Ingeniería de los Computadores

Sesión 10. Redes de interconexión. Técnicas de conmutación

Conceptos

Clasificación

Topologías

Conmutación

Básico en las topologías

Conceptos

Clasificación

Topologías

Conmutación

Buffers de entrada

Conceptos

Clasificación

Topologías

- Enlaces y canales.
 - > Infraestructura: hilos eléctricos (cobre), fibras ópticas, etc.
- Anchura
 - Anchos. Se transmite simultáneamente datos y control
 - > Estrechos. Multiplexa en el tiempo datos y control
- Longitud
 - Cortos. 1 símbolo
 - Largos. Varios símbolos de forma simultánea

Conceptos

Clasificación

Topologías

- Enlaces: longitud
 - > Cortos
 - El ciclo de red depende del retardo de propagación
 - Largos
 - Ciclo de red << retardo de propagación</p>
- Velocidad del canal depende:
 - > Energía empleada para transmitir por una línea
 - Distancia a atravesar
 - > Ruido
 - Desplazamiento entre líneas de un enlace
 - > Tamaño del buffer destino (enlaces largos)

Conceptos

Clasificación

Topologías

- Técnicas de conmutación
 - Cuándo y cómo se conectan entradas y salidas de routers
 - Cuándo se transfiere el mensaje por los caminos

Conceptos

Clasificación

Topologías

- Tipos de técnicas de conmutación
 - Almacenamiento y reenvío (S&F, Store and Forward)
 - Vermiforme (Wormhole)
 - Virtual Cut-Through (VCT)
 - Conmutación de circuitos (CC, Circuit Switching) (Origen en redes telefonicas)
 - Canales virtuales
- Comparación entre técnicas
 - Comparación cuantitativa: latencia de transporte
 - Comparación cualitativa: ancho de banda global

Conceptos

Clasificación

Topologías

Conmutación

- Se considera (a efectos de explicación teórica siguientes transparencias):
 - ➤ 1 phit = 1 flit = w bits

3210

- Cabecera = 1 flit
- > Tamaño total del paquete = L bits + w bits (cabecera)
- ➤ Distancia fuente-destino = D parejas conmutador-enlace
- Conmutadores con buffer independiente para cada entrada y salidas sin buffer
- Tw = tiempo para que un phit atraviese una etapa conmutador/enlace
- > Tr = tiempo de encaminamiento (routing)

Conceptos

Clasificación

Topologías

- Store & forward
 - ➤ El conmutador almacena el paquete completo antes de ejecutar el algoritmo de encaminamiento y reenviar
 - ➤ La unidad de transferencia (paquete) entre interfaces ocupa sólo un canal en cada instante
 - Almacenamiento en conmutadores: múltiplos de un paquete (mínimo 1 paquete)
 - Ancho de banda
 - ➤ El número de enlaces ociosos influye en el ancho de banda: para un tamaño de buffer mínimo (1 paquete), un paquete bloqueado deja ocioso un canal

Conceptos

Clasificación

Topologías

- Store & forward
 - Latencia de transporte:

$$t_{AR} = D \cdot \left[t_r + t_w \cdot \left(\left\lceil \frac{L}{W} \right\rceil + 1 \right) \right]$$

$$t_{AR} = 3 (t_r + t_w 4)$$

Conceptos

Clasificación

Topologías

Conmutación

Wormhole

- ➤ En cuanto llega la cabecera al conmutador se ejecuta el algoritmo de encaminamiento y se reenvía
- > La unidad de transferencia es el mensaje
- ➤ La transferencia se hace a través de un camino segmentado (nº etapas depende del nº de buffer). La unidad de transferencia puede ocupar varios canales en un instante
- Almacenamiento en conmutadores: múltiplos de un flit (mínimo 1 flit)
- Ancho de banda
 - ➤ El número de enlaces ociosos influye en el ancho de banda: para un tamaño de buffer mínimo (1 flit), un paquete bloqueado deja ociosos varios canales

Conceptos

Clasificación

Topologías

Conmutación

Wormhole

Conceptos

Clasificación

Topologías

- Wormhole
 - Latencia de transporte: (buffer en entradas y salidas)

$$\begin{aligned} t_{V} &= D \cdot \left(t_{r} + t_{s} + t_{w}\right) + \max(t_{s}, t_{w}) \cdot \left\lceil \frac{L}{W} \right\rceil \\ t_{V} &= t_{cabecera} + t_{resto} \end{aligned}$$

