Alma 9 Validation

Dark Photon Samples

January 26, 2025

Pawan Johnson

Prof. Carl Gwilliam

Dr. Monika Weilers

Prof. Monica D'Onofrio

University of Liverpool

Introduction

- Validate Alma9 version of Calypso for the track variables
- For the Dark-Photon Samples
- Specifically to understand the difference in two track reconstruction when they are close by

Data Description

- We want to look at Dark Photon decays to two tracks.
- Data samples used are /eos/experiment/faser/data0/sim/mc24/foresee/1100{33,38,51}/

```
110033 : Mass = 10 MeV, epsilon = 1E-5
110038 : Mass = 100 MeV, epsilon = 1E-5
```

- 110051 : Mass = 10 MeV, epsilon = 1E-4
- ALMA 9 samples : ./phy/s0008-dev/
- CENTOS 7 samples: ./phy/s0008-r0019/
- Chaning them together gives a total of 60k events.
- Justification for chaining given diff mass/couplings?

Overview of Validation

- Begin with a sanity check by looking at the TrackParameters
 - longTracks
 - Track Chi2 / Track Chi2/DoF
 - Track nDoF
 - Track Charge
 - ...
- Quantify separation between tracks
- Compare track reconstruction as a function of above
- Definition of Efficiency?
- Residues?

Distribution of Track Parameters

- longTracks
- Track Propagation Error
- Track Chi2
- Track Chi2perDoF
- Track nDoF
- Track charge
- Track nLayers

Distribution of long Tracks

Distribution of longTracks

Distribution of TrackPropagationError [SKIP]

Distribution of TrackChi2

Distribution of TrackChi2perDoF

Distribution of TrackNDoF

Distribution of Track Charge

Distribution of Track nLayers

Comments on Track Parameters

- longTracks 5 is a mess, But not particularly useful
- Track Propagation Error is a easily interpretable function
- Track Chi2 changed a lot, much higher peak and lower tail in AL9, which is good.
- TrackNDoF shows good agreement except betweeen 3-5
- Track Charge in AL9 is slightly elevated, not sure why
- Track nLayers is also decent agreement except at 5-8

Quantifying Separation

Possible Track Separation Variables

- ΔR_0 : Separation between the electron and positron at the first tracking station in the x-y plane
- ΔX_0 : Same as above but only in x direction
- ΔY_0 : Same as above but only in y direction
- θ_0 : Angle between the line connection decay vertex to the two tracks at the first tracking station
- $\Delta R_P = \sqrt{\Delta \eta^2 + \Delta \phi^2}$: Momentum space separation between electron and positron

Position Based Separation variables

ADD CODE SNIPPET

Track Separation in terms of Angle

ADD CODE SNIPPET

Track Separation in η - ϕ Space

Figure: Angle between Momenta

Code Sinppets

TODO: Fix listing here

Distribution of DeltaR0

Distribution of DeltaR0 [Truth Level]

Distribution of DeltaX0

Distribution of DeltaX0 [Truth Level]

Distribution of DeltaY0

Distribution of DeltaY0 [Truth Level]

Comments on Position Based Separation

- Particle predominantly separated in the y-direction
 - Comes from the magentic field's deflection
 - Positron deflected upwards, electron downwards leading asymmetry in DeltaY0 plot
 - DeltaX0 looks symmetric
 - DeltaY0 can be approximated to DeltaR0
- In general Nevents fall off as sepration increases [characteristic of DP Decay?]
- Similar features seen in overlay plot but different in scale
- We can just look at the distributions using DeltaR0 as our primary variable for position based separation.

Overlay Plot

Figure: Overlay plot from Search for dark photons with the FASER detector at the LHC

Distribution of Theta0

Distribution of Theta0 [Truth Level]

Distribution of DeltaRP

Distribution of DeltaRP [Truth Level]

Comments on Angle Based Separation

- Theta0 is a variable to separate the tracks but falls off reapidly
- DeltaRP shows a relatively flat distribution
- To calculate the separation variables the MC level information is used
 - Same across AL9 and CENTOS7
 - More robust
 - No uncertainity from the tracking itself

Events grouped by longTracks vs DeltaR0

Events grouped by longTracks vs DeltaY0 [SKIP]

Events grouped by longTracks vs DeltaX0 [SKIP]

Events grouped by longTracks vs Theta0

Events grouped by longTracks vs DeltaRP

Comments on longTrack grouped Plots

- Good agreement between ALMA9 and CENTOS7
- Events with > 2 longTrack fall most rapidly [nothing past 10 mm]
- = 2 longTracks decay less rapidly [nothing past 30 mm]
- = 1 longTracks is relatively flat
- ullet = 0 same as above Not sure how to interpret
- In the plots where longTracks $\leq 1~\text{AL9}$ performs bad at low separation
- Maybe logscale in x?

