Programación funcional I

Ricardo Pérez López

IES Doñana, curso 2019/2020

Índice general

1.	1.1.	nguaje de programación Python2Historia
2.	2.1.	lelo de ejecución2Modelo de ejecución2Modelo de sustitución3
3.	Expr	resiones 3
	3.1.	Evaluación de expresiones
		3.1.1. Transparencia referencial
		3.1.2. Valores, expresión canónica y forma normal
		3.1.3. Formas normales y evaluación
	3.2.	Literales
	3.3.	Operaciones, operadores y operandos
		3.3.1. Aridad de operadores
		3.3.2. Paréntesis
		3.3.3. Asociatividad de operadores
		3.3.4. Precedencia de operadores
	3.4.	Funciones y métodos
		3.4.1. Funciones
		3.4.2. Métodos
	3.5.	Tipos de datos
		3.5.1. Concepto
		3.5.2. Tipos de datos básicos
	3.6.	Operaciones predefinidas
		3.6.1. Operadores predefinidos
		3.6.2. Funciones predefinidas
		3.6.3. Métodos predefinidos
4.	Álge	bra de Boole 15
••		El tipo de dato booleano
		Operadores relacionales
		Operadores lógicos 16

	4.4. Axiomas	16
	4.4.1. Traducción a Python	17
	4.5. Teoremas fundamentales	. 17
	4.5.1. Traducción a Python	18
	4.6. El operador ternario	18
5.	Definiciones	19
	5.1. Definiciones	. 19
	5.2. Identificadores y ligaduras (<i>binding</i>)	19
	5.2.1. Reglas léxicas	
	5.3. Evaluación de expresiones con ligaduras	
	5.4. Entorno (environment)	
	5.5. Tipado estático vs. dinámico	
	5.6. Scripts	24
6.	Documentación interna	25
	6.1. Identificadores significativos	25
	6.2. Comentarios	25
Re	puestas a las preguntas	25
Bil	liografía	26

1. El lenguaje de programación Python

1.1. Historia

1.2. Características principales

2. Modelo de ejecución

2.1. Modelo de ejecución

- Cuando escribimos programas (y algoritmos) nos interesa abstraernos del funcionamiento detallado de la máquina que va a ejecutar esos programas.
- Nos interesa buscar una metáfora, un símil de lo que significa ejecutar el programa.
- De la misma forma que un arquitecto crea modelos de los edificios que se pretenden construir, los programadores podemos usar modelos que *simulan* en esencia el comportamiento de nuestros programas.
- Esos modelos se denominan modelos de ejecución.
- Los modelos de ejecución nos permiten razonar sobre los programas sin tener que ejecutarlos.
- Definición:

Modelo de ejecución:

Es una herramienta conceptual que permite a los programadores razonar sobre el funcionamiento de un programa sin tener que ejecutarlo directamente en el ordenador.

- Podemos definir diferentes modelos de ejecución dependiendo, principalmente, de:
 - El paradigma de programación utilizado (ésto sobre todo).
 - El lenguaje de programación con el que escribamos el programa.
 - Los aspectos que queramos estudiar de nuestro programa.

2.2. Modelo de sustitución

- En programación funcional, un programa es una expresión y lo que hacemos al ejecutarlo es evaluar dicha expresión, usando para ello las definiciones de operadores y funciones predefinidas por el lenguaje, así como las definidas por el programador y que el código fuente del programa.
- La **evaluación de una expresión**, en esencia, consiste en **sustituir**, dentro de ella, unas *sub-expresiones* por otras que, de alguna manera, estén más cerca del valor a calcular, y así hasta calcular el valor de la expresión al completo.
- Por ello, la ejecución de un programa funcional se puede modelar como un sistema de reescritura al que llamaremos modelo de sustitución.
- La ventaja de este modelo es que no necesitamos recurrir a pensar que debajo de todo esto hay un ordenador con una determinada arquitectura *hardware*, que almacena los datos en celdas de la memoria principal, que ejecuta ciclos de instrucción en la CPU, que las instrucciones modifican los datos de la memoria, etc.
- Todo resulta mucho más fácil que eso.
- Todo se reduce a evaluar expresiones.

3. Expresiones

3.1. Evaluación de expresiones

- Ya hemos visto que la ejecución de un programa funcional consiste, en esencia, en evaluar una expresión.
- **Evaluar una expresión** consiste en determinar el **valor** de la expresión. Es decir, una expresión *representa* o **denota** un valor.
- En programación funcional, el significado de una expresión es su valor, y no puede ocurrir ningún otro efecto, ya sea oculto o no, en ninguna operación que se utilice para calcularlo.

