. It is easy to verify that this is also a vector space. Again, we are tasked with computing a basis. First, we construct a set of basis matrices with zero entries on the diagonal. Let $g_{i,j}$ denote the matrix with entry 1 at i, j, entry -1 at j, i, and zero everywhere else, where $i \neq j$. Then $g_{i,j} \in \mathfrak{so}_n(\mathbb{R})$. To consider the diagonal, note that if any entry on the diagonal is nonzero, then summing the matrix with its transpose makes a nonzero matrix. Thus, the entries on the diagonal must be zero. This set generates $\mathfrak{so}_n(\mathbb{R})$ and contains $\frac{n(n-1)}{2}$ elements, so this is the dimension of the Lie algebra.

The action of \mathbb{R} on $\mathfrak{su}(n) = \{M \in \mathfrak{sl}_n(\mathbb{C}) \mid M + M^* = 0\}$ is again the same as above. To compute a basis for this vector space, first note that the diagonals must not include reals because the complex transpose matrix will not sum to zero. Therefore, we redefine h_i to use i, -i instead of 1, -1. Furthermore, the basis matrices with zeros on the diagonals must be separated into real and

imaginary components. Therefore, we include the $g_{i,j}$ from above and also define $g_{i,j}^*$ to be matrices with the imaginary unit i at i,j and j,i for $i \neq j$, and zero elsewhere. This is a basis for the vector space and has $n(n-1)+(n-1)=n^2-1$ elements, so this is the dimension of the vector space.

Problem .1.3. Prove that $\mathfrak{su}(2) \cong \mathfrak{so}_3(\mathbb{R})$ as \mathbb{R} -vector spaces. (This is immediate, and not particularly interesting, from the dimension computation of Exercise 1.2. However, these two spaces may be viewed as the tangent spaces to SU(2), resp., $SO_3(\mathbb{R})$, at I; the surjective homomorphism $SU(2) \to SO_3(\mathbb{R})$ you constructed in Exercise II.8.9 induces a more 'meaningful' isomorphism $\mathfrak{su}(2) \to \mathfrak{so}_3(\mathbb{R})$. Can you find this isomorphism?)

Solution. Since $\mathfrak{su}(2)$ and $\mathfrak{so}_3(\mathbb{C})$ have the same dimension, namely 3, the two are isomorphic as \mathbb{R} -vector spaces. Admittedly, I don't know how to interpret the surjection from $SU(2) \to SO_3(\mathbb{R})$, nor do I have any clue how to work with Lie algebras.

Problem .1.4. Let V be a vector space over a field k. A *Lie bracket* on V is an operation $[\cdot, \cdot]: V \times V \to V$ such that

- $(\forall u, v, w \in V), (\forall a, b \in k),$ $[au + bv, w] = a[u, w] + b[v, w], \quad [w, au + bv] = a[w, u] + b[w, v],$
- $(\forall v \in V), [v, v] = 0,$
- and $(\forall u, v, w \in V)$, [[u, v], w] + [[v, w], u] + [[w, u], v] = 0.

(This axiom is called the *Jacobi identity*.) A vector space endowed with a Lie bracket is called a *Lie algebra*. Define a category of Lie algebras over a given field. Prove the following:

- In a Lie algebra V, [u, v] = -[v, u] for all $u, v \in V$.
- If V is a k-algebra (Definition III.5.7), then [v, w] := vw wv defines a Lie bracket on V, so that V is a Lie algebra in a natural way.
- This makes $\mathfrak{gl}_n(\mathbb{R})$, $\mathfrak{gl}_n(\mathbb{C})$ into Lie algebras. The sets listed in Exercise III.1.4 are all Lie algebras, with respect to a Lie bracket induced from \mathfrak{gl} .
- $\mathfrak{su}_2(\mathbb{C})$ and $\mathfrak{so}_3(\mathbb{R})$ are isomorphic as Lie algebras over \mathbb{R} .

Solution. First, let $u, v \in V$. We find

$$\begin{split} 0 &= [u+v, u+v] \\ &= [u, u+v] + [v, u+v] \\ &= [u, u] + [u, v] + [v, u] + [v, v] \\ &= [u, v] + [v, u] \end{split}$$

so
$$[u, v] = -[v, u]$$
.

Recall that a k-algebra V is a k-vector space with a compatible ring structure. We merely need to verify that the axioms hold. We find that for $u, v, w \in V$, $a, b \in k$,

$$[au + bv, w] = (au + bv)w - w(au + bv)$$
$$= a(uw - wu) + b(vw - wv)$$
$$= a[u, w] + b[v, w].$$

The other axiom in the first point is easy to verify. Clearly, we have $[v, v] = v^2 - v^2 = 0$. Finally, the Jacobi identity also holds, though it's tedious to typeset.

