

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

BERICHTIGTE FASSUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
14. Juli 2005 (14.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/063395 A1

(51) Internationale Patentklassifikation:
B01J 37/00 (2006.01) *C09C 1/36* (2006.01)
COIG 23/047 (2006.01)

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) Internationales Aktenzeichen: PCT/EP2004/014026

(22) Internationales Anmeldedatum:
9. Dezember 2004 (09.12.2004)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
103 59 839.1 19. Dezember 2003 (19.12.2003) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SACHTLEBEN CHEMIE GMBH [DE/DE]; Dr. Rudolf-Sachtleben-Strasse 4, 47198 Duisburg (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): PROFT, Bernd [DE/DE]; Geschwister-Scholl-Str. 6, 47506 Neukirchen-Vluyn (DE). HIRSCHBERG, Elke [DE/DE]; Ackerstr. 144, 47447 Moers (DE). OPTEHOSTERT, Regina [DE/DE]; Römerstr. 283, 47441 Moers (DE). WINKLER, Jochen [DE/DE]; Saelhuyzen 30, 47509 Rheurdt (DE). PIPPLIES, Klaus [DE/DE]; Ludwig-Dell-Str. 4g, 47506 Neukirchen-Viny (DE). WEDLER, Michael [DE/DE]; Jordringstrasse 1, 47119 Duisburg (DE).

(74) Anwalt: UPPENA, Franz; Patente, Marken & Lizizenzen, Chemetall GmbH, Trakehner Str. 3, 60487 Frankfurt (DE).

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

(48) Datum der Veröffentlichung dieser berichtigten Fassung: 20. Juli 2006

(15) Informationen zur Berichtigung:
siehe PCT Gazette Nr. 29/2006 vom 20. Juli 2006

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR PRODUCING A CATALYTIC PREPARATION AND USE OF SAID CATALYTIC PREPARATION

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG EINER KATALYSATORPRÄPARATION UND VERWENDUNG DER KATALYSATORPRÄPARATION

(57) Abstract: The invention relates to a method for producing a catalytic preparation, according to which the catalyst, which contains at least one inorganic compound that is solid in normal conditions, is comminuted using a dispersing aggregate into particles with a maximum average particle size $d_{50,3}$ of 2 μm , preferably a maximum 1 μm , conforming to DIN 66141 and 66144 and is then dispersed in a liquid in a concentration of between 1 and 50 wt. %, (in relation to the finished catalytic preparation).

(57) Zusammenfassung: Beschrieben wird ein Verfahren zur Herstellung einer Katalysatorpräparation, bei dem der Katalysator, enthaltend mindestens eine bei Normalbedingungen feste anorganische Verbindung, mittels eines Dispergier-aggregates in Partikel mit einer mittleren Korngroßesse $d_{50,3}$ von maximal 2 μm , bevorzugt von maximal 1 μm , dargestellt nach DIN 66141 und 66144, zerkleinert wird und in einer Konzentration von 1 bis 50 Gew.-% (relativ zur fertigen Katalysatorpräparation) in einer Flüssigkeit verteilt wird.

WO 2005/063395 A1

Verfahren zur Herstellung einer Katalysatorpräparation und Verwendung der Katalysatorpräparation

Die Erfindung betrifft ein Verfahren zur Herstellung einer Katalysatorpräparation und deren Verwendung.

5 Bei der Herstellung von Polyestern werden häufig Feststoffkatalysatoren eingesetzt. Solche Katalysatoren können z.B. TiO₂ oder vom TiO₂ abgeleitete Verbindungen sein. Z.B. werden in der EP 0736560 Katalysatoren aus Alkali- oder Erdalkali-Titanat beschrieben.

Bei der heterogenen Katalyse wird der Katalysator nicht im Reaktionsmedium 10 gelöst, sondern liegt als separate, feste Phase vor. Bei einer Variante dieser Katalyse verbleibt der Katalysator als separate, feste Phase im System. In manchen Fällen, wie z.B. bei der Katalyse von Veresterungsprozessen, wird der Katalysator als Pulver zugegeben, das sich aber im Laufe der Reaktion auflöst. Dabei findet ein kontinuierlicher Übergang von der heterogenen zur homogenen 15 Katalyse statt.

Die Verteilung des Katalysators in dem Reaktionsmedium hat einen großen Einfluss auf den Reaktionsverlauf.

