Linear Algebra to Abstract Algebra

Ji, Yong-hyeon March 28, 2025

We cover the following topics in this note.

- Subspace; Span
- Subgroup
- Homomorphism; Monomorphism; Epimorphism
- Isomorphism
- Kernel and Image

Note (span). Let *V* be a vector space over a field \mathbb{F} , and let $S \subseteq V$. Recall that, for $n \in \mathbb{N}$,

$$\operatorname{span}(S) := \left\{ \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_n \mathbf{v}_n \mid \lambda_i \in \mathbb{F}, \ \mathbf{v}_i \in S \text{ for all } i = 1, 2, \dots, n \right\}$$
$$= \left\{ \sum_{i=1}^n \lambda_i \mathbf{v}_i \mid \lambda_i \in \mathbb{F}, \ \mathbf{v}_i \in S \text{ for all } 1 \le i \le n \right\}.$$

(Vector) Subspace

Definition. Let V be a vector space over a field \mathbb{F} , and let $U \subseteq V$. We write $U \subseteq V$ if V is a **(vector) subspace** of V. That is, $U \subseteq V$ if and only if U satisfy the following conditions:

- (i) $\mathbf{0}_{V} \in U$;
- (ii) $\forall \mathbf{u}, \tilde{\mathbf{u}} \in U, \mathbf{u} + \tilde{\mathbf{u}} \in U$;
- (iii) $\forall \mathbf{u} \in U, \ \forall \lambda \in \mathbb{F}, \ \lambda \mathbf{u} \in U.$

Remark. If $S \subseteq V$, then span $(S) \leq V$.

Proof. We must verify that span(S) satisfies the three defining properties of a subspace of V:

- (i) If $S = \emptyset$, by convention we define $\operatorname{span}(\emptyset) := \{\mathbf{0}_V\}$. Let $S \neq \emptyset$. Choose any $\mathbf{v} \in S(\subseteq V)$ and take n = 1 with the scalar $\lambda_1 = 0 \in \mathbb{F}$. Then $\mathbf{0}_V = 0 \cdot \mathbf{v} \in \operatorname{span}(S)$.
- (ii) Let \mathbf{u} , $\tilde{\mathbf{u}} \in \text{span}(S)$, say,

$$\mathbf{u} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i$$
 and $\tilde{\mathbf{u}} = \sum_{j=1}^{m} \mu_j \tilde{\mathbf{v}}_j$,

where $n, m \in \mathbb{N}$, $\lambda_i, \mu_j \in \mathbb{F}$, and $\mathbf{v}_i, \tilde{\mathbf{v}}_j \in S$ for all indices i, j. Then

$$\mathbf{u} + \tilde{\mathbf{u}} = \sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} + \sum_{j=1}^{m} \mu_{j} \tilde{\mathbf{v}}_{j} = \underbrace{\lambda_{1} \mathbf{v}_{1} + \lambda_{2} \mathbf{v}_{2} + \dots + \lambda_{n} \mathbf{v}_{n}}_{n \text{ terms}} + \underbrace{\mu_{1} \tilde{\mathbf{v}}_{1} + \mu_{2} \tilde{\mathbf{v}}_{2} + \dots + \mu_{m} \tilde{\mathbf{v}}_{m}}_{m \text{ terms}} \in \text{span}(S).$$

(iii) Let $\alpha \in \mathbb{F}$. Let $\mathbf{u} \in \mathrm{span}(S)$, say, $\mathbf{u} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i$, where $n \in \mathbb{N}$, $\lambda_i \in \mathbb{F}$, and $\mathbf{v}_i \in S$ for each $1 \le i \le n$. Then

$$\alpha \mathbf{u} = \alpha \left(\sum_{i=1}^{n} \lambda_i \mathbf{v}_i \right) = \sum_{i=1}^{n} (\alpha \lambda_i) \mathbf{v}_i \in \operatorname{span}(S).$$

since $\alpha \lambda_i \in \mathbb{F}$ for all i = 1, 2, ..., n.

Proposition. Let V be a vector space over a field \mathbb{F} , and let $S \subseteq V$. Then

(1) $S \subseteq \operatorname{span}(S) \subseteq V$.

(2) If $U \leq V$ is any subspace of V such that $S \subseteq U$, then $\operatorname{span}(S) \subseteq U$.

Proof.

