# Differential Geometry Notes

Simone Iovine

Sunday  $18^{\text{th}}$  June, 2023

# Contents

| No           | otes   |         |                                                                                          | iii           |
|--------------|--------|---------|------------------------------------------------------------------------------------------|---------------|
| No           | otatio | on      |                                                                                          | v             |
| 1            | Diff   | erentia | al geometry in euclidean spaces                                                          | 1             |
|              | 1.1    |         | h and real analytic functions                                                            | 1             |
|              |        | 1.1.1   | Smooth functions                                                                         | 1             |
|              |        |         | Examples                                                                                 | 2             |
|              |        | 1.1.2   | Real analytic functions                                                                  | $\frac{2}{3}$ |
|              | 1.2    | Diffeor | morphisms between open sets of $\mathbb{R}^n$                                            | 4             |
|              |        | 1.2.1   | Diffeomorfismo tra $B_{\delta}(c)$ e $\mathbb{R}^n$                                      | 5             |
|              |        | 1.2.2   | Teorema di Taylor con resto                                                              | 7             |
|              | 1.3    | Vettor  | i tangenti in $\mathbb{R}^n$                                                             | 9             |
|              |        | 1.3.1   | Derivate direzionali                                                                     | 10            |
|              |        |         | Esempio                                                                                  | 11            |
|              |        |         | Algebra su campo $\mathbb{K}$                                                            | 12            |
|              |        | 1.3.2   | $C_p^{\infty}(\mathbb{R}^n)$ come algebra su $\mathbb{R}$                                | 12            |
|              |        | 1.3.3   | Derivazione puntuale di $C_n^{\infty}(\mathbb{R}^n)$                                     | 13            |
|              |        | 1.3.4   | Isomorfismo tra $T_p(\mathbb{R}^n)$ e $\operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$ | 14            |
|              |        | 1.3.5   | Base canonica per $\operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$                     | 19            |
|              | 1.4    | Campi   | i di vettori su aperti di $\mathbb{R}^n$                                                 | 20            |
|              |        | 1.4.1   | Campi di vettori lisci                                                                   | 21            |
|              |        |         | Esempi                                                                                   | 21            |
|              |        | 1.4.2   | Operazioni in $\chi(U)$                                                                  | 22            |
|              |        | 1.4.3   | $\chi(U)$ come $C^{\infty}(U)$ -modulo                                                   | 23            |
|              |        |         | $\mathbb{R}$ -modulo sinistro                                                            | 23            |
|              |        |         | $\mathbb{R}$ -modulo destro                                                              | 23            |
|              |        |         | Caso di $\chi(U)$                                                                        | 24            |
|              |        | 1.4.4   | Derivata di funzione rispetto a un campo di vettori                                      | 24            |
|              |        |         | Derivazione di un'algebra                                                                | 25            |
|              |        | 1.4.5   | Campo di vettori liscio come derivazione dell'algebra $C^{\infty}(U)$                    | 26            |
| 2            | Diff   | erentia | al manifolds                                                                             | <b>27</b>     |
| 3            | Lie    | groups  | s and algebras                                                                           | 28            |
| $\mathbf{A}$ | Exe    | rcises: | Differential geometry in euclidean spaces                                                | 29            |

|              | A.1   | Funzione $C^k(\mathbb{R})$ ma non $C^{k+1}(\mathbb{R})$                                   | 29        |
|--------------|-------|-------------------------------------------------------------------------------------------|-----------|
|              | A.2   | Funzione liscia ma non reale analitica                                                    | 30        |
|              | A.3   | Intervalli diffeomorfi a $\mathbb{R}$                                                     | 31        |
|              | A.4   | Diffeomorfismo tra $B_r(c)$ e $\mathbb{R}^n$                                              | 32        |
|              | A.5   | Teorema di Taylor con resto per funzione a due variabili                                  | 33        |
|              | A.6   | Funzione liscia tramite incollamento                                                      | 34        |
|              | A.7   | $C_p^{\infty}(\mathbb{R}^n)$ come algebra commutativa e unitaria                          | 36        |
|              | A.8   | $\operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$ come spazio vettoriale su $\mathbb{R}$ | 38        |
|              | A.9   | $\chi(U)$ come spazio vettoriale su $\mathbb{R}$ e $C^{\infty}$ -modulo                   | 41        |
|              | A.10  | $\operatorname{Der}(A)$ come spazio vettoriale su $\mathbb K$                             | 46        |
|              | A.11  | Commutatore come derivazione                                                              | 49        |
| В            | Exe   | rcises: Differential manifolds                                                            | <b>50</b> |
| $\mathbf{C}$ | Exe   | rcises: Lie groups and algebras                                                           | <b>51</b> |
| Bi           | bliog | raphy                                                                                     | 51        |

Simone Iovine ii

## Notes

The following notes are a revision of the notes taken during prof. Andrea Loi's online lessons of Differential geometry 2020-2021 (Mathematics dept., Cagliary University). Some definitions are taken from *Introduzione alla Topologia Generale* of Andrea Loi [1]. The professor followed the following texts during the course: *Introduction to Smooth Manifolds* di John M. Lee [2] e An Introduction to Manifolds di Loring W. Tu [3].

Professor's site: https://loi.unica.it/geomdiff2021.html



# Notation

| Symbol                                | Meaning                 |
|---------------------------------------|-------------------------|
| =                                     | equality                |
| =                                     | identity                |
| {}                                    | set elements            |
| 3                                     | exists                  |
| ∃!                                    | only one exists         |
| A                                     | for all                 |
| $\in$                                 | belongs to              |
| $\implies$                            | implies (sufficient)    |
| <b>←</b>                              | implied by (necessary)  |
| $\iff$                                | if and only if          |
|                                       | is a subset of/included |
|                                       | included or equal       |
| ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← | includes                |
|                                       | includes or equal       |
| \                                     | set difference          |
| Λ                                     | intersection            |
| U                                     | union                   |
| Ø                                     | empty set               |
|                                       | disjoint union          |
| $\mathcal{P}(S)$ $\times$             | power set of $S$        |
| X                                     | direct product          |
| $\oplus$                              | direct sum              |
| $\rightarrow$                         | function/morphism       |
| $\mapsto$                             | maps to                 |
| 0                                     | composition             |
| $f _{U}$                              | f evaluated in $U$      |
| id                                    | identity                |
| ·:                                    | therefore               |
| <u> </u>                              | because                 |
|                                       | logic and               |
| V                                     | logic or                |
| $\infty$                              | infinity such that      |
|                                       |                         |
| $S/_{\sim}$                           | equivalence             |
| \\~                                   | quotient                |

| Symbol                                         | Meaning                          |
|------------------------------------------------|----------------------------------|
| $\overset{iso}{\simeq}$                        | isomorphism                      |
| $\overset{omeo}{\simeq}$                       | omeomorphism                     |
| $\overset{diff}{\simeq}$                       | diffeomorphism                   |
| $\overset{omo}{\simeq}$                        | omomorphism                      |
| N                                              | natural numbers                  |
| $\mathbb{Z}$                                   | integer numbers                  |
| Q                                              | rational numbers                 |
| $\mathbb{R}$                                   | real numbers                     |
| $\mathbb{C}$                                   | complex numbers                  |
| K                                              | $\mathbb{R}$ or $\mathbb{C}$     |
| $\mathbb{T}^n$                                 | n-dimensional torus              |
| $\mathbb{S}^n$                                 | <i>n</i> -dimensional sphere     |
| $\mathbb{R}\mathcal{P}^n$                      | n-dimensional real projective    |
|                                                | space                            |
| $\mathcal{B}$                                  | base                             |
| $\langle v \rangle$                            | spans                            |
| $\mathcal{PC}$                                 | critical point                   |
| PR                                             | regular points                   |
| VC                                             | critic values                    |
| VR                                             | regular values                   |
| $\mathfrak{g}$                                 | Lie algebra (associated to $G$ ) |
| $\sum_{i=1}^{n}$                               | summation from 1 to $n$          |
| $\prod_{i=1}^{n}$                              | product from 1 to n              |
| v                                              | modulo/norm of v                 |
| det                                            | determinant                      |
| tr                                             | trace                            |
| $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ | matrix                           |
|                                                | matrix determinant               |
| 1                                              | identity matrix                  |
| supp                                           | support                          |
| Ob                                             | objects (category)               |
| Mor                                            | morphisms (category)             |
| $\begin{bmatrix} v \end{bmatrix}$              | "ceiling" function               |
| i.e.                                           | means that (id est)              |
| e.g.                                           | as an example (exempli gratia)   |

## Chapter 1

# Differential geometry in euclidean spaces

## 1.1 Smooth and real analytic functions

#### 1.1.1 Smooth functions

Let us consider  $\mathbb{R}^n$  with  $n \ge 1$  and  $U \subset \mathbb{R}^n$  open, and let  $f: U \to \mathbb{R}$  be a function and  $p \in U$  a point: defining the kth-order derivatives of f as

$$\frac{\partial^k f}{\partial (x^1)^{i_1} \cdots \partial (x^k)^{i_k}} \quad \text{where} \quad \sum_{j=1}^k i_j = k \in \mathbb{N}$$
 (1.1)

then we say that  $f \in C^k$  in p with  $k \in \mathbb{N}$  if the kth-order derivatives of f exist and are continuous in p.

Let k = 0, then

$$f \in C^0 \iff f \text{ continuous}$$
 (1.2)

Notation-wise:

- $f \in C^k$  in U if  $f \in C^k$  in p for all  $p \in U$
- $f \in C^{\infty}$  or smooth in p if  $f \in C^k$  in p for all  $k \in \mathbb{N}$
- $f \in C^{\infty}$  or smooth in U if  $f \in C^{\infty}$  for all  $p \in U$

therefore a function is denoted smooth if all its derivatives of any order exist and are finite. In general, we consider functions defined not in  $\mathbb{R}$  but in  $\mathbb{R}^n$ .

A function  $f: U \to \mathbb{R}^n$  with  $n \ge 1$  and  $U \subset \mathbb{R}^m$  with  $m \ge 1$  open is  $C^k$  in p if all its components  $f^j: U \to \mathbb{R}$  are  $f^j \in C^k$  in p with  $k \ge 0$ . In particular,  $f = (f^1, \dots, f^m)$  or  $f^j = \pi_j \circ f$  where  $\pi_j$  is the *projection* 

$$\pi_j: \mathbb{R}^m \to \mathbb{R}$$

$$(x^1, \dots, x^m) \mapsto x^j$$
(1.3)

for j = 1, ..., m.

A function  $f: U \to \mathbb{R}^m$  is:

- $C^k$  in U if  $f^j \in C^k$  in U
- smooth in  $p \in U$  if  $f^j \in C^{\infty}$  in p for all j = 1, ..., m
- smooth in U if  $f^j \in C^{\infty}$  in U for all  $j = 1, \ldots, m$

#### Examples

1) Cubic root Let

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^{1/3} \tag{1.4}$$

This function is continuous  $(f \in C^0)$  and it is and homeomorphism<sup>1</sup> but  $f \notin C^1$  in the origin p = 0 because

$$f' = \frac{x^{-2/3}}{3} \tag{1.5}$$

which is not defined in the origin and therefore  $f \notin C^1(\mathbb{R})$ .

2)  $C^1$  function which is not  $C^2$  Integrating f from the previous example, we obtain a  $C^1$  function which is not  $C^2$ . Let  $g: \mathbb{R} \to \mathbb{R}$  with

$$g(x) = \int_0^x f(t) dt = \frac{3x^{2/3}}{4}$$
 (1.6)

from which  $g \in C^1(\mathbb{R})$  but  $g \notin C^2(\mathbb{R})$ .

3)  $C^k$  function which is not  $C^{k+1}$  See Exercise A.1.

## 1.1.2 Real analytic functions

Let  $p \in \mathbb{R}^n$  be a point, a *neighborhood* U of p is an open set in  $\mathbb{R}^n$  that contains p. Let  $f: U \to \mathbb{R}$  be a function with  $U \subset \mathbb{R}^n$  open, then we say that f is *real analytic* in  $p \in U$  if f coincides with its own Taylor expansion around p. This means that for a function f(x) with  $x = (x^1, \ldots, x^n)$  and  $p = (p^1, \ldots, p^n)$  we have that

$$f(x) = f(p) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} (x^{i} - p^{i}) + \dots + \frac{1}{k!} \sum_{i_{1}, \dots, i_{k} = 1}^{n} \frac{\partial^{k} f}{\partial x^{i_{1}} \cdots \partial x^{i_{k}}} (p) ((x^{i_{1}} - p^{i_{1}}) \cdots (x^{i_{k}} - p^{i_{k}})) + \dots$$

$$= f(p) + \sum_{k=1}^{\infty} \frac{1}{k!} \sum_{i_{1}, \dots, i_{k} = 1}^{n} \frac{\partial^{k} f}{\partial x^{i_{1}} \cdots \partial x^{i_{k}}} (p) \prod_{j=1}^{k} (x^{j} - p^{j})$$
(1.7)

<sup>&</sup>lt;sup>1</sup>Both the function and its inverse are continuous.

For example, a power series can be differentiated term by term resulting in a continuous function with continuous derivative, which coincides with its Taylor expansion, i.e. power series are always real analytic. This also means that  $f \in C^{\infty}$ , because one can differentiate power series indefinitely always obtaining a continuous function.

