Exercices de repérage dans le plan

Tous les graphiques des exercices de ce chapitre peuvent être faits sur papier quadrillé. Le plan est muni d'un repère (O, I, J) orthonormé.

Lectures et représentations

1 Lire les coordonnées des onze points marqués sur la figure.

- **2 1.** Placer les points A(2; 1) et B(4; -3).
 - 2. Déterminer par lecture graphique les coordonnées du milieu M de [AB].
 - **3.** Placer le point N, symétrique de B par rapport à A. Lire les coordonnées du point N.

Calcul des coordonnées du milieu

- **3 1.** Placer les points suivants : A(-2; 1), B(-1; -2), C(3; 0) et D(2; 3).
 - 2. a. Calculer les coordonnées du milieu M de [AC].
 - b. Calculer les coordonnées du milieu P de [BD].

- **3. a.** Que constate-t-on?
 - b. Que peut-on en déduire pour le quadrilatère ABCD?

Démontrer l'existence d'une symétrie par le calcul

4 On considère les points A(1; -2), B(4; -1) et C(-2; -3).

Démontrer que le point C est le symétrique de B par rapport au point A. 1^{re} étape :

On fait une figure et on interprète la situation :

Démontrer que C est le symétrique de B par rapport à A revient à démontrer que A est le milieu de [CB].

 2^{e} étape :

On calcule les coordonnées du milieu de [CB] et on conclut.

5 On considère les points suivants :

R(-3; 1); S(-2; -1) et T(-1; -3).

Démontrer que le point T est le symétrique du point R par rapport au point S.

Coordonnées de l'image d'un point par une symétrie centrale

6 Placer les points A(-3; -1) et M(1; -1, 5).

Déterminer les coordonnées du point B, symétrique de A par rapport à M.

 1^{re} étape :

On fait une figure et on interprète la situation :

Dire que B est le symétrique de A par rapport à M revient à dire que M est le milieu de [AB].

 2^{e} étape :

On note les coordonnées du point B et on exprime les coordonnées du milieu de [AB] en fonction des coordonnées de B, puis on compare avec les coordonnées de M.

 3^{e} étape :

On résout les deux équations et on vérifie sur la figure les solutions obtenues.

 \sim

Calcul de distance en repère orthonormé

- 7 1. Placer les points suivants : E(3; 2); F(-3; 4) et M(-2; -3).
 - 2. a. Calculer MF et ME.
 - **b.** Que peut-on en déduire pour le point M?
- 8 1. Représenter le quadrilatère EDFG de sommets : E(2; 1); F(1; -4); G(-4; -5) et H(-3; 0).
 - 2. Calculer la longueur des côtés de EFGH.
 - 3. Que peut-on en déduire?
 - 1. a. Placer les points E(5; 2) et B(4; -1).
 - b. Tracer le cercle C de centre E et qui passe par B.
 - 2. Calculer le rayon du cercle.
 - 3. Démontrer que ce cercle passe par le point A de coordonnées (8; 3).
- 10 1. Lire sur le graphique ci-dessous les coordonnées des points D, R et L. 14

2. Quelle est la nature du triangle DRL? Justifier la réponse à l'aide de calculs.

Triangles particuliers

11 1. Placer les points suivants : A(-1; 2), B(-3; -1) et C(3; -5).

- 2. Montrer que AB = $\sqrt{13}$ et BC = $2\sqrt{10}$.
- 3. Démontrer que ABC est un triangle rectangle.
- 1. Placer les points suivants : A(-1; -2); B(-2; 1) et C(4; 3).
- 2. a. Calculer BC.

12

- **b.** On admet que AB = $\sqrt{10}$ et AC = $5\sqrt{2}$. Démontrer que ABC est un triangle rectangle.
- **3.** Déterminer les coordonnées du centre et du rayon de son cercle circonscrit.
- 1. Placer les points suivants : G(-3; 2); H(-4; -1) et K(2; -3).
- 2. Le triangle GHK est-il rectangle? Justifier la réponse.
- 3. Si l'unité graphique est le centimètre, déterminer son aire.
- 1. Lire sur le graphique ci-dessous les coordonnées des points E, F et G.

