Abstract Binding Trees

Jon Sterling and Darin Morrison

1 Preliminaries

Fix a set \mathscr{S} of *sorts*. We will say s *sort* when $s \in S$. A valence $\{\vec{p}\}[\vec{q}].s$ specifies an expression of sort s which binds symbols in \vec{p} and variables in \vec{q} .

$$\frac{s \ sort \quad p_i \ sort \quad (i \le m) \quad q_i \ sort \quad (i \le n)}{\left\{p_0, \dots, p_m\right\} \left[q_0, \dots, q_n\right]. \ s \ valence}$$

An arity $(\vec{v})s$ specifies an operator of sort s with arguments of valences \vec{v} . We will call the set of valences \mathcal{V} , and the set of arities \mathcal{A} .

$$\frac{s \ sort \ v_i \ valence \ (i \le n)}{(v_0, ..., v_n) s \ arity}$$

Let \mathbb{I} be an infinite set of symbols. Let \mathbb{F} be the category of finite subsets of \mathbb{I} and their injective maps; then the comma construction $\mathbf{SCtx} \triangleq \mathbb{F} \downarrow \mathscr{S}_{\equiv}$, with \mathscr{S}_{\equiv} the discrete category on the set \mathscr{S} , is the category of contexts of symbols, whose objects are finite sets of symbols U and sort-assignments $\mathfrak{s}: U \to \mathscr{S}$, and whose morphisms are sort-preserving renamings; we will write Υ for a symbol context (U,\mathfrak{s}) .

Then, fix a covariant presheaf (copresheaf) of operators $\mathscr{O}: \mathbf{SCtx} \times \mathscr{A}_{\equiv} \to \mathbf{Set}$ such that the arrows in \mathbf{SCtx} lift to renamings of operators' parameters. Via the Grothendieck construction $^1 \oint (-): \mathbf{Set}^{\mathcal{C}} \to \mathbf{Cat}$ on operators we have a category of objects $\langle \langle \Upsilon, a \rangle, \vartheta \rangle \in \mathcal{O}$ for $\vartheta \in \mathscr{O}\langle \Upsilon, a \rangle$ and morphisms $\oint \mathscr{O} [\langle \langle \Upsilon, a \rangle, \vartheta \rangle, \langle \langle \Upsilon', a' \rangle, \vartheta' \rangle]$ for $f: \langle \Upsilon, a \rangle \to \langle \Upsilon', a' \rangle$ such that $f^*\vartheta = \vartheta' \in \mathscr{O}\langle \Upsilon', a' \rangle$. Equivalently, $\oint \mathscr{O}$ is the pullback of \mathscr{O} along the universal \mathbf{Set} -bundle where $\pi_{\mathscr{O}}$ is a discrete Grothendieck opfibration and $|-|_{\bullet}$ is the forgetful functor from pointed sets:

¹In this case, $C \oint \Psi$ represents the category of elements of a copresheaf $\Psi : C \to \mathbf{Set}$ but we keep the C implicit and simply refer to it as the Grothendieck construction. Alternatively, this construction can be understood as a coend $C \oint \Psi \cong \int^{c∈C} c/C \otimes \Psi(c)_{\equiv}$.

$$\begin{array}{c|c} \oint \mathscr{O} & \xrightarrow{\pi_{\in}} & \bullet / \mathbf{Set} \\ & \downarrow & & \downarrow \\ \mathbf{SCtx} \times \mathscr{A}_{\equiv} & \xrightarrow{\mathscr{O}} & \mathbf{Set} \end{array}$$

$$\frac{\vartheta \in \mathcal{O}\langle \Upsilon, a \rangle}{\Upsilon \Vdash \vartheta : a}$$

The judgment $\Upsilon \Vdash \vartheta : a$ enjoys the structural properties of weakening and exchange via the functoriality of \mathcal{O} .

Examples Operators are defined by specifying the fibers of $\pi_{\mathscr{O}}$ in which they reside. For instance, consider the lambda calculus with a single sort, exp; we give its signature by asserting the following about its operators:

```
\Upsilon \Vdash \lambda : (\{\cdot\} [\exp] . \exp) \exp

\Upsilon \Vdash ap : (\{\cdot\} [\cdot] . \exp, \{\cdot\} [\cdot] . \exp) \exp
```

So far, we have made no use of symbols and parameters; however, consider the extension of the calculus with assignables (references):

```
\Upsilon \Vdash \operatorname{decl} : (\{\cdot\} [\cdot] . \exp, \{\exp\} [\cdot] . \exp) \exp
\Upsilon, u : \exp \Vdash \operatorname{get}[u] : (\cdot) \exp
\Upsilon, u : \exp \Vdash \operatorname{set}[u] : (\{\cdot\} [\cdot] . \exp) \exp
```

Declaring a new assignable consists in providing an initial value, and an expression with a free symbol (which shall represent the assignable in scope). Note that the functoriality of \mathscr{O} guarantees for any renaming $\varrho: \Upsilon \to \Upsilon'$ a restriction map ϱ^* such that $\Upsilon' \Vdash \varrho^*(\vartheta): a$ when $\Upsilon \Vdash \vartheta: a$. In particular, the renaming $\Upsilon, u \mapsto \Upsilon, v$ shall take $\mathsf{get}[u]$ to $\mathsf{get}[v]$.