#### **Examples**

1) Sine function The function  $f(x) = \sin(x)$  is smooth real analytic and its Taylor expansion is as follows

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{j=0}^{\infty} (-1)^j \frac{x^{2j+1}}{(2j+1)!}$$
 (1.8)

In order to obtain its derivative, we can differentiate term by term its Taylor expansion

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin(x) = \frac{\mathrm{d}}{\mathrm{d}x} \sum_{j=0}^{\infty} (-1)^j \frac{x^{2j+1}}{(2j+1)!}$$

$$= \sum_{j=0}^{\infty} (-1)^j (2j+1) \frac{x^{2j}}{(2j+1)!}$$

$$= \sum_{j=0}^{\infty} (-1)^j \frac{x^{2j}}{(2j)!}$$

$$= \cos(x)$$
(1.9)

2) Exponential In order to derive the exponential  $f(x) = e^x$  derivative, we repeat the same procedure as the previous example

$$\frac{\mathrm{d}}{\mathrm{d}x}e^x = \frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=0}^{\infty} \frac{x^j}{j!} = \sum_{j=0}^{\infty} j \frac{x^{j-1}}{j!} = \sum_{j=0}^{\infty} \frac{x^{j-1}}{(j-1)!} = \sum_{n=-1}^{\infty} \frac{x^n}{n!} = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$$
 (1.10)

3) Smooth function which is not real analytic An example of a smooth function which is not real analytic is

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} e^{-1/x^2}, & \text{se } x > 0\\ 0, & \text{se } x \leqslant 0 \end{cases}$$

$$(1.11)$$

In order to demonstrate that  $f \in C^0$  we have to verify that

$$\lim_{x \to 0} e^{-1/x^2} = 0 \tag{1.12}$$

For its smoothness<sup>2</sup>

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \left(\frac{2}{x^3}\right) e^{-1/x^2} = 0 \tag{1.13}$$

From this we have that  $f \in C^{\infty}(\mathbb{R})$ . If it were real analytic, it would have coincided with its Taylor expansion everywhere, in particular in the origin, i.e.

$$f(x) = \sum_{k=0}^{\infty} \frac{\partial^k f}{\partial x^k} x^k \tag{1.14}$$

but f(x) is equal to 0 in the neighborhood of the origin only for  $x \leq 0$  while the Taylor expansion is always zero: despite  $f \in C^{\infty}(\mathbb{R})$ , this contradiction means that the function is not real analytic, notation-wise  $f \notin C^{\omega}(\mathbb{R})$ .

Another reason as to why  $f \notin C^{\omega}(\mathbb{R})$  follows from the fact that if  $f: U \to \mathbb{R}$  with  $U \in \mathbb{R}$  open is real analytic and f = 0 in an open set, then  $f \equiv 0$  everywhere<sup>3</sup>.

## 1.2 Diffeomorphisms between open sets of $\mathbb{R}^n$

Let  $U, V \in \mathbb{R}^n$  be opens sets, we say that the function  $f: U \to V$  is a diffeomorphism if it is a bijection<sup>4</sup>,  $f \in C^{\infty}(U)$  and its inverse  $g: V \to U$  is  $g \in C^{\infty}(V)$ . For example, the following function

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^3 \tag{1.15}$$

is a smooth bijection but its inverse is not smooth, therefore f is not a diffeomorphism. When there exists a diffeomorphism between two open sets, we say that they are diffeomorphic, i.e. U and V are diffeomorphic if exists a diffeomorphism  $f: U \to V$ , notation-wise  $U \simeq V$ .

**Theorem 1** (Invarianza topologica della dimensione). Se  $U \subset \mathbb{R}^n$  e  $V \subset \mathbb{R}^m$  sono aperti omeomorfi allora n=m.

**Theorem 2** (Invarianza differenziabile della dimensione). Se  $U \subset \mathbb{R}^n$  e  $V \subset \mathbb{R}^m$  sono aperti diffeomorfi allora  $n = m^5$ .

È naturale verificare se gli spazi legati da omeomorfismi siano legati anche da diffeomorfismi. Ad esempio, abbiamo che i seguenti sottoinsiemi aperti di  $\mathbb{R}$  sono diffeomorfi tra loro<sup>6</sup>:

$$(a,b) \simeq (c,+\infty) \simeq (-\infty,d) \simeq \mathbb{R}, \quad \forall a,b,c,d \in \mathbb{R}, \ a < b$$
 (1.16)

 $<sup>^2</sup>$ See Exercise A.2.

<sup>&</sup>lt;sup>3</sup>This property is valid for any constant.

<sup>&</sup>lt;sup>4</sup>Therefore invertible.

 $<sup>^5</sup>$ Questo teorema implica quello di "Invarianza topologia della dimensione" in quanto la condizione di diffeomorfismo implica quella di omeomorfismo: una bigezione liscia con inversa liscia è una bigezione continua con inversa continua, poiché  $C^{\infty} \implies C^0$ .

<sup>&</sup>lt;sup>6</sup>Vedi Esercizio A.3.

### 1.2.1 Diffeomorfismo tra $B_{\delta}(c)$ e $\mathbb{R}^n$

Indichiamo con  $B_1(0)$  la palla di centro l'origine e raggio unitario, i.e.

$$B_1(0) = \left\{ x \in \mathbb{R}^n \,\middle|\, ||x|| \doteq \sqrt{\sum_{i=1}^n (x^i)^2} < 1 \right\}$$
 (1.17)

Per n = 1,  $B_1(0) \equiv (-1, 1) \simeq \mathbb{R}$ . Definiamo

$$f: B_1(0) \to \mathbb{R}^n$$

$$x \mapsto \left(\frac{x^1}{\sqrt{1 - \|x\|^2}}, \cdots, \frac{x^n}{\sqrt{1 - \|x\|^2}}\right)$$
(1.18)

questa applicazione è un diffeomorfismo. Per verificarlo, dobbiamo dimostrare che f sia un bigezione,  $f \in C^{\infty}(B_1(0))$  e che  $f^{-1} \in C^{\infty}(\mathbb{R}^n)$ . L'inversa è

$$f^{-1}: \mathbb{R}^n \to B_1(0)$$

$$x \mapsto \left(\frac{x^1}{\sqrt{1 + \|x\|^2}}, \dots, \frac{x^n}{\sqrt{1 + \|x\|^2}}\right)$$
(1.19)

in quanto

$$f \circ q = \mathrm{id}_{\mathbb{R}^n} \wedge q \circ f = \mathrm{id}_{B_1(0)} \tag{1.20}$$

Perché sia f che  $f^{-1}$  siano lisce, dobbiamo verificare che ogni loro componente lo sia, il quale è verificato perché la derivata di una delle componenti di f ha al denominatore sempre

$$\sqrt{1 - \|x\|^2} \neq 0, \quad \forall x \in B_1(0)$$
 (1.21)

e lo stesso vale per la sua inversa

$$\sqrt{1 + \|x\|^2} \neq 0, \quad \forall x \in \mathbb{R}^n$$
 (1.22)

Corollary 2.1. La palla di centro c e raggio  $\delta$  con  $c \in \mathbb{R}^n$  e  $\delta \geqslant 0$  è diffeomorfa a  $\mathbb{R}^n$ , i.e.  $B_{\delta}(c) \simeq B_1(0) \simeq \mathbb{R}^n$ .

*Proof.* Vedi Esercizio A.4; la dimostrazione passa per il mostrare che le traslazioni (le quali sono lineari e affini) e le omotetie (scala di un fattore  $\delta$ ) siano diffeomorfismi.

Per praticità di notazione, chiamiamo h il diffeomorfismo  $B_{\delta}(c) \to \mathbb{R}^n$  definito sopra. Per far vedere come nasce questo diffeomorfismo, si può usare la costruzione geometrica a lato.



Consideriamo la semicalotta aperta in  $\mathbb{R}^{n+1}$  centrata in  $(0,\ldots,0,1)$  di raggio 1:

$$S = \left\{ (x^1, \dots, x^{n+1}) \in \mathbb{R}^{n+1} \,\middle|\, (x^{n+1})^2 + \sum_{i=1}^n (x^i)^2 = 1 \,\wedge\, x^{n+1} < 1 \right\}$$
 (1.23)

La palla  $B_1(0)$  vive nella proiezione della semicalotta sull'iperpiano  $(x^1, \ldots, x^n)$ , definita come

$$B_1(0) = \{ x \in \mathbb{R}^n \mid ||x|| < 1 \} \tag{1.24}$$

Questa proiezione permette di costruire l'applicazione h in due passaggi: prima prendiamo un punto in  $B_1(0)$ , lo proiettiamo su S e, con una proiezione stereografica, lo portiamo su  $\mathbb{R}^n$ . La prima applicazione è  $f: B_1(0) \to S$  mentre la seconda  $g: S \to \mathbb{R}^n$ , cioè la proiezione stereografica dal punto  $(0, \ldots, 0, 1)$ . Abbiamo dunque che  $g \circ f = h$ . Le mappe sono

$$f(x^1, \dots, x^{n+1}) = \left(x^1, \dots, x^n, 1 - \sqrt{1 - \|x\|^2}\right)$$
(1.25)

$$g(x^1, \dots, x^{n+1}) = \left(\frac{x^1}{1 - x^{n+1}}, \dots, \frac{x^n}{1 - x^{n+1}}, 0\right)$$
(1.26)

da cui

$$h(x^{1},...,x^{n+1}) = (g \circ f)(x^{1},...,x^{n+1})$$

$$= g\left(x^{1},...,x^{n},1-\sqrt{1-\|x\|^{2}}\right)$$

$$= \left(\frac{x^{1}}{\sqrt{1-\|x\|^{2}}},\cdots,\frac{x^{n}}{\sqrt{1-\|x\|^{2}}},0\right)$$
(1.27)

A questo punto  $B_1(0) \simeq \mathbb{R}^n$ : dal punto di vista della geometria differenziale, due oggetti diffeomorfi vengono considerati equivalenti<sup>7</sup>.

 $<sup>^7 {\</sup>rm In}$ topologia, vale lo stesso ragionamento per oggetti omeomorfi.

#### 1.2.2 Teorema di Taylor con resto

Una funzione reale analitica coincide con il suo sviluppo di Taylor. Per una funzione liscia questo non è detto: la coincidenza di una funzione liscia con il suo sviluppo di Taylor è data a meno di un *resto*. Introduciamo ora il concetto di insieme stellato rispetto a un punto per definire il resto sopraccitato.

Un sottoinsieme aperto  $U \subset \mathbb{R}^n$  è stellato rispetto a un punto  $p \in U$  se il segmento di retta che unisce p a qualsiasi  $x \in U$  è interamente contenuto in U.

Remark. Un insieme convesso è stellato rispetto a ogni suo punto.

L'ipotesi che un sottoinsieme sia stellato è forte a livello globale ma sempre rispettata a livello locale, in quanto è sempre possibile trovare un aperto stellato rispetto a un punto all'interno di un insieme.

**Theorem 3** (Taylor con resto). Sia  $f: U \to \mathbb{R}$  con  $U \subset \mathbb{R}^n$  stellato rispetto a un punto  $p \in U$  e supponiamo  $f \in C^{\infty}(U)$ , allora esistono n funzioni  $g_i \in C^{\infty}(U)$  per  $i = 1, \ldots, n$  definite come

$$g_i(p) \doteq \frac{\partial f}{\partial x^i}(p), \quad i = 1, \dots, n$$
 (1.28)

tali che

$$f(x) = f(p) + \sum_{i=1}^{n} (x^{i} - p^{i}) g_{i}(x), \quad \forall x \in U$$
(1.29)

*Proof.* Consideriamo il segmento r che unisce p a un punto  $x \in U$  con x fissato arbitrariamente:

$$r = p + t(x - p), \quad t \in [0, 1]$$
 (1.30)

Essendo U stellato rispetto a p, possiamo valutare f in questo segmento (tutti i punti di r sono definiti in U). Consideriamo fissi x e p e derivo f(r) rispetto a t

$$\frac{\mathrm{d}}{\mathrm{d}t}f(r) = \frac{\mathrm{d}}{\mathrm{d}t}f(p+t(x-p))$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} (p+t(x-p)) \left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)^{i}$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} (p+t(x-p)) (x^{i}-p^{i})$$
(1.31)

per la regola della catena.

Integrando rispetto a t nell'intervallo [0,1] otteniamo

$$\int_{0}^{1} \frac{d}{dt} f(p + t(x - p)) dt = \int_{0}^{1} \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} (p + t(x - p)) (x^{i} - p^{i}) dt$$

$$f(x) - f(p) = \sum_{i=1}^{n} (x^{i} - p^{i}) \int_{0}^{1} \frac{\partial f}{\partial x^{i}} (p + t(x - p)) dt$$
(1.32)

chiamando

$$g_i(x) \doteq \int_0^1 \frac{\partial f}{\partial x^i} \left( p + t(x - p) \right) dt \tag{1.33}$$

si può scrivere

$$f(x) = f(p) + \sum_{i=1}^{n} (x^{i} - p^{i}) g_{i}(x)$$
(1.34)

dove  $g_i(x) \in C^\infty(U)$  perché derivata parziale di una funzione liscia. Inoltre

$$g_i(p) = \int_0^1 \frac{\partial f}{\partial x^i}(p) dt = \frac{\partial f}{\partial x^i}(p), \quad i = 1, \dots, n$$
(1.35)

Sia  $f: U \to \mathbb{R}$  con p corrispondente all'origine: per il teorema di Taylor con resto, sappiamo che esiste una funzione  $g_1 \in C^{\infty}(U)$  tale che

$$f(x) = f(0) + x g_1(x)$$
 con  $g_1(0) = f'(0)$  (1.36)

Riapplicando il teorema a  $g_1$  (in quanto liscia), otteniamo

$$g_1(x) = g_1(0) + xg_2(x) \qquad \begin{cases} g_2 \in C^{\infty}(U) \\ g_2(0) = g'_1(0) \end{cases}$$
 (1.37)

Per induzione

$$g_i(x) = g_i(0) + xg_{i+1}(x) \qquad \begin{cases} g_{i+1} \in C^{\infty}(U) \\ g_{i+1}(0) = g'_i(0) \end{cases} \quad \forall i \geqslant 1$$
 (1.38)

Sostituendo in f tutte queste funzioni, si ottiene

$$f(x) = f(0) + xg_1(x)$$

$$= f(0) + xg_1(0) + x^2g_2(x)$$

$$= f(0) + xg_1(0) + x^2g_2(0) + x^3g_3(x)$$

$$\vdots$$

$$= f(0) + xg_1(0) + \dots + x^kg_k(0) + x^{k+1}g_{k+1}(x)$$
(1.39)

A questo punto si può definire

$$g_k(0) = \frac{1}{k!} \frac{\partial^k f}{\partial x^k}(0) \doteq \frac{f^{(k)}(0)}{k!}$$
 (1.40)

da cui

$$f(x) = f(0) + \sum_{k=1}^{i} \frac{x^k}{k!} f^{(k)}(0) + x^{i+1} g_{i+1}(x), \quad \forall i \in \mathbb{N}$$
 (1.41)

dove la prima parte coincide con lo sviluppo in serie di Taylor mentre l'ultimo termine indica il resto.

