2019

Scene Graph Generation and Its Application to Vision-and-Language Tasks

Jianwei Yang @ Georgia Tech 06/16/2019

What is scene graph?

Image as a single label

Image Source: ImageNet

Image as an object set

4

Image as a scene graph

"Woman look at box"

"Man hold king crab"

"Woman wear coat"

"Man embrace woman"

5

Distinguish images more accurately

[1] Image Retrieval using Scene Graphs. Johnson et al. CVPR 2015

Describe images more grounding

- [1]. Auto-Encoding Scene Graphs for Image Captioning. Yang et al. arXiv 2018
- [2]. Exploring Visual Relationship for Image Captioning. Yao et al. ECCV 2018

Answer question more precisely

[1] Graph-Structured Representations for Visual Question Answering. Teney et al. CVPR 2017 [2] Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. Yi et al. Neurips 2018

Left: https://cals.ncsu.edu/wp-content/uploads/2016/08/horse-1500x931.png

Rigth: https://www.videoblocks.com/video/the-man-in-hat-feed-a-brown-horse-with-flowers-on-the-meadow-supmox 3xj0tvkb67

Generate questions more grounding

[1] Visual Curiosity: Learning to Ask Questions to Learn Visual Recognition. Yang et al. CoRL 2018

In this tutorial

Vision-and-Language Tasks

Part 1: Scene Graph Generation

Datasets

Scene Graphs 5K

Johnson et al, CVPR 2015

- 5000 images
- 6745 object categories
- 1310 relationship types
- Long-tailed

Visual Relationships

Lu et al, ECCV 2016

- 5000 images
- 100 object categories
- 70 relationship types
- Fully-annotated

Visual Genome

Krishna et al, IJCV 2017

- 108K images
- 33K object categories
- 42K relationship types
- Long-tailed

CLEVR

Johnson et al, CVPR 2017

- 100K images
- 3 object categories
- 8 relationship types
- Fully-annotated

Models

Neural Motif Network, Zellers et al. CVPR 2018

LinkNet, Woo et al. Neurips 2018

Language Prior, Lu et al. ECCV 2016

IMP, Xu et al. CVPR 2017

Graph R-CNN. Yang et al. ECCV 2018

Pixel2Graph. Newell et al. Neurips 2018

Input

IMP Model

Scene Graph Generation by Iterative Message Passing. Xu et al. CVPR 2017

Scene Graph Generation from Objects, Phrases and Region Captions. Li et al. ICCV 2017

Neural Motif Network

Neural Motifs: Scene Graph Parsing with Global Context. Zellers et al. CVPR 2018

Our model: Graph R-CNN

Jianwei Yang*, Jiasen Lu*, Stefan Lee, Dhruv Batra, Devi Parikh. Graph R-CNN for Scene Graph Generation. ECCV 2018.

Our model: Graph R-CNN

Jianwei Yang*, Jiasen Lu*, Stefan Lee, Dhruv Batra, Devi Parikh. Graph R-CNN for Scene Graph Generation. ECCV 2018.

Our model: Graph R-CNN

Jianwei Yang*, Jiasen Lu*, Stefan Lee, Dhruv Batra, Devi Parikh. Graph R-CNN for Scene Graph Generation. ECCV 2018.

1. Objects in a scene usually have relationships with others;

- 1. Objects in a scene usually have relationships with others;
- 2. Not all object pairs have relationships, the scene graph is usually sparse,

- 1. Objects in a scene usually have relationships with others;
- 2. Not all object pairs have relationships, the scene graph is usually sparse,
- 3. Existence of relationships highly depends on the object categories, and type of relationships highly depends on the context.

1. Relation proposal network (RePN) to learn to prune the densely connected scene graph;

- 1. Relation proposal network (RePN) to learn to prune the densely connected scene graph;
- 2. Attentional graph convolutional networks (aGCN) to incorporate the contextual information.

- 1. Relation proposal network (RePN) to learn to prune the densely connected scene graph,
- 2. Attentional graph convolutional networks (aGCN) to incorporate the contextual information.

