PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-247891

(43)Date of publication of application : 14.09.2001

(51)Int.CI.

C10M173/02 C10M103/06 C10M107/24 C10M107/28 C10M107/32 C10M107/36 C10M107/42 C10M107/44 C10M125/22 C10M125/26 C10M145/04 C10M145/14 C10M145/16 C10M145/24 C10M145/40 C10M149/10 C10M149/18 // C10N 10:02 C10N 20:00 C10N 30:12 C10N 40:24

C10N 50:02

(21)Application number: 2000-375826

(71)Applicant: NIPPON PARKERIZING CO LTD

SHINKO WIRE CO LTD

(22) Date of filing:

11.12.2000

(72)Inventor: KUMAGAI MANABU

NAGATA HIDEJI

JINBO TETSUO

(30)Priority

Priority number: 11368626

Priority date : 27.12.1999

Priority country: JP

(54) CARRIER COMPOSITION FOR DRAWING METALLIC MATERIAL

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a metallic material drawing composition which is environmentally advantageous because it contains no boron or produces no sludge. SOLUTION: This metallic material drawing composition contains an ingredient (A) which is an alkali metal sulfate, an ingredient (B) which is an alkali metal silicate, and an ingredient (C) which is a water-soluble or water-dispersible polymer, with their weight ratios being (B)/(A)=0.01 to 1 and (C)/[(A)+(B)]=0.01 to 0.5. The water-soluble or water-dispersible polymer may be one or more selected from the group consisting of polyurethane resins, polycarbonates, water-soluble polyolefins, and polyethers.

LEGAL STATUS

[Date of request for examination]

22.11.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

· (12) 公開特許公報 (A)

(11)特許出顧公開番号 特開2001-247891 (P2001-247891A)

(43)公開日 平成13年9月14日(2001.9.14)

(51) Int.Cl.7	識別記号	F I C 1 0 M 173/02			テーマコード(参考)		
C 1 0 M 173/02	ZAB				ZAB	4H104	
103/06		103/06			С		
					E		
107/24		107	7/24				
107/28		107	7/28				
	審查請求	来請求 請求項	の数2	OL	(全 6 頁	最終頁に続く	
(21)出願番号	特願2000-375826(P2000-375826)	(71)出願人	000229	597			
			日本パ	一カラ	イジング株	式会社	
(22)出顧日	平成12年12月11日(2000.12.11)				日本橋1丁		
		(71)出顧人					
(31)優先権主張番号	特顧平11-368626		神網網	線工業	株式会社		
(32)優先日	平成11年12月27日(1999.12.27)				中浜町10番	地1	
(33)優先権主張国	日本 (JP)	(74)上記1名の代理人 100088018		0088018			
			弁理士	三浦	祐治		
		(72)発明者	熊谷	学			
			東京都	中央区	日本橋1-	15-1 日本パー	
			カライ	シング	株式会社内		
						最終頁に続く	

(54) 【発明の名称】 金属材料の引抜き加工用キャリア剤組成物。

(57)【要約】

【課題】 金属材料の引抜き加工に用いる組成物で、ほい素を含有しないため且つスラジ等がないために環境対策上有益な、金属材料の引抜き加工用組成物を提供する。

【解決手段】 (A)成分としてアルカリ金属硫酸塩、

(B) 成分としてアルカリ金属珪酸塩、(C) 成分として水溶性または水分散性高分子を含有し、重量比で(B) / (A) = 0.01~1、(C) / [(A) + (B)] = 0.01~0.5である金属材料の引抜き加工用組成物。上記の水溶性または水分散性高分子はウレタン樹脂、ボリカルボン酸塩、水溶性ボリオレフィン、ボリエーテルからえらばれる1種または2種以上とする事ができる。

【特許請求の範囲】

【請求項1】 (A)成分としてアルカリ金属硫酸塩、 (B) 成分としてアルカリ金属珪酸塩、(C) 成分とし て水溶性または水分散性高分子を含有し、かつ(B)/ (A)の重量比が0、01~1の範囲内、(C)/(A +B)の重量比が0.01~0.5の範囲内にあること を特徴とする金属材料の引抜き加工用キャリア剤組成 物。