Per esercizi sul resto, vedi Esercizi A.5 e A.6.

## 1.3 Vettori tangenti in $\mathbb{R}^n$

Preso un punto  $p \in \mathbb{R}^n$ , lo *spazio tangente* in quel punto viene chiamato  $T_p(\mathbb{R}^n)$ . Lo spazio tangente a un punto p è l'insieme<sup>8</sup> di tutti i vettori che escono dal punto stesso. Essendo  $T_p(\mathbb{R}^n) \stackrel{iso}{\simeq} \mathbb{R}^n$ , un elemento  $v \in T_p(\mathbb{R}^n)$  può dunque essere rappresentato come un *vettore riga* o colonna

$$\begin{bmatrix} v^1 & \cdots & v^n \end{bmatrix} \qquad \vee \qquad \begin{bmatrix} v^1 \\ \vdots \\ v^n \end{bmatrix} \tag{1.42}$$

dove le  $v^i$  sono le componenti del vettore nella base canonica, i.e.

$$v = \sum_{i=1}^{n} v^{i} e_{i} \tag{1.43}$$

Per generalizzare questo concetto, considereremo gli elementi degli spazi tangenti non più come oggetti geometrici vettori ma come derivazioni.

 $<sup>^8 \</sup>mbox{Formalmente},$  è uno spazio vettoriale con origine il punto p.

#### 1.3.1 Derivate direzionali

Siano un'applicazione  $f: U \to \mathbb{R}$  con  $f \in C^{\infty}(\mathbb{R}^n)$ , un punto  $p \in U \subset \mathbb{R}^n$  e un vettore  $v \in T_p(\mathbb{R}^n)$ . Consideriamo la retta c(t) che passa per p con direzione v, parametrizzata come

$$c(t) = p + tv, \quad t \in \mathbb{R} \tag{1.44}$$

Definiamo la derivata direzionale di f rispetto a v come

$$D_{v}f \doteq \lim_{t \to 0} \frac{f(c(t)) - f(p)}{t}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} f(c(t)) \Big|_{t=0}$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p) \left(\frac{\mathrm{d}}{\mathrm{d}t} c(t)\right)^{i}$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p) v^{i}$$

$$(1.45)$$

dove  $D_v f \in \mathbb{R}$  e  $v = \begin{bmatrix} v^1 & \cdots & v^n \end{bmatrix}$ .

**Remark.** Sia un'applicazione  $g \in C^{\infty}(\mathbb{R}^n)$  tale che  $g: V \to \mathbb{R}$  con  $V \subset \mathbb{R}$  e  $V \cap U \neq \emptyset$ . Se  $g \equiv f$  in un intorno W del punto  $p \in W \subset U \cap V$ , allora la loro derivata direzionale è la stessa<sup>9</sup>, i.e.

$$D_v g = D_v f, \quad \forall p \in W$$
 (1.46)



Definiamo ora l'insieme di coppie

$$X \doteq \{(f, U) \mid f \in C^{\infty}(U), U \text{ intorno di } p \in U\}$$
(1.47)

Diremo che<sup>10</sup> per  $p \in W$ 

$$(f,U) \sim (q,V) \iff \exists W \subset U \cap V, W \ni p \mid f(q) = q(q), \quad \forall q \in W$$
 (1.48)

<sup>&</sup>lt;sup>9</sup>Questo perché il limite del rapporto incrementale nella definizione di  $D_v f$  dipende da un intorno arbitrariamente piccolo.

 $<sup>^{10}</sup>$ Il simbolo  $\sim$  indica una relazione di equivalenza.

Questa è effettivamente una relazione di equivalenza in quanto riflessiva, simmetrica e transitiva. Prendiamo dunque lo spazio quoziente<sup>11</sup>

$$X/_{\sim} \doteq C_p^{\infty}(\mathbb{R}^n) \tag{1.49}$$

dove un elemento [(f,U)] di questo spazio è chiamato germe intorno al punto p ed è una classe di equivalenza di coppie (f,U). A questo punto,  $C_p^{\infty}(\mathbb{R}^n)$  è l'insieme dei germi di funzioni lisce intorno a p, i.e.

$$C_n^{\infty}(\mathbb{R}^n) = \{ [(f, U)] \mid f : U \to \mathbb{R}, f \in C^{\infty}(\mathbb{R}^n), U \subset \mathbb{R}^n \}$$

$$(1.50)$$

Possiamo definire un'applicazione

$$D_v: C_p^{\infty}(\mathbb{R}^n) \to \mathbb{R}$$

$$[(f, U)] \mapsto D_v f$$
(1.51)

Questa applicazione è ben definita in quanto l'associazione di un germe di funzioni a un numero reale non dipende dal rappresentante scelto poiché

$$(f, U) \sim (q, V) \implies D_v q = D_v f$$
 (1.52)

#### Esempio

Siano le applicazioni

$$\begin{cases} f(x) = \frac{1}{1-x}, & x \in \mathbb{R} \setminus \{1\} \\ g(x) = \sum_{j=1}^{+\infty} x^j, & x \in (-1,1) \end{cases}$$
 (1.53)

Nonostante in generale  $f \neq g$ , nell'intorno (-1,1) di p=0 vale l'equivalenza per i germi

$$(f, \mathbb{R} \setminus \{1\}) \sim (q, (-1, 1)) \tag{1.54}$$

in altre parole, le classi di equivalenza

$$[(f, \mathbb{R} \setminus \{1\})] = [(g, (-1, 1))] \in C_0^{\infty}(\mathbb{R})$$
(1.55)

<sup>&</sup>lt;sup>11</sup>Approfondiremo l'argomento degli spazi quoziente nella Sottosezione ??.

#### Algebra su campo $\mathbb{K}$

Un'algebra A su un campo  $\mathbb{K}$  è una coppia  $(V,\cdot)$  con V spazio vettoriale su un campo  $\mathbb{K}$  e un'operazione binaria

$$\begin{array}{c}
\cdot : A \times A \to A \\
(a, b) \mapsto a \cdot b
\end{array} \tag{1.56}$$

tale che soddisfi le condizioni

$$\begin{cases} (a \cdot b) \cdot c = a \cdot (b \cdot c) & \text{associatività}^{13} \\ (a+b) \cdot c = a \cdot c + b \cdot c \\ c \cdot (a+b) = c \cdot a + c \cdot b \\ \lambda(a \cdot b) = (\lambda a) \cdot b = a \cdot (\lambda b) & \text{omogeneità} \end{cases}$$

$$(1.57)$$

per qualsiasi  $a, b, c \in A$  e qualsiasi  $\lambda \in \mathbb{K}$ .

Equivalentemente, un algebra su un campo  $\mathbb{K}$  può essere pensata come un anello<sup>14</sup>  $(V, +, \cdot)$  il quale sia anche uno spazio vettoriale con aggiunta la proprietà di omogeneità.

## 1.3.2 $C_p^{\infty}(\mathbb{R}^n)$ come algebra su $\mathbb{R}$

Definiamo la somma

$$[(f,U)] + [(g,V)] = [(f+g,U\cap V)], \quad [(f,U)], [(g,V)] \in C_p^{\infty}(\mathbb{R}^n)$$
(1.58)

Questa somma è ben definita in quanto, prendendo due rappresentanti qualunque di [(f, U)] e [(g, V)], esiste sempre un intorno in cui questa somma sia definita. Allo stesso modo, definiamo il prodotto

$$[(f,U)] \cdot [(g,V)] = [(fg,U \cap V)], \quad [(f,U)], [(g,V)] \in C_p^{\infty}(\mathbb{R}^n)$$
(1.59)

e la moltiplicazione per scalari

$$\lambda[(f,U)] = [(\lambda f, U)], \quad \lambda \in \mathbb{R}, \ [(f,U)] \in C_p^{\infty}(\mathbb{R}^n)$$
(1.60)

Tutte queste operazioni sono ben definite e soddisfano tutte le proprietà di un'algebra perché, per funzioni lisce, la somma, il prodotto e la moltiplicazione soddisfano queste stesse proprietà. A questo punto si può dire che  $C_p^{\infty}(\mathbb{R}^n)$  sia un'algebra su  $\mathbb{R}$ .

Nonostante non sia necessario per un'algebra,  $C_p^{\infty}(\mathbb{R}^n)$  è anche commutativa e unitaria 15 su  $\mathbb{R}^n$ .

$$\begin{cases} a+b \in A, & \forall a, b \in A \\ \lambda a \in A, & \forall \lambda \in \mathbb{K} \end{cases}$$

<sup>&</sup>lt;sup>12</sup>Dunque con operazioni

<sup>&</sup>lt;sup>13</sup>In generale, non è necessaria l'associatività per definire un'algebra.

<sup>&</sup>lt;sup>14</sup>Le proprietà di associatività e distributività sono sufficienti per renderla un anello.

<sup>&</sup>lt;sup>15</sup>Vedi Esercizio A.7.

## 1.3.3 Derivazione puntuale di $C_p^{\infty}(\mathbb{R}^n)$

A questo punto, possiamo definire l'applicazione chiamata derivazione puntuale dell'algebra  $C_p^{\infty}(\mathbb{R}^n)$ :

$$D: C_p^{\infty}(\mathbb{R}^n) \to \mathbb{R}$$

$$[(f, U)] \mapsto D_v f = \sum_{i=1}^n \frac{\partial f}{\partial x^i}(p) v^i$$
(1.61)

con  $p \in U \subset \mathbb{R}^n$  e  $v = (v^1, \dots, v^n) \in T_p(\mathbb{R}^n)$ .

Questa applicazione possiede le seguenti proprietà:

1.  $\mathbb{R}$ -linearità<sup>16</sup>, i.e.

$$D([(f,U)] + [(g,V)]) = D([(f,U)]) + D([(g,V)])$$
(1.62)

$$D(\lambda[(f,U)]) = \lambda D([(f,U)]) \tag{1.63}$$

2. soddisfa la regola di Leibniz, i.e.

$$D([(f,U)] \cdot [(g,V)]) = D([(f,U)]) g(p) + f(p) D([(g,V)])$$
(1.64)

Dimostrazione ( $\mathbb{R}$ -linearità (somma)).

$$D([(f,U)] + [(g,V)]) = D([(f+g,U\cap V)])$$

$$= D_v(f+g)$$

$$= \sum_{j=1}^n \frac{\partial (f+g)}{\partial x^j} (p) v^j$$

$$= \sum_{j=1}^n \frac{\partial f}{\partial x^j} (p) v^j + \sum_{j=1}^n \frac{\partial g}{\partial x^j} (p) v^j$$

$$= D_v f + D_v g$$

$$= D([(f,U)]) + D([(g,V)])$$
(1.65)

per qualsiasi  $[(f,U)],[(g,V)]\in C_p^\infty(\mathbb{R}^n)$ , qualsiasi  $p\in U\cap V\subset \mathbb{R}^n$  e qualsiasi  $v\in T_p(\mathbb{R}^n)$ .

Dimostrazione ( $\mathbb{R}$ -linearità (moltiplicazione per scalare)).

$$D(\lambda[(f,U)]) = D([(\lambda f, U)])$$

$$= D_v(\lambda f)$$

$$= \sum_{j=1}^n \frac{\partial(\lambda f)}{\partial x^j} (p) v^j$$

$$= \lambda \sum_{j=1}^n \frac{\partial f}{\partial x^j} (p) v^j$$

$$= \lambda D([(f,U)])$$
(1.66)

 $<sup>^{16}</sup>$ Rispetto alla struttura di spazio vettoriale di  $C_p^{\infty}(\mathbb{R}^n).$ 

per qualsiasi  $[(f,U)],[(g,V)] \in C_p^{\infty}(\mathbb{R}^n)$ , qualsiasi  $\lambda \in \mathbb{R}$ , qualsiasi  $p \in U \subset \mathbb{R}^n$  e qualsiasi  $v \in T_p(\mathbb{R}^n)$ .

Dimostrazione (Regola di Leibniz).

$$D([(f,U)] \cdot [(g,V)]) = D([(fg,U \cap V)])$$

$$= D_v(fg)$$

$$= \sum_{j=1}^n \frac{\partial (fg)}{\partial x^j} (p) v^j$$

$$= \left(\sum_{j=1}^n \frac{\partial f}{\partial x^j} (p) v^j\right) g(p) + f(p) \left(\sum_{j=1}^n \frac{\partial g}{\partial x^j} (p) v^j\right)$$

$$= (D_v f) g(p) + f(p) (D_v g)$$

$$= D([(f,U)]) g(p) + f(p) D([(g,V)])$$

$$(1.67)$$

per qualsiasi  $[(f,U)],[(g,V)]\in C_p^\infty(\mathbb{R}^n)$ , qualsiasi  $p\in U\cap V\subset \mathbb{R}^n$  e qualsiasi  $v\in T_p(\mathbb{R}^n)$ .  $\square$ 

La derivazione puntuale è quindi un modo per associare un numero reale a un germe di funzioni, soddisfacendo le proprietà definite sopra.

