

Maschinelles Lernen

Klassifikation(-sbäume)

Prof. Dr. Rainer Stollhoff

Supervised Learning

Supervised Learning

- 1. Aufgabe A Vorhersage $\hat{Y} = A(X)$
- 2. Qualität Q Verlustfunktion $L(\hat{Y}, Y)$
- 3. Erfahrung E

 Datensatz (x_i, y_i) für $i = 1, \dots, n$

Eine Maschine *lernt* aus Erfahrung E eine Aufgabe A mit der Qualität Q, wenn die Qualität Q beim erfüllen der Aufgabe A mit Erfahrung E steigt (T. Mitchell, MIT, 1988)

Supervised Classification

Supervised Learning

- 1. Aufgabe A Vorhersage $\hat{Y} = A(X) \in \{0, 1, \dots, n\}$
- 2. Qualität Q Verlustfunktion $L(\hat{Y}, Y)$
- 3. Erfahrung E Datensatz (x_i, y_i) für $i = 1, \dots, n$ mit $y_i \in \{0, 1, \dots, n\}$

Eine Maschine *lernt* aus Erfahrung E eine Aufgabe A mit der Qualität Q, wenn die Qualität Q beim erfüllen der Aufgabe A mit Erfahrung E steigt (T. Mitchell, MIT, 1988)

Einfache univariate Klassifikation

Aufgabe
 sage anhand von x den Zielwert y vorher

$$\hat{y} = f(x)$$

• Erfahrung
Beobachtungen: (x_i, y_i)

• Qualität

sage den Zielwert möglichst gut vorher

Gleichheit: $\hat{y} == y$

Abstand: $(\hat{y} - y)^2$

Klassifikationsgüte

•Wahrheitsmatrix / Confusion-Matrix

	<i>y</i> = 1	y = 0	
$\hat{y} = 1$	Richtig-positiv (r_p)	Falsch-positiv (f_p)	Gesamtzahl Vorhersage Positiv $r_p + f_p$
$\hat{y} = 0$	Falsch-negativ (f_n)	Richtig-negativ (r_n)	Gesamtzahl Vorhersage Negativ r_n + f_n
	Gesamtzahl Echt Positiv r_p + f_n	Gesamtzahl Echt Negativ f_p + r_n	Gesamtzahl n

–Fehlklassifikationsrate / error rate

$$\operatorname{err} = \frac{1}{n} \sum_{i} \delta_{(y_i \neq \hat{y}_i)} = \frac{\#\{i : y_i \neq \hat{y}_i\}}{-\frac{f_n + f_e}{n}} / \underline{\#\{i\}}$$

-Korrektklassificationsrate / Accuracy

$$acc = \frac{1}{n} \sum_{i} \delta_{(y_i = \hat{y}_i)} = \frac{\#\{i : y_i = \hat{y}_i\}}{\sqrt{n + v_p}} / \#\{i\}$$

-Sensitivität / True-Positive-Rate / Recall:
$$sens = tpr = \frac{r_p}{r_p + f_n}$$

—Spezifizität / True-Negative-Rate:

$$spec = tnr = \frac{r_n}{r_n + f_n}$$

—Genauigkeit / Precision / Positive-Predictive-Value:

$$prec = ppv = \frac{r_p}{r_p + f_p}$$

—Trennfähigkeit / Negative-Predictive-Value:

$$npv = \frac{r_n}{r_n + f_n}$$

Klassifikationsgüte – Beispiel für Covid-19 tests

•Wahrheitsmatrix / Confusion-Matrix

https://www.bmj.com/content/369/bmj.m1808

–Fehlklassifikationsrate / error rate

$$\operatorname{err} = \frac{1}{n} \sum_{i} \delta_{(y_i \neq \hat{y}_i)} = \frac{\#\{i : y_i \neq \hat{y}_i\}}{\#\{i\}}$$

-Korrektklassificationsrate / Accuracy

$$acc = \frac{1}{n} \sum_{i} \delta_{(y_i = \hat{y}_i)} = \frac{\#\{i : y_i = \hat{y}_i\}}{\#\{i\}}$$

