Basi

V spazio vettoriale finitamente generato

Un insieme di vettori $B = \{\underline{b}_1, \dots, \underline{b}_n\} \subset V$ è una base di V se è un insieme di generatori di V linearmente indipendenti

 $\forall \underline{v} \in V$ si scrive in modo unico come combinazione lineare degli elementi di B Dimostrazione:

$$\underline{v} = \sum_{i=1}^n \lambda_i \underline{v}_i = \sum_{i=1}^n \mu_i \underline{v}_i \implies \underline{0} = \underline{v} - \underline{v} = \sum_{i=1}^n (\lambda_i - \mu_i) \underline{v}_i \implies \lambda_i = \mu_i \quad \forall i \in \{1, \dots, n\}$$

perché B è linearmente indipendente

$$\{\underline{v}_1,\ldots,\underline{v}_k\}\subset\mathbb{R}^n$$
 è una base di $\mathbb{R}^n\iff k=n$ e $\mathrm{rg}(\left[\underline{v}_1\mid\ldots\mid\underline{v}_k\right])=n$

Estrazione di una base da un sistema di generatori

 $\{\underline{v}_1,\ldots,\underline{v}_m\}\subset\mathbb{R}^n$ sistema di generatori ($m\geq n$)

- 1. $A = [\underline{v}_1 \mid \dots \mid \underline{v}_m]$
- 2. Si riduce A in forma a scalini: i vettori corrispondenti alle colonne contenenti pivot formano una base

Completamento di un sistema linearmente indipendente ad una base

 $B = \{\underline{b}_1, \dots, \underline{b}_n\} \subset \mathbb{R}^n$ base di V, $\{\underline{v}_1, \dots, \underline{v}_m\} \subset \mathbb{R}^n$ sistema linearmente indipendente (m < n) $\implies \exists$ una base di V formata da $\{\underline{v}_1, \dots, \underline{v}_m\}$ e altri n - m elementi di B

- 1. $[A|B] = [\underline{v}_1 \mid \dots \mid \underline{v}_m \mid \underline{b}_1 \mid \dots \mid \underline{b}_n]$
- 2. Si riduce [A|B] a scalini, si ottiene
 - m pivot sulle prime m colonne
 - la posizione dei rimanenti n-m pivot individua gli n-m elementi di B da aggiungere a $\{\underline{v}_1,\dots,\underline{v}_m\}$ per ottenere una base di \mathbb{R}^n

Spazio delle righe e delle colonne

$$A = egin{bmatrix} \underline{c}_1 \mid \ldots \mid \underline{c}_n \end{bmatrix} = egin{bmatrix} rac{\underline{r}_1}{\ldots} \ rac{\underline{r}_m}{r_m} \end{bmatrix} \in M_{m imes n}(\mathbb{R}), \ \underline{c}_i \in \mathbb{R}^m, \ \underline{r}_j \in \mathbb{R}^n$$

 $\mathrm{C}(A)=\mathrm{Span}(\underline{c}_1,\ldots,\underline{c}_n)\subset\mathbb{R}^m$ è lo spazio delle colonne di A

 $\mathrm{R}(A) = \mathrm{Span}(\underline{r}_1, \dots, \underline{r}_m) \subset \mathbb{R}^n$ è lo spazio delle righe di A

 $\dim(\mathrm{C}(A)) = \dim(\mathrm{R}(A)) = \mathrm{rg}(A)$

Dimostrazione:

- A a scalini: rg(A) = d, $\{\underline{r}_1, \dots, \underline{r}_d\}$ è un insieme di generatori di R(A), inoltre sono linearmente indipendenti
- Se A non è a scalini, sia A' una sua forma a scalini $\implies R(A) = R(A')$:
 - Le righe di A' sono combinazioni lineari delle righe di A, quindi $\mathrm{R}(A')\subset\mathrm{R}(A)$
 - Le righe di A sono combinazioni lineari delle righe di A' poiché le operazioni elementari sono tutte reversibili, quindi $R(A) \subset R(A')$

Coordinate

 $V
eq \{ \underline{0} \}$ spazio vettoriale finitamente generato, $B = \{ \underline{b}_1, \dots, \underline{b}_n \}$ base di V

$$\underline{v} \in V \implies \underline{v} = \sum_{i=1}^n v_i \underline{b}_i$$

Gli scalari $v_1,\dots,v_n\in\mathbb{R}$ sono detti coordinate di \underline{v} rispetto alla base B

 $T_B:V\to\mathbb{R}^n,\ T_B(\underline{v})=(v_1,\ldots,v_n)$ è una funzione che associa ad ogni $\underline{v}\in V$ una ennupla, ossi ail vettore delle coordinate di \underline{v} rispetto a B

 T_B è biunivoca e lineare

 $\{\underline{v}_1,\ldots,\underline{v}_m\}\subset V$ è linearmente indipendente/sistema di generatori/base $\iff \{T_B(\underline{v}_1),\ldots,T_B(\underline{v}_m)\}\subset \mathbb{R}^n$ è linearmente indipendente/sistema di generatori/base