EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

Paper No. M3

Question number	Scheme		Marks
1. (a)	$V = \int \frac{1}{2} e^{-\frac{1}{6}t} dt$	p> 4147	
,	= -3e ^{-6t} (+c)	A-1	
	use of limits or t=0, v=10	MI-	
	$v = 13 - 3e^{-\frac{1}{6}t}$	Al	(4)
(ك	t=3, V= 11.2 ms-1	LHIAI	(2)
(c)	13 (ft. if v= a ± be - t)	B) 1	(₁)
2. (a)	cos0 = 3/4, 0.75, 6/8	8)	<u>(1)</u>
(P)	$mg\cos \Theta(-R) = \frac{mv^2}{mV}$	MI AI	
	v2= 5.88 ×	Aì	(3)
<u>ල</u>	1 m. 5.88 - 1 mu2 = mgx0.2	M) A)	_
	u = 1.4	#1	(3) (E)
3. (a)	$\frac{1}{2}x1.5v^2 = \frac{52 \times 05^2}{2 \times 0.25}$	>HI AI AI	
	$V = 0.589 \text{ ms}^{-1} (35F)$	L _{H1} Al	(s)
(P)	F= 0.6×1.59	нI	
	52x or 52x 0.25 25	ВІ	
	T=F => X = 0.0424m or 4.24cm	M1 41	(-)
	Min distance = 0.208m or 20.8cm	41 W	(5) (6)
	•		
			•

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

Paper No. M3

Question number	Scheme	Marks
4.(4)	$y = \frac{k}{e^2} \implies k = R^2 g$ $a = \frac{k}{x^2}$ $v = -\frac{R^2 g}{4}$ $dx = \frac{k}{x^2}$	BI →MI L MI AICSO, (4)
.b)	$\int v dv = -\int \frac{R^2q}{x^2} dx$ $\frac{v^2}{x} = \frac{R^2q}{x} (+ c)$ $x = R, v = U \text{or fuse of finits}$ $\frac{v^2}{x} = \frac{R^2q}{x^2} + \frac{u^2}{x^2} - Rq$ $use \text{of } v = 0$ $x = \frac{2gR^2}{2gR - u^2}$	→ H I
5 (a)	$77^{2}h$ $\frac{1}{6}m^{2}h$ $\frac{5}{6}m^{2}h$ $\frac{5}{6}m^{2}h$ $\frac{5}{6}m^{2}h$ $\frac{7}{8}$	B2 -le.e.o.p. B2 -le.e.o.p. HI Al Al (7)
(r)	tank = $h-x$ Use of h = 4r to obtain expression in har oing $d = 66.5^{\circ}$ (18P)	D M1 A1 M1 A1 (4)
,		

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

Paper No. M3

Question number	Scheme	Marks	
6.(a)	r= 1ht=60°= 15h *	HI AI	(2)
Cb)	A \$(1), Tiwi60"-Tim60"= mg 60" = Time60" = mg k(4), Tisi60" + Tisi60" = mghw2	->MI AI ->MI AI	
	HSe of cos60°=1 and si 6°= 13 Ho I my solving for T, or T2	BI	
·	T=====(hw2+25); T=====(hw2-25)	A1; A1 ~	(4)
(c)	万>0 🖈 い> /翌	n(AIV	
	T-21 => T < 27/25 = 7/2 #	MI Alc.s.c.	(4)
7. (4)	In equilar $T = mgsh30^\circ$ $ \frac{1}{8}a = mgsi30^\circ \Rightarrow \frac{1}{2} + 4mg \times \frac{1}{2} $	B) M1 41	(3)
(b)	$m\ddot{x} = mgsi300 - \frac{4mg}{a}(\frac{1}{8}a + x)$	M A1	
	ic = -43 x => SHM	- LHIAL	(b)
$C \setminus$	Period = 211/43 = 11/45 = 11/45	Al	
્રિ	Mexacel = wa = \$ 1.2 = 9	ni Ai	(2)
(a)	X = # shut; () = = 4 shut	EMI AI	
	$b = \frac{3}{12} = \frac{1}{12}$ $b = \frac{1}{12} = \frac{1}{12}$	A1 V	(5)
œ:	wt=176 = 1 - co 1 = 1 - 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	OR MIAI MIAI AIV	(s)
ok:	cos (-1)-cs (.) = 3 - 1 = 1	OR THI AT	
	w= 176 = 17,2√5	411	(5)
		((e)

	TEI LEVIT IIV		
Question	Solution	Markscheme	
7.(a)	$\theta = \frac{\pi}{2} - \cos^{-1}\frac{1}{2} = \frac{\pi}{6}$ $\omega t = \frac{\pi}{6}\sqrt{\frac{a}{4g}} = \frac{\pi}{12}\sqrt{\frac{a}{5}}$ $t = \frac{\pi}{6}\sqrt{\frac{a}{4g}} = \frac{\pi}{12}\sqrt{\frac{a}{5}}$	C HI AI AI f.t.	
OR:	$\cos^{-1}(-\frac{1}{2}) - \cos^{-1}(0) = \frac{2\pi}{3} - \frac{\pi}{2} = \frac{\pi}{6}$ where $\frac{\pi}{6}$ $t = \frac{\pi}{6}\sqrt{\frac{a}{45}} = \frac{\pi}{12}\sqrt{\frac{c}{5}}$	PHI AI HI AI A) ft.	
	·		