ПРОВОЛОКА СТАЛЬНАЯ СВАРОЧНАЯ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

межгосударственный стандарт

ПРОВОЛОКА СТАЛЬНАЯ СВАРОЧНАЯ

Технические условия

ΓΟCT 2246—**70**

Welding steel wire.
Specifications

MKC 25.160.20 ΟΚΠ 12 2201, 12 1101

Дата введения 01.01.73

Настоящий стандарт распространяется на холоднотянутую сварочную проволоку из низкоуглеродистой, легированной и высоколегированной стали.

1. МАРКИ И КЛАССИФИКАЦИЯ

1.1. Проволока должна изготовляться следующих марок:

низкоуглеродистая — Св-08, Св-08A, Св-08AA, Св-08ГA, Св-10ГA и Св-10Г2;

легированная — Св-08ГС, Св-12ГС, Св-08Г2С, Св-10ГН, Св-08ГСМТ, Св-15ГСТЮЦА (ЭП-439), Св-20ГСТЮА, Св-18ХГС, Св-10НМА, Св-08МХ, Св-08ХМ, Св-18ХМА, Св-08ХНМ, Св-08ХМФА, Св-10ХМФТ, Св-08ХГ2С, Св-08ХГСМА, Св-10ХГ2СМА, Св-08ХГСМФА, Св-04Х2МА, Св-13Х2МФТ, Св-08Х3Г2СМ, Св-08ХМНФБА, Св-08ХН2М, Св-10ХН2ГМТ (ЭИ-984), Св-08ХН2ГМТА (ЭП-111), Св-08ХН2ГМЮ, Св-08ХН2ГСМЮ, Св-06Н3, Св-10Х5М;

высоколегированная — Св-12X11НМФ, Св-10X11НВМФ, Св-12X13, Св-20X13, Св-06X14, Св-08X14ГНТ, Св-10X17Т, Св-13X25Т, Св-01X19Н9, Св-04X19Н9, Св-08X16Н8М2 (ЭП-377), Св-08X18Н8Г2Б (ЭП-307), Св-07X18Н9ТЮ, Св-06X19Н9Т, Св-04X19Н9С2, Св-08X19Н9Ф2С2, Св-05X19Н9Ф3С2, Св-07X19Н10Б, Св-08X19Н10Г2Б (ЭИ-898), Св-06X19Н10М3Т, Св-08X19Н10М3Б (ЭИ-902), Св-04X19Н11М3, Св-05X20Н9ФБС (ЭИ-649), Св-06X20Н11М3ТБ (ЭП-89), Св-10X20Н15, Св-07X25Н12Г2Т (ЭП-75), Св-06X25Н12ТЮ (ЭП-87), Св-07X25Н13, Св-08X25Н13БТЮ (ЭП-389), Св-13X25Н18, Св-08X20Н9Г7Т, Св-08X21Н10Г6, Св-30X25Н16Г7, Св-10X16Н25АМ6, Св-09X16Н25М6АФ (ЭИ-981А), Св-01X23Н28М3Д3Т (ЭП-516), Св-30X15Н35В3Б3Т, Св-08Н50 и Св-06X15Н60М15 (ЭП-367).

(Измененная редакция, Изм. № 2).

1.2. По назначению проволока подразделяется:

для сварки (наплавки);

для изготовления электродов (условное обозначение — Э).

Назначение проволоки должно оговариваться в заказе.

1.3. По виду поверхности низкоуглеродистая и легированная проволока подразделяется: неомедненная;

омедненная — (O).

Специальные требования к омеднению поверхности проволоки (включая суммарное содержание меди) устанавливаются техническими условиями, утвержденными в установленном порядке.

Необходимость поставки проволоки с омедненной поверхностью оговаривается в заказе.

(Измененная редакция, Изм. № 2).

1.4. По требованию потребителя проволока должна изготовляться из стали, выплавленной электрошлаковым (Ш) или вакуумнодуговым (ВД) переплавом или в вакуумноиндукционных печах (ВИ). При этом дополнительные требования к металлу проволоки (ужесточение норм по содержанию

Издание официальное

Перепечатка воспрещена

*

вредных и посторонних примесей, введение ограничений по содержанию газов, неметаллических включений и т. п.) устанавливаются соглашением сторон.

2. COPTAMEHT

2.1. Диаметры проволоки и предельные отклонения по ним должны соответствовать указанным в табл. 1.

Таблица 1

Номинальный	Предельное отклонение для проволоки, предназначенной		Номинальный	Предельное отклонение для проволоки, предназначенной	
диаметр проволоки	для сварки (наплавки)	для изготовления электродов	диаметр проволоки	для сварки (наплавки)	для изготовления электродов
0,3 0,5 0,8	$-0,05 \\ -0,06 \\ -0,07$	_	2,5 3,0	-0,12	-0,09
1,0 1,2 1,4 1,5	-0,09	_	4,0 5,0 6,0	-0,16	-0,12
1.6			8,0	-0,20	-0,16
1,6 2,0	-0,12	-0,06	10,0 12,0	-0,24	_

(Измененная редакция, Изм. № 2).

- 2.2. Для высоколегированной проволоки, подвергаемой травлению, предельные отклонения по диаметру допускаются на 50 % более указанных в табл. 1.
- 2.3. Овальность проволоки не должна превышать половины предельного отклонения по диаметру.

Примеры условных обозначений:

Проволока сварочная диаметром 3 мм, марки Св-08А, предназначенная для сварки (наплавки), с неомедненной поверхностью:

Проволока сварочная диаметром 4 мм, марки Св-04Х19Н9, предназначенная для изготовления электродов:

Проволока сварочная диаметром 2 мм, марки Св-30X25H16Г7, предназначенная для сварки (наплавки), из стали, выплавленной электрошлаковым переплавом:

Проволока сварочная диаметром 1,6 мм, марки Св-08Г2С, предназначенная для сварки (наплавки), с омедненной поверхностью:

Проволока сварочная диаметром 2,5 мм, марки Св-08ХГСМФА, предназначенная для изготовления электродов, из стали, выплавленной в вакуумно-индукционной печи, с омедненной поверхностью:

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

3.1. Проволока изготовляется из стали, химический состав которой приведен в табл. 2.

