Circuitos Digitais

Unifesp - ICT - BCT Profa. Denise Stringhini

Visão geral da disciplina

Aula 1

Circuito Sequencial

Diagrama de blocos

O que preciso para realizar um projeto de Circuito Sequencial?

1. Entrada e saída de dados → SISTEMA BINÁRIO

O que preciso para realizar um projeto de Circuito Sequencial?

2. Projeto do circuito combinacional

- → DESCRIÇÃO DE SISTEMAS LÓGICOS DIGITAIS
 - Tabela Verdade → descreve o comportamento esperado
 - Expressões booleanas → tradução em expressões lógicas
 - Portas lógicas → desenho do circuito
 - Simplificação de expressões booleanas → circuito menos complexo
 - Ferramenta de simulação e síntese: desenho e teste do projeto

O que preciso para realizar um projeto de Circuito Sequencial?

3. Circuitos combinacionais de uso frequente

- Aritméticos e lógicos
- Controle de execução
- Barramentos

4. Circuito sequencial → adição de MEMÓRIA

- Elementos de memória → flip-flops e registradores
- Máquina de estados finitos → auxiliam no projeto

Como funcionarão as aulas?

Aulas em sala:

- Exposição de conteúdo (30 a 40 min)
- Trabalho em grupos (planejamento, dúvidas, desenvolvimento) ->
 PROJETOS!
- Quiz!

Aulas em Lab:

- Implementação dos projetos e atividades avaliativas
 - Simulador: Wired Panda
 - Demonstrações

Exemplo de projeto de circuito combinacional

Problema: Você deseja colocar um alarme para detectar a entrada de uma pessoa pela porta dos fundos de sua casa, que deixa normalmente aberta. Você adquire um sensor, porém percebe que este é sensível demais e dispara o alarme com o movimento de um simples inseto. Como melhorar a confiabilidade do sistema?

Exemplo de solução: Posicionar dois ou mais sensores de movimento em linha, um acima do outro. Estes sensores fazem soar um alarme apenas quando todos eles detectarem um movimento ao mesmo

Solução com dois sensores

Os sensores de movimento enviam os sinais digitais que chamaremos de **A** e **B**

- Consideraremos que já estão convertidos para binário
- Modelagem:
 - com movimento = 1
 - sem movimento = 0

Saída: é o alarme e chamaremos de Y

- Modelagem:
 - alarme soa = 1
 - sem alarme = 0

Tabela Verdade

Sensor 1 A	Sensor 2 B	Alarme Y
0	0	0
0	1	0
1	0	0
1	1	1

Qual linha nos interessa?

- \rightarrow Aquela **onde o alarme SOA**, ou seja, onde **Y = 1**.
- → A expressão lógica será um AND entre as variáveis de entrada. Faz sentido?

Expressão lógica

→ 0 alarme (Y) deve soar quando o Sensor 1 (A) E o Sensor 2 (B) detectarem movimentos!

Assim:

Y = A AND B

Circuito lógico

Simulação: exemplo no Wired Panda

Forma de onda: exemplo no Wired Panda

A forma de onda simula o comportamento do circuito a partir de todas as combinações entre as variáveis de entrada.

A verificação do comportamento correto do sistema pode ser feita comparando-se com a Tabela Verdade inicial!

Livro Texto

Bibliografia Básica

- Sistemas Digitais: Princípios e Aplicações. Ronald J. Tocci, Neal S. Widmer e Gregory L. Moss. Editora Prentice-Hall. ISBN: 9788576050957, 2007.
- Sistemas Digitais Fundamentos e Aplicações. Thomas L. Floyd.
 Editora Bookman. ISBN: 8560031936, 2007.
- Fundamentos de Circuitos Digitais. Flávio Rech Wagner, André Inácio Reis e Renato Perez Ribas. Série Livros Didáticos – 17. Editora Bookman. ISBN: 9788577803453, 2008.

Bom semestre!!