VYSOKÉ UČENÉ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

MIKROPROCESOROVÉ A VESTAVĚNÉ SYSTÉMY ESP32: MĚŘENÍ SRDEČNÍHO TEPU [DIGITÁLNÍ SENZOR]

Obsah

1	Úvod	2
	1.1 OLED displej	2
	1.2 Senzor MAX30102	2
	1.3 Zapojení	2
2	Řešení	3
	2.1 Instalace a spuštění	3
	2.2 Programová část aplikace	3
3	Shrnutí	4
4	Příloha	4

1 Úvod

Cílem projektu byl návrh a implementace vestavné aplikace, která měří srdeční tep a výsledek zobrazí na displej. Byla využitá deska WeMos D1 R32¹, která obsahuje čip ESP32, modul pro měření srdečního tepu MAX30102² a grafický OLED displej³.

1.1 OLED displej

Grafický displej OLED 0,96"má rozlišení displeje 128x64 bodů a 7 pinů. Tato verze displeje komunikuje na rozhraní SPI. Pracovní napětí je 3.3 nebo 5V.

1.2 Senzor MAX30102

Senzor MAX30102 dokáže měřit srdeční tep i okysličení krve. Měření probíhá neinvazivně optickou metodou. Komunikace probíhá na rozhraní I2C. Podrobné informace o tom, jak senzor funguje, jsou zde.

1.3 Zapojení

Nejprve bylo VCC(3.3V) a GND z desky Wemos napojeno na "breadboard bus strips"(+ a -). Piny SCL a SDA byly použity pro I2C komunikaci mezi senzorem MAX30102 a deskou Wemos D1 R32. OLED displej komunikuje s deskou na rozhraní SPI a proto byly použity odpovídající piny. Konkrétní zapojení je vidět na videu.

Periferní pin	ESP32 pin	Název v kódu
Senzor VCC	3V3	_
Senzor GND	GND	_
Senzor SCL	SCL(IO22)	_
Senzor SDA	SDA(IO21)	_
OLED VCC	3V3	_
OLED GND	GND	_
OLED D0	IO18	OLED_CLK
OLED D1	IO23	OLED_MOSI
OLED RES	IO17	OLED_RESET
OLED DC	IO16	OLED_DC
OLED CS	IO5	OLED_CS

Tabulka 1: Hardwarové zapojení

¹https://www.fit.vutbr.cz/simekv/IMP_projekt_board_ESP32_Wemos_D1_R32.pdf

²https://www.hwkitchen.cz/max30102-snimac-pro-srdecni-tep-a-pulzni-oxymetr/

³https://www.hadex.cz/m508a-displej-oled-096-128x64-znaku-7pinu-bily/

2 Řešení

Řešení je implementováno v jazyce C v prostředí Arduino IDE s využitím knihoven pro MAX30102⁴ a OLED displej⁵⁶.

2.1 Instalace a spuštění

Projekt vyžaduje ke spuštění Arduino IDE⁷ verze 1.8.19 nebo vyšší. Pak je nutné přidat desku esp32 prostřednictvím Board Manageru a nastavit položku Board na ESP32 Dev Module. Dále je potřeba nainstalovat knihovny v Tools-Manage Libraries :

- 1. SparkFun MAX3010x Pulse and Proximity Sensor Library: pro senzor měření tepu.
- 2. Adafruit GFX Library (a potřebné komponenty): graphics core knihovna pro OLED displej
- 3. Adafruit SSD1306: driver knihovna pro OLED displej

Po nastavení Upload Speed na hodnotu 115200 a Portu projekt je možné spustit. Pokud se po kompilaci a nahrání projektu na desku rozsvítí u senzoru červená LED a na OLED displeji je napsáno přiložit prst na senzor, program běží a nainstaloval se správně.

2.2 Programová část aplikace

- Na začátku kódu jsou připojeny potřebné knihovny, jsou nastaveny velikosti displeje a hodnoty jeho pinů. Rovněž jsou vytvořeny 2 bitmapové obrázky srdce, z nichž jeden je větší, při čtení dat budou tyto obrázky střídavě zobrazovat na obrazovce, napodobující srdeční tep. Pro výpočet hodnot srdečného tepu jsou také vytvořeny globální proměnné.
- Funkce setup() inicializuje senzor a displej a v případě selhání vypíše chybu. Displej se vymaže a senzor se rozsvítí červeným LEDem, což znamená, že senzor běží.
- Funkce loop() obsahuje programový kód, který bude opakovaně prováděn v nekonečné smyčce. Konkrétně následující: senzor načte hodnotu IR a na základě ní program rozhodne, zda je prst na senzor přiložen. Pokud ano, na displeji se zobrazí malý symbol srdce a průměrná hodnota srdečního tepu. Dále po detekci jednoho srdečního tepu program vypočítá průměrnou hodnotu srdečního tepu za minutu(BPM) z rychlosti posledních 4 tepů a zobrazí tuto hodnotu na OLED displeji spolu s velkým symbolem srdce. Pokud je hodnota IR malá, zobrazí se na OLED displeji žádost o přiložení prstu na senzor.

⁴https://github.com/sparkfun/SparkFun_MAX3010x_Sensor_Library

⁵https://github.com/lexus2k/ssd1306

⁶https://github.com/adafruit/Adafruit-GFX-Library

⁷ https://www.arduino.cc/en/software

3 Shrnutí

Při psaní tohoto projektu byly implementovány všechny požadavky uvedené v zadání. Autoevaluace složek E, F, Q, P, D je 14.

Při testování implementace byly výsledky měření porovnány s výsledky měření chytrých hodinek Apple Watch a výsledky lišily jenom nepatrně.

4 Příloha

Video: https://drive.google.com/drive/u/1/folders/1VMrUQWalsoRiYowo8jg8U5sH7tqxdGtw