Running with User Story Lite

The goal of this chapter is to introduce the user story practice, including its elements in the Essence language, and to illustrate how TravelEssence adopted and applied the practice. Specifically, the reader will after finishing this chapter be introduced to

- the elements of the user story practice, including relationships between the respective elements, activity flows, and its relationship with the kernel elements (in TravelEssence's case, only Requirements and Work);
- quality criteria for each user story and the decisions they drive along the practice;
- the elements and structure of a simplified version of the user story practice (called User Story Lite) in a real endeavor, including the obstacles and challenges that might arise; and
- the coverage of kernel solution activity spaces by the User Story Lite practice.

In this chapter, we describe how Smith's team started to apply user stories in their work. User stories have the benefit of getting the team to think, inquire, and understand the value of what they do from the point of view of their users. The user story practice is a popular practice, in particular for small teams. It originated from Extreme Programming (XP), a lightweight, efficient, low-risk way to develop software [Beck 1999]. XP was in turn inspired by use cases from 1992. The User Story Lite practice is a simplified version of the user story practice, created just for the readers of this book.¹

^{1.} Based on version 2017.01 of the User Story Essentials practice originally published by Ivar Jacobson International, © 2015–2017 Ivar Jacobson International SA. Used and adapted with permission.

User Stories Explained

A user story [Cohn 2004] describes functionality in the system we are building that is valuable to a user of a system. User stories are based on an approach that was proven successful back in the 1990s and earlier, where, rather than write lengthy requirements documents, informal discussions were conducted between the user of the system and the developer. A user story includes a written description that is utilized when discussing the story, along with tests to help communicate what is needed to complete the story. By complete we mean everything that has been agreed upon that will achieve the user's need. The idea of user stories is to provide a way to facilitate discussion to help clarify who a piece of functionality is for—i.e., a role—and how it benefits that role. A user story is often captured on a 3×5 index card with a very concise format or template as follows:

As a <role, or type of user>, I want to st here the function you want the system to do>, so that < list here the objective you want to achieve>.

An example could be: "As a bank customer I want to have a direct deposit capability so that my employer can electronically send me my paycheck." This template helps to ensure that the "Who," "What," and "Why" are all considered and captured:

- **Who** will get the value?
- What do we need to achieve?
- Why are we doing it?

(Note that this concept of role is different from the concept of roles we defined earlier (Section 14.6) where a role meant a list of responsibilities that one or more members of the team accept. The role of a bank customer within a user story is with respect to the system being developed, whereas roles within the Scrum Lite practice such as Scrum Master and PO are with respect to a development endeavor.) User story cards, of course, do not provide everything that a user needs. They are placeholders used to remind the team of the need to conduct conversations with the users. The purpose of the conversations is to flesh out the details. These additional details can be added to the card, or they can be captured through additional stories. Again, the primary value of user stories is that they get a conversation going between the development team and the user.

Figure 15.1 shows the idea of applying user stories, and a simple way of remembering what a user story comprises.

Card. A succinct headline description, as captured on a story card.

Figure 15.1 User Story practice big picture.

Conversation. The discussion between actual users of the proposed system and developers about what is needed to converge on the best solution.

Confirmation. Acceptance criteria, captured as bullet-point statements, which can be captured on the back of the story card.

To write a good user story it is useful to apply the INVEST criteria, which is an acronym for Independent, Negotiable, Valuable, Estimatable, Small, and Testable. Each of these six criteria items is discussed below.

Independent. User stories should be *independent* of each other so they each can be developed separately.

Negotiable. At least part of the reason for promoting a conversation when using user stories is to support give and take between the user and developers. To do this, user stories should be written in a way that allows them to be *negotiable*. Negotiation promotes understanding and commitment.

Valuable. A user story should be *valuable* to the user. The conversation can help team members understand the real intent of a requirement and the value each story brings to the user. One way to help ensure each story has this value is to engage the user in actually writing the story.

Estimatable. A user story should be *estimatable*. As team members and users work together on user stories, the goal is for enough details to emerge to

allow the developer to estimate the work effort required to implement the story.

Small. User stories should be *small*. Often, when stories are first written they are too large to fit within a given iteration and therefore must be split into smaller stories. These large stories that are too large to fit within an iteration are often referred to as epics. Through the conversations held between developers and users, the needed smaller stories emerge and are agreed upon.

Testable. An important criterion to keep in mind for a good story is that when completed it should be *testable*. Writing the tests first help ensure the story is testable and helps ensure both the user and the developer are in agreement on what it means to complete the story.

One question that often arises for beginners when using user stories is:

But why do we need the "so that" clause in a user story?

One of the reasons the "so that" clause is added to this format is so the developers understand the end objective of the user. This helps to support evolutionary requirements development, by which we mean that the requirements may evolve as we learn more about the available options and needs of the user. This also keeps the developer's options open in providing alternative solutions. Refer to Figure 15.2 and Table 15.1 for a summary of User Story Lite practice.

Figure 15.2 User Story practice expressed in the Essence language.

Table 15.1 Elements of User Story Lite

Element	Туре	Description
User Story	Alpha	Something that a software system could be extended to do, expressed in terms of the value that it will provide to a user of the system.
Story Card	Work Product	An index card, or equivalent, that captures the essential details of a user story.
Test Case	Work Product	Defines test inputs and expected results to evaluate whether a user story is fully and correctly implemented.
Find User Stories	Activity	Identify things of value that a software system could do. Capture these as simple and succinct headline descriptions on story cards.
Prepare a user story	Activity	A user story is prepared for development by discussion with users to build understanding and refinement of its acceptance criteria and test cases.
Accept a User Story	Activity	The user story implementation is evolved in close collaboration with the customer/user until it is acceptable to and accepted by the customer/user representative.
Splitting User Stories	Pattern	Small things get done faster. In agile development there is a continuous and relentless drive to reduce the size of user stories by splitting bigger stories into smaller ones. The key is to ensure that each story delivers value: * Splits should support meaningful user interactions, no matter how small or "specialized" (think "thin" end-to-end journey with each split providing value to the user).

15.2 Making the User Story Lite Practice Explicit Using Essence Tust as we did in the previous electric.

Just as we did in the previous chapter on Scrum, we can be very explicit about how the user story practice guides the team by understanding how user stories and various elements surrounding user stories are related. Figure 15.2 expresses the user story practice using the Essence language.

From Figure 15.2, it is clear that this practice is a way to decompose complex Requirements into sub-alphas—the User Story alpha. Each user story is described by a story card and is verified through a test case. The User Story Lite practice has several activities:

- Find User Stories;
- Prepare a User Story; and
- Accept a User Story.

We will exemplify how Smith's team applies these activities shortly. Figure 15.2 also shows one pattern, Splitting User Stories, to help teams ease development.

When you compare this with Scrum Lite in Chapter 14, it is obvious that this User Story Lite practice is simpler than that of Scrum Lite. Not only does User Story Lite have fewer elements than Scrum Lite, it also relates to fewer elements in the kernel: in this case, only the Requirements alpha. Thus, a team applying a user story practice alone should consider other practices that provide explicit guidance on how to progress the other kernel alphas, such as Opportunity, Work, etc.

15.3

User Story Lite Alphas

15.3.1 User Story

A user story is something that a software system could be extended to do, expressed in terms of the value that it will provide to a user of the software system.

A user story usually progresses through the following states (see also Figure 15.3).

Figure 15.3 User Story alpha card.

Identified. The user story is identified with its value clearly expressed. It is placed in the team's product backlog.

Ready for Development. The team discusses the details of the user story such that members are clear on what is involved in fulfilling the requirements behind the user story. This might involve details about user interfaces, implementation details, and so on.

In Progress. At this state, the team is working on fulfilling the user story.

Verified. The user story is verified by a qualified user representative, such as a product owner.

15.4

User Story Lite Work Products

The work products in the user story Lite practice are the Story Card, and the Test Case for each user story.

15.4.1 Story Card

A story card is an index card, or equivalent, that captures the essentials of a user story.

A user story can be expressed at different levels of detail.

Value Expressed. The value of the user story is clearly expressed, such as using the common format described above.

Acceptance Criteria Listed. The acceptance criteria for the fulfillment of the user story are clearly expressed.

