What is claimed is:

20

1. A pyrrolidylthiocarbapenem derivative represented by Formula I:

The solution
$$R^1$$
 R^4 R^4 R^2 R^3 R^3 R^4 R^4 R^2 R^3 R^4 R^4 R^2 R^3 R^4 R^4 R^2 R^3 R^4 R^4 R^2 R^3 R^4 R^4 R^4 R^2 R^3

wherein R^1 is and lower alkyl; R^2 , R^3 and R^4 are hydrogen, lower alkyl which can be substituted, or an amino protecting group independently, or R^2 and R^3 together with a nitrogen atom to which ${\ensuremath{\mathsf{R}}}^2$ and ${\ensuremath{\mathsf{R}}}^3$ are bonded form a saturated or unsaturated cyclic group, or R^2 and R^4 , or R^3 and R^4 together with two nitrogen atoms 10 and one sulfur atom in the sufamide group form a satu-4 rated or unsaturated cyclic group; each cyclic group can further include at least one atom selected from the group consisting of oxygen, sulfur and nitrogen, and each cyclic group can be substituted; X1 is hydrogen or 15 a hydroxy protecting group; x^2 is hydrogen, a carboxy protecting group, an ammonio group, an alkali metal or an alkaline-earth metal; and Y^2 is hydrogen or an amino protecting group.

2. A pyrrolidylthiocarbapenem derivative according to claim 1, wherein \mathbb{R}^1 is methyl.

3. A pyrrolidylthiocarbapenem derivative according to claim 2, wherein \mathbb{R}^4 is hydrogen.

- 4. A pyrrolidylthiocarbapenem derivative according to claim 3, wherein \mathbf{X}^1 and \mathbf{Y}^2 are hydrogens and \mathbf{X}^2 is hydrogen or alkali metal.
- 5. A pyrrolidylthiocarbapenem derivative according to claim 4, wherein R^2 and R^3 are hydrogens; R^2 is methyl and R^3 are hydrogen; both R^2 and R^3 are methyl; or R^2 is 2-hydroxyethyl, and R^3 are hydrogen.
- 10 6. A pyrrolidylthiocarbapenem derivative according to claim 2, wherein ${\bf R}^3$ is hydrogen, and ${\bf R}^2$ and ${\bf R}^4$ are 13 bonded to each other to form -CH₂-CH₂-.
- 7. A pyrrolidylthiocarbapenem derivative according to claim 2, wherein ${\bf R}^3$ is hydrogen, and ${\bf R}^2$ and ${\bf R}^4$ are bonded to each other to form $-{\bf CH_2-CH_2-CH_2-}$.
- 8. A pyrrolidylthiocarbapenem derivative according to claim 1, wherein at least one group selected from the group consisting of R², R³, R⁴ and Y² is selected from the group consisting of t-butyloxy carbonyl, allyloxy-carbonyl, p-nitrobenzyloxycarbonyl, p-methoxybenzyloxycarbonyl and diazo.
- 9. A pyrrolidylthiocarbapenem derivative according to claim 1, wherein \mathbf{X}^1 is selected from the group consisting of hydrogen, trimethylsilyl, triethylsilyl and t-butoxydimethylsilyl.
- 10. A pyrrolidylthiocarbapenem derivative according to claim 1, wherein X² is selected from the group consisting of hydrogen, sodium, potassium, t-butyl, allyl, p-nitrobenzyl, p-methoxybenzyl and diphenylmethyl.

11. A pyrrolidylthiocarbapenem derivative according to claim 1, wherein the pyrrolidine ring in Formula I has a configulation of (3S,5S).

12. A pyrrolidine derivative represented by Formula II:

1
S 1 NSO 1 N

wherein R^2 , R^3 and R^4 are hydrogen, lower alkyl which can be substituted, or an amino protecting group independently, or R^2 and R^3 together with a nitrogen atom to which R^4 and R^3 are bonded form a saturated or unsaturated cyclic group, or R^2 and R^4 , or R^3 and R^4 together with two nitrogen atoms and one sulfur atom in the sufamide group form a saturated or unsaturated cyclic group; each cyclic group can further include at least one atom selected from the group consisting of oxygen, sulfur and nitrogen, and each cyclic group can be substituted; Y^1 is hydrogen or a mercapto protecting group; and Y^2 is hydrogen or an amino protecting group.