(1) Let $\mathbf{s} \in S$. Then, choosing n = 1 and $\lambda_1 = 1 \in \mathbb{F}$, we have $\mathbf{s} = 1 \cdot \mathbf{s} \in \operatorname{span}(S)$. Each element $\mathbf{s} \in \operatorname{span}(S)$ is of the form

$$\mathbf{s} = \sum_{i=1}^n \lambda_i \mathbf{v}_i,$$

where $\mathbf{v}_i \in S \subseteq V$ and $\lambda_i \in \mathbb{F}$. Since V is a vector space and is closed under finite linear combinations, it follows that $\mathbf{s} \in V$.

(2) Let $U \leq V$ and $S \subseteq U$. Let $\mathbf{s} \in \operatorname{span}(S)$. Then, there exist $n \in \mathbb{N}$, scalars $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{F}$, and vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \in S \subseteq V$ such that

$$\mathbf{s} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \in \mathrm{span}(S).$$

Since

• $S \subseteq U$, i.e., $\mathbf{v}_i \in S \subseteq U$ for each i = 1, 2, ..., n, and

• $U \le V$, i.e., $\mathbf{u} + \tilde{\mathbf{u}} \in U$ and $\alpha \mathbf{u} \in U$ for any $\mathbf{u}, \tilde{\mathbf{u}} \in U$, $\alpha \in \mathbb{F}$,

it follows that

$$\forall i \in \{1, 2, ..., n\}, \ \lambda_i \mathbf{v}_i \in U \quad \text{and} \quad \mathbf{s} = \sum_{i=1}^n \lambda_i \mathbf{v}_i \in U.$$

Proposition. Let V be a vector space over a field \mathbb{F} , and let $S \subseteq V$. Let $\mathcal{U} := \{U \leq V : S \subseteq U\}$. Then

$$\mathrm{span}(S) = \bigcap_{U \in \mathcal{U}} U.$$

In other words, span(S) *is the smallest subspace of V containing S.*

Proof. We want to show that span(S) = $\bigcap_{U \in \mathcal{U}} U$.

(⊆) Let $\mathbf{u} \in \operatorname{span}(S)$. By definition, there exists $n \in \mathbb{N}$, scalars $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{F}$, and vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \in S$ such that

$$\mathbf{u} = \sum_{i=1}^n \lambda_i \mathbf{v}_i.$$

Let $U \in \mathcal{U}$ be arbitrary. Since $S \subseteq U$ and $U \leq V$, it is closed under finite linear combinations:

$$\sum_{i=1}^n \lambda_i \mathbf{v}_i \in U.$$

Since $\forall U \in \mathcal{U}$, $\mathbf{u} \in U \Leftrightarrow \mathbf{u} \in \bigcap_{U \in \mathcal{U}} U$, we obtain

$$\mathbf{u} = \sum_{i=1}^n \lambda_i \mathbf{v}_i \in \bigcap_{\mathcal{U} \in \mathcal{U}} \mathcal{U}.$$

(⊇) Since $S \subseteq \text{span}(S)$ and $\text{span}(S) \leq V$, we know $\text{span}(S) \in \mathcal{U}$. Let $\mathbf{u} \in \bigcap_{U \in \mathcal{U}} U$. Then

$$\mathbf{u} \in \bigcap_{U \in \mathcal{U}} U \iff \forall U \in \mathcal{U}, \ \mathbf{u} \in U \implies \mathbf{u} \in \mathrm{span}(S).$$

Hence, we conclude that span(S) = $\bigcap_{U \in \mathcal{U}} U$.

Subgroup

Definition. Let *G* be a group. Let $H \subseteq G$. We say that *H* is a **subgroup** of *G*, denoted by $H \leq G$, if and only if *H* is itself a group (with the operation inherited from *G*).

Example.

- $(\mathbb{Q}, +) \leq (\mathbb{R}, +)$.
- $(\mathbb{Q}^{\times}, \times) \leq (\mathbb{R}^{\times}, \times)$.

Subgroup Test

Proposition. *Let* G *be a group, and let* $H \subseteq G$ *with* $H \neq \emptyset$.

(1) (2-step Test)

$$H \le G \iff (x, y \in H \implies xy \in H, x^{-1} \in H)$$

(2) (1-step Test)

$$H \le G \iff (x, y \in H \implies xy^{-1} \in H)$$

Proof. We want to show that

$$\underbrace{H \leq G}_{\text{(a)}} \iff \underbrace{\left(x, y \in H \implies xy \in H, \ x^{-1} \in H\right)}_{\text{(b)}} \iff \underbrace{\left(x, y \in H \implies xy^{-1} \in H\right)}_{\text{(c)}}$$

 $((a) \Rightarrow (b))$ Let $H \leq G$. Let $x, y \in H$. Since every subgroup is closed under the group operation and taking inverses, we have

$$xy \in H$$
 and $x^{-1} \in H$.

