LOS REALES Y SUS PROPIEDADES

ABSTRACT. En este escrito resumimos los axiomas de los reales y las propiedades más importantes que desprenden de ellos y que citarás en tu tarea.

Considere el conjunto de los numeros reales \mathbb{R} equipado con con las operaciones binarias "suma" (+) y producto "producto" (·).

AXIOMAS DE CAMPO

En los siguientes enunciados asumiremos $x,y,z\in\mathbb{R}$ arbitrarios, salvo que alguna restricción se especifique.

A0 $x + y \in \mathbb{R} \text{ y } x \cdot y \in \mathbb{R}$.

A1 x + y = y + x.

A2 x + (y + z) = (x + y) + z.

A3 $x \cdot y = y \cdot x$.

A4 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

A5 $x \cdot (y+z) = x \cdot y + x \cdot z$.

A6 $\exists 0 \in \mathbb{R}$ tal que x + 0 = x para toda $x \in \mathbb{R}$.

A7 $\exists 1 \in \mathbb{R}$ tal que $x \cdot 1 = x$ para toda $x \in \mathbb{R}$.

A8 Para cada $x \in \mathbb{R}$ existe $y \in \mathbb{R}$ tal que x + y = 0.

A9 Para cada $x \in \mathbb{R} \setminus \{0\}$ existe $y \in \mathbb{R}$ tal que $x \cdot y = 1$.

AXIOMAS DE ORDEN

Asuma que existe el conjunto $\mathbb{R}^+\subset\mathbb{R}$ llamado conjunto de números positivos que satisface los siguientes axiomas

A10 Para todo $x, y \in \mathbb{R}^+$, se tiene que $x + y \in \mathbb{R}^+$ y $x \cdot y \in \mathbb{R}^+$.

A11 Si $x \in \mathbb{R} \setminus \{0\}$ entonces $x \in \mathbb{R}^+$ o $-x \in \mathbb{R}^+$, pero no ambos.

A12 $0 \notin \mathbb{R}^+$.

AXIOMA DE COMPLETEZ

AS Sea $\mathcal{A} \subset \mathbb{R}$ tal que $\mathcal{A} \neq \emptyset$ y \mathcal{A} es acotado superiormente, entonces existe el supremo de \mathcal{A} .

Resultados probados a partir de axiomas de campo

T 1. Si a + b = b + c entonces a = c.

T 2. Para todo a, b existe un único x tal que a + x = b. x se denota por a - b y en particular si b = 0, denotamos 0 - a por -a.

T 3. b - a = b + (-a)

T 4. -(-a) = a

T 5. a(-c) = -(ac)

Date: Marzo 2023.

T 6. a(b-c) = ab - ac

T 7. $0 \cdot a = 0$

T 8. Si ab = bc y $a \neq 0$ entonces b = c.

T 9. Para todo a, b con $a \neq 0$ existe un único x tal que $a \cdot x = b$. x se denota por b/a y en particular si b = 1, denotamos 1/a por a^{-1} .

T 10. El neutro aditivo (A6), neutro multiplicativo (A7), inverso aditivo (A8) e inverso multipliativo (A9) son únicos.

T 11. Si $a \neq 0$ entonces $b/a = b \cdot a^{-1}$.

T 12. Si $a \neq 0$ entonces $(a^{-1})^{-1} = a$.

T 13. Si $a \cdot b = 0$ entonces a = 0 ó b = 0.

Resultados probados a partir de axiomas de orden

T 14 (Ley de Tricotomía). Para todo a, b se satisface que solo una de las siguientes opciones: a > b o a < b o a = b.

T 15. a < b si y sólo si a - c < b + c.

T 16.

Si a < b y c > 0 entonces ac < bc.

T 17. Si $a \neq 0$ entonces $a^2 > 0$.

T 18. 1 > 0.

T 19. c < 0 si y sólo si 0 < -c.

T 20. a < b si y s'olo si -a > -b.

T 21. $a \cdot b > 0$ si y sólo si a y b tienen el mismo signo.

T 22. $a < c \ y \ b < d \ entonces \ a + b < c + d$

T 23. Si $0 < a < b \ y \ 0 < c < d \ entonces \ a \cdot c < b \cdot d$.

