Bidirectional Associations Between Endometriosis and Depressive Symptoms Using Data from NHANES 2005–2006

Hamda Altaf¹, Qiaowei Lin², Shakila Meshkat², Venkat Bhat^{2,3,4,5}, Wendy Lou¹

¹Dalla Lana School of Public Health, ²Interventional Psychiatry Program, St. Michael's Hospital, ³Neuroscience Research Program, St. Michael's Hospital, ⁴Department of Psychiatry, University of Toronto, ⁵Institute of Medical Science, Temerty Faculty of Medicine

introduction

Background:

- Endometriosis (ENDO): chronic, underdiagnosed condition, affecting ~10% of reproductive-aged (20-54 years) women (Hu et al. 2023)¹
- Depressive Symptoms (DS): highly prevalent comorbidity of ENDO due to psychological distress and biological factors^{2,3,4}

Known association:

• 2–3x greater odds of DS in ENDO patients²

Knowledge Gap:

- Directionality unclear (Does DS → ENDO? Or ENDO → DS? Both?)³
- Does the directionality of association hold after reducing confounding?

Primary Research Objective:

Is there a bidirectional association between ENDO and DS in reproductive-aged women, after accounting for key demographic confounders?

Secondary Objectives:

- Do DS predict ENDO? (Hu et al. 2023 replication)
- Does ENDO predict DS? (Reverse association)
- Do associations persist after matching on confounding?
- Explore potential causal patterns between ENDO & DS

Methods

Study Design: NHANES 2005–2006, cross-sectional

- Outcome variable in Hu et al. replication: ENDO (yes/no)
- Outcome variable for reverse: DS based on PHQ-9 score (none (<10), moderate(10-14), severe(≥15))

Figure 1. Participant inclusion/exclusion process.

Key Analyses:

- Survey-weighted regression (logistic, multinomial) to examine bidirectional associations (ENDO → DS)
- Exact & nearest-neighbour matching to improve covariate imbalance⁵

Exact MATCHING

Each treated case was exactly matched to at least one control on age, race, and income

1:1 matched pairs;100
treated matched with 100
controls, each matched
within strata

• Conditional Logistic Regression on matched sets (Clustered by Pair ID)

Assumptions & Limitations:

- Assume no unmeasured confounding; Assume survey weights yield population-representative estimates
- Survey R packages require extensive modifications for advanced ML methods (e.g. causal forests)

Results

Table 1. Baseline Characteristics of Women with and without ENDO.

Variable	Total (n = 1392)	Without ENDO (n= 1292)	
Age mean (SD)	35.18 (10.03)	34.76 (10.06)	40.67 (8.56)
DS (%) No Moderate Severe	1282 (92.1)	1197 (92.6)	85 (85.0)
	72 (5.2)	59 (4.6)	13 (13.0)
	38 (2.7)	36 (2.8)	2 (2.0)
Race (%) Non-Hispanic White Non-Hispanic Black Mexican American Other	643 (46.2)	582 (45.0)	61 (61.0)
	319 (22.9)	291 (22.5)	28 (28.0)
	302 (21.7)	298 (23.1)	4 (4.0)
	128 (9.2)	121 (9.4)	7 (7.0)
Family Income (%) Low Medium High	392 (28.2)	375 (29.0)	17 (17.0)
	378 (27.2)	359 (27.8)	19 (19.0)
	622 (44.7)	558 (43.2)	64 (64.0)

• Covariates shown have significant differences between with and without ENDO groups (p<0.001)

1. ENDO~DS (Hu et al. Replications)

- Model 1: ENDO~DS
- Model 2: ENDO~DS + Age + Race + Income
- Model 3: ENDO~DS + All Covariates

Table 2. Survey-weighted logistic regression with ENDO as outcome

<i>, , , , , , , , , ,</i>	<i>S S S</i>	_	
DS	Model 1, OR (95% CI)	Model 2, OR (95% CI)	Model 3, OR (95% CI)
Moderate	2.16 (1.02,4.55)	2.29 (1.11, 4.73)	2.26 (1.01, 5.05)
Severe	0.91 (0.13, 6.51)	1.18 (0.11, 12.99)	1.17 (0.08, 17.41)

2. DS~ENDO (Reverse)

Table 3. Survey-weighted Multinomial regression with DS as outcome.

