Problem 1:

Find a representation for the linear functionals on ℓ^p , where ℓ^p consists of sequences $\langle x_n \rangle$ of real numbers such that

$$(\sum |x_n|^p)^{1/p} < \infty$$

Problem 2:

Let $f \in L^p$, and let $T_{\Delta}(f)$ denote the Δ -approximant of f. Prove that

$$||T_{\Delta}(f)||_p \le ||f||_p$$

Problem 3:

Prove that ℓ^p , $1 \leq p < \infty$, and L^{∞} are complete.

Problem 4:

Let ℓ^{∞} denote the set of all bounded sequences of real numbers. Set $\|(x_n)\|_{\infty} = \sup |x_n|$. Prove that this is a norm, and ℓ^{∞} is a Banach Space.

Problem 5:

Prove the Minkowski inequality for 0 .

Problem 6:

Young's inequality states that if $a,b \geq 0,$ 1 and <math>1/p + 1/q = 1, then

$$ab \le a^p/p + b^q/q$$

Prove the Holder inequality using this.

Problem 7:

I cannot pick up your dry cleaning.

I don't have a car, as I am too poor to afford one.