- Una característica de la programación funcional es que toda expresión posee un valor definido, a diferencia de otros paradigmas en los que, por ejemplo, existen las sentencias, que no poseen ningún valor.
- Además, el orden en el que se evalúe no debe influir en el resultado.
- Podemos decir que las expresiones:

3

1 + 2

5 - 3

denotan todas el mismo valor (el número abstracto 3).

- Es decir: todas esas expresiones son representaciones diferentes del mismo ente abstracto.
- Lo que hace el sistema es buscar la representación más simplificada o reducida posible (en este caso, 3).
- Por eso a menudo usamos, indistintamente, los términos reducir, simplificar y evaluar.

3.1.1. Transparencia referencial

- En programación funcional, el valor de una expresión depende, exclusivamente, de los valores de sus sub-expresiones constituyentes.
- Dichas sub-expresiones, además, pueden ser sustituidas libremente por otras que tengan el mismo valor.
- A esta propiedad se la denomina transparencia referencial.
- En la práctica, eso significa que la evaluación de una expresión no puede provocar **efectos laterales**.
- Formalmente, se puede definir así:

Transparencia referencial:

Si p = q, entonces f(p) = f(q).

3.1.2. Valores, expresión canónica y forma normal

- Los ordenadores no manipulan valores, sino que sólo pueden manejar representaciones concretas de los mismos.
 - Por ejemplo: utilizan la codificación binaria en complemento a 2 para representar los números enteros.
- Pidamos que la representación del valor resultado de una evaluación sea única.
- De esta forma, seleccionemos de cada conjunto de expresiones que denoten el mismo valor, a lo sumo una que llamaremos **expresión canónica de ese valor**.

- Además, llamaremos a la expresión canónica que representa el valor de una expresión la **forma normal de esa expresión**.
- Con esta restricción pueden quedar expresiones sin forma normal.
- Ejemplo:
 - De las expresiones anteriores:
 - * 3
 - *1+2
 - *5 3

que denotan todas el mismo valor abstracto **3**, seleccionamos una (la expresión **3**) como la **expresión canónica** de ese valor.

- Igualmente, la expresión 3 es la **forma normal** de todas las expresiones anteriores (y de cualquier otra expresión con valor **3**).
- Es importante no confundir el valor abstracto **3** con la expresión 3 que representa dicho valor.
- Hay valores que no tienen expresión canónica:
 - Las funciones (los valores de tipo función).
 - El número π no tiene representación decimal finita, por lo que tampoco tiene expresión canónica.
- Y hay expresiones que no tienen forma normal:
 - Si definimos inf = inf + 1, la expresión inf (que es un número) no tiene forma normal.
 - Lo mismo ocurre con $\frac{1}{0}$.

3.1.3. Formas normales y evaluación

- A partir de todo lo dicho, la ejecución de un programa será el proceso de encontrar su forma normal
- Un ordenador evalúa una expresión (o ejecuta un programa) buscando su forma normal y mostrando este resultado.
- Con los lenguajes funcionales los ordenadores alcanzan este objetivo a través de múltiples pasos de reducción de las expresiones para obtener otra equivalente más simple.
- El sistema de evaluación dentro de un ordenador está hecho de forma tal que cuando ya no es posible reducir la expresión es porque se ha llegado a la forma normal.

3.2. Literales

- Un literal es un valor escrito directamente en el código del programa (en una expresión).
- El literal representa un valor constante.
- Ejemplos:
 - -3, -2, -1, 0, 1, 2, 3 (literales que representan números enteros)
 - 3.5, -2.7 (literales que representan números reales)
 - "hola", "pepe", "25", "" (literales de tipo cadena)
- Los literales tienen que satisfacer las reglas de sintaxis del lenguaje.
- Gracias a esas reglas sintácticas, el intérprete puede identificar qué literales son, qué valor representan y de qué tipo son.
- Se deduce, pues, que un literal debe ser la expresión canónica del valor correspondiente.

3.3. Operaciones, operadores y operandos

- En una expresión puede haber:
 - Datos
 - Operaciones a realizar sobre esos datos
- A su vez, las operaciones se pueden representar en forma de:
 - Operadores
 - Funciones

- Métodos
- Empezaremos hablando de los operadores.
- Un **operador** es un símbolo o palabra clave que representa la realización de una *operación* sobre unos datos llamados **operandos**.
- Ejemplos:
 - Los operadores aritméticos: +, -, *, / (entre otros):

```
3 + 4
```

(aquí los operandos son los números 3 y 4)

```
9 * 8
```

(aquí los operandos son los números 9 y 8)

- El operador in para comprobar si un carácter pertenece a una cadena:

```
"c" in "barco"
```

(aquí los operandos son las cadenas "c" y "barco")

3.3.1. Aridad de operadores

- Los operadores se clasifican en función de la cantidad de operandos sobre los que operan en:
 - Unarios: operan sobre un único operando.