1

【請求項2】 前記水溶性または水分散性高分子が、ウ レタン樹脂、ポリカルボン酸塩、水溶性ポリオレフィ ン、ポリエーテル、および多糖類から成る群から選ばれ る少なくとも1種である、請求項1に記載の金属材料の 引抜き加工用キャリア剤組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、鉄鋼、亜鉛めっき 鋼、ステンレス、銅、アルミニウム、チタン等の金属材 料の引抜き加工用キャリア剤に関するものである。より 詳しく述べるならば、本発明は化学反応を伴わず、スプ レーまたは浸漬といった物理的方法によって被加工物で 20 ある金属材料表面にキャリア性に優れる皮膜を形成で き、かつ反応に伴う廃棄物、廃液が生じないような環境 対策上も優れた金属材料の引抜き加工用キャリア剤組成 物に関するものである。

[0002]

【従来の技術】従来、金属材料の引抜き加工において は、被加工材と工具との焼き付き、かじりの防止、さら には潤滑剤の保持、導入性向上を目的として金属材料表 面ににキャリア皮膜を形成するための処理が施されてい る。このキャリア処理は化学反応により皮膜を生成する 30 方法と、物理的に直接付着させる方法の2つに分けられ る。通常キャリア処理を行った後の材料は、金属石けん や消石灰を主成分とする潤滑剤や油、ワックスを加工前 に塗布し引抜き加工が行われている。

【0003】キャリア皮膜の生成において化学反応を用 いる方法は、化成処理法と呼ばれるものであり、りん酸 亜鉛、りん酸カルシウム系皮膜を形成させるりん酸塩処 理またはしゅう酸鉄皮膜を形成させるしゅう酸塩処理等 で金属表面にキャリアとしての役割を有する皮膜を生成 させる。この方法は、材料との密着性が良く耐焼き付き 40 性が非常に優れており、鍛造、伸管、伸線などの塑性加 工分野の広い範囲で使用されている。

【0004】しかしながら、これらの化成処理法は化学 反応によって生成する大量のスラッジが産業廃棄物とな る事が避けられず、また化成処理後の水洗が必要なこと から多種の重金属イオン、燐酸イオン、硝酸イオン、フ ッ素イオン等を含む廃水が発生し、これらの処理に多く の労力と費用がかかる。

【0005】一方、化学反応を伴わずに物理的にキャリ

するものが一般的である。ボラックスは材料との密着性 も良く、液管理が簡便なことより広く使用されている が、皮膜の吸湿による潤滑性能低下や、耐食性が化成処 理皮膜より劣るといった問題点がある。さらには、湖沼 付近では廃水のほう素規制の動きにより使用が制限され る場合がある。また、石灰石けんによる処理も広く行わ れているが、潤滑性、耐食性、粉塵発生などの問題をか かえている。

【0006】とれらの問題点を解決する技術として特開 10 平10-36876号公報にはアルカリ金属硫酸塩、ア ルカリ金属ホウ酸塩を必須成分とし、これに任意成分と して脂肪酸アルカリ金属塩、脂肪酸アルカリ土類金属 塩、固体潤滑剤、水溶性熱可塑性樹脂を配合した潤滑剤 が開示されている。との組成物は潤滑性を保持しつつ、 不揮発分とpHの調整のみで液管理ができ、廃液も生じ ないものであるが、ほう素を含んでいる点や潤滑性が不 十分という問題点がある。したがって現状ではほう素を 含まず環境面でも問題がなく、かつ密着性、潤滑性、耐 食性とも優れた金属材料の引抜き加工用キャリア剤組成 物は得られていないのである。

[0007]

