UGANDA MARTYRS UNIVERSITY

FACULTY OF SCIENCE

FINAL ASSESSMENT EXAMINATION SEMESTER 1 2012-2013 MTC: NUMERICAL ANALYSIS I

BSC GENERAL III and BSC FM III

DATE: Wednesday, 12th -December -2012

Time: 9:00am - 12:00 Noon

Instructions

Attempt any FIVE (5) questions.

Question 1

(a) (i) State the Lagrange interpolation Theorem.

[2 Marks]

- (ii) Derive an expression for the Lagrange's quadratic interpolation polynomial which interpolates the points $(x_0, f_0), (x_1, f_1)$ and (x_2, f_2) . [2 Marks]
- (iii) Find the Lagrange's quadratic polynomial that interpolates the points (-2, 4), (0, 10) and (1,10). [5 Marks]
- (b) Prove that

(i) $\nabla = 1 - E^{-1}$

[2 Marks]

(ii) $\delta = E^{\frac{1}{2}} - E^{\frac{-1}{2}}$

[3 Marks]

(c) A function f(x) has tabular values given as

X	1.0	1.2	111		STATE OF THE PERSON	
			1.4	1.6	1.8	
f(x)	14.5503	17.4726	22.1245			
				29.4157	40.6894	
State	Everett's For	mula and			1.5.5054	

State **Everett's Formula** and use the table to generate and give the values that you would use to substitute for the expressions $q, p, f_0, \delta^2 f_0, \delta^2 f_1$ in the formula to evaluate f(1.35). [6 Marks]

Question 2

(a) Let $\{x_0,x_1,.....x_n\}$ be n+1 distinct points on the interval [a, b] and $f(x) \in [a,b]$ such that

$$f(x) = \sum_{i=0}^{n} f_{i} L_{i}(x) + \frac{1}{(n+1)!} \prod_{i=0}^{n} (x_{k} - x_{i}) f^{n+1}(\Psi_{k}), \text{ for some } x_{k} \in [a,b], \text{ show that } x_{k} \in [a,b]$$

$$f'(x_0+2h)=\frac{1}{h}\bigg[\frac{1}{2}f(x_0)-2f(x_0+h)+\frac{3}{2}f(x_0+2h)\bigg]+\frac{h^2}{3}f'''(\psi_2)\quad\text{where}\\ L_i(x)\text{ are the Lagrange's multipliers for equally spaced points}\\ x_0,\,x_1=x_0+h\,and\,x_2=x_0+2h.\,,\text{ h is the spacing and }\psi_2\in(a,b)\,.\quad\text{[9 Marks]}$$

- (ii) Given $f(x) = x^3 e^x \tan x$, with h = 0.01 determine the value of f'(2.21) by using an appropriate formula for numerical differentiation.($\tan x$ values should be in radians and f(x) values rounded off to 4 decimal places). [4 Marks]
- (b) Construct a finite difference table for the function defined in the table below

x	1.6	1.8	2.0	2.2	2.4
f(x)	0.0495	0.0605	0.0739	0.0903	0.1102

Use the finite difference table with an appropriate formula for numerical differentiation to find the value of f'(2.37). [4 Marks]

Question 3

- (a) Derive the closed Trapezoidal formula for numerically determining the Integral $\int_a^b f(x) \, dx$, on the interval [a, b], using the **Newton Gregory Forward difference** formula.
- (b) Given that the mean value of f(x) over (a, b) is $\frac{7}{b-a} \int_a^b f(x) \, dx$, calculate the Mean value of $f(x) = 6x x^2$ over (0, 6), by using the composite Simpson's rule with 4 strips.

(ii) State the $\frac{3}{8}^{th}$ Rule for Numerical Integration, and use it to find $I(f) = \int_{0}^{1} e^{-x^{2}} dx$, (values of f(x) to be rounded off to 5 decimal places). [5 Marks]

Question 4

(a) State the Intermediate value Theorem.

[1 Mark]

(b) Determine approximately the number of iterations necessary to solve $x^3 - 7x^2 + 14x - 6 = 0$ on the interval [3.2, 4], with an accuracy of 10^{-6} .

[3 Marks]

- (ii) Use the Bisection method to find a root to the equation $x^3 7x^2 + 14x 6 = 0$ on the interval [3.2,4] to 2 decimal places. Show the working clearly and put the results in a suitable table, for 5-Iterations. [6 Marks]
- (iii) Derive the Newton Raphson formula for locating the root P_n of a polynomial function f(x) = 0. [3 Marks]
- (iv) Find the root to the same equation in b(ii) above using the Newton Raphson method with $P_0=3.45\,\mathrm{and}$ iterate up to P_3 . [4 Marks]
- (c) In relation to the example above discuss the convergence of the Newton Raphson method in comparison to the Bisection method while locating the root to a given polynomial equation.

 [3 Marks]

Question 5

(a) Discuss the Jacobi method procedure for solving the 3 x 3 linear system of equations below in the unknowns x_1, x_2 and x_3 .

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$
(i)
 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$ (ii). [3 Marks]
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$ (iii)

(ii) Solve the Linear system of equations below by the Jacobi method beginning with an initial guess to the solution as $(x_1^{(0)},x_2^{(0)},x_3^{(0)})=(0,0,0)$.

$$4x_1 + x_2 + 3x_3 = 17$$

 $x_1 + 5x_2 + x_3 = 14$
 $2x_1 - x_2 + 8x_3 = 12$

[8 Marks]

Present your results in a suitable table up to 3 iterations, and give your final answers rounded off to a whole number.

- (iii) Solve the same system in a (ii) above by the Gaussian elimination method with pivoting. [8 Marks]
- (b) Discuss the convergence of the Jacobi method compared to that of Gauss-Siedel when used to solve a linear system of equations. [1 Mark]

Question 6

- (a) Find the cubic polynomial that passes through the following points (0,5), (1,8), (2,17), (3,44). using linear interpolation by reduction to row echelon form. [6 marks]
- (b) Given that $\Delta f(x_0) = f(x_0 + h) f(x_0)$, by generating expressions for $f(x_0 + h)$, $f(x_0 + 2h)$ and $f(x_0 + 3h)$, Prove by induction that

$$f(x_0 + nh) = f(x_0) + n\Delta f(x_0) + \frac{n(n-1)}{2!} \Delta^2 f(x_0) + \dots + \Delta^n f(x_0).$$
 [8 Marks]

(c) Solve the linear system of equations below by the Gauss-siedel method beginning with an initial guess to the solution of $(x_1^{(0)}, x_2^{(0)}, x_3^{(0)}) = (0,0,0)$.

$$x_1 + 2x_2 + x_3 = 4$$

 $3x_1 + 8x_2 + 7x_3 = 20$
 $2x_1 + 7x_2 + 9x_3 = 23$

[6 Marks]

END