Prinzipiell ist es möglich, einen heterogenen Katalysator in Pulverform dem Reaktionsmedium zuzuführen. Speziell bei kontinuierlichen Prozessen hat dieses 20 Verfahren jedoch neben dem Nachteil einer schlechten Dosierbarkeit der Pulver Mängel hinsichtlich der schnellen Verteilung des Katalysators im Reaktionsmedium. Deswegen entspricht es dem Stand der Technik, Aufschlammungen des Katalysators in Flüssigkeiten einzusetzen.

Da bei der Lagerung der Katalysatoraufschlammungen die Katalysatorteilchen 25 leicht sedimentieren, müssen solche Aufschlammungen vor der Verwendung aufgerührt werden, weil sonst wiederum die Dosierung des Katalysators nicht hinreichend genau wäre.

Nach dem Stokes'schen Gesetz ist die Sedimentationsgeschwindigkeit v proportional zum Quadrat der Durchmesser d der Katalysatorkügelchen und der Dichtedifferenz $\Delta\rho$ zwischen Feststoff und Flüssigkeit sowie umgekehrt proportional zur Viskosität η der Suspensionsflüssigkeit:

5
$$v = \frac{d^2 \cdot \Delta\rho \cdot g}{18\eta} \quad (\text{Stokes'sches Gesetz})$$

Aus der Gleichung ist ersichtlich, dass alle Katalysatorteilchen im Laufe der Zeit sedimentieren müssen, vorausgesetzt, ihre Sedimentationsgeschwindigkeit ist größer als ihre thermische (Brown'sche) Bewegung.

Außer der Erdanziehungskraft wirkt auf die Teilchen auch die van der Waals-
10 Anziehungskraft, auch "Dispersive Kraft" genannt. Die Dispersive Kraft verursacht eine Flockung der Teilchen untereinander, wenn keine stabilisierenden Kräfte, z.B. durch gleichnamige, elektrostatische Aufladung oder adsorbierte Polymere, dagegen wirken. Flocken die Teilchen, so entstehen größere Agglomerate, die nach der Stokes Gleichung umso schneller
15 sedimentieren. Dafür haben geflockte, sedimentierte Systeme den Vorteil einer guten Aufrührbarkeit.

Das Gegenteil ist der Fall bei Aufschlämmungen, bei denen die Sedimentation wegen der Größe der Katalysatorteilchen aus einer flockungsstabilen Verteilung heraus erfolgt. Solche Systeme haben außer dem Nachteil des Absetzens zu
20 einem sehr dicht gepackten, kaum noch aufrührbaren Sediment den weiteren Nachteil, dass sie meistens nicht erwünschte Hilfsstoffe (polymere Netz- und Dispergierhilfsmittel) enthalten.

Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung einer Katalysator-
präparaton zu schaffen, bei dem die Nachteile des Standes der Technik, nämlich
25 insbesondere

- eine zu grob dispersen Verteilung des Katalysator

- eine schlechten Dosierbarkeit des Katalysatorpulvers
- eine schlechten Dosierbarkeit des Katalysators bei Verwendung sedimentierter Aufschlammungen
- eine Sedimentation des Katalysators zu einem festen, nicht aufrührbaren

5 Bodensatz

vermieden werden und bei dem der erhaltene Katalysator einerseits genügend lagerstabil ist und andererseits ein Maximum an katalytischer Aktivität entfalten kann.

Die Lösung der Aufgabe erfolgt durch ein Verfahren zur Herstellung einer
10 Katalysatorpräparation, bei dem der Katalysator, enthaltend mindestens eine bei Normalbedingungen feste anorganische Verbindung, mittels eines Dispergieraggregates in Partikel mit einer mittleren Korngröße $d_{50,3}$ von maximal 2 µm, bevorzugt von maximal 1 µm, dargestellt nach DIN 66141 und 66144, zerkleinert wird und in einer Konzentration von 1 bis 50 Gew.-%, bevorzugt 20 bis
15 40 Gew.-% (relativ zur fertigen Katalysatorpräparation) in einer Flüssigkeit verteilt wird. Die Partikelgrößenmessung wird bevorzugt mittels Laserbeugung vorgenommen.

Überraschenderweise lässt sich der Katalysator auf diese Weise ohne Zuhilfenahme von Netz- oder Dispergierhilfsmitteln oder eines anderweitigen, die
20 Suspension stabilisierenden Hilfsstoffes als Paste herstellen, die im ruhenden Zustand verfestigt ist. Erst ab einer Mindestschubspannung, der Fließgrenze τ_0 , fängt die Paste an zu fließen.

