NORMALISASI DATA BASE - (1)

Normalisasi adalah suatu teknik untuk mengorganisasi data ke dalam tabel-tabel untuk memenuhi kebutuhan pemakai di dalam suatu organisasi.

Normalisasi dilakukan sebagai uji coba pada suatu relasi secara berkelanjutan untuk menentukan apakah relasi itu sudah baik. Dapat dilakukan melalui proses insert, update, delete dan modifikasi pada satu atau beberapa atribut tanpa mempengaruhi integritas dalam relasi tersebut.

Kapan di Perlukan Normalisasi?

Normalisasi di perlukan untuk database berskala besar.

Tujuan Normalisasi :

- 1. Untuk menghilangkan kerangkapan data (redudansi).
- 2. Untuk mengurangi kompleksitas (kerumitan).
- 3. Untuk mempermudah pemodifikasian data dan menghilangkan anomali data.

Keunggulan dari Normalisasi Database

- Memecah table (sangat) kompleks menjadi beberapa tabel. sederhana.
 Seperti Tabel Master (Data cenderung tetap), Tabel Transaksi (dinamik, berhubungan dengan tabel master).
- 2. Mudah diatur, dipleihara dan mempermudah proses pelaporan data.
- 3. Tabel (terutama Tabel Master) bisa digunakan berulang kali.
- 4. Ketika terjadi perubahan atas tabel master, maka tabel transaksi otomatis juga berubah menyesuaikan tabel master.

Kerugian dari Normalisasi

- 1. Meningkatkan jumlah dari penggabungan antar tabel (JOIN).
- 2. Menyebabkan query yang cukup rumit.

Cara Melakukan Normalisasi

- 1. Data diuraikan dalam bentuk tabel, selanjutnya dianalisis berdasarkan persyaratan tertentu kebeberapa tingkat.
- 2. Apabila tabel yang diuji belum memenuhi persyaratan tertentu maka tabel tersebut perlu dipecah menjadi beberapa tabel yang lebih sederhana sampai memenuhi bentuk yang optional.

Tahapan atau Bentuk-bentuk Normalisasi

Bentuk normal adalah keadaan relasi yang dihasilkan dengan menerapkan aturan sederhana berkaitan dengan konsep kebergantungan fungsional pada relasi yang bersangkutan.

Tahap-tahap normalisasi tersebut adalah:

(1) Bentuk Normal ke Satu (1NF)

Syarat:

- 1. Tidak ada set aribut yang berulang atau bernilai ganda, setiap atribut yang dimiliknya bersifat *atomic* (bernilai tunggal) untuk setiap baris.
- 2. Telah ditentukannya *primary key* untuk tabel atau relasi.
- 3. Tiap atribut hanya memiliki satu pengertian.
- 4. Tiap atribut yang dapat memiliki banyak nilai sebenarnya menggambarkan entitas atau relasi yang terpisah.

(2) Bentuk Normal ke Dua (2NF)

Syarat:

- 1. Bentuk data telah memenuhi kriteria bentork normal ke satu.
- 2. Atribut bukan kunci (non key atribut) haruslah memiliki ketergantungan fungsional sepenuhnya pada primary key.
- 3. Kunci primer hanya mengandung satu atribut.

(3) Bentuk Normal ke Tiga (3NF)

Syarat:

Bentuk data telah memenuhi kriteria ke dua.

Tidak boleh terdapat ketergantungan transitif terhadap kunci utama atau primary key.

(4) Boyce-Codd Normal Form (BCNF)

Syarat:

Semua anomali (kesalahan data) yang tersisa dari hasil penyempurnaan kebergantungan fungsional telah dihilangkan.

(5) Bentuk Normal ke Empat (4NF)

Syarat:

- 1. Bila dan hanya bila telah berada dalam bentuk BCNF dan tidak ada *multivalued dependency nontrivial.*
- 2. Multivalued Dependency Nontrivial (MVD) dipakai dalam 4NF.
- 3. Dependency ini dipakai untuk menyatakan hubungan satu (one to many).

(6) Bentuk Normal ke Lima (5NF)

Syarat:

Semua anomali (kesalahan data) yang tertinggal telah dihilangkan.

Dari beberapa tahap normalisasi diatas, Bentuk Normal Pertama (1NF) sampai Normal ke Tiga (3NF), merupakan bentuk normal yang umum dipakai. Umumnya bila ketiga bentuk normal tersebut telah dipenuhi, maka persoalan anomali tidak akan muncul.

Contoh Kasus Normalisasi.

