Problems on Sequence and Series

- 1. Show that a sequence is bounded iff every subsequence of $\{x_n\}$ has a convergent subsequence.
- 2. Show that a monotone sequence has a convergent subsequence, then it is convergent.
- **3**. Prove the convergence of the following sequences the sequence $\{x_n\}$ be defined by

(1)
$$\begin{cases} x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right) & n = 1, 2, \dots \\ x_1 = 2. \end{cases}$$

(2)
$$\begin{cases} x_{n+1} = \sqrt{2x_n} & n = 1, 2, \dots \\ x_1 = 1. \end{cases}$$

(3)
$$\begin{cases} x_{n+1} = \sqrt{2 + \sqrt{x_n}} & n = 1, 2, \dots \\ x_1 = \sqrt{2}. \end{cases}$$

- 4. Determine whether the following series is convergent or divergent :
 - $1. \sum \frac{2^n n!}{n^n}$

 - $2. \sum_{n} \frac{n!}{n^n}$ $3. \sum_{n} \frac{1}{2^n n}$
 - $4. \sum \frac{1}{(n+2)\log(n+2)}$

 - 5. $\sum \frac{\log n}{n^p} \text{ where } p > 0$ 6. $\sum \frac{1}{(\log n)^p} \text{ where } p > 0$
 - 7. $\sum (2^{n+(-1)^n})^{-1}$
 - 8. $\sum (-1)^{n+1} \frac{1}{n}$ 9. $\sum (-1)^{n+1} \frac{1}{\sqrt{n}}$
- **5.** Let $\{a_n\}$ be a sequence such that $a_n \to 0$, then show that there exists a subsequence $\{a_{n_k}\}$ such that $\sum_k a_{n_k}$ is convergent.
- **6.** Let $\sum a_n^2$ be convergent. Show that $\sum a_n^3$ is convergent.
- 7. If $\sum a_n^2$ and $\sum b_n^2$ are convergent, then show that $\sum a_n b_n$ is convergent.