Conceptos

Clasificación

Topologías

- Virtual Cut-Through
 - En cuanto llega la cabecera al conmutador se ejecuta el algoritmo de encaminamiento y se reenvía
 - > La unidad de transferencia es el paquete
 - ➤ La transferencia se hace a través de un camino segmentado (nº etapas depende del nº de buffer). La unidad de transferencia puede ocupar varios canales en un instante
 - Almacenamiento en conmutadores: múltiplos de un paquete (mínimo 1 paquete)
 - Prestaciones
 - > Latencia = wormhole
 - Ancho de banda = Store-and-Forward

Conceptos

Clasificación

Topologías

- Conmutación de circuitos
 - Desde el fuente se envía una sonda (flit) que reserva el camino. El destino devuelve una señal de reconocimiento y el fuente comienza la transmisión
 - > La unidad de transferencia es el mensaje
 - ➤ La transferencia se hace a través del canal entre fuente y destino (o un camino segmentado) reservado por la sonda
 - Almacenamiento en conmutadores: los buffers almacenan la sonda
 - Ancho de banda
 - Cuando la sonda queda bloqueada deja ociosos múltiples canales (tantos como la distancia del punto de bloqueo al fuente)

Conceptos

Clasificación

Topologías

- Conmutación de circuitos
 - Latencia de transporte (si se establece 1 canal):

$$\begin{split} t_{CC} &= \left[t_w + D \cdot \left(t_r + t_w\right)\right] + \left[D \cdot \left(t_w\right) + t_w\right] + \left[1 / B_{canal} \cdot \left\lceil L / W \right\rceil\right] \\ t_{CC} &= t_{sonda} + t_{reconocimiento} + t_{datos} \end{split}$$

Conceptos

Clasificación

Topologías

- Canales virtuales
 - Permiten que varios paquetes compartan el mismo enlace (a nivel de flit)
 - Mejoran el ancho de banda y la latencia al disminuir la probabilidad de bloqueos
 - > Se aplica con el resto de mecanismos

Conceptos

Clasificación

Topologías

Conmutación

Bloqueos

- > Algunos paquetes no pueden alcanzar el destino
- Capacidad de los buffers finita
- Canales ocupados

Conceptos

Clasificación

Topologías

- Bloqueos. Clasificación
 - Interbloqueos (deadlocks)
 - Recursos no disponibles para el avance de los paquetes
 - Buffers ocupados
 - Bloqueo permanente
 - Bloqueos activos (livelocks)
 - > Los paquetes nunca llegan a su destino
 - Canales ocupados por otros paquetes
 - > Sólo ocurre si se permiten caminos no mínimos
 - > Inanición (los recursos siempre se asignan a otros paquetes)

Conceptos

Clasificación

Topologías

- Bloqueos. Soluciones
 - Inanición
 - > Emplear un esquema de asignación de recursos correcto
 - Cola circular con distinta prioridad
 - Bloqueos activos
 - Usar solo rutas mínimas
 - Usar rutas no mínimas restringidas
 - Dar mayor probabilidad a caminos mínimos respecto a no mínimos
 - > Interbloqueos
 - Prevención
 - > Evitación
 - > Recuperación

Conceptos

Clasificación

Topologías

- Prevención de interbloqueos
 - Estrategia muy conservadora: se asignan todos los recursos para transmitir un mensaje antes de iniciar la transmisión
 - > Un flit de sondeo establece el camino
 - > Si existe bloqueo, retrocede y libera recursos
- Evitación de interbloqueos
 - Los recursos se asignan a medida que el mensaje atraviesa la red
 - Un recurso se asigna a un paquete si el estado resultante es seguro (grafo de dependencias acíclico)

Conceptos

Clasificación

Topologías

Conmutación

Evitación de interbloqueos – grafo de dependencias

Teorema: Una función de encaminamiento determinista F para una red R está libre de interbloqueos si sólo si no existen ciclos en su grafo de dependencia de canales

Anillo unidireccional

Conceptos

Clasificación

Topologías

Conmutación

- Evitación de interbloqueos grafo de dependencias
 - > Anillo unidireccional con canales virtuales

Función de encaminamiento:

Usar c_{0i} si j < i, o c_{1i} si j > i

Conceptos

Clasificación

Topologías

Conmutación

• Evitación de interbloqueos – grafo de dependencias

Teorema: Una función de encaminamiento adaptativa F para una red R está libre de interbloqueos si, existiendo dependencias cíclicas, cada paquete encuentra un caminos libre de bloqueos para llegar al destino

Función de encaminamiento:

Usar o c_{Ai} si $j \neq i$, o c_{Hi} si j > i

Conceptos

Clasificación

Topologías

- Recuperación de interbloqueos
 - Estrategia optimista: supone que rara vez ocurre un bloqueo
 - Los recursos se asignan a los mensajes sin ninguna comprobación adicional
 - > Si existe bloqueo, se liberan bloqueos
 - Se reasignan los recursos a otro mensaje
 - Detección de bloqueos en el nodo origen