

BAI

INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:	A2	(11) Internationale Veröffentlichungsnummer: WO 00/49021
C07D 493/00		(43) Internationales Veröffentlichungsdatum: 24. August 2000 (24.08.00)

(21) Internationales Aktenzeichen: PCT/EP00/01333

(22) Internationales Anmeldedatum: 18. Februar 2000 (18.02.00)

(30) Prioritätsdaten:
199 08 765.2 18. Februar 1999 (18.02.99) DE
199 54 230.9 4. November 1999 (04.11.99) DE(71) Anmelder (*für alle Bestimmungsstaaten ausser US*): SCHERRING AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, D-13353 Berlin (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): KLAR, Ulrich [DE/DE]; Isegrimstrasse 8a, D-13503 Berlin (DE). SKUBALLA, Werner [DE/DE]; Mattersburger Weg 12, D-13465 Berlin (DE). BUCHMANN, Bernd [DE/DE]; Erdmannstrasse 44, D-16540 Hohen Neuendorf (DE). SCHWEDE, Wolfgang [DE/DE]; Klosterheider Weg 35, D-13467 Berlin (DE). SCHIRNER, Michael [DE/DE]; Eichenstrasse 51, D-13156 Berlin (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Titel: 16-HALOGEN-EPOTHILONE DERIVATIVES, METHOD FOR PRODUCING THEM AND THEIR PHARMACEUTICAL USE

(54) Bezeichnung: 16-HALOGEN-EPOTHILON-DERIVATE, VERFAHREN ZU DEREN HERSTELLUNG UND IHRE PHARMAZEUTISCHE VERWENDUNG

(57) Abstract

The invention relates to novel epothilone derivatives of general formula (I), wherein R⁸ means a halogen atom, especially a fluorine or chlorine atom, and the remaining substituents have the meanings given in the description. The novel compounds are suitable for producing medicaments.

(57) Zusammenfassung

Die vorliegende Erfindung beschreibt die neuen Epothilon-Derivate der allgemeinen Formel (I), worin R⁸ ein Halogenatom, insbesondere ein Fluor- oder Chloratom, bedeutet, sowie die übrigen Substituenten die in der Beschreibung angegebene Bedeutung haben. Die neuen Verbindungen sind zur Herstellung von Arzneimitteln geeignet.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilién	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

16-Halogen-Epothilin-Derivat, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung

- 5 Von Höfle et al. wird die cytotoxische Wirkung der Naturstoffe Epothilon A ($R = \text{Wasserstoff}$) und Epothilon B ($R = \text{Methyl}$)

Epothilon A ($R = \text{H}$), Epothilon B ($R = \text{CH}_3$)

- 10 z.B. in Angew. Chem. 1996, 108, 1671-1673, beschrieben. Wegen der in-vitro-Selektivität gegenüber Brust- und Darmzelllinien und ihrer im Vergleich zu Taxol deutlich höheren Aktivität gegen P-Glycoprotein-bildende, multiresistente Tumorlinien sowie ihre gegenüber Taxol verbesserten physikalischen Eigenschaften, z.B. eine um 15 den Faktor 30 höhere Wasserlöslichkeit, ist diese neuartige Strukturklasse für die Entwicklung eines Arzneimittels zur Therapie maligner Tumoren besonders interessant. Die Naturstoffe sind sowohl chemisch als auch metabolisch für eine Arzneimittelentwicklung nicht ausreichend stabil. Zur Beseitigung dieser Nachteile sind Modifikationen an dem Naturstoff nötig. Derartige Modifikationen sind nur auf 20 totalsynthetischem Wege möglich und setzen Synthesestrategien voraus, die eine breite Modifikation des Naturstoffes ermöglichen. Ziel der Strukturveränderungen ist es auch, die therapeutische Breite zu erhöhen. Dies kann durch eine Verbesserung der Selektivität der Wirkung und/oder eine Erhöhung der Wirkstärke und/oder eine Reduktion unerwünschter toxischer Nebenwirkungen, wie sie in Proc. Natl. Acad. Sci. 25 USA 1998, 95, 9642-9647 beschrieben sind, erfolgen.

Die Totalsynthese von Epothilon A ist von Schinzer et al. in Chem. Eur. J. 1996, 2, No. 11, 1477-1482 und in Angew. Chem. 1997, 109, Nr. 5, S. 543-544) beschrieben.

Epothilon-Derivate wurden bereits von Höfle et al. in der WO 97/19086 beschrieben. Diese Derivate wurden ausgehend vom natürlichen Epothilon A oder B hergestellt.

- 30 Auch Epothilon C und D (Doppelbindung zwischen den Kohlenstoffatom n 12 und 13:

Epothilon C = Desoxyepothilon A; Epothilon D = Desoxyepothilon B) sind als mögliche Ausgangsprodukte hierfür beschrieben.

Eine weitere Synthese von Epothilon und Epothilon-derivaten wurde von Nicolaou et al. in Angew. Chem. 1997, 109, Nr. 1/2, S. 170 - 172 beschrieben. Die Synthese von

5 Epothilon A und B und einiger Epothilon-Analoga wurde in Nature, Vol. 387, 1997, S. 268-272, die Synthese von Epothilon A und seinen Derivaten in J. Am. Chem. Soc., Vol. 119, No. 34, 1997, S. 7960 - 7973 sowie die Synthese von Epothilon A und B und einiger Epothilon-Analoga in J. Am. Chem. Soc., Vol. 119, No. 34, 1997, S. 7974 - 7991 ebenfalls von Nicolaou et al. beschrieben.

10 Ebenfalls Nicolaou et al. beschreiben in Angew. Chem. 1997, 109, Nr. 19, S. 2181-2187 die Herstellung von Epothilon A-Analoga mittels kombinatorischer Festphasensynthese. Auch einige Epothilon B-Analoga sind dort beschrieben.

15 Epothilon-Derivate, z.T. auch Epothilon C und D, sind des weiteren in den Patentanmeldungen WO 99/07692, WO 99/02514, WO 99/01124, WO 99/67252, WO 98/25929, WO 97/19086, WO 98/38192, WO 99/22461 und WO 99/58534 beschrieben.

In den bisher bekannt gewordenen Epothilon-Derivaten kann am Kohlenstoffatom 16 des Epothilongerüstes kein Halogenatom stehen.

20 Der Inhalt der Prioritätsdokumente DE 199 08 765.2 und DE 199 54 230.9 zu vorliegender Patentanmeldung sowie der WO 99/07692 der Anmelderin ist durch Bezugnahme auf diese Dokumente als Teil der Offenbarung in die vorliegende Patentanmeldung eingeschlossen („incorporated by reference“).

25 Die Aufgabe der vorliegenden Erfindung besteht darin, neue Epothilon-Derivate zur Verfügung zu stellen, die sowohl chemisch als auch metabolisch für eine Arzneimittelentwicklung ausreichend stabil sind und die hinsichtlich ihrer therapeutischen Breite, ihrer Selektivität der Wirkung und/oder unerwünschter toxischer Nebenwirkungen und/oder ihrer Wirkstärke den natürlichen Derivaten überlegen sind.

30 Die vorliegende Erfindung beschreibt die neuen Epothilon-Derivate der allgemeinen Form II,

I,

worin

R^{1a}, R^{1b} gleich oder verschieden sind und Wasserstoff, C₁-C₁₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl, oder gemeinsam eine -(CH₂)_m-Gruppe mit m = 2, 3, 4 oder 5,

5 R^{2a}, R^{2b} gleich oder verschieden sind und Wasserstoff, C₁-C₁₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl oder gemeinsam eine -(CH₂)_n-Gruppe mit n = 2, 3, 4 oder 5.

