Type2-02(2022)

2系資源に適用する 漁獲管理規則・ABC算定について

2系資源の漁獲管理規則を決定するMSE

漁業情報解析部 資源解析グループ 福井 眞 fukui_shin87@fra.go.jp

2系漁獲管理規則におけるパラメータ決定の基準

基本ルールのおさらい

25

禁漁水準(BB)

 $B_R = B_T * P_R$

75

50

資源量水準(%)

100

さまざまな生物パラメータ・個体群のトレンドを 仮定したシミュレーションのもとで…

- A) 資源を保護しつつ(=ABC>Bとなって絶滅するのを防ぐ)、漁獲量をできるだけ大きく
- B) 旧2系漁獲管理規則よりは良いパフォーマンス

を示すパラメータを決定(MSE※)

複数の候補のうち、資源保護と漁獲の両方がバランス良く旧2系漁獲管理規則よりも改善=基本ルール(B_T =0.8, B_L =0.56, (δ_1 , δ_2 , δ_3)=(0.5,0.4,0.4))

A)B)を満たすような漁獲管理規則は他にも存在→場合分けし、追加オプションとして提示

※MSEについてはオンデマンド研修 Info-01(2020)を参照

2系資源MSEの設定

• 個体群動態の構造:プロダクションモデル型

$$B_{t+1} = \left\{ B_t + rB_t \left[1 - \left(\frac{B_t}{K} \right)^{\theta} \right] - C_t \right\} \exp \left(\varepsilon_t - \frac{1}{2} \sigma_R^2 \right)$$

- ・考慮した不確実性: 以下を組み合わせた108通りのOM=参照モデルセット
 - 個体群成長率 r (=0.3,0.5,0.7)
 - プロセス誤差 sr (=0.2, 0.4)
 - CPUEの観察誤差 si (=0.2, 0.4)
 - 過去の資源のトレンド(9タイプ)

- ・シミュレーション期間:過去の資源動態20年、管理期間30年
- ・旧2系ルールもこのMSEに則ったパフォーマンス指標で良いスコアが得られているパラメータを標準とした→同じ土俵でより良いスコアが得られるHCRを探す

詳細は市野川ら(2015) 管理目標の数値化による最適なABC算定規則の探索. 日本水産学会誌, 81, 206-218. を参照

様々な2系漁獲管理規則のパフォーマンス

資源枯渇したケースが20%以下に抑えられるシナリオの割合

ABC算出 のための漁獲量

7 7 7

平均漁獲量が0.2MSYを上回るシナリオの割合

係数	BT	PL	PB	平均年	$Pr(B < 0.2B_{msy}) < 0.2$	C > 0.2MSY	AAV < 0.4	First two	ALL
従来のルール	I				Bscore	Cscore	AAVscore		
1.0-1.0-0.8-1.0		-		1年間	0.769	0.843	0.213	0.713	0.213
1.0-1.0-0.7-1.0		-	+	3年間	0.778	0.944	0.491	0.769	0.389
新ルール									
0.5-0.6-1.0	0.65	0.70	0.00	5年間	0.741	0.954	1.000	0.741	0.741
0.5-0.5-1.0	0.70	0.70	0.00	5年間	0.769	0.907	1.000	0.769	0.769
0.4-0.5-1.0	0.75	0.70	0.00	5年間	0.806	0.889	0.991	0.806	0.796
0.5-0.4-0.4	0.80	0.70	0.00	5年間	0.833	0.880	1.000	0.815	0.815
0.3-0.4-0.5	0.85	0.70	0.00	5年間	0.833	0.880	1.000	0.815	0.815
0.2-0.4-0.0	0.90	0.70	0.00	5年間	0.833	0.870	1.000	0.806	0.806
0.1-0.4-0.0	0.95	0.70	0.00	5年間	0.833	0.870	1.000	0.806	0.806

表の詳細は FRA-SA2020-ABCWG01-01 を参照 (※Pr(B<0.2B_{msy})は誤植で正しくはPr(B<0.5B_{msy})) 令和4年度に追加した漁獲管理規則のパフォーマンス値は FRA-SA2022-ABCWG02-11を参照

2系漁獲管理規則のオプション(追加ルール)

以下の場合について検討し MSEの結果からパラメータ を選定($P_L=0.7$ に固定)

- 迅速にデータが得られる場合 (2年遅れでなく1年遅れ) (BT=0.65 or 0.6)
- ② 漁獲量の変動幅が前年の<±40% (BT=0.8, 0.3-0.6-0.3)
- \bigcirc BT=0.70 (0.4-0.7-1)
- 4 BT=0.65 (0.4-0.7-1)
- (5) BT=0.60 (0.3-0.7-1)

オプションとして示された6通りの2系の漁獲管理規則;基本ルール(実線) との比較(AAV≒0.1のとき)

2系漁獲管理規則のオプション(追加ルール)その2

目標水準(BT=0.8)を 引き下げられる場合;

- 迅速にデータが得られる場合 (2年遅れでなく1年遅れ) (BT=0.65 or 0.6)
- ② 漁獲量の変動幅が前年の<±40% (BT=0.8, 0.3-0.6-0.3)
- 3 BT=0.70 (0.4-0.7-1)
- **4** BT=0.65 (0.4-0.7-1)
- **(5)** BT=0.60 (0.3-0.7-1)

※ 基本ルールよりもリスクが高い場合には、 資源量指標値のトレンド以外の情報から得られる根拠をもとに、当該資源において管理失 敗による**資源枯渇のリスク増大の懸念が少ない資源である(プロセス誤差小さい・資源が高**位)ことを示す

108通りのシナリオのうちどのシナリオで資源枯渇割合が20%を超えたか?(基本ルール)

リスクが高いケースで資源枯渇割合が20%を超えたシナリオ;基本ルールとの比較

2系資源のHCRの根拠がわかった!

• 2系資源の説明は以上です

お疲れ様でした!

