省选模拟试题

ExfJoe

March 3, 2017

竞赛时长: 240min

试题名称	染颜色	最大割	开锁
可执行文件名	color	cut	unlock
输入文件名	color.in	cut.in	unlock.in
输出文件名	color.out	cut.out	unlock.out
时间限制	2s	1.5s	1s
空间限制	256M	256M	256M
测试点数目	10	10	10
测试点分数	10	10	10
是否有 SPJ	是	否	是
是否有部分分	否	否	否
题目类型	传统	传统	传统

- 认真独立完成试题,不与他人交流讨论
- 最终评测在 Win10 下使用 Lemon, 默认栈空间限制为 8M, 不开启 O2 优化
- 试题按英文名称字典序排序

染颜色

题目描述

给定一棵有 n 个结点的树,结点从 0 开始编号,0 号点为根。初始时 i 号点颜色为 i. 从一个点出发可以移动到与它有边相连的点,若两个点**颜色不同**则代价为 1,否则代价为 0. 接下来会有若干次操作,操作有两种:

- 1 新增颜色操作:指定一个结点 u, **将** u **到根的路径上**的所有结点的颜色,统一染为一个**从未出现过的新颜色**。
- 2 询问操作:给定结点 u,询问**以** u **为根的子树内**的所有结点,它们走到根结点 (0~ 号点) 的**代价 和的平均值**。

现在请你给出每次询问的答案。

输入格式

第一行一个整数 n,表示树的结点数。

接下来 n-1 行,每行两个整数 u,v 表示一条边。

接下来一行一个整数 Q,表示接下来有 Q 次操作。每次操作包括一个字符 c 和一个整数 u.

若c为小写字母q,则表示询问以u为根的子树中,所有结点代价和的平均值。

若c为大写字母O,则表示一次对点u执行的新增颜色操作。

输出格式

对于每一次询问输出一行一个实数表示答案。答案与标准输出绝对误差不超过 10-6 即算正确。

样例

	Input
13	
0 :	
0 2	
1 :	1
1 :	0
1 9	
9 :	2
2 !	
5 8	
2 4	
2 3	
4 (
4	
7	
q (
0 4	
q 6	
q 2	
q 9	
q 2	

	_ Uutput
2.000000000	- Guspus
1.000000000	
0.8571428571	
0.500000000	
1.8571428571	

约定

20% 的数据: $n, Q \le 8000$

另有 20% 的数据: 树为随机生成

70% 的数据: $n, Q \leq 50000$

100% 的数据: $1 \le n, Q \le 150000$

最大割

题目描述

考虑一张 n 个点的边带权无向图,点从 $1 \sim n$ 编号。对于图中的任意一个点集 (可以为空集或是全集),称所有那些**恰好有一个端点**在这个点集中的边所组成的边集为割。我们再定义一个割的权值为: 这个割中所含的所有边边权的**异或和**。

现在初始时给定一张 n 个点的空图,接下来会有若干次加 (无向) 边操作,每次加边后请你求出当前图中**权值最大的割的权值**。

输入格式

第一行两个整数 n, m 表示图的点数与加入的总边数。

接下来 m 行每行三个正整数 x,y,w 表示加入一条连接 (x,y) 的权值为 w 的边。x,y 可能相同,两点之间可能会有多条边。

w 将以二进制形式从高位向低位给出。

输出格式

输出 m 行,按顺序给出每次加边后当前图中权值最大的割的权值。

权值也要以二进制形式输出,形式与输入格式中描述的一致。

样例

	Input	
3 6	_	
1 2 1		
1 2 1		
3 3 111		
1 3 101101		
1 2 1011		
2 3 111011		

Output

0
0
1
1
1
1
101101
101101
110000

约定

设 $l = \log_2 w$

测试点编号	n 的规模	<i>m</i> 的规模	l 的规模	约定
1	$n \leq 20$	$m \le 50$	l < 32	
2	10 _ 20	111 _ 00	0 < 02	
3	$n \le 200$	$m \le 100$	l < 100	最终形成的图中每
4	$n \leq 500$	$m \le 250$	l < 1000	个点度数不超过 1
5	77 <u>3</u> 500	<i>nv</i> <u></u>	v < 1000	且无自环
6	$n \leq 100$	$m \le 200$	l < 300	
7	70 100	<i>nv</i> <u></u>	v < 900	
8				
9	$n \le 500$	$m \le 1000$	l < 1000	
10				

对于所有数据: $1 \leq n \leq 500$, $1 \leq m \leq 1000$, $0 \leq l < 1000$, $1 \leq x,y \leq n$

开锁

题目描述

A 君有 n 个盒子,每个盒子被一把锁锁着,每个盒子内都有一把钥匙。对于每个盒子而言**有且仅有**一把钥匙能打开锁着它的锁,而打开它后便能拿着放置在这个盒子内的钥匙去开启其他盒子。

现在 A 君打算**随机**选择 k 个盒子并用魔法将它们打开,并用所得到的钥匙去尝试开启其他所有的盒子 (开启一个盒子后,新得到的钥匙还能继续尝试使用)。

A 君想知道, 最终他能打开**所有盒子**的概率是多少,请你帮助他。

输入格式

第一行一个整数 T 表示数据组数。

每组数据第一行两个整数 n,k,意义见题目描述。

第二行 n 个整数 a_i ,表示第 i 个盒子中装有可以打开第 a_i 个盒子的锁的钥匙。

输出格式

对于每组数据输出一行表示答案,要求绝对误差不超过4位小数。

样例

	Input	
4		
5 1		
2 5 4 3 1		
5 2		
2 5 4 3 1		
5 3		
2 5 4 3 1		
5 4		
2 5 4 3 1		
	Output	
0.00000000		

0.600000000

0.90000000

1.00000000

约定

测试点编号	n 的规模	T 的规模
1	$n \le 10$	T = 10
2	$n \leq 10$	I = 10
3	$n \le 20$	T = 50
4		T = 10
5	$n \le 50$	I = 10
6		
7		
8	$n \le 300$	T = 100
9	n <u>></u> 500	
10		

对于所有数据: $1 \leq n \leq 300$, $1 \leq T \leq 100$, $0 \leq k \leq n$