R³ Wasserstoff, C₁-C₁₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl,

G ein Sauerstoffatom oder eine Gruppe CH₂,

R^{4a}, R^{4b} gleich oder verschieden sind und Wasserstoff, C₁-C₁₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl oder gemeinsam eine -(CH₂)_p-Gruppe mit p = 2, 3, 4 oder 5,

10 D-E eine Gruppe

R⁵ Wasserstoff, C₁-C₁₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl, CO₂H, CO₂-Alkyl, CH₂OH, CH₂O-Alkyl, CH₂O-Acyl, CN, CH₂NH₂, CH₂N(Alkyl, Acyl)_{1,2}, CH₂Hal

15 R⁶, R⁷ je ein Wasserstoffatom, gemeinsam eine zusätzliche Bindung oder ein Sauerstoffatom,

R⁸ ein Halogenatom oder eine Cyanogruppe,

X ein Sauerstoffatom, zwei Alkoxygruppen OR²³, eine C₂-C₁₀-Alkylen- α,ω -dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR⁹ oder eine

20 Gruppierung CR¹⁰R¹¹,

wobei

R²³ für einen C₁-C₂₀-Alkylrest,

R⁹ für Wasserstoff oder eine Schutzgruppe PG^X,

25 R¹⁰, R¹¹ gleich oder verschieden sind und für Wasserstoff, einen C₁-C₂₀-Alkyl-, Aryl-, C₇-C₂₀-Aralkylrest oder

R¹⁰ und R¹¹ zusammen mit dem Methylenkohlenstoffatom gemeinsam für einen 5- bis 7-gliedrigen carbocyclischen Ring stehen,

T-Y eine Gruppe O-C(=O), O-CH₂, CH₂C(=O), NR²⁴-C(=O), NR²⁴-SO₂,

5 R²⁴ Wasserstoff, C₁-C₁₀-Alkyl,

Z ein Sauerstoffatom oder H/OR¹², wobei

R¹² Wasserstoff oder eine Schutzgruppe PG^Z ist,

10 bedeuten.

Das Halogenatom R⁸ kann ein Fluor-, Chlor-, Brom- oder Iodatom sein.

Fluor, Chlor und Brom sind bevorzugt, und von diesen insbesondere Fluor und Chlor.

15

R^{2a} soll vorzugsweise eine Methyl-, Ethyl- Propyl- oder Butylgruppe bedeuten.

Für die Substituenten R^{1a} und R^{1b} steht vorzugsweise gemeinsam eine Trimethylengruppe oder R^{1a} und R^{1b} bedeuten je eine Methylgruppe.

20 R^{10/R¹¹} in der Gruppe X stehen vorzugsweise für 2-Pyridylrest/Wasserstoff oder 2-Methyl-4-thiazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-thiazolylrest/Wasserstoff oder 2-Methyl-4-oxazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-oxazolylrest/Wasserstoff.

25 T-Y ist vorzugsweise eine Gruppe O-C(=O) oder eine Gruppe NR²⁴-C(=O).

Z bedeutet in erster Linie ein Sauerstoffatom.

Zwischen den Kohlenstoffatomen 10 und 11 befindet sich in den bevorzugten

30 Verbindungen der allgemeinen Formel I eine Einfachbindung, d.h. -D-E- steht für eine Ethylengruppe.

Außerdem steht in den erfindungsgemäßen Verbindungen R³ gewöhnlich für ein Wasserstoffatom.

Für die beiden Substituenten R^{4a}/R^{4b} steht vorzugsweise die Kombination H/CH₃.

5 Eine Ausführungsform der Erfindung sieht solche Verbindungen der allgemeinen Formel I vor, worin R⁸ für ein Fluor- oder Chloratom steht und R^{1a} + R^{1b} gemeinsam eine Trimethylengruppe bedeuten.

10 Gemäß einer weiteren Ausführungsform betrifft die Erfindung solche Verbindungen der allgemeinen Formel I, worin R⁸ für ein Fluor- oder Chloratom und R¹⁰/R¹¹ für 2-Pyridylrest/Wasserstoff stehen.

Noch eine andere Variante sind solche Verbindungen der allgemeinen Formel I worin R⁸ für ein Fluor- oder Chloratom und R^{2a}/R^{2b} für Ethyl/Wasserstoff stehen.

15 Noch eine weitere Ausführungsform der Erfindung sind solche Verbindungen der allgemeinen Formel I, worin R⁸ für ein Fluor- oder Chloratom steht, R^{1a} + R^{1b} gemeinsam eine Trimethylengruppe bedeuten sowie R^{2a}/R^{2b} für Ethyl/Wasserstoff stehen.

20 Außerdem ist noch diese Variante für die erfindungsgemäßen Verbindungen zu nennen, worin R⁸ für ein Fluor- oder Chloratom steht, R^{2a}/R^{2b} für Ethyl/Wasserstoff und R¹⁰/R¹¹ für 2-Pyridylrest/Wasserstoff stehen.

25 Weitere Ausgestaltungsformen der vorliegenden Erfindung ergeben sich aus den Merkmalen der Unteransprüche.

Die Darstellung der neuen Epothilon-Derivate basiert auf der Verknüpfung dreier Teilfragmente A, B und C. Dieses Verfahren ist zur Herstellung von Epothilon-Derivaten, welche als R⁸ anstelle des erfindungsgemäßen Halogenatoms beispielsweise eine Methyl-oder längere Alkylgruppe enthalten, in der DE 197 51 200.3, Anmeldetag 13.11.1997 sowie in der dazu korrespondierenden WO 99/07692 beschrieben. Die Schnittstellen liegen wie in der allgemeinen Formel I' angedeutet.

A bedeutet ein C1-C6-Fragment (Epothilon-Zählweise) der allgemeinen Formel

5

worin

R1a', R1b', R2a' und R2b' die bereits für R1a, R1b, R2a und R2b genannten

10 Bedeutungen haben und

R13 CH₂OR^{13a}, CH₂-Hal, CHO, CO₂R^{13b}, COHal,

R14 Wasserstoff, OR^{14a}, Hal, OSO₂R^{14b},

R^{13a}, R^{14a} Wasserstoff, SO₂-Alkyl, SO₂-Aryl, SO₂-Aralkyl oder gemeinsam eine -(CH₂)_o-Gruppe oder gemeinsam eine CR^{15a}R^{15b}-Gruppe,

15 R^{13b}, R^{14b} Wasserstoff, C₁-C₂₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl,

R^{15a}, R^{15b} gleich oder verschieden sind und Wasserstoff, C₁-C₁₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl, oder gemeinsam eine -(CH₂)_q-Gruppe,

Hal Halogen (F, Cl, Br, I),

o 2 bis 4,

20 q 3 bis 6,

einschließlich aller Stereoisomeren sowie deren Gemische bedeuten sowie

freie Hydroxylgruppen in R¹³ und R¹⁴ verethert oder verest rt, freie Carbonylgruppen in A und R¹³ ketalisiert, in einen Enolether überführt oder reduziert sowie freie

25 Säuregruppen in A in deren Salze mit Basen überführt sein können.

B steht für ein C7-C12-Fragment (Epothilon-Zählweise) der allgemeinen Formel

5

B

worin

R3', R4a', R4b' und R5' die bereits für R3, R4a, R4b und R5 genannten Bedeutungen haben,

10 D, E und G die in der allgemeinen Formel I angegebenen Bedeutungen haben und

V ein Sauerstoffatom, zwei Alkoxygruppen OR¹⁷, eine C₂-C₁₀-Alkylen-
 α,ω -dioxygruppe, die geradkettig oder verzweigt sein kann oder
H/OR¹⁶,

W ein Sauerstoffatom, zwei Alkoxygruppen OR¹⁹, eine C₂-C₁₀-Alkylen-

15 α,ω -dioxygruppe, die geradkettig oder verzweigt sein kann oder
H/OR¹⁸,

R¹⁶, R¹⁸ unabhängig voneinander Wasserstoff oder eine Schutzgruppe PG¹

R¹⁷, R¹⁹ unabhängig voneinander C₁-C₂₀-Alkyl,
bedeuten.

20

C steht für ein C13-C16-Fragment (Epothilon-Zählweise) der allgemeinen Formel

C

25 worin

R8' die bereits in der allgemeinen Formel I für R8 genannte Bedeutung hat und

R7' ein Wasserstoffatom,

- T eine Gruppe OR²⁰, wobei R²⁰ ein Wasserstoffatom oder eine Schutzgruppe PG² ist, ein Halogenatom, vorzugsweise ein Brom- oder Iod-Atom, eine Azido- oder eine geschützte Aminogruppe,
- R²¹ eine Hydroxygruppe, Halogen, eine geschützte Hydroxygruppe OPG³, ein Phosphoniumhalogenidrest PPh₃⁺Hal⁻ (Ph = Phenyl; Hal = F, Cl, Br, I), ein Phosphonatrest P(O)(OQ)₂ (Q = C₁-C₁₀-Alkyl oder Phenyl) oder ein Phosphinoxidrest P(O)Ph₂ (Ph = Phenyl),
- 5 U ein Sauerstoffatom, zwei Alkoxygruppen OR²³, eine C₂-C₁₀-Alkylen- α,ω -dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR⁹ oder eine Gruppierung CR¹⁰R¹¹,
- 10 wobei
- R²³ für einen C₁-C₂₀-Alkylrest,
- R⁹ für Wasserstoff oder eine Schutzgruppe PG³,
- R¹⁰, R¹¹ gleich oder verschieden sind und für Wasserstoff, einen C₁-C₂₀-Alkyl-, Aryl-, C₇-C₂₀-Aralkylrest oder
- 15 R¹⁰ und R¹¹ zusammen mit dem Methylenkohlenstoffatom gemeinsam für einen 5- bis 7-gliedrigen carbocyclischen Ring stehen,
- bedeuten.