- ((b) \Rightarrow (c)) Let $x, y \in H$. Suppose that $xy \in H$ and $x^{-1} \in H$. Clearly, $xy^{-1} \in H$.
- $((c) \Rightarrow (a))$ Let $x, y \in H$. Suppose that

$$xy^{-1}\in H.$$

Since $H \neq \emptyset$, $\exists a \in H$, and so

$$aa^{-1} \in H \implies e \in H$$
.

Since $x \in H$ and $e \in H$, we have

$$ex^{-1} \in H \implies x^{-1} \in H.$$

Then, since $x, y \in H$ and $y^{-1} \in H$, we obtain

$$x(y^{-1})^{-1} \in H \implies xy \in H$$
,

i.e., *H* is closed under binary operation on *G*.

Subgroup Generated by S

Definition. Let *G* be a group, and let $S \subseteq G$. The **subgroup of** *G* **generated by** *S*, denoted by $\langle S \rangle$, is defined as:

$$\langle S \rangle := \bigcap \{ H \leq G : S \subseteq H \} = \bigcap_{S \subseteq H \leq G} H.$$

Exercise. Let *G* be a group, and let $S \subseteq G$. Show that $\langle S \rangle$ is the unique smallest subgroup of *G* containing *S*.

Sol. TBA

Exercise. Let *G* be a group, and let $S \subseteq G$. Let $H_i \leq G$ for each $i \in I$. Show that

$$\bigcap_{i\in I} H_i \leq G.$$

Sol. TBA

Proposition. Let (G, +) be an abelian group with identity 0_G , and let $x, y \in G$. Then

- $(1) \ \langle x \rangle = \{ nx : n \in \mathbb{Z} \}$
- $(2) \ \langle x, y \rangle = \{ nx + my : n, m \in \mathbb{Z} \}$

Proof. TBA □

Observation. Let

- $(\mathbb{R}, +)$ is the additive group of real numbers, and
- $(\mathbb{R}_{>0}, \cdot)$ is the multiplicative group of positive real numbers.

The **exponential function** is defined by

$$\exp : (\mathbb{R}, +) \longrightarrow (\mathbb{R}_{>0}, \cdot)$$

$$x \longmapsto e^{x}$$

Then,

(i)
$$\exp(x + y) = e^{x+y} = e^x \cdot e^y = \exp(x) \cdot \exp(y);$$

(ii)
$$\exp(0) = e^0 = 1$$
;

(iii)
$$\exp(-x) = e^{-x} = (e^x)^{-1} = (\exp(x))^{-1}$$
.

Observation. Consider the exponential map

$$f: \mathbb{Z}_3 \to U_3, \quad f(x) = \exp\left(\frac{2\pi i}{3}x\right).$$

Then f is a group homomorphism from the additive group (\mathbb{Z}_3 , +) to the multiplicative group (U_3 , ·) of the third roots of unity. Here,

- $\mathbb{Z}_3 = \{0, 1, 2\}$ with addition modulo 3
- $U_3 = \{1, \, \omega, \, \omega^2\}$, with $\omega = \exp\left(\frac{2\pi i}{3}\right)$ which satisfies $\omega^3 = 1$.

The homomorphism property means that for all $x, y \in \mathbb{Z}_3$ we have:

$$f(x+y) = f(x)f(y).$$

(Addition Table in \mathbb{Z}_3)

(Multiplicative Table in \mathbb{Z}_3)

After applying the exponential map, the corresponding elements are:

$$f(0) = 1$$
, $f(1) = \omega$, $f(2) = \omega^2$.

Thus, the multiplication table is:

	1	ω	ω^2			f(0)	f(1)	<i>f</i> (2)
1	1	ω	ω^2	_	f(0)	f(0)	<i>f</i> (1)	<i>f</i> (2)
ω	ω	ω^2	1		f(1)	f(1)	<i>f</i> (2)	f(0)
ω^2	ω^2	1	ω		<i>f</i> (2)	<i>f</i> (2)	f(0)	f(1)

Homomorphism, Monomorphism, Epicmorphism, and Isomorphism

Definition. Let $(G, *_G)$ and $(H, *_H)$ be groups with identity elements e_G and e_H , respectively.

