$20250519~{\rm MATH}4302~{\rm NOTE}~3[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: $+852\ 5693\ 2134;\ +86\ 19921823546;$

Contents

1	Basics of R-module	3
2	Generating R -module	9
3	Classifying R-module	12

1 Basics of R-module

Definition 1.1. (R-module)

Let R be a ring, and M be a set. If:

(1) There is an operation $+: M \times M \to M$, such that:

$$\forall m,n,k\in M, (m+n)+k=m+(n+k)$$

$$\forall m,n\in M, \qquad m+n=n+m$$

$$\exists 0\in M, \forall m\in M, \qquad 0+m=m$$

$$\forall m\in M, \exists -m\in M, \ (-m)+m=0$$

(2) There is an operation $*: R \times M \to M$, such that:

$$\forall r, s \in R, \forall m \in M, \quad (rs) * m = r * (s * m)$$

$$\forall m \in M, \quad 1 * m = m$$

$$\forall r, s \in R, \forall m \in M, (r + s) * m = r * m + s * m$$

$$\forall r \in R, \forall m, n \in M, r * (m + n) = r * m + r * n$$

Then M is a R-module.

Example 1.2. Let G be a set.

G is an Abelian group iff G is a \mathbb{Z} -module.

Example 1.3. Let R be a set.

If R is a ring, then R is a R-module.

Definition 1.4. (R-linear Map)

Let M, \overline{M} be R-modules, and $f: M \to \overline{M}$ be a map. If:

$$\forall m, n \in M, f(m+n) = f(m) + f(n)$$
$$\forall r \in R, \forall m \in M, f(r*m) = r*f(m)$$

Then $f \in \mathcal{L}(M, \overline{M})$ is R-linear.

Example 1.5. Let $f: M \to M$ be R-linear. $M_f = M$ is a R[x]-module:

$$+_f: M_f \times M_f \rightarrow M_f, \quad m+_f n=m+n$$

 $*_f: R[x] \times M_f \rightarrow M_f, a_i x^i *_f m=a_i *_f^i(m)$

3

Example 1.6. Let G, H be Abelian groups, and $f: G \to H$ be a map. f is a group homomorphism iff f is \mathbb{Z} -linear.

Definition 1.7. (Submodule)

Let M, N be R-modules.

If for some R-linear map $\iota: N \to M$,

for all map $f: K \to N$,

f is R-linear iff $\iota \circ f$ is R-linear,

then N is a R-submodule of M.

Proposition 1.8. Let M be a R-module, and N be a subset of M. If:

 $\forall m, n \in N, m + n \in N$

 $0{\in}N$

 $\forall r \in R, \forall m \in N, \ r*m{\in}N$

Then $N \subseteq M$ is a R-submodule of M.

Proof. For some R-linear map $\iota: N \to M, m \mapsto m$,

for all map $f: K \to N$,

f is R-linear iff $\iota \circ f$ is R-linear.

Quod. Erat. Demonstrandum.

Definition 1.9. (Invariant Submodule)

Let M be a R-module with a R-submodule N, and $f: M \to M$ be R-linear. If N is a R[x]-submodule of M_f , then N is invariant under f.

Example 1.10. Let G be an Abelian group with subset H.

H is a subgroup of G iff H is a \mathbb{Z} -submodule of G.

Example 1.11. Let R be a ring with subset I.

I is an ideal of R iff I is a R-submodule of R.

Definition 1.12. (Product Module)

Let $(M_{\mu})_{\mu \in J}$, N be R-modules.

If for some R-linear maps $(\pi_{\mu}: N \to M_{\mu})_{\mu \in J}$,

for all R-linear maps $(f_{\mu}: K \to M_{\mu})_{\mu \in J}$,

for some unique R-linear map $g: K \to N$, $(\pi_{\mu} \circ g = f_{\mu})_{\mu \in J}$,

then $N = \prod_{\mu \in J} M_{\mu}$ is a R-product module of M_1, \dots, M_k .

Proposition 1.13. Let $(M_{\mu})_{\mu \in J}$ be R-modules, and N be the collection of all map $m: J \to \bigcup_{\mu \in J} M_{\mu}$ with each $m(\mu) \in M_{\mu}$. If:

$$\forall m, n \in N, (m+n)(\mu) = m(\mu) + n(\mu)$$

$$\forall r \in R, \forall m \in N, (r*m)(\mu) = r*m(\mu)$$

Then $N = \prod_{\mu \in J} M_{\mu}$ is a *R*-product module of $(M_{\mu})_{\mu \in J}$.

