Optimal Computation of Avoided Words

Yannis Almirantis¹ Panagiotis Charalampopoulos² Jia Gao² Costas S. Iliopoulos² Manal Mohamed² <u>Solon P. Pissis</u>² Dimitris Polychronopoulos³

¹National Center for Scientific Research Demokritos, Greece

²King's College London, UK

³Imperial College London, UK

AXA 2016

Venice, Italy, 23 Jun. 2016

Let $w=w[0]w[1]\dots w[m-1]$ and $x=x[0]x[1]\dots x[n-1]$ over Σ , n>m.

Let $w=w[0]w[1]\ldots w[m-1]$ and $x=x[0]x[1]\ldots x[n-1]$ over Σ , n>m.

Let $w=w[0]w[1]\ldots w[m-1]$ and $x=x[0]x[1]\ldots x[n-1]$ over Σ , n>m.

We denote by:

• f(w) the # occurrences (observed frequency) of w in x.

Let $w=w[0]w[1]\dots w[m-1]$ and $x=x[0]x[1]\dots x[n-1]$ over Σ , n>m.

- f(w) the # occurrences (observed frequency) of w in x.
- $f(w_p)$ the # occurrences of $w_p = w[0..m-2]$ in x.

Let $w=w[0]w[1]\ldots w[m-1]$ and $x=x[0]x[1]\ldots x[n-1]$ over Σ , n>m.

- f(w) the # occurrences (observed frequency) of w in x.
- $f(w_p)$ the # occurrences of $w_p = w[0..m-2]$ in x.
- $f(w_i)$ the # occurrences of $w_i = w[1..m-2]$ in x.

Let $w=w[0]w[1]\dots w[m-1]$ and $x=x[0]x[1]\dots x[n-1]$ over Σ , n>m.

- f(w) the # occurrences (observed frequency) of w in x.
- $f(w_p)$ the # occurrences of $w_p = w[0..m-2]$ in x.
- $f(w_i)$ the # occurrences of $w_i = w[1 ... m 2]$ in x.
- $f(w_s)$ the # occurrences of $w_s = w[1 ... m-1]$ in x.

Let $w=w[0]w[1]\dots w[m-1]$ and $x=x[0]x[1]\dots x[n-1]$ over Σ , n>m.

We denote by:

- f(w) the # occurrences (observed frequency) of w in x.
- $f(w_p)$ the # occurrences of $w_p = w[0..m-2]$ in x.
- $f(w_i)$ the # occurrences of $w_i = w[1..m-2]$ in x.
- $f(w_s)$ the # occurrences of $w_s = w[1..m-1]$ in x.

We define the **expected frequency** of word w in x as:

Let $w=w[0]w[1]\dots w[m-1]$ and $x=x[0]x[1]\dots x[n-1]$ over Σ , n>m.

We denote by:

- f(w) the # occurrences (observed frequency) of w in x.
- $f(w_p)$ the # occurrences of $w_p = w[0..m-2]$ in x.
- $f(w_i)$ the # occurrences of $w_i = w[1..m-2]$ in x.
- $f(w_s)$ the # occurrences of $w_s = w[1 ... m-1]$ in x.

We define the **expected frequency** of word w in x as:

$$E(w) = \frac{f(w_p) \times f(w_s)}{f(w_i)}.$$
 (1)

Let $w=w[0]w[1]\dots w[m-1]$ and $x=x[0]x[1]\dots x[n-1]$ over Σ , n>m.

We denote by:

- f(w) the # occurrences (observed frequency) of w in x.
- $f(w_p)$ the # occurrences of $w_p = w[0..m-2]$ in x.
- $f(w_i)$ the # occurrences of $w_i = w[1 ... m 2]$ in x.
- $f(w_s)$ the # occurrences of $w_s = w[1..m-1]$ in x.

We define the **expected frequency** of word w in x as:

$$E(w) = \frac{f(w_p) \times f(w_s)}{f(w_i)}.$$
 (1)

Let $w = w[0]w[1] \dots w[m-1]$ and $x = x[0]x[1] \dots x[n-1]$ over Σ , n > m.

We denote by:

- f(w) the # occurrences (observed frequency) of w in x.
- $f(w_p)$ the # occurrences of $w_p = w[0..m-2]$ in x.
- $f(w_i)$ the # occurrences of $w_i = w[1..m-2]$ in x.
- $f(w_s)$ the # occurrences of $w_s = w[1..m-1]$ in x.

We define the **expected frequency** of word w in x as:

$$E(w) = \frac{f(w_p) \times f(w_s)}{f(w_i)}.$$
 (1)

Why?

$$\underbrace{\frac{f(w_p)}{f(w_i)}}$$

prob. w_n precedes w_i

Let $w = w[0]w[1] \dots w[m-1]$ and $x = x[0]x[1] \dots x[n-1]$ over Σ , n > m.

We denote by:

- f(w) the # occurrences (observed frequency) of w in x.
- $f(w_p)$ the # occurrences of $w_p = w[0 ... m-2]$ in x.
- $f(w_i)$ the # occurrences of $w_i = w[1 ... m 2]$ in x.
- $f(w_s)$ the # occurrences of $w_s = w[1..m-1]$ in x.

