Bayesian Decision Theory An Introduction

Dr Muhammad Sarim

Contents

- Bayesian Decision Theory
 - Prior Probabilities
 - Class-conditional Probabilities
 - Posterior Probabilities
 - Probability of Error
- - Conditional Risk
 - Classification
- - Discriminant Functions for the Gaussian Density

Bayesian Decision Theory

 Bayesian Decision Theory is a fundamental statistical approach that quantifies the tradeoffs between various decisions using probabilities and costs that accompany such decisions.

Bayesian Decision Theory

- Bayesian Decision Theory is a fundamental statistical approach that quantifies the tradeoffs between various decisions using probabilities and costs that accompany such decisions.
- First, we will assume that all probabilities are known.

Bayesian Decision Theory

- Bayesian Decision Theory is a fundamental statistical approach that quantifies the tradeoffs between various decisions using probabilities and costs that accompany such decisions.
- First, we will assume that all probabilities are known.
- Then, we will study the cases where the probabilistic structure is not completely known.

• State of nature is a random variable.

- State of nature is a random variable.
- Define w as the type of fish we observe (state of nature) where

- State of nature is a random variable.
- Define w as the type of fish we observe (state of nature) where
 - $w = w_1$ for sea bass

- State of nature is a random variable.
- Define w as the type of fish we observe (state of nature) where
 - $w = w_1$ for sea bass
 - $w = w_2$ for salmon

- State of nature is a random variable.
- Define w as the type of fish we observe (state of nature) where
 - $w = w_1$ for sea bass
 - $w = w_2$ for salmon
 - $P(w_1)$ is the a priori probability that the next fish is a sea bass

- State of nature is a random variable.
- Define w as the type of fish we observe (state of nature) where
 - $w = w_1$ for sea bass
 - $w = w_2$ for salmon
 - $P(w_1)$ is the a priori probability that the next fish is a sea bass
 - $P(w_2)$ is the a priori probability that the next fish is a salmon

RDT

Contents

- 1 Bayesian Decision Theory
 - Prior Probabilities

Continuous Features

- Class-conditional Probabilities
- Posterior Probabilities
- Probability of Error
- 2 Continuous Features
 - Conditional Risk
 - Classification
- The Gaussian Density
 - Discriminant Functions for the Gaussian Density
- 4 Error Probabilities and Integrals
- **5** ROC

Prior Probabilities

• Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.

Prior Probabilities

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- How can we choose $P(w_1)$ and $P(w_2)$?

Prior Probabilities

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- How can we choose $P(w_1)$ and $P(w_2)$?
 - Set $P(w_1) = P(w_2)$ if they are equiprobable (uniform priors).

Prior Probabilities

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- How can we choose $P(w_1)$ and $P(w_2)$?
 - Set $P(w_1) = P(w_2)$ if they are equiprobable (uniform priors).
 - May use different values depending on the fishing area, time of the year, etc.

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- How can we choose $P(w_1)$ and $P(w_2)$?
 - Set $P(w_1) = P(w_2)$ if they are equiprobable (uniform priors).
 - May use different values depending on the fishing area, time of the year, etc.

Prior Probabilities

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- How can we choose $P(w_1)$ and $P(w_2)$?
 - Set $P(w_1) = P(w_2)$ if they are equiprobable (uniform priors).
 - May use different values depending on the fishing area, time of the year, etc.
- Assume there are no other types of fish

$$P(w_1) + P(w_2) = 1$$

(exclusivity and exhaustivity)

• How can we make a decision with only the prior information?

• How can we make a decision with only the prior information?

• How can we make a decision with only the prior information?

Decide
$$\begin{cases} w_1 & \text{if } P(w_1) > P(w_2) \\ w_2 & \text{otherwise} \end{cases}$$

• How can we make a decision with only the prior information?

Decide
$$\begin{cases} w_1 & \text{if } P(w_1) > P(w_2) \\ w_2 & \text{otherwise} \end{cases}$$

• What is the *probability of error* for this decision?

• How can we make a decision with only the prior information?

Decide
$$\begin{cases} w_1 & \text{if } P(w_1) > P(w_2) \\ w_2 & \text{otherwise} \end{cases}$$

• What is the *probability of error* for this decision?

• How can we make a decision with only the prior information?

Decide
$$\begin{cases} w_1 & \text{if } P(w_1) > P(w_2) \\ w_2 & \text{otherwise} \end{cases}$$

• What is the probability of error for this decision?

$$P(error) = \min\{P(w_1), P(w_2)\}\$$

Contents

- Bayesian Decision Theory
 - Prior Probabilities
 - Class-conditional Probabilities
 - Posterior Probabilities
 - Probability of Error
- Continuous Features
 - Conditional Risk
 - Classification
- The Gaussian Density
 - Discriminant Functions for the Gaussian Density
- Error Probabilities and Integrals
- B ROC

Class-conditional Probabilities

 Let's try to improve the decision using the lightness measurement x.

Class-conditional Probabilities

- Let's try to improve the decision using the lightness measurement x.
- Let x be a continuous random variable.

Class-conditional Probabilities

Continuous Features

- Let's try to improve the decision using the lightness measurement x.
- Let x be a continuous random variable.
- Define $p(x|w_i)$ as the class-conditional probability density (probability of x given that the state of nature is w_i for i = 1, 2).

Class-conditional Probabilities

Continuous Features

- Let's try to improve the decision using the lightness measurement x.
- Let x be a continuous random variable.
- Define $p(x|w_i)$ as the class-conditional probability density (probability of x given that the state of nature is w_i for i = 1, 2).
- $p(x|w_1)$ and $p(x|w_2)$ describe the difference in lightness between populations of sea bass and salmon.

Class-conditional Probabilities

Figure: Hypothetical class-conditional probability density functions for two classes.