20

- Als Alkylgruppen R^{1a}, R^{1b}, R^{2a}, R^{2b}, R³, R⁴, R⁵, R⁹, R¹⁰, R¹¹, R¹², R^{13b}, R^{14b}, R^{15a}, R^{15b}, R¹⁷ und R²³ sind gerad- oder verzweigtkettige Alkylgruppen mit 1-20 Kohlenstoffatomen zu betrachten, wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, tert.-Butyl, Pentyl, Isopentyl, Neopentyl, Heptyl, Hexyl, Decyl.
- 25 Die Alkylgruppen R^{1a}, R^{1b}, R^{2a}, R^{2b}, R³, R⁴, R⁵, R⁹, R¹⁰, R¹¹, R¹², R^{13b}, R^{14b}, R^{15a}, R^{15b}, R¹⁷ und R²³ können perfluoriert oder substituiert sein durch 1-5 Halogenatome, Hydroxygruppen, C₁-C₄-Alkoxygruppen, C₆-C₁₂-Arylgruppen (die durch 1-3 Halogenatome substituiert sein können).
- 30 Als Arylrest R^{1a}, R^{1b}, R^{2a}, R^{2b}, R³, R⁴, R⁵, R⁹, R¹⁰, R¹¹, R¹², R^{13b}, R^{14b}, R^{15a} und R^{15b} kommen substituierte und unsubstituierte carbocyclische oder heterocyclische Reste mit einem oder mehreren Heteroatomen wie z.B. Phenyl, Naphthyl, Furyl, Thienyl, Pyridyl, Pyrazolyl, Pyrimidinyl, Oxazolyl, Pyridazinyl, Pyrazinyl,

Chinolyl, Thiazolyl, die einfach oder mehrfach substituiert sein können durch Halogen, OH, O-Alkyl, CO₂H, CO₂-Alkyl, -NH₂, -NO₂, -N₃, -CN, C₁-C₂₀-Alkyl, C₁-C₂₀-Acyl, C₁-C₂₀-Acyloxy-Gruppen, in Frage. Heteroatome in den Heteroarylresten können oxidiert sein; so kann beispielsweise der Thiazolring in Form des N-Oxids vorliegen.

- 5 Wenn nicht anders erwähnt, schließt die Definition „Aryl“ immer auch „Heteroaryl“ mit ein.

Die Aralkylgruppen in R^{1a}, R^{1b}, R^{2a}, R^{2b}, R³, R⁴, R⁵, R⁹, R¹⁰, R¹¹, R¹², R^{13b}, R^{14b}, R^{15a} und R^{15b} können im Ring bis 14 C-Atome, bevorzugt 6 bis 10 und in der Alkylkette 1 bis 8, bevorzugt 1 bis 4 Atome enthalten. Als Aralkylreste kommen beispielweise in Betracht Benzyl, Phenylethyl, Naphthylmethyl, Naphthylethyl, Furylmethyl, Thienylethyl, Pyridylpropyl. Die Ringe können einfach oder mehrfach substituiert sein durch Halogen, OH, O-Alkyl, CO₂H, CO₂-Alkyl, -NO₂, -N₃, -CN, C₁-C₂₀-Alkyl, C₁-C₂₀-Acyl, C₁-C₂₀-Acyloxy-Gruppen.

Die in X in der allgemeinen Formel I enthaltenen Alkoxygruppen sollen jeweils 1 bis 20 Kohlenstoffatome enthalten, wobei Methoxy-, Ethoxy-, Propoxy-, Isopropoxy- und t-Butyloxygruppen bevorzugt sind.

Als Vertreter für die Schutzgruppen PG sind Alkyl- und/oder Aryl-substituiertes Silyl, C₁-C₂₀-Alkyl, C₄-C₇-Cycloalkyl, das im Ring zusätzlich ein Sauerstoffatom enthalten kann, Aryl, C₇-C₂₀-Aralkyl, C₁-C₂₀-Acyl sowie Aroyl zu nennen.

20 Als Alkyl-, Silyl- und Acylreste für die Schutzgruppen PG kommen die dem Fachmann bekannten Reste in Betracht. Bevorzugt sind aus den entsprechenden Alkyl- und Silylethern leicht abspaltbare Alkyl- bzw. Silylreste, wie beispielsweise der Methoxymethyl-, Methoxyethyl-, Ethoxyethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Trimethylsilyl-, Triethylsilyl-, tert.-Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-,
25 Tribenzylsilyl-, Triisopropylsilyl-, Benzyl, para-Nitrobenzyl-, para-Methoxybenzyl-Rest sowie Alkylsulfonyl- und Arylsulfonylreste. Als Acylreste kommen z.B. Formyl, Acetyl, Propionyl, Isopropionyl, Pivalyl-, Butyryl oder Benzoyl, die mit Amino- und/oder Hydroxygruppen substituiert sein können, in Frage.

Die Acylgruppen PG^X bzw. PG^Z in R⁹ und R¹² können 1 bis 20 Kohlenstoffatome enthalten, wobei Formyl-, Acetyl-, Propionyl-, Isopropionyl und Pivalylgruppen bevorzugt sind.

Als Aminoschutzgruppen kommen die dem Fachmann bekannt n Reste in Betracht. Beispielsweise genannt seien die Boc-, Z-, Benzyl, f-Moc-, Troc-, Stabas - oder Benzostabase-Gruppe.

-10-

Der Index m in der aus R^{1a} und R^{1b} gebildeten Alkylengruppe steht vorzugsweise für 2, 3 oder 4.

Die für X mögliche C₂-C₁₀-Alkylen- α,ω -dioxygruppe ist vorzugsweise eine

5 Ethylenketal- oder Neopentylketalgruppe.

Die vorliegende Erfindung betrifft insbesondere die folgenden Verbindungen

10 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-15 dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

20 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

25 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-pyridyl)ethenyl)-

5 8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

10 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

15 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[4.1.0]heptadecan-5,9-dion

20 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-oxabicyclo[4.1.0]heptadecan-5,9-

25 dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-1-aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

30 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

- 5 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

- 10 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

- 15 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

- 20 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

- 25 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

- 30 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyloxazol-4-yl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-methyloxazol-4-yl) thenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

5 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

10 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

15 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-pyridyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

20 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

25 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

30 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

35 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

40 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-oxabicyclo[4.1.0]heptadecan-5,9-dion

45 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyloxazol-4-yl)ethenyl)-1-aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-m thyloxazol-4-yl)ethenyl)-8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

5 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-

methyloxazol-4-yl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

10 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

15 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

20 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-pyridyl)ethenyl)-8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

25 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

30 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

35 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-deca-5,9-dion

40 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

45 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-fluor-

2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-decan-5,9-dion

4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

5

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-deca-5,9-dion

10 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-decan-5,9-dion

15

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

20

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-deca-5,9-dion

25 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-

30

decan-5,9-dion

4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

35

- (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-deca-5,9-dion
- 5 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion
- (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-10 decan-5,9-dion
- (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion
- 15 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-pyridyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-deca-5,9-dion
- (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion
- 20 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-decan-5,9-dion
- 25 4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-aza-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion
- (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-pyridyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-deca-5,9-dion
- 30 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-aza-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion
- (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-decan-5,9-dion
- 35

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

5 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-pyridyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-deca-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

10 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-chlor-2-(2-pyridyl)ethenyl)-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-decan-5,9-dion

15 4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-aza-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-pyridyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-deca-5,9-dion

20 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-aza-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

25 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-chlor-2-(2-pyridyl)ethenyl)-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-decan-5,9-dion

30 Darstellung der Teilfragmente A und B:

Die Teilfragmente (Synthesebausteine) der allgemeinen Formeln A und B lassen sich wie in der DE 19751200.3 bzw. der korrespondierenden WO 99/07692 beschrieben herstellen.

Darstellung der Teilfragmente C:

Die Darstellung der erfindungsgemäßen Teilfragmente der Formel C, in denen R^{8'} ein

Fluoratom bedeutet, kann, wie in den nachfolgenden Formelschemata innerhalb der

- 5 Herstellung der erfindungsgemäßen Verbindungen der Beispiele 1 bis 4 angegeben ist, durchgeführt werden.

