

similar to similar to ナントカ


```
347050 bp DNA linear BCT 16-APR-2005
DEFINITION Listeria monocytogenes strain EGD, complete genome, segment 9/12.
ACCESSION AL591981 AL591824
VERSTON
           AL591981.1
KEVWORDS
SOURCE
           Listeria monocytogenes
 ORGANISM Listeria monocytogenes
           Bacteria; Firmicutes; Bacillales; Listeriaceae; Listeria.
REFERENCE 2 (bases 1 to 347050)
          Glaser, P., Frangeul, L. and Rusniok, C.
           Submitted (06-JUN-2001) to the EMBL/GenBank/DDBJ databases. Glaser
           P., Institut Pasteur, Genomique des Microorganismes Pathogenes, 25
           rue du Docteur Roux, 75724 Paris Cedex 15, FRANCE.
    CDS
                    complement(12915..14294)
                    /transl table=11
                    /gene="lmo1703"
                    /note="similar to similar to RNA methyltransferases"
                    /db xref="GOA:Q8Y6I1"
                    /db xref="InterPro:IPR001566"
                    /db xref="InterPro:IPR002792"
                    /db_xref="InterPro:IPR010280"
                    /db xref="UniProtKB/Swiss-Prot:08Y6I1"
                    /protein id="CAC99781.1"
                    /translation="MNONPVEEGOKEPT.TTRRMGTNGEGTGYFKKAVVEVPGATTGEEV
                    VVEAVKVRDRFTEAKLNKIRKKSPNRVTAPCPVYEACGGCQLQHVAYSAQLELKRDIVI
                    QSIEKHTKIDPTKLKIRPTIGMEDPWRYRNKSQFQTRMVGSGQVETGLFGANSHQLVPI
                    EDCIVQQPVTIKVTNFVRDLLEKYGVPIYDEKAGSGIVRTIVVRTGVKTGETQLVFITN
                    SKKLPKKREMLAEIEAALPEVTSIMQNVNQAKSSLIFGDETFLLAGKESIEEKLMELEF
                    DLSARAFFQLNPFQTERLYQEVEKALVLTGSETLVDAYCGVGTIGQAFAGKVKEVRGMD
                    IIPESIEDAKRNAEKNGIENVYYEVGKAEDVLPKWVKEGFRPDAVIVDPPRSGCDQGLI
                    KSLLDVEAKOLVYVSCNPSTLARDLALLAKKYRIRYMOPVDMFPOTAHVETVVLLOLKD
```

部分一致の罠 "contains similarity"?

automated annotation:

"contains similarity to <u>DNA-binding</u> protein"

↑ドメインないのに

Copy & paste (コピペ) ミス

>gi|91204169|emb|CAJ71822.1| strongly <u>imilar to</u> aspartate aminotransferase [Candidatus Kuenenia stuttgartiensis]

 $\verb|miasrmsnidssgirkvfdlaqkmkspvnlsigqpdfdvpgeikevaiksinegankytltqgipelrnv| ...$

>gi|31541577|gb|AAP56877.1| predicted methyl transferas [Mycoplasma gallisepticum R] MSALYLVGLPIGNLSEINHRALEILNQLEIIYCENTDNFKKLLNLLNINFRDKKLISYHKFNETNRFIMI

similar to transferase

(DBCLS)

機能アノテーションの方法

- 配列類似性によるアノテーション –類似性検索 (BLAST)
- 配列類似性によらないアノテーションモチーフ検索 (InterProScan, Pfam, SOSUI, TMHMM)
- 配列によらないアノテーション
 - -構造の類似性(DALI, Rossetta)
 - -遺伝子発現の類似性(クラスター解析)
 - -コンテキスト(オペロン、遺伝子の並び)

ホモロジー検索とは?