T 24. Si a < b y b < c entonces a < c

T 25. Si $a \neq 0$ entonces $a \ y \ a^{-1}$ tienen el mismo signo.

T 26. Si a < b y tienen el mismo signo entonces $a^{-1} > b^{-1}$.

T 27. Sean a > 0 y b > 0. $b^2 > a^2$ si sólo si b > a.

T 28. Sean a > 0, b > 0 y $n \in \mathbb{N}$. $b^n > a^n$ si sólo si b > a.

RESULTADOS PROBADOS SOBRE VALOR ABSOLUTO

Defina la función valor absoluto $|\cdot|: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}$ dada por

$$|x| \mapsto \begin{cases} -x & \text{si } -x \in \mathbb{R}^+ \\ 0 & \text{si } -x = 0 \\ x & \text{si } x \in \mathbb{R}^+ \end{cases}$$

T 29.
$$|x|^2 = x^2$$
.

T 30.
$$|x| = \sqrt{x^2}$$
.

T 31.
$$|-x| = |x|$$
.

T 32.
$$|xy| = |x||y|$$

T 33.
$$x \le |x| \ y - x \le |x|$$

T 34.
$$|x|^2 + |y|^2 \ge 2|x||y|$$

T 35.
$$|x+y| \le |x| + |y|$$

T 36.
$$||x| - |y|| \le |x + y|$$

T 37.
$$|x| = \max\{x, -x\}$$

T 38. Sea
$$d > 0$$
. $|x| < d$ si y sólo si $-d < x < d$

T 39. Sea
$$d > 0$$
. $|x| > d$ si y sólo si $-d > x$ o $x > d$

RESULTADOS PROBADOS A PARTIR DE AXIOMAS DE COMPLETEZ

Definition 0.1. Sea $\mathcal{A} \subset \mathbb{R}$ distinto de vacío. Decimos que

- (1) x es máximo (mínimo) de A si:
 - (a) $x \in \mathcal{A}$.
 - (b) $\forall y \in \mathcal{A} \text{ se tiene } y \leq x \ (y \geq x).$
- (2) x es cota superior (inferior) de A si:
 - (a) $\forall y \in \mathcal{A}$ se tiene $y \leq x \ (y \geq x)$.
- (3) x es supremo (infimo) de A si:
 - (a) $\forall y \in \mathcal{A}$ se tiene $y \leq x \ (y \geq x)$.
 - (b) Si z es cota superior (inferior) de \mathcal{A} entonces $z \geq x$ ($z \leq x$).
- **T** 40. Si $x = \max A$ entonces $x = \sup A$.
- **T 41.** Si existe el supremo, el infimo, el máximo o el mínimo para un conjunto A entonces son únicos.
- **T 42.** Sea $A \subset \mathbb{R}$ distinto de vacío y acotada inferiormente, entonces existe el infimo de A.
- **T 43.** Sea $A \subset \mathbb{R}$ distinto de vacío y acotado superiormente (inferiormente). $b = \sup A$ ($b = \inf A$) si y sólo si se satisfacen las siguientes condiciones:
 - (1) $\forall y \in \mathcal{A} \text{ se tiene } y \leq x \ (y \geq x).$
 - (2) $\forall \epsilon > 0$ existe $y \in \mathcal{A}$ tal que $b \epsilon < y$ $(b + \epsilon > y)$.
- **T** 44. Sean $S, T \subset \mathbb{R}$ distintos de vacío, tales que

$$\forall s \in \mathcal{S} \ \forall \ t \in \mathcal{T} \quad s < t$$

Entonces inf \mathcal{T} y sup \mathcal{S} existen y satisfacen

$$\sup S \leq \inf T$$
.

T 45. Sean $S, T \subset \mathbb{R}$ distintos de vacío y acotados superiormente (inferiormente). y defina al conjunto

$$C = \{x + y \mid x \in \mathcal{S} \ y \in \mathcal{T}\}$$

Entonces $\sup C$ (inf C) existe y

$$\sup C = \sup \mathcal{S} + \sup \mathcal{T}.$$

$$(\inf C = \inf \mathcal{S} + \inf \mathcal{T}.)$$