Banco de Dados I

Modelagem Conceitual e Projeto de Banco de Dados

Objetivo da aula

 Descrever os conceitos de modelagem de um modelo de dados de alto nível, o modelo Entidade-Relacionamento (ER); e mostrar como um projeto de esquema conceitual no modelo ER pode ser mapeado para um esquema de banco de dados relacional.

Modelagem Conceitual

Processo de Projeto de um Banco de Dados

A criação de uma aplicação de banco de dados envolve várias tarefas:

- Projeto do esquema de banco de dados
- Projeto dos programas que acessam e atualizam os dados
- Projeto de um esquema de segurança para controlar o acesso aos dados

O projetista de banco de dados interage com os usuários da aplicação para entender as necessidades e representá-las de uma maneira alto nível.

A modelagem conceitual desempenha um papel fundamental no desenvolvimento de um sistema de banco de dados, sendo o modelo Entidade-Relacionamento (ER) uma escolha popular.

Visão geral simplificada do processo de projeto de banco de dados

A primeira etapa mostrada é o levantamento e análise de requisitos:

 Projetistas de BD entrevistam os usuários para compreender e documentar os requisitos de dados.

Resultado:

- conjunto de requisitos de usuários, devendo ser especificados com o máximo de detalhes e completude.
- determinação dos requisitos funcionais da aplicação (operações (ou transações) definidas pelo usuário). Para isso é comum usar diagrama de fluxos de dados, diagramas de sequência, cenários.

Visão geral simplificada do processo de projeto de banco de dados

Após é criado um esquema conceitual para o banco de dados, usando um modelo de dados conceitual de alto nível - projeto conceitual. O esquema conceitual é uma representação abstrata dos requisitos de dados dos usuários, descrevendo os elementos essenciais do sistema de informação de forma simplificada, incluindo:

- 1. Tipos de Entidade;
- 2. Relacionamentos;
- 3. Restrições.

Usados para a comunicação com usuários não técnicos, concentrando-se em especificar as propriedades dos dados, sem detalhes de armazenamento e implementação

Visão geral simplificada do processo de projeto de banco de dados

A próxima etapa envolve a implementação do BD utilizando um SGBD comercial. Nessa fase, o esquema conceitual é transformado do modelo de dados de alto nível para o modelo de dados de implementação, conhecido como projeto lógico ou mapeamento do modelo de dados.

O resultado é um esquema de banco de dados no modelo de dados da implementação do SGBD. O mapeamento do modelo de dados normalmente é auto ou semi-automatizado nas ferramentas de projeto de banco de dados.

Visão geral simplificada do processo de projeto de banco de dados

A última etapa do projeto de banco de dados é o **projeto físico**, onde as estruturas internas de armazenamento, organização de arquivos, índices, caminhos de acesso e parâmetros físicos dos arquivos do banco de dados são definidos.

Nesse estágio, também são projetados e implementados os programas de aplicação que correspondem às especificações de transações de alto nível.

Exemplo de aplicação de banco de dados

Exemplo: Banco de dados BANCO

O banco de dados BANCO registra os clientes, contas e agências de um banco.

Suponha que, depois da fase de levantamento e análise de requisitos, os projetistas de banco de dados ofereçam a seguinte descrição do minimundo a parte da empresa que será representada no banco de dados:

- Um banco é organizado em agências. Cada banco tem um código, um nome e pode ter várias agências. Registramos o número e o endereço de cada agência. Uma agência controla uma série de contas. Desejamos saber a quantidade de contas que cada agência controla.
- Armazenamos o nome, número do Cadastro de Pessoa Física, sexo (gênero), telefone e endereço de cada cliente. Registramos para o endereço do cliente: rua, número, bairro, complemento, cidade, estado e CEP. Um cliente pode ter vários telefones (ex: residencial, comercial, celular) e diferentes contas que não necessariamente pertencem a uma mesma agência. De modo semelhante, uma conta pode ter mais de um titular.
- Queremos registrar as contas de cada cliente para fins de controle. Para cada conta, mantemos o número, o saldo e o seu tipo (ex: corrente, poupança)

Exemplo de aplicação de banco de dados

Modelo Entidade-Relacionamento

0 modelo ER

- Descrever os dados de aplicações do mundo real em termos de objetos (entidades) e seus relacionamentos;
- É largamente utilizado para o desenvolvimento da fase inicial do projeto de BD;
- Fornece conceitos para partir de uma descrição informal dos usuários obter uma descrição mais detalhada.

Diagrama Entidade-Relacionamento (DER)

O conceito fundamental da abordagem ER é o conceito de **entidade**.

