Compléments sur les variables aléatoires discrètes

Exercice 1 (HEC 2019, oral sans préparation)

Une urne contient *p* boules numérotées de 1 à *p*, *p* étant un entier naturel non nul. L'entier naturel *n* étant aussi non nul, on considère la variable aléatoire *S* égale au nombre de numéros distincts obtenues en *n* tirages d'une boule de l'urne avec remise. Déterminer l'espérance de *S*.

Exercice 2 (HEC 2018, oral sans préparation)

Une urne contient au départ une boule verte et une boule rouge. On effectue des tirages successifs selon la procédure suivante : on tire une boule, si elle est rouge, on arrête les tirages, si elle est verte on la remet dans l'urne et on ajoute une boule rouge. On note X le nombre de tirages effectués.

- 1. Montrer que X admet une espérance et la calculer.
- 2. Montrer que $\frac{1}{X}$ admet une espérance et la calculer.

Exercice 3 (HEC 2016, oral avec préparation)

Toutes les variables aléatoires qui interviennent dans cet exercice sont supposées définies sur un même espace probabilisé (Ω, \mathcal{A}, P) .

Soit p, q et r trois réels fixés de l'intervalle]0,1[tels que p+q+r=1. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires à valeurs dans $\{-1,0,1\}$ indépendantes et de même loi donnée par :

$$\forall n \in \mathbb{N}^*, P(X_n = 1) = p; P(X_n = -1) = q; P(X_n = 0) = r.$$

On pose, pour tout $n \ge 1$: $Y_n = \prod_{k=1}^n X_k$.

- 1. (a) Pour tout entier $n \ge 1$, préciser $Y_n(\Omega)$ et calculer $P(Y_n = 0)$.
 - (b) Pour tout entier $n \ge 1$, calculer $E(X_n)$ et $E(Y_n)$.
- 2. On pose pour tout entier $n \ge 1$: $p_n = P(Y_n = 1)$.
 - (a) Calculer p_1 et p_2 .
 - (b) Établir une relation de récurrence entre p_n et p_{n+1} .
 - (c) En déduire que pour tout entier $n \ge 1$ on $a : p_n = \frac{(p+q)^n + (p-q)^n}{2}$.
 - (d) Pouvait-on, à l'aide de la question 2, trouver directement la loi de Y_n ?
- 3. (a) Établir l'inégalité : $(p+q)^n > (p-q)^{2n}$. Calculer $V(Y_n)$.
 - (b) Calculer la covariance $Cov(Y_n, Y_{n+1})$.