Conversation Captured. The discussions the team has about the user story are captured so that the team understands more clearly the requirements for the user story and the rationale behind its details. These discussions are usually verbal, but can be written on the story card itself or recorded by some electronic means (see Figure 15.4).

15.4.2 Test Case

A test case defines test inputs and expected results to evaluate whether a user story is fully and correctly implemented.

A test case has several levels of detail (see also Figure 15.5).

Acceptance Criteria Captured. The different possible ways for testing the user story are captured.

Figure 15.4 Story Card work product card.

Figure 15.5 Test Case work product card.

Scripted. The step-by-step procedure for testing and accepting the user story is available. This also necessitates the preparation of test data and test environment used when executing the test case.

Automated. The test case is automated and can be executed with little or no intervention.

15.5

Kick-Starting User Story Lite Usage

There were two primary challenges our TravelEssence development team faced that led them to decide to try User Stories Lite in their endeavor. First, Smith's team members sometimes found themselves wondering about the purpose of the system they were developing. This often resulted in animated discussions with Angela. So, instead of just enumerating PBIs, Angela recognized that by investing a little time in developing PBIs into a user story format, the resulting requirements would help the team better understand the purpose of the system they were developing. This would also help Angela when discussing the system with other stakeholders, such as Dave.

The second challenge the development team often faced was that product backlog items were sometimes too large to fit within a single sprint/iteration. Smith had heard that the User Story Lite practice could help them with both of these challenges and so the team decided to try out this practice to see if it could help solve their challenges.

15.6

Working with User Story Lite

Working with User Story Lite involved several activities (see Figure 15.6). First, the team needed to find User Stories, prepare each User Story for development, and then accept the implementation of the User Story. (The actual implementation (i.e., writing and testing code) is outside the scope of the User Story Lite practice we are describing in this section; it is expected to be addressed by another practice. Later

Figure 15.6 User Story Lite activity cards.

in Chapter 17, we will show how a microservice practice can be used to accomplish this.)

15.6.1 Find User Stories

Angela and the team were discussing which PBIs they would target for the next iteration. Among them were the following three backlog items:

- improve algorithms to rank destinations according to traveler-specific preference;
- improve algorithms to rank destinations according to general popularity of destinations; and
- collect user data from users and analyze them.

15.6.2 Prepare a User Story

Having agreed to the User Story Lite practice, the team proceeded to prepare each story for development in the next iteration. The preparation involved some detailed discussion.

Tom was quick to highlight that the purpose and scope of the above items were not clear. For example, the team was not clear on the acceptance criteria for improving the algorithms. They were also unclear about the purpose of collecting and analyzing user data, and hence the scope of this backlog item.

Smith explained the idea of the User Story Lite practice to Angela. She was quick to grasp the problem the team was facing, and understood how this practice could help. Together as a team, they expressed the User Stories as shown in Figure 15.7.

As a traveler, I want to have destinations I like to be ranked higher than other destinations so that it is easier for me to find them.

Acceptance criteria:

- 1. A visited destination ranks higher than a non-visited one.
- 2. A "liked" destination ranks higher than a "non-liked" one.

As a traveler, I want to have popular destinations ranked higher than other destinations so that it is easier for me to find them.

Acceptance criteria:

- Each destination visited by a traveler will be given a higher score.
- Each destination liked by a traveler will be given a higher score.

As TravelEssence promotion staff, I want to track the actions on the recommendation list so that I can improve the quality of the recommendation and user experience.

Acceptance criteria:

- Count the clicks, likes, and booking on each recommendation destination by specific traveler and travelers in general.
- 2. Trend chart by day, week, month of top *N* destinations.

Figure 15.7 User Story examples.

Tom, Joel, and Grace were much happier with the User Story format as depicted in Figure 15.7 compared to what they had earlier (see Sections 10.1 and 14.4.2), as this format helped them better understand the purpose of the system they were developing. Furthermore, the added detail helped them estimate each story and ensure each one was small enough to fit into an iteration.

Angela mentioned that expressing the requirements in this User Story format demanded more effort from her, but after some discussion, she agreed that this small upfront investment was worthwhile because it made her think in more detail about what she wanted. For example, in the first and second stories in Figure 15.7, the agreed-on acceptance criteria made clear to the team what Angela would accept for improved algorithms. In the third story, because it specified "count clicks" and created a "trend chart," the team understood better what Angela would accept for the data to be collected and how she expected it to be analyzed. The user stories would also help Angela when explaining to Dave, her boss, the specific requirements that the team would be focusing on in the next sprint. Note that these were not the only three user stories they were delivering. There were others, but for brevity, we limit our discussion to these three.

The development of each story would involve designing user interfaces, writing code (user interface code, back-end processing code, and database code), preparing test data, and testing the code according to the acceptance criteria. So, in general, completing one user story was not something each member could do in a day, especially if it involved new functionality, rather than a simple modification of some existing functionality. (Keep in mind that explaining how the team conducts their implementation—code and testing—is outside the scope of our User Story Lite practice.)

15.6.3 **Applying the Splitting User Stories Pattern**

As part of preparing the stories for development, the team proceeded to split each user story that was too large into smaller stories that were more aligned with the INVEST criteria (see Section 15.1), especially the small and testable criteria (see also Figure 15.8).

In general, having smaller stories with clear test criteria makes each story easier to complete, which rewards team members with a sense of achievement and improves team member progress assessments.

As an example, Figure 15.9 shows how the first user story was split into three smaller ones. The team members took the guidance from the Splitting User Stories pattern for approaches to accomplish the splitting, ensuring that the smaller stories were testable all the time.

Figure 15.8 Splitting User Stories pattern card.

Figure 15.9 Splitting a user story.

15.6.4 Accept a Story

The team worked on the user stories within the current iteration. They made it a point to have their acceptance criteria expressed clearly. This investment paid off, as developers had a clearer idea what had to be done. They found that it was not easy to specify acceptance criteria at the same time as they described the story, because they were not yet sure what was really needed. Nevertheless, they felt that doing their best to split the stories was the right thing to do. Over the course of the

delivery of each user story, they regularly communicated with Angela and with each other regarding its details. The result was reduced disagreements when accepting the story.

Angela continued to work closely with the development team using their agreedto Scrum Lite practice. She also participated in the acceptance of each user story. Whenever issues arose during the sprint, she worked with the team to refine the acceptance criteria.

15.7

The Value of the Kernel to the User Story Lite Practice

By describing the User Story Lite practice in an essentialized form (e.g., activity cards showing relationships to alphas), the team could see which alphas were being progressed and where their Requirements practice still had weaknesses. Specifically, the team recognized that their User Story Lite practice helped them achieve the following Essence kernel alpha states.

- Requirements alpha: Bounded and Coherent state
- Work alpha: Prepared state
- Requirements alpha: Acceptable state

The explicit activities in the User Story Lite practice directly supported the team in achieving key checklists within the Requirements alpha: Bounded and Coherent states. For example, the User Story practice encouraged stakeholders and team members to discuss and to agree on the purpose of the new system, as well as helping everyone involved to achieve a shared understanding of the extent of the proposed system. Furthermore, discussions helped both the team members and stakeholders to work through issues related to potentially conflicting requirements (see checklist items in Figure 15.10).

Achieving the Work alpha: Prepared state was helped because the User Story Lite practice encourage the splitting of each story in order to break the requirements down into tasks that the team could estimate and commit to completing within a single Sprint (see Figure 15.11).

The explicit activities in the User Story Lite practice next directly supported the team in achieving key checklists in the Requirements alpha: Acceptable state. For example, it encouraged the team and Angela to agree together on acceptance criteria, which reminded them of the importance of describing clear test steps that would lead to an acceptable solution (see highlighted checklist item in Figure 15.12).

Figure 15.10 Requirements Alpha: Bounded and Coherent alpha state cards.

Figure 15.11 Work: Prepared alpha state card.

15.7.1 Visualizing the Impact of the User Story Lite Practice

While the User Story Lite practice helped the team progress two Essence kernel alphas, it did not solve all the challenges the development team faced with regard to satisfying Angela and progressing these alphas. After some discussion, the team began to realize that the User Story Lite practice had a number of weaknesses that was holding them back from fully achieving the Requirement alpha: Coherent and Acceptable states. For example, the informal nature of the User Story format left too much room for ambiguity in the requirements, and the team realized they were having trouble seeing the "big picture" and how new requirements would fit into that big picture. This led them to realize that they needed more help than the User

Figure 15.12 Requirements: Acceptable alpha state card.

