Numerical Differentiation

The method of obtaining the derivatives of a function using a numerical technique is known as numerical differentiation.

The choice of the formula is the same as incase of interpolation problems.

Scan or click here for more resources

Numerical Differentiation

FORMULAE FOR DERIVATIVES

(1) Newton's forward difference interpolation formula is

$$y = y_0 + u \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \dots$$
 (1)

where
$$u = \frac{x-a}{h}$$
 (2)

Differentiating eqn. (1) with respect to u, we get

$$\frac{dy}{du} = \Delta y_0 + \frac{2u - 1}{2} \Delta^2 y_0 + \frac{3u^2 - 6u + 2}{6} \Delta^3 y_0 + \dots$$
 (3)

Differentiating eqn. (2) with respect to x, we get

$$\frac{du}{dx} = \frac{1}{h} \tag{4}$$

We know that

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{h} \left[\Delta y_0 + \left(\frac{2u - 1}{2} \right) \Delta^2 y_0 + \left(\frac{3u^2 - 6u + 2}{6} \right) \Delta^3 y_0 + \dots \right]$$
 (5)

Expression (5) provides the value of $\frac{dy}{dx}$ at any x which is not tabulated.

Formula (5) becomes simple for tabulated values of x, in particular when x = a and u = 0

Putting u = 0 in (5), we get

$$\left(\frac{dy}{dx}\right)_{x=a} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \frac{1}{5} \Delta^5 y_0 - \dots \right]$$
(6)

Differentiating eqn. (5) with respect to x, we get

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{du} \left(\frac{dy}{dx} \right) \frac{du}{dx}$$

$$= \frac{1}{h} \left[\Delta^2 y_0 + (u - 1) \Delta^3 y_0 + \left(\frac{6u^2 - 18u + 11}{12} \right) \Delta^4 y_0 + \dots \right] \frac{1}{h}$$

$$= \frac{1}{h^2} \left[\Delta^2 y_0 + (u - 1) \Delta^3 y_0 + \left(\frac{6u^2 - 18u + 11}{12} \right) \Delta^4 y_0 + \dots \right]$$
 (7)

Putting u = 0 in (7), we get

$$\left(\frac{d^2y}{dx^2}\right)_{x=a} = \frac{1}{h^2} \left(\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \dots\right)$$
 (8)

Newton's backward difference interpolation formula is

$$y = y_n + u \nabla y_n + \frac{u(u+1)}{2!} \nabla^2 y_n + \frac{u(u+1)(u+2)}{3!} \nabla^3 y_n + \dots$$
 (10)

where
$$u = \frac{x - x_n}{h}$$
 (11)

$$\left(\frac{dy}{dx}\right)_{x=x_n} = \frac{1}{h} \left(\nabla y_n + \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^3 y_n + \frac{1}{4} \nabla^4 y_n + \dots\right)$$

$$\left(\frac{d^{2}y}{dx^{2}}\right)_{x=x_{n}} = \frac{1}{h^{2}} \left(\nabla^{2}y_{n} + \nabla^{3}y_{n} + \frac{11}{12}\nabla^{4}y_{n} + \dots\right)$$

Similarly, we get

$$\left(\frac{d^3y}{dx^3}\right)_{x=x_n} = \frac{1}{h^3} \left(\nabla^3 y_n + \frac{3}{2} \nabla^4 y_n + \dots\right)$$

and so on.

Stirling's central difference interpolation formula is

$$y = y_0 + \frac{u}{1!} \left(\frac{\Delta y_0 + \Delta y_{-1}}{2} \right) + \frac{u^2}{2!} \Delta^2 y_{-1} + \frac{u(u^2 - 1^2)}{3!} \left(\frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2} \right)$$

$$+\frac{u^{2}(u^{2}-1^{2})}{4!}\Delta^{4}y_{-2} + \frac{u(u^{2}-1^{2})(u^{2}-2^{2})}{5!} \left(\frac{\Delta^{5}y_{-2} + \Delta^{5}y_{-3}}{2}\right) + \dots$$
(19)

where

$$u = \frac{x - a}{h} \tag{20}$$

$$\left[\left(\frac{dy}{dx} \right)_{x=a} = \frac{1}{h} \left[\left(\frac{\Delta y_0 + \Delta y_{-1}}{2} \right) - \frac{1}{6} \left(\frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2} \right) + \frac{1}{30} \left(\frac{\Delta^5 y_{-2} + \Delta^5 y_{-3}}{2} \right) - \dots \right] \right]$$

$$\left(\frac{d^2y}{dx^2}\right)_{x=a} = \frac{1}{h^2} \left(\Delta^2 y_{-1} - \frac{1}{12} \Delta^4 y_{-2} + \frac{1}{90} \Delta^6 y_{-3} - \dots\right)$$

