Software Assignment: Eigenvalue Calculation

EE24BTECH11064 - Harshil Rathan

Contents

1	Eigen 1.1	alue Definition	2			
	1.1	Definition	2			
2	Eigenvalue finding algorithms 2					
	2.1	QR Algorithm	2			
		2.1.1 Matrix Decomposition	2			
		2.1.2 Iterative Process	3			
		2.1.3 Convergence	3			
		2.1.4 PROs	3			
		2.1.5 CONs	3			
	2.2	Power-Iteration Method	3			
		2.2.1 Initialization	3			
		2.2.2 Iterate	4			
		2.2.3 Convergence	4			
		2.2.4 PROs				
		2.2.5 CONs	4			
	2.3	Jacobi Method	4			
		2.3.1 Initial Transformations	5			
		2.3.2 Constraints	5			
		2.3.3 Iterative Process	5			
		2.3.4 Convergence	5			
		2.3.5 PROs				
		2.3.6 CONs	6			
	2.4	Comparision	6			
	2.5	Chosen Algorithm				
3	Refer	nces	7			

1 Eigenvalue

1.1 Definition

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e., a matrix equation) that are sometimes also known as characteristic roots.
- Let **A** be a linear transformation represented by a matrix **A**. If there is a vector $\mathbf{X} \in \mathbb{R}^n$ with $\mathbf{X} \neq 0$ such that

$$\mathbf{AX} = \lambda \mathbf{X}$$

- for some scalar λ , then λ is called the eigenvalue of **A** with corresponding (right) eigenvector **X**.
- Letting **A** be a $k \times k$ square matrix:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}$$

• This can be written as:

$$(\mathbf{A} - \lambda I)\mathbf{X} = 0$$

- where *I* is the identity matrix.
- As shown in Cramer's rule, a linear system of equations has nontrivial solutions if and only if the determinant vanishes. Therefore, the solutions are given by:

$$\det(\mathbf{A} - \lambda I) = 0$$

2 Eigenvalue finding algorithms

- 1. QR Algorithm
- 2. Power Iteration Method
- 3. Jacobi Method

2.1 QR Algorithm

The QR algorithm uses **QR decomposition** iteratively to transform a matrix into a form where its eigenvalues become evident

2.1.1 Matrix Decomposition

Given a square matrix A, the matrix A can be decomposed like: A = QR, where

- $\bullet \ \mathbf{Q}$ is an orthogonal matrix
- R is an upper triangular matrix

$$\mathbf{Q}^T\mathbf{Q} = \mathbf{Q}\mathbf{Q}^T = 1$$

• This decomposition can be done using methods like Gram-Schmidt etc.

2.1.2 Iterative Process

We construct a new matrix A_1 , by reversing the order of Q and R

$$A_1 = RQ$$

- The new matrix A_1 has the same eigenvalues as the matrix A. We now repeat this process
- Take A_1 and decompose it again to

$$\mathbf{A}_1 = \mathbf{Q}_1 \mathbf{R}_1$$

• Compute A_2 by reversing Q_1 and R_1

$$\mathbf{A_2} = \mathbf{R_1}\mathbf{Q_1}$$

• Repeating this k times gives us

$$\mathbf{A}_{\mathbf{k}} = \mathbf{Q}_{\mathbf{k}} \mathbf{R}_{\mathbf{k}}, \ \mathbf{A}_{\mathbf{k}+1} = \mathbf{R}_{\mathbf{k}} \mathbf{Q}_{\mathbf{k}}$$

2.1.3 Convergence

- The diagonal elements of ${\bf A_k}$ approach the eigenvalues of the original matrix ${\bf A}$ as $k \to \infty$
- The matrix A_k will converge to an upper triangular matrix with the eigenvalues on the diagonal, where k is the iteration count in the QR algorithm
- ullet The iteration process is repeated till A_k becomes an upper triangular matrix

2.1.4 PROs

- It can compute all eigenvalues of a matrix simultaneously
- It can be adapted to matrices having real, complex entries
- Efficient for dense and symmetric matrices, converges rapidly for symmetric matrices

2.1.5 CONs

- Computation cost for Large matrices, for a $n \times n$ matrix each iteration has a time complexity of $O(n^3)$. (Time Complexity)
- It requires storing multiple matrices which can consume high memory, which makes it less practical for very large matrices.
- Limited efficiency for Sparse Matrices, suitable for dense and symmetric matrices only

2.2 Power-Iteration Method

This Method is simple and is used to find the dominant eigenvalue (The eigenvalue with the largest absolute value) of a given matrix A. The given matrix A has to be a square matrix.

2.2.1 Initialization

• Given a square matrix A and a random vector x_0 . Choose x_0 as the starting point. This vector will be iteratively transformed to approximate the eigenvector associated with the dominant eigenvalue of A.

- The initial vector $\mathbf{x_0}$ can be randomly chosen but it should have at least some component in the direction of the dominant eigenvector.
- Check for Orthogonality at each iteration.