手持ちの配列と似ている配列を、データベースの中から探してくる

入力:配列

出力:似ている配列名とスコア・

アラインメント・E-valueなど

9

(DBCLS)

代表的な塩基配列のデータベース

データベース名	提供機関	備考
GenBank	NCBI (USA)	
EMBL	EBI (EU)	決定した塩基配列を登録する機関 国際DNAバンクとして相互に連携 (毎日データをやりとりしている)
DDBJ	国立遺伝学研究所	
RefSeq	NCBI (USA)	上記DBをきれいにしたもの

(DBCLS)

機能未知の配列があったときに

データベースの中から似ている配列を探し出し、機能を予測する znは

配列が似ている遺伝子やタンパク質は機能も似ているに違いない という仮定に基づく

機能がわかっている配列を詳細に解析するために

データベースから類似の配列を集める

DBの中から配列を探してくるので、「どのDBを使うか」が非常に重要!

10

(DBCLS)

代表的なアミノ酸配列のDB

データベース名	提供機関	備考
GenPept	NCBI (USA)	GenBankから翻訳したアミノ酸 配列を集めたDB
RefSeq	NCBI (USA)	上記DBをきれいにしたもの
Swiss-Prot	Uni-Prot consortium	人手で整備されたDB 最も信頼性の高いDB
trEMBL	Uni-Prot consortium	機械的に整備したDB
Uni-Prot	Uni-Prot consortium	上記2DBをあわせたDB

ホモロジー検索「ツール」

- 何種類かある
- ・膨大な配列データに対して検索するため「正 確性」と「速さ」のトレードオフ

正確

速い

SSERACH FASTA BLAST (BLAT)

現在は計算時間などの関係からBLASTが最も使われている

BLAST: Basic Local Alignment Search Tool

13

(DBCLS)

BLASTのオプション

オプション名	入力配列	対象DB	概要
blastn	DNA塩基配列	DNA塩基配列	入力配列(DNA塩基配列)と類似のDNA塩基配列を検索
blastp	アミノ酸配列	アミノ酸配列	入力配列(アミノ酸配列)と類似のアミノ酸配列を検索
blastx	DNA塩基配列	アミノ酸配列	入力DNA塩基配列をアミノ酸に翻訳した配列で、類似のアミノ酸配 列を検索
tblastn	アミノ酸配列	DNA塩基配列	入力アミノ酸配列を、DNA塩基配列のデータベースをアミノ酸配列 に翻訳したものに対して、類似の配列を検索
tblastx	DNA塩基配列	DNA塩基配列	入力DNA塩基配列をアミノ酸配列に翻訳したものを、DNA塩基配列 DBをアミノ酸配列に翻訳したものとの類似を検索
psi-blast	アミノ酸配列	アミノ酸配列	入力配列(アミノ酸配列)とアミノ酸データベースとの検索を繰り 返すことで、弱い類似しかない配列を検索可能にする方法
phi-blast	アミノ酸配列	アミノ酸配列	配列の「パターン」で類似の配列を検索する

(DBCLS)

入力データの形式

• FASTA形式が最も広く使われている
-ツールのFASTAと混同しないようにしましょう

FASTA形式の例

>gi|18105037|ref|NP_004709.2| cytochrome c oxidase subunit VIIa polypeptide 2 like [Homo sapiens] MYYKFSGFTQKLAGAWASEAYSPQGLKPVVSTEAPPIIFATPTKLTSDSTVYDYAGKNKVPELQKFFQKA DGVPVYLKRGLPDOMLYRTTMALTVGGTIYCLIALYMASOPKNK

> から始まる行はコメント> に続いて配列の名前またはIDが記載される名前、IDのうしろには、スペースをはさんでいろいろ書ける

2行目から配列が記載される

14

(DBCLS)

マルチプルアラインメント

- BLASTは2本の配列をアラインメント(=整列)-ペアワイズアラインメント
- 3本以上の配列を整列させることを マ ルチプルアラインメントと呼ぶ
 - -アミノ酸配列に対して実行される
- 計算が大変なため100配列くらいが限度 -データベースに対して実行できない -あらかじめ類似の配列をBLAST等で集めてから使う

マルチプルアラインメントで わかること

- いるいるな生物種で保存されているアミノ酸がわかる
 - -たくさんの生物種で保存されているアミノ酸は、その タンパク質が機能する上で重要に違いない
- タンパク質の進化的な関係がわかる
 - -進化系統樹の作成

17

(DBCLS)

モチーフとは?

