

WELTORGANISATION FÜR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶: C07D 261/04, 413/04, A01N 25/32

(11) Internationale Veröffentlichungsnummer:

WO 95/07897

A1

(43) Internationales Veröffentlichungsdatum:

23. März 1995 (23.03.95)

(21) Internationales Aktenzeichen:

PCT/EP94/03008

- (22) Internationales Anmeldedatum: 8. September 1994 (08.09.94)
- (30) Prioritätsdaten:

P 43 31 448.1

16. September 1993 (16.09.93) DE

- (71) Anmelder: HOECHST SCHERING AGREVO GMBH [DE/DE]; Miraustrasse 54, D-13509 Berlin (DE).
- (72) Erfinder: WILLMS, Lothar; Königsteiner Strasse 59, D-65719 Hofheim (DE). BAUER, Klaus; Doorner Strasse 53d, D-63456 Hanau (DE). BIERINGER, Hermann; Eichenweg 26, D-65817 Eppstein/Taunus (DE).

CZ, FI, GE, HU, JP, KG, KP, KR, KZ, LK, LT, LV, MD, MG, MN, NO, NZ, PL, RO, RU, SI, SK, TJ, TT, UA, UZ, VN, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO Patent (KE, MW, SD).

(81) Bestimmungsstaaten: AM, AU, BB, BG, BR, BY, CA, CN,

Veröffentlicht

Mit internationalem Recherchenbericht.

- (54) Title: SUBSTITUTED ISOXAZOLINES, PROCESS FOR PRODUCING THEM, AGENTS CONTAINING THEM AND THEIR USE AS SAFENERS
- (54) Bezeichnung: SUBSTITUIERTE ISOXAZOLINE, VERFAHREN ZU DEREN HERSTELLUNG, DIESE ENTHALTENDE MITTEL UND DEREN VERWENDUNG ALS SAFENER

(57) Abstract

Compounds of formula (I) and their salts in which: R¹ is carboxyl, formyl or another acyl radical or a derivative of the 3 last-mentioned groups; R² is hydrogen, halogen, C₁-C₁₈ alkyl, C₂-C₈ cycloalkyl, C₂-C₈ alkenyl, C₂-C₈ alkenyloxy, C₂-C₈ alkinyloxy, C₁-C₁₈ alkylthio, C₂-C₈ alkenylthio, in which each of the last-mentioned 9 radicals may be unsubstituted or substituted, or (C₁-C₈ alkoxy) carbonyl; and R³ and R⁴ are mutually independently an aliphatic, araliphatic or heteroaraliphatic radical with 1 to 30 C atoms which may be unsubstituted or substituted with one or more functional groups, or an aromatic or heteroaromatic radical which is unsubstituted or substituted; are suitable as safeners for pesticides, preferably herbicides in cultivated

 $\begin{array}{c|c}
R^2 \\
R^3 \\
R^4 \\
\end{array}$ $\begin{array}{c}
R^1 \\
\end{array}$ (I)

plants. The compounds may be made from alkenes (II) and nitrile oxides (III) by the process of claim 6.

(57) Zusammenfassung

Verbindungen der Former (I) und deren Salze, worin R¹ Carboxy, Formyl oder einen anderen Acylrest oder ein Derivat der letztgenannten 3 Gruppen, R² Wasserstoff, Halogen, C₁-C₁₈-Alkyl, C₃-C₈-Cycloalkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₁₈-Alkoxy, C₂-C₈-Alkinyloxy, C₂-C₈-Alkinyloxy, C₁-C₁₈-Alkylthio, C₂-C₈-Alkenylthio, wobei jeder der letztgenannten 9 Reste jeweils unsubstituiert oder substituiert ist, oder (C₁-C₈-Alkoxy)-carbonyl und R³ und R⁴ unabhängig voneinander einen aliphatischen, araliphatischen oder heteroaraliphatischen Rest mit 1 bis 30 C-Atomen, der unsubstituiert oder mit einer oder mehreren funktionellen Gruppen substituiert ist, oder einen aromatischen oder heteroaromatischen Rest, der unsubstituiert oder substituiert ist, bedeuten, eignen sich als Safener für Pestizide, vorzugsweise Herbizide in Kulturpflanzen. Die Verbindungen lassen sich nach dem Verfahren von Anspruch 6 aus Alkenen (II) und Nitriloxiden (III) herstellen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MIR	Mauretanien
ΑÜ	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungara	NZ	Neusecland
BJ	Benin	Œ	Irland	PL	Polen
BR	Brazilien	П	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liochtenstein	SN	Senegal
CN	China	LK	Sri Lanka	11D	Techad
CS	Tachechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dinemark	. MD	Republik Moldan	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Pinnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

Beschreibung

Substituierte Isoxazoline, Verfahren zu deren Herstellung, diese enthaltende Mittel und deren Verwendung als Safener.

Die Erfindung betrifft das technische Gebiet der Pflanzenschutzmittel, insbesondere Wirkstoff-Antidot-Kombinationen, die hervorragend für den Einsatz gegen konkurrierende Schadpflanzen in Nutzpflanzenkulturen geeignet sind.

Bei der Anwendung von Pflanzenbehandlungsmitteln, insbesondere bei der Anwendung von Herbiziden, können unerwünschte Schäden an den behandelten Kulturpflanzen auftreten. Viele Herbizide sind nicht voll verträglich (selektiv) mit einigen wichtigen Kulturpflanzen, so daß ihrem Einsatz enge Grenzen gesetzt sind. Sie können deshalb manchmal überhaupt nicht oder nur in solch geringen Aufwandmengen eingesetzt werden, daß die erwünschte breite herbizide Wirksamkeit gegen die Schadpflanzen nicht gewährleistet ist. So können beispielsweise viele Herbizide der weiter unten genannten Stoffklassen (A) bis (K) nicht ausreichend selektiv in Mais, Reis oder in Getreide eingesetzt werden. Besonders bei der Nachauflaufapplikation dieser Herbizide treten phytotoxische Nebenwirkungen an den Kulturpflanzen auf, und es ist wünschenswert, eine derartige Phytotoxizität zu vermeiden oder zu verringern.

Es ist bereits bekannt, Herbizide in Kombination mit Verbindungen einzusetzen, welche die Phytotoxizität der Herbizide bei Kulturpflanzen reduzieren, ohne die herbizide Wirkung gegen die Schadpflanzen entsprechend zu reduzieren. Solche Kombinationspartner werden "Safener" oder "Antidots" genannt.

Aus EP-A-509 433 (CA-A-2065983) ist die Verwendung von 5-Phenylisoxazolin- und 5-Phenylisothiazolin-3-carboxylderivaten als Safener für Herbizide aus der Reihe der Carbamate, Thiocarbamate, Halogenacetanilide, Phenoxyphenoxy-alkancarbonsäurederivate, Sulfonylharnstoffe etc. bekannt.

In EP-A-520371 (CA-A-2072229) werden u.a. 5-Alkylisoxazolin- und - isothiazolin-3-carboxylderivate als Safener für verschiedene Herbizidklassen genannt.

WO 92/03053 (CA-A-2089651) beschreibt die Verwendung von substituierten 3-Aryl-isoxazolin- und -isothiazolin-5-carboxylderivaten als Safener für diese Herbizide. In WO 91/18907 (US-A-5,332,715) werden silylsubstituierte Isoxazoline, Isoxazole, Isothiazoline und Isothiazole als pflanzenschützende Mittel beschrieben.

WO 91/08202 (US-A-5,314,863) schließlich beschreibt 5-benzyl-substitutierte Isoxazolinderivate mit pflanzenschützenden Eigenschaften.

Es wurde nun gefunden, daß sich überraschenderweise Verbindungen aus der Gruppe von 5,5-disubstituierten Isoxazolinderivaten der nachstehenden Formel (I) hervorragend dazu eignen, Kulturpflanzen gegen schädigende Wirkungen von aggressiven Agrarchemikalien, insbesondere Herbiziden, zu schützen.

Diese Isoxazoline, welche zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von aggressiven Agrarchemikalien geeignet sind, entsprechen der Formel (I),

worin

R¹ Carboxy, Formyl oder einen anderen Acylrest oder ein Derivat der letztgenannten 3 Gruppen, vorzugsweise einen Rest der Formel

3

oder

worin R, R^T , R^5 , R^6 , R^7 , Y, T, Z, Q, A_i , X_i und q wie weiter unten definiert sind,

Wasserstoff, Halogen, C_1 - C_{18} -Alkyl, C_3 - C_8 -Cycloalkyl, C_2 - C_8 -Alkenyl, C_2 - C_8 -Alkinyl, C_1 - C_{18} -Alkoxy, C_2 - C_8 -Alkenyloxy, C_2 - C_8 -Alkinyloxy, C_1 - C_1 -Alkylthio, C_2 - C_8 -Alkenylthio, wobei jeder der letztgenannten 9 Reste jeweils unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Nitro, Cyano, C_1 - C_4 -Alkoxy und $(C_1$ - C_4 -Alkoxy)-carbonyl substituiert ist, oder $(C_1$ - C_8 -Alkoxy)-carbonyl,

R³ und R⁴ unabhängig voneinander

worin

einen aliphatischen, araliphatischen oder heteroaraliphatischen Rest mit 1 bis 30 C-Atomen, der unsubstituiert oder mit einer oder mehreren funktionellen Gruppen substituiert ist, beispielsweise einen Rest C_1 - C_{18} -Alkyl, C_3 - C_{12} -Cycloalkyl, C_2 - C_8 -Alkenyl oder C_2 - C_8 -Alkinyl, oder einen aromatischen oder heteroaromatischen Rest, der unsubstituiert oder substituiert ist, beispielsweise einen unsubstituierten oder substituierten Phenyl-, Naphthyl- oder Heteroarylrest, vorzugsweise einen Rest der Formel

- (U) für gleiche oder verschiedene Reste stehen, welche unabhängig voneinander Wasserstoff, Halogen, Cyano, Nitro, Amino oder C₁-C₈-Haloalkyl, C₁-C₈-Haloalkoxy, C₁-C₈-Alkyl, C₁-C₈-Alkoxy, Mono-(C₁-C₄-alkyl)-amino, Di-(C₁-C₄-alkyl)-amino, C₁-C₈-Alkylthio oder C₁-C₈-Alkylsulfonyl, wobei jeder der letztgenannten 8 Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Substituenten aus der Gruppe enthaltend Halogen, C₁-C₈-Haloalkoxy, Nitro, Cyano, Hydroxy, C₁-C₈-Alkoxy und eine C₁-C₈-Alkoxygruppe, worin eine oder mehrere, vorzugsweise bis zu drei CH₂-Gruppen durch Sauerstoff ersetzt sind, und C₁-C₈-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₂-C₈-Alkenylthio, C₂-C₈-Alkinylthio, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkoxy, Mono- und Di-(C₁-C₄-alkyl)-amino und (C₁-C₈-Alkoxy)-carbonyl substituiert ist, und vorzugsweise Wasserstoff, Halogen, C₁-C₆-Haloalkyl, wie Trifluormethyl, C₁-C₆-Haloalkoxy, wie Difluormethoxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C_1 - C_6 -Alkylsulfonyl, Nitro, Amino, (C_1 - C_2 -Alkyl)-amino, Di-(C_1 - C_2 alkyl)-amino oder Cyano bedeuten und
- o eine ganze Zahl von 1 bis 5, vorzugsweise 1 bis 3, ist und p eine ganze Zahl von 1 bis 7, vorzugsweise 1 bis 3, ist, oder vorzugsweise einen monocyclischen oder bicyclischen Heteroarylrest aus der Gruppe Furyl, Thienyl, Pyrrolyl, Pyrazolyl, Thiazolyl, Oxazolyl, Pyridinyl, Pyrimidinyl, Pyrazinyl, Pyridazinyl und Chinolinyl, der jeweils unsubstituiert oder durch einen oder mehrere, vorzugsweise ein bis drei der genannten Reste U substituiert ist,
- R Wasserstoff oder einen aliphatischen, aromatischen, heteroaromatischen, araliphatischen oder heteroaraliphatischen Rest mit 1 bis 30 C-Atomen, der unsubstituiert oder mit einer oder mehreren funktionellen Gruppen substituiert ist, beispielsweise R einen Rest

Wasserstoff, C_1 - C_{18} -Alkyl, C_3 - C_{12} -Cycloalkyl, C_2 - C_8 -Alkenyl oder C_2 - C_8 -Alkinyl, Heterocyclyl, Phenyl oder Heteroaryl,

wobei jeder der letztgenannten 7 Reste unabhängig voneinander unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe enthaltend Halogen, Cyano, Thio, Nitro, Hydroxy, C_1 - C_8 -Alkyl, letzteres nur für den Fall cyclischer Reste, C_1 - C_8 -Haloalkyl, C_1 - C_8 -Alkoxy, C_2 - C_8 -Alkenyloxy, C_2 - C_8 -Alkinyloxy, C_1 - C_8 -Haloalkoxy, C_1 - C_8 -Alkylthio, C_2 - C_8 -Alkenylthio, C_2 - C_8 -Alkinylthio, C_3 - C_7 -Cycloalkoxy, Reste der Formein -NR * R ** und -O-CO-NR * R ** ,

wobei R* und R** in den letztgenannten 3 Resten unabhängig voneinander Wasserstoff, C_1 - C_8 -Alkyl, C_2 - C_8 -Alkenyl, C_2 - C_8 -Alkinyl, Benzyl, Phenyl oder substituiertes Phenyl sind oder gemeinsam mit dem N-Atom einen 3- bis 8-gliedrigen Heterocyclus, der noch bis zu 2 weitere Heteroatome aus der Gruppe N, O und S enthalten und durch C_1 - C_4 -Alkyl substituiert sein kann, bedeuten,

sowie (C_1 - C_8 -Alkoxy)-carbonyl, (C_1 - C_8 -Alkoxy)-thiocarbonyl, (C_2 - C_8 -Alkenyloxy)-carbonyl, (C_1 - C_8 -Alkylthio)-carbonyl, (C_2 - C_8 -Alkenylthio)-carbonyl, (C_2 - C_8 -Alkinyloxy)-carbonyl, (C_2 - C_8 -Alkinyloxy)-carbonyl, Formyl, (C_1 - C_8 -Alkyl)-carbonyl, (C_2 - C_8 -Alkinyl)-carbonyl, (C_2 - C_8 -Alkinyl)-carbonyl, (C_1 - C_4 -Alkylimino, (C_1 - C_4 -Alkoxyimino, (C_1 - C_8 -Alkyl)-carbonylamino, (C_1 - C_8 -Alkenyl)-carbonylamino, (C_2 - C_8 -Alkinyl)-carbonylamino, (C_1 - C_8 -Alkoxy)-carbonylamino, (C_2 - C_8 -Alkenyloxy)-carbonylamino, (C_1 - C_8 -Alkyl)-amino-carbonylamino, (C_1 - C_6 -Alkyl)-carbonyloxy, das unsubstituiert oder durch Halogen, NO $_2$, C $_1$ -C $_4$ -Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, und (C_2 - C_6 -Alkenyl)-carbonyloxy, (C_2 - C_6 -Alkinyl)-carbonyloxy, (C_1 - C_8 -Alkoxy)-carbonyloxy, (C_2 - C_8 -Alkinyl)-carbonyloxy, (C_2 - C_8 -Alkinyloxy)-carbonyloxy, (C_2 - C_8 -Alkylsulfonyl, Phenyl, Phenyl- C_1 - C_6 -alkoxy, Phenyl-(C_1 - C_8 -alkoxy)-carbonyl,

