

Mission Use of the SpaceCube Hybrid Data Processing System

Dave Petrick, 587/Chief Engineer
Science Data Processing Branch
NASA Goddard Space Flight Center

SpaceCube Overview

Heritage

- GOAL: close the gap with commercial processors while retaining reliability
- Started in 2006 at GSFC as R&D
- **42+ Xilinx device-years on orbit**
- 22 Xilinx in space by 2017
- 9 systems in space by 2018
- Various R&D efforts on hardware acceleration

Hybrid Data Processing

- Parallel data processing:
 - FPGA + DSP + Processor(s)
- SpaceCube can move **3,000x** more data than a sequential processor per clock cycle

**SpaceCube is a
Mission-Enabling Technology**

SpaceCube v2.0

- Currently TRL-7
- Leverages 10 years of design heritage and operation experience
- **\$10M+ of NRE**
- Adopted by SSCO for all missions
- IPC 6012B Class 3/A PWB Reliability
- Modular: 9 Mission-Unique I/O cards
- **Run-Time Reconfigurable**

Xilinx Virtex-5 FPGA

SpaceCube v2.0

Commercial Processor Trend

Space Processor Trend

Processor Trend Comparison

Processor Trend Comparison

Future Space Processing Requirement

SpaceCube Closes the Gap

SpaceCube Family Overview

v1.0

v1.5

v2.0-EM

v2.0-FLT

2012 SMART (ORS)

2013 STP-H4
2017 STP-H5

v2.0 Mini

2009 STS-125
2009 MISSE-7
2013 STP-H4
2017 STP-H5
2018 STP-H6

2017 STP-H5
NASA proposals

2018 RRM3
2018 STP-H6 (NavCube)
2018 NEODaC
Restore-L
Many NASA proposals

SpaceCube on the ISS

SpaceCube v1.0

STS-125 Shuttle Payload Bay

MISSE-7/8 ISS Payload

- 7.3 years of operation
- 4x Virtex-4 XC4VFX60: 0.1 SEU/FPGA/Week
- 2x on-orbit file uploads and reconfiguration

STP-H4 ISS Payload

2 years of operation. 3x Virtex-5 XC5VFX130T: 1 SEU/FPGA/Week
Successful on-orbit file upload and reconfiguration

STP-H5 ISS Payload

ISEM, SpaceCube Mini

Photo Credit: DoD STP

The Space Test Program-H5 (STP-H5) external payload, a complement of 13 unique experiments from seven government agencies, is integrated and flown under the management and direction of the Department of Defense's Space Test Program.

Installed on ISS February 2017

Example SpaceCube Processing

Real-Time Vehicle Tracking

Fire Classification

Gigabit Instrument
Interfacing

Spectrometer
Data Reduction

Image Compression

On-Board Image Processing Example

- Successfully tracked Hubble position and orientation in real-time operations
- FPGA Algorithm Acceleration was required to meet 3Hz loop requirement

Rendezvous

Deploy (Docking Ring)

→ Typical space flight processors are 25-100x too slow for this application

Restore-L/RRM3/NEODaC Computer

SpaceCube Processor Card

SpaceCube Backplane Card

SpaceCube Power Card

Processor Card

Power Draw: 6-15W
Weight: 0.98-lbs
22 Layers, Via-in-Pad
IPC 6012B Class 3/A

- 2x Xilinx Virtex-5 (QR) FX130T FPGAs
- 1x Aeroflex CCGA FPGA
 - Xilinx Configuration, Watchdog, Timers
 - Auxiliary Command/Telemetry port
- 1x 128Mb PROM, contains initial Xilinx configuration files
- 1x 16MB SRAM, rad-hard with auto EDAC/scrub feature
- 4x 512MB DDR SDRAM
- 2x 4GB NAND Flash
- 16-channel Analog/Digital circuit for system health
- Optional 10/100 Ethernet interface
- Gigabit interfaces: 4x external, 2x on backplane
- 12x Full-Duplex dedicated differential channels
- 88 GPIO/LVDS channels directly to Xilinx FPGAs
- Mechanical support for heat pipes and stiffener for Xilinx devices

