Linear Equations Unit 3

Linear Algebra and its Applications, David C. Lay Linear Algebra and its Applications, Gilbert Strang Applied Numerical Analysis, Gerald and Wheatly

Linear equation

A linear equation in the variables x_1, x_2, \dots, x_n is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n = b$$

where b and the coefficients of x_1, x_2, \dots, x_n are real or complex numbers

Eg.
$$7x_1 + 5x_2 - 12x_3 = 4.5$$

System of linear equations

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables x_1, x_2, \dots, x_n

•
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

•
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

•
$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Homogeneous linear equations

A system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

is called homogeneous if $b_1 = b_2 = \cdots = b_m = 0$ and non-homogeneous, otherwise.

Eg.

$$x_1 - x_2 + x_3 = 0$$

 $x_1 - 4x_3 = 0$

• A solution of the system is a list $\{s_1, s_2, \dots, s_n\}$ of numbers that makes each equation a true statement when the values s_1, s_2, \dots, s_n are substituted for x_1, x_2, \dots, x_n respectively.

Eg.,

$$x_1 - x_2 + x_3 = 8$$

 $x_1 - 4x_3 = 7$

• {11, 4, 1} is a solution of the above equations because, when these values are substituted for x_1, x_2, \dots, x_n , respectively, the equations simplify to 8 = 8 and 7 = 7

- The set of all possible solutions is called the solution set of the linear system.
- Two linear systems are called equivalent if they have the same solution set.
 That is, each solution of the first system is a solution of the second system, and each solution of the second system is a solution of the first.
- A system of linear equations has
- 1. no solution
- 2. exactly one solution
- 3. infinitely many solutions.

- A system of linear equations is said to be consistent if it has either one solution or infinitely many solutions;
- a system is inconsistent if it has no solution.

Figure 1.1: The example has one solution. Singular cases have none or too many.

Figure 1.3: The row picture: three intersecting planes from three linear equations.

Let the system be given by

$$a_{11}x_1 + a_{12}x_2 = b_1$$
 - (1)
 $a_{21}x_1 + a_{22}x_2 = b_2$ -(2)

To solve for x_1 Multiply first equation by a_{22} and second by a_{12} we get

$$a_{22}a_{11}x_1 + a_{22}a_{12}x_2 = a_{22}b_1$$

$$a_{12}a_{21}x_1 + a_{12}a_{22}x_2 = a_{12}b_2$$

Therefore, we get $(a_{22}a_{11} - a_{12}a_{21})x_1 = a_{22}b_1 - a_{12}b_2$ $x_1 = \frac{a_{22}b_1 - a_{12}b_2}{a_{22}a_{11} - a_{12}a_{21}}$

$$x_1 = \frac{D_{x1}}{D} = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

 $D_{\chi 1}$: Determinant of the numerator in the solution of χ_1 If we are solving for χ_1 , the column 1 is replaced with constants

To solve for x_2

Multiply first equation by a_{21} and second by a_{11} we get

$$a_{21}a_{11}x_1 + a_{21}a_{12}x_2 = a_{21}b_1$$

$$a_{11}a_{21}x_1 + a_{11}a_{22}x_2 = a_{11}b_2$$

Therefore, we get
$$(a_{21}a_{12}-a_{11}a_{22})x_2 = a_{21}b_1 - a_{11}b_2$$

$$x_2 = \frac{a_{21}b_1 - a_{11}b_2}{a_{21}a_{12} - a_{11}a_{22}}$$

$$x_2 = \frac{D_{x2}}{D} = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

 D_{x2} : determinant of the numerator in the solution of x_2 If we are solving for x_2 , the column 2 is replaced with constants

For the system of equations

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

If
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0$$

$$x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}} \text{ and } x_{2} = \frac{\begin{vmatrix} a_{11} & b_{1} \\ a_{21} & b_{2} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

eg.