Ejemplo: el operador - que cambia el signo de su operando:

-5

- **Binarios**: operan sobre dos operandos.

Ejemplo: la mayoría de operadores aritméticos.

- **Ternarios**: operan sobre tres operandos.

Veremos un ejemplo más adelante.

3.3.2. Paréntesis

- Los paréntesis sirven para agrupar elementos dentro de una expresión.
- Se usan, sobre todo, para hacer que varios elementos actúen como uno solo en el contexto de una operación.
 - Por ejemplo:

```
(3 + 4) * 5 vale 35
3 + (4 * 5) vale 23
```

3.3.3. Asociatividad de operadores

• En ausencia de paréntesis, cuando un operando está afectado a derecha e izquierda por el **mismo operador**, se aplican las reglas de la **asociatividad**:

```
8 / 4 / 2
```

El 4 está afectado a derecha e izquierda por el mismo operador /, por lo que se aplican las reglas de la asociatividad. El / es *asociativo por la izquierda*, así que se actúa primero el operador que está a la izquierda. Equivale a hacer:

```
(8 / 4) / 2
```

Si hiciéramos

```
8 / (4 / 2)
```

el resultado sería distinto.

3.3.4. Precedencia de operadores

 En ausencia de paréntesis, cuando un operando está afectado a derecha e izquierda por distinto operador, se aplican las reglas de la prioridad:

```
8 + 4 * 2
```

El 4 está afectado a derecha e izquierda por distintos operadores (+ y *), por lo que se aplican las reglas de la prioridad. El * tiene *más prioridad* que el +, así que actúa primero el *. Equivale a hacer:

```
8 + (4 * 2)
```

Si hiciéramos

```
(8 + 4) * 2
```

el resultado sería distinto.

3.4. Funciones y métodos

3.4.1. Funciones

- Matemáticamente, una función es una regla que asocia a cada elemento de un conjunto (el conjunto origen o dominio) un único elemento de un segundo conjunto (el conjunto imagen o codominio).
- Se representa así:

$$f: A \rightarrow B$$

$$x \rightarrow f(x)$$

donde A es el conjunto origen y B el conjunto imagen.

Función que asocia a cada polígono con su número de lados

- La **aplicación de la función** f sobre el elemento x se representa por f(x) y corresponde al valor que la función asocia al elemento x en el conjunto imagen.
- En la aplicación f(x), al valor x se le llama **argumento** de la función.
- Por ejemplo:

La función **valor absoluto**, que asocia a cada número entero ese mismo número sin el signo (un número natural).

$$\textit{abs}: \mathbb{Z} \to \mathbb{N}$$

$$x \rightarrow abs(x)$$

Cuando aplicamos la función abs al valor -35 obtenemos:

$$abs(-35) = 35$$

El valor 35 es el resultado de aplicar la función *abs* a su argumento -35.

3.4.1.1. Funciones con varios argumentos

• El concepto de función se puede generalizar para obtener **funciones con más de un argumento**.

 Por ejemplo, podemos definir una función max que asocie a cada par de números el máximo de los dos.

$$\textit{max}: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

$$(x, y) \rightarrow max(x, y)$$

Si aplicamos la función max a los argumentos 13 y −25, el resultado sería 13:

$$max(13, -25) = 13$$

3.4.2. Métodos

- Los **métodos** son, para la programación orientada a objetos, el equivalente a las **funciones** para la programación funcional.
- Los métodos son como funciones que actúan sobre un valor.
- La aplicación de un método se denomina invocación o llamada al método, y se escribe:

que representa la **invocación** del método *m* sobre el valor *v*.

• Los métodos también pueden tener argumentos como cualquier función:

$$v.m(a_1, a_2, ..., a_n)$$

• En la práctica, no hay mucha diferencia entre hacer:

$$v.m(a_1, a_2, ..., a_n)$$

y hacer

$$m(v, a_1, a_2, ..., a_n)$$

- Pero conceptualmente, hay una gran diferencia entre un estilo y otro:
 - El primero es más **orientado a objetos** (el *objeto v* «recibe» un mensaje solicitando la ejecución del método *m*).
 - En cambio, el segundo es más **funcional** (la *función m* se aplica a sus argumentos, de los cuales *v* es uno más).
- Python es un lenguaje *multiparadigma* que soporta ambos estilos y por tanto dispone tanto de funciones como de métodos. Hasta que no veamos la orientación a objetos, supondremos que un método es como otra forma de escribir una función.

