### องค์ประกอบคอมพิวเตอร์และภาษาแอสเซมบลี: กรณีศึกษา Raspberry Pi

บทที่ 4 ภาษาแอสเซมบลีของ ARM ขนาด 32 บิต

#### ผศ.ดร.สุรินทร์ กิตติธรกุล

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง Computer Organization & Assembly Language: Raspberry Pi, ผศ.ดร.สุรินทร์ กิตติธรกุล

### สารบัญ

- 4.1 โครงสร้างของซีพียู ARM Cortex A53 ใน BCM2837
- 4.2 สถาปัตยกรรมชุดคำสั่งภาษาแอสเซมบลี (Assembly Instruction Set Architecture)
- 4.3 ตัวอย่างคำสั่งภาษาเครื่องในหน่วยความจำ
- 4.4 การประกาศและตั้งค่าตัวแปรในหน่วยความจำหลัก
- 4.5 คำสั่งถ่ายโอนข้อมูลระหว่างหน่วยความจำและรีจิสเตอร์
- 4.6 คำสั่งประมวลผลข้อมูลในรีจิสเตอร์ (Register Data Processing Instructions)
- 4.7 คำสั่งควบคุมการทำงาน (Control Instructions)
- 4.8 การเรียกใช้ฟังก์ชัน (Function Call)
- 4.9 อุปกรณ์และวิวัฒนาการของชุดคำสั่ง ARM

#### 4.1 โครงสร้างของซีพียู ARM Cortex A53 ใน BCM2837



- วงจรไปป์โลน์สำหรับการอ่าน/เขียนค่าตัวแปรกับหน่วย ความจำ (Load-Store Pipeline) เพื่ออ่าน/เขียนค่าของ ตัวแปรกับหน่วยความจำผ่านทางแคชข้อมูล (Data Cache หรือ D-Cache) ลำดับที่ 1
- วงจรไปป์ไลน์สำหรับการประมวลผลเลขจำนวนเต็ม (Integer Pipeline) ขนาด 8, 16, 32 และ 64 บิต ด้วย คำสั่งทางคณิตศาสตร์และตรรกศาสตร์
- วงจรไปป์ไลน์สำหรับการประมวลผลเลขทศนิยมฐานสอง ชนิดจุดลอยตัว ชื่อ NEON (NEON Floating-Point Pipeline) สามารถรองรับการประมวลผลเลขทศนิยมฐาน สองชนิดจุดลอยตัว มาตรฐาน IEEE754

# 4.2 สถาปัตยกรรมชุดคำสั่งภาษาแอสเซมบลี (Assembly Instruction Set Architecture)

- Cortex A53 รองรับการทำงานในโหมด 32 และ 64 บิต นั่นคือ คำสั่งแอสเซมบลี (ภาษาเครื่อง) ความยาว 32 และ 64 บิตตามโหมดการทำงาน
- วิชานี้ จะอ้างอิงคำสั่งแอสเซมบลีเวอร์ชัน 32 บิตของ ARM เนื่องจากบอร์ดติดตั้งระบบ ปฏิบัติการ Raspbian ซึ่งทำงานในโหมด 32 บิต
  - คำสั่งที่เกี่ยวข้องกับคำสั่งเลขจำนวนเต็มไม่เกิน 32 บิตเท่านั้น
- ARM ยังมีคำสั่งแอสเซมบลีความยาว 16 บิต (Thumb) อีก แต่ทำงานซับซ้อนกว่านิดหน่อย

#### 4.2 สถาปัตยกรรมชุดคำสั่งภาษาแอสเซมบลี (Assembly Instruction Set Architecture)

- ชนิดและขนาดของตัวแปร ผู้อ่านสามารถเทียบเคียบพื้นที่และขนาดของหน่วยความจำ (Memory Space) กับตารางที่ 2.1 โดยข้อมูลหรือตัวแปรแต่ละชนิดต้องการพื้นที่ไม่เท่ากัน ดังนี้
  - ไบท์ (Byte) มีขนาด 8 บิท เหมาะสำหรับตัวแปรชนิดอักขระ เช่น char สำหรับเก็บอักขระตาม รหัสมาตรฐาน ASCII ด้วยพื้นที่ 8 บิทในหน่วยความจำ และ unsigned char สำหรับเลขจำนวน เต็มไม่มีเครื่องหมายความยาว 8 บิท ซึ่งได้สรุปไว้ในตารางที่ 2.13
  - ฮาล์ฟเวิร์ด (Halfword) มีขนาด 16 บิท เช่น short และ unsigned short เหมาะสำหรับตัวแปร ชนิดอักขระตามมาตรฐาน Unicode
  - เวิร์ด (Word) มีขนาด 32 บิท เหมาะสำหรับตัวแปรชนิดจำนวนเต็ม เช่น int และ unsigned int เป็นต้น
  - ดับเบิลเวิร์ด (Doubleword) 64 บิท เหมาะสำหรับตัวแปรชนิดจำนวนเต็ม เช่น unsigned long long เป็นต้น

