LIAISONS NORMALISEES

NOM + caractéristiques associées	Représentation normalisée 3D	Représentations normalisées 2D	Géométrie de la zone de contact		Degrés de libertés		Torseur cinématique associé	Torseur des actions de contact
PIVOT axe		z 2 y c 1	Surface de révolution non cylindrique	$\begin{array}{c} y_1 & \theta & y_2 \\ \hline z_2 & & & \\ \hline z_1 & & & x_1 \\ \hline \end{array}$	1 DDL 1 rotation Paramètre : θ	R T	$ \begin{cases} V_{2/1} \\ $	$\{F_{1\to 2}\} = \begin{cases} X_{12}\vec{x} + Y_{12}\vec{y} + Z_{12}\vec{z} \\ M_{12}\vec{y} + N_{12}\vec{z} \end{cases}$ $P \in (C, \vec{x})$
GLISSIERE direction	2 2 1 x C y	2 Y Z C	Surface cylindrique (sauf cylindre de révolution)	$\begin{array}{c c} & 1 & y_2 \\ \hline z_1 & \lambda_X & z_2 \\ \hline \end{array}$	1 DDL 1 translation Paramètre : λ	R T X 0 1 Y 0 0 Z 0 0	$\{V_{2/1}\} = \begin{cases} \vec{0} \\ u_{21}\vec{x} \end{cases}$ $\forall P$	$\{F_{1\to 2}\} = \begin{cases} Y_{12}\vec{y} + Z_{12}\vec{z} \\ L_{12}\vec{x} + M_{12}\vec{y} + N_{12}\vec{z} \end{cases}$ $\forall P$
PIVOT GLISSANT axe	2 1 2 y	z z z z z z z z z z z z z z z z z z z	Cylindre de révolution	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 DDL 1 translation 1 rotation Paramètre : λ	R T x 1 1 y 0 0 z 0 0	$ \begin{aligned} \{V_{2/1}\} &= \begin{cases} p_{21}\vec{x} \\ u_{21}\vec{x} \end{cases} \\ P &\in (C, \vec{x}) \end{aligned} $	$ \{F_{1\to 2}\} = \begin{cases} Y_{12}\vec{y} + Z_{12}\vec{z} \\ M_{12}\vec{y} + N_{12}\vec{z} \end{cases} $ $ P \in (C, \vec{x}) $
HELICOIDALE axe	2 C 1	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Surface hélicoïdale	$\begin{array}{c c} y_1 & & \\ \hline 1 & & \\ \hline 0_x & & \\ \hline y_2 & & \\ \hline z_1 & & \\ \hline \lambda_x & & \\ \hline \theta_x & & \\ \hline x_1 & & \\ \hline x_2 & & \\ \hline \lambda_{x_2} & & \\ \hline \end{array}$	2 DDL 1 translation 1 rotation liées Paramètres :	R T 1	$\{V_{2/1}\} = \begin{cases} p_{21}\vec{x} \\ u_{21}\vec{x} \end{cases}$ $A \text{vec}: u_{21} = p_{21} \frac{pas}{2\pi}$ (1 inconnue cin.) $P \in (C, \vec{x})$	$ \left\{ F_{1 \to 2} \right\} = \begin{cases} X_{12}\vec{x} + Y_{12}\vec{y} + Z_{12}\vec{z} \\ L_{12}\vec{x} + M_{12}\vec{y} + N_{12}\vec{z} \end{cases} $ Avec: $L_{12} = -X_{12} \frac{pas}{2\pi}$ (5 inconnues stat.) $ P \in (C, \vec{x}) $
ROTULE centre	2 v 1	2	Surface sphérique	$\begin{array}{c} y_1 \\ \theta_x \\ \theta_z \\ y_2 \\ \end{array}$	3 DDL 3 rotations Paramètres :	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\{V_{2/1}\} = \begin{cases} p_{21}\vec{x} + q_{21}\vec{y} + r_{21}\vec{z} \\ \vec{0} \end{cases}$ $P = C$	$\{F_{1\to 2}\} = \begin{cases} X_{12}\vec{x} + Y_{12}\vec{y} + Z_{12}\vec{z} \\ \vec{0} \end{cases}$ $P = C$

NOM + caractéristiques associées	Représentation normalisée 3D	Représentations normalisées 2D	Géométrie de la zone de contact		Degrés de libertés		Torseur cinématique associé	Torseur des actions de contact
