

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 612 348 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 23.04.2003 Bulletin 2003/17
- (21) Application number: 92924237.8
- (22) Date of filing: 02.11.1992

- (51) Int CI.7: **C12N 15/12**, C12P 21/02, A61K 38/17, C12N 5/12, C07K 14/51
- (86) International application number: PCT/US92/09430
- (87) International publication number: WO 93/009229 (13.05.1993 Gazette 1993/12)
- (54) RECOMBINANT BONE MORPHOGENETIC PROTEIN HETERODIMERS, COMPOSITIONS AND METHODS OF USE

REKOMBINANTE KNOCHENMORPHOGENETISCHE PROTEIN HETERODIMERE, ZUSAMMENSETZUNGEN UND VERFAHREN ZUR VERWENDUNG

PROTEINES HETERODIMERES MORPHOGENETIQUES D'OS DE RECOMBINAISON, COMPOSITIONS ET PROCEDES D'UTILISATION

- (84) Designated Contracting States:

 AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
 SE
- (30) Priority: 04.11.1991 US 787496 07.04.1992 US 864692
- (43) Date of publication of application: 31.08.1994 Bulletin 1994/35
- (73) Proprietor: Genetics Institute, LLC Cambridge, MA 02140 (US)
- (72) Inventors:
 - ISRAEL, David Concord, MA 01742 (US)
 - WOLFMAN, Neil, M. Dover, MA 02030 (US)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(56) References cited:

EP-A- 0 433 225 WO-A-89/09787 WO-A-89/10409 WO-A-90/03733 WO-A-90/11366 WO-A-91/18098 WO-A-93/00049 US-A- 4 923 805

- PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA vol. 87, March 1990, WASHINGTON US pages 2220 - 2224 WANG, E.A. ET AL. 'Recombinant human bone morphogenetic protein induces bone formation' cited in the application
- JOURNAL OF BIOLOGICAL CHEMISTRY vol. 265, no. 22, 5 August 1990, BALTIMORE, MD US pages 13198 - 13205 SAMPATH, T.K. ET AL. 'Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily'
- PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA vol. 87, no. 24, December 1990, WASHINGTON US pages 9843 - 9847 CELESTE, A.J. ET AL. 'Identification of transforming growth factor-beta family members present in bone-inductive protein purified from bovine bone'
- JOURNAL OF CELLULAR BIOCHEMISTRY Supplement 16F, 1992, page 76, abstract W026; WOZNEY, J.M. ET AL.: 'Regulation of chondrogenesis and osteogenesis by the BMP proteins'

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

Description

10

15

25

30

35

45

50

[0001] The present invention relates to a series of novel recombinant heterodimeric proteins useful in the field of treating bone defects, healing bone injury and in wound healing in general. The invention also relates to methods for obtaining these heterodimers, methods for producing them by recombinant genetic engineering techniques, and compositions containing them.

[0002] In recent years, protein factors which are characterized by bone or cartilage growth inducing properties have been isolated and identified. See, e.g., U. S. Patent No. 5,013,649, PCT published application WO90/11366 PCT published application WO91/05802 and the variety of references cited therein. See, also, PCT/US90/05903 which discloses a protein sequence termed OP-1, which is substantially similar to human BMP-7, and has been reported to have osteogenic activity.

[0003] A family of individual bone morphogenetic proteins (BMPs), termed BMP-2 through BMP-9 have been isolated and identified. Reference for the purposes of providing disclosure of these proteins and methods of producing them is made to co-owned U. S. Patent No. 6,150,328 and the related applications recited in its preamble. Of particular interest, are the proteins termed BMP-2 and BMP-4, disclosed in the above-referenced patent; BMP-7, disclosed in US 5,141,905; BMP-5, disclosed in US 5,106,748 and BMP-6, disclosed in US 5,187,076 BMP-8 is disclosed in US 5,688,678. Additional members of the BMP family include BMP-1 BMP-9, disclosed in US 5,116,738; and BMP-3, disclosed in US 5,116,738 and PCT publication 89/01464.

[0004] There remains a need in the art for other proteins and compositions useful in the fields of bone and wound healing.

[0005] In one aspect, the invention provides a method for producing a heterodimeric protein having bone stimulating activity comprising culturing a selected host cell containing a nucleotide sequence encoding a first selected BMP or fragment thereof and a nucleotide sequence encoding a second selected BMP or fragment thereof, said nucleotide sequences each being under the control of a suitable regulatory sequence capable of directing co-expression of said proteins, and isolating said heterodimeric protein from the culture medium, wherein said heterodimeric protein is a human BMP-2/5, BMP-2/6, BMP-4/5, BMP-4/6 or BMP-4/7 heterodimer.

[0006] According to one embodiment of this invention, the host cell may be co-transfected with one or more vectors containing coding sequences for one or more BMPs. Each BMP polynucleotide sequence may be present on the same vector or on individual vectors transfected into the cell. Alternatively, the BMPs or their fragments may be incorporated into a chromosome of the host cell. Additionally, a single transcription unit may encode single copy of two genes encoding a different BMP.

[0007] According to another embodiment of this invention, the selected host cell containing the two polypeptide encoding sequences is a hybrid cell line obtained by fusing two selected, stable host cells, each host cell transfected with, and capable of stably expressing, a polynucleotide sequence encoding a selected first or second BMP or fragment thereof.

[0008] In another aspect of the present invention, therefore, there are provided recombinant heterodimeric proteins comprising a protein or fragment of a first BMP in association with a protein or fragment of a second BMP. The heterodimer may be characterized by bone stimulating activity. The heterodimers comprise a protein or fragment of BMP-2 associated with a protein or fragment of either BMP-5 or BMP-6; or a protein or fragment of BMP-4 associated with a protein or fragment of either BMP-5, BMP-6 or BMP-7. These heterodimers may be produced by co-expressing each protein in a selected host cell and isolating the heterodimer from the culture medium.

[0009] As a further aspect of this invention a cell line is provided which comprises a first polynucleotide sequence encoding a first BMP or fragment thereof and a second polynucleotide sequence encoding a second BMP or fragment thereof, the sequences being under control of one or more suitable expression regulatory systems capable of coexpressing the BMPs as a heterodimer wherein said recombinant heterodimeric protein is a human BMP-2/5, BMP-2/6, BMP-4/6 or BMP-4/7 heterodimer. The cell line may be transfected with one or more than one polynucleotide molecule. Alternatively, the cell line may be a hybrid cell line created by cell fusion as described above.

[0010] Another aspect of the invention is a polynucleotide molecule or plasmid vector comprising a polynucleotide sequence encoding a first selected BMP or fragment thereof and a polynucleotide sequence encoding a second selected BMP or fragment thereof wherein said first selected BMP is BMP-2 or BMP-4, and said second selected BMP is BMP-5 or BMP-6, or wherein said first selected BMP is BMP-4 and said second selected BMP is BMP-7. The sequences are under the control of at least one suitable regulatory sequence capable of directing co-expression of each protein or fragment. The molecule may contain a single transcription unit containing a copy of both genes, or more than one transcription unit, each containing a copy of a single gene.

[0011] As still another aspect of this invention there is provided a method for producing a recombinant heterodimeric protein having bone stimulating activity in a prokaryotic cell comprising culturing a selected host cell containing a polynucleotide sequence encoding a first selected BMP or fragment thereof; culturing a second selected host cell containing a polynucleotide sequence encoding a second selected BMP or fragment thereof; isolating monomeric forms

of each BMP protein from the culture medium and co-assembling a monomer of the first protein with a monomer of the second protein wherein said heterodimeric protein is a human BMP-2/5, BMP-2/6, BMP-4/5, BMP-4/6 or BMP-4/7 heterodimer. The first protein and the second protein are different BMPs. The resulting biologically active heterodimer is thereafter isolated from the mixture. Preferred cells are E. coli.

[0012] Thus, as further aspects of this invention recombinant BMP heterodimers produced in eukaryotic cells are provided, as well as suitable vectors or plasmids, and selected transformed cells useful in such a production method. [0013] Other aspects and advantages of the present invention are described further in the following detailed description of preferred embodiments of the present invention.

Figure 1 provides the DNA and amino acid sequences of human BMP-2 (SEQ ID NOs: 1 and 2).

Figure 2 provides the DNA and amino acid sequences of human BMP-4 (SEQ ID NOs: 3 and 4).

Figure 3 provides the DNA and amino acid sequences of human BMP-7 (SEQ ID NOs: 5 and 6).

Figure 4 provides the DNA and amino acid sequences of human BMP-6 (SEQ ID NOs: 7 and 8).

Figure 5 provides the DNA and amino acid sequences of human BMP-5 (SEQ ID NOs: 9 and 10).

Figure 6 provides the DNA and amino acid sequences of human BMP-8 (SEQ ID NOs: 11 and 12).

Figure 7 provides the DNA sequence of vector pALB2-781 containing the mature portoin of the BMP-2 gene (SEQ ID NOs: 13 and 14).

Figure 8 compares the activity of CHO BMP-2 and CHO BMP-2/7 in the W20 alkaline phosphatase assay.

Figure 9 compares the activity of CHO BMP-2 and CHO BMP-2/7 in the BGP (osteocalcin) assay.

Figure 10 provides a comparison of the W-20 activity of E. coli produced BMP-2 and BMP-2/7 heterodimer.

Figure 11 depicts BMP-3 DNA and amino acid sequence.

10

15

20

25

30

35

45

50

Figure 12 provides a comparison of BMP-2 and BMP-2/6 in the W-20 assay.

Figure 13 provides a comparison of the in vivo activity of BMP-2/6 and BMP-2.

Figure 14 provides a comparison of BMP-2, BMP-6 and BMP-2/6 in vivo activity.

[0014] The present invention provides a method for producing recombinant heterodimeric proteins having bone stimulating activity, as well as the recombinant heterodimers themselves, and compositions containing them for bonestimulating or repairing therapeutic use.

[0015] As used throughout this document, the term 'heterodimer' is defined as a biologically-active protein construct comprising the association of two different BMP protein monomers or active fragments thereof joined through at least one covalent, disulfide linkage. A heterodimer of this invention may be characterized by the presence of between one to seven disulfide linkages between the two BMP component strands.

[0016] According to the present invention, therefore, a method for producing a recombinant BMP heterodimer according to this invention comprises culturing a selected host cell containing a polynucleotide sequence encoding a first selected BMP or a biologically active fragment thereof and a polynucleotide sequence encoding a second selected BMP or a fragment thereof. The resulting co-expressed, biologically active heterodimer is formed within the host cell, secreted therefrom and isolated from the culture medium. Preferred embodiments of methods for producing the heterodimeric proteins of this invention, are described in detail below and in the following examples. Preferred methods of the invention involve known recombinant genetic engineering techniques [See, e.g., Sambrook et al, "Molecular Cloning. A Laboratory Manual.", 2d edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989)]. However, other methods, such as conventional chemical synthesis may also be useful in preparing a heterodimer of this invention. [0017] BMP heterodimers generated by this method are produced in a mixture of homodimers and heterodimers. This mixture of heterodimers and homodimers may be separated from contaminants in the culture medium by resort to essentially conventional methods, such as classical protein biochemistry or affinity antibody columns specific for one of the BMPs making up the heterodimer. Additionally, if desired, the heterodimers may be separated from homodimers in the mixture. Such separation techniques allow unambiguous determination of the activity of the heterodimeric species. Example 4 provides one presently employed purification scheme for this purpose.

[0018] The recombinant heterodimers of this invention produced by these methods involve the BMPs designated human BMP-2, human BMP-4, human BMP-5, human BMP-6 and human BMP-7 and are human BMP-2/5, BMP-2/6. BMP-4/5, BMP-4/6 or BMP-4/7 heterodimers.

[0019] BMPs specifically identified above may be employed in heterodimers useful for veterinary, diagnostic or re-

[0020] Human BMP-2 is characterized by containing substantially the entire sequence, or fragments, of the amino acid sequence and DNA sequence disclosed in Figure 1. Human BMP-2 proteins are further characterized as disulfidelinked dimers and homodimers of mature BMP-2 subunits. Recombinantly-expressed BMP-2 subunits include protein species having heterogeneous amino termini. One BMP-2 subunit is characterized by comprising amino acid #249 (Ser) - #396 (Arg) of Figure 1 (SEQ ID NOs: 1 and 2). Another BMP-2 subunit is characterized by comprising amino acid #266 (Thr) - #396 (Arg) of Figure 1. Another BMP-2 subunit is characterized by comprising amino acid #296 (Cys)

- #396 (Arg) of Figure 1. A mature BMP-2 subunit is characterized by comprising amino acid #283 (Gin) - #396 (Arg) of Figure 1. This latter subunit is the presently most abundant protein species which results from recombinant expression of BMP-2 (Figure 1). However, the proportions of certain species of BMP-2 produced may be altered by manipulating the culture conditions. BMP-2 may also include modifications of the sequences of Figure 1, e.g., deletion of amino acids #241-280 and changing amino acid #245 Arg to IIe, among other changes.

[0021] As described in detail in United States Patent No. 6,150,328 human BMP-2 may be produced by culturing a cell transformed with a DNA sequence comprising the nucleotide coding sequence from nucleotide #356 to #1543 in Figure 1 and recovering and purifying from the culture medium one or more of the above-identified protein species, substantially free from other proteinaceous materials with which it is co-produced. Human BMP-2 proteins are characterized by the ability to induce bone formation. Human BMP-2 also has in vitro activity in the W20 bioassay. Human BMP-2 is further characterized by the ability to induce cartilage formation. Human BMP-2 may be further characterized by the ability to demonstrate cartilage and/or bone formation activity in the rat bone formation assay described in the above-referenced application.

[0022] Human BMP-4 is characterized by containing substantially the entire sequence, or fragments, of the amino acid sequence and DNA sequence disclosed in Figure 2 (SEQ ID NOs: 3 and 4). Human BMP-4 proteins are further characterized as disulfide-linked dimers and homodimers of mature BMP-4 subunits. Recombinantly-expressed BMP-4 subunits may include protein species having heterogeneous amino termini. A mature subunit of human BMP-4 is characterized by an amino acid sequence comprising amino acids #293 (Ser) - #408 (Arg) of Figure 2. Other amino termini of BMP-4 may be selected from the sequence of Figure 2. Modified versions of BMP-4, including proteins further truncated at the amino or carboxy termini, may also be constructed by resort to conventional mutagenic techniques. [0023] As disclosed in patent US 6,150,328, BMP-4 may be produced by culturing a cell transformed with a DNA sequence comprising the nucleotide coding sequence from nucleotide #403 to nucleotide #1626 in Figure 2 and recovering and purifying from the culture medium a protein containing the amino acid sequence from amino acid #293 to #408 as shown in Figure 2, substantially free from other proteinaceous materials with which it is co-produced. BMP-4 proteins are capable of inducing the formation of bone. BMP-4 proteins are capable of inducing formation of cartilage. BMP-4 proteins are further characterized by the ability to demonstrate cartilage and/or bone formation activity in the rat bone formation assay.

20

35

45

[0024] Human BMP-7 is characterized by containing substantially the entire sequence, or fragments, of the amino acid sequence and DNA sequence disclosed in Figure 3. Human BMP-7 proteins are further characterized as disulfide-linked dimers and homodimers of mature BMP-7 subunits. Recombinantly-expressed BMP-7 subunits include protein species having heterogeneous amino termini. One BMP-7 subunit is characterized by comprising amino acid #293 (Ser) - #431 (His) of Figure 3 (SEQ ID NOs: 5 and 6). This subunit-is the most abundantly formed protein produced by recombinant expression of the BMP-7 sequence. Another BMP-7 subunit is characterized by comprising amino acids #300 (Ser) - #431 (His) of Figure 3. Still another BMP-7 subunit is characterized by comprising amino acids #316 (Ala) - #431 (His) of Figure 3. Other amino termini of BMP-7 may be selected from the sequence of Figure 3. Similarly, modified versions, including proteins further truncated at the amino or carboxy termini, of BMP-7 may also be constructed by resort to conventional mutagenic techniques.

[0025] As disclosed in patent US 5,141,905, BMP-7 may be produced by culturing a cell transformed with a DNA sequence comprising the nucleotide coding sequence from nucleotide #97 to nucleotide #1389 in Figure 3 and recovering and purifying from the culture medium a protein containing the amino acid sequence from amino acid #293 to #431 as shown in Figure 3, substantially free from other proteinaceous or contaminating materials with which it is coproduced. These proteins are capable of stimulating, promoting, or otherwise inducing cartilage and/or bone formation.

[0026] Human BMP-6 is characterized by containing substantially the entire sequence, or fragments, of the amino acid sequence and DNA sequence disclosed in Figure 4. Human BMP-6 proteins are further characterized as disulfide-linked dimers of mature BMP-6 subunits. Recombinantly-expressed BMP-6 subunits may include protein species having heterogeneous amino termini. One BMP-6 subunit is characterized by comprising amino acid #375 (Ser) - #513 (His) of Figure 4 (SEQ ID NOs: 7 and 8). Other amino termini of BMP-6 may be selected from the sequence of Figure 4. Modified versions, including proteins further truncated at the amino or carboxy termini, of BMP-6 may also be constructed by resort to conventional mutagenic techniques.

[0027] As described in detail in United States Patent No. 5,187,076 human BMP-6 may be produced by culturing a cell transformed with a DNA sequence comprising the nucleotide coding sequence from nucleotide #160 to #1698 in Figure 4 and recovering and purifying from the culture medium a protein comprising amino acid #375 to #513 of Figure 4, substantially free from other proteinaceous materials or other contaminating materials with which it is co-produced. Human BMP-6 may be further characterized by the ability to demonstrate cartilage and/or bone formation activity in the rat bone formation assay.

[0028] Human BMP-5 is characterized by containing substantially the entire sequence, or fragments, of the amino acid sequence and DNA sequence disclosed in Figure 5 (SEQ ID NOs: 9 and 10). Human BMP-5 proteins are further characterized as disulfide-linked dimers of mature BMP-5 subunits. Recombinantly-expressed BMP-5 subunits may

include protein species having heterogeneous amino termini. one BMP-5 subunit is characterized by comprising amino acid #329 (Ser) - #454 (His) of Figure 5. Other amino termini of BMP-5 may be selected from the sequence of Figure 5. Modified versions, including proteins further truncated at the amino or carboxy termini, of BMP-5 may also be constructed by resort to conventional mutagenic techniques.

[0029] As described in detail in United States Patent No. 5,543,394 human BMP-5 may be produced by culturing a cell transformed with a DNA sequence comprising the nucleotide coding sequence from nucleotide #701 to #2060 in Figure 5 and recovering and purifying from the culture medium a protein comprising amino acid #329 to #454 of Figure 5, substantially free from other proteinaceous materials or other contaminating materials with which it is co-produced. Human BMP-5 may be further characterized by the ability to demonstrate cartilage and/or bone formation activity in the rat bone formation assay described in the above-referenced application.

[0030] Each above described BMP protein in its native, non-reduced dimeric form may be further characterized by an apparent molecular weight on a 12% Laemmli gel ranging between approximately 28kD to approximately 40kD. Analogs or modified versions of the DNA and amino acid sequences described herein which provide proteins or active fragments displaying bone stimulating or repairing activity in the rat bone formation assay described below in Example 9, are also classifed as suitable BMPs for use in this invention, further provided that the proteins or fragments contain one or more Cys residues for participation in disulfide linkages. Useful modifications of these sequences may be made by one of skill in the art with resort to known recombinant genetic engineering techniques. Production of these BMP sequences in mammalian cells produces homodimers, generally mixtures of homodimers having heterologous N termini. Production of these BMP sequences in E. coli produces monomeric protein species.

[0031] Thus, according to this invention one recombinant heterodimer of the present invention comprises the association of a human BMP-2, including, e.g., a monomeric strand from a mature BMP-2 subunit as described above or an active fragment thereof, bound through one or up to seven covalent, disulfide linkages to a human BMP-5 including, e.g., a monomeric strand from a mature BMP-5 subunit as described above or an active fragment thereof. Another recombinant heterodimer of the present invention comprises the association of a human BMP-2, as described above, bound through one or up to seven covalent, disulfide linkages to a human BMP-6, including, e.g., a monomeric strand from a BMP-6 subunit as described above or an active fragment thereof.

[0032] Still another recombinant heterodimer of the present invention comprises the association of a human BMP-4, including, e.g., a monomeric strand of a BMP-4 subunit as described above or an active fragment thereof, bound through one or up to seven covalent, disulfide linkages to a human BMP-5, as described above. Another recombinant heterodimer of the present invention comprises the association of a human BMP-4, as described above, bound through one or more covalent, disulfide linkages to a human BMP-6, as described above. Another recombinant heterodimer of the present invention comprises the association of a human BMP-4, as described above bound through one or more covalent, disulfide linkages to a human BMP-7, as described above.

[0033] The disulfide linkages formed between the monomeric strands of the BMPs may occur between one Cys on each strand. Disulfide linkages may form between two Cys on each BMP. Disulfide linkages may form between three Cys on each BMP. Disulfide linkages may form between four Cys on each BMP. Disulfide linkages may form between six Cys on each BMP. Disulfide linkages may form between seven Cys on each BMP. These disulfide linkages may form between adjacent Cys on each BMP or between only selected Cys interspersed within the respective protein sequence. Various heterodimers having the same BMP component strands may form with different numbers of disulfide linkages. Various heterodimers having the same BMP component strands may form with disulfide bonds at different Cys locations. Different heterodimers encompassed by this invention having the same BMP components may differ based upon their recombinant production in mammalian cells, bacterial cells, insect or yeast cells.

[0034] These recombinant heterodimers may be characterized by increased alkaline phosphatase activity in the W20 mouse stromal cell line bioassay (Example 8) compared to the individual BMP homodimers, one strand of which forms each heterodimer. Further, these heterodimers are characterized by greater activity in the W20 bioassay than is provided by simple mixtures of the individual BMP dimers. Preliminary characterization of heterodimers measured on the W20 bioassay have demonstrated that heterodimers of BMP-2 with BMP-5, BMP-6 or BMP-7 are very active. Similarly, heterodimers of BMP-4 with BMP-5, BMP-6 or BMP-7 are strongly active in the W20 bioassay.

45

[0035] Heterodimers of this invention may also be characterized by activity in bone growth and stimulation assays. For example, a heterodimer of this invention is also active in the rat bone formation assay described below in Example 9. The heterodimers are also active in the osteocalcin bioassay described in Example 8. Other characteristics of a heterodimer of this invention include co-precipitation with anti-BMP antibodies to the two different constituent BMPs, as well as characteristic results on Western blots, high pressure liquid chromatography (HPLC) and on two-dimensional gels, with and without reducing conditions.

[0036] One embodiment of the method of the present invention for producing recombinant BMP heterodimers involves culturing a suitable cell line, which has been co-transfected with a DNA sequence coding for expression of a first BMP or fragment thereof and a DNA sequence coding for expression of a second BMP or fragment thereof, under

the control of known regulatory sequences. The transformed host cells are cultured and the heterodimeric protein recovered and purified from the culture medium.

[0037] In another embodiment of this method which is the presently preferred method of expression of the heterodimers of this invention, a single host cell, e.g., a CHO DUKX cell, is co-transfected with a first DNA molecule containing a DNA sequence encoding one BMP and a second DNA molecule containing a DNA sequence encoding a second selected BMP. One or both plasmids contain a selectable marker that can be used to establish stable cell lines expressing the BMPs. These separate plasmids containing distinct BMP genes on seperate transcription units are mixed and transfected into the CHO cells using conventional protocols. A ratio of plasmids that gives maximal expression of activity in the W20 assay, generally, 1:1, is determined.

10

20

25

[0038] For example, as described in detail in Example 3, equal ratios of a plasmid containing the first BMP and a dihydrofolate reductase (DHFR) marker gene and another plasmid containing a second BMP and a DHFR marker gene can be co-introduced into DHFR-deficient CHO cells, DUKX-BII, by calcium phosphate coprecipitation and transfection, electroporation, microinjection, protoplast fusion or lipofection. Individual DHFR expressing transformants are selected for growth in alpha media with dialyzed fetal calf serum by conventional means. DHFR+ cells containing increased gene copies can be selected for propagation in increasing concentrations of methotrexate (MTX) (e.g. sequential steps in 0.02, 0.1, 0.5 and 2.0 uM MTX) according to the procedures of Kaufman and Sharp, J. Mol. Biol., 159:601-629 (1982); and Kaufman et al, Mol. Cell Biol., 5:1750 (1983). Expression of the heterodimer or at least one BMP linked to DHFR should increase with increasing levels of MTX resistance. Cells that stably express either or both BMP/DHFR genes will survive. However at a high frequency, cell lines stably incorporate and express both plasmids that were present during the initial transfection. The conditioned medium is thereafter harvested and the heterodimer isolated by conventional methods and assayed for activity. This approach can be employed with DHFR-deficient cells.

[0039] As an alternative embodiment of this method, a DNA molecule containing one selected BMP gene may be transfected into a stable cell line which already expresses another selected BMP gene. For example as described in detail in Example 3 below, a stable CHO cell line expressing BMP-7 with the DHFR marker (designated 7MB9) [Genetics Institute, Inc] is transfected with a plasmid containing BMP-2 and a second selectable marker gene, e.g., neomycin resistance (Neo). After transfection, the cell is cultured and suitable cells selected by treatment with MTX and the antibiotic, G-418. Surviving cells are then screened for the expression of the heterodimer. This expression system has the advantage of permitting a single step selection.

[0040] Alternative dual selection strategies using different cell lines or different markers can also be used. For example, the use of an adenosine deaminase (ADA) marker to amplify the second BMP gene in a stable CHO cell line expressing a different BMP with the DHFR marker may be preferable, since the level of expression can be increased using deoxycoformycin (DCF)-mediated gene amplification. (See the ADA containing plasmid described in Example 1). Alternatively, any BMP cell line made by first using this marker can then be the recipient of a second BMP expression vector containing a distinct marker and selected for dual resistance and BMP coexpression.

[0041] Still another embodiment of a method of expressing the heterodimers of this invention includes transfecting the host cell with a single DNA molecule encoding multiple genes for expression either on a single transcription unit or on separate transcription units. Multicistronic expression involves multiple polypeptides encoded within a single transcript, which can be efficiently translated from vectors utilizing a leader sequence, e.g., from the EMC virus, from poliovirus, or from other conventional sources of leader sequences. Two BMP genes and a selectable marker can be expressed within a single transcription unit. For example, vectors containing the configuration BMPx-EMC-BMPy-DH-FR or BMPx-EMC-DHFR can be transfected into CHO cells and selected and amplified using the DHFR marker. A plasmid may be constructed which contains DNA sequences encoding two different BMPs, one or more marker genes and a suitable leader or regulatory sequence on a single transcription unit.

[0042] Similarly, host cells may be transfected with a single plasmid which contains separate transcription units for each BMP. A selectable marker, e.g., DHFR, can be contained on a another transcription unit, or alternatively as the second cistron on one or both of the BMP genes. These plasmids may be transfected into a selected host cell for expression of the heterodimer, and the heterodimer isolated from the cells or culture medium as described above.

[0043] Another embodiment of this expression method involves cell fusion. Two stable cell lines which express selected BMPs, such as a cell line expressing BMP-2 (e.g., 2EG5) and a cell line expressing BMP-7 (e.g., 7MB9), developed using the DHFR/MTX gene amplification system and expressing BMP at high levels, as described in Example 1 and in the above incorporated U.S. applications, can be transfected with one of several dominant marker genes (e.g., neo', hygromycin', GPT). After sufficient time in coculture (approximately one day) one resultant cell line expressing one BMP and a dominant marker can be fused with a cell line expressing a different BMP and preferably a different marker using a fusigenic reagent, such as polyethylene glycol, Sendai virus or other known agent.

[0044] The resulting cell hybrids expressing both dominant markers and DHFR can be selected using the appropriate culture conditions, and screened for coexpression of the BMPs or their fragments. The selected hybrid cell contains sequences encoding both selected BMPs, and the heterodimer is formed in the cell and then secreted. The heterodimer is obtained from the conditioned medium and isolated and purified therefrom by conventional methods (see e.g., Ex-

ample 4). The resulting heterodimer may be characterized by methods described herein.

15

30

40

45

50

[0045] Cell lines generated from the approaches described above can be used to produce co-expressed, heterodimeric BMP polypeptides. The heterodimeric proteins are isolated from the cell medium in a form substantially free from other proteins with which they are co-produced as well as from other contaminants found in the host cells by conventional purification techniques. The presently preferred method of production is co-transfection of different vectors into CHO cells and methotrexate-mediated gene amplification. Stable cell lines may be used to generate conditioned media containing recombinant BMP that can be purified and assayed for in vitro and in vivo activities. For example, the resulting heterodimer-producing cell lines obtained by any of the methods described herein may be screened for activity by the assays described in Examples 8 and 9, RNA expression, and protein expression by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

[0046] The above-described methods of co-expression of the heterodimers of this invention utilize suitable host cells or cell lines. Suitable cell preferably include mammalian cells, such as Chinese hamster ovary cells (CHO). The selection of suitable mammalian host cells and methods for transformation, culture, amplification, screening and product production and purification are known in the art. See, e.g., Gething and Sambrook, Nature, 293:620-625 (1981), or alternatively, Kaufman et al, Mol. Cell. Biol., 5(7):1750-1759 (1985) or Howley et al, U. S. Patent 4,419,446. Other suitable mammalian cell lines are the CV-1 cell line, BHK cell lines and the 293 cell line. The monkey COS-1 cell line is presently believed to be inefficient in BMP heterodimer production.

[0047] Many strains of yeast cells known to those skilled in the art may also be available as host cells for expression of the polypeptides of the present invention, e.g., Saccharomyces cerevisiae. Additionally, where desired, insect cells may be utilized as host cells in the method of the present invention. See, e.g., Miller et al, Genetic Engineering, 8: 277-298 (Plenum Press 1986) and references cited therein.

[0048] Another method for producing a biologically active heterodimeric protein of this invention may be employed where the host cells are microbial, preferably bacterial cells, in particular <u>E. coli</u>. For example, the various strains of <u>E. coli</u> (e.g., HB101, MC1061) are well-known as host cells in the field of biotechnology. Various strains of <u>B. subtilis</u>, Pseudomonas, other bacilli and the like may also be employed in this method.

[0049] This method, which may be employed to produce monomers and dimers (both homodimers and heterodimers) is described in European Patent Application No. 433,225. Briefly, this process involves culturing a microbial host comprising a nucleotide sequence encoding the desired BMP protein linked in the proper reading frame to an expression control sequence which permits expression of the protein and recovering the monomeric, soluble protein. Where the protein is insoluble in the host cells, the water-insoluble protein fraction is isolated from the host cells and the protein is solubilized. After chromatographic purification, the solubilized protein is subjected to selected conditions to obtain the biologically active dimeric configuration of the protein. This process, which may be employed to produce the heterodimers of this invention, is described specifically in Example 7, for the production of a BMP-2 homodimer.

[0050] Another aspect of the present invention provides DNA molecules or plasmid vectors for use in expression of these recombinant heterodimers. These plasmid vectors may be constructed by resort to known methods and available components known to those of skill in the art. In general, to generate a vector useful in the methods of this invention, the DNA encoding the desired BMP protein is transferred into one or more appropriate expression vectors suitable for the selected host cell.

[0051] It is presently contemplated that any expression vector suitable for efficient expression in mammalian cells may be employed to produce the recombinant heterodimers of this invention in mammalian host cells. Preferably the vectors contain the selected BMP DNA sequences described above and in the Figures, which encode selected BMP components of the heterodimer. Alternatively, vectors incorporating modified sequences as described in the above-referenced patent applications are also embodiments of the present invention and useful in the production of the vectors.

[0052] In addition to the specific vectors described in Example 1, one skilled in the art can construct mammalian expression vectors by employing the sequence of Figures 1-6 or other DNA sequences containing the coding sequences of Figures 1-6 (SEQ ID NOs: 1, 3, 5, 7, 9 and 11), or other modified sequences and known vectors, such as pCD [Okayama et al, Mol. Cell Biol., 2:161-170 (1982)] and pJL3, pJL4 [Gough et al, EMBO J., 4:645-653 (1985)]. The BMP DNA sequences can be modified by removing the non-coding nucleotides on the 5' and 3' ends of the coding region. The deleted non-coding nucleotides may or may not be replaced by other sequences known to be beneficial for expression. The transformation of these vectors into appropriate host cells as described above can produce desired betarodimers.

[0053] One skilled in the art could manipulate the sequences of Figures 1-6 by eliminating or replacing the mammalian regulatory sequences flanking the coding sequence with e.g., yeast or insect regulatory sequences, to create vectors for intracellular or extracellular expression by yeast or insect cells. [See, e.g., procedures described in published European Patent Application 155,476] for expression in insect cells; and procedures described in published PCT application WO86/00639 and European Patent Application EPA 123,289 for expression in yeast cells].

[0054] Similarly, bacterial sequences and preference codons may replace sequences in the described and exempli-

fied mammalian vectors to create suitable expression systems for use in the production of BMP monomers in the method described above. For example, the coding sequences could be further manipulated (e.g., ligated to other known linkers or modified by deleting non-coding sequences therefrom or altering nucleotides therein by other known techniques). The modified BMP coding sequences could then be inserted into a known bacterial vector using procedures such as described in T. Taniguchi et al, Proc. Natl. Acad. Sci. USA, 77:5230-5233 (1980). The exemplary bacterial vector could then be transformed into bacterial host cells and BMP heterodimers expressed thereby. An exemplary vector for microbial, e.g., bacterial, expression is described below in Example 7.

5

15

20

35

45

[0055] Other vectors useful in the methods of this invention may contain multiple genes in a single transcription unit. For example, a proposed plasmid p7E2D contains the BMP-7 gene followed by the EMC leader sequence, followed by the BMP-2 gene, followed by the DHFR marker gene. Another example is plasmid p7E2ED which contains the BMP-7 gene, the EMC leader, the BMP-2 gene, another EMC leader sequence and the DHFR marker gene. Alternatively, the vector may contain more than one transcription unit. As one example, the plasmid p2ED7ED contains a transcription unit for BMP-2 and a separate transcription unit for BMP-7, i.e., BMP-2-EMC-DHFR and BMP-7-EMC-DH-FR. Alternatively, each transcription unit on the plasmid may contain a different marker gene. For example, plasmid p2EN7ED contains BMP-2-EMC-Neo and BMP-7-EMC-DHFR.

[0056] Additionally the vectors also contain appropriate expression control sequences which are capable of directing the replication and expression of the BMP in the selected host cells. Useful regulatory sequences for such vectors are known to one of skill in the art and may be selected depending upon the selected host cells. Such selection is routine and does not form part of the present invention. Similarly, the vectors may contain one or more selection markers, such as the antibiotic resistance gene, Neo or selectable markers such as DHFR and ADA. The presently preferred marker gene is DHFR. These marker genes may also be selected by one of skill in the art.

[0057] Once they are expressed by one of the methods described above, the heterodimers of this invention may be identified and characterized by application of a variety of assays and procedures. A co-precipitation (immunoprecipitation) assay may be performed with antibodies to each of the BMPs forming the heterodimer. Generally antibodies for this use may be developed by conventional means, e.g., using the selected BMP, fragments thereof, or synthetic BMP peptides as antigen. Antibodies employed in assays are generally polyclonal antibodies made from individual BMP peptides or proteins injected into rabbits according to classical techniques. This assay is performed conventionally, and permits the identification of the heterodimer, which is precipitated by antibodies to both BMP components of the heterodimer. In contrast, only one of the two antibodies causes precipitation of any homodimeric form which may be produced in the process of producing the heterodimer.