С. 3 ГОСТ 2246—70

				Химический
Марка проволоки	Углерод	Кремний	Марганец	Хром
Св-08	Не более 0,10	Не более 0,03	0,35-0,60	Не более 0,15
Св-08А	Не более 0,10	Не более 0,03	0,35-0,60	Не более 0,12
C _B -08AA	Не более 0,10	Не более 0,03	0,35-0,60	Не более 0,10
Св-08ГА	Не более 0,10	Не более 0,06	0,80-1,10	Не более 0,10
Св-10ГА	Не более 0,12	Не более 0,06	1,10—1,40	Не более 0,20
Св-10Г2	Не более 0,12	Не более 0,06	1,50-1,90	Не более 0,20
				Легированная
Св-08ГС	Не более 0,10	0,60-0,85	1,40-1,70	Не более 0,20
Св-12ГС	Не более 0,14	0,60-0,90	0,80-1,10	Не более 0,20
Св-08Г2С	0,05-0,11	0,70-0,95	1,80-2,10	Не более 0,20
Св-10ГН	Не более 0,12	0,15-0,35	0,90-1,20	Не более 0,20
Св-08ГСМТ	0,06-0,11	0,40-0,70	1,00-1,30	Не более 0,30
Св-15ГСТЮЦА	0,12-0,18	0,45—0,85	0,60-1,00	Не более 0,30
Св-20ГСТЮА	0,17—0,23	0,60-0,90	0,60-1,20	Не более 0,30
Св-18ХГС	0,15-0,22	0,90—1,20	0,80-1,10	0,80-1,10
Св-10НМА	0,07-0,12	0,12-0,35	0,40-0,70	Не более 0,20
Св-08МХ	0,06-0,10	0,12-0,30	0,35-0,60	0,45-0,65
C _B -08XM	0,06-0,10	0,12-0,30	0,35-0,60	0,90-1,20
C _B -18XMA	0,15-0,22	0,12-0,35	0,40-0,70	0,80-1,10
Св-08ХНМ	Не более 0,10	0,12-0,35	0,50-0,80	0,70-0,90
Св-08ХМФА	0,06-0,10	0,12-0,30	0,35-0,60	0,90-1,20
Св-10ХМФТ	0,07-0,12	Не более 0,35	0,40-0,70	1,40—1,80
Св-08ХГ2С	0,05-0,11	0,70-0,95	1,70-2,10	0,70-1,00
Св-08ХГСМА	0,06-0,10	0,45-0,70	1,15-1,45	0,85-1,15
Св-10ХГ2СМА	0,07-0,12	0,60-0,90	1,70-2,10	0,80-1,10
Св-08ХГСМФА	0,06-0,10	0,45-0,70	1,20-1,50	0,95—1,25
C _B -04X2MA	Не более 0,06	0,12-0,35	0,40-0,70	1,80-2,20
Св-13Х2МФТ	0,10-0,15	Не более 0,35	0,40-0,70	1,70-2,20
Св-08Х3Г2СМ	Не более 0,10	0,45-0,75	2,00-2,50	2,00-3,00
Св-08ХМНФБА	0,06-0,10	0,12-0,30	0,35-0,60	1,10—1,40
Св-08ХН2М	Не более 0,10	0,12-0,30	0,55-0,85	0,70—1,00
Св-10ХН2ГМТ	0,07-0,12	0,12-0,30	0,80-1,10	0,30-0,60
Св-08ХН2ГМТА	0,06-0,11	0,12-0,30	0,80—1,10	0,25-0,45
Св-08ХН2ГМЮ	0,06-0,11	0,25-0,55	1,00—1,40	0,70-1,10
Св-08ХН2Г2СМЮ	0,06-0,11	0,40-0,70	1,50—1,90	0,70-1,00
Св-06Н3	Не более 0,08	Не более 0,30	0,40-0,70	Не более 0,30
Св-10Х5М	Не более 0,12	0,12-0,35	0,40-0,70	4,00-5,50

Таблица 2

состав, %				_	
Никель	Молибден	Титан	Сера, не более	Фосфор, не более	Прочие элементы
проволока					
Не более 0,30	_	_	0,040	0,040	Алюминий, не более 0,0
Не более 0,25	_	_	0,030	0,030	Алюминий, не более 0,0
Не более 0,25	_	_	0,020	0,020	Алюминий, не более 0,0
Не более 0,25	_	_	0,025	0,030	_
Не более 0,30	_	_	0,025	0,030	_
Не более 0,30	_	_	0,030	0,030	_
проволока					
Не более 0,25	_	_	0,025	0,030	_
Не более 0,30	_	_	0,025	0,030	_
Не более 0,25	_	_	0,025	0,030	_
0,90-1,20	_	_	0,025	0,030	_
Не более 0,30	0,20-0,40	0,05-0,12	0,025	0,030	_
Не более 0,40	_	0,05-0,20	0,025	0,025	Алюминий 0,20—0,50; цирконий 0,05—0,15; церий, не менее 0,04
Не более 0,40	_	0,10-0,20	0,025	0,025	Алюминий 0,20—0,50; церий 0,30—0,45
Не более 0,30	_	_	0,025	0,030	_
1,00—1,50	0,40-0,55	_	0,025	0,020	_
Не более 0,30	0,40-0,60	_	0,025	0,030	_
Не более 0,30	0,50-0,70	_	0,025	0,030	_
Не более 0,30	0,15-0,30	_	0,025	0,025	_
0,80-1,20	0,25-0,45	_	0,025	0,030	_
Не более 0,30	0,50-0,70	_	0,025	0,025	Ванадий 0,15—0,30
Не более 0,30	0,40-0,60	0,05-0,12	0,030	0,030	Ванадий 0,20—0,35
Не более 0,25	_	_	0,025	0,030	_
Не более 0,30	0,40-0,60	_	0,025	0,025	_
Не более 0,30	0,40-0,60	_	0,025	0,025	_
Не более 0,30	0,50-0,70	_	0,025	0,025	Ванадий 0,20—0,35
Не более 0,25	0,50-0,70	_	0,020	0,025	_
Не более 0,30	0,40-0,60	0,05-0,12	0,030	0,030	Ванадий 0,20—0,35
Не более 0,30	0,30-0,50	_	0,030	0,030	_
0,65-0,90	0,80-1,00	_	0,025	0,025	Ванадий 0,20—0,35; ниобий 0,10—0,23
1,40—1,80	0,20-0,40	_	0,025	0,030	_
1,80—2,20	0,40-0,60	0,05-0,12	0,025	0,030	_
2,10-2,50	0,25-0,45	0,05-0,12	0,020	0,025	_
2,00-2,50	0,40-0,65	_	0,030	0,030	Алюминий 0,06—0,18
2,00-2,50	0,45-0,65	_	0,030	0,030	Алюминий 0,06—0,18
3,00—3,50	_	_	0,025	0,030	_
Не более 0,30	0,40-0,60	_	0,025	0,030	_