Bessel's central difference interpolation formula is

$$y = \left(\frac{y_0 + y_1}{2}\right) + \left(u - \frac{1}{2}\right) \Delta y_0 + \frac{u(u - 1)}{2!} \left(\frac{\Delta^2 y_{-1} + \Delta^2 y_0}{2}\right)$$

$$+ \frac{u(u - 1)\left(u - \frac{1}{2}\right)}{3!} \Delta^3 y_{-1} + \frac{(u + 1)u(u - 1)(u - 2)}{4!} \left(\frac{\Delta^4 y_{-2} + \Delta^4 y_{-1}}{2}\right)$$

$$+ \frac{(u + 1)u(u - 1)(u - 2)\left(u - \frac{1}{2}\right)}{5!} \Delta^5 y_{-2}$$

$$+ \frac{(u + 2)(u + 1)u(u - 1)(u - 2)(u - 3)}{6!} \left(\frac{\Delta^6 y_{-3} + \Delta^6 y_{-2}}{2}\right) + \dots$$
where $u = \frac{x - a}{2}$

where
$$u = \frac{x-a}{h}$$

$$\left[\left(\frac{dy}{dx} \right)_{x=a} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \left(\frac{\Delta^2 y_{-1} + \Delta^2 y_0}{2} \right) + \frac{1}{12} \Delta^3 y_{-1} + \frac{1}{12} \left(\frac{\Delta^4 y_{-2} + \Delta^4 y_{-1}}{2} \right) \right] - \frac{1}{120} \Delta^5 y_{-2} - \frac{1}{60} \left(\frac{\Delta^6 y_{-3} + \Delta^6 y_{-2}}{2} \right) + \dots \right]$$

For unequally spaced values of the argument

(i) Newton's divided difference formula is

$$f(x) = f(x_0) + (x - x_0) \Delta f(x_0) + (x - x_0)(x - x_1) \Delta^2 f(x_0) + (x - x_0)(x - x_0) \Delta^2$$

f'(x) is given by

$$f'(x) = \Delta f(x_0) + \{2x - (x_0 + x_1)\} \Delta^2 f(x_0) + \{3x^2 - 2x(x_0 + x_1 + x_2) + (x_0 x_1 + x_1 x_2 + x_2 x_0)\} \Delta^3 f(x_0) + \dots$$
(35)

Example 2. The table given below reveals the velocity 'v' of a body during the time 't' specified. Find its acceleration at t = 1.1.

t:

1.0

1.1

1.2

1.3

1.4

 U°

43.1

47.7

52.1

56.4

60.8.

Sol. The difference table is:

t	v	Δv	$\Delta^2 v$	$\Delta^3 v$	$\Delta^4 v$
1.0	43.1	4.00		*	
1.1	47.7	4.6	- 0.2		
1.2	52.1	4.4	- 0.1	0.1	0.1
1.3	56.4	4.3 4.4	0.1	0.2	
1.4	60.8	4.4			

Let

$$a = 1.1$$
,

...

$$v_0 = 47.7 \text{ and } h = 0.1$$

Acceleration at t = 1.1 is given by

$$\left[\frac{dv}{dt} \right]_{t=1.1} = \frac{1}{h} \left[\Delta v_0 - \frac{1}{2} \Delta^2 v_0 + \frac{1}{3} \Delta^3 v_0 \right] = \frac{1}{0.1} \left[4.4 - \frac{1}{2} (-0.1) + \frac{1}{3} (0.2) \right]$$

$$= 45.1667$$

Hence the required acceleration is 45.1667.

