马尔可夫链蒙特卡罗法 在潜在狄利克雷分配中的应用 MCMC for LDA

西安交通大学管理学院 信息管理与电子商务系 智能决策与机器学习研究中心 刘佳鹏

- ▶ 潜在狄利克雷分配(LDA)使用三个集合:
- ▶ (1) 单词集合 $W = \{w_1, \dots, w_v, \dots, w_V\}$, 其中 w_v 是第 v 个单词, $v = 1, 2, \dots, V$, V 是单词的个数
- ▶ (2) 文本集合 $\mathbf{w} = \{\mathbf{w}_1, \dots, \mathbf{w}_m, \dots, \mathbf{w}_M\}$, 其中 \mathbf{w}_m 是第 m 个文本, $m = 1, 2, \dots, M$, M 是文本的个数
 - ▶ 文本 \mathbf{w}_m 是一个单词序列 $\mathbf{w}_m = (w_{m1}, \dots, w_{mn}, \dots, w_{mN_m})$, 其中 w_{mn} 是文本 \mathbf{w}_m 的第 n 个单词, $n = 1, 2, \dots, N_m, N_m$ 是文本 \mathbf{w}_m 中单词的个数
- ▶ (3) 话题集合 $Z = \{z_1, \dots, z_k, \dots, z_K\}$, 其中 z_k 是第 k 个话 题, $k = 1, 2, \dots, K$, K 是话题的个数

▶ 话题的单词分布及其先验分布:

- ▶ 每一个话题 z_k 由一个"单词的条件概率分布 $p(w \mid z_k)$ " 决定, $w \in W$
- ▶ 分布 $p(w|z_k)$ 服从多项分布(严格意义上类别分布), 其参数 为 φ_k
 - ▶ 参数 φ_k 是一个 V 维向量 $\varphi_k = (\varphi_{k1}, \varphi_{k2}, \cdots, \varphi_{kV})$, 其中 φ_{kv} 表示话题 z_k 生成单词 w_v 的概率
 - ▶ 所有话题的参数向量构成一个 $K \times V$ 矩阵 $\varphi = \{\varphi_k\}_{k=1}^K$
 - ▶ 参数 φ_k 服从狄利克雷分布(先验分布), 其超参数为 β
 - ▶ 超参数 β 也是一个 V 维向量 $\beta = (\beta_1, \beta_2, \dots, \beta_V)$

▶ 文本的话题分布及其先验分布:

- ▶ 每一个文本 \mathbf{w}_m 由一个"话题的条件概率分布 $p(z \mid \mathbf{w}_m)$ " 决定, $z \in Z$
- ▶ 分布 $p(z \mid \mathbf{w}_m)$ 服从多项分布(严格意义上类别分布), 其参数为 θ_m
 - ▶ 参数 θ_m 是一个 K 维向量 $\theta_m = (\theta_{m1}, \theta_{m2}, \dots, \theta_{mK})$, 其中 θ_{mk} 表示文本 \mathbf{w}_m 生成话题 \mathbf{z}_k 的概率
 - ▶ 所有文本的参数向量构成一个 $M \times K$ 矩阵 $\theta = \{\theta_m\}_{m=1}^M$
 - ▶ 参数 θ_m 服从狄利克雷分布(先验分布), 其超参数为 α
 - ▶ 超参数 α 也是一个 K 维向量 $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_K)$

▶ 每一个文本 \mathbf{w}_m 中的每一个单词 \mathbf{w}_{mn} 由该文本的话题分布 $p(z \mid \mathbf{w}_m)$ 以及所有话题的单词分布 $p(w \mid z_k)$ 决定

- ▶ LDA文本集合的生成过程如下:
- ▶ 给定单词集合 W, 文本集合 w, 话题集合 Z, 狄利克雷分布 的超参数 α 和 β
- ▶ (1) 生成话题的单词分布: 随机生成 K 个话题的单词分布。具体过程如下,按照狄利克 雷分布 $Dir(\beta)$ 随机生成一个参数向量 φ_k , $\varphi_k \sim Dir(\beta)$, 作 为话题 z_k 的单词分布 $p(w \mid z_k)$, $w \in W$, $k = 1, 2, \cdots$, K