DS	Model 1, OR (95% CI)		Model 3, OR (95% CI)
Moderate vs None	2.16 (1.10, 4.24)	2.26 (1.22, 4.22)	2.11 (1.12, 4.00)
Severe vs None	0.91 (0.15, 5.42)	1.07 (0.16, 7.32)	0.86 (0.17, 4.25)

Main finding:

- Bidirectional association between moderate DS & ENDO
 - o Table 2 shows ENDO~DS association
 - o Table 3 shows DS~ENDO association

3. Matched Analysis

Figure 2. Covariate Balance comparison. SMD=0 indicates perfect covariate balance.

riguic 2. Covariai	e Dalance compansor	ii. SiviD=0 ilidicates p	Cricci covariate barar
Table 4 . Conditional	Logistic regression m	natched on ENDO.	
Model	DS	OR (95% CI)	p-value
Exact Matching	Moderate Severe	2.87 (1.42, 5.80) 1.02 (0.22, 4.63)	0.003 0.981
Nearest Neighbor	Moderate Severe	1.85 (0.68, 5.04) 1.16 (0.16, 8.53)	0.229 0.881

Table 5. Conditional Logistic regression matched on DS.

Table 5. Containing Logistic regression material on 25.		
Model	OR (95% CI)	p-value
Exact Matching	2.32 (1.21, 4.45)	0.012
Nearest Neighbor	1.71 (0.67, 4.35)	0.257

Main finding:

• Bidirectional association remained after exact matching, but not nearest neighbour matching.

Results (cont'd)

- 4. Bootstrap-weighted Causal Forest (Exploratory)
- The estimated average treatment effect (ATE) of ENDO on DS was 0.035 (95% CI: 0.031–0.042).

Conclusion

Summary:

in specific subgroups.

- Bidirectional relationship between ENDO and DS confirmed for moderate DS
 - ENDO predicts DS, aligning with biological plausibility (chronic pain, inflammation)^{1,3}
- Associations persisted after exact matching, though nearest-neighbour matching showed weaker effects
- Severe DS showed no significant association even after matching
- Exploratory subgroup heterogeneity suggested stronger ENDO-DS links in **older (41–54 years)**, **low-income**, and **racialized women**, hinting at socioeconomic and age-related modifiers

Interpretation:

- Shared pathways: **inflammation**, **pain**, **stigma**^{2,3}
- Associations persist despite covariate adjustment
- Unlike genetic studies, this analysis focused on demographic modifiers (e.g., race, income) over molecular pathways²

Strengths:

https://doi.org/10.37737/ace.22005

- Nationally Representative data, matching methods (robust) Limitations:
- Cross-sectional design (cannot clarify causality), self-report bias, residual confounding, and limited sample size

Next steps & Clinical Implications:

- Longitudinal studies to test temporality
- Mechanistic investigations into shared pathways³
- Routine screening for DS in women with ENDO—and vice versa—is warranted.

References

1.Hu, P.-W., Zhang, X.-L., Yan, X.-T., Qi, C., & Jiang, G.-J. (2023). Association between depression and endometriosis using data from NHANES 2005–2006. Scientific Reports, 13(1), 18708. https://doi.org/10.1038/s41598-023-46005-2

2.Koller, D., Pathak, G. A., Wendt, F. R., Tylee, D. S., Levey, D. F., Overstreet, C., Gelemter, J., Taylor, H. S., & Polimanti, R. (2023). Epidemiologic and Genetic Associations of Endometriosis With Depression, Anxiety, and Eating Disorders. JAMA Network Open, 6(1), e2251214. https://doi.org/10.1001/jamanetworkopen.2022.51214

3.Mormile, R., & Picone, C. (2025). Endometriosis and depression: only a psychological effect or even a causal occurrence? *Archives of Gynecology and Obstetrics*, 311(4), 1219–1220. https://doi.org/10.1007/s00404-025-07938-3

4.van Barneveld, E., Manders, J., van Osch, F. H. M., van Poll, M., Visser, L., van Hanegem, N., Lim, A. C., Bongers, M. Y., & Leue, C. (2022). Depression, Anxiety, and Correlating Factors in Endometriosis: A Systematic Review and Meta-Analysis. Journal of Women's Health, 31(2), 219–230. https://doi.org/10.1089/jwh.2021.0021

5.Iwagami, M., & Shinozaki, T. (2022). Introduction to matching in case-control and cohort studies. Annals of Clinical Epidemiology, 4(2), 33–40.