Thermodynamics III Cheatsheet

Christian Leser (cleser@ethz.ch)

Version: June 28, 2024

1 Conduction

1.1 Fouriers Law

$$\begin{split} & \bar{\vec{q}}'' = -\lambda \nabla T \\ & 1 \text{D:} \quad \dot{q_x}'' = \frac{\dot{Q}}{A} = -\lambda \frac{dT}{dx} \end{split} \qquad \quad \begin{split} & \bar{\vec{q}}'' = \text{Heat flux}, \left[\frac{W}{m^2}\right] \\ & \lambda = \text{thermal conductivity}, \left[\frac{W}{mK}\right] \end{split}$$

3-Dimensional equations follow the fouriers and fick's law:

$$\begin{aligned} \overline{\vec{q}^{\prime\prime}} &= \underbrace{-\lambda \frac{\partial T}{\partial x} \hat{x}}_{\vec{q}_x^{\prime\prime}} \underbrace{-\lambda \frac{\partial T}{\partial y} \hat{y}}_{\vec{q}_y^{\prime\prime}} \underbrace{-\lambda \frac{\partial T}{\partial z} \hat{z}}_{\vec{q}_z^{\prime\prime}} \\ \overline{\vec{q}^{\prime\prime}} &= \underbrace{-\lambda \frac{\partial T}{\partial r} \hat{r}}_{\vec{q}_r^{\prime\prime}} \underbrace{-\lambda \frac{\partial T}{r \partial \phi} \hat{\phi}}_{\vec{q}_y^{\prime\prime}} \underbrace{-\lambda \frac{\partial T}{\partial z} \hat{z}}_{\vec{q}_z^{\prime\prime}} \\ \overline{\vec{q}^{\prime\prime}} &= \underbrace{-\lambda \frac{\partial T}{\partial r} \hat{r}}_{\vec{q}_r^{\prime\prime}} \underbrace{-\lambda \frac{\partial T}{r \partial \theta} \hat{\theta}}_{\vec{q}_y^{\prime\prime}} \underbrace{-\lambda \frac{\partial T}{r \sin(\theta) \partial \phi} \hat{\phi}}_{\vec{q}_y^{\prime\prime}} \end{aligned}$$

Koordinatensysteme Zylindrisch und Sphärisch Some common thermal conductivities

Material	thermal conductivity $\lambda\left[\frac{W}{mK}\right]$
Aluminium:	240
Copper:	400
Carbon steels:	40-60
Stainless steels:	15
Helium:	0.152
Air or N_2 :	0.026
Steam (100°C):	0.025
Plastic:	0.2
Rubber:	0.16

1.2 Heat Conduction Equation

Remember:
$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} \end{bmatrix}$$

$$\begin{array}{l} = & \overrightarrow{\nabla} \left(\lambda \overrightarrow{\nabla} T \right) + \underbrace{\dot{Q}_{\text{source}}^{\prime\prime\prime}}_{\text{Thermal energy generation}}^{\text{Thermal energy generation}^{\text{Thermal energy generation}}^{\text{Thermal energy generation}^{\text{Thermal energy generation}}^{\text{Thermal energy generation}}^{\text{T$$

1.2.1 Solving the Heat Conduction Equation: Boundary conditions (Noch machen, Lecture 2 oder 3)

- Surface Temperature known
- Heat Flux known
- Convection known

Convection

2.1 Heat transfer by convection

$$\ddot{q}''= ext{Heat flux}, \left[rac{W}{m^2}
ight]$$
 $\dot{q}''=\dot{Q}=lpha(T_\infty-T_W)$ $lpha= ext{heat transfer coefficient}, \left[rac{W}{mK}
ight]$

3 Thermal Resistances

3.1 Thermal resistance model

assumption: $\lambda = const$

$$\dot{Q_x} = \dot{Q_x}^{"}A = \frac{1}{R_{th}}\Delta T$$

Geometry Planar	Conduction R_{th} $\frac{L}{\lambda A}$	Convection R_{th} $\frac{1}{\alpha A}$
Cylinder	$\frac{\ln\left(\frac{r_2}{r_1}\right)}{2\pi\lambda L}$	$\tfrac{1}{2\pi r_1 L \alpha}$
Sphere	$\frac{\frac{1}{R_1} - \frac{1}{R_2}}{4\pi\lambda}$	$\frac{1}{4\pi r^2 \alpha}$

Note that for some pipes, there exists a critical thickness of the pipe insulation, for which the thermal insulation of a thin insulation layer is lower than without insulation layer.

$$R_{crit}: \frac{d}{dr_2}(R_{tot}) = 0, R_{tot} = R_{th,ins} + R_{th,conv}$$

 $\Rightarrow r_{2,crit} = \frac{\lambda}{\alpha}$

4 Lumped capacitance method

4.1 Lumped capacitance

Idea: The temperature in a body is almost uniform, so we can assume it to be uniform. Temperature within body will now be T(t) instead of T(t,x,y,z). That means, the temperature difference inside the body $\Delta T_i = T_{s,1} - T_{s,2}$ must be much smaller than the temperature difference outside the body $\Delta T_0 = T_{s,2} - T_{\infty}$.

$$\begin{split} \dot{q} &= \frac{\lambda A}{L} (T_{s,1} - T_{s,2}) = \alpha A (T_{s,2} - T_{\infty}) \\ &\Rightarrow \frac{(T_{s,1} - T_{s,2})}{(T_{s,2} - T_{\infty})} = \frac{\alpha L}{\lambda} = Bi \\ &L_{\text{cylinder}} = \frac{r}{2} \qquad L_{\text{sphere}} = \frac{r}{3} \end{split}$$