Example 4. The distance covered by an athlete for the 50 meter race is given in the following table:

Time (sec): 0 1 2 3 4 5 6

Distance (meter): 0 2.5 8.5 15.5 24.5 36.5 50

Determine the speed of the athlete at t = 5 sec., correct to two decimals.

t	s	∇s	$\nabla^2 s$	∇^3 s	∇4s	$\nabla^5 s$	$ abla^6$ s
0	0				5:		
		2.5					
1	2.5	14.75.2	3.5	1110-000			
		6		- 2.5			
2	8.5	3053	1	300	3.5	<u> </u>	
1990.0	J-14525080000	7	65	1	0	- 3.5	80
3	15.5		2	-	0		1
4	24.5	9		1	- 2.5	- 2.5	
4	24.5	10	3	4 5	- 2.5		
. F	20.5	12	1.5	- 1.5			
5	36.5	13.5	1.5				
6	50	10.0					
6	50						

Here we use Newton's Backward difference Formula for first derivative

$$\left(\frac{dy}{dx}\right)_{x=x_n} = \frac{1}{h} \left(\nabla y_n + \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^3 y_n + \frac{1}{4} \nabla^4 y_n + \ldots\right)$$

The speed of the athlete at t = 5 sec is given by

$$\left(\frac{ds}{dt}\right)_{t=5} = \frac{1}{h} \left[\nabla s_5 + \frac{1}{2} \nabla^2 s_5 + \frac{1}{3} \nabla^3 s_5 + \frac{1}{4} \nabla^4 s_5 + \frac{1}{5} \nabla^5 s_5 \right]$$

$$= \frac{1}{1} \left[12 + \frac{1}{2} (3) + \frac{1}{3} (1) + \frac{1}{4} (0) + \frac{1}{5} (-3.5) \right]$$

 $= 13.1333 \approx 13.13 \text{ metre/sec.}$

Example 5. Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $x = 6$, given that

4.5 x:

5.0

5.5

6.0

6.5

7.0

7.5

9.69 12.90 16.71 21.18 26.37

32.34 39.15.

Sol. Here
$$a = 6.0$$
 : $y_0 = 21.18$ and $h = 0.5$

The forward difference table is:

у	Δу	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
9.69				
9646668	3.21			
12.9		0.60		
120 (40 120 120 120)	3.81	2000, 800, 400, 20	0.06	
16.71	100 mag	0.66	24204	0
	4.47		0.06	
21.18	F 40	0.72		0
00.07	5.19	0.70	0.06	0
26.37	F 07	0.78	0.06	/ U
30 34	5.81	0.84	0.06	
02.04	6.81	0.04		
39.15	5.01			
	9.69 12.9 16.71 21.18 26.37 32.34	9.69 3.21 12.9 3.81 16.71 4.47 21.18 5.19 26.37 5.97 32.34 6.81	9.69 3.21 12.9 0.60 3.81 16.71 4.47 21.18 0.72 5.19 26.37 5.97 32.34 6.81	9.69 3.21 12.9 0.60 3.81 0.06 16.71 0.66 4.47 0.06 21.18 0.72 5.19 0.06 26.37 0.78 32.34 0.84

We know that

$$\begin{aligned} \left[\frac{dy}{dx} \right]_{x=6} &= \frac{1}{h} \left(\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 \right) \\ &= \frac{1}{0.5} \left[5.19 - \frac{1}{2} (0.78) + \frac{1}{3} (0.06) \right] = 9.64 \end{aligned}$$

and
$$\left[\frac{d^2y}{dx^2}\right]_{x=6} = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0\right]$$
$$= \frac{1}{0.25} \left[0.78 - 0.06\right] = 4(0.72) = 2.88.$$

NUMERICAL INTEGRATION

Given a set of tabulated values of the integrand f(x), determining the value of $\int_{x_0}^{x_n} f(x) dx$; called numerical integration. The given interval of integration is subdivided into a large number of subintervals of equal width h and the function tabulated at the points of subdivision is replaced by any one of the interpolating polynomials like Newton-Gregory's, Stirling's, Bessel's over each of the subintervals and the integral is evaluated.