Contents

- Bayesian Decision Theory
 - Prior Probabilities
 - Class-conditional Probabilities
 - Posterior Probabilities
 - Probability of Error
- Continuous Features
 - Conditional Risk
 - Classification
- The Gaussian Density
 - Discriminant Functions for the Gaussian Density
- Error Probabilities and Integrals
- B ROC

Posterior Probabilities

• Suppose we know $P(w_i)$ and $p(x|w_i)$ for j=1,2, and measure the lightness of a fish as the value x.

Posterior Probabilities

- Suppose we know $P(w_i)$ and $p(x|w_i)$ for j=1,2, and measure the lightness of a fish as the value x.
- Define $P(w_i|x)$ as the a posteriori probability (probability of the state of nature being w_i given the measurement of feature value x).

• Suppose we know $P(w_i)$ and $p(x|w_i)$ for j=1,2, and

measure the lightness of a fish as the value x.

• Define $P(w_i|x)$ as the a posteriori probability (probability of the state of nature being w_i given the measurement of feature value x).

Continuous Features

- Suppose we know $P(w_i)$ and $p(x|w_i)$ for j=1,2, and measure the lightness of a fish as the value x.
- Define $P(w_i|x)$ as the a posteriori probability (probability of the state of nature being w_i given the measurement of feature value x).
- We can use the Bayes formula to convert the prior probability to the posterior probability

Continuous Features

- Suppose we know $P(w_i)$ and $p(x|w_i)$ for j=1,2, and measure the lightness of a fish as the value x.
- Define $P(w_i|x)$ as the a posteriori probability (probability of the state of nature being w_i given the measurement of feature value x).
- We can use the Bayes formula to convert the prior probability to the posterior probability

BDT

Continuous Features

- Suppose we know $P(w_i)$ and $p(x|w_i)$ for j=1,2, and measure the lightness of a fish as the value x.
- Define $P(w_i|x)$ as the a posteriori probability (probability of the state of nature being w_i given the measurement of feature value x).
- We can use the Bayes formula to convert the prior probability to the posterior probability

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

where
$$p(x) = \sum_{j=1}^{2} p(x|w_{j})P(w_{j})$$
.

Error Probabilities and Integrals

BDT

Posterior Probabilities

• $p(x|w_i)$ is called the *likelihood* and p(x) is called the *evidence*.

Figure: Posterior probabilities for the particular priors $P(w_1) = 2/3$ and $P(w_2) = 1/3$.

Making a Decision

• How can we make a decision after observing the value of x?

Making a Decision

• How can we make a decision after observing the value of x?

BDT

• How can we make a decision after observing the value of x?

Decide
$$\begin{cases} w_1 & \text{if } P(w_1|x) > P(w_2|x) \\ w_2 & \text{otherwise} \end{cases}$$

Error Probabilities and Integrals

BDT

Making a Decision

• How can we make a decision after observing the value of x?

Decide
$$\begin{cases} w_1 & \text{if } P(w_1|x) > P(w_2|x) \\ w_2 & \text{otherwise} \end{cases}$$

Rewriting the rule gives

Decide
$$\begin{cases} w_1 & \text{if } \frac{p(x|w_1)}{p(x|w_2)} > \frac{P(w_2)}{P(w_1)} \\ w_2 & \text{otherwise} \end{cases}$$

Contents

- Bayesian Decision Theory
 - Prior Probabilities
 - Class-conditional Probabilities
 - Posterior Probabilities
 - Probability of Error
- Continuous Features
 - Conditional Risk
 - Classification
- The Gaussian Density
 - Discriminant Functions for the Gaussian Density
- Error Probabilities and Integrals
- FOC

Probability of Error

• What is the probability of error for this decision?

Probability of Error

• What is the probability of error for this decision?

Jability of Lifton

• What is the probability of error for this decision?

$$P(error|x) = \begin{cases} P(w_1|x) & \text{if we decide } w_2 \\ P(w_2|x) & \text{if we decide } w_1 \end{cases}$$

Probability of Error

• What is the probability of error for this decision?

$$P(error|x) = \begin{cases} P(w_1|x) & \text{if we decide } w_2 \\ P(w_2|x) & \text{if we decide } w_1 \end{cases}$$

• What is the average probability of error?

Probability of Error

• What is the probability of error for this decision?

$$P(error|x) = \begin{cases} P(w_1|x) & \text{if we decide } w_2 \\ P(w_2|x) & \text{if we decide } w_1 \end{cases}$$

• What is the average probability of error?

Probability of Error

• What is the probability of error for this decision?

$$P(error|x) = \begin{cases} P(w_1|x) & \text{if we decide } w_2 \\ P(w_2|x) & \text{if we decide } w_1 \end{cases}$$

• What is the average probability of error?

$$P(error) = \int_{-\infty}^{\infty} p(error, x) dx = \int_{-\infty}^{\infty} P(error|x) p(x) dx$$

Bayes decision rule minimizes this error because

$$P(error|x) = \min\{P(w_1|x), P(w_2|x)\}\$$

Contents

- - Prior Probabilities
 - Class-conditional Probabilities
 - Posterior Probabilities
 - Probability of Error
- Continuous Features
 - Conditional Risk
 - Classification
- - Discriminant Functions for the Gaussian Density

• How can we generalize to

- How can we generalize to
 - more than one feature?

- How can we generalize to
 - more than one feature?
 - ullet replace the scalar x by the feature vector ${f x}$

- How can we generalize to
 - more than one feature?
 - ullet replace the scalar x by the feature vector ${f x}$
 - more than two states of nature?