Indichiamo dunque l'insieme delle derivazioni puntuali di  $C_p^{\infty}(\mathbb{R}^n)$  come  $\mathrm{Der}_p(C_p^{\infty}(\mathbb{R}^n))$ , i.e.

$$\operatorname{Der}_{p}(C_{p}^{\infty}(\mathbb{R}^{n})) \doteq \left\{ D([(f,U)]) = D_{v}f \doteq \sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}}(p) v^{j} \in \mathbb{R} \,\middle|\, [(f,U)] \in C_{p}^{\infty}(\mathbb{R}^{n}), v \in T_{p}(\mathbb{R}^{n}) \right\}$$

$$(1.68)$$

## 1.3.4 Isomorfismo tra $T_p(\mathbb{R}^n)$ e $\mathrm{Der}_p(C_p^\infty(\mathbb{R}^n))$

Definiamo l'applicazione

$$\varphi: T_p(\mathbb{R}^n) \to \operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$$

$$v \mapsto D_v \tag{1.69}$$

questa associa il vettore  $v = (v^1, \dots, v^n) \in T_p(\mathbb{R}^n)$  con  $p \in \mathbb{R}^n$  alla derivazione puntuale  $D_v$ , la quale è a sua volta un'applicazione che associa la classe di equivalenza di germi di funzioni [(f, U)] alla derivata direzionale di f rispetto a v, i.e.

$$D_{v}f = \sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}}(p) v^{j} \in \mathbb{R}$$
(1.70)

Possiamo usare lo stesso simbolo, i.e.  $D_v([(f,U)]) = D_v f$ , perché questa relazione vale per qualunque rappresentante della classe.

L'applicazione  $\varphi$  permette di considerare equivalentemente l'insieme delle derivazioni puntuali

dell'algebra dei germi delle funzioni  $C_p^{\infty}(\mathbb{R}^n)$  e lo spazio tangente a un punto, in quanto questi due insiemi sono isomorfi tra loro tramite  $\varphi$  stessa. Utilizzare le derivazioni è utile perché per alcune varietà differenziabili non esiste una visualizzazione dello spazio tangente.

**Theorem 4.** L'applicazione  $\varphi$  è un isomorfismo degli spazi vettoriali  $T_p(\mathbb{R}^n)$  e  $\mathrm{Der}_p(C_p^\infty(\mathbb{R}^n))$ , i.e. tramite  $\varphi$  si ha che

$$T_p(\mathbb{R}^n) \stackrel{iso.}{\simeq} \operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$$
 (1.71)

Per dimostrare questo teorema è necessario notare che gli elementi  $D_i \in \operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$  costituiscono uno spazio vettoriale<sup>17</sup> con operazioni

$$+: \operatorname{Der}_{p}(C_{p}^{\infty}(\mathbb{R}^{n})) \times \operatorname{Der}_{p}(C_{p}^{\infty}(\mathbb{R}^{n})) \to \operatorname{Der}_{p}(C_{p}^{\infty}(\mathbb{R}^{n}))$$

$$(D_{v}, D_{w}) \mapsto D_{v} + D_{w}$$

$$(1.72)$$

$$\cdot : \mathbb{R} \times \operatorname{Der}_{p}(C_{p}^{\infty}(\mathbb{R}^{n})) \to \operatorname{Der}_{p}(C_{p}^{\infty}(\mathbb{R}^{n})) 
(\lambda, D_{v}) \mapsto \lambda D_{v}$$
(1.73)

Consideriamo ora la seguente preposizione:

**Proposition 4.1.** Le operazioni dello spazio vettoriale  $\operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$  su  $\mathbb{R}$  (definite sopra) sono  $\mathbb{R}$ -lineari e la somma soddisfa la regola di Leibniz, i.e.

$$(D_v + D_w)([(f, U)]) = D_v([(f, U)]) + D_w([(f, U)])$$
(1.74)

$$D(\lambda[(f,U)]) = \lambda D([(f,U)]) = (\lambda D)([(f,U)])$$
(1.75)

$$(D_v + D_w)([(f, U)] \cdot [(g, V)]) = (D_v + D_w)([(f, U)]) g(p) + f(p) (D_v + D_w)([(g, V)])$$
(1.76)

per qualsiasi  $D, D_v, D_w \in \mathrm{Der}_p(C_p^{\infty}(\mathbb{R}^n))$  e qualsiasi  $\lambda \in \mathbb{R}$ .

Dimostrazione (Proposizione). Per la  $\mathbb{R}$ -linearità:

$$(D_{v} + D_{w})(\alpha[(f, U)] + \beta[(g, V)]) = D_{v}(\alpha[(f, U)] + \beta[(g, V)]) + D_{w}(\alpha[(f, U)] + \beta[(g, V)])$$

$$= \alpha D_{v}([(f, U)]) + \beta D_{v}([(g, V)]) + \alpha D_{w}([(f, U)]) + \beta D_{w}([(g, V)])$$

$$= \alpha (D_{v} + D_{w})([(f, U)]) + \beta (D_{v} + D_{w})([(g, V)])$$

$$= \alpha (D_{v} + D_{w})([(f, U)]) + \beta (D_{v} + D_{w})([(g, V)])$$
(1.77)

per qualsiasi  $D_v, D_w \in \operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$  e  $\alpha, \beta \in \mathbb{R}$ . Per la regola di Leibniz:

<sup>&</sup>lt;sup>17</sup>Vedi Esercizio A.8.

$$(D_{v} + D_{w})([(f, U)] \cdot [(g, V)]) = D_{v}([(f, U)] \cdot [(g, V)]) + D_{w}([(f, U)] \cdot [(g, V)])$$

$$= D_{v}([(f, U)]) g(p) + f(p) D_{v}([(g, V)]) + D_{w}([(f, U)]) g(p) + f(p) D_{w}([(g, V)])$$

$$= (D_{v} + D_{w})([(f, U)]) g(p) + f(p) (D_{v} + D_{w})([(g, V)])$$

$$(1.78)$$

per qualsiasi  $D_v, D_w \in \mathrm{Der}_p(C_p^{\infty}(\mathbb{R}^n)).$ 

*Proof.* Per dimostrare che  $\varphi$  sia un isomorfismo è necessario dimostrare che  $\varphi$  sia  $\mathbb{R}$ -lineare, iniettiva<sup>18</sup> e suriettiva<sup>19</sup>.

Per l' $\mathbb{R}$ -linearità, sia  $[(f,U)] \in C_p^{\infty}(\mathbb{R}^n)$ , possiamo scrivere

$$D_{\alpha v + \beta w}([(f, U)]) = D_{\alpha v + \beta w}(f)$$

$$= \sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}}(p) (\alpha v^{j} + \beta w^{j})$$

$$= \alpha \sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}}(p) v^{j} + \beta \sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}}(p) w^{j}$$

$$= \alpha D_{v} f + \beta D_{w} f$$

$$= \alpha D_{v}([(f, U)]) + \beta D_{w}([(f, U)])$$

$$(1.79)$$

per qualsiasi  $\alpha, \beta \in \mathbb{R}$  e  $v, w \in T_p(\mathbb{R}^n)$ .

Da questo si ottiene che l'applicazione  $\varphi$  è  $\mathbb{R}$ -lineare:

$$\varphi(\alpha v + \beta w) = D_{\alpha v + \beta w}$$

$$= \alpha D_v + \beta D_w$$

$$= \alpha \varphi(v) + \beta \varphi(w)$$
(1.80)

per qualsiasi  $\alpha, \beta \in \mathbb{R}$  e  $v, w \in T_p(\mathbb{R}^n)$ .

Per l'iniettività, consideriamo il  $kernel^{20}$  di  $\varphi$ : se questo contiene solo l'elemento 0, inteso come

$$\forall a_1, a_2 \in A \mid a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$$

 $^{19}$ Un'applicazione f tra due insiemi A e B è suriettiva se

$$\forall b \in B, \exists a \in A \mid f(a) = b$$

<sup>20</sup>Il *kernel* o nucleo di un'applicazione, indicato con ker, è l'insieme di tutti e soli gli elementi del dominio che hanno come immagine lo 0 del codominio. Nel caso considerato ora

$$\ker(\varphi) = \left\{ v \in T_p(\mathbb{R}^n) \,\middle|\, \varphi(v) \equiv D_v = 0 \in \mathrm{Der}_p(C_p^{\infty}(\mathbb{R}^n)) \right\}$$

 $<sup>\</sup>overline{\ ^{18}{\rm Un'applicazione}\ f}$ tra due insiemiAe B è iniettivase

$$0: C_p^{\infty}(\mathbb{R}^n) \to \mathbb{R}$$

$$[(f, U)] \mapsto 0$$
(1.81)

i.e.  $ker(\varphi) = \{0\}$ , allora  $\varphi$  è iniettiva<sup>21</sup>.

Siccome 0 associa un qualunque germe liscio [(f,U)] sempre a  $0\in\mathbb{R}$ , possiamo scegliere l'applicazione

$$x^{j}: \mathbb{R}^{n} \to \mathbb{R}$$

$$(x^{1}, \dots, x^{n}) \mapsto x^{j}$$

$$(1.82)$$

per qualsiasi  $j=1,\ldots,n$ , la quale è una proiezione liscia dunque il germe che la contiene è liscio, i.e.  $[(x^j,\mathbb{R}^n)]\in C_p^\infty(\mathbb{R}^n)$ . A questo punto

$$0([(x^{j}, \mathbb{R}^{n})]) = D_{v}([(x^{j}, \mathbb{R}^{n})])$$

$$= D_{v}(x^{j})$$

$$= \sum_{i=1}^{n} \frac{\partial x^{j}}{\partial x^{i}}(p) v^{i}$$

$$= \sum_{i=1}^{n} \delta^{ij} v^{i}$$

$$= v^{j}$$

$$(1.83)$$

perciò

$$\begin{cases}
0([(f,U)]) = 0 \in \mathbb{R}, & \forall [(f,U)] \in C_p^{\infty}(\mathbb{R}^n) \\
0([(x^j,\mathbb{R})]) = v^j
\end{cases}
\implies v^j = 0, & \forall j = 1,\dots, n$$
(1.84)

da cui

$$v \in \ker(\varphi) \iff v = 0 \in T_p(\mathbb{R}^n)$$
 (1.85)

perciò  $\varphi$  è iniettiva.

La suriettività implica che se si fissa una qualunque derivazione puntuale esiste un vettore nello spazio tangente che mandato tramite  $\varphi$  dà quella derivazione: in simboli

$$\forall D \in \operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n)), \ \exists \ v \in T_p(\mathbb{R}^n) \mid \varphi(v) = D$$
(1.86)

dove in generale  $\varphi(v) = D_v$ , dunque dobbiamo trovare un v tale che faccia coincidere  $D = D_v$ . Prima di farlo, enunciamo il seguente lemma:

 $<sup>^{21} \</sup>mbox{Questo}$  vale perché  $\varphi$  è lineare (vedi Teorema della dimensione).

**Lemma 5** (Derivazione di costante). Siano  $D \in \operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$  e la funzione costante

$$c: \mathbb{R}^n \to \mathbb{R}$$

$$x \mapsto c \tag{1.87}$$

allora  $D([(c, \mathbb{R}^n)]) = 0$ .

Dimostrazione (lemma).

$$D([(c, \mathbb{R}^{n})]) = D([(1c, \mathbb{R}^{n})])$$

$$= c D([(1, \mathbb{R}^{n})])$$

$$= c D([(1 \cdot 1, \mathbb{R}^{n})])$$

$$= c (D([(1, \mathbb{R}^{n})]) 1 + 1 D([(1, \mathbb{R}^{n})]))$$

$$= 2c D([(1, \mathbb{R}^{n})])$$

$$= 0$$
(1.88)

A questo punto, due applicazioni sono uguali se e solo se coincidono per ogni punto del dominio, i.e.

$$D_v = D \iff D_v([(f, U)]) = D([(f, U)]), \quad \forall ([(f, U)]) \in (C_p^{\infty}(\mathbb{R}^n))$$
 (1.89)

Prendendo un dominio U stellato rispetto al punto p, per il teorema di Taylor con resto

$$f(x) = f(p) + \sum_{i=1}^{n} (x^{i} - p^{i}) g_{i}(x), \quad \forall x \in U$$
(1.90)

con

$$g_i \in C^{\infty}(U) \mid g_i(p) = \frac{\partial f}{\partial x^i}(p) , \quad i = 1, \dots, n$$
 (1.91)

Sia  $v = (v^1, \dots, v^n) \in T_{p(\mathbb{R}^n)}$  definito come  $v^j = D([(x^j, \mathbb{R}^n)])$  per  $j = 1, \dots, n$ . Ora applichiamo D a un qualunque germe liscio [(f, U)]

Simone Iovine

$$D([(f,U)]) = D([(f,V),\mathbb{R}^n)])^{-0} + D\left(\left[\left(\sum_{i=1}^n (x^i - p^i) g_i(x), U\right)\right]\right)$$

$$= \sum_{i=1}^n D([((x^i - p^i) g_i(x), U)])$$

$$= \sum_{i=1}^n (D([((x^i - p^i), U)]) g_i(p) + (p^i - p^i)^{-0} D([(g_i(x), U)]))$$

$$= \sum_{i=1}^n (D([(x^i, U)]) - D([(p^i, U)])^{-0}) g_i(p)$$

$$= \sum_{i=1}^n D([(x^i, U)]) \frac{\partial f}{\partial x^i}(p)$$

$$= \sum_{i=1}^n \frac{\partial f}{\partial x^i}(p) v^i$$

$$= D_v f$$

$$= D_v ([(f, U)])$$
(1.92)

dunque  $D=D_f$ e perciò  $\varphi$  è anche suriettiva.

