110A HW1

Warren Kim

Winter 2024

Question 1

Let a and b be integers, such that $b \neq 0$. Show that there exist unique $q, r \in \mathbb{Z}$ such that a = bq + r, where $0 \leq r < |b|$.

If b|a and $a \neq 0$, show that $|b| \leq |a|$. Hint: recall that |xy| = |x||y|.

Response

Proof: Suppose b|a and $a \neq 0$. Then, there exists some $c \in \mathbb{Z}$ such that a = bc. Since $a \neq 0$, c is necessarily nonzero. Therefore, we have the inequality $-bc \leq b \leq bc$. This is equivalent to $|b| \leq |bc|$. But bc = a so $|b| \leq |a|$.

Let $a, b, c \in \mathbb{Z}$ such that (a, b) = 1. Suppose a|c and b|c. Show that ab|c.

Response

Let $a, b, c \in \mathbb{Z}$ such that (a, b) = 1. Suppose a|c and b|c. Then there exist some $x, y \in \mathbb{Z}$ such that c = ax and c = by.

Show the backwards direction of Theorem 1.5:

Let $p \in \mathbb{Z}$ such that $p \neq 0, \pm 1$. Show that the second statement implies the first.

- 1. p is prime
- 2. If p|bc where $b, c \in \mathbb{Z}$, then p|b or p|c.

[Hint: contrapositive/contradiction are valid ways to prove this.]

${\bf Question} \ {\bf 5}$

If p is prime and $p|a_1 \cdots a_n$, show that there must be at least one a_i such that $p|a_i$.

Suppose $a, b, c \in \mathbb{Z}$, such that (a, c) = (b, c) = 1. Show that (ab, c) = 1.

Response

Proof: Suppose $a, b, c \in \mathbb{Z}$, such that (a, c) = (b, c) = 1. Then, we can rewrite the gcd as ax + cy = 1 and bx' + cy' = 1 respectively. Then, we have

$$1 = ax + cy$$

$$= (ax + cy) \cdot 1$$

$$= (ax + cy)(bx' + cy')$$

$$= abxx' + acxy' + bcx'y + c^2yy'$$

$$1 = ab(xx') + c(axy' + bx'y + cyy')$$

Setting n = xx' and m = axy' + bx'y + cyy', we get (ab)n + cm = 1, so (ab, c) = 1.

Let p > 3 be prime. Prove that $p^2 + 2$ is not prime. [hint: If you divide p by 3, what are the possible remainders?]

Let p be prime. Show that if $p|a^5$, then p|a.

Response

Proof: Let p be prime and suppose that $p|a^5$. Rewrite $a^5 = a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5$ where $a_1 = a_2 = a_3 = a_4 = a_5 = a$. Then, $p|a^5$ is equivalent to writing $p|a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5$. By Corollary 1.2 (proven in **Question 5**), p must divide at least one a_i , but since $a_i = a$ for $i \in \{1, 2, 3, 4, 5\}$, p|a.