Story Lite practice was providing when it came to structuring and documenting the stories within the overall system.

Smith said that he had heard that the weaknesses the team had found in their use of the User Story Lite practice could be addressed if the team considered migrating to use cases. As a result, the team agreed to study the Use Case Lite practice, which we will present in the next chapter.

The first thing they did is to compare the two practices and their coverage. We will present their comparison later, once we have introduced Use Case Lite in the next chapter. Here, we will discuss only that provided by the User Story Lite practice (see Figure 15.13).

The three activities in User Story Lite only cover two activity spaces. In particular, there is no activity that covers the Shape the System activity space. This is the activity space that deals with the structure of the solution area, including the structure of requirements and the structure of the software system. That was precisely what Smith's team indicated when they said they have trouble seeing the "big picture." They had a list of user stories, but not how all the stories were related to one another. They could not see the entire shape of the software system. In the next chapter, we will present use cases as a way to deal with this gap.

We want to point out here again to the reader that it is not our intent in this book to create arguments or explain why one practice may be better than another (e.g.,

Figure 15.13 User Story Lite coverage of kernel solution activity spaces.

use cases vs. user stories). Our intent in this book is to help the reader understand the value of expressing practices in an essentialized form. Essentialization can aid teams in discussing their own endeavor situations, leading to appropriate decisions.

By looking at their practices through the lens of Essence, the team was able to see the strengths of their current agreed practices, as well as the weaknesses. For example, when the team was still small and they had just a few requirements, the User Story Lite practice worked well for them. But as their requirements grew further, and new team members were added, they realized they needed another approach to describe the big picture, and see how all the requirements fit into that big picture. By having an open and honest discussion about this, the team was able to agree that it would be an improvement to migrate to use cases. In the next chapter, we will discuss what the team learned as they did this, and how it helped them with their current challenges.

What Should You Now Be Able to Accomplish?

After studying this chapter, you should be able to

- explain the "Who," "What," and "Why" of user stories;
- explain the purpose of Card, Conversation, and Confirmation within a user story;
- explain the INVEST criteria;
- explain why we need the "so that" clause in a user story;

- explain the purpose of the User Story Lite practice and the problems it solves;
- explain how TravelEssence adopted and applied User Story Lite and the benefits they achieved, together with the benefits implied by using the User Story Lite practice in an essentialized form; and
- list and explain the alphas, work products, activities, and patterns of User Story Lite.

References

- Alpha State Card Games. 2018. https://www.ivarjacobson.com/publications/brochure/alpha-state-card-games. 99, 153
- S. Ambler and M. Lines. 2012. Disciplined Agile Delivery: A Practitioner's Guide to Agile Software Delivery in the Enterprise. IBM Press. 297, 339, 346
- K. Beck. 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley Longman. 203, 285, 346
- K. Beck. 2003. Test-Driven Development by Example. Addison Wesley. 346
- K. Bittner and I. Spence. 2003. *Use Case Modeling*. Addison-Wesley Professional, 2003. 222,
- G. Booch, J. Rumbaugh, and I. Jacobson. 2005. *The Unified Modeling Language User Guide*. 2nd edition. Addison-Wesley. 222, 285, 345
- F. Brooks. 1975. The Mythical Man-Month. Addison Wesley. 342
- M. Cohn. 2004. User Stories Applied: For Agile Software Development. Addison-Wesley Professional. 204, 247, 285
- E. Derby and D. Larsen. 2006. *Agile Retrospectives: Making Good Teams Great.* Pragmatic Bookshelf, Dallas, TX, and Raleigh, NC. 196, 198, 284
- E. W. Dijkstra. 1972. "The Humble Programmer." Turing Award Lecture, *CACM* 15 (10): 859–866. DOI: 10.1145/355604.361591. 342
- D. Graziotin and P. Abrahamsson. 2013. A web-based modeling tool for the SEMAT Essence theory of software engineering. *Journal of Open Research Software*, 1,1(e4); DOI: 10.5334/jors.ad. 147, 153
- ISO/IEC/IEEE 2382. 2015. Information technology–Vocabulary. International Organization/International Electrotechnical Commission, Geneva, Switzerland. https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v1:en. 343
- ISO/IEC/IEEE 12207. 2017. https://en.wikipedia.org/wiki/ISO/IEC_12207 345
- ISO/IEC/IEEE 15288. 2002, 2008, 2015. Systems and software engineering—System life cycle processes. International Standardization Organization/International Electrotechnical Commission, 1 Rue de Varembe, CH-1211 Geneve 20, Switzerland. 345

- ISO/IEC/IEEE 24765. 2017. Systems and software engineering–Vocabulary. International Organization/International Electrotechnical Commission, Geneva, Switzerland. https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:24765:ed-2:v1:en. 343
- M. Jackson. 1975. Principles of Program Design. Academic Press. 344
- I. Jacobson. 1987. Object-oriented software development in an industrial environment.

 Conference Proceedings of Object-Oriented Programming, Systems, Languages, and

 Applications (OOPSLA 87). DOI: 10.1145/38807.38824. 221, 285
- I. Jacobson and H. Lawson, editors. 2015. *Software Engineering in the Systems Context*, Systems Series, Volume 7. College Publications, London. 345
- I. Jacobson and E. Seidewitz. 2014. A new software engineering. *Communications of the ACM*, 12(10). DOI: 10.1145/2685690.2693160. 347
- I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. 1992. *Object-Oriented Software Engineering: A Use Case Driven Approach*. ACM Press Addison-Wesley. 345
- I. Jacobson, I. Spence, and K. Bittner. 2011. Use-Case 2.0: The Guide to Succeeding with Use Cases. https://www.ivarjacobson.com/publications/whitepapers/use-case-ebook. 169, 222, 226, 233, 285
- I. Jacobson, P.-W. Ng, P. E. McMahon, I. Spence, and S. Lidman. December 2012. The essence of software engineering: The SEMAT kernel. *Communications of the ACM*, 55(12). http://queue.acm.org/detail.cfm?id=2389616. DOI: 10.1145/2380656.2380670. 30, 95
- I. Jacobson, P.-W. Ng, P. E. McMahon, I. Spence, and S. Lidman. 2013a. *The Essence of Software Engineering: Applying the SEMAT Kernel*. Addison-Wesley. xxvi, 30, 90, 95, 336
- I. Jacobson, I. Spence, and P.-W. Ng. (October) 2013b. Agile and SEMAT: Perfect partners. *Communications of the ACM*, 11(9). http://queue.acm.org/detail.cfm?id=2541674. DOI: 10.1145/2524713.2524723. 30, 96
- I. Jacobson, I. Spence, and B. Kerr. 2016. Use-Case 2.0: The hub of software development. *Communications of the ACM*, 59(5): 61–69. DOI: 10.1145/2890778. 169, 222, 226, 285
- I. Jacobson, I. Spence, and P.-W. Ng. 2017. Is there a single method for the Internet of Things? *Queue*, 15.3: 20. DOI: 10.1145/3106637. 335, 339
- P. Johnson and M. Ekstedt. 2016. The Tarpit—A general theory of software engineering. *Information and Software Technology* 70: 181–203. https://www.researchgate.net/profile/Pontus_Johnson/publication/278743539_The_Tarpit_-_A_General_Theory_of_Software_Engineering/links/55b4490008aed621de0114f5/The-Tarpit-A-General_Theory-of-Software-Engineering.pdf. DOI: 10.1016/j.infsof.2015.06.001. 91, 92, 96
- P. Johnson, M. Ekstedt, and I. Jacobson. September 2012. Where's the theory for software engineering? *IEEE Software*, 29(5). DOI: 10.1109/MS.2012.127. 84, 87, 96
- R. Knaster and D. Leffingwell. 2017. SAFe 4.0 Distilled: Applying the Scaled Agile Framework for Lean Software and Systems Engineering. Addison-Wesley Professional. 297, 339
- P. Kruchten. 2003. The Rational Unified Process: An Introduction. 3rd edition. Addison-Wesley. 345

