UNIVERSIDADE DE AVEIRO

Departamento de Matemática

Exame de Recurso de Matemática Discreta (2014/2015)

13 de Julho de 2015

Justifique devidamente as suas respostas.

(Duração: 2 horas e 30 minutos)

- 1. Seja A um conjunto não vazio e $B \subseteq A$. Considere-se a relação \mathcal{R} definida em $\mathcal{P}(A)$ (conjunto das partes de A) da seguinte forma: $X\mathcal{R}Y$ se $B \cap X = B \cap Y$, com $X, Y \subseteq A$.
 - (1)a) Verifique que \mathcal{R} é uma relação de equivalência em $\mathcal{P}(A)$.
 - (1)**b**) Se $A = \{a, b, c, d\}$ e $B = \{a, b, c\}$, determine a classe de equivalência $[\{a, c\}]$.
- 2. Escreva as seguintes frases usando lógica de primeira ordem, com recurso aos predicados $Casa(x) \equiv$ "x é uma casa"; $Grande(x) \equiv$ "x é grande"; $Cara(x) \equiv$ "x é cara"; $Apartamento(x) \equiv$ "x é um apartamento"; $PreoMenor(x,y) \equiv$ "preço de x é menor do que o preço de y".
 - (1)a) Todas as casas grandes são caras.
 - (1)b) Qualquer apartamento custa menos do que uma casa grande.
- 3. (2) Mostre que num conjunto de cinco números inteiros positivos (arbitrários), existem pelo menos dois com o mesmo valor para o resto da divisão por 4.
- 4. Na prova final dos 100 metros em atletismo, participam 10 atletas.
 - (1)a) De quantas maneiras possíveis podem ser distribuídas as medalhas de ouro, prata e bronze?
 - (1)**b**) Sabendo que Usain Bolt é um dos participantes e que ganhará uma das medalhas, determine o número de maneiras de atribuição das 3 medalhas.
- 5. (3) Resolva a equação de recorrência

$$a_n = a_{n-1} + 6a_{n-2},$$

com condições iniciais $a_0 = 4$, $a_1 = 4$.

6. (3) Calcule o número de possibilidades de troca de 50 Euros em notas de 20, 10 e 5 e moedas de 2 Euros e 1 Euro, sabendo que dispõe no máximo de cinco moedas de 1 Euro, cinco moedas de 2 Euros e cinco notas de 5 Euros (não havendo qualquer limitação em relação às restantes notas).

- 7. (2) Determine o número de vértices de uma árvore com 17 vértices de grau 1 e restantes vértices de grau 5.
- 8. Considere o seguinte grafo simples G de componentes G_1 e G_2 :
 - (1)a) Verifique se o grafo G é bipartido e, no caso afirmativo, indique a respectiva bipartição. Caso contrário, justifique.
 - (1)**b)** Considere o grafo G_3 e verifique se G_1 e G_3 são isomorfos.

(2) \mathbf{c}) Determine o número de árvores abrangentes de G_1 , recorrendo à fórmula recursiva.