Date queste proprietà di  $\varphi$ , questa applicazione è un isomorfismo tra  $T_p(\mathbb{R}^n)$  e  $\mathrm{Der}_p(C_p^\infty(\mathbb{R}^n))$ , i.e.

$$T_p(\mathbb{R}^n) \stackrel{iso.}{\simeq} \operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$$
 (1.93)

Corollary 5.1.

$$\dim(T_p(\mathbb{R}^n)) = n = \dim(\operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n)))$$
(1.94)

## 1.3.5 Base canonica per $\operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$

L'insieme delle *n*-uple

$$\left(\left.\frac{\partial}{\partial x^1}\right|_p, \dots, \left.\frac{\partial}{\partial x^n}\right|_p\right) \tag{1.95}$$

i cui elementi sono definiti come

$$\frac{\partial}{\partial x^j}\Big|_{p} ([(f,U)]) = \frac{\partial f}{\partial x^j}(p), \quad \forall p \in U, j = 1,\dots, n$$
 (1.96)

forma una base per lo spazio  $\mathrm{Der}_p(C_p^\infty(\mathbb{R}^n)).$ 

*Proof.* Essendo  $T_p(\mathbb{R}^n) \simeq \mathrm{Der}_p(C_p^{\infty}(\mathbb{R}^n))$ , da cui

$$\dim(\operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))) = n \tag{1.97}$$

se  $(e_1, \ldots, e_n)$  è la base canonica<sup>22</sup> di  $T_p(\mathbb{R}^n)$ , si ha che

$$\varphi(e_i) = D_{e_i}, \quad \forall i = 1, \dots, n \tag{1.98}$$

i.e. un isomorfismo porta elementi di base in altrettanti elementi di base. Applicando questo a una qualunque funzione  $f \in C^{\infty}(\mathbb{R}^n)$ 

$$D_{e_i}(f) = \sum_{j=1}^n \frac{\partial f}{\partial x^j}(p) (e_i)_j = \sum_{j=1}^n \frac{\partial f}{\partial x^j}(p) \delta_{ij} = \frac{\partial f}{\partial x^i}(p)$$
(1.99)

## 1.4 Campi di vettori su aperti di $\mathbb{R}^n$

Sia un aperto  $U \subset \mathbb{R}^n$  con  $n \ge 1$ , un campo di vettori su U è un'applicazione

$$X: U \to \bigsqcup_{p \in U} T_p(\mathbb{R}^n)$$

$$p \mapsto X_p$$

$$(1.100)$$

dove il codominio è l'unione disgiunta<sup>23</sup> degli spazi di vettori tangenti in ogni punto di U; inoltre  $T_p(\mathbb{R}^n) = T_p(U)$  in quanto le due algebre seguenti coincidono  $C_p^{\infty}(\mathbb{R}^n) = C_p^{\infty}(U)$  perché i germi delle funzioni sono definiti localmente, quindi non dipendono dall'aperto considerato. Un elemento del campo di vettori può essere scritto in funzione della base canonica di  $T_p(\mathbb{R}^n)$ 

$$X_p = \sum_{i=1}^n a^i(p) \left. \frac{\partial}{\partial x^i} \right|_p \tag{1.101}$$

dove  $a^i(p) \in \mathbb{R}$  con i = 1, ..., n. In modo naturale, l'elemento  $X_p$  si identifica con l'n-upla  $X_p = (a^1(p), ..., a^n(p))$  in quanto  $T_p(\mathbb{R}^n) \simeq \mathbb{R}^n$ .

La notazione che indica che un elemento di una base genera uno spazio è la seguente:

$$\left\langle \left. \frac{\partial}{\partial x^i} \right|_p \right\rangle = T_p(\mathbb{R}^n) \tag{1.102}$$

Il campo di vettori X (senza la valutazione in un punto p) si scrive come

Simone Iovine 20

<sup>&</sup>lt;sup>22</sup>Con  $(e_j)_k = \delta_{jk}$ , e.g.  $e_3 = (0, 0, 1, 0, \dots, 0)$ .

 $<sup>^{23}</sup>$ L'unione disgiunta equivale a un'unione in cui ogni insieme ha un indice diverso, e.g. l'insieme non connesso  $(0,1)\sqcup(0,1)$  è diverso da  $(0,1)\cup(0,1)=(0,1)$ .

$$X = \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}} \tag{1.103}$$

dove ora  $a^i$  è una funzione  $a^i: U \to \mathbb{R}$ .

#### 1.4.1 Campi di vettori lisci

Un campo di vettori

$$X = \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}} \tag{1.104}$$

è  $C^{\infty}(U)$  (liscio o differenziabile) se le funzioni  $a^i$  sono lisce, i.e.  $a^i \in C^{\infty}(U)$  per qualsiasi  $i=1,\ldots,n$ .

L'insieme dei campi di vettori che rispettano questa prescrizione è chiamato  $\chi(U)$ , i.e.

$$\chi(U) = \left\{ X : U \to \bigsqcup_{p \in U} T_p(\mathbb{R}^n), \ X(p) = X_p = \sum_{i=1}^n a^i(p) \left. \frac{\partial}{\partial x^i} \right|_p \left| U \subset \mathbb{R}^n, \ a^i \in C^{\infty}(U) \right\} \right.$$
(1.105)

#### Esempi

1) Il campo di vettori seguente è liscio perché qualunque derivata delle sue componenti non annulla mai il denominatore in quanto l'origine non è compresa nel dominio

$$X : \mathbb{R}^{2} \setminus \{(0,0)\} \to T_{(x,y)}(\mathbb{R}^{2})$$

$$(x,y) \mapsto -\frac{x}{\sqrt{x^{2}+y^{2}}} \frac{\partial}{\partial x} - \frac{y}{\sqrt{x^{2}+y^{2}}} \frac{\partial}{\partial y}$$

$$= \left(-\frac{x}{\sqrt{x^{2}+y^{2}}}, -\frac{y}{\sqrt{x^{2}+y^{2}}}\right)$$

$$(1.106)$$

2) Per lo stesso motivo dell'esempio precedente, il campo di vettori seguente è liscio

$$X: \mathbb{R}^2 \setminus \{(0,0)\} \to T_{(x,y)}(\mathbb{R}^2)$$

$$(x,y) \mapsto -\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} - \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}$$

$$= \left(-\frac{y}{\sqrt{x^2 + y^2}}, -\frac{x}{\sqrt{x^2 + y^2}}\right)$$

$$(1.107)$$

#### 1.4.2 Operazioni in $\chi(U)$

Si può definire la somma in  $\chi(U)$  come

$$(X+Y)_p \doteq X_p + Y_p, \quad X, Y \in \chi(U), \ p \in U$$
 (1.108)

questo significa che, presi due campi di vettori su U

$$X = \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}}, \quad Y = \sum_{i=1}^{n} b^{i} \frac{\partial}{\partial x^{i}}, \quad a^{i}, b^{i} \in C^{\infty}(U), \forall i = 1, \dots, n$$
 (1.109)

allora

$$X + Y = \sum_{i=1}^{n} (a^i + b^i) \frac{\partial}{\partial x^i}, \quad a^i + b^i \in C^{\infty}(U), \, \forall i = 1, \dots, n$$
 (1.110)

Si può definire anche la moltiplicazione per scalari come

$$(\lambda X)_p \doteq \lambda X_p, \quad \forall X \in \chi(U), \, \forall \lambda \in \mathbb{R}, \, \forall p \in U$$
 (1.111)

questo significa che, preso

$$X = \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}}, \quad a^{i} \in C^{\infty}(U), \, \forall i = 1, \dots, n$$

$$(1.112)$$

allora

$$\lambda X = \sum_{i=1}^{n} (\lambda a^{i}) \frac{\partial}{\partial x^{i}}, \quad \lambda a^{i} \in C^{\infty}(U), \, \forall i = 1, \dots, n$$
 (1.113)

L'ultima operazione è quella di moltiplicazione di un campo di vettori per un'altra funzione

$$(fX)_p \doteq f(p)X_p, \quad X \in \chi(U), \ f \in C^{\infty}(U)$$
(1.114)

questo significa che

$$fX = \sum_{i=1}^{n} (fa^{i}) \frac{\partial}{\partial x^{i}}, \quad fa^{i} \in C^{\infty}(U), \, \forall i = 1, \dots, n$$
 (1.115)

Le prime due operazioni dotano l'insieme di  $\chi(U)$  della proprietà di spazio vettoriale.

#### 1.4.3 $\chi(U)$ come $C^{\infty}(U)$ -modulo

#### $\mathbb{R}$ -modulo sinistro

Sia R un anello commutativo unitario, un gruppo abeliano (A, +) è detto R-modulo sinistro se esiste un'applicazione

$$\begin{array}{c}
\cdot : R \times A \to A \\
(r, a) \mapsto r \cdot a
\end{array} \tag{1.116}$$

tale che

$$\begin{cases}
1_R \cdot a = a \\
r \cdot (s \cdot a) = (rs) \cdot a \\
(r+s) \cdot a = r \cdot a + s \cdot a \\
r \cdot (a+b) = r \cdot a + r \cdot b
\end{cases}$$

$$\forall r, s \in R, \forall a, b \in A$$

$$(1.117)$$

Queste proprietà valgono solo da sinistra, potrebbero non valere se calcolate da destra.

#### $\mathbb{R}$ -modulo destro

Sia R un anello commutativo unitario, un gruppo abeliano (A, +) è detto R-modulo destro se esiste un'applicazione

tale che

$$\begin{cases} a * 1_{R} = a \\ (a * r) * s = a * (rs) \\ a * (r + s) = a * r + a * s \\ (a + b) * r = a * r + b * r \end{cases}$$
  $\forall r, s \in R, \forall a, b \in A$  (1.119)

Queste proprietà valgono solo da destra, potrebbero non valere se calcolate da sinistra.

Tramite queste definizioni, definiamo (A, +) un R-modulo se è sia un R-modulo sinistro che destro, i.e.  $\cdot \equiv *$ .

**Remark.** Se un gruppo A è un R-modulo ed R è un campo  $\mathbb{K}$ , allora A è uno spazio vettoriale in  $\mathbb{K}$ .

#### Caso di $\chi(U)$

Essendo  $C^{\infty}(U)$  un anello commutativo unitario, per l'insieme dei campi di vettori lisci su U vale il seguente teorema:

**Theorem 6.**  $(\chi(U), +)$  è un  $C^{\infty}(U)$ -modulo.

*Proof.* Per dimostrare che il gruppo abeliano  $(\chi(U), +)$  sia un  $C^{\infty}(U)$ -modulo, è necessario dimostrare che  $(\chi(U), +)$  sia un  $C^{\infty}(U)$ -modulo sinistro e destro per la moltiplicazione di un campo di vettori per una funzione

$$\begin{array}{c} \cdot : C^{\infty}(U) \times \chi(U) \to \chi(U) \\ (f, X) \mapsto fX \end{array}$$
 (1.120)

Devono dunque essere verificate le seguenti proprietà sia a sinistra che a destra:

$$\begin{cases} 1_{C^{\infty}(U)}X = X \\ f(gX) = (fg)X \\ f(X+Y) = fX + fY \\ (f+g)X = fX + gX \end{cases} \quad \forall f, g \in C^{\infty}(U), \forall X, Y \in \chi(U)$$
 (1.121)

Siccome la moltiplicazione per funzione è commutativa<sup>24</sup>, è sufficiente dimostrare che  $(\chi(U), +)$  sia un  $C^{\infty}(U)$ -modulo sinistro (o destro) per dimostrare che sia  $C^{\infty}(U)$ -modulo<sup>25</sup>.

## 1.4.4 Derivata di funzione rispetto a un campo di vettori

I campi di vettori permettono di derivare funzioni: la loro azione è equivalente alla derivata direzionale di una funzione rispetto a un vettore.

Siano un campo di vettori liscio  $X \in \chi(U)$  con  $U \subset \mathbb{R}^n$  aperto e una funzione liscia  $f \in C^{\infty}(U)$ . Definiamo la derivata della funzione f rispetto al campo di vettori X come  $Xf \in C^{\infty}(U)$ . La derivata puntuale è definita come

$$(Xf)(p) = X_p f, \quad p \in U \subset \mathbb{R}^n$$
(1.122)

Preso un campo

$$X = \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}}$$
 (1.123)

allora

<sup>&</sup>lt;sup>24</sup>Nonostante ciò, scriveremo la funzione sempre a sinistra dei campi, per notazione e per evitare di confonderla con la derivata di funzione rispetto a un campo di vettori (vedi sottosezione successiva).

<sup>&</sup>lt;sup>25</sup>Vedi Esercizio A.9.

$$(Xf)(p) = \left( \left( \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}} \right) f \right)_{p} = \sum_{i=1}^{n} a^{i}(p) \frac{\partial f}{\partial x^{i}} (p)$$
 (1.124)

perciò

$$Xf: U \to \mathbb{R}$$

$$p \mapsto \sum_{i=1}^{n} a^{i}(p) \frac{\partial f}{\partial x^{i}}(p) \tag{1.125}$$

Questa applicazione è  $C^{\infty}(U)$  perché lo è (Xf)(p), la quale lo è a sua volta perché  $f \in C^{\infty}(U)$  e  $X \in \chi(U)$  in quanto  $a^i \in C^{\infty}(U)$ .