- C. Larman and B. Vodde. 2008. Scaling Lean & Agile Development: Thinking and Organizational Tools for Large-Scale Scrum. Pearson Education, Inc. 346
- C. Larman and B. Vodde. 2016. Large-Scale Scrum: More with LeSS. Addison-Wesley Professional. 297, 339
- D. Leffingwell. 2007. Scaling Software Agility: Best Practices for Large Enterprises. Addison-Wesley. 346
- P. E. McMahon. January/February 2015. A thinking framework to power software development team performance. Crosstalk, The Journal of Defense Software Engineering. http://www.crosstalkonline.org/.96, 154
- NATO. 1968. "Software Engineering: Report on a conference sponsored by the NATO Science Committee." P. Naur and B. Randell, editors. Garmisch, Germany, October 7–11. 342
- S. Newman. 2015. Building Microservices. O'Reilly Media, Inc. 250, 285
- P.-W. Ng. 2013. Making software engineering education structured, relevant and engaging through gaming and simulation. Journal of Communication and Computer 10: 1365-1373.99, 153
- P.-W. Ng. 2014. Theory based software engineering with the SEMAT kernel: Preliminary investigation and experiences. Proceedings of the 3rd SEMAT Workshop on General Theories of Software Engineering. ACM. DOI: 10.1145/2593752.2593756. 30, 96
- P.-W. Ng. 2015. Integrating software engineering theory and practice using Essence: A case study. Science of Computer Programming, 101: 66-78. DOI: 10.1016/j.scico.2014 .11.009.96, 152, 154
- Object Management Group. Essence—Kernel and Language for Software Engineering Methods (Essence). http://www.omg.org/spec/Essence/1.1. 63
- OMG Essence Specification. 2014. http://www.omg.org/spec/Essence/Current. 95, 346
- D. Ross. 1977. Structured Analysis (SA): A language for communicating ideas. In IEEE Transactions on Software Engineering, SE-3(1): 16-34. DOI: 10.1109/TSE.1977.229900.
- K. Schwaber and J. Sutherland. 2016. "The Scrum Guide. The Definitive Guide to Scrum: The Rules of the Game." Scrum.org.

Index

201 Principles of Software Development, 84–85	Agile Manifesto, 335–336 Agility and Agile methods Agile methods era, 25–26
Accept a User Story activity, 207, 214–215	Essence kernel relationship to, 90–91
Acceptable state in Requirements alpha, 57,	introduction, 346
215-217	practices and methods, 335-336
Acceptance Criteria Captured detail level for Test Case, 209	All Stories Fulfilled state in Use Case alpha, 231
Acceptance Criteria Listed detail level for	Alphas
Story Card, 209	Chasing the State game, 105–108
Achieving the Work alpha, 215	Checkpoint Construction game, 112–113
ACM (Association for Computing	composition of practices, 279–281
Machinery), 342	customer area of concern, 160–163
Actionability in Essence kernel, 89	development, 128–132
Activities	development journey, 146–148
Essence, 55	Essence, 54–55
Essence kernel, 72–75	Essence kernel, 68–72, 89, 151–152
Microservices Lite, 255–257, 267–270	kick-starting development, 122–123
Scrum, 175–176, 178	large and complex development, 311
Scrum Lite, 188–197	Microservices Lite, 257–259
thing to do, 62–63	Objective Go game, 108–111
Use Case Lite, 229, 238–244	overview, 56
User Story Lite, 207, 211–215, 217–218	Progress Poker game, 100-104
Activity spaces	Scrum, 175–177
Essence kernel, 68, 72–73	Scrum Lite, 179–182
essentializing practices, 63-65	states, 55–59
Adapt in Plan-Do-Check-Adapt cycle, 132	sub-alphas, 124
Adaptability in microservices, 252	Use Case Lite, 229–233
Adapts achievement level in Development	User Story Lite, 207–209, 215–216
competency, 61–62	Alternative practices, 278–279
Addressed state in Requirements alpha, 57,	Ambler, Scott, 346
80	Analysis competency, 76

Analyzed state in Use-Case Slice alpha, 233	overview, 97-99
Anomalies in development journey, 148	Progress Poker, 99–105
Application logic, definition, 251	reflection, 113
Applies achievement level in Development	Cards
competency, 61–62	alphas, 57–58
Architecture Selected state in Software	Essence, 38
Systems, 59, 80, 311	user stories, 204
Areas of concern in Essence kernel, 67–68	Census, 341
Assists achievement level in Development	Chasing the State game, 105–108
competency, 61–62	Check in Plan-Do-Check-Adapt cycle,
Association for Computing Machinery	131–132
(ACM), 342	Checking in Essence, 138–139
Attainable attribute in SMART criteria,	Checkpoint Construction game, 111–113
196–197	
	Checkpoint pattern, 78–80
Automated detail level	Checkpoints
Build and Deployment Script, 265	kick-starting development, 122–123
Test Case, 210	kick-starting development with practices
AXE telecommunication switching system,	159–165
344	large and complex development, 310
	Cloud computing for microservices, 252
Babbage, Charles, 341	CMMI (Capability Maturity Model
Background in practices, 34	Integration), 306
Backlog-Driven Development practice, 33	COBOL programming language, 342
Beck, Kent, 86, 346	Code
Booch, Grady, 345	thing to work with, 54, 56
Bounded state in Requirements alpha, 56,	work product cards, 60
80, 215–216	Coder role pattern card, 79
Briefly Described detail level in Use-Case	Coherent state in Requirements alpha, 57,
Narrative work product, 235	215-216
Brooks, Frederick P., 84, 342	Collaboration
Build and Deployment Script, 264–265	importance, 11–12
Building blocks, 10	Scrum, 165–166, 174
Bulleted Outline detail level in Use-Case	Collaborations and Interfaces Defined
Narrative work product, 235	detail level in Design Model work
Bureau of the Census, 341	product, 261
	Common ground in Essence, 34–37
Capabilities in practices, 33–34	Competencies
Capability Maturity Model Integration	Essence, 55
(CMMI), 306	Essence kernel, 68, 75–77
Capacity Described work product, 183	programming, 61-62
Card games	testing in, 10
Chasing the State, 105–108	Compilers, 341–342
Checkpoint Construction, 111–113	Complete state in Microservices alpha,
Objective Go, 108–111	258-259

Completed PBIs Listed work product, 184	introduction, 346
Complex development. See Large and	monolithic methods, 297
complex development	practices from, 296
Component methods, 22-25	Daily Scrum activity
Component paradigm, 344–345	description, 173, 178
Composition of practices	diagram, 175–176
description, 276–282	overview, 192-193
Essence, 282–284	Daily Standup practice in Scrum, 26, 33, 173
overview, 275-276	Data in structured methods era, 21–22
reflection, 282-283	Data processing focus, 341
Conceived state in Requirements alpha, 56,	Data stores, definition, 251
311	Davis, Alan, 84–85
Confirmation in user stories, 205	Definition of Done (DoD) in Scrum, 176–177
Consensus-based games	Demonstrable alpha state, 59, 100
Chasing the State, 105–108	Deployment in activity space, 74
Checkpoint Construction, 111–113	Descriptive theory of software engineering,
Objective Go, 108–111	87-88
Progress Poker, 99–105	Design Model work product, 254, 257,
reflection, 113	260-263
Containers definition, 251	Design overview, 14
Context in kick-starting development,	Design Patterns Identified detail level in
118-121	Design Model work product, 262
Continual improvement in large and	Design phase
complex development, 321–323	iterative method, 21
Continuous detail level in Build and	waterfall method, 19-20
Deployment Script, 265	Detail levels
Conversation Captured detail level in Story	Build and Deployment Script, 265
Card, 209	Microservice Design work product, 264
Conversations in user stories, 205	Story Card, 209
Coordination in activity space, 74	Test Case, 210
Culture issues, 330–331	Use Case Lite work products, 233–236
Customer area of concern	Use-Case Narrative work product, 235
alphas, 160–163	Use-Case Slice Test Case work product,
competencies, 76	237
development perspective, 119–120	work products, 60–61
development process, 139	Developers
Essence kernel, 68–70	Scrum, 173
Customer-related practices, 19	Tarpit theory, 92
Customers	Development
description, 42-43	doing and checking, 138-139
value for, 43–44	kick-starting. See Kick-starting develop-
	ment; Kick-starting development
DAD (Disciplined Agile Delivery)	with practices
agile scaling, 27	overview, 127–132

