Адыгейский государственный университет Магистерская программа «Современная теория игр» Сложность вычислений, осень 2018 Правила получения оценки за курс

Изначальная оценка ставится из расчёта 100 баллов, правила перевода в 5-балльную систему будут определены позже. 50 баллов даётся за решение зачётных задач, 50 баллов - за эссе. Эссе может носить как математический, так и научно-популярный характер. В первом случае должна быть изложена некоторая тема: какие в ней изучаются понятия, какие теоремы известны, и т.д. Хотя бы для одной из теоремы должно быть изложено доказательство. Во втором случае формальных доказательств не требуется, но охват должен быть более широким, и должно быть больше сказано о неформальном смысле теорем. Можно также в качестве эссе подготовить исторический обзор.

Возиожные источники тем для эссе:

- 1. Блог Скотта Ааронсона, его книги и статьи
- 2. Блог Ланса Фортноу и его книга Golden Ticket
- 3. Книга Мура и Мертенса Nature of computation
- 4. Блог Ричарда Липтона и книги на его основе

Зачётных задач предлагается 6. Каждая задача оценивается в 10 баллов. В зачёт идут 5 наилучшим образом решённых задач. Задачи и эссе принимаются до 17 января (23:59 МСК) по почте musatych@gmail.com двумя файлом в формате PDF (Один файл с эссе, другой с решениями задач. Можно написать эссе и набрать решения в ТеХе или Word'е, либо отсканировать или сфотографировать написанное от руки, собрав всё в PDF, либо скомбинировать разные способы. При фотографировании следите за резкостью, контрастностью и балансом белого. Фотографии на камеру мобильного телефона при искусственном освещении не всегда выглядят приемлемо. Архивы с фотографиями, а также плохо читаемые PDF проверяться не будут). Совместное решение и обсуждение задач допускается и даже одобряется, но тексты решений необходимо записывать самостоятельно. Обнаруженные списанные решения не засчитываются всем авторам.

- **1.** Придумайте **NP**-полные языки A и B, такие что $A \cap B$ и $A \setminus B$ также **NP**-полные.
- **3.** Докажите **NP**-полноту языка CLAQUE = $\{(G,k) \mid$ в графе G есть полный двудольный подграф с долями размера по $k\}$. (Иными словами, найдутся V_1 и V_2 , такие что $|V_1| = |V_2| = k$ и $V_1 \times V_2 \subset E$)..
 - **4.** Пусть $A \in \mathbf{RP}$ и $B \in \mathbf{RP}$. Докажите, что $A \cup B \in \mathbf{RP}$.
- **5.** Придумайте вероятностный алгоритм для приближённого решения задачи MAXEXACTTWO4SAT с точностью $\frac{3}{8}$ и дерандомизируйте его методом условных математических ожиданий.
- (Задача MAXEXACTTWO4SAT: по пропозициональной формуле в виде 4-КН Φ найти максимальное число дизъюнктов, в которых одновременно могут быть выполнены ровно 2 литерала).
- **6.** Постройте систему интерактивных доказательств для языка GI-ONLY-PAIRS = $\{(G_1,\ldots,G_m)\mid$ для каждого i существует и единственен $j\neq i$, такой что G_i и G_j изоморфны $\}.$

- **1.** Придумайте **NP**-полные языки A и B, такие что $A \cap B$ и $\overline{A \cup B}$ бесконечны и принадлежат **P**.
- **2.** Докажите **NP**-полноту языка CLIQUE-FIXED-VERTEX = $\{(G, k, v) \mid$ в неориентированном графе G есть клика размера k, содержащая вершину $v\}$.
- **3.** Докажите **NP**-полноту языка RURALPOSTMAN = $\{(G, l, E', b) \mid G = (V, E)$ граф, $l: E \to \mathbb{N}$ длины рёбер, $E' \subset E$, $b \in \mathbb{N}$ и существует цикл длины не более b, проходящий хотя бы один раз по всем рёбрам из $E'\}$..
- **4.** Пусть задача о проверке арифметических схем на равенство не лежит одновременно в **RP** и **coRP**. Докажите, что тогда задача о проверке, что из трёх схем ровно две задают одну и ту же функцию, лежит в **BPP**, но не лежит ни в **RP**, ни в **coRP**.
- **5.** Придумайте вероятностный алгоритм для приближённого решения задачи MAXHYPERGRAPH3COL с точностью $\frac{8}{9}$ и дерандомизируйте его методом условных математических ожиданий.
- (Задача MAXHYPERGRAPH3COL: по 3-регулярному гиперграфу H найти максимальное возможное число неодноцветных гиперрёбер при какой-либо раскраске вершин в 3 цвета).
- **6.** Постройте систему интерактивных доказательств для языка $\mathsf{HALFGNI} = \{(G_1, \dots, G_k) \mid \text{ среди этих графов по крайней мере } k/2 неизоморфных \}.$

