

# CHEMISTRY Chapter 14



ESTADO GASEOSO





### **HELICOMOTIVATION**





# ESTADO GASEOSO

- Estado de agregación molecular de la materia.
- Es un fluido, ocupa totalmente e recipiente que lo contiene.
- Las moléculas en su interior están en constante movimiento
- Manifiesta repulsión intermolecular.
- > Presenta volumen y forma variable.



### PROPIEDADES GENERALES DE LOS GASES

# Expansibilidad

El gas ocupa el mayor espacio posible debido a la alta energía que poseen las moléculas.



## Compresibilidad

El volumen de un gas disminuye al reducir las distancias intermoleculares por aumento de la presión externa.





#### **DIFUSIBILIDAD**

Es el desplazamiento de las moléculas gaseosas a través de algún medio gaseoso o líquido, debido a la alta energía cinética de las moléculas.





#### **EFUSIBILIDAD**

Proceso mediante el cual un gas bajo presión se escapa de un compartimiento a otro atravesando por un pequeño orificio.





### VARIABLES DEL ESTADO GASEOSO



# CONDICIÓN NORMAL

Presión = 1 atm

 $T = 0 \,^{\circ}C = 273 \,^{\circ}K$ 

1 Mol C. N. 22,4L Volumen

## **ECUACIÓN UNIVERSAL DE LOS GASES IDEALES**



### Donde:

n: número de moles

P: presión absoluta

V: volumen

T: temperatura absoluta

D: densidad(g/L)

m: masa(g)

N°: partículas

 $N_A$ :número de Avogadro

### Valores de la constante universal (R)

 $R = 0.082 \text{ atm} \cdot L/(\text{mol} \cdot K) \text{ (Si P : atm)}$ 

 $R = 62,4 \text{ mmHg} \cdot L/(\text{mol} \cdot K) \text{ (Si P : mmHg)}$ 

 $R = 8,3 \text{ kPa} \cdot L/(\text{mol} \cdot K) \text{ (Si P : kilopascal)}$ 

¿Qué volumen presentan 4 moles de gas a 127 °C y 4,1 atm de presión?

 $(R = 0.082 atm \cdot L/mol \cdot K)$ 

### Resolución

**V=?** 

- n= 4 moles
- P=4,1 atm
- T=127+273=400K

Ecuación universal de los gases ideales

$$PV = RTn$$

(P: atm)

$$4.1xV = 0.082x400x4$$

$$\frac{1}{10} xV = \frac{2}{1000} x400 x4$$

$$V = 2x4x4$$

$$V = 32$$

V = 32L

# ¿Cuántos moles contiene una muestra de 800 L de un gas a 127 °C y 0,082 atm de presión? (R = 0,082 atm · L/mol · K)

### Resolución

Ecuación universal de los gases ideales

$$PV = RTn$$

$$0.082x800 = 0.082x400xn$$

$$\frac{1}{1000} \times 800 = \frac{1}{1000} \times 400 \times n$$

$$n = 8/4$$

$$n = 2$$

n = 2 moles

Determine el volumen que ocuparían 4 moles de un gas a 27 °C y 124,8 mmHg de presión.

 $(R = 62,4 \text{ mm Hg} \cdot \text{L/mol} \cdot \text{K})$ 

### Resolución

- V=?
- n= 4moles
- P=124,8mmHg
- T=27+273=300K

Ecuación universal de los gases ideales

$$PV = RTn$$

(P:mmHg) 
$$124.8xV = 62.4x300x4$$

$$\frac{1248}{10} \text{xV} = \frac{624}{10} \text{x} = \frac{2}{10}$$

$$V = 300x2$$

$$V = 600$$

$$V = 600L$$

Tres moles de gas a 127 °C ocupan un volumen de 624 litros. Determine la presión en mmHg. (R = 62,4 mm Hg  $\cdot$  L/mol  $\cdot$  K)

### Resolución

• P=?

• n= 3moles

- V=624 L
- T=127+273=400 K

Ecuación universal de los gases ideales

$$PV = RTn$$

(P:mmHg)

$$Px624 = 62.4x400x3$$

$$Px624 = \frac{624}{10}x400x3$$

$$P = 40x3$$

$$P = 120$$

P = 120mmHg

¿Cuántos gramos de gas metano (CH<sub>4</sub>) se encuentran a la presión de 16,4 atm y a la temperatura de 127 °C, ocupando un volumen de 8 litros? Datos: ( $\overline{M}_{CH_4}$ = 16), (R = 0,082 atm · L/mol · K)

### Resolución

- m=?
- V=8 L
- P=16,4 atm
- T=127+273=400 K

Ecuación universal de los gases ideales

$$PV = RT \frac{m}{\overline{M}}$$
(P:atm)  $16,4x8 = 0,082x400x \frac{m}{16}$ 

$$\frac{2}{164}x8 = \frac{82}{1000}x400x \frac{m}{16}$$

$$m = 2x8x4$$

$$m = 64$$

m = 64g

El nitrógeno es un gas inodoro, incoloro y no sustenta la vida; sin embargo, es importante para el crecimiento de las plantas y es un aditivo clave en los fertilizantes. Sus usos van más allá del ámbito de la jardinería. Una muestra de este gas se encuentra a 0,82 atm de presión y 7 °C, determine su densidad en g/L. Datos: PA (N = 14), R = 0,082 atm·L/mol·K)

### Resolución

• D=?

• P=0.82 atm

• T=7+273=280K

Ecuación universal de los gases ideales

$$P\overline{M} = RTD$$

(P:mmHg)

$$0.82x28 = 0.082x280xD$$

$$\frac{82}{100} \times 28 = \frac{1}{1000} \times 280 \times 10$$

$$D = 1$$

D = 1g/L

# El estado gaseoso suele presentar las siguientes características:

- Apenas existe cohesión entre las moléculas.
- Las fuerzas de atracción son muy pequeñas entre las moléculas.
- No tienen una forma fija definida.
- Su volumen es variable.
- Son expansibles y compresibles.
- Poseen una densidad muy baja.
- Las moléculas se mueven a alta velocidad de manera libre y desordenada.
- Al aumentar la temperatura las partículas se mueven más deprisa por lo que además se aumentará la presión.



# Acerca de las funciones del estado gaseoso, ¿qué proposiciones son correctas?

- I. La temperatura absoluta del gas es proporcional a su energía cinética promedio.
- II. El volumen del gas está definido por la capacidad del recipiente que lo contiene.
- III. Si los valores de presión, volumen y temperatura son conocidos entonces se determinan un estado termodinámico del gas.

### Resolución

I. La temperatura absoluta del gas es proporcional a su energía cinética promedio.



II. El volumen del gas está definido por la capacidad del recipiente que lo contiene.



III. Si los valores de presión, volumen y temperatura son conocidos entonces se determinan un estado termodinámico del gas.

La temperatura está relacionada con la velocidad de las moléculas y a su vez con la energía cinética.

### II. <u>verdadero</u>

I. <u>verdadero</u>

Está determinado por el volumen del recipiente que lo contiene

### III. verdadero

El comportamiento de un gas ideal esta determinado por los parámetros de estado termodinámico donde describen las características del los gases.