Development (continued)	Scrum, 199
Plan-Do-Check-Adapt cycle, 128–132	Endeavors
plans, 132–138	description, 42-43
way of working, 140–142	teams, 48–49
Development competency, 61–62, 77	ways of working in, 49–50
Development Complete checkpoint, 80	work in, 49
Development endeavor, 79–80	Engaging user experiences, 37–38
Development journey	Enterprise architecture (EA), 24
anomalies, 148	Ericsson AB, 344
overview, 145	Essence
progress and health, 146–148	common ground, 34–37
visualizing, 145–146	composition of practices, 282–284
Development types	development. See Development
culture issues, 330–331	development journey. See Development
overview, 325	journey
practice and method architectures,	engaging user experiences, 37–38
326–328	essentializing practices, 63–65
	essentializing practices, 63–63 essentials focus, 37
practice libraries, 328–330	evolution, 346
DevOps practice, 302	
Dijkstra, E. W., 86, 342–343	insights, 32
Disciplined Agile Delivery (DAD)	kick-starting development. See Kick-
agile scaling, 27	starting development
introduction, 346	language, 54–61
monolithic methods, 297	large and complex development, 310-
practices from, 296	311, 322–324
Disciplined approach in software	methods and practices, 32–34
engineering, 14–15	microservices, 252–256
Do in Plan-Do-Check-Adapt cycle, 131	OMG standard, 29–30
Document elements in Essence, 54	overview, 31
DoD (Definition of Done) in Scrum, 176–177	practices, 298–299
Doing alpha in PBIs, 181	purpose, 42
Doing in development, 138–139	Scrum with, 174–179
Done alpha in PBIs, 181	serious games. See Serious games
Done term, definition, 99–100	theory of software engineering, 87–91
	Use Case Lite practice, 227–230
EA (enterprise architecture), 24	User Story Lite practice, 207–208
Endeavor area of concern	work products, 60
competencies, 77	Essence kernel
development perspective, 120-121	actionability, 89
development process, 136-139	activities, 72–75
Essence kernel, 68, 70–71	alphas, 68–72
kick-starting development with practices,	applying, 151–152
163-165	competencies, 75–77
practices, 19	extensibility, 90

growth from, 93–94	Foundation Established state in Way of
observations, 151	working, 311
organizing with, 67–69	Fragmented practices, 296–298
overview, 67	Fulfilled alpha state, 57
patterns, 77–80	Fully Described detail level in Use-Case
practicality, 88-89	Narrative work product, 235
relationship to other approaches, 90-91	Function-data paradigm, 344
User Story Lite practice, 215–218	Functionality in software systems, 46
validity, 151	Functions in structured methods era, 21–22
Essential Outline detail level in Use-Case	Future, dealing with
Narrative work product, 235	agility, 335–336
Essentialized practices, 35–36	methods evolution, 338-339
Essentializing practices	methods use, 337-338
composition of practices, 283–284	overview, 333-335
description, 35–36	teams and methods, 337
Essence, 298–299	
for libraries, 329	Games
monolithic methods and fragmented	Chasing the State, 105–108
practices, 296–298	Checkpoint Construction, 111–113
overview, 63–65	Objective Go, 108-111
reusable, 299–302	overview, 97–99
sources, 295–296	Progress Poker, 99–105
Estimatable criteria in user stories, 205-	reflection, 113
206	General predictive theory of software
Evolve Microservice activity, 255, 257,	engineering, 91–92
269-270	"Go to statement considered harmful"
Exchangeable packages, 345	article, 86
Explicit approaches in Scrum, 173–174	Goal Established state in Use Case alpha,
Extensibility	230
Essence kernel, 90	Goals Specified work product, 183
software systems, 47	Gregor, Shirley, 84–85
Extension practices, 279	<i>y</i> ,
Extreme Programming Explained, 86	Hacking vs. programming, 6
Extreme Programming (XP)	Handle favorites use-case slice, 242–243
introduction, 346	Happy day scenarios, 224
practices from, 296	Health and progress
user stories, 203	development journey, 146–148
	Essence, 54
Feedback in Use Case Lite practice, 239	Microservices Lite, 271–272
Find Actors and Use Cases activity, 229,	use-case slices, 245–246
238-239	Hemdal, Göran, 344
Find User Stories activity, 207, 212	Higher-level languages, 342
Formed state in Teams, 311	History of software and software
Fortran programming language, 342	engineering, 341–347
1 0 0 0 0	<i>5 5</i> ,

Hollerith punched card equipment, 341	development journey, 147
Hopper, Grace Murray, 341–342	large and complex development, 319–321
	lifecycle methods, 20-21
Identification of microservices, 251-252	
Identified state	Jackson, Michael, 344
Microservices Lite, 258	Jackson Structured Programming (JSP), 344
user stories, 209	Jacobson, Ivar
Identify Microservices activity, 255, 257,	component paradigm, 344
267-268	method prison governing, 27
IEEE (Institute of Electrical and Electronic	OMG, 345
Engineering), 342	RUP, 345
Implementation phase	SEMAT, 28, 346
activity space, 74	Use-Case Driven Development practice,
iterative method, 21	221
waterfall method, 19–20	JSP (Jackson Structured Programming), 344
Implemented state in Use-Case Slice alpha,	
233	Kernel. See Essence kernel
In Progress state in user stories, 209	Key elements of software engineering
Increment elements	basics, 41–43
description, 177	endeavors, 48–50
work products, 183–184	overview, 41
Increment Notes Described work product,	value for customers, 43–45
184	value through solutions, 45–48
Incremental development in use cases	Kick-starting development
slices, 226–227	context, 118–121
Independent criteria in user stories, 205	overview, 117–118
Innovates achievement level in Develop-	scope and checkpoints, 122–123
ment competency, 61–62	things to watch, 124–126
Institute of Electrical and Electronic	Kick-starting development with practices
Engineering (IEEE), 342	context, 158–159
Interfaces Specified detail level in	overview, 157–158
Microservice Design work product,	practices to apply, 165–167
264	scope and checkpoints, 159–165
Internal Elements Designed detail level in	things to watch, 167–169
Microservice Design work product,	Kruchten, Philippe
264	method prison governing, 27
Internal Structure Defined detail level in	RUP, 345
Microservice Design work product,	
264	Language of software engineering
INVEST criteria for user stories, 205–206	competencies, 61–62
ISO/IEC 12207 standard, 345	essentializing practices, 63–65
Items Ordered work product, 182	overview, 53
Iterative operations	practice example, 53-54
development, 127	things to do, 62–63

things to work with, 54–61	Lovelace, Ada, 341
Large and complex development	
alphas, 311	Machine instruction level, 341
common vision, 315-317	Make Evolvable activity, 255, 257, 268-269
continual improvement, 321-323	Management competency, 77
Essence, 310-311, 322-324	Martin, Robert, 90
iterative operations, 319–321	Masters achievement level in Development
kick-starting, 309–315	competency, 61–62
large-scale development, 308-309	Mayer, Bertrand, 28
large-scale methods, 306–308	Measurable attribute in SMART criteria,
managing, 317–319	196-197
overview, 305-306	Method prison, 27
practices, 310-313	Methods
running, 315–322	agile methods era, 25
scope and checkpoints, 310	component methods era, 22–25
things to watch, 313–315	consequences, 26–28
Large-scale integrated circuits, 343	definition, 19
Large-Scale Scrum (LeSS)	Essence, 32–34
agile scaling, 27	evolution, 338-339
introduction, 346	large-scale, 306-308
monolithic methods, 297	lifecycles, 19–21
practices from, 296	people practices, 25–26
Larman, Craig, 346	rise of, 18–19
Lawson, Harold "Bud," 345	structured methods era, 21–22
Leadership competency, 77	team ownership, 337
Leffingwell, Dean, 346	technical practices, 21–25
LeSS (Large-Scale Scrum)	use focus, 337–338
agile scaling, 27	Methods war, 22, 26–27
introduction, 346	Meyer, Bertrand, 346
monolithic methods, 297	Microprocessors, 343
practices from, 296	Microservice alpha, 254, 257
Levels of detail	Microservice Build and Deployment work
Build and Deployment Script, 265	product, 254, 257
Microservice Design work product, 264	Microservice Design work product, 254,
Story Card, 209	257, 263–264
Test Case, 210	Microservice Test Case work product, 255,
Use Case Lite work products, 233–236	257, 265–267
Use-Case Narrative work product, 235	Microservices, 166–169
Use-Case Slice Test Case work product,	description, 250-252
237	Essence, 252–256
work products, 60-61	overview, 249–250
Libraries for practices, 328–330	Microservices Lite practice
Lifecycles, 19–21	activities, 255–256, 267–270
Lines, Mark, 346	alphas, 257–259
, ,	÷ ′

