	Ту	pe		Author	History	Citatio	n	Literature Cutoff Date			
	Full Ev	aluation Y	u. Khazov a	nd A. Rodionov, F.	G. Konde	NDS 112, 85	5 (2011)	31-Oct-2010			
Note: Current	evaluatio	n has used t	the following	0.3 23; $Q(\alpha) = -1282$ Q record. 21; $Q(\alpha) = -1282.7$		2012Wa38 9AuZZ					
				13	³ Ba Level	<u>s</u>					
				Cross Refe	rence (XF	EF) Flags					
			B 133	Ba IT decay La ε decay (3.912 ISn(12 C,3n γ)	D E	¹²⁴ Sn(¹³ C,4nγ) ¹³² Ba(pol d,p) E	=12 MeV				
E(level) [†]	J^{π}	T _{1/2}	XREF			Comm	nents				
0.0‡	1/2+	10.551 y	ABCDE	d,p). T _{1/2} : weighted av 3849.1 d <i>18</i> (19 43 (1983Ki08), (1979HaYC), 3 (1961Wy01). C 36 (1992Un01,	verage of 3 997Ma75, 3848.0 d 981 d <i>37</i> 0thers: 384 supersede	3840.3 d 89 (2010) the uncertainty is 33 (1980Ho17, th (1972Em01), 389 40.5 d 65 (2004Sc) d by 2002Un02),	OSc08), 38 3σ), 384 ne uncerta 4 d 44 (19 1004, supera 3828 d 1	by (1978No09), L=0 in (pol 354.7 d 28 (2002Un02), 2 d 18 (1983Wa26), 3885.9 d inty is 3\sigma), 3850 d 55 968Re04), 3908 d 73 seded by 2010Sc08), 3853.6 d 1 (1982HoZJ, superseded by 10Wa19, superseded by			
				1983Wa26), an μ : trapped ion speconfiguration: doi	d 2849 d . ectroscopy	37 (1968La10).		· · · · · · · · · · · · · · · · · · ·			
12.327# 6	3/2+	7.0 ns <i>3</i>	ABCDE	20 (1965Th05) (1980Mi13). μ: from x-ray hyp μ=+0.51 7 of 1	verage of ', delayed operfine shi	7.3 ns 5 (1981An1 coincidences; value ft measurements 1.	17), 6.8 ns nes differ s	is 4 (1979An06) and 8.1 ns strongly from $T_{1/2}$ =18.0 ns 4 (corrected previous value			
288.252 ^d 9	11/2-	38.93 h 10	O ABCDE	configuration: dominant $v(d_{3/2}^{-1})$. % ε =0.0104 5; %IT=99.9896 5 μ =0.91 5; Q=0.89 7 % ε ,%IT: from Iy(632.5, \(^{133}\text{Cs}\))Iy(275.9, \(^{133}\text{Ba}\))=0.00058 4: weighted average of 0.00061 3 (1971\text{Su04}\)), 0.00049 5 (1980\text{AnZG}) and, 0.00055 10 (1969\text{Be76}\)). J ^{\pi} : laser spectroscopy (1978\text{No09}\)), 275.9 γ M4 to 3/2+; L=5 in (pol d,p); μ ,Q: from collinear fast beam laser spectroscopy (1983\text{Mu12}\)); μ =-0.91 4, Q=1.08 3 (1979\text{Be25}\)). T _{1/2} : weighted average of 38.92 h 9 (2011\text{Gr01}\)), 38.9 h 1 (1960\text{Wi10}\)) and 40.0 h 5 (1941\text{Co03}\)). Other: 38.05 h 4 (1980\text{AnZG}\)) and 42.5 h (1951\text{Hi52}\)). configuration: $v(h_{11/2}^{-1})$.							
291.188 [‡] 9 302.395 <i>11</i>	5/2 ⁺ 3/2 ⁺		BCD BC E	J^{π} : 291.17 γ E2 to	$1/2^+$ g.s.); direct f	eeding in 133 La ε decay			
539.799 <i>13</i>	1/2+		в Е	$(J^{\pi}=5/2^{\frac{1}{4}}).$ XREF: E(500). J^{π} : 527.464 γ M1 E(level): probably				a ε decay $(J^{\pi}=5/2^{+})$. (pol d,p).			

133Ba Levels (continued)

E(level) [†]	J^π	XREF	Comments
577.555 [#] 13	7/2+	BCD	J^{π} : 565.231 γ E2 to 3/2 ⁺ ; direct feeding in ¹³³ La ε decay (J^{π} =5/2 ⁺).
630.568 10	5/2+	B E	J^{π} : 618.241 γ M1 to 3/2 ⁺ , 630.578 γ E2 to 1/2 ⁺ ; L=2 in (pol d,p).
676.488 <i>12</i>	3/2+,5/2+	B E	XREF: E(674.3).
791.1 <i>5</i>	7/2-	E	J^{π} : L=2 in (pol d,p); 676.47 γ M1,E2 to 1/2 ⁺ , 374.13 γ to 3/2 ⁺ . J^{π} : L=3 in (pol d,p).
858.499 <i>11</i>	3/2+	B E	J^{π} : 858.496 γ M1+E2 to 1/2+; L=2 in (pol d,p).
862.80 9	$(7/2)^+$	В	J^{π} : 850.43 γ M1,E2 to 3/2 ⁺ ; direct population in ¹³³ La ε decay (J^{π} =5/2 ⁺); non observation of γ to 1/2 ⁺ g.s. would argue against 3/2 ⁺ and 5/2 ⁺ .
883.39 [‡] 4	9/2+	B D	J^{π} : 592.22 γ E2 to 5/2 ⁺ , 305.9 γ (M1) to 7/2 ⁺ .
887.135 <i>12</i>	5/2+	B E	XREF: E(886.0).
901.80 <mark>e</mark> 8	13/2-	CD	J^{π} : 584.734 γ M1+E2 to 3/2 ⁺ ; L=2 in (pol d,p). J^{π} : 613.6 γ M1+E2 to 11/2 ⁻ , band assignment.
923.957 10	5/2 ⁺	В	J^{π} : 923.9 γ to 1/2 ⁺ g.s., 632.765 γ M1 to 5/2 ⁺ , 428.70 γ M1 from 7/2 ⁺ , direct
,20,,07, 10	<i>3,2</i>	_	population in ¹³³ La ε decay $(J^{\pi}=5/2^+)$.
968.97 ^d 8	15/2-	CD	J^{π} : 680.7 γ E2 to 11/2 ⁻ ; band assignment.
969.4 5		E	
1021.584 23	3/2+	В	J^{π} : 1021.62 γ to 1/2 ⁺ g.s., 1009.31 γ M1 to 3/2 ⁺ ; population in ¹³³ La ε decay (J^{π} =5/2 ⁺).
1066.8 <i>5</i> 1111.2 <i>5</i>	5/2- 7/2-	E E	J^{π} : L=3 in (pol d,p).
1111.2 <i>3</i> 1112.346 <i>12</i>	5/2 ⁻ ,7/2 ⁻ 3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺	В	J^{π} : 821.13 γ M1 to 5/2 ⁺ ; direct population in ¹³³ La ε decay (J^{π} =5/2 ⁺).
1211.792 12	3/2+,5/2+	ВЕ	J^{π} : 909.27 γ M1 to 3/2 ⁺ , 920.623 γ M1 to 5/2 ⁺ .
1247.7 5	1/2+	E	J^{π} : L=0 in (pol d,p).
1271.3 5	7/2-	E	J^{π} : L=3 in (pol d,p).
1283.959 24	3/2 ⁻	ВЕ	J^{π} : 1283.952 γ (E1) to 1/2+ g.s.; L=1 in (pol d,p).
1329.319 18	5/2+	ВЕ	J^{π} : 751.753 γ M1 to 7/2 ⁺ , 1329.33 γ to 1/2 ⁺ g.s.; 445.3 γ (E2) to 9/2 ⁺ ; direct population in ¹³³ La ε decay (J^{π} =5/2 ⁺).
1329.5 <i>5</i> 1352.76 <i>5</i>	7/2 ⁻ 7/2 ⁺	E B	J^{π} : L=3 in (pol d,p). J^{π} : 1061.56 γ M1+E2 to 5/2 ⁺ and 428.7 γ M1 to 9/2 ⁺ .
1375.65 [#] 7	11/2 ⁺	D	J^{π} : 798.0 γ E2 to $7/2^+$; 492.4 γ (M1) to $9/2^+$.
15/3.03 /	11/2	E	J: 798.07 E2 to 7/2; 492.47 (N11) to 9/2.
1528.64 9	3/2,5/2+	В	J^{π} : 1528.62 γ to 1/2 ⁺ ; direct population in ¹³³ La ε decay (J^{π} =5/2 ⁺).
1528.99 ⁸ 9	15/2-	CD	J^{π} : 627.3 γ M1+E2 γ to 13/2 $^{-}$; band assignment.
1532.40 8	3/2,5/2,7/2+	В	J^{π} : 1230.06 γ to 3/2 ⁺ , 1241.04 γ to 5/2 ⁺ ; direct population in ¹³³ La ε decay (J^{π} =5/2 ⁺).
1563.399 24	5/2+	ВЕ	J^{π} : 932.98 γ M1 to 5/2 ⁺ , 1563.36 γ to 1/2 ⁺ ; L=2 in (pol d,p).
1582.7 <i>5</i> 1620.58 <i>3</i>	1/2 ⁻ 5/2 ⁺	E B E	J^{π} : L=1 in (pol d,p). XREF: E(1616.1).
1020.000	<i>5,2</i>		J^{π} : 1043.02 γ M1 to 7/2 ⁺ , 1620.9 γ to 1/2 ⁺ ; direct population in ¹³³ La ε decay
			$(J^{\pi}=5/2^{+}).$
1633.08 [‡] 8	13/2+	D	J^{π} : 257.5 γ M1+E2 to 11/2 ⁺ , 749.6 γ E2 to 9/2 ⁺ .
1689.75 <i>6</i>	3/2+,5/2,7/2+	В	J^{π} : 1387.41 γ to 3/2 ⁺ , 1111.9 γ to 7/2 ⁺ ; direct population in ¹³³ La ε decay ($J^{\pi}=5/2^{+}$).
1706.93 <i>16</i>	3/2,5/2+	ВЕ	XREF: E(1704.7). J^{π} : 1706.7 γ to 1/2 ⁺ ; direct population in ¹³³ La ε decay (J^{π} =5/2 ⁺).
1712.75 ^e 8	17/2-	CD	J^{π} : 743.8 γ M1+E2 to 15/2 ⁻ , 810.9 γ E2 to 13/2 ⁻ .
1769.61 <i>6</i>	3/2,5/2+	В	J^{π} : 1769.6 γ to 1/2 ⁺ ; 1478.72 γ to 5/2 ⁺ ; direct population in ¹³³ La ε decay (J^{π} =5/2 ⁺).
1770.9 <i>5</i> 1830.22 <i>3</i>	5/2 ⁻ 3/2,5/2 ⁺	E B E	J^{π} : L=3 in (pol d,p). XREF: E(1833.7).
1030.22 3	3/2,3/2	D E	J ^{π} : 1830.21 γ to 1/2 ⁺ ; direct population in ¹³³ La ε decay (J ^{π} =5/2 ⁺).
1859.11 <mark>d</mark> 9	19/2-	CD	J^{π} : 146.4 γ (M1) to 17/2 ⁻ , 890.1 γ E2 to 15/2 ⁻ .
1872.4 5	-> -	E	V. 1.5 () to 11/2 , 0.70.1/ 12 to 10/2 .
1938.3 5		E	

133Ba Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
1942.07 ^a 9	19/2+	3.5 ns 15	CD	J^{π} : 229.2 γ E1 to 17/2 ⁻ ; band assignment. $T_{1/2}$: authors (1975Gi11) give 2 to 5 ns in 124 Sn(12 C,3n γ). configuration: Probable a mixture of ν ($s_{1/2}^{-1}$, $h_{11/2}^{-2}$) and ν ($d_{3/2}^{-1}$, $h_{11/2}^{-1}$).
1968.2 <i>5</i> 2017.0 <i>5</i>	7/2-		E E	Configuration. Probable a finiture of $V(s_{1/2}, n_{11/2})$ and $V(d_{3/2}, n_{11/2})$. J^{π} : L=3 in (pol d,p).
2025.1 <i>5</i> 2036.19 <i>11</i> 2075.8 <i>5</i>	17/2 ⁻ 3/2 ⁻		E D E	J^{π} : 507.2 γ and 1067.2 γ M1+E2 to 15/2 ⁻ . J^{π} : L=1 in (pol d,p).
2101.3 <i>5</i> 2113.4 <i>5</i>	3/2-		E E	J^{π} : L=1 in (pol d,p).
2142.2 <i>5</i> 2170.74 ⁸ <i>9</i> 2171.2 <i>5</i>	(7/2 ⁻) 19/2 ⁻ 5/2 ⁻		E CD E	J^{π} : L=(3) in (pol d,p). J^{π} : 458.0γ D to 17/2 ⁻ , stretched 641.9γ E2 (ΔJ=2) to 15/2 ⁻ . J^{π} : L=3 in (pol d,p).
2210.97 [#] 10 2223.0 5	15/2+		D E	J^{π} : 577.9 γ (M1) to 13/2 ⁺ , 835.3 γ E2 to 11/2 ⁺ .
2245.3 <i>5</i> 2266.9 <i>5</i> 2288.1 <i>5</i>	7/2-		E E E	J^{π} : L=3 in (pol d,p).
2325.3 <i>5</i> 2338.8 <i>5</i>			E E	
2366.04 ^a 11 2381.97 ^b 14	23/2 ⁺ 21/2 ⁺		CD CD	J^{π} : 432.9 γ E2 to 19/2 ⁺ ; band assignment. J^{π} : 439.9 γ M1+E2 to 19/2 ⁺ ; band assignment.
2409 20	21/2		E	J . 437.77 WITTEZ to 17/2 , band assignment.
2447.22 [‡] 10	17/2+		D	J^{π} : 814.1 γ E2 to 13/2+; band assignment.
2495.99 <i>12</i> 2509.26 ⁸ <i>9</i>	$(21/2^+)$ $21/2^-$		CD CD	J^{π} : 554.0 γ (M1+E2) to 19/2 $^{+}$, decay pattern. J^{π} : 650.2 γ M1+E2 to 19/2 $^{-}$, 796.5 γ E2 to 17/2 $^{-}$.
2526.47 11	19/2-		D	J^{π} : 997.4 γ E2 to 15/2 ⁻ , 813.8 γ M1+E2 to 17/2 ⁻ .
2671.17 ^e 11 2830.44 ^g 10	21/2 ⁻ 23/2 ⁻		D CD	J^{π} : 958.3 γ E2 to 17/2 $^{-}$, 812.0 γ (M1+E2) to 19/2 $^{-}$. J^{π} : 659.6 γ E2 to 19/2 $^{-}$, 321.3 γ (M1) to 21/2 $^{-}$.
2831.10 ⁱ 12 2862.15 11	19/2 ⁽⁺⁾ 21/2 ⁺		D D	J^{π} : 1118.4 γ stretched D to 17/2 $^-$. J^{π} : 920.1 γ (M1+E2) to 19/2 $^+$, 252.9 γ D (ΔJ=0) from 21/2 $^+$.
2890.38 ^d 10 2966.3 4	23/2 ⁻ 21/2 ⁻		D D	J^{π} : 1031.1 γ E2 to 19/2 $^{-}$, 219.2 γ M1+E2 to 21/2 $^{-}$. J^{π} : 930.0 γ E2 to 17/2 $^{-}$; 440.0 γ to 19/2 $^{-}$.
2978.2 5	19/2		CD	E(level): level fed by the 137.0γ from $21/2^+$ level at 3115 keV.
3062.94 ⁱ 11	21/2 ⁽⁺⁾		D	J^{π} : 1203.9 γ D to 19/2 $^{-}$, 231.9 γ D to 19/2 $^{(+)}$.
3103.80 ^b 12 3115.16 [@] 9	25/2 ⁺		CD	J^{π} : 737.8 γ M1+E2 to 23/2 $^{+}$.
3115.16 9 3246.51 <i>10</i>	21/2 ⁺ 23/2 ⁺		D CD	J^{π} : 667.9 γ E2 to 17/2 ⁺ , and 1173.3 γ D to 19/2 ⁺ ; band assignment. J^{π} : 1304.2 γ E2 to 19/2 ⁺ , 131.4 γ (M1) to 21/2 ⁺ .
3255.92 ⁸ 10	25/2 ⁻		CD	J^{π} : 746.6 γ E2 to $21/2^{-}$, 425.5 γ M1+E2 to $23/2^{-}$.
3345.94 ^a 12	27/2+		CD	J^{π} : 979.2 γ E2 to 23/2 ⁺ ; band assignment.
3373.60 ⁱ 12	$23/2^{(+)}$		D	J^{π} : 702.3 γ (E1) to 21/2 ⁻ ; 310.8 γ to 21/2 ⁽⁺⁾ ; band assignment.
3433.71 [@] 12	25/2 ⁺		D	J^{π} : 187.2 γ (M1) to 23/2+; band assignment.
3545.92 ^g 11 3582.69 ^f 11	27/2 ⁻ 27/2 ⁻		D CD	J^{π} : 715.6 γ E2 to 23/2 $^{-}$, 290.0 γ (M1) to 25/2 $^{-}$. J^{π} : 752.3 γ E2 to 23/2 $^{-}$, 326.8 γ (M1) to 25/2 $^{-}$; band assignment.
3646.41 <i>13</i>	$(25/2)^+$		D	J^{π} : 1280.3 γ M1+E2 to 23/2 ⁺ .
3688.41 ^e 14	$(25/2^{-})$		D	J^{π} : 798.0 γ to 21/2 ⁻ , 1018.0 γ to 21/2 ⁻ ; band assignment.
3700.60^{i} 16	25/2 ⁽⁺⁾		D	J^{π} : 327.0 γ (M1) to 23/2 ⁽⁺⁾ ; band assignment.
3709.90 <i>16</i> 3710.68 <i>2 12</i>	(25/2) 27/2 ⁺		D	J^{π} : 336.3 γ D to 23/2 ⁽⁺⁾ . J^{π} : 276.9 γ (M1) to 25/2 ⁺ ; band assignment.
3710.68^{20} 12 3838.92^{b} 14	27/2* 29/2 ⁺		D D	J^{π} : 493.1 γ (M1) to 27/2 $^{+}$, 735.0 γ to 25/2 $^{+}$; band assignment.
3967.85 15	2) 2		D	3. 175.17 (311) to 21/2, 155.07 to 25/2, band assignment.

133Ba Levels (continued)

E(level) [†]	J^π	XREF	Comments
3987.98 ^d 14	$27/2^{-}$	D	J^{π} : 1097.6 γ E2 to 17/2 ⁻ ; band assignment.
4084.6 ⁱ 4	27/2 ⁽⁺⁾	D	J^{π} : 384.0 γ (M1) to 25/2 ⁽⁺⁾ , 711.0 γ to 23/2 ⁽⁺⁾ ; band assignment.
4145.58 <i>14</i>	29/2+	D	J^{π} : 1041.8 γ E2 to 25/2+, 799.6 γ to 27/2+.
4179.06 [@] <i>14</i>	$29/2^{+}$	D	J^{π} : 468.4 γ (M1) to 27/2 ⁺ ; band assignment.
4194.42 ⁸ 13	$29/2^{-}$	D	J^{π} : 938.4 γ E2 to 25/2 ⁻ ; band assignment.
4203.20 ^a 14	31/2+	D	J^{π} : 857.2 γ E2 to 27/2+; band assignment.
4223.82 <i>13</i>	$(29/2^+)$	D	J^{π} : 513.1 γ (M1) to 27/2 ⁺ .
4242.86 ^f 12	31/2-	D	J^{π} : 660.1 γ E2 to 27/2 $^{-}$; band assignment.
4255.82 <i>13</i> 4402.41 <i>15</i>	29/2 ⁺ (27/2)	D D	J^{π} : 545.1 γ (M1) to 27/2 ⁺ , 1152.1 γ to 25/2 ⁺ . J^{π} : 756.0 γ to 25/2 ⁺ ; population intensity of this level in 124SN(13C,4NG).
4421.91 ⁸ 12	$31/2^{-}$	D	J^{π} : 839.4 γ E2 to 27/2 ⁻ ; 227.4 γ (M1) to 29/2 ⁻ ; band assignment.
4425.08 13	$(27/2^+)$	D	J^{π} : 778.6 γ and 1321.3 γ stretched D to 25/2 ⁺ .
4485.34 <i>13</i>	31/2+	D	J^{π} : 261.4 γ (M1) to 29/2+, 774.7 γ and 1139.3 γ E2 to 27/2+.
4500.6 ⁱ 7	$29/2^{(+)}$	D	J^{π} : 416.0 γ to 27/2 ⁽⁺⁾ ; band assignment.
4502.44 ^{&} 13	$31/2^{+}$	D	J^{π} : 791.7 γ E2 to 27/2 ⁺ , 323.5 γ (M1) to 29/2 ⁺ ; band assignment.
4633.61 18	(29/2)	D	J^{π} : 1051.0 γ to 27/2 $^{-}$.
4657.81 ^c 12	29/2-	D	J^{π} : 1075.1 γ M1+E2 to 27/2 $^{-}$, 1311.9 γ D to 27/2 $^{+}$; band assignment.
4824.51 ^c 15	31/2-	D	J^{π} : 166.7 γ D to 29/2 $^{-}$; band assignment.
4830.57 ^b 14	33/2+	D	J^{π} : 627.3 γ (M1) to 31/2 ⁺ ; band assignment.
5001.45 [@] 15	33/2+	D	J^{π} : 822.3 γ E2 to 29/2+, 499.1 γ (M1) to 31/2+; band assignment.
5058.11 ^c 18	33/2-	D	J^{π} : 233.6 γ (M1) to 31/2 ⁻ ; band assignment.
5174.16 <i>15</i> 5242.24 ^a <i>15</i>	33/2 ⁺ 35/2 ⁺	D D	J^{π} : 918.4 γ E2 to 29/2 ⁺ . J^{π} : 411.6 γ (M1) to 33/2 ⁺ , 1039.0 γ E2 to 31/2 ⁺ ; band assignment.
5263.4 ⁸ 6	$(33/2^{-})$	D	J^{π} : 1069.0 γ to 29/2 ⁻ ; band assignment.
5350.41° 21	35/2	D	J^{π} : 292.3 γ (M1) to 33/2 ⁻ ; band assignment.
5391.72 ⁸ 13	35/2-	D	J^{π} : 969.8 γ and 1148.9 γ E2 to 31/2 ⁻ ; band assignment.
5417.80 <mark>&</mark> <i>14</i>	$35/2^{+}$	D	J^{π} : 915.5 γ and 932.3 γ E2 to 31/2 ⁺ , 415.9 γ (M1) to 33/2 ⁺ ; band assignment.
5430.11 ^h 14	$33/2^{-}$	D	J^{π} : 1187.2 γ M1+E2 to 31/2 ⁻ ; band assignment.
5465.17 <i>17</i>	$(35/2)^+$	D	J^{π} : 634.6 γ M1+E2 to 33/2 ⁺ .
5520.56 ^f 15	$35/2^{-}$	D	J^{π} : 1278.0 γ E2 to 31/2 ⁻ ; band assignment.
5661.86 ^h <i>14</i>	$35/2^{-}$	D	J^{π} : 1419.0 γ E2 to 31/2 ⁻ ; band assignment.
5735.61 ^c 23	$37/2^{-}$	D	J^{π} : 385.2 γ to 33/2 ⁻ ; band assignment.
5858.16 ^b 16	$37/2^{+}$	D	J^{π} : 1027.7 γ E2 to 33/2 ⁺ , 615.8 γ (M1) to 35/2 ⁺ ; band assignment.
5936.24 [@] <i>16</i>	$37/2^{+}$	D	J^{π} : 518.3 γ (M1) to 35/2 ⁺ , 935.0 γ to 33/2 ⁺ ; band assignment.
5983.71 ^h <i>14</i>	$37/2^{-}$	D	J^{π} : 463.1 γ and 592.1 γ (M1) to 35/2 $^{-}$; band assignment.
6237.0° 3	39/2-	D	J^{π} : 501.4 γ (M1) to 37/2 ⁻ ; band assignment.
6277.35 ^a 17	39/2 ⁺	D	J^{π} : 419.2 γ (M1) to 37/2 ⁺ , 1035.1 γ E2 to 35/2 ⁺ ; band assignment.
6307.92 ^h 15	39/2-	D	J^{π} : 324.3 γ (M1) to 37/2 ⁻ , 916.2 γ E2 to 35/2 ⁺ ; band assignment.
6366.90 ^g 14	39/2-	D	J^{π} : 383.1 γ to 37/2 ⁻ , 846.4 γ E2 to 35/2 ⁻ ; band assignment.
6425.78 ^{&} 16	39/2 ⁺	D	J^{π} : 489.4 γ to 37/2 ⁺ , 1008.1 γ E2 to 35/2 ⁺ ; band assignment.
6546.16 <i>19</i>	41/0-	D	TT 000 5 1 144 5 (051) 1 00 00 1 1 1 1
6749.51 ^h 16 6818.0 ^c 3	41/2-	D	J^{π} : 382.5 γ and 441.7 γ (M1) to 39/2 $^{-}$; band assignment.
6818.0° 3 6955.08 [@] 18	41/2+	D	J^{π} : 581.0 γ (M1) to 39/2 $^{-}$, 1081.5 γ to 37/2 $^{-}$; band assignment.
6955.08 18 6980.56 19	41/2+	D	J^{π} : 529.3 γ to 39/2 ⁺ ; band assignment.
	$(41/2^+)$	D	J^{π} : 703.2 γ to 39/2 ⁺ ; band assignment.
7217.71 ^h 19 7421.0 ^c 4	43/2-	D	J^{π} : 468.2 γ (M1) to 41/2 $^{-}$; band assignment.
7421.0° 4 7431.38 ^{&} 18	43/2-	D	J^{π} : 603.0 γ (M1) to 41/2 $^{-}$, 1184.0 γ to 39/2 $^{-}$; band assignment.
/431.38° 18	$(43/2^+)$	D	J^{π} : 476.3 γ to 41/2 ⁺ , 1005.6 γ to 39/2 ⁺ ; band assignment.

¹³³Ba Levels (continued)

```
E(level)
                                                                                                          Comments
                                             J^{\pi}: 1308.5\gamma to 39/2<sup>+</sup>; band assignment.
7585.86<sup>a</sup> 19
8052.0° 5
                                             J^{\pi}: 631.0\gamma (M1) to 43/2^{-}, 1234.0\gamma to 41/2^{-}; band assignment.
                                     D
  <sup>†</sup> From a least-squares fit to Ey's.
```

[‡] Band(A): based on $1/2^+$ state, $\alpha = +1/2$; Dominant $\nu(s_{1/2})^{-1}$ configuration.

[#] Band(B): based on $3/2^+$ state, $\alpha = -1/2$; Dominant $\nu(d_{3/2})^{-1}$ configuration.

[@] Band(C): Based on $21/2^+$ state, $\alpha = +1/2$; probable configuration= $\nu(h_{11/2})^{-1} \otimes \pi(h_{11/2}^{-1}, g_{7/2}^{-1})$.

[&]amp; Band(D): Based on 23/2⁺ state, $\alpha = -1/2$; probable configuration= $\nu(h_{11/2})^{-1} \otimes \pi(h_{11/2}^{-1}, g_{7/2}^{-1})$.

^a Band(E): Based on 19/2⁺ state, $\alpha = -1/2$; probable a mixture of $\nu(s_{1/2}^{-1}, h_{11/2}^{-2})$ and $\nu(d_{3/2}^{-1}, h_{11/2}^{-2})$ configurations. ^b Band(F): Based on 21/2⁺ state, $\alpha = +1/2$; probable a mixture of $\nu(s_{1/2}^{-1}, h_{11/2}^{-2})$ and $\nu(d_{3/2}^{-1}, h_{11/2}^{-2})$ configurations.

^c Band(G): based on 29/2⁻ state.

^d Band(H): Based on $11/2^-$ state, $\alpha = -1/2$; configuration= $\nu(h_{11/2})^{-1}$.

^e Band(I): Based on $13/2^-$ state, $\alpha = +1/2$; configuration= $\nu(h_{11/2})^{-1}$.

^f Band(J): based on 27/2⁻ state.

^g Band(K): based on 15/2⁻ state.

 $[^]h$ Band(L): band L based on $33/2^-$ state.

ⁱ Band(M): Based on $19/2^{(+)}$ state; probable configuration= $\nu(h_{11/2})^{-1}\otimes\pi(h_{11/2}^{-1},d_{5/2}^{-1})$.