Kasus 1: Entitas Mahasiswa Belum Ternormalisasi:

Tabel 1 : Entitas Mahasiswa

NIM	NAMA	Sem	MaKul	NIDN	Nama Dosen
201001	Andika Saputra	1	Algoritma	1078523	Riyanti Anjani
			Struktur Data	1078523	Riyanti Anjani
201002	Biyanti Anggie	3	Struktur Data	1078523	Riyanti Anjani
			Orkom	1078523	Riyanti Anjani
			Metnum	1075047	Susan Savitri
201003	Naura Putri	5	Web	1075047	Susan Savitri
			Jarkom	1077021	Erwin Masadi
			Metnum	1075047	Susan Savitri

Hasil 1: Entitas Mahasiswa 1NF

Tabel 2 : Entitas Mahasiswa 1NF (Telah Ternormalisasi Bentuk Pertama)

NIM	NAMA	Sem	MaKul	NIDN	Nama Dosen
201001	Andika Saputra	1	Algoritma	1078523	Riyanti Anjani
201001	Andika Saputra	1	Struktur Data	1078523	Riyanti Anjani
201002	Biyanti Anggie	3	Struktur Data	1078523	Riyanti Anjani
201002	Biyanti Anggie	3	Orkom	1078523	Riyanti Anjani
201002	Biyanti Anggie	3	Metnum	1075047	Susan Savitri
201003	Naura Putri	5	Web	1075047	Susan Savitri
201003	Naura Putri	5	Jarkom	1077021	Erwin Masadi
201003	Naura Putri	5	Metnum	1075047	Susan Savitri

Kasus 2: Entitas Dosen Belum Ternormalisasi

Tabel 3 : Entitas Dosen

NIDN	NAMA DOSEN	MaKul_1	MaKul_2	MaKul_3
1078523	Riyanti Anjani	Algoritma	Struktur Data	Orkom
1075047	Susan Savitri	Metnum	Web	-
1077021	Erwin Masadi	Jarkom	-	-

Hasil 2: Entitas Dosen 1NF

Tabel 4 : Entitas Dosen 1NF (Telah Ternormalisasi Bentuk Pertama)

NIDN	NAMA DOSEN	MaKul
1078523	Riyanti Anjani	Algoritma
1078523	Riyanti Anjani	Struktur Data
1078523	Riyanti Anjani	Orkom
1075023	Susan Savitri	Metnum
1075023	Susan Savitri	Web
1077021	Erwin Masadi	Jarkom

Kasus 3: Entitas Mahasiswa 1NF, Tidak Memenuhi 2NF

Tabel 2: Entitas Mahasiswa 1NF

NIM	NAMA	Sem	MaKul	NIDN	Nama Dosen
201001	Andika Saputra	1	Algoritma	1078523	Riyanti Anjani
201001	Andika Saputra	1	Struktur Data	1078523	Riyanti Anjani
201002	Biyanti Anggie	3	Struktur Data	1078523	Riyanti Anjani
201002	Biyanti Anggie	3	Orkom	1078523	Riyanti Anjani
201002	Biyanti Anggie	3	Metnum	1075047	Susan Savitri
201003	Naura Putri	5	Web	1075047	Susan Savitri
201003	Naura Putri	5	Jarkom	1077021	Erwin Masadi
201003	Naura Putri	5	Metnum	1075047	Susan Savitri

Proses menuju 2NF untuk Relasi Mahasiswa

Primary Key (PK): NIM

•Atribut yang bergantung dengan PK:

- Nama
- Semester

•Atribut yang tidak bergantung dengan PK:

- Makul
- NIDN
- NamaDosen

Untuk memenuhi 2NF, atribut yang tidak bergantung dengan primary key dipecah menjadi entitas baru, sehingga entitas mahasiswa dipecah menjadi 2 entitas, yaitu :

- Entitas Mahasiswa 2NF (Nim, Nama, Semester)
- Entitas Ambil_MK (Makul, Nidn, NamaDosen)

HASIL 3A: Entitas Mahasiswa 2NF

NIM	NAMA	Sem
201001	Andika Saputra	1
201001	Andika Saputra	1
201002	Biyanti Anggie	3
201002	Biyanti Anggie	3
201002	Biyanti Anggie	3
201003	Naura Putri	5
201003	Naura Putri	5
201003	Naura Putri	5

Terjadi kerangkapan data yang tidak diperlukan (redudansi), untuk itu data yang sama bisa dihilangkan.