[0058] Another characterizing assay is a Western assay, employing a precipitating antibody, a probing antibody and a detecting antibody. This assay may also be performed conventionally, by using an antibody to one of the BMPs to precipitate the dimers, which are run on reducing SDS-PAGE for Western analysis. An antibody to the second BMP is used to probe the precipitates on the Western gel for the heterodimer. A detecting antibody, such as a goat-antirabbit antibody labelled with horseradish peroxidase (HRP), is then applied, which will reveal the presence of one of the component subunits of the heterodimer.

[0059] Finally, the specific activity of the heterodimer may be quantitated as described in detail in Example 6. Briefly, the amount of each BMP is quantitated using Western blot analysis or pulse labelling and SDS-PAGE analysis in samples of each BMP homodimer and the heterodimer. The W20 activity is also determined as described specifically in Example 8. The relative specific activities may be calculated by the formula: W20 alkaline phosphatase activity/amount of BMP on Western blot or by fluorography. As one example, this formula has been determined for the BMP-2/7 heterodimer, demonstrating that the heterodimer has an estimated 5 to 50 fold higher specific activity than the BMP-2 homodimer.

[0060] The heterodimers of the present invention may have a variety of therapeutic and pharmaceutical uses, e.g., in compositions for wound healing, tissue repair, and in similar compositions which have been indicated for use of the individual BMPs. Increased potency of the heterodimers over the individual BMPs may permit lower dosages of the compositions in which they are contained to be administered to a patient in comparison to dosages of compositions containing only a single BMP. A heterodimeric protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage defects in humans and other animals. Such a preparation employing a heterodimeric protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

[0061] A heterodimeric protein of this invention may be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. Heterodimeric polypeptides of the invention may also be useful in the treatment of osteoporosis. A variety of osteogenic, cartilage-inducing and bone inducing factors have been described. See, e.g., European Patent Applications 148,155 and 169,016 for discussions

thereof.

35

40

45

55

[0062] The proteins of the invention may also be used in wound healing and related tissue repair. The types of wounds include, but are not limited to burns, incisions and ulcers. (See, e.g., PCT Publication WO84/01106 for discussion of wound healing and related tissue repair).

[0063] Additionally, the proteins of the invention may increase neuronal survival and therefore be useful in transplantation and treatment of conditions exhibiting a decrease in neuronal survival.

[0064] In view of the usefulness of the heterodimers, therefore, a further aspect of the invention is a therapeutic composition for repairing fractures and other conditions related to cartilage and/or bone defects or periodontal diseases. In addition, the invention comprises therapeutic compositions for wound healing and tissue repair. Such compositions comprise a therapeutically effective amount of a heterodimeric protein of the invention in admixture with a pharmaceutically acceptable vehicle, carrier or matrix. The preparation and formulation of such physiologically acceptable protein compositions, having due regard to pH, isotonicity, stability and the like, is within the skill of the art.

[0065] It is expected that the proteins of the invention may act in concert with other related proteins and growth factors. Therapeutic compositions of the invention therefore comprise a therapeutic amount of a heterodimeric protein of the invention with a therapeutic amount of at least one of the other BMP proteins disclosed in co-owned and concurrently filed U.S. applications described above. Such combinations may comprise separate molecules of the BMP proteins or other heteromolecules of the present invention.

[0066] In further compositions, heterodimeric proteins of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), and insulin-like growth factor (IGF).

[0067] The therapeutic compositions are also presently valuable for veterinary applications due to the lack of species specificity in BMP proteins. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with heterodimeric proteins of the present invention.

[0068] The composition is to be administered topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than the heterodimeric proteins of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the heterodimeric BMP composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the heterodimeric protein-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

[0069] The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the heterodimeric BMP compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalciumphosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability.

[0070] Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the BMP compositions from dissassociating from the matrix.

[0071] The dosage regimen of a heterodimeric protein-containing pharmaceutical composition will be determined by the attending physician considering various factors which modify the action of the heterodimeric proteins, e.g. amount of bone weight desired to be formed, the site of bone damage, the condition of the damaged bone, the size of a wound, type of damaged tissue, the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and the BMP proteins in the heterodimer and any additional BMP or other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

[0072] The following examples are illustrative of the present invention and do not limit its scope.

[0073] They encompass BMP monomers and heterodimers not included within the scope of protection of the present invention, which, however, are maintained for illustration and enablement purposes.

5 EXAMPLE 1 - BMP Vector constructs and Cell Lines

A. BMP-2 Vectors

[0074] The mammalian expression vector pMT² CXM is a derivative of p91023 (b) [Wong et al, Science, <u>228</u>:810-815 (1985)] differing from the latter in that it contains the ampicillin resistance gene (Amp) in place of the tetracycline resistance gene (Tet) and further contains a Xhol site for insertion of cDNA clones. The functional elements of pMT2 CXM have been described [R. J. Kaufman, <u>Proc. Natl. Acad. Sci. USA</u>, <u>82</u>:689-693 (1985)] and include the adenovirus VA genes, the SV40 origin of replication including the 72 bp enhancer, the adenovirus major late promoter including a 5' splice site and the majority of the adenovirus tripartite leader sequence present on adenovirus late mRNAs, a 3' splice acceptor site, a DHFR insert, the SV40 early polyadenylation site (SV40), and pBR322 sequences needed for propagation in E. coli.

[0075] EcoRI digestion of pMT2-VWF, which has been deposited with the American Type Culture Collection (ATCC), Rockville, MD (USA) under accession number ATCC 67122, excises the cDNA insert present in pMT2-VWF, yielding pMT2 in linear form. Plasmid pMT2 can be ligated and used to transform E. coli HB 101 or DH-5 to ampicillin resistance. Plasmid pMT2 DNA can be prepared by conventional methods.

[0076] Plasmid pMT2 CXM is then constructed using loopout/in mutagenesis [Morinaga et al, <u>Biotechnology</u>, <u>84</u>:636 (1984)]. This removes bases 1075 to 1145 relative to the HindIII site near the SV40 origin of replication and enhancer sequences of pMT2. In addition it inserts the following sequence:

5' PO4-CATGGGCAGCTCGAG-3' (SEQ ID NO: 15)

at nucleotide 1145. This sequence contains the recognition site for the restriction endonuclease Xhol.

[0077] A derivative of pMT2 CXM, termed plasmid pMT23, contains recognition sites for the restriction endonucleases Pstl. EcoRI, Sall and Xhol.

[0078] Full length BMP-2 cDNA (Fig. 1) (SEQ ID NO: 1) is released from the λGT10 vector by digestion with EcoRI and subcloned into pSP65 [Promega Biotec, Madison, Wisconsin; see, e.g., Melton et al, Nucl. Acids Res., 12: 7035-7056 (1984)] in both orientations yielding pBMP-2 #39-3 or pBMP-2 #39-4.

[0079] The majority of the untranslated regions of the BMP-2 cDNA are removed in the following manner. The 5' sequences are removed between the Sail site in the adapter (present from the original cDNA cloning) and the Sall site 7 base pairs upstream of the initiator ATG by digestion of the pSP65 plasmid containing the BMP-2 cDNA with Sall and religation. The 3' untranslated region is removed using heteroduplex mutagenesis using the oligonucleotide

5' GAGGGTTGTGGGTGTCGC<u>TAG</u>TGA<u>GTCGAC</u>TACAGCAAAATT 3'. End SalI

(SEQ ID NO: 16)

The sequence contains the terminal 3' coding region of the BMP-2 cDNA, followed immediately by a recognition site for Sall. The sequence introduces a Sall site following the termination (TAG) codon.

[0080] The Sall fragment of this clone was subcloned into the expression vector pMT23, yielding the vector pMT23-BMP2ΔUT. Restriction enzyme sites flank the BMP-2 coding region in the sequence Pstl-EcoRI-Sall-BMP-2 cDHA-Sall-EcoRI-Xhol.

[0081] The expression plasmid pED4 [Kaufman et al, Nucl. Acids Res., 19:4485-4490 (1991)] was linearized by digestion with EcoRI and treated with calf intestinal phosphatase. The BMP-2 CDNA gene was excised from pMT23-BMP2ΔUT by digestion with EcoRI and recovery of the 1.2 kb fragment by electrophoresis through a 1.0% low melt agarose gel. The linearized pED4 vector and the EcoRI BMP-2 fragment were ligated together, yielding the BMP-2 expression plasmid pBMP2Δ-EMC.

[0082] Another vector pBMP-2 Δ -EN contains the same sequences contained within the vector pBMP2 Δ -EMC, except the DHFR gene has been replaced by conventional means with the neomycin resistance gene from the Tn5 transposable element.

10

25

20

10

40

B. BMP-4 Vectors

5

10

20

25

30

40

45

55

[0083] A BMP-4 cDNA sequence set forth in Figure 2 (SEQ ID NO: 3), in which the 3' untranslated region is removed, is made via heteroduplex mutagenesis with the mutagenic oligonucleotide:

5' GGATGTGGGTGCCGC<u>TGA</u>CTCTAGAGTCGACG<u>GAATTC</u> 3'
End EcoRI
(SEQ ID NO: 17)

This deletes all of the sequences 3' to the translation terminator codon of the BMP-4 cDNA, juxtaposing this terminator codon and the vector polylinker sequences. This step is performed in an SP65 vector [Promega Biotech] and may also be conveniently performed in pMT2-derivatives containing the BMP-4 cDNA similar to the BMP2 vectors described above. The 5' untranslated region is removed using the restriction endonuclease Bsml, which cleaves within the eighth codon of BMP-4 cDNA.

[0084] Reconstruction of the first eight codons is accomplished by ligation to oligonucleotides:

ECORI Initiator BsmI
5' AATTCACCATGATTCCTGGTAACCGAATGCT 3' (SEQ ID NO: 18)

and

3' GTGGTACTAAGGACCATTGGCTTAC 5' (SEQ ID NO: 19)

These oligonucleotides form a duplex which has a Bsml complementary cohesive end capable of ligation to the Bsml restricted BMP-4 cDNA, and it has an EcoRl complementary cohesive end capable of ligation to the EcoRl restricted vector pMT2. Thus the cDNA for BMP-4 with the 5' and 3' untranslated regions deleted, and retaining the entire encoding sequence is contained within an EcoRl restriction fragment of approximately 1.2 kb.

[0085] The pMT2 CXM plasmid containing this BMP-4 sequence is designated pXMBMP-4\DeltaUT. It is digested with EcoRI in order to release the BMP-4 cDNA containing insert from the vector. This insert is subcloned into the EcoRI site of the mammalian expression vector pED4, resulting pBMP4\Delta-EMC.

C. BMP-5 Vectors

[0086] A BMP-5 cDNA sequence comprising the nucleotide sequence from nucleotide #699 to #2070 of Fig. 5 (SEQ ID NO: 9) is specifically amplified as follows. The oligonucleotides CGACCTGCAGCCACCATGCATCTGACTGTA (SEQ ID NO: 20) and TGCCTGCAGTTTAATATTAGTGGCAGC (SEQ ID NO: 21) are utilized as primers to allow the amplification of nucleotide sequence #699 to #2070 of Fig. 5 from the BMP-5 insert of λ -ZAP clone U2-16 [ATCC #68109]. This procedure introduces the nucleotide sequence CGACCTGCAGCCACC (SEQ ID NO: 22) immediately preceeding nucleotide #699 and the nucleotide sequence CTGCAGGCA immediately following nucleotide #2070. The addition of these sequences results in the creation of PstI restriction endonuclease recognition sites at both ends of the amplified DNA fragment. The resulting amplified DNA product of this procedure is digested with the restriction endonuclease PstI and subcloned into the PstI site of the pMT2 derivative pMT21 [Kaufman, Nucl. Acids Res., 19: 4485-4490 (1991)]. The resulting clone is designated H5/5/pMT.

[0087] The insert of H5/5/pMT is excised by PstI digestion and subcloned into the plasmid vector pSP65 [Promega Biotech] at the PstI site, resulting in plasmid BMP5/SP6. BMP5/SP6 and U2-16 are digested with the restriction endonucleases NsiI and NdeI to excise the portion of their inserts corresponding to nucleotides #704 to #1876 of Fig. 5. The resulting 1173 nucleotide NsiI-NdeI fragment of clone U2-16 is ligated into the NsiI-NdeI site of BMP5/SP6 from which the corresponding 1173 nucleotide NsiI-NdeI fragment had been removed. The resulting clone is designated BMP5mix/SP65.

[0088] Direct DNA sequence analysis of BMP5mix/SP65 is performed to confirm identity of the nucleotide sequences produced by the amplification to those set forth in Fig. 5. The clone BMP5mix/SP65 is digested with the restriction endonuclease PstI resulting in the excision of an insert comprising the nucleotides #699 to #2070 of Fig. 5 and the

additional sequences containing the Pstl recognition sites as described above. The resulting 1382 nucleotide Pstl fragment is subcloned into the Pstl site of the pMT2 derivative pMT21. This clone is designated BMP5mix/pMT21#2. [0089] The same fragment is also subcloned into the Pstl site of pED4 to yield the vector designated BMP5mix-EMC-11.

D. BMP-6 Vectors

5

10

15

20

25

30

35

45

55

[0090] A BMP-6 cDNA sequence comprising the nucleotide sequence from nucleotide #160 to #1706 of Fig. 4 (SEQ ID NO: 7) is produced by a series of techniques known to those skilled in the art. The clone BMP6C35 [ATCC 68245] is digested with the restriction endonucleases Apal and Taql, resulting in the excision of a 1476 nucleotide portion of the insert comprising nucleotide #231 to #1703 of Fig. 4. Synthetic oligonucleotides with Sail restriction endonuclease site converters are designed to replace those nucleotides corresponding to #160 to #230 and #1704 to #1706 which are not contained in the 1476 Apal-Taql fragment of the BMP-6 cDNA sequence.

[0092] DNA sequence analysis of BMP6/SP64#15 is performed to confirm identity of the 5' and 3' sequences replaced by the converters to the sequence set forth in Fig. 4. The insert of BMP6/SP64#15 is excised by digestion with the restriction endonuclease Sall. The resulting 1563 nucleotide Sall fragment is subcloned into the Xhol restriction endonuclease site of pMT21 and designated herein as BMP6/pMT21.

[0093] The PstI site of pED4 is converted to a Sall site by digestion of the plasmid with PstI and ligation to the converter oligonucleotides:

5'-TCGACAGGCTCGCCTGCA-3' (SEQ ID NO: 27)

and

3'-GTCCGAGCGG-5' (SEQ ID NO: 28).

40 The above 1563 nucleotide Sall fragment is also subcloned into the Sail site of this pED4 vector, yielding the expression vector BMP6/EMC.

E. BMP-7 Vectors

[0094] A BMP-7 sequence comprising the nucleotide sequence from nucleotide #97 to #1402 of Fig. 3 (SEQ ID NO: 5) is specifically amplified as follows. The oligonucleotides CAGGTCGACCCACCATGCACGTGCGCTCA (SEQ ID NO: 29) and TCTGTCGACCTCGGAGGAGCTAGTGGC (SEQ ID NO: 30) are utilized as primers to allow the amplification of nucleotide sequence #97 to #1402 of Fig. 3 from the insert of clone PEH7-9 [ATCC #68182]. This procedure generates the insertion of the nucleotide sequence CAGGTCGACCCACC immediately preceeding nucleotide #97 and the insertion of the nucleotide sequence GTCGACAGA immediately following nucleotide #1402. The addition of these sequences results in the creation of a Sall restriction endonuclease recognition site at each end of the amplified DNA fragment. The resulting amplified DNA product of this procedure is digested with the restriction endonuclease Sail and subcloned into the Sail site of the plasmid vector pSP64 [Promega Biotech, Madison, WI] resulting in BMP7/SP6#2. [0095] The clones BMP7/SP6#2 and PEH7-9 are digested with the restriction endonucleases Ncol and Stul to excise the portion of their inserts corresponding to nucleotides #363 to #1081 of Fig. 3. The resulting 719 nucleotide Ncol-Stul fragment of clone PEH7-9 is ligated into the Ncol-Stul site of BMP7/SP6#2 from which the corresponding 719 nucleotide fragment is removed. The resulting clone is designated BMP7mix/SP6.

[0096] Direct DNA sequence analysis of BMP7mix/SP6 confirmed identity of the 3' region to the nucleotide sequence

from #1082 to #1402 of Fig. 3, however the 5' region contained one nucleotide misincorporation.

[0097] Amplification of the nucleotide sequence (#97 to #1402 of Fig. 3) utilizing PEH7-9 as a template is repeated as described above. The resulting amplified DNA product of this procedure is digested with the restriction endonucleases Sail and Pstl. This digestion results in the excision of a 747 nucleotide fragment comprising nucleotide #97 to #833 of Fig. 3 plus the additional sequences of the 5' priming oligonucleotide used to create the Sall restriction endonuclease recognition site described earlier. This 747 Sall-Pstl fragment is subcloned into a Sall-Pstl digested pSP65 [Promega Biotech, Madison, WI] vector resulting in 5'BMP7/SP65. DNA sequence analysis demonstrates that the insert of the 5'BMP7/SP65#1 comprises a sequence identical to nucleotide #97 to #362 of Fig. 3.

[0098] The clones BMP7mix/SP6 and 5'BMP7/SP65 are digested with the restriction endonucleases Sail and Ncol. The resulting 3' Ncol-Sall fragment of BMP7mix/SP6 comprising nucleotides #363 to #1402 of Fig. 3 and 5' Sall-Ncol fragment of 5'BMP7/SP65 comprising nucleotides #97 to #362 of Fig. 3 are ligated together at the Ncol restriction sites to produce a 1317 nucleotide fragment comprising nucleotides #97 to #1402 of Fig. 3 plus the additional sequences derived from the 5' and 3' oligonucleotide primers which allows the creation of Sail restriction sites at both ends of this fragment.

[0099] This 1317 nucleotide Sail fragment is ligated nto the Sall site of the pMT2 derivative pMT2Cla-2. pMT2Cla-2 is constructed by digesting pMT21 with EcoRV and Xhol, treating the digested DNA with Klenow fragment of DNA polymerase I and ligating Clal linkers (NEBio Labs, CATCGATG). This removes bases 2171 to 2420 starting from the HindIII site near the SV40 origin of replication and enhancer sequences of pMT2 and introduces a unique Clal site, but leaves the adenovirus VAI gene intact, resulting in pMT2Cla-2. This clone is designated BMP-7-pMT2.

[0100] The insert of BMP-7-pMT2 is excised by digestion with the restriction endonuclease Sall. The resulting 1317 nucleotide Sail fragment is subcloned into the Xhol restriction endonuclease site of pMT21 to yield the clone BMP-7/pMT21. This Sall fragment is also subcloned into the Sall site of the pED4 vector in which the PstI site was converted into a Sall site as described above, resulting in the vector pBMP7/EMC#4.

F. BMP-8 Vectors

10

25

30

50

[0101] At present no mammalian BMP-8 vectors have been constructed. However, using the sequence of Figure 6 (SEQ ID NO: 11), it is contemplated that vectors similar to those described above for the other BMPs may be readily constructed. A bacterial expression vector similar to the BMP-2 vector described in detail in Example 7 may also be constructed for BMP-8, by introducing a Met before the amino acid #284 Ala of Fig. 6. This sequence of BMP-8 is inserted into the vector pALBP2-781 in place of the BMP-2 sequence. See Example 7.

G. BMP Vectors Containing the Adenosine Deaminase (Ada) Marker

95 [0102] BMP genes were inserted into the vector pMT3SV2Ada [R. J. Kaufman, Meth. Enz., 185:537-566 (1990)] to yield expression plasmids containing separate transcription units for the BMP cDNA gene and the selectable marker Ada. pMT3SV2Ada contains a polylinker with recognition sites for the enzymes Pstl, EcoRl, Sail and Xbal that can be used for insertion of and expression of genes (i.e. BMP) in mammalian cells. In addition, the vector contains a second transcription unit encoding Ada which serves as a dominant and amplifiable marker in mammalian cells.

[0103] To construct expression vectors for BMP-5, BMP-6 and BMP-7, individually, the same general method was employed. The gene for BMP 5 (Fig. 5), 6 (Fig. 4) or 7 (Fig. 3) was inserted into the polylinker essentially as described above for the pED4 vector. These vectors can be used for transfection into CHO DUKX cells and subsequent selection and amplification using the Ada marker as previously described [Kaufman et al, Proc. Natl. Acad. Sci. USA, 83: 3136-3140 (1986)]. Since each such vector does not contain a DHFR gene, the resultant transformed cells remain DHFR negative and can be subsequently transfected with a second vector containing a different BMP in conjunction with DHFR and amplified with methotrexate.

[0104] Alternatively, the pMT3SV2Ada/BMP vectors can be used to transfect stable CHO cell lines previously transfected with a different BMP gene and amplified using the DHFR/methotrexate system. The resultant transfectants can be subsequently amplified using the Ada system, yielding cell lines that coexpress two different BMP genes, and are amplified using both the DHFR and Ada markers.

H. BMP-Expressing Mammalian Cell Lines

[0105] At present, the most desirable mammalian cell lines for use in producing the recombinant homodimers and heterodimers of this invention are the following. These cell lines were prepared by conventional transformation of CHO cells using vectors described above.

[0106] The BMP-2 expressing cell line 2EG5 is a CHO cell stably transformed with the vector pBMP2delta-EMC.

[0107] The BMP-4 expressing cell line 4E9 is a CHO cell stably transformed with the vector pBMP4delta-EMC.

[0108] The BMP-5 expressing cell line 5E10 is a CHO cell stably transformed with the vector BMP5mix-EMC-11 (at a amplification level of 2 micromolar MTX).

[0109] The BMP-6 expressing cell line 6HG8 is a CHO cell stably transformed with the vector BMP6/EMC.

[0110] The BMP-7 expressing cell line 7MB9 is a CHO cell stably transformed with the vector BMP7/pMT21.

EXAMPLE 2 - TRANSIENT EXPRESSION OF BMP HETERODIMERS

5

10

25

30

35

40

45

50

55

[0111] The heterodimers of the present invention may be prepared by co-expression in a transient expression system for screening in the assays of Example 8 by two different techniques as follows.

[0112] In the first procedure, the pMT2-derived and EMC-derived expression plasmids described in Example 1 and other similarly derived vectors were constructed which encoded, individually, BMP-2 through BMP-7, and transforming growth factor-beta (TGFβ1). All combinations of pairs of plasmids were mixed in equal proportion and used to cotransfect CHO cells using the DEAE-dextran procedure [Sompayrac and Danna, <u>Proc. Natl. Acad. Sci. USA, 78</u>: 7575-7578 (1981); Luthman and Magnusson, <u>Nucl. Acids Res., 11</u>:1295-1308 (1983)]. The cells are grown in alpha Minimal Essential Medium (α-MEM) supplemented with 10% fetal bovine serum, adenosine, deoxyadenosine, thymidine (100 μg/ml each), pen/strep, and glutamine (1 mM).

[0113] The addition of compounds such as heparin, suramin and dextran sulfate are desirable in growth medium to increase the amounts of BMP-2 present in the conditioned medium of CHO cells. Similarly responsive to such compounds is BMP-5. Therefore, it is expected that these compounds will be added to growth medium for any heterodimer containing these BMP components. Other BMPs may also be responsive to the effects of these compounds, which are believed to inhibit the interaction of the mature BMP molecules with the cell surface.

[0114] The following day, fresh growth medium, with or without 100 µg/ml heparin, was added. Twenty-four hours later, conditioned medium was harvested.

[0115] In some experiments, the conditioned medium was collected minus heparin for the 24-48 hour period post-transfection, and the same plates were then used to generate conditioned medium in the presence of heparin 48-72 hour post-transfection. Controls included transfecting cells with expression plasmids lacking any BMP sequences, transfecting cells with plasmids containing sequences for only a single BMP, or mixing conditioned medium from cells transfected with a single BMP with conditioned medium from cells transfected with a different BMP.

[0116] Characterizations of the coexpressed heterodimer BMPs in crude conditioned media, which is otherwise not purified, provided the following results. Transiently coexpressed BMP was assayed for induction of alkaline phosphatase activity on W20 stromal cells, as described in Example 8.

[0117] Co-expression of BMP-2 with BMP-5, BMP-6 and BMP-7, and BMP-4 with BMP-5, BMP-6 and BMP-7 yielded more alkaline phosphatase inducing activity in the W20 assay than either of the individual BMP homodimers alone or mixtures of homodimers, as shown below. Maximal activity (in vitro), was obtained when BMP-2 was coexpressed with BMP-7. Increased activity was also found for the heterodimers BMP-2/5; BMP-2/6; BMP-4/5; BMP-4/6; and BMP-4/7.

	Conditioned Medium						
	TGF-β	BMP-7	BMP-6	BMP-5	BMP-4	ВМР-3	BMP-2
BMP-2	33	240	99	89	53	9	29
ВМР-3	-	-	-	-	14	-	
BMP-4	12	115	25	22	24		
BMP-5	-	-	-	-			
BMP-6	-	-	-				
ВМР-7		-					
TGF-β	-						

Conditioned Medium + heparin							
	TGF-β	BMP-7	BMP-6	BMP-5	BMP-4	ВМР-3	BMP-2
BMP-2	88	454	132	127	70	77	169
BMP-3	-	-	-	-	7	-	
BMP-4	7	119	30	41	37		
BMP-5	-	-	-	-			

(continued)

Conditioned Medium + heparin							
TGF-β BMP-7 BMP-6 BMP-5 BMP-4 BMP-3 BMP-2							
BMP-6							
BMP-7	BMP-7 - -						
TGF-β -							
Units: 1 unit of activity is equivalent to that of 1 ng/ml of rhBMP-2.							
-: indicat	es activity	below the	e detection	n limit of th	ne assay.		

[0118] These BMP combinations were subsequently expressed using various ratios of expression plasmids (9:1, 3: 1, 1:1, 1:3, 1:9) during the CHO cell transient transfection. The performance of this method using plasmids containing BMP-2 and plasmids containing BMP-7 at plasmid number ratios ranging from 9:1 to 1:9, respectively, demonstrated that the highest activity in the W20 assay was obtained when approximately the same number of plasmids of each BMP were transfected into the host cell. Ratios of BMP-2 to BMP-7 plasmids of 3:1 to 1:3, respectively, also resulted in increased activity in W20 assay in comparison to host cells transfected with plasmids containing only a single BMP.

[0119] Similar ratios may be determined by one of skill in the art for heterodimers consisting of other than BMP-2 and BMP-7. For example, preliminary work on the heterodimer formed between BMP-2 and BMP-6 has indicated that a preferred ratio of plasmids for co-transfection is 3:1, respectively. The determination of preferred ratios for this method is within the skill of the art.

[0120] As an alternative means to transiently generate coexpressed BMPs, the stable CHO cell lines identified in Example 1 expressing each BMP-2, BMP-4, BMP-5, BMP-6 and BMP-7, are cocultured for one day, and are then fused with 46.7% polyethylene glycol (PEG). One day post-fusion, fresh medium is added and the heterodimers are harvested 24 hours later for the W20 assay, described in Example 8. The assay results were substantially similar to those described immediately above.

[0121] Therefore, all combinations of BMP-2 or 4 coexpressed with either BMP-5, 6 or 7 yielded greater activity than any of the BMP homodimers alone. In control experiments where each BMP homodimer was expressed alone and conditioned media mixed post harvest, the activity was always intermediate between the individual BMPs, demonstrating that the BMP co-expressed heterodimers yield higher activity than combinations of the individually expressed BMP homodimers.

EXAMPLE 3 - STABLE EXPRESSION OF BMP HETERODIMERS

However, these latter ratios produced less activity than the 1:1 ratio.

A. BMP-2/7

[0122] Based on the results of the transient assays in Example 2, stable cell lines were made that co-express BMP-

[0123] A preferred stable cell line, 2E7E-10, was obtained as follows: Plasmid DNA (a 1:1 mixture of pBMP-7-EMC and pBMP-2-EMC, described in Example 1) is transfected into CHO cells by electroporation [Neuman et al, EMBO J., 1:841-845 (1982)].

[0124] Two days later, cells are switched to selective medium containing 10% dialyzed fetal bovine serum and lacking nucleosides. Colonies expressing DHFR are counted 10-14 days later, Individual colonies or pools of colonies are expanded and analyzed for expression of each heterodimer BMP component RNA and protein using standard procedures and are subsequently selected for amplification by growth in increasing concentrations of MTX. Stepwise selection of the preferred clone, termed 2E7E, is carried out up to a concentration of 0.5 μM MTX. The cell line is then subcloned and assayed for heterodimer 2/7 expression.

[0125] Procedures for such assay include Western blot analysis to detect the presence of the component DNA, protein analysis and SDS-PAGE analysis of metabolically labelled protein, W20 assay, and analysis for cartilage and/ or bone formation activity using the ectopic rat bone formation assay of Example 9. The presently preferred clonallyderived cell line is identified as 2E7E-10. This cell line secretes BMP-2/7 heterodimer proteins into the media containing 0.5 µM MTX.

[0126] The CHO cell line 2E7E-10 is grown in Dulbecco's modified Eagle's medium (DMEM)/Ham's nutrient mixture F-12, 1:1 (vol/vol), supplemented with 10% fetal bovine serum. When the cells are 80 to 100% confluent, the medium is replaced with serum-free DMEM/F-12. Medium is harvested every 24 hours for 4 days. For protein production and purification the cells are cultured serum-free.

5

10

15

25

30

[0127] While the co-expressing cell line 2E7E-10 preliminarily appears to make lower amounts of BMP protein than the BMP2-expressing cell line 2EG5 described in Example 2, preliminary evidence suggests that the specific activity of the presumptive heterodimer is at least 5-fold greater than BMP-2 homodimer (see Example 6).

[0128] To construct another heterodimer producing cell line, the stable CHO cell line 7MB9, previously transfected with pBMP-7-pMT2, and which expresses BMP-7, is employed. 7MB9 may be amplified and selected to 2 μ M methotrexate resistance using the DHFR/MTX system. To generate a stable co-expressing cell line, cell line 7MB9 is transfected with the expression vector pBMP-2 Δ -EN (EMC-Neo) containing BMP-2 and the neomycin resistance gene from the Tn5 transposable element. The resulting transfected stable cell line was selected for both G-418 and MTX resistance. Individual clones were picked and analyzed for BMP expression, as described above.

[0129] It is anticipated that stable cell lines co-expressing other combinations of BMPs which show enhanced activity by transient coexpression will likewise yield greater activity upon stable expression.

B. BMP-2/6

10

20

25

30

35

40

45

[0130] Based on the results of the transient assays in Example 2, stable cell lines were made that co-express BMP-2 and BMP-6

[0131] A preferred stable cell line, 12C07, was obtained as follows: Plasmid DNA (a 1:3 mixture of pBMP-6-EMC and pBMP-2-EMC, described in Example 1) is transfected into CHO cells by electroporation [Neuman et al, EMBO J., 1:841-845 (1982)].

[0132] Two days later, cells are switched to selective medium containing 10% dialyzed fetal bovine serum and lacking nucleosides. Colonies expressing DHFR are counted 10-14 days later. Individual colonies or pools of colonies are expanded and analyzed for expression of each heterodimer BMP component RNA and protein using standard procedures and are subsequently selected for amplification by growth in increasing concentrations of MTX. Stepwise selection of the preferred clone, termed 12-C, is carried out up to a concentration of 2.0 μM MTX. The cell line is then subcloned and assayed for heterodimer 2/6 expression.

[0133] Procedures for such assay include Western blot analysis to detect the presence of the component DNA, protein analysis and SDS-PAGE analysis of metabolically labelled protein, W20 assay, and analysis for cartilage and/ or bone formation activity using the ectopic rat bone formation assay of Example 9. The presently preferred clonally-derived cell line is identified as 12C07. This cell line secretes BMP-2/6 heterodimer proteins into the media containing 2.0 µM MTX.

[0134] The CHO cell line 12C07 is grown in Dulbecco's modified Eagle's medium (DMEM)/Ham's nutrient mixture F-12, 1:1 (vol/vol), supplemented with 10% fetal bovine serum. When the cells are 80 to 100% confluent, the medium is replaced with serum-free DMEM/F-12. Medium is harvested every 24 hours for 4 days. For protein production and purification the cells are cultured serum-free.

[0135] While the co-expressing cell line 12C07 preliminarily appears to make lower amounts of BMP protein than the BMP2-expressing cell line 2EG5 described in Example 2, preliminary evidence suggests that the specific activity of the presumptive heterodimer is at least 3-5-fold greater than BMP-2 homodimer (see Example 6).

[0136] To construct another heterodimer producing cell line, the stable CHO cell line 2EG5, previously transfected with pBMP-2-EMC, and which expresses BMP-2, is employed. 2EG5 may be amplified and selected to 2 μ M methotrexate resistance using the DHFR/MTX system. To generate a stable co-expressing cell line, cell line 2EG5 is transfected with the expression vector pBMP-6-ada (ada deaminase) containing BMP-6 and the ADA resistance gene. The resulting transfected stable cell line was selected for both DCF and MTX resistance. Individual clones are picked and analyzed for BMP expression, as described above.

[0137] It is anticipated that stable cell lines co-expressing other combinations of BMPs which show enhanced activity by transient coexpression will likewise yield greater activity upon stable expression.

EXAMPLE 4-PURIFICATION OF BMP2/7 AND BMP-2/6 HETERODIMER

[0138] The same purification procedure is used for BMP-2/6 heterodimer and BMP-2/7 heterodimer. Conditioned media from cultures of cell line 2E7E-10 or 12C07 containing recombinantly produced BMP heterodimer 2/TV or 2/6, respectively, can be generated from either adherent or suspension cultures. For small to medium scale generation of coexpressed BMP, adherent cultures are seeded into roller bottles and allowed to grow to confluence in alpha-Minimal Eagles Medium [\alpha-MEM, Gibco, Grand Island, NY] containing 10% dialyzed heat-inactivated fetal calf serum [Hazleton, Denver, PA]. The media is then switched to a serum-free, albumin free, low protein medium based on a 50:50 mixture of Delbecco's Modified Eagle's medium and Hams F-12 medium, optionally supplemented with 100 micrograms/ml dextran sulfate. Four or five daily harvests are pooled, and used to purify the recombinant protein.

[0139] Conditioned medium from roller bottle cultures obtained as described above was thawed slowly at room temperature and pooled. The pH of the pooled medium was adjusted to pH 8.0 using 1 M Tris, pH 8.0. A column was

poured containing Matrex Cellufine Sulfate [Amicon] and equilibrated in 50 mM Tris, pH 8.0.

[0140] Upon completion of loading of the medium, the column was washed with buffer containing 50 mM Tris, 0.4 M NaCl, pH 8.0 until the absorbance at 280 nm reached baseline. The column was then washed with 50 mM Tris, pH 8.0 to remove NaCl from the buffer. The resin was then washed with 50 mM Tris, 0.2 M NaCl, 4 M Urea, pH 8.0 until a peak had eluted. The column was then washed into 50 mM Tris, pH 8.0 to remove the urea.