(1) A function $\varphi : G \to H$ is said to be a **group homomorphism** if and only if

$$\varphi(x *_G y) = \varphi(x) *_H \varphi(y)$$
 for all $x, y \in G$.

- (2) A group homomorphism $\varphi: G \to H$ is called a **group monomorphism** iff it is injective.
- (3) A group homomorphism $\varphi: G \to H$ is called an **group epimorphism** iff it is surjective.
- (4) A group homomorphism $\varphi: G \to H$ is called an **group isomorphism** iff it is bijective.

Ring Homomorphism

Definition. Let $(R, +_R, \cdot_R)$ and $(S, +_S, \cdot_S)$ be rings (with unity). A function

$$\varphi: (R, +_R, \cdot_R) \to (S, +_S, \cdot_S)$$

is called a ring homomorphism if

- (i) $\varphi(a +_R b) = \varphi(a) +_S \varphi(b)$ for all $a, b \in R$
- (ii) $\varphi(a \cdot_R b) = \varphi(a) \cdot_S \varphi(b)$.

and, if the rings are unital, one additionally requires $\varphi(1_R) = 1_S$. It is immediate that this definition implies $\varphi(0_R) = 0_S$ since

$$\varphi(0_R) = \varphi(0_R +_R 0_R) = \varphi(0_R) +_S \varphi(0_R).$$

Module Homomorphism

Definition. Let *R* be a ring and let $(M, +_M, \cdot_M)$ and $(N, +_N, \cdot_N)$ be *R*-modules. A function

$$f:(M,+_M,\cdot_M)\to (N,+_N,\cdot_N)$$

is an *R*-module homomorphism if the following hold: for all $m_1, m_2 \in M$ and for all $r \in R$

- (i) $f(m_1 +_M m_2) = f(m_1) +_N f(m_2)$
- (ii) $f(r \cdot_M m_1) = r \cdot_N f(m_1)$.

Linear Transformation (revised via Module Homomorphism)

Definition. Let F be a field and let V and W be vector spaces over \mathbb{F} ; that is, V and W are F-modules. A function

$$T:V\to W$$

is called a **linear transformation** if the followings are satisfied: for every $\mathbf{v}_1, \mathbf{v}_2 \in V$ and every scalar $\lambda \in F$

- (i) $T(\mathbf{v}_1 + \mathbf{v}_2) = T(\mathbf{v}_1) + T(\mathbf{v}_2);$
- (ii) $T(\lambda \mathbf{v}_1) = \lambda T(\mathbf{v}_1)$.

Thus, a linear transformation is precisely an \mathbb{F} -module homomorphism.

Preservation of Identity and Inverses

Proposition. Let (G, \cdot_G) and (H, \cdot_H) be groups with respective identity elements e_G and e_H , and let $\varphi : G \to H$ be a group homomorphism, that is,

$$\varphi(a \cdot_G b) = \varphi(a) \cdot_H \varphi(b)$$
 for all $a, b \in G$.

Then the following hold:

- (1) Preservation of Identity: $\varphi(e_G) = e_H$.
- (2) Preservation of Inverse: $\varphi(a^{-1}) = (\varphi(a))^{-1}$ for all $a \in G$.

Proof. TBA

Kernel

Definition. Let $\varphi : G \to H$ be a group homomorphism. The **kernel of** φ is the subset of G defined by

$$\ker(\varphi) := \{ g \in G : \varphi(g) = e_H \}.$$

Remark. The set $ker(\varphi)$ is a normal subgroup of G.

Proof. TBA

Image

Definition. Let $\varphi : G \to H$ be a group homomorphism. The **image** of φ is the subset of H given by

 $\operatorname{Img}(\varphi) := \{ h \in H : \exists g \in G \text{ such that } \varphi(g) = h \} = \{ \varphi(g) : g \in G \}.$

Remark. The set $Img(\varphi)$ forms a subgroup of H.

Proof. TBA

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 18. 선형대수학에서 추상 대수학으로 (a) 선형결합의 추상화" YouTube Video, 24:25. Published October 15, 2019. URL: https://www.youtube.com/watch?v=zg63xXZYNM8&t=598s.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 19. 선형대수학에서 추상 대수학으로 (b) 대수적 구조를 보존하는 함수 algebraic homomorphisms" YouTube Video, 25:21. Published October 16, 2019. URL: https://www.youtube.com/watch?v=9TtGaY5C01g&t=187s.