Proof. For some R-linear maps $(\pi_{\mu}: N \to M_{\mu}, m \mapsto m(\mu))_{\mu \in J}$, for all R-linear maps $(f_{\mu}: K \to M_{\mu})_{\mu \in J}$, for some unique R-linear map $g: K \to N, g(k)(\mu) = f_{\mu}(k), (\pi_{\mu} \circ g = f_{\mu})_{\mu \in J}$. Quod. Erat. Demonstrandum.

Proposition 1.14. Let $(M_{\mu})_{\mu \in J}$ be *R*-modules.

If N, \overline{N} are R-product modules of $(M_{\mu})_{\mu \in J}$, then N, \overline{N} are isomorphic.

Proof. We may divide our proof into four steps.

Step 1: Define the unique lift of $(\pi_{\mu})_{\mu \in J}$ to \overline{N} as τ .

Step 2: Define the unique lift of $(\overline{\pi}_{\mu})_{\mu \in J}$ to N as $\overline{\tau}$.

Step 3: $\overline{\tau} \circ \tau$ is the unique lift id_N of $(\pi_\mu)_{\mu \in J}$ to N

Step 4: $\tau \circ \overline{\tau}$ is the unique lift $id_{\overline{N}}$ of $(\overline{\pi}_{\mu})_{\mu \in J}$ to \overline{N} .

Quod. Erat. Demonstrandum.

Proposition 1.15. Let M_1, M_2 be R-modules.

If $N_{12} = M_1 \times M_2$, $N_{21} = M_2 \times M_1$, then N_{12} , N_{21} are isomorphic.

Proof. We may divide our proof into four steps.

Step 1: Define the unique lift of $\pi_{12,2}, \pi_{12,1}$ to N_{21} as $\tau_{12,21}$.

Step 2: Define the unique lift of $\pi_{21,1}, \pi_{21,2}$ to N_{12} as $\tau_{21,12}$.

Step 3: $\tau_{21,12} \circ \tau_{12,21}$ is the unique lift $id_{N_{12}}$ of $\pi_{12,1}, \pi_{12,2}$ to N_{12} .

Step 4: $\tau_{12,21} \circ \tau_{21,12}$ is the unique lift $id_{N_{21}}$ of $\pi_{21,2}, \pi_{21,1}$ to N_{21} .

Quod. Erat. Demonstrandum.

Proposition 1.16. Let M_1, M_2, M_3 be R-modules.

If $N_{12}=M_1\times M_2, N_{(12)3}=N_{12}\times M_3, N_{123}=M_1\times M_2\times M_3$, then $N_{(12)3}, N_{123}$ are isomorphic.

Proof. We may divide our proof into six steps.

Step 1: Define $\tau_{(12)3,1} = \pi_{12,1} \circ \pi_{(12)3,12}, \tau_{(12)3,2} = \pi_{12,2} \circ \pi_{(12)3,12}.$

Step 2: Define the unique lift of $\tau_{(12)3,1}, \tau_{(12)3,2}, \pi_{(12)3,3}$ to N_{123} as $\tau_{(12)3,123}$.

Step 3: Define the unique lift of $\pi_{123,1}, \pi_{123,2}$ to N_{12} as $\tau_{123,12}$.

Step 4: Define the unique lift of $\tau_{123,12}, \pi_{123,3}$ to $N_{(12)3}$ as $\tau_{123,(12)3}$.

Step 5: $\tau_{123,(12)3} \circ \tau_{(12)3,123}$ is the unique lift $id_{N_{(12)3}}$ of $\pi_{(12)3,12}, \pi_{(12)3,3}$ to $N_{(12)3}$.

Step 6: $\tau_{(12)3,123} \circ \tau_{123,(12)3}$ is the unique lift $id_{N_{123}}$ of $\pi_{123,1}, \pi_{123,2}, \pi_{123,3}$ to N_{123} .

Quod. Erat. Demonstrandum.

Example 1.17. Let $(G_{\mu})_{\mu \in J}$, H be Abelian groups.

H is the product group of $(G_{\mu})_{\mu \in J}$ iff H is the \mathbb{Z} -product module of $(G_{\mu})_{\mu \in J}$.

Definition 1.18. (Direct Sum Module)

Let $(M_{\mu})_{{\mu}\in J}$, N be R-modules.

If for some R-linear maps $(\iota_{\mu}: M_{\mu} \to N)_{\mu \in J}$,

for all R-linear maps $(f_{\mu}: M_{\mu} \to K)_{\mu \in J}$,

for some unique R-linear map $g: N \to K$, $(g \circ \iota_{\mu} = f_{\mu})_{\mu \in J}$,

then $N = \bigoplus_{\mu \in J} M_{\mu}$ is a direct sum module of M_1, \dots, M_k .