• Por ejemplo:

Las cadenas tienen definidas el método count () que devuelve el número de veces que aparece una subcadena dentro de la cadena:

```
'hola caracola'.count('ol')
```

devuelve 2.

```
'hola caracola'.count('a')
```

devuelve 4.

• Si count() fuese una función en lugar de un método, recibiría dos parámetros: la cadena y la subcadena. En tal caso, se usaría así:

```
count('hola caracola', 'ol')
```

- Una operación podría tener forma de operador, de función o de método.
- De hecho, en Python hay operaciones que tienen las tres formas.
- Por ejemplo, la suma de dos números se puede expresar:
 - Mediante el operador +:

```
4 + 3
```

- Mediante la función int.__add__:

```
int.__add__(4, 3)
```

 Mediante el método __add__ ejecutado sobre uno de los números (y pasando el otro número como argumento del método):

```
(4).__add__(3)
```

3.5. Tipos de datos

3.5.1. Concepto

- Los datos que comparten características y propiedades se agrupan en conjuntos.
- Asimismo, sobre cada conjunto de valores se definen una serie de **operaciones**, que son aquellas que tiene sentido realizar con esos valores.
- Un **tipo de datos** define un conjunto de **valores** y el conjunto de **operaciones** válidas que se pueden realizar sobre dichos valores.
- Definición:

Tipo de un dato:

Es una característica del dato que indica el conjunto de *valores* al que pertenece y las *operaciones* que se pueden realizar sobre él.

- El tipo de una expresión es el tipo del valor resultante de evaluar dicha expresión.
- Ejemplos:
 - El tipo int en Python define el conjunto de los **números enteros**, sobre los que se pueden realizar las operaciones aritméticas (suma, producto, etc.) entre otras.
 - El tipo str define el conjunto de las **cadenas**, sobre las que se pueden realizar otras operaciones (la *concatenación*, la *indexación*, etc.).

3.5.1.1. Sistema de tipos

- El **sistema de tipos** de un lenguaje es el conjunto de reglas que asigna un tipo a cada elemento del programa.
- Exceptuando a los lenguajes **no tipados** (Ensamblador, código máquina, Forth...) todos los lenguajes tienen su propio sistema de tipos, con sus características.
- El sistema de tipos de un lenguaje depende también del paradigma de programación que soporte el lenguaje. Por ejemplo, en los lenguajes **orientados a objetos**, el sistema de tipos se construye a partir de los conceptos propios de la orientación a objetos (*clases*, *interfaces...*).

3.5.1.2. Tipado fuerte vs. débil

- Un lenguaje de programación es **fuertemente tipado** (o de **tipado fuerte**) si no se permiten violaciones de los tipos de datos.
- Es decir, un valor de un tipo concreto no se puede usar como si fuera de otro tipo distinto a menos que se haga una conversión explícita.
- Un lenguaje es débilmente tipado (o de tipado débil) si no es de tipado fuerte.
- En los lenguajes de tipado débil se pueden hacer operaciones entre datos cuyo tipos no son los que espera la operación, gracias al mecanismo de *conversión implícita*.
- Eiemplo:
 - Python es un lenguaje **fuertemente tipado**, por lo que no podemos hacer lo siguiente (da un error de tipos):

```
2 + "3"
```

- En cambio, PHP es un lenguaje **débilmente tipado** y la expresión anterior en PHP es perfectamente válida (y vale **5**).

El motivo es que el sistema de tipos de PHP convierte *implícitamente* la cadena "3" en el entero 3 cuando se usa en una operación de suma (+).

3.5.1.3. Errores de tipos

- Cuando se intenta realizar una operación sobre un dato cuyo tipo no admite esa operación, se produce un **error de tipos**.
- Ese error puede ocurrir cuando:

- Los operandos de un operador no pertenecen al tipo que el operador necesita (ese operador no está definido sobre datos de ese tipo).
- Los argumentos de una función o método no son del tipo esperado.
- Por ejemplo:

```
4 + "hola"
```

es incorrecto porque el operador + no está definido sobre un entero y una cadena (no se pueden sumar un número y una cadena).

- En caso de que exista un error de tipos, lo que ocurre dependerá de si estamos usando un lenguaje interpretado o compilado:
 - Si el lenguaje es **interpretado** (Python):

El error se localizará **durante la ejecución** del programa y el intérprete mostrará un mensaje de error advirtiendo del mismo en el momento justo en que la ejecución alcance la línea de código errónea, para acto seguido finalizar la ejecución del programa.