- How can we generalize to
 - more than one feature?
 - replace the scalar x by the feature vector x
 - more than two states of nature?
 - just a difference in notation

- How can we generalize to
 - more than one feature?
 - ullet replace the scalar x by the feature vector ${f x}$
 - more than two states of nature?
 - just a difference in notation
 - allowing actions other than just decisions?

- How can we generalize to
 - more than one feature?
 - replace the scalar x by the feature vector x
 - more than two states of nature?
 - just a difference in notation
 - allowing actions other than just decisions?
 - allow the possibility of rejection

- How can we generalize to
 - more than one feature?
 - ullet replace the scalar x by the feature vector ${f x}$
 - more than two states of nature?
 - just a difference in notation
 - allowing actions other than just decisions?
 - allow the possibility of rejection
 - different risks in the decision?

- How can we generalize to
 - more than one feature?
 - replace the scalar x by the feature vector x
 - more than two states of nature?
 - just a difference in notation
 - allowing actions other than just decisions?
 - allow the possibility of rejection
 - different risks in the decision?
 - define how costly each action is

• Let $\{w_1, \ldots, w_c\}$ be the finite set of c states of nature (*categories*).

- Let $\{w_1, \ldots, w_c\}$ be the finite set of c states of nature (categories).
- Let $\{\alpha_1, \ldots, \alpha_a\}$ be the finite set of a possible actions.

- Let $\{w_1, \ldots, w_c\}$ be the finite set of c states of nature (categories).
- Let $\{\alpha_1, \ldots, \alpha_a\}$ be the finite set of a possible actions.
- Let $\lambda(\alpha_i|w_j)$ be the *loss* incurred for taking action α_i when the state of nature is w_j .

- Let $\{w_1, \ldots, w_c\}$ be the finite set of c states of nature (categories).
- Let $\{\alpha_1, \ldots, \alpha_a\}$ be the finite set of a possible actions.
- Let $\lambda(\alpha_i|w_j)$ be the *loss* incurred for taking action α_i when the state of nature is w_i .
- Let x be the d-component vector-valued random variable called the feature vector.

• $p(\mathbf{x}|w_i)$ is the class-conditional probability density function.

- $p(\mathbf{x}|w_i)$ is the class-conditional probability density function.
- $P(w_i)$ is the prior probability that nature is in state w_i .

- $p(\mathbf{x}|w_i)$ is the class-conditional probability density function.
- $P(w_j)$ is the prior probability that nature is in state w_j .
- The posterior probability can be computed as

$$P(w_j|\mathbf{x}) = \frac{p(\mathbf{x}|w_j)P(w_j)}{p(\mathbf{x})}$$

where
$$p(\mathbf{x}) = \sum_{i=1}^{c} p(\mathbf{x}|w_i)P(w_i)$$
.

Contents

- Bayesian Decision Theory
 - Prior Probabilities

Continuous Features

- Class-conditional Probabilities
- Posterior Probabilities
- Probability of Error
- Continuous Features
 - Conditional Risk
 - Classification
- The Gaussian Density
 - Discriminant Functions for the Gaussian Density
- Error Probabilities and Integrals
- B ROC

• Suppose we observe **x** and take action α_i .

• Suppose we observe **x** and take action α_i .

- Suppose we observe **x** and take action α_i .
- If the true state of nature is w_i , we incur the loss $\lambda(\alpha_i|w_i)$.

- Suppose we observe **x** and take action α_i .
- If the true state of nature is w_i , we incur the loss $\lambda(\alpha_i|w_i)$.

Continuous Features

- Suppose we observe **x** and take action α_i .
- If the true state of nature is w_i , we incur the loss $\lambda(\alpha_i|w_i)$.
- The expected loss with taking action α_i is

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i|w_j)P(w_j|\mathbf{x})$$

which is also called the *conditional risk*.

Contents

- Bayesian Decision Theory
 - Prior Probabilities
 - Class-conditional Probabilities
 - Posterior Probabilities
 - Probability of Error
- 2 Continuous Features
 - Conditional Risk
 - Classification
- The Gaussian Density
 - Discriminant Functions for the Gaussian Density
- 4 Error Probabilities and Integrals
- **5** ROC

Minimum-risk Classification

• The general decision rule $\alpha(\mathbf{x})$ tells us which action to take for observation x.

Minimum-risk Classification

• The general decision rule $\alpha(\mathbf{x})$ tells us which action to take for observation x.

- The general *decision rule* $\alpha(\mathbf{x})$ tells us which action to take for observation \mathbf{x} .
- We want to find the decision rule that minimizes the overall risk

$$R = \int R(\alpha(\mathbf{x})|\mathbf{x}) \, p(\mathbf{x}) \, d\mathbf{x}$$

- The general *decision rule* $\alpha(\mathbf{x})$ tells us which action to take for observation \mathbf{x} .
- We want to find the decision rule that minimizes the overall risk

$$R = \int R(\alpha(\mathbf{x})|\mathbf{x}) \, p(\mathbf{x}) \, d\mathbf{x}$$

- The general *decision rule* $\alpha(\mathbf{x})$ tells us which action to take for observation \mathbf{x} .
- We want to find the decision rule that minimizes the overall risk

$$R = \int R(\alpha(\mathbf{x})|\mathbf{x}) \, p(\mathbf{x}) \, d\mathbf{x}$$

• Bayes decision rule minimizes the overall risk by selecting the action α_i for which $R(\alpha_i|\mathbf{x})$ is minimum.

- The general *decision rule* $\alpha(\mathbf{x})$ tells us which action to take for observation \mathbf{x} .
- We want to find the decision rule that minimizes the overall risk

$$R = \int R(\alpha(\mathbf{x})|\mathbf{x}) \, p(\mathbf{x}) \, d\mathbf{x}$$

• Bayes decision rule minimizes the overall risk by selecting the action α_i for which $R(\alpha_i|\mathbf{x})$ is minimum.