С. 5 ГОСТ 2246—70

				Химический
Марка проволоки	Углерод	Кремний	Марганец	Хром
			Вь	 ісоколегированная
Св-12Х11НМФ	0,08-0,15	0,25-0,55	0,35-0,65	10,50—12,00
Св-10Х11НВМФ	0,08-0,13	0,30-0,60	0,35—0,65	10,50—12,00
Св-12Х13	0,09-0,14	0,30-0,70	0,30-0,70	12,00—14,00
Св-20Х13	0,16-0,24	Не более 0,60	Не более 0,60	12,00—14,00
Св-06Х14	Не более 0,08	0,30-0,70	0,30-0,70	13,00—15,00
Св-08Х14ГНТ	Не более 0,10	0,25-0,65	0,90-1,30	12,50—14,50
Св-10Х17Т	Не более 0,12	Не более 0,80	Не более 0,70	16,00—18,00
Св-13Х25Т	Не более 0,15	Не более 1,00	Не более 0,80	23,00—27,00
Св-01Х19Н9	Не более 0,03	0,50-1,00	1,00-2,00	18,00—20,00
Св-04Х19Н9	Не более 0,06	0,50—1,00	1,00—2,00	18,00—20,00
Св-08Х16Н8М2	0,05-0,10	Не более 0,60	1,50—2,00	15,00—17,00
Св-08Х18Н8Г2Б	0,05-0,10	0,30-0,70	1,80—2,30	17,50—19,50
Св-07Х18Н9ТЮ	Не более 0,09	Не более 0,80	Не более 2,00	17,00—19,00
Св-06Х19Н9Т	Не более 0,08	0,40—1,00	1,00—2,00	18,00—20,00
Св-04X19H9C2	Не более 0,06	2,00—2,75	1,00—2,00	18,00—20,00
Св-08Х19Н9Ф2С2	Не более 0,10	1,30—1,80	1,00—2,00	18,00—20,00
Св-05Х19Н9Ф3С2	Не более 0,07	1,30—1,80	1,00—2,00	18,00—20,00
Св-07Х19Н10Б	0,05-0,09	Не более 0,70	1,50—2,00	18,50—20,50
Св-08X19H10Г2Б	0,05-0,10	0,20-0,45	1,80—2,20	18,50—20,50
Св-06X19H10H2B	Не более 0,08	0,30-0,80	1,00—2,00	18,00—20,00
Св-08Х19Н10М3Б	Не более 0,10	Не более 0,60	1,00-2,00	18,00—20,00
Св-04Х19Н11М3	Не более 0,06	Не более 0,60	1,00-2,00	18,00—20,00
Св-05X20Н9ФБС	Не более 0,07	0,90—1,50	1,00-2,00	19,00—21,00
Св-03А20ПЭФВС	110 000000 0,07	0,90—1,50	1,00—2,00	19,00—21,00
Св-06Х20Н11М3ТБ	Не более 0,08	0,50-1,00	Не более 0,80	19,00—21,00
Св-10Х20Н15	Не более 0,12	Не более 0,80	1,00-2,00	19,00—22,00
Св-07Х25Н12Г2Т	Не более 0,09	0,30-1,00	1,50—2,50	24,00—26,50
Св-06Х25Н12ТЮ	Не более 0,08	0,60-1,00	Не более 0,80	24,00—26,50
Св-07Х25Н13	Не более 0,09	0,50-1,00	1,00—2,00	23,00—26,00
Св-08Х25Н13БТЮ	Не более 0,10	0,60-1,00	Не более 0,55	24,00—26,00
Св-13Х25Н18	Не более 0,15	Не более 0,50	1,00—2,00	24,00—26,50
Св-08Х20Н9Г7Т	Не более 0,10	0,50-1,00	5,00-8,00	18,50—22,00
Св-08Х21Н10Г6	Не более 0,10	0,20-0,70	5,00-7,00	20,00—22,00
Св-30Х25Н16Г7	0,25-0,33	Не более 0,30	6,00—8,00	24,50—27,00
Св-10Х16Н25АМ6	0,08-0,12	Не более 0,60	1,00-2,00	15,00—17,00
Св-09Х16Н25М6АФ	0,07-0,11	Не более 0,40	1,00-2,00	15,00—17,00
Св-01Х23Н28М3Д3Т	Не более 0,03	Не более 0,55	Не более 0,55	22,00—25,00
Св-30Х15Н35В3Б3Т	0,27-0,33	Не более 0,60	0,50—1,00	14,00—16,00
Св-08Н50	Не более 0,10	Не более 0,50	Не более 0,50	Не более 0,30
Св-06Х15Н60М15	Не более 0,08	Не более 0,50	1,00-2,00	14,00—16,00

Никель	Молибден	Титан	Сера, не более	Фосфор, не более	Прочие элементы
проволока					
0,60-0,90	0,60-0,90	_	0,025	0,030	Ванадий 0,25—0,50
0,80-1,10	1,00—1,30	_	0,025	0,030	Ванадий 0,25—0,50; вольфрам 1,00—1,40
Не более 0,60	_	_	0,025	0,030	_
_	_	_	0,025	0,030	_
Не более 0,60	_	_	0,025	0,030	_
0,40-0,90	_	0,60-1,00	0,025	0,035	_
Не более 0,60	_	0,20-0,50	0,025	0,035	_
Не более 0,60	_	0,20-0,50	0,025	0,035	_
8,00—10,00	_	_	0,015	0,025	_
8,00—10,00	_	_	0,018	0,025	_
7,50—9,00	1,50—2,00	_	0,018	0,025	_
8,00—9,00		_	0,018	0,025	Ниобий 1,20—1,50
8,00—10,00	_	1,00-1,40	0,015	0,030	А люминий 0,60—0,9:
8,00—10,00	_	0,50—1,00	0,015	0,030	
8,00—10,00	_		0,018	0,025	_
8,00—10,00	_	_	0,025	0,030	Ванадий 1,80—2,40
8,00—10,00	_	_	0,025	0,030	Ванадий 2,20—2,70
9,00—10,50	_	_	0,018	0,025	Ниобий 1,20—1,50
9,50—10,50	_	_	0,020	0,030	Ниобий 0,90—1,30
9,00—11,00	2,00—3,00	0,50-0,80	0,018	0,025	_
9,00—11,00	2,00—3,00	_	0,018	0,025	Ниобий 0,90—1,30
10,00—12,00	2,00—3,00	_	0,018	0,025	
8,00—10,00	_	_	0,020	0,030	Ниобий 1,00—1,40; ванадий 0,90—1,30
10,00—12,00	2,50—3,00	0,60-1,10	0,018	0,030	Ниобий 0,60—0,90
14,00—16,00		_	0,018	0,025	
11,00—13,00	_	0,60-1,00	0,020	0,035	_
11,50—13,50	_	0,60-1,00	0,020	0,030	Алюминий 0,40—0,80
12,00—14,00	_	_	0,018	0,025	_
12,00—14,00	_	0,50—0,90	0,020	0,030	Ниобий 0,70—1,10; алюминий 0,40—0,90
17,00—20,00	_	_	0,015	0,025	_
8,00—10,00	_	0,60-0,90	0,018	0,035	_
9,00-11,00	_	_	0,018	0,035	_
15,00—17,00	_	_	0,018	0,030	_
24,00—27,00	5,50—7,00	_	0,018	0,025	Азот 0,10—0,20
24,00—27,00	5,50—7,00	_	0,018	0,018	Ванадий 0,70—1,00; азот 0,10—0,20
26,00—29,00	2,50—3,00	0,50-0,90	0,018	0,030	Медь 2,50—3,50
34,00—36,00	_	0,20—0,70	0,015	0,025	Вольфрам 2,50—3,50 ниобий 2,80—3,50
48,00-53,00	_	_	0,020	0,030	_
Основа	14,00—16,00	_	0,015	0,015	Железо, не более 4,0