$\gamma(^{133}\text{Ba})$

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\ddagger}$	$_{\mathrm{I}_{\gamma}}{^{\ddagger}}$	E_f	\mathbf{J}_f^π	Mult.	$\delta^{ extbf{@}}$	$lpha^\dagger$	Comments
12.327	3/2+	12.327 6	100 6	0.0	1/2+	M1+E2	≤0.013	69.5 19	B(M1)(W.u.)>0.023; B(E2)(W.u.)<18 α (L)=55.2 <i>15</i> ; α (M)=11.4 <i>3</i> ; α (N+)=2.86 8 α (N)=2.46 7; α (O)=0.373 9; α (P)=0.0261 4 Mult.,δ: L1:L2:L3=100:9.6 20:3.1 15 (1965TH05); α (exp)=65 3 (1980Mi13); maximum possible E2 admixture of δ^2 =1.6×10 ⁻⁴ .
288.252	11/2-	275.925 7	100.000	12.327	3/2+	M4		4.65	$\alpha(K)$ =3.34 5; $\alpha(L)$ =1.018 15; $\alpha(M)$ =0.229 4; $\alpha(N+)$ =0.0565 8 $\alpha(N)$ =0.0491 7; $\alpha(O)$ =0.00705 10; $\alpha(P)$ =0.000352 5 B(M4)(W.u.)=1.67 4 Mult.: other: K:L:M:N=100.0 11:31.5 4:6.68 12:1.78 7 (1980VyZZ); $\alpha(K)$ exp=3.45 20 and K/L+=2.55 10 (1965Th05).
		288 1	0.036 25	0.0	1/2+	[E5]		4.08 11	$\alpha(K)=1.53$ 4; $\alpha(L)=1.97$ 6; $\alpha(M)=0.461$ 13; $\alpha(N+)=0.108$ 3 $\alpha(N)=0.096$ 3; $\alpha(O)=0.0123$ 4; $\alpha(P)=0.0001057$ 22 B(E5)(W.u.)=10 7 E _{γ} ,I _{γ} : from ¹²⁴ Sn(¹² C,3n γ).
291.188	5/2+	278.835 17	100.0 12	12.327	3/2+	M1+E2	0.9 16	0.0580 11	$\alpha(K)=0.0485$ 21; $\alpha(L)=0.0075$ 10; $\alpha(M)=0.00157$ 22; $\alpha(N+)=0.00039$ 5 $\alpha(N)=0.00034$ 5; $\alpha(O)=5.0\times10^{-5}$ 5; $\alpha(P)=3.0\times10^{-6}$ 4 δ : calculated by evaluators with BrIccMixing program from ce(K)=100×10 ¹ 15, ce(L)=145 25, and ce(M)=35 6 (1966Ha23).
		291.17 5	17.4 3	0.0	1/2+	(E2)		0.0497	$\alpha(K)=0.0403 \ 6; \ \alpha(L)=0.00743 \ 11; \ \alpha(M)=0.001568 \ 22; \ \alpha(N+)=0.000382 \ 6 \ \alpha(N)=0.000332 \ 5; \ \alpha(O)=4.76\times10^{-5} \ 7; \ \alpha(P)=2.28\times10^{-6} \ 4$
302.395	3/2+	290.06 5	85.7 8	12.327	3/2+	M1+E2	1.0 12	0.0516 15	$\alpha(K) = 0.0431 \ 24$; $\alpha(L) = 0.0067 \ 8$; $\alpha(M) = 0.00141 \ 19$; $\alpha(N+) = 0.00035 \ 4$ $\alpha(N) = 0.00030 \ 4$; $\alpha(O) = 4.4 \times 10^{-5} \ 4$; $\alpha(P) = 2.6 \times 10^{-6} \ 4$ δ : Calculated by evaluators with BrIccMixing program from $ce(K) = 520 \ 80$, $ce(L1) = 70 \ 10$ and $ce(M) = 18 \ 3 \ (1966 Ha23)$.
		302.38 4	100.0 11	0.0	1/2+	M1		0.0475	$\alpha(K)$ =0.0408 6; $\alpha(L)$ =0.00534 8; $\alpha(M)$ =0.001098 16; $\alpha(N+)$ =0.000276 4 $\alpha(N)$ =0.000237 4; $\alpha(O)$ =3.63×10 ⁻⁵ 5; $\alpha(P)$ =2.66×10 ⁻⁶ 4
539.799	1/2+	527.464 15	100	12.327	3/2+	M1,E2		0.0100 <i>16</i>	$\alpha(K)$ =0.0085 14; $\alpha(L)$ =0.00117 11; $\alpha(M)$ =0.000242 21; $\alpha(N+)$ =6.0×10 ⁻⁵ 6
577.555	7/2+	286.4 4	5.65 19	291.188	5/2+	M1+E2		0.0536 14	$\alpha(N)=5.2\times10^{-5} 5$; $\alpha(O)=7.9\times10^{-6} 9$; $\alpha(P)=5.4\times10^{-7} 11$ $\alpha(K)=0.0447 24$; $\alpha(L)=0.0070 9$; $\alpha(M)=0.00147 20$; $\alpha(N+)=0.00036 5$
		565.231 20	100 2	12.327	3/2+	E2		0.00708 10	$\begin{array}{l} \alpha(\mathrm{N}) = 0.00031 \ 4; \ \alpha(\mathrm{O}) = 4.6 \times 10^{-5} \ 5; \ \alpha(\mathrm{P}) = 2.7 \times 10^{-6} \ 4 \\ \alpha = 0.00708 \ 10; \ \alpha(\mathrm{K}) = 0.00598 \ 9; \ \alpha(\mathrm{L}) = 0.000872 \ 13; \\ \alpha(\mathrm{M}) = 0.000181 \ 3; \ \alpha(\mathrm{N}+) = 4.49 \times 10^{-5} \ 7 \\ \alpha(\mathrm{N}) = 3.87 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 5.78 \times 10^{-6} \ 8; \ \alpha(\mathrm{P}) = 3.63 \times 10^{-7} \ 5 \end{array}$

6

$\gamma(^{133}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
630.568	5/2+	328.18 <i>3</i>	3.62 21	302.395	3/2+	M1+E2	0.0362 23	$\alpha(K)$ =0.030 3; $\alpha(L)$ =0.0046 3; $\alpha(M)$ =0.00095 8; $\alpha(N+)$ =0.000236 15 $\alpha(N)$ =0.000204 14; $\alpha(O)$ =3.04×10 ⁻⁵ 12; $\alpha(P)$ =1.9×10 ⁻⁶ 3
		339.35 4	5.0 5	291.188	5/2+	M1+E2	0.0329 23	$\alpha(K)$ =0.028 3; $\alpha(L)$ =0.00414 21; $\alpha(M)$ =0.00086 6; $\alpha(N+)$ =0.000213 11
		618.241 <i>11</i>	100 3	12.327	3/2+	M1	0.00781 11	$\alpha(N)=0.000184$ 10; $\alpha(O)=2.74\times10^{-5}$ 8; $\alpha(P)=1.7\times10^{-6}$ 3 $\alpha=0.00781$ 11; $\alpha(K)=0.00673$ 10; $\alpha(L)=0.000859$ 12; $\alpha(M)=0.0001764$ 25; $\alpha(N+)=4.44\times10^{-5}$
		630.578 25	17.0 6	0.0	1/2+	E2	0.00533 8	$\alpha(N)=3.81\times10^{-5}$ 6; $\alpha(O)=5.85\times10^{-6}$ 9; $\alpha(P)=4.34\times10^{-7}$ 6 $\alpha=0.00533$ 8; $\alpha(K)=0.00452$ 7; $\alpha(L)=0.000643$ 9; $\alpha(M)=0.0001332$ 19; $\alpha(N+)=3.31\times10^{-5}$ 5
676.488	3/2+,5/2+	136.7 2	21 8	539.799		M1,E2	0.52 12	$\alpha(N)=2.85\times10^{-5} 4$; $\alpha(O)=4.27\times10^{-6} 6$; $\alpha(P)=2.76\times10^{-7} 4$ $\alpha(K)=0.40 6$; $\alpha(L)=0.10 5$; $\alpha(M)=0.020 11$; $\alpha(N+)=0.005 3$ $\alpha(N)=0.0043 23$; $\alpha(O)=0.0006 3$; $\alpha(P)=2.27\times10^{-5} 5$
		374.13 <i>9</i> 385.295 <i>14</i>	8.8 <i>13</i> 82 <i>3</i>	302.395 291.188		M1+E2	0.0231 23	$\alpha(K)$ =0.0196 23; $\alpha(L)$ =0.00283 4; $\alpha(M)$ =0.000588 10; $\alpha(N+)$ =0.0001461 21
		664.21 <i>13</i>	100 4	12.327	3/2+	M1+E2	0.0056 10	$\alpha(N)=0.0001260\ 18;\ \alpha(O)=1.89\times10^{-5}\ 5;\ \alpha(P)=1.22\times10^{-6}\ 21$ $\alpha=0.0056\ 10;\ \alpha(K)=0.0048\ 9;\ \alpha(L)=0.00064\ 9;\ \alpha(M)=0.000132\ 17;$ $\alpha(N+)=3.3\times10^{-5}\ 5$
		676.47 2	29 8	0.0	1/2+	M1,E2	0.0054 9	$\alpha(N)=2.8\times10^{-5} 4$; $\alpha(O)=4.3\times10^{-6} 6$; $\alpha(P)=3.0\times10^{-7} 6$ $\alpha=0.0054 9$; $\alpha(K)=0.0046 8$; $\alpha(L)=0.00061 8$; $\alpha(M)=0.000126 16$; $\alpha(N+)=3.1\times10^{-5} 5$
858.499	3/2+	227.82 6	1.6 3	630.568	5/2+	M1+E2	0.106 6	$\alpha(N)=2.7\times10^{-5}$ 4; $\alpha(O)=4.1\times10^{-6}$ 6; $\alpha(P)=2.9\times10^{-7}$ 6 $\alpha(K)=0.0870$ 15; $\alpha(L)=0.015$ 4; $\alpha(M)=0.0031$ 8; $\alpha(N+)=0.00077$ 18 $\alpha(N)=0.00067$ 16; $\alpha(O)=9.7\times10^{-5}$ 20; $\alpha(P)=5.2\times10^{-6}$ 5
		556.03 22	30 6	302.395	3/2+	M1+E2	0.0088 14	α =0.0088 <i>14</i> ; α (K)=0.0075 <i>13</i> ; α (L)=0.00102 <i>11</i> ; α (M)=0.000210 <i>20</i> ; α (N+)=5.2×10 ⁻⁵ <i>6</i>
		567.26 4	45 2	291.188	5/2+	M1+E2	0.0083 14	$\alpha(N)=4.5\times10^{-5}$ 5; $\alpha(O)=6.8\times10^{-6}$ 8; $\alpha(P)=4.7\times10^{-7}$ 10 $\alpha=0.0083$ 14; $\alpha(K)=0.0071$ 12; $\alpha(L)=0.00096$ 10; $\alpha(M)=0.000199$ 20; $\alpha(N+)=5.0\times10^{-5}$ 6
		846.183 <i>15</i>	100 3	12.327	3/2+	M1+E2	0.0032 6	$\alpha(N)=4.3\times10^{-5} 5$; $\alpha(O)=6.5\times10^{-6} 8$; $\alpha(P)=4.5\times10^{-7} 9$ $\alpha=0.0032 6$; $\alpha(K)=0.0027 5$; $\alpha(L)=0.00035 5$; $\alpha(M)=7.2\times10^{-5} 11$; $\alpha(N+)=1.8\times10^{-5} 3$
		858.496 <i>15</i>	82 <i>3</i>	0.0	1/2+	M1+E2	0.0031 6	$\alpha(N+)=1.8\times10^{-5}$ 3 $\alpha(N)=1.56\times10^{-5}$ 23; $\alpha(O)=2.4\times10^{-6}$ 4; $\alpha(P)=1.7\times10^{-7}$ 4 $\alpha=0.0031$ 6; $\alpha(K)=0.0026$ 5; $\alpha(L)=0.00034$ 5; $\alpha(M)=7.0\times10^{-5}$ 10; $\alpha(N+)=1.8\times10^{-5}$ 3
862.80	(7/2)+	560.28 21	68 19	302.395				$\alpha(N)=1.51\times10^{-5}$ 22; $\alpha(O)=2.3\times10^{-6}$ 4; $\alpha(P)=1.7\times10^{-7}$ 4
		571.9 3	100 9	291.188	5/2+	M1,E2	0.0082 13	α =0.0082 13; α (K)=0.0070 12; α (L)=0.00094 10; α (M)=0.000195 20; α (N+)=4.9×10 ⁻⁵ 6
		850.43 <i>10</i>	90 10	12.327	3/2+	E2	0.0031 6	$\alpha(N)=4.2\times10^{-5} 5$; $\alpha(O)=6.3\times10^{-6} 8$; $\alpha(P)=4.4\times10^{-7} 9$ $\alpha=0.0031 6$; $\alpha(K)=0.0027 5$; $\alpha(L)=0.00035 5$; $\alpha(M)=7.1\times10^{-5} 10$;

γ (133Ba) (continued)

E_i (level)	J_i^π	${\rm E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
		<u> </u>						$\alpha(N+)=1.8\times10^{-5} \ 3$
								$\alpha(N)=1.54\times10^{-5}$ 22; $\alpha(O)=2.4\times10^{-6}$ 4; $\alpha(P)=1.7\times10^{-7}$ 4
883.39	9/2+	305.9 [#] 1	11 [#] 3	577.555	7/2+	(M1)	0.0461	$\alpha(K)$ =0.0396 6; $\alpha(L)$ =0.00517 8; $\alpha(M)$ =0.001065 15; $\alpha(N+)$ =0.000268 4
		592.22 5	100 6	291.188	5/2+	E2	0.00626 9	$\alpha(N)=0.000230$ 4; $\alpha(O)=3.52\times10^{-5}$ 5; $\alpha(P)=2.58\times10^{-6}$ 4 $\alpha=0.00626$ 9; $\alpha(K)=0.00530$ 8; $\alpha(L)=0.000764$ 11; $\alpha(M)=0.0001586$ 23; $\alpha(N+)=3.93\times10^{-5}$ 6
								$\alpha(N)=3.39\times10^{-5} 5$; $\alpha(O)=5.07\times10^{-6} 8$; $\alpha(P)=3.23\times10^{-7} 5$
887.135	5/2+	210.54 6	1.3 3	676.488	3/2+,5/2+	M1,E2	0.135 11	$\alpha(K)$ =0.110 4; $\alpha(L)$ =0.020 6; $\alpha(M)$ =0.0041 13; $\alpha(N+)$ =0.0010 3
		256 57 6	574	(20.5(0	5 /0±	M1 F2	0.0741.14	$\alpha(N)=0.00087 \ 25; \ \alpha(O)=0.00013 \ 3; \ \alpha(P)=6.5\times10^{-6} \ 5$
		256.57 6	5.7 4	630.568	3/2	M1,E2	0.0741 14	$\alpha(K)$ =0.0614 17; $\alpha(L)$ =0.0100 18; $\alpha(M)$ =0.0021 4; $\alpha(N+)$ =0.00052 9 $\alpha(N)$ =0.00045 8; $\alpha(O)$ =6.6×10 ⁻⁵ 10; $\alpha(P)$ =3.7×10 ⁻⁶ 4
		309.56 5	3.5 3	577.555	7/2+	M1,E2	0.0428 20	$\alpha(N)=0.00043$ 8, $\alpha(O)=0.0810$ 70, $\alpha(P)=3.7810$ 4 $\alpha(K)=0.036$ 3; $\alpha(L)=0.0055$ 5; $\alpha(M)=0.00115$ 12; $\alpha(N+)=0.000283$
								$\alpha(N)=0.000245 \ 23; \ \alpha(O)=3.63\times10^{-5} \ 22; \ \alpha(P)=2.2\times10^{-6} \ 3$
		347.1 <i>3</i>	0.8 4	539.799	1/2+			22, 4(1) 2.27.10
		584.734 10	44.1 <i>15</i>	302.395	3/2+	M1+E2	0.0077 13	α =0.0077 13; α (K)=0.0066 12; α (L)=0.00089 10; α (M)=0.000183 20; α (N+)=4.6×10 ⁻⁵ 6
								$\alpha(N)=3.9\times10^{-5}$ 5; $\alpha(O)=6.0\times10^{-6}$ 8; $\alpha(P)=4.2\times10^{-7}$ 9
		595.94 9	100 3	291.188	5/2+	M1(+E2)	0.0074 12	α =0.0074 12; α (K)=0.0063 11; α (L)=0.00085 10; α (M)=0.000174 19; α (N+)=4.4×10 ⁻⁵ 5
								$\alpha(N)=3.8\times10^{-5} 5$; $\alpha(O)=5.7\times10^{-6} 8$; $\alpha(P)=4.0\times10^{-7} 8$
		874.83 <i>3</i>	10.4 5	12.327	3/2+	M1,E2	0.0029 5	α =0.0029 5; α (K)=0.0025 5; α (L)=0.00032 5; α (M)=6.7×10 ⁻⁵ 10; α (N+)=1.67×10 ⁻⁵ 25
								$\alpha(N)=1.44\times10^{-5}\ 21;\ \alpha(O)=2.2\times10^{-6}\ 4;\ \alpha(P)=1.6\times10^{-7}\ 3$
		887.164 <i>24</i>	5.53 25	0.0	1/2+			
901.80	13/2-	613.6 [#] <i>1</i>	100#	288.252	11/2-	M1+E2	0.0068 12	α =0.0068 12; α (K)=0.0058 10; α (L)=0.00078 10; α (M)=0.000162 19; α (N+)=4.0×10 ⁻⁵ 5
								$\alpha(N)=3.5\times10^{-5} 4$; $\alpha(O)=5.3\times10^{-6} 7$; $\alpha(P)=3.7\times10^{-7} 8$
923.957	5/2+	293.17 ^a 11	2.6 5	630.568	5/2+	M1,E2	0.0501 16	$\alpha(K)$ =0.0419 25; $\alpha(L)$ =0.0065 8; $\alpha(M)$ =0.00136 17; $\alpha(N+)$ =0.00034 4
								$\alpha(N)=0.00029 \ 4; \ \alpha(O)=4.3\times10^{-5} \ 4; \ \alpha(P)=2.6\times10^{-6} \ 4$
		621.542 <i>14</i>	55.1 <i>13</i>	302.395	3/2+	M1,E2	0.0066 11	α =0.0066 11; α (K)=0.0057 10; α (L)=0.00076 9; α (M)=0.000156 18; α (N+)=3.9×10 ⁻⁵ 5
								$\alpha(N)=3.4\times10^{-5} 4$; $\alpha(O)=5.1\times10^{-6} 7$; $\alpha(P)=3.6\times10^{-7} 8$
		632.765 8	100 3	291.188	5/2+	M1	0.00738 11	α =0.00738 11; α (K)=0.00636 9; α (L)=0.000812 12; α (M)=0.0001666 24; α (N+)=4.19×10 ⁻⁵ 6
								$\alpha(N)=3.60\times10^{-5} 5$; $\alpha(O)=5.53\times10^{-6} 8$; $\alpha(P)=4.10\times10^{-7} 6$
		911.647 <i>13</i>	10.0 4	12.327	3/2+	M1,E2	0.0027 5	α =0.0027 5; α (K)=0.0023 4; α (L)=0.00029 5; α (M)=6.1×10 ⁻⁵ 9; α (N+)=1.52×10 ⁻⁵ 22
		923.9 2	2.31 <i>13</i>	0.0	1/2+			$\alpha(N)=1.30\times10^{-5}\ 19;\ \alpha(O)=2.0\times10^{-6}\ 3;\ \alpha(P)=1.4\times10^{-7}\ 3$
		943.9 4	2.31 13	0.0	1/2			

 ∞

γ (133Ba) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
968.97	15/2-	680.7 [#] 1	100#	288.252	11/2-	E2	0.00440 7	α =0.00440 7; α (K)=0.00374 6; α (L)=0.000523 8; α (M)=0.0001083 16; α (N+)=2.69×10 ⁻⁵ 4 α (N)=2.32×10 ⁻⁵ 4; α (O)=3.49×10 ⁻⁶ 5; α (P)=2.30×10 ⁻⁷ 4
1021.584	3/2+	158.4 <i>3</i>	2.5 11	862.80	(7/2)+	E2	0.33 6	$\alpha(K)$ =0.26 3; $\alpha(L)$ =0.055 24; $\alpha(M)$ =0.012 6; $\alpha(N+)$ =0.0028 12
		345.1 <i>4</i>	2.1 18	676.488	3/2+,5/2+			$\alpha(N)=0.0024 \ 11; \ \alpha(O)=0.00035 \ 14; \ \alpha(P)=1.48\times10^{-5} \ 5$
		481.73 3	50 3	539.799		M1,E2	0.0127 18	$\alpha(K)$ =0.0108 17; $\alpha(L)$ =0.00150 11; $\alpha(M)$ =0.000310 20; $\alpha(N+)$ =7.7×10 ⁻⁵ 6
		719.44 <i>14</i>	5.0 11	302.395	3/2+			$\alpha(N)=6.7\times10^{-5} 5$; $\alpha(O)=1.00\times10^{-5} 9$; $\alpha(P)=6.8\times10^{-7} 13$
		1009.31 4	100 5	12.327		M1	0.00244 4	α =0.00244 4; α (K)=0.00211 3; α (L)=0.000265 4; α (M)=5.44×10 ⁻⁵ 8; α (N+)=1.369×10 ⁻⁵ 20 α (N)=1.175×10 ⁻⁵ 17; α (O)=1.81×10 ⁻⁶ 3; α (P)=1.352×10 ⁻⁷ 19
		1021.62 5	7.7 5	0.0	1/2+			19
1112.346	3/2+,5/2+,7/2+	435.82 <i>3</i>	13.3 8	676.488	3/2+,5/2+	E2(+M1)	0.0165 <i>21</i>	$\alpha(K)$ =0.0140 20; $\alpha(L)$ =0.00198 9; $\alpha(M)$ =0.000411 15; $\alpha(N+)$ =0.000102 5
		534.796 10	26.0 9	577.555	7/2+	M1,E2	0.0097 15	$\alpha(N)=8.8\times10^{-5} 4$; $\alpha(O)=1.33\times10^{-5} 9$; $\alpha(P)=8.8\times10^{-7} 16$ $\alpha=0.0097 15$; $\alpha(K)=0.0083 14$; $\alpha(L)=0.00113 11$; $\alpha(M)=0.000233 21$; $\alpha(N+)=5.8\times10^{-5} 6$
		809.976 <i>19</i>	22.0 8	302.395	3/2+	M1,E2	0.0035 6	$\alpha(N)=5.0\times10^{-5}$ 5; $\alpha(O)=7.6\times10^{-6}$ 9; $\alpha(P)=5.2\times10^{-7}$ 11 $\alpha=0.0035$ 6; $\alpha(K)=0.0030$ 6; $\alpha(L)=0.00039$ 6; $\alpha(M)=8.0\times10^{-5}$ 12; $\alpha(N+)=2.0\times10^{-5}$ 3
		821.13 <i>3</i>	6.5 4	291.188	5/2+	M1	0.00395 6	$\alpha(N)=1.73\times10^{-5}\ 25;\ \alpha(O)=2.6\times10^{-6}\ 4;\ \alpha(P)=1.9\times10^{-7}\ 4$ $\alpha=0.00395\ 6;\ \alpha(K)=0.00341\ 5;\ \alpha(L)=0.000432\ 6;$ $\alpha(M)=8.86\times10^{-5}\ 13;\ \alpha(N+)=2.23\times10^{-5}\ 4$
		1099.99 2	100 5	12.327	3/2+	E2(+M1)	0.0017 3	$\alpha(N)=1.91\times10^{-5} 3; \ \alpha(O)=2.94\times10^{-6} 5; \ \alpha(P)=2.19\times10^{-7} 3$ $\alpha=0.0017 3; \ \alpha(K)=0.00150 \ 24; \ \alpha(L)=0.00019 \ 3;$ $\alpha(M)=3.9\times10^{-5} \ 6; \ \alpha(N+)=9.8\times10^{-6} \ 15$
		1111.9 ^a 4	105	0.0	1/2+			$\alpha(N)=8.4\times10^{-6}\ 12;\ \alpha(O)=1.29\times10^{-6}\ 19;\ \alpha(P)=9.5\times10^{-8}\ 16$
1211.792	3/2+,5/2+	324.76 10	1.2 <i>5</i> 18 <i>3</i>	887.135	1/2 ⁺ 5/2 ⁺			
1211.772	3/2 ,3/2	353.28 4	53 4	858.499		E2(+M1)	0.0294 24	$\alpha(K)$ =0.0248 25; $\alpha(L)$ =0.00366 13; $\alpha(M)$ =0.00076 4; $\alpha(N+)$ =0.000189 7
		581.39 8	27 3	630.568	5/2+	M1,E2	0.0078 13	$\alpha(N)=0.000163\ 6;\ \alpha(O)=2.43\times10^{-5}\ 4;\ \alpha(P)=1.54\times10^{-6}\ 24$ $\alpha=0.0078\ 13;\ \alpha(K)=0.0067\ 12;\ \alpha(L)=0.00090\ 10;$ $\alpha(M)=0.000186\ 20;\ \alpha(N+)=4.7\times10^{-5}\ 6$
		671.997 <i>17</i>	80 17	539.799	1/2+	M1,E2	0.0055 10	$\alpha(N)=4.0\times10^{-5} 5; \ \alpha(O)=6.1\times10^{-6} 8; \ \alpha(P)=4.2\times10^{-7} 9$ $\alpha=0.0055 \ 10; \ \alpha(K)=0.0047 \ 9; \ \alpha(L)=0.00062 \ 8;$ $\alpha(M)=0.000128 \ 16; \ \alpha(N+)=3.2\times10^{-5} \ 5$ $\alpha(N)=2.8\times10^{-5} \ 4; \ \alpha(O)=4.2\times10^{-6} \ 6; \ \alpha(P)=3.0\times10^{-7} \ 6$

9

$\gamma(^{133}\text{Ba})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	${\rm J}_f^\pi$	Mult.@	$lpha^\dagger$	Comments
1211.792	3/2+,5/2+	909.27 8	21.6 11	302.395	3/2+	M1	0.00311 5	α =0.00311 5; α (K)=0.00269 4; α (L)=0.000339 5; α (M)=6.95×10 ⁻⁵ 10; α (N+)=1.749×10 ⁻⁵ 25 α (N)=1.501×10 ⁻⁵ 21; α (O)=2.31×10 ⁻⁶ 4; α (P)=1.724×10 ⁻⁷ 25
		920.623 24	43.8 11	291.188	5/2+	M1	0.00302 5	α =0.00302 5; α (K)=0.00261 4; α (L)=0.000329 5; α (M)=6.75×10 ⁻⁵ 10; α (N+)=1.699×10 ⁻⁵ 24
		1199.447 22	47 3	12.327	3/2+	M1	0.001653 24	$\alpha(N)=1.458\times10^{-5}\ 21;\ \alpha(O)=2.24\times10^{-6}\ 4;\ \alpha(P)=1.675\times10^{-7}\ 24$ $\alpha=0.001653\ 24;\ \alpha(K)=0.001423\ 20;\ \alpha(L)=0.0001780\ 25;$ $\alpha(M)=3.65\times10^{-5}\ 6;\ \alpha(N+)=1.517\times10^{-5}$
								$\alpha(N)=7.88\times10^{-6}\ 11;\ \alpha(O)=1.213\times10^{-6}\ 17;\ \alpha(P)=9.09\times10^{-8}\ 13;$ $\alpha(IPF)=5.99\times10^{-6}\ 9$
		1211.760 25	100 6	0.0	1/2+	M1,E2	0.00142 21	α =0.00142 21; α (K)=0.00122 18; α (L)=0.000154 21; α (M)=3.2×10 ⁻⁵ 5; α (N+)=1.55×10 ⁻⁵ 10 α (N)=6.8×10 ⁻⁶ 9; α (O)=1.04×10 ⁻⁶ 15; α (P)=7.7×10 ⁻⁸ 13;
1283.959	3/2-	1283.952 24	100	0.0	1/2+	(E1)	0.000555 8	α (IPF)=7.58×10 ⁻⁶ 19 α =0.000555 8; α (K)=0.000419 6; α (L)=5.10×10 ⁻⁵ 8; α (M)=1.041×10 ⁻⁵ 15; α (N+)=7.49×10 ⁻⁵ 11
								$\alpha(N)=2.24\times10^{-6} \ 4; \ \alpha(O)=3.44\times10^{-7} \ 5; \ \alpha(P)=2.56\times10^{-8} \ 4; \ \alpha(IPF)=7.22\times10^{-5} \ 11$
1329.319	5/2+	441.9 ^a 4	4 3	887.135	5/2+	M1,E2	0.0159 20	$\alpha(K)$ =0.0135 19; $\alpha(L)$ =0.00191 9; $\alpha(M)$ =0.000395 16; $\alpha(N+)$ =9.8×10 ⁻⁵ 5
		445.3 <i>3</i>	9 5	883.39	9/2+	(E2)	0.01365	$\alpha(N)=8.5\times10^{-5} 4$; $\alpha(O)=1.28\times10^{-5} 9$; $\alpha(P)=8.5\times10^{-7} 16$ $\alpha(K)=0.01141 17$; $\alpha(L)=0.00178 3$; $\alpha(M)=0.000371 6$; $\alpha(N+)=9.15\times10^{-5} 13$ $\alpha(N)=7.92\times10^{-5} 12$; $\alpha(O)=1.166\times10^{-5} 17$; $\alpha(P)=6.79\times10^{-7} 10$
		653.04 11	21 4		3/2+,5/2+	3.61	0.00400.7	
		751.753 <i>15</i>	100 2	577.555	7/2+	M1	0.00488 7	α =0.00488 7; α (K)=0.00421 6; α (L)=0.000534 8; α (M)=0.0001095 16; α (N+)=2.76×10 ⁻⁵ 4
		1038.18 5	13.8 10	291.188	5/2+	M1	0.00229 4	$\alpha(N)=2.36\times10^{-5} 4$; $\alpha(O)=3.64\times10^{-6} 5$; $\alpha(P)=2.71\times10^{-7} 4$ $\alpha=0.00229 4$; $\alpha(K)=0.00198 3$; $\alpha(L)=0.000248 4$; $\alpha(M)=5.09\times10^{-5} 8$; $\alpha(N+)=1.282\times10^{-5} 18$ $\alpha(N)=1.100\times10^{-5} 16$; $\alpha(O)=1.693\times10^{-6} 24$; $\alpha(P)=1.266\times10^{-7} 18$
		1317.24 ^a 5	47 4	12.327				<i>u</i> (1)=1.100×10 10, <i>u</i> (0)=1.055×10 24, <i>u</i> (1)=1.200×10 10
1252.76	7/2+	1329.33 5	17.4 15	0.0	1/2 ⁺	M1	0.0104	o/V)=0.01665.24, o/I)=0.00215.2; o/M)=0.000442.7;
1352.76	7/2+	428.70 20	5.0 18	923.957	3/2"	M1	0.0194	$\alpha(K)$ =0.01665 24; $\alpha(L)$ =0.00215 3; $\alpha(M)$ =0.000443 7; $\alpha(N+)$ =0.0001113 16
		465.53 11	12.4 18	887.135	5/2+			$\alpha(N) = 9.56 \times 10^{-5} \ 14; \ \alpha(O) = 1.467 \times 10^{-5} \ 21; \ \alpha(P) = 1.081 \times 10^{-6} \ 16$
		469.41 5	25.2 18	883.39		M1	0.01541	$\alpha(K)$ =0.01326 <i>19</i> ; $\alpha(L)$ =0.001709 <i>24</i> ; $\alpha(M)$ =0.000351 <i>5</i> ; $\alpha(N+)$ =8.84×10 ⁻⁵ <i>13</i>
		494.5 ^a 3	26 10	050 400	2/2+			$\alpha(N)=7.58\times10^{-5}\ 11;\ \alpha(O)=1.164\times10^{-5}\ 17;\ \alpha(P)=8.60\times10^{-7}\ 12$
		494.5" 3	3.6 18	858.499	3/2			

10

$\gamma(^{133}$ Ba) (continued)