- The general *decision rule* $\alpha(\mathbf{x})$ tells us which action to take for observation \mathbf{x} .
- We want to find the decision rule that minimizes the overall risk

$$R = \int R(\alpha(\mathbf{x})|\mathbf{x}) \, p(\mathbf{x}) \, d\mathbf{x}$$

- Bayes decision rule minimizes the overall risk by selecting the action α_i for which $R(\alpha_i|\mathbf{x})$ is minimum.
- The resulting minimum overall risk is called the *Bayes risk* and is the best performance that can be achieved.

Continuous Features

Define

- Define
 - α_1 : deciding w_1

Define

• α_1 : deciding w_1 • α_2 : deciding w_2

Continuous Features

Define

- α_1 : deciding w_1
- α_2 : deciding w_2
- $\lambda_{ij} = \lambda(\alpha_i|w_j)$

- Define
 - α_1 : deciding w_1
 - α_2 : deciding w_2
 - $\lambda_{ij} = \lambda(\alpha_i|w_j)$
- Conditional risks can be written as

- Define
 - α_1 : deciding w_1
 - α_2 : deciding w_2
 - $\lambda_{ij} = \lambda(\alpha_i|w_j)$
- Conditional risks can be written as

- Define
 - α_1 : deciding w_1
 - α_2 : deciding w_2
 - $\lambda_{ii} = \lambda(\alpha_i|w_i)$
- Conditional risks can be written as

$$R(\alpha_1|\mathbf{x}) = \lambda_{11} P(w_1|\mathbf{x}) + \lambda_{12} P(w_2|\mathbf{x})$$

$$R(\alpha_2|\mathbf{x}) = \lambda_{21} P(w_1|\mathbf{x}) + \lambda_{22} P(w_2|\mathbf{x})$$

• The minimum-risk decision rule becomes

Decide
$$\begin{cases} w_1 & \text{if } (\lambda_{21} - \lambda_{11}) P(w_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(w_2 | \mathbf{x}) \\ w_2 & \text{otherwise} \end{cases}$$

• The minimum-risk decision rule becomes

Decide
$$\begin{cases} w_1 & \text{if } (\lambda_{21} - \lambda_{11}) P(w_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(w_2 | \mathbf{x}) \\ w_2 & \text{otherwise} \end{cases}$$

• The minimum-risk decision rule becomes

Decide
$$\begin{cases} w_1 & \text{if } (\lambda_{21} - \lambda_{11}) P(w_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(w_2 | \mathbf{x}) \\ w_2 & \text{otherwise} \end{cases}$$

• This corresponds to deciding w_1 if

$$\frac{p(\mathbf{x}|w_1)}{p(\mathbf{x}|w_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(w_2)}{P(w_1)}$$

• The minimum-risk decision rule becomes

Decide
$$\begin{cases} w_1 & \text{if } (\lambda_{21} - \lambda_{11}) P(w_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(w_2 | \mathbf{x}) \\ w_2 & \text{otherwise} \end{cases}$$

• This corresponds to deciding w_1 if

$$\frac{p(\mathbf{x}|w_1)}{p(\mathbf{x}|w_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(w_2)}{P(w_1)}$$

• The minimum-risk decision rule becomes

Decide
$$\begin{cases} w_1 & \text{if } (\lambda_{21} - \lambda_{11}) P(w_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(w_2 | \mathbf{x}) \\ w_2 & \text{otherwise} \end{cases}$$

• This corresponds to deciding w_1 if

$$\frac{p(\mathbf{x}|w_1)}{p(\mathbf{x}|w_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(w_2)}{P(w_1)}$$

 \Rightarrow comparing the *likelihood ratio* to a threshold that is independent of the observation \mathbf{x}

• Actions are decisions on classes (α_i is deciding w_i).

- Actions are decisions on classes (α_i is deciding w_i).
- If action α_i is taken and the true state of nature is w_j , then the decision is correct if i = j and in error if $i \neq j$.

viinimum-error-rate Classification

- Actions are decisions on classes (α_i is deciding w_i).
- If action α_i is taken and the true state of nature is w_j , then the decision is correct if i = j and in error if $i \neq j$.
- We want to find a decision rule that minimizes the probability of error.

viinimum-error-rate Classification

- Actions are decisions on classes (α_i is deciding w_i).
- If action α_i is taken and the true state of nature is w_j , then the decision is correct if i = j and in error if $i \neq j$.
- We want to find a decision rule that minimizes the probability of error.

Minimum-error-rate Classification

- Actions are decisions on classes (α_i is deciding w_i).
- If action α_i is taken and the true state of nature is w_j , then the decision is correct if i = j and in error if $i \neq j$.
- We want to find a decision rule that minimizes the probability of error.
- Define the zero-one loss function

$$\lambda(\alpha_i|w_j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j \end{cases}$$
 $i, j = 1, \dots, c$

(all errors are equally costly)

Minimum-error-rate Classification

Conditional risk becomes

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|w_j) P(w_j|\mathbf{x})$$
$$= \sum_{j\neq i} P(w_j|\mathbf{x})$$
$$= 1 - P(w_i|\mathbf{x})$$

Minimum-error-rate Classification

Conditional risk becomes

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|w_j) P(w_j|\mathbf{x})$$
$$= \sum_{j\neq i} P(w_j|\mathbf{x})$$
$$= 1 - P(w_i|\mathbf{x})$$

• Minimizing the risk requires maximizing $P(w_i|\mathbf{x})$ and results in the minimum-error decision rule

Decide
$$w_i$$
 if $P(w_i|\mathbf{x}) > P(w_i|\mathbf{x}) \quad \forall j \neq i$

Figure: The likelihood ratio $p(\mathbf{x}|w_1)/p(\mathbf{x}|w_2)$. The threshold θ_a is computed using the priors $P(w_1) = 2/3$ and $P(w_2) = 1/3$, and a zero-one loss function. If we penalize mistakes in classifying w_2 patterns as w_1 more than the converse, we should increase the threshold to θ_b .