Phenoxy, Phenoxy- C_1 - C_6 -alkoxy, Phenoxy- $(C_1$ - C_6 -alkoxy)-carbonyl, Phenoxycarbonyl, Phenylcarbonyloxy, Phenylcarbonylamino, Phenyl- $(C_1$ - C_6 -alkyl)-carbonylamino und Phenyl- $(C_1$ - C_6 -alkyl)-carbonyloxy,

wobei die letztgenannten 11 Reste im Phenylring unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Haloalkyl, C_1 - C_4 -Haloalkoxy und Nitro substituiert sind, und Reste der Formeln -SiR'3, -O-SiR'3, (R')3Si- C_1 - C_6 -alkoxy, -CO-O-NR'2, -O-N=CR'2, -N=CR'2, -O-NR'2, -CH(OR')2 und -O-(CH₂)_m-CH(OR')2,

worin die R' in den genannten Formeln unabhängig voneinander Wasserstoff, C_1 - C_4 -Alkyl oder Phenyl, das unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Haloalkyl, C_1 - C_4 -Haloalkoxy und Nitro substituiert ist, oder paarweise eine C_2 - C_6 -Alkylenkette und m=0 bis 6 bedeuten,

und einen substituierten Alkoxyrest der Formel R"O-CHR'''CH(OR")-C₁-C₆-alkoxy,

worin die R" unabhängig voneinander C_1 - C_4 -Alkyl oder zusammen eine C_1 - C_6 -Alkylengruppe und R''' Wasserstoff oder C_1 - C_4 -Alkyl bedeuten,

substituiert ist,

einen Rest der Formel -CO-R, -CS-R, -NR f R g , -N = CR h R i oder SiR a R b R c , wobei R die genannte Bedeutung hat und R f , R g , R h und R i unabhängig voneinander Wasserstoff, C $_1$ -C $_4$ -Alkyl, C $_2$ -C $_4$ -Alkenyl, C $_2$ -C $_4$ -Alkinyl, Benzyl, Phenyl oder substituiertes Phenyl sind oder R f und R g gemeinsam mit dem N-Atom einen 5- oder 6-gliedrigen Heterocyclus, der noch bis zu 2 weitere Heteroatome aus der Gruppe N, O und S enthalten und durch C $_1$ -C $_4$ -Alkyl substituiert sein kann, bedeuten und

 R^a , R^b und R^c unabhängig voneinander C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, Phenyl oder substituiertes Phenyl sind,

- Y, Z unabhängig voneinander Sauerstoff, Schwefel in seinen verschiedenen Oxidationstufen, vorzugsweise S, SO oder SO₂, oder -NR^e, wobei R^e analog R⁵ oder R⁶ definiert ist,
- R⁵, R⁶ gleich oder verschieden sind und unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl oder (C₁-C₄-Alkyl)-carbonyl, wobei jeder der 4 letztgenannten Reste unsubstituiert oder durch einen oder mehrere Substituenten aus der Gruppe enthaltend Halogen, C₁-C₈-Haloalkoxy, Nitro, Cyano, Hydroxy, C₁-C₈-Alkoxy und eine C₁-C₈-Alkoxygruppe, worin eine oder mehrere, vorzugsweise bis zu drei nicht direkt aneinander gebundene CH₂-Gruppen durch Sauerstoff ersetzt sind, und C₁-C₈-Alkylthio, C₁-C₆-Alkylsulfonyl, C₂-C₈-Alkenylthio, C₂-C₈-Alkinylthio, C₂-C₈-Alkinyloxy, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkoxy sowie Amino, Mono- und Di-(C₁-C₄-alkyl)-amino substituiert ist, oder

Formyl oder SiRaRbRc,

worin R^a , R^b und R^c unabhängig voneinander C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl oder unsubstituiertes oder substituiertes Phenyl bedeuten, oder

C₃-C₈-Cycloalkyl, C₃-C₈-Cycloalkenyl, Heterocyclyl mit 3 bis 7 Ringatomen, Aryl, Heteroaryl oder Arylcarbonyl,

wobei jeder der letztgenannten 6 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe C_1 - C_8 -Alkyl, Halogen, C_1 - C_8 -Haloalkoxy, Nitro, Cyano, Hydroxy, C_1 - C_8 -Alkoxy und eine C_1 - C_8 -Alkoxygruppe, worin eine oder mehrere, vorzugsweise bis zu drei nicht direkt aneinander gebundene CH_2 -Gruppen durch Sauerstoff ersetzt sind, und C_1 - C_8 -Alkylthio, C_1 - C_6 -Alkylsulfonyl, C_2 - C_8 -Alkenylthio, C_2 - C_8 - C_8 -Alkenylthio, C_2 - C_8 -

Alkinyloxy, C_3 - C_7 -Cycloalkyl, C_3 - C_7 -Cycloalkoxy sowie Amino, Mono- und Di- $(C_1$ - C_4 -alkyl)-amino substituiert ist, oder

- R⁵, R⁶ gemeinsam eine C₂-C₄-Alkylen-kette oder C₂-C₄-Alkenylen-kette, welche unsubstituiert oder durch 1 oder 2 Reste aus der Gruppe Methyl, Ethyl, Methoxy, Ethoxy und Halogen substituiert ist,
- Wasserstoff, C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, unsubstituiertes oder substituiertes C_6 - C_{12} -Aryl oder Heteroaryl, Benzyl, C_1 - C_4 -Alkoxy, Acyloxy, wie (C_1 - C_4 -Alkyl)-carbonyloxy und unsubstituiertes und substituiertes Phenylcarbonyloxy, oder Hydroxy, -NH-CO-NH₂, -NH-CS-NH₂, Mono- und Di-(C_1 - C_4 -alkyl)-amino, Acylamino, (C_1 - C_4 -Alkyl)sulfonylamino, C_6 - C_{12} -Aryloxy, Heteroaryloxy, Arylsulfonylamino oder Arylamino,

wobei Aryl bzw. Heteroaryl in den letztgenannten 4 Resten unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Nitro, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Haloalkyl und (C_1-C_4) -Haloalkoxy substituiert ist,

- T O, S, NR⁸, N-OR⁸ oder N-O-Acyl,
- Q O oder S,
- q eine ganze Zahl von 0 bis 4,
- i eine Laufziffer, welche bei q ungleich 0 alle ganzen Zahlen von 1 bis q annimmt, wobei q die oben angegebene Bedeutung hat,
- X_i unabhängig voneinander O, S, NR^9 , N- $(A_iX_i)_q$ -R
- A_i unabhängig voneinander unsubstituiertes oder substituiertes C_1 - C_6 -Alkylen, C_2 - C_6 -Alkenylen, C_2 - C_6 -Alkinylen, C_3 - C_6 -Cycloalkylen, C_3 - C_6 -Cycloalkenylen, Heterocyclylen, Arylen oder Heteroarylen und
- R^8 , R^9 unabhängig voneinander H, C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, C_3 - C_6 -Cycloalkyl, C_3 - C_6 -Cycloalkenyl, Heterocyclyl, Aryl oder Heteroaryl bedeuten.

In der Formel (I) und im folgenden können die Reste Alkyl, Alkoxy, Haloalkyl, Haloalkoxy, Alkylamino und Alkylthio sowie die entsprechenden ungesättigten

und/oder substituierten Reste im Kohlenstoffgerüst jeweils geradkettig oder verzweigt sein. Wenn nicht speziell angegeben, sind bei diesen Resten die Kohlenstoffgerüste mit 1 bis 4 C-Atomen, bzw. bei ungesättigten Gruppen mit 2 bis 4 C-Atomen bevorzugt. Alkylreste, auch in den zusammengesetzten Bedeutungen wie Alkoxy, Haloalkyl usw., bedeuten z. B. Methyl, Ethyl, n- oder i-Propyl, n-, i-, t- oder 2-Butyl, Pentyle, Hexyle, wie n-Hexyl, i-Hexyl und 1,3-Dimethylbutyl, Heptyle, wie n-Heptyl, 1-Methylhexyl und 1,4-Dimethylpentyl; Alkenyl- und Alkinylreste haben die Bedeutung der den Alkylresten entsprechenden möglichen ungesättigten Reste, Alkenyl bedeutet z.B. Allyl, 1-Methylprop-2-en-1-yl, 2-Methyl-prop-2-en-1-yl, But-2-en-1-yl, But-3-en-1-yl, 1-Methyl-but-3-en-1-yl und 1-Methyl-but-2-en-1-yl; Alkinyl bedeutet z.B. Propargyl, But-2-in-1-yl, But-3-in-1-yl, 1-Methyl-but-3-in-1-yl. Halogen bedeutet Fluor, Chior, Brom oder Iod, vorzugsweise Fluor, Chior oder Brom, insbesondere Fluor oder Chlor. Haloalkyl, -alkenyl und -alkinyl bedeuten durch Halogen teilweise oder vollständig substituiertes Alkyl, Alkenyl bzw. Alkinyl, z.B. CF₃, CHF₂, CH₂F, CF₃CF₂, CH₂FCHCl, CCl₃, CHCl₂, CH₂CH₂Cl; Haloalkoxy ist z.B. OCF₃, OCHF₂, OCH₂F, CF₃CF₂O, OCH₂CF₃. Entsprechendes gilt für Haloalkenyl und andere durch Halogen substituierte Reste.

Aryl bedeutet beispielsweise Phenyl, Naphthyl, Tetrahydronaphthyl, Indenyl, Indanyl, Pentalenyl, Fluorenyl und ähnliches, vorzugsweise Phenyl; Aryloxy bedeutet vorzugsweise die den genannten Arylresten entsprechenden Oxy-Reste, insbesondere Phenoxy.

Heteroaryl bzw. Heteroaryl in Heteroaryloxy bedeutet beispielsweise Pyridyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Thiazolyl, Oxazolyl, Furyl, Pyrrolyl, Pyrazolyl und Imidazolyl, aber auch bicyclische oder polycyclische aromatische oder araliphatische Verbindungen, z. B. Chinolinyl, Benzoxazolyl etc.

Substituiertes Aryl bzw. Aryloxy, Heteroaryl, Heteroaryloxy, Phenyl, Phenoxy, Benzyl, Benzyloxy bzw. substituierte bicyclische Reste mit aromatischen Anteilen bedeuten beispielsweise einen vom unsubstituierten Grundkörper

abgeleiteten substituierten Rest, wobei die Substituenten beispielsweise ein oder mehrere, vorzugsweise 1, 2 oder 3 Reste aus der Gruppe Halogen, Alkyl, Haloalkyl, Alkoxy, Haloalkoxy, Hydroxy, Amino, Nitro, Cyano, Alkoxycarbonyl, Alkylcarbonyl, Formyl, Carbamoyl, Mono- und Dialkylaminocarbonyl, Mono- und Dialkylamino, Alkylsulfinyl und Alkylsulfonyl bedeuten und bei Resten mit C-Atomen solche mit 1 bis 4 C-Atomen, insbesondere 1 oder 2, bevorzugt sind. Bevorzugt sind dabei in der Regel Substituenten aus der Gruppe Halogen, z. B. Fluor und Chlor, C₁-C₄-Alkyl, vorzugsweise Methyl oder Ethyl, C₁-C₄-Haloalkyl, vorzugsweise Trifluormethyl, C₁-C₄-Alkoxy, vorzugsweise Methoxy oder Ethoxy, C₁-C₄-Haloalkoxy, Nitro und Cyano. Besonders bevorzugt sind dabei die Substituenten Methyl, Methoxy und Chlor.

Gegebenenfalls substituiertes Phenyl ist z.B. Phenyl, das unsubstituiert oder einoder mehrfach, vorzugsweise bis zu dreifach durch gleiche oder verschiedene Reste aus der Gruppe Halogen, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Halogenalkyl, (C_1-C_4) -Halogenalkoxy und Nitro substituiert ist, z.B. o-, m- und p-Tolyl, Dimethylphenyle, 2-, 3- und 4-Chlorphenyl, 2-, 3- und 4-Trifluor- und -Trichlorphenyl, 2,4-, 3,5-, 2,5- und 2,3-Dichlorphenyl, o-, m- und p-Methoxyphenyl.

Ein drei- bis siebengliedriger wie oben beschriebener heterocyclischer Rest ist vorzugsweise von Benzol abgeleitet, wovon mindestens ein CH durch N und/oder mindestens zwei benachbarte CH-Paare durch NH, S und/oder O ersetzt sind. Der Rest kann benzokondensiert sein. Er ist gegebenenfalls teilweise oder vollständig hydriert und wird dann auch als Heterocyclyl bezeichnet. Es kommen insbesondere Reste wie Oxiranyl, Pyrrolidyl, Piperidyl, Dioxolanyl, Pyrazolyl, Morpholyl, Furyl, Tetrahydrofuryl, Indolyl, Chinolinyl, Pyrimidyl, Azepinyl, Triazolyl, Thienyl und Oxazolyl in Frage.

Acyl bedeutet beispielsweise Formyl, Alkylcarbonyl wie $(C_1-C_4-Alkyl)$ -carbonyl, Phenylcarbonyl, wobei der Phenylring substituiert sein kann, z. B. wie oben für Phenyl gezeigt, oder Alkyloxycarbonyl, Phenyloxycarbonyl, Benzyloxycarbonyl,

Alkylsulfonyl und andere Reste von organischen Säuren.

Derivate von Carboxy sind typische Säurederivatereste wie z.B. Salze, Ester, Thioester, Amide, Thioamide, Ketosäuren, Amidine und Nitrile. Derivate von Formyl und Acyl sind vor allem carbonylanaloge Derivate, wie Acetale, Thioacetale, Thioketale, Imine, Thioformyl, Thioacyl etc.

Manche Verbindungen der Formel (I) enthalten ein oder mehrere asymmetrische C-Atome oder Doppelbindungen, die in der allgemeinen Formel (I) nicht gesondert angegeben sind. Die durch ihre spezifische Raumform definierten möglichen Stereoisomeren, wie Enantiomere, Diastereomere, E- und Z-Isomere sowie deren Gemische sind jedoch alle von der Formel (I) umfaßt.

Die Verbindungen der Formel (I), welche von Carbonsäuren abgeleitet sind, können Salze bilden, bei denen der Rest R durch ein Äquivalent eines für die Landwirtschaft geeigneten Kations ersetzt wird. Diese Salze sind beispielsweise Metall-, insbesondere Alkalisalze (Na,K) oder Erdalkalisalze, aber auch Ammoniumsalze oder Salze mit organischen Aminen sowie Salze, die als Kationen Sulfonium- oder Phosphoniumionen enthalten.

