Set Theory

- Definition: Well-defined collection of distinct objects
- Members or Elements: part of the collection
- Roster Method: Description of a set by listing the elements, enclosed with braces
 - Examples:
 - Vowels = {a,e,i,o,u}
 - Primary colors = {red, blue, yellow}
- Membership examples
 - "a belongs to the set of Vowels" is written as:
 - $a \in Vowels$
 - "j does not belong to the set of Vowels:

```
j ∉ Vowels
```

Set-builder method

$$- A = \{ x \mid x \in S, P(x) \} \text{ or } A = \{ x \in S \mid P(x) \}$$

- A is the set of all elements x of S, such that x satisfies the property P
- Example:
 - If X = {2,4,6,8,10}, then in set-builder notation, X can be described as

 $X = \{n \in Z \mid n \text{ is even and } 2 \le n \le 10\}$

- Standard Symbols which denote sets of numbers
 - N: The set of all natural numbers (i.e., all positive integers)
 - Z: The set of all integers
 - Z⁺: The set of all positive integers
 - Z*: The set of all nonzero integers
 - E : The set of all even integers
 - Q : The set of all rational numbers
 - Q*: The set of all nonzero rational numbers
 - Q+: The set of all positive rational numbers
 - R: The set of all real numbers
 - R*: The set of all nonzero real numbers
 - R+: The set of all positive real numbers
 - C : The set of all complex numbers
 - C*: The set of all nonzero complex numbers

- Subsets
 - "X is a subset of Y" is written as $X \subseteq Y$
 - "X is not a subset of Y" is written as X \(\xi \) Y
 - Example:
 - X = {a,e,i,o,u}, Y = {a, i, u} and

$$Z = \{b,c,d,f,g\}$$

- $-Y \subseteq X$, since every element of Y is an element of X
- Y \notin Z, since a ∈ Y, but a \notin Z

- Superset
 - X and Y are sets. If $X \subseteq Y$, then "X is contained in Y" or "Y contains X" or Y is a superset of X, written $Y \supseteq X$
- Proper Subset
 - X and Y are sets. X is a proper subset of Y if $X \subseteq Y$ and there exists at least one element in Y that is not in X. This is written $X \subset Y$.
 - Example:
 - X = {a,e,i,o,u}, Y = {a,e,i,o,u,y}
 - $X \subset Y$, since $y \in Y$, but $y \notin X$

- Set Equality
 - X and Y are sets. They are said to be equal if every element of X is an element of Y and every element of Y is an element of X, i.e. $X \subseteq Y$ and $Y \subseteq X$
 - Examples:
 - {1,2,3} = {2,3,1}
 - X = {red, blue, yellow} and Y = {c | c is a primary color} Therefore, X=Y
- Empty (Null) Set
 - A Set is Empty (Null) if it contains no elements.
 - The Empty Set is written as \varnothing
 - The Empty Set is a subset of every set

- Finite and Infinite Sets
 - X is a set. If there exists a nonnegative integer n such that X has n elements, then X is called a finite set with n elements.
 - If a set is not finite, then it is an infinite set.
 - Examples:
 - Y = {1,2,3} is a finite set
 - P = {red, blue, yellow} is a finite set
 - E, the set of all even integers, is an infinite set
 - \varnothing , the Empty Set, is a finite set with 0 elements

- Cardinality of Sets
 - Let S be a finite set with n distinct elements, where n ≥ 0.
 Then |S| = n, where the cardinality (number of elements) of S is n
 - Example:
 - If $P = \{\text{red, blue, yellow}\}$, then |P| = 3
 - Singleton
 - A set with only one element is a singleton
 - Example:
 - $-H = \{4\}, |H| = 1, H \text{ is a singleton}$

- Power Set
 - For any set X ,the power set of X ,written P(X),is the set of all subsets of X
 - Example:
 - If X = {red, blue, yellow}, then P(X) = { Ø, {red}, {blue}, {yellow}, {red, blue}, {red, yellow}, {blue, yellow}, {red, blue, yellow}}
- Universal Set
 - An arbitrarily chosen, but fixed set