NEWTON-COTE'S QUADRATURE FORMULA

Let $I = \int_a^b y \, dx$, where y takes the values $y_0, y_1, y_2, \dots, y_n$ for $x = x_0, x_1, x_2, \dots, x_n$.

Let the interval of integration (a,b) be divided into n equal sub-intervals, each of width $h=\frac{b-a}{n}$ so that

$$x_0 = a, x_1 = x_0 + h, x_2 = x_0 + 2h, \dots, x_n = x_0 + nh = b.$$

$$\therefore \qquad I = \int_{x_0}^{x_0 + nh} f(x) \, dx$$

Since any x is given by $x = x_0 + rh$ and dx = hdr

$$I = h \int_0^n f(x_0 + rh) dr$$

$$= h \int_0^n \left[y_0 + r \Delta y_0 + \frac{r(r-1)}{2!} \Delta^2 y_0 + \frac{r(r-1)(r-2)}{3!} \Delta^3 y_0 + \dots \right] dr$$

[by Newton's forward interpolation formula]

$$= h \left[ry_0 + \frac{r^2}{2} \Delta y_0 + \frac{1}{2} \left(\frac{r^3}{3} - \frac{r^2}{2} \right) \Delta^2 y_0 + \frac{1}{6} \left(\frac{r^4}{4} - r^3 + r^2 \right) \Delta^3 y_0 + \dots \right]_0^n$$

$$= nh \left[y_0 + \frac{n}{2} \Delta y_0 + \frac{n(2n-3)}{12} \Delta^2 y_0 + \frac{n(n-2)^2}{24} \Delta^3 y_0 + \dots \right]$$
(49)

This is a **general quadrature formula** and is known as **Newton-Cote's quadrature formula**. A number of important deductions viz. Trapezoidal rule, Simpson's one-third and three-eighth rules, Weddle's rule can be immediately deduced by putting n = 1, 2, 3, and 6, respectively, in formula (49).

$$I = \int_{x_0}^{x_0 + nh} f(x) dx = nh \left[y_0 + \frac{n}{2} \Delta y_0 + \frac{n(2n - 3)}{12} \Delta^2 y_0 + \frac{n(n - 2)^2}{24} \Delta^3 y_0 + \dots \right]$$

TRAPEZOIDAL RULE (n = 1)

Putting n=1 in formula (49) and taking the curve through (x_0, y_0) and (x_1, y_1) as a polynomial of degree one so that differences of an order higher than one vanish, we get

$$\int_{x_0}^{x_0+h} f(x) \, dx = h\left(y_0 + \frac{1}{2}\Delta y_0\right) = \frac{h}{2}\left[2y_0 + (y_1 - y_0)\right] = \frac{h}{2}\left(y_0 + y_1\right)$$

Similarly, for the next sub-interval $(x_0 + h, x_0 + 2h)$, we get

$$\int_{x_0+h}^{x_0+2h} f(x) dx = \frac{h}{2} (y_1 + y_2), \dots, \int_{x_0+(n-1)h}^{x_0+nh} f(x) dx = \frac{h}{2} (y_{n-1} + y_n)$$

Adding the above integrals, we get

$$\int_{x_0}^{x_0+nh} f(x) dx = \frac{h}{2} \left[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}) \right]$$

which is known as **Trapezoidal rule**. By increasing the number of subintervals, thereby making h very small, we can improve the accuracy of the value of the given integral.

SIMPSON'S ONE-THIRD RULE (n = 2)

Putting n=2 in formula (49) and taking the curve through (x_0,y_0) , (x_1,y_1) and (x_2,y_2) as a polynomial of degree two so that differences of order higher than two vanish, we get

$$\begin{split} \int_{x_0}^{x_0+2h} f(x) \, dx &= 2h \left[y_0 + \Delta y_0 + \frac{1}{6} \, \Delta^2 y_0 \right] \\ &= \frac{2h}{6} \left[6y_0 + 6(y_1 - y_0) + (y_2 - 2y_1 + y_0) \right] \\ &= \frac{h}{3} (y_0 + 4y_1 + y_2) \end{split}$$

Similarly,

$$\int_{x_0+2h}^{x_0+4h} f(x) dx = \frac{h}{3} (y_2 + 4y_3 + y_4), \dots,$$

$$\int_{x_0+(n-2)h}^{x_0+nh} f(x) dx = \frac{h}{3} (y_{n-2} + 4y_{n-1} + y_n)$$

Adding the above integrals, we get

$$\int_{x_0}^{x_0+nh} f(x) dx = \frac{h}{3} [(y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2})]$$

which is known as Simpson's one-third rule.