13. A pyrrolidine derivative according to claim 12, wherein R^4 is hydrogen.

14. A method for producing a pyrrolidine derivative represented by Formula II:

$$\sqrt{\frac{R^4}{15}} = \frac{R^2}{NSO_2N} < \frac{R^2}{R^3}$$
(II)

5

P 150 wherein R^2 , R^3 and R^4 are hydrogen, lower alkyl which can be substituted, or an amino protecting group independently, or R^2 and R^3 together with a nitrogen atom to which R^2 and R^3 are bonded form a saturated or unsaturated cyclic group, or R^2 and R^4 , or R^3 and R^4 together with two nitrogen atoms and one sulfur atom in the sufamide group form a saturated or unsaturated cyclic group; each cyclic group can further include at least one atom selected from the group consisting of oxygen, sulfur and nitrogen, and each cyclic group can be substituted; Y^1 is hydrogen or a mercapto protecting group; and Y^2 is hydrogen or an amino protecting group;

5

10

15

20

the method comprising the steps of:

converting/a hydroxy group at the 4-position of a 4-hydroxypyrrollidine-2-carboxylic acid derivative into a mercapto group;

converting a carboxy group at the 2-position into a hydroxymethyl group;

converting a hydroxy group in the hydroxy-methyl group into an amino group; and

converting the amino group into a sulfamido group.

- 25 15. A method according to claim 14, wherein \mathbb{R}^4 is hydrogen.
 - 16. A method for producing a pyrrolidylthiocarbapenem derivative comprising the step of:

allowing a carbapenem derivative to react with the pyrrolidine derivative of claim 12 to obtain the pyrrolidylthiocarbapenem derivative of claim 1;

.. <u>.</u>

the carbapenem derivative being represented by Formula III:

$$\begin{array}{c|c}
OX' & R' \\
\hline
OX' & X^3 \\
\hline
COOX^2
\end{array}$$
(III)

wherein R^1 is hydrogen or lower alkyl; x^1 is hydrogen or a hydroxy protecting group; x^2 is hydrogen, a carboxy protecting group, an ammonio group, an alkali metal or an alkaline-earth metal; and x^3 is a leaving group.

5

10

15

17. A method/for producing a pyrrolidylthiocarbapenem derivative comprising the step of:

allowing a carbapenem derivative to react with the pyrrolidine derivative according to claim 13 to obtain the pyrrolidylthiocarbapenem derivative of claim 2:

the carbapenem derivative being represented by Formula III:

$$\begin{array}{c|c}
COOX_5 \\
\hline
COOX_5
\end{array}$$
(III)

wherein \mathbb{R}^1 is hydrogen or lower alkyl; \mathbb{X}^1 is hydrogen or a hydroxy protecting group; \mathbb{X}^2 is hydrogen, a carboxy protecting group, an ammonio group, an alkali

- 127 -

NK

5

10

15

20

metal or an alkaline-earth metal; and x^3 is a leaving group.

An antibacterial agent comprising an effective amount of the pyrrolidylthiocarbapenem derivative of claim 1 as an active ingredient.

An antibacterial agent comprising an effective amount of the pyrrolidylthiocarbapenem derivative of claim 4 as an active ingredient.

20. An antibacterial agent comprising an effective amount of the pyrrolidylthiocarbapenem derivative of claim 5 as an active ingredient.

An antibacterial agent comprising an effective amount of the pyrrolidylthiocarbapenem derivative of claim 11 as an active ingredient.

A method for inhibiting growth of bacteria sensitive to the pyrrolidylthiocarbapenem derivative of claim 1 by allowing the sensitive bacterium to be in contact with an effective amount of the pyrrolidylthiocarbapenem derivative.