#### 4.2 สถาปัตยกรรมชุดคำสั่งภาษาแอสเซมบลี (Assembly Instruction Set Architecture)

- R15 เรียกว่า โปรแกรมเคาท์เตอร์ (Program Counter: PC) คือ รีจิสเตอร์สำหรับเก็บหมายเลข ไบท์ของคำสั่งในเท็กซ์เซ็กเมนท์ของหน่วยความจำเสมือน ที่ซีพียูจะต้องอ่านหรือ เฟทช์ (Fetch) คำสั่งนั้นมาถอดรหัส (Decode) และปฏิบัติ (Execute) ตาม แล้วจึงเปลี่ยนแปลงเป็น PC=PC+4 เพื่อเก็บแอดเดรสของคำสั่งถัดไป หมายเลข 4 หน่วยเป็นไบท์ เนื่องจากทุกคำสั่งในตำราเล่มนี้มี ความยาว 4 ไบท์ตามที่กล่าวมาข้างต้น
- R14 เรียกว่า **ลิงค์รีจิสเตอร์** (Link Register: LR) คือ รีจิสเตอร์สำหรับเก็บแอดเดรสของคำสั่งที่ ต้องการจะรีเทิร์นกลับ โดยรีจิสเตอร์นี้ทำงานคู่กับคำสั่ง BL (Branch and Link) และคำสั่ง BX LR
- R13 เรียกว่า สแต็คพอยท์เตอร์ (Stack Pointer: SP) คือ รีจิสเตอร์สำหรับเก็บแอดเดรสหรือ ตำแหน่งยอด (Top) ของสแต็คเซ็กเมนท์ ซึ่งเรียกสั้นๆ ว่า สแต็ค โดยรีจิสเตอร์นี้ทำงานคู่กับคำสั่ง ที่เกี่ยวข้องกับหน่วยความจำ ในหัวข้อที่ 4.5 ผู้อ่านสามารถทบทวนรายละเอียดเกี่ยวกับสแต็คใน หัวข้อที่ 3.2.3 ที่ผ่านมา หมายเหตุ คำว่า สแต็ค ในตำราเล่มนี้หมายถึงสแต็คเซ็กเมนท์ มิได้หมาย ถึงโครงสร้างข้อมูล (Data Structure) ชนิดหนึ่ง

### 4.3 ตัวอย่างคำสั่งภาษาเครื่องในหน่วยความจำ

- **ดิสแอสเซมบลี** (Disassembly) คือ การแปลคำ สั่งภาษาเครื่องจากคอลัมน์ออพโค้ดให้กลับเป็น ภาษาแอสเซมบลี ARM เพื่อให้ผู้ใช้โปรแกรมซิมูเล เตอร์เข้าใจ โดยจะแปลออพโค้ดแต่ละบรรทัด เป็น คำสั่ง 1 คำสั่ง ยกตัวอย่างเช่น ที่หน่วยความจำตำแหน่ง PC=0x0000 C140 จำนวน 4 ไบท์บรรจุออพโค้ด 0x08BD 8008 ซึ่งตรงกับคำสั่ง POPEQ r3, pc ตำแหน่งถัดไปคือ แอดเดรส PC=0x0000 C144 = 0x0000 C140 + 4 ห่างจากเดิมจำนวน 4 ไบท์



