Álgebra Lineal - Clase 8

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Espacios vectoriales de transformaciones lineales.
- Espacio dual de un K-espacio vectorial.
- Bases duales.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 3 (Sección 3.7) y Capítulo 4 (Secciones 4.1 y 4.2).

Espacios vectoriales de transformaciones lineales

Definición.

Sean V y W dos K-espacios vectoriales. Se define $\operatorname{Hom}_K(V,W)=\{f\colon V\to W\ /\ f \text{ es una transformación lineal}\}.$

► Suma.

Dadas
$$f,g \in \operatorname{Hom}_{K}(V,W)$$
 se define $f+g:V \to W$ como $(f+g)(x)=f(x)+g(x) \ \forall \ x \in V$. Observar que $f+g \in \operatorname{Hom}_{K}(V,W)$ \Rightarrow + es una operación en $\operatorname{Hom}_{K}(V,W)$.

Producto por escalares.

Dados
$$f \in \operatorname{Hom}_K(V, W)$$
 y $\lambda \in K$ se define $(\lambda \cdot f) : V \to W$ como $(\lambda \cdot f)(x) = \lambda \cdot f(x) \ \forall x \in V$. Observar que $\lambda \cdot f \in \operatorname{Hom}_K(V, W)$ $\Rightarrow \cdot$ es una acción de K en $\operatorname{Hom}_K(V, W)$,

 $(\operatorname{Hom}_K(V,W),+,\cdot)$ es un K-espacio vectorial.

Proposición.

Sean V y W dos K-e.v. con dim V=n y dim W=m. Sean B y B' bases de V y W respectivamente. La función $T: \operatorname{Hom}_K(V,W) \to K^{m\times n}, \ T(f) = |f|_{BB'}$ es un isomorfismo. En particular, $\dim(\operatorname{Hom}_K(V,W)) = mn$.

Demostración.

Sean $B = \{v_1, \dots, v_n\}$ y $B' = \{w_1, \dots, w_m\}$.

▶ T es una transformación lineal:

$$f,g \in \operatorname{\mathsf{Hom}}_{\mathsf{K}}(V,W) \Rightarrow T(f+g) = |f+g|_{BB'}.$$

$$orall 1 \leq j \leq \mathit{n}$$
, la j -ésima columna de $|f + g|_{\mathcal{BB}'}$ es

$$((f+g)(v_j))_{B'} = (f(v_j)+g(v_j))_{B'} = (f(v_j))_{B'} + (g(v_j))_{B'},$$

la suma de las j-ésimas columnas de $|f|_{BB'}$ y $|g|_{BB'}$.

$$\Rightarrow T(f+g) = |f+g|_{BB'} = |f|_{BB'} + |g|_{BB'} = T(f) + T(g).$$

En forma análoga se prueba que $T(\lambda \cdot f) = \lambda \cdot T(f)$.

- T es un isomorfismo:
 - T es monomorfismo:

 $\Rightarrow \operatorname{Im}(f) = \{0\} \Rightarrow f \equiv 0.$

- $f \in \operatorname{Hom}_{\kappa}(V, W), T(f) = 0 \Rightarrow |f|_{BB'} = 0.$
- T es epimorfismo:

Dada
$$A \in K^{m \times n}$$
, sea $f_A : V \to W$, $(f_A(x))_{R'} = (A.(x)_R^t)^t \ \forall x \in V$.

$$f_A: V \to W, (f_A(x))_{B'} = (A.(x)_B^t)^t \ \forall x \in V.$$

 $f_A \in \operatorname{Hom}_K(V, W) \ \forall T(f_A) = |f_A|_{BB'} = A.$

 $T: \operatorname{Hom}_K(V, W) \to K^{m \times n}$ isomorfismo

$$\Rightarrow \dim(\operatorname{Hom}_K(V,W)) = \dim(K^{m\times n}) = mn.$$

Espacio dual de un espacio vectorial

Definición.

Sea V un K-e.v. Se llama espacio dual de V, y se lo nota V^* , a $V^* = \operatorname{Hom}_K(V, K) = \{f \colon V \to K/f \text{ es transformación lineal}\}.$

Si $\dim(V) = n$, V^* es isomorfo a $K^{1 \times n}$ y $\dim(V^*) = n = \dim(V)$.