Als Salzbildner eignen sich besonders Metalle und organische Stickstoffbasen, vor allem quartäre Ammoniumbasen. Hierbei kommen als zur Salzbildung geeignete Metalle Erdalkalimetalle, wie Magnesium oder Calcium, vor allem aber Alkalimetalle in Betracht, wie Lithium und insbesondere Kalium und Natrium.

Beispiele für zur Salzbildung geeignete Stickstoffbasen sind primäre, sekundäre oder tertiäre, aliphatische und aromatische, gegebenenfalls am Kohlenwasserstoffrest hydroxylierte Amine, wie Methylamin, Ethylamin, Propylamin, Isopropylamin, die vier isomeren Butylamine, Dimethylamin, Diethylamin, Dipropylamin, Diisopropylamin, Di-n-butylamin, Pyrrolidin, Piperidin, Morpholin, Trimethylamin, Triethylamin, Tripropylamin, Chinuclidin, Pyridin, Chinolin, Isochinolin sowie Methanolamin, Ethanolamin, Propanolamin, Dimethanolamin, Diethanolamin oder Triethanolamin.

Beispiele für quartäre Ammoniumbasen sind Tetraalkylammoniumkationen, in denen die Alkylreste unabhängig voneinander geradkettige oder verzweigte C₁-C₆-Alkylgruppen sind, wie das Tetramethylammoniumkation, das Tetraethylammoniumkation oder das Trimethylethylammoniumkation, sowie weiterhin das Trimethylbenzylammoniumkation, das Triethylbenzylammoniumkation und das Trimethyl-2-hydroxyethylammoniumkation.

Besonders bevorzugt als Salzbildner sind das Ammoniumkation und Di-sowie Trialkylammoniumkationen, in denen die Alkylreste unabhängig voneinander geradkettige oder verzweigte, gegebenenfalls durch eine Hydroxylgruppe substituierte (C_1 - C_6)-Alkylgruppen darstellen, wie beispielsweise das Dimethylammoniumkation, das Trimethylammoniumkation, das Triethylammoniumkation, das Di-(2-hydroxyethyl)-ammoniumkation und das Tri-(2-hydroxyethyl)-ammoniumkation.

Von besonderem Interesse sind Verbindungen der Formel (I) oder deren Salze, worin

R² Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₅-C₆-Cycloalkyl und mindestens einer der Reste R³ und R⁴ einen Rest der Formel

worin

- (U) für gleiche oder verschiedene Reste stehen, welche unabhängig voneinander Wasserstoff, Halogen, wie Fluor, Chlor, Brom und Iod, Cyano, Nitro, Amino, C_1 - C_4 -Haloalkyl, C_1 - C_4 -Haloalkoxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, Mono-(C_1 - C_4 -alkyl)-amino, Di-(C_1 - C_4 -alkyl)-amino, C_1 - C_4 -Alkylthio oder C_1 - C_4 -Alkylsulfonyl bedeuten,
 - eine ganze Zahl von 1 bis 3 ist und
 - p eine ganze Zahl von 1 bis 3 ist, oder

13

 R^3 , R^4 unabhängig voneinander einen monocyclischen oder bicyclischen Heteroarylrest aus der Gruppe Furyl, Thienyl, Pyrrolyl, Pyrazolyl, Thiazolyl, Oxazolyl, Pyridinyl, Pyrimidinyl, Pyrazinyl, Pyridazinyl und Chinolinyl, der unsubstituiert oder durch ein bis drei der vorstehend genannten Reste U substituiert ist, bedeuten.

Besonders bevorzugt sind die Reste R³ und R⁴ gleiche oder verschiedene Reste der Formel

wobei U und o die vorstehend genannten Bedeutungen haben.

Von besonderem Interesse sind auch Verbindungen der genannten Formel (I) und deren Salze, worin

R Wasserstoff, C₁-C₈-Alkyl, C₄-C₇-Cycloalkyl, C₂-C₈-Alkenyl oder C₂-C₈-Alkinyl, Heterocyclyl, Phenyl oder Heteroaryl ist,

> wobei jeder der letztgenannten 7 Reste unabhängig voneinander unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe enthaltend Halogen, Cyano, Thio, Nitro, Hydroxy, C1-C4-Alkyl, letzteres nur für den Fall cyclischer Reste, C1-C4-Haloalkyl, C1-C4-Alkoxy, C2-C4-Alkenyloxy, C2-C4-Alkinyloxy, C1-C4-Haloalkoxy, C₁-C₄-Alkylthio, C₂-C₄-Alkenylthio, C₂-C₄-Alkinylthio, C₅-C₆-Cycloalkyl, C5-C6-Cycloalkoxy, Amino, Mono- und Di-(C1-C4-alkyl)amino, (C₁-C₆-Alkoxy)-carbonyl, Reste der Formeln -SiR'₃, -O-NR'₂, -O-N = CR'₂, -N = CR'₂, worin die R' in den genannten Formeln unabhängig voneinander Wasserstoff, C₁-C₂-Alkyl oder Phenyl oder paarweise eine C2-C5-Alkylenkette bedeuten, substituiert ist,

bedeutet, oder

Verbindungen, worin

einen Rest der Formel -CO-R, -NRfRg oder -N = CRhRi, wobei R, Rf, Rg, Rh R^T und Ri die genannten Bedeutungen haben, bedeutet.

Vorzugsweise bedeutet R Wasserstoff, C_1 - C_8 -Alkyl, C_5 - C_6 -Cycloalkyl, C_2 - C_8 -Alkenyl oder C_2 - C_8 -Alkinyl, wobei jeder der letztgenannten 4 Reste unabhängig voneinander unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe enthaltend Halogen, Cyano, Nitro, C_1 - C_4 -Alkoxy, C_2 - C_4 -Alkenyloxy, C_2 - C_4 -Alkinyloxy, C_5 - C_6 -Cycloalkyl, C_5 - C_6 -Cycloalkoxy, Mono- und Di- $(C_1$ - C_4 -alkyl)-amino, Reste der Formeln -SiR' $_3$, -O-N=CR' $_2$, -N=CR' $_2$, worin die R' in den genannten Formeln unabhängig voneinander Wasserstoff, C_1 - C_2 -Alkyl oder Phenyl oder paarweise eine C_2 - C_5 -Alkylenkette bedeuten, substituiert ist.

R^{T}	bedeutet vorzugsweise -CO-R, wobei R die genannte
	Bedeutung hat, oder - NR^fR^g oder - $N = CR^hR^i$, worin
R ^f , R ^g	unabhängig voneinander H, C ₁ -C ₂ -Alkyl, Benzyl oder Phenyl
	oder gemeinsam mit dem N-Atom Pyrrolidin-1-yl, Piperidin-1-
	yl, Morpholin-4-yl, Piperazin-1-yl oder Imidazol-1-yl, bzw.
R ^h , R ⁱ	unabhängig voneinander H, C ₁ -C ₂ -Alkyl, Benzyl oder Phenyl
	bedeuten.

Von besonderem Interesse sind auch Verbindungen der genannten Formel (I) und deren Salze, worin

 R^5 und R^6 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, C_5 - C_6 -Cycloalkyl oder C_5 - C_6 -Cycloalkenyl bedeuten, sowie solche Verbindungen, worin

 R^7 Wasserstoff, C_1 - C_4 -Alkyl, Phenyl, Benzyl, Hydroxy, NH-CO-NH₂, - NH-Aryl oder C_1 - C_4 -Alkoxy bedeutet.

Von besonderem Interesse sind auch Verbindungen der genannten Formel (I) und deren Salze, worin

- T O, S oder NR⁸, vorzugsweise O oder NR⁸,
- Q O oder S, vorzugsweise O,
- q eine ganze Zahl von 0 bis 4,

WO 95/07897 PCT/EP94/03008

15

i	eine Laufziffer, welche bei q ungleich 0 alle ganzen Zahlen von 1				
	bis q annimmt, wobei q die oben angegebene Bedeutung hat,				
X_{i}	unabhängig voneinander O, S, NR ⁹ , N-(A _i X _i) _q -R				
A_{i}	unabhängig voneinander unsubstituiertes oder substituiertes C ₁ -C ₄ -				
	Alkylen, C ₂ -C ₄ -Alkenylen, C ₅ -C ₆ -Cycloalkylen, vorzugsweise				
	C ₁ -C ₄ -Alkylen,				
R ⁸ , R ⁹	unabhängig voneinander H, C ₁ -C ₄ -Alkyl, C ₂ -C ₄ -Alkenyl, C ₂ -C ₄ -				
	Alkinyl oder C ₅ -C ₆ -Cycloalkyl				
bedeuten.					

Die Erfindung betrifft auch ein Verfahren zum Schutz von Kulturpflanzen, vorzugsweise Getreide-, Reis-, Mais-, Sojabohnen- oder Zuckerrübenpflanzen, vor phytotoxischen Nebenwirkungen von Pflanzenschutzmitteln wie Herbiziden, Insektiziden und Fungiziden, das dadurch gekennzeichnet ist, daß eine wirksame Menge mindestens einer Verbindung der Formel (I) bzw. deren Salz vor, nach oder gleichzeitig mit den jeweiligen Wirkstoffen auf die Pflanzen, Pflanzensamen oder die Anbaufläche appliziert wird.

Die Erfindung betrifft weiterhin die Verwendung von Verbindungen der Formel (I) oder deren Salzen zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Pflanzenschutzmitteln wie Herbiziden, Insektiziden und Fungiziden.

Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung der Verbindung der Formel (I) und deren Salze, dadurch gekennzeichnet, daß man eine Verbindung der Formel (II)

$$R^3R^4C = CHR^2 \tag{II}$$

WO 95/07897 PCT/EP94/03008

16

worin R², R³ und R⁴ die in Formel (I) angegebene Bedeutung haben, mit einem Nitriloxid der Formel (III)

$$(-)$$
O - N = $(+)$ C - R¹ (III)

worin R¹ die in Formel (I) angegebene Bedeutung hat, umsetzt.

Die Umsetzung wird beispielsweise in einem organischen Lösungsmittel durchgeführt. Als Lösungsmittel eignen sich vorzugsweise unpolare bis wenig polare organische Lösungsmittel, z. B. Ether wie Diethylether oder Tetrahydrofuran (THF).

Die Ausgangsverbindungen der Formel (II) und (III) sind literaturbekannt (vgl. J. Org. Chem. 25, 1160 (1960); J. Am. Chem. Soc. 46, 791 (1924) und dort genannte Zitate) oder lassen sich analog den bekannten Verbindungen herstellen. Die Nitriloxide der Formel (III) werden in der Regel in situ aus 2-Halogeno-2-hydroximinoessigsäure(derivaten) bzw. -ethanal(derivaten) bzw. -ketonen unter Einwirkung von Basen, z.B. organische Aminbasen, hergestellt und direkt mit schon in der Reaktionsmischung enthaltender Verbindung der Formel (II) umgesetzt. Die Umsetzung wird vorzugsweise bei einer Temperatur von -15°C bis zur Siedetemperatur des Lösungsmittels, insbesondere bei Raumtemperatur, durchgeführt.

Im folgenden sind mit Verbindungen der Formel (I) auch deren Salze eingeschlossen, sofern keine genauere Definition gegeben ist.

Verbindungen der Formel (I) reduzieren oder unterbinden phytotoxische Nebenwirkungen von Pflanzenschutzmitteln wie Herbiziden, Insektiziden und Fungiziden, die beim Einsatz dieser Wirkstoffe in Nutzpflanzenkulturen auftreten, und können deshalb in üblicher Weise als Antidote oder Safener bezeichnet werden.

Die erfindungsgemäßen Verbindungen der Formel (I) können zur gemeinsamen Anwendung mit Pflanzenschutzmittel-Wirkstoffen gleichzeitig oder in beliebiger Reihenfolge mit den Wirkstoffen ausgebracht werden und sind dann in der Lage, schädliche Nebenwirkungen dieser Wirkstoffe bei Kulturpflanzen zu reduzieren oder völlig aufzuheben, ohne die Wirksamkeit dieser Wirkstoffe gegen Schadpflanzen bzw. Schadinsekten oder Schadpilze zu beeinträchtigen. Dabei können auch Schädigungen, welche durch die Anwendung mehrerer Pflanzenschutzmittel entstehen, z. B. durch mehrere Herbizide oder durch Herbizide in Kombination mit Insektiziden oder Fungiziden, wesentlich reduziert oder völlig aufgehoben werden. Hierdurch kann das Einsatzgebiet herkömmlicher Pflanzenschutzmittel ganz erheblich erweitert werden.

Insektizide, die allein oder gemeinsam mit Herbiziden Pflanzenschädigungen verursachen können, sind beispielsweise folgende:
Insektizide Präparate wie Organophosphate z. B. Terbufos (*Counter), Fonofos (*Dyfonate), Phorate (*Thimet), Chlorpyrifos (*Reldan) und andere verwandte Wirkstoffe; insektizide Carbamate wie z. B. Carbofuran (*Furadan) und andere; sowie Pyrethroid-Insektizide wie z. B. Tefluthrin (*Force), Deltamethrin (*Decis) und Tralomethrin (*Scout) und andere; sowie andere insektizide Mittel mit andersartigem Wirkungsmechanismus.

Herbizide, deren phytotoxische Nebenwirkungen auf Kulturpflanzen mittels Verbindungen der Formel (I) herabgesetzt werden können, sind z.B. Herbizide aus der Gruppe der Carbamate, Thiocarbamate, Halogenacetanilide, substituierte Phenoxy-, Naphthoxy- und Phenoxy-phenoxycarbonsäurederivate sowie Heteroaryloxy-phenoxyalkancarbonsäurederivate, wie Chinolyloxy-, Chinoxalyloxy-, Pyridyloxy-, Benzoxalyloxy- und Benzthiazolyloxy-phenoxyalkancarbonsäureester, Cyclohexandionabkömmlinge, Imidazolinone, Pyrimidyloxy-pyridincarbonsäure-derivate, Pyrimidyloxy-benzoesäure-derivate, Sulfonylharnstoffe, Triazolopyrimidin-sulfonamid-derivate sowie S-(N-Aryl-N-alkylcarbamoylmethyl)-dithiophosphorsäureester. Bevorzugt sind dabei Phenoxyphenoxy- und Heteroaryloxy-phenoxycarbonsäureester und -salze,

Sulfonylharnstoffe, Imidazolinone sowie Herbizide, die gemeinsam mit ALS-Hemmstoffen (Acetolactat-Synthase-Hemmstoffen) zur Erweiterung des Wirkungsspektrums eingesetzt werden, z.B. Bentazon, Cyanazin, Atrazin, Bromoxynil, Dicamba und andere Blattherbizide.