Possiamo considerare l'applicazione

$$X: C^{\infty}(U) \to C^{\infty}(U)$$

$$f \mapsto Xf$$
(1.126)

ricordando che  $C^{\infty}(U)$ , oltre a essere un anello commutativo unitario, è un'algebra sui reali, perciò l'applicazione X è  $\mathbb{R}$ -lineare. Inoltre, siccome  $X_p \in \mathrm{Der}_p(C_p^{\infty}(\mathbb{R}^n))$ , i campi di vettori valutati in un punto soddisfano la regola di Leibniz:

$$X(fg)(p) = X_p(fg) = (X_p f) g(p) + f(p) (X_p g)$$
(1.127)

perciò anche l'applicazione X soddisfa la regola di Leibniz:

$$X(fg) = (Xf)g + f(Xg)$$
 (1.128)

#### Derivazione di un'algebra

Sia A un'algebra su campo <sup>26</sup>  $\mathbb{K}$ , un'applicazione  $D:A\to A$  che sia  $\mathbb{K}$ -lineare e tale che soddisfi la regola di Leibniz

$$D(a \cdot b) = (Da) \cdot b + a \cdot (Db), \quad \forall a, b \in A$$
 (1.129)

$$\cdot: A \times A \to A$$
  
 $(a,b) \mapsto a \cdot b$ 

soddisfa le proprietà

$$\begin{cases} (a+b)\cdot c = a\cdot c + b\cdot c \\ c\cdot (a+b) = c\cdot a + c\cdot b \\ \lambda(a\cdot b) = (\lambda a)\cdot b = a\cdot (\lambda b) \end{cases} \text{ distributività} \qquad \forall a,b,c\in A,\,\forall \lambda\in\mathbb{K}$$

 $<sup>^{26}</sup>$ Ricordiamo che un'algebra A su campo  $\mathbb K$  è una coppia  $(V,\cdot)$  dove V è uno spazio vettoriale e l'operazione

è chiamata derivazione dell'algebra A. L'insieme di tutte le derivazioni di un'algebra A viene indicato come  $\mathrm{Der}(A)^{27}$ .

## 1.4.5 Campo di vettori liscio come derivazione dell'algebra $C^{\infty}(U)$

Possiamo vedere un campo di vettori come una derivazione di un'algebra, quindi definiamo un'applicazione

$$\varphi: \chi(U) \to \operatorname{Der}(C^{\infty}(U))$$

$$X \mapsto \varphi(X) \tag{1.130}$$

da cui

$$\varphi(X)(f) \doteq Xf, \quad f \in C^{\infty}(U)$$
 (1.131)

Sia  $\chi(U)$  che  $\mathrm{Der}(C^{\infty}(U))$  sono  $C^{\infty}(U)$ -moduli tramite l'applicazione

$$\cdot : C^{\infty}(U) \times \operatorname{Der}(C^{\infty}(U)) \to \operatorname{Der}(C^{\infty}(U)) 
(f, D) \mapsto fD$$
(1.132)

per la quale vale

$$(fD)(g) = f(Dg), \quad \forall g \in C^{\infty}(U)$$
 (1.133)

Inoltre  $\varphi$  è anche  $C^{\infty}(U)$ -lineare:

$$\varphi(fX+gY)=f\,\varphi(X)+g\,\varphi(Y),\quad\forall f,g\in C^\infty(U),\,\forall X,Y\in\chi(U) \eqno(1.134)$$

Dimostreremo per le varietà differenziabili<sup>28</sup> che  $\varphi$  è un isomorfismo di  $C^{\infty}(U)$ -moduli, i.e.  $\chi(U) \simeq \mathrm{Der}(C^{\infty}(U))$ .

Tramite questo isomorfismo, si possono identificare i campi di vettori lisci con le derivazioni dell'algebra delle funzioni lisce, analogamente a come lo spazio tangente a un punto di  $\mathbb{R}^n$  si può identificare con le derivazioni puntuali dell'algebra dei germi delle funzioni in quel punto, i.e.  $T_p(\mathbb{R}^n) \simeq \mathrm{Der}_p(C_p^{\infty}(\mathbb{R}^n))$ .

 $<sup>^{27}\</sup>mathrm{Vedi}$ Esercizi A.10 e A.11.

<sup>&</sup>lt;sup>28</sup>Vedi Sotto-sottosezione ??.

# Chapter 2

# Differential manifolds

# Chapter 3

Lie groups and algebras

## Exercises A

# Exercises: Differential geometry in euclidean spaces

## **A.1** Funzione $C^k(\mathbb{R})$ ma non $C^{k+1}(\mathbb{R})$

Per ogni numero naturale  $k \in \mathbb{N}$  costruire una funzione  $C^k(\mathbb{R})$  ma non  $C^{k+1}(\mathbb{R})$ .

Per la funzione

$$f_k : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \alpha x^{k(k+2)/(k+1)} + \beta \tag{A.1}$$

per qualsiasi  $\alpha, \beta \in \mathbb{R}$  e con  $k \in \mathbb{N}$ , valgono

$$f_k \in C^k(\mathbb{R}) \land f_k \notin C^{k+1}(\mathbb{R})$$
 (A.2)

#### A.2 Funzione liscia ma non reale analitica

Dimostrare che la funzione

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
(A.3)

risulta essere liscia ma non reale analitica.

La funzione f è liscia in quanto, perché lo sia, è necessario che

$$\frac{\partial^k f}{\partial x^k}(0) = \frac{\partial^k}{\partial x^k} e^{-1/x^2}(0) = 0, \quad \forall k \in \mathbb{N}$$
(A.4)

e questo è vero poiché

$$\lim_{x \to 0} \left( \frac{e^{-1/x^2}}{x^p} \right) = 0, \quad \forall p \in \mathbb{N} \implies \lim_{x \to 0} \left( \frac{\partial^k}{\partial x^k} \left( e^{-1/x^2} \right) \right) = 0, \quad \forall k \in \mathbb{N}$$
 (A.5)

La funzione non è però reale analitica perché, in un intervallo aperto qualunque di 0 non coincide con il suo sviluppo di Taylor: lo sviluppo di Taylor per la parte dei reali positivi è diversa da 0 per qualunque valore di x non nullo mentre la parte per i reali negativi è identicamente nulla, i.e. preso U un qualunque intorno di 0

$$\sum_{k=0}^{+\infty} \left( \frac{\partial^k}{\partial x^k} \left( e^{-1/x^2} \right) \right) \frac{x^k}{k!} \neq 0, \quad \forall x \in U \setminus \{0\}$$
 (A.6)

## A.3 Intervalli diffeomorfi a $\mathbb{R}$

Siano  $a, b, c, d \in \mathbb{R}$  tale che a < b. Dimostrare che i seguenti intervalli sono tutti diffeomorfi tra loro e diffeomorfi a  $\mathbb{R}$ :

$$\begin{cases} (a,b) \\ (c,+\infty) \\ (-\infty,d) \end{cases} \tag{A.7}$$

Consideriamo le applicazioni:

$$f: (a,b) \to (0,1)$$

$$x \mapsto \frac{x-a}{b-a}$$

$$(A.8)$$

$$h: (0,1) \to (-\infty,d)$$

$$x \mapsto \ln(x) - d$$

$$(A.10)$$

$$g:(0,1)\to(c,+\infty) \qquad i:(c,+\infty)\to\mathbb{R} x\mapsto\frac{c}{x} \qquad (A.9) \qquad x\mapsto\ln(x-c)$$

Queste sono diffeomorfismi in quanto bigezioni lisce con inversa liscia, dunque le loro composizioni sono ancora diffeomorfismi. Le seguenti composizioni delle applicazioni sopraccitate inducono i seguenti diffeomorfismi:

$$g \circ f \implies (a,b) \simeq (c,+\infty)$$

$$h \circ f \implies (a,b) \simeq (-\infty,d)$$

$$i \circ g \circ f \implies (a,b) \simeq \mathbb{R}$$

$$h \circ g^{-1} \implies (c,+\infty) \simeq (-\infty,d)$$

$$i \implies (c,+\infty) \simeq \mathbb{R}$$

$$i \circ g \circ h^{-1} \implies (-\infty,d) \simeq \mathbb{R}$$

$$(A.12)$$

# A.4 Diffeomorfismo tra $B_r(c)$ e $\mathbb{R}^n$

Dimostrare che l'applicazione

$$h: B_1(0) \to \mathbb{R}^n$$

$$x \mapsto \left(\frac{x^1}{\sqrt{1 - \|x\|^2}}, \dots, \frac{x^n}{\sqrt{1 - \|x\|^2}}\right) \tag{A.13}$$

definisce un diffeomorfismo tra la palla aperta unitaria centrata nell'origine di  $\mathbb{R}^n$  ed  $\mathbb{R}^n$ . Dedurre che la palla aperta di centro  $c \in \mathbb{R}^n$  e raggio r > 0 in  $\mathbb{R}^n$  è diffeomorfa a  $\mathbb{R}^n$ .

L'applicazione h è una bigezione liscia in quanto ogni sua componente è liscia poiché

$$\frac{\partial^k}{\partial (x^i)^k} \left( \frac{x^i}{\sqrt{1 - \|x\|^2}} \right) < \infty, \quad \forall k \in \mathbb{N}, \, \forall x \in B_1(0), \, \forall i = 1, \dots, n$$
(A.14)

La sua inversa

$$h^{-1}: \mathbb{R}^n \to B_1(0)$$

$$x \mapsto \left(\frac{x^1}{\sqrt{1 + \|x\|^2}}, \dots, \frac{x^n}{\sqrt{1 + \|x\|^2}}\right) \tag{A.15}$$

è ancora liscia per lo stesso motivo, dunque h induce il diffeomorfismo  $B_1(0) \simeq \mathbb{R}^n$ . Se consideriamo l'applicazione lineare (dunque liscia con inversa liscia e perciò diffeomorfismo)

$$g: B_r(c) \to B_1(0)$$

$$x \mapsto \frac{x-c}{r} \tag{A.16}$$

con  $c = (c^1, \dots, c^n)$ , e la componiamo con h, otteniamo

$$f = h \circ g : B_r(c) \to \mathbb{R}^n$$

$$x \mapsto \left(\frac{\frac{x^1 - c^1}{r}}{\sqrt{1 + \left\|\frac{x - c}{r}\right\|^2}}, \cdots, \frac{\frac{x^n - c^n}{r}}{\sqrt{1 + \left\|\frac{x - c}{r}\right\|^2}}\right) \tag{A.17}$$

L'applicazione f è un diffeomorfismo in quanto composizione di diffeomorfismi, dunque f induce il diffeomorfismo  $B_r(c) \simeq \mathbb{R}^n$ .

# A.5 Teorema di Taylor con resto per funzione a due variabili

Sia  $f \in C^{\infty}(\mathbb{R}^2)$ . Usando il teorema di Taylor con resto, dimostrare che esistono  $g_{11}, g_{12}, g_{22} \in C^{\infty}(\mathbb{R}^2)$  tali che

$$f(x,y) = f(0,0) + x \frac{\partial f}{\partial x}(0,0) + y \frac{\partial f}{\partial y}(0,0) + x^2 g_{11}(x,y) + xy g_{12}(x,y) + y^2 g_{22}(x,y)$$
 (A.18)

Dal teorema di Taylor con resto, se  $f \in C^{\infty}(\mathbb{R}^2)$  ( $\mathbb{R}^2$  è stellato rispetto all'origine), abbiamo che

$$\exists g_{i_1 \cdots i_k} \in C^{\infty}(\mathbb{R}^2) \tag{A.19}$$

definite come

$$g_{i_1\cdots i_k}(0,0) \doteq \frac{1}{k!} \frac{\partial^k f}{\partial x^{i_1}\cdots \partial x^{i_k}}(0,0)$$
(A.20)

tali che

$$f(x,y) = f(0,0) + \sum_{m=1}^{k} \sum_{\substack{i_1,\dots,i_k=1\\i_1>\dots>i_1\\j_1>\dots>i_1}}^{m} g_{i_1\dots i_k}(x,y) \prod_{j=1}^{k} x^{i_j}, \quad \forall k \in \mathbb{N}$$
(A.21)

Espandendo quest'ultima forma per k=1 otteniamo

$$f(x,y) = f(0,0) + x g_1(x,y) + y g_2(x,y)$$

$$= f(0,0) + x g_1(0,0) + y g_2(0,0) + x^2 g_{11}(x,y) + xy g_{12}(x,y) + y^2 g_{22}(x,y)$$

$$= f(0,0) + x \frac{\partial f}{\partial x}(0,0) + y \frac{\partial f}{\partial y}(0,0) + x^2 g_{11}(x,y) + xy g_{12}(x,y) + y^2 g_{22}(x,y)$$
(A.22)

dove gli ultimi tre termini indicano il resto.

### A.6 Funzione liscia tramite incollamento

Sia  $f \in C^{\infty}(\mathbb{R}^2)$  tale che

$$f(0,0) = \frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0 \tag{A.23}$$

Sia l'applicazione

$$g: \mathbb{R}^2 \to \mathbb{R}$$

$$(t, u) \mapsto \begin{cases} \frac{f(t, tu)}{t} & t \neq 0 \\ 0 & t = 0 \end{cases}$$
(A.24)

Dimostrare che  $g \in C^{\infty}(\mathbb{R}^2)$ .

Per il Teorema 3, esistono due applicazioni  $h_1, h_2 \in C^{\infty}(\mathbb{R}^2)$  tali che

$$\begin{cases} f(x,y) = f(0,0) + h_1(x,y) + h_2(x,y) \\ h_1(0,0) = \frac{\partial f}{\partial x}(0,0) \\ h_2(0,0) = \frac{\partial f}{\partial y}(0,0) \end{cases}$$
(A.25)

Dalle ipotesi, possiamo scrivere

$$f(x,y) = h_1(x,y) + h_2(x,y)$$
(A.26)

$$h_1(0,0) = h_2(0,0) = 0$$
 (A.27)

Considerando l'applicazione g, possiamo dividere la trattazione in due casi:

•  $t \neq 0$ :

$$g(t, u) = \frac{1}{t} f(t, tu)$$

$$= \frac{1}{t} (th_1(t, tu) + tu h_2(t, tu))$$

$$= h_1(t, tu) + u h_2(t, tu)$$
(A.28)

• 
$$t = 0$$
:  

$$g(0, u) = h_1(0, 0)^{-0} + u h_2(0, 0)^{-0} = 0$$
(A.29)

dunque

$$g(t, u) = h_1(t, tu) + u h_2(t, tu), \quad \forall (t, u) \in \mathbb{R}^2$$
 (A.30)

Questo dimostra che  $g \in C^0(\mathbb{R}^2)$ . Per dimostrare che sia liscia, consideriamo la derivata di g(t, u) rispetto a t:

$$\frac{\mathrm{d}g(t,u)}{\mathrm{d}t} = \frac{\partial g(t,u)}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial g(t,u)}{\partial y} \frac{\partial y}{\partial t} 
= \frac{\partial h_1(t,tu)}{\partial x} \frac{\partial t}{\partial t} + \frac{\partial h_1(t,tu)}{\partial y} \frac{\partial (tu)}{\partial t} + u \left( \frac{\partial h_2(t,tu)}{\partial x} \frac{\partial t}{\partial t} + \frac{\partial h_2(t,tu)}{\partial y} \frac{\partial (tu)}{\partial t} \right) 
= \frac{\partial h_1(t,tu)}{\partial x} + u \frac{\partial h_1(t,tu)}{\partial y} + u \left( \frac{\partial h_2(t,tu)}{\partial x} + u \frac{\partial h_2(t,tu)}{\partial y} \right) 
= \frac{\partial h_1(t,tu)}{\partial x} + u \frac{\partial h_1(t,tu)}{\partial y} + u \frac{\partial h_2(t,tu)}{\partial x} + u^2 \frac{\partial h_2(t,tu)}{\partial y}$$
(A.31)

Questa applicazione è liscia in quanto composizione liscia di applicazioni lisce (questo ragionamento si estende alle derivate di grado maggiore), dunque  $g \in C^{\infty}(\mathbb{R}^2)$ .

