CS425 GAME PROGRAMMING

Scene Management

Scene Management

- Collision checking (in particular for broad range query)
- Visibility checking
- Proximity query (distance between two objects)
- Nearest Neighbors Query

Regular Grid

Trees and Adaptive

- Binary space partitioning
- Quad/Oct-tree
 - Compute distance field
 - Motion planning
 - Texturing
 - Fill holes
 -many many more

Range Search Data Structures

- Extending binary search tree
 - K-D tree
 - Stack different dimensions in a tree
 - Require less memory
 - Slower
 - Range tree
 - Hierarchical structure of trees
 - Require more memory
 - Faster

- Let's look at 2-D problems
 - A 2d rectangular query on P asks for points from P lying inside a query rectangle [x:x'] x [y:y']. A point p:= (px, py) lies inside this rectangle iff px ∈ [x:x'] and py ∈ [y:y']
 - At the root, we split P with I into 2 sets and store I. Each set is then split into 2 subsets and stores its splitting line. We proceed recursively as such
 - In general, we split with vertical lines at nodes whose depth is even, and split with horizontal lines at nodes whose depth is odd

BuildKDTree(P, depth)

- Input: A set P of points and the current depth, depth.
- Output: The root of kd-tree storing P.
- 1. if P contains only 1 point
- then return a leaf storing at this point
- 3. if depth is even
- 4. then Split P into 2 subsets with a vertical line I thru median
- x-coordinate of points in P. Let P1 and P2 be the sets of
- points to the left or on and to the right of I respectively.
- 5. else Split P into 2 subsets with a horizontal line I thru median
- y-coordinate of points in P. Let P1 and P2 be the sets of
- points below or on I and above I respectively.
- 5. vleft ← BuildKDTree(P1, depth + 1)
- 6. vright ← BuildKDTree(P2, depth + 1)
- 7. Create a node v storing I, make vleft & vright lef/right children of v
- 8. return v

- We traverse the kd-tree
 - Visit only nodes whose region is intersected by the query rectangle.
 - When a region is fully contained in the query rectangle, we report all points stored in its sub-trees.
 - When the traversal reaches a leaf, we have to check whether the point stored at the leaf is contained in the query region

SearchKDTree(v, R)

- Input: The root of a (subtree of a) kd-tree and a range R.
- Output: All points at leaves below v that lie in the range.
- 1. if v is a leaf
- then Report the point stored at v if it lies in R.
- 3. else if region(lc(v)) is fully contained in R
- 4. then ReportSubtree(Ic(v))
- 5. else if region(lc(v)) intersects R
- 6. then SearchKDTree(Ic(v), R) //recursive call
- 7. If region(rc(v)) is fully contained in R
- 8. then ReportSubtree(rc(v))
- 9. else if region(rc(v)) intersects R
- 10. then SearchKDTree(rc(v), R)

K-D-Range Search

- Extending binary search tree
 - K-D tree
 - Stack different dimensions in a tree
 - Require less memory
 - Slower
 - Range tree
 - Hierarchical structure of trees
 - Require more memory
 - Faster

Basics of Range Trees

- Range tree is more efficient but requires more space (store the same data in multiple copies!)
- 2D Range tree has two levels
 - First level is a 1D BST on x-axis (x-BST)
 - For each node v of x-BST, we build a 1D BST on y-axis for values in the sub-tree of v
 - Canonical subset of v

Basics of Range Trees

Build2DRangeTree(P)

- Input: A set P of points in the plane.
- Output: The root of 2-dimensional tree.
- 1. Build a binary search tree Tassoc on the set Py of y-coordinates of the points in P. Store at leaves of Tassoc the points themselves.
- 2. if P contains only 1 point
- then Create a leaf v storing this point and make Tassoc
- the associated structure of v.
- 4. else Split P into 2 subsets: Pleft containing points with
- x-coordinate ≤ xmid, the median x-coordinate, and
- Pright containing points with x-coordinate ≥ xmid
- 5. vleft ← Build2DRangeTree(Pleft)
- 6. vright ← Build2DRangeTree(Pright)
- 7. Create a node v storing xmid, make vleft left child of v & vright
- right child of v, and make Tassoc the associated structure of v
- 8. return v

Query Range Trees

- Similar to 1D, to report points in [x:x'] x [y:y'], we search with x and x' in T. Let u and u' be the two leaves where the search ends resp. Then the points in [x:x'] are the ones stored in leaves between u and u', plus possibly points stored at u & u'.
- We can perform the 2D range query similarly by only visiting the associated binary search tree on y-coordinate of the canonical subset of v, whose x-coordinate lies in the x-interval of the query rectangle.

