Nordic probabilistic Al school Variational Inference and Optimization

Helge Langseth, Andrés Masegosa, and Thomas Dyhre Nielsen

June 14, 2022

ProbAl - 2022

Stochastic Gradient Ascent

A small side-step: Gradient Ascent

Why do we talk about this?

We want a way to optimize ELBO using gradient methods. If we can do Bayesian inference as optimization it will play well with, e.g., deep learning frameworks.

Gradient ascent algorithm for maximizing a function $f(\lambda)$:

- **1** Initialize $\lambda^{(0)}$ randomly.
- ② For t = 1, ...:

$$\boldsymbol{\lambda}^{(t)} \leftarrow \boldsymbol{\lambda}^{(t-1)} + \rho \cdot \nabla_{\boldsymbol{\lambda}} f\left(\boldsymbol{\lambda}^{(t-1)}\right)$$

- $\pmb{\lambda}^{(t)}$ converges to a (local) optimum of $f(\cdot)$ if:
 - f is "sufficiently nice";
 - The learning-rate ρ is "sufficiently small".

Example: Maximum log likelihood in a Gaussian model

We have access to N=1000 observations from a Gaussian distribution with unknown mean μ and precision $\tau=1/\sigma^2$. Use $\pmb{\lambda}=[\mu,\tau]^{\rm T}$.

$$f(\lambda) = \sum_{i=1}^{N} \log p(x_i | \lambda) = \frac{N}{2} \log \tau - \frac{N}{2} \log(2\pi) - \frac{\tau}{2} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$\nabla_{\lambda} f(\lambda) = \begin{bmatrix} -N\tau\mu + \tau \sum_{i=1}^{N} x_i \\ \frac{N}{2\pi} - \frac{1}{2} \sum_{i=1}^{N} (x_i - \mu)^2 \end{bmatrix}$$

... and Stochastic Gradient Ascent

"Standard" gradient ascent is not enough for ELBO optimization

We won't be able to calculate $\nabla_{\lambda} \mathcal{L}(q(\theta \mid \lambda))$ exactly for (at least) two reasons:

- We may have to resolve to mini-batching (gradient from "random subset")
- We may not be able to calculate the gradient exactly even for a mini-batch

... and Stochastic Gradient Ascent

"Standard" gradient ascent is not enough for ELBO optimization

We won't be able to calculate $\nabla_{\lambda} \mathcal{L}(q(\theta \mid \lambda))$ exactly for (at least) two reasons:

- We may have to resolve to mini-batching (gradient from "random subset")
- We may not be able to calculate the gradient exactly even for a mini-batch

Stochastic gradient ascent algorithm for maximizing a function $f(\lambda)$:

If we have access to $\mathbf{g}(\lambda)$ – an **unbiased estimate** of the gradient – it still works!

- Initialize $\lambda^{(0)}$ randomly.
- **②** For t = 1, ...:

$$\boldsymbol{\lambda}^{(t)} \leftarrow \boldsymbol{\lambda}^{(t-1)} + \rho_t \cdot \mathbf{g} \left(\boldsymbol{\lambda}^{(t-1)} \right)$$

 λ_t converges to a (local) optimum of $f(\cdot)$ if:

- f is "sufficiently nice";
- $\mathbf{g}(\lambda)$ is a random variable with $\mathbb{E}[\mathbf{g}(\lambda)] = \nabla_{\lambda} f(\lambda)$ and $\operatorname{Var}[\mathbf{g}(\lambda)] < \infty$.
- The learning-rates $\{\rho_t\}$ is a Robbins-Monro sequence:
 - $\sum_{t} \rho_{t} = \infty$

Example: Maximum log likelihood in a Gaussian model

We consider the same maximum likelihood problem, but instead of the gradient based on the full sample, we only have a **mini-batch of a single example** x_t at iteration t:

$$\mathbf{g}(\boldsymbol{\lambda} \mid x_t) = N \cdot \begin{bmatrix} -\tau \mu + \tau x_t \\ \frac{1}{2\tau} - \frac{1}{2} (x_t - \mu)^2 \end{bmatrix}$$

Black Box Variational Inference

Main idea: Cast inference as an optimization problem

Optimize the ELBO by stochastic gradient ascent over the parameters λ . If that works, Bayesian inference can be **seamlessly integrated** with building-blocks from other gradient-based machine learning approaches (like deep learning).