Примечания:

- 1. Условные обозначения марок проволоки состоят из индекса Св (сварочная) и следующих за ним цифр и букв.
 - 2. Цифры, следующие за индексом Св, указывают среднее содержание углерода в сотых долях процента.
 - 3. Химические элементы, содержащиеся в металле проволок, обозначены следующими буквами:
- A-азот (только в высоколегированных проволоках); B-ниобий; B-вольфрам; $\Gamma-$ марганец; $\Pi-$ медь; M-молибден; H-никель; C-кремний; T-титан; $\Phi-$ ванадий; X-хром; $\Pi-$ цирконий; H-алюминий.
- 4. Цифры, следующие за буквенными обозначениями химических элементов, указывают среднее содержание элемента в процентах. После буквенного обозначения элементов, содержащихся в небольших количествах, цифры не проставлены.
- 5. Буква А на конце условных обозначений марок низкоуглеродистой и легированной проволоки указывает на повышенную чистоту металла по содержанию серы и фосфора. В проволоке марки Св-08АА сдвоенная буква А указывает на пониженное содержание серы и фосфора по сравнению с проволокой марки Св-08А.

(Измененная редакция, Изм. № 2; Поправки, ИУС 10-2001, 6-2003).

3.2. По требованию потребителя содержание углерода в проволоке марки Св-08ГСМТ должно составлять 0,08—0,14 %, в этом случае проволока обозначается Св-10ГСМТ.

По соглашению сторон допускается поставка проволоки марок Св-08МХ, Св-08ХМ и Св-08ХМФА с содержанием углерода 0,08—0,13 %; в этом случае проволока обозначается Св-10МХ, Св-10ХМ и Св-10ХМФА соответственно.

(Измененная редакция, Изм. № 2)

3.3. Допускается увеличение содержания углерода:

до 0,15 % — в проволоке марки Cв-12X13;

до 0,10 % — в проволоке марки Св-07Х19Н10Б.

С согласия потребителя допускается в проволоке марки Св-08Г2С диаметром до 1,4 мм включительно массовая доля марганца 1,65—2,10 %.

(Измененная редакция, Изм. № 3).

3.4. В проволоке марки Св-07Х25Н13, предназначенной для сварки (наплавки), содержание хрома должно быть не менее 23,5 %.

По соглашению сторон в проволоке марки Cв-08X21H10Г6 отношение содержания хрома к содержанию никеля должно быть не менее 2.

3.5. При соблюдении остальных требований настоящего стандарта допускается поставка проволоки с отклонением по содержанию одного из химических элементов от норм, приведенных в табл. 2. Допускаемые отклонения должны соответствовать указанным в табл. 3.

Примечание. С согласия потребителя, при условии соблюдения величин допускаемых отклонений, указанных в табл. 3, разрешается поставка проволоки с отклонениями по содержанию нескольких химических элементов от норм, приведенных в табл. 2.

Таблица 3

Наименование химического элемента	Фактическое содержание элемента в проволоке, %	Допускаемое отклонение, %
Углерод	От 0,08 до 0,12	±0,01
3 імерод	Св. 0,12	±0,01
Марганец	От 0,60 до 1,20	±0,02
Мартаноц	Св. 1,20	±0,05
Кремний	От 0,35 до 0,85	±0,02
Кремний	Св. 0,85	±0,05
Ниобий	От 0,30 до 0,90	±0,02
TIMOONIA	Св. 0,90	±0,05
	От 0,30 до 0,90	±0,02
Никель	Св. 0,90 до 1,80	±0,05
	Св. 1,80 до 7,00	±0,10
	Св. 7,00	±0,15

Продолжение табл. 3

Наименование химического элемента	Фактическое содержание элемента в проволоке, %	Допускаемое отклонение, %
	От 0,30 до 1,20	±0,02
Хром	Св. 1,20 до 2,50	±0,05
_	Св. 2,50 до 7,00	±0,15
	Св. 7,00	±0,20
Титан	От 0,20 до 0,80	±0,02
THIAN	Св. 0,80	±0,05
Ванадий	От 0,30 до 1,50	±0,02
Ванадии	Св. 1,50	±0,05
Вольфрам	От 1,00 до 2,50	±0,05
ьольфрам	Св. 2,50	±0,10
-	От 0,30 до 1,00	±0,02
Молибден	Св. 1,00 до 3,00	±0,05
	Св. 3,00	±0,10
Алюминий	От 0,10 до 0,30	±0,02
Алюминии	Св. 0,30	±0,04

3.4, 3.5. (Измененная редакция, Изм. № 2).

- 3.6. В проволоку марки Св-20ГСТЮА церий вводят по расчету и химическим анализом не определяют.
- 3.7.~ В низкоуглеродистой и легированной проволоке содержание мышьяка не должно превышать 0.08~%.
- $3.8.\ \mathrm{C}$ согласия потребителя в проволоке марок Св-08 и Св-08А допускается остаточное содержание алюминия до $0.05\ \%.$
- 3.9. В низкоуглеродистой проволоке марок Св-08ГА, Св-10ГА и Св-10Г2 и легированной проволоке (не легированной алюминием) остаточное содержание алюминия не должно превышать 0.05~%.
- 3.10. В проволоке, не легированной молибденом, остаточное содержание молибдена не должно превышать:
 - 0,15 % в легированной проволоке;
 - 0,25 % в высоколегированной проволоке.
- 3.11. В проволоке, не легированной титаном, остаточное содержание титана не должно превышать:
 - 0,04 % в легированной проволоке;
 - 0,2 % в высоколегированной проволоке.

По требованию потребителя в проволоке марок Св-04X19H11M3 и Св-08X21H10 Γ 6 остаточное содержание титана не должно превышать 0,1 %.

- 3.12. В легированной проволоке, не легированной ванадием, остаточное содержание ванадия не должно превышать 0.05~%, за исключением проволоки марок Св- $08X3\Gamma2CM$ и Св-10X5M, в которой остаточное содержание ванадия допускается до 0.08~%.
- $3.13.~\mathrm{B}$ проволоке, не легированной медью, остаточное содержание меди не должно превышать 0.25~%.