[0141] The bound BMP-2/7 or BMP-2/6 was then eluted using 50 mM Tris, 0.5 M NaCl, 0.5 M Arginine, pH 8.0. The eluate was collected as a single pool and may be optionally stored frozen prior to further purification. This Cellufine Sulfate eluate was diluted with 14 volumes of 6M urea and the pH of the sample was then adjusted to 6.0. A hydroxyapatite-Ultrogel [IBF] column was poured and equilibrated with 80 mM potassium phosphate, 6M urea, pH 6.0.

[0142] After the completion of sample loading, the column was washed with 10 bed volumes of the equilibration buffer. Bound BMP-2/7 or BMP-2/6 heterodimers were eluted with 5 bed volumes of 100 mM potassium phosphate, 6M urea, pH 7.4. This eluate was loaded directly onto a Vydac C₄ reverse-phase HPLC column equilibrated in water - 0.1% TFA. BMP-2/7 or BMP-2/6 heterodimers were eluted with a gradient of 30-50% acetonitrile in water - 0.1% trifluoroacetic acid.

[0143] Fractions containing BMPs are identified by SDS-PAGE in the presence or absence of reductant. The identity of the BMPs with respect to the heterodimers vs. homodimers is determined by 2D-PAGE (+/- reductant). Fractions with heterodimers gave bands which reduce to two spots. Bands from homodimer fractions reduce to a single spot for each BMP species.

[0144] The BMP-2/6 heterodimer subunits are analyzed on a protein sequenator. BMP-2/6 heterodimers of the followig species are present: BMP-6 subunit beginning with amino acid #375 Ser-Ala-Ser-Ser in association with BMP-2 subunit beginning with amino acid #283 Gin-Ala-Lys or #249 Ser-Lev-His, though other less abundant species may be present.

It is contemplated that the same or substantially similar purification techniques may be employed for any recombinant BMP heterodimer of this invention. The hydroxyapatite-Ultrogel column may be unnecessary and that the purification scheme may be modified by loading the Cellufine Sulfate eluate directly onto the C_4 reverse-phase HPLC column without use of the former column for BMP2/7 or BMP-2/6 or the other heterodimers of this invention.

EXAMPLE 5 - PROTEIN CHARACTERIZATION

[0145] Total protein secreted from the co-expressing cell lines is analyzed after labelling with ³⁵S-methionine or by Western blot analysis using antibodies raised against both BMPs of the heterodimer, e.g., BMP-2 and BMP-7. Together with the alkaline phosphatase assays, the data indicates the presence of the heterodimer and the specific activity. The following specific details are directed towards data collected for the BMP-2/7 and BMP-2/6 heterodimers; however, by application of similar methods to the other heterodimers described herein, similar results are expected.

A. 35S-Met labelling

15

20

25

30

35

[0146] Cell lines derived by cotransfection of BMP2 Δ -EMC and BMP7 Δ -EMC expression vectors were pulsed with ³⁵S-methionine for 15 minutes, and chased for 6 hours in serum free media in the presence or absence of heparin. Total secreted protein was analyzed under reducing conditions by PAGE and fluorography. The results demonstrate that several cell lines secrete both BMP-2 and BMP-7 protein. There is a good correlation between the amount of alkaline phosphatase activity and the amount of coexpressed protein.

[0147] Several cell lines secrete less total BMP-2 and 7 than the BMP-2-only expressing cell line 2EG5, which produces 10 μ g/ml BMP-2. Cell line 2E7E-10 (amplified at a level of 0.5mM MTX) secretes equal proportions of BMP-2 and BMP-7 at about the same overall level of expression as the cell line 2EG5. Cell line 2E7E-10 produces the equivalent of 600 micrograms/ml of BMP-2 homodimer activity in one assay.

[0148] Total labelled protein was also analyzed on a two-dimensional non-reducing/reducing gel system to ascertain whether a heterodimer is made. Preliminary results demonstrate the presence of a unique spot in this gel system that is not found in either the BMP-2-only or BMP-7-only cell lines, suggesting the presence of 2/7 heterodimer. The same gel with purified material produced the same results (e.g., two unique spots on the gel) indicative of the presence of the 2/7 heterodimer. The homodimer of BMP2 produced distinct species on this gel system.

[0149] In contrast to the recombinant BMP-2/7 purification, BMP-2 homodimers are not detected during the BMP-2/6 preparation; however, significant amounts of BMP-6 homodimers are found. In addition, a significant amount of a -20 amino acid N-terminal truncated form of BMP-6 is found; this could be eliminated by the inclusion of protease inhibitors during cell culture. BMP-2/6 was found to elute two to three fractions later from C4 RP-HPLC than did BMP-2/7.

[0150] Amino acid sequencing indicates that the predominant BMP-2/7 heterodimer species comprises a mature BMP-2 subunit [amino acid #283(Gln)-#396(Arg)] and a mature subunit of BMP-7 [#293(Ser)-#431(His)]. BMP-2/6

heterodimer comprises the mature BMP-2 subunit (#283-396) and the mature BMP-6 subunit [#375(Ser)-#513(His)].

B. Immunoprecipitation coupled to Western blot analysis

[0151] Conditioned media from a BMP-2-only (2EG5), a BMP-7-only (7MB9), or the 2E7E-10 co-expressing cell line were subjected to immunoprecipitation with either a BMP-2 or BMP-7 antibody (both conventional polyclonal antibodies raised in rabbits), then analyzed on Western blots probed with either an anti-BMP-2 or anti-BMP-7 antibody. The 2/7 heterodimer precipitates and is reactive on Western blots with both the BMP-2 and BMP-7 antibodies, while either BMP by itself reacts with its specific antibody, but not with the reciprocal antibody.

[0152] It has been demonstrated using this strategy that a protein in the co-expressing cell line that is precipitated by the anti-BMP-7 antibody W33 [Genetics Institute, Inc, Cambridge, Massachusetts] and reacts on a Western blot with the anti-BMP-2 antibody W12 or W10 [Genetics Institute, Inc.] is not present in the BMP-2 or 7-only expressing cell lines. This experiment indicates that this protein species is the heterodimeric protein. Conversely, precipitation with W12 and probing with W33 yielded similar results.

EXAMPLE 6 - SPECIFIC ACTIVITY OF HETERODIMERS

A. In vitro Assays

10

15

25

30

35

40

45

55

[0153] The specific activity of the BMP-2/7 or BMP-2/6 heterodimer and the BMP-2 homodimer secreted into growth medium of the stable cell lines 2E7E-10 and 2EG55, and 12C07 and 2EG5, respectively, were estimated as follows. [0154] The amount of BMP protein in conditioned medium was measured by either Western blot analysis or by analyzing protein secreted from ³⁵S-methionine labelled cells by PAGE and fluorography. The amount of activity produced by the same cell lines on W20 cells using either the alkaline phosphatase assay or osteocalcin-induction assay was then estimated. The specific activity of the BMP was calculated from the ratio of activity to protein secreted into the growth medium.

[0155] In one experiment 2E7E-10 and 2EG5 secreted similar amounts of total BMP proteins as determined by PAGE and fluorography. 2E7E-10 produced about 50-fold more alkaline phosphatase inducing activity than 2EG5, suggesting that the specific activity of the heterodimer is about 50-fold higher than the homodimer.

[0156] In another experiment the amount of BMP-2 secreted by 2EG5 was about 50% higher than BMP-2/7 secreted by 2E7E-10, however, 2E7E-10 produced about 10-fold more osteocalcin-inducing activity that 2EG5. From several different experiments of this type the specific activity of the BMP-2/7 heterodimer is estimated to be between 5 to 50 fold higher than the BMP-2 homodimer.

[0157] Figures 8 and 9 compare the activity of BMP-2 and BMP-2/7 in the W20 alkaline phosphatase and BGP (Bone Gla Protein, osteocalcin) assays. BMP-2/7 has greatly increased specific activity relative to BMP-2 (Figure 8). From Figure 8, approximately 1.3 ng/ml of BMP-2/7 was sufficient to induce 50% of the maximal alkaline phosphatase response in W-20 cells. A comparable value for BMP-2 is difficult to calculate, since the alkaline phosphatase response did not maximize, but greater than 30 ng/ml is needed for a half-maximal response. BMP-2/7 thus has a 20 to 30-fold higher specific activity than BMP-2 in the W-20 assay.

[0158] As seen in Figure 9, BMP-2/7 was also a more effective stimulator of BGP (bone gla protein, osteocalcin) production than BMP-2 in this experiment. Treating W-20-17 cells with BMP-2/7 for four days resulted in a maximal BGP response with 62 ng/ml, and 11 ng/ml elicits 50% of the maximal BGP response. In contrast, maximal stimulation of BGP synthesis by BMP-2 was not seen with doses up to 468 ng/ml of protein. The minimal dose of BMP-2/7 needed to elicit a BGP response by W-20-17 cells was 3.9 ng/ml, about seven-fold less than the 29 ng/ml required of BMP-2. These results were consistent with the data obtained in the W-20-17 alkaline phosphatase assays for BMP-2 and BMP-

[0159] Preliminary analysis indicates that BMP-2/6 has a specific activity in vitro similar to that of BMP-2/7. The potencies of BMP-2 and BMP-2/6 on induction of alkaline phosphatase production in W-20 is compared, as shown in Figure 12, BMP-2/6 has a higher specific activity than BMP-2 in this assay system. This data is in good agreement with data obtained from the *in vivo* assay of BMP-2 and BMP-2/6).

B. In Vivo Assay

(i) BMP-2/7

[0160] The purified BMP-2/7 and BMP-2 were tested in the rat ectopic bone formation assay. A series of different amounts of BMP-2/7 or BMP-2 were implanted in triplicate in rats. After 5 and 10 days, the implants were removed and examined histologically for the presence of bone and cartilage. The histological scores for the amounts of new

cartilage and bone formed are summarized in Table A.

Table A

		5	Day Implants	10 Day In	nplants
		BMP-2/7	BMP-2	BMP-2/7	BMP-2
0.04	С	± - ±		± - ±	
	В			± - ±	
0.02	С	± 1 ±		2 1 2	- ± ±
	В			1 ± 1	- ± -
1.0	C	$1 \pm \pm$	± ± ±	2 2 2	1 1 ±
	В			2 3 3	1 1 ±
5.0	, C	2 2 1	1 ± 1	1 1 2	1 2 1
	. B	± - 1		4 4 3	2 3 2
25.0	С	•		± ± 2	2 2 2
	В			4 4 3	3 3 3

[0161] The amount of BMP-2/7 required to induce cartilage and bone in the rat ectopic assay is lower than that of BMP-2. Histologically, the appearance of cartilage and bone induced by BMP-2/7 and BMP-2 are identical.

(ii) BMP-2/6

[0162] The *in vivo* activity of BMP-2/6 was compared with that of BMP-2 by implantation of various amounts of each BMP for ten days in the rat ectopic bone formation assay. The results of this study (Table B, Figure 13) indicate that BMP-2/6, similar to BMP-2/7, has increased *in vivo* activity relative to BMP-2. The specific activities of BMP-2, BMP-6, and BMP-2/6 are compared in the ectopic bone formation assay ten days after the proteins are implanted. The results of these experiments are shown in Table C and Figure 14. BMP-2/6 is a more potent inducer of bone formation than either BMP-2 or BMP-6. The amount of bone formation observed with BMP-2/6 was comparable to that observed with equivalent doses of BMP-2/7. The appearance of BMP-2/6 implants is quite similar to implants containing BMP-2 or BMP-2/7.

Table B

Histological scores of Implants of BMP 2/6 and BMP-2 In rat ectopic assay (10 day implants).				
BMP (μg)	C/B	BMP-2/6	BMP-2	
0.04	С	- ± -		
	В			
0.20	С	1 1 ±		
	В	± ± ±		
1.0	С	133	11±	
	В	1 2 2	11±	
5.0	c	222	122	
	В	233	222	

Table B (continued)

Histological scores of Implants of BMP 2/6 and BMP-2 in rat ectopic assay (10 day implants).				
ВМР (µg)	C/B	BMP-2/6	BMP-2	
25.	С	111	221	
	В	333	333	

Table C

5

10

15

20

25

30

35

40

45

50

55

Histological scores of implants of BMP-2, BMP-6, and BMP-2/6 in rat ectopic assay (10 day implants). C/B BMP-2 BMP-6 BMP-2/6 BMP (µg) 0.04 С - - -- - ± В --+ С 0.20 - - 2 122 в 222 - - 1 - - -С 1.0 211 111 - ± ± В 1 ± ± 332 - ± ± 5.0 С 221 313 ± ± 1 В 111 2 ± 1 454 25. С $\pm \pm \pm$ $\pm \pm \pm$ ± ± ± В 445 453 545

EXAMPLE 7 - EXPRESSION OF BMP DIMER IN E. COLI

[0163] A biologically active, homodimeric BMP-2 was expressed in <u>E. coli</u> using the techniques described in European Patent Application 433,255 with minor modifications. Other methods disclosed in the above-referenced European patent application may also be employed to produce heterodimers of the present invention from <u>E. coli</u>. Application of these methods to the heterodimers of this invention is anticipated to produce active BMP heterodimeric proteins from E. coli.

A. BMP-2 Expression Vector

[0164] An expression plasmid pALBP2-781 (Figure 7) (SEQ ID NO: 13) was constructed containing the mature portion of the BMP-2 (SEQ ID NO: 14) gene and other sequences which are described in detail below. This plasmid directed the accumulation of 5-10% of the total cell protein as BMP-2 in an E. coli host strain, GI724, described below. [0165] Plasmid pALBP2-781 contains the following principal features. Nucleotides 1-2060 contain DNA sequences originating from the plasmid pUC-18 [Norrander et al, Gene, 26:101-106 (1983)] including sequences containing the gene for β -lactamase which confers resistance to the antibiotic ampicillin in host E. coli strains, and a colEl-derived origin of replication. Nucleotides 2061-2221 contain DNA sequences for the major leftward promoter (pL) of bacteriophage λ [Sanger et al, J. Mol. Biol., 162:729-773 (1982)], including three operator sequences, O_L 1, O_L 2 and O_L 3. The operators are the binding sites for λ cl repressor protein, intracellular levels of which control the amount of transcription initiation from pL. Nucleotides 2222-2723 contain a strong ribosome binding sequence included on a sequence derived from nucleotides 35566 to 35472 and 38137 to 38361 from bacteriophage lambda as described in Sanger et al, J. Mol. Biol., 162:729-773 (1982). Nucleotides 2724-3133 contain a DNA sequence encoding mature BMP-2 protein with an additional 62 nucleotides of 3'-untranslated sequence.

[0166] Nucleotides 3134-3149 provide a "Linker" DNA sequence containing restriction endonuclease sites. Nucleotides 3150-3218 provide a transcription termination sequence based on that of the <u>E. coli asp</u>A gene [Takagi et al, Nucl. Acids Res., 13:2063-2074 (1985)]. Nucleotides 3219-3623 are DNA sequences derived from pUC-18.

[0169] GI724 contains a copy of the wild-type λcl repressor gene stably integrated into the chromosome at the <u>amp</u>C locus, where it has been placed under the transcriptional control <u>of Salmonella typhimurium trp</u> promoter/operator sequences. In GI724, λcl protein is made only during growth in tryptophan-free media, such as minimal media or a minimal medium supplemented with casamino acids such as IMC, described above. Addition of tryptophan to a culture of GI724 will repress the <u>trp</u> promoter and turn off synthesis of λcl, gradually causing the induction of transcription from pL promoters if they are present in the cell.

[0170] GI724 transformed with pALBP2-781 was grown at 37°C to an A₅₅₀ of 0.5 (Absorbence at 550 nm) in IMC medium. Tryptophan was added to a final concentration of 100 μg/ml and the culture incubated for a further 4 hours. During this time BMP-2 protein accumulated to approximately 10% of the total cell protein, all in the "inclusion body" fraction.

[0171] BMP-2 is recovered in a non-soluble, monomeric form as follows. Cell disruption and recovery is performed at 4°C. Approximately 9 g of the wet fermented <u>E. coli</u> GI724/pALBP2-781 cells are suspended in 30 mL of 0.1 M Tris/HCl, 10 mM EDTA, 1 mM phenyl methyl sulphonyl fluoride (PMSF), pH 8.3 (disruption buffer). The cells are passed four times through a cell disrupter and the volume is brought to 100 mL with the disruption buffer. The suspension is centrifuged for 20 min. (15,000 x g). The pellet obtained is suspended in 50 mL disruption buffer containing 1 M NaCl and centrifuged for 10 min. as above. The pellet is suspended in 50 mL disruption buffer containing 1% Triton X-100 (Pierce) and again centrifuged for 10 min. as above. The washed pellet is then suspended in 25 mL of 20 mM Tris/HCl, 1 mM EDTA, 1 mM PMSF, 1% DTT, pH 8.3 and homogenized in a glass homogenizer. The resulting suspension contains crude monomeric BMP-2 in a non-soluble form.

[0172] Ten mL of the BMP-2 suspension, obtained as described above, are acidified with 10% acetic acid to pH 2.5 and centrifuged in an Eppendorf centrifuge for 10 min. at room temperature. The supernatant is chromatographed. Chromatography was performed on a Sephacryl S-100 HR column (Pharmacia, 2.6 x 83 cm) in 1% acetic acid at a flow rate of 1.4 mL/minute. Fractions containing monomeric, BMP-2 are pooled. This material is used to generate biologically active, homodimer BMP-2.

[0173] Biologically active, homodimeric BMP-2 can be generated from the monomeric BMP-2 obtained following solubilization and purification, described above, as follows.

[0174] 0.1, 0.5 or 2.5 mg of the BMP-2 is dissolved at a concentration of 20, 100 or 500 μ g/mL, respectively, in 50 mM Tris/HCl, pH 8.0, 1 M NaCl, 5 mM EDTA, 2 mM reduced glutathione, 1 mM oxidized glutathione and 33 mM CHAPS [Calbiochem]. After 4 days at 4°C or 23°C, the mixture is diluted 5 to 10 fold with 0.1% TFA.

[0175] Purification of biologically active BMP-2 is achieved by subjecting the diluted mixture to reverse phase HPLC on a a Vydac C4 214TP54 column (25 x .46 cm) [The NEST Group, USA] at a flow rate of 1 ml/minute. Buffer A is 0.1% TFA. Buffer B is 90% acetonitrile, and 0.1% TFA. The linear gradient was 0 to 5 minutes at 20% Buffer B; 5 to 10 minutes at 20 to 30 % Buffer B; 10 to 40 minutes at 30 to 60% Buffer B; and 40 to 50 minutes at 60 to 100% Buffer B. Homodimeric BMP-2 is eluted and collected from the HPLC column.

[0176] The HPLC fractions are lyophilized to dryness, redissolved in sample buffer (1.5 M Tris-HCI, pH 8.45, 12% glycerol, 4% SDS, .0075% Serva Blue G, .0025% Phenol Red, with or without 100 mM dithiothreitol) and heated for five minutes at 95°C. The running buffer is 100 mM Tris, 100 mM tricine (16% tricine gel) [Novex], 0.1% SDS at pH 8.3. The SDS-PAGE gel is run at 125 volts for 2.5 hours.

[0177] The gel is stained for one hour with 200 ml of 0.5% Coomassie Brilliant Blue R-250, 25% isopropanol, 10% acetic acid, heated to 60°C. The gel is then destained with 10% acetic acid, 10% isopropanol until the background is clear.

[0178] The reduced material ran at approximately 13kD; the non-reduced material ran at approximately 30 kD, which is indicative of the BMP-2 dimer. This material was later active in the W20 assay of Example 8.

B. BMP-7 Expression Vector

15

20

25

50

55

[0179] For high level expression of BMP-7 a plasmid pALBMP7-981 was constructed, pAlBMP7-981 is identical to plasmid pALBP2-781 with two exceptions: the BMP-2 gene (residues 2724-3133 of pALBP2-781) is replaced by the mature portion of the BMP-7 gene, deleted for sequenced encoding the first seven residues of the mature BMP-7

protein sequence:

5	ATGTCTCATAATC	GTTCTAAAAC TO	CCAAAAAAT CAA	GAAGCTC TGCC	TATGGC
	CAACGTGGCA	GAGAACAGCA	GCAGCGACCA	GAGGCAGGCC	TGTAAGAAGC
10	ACGAGCTGTA	TGTCAGCTTC	CGAGACCTGG	GCTGGCAGGA	CTGGATCATC
	GCGCCTGAAG	GCTACGCCGC	CTACTACTGT	GAGGGGGAGT	GTGCCTTCCC
	TCTGAACTCC	TACATGAACG	CCACCAACCA	CGCCATCGTG	CAGACGCTGG
15	TCCACTTCAT	CAACCCGGAA	ACGGTGCCCA	AGCCCTGCTG	TGCGCCCACG
	CAGCTCAATG	CCATCTCCGT	CCTCTACTTC	GATGACAGCT	CCAACGTCAT
20	CCTGAAGAAA	TACAGAAACA	TGGTGGTCCG	GGCCTGTGGC	TGCCACTAGC
	TCCTCCGAGA	ATTCAGACCC	TTTGGGGCCA	AGTTTTTCTG	GATCCT

and the ribosome binding site found between residues 2707 and 2723 in pALBP2-781 is replaced by a different ribosome binding site, based on that found preceding the T7 phage gene 10, of sequence 5'-CAAGAAGGAGATATACAT-3'. The host strain and growth conditions used for the production of BMP-7 were as described for BMP-2.

C. BMP-3 Expression Vector

25

30

35

40

45

50

55

[0180] For high level expression of BMP-3 a plasmid pALB3-782 was constructed. This plasmid is identical to plasmid pALBP2-781, except that the BMP-2 gene (residues 2724-3133 of pALBP2-781) is replaced by a gene encoding a form of mature BMP-3. The sequence of this BMP-3 gene is:

ATGCGTAAAC AATGGATTGA ACCACGTAAC TGTGCTCGTC GTTATCTGAA
AGTAGACTTT GCAGATATTG GCTGGAGTGA ATGGATTATC TCCCCCAAGT
CCTTTGATGC CTATTATTGC TCTGGAGCAT GCCAGTTCCC CATGCCAAAG
TCTTTGAAGC CATCAAATCA TGCTACCATC CAGAGTATAG TGAGAGCTGT
GGGGGTCGTT CCTGGGATTC CTGAGCCTTG CTGTGTACCA GAAAAGATGT
CCTCACTCAG TATTTTATTC TTTGATGAAA ATAAGAATGT AGTGCTTAAA
GTATACCCTA ACATGACAGT AGAGTCTTGC GCTTGCAGAT AACCTGGCAA
AGAACTCATT TGAATGCTTA ATTCAAT

[0181] The host strain and growth conditions used for the production of BMP-3 were as described for BMP-2.

D. Expression of a BMP-2/7 Heterodimer in E. coli

[0182] Denatured and purified E. coli BMP-2 and BMP-7 monomers were isolated from E. coli inclusion body pellets

by acidification and gel filtration as previously as previously described above. 125 ug of each BMP in 1% acetic acid were mixed and taken to dryness in a speed vac. The material was resuspended in 2.5 ml 50 mM Tris, 1.0 NaCl, 5 mM EDTA, 33 mM CHAPS, 2 mM glutathione (reduced), 1 mM glutathione (oxidized), pH 8.0. The sample was incubated at 23 C for one week.

[0183] The BMP-2/7 heterodimer was isolated by HPLC on a 25 x 0.46 cm Vydac C4 column. The sample was centrifuged in a microfuge for 5 minutes, and the supernatant was diluted with 22.5 ml 0.1% TFA.

A buffer: 0.1% TFA

B buffer: 0.1% TFA, 95% acetonitrile

10

15

20

5

1.0 ml/minute		
0-5'	20% B	
5-10'	20-30%⋅B	
10-90'	30-50% B	
90-100'	50-100% B	

By SDS-PAGE analysis, the BMP-2/7 heterodimer eluted at about 23'.

[0184] Figure 10 is a comparison of the W-20 activity of <u>E. coli</u> BMP-2 and BMP-2/7 heterodimer, indicating greater activity of the heterodimer.

F. Expression of BMP-2/3 Heterodimer in E. coli

[0185] BMP-2 and BMP-3 monomers were isolated as follows: to 1.0 g of frozen harvested cells expressing either BMP-2 or BMP-3 was added 3.3 ml of 100 mM Tris, 10 mM EDTA, pH 8.3. The cells were resuspended by vortexing vigorously. 33 ul of 100 mM PMSF in isopropanol was added and the cells lysed by one pass through a French pressure cell. The lysate was centrifuged in a microfuge for 20 minutes at 4 C. The supernatant was discarded. The inclusion body pellet was taken up in 8.0 M quanidine hydrochloride, 0.25 M OTT, 0.5 M Tris, 5 mM EDTA, pH 8.5, and heated at 37 C for one hour.

[0186] The reduced and denatured BMP monomers were isolated by HPLC on a Supelco C4 guard column as follows:

A buffer : 0.1% TFA

B buffer: 0.1% TFA, 95% acetonitrile

35

40

30

1.0 ml/minute		
0-5' 1% B		
5-40'	1-70% B	
40-45'	70-100% B	

Monomeric BMP eluted at 28-30'. Protein concentration was estimated by A280 and the appropriate extinction coefficient

[0187] 10 ug of BMP-2 and BMP-3 were combined and taken to dryness in a speed vac. To this was added 50 ul of 50 mM Tris, 1.0 M NaCl, 5 mM EDTA, 33 mM CHAPS, 2 mM reduced glutathione, 1 mM oxidized glutathione, pH 8.5. The sample was incubated at 23 for 3 days. The sample was analyzed by SDS-PAGE on a 16% tricine gel under reducing and nonreducing conditions. The BMP-2/3 heterodimer migrated at about 35 kd nonreduced, and reduced to BMP-2 monomer at about 13 kd and BMP-3 monomer at about 21 kd.

[0188] BMP-2/3 heterodimer produced in $E.\ coli$ is tested for $in\ vivo$ activity. (20 μ g) at (ten days) is utilized to compare the $in\ vivo$ activity of BMP-2/3 to BMP-2. BMP-2/3 implants showed no cartilage or bone forming activity, while the BMP-2 control implants showed the predicted amounts of bone and cartilage formation. The $in\ vivo$ data obtained with BMP-2/3 is consistent with the $in\ vitro$ data from the W-20 assay.

EXAMPLE 8 - W-20 BIOASSAYS

55

A. Description of W-20 cells

[0189] Use of the W-20 bone marrow stromal cells as an indicator cell line is based upon the conversion of these

cells to osteoblast-like cells after treatment with BMP-2 [R. S. Thies et al, "Bone Morphogenetic Protein alters W-20 stromal cell differentiation in vitro", <u>Journal of Bone and Mineral Research</u>, <u>5(2):305 (1990)</u>; and R. S. Thies et al, "Recombinant Human Bone Morphogenetic Protein 2 Induces Osteoblastic Differentiation in W-20-17 Stromal Cells", <u>Endocrinology</u>, in press (1992)]. Specifically, W-20 cells are a clonal bone marrow stromal cell line derived from adult mice by researchers in the laboratory of Dr. D. Nathan, Children's Hospital, Boston, MA. BMP-2 treatment of W-20 cells results in (1) increased alkaline phosphatase production, (2) induction of PTH stimulated cAMP, and (3) induction of osteocalcin synthesis by the cells. While (1) and (2) represent characteristics associated with the osteoblast phenotype, the ability to synthesize osteocalcin is a phenotypic property only displayed by mature osteoblasts. Furthermore, to date we have observed conversion of W-20 stromal cells to osteoblast-like cells only upon treatment with BMPs. In this manner, the <u>in vitro</u> activities displayed by BMP treated W-20 cells correlate with the <u>in vivo</u> bone forming activity known for BMPs.

[0190] Below two in vitro assays useful in comparison of BMP activities of novel osteoinductive molecules are described.

B. W-20 Alkaline Phosphatase Assay Protocol

[0191] W-20 cells are plated into 96 well tissue culture plates at a density of 10,000 cells per well in 200 μ l of media (DME with 10% heat inactivated fetal calf serum, 2 mM glutamine and 100 U/ml + 100 μ g/ml streptomycin. The cells are allowed to attach overnight in a 95% air, 5% CO₂ incubator at 37°C.

[0192] The 200 μ l of media is removed from each well with a multichannel pipettor and replaced with an equal volume of test sample delivered in DME with 10% heat inactivated fetal calf serum, 2 mM glutamine and 1% penicillin-streptomycin. Test substances are assayed in triplicate.

[0193] The test samples and standards are allowed a 24 hour incubation period with the W-20 indicator cells. After the 24 hours, plates are removed from the 37°C incubator and the test media are removed from the cells.

[0194] The W-20 cell layers are washed 3 times with 200 μ l per well of calcium/magnesium free phosphate buffered saline and these washes are discarded.

[0195] 50 µl of glass distilled water is added to each well and the assay plates are then placed on a dry ice/ethanol bath for quick freezing. Once frozen, the assay plates are removed from the dry ice/ethanol bath and thawed at 37°C. This step is repeated 2 more times for a total of 3 freeze-thaw procedures. Once complete, the membrane bound alkaline phosphatase is available for measurement.

[0196] 50 μ l of assay mix (50 mM glycine, 0.05% Triton X-100, 4 mM MgCl₂, 5 mM p-nitrophenol phosphate, pH = 10.3) is added to each assay well and the assay plates are then incubated for 30 minutes at 37°C in a shaking waterbath at 60 oscillations per minute.

[0197] At the end of the 30 minute incubation, the reaction is stopped by adding 100 μ l of 0.2 N NaOH to each well and placing the assay plates on ice.

[0198] The spectrophotometric absorbance for each well is read at a wavelength of 405 nanometers. These values are then compared to known standards to give an estimate of the alkaline phosphatase activity in each sample. For example, using known amounts of p-nitrophenol phosphate, absorbance values are generated. This is shown in Table I.

Table I

Absorbance Values for Known Standards of P-Nitrophenol Phosphate			
P-nitrophenol phosphate umoles Mean absorbance (405 nm			
0.000	0		
0.006	0.261 +/024		
0.012	0.521 +/031		
0.018	0.797 +/063		
0.024	1.074 +/061		
0.030	1.305 +/083		

[0199] Absorbance values for known amounts of BMP-2 can be determined and converted to μ moles of p-nitrophenol phosphate cleaved per unit time as shown in Table II.

55

50

15

20

30

35

40

Table II

Alkaline Phosphatase Values for W-20 Cells Treating with BMP-2					
BMP-2 concentration ng/ml	Absorbance Reading 405 nmeters	umoles substrate per hour			
0	0.645	0.024			
1.56	0.696	0.026			
3.12	0.765	0.029			
6.25	0.923	0.036			
12.50	1.121	0.044			
25.0 ·	1.457	0.058			
50.0	1.662	0.067			
100.0	1.977	0.080			

[0200] These values are then used to compare the activities of known amounts of BMP heterodimers to BMP-2 homodimer.

C. Osteocalcin RIA Protocol

15

20

30

35

40

45

50

55

[0201] W-20 cells are plated at 10⁶ cells per well in 24 well multiwell tissue culture dishes in 2 mls of DME containing 10% heat inactivated fetal calf serum, 2 mM glutamine. The cells are allowed to attach overnight in an atmosphere of 95% air 5% CO₂ at 37°C.

[0202] The next day the medium is changed to DME containing 10% fetal calf serum, 2 mM glutamine and the test substance in a total volume of 2 ml. Each test substance is administered to triplicate wells. The test substances are incubated with the W-20 cells for a total of 96 hours with replacement at 48 hours by the same test medias.

[0203] At the end of 96 hours, 50 µl of the test media is removed from each well and assayed for osteocalcin production using a radioimmunoassay for mouse osteocalcin. The details of the assay are described in the kit manufactured by Biomedical Technologies Inc., 378 Page Street, Stoughton, MA 02072. Reagents for the assay are found as product numbers BT-431 (mouse osteocalcin standard), BT-432 (Goat anti-mouse Osteocalcin), BT-431R (iodinated mouse osteocalcin), BT-415 (normal goat serum) and BT-414 (donkey anti goat IgG). The RIA for osteocalcin synthesized by W-20 cells in response to BMP treatment is carried out as described in the protocol provided by the manufacturer.

[0204] The values obtained for the test samples are compared to values for known standards of mouse osteocalcin and to the amount of osteocalcin produced by W-20 cells in response to challenge with known amounts of BMP-2. The values for BMP-2 induced osteocalcin synthesis by W-20 cells is shown in Table III.

Table III

Osteocalcin Synthesis by W-20 Cells				
BMP-2 Concentration ng/ml	Osteocalcin Synthesis ng/well			
0	0.8			
2	0.9			
4	0.8			
8	2.2			
16	2.7			
31	3.2			
62	5.1			
125	6.5			
250	8.2			
500	9.4			
1000	10.0			

EXAMPLE 9 - ROSEN MODIFIED SAMPATH-REDDI ASSAY

[0205] A modified version of the rat bone formation assay described in Sampath and Reddi, <u>Proc. Natl. Acad. Sci.</u> USA, 80:6591-6595 (1983) is used to evaluate bone and/or cartilage activity of BMP proteins. This modified assay is

herein called the Rosen-modified Sampath-Reddi assay. The ethanol precipitation step of the Sampath-Reddi procedure is replaced by dialyzing (if the composition is a solution) or diafiltering (if the composition is a suspension) the fraction to be assayed against water. The solution or suspension is then redissolved in 0.1% TFA, and the resulting solution added to 20 mg of rat matrix. A mock rat matrix sample not treated with the protein serves as a control. This material is frozen and lyophilized and the resulting powder enclosed in #5 gelatin capsules. The capsules are implanted subcutaneously in the abdominal thoracic area of 21-49 ay old male Long Evans rats. The implants are removed after 7-14 days. Half of each implant is used for alkaline phosphatase analysis [see, A. H. Reddi et al, Proc. Natl. Acad. Sci. 69:1601 (1972)]

[0206] The other half of each implant is fixed and processed for histological analysis. 1 µm glycolmethacrylate sections are stained with Von Kossa and acid fuschin to score the amount of induced bone and cartilage formation present in each implant. The terms +1 through +5 represent the area of each histological section of an implant occupied by new bone and/or cartilage cells and matrix. A score of +5 indicates that greater than 50% of the implant is new bone and/or cartilage produced as a direct result of protein in the implant. A score of +4, +3, +2, and +1 would indicate that greater than 40%, 30%, 20% and 10% respectively of the implant contains new cartilage and/or bone.

[0207] The heterodimeric BMP proteins of this invention may be assessed for activity on this assay.

[0208] Numerous modifications and variations in practice of this invention are expected to occur to those skilled in the art. Such modifications and variations are encompassed within the following claims.

