

SYJC CH. 9 CONTROL AND CO-ORDINATION

Unit 9.6 – Human Nervous System

By Firdous Ansari

UNIT 9.6 <u>Human nervous system</u>:

1) CENTRAL NERVOUS SYSTEM (CNS):

Consists of:

- **Meninges** (protective membranes)
- Brain
- Spinal Cord

Meninges:

Additional space between Bone and Dura mater Contains Fat

Meninges: Spinal Cord

CSF (Cerebrospinal fluid):

Lymph like Extra cellular fluid

Continuously secreted by –

- Pia mater
- Choroid plexus
 ependymal cells in
 ventricles of brain
- Central canal in spinal cord

Slightly alkaline Specific gravity - 1.005 Volume - 100-200cc

Drained out of brain into Blood stream : Foramen of Lushka (a pair) Foramen of Magendie

(median)

(In Medulla Oblongata)

Function of CSF:

Shock absorber

Protection- mechanical injuries

Maintains constant pressure inside

cranium

- Exchange of materials
- Supplies oxygen to brain
- Prevents dessication of brain

Blood Brain Barrier

Astrocytes and Endothelium keeps a check on :

- Ions and Large molecules entering brain tissue.
- Prevents toxins and pathogens entering brain tissue.

A) The human brain (Encephalon)

- Encephalology Study of brain
- Three main parts:
 - a) Forebrain (Prosencephalon)
 - b) Midbrain (Mesencephalon)
 - c) Hindbrain (Rhombencephalon)

A) The human brain:

a) Forebrain:

Consists of:

- i) Olfactory lobes
- ii) Cerebrum
- iii) Diencephalon

i) Olfactory lobes:

ii) Cerebrum: Largest part of brain (85%)

Corpus callosum

Band of nerve fibres Connects both the hemispheres

Saggittal view

Dorsal view

Cerebrum

Gyrus /Gyri – Convulations

Cortex

Outer part
Gray mater
Contains Cytons
Highly folded

Sulcus/Sulci – grooves

Medulla

Inner part
White mater
Contains axons

2

Firdous Ansari (Asst. Teacher) Biology Dept. (Jr. College) Mithibai College

Coronal section view

Cerebral hemisphere:

- Each hemisphere:
- Divided into Four lobes
 - > Frontal Lobe
 - ➤ Parietal Lobe
 - ➤ Occipital Lobe
 - ➤ Occipital Lobe
- by three sulci
 - ➤ Central Sulcus
 - ➤ Lateral/ Sylvian Sulcus
 - ➤ Parieto Occiptal Sulcus

Firdous Ansari (Asst. Teacher) Biology Dept. (Jr. College) Mithibai College

Lateral view

Functional areas of cerebrum:

Frontal Lobe:

- Cognitive areas
- Motor Area voluntary motor activities
- Premotor area involuntary movements, ANS
- Association area Co ordination and movements
- Broca's area Motor speech area, translates thoughts into speech.

Parietal lobe:

General sensory area – Somaesthetic sensation **Gustatoreceptor** – taste

Occipital lobe:

Visual area – vision

Wernicke's area

(Intelligence centre) – Understanding of spoken and written words

Temporal Lobe:

Olfactory area – Smell Auditory area – Hearing Speech and Emotions

Cerebrum

The fifth lobe

Insula / Insular cortex
Folded deep within lateral sulcus.

Function:

processing of bodily sensations so they may be used to influence decision making

Cerebrum

Basal nuclei/ Basal ganglia: Grey matter mass within white matter

- Largest basal nuclei
- At floor of Cerebrum laterally to Thalamus

Function:

- Receive neurotransmitters
- Execution of activities at subconscious level

Coronal Section

iii) <u>Diencephalon</u>:

- Location: in between Corpus callosum and Midbrain
- Divided into:
 - 1. Epithalamus
 - 2. Thalamus
 - 3. Hypothalamus

iii) <u>Diencephalon</u>: Function

RAS (Reticular Activating System):

- Connects various parts of brain
- Acts as relay centre

Optic Chiasma:

Crossing of 2 optic nerves in inferior Hypothalamus

Hypothalamus: Function

- Link Between Nervous & Endocrine system
- Centers for : hunger, thirst, sleep, fatigue, satiety center, secretion of intestine and stomach glands
- Maintains Homeostasis
- Acts as Endocrine Gland (secretes neurohormones)
- Part of Limbic system.

