1 2 3	What	is claimed is:
4	1.	A method of fabrication of a capacitor comprising the steps of:
5		a) providing a semiconductor structure having a first region and a capacitor
6		region;
7		b) forming a first conductive layer over said semiconductor structure;
8		c) patterning said first conductive layer to form a plurality of trenches in said
9		capacitor region;
10		d) forming a capacitor dielectric layer over said first conductive layer;
11		e) forming a top plate over said capacitor dielectric layer in the capacitor region
12		f) patterning said first conductive layer in said first region to form first
13		conductive patterns and a bottom plate;
14		g) forming an interlevel dielectric layer over said first conductive layer.
15		
16	2.	The method of claim 1 which further includes forming interconnects to
17	ele	ectrically contact said top plate, said bottom plate and said first conductive patterns.
18	3.	The method of claim 1 which further includes:
19		said first conductive pattern comprise a n-1 level wiring layer;
20		forming via contacts in said interlevel dielectric layer to contact said
21	to	plate, said bottom plate and said first conductive patterns;
22		forming a second conductive line contacting said via contacts.

l	4. The method of claim I which further includes.		
2	forming via contacts in said interlevel dielectric layer to contact said		
3	top plate, said bottom plate and said first conductive patterns;		
4	forming second conductive layer contacting said via contacts; said		
5	second conductive layer is a n level metal layer; said first conductive patterns comprise a		
6	n-l level metal layer.		
7	5. The method of claim 1 wherein said first conductive layer is comprised of Al, Ti,		
8	Ta, Cu and alloys of Al, Ti, Ta, or Cu; and has a thickness in the range of between		
9	3000 and 10,000 Å.		
10	6. The method of claim 1 wherein said plurality of trenches formed in a pattern of		
11	rows and columns.		
12	7. The method of claim 1 wherein said trenches extend down into the conductive layer		
13	between 24 % and 84 % of the thickness of said first conductive layer.		
14	8. The method of claim 1 wherein step (c) further comprises:		
15	forming a trench resist layer over said first conductive layer; said		
16	trench resist layer has openings that define areas where trenches will be formed in first		
17	conductive layer in said capacitor area;		
18	patterning said first conductive layer to form a plurality of trenches in		
19	said capacitor region;		
20	removing said trench resist layer.		

CS02-090

1	9. The method of claim 1 wherein said capacitor dielectric layer has a thickness		
2	between 100 and 1000 Å and is comprised of a material selected from the group		
3	consisting of silicon oxide, silicon nitride, silicon oxide-nitride, and tantalum oxide.		
4	10. The method of claim 1 wherein said top plate is formed by forming a top plate		
5	layer over said capacitor dielectric layer; and masking and patterning said top plate		
6	layer.		
7	11. The method of claim 1 wherein step (f) further comprises: forming a bottom metal		
8	resist mask over the first conductive layer; the bottom metal resist mask has openings		
9	that define the interconnect lines;		
10	patterning said first conductive layer in said first region to form first		
11	conductive patterns and a bottom plate;		
12	removing said bottom metal resist mask.		
13			
14	12. The method of claim 1 wherein said interlevel dielectric layer is comprised of oxide		
15	formed using a high density plasma enhanced chemical vapor silicon oxide deposition		
16	combined with plasma enhanced tetraethyl orthosilicate; and interlevel dielectric layer		
17	is preferably planarized using a chemical-mechanical polish process.		

CS02-090

1		
2	13. A	method of fabrication of a capacitor comprising the steps of:
3	a)	providing a semiconductor structure having a first region and a capacitor
4		region;
5	b)	forming a first conductive layer over said semiconductor structure;
6	c)	forming a trench resist layer over said first conductive layer; said trench
7		resist layer has openings that define areas where trenches will be formed in
8		first conductive layer in said capacitor area; then
9	d)	patterning said first conductive layer to form a plurality of trenches in said
10		capacitor region; then
11		(1) said trenches extend down into the conductive layer between 24 %
12		and 84 % of the thickness of said first conductive layer;
13	e)	removing said trench resist layer; then
14	f)	forming a capacitor dielectric layer over said first conductive layer; then
15	g	forming a top plate over said capacitor dielectric layer in the capacitor region;
16		said top plate is formed by forming a top plate layer over said capacitor
17		dielectric layer; and masking and patterning said top plate layer; then
18	h	patterning said first conductive layer in said first region to form first
19		conductive patterns and a bottom plate; said first conductive patterns comprise
20		a n-l level metal layer;

1	i)	forming an interlevel dielectric layer over said first conductive layer and said			
2		top plate;			
3	j)	forming via contacts in said interlevel dielectric layer to contact said top			
4		plate, said bottom plate and said first conductive patterns;			
5	k)	forming second conductive layer contacting said via contacts; said second			
6		conductive layer is a n level metal layer.			
7					
8	14. Th	e method of claim 13 wherein said first conductive layer is comprised of Al, Ti			
9	Ta, Cu	and alloys of Al, Ti, Ta, or Cu; and has a thickness in the range of between			
10	3000 and 10,000 Å.				
11	15. Th	e method of claim 13 wherein said plurality of trenches formed in a pattern of			
12	rows and columns.				
13	16. Th	e method of claim 13 wherein said top plate is formed by forming a top plate			
14	layer over said capacitor dielectric layer; and masking and patterning said top plate				
15	layer.				
16	17. TI	ne method of claim 13 wherein step (h) further comprises: forming a bottom			
17	metal resist mask over the first conductive layer; the bottom metal resist mask has				
18	openings that define the interconnect lines;				
19		patterning said first conductive layer in said first region to form first			
20	conductive patterns and a bottom plate;				
21		removing said bottom metal resist mask.			