Algorithm: Maximize $\mathcal{L}\left(q\right)=\mathbb{E}_{q}\left[\log\frac{p(m{ heta},\mathcal{D})}{q(m{ heta}|m{\lambda})}\right]$ by gradient ascent

- Initialization:
 - $t \leftarrow 0$;
 - $\hat{\lambda}_0 \leftarrow$ random initialization;
 - $\{\rho_t\}$ \leftarrow a Robbins-Monro sequence.
- Repeat until negligible improvement in terms of $\mathcal{L}\left(q\right)$:
 - $t \leftarrow t + 1$;
 - $\hat{\boldsymbol{\lambda}}_t \leftarrow \hat{\boldsymbol{\lambda}}_{t-1} + \rho_t |\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q)|_{\hat{\boldsymbol{\lambda}}_{t-1}};$

Important issue:

Can we calculate $\nabla_{\lambda} \mathcal{L}(q)$ efficiently without adding new restrictive assumptions?

BBVI - calculating the gradient

The algorithm requires that we can find

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right].$$

Tricky: How can we move the gradient inside the expectation?

Use these properties to simplify the equation:

Now it follows that

$$\nabla_{\pmb{\lambda}} \mathcal{L}\left(q\right) = \mathbb{E}_{\pmb{\theta} \sim q} \left[\log \frac{p(\pmb{\theta}, \mathcal{D})}{q(\pmb{\theta} \,|\, \pmb{\lambda})} \, \cdot \, \nabla_{\pmb{\lambda}} \log q(\pmb{\theta} \,|\, \pmb{\lambda}) \right].$$

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \cdot \nabla_{\lambda} \log q(\theta \mid \lambda) \right].$$

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta \mid D)$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot | \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta \mid D)$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \cdot \nabla_{\lambda} \log q(\theta \mid \lambda) \right].$$

• $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.

ProbAl - 2022 Black Box Variational Inference

• We still only need access to the joint distribution $p(\theta, \mathcal{D})$ – not $p(\theta \mid \mathcal{D})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \cdot \middle| \nabla_{\lambda} \log q(\theta \mid \lambda) \right].$$

- $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.
- ullet We must calculate $abla_{oldsymbol{\lambda}_i} \log q\left(heta_i \,|\, oldsymbol{\lambda}_i
 ight)$, which is also known as the "score function".

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta \mid D)$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

- $q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})$ factorizes under MF , s.t. we can optimize per variable: $q(\theta_i \mid \boldsymbol{\lambda}_i)$.
- ullet We must calculate $abla_{oldsymbol{\lambda}_i} \log q\left(heta_i \,|\, oldsymbol{\lambda}_i
 ight)$, which is also known as the "score function".
- The expectation will be approximated using a sample $\{\theta_1, \dots, \theta_M\}$ generated from $q(\theta \mid \lambda)$. Hence we require that we can **sample from** each $q(\theta_i \mid \lambda_i)$.

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta \mid D)$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \cdot \middle| \nabla_{\lambda} \log q(\theta \mid \lambda) \right].$$

- $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.
- ullet We must calculate $abla_{oldsymbol{\lambda}_i}\log q\left(heta_i\,|\,oldsymbol{\lambda}_i
 ight)$, which is also known as the "score function".
- The expectation will be approximated using a sample $\{\theta_1,\ldots,\theta_M\}$ generated from $q(\theta\,|\,\lambda)$. Hence we require that we can **sample from** each $q(\theta_i\,|\,\lambda_i)$.

Calculating the gradient - in summary

We have observed the datapoint \mathcal{D} , and our current estimate for λ is $\hat{\lambda}$. Then

$$\left. \nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(q\right) \right|_{\boldsymbol{\lambda} = \hat{\boldsymbol{\lambda}}} \approx \frac{1}{M} \sum_{j=1}^{M} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \hat{\boldsymbol{\lambda}})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_{j} \mid \hat{\boldsymbol{\lambda}}).$$

where $\{\boldsymbol{\theta}_1,\dots\boldsymbol{\theta}_M\}$ are samples from $q(\cdot\,|\,\hat{\boldsymbol{\lambda}})$. Typically M is small.

Does it work?

$$\frac{\nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda}); \quad \log \frac{p(\boldsymbol{\theta}_i, \mathcal{D})}{q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda}); \quad \frac{1}{M} \sum_{i=1}^{m} \log \frac{p(\boldsymbol{\theta}_i, \mathcal{D})}{q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda})$$

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Does it work?