$$12x_1 + 3x_2 = 15$$

$$2x_1 - 3x_2 = 13$$

$$x_1 = \frac{\begin{vmatrix} 15 & 3 \\ 13 & -3 \end{vmatrix}}{\begin{vmatrix} 12 & 3 \\ 2 & -3 \end{vmatrix}} = \frac{-45 - 39}{-36 - 6} = \frac{-84}{-42} = 2$$

$$x_2 = \frac{\begin{vmatrix} 12 & 15 \\ 2 & 13 \end{vmatrix}}{\begin{vmatrix} 12 & 3 \\ 2 & -3 \end{vmatrix}} = \frac{156 - 30}{-36 - 6} = \frac{126}{-42} = -3$$

Solving for 3 equations

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$D x_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}$$

$$= b_1 \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} b_2 & a_{23} \\ b_3 & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} b_2 & a_{22} \\ b_3 & a_{32} \end{vmatrix}$$

D x_1 is determinant of the numerator in the solution of x_1

$$D x_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} b_2 & a_{23} \\ b_3 & a_{33} \end{vmatrix} - b_1 \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & b_2 \\ a_{31} & b_3 \end{vmatrix}$$

D x_2 is determinant of the numerator in the solution of x_2

$$D x_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & b_2 \\ a_{32} & b_3 \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & b_2 \\ a_{31} & b_3 \end{vmatrix} + b_1 \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

D x_3 is determinant of the numerator in the solution of x_3

$$x_1 = \frac{D x_1}{D}$$
, $x_2 = \frac{D x_2}{D}$, $x_3 = \frac{D x_3}{D}$

Eg.

$$x_1 + x_2 - x_3 = 6$$

 $3x_1 - 2x_2 + x_3 = -5$
 $x_1 + 3x_2 - 2x_3 = 14$

$$D = \begin{vmatrix} 1 & 1 & -1 \\ 3 & -2 & 1 \\ 1 & 3 & -2 \end{vmatrix}$$

$$= 1 \begin{vmatrix} -2 & 1 \\ 3 & -2 \end{vmatrix} - 1 \begin{vmatrix} 3 & 1 \\ 1 & -2 \end{vmatrix} - 1 \begin{vmatrix} 3 & -2 \\ 1 & 3 \end{vmatrix}$$

$$= 1(4-3) - (-6-1) - (9+2) = 1+7-11 = -3$$

$$Dx1 = \begin{vmatrix} 6 & 1 & -1 \\ -5 & -2 & 1 \\ 14 & 3 & -2 \end{vmatrix}$$

$$= 6 \begin{vmatrix} -2 & 1 \\ 3 & -2 \end{vmatrix} - 1 \begin{vmatrix} -5 & 1 \\ 14 & -2 \end{vmatrix} - 1 \begin{vmatrix} -5 & -2 \\ 14 & 3 \end{vmatrix}$$

$$= 6(4-3) - (10-14) - (-15+28)$$

$$= 6+4-13 = -3$$

$$Dx2 = \begin{vmatrix} 1 & 6 & -1 \\ 3 & -5 & 1 \\ 1 & 14 & -2 \end{vmatrix}$$

$$= 1 \begin{vmatrix} -5 & 1 \\ 14 & -2 \end{vmatrix} - 6 \begin{vmatrix} 3 & 1 \\ 1 & -2 \end{vmatrix} - 1 \begin{vmatrix} 3 & -5 \\ 1 & 14 \end{vmatrix}$$

$$= 1(10-14)-6(-6-1)-(42+5)$$

$$Dx3 = \begin{vmatrix} 1 & 1 & 6 \\ 3 & -2 & -5 \\ 1 & 3 & 14 \end{vmatrix}$$

$$=1\begin{vmatrix} -2 & -5 \\ 3 & 14 \end{vmatrix} - 1\begin{vmatrix} 3 & -5 \\ 1 & 14 \end{vmatrix} + 6\begin{vmatrix} 3 & -2 \\ 1 & 3 \end{vmatrix}$$