Proposition 1.19. Let $(M_{\mu})_{\mu \in J}$ be R-modules, and N be the collection of all map $m: J \to \bigcup_{\mu \in J} M_{\mu}$ with each $m(\mu) \in M_{\mu}$ and finitely many $m(\mu) \neq 0$. If:

$$\forall m, n \in N, (m+n)(\mu) = m(\mu) + n(\mu)$$
$$\forall r \in R, \forall m \in N, (r*m)(\mu) = r*m(\mu)$$

Then $N = \bigoplus_{\mu \in J} M_{\mu}$ is a direct sum module of $(M_{\mu})_{\mu \in J}$.

Proof. For some R-linear maps $\left(\iota_{\mu}: M_{\mu} \to N, m \mapsto n(\nu) = \begin{cases} m & \text{if } \nu = \mu; \\ 0 & \text{if } \nu \neq \mu; \end{cases}\right)_{\mu \in I}$,

for all R-linear maps $(f_{\mu}: M_{\mu} \to K)_{\mu \in J}$,

for some unique R-linear map $g: N \to K, g(m) = \sum_{\mu \in J} f_{\mu}(m(\mu)), (g \circ \iota_{\mu} = f_{\mu})_{\mu \in J}.$ Quod. Erat. Demonstrandum.

Proposition 1.20. Let $(M_{\mu})_{\mu \in J}$ be *R*-modules.

If N, \overline{N} are coproduct modules of $(M_{\mu})_{\mu \in J}$,

then N, \overline{N} are isomorphic.

Proof. We may divide our proof into four steps.

Step 1: Define the unique gluing of $(\iota_{\mu})_{\mu \in J}$ to \overline{N} as \jmath .

Step 2: Define the unique gluing of $(\bar{\iota}_{\mu})_{\mu \in J}$ to N as $\bar{\jmath}$.

Step 3: $j \circ \overline{j}$ is the unique gluing id_N of $(\iota_{\mu})_{\mu \in J}$ to N.

Step 4: $\bar{\jmath} \circ \jmath$ is the unique gluing $id_{\overline{N}}$ of $(\bar{\iota}_{\mu})_{\mu \in J}$ to \overline{N} .

Quod. Erat. Demonstrandum.

Proposition 1.21. Let M_1, M_2 be R-modules.

If $N_{12} = M_1 \oplus M_2$, $N_{21} = M_2 \oplus M_1$,

then N_{12}, N_{21} are isomorphic.

Proof. We may divide our proof into four steps.

Step 1: Define the unique gluing of $\iota_{2,12}$, $\iota_{1,12}$ to N_{21} as $\jmath_{21,12}$.

Step 2: Define the unique gluing of $\iota_{1,21}$, $\iota_{2,21}$ to N_{12} as $\jmath_{12,21}$.

Step 3: $j_{21,12} \circ j_{12,21}$ is the unique gluing $id_{N_{12}}$ of $\iota_{1,12}, \iota_{2,12}$ to N_{12} .

Step 4: $j_{12,21} \circ j_{21,12}$ is the unique gluing $id_{N_{21}}$ of $\iota_{2,21}, \iota_{1,21}$ to N_{21} .

Quod. Erat. Demonstrandum.

Proposition 1.22. Let M_1, M_2, M_3 be R-modules.

If $N_{12} = M_1 \oplus M_2$, $N_{(12)3} = N_{12} \oplus M_3$, $N_{123} = M_1 \oplus M_2 \oplus M_3$,

then $N_{(12)3}, N_{123}$ are isomorphic.

Proof. We may divide our proof into six steps.

Step 1: Define the unique gluing of $\iota_{1,123}, \iota_{2,123}$ to N_{12} as $\jmath_{12,123}$.

Step 2: Define the unique gluing of $j_{12,123}, i_{3,123}$ to $N_{(12)3}$ as $j_{(12)3,123}$.

Step 3: Define $j_{1,(12)3} = \iota_{12,(12)3} \circ \iota_{1,12}, j_{2,(12)3} = \iota_{12,(12)3} \circ \iota_{2,12}$.

Step 4: Define the unique gluing of $j_{1,(12)3}, j_{2,(12)3}, \iota_{3,(12)3}$ to N_{123} as $j_{123,(12)3}$.

Step 5: $j_{123,(12)3} \circ j_{(12)3,123}$ is the unique gluing $id_{N_{(12)3}}$ of $\iota_{12,(12)3}, \iota_{3,(12)3}$ to $N_{(12)3}$.

Step 6: $j_{(12)3,123} \circ j_{123,(12)3}$ is the unique gluing $id_{N_{123}}$ of $\iota_{1,123}, \iota_{2,123}, \iota_{3,123}$ to N_{123} .

Quod. Erat. Demonstrandum.

Example 1.23. Let $(G_{\mu})_{\mu \in J}$, H be Abelian groups.

H is the coproduct group of $(G_{\mu})_{\mu \in J}$ iff H is the \mathbb{Z} -coproduct module of $(G_{\mu})_{\mu \in J}$.