# A.7 $C_p^{\infty}(\mathbb{R}^n)$ come algebra commutativa e unitaria

Dimostrare che l'insieme  $C_p^{\infty}(\mathbb{R}^n)$  dei germi delle funzioni lisce intorno a  $p \in \mathbb{R}^n$  con le operazioni di somma e di prodotto definite negli appunti è un'algebra commutativa e unitaria.

L'algebra  $A=(C_p^\infty(\mathbb{R}^n),+,\cdot)$  ha le operazioni definite come segue:

$$+: A \times A \to A$$

$$([(f, U)], [(g, V)]) \mapsto [(f + g, U \cap V)]$$
(A.32)

Perché sia effettivamente un'algebra, verifichiamo che sia distributiva e omogenea. Per la distributività sinistra:

$$([(f,U)] + [(g,V)]) \cdot [(h,W)] = [(f+g,U\cap V)] \cdot [(h,W)]$$

$$= [((f+g)h,U\cap V\cap W)]$$

$$= [(fh+gh,U\cap V\cap W)]$$

$$= [(fh,U\cap W)] + [(gh,V\cap W)]$$

$$= [(f,U)] \cdot [(h,W)] + [(g,V)] \cdot [(h,W)]$$

per qualsiasi  $[(f,U)],[(g,V)],[(h,W)]\in C_p^\infty(\mathbb{R}^n).$ 

La distributività destra deriva immediatamente dalla distributività sinistra e dalla commutatività (condizione non necessaria per un'algebra): quest'ultima può essere verificata tramite i seguenti passaggi

$$[(f,U)] + [(g,V)] = [(f+g,U\cap V)]$$

$$= [(g+f,V\cap U)]$$

$$= [(g,V)] + [(f,U)]$$

$$= [(g,V)] + [(f,U)]$$

$$= [(g,V)] \cdot [(f,U)]$$

$$= [(g,V)] \cdot [(f,U)]$$
(A.36)

per qualsiasi  $[(f,U)],[(g,V)] \in C_p^{\infty}(\mathbb{R}^n)$ . Per l'omogeneità:

$$\lambda([(f,U)] \cdot [(g,V)]) = \lambda[(fg,U \cap V)]$$

$$= [(\lambda fg, V \cap U)]$$

$$= [(\lambda f, U)] \cdot [(g,V)]$$

$$= [(f,U)] \cdot [(\lambda g, V)]$$
(A.37)

per qualsiasi  $[(f,U)],[(g,V)]\in C_p^\infty(\mathbb{R}^n)$  e qualsiasi  $\lambda\in\mathbb{R}.$  Infine l'unitarietà, i.e.

$$\exists \ e = [(1,U)] \in C_p^\infty(\mathbb{R}^n) \mid [(f,U)] \cdot e = e \cdot [(f,U)] = [(f,U)], \quad \forall [(f,U)] \in C_p^\infty(\mathbb{R}^n) \quad \text{(A.38)}$$

può essere verificata tramite i seguenti passaggi:

$$[(f,U)] \cdot [(1,U)] = [(f \cdot 1, U \cap U)]$$

$$= [(1 \cdot f, U \cap U)]$$

$$= [(1,U)] \cdot [(f,U)]$$

$$= [(f,U)]$$
(A.39)

# A.8 $\operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$ come spazio vettoriale su $\mathbb{R}$

Dimostrare che l'insieme  $\operatorname{Der}_p(C_p^\infty(\mathbb{R}^n))$  delle derivazioni puntuali con le operazioni definite negli appunti è uno spazio vettoriale su  $\mathbb{R}$ .

Per dimostrare che  $\operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$  sia uno spazio vettoriale su  $\mathbb{R}$  è necessario che le operazioni di somma tra derivazioni e moltiplicazione per scalari rispettino i seguenti 8 assiomi:

$$\begin{cases} D_v + (D_w + D_x) = (D_v + D_w) + D_x & 1. \text{ associatività (somma)} \\ D_v + D_w = D_w + D_v & 2. \text{ commutatività (somma)} \\ \exists \ 0 \in \text{Der}_p(C_p^{\infty}(\mathbb{R}^n)) \mid D_v + 0 = D_v & 3. \text{ elemento neutro (somma)} \\ \exists \ - D_v \in \text{Der}_p(C_p^{\infty}(\mathbb{R}^n)) \mid D_v + (-D_v) = 0 & 4. \text{ inverso (somma)} \\ \alpha(\beta D_v) = (\alpha \beta) D_v & 5. \text{ compatibilità (moltiplicazione)} \\ \exists \ 1 \in \mathbb{R} \mid 1D_v = D_v & 6. \text{ elemento neutro (moltiplicazione)} \\ (\alpha + \beta) D_v = \alpha D_v + \beta D_v & 7. \text{ distributività (somma vettoriale)} \\ \alpha(D_v + D_w) = \alpha D_v + \alpha D_w & 8. \text{ distributività (somma scalare)} \end{cases}$$

$$(A.40)$$

per qualsiasi  $D_v, D_w, D_x \in \operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$  e qualsiasi  $\alpha, \beta \in \mathbb{R}$ . Per dimostrare queste proprietà consideriamo un qualsiasi  $[(f, U)] \in C_p^{\infty}(\mathbb{R}^n)$  e applichiamo a questo le derivazioni:

1. Associatività (somma)

$$(D_{v} + (D_{w} + D_{x}))([(f, U)]) = D_{v}([(f, U)]) + (D_{w} + D_{x})([(f, U)])$$

$$= D_{v}([(f, U)]) + D_{w}([(f, U)]) + D_{x}([(f, U)])$$

$$= (D_{v} + D_{w})([(f, U)]) + D_{x}([(f, U)])$$

$$= ((D_{v} + D_{w}) + D_{x})([(f, U)])$$
(A.41)

2. Commutatività (somma)

$$(D_v + D_w)([(f, U)]) = D_v([(f, U)]) + D_w([(f, U)])$$

$$= D_w([(f, U)]) + D_v([(f, U)])$$

$$= (D_w + D_v)([(f, U)])$$
(A.42)

dove nel secondo passaggio abbiamo usato la commutatività della somma in  $\mathbb{R}$ 

3. Elemento neutro (somma)

$$0: C_p^{\infty}(\mathbb{R}^n) \to \mathbb{R}$$

$$[(f, U)] \mapsto 0$$
(A.43)

per qualsiasi  $[(f,U)]\in C_p^\infty(\mathbb{R}^n),$ dunque

$$(D_v + 0)([(f, U)]) = D_v([(f, U)]) + 0([(f, U)])$$

$$= D_v([(f, U)]) + 0$$

$$= D_v([(f, U)])$$
(A.44)

4. Inverso (somma)

$$-D_v: C_p^{\infty}(\mathbb{R}^n) \to \mathbb{R}$$

$$[(f, U)] \mapsto -\sum_{i=1}^n \frac{\partial f}{\partial x^i}(p) v^i$$
(A.45)

dunque

$$(D_v + (-D_v))([(f, U)]) = D_v([(f, U)]) + (-D_v)([(f, U)])$$

$$= \sum_{i=1}^n \frac{\partial f}{\partial x^i}(p) v^i + \left(-\sum_{i=1}^n \frac{\partial f}{\partial x^i}(p) v^i\right)$$

$$= 0$$
(A.46)

5. Compatibilità (moltiplicazione)

$$(\alpha(\beta D_v))([(f, U)]) = \alpha(\beta D_v)([(f, U)])$$

$$= \alpha D_v([(\beta f, U)])$$

$$= \alpha \beta D_v([(f, U)])$$

$$= (\alpha \beta) D_v([(f, U)])$$
(A.47)

6. Elemento neutro (moltiplicazione)

$$(1D_v)([(f,U)]) = D_v([(1f,U)]) = D_v([(f,U)])$$
(A.48)

7. Distributività (somma vettoriale)

$$(\alpha + \beta)D_v([(f, U)]) = D_v([((\alpha + \beta)f, U)])$$

$$= D_v([(\alpha f + \beta f, U)])$$

$$= \alpha D_v([(f, U)]) + \beta D_v([(f, U)])$$
(A.49)

8. Distributività (somma scalare)

$$\alpha(D_v + D_w)([(f, U)]) = (D_v + D_w)([(\alpha f, U)])$$

$$= D_v([(\alpha f, U)]) + D_w([(\alpha f, U)])$$

$$= \alpha D_v([(f, U)]) + \alpha D_w([(f, U)])$$
(A.50)

Tutte queste proprietà sono valide per qualsiasi  $D_v, D_w, D_x \in \operatorname{Der}_p(C_p^{\infty}(\mathbb{R}^n))$  e qualsiasi  $\alpha, \beta \in \mathbb{R}$ .

# A.9 $\chi(U)$ come spazio vettoriale su $\mathbb{R}$ e $C^{\infty}$ -modulo

Dimostrare che l'insieme dei campi di vettori lisci  $\chi(U)$  su un aperto  $U \subset \mathbb{R}^n$  con le operazioni definite negli appunti è uno spazio vettoriale su  $\mathbb{R}$  e un  $C^{\infty}$ -modulo.

Spazio vettoriale su  $\mathbb{R}$  Per dimostrare che  $\chi(U)$  sia uno spazio vettoriale su  $\mathbb{R}$  è necessario che le operazioni di somma tra campi di vettori e moltiplicazione per scalari rispettino i seguenti 8 assiomi:

$$\begin{cases} X + (Y + Z) = (X + Y) + Z & 1. \text{ associatività (somma)} \\ X + Y = Y + X & 2. \text{ commutatività (somma)} \\ \exists \ 0 \in \chi(U) \mid X + 0 = X & 3. \text{ elemento neutro (somma)} \\ \exists \ -X \in \chi(U) \mid X + (-X) = 0 & 4. \text{ inverso (somma)} \\ \alpha(\beta X) = (\alpha \beta) X & 5. \text{ compatibilità (moltiplicazione)} \\ \exists \ 1 \in \mathbb{R} \mid 1X = X & 6. \text{ elemento neutro (moltiplicazione)} \\ (\alpha + \beta) X = \alpha X + \beta X & 7. \text{ distributività (somma vettoriale)} \\ \alpha(X + Y) = \alpha X + \alpha Y & 8. \text{ distributività (somma scalare)} \end{cases}$$

per qualsiasi  $X, Y, Z \in \chi(U)$  e qualsiasi  $\alpha, \beta \in \mathbb{R}$ . Ricordiamo che le operazioni sono definite come:

$$(X+Y)_p \doteq X_p + Y_p \tag{A.52}$$

$$(\alpha X)_p \doteq \alpha X_p \tag{A.53}$$

per qualsiasi  $X,Y\in\chi(U)$ , qualsiasi  $\alpha\in\mathbb{R}$  e qualsiasi  $p\in U\subset\mathbb{R}^n$ , dove i campi di vettori saranno:

$$X = \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}}, \quad Y = \sum_{i=1}^{n} b^{i} \frac{\partial}{\partial x^{i}}, \quad a_{i}, b_{i} \in C^{\infty}(U), \forall i = 1, \dots, n$$
(A.54)

Per dimostrare queste proprietà, valutiamo i campi di vettori in un qualsiasi  $p \in U \subset \mathbb{R}^n$ :

1. Associatività (somma)

$$(X + (Y + Z))_{p} = (X + Y)_{p} + Z_{p}$$

$$= X_{p} + Y_{p} + Z_{p}$$

$$= X_{p} + (Y + Z)_{p}$$

$$= (X + (Y + Z))_{p}$$
(A.55)

2. Commutatività (somma)

$$(X+Y)_{p} = X_{p} + Y_{p}$$

$$= \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p} + \sum_{i=1}^{n} b^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= \sum_{i=1}^{n} b^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p} + \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= Y_{p} + X_{p}$$

$$= (Y+X)_{p}$$
(A.56)