Framework Hard Attention **Soft Attention** head leaf **RePN aGCN** Sparse graph Attentional graph Dense graph tree bird Subject has wings branch Target ► Attention • **Relational Proposal Network Attentional GCNs Conv Feature Scene Graph**

- 1. Relation proposal network (RePN) to learn to prune the densely connected scene graph,
- 2. Attentional graph convolutional networks (aGCN) to incorporate the contextual information.

I − Input Image; *S*: Scene graph

V −Scene graph vertices (object)

E — Scene graph edges (relationship)

O − Scene graph object labels

R — Scene graph relationship labels

Region Proposal

Framework

- *I* − Input Image; *S*: Scene graph
- V −Scene graph vertices (object)
- E Scene graph edges (relationship)
- *O* − Scene graph object labels
- R Scene graph relationship labels

Framework

I − Input Image; *S*: Scene graph

V —Scene graph vertices (object)

E — Scene graph edges (relationship)

O − Scene graph object labels

R — Scene graph relationship labels

Relation Proposal Network

Inspired by Region Proposal Network^[1]:

Step 2: NMS for object pairs based on pair-wise IoU:

$$IoU(\{r_m^o, r_n^o\}, \{r_p^o, r_q^o\}) = \frac{I(r_m^o, r_p^o) + I(r_n^o, r_q^o)}{U(r_m^o, r_p^o) + U(r_n^o, r_q^o)}$$

- [1]. Faster R-CNN. Ren et al. Neurips 2016.
- [2]. Non-local Networks. Want et al. CVPR 2018.

GCN layer with residual connection^[1]:

$$z_i^{(l+1)} = \sigma \left(z_i^{(l)} + \sum_{i \in \mathcal{N}(i)} \alpha_{ij} W z_j^{(l)} \right)$$

GCN layer with residual connection^[1]:

$$z_i^{(l+1)} = \sigma \left(z_i^{(l)} + \sum_{i \in \mathcal{N}(i)} \alpha_{ij} W z_j^{(l)} \right)$$
Matrix Computation
$$z_i^{(l+1)} = \sigma (W Z^{(l)} \alpha_i)$$
Nonlinear function. Learnable parameters, linears from learnable parameters.

Nonlinear function Learnable parameters Inputs from last layer

GCN layer with residual connection^[1]:

$$z_i^{(l+1)} = \sigma \left(z_i^{(l)} + \sum_{i \in \mathcal{N}(i)} \alpha_{ij} W z_j^{(l)} \right)$$
 Matrix Computation
$$z_i^{(l+1)} = \sigma (W Z^{(l)} \alpha_i) \longleftarrow_{\text{Affinities}}^{\text{Predetermined}}$$

Nonlinear function Learnable parameters Inputs from last layer

GCN layer with residual connection^[1]:

Learning the affinities!

$$u_{ij} = w_h^T \sigma \left(W_a \left[z_i^{(l)}, z_j^{(l)} \right] \right)$$
$$\alpha_i = \operatorname{softmax}(u_i)$$

- [1]. Semi-Supervised Classification with Graph Convolutional Networks. Kipf et al. ICLR 2017
- [2]. Graph Attention Networks. Veličković et al. ICLR 2018

GCN layer with residual connection^[1]:

Learning the affinities!

$$u_{ij} = w_h^T \sigma \left(W_a \left[z_i^{(l)}, z_j^{(l)} \right] \right)$$

$$\alpha_i = \operatorname{softmax}(u_i)$$

Attentional GCNs (aGCN) on scene graph:

Update object representations:

$$z_i^o = \sigma \left(W^{\text{skip}} Z^o \alpha^{rs} + W^{sr} Z^r \alpha^{sr} + W^{or} Z^r \alpha^{or} \right)$$

- [1]. Semi-Supervised Classification with Graph Convolutional Networks. Kipf et al. ICLR 2017
- [2]. Graph Attention Networks. Veličković et al. ICLR 2018

GCN layer with residual connection:

$$z_i^{(l+1)} = \sigma\left(z_i^{(l)} + \sum_{i \in \mathcal{N}(i)} \alpha_{ij}Wz_j^{(l)}\right)$$
 Matrix Computation
$$z_i^{(l+1)} = \sigma(WZ^{(l)}\alpha_i)$$
 Nonlinear function Learnable parameters Inputs from last layer

Learning the affinities!