Definition 1.24. (Quotient Module)

Let M be a R-module with a R-submodule I.

Define the collection M/I of all I-cosets as the R-quotient module of M over I.

Example 1.25. Let M be a R-module with a R-submodule I.

M/I is a R-module:

$$\forall m+I, n+I \in M/I, m+I+n+I=m+n+I$$

$$\forall m + I \in M/I, \forall r \in R, \quad r * (m + I) = r * m + I$$

Example 1.26. Let M be a R-module with a R-submodule I.

For some R-linear map $\pi: M \to M/I, m \mapsto m+I$,

for all R-linear map $f: M \to N$ with $f|_I = 0$,

for some unique R-linear map $g: M/I \to N, m+I \mapsto f(m), g \circ \pi = f$.

Example 1.27. Let $f: M \to N$ be R-linear.

 $g: M/\mathbf{Ker}(f) \to N, m + \mathbf{Ker}(f) \mapsto f(m)$ is an embedding.

Example 1.28. Let M be a R-module with R-submodules N, I.

 $(N+I)/I, N/(N\cap I)$ are isomorphic.

Example 1.29. Let M be a R-module with R-submodules I, J.

(M/J)/(I/J), M/I are isomorphic.

Example 1.30. Let M be a R-module with a R-submodule I.

The map that sends every R-submodule N of M containing I to the R-submodule N/I of M/I is bijective.

Definition 1.31. (Annihilator)

Let M be a R-module with subset S.

Define the R-annihilator of S as $\mathbf{Ann}_R(S) = \{r \in R : r * S = \{0\}\}.$

Example 1.32. Let G be an Abelian group with subset S.

 $\operatorname{Ann}_{\mathbb{Z}}(S) = \operatorname{Ord}_{G}(S)\mathbb{Z}.$

Example 1.33. Let R be a ring with subset S.

If $1 \in S$, then $\mathbf{Ann}_R(S) = \{0\}$.

Definition 1.34. (Minimal Polynomial)

Let M be a R-module with subset S, and $f: M \to M$ be R-linear.

If for some $g(x) \in R[x]$, $\operatorname{Ann}_{R[x]}(S_f) = g(x)R[x]$,

then define the minimal polynomial of f on S as g(x).

Definition 1.35. (Torsion)

Let M be a R-module.

- (1) If a subset S of M satisfies $\mathbf{Ann}_R(S) \neq \{0\}$, then S is R-torsioned.
- (2) If M has no nonzero torsioned subset, then M is R-torsion-free.

Example 1.36. Let R be a ring.

- (1) A nonzero subset S of R is R-torsioned iff S is a zero divisor in R.
- (2) R is R-torsion-free iff R is an integral domain.

2 Generating R-module

Definition 2.1. (Spanning Set)

Let M be a R-module.

- (1) If S is a subset of M with R * S = M, then M is R-spanned by S.
- (2) If M is R-spanned by some finite subset, then M is finitely R-spanned.
- (3) If every R-submodule of M is finitely R-spanned, then M is R-Noetherian.

Example 2.2. Let R be a ring.

R is R-spanned by $\{1\}$.

Example 2.3. Let $R = \mathbb{C}[x_1, x_2, x_3, \cdots], I = x_1R + x_2R + x_3R + \cdots$. For any finite subset S of I, for some $k \geq 1$, $SR \subseteq x_1R + \cdots + x_kR \subseteq I$.

Proposition 2.4. Let M be a R-module with a R-submodule N.

If M is R-Noetherian, then N is R-Noetherian.

Proof. It suffices to notice that every R-submodule K of N is a R-submodule of M. Quod. Erat. Demonstrandum.

Example 2.5. Let M be a R-module with a R submodule I.

If M is R-spanned by S, then M/I is R-spanned by S/I.

Proposition 2.6. Let M be a R-module with a R-submodule I.

If M is R-Noetherian, then M/I is R-Noetherian.

Proof. It suffices to notice that every submodule N/I of M/I pullbacks to a submodule N of M. Quod. Erat. Demonstrandum.

Example 2.7. Let M be a R-module with subsets S, T and a R-submodule I. If I, M/I are R-spanned by S, T/I, then M is R-spanned by $S \cup T$.

Proposition 2.8. Let M be a R-module with subsets S, T and a R-submodule I. If I, M/I are R-Noetherian, then M is R-Noetherian.

Proof. It suffices to notice that every submodule N of M corresponds to submodules $N \cap I, N/(N \cap I) \cong (N+I)/I$ of I, M/I. Quod. Erat. Demonstrandum.