Problem .1.5. Let R be an integral domain. Prove or disprove the following:

- Every linearly independent subset of a free *R*-module may be completed to a basis.
- Every generating subset of a free R-module contains a basis.

Solution. The first statement is false. Consider \mathbb{Z} as a module over itself. The set $B=\{2\}$ is linearly independent, yet it cannot be extended to a basis. Indeed, including another element x forces the set to be linearly dependent as $x \cdot 2 - 2 \cdot x = 0$. (Note that we use 2 and x as both elements of the ring and the module.)

The second statement is also false. Consider \mathbb{Z} as a module over itself. The set $B = \{2,3\}$ is a generating set for \mathbb{Z} because $\gcd(2,3) = 1$. In particular, every integer is a linear combination of the two. However, neither $\{2\}$ nor $\{3\}$ are a basis for \mathbb{Z} .

Problem .1.6. Prove Lemma 1.8.

Lemma 1.8. Let R = k be a field, and let V be a k-vector space. Let B be a minimal generating set for V; then B is a basis of V.

Every set generating V contains a basis of V.

Solution. Let B be a minimal generating set for V. Suppose B is not linearly independent. That is, there exists a linear combination

$$c_1b_1+\cdots c_tb_t=0.$$

Since k is a field, we can rearrange the above as

$$b_t = (-c_t^{-1}c_1b_1) + \dots + (-c_t^{-1}c_{t-1}b_{t-1}).$$

Then $B' = B \setminus \{b_t\}$ is also a generating set for V, contradicting the minimality of B. Thus, our assumption is incorrect and B must be linearly independent,

meaning it is a basis of V. The proof details a procedure for reducing a generating set to a basis by repeatedly removing elements contained in the span of existing elements in the set.

Problem .1.7. Let R be an integral domain, and let $M = R^{\oplus A}$ be a free R-module. Let K be the field of fractions of R, and view M as a subset of $V = K^{\oplus A}$ in the evident way. Prove that a subset $S \subseteq M$ is linearly independent in M (over R) if and only if it is linearly independent in V (over K). Conclude that the rank of M (as an R-module) equals the dimension of V (as a K-vector space). Prove that if S generates M over R, then it generates V over K. Is the converse true?

Solution. We prove both directions via the contrapositive. Suppose S is linearly dependent in M. That is, there is a linear combination

$$a_1s_1 + \dots + a_ts_t = 0.$$

Since $S \subseteq M \subseteq V$, this linear combination also exists in V so S is linearly dependent in V. Thus, if S is linearly independent in V then it must also be linearly independent in M. Now suppose S is linearly dependent in V. Then there is a linear combination

$$\frac{a_1}{b_1}s_1 + \dots + \frac{a_t}{b_t}s_t = 0.$$

Multiply this linear combination by $b_1 \cdots b_t$ (this exists since the linear combination must be finite). This yields the equation

$$(b_2 \cdots b_t)a_1s_1 + \cdots + (b_1 \cdots b_{t-1})a_ts_t = 0$$

which is a linear combination over R, showing that S is linearly dependent in M. Therefore, if S is linearly independent in M then it must be linearly independent in V.

That is, if B is a maximal linearly independent subset of M then it is also a maximal linearly independent subset of V (AKA a basis) so the rank of M and the dimension of V are equal.

Suppose S generates M over R and let $\frac{a}{b} \in V$. There exists a linear combination

$$r_1s_1 + \dots + r_ts_t = a.$$

Since $\frac{r_i}{b} \in K$, we find that

$$\frac{r_1}{b}s_1 + \dots + \frac{r_t}{b}s_t = \frac{a}{b}$$

so S generates V over K.

The converse is not true. Consider $R = \mathbb{Z}$, $K = \mathbb{Q}$, $M = V = \mathbb{Z}$. Certainly $S = \{2\}$ generates V over K since for any element $n \in \mathbb{Z}$ we have $n = \frac{n}{2} \cdot 2$. However, S does not generate M over R.

Problem .1.8. Deduce Corollary 1.11 from Proposition 1.9.