ENTIDADE

conjunto de objetos da realidade modelada sobre os quais deseja-se manter informações no banco de dados

É um objeto do mundo real distinguível de outros objetos.

- Ex: cada pessoa em uma empresa é uma entidade
- Ex: o gerente do departamento de vendas

Pode ser um objeto com existência física ou conceitual;

Descrito por propriedades (atributos).

Coleção de entidades semelhantes → Conjunto de entidades (Tipo-Entidade)

- Ex: os empregados de uma empresa são as entidades de um conjunto de entidades denominado Empregado

Entidades de um mesmo conjunto de entidades

- Compartilham atributos
- É normal referenciar todas as entidades pelo mesmo nome do tipo_entidade. Ex: Empregado

Usualmente, um modelo ER é representado graficamente, através de um diagrama entidaderelacionamento (DER).

Em um **DER**, uma **entidade** é representada através de um <mark>retângulo</mark> que contém o nome da entidade.

PESSOA

DEPARTAMENTO

https://app.diagrams.net/

Entidade regular e **Entidade fraca**

Um tipo de **Entidade fraca** sempre tem uma *restrição de participação total* (dependência de existência) porque a entidade fraca não pode ser identificada sem uma entidade proprietária.

Em diagramas ER, um tipo de entidade fraca é identificado ao delimitar suas caixas com linhas duplas.

FUNCIONARIO

DEPENDENTE

Atributos

Usados para descrever um conjunto de entidades ou de relacionamentos.

- Ex: o conjunto de entidades **Empregado** pode ter os seguintes atributos:
 - Nome
 - Matrícula
 - Sexo
 - Idade
 - Endereço

Obs.: todas as entidades em um dado conjunto de entidades têm os mesmos atributos.

Atributos

Cada atributo tem um domínio de possíveis valores.

Ex: domínio do atributo nome de um Empregado → conjunto de 20 caracteres
 Pode assumir o valor nulo.

Chave

- É um conjunto mínimo de atributos cujos valores identificam unicamente uma entidade em um conjunto de entidades.
- Pode haver mais que uma chave candidata
 - Escolhe-se uma delas para ser a chave primária.

Atributos

Tipo de Entidades Pessoa - Atributos:

- cpf
 - o Ex: 11.111.111-11
- nome
 - Ex: João da Silva
- endereço
 - Ex: Rua xx, 200

entidade **p1**:

cpf: 11.111.111-11, nome: João da Silva, endereço: Rua xx, 200

Simples versus **Compostos**

- atributo simples ou atômico:
 - não pode ser decomposto (dividido) em atributos mais básicos:
 - exemplo: sexo {M, F}
- atributo composto
 - pode ser decomposto em atributos mais básicos:
 - exemplo: atributo endereço: nome_rua, nro_casa, complemento, nome_bairro, ...

Monovalorados versus Multivalorados

- atributo monovalorado
 - possui um único valor para cada entidade:
 - o exemplo: idade
- atributo multivalorado
 - possui múltiplos valores para cada entidade:
 - exemplo: atributo telefone
 - pode possuir limites inferior/superior com relação à multiplicidade dos valores assumidos
 - exemplo: nro_min = 0, nro_max = 3

Armazenado versus **Derivado**

- atributo armazenado
 - está realmente armazenado no BD
- atributo derivado
 - pode ser determinado através de outros atributos ou através de entidades relacionadas
 - exemplos:
 - idade = data_atual data_nascimento
 - nro_empregados = "soma de entidades"
 - pode ou n\u00e3o ser armazenado no BD

Valores NULL

- Usado quando uma entidade não tem um valor aplicável para um atributo
- Usado quando o valor de um atributo para uma entidade não é conhecido Exemplo:
 - Atributo Telefone com o valor NULL para a entidade Pessoa indica que não se sabe o telefone da Pessoa

A propriedade de entidade que especifica as associações entre objetos é o relacionamento.

RELACIONAMENTO

conjunto de associações entre ocorrências de entidades

Em um **DER**, um relacionamento é representado através de um **losango**, ligado por linhas aos retângulos representativos das entidades que participam do relacionamento.

DER contendo duas entidades, PESSOA e DEPARTAMENTO, e um relacionamento, TRABALHA_PARA

Este modelo expressa que o banco de dados mantém informações sobre:

- um conjunto de objetos classificados como pessoas (entidade PESSOA),
- um conjunto de objetos classificados como departamentos (entidade DEPARTAMENTO) e
- um conjunto de associações, cada uma ligando um departamento a uma pessoa (relacionamento TRABALHA_PARA).

