Лекция 24 от 14.03.2016

Корневые подпространства

Вспомним конец прошлой лекции.

Пусть V — векторное пространство над полем \mathbb{F} , $\varphi \in L(V)$ — линейный оператор.

Вектор $v \in V$ — корневой для φ , отвечающий собственному значению $\lambda \in \mathbb{F}$ тогда и только тогда, когда существует $m \leqslant 0$ такое, что $(\varphi - \lambda \mathrm{id})^m(v) = 0$. Высотой корневого вектора называется наименьшее такое m.

Корневым подпространством называется пространство из корневых векторов и нулевого вектора. Другими словами, $V^{\lambda}(\varphi) = \{v \in V \mid \exists m \geqslant 0 : (\varphi - \lambda \mathrm{id})^m(v) = 0\}$. Поскольку собственный вектор является корневым вектором высоты 1, то собственное подпространство включено в корневое подпространство: $V_{\lambda}(\varphi) \subset V^{\lambda}(\varphi)$.

Предложение. Корневое подпространство нетривиально тогда и только тогда, когда λ является собственным значением. Другими словами, $V^{\lambda} \neq \{0\} \Leftrightarrow \chi_{\varphi}(\lambda) = 0$.

Доказательство.

$$\Leftarrow \chi_{\varphi}(\lambda) = 0 \Rightarrow V_{\lambda}(\varphi) \neq \{0\} \Rightarrow V^{\lambda}(\varphi) \neq \{0\}, \text{ так как } V^{\lambda}(\varphi) \supset V_{\lambda}(\varphi).$$

$$\Rightarrow$$
 Пусть $V^{\lambda}(\varphi) \neq \{0\} \Rightarrow \exists v \neq 0 \in V^{\lambda}(\varphi) \Rightarrow \exists m \geqslant 1 : (\varphi - \lambda \mathrm{id})^m(v) = 0.$ Рассмотрим $u = (\varphi - \lambda \mathrm{id})^{m-1}(v) \neq 0$, тогда:

$$(\varphi - \lambda id)(u) = (\varphi - \lambda id)(\varphi - \lambda id)^{m-1}(v) = (\varphi - \lambda id)^m(v) = 0.$$

То есть вектор u — это вектор, для которого $(\varphi - \lambda \mathrm{id})(u) = 0$, то есть собственный вектор. Следовательно λ — собственное значение.

Предложение. Для любого собственного значения $\lambda \in \mathbb{F}$ подпространство $V^{\lambda}(\varphi)$ инвариантно относительно φ .

Доказательство. Пусть v — корневой вектор высоты m. Докажем, что $\varphi(v)$ — также корневой вектор.

Заметим, что если $u=(\varphi-\lambda \mathrm{id})(v)$, то u — корневой вектор высоты m-1, и, соответственно, лежит в корневом пространстве:

$$u = (\varphi - \lambda id)(v) = \varphi(v) - \lambda v \in V^{\lambda}(\varphi).$$

Мы получили, что $\varphi(v) \in \lambda v + V^{\lambda}(\varphi)$. Но $\lambda v \in V^{\lambda}(\varphi)$, то есть $\lambda v + V^{\lambda}(\varphi) = V^{\lambda}(\varphi)$ и $\varphi(v) \in V^{\lambda}(\varphi)$. Что и означает, что пространство инвариантно относительно оператора φ .

Положим для краткости, что $\varphi - \lambda id = \varphi_{\lambda}$.

Заметим, что ядра степеней линейного оператора «вкладываются» друг в друга — те векторы, которые стали нулевыми при применении линейного оператора φ_{λ}^k , при применении линейного оператора φ_{λ} ещё раз так и остаются нулевыми, а также «добиваются» (переводятся в нулевые) некоторые ранее ненулевые векторы. Итого, получаем следующее:

$$V_{\lambda}(\varphi) = \ker \varphi_{\lambda} \subset \ker \varphi_{\lambda}^{2} \subset \ldots \subset \ker \varphi_{\lambda}^{m} \subset \ldots$$

Причём существует такое m, что $\ker \varphi_{\lambda}^m = \ker \varphi_{\lambda}^{m+1}$, так как V — конечномерно и размерность его не может уменьшаться бесконечно. Выберем наименьшее такое m.

