Regresión Lineal

Aprenentatge Automàtic

APA/GEI/FIB/UPC - 2025/2026 1Q

⊚(•)(©) / Javier Béjar

- Hay dos tareas en aprendizaje supervisado: Regresión y Clasificación
- En regresión, la salida de cada ejemplo es un valor continuo, por lo que queremos un predictor definido como:

$$f(x): \mathbb{R}^D \to \mathbb{R}$$

- Nada prohíbe que la salida sea multidimensional, pero solo trabajaremos con el caso unidimensional
- \odot Generalmente supondremos que aprendemos de una muestra $X=\{x_1,\ldots,x_N\}$ de ejemplos iid con observaciones ruidosas $y_n=f(x_n)+\epsilon$ donde ϵ también es iid y modela la fuente de incertidumbre no observada

Regresión lineal

- Un Modelo Lineal será una función que es lineal en sus parámetros, no aparecen como exponentes, ni multiplicados/divididos por otros parámetros
- Eso no significa que sean funciones lineales, podemos combinar transformaciones no lineales de las características de entrada
- O Por ejemplo, la regresión lineal se define como:

$$f(x) = w_0 + \sum_{d=1}^{D} w_d x_d$$

si consideramos un atributo adicional x_0 con valor constante 1, podemos expresar la función en notación vectorial como $f(x) = w^{\top}x$

- Podemos definir el problema de regresión lineal usando un enfoque probabilístico modelando el ruido como una distribución de probabilidad
- \odot Consideraremos $\epsilon \sim \mathcal{N}(0, \sigma^2)$ iid con σ^2 conocida (homocedástica)
- o Para el caso de regresión lineal nuestro modelo es:

$$p(y|x, w) = \mathcal{N}(y|w^{\top}x, \sigma^2)$$

- Observad que la media de la distribución depende de una función lineal de los datos
- Una predicción será una distribución de probabilidad donde obtendremos una estimación puntual como salida (la media)

 \odot Podemos calcular las estimaciones de máxima verosimilitud de los parámetros usando la función de verosimilitud dado un conjunto de datos $(\mathcal{X}, \mathcal{Y})$

$$p(\mathcal{Y}|\mathcal{X}, w) = \prod_{n=1}^{N} p(y_n|x_n, w) = \prod_{n=1}^{N} \mathcal{N}(y_n|w^{\top}x_n, \sigma^2)$$

Minimizamos la log-verosimilitud negativa

$$-\log p(Y|X, w) = -\log \prod_{n=1}^{N} p(y_n|x_n, w) = -\sum_{n=1}^{N} \log p(y_n|x_n, w)$$

Esto dará como resultado el método de mínimos cuadrados

Dado que asumimos una distribución gaussiana, obtenemos¹

$$\mathcal{L}(w) = \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y_n - w^{\top} x_n)^2 + constante$$
$$= \frac{1}{2\sigma^2} (y - Xw)^{\top} (y - Xw) = \frac{1}{2\sigma^2} ||y - Xw||_2^2$$

- ⊚ Donde definimos X, la matriz de diseño, como $X = [x_1, x_2, \dots, x_N]^\top \in \mathbb{R}^{N \times D}$, y y es el vector de respuesta
- o Podemos definir la función de error para optimizar como

$$E(w) = \frac{1}{2}||y - Xw||_2^2$$

¹Ver diapositiva 59 del primer tema del curso

- En este caso, la fórmula del error para encontrar un mínimo es una función cuadrática con respecto a los parámetros, por lo que podemos encontrar analíticamente un mínimo tomando derivadas e igualando a 0 (no hay que optimizar)
- Si el tamaño del problema es muy grande el coste computacional de obtener la solución exacta puede ser prohibitivo
- En ese caso se utilizan métodos de descenso de gradiente estocástico
- La solución no es exacta, pero es escalable