While using this formula, the given interval of integration must be divided into an even number of sub-intervals

SIMPSON'S THREE-EIGHTH RULE (n = 3)

Putting n=3 in formula (49) and taking the curve through $(x_0,\,y_0),\,(x_1,\,y_1),\,(x_2,\,y_2),\,$ and $(x_3,\,y_3)$ as a polynomial of degree three so that differences of order higher than three vanish, we get

$$\begin{split} \int_{x_0}^{x_0+3h} f(x) \, dx &= 3h \left(y_0 + \frac{3}{2} \Delta y_0 + \frac{3}{4} \Delta^2 y_0 + \frac{1}{8} \Delta^3 y_0 \right) \\ &= \frac{3h}{8} \left[8y_0 + 12(y_1 - y_0) + 6(y_2 - 2y_1 + y_0) + (y_3 - 3y_2 + 3y_1 - y_0) \right] \\ &= \frac{3h}{8} \left[y_0 + 3y_1 + 3y_2 + y_3 \right] \\ &= \frac{3h}{8} \left[y_0 + 3y_1 + 3y_2 + y_3 \right] \\ &\text{Similarly,} \quad \int_{x_0+3h}^{x_0+6h} f(x) \, dx = \frac{3h}{8} \left[y_3 + 3y_4 + 3y_5 + y_6 \right], \dots \end{split}$$

 $\int_{x_0 + (n-3)h}^{x_0 + 6h} f(x) \, dx = \frac{3h}{8} \left[y_{n-3} + 3y_{n-2} + 3y_{n-1} + y_n \right]$

Adding the above integrals, we get

$$\int_{x_0}^{x_0+nh} f(x) dx = \frac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_{n-2} + y_{n-1}) + 2(y_3 + y_6 + \dots + y_{n-3})]$$

While using this formula, the given interval of integration must be divided into sub-intervals whose number n is a multiple of 3.

Example 1. Use Trapezoidal rule to evaluate $\int_0^1 x^3 dx$ considering five sub-intervals.

Sol. Dividing the interval (0, 1) into 5 equal parts, each of width $h = \frac{1-0}{5}$ = 0.2, the values of $f(x) = x^3$ are given below:

$$x:$$
 0 0.2 0.4 0.6 0.8 1.0 $f(x):$ 0 0.008 0.064 0.216 0.512 1.000 y_0 y_1 y_2 y_3 y_4 y_5

By Trapezoidal rule, we have

$$\int_0^1 x^3 dx = \frac{h}{2} [(y_0 + y_5) + 2(y_1 + y_2 + y_3 + y_4)]$$

$$= \frac{0.2}{2} [(0 + 1) + 2(0.008 + 0.064 + 0.216 + 0.512)]$$

$$= 0.1 \times 2.6 = 0.26.$$

Example 2. Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^{2}}$$
 using

(i) Simpson's
$$\frac{1}{3}$$
 rule taking $h = \frac{1}{4}$

Hence compute an approximate value of π in each case.

(ii) Simpson's
$$\frac{3}{8}$$
 rule taking $h = \frac{1}{6}$

Sol. (i) The values of $f(x) = \frac{1}{1+x^2}$ at $x = 0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}$, 1 are given below:

f(x):

$$\frac{1}{2}$$

$$\frac{3}{4}$$

$$\frac{16}{17}$$

y2

 y_3

y4

$$y_0$$
 y_1 By Simpson's $\frac{1}{3}$ rule,

$$\frac{1}{3}$$
 rule

$$=\frac{h}{1}[(v_0+v_4)+4(v_1+v_2)]$$

$$\int_0^1 \frac{dx}{1+x^2} = \frac{h}{3} \left[(y_0 + y_4) + 4(y_1 + y_3) + 2y_2 \right]$$
$$= \frac{1}{12} \left[(1+0.5) + 4 \left\{ \frac{16}{17} + .64 \right\} + 2(0.8) \right] = 0.785392156$$