• A useful way of representing classifiers is through discriminant functions $g_i(\mathbf{x})$, $i=1,\ldots,c$, where the classifier assigns a feature vector \mathbf{x} to class w_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i$$

• A useful way of representing classifiers is through discriminant functions $g_i(\mathbf{x})$, $i=1,\ldots,c$, where the classifier assigns a feature vector \mathbf{x} to class w_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i$$

• A useful way of representing classifiers is through discriminant functions $g_i(\mathbf{x})$, $i=1,\ldots,c$, where the classifier assigns a feature vector \mathbf{x} to class w_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i$$

For the classifier that minimizes conditional risk

$$g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$$

• A useful way of representing classifiers is through discriminant functions $g_i(\mathbf{x})$, $i=1,\ldots,c$, where the classifier assigns a feature vector \mathbf{x} to class w_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i$$

For the classifier that minimizes conditional risk

$$g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$$

• A useful way of representing classifiers is through discriminant functions $g_i(\mathbf{x})$, $i=1,\ldots,c$, where the classifier assigns a feature vector \mathbf{x} to class w_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i$$

For the classifier that minimizes conditional risk

$$g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$$

For the classifier that minimizes error

$$g_i(\mathbf{x}) = P(w_i|\mathbf{x})$$

• These functions divide the feature space into c decision regions $(\mathcal{R}_1, \ldots, \mathcal{R}_c)$, separated by decision boundaries.

- These functions divide the feature space into c decision regions $(\mathcal{R}_1, \ldots, \mathcal{R}_c)$, separated by decision boundaries.
- Note that the results do not change even if we replace every $g_i(\mathbf{x})$ by $f(g_i(\mathbf{x}))$ where $f(\cdot)$ is a monotonically increasing function (e.g., logarithm).

- These functions divide the feature space into *c decision* regions $(\mathcal{R}_1, \ldots, \mathcal{R}_c)$, separated by decision boundaries.
- Note that the results do not change even if we replace every $g_i(\mathbf{x})$ by $f(g_i(\mathbf{x}))$ where $f(\cdot)$ is a monotonically increasing function (e.g., logarithm).
- This may lead to significant analytical and computational simplifications.

Contents

- - Prior Probabilities
 - Class-conditional Probabilities
 - Posterior Probabilities
 - Probability of Error
- - Conditional Risk
 - Classification
- The Gaussian Density
 - Discriminant Functions for the Gaussian Density

 Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.

- Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.
- Some properties of the Gaussian:

- Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.
- Some properties of the Gaussian:
 - Analytically tractable

- Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.
- Some properties of the Gaussian:
 - Analytically tractable
 - Completely specified by the 1st and 2nd moments

- Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.
- Some properties of the Gaussian:
 - Analytically tractable
 - Completely specified by the 1st and 2nd moments
 - Has the maximum entropy of all distributions with a given mean and variance

- Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.
- Some properties of the Gaussian:
 - Analytically tractable
 - Completely specified by the 1st and 2nd moments
 - Has the maximum entropy of all distributions with a given mean and variance
 - Many processes are asymptotically Gaussian (Central Limit Theorem)

- Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.
- Some properties of the Gaussian:
 - Analytically tractable
 - Completely specified by the 1st and 2nd moments
 - Has the maximum entropy of all distributions with a given mean and variance
 - Many processes are asymptotically Gaussian (Central Limit Theorem)
 - Uncorrelatedness implies independence

Univariate Gaussian

Continuous Features

• For $x \in \mathbb{R}$:

$$p(x) = N(\mu, \sigma^{2})$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^{2}\right]$$

where

$$\mu = E[x] = \int_{-\infty}^{\infty} x \, p(x) \, dx$$
$$\sigma^2 = E[(x - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 \, p(x) \, dx$$

Univariate Gaussian

Figure: A univariate Gaussian distribution has roughly 95% of its area in the range $|x - \mu| \le 2\sigma$.

Multivariate Gaussian

• For $\mathbf{x} \in \mathbb{R}^d$.

$$p(\mathbf{x}) = N(\mu, \mathbf{\Sigma})$$

$$= \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

where

$$\mu = E[\mathbf{x}] = \int \mathbf{x} \, \rho(\mathbf{x}) \, d\mathbf{x}$$
$$\mathbf{\Sigma} = E[(\mathbf{x} - \mu)(\mathbf{x} - \mu)^T] = \int (\mathbf{x} - \mu)(\mathbf{x} - \mu)^T \, \rho(\mathbf{x}) \, d\mathbf{x}$$

Multivariate Gaussian

Figure: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on the mean μ .

• Recall that, given $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{d \times k}$, $\mathbf{y} = \mathbf{A}^T \mathbf{x} \in \mathbb{R}^k$, if $x \sim N(\mu, \Sigma)$, then $y \sim N(\mathbf{A}^T \mu, \mathbf{A}^T \Sigma \mathbf{A})$.

• Recall that, given $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{d \times k}$, $\mathbf{y} = \mathbf{A}^T \mathbf{x} \in \mathbb{R}^k$, if $x \sim N(\mu, \Sigma)$, then $y \sim N(\mathbf{A}^T \mu, \mathbf{A}^T \Sigma \mathbf{A})$.