#### 3. Elemento neutro (somma)

$$0: U \to \bigsqcup_{p \in U} T_p(\mathbb{R}^n)$$

$$p \mapsto 0_p = \sum_{i=1}^n 0 \left. \frac{\partial}{\partial x^i} \right|_p$$

$$\stackrel{\mathbb{R}^n}{\mapsto} (0, \dots, 0)$$
(A.57)

dunque

$$(X+0)_{p} = X_{p} + 0_{p}$$

$$= \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p} + \sum_{i=1}^{n} 0 \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= \sum_{i=1}^{n} (a^{i}(p) + 0) \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= X_{p}$$

$$(A.58)$$

#### 4. Inverso (somma)

$$-X: U \to \bigsqcup_{p \in U} T_p(\mathbb{R}^n)$$

$$p \mapsto \sum_{i=1}^n (-a^i(p)) \left. \frac{\partial}{\partial x^i} \right|_p$$
(A.59)

dunque

$$(X + (-X))_{p} = X_{p} + (-X)_{p}$$

$$= \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p} + \sum_{i=1}^{n} (-a^{i}(p)) \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= \sum_{i=1}^{n} (a^{i}(p) - a^{i}(p)) \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= \sum_{i=1}^{n} 0 \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= 0_{p}$$

$$(A.60)$$

5. Compatibilità (moltiplicazione)

$$(\alpha(\beta X))_{p} = \alpha(\beta X)_{p}$$

$$= \alpha \beta X_{p}$$

$$= (\alpha \beta) X_{p}$$

$$= ((\alpha \beta) X)_{p}$$
(A.61)

6. Elemento neutro (moltiplicazione)

$$(1X)_{p} = 1X_{p}$$

$$= 1 \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= \sum_{i=1}^{n} (1a^{i}(p)) \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= X_{p}$$

$$(A.62)$$

7. Distributività (somma vettoriale)

$$(\alpha(X+Y))_{p} = \alpha(X+Y)_{p}$$

$$= \alpha(X_{p}+Y_{p})$$

$$= \alpha \left( \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p} + \sum_{i=1}^{n} b^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p} \right)$$

$$= \alpha \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p} + \alpha \sum_{i=1}^{n} b^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p}$$

$$= \alpha X_{p} + \alpha Y_{p}$$

$$= (\alpha X)_{p} + (\alpha Y)_{p}$$

$$= (\alpha X + \alpha Y)_{p}$$

$$(A.63)$$

#### 8. Distributività (somma scalare)

$$((\alpha + \beta)X)_{p} = (\alpha + \beta)X_{p}$$

$$= (\alpha + \beta)\sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}}\Big|_{p}$$

$$= \alpha \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}}\Big|_{p} + \beta \sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}}\Big|_{p}$$

$$= \alpha X_{p} + \beta X_{p}$$

$$= (\alpha X)_{p} + (\beta X)_{p}$$

$$= (\alpha X + \beta X)_{p}$$

$$(A.64)$$

Tutte queste proprietà sono valide per qualsiasi  $X, Y, Z \in \chi(U)$  e qualsiasi  $\alpha, \beta \in \mathbb{R}$ .

 $C^{\infty}$ -modulo Sia l'applicazione

$$C^{\infty}(U) \times \chi(U) \to \chi(U)$$

$$(f, X) \mapsto fX$$
(A.65)

Per dimostrare che  $(\chi(U),+)$  sia un  $C^{\infty}$ -modulo è necessario che siano verificate queste proprietà sia a sinistra che a destra:

$$\begin{cases} 1_{C^{\infty}(U)}X = X & 1. \text{ elemento neutro (somma)} \\ f(gX) = (fg)X & 2. \text{ compatibilità (moltiplicazione)} \\ f(X+Y) = fX + fY & 3. \text{ distributività (somma vettoriale)} \\ (f+g)X = fX + gX & 4. \text{ distributività (somma scalare)} \end{cases}$$
(A.66)

per qualsiasi  $f, g \in C^{\infty}(U)$  e qualsiasi  $X, Y \in \chi(U)$ . Siccome la moltiplicazione per funzione è commutativa, è sufficiente dimostrare che  $(\chi(U), +)$  sia un  $C^{\infty}(U)$ -modulo sinistro (o destro) per dimostrare che sia  $C^{\infty}(U)$ -modulo.

Dimostriamo dunque le proprietà riportate sopra, ancora una volta valutando i campi di vettori in un qualsiasi  $p \in U \subset \mathbb{R}^n$ :

1. Elemento neutro (somma)

$$1_{C^{\infty}(U)}: U \to \mathbb{R}$$

$$p \mapsto 1 \tag{A.67}$$

dunque

$$(1_{C^{\infty}(U)}X)_{p} = 1_{C^{\infty}(U)}(p)X_{p}$$

$$= 1 \sum_{i=1}^{n} a^{i}(p) \left. \frac{\partial}{\partial x^{i}} \right|_{p}$$

$$= \sum_{i=1}^{n} (1a^{i}(p)) \left. \frac{\partial}{\partial x^{i}} \right|_{p}$$

$$= \sum_{i=1}^{n} a^{i}(p) \left. \frac{\partial}{\partial x^{i}} \right|_{p}$$

$$= X_{p}$$

$$(A.68)$$

2. Compatibilità (moltiplicazione)

$$(f(gX))_p = f(p)(gX)_p$$

$$= f(p)g(p)X_p$$

$$= (fg)(p)X_p$$

$$= ((fg)X)_p$$
(A.69)

3. Distributività (somma vettoriale)

$$(f(X+Y))_{p} = f(p)(X+Y)_{p}$$

$$= f(p)(X_{p} + Y_{p})$$

$$= f(p)X_{p} + f(p)Y_{p}$$

$$= (fX)_{p} + (fY)_{p}$$

$$= (fX + fY)_{p}$$
(A.70)

4. Distributività (somma scalare)

$$((f+g)X)_{p} = (f+g)(p)X_{p}$$

$$= (f(p) + g(p))X_{p}$$

$$= f(p)X_{p} + g(p)X_{p}$$

$$= (fX)_{p} + (gX)_{p}$$

$$= (fX + gX)_{p}$$
(A.71)

Tutte queste proprietà sono valide per qualsiasi  $f,g\in C^\infty(U)$  e qualsiasi  $X,Y\in\chi(U)$ .

## A.10 Der(A) come spazio vettoriale su $\mathbb{K}$

Sia A un'algebra su un campo  $\mathbb{K}$ . Dimostrare che le operazioni

$$\begin{cases} (D_1 + D_2)(a) = D_1(a) + D_2(a) \\ (\lambda D)(a) = \lambda D(a) \end{cases} \quad \forall \lambda \in \mathbb{K}, \forall D_1, D_2, D \in \text{Der}(A)$$
 (A.72)

dotano Der(A) della struttura di spazio vettoriale su  $\mathbb{K}$ .

Per dimostrare che Der(A) sia uno spazio vettoriale su un campo  $\mathbb{K}$  è necessario che le operazioni di somma tra derivazioni e moltiplicazione per scalari rispettino i seguenti 8 assiomi:

$$\begin{cases} D_1 + (D_2 + D_3) = (D_1 + D_2) + D_3 & 1. \text{ associatività (somma)} \\ D_1 + D_2 = D_2 + D_1 & 2. \text{ commutatività (somma)} \\ \exists \ 0 \in \text{Der}(A)) \mid D + 0 = D & 3. \text{ elemento neutro (somma)} \\ \exists \ -D \in \text{Der}(A) \mid D + (-D) = 0 & 4. \text{ inverso (somma)} \\ \alpha(\beta D) = (\alpha \beta) D & 5. \text{ compatibilità (moltiplicazione)} \\ \exists \ \eta \in \mathbb{K} \mid \eta D = D & 6. \text{ elemento neutro (moltiplicazione)} \\ (\alpha + \beta) D = \alpha D + \beta D & 7. \text{ distributività (somma vettoriale)} \\ \alpha(D_1 + D_2) = \alpha D_1 + \alpha D_2 & 8. \text{ distributività (somma scalare)} \end{cases}$$

per qualsiasi  $D_1, D_2, D_3, D \in Der(A)$  e qualsiasi  $\alpha, \beta \in \mathbb{K}$ .

Per dimostrare queste proprietà consideriamo un qualsiasi  $a \in A$  e applichiamo a questo le derivazioni:

1. Associatività (somma)

$$(D_1 + (D_2 + D_3))(a) = D_1(a) + (D_2 + D_3)(a)$$

$$= D_1(a) + D_2(a) + D_3(a)$$

$$= (D_1 + D_2)(a) + D_3(a)$$

$$= ((D_1 + D_2) + D_3)(a)$$
(A.74)

2. Commutatività (somma)

$$(D_1 + D_2)(a) = D_1(a) + D_2(a)$$

$$= D_2(a) + D_1(a)$$

$$= (D_2 + D_1)(a)$$
(A.75)

dove nel secondo passaggio abbiamo usato la commutatività della somma dell'algebra ereditata dallo spazio vettoriale che la compone

3. Elemento neutro (somma)

$$0: A \to A \\ a \mapsto 0 \tag{A.76}$$

dove

$$a + 0 = a, \quad \forall a \in A \tag{A.77}$$

dunque

$$(D+0)(a) = D(a) + 0(a)$$
  
=  $D(a) + 0$   
=  $D(a)$  (A.78)

4. Inverso (somma)

$$-D: A \to A$$

$$a \mapsto -D(a)$$
(A.79)

dunque

$$(D + (-D))(a) = D(a) + (-D)(a)$$
  
=  $D(a) + -D(a)$   
= 0 (A.80)

5. Compatibilità (moltiplicazione)

$$(\alpha(\beta D))(a) = \alpha(\beta D)(a)$$

$$= \alpha\beta D(a)$$

$$= (\alpha\beta)D(a)$$

$$= ((\alpha\beta)D)(a)$$
(A.81)

6. Elemento neutro (moltiplicazione)

$$(\eta D)(a) = \eta D(a)$$

$$= D(\eta a)$$

$$= D(a)$$
(A.82)

dove abbiamo usato il fatto che lo spazio vettoriale che compone l'algebra è sullo stesso campo  $\mathbb K$  rispetto a quest'ultima

7. Distributività (somma vettoriale)

$$((\alpha + \beta)D)(a) = (\alpha + \beta)D(a)$$

$$= \alpha D(a) + \beta D(a)$$

$$= (\alpha D)(a) + (\beta D)(a)$$

$$= (\alpha D + \beta D)(a)$$
(A.83)

8. Distributività (somma scalare)

$$(\alpha(D_1 + D_2))(a) = \alpha(D_1 + D_2)(a)$$

$$= \alpha(D_1(a) + D_2(a))$$

$$= \alpha D_1(a) + \alpha D_2(a)$$

$$= (\alpha D_1)(a) + (\alpha D_2)(a)$$

$$= (\alpha D_1 + \alpha D_2)(a)$$
(A.84)

Tutte queste proprietà sono valide per qualsiasi  $D_1, D_2, D_3, D \in \text{Der}(A)$  e qualsiasi  $\alpha, \beta \in \mathbb{K}$ .

### A.11 Commutatore come derivazione

Siano  $D_1$  e  $D_2$  due derivazioni di un'algebra A su un campo  $\mathbb{K}$ , i.e.  $D_1, D_2 \in \mathrm{Der}(A)$ . Mostrare che  $D_1 \circ D_2$  non è necessariamente una derivazione di A mentre

$$D_1 \circ D_2 - D_2 \circ D_1 \in \text{Der}(A) \tag{A.85}$$

Perché  $D_1 \circ D_2$  sia una derivazione deve, in particolare, soddisfare la regola di Leibniz, ma questo non è verificato:

$$(D_{1} \circ D_{2})(a \cdot b) = D_{1}(D_{2}(a \cdot b))$$

$$= D_{1}(D_{2}(a) \cdot b + a \cdot D_{2}(b))$$

$$= D_{1}(D_{2}(a)) \cdot b + D_{2}(a) \cdot D_{1}(b) + D_{1}(a) \cdot D_{2}(b) + a \cdot D_{1}(D_{2}(b))$$

$$= (D_{1} \circ D_{2})(a) \cdot b + a \cdot (D_{1} \circ D_{2})(b) + D_{2}(a) \cdot D_{1}(b) + D_{1}(a) \cdot D_{2}(b)$$

$$\neq (D_{1} \circ D_{2})(a) \cdot b + a \cdot (D_{1} \circ D_{2})(b)$$

$$(A.86)$$

Mentre per la combinazione  $D_1 \circ D_2 - D_2 \circ D_1$  questa prescrizione è verificata:

$$(D_{1} \circ D_{2} - D_{2} \circ D_{1})(a \cdot b) = D_{1}(D_{2}(a \cdot b)) - D_{2}(D_{1}(a \cdot b))$$

$$= (D_{1} \circ D_{2})(a) \cdot b + a \cdot (D_{1} \circ D_{2})(b) + D_{2}(a) \cdot D_{1}(b) + D_{1}(a) \cdot D_{2}(b) + D_{2}(a) \cdot D_{1}(b)$$

$$- ((D_{2} \circ D_{1})(a) \cdot b + a \cdot (D_{2} \circ D_{1})(b) + D_{1}(a) \cdot D_{2}(b) + D_{2}(a) \cdot D_{1}(b))$$

$$= (D_{1} \circ D_{2})(a) \cdot b + a \cdot (D_{1} \circ D_{2})(b) + D_{2}(a) - D_{1}(b) + D_{1}(a) - D_{2}(b) + D_{2}(a) - D_{1}(b)$$

$$= (D_{1} \circ D_{2} - D_{2} \circ D_{1})(a) \cdot b + a \cdot (D_{1} \circ D_{2} - D_{2} \circ D_{1})(b)$$

$$= (D_{1} \circ D_{2} - D_{2} \circ D_{1})(a) \cdot b + a \cdot (D_{1} \circ D_{2} - D_{2} \circ D_{1})(b)$$

$$(A.87)$$

dunque  $D_1 \circ D_2 - D_2 \circ D_1 \in \text{Der}(A)$ .

# Exercises B

Exercises: Differential manifolds

# Exercises C

Exercises: Lie groups and algebras

# **Bibliography**

- 1. Loi, A. Introduzione alla Topologia Generale ISBN: 978-88-548-5917-3 (Aracne, 2013).
- 2. Lee, J. M. Introduction to Smooth Manifolds ISBN: 978-1-4419-9982-5 (Springer).
- 3. Tu, L. W. An Introduction to Manifolds ISBN: 978-1-4419-7400-6 (Springer, 2010).