SEQUENCE LISTING

20

30

35

40

45

15

(1) GENERAL INFORMATION:

[0209]

- (i) APPLICANT: Israel, DavidWolfman, Neil M.
 - (ii) TITLE OF INVENTION: Recombinant Bone Morphogenetic Protein Heterodimers, Compositions and Methods of Use.
 - (iii) NUMBER OF SEQUENCES: 30
 - (iv) CORRESPONDENCE ADDRESS: .
 - (A) ADDRESSEE: Legal Affairs, Genetics Institute, Inc.
 - (B) STREET: 87 CambridgePark Drive
 - (C) CITY: Cambridge
 - (D) STATE: MA
 - (E) COUNTRY: USA
 - (F) ZIP: 02140-2387
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Tape
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: Patentin Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER: US
- (B) FILING DATE:
- (C) CLASSIFICATION:
- 55 (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Kapinos, Ellen J.
 - (B) REGISTRATION NUMBER: 32,245

	(C) REFERENCE/DOCKET NUMBER: GI-51928
	(ix) TELECOMMUNICATION INFORMATION:
5	(A) TELEPHONE: 617-876-1170 (B) TELEFAX: 617-876-5851
	(2) INFORMATION FOR SEQ ID NO:1:
10	[0210]
	(i) SEQUENCE CHARACTERISTICS:
15	(A) LENGTH: 1607 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: unknown
00	(ii) MOLECULE TYPE: DNA (genomic)
20	(ix) FEATURE:
25	(A) NAME/KEY: CDS (B) LOCATION: 3561543
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	GTCGACT	CTA G	AGTGT	STGT C	AGCAC	TTGG	CTG	GGG <i>I</i>	CTT	CTT	AACI	TG (CAGGO	BAGAAT	60
	AACTTGC	GCA C	CCCACT	TTG C	GCCGG	TGCC	TTI	GCC	CAG	CGGA	GCCI	GC 1	rrcgo	CATCT	120
5	CCGAGCC	CCA C	ccccc	CTCC A	CTCCI	cggc	CTI	rgcco	CGAC	ACTO	AGAC	GC 1	rgtro	CCCAGC	180
	GTGAAAA	GAG A	GACTG	CGCG G	cccc	ACCC	GGG	AGA	AGGA	GGAG	GCAA	AG 2	AAAA	GAACG	240
	GACATTO	GGT C	CTTGC	GCCA G	GTCCT	TTGA	CCA	GAGI	TTT	TCCA	TGT	GA (CCTC	TTTCA	300
10	ATGGACG	TGT C	ccccc	STGC T	TCTTA	GACG	GAC	TGC	GTC	TCCI	PAAA	GT (CGAC	ATG Met 1	358
15	GTG GCC Val Ala	GGG Gly	ACC CO Thr A:	GC TGT rg Cys	CTT Leu	CTA Leu	GCG Ala 10	TTG Leu	CTG Leu	CTT Leu	CCC Pro	CAG Gln 15	GTC Val	CTC Leu	406
	CTG GGC Leu Gly	GGC Gly 20	GCG GG Ala Al	CT GGC la Gly	CTC Leu	GTT Val 25	CCG Pro	GAG Glu	CTG Leu	GGC Gly	CGC Arg 30	AGG Arg	AAG I.ys	TTC Phe	454
20	GCG GCG Ala Ala 35	GCG Ala	TCG TO Ser Se	cg ggc er Gly	CGC Arg 40	CCC Pro	TCA Ser	TCC Ser	CAG Gln	CCC Pro 45	TCT Ser	GAC Asp	GAG Glu	GTC Val·	502
25	CTG AGC Leu Ser 50	GAG Glu	TTC GI Phe G	AG TTG Lu Leu 55	Arg	CTG Leu	CTC Leu	AGC Ser	ATG Met 60	TTC Phe	GCC	CTG Leu	AAA Lys	CAG Gln 65	550
	AGA CCC Arg Pro	ACC Thr	Pro Se	GC AGG er Arg 70	GAC Asp	GCC Ala	GTG Val	GTG Val 75	CCC Pro	CCC Pro	TAC Tyr	ATG Met	CTA Leu 80	GAC Asp	598
30	CTG TAT Leu Tyr	Arg	Arg H:	is Ser	GlÅ	Gln	Pro. 90	Gly	Ser	Pro	Ala	Pro 95	Asp	His	646
35	CGG TTG Arg Leu	GAG Glu 100	AGG GG Arg Al	CA GCC la Ala	AGC Ser	CGA Arg 105	GCC Ala	AAC Asn	ACT Thr	GTG Val	CGC Arg 110	AGC Ser	TTC Phe	CAC His	694
	CAT GAA His Glu 115	GAA Glu	TCT TO Ser Le	rg gaa eu glu	GAA Glu 120	CTA Leu	CCA Pro	GAA Glu	ACG Thr	AGT Ser 125	GGG Gly	AAA Lys	ACA Thr	ACC Thr	742
40	CGG AGA Arg Arg 130	TTC	TTC TI Phe Pl	TT AAT ne Asn 135	Leu	AGT Ser	TCT Ser	ATC Ile	CCC Pro 140	ACG Thr	GAG Glu	GAG Glu	TTT Phe	ATC Ile 145	790
45	ACC TCA Thr Ser		Glu L												838
	GGA AAC Gly Asn	AAT Asn	AGC AG Ser Se 165	GT TTC er Phe	CAT His	CAC His	CGA Arg 170	ATT Ile	AAT Asn	ATT Ile	TAT Tyr	GAA Glu 175	ATC Ile	ATA Ile	886
50	AAA CCT Lys Pro	GCA Ala	ACA GO	CC AAC la Asn	TCG Ser	AAA Lys	TTC Phe	CCC Pro	GTG Val	ACC Thr	AGA Arg	CTT Leu	TTG Leu	GAC Asp	934

			180					185					190				•	
5	ACC Thr	AGG Arg 195	TTG Leu	GTG Val	AAT Asn	CAG Gln	AAT Asn 200	Ala	AGC Ser	AGG Arg	TGG Trp	GAA Glu 205	ACT Thr	TTT Phe	GAT Asp	GTC Val		982
									GCA Ala			His				GGA Gly 225		1030
10	TTC Phe	GTG Val	GTG Val	GAA Glu	GTG Val 230	GCC Ala	CAC His	TTG Leu	GAG Glu	GAG Glu 235	AAA Lys	CAA Gln	GGT Gly	GTC Val	TCC Ser 240	AAG Lys		1078
15									TTG Leu 250							TGG Trp		1126
									ACT Thr							GGG		1174
20	CAT His	CCT Pro 275	CTC	CAC His	AAA Lys	AGA Arg	GAA Glu 280	AAA Lys	CGT Arg	CAA Gln	GCC Ala	AAA Lys 285	CAC His	AAA Lys	CAG Gln	CGG Arg		1228
25									AGA Arg									1270.
23									ATT Ile									1318
30									CCT Pro 330									1366
									CAG Gln									1414
35									GTC Val									1466
40									GAA Glu									1510
									GGG Gly			TAGT	'ACAG	CA A	AATT	'AAAT	4	1562
45	САТА	ATAA	TA T	TATA	TATA'	'A TA	ТАТТ	TTAG	AAA	AAAG	AAA	AAAA						1607

(2) INFORMATION FOR SEQ ID NO:2:

50 [0211]

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 396 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

5	Met 1	Val	Ala	Gly	Thr 5	Arg	Cys	Leu	Leu	Ala 10	Leu	Leu	Leu	Pro	Gln 15	Val
	Leu	Leu	Gly	Gly 20	Ala	Ala	Gly	Leu	Val 25	Pro	Glu	Leu	Gly	Arg 30	Arg	Lys
10	Phe	Ala	Ala 35	Ala	Ser	Ser	Gly	Arg 40	Pro	Ser	Ser	Gln	Pro 45	ser	Asp	Glu
	Val	Leu 50	Ser	Glu	Phe	Glu	Leu 55	Arg	Leu	Leu	Ser	Met 60	Phe	Gly	Leu	Lys
15	65		Pro			70	•				/5					50
	Asp	Leu	Tyr	Arg	Arg 85	Hiş	Ser	Gly	Gln	Pro 90	Gly	Ser	Pro	Ala	Pro 95	Asp
20			Leu	100				÷	105					110		
			Glu 115					120					125			
25	Thr	Arg 130	Arg	Phe	Phe	Phe	Asn 135	Leu	Ser	Ser	Ile	Pro 140	Thr	Glu	Glu	Phe
30	145		Ser			150					155					160
30	Leu	Gly	Asn	Asn	Ser 165	Ser	Phe	His	His	Arg 170	Ile	Asn	Ile	Tyr	Glu 175	Ile
35			Pro	180					185					190		
	Asp	Thr	Arg 195	Leu	Val	Asn	Gln	Asn 200	Ala	Ser	Arg	Trp	Glu 205	Thr	Phe	Asp
40	Val	Thr 210	Pro	Ala	Val	Met	Arg 215	Trp	Thr	Ala	Gln	Gly 220	His	Ala	Asn	His
	Gly 225		Val	Val	Glu	Val 230	Ala	His	Leu	Glu	Glu 235	Lys	Gln	Gly	Val	Ser 240
45	Lys	Arg	His	Val	Arg 245	Ile	Ser	Arg	Ser	Leu 250	His	Gln	Asp	Glu	His 255	ser
	Trp	ser	Gln	Ile 260	Arg	Pro	Leu	Leu	Val 265	Thr	Phe	Gly	His	Asp 270	Gly	Lys
50	Gly	His	Pro	Leu	His	Lys	Arg	Glu	Lys	Arg	Gln	Ala	Lys	His	Lys	Gln

			275					280					285			
5	Ar	g Lys 290		Leu	Lys	Ser	Ser 295	Cys	Lys	Arg	His	Pro 300	Leu	Tyr	Val	Asp
	Ph 30	e Ser 5	Asp	Val	Gly	Trp 310	Asn	Asp	Trp	Ile	Val 315	Ala	Pro	Pro	Gly	Tyr 320
10	ні	s Ala	Phe	Tyr	Cys 325	His	Gly	Glu	Cys	Pro 330	Phe	Pro	Leu	Ala	Asp 335	His
	Le	u Asn	Ser	Thr 340	Asn	His	Ala	Ile	Val 345	Gln	Thr	Leu	Val	Asn 350	Ser	Val
15	As	n Ser	Lys 355	Ile	Pro	Lys	Ala	Cys 360	Сув	Val	Pro	Thr	Glu 365	Leu	Ser	Ala
	11	e Ser 370	Met	Leu	Tyr	Leu	Asp 375	Glu	Asn	Gl u	Lys	Val 380	Val	Leu	Lys	Asn.
20	Tyr Gln Asp Met Val Val Glu Gly Cys Gly Cys Arg 385 390 395															
	(2) INFORMATION FOR SEQ ID NO:3:															
25	(2) INFORMATION FOR SEQ ID NO:3: [0212]															
	(i) SEC	UENC	CHAF	RACTE	RISTIC	CS:										
30	(B (C) LENG ⁻) TYPE:) STRAI) TOPO!	nucleid NDEDN	acid IESS: d	double											
25	(ii) MC	LECULI	TYPE	: DNA	(genor	nic)										
35	(ix) FE	ATURE:														
40	,	NAME/			26											
40	(xi) SE	QUENC	E DES	CRIPT	ION: S	EQ ID	NO:3:									

	CTCTAGAGGG	CAGAGGAGGA	GGGAGGGAGG	GAAGGAGCGC	GGAGCCCGGC	CCGGAAGCTA	60
	GGTGAGTGTG	GCATCCGAGC	TGAGGGACGC	GAGCCTGAGA	CGCCGCTGCT	GCTCCGGCTG	120
5	AGTATCTAGC	TTGTCTCCCC	GATGGGATTC	CCGTCCAAGC	TATCTCGAGC	CTGCAGCGCC	180
	ACAGTCCCCG	GCCCTCGCCC	AGGTTCACTG	CAACCGTTCA	GAGGTCCCCA	GGAGCTGCTG	240
	CTGGCGAGCC	CGCTACTGCA	GGGACCTATG	GAGCCATTCC	GTAGTGCCAT	CCCGAGCAAC	300
10	GCACTGCTGC	AGCTTCCCTG	AGCCTTTCCA	GCAAGTTTGT	TCAAGATTGG	CTGTCAAGAA	36,0
	TCATGGACTG	TTATTATATG	CCTTGTTTTC	TGTCAAGACA	CC ATG ATT Met Ile 1		414
15		Leu Met Va			GTC CTG CTA Val Leu Leu		462

	GCG Ala	AGC Ser	CAT His	GCT Ala	AGT Ser 25	TTG Leu	ATA Ile	CCT Pro	GAG Glu	ACG Thr 30	GGG Gly	AAG Lys	AAA Lys	AAA Lys	GTC Val 35	GCC Ala		5	10
5	GAG Glu	ATT Ile	CAG Gln	GGC Gly 40	CAC His	GCG Ala	GGA Gly	GGA Gly	CGC Arg 45	CGC Arg	TCA Ser	GGG Gly	CAG Gln	AGC Ser 50	CAT His	GAG Glu		5	58
10																CGC Arg		6	06
															ATG Met	CGG Arg		6	54
15															ATC Ile			7	02
20															AAC Asn 115		٠	7	50
															GGG Gly			79	98
25															ATC Ile			8	4 6
															GAG Glu			89	94
30															AAC Asn			94	4 2
35															CTC Leu 195			99	90
															Arg			103	38
40															GAG Glu			708	3 6
45															CAG Gln			113	34
	CGG Arg 245	ACC Thr	CAC His	CAG Gln	GGC Gly	CAG Gln 250	CAT His	GTC Val	AGĠ Arg	ATT Ile	AGC Ser 255	CGA Arg	TCG Ser	TTA Leu	CCT Pro	CAA Gln 260		. 118	5 2

	GGG Gly	AGT Ser	GGG Gly	TAA Asn	TGG Trp 265	GCC Ala	CAG Gln	CTC Leu	CGG Arg	CCC Pro 270	CTC	CTG Leu	GTC Val	ACC Thr	TTT Phe 275	GGC Gly	1	.230
5	CAT His	GAT Asp	GGC Gly	CGG Arg 280	GGC Gly	CAT His	GCC Ala	TTG Leu	ACC Thr 285	CGA Arg	CGC Arg	CGG Arg	agg arg	GCC Ala 290	AAG Lys	CGT Arg	נ	1278
o	AGC Ser	CCT Pro	AAG Lys 295	CAT His	CAC His	TCA Ser	CAG Gln	CGG Arg 300	GCC Ala	AGG Arg	AAG Lys	AAG Lys	AAT Asn 305	AAG Lys	AAC Asn	TGC Cys	3	1326
	CGG Arg	CGC Arg 310	CAC His	TCG Ser	CTC Leu	TAT Tyr	GTG Val 315	GAC Asp	TTC Phe	AGC Ser	GAT Asp	GTG Val 320	GIY	TGG Trp	AAT Asn	GAC Asp	נ	1374
15	TGG Trp 325	ATT Ile	GTG Val	GCC Ala	CCA Pro	CCA Pro 330	GGC Gly	TAC Tyr	CAG Gln	GCC Ala	TTC Phe 335	TAC Tyr	TGC Cys	CAT His	ejà eee	GAC Asp 340	נ	1422
20	TGC Cys	CCC Pro	TTT Phe	CCA Pro	CTG Leu 345	GCT Ala	GAC Asp	CAC His	CTC Leu	AAC Asn 350	TCA Ser	ACC	AAC	CAT His	GCC Ala 355	ATT Ile	1	1470
	GTG Val	CAG Gln	ACC Thr	CTG Leu 360	Val	AAT Asn	TCT Ser	GTC Val	AAT Asn 365	TCC Ser	AGT Ser	ATC Ile	CCC	AAA Lys 370	GCC Ala	TGT Cys	נ	1518
25	TGT Cys	GTG Val	CCC Pro 375	Thr	GAA Glu	CTG Leu	AGT Ser	GCC Ala 380	ATC Ile	TCC Ser	ATG Met	CTG Leu	TAC Tyr 385	Leu	GAT Asp	GAG Glu	3	1566
	TAT Tyr	GAT Asp 390	Lys	GTG Val	GTA Val	CTG Leu	AAA Lys 395	Asn	TAT Tyr	CAG Gln	GAG Glu	ATG Met 400	Val	GTA Val	GAG Glu	GGA Gly	3	1614
30		Gly		CGC Arg		GATC.	AGG	CAGT	CCTT	GA G	GATA	GACA	G AT	ATAC	ACAC		:	1666
	CAC	ACAC.	ACA	CACC	ACAT	AC A	CCAC	ACAC	A CA	CGTT	CCCA	TCC	ACTC	ACC	CACA	Cactac	:	1726
35	ACA	GACT	GCT	тсст	TATA	GC T	GGAC	TTTT	A TT	AAAT	аааа	AAA	AAAA	AAA	AATG	GAAAAA	:	1786
																CCATAT		1846
															ТААА	AAAATG		1906
40	AGT	CATT	TTA	AATT	AAAA	AA A	AAAA	AAAC	T CT	AGAG	TCGA	ÇGG	AATT	C			:	1954

(2) INFORMATION FOR SEQ ID NO:4:

45 [0213]

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 408 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

	Met 1	Ile	Pro	Gly	Asn 5	Arg	Met	Leu	Met	Val 10	Val	Leu	Leu	Cys	Gln 15	Val
5	Leu	Leu	Gly	Gly 20	Ala	Ser	His	Ala	Ser 25	Leu	Ile	Pro	Glu	Thr 30	Gly	Lys
	Lys	Lys	Val 35	Ala	Glu	Ile	Gln	Gly 40	His	Ala	Gly	Gly	Arg 45	Arg	Ser	Gly
10	Gln	Ser 50	His	Glu	Leu	Leu	Arg 55	Asp	Phe	Glu	Ala	Thr 60	Leu	Leu	Gln	Met
	Phe 65	Gly	Leu	Arg	Arg	Arg 70	Pro	Gln	Pro	Ser	Lys 75	Ser	Ala	Val	Ile	Pro 80
15	Asp	Tyr	Met	Arg	Asp 85	Leu	Tyr	Arg	Leu	Gln 90	Ser	Gly	Glu	Glu	Glu 95	Glu
20	Glu	Gln	Ile	His 100	Ser	Thr	Gly	Leu	Glu 105	туг	Pro	Glu	Arg	Pro 110	Ala	Ser
	Arg	Ala	Asn 115	Thr	Val	Arg	Ser	Phe 120	His	His	Glu	Glu	His 125	Leu	Glu	Asn
25	Ile	Pro 130	Gly	Thr	Ser	Glu	Asn 135	Ser	Ala	Phe	Arg	Phe 140	Leu	Phe	Asn	Leu
	145				Glu	150	•				155					160
30					Val 165					170					175	
	_			180	Tyr				185					190	•	
35	•		195		Thr			200					205			
		210			Glu		215					220				
40	225				Gln	230					235					240
					Arg 245					250					255	
45				260	Gly				265					270		
50			275		His			280					285			
	Arg	Àla 290	Lys	Arg	Ser	Pro	Lys 295	His	His	Ser	Gln	Arg 300	Ala	Arg	Lys	Lys

		Asn 305	Lys	Asn	Cys	Arg	Arg 310	His	Ser	Leu	Tyr	Val 315	qaA	Phe	Ser	Asp	Val 320
5		Gly	Trp	Asn	Asp	Trp 325	Ile	Val	Ala	Pro	Pro 330	Gly	Tyr	Gln	Ala	Phe 335	Tyr
		Cys	His	Gly	Asp 340	Cys	Pro	Phe	Pro	Leu 345	Ala	Asp	His	Leu	Asn 350	Ser	Thr
10		Asn	His	λla 355	Ile	Val	Gln	Thr	Leu 360	Val	Asn	Ser	Val	Asn 365	Ser	Ser	Ile
		Pro	Lys 370	Ala	Cys	Cys	Val	Pro 375	Thr	Glu	Leu	Ser	Ala 380	Ile	Ser	Met	Leu
15		Tyr 385	Leu	Asp	Glu	Tyr	Asp 390	Lys	Val	Val	Leu	Lys 395	Asn	Tyr	Gln	Glu	Met 400
		Val	Val	Glu	Gly	Cys 405	Gly	Cys	Arg								
20	(2) INFORMATION FOR SEQ ID NO:5:																
	[0214]																
25	(i) S	EQUE	ENCE	CHAR	ACTE	RISTIC	CS:										
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1448 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: unknown																
	(ii)	MOLE	CULE	TYPE	: DNA	(geno	mic)										
35	(ix)	FEAT	URE:														
33		` '		(EY: C ON: 9		9											
40	(xi)	SEQL	JENCE	EDES	CRIPT	ION: S	SEQ IC	NO:5	:								
45																	

	GTG	ACCG	AGC (GGCGG	CGGA	CG G	CCGC	CTGC	c cc	CTCT	GCCA	CCT	GGGG	CGG	TĠCG	GCCC	G	60
5	GAG	CCCG	GAG (cccc	GTA (GC G	CGTA	GAGC	C GG	cccc						CTG Leu		114
				GCG Ala 10														162
10				TCC Ser														210
15				ATC Ile													•	258
15				ATC Ile														306

	CAC His	CTC Leu	CAG Gln	GGC Gly	AAG Lys 75	CAC His	AAC Asn	TCG Ser	GCA Ala	CCC Pro 80	ATG Met	TTC Phe	ATG Met	CTG Leu	GAC Asp 85	CTG Leu	354
5	TAC Tyr	AAC Asn	GCC Ala	ATG Met 90	GCG Ala	GTG Val	GAG Glu	GAG Glu	GGC Gly 95	GGC Gly	GGG Gly	CCC Pro	GGC Gly	GGC Gly 100	CAG Gln	GGC Gly	402
10	TTC Phe	TCC Ser	TAC Tyr 105	CCC Pro	TAC Tyr	AAG Lys	GCC Ala	GTC Val 110	TTC Phe	AGT Ser	ACC Thr	CAG Gln	GGC Gly 115	CCC Pro	CCT Pro	CTG Leu	450
	GCC Ala	AGC Ser 120	CTG Leu	CAA Gln	GAT Asp	AGC Ser	CAT His 125	TTC Phe	CTC Leu	ACC Thr	GAC Asp	GCC Ala 130	GAC Asp	ATG Met	GTC Val	ATG Met	498
15	Ser 135	Phe	Val	Asn	Leu	Val 140	Glu	His	Asp	Lys	G1u 145	Phe	Phe	HIS	CCA Pro	150	546
20	TAC Tyr	CAC His	CAT His	CGA Arg	GAG Glu 155	TTC Phe	Arg	TTT Phe	GAT Asp	CTT Leu 160	TCC Ser	AAG Lys	ATC Ile	CCA Pro	GAA Glu 165	GGG Gly	594
	GAA Glu	GCT Ala	GTC Val	ACG Thr 170	GCA Ala	GCC Ala	GAA Glu	TTC Phe	CGG Arg 175	ATC Ile	TAC Tyr	AAG Lys	GAC Asp	TAC Tyr 180	ATC Ile	CGG Arg	642
25	Glu	Arg	Phe 185	Asp	Asn	Glu	Thr	Phe 190	Arg	Ile	Ser	Val	Tyr 195	Gln	GTG Val	Leu	690
	Gln	Glu 200	His	Leu	Gly	Arg	Glu 205	Ser	Asp	Leu	Phe	210	Leu	Asp	AGC Ser	Arg	738
30	Thr 215	Leu	Trp	Ala	Ser	Glu 220	Glu	Gly	Trp	Leu	Val 225	Phe	Asp	Ile	ACA Thr	230	786
35	ACC	AGC Ser	AAC Asn	CAC His	TGG Trp 235	GTG Val	GTC Val	ÀAT Asn	CCG Pro	CGG Arg 240	CAC His	AAC Asn	CTG Leu	GGC Gly	CTG Leu 245	CAG Gln	834
	CTC Leu	TCG Ser	GTG Val	GAG Glu 250	ACG Thr	ctg Leu	GAT Asp	Gly	CAG Gln 255	AGC Ser	ATC Ile	AAC Asn	CCC Pro	AAG Lys 260	TTG Leu	GCG Ala	882
40	GGC Gly	CTG Leu	ATT Ile 265	GGG Gly	ccc Arg	CAC His	GGG Gly	ccc Pro 270	CAG Gln	AAC Asn	AAG Lys	CAG Gln	CCC Pro 275	TTC Phe	ATG Met	GTG Val	930
45	Ala	Phe 280	Phe	Lys	Ala	Thr	Glu 285	Val	His	Phe	Arg	290	Ile	Arg	TCC Ser	Tnr	978
	GGG Gly 295	Ser	AAA Lys	CAG Gln	CGC Arg	AGC Ser 300	Gln	AAC Asn	CGC Arg	TCC Ser	AAG Lys 305	ACG Thr	CCC Pro	AAG Lys	AAC Asn	CAG Gln 310	1026

	GAA Glu	GCC Ala	CTG Leu	Arg	ATG Met 315	GCC Ala	AAC Asn	GTG Val	GCA Ala	GAG Glu 320	AAC Asn	AGC Ser	AGC Ser	AGC Ser	GAC Asp 325	CAG Gln		1074
5	AGG Arg	CAG Gln	GCC Ala	TGT Cys 330	AAG Lys	AAG Lys	CAC His	GAG Glu	CTG Leu 335	TAT Tyr	GTC Val	AGC Ser	TTC Phe	CGA Arg 340	GAC Asp	CTG Leu		1122
10	GGC Gly	TGG Trp	CAG Gln 345	GAC Asp	TGG Trp	ATC Ile	ATC Ile	GCG Ala 350	CCT Pro	GAA Glu	Gly	TAC Tyr	GCC Ala 355	GCC Ala	TAC Tyr	TAC Tyr		1170
	TGT Cys	GAG Glu 360	GGG Gly	GAG Glu	TGT Cys	GCC Ala	TTC Phe 365	CCT Pro	CTG Leu	AAC Asn	TCC Ser	TAC Tyr 370	ATG Met	AAC Asn	GCC Ala	ACC Thr		1218
15	AAC Asn 375	CAC His	GCC Ala	ATC Ile	GTG Val	CAG Gln 380	ACG Thr	CTG Leu	GTC Val	CAC His	TTC Phe 385	ATC Ile	AAC Asn	CCG Pro	GAA Glu	ACG' Thr 390		1266
-															TCC Ser 405			1314
20															AGA Arg			1362
25					GCC Ala					TAGO	тсст	ec c	SAGAJ	ATTC	AG			1409
	ACC	CTTTC	GG (CCA	GTTI	T TC	TGGA	TCCI	CC	TTGC	TC						:	1448

(2) INFORMATION FOR SEQ ID NO:6:

[0215]

30

35

40

50

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 431 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Met His Val Arg Ser Leu Arg Ala Ala Pro His Ser Phe Val Ala 1 5 10 15
 - Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser 20 25 30
 - Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser
 - Gln Glu Arg Arg Glu Met Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu 50 55 60
- Pro His Arg Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro

	65					70					75					80
5	Met	Phe	Met	Leu	Asp 85	Leu	Tyr	Asn	Ala	Met 90	Ala	Val	Glu	Glu	Gly 95	Gly
	Gly	Pro	Gly	Gly 100	Gln	Gly	Phe	Ser	Tyr 105	Pro	Tyr	Lys	Ala	Val 110	Phe	Ser
10	Thr	Gln	Gly 115	Pro	Pro	Leu	Ala	Ser 120	Leu	Gln	Asp	Ser	His 125	Phe	Leu	Thr
	Asp	Ala 130	Asp	Met	Val	Met	Ser 135	Phe	Val	Asn	Leu	Val 140	Glu	His	Asp	Lys
15	Glu 145	Phe	Phe	His	Pro	Arg 150	Tyr	His	His	Arg	Glu 155	Phe	Arg	Phe	Asp	Leu 160
	Ser	Lys	Ile	Pro	Glu 165	Gly	Glu	Ala	Val	Thr 170	Ala	Ala	Glu	Phe	Arg 175	Ile
20	Tyr	Lys	Asp	Tyr 180	Ile	Arg	Glu	Arg	Phe 185	Asp	Asn	Glu	Thr	Phe 190	Arg	Ile
•	Ser	Val	Tyr 195	Gln	Val	Leų	Gln	Glu 200	His	Leu	Gly	Arg	Glu 205	Ser	Asp	Leu
25	Phe	Leu 210	Leu	Asp	Ser	Arg	Thr 215	Leu	Trp	Ala	Ser	Glu 220	Glu	Gly	Trp	Leu
	Val 225	Phe	Asp	Ile	Thr	Ala 230	Thr	Ser	Asn	His	Trp 235	Val	Val	Asn	Pro	Arg 240
30	His	Asn	Leu	Gly	Leu 245	Gln	Leu	Ser	Val	Glu 250	Thr	Leu	Asp	Gly	Gln 255	Ser
	Ile	Asn	Pro	Lys 260	Leu	Ala	Gly	Leu	Ile 265	Gly	Arg	His	Gly	Pro 270	Gln	Asn
35	Lys	Gln	Pro 275	Phe	Met	Val	Ala	Phe 280	Phe	Lys	Ala	Thr	Glu 285	Val	His	Phe
	Arg	Ser 290	Ile	Arg	Ser	Thr	Gly 295	Ser	Lys	Gln	Arg	Ser 300	Gln	Asn	Arg	Ser
40	Lys 305	Thr	Pro	Lys	Asn	Gln 310	Glu	Ala	Leu	Arg	Met 315	Ala	Asn	Val	Ala	Glu 320
	Asn	Ser	Ser	Ser	Asp 325		Arg			Cys 330			His	Glu	Leu 335	Tyr
45	Val	Ser	Phe	Arg 340	Asp	Leu	Gly	Trp	Gln 345	Asp	Trp	Ile	Ile	Ala 350	Pro	Glu
	Gly	Tyr	Ala 355	Ala	Tyr	Tyr	Суѕ	Glu 360	Gly	Glu	Cys	Ala	Phe 365	Pro	Leu	Asn
50	Ser	Tyr 370		Asn	Ala	Thr	Asn 375	His	Ala	Ile	Val	Gln 380	Thr	Leu	Val	His
	Phe	Ile	Asn	Pro	Glu	Thr	Val	Pro	Lys	Pro	Cys	Cys	Ala	Pro	Thr	Gln

	38	5					390					395					400
5	Le	u	Asn	Ala	Ile	Ser 405	Val	Leu	Tyr	Phe	Asp 410	Asp	Ser	Ser	Asn	Val 415	lle
	Le	u	Lys	Lys	Tyr 420	Arg	Asn	Met	Val	Val 425	Arg	Ala	Cys	Gly	Cys 430	His	
10	(2) INFORM	IAT	ION F	OR S	EQ ID	NO:7:											
	[0216]																
	(i) SEQ	UEI	NCE	CHAR	ACTE	RISTIC	CS:										
15	(B) (C)	TY: ST	PE: n	ucleic DEDNE	3 base acid ESS: d ircular	ouble											
20	(ii) MOL	EC	ULE .	TYPE:	cDNA	to mF	ANF								-		
	(iii) HYP	то	HETI	CAL: I	NO												
25	(vi) ORI																
	• •				omo s Huma	•											
30	(vii) IMM	1EC	DIATE	SOUF	RCE:												
	` '			/: Strai BMP6	-	catal	og #93	36203	Humai	n place	enta cl	ONA li	brary				
35	(viii) PO	SIT	ION I	N GEN	NOME:												
	(C)	UNI	ITS: b	р									•				
	(ix) FEA																
40				EY: CE N: 160	os 0170 [.]	1											
	(ix) FEA	ΓUF	RE:														
45					t_pept 32169												
	(ix) FEAT	ΓUF	RE:														
50				Y: mF N: 12									•				
	(xi) SEQ	UEI	NCE	DESCI	RIPTIC	N: SE	Q ID I	NO:7:									
5 5																	

	CGACCATGAG AGATAAGGAC TGAGGGCCAG GAAGGGGAAG CGAGCCCGCC GAGAGGTGGC	60
	GGGGACTGCT CACGCCAAGG GCCACAGCGG CCGCGCTCCG GCCTCGCTCC GCCGCTCCAC	120
5	GCCTCGCGGG ATCCGCGGGG GCAGCCCGGC CGGGCGGGG ATG CCG GGG CTG GGG Met Pro Gly Leu Gly -374 -370	174
10	CGG AGG GCG CAG TGG CTG TGC TGG TGG GGG CTG CTG TGC AGC TGC AGG Arg Arg Ala Gln Trp Leu Cys Trp Trp Gly Leu Leu Cys Ser Cys -365 -360 -355	222
	TGC GGG CCC CCG CCG CTG CGG CCC TTG CCC GCT GCC GCG GCC GCC	270

	Cys	Gly	Pro	Pro -350	Pro	Leu	Arg	Pro	Pro -34	Leu	Pro	Ala	Ala	Ala -34	Ala O	Ala	
5	GCC Ala	GCC Ala	GGG Gly -33	Gly	CAG Gln	CTG Leu	CTG Leu	GGG Gly -33	Asp	GGC Gly	GGG	AGC Ser	CCC Pro -325	GIA	CGC Arg	ACG Thr	318
	GAG Glu	CAG Gln -320	Pro	CCG Pro	CCG Pro	TCG Ser	CCG Pro	Gln	TCC Ser	TCC Ser	TCG Ser	GGC Gly -310	Pne	CTG Leu	TAC Tyr	CGG Arg	366
10 .	CGG Arg	Leu	AAG Lys	ACG Thr	CAG Gln	GAG Glu -300	Lys	CGG Arg	GAG Glu	ATG Met	CAG Gln -295	Lys	GAG Glu	ATC Ile	TTG Leu	TCG Ser -290	414
15	CTG	стс	GGG Gly	CTC Leu	CCG Pro	CAC His	CGG	CCC Pro	CGG Arg	CCC Pro -280	Leu	CAC His	GGC Gly	CTC Leu	CAA Gln -275	GIN	462
	CCG Pro	CAG Gln	CCC Pro	CCG Pro	Ala	CTC Leu	CGG Arg	CAG Gln	CAG Gln -265	GAG Glu	GAG Glu	CAG Gln	CAG Gln	CAG Gln -260	Gin	CAG Gln	510
20	CAG Gln	CTG Leu	CCT Pro -255	Arg	GGA Gly	GAG Glu	CCC Pro	CCT Pro -250	Pro	GGG Gly	CGA Arg	CTG Leu	AAG Lys -245	ser	GCG Ala	CCC Pro	558
25	CTC Leu	TTC Phe -240	Met	CTG Leu	GAT Asp	CTG Leu	TAC Tyr -235	Asn	GCC Ala	CTG Leu	TCC Ser	GCC Ala -230	Asp	AAC Asn	GAC Asp	GAG Glu	606
	GAC Asp -225	Gly	GCG Ala	TCG Ser	GAG Glu	GGG Gly -220	Glu	AGG Arg	CAG Gln	CAG Gln	TCC Ser -215	Trp	CCC Pro	CAC His	GAA Glu	GCA Ala -210	654
30	GCC Ala	AGC Ser	TCG Ser	TCC Ser	CAG Gln -205	Arg	CGG Arg	CAG Gln	CCG Pro	CCC Pro -200	Pro	GGC	GCC Ala	GCG Ala	CAC His -195	Pro	702
35	CTC Leu	AAC Asn	CGC Arg	AAG Lys -190	Ser	CTT Leu	CTG Leu	GCC Ala	ccc Pro -185	GGA Gly	TCT Ser	GGC Gly	AGC Ser	GGC Gly -180	GTÅ	GCG Ala	750
33	TCC Ser	CCA Pro	CTG Leu -175	Thr	AGC Ser	GCG Ala	CAG Gln	GAC Asp -170	Ser	GCC Ala	TTC Phe	Leu	AAC Asn -165	Asp	GCG Ala	GAC Asp	798
40	ATG Met	GTC Val -160	Met	AGC Ser	TTT Phe	GTG Val	AAC Asn ~155	Leu	GTG Val	GAG Glu	Tyr	GAC Asp -150	Lys	GAG Glu	TTC Phe	TCC Ser	846
	CCT Pro -145	Arg	CAG Gln	CGA Arg	CAC His	CAC His -140	Lys	GAG Glu	TTC Phe	AAG Lys	TTC Phe -135	Asn	TTA Leu	TCC Ser	CAG Gln	ATT Ile -130	894
45	CCT Pro	GAG Glu	GGT Gly	GAG Glu	GTG Val -125	Val	ACG Thr	GCT Ala	Ala	GAA Glu -120	Phe	CGC Arg	ATC Ile	TAC Tyr	AAG Lys -115	Asp	942
	TGT	GTT	ATG	GGG	AGT	TTT	AAA	AAC	CAA	ACT	TTT	CTT	ATC	AGC	ATT	TAT	990

