NVIDIA:A VOLATILITY STRATEGY

Tommaso Zazzaron, Federico La Penna, Tobia Gianola, Mara Popescu, Francesco Saverio Bratta, Mariela Kodzhebasheva

February 21, 2025

WHY NVIDIA?

Highly Volatile

Market Leadership in Al

Liquid Options Market

Sensible to Macro-Factors

Our Exposure

Vega Positive

Gamma Neutral

Our Hedging

Delta Neutral

Trade

What We Sell

To Our Client:

5x Double Knock-In Barrier Call

4x Down-and-In Digital Barrier Put

What We Buy

From Listed Options:

5x Strangle

From an Investment Bank:

1x Strip

What we sell

- Double Knock-In Barrier Call Options (Maturity: 3 Months):
 - Strike: \$121 Lower Barrier: \$105 Upper Barrier: \$140
 - Strike: \$120 Lower Barrier: \$108 Upper Barrier: \$142
 - Strike: \$119 Lower Barrier: \$107 Upper Barrier: \$131
- Double Knock-In Barrier Call Options (Maturity: 1 Month):
 - Strike: \$119 Lower Barrier: \$110 Upper Barrier: \$136
 - Strike: \$120 Lower Barrier: \$112 Upper Barrier: \$137
- Down-and-In Digital Barrier Put Options (Maturity: 1 Month):
 - Strike: \$100 Payout: \$20
 - Strike: \$102 Payout: \$15
 - Strike: \$108 Payout: \$10
 - Strike: \$108 Payout: \$8

What we buy

- Strangles (Maturity: 3 Months):
 - Lower Strike: \$116 Upper Strike: \$126
 - Lower Strike: \$115 Upper Strike: \$125
 - Lower Strike: \$114 Upper Strike: \$124
- Strangles (Maturity: 1 Month):
 - Lower Strike: \$112 Upper Strike: \$122
 - Lower Strike: \$115 Upper Strike: \$125
- Strip (Maturity: 1 Month):
 - Call Strike: \$118
 - Call Strike: \$122
 - Call Strike: \$124
 - Call Strike: \$125

Greeks									
	Short Long Overall strategy strategy Portfolio								
Δ	-2.3677	2.9234	0.6392						
Γ	0.0509	0.2221	0.2533						
V	270.4806	233.1494	504.0157						
Θ	130.4107	688.1608	908.0132						

INTRODUCTION STRATEGY MC MODELING LIMITS STRESS TESTS

Heston Model

$$dS_t = r_t S_t dt + \sqrt{v_t} S_t dW_t^s$$

$$dr_t = k(\Theta - r_t)dt + \sigma_r dW_t^r$$

$$dv_t = k(\Theta - v_t)dt + \sigma_v dW_t^v$$

Heston Model

$$dS_t = r_t S_t dt + \sqrt{v_t} S_t dW_t^s$$

By Euler scheme

$$S_t = S_{t-1} + r_{t-1}S_{t-1}dt + \sqrt{v_{t-1}}S_{t-1}dW_t^{S}$$

$$dW_t^S = -0.0191dW_t^r + 0.0572dW_t^{VIX} + 0.9982dW_t^{IV}$$

By Cholesky decomposition

INTRODUCTION STRATEGY MC MODELING

LIMITS

STRESS TESTS

- The P&L increases in each scenario, except when there is a decrease in volatility.
- The results are in line with our strategy of exploiting high volatility.