По требованию потребителя остаточное содержание меди в проволоке должно быть не более 0,20 %.

Примечание. Требования п. 3.13 относятся к проволоке с неомедненной поверхностью.

- 3.14. Содержание ферритной фазы должно быть:
- 2—6 % в проволоке марок Св-08X16H8M2 и Св-08X18H8Г2Б;
- 3—8 % в проволоке марки Св-04X19H11M3.

В проволоке перечисленных марок допускается повышение содержания хрома до 1 % сверх норм, приведенных в табл. 2.

- 3.15. Для проволоки марок Св-01X19Н9, Св-04X19Н9, Св-06X19Н9Т, Св-08X19Н10Г2Б, Св-08X19Н10М3Б и Св-07X25Н13 содержание ферритной фазы регламентируется по соглашению сторон; при этом допускается повышение содержания хрома до 2 %, а никеля до 1 % по сравнению с нормами, приведенными в табл. 2.
 - 3.14, 3.15. (Измененная редакция, Изм. № 2).
 - 3.16. Содержание азота в проволоке не должно превышать норм, приведенных в табл. 4.

Таблица 4

Группа проволоки	Марка проволоки	Содержание азота, %, не более
1	C _B -08AA	0,008
2	Св-08А, Св-08ГА, Св-10ГА, Св-10Г2, Св-08ГС, Св-12ГС, Св-08Г2С, Св-10ГН, Св-08ГСМТ, Св-10НМА	0,010
3	Св-08МХ, Св-08ХМ, Св-18ХМА, Св-08ХНМ, Св-08ХМФА	0,012
4	Св-18ХГС, Св-10ХМФТ, Св-08ХГСМА, Св-08ХГСМФА, Св-08ХМНФБА, Св-08ХН2М, Св-10ХН2ГМТ, Св-08ХН2ГМТА, Св-08ХН2ГМЮ, Св-08ХН2Г2СМЮ, Св-06Н3	0,015
5	Св-08ХГ2С, Св-10ХГ2СМА, Св-04Х2МА, Св-13Х2МФТ, Св-08Х3Г2СМ	0,018
6	C _B -10X5M	0,020
7	Св-08Х19Н10Г2Б, Св-08Х19Н10М3Б, Св-07Х25Н13	0,050

Примечания:

- 1. (Исключено, Изм. № 5).
- 2. В проволоке 2 группы допускается с согласия потребителя содержание азота до 0,012 %.
- 3. До 1 января 1981 г. в проволоке 4, 5 и 6 групп допускалось увеличение содержания азота на 0,005 % сверх указанных в таблице норм. С 1 января 1981 г. указанное увеличение содержания азота может быть допущено с согласия потребителя.
- 4. При изготовлении проволоки 7 группы с регламентированным содержанием ферритной фазы требование по ограничению содержания азота не является обязательным.

(Измененная редакция, Изм. № 2, 5; Поправка, ИУС 6—2003).

- 3.17. По соглашению сторон проволока должна изготовляться из стали с суженными пределами содержания химических элементов по сравнению с указанными в табл. 2, а также с ограничением содержания химических элементов, не указанных в табл. 2 и в пп. 3.7, 3.9—3.13 и 3.16.
- 3.18. По соглашению сторон разрешается устанавливать другие допустимые значения остаточного содержания химических элементов по сравнению с указанными в п. 3.9—3.12.
- 3.19. Проволоку с неомедненной поверхностью свертывают в мотки, размеры и масса которых соответствуют указанным в табл. 5.

Таблица 5

Диаметр проволоки,	Внутренний диаметр	Масса	мотка проволоки, кг, н	ие менее	
MM	витков мотка проволоки, мм	низкоуглеродистой	легированной	высоколегированной	
0,3-0,5	150—300	2	2	1,5	
0,8	200—350	5	5	3,0	
1,0-1,2	200—400	20	15	10,0	
1,4—1,5	300—600	25	15	10,0	
1,6-2,0	300—000	30	20	15,0	
2,5-3,0	400—600				
4,0—10,0	500—750	40	30	20	
12,0	600—800				

 Π р и м е ч а н и е. Допускается поставка мотков массой, уменьшенной до 50 % от указанной в табл. 5, в объеме не более 10 % общей массы проволоки в партии.

3.20. Проволоку с омедненной поверхностью свертывают в мотки прямоугольного сечения, размеры которых должны соответствовать указанным в табл. 6. Для проволоки диаметром 1,6—

3,0 мм требуемые размеры мотков оговаривают в заказе. По согласованию с потребителем проволоку с неомедненной поверхностью также свертывают в мотки прямоугольного сечения.

MM

Таблица 6

Диаметр	Наружный д	циаметр мотка	Внутренний диаметр мотка		Высота	а мотка
проволоки	Номин.	Пред. откл.	Номин.	Пред. откл.	Номин.	Пред. откл.
0,8—1,6	175	+10 -5	100	+6 -2	50	±4
1,6—2,0	250	+15 -5	175	+8 -4	85	+4
2,0—3,0	320	+25	220	+8 -4	63	<u>-6</u>
3,0	320	— 5	260	+10 -4	00	+4 -6
1,6-5,0	600	+50 —10	400	+20 -15	90	+8 -10

- 3.19, 3.20. (Измененная редакция, Изм. № 2).
- 3.21. По соглашению сторон проволока поставляется намотанной на катушки или в кассеты.
- 3.22. По соглашению сторон допускается поставка проволоки в мотках повышенной массы или на крупногабаритных катушках.
- 3.23. Проволока в мотках (катушках, кассетах) должна состоять из одного отрезка, свернутого неперепутанными рядами и плотно укатанного таким образом, чтобы исключить возможность распушивания или разматывания мотка. Концы проволоки должны быть легко находимы. Допускается контактная стыковая сварка отдельных кусков проволоки одной плавки: при этом зона сварного соединения должна соответствовать требованиям настоящего стандарта.
- 3.24. Временное сопротивление разрыву легированной и высоколегированной проволоки должно соответствовать нормам, указанным в табл. 7.

