VARIABI	LI ALEATORIE
	VARIABILE ALEATORIA è una surviene X definite su S a valori reali
	X: S - IR ed ogni possibile risultator di un re ed ogni elemento dello sperio compone S, reale.
sllore = dice DIS	etoria può pendere valori distreti, CRETA. Ori in un interello in IR 2 dice CONTINUA.
ile sed of allestone distr	mione $f(Xi) = P(X = Xi)$ $i = 1, 2$ ni volore somunto delle voriolile ete X associa le conispondente poblibilità 1BUZIONE (BENSITA) DI PROBABILITA di X.
di une	nisle FUNZIONE DI RIPARTIZIONE (DISTRIBUZIONE) variabile aleatoria X la Junione () = P(X « X) X & IR
F: M	h (m - Co,13)

Propriete:
F(x) $\in \mathcal{L}_0, 13$
$\lim_{x \to -\infty} F(x) = 0$
$\lim_{X \to +\infty} F(x) = 1$
· F(x) non steverte
Per une variable discreta si ha le seguente relationse
tre surrione di distribucione e densité di pobolilité:
$F(x) = P(x \times x) = \sum_{xi}^{x} g(xi)$
In fénerale, nel coso di una variable alectorie disvote, une funcione f(x) è una distribuzione di pobabilità se:
une juntione &(x) è une distributione di pobabilité de:
1) &(xi) } 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2) \(\frac{5}{xi} \) \(\frac{8}{(\text{Xi})} = 1 \) NORMALIZEAZIONE

VARIABILI ALEATORIE CONTINUE

Delinition::

- X é une v. le. CONTINUA de può assumere un

insilne continuo di valori in M.

_ x é une v.e. continue se F(x) é (assolutemente) continue

- X é une v.e. continue re 3 f(x) ≥ 0 tele cle

 $P(X \in B) = \int_{B} g(x) dx$ \forall \forall B \cong \limits \limits \forall B

· P(e xxxb) = P(xt[e,b]) = (b g(x) dx

 $P(x = e) = \int_{e}^{e} g(x) dx = 0$

P(x,re) = 5 8(x) dx

P({x (se}) = P({x < e}) = e}) =

= P(x < e) + P(x = e) = P(x < e)

-> P(exxxb) = P(exxxb)

 $P(X (x) = F(x) = \int^{x} g(t) dt$

F(x) è une primitive di g(x),

tisé $\int_{e}^{g} g(x) dx = F(g) - F(g)$

In love a quette consideration:, à perupone de:
$ \delta(x) \ge 0 \qquad \forall x \in \mathbb{R}$
1) $\int_{-\infty}^{+\infty} \int_{0}^{+\infty} \int_{0}$
VARIABILI ALEATORIE VETTORIALI
Objinitione: France X e Y due vorialili aleatorie ele régnardano
Le sterre splimente casuale. Si die FUNZIONE DI RIPARTIZIONE CONGIUNTA $F(x,y)$ di $X \in Y$ $F(x,y) = P(X \land X, Y \land y)$
Definitione: 3. definible DENSITA CONGIUNTA (BISCRETA)
$Pis = P(xi, yi) = P(x = xi, y = yi) $ $\sum_{i \in Nonmallitt Atlant} $ $Nonmallitt Atlant$
Délinitione: 3: délinitione DENSITA MARGINALI (DISCRETE)
$P_{X,\bar{A}} = P(X = \bar{a}) = \sum_{\bar{i}} P(X = \bar{i}, Y = \bar{i}) = \sum_{\bar{i}} P_{\bar{i}}$
$P_{Y,\delta} = P(Y = \delta) = \sum_{i} P(X = i, Y = \delta) = \sum_{i} P_{i}\delta$

VARIABILI VETTORIALI CONTINUE

Définitione: Oue voriabili X e Y à dicons

CONGIUNTAMENTE CONTINUÉ De 38 = 11/2 - 1/2,

& > 0, tele rle VC < 1/h2

P(x, y & C) = S & (x, y) dx dy

con &(X,Y) DENSITA' CONGIUNTA.

• $\iint_{\mathbb{R}^2} g(x,y) dx dy = 1 \quad NORMALITEATIONE$

· F(e,b) = P(xxe, yxb) =

 $= \int_{-\infty}^{2} \int_{-\infty}^{2} f(x,y) dxdy \longrightarrow f(a,b) = \frac{\int_{-\infty}^{2} F}{\int a \int b}$

· Oate le densité consiunte g(x,Y), le DENSITA MARGINALI sons

 $&y(y) = \int_{-\infty}^{+\infty} & f(x,y) dx$

	PARIABILI ALEATORIE INDIPENDENTI
Definitione	: One variabili sleateril sono INDIPENSENTI Se \(\forall (A,B) \in \mathbb{R}^2\) \(P(\times A, \times B) = \(P(\times A) P(\times B),\)
toe	$\iint_{A\times B} g(x,y) dx dy = \iint_{A} g(x) dx \iint_{B} gy d(y)$
	$\mathcal{E}(x,y) = \mathcal{E}_{x}(x) \mathcal{E}_{y}(y)$
Consequence	: Se X e Y rono indipendenti, allere delle conorcerre delle morginali fx (x) e fy (y) posso risolire alla conquenta f(x,y) = fx(x) fy (y).
ge i 1000	insle X e y non sono indipendenti, allore non ilile risalire dalle morginali alla consiente.
	, dolla congiunta &xy (x, Y) possor SEMPRE riconare inal: &x (x) & &y (y)
	$\begin{cases} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
de conclu	CENPRE
	$\begin{array}{c} P_{XY}(\bar{\lambda}, \bar{\chi}) & \longrightarrow & (P_{X}(\bar{\lambda}), P_{Y}(\bar{\chi})) \\ (P_{X}, P_{Y}) & \longleftrightarrow & P_{XY} \\ P_{\bar{\lambda}\bar{\chi}} & = & P_{X,\bar{\lambda}} \cdot P_{Y,\bar{\lambda}} \end{array}$

VARIABILI DISCRETE Sano X e Y due voriabili slectorie distrete Definitione: 2- dice DENSITA DISCRETA CONDIZIONATA ol: X deto PXIY (X,Y) = P (X = X | Y = Y) P(X=X, Y=Y) Pxy (x, Y) Py(Y) P(Y=Y) VARIABILI CONTINUE Définitione: Sano X e 1 due variabili électorie continue Si définire gx14 (X)4) le DENSITA CONDIZIONATA di X deto Y= y in modo cle P(xeAlY=y) =) & &xiy (xiy) dx VAE 12 8xy (x,y) 8 X1 Y = 84(Y) Se X e Y sono indipendenti sapiano ele 8 x y (x, y) = 8x (x) 84 (y) 8X1Y 8x (x)