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
1352.76	7/2+	722.01 <i>15</i> 775.31 <i>18</i>	3.8 7 3.2 7	630.568 577.555		M1	0.00453 7	α =0.00453 7; α (K)=0.00391 6; α (L)=0.000495 7; α (M)=0.0001017 15; α (N+)=2.56×10 ⁻⁵ 4
		1061.56 22	100 7	291.188	5/2+	M1+E2	0.0019 3	$\alpha(N)=2.20\times10^{-5} \ 3; \ \alpha(O)=3.38\times10^{-6} \ 5; \ \alpha(P)=2.51\times10^{-7} \ 4$ $\alpha=0.0019 \ 3; \ \alpha(K)=0.0016 \ 3; \ \alpha(L)=0.00021 \ 3; \ \alpha(M)=4.2\times10^{-5} \ 6;$ $\alpha(N+)=1.07\times10^{-5} \ 16$ $\alpha(N)=9.2\times10^{-6} \ 13; \ \alpha(O)=1.40\times10^{-6} \ 21; \ \alpha(P)=1.03\times10^{-7} \ 18$
		1340.2 <i>3</i>	5.3 9	12.327	3/2+			$u(1)-9.2\times10 - 15, u(0)-1.40\times10 - 21, u(1)-1.00\times10 - 10$
1375.65	11/2+	492.4 [#] 1	19 [#] 6	883.39		(M1)	0.01367	$\alpha(K)$ =0.01177 17; $\alpha(L)$ =0.001515 22; $\alpha(M)$ =0.000311 5; $\alpha(N+)$ =7.83×10 ⁻⁵ 11 $\alpha(N)$ =6.72×10 ⁻⁵ 10; $\alpha(O)$ =1.032×10 ⁻⁵ 15; $\alpha(P)$ =7.63×10 ⁻⁷ 11
		798.0 [#] 1	100# 13	577.555	7/2+	E2	0.00301 5	α =0.00301 5; α (K)=0.00257 4; α (L)=0.000348 5; α (M)=7.19×10 ⁻⁵ 10; α (N+)=1.79×10 ⁻⁵ 3
1528.64	3/2,5/2+	1516.34 20 1528.62 10	47 <i>13</i> 100 <i>13</i>	12.327 0.0	3/2 ⁺ 1/2 ⁺			$\alpha(N)=1.543\times10^{-5}\ 22;\ \alpha(O)=2.33\times10^{-6}\ 4;\ \alpha(P)=1.584\times10^{-7}\ 23$
1528.99	15/2-	560.0 [#] 1	23.0 [#] 9	968.97	15/2-	D		
		627.3 ^{##} 1	100## 4	901.80	13/2-	M1+E2	0.0065 11	α =0.0065 11; α (K)=0.0055 10; α (L)=0.00074 9; α (M)=0.000153 18; α (N+)=3.8×10 ⁻⁵ 5 α (N)=3.3×10 ⁻⁵ 4; α (O)=5.0×10 ⁻⁶ 7; α (P)=3.5×10 ⁻⁷ 7
1532.40	3/2,5/2,7/2+	1230.06 <i>9</i> 1241.04 <i>15</i>	100 <i>13</i> 58 <i>10</i>	302.395 291.188				<i>u</i> (1)=3.3×10 +, <i>u</i> (0)=3.0×10 /, <i>u</i> (1)=3.3×10 /
1563.399	5/2+	932.98 7	52 4	630.568	5/2+	M1	0.00293 5	α =0.00293 5; α (K)=0.00253 4; α (L)=0.000319 5; α (M)=6.54×10 ⁻⁵ 10; α (N+)=1.646×10 ⁻⁵ 23
1620.58	5/2 ⁺	1261.01 <i>3</i> 1550.97 <i>5</i> 1563.36 <i>6</i> 733.63 ^a <i>10</i>	100 6 42 3 37 3 5.6 9	302.395 12.327 0.0 887.135	3/2 ⁺ 1/2 ⁺			$\alpha(N)=1.413\times10^{-5}\ 20;\ \alpha(O)=2.17\times10^{-6}\ 3;\ \alpha(P)=1.623\times10^{-7}\ 23$
1020,00	5/2	1043.02 4	19.7 18	577.555		M1	0.00227 4	α =0.00227 4; α (K)=0.00196 3; α (L)=0.000246 4; α (M)=5.04×10 ⁻⁵ 7; α (N+)=1.268×10 ⁻⁵ 18 α (N)=1.088×10 ⁻⁵ 16; α (O)=1.674×10 ⁻⁶ 24; α (P)=1.253×10 ⁻⁷ 18
		1080.9 <i>1</i> 1329.33 <i>5</i> 1608.36 <i>13</i> 1620.9 <i>7</i>	7.8 <i>12</i> 20.4 <i>18</i> 100 <i>6</i> 3.0 <i>12</i>	539.799 291.188 12.327 0.0	5/2+			α(1)-1.000Λ10 10, α(O)-1.0/4Λ10 24, α(1)-1.233Λ10 10
1633.08	13/2+	257.5 [#] 1	<9.5 [#]	1375.65	11/2+	M1+E2	0.0733 13	$\alpha(K)$ =0.0608 17; $\alpha(L)$ =0.0099 18; $\alpha(M)$ =0.0021 4; $\alpha(N+)$ =0.00051 9 $\alpha(N)$ =0.00044 8; $\alpha(O)$ =6.5×10 ⁻⁵ 10; $\alpha(P)$ =3.7×10 ⁻⁶ 4
		749.6 [#] 1	100 [#] <i>10</i>	883.39	9/2+	E2	0.00348 5	α =0.00348 5; α (K)=0.00297 5; α (L)=0.000407 6; α (M)=8.42×10 ⁻⁵

$\gamma(^{133}\text{Ba})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\sharp}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}^{π}_f	Mult.@	$lpha^\dagger$	Comments
								12; $\alpha(N+)=2.10\times10^{-5}$ 3
								$\alpha(N)=1.81\times10^{-5}$ 3; $\alpha(O)=2.72\times10^{-6}$ 4; $\alpha(P)=1.83\times10^{-7}$ 3
1689.75	3/2+,5/2,7/2+	802.3 4	63 30	887.135				
		1111.9 <mark>a</mark> 4	47 25	577.555				
		1387.41 7	72 8	302.395				
		1398.49 8	100 11	291.188				
		1677.01 ^a 9		12.327				
1706.93	3/2,5/2+	848.4 3	100 20	858.499				
		1404.7 4	34 5	302.395				
		1415.9 3	47 5	291.188				
		1694.4 <i>4</i>	52 4	12.327				
		1706.7 4	11 3	0.0	1/2+			
1712.75	17/2-	743.8 [#] 1	100 [#] 3	968.97	15/2-	M1+E2	0.0043 8	α =0.0043 8; α (K)=0.0037 7; α (L)=0.00048 7; α (M)=9.9×10 ⁻⁵ 14 α (N+)=2.5×10 ⁻⁵ 4
			#					$\alpha(N)=2.1\times10^{-5} \ 3; \ \alpha(O)=3.3\times10^{-6} \ 5; \ \alpha(P)=2.3\times10^{-7} \ 5$
		810.9 [#] <i>1</i>	43.6 [#] <i>13</i>	901.80	13/2-	E2	0.00290 4	α =0.00290 4; α (K)=0.00247 4; α (L)=0.000335 5;
								$\alpha(M)=6.91\times10^{-5}\ 10;\ \alpha(N+)=1.723\times10^{-5}\ 25$
								$\alpha(N)=1.483\times10^{-5} \ 21; \ \alpha(O)=2.24\times10^{-6} \ 4; \ \alpha(P)=1.527\times10^{-7} \ 22$
1769.61	$3/2,5/2^+$	1467.28 <i>13</i>	30 4	302.395				
		1478.72 ^a 9	28 3	291.188				
		1757.06 20	25 4	12.327				
1020.22	210 510+	1769.60 7	100 8	0.0	1/2+			
1830.22	3/2,5/2+	1818.1 <i>4</i> 1830.21 <i>3</i>	83 <i>17</i> 100 <i>33</i>	12.327 0.0	3/2 ⁺			
1050 11	10/0-					0.51	0.225	(H) 0 200 4 (I) 0 0205 ((A) 0 00505 12
1859.11	19/2-	146.4 [#] <i>1</i>	0.82 [#] 5	1712.75	17/2-	(M1)	0.337	$\alpha(K)$ =0.289 4; $\alpha(L)$ =0.0385 6; $\alpha(M)$ =0.00795 12; $\alpha(N+)$ =0.00200 3
		ш	ш					α (N)=0.001714 25; α (O)=0.000262 4; α (P)=1.90×10 ⁻⁵ 3
		890.1 [#] <i>1</i>	100 [#] 3	968.97	15/2-	E2	0.00234 4	α =0.00234 4; α (K)=0.00200 3; α (L)=0.000267 4; α (M)=5.50×10 ⁻⁵ 8; α (N+)=1.375×10 ⁻⁵ 20
		п						$\alpha(N)=1.183\times10^{-5}\ 17;\ \alpha(O)=1.79\times10^{-6}\ 3;\ \alpha(P)=1.240\times10^{-7}\ 18$
1942.07	19/2+	83.1# 1	100 [#] 10	1859.11	19/2-	(E1)	0.379	B(E1)(W.u.)=9.E-5 4 α (K)=0.323 5; α (L)=0.0448 7; α (M)=0.00918 14; α (N+)=0.00224 4
								$\alpha(N)=0.001244$ $\alpha(N)=0.00194$ 3; $\alpha(O)=0.000283$ 4; $\alpha(P)=1.638\times10^{-5}$ 24
					. =			
		229.2 [#] 1	11.00 [#] <i>19</i>	1712.75	17/2	E1	0.0232	$\alpha(K)$ =0.0199 3; $\alpha(L)$ =0.00258 4; $\alpha(M)$ =0.000529 8; $\alpha(N+)$ =0.0001313 19
								α (N)=0.0001132 <i>16</i> ; α (O)=1.701×10 ⁻⁵ <i>24</i> ; α (P)=1.138×10 ⁻⁶ <i>16</i> B(E1)(W.u.)=4.5×10 ⁻⁷ <i>20</i>
	17/2-	507.2 [#] 1	50 [#] 10	1528.99	$15/2^{-}$	M1+E2	0.0111 17	$\alpha(K)$ =0.0095 15; $\alpha(L)$ =0.00130 11; $\alpha(M)$ =0.000269 21;
2036.19	17/2							$\alpha(N+)=6.7\times10^{-5} 6$ $\alpha(N)=5.8\times10^{-5} 5; \alpha(O)=8.7\times10^{-6} 9; \alpha(P)=5.9\times10^{-7} 12$

$\gamma(^{133}\text{Ba})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
2036.19	17/2-	1067.2 [#] 1	100#	968.97	15/2-	M1+E2	0.0019 3	α =0.0019 3; α (K)=0.0016 3; α (L)=0.00020 3; α (M)=4.2×10 ⁻⁵ 6; α (N+)=1.05×10 ⁻⁵ 15 α (N)=9.1×10 ⁻⁶ 13; α (O)=1.39×10 ⁻⁶ 21; α (P)=1.01×10 ⁻⁷ 18
2170.74	19/2-	311.4 [#] <i>1</i>	6.7 [#] 19	1859.11	19/2-			
		458.0 [#] 1	100 [#] 4	1712.75	$17/2^{-}$	D		
		641.9 [#] 1	97 [#] 5	1528.99	15/2-	E2	0.00510 8	α =0.00510 8; α (K)=0.00433 6; α (L)=0.000612 9; α (M)=0.0001268 18; α (N+)=3.15×10 ⁻⁵ 5
		1201.8 [#] <i>I</i>	41.0 [#] 19	968.97	15/2-	E2	0.001236 18	$\alpha(N)=2.72\times10^{-5} 4$; $\alpha(O)=4.07\times10^{-6} 6$; $\alpha(P)=2.64\times10^{-7} 4$ $\alpha=0.001236 18$; $\alpha(K)=0.001058 15$; $\alpha(L)=0.0001358 19$; $\alpha(M)=2.79\times10^{-5} 4$; $\alpha(N+)=1.351\times10^{-5}$ $\alpha(N)=6.01\times10^{-6} 9$; $\alpha(O)=9.17\times10^{-7} 13$; $\alpha(P)=6.58\times10^{-8} 10$;
								$\alpha(IPF) = 6.52 \times 10^{-6} \ 10$
2210.97	15/2+	577.9 [#] 1	<57 [#]	1633.08	13/2+	(M1)	0.00921 13	α =0.00921 13; α (K)=0.00793 12; α (L)=0.001015 15; α (M)=0.000209 3; α (N+)=5.24×10 ⁻⁵ 8 α (N)=4.50×10 ⁻⁵ 7; α (O)=6.92×10 ⁻⁶ 10; α (P)=5.12×10 ⁻⁷ 8
		835.3# 1	100 [#] 17	1375.65	11/2+	E2	0.00270 4	α =0.00270 4; α (K)=0.00231 4; α (L)=0.000311 5; α (M)=6.42×10 ⁻⁵ 9; α (N+)=1.602×10 ⁻⁵ 23
2366.04	23/2+	423.9 [#] 1	100#	1942.07	19/2+	E2	0.01573	$\alpha(N)=1.379\times10^{-5}\ 20;\ \alpha(O)=2.09\times10^{-6}\ 3;\ \alpha(P)=1.428\times10^{-7}\ 20$ $\alpha(K)=0.01311\ 19;\ \alpha(L)=0.00208\ 3;\ \alpha(M)=0.000434\ 6;$ $\alpha(N+)=0.0001069\ 15$
2381.97	21/2+	439.9 [#] 1	100 [#]	1942.07	19/2+	M1+E2	0.0161 <i>21</i>	$\alpha(N)=9.25\times10^{-5}\ 13;\ \alpha(O)=1.359\times10^{-5}\ 19;\ \alpha(P)=7.77\times10^{-7}\ 11$ $\alpha(K)=0.0137\ 19;\ \alpha(L)=0.00193\ 9;\ \alpha(M)=0.000400\ 16;$ $\alpha(N+)=0.000100\ 5$
								$\alpha(N)=8.6\times10^{-5}$ 4; $\alpha(O)=1.29\times10^{-5}$ 9; $\alpha(P)=8.6\times10^{-7}$ 16
2447.22	17/2+	814.1 [#] 1	100 [#]	1633.08	13/2+	E2	0.00287 4	α =0.00287 4; α (K)=0.00245 4; α (L)=0.000331 5; α (M)=6.84×10 ⁻⁵ 10; α (N+)=1.706×10 ⁻⁵ 24
								$\alpha(N)=1.469\times10^{-5} \ 2I; \ \alpha(O)=2.22\times10^{-6} \ 4; \ \alpha(P)=1.513\times10^{-7} \ 22$
2495.99	$(21/2^+)$	554.0 [#] 1	100 [#]	1942.07	19/2+	(M1+E2)	0.0088 14	α =0.0088 14; α (K)=0.0075 13; α (L)=0.00103 11; α (M)=0.000212 21; α (N+)=5.3×10 ⁻⁵ 6
								$\alpha(N)=4.6\times10^{-5} 5$; $\alpha(O)=6.9\times10^{-6} 8$; $\alpha(P)=4.8\times10^{-7} 10$
2509.26	21/2-	338.6 [#] 1	100# 4	2170.74	19/2-	(M1)	0.0354	$\alpha(K)$ =0.0304 5; $\alpha(L)$ =0.00396 6; $\alpha(M)$ =0.000815 12; $\alpha(N+)$ =0.000205 3
								$\alpha(N)=0.0001760\ 25;\ \alpha(O)=2.70\times10^{-5}\ 4;\ \alpha(P)=1.98\times10^{-6}\ 3$
		650.2 [#] 1	26.4 [#] <i>12</i>	1859.11	19/2-	M1+E2	0.0059 10	α =0.0059 10; α (K)=0.0051 9; α (L)=0.00068 9; α (M)=0.000139 17; α (N+)=3.5×10 ⁻⁵ 5
		796.5 [#] 1	9.0# 6	1712.75	17/2-	E2	0.00302 5	$\alpha(N)=3.0\times10^{-5}\ 4;\ \alpha(O)=4.6\times10^{-6}\ 7;\ \alpha(P)=3.2\times10^{-7}\ 7$ $\alpha=0.00302\ 5;\ \alpha(K)=0.00258\ 4;\ \alpha(L)=0.000350\ 5;\ \alpha(M)=7.22\times10^{-5}$ $11;\ \alpha(N+)=1.80\times10^{-5}\ 3$ $\alpha(N)=1.551\times10^{-5}\ 22;\ \alpha(O)=2.34\times10^{-6}\ 4;\ \alpha(P)=1.590\times10^{-7}\ 23$

γ (133Ba) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f]	$\frac{\pi}{f}$ Mult	α [†]	Comments
2526.47	19/2-	490.0 [#] 5	60 [#] 20	2036.19 17/	2-		
		813.8 [#] <i>1</i>	100 [#] 20	1712.75 17/	2- M1+	E2 0.0035 <i>6</i>	α =0.0035 6; α (K)=0.0030 6; α (L)=0.00039 6; α (M)=7.9×10 ⁻⁵ 11; α (N+)=2.0×10 ⁻⁵ 3
		997.4 [#] 1	40# 20	1528.99 15/	2- E2	0.00182 3	$\alpha(N)=1.71\times10^{-5}\ 25;\ \alpha(O)=2.6\times10^{-6}\ 4;\ \alpha(P)=1.9\times10^{-7}\ 4$ $\alpha=0.00182\ 3;\ \alpha(K)=0.001563\ 22;\ \alpha(L)=0.000205\ 3;$ $\alpha(M)=4.22\times10^{-5}\ 6;\ \alpha(N+)=1.055\times10^{-5}\ 15$ $\alpha(N)=9.07\times10^{-6}\ 13;\ \alpha(O)=1.379\times10^{-6}\ 20;\ \alpha(P)=9.69\times10^{-8}\ 14$
2671.17	21/2-	812.0 [#] 5	100 [#] 19	1859.11 19/	2 ⁻ (M1+	·E2) 0.0035 6	α =0.0035 6; α (K)=0.0030 6; α (L)=0.00039 6; α (M)=8.0×10 ⁻⁵ 12; α (N+)=2.0×10 ⁻⁵ 3 α (N)=1.72×10 ⁻⁵ 25; α (O)=2.6×10 ⁻⁶ 4; α (P)=1.9×10 ⁻⁷ 4
		958.3 [#] 1	100 [#] 6	1712.75 17/	2 ⁻ E2	0.00199 3	α =0.00199 3; α (K)=0.001704 24; α (L)=0.000225 4; α (M)=4.62×10 ⁻⁵ 7; α (N+)=1.156×10 ⁻⁵ 17 α (N)=9.95×10 ⁻⁶ 14; α (O)=1.511×10 ⁻⁶ 22; α (P)=1.056×10 ⁻⁷ 15
2830.44	23/2-	321.3 [#] <i>1</i>	76 [#] 3	2509.26 21/	2 ⁻ (M1)	0.0405	$\alpha(K)=0.0348$ 5; $\alpha(L)=0.00455$ 7; $\alpha(M)=0.000936$ 14; $\alpha(N+)=0.000235$ 4 $\alpha(N)=0.000202$ 3; $\alpha(O)=3.10\times10^{-5}$ 5; $\alpha(P)=2.27\times10^{-6}$ 4
		659.6 [#] 1	<6.8 [#]	2170.74 19/	2 ⁻ E2	0.00476 7	α =0.00476 7; α (K)=0.00404 6; α (L)=0.000569 8; α (M)=0.0001178 17; α (N+)=2.93×10 ⁻⁵ 5 α (N)=2.53×10 ⁻⁵ 4; α (O)=3.79×10 ⁻⁶ 6; α (P)=2.48×10 ⁻⁷ 4
		971.5 [#] <i>1</i>	100 [#] 3	1859.11 19/	2-		u(1)-2.33×10 1, u(0)-3.77×10 0, u(1)-2.10×10 1
2831.10	19/2(+)	1118.4 [#] <i>1</i>	100 [#]	1712.75 17/			
2862.15	21/2+	496.0 [#] 5	<80 [#]	2366.04 23/			
	·	920.1 [#] <i>I</i>	100 [#] 20	1942.07 19/	2 ⁺ (M1+	E2) 0.0026 5	α =0.0026 5; α (K)=0.0022 4; α (L)=0.00029 5; α (M)=5.9×10 ⁻⁵ 9; α (N+)=1.49×10 ⁻⁵ 22 α (N)=1.28×10 ⁻⁵ 19; α (O)=2.0×10 ⁻⁶ 3; α (P)=1.4×10 ⁻⁷ 3
2890.38	23/2-	219.2 [#] 1	2.7 [#] 5	2671.17 21/	2 ⁻ M1+	E2 0.119 8	$\alpha(K)=0.0975$ 23; $\alpha(L)=0.017$ 5; $\alpha(M)=0.0036$ 10; $\alpha(N+)=0.00088$ 23
							α (N)=0.00076 20; α (O)=0.000110 25; α (P)=5.8×10 ⁻⁶ 5
		381.0 [#] 5	18.2 [#] 23	2509.26 21/	2-		
		1031.1 [#] <i>I</i>	100 [#] 7	1859.11 19/	2- E2	0.001695 24	α =0.001695 24; α (K)=0.001456 21; α (L)=0.000190 3; α (M)=3.91×10 ⁻⁵ 6; α (N+)=9.78×10 ⁻⁶ 14 α (N)=8.41×10 ⁻⁶ 12; α (O)=1.280×10 ⁻⁶ 18; α (P)=9.03×10 ⁻⁸ 13
2966.3	21/2-	440.0 [#] 5	<66.7 [#]	2526.47 19/	2-		
	•	930.0# 5	100#	2036.19 17/		0.00212 3	α =0.00212 3; α (K)=0.00182 3; α (L)=0.000241 4; α (M)=4.96×10 ⁻⁵ 7; α (N+)=1.240×10 ⁻⁵ 18 α (N)=1.067×10 ⁻⁵ 15; α (O)=1.619×10 ⁻⁶ 23; α (P)=1.127×10 ⁻⁷ 16
3062.94	21/2(+)	231.9 [#] 1	18.8# 25	2831.10 19/	2 ⁽⁺⁾ D		α(1) 1.00/Λ10 13, α(0)=1.01/Λ10 23, α(1)=1.12/Λ10 10
	,	1203.9 [#] <i>I</i>	100 [#] 6	1859.11 19/			

$\gamma(^{133}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. @	α^{\dagger}	Comments
3103.80	25/2+	737.8 [#] 1	100 [#]	2366.04	23/2+	M1+E2	0.0044 8	α =0.0044 8; α (K)=0.0037 7; α (L)=0.00049 7; α (M)=0.000101 14; α (N+)=2.5×10 ⁻⁵ 4
3115.16	21/2+	137.0 [#] 5	9.6 [#] <i>17</i>	2978.2	19/2	(M1)	0.406 7	$\alpha(N)=2.2\times10^{-5} \ 3; \ \alpha(O)=3.3\times10^{-6} \ 5; \ \alpha(P)=2.4\times10^{-7} \ 5$ $\alpha(K)=0.347 \ 6; \ \alpha(L)=0.0464 \ 8; \ \alpha(M)=0.00957 \ 17; \ \alpha(N+)=0.00240 \ 5$
	,					. ,		α (N)=0.00207 4; α (O)=0.000316 6; α (P)=2.29×10 ⁻⁵ 4
		252.9 [#] 1	17.1 [#] 25	2862.15	21/2+	(M1)	0.0761	$\alpha(K)$ =0.0653 10; $\alpha(L)$ =0.00859 12; $\alpha(M)$ =0.001769 25; $\alpha(N+)$ =0.000445 7
								α (N)=0.000382 6; α (O)=5.85×10 ⁻⁵ 9; α (P)=4.27×10 ⁻⁶ 6
		667.9 [#] 1	37 [#] 4	2447.22	17/2+	E2	0.00461 7	α =0.00461 7; α (K)=0.00392 6; α (L)=0.000550 8; α (M)=0.0001139 16; α (N+)=2.83×10 ⁻⁵ 4
								$\alpha(N)=2.44\times10^{-5} 4$; $\alpha(O)=3.67\times10^{-6} 6$; $\alpha(P)=2.40\times10^{-7} 4$
		944.4 [#] 1	37 [#] 4	2170.74	19/2-	(E1)	0.000849 12	α =0.000849 <i>12</i> ; α (K)=0.000736 <i>11</i> ; α (L)=9.04×10 ⁻⁵ <i>13</i> ; α (M)=1.85×10 ⁻⁵ <i>3</i> ; α (N+)=4.64×10 ⁻⁶ <i>7</i>
								$\alpha(N)=3.98\times10^{-6} \ 6; \ \alpha(O)=6.10\times10^{-7} \ 9; \ \alpha(P)=4.48\times10^{-8} \ 7$
		1173.3 [#] <i>1</i>	100 # 4	1942.07	19/2+	D		
3246.51	23/2+	131.4 [#] <i>1</i>	100 [#] 7	3115.16	21/2+	(M1)	0.456	$\alpha(K)$ =0.390 6; $\alpha(L)$ =0.0522 8; $\alpha(M)$ =0.01077 16; $\alpha(N+)$ =0.00270 4 $\alpha(N)$ =0.00232 4; $\alpha(O)$ =0.000355 5; $\alpha(P)$ =2.57×10 ⁻⁵ 4
		384.5 [#] 1	<10 [#]	2862.15	21/2+	(M1)	0.0255	$\alpha(K)$ =0.0219 3; $\alpha(L)$ =0.00285 4; $\alpha(M)$ =0.000586 9; $\alpha(N+)$ =0.0001473 21
								$\alpha(N)=0.0001264 \ 18; \ \alpha(O)=1.94\times10^{-5} \ 3; \ \alpha(P)=1.427\times10^{-6} \ 20$
		416.0 [#] 5	<6.7 [#]	2830.44	23/2-			
		737.3 [#] 1	60 [#] 3	2509.26	21/2-	(E1)	0.001391 20	α =0.001391 20; α (K)=0.001204 17; α (L)=0.0001492 21; α (M)=3.05×10 ⁻⁵ 5; α (N+)=7.65×10 ⁻⁶
								$\alpha(N)=6.57\times10^{-6}\ 10;\ \alpha(O)=1.004\times10^{-6}\ 14;\ \alpha(P)=7.30\times10^{-8}\ 11$
		750.6 [#] 1	27 # 7	2495.99	$(21/2^+)$			
		880.4 [#] 1	53 [#] 7	2366.04	23/2+	(M1)	0.00336 5	α =0.00336 5; α (K)=0.00290 4; α (L)=0.000366 6; α (M)=7.50×10 ⁻⁵ 11; α (N+)=1.89×10 ⁻⁵ 3
								$\alpha(N)=1.620\times10^{-5}\ 23;\ \alpha(O)=2.49\times10^{-6}\ 4;\ \alpha(P)=1.86\times10^{-7}\ 3$
		1304.2 [#] 1	30 [#] 7	1942.07	19/2+	E2	0.001064 15	α =0.001064 15; α (K)=0.000897 13; α (L)=0.0001143 16; α (M)=2.34×10 ⁻⁵ 4; α (N+)=2.84×10 ⁻⁵
								$\alpha(N)=5.05\times10^{-6}$ 7; $\alpha(O)=7.72\times10^{-7}$ 11; $\alpha(P)=5.58\times10^{-8}$ 8; $\alpha(IPF)=2.25\times10^{-5}$ 4
3255.92	25/2-	365.5 [#] 1	42.7 [#] 24	2890.38	23/2-	(M1)	0.0291	$\alpha(K)=0.0250$ 4; $\alpha(L)=0.00325$ 5; $\alpha(M)=0.000668$ 10; $\alpha(N+)=0.0001679$ 24
								$\alpha(N)=0.0001442\ 21;\ \alpha(O)=2.21\times10^{-5}\ 4;\ \alpha(P)=1.626\times10^{-6}\ 23$
		425.5 [#] 1	46.8 [#] 16	2830.44	23/2-	M1+E2	0.0176 <i>21</i>	$\alpha(K)$ =0.0150 20; $\alpha(L)$ =0.00212 8; $\alpha(M)$ =0.000440 13; $\alpha(N+)$ =0.000110 5
								$\alpha(N)=9.4\times10^{-5} 4$; $\alpha(O)=1.42\times10^{-5} 8$; $\alpha(P)=9.4\times10^{-7} 17$

$\gamma(^{133}\text{Ba})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
3255.92	25/2-	746.6 [#] 1	100# 3	2509.26	21/2-	E2	0.00352 5	α =0.00352 5; α (K)=0.00300 5; α (L)=0.000412 6; α (M)=8.51×10 ⁻⁵ 12; α (N+)=2.12×10 ⁻⁵ 3
								$\alpha(N)=1.83\times10^{-5} \ 3; \ \alpha(O)=2.75\times10^{-6} \ 4; \ \alpha(P)=1.85\times10^{-7} \ 3$
3345.94	27/2+	980.0 [#] 1	100 [#]	2366.04	23/2+	E2	0.00189 <i>3</i>	α =0.00189 3; α (K)=0.001623 23; α (L)=0.000213 3; α (M)=4.39×10 ⁻⁵ 7; α (N+)=1.098×10 ⁻⁵ 16
	(1)		#		(1)			$\alpha(N)=9.45\times10^{-6}\ 14;\ \alpha(O)=1.435\times10^{-6}\ 20;\ \alpha(P)=1.006\times10^{-7}\ 14$
3373.60	$23/2^{(+)}$	310.8 [#] <i>I</i>	100 <mark>#</mark> <i>16</i>	3062.94	,			
		702.3 [#] 1	26 [#] 5	2671.17	21/2-	(E1)	0.001540 22	α =0.001540 22; α (K)=0.001332 19; α (L)=0.0001654 24; α (M)=3.38×10 ⁻⁵ 5; α (N+)=8.47×10 ⁻⁶
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						$\alpha(N)=7.28\times10^{-6}\ II;\ \alpha(O)=1.112\times10^{-6}\ I6;\ \alpha(P)=8.06\times10^{-8}\ I2$
3433.71	25/2+	187.2 [#] <i>1</i>	100 [#] 4	3246.51	23/2+	(M1)	0.1712	$\alpha(K)$ =0.1467 21; $\alpha(L)$ =0.0195 3; $\alpha(M)$ =0.00401 6; $\alpha(N+)$ =0.001008 15
								α (N)=0.000866 13; α (O)=0.0001325 19; α (P)=9.64×10 ⁻⁶ 14
		1067.6 [#] 1	16 [#] 13	2366.04	23/2+	(M1)	0.00215 3	α =0.00215 3; α (K)=0.00185 3; α (L)=0.000233 4; α (M)=4.77×10 ⁻⁵ 7; α (N+)=1.201×10 ⁻⁵ 17
								$\alpha(N)=1.031\times10^{-5}\ 15;\ \alpha(O)=1.586\times10^{-6}\ 23;\ \alpha(P)=1.187\times10^{-7}\ 17$
3545.92	27/2-	290.0 [#] 1	100 [#] 3	3255.92	25/2-	(M1)	0.0530	$\alpha(K)$ =0.0455 7; $\alpha(L)$ =0.00596 9; $\alpha(M)$ =0.001227 18; $\alpha(N+)$ =0.000308 5
								$\alpha(N)=0.000265 \ 4; \ \alpha(O)=4.06\times10^{-5} \ 6; \ \alpha(P)=2.97\times10^{-6} \ 5$
		655.4 [#] 1	9 [#] 3	2890.38	$23/2^{-}$			
		715.6 [#] <i>1</i>	100# 4	2830.44	23/2-	E2	0.00389 6	α =0.00389 6; α (K)=0.00332 5; α (L)=0.000459 7; α (M)=9.49×10 ⁻⁵ 14; α (N+)=2.36×10 ⁻⁵ 4
								$\alpha(N)=2.04\times10^{-5} \ 3; \ \alpha(O)=3.07\times10^{-6} \ 5; \ \alpha(P)=2.04\times10^{-7} \ 3$
3582.69	27/2-	326.8 [#] 1	82 [#] 4	3255.92	25/2-	(M1)	0.0388	$\alpha(K)$ =0.0333 5; $\alpha(L)$ =0.00435 6; $\alpha(M)$ =0.000895 13; $\alpha(N+)$ =0.000225 4
								α (N)=0.000193 3; α (O)=2.96×10 ⁻⁵ 5; α (P)=2.17×10 ⁻⁶ 3
		693.0 [#] 5	10 [#] 3	2890.38	$23/2^{-}$			
		752.3 [#] 1	100 [#] 3	2830.44	23/2-	E2	0.00345 5	α =0.00345 5; α (K)=0.00295 5; α (L)=0.000404 6; α (M)=8.34×10 ⁻⁵ 12; α (N+)=2.08×10 ⁻⁵ 3
								$\alpha(N)=1.79\times10^{-5}$ 3; $\alpha(O)=2.70\times10^{-6}$ 4; $\alpha(P)=1.81\times10^{-7}$ 3
3646.41	$(25/2)^+$	1280.3 [#] <i>I</i>	100#	2366.04	23/2+	M1+E2	0.00127 18	α =0.00127 18; α (K)=0.00108 15; α (L)=0.000136 18; α (M)=2.8×10 ⁻⁵ 4; α (N+)=2.48×10 ⁻⁵ 7
								$\alpha(N)=6.0\times10^{-6} 8$; $\alpha(O)=9.2\times10^{-7} 13$; $\alpha(P)=6.8\times10^{-8} 11$; $\alpha(IPF)=1.78\times10^{-5} 4$
3688.41	$(25/2^{-})$	798.0 [#] 1	100 [#] 33	2890.38	23/2-			
2000.71	(==)	1018.0# 5	<100 [#]	2671.17				
3700.60	25/2 ⁽⁺⁾	327.0 [#] <i>I</i>	100#	3373.60		(M1)	0.0387	$\alpha(K)$ =0.0333 5; $\alpha(L)$ =0.00434 6; $\alpha(M)$ =0.000894 13; $\alpha(N+)$ =0.000225 4
								$\alpha(N)=0.000193 \ 3; \ \alpha(O)=2.96\times10^{-5} \ 5; \ \alpha(P)=2.17\times10^{-6} \ 3$