Example 2.9. Let M_{μ} be R-modules with product module N. If each M_{μ} is R-spanned by $m_{\mu,s_{\mu}}$, then N is R-spanned by $n_{\mu,s_{\mu}}(\nu) = \begin{cases} m_{\mu,s_{\mu}} & \text{if } \nu = \mu; \\ 0 & \text{if } \nu \neq \mu; \end{cases}$ iff there is finitely many nonzero M_{μ} .

Example 2.10. Let M_{μ} be R-modules with direct sum module N. If each M_{μ} is R-spanned by $m_{\mu,s_{\mu}}$, then N is R-spanned by $n_{\mu,s_{\mu}}(\nu) = \begin{cases} m_{\mu,s_{\mu}} & \text{if } \nu = \mu; \\ 0 & \text{if } \nu \neq \mu; \end{cases}$.

Proposition 2.11. Let M_1, M_2 be R-modules.

If M_1, M_2 are R-Noetherian, then $M_1 \oplus M_2$ is R-Noetherian.

Proof. It suffices to notice that $(M_1 \oplus M_2)/M_1 \cong M_2$.

Quod. Erat. Demonstrandum.

Proposition 2.12. If R is R-Noetherian, then R[x] is R[x]-Noetherian.

Proof. For all ideal I[x] of R[x], consider the following set:

$$I = \{a_m \in R : a_m x^m \dots \in I[x]\}$$

Since $(a_m + b_n)x^{m+n} \cdots = x^n(a_m x^m \cdots) + x^m(b_n x^n \cdots)$, *I* is closed under addition.

Since I[x] contains 0, I contains 0.

Since $\lambda a_m x^m \cdots = \lambda(a_m x^m \cdots)$, I is closed under scalar multiplication.

Since R is Noetherian, I is finitely generated. WLOG, assume that $I = a_m R + b_n R + c_k R, m \le n \le k$. By construction, every $f(x) \in I[x]$ can be reduced to p(x)a(x) + q(x)b(x) + r(x)c(x) + s(x), where $\deg s(x) < k$, so $a(x), b(x), c(x), 1, \dots, x^{k-1}$ generates I[x]. Quod. Erat. Demonstrandum.

Proposition 2.13. Let R be a ring, I_1, \dots, I_k be pairwise coprime ideals of R, and $I = I_1 \cap \dots \cap I_k = I_1 \cdots I_k$. The map below is a ring isomorphism:

$$\widetilde{\pi}: \frac{R}{I} \to \frac{R}{I_1} \oplus \cdots \oplus \frac{R}{I_k}, r+I \mapsto (r+I_1, \cdots, r+I_k)$$

Proof. Define the maps below:

$$\pi_1: R \to \frac{R}{I_1}, r \mapsto r + I_1, \cdots, \pi_k: R \to \frac{R}{I_k}, r \mapsto r + I_k, \pi = \pi_1 \oplus \cdots \oplus \pi_k$$

Step 1: Since π_1, \dots, π_k are ring homomorphisms, π is a ring homomorphism.

Step 2: Since $Ker(\pi_1) = I_1, \dots, Ker(\pi_k) = I_k, Ker(\pi) = I$.

Step 3: Define $J_1 = I_2 \cdots I_{k-1} I_k, \cdots, J_k = I_1 I_2 \cdots I_{k-1}$.

Since $I_1 + J_1 = \cdots = I_k + J_k = R$, some $i_1 + j_1 = \cdots = i_k + j_k = 1$,

so every $(r_1 + I_1, \dots, r_k + I_k)$ has a preimage $r_1j_1 + \dots + r_kj_k$.

Quod. Erat. Demonstrandum.

Definition 2.14. (Linearly Independent Set)

Let M be a R-module.

(1) If S is a subset of M with $R * S \cong R^S$, then S is R-linearly independent.

- (2) If a linearly independent subset S R-spans M, then S is a R-basis of M.
- (3) If M has a R-basis, then M is R-free.

Example 2.15. Let M be a R-module.

M has a maximal R-linearly independent set S.

Example 2.16. $\{2\}$ is a maximal \mathbb{Z} -linearly independent set in \mathbb{Z} , but \mathbb{Z} is not \mathbb{Z} -spanned by $\{2\}$.

Example 2.17. Let R be a ring with ideal I.

I is R-free iff I is principal.

Proposition 2.18. Let R be a field, and M be a R-module with maximal R-linearly independent set S. M is R-spanned by S.

Proof. For all $m \in M$, if $m \in S$, then m = 1 * m is R-spanned by S.

If $m \notin S$, then S is linearly independent while $S \cup \{m\}$ is linearly dependent.

For some $r_1, \dots, r_k, r \in R$ with $r \neq 0$, for some distinct $m_1, \dots, m_k \in S$,

 $r_1 * m_1 + \cdots + r_k * m_k + r * m = 0$, so $m = -\frac{r_1}{r} * m_1 - \cdots - \frac{r_k}{r} * m_k \in R * S$.