Simulator แสดงค่าใน Memory+Disassemmbly



• โปรแกมคอมพิวเตอร์ คือ ภารกิจการนำข้อมูลที่มีความ OXFFFFFFF **OS Kernel Space** 1 GB สัมพันธ์ต่อกัน และเปลี่ยนแปลงค่าจนเสร็จสิ้นภารกิจ otherwise resulting in a Segmentation Fault 0xC0000000 Automatic variables (local to a function's scope), caller's return address, etc. • **สแต็คเซ็กเมนท์**มีไว้สำหรับเก็บค่ารีจิสเตอร์ I R และรีจิส (grows towards lower memory addresses) เตอร์อื่นๆ รวมถึงค่าตัวแปรชนิดโลคอล (Local) • พื้นที่สำหรับตัวแปร เช่น อะเรย์ โครงสร้างข้อมูลต่างๆ 🕈 สามารถจองเพิ่มเติมขณะที่กำลังรันโปรแกรมในพื้นที่ Dynamic memory allocation through malloc/new free/delete 3 GB (grows towards higher memory addresses) BSS เรียกว่า Heap Segment โดยระบบปฏิบัติการ Uninitialized static variables, filled with zeros Data Static variables explicitly initialized ประกาศ**ตัวแปรโกลบอล (Global)** ในหน่วยความจำ Text Binary image of the process (e.g., /bin/ls) บริเวณ Data Segment 0x08048000  $0 \times 000000000$ 

• โปรแกมคอมพิวเตอร์ คือ ภารกิจการนำข้อมูลที่มีความ OXFFFFFFF **OS Kernel Space** 1 GB สัมพันธ์ต่อกัน และเปลี่ยนแปลงค่าจนเสร็จสิ้นภารกิจ otherwise resulting in a Segmentation Fault 0xC0000000 Automatic variables (local to a function's scope), caller's return address, etc. • **สแต็คเซ็กเมนท์**มีไว้สำหรับเก็บค่ารีจิสเตอร์ I R และรีจิส (grows towards lower memory addresses) เตอร์อื่นๆ รวมถึงค่าตัวแปรชนิดโลคอล (Local) • พื้นที่สำหรับตัวแปร เช่น อะเรย์ โครงสร้างข้อมูลต่างๆ 🕈 สามารถจองเพิ่มเติมขณะที่กำลังรับโปรแกรมในพื้นที่ Dynamic memory allocation through malloc/new free/delete 3 GB -(grows towards higher memory addresses) BSS เรียกว่า Heap Segment โดยระบบปฏิบัติการ Uninitialized static variables, filled with zeros Data Static variables explicitly initialized ประกาศ**ตัวแปรโกลบอล (Global)** ในหน่วยความจำ Text Binary image of the process (e.g., /bin/ls) บริเวณ Data Segment 0x08048000  $0 \times 000000000$ 

| รูปแบบ       |          |        | ความหมาย          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   | 0xffffff |
|--------------|----------|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------|
|              |          |        | (Rm และ Rn คือ เ  | หมายเลขรีจิสเตอร์มีค่าเท่ากับ R0-R15) 🔻 🕓 🕒 🔾 🔾 🔾 🔾 🔾 🔾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OS Kernel Space r code cannot read from nor write to these addresses, otherwise resulting in a Segmentation Fault |          |
| LDR Rd, [Rn] |          | Rn]    | Rd = Mem[Rn]      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   | 0xC0000  |
|              |          |        | สำเนาข้อมูล 32 บิ | ท จากหน่วยความจำที่แอดเดรส Rn ไปเขียนในรีจิสเตอร์ Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stack variables (local to a function's scope), caller's return address, etc.                                      |          |
| STR Rd, [Rn] |          | Rn]    | Mem[Rn] = Rd      | , and the second | (grows towards lower memory addresses)                                                                            |          |
|              |          |        | สำเนาข้อมูล 32 บิ | าในรีจิสเตอร์ Rd ไปเขียนในหน่วยความจำที่แอดเดรส Rn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |          |
| LDRB         | Rd,      | [Rn]   | Rd = Mem[Rn]      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |          |
|              |          |        | สำเนาข้อมูลจำนวเ  | ย 8 บิทจากหน่วยความจำที่แอดเดรส Rn ไปเขียนในรีจิสเตอร์ Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |          |
| STRB         | Rd, [Rn] |        | Mem[Rn] = Rd      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ↑ Heap ↑                                                                                                          |          |
|              |          |        | สำเนาข้อมล 8 บิท  | ล่างสดในรีจิสเตอร์ Rd ไปเขียนในหน่วยความจำที่แอดเดรส Rn Dynamic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | memory allocation through malloc/new free/delete (grows towards higher memory addresses)                          |          |
| -            | #        | เลเบล  | คำสั่ง            | คอมเมนท์                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BSS                                                                                                               |          |
| =            | 1        |        | .data             | @Variable definition ◆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Uninitialized static variables, filled with zeros                                                                 |          |
|              | 2        |        | .ballign 4        | @Align variable to 4-byte space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data Static variables explicitly initialized                                                                      |          |
| 3 wo         |          | wordva | ar1: .word 7      | @wordvar1=7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Text                                                                                                              |          |
|              | 4        |        | .ballign 4        | @Align variable to 4-byte space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Binary image of the process (e.g., /bin/ls)                                                                       | 0x08048  |
|              | 5        | wordva | ar2: .word 3      | @wordvar2=3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | 0×00000  |