$\gamma(^{133}\text{Ba})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.@	$lpha^\dagger$	Comments
3709.90	(25/2)	336.3 [#] 1	100 [#]	3373.60	23/2 ⁽⁺⁾	D		
3710.68	27/2+	276.9 [#] 1	100 [#]	3433.71		(M1)	0.0598	$\alpha(K)$ =0.0514 8; $\alpha(L)$ =0.00674 10; $\alpha(M)$ =0.001388 20; $\alpha(N+)$ =0.000349 5
								$\alpha(N)=0.000300\ 5;\ \alpha(O)=4.59\times10^{-5}\ 7;\ \alpha(P)=3.36\times10^{-6}\ 5$
3838.92	29/2+	493.1 [#] <i>1</i>	100# 11	3345.94	27/2+	(M1)	0.01362	$\alpha(K)$ =0.01173 <i>17</i> ; $\alpha(L)$ =0.001509 <i>22</i> ; $\alpha(M)$ =0.000310 <i>5</i> ; $\alpha(N+)$ =7.80×10 ⁻⁵ <i>11</i>
		щ	ш					$\alpha(N)=6.70\times10^{-5}\ 10;\ \alpha(O)=1.028\times10^{-5}\ 15;\ \alpha(P)=7.60\times10^{-7}\ 11$
		735.0# 1	44 [#] 11	3103.80	•			
3967.85		1601.8 [#] <i>1</i>	100#	2366.04				
3987.98	27/2-	1097.6 [#] 1	100#	2890.38	23/2-	E2	0.001484 <i>21</i>	α =0.001484 21; α (K)=0.001276 18; α (L)=0.0001654 24; α (M)=3.40×10 ⁻⁵ 5; α (N+)=8.51×10 ⁻⁶ α (N)=7.32×10 ⁻⁶ 11; α (O)=1.115×10 ⁻⁶ 16; α (P)=7.92×10 ⁻⁸ 11
4084.6	27/2 ⁽⁺⁾	384.0 [#] 5	100 [#] 20	3700.60	25/2 ⁽⁺⁾	(M1)	0.0256	$\alpha(K)=0.0220$ 4; $\alpha(L)=0.00286$ 5; $\alpha(M)=0.000588$ 9; $\alpha(N+)=0.0001478$ 22
								$\alpha(N)=0.0001269 \ 19; \ \alpha(O)=1.95\times10^{-5} \ 3; \ \alpha(P)=1.432\times10^{-6} \ 21$
		711.0 [#] 5	<57 [#]	3373.60	$23/2^{(+)}$			
4145.58	29/2+	799.6 <mark>#</mark> 1	56 [#] 22	3345.94	$27/2^{+}$			
		1041.8 [#] <i>1</i>	100# 11	3103.80	25/2+	E2	0.001658 24	α =0.001658 24; α (K)=0.001424 20; α (L)=0.000186 3; α (M)=3.82×10 ⁻⁵ 6; α (N+)=9.56×10 ⁻⁶ 14
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						$\alpha(N)=8.22\times10^{-6}\ 12;\ \alpha(O)=1.251\times10^{-6}\ 18;\ \alpha(P)=8.84\times10^{-8}\ 13$
4179.06	29/2+	468.4 [#] 1	100 [#]	3710.68	27/2+	(M1)	0.01549	$\alpha(K)$ =0.01333 19; $\alpha(L)$ =0.001718 24; $\alpha(M)$ =0.000353 5; $\alpha(N+)$ =8.88×10 ⁻⁵ 13
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						$\alpha(N) = 7.63 \times 10^{-5} \ II; \ \alpha(O) = 1.171 \times 10^{-5} \ I7; \ \alpha(P) = 8.64 \times 10^{-7} \ I3$
4194.42	29/2-	938.4 [#] 1	100 [#]	3255.92	25/2-	E2	0.00208 3	α =0.00208 3; α (K)=0.001784 25; α (L)=0.000236 4; α (M)=4.86×10 ⁻⁵ 7; α (N+)=1.214×10 ⁻⁵ 17
		#	#					$\alpha(N)=1.044\times10^{-5}\ 15;\ \alpha(O)=1.585\times10^{-6}\ 23;\ \alpha(P)=1.105\times10^{-7}\ 16$
4203.20	31/2+	857.2 [#] 1	100 [#]	3345.94	27/2+	E2	0.00255 4	α =0.00255 4; α (K)=0.00218 3; α (L)=0.000292 4; α (M)=6.03×10 ⁻⁵ 9; α (N+)=1.505×10 ⁻⁵ 21 α (N)=1.295×10 ⁻⁵ 19; α (O)=1.96×10 ⁻⁶ 3; α (P)=1.348×10 ⁻⁷ 19
4222.92	(20/2+)	513.1 [#] <i>I</i>	100# 10	3710.68	27/2+	(11)	0.01224	
4223.82	(29/2+)	513.1" 1	100" 10	3/10.68	21/21	(M1)	0.01234	$\alpha(K)$ =0.01063 15; $\alpha(L)$ =0.001366 20; $\alpha(M)$ =0.000281 4; $\alpha(N+)$ =7.06×10 ⁻⁵ 10 $\alpha(N)$ =6.06×10 ⁻⁵ 9; $\alpha(O)$ =9.30×10 ⁻⁶ 13; $\alpha(P)$ =6.88×10 ⁻⁷ 10
		877.8 [#] 1	90# 20	3345.94	27/2+			$u(N)=0.00\times10^{-5}$ 9, $u(O)=9.50\times10^{-5}$ 15; $u(P)=0.88\times10^{-5}$ 10
4242.86	31/2-	8//.8" <i>I</i> 660.1 [#] <i>I</i>	90" 20 100 # 7	3582.69	•	E2	0.00475 7	o=0.00475.7; o(V)=0.00404.6; o(I)=0.000569.9; o(M)=0.0001176.17.
4242.80	31/2	000.1" 1	100" /	3382.09	21/2	E2	0.004/5 /	α =0.00475 7; α (K)=0.00404 6; α (L)=0.000568 8; α (M)=0.0001176 17; α (N+)=2.92×10 ⁻⁵ 4 α (N)=2.52×10 ⁻⁵ 4; α (O)=3.78×10 ⁻⁶ 6; α (P)=2.47×10 ⁻⁷ 4
		697.0 [#] 1	71 # 6	2545 02	27/2-	E2	0.00415 6	$\alpha(N)=2.52\times10^{-6}$ 4; $\alpha(O)=3.78\times10^{-6}$ 6; $\alpha(P)=2.47\times10^{-7}$ 4 $\alpha=0.00415$ 6; $\alpha(K)=0.00353$ 5; $\alpha(L)=0.000492$ 7; $\alpha(M)=0.0001017$ 15;
		097.0" 1	/1" 0	3545.92	21/2	E2	0.00415 0	α =0.00413 0; α (K)=0.00333 3; α (L)=0.000492 /; α (M)=0.0001017 13;

17

$\gamma(^{133}\text{Ba})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	${\rm J}_f^\pi$	Mult.	$lpha^\dagger$	Comments
								$\alpha(N+)=2.53\times10^{-5} 4$
								$\alpha(N)=2.18\times10^{-5} \ 3; \ \alpha(O)=3.28\times10^{-6} \ 5; \ \alpha(P)=2.17\times10^{-7} \ 3$
4255.82	29/2+	545.1 [#] <i>I</i>	100 [#]	3710.68	27/2+	(M1)	0.01063	$\alpha(K)$ =0.00915 13; $\alpha(L)$ =0.001174 17; $\alpha(M)$ =0.000241 4; $\alpha(N+)$ =6.07×10 ⁻⁵ 9 $\alpha(N)$ =5.21×10 ⁻⁵ 8; $\alpha(O)$ =8.00×10 ⁻⁶ 12; $\alpha(P)$ =5.92×10 ⁻⁷ 9
		1152.1 [#] <i>1</i>	21 [#] 5	3103.80	25/2+			<i>a(1)</i> 5.21/10 0, <i>a(0)</i> 0.00/10 12, <i>a(1)</i> 5.52/10
4402.41	(27/2)	756.0 [#] 5	<100 [#]	3646.41				
4421.91	31/2	227.4 [#] 1	24.3 [#] 15	4194.42		(M1)	0.1011	$\alpha(K)$ =0.0867 13; $\alpha(L)$ =0.01144 16; $\alpha(M)$ =0.00236 4; $\alpha(N+)$ =0.000592 9
								$\alpha(N)=0.000509 \text{ 8}; \ \alpha(O)=7.79\times10^{-5} \text{ 11}; \ \alpha(P)=5.68\times10^{-6} \text{ 8}$
		839.4 [#] 1	100# 4	3582.69	27/2-	E2	0.00267 4	α =0.00267 4; α (K)=0.00229 4; α (L)=0.000308 5; α (M)=6.34×10 ⁻⁵ 9; α (N+)=1.583×10 ⁻⁵ 23
								$\alpha(N)=1.363\times10^{-5} \ 19; \ \alpha(O)=2.06\times10^{-6} \ 3; \ \alpha(P)=1.413\times10^{-7} \ 20$
		875.9 [#] 1	56 [#] 4	3545.92	27/2-	E2	0.00243 4	α =0.00243 4; α (K)=0.00208 3; α (L)=0.000278 4; α (M)=5.72×10 ⁻⁵ 8; α (N+)=1.429×10 ⁻⁵ 20 α (N)=1.229×10 ⁻⁵ 18; α (O)=1.86×10 ⁻⁶ 3; α (P)=1.285×10 ⁻⁷ 18
4425.08	$(27/2^+)$	778.6 [#] 1	83 [#] 17	3646.41	(25/2)+	D		<i>a(1)</i> 1,225/10 10, <i>a(0)</i> 1,00/10 3, <i>a(1)</i> 1,205/10 10
4423.00	(21/2)	1321.3 [#] <i>I</i>	100# 17	3103.80		D		
4485.34	31/2+	261.4 [#] <i>I</i>	57# 7	4223.82		(M1)	0.0697	$\alpha(K)$ =0.0598 9; $\alpha(L)$ =0.00786 11; $\alpha(M)$ =0.001619 23; $\alpha(N+)$ =0.000407 6
								$\alpha(N)=0.000349 \ 5; \ \alpha(O)=5.35\times10^{-5} \ 8; \ \alpha(P)=3.91\times10^{-6} \ 6$
		282.2 [#] 1	64 [#] 7	4203.20	31/2+	(M1)	0.0569	$\alpha(K)$ =0.0489 7; $\alpha(L)$ =0.00641 9; $\alpha(M)$ =0.001319 19; $\alpha(N+)$ =0.000332 5
								$\alpha(N)=0.000285 \ 4; \ \alpha(O)=4.36\times10^{-5} \ 7; \ \alpha(P)=3.19\times10^{-6} \ 5$
		774.7 [#] 1	36 [#] 7	3710.68	27/2+	E2	0.00322 5	α =0.00322 5; α (K)=0.00275 4; α (L)=0.000375 6; α (M)=7.74×10 ⁻⁵ 11; α (N+)=1.93×10 ⁻⁵ 3
								$\alpha(N)=1.662\times10^{-5} \ 24; \ \alpha(O)=2.51\times10^{-6} \ 4; \ \alpha(P)=1.695\times10^{-7} \ 24$
		1139.3 [#] <i>1</i>	100 [#] 7	3345.94	27/2+	E2	0.001374 20	α =0.001374 20; α (K)=0.001181 17; α (L)=0.0001524 22; α (M)=3.13×10 ⁻⁵ 5; α (N+)=9.32×10 ⁻⁶
								$\alpha(N)=6.74\times10^{-6}\ 10;\ \alpha(O)=1.028\times10^{-6}\ 15;\ \alpha(P)=7.34\times10^{-8}\ 11;$ $\alpha(IPF)=1.482\times10^{-6}\ 22$
4500.6	29/2(+)	416.0 [#] 5	100 [#]	4084.6	27/2(+)			u(III)-1.102/10 22
4502.44	31/2+	246.6 [#] 1	71 [#] 4	4255.82	,	D		
.502.11	51/2	323.5# 1	64 [#] 7	4179.06		(M1)	0.0398	$\alpha(K)$ =0.0342 5; $\alpha(L)$ =0.00447 7; $\alpha(M)$ =0.000919 13; $\alpha(N+)$ =0.000231 4
								$\alpha(N)=0.000198 \ 3; \ \alpha(O)=3.04\times10^{-5} \ 5; \ \alpha(P)=2.23\times10^{-6} \ 4$
		791.7 [#] <i>I</i>	100 [#] 7	3710.68	27/2+	E2	0.00306 5	α =0.00306 5; α (K)=0.00261 4; α (L)=0.000355 5; α (M)=7.33×10 ⁻⁵ 11; α (N+)=1.83×10 ⁻⁵ 3
								$\alpha(N)=1.574\times10^{-5} 22; \ \alpha(O)=2.38\times10^{-6} 4; \ \alpha(P)=1.613\times10^{-7} 23$

$\gamma(^{133}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbb{E}_f \mathbb{J}_f^π	Mult.	α^{\dagger}	Comments
4502.44	$31/2^{+}$	1156.7 [#] <i>I</i>	64 [#] 7	3345.94 27/2 ⁺			
4633.61	(29/2)	1051.0 [#] 5	100 #	3582.69 27/2-			
4657.81	29/2-	232.7 [#] 1	15 [#] 3	4425.08 (27/2+)			
		255.4 [#] 1	17.8 <mark>#</mark> <i>10</i>	4402.41 (27/2)	D		
		690.6 [#] <i>a</i> 1	8 [#] 3	3967.85			
		1075.1 [#] <i>1</i>	100 [#] 5	3582.69 27/2-	M1+E2	0.0018 3	α =0.0018 3; α (K)=0.00158 25; α (L)=0.00020 3; α (M)=4.1×10 ⁻⁵ 6;
							$\alpha(N+)=1.04\times10^{-5} 15$
		# .	#		_		$\alpha(N)=8.9\times10^{-6}\ 13;\ \alpha(O)=1.36\times10^{-6}\ 20;\ \alpha(P)=1.00\times10^{-7}\ 17$
		1311.9 [#] <i>1</i>	10.0# 17	3345.94 27/2 ⁺	D		
4824.51	31/2-	166.7 [#] 1	100.0# 9	4657.81 29/2	D		
		190.9 [#] <i>1</i>	6.5 [#] 11	4633.61 (29/2)	D		
4830.57	33/2+	345.3 [#] 1	14 [#] 6 100 <mark>&</mark> # 6	4485.34 31/2+	D		
		627.3 ^{&#} 1	100 6	4203.20 31/2+	(M1)	0.00754 11	α =0.00754 11; α (K)=0.00649 9; α (L)=0.000829 12; α (M)=0.0001702 24; α (N+)=4.28×10 ⁻⁵ 6 α (N)=3.68×10 ⁻⁵ 6; α (O)=5.65×10 ⁻⁶ 8; α (P)=4.19×10 ⁻⁷ 6
5001.45	33/2+	499.1 [#] <i>I</i>	100 [#] 9	4502.44 31/2 ⁺	(M1)	0.01322	$\alpha(K)$ =0.01138 16 ; $\alpha(L)$ =0.001464 21 ; $\alpha(M)$ =0.000301 5 ;
3001.13	33/2	1,7,11	100)	1302.11 31/2	(1111)	0.01322	$\alpha(N+)=7.57\times10^{-5}$ 11
							$\alpha(N)=6.50\times10^{-5} 9$; $\alpha(O)=9.97\times10^{-6} 14$; $\alpha(P)=7.37\times10^{-7} 11$
		822.3 [#] 1	18 [#] 5	4179.06 29/2+	E2	0.00280 4	α =0.00280 4; α (K)=0.00240 4; α (L)=0.000323 5; α (M)=6.67×10 ⁻⁵ 10; α (N+)=1.665×10 ⁻⁵ 24
							$\alpha(N)=1.433\times10^{-5}\ 20;\ \alpha(O)=2.17\times10^{-6}\ 3;\ \alpha(P)=1.480\times10^{-7}\ 21$
5058.11	$33/2^{-}$	233.6 [#] 1	100 [#]	4824.51 31/2-	(M1)	0.0940	$\alpha(K)$ =0.0807 12; $\alpha(L)$ =0.01064 15; $\alpha(M)$ =0.00219 3;
							$\alpha(N+)=0.000551 \ 8$ $\alpha(N)=0.000473 \ 7; \ \alpha(O)=7.24\times10^{-5} \ 11; \ \alpha(P)=5.29\times10^{-6} \ 8$
5174.16	33/2+	918.4 [#] <i>1</i>	100 [#] 13	4255.82 29/2+	E2	0.00218 3	$\alpha(N)=0.000473$ 7; $\alpha(O)=7.24\times10^{-5}$ 11; $\alpha(P)=5.29\times10^{-6}$ 8 $\alpha=0.00218$ 3; $\alpha(K)=0.00187$ 3; $\alpha(L)=0.000248$ 4; $\alpha(M)=5.11\times10^{-5}$
31/4.10	33/2	918.4" 1	100" 13	4233.82 29/2	E2	0.00218 3	$\alpha = 0.00218 \text{ 3}; \ \alpha(K) = 0.00187 \text{ 3}; \ \alpha(L) = 0.000248 \text{ 4}; \ \alpha(M) = 5.11 \times 10^{-5} \text{ 8}; \ \alpha(N+) = 1.277 \times 10^{-5} \text{ 18}$
							$\alpha(N)=1.099\times10^{-5}$ 16; $\alpha(O)=1.667\times10^{-6}$ 24; $\alpha(P)=1.158\times10^{-7}$ 17
		995.0 [#] 5	25 [#] 13	4179.06 29/2+			2., 4(2)
5242.24	35/2+	411.6 [#] <i>I</i>	11.7 # <i>17</i>	4830.57 33/2+	(M1)		
	/	1039.0 [#] <i>I</i>	100 [#] 5	4203.20 31/2+	E2	0.001667 24	α =0.001667 24; α (K)=0.001432 20; α (L)=0.000187 3;
				,			$\alpha(M)=3.84\times10^{-5} 6$; $\alpha(N+)=9.62\times10^{-6} 14$
							$\alpha(N)=8.27\times10^{-6}\ 12;\ \alpha(O)=1.258\times10^{-6}\ 18;\ \alpha(P)=8.89\times10^{-8}\ 13$
5263.4	$(33/2^{-})$	1069.0 [#] 5	100 [#]	4194.42 29/2-			
5350.41	35/2-	292.3 [#] 1	100 [#]	5058.11 33/2-	(M1)	0.0519	$\alpha(K)$ =0.0446 7; $\alpha(L)$ =0.00584 9; $\alpha(M)$ =0.001202 17; $\alpha(N+)$ =0.000302 5
		ш	щ				$\alpha(N)=0.000259 \ 4; \ \alpha(O)=3.98\times10^{-5} \ 6; \ \alpha(P)=2.91\times10^{-6} \ 4$
5391.72	35/2-	969.8 [#] 1	100 [#] 7	4421.91 31/2-	E2	0.00194 <i>3</i>	α =0.00194 3; α (K)=0.001660 24; α (L)=0.000219 3; α (M)=4.50×10 ⁻⁵

19

$\gamma(^{133}\text{Ba})$ (continued)

					<u>-</u>		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}{^{\ddag}}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	$lpha^\dagger$	Comments
							7; $\alpha(N+)=1.125\times10^{-5}$ 16 $\alpha(N)=9.68\times10^{-6}$ 14; $\alpha(O)=1.470\times10^{-6}$ 21; $\alpha(P)=1.029\times10^{-7}$ 15
5391.72	35/2-	1148.9 [#] <i>1</i>	16.7 [#] <i>19</i>	4242.86 31/2	E2	0.001351 19	α =0.001351 <i>19</i> ; α (K)=0.001161 <i>17</i> ; α (L)=0.0001497 <i>21</i> ; α (M)=3.07×10 ⁻⁵ 5; α (N+)=9.65×10 ⁻⁶ α (N)=6.62×10 ⁻⁶ <i>10</i> ; α (O)=1.009×10 ⁻⁶ <i>15</i> ; α (P)=7.21×10 ⁻⁸ <i>10</i> ; α (IPF)=1.95×10 ⁻⁶ 3
5417.80	35/2 ⁺	243.7 [#] 1	22 <mark>#</mark> 2	5174.16 33/2+	D		
		415.9 [#] <i>a</i> 1	25 [#] 5	5001.45 33/2+		0.0209	$\alpha(K)$ =0.0180 3; $\alpha(L)$ =0.00233 4; $\alpha(M)$ =0.000478 7; $\alpha(N+)$ =0.0001203 17 $\alpha(N)$ =0.0001033 15; $\alpha(O)$ =1.585×10 ⁻⁵ 23; $\alpha(P)$ =1.168×10 ⁻⁶ 17
							E_{γ} : poor fit.
		586.0 [#] 5	15 [#] 5	4830.57 33/2+			E_{γ} : poor fit.
		915.5 [#] <i>1</i>	100# 5	4502.44 31/2+		0.00220 3	α =0.00220 3; α (K)=0.00188 3; α (L)=0.000250 4; α (M)=5.15×10 ⁻⁵ 8; α (N+)=1.286×10 ⁻⁵ 18
		#	#				$\alpha(N)=1.107\times10^{-5}\ 16;\ \alpha(O)=1.679\times10^{-6}\ 24;\ \alpha(P)=1.166\times10^{-7}\ 17$
		932.3# 1	40 [#] 5	4485.34 31/2+	E2	0.00211 3	α =0.00211 3; α (K)=0.00181 3; α (L)=0.000240 4; α (M)=4.93×10 ⁻⁵ 7; α (N+)=1.233×10 ⁻⁵ 18
~.ao	22/2-		400#	12.12.05.01.12-	3.64 770	0.00440.00	$\alpha(N)=1.060\times10^{-5}$ 15; $\alpha(O)=1.610\times10^{-6}$ 23; $\alpha(P)=1.121\times10^{-7}$ 16
5430.11	33/2-	1187.2 [#] <i>1</i>	100 [#]	4242.86 31/2	M1+E2	0.00148 22	α =0.00148 22; α (K)=0.00127 19; α (L)=0.000161 22; α (M)=3.3×10 ⁻⁵ 5; α (N+)=1.31×10 ⁻⁵ 11
							$\alpha(N)=7.1\times10^{-6}\ 10;\ \alpha(O)=1.09\times10^{-6}\ 16;\ \alpha(P)=8.0\times10^{-8}\ 13;$ $\alpha(IPF)=4.82\times10^{-6}\ 13$
5465.17	$(35/2)^+$	634.6 [#] 1	100 [#]	4830.57 33/2+	M1+E2	0.0063 11	α =0.0063 11; α (K)=0.0054 10; α (L)=0.00072 9; α (M)=0.000148 18; α (N+)=3.7×10 ⁻⁵ 5
							$\alpha(N)=3.2\times10^{-5} 4$; $\alpha(O)=4.8\times10^{-6} 7$; $\alpha(P)=3.4\times10^{-7} 7$
5520.56	35/2-	1278.0 [#] 5	100 [#]	4242.86 31/2	E2	0.001102 <i>16</i>	α =0.001102 <i>16</i> ; α (K)=0.000935 <i>14</i> ; α (L)=0.0001192 <i>17</i> ; α (M)=2.45×10 ⁻⁵ <i>4</i> ; α (N+)=2.38×10 ⁻⁵
							$\alpha(N)=5.27\times10^{-6} 8$; $\alpha(O)=8.05\times10^{-7} 12$; $\alpha(P)=5.81\times10^{-8} 9$; $\alpha(IPF)=1.77\times10^{-5} 3$
5661.86	$35/2^{-}$	231.7 [#] <i>1</i>	29 [#] 10	5430.11 33/2			
	,	1419.0 [#] <i>I</i>	100 [#] 5	4242.86 31/2	E2	0.000932 13	α =0.000932 13; α (K)=0.000760 11; α (L)=9.60×10 ⁻⁵ 14; α (M)=1.97×10 ⁻⁵ 3; α (N+)=5.70×10 ⁻⁵ 8
							$\alpha(N)=4.24\times10^{-6} \ 6; \ \alpha(O)=6.49\times10^{-7} \ 9; \ \alpha(P)=4.73\times10^{-8} \ 7; \ \alpha(IPF)=5.20\times10^{-5} \ 8$
5735.61	$37/2^{-}$	385.2 [#] 1	100 [#]	5350.41 35/2			
5858.16	37/2+	615.8 [#] I	100# 15	5242.24 35/2+		0.00788 11	α =0.00788 11; α (K)=0.00679 10; α (L)=0.000868 13; α (M)=0.0001782 25; α (N+)=4.48×10 ⁻⁵ α (N)=3.85×10 ⁻⁵ 6; α (O)=5.91×10 ⁻⁶ 9; α (P)=4.39×10 ⁻⁷ 7

20

$\gamma(\frac{133}{\text{Ba}})$ (continued)

E_i (level)	J_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}{^{\ddag}}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	$lpha^\dagger$	Comments
5858.16	37/2+	1027.7 [#] I	46 [#] 8	4830.57	33/2+	E2	0.001707 24	α =0.001707 24; α (K)=0.001466 21; α (L)=0.000192 3; α (M)=3.94×10 ⁻⁵ 6; α (N+)=9.86×10 ⁻⁶ 14 α (N)=8.48×10 ⁻⁶ 12; α (O)=1.289×10 ⁻⁶ 18; α (P)=9.09×10 ⁻⁸ 13
5936.24	37/2+	518.3 [#] 1	100 [#] 8	5417.80	35/2+	(M1)	0.01204	$\alpha(K)$ =0.01036 15; $\alpha(L)$ =0.001331 19; $\alpha(M)$ =0.000274 4; $\alpha(N+)$ =6.88×10 ⁻⁵ 10
		935.0# 5	46 [#] 8	5001.45	33/2+	[E2]	0.00210 3	$\alpha(N)=5.91\times10^{-5} 9$; $\alpha(O)=9.07\times10^{-6} 13$; $\alpha(P)=6.71\times10^{-7} 10$ $\alpha=0.00210 3$; $\alpha(K)=0.00180 3$; $\alpha(L)=0.000238 4$; $\alpha(M)=4.90\times10^{-5} 7$; $\alpha(N+)=1.224\times10^{-5} 18$ $\alpha(N)=1.053\times10^{-5} 15$; $\alpha(O)=1.599\times10^{-6} 23$; $\alpha(P)=1.114\times10^{-7} 16$
5983.71	37/2-	321.8 [#] <i>1</i>	100 # <i>16</i>	5661.86	35/2-			<u> </u>
	,	463.1 [#] <i>1</i>	63 [#] 5	5520.56	,	(M1)	0.01594	$\alpha(K)$ =0.01371 20; $\alpha(L)$ =0.001769 25; $\alpha(M)$ =0.000364 5; $\alpha(N+)$ =9.14×10 ⁻⁵ 13
								$\alpha(N)=7.85\times10^{-5} \ 11; \ \alpha(O)=1.205\times10^{-5} \ 17; \ \alpha(P)=8.90\times10^{-7} \ 13$
		592.1 [#] <i>1</i>	68 [#] 5	5391.72	35/2-	(M1)	0.00868 13	α =0.00868 13; α (K)=0.00747 11; α (L)=0.000956 14; α (M)=0.000196 3; α (N+)=4.94×10 ⁻⁵ 7
		ш	ш					$\alpha(N)=4.24\times10^{-5} \ 6; \ \alpha(O)=6.51\times10^{-6} \ 10; \ \alpha(P)=4.83\times10^{-7} \ 7$
6237.0	39/2-	501.4 [#] I	100 [#]	5735.61	37/2-	(M1)	0.01307	$\alpha(K)$ =0.01125 16; $\alpha(L)$ =0.001447 21; $\alpha(M)$ =0.000297 5; $\alpha(N+)$ =7.48×10 ⁻⁵ 11
		# -	#					$\alpha(N)=6.42\times10^{-5} \ 9; \ \alpha(O)=9.86\times10^{-6} \ 14; \ \alpha(P)=7.29\times10^{-7} \ 11$
6277.35	39/2+	419.2 [#] <i>1</i>	30.5 [#] 22	5858.16	37/2+	(M1)	0.0205	$\alpha(K)$ =0.01762 25; $\alpha(L)$ =0.00228 4; $\alpha(M)$ =0.000469 7; $\alpha(N+)$ =0.0001179 17
		1005.1# 1	100# 5	5040.04	25/24	F2	0.001/01.01	$\alpha(N)=0.0001012 \ 15; \ \alpha(O)=1.553\times10^{-5} \ 22; \ \alpha(P)=1.145\times10^{-6} \ 16$
		1035.1 [#] <i>1</i>	100" 5	5242.24	35/2+	E2	0.001681 <i>24</i>	α =0.001681 24; α (K)=0.001444 21; α (L)=0.000188 3; α (M)=3.88×10 ⁻⁵ 6; α (N+)=9.70×10 ⁻⁶ 14
6207.02	20/2-	2242# 1	50# B	5002 51	25/2-	0.51)	0.0207	$\alpha(N)=8.34\times10^{-6}\ 12;\ \alpha(O)=1.269\times10^{-6}\ 18;\ \alpha(P)=8.96\times10^{-8}\ 13$
6307.92	39/2-	324.3 [#] 1	50 [#] 8	5983.71		(M1)	0.0396	$\alpha(K)$ =0.0340 5; $\alpha(L)$ =0.00444 7; $\alpha(M)$ =0.000913 13; $\alpha(N+)$ =0.000230 4 $\alpha(N)$ =0.000197 3; $\alpha(O)$ =3.02×10 ⁻⁵ 5; $\alpha(P)$ =2.22×10 ⁻⁶ 4
		916.2 [#] <i>1</i>	100# 8	5391.72	35/2-	E2	0.00219 3	α =0.00219 3; α (K)=0.00188 3; α (L)=0.000250 4; α (M)=5.14×10 ⁻⁵ 8; α (N+)=1.284×10 ⁻⁵ 18
		,,	,,					$\alpha(N)=1.105\times10^{-5}\ 16;\ \alpha(O)=1.676\times10^{-6}\ 24;\ \alpha(P)=1.164\times10^{-7}\ 17$
6366.90	39/2-	383.1 [#] <i>1</i>	67 [#] 17	5983.71	,			
		846.4 [#] 1	100 [#] 25	5520.56	35/2-	E2	0.00262 4	α =0.00262 4; α (K)=0.00224 4; α (L)=0.000301 5; α (M)=6.22×10 ⁻⁵ 9; α (N+)=1.551×10 ⁻⁵ 22
		#	#					$\alpha(N)=1.335\times10^{-5} \ 19; \ \alpha(O)=2.02\times10^{-6} \ 3; \ \alpha(P)=1.387\times10^{-7} \ 20$
		975.1 [#] <i>1</i>	42 [#] 8	5391.72				
6425.78	39/2 ⁺	489.4 [#] 1	19 [#] 5	5936.24				
		1008.1 [#] <i>1</i>	100 [#] 10	5417.80	35/2+	E2	0.001779 25	α =0.001779 25; α (K)=0.001528 22; α (L)=0.000200 3; α (M)=4.12×10 ⁻⁵ 6;

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
								$\alpha(N+)=1.029\times10^{-5} I$
		,,						$\alpha(N)=8.85\times10^{-6}\ 13;\ \alpha(O)=1.346\times10^{-6}\ 19;\ \alpha(P)=9.47\times10^{-8}\ 14$
6546.16		688.0 [#] 1	100 [#]	5858.16	$37/2^{+}$			
6749.51	41/2-	382.5 [#] 1	71 [#] <i>18</i>	6366.90	39/2-	(M1)	0.0259	$\alpha(K)$ =0.0222 4; $\alpha(L)$ =0.00289 4; $\alpha(M)$ =0.000594 9; $\alpha(N+)$ =0.0001493 21 $\alpha(N)$ =0.0001282 18; $\alpha(O)$ =1.97×10 ⁻⁵ 3; $\alpha(P)$ =1.446×10 ⁻⁶ 21
		441.7 [#] <i>I</i>	100 [#] 12	6307.92	39/2-	(M1)	0.0180	$\alpha(\mathrm{K}) = 0.01544$ 22; $\alpha(\mathrm{L}) = 0.00199$ 3; $\alpha(\mathrm{M}) = 0.000410$ 6; $\alpha(\mathrm{N}+) = 0.0001031$ 15
								$\alpha(N)=8.85\times10^{-5} \ 13; \ \alpha(O)=1.359\times10^{-5} \ 19; \ \alpha(P)=1.002\times10^{-6} \ 14$
6818.0	41/2-	581.0 [#] <i>I</i>	100 [#] 5	6237.0	39/2-	(M1)	0.00909 13	α =0.00909 13; α (K)=0.00783 11; α (L)=0.001002 14; α (M)=0.000206 3; α (N+)=5.18×10 ⁻⁵ 8
								$\alpha(N)=4.44\times10^{-5}$ 7; $\alpha(O)=6.82\times10^{-6}$ 10; $\alpha(P)=5.06\times10^{-7}$ 7
		1081.5 [#] <i>a</i> 1	14 [#] 5	5735.61	$37/2^{-}$			
6955.08	$41/2^{+}$	529.3 [#] 1	100 #	6425.78	39/2+			
6980.56	$(41/2^+)$	703.2 [#] 1	100 [#]	6277.35	$39/2^{+}$			
7217.71	43/2-	468.2 [#] 1	100 [#]	6749.51	41/2-	(M1)	0.01551	$\alpha(K)$ =0.01334 <i>19</i> ; $\alpha(L)$ =0.001720 <i>25</i> ; $\alpha(M)$ =0.000354 <i>5</i> ; $\alpha(N+)$ =8.89×10 ⁻⁵ <i>13</i>
								$\alpha(N) = 7.63 \times 10^{-5} \ II; \ \alpha(O) = 1.172 \times 10^{-5} \ I7; \ \alpha(P) = 8.65 \times 10^{-7} \ I3$
7421.0	43/2-	603.0 [#] 5	100 [#] 10	6818.0	41/2-	(M1)	0.00830 12	α =0.00830 <i>12</i> ; α (K)=0.00715 <i>11</i> ; α (L)=0.000914 <i>13</i> ; α (M)=0.000188 <i>3</i> ; α (N+)=4.72×10 ⁻⁵ <i>7</i>
								$\alpha(N)=4.05\times10^{-5}$ 6; $\alpha(O)=6.23\times10^{-6}$ 9; $\alpha(P)=4.62\times10^{-7}$ 7
		1184.0 [#] 5	30 # <i>10</i>	6237.0	39/2-			
7431.38	$(43/2^+)$	476.3 [#] 1	100 [#] <i>33</i>	6955.08	$41/2^{+}$			
		1005.6 [#] 1	100 [#] <i>17</i>	6425.78	39/2+			
7585.86	43/2+	1308.5 [#] 1	100 [#]	6277.35	39/2+			
8052.0	45/2-	631.0 [#] 5	100 [#] 14	7421.0	43/2-	(M1)	0.00743 11	α =0.00743 11; α (K)=0.00640 9; α (L)=0.000817 12; α (M)=0.0001678 24; α (N+)=4.22×10 ⁻⁵ 6
		,,						$\alpha(N)=3.62\times10^{-5} 6$; $\alpha(O)=5.57\times10^{-6} 8$; $\alpha(P)=4.13\times10^{-7} 6$
		1234.0 [#] 5	86 [#] 14	6818.0	$41/2^{-}$			

[†] Additional information 1. ‡ From 133 La ε decay (3.912 h) for levels below 1830 keV, otherwise from 124 Sn(13 C,4n γ), except as noted. # From 124 Sn(13 C,4n γ).