Microservices Lite practice (continuea)	scope and checkpoints, 161-162
Build and Deployment Script, 264–265	value for customers, 43-44
description, 256-257	Outlined detail level in Build and
design model, 260–263	Deployment Script, 265
impact, 270–271	
Microservice Design work product,	Pair programming teams, 26
263-264	Paradigm shifts, 22–23
Microservice Test Case work product,	Paradigmatic theories, 85
265-267	Paths in use cases slices, 228
overview, 253-256	Patterns
progress and health, 271–272	Essence kernel, 68, 77-80
reusable practices, 299–300	essentializing practices, 63–65
work products, 259–267	Scrum, 178–179, 184–186
Mini-computers, 343	PBIs. See Product Backlog Items (PBIs)
Mini-methods, 19	People practices, 25–26
Minimal state in Microservices Lite, 258	Performance in software systems, 47
Modular approaches in Scrum, 173–174	Perlis, Alan, 92
Monolithic methods, 296–298	PLA (product-line architecture), 24
Mythical Man-Month, 84	Plan-Do-Check-Adapt cycle, 128–132
•	Planned alpha in sprints, 179
NATO-sponsored conference, 342	Plans
Negotiable criteria in user stories, 205	development, 132-138
NZ Transport Agency, 18	Plan-Do-Check-Adapt cycle, 128–131
	Scrum Lite, 188–192
Object Management Group (OMG) standard	POs (product owners)
Essence, 29-30, 346	description, 178
Essence kernel, 71	pattern cards, 184–185
notation, 23–24	Scrum, 172–173, 175
UML standard, 345	Possibilities in activity space, 73
Object-oriented programming	Post-development phase in development
acceptance, 344-345	endeavor, 79–80
components in, 23	Practicality in Essence kernel, 88–89
Objective Go game, 108–111	Practice separation in Essence kernel, 90
On the Criteria to Be Used in Decomposing	Practices
Systems into Modules, 86	agile methods era, 25
Operational alpha state, 59	background, 34
Opportunity	capabilities, 33–34
alpha state card, 72	common ground, 34-37
customer area of concern, 69, 71	component methods era, 22-25
development context, 158	composition of. See Composition of
development endeavors, 42-43	practices
development perspective, 119-120	consequences, 26–28
development plans, 133-134	definition, 174
large and complex development, 311-312	Essence, 32–34, 298–299

fragmented practices, 296–298 kick-starting development with. See Kick-starting development with practices large and complex development, 310–313 libraries, 328–330 lifecycles, 19–21 people, 25–26 reusable, 299–302 rise of, 18–19 Scrum, 173–174, 177, 198–199 sources, 295–296 structured methods era, 21–22 technical, 21–25	Product Ownership practice, 301 Product Retrospective practice, 302 Product Sprint practice, 302 Program backlog management, 318 Program practices, 302–303 Programming, defined, 4 Programming and software engineering differences, 6–8 intern view, 8–10 overview, 3–4 professional view, 10–12 programming, 4–6 software engineering, 12–15 Progress and health
types, 19	activity space, 74–75
Pre-development phase in development	development journey, 146–148
endeavor, 79–80	Essence, 54
Precision in Scrum, 200–202	Microservices Lite practice, 271-272
Preparation in activity space, 74	use-case slices, 245–246
Prepare a Use-Case Slice activity, 229,	Progress Poker game
242-243	benefits, 102
Prepare a user story activity, 207, 212–213	example, 103-105
Prepared state	overview, 99-102
Use-Case Slice alpha, 232–233	Progressing
Work alpha, 215	use-case slices, 232–233
Priorities in Scrum, 172	use cases, 230–232
Problems in kick-starting development, 118	Provided interface, UML notation for,
Product Backlog Items (PBIs)	261
alphas, 181	
description, 172, 177	Quality in software systems, 47–48
example, 176	Quantifiable approach in software
identifying, 173	engineering, 14–15
Scrum, 168	88,
Product Backlog practice, 302	Rapidly Deployable state in Microservices
Product Backlog work product	Lite practice, 258
activity cards, 190–192	Rational Unified Process (RUP)
description, 177	development of, 24, 345
Scrum Lite, 182–184	large-scale development, 306
Product-line architecture (PLA), 24	monolithic methods, 297
Product Management practice, 302	Reaching out in scaling, 293
Product owners (POs)	Ready for Development checkpoint, 80
description, 178	Ready for Development state in User Story,
pattern cards, 184–185	209
Scrum, 172–173, 175	Ready requirement, 80
Serum, 1/2 1/3, 1/3	icacy requirement, ou

Ready state	monolithic methods, 297
PBIs, 181	
Software Systems, 59	SA/SD (Structured Analysis/Structured
Recognized state for Stakeholders, 311	Design), 21
Relevant attribute in SMART criteria,	SaaS (Software as a Service), 8
196-197	SADT (Structured Analysis and Design
Reliability in software systems, 47	Technique)
Required Behavior Defined detail level in	description, 21–22
Microservice Design work product,	development of, 344
264	Scaled Agile Framework (SAFe)
Required interface, UML notation for, 261	agile scaling, 27
Requirements	introduction, 346
activity space, 74	monolithic methods, 297
alpha state card, 72	practices from, 296
alphas, 56–58	Scaled Professional Scrum (SPS)
development context, 158	agile scaling, 27
development perspective, 120	introduction, 346
development plans, 134–135	practices from, 296
large and complex development, 311–312	Scaling
Ready for Development checkpoint, 80	challenges, 289–291
scope and checkpoints, 161–162	dimensions of, 291–294
solution area of concern, 70	large and complex development. See
in solutions, 42–43, 45–46	Large and complex development
thing to work with, 54–56	overview, 289
User Story Lite practice, 225, 227, 230	reaching out, 293
Requirements alpha	scaling up, 292–293
Progress Poker game, 100–101	zooming in, 291–292
User Story Lite practice, 215–217	Scenario Chosen detail level in Use-Case
	Slice Test Case work product, 237
Requirements engineering, 13–14	•
Requirements phase	Scenarios in use cases slices, 228
iterative method, 21	Scheduled alpha in sprints, 179
waterfall method, 19–20	Schwaber, Ken, 346
Retired alpha state, 59	Scope
Retrospective practice in Scrum, 33	kick-starting development, 122–123
Reusable practices, 19, 299–302	kick-starting development with practices,
Reviewed alpha in sprints, 179–180	159–165
Roles in Scrum Lite, 184–186	large and complex development, 310
Roles pattern, 77–78	Scoped state in Use-Case Slice alpha, 232
Ross, Douglas, 344	Scripted detail level in Test Case, 210
Royce, Walker, 345	Scripted or Automated detail level in Use-
Rumbaugh, James, 345	Case Slice Test Case work product,
RUP (Rational Unified Process)	237
development of, 24, 345	Scrum
large-scale development, 306	collaboration, 165–166, 174