Durch Variation des (Hetero)arylrestes im Ausgangsprodukt im Reaktionsschritt a) (im vorliegenden Fall ist dies der 2-Methyl-4-thiazolylrest) kommt man zu entsprechend substituierten Bausteinen der Formel C und letztendlich Verbindungen der Formel I.

- 10 Die Darstellung von Fragmenten der Formel C, in denen R^{8'} ein Chloratom bedeutet, ist innerhalb des Beispiels 5 beschrieben.

Stellt R^{8'} ein Bromatom dar, wird dieses analog wie ein Chloratom in den Fragmenten C eingeführt.

15 Formelschemata zu den Beispielen 1 bis 4

Beispiel 1

Aus Phosphoniumstaz 1j
in Analogie zu DE 19751200.3

1a)

1b)

1c)

25 1d)

-19-

1e)

1f)

5

1g)

1h)

10

1i)

1j)

15

-20-

Beispiel 2aus Phosphoniumsalz 1j
in Analogie zu Beispiel 1**Beispiel 3**

Titelverbindung A

Titelverbindung B

Beispiel 4

Titelverbindung A

Titelverbindung B

Die vorliegende Erfindung betrifft neben den Verbindungen der allgemeinen Formel I außerdem die neuen C13-C16-Epothilon-Bausteine der allgemein n Formel C als Zwischenprodukte

C

5

worin

- R^{8'} die bereits in der allgemeinen Formel I für R⁸ genannte Bedeutung hat und
- R^{7'} ein Wasserstoffatom,
- T' eine Gruppe OR²⁰, wobei R²⁰ ein Wasserstoffatom oder eine Schutzgruppe PG² ist, Halogen oder eine Azido- oder eine geschützte Aminogruppe,
- R²¹ eine Hydroxygruppe, Halogen, eine geschützte Hydroxygruppe OPG³, ein Phosphoniumhalogenidrest PPh₃⁺Hal⁻ (Ph = Phenyl; Hal = F, Cl, Br, I), ein Phosphonatrest P(O)(OQ)₂ (Q = C₁-C₁₀-Alkyl oder Phenyl) oder ein Phosphinoxidrest P(O)Ph₂ (Ph = Phenyl),
- U ein Sauerstoffatom, zwei Alkoxygruppen OR²³, eine C₂-C₁₀-Alkylen- α,ω -dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR⁹ oder eine Gruppierung CR¹⁰R¹¹,
- wobei
 - R²³ für einen C₁-C₂₀-Alkylrest,
 - R⁹ für Wasserstoff oder eine Schutzgruppe PG³,
 - R¹⁰, R¹¹ gleich oder verschieden sind und für Wasserstoff, einen C₁-C₂₀-Alkyl-, Aryl-, C₇-C₂₀-Aralkylrest oder
 - R¹⁰ und R¹¹ zusammen mit dem Methylenkohlenstoffatom gemeinsam für einen 5- bis 7-gliedrigen carbocyclischen Ring stehen,
- bedeuten.

Erfnungsgemäß sind solche Verbindungen der allgemeinen Formel C bevorzugt, worin

R⁸ für ein Fluor-, Chlor- oder Bromatom, und/oder

5

U für ein Sauerstoffatom steht, und/oder

der für R¹⁰ und/oder R¹¹ stehende Arylrest für einen gegebenenfalls mit 1 bis 3 Resten, ausgewählt aus der Gruppe der Substituenten Halogen, freie Hydroxygruppe oder geschützte Hydroxygruppe OPG⁵, CO₂H, CO₂-Alkyl, C₁-C₄-Alkyl, Azido, Nitro, Nitril, Amino (NH₂), substituierten Phenylrest oder für einen gegebenenfalls mit 1 bis 2 C₁-C₄-Alkylresten substituierten 5- oder 6-gliedrigen Heteroarylrest,

insbesondere für einen aus der Gruppe 2-, 3-Furanyl-, 2-, 3-, 4-Pyridinyl-, 2-, 4-, 5-Thiazolyl-, 2-, 4- und 5-Imidazolylrest, der gegebenenfalls durch 1 oder 2 C₁-C₄-

15 Alkylreste substituiert ist, ausgewählten Substituenten steht und/oder

PG² und PG³ aus der Gruppe der Substituenten Methoxymethyl-, Methoxyethyl, Ethoxyethyl-, Tetrahydropyranyl-, Tetrahydrofuran-, Trimethylsilyl-, Triethylsilyl-, tert.-Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-, Benzyl-,

20 para-Nitrobenzyl-, para-Methoxybenzyl-, Acetyl-, Propionyl-, Butyryl- und Benzoylrest ausgewählt sind,

insbesondere PG² ein tert.-Butyldimethylsilyl-, Acetyl, Benzoyl-, Benzyl-, Tetrahydropyranyl-Rest ist.

25

Als Schutzgruppen PG⁴ und PG⁵ kommen alle schon vorstehend für PG² und PG³ angegebenen Schutzgruppen in Frage.

30 Die vorliegende Erfindung betrifft außerdem Teilfragmente der allgemeinen Formel BC

BC

worin R³, R^{4a}, R^{4b}, R⁵, R⁸, D, E, G, T' und U die bereits genannten Bedeutungen
5 haben und PG¹⁴ ein Wasserstoffatom oder eine Schutzgruppe PG darstellt.

Die vorliegende Erfindung betrifft außerdem noch Teilfragmente der allgemeinen Formel ABC

10

ABC,

worin R^{1a'}, R^{1b'}, R^{2a'}, R^{2b'}, R³, R^{4a'}, R^{4b'}, R⁵, R⁶, R⁷, R⁸, R¹³, R¹⁴, D, E, G, T', U und Z die bereits genannten Bedeutungen haben.

15

Darstellung der Teilfragmente ABC und deren Zyklisierung zu I:

Die Darstellung und Zyklisierung erfolgt ebenfalls analog wie in der DE 19751200.3
20 bzw. der korrespondierenden WO 99/07692 beschrieben, wobei nunmehr Fragment C als Substituent R^{8'} insbesondere ein Fluor-, Chlor- oder Bromatom aufweist:

Teilfragmente der allgemeinen Formel AB

AB,

worin $R^{1a'}$, $R^{1b'}$, $R^{2a'}$, $R^{2b'}$, R^3 , $R^{4a'}$, $R^{4b'}$, R^5 , R^{13} , R^{14} , D, E, G, V und Z die bereits genannten Bedeutungen haben und PG^{14} ein Wasserstoffatom oder eine Schutzgruppe PG darstellt, werden aus den zuvor beschriebenen Fragmenten A und B nach dem in Schema 1 gezeigten Verfahren erhalten.

Schema 1

10 Schritt a ($A + B \rightarrow AB$):

Die Verbindung B, worin W die Bedeutung eines Sauerstoffatoms hat und eventuell vorhandene zusätzliche Carbonylgruppen geschützt sind, wird mit dem Enolat einer Carbonylverbindung der allgemeinen Formel A alkyliert. Das Enolat wird durch Einwirkung starker Basen wie z.B. Lithiumdiisopropylamid, Lithiumhexamethyldisilazan 15 bei niedrigen Temperaturen hergestellt.

Teilfragmente der allgemeinen Formel ABC

ABC,

worin $R^{1a'}$, $R^{1b'}$, $R^{2a'}$, $R^{2b'}$, R^3 , $R^{4a'}$, $R^{4b'}$, R^5 , R^6 , R^7 , R^8 , R^{13} , R^{14} , D, E, G, T', U und Z die bereits genannten Bedeutungen haben, werden aus den zuvor beschriebenen Fragmenten AB und C nach dem in Schema 2 gezeigten Verfahren erhalten.

Schema 2

10

AB

C

ABC

Schritt b ($AB + C \rightarrow ABC$):

Die Verbindung C, in der R^{21} die Bedeutung eines Wittigsalzes hat und eventuell vorhandene zusätzliche Carbonylgruppen geschützt sind, wird durch eine geeignete 15 Base wie z.B. n-Butyllithium, Lithiumdiisopropylamid, Kalium-tert.butanolat, Natrium- oder Lithium-hexamethyldisilazid deprotoniert und mit einer Verbindung AB, worin V die Bedeutung eines Sauerstoffatoms hat, umgesetzt.

Schritt c ($ABC \rightarrow I$):

20 Die Verbindungen ABC, in denen R^{13} eine Carbonsäure CO_2H darstellt, T' für OR^{20} steht und R^{20} ein Wasserstoffatom darstellt, setzt man nach den, dem Fachmann bekannten Methoden für die Bildung großer Macrolide zu Verbindungen der Formel I, in

denen T-Y die Bedeutung O-C(=O) besitzt, um. Bevorzugt wird die in "Reagents for Organic Synthesis, Vol. 16, p 353" beschriebene Methode unter Verwendung von 2,4,6-Trichlorbenzoësäurechlorid und geeigneten Basen wie z.B. Triethylamin, 4-Dimethylaminopyridin, Natriumhydrid.