【発明が解決しようとする課題】本発明は前記従来技術 の抱える問題点を解決するためのものであって、金属材 料表面に密着性、潤滑性、耐食性とも優れたキャリア皮 膜を形成させ、かつほう素を含まず廃棄物処理も容易 で、環境対策面においても有益な金属材料の引抜き加工 用キャリア剤組成物を提供する事を目的とするものであ

[0008]

【課題を解決するための手段】本発明者らは上記課題を 解決するための手段についてに鋭意検討を行った結果、 アルカリ金属硫酸塩とアルカリ金属珪酸塩と水溶性また は水分散性高分子とを特定比率で含む水溶液に、金属材 料を浸漬乾燥させる事により、ほう素を含まず、優れた 潤滑性能を持つ強靭な皮膜が形成されることを新たに見 出し、本発明を完成するに至った。

【0009】すなわち、本発明の金属材料の引抜き加工 用キャリア剤組成物は、(A)成分としてアルカリ金属 硫酸塩、(B)成分としてアルカリ金属珪酸塩、(C) 成分として水溶性または水分散性高分子を含有し、かつ (B)/(A)の重量比が0.01~1の範囲内、

(C)/(A+B)の重量比が0、01~0、5の範囲 内にあることを特徴とするものである。

【0010】前記水溶性または水分散性高分子は、ウレ タン樹脂、ポリカルボン酸塩、水溶性ポリオレフィン ポリエーテル及び多糖類から成る群から選ばれる少なく とも1種であるのが好ましい。

[0011]

【作用】以下、本発明の内容をより詳細に説明する。本 ア皮膜を付着させる方法として、ボラックスを主成分と 50 発明の金属材料の引抜き加工用キャリア剤に使用される

(A) 成分のアルカリ金属硫酸塩は組成に特に限定はな くNa,SO,、K,SO,、NaKSO,等が使用でき る。また、これらの混合物も使用できる。

【0012】また、本発明に使用される(B)成分のア ルカリ金属珪酸塩も特に限定はなく、珪酸リチウム、珪 酸カリウム、珪酸ナトリウム、オルソ珪酸ナトリウム、 メタ珪酸ナトリウム、水ガラス等が使用できる。また、 これらの混合物も使用できる。

【0013】 ここで、前記(A) アルカリ金属硫酸塩と (B) アルカリ金属珪酸塩の重量比(B) / (A) は 0.01~1の範囲内にあるのが好ましく、より好まし くは、0.05~0.7である。(A)成分に対する、 (B) 成分の重量比(B) / (A) が0.01未満で は、皮膜硬度が低くなり、耐加重性が悪くなるため金属 材料と工具との焼き付きが発生しやすくなる。さらにと の場合、耐食性も著しく低下する。逆に(B)/(A) が1を超えると皮膜硬度が高くなり過ぎ、皮膜自体が工 具や材料を傷付けやすくなるので好ましくない。

【0014】次に本発明に使用される(C)成分の水溶 レタン樹脂、ポリカルボン酸塩、水溶性ポリオレフィ ン、ボリエーテルおよび多糖類から成る群から選ばれる 少なくとも1種が好ましい。

【0015】本発明に使用されるウレタン樹脂としては 水性ウレタンが好ましく、一般に入手可能なもののどれ を用いても良く、ポリエステルポリオール、ポリオー ル、ポリイソシアネートを原料とする水性ウレタンを用 いることができる。

【0016】本発明に使用されるポリカルボン酸塩は、 一般に入手可能なものならどれを用いても良いが、アク 30 を添加しても構わない。 リル酸、メタクリル酸、マレイン酸、イタコン酸等の重 合物またはこれらをモノマーに含む共重合物およびこれ らの誘導体およびカリウム塩、ナトリウム塩、アンモニ ウム塩等を用いるのが好ましい。

【0017】本発明に用いられる水溶性ポリオレフィン も、一般的に入手可能なものならどれを用いても良い が、ボリビニルアルコール、ボリビニルピロリドンおよ びこれらの誘導体を用いるのが好ましい。