Geeignete Herbizide, die mit den erfindungsgemäßen Safenern kombiniert werden können, sind beispielsweise:

- A) Herbizide vom Typ der Phenoxyphenoxy- und Heteroaryloxyphenoxycarbonsäure- (C_1-C_4) alkyl-, (C_2-C_4) alkenyl- und (C_3-C_4) alkinylester wie
- A1) Phenoxy-phenoxy- und Benzyloxy-phenoxy-carbonsäure-derivate, z.B.
- 2-(4-(2,4-Dichlorphenoxy)-phenoxy)-propionsäuremethylester (Diclofop-methyl),
- 2-(4-(4-Brom-2-chlorphenoxy)-phenoxy)-propionsäuremethylester
- (s. DE-A-2601548),
- 2-(4-(4-Brom-2-fluorphenoxy)-phenoxy)-propionsäuremethylester
- (s. US-A-4808750),
- 2-(4-(2-Chlor-4-trifluormethylphenoxy)-phenoxy)-propionsäuremethylester
- (s. DE-A-2433067),
- 2-(4-(2-Fluor-4-trifluormethylphenoxy)-phenoxy)-propionsäuremethylester
- (s. US-A-4808750),
- 2-(4-(2,4-Dichlorbenzyl)-phenoxy)propionsäuremethylester (s. DE-A-2417487),
- 4-(4-(4-Trifluormethylphenoxy)-phenoxy)-pent-2-en-säureethylester,
- 2-(4-(4-Trifluormethylphenoxy)-phenoxy)-propionsäuremethylester
- (s. DE-A-2433067),
- A2) "Einkernige" Heteroaryloxy-phenoxy-alkancarbonsäurederivate, z.B.
- 2-(4-(3.5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäureethylester (s. EP-A-2925),
- 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäurepropargylester (EP-A-3114).
- 2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy-propionsäure-methylester

WO 95/07897 PCT/EP94/03008

19

- (s. EP-A-3890),
- 2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäure-ethylester (s. EP-A-3890),
- 2-(4-(5-Chlor-3-fluor-2-pyridyloxy)-phenoxy)-propionsäurepropargylester (EP-A-191736),
- 2-(4-(5-Trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäurebutylester (Fluazifopbutyl),
- A3) "Zweikernige" Heteroaryloxy-phenoxy-alkancarbonsäurederivate, z.B.
- 2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)-propionsäuremethylester und -ethylester (Quizalofop-methyl und -ethyl),
- 2-(4-(6-Fluor-2-chinoxalyloxy)-phenoxy)-propionsäuremethylester
- (s. J. Pest. Sci. Vol. 10, 61 (1985)),
- 2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)-propionsäure und -2-isopropylidenaminooxyethylester (Propaguizafop u. Ester),
- 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäureethylester (Fenoxapropethyl), dessen D(+) Isomer (Fenoxaprop-P-ethyl) und
- 2-(4-(6-Chlorbenzthiazol-2-yloxy)-phenoxypropionsäureethylester (s. DE-A-2640730),
- 2-(4-(6-Chlorchinoxalyloxy)-phenoxy-propionsäure-tetrahydrofur-2-ylmethyl-ester (s. EP-A 323 727),
- B) Herbizide aus der Sulfonylharnstoff-Reihe, wie z.B. Pyrimidin- oder Triazinylaminocarbonyl-[benzol-, pyridin-, pyrazol-, thiophen- und (alkylsulfonyl)alkylamino-]-sulfamide. Bevorzugt als Substituenten am Pyrimidinring oder Triazinring sind Alkoxy, Alkyl, Haloalkoxy, Haloalkyl, Halogen oder Dimethylamino, wobei alle Substituenten unabhängig voneinander kombinierbar sind. Bevorzugte Substituenten im Benzol-, Pyridin-, Pyrazol-, Thiophen- oder (Alkylsulfonyl)alkylamino-Teil sind Alkyl, Alkoxy, Halogen, Nitro, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkyl, Alkylsulfonyl, Haloalkoxy, Haloalkyl, Alkylcarbonyl, Alkoxyalkyl, (Alkansulfonyl)alkylamino. Geeignete Sulfonylharnstoffe sind beispielsweise

- B1) Phenyl- und Benzylsulfonylharnstoffe und verwandte Verbindungen, z.B.
- 1-(2-Chlorphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)harnstoff (Chlorsulfuron),
- 1-(2-Ethoxycarbonylphenylsulfonyl)-3-(4-chlor-6-methoxypyrimidin-2-yl)harnstoff (Chlorimuron-ethyl),
- 1-(2-Methoxyphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)harnstoff (Metsulfuron-methyl),
- 1-(2-Chlorethoxy-phenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)harnstoff (Triasulfuron),
- 1-(2-Methoxycarbonyl-phenylsulfonyl)-3-(4,6-dimethyl-pyrimidin-2-yl)harnstoff (Sulfometuron-methyl),
- 1-(2-Methoxycarbonylphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-3-methylharnstoff (Tribenuron-methyl),
- 1-(2-Methoxycarbonylbenzylsulfonyl)-3-(4,6-dimethoxy-pyrimidin-2-yl)harnstoff (Bensulfuron-methyl),
- 1-(2-Methoxycarbonylphenylsulfonyl)-3-(4,6-bis-(difluormethoxy)pyrimidin-2-yl)harnstoff (Primisulfuron-methyl),
- 3-(4-Ethyl-6-methoxy-1,3,5-triazin-2-yl)-1-(2,3-dihydro-1,1-dioxo-2-methylbenzo[b]thiophen-7-sulfonyl)-harnstoff (s. EP-A-79683),
- 3-(4-Ethoxy-6-ethyl-1,3,5-triazin-2-yl)-1-(2,3-dihydro-1,1-dioxo-2-methylbenzo[b]thiophen-7-sulfonyl)-harnstoff (s. EP-A-79683),
- 3-(4-Methoxy-6-methyl-1,3,5-triazin-2-yl)-1-(2-methoxycarbonyl-5-jod-phenylsulfonyl)-harnstoff (s. WO 92/13845)
- B2) Thienylsulfonylharnstoffe, z.B. 1-(2-Methoxycarbonylthiophen-3-yl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)harnstoff (Thifensulfuron-methyl),
- B3) Pyrazolylsulfonylharnstoffe, z.B.
- 1-(4-Ethoxycarbonyl-1-methylpyrazol-5-yl-sulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl)harnstoff (Pyrazosulfuron-methyl),
- 3-Chlor-5-(4,6-dimethoxypyrimidin-2-ylcarbamoylsulfamoyl)-1-methyl-pyrazol-4-carbonsäuremethylester (s. EP 282613),

21

5-(4,6-Dimethylpyrimidin-2-yl-carbamoylsulfamoyl)-1-(2-pyridyl)-pyrazol-4-carbonsäuremethylester (NC-330, s. Brighton Crop Prot. Conference - Weeds - 1991, Vol. 1, 45 ff.),

B4) Sulfondiamid-Derivate, z.B.

3-(4,6-Dimethoxypyrimidin-2-yl)-1-(N-methyl-N-methylsulfonylaminosulfonyl)harnstoff
(Amidosulfuron) und Strukturanaloge (s. EP-A-0131258 und Z. Pfl. Krankh. Pfl. Schutz 1990, Sonderheft XII, 489-497),

B5) Pyridylsulfonylharnstoffe, z.B.

1-(3-N,N-Dimethylaminocarbonylpyridin-2-yl-sulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl)harnstoff (Nicosulfuron),
1-(3-Ethylsulfonylpyridin-2-yl-sulfonyl)-3-(4,6-dimethoxy-pyrimidin-2-yl)harnstoff

(DPX-E 9636, s. Brighton Crop Prot. Conf. - Weeds - 1989, S. 23 ff.), Pyridylsulfonylharnstoffe, wie sie in DE-A-4000503 und DE-A-4030577 beschrieben sind, vorzugsweise solche der Formel

worin

E CH oder N vorzugsweise CH,

R¹¹ lod oder NR¹⁶R¹⁷,

R¹² H, Halogen, Cyano, C_1 - C_3 -Alkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Haloalkyl, C_1 - C_3 -Haloalkoxy, C_1 - C_3 -Alkylthio, $(C_1$ - C_3 -Alkoxy)- C_1 - C_3 -alkyl,

 $(C_1-C_3-Alkoxy)$ -carbonyl, Mono- oder Di- $(C_1-C_3-alkyl)$ -amino, $C_1-C_3-Alkyl$ -sulfinyl oder -sulfonyl, $SO_2-NR^aR^b$ oder CO- NR^aR^b , insbesondere H,

- R^a, R^b unabhängig voneinander H, C_1 - C_3 -Alkyl, C_1 - C_3 -Alkenyl, C_1 - C_3 -Alkinyl oder zusammen -(CH_2)₄-, -(CH_2)₅- oder (CH_2)₂-O-(CH_2)₂-,
- R¹³ H oder CH₃,
- R¹⁴ Halogen, C₁-C₂-Alkyl, C₁-C₂-Alkoxy, C₁-C₂-Haloalkyl, vorzugsweise CF₃, C₁-C₂-Haloalkoxy, vorzugsweise OCHF₂ oder OCH₂CF₃,
- R^{15} C_1 - C_2 -Alkyl, C_1 - C_2 -Haloalkoxy, vorzugsweise OCHF₂, oder C_1 - C_2 -Alkoxy, und
- R¹⁶ C₁-C₄-Alkyl und
- R¹⁷ C₁-C₄-Alkylsulfonyl oder
- ${
 m R}^{16}$ und ${
 m R}^{17}$ gemeinsam eine Kette der Formel -(CH₂)₃SO₂- oder -(CH₂)₄SO₂- bedeuten,
- z.B. 3-(4,6-Dimethoxypyrimidin-2-yl)-1-(3-N-methylsulfonyl-N-methylaminopyridin-2-yl)-sulfonylharnstoff, oder deren Salze,
- B6) Alkoxyphenoxysulfonylharnstoffe, wie sie in EP-A-0342569 beschrieben sind, vorzugsweise solche der Formel

worin

- E CH oder N, vorzugsweise CH,
- R¹⁸ Ethoxy, Propoxy oder Isopropoxy,
- R^{19} Wasserstoff, Halogen, NO_2 , CF_3 , CN, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio oder (C_1 - C_3 -Alkoxy)-carbonyl, vorzugsweise in 6-Position am Phenylring,
- n 1, 2 oder 3, vorzugsweise 1,
- R²⁰ Wasserstoff, C₁-C₄-Alkyl oder C₃-C₄-Alkenyl,

 R^{21} , R^{22} unabhängig voneinander Halogen, C_1 - C_2 -Alkyl, C_1 - C_2 -Alkoxy, C_1 - C_2 -Haloalkyl, C_1 - C_2 -Haloalkoxy oder (C_1 - C_2 -Alkoxy)- C_1 - C_2 -alkyl, vorzugsweise OCH $_3$ oder CH $_3$, bedeuten, z.B. 3-(4,6-Dimethoxypyrimidin-2-yl)-1-(2-ethoxyphenoxy)-sulfonylharnstoff, oder deren Salze,

und andere verwandte Sulfonylharnstoffderivate und Mischungen daraus,

- C) Chloracetanilid-Herbizide wie
- N-Methoxymethyl-2,6-diethyl-chloracetanilid (Alachlor),
- N-(3'-Methoxyprop-2'-yl)-2-methyl-6-ethyl-chloracetanilid (Metolachlor),
- N-(3-Methyl-1,2,4-oxadiazol-5-yl-methyl)-chloressigsäure-2,6-dimethylanilid,
- N-(2,6-Dimethylphenyl)-N-(1-pyrazolylmethyl)-chloressigsäureamid (Metazachlor),
- D) Thiocarbamate wie
- S-Ethyl-N,N-dipropylthiocarbamat (EPTC) oder
- S-Ethyl-N,N-diisobutylthiocarbamat (Butylate),
- E) Cyclohexandion-Derivate wie
- 3-(1-Allyloxyiminobutyl)-4-hydroxy-6,6-dimethyl-2- oxocyclohex-3-encarbonsäuremethylester (Alloxydim),
- 2-(1-Ethoximinobutyl)-5-(2-ethylthiopropyl)-3-hydroxy-cyclohex-2-en-1-on (Sethoxydim),
- 2-(1-Ethoximinobutyl)-5-(2-phenylthiopropyl)-3-hydroxy-cyclohex-2-en-1-on (Cloproxydim),
- 2-(1-(3-Chlorallyloxy)iminobutyl)-5-[2-(ethylthio)propyl]-3-hydroxy-cyclohex-2-en-1-on,
- 2-(1-(3-Chlorallyloxy)iminopropyl)-5-[2-(ethylthio)propyl]-3-hydroxy-cyclohex-2-en-1-on (Clethodim),
- 2-(1-(Ethoxyimino)-butyl)-3-hydroxy-5-(thian-3-yl)-cyclohex-2-enon (Cycloxydim),

oder

PCT/EP94/03008 WO 95/07897

24

- 2-(1-Ethoxyiminopropyl)-5-(2,4,6-trimethylphenyl)-3-hydroxy-cyclohex-2-en-1-on (Tralkoxydim),
- F) 2-(4-Alkyl-5-oxo-2-imidazolin-2-yl)-benzoesäurederivate oder 2-(4-Alkyl-5-oxo-2-imidazolin-2yl)-heteroarylcarbonsäurederivate wie z.B.
- 2-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-5methylbenzoesäuremethylester und
- 2-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-4-methylbenzoesäure (Imazamethabenz),
- 5-Ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-pyridin-3-carbonsäure (Imazethapyr),
- 2-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-chinolin-3-carbonsäure (Imazaquin),
- 2-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-pyridin-3-carbonsäure (imazapyr),
- 5-Methyl-2-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-pyridin-3-carbonsäure (Imazethamethapyr),
- G) Triazolopyrimidinsulfonamidderivate, z. B.
- N-(2,6-Difluorphenyl)-7-methyl-1,2,4-triazolo-(1,5-c)-pyrimidin-2-sulfonamid (Flumetsulam),
- N-(2,6-Dichlor-3-methylphenyl)-5,7-dimethoxy-1,2,4-triazolo-(1,5-c)-pyrimidin-2sulfonamid,
- N-(2,6-Difluorphenyl)-7-fluor-5-methoxy-1,2,4-triazolo-(1,5-c)-pyrimidin-2sulfonamid
- N-(2,6-Dichlor-3-methylphenyl)-7-chlor-5-methoxy-1,2,4-triazolo-(1,5-c)pyrimidin-2-sulfonamid,
- N-(2-Chlor-6-methoxycarbonyl)-5,7-dimethyl-1,2,4-triazolo-(1,5-c)-pyrimidin-2sulfonamid
- (siehe z. B. EP-A-343 752, US- 4 988 812),

- H) Benzoylcyclohexandionderivate, z. B.
- 2-(2-Chlor-4-methylsulfonylbenzoyl)-cyclohexan-1,3-dion (SC-0051, s. EP-A-137963),
- 2-(2-Nitrobenzoyl)-4,4-dimethyl-cyclohexan-1,3-dion (s. EP-A-274634),
- 2-(2-Nitro-3-methylsulfonylbenzoyl)-4,4-dimethyl-cyclohexan-1,3-dion (s. WO-91/13548),
- J) Pyrimidinyloxy-pyrimidincarbonsäure- bzw. Pyrimidinyloxy-benzoesäure-Derivate, z.B.
- 3-(4,6-Dimethoxypyrimidin-2-yl)-oxy-pyridin-2-carbonsäurebenzylester (EP-A-249 707),
- 3-(4,6-Dimethoxypyrimidin-2-yl)-oxy-pyridin-2-carbonsäuremethylester (EP-A-249 707),
- 2,6-Bis[(4,6-dimethoxypyrimidin-2-yl)-oxy]-benzoesäure (EP-A-321 846),
- 2,6-Bis[(4,6-dimethoxypyrimidin-2-yl)-oxy]-benzoesäure-(1-ethoxycarbonyloxyethyl)-ester (EP-A-472 113) und
- K) S-(N-Aryl-N-alkyl-carbamoylmethyl)-dithiophosphorsäureester wie S-[N-(4-Chlorphenyl)-N-isopropyl-carbamoylmethyl]-O,O-dimethyl-dithiophosphat (Anilofos).

