∞ Exercices sur les logarithmes

Exercice 1 Déterminer la dérivée des fonctions suivantes :

- 1. $f(x) = \ln(3x+2) sur I = -\frac{2}{3}; +\infty[$.
- **2.** $g(x) = \ln(x^2 + 1) sur \mathbb{R}$.
- **3.** $h(x) = x \ln(x^2 + 3) sur \mathbb{R}$.
- **4.** $i(x) = \frac{\ln(1+x)}{x} sur \,]0; +\infty[.$

Exercice 2 Déterminer une primitive de chacune des fonctions suivantes :

- 1. $f(x) = \frac{3}{2x-4} sur I =]2; +\infty[.$
- **2.** $g(x) = \frac{x}{x^2 + 1} sur I = \mathbb{R}.$
- 3. $h(x) = 2 + \frac{1}{2x-1} + \frac{1}{(2x-1)^2} sur I = \frac{1}{2}; +\infty[.$
- **4.** $j(x) = \frac{2}{x^2 1} sur]1; +\infty[$ après avoir vérifié que $j(x) = \frac{1}{x 1} \frac{1}{x + 1}$ pour x > 1.

Exercice 3 On donne $ln(2) \approx 0.69$ et $ln(5) \approx 1.61$. Sans utiliser le logarithme de la calculatrice, en déduire des valeurs approchées des nombres suivants :

- $-\ln(10)$.
- $-\ln(0.1)$.
- $-\ln(0.2)$.
- ln(80).

Exercice 4 Résoudre dans \mathbb{N} les inéquations suivantes :

$$2^n \le 1000$$

$$0.5^n \le 0.001$$

Exercice 5 *Soit f la fonction définie sur*]0; $+\infty[$ *par :*

$$f(x) = \frac{1}{x} - \ln x.$$

On appelle \mathscr{C}_f sa courbe représentative dans un repère orthonormal (O, \vec{i}, \vec{j}) .

- 1. Sur le graphique ci-dessous, on donne \mathscr{C}_f et les courbes C et Γ . L'une de ces deux courbes représente graphiquement la dérivée f' de f, et l'autre une des primitives F de f.
 - **a.** Indiquer laquelle des deux courbes C et Γ représente graphiquement f'. Justifier.
 - **b.** Par lecture graphique, donner F(1).

- **2.** Dans cette question, on pourra vérifier la cohérence des résultats obtenus avec les courbes représentatives données sur le dessin.
 - **a.** Déterminer la limite de la fonction f quand x tend vers 0. Interpréter graphiquement cette limite.
 - **b.** Déterminer la limite de la fonction f quand x tend vers $+\infty$.
 - **c.** Calculer f'(x) et montrer que l'on peut écrire : $f'(x) = \frac{-x-1}{x^2}$.
 - **d.** Etudier le signe de f'(x) puis donner le tableau de variations de f.
- **3.** Soit H la fonction définie sur]0; $+\infty$ [par :

$$H(x) = x - (x - 1) \ln x.$$

- **a.** Montrer que H est une primitive de f sur]0; $+\infty[$.
- **b.** En déduire l'expression de la fonction F de la question 1.
- **c.** Déterminer la limite de $\frac{H(x)}{x^2}$ en $+\infty$.