Ejemplo.

$$(\mathbb{R}^3)^* = \{f : \mathbb{R}^3 \to \mathbb{R} \mid f \text{ es transformación lineal}\}$$

= $\{f : \mathbb{R}^3 \to \mathbb{R} \mid f(x_1, x_2, x_3) = ax_1 + bx_2 + cx_3 \text{ con } a, b, c \in \mathbb{R}\}$

Para
$$i = 1, 2, 3$$
, sea $\delta_i : \mathbb{R}^3 \to \mathbb{R}$, $\delta_i(x_1, x_2, x_3) = x_i$.

$$(\mathbb{R}^3)^* = \{ f : \mathbb{R}^3 \to \mathbb{R} / f = a \delta_1 + b \delta_2 + c \delta_3 \text{ con } a, b, c \in \mathbb{R} \}$$
$$= \langle \delta_1, \delta_2, \delta_3 \rangle$$

Base dual

Proposición.

Sea V un K-e.v. de dimensión n y sea $B = \{v_1, \ldots, v_n\}$ una base de V. Existe una única base $B^* = \{\varphi_1, \ldots, \varphi_n\}$ de V^* , que

Illamaremos la base dual de
$$B$$
, tal que $\varphi_i(v_j) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$

Ejemplo.

$$V = \mathbb{R}^3$$
, $B = \{(1,0,0), (0,1,0), (0,0,1)\}$

$$\begin{array}{lll} \delta_1(1,0,0)=1 & \delta_2(1,0,0)=0 & \delta_3(1,0,0)=0 \\ \delta_1(0,1,0)=0 & \delta_2(0,1,0)=1 & \delta_3(0,1,0)=0 \\ \delta_1(0,0,1)=0 & \delta_2(0,0,1)=0 & \delta_3(0,0,1)=1 \\ \delta_1(x_1,x_2,x_3)=x_1 & \delta_2(x_1,x_2,x_3)=x_2 & \delta_3(x_1,x_2,x_3)=x_3 \end{array}$$

$$B^* = \{\delta_1, \delta_2, \delta_3\}$$
, donde $\delta_i(x_1, x_2, x_3) = x_i$ para $i = 1, 2, 3$.

Demostración.

Existencia. Para $1 \le i \le n$, sea $\varphi_i : V \to K$ la t.l. definida en la base $B = \{v_1, \dots, v_n\}$ por $\varphi_i(v_j) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \ne j \end{cases}$

Sea
$$B^* = \{\varphi_1, \dots, \varphi_n\} \subset V^*$$
.

Como $\dim(V^*) = n$, para probar que B^* es base de V^* , basta ver que es l.i.

Sean $a_1, \ldots, a_n \in K$ tales que $a_1 \varphi_1 + \cdots + a_n \varphi_n = 0$.

Evaluamos en v_i , para $i = 1, \ldots, n$:

$$a_i = a_1 \underbrace{\varphi_1(v_i)}_{=0} + \cdots + a_i \underbrace{\varphi_i(v_i)}_{=1} + \cdots + a_n \underbrace{\varphi_n(v_i)}_{=0} = 0$$

Unicidad. Si $\{\widetilde{\varphi}_1, \dots, \widetilde{\varphi}_n\}$ es otra base que satisface las condiciones, para cada $1 \le i \le n$:

- $\widetilde{\varphi}_i(v_i) = 0 = \varphi_i(v_i) \text{ si } 1 \leq j \leq n, j \neq i,$
- $\triangleright \widetilde{\varphi}_i(v_i) = 1 = \varphi_i(v_i).$
- $\Rightarrow \widetilde{\varphi}_i = \varphi_i$ (coinciden sobre una base).

Ejemplo.

 $V = \mathbb{R}^2$. $B = \{(1,1), (1,-1)\}$.

Si $B^* = \{\varphi_1, \varphi_2\} \subset (\mathbb{R}^2)^*$ es la base dual de B:

$$ho$$
 $\varphi_1(1,1) = 1$ y $\varphi_1(1,-1) = 0$

$$ho \varphi_2(1,1) = 0 \text{ y } \varphi_2(1,-1) = 1$$

$$(x,y) = \frac{x+y}{2} \cdot (1,1) + \frac{x-y}{2} \cdot (1,-1)$$

$$\varphi_1(x,y) = \frac{x+y}{2} \underbrace{\varphi_1(1,1)}_{2} + \frac{x-y}{2} \underbrace{\varphi_1(1,-1)}_{2} = \frac{x+y}{2}$$

$$\varphi_2(x,y) = \frac{x+y}{2} \underbrace{\varphi_2(1,1)}_{2} + \frac{x-y}{2} \underbrace{\varphi_2(1,-1)}_{2} = \frac{x-y}{2}$$

$$\Rightarrow \varphi_1(x,y) = \frac{x+y}{2}$$
 y $\varphi_2(x,y) = \frac{x-y}{2}$.