5

Schritt d (ABC → I):

Die Verbindungen ABC, in denen R¹³ eine Gruppe CH₂OH und R²⁰ ein Wasserstoffatom darstellt, lassen sich vorzugsweise unter Verwendung von Triphenylphosphin und Azodiester wie beispielsweise Azodicarbonsäurediethylester zu Verbindungen der Formel I, in denen T-Y die Bedeutung von O-CH₂ hat, umsetzen.

10

Die Verbindungen ABC, in denen R¹³ eine Gruppe CH₂OSO₂Alkyl oder CH₂OSO₂Aryl oder CH₂OSO₂Aralkyl und R²⁰ ein Wasserstoffatom darstellt, lassen sich nach Deprotonierung mit geeigneten Basen wie beispielsweise Natriumhydrid, n-Butyllithium, 4-Dimethylaminopyridin, Hünig-Base, Alkalihexamethyldisilazanen zu 15 Verbindungen der Formel I, in denen T-Y die Bedeutung von O-CH₂ hat, zyklisieren.

15

Alternativ zu vorstehender Route lassen sich Teilfragmente der allgemeinen Formel BC

20

25

worin R³, R^{4a}, R^{4b}, R⁵, R⁸, D, E, T' und U die bereits genannten Bedeutungen haben und PG¹⁴ ein Wasserstoffatom oder eine Schutzgruppe PG darstellt, aus den zuvor beschriebenen Fragmenten B und C nach dem in Schema 3 gezeigten Verfahren erhalten.

Schema 3

Zur Einführung einer Stickstofffunktion an C-15 kann wahlweise auf der Stufe C' (Fragment C mit $T' = OR^{20}$) oder BC' (Fragment BC mit $T' = OR^{20}$) an der Position 15 die Sauerstofffunktion direkt (C'' bzw. BC'' mit $T' = Nf$ = Azid oder geschütztes Amin) oder über die Zwischenstufe eines Halogenatoms in eine Stickstofffunktion umgewandelt werden:

10

15

Stellt R^{20} ein Wasserstoff dar, so kann die Hydroxylgruppe nach den dem Fachmann bekannten Verfahren in einem Halogenatom, vorzugsweise ein Chlor-, Brom-, oder

Iodatom überführt werden, das anschließend in eine Stickstofffunktion Nf, wobei Nf vorzugsweise ein Azid oder ein geschütztes Amin darstellt, überführt wird. Alternativ kann die Hydroxylgruppe an C-15 (R^{20} in der Bedeutung von Wasserstoff) in eine Abgangsgruppe vorzugsweise in ein Alkyl- oder Aralkyl-sulfonat überführt und dieses dann durch ein Stickstoffnukleophil Nf substituiert werden.

5 Teilfragmente der allgemeinen Formel ABC

ABC,

10

worin $R^{1a'}$, $R^{1b'}$, $R^{2a'}$, $R^{2b'}$, R^3 , $R^{4a'}$, $R^{4b'}$, R^5 , R^6 , R^7 , R^8 , R^{13} , R^{14} , D , E , G , T' , U und Z die bereits genannten Bedeutungen haben, werden aus den zuvor beschriebenen Fragmenten BC und A nach dem in Schema 4 gezeigten Verfahren erhalten.

15

Schema 4

20 Die Einführung der Stickstofffunktion an C-15 kann wie bereits für C''' bzw. BC''' beschrieben, auch auf der Stufe ABC erfolgen. Die flexible Funktionalisierung der beschriebenen Bausteine A, B und C gewährleistet auch eine von dem oben beschriebenen Verfahren abweichende Verknüpfungsreihenfolge, die zu den

Bausteinen ABC führt. Diese Verfahren sind in der folgenden Tabelle zusammengestellt:

Verknüpfungsmöglichkeiten	Verknüpfungsmethoden a bis e	Voraussetzungen
A + B → A-B	a: Aldol (siehe Schema 1)	Z = W = Sauerstoff
B + C → B-C	b: Wittig (analog Schema 2) e: McMurry	U = Sauerstoff und R ²¹ = Wittigsalz oder Phosphinoxid oder Phosphonat U = V = Sauerstoff
A + C → A-C	c: Veresterung (z. B. 2,4,6-Trichlorbenzoylchlorid / 4-Dimethylaminopyridin) d: Veretherung (z.B. Mitsunobu) f: Amidbildung (z.B. mit (PhO) ₂ P(O)N ₃) in Gegenwart einer Base (z.B. NaHCO ₃) in einem inerten Lösungsmittel (z.B. DMF).	R ¹³ = CO ₂ R ^{13b} oder COHal und R ²⁰ = Wasserstoff R ¹³ = CH ₂ OH und R ²⁰ = Wasserstoff oder SO ₂ -Alkyl oder SO ₂ -Aryl oder SO ₂ -Aralkyl R ¹³ = CO ₂ R ^{13b} oder COHal und R ²⁰ = Wasserstoff T = NH ₂ , NHR ²⁴

Nach diesen Verfahren lassen sich die Bausteine A, B und C, wie in Schema 5 angegeben, verknüpfen:

Schema 5

5

10

Freie Hydroxylgruppen in I, I', A, B, C, AB, ABC können durch Veretherung oder Veresterung, freie Carbonylgruppen durch Ketalisierung, Enoletherbildung oder Reduktion weiter funktionell abgewandelt sein.

Die Erfindung vorliegende Erfindung betrifft alle Stereoisomeren der beschriebenen und beanspruchten Verbindungen und auch deren Gemische.

20

Biologische Wirkungen und Anwendungsbereiche der neuen Divate:

Die neuen Verbindungen der Formel I sind wertvolle Pharmaka. Sie interagieren mit Tubulin, indem sie gebildete Mikrotubuli stabilisieren und sind somit in der Lage, die Zellteilung phasenspezifisch zu beeinflussen. Dies betrifft vor allem schnell wachsende, neoplastische Zellen, deren Wachstum durch interzelluläre Regelmechanismen weitgehend unbeeinflußt ist. Wirkstoffe dieser Art sind prinzipiell geeignet zur Behandlung maligner Tumoren. Als Anwendungsbereich seien beispielweise genannt die Therapie von Ovarial-, Magen-, Colon-, Adeno-, Brust-, Lungen-, Kopf- und Nacken-Karzinomen, dem malignen Melanom, der akuten lymphozytären und myelocytären Leukämie. Die erfindungsgemäßen Verbindungen eignen sich aufgrund ihrer Eigenschaften prinzipiell zur Anti-Angiogenese-Therapie sowie zur Behandlung chronischer entzündlicher Erkrankungen wie beispielsweise der Psoriasis oder der Arthritis. Zur Vermeidung unkontrollierter Zellwucherungen an sowie der besseren Verträglichkeit von medizinischen Implantaten lassen sie sich prinzipiell in die hierfür verwendeten polymeren Materialien auf- bzw. einbringen. Die erfindungsgemäßen Verbindungen können alleine oder zur Erzielung additiver oder synergistischer Wirkungen in Kombination mit weiteren in der Tumortherapie anwendbaren Prinzipien und Substanzklassen verwendet werden.

Als Beispiele seien genannt die Kombination mit

- Platinkomplexen wie z.B. Cisplatin, Carboplatin,
- interkalierenden Substanzen z.B. aus der Klasse der Anthracycline wie z.B. Doxorubicin oder aus der Klasse der Antrapyrazole wie z.B. CI-941,
- mit Tubulin interagierenden Substanzen z.B. aus der Klasse der Vinka-Alkaloide wie z.B. Vincristin, Vinblastin oder aus der Klasse der Taxane wie z.B. Taxol, Taxotere oder aus der Klasse der Makrolide wie z.B. Rhizoxin oder andere Verbindungen wie z.B. Colchicin, Combretastatin A-4,
- DNA Topoisomeraseinhibitoren wie z.B. Camptothecin, Etoposid, Topotecan, Teniposid,
- Folat- oder Pyrimidin-Antimetaboliten wie z.B. Lometrexol, Gemcitabin,
- DNA alkylierenden Verbindungen wie z.B. Adozelesin, Dystamycin A,
- Inhibitoren von Wachstumsfaktoren (z.B. von PDGF, EGF, TGF β , EGF) wie z.B. Somatostatin, Suramin, Bombesin-Antagonisten,
- Inhibitoren der Protein Tyrosin Kinase oder der Protein Kinases A oder C wie z.B. Erbstatin, Genistein, Staurosporin, Ilmofosin, 8-Ci-cAMP,

- Antihormonen aus der Klasse der Antigestagene wie z.B. Mifepriston, Onapriston oder aus der Klasse der Antiöstrogene wie z.B. Tamoxifen oder aus der Klasse der Antiandrogene wie z.B. Cyproteronacetat,
- Metastasen inhibierenden Verbindungen z.B. aus der Klasse der Eicosanoide wie z.B. PG_{I2}, PGE₁, 6-Oxo-PGE₁ sowie deren stabiler Derivate (z.B. Iloprost, Cicaprost, Misoprostol),
- Inhibitoren onkogener RAS-Proteine, welche die mitotische Signaltransduktion beeinflussen wie beispielsweise Inhibitoren der Farnesyl-Protein-Transferase,
- natürlichen oder künstlich erzeugten Antikörpern, die gegen Faktoren bzw. deren Rezeptoren, die das Tumorzellwachstum fördern, gerichtet sind wie beispielsweise der erbB2-Antikörper.

