EXERCISE SHEET 24

1		_
Ø	×	Pr (X = x)
	Ð	$\left {}^{3}\left({}_{3}X\left(\frac{1}{6}\right) {}^{6}\left(\frac{5}{6}\right) \right) ^{3}=\frac{125}{216}$
	ι	$\int_{1}^{3} \left(\frac{1}{6}\right) \times \left(\frac{5}{6}\right)^{2} = \frac{75}{216} = \frac{25}{72}$
	2	$^{3}\left(_{2}\chi\left(\frac{1}{6}\right)^{2}\chi\left(\frac{5}{6}\right) = \frac{15}{216} = \frac{5}{72}$
	3	$\int_{3}^{3} \left(\frac{1}{6}\right)^{3} \chi \left(\frac{5}{6}\right)^{6} = \frac{1}{216}$

$$\begin{array}{c}
\text{(2)} \text{(1)} \\
\text{Pr(39ink)} = {}^{3} \left(\frac{2}{3}\right)^{3} \chi \left(\frac{1}{3}\right)^{0} \\
= \frac{8}{27}
\end{array}$$

Pr(ot least 2) = Pr(2 sink) + Pr(3 sink)
=
$${}^{3}\left(_{2} \times \left(\frac{2}{3}\right)^{2} \times \left(\frac{1}{3}\right) + \frac{8}{27}\right)$$

= $\frac{20}{27}$

Pr(at most | hit) = Pr(0 hit) + Pr(| hit)
$$= {}^{3} \left({}_{3} \times (0.05)^{0} \times (0.95)^{3} + {}^{3} \left({}_{1} \times (0.05)^{1} \times (0.95)^{2} \right) \right)$$

$$= 0.99 275$$

$$Pr(x > 1) > 0.9$$

 $Pr(x = 0) \le 0.1$
 $(0.5) < 0.1$
BTAE:

$$x=4:(0.5)^4=0.0625$$

The coin has to be tossed at least 4 times

$$9 \times = \text{number of unsuccessful tries}$$

 $9) \text{Pr}(x > 5) = (1-0.1)^6$
 $= 0.5314 \text{ Ludp}$

$$E(x) = \frac{1-0.1}{0.1}$$

$$\sqrt{Var}(x) = \frac{1 - 0.1}{(0.1)^2}$$
= 90
$$\sqrt{90} = 9.4868 < 44p > 44$$

EXERCISE SHEET 24

- 1 \ Selected Question >
- 2) < Selected Question >
- 3 < Selected Question >
- (4) Let X = students have job within 6 months

 Pr(x>9) = "Cq(0.85)"(0.15)" + "Cq(0.85)"(0.15)"

 = 0.544298238

 ≈ 0.544344 dp>
- 5 Kselected question>
- © Let X = successful drop $\Pr(x > 1) > 0.95$ $1 {}^{n}C_{o}\left(\frac{1}{3}\right)^{o}\left(\frac{2}{3}\right)^{n} > 0.95$ $\left(\frac{2}{3}\right)^{n} \leq 0.05$

BTAE:

n	$\left(\frac{2}{3}\right)^n$
6	0.08779149
7	0.0585276
8	0.03901844

- : At least 8 drops,
- 7 LSelected question >
- 18 Let X=milk cartons underfilled

a) i)
$$Pr(X \le 2) = {}^{6}c_{0}(0.3)^{0}(0.7)^{6} + {}^{6}c_{1}(0.3)^{1}(0.7)^{6} + {}^{6}c_{2}(0.3)^{3}(0.7)^{4}$$

= 0.7443 < 40p/

(i)
$$E(x) = 6(0.3)$$

b)
$$Pr(x > 1) > 0.9$$

 $1-c(0.7)(0.3) > 0.9$
 $(0.3) \leq 0.1$
 $n \ln |0.3| \leq \ln |0.1|$
 $n > 1.9126 \leq 1.97$
 $\therefore minimum > 2$