- ドメインに特徴的な局所的に保存された配列のパターン
- マルチプルアラインメントから見つける

(DBCLS)

有名なドメイン・モチーフ

ロイシンジッパー

Zincフィンガー

モチーフ L-x(6)-L-x(6)-L-x(6)-L

C-x(2,4)-C-x(3)-F-x(5)-L-x(2)-H-x(3)-H

18

(DBCLS)

モチーフの使い方

- ・大きく分けて2種類
 - -アミノ酸配列を入力してモチーフデータベースを検索
 - 入力した配列がどのようなモチーフを持つかによって 機能を類推する
 - ・ホモロジー検索と似ているが、モチーフを使った方が より詳細な情報が得られることが多い
 - -モチーフを入力してアミノ酸データベースを検索
 - •同じ機能のタンパク質をまとめ取りしたいとき

モチーフの表現方法

- コンセンサス配列
 - モチーフに現れる平均的・典型的な配列(共通配列)
- パターン
 - -正規表現を使って配列のパターンを表現
- プロファイル (PSSM=Position Specific Score Matrix)
 - -各位置でのアミノ酸の出現頻度をスコア化
- ・ 隠れマルコフモデル (HMM=Hidden Markov Model)
 - -ギャップを考慮したプロファイル

(DBCLS)

モチーフ検索ツール

- HMMER
 - -Pfamデータベースを検索
- InterProScan
 - -InterProのデータを全検索(主要なモチーフデータベースをまとめて検索)
 - •欠点:検索に時間がかかる、データが最新でない場合 もある

(DBCLS)

モチーフのデータベース

- ProDom
 - -コンセンサス配列
- PROSITE
 - -パターン
- Pfam
 - -隠れマルコフモデル Hidden Markov Model
- InterPro
 - -上記を含むモチーフデータベースを集めたデータベース22

(DBCLS)

モチーフ検索ツール

- 膜貫通モチーフ予測
 - -SOSUI
 - 物理化学パラメータ
 - -TMHMM
 - 隠れマルコフモデル

24

タンパク質の立体構造を知ることの意義

- タンパク質の機能を原理的に理解する
 - -どうしてそのタンパク質が働くのか?
 - •アミノ酸配列の中でどこが重要か?
 - •どこでどういう化合物と結合するか?
 - •どこでほかのタンパク質とくっつくのか?
 - ➡ どういう薬をつくればよいか
- タンパク質の進化を理解する
 - -立体構造は配列よりも保存されやすい

25

27

(DBCLS)

立体構造分類データベース

- SCOP Structural Classification of Proteins
 - -4階層で分類
 - Class (クラス)
 - All alpha proteins (すべてαヘリックスからなる)
 - All beta proteins (すべてβシートからなる)
 - Alpha and beta proteins (a/b) (αヘリックスと平行ベータシートからなる)
 - Alpha and beta proteins (a+b) (αヘリックスと逆平行ベータシートからなる)
 - Fold (フォールド)
 - Superfamily (スーパーファミリー)
 - Family (ファミリー)
- CATH

(DBCLS)

立体構造データベース

- wwPDB World Wide Protein Data Bank
 - -RCSB PDB
 - RCSB Research Collaboratory for Structural Bioinformatics (アメリカ)
 - -The State University of New Jersey
 - -The University of California, San Diego
 - -The University of Wisconsin-Madison
 - -MSD Molecular Structure Database
 - EBI European Bioinformatics Institute (ヨーロッパ)
 - -PDBj
 - •大阪大学蛋白質研究所(日本)

26

(DBCLS)

立体構造ビューワ

- データベースには原子の座標が登録されているだけなので、表示するソフトが必要
 - -RasMol
 - -Chime
 - -Jmol
 - -PyMol
 - -CHIMERA
 - -VMD
 - -Swiss PDB Viewer
 - -SPICE