15 In vitro Aktivität von Epothilon-Derivaten an humanen Tumorzelllinien

- a) IC₅₀-Werte [nM] für die Wachstumshemmung humaner MCF-7-Brust- und multi-drug-resistenter NCI/ADR-Karzinomzelllinien von Epothilon-Derivaten mit 13Z-Olefin im Kristall-Violett-Assay im Vergleich zu Epothilon D.

20

Tabelle 1:

Verbindung	MCF-7	NCI/ADR	Selektivität*
Epothilon D	23	50	2,2
Taxol	4,0	>>100	>>25
Bsp. 1	4,3	12	2,8
Bsp. 5	5,1	37	7,3
Bsp. 9	5,0	10	2,0
Bsp. 13	5,8	28	4,8
Bsp. 17	6,1	33	5,4

*: Selektivität = IC₅₀(NCI/ADR) : IC₅₀ (MCF-7)

- 25 Die Verbindungen der Beispiele 1, 9, 13 und 17 besitzen eine signifikant höhere Wirkstärke im Vergleich zur strukturell ähnlichen Referenzverbindung Epothilon D. Alle Verbindungen zeigen im Unterschied zu Taxol eine Wirkung an der multi-drug-resistenten Zelllinie NCI/ADR.

- b) IC₅₀-Werte [nM] für die Wachstumshemmung humaner MCF-7-Brust- und multi-drug-resistenter NCI/ADR-Karzinomzelllinien von Epothilon-Derivaten mit 13,14- α -Epoxid im Kristall-Violett-Assay im Vergleich zu Epothilon B.
- 5

Tabelle 2:

Verbindung	MCF-7	NCI/ADR	Selektivität*
Epothilon B	0,6	3,5	5,8
Taxol	4,0	>>100	>>25
Bsp. 3B	0,3	1,4	4,7
Bsp. 7A	0,8	6,0	7,5
Bsp. 10A	2,1	3,9	1,9
Bsp. 14A	0,5	3,5	7,0
Bsp. 20A	0,6	4,6	7,6

*: Selektivität = IC₅₀-(NCI/ADR) : IC₅₀ (MCF-7)

10

Die Verbindungen der Beispiele 3B, 14A und 20A besitzen eine vergleichbare oder signifikat höhere Wirkstärke im Vergleich zur strukturell ähnlichen Referenzverbindung Epothilon B. Alle Verbindungen zeigen im Unterschied zu Taxol eine Wirkung an der multi-drug-resistenten Zelllinie NCI/ADR. Verbindungen der Beispiele 3B und 10A
15 zeigen eine verbesserte Selektivität an der multi-drug-resistenten Zelllinie NCI/ADR im Vergleich zur Referenzverbindung Epothilon B.

15

20 Die Erfindung betrifft auch Arzneimittel auf Basis der pharmazeutisch verträglichen, d.h. in den verwendeten Dosen nicht toxischen Verbindungen der allgemeinen Formel I, gegebenenfalls zusammen mit den üblichen Hilfs- und Trägerstoffen.
Die erfindungsgemäßen Verbindungen können nach an sich bekannten Methoden der Galenik zu pharmazeutischen Präparaten für die enterale, percutane, parenterale oder lokale Applikation verarbeitet werden. Sie können in Form von Tabletten, Drage s, Gel-kapseln, Granulaten, Suppositorien, Implantaten, injizierbaren st rilen wäßrigen oder öligen Lösungen, Suspension n oder Emulsionen, Salben, Cremes und Gelen verabreicht werden.

25

Der oder die Wirkstoffe können dabei mit den in der Galenik üblichen Hilfsstoffen wie z.B. Gummiarabikum, Talk, Stärke, Mannit, Methylcellulose, Laktose, Tensiden wie Tweens oder Myrij, Magnesiumstearat, wässrigen oder nicht wässrigen Trägern, Paraffinderivaten, Netz-, Dispergier-, Emulgier-, Konservierungsmitteln und Aromastoffen zur Geschmackskorrektur (z.B. etherischen Ölen) gemischt werden.

Die erfindungsgemäßen Verbindungen können in Form der α -, β - oder γ -Cyclodextrinclathrate, vorliegen oder in Liposomen verkapselt sein.

Die Erfindung betrifft somit auch pharmazeutische Zusammensetzungen, die als Wirkstoff zumindest eine erfindungsgemäße Verbindung enthalten. Eine Dosiseinheit enthält

etwa 0,1-100 mg Wirkstoff(e). Die Dosierung der erfindungsgemäßen Verbindungen liegt beim Menschen bei etwa 0,1-1000 mg pro Tag.

Die nachfolgenden Beispiele dienen der näheren Erläuterung der Erfindung, ohne sie

darauf einschränken zu wollen.

Beispiel für die Herstellung der erfindungsgemäß in Verbindung n der allgemeinen Formel I

5

Beispiel 1

(4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

10 In Analogie zu den in DE 19751200.3 beschriebenen Verfahren erhält man aus dem Phosphoniumsalz aus Beispiel 1j 36.5 mg der Titelverbindung als schwach gelbgefärbtes Öl.

$^1\text{H-NMR}$ (DMSO-d₆): δ = 0.93 (3H), 0.94 (3H), 1.10 (3H), 0.8-1.4 (6H), 1.21 (3H), 1.62 (1H), 1.66 (3H) 1.87 (1H), 2.24 (1H), 2.3-2.6 (3H), 2.64 (3H), 2.73 (1H), 3.13 (1H), 3.53 (1H), 4.22 (1H), 5.16 (1H), 5.36 (1H), 6.22 (1H), 7.46 (1H) ppm.

15

Beispiel 1a

2-Methylthiazol-4-carbaldehyd

20 Zu einer Lösung aus 60 g 2-Methylthiazol-4-carbonsäureethylester in 1070 ml Methylenchlorid tropft man bei -75°C unter Stickstoff langsam 476 ml einer 1.2 molaren Lösung von DIBAH in Toluol. Man röhrt 2 Stunden nach. Dann tropft man langsam 150 ml Isopropanol, anschließend 230 ml Wasser dazu, entfernt das Kältebad und röhrt bei 25°C 2 Stunden kräftig nach. Der entstandene Niederschlag wird abgesaugt und mit 25 Essigester nachgewaschen. Das Filtrat wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/Ether 1:1 erhält man 35.6 g der Titelverbindung als farbloses Öl.

$^1\text{H-NMR}$ (CDCl₃): δ = 2.8 (3H), 8.05 (1H), 10.0 (1H) ppm.

30 Beispiel 1b

(2Z)-3-(2-Methylthiazol-4-yl)-2-fluor-2-propensäureethylester

Zu einer Suspension von 9.64 g Natriumhydrid (60%ige Suspension in Mineralöl) in 120 ml Dimethoxyethan fügt man bei 0°C eine Lösung von 58.7 g 35 Phosphonofluoressigsäuretriethylster in 120 ml Dimethoxyethan. Man röhrt 40 Minuten und tropft dann eine Lösung von 15.4 g des unter Beispiel 1a hergestellten Aldehyds in

120 ml Dimethoxyethan zu und röhrt anschließend 2 Stunden bei 24°C unter Argon. Nach dem versetzen mit wäßriger Ammoniumchlorid-Lösung extrahiert man dreimal mit Essigester, wäscht die organische Phase mit verdünnter Natriumchlorid-Lösung, trocknet über Natriumsulfat und dampft im Vakuum ein. Das Gemisch der Z- und E-5 konfigurierten Olefine trennt man durch Säulenchromatographie an Kieselgel. Mit Hexan/Essigester 4:6 bis 3:7 erhält man neben 3.9 g einer Mischfraktion 7.5 g (2E)-3-(2-Methylthiazol-4-yl)-2-fluor-2-propensäureethylester und 7.3 g der Titelverbindung als farblose Öle.

