Отчет по выполнению лабораторной работы №8

Дисциплина: архитектура компьютеров

Ясиновская Дарья Олеговна

Содержание

Цель работы	5
Выполнение лабораторной работы	6
Реализация циклов в NASM	6
Самостоятельная работа	16
Выводы	19

Список иллюстраций

1	Создание каталога и файла	6
2	Ввод программы из листинга 8.1	7
3	Проверка работы файла	8
4	Изменение файла	8
5	Проверка работы файла	9
6	Внесение изменений в текст программы	10
7	Запуск программы	11
8	Создание файла lab8-2.asm	11
9	Ввод программы из листинга 8.2	12
10	Запуск программы	13
11	Ввод программы из листинга 8.3	13
12	Проверка работы файла	13
13	Изменение текста листинга 8.3	14
14	Проверка работы программы	15
1	Написание программы для самостоятельной работы	16
2	Запуск программы	17

Список таблиц

Цель работы

Целью работы является риобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

Выполнение лабораторной работы

Реализация циклов в NASM

Создаю каталог для программ лабораторной работы №8, перехожу в него и создаю файл lab8-1.asm (рис. [-@fig:001]).

```
daryayasinovskaya@10 ~]$ mkdir ~/work/arch-pc/lab08
[daryayasinovskaya@10 ~]$ cd ~/work/arch-pc/lab08
[daryayasinovskaya@10 lab08]$ touch lab8-1.asm
[daryayasinovskaya@10 lab08]$ 

[daryayasinovskaya@10 lab08]$
```

Рис. 1: Создание каталога и файла

Ввожу в файл lab8-1.asm текст программы из листинга 8.1.(рис. [-@fig:002]).

Рис. 2: Ввод программы из листинга 8.1

Созаю исполняемый файл и проверяю его работу.(рис. [-@fig:003]).

```
[daryayasinovskaya@10 lab08]$ nasm -f elf lab8-1.asm
[daryayasinovskaya@10 lab08]$ ld -m elf_i386 -o lab8-1 lab8-1.o
[daryayasinovskaya@10 lab08]$ ./lab8-1
Введите N: 10
10
9
8
7
6
5
4
3
2
1
[daryayasinovskaya@10 lab08]$ [
```

Рис. 3: Проверка работы файла

Далее изменяю текст программы, добавив изменение значение регистра есх в цикле.(рис. [-@fig:004]).

```
GNU nano 7.2
                                    /home/daryayasinovskaya/work/arch-pc/lab08/
; Программа вывода значений регистра 'есх'
,
%include 'in_out.asm'
msgl db 'Введите N: ',0h
        .bss
  resb 10
global _start
; ---- Вывод сообщения 'Введите N: '
mov eax,msgl
call sprint
; ---- Ввод 'N'
mov ecx, N
mov edx, 10
call sread
; ---- Преобразование 'N' из символа в число
mov eax,N
call atói
mov [N],eax
; ----- Организация цикла
mov есх,[N] ; Счетчик цикла, `есх=N`
sub ecx,1 ; `ecx=ecx-1
mov [N],ecx
mov eax,[N]
call iprintLF ; Вывод значения `N`
loop label ; `ecx=ecx-1` и если `ecx` не '0'
; переход на `label`
call quit
```

Рис. 4: Изменение файла

Создаю исполняемый файл и проверяю его работу.(рис. [-@fig:005]).

```
[daryayasinovskaya@10 lab08]$ nasm -f elf lab8-1.asm
[daryayasinovskaya@10 lab08]$ ld -m elf_i386 -o lab8-1 lab8-1.o
[daryayasinovskaya@10 lab08]$ ./lab8-1
Введите N: 10
9
7
5
3
1
[daryayasinovskaya@10 lab08]$ [
```

Рис. 5: Проверка работы файла

Мы видим, что число проходов цикла не соответствует значению N.