We define the **expected frequency** of word w in x as:

$$E(w) = \frac{f(w_p) \times f(w_s)}{f(w_i)}.$$
 (1)

$$\underbrace{\frac{f(w_p)}{f(w_i)}}_{\text{prob. }w_p \text{ precedes }w_i} \times \underbrace{\frac{f(w_s)}{f(w_i)}}_{\text{prob. }w_s \text{ succeeds }w_i}$$

Let $w = w[0]w[1] \dots w[m-1]$ and $x = x[0]x[1] \dots x[n-1]$ over Σ , n > m.

We denote by:

- f(w) the # occurrences (observed frequency) of w in x.
- $f(w_p)$ the # occurrences of $w_p = w[0 ... m-2]$ in x.
- $f(w_i)$ the # occurrences of $w_i = w[1 ... m 2]$ in x.
- $f(w_s)$ the # occurrences of $w_s = w[1..m-1]$ in x.

We define the **expected frequency** of word w in x as:

$$E(w) = \frac{f(w_p) \times f(w_s)}{f(w_i)}.$$
 (1)

$$\underbrace{\frac{f(w_p)}{f(w_i)}}_{\text{prob. } w_p \text{ precedes } w_i} \times \underbrace{\frac{f(w_s)}{f(w_i)}}_{\text{prob. } w_s \text{ succeeds } w_i} \times f(w_i)$$

Let $w=w[0]w[1]\dots w[m-1]$ and $x=x[0]x[1]\dots x[n-1]$ over Σ , n>m.

We denote by:

- f(w) the # occurrences (observed frequency) of w in x.
- $f(w_p)$ the # occurrences of $w_p = w[0..m-2]$ in x.
- $f(w_i)$ the # occurrences of $w_i = w[1 ... m 2]$ in x.
- $f(w_s)$ the # occurrences of $w_s = w[1..m-1]$ in x.

We define the **expected frequency** of word w in x as:

$$E(w) = \frac{f(w_p) \times f(w_s)}{f(w_i)}.$$
 (1)

$$\underbrace{\frac{f(w_p)}{f(w_i)}}_{\text{prob. } w_p \text{ precedes } w_i} \times \underbrace{\frac{f(w_s)}{f(w_i)}}_{\text{prob. } w_s \text{ succeeds } w_i} \times f(w_i) = E(w). \tag{2}$$

We define the **standard deviation** (χ^2 test) of w in x as:

We define the **standard deviation** (χ^2 test) of w in x as:

$$std(w) = \frac{f(w) - E(w)}{\max\{\sqrt{E(w)}, 1\}}.$$
(3)

We define the **standard deviation** (χ^2 test) of w in x as:

$$std(w) = \frac{f(w) - E(w)}{\max\{\sqrt{E(w)}, 1\}}.$$
(3)

Given $\rho < 0$, a word w is called ρ -avoided in x if $std(w) \leq \rho$.

We define the **standard deviation** (χ^2 test) of w in x as:

$$std(w) = \frac{f(w) - E(w)}{\max\{\sqrt{E(w)}, 1\}}.$$
(3)

Given $\rho < 0$, a word w is called ρ -avoided in x if $std(w) \leq \rho$.

AVOIDEDWORDSCOMPUTATION

Input: A word x of length n, an integer k > 2, and a $\rho < 0$

Output: All ρ -avoided words of length k in x

We define the **standard deviation** (χ^2 test) of w in x as:

$$\mathit{std}(w) = \frac{f(w) - E(w)}{\max\{\sqrt{E(w)}, 1\}}. \tag{3}$$

Given $\rho < 0$, a word w is called ρ -avoided in x if $std(w) \leq \rho$.

AVOIDEDWORDSCOMPUTATION

Input: A word x of length n, an integer k>2, and a $\rho<0$

Output: All ρ -avoided words of length k in x

This problem was first considered by Brendel, Beckmann, and Trifonov in 1986.

We define the **standard deviation** (χ^2 test) of w in x as:

$$\mathit{std}(w) = \frac{f(w) - E(w)}{\max\{\sqrt{E(w)}, 1\}}. \tag{3}$$

Given $\rho < 0$, a word w is called ρ -avoided in x if $std(w) \leq \rho$.

AVOIDEDWORDSCOMPUTATION

Input: A word x of length n, an integer k>2, and a $\rho<0$

Output: All ρ -avoided words of length k in x

This problem was first considered by Brendel, Beckmann, and Trifonov in 1986.

No non-trivial solution was provided [Brendel et al, 1986].

Definition

An absent word w of x is minimal if and only if all its proper factors occur in x.

Definition

An absent word w of x is minimal if and only if all its proper factors occur in x.

Lemma (Absent)

Any absent ρ -avoided word w in x is a minimal absent word of x.

Definition

An absent word w of x is minimal if and only if all its proper factors occur in x.

Lemma (Absent)

Any absent ρ -avoided word w in x is a minimal absent word of x.

Definition

An absent word w of x is *minimal* if and only if all its proper factors occur in x.

Lemma (Absent)

Any absent ρ -avoided word w in x is a minimal absent word of x.

$$\mathit{std}(w) = \frac{f(w) - E(w)}{\max\{\sqrt{E(w)}, 1\}} \le \rho < 0.$$

Definition

An absent word w of x is *minimal* if and only if all its proper factors occur in x.