Die obengenannten Herbizide der Gruppen A bis K sind dem Fachmann bekannt und in der Regel in "The Pesticide Manual", British Crop Protection Council, 9. Auflage 1991 oder 8. Auflage 1987 oder in "Agricultural Chemicals Book II, Herbicides", by W.T. Thompson, Thompson Publications, Fresno CA, USA 1990 oder in "Farm Chemicals Handbook '90", Meister Publishing Company, Willoughby OH, USA 1990 beschrieben. Imazethamethapyr ist aus Weed Techn. 1991, Vol. 5, 430-438 bekannt.

Die herbiziden Wirkstoffe und die erwähnten Safener können zusammen (als fertige Formulierung oder im Tank-mix-Verfahren) oder in beliebiger Reihenfolge nacheinander ausgebracht werden. Das Gewichtsverhältnis Safener:Herbizid kann innerhalb weiter Grenzen variieren und ist vorzugsweise im Bereich von 1:10 bis 10:1, insbesondere von 1:10 bis 5:1. Die jeweils optimalen Mengen an Herbizid und Safener sind vom Typ des verwendeten Herbizids oder vom verwendeten Safener sowie von der Art des zu behandelnden Pflanzenbestandes abhängig und lassen sich von Fall zu Fall durch entsprechende Vorversuche ermitteln. Entsprechende Mengenverhältnisse sind bei Anwendung von Safener und anderen Pflanzenschutzmittelwirkstoffen, wie Insektiziden oder Insektid-Herbizid-Kombinationen sinnvoll.

Haupteinsatzgebiete für die Anwendung der Safener sind vor allem Getreidekulturen (Weizen, Roggen, Gerste, Hafer), Reis, Mais, Sorghum, aber auch Baumwolle und Sojabohne, vorzugsweise Getreide, Reis und Mais.

Ein besonderer Vorteil der erfindungsgemäßen Safener der Formel (I) ist bei deren Kombination mit Herbiziden aus der Gruppe der Sulfonylharnstoffe und/oder Imidazolinone sowie mit Herbiziden vom Typ der Phenoxyphenoxyund Heteroaryloxy-phenoxy-alkancarbonsäurederivate festzustellen.

Einige Herbizide dieser Strukturklassen können speziell in Getreidekulturen und/oder Mais sowie Reis nicht oder nicht genügend selektiv eingesetzt werden. Durch die Kombination mit den erfindungsgemäßen Safenern sind auch bei diesen Herbiziden in Getreide, Mais oder Reis hervorragende Selektivitäten zu erreichen.

Die Safener der Formel (I) können je nach ihren Eigenschaften zur Vorbehandlung des Saatgutes der Kulturpflanze (Beizung der Samen) verwendet werden oder vor der Saat in die Saatfurchen eingebracht oder zusammen mit dem Herbizid vor oder nach dem Auflaufen der Pflanzen angewendet werden. Vorauflaufbehandlung schließt sowohl die Behandlung der Anbaufläche vor der

WO 95/07897 PCT/EP94/03008

27

Aussaat als auch die Behandlung der angesäten, aber noch nicht bewachsenen Anbauflächen ein. Bevorzugt ist die gemeinsame Anwendung mit dem Herbizid, insbesondere in Nachauflaufverfahren. Hierzu können Tankmischungen oder Fertigformulierungen eingesetzt werden.

Die benötigten Aufwandmengen der Safener können je nach Indikation und verwendetem Herbizid innerhalb weiter Grenzen schwanken und liegen in der Regel im Bereich von 0,001 bis 5 kg, vorzugsweise 0,005 bis 0,5 kg Wirkstoff je Hektar.

Gegenstand der vorliegenden Erfindung ist deshalb auch ein Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Pestiziden, vorzugsweise von Herbiziden, das dadurch gekennzeichnet ist, daß eine wirksame Menge einer Verbindung der Formel (I) vor, nach oder gleichzeitig mit dem Pestizid bzw. Herbizid auf die Pflanzen, Pflanzensamen oder die Anbaufläche appliziert wird.

Gegenstand der Erfindung sind auch pflanzenschützende Mittel, die einen Wirkstoff der Formel (I) und übliche Formulierungshilfsmittel enthalten, sowie pestizide, vorzugsweise herbizide Mittel, die einen Wirkstoff der Formel (I) und ein Pestizid bzw. Herbizid sowie im Bereich des Pflanzenschutzes übliche Formulierungshilfsmittel enthalten.

Die Verbindungen der Formel (I) und deren Kombinationen mit einem oder mehreren der genannten Herbizide können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), emulgierbare Konzentrate (EC), wasserlösliche Pulver (SP), wasserlösliche Konzentrate (SL), konzentrierte Emulsionen (EW) wie Öl-in-Wasser und Wasser-in- Öl-Emulsionen, versprühbare Lösungen oder Emulsionen, Kapselsuspensionen (CS), Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen, Suspensionskonzentrate, Stäubemittel

(DP), ölmischbare Lösungen (OL), Beizmittel, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, Granulate für die Boden- bzw. Streuapplikation, wasserlösliche Granulate (SG), wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln und Wachse.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie" Band 7, C. Hauser Verlag München, 4. Aufl. 1986; Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker N.Y., 1973; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside,
Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden
beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents
and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H.v.Olphen, "Introduction
to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y.; Marsden, "Solvents
Guide", 2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and
Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood,
"Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964;
Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell.,
Stuttgart 1976; Winnacker-Küchler "Chemische Technolgie", Band 7, C. Hauser
Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole und Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate oder Alkylarylsulfonate und

Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalinsulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten.

Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte (z.B. Blockpolymere), Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitanfettsäureester oder Polyoxethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.

Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

Die agrochemischen Zubereitungen enthalten in der Regel 0,1 bis 99 Gewichtsprozent, insbesondere 0,1 bis 95 Gew.-%, Wirkstoffe der Formel (I) (Antidot) oder des Antidot/Herbizid-Wirkstoffgemischs und 1 bis 99,9 Gew.-%, insbesondere 5 bis 99,8 Gew.-%, eines festen oder flüssigen Zusatzstoffes und 0 bis 25 Gew.-%, insbesondere 0,1 bis 25 Gew.-%, eines Tensides.

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten beträgt die Wirkstoffkonzentration etwa 1 bis 80 Gew.-% Wirkstoffe. Staubförmige Formulierungen enthalten etwa 1 bis 20 Gew.-% an Wirkstoffen, versprühbare Lösungen etwa 0,2 bis 20 Gew.-% Wirkstoffe. Bei Granulaten wie wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt. In der Regel liegt der Gehalt bei den in Wasser dispergierbaren Granulaten zwischen 10 und 90 Gew.-%.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Granulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Pestizids bzw. Herbizids u.a. variiert die erforderliche Aufwandmenge der "Antidots".

Folgende Beispiele dienen zur Erläuterung der Erfindung:

A. Formulierungsbeispiele

- a) Ein Stäubmittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der Formel (I) oder eines Wirkstoffgemischs aus einem Herbizid und eine Verbindung der Formel (I) und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel (I) oder eines Wirkstoffgemischs aus einem Herbizid und einem Safener der Formel (I), 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der Formel (I) oder eines Wirkstoffgemischs aus einem Herbizid und einem Safener der Formel (I), 6 Gew.-Teilen Alkylphenolpolyglykolether (RTriton X 207), 3 Gew.-Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew.- Teilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
- d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer Verbindung der Formel (I) oder eines Wirkstoffgemischs aus einem Herbizid und einem Safener der Formel (I), 75 Gew.-Teilen Cyclohexanon als Lösemittel und 10 Gew.-Teilen oxethyliertem Nonylphenol als Emulgator.

- e) Ein in Wasser dispergierbares Granulat wird erhalten, indem man
 75 Gew.-Teile einer Verbindung der Formel (I) oder eines Wirkstoffgemischs
 aus einem Herbizid und einem Safener der Formel (I),
 - 10 " ligninsulfonsaures Calcium,
 - 5 " Natriumlaurylsulfat,
 - 3 " Polyvinylalkohol und
 - 7 " Kaolin

mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert.

- f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man
 - 25 Gew.-Teile einer Verbindung der Formel (I) oder eines
 Wirkstoffgemischs aus einem Herbizid und einem Safener
 der Formel (I),
 - 5 " 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium,
 - 2 " oleoylmethyltaurinsaures Natrium,
 - 1 " Polyvinylalkohol,
 - 17 " Calciumcarbonat und
 - 50 " Wasser

auf einer Kolloidmühle homogensiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.

- B. Herstellungsbeispiele
- 1. 5,5-Diphenyl-2-isoxazolin-3-carbonsäureethylester

13,52 g (0,075 mol) 1,1-Diphenylethen und 5,06 g (0,05 mol) Triethylamin werden bei 0°C in 200 ml Ether gelöst, anschließend werden in ca. zwei Stunden 7,58 g (0,05 mol) 2-Chlor-2-hydroximino-essigsäureethylester, gelöst in 100 ml Ether, zugetropft. Nach einstündigem Nachrühren bei

Raumtemperatur werden 100 ml H_2O zugegeben und anschließend wird das Gemisch mit Ether extrahiert. Nach Trocknen über $MgSO_4$ wird der Ether abdestilliert und der Rückstand über eine Kieselgelsäule (Laufmittel: n-Heptan:Essigester = 8:2) gereinigt. So werden 12,7 g (86 % d. Th.) Produkt mit dem Schmelzpunkt 78 bis 81°C erhalten.

Die Verbindungen der folgenden Tabelle 1 werden auf analogem Weg zu Beispiel 1 bzw. den weiter oben beschriebenen Methoden erhalten.

Abkürzungen in Tabelle 1:

Me = Methyl

Bu = Butyl

i-, s-, t-, c-Alkyl = iso-, sekundär-, tertiär- bzw. cyclo-Alkyl Schmp. = Schmelzpunkt (in °C)

34

Tabelle 1:

$$\begin{array}{c|c}
R^{2} & R^{1} \\
R^{3} & N
\end{array}$$
(1)

Bsp.	R ¹	R ²	R ³	R ⁴	Schmp.
2	-соосн ₃	Н	C ₆ H ₅	C ₆ H ₅	122-124°C
3	-COO-n-C ₃ H ₇	Н	C ₆ H ₅	C ₆ H ₅	64-66°C
4	-COO-n-C ₄ H ₉	Н	C ₆ H ₅	C ₆ H ₅	ÖI
5	-COO-n-C ₅ H ₁₁	Н	C ₆ H ₅	C ₆ H ₅	ÖI
6	-COO ⁻ Na ⁺	н	C ₆ H ₅	C ₆ H ₅	210-212°C (Z)
7	-COO'N(CH ₃) ₄ +	Н	C ₆ H ₅	C ₆ H ₅	116°C (Z)
8	-COOCH ₂ CH ₂ CI	Н	C ₆ H ₅	C ₆ H ₅	70°C
9	-COOCH ₂ CH ₂ OCH ₃	Н	C ₆ H ₅	C ₆ H ₅	ÖI
10	-COO-i-C ₃ H ₇	Н	C ₆ H ₅	C ₆ H ₅	·
11	-COO-i-C ₄ H ₉	н	C ₆ H ₅	C ₆ H ₅	ÖI
12	-COO-s-C₄H ₉	н	C ₆ H ₅	C ₆ H ₅	ÕI
13	-COO-C(CH ₃) ₃	H	C ₆ H ₅	C ₆ H ₅	ÖI
14	-COO-n-C ₆ H ₁₃	н	C ₆ H ₅	C ₆ H ₅	ŎI
15	-COO-n-C ₈ H ₁₇	Н	C ₆ H ₅	C ₆ H ₅	ÖI
16	-COOCH ₂ SCH ₃	Н	C ₆ H ₅	C ₆ H ₅	ÖI
17	-COOCH ₂ -CH=CH ₂	Н	C ₆ H ₅	C ₆ H ₅	55-57°C
18	-соон	н	C ₆ H ₅	C ₆ H ₅	85-90°C
19	-COOC ₂ H ₅	CH ₃	C ₆ H ₅	C ₆ H ₅	

ERSATZBLATT (REGEL 26)

Bsp.	R ¹	R ²	R ³	R ⁴	Schmp.
20	-COOC ₂ H ₅	-C₂H ₅	C ₆ H ₅	C ₆ H ₅	
21	-COO-n-C ₄ H ₉	Cyclo-C ₃ H ₄	C ₆ H ₅	C ₆ H ₅	
22	-COOCH3	Cyclo-C ₆ H ₁₁	C ₆ H ₅	C ₆ H ₅	
23	-COOC ₂ H ₅	-CH ₂ -CH = CH ₂	C ₆ H ₅	C ₆ H ₅	82°C
24	-COOC ₂ H ₅	-CH ₂ CH ₂ CN	C ₆ H ₅	C ₆ H ₅	
25	-C00-C ₂ H ₅	-COOC₂H ₅	C ₆ H ₅	C ₆ H ₅	
26	-COOC ₂ H ₅	-OC₂H ₅	C ₆ H ₅	C ₆ H ₅	
27	-COOC ₂ H ₅	-S-CH ₃	C ₆ H ₅	C ₆ H ₅	
28	-соосн ₃	-CH₂COOCH₃	C ₆ H ₅	C ₆ H ₅	
29	-COOCH ₂ C ₆ H ₅	Н	C ₆ H ₅	C ₆ H ₅	ÖI
30	-COOC ₆ H ₅	Н	C ₆ H ₅	C ₆ H ₅	ÖI
31	-COOCH ₂ CH ₂ C ₆ H ₅	H	C ₆ H ₅	C ₆ H ₅	
32	-COOC₂H₅	Н	2-CI-C ₆ H ₄	C ₆ H ₅	
33	-COOC ₂ H ₅	H	3-CI-C ₆ H ₄	C ₆ H ₅	ÖI
34	-COOC ₂ H ₅	Н	4-CI-C ₆ H ₄	C ₆ H ₅	ÖI
35	-COOC ₂ H ₅	Н	2-F-C ₆ H ₄	C ₆ H ₅	
36	-COOC ₂ H ₅	Н	3-F-C ₆ H ₄	C ₆ H ₅	
37	-COOC ₂ H ₅	Н	4-F-C ₆ H ₄	C ₆ H ₅	ÖI
38	-COOC₂H₅	Н	4-CI-C ₆ H ₄	4-CI-C ₆ H ₄	ÖI
39	-COOC ₂ H ₅	Н	4-CI-C ₆ H ₄	2-CI-C ₆ H ₄	
40	-COOC ₂ H ₅	Н	4-CI-C ₆ H ₄	3-CI-C ₆ H ₄	
41	-COOC₂H ₅	Н	4-Br-C ₆ H ₄	C ₆ H ₅	
42	-COOC ₂ H ₅	Н	4-Br-C ₆ H ₄	4-CI-C ₆ H ₄	ÖI
43	-COOC ₂ H ₅	Н	4-CF ₃ -C ₆ H ₄	C ₆ H ₅	ÖI