立体構造の比較

- 配列の比較
 - -2本の配列を並べて(アラインメント)点数を付 ける(点数が高ければ似ている)
- 立体構造の比較
 - -2個の構造を重ね合わせて、両者の「ずれ」を計 算する(ずれが小さければ似ている)
 - RMSD (Root Mean Square Deviation)
 - •Zスコア(タンパク質の長さを考慮:BLASTでのEvalueに相当)

(DBCLS)

立体構造の予測方法

- *ab intio* (アブイニシオ) 法 (ラテン語)
 - -最初から非経験的に立体構造を計算

- fragment assembly 法
 - -経験的(今までわかっている立体構造の情報を使う) に立体構造を計算
- threading 法
 - 配列が似てなくても構造が似てそうなものを探す

簡単

- homology modeling 法
 - -配列が似ていれば、構造も似ている(はず)

(DBCLS)

立体構造比較プログラム

計算がとても大変なので結果はメールで受け取るものも多い

- DALL
 - EBI: European Bioinformatics Institute (ヨーロッパ)
 - http://www.ebi.ac.uk/dali/
- CE
 - SDSC: San Diego Supercomputer Center (アメリカ)
 - http://cl.sdsc.edu/ce.html
- VAST
 - NCBI:National Center for Biotechnology Information (アメリカ)
 - http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml
- MARAS
 - 奈良先端科学技術大学院大学(日本)
 - http://biunit.naist.jp/matras/

(DBCLS)

立体構造の予測方法

- ab initio 法
 - -物理化学的なパラメータを使って構造を1から計算(微 分方程式を解いたりとか)
 - •スーパーコンピューターが必要
 - 最近では分散コンピューティングも使われる (Folding@Home)
 - -長所:うまくいけば立体構造だけでなくフォールディン グの過程もわかる
 - 短所:計算大変、小さいタンパク質のみ
 - -program: Gaussian等専用のプログラム

立体構造の予測方法

• fragment assembly 法

- -経験的(今までわかっている立体構造の情報を使う)に 立体構造を計算
 - •配列にあてはまる部分的な立体構造を探す
 - •部分的な構造を組み合わせて、全体の構造を計算
- -長所:似ている配列がないタンパク質にも使える。
- –短所:ab initio法ほどではないが計算がそれなりに大変
- -program: Rossetta

33

(DBCLS)

立体構造の予測方法

- homology modeling 法
 - -配列が似ていれば構造も似ている(だろう)
 - PDBの中から似ている構造を探す
 - その構造のアミノ酸残基を置き換えて構造最適化
 - -長所:配列が30%くらい似ていれば予測可能。計算も そんなに大変でない
 - -短所:似ている配列がないと使えない。似ていても類似性が低下すると予測精度も低下。データベース中にない構造は予測できない。
 - –program: swiss-model, MODELLER

(DBCLS)

立体構造の予測方法

- threading 法
 - -PDBから予測したいタンパク質に対応する立体構造を 探し出す
 - ・立体構造中のアミノ酸を、周りの構造を反映させた別の文字 (αヘリックス の中にあって周りに水分子が多い、とか) に置き換えて、構造未知の配列と アラインメントさせる
 - -長所:似ていない配列にも使える。計算も(ab initio法 と比べて)そんなに大変でない
 - -短所:データベース中にない構造は予測不可能
 - -program: LIBRA

34

(DBCLS)

立体構造からの機能解析

- タンパク質が機能するためには他の物質との 相互作用が必要
 - タンパク質のどこで相互作用するか?
 - •ポケット
 - 表面の電荷
 - -なにと相互作用するか?
 - •化合物などの立体構造をあてはめてみる

ポケット

低分子化合物などはポケットに結合する傾向がある

(DBCLS)