Query Range Trees

2DRangeQuery

- Input: A 2D range tree T and a range [x:x'] x [y:y']
 Output: All points in T that lie in the range.
- 1. vsplit ← FindSplitNode(T, x, x')
- 2. if vsplit is a leaf
- 3. then Check if the point stored at vsplit must be reported
- 4. else (* Follow the path to x and call 1DRangeQuery on
 - the subtrees right of the path *)
- v ← lc(vsplit)
- 6. while v is not a leaf
- 7. do if $x \le xv$
- 8. then 1DRangeQuery(Tassoc(rc(v)), [y:y'])
- 9. $v \leftarrow lc(v)$
- 10. else $v \leftarrow rc(v)$
- 11. Check if the point stored at leaf v must be reported
- 12. Similar procedure for x'

Higher-D Range Trees

 Let P be a set of n points in d-dimensional space, where d≥ 2. A range tree for P uses O(nlogd-1n) storage and it can be constructed in O(nlogd-1n) time. One can report the points in P that lies in a rectangular query range in O(logdn + k) time, where k is the number of reported points.

Drawing the Visible Objects

- We want to generate the image that the eye would see, given the objects in our space
- How do we draw the correct object at each pixel, given that some objects may obscure others in the scene?

Hidden surface removal

The Painter's Algorithm

Avoid extra z-test & space costs by scan converting polygons in back-to-front order

From wikipedia

Is there always a correct back-to-front order?

BSP Trees

- Having a pre-built BSP tree will allow us to get a correct depth order of polygons in our scene for any point in space.
- We will build a data structure based on the polygons in our scene, that can be queried with any point input to return an ordering of those polygons.

The Big Picture

Assume that no objects in our space overlap

Use planes to recursively split our object space, keeping a tree structure of these recursive splits.

Choose a Splitting Line

Choose a splitting plane, dividing our objects into three sets – those on each side of the plane, and those fully contained on the plane.

Choose More Splitting Lines

- What do we do when an object (like object 1) is divided by a splitting plane?
- It is divided into two objects, one on each side of the plane.

Split Recursively Until Done

When we reach a convex space containing exactly zero or one objects, that is a leaf node.

Continue

Continue

Finished

Once the tree is constructed, every root-to-leaf path describes a single convex subspace.

Querying the Tree

- If a point is in the positive half-space of a plane,
 - everything in the negative half-space is farther away -- so draw it first, using this algorithm recursively
 - draw objects on the splitting plane
 - draw objects into the positive half-space, recursively

What Order Is Generated From This Eye Point?

How much time does it take to query the BSP tree, asymptotically?

Structure of a BSP Tree

- Each internal node has a +half space, a -half space, and a list of objects contained entirely within that plane (if any exist).
- Each leaf has a list of zero or one objects inside it, and no subtrees
- The size of a BSP tree is the total number of objects stored in the leaves & nodes of the tree

Building a BSP Tree

How do we pick splitting lines/planes?

Building a BSP Tree From Line Segments in the Plane

- We'll now deal with a formal algorithm for building a BSP tree for line segments in the 2D plane.
- This will generalize for building trees of D-1 dimensional objects within D-dimensional spaces.

Auto-Partitioning

 Auto-partitioning: splitting only along planes coincident on objects in our space

Algorithm for the 2d Case

- If we only have one segment 's', return a leaf node containing s.
- Otherwise, choose a line segment 's' along which to split
- For all other line segments, one of four cases will be true:
- 1) The segment is in the +half space of s
 - 2) The segment is in the -half space of s
- 3) The segment crosses the line through s
- 4) The segment is entirely contained within the line through s
- Split all segments who cross 's' into two new segments -- one in the +half space, and one in the -half space
- Create a new BSP tree from the set of segments in the +half space of s, and another on the set of segments in the -half space
- Return a new node whose children are these +/- half space BSP's, and which contains the list of segments entirely contained along the line through s.

Our Building Algorithm Extends to 3D!

The same procedure we used to build a tree from twodimensional objects can be used in the 3D case – we merely use polygonal faces as splitting planes, rather than line segments.

More applications

Querying a point to find out who within

- Visibility
- Blending
 - Opengl stuff

it exists