$$u_{ij} = w_h^T \sigma \left(W_a \left[z_i^{(l)}, z_j^{(l)} \right] \right)$$

$$\alpha_i = \operatorname{softmax}(u_i)$$

Attentional GCNs (aGCN) on scene graph:

Update predicate representations:

$$z_i^r = \sigma(z_i^r + W^{rs}Z^o\alpha^{rs} + W^{ro}Z^o\alpha^{ro})$$

- [1]. Semi-Supervised Classification with Graph Convolutional Networks. Kipf et al. ICLR 2017
- [2]. Graph Attention Networks. Veličković et al. ICLR 2018

$$P(V|I)$$
 $P(E|V,I)$ $P(R,O|V,E,I) = P(S|I)$

Binary Cross Entropy Loss

Region Proposal Network

$$P(V|I) P(E|V,I) P(R,O|V,E,I) = P(S|I)$$

Region Proposal Network $P(V|I) \quad P(E|V,I) \quad P(R,O|V,E,I) = P(S|I)$ Relation Proposal Network Binary Cross Entropy Loss

Assume there are N objects extracted from an image, then N*(N-1) edges

Assume there are N objects extracted from an image, then N*(N-1) edges

Step 1: Take maximum for object scores and predicate scores, excluding background class.

Assume there are N objects extracted from an image, then N*(N-1) edges

Step 1: Take maximum for object scores and predicate scores, excluding background class.

Step 2: Compute relationship scores: Rel(i,j) = Subj(i) * Obj(j) * Pred(i,j)

Assume there are N objects extracted from an image, then N*(N-1) edges

Step 1: Take maximum for object scores and predicate scores, excluding background class.

Step 2: Compute relationship scores: Rel(i,j) = Subj(i) * Obj(j) * Pred(i,j)

Step 3: Sort the relationship triplets in a descending order:

Assume there are N objects extracted from an image, then N*(N-1) edges

Step 1: Take maximum for object scores and predicate scores, excluding background class.

Step 2: Compute relationship scores: Rel(i,j) = Subj(i) * Obj(j) * Pred(i,j)

Step 3: Sort the relationship triplets in a descending order:

Step 4: Compute the triplet recalls (Recall@50, Recall@100) based on the ground-truth

SGGen:
$$Recall = \frac{C(T_{pred} \ and \ T_{gt})}{N(T_{gt})}$$
 lou > 0.5

Assume there are N objects extracted from an image, then N*(N-1) edges

Step 1: Take maximum for object scores and predicate scores, excluding background class.

Step 2: Compute relationship scores: Rel(i,j) = Subj(i) * Obj(j) * Pred(i,j)

Step 3: Sort the relationship triplets in a descending order:

Step 4: Compute the triplet recalls (Recall@50, Recall@100) based on the ground-truth

SGGen:
$$Recall = \frac{C(T_{pred} \ and \ T_{gt})}{N(T_{gt})}$$
 lou > 0.5

watch

All predictions are wrong

Prediction-2:

One node is wrong

Prediction-3:

Three predicates are wrong

skateboard

pants

All predictions are wrong

One node is wrong

Prediction-3:

Three predicates are wrong

$$SGGen = \frac{C(T_{pred} \ and \ T_{gt})}{N(T_{gt})}$$

SGGen = 5

Prediction-1:

hat

sweater

man under watch
on wear

stand on on short

SGGen = 0

Prediction-2:

$$SGGen = \frac{C(T_{pred} \ and \ T_{gt})}{N(T_{gt})}$$

SGGen = 5

Prediction-3:

$$SGGen = \frac{C(T_{pred} \ and \ T_{gt})}{N(T_{gt})}$$

SGGen = 5

Prediction-1:

SGGen = 0

Prediction-2:

SGGen = 0

Prediction-3:

$$SGGen = 2$$

$$SGGen = \frac{C(T_{pred} \ and \ T_{gt})}{N(T_{gt})} \longrightarrow SGGen += \frac{C(O) + C(P) + C(T)}{N(O_{gt}) + N(P_{gt}) + N(T_{gt})}$$

Ground-Truth

SGGen = 5

SGGen+ = 16

Prediction-1:

SGGen = 0

SGGen+=0

Prediction-2:

SGGen = 0

SGGen+ = 10

Prediction-3:

SGGen = 2

SGGen+=9

$$SGGen = \frac{C(T_{pred} \ and \ T_{gt})}{N(T_{gt})} \longrightarrow SGGen += \frac{C(O) + C(P) + C(T)}{N(O_{gt}) + N(P_{gt}) + N(T_{gt})}$$

Experiments

Table. Implementation Details.