[@] From $\alpha(\exp)$, $\gamma(\theta)$ and DCO ratios in ¹³³La ε decay (3.912 h) and ¹²⁴Sn(¹³C,4n γ).

[&]amp; Multiply placed with intensity suitably divided.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{133}_{56} \mathrm{Ba}_{77}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

γ Decay (Uncertain)

10.551 y *11*

 $^{133}_{56} \mathrm{Ba}_{77}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $^{133}_{56} \mathrm{Ba}_{77}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

γ Decay (Uncertain)

 $^{133}_{56} \mathrm{Ba}_{77}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Band(H): Based on 11/2-

1098

1031

890

27/2

23/2

19/2

15/2

11/2

state, $\alpha = -1/2$; configuration= $v(\mathbf{h}_{11/2})^{-1}$

3987.98

2890.38

1859.11

968.97

288.252

state, $\alpha = +1/2$;

1018

958

811

901.80

 $(25/2^{-})$

21/2

17/2

13/2

15/2

1528.99

 $\begin{array}{l} \textbf{Band(M): Based on 19/2}^{(+)}\\ \textbf{state; probable}\\ \textbf{configuration=} \textit{V}(\textbf{h}_{11/2})\\ ^{-1} \otimes \pi(\textbf{h}_{11/2}^{-1},\\ \textbf{d}_{5/2}^{-1}) \end{array}$

$$^{133}_{56} \mathrm{Ba}_{77}$$

¹³³Ba IT decay 1965Th05,1980VyZZ,1980Mi13

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010

Parent: 133 Ba: E=288.252 9; $J^{\pi}=11/2^{-}$; $T_{1/2}=38.93$ h 10 ; %IT decay=99.9896 5

1980Mi13: $^{133\text{m}}$ Ba decay [from 133 Cs(p,n)]; measured γ , $\gamma\gamma$ (t); deduced levels, $T_{1/2}$, α (exp). Cyclotron, chemical and mass separations, Ge detectors.

1980VyZZ: 133m Ba decay [from Gd(p,X) E=660 MeV]; measured γ , ce; deduced transitions, subshell ratios. Synchrocyclotron, chemical and mass separations.

1965Th05: $^{133\text{m}}$ Ba decay [from $^{\text{nat}}$ Cs(d,2n) E=20 MeV]; measured ce, γ , ce γ (t), ce-ce(t); deduced levels, $T_{1/2}$, subshell ratios, α (exp). Cyclotron, chemical separation, magnetic lens and iron-free spectrometers, NaI(Tl) detector.

1980AnZG: 133m Ba decay [from Cs(p,n)]; measured E γ , I γ , isomer $T_{1/2}$. Cyclotron, chemical procedure.

Others: 1966Ha23, 1979An06, 1981An17, 2011Gr01.

¹³³Ba Levels

E(level) [†]	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$	Comments
0.0	1/2+	10.551 y <i>11</i>	
12.327 6	$3/2^{+}$	7.0 ns <i>3</i>	
288 252 9	$11/2^{-}$	38 93 h 10	%=0.0104 5: %IT=99.9896 5

[†] From 'Adopted Levels'.

$\gamma(^{133}\text{Ba})$

Iy normalization: from $\Sigma(\gamma+ce)=100$ depopulating the 288.252-keV level.

E_{γ}^{\ddagger}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	δ	α^{\dagger}	Comments
12.327 6	8.01 25	12.327	3/2+	0.0 1/2	M1+E2	≤0.013	69.5 19	L1:L2:L3=100:9.6 20 :3.1 15 (1965Th05); α (exp)=65 3 (1980Mi13) α (L)=55.2 15 ; α (M)=11.4 3 ; α (N+)=2.86 8 α (N)=2.46 7 ; α (O)=0.373 9 ; α (P)=0.0261 4 α (L1)=48.6 7 ; α (L2)=4.9 5 ; α (L3)=1.8 7 I _{γ} : calculated by evaluators from intensity balance with 275.9-keV transition and α =69.5 19 ; others: 0.086 5 (1980Mi13), 0.0515 25
275.925 7	100	288.252	11/2	12.327 3/2	⁺ М4		4.65	(1980VyZZ). Mult., δ : from 1965Th05, 1980Mi13; maximum possible E2 admixture of δ^2 =1.6×10 ⁻⁴ . δ : =0.007 5 calculated with BrIccMixing program by evaluators using the L-subshell ratio of 1965Th05; α =68.9 20 with that δ . K:L:M:N=100.0 11:31.5 4:6.68 12:1.78 7 (1980VyZZ) α (K)exp=3.45 20; K/L+=2.55 10 (1965Th05)

¹³³Ba IT decay 1965Th05,1980VyZZ,1980Mi13 (continued)

$\gamma(^{133}\text{Ba})$ (continued)

E_{γ}^{\ddagger}	Ι _γ @	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
288 1	<0.0018	288.252	11/2-	0.0 1/2+	[E5]	4.08 11	$\alpha(K)=3.34\ 5;\ \alpha(L)=1.018\ 15;\ \alpha(M)=0.229\ 4;$ $\alpha(N+)=0.0565\ 8$ $\alpha(N)=0.0491\ 7;\ \alpha(O)=0.00705\ 10;\ \alpha(P)=0.000352\ 5$ E_{γ} : from 2011Gr01 and 1980AnZG: $\Delta E_{\gamma}=1\ keV$ (assigned by evaluators). I_{γ} : from 2011Gr01. Other: 0.036 25 (1980AnZG).

[†] Additional information 1.

¹³³Ba IT decay 1965Th05,1980VyZZ,1980Mi13

[‡] From 1980VyZZ, except as noted. # From $\alpha(K)$ exp and sub-shell ratios, except as noted.

[®] For absolute intensity per 100 decays, multiply by 0.1769 25.

¹³³La ε decay (3.912 h) 1976He11,1980VyZZ

	History			
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010	

Parent: 133 La: E=0.0; J^{π} =5/2+; $T_{1/2}$ =3.912 h 8; $Q(\varepsilon)$ =2059 28; $\%\varepsilon+\%\beta^+$ decay=100.0 1976He11: 133 La ε decay [from 133 Ce ε decay, produced in 132 Ba(α ,3n)]; measured γ , γ (t), $\gamma\gamma$ coin.; deduced levels, J^{π} , α (exp), log ft, $T_{1/2}$ (133 La). Cyclotron, chemical and mass separations, Ge(Li) detectors.

1980VyZZ, 1983JoZX: 133 La ε decay [from Gd(p,X) E=660 MeV]; measured γ , ce; deduced levels, J^{π} . Synchrocyclotron, chemical and mass separations, particle-vibrational coupling model. Others: 1966Ha23, 1973Re05.

¹³³Ba Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	1/2+	10.551 y <i>11</i>	
12.326 6	3/2+	7.0 ns 3	
288.251 9	11/2-	38.93 h 10	0.3% of all ¹³³ La decays populate the ¹³³ Ba isomer (1966Ha23).
291.186 9	5/2+		
302.395 11	3/2+		
539.800 <i>13</i>	1/2+		
577.553 13	7/2+		
630.567 10	5/2+		
676.486 <i>12</i>	$3/2^+, 5/2^+$		
858.499 <i>11</i>	3/2+		
862.80 9	$(7/2)^+$		
883.39 <i>5</i>	9/2+		
887.134 <i>12</i>	5/2+		
923.955 10	5/2+		
1021.584 23	3/2+		
1112.344 <i>12</i>	3/2+,5/2+,7/2+		
1211.792 <i>12</i>	3/2+,5/2+		
1283.959 24	3/2-		
1329.316 18	5/2 ⁺		
1352.76 5	7/2 ⁺		
1528.64 9	3/2,5/2+		
1532.40 8	3/2,5/2,7/2+		
1563.399 <i>24</i> 1620.56 <i>4</i>	5/2 ⁺ 5/2 ⁺		
1689.74 6	3/2+,5/2,7/2+		
1706.94 19	3/2,5/2+		
1769.70 5	3/2,5/2+		
1830.22 3	3/2,5/2+		
1000.220	<i>2,2,2,2</i>		

[†] From a least-squares fit to $E\gamma$'s.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}arepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(2.3 \times 10^2 \ 3)$	1830.22	0.0027 6	7.98 17	0.0027 6	ε K=0.811 8; ε L=0.147 6; ε M+=0.0424 20
$(2.9 \times 10^2 \ 3)$	1769.70	0.0111 6	7.60 11	0.0111 6	ε K=0.822 5; ε L=0.139 4; ε M+=0.0398 11
$(3.5 \times 10^2 \ 3)$	1706.94	0.0120 9	7.75 9	0.0120 9	ε K=0.828 3; ε L=0.1336 20; ε M+=0.0381 7
$(3.7 \times 10^2 \ 3)$	1689.74	0.0177 22	7.63 10	0.0177 22	ε K=0.8297 24; ε L=0.1326 18; ε M+=0.0378 6
$(4.4 \times 10^2 \ 3)$	1620.56	0.061 4	7.25 7	0.061 4	ε K=0.8340 <i>16</i> ; ε L=0.1293 <i>12</i> ; ε M+=0.0367 4
$(5.0 \times 10^2 \ 3)$	1563.399	0.055 4	7.41 7	0.055 4	ε K=0.8366 12; ε L=0.1274 9; ε M+=0.0360 3

[‡] From 'Adopted Levels'.

133 La ε decay (3.912 h) 1976He11,1980VyZZ (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ ‡	$\mathrm{I}arepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(5.3 \times 10^2 \ 3)$	1532.40		0.0061 7	8.42 8	0.0061 7	ε K=0.8377 11; ε L=0.1265 8; ε M+=0.0358 3
$(5.3 \times 10^2 \ 3)$	1528.64		0.0054 8	8.48 9	0.0054 8	ε K=0.8379 11; ε L=0.1264 8; ε M+=0.0357 3
$(7.1 \times 10^2 \ 3)$	1352.76		0.131 9	7.36 5	0.131 9	εK=0.8423 6; εL=0.1231 4; εM+=0.03463 14
$(7.3 \times 10^2 \ 3)$	1329.316		0.079 5	7.61 5	0.079 5	ε K=0.8427 5; ε L=0.1228 4; ε M+=0.03453 13
$(7.8 \times 10^2 \ 3)$	1283.959		0.062 5	7.77 5	0.062 5	ε K=0.8434 5; ε L=0.1222 4; ε M+=0.03435 11
$(8.5 \times 10^2 \ 3)$	1211.792		0.168 11	7.42 5	0.168 11	ε K=0.8444 4; ε L=0.1215 3; ε M+=0.03410 9
$(9.5 \times 10^2 \ 3)$	1112.344		0.318 17	7.24 <i>4</i>	0.318 17	ε K=0.8455 3; ε L=0.12067 22; ε M+=0.03383 7
$(1.04 \times 10^3 \ 3)$	1021.584		0.115 7	7.77 4	0.115 7	ε K=0.8463 3; ε L=0.12005 18; ε M+=0.03363 6
$(1.14 \times 10^3 \ 3)$	923.955		1.59 8	6.71 4	1.59 8	ε K=0.8470 2; ε L=0.11950 15; ε M+=0.03345 5
$(1.17 \times 10^3 \ 3)$	887.134		0.64 3	7.13 <i>3</i>	0.64 3	ε K=0.8473 2; ε L=0.11932 <i>14</i> ; ε M+=0.03339 5
$(1.20 \times 10^3 \ 3)$	862.80		0.066 7	8.13 5	0.066 7	ε K=0.8474 2; ε L=0.11920 <i>14</i> ; ε M+=0.03335 5
$(1.20 \times 10^3 \ 3)$	858.499		1.16 6	6.89 <i>3</i>	1.16 6	ε K=0.8474 2; ε L=0.11918 <i>14</i> ; ε M+=0.03334 <i>5</i>
$(1.38 \times 10^3 \ 3)$	676.486	0.00031 12	0.192 <i>17</i>	7.80 5	0.192 <i>17</i>	av E β =172 13; ε K=0.8470 4; ε L=0.11828 17; ε M+=0.03306 5
$(1.43 \times 10^3 \ 3)$	630.567	0.0025 8	0.95 5	7.13 3	0.95 5	av E β =192 13; ε K=0.8464 6; ε L=0.11800 19; ε M+=0.03297 6
$(1.48 \times 10^3 \ 3)$	577.553	0.0019 5	0.43 3	7.51 4	0.43 3	av E β =216 13; ε K=0.8451 9; ε L=0.11764 22; ε M+=0.03286 7
$(1.76 \times 10^3 \ 3)$	302.395	0.054 8	2.10 11	6.97 <i>3</i>	2.15 11	av E β =336 13; ε K=0.828 3; ε L=0.1145 5; ε M+=0.03195 14
$(1.77 \times 10^3 \ 3)$	291.186	0.030 5	1.10 11	7.26 5	1.13 11	av E β =341 13; ε K=0.827 3; ε L=0.1143 5; ε M+=0.03190 14
$(2.05 \times 10^3 \ 3)$	12.326	7.1 8	84 6	5.51 4	91 7	av E β =463 13; ε K=0.784 6; ε L=0.1079 9; ε M+=0.03008 24

[†] From intensity balances. ‡ Absolute intensity per 100 decays.

	$\mathrm{E}_{\gamma}^{\ \ddagger}$	I_{γ} ‡&	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}^π_f	Mult.#	δ	$lpha^\dagger$	Comments
	12.327 6	56.4 28	12.326	3/2+	0.0	1/2+	M1+E2	≤0.013	69.5 19	$\alpha(L)=55.2\ 15;\ \alpha(M)=11.4\ 3;\ \alpha(N+)=2.86\ 8$ $\alpha(N)=2.46\ 7;\ \alpha(O)=0.373\ 9;\ \alpha(P)=0.0261\ 4$ Mult., δ : from 'Adopted Levels and gammas'. I _{\gamma} : from I(γ +ce)=3976\ 164\ deduced using I _{\gamma} (±)=458\ 11\ (1976He11),\ \epsilon/\beta^+=15.2\ (theory\ 1972Dz09\ with assumed uncertainty\ of\ 3%)\ and\ \Sil(\gamma+ce)=266\ 4,\ the\ total\ intensity\ feeding\ this\ state.
	^x 113.43 6	0.21 4					M1,E2		1.0 3	ce(K)=38 6; ce(L23)=9 2; ce(M)=2.3 4; α (K)exp=0.8 2 (1966Ha23) α (K)=0.71 12; α (L)=0.20 13; α (M)=0.04 3; α (N+)=0.010 7 α (N)=0.009 6; α (O)=0.0012 7; α (P)=3.89×10 ⁻⁵ 6
•	136.7 [@] 2	0.8 [@] 3	676.486	3/2+,5/2+	539.800	1/2+	M1,E2		0.52 12	ce(K)=7 I (1966Ha23) α (K)exp=0.4 2 α (K)=0.40 6 ; α (L)=0.10 5 ; α (M)=0.020 II ; α (N+)=0.005 3 α (N)=0.0043 23 ; α (O)=0.0006 3 ; α (P)=2.27×10 ⁻⁵ 5
	158.4 [@] 3	0.07@ 3	1021.584	3/2+	862.80	(7/2)+	E2		0.33 6	ce(K)=4 I ; α (K)exp=0.26 I 2 (1966Ha23) α (K)=0.26 J 3; α (L)=0.055 J 4; α (M)=0.012 J 6; α (N+)=0.0028 I 2 α (N)=0.0024 I 1; α (O)=0.00035 J 4; α (P)=1.48×10 ⁻⁵ J 5 I 5 I 7; this transition questionably populates the 862.80-keV level in 1976He11, however, the level energy difference (158.78 J 9) fits.
	210.54 6	0.20 5	887.134	5/2+	676.486	3/2+,5/2+	M1,E2		0.135 11	ce(K)=10 2 (1966Ha23) α (K)exp=0.23 8 α (K)=0.110 4; α (L)=0.020 6; α (M)=0.0041 13; α (N+)=0.0010 3 α (N)=0.00087 25; α (O)=0.00013 3; α (P)=6.5×10 ⁻⁶ 5
	227.82 6	0.31 5	858.499	3/2+	630.567	5/2+	M1,E2		0.106 6	ce(K)=8 2 (1966Ha23) α (K)exp=0.15 4 α (K)=0.0870 15; α (L)=0.015 4; α (M)=0.0031 8; α (N)=0.00067 16; α (O)=9.7×10 ⁻⁵ 20; α (P)=5.2×10 ⁻⁶ 5
	256.57 [@] 6	0.91 [@] 6	887.134	5/2+	630.567	5/2+	M1,E2		0.0741 <i>14</i>	ce(K)=16.5 25 (1966Ha23) α(K)exp=0.076 12

 ω

1976He11,1980VyZZ (continued)

¹³³La ε decay (3.912 h)

γ (133Ba) (continued)

						-		
E_{γ}^{\ddagger}	I_{γ} ‡&	$E_i(level)$	\mathtt{J}_{i}^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
309.56 5	0.55 5	887.134	5/2+	577.553	7/2+	M1,E2	0.0428 20	$\alpha(K)$ =0.0408 6; $\alpha(L)$ =0.00534 8; $\alpha(M)$ =0.001098 16; $\alpha(N+)$ =0.000276 4 $\alpha(N)$ =0.000237 4; $\alpha(O)$ =3.63×10 ⁻⁵ 5; $\alpha(P)$ =2.66×10 ⁻⁶ 4 ce(K)=5.8 18; $\alpha(K)$ exp=0.047 15 $\alpha(K)$ =0.036 3; $\alpha(L)$ =0.0055 5; $\alpha(M)$ =0.00115 12;
324.76 10	0.32 5	1211.792	3/2+,5/2+	887.134	5/2 ⁺			$\alpha(N+)=0.000283 \ 25$ $\alpha(N)=0.000245 \ 23; \ \alpha(O)=3.63\times10^{-5} \ 22; \ \alpha(P)=2.2\times10^{-6} \ 3$
328.18 3	1.19 7	630.567	5/2+	302.395	3/2+	M1+E2	0.0362 23	ce(L)=1.2 3; α (L)exp=0.0046 12 α (K)=0.030 3; α (L)=0.0046 3; α (M)=0.00095 8; α (N+)=0.000236 15
339.35 4	1.63 16	630.567	5/2+	291.186	5/2+	M1+E2	0.0329 23	$\alpha(N)=0.000204\ 14;\ \alpha(O)=3.04\times10^{-5}\ 12;\ \alpha(P)=1.9\times10^{-6}\ 3$ $ce(K)=11\ 3;\ ce(L)=1.4\ 4;\ \alpha(K)exp=0.030\ 8;\ \alpha(L)exp=0.0039\ 11$ $\alpha(K)=0.028\ 3;\ \alpha(L)=0.00414\ 21;\ \alpha(M)=0.00086\ 6;$ $\alpha(N+)=0.000213\ 11$ $\alpha(N)=0.000184\ 10;\ \alpha(O)=2.74\times10^{-5}\ 8;\ \alpha(P)=1.7\times10^{-6}\ 3$
345.1 [@] 4	0.06 [@] 5	1021.584	3/2+	676.486	3/2+,5/2+			$\alpha(N)=0.000184 10$; $\alpha(O)=2.74\times10^{-6} 8$; $\alpha(P)=1.7\times10^{-6} 3$ E_{γ} : this transition questionably populates the 676.486-keV level in 1976He11, however, the level energy difference (345.098 25) fits.
347.1 [@] 3	0.13 [@] 6	887.134	5/2+	539.800	1/2+			, , , , , , , , , , , , , , , , , , , ,
353.28 4	0.94 7	1211.792	3/2+,5/2+	858.499	/	E2	0.0271	ce(K)=3.8 7; α (K)exp=0.018 4 α (K)=0.0223 4; α (L)=0.00378 6; α (M)=0.000794 12; α (N+)=0.000195 3
^x 355.97 3	1.19 6					E1	0.00738 11	$\begin{array}{l} \alpha(\mathrm{N}) = 0.0001687 \ 24; \ \alpha(\mathrm{O}) = 2.45 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 1.296 \times 10^{-6} \ 19 \\ \mathrm{ce}(\mathrm{K}) = 1.3 \ 3; \ \alpha(\mathrm{K}) \mathrm{exp} = 0.0041 \ 12 \\ \alpha = 0.00738 \ 11; \ \alpha(\mathrm{K}) = 0.00636 \ 9; \ \alpha(\mathrm{L}) = 0.000810 \ 12; \\ \alpha(\mathrm{M}) = 0.0001659 \ 24; \ \alpha(\mathrm{N}+) = 4.14 \times 10^{-5} \ 6 \\ \alpha(\mathrm{N}) = 3.56 \times 10^{-5} \ 5; \ \alpha(\mathrm{O}) = 5.39 \times 10^{-6} \ 8; \ \alpha(\mathrm{P}) = 3.75 \times 10^{-7} \ 6 \end{array}$
374.13 <i>9</i> 385.295 <i>14</i>	0.33 <i>5</i> 3.10 <i>11</i>	676.486 676.486	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺	302.395 291.186		M1+E2	0.0231 23	ce(K)=16 5; ce(L)=2.5 7; ce(M)=0.7 3 α (K)exp=0.023 8; α (L)exp=0.0036 3; α (M)exp=0.0010 4 α (K)=0.0196 23; α (L)=0.00283 4; α (M)=0.000588 10; α (N+)=0.0001461 21 α (N)=0.0001260 18; α (O)=1.89×10 ⁻⁵ 5; α (P)=1.22×10 ⁻⁶ 21
428.7 [@] 2	0.17 [@] 6	1352.76	7/2+	923.955	5/2+	M1	0.0194	ce(K)=1.0 3; α (K)exp=0.021 6 α (K)=0.01665 24; α (L)=0.00215 3; α (M)=0.000443 7; α (N+)=0.0001113 16 α (N)=9.56×10 ⁻⁵ 14; α (O)=1.467×10 ⁻⁵ 21; α (P)=1.081×10 ⁻⁶ 16 E _y : 428.53 9 is placed from the 1351-keV (3/2 ⁺ ,5/2 ⁺) level (1980VyZZ), but this level is not supported by others, the level energy difference is equal to 428.74 5.
^x 432.3 [@] b 3	0.09 [@] 5							chergy affective is equal to 120.713.

S

133 La ε decay (3.912 h) 1976He11,1980VyZZ (continued)

$\gamma(^{133}\text{Ba})$ (continued)

$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ} ‡&	$E_i(level)$	J_i^{π}	E_f	${\rm J}_f^\pi$	Mult.#	$lpha^\dagger$	Comments
435.82 3	1.02 6	1112.344	3/2+,5/2+,7/2+	676.486	3/2+,5/2+	E2	0.01452	ce(K)=2.6 5; α (K)exp=0.012 3 α (K)=0.01212 17; α (L)=0.00190 3; α (M)=0.000398 6; α (N+)=9.79×10 ⁻⁵ 14 α (N)=8.47×10 ⁻⁵ 12; α (O)=1.247×10 ⁻⁵ 18; α (P)=7.20×10 ⁻⁷ 10
441.9 [@] 4	0.07 [@] 5	1329.316	5/2+	887.134	5/2+	M1,E2	0.0159 20	ce(K)=0.35 12; α (K)exp=0.023 10 α (K)=0.0135 19; α (L)=0.00191 9; α (M)=0.000395 16; α (N+)=9.8×10 ⁻⁵ 5 α (N)=8.5×10 ⁻⁵ 4; α (O)=1.28×10 ⁻⁵ 9; α (P)=8.5×10 ⁻⁷ 16 E _{γ} : this transition questionably populates the 887.134-keV level in 1976He11, the level energy difference = 442.182 19.
445.3 [@] 3	0.17 [@] 10	1329.316	5/2+	883.39	9/2+	(E2)	0.01365	ce(K)=0.7 3; α (K)exp=0.019 12 α (K)=0.01141 17; α (L)=0.00178 3; α (M)=0.000371 6; α (N+)=9.15×10 ⁻⁵ 13 α (N)=7.92×10 ⁻⁵ 12; α (O)=1.166×10 ⁻⁵ 17; α (P)=6.79×10 ⁻⁷ 10 E _{γ} : poor fit, the level energy difference = 445.93 5. Mult.: M1,E2 from conversion data. M1 ruled out from placement in level scheme.
465.53 [@] 11 469.41 5	0.42 [@] 6 0.85 6	1352.76 1352.76	7/2 ⁺ 7/2 ⁺	887.134 883.39		M1	0.01541	ce(K)=2.5 3; α (K)exp=0.013 2 α (K)=0.01326 19; α (L)=0.001709 24; α (M)=0.000351 5; α (N+)=8.84×10 ⁻⁵ 13
481.73 <i>3</i>	1.39 8	1021.584	3/2+	539.800	1/2+	M1,E2	0.0127 18	$\alpha(N)=7.58\times10^{-5}\ II;\ \alpha(O)=1.164\times10^{-5}\ I7;\ \alpha(P)=8.60\times10^{-7}\ I2$ $ce(K)=3.0\ 4;\ \alpha(K)exp=0.0096\ I3$ $\alpha(K)=0.0108\ I7;\ \alpha(L)=0.00150\ II;\ \alpha(M)=0.000310\ 20;$ $\alpha(N+)=7.7\times10^{-5}\ 6$ $\alpha(N)=6.7\times10^{-5}\ 5;\ \alpha(O)=1.00\times10^{-5}\ 9;\ \alpha(P)=6.8\times10^{-7}\ I3$
494.5 [@] 3	0.12 [@] 6	1352.76	7/2+	858.499	3/2+			E_{γ} : this transition populates the 858.499-keV level questionably (1976He11), the level energy difference = 494.20 5.
^x 519.1 [@] 4 527.464 <i>15</i>	0.9 [@] 3 3.22 11	539.800	1/2+	12.326	3/2+	M1,E2	0.0100 16	ce(K)=6.0 5; α (K)exp=0.0083 8 α (K)=0.0085 14; α (L)=0.00117 11; α (M)=0.000242 21; α (N+)=6.0×10 ⁻⁵ 6
534.796 10	2.00 7	1112.344	3/2+,5/2+,7/2+	577.553	7/2+	M1,E2	0.0097 15	$\alpha(N)=5.2\times10^{-5} 5$; $\alpha(O)=7.9\times10^{-6} 9$; $\alpha(P)=5.4\times10^{-7} 11$ $ce(K)=3.7 4$; $\alpha(K)exp=0.0082 9$ $\alpha=0.0097 15$; $\alpha(K)=0.0083 14$; $\alpha(L)=0.00113 11$; $\alpha(M)=0.000233 21$; $\alpha(N+)=5.8\times10^{-5} 6$
^x 540.45 3 556.03 22	0.553 28 5.7 <i>1</i> 2	858.499	3/2+	302.395	3/2+	M1,E2	0.0088 14	$\alpha(N)=5.0\times10^{-5}$ 5; $\alpha(O)=7.6\times10^{-6}$ 9; $\alpha(P)=5.2\times10^{-7}$ 11 ce(K)=0.7 3; $\alpha(K)$ exp=0.006 3 ce(K)=8.3 8; ce(L)=0.7 3; $\alpha(K)$ exp=0.0065 14; $\alpha(L)$ exp=0.0006 3

6

¹³³La ε decay (3.912 h) 1976He11,1980VyZZ (continued)

$\gamma(^{133}\text{Ba})$ (continued)

