

Simplified Memory-bounded A*1

Alfons Juan Jorge Civera Albert Sanchis

DSIC apartamento da Sistemas

Departamento de Sistemas Informáticos y Computación

¹Para una correcta visualización, se requiere Acrobat Reader v. 7.0 o superior.

Objetivos

- ► Aplicar el algoritmo SMA*.
- ► Construir el árbol de búsqueda SMA*.
- Analizar propiedades, optimalidad y complejidad de la búsqueda SMA*.

Índice

1	SMA* mediante un ejemplo	3
2	Propiedades, optimalidad y complejidad	4
3	Conclusiones	5

1 SMA* mediante un ejemplo [1, 2]

SMA* se comporta como A* (si hay suficiente memoria disponible). En otro caso elimina un nodo poco prometedor guardando su valor f e inserta un nuevo nodo.

2 Propiedades, optimalidad y complejidad

Control estados repetidos para evitar ciclos (si suficiente memoria)

► Completitud:

 Sí (si hay memoria suficiente para almacenar el camino menos profundo a la solución)

► Optimalidad:

- Sí (si hay memoria suficiente para almacenar el camino menos profundo a la solución)
- ▷ En otro caso, la mejor solución con la memoria disponible
- La búsqueda es óptimamente eficiente (si hay memoria suficiente para el árbol de búsqueda completo)
- ► Complejidad espacial: Definida por el usuario
- ► Complejidad temporal:
 - $\triangleright O(b^d)$, en la práctica, coste extra para crear y actualizar nodos
- Buen funcionamiento en grafos explícitos con func. no uniformes

3 Conclusiones

Hemos estudiado:

- ► El algoritmo SMA*.
- El espacio de búsqueda SMA*.
- Propiedades, optimalidad y complejidad en la búsqueda SMA*.

Algunos aspectos a destacar sobre SMA*:

- ► Completo y óptimo, si memoria suficiente y h admisible.
- Coste espacial definido por el usuario.
- Coste temporal similar a A* con coste extra en la práctica.

Referencias

- [1] Stuart J. Russell. Efficient memory-bounded search methods. In Proc. of European Conference on Artificial Intelligence, ECAI '92, page 1–5, USA, 1992. John Wiley & Sons, Inc.
- [2] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentince Hall, first edition, 1995.