Different samples, each with M=5.

$$\nabla_{\lambda} \log q(\theta_i \mid \lambda); \quad \log \frac{p(\theta_i, \mathcal{D})}{q(\theta_i \mid \lambda)} \cdot \nabla_{\lambda} \log q(\theta_i \mid \lambda); \quad \frac{1}{M} \sum_{i=1}^{m} \log \frac{p(\theta_i, \mathcal{D})}{q(\theta_i \mid \lambda)} \cdot \nabla_{\lambda} \log q(\theta_i \mid \lambda)$$

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Different values of M (M=3, 5, 10,and 25)

$$\nabla_{\lambda} \log q(\theta_i \mid \lambda); \quad \log \frac{p(\theta_i, \mathcal{D})}{q(\theta_i \mid \lambda)} \cdot \nabla_{\lambda} \log q(\theta_i \mid \lambda); \quad \frac{1}{M} \sum_{i=1}^{m} \log \frac{p(\theta_i, \mathcal{D})}{q(\theta_i \mid \lambda)} \cdot \nabla_{\lambda} \log q(\theta_i \mid \lambda)$$

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Code Task: Score-function gradient for linear regression

- $\bullet \ \boldsymbol{\theta} = \{w_0, w_1\}, \ \boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \sigma_{\theta} \cdot \mathbf{I}_{2 \times 2})$
- $Y_i | \{\boldsymbol{\theta}, x_i, \sigma_y\} \sim \mathcal{N}(w_0 + w_1 \cdot x_i, \sigma_y^2)$
- We choose $q_j(\theta_j \,|\, \pmb{\lambda}_j) = \mathcal{N}(\theta_j \,|\, \mu_j, \sigma_j^2)$, so $\pmb{\lambda}_j = \{\mu_j, \sigma_j\}$

In this task you will implement the score-function gradient:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda})} \,\cdot\, \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda}) \right].$$

- Look at Exercise 1 in the notebook
 - Day2-AfterLunch/students_BBVI.ipynb.
- Calculate $\nabla_{\lambda} \log q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda})$, i.e., $\frac{\partial}{\partial \mu} \, \log \mathcal{N}(\mu, \sigma^2)$ and $\frac{\partial}{\partial \sigma} \, \log \mathcal{N}(\mu, \sigma^2)$ by hand.
- Implement your results in the function <code>score_function_gradient</code>.

Let's try to find another trick to compute:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) = \nabla_{\boldsymbol{\lambda}} \, \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \, | \, \boldsymbol{\lambda})} \right].$$

Let's try to find another trick to compute:

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p_{\theta}(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right].$$

Let's assume $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda)$

where $\phi(\epsilon)$ is some simple distribution that does not depend on λ and $f(\epsilon, \lambda)$ is a deterministic transformation.

Let's try to find another trick to compute:

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p_{\theta}(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right].$$

Let's assume $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda)$

where $\phi(\epsilon)$ is some simple distribution that does not depend on λ and $f(\epsilon, \lambda)$ is a deterministic transformation.

The common example is $q(\theta|\lambda) = \mathcal{N}(\mu, \sigma)$ reparametrized using

$$\epsilon \sim \mathcal{N}(0,1)$$
 $\theta = \mu + \sigma \epsilon$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$egin{array}{lll} oldsymbol{\epsilon} & \sim & \phi(oldsymbol{\epsilon}) \ oldsymbol{ heta} & = & f(oldsymbol{\epsilon}, oldsymbol{\lambda}) \end{array}$$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda)$

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right]$$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\begin{array}{ccc} \boldsymbol{\epsilon} & \sim & \phi(\boldsymbol{\epsilon}) \\ \boldsymbol{\theta} & = & f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \end{array}$$

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right]$$
$$= \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\epsilon} \sim \phi} \left[\log \frac{p(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}), \mathcal{D})}{q(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \mid \boldsymbol{\lambda})} \right]$$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda)$

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right]$$

$$= \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\epsilon} \sim \phi} \left[\log \frac{p(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}), \mathcal{D})}{q(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \mid \boldsymbol{\lambda})} \right]$$

$$= \mathbb{E}_{\boldsymbol{\epsilon} \sim \phi} \left[\nabla_{\boldsymbol{\lambda}} \log \frac{p(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}), \mathcal{D})}{q(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \mid \boldsymbol{\lambda})} \right]$$