Die Fließgrenze der Katalysatorpaste steigt mit zunehmender Katalysatorkonzentration, bzw. mit abnehmender Teilchengröße. Durch Variation der
25 Katalysatorkonzentration und der Teilchengröße lässt sich die Fließgrenze der Katalysatorpaste einstellen. Bevorzugt hat die Katalysatorpaste eine Fließgrenze τ_0 von mindestens 0,1 Pa bei 23 °C (Raumtemperatur), besonders bevorzugt von 1 bis 30 Pa und ganz besonders bevorzugt von 5 bis 30 Pa, bei 23 °C. Bestimmt

wird die Fließgrenze nach DIN 53019 am Zylindermesssystem Z2 DIN (beschrieben im Datenblatt "Daten für Standard-Messsystem nach DIN 53019" für Viscolab/Rheolab MC 10 von Physika Meßtechnik GmbH, Stuttgart) und Auswertung nach Bingham. Dazu wird die Probe (Katalysatorpaste) in das 5 Standardmesssystem Z2 eingefüllt und dort bei Raumtemperatur über einen Zeitraum von 24 Stunden zunächst ruhen gelassen. Die Messung erfolgt mit 100 Messpunkten mit einer Messdauer von 5 s pro Messpunkt im Schergeschwindigkeitsbereich von 0 bis 100 1/s (lineare Rampe).

Mit dem beschriebenen Verfahren ist gewährleistet, dass die stabile 10 Katalysatorpaste durch Aufröhren in eine gut dosierbare und effektiv in die Reaktionslösung einmischbare Form gebracht werden kann, wobei die Katalysatoraktivität optimal genutzt wird. Der Katalysator liegt dabei in kolloidaler Form vor und ist ungewöhnlich lagerstabil. Auch bei einer einjährigen Lagerzeit der Suspension sedimentiert der Katalysator nicht und behält seine volle 15 Aktivität. Weiterhin von Vorteil ist, dass der Einsatz von Hilfsstoffen zur Erzeugung einer Fließgrenze (z.B. Polyurethanverdicker, Polyacrylatverdicker, Celluloseether, hochdisperse Kieselsäure) überflüssig ist.

Die bei Normalbedingungen feste anorganische Verbindung (Katalysator oder Katalysatorbestandteil) kann z.B. ausgewählt werden aus folgenden Stoffen: 20 Titandioxid, Titandioxid-haltige Stoffe, Titanate, Zeolithe, Aluminiumoxid, Boroxide, Germaniumdioxid, Antimon(III)-oxid, Cerioxide, Bariumsulfat, Zinksulfid, Siliziumdioxid oder Mischungen dieser Stoffe.

Besonders bevorzugt sind dabei Titandioxid und die in der EP 0736560 beschriebenen titanhaltigen Katalysatoren: hydratisiertes Titandioxid der 25 Zusammensetzung

$y \text{ TiO}_2 \cdot z \text{ H}_2\text{O}$ (mit $y = 1$, $z = 0,01$ bis 2), oder ein Titanat der Zusammensetzung

$(Me_nO)_x \cdot (TiO_2)_y \cdot (H_2O)_z$ (mit Me = Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba; n = 1 für Me = Erdalkali und n = 2 für Me = Alkali; x = 0,0001 bis 6; y = 1; z = 0,01 bis 2).

Als Dispergieraggregat können z.B. eingesetzt werden Rührwerkskugelmühlen, Ultraschallhomogenisatoren, bzw. Ultraschalldesintegratoren, 5 Hochdruckhomogenatoren, auf der Hochleistungspulstechnik basierende Dispergiergeräte, auf dem Prallstrahlverfahren beruhendes Dispergiergeräte (z.B. Gegenstrahlmühlen) oder Prallstrommühlen (z.B. Microjetdispergatoren). Besonders bevorzugt sind Rührwerkskugelmühlen.

Der Katalysator kann vor der Zerkleinerung in der Flüssigkeit vordispersiert, bzw. 10 aufgeschlämmt werden. Dazu können Dissolver, Rührer (z.B. Balken- Korb- oder Zahnscheibenrührer), Hoesch-Turbinen oder Ystral-Mühlen benutzt werden. Anschließend wird der Katalysator in der Flüssigkeit mittels eines der oben beschriebenen Dispergieraggregate auf die gewünschte Korngröße gebracht.

Der Katalysator kann auch trocken zerkleinert und anschließend mit einem 15 Dissolver, Rührer (z.B. Balken- Korb- oder Zahnscheibenrührer), einer Turbine oder Ystral-Mühle in der Flüssigkeit aufgeschlämmt werden.