	Cys	Val	Met	Gly		Phe	Lys	Asn	Gln -10	Thr 5	Phe	Leu	Ile	Ser -10	Ile	Tyr	
5	CAA Gln	GTC Val	TTA Leu -95	CAG Gln	GAG Glu	CAT His	CAG Gln	CAC His -90	AGA Arg	GAC Asp	TCT Ser	GAC Asp	CTG Leu -85	TTT Phe	TTG Leu	TTG Leu	1038
	GAC Asp	ACC Thr -80	CGT Arg	GTA Val	GTA Val	TGG Trp	GCC Ala -75	TCA Ser	GAA Glu	GAA Glu	GGC Gly	TGG Trp -70	CTG Leu	GAA Glu	TTT Phe	GAC Asp	1086
10	ATC Ile -65	ACG Thr	GCC	ACT Thr	AGC Ser	AAT Asn -60	CTG Leu	TGG Trp	GTT Val	GTG Val	ACT Thr -55	CCA Pro	CAG Gln	CAT His	AAC Asn	ATG Met -50	1134
15														GTC Val			1182
														AAG Lys -20			1230
20	TTC Phe	ATG Met	GTG Val -15	GCT Ala	TTC Phe	TŢC Phe	AAA Lys	GTG Val -10	AGT Ser	GAG Glu	GTC Val	CAC His	GTG Val -5	CGC Arg	ACC Thr	ACC Thr	1278
25														cgc Arg			1326
														TAC Tyr			1374
30														GTG Val 45			1422
25	CAA Gln	GAC Asp	CTG Leu 50	GGA Gly	TGG Trp	CAG Gln	GAC Asp	TGG Trp 55	ATC Ile	ATT Ile	GCA Ala	CCC Pro	AAG Lys 60	GGC Gly	TAT Tyr	GCT Ala	1470
35														GCA Ala			1518
40														CTT Leu			1566
														CTA Leu			1614
45														CTG Leu 125			1662
	TAC	AGG	AAT	ATG	GTT	GTA	AGA	GCT	TGT	GGA	TGC	CAC	TAAC	TCGA	AA		1708

Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His 130 135 140

5	CCAGATGCTG	GGGACACACA	TTCTGCCTTG	GATTCCTAGA	TTACATCTGC	СТТАААААА	1768
	CACGGAAGCA	CAGTTGGAGG	TGGGACGATG	AGACTTTGAA	ACTATCTCAT	GCCAGTGCCT	1828
	TATTACCCAG	GAAGATTTTA	AAGGACCTCA	TTAATAATTT	GCTCACTTGG	TAAATGACGT	1888
10	GAGTAGTTGT	TGGTCTGTAG	CAAGCTGAGT	TTGGATGTCT	GTAGCATAAG	GTCTGGTAAC	1948
	TGCAGAAACA	TAACCGTGAA	GCTCTTCCTA	CCCTCCTCCC	CCAAAAACCC	ACCAAAATTA	2008
	GTTTTAGCTG	TAGATCAAGC	TATTTGGGGT	GTTTGTTAGT	AAATAGGGAA	AATAATCTCA	2068
15	AAGGAGTTAA	ATGTATTCTT	GGCTAAAGGA	TCAGCTGGTT	CAGTACTGTC	TATCAAAGGT	2128
15	AGATTTTACA	GAGAACAGAA	ATCGGGGAAG	TGGGGGGAAC	GCCTCTGTTC	AGTTCATTCC	2188
	CAGAAGTCCA	CAGGACGCAC	AGCCCAGGCC	ACAGCCAGGG	CTCCACGGGG	CGCCCTTGTC	2248
	TCAGTCATTG	CTGTTGTATG	TTCGTGCTGG	AGTTTTGTTG	GTGTGAAAAT	ACACTTATTT	2308
20	CAGCCAAAAC	ATACCATTTC	TACACCTCAA	TCCTCCATTT	GCTGTACTCT	TTGCTAGTAC	2368
	CAAAAGTAGA	CTGATTACAC	TGAGGTGAGG	CTACAAGGGG	TGTGTAACCG	TGTAACACGT	2428
	GAAGGCAGTG	CTCACCTCTT	CTTTACCAGA	ACGGTTCTTT	GACCAGCACA	TTAACTTCTG	2488
25	GACTGCCGGC	TCTAGTACCT	TTTCAGTAAA	GTGGTTCTCT	GCCTTTTTAC	TATACAGCAT	2548
	ACCACGCCAC	AGGGTTAGAA	CCAACGAAGA	AAATAAAATG	AGGGTGCCCA	GCTTATAAGA	2608
	ATGGTGTTAG	GGGGATGAGC	ATGCTGTTTA	TGAACGGAAA	TCATGATTTC	CCTGTAGAAA	2668
30	GTGAGGCTCA	GATTAAATTT	TAGAATATTT	TCTAAATGTC	TTTTTCACAA	TCATGTGACT	2728
	GGGAAGGCAA	TTTCATACTA	AACTGATTAA	ATAATACATT	TATAATCTAC	AACTGTTTGC	2788
	ACTTACAGCT	TTTTTTGTAA	ATATAAACTA	TAATTTATTG	TCTATTTTAT	ATCTGTTTTG	2848
35	CTGTGGCGTT	GGGGGGGGG	CCGGGCTTTT	GGGGGGGG	GTTTGTTTGG	GGGTGTCGT	2908
	GGTGTGGGCG	GGCGG					2923

(2) INFORMATION FOR SEQ ID NO:8:

[0217]

40

45

50

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
- Met Pro Gly Leu Gly Arg Arg Ala Gln Trp Leu Cys Trp Trp Trp Gly
 -374 -370 -365 -360

	Leu	Leu	Cys	Ser -355		Cys	Gly	Pro	Pro -3!	Pro 50	Leu	Arg	Pro	Pro -	Leu 345	Pro
5	Ala	Ala	Ala -340		Ala	Ala	Ala	Gly -3:	Gly 35	Gln	Leu	Leu	Gly -:	Asp 330	Gly	Gly
	Ser	Pro -325		Arg	Thr	Glu	Gln -32		Pro	Pro	Ser	Pro	Gln 315	Ser	Ser	Ser
10	Gly -310		Leu	Tyr	Arg	Arg -30		Lys	Thr	Gln	Glu -	Lys 300	Arg	Glu	Met	Gln -295
	Lys	Glu	Ile	Leu	Ser -290		Leu	Gly	Leu	Pro -28		Arg	Pro	Arg		Leu 280
15	His	Gly	Leu	Gln -275		Pro	Gln	Pro	Pro	Ala 0	Leu	Arg	Gln		Glu 265	Glu
	Gln	Gln	Gln -260		Gln	Gln	Leu	Pro -25		Gly	Glu	Pro		Pro 250	Gly	Arg
20	Leu	Lys -245		Ala	Pro	Leu	Phe -24		Leu	Asp	Leu		Asn 35	Ala	Leu	Ser
	Ala -230		Asn	Asp	Glu	Asp -22		Ala	Ser	Glu	Gly -2	Glu 20	Arg	Gln	Gln	Ser -215
25	Trp	Pro	His	Glu	Ala -210		Ser	Ser	Ser	Gln -20		Arg	Gln	Pro		Pro 200
	Gly	Ala	Ala	His -195		Leu	Asn	Arg	Lys -19	Ser 0	Leu	Leu	Ala		Gly 185	Ser
30	Gly	Ser	Gly -180		Ala	Ser	Pro	Leu -17		Ser	Ala	Gl n		Ser 170	Ala	Phe
	Leu	Asn -165		Ala	Asp	Met	Val -le		Ser	Phe	Val		Leu 55	Val	Glu	Tyr
35	Asp -150		Glu	Phe	Ser	Pro		Gln	Arg	His		Lys 40	Glu	Phe	Ľys	Phe -135
	Asn	Leu	Ser	Gln	11e -130		Glu	Gly	Glu	val -12		Thr	Ala	Ala		Phe .20
40	Arg	Ile	туг	Lys -115		Cys	Val	Met	Gly -11	ser .0	Phe	Lys	Asn		Thr 105	Phe
	Leu	Ile	Ser -100		Tyr	Gln	Val	Leu -95		Glu	His	Gln	His -90		Asp	Ser
45	Asp	Leu -85	Phe	Leu	Leu	Asp	Thr -80	Arg	Val	val	Trp	Ala -75	Ser	Glu	Glu	Gly
	Trp -70	Leu	Glu	Phe	Asp	Ile -65	Thr	Ala	Thr	Ser	Asn -60	Leu	Trp	Val	Val	Thr -55
50	Pro	Gln	His	Asn	Met -50	Gly	Leu	Gln	Leu	Ser -45	Val	Val	Thr	Arg	Asp -40	Gly

	Val	His	Val	His -35	Pro	Àrg	Ala	Ala	-30	Leu	val	GJY	Arg	Asp -25	Gly	Pro
5	Tyr	Asp	Lys -20	Gln	Pro	Phe	Met	Val -15	Ala	Phe	Phe	Lys	Val	Ser	Glu	Val
	His	Val	Arg	Thr	Thr	Arg	Ser 1	Ala	Ser	Ser	Arg 5	Arg	Arg	Gln	Gln	Ser 10
10	Arg	Asn	Arg	Ser	Thr 15	Gln	Ser	Glņ	Asp	Val 20	Ala	Arg	Val	Ser	Ser 25	Ala
	Ser	Asp	Tyr	Asn 30	Ser	Ser	Glu	Leu	Lys 35	Thr	Ala	Cys	Arg	Lys 40	His	Glu
15	Leu	Tyr	Val 45	Ser	Phe	Gln	Asp	Leu 50	Gly	Trp	Gln	Asp	Trp 55	Ile	Ile	A1a
	Pro	Lys 60	Gly	Tyr	Ala	Ala	Asn 65	Tyr	Cys	Asp	Gly	Glu 70	Cys	Ser	Phe	Pro
20	Leu 75	Asn	Ala	His	Met	Asn 80	Ala	Thr	Asn	His	Ala 85	Ile	Val	Gln	Thr	Leu 90
	Val	His	Leu	Met	Asn 95	Pro	Glu	Tyr	Val	Pro 100	Lys	Pro	Cys	Cys	Ala 105	Pro
25	Thr	Lys	Leu	Asn 110	Ala	Ile	Ser	Val	Leu 115	Tyr	Phe	Asp	Asp	Asn 120	Ser	Asn
	Val	Ile	Leu 125	Lys	Lys	Tyr	Arg	Asn 130	Met	Val	Val	Arg	Ala 135	Cys	Gly	Cys
0	His															

(2) INFORMATION FOR SEQ ID NO:9:

[0218]

35

40

45

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2153 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (H) CELL LINE: U2-OS osteosarcoma
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: U2-OS human osteosarcoma cDNA library
- (B) CLONE: U2-16
 - (viii) POSITION IN GENOME:

	E	Р
	(C) UNITS: bp	
	(ix) FEATURE:	
5	(A) NAME/KEY: CDS (B) LOCATION: 6992063	
	(ix) FEATURE:	
10	(A) NAME/KEY: mat_peptide (B) LOCATION: 16472060	
	(ix) FEATURE:	
15	(A) NAME/KEY: mRNA (B) LOCATION: 12153	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO	:9:
20		
25		
30		
35		

	CTGGTATATT TGTGCCTGCT GGAGGTGGAA TTAACAGTAA GAAGGAGAAA GGGATTGAAT	60
	GGACTTACAG GAAGGATTTC AAGTAAATTC AGGGAAACAC ATTTACTTGA ATAGTACAAC	120
5	CTAGAGTATT ATTTACACT AAGACGACAC AAAAGATGTT AAAGTTATCA CCAAGCTGCC	180
	GGACAGATAT ATATTCCAAC ACCAAGGTGC AGATCAGCAT AGATCTGTGA TTCAGAAATC	240
	AGGATTTGTT TTGGAAAGAG CTCAAGGGTT GAGAAGAACT CAAAAGCAAG TGAAGATTAC	300
10	TTTGGGAACT ACAGTTTATC AGAAGATCAA CTTTTGCTAA TTCAAATACC AAAGGCCTGA	360
	TTATCATAAA TTCATATAGG AATGCATAGG TCATCTGATC AAATAATATT AGCCGTCTTC	420
	TGCTACATCA ATGCAGCAAA AACTCTTAAC AACTGTGGAT AATTGGAAAT CTGAGTTTCA	480
15	GCTTTCTTAG AAATAACTAC TCTTGACATA TTCCAAAATA TTTAAAATAG GACAGGAAAA	540
	TCGGTGAGGA TGTTGTGCTC AGAAATGTCA CTGTCATGAA AAATAGGTAA ATTTGTTTTT	600
	TCAGCTACTG GGAAACTGTA CCTCCTAGAA CCTTAGGTTT TTTTTTTTT AAGAGGACAA	660
20	GAAGGACTAA AAATATCAAC TTTTGCTTTT GGACAAAA ATG CAT CTG ACT GTA Met His Leu Thr Val -316-315	713
25	TTT TTA CTT AAG GGT ATT GTG GGT TTC CTC TGG AGC TGC TGG GTT CTA Phe Leu Leu Lys Gly Ile Val Gly Phe Leu Trp Ser Cys Trp Val Leu -310 -305 -300	761
.5	GTG GGT TAT GCA AAA GGA GGT TTG GGA GAC AAT CAT GTT CAC TCC AGT Val Gly Tyr Ala Lys Gly Gly Leu Gly Asp Asn His Val His Ser Ser -295 -280	809
30	TTT ATT TAT AGA AGA CTA CGG AAC CAC GAA AGA CGG GAA ATA CAA AGG Phe lle Tyr Arg Arg Leu Arg Asn His Glu Arg Arg Glu Ile Gln Arg -275 -270 -265	857
ne.	GAA ATT CTC TCT ATC TTG GGT TTG CCT CAC AGA CCC AGA CCA TTT TCA Glu Ile Leu Ser Ile Leu Gly Leu Pro His Arg Pro Arg Pro Phe Ser -260 -255 -250	905
35	CCT GGA AAA ATG ACC AAT CAA GCG TCC TCT GCA CCT CTC TTT ATG CTG Pro Gly Lys Met Thr Asn Gln Ala Ser Ser Ala Pro Leu Phe Met Leu -245 -240 -235	953
10	GAT CTC TAC AAT GCC GAA GAA AAT CCT GAA GAG TCG GAG TAC TCA GTA	1001

	Asp	Leu -230		Asn	Ala	Glu	Glu -225		Pro	Glu	Glu	Ser -220		Tyr	Ser	Val	
5	AGG Arg -215	GCA Ala	TCC Ser	TTG Leu	GCA Ala	GAA Glu -210	Glu	ACC Thr	AGA Arg	GGG Gly	GCA Ala -205	Arg	AAG Lys	GGA Gly	TAC Tyr	CCA Pro -200	1049
10	GCC Ala	TCT Ser	CCC Pro	TAA naa	GGG Gly -19	Tyr	CCT Pro	CGT Arg	CGC Arg	ATA 11e ~19(Gln	TTA Leu	TCT Ser	CGG Arg	ACG Thr -18	Thr	1097
	CCT Pro	CTG Leu	ACC Thr	ACC Thr -180	Gln	AGT Ser	CCT Pro	CCT Pro	CTA Leu -175	Ala	AGC Ser	CTC Leu	CAT His	GAT Asp -170	Thr	AAC Asn	1145
15	TTT Phe	CTG Leu	AAT Asn -165	Asp	GCT Ala	GAC Asp	ATG Met	GTC Val -160	Met	AGC Ser	TTT Phe	GTC Val	AAC Asn -15	Leu	GTT Val	GAA Glu	1193
20		GAC Asp -150	Lys					Gln					Lys				1241
	TTT Phe -13	GAT Asp	CTT Leu	ACC Thr	CAA Gln	ATT Ile -13	Pro	CAT. His	GGA Gly	GAG Glu	GCA Ala -125	Val	ACA Thr	GCA Ala	GCT Ala	GAA Glu -120	1289
25	TTC Phe	CGG Arg	ATA Ile	TAC Tyr	AAG Lys -11	Asp	CGG Arg	AGC Ser	AAC Asn	AAC Asn -11	Arg	TTT Phe	GAA Glu	AAT Asn	GAA Glu -10	Thr	1337
30	ATT Ile	AAG Lys	ATT Ile	AGC Ser -100	Ile	TAT Tyr	CAA Gln	ATC Ile	ATC Ile -95	AAG Lys	GAA Glu	TAC Tyr	ACA Thr	AAT Asn -90	AGG Arg	GAT Asp	1385
	GCA Ala	GAT Asp	CTG Leu -85	TTC Phe	TTG Leu	TTA Leu	GAC Asp	ACA Thr -80	AGA Arg	AAG Lys	GCC Ala	CAA Gln	GCT Ala -75	TTA Leu	GAT Asp	GTG Val	1433
35	GGT Gly	TGG Trp -70	CTT Leu	GTC Val	TTT Phe	GAT Asp	ATC Ile -65	ACT Thr	GTG Val	ACC Thr	AGC Ser	AAT Asn -60	CAT His	TGG Trp	GTG Val	ATT Ile	1481
40	AAT Asn ~55	ccc Pro	CAG Gln	AAT Asn	AAT Asn	TTG Leu -50	GJ Y GGC	TTA Leu	CAG Gln	CTC Leu	TGT Cys -45	GCA Ala	GAA Glu	ACA Thr	GG G	GAT Asp -40	1529
	GGA Gly	CGC Arg	AGT Ser	ATC Ile	AAC Asn -35	GTA Val	AAA Lys	TCT Ser	GCT Ala	GGT Gly -30	CTT Leu	GTG Val	GGA Gly	AGA Arg	CAG Gln -25	GGA Gly	1577
45	CCT Pro	CAG Gln	TCA Ser	AAA Lys -20	CAA Gln	CCA Pro	TTC Phe	ATG Met	GTG Val -15	GCC Ala	TTC Phe	TTC Phe	AAG Lys	GCG Ala -10	AGT Ser	GAG Glu	1625
50	GTA Val	CTT Leu	CTT Leu -5	CGA Arg	TCC Ser	GTG Val	AGA Arg	GCA Ala 1	GCC Ala	AAC Asn	AAA Lys	CGA Arg 5	AAA Lys	AAT Asn	CAA Gln	AAC Asn	1673
55	CGC	AAT	AAA	TCC	AGC	TCT	CAT	CAG	GAC	TCC	TCC	AGA	ATG	TCC	AGT	GTT	1721

	Arg 10	naA	Lys	Ser	Ser	Ser 15	His	Gln	Asp	Ser	Ser 20	Arg	Met	Ser	Ser	Val 25	
5	GGA Gly	GAT Asp	TAT Tyr	AAC Asn	ACA Thr 30	AGT Ser	GAG Glu	CAA Gln	AAA Lys	CAA Gln 35	GCC Ala	TGT Cys	AAG Lys	AAG Lys	CAC His 40	GAA Glu	1769
	CTC Leu	TAT Tyr	GTG Val	AGC Ser 45	TTC Phe	CGG Arg	GAT Asp	CTG Leu	GGA Gly 50	TGG Trp	CAG Gln	GAC Asp	TGG Trp	ATT Ile 55	ATA Ile	GCA Ala	1817
10	CCA Pro	GAA Glu	GGA Gly 60	TAC Tyr	GCT Ala	GCA Ala	TTT Phe	TAT Tyr 65	TGT Cys	GAT Asp	GGA Gly	GAA Glu	TGT Cys 70	TCT Ser	TTT Phe	CCA Pro	1865
15	CTT Leu	AAC Asn 75	GCC Ala	CAT His	ATG Met	AAT Asn	GCC Ala 80	ACC Thr	AAC Asn	CAC His	GCT Ala	ATA Ile 85	GTT Val	CAG Gln	ACT Thr	CTG Leu	1913
	GTT Val 90	CAT His	CTG Leu	ATG Met	TTT Phe	CCT Pro 95	GAC Asp	CAC His	GTA Val	CCA Pro	AAG Lys 100	CCT Pro	TGT Cys	TGT Cys	GCT Ala	CCA Pro 105	1961
20	ACC Thr	AAA Lys	TTA Leu	AAT Asn	GCC Ala 110	ATC Ile	TCT Ser	GTT Val	CTG Leu	TAC Tyr 115	TTT Phe	GAT Asp	GAC Asp	AGC Ser	TCC Ser 120	AAT Asn	2009
25	GTC Val	ATT Ile	TTG Leu	AAA Lys 125	AAA Lys	TAT Tyr	AGA Arg	AAT Asn	ATG Met 130	GTA Val	GTA Val	CGC Arg	TCA Ser	TGT Cys 135	GGC Gly	TGC Cys	2057
	CAC His	TAAT	TTAT	VAA 7	TAAT	\TTG#	AT A#	TAAC	:AAA#	A AGA	ATCTO	TAT	TAAC	GTTI	TAT		2110
30	GGCT	rgca#	TA A	LAAA C	CATA	C TI	TCAG	ACAA	ACA	.GAA	AAA	ааа					2153

(2) INFORMATION FOR SEQ ID NO:10:

35 [0219]

40

45

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 454 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

	Met H -316	lis -31	Leu 5	Thr	Val	Phe	Leu -3	Leu 10	Lys	GĮĀ	Ile	Val	Gly -305	Phe	Leu	Trp
5	Ser 0	Cys	Trp	Val	Leu	Val -29	Gly 5	Tyr	Ala	Lys	Gly -:	Gly 290	Leu	Gly	Asp	Asn -285
	His V	/al	His	Ser	Ser -280	Phe	Ile	Tyr	Arg	Arg -27	Leu 75	Arg	Asn	His	Glu -2	Arg 270
10	Arg (31u	Ile	Gln -26	Arg	Glu	Ile	Leu	Ser -2	Ile 60	Leu	Gly	Leu	Pro	His 255	Arg
15																
20																
25																
30																
35																
40																
45																

	Pro	Arg	Pro -250		Ser	Pro	Gly	Lys -24		Thr	Asn	Gln	Ala	Ser 240	Ser	Ala	
5	Pro	Leu -235		Met	Leu	Asp	Leu -23		Asn	Ala	Glu	Glu -:	Asn 225	Pro	Glu	Glu	
	Ser -220		Tyr	Ser	Val	Arg -21		Ser	Leu	Ala	Glu -2	Glu 210	Thr	Arg	Gly	Ala	-205
10	Arg	Lys	Gly	Tyr	Pro -200		Ser	Pro	Asn	Gly -19		Pro	Arg	Arg		Gln 90	
	Leu	Ser	Arg	Thr -185		Pro	Leu	Thr	Thr -18		Ser	Pro	Pro	Leu	Ala L75	Ser	
15	Leu	His	Asp -170	Thr	Asn	Phe	Leu	Asn -16		Ala	Asp	Met		Met 160	Ser	Phe	
	Val	Asn -155		Val	Glu	Arg	Asp -15		Asp	Phe	Ser	His	Gln 45	Arg	Arg	His	
20	Tyr		Glu	Phe	Arg	Phe		Leu	Thr	Gln		Pro	His	Gly	Glu		-125
	Val	Thr	Ala	Ala	Glu -120		Arg	Ile	Tyr	Lys -13		Arg	Ser	Asn		Arg	
25	Phe	Glu	Asn	Glu -105		Ile	Lys	Ile	Ser -10		Tyr	Gln	lle	Ile -9		Glu	
	Tyr	Thr	Asn -90	Arg	Asp	Ala	Asp	Leu -85	Phe	Leu	Leu	Asp	Thr -80	Arg	Lys	Ala	
30	Gln	Ala -75	Leu	Asp	Val	Gly	Trp	Leu	Val	Phe	Asp	Ile -65	Thr	Val	Thr	Ser	
	Asn -60	His	Trp	Val	Ile	Asn -55	Pro	Gln	Asn	Asn	Leu -50	Gly	Leu	Gln	Leu	Cys -45	
35	Ala	Gln	Thr	Gly	Asp -40	Gly	Arg	Ser	Ile	Asn -35	Val	Lys	Ser	Ala	Gly -30	Leu	
	Val	Gly	Arg	Gln -25	Gly	Pro	Gln	Ser	Lys -20	Gln	Pro	Phe	Met	val -15	Ala	Phe	
10	Phe	Lys	Ala -10	Ser	Glu	Val	Leu	Leu -5	Arg	Ser	Val	Arg	Ala 1	Ala	Asn	Lys	
1 5	Arg 5	Lys	Asn	Gln	Asn	Arg 10	Asn	Lys	Ser	Ser	Ser 15	His	Gln	Asp	Ser	Ser 20	
	Arg	Met	Ser	ser	Val 25	Gly	Asp	Tyr	Asn	Thr 30	Ser	Glu	Gln	Lys	Gln . 35	Ala	
50	Cys	Lys	Lys	His 40	Glu	Leu	Tyr	Val	Ser 45	Phe	Arg	Asp	Leu	Gly 50	Trp	Gln	
•	Asp	Trp	Ile 55	Ile	Ala	Pro	Glu	Gly 60	Tyr	Ala	Ala	Phe	Tyr 65	Cys	Asp	Gly	

		Glu	Cys 70	ser	Phe	Pro	Leu	Asn 75	Ala	His	Met	Asn	Ala 80	Thr	Asn	His	Ala
5		Ile 85	Val	Gln	Thr	Leu	Val 90	His	Leu	Met	Phe	Pro 95	Asp	His	Val	Pro	Lys 100
		Pro	Cys	Cys	Ala	Pro 105	Thr	Lys	Leu	Asn	Ala 110	Ile	Ser	Val	Leu	Tyr 115	Phe
10		Asp	Asp	Ser	Ser 120	Asn	Val	Ile	Leu	Lys 125	Lys	туг	Arg	Asn	Met 130	Val	Val
		Arg	Ser	Cys 135	Gly	Cys	His										
15	(2) INF	ORMA	TION	FOR S	EQ ID	NO:11	l:										
	[0220]																
	(i)	SEQU	ENCE	CHAR	ACTE	RISTIC	CS:										
20				H: 100 nucleic	3 base	pairs			•								
		(c) s	TRAN	DEDN	ESS: d circula												
25	(ii)	MOLE					RN∆										
	. ,	HYPO				101111											
30	` ') ORIG															
30	(V)				Homo	sanian											
					E: Hum												
35	(vi	i) IMM	EDIAT	E SOL	JRCE:												
				RY: Hu	man ho 3	eart c	NA lib	rary st	ratage	ene cat	alog #	936208	3				
40	(vi	ii) POS	SITION	IN GE	ENOM	E:											
		(C) L	JNITS:	bp													
45	(ix) FEAT	URE:														
43				KEY: 0													
50	(ix) FEAT	URE:														
30					nat_pe 12784												
55	(ix) FEAT	TURE:														
,,				KEY: r	nRNA												

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GAATTCC	GAG	CCC	CAT	TGG	AAG	GAG	TTC	CGC	$\mathbf{T}\mathbf{T}\mathbf{T}$	GAC	CTG	ACC	CAG	ATC
	Glu	Pro	His	Trp	Lys	Glu	Phe	Arg	Phe	Asp	Leu	Thr	Gln	Ile
	-139			-	-139	5				-130)			

	CCG (Pro 1	Ala	GGG Gly	GAG Glu	GCG Ala	GTC Val -120	Thr	GCT Ala	GCG Ala	GAG Glu	TTC Phe -115	Arg	ATT Ile	TAC Tyr	AAG Lys	GTG Val -110	97
5	CCC 2	AGC Ser	ATC Ile	CAC His	CTG Leu -105	Leu	AAC Asn	AGG Arg	ACC Thr	CTC Leu -100	His	GTC Val	AGC Ser	ATG Met	TTC Phe -95	CAG Gln	145
10	GTG (GTC Val	CAG Gln	GAG Glu -90	CAG Gln	TCC Ser	AAC Asn	AGG Arg	GAG Glu -85	TCT Ser	GAC Asp	TTG Leu	TTC Phe	TTT Phe -80	TTG Leu	GAT Asp	193
	CTT (CAG Gln	ACG Thr -75	ctc Leu	CGA Arg	GCT Ala	GGA Gly	GAC Asp -70	GAG Glu	GGC Gly	TGG Trp	ctg Leu	GTG Val -65	CTG Leu	GAT Asp	GTC Val	241
15	ACA (GCA Ala -60	GCC Ala	AGT Ser	GAC Asp	TGC Cys	TGG Trp -55	TTG Leu	CTG Leu	AAG Lys	CGT Arg	CAC His -50	AAG Lys	GAC Asp	CTG Leu	GGA Gly	289
20	CTC (Leu /	CGC Arg	CTC Leu	TAT Tyr	GTG Val	GAG Glu -40	ACT Thr	GAG Glu	GAT Asp	GGG Gly	CAC His -35	AGC Ser	GTG Val	GAT Asp	CCT Pro	GGC Gly -30	337
	CTG (Ala	Gly	Leu	Leu -25	Gly	Gln	Arg	Ala	Pro	Arg	Ser	Gln	Gln	Pro	Phe	385
25	GTG Val	GTC Val	ACT Thr	TTC Phe -10	TTC Phe	AGG Arg	GCC Ala	AGT Ser	CCG Pro -5	AGT Ser	CCC Pro	ATC Ile	CGC Arg	ACC Thr 1	Pro	CGG Arg	433
30	GCA Ala																481
	CCG Pro 20	CAG Gln	GCC Ala	AAC Asn	CGA Arg	CTC Leu 25	CCA Pro	GGG Gly	ATC Ile	TTT	GAT Asp 30	GAC Asp	GTC Val	CAC	Gly GGC	TCC Ser 35	529
35	CAC H1s	GTA GCC	CGG Arg	CAG Gln	GTC Val 40	TGC	CGT Arg	CGG	CAC His	GAG Glu 45	CTC Leu	TAC Tyr	GTC Val	AGC Ser	TTC Phe 50	CAG Gln	577
40	GAC Asp	CTT Leu	GGC Gly	TGG Trp 55	CTG Leu	GAC Asp	TGG Trp	GTC Val	ATC Ile 60	GCC Ala	CCC Pro	CAA Gln	GGC Gly	TAC Tyr 65	TCA Ser	GCC Ala	625
	TAT Tyr	TAC Tyr	TGT Cys 70	GAG Glu	GGG	GAG Glu	TGC Cys	TCC Ser 75	TTC Phe	CCG Pro	CTG Leu	GAC Asp	TCC Ser 80	TGC Cys	ATG Met	AAC Asn	673
45	GCC Ala	ACC Thr 85	AAC Asn	CAC His	GCC Ala	ATC Ile	CTG Leu 90	CAG Gln	TCC Ser	CTG Leu	GTG Val	CAC His 95	CTG Leu	ATG Met	AAG Lys	CCA Pro	721
50	AAC Asn 100	GCA Ala	GTC Val	CCC Pro	AAG Lys	GCG Ala 105	TGC Cys	TGT Cys	GCA Ala	CCC Pro	ACC Thr 110	AAG Lys	CTG Leu	AGC Ser	GCC Ala	ACC Thr 115	769

	EP 0 612 348 B1	
	TCT GTG CTC TAC TAT GAC AGC AGC AAC AAC GTC ATC CTG CGC AAG CAC Ser Val Leu Tyr Tyr Asp Ser Ser Asn Asn Val Ile Leu Arg Lys His 120 125 130	817
5	CGC AAC ATG GTG GTC AAG GCC TGC GGC TGC CAC TGAGTCAGCC CGCCCAGCCC Arg Asn Met Val Val Lys Ala Cys Gly Cys His 135 140	870
	TACTGCAGCC ACCCTTCTCA TCTGGATCGG GCCCTGCAGA GGCAGAAAAC CCTTAAATGC	936
10	TGTCACAGCT CAAGCAGGAG TGTCAGGGGC CCTCACTCTC GGTGCCTACT TCCTGTCAGG	990
	CTTCTGGGAA TTC	1003
15	(2) INFORMATION FOR SEQ ID NO:12:	
	[0221]	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 281 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
30		
35		
40		

	G1: -1	u Pr 39	o Hi	s Tr	p Ly	s G1	u Pł	ne A	rg P	he A	sp L	eu T O	hr G	ln I	le F	ro Ala -125
5	Gl	y Gl	u Al	a Va -1	1 Th 20	r Al	a Al	la G	lu P	he A -115	rg I	le T	yr L	ys V	al P -11	ro Ser
	Ile	e Hi	s Le -1	u Le 05	u As	n Ar	g Th	ır Le	eu H -100	is V	al s	er M	et P	he G -95	ln V	al Val
10	Gli	n Gl -9	u G1 0	n Se	r As	n Ar	g G1 -8	.ប S e	er A	sp L	eu P	he Pi	he L BO	eu A	sp L	eu Gln
	Th:	r Le 5	u Ar	g Al	a Gl	y As -7	p G1 0	u G]	ly T	rp L	eu V	al Lo	eu A	sp V	al T	hr Ala
15	Ala	a Se	r As	р Су	s Tr	p Le 5	u Le	u Ly	/s A	rg H	is Ly	ys As	sp L	eu G		eu Arg 45
20	Let	ту ту	r Va	1 G1 ⁻	u Th	r Gl	u As	p Gl	у н:	is S 35	er Va	al As	sp Pi		ly L	eu Ala
	Gly	/ Le	u Le	u Gl: 5	y Gl	n Ar	g Al	a Pr -2	O A1	rg S	er G]	ln G]	in Pi		ne Va	al Val
25	Thr	Pho	e Ph	e Ar	g Ala	a Se	r Pr	o Se 5	r Pr	:0 I	le Ar	g Th	r Pr 1	co Ar	g A	la Val
	Arg	Pro) Le	u Ar	y Arc	g Ar	g Gl:	n Pr	o Ly	s L	ys Se 15	r As	n Gl	u Le		co Gln
30	Ala	Ası	Arc	g Let 25	ı Pro	Gly	y Ile	e Ph	e As 3	p As	sp Va	l Hi	s Gl			s Gly
	Arg	Glr	ı Vai	l Cys	arç	Arc	g His	s Gl	u Le	u Ty	yr Va	l Se	r Ph	e Gl	n As	p Leu
35																
			40					45					50			
40	Gly	Trp 55	Leu	Asp	Trp	Val	Ile 60	Ala	Pro	Gln	Gly	Tyr 65	Ser	Ala	Tyr	Tyr
	Cys 70	Glu	Gly	Glu	Cys	Ser 75	Phe	Pro	Leu	Asp	Ser .80	Cys	Met	Asn	Ala	Thr 85
45	Asn	His	Ala	Ile	Leu 90	Gln	Ser	Leu	Val	His 95	Leu	Met	Lys	Pro	Asn 100	Ala
	Val	Pro	Lys	Ala 105	Cys	Cys	Ala	Pro	Thr 110	Lys	Leu	Ser	Ala	Thr 115	Ser	Val
50	Leu	Tyr	Tyr 120	Asp	Ser	Ser	Asn	Asn 125	Val	Ile	Leu	Arg	Lys 130	His	Arg	Asn
	Met	Val 135	Val	Lys .	Ala		Gly 140	Cys	His							
55																

	(2) INFORMATION FOR SEQ ID NO:13:	
	[0222]	
5	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 2623 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
4.5	(vii) IMMEDIATE SOURCE:	
15	(B) CLONE: pALBP2-781	
	(ix) FEATURE:	
20	(A) NAME/KEY: CDS (B) LOCATION: 27243071	
	(ix) FEATURE:	
25	(A) NAME/KEY: terminator (B) LOCATION: 31503218	
	(ix) FEATURE:	
30	(A) NAME/KEY: RBS (B) LOCATION: 22222723	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
35	GACGAAAGGG CCTCGTGATA CGCCTATTTT TATAGGTTAA TGTCATGATA ATAATGGTTT	60
	CTTAGACGTC AGGTGGCACT TTTCGGGGAA ATGTGCGCGG AACCCCTATT TGTTTATTTT	120
	TOTALATACA TTOALATATE TATCCGCTCA TGAGACAATA ACCCTGATAA ATGCTTCAAT	180

AATATTGAAA AAGGAAGAGT ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT

TTGCGGCATT TTGCCTTCCT GTTTTTGCTC ACCCAGAAAC GCTGGTGAAA GTAAAAGATG

CTGAAGATCA GTTGGGTGCA CGAGTGGGTT ACATCGAACT GGATCTCAAC AGCGGTAAGA

.

