Работа 3.4.1

Диа- и парамагнетики

Цель работы: измерение магнитной восприимчивости диа- и парамагнитного образцов.

Оборудование: электромагнит, аналитические весы, милливеберметр, амперметр постоянного тока.

1. Теоретическая справка

Выражение для силы. Mагнитной восприимчивостью тела χ называется коэффициент пропорциональности между намагниченностью M и напряженностью магнитного поля H. Она может быть определена методом измерения сил, которые действуют на тело в магнитном поле. Мы будем пользоваться M методом Γ M0, в котором образец имеет форму стержня, а магнитное поле постоянно. Из энергетических соображений несложно получить выражение для силы F0, действующей на объект в магнитном поле индукцией B1.

$$F = -\frac{\chi}{2\mu\mu_0}B^2s,\tag{1}$$

где s - площадь поперечного сечения, μ_0 — магнитная проницаемость. Таким образом, парамагнетики ($\chi > 1$) будут втягиваться в поле, а диамагнетики ($\chi < 1$) - выталкиваться из него.

2. Калибровка

Экспериментальная установка. Схема установки изображена на рисунке 1. Магнитное поле индукцией B создается с помощью электромагнита, питаемого постоянным током силой I. Т.к. зависимость B(I) изначально неизвестна, было необходимо построить калибровочную кривую B(I) и проводить дальнейшие измерения при тех же самых токах. Ток измеряется амперметром, индукция поля — милливеберметром. Измеряется поток Φ_1 внутри электромагнита и Φ_0 вдали от него, после этого получаем индукцию поля по формуле

 $B = \frac{\Phi_1 - \Phi_0}{NS},\tag{2}$

установки

Рис. 1: Схема

где N - число витков катушки милливеберметра, S - площадь поперечного сечения. В этом эксперименте

$$NS = 72 \text{ cm}^2. \tag{3}$$

Обработка результатов. Результаты измерений и пересчитанные значения занесены в таблицу 1. Погрешности Φ_1 и Φ_0 приняты

$$\Delta \Phi = 0.05 \text{ MB6.} \tag{4}$$

Отсюда, в силу (2) находится погрешность $B - \Delta B$:

$$\Delta B = \sqrt{2} \frac{\Delta \Phi}{NS} \approx 0.01 \text{ Tm.} \tag{5}$$

I, A	0,40	0,80	1,20	1,60	2,00	2,40	2,00	3,16
Φ_1 , мВб	2,7	3,3	4,1	4,8	5,5	6,1	6,7	7,0
Φ_0 , мВб	1,6	1,4	1,2	1,0	0,9	0,6	0,5	0,2
B, Тл	0,14	0,24	0,37	0,49	0,59	0,71	0,80	0,87

Таблица 1: Измерения I(B)

График B(I) представлен на рис. 2. Вообще говоря, в силу закона Био-Савара-Лапласа, зависимость должна быть прямой пропорциональностью. Но, как мы видим, при токах наблюдаются отклонение, поэтому было использовано следующее фитирование:

$$I = \alpha B + \beta B^2 \tag{6}$$

Как мы видим, эта зависимость хорошо ложится на экспериментальные данные, для нее $\chi^2 \approx 2$ (здесь χ — **не** магнитная восприимчивость, а статистический коэффициент).

3. Измерение магнитных восприимчивостей

Экспериментальная установка. Здесь используется та же установка, что и в предыдущей. На аналитических весах измеряется разность масс, и, таким образом, определяется вес.

Рис. 2: График зависимости B(I)

$$|P| = |m - m_0|g, \tag{7}$$

где m — показания весов, m_0 — показания при отсутствии магнитного поля. Измерения проводятся при тех же токах, что были в части 2.

$m_{ m a,r}$, г	0,5	3,7	7,5	16,4	24,5	33,7	43,4	50,8
$ P _{\mathrm{ал}}$, мН	0,025	0,056	0,093	0,181	0,260	0,350	0,445	0,518
$m_{\scriptscriptstyle m M},{ m M}$ г	4,3	3,9	1,5	-2,3	-6,5	-10,9	-15,2	-19,7
$ P _{\scriptscriptstyle{\mathrm{M}}}$, MH	0,022	0,026	0,049	0,086	0,128	0,171	0,213	0,257
$m_{ m rp},$ мг	-5,9	-13,9	-29,2	-49	-69,8	-97,7	-119,6	-147,4
$ P _{rp}$, MH	0,034	0,113	0,263	0,458	0,662	0,936	1,151	1,424
$B^2, \mathrm{T}\pi^2$	0,020	0,059	0,138	0,237	0,348	0,497	0,642	0,760
$\Delta B^2, \mathrm{Tr}^2$	0,004	0,006	0,010	0,012	0,015	0,018	0,021	0,022

Таблица 2: Измерения |P|(B)

Обработка результатов. Данные эксперимента с пересчитанными значениями занесены в таблицу 2. Значком «ал» обозначаются соответствующие данные для алюминиевого стержня, «м» — медного, «гр» — графитового. Как мы видим, алюминий — парамагнегник, медь и

	алюминий	медь	графит
m_0 , мг	-2,0	-6,5	-2,4
d, mm	10,00	10,00	6,70

Таблица 3: Параметры стержней

графи — диамагнетики. Параметры стержней занесены в таблицу 3 (d - диаметр образца). Погрешность m и m_0 считалась равной

$$\Delta m = 0, 1 \text{ MC}. \tag{8}$$

Таким образом, в силу (7), погрешность $|P| - \Delta |P|$, можно найти по формуле

$$\Delta|P| = \sqrt{2}\Delta mg \approx 0,002 \text{ MH}. \tag{9}$$

Погрешность B^2 (обозначена ΔB^2) вычислялась по формуле

$$\Delta B^2 = 2\Delta BB. \tag{10}$$

На рис. 3 приведен график зависимости |P|(B), в легенде указана принадлежность данных тому или иному образцу. Данные были профитированы зависимостью вида

$$|P| = \alpha B^2. \tag{11}$$

Как мы видим, данные хорошо ложатся на эти зависимости, хотя для меди и алюминия статистические коэффициенты $\chi^2 \sim$ 20. По формулам (1) и (3) магнитная восприимчивость определяется по формуле

$$|\chi| = \frac{2\alpha\mu_0\mu}{s} \approx \frac{8\alpha\mu_0}{\pi d^2},\tag{12}$$

здесь мы приняли, что $\mu \approx 1$. Погрешность χ , обозначаемая $\Delta \chi$, измеряется по формуле

$$\Delta \chi = \frac{\Delta \alpha}{\alpha} \chi,\tag{13}$$

где $\Delta \alpha$ — погрешность α . Полученные данные занесены в таблицу 4.

Рис. 3: График зависимости $|P|(B^2)$

	алюминий	медь	графит
α , м $H/T\pi^2$	0,71	0,35	1,87
$\Delta \alpha, H/T\pi^2$	0,01	0,01	0,03
$\chi \cdot 10^{-3}$, mm	0,0227	-0,011	-0,133
$\Delta \chi \cdot 10^{-3}$, mm	0,0003	0,0003	0,0021

Таблица 4: Магнитные проницаемости стержней

Табличные значения:

$$\chi_{\text{ал}} = 2,22 \cdot 10^{-5} \chi_{\text{M}} = -1,03 \cdot 10^{-5}, \tag{14}$$

что хорошо совпадает с полученными значениями.

4. Заключение

Все цели работы достигнуты, магнитные восприимчивости образцов были определены с достаточно высокой точностью (совпали с табличными).