Sensitivity Name	Factor Sensitivity	Limit	Limit Usage (%)
All Mkt. +1%	-62.2723	1,000	6%
All Mkt. +10%	388.6390	-5,000	Not applicable
All Mkt10%	2,969.2898	-5,000	Not applicable
Vola + 1%	136.8723	2,500	5%
Vola + 20%	2,849.1473	-5,000	Not applicable
Vola - 20%	-2,401.9247	-5,000	48.04%

INTRODUCTION STRATEGY MC MODELING LIMITS STRESS TESTS

• The Hedging (Long) Strategy is more sensitive to changes in stock price and volatility that the Sold (Short) Strategy

Sensitivity Name	Gross sensitivity Long	Gross Sensitivity Short
All Mkt. +1%	-1,403.4552	-185.2792
All Mkt. +10%	646.4979	-1.784,3217
All Mkt10%	-1,124.4268	2.443,4162
Vola + 1%	-1,369.6997	-19.8901
Vola + 20%	1,642.1558	-319.4687
Vola - 20%	-4,596.7815	668.3939

INTRODUCTION STRATEGY MC MODELING LIMITS STRESS TESTS

Scenario	Volatility shock	Volatility	Simulated P&L
DeepSeek's Al Announcement *	+80%	150%	8,965.04
US-China trade war	+25%	100%	3,415.08
Nvidia becomes a mature company with stable earnings **	-60%	30%	-4,985.65
AI demand continues steadily with low stable volatility **	-85%	10%	-6,155.85

^{*} Historical scenario

^{**} Hypothetical scenario

NVIDIA becomes «mature company»

DeepSeek Al Announcement

Al demand continues steadily

B

- Extreme case: Volatility ≈ 0
- Negative P&L
- The results are in line with our strategy of exploiting high volatility and losing in cases of very low volatility

APPENDIX

APPENDIX: PAYOFF & PRICE: STRANGLE + DOUBLE BARRIER

$$cdi = S_0 e^{-qT} \cdot \left(\frac{H}{S_0}\right)^{2\lambda} \cdot N(y) - K e^{-rT} \cdot \left(\frac{H}{S_0}\right)^{2\lambda - 2} \cdot N(y - \sigma\sqrt{T})$$

$$cui = S_0 N(x_1) e^{-qT} - K e^{-rT} N(x_1 - \sigma \sqrt{T}) - S_0 e^{-qT} \left(\frac{H}{S_0}\right)^{2\lambda} \left[N(-y) - N(-y_1)\right] + k e^{-rT} \left(\frac{H}{S_0}\right)^{2\lambda - 2} \left[N(-y + \sigma \sqrt{T}) - N(-y_1 + \sigma \sqrt{T})\right]$$

$$x_1 = \frac{\ln\left(\frac{S_0}{H}\right)}{\sigma\sqrt{T}} + \lambda\sigma\sqrt{T}$$

$$y_1 = \frac{\ln\left(\frac{H}{S_0}\right)}{\sigma\sqrt{T}} + \lambda\sigma\sqrt{T}$$

PARAMETERS:
$$x_1 = \frac{\ln\left(\frac{S_0}{H}\right)}{\sigma\sqrt{T}} + \lambda\sigma\sqrt{T} \qquad y_1 = \frac{\ln\left(\frac{H}{S_0}\right)}{\sigma\sqrt{T}} + \lambda\sigma\sqrt{T} \qquad y = \frac{\ln\left(\frac{H^2}{S_0K}\right)}{\sigma\sqrt{T}} + \lambda\sigma\sqrt{T} \qquad \lambda = \frac{r - q + \frac{\sigma^2}{2}}{\sigma^2}$$

$$\lambda = \frac{r - q + \frac{\sigma^2}{2}}{\sigma^2}$$

Assumption
$$\Rightarrow c_{corridor} = \frac{cui + cdi}{2}$$

APPENDIX: PAYOFF & PRICE: DOWN-AND-IN DIGITAL PUT

$$DGT^{PUT} = ce^{-rT}(P_d - P_{bi})$$

$$P_{d} = N \left(\frac{\left(\ln \left(\frac{S_{0}}{K} \right) + r + \frac{\sigma^{2}}{2} \right)}{\sigma \sqrt{T}} \right) \qquad P_{bi} = \left(\frac{B}{S_{0}} \right)^{\frac{2\left(r - \frac{\sigma^{2}}{2}\right)}{\sigma^{2}}} N \left(\frac{\left(\ln \left(\frac{B^{2}}{S_{0}K} \right) - \frac{\sigma^{2}}{2} \right)}{\sigma \sqrt{T}} \right)$$

