Tuomo Valkonen

Proximal methods for point source localisation The implementation

Regularised regression

The Lasso in \mathbb{R}^n

Solve

$$\min_{x \in \mathbb{R}^n} \ \frac{1}{2} ||Ax - b||^2 + \alpha ||x||_1.$$

The Lasso on $\mathcal{M}_{+}(\Omega)$

In the space $\mathcal{M}(\Omega)$ of Radon (i.e., nice) measures on $\Omega \subset \mathbb{R}^n$, solve

$$\min_{\mu \in \mathcal{M}(\Omega)} \frac{1}{2} \|A\mu - b\|^2 + \alpha \|\mu\|_{\mathcal{M}(\Omega)} + \delta_{\geq 0}(\mu).$$

¹Early formulations in Candès & Fernandez-Granda (2014), *Towards a Mathematical Theory of Super-resolution*

Forward-backward algorithm

Implicit step

■ Pick a "particle-to-wave" operator $\mathcal{D} \in \mathbb{L}(\mathcal{M}(\Omega); C_0(\Omega))$ such that

$$A_*A \leq L\mathcal{D}$$
.

With

$$H(\mu) := \tau [A_*(A\mu^k - b) + \alpha] + \mathcal{D}(\mu - \mu^k) \in C_0(\Omega),$$

approximate implicit forward-backward step becomes

on
$$\Omega$$
 $-\varepsilon_{k+1} \leq H(\mu^{k+1}) \leq \varepsilon_{k+1}$ on supp μ^{k+1} .

Algorithm sketch for one FB step

- **Optimise weights** β of $\mu^{k+1} = \sum_{x \in S} \beta_x \delta_x$ to have $H(\mu^{k+1}) \approx 0$ on supp μ^{k+1} . This may reduce supp μ^{k+1} to satisfy right-hand-side
- **2** Find minimiser ξ of $H(\mu^{k+1})$.
- If in bounds, $H(\mu^{k+1})(\xi) \ge -\varepsilon_{k+1}$, finish.
- 4 Otherwise **add** ξ **to support** of μ^{k+1} , and repeat.

Implementation: main components

Weight optimisation subproblems

semismooth Newton → nalgebra.

Minimisation of *H*

branch-and-bound ↔

custom geometrical bisection tree structure for

 φ_1

 φ_2

$$\sum_{k} \varphi_{k} \quad \text{where each } \varphi_{k} \text{ has small support.}$$

Maintains rough upper/lower bounds within each node/cube.

multi-threaded with rayon pools and a priority queue.

Abstraction and tools

- Mappings, linear operators (A, \mathcal{D}) , vector spaces, GEMV, AXPY, etc.
- Float with everything necessary; linspace; cubes; iteration; mapping...
- Iterative algorithm boilerplate

Iterative algorithm boilerplate separation

```
let mut logger = Logger::new();
let mut iter = AlgIteratorOptions {
   max_iter : 100,
    verbose_iter : Verbose::Every(10),
    .. Default::default()
                           // Include time in output
}.timed()
 .into_log(&mut logger); // Log the output
// ...
let mut x = 1 as float:
iter.iterate(|state|{
   x = x + x.sqrt();
                            // This is our computational step
    state.if_verbose(||{
        return x
                            // return current value when requested
   })
})
```

GATs for abstract functional analysis

```
// Trait for linear A: X → Y that have an adjoint A': Y' → X'
pub trait Adjointable<X, Y'> : Linear<X> {
    type AdjointCodomain; // X'
    type Adjoint<'a> : Linear<Y', Codomain=Self::AdjointCodomain>
                       where Self : 'a:
    fn adjoint(&self) -> Self::Adjoint<'_>;
}
// ...
opA.adjoint().apply(x) // No data copied to apply adjoint!
```

Challenges

nalgebra type piggybacking

nalgebra RealField has the same methods as num_traits Float

→ hell with ToNalgebraRealField piggybacking trait.

Standardisation? A way to require traits without importing their methods?

Trait bound bloat

Many of our functions have **20 lines** of *inherited* trait bounds.

Really? Do we really have to repeat inherited trait bounds?

Float literals

#[replace_float_literals(F::cast_from(literal))]

Returning closures and constructing iterators

Needed Map trait for methods instead of closures, and tons of boilerplate.

Documentation: math

Rust markdown stuck in the past: no KaTeX (without cumbersome workarounds).

More details

Proximal methods for point source localisation

Manuscript: arXiv 2212.02991

Rust codes: Zenodo 7402055

Both: tuomov.iki.fi ↔

