CheatSheet pour l'Algèbre Linéaire

Yehor KOROTENKO

March 12, 2025

1 Éspaces euclidiens

Proposition 1.1. Endomorphisme $f: E \to E$ un drapeau invariant (i.e $f(E_i) \subset E_i$) \iff Mat(f) triangulaire supérieure

1.1 Produits scalairs et normes

Définition 1.1. Une forme bilinéaire sur E (produit scalair) un espace euclidien est une application:

$$f: E \times E \longrightarrow \mathbb{R}$$

 $(u, v) \longmapsto f(u, v)$

qui vérifie ces propriétés:

1. Bilinéarité:

(a)
$$f(u + \lambda v, w) = B(u, w) + \lambda B(v, w)$$
 avec $u, v, w \in E$ et $\lambda \in \mathbb{R}$

(b)
$$f(u, v + \lambda w) = B(u, v) + \lambda B(v, w)$$
 avec $u, v, w \in E$ et $\lambda \in \mathbb{R}$

2. Symétrie:
$$B(u,v) = B(v,u)$$
 $\forall u,v \in E$

3. **Définie positive**:
$$\forall u \in E, B(u, u) > 0$$

4. **Définie**:
$$B(u,u) = 0 \iff u = 0$$

Remarque. Le produit vectoriel est noté: $\langle .,. \rangle$

Définition 1.2. La norme $\forall X \in E$:

$$||X|| = \sqrt{\langle X, X \rangle}$$

Proposition 1.2. Les formules utiles: (pour $X, Y \in E$)

1.
$$|\langle X, Y \rangle| \le ||X|| \cdot ||Y||$$
 (égalité si X et Y sont colinéaires)

2.
$$||X + Y||^2 = ||X||^2 + 2\langle X, Y \rangle + ||Y||^2$$

3.
$$||X + Y||^2 + ||X - Y||^2 = 2(||X||^2 + ||Y||^2)$$

4.
$$\langle X, Y \rangle = \frac{1}{4} \left(\|X + Y\|^2 - \|X - Y\|^2 \right)$$

1.2 Orthogonalité

Définition 1.3. $u, v \in E$ sont **orthogonaux** si $\langle u, v \rangle = 0$ et on les notes $u \perp v$

Définition 1.4. Orthogonale de A:

$$A^{\perp} = \{ u \in E \mid \langle u, v \rangle = 0 \quad \forall v \in A \}$$

aussi connu comme complement orthogonale.

Proposition 1.3. Si E est un espace euclidien et $A \subset E$ son sous-espace vectoriel, alors:

$$E = A \oplus A^{\perp}$$

i.e tout vecteur $x \in E$ peut s'écrit comme x = e + e' où $e \in A$ et $e' \in A'$.

Proposition 1.4. Si f est une projection orthogonale sur $F \subset E$, alors:

$$f(f(x)) = f(x) \quad \forall x \in E$$

Définition 1.5. La projection orthogonale sur un sous-espace $A \subset E$ est une application:

$$p_F: E \longrightarrow F$$

 $x \longmapsto p_F(x = e + e') = e$

Proposition 1.5. La distance d'un vecteur x à un sous-espace F est:

$$||x - p_F(x)||$$

Définition 1.6. Une isométrie de E est un endomorphisme tel que:

$$\forall x, y \in E, \quad \langle f(x), f(y) \rangle = \langle x, y \rangle$$

de plus,

$$\forall x \in E, \quad \|f(x)\| = \|x\|$$

Proposition 1.6. Si $X \in E$ et (e_1, \ldots, e_n) est une base orthonormale de E, donc:

$$X = \langle X, e_1 \rangle e_1 + \ldots + \langle X, e_n \rangle e_n$$

 $Où \langle X, e_i \rangle$ sont les coordonées dans la base (e_1, \ldots, e_n)

2 Détérminants

2.1 Propriétés les plus improtants

Proposition 2.1. les propriétés de déterminant. Pour cette proposition, on note $det(c_1, \ldots, c_n)$ un déterminant où $\forall i, r_i$ et $\forall i, y_i$ représentent une colonne (ou un vecteur colonne). Et $\forall i, \lambda_i \in \mathbb{R}$.

1. Déterminant de la matrice identité est 1:

$$\det(I_n) = 1$$

2. Déterminant de la matrice du rang 1 est son seul élément:

$$\det([a_{1,1}]) = a_{1,1}$$
 $où a_{1,1} \in \mathbb{R}$

3. Linéarité 1:

$$\det(r_1,\ldots,r_i+y_i,\ldots,r_n) = \det(r_1,\ldots,r_i,\ldots,r_n) + \det(r_1,\ldots,y_i,\ldots,r_n)$$

4. Linéarité 2:

$$\det(r_1,\ldots,\lambda_i r_i,\ldots,r_n) = \lambda_i \det(r_1,\ldots,r_i,\ldots,r_n)$$

C'est pourquoi:

$$\det(\lambda A) = \lambda^n \det(A)$$

5. Mêmes colonnes: Supposons que $i \neq j$ et $c_i = c_j$ alors:

$$\det(c_1,\ldots,c_i,\ldots,c_i,\ldots,c_n)=0$$

S'il y a deux colonnes identiques, alors det est égale à θ .

6. Déplacements des colonnes:

$$\det(c_1, \dots, c_i, \dots, c_j, \dots, c_n) = -\det(c_1, \dots, \underbrace{c_j, \dots, c_i}_{permutation}, \dots, c_n)$$

Autrement dire, une permutation des colonnes change la signe.

7. Détérminant des matrices multipliées: Soient $A, B \in \mathcal{M}_n(\mathbb{R})$

$$\det(AB) = \det(A)\det(B)$$

8. Détérminant d'une matrice transposé: Soit $A \in \mathcal{M}_n(\mathbb{R})$

$$\det(A^T) = \det(A)$$