Prova del 24/06/2016

Traccia A

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	f/X	In(X)	In(X)*f	χ^2	X ² *f
1	120	120	120,00	0,0000	0,0000	1	120
5	36	180	7,20	1,6094	57,9398	25	900
7	42	294	6,00	1,9459	81,7282	49	2058
12	102	1224	8,50	2,4849	253,4605	144	14688
	300	1818	141,70	6,0403	393,1285		17766

a) Calcolo della media aritmetica, armonica e geometrica:

b) Calcolo della mediana e della moda:

moda = 1

$$V(X) = M(X^2) - m(X)^2 = 17766/300 - 6,06^2 = 22,4964$$

X	Υ	X * Y	Χ²	Y ²
2	30	60	4	900
6	25	150	36	625
9	26	234	81	676
13	19	247	169	361
30	100	691	290	2562

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX :

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{V(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{30}{4} = 7,5$$

$$M(Y) = \frac{100}{4} = 25$$

$$\text{Fov}(X;Y) = M(X*Y) - M(X)*M(Y) = \frac{691}{4}$$

$$Cov(X;Y) = M(X*Y) - M(X)*M(Y) = 691 - 7.5 * 25 = -14,7500$$

$$V(X) = M(X^{2}) - M(X)^{2} = 290 - 7.5^{2} = 16,2500$$

$$b = Cov(X;Y) = -14,75 = -0,9077$$

$$a = M(Y) - bM(X) = 25 - (-0,9077) * 7.5 = 31,8077$$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

$$r = \frac{\text{Cov}(X;Y)}{\sigma(X) \, \sigma(Y)}$$

$$V(Y) = \frac{2562}{4} - 25^2 = 15,5000$$

$$\sigma(Y) = \text{RADQ}(15,5) = 3,9370$$

$$\sigma(X) = \text{RADQ}(16,25) = 4,0311$$

$$r = \frac{-14,75}{3.937 * 4.0311} = -0,9294 \quad \text{Si registra una forte relazione lineare indiretta}$$

c) Giudicare la bontà di accostamento:

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (-0.9294)^2 = 0.8638$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

```
p = 0.3
n = 4
```

La distribuzione di probabilità quindi è la seguente:

Χ	P(X)
0	0,2401
1	0,4116
2	0,2646
3	0,0756
4	0,0081
	1

Media = np = 1,2Varianza = npq = 0,84

ESERCIZIO 4

CREO I VETTORI E LA TABELLA marca=c("Samsung", "Apple", "Mediacom") pezzi=c(90, 140, 70) vendite=data.frame(marca, pezzi)

CREO LA COLONNA DELLE PERCENTUALI tot_pezzi=sum(pezzi) perc=pezzi/tot_pezzi vendite=data.frame(vendite, perc)

CREO IL GRAFICO A ISTOGRAMMA barplot(pezzi, names.arg=marca)

GRAFICO A TORTA DELLE PERCENTUALI pie(perc, labels=marca)

ESERCIZIO 5

CREO I VETTORI DEI DATI voti=c(26, 30, 25, 24, 18, 22, 29, 27, 25, 25)

EFFETTUO IL TEST BILATERALE PER VERIFICARE LE IPOTESI:

H0: mu=25 H1: mu!=25

t.test(voti, mu=25, alternative="two.sided", conf.level=0.95)

POICHE' IL LIVELLO DI SIGNIFICATIVITA' (0.05) E' MINORE DEL P-VALUE CALCOLATO (0.9282) SI ACCETTA L'IPOTESI NULLA # L'INTERVALLO DI CONFIDENZA PER LA MEDIA E' COMPRESO FRA 22.65775 E 27.54225

Prova del 24/06/2016

Traccia B

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	f/X	In(X)	In(X)*f	χ^2	X ² *f
2	10	20	5,00	0,6931	6,9315	4	40
6	16	96	2,67	1,7918	28,6682	36	576
8	49	392	6,13	2,0794	101,893	64	3136
10	25	250	2,50	2,3026	57,5646	100	2500
	100	758	16,29	6,8669	195,0569		6252

a) Calcolo della media aritmetica, armonica e geometrica:

b) Calcolo della mediana e della moda:

moda = 8

$$V(X) = M(X^2) - m(X)^2 = 6252/100 - 7,58^2 =$$
5,0636

Χ	Υ	X * Y	χ^2	Y ²
5	15	75	25	225
6	24	144	36	576
10	40	400	100	1600
12	59	708	144	3481
33	138	1327	305	5882

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX :

