

- dr Łukasz Pietrzak
- IMSI
- lukasz.pietrzak@p.lodz.pl

Jedna z najprostszych metod wykorzystująca poszukiwanie na kierunku z wykorzystaniem gradientu funkcji celu.

Założenia początkowe:

- funkcja celu jest przynajmniej klasy C1,
- funkcja celu jest wypukła w całym przedziale poszukiwań minimum Dodatkowo:
- wykonujemy poszukiwanie minimum funkcji celu, czyli wykorzystujemy - $\nabla f(x)$
- Zakładamy stałość długości kroku w kolejnych iteracjach lub jego zmienność (2 warianty metody)

Określenie kierunku

W metodzie gradientu prostego kierunek poszukiwania minimum funkcji celu w danym punkcie ze zbioru D (rozwiązań dopuszczalnych) określamy według następującego wzoru:

$$d_i = -\nabla f(x_i), i = 1,2,3,...$$

gdzie i jest numerem iteracji

W kolejnych iteracjach otrzymujemy argumenty przybliżające nas do poszukiwanego rozwiązania:

$$x_{i+1} = x_i - \lambda_i d_i$$

Gdzie: λ_i jest długością kroku w danej iteracji x_i jest w przypadku pierwszej iteracji x0 czyli wybranym punktem startu d $_i$ dla pierwszej iteracji jest $d_0 = -\nabla f(x_0)$

W przypadku omawianej metody istnieją dwa możliwe przypadki:

- W kolejnych iteracjach posługujemy się stałą długością kroku λ_i
- Możemy modyfikować długość kroku w zależności od otrzymanego rezultatu – wartości funkcji celu dla uzyskanego argumentu x_i.
 Minimum funkcji celu znajduje się w punkcie styczności kierunku ustalonego w danej iteracji do poziomicy funkcji celu.

Należy nadmienić, że wariant metody ze stałym krokiem nie zawsze prowadzi do znalezienia rozwiązania a sama metoda w tym wariancie nie zawsze będzie zbieżna.

Często od doboru kroku zależy osiągnięcie rozwiązania, jak i działanie samej metody. Na załączonych obrazach widać wpływ zmiany długości kroku na działanie metody:

Posłużymy się metodą gradientu prostego dla funkcji celu postaci:

$$f(x_1, x_2) = 2x_1^2 + 3x_2^2$$

n=7 f=1.1796e -09 Xopt= 1.0e-04 * 0.1536 0.1536

Policzmy kolejne przybliżenia:

$$d_i = -\nabla f(x_1, x_2) = -\begin{bmatrix} 4x_1 \\ 6x_2 \end{bmatrix}$$

Kolejne argumenty funkcji celu dla punktu startu (6,6), długości kroku 0.2 i dokładności 0.001:

$$X1 = \begin{bmatrix} 6 \\ 6 \end{bmatrix} - 0.2 \begin{bmatrix} 24 \\ 36 \end{bmatrix} = \begin{bmatrix} 1.2 \\ -1.2 \end{bmatrix}$$
; f(X1)=7.2

$$X2 = \begin{bmatrix} 1.2 \\ -1.2 \end{bmatrix} - 0.2 \begin{bmatrix} 4.8 \\ -7.2 \end{bmatrix} = \begin{bmatrix} 0.24 \\ 0.24 \end{bmatrix}$$
; $f(X2) = 0.2880$

$$X3 = \begin{bmatrix} 0.24 \\ 0.24 \end{bmatrix} - 0.2 \begin{bmatrix} 0.96 \\ 1.44 \end{bmatrix} = \begin{bmatrix} 0.048 \\ -0.048 \end{bmatrix}; f(X3) = 0.0115$$

$$X4 = \begin{bmatrix} 0.0480 \\ -0.0480 \end{bmatrix} - 0.2 \begin{bmatrix} 0.192 \\ -0.288 \end{bmatrix} = \begin{bmatrix} 0.0096 \\ 0.0096 \end{bmatrix}; f(X4) = 4.6080e-04$$

n=46 F(xopt) = 5.5949e-08 xopt = 1.0e-03 *

0.16730.0003

W metodzie Newtona do wyznaczenia kierunku poszukiwań wykorzystuje się gradient funkcji oraz Hessian – macierz drugich pochodnych. Metoda ta jest bardzo szybko zbieżna dla funkcji kwadratowych. Jej wadą jest rozbieżności dla niektórych funkcji i punktów początkowych oraz konieczność liczenia i odwracania Hessianu.

