

Roll No.: 60 Name: Sanjæs: 2 GOVERNMENT COLLEGE OF ENGINEERING, KANNUR S1: FIRST SEMESTER S1: FIRST SEMESTER B-TECH DEGREE (2024 Admns)

Time: 1.5 hrs

FIRST SERIES TEST: NOV 2024

Max. Marks: 30

BRANCH: CS

GAMAT 101: MATHEMATICS FOR INFORMATION

ľ		SCIENCE - 1	ON
Con	urso (Dutcome. Student will be able to:	
	41.00	kulate the limits for functions of two variables and partial derivatives of multivariable functions PART A	
L		Answer ALL Questions (Each question carries 3 marks: 4 x 3 = 12 marks)	
1	F	ind the slope of the surface $z = x^2y + 5y^3$ in the x direction at $(1, -2)$	[CO 2]
2	F	ind the first and second order partial derivatives of	[CO 2]
L	Z	$= x^3 + y^3 - 3xy$	
3	If	$z = e^x \sin y$, prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$	[CO 2]
4	F	$\frac{dz}{dt}$ using chain rule when $z = xy$ with $x = \cos t$ and $y = \sin t$	[CO 2]
		PART B	
		Answer any ONE Full question from each module	
		(Each question carries 9 marks: 2 x 9 = 18marks)	
		Module II	
5	a)	If $z = log(x^2 + y^2)$, prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$	[CO 2]
		$\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} = 0$	5 marks
	b)	Find $\frac{dw}{dt}$ if $w = xy + z$, $x = \cos t$, $y = \sin t$, $z = t$.	[CO 2] 4 marks
		Also find $\frac{dw}{dt}$ at $t = \frac{\pi}{2}$	
		OR	
6	a)	Find the slopes of the sphere $x^2 + y^2 + z^2 = 14$ in the y direction at	[CO 2]
		the points (1,2,3) and (1,2,-3)	4 marks
	b)	Suppose that $w = \sqrt{x^2 + y^2 + z^2}$, $x = \cos\theta$, $y = \sin\theta$, $z = \tan\theta$. Use	[CO 2]
		524	5 marks
		chain rule to find $\frac{dw}{d\theta}$ at $\theta = \frac{\pi}{4}$	
		Module II	
7	a)	Find the rate of change of $z = \frac{1}{x+y}$ with respect to x at the	[CO2]
		point (-1,4) with y held fixed.	4 marks
		point (1,3) with a need intent	

	b)	If $u = x^2 + y^2$, $x = r - s$, $y = r + s$, find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial s}$	[CO2] 5 marks
8	2)	OR	
G	aj	If $z = \text{Log}(x^2 + xy + y^2)$, prove that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2$	[CO2] 5 marks
	b)	Find the rate of change of $z = \sin(y^2 - 4x)$ with respect to y at the point (3,1) with x held fixed.	[CO2] 4 marks

7	a)	Find the relative minima of $f(x,y) = 3x^2 - 2xy + y^2 - 8y$	[CO3] 5marks
	b)	Find $\frac{dy}{dx}$ from $y = \sqrt{3x^2 + 4x + 5}$ at $x = 1$	[CO1] 4 marks
		OR	
8	a)	If $u = f(y-z,z-x,x-y)$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	[CO3] 5 marks
	b)	At what points the function $f(x) = \frac{x+1}{x^2-4x+3}$ is continuous	[CO1] 4 marks

Roll. No..... 60...

No. of pages : 2

GOVERNMENT COLLEGE OF ENGINEERING, KANNUR S1: FIRST SEMESTER B-TECH DEGREE (2024 Admns)

Time: 1.5 hrs

SECOND SERIES TEST : DEC 2024

Max. Marks: 30

BRANCH: CS

GAMAT 101: MATHEMATICS FOR INFORMATION SCIENCE - 1

Course Outcome Newlent will be able to

COT Apply various concepts in calculus to linearize function and to analyze concavity

CO3: Interpret: Directional derivative and solve maxima minima of multivariable functions

	PART A Answer ALL Questions (Each question carries 3 marks: 4 x 3 = 12 marks)	arks)
1	Find the slope of the curve $y = x^2 + 5x + 7$ at the point $x = 3$	[CO 1]
2	Find $\lim_{x\to 5} \frac{x^2-25}{x-5}$	[CO 1]
3	Find the critical points of $f(x,y) = x^2 - 2xy + 2y$	[CO 3]
4	Find the critical points of $f(x,y) = x^2 + y^2 - 2x - 6y + 14$	[CO 3]

PART B

Answer any ONE Full question from each module

(Each question carries 9 marks: $1 \times 9 = 9 \text{marks}$)

Module I

5	a)	Find the equation of the tangent and normal lines to the curve $y = x^2$ at the point $(1,1)$.	[CO 1] 5 marks
	b)	Find the limit $\lim_{x\to\infty} \frac{4x^3 + 5x^2 + 6x + 7}{7x^3 + 6x^2 + 5x + 4}$	[CO 1] 4 marks
		OR	
6	a)	Find the instantaneous rate of change of $f(x) = 5x^3 + 7x^2 + 9x + 11$ at $x = 1$	[CO 1] 4 marks
	b)	Linearize $f(x) = \sin x$ at $x = \frac{\pi}{4}$	[CO 1] 5 marks

Module III