$$\int_0^1 \frac{dx}{1+x^2} = \left[\tan^{-1} x \right]_0^1 = \tan^{-1} 1 = \frac{\pi}{4}$$

$$\frac{\pi}{4} \approx 0.785392156 \implies \pi \approx 3.1415686$$

(ii) The values of
$$f(x) = \frac{1}{1+x^2}$$
 at $x = 0, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}$, 1 are given below:

x:
 0

$$\frac{1}{6}$$
 $\frac{2}{6}$
 $\frac{3}{6}$
 $\frac{4}{6}$
 $\frac{5}{6}$
 1

 f(x):
 1
 $\frac{36}{37}$
 $\frac{9}{10}$
 $\frac{4}{5}$
 $\frac{9}{13}$
 $\frac{36}{61}$
 $\frac{1}{2}$
 y_0
 y_1
 y_2
 y_3
 y_4
 y_5
 y_6

By Simpson's $\frac{3}{8}$ rule,

$$\int_0^1 \frac{dx}{1+x^2} = \frac{3h}{8} \left[(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2y_3 \right]$$

$$= \frac{3\left(\frac{1}{6}\right)}{8} \left[\left(1 + \frac{1}{2}\right) + 3\left(\frac{36}{37} + \frac{9}{10} + \frac{9}{13} + \frac{36}{61}\right) + 2\left(\frac{4}{5}\right) \right]$$
$$= 0.785395862$$

Also,
$$\int_0^1 \frac{dx}{1+x^2} = \frac{\pi}{4}$$

$$\frac{\pi}{4} = 0.785395862$$

$$\Rightarrow \qquad \pi = 3.141583$$

Example 10. Evaluate $\int_{1}^{2} e^{-\frac{1}{2}x} dx$ using four intervals.

Sol. The table of values is:

$$x$$
: 1 1.25 1.5 1.75 2 $y = e^{-x/2}$: .60653 .53526 .47237 .41686 .36788 y_0 y_1 y_2 y_3 y_4

Since we have four (even) subintervals here, we will use Simpson's $\frac{1}{3}$ rd rule.

$$\int_{1}^{2} e^{-\frac{1}{2}x} dx = \frac{h}{3} [(y_0 + y_4) + 4(y_1 + y_3) + 2y_2]$$

$$= \frac{.25}{3} [(.60653 + .36788) + 4(.53526) + .41686) + 2(.47237)]$$

$$= 0.4773025.$$

Example 5. Evaluate $\int_{0.6}^{2} y \, dx$, where y is given by the following table:

x: 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 y: 1.23 1.58 2.03 4.32 6.25 8.36 10.23 12.45.

Sol. Here the number of subintervals is 7, which is neither even nor a multiple of 3. Also, this number is neither a multiple of 4 nor a multiple of 6, hence using Trapezoidal rule, we get

$$\begin{split} \int_{0.6}^2 y \, dx &= \frac{h}{2} \, \left[(y_0 + y_7) + 2(y_1 + y_2 + y_3 + y_4 + y_5 + y_6) \right] \\ &= \frac{0.2}{2} \, \left[(1.23 + 12.45) + 2(1.58 + 2.03 + 4.32 + 6.25 + 8.36 + 10.23) \right] \\ &= 7.922. \end{split}$$

Example 6. Find $\int_{1}^{11} f(x) dx$, where f(x) is given by the following table, using a suitable integration formula.

x: 1 2 3 4 5 6 7 8 9 10 11 f(x): 543 512 501 489 453 400 352 310 250 172 95

Sol. Since the number of subintervals is 10 (even) hence we shall use Simpson's $\frac{1}{3}$ rd rule.

$$\begin{split} \int_{1}^{11} f(x) \, dx &= \frac{h}{3} \, \left[(y_0 + y_{10}) + 4(y_1 + y_3 + y_5 + y_7 + y_9) + 2(y_2 + y_4 + y_6 + y_8) \right] \\ &= \frac{1}{3} \, \left[(543 + 95) + 4(512 + 489 + 400 + 310 + 172) \right. \\ &\qquad \qquad + 2(501 + 453 + 352 + 250) \right] \\ &= \frac{1}{2} \, \left[638 + 7532 + 3112 \right] = 3760.67. \end{split}$$