2014 Global Award: Most innovative design worldwide in the Military/Aerospace sector

Processor Card Diagram

TOP

Back-to-Back
Technology

BOTTOM

US Patent:
9,549,467

Industry license
agreement in
place to build
SpaceCube

Example Mission-Unique I/O Cards

Restore-L Video/Spacecraft Interface Card

LIDAR Digitizer, Front-End, and Laser Card

"NavCube" GPS RF Front-End Interface Card

Reconfigurable + Modular = Spinoff Technologies

GPS Receiver – L1/L2C Tracking

LIDAR Instrument – Configurable Resolution

“NavCube”

- Port the “World Recording Breaking” Navigator technology to SpaceCube
- Full qualification, will fly on
- 2016 Goddard Innovation of the Year
- 6 RTAXs \rightarrow $\frac{1}{2}$ of 1 Virtex 5

NASA's Satellite Servicing Projects Division (SSPD) is developing servicing technologies that support science and exploration. SSPD is responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA.

<http://sspd.gsfc.nasa.gov>

Robotic Refueling Mission 3 SpaceCube

1553/Ethernet/Digital Card

Analog Card

High Level Requirements:

- Interface with ISS and RRM3 instruments:
 - Cameras, thermal imager, motors
- Monitor/Control cryocooler and fuel transfer
- Stream video data
- Motor control of robotic tools
- Host Wireless Access Point

NEODaC Instrument Development

8x 3K x 3K detectors

Xilinx GTX Driver: 1.6Gbps, 1300mV, vary Pre

- Near Earth Objects Detection and Characterization
 - Funded by NASA SMD/Planetary
- SerDes output drivers over 21-ft.
- SpaceCube FPGAs being used to interface with detectors, host on-board data processing applications and compression
- Successful multi-detector readout with SpaceCube completed during TVAC
- Flight system: 8 Processor Cards

SerDes Link Test Results				
Transmitter Swing (mV)	Transmitter % Pre-emphasis	Test Duration	Bit Error Count	BER (*)
500	0	6hr	32	9.2E-13
500	8	18hr	0	9.6E-15
800	0	4hr	4	1.7E-13
800	25	20hr	0	8.7E-15
1300	17	20hr	0	8.7E-15
1300	0	19hr	52	4.7E-13

- Note: BER calculation assumes at least 1 error
- 58-hours of error-free transmission

Raven – Relative Navigation

Raven is a technology demonstration experiment on the Space Test Program-Houston 5 (STP-H5) payload, launched to the ISS on the SpaceX CRS-10 mission in February, 2017. During its two year mission on ISS, it will advance the state-of-the-art in NASA's relative navigation capabilities.

- Raven contains three sensors (visible, infrared, lidar), a high-performance & reliable computing platform (SpaceCube) and advanced machine vision algorithms
- Raven will track visiting vehicles to ISS, developing an “off-the-shelf” relative navigation capability for NASA

Raven Payload

Objective:

To advance the state-of-the-art in rendezvous and proximity operations (RPO) hardware and software by:

- Providing an orbital testbed for servicing-related relative navigation algorithms and software
- Demonstrating relative navigation to several visiting vehicles:
 - Progress
 - Soyuz
 - Cygnus
 - HTV
 - Dragon
- Demonstrating that both cooperative and non-cooperative rendezvous can be accomplished with a single similar sensor suite

SpaceCube v2.0

Raven – Sample Data

Raven is currently generating valuable science that is reducing the risk for future NASA missions that require rendezvous and proximity operations systems

Dragon Tracking (VisCam)

Raven demonstrated successful on-board vehicle tracking during SpaceX CRS-10 departure

Restore-L Technology Demonstration Project

The Restore-L Project will:

1. Demonstrate national satellite servicing capabilities
2. Advance essential technologies for NASA and national goals
3. Kick-start a new U.S. commercial servicing industry