 \odot Derivada respecto a los parámetros w

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial}{\partial w} \left(\frac{1}{2\sigma^2} (y - Xw)^\top (y - Xw) \right)$$
$$= \frac{1}{2\sigma^2} \frac{\partial}{\partial w} \left(y^\top y - 2y^\top Xw + w^\top X^\top Xw) \right)$$
$$= \frac{1}{\sigma^2} \left(-y^\top X + w^\top X^\top X \right)$$

Igualando la derivada a 0

$$w^{\top}X^{\top}X = y^{\top}X \Leftrightarrow w^{\top} = y^{\top}X(X^{\top}X)^{-1} \Leftrightarrow w = (X^{\top}X)^{-1}X^{\top}y$$

 \odot El segundo paso asume que el rango de $X^{\top}X$ es D y, por lo tanto, es simétrica y definida positiva (y no es singular y tiene inversa)

- © Resolver este problema requiere resolver un sistema de ecuaciones lineales (las ecuaciones normales) Aw = b con $A = X^{T}X$ y $b = X^{T}y$
- \odot Si es cierto que $X^{ op}X$ tiene rango D, entonces $(X^{ op}X)^{-1}X^{ op}$ es la matriz pseudoinversa X^+ o matriz de Moore-Penrose y $w=X^+y$
- \odot Problema: El coste de calcular la pseudoinversa es $O(N^3)$ e incluso si no es singular, puede causar problemas numéricos si está mal condicionada (cerca de ser singular)
- Para evitar estos problemas, estas ecuaciones se resuelven usando
 Descomposición en Valores Singulares (SVD)

 \odot Cualquier matriz $A \in \mathbb{R}^{m \times n}$ con m > n se puede expresar como:

$$A = U\Lambda V^{\top}$$

dónde

- o $U \in \mathbb{R}^{m \times m}$ y $V \in \mathbb{R}^{n \times n}$ son matrices ortonormales con columnas de norma unitaria, por lo tanto $U^{\top}U = I$ y $V^{\top}V = I$ (U son los vectores propios AA^{\top} , V son los vectores propios de $A^{\top}A$)
- o $\Lambda \in \mathbb{R}^{m \times n}$ es una matriz diagonal rectangular donde λ_i son los valores singulares (valores propios), si el rango de A es r entonces hay r valores singulares y el resto son 0

 \odot Los parámetros w para mínimos cuadrados se pueden calcular usando SVD como:

$$w_i = V diag\left(\frac{1}{\lambda_i}\right)_+ U^\top y$$

donde U, V y Λ se calculan a partir de la SVD de X y

$$\left(\frac{1}{\lambda_i}\right)_+ = \max(0, \frac{1}{\lambda_i})$$

Este notebook muestra el cálculo de la regresión lineal usando la pseudoinversa y SVD

También podéis ver un video explicando el contenido del cuaderno

- o La regresión lineal con los atributos de entrada solo puede ajustarse a líneas rectas
- Podemos calcular vectores de características a partir de los atributos de entrada aplicando diferentes funciones
- o Podemos usar transformaciones no lineales para obtener funciones no lineales
- El modelo es lineal dado que todavía es lineal en los parámetros
- Generalizamos el modelo como:

$$y = f(x) = w^{\mathsf{T}} \phi(x) + \epsilon = \sum_{k=0}^{K} w_k \phi_k(x) + \epsilon$$

 \odot ϕ se denominan funciones base

 Como hicimos antes, podemos calcular el estimador de máxima verosimilitud suponiendo ruido gaussiano

$$p(y|x, w) = \mathcal{N}(y|w^{\top}\phi(x), \sigma^2)$$

donde $\phi: \mathbb{R}^D \to \mathbb{R}^K$ es una transformación no lineal de las entradas x