SPHERIQUE A DOIGT (ROTULE A DOIGT) Centre	2 y 1 x	z	Surface sphérique + contact ponctuel	$y_1 \mid \theta_x, \theta_z / y_2$ z_2 z_1	2 DDL 2 rotations	R T x 1 0 y 0 0 z 1 0	$\{V_{2/1}\} = \begin{cases} p_{21}\vec{x} + r_{21}\vec{z} \\ \vec{0} \end{cases}$ $P = C$	$\{F_{1\to 2}\} = \begin{cases} X_{12}\vec{x} + Y_{12}\vec{y} + Z_{12}\vec{z} \\ M_{12}\vec{y} \end{cases}$ $P = C$
				x_2 , θ_z , x_1	Paramètres : 3 DDL	θ_x, θ_z	(n,\vec{x})	$X \cdot \vec{x}$
APPUI PLAN Normale	y x 1	yz	Surface plane, ou ligne plane (sauf droite) normales au contact parallèles	$\frac{1}{\sqrt{2}} \frac{2}{\sqrt{2}} \frac{2}{\sqrt{2}$	1 rotation 2 translations	x 1 0 y 0 1	$\{V_{2/1}\} = \begin{cases} p_{21}\vec{x} \\ v_{21}\vec{y} + w_{21}\vec{z} \end{cases}$	$\{F_{1\to 2}\} = \begin{cases} X_{12}\vec{x} \\ M_{12}\vec{y} + N_{12}\vec{z} \end{cases}$
					Paramètres : $\lambda_y, \lambda_z, \theta_x$	z 0 1	$\forall P$	$\forall P$
LINEAIRE ANNULAIRE (SPHERE	2 1	z 2 z z z z z z z z z z z z z z z z z z	Cercle, normales au	$\frac{1}{2} C_1 \qquad \frac{\theta_x \theta_{z_y y_2}}{2}$	4 DDL 3 rotations 1 translation	R T	$\{V_{2/1}\} = \begin{cases} p_{21}\vec{x} + q_{21}\vec{y} + r_{21}\vec{z} \\ u_{21}\vec{x} \end{cases}$	$\{F_{1\to 2}\} = \begin{cases} Y_{12}\vec{y} + Z_{12}\vec{z} \\ \vec{0} \end{cases}$
-CYLINDRE) Axe + centre	× C	1	contact concourantes	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Paramètres :	z 1 0	P = C	P = C
LINEAIRE RECTILIGNE Axe + normale	2 x 1 1 C z	z	Droite	$\begin{array}{c c} x_1 & & \\ \hline & \theta_y & x_2 \\ \hline & C_1 & & \\ \hline & Q_1 & & \\ \hline & Q_2 & & \\ \hline & Q_2 & & \\ \hline & Q_3 & & \\ \hline & Q_4 & & \\ \hline & Q_5 &$	4 DDL 2 rotations 2 translations	R T x 1 0	$\{V_{2/1}\} = \begin{cases} p_{21}\vec{x} + q_{21}\vec{y} \\ v_{21}\vec{y} + w_{21}\vec{z} \end{cases}$	${F_{1 \to 2}} = {X_{12} \vec{x} \choose N_{12} \vec{z}}$
					Paramètres : $\lambda_y, \lambda_z, \theta_x, \theta_y$	z 0 1	$P \in (C, \vec{x}, \vec{y})$	$P \in (C, \vec{x}, \vec{y})$
PONCTUELLE (SPHERE-PLAN) Point + normale	2 C y	$\frac{2}{1}$	Point	$\begin{array}{c c} x_1 \\ \theta_y \theta_z \\ x_2 \\ y_1 \\ \lambda_z \\ \theta_x \end{array}$	5 DDL 3 rotations 2 translations	R T x 1 0 y 1 1	$\left\{ V_{2/1} \right\} = \begin{cases} p_{21}\vec{x} + q_{21}\vec{y} + r_{21}\vec{z} \\ v_{21}\vec{y} + w_{21}\vec{z} \end{cases}$	$\{F_{1\to 2}\} = \begin{cases} X_{12}\vec{x} \\ \vec{0} \end{cases}$
					Paramètres :	z 1 1 $\lambda_y, \lambda_z, \theta_x, \theta_y, \theta_z$	$P \in (C, \vec{x})$	$P \in (C, \vec{x})$
ENCASTREMENT	y 2 x 1	y y z z z			0 DDL	R T	$\{V_{2/1}\} = \begin{cases} \vec{0} \\ \vec{0} \end{cases}$ $\forall P$	$ {F_{1\to 2}} = \begin{cases} X_{12}\vec{x} + Y_{12}\vec{y} + Z_{12}\vec{z} \\ L_{12}\vec{x} + M_{12}\vec{y} + N_{12}\vec{z} \end{cases} $ $ \forall P $