ERSATZBLATT (REGEL 26)

					
Bsp.	R ¹	R ²	R ³	R ⁴	Schmp.
44	-COOC ₂ H ₅	Н	4-CH ₃ -C ₆ H ₄	C ₆ H ₅	
45	-COOC ₂ H ₅	Н	4-CH ₃ -C ₆ H ₄	4-CI-C ₆ H ₄	ÖI
46	-COOC ₂ H ₅	Н	2,4-Di-Ci-C ₆ H ₃	C ₆ H ₅	ÖI
47	-COOC ₂ H ₅	Н	3,4-Di-Cl-C ₆ H ₃	C ₆ H ₅	ÖΙ
48	-COOC ₂ H ₅	н	2,5-Di-Cl-C ₆ H ₃	C ₆ H ₅	
49	-COOC ₂ H ₅	Н	3,5-Di-Cl-C ₆ H ₃	C ₆ H ₅	
50	-COOC₂H₅	Н	2,6-Di-Cl-C ₆ H ₃	C ₆ H ₅	
51	COOC ₂ H ₅	н	4-NO ₂ -C ₆ H ₄	C ₆ H ₅	
52	COOC ₂ H ₅	н	4-CN-C ₆ H ₄	C ₆ H ₅	
53	COOC₂H ₅	Н .	4-COOCH ₃ - C ₆ H ₄	C ₆ H ₅	
54	COOC ₂ H ₅	н	4-OCH ₃ -C ₆ H ₄	C ₆ H ₅	120°C
55	COO-n-C ₃ H ₇	н	4-F-C ₆ H ₄	C ₆ H ₅	ŎI
56	COO-n-C ₃ H ₇	Н	4-CI-C ₆ H ₄	C ₆ H ₅	Õi
57	COO-n-C ₄ H ₉	н	4-F-C ₆ H ₄	C ₆ H ₅	Öl
58	COO-n-C ₄ H ₉	н	4-CI-C ₆ H ₄	C ₆ H ₅	ÖI
59	COO-n-C ₅ H ₁₁	н	4-F-C ₆ H ₄	C ₆ H ₅	Öl
60	COO-n-C ₅ H ₁₁	н	4-CI-C ₆ H ₄	C ₆ H ₅	ÖI
61	COO-n-C ₆ H ₁₃	Н	4-CI-C ₆ H ₄	C ₆ H ₅	ÖI
62	COO-CH ₂ CH ₂ CI	н	4-CI-C ₆ H ₄	C ₆ H ₅	ÖI
63	COO-CH ₂ CH ₂ OCH ₃	н	4-CI-C ₆ H ₄	C ₆ H ₅	
64	COOCH(CH ₃)- CH ₂ (CH ₂) ₃ CH ₃	н	4-CI-C ₆ H ₄	C ₆ H ₅	
65	COO-CH ₂ C ₆ H ₅	н	4-CI-C ₆ H ₄	C ₆ H ₅	
66	соон	н	4-CI-C ₆ H ₄	C ₆ H ₅	86-87°C

Bsp.	R ¹	R ²	R ³	R ⁴	Schmp.
67	COO'Na +	н	4-CI-C ₆ H ₄	C ₆ H ₅	,
68	COO'K +	н	4-F-C ₆ H ₄	C ₆ H ₅	
69	COOC ₂ H ₅	н	C ₆ H ₅	CH ₃	ÖI
70	COOCH ₃	н	C ₆ H ₅	CH ₃	
71	COOC ₂ H ₅	Н	C ₆ H ₅	CH(CH ₃) ₂	
72	COOC ₂ H ₅	Н	C ₆ H ₅	C(CH ₃) ₃	ÖI
73	COOC ₂ H ₅	н	4-CI-C ₆ H ₄	C(CH ₃) ₃	
74	COO-n-C ₃ H ₇	н	C ₆ H ₅	C(CH ₃) ₃	_
75	COO-n-C ₄ H ₉	Н	C ₆ H ₅	C(CH ₃) ₃	
76	COO-n-C ₅ H ₁₁	Н	C ₆ H ₅	C(CH ₃) ₃	
77	COO-n-C ₆ H ₁₃	Н	C ₆ H ₅	C(CH ₃) ₃	
78	COO-CH ₂ CH ₂ OCH ₃	Н	C ₆ H ₅	C(CH ₃) ₃	
79	COO-C ₂ H ₅	Н	C ₆ H ₅	CH ₂ C(CH ₃) ₃	
80	COO-C ₂ H ₅	Н	C ₆ H ₅	CH ₂ Si(CH ₃) ₃	
81	COOC ₂ H ₅	Н	C ₆ H ₅	Cyclo-C ₅ H ₉	Öl
82	COOC ₂ H ₅	н	C ₆ H ₅	Cyclo-C ₆ H ₁₁	ÖI
83	COOC₂H ₅	н	C ₆ H ₅	Cyclo-C ₃ H ₄	ÖI
84	COO-n-C ₃ H ₇	Н	C ₆ H ₅	Cyclo-C ₆ H ₁₁	
85	COO-n-C ₄ H ₉	н	C ₆ H ₅	Cyclo-C ₆ H ₁₁	
86	COO-n-C ₅ H ₁₁	Н	C ₆ H ₅	Cyclo-C ₆ H ₁₁	
87	-COOC ₂ H ₅	н	Cyclo-C ₆ H ₁₁	CH ₃	
88	-COOC ₂ H ₅	н	Cyclo-C ₆ H ₁₁	C(CH ₃) ₃	
89	-COOC ₂ H ₅	н	Cyclo-C ₆ H ₁₁	Cyclo-C ₆ H ₁₁	
90	-COOC ₂ H ₅	н	C ₆ H ₅	2-Pyridyl	

ERSATZBLATT (REGEL 26)

			·····		
Bsp.	R ¹	R ²	R ³	R ⁴	Schmp.
91	-COOC ₂ H ₅	Н	C ₆ H ₅	3-Pyridyl	ÖI
92	-COOC ₂ H ₅	Н	C ₆ H ₅	4-Pyridyl	ÖI
93	-COOC ₂ H ₅	Н	C ₆ H ₅	2-Thienyl	ŎΙ
94	-COOC ₂ H ₅	Н	C ₆ H ₅	3-Thienyl	ÖI
95	-COOC ₂ H ₅	Н	C ₆ H ₅	2-Cl-3- pyridyl	ŌI
96	-COOC ₂ H ₅	н	C ₆ H ₅	6-CI-3- pyridyl	·
97	-COOC₂H₅	н	4-CI-C ₆ H ₄	3-Pyridyl	
98	-COOC₂H ₅	Н	3-CI-C ₆ H ₄	3-Pyridyl	
99	-COOC₂H₅	н	2-CI-C ₆ H ₄	3-Pyridyl	
100	-соон	Н	C ₆ H ₅	3-Pyridyl	
101	-COCH ₃	Н	C ₆ H ₅	C ₆ H ₅	
102	-cocн₃	н	C ₆ H ₅	Cyclo-C ₆ H ₁₁	
103	-сно	н	C ₆ H ₅	C ₆ H ₅	
104	-сно	Н	C ₆ H ₅	Cyclo-C ₆ H ₁₁	
105	-сно	н	C ₆ H ₅	C(CH ₃) ₃	
106	-CH(OCH ₃) ₂	н	C ₆ H ₅	C ₆ H ₅	
107	-CH(OC ₂ H ₅) ₂	н	C ₆ H ₅	C ₆ H ₅	
108	~	Н	C ₆ H ₅	C ₆ H ₅	
109	~°	н	C ₆ H ₅	C ₆ H ₅	
110	-C(OCH ₃) ₂ CH ₃	н	C ₆ H ₅	C ₆ H ₅	

					
Bsp.	R ¹	R ²	R ³	R ⁴	Schmp.
111	-COCF ₃	Н	C ₆ H ₅	C ₆ H ₅	
112	-COCF ₃	Н	C ₆ H ₅	C(CH ₃) ₃	
113	-COCF ₃	Н	C ₆ H ₅	Cyclo-C ₆ H ₁₁	:
114	-COCCI ₃	Н	C ₆ H ₅	C ₆ H ₅	
115	-COCHCI ₂	Н	C ₆ H ₅	C ₆ H ₅	
116	-COCHCI₂	Н	C ₈ H ₅	C(CH ₃) ₃	
117	-COCHCI2	Н	C ₆ H ₅	Cyclo-C ₆ H ₁₁	
118	-COCHF ₂	н	C ₆ H ₅	C ₆ H ₅	
119	-COCHF ₂	Н	C ₆ H ₅	3-Pyridyl	
120	-соо- сн(сн _з)сн ₂ осн ₃	Н	C ₆ H ₅	C ₆ H ₅	ÖI
121	-соон	Н	4-F-C ₆ H ₄	4-F-C ₆ H ₄	130-134°C
122	-соон	н	4-F-C ₆ H ₄	C ₆ H ₅	135-140°C
123	-COOC ₂ H ₅	Н	-COOCH(CH ₃)- C ₂ H ₅	C ₆ H ₅	ÖI
124	-CONH	н	-C ₆ H ₅	C ₆ H ₅	212-215°C
125	-COOC ₂ H ₅	н	-COOC ₂ H ₅	C ₆ H ₅	ÖI
126	-COOCH ₂ COOC ₂ H ₅	Н	-C ₆ H ₅	C ₆ H ₅	ÖI
127	-CH ₂ -C=CH	н	-C ₆ H ₅	C ₆ H ₅	ÖI
128	- C H 2 -	н	-C ₆ H ₅	C ₆ H ₅	ÖI
129	-CH(C ₂ H ₅) ₂	н	-C ₆ H ₅	C ₆ H ₅	ÖI
130	-CH(CH ₃)C ₂ H ₅	н	-4-F-C ₆ H ₄	C ₆ H ₅	Öl

ERSATZBLATT (REGEL 26)

Bsp.	R ¹	R²	R ³	R ⁴	Schmp.
131	- C H 2 - O	Н	C ₆ H ₅	C ₆ H ₅	ÖI ,
132	-COOC ₄ H ₉ (n)	Н	-C ₆ H ₅	-2-CH ₃ -C ₆ H ₄	ŐI
133	-COOCH ₂ - CH ₂ OC ₂ H ₅	н	-C ₆ H ₅	C ₆ H ₅	ÖI
134	-COOC ₂ H ₅	Н	-4-F-C ₆ H ₄	4-F-C ₆ H ₄	ŐI
135	-COOC ₄ H ₉ (n)	H	4-F-C ₆ H ₄	4-F-C ₆ H ₄	Öl
136	-CON(CH ₃) ₂	н	-C ₆ H ₅	-C ₆ H ₅	105-107°C
137	-CONHCH₃	Н	-C ₆ H ₅	-C ₆ H ₅	110-112°C
138	-CONH₂	Н	-C ₆ H ₅	-C ₆ H ₅	185-187°C
139	-COOCH ₂ CH ₂ OH	Н	-C ₆ H ₅	-C ₆ H ₅	102-103°C
140	-COOC₂H ₅	Н	-4-0CH ₃ -C ₆ H ₄	-4-F-C ₆ H ₄	135-140°C
141	CO ₂ Et	Н	4-NMe ₂ -C ₆ H ₄	C ₆ H ₄	ÖI
142	CO ₂ Et	Н	4-F-C ₆ H ₄	2-F-C ₆ H ₄	- Öl
143	CO ₂ Et	H	4-CI-C ₆ H ₄	4-t-Bu-C ₆ H ₄	86°C
144	CO ₂ Et	н	4-F-C ₆ H ₄	2-CI-C ₆ H ₄	Öl
145	CO₂Et	н	4-F-C ₆ H ₄	2,3,4-Cl ₃ - C ₆ H ₂	88°C
146	CO ₂ Et	н	4-F-C ₆ H ₄	3,4-Cl ₂ -C ₆ H ₃	Ŏl ¹⁾
147	CO ₂ Et	н	2,4-F ₂ -C ₆ H ₄	C ₆ H ₅	ÖI
148	CO ₂ Et	н	4-F-C ₆ H ₄	2-CH ₃ -C ₆ H ₄	Öl ²⁾
149	CO ₂ Et	Н	4-F-2-CI-C ₆ H ₃	C ₆ H ₅	Öi ,
150	CO ₂ Et	Н	4-CI-2-F-C ₆ H ₄	C ₆ H ₅	ÖI

Brechungsindizes zu Bsp. 146, 148:

$$^{1)}$$
 $n_D^{30} = 1,5493$ $^{2)}$ $n_D^{30} = 1,5530$

WO 95/07897 PCT/EP94/03008

41

C. Biologische Beispiele

Samen von Weizen, Gerste oder Reis werden in sandiger Lehmerde in Plastiktöpfen ausgelegt, im Gewächshaus bis zum 3- bis 4- Blattstadium herangezogen und dann nacheinander mit den erfindungsgemäßen Verbindungen und den Herbiziden im Nachlaufverfahren behandelt. Die Herbizide und die Verbindungen der Formel (I) werden dabei in Form wäßriger Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 300 I/ha ausgebracht. 3-4 Wochen nach der Behandlung werden die Pflanzen visuell auf jede Art von Schädigung durch die ausgebrachten Herbizide bonitiert, wobei insbesondere das Ausmaß der anhaltenden Wachstumshemmung berücksichtigt wird. Die Bewertung erfolgt in Prozentwerten im Vergleich zu unbehandelten Kontrollen.

Einige Versuchsergebnisse sind in Tabellen 2, 3 und 4 zusammengestellt.