2. Le triangle EFG est-il rectangle? Justifier la réponse à l'aide de calcul.

1. Placer les points suivants :

$$R(-3; -1); S(-4; 1) \text{ et } Q(3; 2).$$

- 2. Démontrer que le triangle QRS est rectangle.
- 3. a. Déterminer la valeur exacte de $\tan \widehat{QRS}$.
 - **b.** En déduire l'arrondi au degré près de \widehat{QRS} .
- 16 1. Placer les points suivants :

$$A(1; 6); B(-3; 3); C(3; 0) et H(-1; 2).$$

- 2. a. Démontrer que les triangles AHB et AHC sont rectangles en H.
 - **b.** Que peut-on en déduire pour la droite (AH)?
 - **c.** Si l'unité graphique est le centimètre, déterminer l'aire du triangle ABC.

Quadrilatères particuliers

17 1. Placer les points

$$A(2; 0), R(-1; -1), E(-4; 1) \text{ et } U(-1; 2).$$

- 2. a. Démontrer les segments [AE] et [RU] ont même milieu.
 - b. En déduire la nature du quadrilatère AREU.
- 18 1. Lire les coordonnées des points A, B, C et D de la figure suivante.

- ${\bf 2.}\,$ Démontrer à l'aide de calculs que ABCD est un parallélogramme.
- 3. a. Calculer AC et BD.

- b. Que peut-on en déduire pour le quadrilatère ABCD?
- 4. Calculer l'arrondi au degré de l'angle .
- **9 1.** Placer les points A(4; -1), Q(-1; -2), N(0; 3) et M(5; 4).
 - 2. Démontrer à l'aide de calculs que AQNM est un parallélogramme.
 - 3. a. Calculer QA et QN.
 - **b.** Que peut-on en déduire pour le quadrilatère AQNM?
 - 4. Déterminer par le calcul les coordonnées de son centre de symétrie.

Exercices

Pour aller plus loin Fractions et radicaux

Pour les exercices 20 et 21, on ne demande pas de faire de figure.

20 On considère les points A, B, C et D.

Démontrer que ABCD est un parallélogramme (on pourra démontrer que les diagonales se coupent en leur milieu).

21 On considère les points M, N(3; $-\sqrt{2}$), P et Q. Démontrer que MNPQ est un parallélogramme.

Problèmes

Le but des problèmes de cette rubrique est d'utiliser, dans le contexte de ce chapitre de repérage, des propriétés géométriques déjà rencontrées par ailleurs.

- 22 Théorème de la médiane
 - 1. Placer les points suivants :

$$M(-2; 2); N(6; -4) \text{ et } P(2; -6).$$

- 2. Calculer les coordonnées du milieu A de [MN].
- **3.** a. Calculer MN et AP.
 - **b.** Que peut-on en déduire pour le triangle MNP? Justifier la réponse.
- 23 Théorème de Thalès
 - 1. Placer les points suivants :

$$A(-7; -1)$$
 et $B(-4; 1)$.

2. a. Placer les points C et D tels que C soit le symétrique de A par rapport à B et C soit le milieu de [BD].

- b. Expliquer pourquoi les points A, B et D sont alignés.
- c. Exprimer sous forme de fraction irréductible le quotient .
- **3.** On donne le point E(4 ; -3). La parallèle à (DE) qui passe par B coupe (AE) en P.

Calculer la valeur exacte des longueurs AP et PB.

24 Alignement

- 1. Calculer les longueurs AB, BC et AC pour A(-6 ; 0), B(-3 ; 1) et C(6 ; 4).
- 2. En déduire que les points A, B et C sont alignés.

