Versuch 353

Das Relaxationsverhalten eines RC-Kreises

Nico Schaffrath nico.schaffrath@tu-dortmund.de mira.arndt@tu-dortmund.de

Durchführung: 3.12.2019 Abgabe: 10.12.2019

Mira Arndt

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel		3				
2	The	orie	3				
	2.1 Allgemeine Realaxionsgleichung						
	2.2	Entladevorgang eines RC-Kreises	3				
	2.3	Frequenzabhängigkeit der Phasenverschiebung zwischen Kondensator- und					
		Generatorspannung	3				
	2.4	Frequenzabhängigkeit der Amplitude der Kondensatorspannung	3				
	2.5	Ein RC-Kreis als Integrierglied	3				
3	Durchführung						
	3.1	Entladevorgang des RC-Kreises und Bestimmung der Zeitkonstanten	3				
	3.2	Frequenzabhängigkeit der Amplitude der Kondensatorspannung	3				
	3.3	Frequenzabhängigkeit der Phasenverschiebung zwischen Kondensator- und					
		Generatorspannung	3				
	3.4	Integrierfunktion des RC-Kreises	3				
4	Ausv	vertung	3				
5	Disk	ussion	5				
6	Anh	ang	5				
Lit	Literatur						

1 Ziel

Bei diesem Versuch werden die Relaxationserscheinungen einses RC-Kreises untersucht. Es soll die Zeitkonstante des RC-Gliedes bestimmt, die Abhängigkeit der Amplitude der Kondensatorspannung von der Generatorfrequenz untersucht und die Phasenverschiebung zwischen Generator- und Kondensatorspannung in Abhängigkeit der Frequenz gemessen werden. Anschließend soll nachgewiesen werden, dass ein RC-Kreis unter bestimmten Voraussetzungen, die in der Theorie (REFERENZ) hergeleitet werden, als Integrator dienen kann.

2 Theorie

- 2.1 Allgemeine Realaxionsgleichung
- 2.2 Entladevorgang eines RC-Kreises
- 2.3 Frequenzabhängigkeit der Phasenverschiebung zwischen Kondensatorund Generatorspannung
- 2.4 Frequenzabhängigkeit der Amplitude der Kondensatorspannung
- 2.5 Ein RC-Kreis als Integrierglied

3 Durchführung

- 3.1 Entladevorgang des RC-Kreises und Bestimmung der Zeitkonstanten
- 3.2 Frequenzabhängigkeit der Amplitude der Kondensatorspannung
- 3.3 Frequenzabhängigkeit der Phasenverschiebung zwischen Kondensatorund Generatorspannung
- 3.4 Integrierfunktion des RC-Kreises

4 Auswertung

Siehe Abbildung 1!

Abbildung 1: Plot.

Messung	U_G/V	U_C/V	$Frequenz / \mathrm{Hz}$	a/ms	b/ms	Phase
1	5	4.9	10	0.6	98	574
2	5	4.9	20	1.0	50	574
3	5	4.8	30	0.8	33	574
4	5	4.8	40	0.76	25	574
5	5	4.8	50	0.8	20	574
6	5	4.7	60	0.7	16.5	574
7	5	4.6	70	0.8	14	574
8	5	4.5	80	0.8	12.4	574
9	5	4.4	90	0.8	11.2	574
10	5	4.4	100	0.7	10	574
11	5	4.2	125	0.7	8	574
12	5	4.0	150	0.65	6.6	574
13	5	3.6	175	0.6	5.7	574
14	5	3.5	200	0.6	5	574
15	5	2.6	300	0.5	3.3	574
16	5	2.2	400	0.4	2.5	574
17	5	1.8	500	0.4	2	574
18	5	1.2	750	0.28	1.35	574
19	5	0.95	1000	0.2	1	574
20	5	0.20	5000	0.05	0.2	574
21	5	0.10	10000	0.025	0.1	574

Tabelle 1: Aufgenommene Werte zur Bestimmung von ${\cal R}_{11}$

5 Diskussion

6 Anhang

Literatur

- [1] TU Dortmund. Versuchsanleitung-Das Relaxationsverhalten eines RC-Kreises.
- [2] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [3] Eric Jones, Travis E. Oliphant, Pearu Peterson u.a. SciPy: Open source scientific tools for Python. Version 0.16.0. URL: http://www.scipy.org/.
- [4] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [5] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.