-Sensitivität / True-Positive-Rate / Recall:

$$sens = tpr = \frac{\dot{r_p}}{r_p + f_n}$$

—Spezifizität / True-Negative-Rate:

$$spec = tnr = \frac{r_n}{r_n + f_p}$$

—Genauigkeit / Precision / Positive-Predictive-Value:

$$prec = ppv = \frac{r_p}{r_p + f_p}$$

—Trennfähigkeit / Negative-Predictive-Value:

$$npv = \frac{r_n}{r_n + f_n}$$

Maschinelles Lernen

Klassifikation(-sbäume)

Prof. Dr. Rainer Stollhoff

Klassifikation

Technische
Hochschule
Wildau
Technical University
of Applied Sciences

Aufgabe: Klassifikation, d.h. Vorhersage $\hat{y} = \hat{y}(x) \in \{0,1\}$

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n$

Qualität: Fehlerrate

$$\operatorname{err} = \frac{1}{n} \sum_{i} \delta_{(y_i \neq \hat{y}_i)} = \frac{\#\{i : y_i \neq \hat{y}(x_i)\}}{\#\{i\}}$$

Lernen: Finde einen Wert für θ , der die Fehlerrate minimiert

Klassifikationsbäume

• Idee: Rekursive Partitionierung / Wiederholtes Aufteilen

Klassifikationsbäume

- Idee: Rekursive Partitionierung / Wiederholtes Aufteilen
- Teilungsregel:
 In jeder neue Gruppe möglichst die gleiche Klasse, d.h. in jedem der beiden neuen Knoten K mit

$$p_K = \frac{\#\{i \text{ in K: } y_i = 1\}}{\#\{i \text{ in K}\}}$$

minimiere

$$p_K \cdot (1 - p_K)$$

Vorhersage:

Lasse eine neue Beobachtung den Baum durchlaufen. Angenommen sie landet im Knoten K. Die häufigste Klasse in K ist y_K , welche zur Vorhersage dient:

$$\hat{y}(x_i) = y_{K(x_i)}$$

Klassifikationsregel mit Wahrscheinlichkeiten

 Vorhersage in der Regel durch Vergleich von Wahrscheinlichkeiten und Grenzwert

$$\hat{p}(y=1|x) > c$$

oder scores und Grenzwert

f(x) > c

 Receiver Operating Characteristic Kurve ROC-Kurve

Trägt für alle möglichen Grenzen c die Sensitivität gegen (1-Spezifizität) auf

• Area under the ROC-Curve — AUC bzw. auc () Gibt die Fläche unterhalb der ROC-Kurve an

Vorhersage anhand von Wahrscheinlichkeiten

Fehlklassifikationsrate

$$\operatorname{err} = \frac{1}{n} \sum_{i} 1_{(y_i \neq \hat{y}_i)}$$

Quadrat. Fehler der Wahrs.

$$L(p,\hat{p}) = \frac{1}{n} \sum_{i} (p_i - \hat{p}_i)^2$$

Brier-Score

$$L(y,\hat{p}) = \frac{1}{n} \sum_{i} (y_i - \hat{p}_i)^2$$

$$L(y,\hat{p}) = \frac{1}{n} \sum_{i} (y_i - \hat{p}_i)^2$$

Likelihood

$$L(y,\hat{p}) = \prod_{i: \gamma_i = 1} y_i \cdot \hat{p}(x) + (1 - \hat{p}(x))$$
•Log-Likelihood
•Log-Likelihood

$$L(y, \hat{p}) = \sum_{i:y_i=1} \log \hat{p}(x_i) + \sum_{i:y_i=0} \log(1 - \hat{p}(x_i))$$

Klassifikationsbäume

- Idee: Rekursive Partitionierung / Wiederholtes Aufteilen
- Teilungsregel: In jedem neuen Knoten möglichst die gleiche Klasse, d.h. mit $p_K={}^{\#\{i \text{ in } K: \ y_i=1\}}/{}_{\#\{i \text{ in } K\}}$
 - -Minimiere Brier score $p_K \cdot (1 p_K)$
 - -Maximiere log-lik

$$\lim_{i \text{ in } K: y_i = 1} \log p_K + \lim_{i \text{ in } K: y_i = 0} \log(1 - p_K)$$

$$\lim_{i \text{ in } K: y_i = 1} \log p_K + \lim_{i \text{ in } K: y_i = 0} \log(1 - p_K)$$

$$\lim_{i \text{ in } K: y_i = 1} \log p_K + \lim_{i \text{ in } K: y_i = 0} \log(1 - p_K)$$

$$\lim_{i \text{ in } K: y_i = 1} \log p_K + \lim_{i \text{ in } K: y_i = 0} \log(1 - p_K)$$

$$\lim_{i \text{ in } K: y_i = 1} \log p_K + \lim_{i \text{ in } K: y_i = 0} \log(1 - p_K)$$