Coordenadas y bases duales

Observación.

Sea V un K-e.v. de dimensión n. Sean $B = \{v_1, \ldots, v_n\} \subset V$ una base y $B^* = \{\varphi_1, \ldots, \varphi_n\} \subset V^*$ su base dual.

▶ Para
$$v \in V$$
, $(v)_B = (\varphi_1(v), \dots, \varphi_n(v))$.

$$v = \sum_{i=1}^{n} \alpha_i v_i$$
, con $\alpha_i \in K$.

$$\Rightarrow \varphi_j(\mathbf{v}) = \varphi_j\Big(\sum_{i=1}^n \alpha_i \mathbf{v}_i\Big) = \sum_{i=1}^n \alpha_i \varphi_j(\mathbf{v}_i) = \alpha_j.$$

▶ Para
$$\varphi \in V^*$$
, $(\varphi)_{B^*} = (\varphi(v_1), \dots, \varphi(v_n))$.

$$\varphi = \sum_{i=1}^{n} \beta_i \varphi_i \text{ con } \beta_i \in K.$$

$$\Rightarrow \varphi(\mathbf{v}_j) = \Big(\sum_{i=1}^n \beta_i \varphi_i\Big)(\mathbf{v}_j) = \sum_{i=1}^n \beta_i \varphi_i(\mathbf{v}_j) = \beta_j.$$

Ejemplo.

 $V = \mathbb{R}^2$, $B = \{(1,1), (1,-1)\}$,

Las coordenadas de v = (-1,3) en la base B son $(v)_B = (\varphi_1(-1,3), \varphi_2(-1,3)) = (1,-2)$

 $(\varphi)_{B^*} = (\varphi(1,1), \varphi(1,-1)) = (2.8)$

Las coordenadas de $\varphi(x,y) = 5x - 3y$ en la base B^* son

Proposición.

Sea V un K-e.v. de dimensión n.

Si
$$B_1 = \{v_1, \dots, v_n\}$$
, $B_2 = \{w_1, \dots, w_n\}$ son bases de V y $B_1^* = \{\varphi_1, \dots, \varphi_n\}$, $B_2^* = \{\psi_1, \dots, \psi_n\}$ sus bases duales, entonces $C(B_1^*, B_2^*) = C(B_2, B_1)^t$.

Demostración.

$$C(B_1^*, B_2^*) = \left((\varphi_1)_{B_2^*}^t \cdots (\varphi_n)_{B_2^*}^t \right) = \begin{pmatrix} \varphi_1(w_1) & \cdots & \varphi_n(w_1) \\ \vdots & & \vdots \\ \varphi_1(w_n) & \cdots & \varphi_n(w_n) \end{pmatrix}$$

$$C(B_2, B_1) = \left((w_1)_{B_1}^t \cdots (w_n)_{B_1}^t \right) = \begin{pmatrix} \varphi_1(w_1) & \cdots & \varphi_1(w_n) \\ \vdots & & \vdots \\ \varphi_n(w_1) & \cdots & \varphi_n(w_n) \end{pmatrix}$$

$$\Rightarrow C(B_1^*, B_2^*) = C(B_2, B_1)^t.$$

Más sobre bases duales

Proposición.

Sea V un K-e.v. de dimensión n. Si $B_1 = \{\varphi_1, \ldots, \varphi_n\}$ es una base de V^* , existe una única base $B = \{v_1, \ldots, v_n\}$ de V que satisface $B^* = B_1$.

Demostración.