▶ (2) **生成文本的话题分布:** 随机生成 M 个文本的话题分布。具体过程如下:按照狄利克雷分布 $Dir(\alpha)$ 随机生成一个参数向量 $\theta_m, \theta_m \sim Dir(\alpha)$, 作为文本 \mathbf{w}_m 的话题分布 $p(z \mid \mathbf{w}_m), m = 1, 2, \cdots, M$

- ▶ (3) 生成文本的单词序列:
 - 随机生成 M 个文本的 N_m 个单词。文本 $\mathbf{w}_m(m=1,2,\cdots,M)$ 的单词 $w_{mn}(n=1,2,\cdots,N_m)$ 的生成 过程如下:
 - (3-1) 首先按照多项分布 $Mult(\theta_m)$ 随机生成一个话题 $z_{mn}, z_{mn} \sim Mult(\theta_m)$
 - (3-2) 然后按照多项分布 $Mult(\varphi_{z_{mn}})$ 随机生成一个单词 $w_{mn}, w_{mn} \sim Mult(\varphi_{z_{mn}})$
- ▶ 注: 文本 \mathbf{w}_m 本身是单词序列 $\mathbf{w}_m = (w_{m1}, w_{m2}, \dots, w_{mN_m}),$ 对应着隐式的话题序列 $\mathbf{z}_m = (z_{m1}, z_{m2}, \dots, z_{mN_m})$

(LDA 的文本生成算法)

(1) 对于话题 z_k $(k = 1, 2, \dots, K)$:

生成多项分布参数 $\varphi_k \sim \text{Dir}(\beta)$, 作为话题的单词分布 $p(w|z_k)$;

(2) 对于文本 \mathbf{w}_m $(m = 1, 2, \dots, M)$:

生成多项分布参数 $\theta_m \sim \text{Dir}(\alpha)$,作为文本的话题分布 $p(z|\mathbf{w}_m)$;

- (3) 对于文本 \mathbf{w}_m 的单词 w_{mn} $(m = 1, 2, \dots, M, n = 1, 2, \dots, N_m)$:
 - (a) 生成话题 $z_{mn} \sim \text{Mult}(\theta_m)$,作为单词对应的话题;
 - (b) 生成单词 $w_{mn} \sim \text{Mult}(\varphi_{z_{mn}})$ 。

- ▶ LDA 的文本生成过程中, 假定话题个数 K 给定, 实际通常通过实验选定
- ▶ 狄利克雷分布的超参数 α 和 β 通常也是事先给定的
 - ▶ 在没有其他先验知识的情况下, 可以假设向量 α 和 β 的所有分量均为 1, 这时的文本的话题分布 θ_m 是对称的, 话题的单词分布 φ_k 也是对称的

- ► LDA模型本质是一种概率图模型(probabilistic graphical model)
- ▶ 下图为LDA作为概率图模型的板块表示 (plate notation), 亦称为盘式记法

- ▶ 结点表示随机变量,实心结点是观测变量,空心结点是隐变量
- ▶ 有向边表示概率依存关系
- ▶ 矩形(板块)表示重复,板块内数字表示重复的次数

▶ 结点 α 和 β 是模型的超参数, 结点 φ_k 表示话题的单词分布的参数, 结点 θ_m 表示文本的话题分布的参数, 结点 z_{mn} 表示话题, 结点 w_{mn} 表示单词