【0018】本発明に用いられるボリエーテルは、一般 に入手可能なものならどれを用いても良いが、ポリエチ 40 レングリコール、ポリプロピレングリコールおよびこれ らの誘導体を用いるのが好ましい。

【0019】本発明に使用される多糖類は、一般的に入 手可能なものならどれを用いても良いが、メチルセルロ ース、メチルスターチ、メチルグアーガム、エチルセル ロース、エチルスターチ、エチルグアーガム、カルボキ シメチルセルロース、カルボキシメチルスターチ、カル ボキシメチルグアーガム、カルボキシメチルヒドロキシ エチルセルロース、カルボキシメチルヒドロキシエチル スターチ、カルボキシメチルヒドロキシエチルグアーガ 50 着していない場合は省いてもかまわない。これらの前処

ム、ヒドロキシエチルセルロース、ヒドロキシエチルス ターチ、ヒドロキシエチルグアーガム、ヒドロキシエチ ルメチルセルロース、ヒドロキシエチルメチルスター チ、ヒドロキシエチルメチルグアーガム、ヒドロキシプ ロビルセルロース、ヒドロキシプロビルスターチ、ヒド ロキシプロピルグアーガム、ヒドロキシプロピルメチル セルロース、ヒドロキシプロピルメチルスターチ、ヒド ロキシプロピルメチルグアーガム、トリカルボキシスタ ーチ、トリカルボキシアミロース、トリカルボキシペク 10 チン、キサンタンガム、スルホ酢酸-β1.3グルカン 等の群から選ばれる少なくとも1種を用いるのが好まし

【0020】(C)成分の配合比は(C)/(A+B) の重量比として0.01~0、5であることが好まし い。より好ましくは0.05~0.2である。この重量 比(C)/(A+B)がO.O 1未満では、処理後の乾 燥工程における皮膜生成の過程において、アルカリ金属 硫酸塩の結晶が大きく成長しすぎ、潤滑剤の保持、導入 性が悪くなる。また重量比 (C) / (A+B) が0.5 性または水分散性の高分子化合物も特に限定はないがウ 20 を超えた場合、皮膜の密着性が低下し、焼き付きが発生 しやすくなる。さらにこの場合、吸湿性も著しく増加す る。

> 【0021】本発明の金属材料の引抜き加工用キャリア 剤組成物には、防錆性向上のために一般的に用いられる 亜硝酸塩、モリブデン酸塩、アルカノールアミン、複素 環アミン類の防錆添加剤を添加しても構わない。

> 【0022】本発明の金属材料のの引抜き加工用キャリ ア剤組成物には、液安定性向上のために一般的に用いら れる酒石酸塩、グルコン酸塩、EDTA等のキレート剤

> 【0023】本発明の金属材料の引抜き加工用キャリア 剤組成物には、特に金属表面の拡大率が高い様な加工条 件において耐焼付き性向上のため、一般的に用いられる 硫黄系、りん系、塩素等の極圧添加剤を添加しても構わ ない。

> 【0024】本発明の金属材料の引抜き加工用キャリア 剤組成物には、対象金属表面の濡れ性向上のために、一 般的に用いられる非イオン性界面活性剤、陰イオン性界 面活性剤、両性界面活性剤から選ばれる少なくとも1種 を添加しても構わない。

> 【0025】本発明の金属材料の引抜き加工用キャリア 組成物は、皮膜を形成させる際に化学反応を利用しない ので、対象素材は特に限定されないが、実用的には鉄 鋼、ステンレス、銅、アルミニウム、チタン等の金属ま たはその合金を引抜き加工する際に用いることが好まし い。本発明のキャリア剤組成物は、金属材料の表面を脱 脂(通常のアルカリ脱脂剤が使用できる)、水洗、酸 洗、水洗による前処理を行い、表面を清浄にした後に付 着させるのが好ましい。なお、酸洗は酸化スケールが付