# 4.5 คำสั่งถ่ายโอนข้อมูลระหว่างหน่วยความจำและรีจิสเตอร์

**ตารางที่** 4.3: ตัวอย่างโปรแกรมภาษาแอสเซมบลีเพื่อคำนวณประโยค x = (a + b) - c

| #  | เลเบล | คำสั่ง         | คอมเมนท์                           |
|----|-------|----------------|------------------------------------|
| 1  |       | LDR R4, =a     | @ get address of variable a        |
| 2  |       | LDR R0, [R4]   | @ assign value of variable a to R0 |
| 3  |       | LDR R4, =b     | @ get address of variable b        |
| 4  |       | LDR R1, [R4]   | @ assign value of variable b to R1 |
| 5  |       | ADD R3, R0, R1 | @ a+b                              |
| 6  |       | LDR R4, =c     | @ get address of variable c        |
| 7  |       | LDR R2, [R4]   | @ assign value of variable c to R2 |
| 8  |       | SUB R3, R3, R2 |                                    |
| 9  |       | LDR R4, =x     | @ get address of variable x        |
| 10 |       | STR R3, [R4]   | @ store value of R3 to variable x  |

# 4.5 คำสั่งถ่ายโอนข้อมูลระหว่างหน่วยความจำและรีจิสเตอร์

- เซ็กเมนท์ต่างๆ **ยกเว้น Text Segment** เป็นพื้นที่สำหรับตัวแปรและโครงสร้างข้อมูลชนิดต่างๆ
- โปรแกรมจะต้อง**อ่านหรือโหลด (Load) ข้อมูลจากตำแหน่งที่ตัวแปรตั้งอยู่ในหน่วยความจำ** มาพักในรีจิสเตอร์ก่อน
- โปรแกรมจะ**คำนวณข้อมูลที่เก็บในรีจิสเตอร์เท่านั้น** ด้วยคำสั่งประมวลผลข้อมูลในหัวข้อที่ 4.6
- เมื่อคำนวณแล้วเสร็จ โปรแกรมจะสามารถ**นำค่าจากรีจิสเตอร์เก็บหรือสโตร์ (Store)**ค่าในหน่วยความจำได้ เพื่อให้ผู้ใช้บันทึกตามรูปแบบไฟล์ในอุปกรณ์เก็บรักษาข้อมูลต่อไป
- ภาษาแอสเซมบลี ประเภทนี้ เรียกว่า **สถาปัตยกรรมโหลด/สโตร์ (Load/Store Architecture)**

- คำสั่งทางคณิตศาสตร์ เพื่อคำนวณเลขจำนวนเต็มชนิดมีและไม่มีเครื่องหมาย
- คำสั่งเลื่อนบิต เพื่อเลื่อนบิตข้อมูลไปทางซ้ายและขวา
- คำสั่งทางคณิตศาสตร์และเลื่อนบิต เพื่อคำนวณเลขจำนวนเต็มชนิดมีและไม่มี เครื่องหมาย หลังจากที่มีการเลื่อนบิตไปทางซ้ายหรือขวา
- คำสั่งทางตรรกศาสตร์ เพื่อคำนวณค่าทางตรรกศาสตร์ของเลขจำนวนเต็มชนิดมี และไม่มีเครื่องหมาย