▶ 结点 β 指向结点 φ_k , 重复 K 次, 表示根据超参数 β 生成 K 个话题的单词分布的参数 φ_k

▶ 结点 α 指向结点 θ_m , 重复 M 次, 表示根据超参数 α 生成 M 个文本的话题分布的参数 θ_m

▶ 结点 θ_m 指向结点 z_{mn} , 重复 N_m 次, 表示根据文本的话题分布 θ_m 生成 N_m 个话题 z_{mn}

ightharpoonup 结点 z_{mn} 指向结点 w_{mn} , 同时 K 个结点 φ_k 也指向结点 w_{mn} , 表示根据话题 z_{mn} 以及 K 个话题的单词分布 φ_k 生成 单词 w_{mn}

- ► LDA模型中文本的单词序列是观测变量, 文本的话题序列是 隐变量, 文本的话题分布和话题的单词分布也是隐变量
- 利用LDA进行话题分析,就是对给定文本集合,学习到每个 文本的话题分布,以及每个话题的单词分布
- ▶ 这就是LDA模型的学习目标:给定文本集合,通过后验概率分布的估计,推断模型的所有参数

- ▶ 未知参数: (1) 话题的单词分布 $\varphi_{1:K}$ (2) 文本的话题分布 $\theta_{1:M}$ (3) 话题变量 z_{mn} , $m = 1, \dots, M$, $n = 1, \dots, N_m$
- ▶ 已知部分: (1) 观测数据: 文本的单词序列 $\mathbf{w} = \{\mathbf{w}_1, \dots, \mathbf{w}_m, \dots, \mathbf{w}_M\}$ (2) 超参数 $\alpha \times \beta$
- ▶ 目标: 后验分布

$$p(\varphi_{1:K}, \theta_{1:M}, \{z_{mn}\} \mid \mathbf{w}, \alpha, \beta)$$

- ▶ 目标:后验分布 $p(\varphi_{1:K}, \theta_{1:M}, \{z_{mn}\} \mid \mathbf{w}, \alpha, \beta)$
- ► 困难:该后验分布没有闭式解/解析解 (closed-form/analytical solution) / 直接计算该后验分布是 不可行的(intractable)
- ▶ 用 $\Phi = \{\varphi_{1:K}, \theta_{1:M}, \{z_{mn}\}\}$ 表示参数集合

$$p(\varphi_{1:K}, \theta_{1:M}, \{z_{mn}\} \mid \mathbf{w}, \alpha, \beta)$$

$$= p(\Phi \mid \mathbf{w}, \alpha, \beta)$$

$$= \frac{p(\Phi \mid \alpha, \beta)p(\mathbf{w} \mid \Phi)}{p(\mathbf{w} \mid \alpha, \beta)}$$

$$= \frac{p(\Phi \mid \alpha, \beta)p(\mathbf{w} \mid \Phi)}{\int_{\Phi} p(\mathbf{w}, \Phi \mid \alpha, \beta)d\Phi}$$

$$= \frac{p(\Phi \mid \alpha, \beta)p(\mathbf{w} \mid \Phi)}{\int_{\Phi} p(\Phi \mid \alpha, \beta)p(\mathbf{w} \mid \Phi)}$$

归一化因子 $\int_{\Phi} p(\Phi \mid \alpha, \beta) p(\mathbf{w} \mid \Phi) d\Phi$ 没有解析解

- ▶ 目标: 后验分布 $p(\varphi_{1:K}, \theta_{1:M}, \{z_{mn}\} \mid \mathbf{w}, \alpha, \beta)$
- ▶ 采样方法: 采样一组满足后验分布 $p(\varphi_{1:K}, \theta_{1:M}, \{z_{mn}\} \mid \mathbf{w}, \alpha, \beta)$ 的样本模拟该后验分布
- ▶ 同时采样所有参数的样本是困难的

$$(\varphi_{1:K}, \theta_{1:M}, \{z_{mn}\}) \sim p(\varphi_{1:K}, \theta_{1:M}, \{z_{mn}\} \mid \mathbf{w}, \alpha, \beta)$$

