MZNČ: transformace Cochrane a Orcutt (C-O)

- MZNČ při AR(1) autokorelaci náhodných složek, lze zobecnit pro AR(q).
- Varianta Prais-Winstenovy transformace: Opakovaně odhadujeme autokrelační koeficient, zároveň opakovaně transformujeme y a X. Narozdíl od PW transformace ztrácíme první pozorování: období t = 1).
- Založena na konceptu (tvaru) zobecněných diferencí

Tvar zobecněných diferencí (příklad)

Použijeme jednoduchý regresní model:

$$Y_t = \beta_0 + \beta_1 X_t + u_t$$

Vyjádříme tento model pro období: t-1:

$$Y_{t-1} = \beta_0 + \beta_1 X_{t-1} + u_{t-1}$$

Pronásobíme zpožděnou rovnici koeficientem $|\rho|$ < 1:

$$\rho Y_{t-1} = \rho \beta_0 + \rho \beta_1 X_{t-1} + \rho u_{t-1}$$

lacktriangle Odečteme upravenou rovnici od původní rovnice pro Y_t a získáme tvar zobecněných diferencí:

$$(Y_t - \rho Y_{t-1}) = \beta_0 (1 - \rho) + \beta_1 (X_t - \rho X_{t-1}) + (u_t - \rho u_{t-1}),$$

který zjednodušeně zapisujeme takto:

$$Y_t^* = \beta_0^* + \beta_1^* X_t^* + \upsilon_t$$

MZNČ: iterativní transformace metodou C-O:

1. Vyjdeme z jednoduchého regresního modelu

$$Y_t = \beta_0 + \beta_1 X_t + u_t , \qquad (1)$$

jehož odhad pomocí MNČ zapíšeme obvyklým způsobem:

$$Y_t = b_0 + b_1 X_t + e_t$$
, $t = 1, ..., n$ (1a)

2. Pokud DW nebo BG test ukazuje na autokorelaci náhodné složky typu AR(1), použijeme vektor reziduí $\mathbf{e}^T = (e_1, \dots, e_T)$ k odhadu AR(1) funkce (bez úrovňové konstanty). Odhad zapíšeme takto:

$$e_t = \hat{\rho} e_{t-1} + \varepsilon_t$$
 , $t = 2, ..., n ; |\hat{\rho}| < 1$

3. S využitím odhadnutého autoregresního koeficientu $\hat{\rho}$ převedu model (1) na tvar zobecněných diferencí:

$$Y_{t}^{*} = \beta_{0}^{*} + \beta_{1}^{*} X_{t}^{*} + \nu_{t} \qquad , \tag{2}$$

- > generujeme hodnoty $Y_t^* = (Y_t \hat{\rho} Y_{t-1})$ a $X_t^* = (X_t \hat{\rho} X_{t-1})$; $t = 2, \dots, n$.
- > u modelů s více exogenními proměnnými generujeme: $X_{it}^* = (X_{it} \hat{\rho}X_{it-1})$; i = 1,, k (počet exog. proměnných)

Model ve tvaru (2) odhadneme MNČ a získané odhady regresních koeficientů ${b_0}^*=\hat{\beta}_0^*$ a ${b_1}^*=\hat{\beta}_1^*$ použijeme k výpočtu parametrů b_0^{\prime} a b_1^{\prime} pro další iteraci s rovnicí (1a):

$$b_0^{/} = \frac{b_0^*}{(1-\widehat{\rho})}$$
 ; $b_1^{/} = b_1^*$.

4. Takto získané parametry b_0^{\prime} a b_1^{\prime} dosadíme do rovnice (1a):

$$Y_t = b_0^{\prime} + b_1^{\prime} X_t + e_t^{\prime}$$
,

ze které generujeme novou sadu reziduí:

$$e_t^{\prime} = Y_t - (b_0^{\prime} + b_1^{\prime} X_t)$$
.

5. Postupujeme podle kroku 2 a použijeme rezidua e_t^{\prime} pro opakovaný odhad AR(1) vztahu:

$$e_t' = \hat{\hat{\rho}} e_{t-1}' + \varepsilon_t'$$
 , $t = 2, ..., n; |\hat{\hat{\rho}}| < 1$

6. Postup (kroky 2 až 5) opakujeme, dokud jednotlivé odhady ρ nekonvergují, tj. mezi dvěma iteracemi se odhad ρ liší o méně, než je předem stanovený limit.

MZNČ: iterativní transformace metodou C-O

- Konvergence ρ bývá poměrně rychlá (nízký počet iterací).
- **Smysl iterací**: protože při existenci autokorelace AR(1) není MNČ nejlepší odhadovou metodou, první odhad ρ (tj. $\hat{\rho}$) je pouze aproximativní.
- Konvergují-li odhady ρ k nějaké hodnotě $|\rho|$ < 1, potom náhodná složka z modelu zobecněných diferencí (2) /tj.: $\upsilon_t = (u_t \rho u_{t-1})$ / splňuje G.M. předpoklady a odhad je vydatný (min. rozptyl).