Restore-L Servicing Vehicle Overview

Class/Category	Class C (NPR 8705.4) Category 2 (NPR 7120.5E)
Mission Life	1 year
Launch Vehicle	Domestic: Atlas V, Falcon-9
Launch Site	VAFB
PM Requirements	NPR 7120.5E Tailored
Client	Landsat 7
Other Potential Clients	Understudy clients identified

Restore-L Objectives

Autonomous
Rendezvous,
Inspection

Autonomous
Capture

Telerobotic Refuel
& Relocate

Restore-L Capture and Refuel Video

Restore-L Payload Computer: 3 SpaceCubes

Restore-L Dual SpaceCube Payload Control Computers

High Level Requirements:

- Interface with Spacecraft and Payload Busses
- Interface with vision sensors
- Host Relative Proximity Operations application
- Host Robotic Manipulation Control application

Restore-L will fly 21 Xilinx Virtex-5 FPGAs

Restore-L Capture of Landsat 7

Radiation Effects Mitigation

Restore-L SpaceCube Data Processing Architecture

If Spare is “Cold”, then worst case error probability: $Pe(sys) = [8x Pe(Xilinx) + 16x Pe(DDR)]$

Establishing Acceptable SEE Error Rates Using a Risk-based Engineering Analysis Approach

NASA Risk Assessment

Assessment Process

Likelihood	Safety Estimated likelihood of Safety event occurrence	Technical Estimated likelihood of not meeting performance requirements
5 Very High	$(P_{SE} > 10^{-1})$	$(P_T > 50\%)$
4 High	$(10^{-2} < P_{SE} \leq 10^{-1})$	$(25\% < P_T \leq 50\%)$
3 Moderate	$(10^{-3} < P_{SE} \leq 10^{-2})$	$(15\% < P_T \leq 25\%)$
2 Low	$(10^{-5} < P_{SE} \leq 10^{-3})$	$(2\% < P_T \leq 15\%)$
1 Very Low	$(10^{-6} < P_{SE} \leq 10^{-5})$	$(0.1\% < P_T \leq 2\%)$

Mode	Time (s)	100% Device Utilization WCA		Estimated Restore WCA Upset Rates		
		Device WCA	PCC WCA	RPO PCC	RSW PCC	RPO + RSW
one orbit (96 minutes)	5760	0.484%	1.934%	1.074%	0.222%	1.296%
Rendezvous (30 min)	1800	0.151%	0.604%	0.336%	0.069%	0.405%
Capture (77 sec)	77	0.006%	0.026%	0.014%	0.003%	0.017%

Note: assumes BRAM Mitigation

Note: Actual utilization for RPO and RSW PCCs as of 4/18/2016

Note: assumes RPO & RSW PCCs must be error-free for full operation

Labor Intensive

(Yes, we will be routinely scrubbing the configuration)

Next Year's Talk: The Restore-L FPGA Design Challenge

Subsystem	Qty	FPGA/Unit	Total FPGAs
SpaceCube	3	6	18
VDSU	2	2	4
PSU	1	44	44
REU	2	12	24
Tool Drive	2	1	2
Camera	13	1	13
RPO VisCam	3	1	3
RPO IRCam	1	1	1
RPO LRF	1	3	3
RPO LIDAR	1	2	2
			118!!!

FPGA Types

- Xilinx Virtex 5
- RTG4
- RTAX
- Aeroflex
- RTProASIC3

Topics

- Process
- Manpower
- Reuse
- Radiation
- Verification

Wrap-Up

- Cross-Cutting Technology
 - Technology leveraging and spin-offs
- Reconfigurable + Modularity
 - Reduced cost and schedule
 - On-orbit adaptation to new mission requirements
- Flight-Proven Technology
 - 8 flights since 2009
 - 7 upcoming flights
 - Many more in the works
- NASA's most forward-thinking organization has infused the technology in ALL current and future projects
- Non-NASA customers
- Licensed to Build: Genesis Engineering Solutions
 - 2 Patents, 7 Pending
- What's next?

9 Mission-Unique SpaceCube v2.0 I/O Cards

100% Success Rate

SpaceCube
v3.0

Questions?

<https://spacecube.nasa.gov/>