Таблица 7

Диаметр проволоки, мм	Временное сопротивление разрыву про	оволоки, МПа (кгс/мм ²), предназначенной
диалогр проволоки, мм	для сварки (наплавки)	для изготовления электродов
0,3-0,5	882—1372 (90—140)	_
0,8—1,5	882—1323 (90—135)	_
1,6	882—1274 (90—130)	686—980 (70—100)
2,0	784—1176 (80—120)	686—980 (70—100)
Св. 2,0	686—1029 (70—105)	637—931 (65—95)

Примечания:

- 1. Колебания временного сопротивления разрыву в одном мотке проволоки диаметром более 1,4 мм не должны превышать 98 МПа (10 кгс/мм²).
- 2. Легированная и высоколегированная проволока подвергается дополнительной термической обработке. При обеспечении заданных пределов временного сопротивления разрыву дополнительную термическую обработку проволоки допускается не производить.
- 3.25. Допускается повышение верхнего предела временного сопротивления разрыву (вне зависимости от назначения проволоки):

до 110 кгс/мм^2 — для проволоки диаметром более 2 мм марок:

Св-06Х20Н11М3ТБ (ЭП89);

Св-07Х25Н12Г2Т (ЭП75);

Св-06Х25Н12ТЮ и Св-08Х25Н13БТЮ (ЭП389);

до 115 кгс/мм 2 — для проволоки диаметром более 2 мм марок:

Св-10Х16Н25АМ6 (ЭИ395);

Св-09Х16Н25М6АФ (ЭИ981А);

Св-01Х23Н28М3Д3Т (ЭП516) и Св-06Х15Н60М15;

до 135 кгс/мм² — для проволоки диаметром 2 мм марок:

С. 11 ГОСТ 2246-70

Св-08Х20Н9Г7Т:

Св-08Х21Н10Г6:

CB-10X16H25AM6;

Св-09Х16Н25М6АФ;

до 145 кгс/мм² — для проволоки диаметром менее 2 мм марок:

Св-08Х20Н9Г7Т;

Св-10Х16Н25АМ6;

Св-08Х21Н10Г6;

Св-09Х16Н25М6АФ;

до 180 кгс/мм² — марок проволоки диаметром 2 мм и менее марок:

Св-01Х23Н28М3Д3Т (ЭП516) и Св-06Х15Н60М15.

3.26. Поверхность проволоки должна быть чистой и гладкой, без трещин, расслоений, плен, закатов, раковин, забоин, окалины, ржавчины, масла и других загрязнений. На поверхности проволоки допускаются риски (в том числе затянутые), царапины, местная рябизна и отдельные вмятины. Глубина указанных пороков не должна превышать предельного отклонения по диаметру проволоки.

По требованию потребителя проволока изготавливается с улучшенной поверхностью. В этом случае на поверхности проволоки допускаются мелкие волочильные риски, царапины, следы шлифовки, местная рябизна и отдельные вмятины при глубине каждого из указанных пороков не более 1/4 предельного отклонения по диаметру.

- 3.24—3.26. (Измененная редакция, Изм. № 2).
- 3.27. На поверхности низкоуглеродистой и легированной проволоки не допускается наличие технологических смазок, за исключением следов мыльной смазки без графита и серы.
- 3.28. Проволока марок Св-08ГС, Св-08ГСС, Св-08ГСМТ, Св-08ХТСС, Св-08ХГСМА, Св-10ХГ2СМА, Св-08ХГСМФА и Св-08ХЗГ2СМ должна изготовляться с омедненной поверхностью или неомедненной. На поверхности неомедненной проволоки допускается наличие следов мыльной смазки массой до 0,05 % от массы проволоки. Вид поверхности проволоки устанавливается в заказе. Если в заказе не установлен вид поверхности, вид поверхности проволоки устанавливает изготовитель.

(Измененная редакция, Изм. № 5).

- 3.29. С согласия потребителя проволоку марок Св-18ХГС и Св-18ХМА для предохранения от коррозии разрешается покрывать сплошным слоем нейтральной смазки, хорошо растворимой в бензине.
- 3.30. Высоколегированная проволока должна поставляться в травленом и отбеленном состоянии или после термической обработки в инертной атмосфере со светлой, светло-матовой или серой поверхностью, без всяких следов смазки.
- 3.3.1. Проволока должна быть принята техническим контролем предприятия-изготовителя. Изготовитель должен гарантировать соответствие поставляемой проволоки требованиям настоящего стандарта.

4. МЕТОДЫ ИСПЫТАНИЙ

- 4.1. Проволока поставляется партиями. Каждая партия должна состоять из проволоки одной марки, одной плавки, одного диаметра, одного назначения и одного вида поверхности.
 - 4.2. Осмотру и обмеру должны подвергаться все мотки (катушки, кассеты) проволоки.
- 4.3. Диаметр проволоки измеряют с точностью до 0,01 мм в двух взаимно перпендикулярных направлениях в каждом сечении не менее чем в двух местах на расстоянии не менее 5 м друг от друга.
- 4.4. Пробы для химического состава отбирают по ГОСТ 7565 при выплавке стали и при необходимости в проволоке.

Для проверки химического состава проволоки от каждой партии отбирают 0,5 % мотков (катушек, кассет), но не менее двух мотков (катушек, кассет). Образцы для анализа должны быть взяты от обоих концов каждого контролируемого мотка или из двух участков на расстоянии не менее 5 м друг от друга каждой контролируемой катушки (кассеты).

(Измененная редакция, Изм. № 2).

- 4.5. Для проверки временного сопротивления разрыву проволоки от каждой партии отбирают 2 % мотков (катушек, кассет), но не менее трех мотков (катушек, кассет). Образцы для испытания должны быть взяты из двух участков каждого контролируемого мотка (катушки, кассеты) на расстоянии не менее 5 м друг от друга.
 - 4.6. Содержание ферритной фазы проверяют при выплавке стали или в проволоке.

Для проверки содержания α -фазы при выплавке стали из каждого ковша отбирают пробу жидкого металла в процессе его разливки.

Для проверки содержания α -фазы в проволоке от каждой партии отбирают 3 % мотков (катушек, кассет), но не менее трех мотков (катушек, кассет). Образцы для проверки должны быть отобраны с обоих концов каждого контролируемого мотка или из двух участков каждой контролируемой катушки (кассеты) на расстоянии не менее 5 м друг от друга.

Методика определения содержания α-фазы приведена в приложении 1.

(Измененная редакция, Изм. № 2).

4.6а. Для проверки наличия следов мыльной смазки на поверхности проволоки от каждой партии отбирают 2 % мотков (катушек), но не менее трех мотков (катушек). Методика определения массы следов мыльной смазки на поверхности проволоки приведена в приложении 2.

(Введен дополнительно, Изм. № 5).

- 4.7. Химический состав определяют по ГОСТ 12344Γ ОСТ $12365, \Gamma$ ОСТ $28473, \Gamma$ ОСТ 22536.0Γ ОСТ 22536.12 или другими методами, обеспечивающими необходимую точность определения.
 - 4.8. Содержание азота определяют по методике предприятия изготовителя металла.

Содержание азота в нелегированной стали определяют по ГОСТ 12359.

- 4.7, 4.8. (Измененная редакция, Изм. № 2).
- 4.9. Испытания проволоки на растяжение для определения временного сопротивления разрыву проводят по ГОСТ 10446.
- 4.10. При проверке химического состава проволоки в соответствии с требованиями табл. 2, пп. 3.7, 3.9—3.13 и 3.16 обязательному определению подлежит фактическое содержание азота в легированной и высоколегированной проволоке марок, не указанных в п. 3.16, а также фактическое остаточное содержание алюминия и ванадия в высоколегированной проволоке и вольфрама в легированной и высоколегированной проволоке.

