

SEQ2SEQ MATTENTION

Андреева Дарья Data Scientist, X5 Tech

машинный перевод

1954г. – джорджтаунский эксперимент

до 2010г. – статистические модели

с 2016г. – машинный перевод

формально

source: $X = (X_1, ..., X_n)$

target: $y = (y_1, ..., y_m)$

С - корпус из пар (х, у)

$$P_{ heta}(Y|X) = \prod\limits_{i=1}^n p(y_i|X,y_{< i})$$
 — max

$$\hat{y}_i = argmax(p_{\theta}(y_i|X,\hat{y}_{< i}))$$

жадно семплируем?

кодировщик-декодировщик

source: $X = (X_1, ..., X_n)$

target: $y = (y_1, ..., y_m)$

X5 Tech

С - корпус из пар (х, у)

кодировщик-декодировщик

source: $X = (X_1, ..., X_n)$

target: $y = (y_1, ..., y_m)$

С - корпус из пар (х, у)

внимание

внимание

ATTENTION IS ALL YOU NEED

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads.
 We multiply X or
 R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Thinking Machines

W₀Q W₀K W₀V

Mo

...

позиционный эмбеддинг

overview

decoder

overview