If $q(\theta|\lambda)$ can be reparametrized:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda)$

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right]$$

$$= \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \phi} \left[\log \frac{p(f(\epsilon, \lambda), \mathcal{D})}{q(f(\epsilon, \lambda) \mid \lambda)} \right]$$

$$= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\lambda} \log \frac{p(f(\epsilon, \lambda), \mathcal{D})}{q(f(\epsilon, \lambda) \mid \lambda)} \right]$$

$$= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\theta} \log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \nabla_{\lambda} f(\epsilon, \lambda) + \nabla_{\lambda} \log q(\theta \mid \lambda) \right]$$

If $q(\theta|\lambda)$ can be reparametrized:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda)$

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right] \\
= \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \phi} \left[\log \frac{p(f(\epsilon, \lambda), \mathcal{D})}{q(f(\epsilon, \lambda) \mid \lambda)} \right] \\
= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\lambda} \log \frac{p(f(\epsilon, \lambda), \mathcal{D})}{q(f(\epsilon, \lambda) \mid \lambda)} \right] \\
= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\theta} \log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \nabla_{\lambda} f(\epsilon, \lambda) + \nabla_{\lambda} \log q(\theta \mid \lambda) \right] \\
= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\theta} \log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \nabla_{\lambda} f(\epsilon, \lambda) \right]$$

Monte-Carlo Estimation:

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\theta} \log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \nabla_{\lambda} f(\epsilon, \lambda) \right]$$

Monte-Carlo Estimation:

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\theta} \log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \nabla_{\lambda} f(\epsilon, \lambda) \right]$$

$$\approx \frac{1}{M} \sum_{i=1}^{M} \nabla_{\theta} \log \frac{p(\theta_{j}, \mathcal{D})}{q(\theta_{j} \mid \lambda)} \nabla_{\lambda} f(\epsilon_{j}, \lambda) : \epsilon_{j} \sim \phi(\epsilon), \ \theta_{j} = f(\epsilon_{j}, \lambda)$$

Monte-Carlo Estimation:

$$\begin{split} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) : \boldsymbol{\epsilon}_{j} \sim \boldsymbol{\phi}(\boldsymbol{\epsilon}), \ \boldsymbol{\theta}_{j} = f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}, \mathcal{D})}_{\text{Model's Gradient}} - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \end{split}$$

Monte-Carlo Estimation:

$$\begin{split} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) : \boldsymbol{\epsilon}_{j} \sim \boldsymbol{\phi}(\boldsymbol{\epsilon}), \ \boldsymbol{\theta}_{j} = f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}, \mathcal{D})}_{\text{Model's Gradient}} - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \end{split}$$

This gradient estimator directly uses model's gradients

Monte-Carlo Estimation:

$$\begin{split} \nabla_{\pmb{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\pmb{\theta}} \log \frac{p(\pmb{\theta}, \mathcal{D})}{q(\pmb{\theta} \mid \pmb{\lambda})} \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}, \pmb{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\pmb{\theta}} \log \frac{p(\pmb{\theta}_j, \mathcal{D})}{q(\pmb{\theta}_j \mid \pmb{\lambda})} \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}_j, \pmb{\lambda}) : \pmb{\epsilon}_j \sim \phi(\pmb{\epsilon}), \ \pmb{\theta}_j = f(\pmb{\epsilon}_j, \pmb{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\pmb{\theta}} \log p(\pmb{\theta}, \mathcal{D})}_{\text{Model's Gradient}} - \nabla_{\pmb{\theta}} \log q(\pmb{\theta} \mid \pmb{\lambda}) \right) \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}, \pmb{\lambda}) \end{split}$$

This gradient estimator directly uses model's gradients

While the score function estimator does not.