APPENDIX: PAYOFF & PRICE: STRIP

$$P^{strip} = \sum_{i=1}^{4} P_i^{call}$$

$$P^{call} = S_0 N(d_{1,i}) - e^{-rT} K_i N(d_{2,i})$$

$$d_{1,i} = \frac{\ln\left(\frac{S_0}{K_i}\right) + \left(r + \frac{\sigma^2}{2}\right)}{\sigma\sqrt{T}}$$

$$d_{2,i} = d_{1,i} - \sigma\sqrt{T}$$

APPENDIX: PORTFOLIO FEATURES

Number of units	Option type	Strike price	Time to expiration	Price of the strategy (BS)	Delta	Gamma	Vega	Theta	Rho
1	Double Barrier (LT)	121	0.2579	14.3411	-0.1726	-0.0074	-23.2885	0.0000	0.0000
1	Double Barrier (LT)	120	0.2579	15.8714	-0.1532	-0.0077	-24.5037	0.0000	0.0000
1	Double Barrier (ST)	119	0.0595	11.1016	-0.1650	-0.0093	-12.7809	0.0000	0.0000
1	Double Barrier (ST)	119	0.0595	11.8626	-0.1495	-0.0097	-13.4381	0.0000	0.0000
1	Double Barrier (ST)	120	0.0595	13.9180	-0.1261	-0.0090	-13.7217	0.0000	0.0000
1	Knock In Digital Put (ST)	100	0.0595	13.2276	-0.5523	0.0334	307.4115	52.4865	-43.3880
1	Knock In Digital Put (ST)	102	0.0595	10.0085	-0.4154	0.0256	22.5961	36.8790	-34.7113
1	Knock In Digital Put (ST)	108	0.0595	5.9664	-0.3334	0.0188	16.2488	21.3663	-28.8946
1	Knock In Digital Put (ST)	108	0.0595	4.3757	-0.3002	0.0163	11.9570	19.6789	-23.3647
Total				100.6729	-2.3677		270.4806		

Number of units	Option type	Strike Price Call	Strike Price Put	Time to expiration	Price of the strategy (BS)	Delta	Gamma	Vega	Theta	Rho
1	Strangle (LT)	126	116	0.2579	24.6800	0.1212	0.0214	49.6562	49.9384	-2.9425
1	Strangle (LT)	125	115	0.2579	24.0500	0.1744	0.0242	49.0918	48.8659	-0.9606
1	Strangle (ST)	124	114	0.0595	15.3900	0.1878	0.0386	26.5519	110.2331	0.6021
1	Strangle (ST)	122	112	0.0595	16.1500	0.2568	0.0349	25.6652	112.1802	1.2496
1	Strangle (ST)	125	115	0.0595	14.9700	0.1491	0.0405	26.9437	108.4943	0.2380
1	Strip	124. 122	125.118	0.0595	54.0500	2.1177	0.0428	55.6262	347.8907	17.2167
Total					149.2900	3.0070		233.5351		

APPENDIX: HESTON MODEL

Heston Model

$$dS_t = r_t S_t dt + \sqrt{v_t} S_t dW_t^s$$

$$dr_t = k(\vartheta - r_t)dt + \sigma_r dW_t^r$$

$$dW_t^s = -0.0191dW_t^r + 0.0572dW_t^{VIX} + 0.9982dW_t^{IV}$$

$$dv_t = k(\vartheta - v_t)dt + \sigma_v dW_t^v$$

$$S_t = S_{t-1} + r_{t-1}S_{t-1}dt + \sqrt{v_{t-1}}S_{t-1}dW_t^s$$