2.2.2 Iterate

- This process iterates repeatedly by multiplying the matrix **A** by the vector \mathbf{x}_k , where \mathbf{x}_k is the vector at each step k. For $k = 1,2,3 \cdots$
- compute the next vector $\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k$
- Normalize x_{k+1} by dividing by it's norm

$$\mathbf{x}_{k+1} = \frac{\mathbf{A}\mathbf{x}_k}{|\mathbf{A}\mathbf{x}_k|}$$

• This multiplication and normalization process is repeated until \mathbf{x}_k converges

2.2.3 Convergence

- The vector x_k converges to the eigenvector associated with the dominant eigenvalue, as k → ∞
- The eigenvalue λ can be approximated as

$$\lambda_k = \frac{\mathbf{x}_k^T \mathbf{A} \mathbf{x}_k}{\mathbf{x}_k^T \mathbf{x}_k}$$

 If the matrix has a dominant eigenvalue, the convergence is usually fast, but if the difference between the magnitude of the eigenvalues is less the convergence is slow

2.2.4 PROs

- Simple to implement and computationally inexpensive, making it efficient for large matrices when only the dominant eigenvalue is needed.
- Suitable for sparse matrices, as it requires only matrix-vector multiplication.
- Works well when the matrix has a unique dominant eigenvalue.

2.2.5 CONs

- Only finds the dominant eigenvalue, additional techniques are required to find other eigenvalues.
- May converge slowly or not at all if the dominant eigenvalue is not significantly larger than other eigenvalues.
- Limited to matrices with a clear dominant eigenvalue
- Does not work for matrices with complex values

2.3 Jacobi Method

This method is an iterative process designed for computing the eigenvalues and eigenvectors of real symmetric matrices. It transforms the diagonal elements of the matrix to be it's eigenvalues. It is based on a series of rotations called Jacobi or given rotations.

2.3.1 Initial Transformations

- It applies a series of Jacobi rotations (orthogonal transformations) to the zero out off-diagonal elements iteratively
- A rotation matrix $\mathbf{J}(p, q, \theta)$ is constructed for each iteration, targeting the off-diagonal element \mathbf{A}_{pq}
- The new matrix A' minimizes the off-diagonal entries as to A

2.3.2 Constraints

• As we want to make the off element of the new matrix A' zero. We write the condition

$$0 = (c^2 - s^2)\mathbf{a_{pq}} + cs(\mathbf{a_{pp}} - \mathbf{a_{qq}})$$

• As $c = \cos \theta$ and $s = \sin \theta$, if $\mathbf{a}_{pq} \neq 0$ we get

$$\phi = \cot 2\theta = \frac{(a_{qq} - a_{pp})}{2a_{pq}}$$

• Say $\tan \theta = t$, then

$$t = \tan \theta = \phi \pm \sqrt{\phi^2 + 1}$$

c and s are computed as

$$c = \frac{1}{\sqrt{1+t^2}}, \ s = t \cdot c$$

2.3.3 Iterative Process

- Identify the largest off-diagonal element a_{pq}
- Perform operations using $\mathbf{J}(p,q,\theta)$ and transform $\mathbf{A}' = \mathbf{J}^{\mathrm{T}}\mathbf{A}\mathbf{J}$
- Update the new matrix ${\bf A}'$ to ${\bf A}$ and repeat the process until the off-diagonal elements are smaller than the tolerance ϵ

2.3.4 Convergence

- Convergence is guaranteed for symmetric matrices due to its reliance on symmetric transformations
- It iteratively reduces the magnitude of the off-diagonal elements, leading to diagonalization
- Convergence can be fast for matrices when the eigenvalues are well-separated, for matrices with close eigenvalues it requires more iterations
- \bullet The algorithm stops when the largest off-diagonal element is smaller than the pre-defined tolerance ϵ

2.3.5 PROs

 The algorithm can be easily implemented since it does not require complex matrix factorization like the QR • It also yield the eigenvectors of the given matrix. The columns of the transformed matrix are its eigenvectors and the diagonal elements are its eigenvalues

2.3.6 CONs

- High cost of computation, the overall complexity is $O(n^3)$, making it inefficient for large matrices
- Is efficient only for real symmetric matrices
- For matrices with close eigenvalues, convergence may be slow and require more iterations

2.4 Comparision

Criteria	QR Algorithm	Power Iteration Method	Jacobi Method
Purpose	Computes all eigenvalues	Computes the dominant	Computes all eigenvalues
	and eigenvectors.	eigenvalue.	of symmetric matrices.
Matrix Suitability	Dense Matrices and	Large, Sparse matrices.	Symmetric matrices.
	Symmetric Matrices		
Complexity (Per	$O(n^3)$ for dense matrices,	$O(n^2)$ for large sparse	$O(n^3)$, with slower
Iteration)	$O(kn^2)$ for sparse matrices	matrices (scales well with	convergence compared to
	(k = iterations).	size).	QR.
Convergence	Quadratic convergence for	Linear convergence	Quadratic convergence for
	symmetric matrices slower	requires well-separated	symmetric matrices.
	for general matrices.	eigenvalues.	
Efficiency	Efficient for small to	Highly efficient for sparse,	Inefficient for large
	medium-sized matrices	large matrices focusing on	matrices due to iterative
	costly for very large	a single eigenvalue.	pairwise rotations.
	matrices.		
Key Features	- Computes all eigenvalues	- Simplest method.	- Simple to implement for
	at once.	- Focuses on the largest	symmetric matrices.
	- Suitable for iterative	eigenvalue.	- Explicitly diagonalizes
	refinements (shifted QR).	- Memory-efficient.	the matrix.

2.5 Chosen Algorithm

QR Algorithm

- QR algorithm is more efficient as it generates all the eigenvalues at once
- Power Iteration Algorithm only computes the largest eigenvalue hence is not suitable
- Jacobi method is more efficient for symmetric matrices and also has a slower convergence as compared to QR
- QR also computes eigenvalues for matrices with complex entries and fatser convergence for small-medium size matrices

3 References

- Eigenvalue
- QR Algorithm
- Power Iteration
- Jacobi Method
- VMLS Python Companion
- VMLS.pdf
- Householder Algorithm