第32届全国信息学奥林匹克竞赛

CCF NOI 2015

第二试

竞赛时间: 2015年7月19日8:00-13:00

题目名称	荷马史诗	品酒大会	小园丁与老司机
目录	epic	savour	farm
可执行文件名	epic	savour	farm
输入文件名	epic.in	savour.in	farm.in
输出文件名	epic.out	savour.out	farm.out
每个测试点时限	1秒	1秒	1秒
内存限制	512MB	512MB	512MB
测试点数目	20	20	20
每个测试点分值	5	5	5
是否有部分分	是	否	是
题目类型	传统型	传统型	传统型
是否有附加文件	是	是	是

提交源程序须加后缀

对于 Pascal 语言	epic.pas	savour.pas	farm.pas
对于 C 语言	epic.c	savour.c	farm.c
对于 C++ 语言	epic.cpp	savour.cpp	farm.cpp

注意: 最终测试时, 所有编译命令均不打开任何优化开关。

荷马史诗

【问题描述】

追逐影子的人,自己就是影子 ——荷马

Allison 最近迷上了文学。她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的《荷马史诗》。但是由《奥德赛》和《伊利亚特》组成的鸿篇巨制《荷马史诗》实在是太长了,Allison 想通过一种编码方式使得它变得短一些。

一部《荷马史诗》中有n种不同的单词,从1到n进行编号。其中第i种单词出现的总次数为 w_i 。Allison 想要用k进制串 s_i 来替换第i种单词,使得其满足如下要求:

对于任意的 $1 \le i, j \le n$, $i \ne j$, 都有: s_i 不是 s_i 的前缀。

现在 Allison 想要知道,如何选择 s_i ,才能使替换以后得到的新的《荷马史诗》长度最小。在确保总长度最小的情况下,Allison 还想知道最长的 s_i 的最短长度是多少?

一个字符串被称为 k 进制字符串,当且仅当它的每个字符是 0 到 k-1 之间 (包括 0 和 k-1) 的整数。

字符串 Str1 被称为字符串 Str2 的前缀,当且仅当:存在 $1 \le t \le m$,使得 Str1 = Str2[1..t]。其中,m 是字符串 Str2 的长度,Str2[1..t] 表示 Str2 的前 t 个字符组成的字符串。

【输入格式】

从文件 epic.in 中读入数据。

输入文件的第 1 行包含 2 个正整数 n,k,中间用单个空格隔开,表示共有 n种单词,需要使用 k 进制字符串进行替换。

接下来n行,第i+1行包含1个非负整数 w_i ,表示第i种单词的出现次数。

【输出格式】

输出到文件 epic.out 中。

输出文件包括2行。

第1行输出1个整数,为《荷马史诗》经过重新编码以后的最短长度。

第 2 行输出 1 个整数,为保证最短总长度的情况下,最长字符串 s_i 的最短长度。

【样例输入1】

4 2

1

1

2

【样例输出 1】

12

2

【样例说明 1】

用 $X_{(k)}$ 表示X是以k进制表示的字符串。

一种最优方案: $00_{(2)}$ 替换第 1 种单词, $01_{(2)}$ 替换第 2 种单词, $10_{(2)}$ 替换第 3 种单词, $11_{(2)}$ 替换第 4 种单词。在这种方案下,编码以后的最短长度为:

