Ali Siahkoohi

CURRICULUM VITAE

alisk@rice.edu CONTACT Office Duncan Hall, Room 2037 **Email** 6100 Main Street, Houston, TX 77005 Website alisiahkoohi.github.io Information RESEARCH My research focuses on scientific machine learning, developing scalable methods to overcome computational INTERESTS challenges in the physical and data sciences. Keywords: generative models, variational inference, scientific machine learning, uncertainty quantification ACADEMIC **Simons Postdoctoral Fellow** August 2022 - present Positions Department of Computational Applied Mathematics & Operations Research Rice University, Houston, TX, USA Working jointly with Dr. Maarten V. de Hoop and Dr. Richard G. Baraniuk **EDUCATION** Georgia Institute of Technology, Atlanta, GA, USA Ph.D., Computational Science and Engineering Minor in Applied Mathematics University of Tehran, Tehran, Iran M.Sc., Geophysics Sharif University of Technology, Tehran, Iran B.Sc., *Electrical Engineering*

PUBLICATIONS

Preprints

P4. P. M. Mayer, L. Luzi, A. Siahkoohi, D. H. Johnson, and R. G. Baraniuk. Removing bias from maximum likelihood estimation with model autophagy. Preprint arXiv:2405.13977, 2024

August 2022

March 2016

August 2013

- P3. L. Baldassari, A. Siahkoohi, J. Garnier, K. Sølna, and M. V. de Hoop. Taming score-based diffusion priors for infinite-dimensional nonlinear inverse problems. Preprint arXiv:2405.15676, 2024
- P2. R. Orozco, A. Siahkoohi, M. Louboutin, and F. J. Herrmann. ASPIRE: Iterative amortized posterior inference for Bayesian inverse problems. Preprint arXiv:2405.05398, 2024
- P1. R. Orozco, P. Witte, M. Louboutin, A. Siahkoohi, G. Rizzuti, B. Peters, and F. J. Herrmann. InvertibleNetworks.jl: A Julia package for scalable normalizing flows. Preprint arXiv:2312.13480, 2023

Journal Publications

- J6. L. Luzi, P. M. Mayer, J. Casco-Rodriguez, A. Siahkoohi, and R. G. Baraniuk. Boomerang: Local sampling on image manifolds using diffusion models. Transactions on Machine Learning Research, 2024
- J5. M. Louboutin, Z. Yin, R. Orozco, T. J. Grady II, A. Siahkoohi, G. Rizzuti, P. A. Witte, O. Møyner, G. J. Gorman, and F. J. Herrmann. Learned multiphysics inversion with differentiable programming and machine learning. The Leading Edge, 42(7):474-486, 2023
- J4. Y. Zhang, Z. Yin, O. López, A. Siahkoohi, M. Louboutin, R. Kumar, and F. J. Herrmann. Optimized time-lapse acquisition design via spectral gap ratio minimization. Geophysics, 88(4):A19–A23, 2023
- J3. A. Siahkoohi, G. Rizzuti, R. Orozco, and F. J. Herrmann. Reliable amortized variational inference with physics-based latent distribution correction. Geophysics, 88(3):R297-R322, 2023
- J2. A. Siahkoohi, G. Rizzuti, and F. J. Herrmann. Deep Bayesian inference for seismic imaging with tasks. Geophysics, 87(5):S281–S302, 2022
- J1. A. Siahkoohi, M. Louboutin, and F. J. Herrmann. The importance of transfer learning in seismic modeling and imaging. Geophysics, 84(6):A47-A52, 2019