Generell gilt bei der Wahl der Partikelgröße und der Katalysatorkonzentration folgende Beziehung: Je kleiner die Partikelgröße, desto kleiner sollte die Katalysatorkonzentration innerhalb der angegebenen Grenzen gewählt werden, 20 und umgekehrt.

Als Flüssigkeit werden bevorzugt folgenden Stoffe einzeln oder im Gemisch eingesetzt: Wasser, Alkohole mit 1 bis 20 C-Atomen (z.B. Methanol, Ethanol, Propanol (alle Isomeren), Butanol (alle Isomeren)), Diole, wie Alkandiole oder Cycloalkandiole mit 2 bis 12 C-Atomen (z.B. Ethylenglycol, 1,3-Propandiol, 1,4- 25 Butandiol, 1,4- Cyclohexandimethanol), Carbonsäuren (z.B. Ameisensäure, Essigsäure, Propansäure, Butansäure, Pentansäure) oder Fettsäuren.

Das erfindungsgemäße Verfahren kann beispielhaft wie folgt durchgeführt werden (ohne dass damit irgendwelche Einschränkungen verbunden sind):

Das Katalysatormaterial wird, sofern es nicht bereits in Pulverform vorliegt, in bekannter Weise pulverisiert, in die Flüssigkeit eingerührt und vordispersiert
5 (z.B. mit einem Zahnscheibendissolver). Die erhaltene Suspension wird anschließend mittels eines Dispergieraggregates (z.B. Perlühle) solange behandelt, bis die mittlere Korngröße $d_{50,3}$ einen Maximalwert von 2 µm, bevorzugt von maximal 1 µm erreicht.

Verwendung finden die erfindungsgemäß hergestellten Katalysatorpräparationen
10 u.a. in Kondensations- und Polykondensationsreaktionen (z.B. der Amidierung von Carbonsäuren, Veresterungen von Carbonsäuren und deren Hydrolyse), bei Umesterungen von Estern, bei Umamidierungen von Amiden, bei Umlagerungen (z.B. alpha-Pinen in Kamphen, Aldol-Reaktion) und bei der Olefinpolymerisation.

Verwendung kann die erfindungsgemäß hergestellte Katalysatorpräparation
15 weiterhin in der Fotokatalyse finden. So kann z.B. eine TiO₂-haltige Katalysatorpräparation in ein durch bakterielle oder chemische Schadstoffe belastetes Medium eingebracht werden, wobei die Schadstoffe in Gegenwart von Licht oxidiert werden. Einsatzgebiete derartiger Fotokatalysatoren sind Farben, Lacke, Anstriche, Papier, Tapeten, selbstreinigende Oberflächen oder
20 antibakterielle Oberflächen.

Eine weitere Verwendungsmöglichkeit der Katalysatorpräparation ist die Wirkungsverstärkung von Katalysatorenenzymsystemen. Dazu können z.B. bei der Herstellung der Katalysatorpräparation zu der in der Flüssigkeit verteilten anorganischen Verbindung Enzyme zugegeben werden. Die Enzyme lagern sich
25 auf der Feststoffoberfläche ab. Dort liegen die Enzyme vorteilhafter Weise in verteilter Form vor und sind gleichzeitig immobil.

Die Erfindung wird anhand des folgenden Ausführungsbeispiels näher erläutert:

Beispiel 1: Herstellung einer stabilen titanhaltigen Katalysatorpräparation

280 g eines pulverförmigen Ti-haltigen Katalysators mit einem Ti-Gehalt von 48,1 Gew.-%, einer spezifischen BET-Oberfläche von 71,5 m²/g und einer mittleren Korngröße $d_{50,3}$ von 2,7 µm, hergestellt nach dem in der EP 0736560 beschriebenen Verfahren, wurden in 520 g Monoethylenglycol mittels Zahnscheibendissolver (Durchmesser 4 cm, Drehzahl 1300 min⁻¹) eingerührt und 45 Minuten dispergiert. Die dabei gebildete Suspension wurde mit einer Rührwerkskugelmühle (Dispermat SL, 125 ml Mahlraum, 100 ml Glasperlen, Durchmesser 1 mm) 20 Minuten bei 3000 U/Min und 50 Minuten bei 4000 U/Min im Kreislaufverfahren gemahlen. Die Suspension wurde von den Perlen und dem Grobanteil über ein Sieb (Maschenweite 56 µm) abgetrennt. Die Partikelgrößenbestimmung (Laserbeugung, Helos) zeigte einen mittleren Partikeldurchmesser $d_{50,3} = 0,92$ µm mit einer Verteilungsbreite von $B_{90/10} = 1,5$ µm. Der Feststoffgehalt lag bei 35 Gew.-%. Die Suspension zeigte auch nach drei Tagen Lagerung bei 80 °C keine Bodensatzbildung. Die dispergierte Suspension wurde in ein Messsystem Z2 DIN eingefüllt und bei Raumtemperatur 48 Stunden stehen gelassen. Die Messung erfolgte mit 100 Messpunkten mit einer Messdauer von 5 s pro Messpunkt im Schergeschwindigkeitsbereich von 0 bis 100 1/s (lineare Rampe). Die Schubspannung (bei Beginn der Scherbelastung) der Suspension wurde mit $\tau_0 = 22,6$ Pa bestimmt (Messung nach DIN 53019, Z2 DIN, Auswertung nach Bingham).