Oznaczenia:

- x₀ pierwsze przybliżenie rozwiązania (punkt startowy)
- x_i i-te przybliżenie rozwiązania
- H macierz drugich pochodnych (Hessian) –

$$H = \nabla^2 f(x_i)$$

ε – wymagana dokładność

Algorytm:

- 1. Ustal i:=0, x_0 , $\epsilon > 0$
- 2. Sprawdź, czy punkt x_i spełnia kryterium stopu jeśli $|\nabla^2 f(x_i)|^2 \le \varepsilon$ to x_i jest rozwiązaniem
- 3. Wyznacz kolejne przybliżenie rozwiązania $x_{i+1}=x_i+\lambda_i d_i$, gdzie
 - $d_i := -H^{-1}(x_i)\nabla f(x_i)$ jest kierunkiem poprawy,
 - H⁻¹(x_i) jest macierzą odwrotną do macierzy drugich pochodnych w punkcie x_i, natomiast λ_i >0 to długość kroku minimalizująca jednowymiarową funkcję $f(\lambda_i)=f(x_i+\lambda_id_i)$

- 4. i:=i+1
- 5. Idź do punktu 2.

Uzupełnienie do met. Newtona

Wzór:

 $A^{-1}=(A^{D})^{T}\cdot 1/det(A)$

gdzie:

A⁻¹ - macierz odwrotna

AD - macierz dopełnień algebraicznych

 $(A^D)^T$ - macierz dołączona - czyli transponowana z macierz dopełnień algebraicznych

det(A) - wyznacznik macierzy

MACIERZ MUSI BYĆ NIEOSOBLIWA CZYLI det(A)≠0!!!

Jak działa algorytm w praktyce?

Poszukujemy minimum bez ograniczeń funkcji:

$$F(x_1,x_2)=4x_1^3+2x_1x_2^4$$

1. Wybieramy punkt startowy i określamy wymaganą dokładność:

$$x0 = [1, 1]; \quad \varepsilon = 0.2$$

Jak działa algorytm w praktyce?

By przejść do punktu 2 i sprawdzić warunek stopu,

$$|\nabla^2 f(x_i)|^2 \le \varepsilon$$

musimy policzyć:

$$\nabla^2 f(x_i)$$

A dokładniej Hessian czyli...

MACIERZ DRUGICH POCHODNYCH

Obliczanie pochodnych cząstkowych

Pierwsze pochodne Drugie pochodne

$$\frac{\partial}{\partial x_1} = 12x_1^2 + 2x_2^4$$
$$\frac{\partial}{\partial x_2} = 12x_1x_2^3$$

$$\frac{\partial^2}{\partial x_1 x_1} = 24x_1$$

$$\frac{\partial^2}{\partial x_2 x_2} = 24x_1 x_2$$

Obliczanie pochodnych cząstkowych

Pochodne mieszane:

$$\frac{\partial^2}{\partial x_1 x_2} = 8x_2^3 = \frac{\partial^2}{\partial x_2 x_1}$$