| Abus                                              | B/W R/W                                  |                        |                                     |
|---------------------------------------------------|------------------------------------------|------------------------|-------------------------------------|
| ABE - ADDRESS REGISTER                            | <b>1</b>                                 | รูปแบบ                 | ความหมาย                            |
| ADDRESS INCREMENTER                               | <b>←</b> PH2                             | ADD Rd, Rn, Rm         | Rd = Rn + Rm                        |
|                                                   | ← IRQ<br>← FIQ                           | ADD Rd, Rn, #Imm       | Rd = Rn + #Imm                      |
| REGISTER BANK (32-bit registers)                  | RESET  ABORT                             | SUB Rd, Rn, Rm         | Rd = Rn - Rm                        |
| MULTIPLIER                                        | INSTRUCTION OPC DECODER                  | SUB Rd, Rn, #Imm       | Rd = Rn - #Imm                      |
| MULTIPLIER  b a a a a a a a a a a a a a a a a a a | CONTROL TRANS  TRANS  M bus              | RSB Rd, Rn, Rm         | Rd = Rm - Rn (Reverse Subtract)     |
| BARREL<br>SHIFTER                                 | → MREQ<br>→ SEQ                          | RSB Rd, Rn, #Imm       | Rd = #Imm - Rn (Reverse Subtract)   |
| 32-BIT ALLU                                       | <b>→</b> <del>CPI</del>                  | MUL Rd, Rn, Rm         | Rd = (Rn * Rm) (Only lower 32 bits) |
|                                                   | <ul> <li>← CPA</li> <li>← CPB</li> </ul> | UMULL Rhi, Rlo, Rn, Rm | [Rhi Rlo] = (Rn * Rm) (Unsigned)    |
| WRITE DATA REGISTER INSTRUCT                      | TION PIPELINE<br>ATA REGISTER            | SMULL Rhi, Rlo, Rn, Rm | [Rhi Rlo] = (Rn * Rm) (Signed)      |
|                                                   | Dobus                                    |                        |                                     |

Computer Organization & Assembly Language: Raspberry Pi, ผศ.ดร.สุรินทร์ กิตติธรกุล



| รูปแบบ                   | ความหมาย                        |
|--------------------------|---------------------------------|
| ADD Rd, Rn, Rm LSL #shmt | Rd = Rn + (Rm « #shmt)          |
| ADD Rd, Rn, Rm LSR #shmt | Rd = Rn + (Rm * #shmt)          |
| ADD Rd, Rn, Rm ASR #shmt | Rd = Rn + (Rm * #shmt) (Signed) |

|                                                                   | ູສູປແບບ          | ความหมาย                                     |
|-------------------------------------------------------------------|------------------|----------------------------------------------|
| unsigned int a = 0xffff0000;                                      | AND Rd, Rn, Rm   | Rd = Rn & Rm (bitwise AND)                   |
| unsigned int b = 0x0000ffff;                                      | AND Rd, Rn, #Imm | Rd = Rn & #Imm (bitwise AND)                 |
| unsigned int c;                                                   | ORR Rd, Rn, Rm   | Rd = Rn   Rm (bitwise OR)                    |
| c = a & b; /* c = 0x00000000 AND */                               | ORR Rd, Rn, #Imm | $Rd = Rn \mid \#Imm \text{ (bitwise OR)}$    |
| $c = a \mid b; /* c = 0xfffffffff OR */$                          | MVN Rd, Rm       | Rd = $\bar{Rm}$ (bitwise Inverse)            |
| c = !b; /* $c = 0xffff0000 NOT */$                                | MVN Rd, #Imm     | Rd = $\#\bar{Imm}$ (bitwise Inverse)         |
| $c = a \wedge b$ ; /* $c = 0xfffffffffffffffffffffffffffffffffff$ | EOR Rd, Rn, Rm   | $Rd = Rn \oplus Rm$ (bitwise XOR)            |
|                                                                   | EOR Rd, Rn, #Imm | $Rd = Rn \oplus \#Imm \text{ (bitwise XOR)}$ |
|                                                                   |                  | <u>U</u>                                     |

# 4.7 คำสั่งควบคุมการทำงาน (Control Instructions): if



# 4.7 คำสั่งควบคุมการทำงาน (Control Instructions): if-else

```
if ((a+b)>c) {
    x+=y; /* Body-IF */
else {
    x=y; /* Body-ELSE */
           Condition
                    False
       True
                    Body-ELSE
   Body-IF
```

| #                                                                | เลเบล | คำสั่ง                                                                                                                                                                           | คอมเ                                                     | มนท์                |                                                                                                                         |
|------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | เลเบล | ิ LDR R4, =a<br>LDR R0, [R4]<br>LDR R4, =b<br>LDR R1, [R4]<br>ADD R3, R0, R1<br>LDR R4, =c<br>LDR R2, [R4]<br>CMP R3, R2<br>BLE else<br>LDR R4, =x<br>LDR R5, [R4]<br>LDR R4, =y | 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | <u>มนท์</u><br>else | ADD R5, R5, R6 LDR R4, =x STR R5, [R4] B exit LDR R4, =x LDR R5, [R4] LDR R4, =y LDR R6, [R4] SUB R5, R5, R6 LDR R4, =x |
| 13<br>14                                                         |       | LDR R6, [R4]<br>ADD R5, R5, R6                                                                                                                                                   | 24<br>25                                                 | exit                | STR R5, [R4]<br>                                                                                                        |