- Si el lenguaje es compilado (Java):

Es muy probable que el comprobador de tipos del compilador detecte el error de tipos **durante la compilación** del programa, es decir, antes incluso de ejecutarlo. En tal caso, se abortará la compilación para impedir la generación de código objeto erróneo.

3.5.2. Tipos de datos básicos

3.5.2.1. Números

- Hay dos tipos numéricos básicos en Python: los enteros y los reales.
 - Los **enteros** se representan con el tipo int.

Sólo contienen parte entera, y sus literales se escriben con dígitos sin punto decimal (ej: 13).

- Los **reales** se representan con el tipo float.

Contienen parte entera y parte fraccionaria, y sus literales se escriben con dígitos y con punto decimal separando ambas partes (ej: 4.87). Los números en notación exponencial (2e3) también son reales.

- Las **operaciones** que se pueden realizar con los números son los que cabría esperar (aritméticas, trigonométricas, matemáticas en general).
- Los enteros y los reales generalmente se pueden combinar en una misma expresión aritmética y suele resultar en un valor real, ya que se considera que los reales *contienen* a los enteros.
 - Ejemplo: 4 + 3.5 devuelve 7.5.

3.5.2.2. Cadenas

• Las cadenas son secuencias de cero o más caracteres codificados en Unicode.

- En Python se representan con el tipo str.
 - No existe el tipo *carácter* en Python. Un carácter en Python es simplemente una cadena que contiene un solo carácter.
- Un literal de tipo cadena se escribe encerrando sus caracteres entre comillas simples (') o dobles (").
 - No hay ninguna diferencia entre usar unas comillas u otras, pero si una cadena comienza con comillas simples, debe acabar también con comillas simples (y viceversa).
- Ejemplos:

```
"hola"
'Manolo'
"27"
```

- También se pueden escribir literales de tipo cadena encerrándolos entre triples comillas (''' o """).
 - Estos literales se usan para escribir cadenas formadas por varias líneas. La sintaxis de las triples comillas respetan los saltos de línea.
 - Ejemplo:

```
"""Bienvenido
a
Python"""
```

- No es lo mismo 27 que "27".
 - 27 es un número entero (un literal de tipo int).
 - "27" es una cadena (un literal de tipo str).

3.6. Operaciones predefinidas

3.6.1. Operadores predefinidos

3.6.1.1. Operadores aritméticos

Operador	Descripción	Ejemplo	Resultado	Comentarios
+	Suma	3 + 4	7	
_	Resta	3 - 4	-1	
*	Producto	3 * 4	12	
/	División	3 / 4	0.75	Devuelve un float
%	Módulo	4 % 3	1	Resto de la división
		8 % 3	2	
**	Exponente	3 ** 4	81	Devuelve 3 ⁴
//	División entera	4 // 3	1	
		-4 // 3	-2	??

3.6.1.2. Operadores de cadenas

Operador	Descripción	Ejemplo	Resultado	Comentarios
+	Concatenación	'ab' + 'cd' 'ab' 'cd'	'abcd'	Yuxtapuestas
*	Repetición	'ab' * 33 * 'ab'	'ababab' 'ababab'	
[0] [1:]	Primer carácter Resto de cadena	'hola'[0] 'hola'[1:]	'h' 'ola'	

3.6.2. Funciones predefinidas

Función	Descripción	Ejemplo	Resultado
abs(n)	Valor absoluto	abs(-23)	23
len(str)	Longitud de la cadena	<pre>len('hola')</pre>	4
$\max(n_1(,n_2)^*)$	Valor máximo	$\max(2, 5, 3)$	5
$\min(n_1(,n_2)^*)$	Valor mínimo	min(2, 5, 3)	2
round(n[,p])	Redondeo	round(23.493)	23
		round(23.493, 1)	23.5
type(v)	Tipo del valor	type(23.5)	<class 'float'></class

3.6.3. Métodos predefinidos

https://docs.python.org/3/library/stdtypes.html#string-methods

4. Álgebra de Boole

4.1. El tipo de dato booleano

- Un dato **lógico** o *booleano* es aquel que puede tomar uno de dos posibles valores, que se denotan normalmente como **verdadero** y **falso**.
- Esos dos valores tratan de representar los dos valores de verdad de la **lógica** y el **álgebra booleana**.
- Su nombre proviene de **George Boole**, matemático que definió por primera vez un sistema algebraico para la lógica a mediados del S. XIX.
- En Python, el tipo de dato lógico se representa como bool y sus posibles valores son False y True (con la inicial en mayúscula).