10 Let
$$X = pick loser$$

$$Pr(X=5) = \left(\frac{5}{6}\right)^{5} \left(\frac{1}{6}\right)$$

$$= 0.0670 < 4dp > 7$$

(1) a) Let
$$X = \text{number of tries before pass}$$

$$Pr(X = 2) = \left(1 - \frac{7}{10}\right)^{2} \left(\frac{7}{10}\right)$$

$$= \frac{63}{1000}$$

b)
$$Pr(x<3) = 1 - \left(1 - \frac{7}{10}\right)^3$$

= 0.973\(\alpha\delta\delta\rangle\rangle\rangle

(2) a) Let
$$X=$$
 number of girls born before boy
 $Pr(X=0) = (0.48)^{\circ}(0.62)$
 $= 0.52$

c)
$$Pr(2 < X < 8) = (0.48)^{3} - (0.48)^{8}$$

= 0.1078 $\angle 4dp / \sqrt{2}$

(3) a) Let X = number of rolls before sum 1 $Pr(X=5) = \left(\frac{17}{18}\right)^{6} \left(\frac{1}{18}\right)$ = 0.0417.44 dp

b)
$$p_r(x > 1) = \frac{17}{18}$$

14) Let X = number of exected people that not type A before type A found $Pr(x=3) = (0.6)^3 (0.4)$ = 0.08640 44dp/,

(b) a)
$$E(x) = \frac{l-\rho}{\rho}$$

$$= \frac{\frac{7}{8}}{\frac{1}{8}}$$

$$= 7$$

b)
$$Var(x) = \frac{1-p}{p^2}$$

= $\frac{7}{8}X(8)^2$
= 56

- (6) a) Let X= number of success in first 4 trials $Pr(X=1) = {}^{4}C_{1} (0.8)^{2} (0.2)^{3}$ $= 0.0256 < 4 dp >_{1}$
 - b) Let Z= number of failures before success $Pr(Z=2) = (1-0.8)^2 (0.8)$ = 0.032 $\angle 3dp \gamma_n$

(7) Let
$$X = num$$
 ber of radio valve that are defective.
 $Pr(X=3) = {}^{8}C_{3} (0.12)^{3} (0.88)^{5}$
 $= 0.05107 < 5dp >_{1}$

B let
$$X = number$$
 of defective values
$$Pr(X > 1) = 1 - \left(\frac{{}^{3}C_{0} \times {}^{5}C_{4}}{{}^{3}C_{4}}\right) - \left(\frac{{}^{3}C_{1} \times {}^{5}C_{3}}{{}^{3}C_{4}}\right)$$

$$= 0.500 \ \ \langle 3do \ \ \rangle$$

19 Let
$$X =$$
 number of shots before hit target $Pr(x > 6) = (1 - 0.6)^6$
= 0.004096 $\angle Gdp > 0.004096$

② Let
$$x = number of germinated seeds$$

$$Pr(x > 18) = {}^{\infty}C_{\infty}(0.4)^{18}(0.1)^{2} + {}^{\infty}C_{19}(0.4)^{1}(0.1)^{1} + {}^{\infty}C_{\infty}(0.4)^{20}(0.1)^{1}$$

$$= 0.6769 \text{ Lydp}_{1/2}$$

Let
$$X = number of selected white cubes Let $Y = number selected black cubes$

$$Pr(X=3Y=3) = \frac{{}^{5}C_{3} \times {}^{3}C_{0}}{{}^{3}C_{3}} + \frac{{}^{3}C_{3} \times {}^{5}C_{0}}{{}^{3}C_{3}}$$

$$= \frac{11}{56}$$$$

22 a) Let
$$x = number of rolls before sum 10$$

$$Pr(x=6) = \left(1 - \left(\frac{1}{6}x + \frac{1}{6}\right)x3\right)^5 \left(\frac{1}{12}\right)$$

$$= 0.0539 < 4 dp > 10$$

b)
$$Pr(x > 1) = \left(1 - \frac{1}{12}\right)^{t}$$
$$= \frac{11}{12}$$