# 4.7 คำสั่งควบคุมการทำงาน (Control Instructions)

คำสั่งควบคุมการทำงาน (Control Instructions) ในภาษาสูงแบ่งเป็น ประโยคการตัดสินใจ เช่น ประโยค IF, IF-ELSE, Switch-Case และประโยคการวนรอบชนิดต่างๆ เช่น FOR, WHILE, DO-WHILE เป็นต้น โครงสร้าง คำสั่งภาษาแอสเซมบลีของ ARM ที่รองรับประโยคเหล่านี้ ประกอบด้วย

• คำสั่ง CMP (Compare) ทำหน้าที่เปรียบเทียบระหว่างค่ารีจิสเตอร์กับค่าคงที่ หรือระหว่างค่ารีจิสเตอร์ 2 ตัว โปรแกรมเมอร์สามารถเขียนคำสั่งนี้ได้ 2 รูปแบบตามตารางต่อไปนี้

| รูปแบบ       | ความหมาย                     |  |  |  |
|--------------|------------------------------|--|--|--|
| CMP Rn, Rm   | NZCV ← Rn - Rm               |  |  |  |
| CMP Rn, #Imm | $NZCV \leftarrow Rn - \#Imm$ |  |  |  |

ค่าบิท NZCV ในรีจิสเตอร์ CPSR (หัวข้อที่ 4.6.1) คือ ผลลัพธ์ที่ได้จากคำสั่ง CMP โดยคำสั่งนี้ทำการ เปรียบเทียบเลขจำนวนเต็มสองค่า (Rn - Rm) หรือ (Rn - #Imm)

# 4.7 คำสั่งควบคุมการทำงาน (Control Instructions)



# 4.7 คำสั่งควบคุมการทำงาน (Control Instructions): ลูป for



# 4.7 คำสั่งควบคุมการทำงาน (Control Instructions): ลูป while



### 4.7 คำสั่งควบคุมการทำงาน (Control Instructions): ลูป do\_while











MyFunction ถูกเรียกใช้ซ้ำจากคำสั่ง BL myFunction สองประโยค แต่ LR จะเก็บ แคดเดรสเพื่อรีเทิร์นกลับยังแต่ละตำแหน่ง ได้อย่างถูกต้อง โดย LR จะเก็บแอดเดรส คำสั่งถัดไป หลังจากทำงาน myFunction แล้วเสร็จ ด้วยประโยค BX LR

- R14 เรียกว่า **ลิงค์รีจิสเตอร์** (Link Register: LR) คือ รีจิสเตอร์สำหรับเก็บแอดเดรสของคำสั่งที่ ต้องการจะรีเทิร์นกลับ โดยรีจิสเตอร์นี้ทำงานคู่กับคำสั่ง BL (Branch and Link) และคำสั่ง BX LR
- R13 เรียกว่า สแต็คพอยท์เตอร์ (Stack Pointer: SP) คือ รีจิสเตอร์สำหรับเก็บแอดเดรสหรือ ตำแหน่งยอด (Top) ของสแต็คเซ็กเมนท์ ซึ่งเรียกสั้นๆ ว่า สแต็ค โดยรีจิสเตอร์นี้ทำงานคู่กับคำสั่ง ที่เกี่ยวข้องกับหน่วยความจำ ในหัวข้อที่ 4.5 ผู้อ่านสามารถทบทวนรายละเอียดเกี่ยวกับสแต็คใน หัวข้อที่ 3.2.3 ที่ผ่านมา หมายเหตุ คำว่า สแต็ค ในตำราเล่มนี้หมายถึงสแต็คเซ็กเมนท์ มิได้หมาย ถึงโครงสร้างข้อมูล (Data Structure) ชนิดหนึ่ง
- R4-R12 เป็นรีจิสเตอร์สำหรับใช้งานทั่วไป
- RO-R3 เป็นรีจิสเตอร์สำหรับสำหรับใช้งานทั่วไป และใช้ส่งค่าพารามิเตอร์ (Parameter) ไปให้ฟัง ค์ชัน โดยรีจิสเตอร์เหล่านี้ทำงานร่วมกับคำสั่ง BL (Branch and Link)
- R0 เป็นรีจิสเตอร์สำหรับรีเทิร์นค่าข้อมูลจากฟังค์ชัน โดยทำงานร่วมกับคำสั่ง BX LR



