Galois Theory hw2

xianzhi wang

August 2022

$\mathbf{Q}\mathbf{1}$

Question 1. Show $\pi - \sqrt{\pi}$ is not algebraic over \mathbb{Q} .

First we show $\sqrt{\pi}$ is not algebraic over \mathbb{Q} . Assume for contradiction that $\sqrt{\pi}$ is algebraic over \mathbb{Q} , so $\exists a_n, \cdot, a_0 \in \mathbb{Q}$ not all zero such that

$$a_n(\sqrt{\pi})^n + \dots + a_1\sqrt{\pi} + a_0 = 0$$
 denote by $p(\sqrt{\pi}) = 0$

Consider

$$0 = p(\sqrt{\pi})p(-\sqrt{\pi}) = q(\pi)$$
 for some polynomial q

some algebra omitted. Thus, $q(\pi) = 0$, so π is algebraic over \mathbb{Q} , contradiction.

Now assume for contradiction $\pi - \sqrt{\pi}$ is algebraic over \mathbb{Q} , so $\exists b_n \cdots, b_0 \in \mathbb{Q}$ not all zero s.t.

$$b_n(\pi - \sqrt{\pi})^n + \dots + b_1(\pi - \sqrt{\pi}) + b_0 = 0$$

multiply out this expression, we obtain a not all zero polynomial of $\sqrt{\pi}$ such that it equals 0. A contradiction.

$\mathbf{Q2}$

i is not contained in the splitting field of $x^3 - 2$ over \mathbb{Q} .

We know the splitting field of $X^3 - 2$ is $\mathbb{Q}(\sqrt[3]{2}, \omega)$, first we show $i \notin \mathbb{Q}(\omega)$. Assume for contradiction $i \in \mathbb{Q}(w) \implies \sqrt{3} \in \mathbb{Q}(\omega)$, which implies

$$\mathbb{Q}(i,\sqrt{3})\subset\mathbb{Q}(\omega),$$

but the LHS has degree 4 over \mathbb{Q} , and RHS has degree 2 over \mathbb{Q} .

 $i \notin \mathbb{Q}(\omega)$, so $\deg_{\mathbb{Q}(\omega)} i > 1$. Thus, $\mathbb{Q}(\omega, i)$ is degree 4 extension over \mathbb{Q} . However, if assume for contradiction $i \in \mathbb{Q}(\omega, \sqrt[3]{2})$, then $\mathbb{Q}(\omega, i) \subset \mathbb{Q}(\omega, \sqrt[3]{2})$ but the former has degree 4, and the latter has degree 6, and $4 \nmid 6$.