25 Droites des milieux

- **1.** Placer les points suivants : A(2;A(2;2);B(4;-4)) et C(-1;-3).
- 2. Calculer les coordonnées du milieu M de [AC].
- **3.** La parallèle à la droite (BC) qui passe par M coupe le côté [AB] en N. Calculer les coordonnées du point N. Justifier la réponse.
- 26 1. Lire les coordonnées des points A, B, M et N de la figure suivante :

- 2. Calculer les longueurs NB et MB.
- 3. On admet que NA = $\sqrt{29}$ et MA = $\sqrt{65}$.

- **a.** Que peut-on en déduire des résultats de la question 2 pour la droite (NM)?
- **b.** Quel est le symétrique du point A par rapport à la droite (MN)?
- 1. Placer les points suivants :

$$A(-3; 2); B(1; -4) \text{ et } C(-1; -2).$$

- 2. Démontrer que le triangle ABC est rectangle et isocèle.
- 1. Placer les points suivants :

$$A(1; 4); B(2; -4) \text{ et } C(-6; 0).$$

- **2.** Quelle est la nature précise du triangle ABC? Justifier la réponse.
- 3. Soit H le pied de la hauteur issue de A. Calculer la valeur exacte de AH.
- 4. On suppose dans cette question que l'unité graphique est le centimètre.

Calculer l'aire du triangle ABC.

Quadrilatères particuliers

- **29** Placer les points A(-3; -1), B(-4; 1), C(2; 4) et D(3; 2). Démontrer que ABCD est un rectangle.
- **30** Placer les points E(2; -5), F(-3; 0), G(-4; 7) et H(1; 2). Démontrer que EFGH est un losange.
- **31** Placer les points E(1; -2), F(-2; -4), G(-4; -1) et H(-1; 1). Démontrer que EFGH est un carré.

Devoirs à la maison

- **1.** a. Vérifier que le point A(3; -1) est sur la droite d_1 , représentation graphique de la fonction affine $x \mapsto x 2$.
 - **b.** Vérifier que le point B(4; 6) est sur la droite d_2 , représentation graphique de la fonction affine $x \mapsto -3x + 18$.
 - 2. Déterminer les coordonnées du point C, intersection de ces deux droites.
 - 3. Démontrer que le triangle ABC est rectangle en C.
 - **4.** Déterminer les coordonnées du point M, centre du cercle circonscrit au triangle ABC.
 - 5. Démontrer que le point F(1; 5) est un point de ce cercle.

ĊΤ

- 6. Calculer l'angle au degré près.
- **33 1.** Dans un repère orthonormé (O, I, J), placer les points suivants : A(-1; 1); B(3; 3); C(5; -1) et D(1; -3). L'unité est le centimètre.
 - **2.** Calculer les coordonnées des milieux respectifs de [AC] et [BD]. En déduire la nature du quadrilatère ABCD.
 - 3. Calculer la distance BC.
 - 4. On admet que AB = 2 et AC = 2.
 - a. Montrer que ABC est un triangle isocèle et rectangle.
 - b. Préciser alors, en justifiant la réponse, la nature du quadrilatère ABCD.
- 34 1. Lire sur le graphique ci-dessous les coordonnées des points D, E, F, L, et Q.

On utilisera les résultats obtenus pour ma suite de l'exercice.

- 2. Démontrer que la droite (FE) est tangente au cercle en E.
- 3. La droite (LQ) est-elle tangente au cercle en L? Justifier.
- **1.** Placer les points A(1; -3), B(5; -1) et C(-3; 5).
- 2. Démontrer que le triangle ABC est rectangle.
- **3.** Déterminer les coordonnées du point M, centre du cercle C circonscrit au triangle ABC. Quel est le rayon de ce cercle C?
- **4.** Démontrer que le point D(4; -2) est sur C.
- 5. a. Quelle est la nature du triangle DCB? Justifier.
 - b. Calculer l'arrondi au degré près de l'angle.