CHAT APP WITH SPAM DETECTION

Presented by group 83

Introduction

01

React Native and machine learning can create a conversation app with spam detection, merging mobile development with advanced data handling.

React Native enables a cross-platform interface for iOS and Android, supporting real-time messaging. User authentication and message storage can be managed with Node.js, Express, and Firebase Firestore.

02

03

Machine learning models in TensorFlow can filter spam, hosted on a server and accessible via an API for enhanced user safety.

Literature Review

- 1. Paper [1]: Randell's *The Soul of Internet covers the history and development of the internet, discussing social media applications and featuring interviews with key figures.
- 2. Paper [2]: Intel Hyper Threading Technology* explains multithreading, comparing CPU performance with single and multiple threads. It is used in our project for concurrent tasks.
- 3. Paper [3]: Michael Hauben describes the social impact of the internet and introduces the concept of 'Netizen,' noting the popularity of chat applications.
- 4. Paper [4]: Richard Stevens Unix Network Programming* provides essential information on using sockets and Network APIs for network programming in our project.
- Paper [5]: Vincent Cerf and Robert Kahn's guide on the TCP protocol emphasizes its importance for reliable data transfer, crucial for our application.

Meet The Group

MANOJ D MAIYA (01JCE21CS061)

SHARATH HK (01JCE21CS090)

DARSH KHETAN (01JST21CS031)

Table Of Contents

- 2 WORK PLAN
- **3** DESIGN TECHNOLOGIES
- 4 MODEL SNAPSHOTS
- 5 FUTURE ENHANCEMENTS

Develop a chat app using React Native for a unified experience across iOS and Android devices.

Objective 02

Implement instant messaging with Firebase Realtime Database to enhance user engagement and responsiveness.

Objective 03

Integrate machine learning and NLP to detect spam messages, improving the user experience.

Project Setup and Initial Development

0

March
Learning Phase

Design Technologies

SYSTEM DESIGN

MODEL SNAPSHOTS

Lunch Money Money Money This is because the p(Dear | N) = 0.47 probability we see Lunch in p(Friend | N) = 0.29 spam is 0, since it was not p(Lunch | N) = 0.18 in the Training Data. p(Money | N) = 0.06p(N) = 0.67 $p(S) \times p(Lunch \mid S) \times p(Money \mid S)^4 = 0$ p(Dear | S) = 0.29 p(Friend | S) = 0.14 p(**Lunch** | **S**) = 0.00 p(Money | S) = 0.57p(S) = 0.33

p(**Dear** | **S**) = 0.29 p(**Friend** | **S**) = 0.14

p(**Lunch** | **S**) = 0.00

p(Money | S) = 0.57

Terminology Alert!!!

Because we have calculated the probabilities of discrete, individual words, and not the probability of something continuous, like weight or height, these **Probabilities** are also called **Likelihoods**.

...and we wanted to filter out the **spam** messages.

...and we also received
spam (unwanted
messages that are usually
scams or unsolicited
advertisements)...

FUTURE ENHANCENTS

Personalized Spam Detection

Biometric Authentication

Chatbots and Al Assistants

Cross-platform Compatibility

CONCLUSION

In conclusion, our chat application project using React Native and Firebase has created a modern, cross-platform communication platform. React Native enables seamless communication across iOS and Android, with real-time message delivery powered by Firebase. Secure user authentication and spam detection enhance user safety and experience. Our intuitive, user-centric design ensures ease of use, while scalability and performance optimization provide a foundation for future growth. Continuous feedback integration fosters improvement. We remain committed to embracing emerging technologies to meet our users' evolving needs.

REFERENCES

[1] Modupe, A., Olugbara, O. O., & Ojo, S. O. (2014). Filtering of Mobile Short Messaging Communication Using Latent Dirichlet Allocation with Social Network Analysis. In G.-C. Yang, S.-I. Ao, & L. Gelman (Eds.), Transactions on Engineering Technologies: Special Volume of the World Congress on Engineering 2013 (pp. 671–686). Springer Science & Business.

[2] Shirani-Mehr, H. (2013). SMS Spam Detection using Machine Learning Approach.

[3] Abdulhamid, S. M., et al. (2017). A Review on Mobile SMS Spam Filtering Techniques. IEEE Access, 5, 15650–15666.

[4] Aski, A. S., & Sourati, N. K. (2016). Proposed Efficient Algorithm to Filter Spam Using Machine Learning Techniques. Pacific Science Review. Natural Science and Engineering, 18(2), 145–149.

[5] Narayan, A., & Saxena, P. (2013). The Curse of 140 Characters: Evaluating The Efficacy of SMS Spam Detection on Android (pp. 33–42).

