Cluster Analysis

7.1 - 7.3

What is Cluster Analysis?

- Cluster collection of data objects similar to others in the cluster and dissimilar to objects in other clusters
- No training data
 - costly to collect and label
 - labels are unknown
 - AI learning by observation; unsupervised learning

Clustering Applications

- Marketing
 - discovery of customer groups/demographics
- Biology
 - taxonomy derivation, gene categorization
- Outlier detection
 - Credit card fraud, network intrusion
- Data Preprocessing
 - Training data preparation

Clustering Challenges

- Scalability
 - work with entire data set
- Different data types
 - interval, binary, categorical, ordinal
- Clusters of arbitrary shape
- Input parameters for clustering algorithms
 - number of clusters, size
 - output highly sensitive
 - burden on users

Clustering Challenges

- Noisy data
- Insensitivity to incremental record entry
 - Incorporating into existing clusters vs clustering from scratch
- Insensitivity to record order
- High dimensionality
- Constraint inputs
- Usable, interpretable results

Data Structures

- Data matrix
 - \blacksquare *n* objects, *p* variables two mode
 - Representation: (n x p) matrix
- Dissimilarity matrix
 - used by most clustering algorithms
 - \blacksquare *n* objects one mode
 - Representation: (n x n) lower triangular matrix
 - cell (i, j) is the dissimilarity between object i and object j

Interval Scaled Variables

- Continuous numerical measures on a linear scale
- Standardization
 - Units matter smaller scales can give larger weight
 - Weighting may be determined by user
 - z-score with mean absolute deviation
 - mean absolute deviation s = $(1/n) * \Sigma (|x_i mean_i|)$
 - \blacksquare z-score_i \equiv x_i = mean_i / s
 - Standard deviation squares the difference exaggerates outliers

Interval Scaled Variables

■ Euclidian distance

$$d(i, j) = \sqrt{((x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{in} - x_{jn})^2)}$$

■ Manhattan (city block) distance

$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + ... + |x_{in} - x_{jn}|$$

- Minkowski distance

Binary Variables

- \blacksquare Two states simplify to 0, 1
- Dissimilarity matrix
 - q = 1 in both; r = 1 in i, 0 in j; s = 0 in i, 1 in j; t = 0 in both
- Symmetric binary both states of equal interest
 - d(i, j) = (r+s)/(q+r+s+t)
- Asymmetric binary one state more interesting
 - d(i, j) = (r+s)/(q+r+s)
 - similarity(i, j) = 1 d(i, j) = q/(q+r+s)

Categorical Variables

- Multiple distinct states
- d(i, j) = (p-m)/p
 - \blacksquare m = number of variables in i and j that match
 - p = total number of variables

Ordinal Variables

- Categorical where states are in a meaningful sequence ranking
- Map each value to its rank, r = (1, 2, ..., M)
- Scale to (0.0, 1.0), z = (r 1)/(M 1)
- Compute d(i, j) with interval-scaled methods

Ratio-Scaled Variables

- Nonlinear scale
 - Population Growth, Radioactive Decay = Ae^{Bt}
- Logarithmic Transformation
 - \bullet y = $\log_a x$
 - Treat y as interval valued
- Ordinal Data
 - Rank and interval-scale

Mixed and Vector Variables

- Mixed types normalize all to (0.0, 1.0) and process all variables together
- Vectors
 - cosine similarity measure

$$\bullet$$
 s(x, y) = (x^t · y)/(||x|| | ||y||)

- Tanimoto coefficient
 - $\bullet s(x, y) = (x^{t} \cdot y)/(x^{t} \cdot x + y^{t} \cdot y x^{t} \cdot y)$

Partitioning Methods

- k partitions of n objects; $k \le m$
- Each group has at least one object; each object in only one group
- Iterative relocation
 - Initial partitioning; relocate objects between groups
 - "good" partitioning objects in same cluster are near, objects of different clusters are far apart
 - k-means cluster represented by mean of the objects
 - k-medoids cluster represented by object near center
- "Spherical" clusters, small or medium-sized databases

Hierarchical Methods

- Agglomerative bottom-up
 - Start with each object as its own cluster; merge clusters near each other; stop when one cluster exists
- Divisive top-down
 - Start with all objects in one cluster; split into clusters furthest apart; stop when each object is its own cluster
- Splits/merges cannot be undone if done wrong

Density-Based Methods

- Increase size of a given cluster until density is below a set level
- For each data point in cluster, a minimum number of other points must exist in a certain radius
- Better at finding non-circular clusters

Grid and Model Based Methods

- Grid-Based
 - Quantize object space into finite number of cells
 - Cluster by including or excluding cells
 - Fast computation dependent on number of cells
- Model-Based
 - Hypothesize a model of each cluster
 - Density function, statistics analysis
 - Find best fit of data to model

High-Dimensional Methods

- Relevancy of dimensions
- High dimensions results in sparse data
 - Larger overall distances
 - Low density
- Subspace Clustering
 - Cluster in significant subsets of dimensions
- Frequent Pattern Clustering
 - Cluster on frequent patterns among subsets of dimensions

Constraint-Based Methods

- Constraint
 - user expectation or application-specific property of resulting clusters
- Use constraints specified by user or application
 - Starting point for clustering
 - Refine quality of resulting clusters