Basic Set Theory

| Sets | Let X be a set. (
$$\mathbb{N} \subseteq \mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$
)
| N \Leftrightarrow | \{1.1+1.1+1+1...\} | Fails: ADD(N)(I), MULT(I)(0)(S) |
| N_0 $\Leftrightarrow \mathbb{N} \cup \{0\} |$ Fails: ADD(I), MULT(I)
| \(\mathbb{Z} \otimes \pi \in \mathbb{R} \) \(\times \mathbb{R} \) \(\mathbb{R} \)

(X,d) [Metric Space] Let X be a set and
$$d: X^2 \to \mathbb{R}_0^+$$
 be a metric then (X,d) is a metric space (pos) $(\forall x, y \in X) 0 \le d(x, y)$ $(\forall x, y \in X) d(x, y) = 0 \Leftrightarrow x = y$ (sym) $(\forall x, y \in X) d(x, y) = d(y, x)$

<u>Conjugate</u>: $(\forall z \in \mathbb{C})z = z_R + z_I i \Rightarrow \overline{z} = z_R - z_I i$ <u>Absolute</u>: $(\forall z \in \mathbb{C})|z| \Leftrightarrow \sqrt{z\overline{z}} = \sqrt{z_R^2 + z_I^2}$

(tri)
$$(\forall x, y, z \in X) d(x, z) \le d(x, y) + d(y, z)$$