History

Date	Revision	Change	Author
2011/9/20	00	Draft	cn0086
2011/12/26	01	1, 更改协议, 加入	cn0086
		sequence 字段	

1. 通讯方式

- 1.1 服务器与客户端采用 TCP 通讯协议; 服务器采用有线接入, 客户端采用 2G 或 3G 网络;
- 1.3 每次由客户端发起通讯请求,然后发送命令给服务器,服务器根据命令,做相应动作,并把结果回给客户端;
- 1.2 由于流量是需要计费,所以采用尽量简短、有效的通讯方式。

2. 信息包的结构定义

信息包由三个域组成: Prologue Field、Information Field 和 Epilogue Field。

	Prologue	e Field	Information Field	Epilogue Field	
HEAD	SEQ	PCB	Length	INF	СНЕСК
1 Byte	1 Byte	1 D4-	2 Byte	0 1004 D-+-	1 Byte
固定为 0xC9	00~FF	1 Byte		0-1024 Byte	异或值

Prologue Field 由 5 个字节组成,描述信息包的基本信息; Information Field 构成信息包的主体,用于传输实际的信息,其长度由 Prologue Field 的第 4 和第 5 个字节决定,信息的最大长度为1024个字节,主要考虑单片机内存有限,而且 TCP协议中,最大数据包 MTU 也只是 1500; Epilogue Field 构成了整个信息包的结尾,它是由一个校验字节组成。

2.1 HEAD 字节

HEAD 固定为十六进制数 'C9'(2 机制: 1100 1001)。如果服务器接收的 HEAD 字节,不是十六进制数 'C9',服务器应忽略该字节,不必响应,直到接收到十六进制数 'C9'后开始启动一个包的接收。

2.2 SEQ 字节

SEQ(sequence) 为十六进制 00°FF, 记录当前包次序, 从 0 开始, +1 递增。主要考虑网络可能有延时, 服务器、客户端对不同命令的响应时间可能不一样, 不能因为某个命令而阻塞其它命令运行.

2.3 PCB 字节 (protocol control byte)

信息包分为两类:命令包和应答包。命令包主动,应答包被动。

2.3.1 命令包(b7=0)

0 b6 B5	b4	b3	b2	b1	b0
---------	----	----	----	----	----

b7----- '0' 表明是命令包, 1表示应答包

b6 ----- 信息包状态标识 M

M = 1, 下一个包是该包的延续包

M = 0, 没有延续包

b5-b4-b3-b2-b1-b0-----命令的定义,见表 1:

表 1. 命令定义

INF(+	一六进制数)	命令包说明		
Bit7	Bit6~0			
0	100 1100	0x4C, L, 请求登录		
0	101 0001	0x51, Q, 退出, 断开连接		
0	101 0100	0x54, T, 请求服务器时间, 校准时间用		
0				

2.3.2 应答包

应答包格式:

	Prologue	e Field	Information Field	Epilogue Field	
HEAD	SEQ	PCB	Length	INF	СНЕСК
1 Byte	1 Byte	1 D 4	2 Byte	0 1004 D 4	1 Byte
固定为 0xC9	00~FF	1 Byte		0-1024 Byte	异或值

HEAD, Length, 定义同上, SEQ 跟命令包中 SEQ 一样, PCB 定义如下:

应答包(b7=1)

1	b6	В5	b4	b3	b2	b1	b0
---	----	----	----	----	----	----	----

b6 ----- 信息包状态标识 M

M = 1, 下一个包是该包的延续包

M = 0, 没有延续包

b5-b4-b3-b2-b1-b0-----应答的定义, 其中 b5-b4-b3 为命令类别, 见表 2:

表 2 应答信息定义

INF(+	一六进制数)	应答包说明			
Bit7	Bit6~0				
1	100 1100	0xCC, 登录成功			
1	110 0001	0xEC, 登录失败			
1	101 0100	0xD4,返回服务器时间, 1970年1月1日0时0分0秒到现在此时			
1	101 0100	的秒数, unsigned int			
1					
1					