Prof. Dr. Marcus Zibrowius Jan Hennig

14.06.2024

Homologische Algebra Blatt 10

1 | Stehgreiffragen: Adjunktion

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Welches ist der Linksadjungierte in der "frei, vergesslich " Adjunktion?
- (b) Seien $F : \mathcal{C} \rightleftharpoons \mathcal{D} : G$ adjungierte Funktoren. Wahr oder falsch: Der zugehörige Isomorphismus $\operatorname{Hom}_{\mathcal{C}}(X, G(Y)) \cong \operatorname{Hom}_{\mathcal{D}}(F(X), Y)$ schickt Isomorphismen auf Isomorphismen.
- (c) Die Inklusion von partiell geordneten Mengen $\mathbb{Z} \hookrightarrow \mathbb{R}$ hat einen links- und einen rechtsadjungierten Funktor. Wie sehen diese aus?
- (d) Wahr oder falsch: Es gibt eine \mathbb{Z} -indizierte Kette von Funktoren F_i mit $F_i \dashv F_{i+1}$.
- (e) Wahr oder falsch: Ist $F \dashv G$ und $G \dashv H$, so gilt $F \dashv H$.
- (f) Wahr oder falsch in \mathbf{Mod}_R :
 - (i) $\operatorname{Hom}(A, -) \dashv A \otimes_R -.$
 - (ii) $A \otimes_R \dashv \operatorname{Hom}(A, -)$.
 - (iii) $\operatorname{Hom}(-,A) \dashv A \otimes_R -.$
 - (iv) $A \otimes_R \dashv \operatorname{Hom}(-, A)$.

2 | Keine Adjungierten für die folgenden Funktoren von Körpern

Sei U jeweils der zugehörige Vergissfunktor.

- (a) Zeigen Sie, dass $U \colon \mathbf{Field} \to \mathbf{Ring}$, \mathbf{Ab} oder \mathbf{Set} weder einen Links- noch einen Rechtsadjungierten hat.
- (b) Zeigen Sie, dass $(-)^{\times}$: **Field** \to **Ab** weder einen Links- noch einen Rechtsadjungierten hat.

(Hinweis: Alle vier Fälle können zusammen behandelt werden)

3 | Komposition von Adjunktionen

Seien $F: \mathcal{C} \rightleftarrows \mathcal{D}: G$ und $F': \mathcal{D} \rightleftarrows \mathcal{E}: G'$ zwei Paare von adjungierten Funktoren $(F \dashv G, F' \dashv G')$.

(a) Zeigen Sie, dass $F'F: \mathcal{C} \rightleftharpoons \mathcal{E}: GG'$ ein Paar von adjungierten Funktoren ist $(F'F \dashv GG')$.

4 | Zwei bekannte Funktoren, ein außergewöhnlicher und eine Adjunktion $f_* \dashv f^{-1} \dashv f_!$

Sei $f: A \to B$ eine Abbildung von Mengen und P(M) die Potenzmenge von M aufgefasst als partiell geordnete Menge mittels Inklusion. Definiere die folgenden Funktoren:

- (i) Direktes Bild: $f_*: P(A) \to P(B)$, mit $M \mapsto f(M)$,
- (ii) Inverses Bild: $f^{-1}: P(B) \to P(A)$, mit $M \mapsto f^{-1}(M)$,
- (iii) Außergewöhnliches direktes Bild: $f_!: P(A) \to P(B)$, mit $M \mapsto \{b \in B \mid f^{-1}(b) \subseteq M\}$,

Vergewissern Sie sich zuerst, dass dies wirklich Funktoren definieren.

- (a) Zeigen Sie, dass f^{-1} mit Limiten und Kolimiten vertauscht.
- (b) Zeigen Sie, dass $f_* \dashv f^{-1}$.
- (c) Zeigen Sie, dass $f^{-1} \dashv f_1$.