Упражнение. Доказать, что для любого $s\geqslant 0$ выполняется равенство $\ker \varphi_{\lambda}^m=\ker \varphi_{\lambda}^{m+s}.$

Заметим также, что $V^{\lambda}(\varphi) = \ker \varphi_{\lambda}^{m}$. Пусть $k_{i} = \dim \ker \varphi_{\lambda}^{i}$. Тогда:

$$\dim V_{\lambda}(\varphi) = k_1 < k_2 < \ldots < k_m = \dim V^{\lambda}(\varphi).$$

Будем обозначать как $\varphi|_V$ отображение, ограниченное на пространстве V.

Предложение.

- 1. Характерестический многочлен линейного отображения $\varphi|_{V^{\lambda}(\varphi)}$ равен $(t-\lambda)^{k_m}$.
- 2. Если $\mu \neq \lambda$, то линейный оператор $\varphi \mu id$ невырожден на $V^{\lambda}(\varphi)$.

Доказательство. Выберем базис $e = (e_1, \dots, e_{k_m})$ в $V^{\lambda}(\varphi)$ так, чтобы (e_1, \dots, e_{k_i}) также был базисом в $\ker \varphi^i_{\lambda}$. Тогда:

$$A(\varphi_{\lambda}|_{V^{\lambda}(\varphi)}, e) = \begin{matrix} k_{1} & k_{2} - k_{1} & \dots & k_{m} - k_{m-1} \\ k_{1} & 0 & * & \dots & * \\ k_{2} - k_{1} & 0 & 0 & \dots & * \\ \vdots & \vdots & \ddots & \vdots & \\ k_{m} - k_{m-1} & 0 & 0 & \dots & * \end{matrix}$$
 (*)

Но тогда:

$$A(\varphi|_{V^{\lambda}(\varphi)}, \mathbf{e}) = A(\varphi_{\lambda}|_{V^{\lambda}(\varphi)}, \mathbf{e}) = \begin{pmatrix} A_1 & * & * & \dots & * \\ 0 & A_1 & * & \dots & * \\ 0 & 0 & A_3 & \dots & * \\ \vdots & \vdots & \ddots & \vdots & \\ 0 & 0 & 0 & \dots & A_n \end{pmatrix},$$

где $A_i = \lambda E$. Следовательно, характеристический многочлен линейного отображения $\varphi|_{V^{\lambda}(\varphi)}$ равен $(t-\lambda)^{k_m}$.

Матрица $A((\varphi - \mu \mathrm{id})|_{V^{\lambda}(\varphi)}, \mathfrak{E}) = (\varphi_{\lambda}|_{V^{\lambda}(\varphi)}, \mathfrak{E}) - \mu \mathrm{id}$ имеет вид (*), где $A_i = (\lambda - \mu)\mathrm{id}$. Следовательно, $\det((\varphi - \mu \mathrm{id})|_{V^{\lambda}(\varphi)}) = (\lambda - \mu)^{k_m} \neq 0$, то есть линейный оператор невырожден.

Предложение. Если λ – собственное значение φ , то dim $V^{\lambda}(\varphi)$ равен кратности λ как корня многочлена $\chi_{\varphi}(t)$.

Доказательство. Пусть (e_1, \ldots, e_k) — базис $V^{\lambda}(\varphi)$, $k = \dim V^{\lambda}(\varphi)$. Дополним (e_1, \ldots, e_k) до базиса $\mathfrak{e} = (e_1, \ldots, e_n)$ всего пространства V. Тогда матрица линейного оператора имеет следующий вид:

$$A_{\varphi} = \left(\begin{array}{c|c} B & * \\ \hline 0 & C \end{array}\right), \quad B \in M_k, C \in M_{n-k}$$
$$\chi_{\varphi}(t) = \det(tE - A) = \det(tE - B) \det(tE - C).$$

Заметим, что $\det(tE-B)$ — это характеристический многочлен $\varphi|_{V^{\lambda}(\varphi)},$ следовательно,

$$\chi_{\varphi}(t) = (t - \lambda)^k \det(tE - C).$$

Осталось показать, что λ — не корень $\det(tE-C)$.