components, 33	Simplest Story Fulfilled state in Use Case		
composite practices, 306–307	alpha, 231		
description, 168	Simula 67 language, 23		
with Essence, 174–179	Slice the Use Cases activity		
fragmented practices, 297	description, 229		
introduction, 346	working with, 241–242		
overview, 171–173	Slicing use cases, 226–227		
practices, 173–174, 198–199, 296	Small attribute		
precision, 200–202	SMART criteria, 196–197		
reflections, 198–202	user stories, 206		
Scrum Lite	Smalltalk language, 23		
activities, 188–197	SMART criteria, 196–197		
alphas, 179–182			
overview, 174–177	"So that" clauses in user stories, 206 SOA (service-oriented architecture), 24		
planning, 188–192	Social issues, 330–331		
roles, 184–186	Software as a Service (SaaS), 8		
	Software crisis, 18, 343		
usage, 187–188	Software development, defined, 4		
work products, 182–184	•		
Scrum Masters	Software Engineering Method And Theory		
description, 173, 178–179	(SEMAT)		
large and complex development, 321-	description, 28–29		
322	founding, 346		
pattern cards, 184–186	Software engineering overview		
patterns, 175	challenges, 17–18		
Scrum of Scrums meetings, 320	defined, 4–5, 14–15		
Scrum Teams	history, 341–347		
description, 179	key elements. See Key elements of		
Essence, 175	software engineering		
pattern cards, 185–186	language. See Language of software		
SDL (Specification and Description	engineering		
Language), 344	methods and practices, 18-28		
Self-organizing teams, 26	OMG standard, 29–30		
SEMAT (Software Engineering Method And	and programming. See Programming and		
Theory)	software engineering		
description, 28–29	SEMAT initiative, 28–29		
founding, 346	Tarpit theory, 92		
Serious games	theory, 84–87		
Chasing the State, 105–108	Software Life Cycle Processes, 345		
Checkpoint Construction, 111–113	Software Systems		
Objective Go, 108–111	alpha cards, 58, 72		
overview, 97–99	Demonstrable alpha state card, 100		
Progress Poker, 99–105	development context, 158		
reflection, 113	development perspective, 120		
Service-oriented architecture (SOA), 24	development plans, 135–136		

Software Systems (continued)	Stakeholder Representation competency,
large and complex development, 311–312	76
Objective Go game, 109–111	Stakeholders
scope and checkpoints, 161, 162	activity space, 74
solutions, 42–43, 45–48, 70	alpha state card, 72
thing to work with, 54-56	customer area of concern, 69, 71
Soley, Richard, 28, 346	as customers, 42–43
Solution area of concern	development context, 158
competencies, 76–77	development perspective, 119
development perspective, 120	development plans, 133
development process, 139	large and complex development, 311–312
Essence kernel, 68–70	Objective Go game, 108–111
kick-starting development with practices,	scope and checkpoints, 159–160
161	value for, 44–45
Solution-related practices, 19	Started state in Work alpha, 311
Solutions	States in alphas, 55–59
description, 42–43	Stored program computers, 341
value through, 45–48	Story Card work product, 207, 209–210
Specification and Description Language	Story practice, 166
(SDL), 344	Story Structure Understood state in Use
Splitting User Stories activity, 207, 213–214	Case alpha, 231
Sprint Backlog	Structure and Approach Described detail
activity cards, 190–191	level in Design Model work product,
description, 177	260
PBIs, 172	Structured Analysis and Design Technique
work products, 183	(SADT)
Sprint Planning activity	description, 21–22
~F	
activity cards, 188–192	
activity cards, 188–192 description, 178	development of, 344
description, 178	development of, 344 Structured Analysis/Structured Design
description, 178 Sprint Retrospective activity	development of, 344 Structured Analysis/Structured Design (SA/SD), 21
description, 178 Sprint Retrospective activity activity cards, 195–196	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity activity cards, 193–195	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22 Student Pairs pattern card, 78
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity activity cards, 193–195 description, 172, 178	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22 Student Pairs pattern card, 78 Sub-alphas, 124
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity activity cards, 193–195 description, 172, 178 Sprints	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22 Student Pairs pattern card, 78 Sub-alphas, 124 Subsystems in UML notation, 261
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity activity cards, 193–195 description, 172, 178 Sprints alphas, 179–181	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22 Student Pairs pattern card, 78 Sub-alphas, 124 Subsystems in UML notation, 261 Sufficient Stories Fulfilled state in Use Case
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity activity cards, 193–195 description, 172, 178 Sprints alphas, 179–181 description, 177	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22 Student Pairs pattern card, 78 Sub-alphas, 124 Subsystems in UML notation, 261 Sufficient Stories Fulfilled state in Use Case alpha, 231
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity activity cards, 193–195 description, 172, 178 Sprints alphas, 179–181 description, 177 Scrum, 172–173	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22 Student Pairs pattern card, 78 Sub-alphas, 124 Subsystems in UML notation, 261 Sufficient Stories Fulfilled state in Use Case alpha, 231 Support in activity space, 74–75
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity activity cards, 193–195 description, 172, 178 Sprints alphas, 179–181 description, 177 Scrum, 172–173 SPS (Scaled Professional Scrum)	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22 Student Pairs pattern card, 78 Sub-alphas, 124 Subsystems in UML notation, 261 Sufficient Stories Fulfilled state in Use Case alpha, 231 Support in activity space, 74–75 Sutherland, Jeff, 346
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity activity cards, 193–195 description, 172, 178 Sprints alphas, 179–181 description, 177 Scrum, 172–173 SPS (Scaled Professional Scrum) agile scaling, 27	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22 Student Pairs pattern card, 78 Sub-alphas, 124 Subsystems in UML notation, 261 Sufficient Stories Fulfilled state in Use Case alpha, 231 Support in activity space, 74–75 Sutherland, Jeff, 346 SWEBOK, 84–85
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity activity cards, 193–195 description, 172, 178 Sprints alphas, 179–181 description, 177 Scrum, 172–173 SPS (Scaled Professional Scrum) agile scaling, 27 introduction, 346	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22 Student Pairs pattern card, 78 Sub-alphas, 124 Subsystems in UML notation, 261 Sufficient Stories Fulfilled state in Use Case alpha, 231 Support in activity space, 74–75 Sutherland, Jeff, 346 SWEBOK, 84–85 System Boundary Established detail level in
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity activity cards, 193–195 description, 172, 178 Sprints alphas, 179–181 description, 177 Scrum, 172–173 SPS (Scaled Professional Scrum) agile scaling, 27 introduction, 346 practices from, 296	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22 Student Pairs pattern card, 78 Sub-alphas, 124 Subsystems in UML notation, 261 Sufficient Stories Fulfilled state in Use Case alpha, 231 Support in activity space, 74–75 Sutherland, Jeff, 346 SWEBOK, 84–85 System Boundary Established detail level in Use-Case Model work product, 234
description, 178 Sprint Retrospective activity activity cards, 195–196 Scrum, 178 Sprint Review activity activity cards, 193–195 description, 172, 178 Sprints alphas, 179–181 description, 177 Scrum, 172–173 SPS (Scaled Professional Scrum) agile scaling, 27 introduction, 346	development of, 344 Structured Analysis/Structured Design (SA/SD), 21 Structured detail level in Use-Case Model work product, 235 Structured methods era, 21–22 Student Pairs pattern card, 78 Sub-alphas, 124 Subsystems in UML notation, 261 Sufficient Stories Fulfilled state in Use Case alpha, 231 Support in activity space, 74–75 Sutherland, Jeff, 346 SWEBOK, 84–85 System Boundary Established detail level in

Tarpit theory, 91–92	waterfall method phase, 19-20
TD (test-driven development) in Essence, 36	Testing competency, 10, 77
TDD (Test-Driven Development) in Extreme	Theory
Programming, 346	arguments, 85–87
Team Backlog practice, 301	Essence, 87–91
Team Retrospective practice	general predictive theory, 91–92
description, 301	growth from, 93–94
large and complex development, 321–322	overview, 83–84
Team Sprint practice, 301	software engineering, 84–87
Teams	uses, 87
activity space, 74–75	Things to do
agile, 26	activities, 62–63
alpha state card, 72	backlogs, 49
development perspective, 120	composition, 279
development plans, 136–137	Essence kernel, 72–75
endeavor area of concern, 42–43, 48–49,	Things to watch
70–71	kick-starting development, 124–126
	kick-starting development with practices,
Essence, 36 large and complex development, 311–312	167–169
methods ownership, 337	large and complex development, 313–315
need for, 12–13	Things to work with
scope and checkpoints, 163–164	alpha states, 56–59
Technical practices, 21–25	alphas, 56
Technology stacks, 10	Essence kernel, 69–72, 89
Test a Use-Case Slice activity	overview, 54–56
description, 229	Use Case Lite practice, 230–234
working with, 243–244	work products, 59–61
Test Automated detail level in Microservice	To Do alpha in PBIs, 181
Test Case work product, 267	Turing tar-pit, 92
Test Case work product, 207 Test Case work product, 207, 209–210	Turing tar pit, 32
Test Dependencies Managed detail level	UCDD (Use-Case Driven Development)
in Microservice Test Case work	practice, 221–222
product, 266	Unified Modeling Language (UML) standard
Test-driven development (TD) in Essence,	development of, 24
36	introduction, 345
Test-Driven Development (TDD) in Extreme	Microservices Lite practice, 260–261
Programming, 346	primer, 260
Test Scenarios Chosen detail level in	use cases, 222–223
Microservice Test Case work	Unified Process prison, 27
product, 266	Unified Process (UP), 24, 345
Testable attribute	Univac I computer, 341
SMART criteria, 196–197	University of Wisconsin, 18
user stories, 206	UP (Unified Process), 24, 345
Testing	Usable alpha state, 59
activity space, 74	Use Case alpha, 229–231
activity space, 14	ose Gase aipiia, 225-251