表面電荷の計算

・例えばDNAは負電荷を持つので、立体構造中でDNAと 結合する部分は正の電荷が多いと考えられる

-DelPhi: タンパク質の表面電荷を計算するプログラム

-eF-site: タンパク質表面の電荷を計算したデータベー

ス

OBCLS

ポケットの検出

SURFNET

-プローブ球をタンパク質の原子の間に ていく方法

LIGSITE

-格子点のうちタンパク質原子に まれた領域を抽出

CASTp

- 多面体とタンパク質との間をポケットとする

38

(DBCLS)

立体構造と化合物のドッキング

- タンパク質に結合する化合物を探す
 - -結合するタンパク質がわかっている場合
 - •本当にその場所に結合するか?
 - どのように結合するか?
 - -結合するタンパク質がわからない場合
 - ・化合物のデータベースに収録されている化合物をひた すら探す
 - -program: GOLD, UCSF DOCK, AutoDock

遺伝子発現情報とは?

- •細胞内のmRNAの量を測定する
 - -どの遺伝子がどこでどれくらい発現しているか?
- ゲノム中での遺伝子の位置を調べる
 - -遺伝子の構造アノテーション

セントラルドグマ

41

(DBCLS)

遺伝子発現情報のデータベース

- さまざまな測定結果を集めたDB
 - -GEO: Gene Expression Omnibus
 - NCBI
 - –ArrayExpress
 - EBI
 - -CIBEX
 - •国立遺伝学研究所

DNA塩基配列のDBや立体構造のDBとは違い、 データの交換はしていない (DBCLS)

遺伝子発現情報の使い道

- サンプル間の遺伝子発現の違いを見つける
 - -例:正常細胞とがん細胞で発現が違う遺伝子は?
- 機能未知遺伝子の機能アノテーション
 - 発現パターンが似ていれば、同じような現象にかかわっているかも
- 遺伝子の構造アノテーション
 - -ゲノム中でmRNAに対応する部分が遺伝子
 - 真核生物の場合、エキソン・イントロンもわかる

42

(DBCLS)

遺伝子発現情報のデータベース

- 特定のサンプル、実験法でのデータを 集めたDB
 - –BioGPS (GNF Symatlas)
 - GNF: Genomics Institute of the Novartis Research Foundation
 - •ヒト、マウス、ラットの組織・細胞毎の発現情報
 - -BODYMAP
 - •大阪大学、九州大学、東京大学
 - •SAGEデータ

遺伝子発現情報の解析方法

- 統計解析
 - -t検定とか
 - ・ソフト: EXCEL, OpenOffice calc, S, R
- クラスタリング
 - -パターンごとに遺伝子を分類
 - ・ソフト: Cluster, R
- パスウェイ解析
 - -パスウェイデータベースへのマッピングや GO エンリッチメント解析 45

(DBCLS)

パスウェイへのマッピング

- どの代謝系や制御系が活性化/不活性化しているか
 - -パスウェイのデータベース
 - KEGG PATHWAY
 - Reactome
 - BioCyc

EMBOSS

- The European Molecular Biology Open Software Suite
- DNA塩基配列、アミノ酸配列を操作する際に便利なツールを集めたパッケージ
 - -250以上のツール
 - ドットプロット、アラインメント、モチーフ検索なんかもできる
- 無料
- 本当は自分のパソコンにインストールして使うが、インターネット経由でも利用できる
 - -<u>http://emboss.dbcls.jp</u>/ とかいろいろ

49

(DBCLS)

NEBcutter

- NEW ENGLAND BioLabs社が提供する制限酵素地図作製ツール
 - -DNA塩基配列上に制限酵素を表示
 - -DNAを制限酵素で切断すると、どのような電気泳動パターンになるのかも表示できる
- ・クローニングする際にプライマー設計の参考になる
- PCR増副産物が意図したものか確認できる
- 企業によって運用されているが無料

(DBCLS)

Primer3

- PCRで使うPrimerの設計を支援してくれるツール
- パラメータの詳細な設定が可能
- あくまでも参考程度に

50

(DBCLS)

http://www.dragonsnakers.com/tcb/