

NHẬP MÔN TRÍ TUỆ NHÂN TẠO

ThS Nguyễn Thị Trang CNTT1

Học viện Công nghệ Bưu chính Viễn thông

Email: trangnguyen.hust117@gmail.com

Nhập môn trí tuệ nhân tạo

TÌM KIẾM CỤC BỘ (LOCAL SEARCH)

Nội dung

- □ Giới thiệu tìm kiếm cục bộ
- □ Thuật toán leo đồi (Hill climbing)
- □ Thuật toán tôi thép (Simulated Annealing)

Tìm kiếm cục bộ

- □ Các thuật toán tìm kiếm đã học (mù hoặc có thông tin) khảo sát không gian tìm kiếm một cách hệ thống theo một số quy tắc nhất định.
 - Cần lưu lại thông tin về trạng thái và đường đi đã khảo sát
 - Không thích hợp cho bài toán có không gian trạng thái lớn
- □ Tìm kiếm cục bộ tại một thời điểm chỉ xem xét trạng thái hiện thời và các trạng thái lân cận
 - Không lưu thông tin về trạng thái và đường đi đã khảo sát
 - Tiết kiệm thời gian và bộ nhớ
 - Có thể áp dụng cho các bài toán có không gian trạng thái lớn
 - Không cho lời giải tối ưu

Bài toán tối ưu hoá tổ hợp (rời rạc)

- □ Tìm trạng thái tối ưu hoặc tổ hợp tối ưu trong không gian rời rạc các trạng thái
 - Không quan tâm tới đường đi
- Không gian trạng thái rất lớn
 - Không thể sử dụng các phương pháp tìm kiếm đã học để duyệt tất cả các trạng thái
- □ Không tồn tại thuật toán cho phép tìm lời giải tốt nhất với độ phức tạp tính toán nhỏ
 - Có thể chấp nhận lời giải tương đối tốt
- □ Ví dụ: Bài toán lập kế hoạch, lập thời khoá biểu, ...

Tìm kiếm cục bộ: Tư tưởng

- □ Chỉ quan trọng trạng thái đích (trạng thái tốt nhất) không quan trọng đường đi
 - Mỗi trạng thái tương ứng với một lời giải (chưa tối ưu)
- □ Cải thiện dần (iterative improvement) lời giải bằng cách xuất phát từ một trạng thái, sau đó thay đổi để chuyển sang trạng thái có hàm mục tiêu tốt hơn.
- □ Thay đổi trạng thái bằng cách thực hiện các chuyển động
 - Trạng thái nhận được từ một trạng thái n bằng cách thực hiện các chuyển động gọi là hàng xóm n

Phát biểu bài toán tìm kiếm cục bộ

- Không gian trạng thái X
- □ Hàm mục tiêu Obj: X → R
- Tập chuyển động để sinh ra hàng xóm
 - N(x) là tập các hàng xóm của x
- Yêu cầu: Tìm trạng thái x* sao cho Obj(x*) là lớn nhất hoặc nhỏ nhất

Minh hoạ tìm kiếm cục bộ

Nội dung

- □ Giới thiệu tìm kiếm cục bộ
- □ Thuật toán leo đồi (Hill Climbing)
- □ Thuật toán tôi thép (Simulated Annealing)

Thuật toán leo đổi: Tư tưởng

- Leo đổi: Là tên chung của một họ thuật toán cùng nguyên lý
- □ Cách thức: Từ trạng thái hiện tại, xem xét tập hàng xóm, di chuyển sang trạng thái tốt hơn
 - Chọn hàng thái hàng xóm di chuyển như nào?
- □ Trạng thái đích: Thuật toán dừng lại khi không có trạng thái hàng xóm nào tốt hơn
 - Thuật toán có thể tìm được cực trị hoặc cực trị địa phương

Di chuyển sang trạng thái tốt nhất

- □ Đầu vào: Bài toán tối ưu tổ hợp
- □ Đầu ra: Trạng thái với hàm mục tiêu lớn nhất (hoặc cực đại địa phương)
 - 1. Chọn ngẫu nhiên trạng thái x
 - 2. Gọi Y là tập các trạng thái hàng xóm của x
 - 3. If $\forall y_i \in Y : Obj(y_i) < Obj(x) : return x$
 - 4. $x \leftarrow y_i \text{ trong } \text{d\'o } i = argmax_i(Obj(y_i))$
 - 5. Go to 2

Ví dụ leo đồi

Tính chất thuật toán leo đổi

- □ Đơn giản, dễ lập trình
- □ Không tốn bộ nhớ (Không phải ghi nhớ các trạng thái)
- □ Dễ bị lời giải tối ưu cục bộ (cực trị địa phương)

Tính chất thuật toán leo đồi (2)

- □ Việc lựa chọn chuyển động rất quan trọng, không có quy tắc chung
 - Nếu có quá nhiều chuyển động
 - □ Sinh ra quá nhiều hàng xóm
 - □ Mất nhiều thời gian lựa chọn phương án tốt nhất
 - Nếu quá ít chuyển động
 - Rất dễ bị cực trị địa phương.