Пусть $W = \langle e_{k+1}, \dots, e_n \rangle$. Тогда рассмотрим линейный оператор $\psi \in L(W)$, у которого матрица в базисе (e_{k+1}, \dots, e_n) есть C. Предположим, что $\det(\lambda E - C) = 0$. Это значит, что λ — собственное значение для ψ и существует вектор $w \in W$, $w \neq 0$ такой, что $\psi(w) = \lambda w$.

Тогда:

$$\varphi(w) = \lambda w + u, \quad u \in V^{\lambda}(\varphi)$$
$$\varphi(w) - \lambda w \in V^{\lambda}(\varphi)$$
$$(\varphi - \lambda id)(w) \in V^{\lambda}(\varphi) \Rightarrow w \in V^{\lambda}(\varphi)$$

Получили противоречие. Значит, λ — не корень (tE-C).

Следствие. $V^{\lambda}(\varphi) = \ker \varphi_{\lambda}^{s}$, $r \partial e s - \kappa p a m h o c m b \lambda \kappa a \kappa \kappa o p h s м h o c o ч л e h a <math>\varphi_{\lambda}(t)$.

Предложение. Если $\lambda_1, \ldots, \lambda_k$, где $\lambda_i \neq \lambda_j$ при $i \neq j$ — собственные значения φ , то сумма $V^{\lambda_1}(\varphi) + \ldots + V^{\lambda_k}(\varphi)$ — прямая.

База при k = 1 - ясно.

Теперь пусть утверждение доказано для всех значений, меньших k. Докажем для k.

Выберем векторы $v_i \in V^{\lambda_i}(\varphi)$ такие, что $v_1 + \ldots + v_k = 0$. Пусть m — высота вектора v_k . Тогда применим к нашей сумме оператор $\varphi^m_{\lambda_k}$, получив следующее:

$$\varphi_{\lambda_k}^m(v_1) + \ldots + \varphi_{\lambda_k}^m(v_{k-1}) + \varphi_{\lambda_k}^m(v_k) = 0.$$

С другой стороны, $\varphi^m_{\lambda_k}(v_k) = 0$, то есть:

$$\varphi_{\lambda_k}^m(v_1) + \ldots + \varphi_{\lambda_k}^m(v_{k-1}) + \varphi_{\lambda_k}^m(v_k) = \varphi_{\lambda_k}^m(v_1) + \ldots + \varphi_{\lambda_k}^m(v_{k-1}) = 0.$$

Тогда по предположению индукции $\varphi_{\lambda_k}^m(v_1)=\ldots=\varphi_{\lambda_k}^m(v_{k-1})=0$. Но $\varphi_{\lambda}|_{V^{\lambda}(\varphi)}$ не вырожден и обратим при $i\neq k$, следовательно $v_1=\ldots=v_{k-1}=0$. Но тогда и $v_k=0$.

Следовательно, сумма прямая, что нам и требовалось.

Теорема. Если характеристический многочлен $\chi_{\varphi}(t)$ разлагается на линейные множители, причём $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_s)^{k_s}$, то $V = \bigoplus_{i=1}^s \varphi^{\lambda_i}(\varphi)$.

Доказательство. Так как сумма $\varphi^{\lambda_i}(\varphi) + \ldots + \varphi^{\lambda_i}(\varphi)$ прямая и для любого i выполняется, что $\dim(\varphi^{\lambda_i}(\varphi)) = k_i$, то:

$$\dim(\varphi^{\lambda_1}(\varphi) + \ldots + \varphi^{\lambda_s}(\varphi)) = k_1 + \ldots + k_s = \dim V.$$

Следовательно,
$$V = \bigoplus_{i=1}^{s} \varphi^{\lambda_i}(\varphi)$$
.

Жордановы клетки

Определение. Пусть $\lambda \in \mathbb{F}$. **Жордановой клеткой** порядка n, отвечающей значению λ , называется матрица вида:

$$J_{\lambda}^{n} = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix} \in M_{n}(\mathbb{F}).$$