Quod. Erat. Demonstrandum.

Proposition 2.19. Let R be a ring, I_1, \dots, I_k be ideals of R contained in a common maximal ideal I of R. The R-spanning set below is minimal:

$$\{(1+I_1,I_2,\cdots,I_{k-1},I_k),\cdots,(I_1,I_2,\cdots,I_{k-1},1+I_k)\}\subseteq \frac{R}{I_1}\oplus\cdots\oplus \frac{R}{I_k}$$

Proof. It suffices to notice that the $\frac{R}{I}$ -spanning set below is minimal:

$$\{(1+I,I,\cdots,I,I),\cdots,(I,I,\cdots,I,1+I)\}\subseteq \left(\frac{R}{I}\right)^k$$

3 Classifying R-module

Definition 3.1. (Invariant Ideal)

Let R be a ring, and $A \in \mathbf{M}_{\mu,\nu}(R)$. Define the σ^{th} invariant ideal $I_{\sigma}(A)$ of A

as the ideal generated by all $\sigma * \sigma$ minor a of A.

Definition 3.2. (Invariant Factor)

Let R be a principal ideal domain, and $A \in \mathbf{M}_{\mu,\nu}(R)$.

If $I_{\sigma}(A) = i_{\sigma}(A)R$, $I_{\sigma-1}(A) = i_{\sigma-1}(A)R$ are nonzero,

then define the $\sigma^{\rm th}$ invariant factor $d_{\sigma}(A)$ of A as $\frac{i_{\sigma}(A)}{i_{\sigma-1}(A)}$

Proposition 3.3. Let R be a principal ideal domain, and $A \in \mathbf{M}_{\mu,\nu}(R)$.

For some $P \in \mathbf{GL}_{\mu}(R), Q \in \mathbf{GL}_{\nu}(R)$:

$$PAQ = \begin{pmatrix} d_1(A) & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & d_{\sigma}(A) & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

Proof. It suffices to find P, Q, such that the $(1,1)^{th}$ entry of PAQ divides the others. **Step 1:** By performing the following type of row operation, we may refine the $(1,1)^{th}$

entry of A, such that it divides the 1st column of A:

$$\begin{pmatrix} x_{11} & x_{21} \\ -\frac{a_{21}}{g_{11,21}} & \frac{a_{11}}{g_{11,21}} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} g_{11,21} & * \\ 0 & * \end{pmatrix}, \text{ where } g_{11,21} = \mathbf{GCD}_R(a_{11}, a_{21})$$

Step 2: By performing the following type of column operation, we may refine the $(1,1)^{th}$ entry of A, such that it divides the 1^{st} row of A:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_{11} & -\frac{a_{12}}{g_{11,12}} \\ x_{12} & \frac{a_{11}}{g_{11,12}} \end{pmatrix} = \begin{pmatrix} g_{11,12} & 0 \\ * & * \end{pmatrix}, \text{ where } g_{11,12} = \mathbf{GCD}_R(a_{11}, a_{12})$$

Step 3: Consider the following ascending chain of principal ideals:

$$a_{11}^{(1)}R\overset{\text{step 1}}{\subseteq}a_{11}^{(2)}R\overset{\text{step 2}}{\subseteq}a_{11}^{(3)}R\overset{\text{step 1}}{\subseteq}a_{11}^{(4)}R\overset{\text{step 2}}{\subseteq}\cdots$$

As R is a principal ideal domain, this chain stablizes, so we obtain another representa-

tive PAQ of A, such that its $(1,1)^{th}$ entry divides both the 1^{st} column and the 1^{st} row. **Step 4:** By performing the following type of row operation, we may clear the 1^{st} column while fixing 1^{st} row:

$$\begin{pmatrix} 1 & 0 \\ -\frac{a_{21}}{a_{11}} & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ 0 & * \end{pmatrix}, \text{ where } a_{11}|a_{21}$$

Step 5: By performing the following type of column operation, we may clear the 1st row while fixing the 1st column:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 & -\frac{a_{12}}{a_{11}} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & 0 \\ a_{21} & * \end{pmatrix}, \text{ where } a_{11}|a_{12}$$

Step 6: By performing the following types of mixed operations and then repeat step 1-4, we may refine the $(1,1)^{th}$ entry of A, such that it divides a particular entry:

$$\begin{pmatrix} 1 & x_{22} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} \begin{pmatrix} x_{11} & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} g_{11,22} & -a_{11} \\ a_{22} & 0 \end{pmatrix}, \text{ where } g_{11,22} = \mathbf{GCD}_R(a_{11}, a_{22})$$

$$\begin{pmatrix} x_{11} & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ x_{22} & 1 \end{pmatrix} = \begin{pmatrix} g_{11,22} & a_{22} \\ -a_{11} & 0 \end{pmatrix}, \text{ where } g_{11,22} = \mathbf{GCD}_R(a_{11}, a_{22})$$

