Table A-1: IDF equation for Al Ain (Regions 2 and W2)

Return Period	IDF Equation	R ² value
100	$y = 737.18x^{-0.665}$	$R^2 = 0.96$
50	$y = 632.86x^{-0.665}$	$R^2 = 0.98$
25	$y = 512.94x^{-0.665}$	$R^2 = 0.94$
10	$y = 368.92x^{-0.665}$	$R^2 = 0.97$
5	$y = 258.03x^{-0.665}$	$R^2 = 0.92$
2	$y = 166.3x^{-0.667}$	$R^2 = 0.90$

A4.2 Modified rational equation

When determining the total amount of runoff volume, the rational equation can be modified as follows:

$$R_V = CPA$$

Equation A4.2: Modified rational equation for runoff volume Where:

RV = total volume of runoff (m3)

C = runoff coefficient refer to Table 3.6 and Table 3-7 (DMAT Drainage design manual).

P = precipitation depth (m) (precipitation depth from Figure A-1)