Tabelle 2: Safenerwirkung in Gerste

Produkt Herbizid/Safener	Dosis (kg a.i./ha)	herbizide Wirkung in %
	0,2	80
H ₁ + Nr. 1	0,2 + 1,25	60
H ₁ + Nr. 2	0,2 + 1,25	60
H ₁ + Nr. 6	0,2 + 1,25	20
H ₁ + Nr. 17	0,2 + 1,25	20
H ₁ + Nr. 4	0,2 + 1,25	20
H ₁ + Nr. 3	0,2 + 1,25	30
H ₁ + Nr. 7	0,2 + 1,25	37

H₁ = Fenoxaprop-P-ethyl

HOVU = Hordeum vulgare (Gerste)

Nr. ... = Safener von Beispiel Nr. ... aus Abschnitt B (Chemische Beispiele)

Tabelle 3: Safenerwirkung in Reis

Produkt Herbizid/Safener	Dosis (kg a.i./ha)	herbizide Wirkung in % ORSA
Н ₁	0,3	75
H ₁ + Nr. 1	0,3 + 1,25	60
H ₁ + Nr. 2	0,3 + 1,25	70
H ₁ + Nr. 6	0,3 + 1,25	70
H ₁ + Nr. 17	0,3 + 1,25	70

ERSATZBLATT (REGEL 26)

Produkt Herbizid/Safener	Dosis (kg a.i./ha)	herbizide Wirkung in % ORSA
H ₁ + Nr. 4	0,3 + 1,25	65
H ₁ + Nr. 3	0,3 + 1,25	20
H ₁ + Nr. 7	0,3 + 1,25	70

H₂ = Fenoxaprop-P-ethyl

ORSA = Oryza sativa (Reis)

Tabelle 4: Safenerwirkung in Mais

Produkt Herbizid/Safener	Dosis (kg a.i./ha)	herbizide Wirkung in % ZEMV
H ₂	0,075	70
H ₂ + Nr. 1	0,075 + 1,25	20
H ₂ + Nr. 2	0,075 + 1,25	30
H ₂ + Nr. 6	0,075 + 1,25	50
H ₂ + Nr. 17	0,075 + 1,25	70
H ₂ + Nr. 4	0,075 + 1,25	30
H ₂ + Nr. 3	0,075 + 1,25	40
H ₂ + Nr. 7	0,075 + 1,25	30

H₂ = 3-(4,6-Dimethoxypyrimidin-2-yl)-1-(3-N-methylsulfonyl-N-methylaminopyridin-2-yl)-sulfonylharnstoff

ZEMV = Zea mays (Mais)

ERSATZBLATT (REGEL 26)

Beispiel 2

Maispflanzen werden im Gewächshaus in Plastiktöpfen bis zum 4-Blattstadium bzw. bis zum 6-Blattstadium herangezogen und mit einer Tankmischung, bestehend aus einem Herbizid und erfindungsgemäßen Verbindungen der Formel (I), behandelt. Die Präparate werden bei einer Wasseraufwandmenge von 300 I/ha auf die wachsenden Pflanzen gesprüht. 4 Wochen nach Behandlung werden die Pflanzen auf vorhandene Phytotoxizität bonitiert und das Ausmaß der Schädigung im Vergleich zur unbehandelten Kontrolle bestimmt.

Die Versuchsergebnisse, dargestellt in Tabellen 5 und 6, zeigen, daß die erfindungsgemäßen Verbindungen Pflanzenschädigungen sehr wirksam verhindern können.

Tabelle 5: Wirkung der erfindungsgemäßen Verbindungen an Maispflanzen

Stoffe	Dosis	herbizide Wirkung bei Mais (in %)	
Herbizid/Safener	kg AS/ha	4-Blattstadium	6-Blattstadium
H ₂	0,200	77	83
	0,100	70	73
	0,050	63	60
	0,025	33	40
H ₂ + Nr. 1	0,200 0,200	5	10
	0,100 0,100	0	0
	0,050 0,050	0	0
	0,025 0,025	0	0
H ₂ + Nr. 3	0,200 0,200	40	0
	0,100 0,100	20	0
	0,050 0,050	0	0
·	0,025 0,025	0	0

Stoffe	Dosis		herbizide Wirkung b	ei Mais (in %)
Herbizid/Safener	kg AS/h	а	4-Blattstadium	6-Blattstadium
H ₂ + Nr. 17	0,200	0,200	20	10
	0,100	0,100	10	0
	0,050	0,050	0	0
	0,025	0,025	0	0
H ₂ + Nr. 6	0,200	0,200	27	30
·	0,100	0,100	7	20
	0,050	0,050	o	10
	0,025	0,025	0	0
H ₂ + Nr. 7	0,200	0,200	20	33
	0,100	0,100	0	20
	0,050	0,050	0	0
	0,025	0,025	0	0
H ₂ + Nr. 4	0,200	0,200	20	0
	0,100	0,100	0	0
	0,050	0,050	0	0
	0,025	0,025	0	0

H₂ = 3-(4,6-Dimethoxypyrimidin-2-yl)-1-(3-N-methylsulfonyl-N-methylaminopyridin-2-yl)-sulfonylharnstoff

46

Tabelle 6: Wirkung der erfindungsgemäßen Verbindungen an Maispflanzen

Stoffe	Dosis		herbizide Wirkung bo	ei Mais (in %)
Herbizid/Safener	kg AS/h	a	4-Blattstadium	6-Blattstadium
H ₃	0,200		90	88
	0,100		80	80
	0,050		75	80
	0,025		60	65
H ₃ + Nr. 3	0,200	0,200	-5	10
	0,100	0,100	0	0
	0,050	0,050	o	0
	0,025	0,025	0	0
H ₃ + Nr. 4	0,200	0,200	10	15
	0,100	0,100	0	10
	0,050	0,050	0	0
	0,025	0,025	0	0
H ₃ + Nr. 7	0,200	0,200	20	25
	0,100	0,100	0 .	10
	0,050	0,050	0	0
	0,025	0,025	0	0

H₃ = 3-(4-Methoxy-6-methyl-1,3,5-triazin-2-yl)-1-(2-methoxycarbonyl-5-jod-phenylsulfonyl)-harnstoff

Patentansprüche:

1. Verbindungen der Formel (I) und deren Salze,

$$\begin{array}{c|c}
R^{2} & R^{1} \\
R^{3} & N
\end{array}$$
(1)

worin

R¹ Carboxy, Formyl oder einen anderen Acylrest oder ein Derivat der letztgenannten 3 Gruppen,

 $\begin{array}{lll} & \text{Wasserstoff, Halogen, C$_1$-C$_{18}$-Alkyl, C$_3$-C$_8$-Cycloalkyl, C$_2$-C$_8$-Alkenyl, } \\ & \text{C$_2$-C$_8$-Alkinyl, C$_1$-C$_{18}$-Alkoxy, C$_2$-C$_8$-Alkenyloxy, C$_2$-C$_8$-Alkinyloxy, } \\ & \text{C$_1$-C$_18$-Alkylthio, C$_2$-C$_8$-Alkenylthio, wobei jeder der letztgenannten 9} \\ & \text{Reste jeweils unsubstituiert oder durch einen oder mehrere Reste aus der } \\ & \text{Gruppe Halogen, Nitro, Cyano, C$_1$-C$_4$-Alkoxy oder (C$_1$-C$_4$-Alkoxy)$-carbonyl substituiert ist, oder (C$_1$-C$_8$-Alkoxy)$-carbonyl,} \\ \end{array}$

R³ und R⁴ unabhängig voneinander

einen aliphatischen, araliphatischen oder heteroaraliphatischen Rest mit 1 bis 30 C-Atomen, der unsubstituiert oder mit einer oder mehreren funktionellen Gruppen substituiert ist, oder einen aromatischen oder heteroaromatischen Rest, der unsubstituiert oder substituiert ist,

bedeuten.

- 2. Verbindungen der Formel (I) und deren Salze nach Anspruch 1, dadurch gekennzeichnet, daß
- R¹ einen Rest der Formel

oder

worin R, R^T , R^5 , R^6 , R^7 , Y, T, Z, Q, A_i , X_i und q wie weiter unten definiert sind,

- R Wasserstoff oder einen aliphatischen, aromatischen, heteroaromatischen, araliphatischen oder heteroaraliphatischen Rest mit 1 bis 30 C-Atomen, der unsubstituiert oder mit einer oder mehreren funktionellen Gruppen substituiert ist,
- einen Rest der Formel -CO-R, -CS-R, -NR f R g , -N = CR h R i oder , SiR a R b R c , wobei R die genannte Bedeutung hat und R f , R g , R h und R i unabhängig voneinander Wasserstoff, C $_1$ -C $_4$ -Alkyl, C $_2$ -C $_4$ -Alkenyl, C $_2$ -C $_4$ -Alkinyl, Benzyl, Phenyl oder substituiertes Phenyl sind oder R f und R g gemeinsam mit dem N-Atom einen 5- oder 6-gliedrigen Heterocyclus, der noch bis zu 2 weitere Heteroatome aus der Gruppe N, O und S enthalten und durch C $_1$ -C $_4$ -Alkyl substituiert sein kann, bedeuten und

 R^a , R^b und R^c unabhängig voneinander C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, Phenyl oder substituiertes Phenyl sind,

Y, Z unabhängig voneinander Sauerstoff, Schwefel in seinen verschiedenen Oxidationstufen, oder -NR^e, wobei R^e analog R⁵ oder R⁶ definiert ist,

R⁵, R⁶ gleich oder verschieden sind und unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, (C₁-C₄-Alkyl)-carbonyl, wobei jeder der 4 letztgenannten Reste unsubstituiert oder durch einen oder mehrere Substituenten aus der Gruppe enthaltend Halogen, C₁-C₈-Haloalkoxy, Nitro, Cyano, Hydroxy, C₁-C₈-Alkoxy und eine C₁-C₈-Alkoxygruppe, worin eine oder mehrere CH₂-Gruppen durch Sauerstoff ersetzt sind, und C₁-C₈-Alkylthio, C₁-C₆-Alkylsulfonyl, C₂-C₈-Alkenylthio, C₂-C₈-Alkinylthio, C₂-C₈-Alkinyloxy, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkoxy sowie Amino, Mono- und Di-(C₁-C₄-alkyl)-amino substituiert ist, oder

Formyl oder SiRaRbRc,

worin R^a , R^b und R^c unabhängig voneinander C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl oder unsubstituiertes oder substituiertes Phenyl bedeuten, oder

 $\rm C_3\text{-}C_8\text{-}Cycloalkyl,\ C_3\text{-}C_8\text{-}Cycloalkenyl,\ Heterocyclyl\ mit\ 3\ bis\ 7\ Ringatomen,\ Aryl,\ Heteroaryl\ oder\ Arylcarbonyl,$

wobei jeder der letztgenannten 6 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe C_1 - C_8 -Alkyl, Halogen, C_1 - C_8 -Haloalkoxy, Nitro, Cyano, Hydroxy, C_1 - C_8 -Alkoxy und eine C_1 - C_8 -Alkoxygruppe, worin eine oder mehrere nicht direkt aneinander gebundene CH_2 -Gruppen durch Sauerstoff ersetzt sind, und C_1 - C_8 -Alkylthio, C_1 - C_6 -Alkylsulfonyl, C_2 - C_8 -Alkenylthio, C_2 - C_8 -Alkinylthio, C_2 - C_8 -Alkinylthio, C_2 - C_8 -Alkinyloxy, C_3 - C_7 -Cycloalkoxy sowie Amino, Mono- und Di- $(C_1$ - C_4 -alkyl)-amino substituiert ist, oder

R⁵, R⁶ gemeinsam eine C₂-C₄-Alkylen-kette oder C₂-C₄-Alkenylen-kette, welche unsubstituiert oder durch 1 oder 2 Reste aus der Gruppe Methyl, Ethyl, Methoxy, Ethoxy und Halogen substituiert ist, sowie

Wasserstoff, C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, unsubstituiertes oder substituiertes C_6 - C_{12} -Aryl oder Heteroaryl, Benzyl, C_1 - C_4 -Alkoxy, Acyloxy, Hydroxy, -NH-CO-NH₂, -NH-CS-NH₂, Mono- und Di-(C_1 - C_4 -alkyl)-amino, Acylamino, (C_1 - C_4 -Alkyl)-sulfonylamino,, C_6 - C_{12} -Aryloxy, Heteroaryloxy, Arylsulfonylamino oder Arylamino,

worin Aryl bzw. Heteroaryl in den letztgenannten 4 Resten unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Nitro, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Haloalkyl und (C_1-C_4) -Haloalkoxy substituiert ist,

- T O, S, NR⁸, N-OR⁸ oder N-O-Acyl,
- Q O oder S,

worin

- q eine ganze Zahl von 0 bis 4,
- eine Laufziffer, welche bei q ungleich 0 alle ganzen Zahlen von 1 bis q
 annimmt, wobei q die oben angegebene Bedeutung hat,
- X_i unabhängig voneinander O, S, NR^9 , N- $(A_iX_i)_q$ -R
- Ai unabhängig voneinander unsubstituiertes oder substituiertes C_1 - C_6 -Alkylen, C_2 - C_6 -Alkenylen, C_2 - C_6 -Alkinylen, C_3 - C_6 -Cycloalkylen, C_3 - C_6 -Cycloalkenylen, Heterocyclylen, Arylen oder Heteroarylen und
- R^8 , R^9 unabhängig voneinander H, C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, C_3 - C_6 -Cycloalkyl, C_3 - C_6 -Cycloalkenyl, Heterocyclyl, Aryl oder Heteroaryl bedeuten.
- 3. Verbindungen oder deren Salze nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mindestens einer der Reste \mathbb{R}^3 und \mathbb{R}^4 unabhängig voneinander einen Rest der Formel

- (U) für gleiche oder verschiedene Reste stehen, welche unabhängig voneinander Wasserstoff, Halogen, Cyano, Nitro, Amino oder C₁-C₈-Haloalkyl, C₁-C₈-Haloalkoxy, C₁-C₈-Alkyl, C₁-C₈-Alkoxy, Mono-(C₁-C₄-alkyl)-amino, Di-(C₁-C₄-alkyl)-amino, C₁-C₈-Alkylthio oder C₁-C₈-Alkylsulfonyl, wobei jeder der letztgenannten 8 Reste unsubstituiert oder durch einen oder mehrere gleiche oder verschiedene Substituenten aus der Gruppe enthaltend Halogen, C₁-C₈-Haloalkoxy, Nitro, Cyano, Hydroxy, C₁-C₈-Alkoxy und eine C₁-C₈-Alkoxygruppe, worin eine oder mehrere CH₂-Gruppen durch Sauerstoff ersetzt sind, C₁-C₈-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₂-C₈-Alkenylthio, C₂-C₈-Alkinylthio, C₂-C₈-Alkenyloxy, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkoxy, Mono- und Di-(C₁-C₄-alkyl)-amino und (C₁-C₈-Alkoxy)-carbonyl substituiert ist, bedeuten und
- o eine ganze Zahl von 1 bis 5 ist und
- p eine ganze Zahl von 1 bis 7 ist,

oder einen monocyclischen oder bicyclischen Heteroarylrest aus der Gruppe Furyl, Thienyl, Pyrrolyl, Pyrazolyl, Thiazolyl, Oxazolyl, Pyridinyl, Pyrimidinyl, Pyrazinyl, Pyridazinyl und Chinolinyl, der jeweils unsubstituiert oder durch einen oder mehrere der genannten Reste U substituiert ist, und