¹H-NMR (CDCl₃): δ = 1.36 (3H), 2.73 (3H), 4.33 (2H), 7.20 (1H), 7.67 (1H) ppm.

10

Beispiel 1c

(2Z)-3-(2-Methylthiazol-4-yl)-2-fluor-2-propen-1-ol

Zu einer Lösung aus 18,8 g des vorstehend hergestellten Esters in 260 ml Toluol tropft 15 man bei -70°C unter Stickstoff 136 ml einer 1.2 molaren Lösung von DIBAH in Toluol. Nach einer Stunde tropft man langsam 55 ml Isopropanol und anschließend 68 ml Wasser dazu und röhrt 2 Stunden kräftig nach. Der entstandene Niederschlag wird abgesaugt und gut mit Essigester gewaschen. Das Filtrat wird im Vakuum eingeengt, der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit 20 Hexan/0-70% Essigester erhält man 13,4 g der Titelverbindung als farbloses Öl.

¹H-NMR (CDCl₃): δ = 2.69 (3H), 3.71 (1H), 4.27 (2H), 6.18 (1H), 7.35 (1H) ppm.

Beispiel 1d

(2Z)-3-(2-Methylthiazol-4-yl)-2-fluor-2-propenal

25

Zu einer Lösung aus 13,28 g des vorstehend hergestellten Alkohols in 200 ml Toluol gibt man portionsweise insgesamt 53.3 g Braunstein und röhrt kräftig unter Stickstoff 4 Stunden nach. Braunstein wird über Celite abgesaugt, gut mit Essigester gewaschen, und das Filtrat im Vakuum eingeengt. Der so erhaltene Rückstand durch 30 Chromatographie an Kieselgel gereinigt. Mit Hexan/0-30% Essigester erhält man 9,93 g der Titelverbindung als farbloses Öl.

¹H-NMR (CDCl₃): δ = 2.77 (3H), 6.95 (1H), 7.88 (1H), 9.36 (1H) ppm.

Beispiel 1e

(3S,4Z)-5-(2-Methylthiazol-4-yl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-1,3-oxazolidin-2-on-3-yl]-3-hydroxy-4-fluor-4-penten-1-on

Es werden 17.6 g wasserfreies Chrom(II)chlorid in 210 ml THF unter Argon vorgelegt
5 und mit 766 mg Lithiumiodid versetzt. Anschließend wird eine Lösung aus 9,8 g des vorstehend hergestellten Aldehyds und 18.8 g (4S,5R)-3-(Bromacetyl)-4-methyl-5-phenyloxazolidin-2-on in 38 ml THF dazugetropft. Es wird 3 Stunden nachgerührt. Man gibt 150 ml gesättigte Natriumchlorid-Lösung dazu, röhrt 30 Minuten und trennt die Phasen. Die wäßrige Phase wird zweimal mit Essigester extrahiert, die vereinigten
10 organischen Phasen einmal mit Wasser, einmal mit gesättigter Natriumchlorid-Lösung extrahiert. Die organische Phase wird über Natriumsulfat getrocknet, abfiltriert und das Filtrat im Vakuum eingeengt. Der so erhaltene Rückstand wird durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-60% Essigester erhält man 11,22 g der Titelverbindung neben 9,53 g einer Mischfraktion und 1,8 g der entsprechenden
15 diastereomeren Titelverbindung als helle Öle.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.93$ (3H), 2.71 (3H), 3.36 (1H), 3.52 (1H), 4.82 (1H), 5.72 (1H),
6.29 (1H), 7.2-7.5 (6H) ppm.

Beispiel 1f

20 (3S,4Z)-5-(2-Methylthiazol-4-yl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-1,3-oxazolidin-2-on-3-yl]-3-(tert.-butyl-dimethylsilyloxy)-4-fluor-4-penten-1-on

Zu einer Lösung aus 11,2 g der vorstehend hergestellten Titelverbindung in 86 ml Methylenchlorid tropft man bei -70°C unter Stickstoff 4,68 ml Lutidin und röhrt 5 Minuten nach. Dann wird langsam 8,56 ml tert.-Butyldimethylsilyl trifluormethansulfonat zugetropft. Nach einer Stunde versetzt man mit gesättigter Ammoniumchloridlösung und lässt das Reaktionsgemisch auf 25°C erwärmen. Man verdünnt mit Ether, wäscht einmal mit Wasser und einmal mit gesättigter Natriumchlorid-Lösung. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingeengt. Der so erhaltene
25 Rückstand wird durch Chromatographie an Kieselgel gereinigt. Mit Hexan/Ether 1:1 erhält man 9,3 g der Titelverbindung als farbloses Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.15$ (6H), 0.90 (9H), 0.93 (3H), 2.70 (3H), 3.27 (1H), 3.57 (1H),
4.77 (1H), 4.90 (1H), 5.66 (1H), 6.15 (1H), 7.26-7.50 (6H) ppm.

35 Beispiel 1g

(3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-fluor-4-pentensäureethylester

Zu einer Lösung aus 15,5 g der vorstehend hergestellten Titelverbindung in 70 ml
5 Ethanol gibt man 2,8 ml Titan(IV)ethylat und kocht 4 Stunden am Rückfluß unter
Stickstoff. Die Reaktionslösung wird im Vakuum eingeengt, der Rückstand in 70 ml
Essigester aufgenommen, mit Wasser versetzt und 20 Minuten gerührt. Titanoxid wird
abgesaugt, gut mit Essigester gewaschen und das Filtrat im Vakuum eingeengt. Der
Rückstand wird mit Hexan versetzt, die Kristalle werden abgesaugt und zweimal mit
10 Hexan gewaschen. Das Filtrat wird im Vakuum eingeengt. Der so erhaltenen Rückstand
wird durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-50% Essigester erhält
man 11,9 g der Titelverbindung als farbloses Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.11$ (6H), 0.91 (9H), 1.26 (3H), 2.70 (2H), 2.71 (3H), 4.15 (2H),
4.74 (1H), 6.12 (1H), 7.37 (1H) ppm.

15

Beispiel 1h

(3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-fluor-4-penten-1-ol

Zu einer Lösung aus 10.5 g der vorstehend hergestellten Titelverbindung in 250 ml
20 Toluol tropft man unter Stickstoff bei -70°C langsam 58.6 ml einer 1.2 molaren Lösung
von DIBAH in Toluol und röhrt eine Stunde bei -30°C . Man tropft langsam bei -70°C 10
ml Isopropanol dazu, anschließend 22 ml Wasser und röhrt bei 25°C 2 Stunden kräftig
nach. Der Niederschlag wird abgesaugt, gut mit Essigester gewaschen, und das Filtrat
im Vakuum eingeengt. Der so erhaltene Rückstand wird durch Chromatographie an
25 Kieselgel gereinigt. Mit Hexan/0-70% Essigester erhält man 7.73 g der Titelverbindung
als gelbes Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.12$ (3H), 0.16 (3H), 0.93 (9H), 2.00 (2H), 2.72 (3H), 3.77 (1H),
3.86 (1H), 4.53 (1H), 6.13 (1H), 7.36 (1H) ppm.

30 Beispiel 1i

(3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-1-iod-4-fluor-4-penten

Zu einer Lösung aus 7,31 g Triphenylphosphin in 106 ml Methylenchlorid gibt man
1,90 g Imidazol. Zu dieser Lösung gibt man 7,07 g Iod, lässt 10 Minuten röhren und
35 tropft dann eine Lösung aus 7,7 g der vorstehend hergestellten Titelverbindung in 28 ml
Methylenchlorid zu und röhrt 30 Minuten. Es wird abfiltriert, gut mit Ether gewaschen,

und das Filtrat im Vakuum eingeengt. Der so erhaltene Rückstand wird durch Chromatographie an Kies Igel gereingt. Mit Hexan/0-10% Essigester erhält man 8,2 g der Tit lverbindung als farbloses Öl.

1H-NMR (CDCl₃): δ = 0.11 (3H), 0.16 (3H), 0.93 (9H), 2.23 (2H), 2.71 (3H), 3.24 (2H),
5 4.36 (1H), 6.12 (1H), 7.36 (1H) ppm.