Hesjan

$$H = \begin{bmatrix} \frac{\partial^2}{\partial x_1 x_1} & \frac{\partial^2}{\partial x_1 x_2} \\ \frac{\partial^2}{\partial x_2 x_1} & \frac{\partial^2}{\partial x_2 x_2} \end{bmatrix}$$

$$= \begin{bmatrix} 24x_1 & 8x_2^3 \\ 8x_2^3 & 24x_1 x_2 \end{bmatrix}$$

Hesjan

$$H = \begin{bmatrix} \frac{\partial^2}{\partial x_1 x_1} & \frac{\partial^2}{\partial x_1 x_2} \\ \frac{\partial^2}{\partial x_2 x_1} & \frac{\partial^2}{\partial x_2 x_2} \end{bmatrix}$$

$$= \begin{bmatrix} 24x_1 & 8x_2^3 \\ 8x_2^3 & 24x_1 x_2 \end{bmatrix}$$

Czyli przechodzimy do punktu 2

$$H = \begin{bmatrix} 24x_1 & 8x_2^3 \\ 8x_2^3 & 24x_1 x_2 \end{bmatrix}; \quad x0 = [1, 1]$$

Czyli:

$$H(x_0) = \begin{bmatrix} 24 & 8 \\ 8 & 24 \end{bmatrix}$$

Punkt 2 cd.

Sprawdź, czy punkt x_i spełnia kryterium stopu – jeśli $|\nabla^2 f(x_i)|^2 \le \varepsilon$ to x_i jest rozwiązaniem

$$|H| = 262144 > \varepsilon$$

Czyli nie jest spełnione kryterium stopu, więc możemy przejść do punktu 3

Wyznacz kolejne przybliżenie rozwiązania $x_{i+1}=x_i+\lambda_i d_{i,j}$ gdzie $d_i:=-H^{-1}(x_i)\nabla f(x_i)$

Czyli:

$$d_0 = -1 * \begin{bmatrix} 24 & 8 \\ 8 & 24 \end{bmatrix}^{-1} \begin{bmatrix} 14 \\ 12 \end{bmatrix}$$

Teraz musimy policzyć macierz dopełnień algebraicznych, by określić H⁻¹

Macierz dopełnień

$$H_{d} = \begin{bmatrix} 24 & -8 \\ -8 & 24 \end{bmatrix}$$

Transponowana macierz dopełnień algebraicznych:

$$H_{d}^{T} = \begin{bmatrix} 24 & -8 \\ -8 & 24 \end{bmatrix}$$

I dochodzimy do obliczenia H⁻¹:

$$\mathsf{H}^{-1} = \begin{bmatrix} 0.046875 & -0.015625 \\ -0.015625 & 0.046875 \end{bmatrix}$$

A następnie naszego kierunku poprawy w pkt. x0

$$d_0 = -1 * \begin{bmatrix} 24 & 8 \\ 8 & 24 \end{bmatrix}^{-1} \begin{bmatrix} 14 \\ 12 \end{bmatrix} = \begin{bmatrix} -0.4688 \\ -0.3438 \end{bmatrix}$$

Teraz chcemy znaleźć punkt x1; sposób analogiczny jak w metodzie Powell'a, czyli:

• Argumentem funkcji jest teraz $(x_0 + \lambda_1 d_1)$

$$F(x_0 + \lambda_1 d_1) = (-0.033*\lambda_1^5 - 1.441*\lambda_1^4 - 1.665*\lambda_1^3 + 1.934*\lambda_1^2 + 6.56*\lambda_1 + 4$$

Musimy znaleźć wartość λ_1 minimalizującą funkcję na wyznaczonym kierunku.

Czyli zminimalizować funkcję o argumencie λ_1

$$d/d\lambda (F(x_0 + \lambda_1 d_1)) = 0$$

UWAGA

I tutaj warto zastanowić się co dalej, bo gdy chcemy wyliczyć λ dla wielomianu 4-tego (!!!) stopnia, wtedy mamy szereg rozwiązań:

-22.9505 + 3.1090i

-22.9505 - 3.1090i

11.1640

-0.0020 + 0.0812i

-0.0020 - 0.0812i

Na nasze szczęście jeden jedyny "nadaje się"

Otrzymujemy x₁:

$$x_1 = \begin{bmatrix} -4.4568 \\ -3.0018 \end{bmatrix}$$

I sprawdzamy po raz kolejny kryterium stopu oraz porównujemy wartości funkcji:

$$F(x_1) = -1077,84$$

Szacowanie przedziału poszukiwań – optymalizacja funkcji jednoargumentowej

W przypadku poszukiwania minimum funkcji zależnej od jednego argumentu, pomocne jest początkowe oszacowanie długości przedziału.