Lemma (Absent)

Any absent ρ -avoided word w in x is a minimal absent word of x.

$$\mathit{std}(w) = \frac{f(w) - E(w)}{\max\{\sqrt{E(w)}, 1\}} \le \rho < 0.$$

$$f(w) - E(w) < 0$$

Definition

An absent word w of x is *minimal* if and only if all its proper factors occur in x.

Lemma (Absent)

Any absent ρ -avoided word w in x is a minimal absent word of x.

$$std(w) = \frac{f(w) - E(w)}{\max\{\sqrt{E(w)}, 1\}} \le \rho < 0.$$

$$f(w) - E(w) < 0 \rightarrow E(w) > 0$$

Definition

An absent word w of x is *minimal* if and only if all its proper factors occur in x.

Lemma (Absent)

Any absent ρ -avoided word w in x is a minimal absent word of x.

$$\begin{split} \mathit{std}(w) &= \frac{f(w) - E(w)}{\max\{\sqrt{E(w)}, 1\}} \leq \rho < 0. \\ f(w) - E(w) &< 0 \rightarrow E(w) > 0 \\ \\ \frac{f(w_p) \times f(w_s)}{f(w_i)} &> 0 \end{split}$$

Definition

An absent word w of x is *minimal* if and only if all its proper factors occur in x.

Lemma (Absent)

Any absent ρ -avoided word w in x is a minimal absent word of x.

$$\mathit{std}(w) = \frac{f(w) - E(w)}{\max\{\sqrt{E(w)}, 1\}} \leq \rho < 0.$$

$$f(w) - E(w) < 0 \rightarrow E(w) > 0$$

$$f(w) - E(w) < 0 \rightarrow E(w) > 0$$

$$\frac{f(w_p) \times f(w_s)}{f(w_i)} > 0 \to f(w_p) > 0, f(w_s) > 0.$$

Lemma (Occurring)

Let w be a word occurring in x and $\mathcal{T}(x)$ be the suffix tree of x. Then, if w_p is a path-label of an implicit node of $\mathcal{T}(x)$, $std(w) \geq 0$.

Lemma (Occurring)

Let w be a word occurring in x and $\mathcal{T}(x)$ be the suffix tree of x. Then, if w_p is a path-label of an implicit node of $\mathcal{T}(x)$, $std(w) \geq 0$.

Lemma (Occurring)

Let w be a word occurring in x and $\mathcal{T}(x)$ be the suffix tree of x. Then, if w_p is a path-label of an implicit node of $\mathcal{T}(x)$, $std(w) \geq 0$.

Proof.

For any occurring w we have $f(w_i) \geq f(w_s)$.

Lemma (Occurring)

Let w be a word occurring in x and $\mathcal{T}(x)$ be the suffix tree of x. Then, if w_p is a path-label of an implicit node of $\mathcal{T}(x)$, $std(w) \geq 0$.

Proof.

For any occurring w we have $f(w_i) \geq f(w_s)$.

This implies
$$f(w_p) \ge \frac{f(w_s)}{f(w_i)} \times f(w_p)$$

Lemma (Occurring)

Let w be a word occurring in x and $\mathcal{T}(x)$ be the suffix tree of x. Then, if w_p is a path-label of an implicit node of $\mathcal{T}(x)$, $std(w) \geq 0$.

Proof.

For any occurring w we have $f(w_i) \geq f(w_s)$.

This implies
$$f(w_p) \geq \frac{f(w_s)}{f(w_i)} \times f(w_p) = E(w)$$
.

Useful Properties

Lemma (Occurring)

Let w be a word occurring in x and $\mathcal{T}(x)$ be the suffix tree of x. Then, if w_p is a path-label of an implicit node of $\mathcal{T}(x)$, $std(w) \geq 0$.

Proof.

For any occurring w we have $f(w_i) \ge f(w_s)$.

This implies $f(w_p) \ge \frac{f(w_s)}{f(w_i)} \times f(w_p) = E(w)$.

If w_p is a path-label of an implicit node then $f(w_p) = f(w)$.

Useful Properties

Lemma (Occurring)

Let w be a word occurring in x and $\mathcal{T}(x)$ be the suffix tree of x. Then, if w_p is a path-label of an implicit node of $\mathcal{T}(x)$, $std(w) \geq 0$.

Proof.

For any occurring w we have $f(w_i) \ge f(w_s)$.

This implies $f(w_p) \ge \frac{f(w_s)}{f(w_i)} \times f(w_p) = E(w)$.

If w_p is a path-label of an implicit node then $f(w_p) = f(w)$.

Hence
$$\frac{f(w)-E(w)}{\max\{\sqrt{E(w)},1\}}=$$

Useful Properties

Lemma (Occurring)

Let w be a word occurring in x and $\mathcal{T}(x)$ be the suffix tree of x. Then, if w_p is a path-label of an implicit node of $\mathcal{T}(x)$, $std(w) \geq 0$.

Proof.

For any occurring w we have $f(w_i) \geq f(w_s)$.

This implies $f(w_p) \ge \frac{f(w_s)}{f(w_i)} \times f(w_p) = E(w)$.

If w_p is a path-label of an implicit node then $f(w_p) = f(w)$.