Patentansprüche

1. Verfahren zur Herstellung einer Katalysatorpräparation, dadurch gekennzeichnet, dass der Katalysator, enthaltend mindestens eine bei Normalbedingungen feste anorganische Verbindung, mittels eines Disperseraggregates in Partikel mit einer mittleren Korngröße $d_{50,3}$ von maximal 2 µm, dargestellt nach DIN 66141 und 66144, zerkleinert wird und in einer Konzentration von 1 bis 50 Gew.-%, relativ zur fertigen Katalysatorpräparation, in einer Flüssigkeit verteilt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Katalysator in einer Konzentration von 20 bis 40 Gew.-%, relativ zur fertigen Katalysatorpräparation in einer Flüssigkeit verteilt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die feste anorganische Verbindung ausgewählt wird aus folgenden Stoffen: Titandioxid, Titandioxid-haltige Stoffe, Titanate, Zeolithe, Aluminiumoxid, Boroxide, Germaniumdioxid, Antimon(III)-oxid, Ceroxide, Bariumsulfat, Zinksulfid, Siliziumdioxid oder Mischungen dieser Stoffe.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die feste anorganische Verbindung ausgewählt wird aus folgenden Stoffen:
hydratisiertes Titandioxid der Zusammensetzung
 $y \text{ TiO}_2 \cdot z \text{ H}_2\text{O}$ (mit $y = 1$, $z = 0,01$ bis 2),
oder ein Titanat der Zusammensetzung $(\text{Me}_n\text{O})_x \cdot (\text{TiO}_2)_y \cdot (\text{H}_2\text{O})_z$ (mit $\text{Me} = \text{Li}, \text{Na}, \text{K}, \text{Rb}, \text{Cs}, \text{Mg}, \text{Ca}, \text{Sr}, \text{Ba}$; $n = 1$ für $\text{Me} = \text{Erdalkali}$ und $n = 2$ für $\text{Me} = \text{Alkali}$; $x = 0,0001$ bis 6; $y = 1$; $z = 0,01$ bis 2).
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Partikel eine mittlere Korngröße $d_{50,3}$ von maximal 1 µm aufweisen.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Partikelzerkleinerungsaggregat eingesetzt werden: Rührwerkskugelmühlen, Ultraschallhomogenisatoren, bzw. Ultraschalldesintegratoren, Hochdruckhomogenatoren, auf der Hochleistungspulstertechnik basierende Dispergiergeräte, auf dem Prallstrahlverfahren beruhendes Dispergiergeräte (z.B. Gegenstrahlmühlen) oder Prallstrommühlen (z.B. Microjetdispergatoren).
5
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Flüssigkeit folgenden Stoffe einzeln oder im Gemisch eingesetzt werden: Wasser, Alkohole mit 1 bis 20 C-Atomen, Diole, Carbonsäuren oder Fettsäuren.
10
8. Verwendung der nach einem Verfahren gemäß einem der Ansprüche 1 bis 7 hergestellten Katalysatorpräparation in Kondensations- und Polykondensationsreaktionen, bei Umesterungen von Estern, bei Uramidierungen von Amiden, bei Umlagerungen und bei der Olefinpolymerisation.
15
9. Verwendung der nach einem Verfahren gemäß einem der Ansprüche 1 bis 7 hergestellten Katalysatorpräparation zur Fotokatalyse.
10. Verwendung der nach einem Verfahren gemäß einem der Ansprüche 1 bis 7 hergestellten Katalysatorpräparation zur Wirkungsverstärkung von Katalysatorenenzymsystemen.
20