Experiment - 1

Aim: To determine the strength of ammonia in tap water sample.

Apparatus required: Pipette, burette, funnel, conical flask, volumetric flask, and dropper

Chemical required: Standard N/20 - Na₂CO₃, HCl solution, water sample and methyl orange indicator.

Theory: NH₃ is highly soluble in H₂O. It is nitrogenous compound and present in water in from of ammonia hydroxide in solution.

$$NH_3(g) + H_2O(I) \longrightarrow NH_4OH(aq.)$$

Where, NH₃ is coming from the pesticides, insecticides fertilizer and other industrial water that are disposed off into the water.

The titration of NH3 and HCl is called Acid – Base titration. Here, HCl is not a primary standard solution, So it is firstly standardized by the help of Na_2CO_3 solution.

Procedure:

I) Standardisation of HCl Solution -

- i- Rinse and fill the burette with HCl.
- ii- Pipette out 10ml of Na₂CO₃ solution and added 2 drops of methyl orange, titrated with HCl solution till colour changed from yellow to light pink.
- iii- The experiment was repeated three times to get concordant reading.

II) Titration of water sample with HCl Solution -

- i- Rinse and fill the burette with HCl.
- ii- Pipette out 10ml water sample in conical flask.
- iii- Add 2-3 drops of methyl orange and titrate with HCl solution till the colour change from yellow to light pink.
- iv- The experiment was repeated three times to get concordant reading.

Observation Table:

I) Standardisation of HCI-

S. No.	Burette Reading		Volume of HCl used, (ml)
	Initial	Final	()
1	0	13	13
2			
3			

Concordant reading = ml

$$N_1 V_1 = N_2 V_2$$

 (Na_2CO_3) (HCl)
 $(1/20) X 10 = N_2 X$
 $N_2 = N of HCl$

(II) Titration of water sample with HCl

S. No.	Burette Reading		Volume of HCl used(ml)
	Initial Volume (ml)	Final Volume (ml)	
1	0	2.2	2.2
2			
3			

Concordant reading 2.2 ml

$$N_2 V_2 = N_3 V_3$$

$$N_3 = \dots N$$
 of water

Strength = N₃ X 17

Structure:

Indicator - Methyl Orange

(Acidic Medium) - Pink

$$\begin{array}{c|c} Na^{+-}O_{3}S - & & -NH - N = & -N \\ \hline Ouinonoid form - Acidic solution (red) & CH_{3} \\ \hline CH_{3} & & \\ \hline CH_{3} & & \\ \hline CH_{3} & & \\ \hline Na^{+-}O_{3}S - & -N = N - & -N \\ \hline CH_{3} & & \\ CH_{3} & & \\ \hline CH_{3} & & \\ CH_{3} & & \\ \hline CH_{3} &$$

(Basic Medium) - Yellow

Result:

Normality of water =N

Normality of HCl =N

Strength of NH₃ = g/L

Precautions:

- 1. Handle the apparatus with carefully.
- 2. Do not pipette out hot solutions.
- 3. There should be no air bubbles in burette.

4. Lower meniscus of HCl should be observed.