武汉大学 2020-2021 学年第二学期期末考试

线性代数B(A卷答题卡)

								考	生	学	: 号	•				
				0	0	0	0	0	0	0	0	0	0	0	0	0
姓名			班级	1	1	1	1	1	1	1	1	1	1	1	1	1
				2	2	2	2	2	2	2	2	2	2	2	2	2
				3	3	3	3	3	3	3	3	3	3	3	3	3
			1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	4	4	4	4	4	4	4	4	4	4	4	4	4
			考号信息点。	5	5	5	5	5	5	5	5	5	5	5	5	5
填	正确填涂		2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔	6	6	6	6	6	6	6	6	6	6	6	6	6
涂样例		事	作解答题:字体工整、笔迹清楚。	7	7	7	7	7	7	7	7	7	7	7	7	7
	错误填涂		3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	8	8	8	8	8	8	8	8	8	8	8	8	8
	√ ×		项 写的答题无效;在草稿纸、试题卷上答题无效。	9	9	9	9	9	9	9	9	9	9	9	9	9
			4.保持卡面清洁,不要折叠、不要弄破。			缺	考上	真沒	余:							

请将选择题、填空题的答案填于此:

一、单项选择题:

- (1) _____ (2) ____ (3) ____ (4) ____
- (1) _____ (2) ____ (3) ____ (4) ____

符号说明: det(A) 指方阵 A 的行列式; A^* 指方阵 A 的伴随矩阵; A^T 指矩阵 A 的转置矩阵; R(A) 指矩阵 A 的 秩; E 为单位矩阵。

- **-、单项选择题**(每小题 3 分, 共 12 分)
- (1) 设n阶方阵 A, B满足关系式 AB = O,且 $B \neq O$,则必有_____.
 - (A) $\boldsymbol{A} = \boldsymbol{O}$:
- (B) $| B | \neq 0 ;$
- (C) $(A + B)^2 = A^2 + B^2$; (D) |A| = 0.

- (A) -1; (B) 0; (C) 1;
- (3) 已知 α_1 , α_2 , α_3 是非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的 3 个不同的解,则下列向量

$$\alpha_1-\alpha_2 \text{ , } \quad \alpha_1+\alpha_2-2\alpha_3 \text{ , } \quad \frac{2}{3}(\alpha_1-\alpha_2) \text{ , } \quad \alpha_1-3\alpha_2+2\alpha_3$$

中是导出组 Ax = 0 的解的向量共有

- (A) 4 个 (B) 3 个 (C) 2 个 (D) 1 个

(4) 设
$$\mathbf{A} = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 6 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
,则_____

- (A) A 与 B 是相似的且是合同的
- (B) A 与 B 是相似的但不是合同的
- (C) $\mathbf{A} \rightarrow \mathbf{B}$ 不是相似的但是合同的 (D) $\mathbf{A} \rightarrow \mathbf{B}$ 不是相似的也不是合同的

二、填空题(每小题 3 分, 共 12 分)

- (1) 设 \mathbf{A} 是m 阶方阵, \mathbf{B} 是n 阶方阵,且 $|\mathbf{A}| = a$, $|\mathbf{B}| = b$, $\mathbf{C} = \begin{bmatrix} \mathbf{O} & \mathbf{A} \\ \mathbf{B} & \mathbf{O} \end{bmatrix}$, 则 $|\mathbf{C}| = \underline{\qquad}$.
- (2) 已知某齐次线性方程组的通解为 $k_1(0,1,1,0)^{\mathrm{T}} + k_2(-1,2,2,1)^{\mathrm{T}}$,如果此通解也是线性方程组 $\begin{cases} x_1 + x_2 = 0 \\ x_2 x_4 = 0 \end{cases}$ 的解,

则常数 k_1, k_2 必满足_____.

(3) 若
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & c+2 & 0 \\ 1 & 0 & c-5 \end{pmatrix}$$
是正定矩阵,则 c 的取值范围为_____.

