

RAZONAMIENTO LOGICO MATEMATICO

DOCENTE: Eliseo Velasquez Condori

Actividad :Ecuaciones e Inecuaciones polinomiales trabajo en grupo

INTEGRANTES:

Josue Gabriel Sumare Uscca Jesus Alonso Vilca Samanez Albert Gussepe Blanco Cana Jayan Michael Caceres Cuba

EJERCICIOS

1-) Si se disponen de 13 bolas, 4 blancas, 3 verdes y 6 azules, de cuantas maneras diferentes se pueden ordenar si no es posible distinguir las bolas del mismo color

2.-) ¿Cuántas respuestas distintas pueden haber en un examen de opción múltiple de diez preguntas en la cual las respuestas pueden ser $a,\ b,\ c,\ d,\ o\ e$?

3.-) Suponga que dos dados, uno rojo y el otro verde, se arrojan ¿cuántos resultados podría haber?

4.-) ¿De cuántas maneras se pueden sentar siete personas en siete sillas dispuestas en en fila si una de ellas ocupa un lugar fijo?.

	telefónico 	úmeros (s). 	sın repeti 	pai	ra 10rn
——————————————————————————————————————	В	C	D	E	F
	nen 9 posil ne 8 posibi	oilidades lidades po	r que dice	e sin repe	tición
G	→ tiene 3	posibilidad	des sin re _l	petición	
Entono	es seria u	ına combi	nacion		
C9/7→9	9!/6!x3!=8	4			
	men de c lebe resp	omputaci			•

6. en un examen de computación con 13 preguntas, un estudiante debe responder cualesquiera 9 preguntas. ¿De cuantas maneras puedan elegirse las 9 preguntas (sin importar el orden)?

como no importa el orden es una combinacion

$$C13/9 \rightarrow 13!/9!x4!=715$$

7.de cuantas maneras pueden formarse un comité de cuatro miembros a partir de un grupo de 17 personas?

aunque este implicido en aqui no importa el orden por lo tanto es una combinación

C17/4->17!/13!x4!=2380

8.A una ceremonia asisten cinco matrimonios, los que se dispondrán en la primera corrida de asientos dispuestas en fila. ¿De cuántas maneras pueden sentarse? si:

- a) se sientan al azar permutación de 10 10! = 3628800
- b) las parejas debe quedar siempre juntas permutación de las 5 parejas y por cada pareja una permutación de 2 2!*2!*2!*5! = 3840
- c) la mujer debe estar al lado derecho de su marido permutación de los matrimonios 5! = 120
- d) un determinado matrimonio debe quedar en el centro permutación del resto de personas a parte del matrimonio por la permutación de la pareja por la cantidad de parejas 8!*2!*5 = 403200

9. Se tomará una fotografía a tres matrimonios. ¿De cuántas maneras se puede hacer?,si:

- a) Se disponen todos en una sola fila.
 permutación de 6 personas
 6! = 720
- b) Se disponen en dos filas: una de hombres y otra de mujeres.
 sería multiplicar las posibles permutaciones
 3!*3!*2! = 72

10. Cuántas cadenas de bits de longitud 10 contienen:

a) exactamente cuatro unos

1111000000

si solo tiene 4 unos significa que los demás son 0 por lo que se aplica combinación de 10 en 4 10*9*8*7/4*3*2 y eso nos da 210

- b) a lo más cuatro unos se hace una sumatoria de 4 combinatorias de 10 en 1,2,3,4 10 + 45 + 120 + 210 = 385
- c) al menos cuatro unos en este caso sumamos las combinatorias restantes de 10 de 10 en 4,5,6,7,8,9,10 210 + 252 + 210 + 120 + 45 + 10 + 1 = 848
- d) un número igual de unos y ceros para ello debería tener 5 ceros o 5 unos, por lo que simplemente es combinatoria de 10 en 5 252

11. Obtenga el coeficiente del término dado en el desarrollo binomial

b)
$$x^7$$
 de $(x-3)^11$

en este caso no podemos aplicar la misma fórmula debido a que el segundo término del binomio es un número entero, por ello restaremos el exponente del término a el del binomio:

$$11 - 7 = 4 + 1 = 5$$

por combinatoria del 5to término

$$(11) 11*10*9*8$$

$$() = ---- = 330$$

$$(4) 4*3*2$$

pero no olvidemos que el entero afecta al coeficiente por lo que quedaría

$$330 \times 7 (-3)^4 = 330*81 \times 7 = 26730 \times 7$$

12. Utilice el teorema del binomio para determinar el desarrollo binomial de la función

a) $(2x - 1)^{7}$

por combinaciones se obtienen los coeficientes 1 7 21 35 35 21 7 1 solo queda hacer la sumatoria de k hasta n $1(2x)^7 + 7(2x)^6 (-1)^1 + 21(2x)^5 (-1)^2 + 35(2x)^4 (-1)^3 + 35(2x)^3 (-1)^4 + 21(2x)^2 (-1)^5 + 7(2x) (-1)^6 + 1 (-1)^7$

b) $(3x + 4)^5$

por combinaciones o triangulo de pascal se obtienen los coeficientes 1 5 10 10 5 1 ahora solo queda hacer la sumatoria

$$1(3x)^5 + 5(3x)^4 (4)^1 + 10(3x)^3 (4)^2 + 10(3x)^2$$

 $(4)^3 + 5(3x)^1 (4)^4 + 1(4)^5$

 $243x^5 + 1620x^4 + 4320x^3 + 5760x^2 + 3840x + 1024$

c) $(x^{1/2} - 3^{1/2})^4$

por combinatorias o triángulo de pascal se halla que los coeficientes son 1 4 6 4 1 solo queda ubicarlos con la sumatoria

$$\frac{1(x^{\wedge 1/2})^{\wedge}4}{4(x^{\wedge 1/2})^{\wedge}3} \frac{(3^{\wedge 1/2})^{\wedge}1}{6(x^{\wedge 1/2})^{\wedge}2} \frac{(3^{\wedge 1/2})^{\wedge}2}{4(x^{\wedge 1/2})^{\wedge}1} + \frac{6(x^{\wedge 1/2})^{\wedge}2}{(3^{\wedge 1/2})^{\wedge}3} + \frac{1(3^{\wedge 1/2})^{\wedge}4}{(3^{\wedge 1/2})^{\wedge}4}$$

$$x^2 + (48x^3)^1/2 + 18x + (432x)^1/2 + 9$$

d) $(x^-2 + y^-1)^6$

por combinaciones obtenemos los coeficientes 1 6 15 20 15 6 1

y ahora la sumatoria de k hasta n

$$1(x^{-2})^{6} + 6(x^{-2})^{5} (y^{-1})^{1} + 15(x^{-2})^{4} (y^{-1})^{2} + 20(x^{-2})^{3} (y^{-1})^{3} + 15(x^{-2})^{2} (y^{-1})^{4} + 6(x^{-2})^{1} (y^{-1})^{5} + 1(y^{-1})^{6}$$

$$x^{-18} + 6(x^{-10})(y^{-1}) + 15(x^{-8})(y^{-2}) + 20(x^{-6})(y^{-3}) + 15(x^{-4})(y^{-4}) + 6(x^{-2})(y^{-5}) + y^{-6}$$

13. Probar

$$\begin{array}{l} n! \: / \: (r! \: (n\text{-}r)!) = \left[(n\text{-}1)! \: / \: ((r\text{-}1)! \: (n\text{-}r)!) \right] \: + \: \left[(n\text{-}1)! \: / \: ((r)! \: (n\text{-}r\text{-}1)!) \right] \\ \end{array}$$

esto es lo mismo que decir:

$$\begin{array}{l} n^*(n-1)! \ / \ (r^*(r-1)! \ (n-r)^*(n-r-1)!) = \left[(n-1)! \ / \ ((r-1)! \ (n-r)(n-r-1)!) \right] \\ + \left[(n-1)! \ / \ (r^*(r-1)! \ (n-r-1)!) \right] \end{array}$$

simplificamos en los tres términos por factor común:

$$(n-1)! / ((r-1)!*(n-r-1)!)$$

por lo que nos quedaría:

$$n/r^*(n-r) = 1/(n-r) + 1/r$$

 $n/r^*(n-r) = r+n-r/r^*(n-r)$
 $n/r^*(n-r) = n/r^*(n-r)$

y efectivamente se llega a la misma respuesta.

$$\begin{array}{lll} n! \: / \: ((n\mbox{-}2)!(n\mbox{-}(n\mbox{-}2))!) \: + \: (n\mbox{+}1)! \: / \: ((n\mbox{-}1)!(n\mbox{+}1\mbox{-}(n\mbox{-}1))) \: = \: \\ n^2 \end{array}$$

esto es igual a decir:

$$n*(n-1) / 2 + n*(n+1) / 2$$

 $(n^2 - n + n^2 + n)/2$
 $2n^2/2$
 $n^2 = n^2$

por lo que podemos comprobar que sí se llega al mismo resultado.