$$1 \times 2 + 1 \times 2 + 2 \times 2 + 2 \times 2 = 12$$

最长字符串 s_i 的长度为 2 。

$$1 \times 3 + 1 \times 3 + 2 \times 2 + 2 \times 1 = 12$$

最长字符串 s_i 的长度为 3 。与最优方案相比,文章的长度相同,但是最长字符串的长度更长一些。

【样例输入2】

6 3

1

1

3

3

9

9

【样例输出2】

36

3

【样例说明2】

【样例输入输出3】

见选手目录下的 epic/epic.in 与 epic/epic.ans。

【数据规模与约定】

所有测试数据的范围和特点如下表所示

测试点编号	n 的规模	k 的规模	备注	约定
1	n = 3	k = 2		
2	n = 5	k = 2		
3	n = 16	k = 2	所有 w _i 均相等	
4	n = 1,000	k = 2	w_i 在取值范围内 均匀随机	
5	n = 1,000	k = 2		
6	n = 100,000	k = 2		
7	n = 100,000	k = 2	所有 w_i 均相等	
8	n = 100,000	k = 2		
9	n = 7	k = 3		
10	n = 16	k = 3	所有 w_i 均相等	
11	n = 1,001	k = 3	所有 w_i 均相等	$0 < w_i \le 10^{11}$
12	n = 99,999	k = 4	所有 w_i 均相等	
13	n = 100,000	k = 4		
14	n = 100,000	k = 4		
15	n = 1,000	k = 5		
16	n = 100,000	k = 7	w_i 在取值范围内 均匀随机	
17	n = 100,000	k = 7		
18	n = 100,000	k = 8	w _i 在取值范围内 均匀随机	
19	n = 100,000	k = 9		
20	n = 100,000	k = 9		

【提示】

选手请注意使用 64 位整数进行输入输出、存储和计算。

【评分方式】

对于每个测试点:

若输出文件的第1行正确,得到该测试点40%的分数; 若输出文件完全正确,得到该测试点100%的分数。

品酒大会

【问题描述】

一年一度的"幻影阁夏日品酒大会"隆重开幕了。大会包含品尝和趣味挑战两个环节,分别向优胜者颁发"首席品酒家"和"首席猎手"两个奖项,吸引了众多品酒师参加。

在大会的晚餐上,调酒师 Rainbow 调制了 n 杯鸡尾酒。这 n 杯鸡尾酒排成一行,其中第 i 杯酒 $(1 \le i \le n)$ 被贴上了一个标签 s_i ,每个标签都是 26 个小写英文字母之一。设 Str(l,r)表示第 l 杯酒到第 r 杯酒的 r-l+1 个标签顺次连接构成的字符串。若 Str(p,po)=Str(q,qo),其中 $1 \le p \le po \le n, 1 \le q \le qo \le n, p \ne q, po-p+1=qo-q+1=r$,则称第 p 杯酒与第 q 杯酒是"r 相似"的。当然两杯"r 相似"(r>1)的酒同时也是"1 相似"、"2 相似"、"2 相似"、"(r-1)相似"的。特别地,对于任意的 $1 \le p, q \le n$, $p \ne q$,第 p 杯酒和第 q 杯酒都是"0 相似"的。

在品尝环节上,品酒师 Freda 轻松地评定了每一杯酒的美味度,凭借其专业的水准和经验成功夺取了"首席品酒家"的称号,其中第i杯酒 $(1 \le i \le n)$ 的美味度为 a_i 。现在 Rainbow 公布了挑战环节的问题:本次大会调制的鸡尾酒有一个特点,如果把第p杯酒与第q杯酒调兑在一起,将得到一杯美味度为 a_pa_q 的酒。现在请各位品酒师分别对于 $r=0,1,2,\cdots,n-1$,统计出有多少种方法可以选出 2 杯"r相似"的酒,并回答选择 2 杯"r相似"的酒调兑可以得到的美味度的最大值。

【输入格式】

从文件 savour.in 中读入数据。

输入文件的第1行包含1个正整数n,表示鸡尾酒的杯数。

第 2 行包含一个长度为 n 的字符串 S,其中第 i 个字符表示第 i 杯酒的标签。第 3 行包含 n 个整数,相邻整数之间用单个空格隔开,其中第 i 个整数表示第 i 杯酒的美味度 a_i 。

【输出格式】

输出到文件 savour.out 中。

输出文件包括 n 行。第 i 行输出 2 个整数,中间用单个空格隔开。第 1 个整数表示选出两杯 " (i-1) 相似"的酒的方案数,第 2 个整数表示选出两杯 " (i-1) 相似"的酒调兑可以得到的最大美味度。若不存在两杯" (i-1) 相似"的酒,这两个数均为 0 。