Existencia. Sean $B_2 = \{w_1, \dots, w_n\}$ base de V y B_2^* su base dual.

$$\mathsf{Sea}\ \mathit{M} = \left(\begin{array}{cccc} \varphi_1(w_1) & \varphi_1(w_2) & \cdots & \varphi_1(w_n) \\ \varphi_2(w_1) & \varphi_2(w_2) & \cdots & \varphi_2(w_n) \\ \vdots & \vdots & & \vdots \\ \varphi_n(w_1) & \varphi_n(w_2) & \cdots & \varphi_n(w_n) \end{array} \right).$$

[Observar: si B cumple $B^* = B_1$, entonces $M = C(B_2, B)$.]

$$\forall 1 \leq i \leq n$$
, $(\varphi_i)_{B_2^*} = (\varphi_i(w_1), \dots, \varphi_i(w_n))$ es la i -ésima fila de M . $\{\varphi_1, \dots, \varphi_n\} \subset V^*$ es l.i. $\Rightarrow \{(\varphi_1)_{B_2^*}, \dots, (\varphi_n)_{B_2^*}\} \subset K^n$ es l.i. $\Rightarrow M$ es inversible

Sea $M^{-1} = (a_{ij})_{1 \le i,j \le n}$.

[Observar: si $M = C(B_2, B)$, entonces $M^{-1} = C(B, B_2)$.]

Para cada $1 \le j \le n$, sea $v_j = \sum_{i=1}^n a_{kj} w_k$.

$$\varphi_{i}(v_{j}) = \varphi_{i}\left(\sum_{k=1}^{n} a_{kj}w_{k}\right) = \sum_{k=1}^{n} a_{kj}\varphi_{i}(w_{k}) = \sum_{k=1}^{n} \varphi_{i}(w_{k})a_{kj} = \sum_{k=1}^{n} M_{ik} \cdot (M^{-1})_{kj} = (M \cdot M^{-1})_{ij} = (I_{n})_{ij}.$$

$$\Rightarrow \varphi_i(v_j) = 1$$
 si $i = j$ y $\varphi_i(v_j) = 0$ si $i \neq j$.
 $\Rightarrow B = \{v_1, \dots, v_n\}$ es una base de V : basta ver que es l.i.

$$\sum_{j=1}^{n} \alpha_{j} v_{j} = 0 \Rightarrow 0 = \varphi_{i} \left(\sum_{j=1}^{n} \alpha_{j} v_{j} \right) = \sum_{j=1}^{n} \alpha_{j} \varphi_{i}(v_{j}) = \alpha_{i}, \ \forall i.$$

Unicidad. Si $B' = \{u_1, \ldots, u_n\}$ es otra base de V tal que $(B')^* = \{\varphi_1, \ldots, \varphi_n\}$, para $1 \le i \le n$,

$$(u_i)_B = (\varphi_1(u_i), \ldots, \varphi_n(u_i)) = e_i = (v_i)_B \Rightarrow u_i = v_i.$$

Ejemplo.

 $\{\varepsilon_0, \varepsilon_1, \varepsilon_2\}$ es una base de $(\mathbb{R}_2[X])^*$: como dim $((\mathbb{R}_2[X])^*) = 3$, basta ver que es l.i. Supongamos que $\alpha_0\varepsilon_0 + \alpha_1\varepsilon_1 + \alpha_2\varepsilon_2 = 0$.

 $\alpha_0 \varepsilon_0(P) + \alpha_1 \varepsilon_1(P) + \alpha_2 \varepsilon_2(P) = 0.$

 $orall P\in\mathbb{R}_2[X]$, $(lpha_0arepsilon_0+lpha_1arepsilon_1+lpha_2arepsilon_2)(P)=0$, o sea

$$P = (X-1)(X-2) \Rightarrow \alpha_0 = 0,$$

$$P = X(X-2) \Rightarrow \alpha_1 = 0$$

$$P = X(X-1) \Rightarrow \alpha_2 = 0.$$

$$V = \mathcal{N}(\mathcal{N} - 1) \Rightarrow \alpha_2 = 0$$

$$\Rightarrow \exists ! \text{ base } B = \{P_0, P_1, P_2\} \text{ de } \mathbb{R}_2[X] \text{ tal que } B^* = \{\varepsilon_0, \varepsilon_1, \varepsilon_2\}.$$

$$P_0(0) = 1$$
, $P_0(1) = 0$, $P_0(2) = 0$ y $gr(P_0) \le 2$

$$\Rightarrow P_0 = \frac{(X-1)(X-2)}{(-1)(-2)} = \frac{1}{2}(X-1)(X-2).$$

Análogamente:
$$P_1 = -X(X - 2)$$
 y $P_2 = \frac{1}{2}X(X - 1)$.