因为难以考虑变量之间的相关关系

▶ 采用分块采样的方法

```
\begin{split} &\text{for } k=1,\cdots,K,\\ &\varphi_k \sim p(\varphi_k \mid \mathbf{w},\alpha,\beta,\Phi \setminus \{\varphi_k\})\\ &=p(\varphi_k \mid \mathbf{w},\alpha,\beta,\varphi_{k'=1,\cdots,k-1,k+1,\cdots,K},\theta_{1:M},\{z_{mn}\}_{m=1,\cdots,M,n=1,\cdots,N_m}),\\ &\text{for } m=1,\cdots,M,\\ &\theta_m \sim p(\theta_m \mid \mathbf{w},\alpha,\beta,\Phi \setminus \{\theta_m\})\\ &=p(\theta_m \mid \mathbf{w},\alpha,\beta,\varphi_{1:K},\theta_{m'=1,\cdots,m-1,m+1,\cdots,M},\{z_{m'n'}\}_{m'=1,\cdots,M,n'=1,\cdots,N_{m'}}),\\ &\text{for } m=1,\cdots,M,\quad n=1,\cdots,N_m,\\ &z_{mn} \sim p(z_{mn} \mid \mathbf{w},\alpha,\beta,\Phi \setminus \{z_{mn}\})\\ &=p(z_{mn} \mid \mathbf{w},\alpha,\beta,\varphi_{1:K},\theta_{m'=1,\cdots,M},\{z_{m'n'}\}_{m'=1,\cdots,M,n'=1,\cdots,N_{m'}}\setminus \{z_{mn}\}), \end{split}
```

- ▶ 设定采样次数 T (e.g., 10000)
- ▶ 随机指定初始样本 $\varphi_{1:K}^{(0)}, \theta_{1:M}^{(0)}, \{z_{mn}^{(0)}\}$
- ▶ 采样过程如下:

$$\begin{split} &\text{for } t = 1, \cdots, T, \\ &\text{for } k = 1, \cdots, K, \\ &\varphi_k^{(t)} \sim p(\varphi_k \mid \mathbf{w}, \alpha, \beta, \varphi_{k'=1, \cdots, k-1}^{(t)}, \varphi_{k'=k+1, \cdots, K}^{(t-1)}, \theta_{1:M}^{(t-1)}, \{z_{mn}^{(t-1)}\}_{m=1, \cdots, M, n=1, \cdots, N_m}), \end{split}$$

$$&\text{for } m = 1, \cdots, M, \\ &\theta_m^{(t)} \sim p(\theta_m \mid \mathbf{w}, \alpha, \beta, \varphi_{1:K}^{(t)}, \theta_{m'=1, \cdots, m-1}^{(t)}, \theta_{m'=m+1, \cdots, M}^{(t-1)}, \{z_{m'n'}^{(t-1)}\}_{m'=1, \cdots, M, n'=1, \cdots, N_{m'}}), \end{split}$$

$$&\text{for } m = 1, \cdots, M, \quad n = 1, \cdots, N_m, \\ &z_{mn}^{(t)} \sim p(z_{mn} \mid \mathbf{w}, \alpha, \beta, \varphi_{1:K}^{(t)}, \theta_{m'=1, \cdots, M}^{(t)}, \{z_{m'n'}^{(t)}\}_{m'=1, \cdots, m-1, n'=1, \cdots, N_{m'}}, \{z_{mn'}^{(t)}\}_{n'=n+1, \cdots, N_{m'}}, \{z_{m'n'}^{(t-1)}\}_{n'=n+1, \cdots, N_m}, \{z_{m'n'}^{(t-1)}\}_{m'=m+1, \cdots, M, n'=1, \cdots, N_{m'}}) \end{split}$$

▶ 输出: 样本 $\{\varphi_k^{(t)}\}$, $\{\theta_m^{(t)}\}$, $z_{mn}^{(t)}$, $t=1,\dots,T$