【样例输入1】

10

ponoiiipoi

2 1 4 7 4 8 3 6 4 7

【样例输出1】

45 56

10 56

3 32

0 0

0 0

0 0

0 0

0 0

0 0

0 0

【样例说明 1】

用二元组 (p,q) 表示第 p 杯酒与第 q 杯酒。

0 相似: 所有 45 对二元组都是 0 相似的,美味度最大的是 $8 \times 7 = 56$ 。

1 相似: (1,8) (2,4) (2,9) (4,9) (5,6) (5,7) (5,10) (6,7) (6,10) (7,10) ,最大的 $8 \times 7 = 56$ 。

2相似: (1,8)(4,9)(5,6),最大的 $4 \times 8 = 32$ 。

没有 3,4,5,…,9 相似的两杯酒, 故均输出 0。

【样例输入2】

12

abaabaabaaba

1 -2 3 -4 5 -6 7 -8 9 -10 11 -12

【样例输出2】

66 120

34 120

15 55

12 40

9 27

7 16

5 7

3 - 4

2 -4

1 - 4

0 0

【样例输入输出3】

见选手目录下的 savour/savour.in 与 savour/savour.ans。

【数据规模与约定】

所有测试数据的范围和特点如下表所示

测试点编号	n 的规模	a _i 的规模	备注
1	n = 100		
2	n = 200	$ a_i \le 10,000$	
3	n = 500		
4	n = 750		
5	n = 1,000	$ a_i \le 1,000,000,000$	
6	n = 1,000		
7	n = 2,000		
8	n = 2,000		
9	00.001	la < 1 000 000 000	不
10	n = 99,991	$ a_i \le 1,000,000,000$	不存在"10相似"的酒
11	n = 100,000		
12	n = 200,000	la l < 1000 000	$ $ 所有 a_i 的值都相等
13	m — 200 000	$ a_i \le 1000,000$	別有 u_i 以但都相等
14	n = 300,000		
15	m — 100 000	$ a_i \le 1,000,000,000$	
16	n = 100,000		
17	200,000		
18	n = 200,000		
19	200,000		
20	n = 300,000		

小园丁与老司机

【问题描述】

小园丁Mr. S 负责看管一片田野,田野可以看作一个二维平面。田野上有 n 棵 许愿树,编号 1,2,3,…,n,每棵树可以看作平面上的一个点,其中第 i 棵树 $(1 \le i \le n)$ 位于坐标 (x_i, y_i) 。**任意两棵树的坐标均不相同。**

老司机 Mr. P 从原点 (0,0) 驾车出发,进行若干轮行动。每一轮, Mr. P 首先选择任意一个满足以下条件的方向:

- 1. 为左、右、上、左上 45°、右上 45° 五个方向之一。
- 2. 沿此方向前进可以到达一棵他尚未许愿过的树。

完成选择后,Mr. P 沿该方向直线前进,必须到达该方向上距离最近的尚未许愿的树,在树下许愿并继续下一轮行动。如果没有满足条件的方向可供选择,则停止行动。他会采取最优策略,在尽可能多的树下许愿。若最优策略不唯一,可以选择任意一种。

不幸的是,小园丁 Mr. S 发现由于田野土质松软,老司机 Mr. P 的小汽车在每轮行进过程中,都会在田野上留下一条车辙印,一条车辙印可看作以两棵树(或原点和一棵树)为端点的一条线段。

在 Mr. P 之后,还有很多许愿者计划驾车来田野许愿,这些许愿者都会像 Mr. P 一样任选一种最优策略行动。Mr. S 认为非左右方向(即上、左上 45°、右上 45° 三个方向)的车辙印很不美观,为了维护田野的形象,他打算租用一些轧路机,在这群许愿者到来之前夯实所有"可能留下非左右方向车辙印"的地面。"可能留下非左右方向车辙印"的地面应当是田野上的若干条线段,其中每条线段都包含在某一种最优策略的行进路线中。每台轧路机都采取满足以下三个条件的工作模式:

- 1. 从原点或任意一棵树出发。
- 2. 只能向上、左上 45°、右上 45° 三个方向之一移动,并且只能在树下改变方向或停止。
- 3. 只能经过"可能留下非左右方向车辙印"的地面,但是同一块地面可以 被多台轧路机经过。

现在 Mr. P和 Mr. S分别向你提出了一个问题:

- 1. 请给 Mr.P 指出任意一条最优路线。
- 2. 请告诉 Mr. S 最少需要租用多少台轧路机。

【输入格式】

从文件 farm.in 中读入数据。

输入文件的第1行包含1个正整数n,表示许愿树的数量。

接下来n行,第i+1行包含2个整数 x_i,y_i ,中间用单个空格隔开,表示第i 棵许愿树的坐标。

【输出格式】

输出到文件 farm.out 中。

输出文件包括3行。

输出文件的第 1 行输出 1 个整数 m ,表示 Mr. P 最多能在多少棵树下许愿。输出文件的第 2 行输出 m 个整数,相邻整数之间用单个空格隔开,表示 Mr. P 应该依次在哪些树下许愿。

输出文件的第3行输出1个整数,表示Mr.S最少需要租用多少台轧路机。

【样例输入1】

6

-1 1

1 1

-2 2

0 8

0 9

0 10

【样例输出 1】

3

2 1 3

3

【样例说明 1】

最优路线 2 条可许愿 3 次: $(0,0) \rightarrow (1,1) \rightarrow (-1,1) \rightarrow (-2,2)$ 或 $(0,0) \rightarrow (0,8) \rightarrow (0,9) \rightarrow (0,10)$ 。

至少 3 台轧路机,路线是 $(0,0) \rightarrow (1,1)$, $(-1,1) \rightarrow (-2,2)$ 和 $(0,0) \rightarrow (0,8) \rightarrow (0,9) \rightarrow (0,10)$ 。

【样例输入2】

4

0 1

-2 1

2 1

3 2

【样例输出2】

4

1 2 3 4

【样例说明2】

最优路线唯一: $(0,0) \rightarrow (0,1) \rightarrow (-2,1) \rightarrow (2,1) \rightarrow (3,2)$,可许愿 4 次。其中在 (0,1) 许愿后,从 (-2,1) 出发沿着向右的方向能够到达的最近的未许愿过的树是(2,1),所以可以到达 (2,1)。

而如果沿着 $(0,0) \rightarrow (0,1) \rightarrow (2,1) \rightarrow (-2,1)$ 的方向前进,此时 (-2,1) 右边所有树都是许愿过的,根据题目条件规定,停止前进。故无法获得最优解。

 $(0,0) \to (0,1)$ 与 $(2,1) \to (3,2)$ 会留下非左右方向车辙印,需 2 台轧路机。

【样例输入输出3】

见选手目录下的 farm/farm.in 与 farm/farm.ans。

【数据规模与约定】

所有测试数据的范围和特点如下表所示

测试点编号	n 的规模	x_i, y_i 的规模	备注
1	n = 5	$ x_i \le 100$	
2	n = 10	$0 < y_i \le 100$	
3	n = 100	$ x_i \le 10,000$	
4	n = 1,000	$0 < y_i \le 10,000$	
5	n = 5,000	lv l < 1 000 000	
6	n = 3,000	$ x_i \le 1,000,000$	保证最优路线唯一
7	n = 50,000	$0 < y_i \le 1,000,000$	
8	n = 5,000	$ x_i \le 1,000,000$	
9	n = 50,000	$0 < y_i \le 1,000,000$	保证 y_i 互不相同
10	n = 30,000	$0 < y_i \le 1,000,000$	
11	n = 5,000		保证对于任意整数Y,
12	n = 3,000	$ x_i \le 1,000,000$	满足 $y_i = Y$ 的树不超 过 1,000 棵
13	n = 50,000	$0 < y_i \le 1,000,000$	存在一种最优解,使得
14	n = 30,000		一路面
15	m — 10.000		
16	n = 10,000		 保证对于任意整数 Y ,
17	n = 30,000	$ x_i \le 1,000,000,000$	$K \cup N \setminus C \cup S \cup Y \cap C \cup S \cup Y \cap C \cup S \cup$
18	n = 30,000	$0 < y_i \le 1,000,000,000$	M
19	m — F0.000		人 1,000 1本
20	n = 50,000		

【评分方式】

对于每个测试点:

若输出文件的第1行正确,得到该测试点20%的分数;若输出文件的前两行正确,得到该测试点40%的分数;若输出文件完全正确,得到该测试点100%的分数。