Dataset	Backbone	#objects	#predicates	Metrics
Visual Genome Train: 75,651 Test: 32,422	VGG-16 Faster R-CNN ^[1]	150	50	PredCls,SGCls, SGGen,SGGen+, mAP

Comparing SGGen+ with SGGen

Perturbation: change the node labels in ground-truth scene graphs

Perturb on	Node w/o relationship		Nodes w/ relationship			Both			
Perturb ratio	20%	50%	100%	20%	50%	100%	20%	50%	100%
SGGen	100.0	100.0	100.0	54.1	22.1	0.0	62.2	24.2	0.0
SGGen+	94.5	89.1	76.8	84.3	69.6	47.9	80.1	56.6	22.8

1. SGGen is completely insensitive to the perturbation on objects w/o rel.

Comparing SGGen+ with SGGen

Perturbation: change the node labels in ground-truth scene graphs

Perturb on	Node w/o relationship	Nodes w/ relationship	Both		
Perturb ratio	20% 50% 100%	20% 50% 100%	20% 50% 100%		
SGGen	100.0 100.0 100.0	54.1 22.1 0.0	62.2 24.2 0.0		
SGGen+	94.5 89.1 76.8	84.3 69.6 47.9	80.1 56.6 22.8		

- 1. SGGen is completely insensitive to the perturbation on objects w/o rel.
- 2. SGGen is over sensitive to perturbations on objects with rel.

Comparing with Previous Work

Recall@50

- [1] Scene Graph Generation by Iterative Message Passing. Xu et al. CVPR 2017
- [2] Scene Graph Generations from Objects, Phrases and Captions. Li et al. ICCV 2017
- [3] Neural Motif: Scene Graph Parsing with Global Context. Zellers et al. CVPR 2018

Comparing with Previous Work

Recall@100

- [1] Scene Graph Generation by Iterative Message Passing. Xu et al. CVPR 2017
- [2] Scene Graph Generations from Objects, Phrases and Captions. Li et al. ICCV 2017
- [3] Neural Motif: Scene Graph Parsing with Global Context. Zellers et al. CVPR 2018

Qualitative Results

Common sense emerges

We extract the weights in the score-level aGCN layer, and sort it in descending order.

Object-Object Co-Occurrence							
Object	Top-1	Top-2	Object	Top-1	Top-2		
boat	water	beach	girl	woman	hair		
plane	wing	tail	cow	horse	dog		
clock	building	root	sidewalk	street	bus		
bottle	cup	glass	handle	plate	food		
bus	truck	vehicle	snow	pole	ski		

Object-Predicate Co-Occurrence							
Object	Top-1	Top-2	Object	Top-1	Top-2		
hat	hold	wear	kite	watch	look at		
boat	in	sit in	girl	look at	watch		
umbrella	carry	hold	jacket	wear	with		
track	with	on	stripe	on	has		
sidewalk	at	walk on	snow	on	near		

Ablation Study

Ablation Study

Ablation Study

Ablation Study

Object Detection Investigation

1. Performance on almost all categories improve after adding RePN.

Object Detection Investigation

Part I: Summary

Take aways:

- Introducing a general base model for scene graph generation
- Pruning the fully-connected graph is important for scene graph generation
- Exploiting the context across objects and predicates is crucial
- Scene graph generation helps to improve object detection

• Challenges:

- The dataset is noisy (incomplete and inconsistent annotations)
- Relationships need more fine-grained categorizing (spatial, semantic, etc)
- Rare/novel relationship is hard to detect

Part 2: Scene Graph for Vision-and-Language Tasks

How we can use scene graph?

How we can use scene graph?