▶ 根据采样得到的满足后验分布 $p(\varphi_{1:K}, \theta_{1:M}, \{z_{mn}\} \mid \mathbf{w}, \alpha, \beta)$ 的样本

$$\{\varphi_k^{(t)}\}, \{\theta_m^{(t)}\}, z_{mn}^{(t)}, t = 1, \cdots, T,$$

可以计算模型参数(1)话题的单词分布 $\varphi_{1:K}$ (2)文本的话题分布 $\theta_{1:M}$ (3)话题变量 z_{mn} , $m=1,\cdots,M$, $n=1,\cdots,N_m$ 的统计量(如样本均值、样本方差等)

▶ 注: 丢弃燃烧期(burn-in period)采集的样本,例如只使 用 $t = \frac{T}{2} + 1, \dots, T$ 周期内的样本

- 在上面的有向图中,结点 x₁ 的双亲结点是 x₂ 和 x₃,它的孩子结点是 x₄ 和 x₅,孩子结点的其他双亲结点是 x₆ 和 x₇
- 理论上可以证明,任意结点 x_i 的满条件分布仅与其双亲结点、孩子结点以及孩子结点的其他双亲结点相关(条件相关),而与其他结点无关(条件独立)

$$p(x_i \mid x_{-i}) = p(x_i \mid x_{\mathsf{parent}(x_i)}, x_{\mathsf{child}(x_i)}, x_{\mathsf{parent}(\mathsf{child}(x_i))})$$

▶ 在上图的例子中

$$p(x_1 \mid x_{-1}) = p(x_1 \mid x_2, x_3, x_4, x_5, x_6, x_7)$$

- ▶ 有向图中与某结点 x; 相关的部分被称为**马尔可夫毯**(Markov blanket)
- ▶ 应用上述结论可以简化LDA模型中的采样过程

ightharpoonup 文本的话题分布 θ_m 的采样

$$\begin{split} &\theta_{m} \sim p(\theta_{m} \mid \mathbf{w}, \alpha, \beta, \mathbf{\Phi} \setminus \{\theta_{m}\}) \\ &= p(\theta_{m} \mid \mathbf{w}, \alpha, \beta, \mathbf{\Phi}_{1:K}, \theta_{m'=1}, \dots, m-1, m+1, \dots, M, \{z_{m'n'}\}_{m'=1}, \dots, M, n'=1, \dots, N_{m'}) \\ &= p(\theta_{m} \mid \alpha, \{z_{mn}\}_{n=1}, \dots, N_{m}) \propto p(\theta_{m} \mid \alpha) p(\{z_{mn}\}_{n=1}, \dots, N_{m} \mid \theta_{m}) \\ &\propto p(\theta_{m} \mid \alpha) \prod_{n=1}^{N_{m}} p(z_{mn} \mid \theta_{m}) \propto \text{Dir}(\theta_{m} \mid \alpha) \prod_{n=1}^{N_{m}} \text{Mult}(z_{mn} \mid \theta_{m}) \\ &\propto \frac{1}{B(\alpha)} \prod_{k=1}^{K} \theta_{mk}^{\alpha_{k}-1} \cdot \prod_{n=1}^{N_{m}} \prod_{k=1}^{K} \theta_{mk}^{\mathbb{I}(z_{mn}=k)} \propto \frac{1}{B(\alpha)} \prod_{k=1}^{K} \theta_{mk}^{\alpha_{k}-1} \cdot \prod_{k=1}^{K} \theta_{mk}^{\sum_{n=1}^{N_{m}} \mathbb{I}(z_{mn}=k)} \\ &\propto \frac{1}{B(\alpha)} \prod_{k=1}^{K} \theta_{mk}^{\alpha_{k}+1} \prod_{n=1}^{N_{m}} \mathbb{I}(z_{mn}=k) - 1 \\ &= \text{Dir}(\theta_{m} \mid \alpha'_{m}) \end{split}$$