- Recall that, given $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{d \times k}$, $\mathbf{y} = \mathbf{A}^T \mathbf{x} \in \mathbb{R}^k$, if $x \sim N(\mu, \Sigma)$, then $y \sim N(\mathbf{A}^T \mu, \mathbf{A}^T \Sigma \mathbf{A})$.
- As a special case, the whitening transform $\mathbf{A}_{\mathbf{w}} = \mathbf{\Phi} \mathbf{\Lambda}^{-1/2}$

Continuous Features

- Recall that, given $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{d \times k}$, $\mathbf{y} = \mathbf{A}^T \mathbf{x} \in \mathbb{R}^k$, if $x \sim N(\mu, \Sigma)$, then $y \sim N(\mathbf{A}^T \mu, \mathbf{A}^T \Sigma \mathbf{A})$.
- As a special case, the whitening transform $\mathbf{A}_{\mathbf{w}} = \mathbf{\Phi} \mathbf{\Lambda}^{-1/2}$

where

 \bullet **\Phi** is the matrix whose columns are the orthonormal eigenvectors of Σ ,

- Recall that, given $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{d \times k}$, $\mathbf{y} = \mathbf{A}^T \mathbf{x} \in \mathbb{R}^k$, if $x \sim N(\mu, \Sigma)$, then $y \sim N(\mathbf{A}^T \mu, \mathbf{A}^T \Sigma \mathbf{A})$.
- As a special case, the whitening transform $A_{w} = \Phi \Lambda^{-1/2}$

where

- \bullet **\Phi** is the matrix whose columns are the orthonormal eigenvectors of Σ .
- \bullet Λ is the diagonal matrix of the corresponding eigenvalues,

- Recall that, given $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{d \times k}$, $\mathbf{y} = \mathbf{A}^T \mathbf{x} \in \mathbb{R}^k$, if $x \sim N(\mu, \Sigma)$, then $y \sim N(\mathbf{A}^T \mu, \mathbf{A}^T \Sigma \mathbf{A})$.
- As a special case, the whitening transform $A_{w} = \Phi \Lambda^{-1/2}$

where

- \bullet **\Phi** is the matrix whose columns are the orthonormal eigenvectors of Σ .
- \bullet Λ is the diagonal matrix of the corresponding eigenvalues,

- Recall that, given $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{d \times k}$, $\mathbf{y} = \mathbf{A}^T \mathbf{x} \in \mathbb{R}^k$, if $x \sim N(\mu, \Sigma)$, then $y \sim N(\mathbf{A}^T \mu, \mathbf{A}^T \Sigma \mathbf{A})$.
- As a special case, the whitening transform $A_{w} = \Phi \Lambda^{-1/2}$

where

- \bullet **\Phi** is the matrix whose columns are the orthonormal eigenvectors of Σ .
- \bullet Λ is the diagonal matrix of the corresponding eigenvalues, gives a covariance matrix equal to the identity matrix I.

Continuous Features

Contents

- Bayesian Decision Theory
 - Prior Probabilities
 - Class-conditional Probabilities
 - Posterior Probabilities
 - Probability of Error
- Continuous Features
 - Conditional Risk
 - Classification
- The Gaussian Density
 - Discriminant Functions for the Gaussian Density
- Error Probabilities and Integrals
- ROC

• Discriminant functions for minimum-error-rate classification can be written as

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|w_i) + \ln P(w_i)$$

• Discriminant functions for minimum-error-rate classification can be written as

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|w_i) + \ln P(w_i)$$

 Discriminant functions for minimum-error-rate classification can be written as

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|w_i) + \ln P(w_i)$$

• For $p(\mathbf{x}|w_i) = N(\mu_i, \Sigma_i)$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu_i})^T \boldsymbol{\Sigma_i}^{-1}(\mathbf{x} - \boldsymbol{\mu_i}) - \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\boldsymbol{\Sigma_i}| + \ln P(w_i)$$

Case 1:
$$\Sigma_i = \sigma^2 I$$

Discriminant functions are

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$
 (linear discriminant)

where

$$\mathbf{w_i} = \frac{1}{\sigma^2} \boldsymbol{\mu_i}$$

$$w_{i0} = -\frac{1}{2\sigma^2} \boldsymbol{\mu_i}^T \boldsymbol{\mu_i} + \ln P(w_i)$$

 $(w_{i0}$ is the threshold or bias for the i'th category)

Case 1: $\Sigma_i = \sigma^2 I$

• Decision boundaries are the hyperplanes $g_i(\mathbf{x}) = g_i(\mathbf{x})$, and can be written as

$$\mathbf{w}^T(\mathbf{x} - \mathbf{x_0}) = 0$$

$$\begin{aligned} \mathbf{w} &= \boldsymbol{\mu_i} - \boldsymbol{\mu_j} \\ \mathbf{x_0} &= \frac{1}{2} (\boldsymbol{\mu_i} + \boldsymbol{\mu_j}) - \frac{\sigma^2}{\|\boldsymbol{\mu_i} - \boldsymbol{\mu_i}\|^2} \ln \frac{P(w_i)}{P(w_j)} (\boldsymbol{\mu_i} - \boldsymbol{\mu_j}) \end{aligned}$$

Case 1: $\Sigma_i = \sigma^2 I$

• Decision boundaries are the hyperplanes $g_i(\mathbf{x}) = g_i(\mathbf{x})$, and can be written as

$$\mathbf{w}^T(\mathbf{x} - \mathbf{x_0}) = 0$$

$$\begin{aligned} \mathbf{w} &= \boldsymbol{\mu_i} - \boldsymbol{\mu_j} \\ \mathbf{x_0} &= \frac{1}{2} (\boldsymbol{\mu_i} + \boldsymbol{\mu_j}) - \frac{\sigma^2}{\|\boldsymbol{\mu_i} - \boldsymbol{\mu_i}\|^2} \ln \frac{P(w_i)}{P(w_j)} (\boldsymbol{\mu_i} - \boldsymbol{\mu_j}) \end{aligned}$$