Hence
$$\frac{f(w)-E(w)}{\max\{\sqrt{E(w)},1\}} = \frac{f(w_p)-E(w)}{\max\{\sqrt{E(w)},1\}} \ge 0$$
.

Let k=3 and $\rho=-0.4$.

Let k=3 and $\rho=-0.4$.

• word $w_1 = \text{CGT}$ is an **occurring** ρ -avoided word:

Let k=3 and $\rho=-0.4$.

• word $w_1 = \text{CGT}$ is an **occurring** ρ -avoided word:

$$E(w_1) = 3 \times 3/6 = 1.5, \; \textit{std}(w_1) = (1 - 1.5)/\sqrt{1.5} = -0.408248.$$

Let k=3 and $\rho=-0.4$.

• word $w_1 = \text{CGT}$ is an **occurring** ρ -avoided word:

$$E(w_1) = 3 \times 3/6 = 1.5, \ \text{std}(w_1) = (1 - 1.5)/\sqrt{1.5} = -0.408248.$$

• word $w_2 = AGT$ is an **absent** ρ -avoided word:

Let k=3 and $\rho=-0.4$.

• word $w_1 = \text{CGT}$ is an **occurring** ρ -avoided word:

$$E(w_1) = 3 \times 3/6 = 1.5, \ \textit{std}(w_1) = (1 - 1.5)/\sqrt{1.5} = -0.408248.$$

• word $w_2 = AGT$ is an **absent** ρ -avoided word:

$$E(w_2) = 1 \times 3/6 = 0.5$$
, $std(w_2) = (0 - 0.5)/1 = -0.5$.

```
AVOIDEDWORDS(x, k, \rho)

1 \mathcal{T}(x) \leftarrow \text{SUFFIXTREE}(x)

2 for each node v \in \mathcal{T}(x) do

3 \mathcal{D}(v) \leftarrow \text{word-depth of } v

4 \mathcal{C}(v) \leftarrow \text{number of terminal nodes in the subtree rooted at } v

5 ABSENTAVOIDEDWORDS(x, k, \rho)

6 OCCURRINGAVOIDEDWORDS(x, k, \rho)
```

```
\begin{array}{lll} \operatorname{AVOIDEDWords}(x,\,k,\,\rho) \\ & 1 & \mathcal{T}(x) \leftarrow \operatorname{SUFFIXTREE}(x) \\ 2 & \textbf{for} \ \operatorname{each} \ \operatorname{node} \ v \in \mathcal{T}(x) \ \textbf{do} \\ 3 & \mathcal{D}(v) \leftarrow \operatorname{word-depth} \ \operatorname{of} \ v \\ 4 & \mathcal{C}(v) \leftarrow \operatorname{number} \ \operatorname{of} \ \operatorname{terminal} \ \operatorname{nodes} \ \operatorname{in} \ \operatorname{the} \ \operatorname{subtree} \ \operatorname{rooted} \ \operatorname{at} \ v \\ 5 & \operatorname{AbsentAvoidedWords}(x,k,\rho) \\ 6 & \operatorname{OccurringAvoidedWords}(x,k,\rho) \end{array}
```

Absent Avoided Words (x, k, ρ)

```
\begin{array}{lll} \operatorname{AVOIDEDWords}(x,\,k,\,\rho) \\ & 1 & \mathcal{T}(x) \leftarrow \operatorname{SUFFIXTREE}(x) \\ 2 & \textbf{for} \ \operatorname{each} \ \operatorname{node} \ v \in \mathcal{T}(x) \ \textbf{do} \\ 3 & \mathcal{D}(v) \leftarrow \operatorname{word-depth} \ \operatorname{of} \ v \\ 4 & \mathcal{C}(v) \leftarrow \operatorname{number} \ \operatorname{of} \ \operatorname{terminal} \ \operatorname{nodes} \ \operatorname{in} \ \operatorname{the} \ \operatorname{subtree} \ \operatorname{rooted} \ \operatorname{at} \ v \\ 5 & \operatorname{AbsentAvoidedWords}(x,k,\rho) \\ 6 & \operatorname{OccurringAvoidedWords}(x,k,\rho) \end{array}
```

AbsentavoidedWords (x, k, ρ)

• Compute all minimal absent words of length k (Lemma 1).

```
\begin{array}{lll} \operatorname{AVOIDEDWords}(x,\,k,\,\rho) \\ & 1 & \mathcal{T}(x) \leftarrow \operatorname{SUFFIXTREE}(x) \\ 2 & \textbf{for} \ \operatorname{each} \ \operatorname{node} \ v \in \mathcal{T}(x) \ \textbf{do} \\ 3 & \mathcal{D}(v) \leftarrow \operatorname{word-depth} \ \operatorname{of} \ v \\ 4 & \mathcal{C}(v) \leftarrow \operatorname{number} \ \operatorname{of} \ \operatorname{terminal} \ \operatorname{nodes} \ \operatorname{in} \ \operatorname{the} \ \operatorname{subtree} \ \operatorname{rooted} \ \operatorname{at} \ v \\ 5 & \operatorname{AbsentAvoidedWords}(x,k,\rho) \\ 6 & \operatorname{OccurringAvoidedWords}(x,k,\rho) \end{array}
```