Przedział jest dobrany tak, by spełniony był warunek unimodalności funkcji w wybranym przedziale.

Dla zadań ze ściśle zdefiniowanym przedziałem konieczność szacowania nie występuje.

Metoda służy do wstępnego oszacowania przedziału poszukiwań minimum dla unimodalnej funkcji celu.

Rozpoczynamy od wyznaczenia wartości funkcji celu w dwóch punktach x_0 =0 oraz x_1 > 0. W zależności od wartości funkcji w tych punktach możemy napotkać trzy przypadki:

1. $f(x_0)=f(x_1)$ – minimum funkcji celu znajduje się w przedziale $[x_0,x_1]$ co prowadzi do zakończenia poszukiwań właściwego przedziału

2. $f(x_1) < f(x_0) - kierunek w którym dokonujemy poszukiwania jest właściwy i następny krok także wykonujemy w tym kierunku.$

Kolejny punkt wybieramy, wykorzystując zapis: $x_2=\epsilon x_1$, gdzie ϵ jest współczynnikiem ekspansji $\epsilon>1$. W momencie gdy $f(x_2)\geq f(x_1)$, kończymy poszukiwania, a poszukiwane minimum znajduje się w przedziale

Jeżeli $f(x_2) < f(x_1)$ wtedy kontynuujemy szukanie w danym kierunku, a kolejne punkty wyznaczane są za pomocą:

$$X_{(i+1)} = \varepsilon_i X_{(i)}$$

Gdzie i =1, 2, 3,..... i oznacza to kolejne kroki;

Kończymy obliczenia gdy $f(x_{i+1}) \ge f(x_i)$, co oznacza że minimum znajduje się w przedziale $[x_{i-1}, x_{i+1}]$

3. Jeżeli $f(x_1)>f(x_0)$ to oznacza, że minimum funkcji znajduje się w lewo od punktu $x_0 = 0$. Wtedy należy podstawić $-x_1$ zamiast x_1 . Gdy zachodzi nierówność $f(x_1) \ge f(x_0)$ to następuje zakończenie poszukiwań, a minimum znajduje się w przedziale $[-x_1, x_1]$

Szacowanie przedziału poszukiwań – metoda ekspansji

Jeśli nierówność $f(x_1) \ge f(x_0)$ nie jest spełniona, to kontynuujemy poszukiwania według omówionego wcześniej schematu czyli $x_{i+1} = \varepsilon_i x_1$. Różnica tkwi w poruszaniu się w lewo, co skutkuje końcowym przedziałem w postaci $[x_{i-1}, x_{i+1}]$

Metoda ekspansji - przykład

Zastosujemy metodę ekspansji dla funkcji:

$$F(x)=-x^4-2x^2+x-5$$

- a) Ustalamy punkt $x_0 = 0$ i określamy początkowy krok $x_1 = 2,5$ i obieramy współczynnik ekspansji $\varepsilon = 2$
- b) Obliczamy wartości funkcji dla x_0 i x_1 czyli f(0) = -5 oraz f(2,5) = -24.0625
- c) Sprawdzamy spełnienie któregoś z możliwych przypadków w przypadku badanym spełniona jest nierówność f(2,5)>f(0) czyli $f(x_1) > f(x_0)$ co zgadza się z warunkiem numer 3
- d) Spełnienie nierówności z przypadku 3 skutkuje poszukiwaniem minimum po lewej stronie od x_0

Metoda ekspansji - przykład

e) Podstawiamy za $x_1 = -x_1$ czyli po podstawieniu $x_1 = -2,5$ i obliczamy wartość funkcji:

$$f(x_1) = f(-2,5) = 19.0625$$

I w rezultacie spełniona jest nierówność:

$$f(-2,5)>f(0)$$

f) Spełnienie powyższej nierówności implikuje koniec poszukiwań i oznacza że minimum leży w przedziale [-2,5;2,5]

Jeśli nie byłaby spełniona ostatnia nierówność, musielibyśmy poruszać się w wyznaczonym kierunku, wykorzystując współczynnik ekspansji.

