Übungsblatt 11

Aufgabe 31. Berechnen Sie $\int_S \langle V, N \rangle$ dvol für $V = (yx^2, xy^2 - 3z^4, x^3 + y^2)$, wobei S ist der Rand von $\{(x, y, z) \mid x^2 + y^2 + z^2 \leq 16, z \leq 0, y \leq 0\}$ und N der äußere Einheitsnormalenvektor auf S ist – einmal direkt und einmal mittels des Divergenzsatzes.

Aufgabe 32. Sei $C = \{(x,y,z) \mid x^2 + y^2 + z^2 = 1, z \ge \frac{1}{2}\}$. Sei γ eine einfach geschlossene Kurve, welche $C \cap \{z = \frac{1}{2}\}$ parametrisiert. Berechnen Sie $\int_{\gamma} F \cdot ds$ für $F = (\sin x - \frac{y^3}{3}, \cos y + \frac{x^3}{3}, xyz)$ einmal direkt und einmal mittels des Rotationssatzes (=Satz von Stokes) unter Verwendung der Fläche C.

Aufgabe 33. Sei $f = (f_1, f_2)^T : \mathbb{R}^2 \to \mathbb{R}^2$ partiell differenzierbar mit $\partial_x f_2 = -\partial_y f_1$ und $\partial_x f_1 = \partial_y f_2$. Parametrisiere $\gamma : [0, 2\pi] \to \mathbb{R}^2$ eine glatte einfach geschlossene Kurve. Wir fassen f als komplexe Funktion $f : \mathbb{C} \to \mathbb{C}$ auf. Zeigen Sie, dass dann das komplexe Kurvenintegral

$$\int_{\gamma} f dz = 0$$

ist.

Hinweis: Verwenden Sie zweimal den Divergenzsatz für das von γ eingeschlossene Gebiet, einmal mit dem Vektorfeld $V_1(x,y) = (f_1(x,y), -f_2(x,y))^T$ und einmal mit $V_2(x,y) = (f_2(x,y), f_1(x,y))^T$.