Limbic system:

- Complex neuronal circuit
- Formed by
 - > Hypothalamus
 - >Amygdala,
 - >parts of Epithalamus,
 - ➤ Thalamus,
 - > Hippocampus
- Function: Emotional reactions motivation drives, memory.

b)Mid brain:

Location: Between Diencephalon and Pons.

Parts:

- 1. Corpora quadrigemina
- 2. Crura cerebri
- Red nucleus
- Cerebral Aqueduct

b)Mid brain:

i) <u>Corpora</u> <u>quadrigemina</u>

- Four rounded elevations
- Also called Optic Lobes
- **1. Two superior colliculi** (visual reflexes)
- **2. Two inferior colliculi** (auditory reflexes)

b)Mid brain:

ii) Crura cerebri/ cerebral peduncles

- Two thick fibrous tracts
- Ascending & Descending Tracts (RAS)
- Connect cerebrum to midbrain.

Red nucleus: Mass of grey matter within white matter

Location : Centre of mid brain

 Function: Control posture, Muscle tone, Modify some motor activities.

Red Nucleus

c) <u>Hindbrain</u>:

Midbrain, Pons & Medulla – Brain Stem

- Posterior region of brain
- Consists of:
 - 1. Pons varolli
 - 2. Cerebellum
 - 3. Medulla oblongata

a) Cerebellum: Second largest part of brain

a) <u>Cerebellum</u>:

- Cortex outer, thin Gray mater, has 30 million neurons
- Medulla inner, tree like White mater

Function:

- Maintains equilibrium ,posture , balance, orientation
- Voluntary movements
- Neuromuscular activities e.g. walking, running, speaking
- Maintenance of muscle tone

b) Pons varolli:

- Cross band of nerve fibres
- Outer- White mater, Inner Gray mater
- Function : Connect cerebellar lobes, medulla oblongata , spinal cord.

c) Medulla oblongata:

- Location: Posterior conical part
- Continues as spinal cord
- Inner Gray mater , Outer White mater
- Ventricle Metacoel (IV)
- Roof of Metacoel posterior choroid plexus, secretes CSF
- Choroid plexus- 3 openings

(a pair of lateral foramen of luschka and median foramen of Magendie)

Function:

- Involuntary vital functions
- Non vital reflex

Ventricles of Brain

B) Spinal cord:

- Extension of Medulla
- Location: Neural canal of vertebral column
- Meninges (same as brain) additional epidural space present
- CSF Around and within spinal cord
- Gives rise to 31 pairs of Spinal nerves

B) Spinal cord:

Mithibai College

Anterior end -broad Medulla oblongata Cervical Swelling Long, cylindrical 2 swellings 42-45cm Lumbar Swelling Conus medullaris (L1 to L2) Filum Thread like terminale Firdous Ansari (Asst. Teacher) Posterior end- tapering Biology Dept. (Jr. College)

Cauda Equina

- Nerves concentrated in swellings around conus medullaris.
- Nerves in hindpart + filum terminale
- appear like horse tail (Cauda equina)

Functions of spinal cord:

- Main centre for Reflex Action
- Pathway impulse conduction
- Nervous connection many parts of the body

2. PNS –Types

2) Peripheral nervous system (PNS):

Connects CNS – Parts of body (receptors and effectors)

PNS-Types of Nerves

Origin

Cranial nerve

Spinal nerve

Direction of Impulse Conduction

Afferent nerve

Efferent nerve

Function

Sensory nerve

Motor nerve

Mixed nerve

i) Cranial nerves:

- Brain(all amniotes), originate or terminate
- 12 pairs
- Roman number I to XII
- According to function
 - 1. Sensory (I, II, VIII)
 - 2. Motor (III, IV, VI, XI, XII)
 - 3. Mixed (V, VII, IX, X)

