Tencent 腾讯

超越自回归限制: 大模型倍速推理引擎TACO-LLM的设计与实践

腾讯云异构计算研发负责人 叶帆

目录

- 1 背景介绍
- 2 设计实现
- 3 性能分析
- 4 未来展望

1 背景介绍

大模型推理瓶颈

Causal Language Modeling

Auto-regressive decoding process -> 性能被内存带宽限制

10B模型 20GB IO 20B FLOP

*A100

显存带宽: 2039 GB/s

FP16算力: 312 TFLOPS

IO耗时: 10ms

计算耗时: 0.07ms

^{*} For technical discussion and reference only, performance will vary based on different hardware.

解决思路

降低model size

- Quantization
- Sparsity
- Distilling
- Tensor-decomposition

减少解码步数

- Block decoding
- Speculative decoding
- Medusa
- LLMA

Non auto-regressive Approach

- NAT
- Retentive Networks
- Layerwise iterative
- Parallel decoding

方案对比

方案	Training-Free	精度无损	Full FLOPS leverage	局限性
Quantization	depends	X	X	
Distilling	×	×	×	
Tensor-Decomposition	depends	X	X	
Block Decoding	×	~	×	
Speculative Decoding	depends		X	
Medusa	X		X	
LLMA			×	冷启动
Non Autoregressive Approach	×	×	*部分	缺乏通用性

TACO-LLM方案设计

1 50TA

- LLMA/Speculative Decoding
 - 优点:一次生成多个token,可以大大降低单请求的latency;
 - 不足:加速效果依赖token的命中率,存在冗余计算;对于draft model方案还有小模型耗时,小模型难获取等问题。
- PagedAttention
 - 优点:通过Page机制将不同序列的KV-cache统一管理,减少了显存占用,并支持continuous batching
 - 不足: 现有kernel实现绑定了GPU的shared memory、registers等资源,对于长序列请求,耗时显著增加,甚至出现资源溢出。
- FlashAttention/FlashDecoding
 - 优点:将不同序列分块计算,将序列的长度和片上资源的使用量解绑,可以实现不同的序列长度,只需要消耗片上固定资源,从而支持更长的序列长度;FlashDecoding在序列维上进一步划分,增加了并行度,实现更低的latency;
 - 不足:不同序列的KV-cache没有做有效的融合; FlashDecoding对batch-size较小时,有比较好的效果,在batch-size比较大时,效果会减弱;另外全局的reduce过程,需要新的kernel来完成,这也增加了额外的开销。

Our Contribution

Lookahead Cache

TurboAttention

2 设计实现

1 设计思路

- 面向通用性设计
- 提高性能的关键在于充分挖掘GPU冗余算力 (bottleneck在访存上)
- 途径是前向计算产生多个token, 在序列维增加并行度
- LLM模型由decoding process转变为validation process, validate提前获取的decoding candidate tokens
- 通过Lookahead Cache来获取decoding candidates

2 方案

整体方案分两大部分:

- 基于批处理的Lookahead Cache:
 - 一次预测批量请求;
 - 根据batch-size和各个请求的命中率,对copy len自适应惩罚;
 - 基于森林的多分支预测方法;
- TurboAttention:
 - 基于Paged Attention
 - 借鉴融合FlashAttention, 节省显存同时解耦片上资源;
 - Lookahead将向量和矩阵运算,转化为矩阵和矩阵的运算,有效 leverage GPU tensor-core加速;
 - 在Head维使用Double Buffer, 实现访存与计算overlap, 同时将片上资源与head-size大小解耦。

1 支持批处理的Lookahead Cache

- 一个batch内,每一个序列维护自己的一个local cache,共享全局一个global cache;
- 命中tokens会根据当前序列的命中率和整体的并发度来调整lookahead的长度,不同序列可以支持不同的lookahead长度;

1 Lookahead cache分词方法

• 传统方法

单分支结构,可以最大化lookahead命中长度,但是有一个大的问题,一旦有一个不命中,后面将都会被拒绝。

• 多种树结构分词方法 [森林分词法]

多分支结构(树):

- 有多种结果候选,提高迭代命中率;
- 树结构多样可以结合词法,语法,将对应的pattern做动态的更新拟合;
- 每一个请求按照各种树结构的权重采样,最终通过命中情况,来调整各种树结构的概率。
- 可以通过简易地随机森林来自学习这个过程,甚至可以在线学习(在CPU上进行);