$\mathrm{E}_{\gamma}^{\ddagger}$	I _γ ‡&	E_i (level)	\mathtt{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
560.28 21	0.73 21	862.80	(7/2)+	302.395	3/2+			α =0.0088 14; α (K)=0.0075 13; α (L)=0.00102 11; α (M)=0.000210 20; α (N+)=5.2×10 ⁻⁵ 6 α (N)=4.5×10 ⁻⁵ 5; α (O)=6.8×10 ⁻⁶ 8; α (P)=4.7×10 ⁻⁷ 10
565.231 20	21.6 8	577.553	7/2+	12.326		E2	0.00708 10	ce(K)=34.8 13; α (K)exp= 0.0072 4 α =0.00708 10; α (K)=0.00598 9; α (L)=0.000872 13; α (M)=0.000181 3; α (N+)=4.49×10 ⁻⁵ 7 α (N)=3.87×10 ⁻⁵ 6; α (O)=5.78×10 ⁻⁶ 8; α (P)=3.63×10 ⁻⁷ 5 Mult.: E2,M1 from conversion data. M1 ruled out from placement in
567.26 4	8.4 4	858.499	3/2+	291.186	5/2+	M1,E2	0.0083 14	the level scheme. ce(K)=9.7 6 ; α (K)exp=0.0051 4 α =0.0083 14 ; α (K)=0.0071 12 ; α (L)=0.00096 10 ; α (M)=0.000199 20 ; α (N+)=5.0×10 ⁻⁵ 6 α (N)=4.3×10 ⁻⁵ 5 ; α (O)=6.5×10 ⁻⁶ 8 ; α (P)=4.5×10 ⁻⁷ 9
571.9 <i>3</i>	1.08 10	862.80	(7/2)+	291.186	5/2+	M1,E2	0.0082 13	ce(K)=1.2 3; α (K)exp=0.0050 13 α =0.0082 13; α (K)=0.0070 12; α (L)=0.00094 10; α (M)=0.000195 20; α (N+)=4.9×10 ⁻⁵ 6
581.39 8	0.48 5	1211.792	3/2+,5/2+	630.567	5/2+	M1,E2	0.0078 13	$\alpha(N)=4.2\times10^{-5}$ 5; $\alpha(O)=6.3\times10^{-6}$ 8; $\alpha(P)=4.4\times10^{-7}$ 9 ce(K)=0.98 30; $\alpha(K)$ exp=0.0083 30 α =0.0078 13; $\alpha(K)$ =0.0067 12; $\alpha(L)$ =0.00090 10; $\alpha(M)$ =0.000186 20; $\alpha(N)=4.7\times10^{-5}$ 6 $\alpha(N)=4.0\times10^{-5}$ 5; $\alpha(O)=6.1\times10^{-6}$ 8; $\alpha(P)=4.2\times10^{-7}$ 9 E _{γ} : poor fit, the level energy difference = 581.224 14.
584.734 10	7.01 23	887.134	5/2+	302.395	3/2+	M1+E2	0.0077 13	Mult.: M1,(E2) in 1983JoZX. ce(K)=9.8 3; α (K)exp=0.0063 3 α =0.0077 13; α (K)=0.0066 12; α (L)=0.00089 10; α (M)=0.000183 20; α (N+)=4.6×10 ⁻⁵ 6
592.22 5	1.30 8	883.39	9/2+	291.186	5/2+	E2	0.00626 9	$\alpha(N)=3.9\times10^{-5}$ 5; $\alpha(O)=6.0\times10^{-6}$ 8; $\alpha(P)=4.2\times10^{-7}$ 9 ce(K)=2.0 5; $\alpha(K)$ exp=0.0068 18 α =0.00626 9; $\alpha(K)$ =0.00530 8; $\alpha(L)$ =0.000764 11; $\alpha(M)$ =0.0001586 23; $\alpha(N+)=3.93\times10^{-5}$ 6 $\alpha(N)=3.39\times10^{-5}$ 5; $\alpha(O)=5.07\times10^{-6}$ 8; $\alpha(P)=3.23\times10^{-7}$ 5 Mult.: E2,M1 from conversion data. M1 ruled out from placement in level scheme.
595.94 9	15.9 5	887.134	5/2+	291.186	5/2+	M1(+E2)	0.0074 12	ce(K)=28.4 11; ce(L)=5.0 10; α (K)exp=0.0079 5; α (L)exp=0.0014 3 α =0.0074 12; α (K)=0.0063 11; α (L)=0.00085 10; α (M)=0.000174 19; α (N+)=4.4×10 ⁻⁵ 5 α (N)=3.8×10 ⁻⁵ 5; α (O)=5.7×10 ⁻⁶ 8; α (P)=4.0×10 ⁻⁷ 8
x604.37 22 618.241 11	0.12 <i>5</i> 32.9 <i>12</i>	630.567	5/2+	12.326	3/2+	M1	0.00781 11	ce(K)=52.7 20; ce(L)=6.5 3; α (K)exp=0.0074 4; α (L)exp=0.00089 5 α =0.00781 11; α (K)=0.00673 10; α (L)=0.000859 12; α (M)=0.0001764 25; α (N+)=4.44×10 ⁻⁵ α (N)=3.81×10 ⁻⁵ 6; α (O)=5.85×10 ⁻⁶ 9; α (P)=4.34×10 ⁻⁷ 6

133 La ε decay (3.912 h) 1976He11,1980VyZZ (continued)

$\gamma(^{133}\text{Ba})$ (continued)

E_{γ}^{\ddagger}	I_{γ} ‡&	$E_i(level)$	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.#	α^{\dagger}	Comments
621.542 <i>14</i>	21.5 3	923.955	5/2+	302.395	3/2+	M1,E2	0.0066 11	ce(K)=24 5; ce(L)=4.1 4; α(K)exp=0.0049 11; α(L)exp=0.00085
								α =0.0066 11; α (K)=0.0057 10; α (L)=0.00076 9; α (M)=0.000156 18; α (N+)=3.9×10 ⁻⁵ 5
630.578 25	5.6 2	630.567	5/2+	0.0	1/2+	E2	0.00533 8	$\alpha(N)=3.4\times10^{-5} 4$; $\alpha(O)=5.1\times10^{-6} 7$; $\alpha(P)=3.6\times10^{-7} 8$ ce(K)=5.6 4; $\alpha(K)$ exp=0.0045 4
0001070 20	2.0 2	000.007	0,2	0.0	1/2	_ _	0.00000	α =0.00533 8; α (K)=0.00452 7; α (L)=0.000643 9; α (M)=0.0001332 19; α (N+)=3.31×10 ⁻⁵ 5
								$\alpha(N)=2.85\times10^{-5} 4$; $\alpha(O)=4.27\times10^{-6} 6$; $\alpha(P)=2.76\times10^{-7} 4$
632.765 8	39.0 12	923.955	5/2+	291.186	5/2+	M1	0.00738 11	$ce(K)=59 \ 3; ce(L)=8.3 \ 5; ce(M)=1.3 \ 4$ $\alpha(K)exp=0.0067 \ 4; \ \alpha(L)exp=0.00095 \ 6; \ \alpha(M)exp=0.00015 \ 5$
								α =0.00738 11; α (K)=0.00636 9; α (L)=0.000812 12; α (M)=0.0001666 24; α (N+)=4.19×10 ⁻⁵ 6
<			T 10+		2/24 7/24			$\alpha(N)=3.60\times10^{-5}$ 5; $\alpha(O)=5.53\times10^{-6}$ 8; $\alpha(P)=4.10\times10^{-7}$ 6
653.04 11	0.41 7	1329.316	5/2+		3/2+,5/2+			
664.21 [@] 13	3.77 [@] 10	676.486	3/2+,5/2+	12.326	3/2+	M1+E2	0.0056 10	ce(K)=4.0 9; α (K)exp=0.0047 11 α =0.0056 10; α (K)=0.0048 9; α (L)=0.00064 9; α (M)=0.000132
								17; $\alpha(N+)=3.3\times10^{-5}$ 5
								$\alpha(N)=2.8\times10^{-5}$ 4; $\alpha(O)=4.3\times10^{-6}$ 6; $\alpha(P)=3.0\times10^{-7}$ 6
								E_{γ} : level energy difference is 664.155 12; 664.009 23 in 1980VyZZ.
671.997 <i>17</i>	1.4 3	1211.792	3/2+,5/2+	539.800	1/2+	M1,E2	0.0055 10	$ce(K)=1.3 3$; $\alpha(K)exp=0.0041 13$
								α =0.0055 10; α (K)=0.0047 9; α (L)=0.00062 8; α (M)=0.000128 16; α (N+)=3.2×10 ⁻⁵ 5
								$\alpha(N)=2.8\times10^{-5} \ 4; \ \alpha(O)=4.2\times10^{-6} \ 6; \ \alpha(P)=3.0\times10^{-7} \ 6$
676.47 2	1.1 3	676.486	$3/2^+, 5/2^+$	0.0	1/2+	M1,E2	0.0054 9	ce(K)=1.1 3; α (K)exp=0.0044 17 α =0.0054 9; α (K)=0.0046 8; α (L)=0.00061 8; α (M)=0.000126
								16; $\alpha(N+)=3.1\times10^{-5}$ 5
	6							$\alpha(N)=2.7\times10^{-5} \ 4; \ \alpha(O)=4.1\times10^{-6} \ 6; \ \alpha(P)=2.9\times10^{-7} \ 6$
$x682.0^{\textcircled{@}} 5$	0.09 6 5							
^x 684.3 [@] 5	0.08 6 5							
^x 689.5 [@] 3 719.44 <i>14</i>	0.10 [@] 5 0.14 3	1021.584	3/2+	302.395	2/2+			
719.44 <i>14</i> 722.01 <i>15</i>	0.14 3 0.127 23	1352.76	3/2+ 7/2+	630.567				
733.63 ^b 10	0.094 15	1620.56	5/2+	887.134	5/2+			$ce(K)=0.26 8$; $\alpha(K)exp=0.012 4$
								E_{γ} : poor fit: the level energy difference is equal to 733.36 3. Mult.: $\alpha(K)$ exp value does not correspond to mult.=D or E2.
751.753 <i>15</i>	1.96 7	1329.316	5/2 ⁺	577.553	7/2+	M1	0.00488 7	$ce(K)=1.9 \ 4; \ \alpha(K)exp=0.0044 \ 8$
			•		•			α =0.00488 7; α (K)=0.00421 6; α (L)=0.000534 8;
								$\alpha(M)=0.0001095 \ 16; \ \alpha(N+)=2.76\times10^{-5} \ 4$ $\alpha(N)=2.36\times10^{-5} \ 4; \ \alpha(O)=3.64\times10^{-6} \ 5; \ \alpha(P)=2.71\times10^{-7} \ 4$
								$\alpha(N)=2.50\times10^{-6}4; \ \alpha(O)=5.04\times10^{-6}5; \ \alpha(P)=2.71\times10^{-6}4$

 133 La ε decay (3.912 h) 1976He11,1980VyZZ (continued)

$\gamma(^{133}$	Ba)	(continu	eď

						, (., (
	E_{γ}^{\ddagger}	I_{γ} ‡&	$E_i(level)$	${\color{red}J_i^{\pi}}$	\mathbb{E}_f \mathbb{J}_f^π	Mult.#	$lpha^\dagger$	Comments
	775.31 18	0.109 25	1352.76	7/2+	577.553 7/2		0.00453 7	ce(K)=0.15 5; α (K)exp=0.006 3 α =0.00453 7; α (K)=0.00391 6; α (L)=0.000495 7; α (M)=0.0001017 15; α (N+)=2.56×10 ⁻⁵ 4 α (N)=2.20×10 ⁻⁵ 3; α (O)=3.38×10 ⁻⁶ 5; α (P)=2.51×10 ⁻⁷ 4
	302.3 [@] 4 309.976 <i>19</i>	0.12 [@] 6 1.69 6	1689.74 1112.344	3/2 ⁺ ,5/2,7/2 ⁺ 3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺	887.134 5/2 ⁻ 302.395 3/2 ⁻		0.0035 6	ce(K)=1.0 2; ce(L)=0.16 4; α (K)exp=0.0026 6; α (L)exp=0.00043 11 α =0.0035 6; α (K)=0.0030 6; α (L)=0.00039 6; α (M)=8.0×10 ⁻⁵ 12; α (N+)=2.0×10 ⁻⁵ 3
8	321.13 3	0.50 3	1112.344	3/2+,5/2+,7/2+	291.186 5/2	+ M1	0.00395 6	$\alpha(N)=1.73\times10^{-5}\ 25;\ \alpha(O)=2.6\times10^{-6}\ 4;\ \alpha(P)=1.9\times10^{-7}\ 4$ $ce(K)=0.40\ 5;\ \alpha(K)exp=0.0036\ 5$ $\alpha=0.00395\ 6;\ \alpha(K)=0.00341\ 5;\ \alpha(L)=0.000432\ 6;\ \alpha(M)=8.86\times10^{-5}$ $13;\ \alpha(N+)=2.23\times10^{-5}\ 4$ $\alpha(N)=1.91\times10^{-5}\ 3;\ \alpha(O)=2.94\times10^{-6}\ 5;\ \alpha(P)=2.19\times10^{-7}\ 3$
8	346.183 <i>15</i>	18.9 6	858.499	3/2+	12.326 3/2	+ M1,E2	0.0032 6	$\alpha(N)=1.91\times10^{-3}$ 3; $\alpha(O)=2.94\times10^{-6}$ 5; $\alpha(P)=2.19\times10^{-7}$ 3 ce(K)=10 3; ce(L)=1.0 3; ce(M)=0.17 8 $\alpha(K)$ exp=0.0024 8; $\alpha(L)$ exp=0.00024 8; $\alpha(M)$ exp=0.00004 2 α =0.0032 6; $\alpha(K)$ =0.0027 5; $\alpha(L)$ =0.00035 5; $\alpha(M)$ =7.2×10 ⁻⁵ 11; $\alpha(N+)$ =1.8×10 ⁻⁵ 3 $\alpha(N)$ =1.56×10 ⁻⁵ 23; $\alpha(O)$ =2.4×10 ⁻⁶ 4; $\alpha(P)$ =1.7×10 ⁻⁷ 4
8	348.4 [@] b 3	0.34 [@] 7	1706.94	3/2,5/2+	858.499 3/2	+		
	350.43 <i>10</i>	0.97 11	862.80	$(7/2)^+$	12.326 3/2		0.0031 6	ce(K)=1.0 3; α (K)exp=0.005 2 (1966Ha23) α =0.0031 6; α (K)=0.0027 5; α (L)=0.00035 5; α (M)=7.1×10 ⁻⁵ 10; α (N+)=1.8×10 ⁻⁵ 3 α (N)=1.54×10 ⁻⁵ 22; α (O)=2.4×10 ⁻⁶ 4; α (P)=1.7×10 ⁻⁷ 4
8	358.496 <i>15</i>	15.4 5	858.499	3/2+	0.0 1/2	+ M1,E2	0.0031 6	ce(K)=9.0 4; ce(L)=0.87 15; ce(M)=0.32 11 α (K)exp=0.0026 2; α (L)exp=0.00026 5; α (M)exp=0.00009 3 α =0.0031 6; α (K)=0.0026 5; α (L)=0.00034 5; α (M)=7.0×10 ⁻⁵ 10; α (N+)=1.8×10 ⁻⁵ 3
8	374.83 <i>3</i>	1.66 8	887.134	5/2+	12.326 3/2	+ M1,E2	0.0029 5	$\alpha(N)=1.51\times10^{-5}$ 22; $\alpha(O)=2.3\times10^{-6}$ 4; $\alpha(P)=1.7\times10^{-7}$ 4 ce(K)=0.69 10; ce(L)=0.14 4; $\alpha(K)$ exp=0.0019 3; $\alpha(L)$ exp=0.00038 11 α =0.0029 5; $\alpha(K)$ =0.0025 5; $\alpha(L)$ =0.00032 5; $\alpha(M)$ =6.7×10 ⁻⁵ 10; $\alpha(N+)$ =1.67×10 ⁻⁵ 25 $\alpha(N)$ =1.44×10 ⁻⁵ 21; $\alpha(O)$ =2.2×10 ⁻⁶ 4; $\alpha(P)$ =1.6×10 ⁻⁷ 3
<i>x</i> 8	387.164 <i>24</i> 392.29 <i>22</i> 399.38 <i>5</i>	0.88 <i>4</i> 0.14 <i>6</i> 0.30 <i>2</i>	887.134	5/2+	0.0 1/2	+		a(1) 111 / 10 21, a(0) 2.2/10 7, a(1) 1.0/10 3
	009.27 8	0.38 2	1211.792	3/2+,5/2+	302.395 3/2	+ M1	0.00311 5	ce(K)=0.21 4; α (K)exp=0.0025 5 α =0.00311 5; α (K)=0.00269 4; α (L)=0.000339 5; α (M)=6.95×10 ⁻⁵ 10; α (N+)=1.749×10 ⁻⁵ 25 α (N)=1.501×10 ⁻⁵ 21; α (O)=2.31×10 ⁻⁶ 4; α (P)=1.724×10 ⁻⁷ 25
9	011.647 <i>13</i>	3.88 16	923.955	5/2+	12.326 3/2	⁺ M1,E2	0.0027 5	$\alpha(K)=1.301 \times 10^{-2}$ 21, $\alpha(K)=2.31 \times 10^{-4}$ 4, $\alpha(F)=1.724 \times 10^{-2}$ 23 ce(K)=1.9 4; $\alpha(K)$ exp=0.0022 5
1								

133 La ε decay (3.912 h)	1976He11,1980VyZZ (continued)

$v(^{133}Ba)$	(continued)
/ Du/	(Communa

ı							/(24)	(continued)	
	E_{γ}^{\ddagger}	I_{γ} ‡&	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
	920.623 24	0.77 4	1211.792	3/2+,5/2+	291.186 5	5/2+	M1	0.00302 5	α =0.0027 5; α (K)=0.0023 4; α (L)=0.00029 5; α (M)=6.1×10 ⁻⁵ 9; α (N+)=1.52×10 ⁻⁵ 22 α (N)=1.30×10 ⁻⁵ 19; α (O)=2.0×10 ⁻⁶ 3; α (P)=1.4×10 ⁻⁷ 3 ce(K)=0.51 10; α (K)exp=0.0029 6 α =0.00302 5; α (K)=0.00261 4; α (L)=0.000329 5; α (M)=6.75×10 ⁻⁵ 10; α (N+)=1.699×10 ⁻⁵ 24 α (N)=1.458×10 ⁻⁵ 21; α (O)=2.24×10 ⁻⁶ 4; α (P)=1.675×10 ⁻⁷ 24
	923.9 [@] 2	0.90 [@] 5	923.955	5/2 ⁺	0.0	1/2+			
	932.98 7	0.51 4	1563.399	5/2+	630.567		M1	0.00293 5	ce(K)=0.34 9; α (K)exp=0.0030 8 α =0.00293 5; α (K)=0.00253 4; α (L)=0.000319 5; α (M)=6.54×10 ⁻⁵ 10; α (N+)=1.646×10 ⁻⁵ 23 α (N)=1.413×10 ⁻⁵ 20; α (O)=2.17×10 ⁻⁶ 3; α (P)=1.623×10 ⁻⁷ 23 E _y : poor fit: the level energy difference is equal to 932.831 25.
	^x 981.06 8	0.23 2							L_{γ} , poor iii. the level energy difference is equal to 932.631 23.
	^x 992.99 9	0.25 2							
	1009.31 4	2.80 13	1021.584	3/2+	12.326	3/2+	M1	0.00244 4	ce(K)=1.28 13; ce(L)=0.16 4; α (K)exp=0.0021 2; α (L)exp=0.00026 7
									α =0.00244 4; α (K)=0.00211 3; α (L)=0.000265 4;
									$\alpha(M)=5.44\times10^{-5} 8; \alpha(N+)=1.369\times10^{-5} 20$
	1001 (0.5	0.015.15	1001 504	2/2+	0.0	1 (2+			$\alpha(N)=1.175\times10^{-5}\ 17;\ \alpha(O)=1.81\times10^{-6}\ 3;\ \alpha(P)=1.352\times10^{-7}\ 19$
	1021.62 5 1038.18 5	0.215 <i>15</i> 0.27 <i>2</i>	1021.584 1329.316	3/2 ⁺ 5/2 ⁺	0.0 1 291.186 5	1/2 ⁺	M1	0.00229 4	$ce(K)=0.15 \ 4; \ \alpha(K)exp=0.0025 \ 7$
	1036.16 3	0.27 2	1329.310	3/2	291.100 .	3/2	IVI I	0.00229 4	α =0.00229 4; α (K)=0.00198 3; α (L)=0.000248 4;
									$\alpha(M)=5.09\times10^{-5}$ 8; $\alpha(N+)=1.282\times10^{-5}$ 18
									$\alpha(N)=1.100\times10^{-5}$ 16; $\alpha(O)=1.693\times10^{-6}$ 24; $\alpha(P)=1.266\times10^{-7}$ 18
	1043.02 4	0.33 3	1620.56	5/2 ⁺	577.553	7/2+	M1	0.00227 4	$ce(K)=0.16$ 4; $\alpha(K)exp=0.0022$ 6
									α =0.00227 4; α (K)=0.00196 3; α (L)=0.000246 4;
									$\alpha(M)=5.04\times10^{-5}$ 7; $\alpha(N+)=1.268\times10^{-5}$ 18
	1061.56 22	3.38 23	1352.76	7/2+	291.186	5 /O+	M1+E2	0.0019 3	$\alpha(N)=1.088\times10^{-5}$ 16; $\alpha(O)=1.674\times10^{-6}$ 24; $\alpha(P)=1.253\times10^{-7}$ 18 ce(K)=1.09 10; ce(L)=0.22 4; $\alpha(K)=0.0015$ 2;
	1001.30 22	3.36 23	1332.70	1/2	291.180	3/2	WII+EZ	0.0019 3	$\alpha(L) = 0.0013 \ 2;$ $\alpha(L) = 0.00029 \ 6$
									α =0.0019 3; α (K)=0.0016 3; α (L)=0.00021 3; α (M)=4.2×10 ⁻⁵
									6; $\alpha(N+)=1.07\times10^{-5}$ 16
									$\alpha(N)=9.2\times10^{-6}\ 13;\ \alpha(O)=1.40\times10^{-6}\ 21;\ \alpha(P)=1.03\times10^{-7}\ 18$
	1080.9 [@] 4	0.13 [@] 2	1620.56	5/2 ⁺	539.800	1/2+			E_{γ} : 1081.04 <i>11</i> in 1980VyZZ.
	1099.99 2	7.7 4	1112.344	3/2+,5/2+,7/2+	12.326	3/2+	E2	0.001477 <i>21</i>	ce(K)=2.4 2; ce(L)=0.26 3; ce(M)=0.11 3
									$\alpha(K)\exp=0.0014\ 2;\ \alpha(L)\exp=0.00015\ 2;\ \alpha(M)\exp=0.00006\ 2$ $\alpha=0.001477\ 2I;\ \alpha(K)=0.001270\ I8;\ \alpha(L)=0.0001646\ 23;$
									α =0.001477 21, α (K)=0.001270 78, α (L)=0.0001040 23, α (M)=3.38×10 ⁻⁵ 5; α (N+)=8.5×10 ⁻⁶ 4
									$\alpha(N)=7.28\times10^{-6}$ 11; $\alpha(O)=1.109\times10^{-6}$ 16; $\alpha(P)=7.89\times10^{-8}$ 11
	1111.9 [@] 4	0.09 [@] 4	1112.344	3/2+,5/2+,7/2+	0.0	1/2+			E_{γ} : this transition questionably populates the g.s. in 1976He11,
				, ,-, ,-,-		,			the level energy difference = 1112.344 <i>12</i> .

10

¹³³ La ε decay (3.912 h)	1976He11,1980VyZZ (continued)
---	-------------------------------

$\gamma(^{133}\text{Ba})$ (continued)

						7	(
E_{γ}^{\ddagger}	I_{γ} ‡&	$E_i(level)$	J_i^{π}	\mathbf{E}_f	J_f^π	Mult.#	$lpha^\dagger$	Comments
1111.9 [@] 4 x1175.98 7 x1181.99 13	0.09 [@] 4 0.19 2 0.046 13	1689.74	3/2+,5/2,7/2+	577.553	7/2+			E_{γ} : this transition questionably populates the 577.553-keV level (1976He11), the level energy difference = 1112.19 6.
*1192.3 [@] 3 1199.447 22	0.006 [@] 3 0.83 6	1211.792	3/2+,5/2+	12.326	3/2+	M1	0.001653 24	ce(K)=0.28 3; α (K)exp=0.0015 2 α =0.001653 24; α (K)=0.001423 20; α (L)=0.0001780 25; α (M)=3.65×10 ⁻⁵ 6; α (N+)=1.517×10 ⁻⁵ α (N)=7.88×10 ⁻⁶ 11; α (O)=1.213×10 ⁻⁶ 17; α (P)=9.09×10 ⁻⁸ 13; α (IPF)=5.99×10 ⁻⁶ 9
1211.760 25	1.76 12	1211.792	3/2+,5/2+	0.0	1/2+	M1,E2	0.00142 21	ce(K)=0.9 3; α (K)exp=0.0022 7 (1966Ha23) α =0.00142 21; α (K)=0.00122 18; α (L)=0.000154 21; α (M)=3.2×10 ⁻⁵ 5; α (N+)=1.55×10 ⁻⁵ 10 α (N)=6.8×10 ⁻⁶ 9; α (O)=1.04×10 ⁻⁶ 15; α (P)=7.7×10 ⁻⁸ 13; α (IPF)=7.58×10 ⁻⁶ 19
1230.06 <i>9</i> 1241.04 <i>15</i> 1261.01 <i>3</i>	0.16 2 0.092 <i>16</i> 0.98 <i>7</i>	1532.40 1532.40 1563.399	3/2,5/2,7/2 ⁺ 3/2,5/2,7/2 ⁺ 5/2 ⁺	291.186 302.395	5/2 ⁺ 3/2 ⁺			
1283.952 24	2.55 17	1283.959	3/2-	0.0	1/2+	(E1)	0.000555 8	α =0.000555 8; α (K)=0.000419 6; α (L)=5.10×10 ⁻⁵ 8; α (M)=1.041×10 ⁻⁵ 15; α (N+)=7.49×10 ⁻⁵ 11 α (N)=2.24×10 ⁻⁶ 4; α (O)=3.44×10 ⁻⁷ 5; α (P)=2.56×10 ⁻⁸ 4; α (IPF)=7.22×10 ⁻⁵ 11 Mult.: this transition populates the 1/2+, g.s.; in 132 Ba(pol d,p) L=1 for the 1283.9-keV state. Comparison of I γ and ce for 1283.9- and 1199.5-keV (M1) transitions point at mult.=(E1) for the former.
1317.24 ^b 5 1329.33 ^a 5	0.92 7 0.34 <i>3</i>	1329.316 1329.316	5/2 ⁺ 5/2 ⁺	12.326 0.0	3/2 ⁺ 1/2 ⁺			E_{γ} : poor fit: the level energy difference is equal to 1316.973 <i>17</i> . E_{γ} : other transition questionably populates the 291.186-keV level from the 1620.56-keV level (1976He11).
1329.33 ^a 5	0.34 3	1620.56	5/2+	291.186	5/2+			E_{γ} : questionable population in 1976He11, the level energy difference = 1329.38 4; other transition populates the g.s. from the 1329.3-keV level.
1340.2 [@] 3 1387.41 7 1398.49 8 1404.7 [@] 4 1415.9 [@] 3 1467.28 13 1478.72 9 1516.34 20	0.18 [@] 3 0.136 15 0.19 2 0.117 [@] 17 0.158 [@] 18 0.074 10 0.069 7 0.07 2	1352.76 1689.74 1689.74 1706.94 1706.94 1769.70 1769.70 1528.64	7/2 ⁺ 3/2 ⁺ ,5/2,7/2 ⁺ 3/2 ⁺ ,5/2,7/2 ⁺ 3/2,5/2 ⁺ 3/2,5/2 ⁺ 3/2,5/2 ⁺ 3/2,5/2 ⁺ 3/2,5/2 ⁺	302.395 291.186 302.395 291.186 302.395 291.186	3/2 ⁺ 5/2 ⁺ 3/2 ⁺ 5/2 ⁺ 3/2 ⁺ 5/2 ⁺			E_{γ} : poor fit: the level energy difference is equal to 1478.51 5.
	*1111.9 [@] 4 *1175.98 7 *1181.99 13 *1192.3 [@] 3 1199.447 22 *1211.760 25 *1219.2 3 1230.06 9 1241.04 15 1261.01 3 1283.952 24 *1317.24 ^b 5 1329.33 ^a 5 1329.33 ^a 5 1340.2 [@] 3 1387.41 7 1398.49 8 1404.7 [@] 4 1415.9 [@] 3 1467.28 13 1478.72 9	1111.9@ 4 0.09@ 4 *1175.98 7 0.19 2 *1181.99 13 0.046 13 *1192.3@ 3 0.006@ 3 1199.447 22 0.83 6 *1211.760 25 1.76 12 *1219.2 3 0.09 2 1230.06 9 0.16 2 1241.04 15 0.092 16 1261.01 3 0.98 7 1283.952 24 2.55 17 1317.24b 5 0.34 3 1329.33a 5 0.34 3 1340.2@ 3 0.18@ 3 1387.41 7 0.136 15 1398.49 8 0.19 2 1404.7@ 4 0.117@ 17 1415.9@ 3 0.158@ 18 1467.28 13 0.074 10 1478.72 9 0.069 7	1111.9@ 4 0.09@ 4 1689.74 x1175.98 7 0.19 2 x1181.99 13 0.046 13 x1192.3@ 3 0.006@ 3 1199.447 22 0.83 6 1211.792 x1219.2 3 0.09 2 1230.06 9 0.16 2 1532.40 1241.04 15 0.092 16 1532.40 1261.01 3 0.98 7 1563.399 1283.952 24 2.55 17 1283.959 1340.2@ 3 0.34 3 1620.56 1340.2@ 3 0.18@ 3 1352.76 1387.41 7 0.136 15 1689.74 1404.7@ 4 0.117@ 17 1706.94 1415.9@ 3 0.158@ 18 1706.94 1467.28 13 0.074 10 1769.70 1478.72 9 0.069 7 1769.70	x1111.9@ 4 0.09@ 4 1689.74 3/2+,5/2,7/2+ x1175.98 7 0.19 2 3 0.046 13 3 x1192.3@ 3 0.006@ 3 1211.792 3/2+,5/2+ 1211.760 25 1.76 12 1211.792 3/2+,5/2+ x1219.2 3 0.09 2 1211.792 3/2+,5/2+ 1221.006 9 0.16 2 1532.40 3/2,5/2,7/2+ 1261.01 3 0.98 7 1563.399 5/2+ 1283.952 24 2.55 17 1283.959 3/2- 1329.33 ^a 5 0.34 3 1329.316 5/2+ 1329.33 ^a 5 0.34 3 1620.56 5/2+ 1340.2@ 3 0.18@ 3 1352.76 7/2+ 1387.41 7 0.136 15 1689.74 3/2+,5/2,7/2+ 1398.49 8 0.19 2 1689.74 3/2+,5/2,7/2+ 1404.7@ 4 0.117@ 17 1706.94 3/2,5/2+ 1407.28 13 0.074 10 1769.70 3/2,5/2+ 1478.72 9 0.069 7 1769.70 3/2,5/2+	x1111.9@ 4 0.09@ 4 1689.74 3/2+,5/2,7/2+ 577.553 x1175.98 7 x1181.99 /3 0.046 /3 x1192.3@ 3 0.006@ 3 1199.447 22 0.83 6 1211.792 3/2+,5/2+ 12.326 x1219.2 3 1230.06 9 0.16 2 1230.06 9 0.16 2 1532.40 3/2,5/2,7/2+ 1232.40 3/2,5/2,7/2+ 302.395 2/2+ 302.395 2/2+ 1241.04 15 0.092 16 1532.40 3/2,5/2,7/2+ 302.395 1283.952 24 2.55 17 1283.959 3/2- 0.0 1317.24b 5 0.92 7 1329.316 5/2+ 1283.959 3/2- 0.0 1329.33a 5 0.34 3 1329.316 5/2+ 0.0 1283.952 3/2- 0.0 1329.33b 5 0.34 3 1620.56 5/2+ 291.186 1340.2@ 3 0.18@ 3 1352.76 7/2+ 12.326 12.326 1387.41 7 0.136 15 1689.74 3/2+,5/2,7/2+ 302.395 1398.49 8 0.19 2 1689.74 3/2+,5/2,7/2+ 302.395 1398.49 8 0.19 2 1689.74 3/2+,5/2,7/2+ 302.395 140.70 4 0.117@ 17 1706.94 3/2,5/2+ 302.395 140.726 29 30.158@ 18 1706.94 3/2,5/2+ 302.395 302.395 1415.9@ 3 0.158@ 18 1706.94 3/2,5/2+ 302.395 302.395 1478.72 9 0.069 7 1769.70 3/2,5/2+ 301.186 302.395 302.395 1478.72 9 0.069 7 1769.70 3/2,5/2+ 302.395 291.186	x1111.9@ 4 0.09@ 4 1689.74 3/2+,5/2,7/2+ 577.553 7/2+ x1175.98 7 0.19 2 0.046 13 x1192.3@ 3 0.006@ 3 1211.792 3/2+,5/2+ 12.326 3/2+ 1211.760 25 1.76 12 1211.792 3/2+,5/2+ 0.0 1/2+ x1219.2 3 0.09 2 1230.06 9 0.16 2 1532.40 3/2,5/2,7/2+ 302.395 3/2+ 1241.04 15 0.092 16 1532.40 3/2,5/2,7/2+ 291.186 5/2+ 1283.952 24 2.55 17 1283.959 3/2- 0.0 1/2+ 1317.24b 5 0.92 7 1329.316 5/2+ 302.395 3/2+ 1283.952 24 2.55 17 1283.959 3/2- 0.0 1/2+ 1340.2@ 3 0.34 3 1620.56 5/2+ 291.186 5/2+ 1387.41 7 0.136 15 1689.74 3/2+,5/2,7/2+ 302.395 3/2+ 1398.49 8 0.19 2 1689.74 3/2+,5/2,7/2+ 291.186 5/2+ 1404.7@ 4 <t< td=""><td>x1111.9@ 4 0.09@ 4 1689.74 3/2*,5/2,7/2* 577.553 7/2* x1175.98 7 0.19 2 x1181.99 13 0.046 13 x1192.3@ 3 0.006@ 3 11199.447 22 0.83 6 1211.792 3/2*,5/2* 12.326 3/2* M1 x1219.2 3 0.09 2 1230.06 9 0.16 2 1532.40 3/2,5/2,7/2* 302.395 3/2* 1241.04 15 0.092 16 1532.40 3/2,5/2,7/2* 291.186 5/2* 1283.952 24 2.55 17 1283.959 3/2* 0.0 1/2* (E1) 1317.24b 5 0.92 7 1329.316 5/2* 0.0 1/2* (E1) 1329.33a 5 0.34 3 1620.56 5/2* 291.186 5/2* 1340.2@ 3 0.18@ 3 1352.76 7/2* 12.326 3/2* 1387.41 7 0.136 15 1689.74 3/2*,5/2.7/2* 302.395 3/2* 1398.49 8 0.19 2 1689.74 3/2*,5/2.7/2* 302.395 3/2* 1404.7@ 4 0.117@ 17</td><td>x1111.9@ 4 0.09@ 4 1689.74 3/2+,5/2,7/2+ 577.553 7/2+ x1175.98 7 0.19 2 2 2 2 2 2 2 2 3 0.006 / 3 3 1199.447 22 0.83 6 1211.792 3/2+,5/2+ 12.326 3/2+ M1 0.001653 24 x1211.760 25 1.76 12 1211.792 3/2+,5/2+ 0.0 1/2+ M1,E2 0.00142 21 x1219.2 3 0.09 2 1230.06 9 0.16 2 1532.40 3/2.5/2.7/2+ 302.395 3/2+ 3/2+ 1241.04 15 0.092 16 1532.40 3/2.5/2.7/2+ 302.395 3/2+ 3/2+ 1283.952 24 2.55 17 1283.959 3/2- 0.0 1/2+ (E1) 0.000555 8 1317.24b 5 0.92 7 1329.316 5/2+ 0.0 1/2+ (E1) 0.000555 8 1317.24b 5 0.92 7 1329.316 5/2+ 0.0 1/2+ (E1) 0.000555 8 1317.24b 5 0.92 7 1329.316 5/2+ 1/2- 0.0 1/2+ 1329.33a 5<!--</td--></td></t<>	x1111.9@ 4 0.09@ 4 1689.74 3/2*,5/2,7/2* 577.553 7/2* x1175.98 7 0.19 2 x1181.99 13 0.046 13 x1192.3@ 3 0.006@ 3 11199.447 22 0.83 6 1211.792 3/2*,5/2* 12.326 3/2* M1 x1219.2 3 0.09 2 1230.06 9 0.16 2 1532.40 3/2,5/2,7/2* 302.395 3/2* 1241.04 15 0.092 16 1532.40 3/2,5/2,7/2* 291.186 5/2* 1283.952 24 2.55 17 1283.959 3/2* 0.0 1/2* (E1) 1317.24b 5 0.92 7 1329.316 5/2* 0.0 1/2* (E1) 1329.33a 5 0.34 3 1620.56 5/2* 291.186 5/2* 1340.2@ 3 0.18@ 3 1352.76 7/2* 12.326 3/2* 1387.41 7 0.136 15 1689.74 3/2*,5/2.7/2* 302.395 3/2* 1398.49 8 0.19 2 1689.74 3/2*,5/2.7/2* 302.395 3/2* 1404.7@ 4 0.117@ 17	x1111.9@ 4 0.09@ 4 1689.74 3/2+,5/2,7/2+ 577.553 7/2+ x1175.98 7 0.19 2 2 2 2 2 2 2 2 3 0.006 / 3 3 1199.447 22 0.83 6 1211.792 3/2+,5/2+ 12.326 3/2+ M1 0.001653 24 x1211.760 25 1.76 12 1211.792 3/2+,5/2+ 0.0 1/2+ M1,E2 0.00142 21 x1219.2 3 0.09 2 1230.06 9 0.16 2 1532.40 3/2.5/2.7/2+ 302.395 3/2+ 3/2+ 1241.04 15 0.092 16 1532.40 3/2.5/2.7/2+ 302.395 3/2+ 3/2+ 1283.952 24 2.55 17 1283.959 3/2- 0.0 1/2+ (E1) 0.000555 8 1317.24b 5 0.92 7 1329.316 5/2+ 0.0 1/2+ (E1) 0.000555 8 1317.24b 5 0.92 7 1329.316 5/2+ 0.0 1/2+ (E1) 0.000555 8 1317.24b 5 0.92 7 1329.316 5/2+ 1/2- 0.0 1/2+ 1329.33a 5 </td