BOOLE'S RULE

Putting n=4 in formula and neglecting all differences of order higher than four, we get

$$\begin{split} \int_{x_0}^{x_0+4h} & f(x) \ dx = h \ \int_0^4 \left[y_0 + r \Delta y_0 + \frac{r(r-1)}{2!} \Delta^2 y_0 + \frac{r(r-1)(r-2)}{3!} \Delta^3 y_0 + \frac{r(r-1)(r-2)}{4!} \Delta^4 y_0 \right] dr \end{split}$$

| By Newton's forward interpolation formula

$$=4h\left[y_0+\frac{n}{2}\Delta y_0+\frac{n(2n-3)}{12}\Delta^2 y_0+\frac{n(n-2)^2}{24}\Delta^3 y_0\right]$$

$$+\left(\frac{n^{4}}{5}-\frac{3n^{3}}{2}+\frac{11n^{2}}{3}-3n\right)\frac{\Delta^{4}y_{0}}{4!}\right]_{0}^{4}$$

$$=4h\left[y_0+2\Delta y_0+\frac{5}{3}\Delta^2 y_0+\frac{3}{2}\Delta^3 y_0+\frac{7}{90}\Delta^4 y_0\right]$$

$$=\frac{2h}{45}\left(7y_0+32y_1+12y_2+32y_3+7y_4\right)$$

Similarly,
$$\int_{x_0+4h}^{x_0+8h} f(x) dx = \frac{2h}{45} (7y_4 + 32y_5 + 12y_6 + 32y_7 + 7y_8) \text{ and so on.}$$

Adding all these integrals from x_0 to $x_0 + nh$, where n is a multiple of 4, we get

$$\int_{x_0}^{x_0+nh} f(x) dx = \frac{2h}{45} \left[7y_0 + 32y_1 + 12y_2 + 32y_3 + 14y_4 + 32y_5 + 12y_6 + 32y_7 + 14y_8 + \dots \right]$$

This is known as Boole's rule.

While applying Boole's rule, the number of sub-intervals should be taken as a multiple of 4.

Example 13. Evaluate $\int_0^4 \frac{dx}{1+x^2}$ using Boole's rule taking

(i)
$$h = 1$$
 (ii) $h = 0.5$

Compare the results with the actual value and indicate the error in both.

Sol. (i) Dividing the given interval into 4 equal subintervals (i.e., h = 1), the table is as follows:

$$x:$$
 0 1 2 3 4
 $y:$ 1 $\frac{1}{2}$ $\frac{1}{5}$ $\frac{1}{10}$ $\frac{1}{17}$
 y_0 y_1 y_2 y_3 y_4

using Boole's rule,

$$\begin{split} \int_0^4 y \ dx &= \frac{2h}{45} \left[7y_0 + 32y_1 + 12y_2 + 32y_3 + 7y_4 \right] \\ &= \frac{2(1)}{45} \left[7(1) + 32 \left(\frac{1}{2} \right) + 12 \left(\frac{1}{5} \right) + 32 \left(\frac{1}{10} \right) + 7 \left(\frac{1}{17} \right) \right] \\ &= 1.289412 \ (\text{approx.}) \end{split}$$

$$\int_0^4 \frac{dx}{1+x^2} = 1.289412.$$

(ii) Dividing the given interval into 8 equal subintervals (i.e., h=0.5), the table is as follows:

x: 0 .5 1 1.5 2 2.5 3 3.5 4

y: 1 0.8 0.5 $\frac{4}{13}$.2 $\frac{4}{29}$.1 $\frac{4}{53}$ $\frac{1}{17}$

 y_0 y_1 y_2 y_3 y_4 y_5 y_6 y_7 y_8

using Boole's rule,

$$\begin{split} \int_0^4 y dx &= \frac{2h}{45} \left[7(y_0) + 32(y_1) + 12(y_2) + 32(y_3) + 7(y_4) \right. \\ &+ 7(y_4) + 32(y_5) + 12(y_6) + 32(y_7) + 7(y_8) \right] \\ &= \frac{1}{45} \left[7(1) + 32(.8) + 12(.5) + 32\left(\frac{4}{13}\right) + 7(.2) + 7(.2) \right. \\ &+ 32\left(\frac{4}{29}\right) + 12(.1) + 32\left(\frac{4}{53}\right) + 7\left(\frac{1}{17}\right) \right] \\ &= 1.326373 \end{split}$$