Результаты указанного определения указываются в документе о качестве.

Определение содержания азота в низкоуглеродистой проволоке и мышьяка в низкоуглеродистой и легированной проволоке, а также остаточного содержания алюминия, молибдена, титана и ванадия в легированной проволоке и меди во всех марках допускается не производить, если технология выплавки стали гарантирует содержание перечисленных элементов в пределах норм, установленных настоящим стандартом.

(Измененная редакция, Изм. № 2).

4.11. При получении неудовлетворительных результатов испытаний хотя бы по одному из показателей по нему проводят повторные испытания на удвоенном количестве образцов, взятых из той же контрольной партии проволоки.

При получении неудовлетворительных результатов повторных испытаний предприятие-изготовитель может произвести пересортировку партии проволоки путем проведения испытаний по тем же показателям каждого мотка (катушки, кассеты) с последующей сдачей мотков (катушек, кассет), выдержавших испытания.

4.12. Для контрольной проверки потребителем качества проволоки и соответствия ее требованиям настоящего стандарта должны применяться правила отбора проб и методы испытаний, указанные выше.

5. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 5.1. Каждый моток должен быть плотно перевязан мягкой проволокой не менее чем в трех местах, равномерно расположенных по периметру мотка.
- 5.2. Мотки проволоки одной партии допускается связывать в бухты. Масса одного мотка или бухты не должна превышать 80 кг. По согласованию с потребителем допускается масса мотков или бухт более 80 кг.

(Измененная редакция, Изм. № 2).

- 5.3. На каждый моток (бухту, катушку, кассету) проволоки крепят металлический ярлык, на котором должны быть указаны:
 - а) наименование или товарный знак предприятия-изготовителя;
 - б) условное обозначение проволоки;
 - в) номер партии;
 - г) клеймо технического контроля.

Транспортная маркировка —по ГОСТ 14192.

(Измененная редакция, Изм. № 2, 4).

5.4. Каждый моток (бухта, катушка) проволоки диаметром 0,5 мм и менее должен быть обернут слоем бумаги и упакован в плотный деревянный ящик по ГОСТ 18617 или другую тару (металлическую, картонную, пластмассовую) по нормативно-технической документации.

Каждый моток (бухта, катушка) проволоки диаметром свыше 0,5 мм должен быть обернут слоем бумаги, затем слоем полимерной пленки, нетканых материалов или ткани из химических волокон.

При механизированной упаковке каждый моток проволоки должен быть обернут слоем кабельной крепированной бумаги по ГОСТ 10396 или бумаги марки КМВ-170 или другой крепированной бумаги, равноценной по защитным свойствам, или полимерной пленки с одновременным фиксированием упаковки проволокой по ГОСТ 3282 или другой проволокой.

В качестве упаковочных материалов применяют:

бумагу парафинированную по ГОСТ 9569 (допускается применение двухслойной бумаги по ГОСТ 8828 или другой бумаги, обеспечивающей защиту от коррозии);

пленку полимерную по ГОСТ 10354, ГОСТ 16272 или другую полимерную пленку;

тарное холстопрошивное или клееное полотно, сшивную ленту из отходов текстильной промышленности или ткани из химических волокон по нормативно-технической документации.

Допускается упаковывать проволоку в полиэтиленовую пленку, а высоколегированную проволоку — в нетканые материалы и ткани из химических волокон без бумажного подслоя.

Вид упаковки проволоки, изготовляемой на крупногабаритных катушках, в мотках и бухтах повышенной массы устанавливается по согласованию потребителя с изготовителем.

(Измененная редакция, Изм. № 4).

5.5. На каждый упакованный моток (бухту, катушку) поверх упаковки крепят металлический ярлык, содержащий данные, приведенные в п. 5.3.

Примечание. При упаковке проволоки в жесткую тару допускается замена металлического ярлыка бумажной этиксткой, наклеиваемой на тару и содержащей аналогичные данные.

(Измененная редакция, Изм. № 2, 4).

5.6. Каждая партия проволоки должна сопровождаться сертификатом, удостоверяющим соответствие проволоки требованиям настоящего стандарта.

В сертификате указывают:

- а) товарный знак предприятия-изготовителя;
- б) условное обозначение проволоки;
- в) номер плавки и партии;
- г) состояние поверхности проволоки;
- д) химический состав в процентах, включая:

фактическое содержание азота в легированной и высоколегированной проволоке марок, не указанных в п. 3.16;

фактическое остаточное содержание алюминия и ванадия в высоколегированной проволоке и вольфрама в легированной и высоколегированной проволоке;

- е) содержание ферритной фазы в пробе в процентах;
- ж) результаты испытаний на растяжение:
- з) массу проволоки нетто в килограммах.

(Измененная редакция, Изм. № 2).

5.7. Проволоку транспортируют транспортом всех видов в крытых транспортных средствах в соответствии с правилами перевозки грузов, действующими на транспорте данного вида.

По согласованию потребителя с изготовителем допускается транспортирование проволоки на крупногабаритных катушках массой 1 т и более в открытых транспортных средствах.

- 5.8. Проволока должна храниться в закрытом складском помещении.
- 5.7, 5.8. (Измененная редакция, Изм. № 4).

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ФЕРРИТНОЙ ФАЗЫ ПРИ ВЫПЛАВКЕ СТАЛИ И В СВАРОЧНОЙ ПРОВОЛОКЕ

1. Определение содержания ферритной фазы проводят магнитным методом с использованием ферритомера типа ФЦ-2.

(Измененная редакция, Изм. № 2).

2. Из каждой пробы или из каждого образца, отбираемых как указано в п. 4.6 настоящего стандарта, изготавливают не менее двух контрольных образцов, размеры которых должны соответствовать указанным в таблице.

мм

171171		
Назначение контрольного образца	Диаметр (пред. откл. ±0,1)	Длина (пред. откл. ±1)
Для определения содержания α-фазы при выплавке стали	7	60
Для определения содержания α-фазы в проволоке	5	60

- 3. Контрольные образцы при выплавке стали изготавливаются из ковшовых проб жидкого металла, заливаемого в охлаждаемый металлический кокиль. Объем отбираемых проб должен обеспечивать изготовление не менее двух контрольных образцов.
- 4. Заготовки контрольных образцов для определения содержания α-фазы в проволоке изготавливают путем переплавки проволоки в охлаждаемый кокиль из меди марок М0 или М1 по ГОСТ 859. Переплавку проволоки производят электродуговым способом неплавящимся вольфрамовым электродом в среде аргона высшего сорта по ГОСТ 10157.
 - 5. Испытание контрольных образцов проводят согласно инструкции по эксплуатации ферритометра типа ФЦ-2.