AbsentavoidedWords (x, k, ρ)

- Compute all minimal absent words of length k (Lemma 1).
- ullet Find all nodes corresponding to w_p , w_i , and w_s .

```
\begin{array}{lll} \operatorname{AVOIDEDWords}(x,\,k,\,\rho) \\ & 1 & \mathcal{T}(x) \leftarrow \operatorname{SUFFIXTREE}(x) \\ & 2 & \textbf{for} \ \operatorname{each} \ \operatorname{node} \ v \in \mathcal{T}(x) \ \textbf{do} \\ & 3 & \mathcal{D}(v) \leftarrow \operatorname{word-depth} \ \operatorname{of} \ v \\ & 4 & \mathcal{C}(v) \leftarrow \operatorname{number} \ \operatorname{of} \ \operatorname{terminal} \ \operatorname{nodes} \ \operatorname{in} \ \operatorname{the} \ \operatorname{subtree} \ \operatorname{rooted} \ \operatorname{at} \ v \\ & 5 & \operatorname{AbsentAvoidedWords}(x,k,\rho) \\ & 6 & \operatorname{OccurringAvoidedWords}(x,k,\rho) \end{array}
```

AbsentavoidedWords (x, k, ρ)

- Compute all minimal absent words of length k (Lemma 1).
- Find all nodes corresponding to w_p , w_i , and w_s .
- Compute std(w) using their C(v) count.

```
\begin{array}{lll} \operatorname{AVOIDEDWords}(x,\,k,\,\rho) \\ 1 & \mathcal{T}(x) \leftarrow \operatorname{SUFFIXTREE}(x) \\ 2 & \textbf{for} \ \operatorname{each} \ \operatorname{node} \ v \in \mathcal{T}(x) \ \textbf{do} \\ 3 & \mathcal{D}(v) \leftarrow \operatorname{word-depth} \ \operatorname{of} \ v \\ 4 & \mathcal{C}(v) \leftarrow \operatorname{number} \ \operatorname{of} \ \operatorname{terminal} \ \operatorname{nodes} \ \operatorname{in} \ \operatorname{the} \ \operatorname{subtree} \ \operatorname{rooted} \ \operatorname{at} \ v \\ 5 & \operatorname{AbsentAvoidedWords}(x,k,\rho) \\ 6 & \operatorname{OccurringAvoidedWords}(x,k,\rho) \end{array}
```

Absent Avoided Words (x, k, ρ)

- Compute all minimal absent words of length k (Lemma 1).
- ullet Find all nodes corresponding to w_p , w_i , and w_s .
- Compute std(w) using their C(v) count.
- Note that f(w) = 0!

• Note that f(w) = 0!

```
Avoided Words (x, k, \rho)
     \mathcal{T}(x) \leftarrow \text{SUFFIXTREE}(x)
     for each node v \in \mathcal{T}(x) do
           \mathcal{D}(v) \leftarrow \text{word-depth of } v
           \mathcal{C}(v) \leftarrow number of terminal nodes in the subtree rooted at v
      ABSENTAVOIDEDWORDS(x, k, \rho)
      OCCURRINGAVOIDEDWORDS(x, k, \rho)
ABSENTAVOIDEDWORDS(x, k, \rho)
  • Compute all minimal absent words of length k (Lemma 1).
  • Find all nodes corresponding to w_p, w_i, and w_s.
  • Compute std(w) using their C(v) count.
```

 $\mathcal{O}(\sigma n)$ time, $\sigma = |\Sigma|$, to compute the words [Crochemore et al, 1998];

```
AVOIDEDWORDS(x, k, \rho)

1 \mathcal{T}(x) \leftarrow \text{SuffixTree}(x)

2 for each node v \in \mathcal{T}(x) do

3 \mathcal{D}(v) \leftarrow \text{word-depth of } v

4 \mathcal{C}(v) \leftarrow \text{number of terminal nodes in the subtree rooted at } v

5 ABSENTAVOIDEDWORDS(x, k, \rho)

6 OCCURRINGAVOIDEDWORDS(x, k, \rho)

ABSENTAVOIDEDWORDS(x, k, \rho)
```

- Compute all minimal absent words of length k (Lemma 1).
- Find all nodes corresponding to w_p , w_i , and w_s .
- Compute std(w) using their C(v) count.
- Note that f(w) = 0!