Peer-Reviewed Conference Papers

- C32. S. Alemohammad, J. Casco-Rodriguez, L. Luzi, A. I. Humayun, H. Babaei, D. LeJeune, <u>A. Siahkoohi</u>, and R. Baraniuk. Self-consuming generative models go MAD. In *The Twelfth International Conference on Learning Representations*, 2024
- C31. L. Luzi, D. LeJeune, <u>A. Siahkoohi</u>, S. Alemohammad, V. Saragadam, H. Babaei, N. Liu, Z. Wang, and R. G. Baraniuk. Titan: Bringing the deep image prior to implicit representations. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pages 6165–6169, 2024
- C30. L. Baldassari, <u>A. Siahkoohi</u>, J. Garnier, K. Sølna, and M. V. de Hoop. Conditional score-based diffusion models for Bayesian inference in infinite dimensions. In *Advances in Neural Information Processing Systems*, volume 36, pages 24262–24290, 2023
- C29. <u>A. Siahkoohi</u>, R. Morel, M. V. de Hoop, E. Allys, G. Sainton, and T. Kawamura. Unearthing InSights into Mars: Unsupervised source separation with limited data. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202, pages 31754–31772, 2023
- C28. R. Orozco, M. Louboutin, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Amortized normalizing flows for transcranial ultrasound with uncertainty quantification. In *Medical Imaging* with Deep Learning, volume 227, pages 332–349, 2023
- C27. R. Orozco, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Refining amortized posterior approximations using gradient-based summary statistics. In 5th Symposium on Advances in Approximate Bayesian Inference, 2023
- C26. R. Orozco, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Adjoint operators enable fast and amortized machine learning based Bayesian uncertainty quantification. In *Medical Imaging 2023: Image Processing*, volume 12464, page 124641L, 2023
- C25. Y. Zhang, Z. Yin, O. Lopez, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. 3D seismic survey design by maximizing the spectral gap. In *Third International Meeting for Applied Geoscience & Energy*, 2023
- C24. <u>A. Siahkoohi</u>, M. Chinen, T. Denton, W. B. Kleijn, and J. Skoglund. Ultra-low-bitrate speech coding with pretrained Transformers. In *Proceedings of Interspeech*, pages 4421–4425, 2022
- C23. <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Velocity continuation with Fourier neural operators for accelerated uncertainty quantification. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1765–1769, 2022
- C22. M. Louboutin, P. Witte, <u>A. Siahkoohi</u>, G. Rizzuti, Z. Yin, R. Orozco, and F. J. Herrmann. Accelerating innovation with software abstractions for scalable computational geophysics. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1482–1486, 2022
- C21. Z. Yin, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Learned coupled inversion for carbon sequestration monitoring and forecasting with Fourier neural operators. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 467–472, 2022
- C20. Y. Zhang, M. Louboutin, <u>A. Siahkoohi</u>, Z. Yin, R. Kumar, and F. J. Herrmann. A simulation-free seismic survey design by maximizing the spectral gap. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 15–20, 2022
- C19. <u>A. Siahkoohi</u>, R. Orozco, G. Rizzuti, and F. J. Herrmann. Wave-equation based inversion with amortized variational Bayesian inference. In *EAGE Deep learning for seismic processing: Investigating the foundations workshop*, 2022
- C18. R. Orozco, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Photoacoustic imaging with conditional priors from normalizing flows. In *Neural Information Processing Systems Workshop on Deep Learning and Inverse Problems*, 2021
- C17. <u>A. Siahkoohi</u>, G. Rizzuti, M. Louboutin, P. Witte, and F. J. Herrmann. Preconditioned training of normalizing flows for variational inference in inverse problems. In 3rd Symposium on Advances in Approximate Bayesian Inference, 2021
- C16. <u>A. Siahkoohi</u> and F. J. Herrmann. Learning by example: Fast reliability-aware seismic imaging with normalizing flows. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*,

- pages 1580-1585, 2021
- C15. R. Kumar, M. Kotsi, <u>A. Siahkoohi</u>, and A. Malcolm. Enabling uncertainty quantification for seismic data preprocessing using normalizing flows (NF)—An interpolation example. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1515–1519, 2021
- C14. G. Rizzuti, <u>A. Siahkoohi</u>, P. A. Witte, and F. J. Herrmann. Parameterizing uncertainty by deep invertible networks, an application to reservoir characterization. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1541–1545, 2020
- C13. M. Zhang, <u>A. Siahkoohi</u>, and F. J. Herrmann. Transfer learning in large-scale ocean bottom seismic wavefield reconstruction. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1666–1670, 2020
- C12. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. Weak deep priors for seismic imaging. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2998–3002, 2020
- C11. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. Uncertainty quantification in imaging and automatic horizon tracking—A Bayesian deep-prior based approach. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1636–1640, 2020
- C10. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification. In *European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts*, 2020
- C9. F. J. Herrmann, <u>A. Siahkoohi</u>, and G. Rizzuti. Learned imaging with constraints and uncertainty quantification. In *Neural Information Processing Systems Deep Inverse Workshop*, 2019
- C8. <u>A. Siahkoohi</u>, R. Kumar, and F. J. Herrmann. Deep-learning based ocean bottom seismic wavefield recovery. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2232–2237, 2019
- C7. <u>A. Siahkoohi</u>, D. J. Verschuur, and F. J. Herrmann. Surface-related multiple elimination with deep learning. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 4629–4634, 2019
- C6. G. Rizzuti, <u>A. Siahkoohi</u>, and F. J. Herrmann. Learned iterative solvers for the Helmholtz equation. In European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts, 2019
- C5. <u>A. Siahkoohi</u>, M. Louboutin, R. Kumar, and F. J. Herrmann. Deep convolutional neural networks in prestack seismic—two exploratory examples. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2196–2200, 2018
- C4. <u>A. Siahkoohi</u>, R. Kumar, and F. J. Herrmann. Seismic data reconstruction with generative adversarial networks. In *European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts*, 2018
- C3. <u>A. Siahkoohi</u> and A. Gholami. Sparsity promoting least squares migration for laterally inhomogeneous media. In 7th EAGE Saint Petersburg International Conference and Exhibition, 2016
- C2. M. S. Ebrahimi, M. H. Daraei, J. Rezaei, and <u>A. Siahkoohi</u>. A novel utilization of wireless sensor networks as data acquisition system in smart grids. In *Materials Science and Information Technology*, volume 433-440, pages 6725–6730, 2012
- C1. A. Najafi, <u>A. Siahkoohi</u>, and M. B. Shamsollahi. A content-based digital image watermarking algorithm robust against JPEG compression. In *IEEE International Symposium on Signal Processing and Information Technology*, pages 432–437, 2011