理は常法により行えば良い。

【0026】本発明の金属材料の引抜き加工様キャリア 剤組成物は、金属材料上に皮膜を形成させる際に化学反 応を利用しないので、化成スラッジのような廃棄物を生 じない。このため、酸、アルカリを大量に持ち込まない 限り液の廃棄更新、廃棄物の除去等を必要とせず、また 成分変動もほとんど起こさないため、浴の管理は持ち出 し分の補給によって行えばよい。

【0027】本発明のキャリア剤組成物は、浸漬、スプ 布は金属表面が充分にキャリア剤組成物に覆われれば良 く、塗布する温度や時間に特に制限は無い。塗布後キャ リア剤組成物を乾燥する必要がある。浴の温度及び乾燥 温度は常温でもかまわないが、より効率よく乾燥するた めには浴の温度50~80℃、乾燥温度60~120℃ 位にするのが好ましい。なお、金属材料上に形成するキ ャリア皮膜の付着量も特に制限はないが、潤滑性、密着 性、耐食性を考慮して3~20g/m゚とするのが好ま * *しい。より好ましくは $5\sim15\,\mathrm{g/m}$ である。

[0028]

【実施例1】本発明の実施例を比較例と共に挙げ、その 効果をより具体的に説明する。実施例1~9、比較例1 ~3表1に示す割合でキャリア剤組成物を調製した。調 製は硫酸塩、珪酸塩、および水溶性または水分散性高分 子を水に溶解または分散した。

【0029】さらに、実施例1~9及び比較例1~3に 示すキャリア剤組成物を60℃に加温し、試験材(材 レーや流しかけ等の常法により金属材料に塗布する。塗 10 質:S45C球状焼鈍材 直径3mmφ、長さ20mの 線材)を30秒浸漬した後、100℃で30分乾燥し、 キャリア処理を行った。

> 【0030】比較例4~6(石灰石けん、ボラックス、 りん酸塩)現行キャリア剤を一般的な条件にて処理を行

【0031】なお伸線用試験材は、キャリア剤組成物塗 布に先立ち以下の前処理工程(1)~(4)を行った。

(1)アルカリ脱脂:日本パーカライジング製 ファインクリーサ4360(登録商標)

濃度20g/L、温度60℃、浸漬10分)

(2) 水洗

:常温の水道水 浸漬 60秒

(3)酸洗

:塩酸、濃度17.5重量%、温度RT、浸漬時間10分

(4) 水洗

: 常温の水道水 浸漬 60秒

【0032】伸線試験は単頭伸線機を使用し次の工程で 連続伸線加工を行った。

素線:3.00mmφ→1伸:2.76mm→2伸:2.40mm→3伸: 2.17mm→4伸:1.90mm5伸:1.72mm ϕ →6伸:1.51mm 尚、伸線の各バスごとに市販のカルシウム系乾式バウダ ーを使用した。

m²)は5%クロム酸を75℃に加温、15分浸漬しキ ャリア皮膜を剥離、前後の重量差より算出した。潤滑性 の評価は6連伸後の引抜き荷重、皮膜残存量により評価 した。耐食性は素線にキャリア処理を行い、恒温高湿槽 温度30℃、相対湿度80%の環境下で4週間放置後、

材料表面に於ける錆発生面積%を評価した。

【0034】表1から、本発明の金属材料の引抜き加工 用キャリア組成物を用いた実施例1~9は本発明の構成 要件を満たさない比較例1~3と比べ、6連伸後の引き 抜き荷重も低く、残存付着量も多くなっており、明らか に潤滑性において優れていることが判る。また実施例1 【0033】キャリア皮膜付着量及び残存付着量(g/ 30 ~9は、現行処理である比較例4~6と比べても遜色な い性能を有することが示されている。一方、耐食性に関 しても比較例4、5と比べ明らかに向上しており、現行 処理の代替に十分なりうると考えられる。

[0035]

【表1】

(4) (4) (4) (4) (4) (4) (5) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7

