實驗四

乘法器

實驗目的

- 了解二進制乘法器的設計
- 了解IC型的乘法器使用

實驗項目

- 2bit * 2bit 乘法器
- 4bit * 3bit 乘法器(加分用)

四、相關知識

A、二進制乘法與二進制乘法

在乘法的過程中,事實上可視為許多位元的相加,如圖 6 - 1 所示。

由屬 6 - 1 中我們可發現二個二進制數的相乘,可以由很多單一位元相乘 之後的和得到。

B、單一位元的相樂

L由圖 6 - 1 中二進制相乘的特性,我們可列出如表 6 - 3(a)的真值表。

A	В	М
0	0	0
0	1	0
1	0	0
1	1	1

(8) 單位元乘法真值表

Γ	A	В	Y
	Ó	0	0
h	0	1	0
ı	1	0	0
	1	1	1

(b) AND 真值表

表6-3

2.將表 6 - 3(0)的真值表與表 6 - 3(b) AND間的真值表比較之後,我們可 發現單一位置的相乘,可用 AND 開來完成。

C·2 bit×2 bit 乘法器

L首先考慮 2 bit × 2 bit 的運算情形,如圖 6 - 2所示。

2.由圖 6 - 2 的運算特性,可得如下的布林函數。

$$M_0 = A_0 B_0$$
 $M_1 = A_1 B_0 + A_0 B_1$ $M_2 = A_1 B_1 + C_0$ $M_3 = C_1$

3.由2.中的布林函數,可得如圖6-3的電路。

D、4 bit × 3 bit 乘法器

I.首先分析 4 bit × 3 bit 的乘法運算,如圖 6 - 4 所示。

		As	A ₂	Aı	Ao	
	×		B ₂	Bı	Во	
		A ₃ B ₀	A ₂ B ₀	A ₁ B ₀	A ₀ B ₀ -	- 0
	A,B,	A ₂ B ₁	A ₁ B ₁	A ₀ B ₁		- 2
A ₃ B ₂	A ₂ B ₂	A, B,	A ₀ B ₂			— ③
		岡 6 -	4			

2.由圖 6 - 4 中,我們發現 4 bit × 3 bit的乘法可由二次加法運算來完成。第一次將①及②相加,第二次將第一次運算後的和與③相加,如圖 6 - 5 所示。

岡6-5

3.最後我們可得到如圖 6 - 6 所示,利用二個 4 位元全加器所組成 4 bit× 3 bit 乘法器電路。