 $\mathcal{O}(\sigma n)$ time, $\sigma = |\Sigma|$, to compute the words [Crochemore et al, 1998]; and $\mathcal{O}(1)$ work per word using Weighted Ancestors queries [Gawrychowski et al, 2014].

```
AVOIDEDWORDS(x, k, \rho)

1 \mathcal{T}(x) \leftarrow \text{SUFFIXTREE}(x)

2 for each node v \in \mathcal{T}(x) do

3 \mathcal{D}(v) \leftarrow \text{word-depth of } v

4 \mathcal{C}(v) \leftarrow \text{number of terminal nodes in the subtree rooted at } v

5 ABSENTAVOIDEDWORDS(x, k, \rho)

6 OCCURRINGAVOIDEDWORDS(x, k, \rho)
```

```
\begin{array}{lll} \operatorname{AVOIDEDWords}(x,\,k,\,\rho) \\ & 1 & \mathcal{T}(x) \leftarrow \operatorname{SUFFIXTREE}(x) \\ & 2 & \textbf{for} \ \operatorname{each} \ \operatorname{node} \ v \in \mathcal{T}(x) \ \textbf{do} \\ & 3 & \mathcal{D}(v) \leftarrow \operatorname{word-depth} \ \operatorname{of} \ v \\ & 4 & \mathcal{C}(v) \leftarrow \operatorname{number} \ \operatorname{of} \ \operatorname{terminal} \ \operatorname{nodes} \ \operatorname{in} \ \operatorname{the} \ \operatorname{subtree} \ \operatorname{rooted} \ \operatorname{at} \ v \\ & 5 & \operatorname{AbsentAvoidedWords}(x,k,\rho) \\ & 6 & \operatorname{OccurringAvoidedWords}(x,k,\rho) \end{array}
```

AvoidedWords (x, k, ρ)

- 1 $\mathcal{T}(x) \leftarrow \text{SuffixTree}(x)$
- 2 **for** each node $v \in \mathcal{T}(x)$ **do**
- 3 $\mathcal{D}(v) \leftarrow \text{word-depth of } v$
- 4 $\mathcal{C}(v) \leftarrow$ number of terminal nodes in the subtree rooted at v
- 5 AbsentAvoidedWords (x, k, ρ)
- 6 OCCURRINGAVOIDEDWORDS (x, k, ρ)

Occurring Avoided Words (x, k, ρ)

• For occurring ones w_p is a path-label of an **explicit** node (Lemma 2).

AvoidedWords (x, k, ρ)

- 1 $\mathcal{T}(x) \leftarrow \text{SuffixTree}(x)$
- 2 **for** each node $v \in \mathcal{T}(x)$ **do**
- 3 $\mathcal{D}(v) \leftarrow \text{word-depth of } v$
- 4 $C(v) \leftarrow$ number of terminal nodes in the subtree rooted at v
- 5 Absent Avoided Words (x, k, ρ)
- 6 OCCURRINGAVOIDEDWORDS (x, k, ρ)

- For occurring ones w_p is a path-label of an **explicit** node (Lemma 2).
- Find all nodes v corresponding to w_p of length $\mathcal{D}(v) = k 1$.

AvoidedWords (x, k, ρ)

- 1 $\mathcal{T}(x) \leftarrow \text{SuffixTree}(x)$
- 2 **for** each node $v \in \mathcal{T}(x)$ **do**
- 3 $\mathcal{D}(v) \leftarrow \text{word-depth of } v$
- 4 $C(v) \leftarrow$ number of terminal nodes in the subtree rooted at v
- 5 Absent Avoided Words (x, k, ρ)
- 6 OCCURRINGAVOIDEDWORDS (x, k, ρ)

- For occurring ones w_p is a path-label of an **explicit** node (Lemma 2).
- Find all nodes v corresponding to w_p of length $\mathcal{D}(v) = k 1$.
- Find all nodes corresponding to w_i using the suffix link of v.

AvoidedWords (x, k, ρ)

- 1 $\mathcal{T}(x) \leftarrow \text{SuffixTree}(x)$
- 2 **for** each node $v \in \mathcal{T}(x)$ **do**
- 3 $\mathcal{D}(v) \leftarrow \text{word-depth of } v$
- 4 $C(v) \leftarrow$ number of terminal nodes in the subtree rooted at v
- 5 Absent Avoided Words (x, k, ρ)
- 6 OCCURRINGAVOIDEDWORDS (x, k, ρ)

- For occurring ones w_p is a path-label of an **explicit** node (Lemma 2).
- Find all nodes v corresponding to w_p of length $\mathcal{D}(v) = k 1$.
- ullet Find all nodes corresponding to w_i using the suffix link of v.
- ullet Find all nodes corresponding to w using the children of v.

AvoidedWords (x, k, ρ)

- 1 $\mathcal{T}(x) \leftarrow \text{SuffixTree}(x)$
- 2 **for** each node $v \in \mathcal{T}(x)$ **do**
- 3 $\mathcal{D}(v) \leftarrow \text{word-depth of } v$
- 4 $C(v) \leftarrow$ number of terminal nodes in the subtree rooted at v
- 5 Absent Avoided Words (x, k, ρ)
- 6 OCCURRINGAVOIDEDWORDS (x, k, ρ)

- For occurring ones w_p is a path-label of an **explicit** node (Lemma 2).
- Find all nodes v corresponding to w_p of length $\mathcal{D}(v) = k 1$.
- ullet Find all nodes corresponding to w_i using the suffix link of v.
- ullet Find all nodes corresponding to w using the children of v.
- ullet Find all nodes corresponding to w_s using the suffix link of v.

AvoidedWords (x, k, ρ)

- 1 $\mathcal{T}(x) \leftarrow \text{SuffixTree}(x)$
- 2 **for** each node $v \in \mathcal{T}(x)$ **do**
- 3 $\mathcal{D}(v) \leftarrow \text{word-depth of } v$
- 4 $C(v) \leftarrow$ number of terminal nodes in the subtree rooted at v
- 5 Absent Avoided Words (x, k, ρ)
- 6 OCCURRINGAVOIDEDWORDS (x, k, ρ)

- For occurring ones w_p is a path-label of an **explicit** node (Lemma 2).
- Find all nodes v corresponding to w_p of length $\mathcal{D}(v) = k 1$.
- ullet Find all nodes corresponding to w_i using the suffix link of v.
- ullet Find all nodes corresponding to w using the children of v.
- ullet Find all nodes corresponding to w_s using the suffix link of v.
- Compute std(w) using their C(v) count.