$$=1(-28+15) - (42+5) + 6(9+2)$$

= $-13 - 47 + 66 = 6$

$$x_1 = \frac{D x_1}{D}, x_2 = \frac{D x_2}{D}, x_3 = \frac{D x_3}{D}$$

$$x_1 = \frac{-3}{-3}$$
, $x_2 = \frac{-9}{-3}$, $x_3 = \frac{6}{-3}$

$$x_1 = 1$$
, $x_2 = 3$, $x_3 = -2$

```
Eg2.

2x_1 - 3x_2 + x_3 = 1

3x_1 + x_2 - x_3 = 2

x_1 - x_2 - x_3 = 1
```

$$D = \begin{vmatrix} 2 & -3 & 1 \\ 3 & 1 & -1 \\ 1 & -1 & -1 \end{vmatrix}$$

$$= -14$$

$$Dx1 = \begin{vmatrix} 1 & -3 & 1 \\ 2 & 1 & -1 \\ 1 & -1 & -1 \end{vmatrix} = -8$$

$$Dx2 = \begin{vmatrix} 2 & 1 & 1 \\ 3 & 2 & -1 \\ 1 & 1 & -1 \end{vmatrix} = 1$$

$$Dx3 = \begin{vmatrix} 2 & -3 & 1 \\ 3 & 1 & 2 \\ 1 & -1 & 1 \end{vmatrix} = 5$$

$$x_1 = \frac{D x_1}{D}, x_2 = \frac{D x_2}{D}, x_3 = \frac{D x_3}{D}$$

$$x_1 = \frac{-8}{-14}$$
, $x_2 = \frac{1}{-14}$, $x_3 = \frac{5}{-14}$

$$x_1 = \frac{4}{7}, \qquad x_2 = -1/14, \qquad x_3 = -5/14$$

We now start with solving a systems of linear equations. The idea is to manipulate the rows of the augmented matrix in place of the linear equations themselves. Since, multiplying a matrix on the left corresponds to row operations, we left multiply by certain matrices to the augmented matrix so that the final matrix is in row echelon form. The process of obtaining the row echelon form of a matrix is called the Gauss Elimination method.

The general Gaussian elimination procedure is applied to the linear systems:

$$R_1: a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $R_2: a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 $R_n: a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$

Form the augmented matrix from the system of equations

The unknowns are eliminated to obtain an upper-triangular matrix.

$$R_1: a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$R_2: a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$
To eliminate x_1 from R_2 , we multiply R_1 by $(-a_{21}/a_{11})$ and obtain $-a_{21}x_1 - a_{12}\left(\frac{a_{21}}{a_{11}}\right)x_2 - \dots - a_{1n}\left(\frac{a_{21}}{a_{11}}\right)x_n = -b_1\left(\frac{a_{21}}{a_{11}}\right)$

Adding the above equation to R₂ we obtain

$$\left(a_{22} - a_{12} \frac{a_{21}}{a_{11}} \right) x_2 - \left(a_{23} - a_{13} \frac{a_{21}}{a_{11}} \right) x_3 \dots - \left(a_{2n} - a_{1n} \frac{a_{21}}{a_{11}} \right) x_n$$

$$= b_2 - b_1 \left(\frac{a_{21}}{a_{11}} \right)$$

R₂ can be rewritten as

$$R_2: a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2n}x_n = b'_2$$

Where
$$a'_{22} = \left(a_{22} - a_{12} \frac{a_{21}}{a_{11}}\right)$$
 and so on.

In a similar fashion, we can eliminate x_1 from the remaining equations and after eliminating x_1 from the last row Rn, we obtain the system

$$R_1: a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$R_2: \qquad a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2n}x_n = b'_2$$

$$R_n: a'_{n2}x_2 + a'_{n3}x_3 + \dots + a'_{nn}x_n = b'_n$$

In the process of obtaining the above system, we have multiplied the first row by $(-a_{21}/a_{11})$, i.e. we have divided it by a_{11} which is therefore assumed to be nonzero. For this reason, the first row R_1 in is called the pivot equation, and a_{11} is called the pivot or pivotal element. The method obviously fails if a_{11} = 0.