Tabel 5: Entitas Mahasiswa 2NF (Telah Ternormalisasi Bentuk ke 2)

NIM	NAMA	Sem
2010001	Andika Saputra	1
2010002	Biyanti Anggie	3
2010003	Naura Putri	5

HASIL 3B: Entitas Ambil MK 2NF

NIM	MaKul	NIDN	Nama Dosen
201001	Algoritma	1078523	Riyanti Anjani
201001	Struktur Data	1078523	Riyanti Anjani
201002	Struktur Data	1078523	Riyanti Anjani
201002	Orkom	1078523	Riyanti Anjani
201002	Metnum	1075047	Susan Savitri
201003	Web	1075047	Susan Savitri
201003	Jarkom	1077021	Erwin Masadi
201003	Metnum	1075047	Susan Savitri

Catatan : Agar tidak terputus relasi antara **entitas mahasiswa** dan **entitas Ambil_MK**, maka perlu ditambahkan atribut penghubungnya, yaitu <u>NIM.</u>

Ketergantungan Transitif

Ketergantungan Transitif tidak memiliki ketergantungan secara langsung terhadap $primary\ key$.

Nim	Kd_Jur	Jurusan	Kd_MK
20100001	13	TIF	MK001
20100002	11	TPS	MK002
20100003	11	TPS	MK002

```
Ketergantungan transitif :
Nim à Kd_Jur (kd_jurusan bergantung pada Nim)
Kd_Jur à Jurusan (jurusan bergantung pada kd_jurusan) , MAKA
Nim à Jurusan (Jurusan bergantung transitif dengan Nim)
```

Tabel 6: Entitas Ambil_MK 2NF

NIM	MaKul	NIDN	Nama Dosen
201001	Algoritma	1078523	Riyanti Anjani
201001	Struktur Data	1078523	Riyanti Anjani
201002	Struktur Data	1078523	Riyanti Anjani
201002	Orkom	1078523	Riyanti Anjani
201002	Metnum	1075047	Susan Savitri
201003	Web	1075047	Susan Savitri
201003	Jarkom	1077021	Erwin Masadi
201003	Metnum	1075047	Susan Savitri

Proses menuju 3NF untuk Entitas Ambil_MK 2NF

- •Primary Key (PK) : NIDN
- •Atribut yang bergantung dengan PK :
- -Nama Dosen
- •Atribut yang bergantung transitif dengan PK:
- -NIM
- -Makul

Untuk memenuhi 2NF, Entitas Ambil_MK 2NF dipecah menjadi 2 Entitas, yaitu

- -Entitas Dosen 3NF (NIDN, Nama Dosen)
- -Entitas Ambil_MK 3NF (Nim, Makul)

HASIL 4A: Entitas Dosen 3NF

Tabel 7: Entitas Dosen 3NF (Telah Ternormalisasi Bentuk ke 3)

NIDN	Nama Dosen
1078523	Riyanti Anjani
1075047	Susan Savitri
1075047	Susan Savitri
1077021	Erwin Masadi

1075047	Susan Savitri

Menjadi:

NIDN	Nama Dosen
1078523	Riyanti Anjani
1075047	Susan Savitri
1077021	Erwin Masadi

Keterangan : Data yang sama pada tabel sebelah kiri di buang, sehingga akan menghasilkan tabel sebelah kanan

HASIL 4B : Entitas Ambil_MK memenuhi 3NF

NIM	Makul
201001	Algoritma
201001	Struktur Data
201002	Struktur Data
201002	Orkom
201002	Metnum
201003	Web
201003	Jarkom
201003	Metnum

Menjadi:

Tabel 8: Entitas Ambil_MK 3NF (Telah Ternormalisasi Bentuk ke 3)

NIM	Makul	NIDN
201001	Algoritma	1078523
201001	Struktur Data	1078523
201002	Struktur Data	1078523
201002	Orkom	1078523
201002	Metnum	1075047
201003	Web	1075047
201003	Jarkom	1077021
201003	Metnum	1075047

Catatan : Agar tidak terputus relasi antara $entitas \ dosen \ 3NF \ dan \ entitas \ Ambil_MK \ 3NF$, maka perlu ditambahkan atribut penghubungnya, yaitu \underline{NIDN}

Tambahan

Tabel 8: Entitas Makul 3NF (Telah Ternormalisasi Bentuk ke 3)

Kd-MK	MaKul
A	Algoritma
В	Struktur Data
В	Struktur Data
С	Orkom
D	Metnum
E	Web

F	Jarkom
D	Metnum

Menjadi:

Kd-MK	MaKul
A	Algoritma
В	Struktur Data
С	Orkom
D	Metnum
Е	Web
F	Jarkom

Keterangan : Data yang sama pada tabel sebelah kiri di buang, sehingga akan menghasilkan tabel sebelah kanan

0000000