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{33}{4} = 8,25$$

$$M(Y) = \frac{138}{4} = 34,5$$

$$Cov(X;Y) = M(X^*Y) - M(X)^*M(Y) = \frac{1327}{4} - 8,25 * 34,5 = 47,1250$$

$$V(X) = M(X^2) - M(X)^2 = \frac{305}{4} - 8,25^2 = 8,1875$$

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} = \frac{47,125}{8,1875} = 5,7557$$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

34,5 - (5,7557) * 8,25 =

$$r = \frac{\text{Cov}(X;Y)}{\sigma(X) \, \sigma(Y)}$$

$$V(Y) = \frac{5882}{4} - 34,5^2 = 280,2500$$

$$\sigma(Y) = \text{RADQ}(280,25) = 16,7407$$

$$\sigma(X) = \text{RADQ}(8,1875) = 2,8614$$

$$r = \frac{47,125}{16,7407 \, ^{*} 2,8614} = 0,9838$$
 Si registra una forte relazione lineare diretta

c) Giudicare la bontà di accostamento:

M(Y) - bM(X) =

a =

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (0.9838)^2 = 0.9678$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

-12,9847

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

$$p = 0.4$$

 $n = 4$

La distribuzione di probabilità quindi è la seguente:

X	P(X)
0	0,1296
1	0,3456
2	0,3456
3	0,1536
4	0,0256
	1

Media = np = 1,6Varianza = npq = 0,96

ESERCIZIO 4

CREO I VETTORI E LA TABELLA marca=c("Apple", "Huawei", "LG") pezzi=c(100, 35, 60) vendite=data.frame(marca, pezzi)

CREO LA COLONNA DELLE PERCENTUALI tot_pezzi=sum(pezzi) perc=pezzi/tot_pezzi vendite=data.frame(vendite, perc)

CREO IL GRAFICO A ISTOGRAMMA barplot(pezzi, names.arg=marca)

GRAFICO A TORTA DELLE PERCENTUALI pie(perc, labels=marca)

ESERCIZIO 5

CREO I VETTORI DEI DATI voti=c(21, 24, 26, 23, 19, 20, 25, 27, 26, 26)

EFFETTUO IL TEST BILATERALE PER VERIFICARE LE IPOTESI:

H0: mu=24 H1: mu!=24

t.test(voti, mu=24, alternative="two.sided", conf.level=0.95)

POICHE' IL LIVELLO DI SIGNIFICATIVITA' (0.05) E' MINORE DEL P-VALUE CALCOLATO (0.7451) SI ACCETTA L'IPOTESI NULLA # L'INTERVALLO DI CONFIDENZA PER LA MEDIA E' COMPRESO FRA 21.67526 E 25.72474

Prova del 24/06/2016

Traccia C

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

Χ	f	X*f	f/X	In(X)	In(X)*f	χ^2	X ² *f
6	12	72	2,00	1,7918	21,5011	36	432
8	15	120	1,88	2,0794	31,1916	64	960
10	20	200	2,00	2,3026	46,0517	100	2000
11	3	33	0,27	2,3979	7,1937	121	363
•	50	425	6,15	8,5717	105,9381		3755

a) Calcolo della media aritmetica, armonica e geometrica:

b) Calcolo della mediana e della moda:

moda = 10

$$V(X) = M(X^2) - m(X)^2 = 3755/50 - 8,5^2 =$$
2,8500

Х	Υ	X * Y	χ^2	Y^2
1	15	15	1	225
5	40	200	25	1600
7	59	413	49	3481
10	72	720	100	5184
23	186	1348	175	10490

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX :

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{23}{4} = 5,75$$

$$M(Y) = \frac{186}{4} = 46,5$$

$$Cov(X;Y) = M(X*Y) - M(X)*M(Y) = \frac{1348}{4} - 5,75 * 46,5 = 69,6250$$

$$V(X) = M(X^2) - M(X)^2 = \frac{175}{4} - 5,75^2 = 10,6875$$

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} = \frac{69,625}{10,6875} = 6,5146$$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

$$r = \frac{\text{Cov}(X;Y)}{\sigma(X) \, \sigma(Y)}$$

$$V(Y) = \frac{10490}{4} - 46,5^2 = 460,2500$$

$$\sigma(Y) = \text{RADQ}(460,25) = 21,4534$$

$$\sigma(X) = \text{RADQ}(10,6875) = 3,2692$$

$$r = \frac{69,625}{21,4534 * 3,2692} = 0,9927$$
 Si registra una forte relazione lineare diretta

46,5 - (6,5146) * 5,75 =

c) Giudicare la bontà di accostamento:

M(Y) - bM(X) =

a =

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (0.9927)^2 = 0.9855$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