Stosujemy dla sytuacji, gdy mamy wstępną informację o położeniu minimum funkcji celu (np. obliczyliśmy minimum analitycznie lub mamy wykonany wykres i z niego jesteśmy w stanie orientacyjnie odczytać wartość).

Wtedy możemy zdecydować się na ustalenie granic wstępnego przedziału poszukiwań w otoczeniu innego punktu niż $x_0 = 0$.

Zmiana w stosunku do metody ekspansji polega na tym że:

- a) Rozpoczynamy z dowolnego punktu początkowego x_0 i wartość współczynnika ekspansji zawsze jest określona ϵ =2
- b) Minimum funkcji celu może znajdować się po prawej jak i po lewej stronie od wybranego punktu – jest to powód by w tej metodzie testować w obu kierunkach osi
- c) Kolejne punkty określone są według następującej zależności:

$$X_{i+1} = X_0 \pm \varepsilon_i \Delta x$$
, gdzie i = 0, 1, 2, 3,....

Znak w równaniu zależy od kierunku testowania (lewo lub prawo):

 Δx jest dowolne; i odpowiada numerowi iteracji

d) Długość kroku jest dwukrotnie większa czyli kolejne punkty (w następnych krokach) generowane są w sposób następujący:

$$x_{i+1} = x_0 + 2_i \Delta x$$
 $i = 0, 1, 2, 3,...$

Co widać, początkowo poruszamy się w prawo; obliczenia wykonujemy dopóki gdy zajdzie nierówność:

$$f(x_{i+1}) \ge f(x_i)$$

Znaleziony w ten sposób punkt x_{i+1} określa *górną granicę* przedziału poszukiwań

e) Dolną granicę przedziału poszukiwań określamy stosując tę samą zasadę, wykorzystując formułę:

$$x_{i+1} = x_0 - 2_i \Delta x$$
 $i = 0, 1, 2, 3, \dots$

Koniec poszukiwań następuje, gdy spełniona zostanie nierówność:

$$f(x_{i+1}) \ge f(x_i)$$

Wtedy lewy kraniec przedziału poszukiwań znajduje się w x_{i+1.} W ten sposób określamy przedział poszukiwań funkcji celu jako przedział na końcach którego znajdują się wartości x znalezione w punktach d i e czyli podczas szukania w lewo i w prawo.

Metoda ekspansji Boxa — Daviesa — Swanna - przykład

Chcemy wyznaczyć przedział [a,b] funkcji, podczas szukania minimum, dla funkcji:

$$F(x)=2x^2-8x+6$$

1. Ustalamy początkowy punkt jako $x_0=1$, niech $\Delta x=1$, $F(x_0)=0$; Wartość iteratora ustalamy na i=1,wykonujemy obliczenia:

$$x_1 = x_0 + 2_1 \Delta x = 3$$

2. $f(x_1) = 20$ i w związku z tym zachodzi nierówność

$$f(x_1) > f(x_0)$$

Czyli znaleźliśmy prawy koniec przedziału czyli, zatem musimy zająć się poszukiwaniem lewego krańca przedziału

Metoda ekspansji Boxa — Daviesa — Swanna - przykład

4. Określamy lewy kraniec przedziału czyli a. Poruszamy się w lewo od punktu x_0 , z wartością iteracji 0 czyli:

$$x_1 = x_0 - 2_0 \Delta x = -1$$

Następnie obliczamy wartość funkcji w tym punkcie i uzyskujemy

$$f(x_1) = 16$$

Czyli spełniona jest nierówność:

 $f(x_1) > f(x_0)$, czyli lewy kraniec przedziału wynosi a = $x_1 = -1$

Zatem znaleźliśmy granice przedziału poszukiwań i wynoszą one [-1,3]

Poszukiwanie minimum funkcji celu w przedziale liczbowym

Poszukiwanie minimum w danym przedziale [a, b] stosujemy często w optymalizacji wielowymiarowej.