$$\int_0^4 \frac{dx}{1+x^2} = 1.326373$$

But the actual value is

$$\int_0^4 \frac{dx}{1+x^2} = \left(\tan^{-1} x\right)_0^4 = \tan^{-1}(4) = 1.325818$$

Error in result I =
$$\left(\frac{1.325818 - 1.289412}{1.325818}\right) \times 100 = 2.746\%$$

Error in result II =
$$\left(\frac{1325818 - 1326373}{1325818}\right) \times 100 = -0.0419\%$$
.

Example 14. A river is 80 m wide. The depth 'y' of the river at a distance 'x' from one bank is given by the following table:

Find the approximate area of cross-section of the river using

(i) Boole's rule.

Sol. The required area of the cross-section of the river

$$= \int_0^{80} y \, dx$$

Here the number of sub intervals is 8.

= 708

(i) By Boole's rule,

$$\begin{split} \int_0^{80} y \, dx &= \frac{2h}{45} \left[7y_0 + 32y_1 + 12y_2 + 32y_3 + 7y_4 + 7y_4 \\ &\quad + 32y_5 + 12y_6 + 32y_7 + 7y_8 \right] \\ &= \frac{2 \, (10)}{45} \left[7(0) + 32(4) + 12(7) + 32(9) + 7(12) + 7(12) + 32(15) \\ &\quad + 12(14) + 32(8) + 7(3) \right] \end{split}$$

Hence the required area of the cross-section of the river = 708 sq. m.

(ii) By Simpson's $\frac{1}{3}$ rd rule

$$\int_0^{80} y \, dx = \frac{h}{3} \left[(y_0 + y_8) + 4(y_1 + y_3 + y_5 + y_7) + 2(y_2 + y_4 + y_6) \right]$$
$$= \frac{10}{3} \left[(0+3) + 4(4+9+15+8) + 2(7+12+14) \right]$$
$$= 710$$

Example Find the solution of $\frac{dy}{dx} = 1 + xy$, y(0) = 1 which passes through

(0, 1) in the interval (0, 0.5) such that the value of y is correct to three decimal places (use the whole interval as one interval only). Take h = 0.1.

Sol. The given initial value problem is

$$\frac{dy}{dx} = f(x, y) = 1 + xy; \quad y(0) = 1$$
i.e.,
$$y = y_0 = 1 \quad \text{at} \quad x = x_0 = 0$$
Here,
$$y^{(1)} = 1 + x + \frac{x^2}{2}$$

$$y^{(2)} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{8}$$

$$y^{(3)} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{8} + \frac{x^5}{15} + \frac{x^6}{48}$$

$$y^{(4)} = y^{(3)} + \frac{x^7}{105} + \frac{x^8}{384}$$
when $x = 0$, $y = 1.000$

$$x = 0.1, \quad y^{(1)} = 1.105, \quad y^{(2)} = 1.1053 \dots$$

$$\therefore \qquad y = 1.105 \qquad \text{(correct up to 3 decimals)}$$

$$x = 0.2, \quad y^{(1)} = 1.220, \quad y^{(2)} = 1.223 = y^{(3)}$$

$$y = 1.223$$
 (correct up to 3 decimals)
$$x = 0.3, \quad y = 1.355 \quad \text{as} \quad y^{(2)} = 1.355 = y^{(3)}$$
 (similarly)
$$x = 0.4, \quad y = 1.505$$
 (similarly)
$$x = 0.5, \quad y = 1.677 \quad \text{as} \quad y^{(4)} = y^{(8)} = 1.677$$

Thus,

x	0	0.1	0.2	0.3	0.4	0.5
у	1.000	1.105	1.223	1.355	1.505	1.677

We have numerically solved the given differential eqn. for x=0, .1, .2, .3, .4, and .5.