Sistemas de Control y Servicios

Trabajo Practico N°2 Ejercicio Nº3

Alumna: Maria Lilen Guzmán

Diseñar y simular un circuito electrónico analógico utilizando Proteus.

Amplificador inversor en base a un amplificador operacional LM741. Un amplificador inversor utilizando un amplificador operacional LM741 en Proteus es un circuito que amplifica e invierte una señal de entrada analógica, y se utiliza comúnmente en aplicaciones de amplificación de señales.

El funcionamiento del amplificador inversor es el siguiente:

- La señal de entrada que deseamos amplificar se conecta a la entrada inversora (-) del amplificador operacional. En un amplificador inversor, esta entrada es la que se utiliza para aplicar la señal que se amplificará y se invierte. La entrada no inversora (+) se conecta a tierra.
- La resistencia de entrada (R1) conecta la entrada inversora (-) a la señal de entrada. Esta resistencia determina la impedancia de entrada del amplificador y, en combinación con la resistencia de retroalimentación (R2), establece la ganancia del circuito.
- La señal de entrada es amplificada y se invierte en la salida del amplificador operacional. Esto significa que, si la señal de entrada aumenta, la señal de salida disminuirá y viceversa. La magnitud de esta inversión depende de la ganancia del amplificador inversor y puede ser ajustada mediante las resistencias R1 y R2.
- La resistencia de retroalimentación (R2) conecta la salida del amplificador operacional a la entrada inversora (-).
- La ganancia del amplificador inversor (Av) se determina por la relación de resistencia entre R1 y R2, y se calcula utilizando la fórmula Av = -R2 / R1.
 Esta ganancia determina cuánto se amplifica la señal de entrada y, como se mencionó anteriormente, también influye en la fase de la señal de salida.

Diagrama en Proteus:

En el osciloscopio se puede observar que la señal de entrada es de 5V

INSTITUTO SUPERIOR POLITÉCNICO CÓRDOBA

En la captura de pantalla del osciloscopio de Proteus, se puede observar que la señal de salida es de -10V. La señal de salida se representa como una versión amplificada e invertida de la señal de entrada, confirmando así el funcionamiento del amplificador operacional en modo inversor.

