Exercises in Experimental Physics 4

Seminar 2 submission deadline: 21.04.20

- 1. The total energy E of a relativistic particle with the rest mass m_0 is $E = mc^2$ ($m = m_0/\sqrt{(1 (v/c)^2)}$). Its kinetic energy is $K = E E_0$, where E_0 is the energy at rest ($E_0 = m_0c^2$). Find K for v << c. (2p)
- 2. Find the number of electrons emitted per second from an electrode due to the photoeffect if the saturation current I is 10^{-10} A. (1p)
- 3. Find the maximal wavelength so that the photoeffect can be observed for silver with the work function A=4.28 eV. (1p)
- 4. A photon with the wavelength λ scatters off a free electron and deviates by an angle θ . Find the energy E'_e and the momentum p'_e of the electron. Evaluate these quantities if $\lambda = 0.02$ nm and $\theta = 90^{\circ}$. (2p)
- 5. By using the drawing in Figure 1 find the angle φ in the preceding task. (2p)

Figure 1: A photon scattered off an electron.