Step 7: Consider the following ascending chain of principal ideals:

$$a_{11}^{(1)}R \overset{\text{step } 6}{\subseteq} a_{11}^{(2)}R \overset{\text{step } 6}{\subseteq} a_{11}^{(3)}R \overset{\text{step } 6}{\subseteq} a_{11}^{(4)}R \overset{\text{step } 6}{\subseteq} \cdots$$

As R is a principal ideal domain, this chain stabilizes, so we obtain another representative PAQ of A, such that its $(1,1)^{\text{th}}$ entry divides every entry, so it is $d_1(A)$. We proceed with the remaining $(\sigma - 1) * (\sigma - 1)$ block. Quod. Erat. Demonstrandum. \square

Proposition 3.4. Let R be a principal ideal domain,

and M be a μ -dimensional R-module with R-submodule N.

- (1) For some R-basis $\{m_1, \dots, m_{\mu}\}$ of M, for some nonzero ascending chain $\{d_1, \dots, d_{\nu}\}$ in R,
- $\{d_1 * m_1, \cdots, d_{\nu} * m_{\nu}\}$ is a *R*-basis of *N*.
- (2) For all *R*-bases $\{m_1, \dots, m_{\mu}\}, \{m'_1, \dots, m'_{\mu}\}$ of *M*,

for all nonzero ascending chains $\{d_1, \dots, d_{\nu}\}, \{d'_1, \dots, d'_{\nu'}\}$ in R,

if $\{d_1*m_1,\cdots,d_{\nu}*m_{\nu}\},\{d'_1*m_1,\cdots,d'_{\nu'}*m_{\nu'}\}\$ are R-bases of N,

then $\nu = \nu'$, $d_1 \sim d'_1$, $d_2 \sim d'_2$, \cdots

Proof. We may divide our proof into two steps.

Step 1: As R is a principal ideal domain, R is R-Noetherian, so M is R-Noetherian,

and N is the image of a R-linear map from some σ -dimensional R-module K to M:

$$B = P \circ \begin{pmatrix} d_1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & d_{\nu} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix} \circ Q$$

Assume that the columns of P are $\{m_1, \dots, m_{\mu}\}$.

As $P \in \mathbf{GL}(M)$, $\{m_1, \dots, m_{\mu}\}$ is a R-basis of M.

As $Q \in \mathbf{GL}(K)$ and d_1, \dots, d_{ν} are nonzero, $\{d_1 * m_1, \dots, d_{\nu} * m_{\nu}\}$ is a R-basis of N.

Step 2: As $\{m_1, \dots, m_{\mu}\}, \{m'_1, \dots, m'_{\mu}\}$ are *R*-bases of *M*,

for some $S \in GL(M)$, $m'_1 = Sm_1, m'_2 = Sm_2, \cdots$.

As $\{d_1 * m_1, \cdots, d_{\nu} * m_{\nu}\}, \{d'_1 * m'_1, \cdots, d'_{\nu'} * m'_{\nu'}\}$ are *R*-bases of *N*,

 $\nu = \nu'$, and for some $T \in \mathbf{GL}(N)$, $d_1' * m_1' = Td_1 * m_1, d_2' * m_2' = Td_2 * m_2, \cdots$

As $d'_1 * Sm_1 = Td_1 * m_1, d'_2 * Sm_2 = Td_2 * m_2, \dots, d_1 \sim d'_1, d_2 \sim d'_2, \dots$

Quod. Erat. Demonstrandum.

Definition 3.5. (Invariant Ideal)

Let R be a ring, and M be a R-module minimally generated by μ elements. Define the σ^{th} invariant ideal $I_{\sigma}(M)$ of M as the ideal generated by all element a such that a*M is generated by at most $\mu-\sigma$ elements.

Definition 3.6. (Invariant Factor)

Let R be a principal ideal domain, and M be a R-module minimally generated by μ elements. If $I_{\sigma}(M) = d_{\sigma}(M)R$ is nonzero, then define the σ^{th} invariant factor of M as $d_{\sigma}(M)$.

