WELCOME

Stroke Prediction

Mentor: Văn Lương & Khánh Huyền

Member: Huy Anh

Introduction

Context & Objetive 1 Data Information 2 Exploratory data analysis 3

Model & Result 4 Evaluate Model 5

1. Context & Objetive

Context

According to the WHO stroke is the 2nd leading cause of death globally, responsible for approximately 11% of total deaths

Objetive

Predicts whether a patient is likely to get stroke based on various parameters

2. Data information

	Data	Note	
	ID	Unique Identifier	
Sal	Age	Age of the patient	
Numerical	AVG_Glucose_Level	AVG glucose in blood	
Z Z	ВМІ	Body Mass index	
	Gender	"Male", "Female" or "Other"	
	Hypertension	0 if patient doesn't have hypertension 1 if patient have hypertension	
	Heart_Disease	0 if patient doesn't have heart disease 1 if patient have heart disease	
ical	Ever_Married	"No" or " Yes"	
Categorical	Work_Type	"children", "Govt_jov", "Never_worked", "Private" or "Self-employed	
0	Residence_Type	"Rural" or "Urban"	
	smoking_Status	"formerly smoked", "never smoked", "smokes" or "Unknown"	
	Stroke	0 if patient doesn't have Stroke 1 if patient have stroke	

#	Column	Non-Null Count	Dtype
0	id	5110 non-null	int64
1	gender	5110 non-null	object
2	age	5110 non-null	float64
3	hypertension	5110 non-null	int64
4	heart_disease	5110 non-null	int64
5	ever_married	5110 non-null	object
6	work_type	5110 non-null	object
7	Residence_type	5110 non-null	object
8	avg_glucose_level	5110 non-null	float64
9	bmi	4909 non-null	float64
10	smoking_status	5110 non-null	object
11	stroke	5110 non-null	int64

dtypes: float64(3), int64(4), object(5)

memory usage: 479.2+ KB

About Data

- Bảng có **5110 dòng** và **12 cột**
- Cột BMI có dữ liệu null
- Dữ liệu của cột "Age" đang là dạng float

- Dữ liệu của AVG_Glucose và BMI có outlier, nhưng

 AVG_Glucose BMI có thể là các chỉ số nguyên nhân

 dẫn đến stroke
- Chia giá trị dữ liệu thành các nhóm nhỏ: ở các cột "AVG_glucose", "Bmi" và "Age"
- BMI: Do có giá trị null, nên đã thay thế giá trị null bằng một giá trị cụ thể rồi chia thành các nhóm nhỏ

AVG_Glucose

Max: 372.74Min: 55.12Median: 91.88

BMI

Max: 97.6Median : 28.1Median: 10.3

Age

Max: 82Min: 0Median: 45

- Những người **trên 40 tuổi** có xu hướng bị "Stroke" nhiều hơn
- "Glucose" **Không ảnh hướng** đến việc bị "Stroke"
- "BMI" cao cũng là nguyên nhân dẫn đến "stroke"

- Trong những người bị stroke
 tỉ lệ **nữ giới** chiếm 56%,
 nam giới chiếm 43.4%
- Thành thị có tỉ lệ bị stroke
 cao hơn là ở nông thôn
- Những người **có gia đình**có tỉ lệ stroke **cao hơn** là **chưa lập gia đình**
- Hypertension, Heart Disease
 và Smoking thì không liên
 quan đến Stroke

4. Modeling

- Sau khi xử lý và làm sạch dữ liệu, Tiến hành

 Enconding các Categorical data
- Dữ liệu đang bị mất cân bằng giữa "Stroke" và "No
 Stroke" => Thực hiện cân bằng data để giúp cho mô
 hình hoạt động được tốt và chính xác hơn

4. Modeling

Model	Accuracy	Precision	Recall	F1_Score
Navie Bayes	72%	12%	74%	21%
Mnb	70%	9%	58%	16%
Logistic Regresion	70%	8%	48%	14%
Decision Tree	72%	10%	62%	18%
Random Forest	79%	11%	48%	18%
SVM	66%	9%	62%	15%
KNN	84%	11%	32%	16%
Adaboost	81%	6%	20%	9%
Gradien	79%	7%	26%	11%
Xgb	79%	7%	28%	12%
Light GBM	77%	8%	34%	13%

- Sau khi áp dụng các model để tìm dự đoán thì KNN có accuracy là 84% ,Adaboost 81% và random forest là 79%
- Tuy nhiên đây là bài toán phân loại Stroke nên ta xét thêm các chỉ số f1, Precision và Recall thì Gnb lại cho kết quả cao nhất
- -> Chọn mô hình Navie Bayes

5. Predict & Evaluate

Confusion matrix

- Precision = 12% -> trong tổng 308 người dự đoán là bị stroke ,
 thì có 37 người thực sự bị stroke.
- **Recall = 74%** -> Trong 50 người thực sự bị stroke thì mô hình đoán đc 37 người
- F1 = 21%

- FNR = FN/(TP + FN) = 26% -> Tỉ lệ dự báo sai của mô hình là 26%
- FPR = FP/(FP+ TN) = 27% -> Tỉ lệ dự báo nhầm của mô hình là 27%
- **AUC** = 0.73

6. Reference

- **Linkdataset:** https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
- Link Bmi level: https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
- Link glucose level: https://www.credihealth.com/blog/normal-blood-glucose-levels-in-adults/

THANKS