

Stelling. $(Q', \Sigma, \delta', q'_s, F')$ is een DFA equivalent met de NFA $(Q, \Sigma, \delta, q_s, F)$

Bewijs. Uit de constructie op pagina 27-28 volgt duidelijk dat de geconstrueerde automaat een DFA is:

- Er zijn geen ε -bogen, want $\delta'(q', a)$ is enkel gedefinieerd voor $a \in \Sigma$ (en $q' \in Q'$), m.a.w. $a \neq \varepsilon$
- De functie $\delta': Q' \times \Sigma \to Q'$ is een totale functie: ze is overal goed gedefinieerd.

Wat betreft de equivalentie, moeten we verifiëren dat

$$\forall w \in \Sigma^*: q_s \stackrel{w}{\leadsto} F' \text{ (in de DFA)} \iff q_s \stackrel{w}{\leadsto} F \text{ (in de NFA)}$$

We bewijzen beide richtingen.

 \Rightarrow Deze implicatie volgt uit iets algemeners dat we nu zullen bewijzen: zij S een deelverzameling van Q gesloten onder ε -bogen. Dan geldt

$$\forall w \in \Sigma^*: q'_s \stackrel{w}{\leadsto} S \text{ (in de DFA)} \implies \forall p \in S: q_s \stackrel{w}{\leadsto} p \text{ (in de NFA)}$$

Dit bewijzen we per inductie op de lengte van w.

- Basisstap: Als |w| = 0, dan geldt dat $w = \varepsilon = \text{de lege string}$. Neem aan dat $q'_s \stackrel{w}{\leadsto} S$. Dan is $S = q'_s = \{q_s, \text{toestanden bereikbaar vanuit } q_s \text{ met } \varepsilon\}$. We zien nu duidelijk in dat de implicatie geldt en dat elke toestand in S bereikbaar is vanuit q_s met w.
- Inductie hypothese: veronderstel dat de stelling geldt voor alle strings w van hoogstens lengte w = 1.
- Inductiestap: Beschouw een string w' = wa (met $a \in \Sigma$) van lengte n+1. We willen aantonen dat als $q'_s \overset{wa}{\leadsto} S$, dan geldt $\forall p \in S : q_s \overset{wa}{\leadsto} p$. Zij S_2 de toestand in de DFA zodat $q'_s \overset{w}{\leadsto} S_2$. Wegens de inductiehypothese geldt nu

$$\forall p \in S_2 : q_s \stackrel{w}{\leadsto} p$$

We kunnen in in de DFA in S geraken door een pijl met label a te volgen vanuit toestand S_2 . Dit betekent precies dat S de verzameling is van alle toestanden die we in de NFA kunnen bereiken door vanuit een toestand in S_2 een pijl te nemen met een label a erop, gevolgd door eventueel een aantal ε -bogen. En dus geldt voor iedere $p \in S$ dat $q_s \stackrel{w'}{\leadsto} q$, hetgeen we wilden bewijzen.

Nu volgt de rechterimplicatie

$$q_s' \overset{w}{\leadsto} F' \quad \Longrightarrow \quad \exists S \in F' : q_s' \overset{w}{\leadsto} S \overset{\text{hierboven}}{\Longrightarrow} \forall p \in S : q_s \overset{w}{\leadsto} p \quad \overset{S \in F'}{\Longrightarrow} \quad \exists p \in S : p \in F$$

Voor die laatste p geldt dus ook dat $q_s \overset{w}{\leadsto} p$ en dus $q_s \overset{w}{\leadsto} F$

 \Leftarrow Als $q_s \stackrel{w}{\leadsto} F$, dan bestaat er een $q \in F$ zodat $q_s \stackrel{w}{\leadsto} q$. Er bestaat in de NFA dus een accepterend pad $q_s, q_1, q_2, ..., q_n, q$. Voor een toestand q in de NFA, zij S(q) de grootste verzameling die q bevat en gesloten is onder ε -bogen. Nu is $S(q_s), S(q_1), S(q_2), ..., S(q_n), S(q)$ een accepterend pad in de DFA. En dus $q'_s \stackrel{w}{\leadsto} S(q)$ en dus $q'_s \stackrel{w}{\leadsto} F'$.