架構図 1~9及び比較図 1~3には配描浴台割とした阻挡機)よ。0.5wt & 凝却

ポリカルボン酸塩:ポリアクリル酸ン一ダ分子量40000 ウレタン:ポリエチレングリコール分子量1000とヘキサメチレンジインシアネートの重合物(分子量5000以上)

1 K 珪酸カリウム:SiO₂/K₂O モルはか 0.45~0.55 石灰石けん:LUB CAO1(日本パーカライジング製) 250gル 60°C 5分

ボラックス:PK-267 (パーカーフーネ゚レーション製) 150g/L 80'C 5分

りん酸塩処理: りん酸塩 PB421WD (日本パーカライジング製)

10分

3.08 T/808

[0036]

【実施例2】量産伸線テストは、連続伸線機を使用し連 続伸線加工を行った。

材料:Si.Cr鋼線(9254)

原線:ロッド(φ8.00mm)→皮削り(φ7.40mm)→熱処

理→インラインコーティング

伸線パススケジュール: (φ7.40mm)→ 6.40mm → 5.60mm → 5.00mm → 4.50mm→ 異形線φ4.07mm(丸線換算) →

異形線φ3.67mm(丸線換算)

多糖類:セルロース1重数体

【0037】表2の実施例ではキャリア剤として表1の 実施例6のものを用いた。また表2の比較例では表1の 比較例の5及び6を用いた。尚各バス毎の伸線用潤滑剤 はカルシウム系乾式パウダーである。

[0038]

【表2】

4	0
J	LV

		コーティング	コーティング	ダイス寿命
		付養量(g/m²)	潤滑剤残量(g/m²)	(平均)
実施例		9~12	4~6	20トン以上
比較例	ポラックス	15~20	2~3	4トン
	りん酸亜鉛	6~8	2~4	20トン以上

【0039】以上の結果より、本コーティングはボラッ クスより格段に伸線性が改善され、りん酸亜鉛と比べて も遜色ない伸線性を有していると判断できる。耐食性に ついてもボラックスより向上しており、量産使用におい 10 処理で化成処理に匹敵する高い潤滑性及び耐食性を有す ても問題なく使用できる。また、ボラックスのように排 水にほう素を含まず、りん酸亜鉛のようにスラッジ等の 廃棄物が生じないため、排水、廃棄物処理等の環境問 題、作業者の負荷軽減にも非常に有益である。 *

* [0040]

【発明の効果】以上の説明から明らかなように、本発明 の金属材料の引抜き加工用キャリア剤組成物は、簡便な る皮膜を生成する事が出来る。また、化成スラッジのよ うな廃棄物は生じず、ほう素等を含まないことから排水 処理性も良いため作業性、環境対策面でも利用者にとっ て有益である。

7	17	٠,	L	~	_	33	σ	結	35
_	ш	_	١,	٠,	_	~	v.	/ 15.77	7

(51)Int.Cl	. ⁷	FΙ	テーマコード(参考)
C10M	I 107/32	C 1 0 M 107/32	
	107/36	107/36	
•	107/42	107/42	
	107/44	107/44	
	125/22	125 /22	
	125/26	125/26	
	145/04	145/04	
	145/14	145/14	
	145/16	145/16	
	145/24	145/24	
	145/40	145/40	
	149/10	149/10	
	149/18	149/18	
// C10N	10:02	C 1 0 N 10:02	
	20:00	20:00	Z
	30:12	30:12	
	40:24	40:24	Z
	50:02	50:02	
(72)発明者	永田 秀二	Fターム(参考) 4h	1104 AA18A AA18C AA21A AA21C
	東京都中央区日本橋 1 - 15- 1	日本バー	CB02A CB02C CB08A CB08C
	カライジング株式会社内		CB09A CB09C CB14A CB14C
(72)発明者	神保 鉄男		CB19A CB19C CE05A CE05C
	兵庫県尼崎市浜町10番地1 神錦	獨線工業	CE13A CE13C EA17A EA17C
	株式会社内		FA01 LA06 PA23 QA01 QA08