Um **conjunto de relacionamentos** é um conjunto de n-tuplas:

$$\{(e_1, \ldots, e_n) | e_1 E_1, \ldots, e_n \in E_m\}$$

Cada n-tupla denota um relacionamento envolvendo n entidades $\mathbf{e}_1,\ldots,\mathbf{e}_m$ onde cada entidade está em um conjunto de entidades \mathbf{E}_i

Pode ter um conjunto de atributos descritivos

Armazenam informações sobre o relacionamento.

Ex: Ana trabalha no departamento desde dezembro de 2020.

Deve ser unicamente identificado pelas entidades participantes

 Ex: cada relacionamento trabalha_para deve ser identificado pelo cpf do funcionário e ID do departamento.

Pode envolver duas ou mais entidades.

Pode envolver duas entidades do mesmo conjunto de entidades → especificar o papel de cada uma.

Cardinalidade de relacionamentos

Para fins de projeto de banco de dados, uma propriedade importante de um relacionamento é a de quantas ocorrências de uma entidade podem estar associadas a uma determinada ocorrência através do relacionamento.

Esta propriedade é chamada de **cardinalidade** de uma entidade em um relacionamento. Há duas cardinalidades a considerar: a **cardinalidade** máxima e a **cardinalidade** mínima.

CARDINALIDADE (mínima, máxima) de entidade em relacionamento

número (mínimo, máximo de ocorrências de entidade associadas a uma ocorrência da entidade em questão através do relacionamento)

Cardinalidade de relacionamentos

Cardinalidade máxima

Consideremos as seguintes cardinalidades máximas:

- Entidade PESSOA tem cardinalidade máxima 1 no relacionamento TRABALHA_PARA.
 Isso significa que uma ocorrência de PESSOA pode estar associada à no máximo uma ocorrência de DEPARTAMENTO, ou em outros termos, que um funcionário pode estar lotado em no máximo um departamento.
- Entidade **DEPARTAMENTO** tem cardinalidade máxima **120** no relacionamento **TRABALHA_PARA**.

No projeto de banco de dados não é necessário distinguir entre diferentes cardinalidades máximas maiores que um. Por este motivo, apenas duas cardinalidades máximas são consideradas:

- a cardinalidade máxima um (1) e
- a cardinalidade máxima ilimitada, usualmente chamada de cardinalidade máxima "muitos" e referida pela letra N.

Assim, no exemplo anterior, diz-se que a cardinalidade máxima da entidade **DEPARTAMENTO** no relacionamento **TRABALHA_PARA** é **N**.

A cardinalidade máxima pode ser usada para classificar relacionamentos binários. Um relacionamento binário é aquele cujas ocorrências envolvem duas entidades.

Podemos classificar os relacionamentos em:

- 1:1 (um-para-um)
- 1:N (um-para-muitos) e
- M:N (muitos-para-muitos)

A cardinalidade máxima pode ser usada para classificar relacionamentos binários. Um relacionamento binário é aquele cujas ocorrências envolvem duas entidades.

Podemos classificar os relacionamentos em:

- 1:1 (um-para-um)
- 1:N (um-para-muitos) e
- M:N (muitos-para-muitos)

A cardinalidade máxima pode ser usada para classificar relacionamentos binários. Um relacionamento binário é aquele cujas ocorrências envolvem duas entidades.

Podemos classificar os relacionamentos em:

- 1:1 (um-para-um)
- 1:N (um-para-muitos) e
- M:N (muitos-para-muitos)

Todos os exemplos até aqui são de relacionamentos **binários**. Podemos definir relacionamentos de grau maior do que dois.

Ex: Relacionamento ternário

Cada ocorrência do relacionamento **DISTRIBUICAO** associa três ocorrências de entidade: um **produto** a ser distribuído, uma **cidade** na qual é feita a distribuição e um **distribuidor**.

No caso de relacionamentos de grau maior que dois, o conceito de cardinalidade de relacionamento é uma extensão do conceito de cardinalidade em relacionamentos binários.

No caso de um relacionamento ternário, a cardinalidade refere-se a *pares de entidades*.

Em um relacionamento R entre três entidades A, B e C, a cardinalidade máxima de A e B dentro de R indica quantas ocorrências de C podem estar associadas a um par de ocorrências de A e B.

par de ocorrências (CIDADE, PRODUTO) associado a no máximo um distribuidor

par de ocorrências (CIDADE, DISTRIBUIDOR) associado a muitos produtos

par de ocorrências (**PRODUTO**, **DISTRIBUIDOR**) associado a muitas cidades