H, C₁-C₁₈-Alkyl, C₃-C₁₂-Cycloalkyl, C₂-C₈-Alkenyl oder C₂-C₈-Alkinyl, Heterocyclyl, Phenyl oder Heteroaryl,

wobei jeder der letztgenannten 7 Reste unabhängig voneinander unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe enthaltend Halogen, Cyano, Thio, Nitro, Hydroxy, C_1 - C_8 -Alkyl, letzteres nur für den Fall cyclischer Reste, C_1 - C_8 -Haloalkyl, C_1 - C_8 -Alkoxy, C_2 - C_8 -Alkenyloxy, C_2 - C_8 -Alkinyloxy, C_1 - C_8 -Haloalkoxy, C_1 - C_8 -Alkylthio, C_2 - C_8 -Alkenylthio, C_2 - C_8 -Alkinylthio, C_3 - C_7 -Cycloalkoxy, Reste der Formeln -NR * R ** und -CO-NR * R ** und -O-CO-NR * R ** ,

wobei R* und R** in den letztgenannten 3 Resten unabhängig voneinander Wasserstoff, C_1 - C_8 -Alkyl, C_2 - C_8 -Alkinyl, Benzyl, Phenyl oder substituiertes Phenyl sind oder gemeinsam mit dem N-Atom einen 3- bis 8-gliedrigen Heterocyclus, der noch bis zu 2 weitere Heteroatome aus der Gruppe N, O und S enthalten und durch C_1 - C_4 -Alkyl substituiert sein kann, bedeuten,

sowie (C₁-C₈-Alkoxy)-carbonyl, (C₁-C₈-Alkoxy)-thiocarbonyl, (C₂-C₈-Alkenyloxy)-carbonyl, (C₁-C₈-Alkylthio)-carbonyl, (C₂-C₈-Alkenylthio)-carbonyl, (C2-C8-Alkinylthio)-carbonyl, (C2-C8-Alkinyloxy)-carbonyl, Formyl, (C1-C8-Alkyl)-carbonyl, (C2-C8-Alkenyl)-carbonyl, (C_2 - C_8 -Alkinyl)-carbonyl, C_1 - C_4 -Alkylimino, C_1 -C₄-Alkoxyimino, (C₁-C₈-Alkyl)-carbonylamino, (C₂-C₈-Alkenyl)carbonylamino, (C2-C8-Alkinyl)-carbonylamino, (C1-C8-Alkoxy)carbonylamino, (C2-C8-Alkenyloxy)-carbonylamino, (C2-C8-Alkinyloxy)-carbonylamino, (C₁-C₈-Alkyl)-amino-carbonylamino, (C1-C6-Alkyl)-carbonyloxy, das unsubstituiert oder durch Halogen, NO2, C1-C4-Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, und (C2-C6-Alkenyl)-carbonyloxy, (C2-C6-Alkinyl)carbonyloxy, (C₁-C₈-Alkoxy)-carbonyloxy, (C₂-C₈-Alkenyloxy)carbonyloxy, (C2-C8-Alkinyloxy)-carbonyloxy, C1-C8-Alkylsulfonyl, Phenyl, Phenyl-C₁-C₆-alkoxy, Phenyl-(C₁-C₆-alkoxy)-carbonyl, Phenoxy, Phenoxy-C₁-C₆-alkoxy, Phenoxy-(C₁-C₆-alkoxy)-carbonyl, Phenoxycarbonyl, Phenylcarbonyloxy, Phenylcarbonylamino, Phenyl-(C₁-C₆-alkyl)-carbonylamino und Phenyl-(C₁-C₆-alkyl)carbonyloxy,

wobei die letztgenannten 11 Reste im Phenylring unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Haloalkyl, C_1 - C_4 -Haloalkoxy und Nitro substituiert sind,

und Reste der Formeln -SiR'₃, -O-SiR'₃, (R')₃Si-C₁-C₆-alkoxy, -CO-O-NR'₂, -O-N=CR'₂, -N=CR'₂, -O-NR'₂(-CH(OR')₂ und -O-(CH₂)_m-CH(OR')₂,

worin die R' in den genannten Formeln unabhängig voneinander Wasserstoff, C_1 - C_4 -Alkyl oder Phenyl, das unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Haloalkyl, C_1 - C_4 -Haloalkoxy und Nitro substituiert ist, oder paarweise eine C_2 - C_6 -Alkylenkette und m=0 bis 6 bedeuten,

und einen substituierten Alkoxyrest der Formel R"O-CHR"CH(OR")-C1-C6-alkoxy,

worin die R" unabhängig voneinander C_1 - C_4 -Alkyl oder zusammen eine C_1 - C_6 -Alkylengruppe und R''' Wasserstoff oder C_1 - C_4 -Alkyl bedeuten,

substituiert ist,

bedeuten.

- 4. Verbindungen oder deren Salze nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß
- R^2 Wasserstoff, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder C_5 - C_6 -Cycloalkyl und mindestens einer der Reste R^3 , R^4 einen Rest der Formel

worin

(U) für gleiche oder verschiedene Reste stehen, welche unabhängig voneinander Wasserstoff, Halogen, wie Fluor, Chlor, Brom und Iod, Cyano, Nitro, Amino, C_1 - C_4 -Haloalkyl, C_1 - C_4 -Haloalkoxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, Mono- $(C_1$ - C_4 -alkyl)-amino, Di- $(C_1$ - C_4 -alkyl)-amino, C_1 - C_4 -Alkylthio oder C_1 - C_4 -Alkylsulfonyl bedeuten und

- o eine ganze Zahl von 1 bis 3 ist und
- p eine ganze Zahl von 1 bis 3 ist, oder einer der Reste
- R³, R⁴ unabhängig voneinander einen monocyclischen oder bicyclischen Heteroarylrest aus der Gruppe Furyl, Thienyl, Pyrrolyl, Pyrazolyl, Thiazolyl, Oxazolyl, Pyridinyl, Pyrimidinyl, Pyrazinyl, Pyridazinyl und Chinolinyl, der unsubstituiert oder durch ein bis drei der vorstehend genannten Reste U substituiert ist,

bedeuten.

- 5. Verbindungen oder deren Salze nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet daß
- R³, R⁴ unabhängig voneinander gleiche oder verschiedene Reste der Formel

bedeuten und

R Wasserstoff, C_1 - C_8 -Alkyl, C_4 - C_7 -Cycloalkyl, C_2 - C_8 -Alkenyl oder C_2 - C_8 -Alkinyl, Heterocyclyl, Phenyl oder Heteroaryl ist,

wobei jeder der letztgenannten 7 Reste unabhängig voneinander unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe enthaltend Halogen, Cyano, Thio, Nitro, Hydroxy, C_1 - C_4 -Alkyl, letzteres nur für den Fall cyclischer Reste, C_1 - C_4 -Haloalkyl, C_1 - C_4 -Alkoxy, C_2 - C_4 -Alkenyloxy, C_2 - C_4 -Alkinyloxy, C_1 - C_4 -Haloalkoxy, C_1 - C_4 -Alkylthio, C_2 - C_4 -Alkenylthio, C_2 - C_4 -Alkinylthio, C_5 - C_6 -Cycloalkoxy, Amino, Mono- und Di-(C_1 - C_4 -alkyl)-amino, (C_1 - C_6 -Alkoxy)-carbonyl, Reste der Formeln -SiR' $_3$, -O-NR' $_2$, -O-N = CR' $_2$, -N = CR' $_2$, worin die R' in den genannten Formeln unabhängig voneinander Wasserstoff, C_1 - C_2 -Alkyl oder Phenyl oder paarweise eine C_2 - C_5 -Alkylenkette bedeuten, substituiert ist, bedeutet und

 R^{T} einen Rest der Formel -CO-R, -NR^fR^g oder -N = CR^hRⁱ bedeutet.

6. Verfahren zur Herstellung von Verbindungen der Formel (I) oder deren Salzen, wie sie in Anspruch 1 oder 2 definiert sind, dadurch gekennzeichnet, daß man eine Verbindung der Formel (II),

$$R^3R^4C = CHR^2 \tag{II}$$

worin R², R³ und R⁴ wie in der Verbindung der Formel (I) definiert sind, mit einem Nitriloxid der Formel (III)

$$^{(-)}O - N = ^{(+)}C - R^1$$
 (III)

worin R¹ wie in Formel (I) definiert ist, umsetzt.

- 7. Pflanzenschutzmittel, dadurch gekennzeichnet, daß es als kulturpflanzenschützende Komponente eine Verbindung der Formel (I) oder deren Salz nach einem der Ansprüche 1 bis 5 und im Pflanzenschutz übliche Formulierungshilfsmittel enthält.
- 8. Pflanzenschutzmittel, dadurch gekennzeichnet, daß es mindestens ein Pestizid sowie als Safener mindestens eine Verbindung der Formel (I) oder deren Salze nach einem der Ansprüche 1 bis 5 enthält.
- 9. Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Pflanzenschutzmittel-Wirkstoffen (Pestiziden), dadurch gekennzeichnet, daß eine wirksame Menge von mindestens einer der Verbindungen der Formel (I) oder deren Salzen nach einem der Ansprüche 1 bis 5 vor, nach oder gleichzeitig mit dem jeweiligen Pestizid auf die Pflanzen, Pflanzensamen oder die Anbaufläche appliziert wird.
- 10. Verwendung von Verbindungen der Formel (I) oder deren Salzen, wie sie nach einem der Ansprüche 1 bis 5 definiert sind, als Safener zum Schützen von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Pflanzenschutzmittel-Wirkstoffen (Pestiziden).

INTERNATIONAL SEARCH REPORT

Inte. Actual Application No PCT/EP 94/03008

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D261/04 C07D413/04 A01N25/32 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ' 1-4 X JOURNAL OF INDIAN CHEMICAL SOCIETY, vol.70, no.2, February 1993, CALCUTTA pages 134 - 137 A. NAGARAJAN ET AL 'Electron-impact mass spectral fragmentation patterns of isoxazolines' see page 134 compounds 19 and 20 and page 135 second column Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search **-6**. 12. 94 25 November 1994 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2220 HV Riswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Henry, J

IINTERNATIONAL SEARCH REPORT

Int. 10nal Application No
PCT/EP 94/03008

		PCT/EP 94/03008
C.(Continu	DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CHEMICAL ABSTRACTS, vol. 67, no. 21, 20 November 1967, Columbus, Ohio, US; abstract no. 100039w, V.A. TARTAKOVSKII ET AL '1-3 dipolar cycloaddition of nitrone esters to conjugated unsaturated compounds' page 9407; see abstract & ZH. ORG. KHIM., vol.3, no.6, 1967 pages 980 - 983	1,2
X	CHEMICAL ABSTRACTS, vol. 120, no. 11, 14 March 1994, Columbus, Ohio, US; abstract no. 134457j, page 1040; see abstract & JP,A,5 213 909 (YOSHITOMI PHARMACEUTICAL) 24 August 1993	1,2
X	ANGEWANDTE CHEMIE. INTERNATIONAL EDITION, vol.18, no.1, 1979, WEINHEIM DE pages 78 - 79 VOLKER JÄGER ET AL 'Ring-opening of 5-(bromomethyl)-2-isoxazolines to beta,gamma-enoximes.' see page 79 figure 3f	1,2
A	EP,A,O 509 433 (HOECHST AKTIENGESELLSCHAFT) 21 October 1992 cited in the application see claims	1,7-10
A	WO,A,91 08202 (HOECHST AKTIENGESELLSCHAFT) 13 June 1991 see claims	1,7-10

1

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int. ional Application No PCT/EP 94/03008

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
JP-A-5213909	24-08-93	NONE		
EP-A-0509433	21-10-92	AU-A-	1485192	22-10-92
WO-A-9108202	13-06-91	DE-A- AU-B- AU-A- CN-A- EP-A- NZ-A- US-A-	3939010 654119 6716090 1052308 0501986 236199 5314863	29-05-91 27-10-94 26-06-91 19-06-91 09-09-92 25-03-94 24-05-94

onales Aktenzeichen INTERNATIONALER RECHERCHENBERICHT PCT/EP 94/03008 A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C07D261/04 C07D413/04 A01 C07D413/04 A01N25/32 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüßtoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 CO7D Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr. Anspruch Nr. Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategorie* X JOURNAL OF INDIAN CHEMICAL SOCIETY, 1-4 Bd.70, Nr.2, Februar 1993, CALCUTTA Seiten 134 - 137 A. NAGARAJAN ET AL 'Electron-impact mass spectral fragmentation patterns of isoxazolines siehe Seite 134 Verbindungen 19 und 20 und Seite 135 zweite Spalte Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Priontätsdatum veröffentlicht worden ist und mit der * Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theone angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweiselhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden

- soll oder die aus einem anderen besonderen Grund angegeben ist (wie
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Malnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mut einer oder mehreren anderen Veröffentlichungen dieser-Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentsamilie ist Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche 25. November 1994

-6. 12. 94

Name und Postanschrift der Internationale Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016

Bevollmächtigter Bediensteter

Henry, J

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

1

INTERNATIONALER RECHERCHENBERICHT

Inte. onales Aktenzeichen
PCT/EP 94/03008

C.(Fortsetzu	ng) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Categorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kom	menden Teile Betr. Anspruch Nr.
X	CHEMICAL ABSTRACTS, vol. 67, no. 21, 20. November 1967, Columbus, Ohio, US; abstract no. 100039w, V.A. TARTAKOVSKII ET AL '1-3 dipolar cycloaddition of nitrone esters to conjugated unsaturated compounds' Seite 9407; siehe Zusammenfassung & ZH. ORG. KHIM., Bd.3, Nr.6, 1967 Seiten 980 - 983	1,2
X	CHEMICAL ABSTRACTS, vol. 120, no. 11, 14. März 1994, Columbus, Ohio, US; abstract no. 134457j, Seite 1040; siehe Zusammenfassung & JP,A,5 213 909 (YOSHITOMI PHARMACEUTICAL) 24. August 1993	1,2
X	ANGEWANDTE CHEMIE. INTERNATIONAL EDITION, Bd.18, Nr.1, 1979, WEINHEIM DE Seiten 78 - 79 VOLKER JÄGER ET AL 'Ring-opening of 5-(bromomethyl)-2-isoxazolines to beta,gamma-enoximes.' siehe Seite 79 Verbindung 3f	1,2
A	EP,A,O 509 433 (HOECHST AKTIENGESELLSCHAFT) 21. Oktober 1992 in der Anmeldung erwähnt siehe Ansprüche	1,7-10
A	WO,A,91 08202 (HOECHST AKTIENGESELLSCHAFT) 13. Juni 1991 siehe Ansprüche	1,7-10
		·

1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröftentlichungen, die zur selben Patentfamilie gehören

Int. onales Aktenzeichen
PCT/EP 94/03008

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
JP-A-5213909	24-08-93	KEINE		
EP-A-0509433	21-10-92	AU-A-	1485192	22-10-92
WO-A-9108202	13-06-91	DE-A- AU-B- AU-A- CN-A- EP-A- NZ-A- US-A-	3939010 654119 6716090 1052308 0501986 236199 5314863	29-05-91 27-10-94 26-06-91 19-06-91 09-09-92 25-03-94 24-05-94