Olfactory lobe: Cranial Nerve

I – Olfactory nerve Goes to – Epithelium

of nose Function – sensation of smell

Firdous An Biology De Mithibai College

Diencephalon: Cranial Nerve

II – Optic nerve

Goes to: Retina of

Eye

Function: carry Visual

impulses

Firdous An Biology De Mithibai College

Midbrain: Cranial Nerve

III – Occulomotor

Goes to - Eye muscles Function – Movement of eyeballs

IV – Pathetic

Goes to - Eye muscles Function – Movement and rotation of eyeballs

Firdous An Biology De Mithibai College

Pons – Cranial Nerve

V – Trigemial

Goes to: Various parts of head Function – Sensation of skin touch, taste, jaw movements Branches:

- > Opthalmic
- Maxillary
- Mandibular

VI – Abducens

Goes to – Muscles of Eyeballs Function – Movement of eye

VII – Facial

Goes to – Facial, Scalp and neck muscles; Various glands in head

Function – Facial expression, taste, saliva and tear section, movement of neck

VIII – Auditory

Goes to - Internal ear Function – hearing & equilibrium Branches –

- Vestibular
- Cochlear

Medulla-Cranial Nerve

IX – Glossopharyngeal

Goes to – Pharynx, tongue, salivary gland Function – Taste, Salivation, Swallowing

X – Vagus

Goes to – Various Vital organs Functions – Various involuntary movement

XI – Spinal Accessory

Goes to - Neck and torso muscles Function – Movements of larynx, Pharynx, shoulder and neck

XII – Hypoglossal

Goes to – tongue muscles Function – Movement of tongue

ii) Spinal nerves:

- Originates from spinal cord
- 31 pairs
- Mixed nerves

Spinal nerves:

- 1. 8 pairs of cervical spinal nerves
- 2. 12 pairs of thoracic spinal nerves
- 3. 5 pairs of lumbar spinal nerves.
- 4. 5 pairs of sacral spinal nerves
- 1 pairs of coccyx spinal nerves.

Emerges out of intervertebral foramen

Formation of a typical spinal nerve:

Mithibai College

3. Autonomous nervous system:

- Transmits impulses from CNS to organs
- Communicates with organs and glands
- Involuntary responses
- Cranial & Spinal nerves

3. Autonomous nervous system:

ANS
Autonomic Nervous System

Parasympathetic NS

Parasympathetic NS

Arousing Mobilizes body

Calming
Conserves energy

SYMPATHETIC NERVOUS SYSTEM	PARASYMPATHETIC NERVOUS SYSTEM
- Thoraco-lumbar outflow	- Cranio –sacral
- 22 pairs of sympathetic ganglia	-ganglia close or within wall of effector organ

SYMPATHETIC NERVOUS SYSTEM	PARASYMPATHETIC NERVOUS SYSTEM
- Preganglionic nerve fibres short and post ganglionic nerve fibres long.	- Preganglionic nerve fibres long and post ganglionic nerve fibres short
-Post ganglionic nerve fibres secrete Adernaline and Noradrenaline	- Post ganglionic nerve fibres secrete acetylcholine
- Adrenergic fibres	- Cholinergic fibres

SYMPATHETIC NERVOUS SYSTEM	PARASYMPATHETIC NERVOUS SYSTEM
- response- emergencies	- Housekeeping system - Antagonist to sympathetic , bring back to normal.
- Excitatory effect (except digestive and excretory organ)	- Digestive and excretory activities accelerated.

Unit 9.8: Disorders of nervous system

Major categories include:

PSYCHOLOGICAL DISORDERS:

- Mental disorders
- Affect mood, thinking, behavior.
- Affect multiple aspects of life.

Disorders of nervous system - Parkinson's Disease

Cause: Degeneration of dopamine producing neuron

Effects:

- Tremors
- Stiffness
- Difficulty in walking, balance and co ordination

Disorders of nervous system - Alzheimer's Disease

- Most common form of dementia
- Increases with age

Cause: Occurs due to loss of cholinergic neurons, accumulation of amyloid proteins.