Corollary 1.11. Let R be an integral domain, and let A, B be sets. Then

$$F^R(A) \cong F^R(B) \iff there \ is \ a \ bijection \ A \cong B.$$

Solution. Clearly if $A \cong B$ then the two sets have the same order so $F^R(A)$ and $F^R(B)$ are merely |A| copies of R, so they must be isomorphic. For the other direction, let A be a basis for $F^R(A)$ and let B be a basis for $F^R(B)$. Then A is also a basis for $F^R(B)$, just as B is a basis for $F^R(A)$. But by Proposition 1.9, we have $|A| \leq |B|$ and $|B| \leq |A|$ so |A| = |B| and the two sets are isomorphic.

Problem .1.9. Let R be a commutative ring, and let M be an R-module. Let \mathfrak{m} be a maximal ideal in R, such that $\mathfrak{m}M=0$ (that is, rm=0 for all $r\in\mathfrak{m}, m\in M$). Define in a natural way a vector space structure over R/\mathfrak{m} on M.

Solution. For M to be a vector space over R/\mathfrak{m} , we require multiplication to be well-defined. That is, we should have $rm = (r + \mathfrak{m})m$, or $\mathfrak{m}m = 0$. Since this is the case, M inherits a vector space structure from the module structure on R. In particular, recall that $M/\mathfrak{m}M$ has a module structure over R/\mathfrak{m} . However, we also have that $\mathfrak{m}M = 0$ so $M \cong M/\mathfrak{m}M$.

Problem .1.10. Let R be a commutative ring, and let $F = R^{\oplus B}$ be a free module over R. Let \mathfrak{m} be a maximal ideal of R, and let $k = R/\mathfrak{m}$ be the quotient field. Prove that $F/\mathfrak{m}F \cong k^{\oplus B}$ as k-vector spaces.

Solution. Consider the natural homomorphism $\varphi: F \to k^{\oplus B}$ which sends each component to its residue class mod \mathfrak{m} . The kernel of this homomorphism is the set of elements in F which are in \mathfrak{m} , or $\mathfrak{m}F$. Thus, by the first isomorphism theorem for modules, we have

$$\frac{F}{\mathfrak{m}F} \cong k^{\oplus B}$$

and we are done.

Problem .1.11. Prove that commutative rings satisfy the IBN property. (Use Proposition V.3.5 and Exercise 1.10.)

Solution. Recall that the IBN (Invariant Basis Number) property is the property that $R^m \cong R^n \iff m = n$. One direction is trivial so we only consider the other direction. Let R be a commutative ring and suppose $R^m \cong R^n$. Furthermore, let \mathfrak{m} be a maximal ideal of R^m (its existence is guaranteed by Proposition V.3.5). The isomorphism of modules $R^m \cong R^n$ induces an isomorphism of vector spaces $(R/\mathfrak{m})^m \cong (R/\mathfrak{m})^n$. Since these two finite-dimensional vector fields are isomorphic, it must be the case that m = n.

Problem .1.12. Let V be a vector space over a field k, and let $R = \operatorname{End}_{k\text{-Vect}}(V)$ be its ring of endomorphisms (cf. Exercise III.5.9). (Note that R is *not* commutative in general.)

- Prove that $\operatorname{End}_{k\text{-Vect}}(V \oplus V) \cong \mathbb{R}^4$ as an R-module.
- Prove that R does not satisfy the IBN property if $V = k^{\oplus \mathbb{N}}$.

(Note that $V \cong V \oplus V$ if $V = k^{\oplus \mathbb{N}}$.)

Solution. The endomorphism ring $\operatorname{End}_{k\text{-Vect}}(V \oplus V)$ may be thought of as the set of 2×2 matrices whose entries are themselves endomorphisms of V. That is, we have the picture

$$\operatorname{End}_{k\text{-Vect}}(V \oplus V) \cong \begin{bmatrix} \operatorname{End}_{k\text{-Vect}}(V) & \operatorname{End}_{k\text{-Vect}}(V) \\ \operatorname{End}_{k\text{-Vect}}(V) & \operatorname{End}_{k\text{-Vect}}(V) \end{bmatrix}$$

and clearly the set of matrices on the right are isomorphic to \mathbb{R}^4 . This interpretation of the endomorphism of a direct product comes from thinking of mapping the basis of each copy of V, except they can interact with each other.

If $V = k^{\oplus \mathbb{N}}$, then we find $R \cong \operatorname{End}_{k\text{-Vect}}(V \oplus V) \cong R^4$ so R does not satisfy the IBN property.

Problem .1.13. Let A be an abelian group such that $\operatorname{End}_{Ab}(A)$ is a field of characteristic 0. Prove that $A \cong \mathbb{Q}$. (Hint: Prove that A carries a \mathbb{Q} -vector space structure; what must its dimension be?)

Solution. To do. \Box