体論(第1回)の解答

問題 1-1

定理 1-1 の条件をチェックすればよい. $x = a + b\alpha$, $y = c + d\alpha \in K$ $(a, b, c, d \in \mathbb{Q})$ とする.

- (i) $x y = (a c) + (b d)\alpha \in K$.
- (ii) $xy = (ac + 2bd) + (ad + bc)\alpha \in K$.
- (iii) $1 = 1 + 0 \cdot \alpha \in K$.
- (iv) $x = a + b\alpha \neq 0$ のとき,

$$\frac{1}{x} = \frac{1}{a + b\alpha} = \frac{a}{a^2 - 2b^2} + \frac{-b}{a^2 - 2b^2}\alpha \in K.$$

以上 (i)-(iv) より K は C の部分体.

問題 1-2

(1) $\mathbb{R} \neq L$ なので $\alpha \in L \setminus \mathbb{R}$ がとれる. $\alpha = a + bi$ $(a, b \in \mathbb{R}, b \neq 0)$ と表す. $a, b, \alpha \in L$ より、

$$i = \frac{\alpha - a}{b} \in L.$$

- (2) $L=\mathbb{R}$ のときは成立するので, $L\neq\mathbb{R}$ とする. $\beta\in\mathbb{C}$ をとる. $\beta=c+di$ $(c,d\in\mathbb{R})$ とかける.
- (1) より $c,d,i \in L$ であるので $\beta \in L$. 従って $\mathbb{C} \subseteq L$. よって $L = \mathbb{C}$.

問題 1-3

- (1) について.
- (1-i) 定義より K と $\alpha_1, \alpha_2, ..., \alpha_n$ は $K(\alpha_1, \alpha_2, ..., \alpha_n)$ に含まれる.

(1-ii) L の部分体であること.定理 1-1 の条件を確かめれば良い.明らかに $1 \in K(\alpha_1,\alpha_2,...,\alpha_n)$ である.また $\beta,\gamma \in K(\alpha_1,\alpha_2,...,\alpha_n)$ とすると,

$$\beta = \frac{f_1(\alpha_1, \alpha_2, ..., \alpha_n)}{g_1(\alpha_1, \alpha_2, ..., \alpha_n)}, \quad g_1(\alpha_1, \alpha_2, ..., \alpha_n) \neq 0,$$

$$\gamma = \frac{f_2(\alpha_1, \alpha_2, ..., \alpha_n)}{g_2(\alpha_1, \alpha_2, ..., \alpha_n)} \quad g_2(\alpha_1, \alpha_2, ..., \alpha_n) \neq 0$$

を満たす $f_1, f_2, g_1, g_2 \in K[x_1, x_2, ..., x_n]$ がある. ここで,

$$\beta - \gamma = \frac{(f_1 g_2 - f_2 g_1)(\alpha_1, \alpha_2, ..., \alpha_n)}{(g_1 g_2)(\alpha_1, \alpha_2, ..., \alpha_n)}, \quad (g_1 g_2)(\alpha_1, \alpha_2, ..., \alpha_n) \neq 0,$$

$$\beta \gamma = \frac{(f_1 f_2)(\alpha_1, \alpha_2, ..., \alpha_n)}{(g_1 g_2)(\alpha_1, \alpha_2, ..., \alpha_n)},$$
 $(g_1 g_2)(\alpha_1, \alpha_2, ..., \alpha_n) \neq 0$

copyright ⓒ 大学数学の授業ノート

より $\beta - \gamma$, $\beta \gamma \in K(\alpha_1, \alpha_2, ..., \alpha_n)$. また $\beta \neq 0$ とすると,

$$\frac{1}{\beta} = \frac{g_1(\alpha_1, \alpha_2, ..., \alpha_n)}{f_1(\alpha_1, \alpha_2, ..., \alpha_n)}, \quad f_1(\alpha_1, \alpha_2, ..., \alpha_n) \neq 0$$

より $\frac{1}{\beta} \in K(\alpha_1, \alpha_2, ..., \alpha_n)$. 以上より, $K(\alpha_1, \alpha_2, ..., \alpha_n)$ は L の部分体.

(1-iii) 最小性を示す. M を K と $\alpha_1,\alpha_2,...,\alpha_n$ を含む体とする. $\beta \in K(\alpha_1,\alpha_2,...,\alpha_n)$ とすると,

$$\beta = \frac{f(\alpha_1, \alpha_2, ..., \alpha_n)}{g(\alpha_1, \alpha_2, ..., \alpha_n)}, \quad g(\alpha_1, \alpha_2, ..., \alpha_n) \neq 0$$

を満たす $f,g \in K[x_1,x_2,...,x_n]$ がある. M は K と $\alpha_1,\alpha_2,...,\alpha_n$ を含む体なので,

$$\beta = \frac{f(\alpha_1, \alpha_2, ..., \alpha_n)}{g(\alpha_1, \alpha_2, ..., \alpha_n)} \in M.$$

従って $K(\alpha_1, \alpha_2, ..., \alpha_n) \subseteq M$. よって最小性が証明できた.

(2) $K(\alpha_1, \alpha_2, ..., \alpha_n)$ は K と $\alpha_1, \alpha_2, ..., \alpha_m$ を含む体なので、

$$K(\alpha_1, \alpha_2, ..., \alpha_m) \subseteq K(\alpha_1, \alpha_2, ..., \alpha_n).$$

 $K(\alpha_1,\alpha_2,...,\alpha_n)$ は $\alpha_{m+1},...,\alpha_n$ を含むので, $K(\alpha_1,\alpha_2,...,\alpha_m)(\alpha_{m+1},\alpha_{m+2},...,\alpha_n)$ の最小性より

$$K(\alpha_1, \alpha_2, ..., \alpha_m)(\alpha_{m+1}, \alpha_{m+2}, ..., \alpha_n) \subseteq K(\alpha_1, \alpha_2, ..., \alpha_n).$$

逆に $K(\alpha_1,\alpha_2,...,\alpha_m)(\alpha_{m+1},\alpha_{m+2},...,\alpha_n)$ は $K(\alpha_1,\alpha_2,...,\alpha_m)$ を含むので、K と $\alpha_1,\alpha_2,...,\alpha_m$ を含む。また、 $K(\alpha_1,\alpha_2,...,\alpha_m)(\alpha_{m+1},\alpha_{m+2},...,\alpha_n)$ は $\alpha_{m+1},\alpha_{m+2},...,\alpha_n$ も含む。よって $K(\alpha_1,\alpha_2,...,\alpha_n)$ の最小性から、

$$K(\alpha_1, \alpha_2, ..., \alpha_m)(\alpha_{m+1}, \alpha_{m+2}, ..., \alpha_n) \supseteq K(\alpha_1, \alpha_2, ..., \alpha_n).$$

問題 1-4

まず

$$\sqrt{2} \in \mathbb{Q}(\sqrt{2}, \sqrt{6}), \quad \sqrt{3} = \frac{\sqrt{6}}{\sqrt{2}} \in \mathbb{Q}(\sqrt{2}, \sqrt{6}).$$

よって $\mathbb{Q}(\sqrt{2},\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2},\sqrt{6})$. 逆に

$$\sqrt{2} \in \mathbb{O}(\sqrt{2}, \sqrt{3}), \quad \sqrt{6} = \sqrt{2}\sqrt{3} \in \mathbb{O}(\sqrt{2}, \sqrt{3}).$$

よって $\mathbb{Q}(\sqrt{2}, \sqrt{6}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. 従って $\mathbb{Q}(\sqrt{2}, \sqrt{6}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.