E_{γ}^{\ddagger}	I_{γ} ‡ &	E_i (level)	\mathtt{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
1528.62 10	0.15 2	1528.64	3/2,5/2+	0.0	1/2+	
x1540.01 20	0.06 1					
1550.97 5	0.41 3	1563.399	5/2+	12.326		
1563.36 6	0.36 <i>3</i>	1563.399	5/2+	0.0	$1/2^{+}$	
x1581.66 12	0.12 2					
^x 1592.33 <i>13</i>	0.030 8					
^x 1595.6 [@] b 5	0.3 @ 2					
1608.35 [@] 13	1.67 [@] 11	1620.56	5/2+	12.326	$3/2^{+}$	E_{γ} : the level energy difference is equal to 1608.24 4; 1608.09 3 in 1980VyZZ.
1620.9 [@] 7	$0.05^{\textcircled{0}}$ 2	1620.56	5/2+	0.0	$1/2^{+}$	
^x 1659.6 [@] 5	$0.05^{\textcircled{0}}$ 2					
1677.3 [@] 3	0.19 [@] 3	1689.74	3/2+,5/2,7/2+	12.326	$3/2^{+}$	E_{y} : 1677.01 9 in 1980VyZZ.
1694.4 [@] 4	0.178 [@] <i>16</i>	1706.94	3/2,5/2+	12.326	$3/2^{+}$	
1706.7 [@] 4	0.038 [@] 10	1706.94	3/2,5/2+	0.0	$1/2^{+}$	
^x 1720.2 [@] 2	0.03 [@] 2					
1757.06 20	0.063 10	1769.70	3/2,5/2+	12.326		
1769.60 <i>7</i>	0.25 2	1769.70	3/2,5/2+	0.0	$1/2^{+}$	
^x 1782.9 [@] 5	0.05 [@] 3					
^x 1805.83 <i>10</i>	0.055 6					
1818.1 [@] 4	$0.05^{\textcircled{0}}$ 1	1830.22	3/2,5/2+	12.326	$3/2^{+}$	
1830.21 [@] 3	0.06 [@] 2	1830.22	3/2,5/2+	0.0	$1/2^{+}$	
^x 1851.7 ^{@b} 6	0.02 [@] 1					
^x 1886.7 [@] b 4	0.03 [@] 1					
1000.7	0.05 1					

[†] Additional information 1.

From 1980VyZZ, except as noted. Since some of the quoted uncertainties are unrealistically small, the evaluators added 3% in quadrature to the uncertainties of 1980VyZZ. There are systematic discrepancies between Iy values measured by 1976He11 and 1980VyZZ.

[#] From $\alpha(K)$ exp, $\alpha(L)$ exp and $\alpha(M)$ exp. Ice are from 1983JoZX, except as noted; $\alpha(\exp)=Ice/I\gamma$ for 302.35 γ (mult.=M1 in 1983JoZX, 1976He11) is normalized to $\alpha(K)=0.0408$ by evaluators.

[®] From 1976He11.

[&] For absolute intensity per 100 decays, multiply by 0.0244 10.

^a Multiply placed.

^b Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

133 La ε decay (3.912 h) 1976He11,1980VyZZ

133 La ε decay (3.912 h) 1976He11,1980VyZZ

Decay Scheme (continued) Legend Intensities: Relative I_{γ} I_{γ} < 2%× I_{γ}^{max} $I_{\gamma} < 2.0 \times I_{\gamma}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ γ Decay (Uncertain) 0.0 3.912 h 8 Q+=2059 28 $%\varepsilon + %\beta^{+} = 100$ ¹³³₅₇La₇₆ $I\beta^+$ Log ft $\underline{\text{I}\varepsilon}$ 7/2⁺ 1352.76 0.131 7.36 1329.316 0.079 7.61 1283.959 3/2 0.062 7.77 3/2+,5/2+ 1211.792 0.168 7.42 3/2+,5/2+,7/2+ 1112.344 0.318 7.24 3/2+ 1021.584 0.115 7.77 5/2⁺ 5/2⁺ 9/2⁺ (7/2) 923.955 1.59 6.71 887.134 0.647.13 883.39 862.80 0.066 8.13 3/2+ 858.499 6.89 1.16 3/2+,5/2+ 676.486 0.000310.192 7.80 5/2+ 630.567 0.00250.957.13 7/2+ 577.553 0.0019 0.43 7.51 1/2+ 539.800 302.395 0.054 2.10 6.97 $5/2^{+}$ 0.030 1.10 7.26 12.326 7.0 ns *3* 10.551 y *11* 7.1 5.51 $^{133}_{56} \mathrm{Ba}_{77}$

133 La ε decay (3.912 h) 1976He11,1980VyZZ

Decay Scheme (continued)

Intensities: Relative I_{γ}

124 Sn(12 C,3n γ) 1975Gi11,1995Ju02

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010

1975Gi11: 124 Sn(12 C,3n γ), E=46 MeV; measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma$ delay, $\gamma(\theta)$; 133 Ba: deduced levels, J^{π} , $T_{1/2}$. Cyclotron,

Ge(Li) detectors. 1995Ju02: 124 Sn(13 C,4n γ) E=48.4, 65.5 MeV; measured Ε γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ coin, DCO values; 133 Ba: deduced levels, J^{π} .

¹³³Ba Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	1/2+	10.551 y <i>11</i>	
12.327 6	3/2+	<i>y</i>	
288.4 <i>3</i>	11/2-	38.93 h 10	
290.96 21	5/2+		
302.96 22	$3/2^{+}$		E(level): not suggested in 1995Ju02.
577.0 <i>4</i>	7/2+		
901.9 6	$13/2^{-}$		
968.9 7	$15/2^{-}$		
1528.9 8	$15/2^{-}$		
1711.9 7	$17/2^{-}$		
1857.9 7	19/2		
1941.4 7	$19/2^{+}$	3.5 ns <i>15</i>	$T_{1/2}$: authors of 1975Gi11 give 2 to 5 ns.
			J^{π} : assigned by analogy with ¹³⁵ Ce, ¹³⁷ Nd, and ¹³¹ Xe in 1975Gi11.
2170.3 8	19/2		
2365.1 8	23/2+		
2381.2 8	21/2+		
2457.4? 9	$21/2^{-}$		E(level): not observed in 1995Ju02.
2490.2? 9			E(level): not observed in 1995Ju02.
2495.3? [@] 10	21/2+ @		
2508.7 [@] 9	$21/2^{-}$		
2829.8 [@] 9	$23/2^{-}$		
2888.3 [@] 12	23/2-@		
2977.1 [@] 11	19/2 [@]		
3104.0? [@] 11	25/2+ @		
3113.8 [@] 11	21/2+ @		
3245.7 [@] 11	$23/2^{+}$ @		
3254.2 [@] 11	$25/2^{-}$ @		
3344.3? [@] 13	27/2+ @		
3581.0? [@] 12	27/2 ⁻ @		
3381.0? 12	21/2		

[†] From a least-squares fit to $E\gamma$'s. [‡] From 1975Gi11. [#] From 'Adopted Levels'.

[®] Added by evaluators using unplaced γ 's from 1975Gi11 and using the ¹³³Ba level scheme suggested by 1995Ju02.

124 Sn(12 C,3n γ) 1975Gi11,1995Ju02 (continued)

$_{\mathrm{E}_{\gamma}}^{\dagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_i (level)	J_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
12.327 <i>6</i> 83.5 <i>1</i>	30 3	12.327 1941.4	3/2 ⁺ 19/2 ⁺	0.0 1857.9	1/2 ⁺ 19/2 ⁻	M1+E2 (E1)	E_{γ} ,Mult.: from 'Adopted Levels and gammas'. I_{γ} : from $\gamma\gamma$ -coin. Mult.: stated in table 1 of 1975Gi11.
^x 110.7 <i>I</i> ^x 120.5 <i>I</i>	3.3 <i>3</i> 1.0 <i>I</i>						Mult Stated III table 1 of 19730111.
131.90 <i>13</i> x134.6 <i>1</i>	3.6 <i>4</i> 3.7 <i>4</i>	3245.7	23/2+	3113.8	21/2+		
136.70 14	4.5 5	3113.8	21/2+	2977.1	19/2		
146.1 <i>1</i>		1857.9	19/2-	1711.9	17/2		E_{γ} : given in level scheme only, not given in table 1 (1975Gi11).
^x 202.5 2	1.9 2	1041 4	19/2 ⁺	1711.0	17/2-	E1	Multirestand in table 1 of 1075C:11
229.2 2 ^x 255.9 2	3.5 <i>4</i> 6.4 <i>6</i>	1941.4	19/2	1711.9	17/2-	E1	Mult.: stated in table 1 of 1975Gi11.
276.1 <i>3</i>		288.4	11/2	12.327		M4	Mult.: from 'Adopted Levels and gammas'.
278.8 <i>3</i> 285.8 <i>3</i>	11.5 <i>12</i> 6.2 <i>6</i>	290.96 577.0	5/2 ⁺ 7/2 ⁺	12.327 290.96	3/2 ⁺ 5/2 ⁺	M1(+E2) M1(+E2)	$\gamma(\theta)$: A ₂ =-0.44 6. $\gamma(\theta)$: A ₂ =-0.55 13.
290.6 [@] 3	3.3@	290.96	5/2 ⁺	0.0	1/2+	W11(±L2)	E_{γ} : 291.3 <i>I</i> , I_{γ} =0.4 <i>I</i> in 1995Ju02.
290.6 [@] 3	3.3 [@]	302.96	3/2+	12.327			$\gamma(\theta)$: A ₂ =-0.10 15.
303.0 3	6.4 6	302.96	3/2+	0.0	1/2+	M1(+E2)	$\gamma(\theta)$: $A_2 = -0.52$ 8. E_{γ} : not observed in 1995Ju02.
321.1 3	2.8 3	2829.8	23/2-	2508.7	21/2-		'
326.8 <i>3 x</i> 331.9 <i>3</i>	2.1 2 5.9 6	3581.0?	27/2-	3254.2	25/2-		
338.4 3	2.5 3	2508.7	21/2-	2170.3	19/2-		
365.9 4	4.9 5	3254.2	25/2-	2888.3	23/2		
^x 391.9 4	3.2 3						
^x 395.7 4	4.7 5						
^x 419.5 <i>4</i> 423.7 <i>4</i>	3.1 <i>3</i> 25 <i>3</i>	2365.1	23/2+	1941.4	19/2+	E2	$\gamma(\theta)$: A ₂ =0.16 4.
439.8 4	10.2 10	2381.2	23/2 21/2 ⁺	1941.4	19/2+	M1+E2	$\gamma(\theta)$: A ₂ =0.10 4. $\gamma(\theta)$: A ₂ =-0.31 12.
458.1 5	4.5 5	2170.3	19/2-	1711.9	17/2-		7(0)1112 0.01121
^x 531.6 5	1.6 2						
553.9 6	5.9 5	2495.3?	21/2+	1941.4	19/2+	Ea	(0) 4 0.02 10
565.4 <i>6</i> 599.5 <i>6</i>	10.7 <i>11</i> 9.4 9	577.0 2457.4?	7/2 ⁺ 21/2 ⁻	12.327 1857.9	3/2 ⁺ 19/2 ⁻	E2	$\gamma(\theta)$: A ₂ =0.03 10. E _{γ} : not observed in 1995Ju02.
399.3 0	9.4 9	2437.41	21/2	1037.9	19/2		I_{γ} : composite line.
613.6 6	30 <i>3</i>	901.9	$13/2^{-}$	288.4	$11/2^{-}$	D+Q	$\gamma(\theta)$: A ₂ =-0.63 7.
^x 622.0 6	4.1 4						
627.1 6	12.8 13	1528.9	15/2-	901.9	13/2	M1+E2	$\gamma(\theta)$: A ₂ =-0.77 7.
632.5 <i>6</i> 641.8 <i>6</i>	3.0 <i>3</i> 7.0 <i>7</i>	2490.2? 2170.3	19/2-	1857.9 1528.9	19/2 ⁻ 15/2 ⁻	M1,E2 Q	$\gamma(\theta)$: A ₂ =0.16 <i>12</i> . $\gamma(\theta)$: A ₂ =0.40 9.
680.4 7	100	968.9	15/2	288.4	11/2	Q	$\gamma(\theta)$: A ₂ =0.40 9. $\gamma(\theta)$: A ₂ =0.20 3.
737.0 7	9.8 10	3245.7	23/2+	2508.7	21/2-	Q	(O). 112 0.20 J.
738.9 <i>7</i>	4.9 5	3104.0?	$25/2^{+}$	2365.1	23/2+		
742.9 7	18.0 <i>18</i>	1711.9	17/2-	968.9	15/2-	M1+E2	$\gamma(\theta)$: A ₂ =-0.84 13.
745.5 7	4.1 4	2457.4?	21/2	1711.9	17/2	Q	$\gamma(\theta)$: A ₂ =0.43 13. E _{γ} : the transition depopulates the 3256-keV level in 1995Ju02.
745.5 7	4.1 4	3254.2	25/2-	2508.7	21/2-		
x760.8 8	2.5 3	1711 0	17/2-	001.0	12/2-	Ea	(0) 4 011 0
809.8 <i>8</i> *842.7 <i>8</i>	9.0 <i>9</i> 7.0 <i>7</i>	1711.9	17/2-	901.9	13/2-	E2	$\gamma(\theta)$: A ₂ =0.11 8.
888.9 9	60 6	1857.9	19/2-	968.9	15/2-	Q	$\gamma(\theta)$: A ₂ =0.19 3.
960.8 10	3.0 <i>3</i>	2490.2?	,-	1528.9	15/2	M1,E2	$\gamma(\theta)$: A ₂ =0.17 3. $\gamma(\theta)$: A ₂ =0.31 10.
979.2 10	9.2 10	3344.3?	$27/2^{+}$	2365.1	23/2+	•	

124 Sn(12 C,3n γ) 1975Gi11,1995Ju02 (continued)

$\gamma(^{133}\text{Ba})$ (continued)

 † From 1975Gi11; $\Delta E \gamma$ assigned by evaluators according statement of authors that $\Delta E \gamma \approx 0.1\%.$

[†] From 1975Gi11, observed at 55° to the beam. # From $\gamma(\theta)$ of 1975Gi11, except as noted. @ Multiply placed with undivided intensity.

 $^{^{}x}$ γ ray not placed in level scheme.

124 Sn(12 C,3n γ) 1975Gi11,1995Ju02

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010

1995Ju02: 124 Sn(13 C,4n γ) E=48.4, 65.5 MeV; measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ coin, DCO values; 133 Ba; deduced levels, J^{π} , rotational bands, B(M1)/B(E2). Tandem, NORDBALL array, cranked shell model.

¹³³Ba Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	1/2+	10.551 y <i>11</i>	
12.327 <mark>&</mark> 6	3/2+	7.0 ns <i>3</i>	
288.252 ^f 10	11/2-	38.93 h <i>10</i>	
291.33 [@] 6	5/2+		
577.77 <mark>&</mark> 7	7/2+		
883.64 [@] 8	9/2+		
901.83 <mark>8</mark> 8	13/2-		
969.01 ^f 8	$15/2^{-}$		
1375.87 <mark>&</mark> 9	$11/2^{+}$		
1529.03 ⁱ 9	15/2-		
1633.29 [@] 10	13/2+		
1712.80 <mark>8</mark> 9	17/2-		
1859.15 ^{<i>f</i>} 9	$19/2^{-}$		
1942.13 ^c 10	19/2+	3.5 ns <i>15</i>	
2036.23 11	17/2-		
2170.79 ⁱ 9	19/2-		
2211.18& 11	15/2 ⁺		
2366.10 ^c 11 2382.03 ^d 14	23/2+		
2382.03 ^a 14 2447.36 ^a 11	$(21/2^+)$		
2447.36° 11 2496.05 12	17/2 ⁺ 21/2 ⁺		
2509.31^{i} 9	21/2		
2526.51 <i>11</i>	19/2		
2671.22 ⁸ 11	21/2-		
2830.49 ⁱ 10	23/2-		
2831.14 ^k 12	$19/2^{(+)}$		
2862.21 11	21/2+		
2890.43 ^f 10	$23/2^{-}$		
2966.4 <i>4</i>	21/2-		D. 1. 11 1071 V.D. C. 2115 241 V.I. 1/I 21/21
2978.2 5	19/2		Populated by 137-keV D γ from 3115.24-keV level (J=21/2 ⁺).
3062.99^{k} 11	21/2 ⁽⁺⁾		
3103.86 ^d 12 3115.24 ^a 10	25/2 ⁺ 21/2 ⁺		
$3115.24^{\circ} 10$ $3246.58^{\circ} 10$	23/2 ⁺		
3246.38° 10 3255.97 ⁱ 10	25/2 ⁻		
3346.00° 12	23/2 27/2 ⁺		
3373.65^{k} 12	$23/2^{(+)}$		
3433.77 ^a 12	25/2 ⁺		
3545.97 ⁱ 11	27/2-		
3582.74 ^h 11	27/2-		
3646.47 <i>13</i>	25/2+		

¹²⁴Sn(¹³C,4nγ) **1995Ju02** (continued)

¹³³Ba <u>Levels</u> (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
3688.46 ⁸ 14	$(25/2^{-})$	
3700.65 ^k 16	25/2(+)	
3709.95 <i>16</i>	25/2	
3710.73 ^b 12	$27/2^{+}$	
3838.98 ^d 14	29/2+	
3967.91 <i>15</i>		E(level): remains uncertain: populating (690.9 γ <i>I</i>) and depopulating (1601.8 γ <i>I</i>) transitions of the level fit poorly to corresponding level energy differences (normalized χ^2 =6.26 for each transition).
3988.03 ^f 15	27/2-	in poorly to corresponding level energy differences (normalized $\chi^2 = 0.20$ for each transmon).
4084.7 ^k 4	$27/2^{(+)}$	
4145.64 <i>14</i>	$29/2^{(+)}$	
4179.08 ^a 13	29/2+	
4194.47 ⁱ 13	$29/2^{-}$	
4203.27 ^c 14	31/2+	
4223.88 13	29/2+	
4242.91 ^h 12	31/2-	
4255.88 <i>13</i> 4402.47 <i>16</i>	29/2 ⁺ (27/2)	J^{π} : stretched D γ from 4657.87-keV, J=29/2 ⁻ level.
4421.96 ⁱ 12	$31/2^{-}$	3. Subtefied D y from $+657.07$ -Re v , $3-27/2$ fevel.
4425.14 <i>13</i>	27/2	
4485.41 <i>13</i>	31/2+	
4500.7 ^k 7	29/2	
4502.49 ^b 13	$31/2^{+}$	
4633.67 18	29/2	J^{π} : stretched D γ from 4824.57-keV, J=31/2 ⁻ level.
4657.87 ^e 12 4824.57 ^e 16	29/2-	
4824.37 10 4830.64 ^d 14	31/2 ⁻ 33/2 ⁺	
5001.48 ^a 15	33/2 ⁺	
5058.17 ^e 19	33/2-	
5174.22 <i>15</i>	33/2+	
5242.32 ^c 15	$35/2^{+}$	
5263.5 ⁱ 6 5350.47 ^e 21	(33/2 ⁻) 35/2 ⁻	
5391.77 ⁱ 13	35/2-	
5417.86 ^b 14	35/2+	
5430.16 ^j 14	33/2-	
5465.24 18	$35/2^{+}$	
5520.61 ^h 15	35/2-	
5661.92 ^j 14	35/2-	
5735.67 ^e 23	37/2-	
5858.23 ^d 16 5936.30 ^a 16	37/2 ⁺ 37/2 ⁺	
5983.77 ^j 14	37/2 ⁻	
6237.1 ^e 3	39/2 ⁻	
6277.42 ^c 17	39/2 ⁺	
6307.97 ^j 15	$39/2^{-}$	
6366.95 ⁱ 14	$39/2^{-}$	
6425.83 ^b 16	39/2+	
6546.23 19		
6749.56 ^j 16	41/2-	
6818.1 ^e 3	41/2-	

124 Sn(13 C,4n γ) 1995Ju02 (continued)

¹³³Ba Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
6955.14 ^a 18 6980.63 ^d 19	(41/2 ⁺) 41/2 ⁺	7217.76 ^{<i>j</i>} 19 7421.1 ^e 4	43/2 ⁻ 43/2 ⁻	7431.44 ^b 18 7585.93 ^c 19 8052.1 ^e 5	(43/2 ⁺) (43/2 ⁺) 45/2 ⁻

[†] From a least-squares fit to $E\gamma$'s.

$\gamma(^{133}\text{Ba})$

${\rm E}_{\gamma}{}^{\dagger}$	$\mathrm{I}_{\gamma}^{ \dagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
12.327 6		12.327	3/2+	0.0	1/2+	M1+E2	E _γ ,Mult.: not observed in 1995Ju02; from 'Adopted
02.1.7	40.5	1040 12	10/0+	1050 15	10/2-	Ъ	Lekeels and gammas'.
83.1 <i>I</i>	48 5	1942.13	19/2+	1859.15	19/2	D	R=1.0 1.
131.4 <i>I</i>	3.0 2	3246.58	23/2+	3115.24	$21/2^{+}$	D	R=0.78 3.
137.0 5	0.23 4	3115.24	$21/2^{+}$	2978.2	19/2	D	R=0.88 7.
146.4 <i>I</i>	0.64 <i>4</i>	1859.15	$19/2^{-}$	1712.80	$17/2^{-}$	D	R=0.87 7.
166.7 <i>1</i>	9.20 8	4824.57	$31/2^{-}$	4657.87	$29/2^{-}$	D	R=0.82 2.
187.2 <i>I</i>	7.9 <i>3</i>	3433.77	$25/2^{+}$	3246.58	$23/2^{+}$	D	R=0.80 2.
190.9 <i>1</i>	0.6 1	4824.57	$31/2^{-}$	4633.67	29/2	D	R=0.82 8.
219.2 <i>1</i>	0.24 4	2890.43	$23/2^{-}$	2671.22	$21/2^{-}$	M1+E2	R=0.47 7.
227.4 1	1.31 8	4421.96	$31/2^{-}$	4194.47	29/2-	D	R=0.9314.
229.2 <i>1</i>	5.26 9	1942.13	19/2+	1712.80	17/2-	D	R=0.93 3.
231.7 <i>1</i>	0.6 2	5661.92	$35/2^{-}$	5430.16	$33/2^{-}$		
231.9 <i>1</i>	0.30 4	3062.99	$21/2^{(+)}$	2831.14	$19/2^{(+)}$	D	R=0.78 5.
232.7 1	0.9 2	4657.87	$29/2^{-}$	4425.14	27/2		
233.6 <i>1</i>	13.3 5	5058.17	$33/2^{-}$	4824.57	$31/2^{-}$	D	R=0.83 2.
243.7 <i>1</i>	0.44 4	5417.86	$35/2^{+}$	5174.22	$33/2^{+}$	D	R=0.79 9.
246.6 <i>1</i>	1.00 5	4502.49	$31/2^{+}$	4255.88	$29/2^{+}$	D	R=0.79 7.
252.9 <i>1</i>	0.41 6	3115.24	$21/2^{+}$	2862.21	$21/2^{+}$	D	$R=1.76 \ 13, \ \Delta J=0.$
255.4 <i>1</i>	1.07 6	4657.87	$29/2^{-}$	4402.47	(27/2)	D	R=0.81 6.
257.5 <i>1</i>	< 0.2	1633.29	$13/2^{+}$	1375.87	11/2+	M1+E2	R=0.52 8.
261.4 <i>1</i>	0.8 1	4485.41	31/2+	4223.88	29/2+	D	R=0.63 7.
275.925 7		288.252	$11/2^{-}$	12.327	3/2+	M4	E_{γ} ,Mult.: from 'Adopted Levels and gammas'.
276.9 <i>1</i>	6.1 2	3710.73	27/2+	3433.77	$25/2^{+}$	D	R=0.80 2.

[‡] From deduced transition multipolarities and band assignment.

[#] From 'Adopted Levels'.

[@] Band(A): based on $1/2^+$ state, $\alpha = +1/2$; Dominant $\nu(s_{1/2})^{-1}$ configuration.

[&]amp; Band(B): based on $3/2^+$ state, $\alpha = -1/2$; Dominant $\nu(d_{3/2})^{-1}$ configuration.

^a Band(C): Based on 21/2⁺ state, α=+1/2; probable configuration= ν (h_{11/2})⁻¹⊗ π (h_{11/2},g_{7/2}⁻¹).

^b Band(D): Based on 23/2⁺ state, α=−1/2; probable configuration= ν (h_{11/2})⁻¹⊗ π (h_{11/2},g_{7/2}).

^c Band(E): Based on 19/2⁺ state, $\alpha = -1/2$; probable a mixture of $\nu(s_{1/2}^{-1}, h_{11/2}^{-2})$ and $\nu(d_{3/2}^{-1}, h_{11/2}^{-2})$ configurations.

^d Band(F): Based on 21/2⁺ state, $\alpha = +1/2$; probable a mixture of $\nu(s_{1/2}^{-1}, h_{11/2}^{-2})$ and $\nu(d_{3/2}^{-1}, h_{11/2}^{-2})$ configurations.

^e Band(G): based on 29/2⁻ state.

^f Band(H): Based on 11/2⁻ state, $\alpha = -1/2$; configuration= $\nu(h_{11/2})^{-1}$.

^g Band(I): Based on $13/2^-$ state, $\alpha = +1/2$; configuration= $\nu(h_{11/2})^{-1}$.

^h Band(J): based on 27/2⁻ state.

i Band(K): based on 15/2 state.