- © Ahora los elementos de la matriz de diseño están compuestos por el resultado de esta transformación, que llamamos matriz de características $\Phi \in \mathbb{R}^{N \times K}$, donde $\Phi_{ij} = \phi_j(x_i)$
- o El estimador de máxima verosimilitud corresponde a:

$$w_{ML} = (\Phi^{\top} \Phi)^{-1} \Phi^{\top} y$$

Regularización

- o Como comentamos, el estimador de ML puede sobreajustar los datos
- Podemos usar la regularización para evitarlo
- o En el caso de la regresión lineal, se puede controlar la magnitud de los pesos,
- Estos controlan cómo cambia la función entre dos ejemplos vecinos del conjunto de entrenamiento
- Queremos que la función cambie suavemente, para que no se desvíe mucho

- Para controlar la magnitud de los pesos podemos penalizar la función de error (error cuadrático)
- Una forma de controlar los pesos es agregar un término de penalización con su norma p

$$||w||_p^p = \left(\sum_{d=1}^D w_d^p\right)$$

 \odot Las normas L_1 y L_2 se usan comúnmente en la práctica

⊚ Agregar un término ponderado con la norma L_1 se denomina regresión LASSO y cuando $\lambda \to \infty$, más parámetros se reducen a 0 (solución dispersa (sparse))

$$E_{\lambda}(w) = \frac{1}{2}||y - \Phi w||^2 + \lambda \sum_{d=1}^{D} |w_d|$$

 \odot Agregar un término ponderado con la norma L_2 se llama Regresión de Cresta (Ridge Regression) que tiende a reducir el valor de los parámetros (pero no suelen desaparecer)

$$E_{\lambda}(w) = \frac{1}{2}||y - \Phi w||^2 + \frac{\lambda}{2}||w||_2^2$$

 \odot El parámetro λ debe ser mayor que 0 y se puede ajustar mediante validación cruzada

O Podemos combinar ambas regularizaciones en lo que se llama Elastic Net que usa una combinación convexa de ambas regularizaciones:

$$E_{\lambda}(w) = \frac{1}{2}||y - \Phi w||^2 + \lambda \left(\frac{1 - \alpha}{2}||w||_2^2 + \alpha||w||_1^1\right)$$

 \odot Donde $\alpha \in [0,1]$

Medición del ajuste

o Podemos usar el error cuadrático medio para comparar resultados de regresión

$$MSE = \frac{1}{N} \sum_{n=1}^{N} (y_n - w^{\top} \phi(x_n))^2$$

 La raíz del error cuadrático medio da los resultados en las unidades de la variable de salida

$$RMSE = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (y_n - w^{\top} \phi(x_n))^2}$$

 \odot El coeficiente de determinación R^2 está normalizado

$$R^2 = 1 - \frac{MSE}{Var(y)}$$

El Error Absoluto Medio no le da más importancia a los errores más grandes

$$MAE = \frac{1}{N} \sum_{n=1}^{N} |y_n - w^{\top} \phi(x_n)|$$

Esta función de error es más tolerante a los valores atípicos y se usa como objetivo de optimización en regresión robusta

Interpretabilidad/Explicabilidad

- La regresión lineal es un modelo de caja blanca y proporciona una interpretación global del comportamiento del modelo
- Si los datos tienen muchas características, es mejor usar la regresión LASSO para tener un modelo disperso, más fácil de entender
- La importancia de las características se define como el peso dividido por el error estándar del peso, cuanto mayor sea el valor, mayor será la importancia
- El gráfico de efectos permite visualizar la distribución de la contribución de los valores de los datos a las predicciones

$$efecto_j^i = w_j x_j^i$$

 El efecto de las características en las predicciones individuales se puede explicar trazando los valores del ejemplo en el gráfico de efectos

- o El poder predictivo del modelo es limitado dado que solo busca relaciones lineales
- Las no linealidades y las interacciones deben introducirse manualmente
- Las características también deben ser
 - Gausianas
 - Homocedásticas (varianza constante)
 - o Independientes e idénticamente distribuidas (iid)
- Colinearidades: La importancia de las variables se distribuye a lo largo de todas las características correlacionadas

Este notebook aplica los modelo junto de datos Miles per Gallon Este notebook aplica los modelos de regresión que hemos explicado al con-