Image Geometry

Yih-Lon Lin (林義隆)

Associate Professor,

Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology

Interpolation of Data

affine transformations

FIGURE 6.1 Replacing four points with eight.

FIGURE 6.2 Figure 6.1 slightly redrawn.

Interpolation of Data

• The estimation of function values based on surrounding values is called **interpolation**.

FIGURE 6.5 Calculating linearly interpolated values.

Image Interpolation

bilinear interpolation

EIGURE 6.6 Interpolation on an image.

Image Interpolation

bilinear interpolation

FIGURE 6.7 Interpolation between four image points.

Image Interpolation

General Interpolation

A general interpolation function

FIGURE 6.10 Using a general interpolation function.

$$f(x') = R(-\lambda)f(x_1) + R(1-\lambda)f(x_2).$$

General linear Interpolation

two interpolation functions

$$R_0(u) = \begin{cases} 0 & \text{if } u \le -0.5\\ 1 & \text{if } -0.5 < u \le 0.5\\ 0 & \text{if } u > 0.5 \end{cases}$$

$$R_1(u) = \begin{cases} 1+u & \text{if } u \le 0\\ 1-u & \text{if } u \ge 0 \end{cases}.$$

General linear Interpolation

Cubic interpolation

FIGURE 6.12 The cubic interpolation function R3(u).

$$R_3(u) = \begin{cases} 1.5(u)^3 - 2.5|u|^2 + 1 & \text{if } |u| \le 1, \\ -0.5|u|^3 + 2.5|u|^2 - 4|u| + 2 & \text{if } 1 < |u| \le 2. \end{cases}$$

$$f(x') = R_3(-1 - \lambda)f(x_1) + R_3(-\lambda)f(x_2) + R_3(1 - \lambda)f(x_3) + R_4(2 - \lambda)f(x_4)$$

Bicubic Interpolation

FIGURE 6.B Using $R_3(u)$ for interpolation.

FIGURE 6.14 How to apply bicubic interpolation.

Rotation

Rotation

◎ 國立雲林科技大學

National Yunlin University of Science and Technology

Transformations

$$C = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad E = \begin{bmatrix} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix}$$

dilation/contraction translation

Rotation

F16URE 6.B Rotating a point back into the original image.

Example

Determine the matrix that defines a rotation of a plane through an angle θ about a point P(h, k). Use this general result to find the matrix that defines a rotation of the plane through an angle of $\pi/2$ about the point (5, 4). Find the image of the triangle having the following vertices A(1, 2), B(2, 8), and C(3, 2) under this rotation. See Figure 2.23.

Figure 2.23

Rotation about P

Solution

The rotation about P can accomplished by a sequence of three of the above transformations;

- (a) A translation T_1 of the plane that takes P to origin O.
- (b) A rotation R of the plane about the origin through an angle θ .
- (c) A translation T_2 of the plane that takes O back to P. The matrices that describe these transformations are as follows.

$$\begin{bmatrix} 1 & 0 & -h \\ 0 & 1 & -k \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix}$$

Solution

$$R_{P}\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = T_{2}RT_{1}\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & h \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ 0 & 1 & k \end{bmatrix} \begin{bmatrix} 1 & 0 & -h \end{bmatrix} \begin{bmatrix} x \\ 0 & 1 & -k \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta & -h \cos \theta + k \sin \theta + h \end{bmatrix} \begin{bmatrix} x \\ \sin \theta & \cos \theta & -h \sin \theta - k \cos \theta + k \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Solution

To get the specific matrix that defined the rotation of the plane through an angle $\pi/2$ about the point P(5, 4), for example, let h = 5, k = 4, and $\theta = \pi/2$. The rotation matrix is

$$M = \begin{bmatrix} 0 & -1 & 9 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$