9,0409

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

```
p = 0.2
n = 4
```

La distribuzione di probabilità quindi è la seguente:

Χ	P(X)
0	0,4096
1	0,4096
2	0,1536
3	0,0256
4	0,0016
	1

Media = np = 0.8Varianza = npq = 0.64

ESERCIZIO 4

CREO I VETTORI E LA TABELLA marca=c("Samsung", "LG", "Xiaomi") pezzi=c(50, 30, 20) vendite=data.frame(marca, pezzi)

CREO LA COLONNA DELLE PERCENTUALI tot_pezzi=sum(pezzi) perc=pezzi/tot_pezzi vendite=data.frame(vendite, perc)

CREO IL GRAFICO A ISTOGRAMMA barplot(pezzi, names.arg=marca)

GRAFICO A TORTA DELLE PERCENTUALI pie(perc, labels=marca)

ESERCIZIO 5

CREO I VETTORI DEI DATI voti=c(28, 22, 26, 25, 26, 19, 28, 29, 30, 26)

EFFETTUO IL TEST BILATERALE PER VERIFICARE LE IPOTESI:

H0: mu=26 H1: mu!=26

t.test(voti, mu=26, alternative="two.sided", conf.level=0.95)

POICHE' IL LIVELLO DI SIGNIFICATIVITA' (0.05) E' MINORE DEL P-VALUE CALCOLATO (0.9261) SI ACCETTA L'IPOTESI NULLA # L'INTERVALLO DI CONFIDENZA PER LA MEDIA E' COMPRESO FRA 23.52863 E 28.27137

Prova del 24/06/2016

Traccia D

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	f/X	In(X)	In(X)*f	χ^2	X ² *f
5	20	100	4,00	1,6094	32,1888	25	500
6	63	378	10,50	1,7918	112,881	36	2268
9	40	360	4,44	2,1972	87,889	81	3240
10	27	270	2,70	2,3026	62,1698	100	2700
	150	1108	21,64	7,9010	295,1284		8708

a) Calcolo della media aritmetica, armonica e geometrica:

b) Calcolo della mediana e della moda:

moda = 6

$$V(X) = M(X^2) - m(X)^2 = 8708/150 - 7,386666666666 3,4905$$

X	Υ	X * Y	χ^2	Y ²
0	69	0	0	4761
4	40	160	16	1600
6	29	174	36	841
9	18	162	81	324
19	156	496	133	7526

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX :

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{19}{4} = \frac{4,75}{4}$$

$$M(Y) = \frac{156}{4} = \frac{39}{4}$$

$$Cov(X;Y) = M(X*Y) - M(X)*M(Y) = \frac{496}{4} - 4,75 * 39 = -61,2500$$

$$V(X) = M(X^2) - M(X)^2 = \frac{133}{4} - 4,75^2 = 10,6875$$

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} = \frac{-61,25}{10,6875} = -5,7310$$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

39 - (-5,731) * 4,75 =

c) Giudicare la bontà di accostamento:

M(Y) - bM(X) =

a =

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (-0.9868)^2 = 0.9737$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

66,2222

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

p = 0.6n = 4

La distribuzione di probabilità quindi è la seguente:

X	P(X)
0	0,0256
1	0,1536
2	0,3456
3	0,3456
4	0,1296
	1

Media = np = 2,4Varianza = npq = 0,96

ESERCIZIO 4

CREO I VETTORI E LA TABELLA marca=c("LG", "Apple", "Mediacom") pezzi=c(40, 68, 15) vendite=data.frame(marca, pezzi)

CREO LA COLONNA DELLE PERCENTUALI tot_pezzi=sum(pezzi) perc=pezzi/tot_pezzi vendite=data.frame(vendite, perc)

CREO IL GRAFICO A ISTOGRAMMA barplot(pezzi, names.arg=marca)

GRAFICO A TORTA DELLE PERCENTUALI pie(perc, labels=marca)

ESERCIZIO 5

CREO I VETTORI DEI DATI voti=c(20, 21, 28, 30, 25, 27, 28, 30, 30, 28)

EFFETTUO IL TEST BILATERALE PER VERIFICARE LE IPOTESI:

H0: mu=27 H1: mu!=27

t.test(voti, mu=27, alternative="two.sided", conf.level=0.95)

POICHE' IL LIVELLO DI SIGNIFICATIVITA' (0.05) E' MINORE DEL P-VALUE CALCOLATO (0.7993) SI ACCETTA L'IPOTESI NULLA # L'INTERVALLO DI CONFIDENZA PER LA MEDIA E' COMPRESO FRA 24.10865 E 29.29135