Aufgabe 1 Wir wissen

$$\forall, \ u_1, v_1 \in U_1 : u_1 \circ v_1 \in U_1 \wedge u_1^{-1} \in U_1$$
$$\forall, \ u_2, v_2 \in U_2 : u_2 \circ v_2 \in U_2 \wedge u_2^{-1} \in U_2.$$

a) Zu zeigen ist, dass $U_1 \cap U_2 \neq \emptyset$ und $\forall u, v \in U_1 \cap U_2 : u \circ v \in U_1 \cap U_2 \wedge u^{-1} \in U_1 \cap U_2$.

Ist e das Neutralelement einer Gruppe G so gilt für alle Untergruppen U von G, dass $e \in U$. Demzufolge gilt $e \in U_1$ und $e \in U_2$ und weiters $U_1 \cap U_2 \neq \emptyset$.

Wenn $u, v \in U_1 \cap U_2$ dann gilt $u, v \in U_1$ und $u, v \in U_2$. Nachdem U_1 und U_2 Untergruppen sind gilt weiters $u \circ v \in U_1$ und $u \circ v \in U_2$. Daraus folgt $u \circ v \in U_1 \cap U_2$.

Analog dazu, wenn $u \in U_1 \cap U_2$ dann gilt $u \in U_1$ und $u \in U_2$. Weiters gilt $u^{-1} \in U_1$ und $u^{-1} \in U_2$. Daraus folgt $u^{-1} \in U_1 \cap U_2$.

Demzufolge ist $U_1 \cap U_2$ eine Untergruppe von G.

b) Zu zeigen ist, dass $U_1 \cup U_2 \neq \emptyset$ und $\forall u, v \in U_1 \cup U_2 : u \circ v \in U_1 \cup U_2 \land u^{-1} \in U_1 \cup U_2$.

Nachdem U_1 und U_2 Untergruppen sind muss gelten, dass $U_1 \neq \emptyset$ und $U_2 \neq \emptyset$. Demzufolge gilt $U_1 \cup U_2 \neq \emptyset$.

Man wähle ein $u_1 \in U_1 \setminus U_2$ und ein $u_2 \in U_2 \setminus U_1$. Es gilt $u_1, u_2 \in U_1 \cup U_2$. Unter der Annahme, dass $U_1 \cup U_2$ eine Untergruppe ist, muss nun gelten, dass

$$u_1 \circ u_2 \in U_1 \cup U_2 \Rightarrow \begin{cases} u_1 \circ u_2 \in U_1 & \text{oder} \\ u_1 \circ u_2 \in U_2 \end{cases}$$

und weiters, nachdem es in einer Untergruppe U für jedes $v \in U$ ein $v^{-1} \in U$ gibt,

$$u_1 \circ u_2 \in U_1 \Rightarrow u_1 \circ u_1^{-1} \circ u_2 \in U_1 \Rightarrow u_2 \in U_1$$

 $u_1 \circ u_2 \in U_2 \Rightarrow u_2 \circ u_2^{-1} \circ u_1 \in U_2 \Rightarrow u_1 \in U_2.$

Beide "Implikationsmöglichkeiten" von $u_1 \circ u_2 \in U_1 \cup U_1$ führen also zu einem Widerspruch nachdem gilt, dass $u_1 \notin U_2$ und $u_2 \notin U_1$. Demnach ist $U_1 \cup U_2$ nicht zwingend eine Untergruppe von G.

(Tatsächlich wurde gezeigt, dass $U_1 \cup U_2$ nur dann eine Untergruppe von G ist, wenn entweder für alle $u_1 \in U_1$ gilt, dass $u_1 \in U_2$, oder für alle $u_2 \in U_2$ gilt, dass $u_2 \in U_1$ — also wenn $U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$.)

Aufgabe 2

- a) $\langle (1\ 2)(3\ 4) \rangle = \{id, (1\ 2)(3\ 4)\}$
- b) $\langle (1\ 2), (3\ 4) \rangle = \{id, (1\ 2), (3\ 4), (1\ 2)(3\ 4)\}$
- c) $\langle (1\ 2\ 3\ 4) \rangle = \{id, (1\ 2\ 3\ 4), (4\ 3\ 2\ 1), (1\ 3)(2\ 4)\}$
- d) $\langle (1\ 2\ 3\ 4), (1\ 3) \rangle = \{id, (1\ 2\ 3\ 4), (1\ 3), (4\ 3\ 2\ 1), (1\ 3)(2\ 4), (1\ 4)(2\ 3), (1\ 2)(3\ 4), (2\ 4)\}$

Aufgabe 3

- a) $\langle (1\ 2\ 3), (4\ 5) \rangle$
- b) $\langle (1\ 2\ 3\ 4\ 5), (1\ 3\ 5\ 2\ 4) \rangle$
- c) $\langle (2\ 4)(3\ 5) \rangle$