(4) 设(I): α_1 , α_2 , α_3 ; (II): β_1 , β_2 , β_3 是向量空间 \mathbb{R}^3 中的两组基,且

$$\beta_1=\alpha_1-\alpha_2,\ \beta_2=\alpha_1+\alpha_2+\alpha_3,\ \beta_3=\alpha_1+2\alpha_2+3\alpha_3\,,$$

则由基(I)到基(II)的过渡矩阵S =________, $\xi = 5\beta_1 - 4\beta_2 + 2\beta_3$ 在基(I)下的坐标为______

$$\Xi \text{、} (12\, \text{分}) \ \text{计算} \, n \, \text{阶行列式} \, D_n = \begin{vmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 2 & \cdots & 2 \\ 1 & 2 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 2 \\ 1 & 2 & \cdots & 2 & 0 \end{vmatrix} \text{ 的值,这里} \, n \geq 3 \, .$$

四、 $(12 eta)$ 已知矩阵方程 $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 2 \\ 1 & -1 & 0 \end{pmatrix}$ $\boldsymbol{X} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$, 求矩阵 \boldsymbol{X} .	五、 $(12 eta)$ 设非齐次线性方程组 $\begin{cases} -x_1-2x_2+ax_3=1 \\ x_1+x_2+2x_3=b \end{cases}$,试问:当 a,b 满足什么条件时,方程组有(1) $\{4x_1+5x_2+10x_3=2 \}$ 无解; (3) 有无穷多解?在有无穷多解时,求出对应的齐次线性方程组的基础解系以及该非齐次方程组的	
	无解;(3)有无力多解: 任有无力多解时, 水山对应的介依线压力径组的基础解系以及以中介依为径组的	地畔•

武汉大学 2020-2021 学年第二学期期末考试

线性代数B(A卷答题卡)

			考 生 学 号														
					0	0	0	0	0	0	0	0	0	0	0	0	0
		姓名		班级	1	1	1	1	1	1	1	1	1	1	1	1	1
					2	2	2	2	2	2	2	2	2	2	2	2	2
ŀ			1		3	3	3	3	3	3	3	3	3	3	3	3	3
岩柱				1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	4	4	4	4	4	4	4	4	4	4	4	4	4
	1-		l	考号信息点。	5	5	5	5	5	5	5	5	5	5	5	5	5
	填	正确填涂		2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔	6	6	6	6	6	6	6	6	6	6	6	6	6
	涂		l	作解答题:字体工整、笔迹清楚。	7	7	7	7	7	7	7	7	7	7	7	7	7
	样	错误填涂		3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	8	8	8	8	8	8	8	8	8	8	8	8	8
	例	√ ×	项	写的答题无效;在草稿纸、试题卷上答题无效。	9	9	9	9	9	9	9	9	9	9	9	9	9
				4.保持卡面清洁,不要折叠、不要弄破。			紻	老	真沒	全•		Г					
Ĺ							Щ	· • •	ブル	11							

、(12 分) 已 知 向 量 组 $\alpha_1 = (1,2,-3)^{\mathrm{T}}, \alpha_2 = (3,0,1)^{\mathrm{T}}, \alpha_3 = (9,6,-7)^{\mathrm{T}}$ 与 向 量 组 $\beta_1 = (0,1,-1)^{\mathrm{T}}$, $\beta_2 = (a,2,1)^{\mathrm{T}}, \beta_3 = (b,1,0)^{\mathrm{T}}$ 具有相同的秩,且 β_3 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,求 a,b 的值.

七、(12分)设齐次线性方程组

$$\begin{cases} 2x_1 + ax_2 + x_3 = 0, \\ (a+2)x_1 - 2x_2 + 2x_3 = 0, \\ 4x_1 + (a-1)x_2 + 2x_3 = 0 \end{cases}$$

有非零解,且 3 阶矩阵 \mathbf{A} 的三个特征值为-4, 2, 2 ,对应的特征向量分别有

$$\boldsymbol{x}_1 = \begin{pmatrix} 1 \\ 2a \\ 3 \end{pmatrix}, \ \ \boldsymbol{x}_2 = \begin{pmatrix} a-1 \\ a+2 \\ a+1 \end{pmatrix}, \ \ \boldsymbol{x}_3 = \begin{pmatrix} a+2 \\ a+1 \\ 1 \end{pmatrix}.$$

试确定参数a,并求矩阵A.

八、证明(16 分,每小题 8 分): (1) 沿 4 为 2 吟 古 陈 ,	(2) 假设 \mathbf{A} , \mathbf{B} 都是 n 阶实对称矩阵,并且 \mathbf{A} 的特征值均大于 a , \mathbf{B} 的特征值均大于 b ,证明: $\mathbf{A} + \mathbf{B}$ 的特征值大于 $a + b$.
(1) 设 ${m A}$ 为 3 阶方阵,试证:若 3 维非零向量 $\alpha_1,\alpha_2,\alpha_3$ 满足 ${m A}\alpha_1={m 0}$, ${m A}\alpha_2=\alpha_1$, ${m A}^2\alpha_3=\alpha_1$,则 $\alpha_1,\alpha_2,\alpha_3$ 线性无关.	
	4