MANAGING LOCAL USERS AND GROUPS

PERFORMANCE CHECKLIST

In this lab you will set a default local password policy, create a supplementary group for three users, allow that group to use **sudo** to run commands as **root**, and modify the password policy for one user.

OUTCOMES

You should be able to:

- Set a default password aging policy of the local user's password.
- · Create a group and use the group as a supplementary group for new users.
- Create three new users with the new group as their supplementary group.
- Configure the group members of the supplementary group to run any command as any user using **sudo**.
- Set a user-specific password aging policy.

BEFORE YOU BEGIN

Log in to workstation as student using student as the password.

On workstation, run **lab users-review start** to start the exercise. This script creates the necessary files to ensure that the environment is set up correctly.

[student@workstation ~]\$ lab users-review start

- 1. From workstation, open an SSH session to serverb as student.
- **2.** On serverb, ensure that newly created users have passwords that must be changed every 30 days.
- 3. Create the new group called consultants with a GID of 35000.
- **4.** Configure administrative rights for all members of consultants to be able to execute any command as any user.
- **5.** Create the consultant1, consultant2, and consultant3 users with consultants as their supplementary group.
- **6.** Set the consultant1, consultant2, and consultant3 accounts to expire in 90 days from the current day.
- **7.** Change the password policy for the consultant2 account to require a new password every 15 days.

8. Additionally, force the consultant1, consultant2, and consultant3 users to change their passwords on the first login.

Evaluation

On workstation, run the **lab users-review grade** command to confirm success of this exercise.

[student@workstation ~]\$ lab users-review grade

Finish

On workstation, run **lab users-review finish** to complete this lab. This script deletes the user accounts and files created throughout the lab to ensure that the environment is clean.

[student@workstation ~]\$ lab users-review finish

CONTROLLING ACCESS TO FILES

PERFORMANCE CHECKLIST

In this lab, you will configure permissions on files and set up a directory that users in a particular group can use to conveniently share files on the local file system.

OUTCOMES

You should be able to:

- Create a directory where users can work collaboratively on files.
- · Create files that are automatically assigned group ownership.
- · Create files that are not accessible outside of the group.

BEFORE YOU BEGIN

Log in to workstation as student using student as the password.

On workstation, run the **lab perms-review start** command. The command runs a start script that determines if serverb is reachable on the network. The script also creates the techdocs group and three users named tech1, tech2, and database1.

[student@workstation ~]\$ lab perms-review start

- 1. Use the **ssh** command to log in to serverb as the student user. Switch to root on serverb using redhat as the password.
- 2. Create a directory called /home/techdocs.
- 3. Change the group ownership of the /home/techdocs directory to the techdocs group.
- **4.** Verify that users in the techdocs group can create and edit files in the /home/techdocs directory.
- 5. Set permissions on the /home/techdocs directory. On the /home/techdocs directory, configure setgid (2), read/write/execute permissions (7) for the owner/user and group, and no permissions (0) for other users.
- **6.** Verify that the permissions are set properly.
- 7. Confirm that users in the techdocs group can now create and edit files in the /home/ techdocs directory. Users not in the techdocs group cannot edit or create files in the /home/techdocs directory. Users tech1 and tech2 are in the techdocs group. User database1 is not in that group.
- **8.** Modify the global login scripts. Normal users should have a umask setting that prevents others from viewing or modifying new files and directories.
- 9. Log off from serverb.

[student@serverb ~]\$ exit logout Connection to serverb closed.

Evaluation

On workstation, run the **lab perms-review grade** script to confirm success on this exercise.

[student@workstation ~]\$ lab perms-review grade

Finish

On workstation, run the lab perms-review finish script to complete the lab.

 $[student@workstation ~] \$ \ \textbf{lab perms-review finish}$

MANAGING NETWORKING

PERFORMANCE CHECKLIST

In this lab, you will configure networking settings on a Red Hat Enterprise Linux server.

OUTCOMES

You should be able to configure two static IPv4 addresses for the primary network interface.

BEFORE YOU BEGIN

Log in as the student user on workstation using student as the password.

From workstation run the **lab net-review start** command. The command runs a start script that determine if the host, serverb, is reachable on the network.

[student@workstation ~]\$ lab net-review start

- 1. Use the **ssh** command to log in to **serverb** as the **student** user. The systems are configured to use SSH keys for authentication, so a password is not required to log in to **serverb**.
- 2. Use the **sudo** -i command to switch to the root user. If prompted, use student as the password.
- 3. Create a new connection with a static network connection using the settings in the table.

PARAMETER	SETTING
Connection name	lab
Interface name	enX (might vary, use the interface that has 52:54:00:00:fa:0b as its MAC address)
IP address	172.25.250.11/24
Gateway address	172.25.250.254
DNS address	172.25.250.254

- **4.** Configure the new connection to be autostarted. Other connections should not start automatically.
- **5.** Modify the new connection so that it also uses the address 10.0.1.1/24.
- **6.** Configure the **hosts** file so that 10.0.1.1 can be referenced as **private**.
- **7.** Reboot the system.
- 8. From workstation use the ping command to verify that serverb is initialized.

Evaluation

On workstation, run the lab net-review grade script to confirm success on this lab.

[student@workstation ~]\$ lab net-review grade

Finish

On workstation, run the lab net-review finish script to finish this lab.

[student@workstation ~]\$ lab net-review finish

INSTALLING AND UPDATING SOFTWARE PACKAGES

PERFORMANCE CHECKLIST

In this lab, you will manage software repositories and module streams, and install and upgrade packages from those repositories and streams.

OUTCOMES

You should be able to:

- · Manage software repositories and module streams.
- Install and upgrade packages from repositories and streams.
- · Install an RPM package.

BEFORE YOU BEGIN

Log in to workstation as student using student as the password.

On workstation, run the **lab software-review start** command. This script ensures that serverb is available. It also downloads any packages required for the lab exercise.

[student@workstation ~]\$ lab software-review start

- On serverb configure a software repository to obtain updates. Name the repository as errata and configure the repository in the /etc/yum.repos.d/errata.repo file. It should access http://content.example.com/rhel8.0/x86_64/rhcsa-practice/errata. Do not check GPG signatures.
- 2. On serverb, install new package xsane-gimp and the Apache HTTP Server module from the 2.4 stream and the common profile.
- **3.** For security reasons, serverb should not be able to send anything to print. Achieve this by removing the *cups* package. Exit from the root account.
- **4.** The start script downloads the *rhcsa-script-1.0.0-1.noarch.rpm* package in the **/home/ student** directory on serverb.

Confirm that the package *rhcsa-script-1.0.0-1.noarch.rpm* is available on **serverb**. Install the package. You will need to gain superuser privileges to install the package. Verify that the package is installed. Exit from **serverb**.

Evaluation

On workstation, run the lab software-review grade script to confirm success on this lab.

[student@workstation ~]\$ lab software-review grade

Finish

On workstation, run the **lab software-review finish** script to complete this exercise. This script removes the repository and packages created during this exercise.

 $[student@workstation ~] \$ \ \textbf{lab software-review finish}$