Scene Graph as Feature Representation

Image Representations for Vision-and-Language Tasks

Image Representations for Vision-and-Language Tasks

Image Representations for Vision-and-Language Tasks

Visual Question Answering on Clipart

Graph-Structured Representations for Visual Question Answering. Teney et al. CVPR 2017

Table 2. Results on the test set of the "abstract scenes" dataset (average scores in percents).

Visual Question Answering on Realistic Data

MUREL: Multimodal Relational Reasoning for Visual Question Answering. Cadene et al. CVPR 2019

	test-dev				test-std
Model	Yes/No	Num.	Other	All	All
Bottom-up [3]	81.82	44.21	56.05	65.32	65.67
Counter [41]	83.14	51.62	58.97	68.09	68.41
MuRel	84.77	49.84	57.85	68.03	68.41

Table 3. State-of-the-art comparison on the VQA 2.0 dataset.

84

Compositional Reasoning VQA Dataset

GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering. Hudson et al. CVPR 2019

Pattern: What|Which <type> [do you think] <is> <dobject>, <attr> or <decoy>?
Program: Select: <dobject> → Choose <type>: <attr>|<decoy>
Reference: The food on the red object left of the small girl that is holding a hamburger
Decoy: brown

What color is the food on the red object left of the small girl that is holding a hamburger, yellow or brown?

Select: hamburger → Relate: girl, holding → Filter size: small → Relate: object, left → Filter color: red → Relate: food, on → Choose color: yellow | brown

Graph Normalization

Ontology construction

- Edge Pruning
- Object Augmentation
- Global Properties

Question Generation

Pattern Collection

- Compositional References
- Decoy Selection
- Probabilistic Generation

Sampling and Balancing

- Distribution Balancing
- Type-Based Sampling
- Deduplication

Entailment Relations

- Functional Programs
- Entailment Relations
- Recursive Reachability

New Metrics

- Consistency
- Validity & Plausibility
- Distribution
- Grounding

Compositional Reasoning VQA Dataset

GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering. Hudson et al. CVPR 2019

Image Captioning given Relationship

Exploring Visual Relationship for Image Captioning. Yao et al. ECCV 2018

How we can use scene graph?

Scene Graph as Symbolic Representation

Learning to Generate Questions

Visual Curiosity: Learning to Ask Questions to Learn Visual Recognition. Yang and Lu et al. CoRL 2018

Learning to Generate Questions

Material

Target

Attribute Shape

Reference None

What is the shape Question of the front most

large red object?

What is the color of the metal cube on What is the material of object at the left side of a small object?

3

left side of metal cube?

95

Color

Learning to Generate Questions

Q1: What is the closest thing made of?

A1: metal

Q2: What shape is the closest object?

A2: cylinder

Q7: What shape is the rightmost thing?

A7: bowl

Q8: The rightmost thing has what color?

A8: green

Q9: What is the size of the rightmost thing?

A9: small

Q10: There is a closest object to the left of the tiny green matte bowl; what is its material?

A10: rubber

Q11: What shape is the closest matte object to the left of the tiny green matte

Q1: What is the shape of the farthest thing?

A1: ball

Q2: What material is the farthest object?

A2: plastic

Q7: The leftmost object is what color?

A7: brown

Q8: What is the closest thing that is in front of the yellow plastic ball made of?

A8: paper

Q9: What shape is the closest thing that is in front of the yellow plastic ball?

A9: cereal

Q10: The closest paper cereal in front of the yellow plastic ball is what color?

A10: red

Q1: What is the rightmost thing made of?

A1: plastic

Q2: There is a rightmost object; what

shape is it? A2: stapler

A6: AMBIGUOUS

Q7: What material is the leftmost thing?

A7: food

Q8: The leftmost thing is what shape?

A8: orange

Q9: The leftmost thing is what color?

A9: yellow

Q10: What material is the closest object right of the yellow food orange?

A10: plastic

Q11: There is a closest plastic thing that is

Part II: Summary

- Take away messages:
 - Scene graph can be used as feature or symbolic representation of image
 - Scene graph improves vision-language tasks like VQA and image captioning
 - Scene graph make the models more interpretable

Potential Directions:

- Leverage scene graph for explicit and effective reasoning on realistic data
- Language context dependent scene graph generation
- Combine scene graph and knowledge graph for common sense reasoning

Thanks! Questions?