	TCCTTGAGAG TTTTCGCCCC GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC	420
5	TATGTGGCGC GGTATTATCC CGTATTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC	480
•	ACTATTCTCA GAATGACTTG GTTGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG	540
	GCATGACAGT AAGAGAATTA TGCAGTGCTG CCATAACCAT GAGTGATAAC ACTGCGGCCA	600
10	ACTTACTTCT GACAACGATC GGAGGACCGA AGGAGCTAAC CGCTTTTTTG CACAACATGG	660
70	GGGATCATGT AACTCGCCTT GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG	720
	ACGAGCGTGA CACCACGATG CCTGTAGCAA TGGCAACAAC GTTGCGCAAA CTATTAACTG	780
	GCGAACTACT TACTCTAGCT TCCCGGCAAC AATTAATAGA CTGGATGGAG GCGGATAAAG	840
15	TTGCAGGACC ACTTCTGCGC TCGGCCCTTC CGGCTGGCTG GTTTATTGCT GATAAATCTG	900
	GAGCCGGTGA GCGTGGGTCT CGCGGTATCA TTGCAGCACT GGGGCCAGAT GGTAAGCCCT	960
	CCCGTATCGT AGTTATCTAC ACGACGGGGA GTCAGGCAAC TATGGATGAA CGAAATAGAC	1020
20	AGATCGCTGA GATAGGTGCC TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTTACT	1080
	CATATATACT TTAGATTGAT TTAAAACTTC ATTTTTAATT TAAAAGGATC TAGGTGAAGA	1140
	TCCTTTTTGA TAATCTCATG ACCAAAATCC CTTAACGTGA GTTTTCGTTC CACTGAGCGT	1200
25	CAGACCCCGT AGAAAAGATC AAAGGATCTT CTTGAGATCC TTTTTTTCTG CGCGTAATCT	1260
	GCTGCTTGCA AACAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTTGCCG GATCAAGAGC	1320
	TACCAACTCT TTTTCCGAAG GTAACTGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC	1380
30	TTCTAGTGTA GCCGTAGTTA GGCCACCACT TCAAGAACTC TGTAGCACCG CCTACATACC	1440
	TCGCTCTGCT AATCCTGTTA CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG	1500
	GGTTGGACTC AAGACGATAG TTACCGGATA AGGCGCAGCG GTCGGGCTGA ACGGGGGGTT	1560
35	CGTGCACACA GCCCAGCTTG GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG	1620
	AGCATTGAGA AAGCGCCACG CTTCCCGAAG GGAGAAAGGC GGACAGGTAT CCGGTAAGCG	1680
	GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC TGGTATCTTT	1740
40	ATAGTCCTGT CGGGTTTCGC CACCTCTGAC TTGAGCGTCG ATTTTTGTGA TGCTCGTCAG	1800
	GGGGGCGGAG CCTATGGAAA AACGCCAGCA ACGCGGCCTT TTTACGGTTC CTGGCCTTTT	1860
	GCTGGCCTTT TGCTCACATG TTCTTTCCTG CGTTATCCCC TGATTCTGTG GATAACCGTA	1920
45	TTACCGCCTT TGAGTGAGCT GATACCGCTC GCCGCAGCCG AACGACCGAG CGCAGCGAGT	1980
	CAGTGAGCGA GGAAGCGGAA GAGCGCCCAA TACGCAAACC GCCTCTCCCC GCGCGTTGGC	2040
	CGATTCATTA ATGCAGAATT GATCTCTCAC CTACCAAACA ATGCCCCCCT GCAAAAAATA	2100_
50	AATTCATATA AAAAACATAC AGATAACCAT CTGCGGTGAT AAATTATCTC TGGCGGTGTT	2160

	GACATAAATA CCACTGGCGG TGATACTGAG CACATCAGCA GGACGCACTG ACCACCATGA	2220
F	AGGTGACGCT CTTAAAAATT AAGCCCTGAA GAAGGGCAGC ATTCAAAGCA GAAGGCTTTG	2280
5	GGGTGTGTGA TACGAAACGA AGCATTGGCC GTAAGTGCGA TTCCGGATTA GCTGCCAATG	2340
	TGCCAATCGC GGGGGGTTTT CGTTCAGGAC TACAACTGCC ACACACCACC AAAGCTAACT	2400
	GACAGGAGAA TCCAGATGGA TGCACAAACA CGCCGCCGCG AACGTCGCGC AGAGAAACAG	2460
10	GCTCAATGGA AAGCAGCAAA TCCCCTGTTG GTTGGGGTAA GCGCAAAACC AGTTCCGAAA	2520
	GATTTTTTA ACTATAAACG CTGATGGAAG CGTTTATGCG GAAGAGGTAA AGCCCTTCCC	2580
	GAGTAACAAA AAAACAACAG CATAAATAAC CCCGCTCTTA CACATTCCAG CCCTGAAAAA	2640
15	GGGCATCAAA TTAAACCACA CCTATGGTGT ATGCATTTAT TTGCATACAT TCAATCAATT	2700
	GTTATCTAAG GAAATACTTA CAT ATG CAA GCT AAA CAT AAA CAA CGT AAA Met Gln Ala Lys His Lys Gln Arg Lys l 5	27,50
20	CGT CTG AAA TCT AGC TGT AAG AGA CAC CCT TTG TAC GTG GAC TTC AGT Arg Leu Lys Ser Ser Cys Lys Arg His Pro Leu Tyr Val Asp Phe Ser 10 20 25	2798
25	GAC GTG GGG TGG AAT GAC TGG ATT GTG GCT CCC CCG GGG TAT CAC GCC Asp Val Gly Trp Asn Asp Trp Ile Val Ala Pro Pro Gly Tyr His Ala 30 35 40	2846
	TTT TAC TGC CAC GGA GAA TGC CCT TTT CCT CTG GCT GAT CAT CTG AAC Phe Tyr Cys His Gly Glu Cys Pro Phe Pro Leu Ala Asp His Leu Asn 45 50 55	2894
30	TCC ACT AAT CAT GCC ATT GTT CAG ACG TTG GTC AAC TCT GTT AAC TCT Ser Thr Asn His Ala Ile Val Gln Thr Leu Val Asn Ser Val Asn Ser 60 65 70	2942
35	AAG ATT CCT AAG GCA TGC TGT GTC CCG ACA GAA CTC AGT GCT ATC TCG Lys Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser 75 80 85	2990
	ATG CTG TAC CTT GAC GAG AAT GAA AAG GTT GTA TTA AAG AAC TAT CAG Met Leu Tyr Leu Asp Glu Asn Glu Lys Val Val Leu Lys Asn Tyr Gln 90 95 100 105	3038
40	GAC ATG GTT GTG GAG GGT TGT GGG TGT CGC TAGTACAGCA AAATTAAATA Asp Met Val Val Glu Gly Cys Gly Cys Arg 110 115	3088
	CATAAATATA TATATATAT TATATTTTAG AAAAAAGAAA AAAATCTAGA GTCGACCTGC	3148
45	AGTAATCGTA CAGGGTAGTA CAAATAAAAA AGGCACGTCA GATGACGTGC CTTTTTCTT	3208
	GTGAGCAGTA AGCTTGGCAC TGGCCGTCGT TTTACAACGT CGTGACTGGG AAAACCCTGG	3268
	CGTTACCCAA CTTAATCGCC TTGCAGCACA TCCCCCTTTC GCCAGCTGGC GTAATAGCGA	3328
50	AGAGGCCCGC ACCGATCGCC CTTCCCAACA GTTGCGCAGC CTGAATGGCG AATGGCGCCT	3388

		GAT	.ecee	TAT 1	TTCT	CCTT	A CGC	ATCT	GTG	CGGT	ATTT	A CA	CCGC	ATAT	ATGG	тсса	CT
		CTC	AGTA	CAA 1	CTGC	TCTG/	TGC	CGCA	TAG '	TAAC	SCCAG	c cc	CGAC	ACCC	GCCA	ACAC	CC
5		GCT	GACG	cc c	CTGA	cggg	TTG	TCTG	CTC (cccc	CATCO	G CT	TACAC	FACA	AGCT	GTGA	CC
		GTC	TCCG	GA G	CTGC	ATGTG	TCA	GAGG	rrr :	CACC	GTCA	T CA	CCGA	ACG	cece	A	
															0000	-	
10	(2)	INFOR	MATIC	ON FO	RSEC	iD NC	0:14:										
	[02	23]															
		(i) SEQUENCE CHARACTERISTICS:															
15		(A) LEN	GTH: 1	15 am	ino aci	ds										
		(B (D) TYPI) TOP	E: amir OLOGʻ	no acid Y: linea	i ar											
		(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein															
20																	
	1	(xi) SE	QUEN	CE DE	SCRI	PTION	: SEQ	ID NO	:14:								
		Met	: Glr	פומי	T		•										
25		1		, 410	, nys	5	rλε	GIn	Arg	Lys	Aro	Leu	Lys	Ser	Ser	Cys 15	Lys
		Arg) His	Pro	Leu	Tyr	Val	Asp	Phe	Ser	Asp	Val	Gly	Trp	Asn		Trp
										25					30		
30		116	Val	35	Pro	Pro	Gly	Tyr	His 40	Ala	Phe	Tyr	Cys	His 45	Gly	Glu	Cys
		Pro	Phe	Pro	Leu	Ala	Asp	His	Leu	Asn	Ser	Thr	Asn	Hie	λla	Tlo	Val
								. 55					60				
35		61 n 65	Thr	Leu	Val	Asn	Ser 70	Val	Asn	Ser	Lys	Ile 75	Pro	Lys	Ala	Cys	
		Val	Pro	Thr	Glu	Leu	Ser.	Ala	Tle	Ser	Mo+	_	<i>(</i> 1)	-	•		80
											90					95	
40		Glu	Lys	Val	Val 100	Leu	Lys	Asn	Tyr	Gln	Asp	Met	Val	Val	Glu	Ġlу	Cys
			Cys							105					110		
		•	- 4 -	115													
45	(2) INF	ORMA	ATION	FOR S	SEQ ID	NO:1	5 ٠										
				. 0,, c	JQ 10	INO. I	J .										
	[0224]																
50	(i)	SEQU	ENCE	CHAR	RACTE	RISTIC	CS:										
	(A) LENGTH: 14 base pairs																
		(B) T (C) S	YPE: 1	nucleic DEDN	acid ESS: s	inale											
55		(D) T	OPOL	OGY: I	inear	yıc											

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

	CATGGGCAGC TGAG	14
_	(2) INFORMATION FOR SEQ ID NO:16:	
5	[0225]	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genonic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
20	GAGGGTTGTG GGTGTCGCTA GTGAGTCGAC TACAGCAAAT T	41
	(2) INFORMATION FOR SEQ ID NO:17:	
25	[0226]	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	GGATGTGGGT GCCGCTGACT CTAGAGTCGA CGGAATTC	38
40	(2) INFORMATION FOR SEQ ID NO:18:	
	[0227]	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 31 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
55		
	AATTCACCAT GATTCCTGGT AACCGAATGC T	31

(2) INFORMATION FOR SEQ ID NO:19:

	[0228]	
5	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
	GTGGTACTAA GGACCATTGG CTTAC	25
20	(2) INFORMATION FOR SEQ ID NO:20:	
	[0229]	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
35	CGACCTGCAG CCATGCATCT GACTGTA	27
	(2) INFORMATION FOR SEQ ID NO:21:	
40	[0230]	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
	TGCCTGCAGT TTAATATTAG TGGCAGC	27
e e		

	(2) INFORMATION FOR SEQ ID NO:22:	
	[0231]	
5	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 15 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	CGACCTGCAG CCACC	1 5
	(2) INFORMATION FOR SEQ ID NO:23:	
20	[0232]	÷
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 81 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
35	TCGACCCACC ATGCCGGGC TGGGGCGGAG GGCGCAGTGG CTGTGCTGGT GGTGGGGGCT	60
	GTGCTGCAGC TGCTGCGGGC C	8)
	(2) INFORMATION FOR SEQ ID NO:24:	
40	[0233]	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 73 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50 50	(ii) MOLECULE TYPE: DNA (genomic)	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
5 5	CGCAGCAGCT GCACAGCAGC CCCCACCACC AGCACAGCCA CTGCGCCCTC CGCCCCAGCC	60
	CCGGCATGGT GGG	73

	(2) INFORMATION FOR SEQ ID NO:25:	
	[0234]	
5	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 11 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
	TCGACTGGTT T	11
20	(2) INFORMATION FOR SEQ ID NO:26: [0235]	
	(i) SEQUENCE CHARACTERISTICS:	
<i>2</i> 5		
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
35	CGAAACCAG	9
	(2) INFORMATION FOR SEQ ID NO:27:	
40	[0236]	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
	TCGACAGGCT CGCCTGCA	18
55		

(2) INFORMATION FOR SEQ ID NO:28:

	[0237]	
5	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 10 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
	GTCCGAGCGG	
20	(2) INFORMATION FOR SEQ ID NO:29:	• •
20	[0238]	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
35	CAGGTEGACE CACCATGCAC GTGCGCTCA	25
	(2) INFORMATION FOR SEQ ID NO:30:	
40	[0239]	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	TCTGTCGACC TCGGAGGAGC TAGTGGC	27
55		

Claims

5

15

20

25

30

35

40

45

50

- 1. A method for producing a heterodimeric protein having bone stimulating activity comprising culturing a selected host cell containing a nucleotide sequence encoding a first selected BMP or fragment thereof and a nucleotide sequence encoding a second selected BMP or fragment thereof, said nucleotide sequences each being under the control of a suitable regulatory sequence capable of directing co-expression of said proteins, and isolating said heterodimeric protein from the culture medium, wherein said heterodimeric protein is a human BMP-2/5, BMP-4/6, BMP-4/6 or BMP-4/7 heterodimer.
- The method of claim 1, wherein said nucleotide sequences are present on individual vectors transfected into said host cell.
 - 3. The method of claim 2, wherein more than a single copy of the gene encoding each said BMP or fragment thereof is present on each vector.
 - 4. The method of claim 1, wherein both said nucleotide sequences are present on a single vector.
 - The method of claim 1, wherein both said nucleotide sequences are incorporated into a chromosome of said host cell.
 - 6. The method of any one of claims 1 to 3, wherein said host cell is a hybrid cell prepared by culturing two fused selected, stable host cells, each host cell transfected with a nucleotide sequence encoding a selected first or second BMP or fragment thereof, said nucleotide sequences under the control of a suitable regulatory sequence capable of directing expression of each protein or fragment.
 - 7. The method of any one of claims 1 to 6, wherein said host cell is a mammalian cell, an insect cell or a yeast cell.
 - 8. A method for producing a heterodimeric protein having bone stimulating activity in a bacterial cell comprising culturing a selected host cell containing a nucleotide sequence encoding a first selected BMP or fragment thereof under the control of a suitable regulatory sequence capable of directing expression of the protein or protein fragment under conditions suitable for the formation of soluble, monomeric protein; culturing a selected host cell containing a nucleotide sequence encoding a second BMP or fragment thereof under the control of a suitable regulatory sequence capable of directing expression of the protein or protein fragment under said conditions to form a second soluble, monomeric protein; and mixing said soluble monomeric proteins under conditions permitting the formation of dimeric proteins associated by at least one covalent disulfide bond; and isolating from the mixture a heterodimeric protein, wherein said heterodimeric protein is a human BMP-2/5, BMP-2/6, BMP-4/5, BMP-4/6 or BMP-4/7 heterodimer.
 - 9. The method of claim 8, wherein said host cell is E. coli.
 - 10. The method of claim 8 or 9, wherein said conditions comprise treating said protein with a solubilizing agent
 - 11. A cell line comprising a nucleotide sequence encoding a first BMP or fragment thereof under the control of a suitable expression regulatory system and a nucleotide sequence encoding a second BMP or fragment thereof under the control of a suitable expression regulatory system, said regulatory systems capable of directing the coexpression of said BMPs or fragments thereof and the formation of heterodimeric protein, wherein said recombinant heterodimeric protein is a human BMP-2/5, BMP-2/6, BMP-4/5, BMP-4/6 or BMP-4/7 heterodimer.
 - 12. The cell line of claim 11, wherein said nucleotide sequences are present in a single DNA molecule.
 - 13. The cell line of claim 11, wherein said nucleotide sequences are present on different DNA molecules.
 - 14. The cell line of claim 12, wherein said single DNA molecule comprises a first transcription unit containing a gene encoding a first BMP or fragment thereof and a second transcription unit containing a gene encoding a second BMP or fragment thereof.
 - 15. The cell line of claim 12, wherein said single DNA molecule comprises a single transcription unit containing multiple copies of said gene encoding said first BMP or fragments thereof and multiple copies of said gene encoding said

second BMP or fragments thereof.

- 16. A DNA molecule comprising a nucleotide sequence encoding a first selected BMP or fragment thereof and a nucleotide sequence encoding a second, different selected BMP or fragment thereof, said nucleotide sequences being under the control of at least one suitable regulatory sequence capable of directing co-expression of each BMP or fragment thereof, wherein said first selected BMP is BMP-2 or BMP-4, and said second selected BMP is BMP-5 or BMP-6, or wherein said first selected BMP is BMP-4 and said second selected BMP is BMP-7.
- 17. The molecule of claim 16 comprising a first transcription unit containing a gene encoding a first BMP or fragmentthereof and a second transcription unit containing a gene encoding a second BMP or fragment thereof.
 - 18. The molecule of claim 16 comprising a single transcription unit containing multiple copies of said gene encoding said first BMP or fragments thereof and multiple copies of said gene encoding said second BMP or fragments thereof.
 - 19. A recombinant heterodimeric protein having bone stimulating activity comprising a protein or fragment of a first BMP in association with a second protein or fragment of a second BMP produced by co-expressing said proteins in a selected host cell, wherein said recombinant heterodimeric protein is a human BMP-2/5, BMP-2/6, BMP-4/5, BMP-4/6 or BMP-4/7 heterodimer.
 - 20. A pharmaceutical composition comprising a protein of claim 19.
 - 21. Use of a recombinant heterodimeric protein of claim 19 for the production of a pharmaceutical composition for the treatment of bone defects, periodontal diseases, healing bone injury, wound healing or increasing neuronal survival or for surgery.

Patentansprüche

5

15

20

25

40

45

50

- 1. Verfahren zur Herstellung eines heterodimeren Proteins, das knochenstimulierende Aktivität hat, umfassend Züchten einer ausgewählten Wirtszelle, die eine Nucleotidsequenz enthält, die ein erstes ausgewähltes BMP oder ein Fragment davon codiert, und eine Nucleotidsequenz, die ein zweites ausgewähltes BMP oder ein Fragment davon codiert, wobei die Nucleotidsequenzen jeweils unter der Kontrolle einer geeigneten regulatorischen Sequenz sind, die imstande ist, die Co-Expression der Proteine zu regeln, und Isolieren des heterodimeren Proteins aus dem Kulturmedium, wobei das heterodimere Protein ein menschliches BMP-2/5-, BMP-2/6-, BMP-4/5-, BMP-4/6- oder BMP-4/7-Heterodimer ist.
 - 2. Verfahren nach Anspruch 1, wobei die Nucleotidsequenzen auf einzelnen in die Wirtszelle transfizierten Vektoren vorhanden sind.
 - 3. Verfahren nach Anspruch 2, wobei mehr als eine einzelne Kopie des Gens, das jeweils das BMP oder ein Fragment davon codiert, auf jedem Vektor vorhanden ist.
 - 4. Verfahren nach Anspruch 1, wobei beide Nucleotidsequenzen auf einem einzelnen Vektor vorhanden sind.
 - 5. Verfahren nach Anspruch 1, wobei beide Nucleotidsequenzen in ein Chromosom der Wirtszelle eingebaut werden.
 - 6. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Wirtszelle eine Hybridzelle ist, hergestellt durch Züchten von zwei fusionierten, ausgewählten, stabilen Wirtszellen, wobei jede Wirtszelle mit einer Nucleotidsequenz transfiziert ist, die ein ausgewähltes erstes oder zweites BMP oder ein Fragment davon codiert, wobei die Nucleotidsequenzen unter der Kontrolle einer geeigneten regulatorischen Sequenz sind, die imstande ist, die Expression von jedem Protein oder Fragment zu regeln.
 - Verfahren nach einem der Ansprüche 1 bis 6, wobei die Wirtszelle eine Säugerzelle, eine Insektenzelle oder eine Hefezelle ist.
 - 8. Verfahren zur Herstellung eines heterodimeren Proteins, das knochenstimulierende Aktivität hat, in einer Bakterienzelle, umfassend Züchten einer ausgewählten Wirtszelle, die eine Nucleotidsequenz enthält, die ein erstes

ausgewähltes BMP oder ein Fragment davon codiert, unter der Kontrolle einer geeigneten regulatorischen Sequenz, die imstande ist, die Expression des Proteins oder des Proteinfragmentes unter Bedingungen zu regeln, die für die Bildung eines löslichen, monomeren Proteins geeignet sind; Züchten einer ausgewählten Wirtszelle, die eine Nucleotidsequenz enthält, die ein zweites BMP oder ein Fragment davon codiert, unter der Kontrolle einer geeigneten regulatorischen Sequenz, die imstande ist, die Expression des Proteins oder des Proteinfragmentes unter den Bedingungen zu regeln, um ein zweites lösliches, monomeres Protein zu bilden; und Mischen der löslichen, monomeren Proteine unter Bedingungen, die die Bildurig von dimeren Proteinen erlauben, die durch mindestens eine kovalente Disulfidbindung verbunden sind; und Isolieren eines heterodimeren Proteins aus dem Gemisch, wobei das heterodimere Protein ein menschliches BMP-2/5-, BMP-2/6-, BMP-4/5-, BMP-4/6- oder BMP-4/7-Heterodimer ist.

9. Verfahren nach Anspruch 8, wobei die Wirtszelle E. coli ist.

10

15

20

25

30

35

40

45

50

- Verfahren nach Anspruch 8 oder 9, wobei die Bedingungen das Behandeln des Proteins mit einem Solubilisierungsmittel umfassen.
- 11. Zellinie, umfassend eine Nucleotidsequenz, die ein erstes BMP oder ein Fragment davon codiert, unter der Kontrolle eines geeigneten expressions-regulatorischen Systems, und eine Nucleotidsequenz, die ein zweites BMP oder ein Fragment davon codiert, unter der Kontrolle eines geeigneten expressions-regulatorischen Systems, wobei das regulatorische System imstande ist, die Co-Expression der BMPs oder der Fragmente davon und die Bildung von heterodimerem Protein zu regeln, wobei das rekombinante, heterodimere Protein ein menschliches BMP-2/5-, BMP-2/6-, BMP-4/5-, BMP-4/6- oder BMP-4/7-Heterodimer ist.
- 12. Zellinie nach Anspruch 11, wobei die Nucleotidsequenzen in einem einzelnen DNA-Molekül vorhanden sind.
- 13. Zellinie nach Anspruch 11, wobei die Nucleotidsequenzen auf unterschiedlichen DNA-Molekülen vorhanden sind.
- 14. Zellinie nach Anspruch 12, wobei das einzelne DNA-Molekül eine erste Transkriptionseinheit umfasst, enthaltend ein Gen, das ein erstes BMP oder ein Fragment davon codiert, und eine zweite Transkriptionseinheit, enthaltend ein Gen, das ein zweites BMP oder ein Fragment davon codiert.
- 15. Zellinie nach Anspruch 12, wobei das einzelne DNA-Molekül eine einzelne Transkriptionseinheit umfasst, enthaltend mehrere Kopien des Gens, das das erste BMP oder Fragmente davon codiert, und mehrere Kopien des Gens, das das zweite BMP oder Fragmente davon codiert.
- 16. DNA-Molekül, umfassend eine Nucleotidsequenz, die ein erstes ausgewähltes BMP oder ein Fragment davon codiert, und eine Nucleotidsequenz, die ein zweites, unterschiedliches, ausgewähltes BMP oder ein Fragment davon codiert, wobei die Nucleotidsequenzen unter der Kontrolle von mindestens einer geeigneten reguluatorischen Sequenz sind, die imstande ist, die Co-Expression von jedem BMP oder Fragment davon zu regeln, wobei das erste ausgewählte BMP BMP-2 oder BMP-4 ist, und das zweite ausgewählte BMP BMP-5 oder BMP-6 ist, oder wobei das erste ausgewählte BMP BMP-4 ist und das zweite ausgewählte BMP BMP-7 ist.
- 17. Molekül nach Anspruch 16, umfassend eine erste Transkriptionseinheit, die ein Gen enthält, das ein erstes BMP oder ein Fragment davon codiert, und eine zweite Transkriptionseinheit, die ein Gen enthält, das ein zweites BMP oder ein Fragment davon codiert.
- 18. Molekül nach Anspruch 16, umfassend eine einzelne Transkriptionseinheit, die mehrfache Kopien des Gens enthält, das das erste BMP oder Fragmente davon codiert, und mehrfache Kopien des Gens, das das zweite BMP oder Fragmente davon codiert.
- 19. Rekombinantes, heterodimeres Protein mit knochenstimulierender Aktivität, umfassend ein Protein oder ein Fragment eines ersten BMP in Verbindung mit einem zweiten Protein oder Fragment eines zweiten BMP, hergestellt durch Co-Exprimieren der Proteine in einer ausgewählten Wirtszelle, wobei das rekombinante, heterodimere Protein ein menschliches BMP-2/5-, BMP-2/6-, BMP-4/5-, BMP-4/6- oder BMP-4/7-Heterodimer ist.
- 20. Arzneimittel, umfassend ein Protein nach Anspruch 19.
- 21. Verwendung eines rekombinanten, heterodimeren Proteins nach Anspruch 19 für die Herstellung eines Arznei-

mittels zur Behandlung von Knochendefekten, Periodontalerkrankungen, Heilung von Knochenverletzung, Wundheilung oder Steigerung neuronalen Überlebens oder zur Chirurgie.

5 Revendications

10

20

30

35

40

- 1. Méthode pour produire une protéine hétérodimérique ayant une activité de stimulation osseuse, comprenant les étapes consistant à cultiver une cellule hôte sélectionnée contenant une séquence nucléotidique codant une première BMP sélectionnée ou l'un de ses fragments et une séquence nucléotidique codant une seconde BMP sélectionnée ou l'un de ses fragments, lesdites séquences nucléotidiques étant chacune sous le contrôle d'une séquence régulatrice appropriée capable de diriger la co-expression desdites protéines, et à isoler ladite protéine hétérodimérique à partir du milieu de culture, ladite protéine hétérodimérique étant un hétérodimère BMP-2/5, BMP-4/5, BMP-4/6 ou BMP-4/7 humain.
- Méthode de la revendication 1, dans laquelle lesdites séquences nucléotidiques sont présentes sur des vecteurs individuels transfectés dans ladite cellule hôte.
 - 3. Méthode de la revendication 2, dans laquelle plus d'une seule copie du gène codant chacune desdites BMP ou l'un de leurs fragments sont présentes sur chaque vecteur.
 - 4. Méthode de la revendication 1, dans laquelle les deux dites séquences nucléotidiques sont présentes sur un seul vecteur.
- Méthode de la revendication 1, dans laquelle les deux dites séquences nucléotidiques sont incorporées dans un chromosome de ladite cellule hôte.
 - 6. Méthode selon l'une quelconque des revendications 1 à 3, dans laquelle ladite cellule hôte est une cellule hybride préparée en cultivant deux cellules hôtes stables sélectionnées fusionnées, chaque cellule hôte transfectée par une séquence nucléotidique codant une première ou une seconde BMP sélectionnée ou l'un de leurs fragments, lesdites séquences nucléotidiques étant sous le contrôle d'une séquence régulatrice appropriée capable de diriger l'expression de chaque protéine ou fragment.
 - 7. Méthode de l'une quelconque des revendications 1 à 6, dans laquelle ladite cellule hôte est une cellule de mammifère, une cellule d'insecte ou une cellule de levure.
 - 8. Méthode pour produire une protéine hétérodimérique ayant une activité de stimulation osseuse dans une cellule bactérienne, comprenant les étapes consistant à cultiver une cellule hôte sélectionnée contenant une séquence nucléotidique codant une première BMP sélectionnée ou l'un de ses fragments sous le contrôle d'une séquence régulatrice appropriée capable de diriger l'expression de la protéine ou du fragment de protéine dans des conditions appropriées à la formation d'une protéine monomérique soluble ; à cultiver une cellule hôte sélectionnée contenant une séquence nucléotidique codant une seconde BMP sélectionnée ou l'un de ses fragments sous le contrôle d'une séquence régulatrice appropriée capable de diriger l'expression de la protéine ou du fragment de protéine dans lesdites conditions pour former une seconde protéine monomérique soluble ; et à mélanger lesdites protéines monomériques solubles dans des conditions permettant la formation de protéines dimériques associées par au moins un pont disulfure covalent ; et à isoler à partir du mélange une protéine hétérodimérique, ladite protéine hétérodimérique étant un hétérodimère BMP-2/5, BMP-2/6, BMP-4/5, BMP-4/6 ou BMP-4/7 humain.
 - 9. Méthode de la revendication 8, dans laquelle ladite cellule hôte est E. coli.
- 10. Méthode de la revendication 8 ou 9, dans laquelle lesdites conditions comprennent le traitement de ladite protéine avec un agent solubilisant.
- 11. Lignée cellulaire comprenant une séquence nucléotidique codant une première BMP ou l'un de ses fragments sous le contrôle d'un système de régulation de l'expression approprié et une séquence nucléotidique codant une seconde BMP ou l'un de ses fragments sous le contrôle d'un système de régulation de l'expression approprié, lesdits systèmes de régulation étant capables de diriger la co-expression desdites BMP ou de leurs fragments et la formation d'une protéine hétérodimérique, ladite protéine hétérodimérique recombinée étant un hétérodimère BMP-2/5, BMP-2/6, BMP-4/5, BMP-4/6 ou BMP-4/7 humain.

- Lignée cellulaire de la revendication 11, dans laquelle lesdites séquences nucléotidiques sont présentes dans une seule molécule d'ADN.
- 13. Lignée cellulaire de la revendication 11, dans laquelle lesdites séquences nucléotidiques sont présentes sur des molécules d'ADN différentes.
- 14. Lignée cellulaire de la revendication 12, dans laquelle ladite unique molécule d'ADN comprend une première unité de transcription contenant un gène codant une première BMP ou l'un de ses fragments et une seconde unité de transcription contenant un gène codant une seconde BMP ou l'un de ses fragments
- 15. Lignée cellulaire de la revendication 12, dans laquelle ladite unique molécule d'ADN comprend une seule unité de transcription contenant plusieurs copies dudit gène codant ladite première BMP ou des fragments de celle-ci et plusieurs copies dudit gène codant ladite seconde BMP ou des fragments de celle-ci.
- 16. Molécule d'ADN comprenant une séquence nucléotidique codant une première BMP sélectionnée ou l'un de ses fragments et une séquence nucléotidique codant une seconde BMP sélectionnée différente ou l'un de ses fragments, lesdites séquences nucléotidiques étant sous le contrôle d'au moins une séquence régulatrice appropriée capable de diriger la co-expression de chaque BMP ou de leurs fragments, dans laquelle ladite première BMP sélectionnée est BMP-2 ou BMP-4, et ladite seconde BMP sélectionnée est BMP-5 ou BMP-6, ou dans laquelle ladite première BMP sélectionnée est BMP-7.
 - 17. Molécule de la revendication 16 comprenant une première unité de transcription contenant un gène codant une première BMP ou l'un de ses fragments et une seconde unité de transcription contenant un gène codant une seconde BMP ou l'un de ses fragments,
 - 18. Molécule de la revendication 16, comprenant une seule unité de transcription contenant plusieurs copies dudit gène codant ladite première BMP ou des fragments de celle-ci et plusieurs copies dudit gène codant ladite seconde BMP ou des fragments de celle-ci.
- 19. Protéine hétérodimérique recombinée ayant une activité de stimulation osseuse comprenant une protéine ou un fragment d'une première BMP en association avec une seconde protéine ou un fragment d'une seconde BMP produite par co-expression desdites protéines dans une cellule hôte sélectionnée, ladite protéine hétérodimérique recombinée étant un hétérodimère BMP-2/5, BMP-2/6, BMP-4/5, BMP-4/6 ou BMP-4/7 humain.
- 20. Composition pharmaceutique comprenant une protéine de la revendication 19.

5

10

15

20

25

40

45

50

55

21. Utilisation d'une protéine hétérodimérique recombinée de la revendication 19 pour la production d'une composition pharmaceutique pour le traitement de défauts osseux, de maladies desmodontales, la guérison de lésions osseuses, la cicatrisation de plaies ou l'accroissement de la survie neuronale ou en chirurgie.