 $^{^{}j}$ Band(L): band L based on $33/2^{-}$ state.

^k Band(M): Based on $19/2^{(+)}$ state; probable configuration= $\nu(h_{11/2})^{-1}\otimes\pi(h_{11/2}^{-1},d_{5/2}^{-1})$.

124Sn(13C,4n γ) 1995Ju02 (continued)

γ (133Ba) (continued)

$E_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}{}^{\dagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
279.1 <i>I</i>	1.9 3	291.33	5/2+	12.327	3/2+	M1(+E2)	Mult.: from 'Adopted Levels and gammas'. R=0.71 3.
282.2 1	0.9 1	4485.41	$31/2^{+}$	4203.27	$31/2^{+}$	D	$R=1.34 \ 10, \Delta J=0.$
286.4 1	<0.1	577.77	7/2+	291.33	5/2+	M1,E2	Mult.: from 'Adopted Levels and gammas'. R=1.2 2.
290.0 <i>I</i>	7.6 2	3545.97	$27/2^{-}$	3255.97	$25/2^{-}$	D	R=0.76 2.
291.3 <i>I</i>	0.4 1	291.33	5/2 ⁺	0.0	1/2+	E2	Mult.: in 133 La ε decay mult.=(E2).
271.5 1	0.11	271.33	3/2	0.0	1/2	1.2	R=1.43 7.
292.3 1	10.8 4	5350.47	$35/2^{-}$	5058.17	$33/2^{-}$	D	R=0.77 2.
305.9 <i>1</i>	0.22 5	883.64	9/2+	577.77	7/2+	D	R=0.68 4.
306.4 <i>1</i>	0.3 1	4485.41	31/2+	4179.08	29/2+		
310.8 <i>I</i>	1.9 <i>3</i>	3373.65	$23/2^{(+)}$	3062.99	$21/2^{(+)}$		
311.4 <i>I</i>	0.7 2	2170.79	19/2-	1859.15	19/2-		
321.3 <i>1</i>	11.1 5	2830.49	$23/2^{-}$	2509.31	$21/2^{-}$	D	R=0.74 3.
321.8 <i>1</i>	1.9 3	5983.77	$37/2^{-}$	5661.92	$35/2^{-}$		
323.5 <i>1</i>	0.9 1	4502.49	$31/2^{+}$	4179.08	$29/2^{+}$	D	R=0.78 4.
324.3 <i>1</i>	1.3 2	6307.97	39/2-	5983.77	$37/2^{-}$	D	R=0.56 5.
326.8 <i>1</i>	8.6 4	3582.74	27/2-	3255.97	25/2	D	R=0.74 2.
327.0 <i>1</i>	1.0 2	3700.65	$25/2^{(+)}$	3373.65	$23/2^{(+)}$	D	R=0.89 4.
336.3 <i>1</i>	0.20 5	3709.95	25/2	3373.65	$23/2^{(+)}$	D	R=0.75 10.
338.6 <i>1</i>	16.7 6	2509.31	21/2-	2170.79	19/2-	D	R=0.70 2.
345.3 <i>1</i>	0.5 2	4830.64	$33/2^{+}$	4485.41	$31/2^{+}$	D	R=0.86 9.
365.5 1	5.3 3	3255.97	25/2-	2890.43	23/2-	D	R=0.71 3.
381.0 5	1.6 2	2890.43	23/2-	2509.31	21/2-		D 0 (5.5
382.5 1	1.2 3	6749.56	41/2-	6366.95	39/2-	D	R=0.65 7.
383.1 <i>I</i>	0.8 2	6366.95	39/2-	5983.77	37/2-	D	D 0.01 II
384.0 5	0.35 7	4084.7	27/2 ⁽⁺⁾	3700.65	25/2 ⁽⁺⁾	D	R=0.81 11.
384.5 1	<0.3 7.0 <i>3</i>	3246.58	23/2+	2862.21	21/2+	D	R=0.77 7.
385.2 <i>I</i> 411.6 <i>I</i>	0.7 <i>1</i>	5735.67 5242.32	37/2 ⁻ 35/2 ⁺	5350.47 4830.64	35/2 ⁻ 33/2 ⁺	D D	R=0.75 2. R=0.80 9.
411.0 <i>I</i> 415.9 <i>@ I</i>							
415.9 1	0.5 1	5417.86	35/2+	5001.48	33/2+	D	E _γ : poor fit; level energy difference is equal to 416.38 <i>10</i> . R=0.75 <i>6</i> .
416.0 5	< 0.2	3246.58	$23/2^{+}$	2830.49	$23/2^{-}$		
416.0 5	< 0.3	4500.7	29/2	4084.7	27/2(+)		
419.2 <i>I</i>	0.67 5	6277.42	39/2+	5858.23	37/2+	D	R=0.62 8.
423.9 <i>1</i>	35.2 10	2366.10	23/2+	1942.13	19/2+	E2	R=1.49 3.
425.5 <i>1</i>	5.8 2	3255.97	25/2-	2830.49	23/2-	M1+E2	R=0.50 6.
439.9 <i>1</i>	0.40 10	2382.03	$(21/2^+)$	1942.13	$19/2^{+}$		
440.0 5	< 0.2	2966.4	$21/2^{-}$	2526.51	19/2-		
441.7 <i>1</i>	1.7 2	6749.56	$41/2^{-}$	6307.97	39/2-	D	R=0.63 7.
458.0 <i>1</i>	10.5 4	2170.79	19/2-	1712.80	17/2-	D	R=0.60 2.
463.1 <i>1</i>	1.2 <i>I</i>	5983.77	37/2-	5520.61	35/2-	D	R=0.67 12.
468.2 1	1.9 3	7217.76	43/2-	6749.56	41/2	D	R=0.61 7.
468.4 1	2.6 2	4179.08	29/2+	3710.73	27/2+	D	R=0.85 9.
476.3 1	0.6 2	7431.44	$(43/2^+)$	6955.14	$(41/2^+)$		
489.4 <i>1</i>	0.4 <i>I</i> 0.3 <i>I</i>	6425.83	39/2 ⁺	5936.30 2036.23	37/2 ⁺		
490.0 <i>5</i> 492.4 <i>1</i>	0.5 1	2526.51 1375.87	19/2 ⁻ 11/2 ⁺	883.64	17/2 ⁻ 9/2 ⁺	D	R=0.82 13.
492.4 <i>I</i> 493.1 <i>I</i>	0.13 <i>3</i> 0.9 <i>1</i>	3838.98	29/2 ⁺	3346.00	9/2 27/2 ⁺	D D	R=0.82 13. R=0.85 9.
496.0 5	<0.4	2862.21	21/2+	2366.10	23/2+	ט	K-0.03 /.
499.1 <i>I</i>	2.2 2	5001.48	33/2+	4502.49	31/2+	D	R=0.76 9.
501.4 <i>I</i>	4.2 2	6237.1	39/2	5735.67	$37/2^{-}$	D	R=0.65 3.
507.2 1	0.5 1	2036.23	17/2-	1529.03	$15/2^{-}$	M1+E2	R=0.53 5.
513.1 <i>1</i>	1.0 <i>I</i>	4223.88	29/2+	3710.73	27/2+	D	R=0.72 10.

124Sn(13C,4n γ) 1995Ju02 (continued)

γ (133Ba) (continued)

${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
518.3 <i>1</i>	1.3 1	5936.30	37/2+	5417.86	35/2 ⁺	D	R=0.82 10.
529.3 1	0.7 1	6955.14	$(41/2^+)$	6425.83	39/2 ⁺	D	N 0.02 10.
545.1 <i>I</i>	1.9 <i>I</i>	4255.88	29/2+	3710.73	27/2+	D	R=0.72 5.
554.0 <i>1</i>	2.9 2	2496.05	21/2+	1942.13	19/2+	M1+E2	R=0.46 5.
560.0 <i>1</i>	2.6 <i>1</i>	1529.03	15/2-	969.01	$15/2^{-}$	D	R=1.02 7.
565.4 <i>1</i>	0.9 1	577.77	$7/2^{+}$	12.327	$3/2^{+}$	E2	Mult.: from 'Adopted Levels and gammas'.
							R=1.34 4.
577.9 <i>1</i>	< 0.2	2211.18	$15/2^{+}$	1633.29	$13/2^{+}$	D	R=0.9 2.
581.0 <i>I</i>	2.2 1	6818.1	41/2	6237.1	39/2-	D	R=0.62 5.
586.0 <i>5</i>	0.3 1	5417.86	35/2 ⁺	4830.64	33/2+		E_{γ} : poor fit; level energy difference is equal to 587.22 10.
592.1 <i>1</i>	1.3 <i>I</i>	5983.77	$37/2^{-}$	5391.77	$35/2^{-}$	D	R=0.65 9.
592.4 <i>1</i>	2.0 1	883.64	9/2+	291.33	5/2+	E2	R=1.27 8.
603.0 5	1.0 <i>I</i>	7421.1	$43/2^{-}$	6818.1	$41/2^{-}$	D	R=0.6 2.
613.6 <i>1</i>	19.0 9	901.83	13/2	288.252		M1+E2	R=0.44 2.
615.8 <i>I</i>	1.3 2	5858.23	$37/2^{+}$	5242.32	$35/2^{+}$	D	R=0.68 10.
627.3 [#] 1	11.3 [#] 5	1529.03	$15/2^{-}$	901.83	$13/2^{-}$	M1+E2	R=0.39 1.
627.3 [#] 1	3.6 [#] 2	4830.64	$33/2^{+}$	4203.27	$31/2^{+}$	D	R=0.51 4.
631.0 5	0.7 1	8052.1	$45/2^{-}$	7421.1	$43/2^{-}$	D	R=0.6 1.
634.6 <i>1</i>	1.4 <i>I</i>	5465.24	$35/2^{+}$	4830.64	$33/2^{+}$	M1+E2	R=0.55 6.
641.9 <i>I</i>	10.2 5	2170.79	$19/2^{-}$	1529.03	$15/2^{-}$	E2	R=1.51 3.
650.2 <i>1</i>	4.4 2	2509.31	$21/2^{-}$	1859.15	19/2-	M1+E2	R=0.49 3.
655.4 <i>1</i>	0.7 2	3545.97	27/2-	2890.43	23/2		D 444
659.6 <i>1</i>	<1	2830.49	23/2-	2170.79	19/2-	E2	R=1.36 8.
660.1 <i>I</i>	9.0 6	4242.91	31/2-	3582.74	27/2-	E2	R=1.31 <i>12</i> .
667.9 1	0.9 1	3115.24	21/2+	2447.36	17/2+	E2	R=1.44 8.
680.7 <i>1</i> 688.0 <i>1</i>	100 0.6 <i>1</i>	969.01 6546.23	15/2-	288.252 5858.23	37/2 ⁺	E2	R=1.36 2.
690.6 [@] 1	0.5 2	4657.87	29/2-	3967.91	31/2		E_{γ} : see comment for 3967.91-keV level.
693.0 5	1.0 3	3582.74	27/2-	2890.43	$23/2^{-}$		by, see comment for 3507.51 ke v level.
697.0 <i>1</i>	6.4 5	4242.91	31/2-	3545.97	27/2-	E2	R=1.35 7.
702.3 <i>1</i>	0.5 1	3373.65	23/2(+)	2671.22	21/2-	D	R=0.9 1.
703.2 1	0.7 2	6980.63	41/2+	6277.42	39/2+		
711.0 5	< 0.2	4084.7	27/2(+)	3373.65	23/2(+)		
715.6 <i>1</i>	7.6 3	3545.97	27/2-	2830.49	$23/2^{-}$	E2	R=1.42 8.
735.0 <i>1</i>	0.4 1	3838.98	29/2+	3103.86	$25/2^{+}$		
737.3 1	1.8 <i>I</i>	3246.58	$23/2^{+}$	2509.31	$21/2^{-}$	D	R=0.74 5.
737.8 <i>1</i>	4.0 2	3103.86	$25/2^{+}$	2366.10	$23/2^{+}$	M1+E2	R=0.36 2.
743.8 <i>1</i>	14.9 5	1712.80	17/2-	969.01	15/2	M1+E2	R=0.48 2.
746.6 <i>1</i>	12.4 4	3255.97	25/2-	2509.31	21/2	E2	R=1.45 4.
749.6 <i>1</i>	2.1 2	1633.29	13/2+	883.64	9/2+	E2	R=1.31 5.
750.6 <i>1</i>	0.8 2	3246.58	23/2+	2496.05	21/2+	E2	D_1 45 4
752.3 <i>1</i> 756.0 <i>5</i>	10.5 <i>3</i> < 0.3	3582.74 4402.47	$27/2^{-}$ (27/2)	2830.49 3646.47	23/2 ⁻ 25/2 ⁺	E2	R=1.45 4.
774.7 <i>1</i>	0.5 1	4485.41	$31/2^{+}$	3710.73	23/2 27/2 ⁺	E2	R=1.22 11.
778.6 1	0.5 1	4425.14	27/2	3646.47	25/2 ⁺	D	R=0.74 7.
791.7 <i>I</i>	1.4 <i>I</i>	4502.49	31/2+	3710.73	27/2+	E2	R=1.39 8.
796.5 <i>1</i>	1.5 <i>I</i>	2509.31	21/2	1712.80	$17/2^{-}$	E2	R=1.4 2.
798.0 <i>1</i>	0.8 1	1375.87	11/2+	577.77	7/2+	E2	R=1.26 8.
798.0 <i>5</i>	< 0.3	3688.46	$(25/2^{-})$	2890.43	23/2-		
799.6 <i>1</i>	0.5 2	4145.64	29/2(+)	3346.00	27/2+		
810.9 <i>I</i>	6.5 2	1712.80	$17/2^{-}$	901.83	$13/2^{-}$	E2	R=1.33 7.
812.0 5	1.6 <i>3</i>	2671.22	21/2-	1859.15	19/2-	(M1+E2)	R=0.58 6.
813.8 <i>I</i>	0.5 1	2526.51	19/2	1712.80	17/2	M1+E2	R=0.48 5.
814.1 <i>I</i>	1.9 <i>I</i>	2447.36	17/2+	1633.29	$13/2^{+}$	E2	R=1.32 8.

124Sn(13C,4n γ) 1995Ju02 (continued)

γ (133Ba) (continued)

E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	Comments
822.3 1	0.4 1	5001.48	33/2+	4179.08 29/2+	E2	R=1.5 3.
835.3 1	0.35 6	2211.18	15/2+	1375.87 11/2+	E2	R=1.26 7.
839.4 <i>1</i>	5.4 2	4421.96	31/2-	3582.74 27/2-	E2	R=1.5 2.
846.4 <i>1</i>	1.2 3	6366.95	39/2-	5520.61 35/2-	E2	R=1.36 10.
857.2 1	14.3 4	4203.27	31/2+	3346.00 27/2+	E2	R=1.43 2.
875.9 <i>1</i>	3.0 2	4421.96	$31/2^{-}$	3545.97 27/2-	E2	R=1.45 12.
877.8 <i>1</i>	0.9 2	4223.88	29/2+	3346.00 27/2+		R=1.22 10.
880.4 <i>1</i>	1.6 2	3246.58	$23/2^{+}$	2366.10 23/2+	D	$R=1.29 \ 8, \ \Delta J=0.$
890.1 <i>1</i>	78 2	1859.15	$19/2^{-}$	969.01 15/2	E2	R=1.36 4.
915.5 <i>1</i>	2.0 1	5417.86	$35/2^{+}$	4502.49 31/2+	E2	R=1.46 9.
916.2 <i>1</i>	2.6 2	6307.97	39/2-	5391.77 35/2	E2	R=1.32 14.
918.4 <i>I</i>	0.8 1	5174.22	33/2+	4255.88 29/2+	E2	R=1.4 2.
920.1 <i>1</i>	0.5 1	2862.21	$21/2^{+}$	1942.13 19/2+	(M1+E2)	R=0.59 13.
930.0 5	< 0.3	2966.4	21/2	2036.23 17/2	E2	R=1.41 4.
932.3 1	0.8 1	5417.86	35/2+	4485.41 31/2+	E2	R=1.4 2.
935.0 <i>5</i>	0.6 1	5936.30	37/2 ⁺	5001.48 33/2+	[E2]	D 4 40 40
938.4 1	3.0 2	4194.47	29/2-	3255.97 25/2-	E2	R=1.42 10.
944.4 <i>1</i>	0.9 1	3115.24	21/2+	2170.79 19/2	D	R=0.81 7.
958.3 1	1.6 <i>I</i>	2671.22	21/2-	1712.80 17/2	E2	R=1.4 2.
969.8 <i>1</i>	5.4 4	5391.77	35/2-	4421.96 31/2	E2	R=1.30 10.
971.5 <i>I</i>	14.7 5	2830.49	23/2-	1859.15 19/2	[E2]	R=1.23 6.
975.1 <i>I</i>	0.5 1	6366.95	39/2 ⁻	5391.77 35/2	[E2]	D 1 44 2
980.0 <i>1</i> 995.0 <i>5</i>	21.1 8 0.2 <i>I</i>	3346.00	27/2 ⁺ 33/2 ⁺	2366.10 23/2 ⁺ 4179.08 29/2 ⁺	E2	R=1.44 3.
993.0 <i>3</i> 997.4 <i>1</i>		5174.22			E2	R=1.3 2.
1005.6 <i>I</i>	0.2 <i>1</i> 0.6 <i>1</i>	2526.51 7431.44	$19/2^ (43/2^+)$	1529.03 15/2 ⁻ 6425.83 39/2 ⁺	EZ	K-1.3 2.
1003.0 <i>I</i> 1008.1 <i>I</i>	2.1 2	6425.83	39/2 ⁺	5417.86 35/2 ⁺	E2	R=1.42 9.
1018.0 5	0.3 1	3688.46	$(25/2^{-})$	2671.22 21/2	152	R-1.72 9.
1013.0 <i>J</i> 1027.7 <i>I</i>	0.6 1	5858.23	37/2 ⁺	4830.64 33/2 ⁺	E2	R=1.2 2.
1031.1 <i>I</i>	8.8 6	2890.43	23/2-	1859.15 19/2	E2	R=1.41 4.
1035.1 <i>I</i>	2.2 1	6277.42	39/2 ⁺	5242.32 35/2+	E2	R=1.36 7.
1039.0 <i>I</i>	6.0 3	5242.32	35/2 ⁺	4203.27 31/2+	E2	R=1.29 6.
1041.8 <i>I</i>	0.9 1	4145.64	29/2 ⁽⁺⁾	3103.86 25/2+	E2	R=1.26 10.
1051.0 5	0.7 2	4633.67	29/2	3582.74 27/2	22	1,2010.
1067.2 <i>1</i>	<1	2036.23	17/2-	969.01 15/2	M1+E2	R=0.45 5.
1067.6 <i>1</i>	1.3 <i>I</i>	3433.77	25/2 ⁺	2366.10 23/2+	D	R=0.65 6.
1069.0 5	0.9 2	5263.5	$(33/2^{-})$	4194.47 29/2-		
1075.1 <i>I</i>	6.0 <i>3</i>	4657.87	$29/2^{-}$	3582.74 27/2-	M1+E2	R=0.45 2.
1081.5 [@] 1	0.3 1	6818.1	41/2-	5735.67 37/2-		E_{γ} : poor fit; level energy difference is equal to 1082.40 <i>14</i> .
1097.6 <i>1</i>	1.2 <i>I</i>	3988.03	$27/2^{-}$	2890.43 23/2-	E2	R=1.8 2.
1118.4 <i>I</i>	0.5 1	2831.14	$19/2^{(+)}$	1712.80 17/2-	D	R=0.80 6.
1139.3 <i>1</i>	1.4 <i>I</i>	4485.41	$31/2^{+}$	3346.00 27/2+	E2	R=1.58 14.
1148.9 <i>1</i>	0.9 1	5391.77	35/2-	4242.91 31/2-	E2	R=1.7 10.
1152.1 <i>1</i>	0.4 1	4255.88	$29/2^{+}$	3103.86 25/2+		
1156.7 <i>1</i>	0.9 1	4502.49	31/2+	3346.00 27/2+		
1173.3 <i>1</i>	2.4 1	3115.24	$21/2^{+}$	1942.13 19/2+	D	R=0.67 6.
1184.0 5	0.3 1	7421.1	43/2-	6237.1 39/2	[E2]	
1187.2 <i>I</i>	1.8 <i>I</i>	5430.16	33/2-	4242.91 31/2	M1+E2	R=0.51 7.
1201.8 <i>I</i>	4.3 2	2170.79	19/2	969.01 15/2	E2	R=1.56 13.
1203.9 <i>1</i>	1.6 <i>I</i>	3062.99	21/2 ⁽⁺⁾	1859.15 19/2	D	R=0.87 7.
1234.0 5	0.6 1	8052.1	45/2-	6818.1 41/2	[E2]	D 400 10
1278.0 5	4.4 2	5520.61	35/2-	4242.91 31/2-	E2	R=1.38 10.
1280.3 <i>I</i>	1.2 1	3646.47	25/2+	2366.10 23/2+	M1+E2	R=0.59 6.
1304.2 <i>I</i>	0.9 2	3246.58	23/2+	1942.13 19/2+	E2	R=1.29 5.

¹²⁴Sn(¹³C,4nγ) **1995Ju02** (continued)

$\gamma(^{133}\text{Ba})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathtt{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
							E_{γ} : poor fit, level energy difference is equal to 1304.45 5.
1308.5 <i>I</i>	0.5 1	7585.93	$(43/2^+)$	6277.42	$39/2^{+}$, -
1311.9 <i>1</i>	0.6 1	4657.87	29/2-	3346.00	$27/2^{+}$	D	R=0.80 9.
1321.3 <i>I</i>	0.6 1	4425.14	27/2	3103.86	$25/2^{+}$	D	R=0.94 11.
1419.0 <i>I</i>	2.1 <i>I</i>	5661.92	35/2-	4242.91	$31/2^{-}$	E2	R=1.35 14.
1601.8 <i>I</i>	0.4 1	3967.91		2366.10	$23/2^{+}$		

 $^{^{\}dagger}$ From 1995Ju02, except as noted.

[‡] From 1995Ju02. R=I γ (37° or 143°)/I γ (79° or 101°) ratio is 1.4 – 1.5 for known ΔJ=0 dipole and ΔJ=2 quadrupole (E2) transitions, while for known stretched dipole transitions it is about 0.8; for many cases, when R is small (≈ 0.4), transitions connect levels with ΔJ=1 and have D+Q (M1+E2) multipolarities.

[#] Multiply placed with intensity suitably divided.

[®] Placement of transition in the level scheme is uncertain.

5520.61

5430.16

5417.86

5391.77

5350.47

5242.32

5001.48

4830.64

4242.91

0.0 10.551 y *11*

 $^{133}_{56} \mathrm{Ba}_{77}$

35/2

33/2

35/2+

35/2

35/2

35/2

33/2+

33/2+

31/2-

1/2+

 $^{133}_{56}\mathrm{Ba}_{77}$ -9

124 Sn(13 C,4n γ) 1995Ju02 Legend Level Scheme (continued) $I_{\gamma} < ~2\%{\times}I_{\gamma}^{\text{max}}$ $I_{\gamma} < 2.70 \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ γ Decay (Uncertain) Intensities: Relative I_{γ} @ Multiply placed: intensity suitably divided - 346 MH2214 1 1/8;2 Mr. 22.8 1.92, 1.92, 1.93, \$20,8 35/2+ 5465.24 33/2 5430.16 35/2+ 5417.86 1 600,000 5391.77 35/2 35/2 5350.47 (33/2-) 5263.5 35/2+ 5242.32 -8, 8, + 23360 | 1 | 42.| | 49.| 42.4 | 0.2.4 33/2+ 5174.22 33/2-5058.17 $= \frac{1}{3} \frac{62 \cdot 3}{36 \cdot 3} \frac{0.3 \cdot 6}{36 \cdot 6}$ 1/90,000 -1/60,000 -1/60,000 33/2+ 5001.48 33/2+ 4830.64 - 1035 - 201 -+ 1311.9 Dog | . 31/2 4824.57 696 MT/E 255 0.5 25,2 0.05 29/2 4657.87 1,56.7 201.7 25.50.4 26.50.6 26.00.6 29/2 4633.67 31/2+ 4502.49 31/2+ 4485.41 27/2 31/2⁻ (27/2) 4425.14 4421.96 4402.47 29/2+ 4255.88 31/2-4242.91 31/2+ 4203.27 29/2⁻ 29/2⁺ 4194.47 4179.08 3967.91 27/2+ 3710.73 3582.74 27/2 27/2+ 3346.00 1/2+ 0.0 10.551 y *11* $^{133}_{56}\mathrm{Ba}_{77}$

 $^{133}_{56} \mathrm{Ba}_{77}$

 $^{133}_{56}\mathrm{Ba}_{77}$

Level Scheme (continued)

 $^{133}_{56}\mathrm{Ba}_{77}$

124 Sn(13 C,4n γ) 1995Ju02 (continued)

Band(G): Based on 29/2 state

Band(H): Based on 11/2⁻ state, α=-1/2;

configuration= $v(\mathbf{h}_{11/2})^{-1}$

1098

1031

3988.03

2890.43

1859.15

969.01

288.252

27/2

23/2

19/2

15/2

11/2

state, $\alpha = +1/2$;

1018

958

811

 $(25/2^{-})$

21/2

17/2

13/2

7217.76

6749.56

6307.97

5983.77

5661.92

¹²⁴Sn(¹³C,4nγ) **1995Ju02** (continued)

 $\begin{array}{c} \textbf{Band(M): Based on 19/2}^{(+)}\\ \textbf{state; probable}\\ \textbf{configuration=} v(\textbf{h}_{11/2})\\ ^{-1} \otimes \pi(\textbf{h}_{11/2}^{-1},\\ \textbf{d}_{5/2}^{-1}) \end{array}$

$$^{133}_{56} \mathrm{Ba}_{77}$$

¹³²Ba(pol d,p) E=12 MeV **2009Su18,1970Vo04**

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010

2009Su18: 132 Ba(pol d,p), E=24.0 MeV; measured σ (E, θ) at 10 angles between 6°-40°. 133 Ba; deduced analyzing power, levels, L(n), J^{π} , S. MP Tandem accelerator, polarized deuteron beam, Q3D spectrograph, FWHM=6-7 keV, long focal-plane detector, DWBA analysis, interacting boson-fermion model and shell model calculations.

1970Vo04: 132 Ba(d,p), 12 MeV; measured $\sigma(E,\theta)$, θ =5°, 50°, deduced levels, L(n), J^{π} , S. Van de Graaff, broad-range magnetic spectrograph, FWHM=13-15 keV, DWBA analysis.

¹³³Ba Levels

E(level) [†]	J ^π @	L	$(2J+1)S_{1j}$	Comments
0	1/2+	0	0.47	$d\sigma/d\Omega$ =2.12 mb/sr 3.
12.3 5	3/2+	2	1.13	$d\sigma/d\Omega = 1.86$ mb/sr 3.
288.3 5	11/2-	5	2.30	$d\sigma/d\Omega$ =2.96 mb/sr 4.
294 [#] 5	,			
302.8 5	3/2+	2	0.19	$d\sigma/d\Omega$ =330 μ b/sr 7.
500 [#] 5	1/2+	0	≈0.02	
576.6 <i>5</i>	$(7/2^+)$	(4)	0.12	$d\sigma/d\Omega=22 \mu b/sr I$.
630.8 5	5/2+	2	0.30	$d\sigma/d\Omega = 515 \mu b/sr 9.$
674.3 5	3/2+	2	0.03	$d\sigma/d\Omega=87 \mu b/sr 4$.
791.1 5	7/2-	3	0.18	$d\sigma/d\Omega=283 \mu b/sr 6$.
858.5 <i>5</i>	3/2+	2	0.24	$d\sigma/d\Omega=397 \mu b/sr 7$.
886.0 <i>5</i>	5/2+	2	0.12	$d\sigma/d\Omega=195 \mu b/sr 5$.
969.4 5				$d\sigma/d\Omega$ =6.0 μ b/sr 10.
1066.8 5				$d\sigma/d\Omega=2.8 \ \mu b/sr \ 7.$
1111.2 [‡] 5	5/2-,7/2-	3	0.004, 0.003	$d\sigma/d\Omega$ =4.9 μ b/sr 10.
1211.1 5				$d\sigma/d\Omega=1.9 \ \mu b/sr \ 3.$
1247.7 5	1/2+	0	0.10	$d\sigma/d\Omega$ =433 μ b/sr 10.
1271.3 5	$7/2^{-}$	3	1.63	$d\sigma/d\Omega$ =2.79 mb/sr 5.
1283.6 <i>5</i>	3/2-	1	0.52	$d\sigma/d\Omega$ =1.46 mb/sr 3.
1329.5 [‡] <i>5</i>	$7/2^{-}$	3	0.14	$d\sigma/d\Omega$ =233 μ b/sr 12.
1501.5 5				$d\sigma/d\Omega=9 \mu b/sr 3$.
1563.6 <i>5</i>	5/2+	2	0.05	$d\sigma/d\Omega=96 \mu b/sr 6$.
1582.7 <i>5</i>	1/2-	1	0.14	$d\sigma/d\Omega$ =589 μ b/sr 12.
1616.1 <i>5</i>				$d\sigma/d\Omega=33 \mu b/sr 3$.
1689.3 <i>5</i>				$d\sigma/d\Omega$ =3.9 μ b/sr 5.
1704.7 5				$d\sigma/d\Omega=1.7 \mu b/sr 25.$
1770.9 [‡] 5	5/2-	3	0.27	$d\sigma/d\Omega$ =366 μ b/sr 10.
1833.7 5				$d\sigma/d\Omega=41 \mu b/sr 4$.
1872.4 <i>5</i>				$d\sigma/d\Omega=41 \mu b/sr 3$.
1938.3 5				$d\sigma/d\Omega$ =42 μ b/sr 2.
1968.2 5	7/2-	3	0.05	$d\sigma/d\Omega=110 \mu b/sr 7.$
2017.0 5				$d\sigma/d\Omega = 52 \mu b/sr 6$.
2025.1 5	2.12-		0.02	$d\sigma/d\Omega = 108 \ \mu \text{b/sr} \ 7.$
2075.8 5	3/2-	1	0.02	$d\sigma/d\Omega = 96 \ \mu b/sr \ 6.$
2101.3 5	2/2-	1	0.02	$d\sigma/d\Omega = 14 \mu b/sr 3$.
2113.4 5	3/2-	1	0.02	$d\sigma/d\Omega = 81 \ \mu b/sr \ 6.$
2142.2 5	$(7/2^{-})$	(3)	0.03	$d\sigma/d\Omega = 61 \mu b/sr 4$.
2171.2 5	5/2-	3	0.08	$d\sigma/d\Omega = 137 \ \mu \text{b/sr} \ 7.$
2223.0 <i>5</i> 2245.3 <i>5</i>				$d\sigma/d\Omega=13 \mu b/sr 2.$ $d\sigma/d\Omega=21 \mu b/sr 3.$
2266.9 5				$d\sigma/d\Omega = 26 \mu b/sr 4$.
2288.1 5	7/2-	3	0.01	$d\sigma/d\Omega = 20 \mu b/sr \ 5.$
2325.3 5	114	5	0.01	$d\sigma/d\Omega = 15 \mu \text{b/sr } 7.$
2020.0				00 / 000 1 10 po / 01 / 1

¹³²Ba(pol d,p) E=12 MeV 2009Su18,1970Vo04 (continued)

¹³³Ba Levels (continued)

E(level) Comments 2338.8 5 $d\sigma/d\Omega$ =92 μ b/sr 6.

2409[#] 20

[†] From 2009Su18, except as noted. According to authors, evaluators assigned ΔE =0.5 keV for each level energy.

[†] Possible a doublet. # From 1970Vo04. @ From L-value and analyzing power (2009Su18).