Вношу изменения в текст программы, добавив команды push и pop.(рис. [-@fig:006]).

```
GNU nano 7.2
                                /home/daryayasinovskaya/work/arch-p
; Программа вывода значений регистра 'есх'
,
%include 'in_out.asm'
msgl db 'Введите N: ',0h
  CTION .bss
resb 10
global _start
; ---- Вывод сообщения 'Введите N: '
mov eax,msg1
call sprint
; ---- Ввод 'N'
mov ecx, N
mov edx, 10
call sread
; ---- Преобразование 'N' из символа в число
mov eax,N
call atoi
mov [N],eax
; ----- Организация цикла
mov ecx,[N] ; Счетчик цикла, `ecx=N`
push ecx ; добавление значения есх в стек
sub ecx,1
mov [N],ecx
mov eax,[N]
call iprintLF
рор есх ; извлечение значения есх из стека
loop label
call quit
```

Рис. 6: Внесение изменений в текст программы

Создаю исполняемый файл и запускаю ero.(рис. [-@fig:007]).

```
[daryayasinovskaya@10 lab08]$ nasm -f elf lab8-1.asm
[daryayasinovskaya@10 lab08]$ ld -m elf_i386 -o lab8-1 lab8-1.o
[daryayasinovskaya@10 lab08]$ ./lab8-1
Введите N: 10
9
8
7
6
5
4
3
2
1
0
[daryayasinovskaya@10 lab08]$
```

Рис. 7: Запуск программы

В данном случае число проходов цикла соответствует значению N. Создаю файл lab8-2.asm.

```
[daryayasinovskaya@10 lab08]$ touch lab8-2.asm
```

Рис. 8: Создание файла lab8-2.asm

Ввожу в него программу из листинга 8.2

```
GNU nano 7.2
                                   /home/daryayasinovskaya/work/
%include 'in_out.asm'
msg db "Результат: ",0
global _start
start
рор есх ; Извлекаем из стека в `есх` количество
; аргументов (первое значение в стеке)
pop edx ; Извлекаем из стека в `edx` имя программы
; (второе значение в стеке)
sub ecx,1 ; Уменьшаем `ecx` на 1 (количество
; аргументов без названия программы)
mov esi, 0 ; Используем `esi` для хранения
; промежуточных сумм
cmp есх,0h ; проверяем, есть ли еще аргументы
jz _end ; если аргументов нет выходим из цикла
; (переход на метку `_end`)
рор еах ; иначе извлекаем следующий аргумент из стека
call atoi ; преобразуем символ в число
add esi,eax ; добавляем к промежуточной сумме
; след. аргумент `esi=esi+eax`
loop next ; переход к обработке следующего аргумента
mov eax, msg ; вывод сообщения "Результат: "
call sprint
mov eax, esi ; записываем сумму в регистр `eax`
call iprintLF ; печать результата
call quit ; завершение программы
```

Рис. 9: Ввод программы из листинга 8.2

Создаю исполняемый файл и запускаю его с аргументами 30б 10 и "12".(рис. [-@fig:010]).

```
[daryayasinovskaya@10 lab08]$ nasm -f elf lab8-2.asm
[daryayasinovskaya@10 lab08]$ ld -m elf_i386 -o lab8-2 lab8-2.o
[daryayasinovskaya@10 lab08]$ ./lab8-2 30 10 '12'
30
10
12
[daryayasinovskaya@10 lab08]$
```

Рис. 10: Запуск программы

Программой было обработано 3 аргумента.

Создаю файл lab8-3.asm и ввожу в него программу из листинга 8.3.(рис. [-@fig:011]).

```
[daryayasinovskaya@10 lab08]$ touch lab8-3.asm
```

Рис. 11: Ввод программы из листинга 8.3

Созадю исполняемый файл и запускаю его, указав аргументы.(рис. [-@fig:002]).

```
[daryayasinovskaya@10 lab08]$ nasm -f elf lab8-3.asm
[daryayasinovskaya@10 lab08]$ ld -m elf_i386 -o lab8-3 lab8-3.o
[daryayasinovskaya@10 lab08]$ ./lab8-3 17 24 5 10
Результат: 56
[daryayasinovskaya@10 lab08]$
```

Рис. 12: Проверка работы файла

Программа работает.