Case 1: $\Sigma_i = \sigma^2 I$

• Decision boundaries are the hyperplanes $g_i(\mathbf{x}) = g_j(\mathbf{x})$, and can be written as

$$\mathbf{w}^T(\mathbf{x} - \mathbf{x_0}) = 0$$

where

$$\begin{aligned} \mathbf{w} &= \boldsymbol{\mu_i} - \boldsymbol{\mu_j} \\ \mathbf{x_0} &= \frac{1}{2} (\boldsymbol{\mu_i} + \boldsymbol{\mu_j}) - \frac{\sigma^2}{\|\boldsymbol{\mu_i} - \boldsymbol{\mu_i}\|^2} \ln \frac{P(w_i)}{P(w_j)} (\boldsymbol{\mu_i} - \boldsymbol{\mu_j}) \end{aligned}$$

• Hyperplane separating \mathcal{R}_i and \mathcal{R}_j passes through the point $\mathbf{x_0}$ and is orthogonal to the vector \mathbf{w} .

Case 1: $\Sigma_i = \sigma^2 I$

Figure: If the covariance matrices of two distributions are equal and proportional to the identity matrix, then the distributions are spherical in *d* dimensions.

Case 1:
$$\Sigma_i = \sigma^2 I$$

• Special case when $P(w_i)$ are the same for $i=1,\ldots,c$ is the minimum-distance classifier that uses the decision rule

assign **x** to
$$w_{i^*}$$
 where $i^* = \arg\min_{i=1,...,c} \|\mathbf{x} - \boldsymbol{\mu_i}\|$

Case 2:
$$\Sigma_i = \Sigma$$

Discriminant functions are

$$g_i(\mathbf{x}) = \mathbf{w_i}^T \mathbf{x} + w_{i0}$$
 (linear discriminant)

$$\mathbf{w_i} = \mathbf{\Sigma}^{-1} \, \mathbf{\mu_i}$$
 $w_{i0} = -\frac{1}{2} \, \mathbf{\mu_i}^T \mathbf{\Sigma}^{-1} \mathbf{\mu_i} + \ln P(w_i)$

Case 2:
$$\Sigma_i = \Sigma$$

Decision boundaries can be written as

$$\mathbf{w}^T(\mathbf{x} - \mathbf{x_0}) = 0$$

$$\begin{aligned} \mathbf{w} &= \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}) \\ \mathbf{x}_{0} &= \frac{1}{2}(\boldsymbol{\mu}_{i} + \boldsymbol{\mu}_{j}) - \frac{\ln(P(w_{i})/P(w_{j}))}{(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})^{T} \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})} (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}) \end{aligned}$$

Case 2:
$$\Sigma_i = \Sigma$$

Decision boundaries can be written as

$$\mathbf{w}^T(\mathbf{x} - \mathbf{x_0}) = 0$$

$$\begin{aligned} \mathbf{w} &= \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}) \\ \mathbf{x}_{0} &= \frac{1}{2}(\boldsymbol{\mu}_{i} + \boldsymbol{\mu}_{j}) - \frac{\ln(P(w_{i})/P(w_{j}))}{(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})^{T} \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})} (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}) \end{aligned}$$

Case 2:
$$\Sigma_i = \Sigma$$

Decision boundaries can be written as

$$\mathbf{w}^T(\mathbf{x}-\mathbf{x_0})=0$$

where

$$\begin{aligned} \mathbf{w} &= \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{\mathbf{i}} - \boldsymbol{\mu}_{\mathbf{j}}) \\ \mathbf{x}_{\mathbf{0}} &= \frac{1}{2}(\boldsymbol{\mu}_{\mathbf{i}} + \boldsymbol{\mu}_{\mathbf{j}}) - \frac{\ln(P(w_i)/P(w_j))}{(\boldsymbol{\mu}_{\mathbf{i}} - \boldsymbol{\mu}_{\mathbf{j}})^T \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{\mathbf{i}} - \boldsymbol{\mu}_{\mathbf{j}})} (\boldsymbol{\mu}_{\mathbf{i}} - \boldsymbol{\mu}_{\mathbf{j}}) \end{aligned}$$

• Hyperplane passes through x_0 but is not necessarily orthogonal to the line between the means.

Figure: Probability densities with equal but asymmetric Gaussian distributions.

Case 3: Σ_i = arbitrary

Discriminant functions are

$$g_i(\mathbf{x}) = \mathbf{x}^T \mathbf{W_i} \mathbf{x} + \mathbf{w_i}^T \mathbf{x} + w_{i0}$$
 (quadratic discriminant)

$$\begin{aligned} \mathbf{W_i} &= -\frac{1}{2} \mathbf{\Sigma_i^{-1}} \\ \mathbf{w_i} &= \mathbf{\Sigma_i^{-1}} \boldsymbol{\mu_i} \\ w_{i0} &= -\frac{1}{2} \boldsymbol{\mu_i^T} \mathbf{\Sigma_i^{-1}} \boldsymbol{\mu_i} - \frac{1}{2} \ln |\mathbf{\Sigma_i}| + \ln P(w_i) \end{aligned}$$

Case 3: Σ_i = arbitrary

Discriminant functions are

$$g_i(\mathbf{x}) = \mathbf{x}^T \mathbf{W_i} \mathbf{x} + \mathbf{w_i}^T \mathbf{x} + w_{i0}$$
 (quadratic discriminant)

$$\begin{aligned} \mathbf{W_i} &= -\frac{1}{2} \mathbf{\Sigma_i^{-1}} \\ \mathbf{w_i} &= \mathbf{\Sigma_i^{-1}} \boldsymbol{\mu_i} \\ w_{i0} &= -\frac{1}{2} \boldsymbol{\mu_i^T} \mathbf{\Sigma_i^{-1}} \boldsymbol{\mu_i} - \frac{1}{2} \ln |\mathbf{\Sigma_i}| + \ln P(w_i) \end{aligned}$$