FIGURE 1A

GTCG)	ACTC:	LO CA GJ	.GTGT	2 C GTGT	CAG	SCACT	30 PTGG	CTGC	GGA(40 TT (CTTGA	5 ACTT		.GGGA	60 Gaat		70 TTGCGCA
cccci	ACTT?	go CG CC	cccc	90 TGCC) : TT1	rgeco	100 CCAG	CGG#		110 CGC 1			o T CC		130 CCCA		140 CCCCTCC
ACTC	15 CTCG	50 SC C1	TGCC	160 CGAC) : ACI	gaga	170 ACGC	TGTI	i CCCA		etgaa			ACTG	200 CGCG		210 GGCACCC
GGGA	22 BAAG	O A GO	AGGC	230 AAAG	AAA	AGGA	240 ACG	GACA			CCTTG		D A GG		270 TTGA		280 Gagtttt
TCCA?	2 S TGTG0	O SA CO	CTCI	300 TTCA	ATG	GACG	310 TGT	ccc c		20 GC 2) G GA	CTGC	340 GGTC		350 Paaaggt
CGA	() CA OC MI	iG G	rg gc	CC GC	G A	70 CC CC	SC TO	ST C.	rr c: su L	ra G	85 CG T	rg CI	e C	IT C	cc ci	00 AG G1 Ln Va	rc al
CTC Leu	CTG Leu	GGC Gly	415 GGC Gly	GCG Ala	GCT Ala	GGC Gly	cíc Leu (24)	Val	CCG Pro	GAG Glu	CTG Leu	GGC Gly	445 CGC Arg	AGG Arg	AAG Lys	TTC Phe	GCG Ala
460 GCG Ala	GCG Ala	TCG Ser	TCG Ser	GGC GGC	475 CGC Arg	ccc Pro	TCA Ser	TCC Ser	CAG Gln	490 CCC Pro	TCT	GAC Asp	GAG Glu	GTC Val	505 CTG Leu	AGC Ser	GAG Glu
TTC Phe	GAG Glu	520 TTG Leu	CGG	CTG Leu	CTC Leu	AGC Ser	535 ATG MET	TTC Phe	GJY GGC	CTG Leu	AAA Lys	550 CAG Gln	AGA Arg	Pro	ACC Thr	CCC Pro	565 AGC Ser
AGG Arg	GAC Asp	GCC Ala	GTG Val	580 GTG Val	CCC Pro	CCC Pro	TAC Tyr	ATG MET	595 CTA Leu	GAC Asp	CTG Leu	TAT Tyr	CGC Arg	610 AGG Arg	CAC His	TCA Ser	GGT Gly
	_																

FIGURE 1B

AAC Asn	ACT Thr	GTG Val	685 CGC Arg	AGC Ser	TTC Phe	CAC His	CAT His	700 GAA Glu	CAA	TCT Ser	TTG Leu	GAA Glu	715 GAA Glu		CCA Pro	GAA Glu	ACG Thr
730 AGT Ser	GGG	AAA Lys	ACA Thr	ACC Thr	745 CGG Arg	AGA Arg	TTC Phe	TTC Phe	TTT Phe	760 Aat Asn	TTA Leu	AGT Ser	TCT Ser	ATC Ile	775 CCC Pro	ACG Thr	GAG Glu
GAG Glu	TTT Phe	790 ATC Ile	ACC Thr	TCA Ser	GCA Ala	GAG Glu	805 CTT Leu	CAG Gln	GTT Val	TTC Phe	CGA Arg	820 GAA Glu	CAG Gln	ATG MET	CAA Gln	GAT Asp	835 GCT Ala
TTA Leu	1	AAC Asn	AAT Asn	850 AGC Ser	AGT Ser	TTC Phe	CAT His	CAC His	865 CGA Arg	ATT Ile	AAT Asn	ATT Ile	TAT Tyr	880 GAA Glu	ATC Ile	ATA Ile	AAA Lys
CCT Pro	B95 GCA Ala	ACA Thr		AAC Asn	TCG Ser	910 AAA Lys	TTC Phe	CCC Pro	GTG Val	ACC Thr	925 AGA Arg	CTT Leu	TTG Leu	GAC Asp	ACC Thr	940 AGG Arg	TTG Leu
		CAG Gln	955 AAT Asn		361	AGG Arg	TGG Trp	970 GAA Glu	AGT Ser	TTT Phe	GAT Asp	GTC Val	985 ACC Thr	CCC Pro	GCT Ala	GTG Val	ATG MET
1000 CGG Arg	TGG	****	GCA Ala	CAG	GGA Gly	CAC His	GCC Ala	AAC Asn	Cam	GGA Gly	TTC Phe	GTG Val	GTG Val		045 GTG Val	GCC Ala	CAC His
TTG Leu	GAG	IOEO GAG Glu	aaa Lys	CAA Gln	GGT Gly	GTC	075 TCC Ser	AAG Lys	AGA Arg	CAT His	CMM	AGG Arg	ATA Ile	AGC Ser	Arg	TCT Ser 249)	105 TTG Leu
CAC	CAA	GAT	GAA	CAC	AGC	TGG	TCA	CAG	135 ATA	AGG	CCA	TTG	തെട്.	150 GTA .	ACT '	TTT (GGC
nis	GIN	Asp	GIU	His	Ser	Trp	Ser	Gln	Ile	Arg	Pro	Leu	Leu	Val	Thr 266)	Phe	Gly
CAT	GAT Asp	GGA Gly	AAA Lys	GGG Gly	CAT	180 CCT Pro	CTC Leu	CAC His	aaa Lys	ACA	195 GAA Glu	AAA Lys	Arg	CAA Gln 283)		210 AAA (Lys)	CAC His
AAA Lys	CAG Gln	CGG	225 AAA Lys	CGC Arg	CTT Leu	AAG Lys	TCC	Ser	TGT Cys 296)	AAG Lys	AGA Arg	CAC	255 CCT (Pro)	TTG ' Leu '	TAC (GTG (Val)	JAC Asp
.270 TTC Phe	AGT Ser	GAC Asp	GTG Val	GGG	85 TGG Trp	AAT Asn	GAC Asp	TGG Trp	ልጥጥ	00 GTG (Val .	GCT Ala	CCC (CCG (l3: GGG :	ראת י	CAC C	cc la

FIGURE 1C

1330

1345

TTT TAC TGC CAC GGA GAA TGC CCT TTT CCT CTG GCT GAT CAT CTG AAC TCC ACT Phe Tyr Cys His Gly Glu Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser Thr 1390

AAT CAT GCC ATT GTT CAG ACG TTG GTC AAC TCT GTT AAC TCT AAG ATT CCT AAG Asn His Ala Ile Val Gln Thr Leu Val Asn Ser Val Asn Ser Lys Ile Pro Lys

1435

GCA TGC TGT GTC CCG ACA GAA CTC AGT GCT ATC TCG ATG CTG TAC CTT GAC GAG Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser MET Leu Tyr Leu Asp Glu

1495

AAT GAA AAG GTT GTA TTA AAG AAC TAT CAG GAC ATG GTT GTG GAG GGT TGT GGG Asn Glu Lys Val Val Leu Lys Asn Tyr Gln Asp MET Val Val Glu Gly Cys Gly

1540(396)

1553

1563

1573

1583

1593

1603

TGT CGC TAGTACAGCA AAATTAAATA CATAAATATA TATATATATA TATATTTTAG AAAAAAAGAAA Cys Arg

AAAA

FIGURE 2A

20 30 40 50 60 CTCTAGAGGG CAGAGGAGGA GGGAGGGAGG GAAGGAGCCC GGAGCCCGGC CCGGAAGCTA GGTGAGTGTG 90 100 110 120 130 GCATCCGAGC TGAGGGACGC GAGCCTGAGA CGCCGCTGCT GCTCCGGCTG AGTATCTAGC TTGTCTCCCC 170 180 150 160 190 200 GATGGGATTC CCGTCCAAGC TATCTCGAGC CTGCAGCGC ACAGTCCCCG GCCCTCGCCC AGGTTCACTG 220 230 240 250 260 270 280 CAACCGTTCA GAGGTCCCCA GGAGCTGCTG CTGGCGAGCC CGCTACTGCA GGGACCTATG GAGCCATTCC 300 290 310 320 330 GTAGTGCCAT CCCGAGCAAC GCACTGCTGC AGCTTCCCTG AGCCTTTCCA GCAAGTTTGT TCAAGATTGG 370 380 390 400 CTGTCAAGAA TCATGGACTG TTATTATATG CCTTGTTTTC TGTCAAGACA CC ATG ATT CCT 432 GGT AAC CGA ATG CTG ATG GTC GTT TTA TTA TGC CAA GTC CTG CTA GGA GGC GCG Gly Asn Arg MET Leu MET Val Val Leu Leu Cys Gln Val Leu Leu Gly Gly Ala 477
AGC CAT GCT AGT TTG ATA CCT GAG ACG GGG AAG AAA AAA GTC GCC GAG ATT CAG
Ser His Ala Ser Leu Ile Pro Glu Thr Gly Lys Lys Val Ala Glu Ile Gln GGC CAC GCG GGA GGA CGC CGC TCA GGG CAG AGC CAT GAG CTC CTG CGG GAC TTC Gly His Ala Gly Gly Arg Arg Ser Gly Gln Ser His Glu Leu Leu Arg Asp Phe GAG GCG ACA CTT CTG CAG ATG TTT GGG CTG CGC CGC CCG CAG CCT AGC AAG Glu Ala Thr Leu Leu Gln MET Phe Gly Leu Arg Arg Pro Gln Pro Ser Lys 657 AGT GCC GTC ATT CCG GAC TAC ATG CGG GAT CTT TAC CGG CTT CAG TCT GGG GAG Ser Ala Val Ile Pro Asp Tyr MET Arg Asp Leu Tyr Arg Leu Gln Ser Gly Glu

FIGURE 2B

687 GAG GAG GAA Glu Glu Glu	GAG CAG AT	702 TC CAC AGC A	ACT GGT CTT Thr Gly Leu	717 GAG TAT CCT Glu Tyr Pro	732 GAG CGC CCG GCC Glu Arg Pro Ala
AGC CGG GCC Ser Arg Ala	747 AAC ACC GI ASn Thr Va	'G AGG AGC	762 TTC CAC CAC Phe His His	777 GAA GAA CAT Glu Glu His	CTG GAG AAC ATC Leu Glu Asn Ile
792 CCA GGG ACC Pro Gly Thr	80 AGT GAA AA Ser Glu As	C TCT GCT	822 TTT CGT TTC Phe Arg Phe	CTC TTT AAC Leu Phe ABn	837 CTC AGC AGC ATC Leu Ser Ser Ile
CCT GAG AAC Pro Glu Asr	GAG GTG AT	867 TC TCC TCT (Le Ser Ser)	GCA GAG CTT Ala Glu Leu	882 CGG CTC TTC Arg Leu Phe	CGG GAG CAG GTG Arg Glu Gln Val
GAC CAG GGG Asp Gln Gly	912 CCT GAT TO Pro Asp Ti	GG GAA AGG rp Glu Arg	927 GGC TTC CAC Gly Phe His	CGT ATA AAC Arg Ile Asn	942 ATT TAT GAG GTT Ile Tyr Glu Val
957 ATG AAG CCC MET Lys Pro	CCA GCA GA Pro Ala GI	972 AA GTG GTG Lu Val Val	CCT GGG CAC Pro Gly His	987 CTC ATC ACA Leu Ile Thr	1002 CGA CTA CTG GAC Arg Leu Leu Asp
	1017		032	1047	
ACG AGA CTO	GTC CAC CAC CAC LA Val His Hi	AC AAT GTG is Asn Val	ACA CGG TGG Thr Arg Trp	GAA ACT TTT	GAT GTG AGC CCT Asp Val Ser Pro
Thr Arg Lev 1062 GCG GTC CT	Val His Hi 107 CGC TGG AG	is Asn Val ' 77 CC CGG GAG '	Thr Arg Trp 1092 AAG CAG CCA	GAA ACT TTT Glu Thr Phe AAC TAT GGG	GAT GTG AGC CCT Asp Val Ser Pro 1107 CTA GCC ATT GAG Leu Ala Ile Glu
Thr Arg Lev 1062 GCG GTC CT Ala Val Lev 1122 GTG ACT CAG	1 Val His Hi 107 1 CGC TGG AG 1 Arg Trp Th	is Asn Val	Thr Arg Trp 1092 AAG CAG CCA Lys Gln Pro ACC CAC CAG	GAA ACT TTT Glu Thr Phe AAC TAT GGG Asn Tyr Gly 1152 GGC CAG CAT Gly Gln His	1107 CTA GCC ATT GAG Leu Ala Ile Glu 1167 GTC AGG ATT AGC Val Arg Ile Ser
Thr Arg Lev 1062 GCG GTC CT Ala Val Lev 1122 GTG ACT CAC Val Thr His	1 Val His Hi 107 T CGC TGG AC 1 Arg Trp Th 2 CTC CAT CAT 5 Leu His G1	is Asn Val	Thr Arg Trp 1092 AAG CAG CCA Lys Gln Pro ACC CAC CAG Thr His Gln 1197 AAT TGG GCC Asn Trp Ala	GAA ACT TTT Glu Thr Phe AAC TAT GGG ASN TYR Gly 1152 GGC CAG CAT Gly Gln His CAG CTC CGG Gln Leu Arg	Asp Val Ser Pro 1107 CTA GCC ATT GAG Leu Ala Ile Glu 1167 GTC AGG ATT AGC Val Arg Ile Ser 1212 CCC CTC CTG GTC Pro Leu Leu Val
Thr Arg Level 1062 GCG GTC CTC Ala Val Level CGA TCG TTC Arg Ser Level 1227	T Val His Hi T CGC TGG AC T Arg Trp Th C CTC CAT CA S Leu His GI A CCT CAA GC I Pro Gln GI	is Asn Val	Thr Arg Trp 1092 AAG CAG CCA Lys Gln Pro ACC CAC CAG Thr His Gln 1197 AAT TGG GCC Asn Trp Ala	GAA ACT TTT Glu Thr Phe AAC TAT GGG Asn Tyr Gly 1152 GGC CAG CAT Gly Gln His CAG CTC CGG Gln Leu Arg 1257 ACC CGA CGC	Asp Val Ser Pro 1107 CTA GCC ATT GAG Leu Ala Ile Glu 1167 GTC AGG ATT AGC Val Arg Ile Ser 1212 CCC CTC CTG GTC

FIGURE 2C

1332
CGC CAC TCG CTC TAT GTG GAC TTC AGC GAT GTG GGC TGG AAT GAC TGG ATT GTG ATG His Ser Leu Tyr Val Asp Phe Ser Asp Val Gly Trp Asn Asp Trp Ile Val

1392
GCC CCA CCA GGC TAC CAG GCC TTC TAC TGC CAT GGG GAC TGC CCC TTT CCA CTG Ala Pro Pro Gly Tyr Gln Ala Phe Tyr Cys His Gly Asp Cys Pro Phe Pro Leu

GCT GAC CAC CTC AAC TCA ACC AAC CAT GCC ATT GTG CAG ACC CTG GTC AAT TCT Ala Asp His Leu Asn Ser Thr Asn His Ala Ile Val Gln Thr Leu Val Asn Ser

1497
GTC AAT TCC AGT ATC CCC AAA GCC TGT TGT GTG CCC ACT GAA CTG AGT GCC ATC Val Asn Ser Ser Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile

TCC ATG CTG TAC CTG GAT GAG TAT GAT GAT AAG GTG GTA CTG AAA AAT TAT CAG GAG Ser MET Leu Tyr Leu Asp Glu Tyr Asp Lys Val Val Leu Lys Asn Tyr Gln Glu

1602
ATG GTA GTA GAG GGA TGT GGG TGC CGC TGAGATCAGG CAGTCCTTGA GGATAGACAG

1736 1746 1756 1766 1776 1786 1796 ACAGACTGCT TCCTTATAGC TGGACTTTTA TTTAAAAAA AAAAAAAAA AATGGAAAAA ATCCCTAAAC

1806 1816 1826 1836 1846 1856 1866 ATTCACCTTG ACCTTATTTA TGACTTTACG TGCAAATGTT TTGACCATAT TGATCATATA TTTTGACAAA

1876 1886 1896 1906 1916 1926 1936 ATATATTTAT AACTACGTAT TAAAAGAAA AAATAAAATG AGTCATTATT TTAAAAAAAA AAAAAAAACT

1946 CTAGAGTCGA CGGAATTC

FIGURE 3A

GTGA		10 GC G	GCGC			CGCC		ccc		40 CCA	CCTG		50 GG	
TGCG		60 CG G.	AGCC	7(CGGA		CGGG'	80 TAGC	GCG	TAGA	90 GCC (GGCG	CG A'	99 TG ET 1}	
CAC His	GTG Val	108 CGC Arg	TCA Ser	CTG Leu	117 CGA Arg	GCT	GCG Ala	126 GCG Ala	CCG	CAC His	135 AGC Ser	TTC Phe	GTG Val	144 GCG Ala
CTC Leu	TGG Trp	153 GCA Ala	ccc Pro	CTG Leu	162 TTC Phe	CTG Leu	CTG Leu	171 CGC Arg	TCC Ser	GCC Ala	180 CTG Leu	GCC Ala	GAC Asp	189 TTC Phe
AGC Ser	CTG Leu	198 GAC Asp	AAC Asn	GAG	GTG	CAC	TCG Ser	AGC	TTC	ATC Ile	225 CAC His	CGG Arg	CGC Arg	234 CTC Leu
CGC	AGC Ser	243 CAG Gln	GAG Glu	CGG Arg	252 CGG Arg	GAG	ATG MET	261 CAG Gln	CGC Arg	GAG Glu	270 ATC Ile	CTC Leu	TCC Ser	279 ATT Ile
TTG Leu	GGC Gly	288 TTG Leu	ccc Pro	CAC His	297 CGC Arg	CCG	CGC Arg	306 CCG Pro	CAC His	CTC Leu	315 CAG Gln	GGC Gly	AAG Lys	324 CAC His
AAC Asn	TCG Ser	333 GCA Ala	CCC Pro	ATG MET	342 TTC Phe	ATG MET	CTG Leu	351 GAC Asp	CTG Leu	TAC Tyr	360 AAC Asn	GCC Ala	ATG MET	369 GCG Ala
GTG Val	GAG Glu	378 GAG Glu	GGC Gly	GGC Gly	GGG	CCC Pro	GGC Gly	396 GGC Gly	CAG Gln	GGC Gly	405 TTC Phe	TCC Ser	TAC Tyr	414 CCC Pro
				TTC Phe	AGT	ACC		GGC						
			CAT	TTC Phe	CTC	ACC	GAC	GCC						
				GAA Glu										

FIGURE 3B

CAC His	CAT His	558 CGA Arg	GAG Glu	TTC Phe	567 CGG Arg	TTT Phe	GAT Asp	576 CTT Leu	TCC	AAG Lys	585 ATC Ile	CCA	GAA Glu	594 GGG Gly
GAA Glu	GCT Ala	603 GTC Val	ACG Thr	GCA Ala	612 GCC Ala	GAA Glu	TTC Phe	621 CGG Arg	ATC Ile	TAC Tyr	630 AAG Lys	Asp GAC	TAC Tyr	639 ATC Ile
CGG Arg	GAA Glu	648 CGC Arg	TTC Phe	GAC Asp	657 AAT Asn	GAG Glu	ACG Thr	666 TTC Phe	CGG Arg	ATC Ile	675 AGC Ser	GTT Val	TAT Tyr	684 CAG Gln
GTG Val	CTC Leu	693 CAG Gln	GAG Glu	CAC His	702 TTG Leu	GGC Gly	AGG Arg	711 GAA Glu	TCG Ser	GAT Asp	720 CTC Leu	TTC Phe	CTG Leu	729 CTC Leu
GAC Asp	AGC Ser	738 CGT Arg	ACC Thr	otc Leu	747 TGG Trp	GCC Ala	TCG Ser	756 GAG Glu	GAG Glu	GGC Gly	765 TGG Trp	CTG Leu	GTG Val	774 TTT Phe
GAC Asp	ATC Ile	783 ACA Thr	GCC Ala	ACC Thr	792 AGC Ser	AAC Asn	CAC His	801 TGG Trp	GTG Val	GTC Val	810 AAT Asn	CCG Pro	CGG Arg	819 CAC His
AAC Asn	CTG Leu	828 GGC Gly	CTG Leu	CAG Gln	837 CTC Leu	TCG Ser	GTG Val	846 GAG Glu	ACG Thr	CTG Leu	855 GAT Asp	GLY GGG	CAG Gln	864 AGC Ser
ATC Ile	AAC Asn	873 CCC Pro	AAG Lys	TTG Leu	882 GCG Ala	GGC Gly	CTG Leu	891 ATT Ile	GGG GLY	Arg CGG	900 CAC His	GGG Gly	CCC Pro	909 CAG Gln
AAC Asn	AAG Lys	918 CAG Gln	CCC Pro	TTC Phe	927 ATG MET	GTG Val	GCT Ala	936 TTC Phe	TTC Phe	AAG Lys	945 GCC Ala	ACG Thr	GAG Glu	954 GTC Val
CAC His	TTC Phe	963 CGC Arg	AGC Ser	ATC Ile	Arg	TCC Ser (293)	Thr	981 GGG Gly	AGC Ser	AAA Lys	990 CAG Gln	CGC Arg	AGC Ser	999 CAG Gln
					,									
		800			17		10	26		10	35		10	44
AAC	CGC	TCC	AAG	ACG	CCC	AAG	AAC	CAG	GAA	GCC	CTG	CGG	ATG	GCC
VDII	Arg	361	пåр	THE	FIG	πÃg	ASIL	911	<u>ulu</u>	wig	reu	vid	MET.	ATG
		1053			062			1071			.080		1	089
AAC	GTG	GCA	GAG	AAC	AGC	AGC	AGC	GAC	CAG	AGG	CAG	GCC	TGT	AAG
Asn	Val	Ala	Glu	Asn	Ser	Ser	Ser	Asp	Gln	Arg	Gln	Ala	Cys	Lys

FIGURE 3C

1098 1107 1116 1125 AAG CAC GAG CTG TAT GTC AGC TTC CGA GAC CTG GGC TGG CAG GAC Lys His Glu Leu Tyr Val Ser Phe Arg Asp Leu Gly Trp Gln Asp 1170 1152 1161 TGG ATC ATC GCG CCT GAA GGC TAC GCC GCC TAC TAC TGT GAG GGG Trp Ile Ile Ala Pro Glu Gly Tyr Ala Ala Tyr Tyr Cys Glu Gly 1215 1197 1206 1188 GAG TGT GCC TTC CCT CTG AAC TCC TAC ATG AAC GCC ACC AAC CAC Glu Cys Ala Phe Pro Leu Asn Ser Tyr MET Asn Ala Thr Asn His 1242 1251 1260 GCC ATC GTG CAG ACG CTG GTC CAC TTC ATC AAC CCG GAA ACG GTG Ala Ile Val Gln Thr Leu Val His Phe Ile Asn Pro Ile Ser Val . 1287 1296 1305 1278 CCC AAG CCC TGC TGT GCG CCC ACG CAG CTC AAT GCC ATC TCC GTC Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser Val 1350 1332 1341 CTC TAC TTC GAT GAC AGC TCC AAC GTC ATC CTG AAG AAA TAC AGA Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr Arg 1377 1386 AAC ATG GTG GTC CGG GCC TGT GGC TGC CAC TAGCTCCTCC Asn MET Val Val Arg Ala Cys Gly Cys His 1439 1448 1429 1409 1419

GAGAATTCAG ACCCTTTGGG GCCAAGTTTT TCTGGATCCT CCATTGCTC

FIGURE 4A

CGA	CCAT	10 GAG	AGAT			GAGG			AGGG	40 GAAG	CGA	.GCCC	50 GCC	
GAG	aggt	60 GGC	GGGG	ACTG	CT C	70 ACGC	CAAG		0 CACA	GÇGG	9 0 CCG	CGCI	CCG	100
GCC!	rccc	110 TCC	GCCG		20 AC G	CCTC		O G AT	CCGC	140 GGGG	GCA	GCCC	150 GGC	
CGG	1: GCGG	M	TG C ET P 1)	CG G	68 GG C ly L	TG G eu G	GG C	77 GG A rg A	GG G rg A	CG C	86 AG T ln T	GG C	TG T	95 GC Ys
TGG Trp	TGG Trp	204 TGG Trp	GJ Y	CTG Leu	213 CTG Leu	TGC	AGC Ser	222 TGC Cys	TGC	GGG	231 CCC Pro	CCG	CCG Pro	240 CTG Leu
CGG Arg	CCG Pro	249 CCC Pro	TTG	CCC Pro	258 GCT Ala	GCC	GCG Ala	267 GCC Ala	GCC	GCC Ala	276 GCC Ala	GGG	GGG Gly	285 CAG Gln
CTG Leu	CTG Leu	294 GGG Gly	GAC	GGC Gly	303 GGG Gly	AGC	CCC	312 GGC Gly	CGC	ACG Thr	321 GAG Glu	CAG	CCG Pro	330 CCG Pro
CCG Pro	TCG Ser	339 CCG Pro	CAG	TCC Ser	TCC	TCG Ser	GGC	TTC	CTG Leu	TAC Tyr	CGG	CGG Arg	CTC	375 AAG Lys
ACG Thr	CAG Gln	384 GAG Glu	AAG Lys	CGG Arg	393 GAG Glu	ATG	CAG	AAG	GAG Glu	ATC	411 TTG Leu	TCG	GTG	420 CTG Leu
GGG GGG	CTC Leu	429 CCG Pro	CAC His	CGG Arg	438 CCC Pro	CGG	CCC	447 CTG Leu	CAC	GGC Gly	456 CTC Leu	CAA	CAG Gln	465 CCG Pro

FIGURE 4B

474 483 492 501 510 CAG CCC CCG GCG CTC CGG CAG CAG GAG GAG CAG CAG CAG CAG CA
519 528 537 546 555 CAG CTG CCT CGC GGA CAG CCG CCG CCG CCG CCG CCG CCG
564 573 582 591 600 CCC CTC TTC ATG CTG GAT CTG TAC AAC GCC CTG TCC GCC GAC AAC Pro Lau Phe MET Leu Asp Leu Tyr Asn Ala Leu Ser Ala Asp Asn
609 618 627 636 645 GAC GAG GAC GGG GCG TCG GAG GGG GAG AGG CAG TCC TGG CCC ASP Glu Asp Gly Ala Ser Glu Gly Glu Arg Gln Gln Ser Trp Pro
654 663 672 681 690 CAC GAA GCA GCC TCG TCC CAG CGT CGG CAG CCC CCG GGC His Glu Ala Ala Ser Ser Ser Gln Arg Arg Gln Pro Pro Gly Ser
699 708 717 726 735 GCC GCG CAC CCG CTC AAC CGC AAG AGC CTT CTG GCC CCC GGA TCT Pro Pro Gly Ala Ala His Pro Leu Asn Arg Lys Ser Leu Leu Ala
744 753 762 771 780 GGC AGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGS AGC GGC GGC TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG GCG CAG GAC AGC GCC GGC AGC GGC GGC GCG TCC CCA CTG ACC AGC GCG GCG CAG GAC AGC GCC ACC AC
789 798 807 816 825 TTC CTC AAC GAC GCG GAC ATG GTC ATG AGC TTT GTG AAC CTG GTG Phe Leu Asn Asp Ala Asp MET Val MET Ser Phe Val Asn Leu Val
834 843 852 861 870 GAG TAC GAC AAG GAG TTC TCC CCT CGT CAG CGA CAC CAC AAA GAG Glu Tyr Asp Lys Glu Phe Ser Pro Arg Gln Arg His His Lys Glu
879 888 897 906 915 TTC AAG TTC AAC TTA TCC CAG ATT CCT GAG GGT GAG GTG ACG Phe Lys Phe Asn Leu Ser Gln Ile Pro Glu Gly Glu Val Val Phe
924 933 942 951 960 GCT GCA GAA TTC CGC ATC TAC AAG GAC TGT GTT ATG GGG AGT TTT Phe Arg Ile Tyr Lys Asp Cys Val MET Ala Ala Glu Gly Ser Phe

FIGURE 4C

			969			978			987			996			1005
	AAA	AAC	CAA	ACT	TTT	CTT	ATC	AGC	ATT	TAT	CAA	GTC	TTA	CAG	GAG
	Lys	Asn	Gln	Thr	Phe	Leu	Ile	Ser	Ile	Tyr	Gln	Val	Leu	Gln	Glu
									<						
		-	1014			1023			1032			1041			1050
	CAT	CAG	CAC	AGA	GAC	TCT	GAC	CTG	TTT	TTG	TTG	GAC	ACC	CGT	GTA
	H1s	Gln	His	Arg	Asp	Ser	Asp	Leu	Phe	Leu	Leu	Asp	Thr	Arg	Val
	C m a		1059	max		1068		maa.	1077			1086	ATC		1095
	Val.	400	310	COX	Clu	GAA	GUC	TGG	Lau	GAA	Dho	A CD	Ile	Mb =	310
	VQI	TTD	vra	SeT	GIU	GIU	GLY	TLD	Dea	GIU	FIIG	veħ	774	THE	WT.
		3	1104			1113		:	1122			1131		1	1140
	ACT	AGC	AAT	CTG	TGG	GTT	GTG	ACT	CCA	CAG	CAT	AAC	ATG	GGG	CTT
	Thr	Ser	Asn	Leu	Trp	Val	Val	Thr	Pro	Gln	His	Asn	MET	Gly	Leu
					•										
		_						_							
			1149			1158						1176			1185
	CAG	CTG	AGC	GTG	GTG	ACA	AGG	GAT	GGA	GTC	CAC	GTC	CAC	CCC	CGA
	CTÜ	Leu	ser	Val	Val	THE	Arg	Asp	GTA	APT	HIB	Val	His	Pro	Arg
		7	1194			1203			1212			1221		•	1230
	GCC			CTG			364						AAG		
	Ala	Ala	Glv	Leu	Val	Glv	Ara	Agp	Glv	Pro	Tvr	dak	Lys	Gln	Pro
			2			2					-2-				
			L239			1248			1257			1266			275
	TTC	ATG	GTG	GCT	TTC	TTC	AAA	GTG	AGT	GAG	GTC	CAC	GTG	CGC	ACC
	Phe	MET	Val	Ala	Phe	Phe	Lys	Val	Ser	Glu	Val	His	Val'	Arg	Thr
		,	1284			1293		-	1302			1311		,	220
	200			ccc									CGT	7 7 7 1	320
1	Th~	Ara	Sor	Ala	Ser	SAT	224	750	Ara	GIR	GIN	Ser	Arg	yen	250
		2-3	241	ALU	267	261	wid	ary	ALG	(382		- CA	ura	Maii	ALG
										,,,,,,	• ,				
		1	1329		2	L338		1	L347			1356		1	365
•	TCT			TCC			GTG			GTC			GCT	TCA	GAT
	Ser	Thr	Gln	Ser	Gln	ABP	Val	Ala	Arg	Val	Ser	Ser	Ala	Ser	Asp
	(388														_
			1374			L383		1	1392			1401			410
													CAT		
•	Tyr	Asn	Ser	Ser	Glu	Leu	Lys	Thr	Ala			Lys	<u>His</u>	Glu	Leu
										(412	2)				
			410			400								•	465
	יים מיד		419	mma		L428			437	C . C		1446 mcc	A TO C		455
	TVI	Un I	VOT.	TIC	CAA	GAC	CTG	GGA	Ties	CAG	CAC	1.00	ATC	ATT.	Ala
	TAL	val	SEL	FIIE	GTU	ASP	ren	GTA	IID	OTU	ARD	TIP	Ile	TTE	WT G

FIGURE 4D

CCC AAG GGC TAT GCT GCC AAT TAC TGT GAT GGA GAA TGC TCC TTC Pro Lys Gly Tyr Ala Ala Asn Tyr Cys Asp Gly Glu Cys Ser Phe CCA CTC AAC GCA CAC ATG AAT GCA ACC AAC CAC GCG ATT GTG CAG Pro Leu Asn Ala His MET Asn Ala Thr Asn His Ala Ile Val Gln ACC TTG GTT CAC CTT ATG AAC CCC GAG TAT GTC CCC AAA CCG TGC Thr Leu Val His Leu MET Asn Pro Glu Tyr Val Pro Lys Pro Cys TGT GCG CCA ACT AAG CTA AAT GCC ATC TCG GTT CTT TAC TTT GAT Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp GAC AAC TCC AAT GTC ATT CTG AAA AAA TAC AGG AAT ATG GTT GTA Asp Asn Ser Asn Val Ile Leu Lys Lys Tyr Arg Asn MET Val Val 1689 1698 1708 1718 1728 AGA GCT TGT GGA TGC CAC TAACTCGAAA CCAGATGCTG GGGACACACA Arg Ala Cys Gly Cys His 1748 . TTCTGCCTTG GATTCCTAGA TTACATCTGC CTTAAAAAAA CACGGAAGCA CAGTTGGAGG TGGGACGATG AGACTTTGAA ACTATCTCAT GCCAGTGCCT TATTACCCAG GAAGATITTA AAGGACCTCA TTAATAATTT GCTCACTTGG TAAATGACGT GAGTAGTTGT TGGTCTGTAG CAAGCTGAGT TTGGATGTCT GTAGCATAAG GTCTGGTAAC TGCAGAAACA TAACCGTGAA GCTCTTCCTA CCCTCCTCCC CCAAAAACCC ACCAAAATTA GTTTTAGCTG TAGATCAAGC TATTTGGGGT GTTTGTTAGT AAATAGGGAA AATAATCTCA AAGGAGTTAA ATGTATTCTT GGCTAAAGGA TCAGCTGGTT CAGTACTGTC TATCAAAGGT

FIGURE 4E

2138	2148	2158	2168	2178
AGATTTTACA	GAGAACAGAA	ATCGGGGAAG	TGGGGGGAAC	GCCTCTGTTC
2188	2198	2208	2218	2228
AGTTCATTCC	CAGAAGTCCA	CAGGACGCAC	AGCCCAGGCC	ACAGCCAGGG
2238	2248	2258	2268	2278
CTCCACGGGG	CGCCCTTGTC	TCAGTCATTG	CTGTTGTATG	TTCGTGCTGG
2288	2298	2308	2318	2328
AGTTTTGTTG	GTGTGAAAAT	ACACTTATTT	CAGCCAAAAC	ATACCATTTC
2338	2348	2358	2368	2378
TACACCTCAA	TCCTCCATTT	GCTGTACTCT	TTGCTAGTAC	CAAAAGTAGA
2388	2398	2408	2418	2428
CTGATTACAC	TG\$GGTG\$G	CTACABGGG		TGTAACACGT
2438				2478
GAAGGCAGTG	CTCACCTCTT	CTTTACCAGA	ACGGTTCTTT	GACCAGCACA
TTAACTTCTG	GACTGCCGGC	TCTAGTACCT	TTTCAGTAAA	2528 GTGGTTCTCT
GCCTTTTTAC	TATACAGCAT	ACCACGCCAC	AGGGTTAGAA	
AAATAAAATG	2598	2608	2618	2628
	AGGGTGCCCA	GCTTATAAGA	ATGGTGTTAG	GGGGATGAGC
2638	2648	2658	2668	2678
ATGCTGTTTA	TGAACGGAAA	TCATGATTTC	CCTGTAGAAA	GTGAGGCTCA
2688	2698	2708	2718	2728
GATTAAATTT	TAGAATATTT	TCTAAATGTC	TTTTTCACAA	TCATGTGACT
2738	2748	2758	2768	2778
GGGAAGGCAA	TTTCATACTA	AACTGATTAA	ATAATACATT	TATAATCTAC
2788	2798	2808	2818	2828
AACTGTTTGC	ACTTACAGCT	TTTTTTGTAA	ATATAAACTA	TAATTTATTG
2838	2848	2858	2868	2878
TCTATTTTAT	ATCTGTTTTG	CTGTGGCGTT	GGGGGGGGG	CCGGGCTTTT
2888	2898	2908	2918	GGCGG
GGGGGGGGG	GTTTGTTTGG	GGGTGTCGT	GGTGTGGGCG	

