Laboratorio de Cálculo Numérico I Reducción a forma de Hessenberg

Definición. La matriz $H \in \mathbb{R}^{n \times n}$ es triangular superior de Hessenberg si y sólo si $h_{i,j} = 0$ para $j = 1, \ldots, i-2$ y $i = 3, \ldots, n$

Ejemplos

$$H = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ -1 & 2 & 3 & 4 & 5 \\ 0 & -1 & 3 & 4 & 5 \\ 0 & 0 & -1 & 4 & 5 \\ 0 & 0 & 0 & -1 & 5 \end{pmatrix}, \quad \hat{H} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ -1 & 2 & 3 & 4 & 5 \\ 0 & -1 & 3 & 4 & 5 \\ \hline 0 & 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & -1 & 5 \end{pmatrix}$$

Teorema. Sea $A \in \mathbb{R}^{nxn}$ existen Q, $H \in \mathbb{R}^{nxn}$ tal es que Q es ortogonal, $Qe_1 = Q^Te_1 = e_1$ donde $e_1 \in \mathbb{R}^n$ es el primer vector canónico y $QAQ^T = H$ es matriz triangular superior de Hessenberg.

Demostración (inducción en n).

Notemos que para n=2, cualquier $A\in\mathbb{R}^{2x^2}$ es triangular superior de Hessenberg, de donde $Q=I_2$ es la matriz buscada.

Supongamos que el resultado es cierto para matrices de orden n-1. Sea $A \in \mathbb{R}^{nxn}$ y consideremos la partición de A en los bloques

$$A = \begin{pmatrix} a_{11} & z^T \\ y & B \end{pmatrix} \text{ con } B \in \mathbb{R}^{(n-1)x(n-1)}, \ y, z \in \mathbb{R}^{n-1}.$$
 (1)

Construimos una reflexión de Householder $P = I_{n-1} - 2uu^T$ donde $u \in \mathbb{R}^{n-1}$, $||u||_2 = 1$ y $Py = \alpha \hat{e}_1$ con \hat{e}_1 el primer vector canónico en \mathbb{R}^{n-1} . Se tiene que

$$\begin{pmatrix} 1 & 0^T \\ 0 & P \end{pmatrix} \begin{pmatrix} a_{11} & z^T \\ y & B \end{pmatrix} \begin{pmatrix} 1 & 0^T \\ 0 & P^T \end{pmatrix} = \begin{pmatrix} a_{11} & z^T P^T \\ \alpha \hat{e}_1 & \hat{B} \end{pmatrix},$$

donde $\hat{B} = PBP^T$.

Por hipótesis de inducción para \hat{B} , existen $Q_1, H_1 \in \mathbb{R}^{(n-1)x(n-1)}$ tales que

- 1. Q_1 es ortogonal.
- 2. $Q_1 \hat{e_1} = Q_1^T \hat{e_1} = \hat{e_1}$.
- 3. H_1 es una matriz triangular superior de Hessenberg.
- 4. $Q_1 \hat{B} Q_1^T = H_1$.

En particular $\hat{B} = Q_1^T H_1 Q_1$. De donde

$$\begin{pmatrix} a_{11} & z^T P^T \\ \alpha e_1 & \hat{B} \end{pmatrix} = \begin{pmatrix} 1 & 0^T \\ 0 & Q_1^T \end{pmatrix} \begin{pmatrix} a_{11} & z^T P^T Q_1^T \\ \alpha \hat{e}_1 & H_1 \end{pmatrix} \begin{pmatrix} 1 & 0^T \\ 0 & Q_1 \end{pmatrix}.$$

Definamos la matriz

$$Q = \left(\begin{array}{cc} 1 & 0^T \\ 0 & Q_1 \end{array}\right) \left(\begin{array}{cc} 1 & 0^T \\ 0 & P \end{array}\right) = \left(\begin{array}{cc} 1 & 0^T \\ 0 & Q_1 P \end{array}\right).$$

Es decir, Q es ortogonal y $Qe_1 = Q^T e_1 = e_1$.

Además

$$QAQ^T = H = \begin{pmatrix} a_{11} & z^T P^T Q_1 \\ \alpha \hat{e}_1 & H_1 \end{pmatrix}$$

es una matriz de Hessenberg superior.

 \Diamond

La demostración muestra un algoritmo para obtener la similitud de A con una matriz de Hessenberg superior.

```
\begin{array}{l} \textit{function} \ [H] = \textit{Hessenberg}(A) \\ \% \ \text{Reducci\'on} \ \text{de la matriz} \ \textit{A} \ \text{en una matriz} \ \text{de Hessenberg}. \\ [n,n] = \textit{size}(A); \ \ \textit{H} = \textit{A}; \\ \textbf{for} \ \textit{i} = 1:n-2 \\ \quad \textit{u} = \textit{house}(H(i+1:n,i)); \\ \quad \textit{H}(i+1:n,i:n) = H(i+1:n,i:n) - 2*u*(u'*H(i+1:n,i:n)); \\ \quad \textit{H}(1:n,i+1:n) = H(1:n,i+1:n) - 2*(H(1:n,i+1:n)*u)*u'; \\ \quad \textit{H}(i+2:n,i) = \textit{zeros}(n-i-1,1); \\ \textbf{end} \end{array}
```

El número de operaciones aritméticas del algoritmo es de $(10/3)n^3$.