AvoidedWords (x, k, ρ)

- 1 $\mathcal{T}(x) \leftarrow \text{SuffixTree}(x)$
- 2 **for** each node $v \in \mathcal{T}(x)$ **do**
- 3 $\mathcal{D}(v) \leftarrow \text{word-depth of } v$
- 4 $C(v) \leftarrow$ number of terminal nodes in the subtree rooted at v
- 5 AbsentAvoidedWords (x, k, ρ)
- 6 OCCURRINGAVOIDEDWORDS (x, k, ρ)

- For occurring ones w_p is a path-label of an **explicit** node (Lemma 2).
- Find all nodes v corresponding to w_p of length $\mathcal{D}(v) = k 1$.
- ullet Find all nodes corresponding to w_i using the suffix link of v.
- ullet Find all nodes corresponding to w using the children of v.
- ullet Find all nodes corresponding to w_s using the suffix link of v.
- Compute std(w) using their C(v) count.
- $\mathcal{O}(n)$ time to visit all nodes;

AvoidedWords (x, k, ρ)

- 1 $\mathcal{T}(x) \leftarrow \text{SuffixTree}(x)$
- 2 **for** each node $v \in \mathcal{T}(x)$ **do**
- 3 $\mathcal{D}(v) \leftarrow \text{word-depth of } v$
- 4 $C(v) \leftarrow$ number of terminal nodes in the subtree rooted at v
- 5 AbsentAvoidedWords (x, k, ρ)
- 6 OCCURRINGAVOIDEDWORDS (x, k, ρ)

OCCURRINGAVOIDEDWORDS (x, k, ρ)

- For occurring ones w_p is a path-label of an **explicit** node (Lemma 2).
- Find all nodes v corresponding to w_p of length $\mathcal{D}(v) = k 1$.
- ullet Find all nodes corresponding to w_i using the suffix link of v.
- ullet Find all nodes corresponding to w using the children of v.
- ullet Find all nodes corresponding to w_s using the suffix link of v.
- Compute std(w) using their C(v) count.
- $\mathcal{O}(n)$ time to visit all nodes; and $\mathcal{O}(1)$ work per word.

```
AVOIDEDWORDS(x, k, \rho)

1 \mathcal{T}(x) \leftarrow \text{SUFFIXTREE}(x)

2 for each node v \in \mathcal{T}(x) do

3 \mathcal{D}(v) \leftarrow \text{word-depth of } v

4 \mathcal{C}(v) \leftarrow \text{number of terminal nodes in the subtree rooted at } v

5 ABSENTAVOIDEDWORDS(x, k, \rho)

6 OCCURRINGAVOIDEDWORDS(x, k, \rho)
```

```
AvoidedWords(x, k, \rho)
```

- 1 $\mathcal{T}(x) \leftarrow \text{SUFFIXTREE}(x)$
- 2 **for** each node $v \in \mathcal{T}(x)$ **do**
- 3 $\mathcal{D}(v) \leftarrow \text{word-depth of } v$
- 4 $C(v) \leftarrow$ number of terminal nodes in the subtree rooted at v
- 5 AbsentAvoidedWords (x, k, ρ)
- 6 OCCURRINGAVOIDEDWORDS (x, k, ρ)

Theorem

Alg. Avoided Words solves problem Avoided Words Computation in time and space $\mathcal{O}(n)$ for constant-sized alphabets.

For integer alphabets, the algorithm solves the problem in time $\mathcal{O}(\sigma n)$.

ALLAVOIDEDWORDSCOMPUTATION

Input: A word x of length n and a $\rho<0$

 $\textbf{Output:} \ \mathsf{All} \ \rho\text{-avoided words in} \ x$

ALLAVOIDEDWORDSCOMPUTATION

Input: A word x of length n and a $\rho < 0$

Output: All ρ -avoided words in x

Theorem

Given a word x of length n over an integer alphabet of size σ and a real number $\rho < 0$, all ρ -avoided words in x can be computed in time $\mathcal{O}(\sigma n)$. This is time-optimal if $2 \le \sigma \le n$.

ALLAVOIDEDWORDSCOMPUTATION

Input: A word x of length n and a $\rho < 0$

Output: All ρ -avoided words in x

Theorem

Given a word x of length n over an integer alphabet of size σ and a real number $\rho < 0$, all ρ -avoided words in x can be computed in time $\mathcal{O}(\sigma n)$. This is time-optimal if $2 \le \sigma \le n$.

Proof.

ALLAVOIDEDWORDSCOMPUTATION

Input: A word x of length n and a $\rho < 0$

Output: All ρ -avoided words in x

Theorem

Given a word x of length n over an integer alphabet of size σ and a real number $\rho < 0$, all ρ -avoided words in x can be computed in time $\mathcal{O}(\sigma n)$. This is time-optimal if $2 \le \sigma \le n$.