| PUSH {register list} | สำเนาข้อมูล 32 บิทจากรีจิสเตอร์ที่ปรากฏในรายชื่อรีจิสเตอร์ |
|----------------------|------------------------------------------------------------|
|                      | ไปวางบนย <sup>ื</sup> อดสแต็คชั่วคราวตามลำดับจากซ้ายไปขวา  |
|                      | ปรับเปลี่ยนค่ารีจิสเตอร์ SP ให้สอดคล้องกับคำสั่ง           |
| POP {register list}  | สำเนาข้อมูล 32 บิทจากยอดสแต็คไปบรรจุในรีจิสเตอร์           |
|                      | ที่ปรากฎในรายชื่อรีจิสเตอร์ตามลำดับจากขวาไปซ้าย            |
|                      | ปรับเปลี่ยนค่ารีจิสเตอร์ SP ให้สอดคล้องกับคำสั่ง           |



#### R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13(SP) R14(LR) R15(PC)

|                      | U I                                                        |
|----------------------|------------------------------------------------------------|
| PUSH {register list} | สำเนาข้อมูล 32 บิทจากรีจิสเตอร์ที่ปรากฎในรายชื่อรีจิสเตอร์ |
|                      | ไปวางบนยอดสแต็คชั่วคราวตามลำดับจากซ้ายไปขวา                |
|                      | ปรับเปลี่ยนค่ารีจิสเตอร์ SP ให้สอดคล้องกับคำสั่ง           |
| POP {register list}  | สำเนาข้อมูล 32 บิทจากยอดสแต็คไปบรรจุในรีจิสเตอร์           |
|                      | ที่ปรากฏในรายชื่อรีจิสเตอร์ตามลำดับจากขวาไปซ้าย            |
|                      | ปรับเปลี่ยนค่ารีจิสเตอร์ SP ให้สอดคล้องกับคำสั่ง           |



# 4.9 อุปกรณ์และวิวัฒนาการของชุดคำสั่ง ARM

|           | Devices Shipped<br>(Million of Units) | 2010<br>Devices | Chips/<br>Device | TAM 2010<br>Chips | 2010<br>ARM | 2010<br>Share | TAM 2015<br>Devices | Chips/<br>Unit | TAM 2015<br>Chips |
|-----------|---------------------------------------|-----------------|------------------|-------------------|-------------|---------------|---------------------|----------------|-------------------|
| $\subset$ | Smart Phone                           | 280             | 2-5              | 1,200             | 1,100       | 90%           | 1,100               | 3-5            | 4,000             |
| <u>e</u>  | Feature Phone                         | 760             | 1-3              | 1,900             | 1,700       | 90%           | 650                 | 2-3            | 2,000             |
| Mobile    | Low End Voice                         | 570             | 1                | 570               | 540         | 95%           | 700                 | 1-2            | 1,300             |
| Σ         | Portable Media Players                | 150             | 1-3              | 300               | 220         | 70%           | 120                 | 1-3            | 250               |
|           | Mobile Computing* (apps only)         | 230             | 1                | 230               | 25          | 10%           | 750                 | 1              | 750               |
| 7         | PCs & Servers (apps only)             | 220             | 1                | 220               | 0           | 0%            | 250                 | 1              | 250               |
|           | Digital Camera                        | 130             | 1-2              | 200               | 160         | 80%           | 150                 | 1-2            | 250               |
|           | Digital TV & Set-top-box              | 350             | 1-2              | 450               | 160         | 35%           | 500                 | 1-4            | 1,200             |
| ile       | Networking                            | 670             | 1-2              | 750               | 185         | 25%           | 800                 | 1-2            | 1,400             |
| -Mobile   | Printers                              | 120             | 1                | 120               | 75          | 65%           | 200                 | 1              | 200               |
| _         | Hard Disk & Solid State Drives        | 670             | 1                | 670               | 560         | 85%           | 1,100               | 1              | 1,100             |
| No        | Automotive                            | 1,800           | 1                | 1,800             | 180         | 10%           | 2,200               | 1              | 2,200             |
|           | Smart Card                            | 5,400           | 1                | 5,400             | 330         | 6%            | 7,700               | 1              | 7,700             |
|           | Microcontrollers                      | 5,800           | 1                | 5,800             | 560         | 10%           | 9,000               | 1              | 9,000             |
|           | Others **                             | 1,700           | 1                | 1,800             | 270         | 15%           | 2,000               | 1              | 2,000             |
| •         | Total                                 | 19,000          |                  | 22,000            | 6,100       | 28%           | 27,000              |                | 34,000            |