2 Contexts

In general, we will have three kinds of context: metavariable contexts, variable contexts, and symbol (parameter) contexts. A metavariable context Ω consists of bindings of valences to metavariables; a variable context Γ is a collection of bindings of sorts to variables, and a parameter context Υ is a collection of bindings of sorts to symbols.

$$\frac{\Omega \ mctx \quad v \ valence \quad \mathbf{M} \notin |\Omega|}{\Omega, \mathbf{M} : v \ mctx}$$

$$\frac{\Gamma \ vctx \quad s \ sort \quad x \notin |\Gamma|}{\Gamma, x : s \ vctx}$$

$$\frac{\Upsilon \ vctx \quad s \ sort \quad u \notin |\Upsilon|}{\Upsilon, u : s \ sctx}$$

3 Abstract Binding Trees

Let the judgment $\Omega \triangleright \Upsilon \parallel \Gamma \vdash M : s$ presuppose Ω mctx, Υ sctx, Γ vctx and s sort, meaning that M is an abstract binding tree of sort s, with metavariables in Ω , parameters in Υ , and variables in Γ . Let the judgment $\Omega \triangleright \Upsilon \parallel \Gamma \vdash E : v$ presuppose v valence. Then, the syntax of abstract binding trees is inductively defined in four rules:

$$\frac{\Gamma \ni x : s}{\Omega \rhd \Upsilon \parallel \Gamma \vdash x : s} var$$

$$\Omega \ni M : \left\{ p_0, \dots, p_m \right\} \left[q_0, \dots, q_n \right] . s$$

$$\Upsilon \ni u_i : p_i \quad (i \le m)$$

$$\Omega \rhd \Upsilon \parallel \Gamma \vdash M_i : q_i \quad (i \le n)$$

$$\overline{\Omega \rhd \Upsilon \parallel \Gamma \vdash M \{u_0, \dots, u_m\} (M_0, \dots, M_n) : s} \quad mvar$$

$$\Upsilon \Vdash \vartheta : v_1, \dots, v_n$$

$$\frac{\Omega \rhd \Upsilon \parallel \Gamma \vdash E_i : q_i \quad (i \le n)}{\Omega \rhd \Upsilon \parallel \Gamma \vdash \vartheta (E_0, \dots, E_n) : s} \quad app$$

$$\frac{\Omega \rhd \Upsilon \parallel \Gamma \vdash \vartheta (E_0, \dots, E_n) : s}{\Omega \rhd \Upsilon \parallel \Gamma \vdash \left(\left\{ \overrightarrow{u} \right\} \left[\overrightarrow{x} \right] . M \right) : \left(\left\{ \overrightarrow{p} \right\} \left[\overrightarrow{q} \right] . s \right)} \quad abs$$

Abstract binding trees are identified up to α -equivalence.

3.1 Substitution of Variables

Variable substitution in abstract binding trees is defined inductively by a pair of judgments, $[N/x]M \rightsquigarrow M'$ and $[N/x]E \rightsquigarrow E'$:

$$\frac{x = y}{[N/x] y \leadsto N} \qquad \frac{x \# y}{[N/x] y \leadsto y}$$

$$\frac{[N/x] M_i \leadsto M_i' \quad (i \le n)}{[N/x] M \{\overrightarrow{u}\} (M_0, \dots, M_n) \leadsto M \{\overrightarrow{u}\} (M_0', \dots, M_n')}$$

$$\frac{[N/x] E_i \leadsto E_i' \quad (i \le n)}{[N/x] \vartheta (E_0, \dots, E_n) \leadsto \vartheta (E_0', \dots, E_n')}$$

$$\frac{x \notin \overrightarrow{y} \quad \overrightarrow{y} \# FV(N) \quad [N/x] M \leadsto M'}{[N/x] \{\overrightarrow{u}\} [\overrightarrow{y}] . M \leadsto \{\overrightarrow{u}\} [\overrightarrow{y}] . M} \qquad \frac{x \in \overrightarrow{y} \quad \overrightarrow{y} \# FV(N)}{[N/x] \{\overrightarrow{u}\} [\overrightarrow{y}] . M \leadsto \{\overrightarrow{u}\} [\overrightarrow{y}] . M}$$

Because terms are identified up to α -equivalence, the variable substitution judgment is functional in its inputs, and so we are justified in writing [N/x]M for M' when $[N/x]M \rightsquigarrow M'$. We write $[\vec{N}/\vec{x}]M$ for the simultaneous substitution of \vec{N} for \vec{x} in M.

3.2 Substitution of Metavariables

Metavariable substitution is defined inductively by the judgment $[E/M]M \rightsquigarrow M'$:

$$\begin{split} & \overline{[E/\mathrm{M}]\,x \leadsto x} \\ & \underline{\mathrm{M} \,\#\,\mathrm{N} \, \left[E/\mathrm{N}\right] M_i \leadsto M_i' \ (i \le n)} \\ & \underline{[E/\mathrm{M}]\,\mathrm{N} \left\{\overrightarrow{u}\right\} (M_0, \dots, M_n) \leadsto \mathrm{N} \left\{\overrightarrow{u}\right\} \left(M_0', \dots, M_n'\right)} \end{split}$$