Monte-Carlo Estimation:

$$\begin{split} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) : \boldsymbol{\epsilon}_{j} \sim \boldsymbol{\phi}(\boldsymbol{\epsilon}), \ \boldsymbol{\theta}_{j} = f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}, \mathcal{D})}_{\text{Model's Gradient}} - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \end{split}$$

This gradient estimator directly uses model's gradients

- While the score function estimator does not.
- $\log p(\theta, \mathcal{D})$ needs to be differentiable wrt θ (i.e. **no discrete variables**).
- $q(\theta|\lambda)$ needs to be differentiable and reparametrizable

Reparametrizable Distributions

Reparameterization can be done for a (growing) set of distributions:

Target	$p(z;\theta)$	Base $p(\epsilon)$	One-liner $g(\epsilon; \theta)$
Exponential	$\exp(-x); x > 0$	$\epsilon \sim [0; 1]$	$ln(1/\epsilon)$
Cauchy	$\frac{1}{\pi(1+x^2)}$	$\epsilon \sim [0;1]$	$\tan(\pi\epsilon)$
Laplace	$\mathcal{L}(0; 1) = \exp(- x)$	$\epsilon \sim [0;1]$	$\ln(\frac{\epsilon_1}{\epsilon_2})$
Laplace	$\mathcal{L}(\mu;b)$	$\epsilon \sim [0;1]$	$\mu - bsgn(\epsilon) \ln (1 - 2 \epsilon)$
Std Gaussian	$\mathcal{N}(0;1)$	$\epsilon \sim [0;1]$	$\sqrt{\ln(\frac{1}{e_1})}\cos(2\pi\epsilon_2)$
Gaussian	$\mathcal{N}(\mu; RR^{\top})$	$\epsilon \sim \mathcal{N}(0; 1)$	$\mu + R\epsilon$
Rademacher	$Rad(\frac{1}{2})$	$\epsilon \sim Bern(\frac{1}{2})$	$2\epsilon - 1$
Log-Normal	$\ln \mathcal{N}(\mu; \sigma)$	$\epsilon \sim \mathcal{N}(\mu;\sigma^2)$	$\exp(\epsilon)$
Inv Gamma	$i\mathcal{G}(k;\theta)$	$\epsilon \sim \mathcal{G}(k;\theta^{-1})$	$\frac{1}{\epsilon}$

Table from http://blog.shakirm.com/2015/10/ machine-learning-trick-of-the-day-4-reparameterisation-tricks/

Reparametrizable Distributions

Reparameterization can be done for a **(growing) set of distributions**:

Target	$p(z;\theta)$	Base $p(\epsilon)$	One-liner $g(\epsilon; \theta)$
Exponential	$\exp(-x); x > 0$	$\epsilon \sim [0; 1]$	$ln(1/\epsilon)$
Cauchy	$\frac{1}{\pi(1+x^2)}$	$\epsilon \sim [0;1]$	$\tan(\pi\epsilon)$
Laplace	$\mathcal{L}(0; 1) = \exp(- x)$	$\epsilon \sim [0;1]$	$\ln(\frac{\epsilon_1}{\epsilon_2})$
Laplace	$\mathcal{L}(\mu;b)$	$\epsilon \sim [0;1]$	$\mu - bsgn(\epsilon) \ln (1 - 2 \epsilon)$
Std Gaussian	$\mathcal{N}(0;1)$	$\epsilon \sim [0;1]$	$\sqrt{\ln(\frac{1}{e_1})}\cos(2\pi\epsilon_2)$
Gaussian	$\mathcal{N}(\mu; RR^{\top})$	$\epsilon \sim \mathcal{N}(0; 1)$	$\mu + R\epsilon$
Rademacher	$Rad(\frac{1}{2})$	$\epsilon \sim \textit{Bern}(\frac{1}{2})$	$2\epsilon - 1$
Log-Normal	$\ln \mathcal{N}(\mu; \sigma)$	$\epsilon \sim \mathcal{N}(\mu;\sigma^2)$	$\exp(\epsilon)$
Inv Gamma	$i\mathcal{G}(k;\theta)$	$\epsilon \sim \mathcal{G}(k;\theta^{-1})$	$\frac{1}{\epsilon}$

 $Table\ from\ http://blog.shakirm.com/2015/10/\ machine-learning-trick-of-the-day-4-reparameter is at ion-tricks/learning-trick-of-the-day-4-reparameter is at ion-trick-of-the-day-4-reparameter in the ion-trick-of-the-day-4-reparameter is at ion-trick-of-the-day-4-reparameter is at ion-trick-of-the-day-4-reparameter in th$

A nice survey with more recent developments (very active area of research)

Zhang, Cheng, et al. "Advances in variational inference." IEEE transactions on pattern analysis and machine intelligence 41.8 (2018): 2008-2026.