其中 $\alpha'_m = (\alpha'_{m1}, \cdots, \alpha'_{mK}), \ \alpha'_{mk} = \alpha_k + \sum_{n=1}^{N_m} \mathbb{I}(z_{mn} = k), \ k = 1, \cdots, K$

ightharpoonup 话题的单词分布 φ_k 的采样

$$\begin{split} \varphi_k &\sim p(\varphi_k \mid \mathbf{w}, \alpha, \beta, \Phi \setminus \{\varphi_k\}) \\ &= p(\varphi_k \mid \mathbf{w}, \alpha, \beta, \varphi_{k'=1, \cdots, k-1, k+1, \cdots, K}, \theta_{1:M}, \{z_{mn}\}_{m=1, \cdots, M, n=1, \cdots, N_m}) \\ &= p(\varphi_k \mid \beta, \mathbf{w}, \varphi_{k'=1, \cdots, k-1, k+1, \cdots, K}, \{z_{mn}\}_{m=1, \cdots, M, n=1, \cdots, N_m}) \\ &= p(\varphi_k \mid \beta) p(\mathbf{w} \mid \varphi_{1:K}, \{z_{mn}\}_{m=1, \cdots, M, n=1, \cdots, N_m}) = \mathrm{Dir}(\varphi_k \mid \beta) \prod_{m=1}^{M} \prod_{n=1}^{N_m} \varphi_{z_{mn}, i(w_{mn})} \\ &= \mathrm{Dir}(\varphi_k \mid \beta) \prod_{k'=1}^{K} \prod_{v=1}^{V} \varphi_{k'v}^{\sum_{m=1}^{M} \sum_{n=1}^{N} \mathbb{I}[z_{mn}=k', w_{mn}=w_v)} \\ &\propto \mathrm{Dir}(\varphi_k \mid \beta) \prod_{v=1}^{V} \varphi_{kv}^{\sum_{m=1}^{M} \sum_{n=1}^{N} \mathbb{I}[z_{mn}=k, w_{mn}=w_v)} \\ &= \mathrm{Dir}(\varphi_k \mid \beta) \prod_{v=1}^{V} \varphi_{kv}^{\sum_{m=1}^{M} \sum_{n=1}^{N} \mathbb{I}[z_{mn}=k, w_{mn}=w_v)} \\ &\Rightarrow \mathrm{Dir}(\varphi_k \mid \beta) \prod_{v=1}^{V} \varphi_{kv}^{\sum_{m=1}^{M} \sum_{n=1}^{N} \mathbb{I}[z_{mn}=k, w_{mn}=w_v)} \\ &\Rightarrow \mathrm{Dir}(\varphi_k \mid \beta) \xrightarrow{\mathbb{I}} \mathbb{I}[z_{mn}=k, w_{mn}=w_v) \\ &\Rightarrow \mathrm{Dir}(\varphi_k \mid \beta'_k) \end{aligned}$$

▶ 话题变量 *zmn* 的采样

$$\begin{split} z_{mn} &\sim p(z_{mn} \mid \mathbf{w}, \alpha, \beta, \Phi \setminus \{z_{mn}\}) \\ &= p(z_{mn} \mid \mathbf{w}, \alpha, \beta, \varphi_{1:K}, \theta_{m'=1}, \dots, M, \{z_{m'n'}\}_{m'=1}, \dots, M, n'=1, \dots, N_{m'} \setminus \{z_{mn}\}) \\ &= p(z_{mn} \mid \theta_m, w_{mn}, \varphi_{1:K}) \\ &= p(z_{mn} \mid \theta_m) p(w_{mn} \mid z_{mn}, \varphi_{1:K}) \end{split}$$

从而有

$$z_{mn} = k \propto \theta_{mk} \cdot \varphi_{k,i(w_{mn})}, \quad k = 1, \cdots, K$$

其中 $i(w_{mn}) \in \{1, \cdots, V\}$ 表示单词 w_{mn} 的索引, 进一步有

$$p(z_{mn} = k) = \frac{\theta_{mk}\varphi_{k,i(w_{mn})}}{\sum\limits_{k'=1}^{K} \theta_{mk'}\varphi_{k',i(w_{mn})}}, \quad k = 1, \cdots, K$$