Theses

T1. <u>A. Siahkoohi</u>. *Deep generative models for solving geophysical inverse problems*. PhD thesis, Georgia Institute of Technology, 2022

Technical Reports

R4. <u>A. Siahkoohi</u>, R. Morel, R. Balestriero, E. Allys, G. Sainton, T. Kawamura, and M. V. de Hoop. Martian time-series unraveled: A multi-scale nested approach with factorial variational autoencoders. Technical

- Report arXiv:2305.16189, Rice University, 2024
- R3. M. Louboutin, <u>A. Siahkoohi</u>, R. Wang, and F. J. Herrmann. Low-memory stochastic backpropagation with multi-channel randomized trace estimation. Technical Report arXiv:2106.06998, Georgia Institute of Technology, 2021
- R2. <u>A. Siahkoohi</u>, G. Rizzuti, P. A. Witte, and F. J. Herrmann. Faster uncertainty quantification for inverse problems with conditional normalizing flows. Technical Report arXiv:2007.07985, Georgia Institute of Technology, 2020
- R1. <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Neural network augmented wave-equation simulation. Technical Report arXiv:1910.00925, Georgia Institute of Technology, 2019

TALKS Invited talks

- T22. Low-cost uncertainty quantification for large-scale inverse problems

 January 2023
 - ► RhEoVOLUTION Group (Dr. Andréa Tommasi), CNRS & Université Montpellier
 - ► Virtual oral presentation
- T21. Reliable amortized variational inference with conditional normalizing flows via

 August 2022
 physics-based latent distribution correction
 - ► International Meeting for Applied Geoscience & Energy, Workshop on Subsurface Uncertainty Description and Estimation
 - ► Oral presentation
- T20. Fast and reliability-aware seismic imaging with conditional normalizing flows

June 2021

- ► KAUST Virtual Workshop: Intelligent illumination of the Earth
- ► Virtual oral presentation
- T19. Unsupervised data-guided uncertainty analysis in imaging and horizon tracking

October 2020

- ► The 3rd Annual Meeting of the SIAM Texas-Louisiana Section
- ► Virtual oral presentation

Contributed talks

T18. Unearthing InSights into Mars: Unsupervised source separation with limited data

July 2023

July 2023

- ► International Conference on Machine Learning
- ► Poster presentation
- T17. Refining amortized posterior approximations using gradient-based summary statistics
 - ► Symposium on Advances in Approximate Bayesian Inference
 - ► Poster presentation
- T16. Martian time-series unraveled: A multi-scale nested approach with factorial variational May 2023 autoencoders
 - ► Geo-Mathematical Imaging Group Partners Meeting, Rice University
 - ▶ Oral presentation
- T15. Unearthing InSights into Mars: Unsupervised source separation with limited data

May 2023

- ► Geo-Mathematical Imaging Group Partners Meeting, Rice University
- ► Oral presentation
- T14. Velocity continuation with Fourier neural operators for accelerated uncertainty quantification

August 2022

- ► International Meeting for Applied Geoscience & Energy
- ▶ Oral presentation
- T13. Low-bitrate speech coding with Transformers

December 2021

- ► Chrome Media Team, Google
- ► Virtual oral presentation
- T12. Multifidelity conditional normalizing flows for physics-guided Bayesian inference November 2021
 - ► ML4SEISMIC Partners Meeting, Georgia Institute of Technology
 - ► Virtual oral presentation