Reparameterized gradient

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Notice the direction of each sample's gradient:

- Score-function gradient: Towards the mode of q
- Reparameterization-gradient: (Approximately) towards the mode of p

Code Task: Reparameterization-gradient for linear regression

$$\bullet \ \theta = \{w_0, w_1\}, \ \theta \sim \mathcal{N}(\mathbf{0}, \sigma_{\theta} \cdot \mathbf{I}_{2 \times 2})$$

•
$$Y_i | \{ \boldsymbol{\theta}, x_i, \sigma_y \} \sim \mathcal{N}(w_0 + w_1 \cdot x_i, \sigma_y^2)$$

In this task you will implement the score-function gradient:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(q\right) = \underset{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}}{\mathbb{E}} \left[\left(\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}, \mathcal{D}) - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right]$$

- We provide $\nabla_{\theta} \log p(\theta, \mathcal{D})$, $\nabla_{\theta} \log q(\theta \mid \lambda)$ and $\nabla_{\lambda} f(\epsilon, \lambda)$ for this model.
- Go to Exercise 2 in

 Day2-AfterLunch/students_BBVI.ipynb.
- ullet Experiment with the number of Monte-Carlo samples M per iteration, the learning-rate, and the number of iterations. Compare with the output of the Score Function Gradient.

Reparametrization: Gradients align with model's gradient ($\nabla_{\theta} \ln p(\mathcal{D}, \theta)$). But:

Reparametrization: Gradients align with model's gradient ($\nabla_{\theta} \ln p(\mathcal{D}, \theta)$). But:

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta|\lambda)$ be **differentiable** (i.e. no categorical variables).

Reparametrization: Gradients align with model's gradient ($\nabla_{\theta} \ln p(\mathcal{D}, \theta)$). But:

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta|\lambda)$ be **differentiable** (i.e. no categorical variables).

Score Function: Gradients point towards the mode of the approximation, and the only way the model influences them is through $\log p(\mathcal{D}, \theta)$ in the weights.

Reparametrization: Gradients align with model's gradient $(\nabla_{\theta} \ln p(\mathcal{D}, \theta))$. But:

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta|\lambda)$ be **differentiable** (i.e. no categorical variables).

Score Function: Gradients point towards the mode of the approximation, and the only way the model influences them is through $\log p(\mathcal{D}, \theta)$ in the weights.

- Only requires $\ln q(\theta|\lambda)$ to be **differentiable**.
- No requirements for $\ln p(\mathcal{D}, \theta)$ (only to be computable).

Reparametrization: Gradients align with model's gradient $(\nabla_{\theta} \ln p(\mathcal{D}, \theta))$. But:

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta|\lambda)$ be **differentiable** (i.e. no categorical variables).

Score Function: Gradients point towards the mode of the approximation, and the only way the model influences them is through $\log p(\mathcal{D}, \theta)$ in the weights.

- Only requires $\ln q(\theta|\lambda)$ to be **differentiable**.
- No requirements for $\ln p(\mathcal{D}, \boldsymbol{\theta})$ (only to be computable).

Takeaway Message

Score Function is more general, but Reparametrization is better if applicable.

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual/Automatic) Define the variational distribution

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda})$$

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual/Automatic) Define the variational distribution

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda})$$

(Automatic) Optimize the ELBO:

$$\lambda_{t+1} = \lambda_t + \rho \nabla_{\lambda} \mathcal{L}(\lambda_t)$$

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual/Automatic) Define the variational distribution

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda})$$

(Automatic) Optimize the ELBO:

$$\boldsymbol{\lambda}_{t+1} = \boldsymbol{\lambda}_t + \rho \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\lambda}_t)$$

• Using either score-funtion or reparametrization gradients.

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual/Automatic) Define the variational distribution

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda})$$

(Automatic) Optimize the ELBO:

$$\lambda_{t+1} = \lambda_t + \rho \nabla_{\lambda} \mathcal{L}(\lambda_t)$$

- Using either score-funtion or reparametrization gradients.
- Automatic-Differentiation engines take care of gradients.

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual/Automatic) Define the variational distribution

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda})$$

(Automatic) Optimize the ELBO:

$$\lambda_{t+1} = \lambda_t + \rho \nabla_{\lambda} \mathcal{L}(\lambda_t)$$

- Using either score-funtion or reparametrization gradients.
- Automatic-Differentiation engines take care of gradients.
- (Automatic) Approximate inference result

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda}^*) = \arg\min_{q} \mathrm{KL}\left(q(\boldsymbol{\theta}|\boldsymbol{\lambda})||p(\boldsymbol{\theta}|\mathcal{D})\right)$$

Probabilistic programming: Variational inference in Pyro

Pyro

Pyro (pyro.ai) is a Python library for probabilistic modeling, inference, and criticism, integrated with PyTorch.