### 4.9 อุปกรณ์และวิวัฒนาการของชุดคำสั่ง ARM



### สรุปท้ายบท

คำสั่งภาษาแอสเซมบลีของ ARM มีลักษณะเด่นเมื่อเปรียบเทียบกับภาษาอื่นๆ เช่น การมีคำสั่งเลื่อนบิทภายใน คำสั่งคณิตศาสตร์ การตรวจสอบเงื่อนไขก่อนการปฏิบัติตามคำสั่งนั้น เป็นต้น ทำให้ชิพซีพียูที่ผลิตตามการ ออกแบบของ ARM บริโภคพลังงานน้อย จึงได้รับความนิยมในอุปกรณ์เคลื่อนที่มาเป็นระยะเวลาต่อเนื่อง ที่ ผ่านมาสถาปัตยกรรมของคำสั่งสามารถแบ่งออกได้เป็น

- สถาปัตยกรรมโหลด/สโตร์ (Load/Store Architecture) ARM ออกแบบคำสั่งภาษาแอสเซมบลีตาม หลักการ RISC (Reduced Instruction Set Computer) ข้อมูลเพิ่มเติมที่ wikipedia และแตกต่าง จากคำสั่งจากสถาปัตยกรรมอื่นๆ ดังนี้
- สถาปัตยกรรม x86 (x86 Architecture) ในภาษาแอสเซมบลีของ Intel 80x86 หรือเรียกย่อๆ ว่า x86 ซึ่งบางคำสั่งใช้การอ่านค่าจากหน่วยความจำเพื่อประมวลผล ทำให้การประมวลซับซ้อนและล่าช้า ข้อมูล เพิ่มเติมที่ wikipedia
- สแต็คแมชชื่น (Stack Machine) ได้แก่ ภาษาจาวาไบท์โค้ด (Java Bytecode) จัดเป็นคำสั่งภาษาแอ สเซมบลีเมื่อแปลจากซอร์สโค้ดภาษา Java เทคโนโลยีที่น่าสนใจของ ARM เรียกว่า Jazelle สามารถ รองรับการประมวลผลคำสั่ง Java Bytecode ด้วยฮาร์ดแวร์ทำให้ชิพบริโภคพลังงานต่ำโดยเฉพาะโทร ศัพท์สมาร์โฟนที่ใช้ระบบปฏิบัติการ Android ซึ่งซอฟท์แวร์ส่วนใหญ่ใช้ภาษา Java พัฒนา รายละเอียด เพิ่มเติมใน wikipedia

#### References

- https://www.researchgate.net/figure/Block-Diagram-of-Micro-SD-card\_fig6\_306236972
- https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/
- https://freedompenguin.com/articles/how-to/learning-the-linux-file-system
- https://www.techpowerup.com/174709/arm-launches-cortex-a50-series-the-worlds-most-energy-efficient-64-bit-processors
- https://www.researchgate.net/figure/NVIDIA-Tegra-2-mobile-processor-11\_fig1\_221634532
- Harris, D. and S. Harris (2013). Digital Design and Computer Architecture (1st ed.). USA: Morgan Kauffman Publishing.
- https://learn.adafruit.com/resizing-raspberry-pi-boot-partition/edit-partitions

#### References

- https://en.wikipedia.org/wiki/Human%E2%80%93computer\_interaction
- https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/programmer-s-guide-for-armv8-a
- https://xdevs.com/article/rpi3 oc/
- https://www.gsmarena.com/a look inside the new proprietary apple a6 chipset-news-4859.php
- https://www.slideshare.net/kleinerperkins/2012-kpcb-internet-trends-yearend-update/25-Global\_Smartphone\_Tablet\_Shipments\_Exceeded
- https://www.aliexpress.com/item/32329091078.html
- https://www.raspberrypi.org/forums/viewtopic.php?t=63750
- https://www.youtube.com/watch?v=2ciyXehUK-U