FIGURE 5A

10 CTGGTATATT	20 TGTGCCTGCT	30 GGAGGTGGAA	40 TTAACAGTAA	50 GAAGGAGAAA
60	70	80	90	100
GGGATTGAAT	GGACTTACAG	80 GAAGGATTTC	AAGTAAATTC	AGGGAAACAC
110	120	130	140	150
ATTTACTTGA	ATAGTACAAC	CTAGAGTATT	ATTTTACACT	AAGACGACAC
160	170	180	190	200
AAAAGATGTT	AAAGTTATCA	CCAAGCTGCC	GGACAGATAT	ATATTCCAAC
210	220	230	240	250
ACCAAGGTGC	AGATCAGCAT	AGATCTGTGA	TTCAGAAATC	AGGATTTGTT
260	270	280	290	300
TTGGAAAGAG	CTCAAGGGTT	280 GAGAAGAACT	CAAAAGCAAG	TGAAGATTAC
310	320	330	340	350
TTTGGGAACT	ACAGTTTATC	AGAAGATCAA	CTTTTGCTAA	TTCAAATACC
360	370	380	390	400
AAAGGCCTGA	TTATCATAAA	380 TTCATATAGG	AATGCATAGG	TCATCTGATC
410	420	430	440	450
TTTATATAAA	AGCCGTCTTC	430 TGCTACATCA	ATGCAGCAAA	AACTCTTAAC
		480		
AACTGTGGAT	AATTGGAAAT	CTGAGTTTCA	GCTTTCTTAG	AAATAACTAC
510	520	530	540	550
TCTTGACATA	TTCCAAAATA	TTTAAAATAG	GACAGGAAAA	TCGGTGAGGA
560	570	580 CTGTCATGAA	500	600
TGTTGTGCTC	AGAAATGTCA	CTCTCATCAA	AATAGGTAA	Valuation Canadada de la compansión de l
610	620	630	640	650
TCAGCTACTG	GGAAACTGTA	CCTCCTAGAA	CCTTAGGTTT	TTTTTTTTT
660	670	680	690	700
AAGAGGACAA	GAAGGACTAA	AAATATCAAC	TTTTGCTTTT	GGACAAAA

FIGURE 5B

701 ATG MET (1)	CAT His	CTG Leu	710 ACT Thr	GTA Val	mm m	719 TTA Leu	CTT Leu	AAG Lys	728 GGT Gly	ATT Ile	GTG Val	737 GGT Gly	TTC Phe	CTC Leu
746 TGG Trp	AGC Ser	TGC Cys	755 TGG Trp	GTT Val	CTA Leu	764 GTG Val	GGT Gly	TAT Tyr	773 GCA Ala	AAA Lys	GGA Gly	782 GGT Gly	TTG Leu	GGA Gly
791 GAC Asp	AAT Asn	CAT His	800 GTT Val	-	TCC s Sex	809 AGT Ser	TTT Phe	ATT : Ile	818 TAT TY	AGA r Ar	AGA g Ar	827 CTA g Lei	CGG u Arg	AAC Asn
836 CAC His		AGA Arg	845 CGG Arg		ATA Ile	854 CAA Gln	AGG Arg	GAA Glu	863 ATT Ile	CTC Leu	TCT Ser	872 ATC Ile	TTG Leu	GGT Gly
881 TTĢ Leu		CAC His	890 AGA Arg	000	AGA Arg	899 CCA Pro	WALL	TCA	908 CCT Pro	GGA Gly	AAA Lys	917 ATG Gln	ACC Ala	AAT Ser
926 CAA Ser		TCC	935 TCT Leu	~~	CCT MET	944 CTC Leu	TTT Asp	ATG Leu	953 CTG Tyr	GAT	CTC Ala	962 TAC MET	AAT Thr	GCC Asn
971 GAA Glu		LAA . nek .	980 CCT		GAG Glu	989 TCG Ser	GAG	TAC Tyr	998 TCA Ser	GTA	AGG	1007 GCA Ala	TCC	TTG Leu
1016 GCA Ala		GAG	1025 ACC		000	1034 GCA Ala	NCN.	AAC	1043 GGA Gly	TAC	CCA	1052 GCC Ala	TCT	CCC Pro
1061 TAA Taa		TAT	1070 CCI			1079 ATA Ile	CAG	ተመ አ	1088 TCT Ser	CGG	ACG Thr	1097 ACT Thr	CCT	CTG Leu
1100 ACC		C CAG	llls AG n Se		r cci	1124 CTA Leu	GCC	: AGC	1133 CTC Lev	CAT	GAT ASP	1142 ACC Thr	: AAC	TTT Phe
115 CTC Let		T GA' n As	ll6 T GC p Ala	n ca.	C ATO	1169 GTC Val	• አጥር	AGC Sei	1176 TT1 Phe	GTO	AAC Asi	1187 TTA Lev	GTT	GAA Glu
119 AG Ar		C AA p Ly	120 G GA s As	m mm	T TC e Se	1214 F CAC F His	~ ~ ~ ~	G CG	122: A AGO g Aro	CA.	r TAC s Ty	1232 C AAJ c Lys	A GAA	TTT

FIGURE 5C

CGA TTT GAT CTT ACC CAA ATT CCT CAT GGA GAG GCA GTG ACA GCA 1268 Arg Phe Asp Leu Thr Gln Ile Pro His Gly Glu Ala Val Thr Ala GCT GAA TTC CGG ATA TAC AAG GAC CGG AGC AAC AAC CGA TTT GAA Ala Glu Phe Arg Ile Tyr Lys Asp Arg Ser Asn Asn Arg Phe Glu 1367 AAT GAA ACA ATT AAG ATT AGC ATA TAT CAA ATC ATC AAG GAA TAC 1358 Asn Glu Thr Ile Lys Ile Ser Ile Tyr Gln Ile Ile Lys Glu Tyr ACA AAT AGG GAT GCA GAT CTG TTC TTG TTA GAC ACA AGA AAG GCC Thr Asn Arg Asp Ala Asp Leu Phe Leu Leu Asp Thr Arg Lys Ala 1403 CAA GCT TTA GAT GTG GGT TGG CTT GTC TTT GAT ATC ACT GTG ACC Gln Ala Leu Asp Val Gly Trp Leu Val Phe Asp Ile Thr Val Thr 1421 AGC AAT CAT TGG GTG ATT AAT CCC CAG AAT AAT TTG GGC TTA CAG Ser Asn His Trp Val Ile Asn Pro Gln Asn Asn Leu Gly Leu Gln 1493 1466 CTC TGT GCA GAA ACA GGG GAT GGA CGC AGT ATC AAC GTA AAA TCT 1538 Leu Cys Ala Glu Thr Gly Asp Gly Arg Ser Ile Asn Val Lys Ser GCT GGT CTT GTG GGA AGA CAG GGA CCT CAG TCA AAA.CAA CCA TTC Ala Gly Leu Val Gly Arg Gln Gly Pro Gln Ser Lys Gln Pro Phe 1592 1628 ATG GTG GCC TTC TTC AAG GCG AGT GAG GTA CTT CTT CGA TCC GTG MET Val Ala Phe Phe Lys Ala Ser Glu Val Leu Leu Arg Ser Val AGA GCA GCC AAC AAA CGA AAA AAT CAA AAC CGC AAT AAA TCC AGC Arg Ala Ala Asn Lys Arg Lys Asn Gln Asn Arg Asn Lys Ser Ser TOT CAT CAG GAC TOO TOO AGA ATG TOO AGT GTT GGA GAT TAT AAC 1718 Ser His Gln Asp Ser Ser Arg MET Ser Ser Val Gly Asp Tyr Asn (337)

FIGURE 5D

1736			
Thr Ser Glu Gln Lys Gln Ala Cys Lys Lys His Glu Leu Tyr Val	1736 1745	1754 1763	1772
Thr Ser Glu Gln Lys Gln Ala Cys Lys Lys His Glu Leu Tyr Val	ACA AGT GAG CAA AAA CA	A GCC TGT AAG AAG C	AC GAA CTC TAT GTG
1781 1790 1799 1808 1817 AGC TTC CGG GAT CTG GGA TGG CAG GAC TGG ATT ATA GCA CCA GAA Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu (362) 1826 1835 1844 1853 1862 GGA TAC GCT GCA TTT TAT TGT GAT GGA GAA TGT TCT TTT CCA CTT Gly Tyr Ala Ala Phe Tyr Cys Asp Gly Glu Cys Ser Phe Pro Leu 1871 AAC GCC CAT ATG AAT GCC ACC AAC CAC GCT ATA GTT CAG ACT CTG ASn Ala His MET Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu 1916 1925 1934 1943 1952 GTT CAT CTG ATG TTT CCT GAC CAC GTA CCA AAG CCT TGT TGT GCT Val His Leu MET Phe Pro Asp His Val Pro Lys Pro Cys Cys Ala 1961 1970 1979 1988 1997 CCA ACC AAA TTA AAT GCC ATC TCT GTT CTG TAC TTT GAT GAC AGC Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA	Thr Ser Glu Gln Lys Gli	Ala Cys Lys Lys H	is Glu Leu Tvr Val
AGC TTC CGG GAT CTG GGA TGG CAG GAC TGG ATT ATA GCA CCA GAA Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu (362) 1826	-		
AGC TTC CGG GAT CTG GGA TGG CAG GAC TGG ATT ATA GCA CCA GAA Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu (362) 1826		•	•
Ser Phe (362) Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu (362)		1799 1808	1817
Ser Phe (362) Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu (362)	AGC TTC CGG GAT CTG GG	A TGG CAG GAC TGG AT	TT ATA GCA CCA GAA
1826	Ser Phe Arg Asp Leu Gly	Trp Gln Asp Trp I	le Ile Ala Pro Glu
GGA TAC GCT GCA TTT TAT TGT GAT GGA GAA TGT TCT TTT CCA CTT Gly Tyr Ala Ala Phe Tyr Cys Asp Gly Glu Cys Ser Phe Pro Leu 1871			
GGA TAC GCT GCA TTT TAT TGT GAT GGA GAA TGT TCT TTT CCA CTT Gly Tyr Ala Ala Phe Tyr Cys Asp Gly Glu Cys Ser Phe Pro Leu 1871			
Gly Tyr Ala Ala Phe Tyr Cys Asp Gly Glu Cys Ser Phe Pro Leu 1871	1826 1835	1844 1853	1862
Gly Tyr Ala Ala Phe Tyr Cys Asp Gly Glu Cys Ser Phe Pro Leu 1871	GGA TAC GCT GCA TTT TA	r tgt gat gga gaa to	T TCT TTT CCA CTT
1871	Gly Tyr Ala Ala Phe Ty	Cys Asp Gly Glu Cy	s Ser Phe Pro Leu
AAC GCC CAT ATG AAT GCC ACC AAC CAC GCT ATA GTT CAG ACT CTG ASN Ala His MET ASN Ala Thr Asn His Ala Ile Val Gln Thr Leu 1916	_		
AAC GCC CAT ATG AAT GCC ACC AAC CAC GCT ATA GTT CAG ACT CTG ASN Ala His MET ASN Ala Thr Asn His Ala Ile Val Gln Thr Leu 1916	1871 1880	1889 1898	1907
Asn Ala His MET Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu 1916 1925 1934 1943 1952 GTT CAT CTG ATG TTT CCT GAC CAC GTA CCA AAG CCT TGT TGT GCT Val His Leu MET Phe Pro Asp His Val Pro Lys Pro Cys Cys Ala 1961 1970 1979 1988 1997 CCA ACC AAA TTA AAT GCC ATC TCT GTT CTG TAC TTT GAT GAC AGC Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser 2006 2015 2024 2033 2042 TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA	AAC GCC CAT ATG AAT GC	C ACC AAC CAC GCT AT	TA GTT CAG ACT CTG
GTT CAT CTG ATG TTT CCT GAC CAC GTA CCA AAG CCT TGT TGT GCT Val His Leu MET Phe Pro Asp His Val Pro Lys Pro Cys Cys Ala 1961 1970 1979 1988 1997 CCA ACC AAA TTA AAT GCC ATC TCT GTT CTG TAC TTT GAT GAC AGC Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser 2006 2015 2024 2033 2042 TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA	Asn Ala His MET Asn Ala	a Thr Asn Hiś Ala II	le Val Gln Thr Leu
GTT CAT CTG ATG TTT CCT GAC CAC GTA CCA AAG CCT TGT TGT GCT Val His Leu MET Phe Pro Asp His Val Pro Lys Pro Cys Cys Ala 1961 1970 1979 1988 1997 CCA ACC AAA TTA AAT GCC ATC TCT GTT CTG TAC TTT GAT GAC AGC Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser 2006 2015 2024 2033 2042 TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA			
Val His Leu MET Phe Pro Asp His Val Pro Lys Pro Cys Cys Ala 1961 1970 1979 1988 1997 CCA ACC AAA TTA AAT GCC ATC TCT GTT CTG TAC TTT GAT GAC AGC Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser 2006 2015 2024 2033 2042 TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA		1934 1943	1952
Val His Leu MET Phe Pro Asp His Val Pro Lys Pro Cys Cys Ala 1961 1970 1979 1988 1997 CCA ACC AAA TTA AAT GCC ATC TCT GTT CTG TAC TTT GAT GAC AGC Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser 2006 2015 2024 2033 2042 TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA	GTT CAT CTG ATG TTT CC	r gac cac gta cca ai	AG CCT TGT TGT GCT
1961 1970 1979 1988 1997 CCA ACC AAA TTA AAT GCC ATC TCT GTT CTG TAC TTT GAT GAC AGC Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser 2006 2015 2024 2033 2042 TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA	Val His Leu MET Phe Pro	Asp His Val Pro Ly	78 Pro Cys Cys Ala
CCA ACC AAA TTA AAT GCC ATC TCT GTT CTG TAC TTT GAT GAC AGC Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser 2006 2015 2024 2033 2042 TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA			
Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser 2006 2015 2024 2033 2042 TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA		1979 1988	1997 [*]
2006 2015 2024 2033 2042 TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA	CCA ACC AAA TTA AAT GC	C ATC TCT GTT CTG T	AC TTT GAT GAC AGC
TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA	Pro Thr Lys Leu Asn Ala	a Ile Ser Val Leu Ty	r Phe Asp Asp Ser
TCC AAT GTC ATT TTG AAA AAA TAT AGA AAT ATG GTA GTA	•		
Ser Asn Val Ile Leu Lys Lys Tyr Arg Asn MET Val Val Arg Ser 2051 2060 2070 2080 2090 2100 TGT GGC TGC CAC TAATATTAAA TAATATTGAT AATAACAAAA AGATCTGTAT Cys Gly Cys His (454) 2110 2120 2130 2140 2150			
2051 2060 2070 2080 2090 2100 TGT GGC TGC CAC TAATATTAAA TAATATTGAT AATAACAAAA AGATCTGTAT Cys Gly Cys His (454) 2110 2120 2130 2140 2150	TCC AAT GTC ATT TTG AA	A AAA TAT AGA AAT AT	NG GTA GTA CGC TCA
2051 2060 2070 2080 2090 2100 TGT GGC TGC CAC TAATATTAAA TAATATTGAT AATAACAAAA AGATCTGTAT Cys Gly Cys His (454) 2110 2120 2130 2140 2150	Ser Ash Val Ile Leu Ly	s Lys Tyr Arg Asn Mi	T Val Val Arg Ser
TGT GGC TGC CAC TAATATTAAA TAATATTGAT AATAACAAAA AGATCTGTAT Cys Gly Cys His (454) 2110 2120 2130 2140 2150			_
TGT GGC TGC CAC TAATATTAAA TAATATTGAT AATAACAAAA AGATCTGTAT Cys Gly Cys His (454) 2110 2120 2130 2140 2150			
Cys Gly Cys His (454) 2110 2120 2130 2140 2150	2051 2060	2070 2080	2090 2100
Cys Gly Cys His (454) 2110 2120 2130 2140 2150		TAAA TAATATTGAT AAT	VACAAAA AGATCTGTAT
2110 2120 2130 2140 2150			
2110 2120 2130 2140 2150 TAAGGTTTAT GGCTGCAATA AAAAGCATAC TTTCAGACAA ACAGAAAAA AAA	(454)		
TAAGGTTTAT GGCTGCAATA AAAAGCATAC TTTCAGACAA ACAGAAAAA AAA	2110 2120	2130 2140	2150
	TAAGGTTTAT GGCTGCAATA A	AAGCATAC TTTCAGACAI	ACAGAAAAA AAA

Figure 6

GAATTCC	(1) GAG CC Glu Pr	C CAT o His	TGG AA Trp Ly	G GAG S Glu	TTC Phe	CGC Arg	TTT Phe	GAC Asp (10)	Leu	ACC Thr	CAG Gln	ATC Ile	CCG Pro	GCT Ala
GGG GAG Gly Glu	GCG GT Ala Va (2	l Thr	GCT GC Ala Al	G GAG a Glu	TTC Phe	CGG Arg	ATT Ile	TAC Tyr	AAG Lys	GTG Val (30)	Pro	AGC Ser	ATC Ile	CAC His
CTG CTC Leu Leu	AAC AGG Asn Arg	Thr	CTC CA Leu Hi (40)	C GTC s Val	AGC Ser	ATG Net	TTC Pha	CAG Gln	GTG Val	GTC Val	CAG Gln	GAG Glu (50)	Gln	TCC
AAC AGG Asn Arg	GAG TC	r GAC r Asp	TTG TI Leu Ph	C TTT e Phe (60	Lau	GAT Asp	CTT	CAG Gln	ACG Thr	CTC Leu	CGA Arg	GCT Ala	GGA Gly	GAC Asp (70)
GAG GGC Glu Gly	TGG CTC	G GTG	CTG GA Leu As	T GTC p Val	ACA Thr	GCA Ala (80)	Ala	AGT Ser	gac Asp	TGC Cyc	TGG Trp	TTG Leu	CTG Leu	AAG Lys
CGT CAC Arg His (90)	Lys Asy	CTG Leu	GGA CT Gly Lu	e Arg	CTC	TAT Tyr	Val	GAG Glu (100)	Thr	GAG Glu	GAT Asp	GGG Gly	CAC His	AGC Ser
GTG GAT Val Asp	CCT GGG Pro Gly (110	Leu .	GCC GG Ala Gl	y Leu	CTG Leu	Gly	CAA Gln	CGG Arg	Ala	CCA Pro (120)	Arg	TCC Ser	CAA Gln	CAG Gln
CCT TTC Pro Phe	GTG GTG Val Val	Thr	TTC TT Phe Ph 130)	c AGG e Arg	GCC Ala	AGT Ser	CCG Pro	AGT Ser	CCC Pro	ATC Ile	Arg	ACC Thr (140)	CCT Pro	CGG Arg
GCA GTG Ala Val	AGG CCA	CTG	AGG AG Arg Ar	G AGG g Arg (150)	Gln	CCG Pro	aag Lys	aaa Lys	AGC Ser	AAC Asn	GAG Glu	CTG Leu	Pro	CAG Gln 160)
GCC AAC Ala Asn	CGA CTO	CCA (GGG AT Gly Il	C TTT E Phe	Asp	GAC Asp 170)	Val	CAC His	GGC Gly	TCC Ser	CAC His	GGC Gly	CGG Arg	CAG Gln
GTC TGC Val Cys (180)	Arg Arg	CAC (GAG CT Glu Le	TAC Tyr	GTC Val	AGC Ser	Phe	CAG Gln 190)	Asp	CTT Leu	Gly	TGG Trp	CTG Leu	GAC Asp
TGG GTC Trp Val	ATC GCC Ile Ala (200	Pro	CAA GG Gln Gl	TAC Y Tyr	TCA Ser	GCC Ala	TAT Tyr	TAC Tyr	Сув	GAG Glu 210)	GGG Gly	GAG Glu	TGC Cys	TCC Ser
TTC CCG Phe Pro	CTG GAG	Ser (TGC AT Cys Me 220)	AAC L Asn	GCC Ala	ACC Thr	AAC Asn	CAC His	GCC Ala	ATC Ile	Leu	CAG Gln 230)	TCC Ser	CTG Leu

Figure 6 (Con't)

GTG CAC CTG ATG AAG CCA AAC GCA GTC CCC AAG GCG TGC TGT GCA CCC ACC AAG Val His Leu Met Lys Pro Asn Ala Val Pro Lys Ala Cys Cys Ala Pro Thr Lys (240)

CTG AGC GCC ACC TCT GTG CTC TAC TAT GAC AGC AGC AAC AAC GTC ATC CTG CGC Leu Ser Ala Thr Ser Val Leu Tyr Tyr Asp Ser Ser Asn Asn Val Ile Leu Arg (260)

AAG CAC CGC AAC ATG GTG GTC AAG GCC TGC GGC TGC CAC TGAGTCAGCCCGCCCAGC Lys His Arg Asn Met Val Val Lys Ala Cys Gly Cys His (270)

CCTACTGCAGCCACCCTTCTCATCTGGATCGGGCCCTGCAGAGGCAGAAAACCCTTAAATGCTGTCACAGCCTCAAGCAGGAGTGTCAGGGGCCCTCACTCTCGGTGCCTACTTCCTGTCAGGCTTCTGGGAATTC

FIGURE 7

evesurrees	CCTCGTGAFA	COCCTATITY	LUSTO TRU	. TOTCATEAT!	ATAATOOTT	60
CITABLEGIC	aggreecaet	TTTC::::CALL	aroressee	Mescotati	SESSENSESSES	830
1e3mayar	ilcvvvitu	avaccecesey	<i>Levendoni</i> sy	. Accesental	neetesna	180
altertata	Westveras	Visoroly 12.0	17/672223663	TOTOGGGGTT	. Vileccilli	800
77.000000723	TTBEETTEET	GTTTTTCGTC	recerence	oergoronn	eshavare	369
CLOVYBY LEY	67786678EA	egyglágasz	yeyrestyter	6672££6776	Tocasly by	୬୯୭
16611970	7777606668	ENTOTATE DES	23@ENZENZ	OVECTELL ST	metterec	420
avlologe esc	6927227266	6637134763	COORDONE!	eenvereger	esecte atae	489
<i>resultsoley</i>	ontenex 6	<u>ellenolnel</u>	CYCCYOLOYO	TONNINGS	ellucoovlo	6 88
ocatonens?	attamenal	TOCKOTECTO	GENYLYNGEN L	evalentene	actoccocca	600
actractives	everveevle	edtrogyeedt	regreesing	©62223330	evernovales	660
6667257261	MC7CCCCTT	GVLESLLOS	Weesewees	ON LONG CO	atrochres	720
agredeass a	CYCCYCS720	COTOTAGELL	Leegny Cave	01110COCWW	ely22.vye20	700
0converves	Tactotacet	266esee77/6	WALINIANON	GLEGYLEGYB	occoverno	. 800
tegensones	actions and a	Terrocette	66362466230	<u> </u>	STLYNYLERS	ე მ0
6773665632677	©#32060262	egesgly let	329677867ES	6468867075	69377786 883	900
eccolyles.	21. 12 2.12.167	Vegyesegy	eserce enre	2726672607	CONTINUENCE	1020
vov.eselesov	6727663 <u>66</u> 6	<i>Leneugylly</i>	arestressa	Veloleveve	GYVELLIVEL	2000
Catatataet	22000220012	22VVVVELLG	V22225VV22	<i>enningense</i>	Lygglery	2160
Teerstreen	<i>BYLLELGY</i> 20	<i>reenvil</i> ates	errygeren	CLLLLE COLLEGE	eletolecot	1200
Croteceot	vennnevse	TANCON LEAS.	ellen ber bee	9 3922222 83	eseczy/les	1260
oelselyon	wennow	CELLEGO GTAG	Choecolegi	039987738CC0	GTZCYYUY2 4	7330
\$706577E3E3	& S. S. S. C. CONTROL	6 <i>2177</i> 62662	LEVGG/GYGC	ocleatacea	windialec	3 30 0
Leggiogoly)	4770476220	60667esves	<i>emonee</i>	2027067659	CCTYCYLYCG	1440
Teograpost	WLEQUESOLE V	667626626	CLASCONDLESS	COVING LED	LOLGILYCO	2900
<u>obligovere</u>	vvovesyzvo	22YBBBBT22	700000 G70000	02000000000000000000000000000000000000	NGG66666177	2560
eg lacy en ev	666676 233 9	ovaesmeau	essygycesy	versnoveve	CTLCLEGGT0	1680
abaottobba	Vygeoggyes	CITCOES NYO	60%7777666	697676937£	eccalnyecc	1000
OCTOR SELECTION	anchesians	2324 03433 3	vecteenes	33 89 <i>AAA</i> 6339	TOCTATETT	1740
atlotectot	3007770000	cycelelesore	COT DEPARATE	ADT DETERMEN	raczeszene	1800
000000cc0A0	CCIVISGUAY	strecce veet	7 66669623 5	TTTLESSTTC	CTCCCCTTTT	1860
CCTOOCCTTT	70C7CACA76	TTCTTTCCT0	Cettat Cocc	TCATTETETO	oataaceota	7930

FIGURE 7 (cont'd)

TTACOCCCTT	TGAGTGAGCT	GATACEGETE	GOCGCAGCOG	AACGACCGAG	COCAGOGAGT	1980
CAGTGAGCGA	GGAAGCOGAA	GAGCGCCAA	TACGCAAACC	GCCTCTCCCC	GCGCGTTGGC	2040
COATTCATTA	ATGCAGAATT	GATCTCTCAC	CTACCARACA	ATGCCCCCCT	GCAAAAAATA	2100
AATTCATATA	AAAAACATAC	agataaccat	CTGCGGTGAT	AAATTATCTC	TOCCOGTOTT	2160
GACATARATA	OCACTOGOGG	TGATACTGAG	CACATCAGGA	GGACGCACTG	ACCACCATGA	2220
aggtqacct	CTTAAAAATT	AAGCCCTGAA	GAAGGGCAGC	attcaaagca	GAAGGCTTTG	2280
OGGTGTGTGA	TACGAAACGA	AGCATTGGCC	GTANGTOCGA	TTCCGGATTA	GCTGCGAATG	2340
TGCCAATOGC	GGGGGGTTTT	CETTCAGGAC	TACAACTGCC	ACACACCACC	aragetract	2400
GACAGGAGAA	TCCAGATGGA	TOCACAAACA	coccocce	AACGTCGGGC	AGAGAAACAG	2460
GCTCAATGGA	aagcagcaaa	Tecetatiq	GTTGGGGTAA	GOGCAAAACC	agttoogaaa	2520
GATTTTTTA	ACTATAAACG	CTGATGGAAG	COTTIATOCG	Onagasctaa	AGCCCTTCCC	2580
GAGTAACAAA	AAAACAACAG	CXTAAATAAC	COOCCICTIA	CACATTCCAG	CCCTGAAAAA	2640
GGGCATCAAA	TTARACCACA	CCTATGGTGT	Atgertitat	TTGCATACAT	TCAATCAATT	2700
OTTATCTARG	GAAATACTTA	CATATOCAAG	CTANACATAN	ACAACGTAAA	COTCTGAAAT	2760
CTAGCTGTAA	GAGACACCCT	TTOTACGTGG	ACTTCAGTGA	cotegootes	aatgactgga	2820
TTOTEGETCC	CCCGGGGTAT	CACOCCTTTT	ACTOCCACCO	agaatgccct	TTTCCTCTGG	2880
CTGATCATCT	GAACTCCACT	AATCATOCCA	TTGTTCAGAC	GTTGGTCAAC	TCTGTTAACT	2940
CTANGATTCC	TANGGCATGC	TOTOTOCOGA	CAGAACTCAO	TGCTATCTCG	ATGCTGTACC	3000
TTGACGAGAA	TORRANGOTT	GTATTAAAGA	actatcagga	CYLOGLICIG	gadgettetg	3060
GGTGTCGCTA	GTACAGCAAA	attaaataca	KTATATAAT	TATATATATA	TATTTTAPAA	3120
********	aatctagagt	DEVCCIACYE	TARTCOTACA	BOGTAGTACA	aataaaaag	3180
GCYOCICYOY	TOACGTGCCT	TTITTCTTOT	GAGCAGTAAG	CTTOGCACTO	occorcott	3240
TACAACGTCG	TGACTGGGAA	AACCCTGGCG	TTACCCAACT	TAATCSCCTT	GCAGCACATC	3300
CCCCTTTCGC	CAGCTGGCGT	aatagcgaas	WOOCCOOCYC	CGRTCGCCCT	Teccaacagt	3360
TGCGCAGCCT	GARTGGCGAA	TOGCGCCTCA	TGCCGTATTT	TCTCCTTACS	CATCTOTECS	3420
GTATTTCACA	CCGCATATAT	COTOCACTUT	CAGTACAATC	TOCTCTGATG	CCCCATAGTT	3480
AAGCCAGCCC	CGAGACCCGC	CAACACCCGC	TGACOCGCCC	TGACOGGCTT	etciccicc	3540
DGEATCCGCT	TACAGAÇAAG	CTOTOACCOT	CTOCGGGAGC	TOCATOTOTC	AGAGGITTTC	3600
ACCUTCATCA	CCGAAACGCG	CGA				3623

FIGURE 8

W-20 ALKALINE PHOSPHATASE: BMP-2 VS. BMP-2/7

FIGURE 9 EFFECTS OF BMP-2 AND BMP2/7 ON BGP SYNTHESIS BY W-20 CELLS

FIGURE 10

COMPARAISON OF *E.Coli* BMP-2 AND BMP-2/7: W-20-17 ALKALINE PHOSPHATASE

FIGURE 11A

10 AGATCITGAA		30 CCACACACGC		50 AGCICITICI	60 CAGOSITICA	70 GIGGAGACOG
80 CCCCCCACC		100 GGIGAGGICC		120 TGGGGAAGAG	130 COCACCIGIC	140 AGGCTGGGCT
150 GGGTCAGGGC		170 GCTGGCCGCT		190 ACCCGGCCGC	GICCCCGGCT 200	210
220 TOGCOCCAGC	230 TGGITTGGAG	240 TTCAACCCIC	250 6601005005	260 COCCIOCIT	270 GOGOCTTOGG	280 AGIGICCCCC
290 AGOGAOGOOG		310	320 GIACCTAGCC	ATG GCT GGG	335 GOG AGC AG Ala Ser Ar	
350 TIT CIG TG Phe Leu Tr	e circ ecc i	365 SCITCIGC (Ys Phe Cys (FIG AGC CIG Val Ser Leu	380 GCG CAG GCA Ala Gln Gly	39 GAG AGA CC Glu Arg Pr	S AAG CCA
ccr rrc cc Pro Phe Pro	G GAG CIC C	425 SC AAA GCT (GG Llys Ala (STG CCA GGT Val Pro Gly	440 GAC CGC ACC Asp Arg Thr	GCA GGT GG Ala Gly Gl	455 FF GGC CCG Ly Gly Pro
GAC TOC GA Asp Ser Glo	470 G CTG CAG C u Leu Gln Pi	OG CAA GAC A	185 AAG GTC TCT Lys Val Ser	500 GAA CAC ATO Glu His MET	CIG CGC CI Leu Arg Le	515 C TAT GAC LU Tyr Asp
AGG TAC AG Arg Tyr Se	530 C ACG GTC C r Thr Val G	AG GOG GOC (In Ala Ala A	545 OGG ACA COG Arg Thr Pro	GGC TCC CTC Gly Ser Lev	560 GAG GGA GG Glu Gly Gl	C TCG CAG Ly Ser Gln
575 CCC TGG CG Pro Trp Ar	c oct og c	en Ten Ard (C CLC CCC (605 GAA GGC AAC Glu Gly Asn	ACG GTT CGC Thr Val Arg	620 CAGC TTT CO Ser Phe Ar	G GCG GCA g Ala Ala
635 GCA GCA GA Ala Ala Gl	A ACT CTT G u Thr Leu G	650 AA AGA AAA (lu Arg Lys (GGA CTG TAT Gly Leu Tyr	665 ATC TIC AAI Ile Phe Asr	68 CTG ACA TO Leu Thr Se	G CTA ACC
69 AAG TCT GA Lys Ser Gl	A AAC ATT T	710 IG TCT GCC A Bu Ser Ala T	ACA CIG TAT Thr Leu Tyr	725 TTC TGT ATT Phe Cys Ile	GGA GAG CI	740 NA GGA AAC NU Gly Asn

FIGURE 11C

1430		»~~	202		1445	***	(37 7)	CRC	over.	1460	C A M	אמעני	GC.C		1475 AGT	CAA	TGG	חאנה
CVS	Ala	ATT	ATT	TAC	Ten	TUG	Val	Asn	Phe	Ala	Asp	Tle	Glv	Tro	Ser	Glu	Trp	Ile
0,0		9	9	-1-		270												
:	1490					1505					L520				:	L535		
ATC	TOC	∞	AAG	TOC	TTT	GAT	COC	TAT	TAT	TCC	TCT	GGA	GCA	TGC	CAG	TIC	∞	ATG
Ile	Ser	Pro	Lys	Ser	Phe	Asp	<u>Ala</u>	Tyr	Tyr	CAa	Ser	Gly	<u>Ala</u>	Cys	Gln	Phe	Pro	MET
		L550					L565				-	L580				_	1595	
CCA	AAG	TCT	TIG	AAG	CCA	TCA	AAT	CAT	CCT	ACC	ATC	CAG	AGT	ATA	GIG	AGA	GCT	GIG
Pro	Lys	<u>Ser</u>	Leu	Lys	Pro	<u>Ser</u>	<u>Asn</u>	<u>His</u>	<u>Ala</u>	In	Ile	Gln	Ser	Tie	<u>val</u>	Arg	Ala	Val
							_		•								,	L655
~~~	·	_	610					625		~~~	~		1640	***	2000	m~	_	
(3)	GIC	GIT	CCI.	GGG	ATT	œr.	GAG	CCI	160	JGT.	GIA	CA	GAA	T	MIG	200	TCA	Tan
GIA	var	VAIL	PIO	GIÃ	тте	PTO	GIU	PEO	CĀR	Cys	AST	PIO	GIU	TÄP	LIET.	Ser	Ser	LEU
			,	L670				-	1685				,	1700				
AGT	ATT	מידי				CAA	דעע				cm	CIT	_		TAC	œ	AAC	ATG
Ser	Tie	Teu	Phe	Phe	Agn	Glu	Asn	TVS	Acn	Val	Val	Teu	Taxs	Val	Tyr	Pro	Asn	MET
					_F			-,,-		-								
1715				1	L <b>73</b> 0	(	(472)		17	746		175	56		1766	5	٠ .	776
ACA	GTA	GAG	TCT	TGC	GCT	TGC	AGA	TAAC	CIC	CA J	VAGA	CTC	T T	GAA	(GCI	CAA 1	TCAA	TCT
		Glu																
						_												
		786												•				
CTAC	ACIY	CA (	XGA	ALIC														

Figure 12

## W-20 ALKALINE PHOSPHATASE: CHO BMP-2/6 vs. CHO BMP-2



## FIGURE 13A



# FIGURE 13B



# FIGURE 14A



# FIGURE 14B



# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS

☑ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
☑ LINES OR MARKS ON ORIGINAL DOCUMENT
☑ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)