Utiliser le produit scalaire...

...POUR CALCULER UNE LONGUEUR

Le produit scalaire permet de retrouver la norme d'un vecteur, et donc la distance entre deux points.

Propriété Soit \vec{u} un vecteur. Le <u>carré</u> de la norme de \vec{u} est égal au produit scalaire de \vec{u} avec lui-même.

$$\|\vec{u}\|^2 = \vec{u} \cdot \vec{u}$$

Exemple 1: Déterminer la norme du vecteur $\vec{u} \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.

On calcule le produit scalaire de \vec{u} avec lui-même :

$$\vec{u} \cdot \vec{u} = (-1) \times (-1) + 5 \times 5 = (-1)^2 + 5^2 = 1 + 25 = 26$$

On a donc $\|\vec{u}\|^2 = 26$. On en déduit que $\|\vec{u}\| = \sqrt{26}$.

<u>Exemple 2</u>: Soient deux points A(4;5) et B(7;3). Déterminer la distance AB.

On commence par déterminer coordonnées du vecteur \overrightarrow{AB} .

$$\overrightarrow{AB} \begin{pmatrix} 7 - 4 \\ 3 - 5 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

On calcule ensuite le produit scalaire de \overrightarrow{AB} avec lui-même :

$$\overrightarrow{AB} \cdot \overrightarrow{AB} = 3 \times 3 + (-2) \times (-2) = 3^2 + (-2)^2 = 9 + 4 = 13$$

On a donc $AB^2 = 13$. On en déduit que $AB = \sqrt{13}$.

...POUR DÉTERMINER SI DEUX VECTEURS SONT ORTHOGONAUX

On rappelle que deux vecteurs sont dits orthogonaux lorsque leurs directions sont perpendiculaires, c'està-dire lorsqu'ils forment un angle droit.

Propriété Deux vecteurs \vec{u} et \vec{v} sont orthogonaux si et seulement si leur produit scalaire est nul.

$$\vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = \vec{0}$$

Si on connait les coordonnées de deux vecteurs, on peut alors calculer leur produit scalaire pour déterminer s'ils sont orthogonaux.

<u>Exemple 1</u>: Soient deux vecteurs $\vec{u}\binom{3}{5}$ et $\vec{v}\binom{-10}{6}$. Déterminer si \vec{u} et \vec{v} sont orthogonaux.

On calcule le produit scalaire de \vec{u} et \vec{v} :

$$\vec{u} \cdot \vec{v} = 3 \times (-10) + 5 \times 6 = -30 + 30 = 0$$

Puisque $\vec{u} \cdot \vec{v} = 0$, on en déduit que \vec{u} et \vec{v} sont orthogonaux.

<u>Exemple 2</u>: Soient trois points A(3;5), B(-1;2) et C(6;7). Déterminer si les droites (AB) et (AC) sont perpendiculaires.

Attention, on commence par déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} :

$$\overrightarrow{AB} \begin{pmatrix} -1-3 \\ 2-5 \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \end{pmatrix}$$
 et $\overrightarrow{AC} \begin{pmatrix} 6-3 \\ 7-5 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

On calcule ensuite le produit scalaire de \overrightarrow{AB} et \overrightarrow{AC} :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -4 \times 3 + (-3) \times 2 = -12 - 6 = -18$$

Puisque $\overrightarrow{AB} \cdot \overrightarrow{AC} \neq 0$, on en déduit que \overrightarrow{AB} et \overrightarrow{AC} ne sont pas orthogonaux et que les droites (AB) et (AC) ne sont pas perpendiculaires.

...POUR CALCULER LA MESURE D'UN ANGLE

On peut aller encore plus loin et déterminer la mesure de n'importe quel angle grâce au produit scalaire! Voyons la méthode sur un exemple.

 $\underline{\textit{Exemple}} : \textit{Soient deux vecteurs } \overrightarrow{u} \binom{-3}{3\sqrt{3}} \text{ et } \overrightarrow{v} \binom{0}{2}. \textit{ Déterminer une mesure de l'angle } (\overrightarrow{u}; \overrightarrow{v}).$

On calcule le produit scalaire de \vec{u} et \vec{v} :

$$\vec{u} \cdot \vec{v} = -3 \times 0 + 3\sqrt{2} \times 2 = 6\sqrt{3}$$

On calcule les normes de \vec{u} et \vec{v} :

$$\|\vec{u}\|^2 = (-3) \times (-3) + 3\sqrt{3} \times 3\sqrt{3} = (-3)^2 + (3\sqrt{3})^2 = 9 + 27 = 36$$
 $donc \ \|\vec{u}\| = \sqrt{36} = 6$ $\|\vec{v}\|^2 = 0 \times 0 + 2 \times 2 = 0^2 + 2^2 = 4$ $donc \ \|\vec{v}\| = \sqrt{4} = 2$

On exprime le produit scalaire avec la formule générale :

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v})$$

On remplace les termes par les valeurs obtenues précédemment :

$$6\sqrt{3} = 6 \times 2 \times \cos(\vec{u}; \vec{v})$$

On en déduit la valeur de $\cos(\vec{u}; \vec{v})$:

$$\cos(\vec{u}; \vec{v}) = \frac{6\sqrt{3}}{6\times 2} = \frac{\sqrt{3}}{2}$$

On peut donc conclure que la mesure en radian de l'angle $(\vec{u}; \vec{v})$ est $\frac{\pi}{6}$ ou $-\frac{\pi}{6}$.

LE THÉORÈME D'AL-KASHI

Le théorème d'Al-Kashi est une généralisation du théorème de Pythagore valable dans n'importe quel triangle! Plus besoin d'avoir un triangle rectangle!

Théorème Doit ABC un triangle quelconque. On a les trois l'égalité suivantes : $BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos(\widehat{A})$ $AC^2 = AB^2 + BC^2 - 2 \times AB \times BC \times \cos(\widehat{B})$ $AB^2 = AC^2 + BC^2 - 2 \times AC \times BC \times \cos(\widehat{C})$

On peut utiliser ce théorème pour calculer les longueurs d'un triangle ou pour déterminer la mesure d'un angle.

<u>Exemple</u>: Soit un triangle ABC tel que AB=6, AC=4 et BC=3. Déterminer la mesure de \widehat{A} .

Pour l'angle \widehat{A} , on utilise la première formule :

$$BC^{2} = AB^{2} + AC^{2} - 2 \times AB \times AC \times \cos(\widehat{A})$$

$$3^{2} = 6^{2} + 4^{2} - 2 \times 6 \times 4 \times \cos(\widehat{A})$$

$$9 = 36 + 16 - 48\cos(\widehat{A})$$

$$9 = 52 - 48\cos(\widehat{A})$$

$$48\cos(\widehat{A}) = 52 - 9$$

$$48\cos(\widehat{A}) = 43$$

$$\cos(\widehat{A}) = \frac{43}{48}$$

On a donc :

$$\widehat{A} = \arccos\left(\frac{43}{48}\right) \approx 26^{\circ}$$