ПРИЛОЖЕНИЕ 2 Обязательное

МЕТОДИКА ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ СЛЕДОВ МЫЛЬНОЙ СМАЗКИ НА ПОВЕРХНОСТИ СВАРОЧНОЙ ПРОВОЛОКИ

Масса следов мыльной смазки на поверхности проволоки определяется весовым методом.

1. Аппаратура и реактивы

Вытяжной шкаф любой конструкции.

Весы лабораторные 2-го класса точности с максимальным пределом взвешивания до 200 г или другие, обеспечивающие ту же точность взвешивания.

Диэтиловый эфир по временной фармакопейной статье 42—301—74 или эфир этиловый технический по НТД, бензол по ГОСТ 5955, толуол по ГОСТ 9572, ксилол по ГОСТ 9410.

2. Отбор и подготовка образцов

От каждого мотка (катушки) проволоки, отобранного для контроля, отбрасывается конец длиной 3—4 м, затем отбирают не меньше трех образцов для проведения параллельных определений.

Масса каждого образца в зависимости от диаметра проволоки приведена в таблице.

Диаметр проволоки, мм	Масса образца, г, не менее	Диаметр проволоки, мм	Масса образца, г, не менее
0,8 1,0 1,2 1,4 1,6 2,0	20 30 40 50 60 70	2,5 3,0 4,0 5,0 6,0	80 100 120 140 160

Отобранные образцы в зависимости от диаметра проволоки сворачиваются в мотки или разделяются на отрезки с соблюдением условий, предотвращающих снятие имеющихся следов смазки. При этом диаметр мотков и длина отрезков должны обеспечивать их размещение на чашке весов.

3. Проведение испытаний

3.1. Работу следует производить в резиновых перчатках. Подготовленные образцы проволоки взвешивают с погрешностью 0,0002 г. Затем образцы помещают в вытяжной шкаф и очищают путем протирки тампонами, смоченными в диэтиловом или этиловом эфире. Чистоту поверхности проволоки контролируют по отсутствию следов загрязнения на белой ткани (визуально). Очищенные образцы снова взвешиваются. Масса следов мыльной смазки определяется по разности масс образца при первом и втором взвешиваниях.

С. 15 ГОСТ 2246-70

4. Обработка результатов 4.1. Массовую долю следов мыльной смазки на поверхности проволоки в процентах вычисляют по формуле

$$X = \frac{P_1 - P_2}{P_2} \cdot 100,$$

где P_1 — масса образца до снятия следов смазки, г; P_2 — масса образца после снятия следов смазки, г. 4.2. За окончательный результат принимается среднее арифметическое значение трех параллельных определений.

ПРИЛОЖЕНИЕ 2. (Введено дополнительно, Изм. № 5).

ИНФОРМАЦИОННЫЕ ДАННЫЕ*

- 1. РАЗРАБОТАН И ВНЕСЕН Минчерметом СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 23.06.70 № 952
- 3. B3AMEH FOCT 2246-60
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на	Номер пункта, подпункта,	Обозначение НТД, на	Номер пункта, подпункта,
который дана ссылка	перечисления, приложения	который дана ссылка	перечисления, приложения
			
ΓΟCT 859—2001	Приложение 1	ΓΟCT 12358—2002	4.7
ΓΟCT 3282—74	5.4	ΓΟCT 12359—99	4.7, 4.8
ΓΟCT 5955—75	Приложение 2	ΓΟCT 12360—82	4.7
ΓΟCT 7565—81	4.4	ΓΟCT 12361—2002	4.7
ΓΟCT 8828—89	5.4	ΓΟCT 12362—79	4.7
ГОСТ 9410—78	Приложение 2	ΓΟCT 12363—79	4.7
ГОСТ 9569—79	5.4	ΓΟCT 12364—84	4.7
ГОСТ 9572—93	Приложение 2	ΓΟCT 12365—84	4.7
ΓΟCT 10157—79	Приложение 1	ΓΟCT 14192—96	5.3
ГОСТ 10354—82	5.4	ΓΟCT 16272—79	5.4
ГОСТ 10396—84	5.4	ΓΟCT 18617—83	5.4
Γ OCT 10446—80	4.9	ΓΟCT 22536.0—87	4.7
ГОСТ 12344—2003	4.7	ΓΟCT 22536.1—88	4.7
ΓΟCT 12345—2001	4.7	ГОСТ 22536.2—87	4.7
ГОСТ 12346—78	4.7	ГОСТ 22536.3—88	4.7
ГОСТ 12347—77	4.7	ГОСТ 22536.4—88	4.7
ΓΟCT 12348—78	4.7	ГОСТ 22536.5—87	4.7
ГОСТ 12349—83	4.7	ГОСТ 22536.6—88	4.7
ГОСТ 12350—78	4.7	ГОСТ 22536.7—88	4.7
ΓΟCT 12351—2003	4.7	ГОСТ 22536.8—87	4.7
ΓΟ CT 12352—81	4.7	ГОСТ 22536.9—88	4.7
Γ O CT 12353—78	4.7	ГОСТ 22536.10—88	4.7
ΓΟCT 12354—81	4.7	ГОСТ 22536.11—87	4.7
ΓΟCT 12355—78	4.7	ГОСТ 22536.12—88	4.7
ΓΟCT 12356—81	4.7	ΓΟCT 28473—90	4.7
ΓΟCT 12357—84	4.7		
	I	I	I

- 5. Ограничение срока действия снято Постановлением Госстандарта СССР от 30.10.91 № 1685
- 6. ИЗДАНИЕ (август 2004 г.) с Изменениями № 1, 2, 3, 4, 5, утвержденными в марте 1973 г., июне 1978 г., июне 1980 г., феврале 1983 г., марте 1987 г. (ИУС 4—73, 8—78, 8—80, 5—83, 6—87), Поправками (ИУС 10—2001, 6—2003)

Переиздание (по состоянию на июль 2008 г.)

^{*} См. примечание ФГУП «СТАНДАРТИНФОРМ» (с. 17).

ПРИМЕЧАНИЕ ФГУП «СТАНДАРТИНФОРМ»

Информационные данные. Ссылочные нормативно-технические документы: ГОСТ 9569—79 заменен на ГОСТ 9569—2006.

Редактор *М.И. Максимова*Технический редактор *Н.С. Гришанова*Корректор *М.С. Кабашова*Компьютерная верстка *И.А. Налейкиной*

Подписано в печать 26.08.2008. Формат $60 \times 84^{-1}/8$. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл.печ.л. 2,32. Уч.-изд.л. 1,75. Тираж 144 экз. Зак. 1075.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru infoBM. Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ. Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.