Composite Marginal Likelihood Methods for Random Utility Models

Zhibing Zhao and Lirong Xia

Rensselaer Polytechnic Institute

Plackett-Luce Model

Rank-Breaking

	Dunkin' Donuts	Haagen- Dazs	Veggiegrill
Dunkin' Donuts		2	2
Haagen- Dazs	1		2
Veggiegrill	1	1	

Composite Marginal Likelihood

$$\vec{\theta}^* = \arg\max_{i \neq j} \log \Pr(a_i > a_j | \vec{\theta})^{\kappa_{ij} w_{ij}}$$

- + strictly concave
- restricted to full rankings
- + asymptotically normal
- (future direction)
- + fast
- + easy to implement

Theoretical Results

High-level message:

Breaking: symmetric RUMs: uniform breaking

Plackett-Luce: weighted union of position-k breakings

CML weights: connected and symmetric

Theorems 1 & 2: Strict log-concavity is preserved under convolution and marginalization.

Theorems 3 & 4: (strongly connected $W \otimes G(P)$ is desired.) For Plackett-Luce model or RUMs where CDF of each utility distribution is strictly log-concave, the composite likelihood function (objective function of RBCML) is strictly log-concave if and only if $W \otimes G(P)$ is weakly connected. RBCML is bounded if and only if $W \otimes G(P)$ is strongly connected.

Theorem 5: RBCML is consistent and asymptotic normal.

Theorems 6 & 7: When CML weight is uniform, RBCML is consistent if and only if (i) for Plackett-Luce model, the breaking is weighted union of position-k breakings; (ii) for symmetric RUMs, the breaking is uniform.

Theorems 8 & 9: RBCML is consistent if and only if *W* is connected and symmetric and (i) for Plackett-Luce model, the breaking is weighted union of position-k breakings; (ii) for symmetric RUMs, the breaking is uniform.

Input: Profile P of n rankings, number of iterations T, the heuristic of breaking $G(\vec{\theta})$ and weights $W(\vec{\theta})$.

Output: estimated parameter $\vec{\theta}^*$

Initialize $\vec{\theta}^{(0)} = \vec{0}$

For t = 1 to T do

Compute $G(\vec{\theta}^{(t-1)})$ and $W(\vec{\theta}^{(t-1)})$

Estimate $\vec{\theta}^{(t)}$ using $G(\vec{\theta}^{(t-1)})$ and $W(\vec{\theta}^{(t-1)})$ using RBCML

End for

Experiments

Gaussian Random Utility Model

Summary and Future Work

RBCML: fast and accurate due to strict concavity and asymptotic normality.

Future Work: to extend RBCML to partial orders.

References

Hossein Azari Soufiani, David C. Parkes, and Lirong Xia, "Computing Parametric Ranking Models via Rank-Breaking", In proceedings of the 31st International Conference on Machine Learning, 2014.

Lucas Maystre and Matthias Grossglauser, "Fast and Accurate Inference of Plackett-Luce Models", in Advances in Neural Information Processing Systems, 2015.

Ashish Khetan and Sewoong Oh, "Data-Driven Rank Breaking for Efficient Rank Aggregation", in Journal of Machine Learning Research, 2016.

zhaozb08@gmail.com
http://homepages.rpi.edu/~zhaoz6/