Теперь изменяю текст программы из листинга 8.3 так, чтобы он вычислял произведение агрументов каждой строки.(рис. [-@fig:013]).

```
GNU nano 7.2
                                   /home/daryayasinovskaya/work/arch-
%include 'in_out.asm'
msg db "Результат: ",0
global _start
рор есх ; Извлекаем из стека в `есх` количество
; аргументов (первое значение в стеке)
pop edx ; Извлекаем из стека в `edx` имя программы
; (второе значение в стеке)
sub ecx,1 ; Уменьшаем `ecx` на 1 (количество
; аргументов без названия программы)
mov esi, 1 ; Используем `esi` для хранения
; промежуточных сумм
cmp ecx,0h ; проверяем, есть ли еще аргументы
jz _end ; если аргументов нет выходим из цикла
; (переход на метку `_end`)
рор еах ; иначе извлекаем следующий аргумент из стека
call atoi ; преобразуем символ в число
mul esi
mov esi, eax
loop next ; переход к обработке следующего аргумента
mov eax, msg ; вывод сообщения "Результат: "
call sprint
mov eax, esi ; записываем сумму в регистр `eax`
call iprintLF ; печать результата
call quit ;завершение программы
```

Рис. 13: Изменение текста листинга 8.3

Создаю исполняемый файл и запускаю его, указав аргументы.(рис. [-@fig:114]).

```
[daryayasinovskaya@10 lab08]$ nasm -f elf lab8-3.asm
[daryayasinovskaya@10 lab08]$ ld -m elf_i386 -o lab8-3 lab8-3.o
[daryayasinovskaya@10 lab08]$ ./lab8-3 2 6 9
Результат: 108
[daryayasinovskaya@10 lab08]$
```

Рис. 14: Проверка работы программы

Самостоятельная работа

Создаю файл lab8-4.asm и начинаю написание программы, которая находит сумму значений функии f(x) для своео варианта(вариант 16).(рис. [-@fig:015]).

```
GNU nano 7.2
                                    /home/daryayasinovskaya/work/a
%include'in_out.asm'
msgl db "Результат: ",0
msg2 db "Функция: f(x)=4x−3"
global _start
mov eax,msg2
call sprintLF
рор есх
pop edx
sub ecx,1
mov esi, 0
mov edi, 4
cmp ecx,0h
jz _end
pop eax
call atoi
mul edi
sub eax,3
add esi,eax
loop next
mov eax, msgl
call sprint
mov eax, esi
call iprintLF
call quit
```

Рис. 1: Написание программы для самостоятельной работы

Создаю исполняемый файл и запускаю его, указав агрументы.(рис. [-@fig:014]).

```
[daryayasinovskaya@10 lab08]$ nasm -f elf lab8-4.asm
[daryayasinovskaya@10 lab08]$ ld -m elf_i386 -o lab8-4 lab8-4.o
[daryayasinovskaya@10 lab08]$ ./lab8-4 1 2 3 4
Функция : f(x) = 4x - 3Linker: LLD 16.0.6
Результат: 28
[daryayasinovskaya@10 lab08]$
```

Рис. 2: Запуск программы

```
Программы работает корректно.
  Текст программы:
  %include 'in out.asm'
SECTION .data
msg db "Результат:",0
msg2 db "Функция: f(x)=4x-3"
SECTION .text
global _start
_start:
mov eax,msg2
call sprintLF
pop ecx
pop edx
sub ecx,1
mov esi, 0
mov edi, 4 next:
cmp ecx,0h
jz end
pop eax
call atoi
mul edi
sub eax,3
```

add esi,eax

loop next

_end:

mov eax, msg

call sprint

mov eax, esi

call iprintLF

call quit

Выводы

Я научилась написанию программ с исползованием циклов и обработкой аргументов командной строки.