Maschinelles Lernen

Klassifikation(-sbäume)

Prof. Dr. Rainer Stollhoff

Klassifikationsbäume

- Idee: Rekursive Partitionierung / Wiederholtes Aufteilen
- Teilungsregel: In jedem neuen Knoten möglichst die gleiche Klasse, d.h. mit $p_K={}^{\#\{i \text{ in } K: \ y_i=1\}}/{}_{\#\{i \text{ in } K\}}$
 - -Minimiere Brier score $p_K \cdot (1 p_K)$
 - -Maximiere log-lik

$$\frac{1}{i \ln K : y_i = 1} \log p_K + \sum_{i \ln K : y_i = 0} \log(1 - p_K)$$

$$\frac{1}{i \ln K : y_i = 1} \int_{0.0}^{0.0} \log p_K + \sum_{i \ln K : y_i = 0}^{0.0} \log p_$$

Ensemble Methoden

- Idee: "Swarm Intelligence" oder "Wisdom of the Crowd"
 - Erzeuge wiederholt einfache Modelle
 - Aggregiere die einzelnen Vorhersagen z.B. mit Mittelwertbildung oder Mehrheitsentscheid
- Bagging = Bootstrap-Aggregating
 - Erzeuge Modelle auf Bootstrap Stichproben
- RandomForest
 - Erzeuge Bäume mit zufälligen Parametern (hier: Wahl der Partitionierung in einem Knoten) auf Bootstrap Stichproben
- Boosting
 - Erzeuge Modelle auf iterativ gewichteten Datensätzen
- Erhöhe die Gewichte von Beobachtungen, die falsch vorhergesagt wurden

(Adaptive)Boosting

Technical University of Applied Sciences

AdaBoost.M1

- 1. Gegeben einen Trainingsdatensatz $T^n = ((x_i, y_i))_{i=1,\dots,n}$
- 2. Initialisiere die Gewichtung $w_m(i) = \frac{1}{N}, (i = 1, ..., n)$
- 3. Iteriere für $m = 1, \ldots, \underline{M}$:
 - (a) Konstruiere mit w_m gewichteten Datensatz T_m^n .
 - (b) Erhalte eine Klassifikationsregel $\hat{y}_m = \hat{Y}(T_m^n)$
 - wm(i).

 Koratreller

 auf Feller (c) mit gewichtetem Fehler $err_m^w = \sum_{m} w_m(i)$.
 - (d) Setze $\beta_m = \frac{err_m^w}{1 err_m^w} \in (O, 1)$
 - (e) und $w_{m+1}(i) = \begin{cases} w_m(i) & \text{, falls } y_i \neq \hat{y}_m(x_i) \\ w_m(i) \beta_m & \text{sonst} \end{cases}$ $(i = 1, \dots, n).$
 - (f) Normalisiere die Gewichtung, so dass $\sum_{i=1}^{n} w_{m+1}(i) = 1$.
- 4. Scoring rule $\hat{f} := \sum_{m=1}^{M} \log(\frac{1}{\beta_m}) \hat{y}_m$ Grentlehr Mehrheitzelseled Lyanger and Hollest Levelseles Lorden Source Land
- 5. Klassifikationsregel $\hat{y} := sign(\hat{f})$
- 6. geschätzte Faktorisierung $\hat{p} := \frac{e^f}{e^{\hat{f}} + e^{-\hat{f}}}$

Beispiel AdaBoost

(Stollhoff, 2005, Verbesserung von Klassifikationsverfahren durch Boosting)

Beispiel AdaBoost

(Stollhoff, 2005, Verbesserung von Klassifikationsverfahren durch Boosting)

Beispiel AdaBoost

(Stollhoff, 2005, Verbesserung von Klassifikationsverfahren durch Boosting)

