Übungsgruppe 8 1. Juli 2017

Betriebssysteme und Softwaretechnik

Abgabe 6 Abgabe: 22.06.2017

Adrian C. Hinrichs Matr.Nr. 367129 Jeremias Merten Matr.Nr. 367626 Georg C. Dorndorf Matr.Nr. 366511

Aufgabe 6

Aufgabe 6.1

a)

Siehe Quellcode.

b)

Erstmal nicht.

Aufgabe 6.2

a)

Der Resource Allocation Graph für die in der Aufgabenstellungs angegebene Tabelle für den Zeitpunkt t=7 sieht wie folgt aus:

Abbildung 1: Resource Allocation Graph

Es liegt kein Deadlock vor, da der Graph keine Kreise enthält.

b)

- i Ein Deadlock kann nicht auftreten, wenn $t_{XA} \cdot t_{XB} + t_{YA} \cdot t_{YB} + t_{ZA} \cdot t_{ZB} < t_A \cdot t_B$
 - Diest ist Falsch. Sei $t_A=t_B=16$, wenn beide Prozesse alle Betriebsmittel zu genau einem Viertel ihrer Laufzeit Brauchen ($t_{XA}=t_{YA}=t_{ZA}=\frac{1}{4}t_A=4$ und $t_{XB}=t_{YB}=t_{ZB}=\frac{1}{4}t_B42$), Prozess A Betriebsmittel X zum Zeitpunkt 0 und Betriebsmittel Y zum Zeitpunkt 1 und Betriebsmittel X zum Zeitpunkt 1 und Betriebsmittel X zum Zeitpunkt 3 anfordert, laufen sie unweigerlich

in ein Deadlock, obwohl $t_{XA} \cdot t_{XB} + t_{YA} \cdot t_{YB} + t_{ZA} \cdot t_{ZB} = 3 \cdot (2 \cdot 2) = 3 \cdot 4 = 12 < 16^2$ gilt.

- ii Ein Deadlock liegt automatisch vor, wenn $t_{XA} + t_{YA} + t_{ZA} > t_A$ und $t_{XB} + t_{YB} + t_{ZB} > t_B$.
 - Nicht richtig, angenomen, Prozess A Braucht BTM X und Y von Zeitpunkt 1 bis 2 und Betriebsmittel Z von Zeitpunkten 3 bis 4, Prozess B jedoch Betriebsmittel Z von Zeitpunkt 1 bis 2 und die Beiden Anderen Betriebsmittel von Zeitpunkt 3 bis 4, so ist die Bedingung erfüllt, es liegt aber kein Deadlock vor.
- iii Ein Deadlock liegt automatisch vor, wenn $t_{XA} \cdot t_{XB} + t_{YA} \cdot t_{YB} + t_{ZA} \cdot t_{ZB} > t_A \cdot t_B$.
- iv Ein Deadlock kann nicht auftreten, wenn $t_{XA} + t_{YA} + t_{ZA} < t_A$ und $t_{XB} + t_{YB} + t_{ZB} < t_B$.
 - Dies ist Falsch. Das Gegenbeispiel aus (i) ist hier ebenfalls gültig, da $\frac{1}{4}t_A + \frac{1}{4}t_A + \frac{1}{4}t_A < t_A$ und $\frac{1}{4}t_B + \frac{1}{4}t_B + \frac{1}{4}t_B < t_B$ gilt.

Aufgabe 6.3

Abbildung 2: Resource Allocation Graph

Nein es liegt kein Deadlock vor, da kein Zyklischer Zustand vorliegt.

Aufgabe 6.4

a)

$$\begin{aligned} Max[i,j] &:= (BM_1 = 13), (BM_2 = 8), (BM_3 = 9) \\ Avail[j] &= (9,5,6) \\ Need[i = 1,j] &= (14,1,2) \\ Allo[i = 2,j] &= (0,2,1) \\ &\Rightarrow Avail[j] &\neq (9,3,5) \\ Avail[j] &\not\geq Need[i = 1,j] \Rightarrow \text{Zustand nicht Safe.} \\ Need[i = 2,j] &= (3,6,4) \\ Allo[i = 2,j] &= (1,0,1) \\ &\Rightarrow Avail[j] &= (8,5,5) \\ Avail[j] &\not\geq Need[i = 1,j] \Rightarrow \text{Zustand nicht Safe.} \\ Need[i = 2,j] &= (2,0,0) \\ Allo[i = 2,j] &= (3,1,1) \\ &\Rightarrow Avail[j] &= (6,4,5) \\ Avail[j] &\geq Need[i = 1,j] \Rightarrow \text{Zustand ist Safe.} \end{aligned}$$

b)

Nein daraus kann nicht sicher geschlossen werden, dass kann nicht sicher daraus geschlossen werden, da die Zuteilung auch abgelehnt hätte werden können, weil insgesamt nicht genügend Resourcen zur Verfügung stehen.

Aufgabe 6.5

- **a**)
- b)
- **c**)