1 Tree Causal Attention Mask

Z Turbo Attention

• 既要节省显存,又要节省片上资源 (SRAM和register); 在Decoder场景下, PagedAttention通 FlashAttention对一 过一个大的block表, 个固定的模型, 计 有效地将不同长度 算时用到的SRAM和 的序列batch化。相 register数目与序列 比之前简单padding 长度无关, 这样不 的batch方式, 这个 仅可以支持较长的 方式可以显著节省 softmax 序列,还可以在长 显存, 降低显存碎 序列时,保持较高 片。 的Occupancy。 Compute block Q 结合两者的长处得到 TurboAttention softmax

Compute block

Z Turbo Attention

• 原生支持Lookahead,将向量运算转化为矩阵运算,使 $T_n \approx T_1$;

优点:

- 可以自然地利用加速单元例如Tensor-core;
- 可以减少kv cache的访存次数;
- 达到 $T_n \approx T_1$ 的目的,使即使命中率即使为0,吞吐也不会明显下降。

Turbo Attention

- Head维上使用Double Buffer,使访存和计算overlap,同时使SRAM和register的使用量与head_size的大小解耦;
- 对不同的序列长度和head-size,一个warp读取固定大小的数据且保证大小是一个tensorcore MMA指令要求的整数倍,这样通过ILP可以使每一个线程对Gmem的请求次数降低为1。

总结

1 提高Lookahead Cache命中率,减少无效计算

- 通过森林分词,有效提高decoding candidate tokens的命中长度,从而减少无效计算
- 通过Tree Attention, 合并相同前序candidate tokens的计算, 减少重复计算
- 自适应candidate tokens长度,各序列按自身情况灵活调整(命中率、并发度、自适应惩罚),避免过载GPU冗余算力

2 提高算力天花板

- 序列维增加的并行度可有效leverage tensorcore,提高理论算力上限,并使得性能下限和 单token解码持平
- 将片上资源使用(SRAM、registers, etc.)和序列长度解耦,有效提升长序列性能
- 通过双buffer设计提高ILP, 有效隐藏IO开销

3 性能分析

1 Double buffer加速效果

• 在各种head size下,使用head维double buffer技术,耗时明显减小,最大加速1.77x。

2 加速上限分析

- Lookahead=7
 - batch-size=8时,加速上限为6.2x
 - batch-size=128时,加速上限为5.12x
- 大多投机采样的加速方法,只在低并发(batch-size=1)时,才有加速效果。
- TACO-LLM的方案,一直到batch-size=128时,都保持较高的加速潜力。以batch-size=128的加速上限为5.12x为例,假设lookahead=7时,平均只命中了3.5个token,那么将有2.88x的加速。

4 *命中率分析

- 并非所有的迭代都会触发cache, 所有迭代里只有60%的触发cache
- 预测tokens中,只有61%的命中率,全局命中长度最大为2.45,是最大预测长度的35%,远没有达到加速上限
- 当前工作采用森林分词改进线性预测的命中情况

Batch size	迭代命中率	全局命中长度	tokens命中率	加速倍数
128	0.5958	1.0796	0.5995	1.83x
64	0.6093	1.1304	0.6153	1.88x
32	0.5851	1.1294	0.5875	1.92x
16	0.5708	1.6543	0.5483	1.95x
8	0.556	2.4503	0.4495	2.48x
1	0.4929	1.9971	0.3828	2.46x

^{*} 这里展示的是传统线性预测结构的命中率

同batch size下, TACO-LLM

- 某LLM-6b-32k, 相比vLLM最大提升3.17x
- 某LLM-13b, 相比vLLM最大提升1.44x
- codellama-13b, 相比vLLM最大提升2.47x

TACO-LLM全面优于vLLM

^{*} For technical discussion and reference only, performance will vary based on different hardware.

5 实际业务效果

客户场景

• 模型

选用某LLM-72B模型,输入4K,输出1K,要求首字延迟2-3秒,全部请求5秒内完成。

- 业务
- 1) 人岗匹配业务。从一系列简历中,通过模型寻找合适的岗位候选人。
- 2) 在线客户业务。当前有一些复杂的交互业务, 机器人回答质量欠佳, 引入该大模型优化业务体验。

测试效果

在batch size为**1/4/8**的情况下,taco-llm对比vllm吞吐加速分别达到了**1.92/2.03/2.14**倍。

4 未来展望

Future Work

- 进一步优化Lookahead Cache构建及维护方式
- 进一步提高cache命中率,在控制candidate tokens数量的前提下,进一步提高平均匹配长度。
- Join us: alexfye@tencent.com

Thanks