- Venn Diagrams
 - Abstract visualization of a Universal set, U as a rectangle, with all subsets of U shown as circles.
 - Shaded portion represents the corresponding set
 - Example:
 - In Figure 1, Set X, shaded, is a subset of the Universal set, U

Set XFIGURE 1.1

Set Operations and Venn Diagrams

Union of Sets

The **union** of two sets X and Y, denoted by $X \cup Y$, is defined to be the set

$$X \cup Y = \{x \mid x \in X \text{ or } x \in Y\}.$$

FIGURE 1.2 Venn diagram of $X \cup Y$

Example: If
$$X = \{1,2,3,4,5\}$$
 and $Y = \{5,6,7,8,9\}$, then $XUY = \{1,2,3,4,5,6,7,8,9\}$

Intersection of Sets

The **intersection** of two sets *X* and *Y*, denoted by $X \cap Y$, is defined to be the set

$$X \cap Y = \{x \mid x \in X \text{ and } x \in Y\}.$$

FIGURE 1.3 Venn diagram of $X \cap Y$

Example: If $X = \{1,2,3,4,5\}$ and $Y = \{5,6,7,8,9\}$, then $X \cap Y = \{5\}$

Disjoint Sets

Two sets *X* and *Y* are said to be **disjoint** if $X \cap Y = \emptyset$.

FIGURE 1.4 $X \cap Y = \emptyset$

Example: If $X = \{1,2,3,4,\}$ and $Y = \{6,7,8,9\}$, then $X \cap Y = \emptyset$

Difference

Let X and Y be sets. The **difference** of X and Y (or the **relative complement** of Y in X), written X - Y, is the set

$$X - Y = \{x \mid x \in X \text{ but } x \notin Y\}.$$

• Example: If X = {a,b,c,d} and Y = {c,d,e,f}, then X - Y = {a,b} and Y - X = {e,f}

FIGURE 1.6 Venn diagram of X - Y

Complement

The complement of a set X with respect to a universal set U, denoted by , is defined to be $= \{x \mid x \in U, \text{ but } x \notin X\}$

 \overline{X} \overline{X}

Example: If $U = \{a,b,c,d,e,f\}$ and $X = \{c,d,e,f\}$, then $\overline{X} = \{a,b\}$

$$X - (Y \cup Z)$$

$$(X \cup Y) - Z$$

FIGURE 1.8 Venn diagrams of the sets $X-(Y\cup Z)$ and $(X\cup Y)-Z$

- Ordered Pair
 - X and Y are sets. If $x \in X$ and $y \in Y$, then an ordered pair is written (x,y)
 - Order of elements is important. (x,y) is not necessarily equal to (y,x)
- Cartesian Product
 - The Cartesian product of two sets X and Y, written X
 Y, is the set
 - $X \times Y = \{(x,y) | x \in X, y \in Y\}$
 - For any set X, $X \times \emptyset = \emptyset = \emptyset \times X$
 - Example:
 - $X = \{a,b\}, Y = \{c,d\}$ - $X \times Y = \{(a,c), (a,d), (b,c), (b,d)\}$
 - $-Y \times X = \{(c,a), (d,a), (c,b), (d,b)\}$

Fundamental Set Properties

Idempotence

$$A \cup A = A$$
$$A \cap A = A$$

Associativity

$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$

Commutativity

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Distributivity (\cap over \cup)

$$[A \cap (B \cup C)] = [(A \cap B) \cup (A \cap C)]$$
$$[(A \cup B) \cap C] = [(A \cap C) \cup (B \cap C)]$$

Complement

$$A \cup \overline{A} = U$$
$$A \cap \overline{A} = \emptyset$$

Involution

$$\overline{(\overline{A})} = A$$

Domination

$$A \cup U = U$$
$$A \cap \emptyset = \emptyset$$

Identity

$$A \cup \emptyset = A$$

 $A \cap U = A$

De Morgan's Laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Distributivity (\cup over \cap)

$$[A \cup (B \cap C)] = [(A \cup B) \cap (A \cup C)]$$
$$[(A \cap B) \cup C] = [(A \cup C) \cap (B \cup C)]$$

Complement (continued)

$$\overline{\varnothing} = U$$
 $\overline{U} = \varnothing$