- T11. Uncertainty quantification in imaging and automatic horizon tracking—A Bayesian November 2021 deep-prior based approach
 - ► ML4SEISMIC Partners Meeting, Georgia Institute of Technology
 - ► Virtual oral presentation
- T10. Learning by example: Fast reliability-aware seismic imaging with normalizing

 September 2021

 flows
 - ► Society of Exploration Geophysicists International Exposition and Annual Meeting
 - ► Virtual oral presentation [Link to video]
- T9. Preconditioned training of normalizing flows for variational inference in inverse January 2021 problems
 - ► Symposium on Advances in Approximate Bayesian Inference
 - ► Prerecorded short oral presentation [Link to video]
- T8. A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification December 2020
 - ► European Association of Geoscientists and Engineers Annual Conference & Exhibition
 - ► Virtual oral presentation
- T7. Uncertainty quantification in imaging and automatic horizon tracking—A Bayesian October 2020 deep-prior based approach
 - ► Society of Exploration Geophysicists International Exposition and Annual Meeting
 - ► Virtual oral presentation [Link to video]
- T6. Weak deep priors for seismic imaging

October 2020

- ▶ Society of Exploration Geophysicists International Exposition and Annual Meeting
- ► Virtual oral presentation [Link to video]
- T5. A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification February 2020
 - Society of Exploration Geophysicists Student Chapter, Georgia Institute of Technology
 - ► Oral presentation
- T4. Learned imaging with constraints and uncertainty quantification

November 2019

- ► HotCSE Seminar, CSE Department, Georgia Institute of Technology
- ► Oral presentation
- T3. Deep-learning based ocean bottom seismic wavefield recovery

September 2019

- ► Society of Exploration Geophysicists International Exposition and Annual Meeting
- ► Oral presentation
- T2. Surface-related multiple elimination with deep learning

September 2019

October 2018

- ▶ Society of Exploration Geophysicists International Exposition and Annual Meeting
- ► Oral presentation
- T1. Deep convolutional neural networks in prestack seismic—two exploratory examples
 - ► Society of Exploration Geophysicists International Exposition and Annual Meeting
 - ► Poster presentation

PROFESSIONAL SERVICE

Editorial Service

Special issue on Applied Mathematics in Inverse Problems and Uncertainty Quantification

- ▶ Journal of Mathematics, 2023
- ▶ Guest Editor

Conference Organization

- ► Organizer, Deep Learning and Inverse Problems Workshop (NeurIPS 2024)
- ▶ Session Chair, International Meeting for Applied Geoscience & Energy (IMAGE 2022)

Journal Reviewer

- ► IEEE Transactions on Neural Networks and Learning Systems
- ► IEEE Geoscience and Remote Sensing Letters
- ► IEEE Transactions on Geoscience and Remote Sensing

- ► Notices of the American Mathematical Society (AMS)
- ► Remote Sensing
- ► Journal of Geophysical Research Solid Earth
- ► Geophysical Prospecting
- ► Geophysics
- ▶ Geosciences
- ► Entropy

Technical Program Committee Member and Reviewer

- ► Neural Information Processing Systems (NeurIPS 2023–2024)
- ► International Conference on Machine Learning (ICML 2024)
- ► International Conference on Learning Representations (ICLR 2024)
- ► Artificial Intelligence and Statistics Conference (AISTATS 2024)
- ► International Speech Communication Association (Interspeech 2023)
- ► Advances in Approximate Bayesian Inference (AABI 2023–2024)
- ► Structured Probabilistic Inference & Generative Modeling (ICML workshop, 2023–2024)
- ► Deep Generative Models for Health (NeurIPS workshop, 2023)
- ► International Meeting for Applied Geoscience & Energy (IMAGE 2023)

TEACHING EXPERIENCE

Numerical Analysis I

Fall 2022

Rice University, Houston, TX, USA

Instructor for 18 lectures

Computational Foundations of Machine Learning

Spring 2022

Georgia Institute of Technology, Atlanta, GA, USA

Teaching Assistant

Imaging with Data-Driven Models

Fall 2019

Georgia Institute of Technology, Atlanta, GA, USA

Teaching Assistant

Numerical Analysis I

Fall 2018

Georgia Institute of Technology, Atlanta, GA, USA

Teaching Assistant

Digital Signal Processing

Spring 2011

Sharif University of Technology, Tehran, Iran

Teaching Assistant

Signals and Systems

Spring 2011

Sharif University of Technology, Tehran, Iran

Teaching Assistant

Linear Algebra

Spring 2010

Sharif University of Technology, Tehran, Iran

Teaching Assistant

INTERNSHIP

Research Intern

August 2021 – December 2021

Chrome Media Team

Google, San Francisco, CA, USA