Leo đổi ngẫu nhiên: Tư tưởng

- □ Là một phiên bản khác của thuật toán leo đồi
- □ Lựa chọn ngẫu nhiên một trạng thái hàng xóm
 - Chuyển sang trạng thái hàng xóm nếu trạng thái này tốt hơn
 - Nếu không, chọn ngẫu nhiên một hàng xóm khác
- □ Kết thúc khi nào hết kiên nhẫn
 - Số hàng xóm mà thuật toán xem xét trong mỗi bước lặp hoặc trong toàn bộ thuật toán.

Thuật toán leo đổi ngẫu nhiên

- 1. Chọn ngẫu nhiên trạng thái x
- 2. Gọi Y là tập các trạng thái hàng xóm của x
- 3. Chọn ngẫu nhiên $y_i \in Y$
- 4. If $Obj(y_i) > Obj(x): x \leftarrow y_i$
- 5. Go to 2 nếu chưa hết kiên nhẫn.

Vấn đề: Chọn tiêu chuẩn kết thúc như nào?

Một số tính chất

- □ Trường hợp mỗi trạng thái có nhiều láng giềng
 - Leo đồi ngẫu nhiên thường cho kết quả nhanh hơn, và ít gặp cực trị địa phương hơn
- Với những không gian trạng thái có ít cực trị địa phương
 - Các thuật toán leo đổi thường tìm được lời giải khá nhanh
- □ Với những không gian phức tạp
 - Các thuật toán leo đổi thường chỉ tìm được cực trị địa phương
 - Bằng cách thực hiện nhiều lần với trạng thái xuất phát ngẫu nhiên, leo đồi thường tìm đc cực trị địa phương khá tốt.

Nội dung

- □ Giới thiệu tìm kiếm cục bộ
- □ Thuật toán leo đồi (Hill Climbing)
- □ Thuật toán tôi thép (Simulated Annealing)

Thuật toán tôi thép: Tư tưởng

- □ Là phiên bản khái quát hoá của leo đồi ngẫu nhiên
- Mục tiêu: Giải quyết phần nào vấn đề cực trị địa phương trong các thuật toán leo đồi
- Nguyên tắc chung: Chấp nhận những trạng thái kém hơn trạng thái hiện thời với một xác suất p
- □ → Chọn xác suất p như nào?

Lựa chọn p

- Nguyên tắc: Không chọn p cố định, giá trị p phụ thuộc hai yếu tố
 - Nếu trạng thái mới kém hơn nhiều so với trạng thái hiện thời, thì p phải giảm đi
 - □ Xác suất chấp nhận trạng thái tỉ lệ nghịch với độ kém của trạng thái
 - Theo thời gian, giá trị của p phải giảm dần
 - Khi mới bắt đầu, thuật toán chưa ở vùng trạng tốt, do vậy chấp nhận thay đổi lớn
 - □ Theo thời gian, thuật toán chuyển sang vùng trạng thái tốt, do vậy cần hạn chế thế thay đổi.

Thuật toán tôi thép

SA(X, Obj, N, m, x, C)

2. giảm T theo sơ đồ C

Đầu vào: số bước lặp m

```
trạng thái bắt đầu x (chọn ngẫu nhiên) sơ đồ làm lạnh C

Đầu ra: trạng thái tốt nhất x^* (cực đại hàm mục tiêu)

Khởi tạo:x^* = x

for i = 1 to m

1. chọn ngẫu nhiên y \in N(x)

a) tính \Delta(x,y) = Obj(x) - Obj(y)

b) if \Delta(x,y) < 0 then p = 1

c) else p = e^{-\Delta(x,y)/T}

d) if rand[0,1] < p then x \leftarrow y

if Obj(x) > Obj(x^*) then x^* \leftarrow x
```

return x^*

Sơ đồ làm lạnh C

- $\square T_i = T_0 * \alpha^{t*k}$
 - $T_0 > 0$,
 - $\alpha \in (0,1),$
 - \blacksquare 1 \leq t \leq m,
 - 1 < *k* < *m*
- □ Ý nghĩa:
 - t càng tăng T càng nhỏ, p càng nhỏ
 - T lớn: Chấp nhận bất cứ trạng thái nào
 - □ Chuyển động ngẫu nhiên (random walk)
 - T nhỏ: Không chấp nhận trạng thái kém
 - □ Leo đồi ngẫu nhiên

Tính chất thuật toán tôi thép

- □ Không có cơ sở lý thuyết rõ ràng
- □ Thường cho kết qủa tốt hơn leo đồi
 - It bị cực trị địa phương
- □ Việc lựa chọn tham số phụ thuộc vào bài toán cụ thể