- LDA的Gibbs抽样复法:
- ▶ 输入: 文本的单词序列 $\mathbf{w} = \{\mathbf{w}_1, \dots, \mathbf{w}_m, \dots, \mathbf{w}_M\}, \mathbf{w}_m = (\mathbf{w}_{m1}, \dots, \mathbf{w}_{mn}, \dots, \mathbf{w}_{mN_m}\}$
- 参数: 超参数 α 和 β. 话题个数 K. 采样次数 T
- lacktriangle 输出:满足文本的话题分布 $heta_m$ 的后验分布的样本 $\{ heta_m^{(t)}\}_{t=1,\cdots,T}$,满足话题的单词分布 $arphi_k$ 的后验分布 的样本 $\{\varphi_k^{(t)}\}_{t=1,\dots,T}$, 满足话题变量 z_{mn} 的后验分布的样本 $\{z_{mn}^{(t)}\}_{t=1,\dots,T}$
- ightharpoonup (1) 为每个文本 \mathbf{w}_m 引入计数变量 $r_m = (r_{m1}, \cdots, r_{mK})$, 其中 r_{mk} 表示文本 \mathbf{w}_m 中的话题 k 的计数, 初值设为0;为每个主题 k引入计数变量 $s_k = (s_{k1}, \dots, s_{kV})$,其中 s_{kV} 表示话题 k中的单词 v的计数, 初值设为0
- (2) 对所有文本 \mathbf{w}_m , $m=1,\dots,M$ 中的所有单词 \mathbf{w}_{mn} , $n=1,\dots,N_m$,
- 抽取话题变量 $z_{mn} = z_k \sim \text{Mult}(\frac{1}{r})$
- 增加文本-话题计数 $r_{mk} = r_{mk} + 1$
- 增加话题-单词计数 $s_{k,i(w_{mn})} = s_{k,i(w_{mn})} + 1$
- (3) 循环下列采样过程 T 次, $t = 1, \dots, T$.
- (a) 对所有文本 \mathbf{w}_m , $m=1,\dots,M$, 抽取文本的话题分布 $\theta_m^{(t)}\sim \mathrm{Dir}(\alpha_m')$, 其中 $\alpha'_m = (\alpha'_{m1}, \cdots, \alpha'_{mK}), \ \alpha'_{mk} = \alpha_k + r_{mk}, \ k = 1, \cdots, K$
- (b) 对所有话题 $k=1,\dots,K$,抽取话题的单词分布 $\varphi_{\iota}^{(t)}\sim \text{Dir}(\beta_{\iota}')$,其中 $\beta'_{k} = (\beta'_{k1}, \dots, \beta'_{kV}), \ \beta'_{kv} = \beta_{V} + s_{kv}, \ v = 1, \dots, V$
- (c) 所有的 r_{mk} 和 r_{kv} , $m=1,\cdots,M,\ k=1,\cdots,K,\ v=1,\cdots,V$ 归零
- (d) 对所有文本 \mathbf{w}_m , $m=1,\cdots,M$ 中的所有单词 \mathbf{w}_{mn} , $n=1,\cdots,N_m$, 按照以下概率分布抽 取话题变量 $z_{mn}^{(t)}=z_k$,并增加文本-话题计数 $r_{mk}=r_{mk}+1$ 和话题-单词计数 $s_{k,i(w_{mn})}=s_{k,i(w_{mn})}+1$

$$p(z_{mn}^{(t)} = k) = \frac{\theta_{mk}^{(t)} \varphi_{k,i(w_{mn})}^{(t)}}{\sum\limits_{k'=1}^{K} \theta_{mk'}^{(t)} \varphi_{k',i(w_{mn})}^{(t)}}, \quad k = 1, \dots, K$$