Modeling: • Directed graphical models

Neural networks (via nn.Module)

• ...

Inference: • Variational inference – including BBVI, SVI

 Monte Carlo – including Importance sampling and Hamiltonian Monte Carlo

• ...

Criticism:

Point-based evaluations

Posterior predictive checks

...

... and there are also many other possibilities

Tensorflow is integrating probabilistic thinking into its core, InferPy is a local alternative, etc.

Pyro models

Simple example

$$\begin{array}{ll} \mathsf{temp} & \sim \mathcal{N}(15,2) \\ \mathsf{sensor} & \sim \mathcal{N}(\mathsf{temp},1) \\ \\ p(\mathsf{sensor} = 18,\mathsf{temp}) \end{array}$$

Pyro models

Simple example

$$\begin{array}{ll} \mathsf{temp} & \sim \mathcal{N}(15,2) \\ \mathsf{sensor} & \sim \mathcal{N}(\mathsf{temp},1) \\ \\ p(\mathsf{sensor} = 18,\mathsf{temp}) \end{array}$$

Pyro models:

- random variables ⇔ pyro.sample
- observations ⇔ pyro.sample with the obs argument

Pyro models

Simple example

```
\begin{aligned} & \mathsf{temp} & & \sim \mathcal{N}(15, 2) \\ & \mathsf{sensor} & & \sim \mathcal{N}(\mathsf{temp}, 1) \\ & & \\ & p(\mathsf{sensor} = 18, \mathsf{temp}) \end{aligned}
```

Pyro models:

- random variables ⇔ pyro.sample
- observations ⇔ pyro.sample with the obs argument

```
#The observations
obs = {'sensor': torch.tensor(18.0)}

def model(obs):
    temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
    sensor = pyro.sample('sensor', dist.Normal(temp, 1.0), obs=obs['sensor'])
```

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor}=18)$$

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor} = 18)$$

Variational Solution

```
\min_{\mathbf{q}} \operatorname{KL}\left(\mathbf{q}(\mathsf{temp}) || p(\mathsf{temp}|\mathsf{sensor} = 18)\right)
```

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor} = 18)$$

Variational Solution

$$\min_{q} \operatorname{KL}\left({q(\mathsf{temp})} || p(\mathsf{temp}|\mathsf{sensor} = 18) \right)$$

Pyro Guides:

• Define the *q* **distributions** in variational settings.

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor} = 18)$$

Variational Solution

```
\min_{q} \mathrm{KL}\left(\frac{q(\mathsf{temp})}{||p(\mathsf{temp}|\mathsf{sensor}=18))}\right)
```

Pyro Guides:

- Define the *q* **distributions** in variational settings.
- Build proposal distributions in importance sampling, MCMC.
- ...

Pyro Guides:

- Guides are arbitrary stochastic functions.
- Guides produces samples for those variables of the model which are not observed.

Pyro Guides:

- Guides are arbitrary stochastic functions.
- Guides produces samples for those variables of the model which are not observed.

Guide requirements

- the guide has the same input signature as the model
- ② all unobserved sample statements that appear in the model appear in the guide.

Example

```
#The guide
def guide(obs):
    a = pyro.param("mean", torch.tensor(0.0))
    b = pyro.param("scale", torch.tensor(1.), constraint=constraints.positive)
    temp = pyro.sample('temp', dist.Normal(a, b))
```

Code-task: VB for a simple Gaussian model

Exercise: Pyro implementation for a simple Gaussian model

Day2-AfterLunch/student_simple_gaussian_model_pyro.ipynb

- $X_i \mid \{\mu, \gamma\} \sim \mathcal{N}(\mu, 1/\gamma)$
- $\bullet \ \mu \sim \mathcal{N}(0,\tau)$
- $\gamma \sim \text{Gamma}(\alpha, \beta)$
- Implement a pyro **guide** for the graphical model above.
- Specify suitable **variational approximation** in the form of a Pyro guide.

$$q(\mu, \gamma) = \dots$$

• Check the differences with the following notebook (no Pyro implementation).

Day2-BeforeLunch/student_simple_model.ipynb