• Esos dos valores son formas especiales para los enteros 0 y 1, respectivamente.

Operadores relacionales

- Los operadores relacionales son operadores que toman dos operandos (que usualmente deben ser del mismo tipo) y devuelven un valor booleano.
- Los más conocidos son los operadores de comparación, que sirven para comprobar si un dato es menor, mayor o igual que otro, según un orden preestablecido.
- Los operadores de comparación que existen en Python son:

Operadores lógicos

- Los operadores lógicos son operadores que toman uno o dos operandos booleanos y devuelven un valor booleano.
- Representan las operaciones básicas del álgebra de Boole llamadas suma, producto y complemento.
- En lógica proposicional (un tipo de lógica matemática que tiene estructura de álgebra de Boole), se llaman:
 - Disyunción (∨),
 - Conjunción (∧) y
 - Negación (¬).
- En Python se representan como or, and y not, respectivamente

4.4. Axiomas

- 1. Ley asociativa: $\begin{cases} \forall a,b,c \in \mathfrak{B} : (a \vee b) \vee c = a \vee (b \vee c) \\ \forall a,b,c \in \mathfrak{B} : (a \wedge b) \wedge c = a \wedge (b \wedge c) \end{cases}$ 2. Ley conmutativa: $\begin{cases} \forall a,b \in \mathfrak{B} : a \vee b = b \vee a \\ \forall a,b \in \mathfrak{B} : a \wedge b = b \wedge a \end{cases}$ 3. Ley distributiva: $\begin{cases} \forall a,b,c \in \mathfrak{B} : a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) \\ \forall a,b,c \in \mathfrak{B} : a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \end{cases}$
- 4. Elemento neutro: $\begin{cases} \forall a \in \mathfrak{B} : a \lor F = a \\ \forall a \in \mathfrak{B} : a \land V = a \end{cases}$
- 5. Elemento complementario: $\begin{cases} \forall a \in \mathfrak{B}; \exists \neg a \in \mathfrak{B}: a \vee \neg a = \mathsf{V} \\ \forall a \in \mathfrak{B}; \exists \neg a \in \mathfrak{B}: a \wedge \neg a = \mathsf{F} \end{cases}$

Luego $(\mathfrak{B}, \neg, \vee, \wedge)$ es un álgebra de Boole.

4.4.1. Traducción a Python

1. Lev asociativa:

```
(a or b) or c == a or (b or c)
(a and b) and c == a and (b and c)
```

2. Ley conmutativa:

```
a \quad or \quad b == b \quad or \quad a
a and b == b and a
```

3. Ley distributiva:

```
a or (b and c) == (a or b) and (a or c)
a and (b or c) == (a and b) or (a and c)
```

4. Elemento neutro:

```
a or False == a
a and True == a
```

5. Elemento complementario:

```
a or (not a) == True
a and (not a) == False
```

4.5. Teoremas fundamentales

7. Ley de absorción:
$$\begin{cases} \forall a \in \mathfrak{B} : a \lor V = V \\ \forall a \in \mathfrak{B} : a \land F = F \end{cases}$$

8. Ley de identidad:
$$\begin{cases} \forall a \in \mathfrak{B} : a \lor F = a \\ \forall a \in \mathfrak{B} : a \land V = a \end{cases}$$

9. Ley de involución:
$$\begin{cases} \forall a \in \mathfrak{B} : \neg \neg a = 0 \\ \neg V = F \\ \neg F = V \end{cases}$$

6. Ley de idempotencia:
$$\begin{cases} \forall a \in \mathfrak{B} : a \lor a = a \\ \forall a \in \mathfrak{B} : a \land a = a \end{cases}$$
7. Ley de absorción:
$$\begin{cases} \forall a \in \mathfrak{B} : a \lor V = V \\ \forall a \in \mathfrak{B} : a \land F = F \end{cases}$$
8. Ley de identidad:
$$\begin{cases} \forall a \in \mathfrak{B} : a \lor F = a \\ \forall a \in \mathfrak{B} : a \land V = a \end{cases}$$
9. Ley de involución:
$$\begin{cases} \forall a \in \mathfrak{B} : \neg \neg a = a \\ \neg V = F \\ \neg F = V \end{cases}$$
10. Leyes de De Morgan:
$$\begin{cases} \forall a, b \in \mathfrak{B} : \neg (a \lor b) = \neg a \land \neg b \\ \forall a, b \in \mathfrak{B} : \neg (a \land b) = \neg a \lor \neg b \end{cases}$$