Proof.

For **occurring** words this is trivial in O(n): linear # of explicit nodes.

ALLAVOIDEDWORDSCOMPUTATION

Input: A word x of length n and a $\rho < 0$

Output: All ρ -avoided words in x

Theorem

Given a word x of length n over an integer alphabet of size σ and a real number $\rho < 0$, all ρ -avoided words in x can be computed in time $\mathcal{O}(\sigma n)$. This is time-optimal if $2 \le \sigma \le n$.

Proof.

For **occurring** words this is trivial in $\mathcal{O}(n)$: linear # of explicit nodes. The $\mathcal{O}(\sigma n)$ bound on the number of minimal **absent** words is tight.

ALLAVOIDEDWORDSCOMPUTATION

Input: A word x of length n and a $\rho < 0$

Output: All ρ -avoided words in x

Theorem

Given a word x of length n over an integer alphabet of size σ and a real number $\rho < 0$, all ρ -avoided words in x can be computed in time $\mathcal{O}(\sigma n)$. This is time-optimal if $2 \le \sigma \le n$.

Proof.

For **occurring** words this is trivial in $\mathcal{O}(n)$: linear # of explicit nodes. The $\mathcal{O}(\sigma n)$ bound on the number of minimal **absent** words is tight. Consider $\rho \geq -\frac{1}{n}$.

ALLAVOIDEDWORDSCOMPUTATION

Input: A word x of length n and a $\rho < 0$

Output: All ρ -avoided words in x

Theorem

Given a word x of length n over an integer alphabet of size σ and a real number $\rho < 0$, all ρ -avoided words in x can be computed in time $\mathcal{O}(\sigma n)$. This is time-optimal if $2 \le \sigma \le n$.

Proof.

For **occurring** words this is trivial in $\mathcal{O}(n)$: linear # of explicit nodes.

The $\mathcal{O}(\sigma n)$ bound on the number of minimal **absent** words is tight.

Consider $\rho \geq -\frac{1}{n}$.

For every (minimal absent word) w we have $E(w) \geq \frac{1}{n}$.

ALLAVOIDEDWORDSCOMPUTATION

Input: A word x of length n and a $\rho < 0$

Output: All ρ -avoided words in x

Theorem

Given a word x of length n over an integer alphabet of size σ and a real number $\rho < 0$, all ρ -avoided words in x can be computed in time $\mathcal{O}(\sigma n)$. This is time-optimal if $2 \le \sigma \le n$.

Proof.

For **occurring** words this is trivial in O(n): linear # of explicit nodes.

The $\mathcal{O}(\sigma n)$ bound on the number of minimal **absent** words is tight.

Consider $\rho \geq -\frac{1}{n}$.

For every (minimal absent word) w we have $E(w) \geq \frac{1}{n}$.

Since f(w)=0 we have $\mathit{std}(w)=\frac{-E(w)}{\max\{\sqrt{E(w),1}\}}$

ALLAVOIDEDWORDSCOMPUTATION

Input: A word x of length n and a $\rho < 0$

Output: All ρ -avoided words in x

Theorem

Given a word x of length n over an integer alphabet of size σ and a real number $\rho < 0$, all ρ -avoided words in x can be computed in time $\mathcal{O}(\sigma n)$. This is time-optimal if $2 \le \sigma \le n$.

Proof.

For **occurring** words this is trivial in O(n): linear # of explicit nodes.

The $\mathcal{O}(\sigma n)$ bound on the number of minimal **absent** words is tight.

Consider $\rho \geq -\frac{1}{n}$.

For every (minimal absent word) w we have $E(w) \ge \frac{1}{n}$.

Since
$$f(w) = 0$$
 we have $std(w) = \frac{-E(w)}{\max\{\sqrt{E(w),1}\}} \le -\frac{1}{n} \le \rho$.

Time-optimal algorithm for constant-sized and integer alphabets.

Time-optimal algorithm for constant-sized and integer alphabets.

Can the problem be solved in $\mathcal{O}(n + output)$ for integer alphabets?

Time-optimal algorithm for constant-sized and integer alphabets.

Can the problem be solved in $\mathcal{O}(n + output)$ for integer alphabets?

Free open-source implementation: http://github.com/solonas13/aw

Time-optimal algorithm for constant-sized and integer alphabets.

Can the problem be solved in $\mathcal{O}(n + output)$ for integer alphabets?

Free open-source implementation: http://github.com/solonas13/aw

Paper is on arXiv (to appear in WABI 2016):

- Y. Almirantis, P. Charalampopoulos, J. Gao, C. S. Iliopoulos, M, Mohamed,
- S. P. Pissis, and D. Polychronopoulos: Optimal Computation of Avoided Words.

Time-optimal algorithm for constant-sized and integer alphabets.

Can the problem be solved in $\mathcal{O}(n + output)$ for integer alphabets?

Free open-source implementation: http://github.com/solonas13/aw

Paper is on arXiv (to appear in WABI 2016):

- Y. Almirantis, P. Charalampopoulos, J. Gao, C. S. Iliopoulos, M, Mohamed,
- S. P. Pissis, and D. Polychronopoulos: Optimal Computation of Avoided Words.

Thanks!