Use-Case diagrams, 24	User Story Lite practice		
Use-Case Driven Development (UCDD)	activities, 211–215		
practice, 221–222	alphas, 207–209		
Use Case Lite practice	Essence, 207–208		
activities, 238–244	Essence kernel, 215–218		
alphas, 229–233	impact, 216–218		
Essence, 227–230	overview, 203		
impact, 244–245	usage, 211		
kick-starting, 237–240	user story description, 204–207		
overview, 221–222	work products, 209–210		
reusable practices, 299–300			
use-case slices progress and health,	Validity in Essence kernel, 151		
245-246	Valuable criteria in user stories, 205		
use cases description, 222–226	Value		
use cases slicing, 226–227	for customers, 43-45		
user stories vs. use cases, 246–248	through solutions, 45-48		
work products, 233-236	Value Established detail level in Use-Case		
working with, 240-244	Model work product, 234		
Use-Case Model work product, 227, 229,	Value Established state in Opportunity,		
234-235	311		
Use-Case Narrative work product, 227, 229,	Value Expressed detail level in Story Card,		
235-236	209		
Use-case narratives, 224–225	Variables Identified detail level in Use-Case		
Use case practices, 166, 168–169	Slice Test Case work product, 237		
Use-Case Slice alpha, 229, 232–233	Variables Set detail level in Use-Case Slice		
Use-Case Slice Test Case work product, 227,	Test Case work product, 237		
229, 236–237	Verification phase		
Use-case slices	iterative method, 21		
process, 226–227	waterfall method, 19-20		
progress and health, 245–246	Verified state		
Use Cases	Use-Case Slice alpha, 233		
introduction, 345	user stories, 209		
practices from, 296	Vodde, Bas, 346		
User experiences in Essence, 37–38	von Neumann, John, 341		
User interface, definition, 251	, , , , -		
User stories	Waterfall method		
description, 204–207	description, 19–20		
Scrum teams, 166	development of, 344		
User Stories practice	Way of working		
description, 168–169	adapting, 140–141		
	alpha state card, 72		
vs_use_cases_2.46=2.48	aipiia state cara, 12		
vs. use cases, 246–248	development context 158		
vs. use cases, 246–248 User Story alpha in User Story Lite practice, 207–208	development context, 158 development perspective, 120–121		

Work products endeavor area of concern, 42-43, 49-50, Essence, 54-55 Essence kernel, 141–142 Microservices Lite practice, 259-267 large and complex development, 311-312 overview, 59-61 scope and checkpoints, 163, 165 Scrum, 175, 177 "Where's the Theory for Software Scrum Lite, 182-184 Engineering?" paper, 84 Use Case Lite practice, 229, 233-236 Work activity User Story Lite practice, 207, 209alpha state card, 72 210 development context, 158 Write Code activity cards, 62–63 development perspective, 120 development plans, 136-137 XP (Extreme Programming) endeavor area of concern, 42-43, 49, 71 introduction, 346 large and complex development, 311-312 practices from, 296 scope and checkpoints, 163-164 user stories, 203 Work alpha, 215-216 Work Forecast Described work product, 183 Zooming in in scaling, 291-292

Author Biographies

Ivar Jacobson

Dr. Ivar Jacobson received his Ph.D. in computer science from KTH Royal Institute of Technology, was awarded the Gustaf Dalén medal from Chalmers in 2003, and was made an honorary doctor at San Martin de Porres University, Peru, in 2009. Ivar has both an academic and an industry career. He has authored ten books, published more than a hundred papers, and is a frequent keynote speaker at conferences around the world.

Ivar Jacobson is a key founder of components

and component architecture, work that was adopted by Ericsson and resulted in the greatest commercial success story ever in the history of Sweden (and it still is). He is the creator of use cases and Objectory—which, after the acquisition of Rational Software around 2000, resulted in the Rational Unified Process, a popular method. He is also one of the three original developers of the Unified Modeling Language. But all this is history. His most recently founded company, Ivar Jacobson International, has been focused since 2004 on using methods and tools in a smart, superlight, and agile way. Ivar is also a founder and leader of a worldwide network, SEMAT, whose mission is to revolutionize software development based on a kernel of software engineering. This kernel has been realized as a formal standard called Essence, which is the key idea described in this book.

Harold "Bud" Lawson

Professor Emeritus Dr. Harold "Bud" Lawson (The Institute of Technology at Linköping University) has been active in the computing and systems arena since 1958 and has broad international experience in private and public organizations as well as academic environments. Bud contributed to several pioneering efforts in hardware and software technologies. He has held professorial appointments at several universities in the USA, Europe, and the Far East. A Fellow of the ACM, IEEE, and INCOSE, he was also head of the Swedish del-

egation to ISO/IEC JTC1 SC7 WG7 from 1996 to 2004 and the elected architect of the ISO/IEC 15288 standard. In 2000, he received the prestigious IEEE Computer Pioneer Charles Babbage medal award for his 1964 invention of the pointer variable concept for programming languages. He has also been a leader in systems engineering. In 2016, he was recognized as a Systems Engineering Pioneer by INCOSE. He has published several books and was the coordinating editor of the "Systems Series" published by College Publications, UK.

Tragically, Harold Lawson passed away after battling an illness for almost a year, just weeks before the publication of this book.

Pan-Wei Ng

Dr. Pan-Wei Ng has been helping software teams and organizations such as Samsung, Sony, and Huawei since 2000, coaching them in the areas of software development, architecture, agile, lean, DevOps, innovation, digital, Beyond Budgetings, and Agile People. Pan-Wei firmly believes that there is no one-size-fits-all, and helps organizations find a way of working that suits them best. This is why he is so excited about Essence and has been working with it through SEMAT since their inception in 2006, back when Essence was a mere

idea. He has contributed several key concepts to the development of Essence.

Pan-Wei coauthored two books with Dr. Ivar Jacobson and frequently shares his views in conferences. He currently works for DBS Singapore, and is also an adjunct lecturer in the National University of Singapore.

Paul E. McMahon

Paul E. McMahon has been active in the software engineering field since 1973 after receiving his master's degree in mathematics from the State University of New York at Binghamton (now Binghamton University). Paul began his career as a software developer, spending the first twentyfive years working in the US Department of Defense modeling and simulation domain. Since 1997, as an independent consultant/coach (http://pemsystems.com), Paul helps organiza-

tions and teams using a hands-on practical approach focusing on agility and performance.

Paul has taught software engineering at Binghamton University, conducted workshops on software engineering and management, and has published more than 50 articles and 5 books. Paul is a frequent speaker at industry conferences. He is also a Senior Consulting Partner at Software Quality Center. Paul has been a leader in the SEMAT initiative since its initial meeting in Zurich.

Michael Goedicke

Prof. Dr. Michael Goedicke is head of the working group Specification of Software Systems at the University of Duisburg-Essen. He is vice president of the GI (German National Association for Computer Science), chair of the Technical Assembly of the IFIP (International Federation for Information Processing), and longtime member and steering committee chair of the IEEE/ACM conference series Automated Software Engineering. His research interests include, among others, software engineering methods, technical specification and realization of software systems, and software ar-

chitecture and modeling. He is also known for his work in views and viewpoints in software engineering and has quite a track record in software architecture. He has been involved in SEMAT activities nearly from the start, and assisted in the standardization process of Essence—especially the language track.