4.5.1. Traducción a Python

6. Ley de idempotencia:

```
a or a == a
a and a == a
```

7. Ley de absorción:

```
a or True == True
a and False == False
```

8. Ley de identidad:

```
a or False == a
a and True == a
```

9. Ley de involución:

```
not (not a) == a
not True == False
not False == True
```

10. Leyes de De Morgan:

```
not (a or b) == (not a) and (not b)
not (a and b) == (not a) or (not b)
```

4.6. El operador ternario

- Las expresiones lógicas (o *booleanas*) se pueden usar para comprobar si se cumple una determinada **condición**.
- Las condiciones en un lenguaje de programación se representan mediante expresiones lógicas cuyo valor (*verdadero* o *falso*) indica si la condición se cumple o no se cumple.
- Con el **operador ternario** podemos hacer que el resultado de una expresión varíe entre dos posibles opciones dependiendo de si se cumple o no una condición.
- El operador ternario se llama así porque es el único operador en Python que actúa sobre tres operandos.
- Su sintaxis es:

```
<expresión_condicional> ::= <valor_si_verdadero> if <condición> else <valor_si_falso>
```

- donde:
 - < condición > debe ser una expresión lógica
 - <valor si verdadero> y <valor si falso> pueden ser expresiones de cualquier tipo
- El valor de la expresión completa será <*valor_si_verdadero>* si la <*condición>* es cierta; en caso contrario, su valor será <*valor_si_falso>*.
- Ejemplo:

```
25 if 3 > 2 else 17
```

evalúa a 25.

5. Definiciones

5.1. Definiciones

- Introduciremos ahora en nuestro lenguaje una nueva instrucción (técnicamente es una sentencia) con la que vamos a poder hacer definiciones.
- A esa sentencia (en este momento) la llamaremos definición, y expresa el hecho de que un nombre representa un valor.
- Las definiciones tienen la siguiente sintaxis:

```
<definición> ::= <identificador> = <expresión>
```

• Por ejemplo:

```
x = 25
```

A partir de ese momento, el identificador x representa el valor 25.

Y si x vale 25, la expresión 2 + x * 3 vale 77.

5.2. Identificadores y ligaduras (binding)

- Los identificadores son los nombres o símbolos que representan a los elementos del lenguaje.
- Cuando hacemos una definición, lo que hacemos es asociar un identificador con un valor.
- Esa asociación se denomina ligadura (o binding).
- Por esa razón, también se dice que una definición es una ligadura.
- También decimos que el identificador está ligado (bound).

• En un **lenguaje funcional puro**, un identificador ya ligado no se puede ligar a otro valor. Por ejemplo, lo siguiente daría un error:

```
\begin{array}{rcl}
x & = & 4 \\
x & = & 7
\end{array}
```


- Python no es un lenguaje funcional puro, por lo que se permite volver a ligar el mismo identificador a otro valor distinto (*rebinding*).
 - Eso hace que se pierda el valor anterior.
 - Por ahora, no lo hagamos.

5.2.1. Reglas léxicas

- Cuando hacemos una definición debemos tener en cuenta ciertas cuestiones relativas al identificador:
 - ¿Cuál es la longitud máxima de un identificador?
 - ¿Qué caracteres se pueden usar?
 - ¿Se distinguen mayúsculas de minúsculas?
 - ¿Coincide con una palabras clave o reservada?
 - * Palabra clave: palabra que forma parte de la sintaxis del lenguaje.
 - * Palabra reservada: palabra que no puede emplearse como identificador.

5.3. Evaluación de expresiones con ligaduras

• Podemos usar un identificador ligado dentro de una expresión (siempre que la expresión sea una expresión válida según las reglas del lenguaje, claro está):

```
>>> x = 25
>>> 2 + x * 3
77
```

• Intentar usar en una expresión un identificador no ligado provoca un error (nombre no definido):

```
>>> y
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'y' is not defined
```

• Podemos hacer:

- En este caso estamos ligando a y el valor que tiene x.
- x e y comparten valor.

5.4. Entorno (environment)

- Se denomina **entorno** (del inglés, *environment*) al conjunto de todas las ligaduras que son accesibles en un punto concreto de un programa.
- El entorno, por tanto, depende del punto del programa en el que se calcule:

- En la línea 1, el identificador x aún no está ligado, por lo que uso genera un error.
- En la línea 6, en cambio, el identificador puede usarse sin error ya que ha sido ligado previamente en la línea 5.
- Si tenemos:

Según la línea en la que nos encontremos, tenemos los siguientes entornos:

Entorno en la línea 1

Entorno en la línea 2

Entorno en la línea 3

Entorno en la línea 4

Entorno en la línea 5

5.5. Tipado estático vs. dinámico

- Cuando un identificador está ligado a un valor, a efectos prácticos el identificador actúa como si fuera el valor.
- Como cada valor tiene un tipo de dato asociado, también podemos hablar del tipo de un identificador.