Stosowane są one do określenia długości kroku na danym kierunku poszukiwań, tak by samo poszukiwanie ekstremum było bardziej efektywne.

Założenie służące poszukiwaniu ekstremum funkcji jednej zmiennej w danym przedziale jest w tym wypadku niezmiernie ważne i w tym wypadku dotyczy <u>unimodalności funkcji celu w danym przedziale.</u>

Poszukiwanie minimum funkcji celu w przedziale liczbowym

Jeśli założenie o unimodalności jest spełnione w pewnym przedziale [a, b], to do określenia podprzedziału, w którym leży minimum badanej funkcji, wystarczy obliczyć wartości funkcji w dwóch punktach wewnętrznych tego przedziału: c i d, takich że c <d.

Jeżeli f(c) > f(d), wtedy minimum funkcji znajduje się na prawo od punktu c i przedział poszukiwań zawężamy od lewej, do przedziału [c, b].

Jeśli f(c) < f(d), to minimum funkcji znajduje się na lewo od punktu d i przedział zawężamy do [a,d].

Poszukiwanie minimum funkcji celu w przedziale liczbowym

Żeby określić optymalną długość kroku, zawężamy przedział wykorzystując omówioną metodę określenia położenia minimum funkcji.

W każdym z kolejnych kroków położenie minimum funkcji celu znajduje się w zawężonym przedziale.

Poszukiwanie minimum funkcji celu w przedziale liczbowym

Możliwe przypadki lokalizacji podprzedziału

Schemat poszukiwania ekstremum f. 2 zmiennych

- 1. Liczymy pochodne cząstkowe I-go rzędu
- 2. Przyrównujemy te pochodne do zera, tworząc układ równań
- 3. Układ rozwiązujemy, mamy rozwiązania (o ile istnieją)
- 4. Każde rozwiązanie to tzw. "punkt stacjonarny", czyli taki, w którym może (ale nie musi) być ekstremum. Wypisujemy je (nie należące do dziedziny oczywiście odrzucamy)

Schemat poszukiwania ekstremum funkcji wielu zmiennych na przykładzie funkcji dwóch zmiennych

Badanie istnienia ekstremów w punktach stacjonarnych

- 1) Liczymy pochodne cząstkowe drugiego rzędu; (uwaga: pochodne mieszane powinny wyjść takie same)
- 2) Z pochodnych cząstkowych drugiego rzędu tworzymy wyznacznik
- 3) Do utworzonego wyznacznika wstawiamy jeden po drugim współrzędne kolejnych punktów stacjonarnych
 - jeśli $W(P_1) > 0$ wtedy w punkcie P_1 funkcja osiąga ekstremum
 - jeśli $W(P_1)$ < 0 wtedy w punkcie P_1 funkcja nie osiąga ekstremum
 - jeśli $W(P_1)$ = 0 nie możemy rozstrzygnąć, czy w punkcie P_1 funkcja osiąga ekstremum
- 4) Zajmujemy się już tylko punktami, w których funkcja osiągnęła ekstremum; Określamy, czy są to minima, czy maksima lokalne.

Schemat poszukiwania ekstremum funkcji wielu zmiennych na przykładzie funkcji dwóch zmiennych

Ad.3

$$W(P_1) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} (P_1) & \frac{\partial^2 f}{\partial y \partial x} (P_1) \\ \frac{\partial^2 f}{\partial x \partial y} (P_1) & \frac{\partial^2 f}{\partial y^2} (P_1) \end{vmatrix}$$

Schemat poszukiwania ekstremum funkcji wielu zmiennych na przykładzie funkcji dwóch zmiennych

Ad 4

$$je\acute{s}li\frac{\partial^2 f}{\partial x \partial x}(P_1) > 0 - wP_1 mamy MINIMUM$$

 $je\acute{s}li\frac{\partial^2 f}{\partial x \partial x}(P_1) < 0 - wP_1 mamy MAKSIMUM$