Similarly, we eliminate the variables will be obtain the upper-triangular matrix in the form:

$$R_1: a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$R_2: \qquad a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2n}x_n = b'_2$$

$$R_3:$$
 $a_{33}''x_3 + \cdots + a_{3n}''x_n = b_3''$

$$a_{nn}^{(n-1)}x_n = b_n^{(n-1)}$$

where $a_{nn}^{(n-1)}$ indicates the element a_{nn} has changed (n-1) times.

From
$$R_n: a_{nn}^{(n-1)} x_n = b_n^{(n-1)}$$

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$

This is then substituted in the $R_{(n-1)}$ to obtain x_{n-1} and the process is repeated to compute the other unknowns. We have therefore first computed x_n then x_{n-1} , x_2 , x_1 in that order. Due to this reason, the process is called back substitution.

$$x_2 + x_3 = 2$$

 $2x_1 + 3x_3 = 5$
 $x_1 + x_2 + x_3 = 3$.

The augmented matrix can be written as

$$\begin{bmatrix} 0 & 1 & 1 & 2 \\ 2 & 0 & 3 & 5 \\ 1 & 1 & 1 & 3 \end{bmatrix}$$

Interchange R₂ and R₁ to get

$$\begin{bmatrix} 2 & 0 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & 1 & 3 \end{bmatrix}$$

```
\begin{bmatrix} 2 & 0 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & 1 & 3 \end{bmatrix}
 Replace R_3 by R_3 - \frac{1}{2}R_1 to get
 \begin{bmatrix} 2 & 0 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 1 - (\frac{1}{2})2 & 1 - (\frac{1}{2})0 & 1 - (\frac{1}{2})3 & 3 - (\frac{1}{2})5 \end{bmatrix}
= \begin{bmatrix} 2 & 0 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}
```

Replace R_3 by $R_3 - R_2$ to get

$$\begin{bmatrix} 2 & 0 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 0 - 0 & 1 - 1 & -\binom{1}{2} - 1 & \binom{1}{2} - 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & -\frac{3}{2} & -\frac{3}{2} \end{bmatrix}$$

The matrix is in row echelon form. Using the last row we get $x_3=1$ Second row of the matrix gives us $x_2+x_3=2$ So, $x_2=1$ First row gives us $2x_1+3x_3=5$ So $x_1=1$

```
Eg2.

x_1 + 3x_2 + 5x_3 = 14

2x_1 - x_2 - 3x_3 = 3

4x_1 + 5x_2 - x_3 = 7
```

The augmented matrix can be written as

$$\begin{bmatrix} 1 & 3 & 5 & | & 14 \\ 2 & -1 & -3 & | & 3 \\ 4 & 5 & -1 & | & 7 \end{bmatrix}$$

Replace R_2 by $R_2 - 2R_1$ and R_3 by $R_3 - 4R_1$ to get

$$\begin{bmatrix} 1 & 3 & 5 & 14 \\ 2-2 & -1-2(3) & -3-2(5) & 3-2(14) \\ 4-4 & 5-4(3) & -1-4(5) & 7-4(14) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 & 5 & 14 \\ 0 & -7 & -13 & -25 \\ 0 & -7 & -21 & -49 \end{bmatrix}$$

Since all the elements in R_2 and R_3 are negative, we multiply throughout by -1

Replace R_2 by $(-1)R_2$ and R_3 by $(-1)R_3$ to get

$$\begin{bmatrix} 1 & 3 & 5 & 14 \\ 0 & -7 & -13 & -25 \\ 0 & -7 & -21 & -49 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 & 5 & | & 14 \\ 0 & 7 & 13 & | & 25 \\ 0 & 7 & 21 & | & 49 \end{bmatrix}$$

Replace R₃ by R₃ - R₂ to get

$$= \begin{bmatrix} 1 & 3 & 5 & | & 14 \\ 0 & 7 & 13 & | & 25 \\ 0 & 0 & 8 & | & 24 \end{bmatrix}$$

Now back substitution gives us

$$x_1 + 3x_2 + 5x_3 = 14$$

 $7x_2 + 13x_3 = 25$
 $8x_3 = 24$

$$x_1 = 5$$
, $x_2 = -2$, $x_3 = 3$