Gradient-Boosting

Logit-Boost

- 1. Gegeben einen Trainingsdatensatz $T^n = ((x_i, y_i))_{i=1,\dots,n}$
- 2. Initialisiere die scoring rule $\hat{f} \equiv 0$, die geschätzten bedingten Wahrscheinlichkeiten $\hat{p}_1(x_i) = \frac{1}{2}$ und die Gewichtung $w_m(i) = \frac{1}{N}, (i = 1, \dots, n)$
- 3. Iteriere für $m = 1, \ldots, M$:

(a)
$$z_m(i) = \frac{y_i - \hat{p}_m(x_i)}{\hat{p}_m(x_i)(1 - \hat{p}_m(x_i))}$$

(b) $w_m(i) = \hat{p}_m(x_i)(1 - \hat{p}_m(x_i))$

- (c) Bezeichne $T_m^n(z)$ den mit w_m gewichteten Trainingsdatensatz $T_m^n(z) = ((x_i, z_m(i)))_{i=1,\dots,n}$
- (d) Wende das Regressionsverfahren \hat{F} unter Minimierung des quadratischen Verlustes auf $T_m^n(z)$ an und erhalte die Funktion \hat{r}_m
- (e) Setze $\hat{f}_m = \sum_{k=1}^m \hat{r}_k$
- (f) und $\hat{p}_m(x) = \frac{e^{\hat{f}_m(x)}}{1 + e^{\hat{f}_m(x)}}$
- 4. Scoring Rule $\hat{f} = \sum_{k=1}^{M} \hat{r}_k$
- 5. Klassifikationsregel $\hat{y}(x) = \begin{cases} 1 & \text{, falls } \hat{f}(x) \ge 0 \\ 0 & \text{, sonst} \end{cases}$
- 6. geschätzte Faktorisierung $\hat{p}(x) = \frac{e^{\hat{f}(x)}}{1+e^{\hat{f}(x)}}$

Random Forest

Klassifikation eines einzelnen Baums

1) Erzeugen mittels wiederholter Zufallsstichproben und teilweise zufälliger Parameterwahl

Bootstrap Daten für einzelnen Baum

2) Vorhersage mittels Aggregation / Mehrheitsentscheid ... Tree_n Tree₂ Tree₁

Random Forest

Exkurs: Klassifikation – Maximum-Likelihood-Schätzer mit Gradientenabstieg

Aufgabe: Klassifikation, d.h. Vorhersage $\hat{y} = \hat{y}(x) \in \{0,1\}$

mittels Vorhersage der bedingten Wahrscheinlichkeit $f(x;\theta) = \hat{p}(y=1|x;\theta)$ und Grenzwert

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n$

Qualität: (Likelihood) oder log-likelihood

$$L(\theta) = \sum_{i: y_i = 1} \log \hat{p}(x_i; \theta) + \sum_{i: y_i = 0} \log(1 - \hat{p}(x_i; \theta))$$

Lernen: Finde einen Wert für θ , der die log-likelihood minimiert (bzw. likelihood maximiert) Durch geeignete Wahl von θ in einem iterativen Prozess (Gradientenabstiegsverfahren):

1. Wähle Startwert z.B.
$$\theta^0 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

2. Berechne Gradienten
$$\nabla L(\theta^{0}) = \begin{pmatrix} \frac{\partial}{\partial \theta_{0}} L(\theta^{0}) \\ \frac{\partial}{\partial \theta_{1}} L(\theta^{0}) \\ \vdots \\ \frac{\partial}{\partial \theta_{n}} L(\theta^{0}) \end{pmatrix} = \begin{pmatrix} \frac{d}{df} L(f(\theta^{0})) \cdot \frac{\partial}{\partial \theta_{0}} f(x; \theta^{0}) \\ \frac{d}{df} L(f(\theta^{0})) \cdot \frac{\partial}{\partial \theta_{1}} f(x; \theta^{0}) \\ \vdots \\ \frac{d}{df} L(f(\theta^{0})) \cdot \frac{\partial}{\partial \theta_{n}} f(x; \theta^{0}) \end{pmatrix}$$

3. Update
$$\theta^{t+1} = \theta^t + \mathbf{A} \cdot \nabla L(\theta^t)$$

Klassifikationsgüte und (Klassen-)wahrscheinlichkeiten

Klassifikationsgüte und (Klassen-)wahrscheinlichkeiten

