Fine-Tuning a T5-Small Model for Multitask Text-to-SQL Generation within the MAC-SQL Paradigm

By Elsa Ruiz

Relevance

Multi Agent Collaborative SQL

Project

Goal

Enable natural language interfaces for SQL databases using a lightweight model and few hundred data to explore power of finetuning

Challenge

- Translate ambiguous natural queries into valid, executable SQL.
- Reach a good accuracy in resource limited environment

Approach

Fine-tune t5-small-awesome-text-to-sql using a multitask dataset (Selector, Decomposer, Refiner) under the MAC-SQL architecture.

Data migration process infographics

60 M parameters

Lightweight

Finetuned

Already trained on NL→SQL pairs

Simulation

Suitable for resourceconstrained environments

t5-small-awesometext-to-sql

- Preprocessing
- Trainer API Hugging Face
- Initial parameters:
 - Batch size: 1
 - Epochs: 10
 - Metric for best model: 'eval_loss'
 - Learning rate: 5e-5
 - Models and logs storage
 - bf16

Metrics

Loss: Cross-Entropy

Evaluation:

- Decomposer count: 2029
- Selector count: 1009
- Refiner count: 337

Experiment 1: Task balance vs. imbalance

Real distribution

Training Loss per Type Train Loss (Decomposer) 0.700 Train Loss (Selector) Train Loss (Refiner) 0.675 0.650 0.625 0.600 0.575 0.550 0.525 200 500

400

Step

600

700

800

300

100

Undersampling

Training Loss	Validation Loss
0.565600	0.485127
0.538100	0.448692
0.479700	0.424645
0.471500	0.408683
0.405000	0.396389
0.436800	0.387550
0.400500	0.381792
0.401500	0.378341
0.435400	0.374937
0.384100	0.374343
	0.565600 0.538100 0.479700 0.471500 0.405000 0.436800 0.400500 0.401500 0.435400

• Rouge_L: 0.354

• EM: 0

Real distribution

Epoch	Training Loss	Validation Loss
1	0.498400	0.367861
2	0.319400	0.353492
3	0.277000	0.341445
4	0.429600	0.331809
5	0.288100	0.326303
6	0.422600	0.321671
7	0.329600	0.318466
8	0.265200	0.316073
9	0.315600	0.314496
10	0.361300	0.313996

• Rouge_L: 0.19

• EM: 0

Real distribution

Experiment 1: Task balance vs. imbalance

Experiment 2: Batch size per device

Experiment 3: Learning rate

1 Complementary

2
Early Stopping
Liger Kernel

3
Same aim

Batch sizes

LR: [3e-5, 5e-5, 1e-4]

BS:[[4, 8]

Best pair: 0.2, 0.27

EX: 0.05

Rouge: 0.4

Experiment 4: Generation

Task Type	Correct	Incorrect	Accuracy	Notes
Decomposer	0	2	0%	Limit tokens, hallucination
Refiner	0	2	0%	Misinterpreted schemas
Selector	0	2	0%	malformed structure

Conclusion

It was possible to finetune a very ligthweight model with so few data?

- [1] Shi, L., Tang, Z., Zhang, N., Zhang, X., & Yang, Z. (2024). A Survey on Employing Large Language Models for Text-to-SQL Tasks. http://arxiv.org/abs/2407.15186
- [2] Wiesinger, J., Marlow, P., Vuskovic, V., Huang, E., Xue, E., Sercinoglu, O., Riedel, S., Baveja, S., Gulli, A., Nawalgaria, A., Mollison, G., & Haymaker, J. (2024) Google Whitepaper on Al Agents: Google: Free Download, Borrow, and Streaming: Internet Archive. (n.d.). Retrieved May 4, 2025, from https://archive.org/details/google-ai-agents-whitepaper
- [3] Wang, B., Ren, C., Yang, J., Liang, X., Bai, J., Chai, L., Yan, Z., Zhang, Q.-W., Yin, D., Sun, X., & Li, Z. (2023). MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL. http://arxiv.org/abs/2312.11242
- [4] Goodfellow, I., Bengio, Y., & Courville, A. (n.d.). *Deep Learning*.
- [5] Tunstall, L., von Werra, L., & Wolf, T. (n.d.). Natural Language Processing with Transformers Building Language Applications with Hugging Face.