Case 3: Σ_i = arbitrary

Discriminant functions are

$$g_i(\mathbf{x}) = \mathbf{x}^T \mathbf{W_i} \mathbf{x} + \mathbf{w_i}^T \mathbf{x} + w_{i0}$$
 (quadratic discriminant)

where

$$\begin{aligned} \mathbf{W_i} &= -\frac{1}{2} \mathbf{\Sigma_i^{-1}} \\ \mathbf{w_i} &= \mathbf{\Sigma_i^{-1}} \boldsymbol{\mu_i} \\ w_{i0} &= -\frac{1}{2} \boldsymbol{\mu_i^T} \mathbf{\Sigma_i^{-1}} \boldsymbol{\mu_i} - \frac{1}{2} \ln |\mathbf{\Sigma_i}| + \ln P(w_i) \end{aligned}$$

Decision boundaries are hyperquadrics.

Case 3: Σ_i = arbitrary

Figure: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.

Case 3: Σ_i = arbitrary

Figure: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.

Contents

- - Prior Probabilities
 - Class-conditional Probabilities
 - Posterior Probabilities
 - Probability of Error
- - Conditional Risk
 - Classification
- - Discriminant Functions for the Gaussian Density
- Error Probabilities and Integrals

Error Probabilities and Integrals

Error Probabilities and Integrals

• For the two-category case

$$P(error) = P(\mathbf{x} \in \mathcal{R}_{2}, w_{1}) + P(\mathbf{x} \in \mathcal{R}_{1}, w_{2})$$

$$= P(\mathbf{x} \in \mathcal{R}_{2}|w_{1})P(w_{1}) + P(\mathbf{x} \in \mathcal{R}_{1}|w_{2})P(w_{2})$$

$$= \int_{\mathcal{R}_{2}} p(\mathbf{x}|w_{1}) P(w_{1}) d\mathbf{x} + \int_{\mathcal{R}_{1}} p(\mathbf{x}|w_{2}) P(w_{2}) d\mathbf{x}$$

Error Probabilities and Integrals

• For the multicategory case

$$egin{aligned} P(\textit{error}) &= 1 - P(\textit{correct}) \ &= 1 - \sum_{i=1}^{c} P(\mathbf{x} \in \mathcal{R}_i, w_i) \ &= 1 - \sum_{i=1}^{c} P(\mathbf{x} \in \mathcal{R}_i | w_i) P(w_i) \ &= 1 - \sum_{i=1}^{c} \int_{\mathcal{R}_i} p(\mathbf{x} | w_i) P(w_i) \, d\mathbf{x} \end{aligned}$$

Error Probabilities and Integrals

Figure: Components of the probability of error for equal priors and the non-optimal decision point x^* . The optimal point x_B minimizes the total shaded area and gives the Bayes error rate.

Contents

- - Prior Probabilities
 - Class-conditional Probabilities
 - Posterior Probabilities
 - Probability of Error
- - Conditional Risk
 - Classification
- - Discriminant Functions for the Gaussian Density
- Error Probabilities and Integrals
- B ROC

• Consider the two-category case and define

- Consider the two-category case and define
 - w_1 : target is present

- Consider the two-category case and define
 - w₁: target is present
 - w₂: target is not present

- Consider the two-category case and define
 - w₁: target is present
 - w₂: target is not present

- Consider the two-category case and define
 - w₁: target is present
 - w_2 : target is not present

Table: Confusion matrix.

		Assigned	
		w_1	w_2
True	w_1	correct detection	mis-detection
	<i>W</i> ₂	false alarm	correct rejection

• If we use a parameter (e.g., a threshold) in our decision, the plot of these rates for different values of the parameter is called the *receiver operating characteristic* (ROC) curve.

• To minimize the overall risk, choose the action that minimizes the conditional risk $R(\alpha|\mathbf{x})$.

• To minimize the overall risk, choose the action that minimizes the conditional risk $R(\alpha|\mathbf{x})$.

- To minimize the overall risk, choose the action that minimizes the conditional risk $R(\alpha|\mathbf{x})$.
- To minimize the probability of error in a classification problem, choose the class that maximizes the posterior probability $P(w_i|\mathbf{x})$.

- To minimize the overall risk, choose the action that minimizes the conditional risk $R(\alpha|\mathbf{x})$.
- To minimize the probability of error in a classification problem, choose the class that maximizes the posterior probability $P(w_i|\mathbf{x})$.

- To minimize the overall risk, choose the action that minimizes the conditional risk $R(\alpha|\mathbf{x})$.
- To minimize the probability of error in a classification problem, choose the class that maximizes the posterior probability $P(w_j|\mathbf{x})$.
- If there are different penalties for misclassifying patterns from different classes, the posteriors must be weighted according to such penalties before taking action.

- To minimize the overall risk, choose the action that minimizes the conditional risk $R(\alpha|\mathbf{x})$.
- To minimize the probability of error in a classification problem, choose the class that maximizes the posterior probability $P(w_j|\mathbf{x})$.
- If there are different penalties for misclassifying patterns from different classes, the posteriors must be weighted according to such penalties before taking action.

- To minimize the overall risk, choose the action that minimizes the conditional risk $R(\alpha|\mathbf{x})$.
- To minimize the probability of error in a classification problem, choose the class that maximizes the posterior probability $P(w_j|\mathbf{x})$.
- If there are different penalties for misclassifying patterns from different classes, the posteriors must be weighted according to such penalties before taking action.
- Do not forget that these decisions are the optimal ones under the assumption that the "true" values of the probabilities are known.