El tipo de un identificador ligado es el tipo del dato con el que está ligado.

- Si un identificador no está ligado, no tiene sentido preguntarse qué tipo de dato tiene.
- Si un identificador ligado se liga a otro valor (cosa que ya hemos dicho que evitaremos por ahora) y ese otro valor es de otro tipo distinto al del valor original, el tipo del identificador cambia y pasa a ser el del valor con el que está ligado ahora.
- Eso quiere decir que el tipo de un identificador puede cambiar durante la ejecución del programa.
- A este enfoque se le denomina tipado dinámico.

Lenguajes de tipado dinámico:

Son aquellos que **permiten** que el tipo de un identificador **cambie** durante la ejecución del programa.

- En contraste con los lenguajes de tipado dinámico, existen los llamados lenguajes de tipado estático.
- En un lenguaje de tipado estático, el tipo de un identificador se define una sola vez (en la fase de compilación o justo al empezar a ejecutarse el programa), y no puede cambiar durante la ejecución del mismo.

Lenguajes de tipado estático:

Son aquellos que **obligan a declarar** el tipo de un identificador antes de poder usarlo y **prohíben** que dicho tipo **cambie** durante la ejecución del programa.

• Estos lenguajes disponen de construcciones sintácticas que permiten declarar de qué tipo serán los datos con los que se ligará un identificador.

Por ejemplo, en Java podemos hacer:

```
int x;
```

con lo que declaramos que x sólo podrá ligarse a valores de tipo int.

• A veces, se pueden realizar al mismo tiempo la declaración del tipo y la ligadura al valor:

```
int x = 24;
```

- Normalmente, los lenguajes de tipado estático son también lenguajes compilados y también fuertemente tipados.
- Asimismo, los lenguajes de tipado dinámico suelen ser lenguajes interpretados y a veces también son lenguajes débilmente tipados.
- Pero nada impide que un lenguaje de tipado dinámico pueda ser compilado, por ejemplo.
- Los tres conceptos de:
 - Compilado vs. interpretado
 - Tipado fuerte vs. débil
 - Tipado estático vs. dinámico

son diferentes aunque están estrechamente relacionados.

5.6. Scripts

- Cuando tenemos varias definiciones o muy largas resulta tedioso tener que introducirlas una y otra vez en el intérprete interactivo.
- Lo más cómodo es teclearlas juntas dentro un archivo que luego cargaremos desde dentro del intérprete.
- Ese archivo se llama **script** y, por ahora, contendrá una lista de las definiciones que nos interese usar en nuestras sesiones interactivas con el intérprete.
- Los nombres de archivo de los scripts en Python llevan extensión .py.
- Para cargar un *script* en nuestra sesión, usamos la orden from. Por ejemplo, para cargar un *script* llamado definiciones.py, usaremos:

```
from definiciones import *
```

6. Documentación interna

6.1. Identificadores significativos

• Se recomienda usar identificadores descriptivos.

Es mejor usar:

```
ancho = 640
alto = 400
superficie = ancho * alto
```

que

```
\begin{pmatrix}
x = 640 \\
y = 400 \\
z = x * y
\end{pmatrix}
```

aunque ambos programas sean equivalentes en cuanto al efecto que producen y el resultado que generan.

• Si el identificador representa varias palabras, se puede usar el carácter de guión bajo (_) para separarlas y formar un único identificador:

```
altura_triangulo = 34.2
```

6.2. Comentarios

- Los comentarios en Python empiezan con el carácter # y se extienden hasta el final de la línea.
- Los comentarios pueden aparecer al comienzo de la línea o a continuación de un espacio en blanco o una porción de código.
- Los comentarios no pueden ir dentro de un literal de tipo cadena.

Un carácter # dentro de un literal cadena es sólo un carácter más.

Respuestas a las preguntas

6.2.0.1. Respuestas a las preguntas

Bibliografía

Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. 1996. Structure and Interpretation of Computer Programs. 2nd ed. Cambridge, Mass.: New York: MIT Press; McGraw-Hill.

Blanco, Javier, Silvina Smith, and Damián Barsotti. 2009. *Cálculo de Programas*. Córdoba, Argentina: Universidad Nacional de Córdoba.

Van-Roy, Peter, and Seif Haridi. 2004. Concepts, Techniques, and Models of Computer Programming. Cambridge, Mass: MIT Press.