- **1.** Докажите, что если A и B являются \mathbf{NP} -полными, то и $\{(a,b) \mid a \in A \lor b \in B\}$ также является \mathbf{NP} -полным.
- **2.** Докажите **NP**-полноту языка CLIQUE-AFTER-EXPANSION = $\{(G, k) \mid$ в неориентированный граф G можно добавить 10 рёбер, так чтобы в результирующем графе была клика размера $k\}$.
- **3.** Докажите **NP**-полноту языка MAXLEAFSPANTREE = $\{(G, k) \mid$ в графе G есть остовное дерево с не менее чем k листьями $\}$. (Остовным деревом в графе G называется подграф G, который является деревом и содержит все вершины G)..
- **4.** Докажите, что если $A \in \mathbf{BPP}$ и $B \in \mathbf{BPP}$, то $\{(a,b) \mid a \in A \leftrightarrow b \in B\} \in \mathbf{BPP}$. (Т.е. верно либо ни одно из условий $a \in A$ и $b \in B$, либо оба).
- **5.** Придумайте вероятностный алгоритм для приближённого решения задачи MAX3COL-SMALLDIFF с точностью $\frac{4}{9}$ и дерандомизируйте его методом условных математических ожиданий.
- (Задача MAX3COL-SMALLDIFF: по неориентированному графу G найти максимальное возможное число рёбер, цвета концов которых отличаются ровно на 1, в некоторой раскраске в 3 цвета).
- **6.** Постройте систему интерактивных доказательств для языка GI-NO-EQUAL-CLASSES = $\{(G_1, \ldots, G_m) \mid$ в разбиении этого набора графов на классы эквивалентности по отношению изоморфизма нет двух классов одинакового размера $\}$.

- **1.** Придумайте **NP**-полные языки A и B, такие что $A \cup B \in \mathbf{P}$.
- **2.** Докажите **NP**-полноту языка 3COL-PARTITION = $\{(G, k) \mid \text{ вершины неориентированного графа } G$ можно разбить на k групп, таких что подграф, индуцированный каждой группой, можно раскрасить в 3 цвета $\}$.
- **3.** Докажите **NP**-полноту языка MINMAXCLIQUE = $\{(G, k) \mid B \text{ неориентированном графе } G$ есть неувеличиваемая клика из не более чем k вершин $\}$.
- **4.** Докажите, что существуют $A\subset B\subset C$, такие что A и C не лежат в **BPP**, а $B\in \mathbf{BPP}$.
- **5.** Придумайте вероятностный алгоритм для приближённого решения задачи MAXHYPERGRAPH2COL с точностью $\frac{3}{4}$ и дерандомизируйте его методом условных математических ожиданий.
- (Задача MAXHYPERGRAPH2COL: по 3-регулярному гиперграфу H найти максимальное возможное число неодноцветных гиперрёбер при какой-либо раскраске вершин в 2 цвета).
- **6.** Постройте систему интерактивных доказательств для языка $\mathsf{MULTIGNI} = \{(G_1, \dots, G_m, k) \mid \text{ среди графов } G_1, \dots, G_m \text{ есть хотя бы } k \text{ попарно неизоморфных} \}.$

- **1.** Придумайте **NP**-трудные языки A и B, такие что $A \cap B$ является **coNP**-полным.
- **2.** Докажите **NP**-полноту языка HAMCYCLE-FIXED-ARC = $\{(G,e) \mid$ в ориентированном графе G найдётся гамильтонов цикл, проходящий через ребро $e\}$.
- **3.** Докажите **NP**-полноту языка GRAPHCONTRACTABILITY = $\{(G, H) \mid \text{из графа} G$ можно получить граф H последовательностью стягиваний рёбер $\}$. (При стягивании ребра (u, v) вместо него образуется новая вершина w, соединённая рёбрами с вершинами, с которыми была соединена хотя бы одна из вершин u и v)..
- **4.** Докажите, что если $A \in \mathbf{BPP}$ и $B \in \mathbf{BPP}$, то $\{(a,b) \mid a \in A \oplus b \in B\} \in \mathbf{BPP}$. (Т.е. верно ровно одно из условий $a \in A$ и $b \in B$).
- **5.** Придумайте вероятностный алгоритм для приближённого решения задачи MAX3COL с точностью $\frac{2}{3}$ и дерандомизируйте его методом условных математических ожиданий.
- (Задача MAX3COL: по неориентированному графу G найти максимальное возможное число неодноцветных рёбер при какой-либо раскраске в 3 цвета).
- **6.** Постройте систему интерактивных доказательств для языка GI-ONLY-BINARY-DEGREES = $\{(G_1, \ldots, G_m) \mid$ в разбиении этого набора графов на классы эквивалентности по отношению изоморфизма размеры всех классов являются степенями двойки $\}$.

- 1. Придумайте $A\subset B\subset C$, такие что A и C лежат в ${\bf P}$, при этом A и \overline{C} бесконечны, а B является ${\bf NP}$ -полным.
- **2.** Докажите **NP**-полноту языка **HAMADDITION** = $\{(G, k) \mid$ в неориентированный граф G можно добавить не более k рёбер, так чтобы в результирующем графе был гамильтонов цикл $\}$.
- **3.** Докажите **NP**-полноту языка **EXACTONE3SAT** = $\{\varphi \mid \varphi$ формула в виде 3-КНФ, такая что для некоторого набора значений в каждом дизъюнкте выполнен ровно один литерал $\}$..
 - **4.** Пусть $A \in \mathbf{RP}$ и $B \in \mathbf{RP}$. Докажите, что $A \cap B \in \mathbf{RP}$.
- **5.** Придумайте вероятностный алгоритм для приближённого решения задачи MAX4COL с точностью $\frac{3}{4}$ и дерандомизируйте его методом условных математических ожиданий.

(Задача MAX4COL: по неориентированному графу G найти максимальное возможное число неодноцветных рёбер при какой-либо раскраске в 4 цвета).

6. Постройте систему интерактивных доказательств для языка GI-NO-PAIRS = $\{(G_1, \ldots, G_m) \mid$ если какие-то графы G_i и G_j , где $i \neq j$, изоморфны, то найдётся граф G_k , $k \neq i$, $k \neq j$, изоморфный им обоим $\}$.