Alternative Efficiency Metrics

In General

- One Track Event ⇒ NOT reconstructed
- ullet Two Track event + Opposite charges \implies reconstructed
- ullet More than two track \Longrightarrow complicated

Some Possible Eff. Metrics

- Number of Events with ≥ 2 longTracks [good proxy]
- (Can add charge identification to above but not necessary)
- MC Based Effi. [matching reconstructed to truth level data]

Definition of Fiducial

Before we define the efficiency we need to account for the detector acceptance by requiring the particle to be Fiducial.

Based on reconstructed data [from Sinead]

- Requires *longTracks* == 2
- Track_r_atMaxRadius < 100
- $t_{st}\{1, 2, 3\}_r < 100$

Based on truth level data

- $truthd0_r[\{1, 2, 3\}] < 100$
- $truthd1_r[\{1, 2, 3\}] < 100$
- Does not need the 2track cut while maintaining that particles of interest were Fiducial, While also being independent of ALMA9 or CENTOS7

Notes:

Where are NaNs comming from at the truthlevel?

How do Fiducial Cuts perform?

Selection Step	Pass	All	Effi. (%)	Cum. Effi. (%)
2LongTracks	37807	60000	63.01	63.01
Opposite Charge	32427	37807	85.77	54.04
MaxRadius < 100	31489	32427	97.11	52.48
$t_{st}1_{r} < 100$	31471	31489	99.94	52.45
t_st2_r < 100	31458	31471	99.96	52.43
t_st3_r < 100	31383	31458	99.76	52.31

Table: Efficiencies and cumulative efficiencies at various selection steps. [ALMA9]

Selection Step	Pass	All	Effi. (%)	Cum. Effi. (%)
2LongTracks	36746	60000	61.24	61.24
Opposite Charge	30375	36746	82.66	50.62
MaxRadius < 100	29520	30375	97.19	49.20
$t_{-}st1_{-}r < 100$	29498	29520	99.93	49.16
t_st2_r < 100	29491	29498	99.98	49.15
t_st3_r < 100	29415	29491	99.74	49.03

Table: Efficiencies and cumulative efficiencies at various selection steps.[CENTOS7]

ALMA9 performs better over most of the cuts. Using this fiducial cuts throws out 50% of the data.

Cuts. Contd.

Selection Step	Pass	All	Effi. (%)	Cum. Effi. (%)
$truthd0_st1_r < 100$	59634	60000	99.39	99.39
$truthd0_st2_r < 100$	58429	59634	97.98	97.38
$truthd0_st3_r < 100$	56703	58429	97.05	94.50

Table: Efficiencies and cumulative efficiencies for truth-level selection steps. [ALMA9]

Selection Step	Pass	All	Effi. (%)	Cum. Effi. (%)
$truthd0_st1_r < 100$	59634	60000	99.39	99.39
$truthd0_st2_r < 100$	58429	59634	97.98	97.38
$truthd0_st3_r < 100$	56703	58429	97.05	94.50

Table: Efficiencies and cumulative efficiencies for truth-level selection steps. [CENTOS7]

>= 2 Track Efficiency as a function of DeltaR0

>= 2 Track Efficiency as a function of DeltaX0 [SKIP]

>= 2 Track Efficiency as a function of DeltaY0 [SKIP]

>= 2 Track Efficiency as a function of Theta0

NEvents with longTracks>=2

>= 2 Track Efficiency as a function of DeltaRP

Comments on 2Track Efficiency

- Good agreement between ALMA9 and CENTOS7
- Minor bump at very low separation (\approx 2-6 mm) for ALMA9

A More Robust Efficiency Metric [MC Based]

- Our interest is only in the primary two tracks from e^+e^-
- For acceptance: Truth Position of $e^+e^- < 100$
- Identify the two primary tracks
 - Wanted to use t_pdg_parent . . .
 - Find closest to truth (by position and momenta)...
 - not trivial what is the margin of allowed error?
 - Highest momenta tracks?
 - Best approach is to use t_truthHitRatio + PID
- Can further quantify the "goodness" of the reconstructed primary tracks

Distribution of t_pdg_parent

t_pdg_parent	AL9	SL7
-11	2	0
0	2	0
22	2610	2397
32	115877	112809

Table: Count of t_pdg_parent

All particles are daughters of the Dark Photon?

Comments on Data in NTuples [SKIP]

- Need to add newly introducted variables to twiki.
- t_st0_x, y, z are filled with NaNs, We donot use/store station0 vals?
- t_pdg_parent ???
- truthParticleMatchedTracks What exactly is this column.?

Backup