Notes

September 19, 2014

assignment

```
number of cycles of length n in S_n is (n-1)! because you fix the first entry to eliminate duplicates. number of cycles of length m of S_n. pick \binom{n}{m} for the first element. \binom{n}{m}m!/m=\frac{n!}{(n-m)!}\frac{1}{m} #12
```

(ab) is odd, length three cycles are even, two evens multiplied together is even.

3.1 groups

S is a set.

definiton

```
a binary operation on S is a function S \times S \to S, or (x,y) \to x * y interesting binary operations satisfy: associativity, identity (\exists e \in S \text{ such that } x * e = e * x = x), inverse (a * b = b * a = e). if an element has an inverse, we say that it is invertible.
```

example

 \mathbb{Z} with binary operation is usual addition, $(\mathbb{Z}, +)$, then it is associative, 0 is identity, and all elements are invertible.

```
(2\mathbb{Z},+), nothing is different (2\mathbb{Z},\cdot). No identity element o (2\mathbb{Z}+1,+), this operation is not closed, it's not a binary operation.
```

propostion

let * be an associative operation on S, let $a, b, c \in S$ be invertible elements. then

- 1. the * operation has at most one identity element
- 2. if it has an identity elemen, then an element a in S has at most one inverse.

proof

```
assume that e, e' identity elements, x \star e = e \star x = x and x \star e' = e' \star x = x for all x \in S. take x = e' then e' = e' \star e = e now if a has two inverses b, b' then b = b \star e = b \star (a \star b') = (b \star a) \star b' = e \star b' = b'
```

propostion

let * be an associative operation on S, let $a, b, c \in S$ be invertible elements. then

1. a^{-1} is invertible

$$a\star a^{-1}=a^{-1}\star a=e$$

2. $a \star b$ is invertible and $(a \star b)^{-1} = a^{-1} \star b^{-1}$.

$$(a*b)*(b^{-1}*a^{-1}) = a*e*a^{-1} = e \text{ and similarly } (b^{-1}*a^{-1})*(a*b) = e$$

definition of group

let G be a set and \star be a binary operation on G. we say that (G,\star) is a group if

- 1. \star is associative
- 2. \star as an identity element
- 3. every element of G is invertible.

examples

 $(\mathbb{Z},+)$ is a group, (\mathbb{Z},\cdot) is not, (\mathbb{Q},\cdot) is not because zero is not invertible, $(\mathbb{Q}*,\cdot)$ is because the * means throw out zero. (S_n,\circ) where \circ is a permutation, is a group, $(\mathbb{Z}_n,+)$ is a group. \mathbb{Z}_n^* is all the elements of \mathbb{Z}_n^* is all elements of \mathbb{Z}_n that are invertible

proposition

(G,*) is a group, and $a,b,c\in G$ then n if ab=ac then b=c and if ba=ca then b=c $a^{-1}ab=a^{-1}ac=b=c$

abelian groups (commutative groups)

a group (G, *) is called abelian if * is commutative.

for example (S_n, \circ) is not abelian.

another example is $GL_n(\mathbb{R})$ the invertible $n \times n$ matrices with entries in \mathbb{R} . $(GL_n(\mathbb{R}), \cdot)$ is not commutative.