Tables fait-dimension

Proposition de Modèle de Données (Star Schema)

1. Table de Faits : Fact_Sales (Table des Ventes)

C'est le cœur de notre modèle. Chaque ligne représente une ligne de commande unique.

- Clés Étrangères (Foreign Keys FK) :
 - Order_Date_Key (FK vers Dim_Date)
 - Ship_Date_Key (FK vers Dim_Date)
 - Product_Key (FK vers Dim_Product)
 - Customer_Key (FK vers Dim_Customer)
 - Geography_Key (FK vers Dim_Geography)
 - ShipMode_Key (FK vers Dim_ShipMode)
- Mesures (Measures) / Faits :
 - Sales (déjà présente)
 - Quantity (déjà présente)
 - Profit (déjà présente)
 - Order_Line_ID (équivalent de Row ID si chaque Row ID représente une ligne de commande unique)
- Colonnes à Exclure (ou à ne pas mettre dans la table de faits si elles sont déià dans une dimension) :
 - Order ID (peut être une colonne dans la table de faits si on veut l'analyser, mais pas une clé étrangère vers une dimension Dim_Order sauf si on veut ajouter des attributs à la commande elle-même, ce qui n'est pas le cas ici). Pour nos objectifs, le Row ID ou un Order_Line_ID est suffisant.

2. Tables de Dimensions :

Ces tables contiendront les attributs qui décrivent "qui", "quoi", "où", "quand" et "comment" s'est passée la vente.

a. Dim_Date (Dimension Temps)

Cette dimension est essentielle pour toute analyse temporelle. Puisque tu auras Order Date et Ship Date en format AAAA-MM-JJ, tu pourras générer cette table à partir de ces dates ou créer une table calendaire complète.

- Clé Primaire (Primary Key PK) :
 - Date_Key (format entier, par exemple 20160722 pour le 22 juillet 2016)
- Attributs :
 - Full_Date (la date complète : AAAA-MM-JJ)
 - Day_Of_Week (ex: "Vendredi")
 - Day_Of_Month (ex: 22)
 - Month (ex: 1)
 - Month_Name (ex: "Juillet")
 - Quarter (ex: Q3)
 - Year (ex: 2016)
 - Week_Number (Numéro de semaine dans l'année)
 - Is Weekend (Booléen, Vrai/Faux)
 - Potentiellement : Fiscal_Year , Fiscal_Quarter si l'entreprise a un calendrier fiscal différent.

b. Dim_Product (Dimension Produit)

Décrit les produits vendus.

- Clé Primaire (PK):
 - Product_Key (basée sur Product ID)
- Attributs:
 - Product_ID (l'ID original du produit)
 - Product_Name

- Sub_Category
- Category

c. Dim_Customer (Dimension Client)

Décrit les clients.

- Clé Primaire (PK) :
 - Customer_Key (basée sur Customer ID)
- Attributs :
 - Customer_ID (I'ID original du client)
 - Customer_Name
 - Segment

d. Dim_Geography (Dimension Géographie)

Décrit les lieux de vente.

- Clé Primaire (PK):
 - Geography_Key (peut être générée ou un agrégat de State et City si Country est toujours "United States")
- Attributs :
 - Country (sera toujours "United States" ici, mais bonne pratique de l'inclure)
 - Region
 - State
 - City

e. Dim_ShipMode (Dimension Mode d'Expédition)

Décrit les modes d'expédition.

- Clé Primaire (PK):
 - ShipMode_Key (clé numérique simple)

• Attributs :

Ship_Mode_Name (ex: "First Class", "Same Day", "Second Class",
 "Standard Class")

Comment Construire ce Modèle dans Power BI (avec Power Query) :

- 1. Charger le Dataset original dans Power Bl.
- 2. Dupliquer la requête originale plusieurs fois pour créer les dimensions :
 - Pour Dim_Product : Sélectionner Product ID , Product Name , Sub-Category , Category . Supprimer les doublons sur Product ID .
 Ajouter une colonne d'index ou une clé générée si Product ID n'est pas unique.
 - Pour Dim_Customer : Sélectionner Customer ID, Customer Name,
 Segment . Supprimer les doublons sur Customer ID .
 - Pour Dim_Geography : Sélectionner Country, Region, State, City.
 Supprimer les doublons sur la combinaison de ces colonnes.
 - Pour Dim_ShipMode : Sélectionner Ship Mode . Supprimer les doublons.
- 3. Créer la Dim_Date : C'est une table souvent générée soit :
 - À partir des dates uniques de Order Date et Ship Date de ta table de faits.
 - En créant une table de dates complètes à partir de la date minimale et maximale de ton dataset.
 - Power Bl dispose de fonctions DAX pour créer une table de dates ou tu peux le faire via Power Query.

4. Préparer la Fact_Sales :

- Conserver Row ID, Order ID, Sales, Quantity, Profit.
- Ajouter les clés étrangères: Utiliser des fusions (Merge Queries) dans Power Query pour ramener les Product_Key, Customer_Key, Geography_Key, ShipMode_Key à partir de leurs dimensions

- respectives en utilisant les attributs correspondants (Product ID, Customer ID, Country/State/City, Ship Mode).
- Convertir les dates en clés de date: Pour Order Date et Ship Date, tu devras soit les convertir en format entier (AAAAJJMM) pour qu'elles correspondent à la Date_Key de Dim_Date, soit les conserver comme des colonnes de type Date et laisser Power BI gérer la relation sur le champ Full_Date de la dimension Date. La première méthode est souvent plus performante et plus robuste.
- 5. **Gérer les relations**: Une fois les tables chargées dans le modèle Power Bl, tu devras établir les relations entre la table de faits et chaque table de dimension (une relation *un à plusieurs* de la dimension vers le fait, filtrage *simple* dans le sens de la dimension vers le fait).

Avantages de cette approche :

- Performances : Power BI est optimisé pour les modèles en étoile.
- Simplicité des Mesures DAX : Les calculs de KPIs seront plus simples et plus lisibles.
- Flexibilité : Facile d'ajouter de nouveaux attributs aux dimensions sans modifier la table de faits.
- Compréhension : Le modèle est intuitif à comprendre pour les utilisateurs.