Proposition 3.7. Let R be a principal ideal domain with an irreducible element p, and $A \in \mathbf{M}_{\sigma,\mu}(R)$ be a multiple of p.

$$d_{\tau}(A) = d_{\tau} \left(\frac{R^{\mu}}{\mathbf{Im}(A)} \right)$$

Proof. As $d_1(A)R, \dots, d_{\nu}(A)R, \{0\}, \dots, \{0\}$ are contained in the same maximal ideal pR of R, $\frac{R^{\mu}}{\operatorname{Im}(A)} \cong \frac{R}{d_1(A)R} \oplus \dots \oplus \frac{R}{d_k(A)R} \oplus \frac{R}{\{0\}} \oplus \dots \oplus \frac{R}{\{0\}}$ is minimally generated by μ elements. As a consequence, $a*\frac{R^{\mu}}{\operatorname{Im}(A)} \cong \frac{aR}{d_1(A)R} \oplus \dots \oplus \frac{aR}{d_k(A)R} \oplus \frac{aR}{\{0\}} \oplus \dots \oplus \frac{aR}{\{0\}}$ is generated by at most $\mu - \tau$ elements iff $d_{\tau}(A)$ divides a. Quod. Erat. Demonstrandum.

Example 3.8. Let R be a principal ideal domain,

and M be a R-module minimally generated by μ elements.

- (1) For some nonzero, nonunit ascending chain $\{d_1, \dots, d_{\nu}\}$ in R, for some $\mu \geq \nu$, $M \cong \frac{R}{d_1 R} \oplus \dots \oplus \frac{R}{d_{\nu} R} \oplus R^{\mu \nu}$.
- (2) For all nonzero, nonunit ascending chains $\{d_1, \dots, d_{\nu}\}, \{d'_1, \dots, d'_{\nu'}\}$ in R, for all $\mu \geq \nu, \mu' \geq \nu'$, if $M \cong \frac{R}{d_1 R} \oplus \dots \oplus \frac{R}{d_{\nu} R} \oplus R^{\mu \nu} \cong \frac{R}{d'_1 R} \oplus \dots \oplus \frac{R}{d'_{\nu'} R} \oplus R^{\mu' \nu'}$, then $\nu = \nu', d_1 \sim d'_1, d_2 \sim d'_2, \dots, \mu = \mu'$.

Example 3.9. Let R be a principal ideal domain,

and M be a R-module minimally generated by μ elements.

(1) For some irreducible elements $\{p_1, \dots, p_k\}$ in R,

for some
$$\{n_{1,1} \ge \cdots \ge n_{1,\nu_1}, \cdots, n_{k,1} \ge \cdots \ge n_{k,\nu_k}\}$$
,

for some $\mu \geq \nu = \nu_1 + \cdots + \nu_k$,

$$M \cong \left(\frac{R}{p_1^{n_{1,1}}R} \oplus \cdots \oplus \frac{R}{p_1^{n_{1,\nu_1}}R}\right) \oplus \cdots \oplus \left(\frac{R}{p_k^{n_{k,1}}R} \oplus \cdots \oplus \frac{R}{p_k^{n_{k,\nu_k}}R}\right) \oplus R^{\mu-\nu}.$$

(2) For all irreducible elements $\{p_1, \dots, p_k\}, \{p'_1, \dots, p'_{k'}\}$ in R,

for all
$$\{n_{1,1} \geq \cdots \geq n_{1,\nu_1}, n_{k,1} \geq \cdots \geq n_{k,\nu_k}\}, \{n'_{1,1} \geq \cdots \geq n'_{1,\nu'_1}, n'_{k',1} \geq \cdots \geq n'_{k',\nu'_{k'}}\}$$
, for all $\mu \geq \nu = \nu_1 + \cdots + \nu_k, \mu' \geq \nu' = \nu'_1 + \cdots + \nu'_{k'}$,

if
$$M \cong \left(\frac{R}{p_1^{n_{1,1}}R} \oplus \cdots \oplus \frac{R}{p_1^{n_{1,\nu_1}}R}\right) \oplus \cdots \oplus \left(\frac{R}{p_k^{n_{k,1}}R} \oplus \cdots \oplus \frac{R}{p_k^{n_{k,\nu_k}}R}\right) \oplus R^{\mu-\nu}$$

and
$$M \cong \left(\frac{R}{p'_{1}^{n'_{1,1}}R} \oplus \cdots \oplus \frac{R}{p'_{1}^{n'_{1,\nu'_{1}}}R}\right) \oplus \cdots \oplus \left(\frac{R}{p'_{k'}^{n'_{k',1}}R} \oplus \cdots \oplus \frac{R}{p'_{k'}^{n'_{k',\nu'_{k'}}R}}\right) \oplus R^{\mu-\nu},$$

then $k = k'$, and up to permutation, $p_{1} \sim p'_{1}, \nu_{1} = \nu'_{1}, n_{1,1} = n'_{1,1}, n_{1,2} =$

 $n'_{1,2}, \cdots, p_2 \sim p'_2, \nu_2 = \nu'_2, n_{2,1} = n'_{2,1}, n_{2,2} = n'_{2,2}, \cdots, \mu = \mu'.$

References

 $[1]\,$ H. Ren, "Template for math notes," 2021.