Beispiel 1j

(3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-fluor-4-penten-triphenylphosphoniumiodid

10 Man mischt 8,16 g der vorstehend hergestellten Titelverbindung mit 5,33 g Triphenylphosphin und röhrt unter Stickstoff bei 100°C 2 Stunden. Nach dem Abkühlen wird der feste Rückstand zweimal mit Ether und wenig Essigester verrieben, wobei die überstehende Lösung abpipettiert wird. Dann wird der Rückstand in Methanol gelöst und im Vakuum eingeengt. Der feste Schaum wird wieder in wenig Methanol gelöst, mit Toluol versetzt und wieder im Vakuum eingeengt. Dieser Vorgang wird zweimal wiederholt, anschließend wird der Rückstand im Hochvakuum getrocknet. Man erhält 12,4 g der Titelverbindung als feste Substanz.

Fp.: 70-72°C

20

Beispiel 2

(4S,7R,8S,9S,13(E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4-thiazoly)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

25 In Analogie zu Beispiel 1 erhält man aus dem Phosphoniumsalz aus Beispiel 1j 41,5 mg der Titelverbindung als schwach gelbfärbtes Öl.

1H-NMR (CDCl₃): δ = 0.99 (3H), 1.05 (3H), 0.8-1.4 (6H), 1.16 (3H), 1.30 (3H), 1.5-1.7 (1H), 1.76 (1H), 2.00 (1H), 2.18 (1H), 2.43 (1H), 2.56 (1H), 2.63 (2H), 2.70 (3H), 3.25 (1H), 3.40 (2H), 3.66 (1H), 4.30 (1H), 5.13 (1H), 5.61 (1H), 6.18 (1H), 7.48 (1H) ppm.

30

Beispiel 3

(1R,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazoly)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion (A) und

(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion (B)

5 Zu 15 mg der in Beispiel 1 hergestellten Titelverbindung in 0,3 ml Acetonitril gibt man bei 0°C unter Argon 0,172 ml EDTA und 0,288 ml 1,1,1-Trifluoracetone, anschließend eine Mischung aus 35,0 mg Oxon und 20,2 mg Natriumhydrogencarbonat. Man röhrt 3,5 Stunden bei 0°C. Man versetzt mit 2 ml Natriumthiosulfatlösung, röhrt 5 Minuten und verdünnt mit 80 ml Essigester. Die organische Phase wird einmal mit 10 halbgesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt. Der so erhaltene Rückstand wird durch zweifache präparative Dickschichtchromatographie gereinigt. Mit Methylenchlorid/Essigester 2:8 (1.PDC) bzw. Methylenchlorid/methanol 98:2 (2.PDC), erhält man 2,5 mg der Titelverbindung A als unpolare Komponente und 6 mg der Titelverbindung B als polare Komponente als 15 farblose Öle.

$^1\text{H-NMR}$ (MeOH-d4) von A: $\delta = 0.99$ (3H), 1.04 (3H), 0.8-1.9 (11H), 1.30 (3H), 1.41 (3H), 2.17 (2H), 2.47 (1H), 2.58 (1H), 2.71 (3H), 3.01 (1H), 3.2-3.4 (1H), 3.78 (1H), 4.33 (1H), 4.8-5.0 (1H), 5.71 (1H), 6.26 (1H), 7.53(1H) ppm.

$^1\text{H-NMR}$ (MeOH-d4) von B: $\delta = 0.99$ (3H), 1.01 (3H), 0.9-1.9 (6H), 1.12 (3H), 1.30 (3H), 1.33 (3H), 1.95-2.10 (4H), 2.18 (2H), 2.41 (1H), 2.48 (1H), 2.70 (3H), 3.2-3.4 (1H), 3.63 (1H), 3.85 (1H), 4.34 (1H), 5.34 (1H), 5.63 (1H), 6.19 (1H), 7.51 (1H) ppm.

Beispiel 4

(1R,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion (A) und
 (1S,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion (B)

30 In Analogie zu Beispiel 3 erhält man aus 38 mg der in Beispiel 2 hergestellten Titelverbindung 8.8 mg der Titelverbindung A als unpolare Komponente und 9.0 mg der Titelverbindung B als polare Komponente als farblose Öle.

$^1\text{H-NMR}$ (MeOH-d4) von A: $\delta = 0.95$ (3H), 1.00 (3H), 0.8-1.65 (8H), 1.14 (3H), 1.28 (3H), 1.33 (3H), 1.91 (1H), 2.18 (2H), 2.54 (2H), 2.68 (3H), 3.05 (1H), 3.43 (1H), 3.63 (1H), 4.26 (1H), 5.66 (1H), 6.24 (1H), 7.52 (1H) ppm.

¹H-NMR (MeOH-d4) von B: δ = 0.95 (3H), 1.02 (3H), 0.8-1.7 (8H), 1.14 (3H), 1.29 (3H), 1.32 (3H), 1.77 (1H), 2.09 (1H), 2.23 (1H), 2.5-2.65 (2H), 2.69 (3H), 3.14 (1H), 3.33 (1H), 3.70 (1H), 4.38 (1H), 5.66 (1H), 6.21 (1H), 7.51 (1H) ppm.

5 Beispiel 5

(4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazoly)-ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

Beispiel 5a

10 2-Methylthiazol-4-carbaldehyd

50 g Ethyl-2-methylthiazole-4-carboxylat werden in 700 ml Methylenechlorid gelöst, auf -70°C gekühlt und vorsichtig mit 390 ml Diisobutylaluminiumhydrid (1,2 molar in Toluol) versetzt. Nach 1h war die Umsetzung noch nicht vollständig, es wurden nochmals 40 ml 15 Diisobutylaluminiumhydrid zugetropft. Nach weiteren 40 Min. wurde das Reaktionsgemisch vorsichtig mit 100 ml Isopropanol versetzt und 15 Minuten gerührt. Anschließend werden 215 ml Wasser zugetropft und das Kühlbad entfernt. Nach 2h wurde der kristalline Niederschlag über ein Fritte abgesaugt, mit Essigester gewaschen und das Filtrat im Vakuum eingedampft. Man erhält 36,1 g der Titelverbindung.
20 ¹H-NMR (CDCl₃): δ = 2,8 (3H), 8,05 (1H), 10,00 (1H) ppm.

Beispiel 5b

(2Z)-3-(2-Methylthiazol-4-yl)-2-chlor-2-propensäureethylester

25 Zu einer Suspension von 9 g Natriumhydrid (60%ige Suspension in Mineralöl) in 165 ml Dimethoxyethan fügt man, innerhalb von 15 Minuten, bei 0°C unter Stickstoff, eine Lösung von 97 g Triethyl-2-chloro-2-phosphonoacetat in 165 ml Dimethoxyethan. Man röhrt 45 Minuten bei 24°C und tropft dann eine Lösung von 31,8 g der unter Beispiel 5a hergestellten Titelverbindung in 165 ml Dimethoxyethan zu und röhrt anschließend 1 30 Stunde nach. Nach dem Versetzen mit wäßriger Ammoniumchlorid-Lösung extrahiert man 3x mit Essigester, wäscht die organische Phase mit verdünnter Natriumchlorid-Lösung, trocknet über Natriumsulfat und dampft im Vakuum ein. Das Gemisch der Z- und E-konfigurierten Olefine trennt man durch Säulenchromatographie an Kieselgel. Nach Säulenchromatographie mit Hexan/Essigester 10-30% und anschließender 35 Kristallisation aus Hexan erhält man 32 g der Titelverbindung. (FP. 61°C-62°C)

¹H-NMR (CDCl₃): δ = 1,37 (3H), 2,76 (3H), 4,33 (2H), 8,13 (1H), 8,18 (1H) ppm.

Beispiel 5c**(2Z)-3-(2-Methylthiazol-4-yl)-2-chlor-2-propen-1-ol**

- 5 In Analogie zu Beispiel 1c erhält man aus 32 g des in Beispiel 5b hergestellten Esters, in Toluol als Lösungsmittel, 22,8 g der Titelverbindung.

Beispiel 5d**(2Z)-3-(2-Methylthiazol-4-yl)-2-chlor-2-propenal**

- 10 9,8 g des in Beispiel 5c hergestellten Alkohols werden in 500 ml Methylenchlorid gelöst und mit 26,14 ml Triethylamin versetzt. Anschließend werden 16,14 g SO₃-Pyridin-Komplex addiert und 1h bei 24°C gerührt. Nun wird mit Ammoniumchlorid-Lösung versetzt, mit Essigester extrahiert, die organische Phase mit gesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach eindampfen im Vakuum erhält man 10,03 g der Titelverbindung.

Beispiel 5e

- 20 **(3S,4Z)-5-(2-Methylthiazol-4-yl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-3-hydroxy-4-chlor-4-penten-1-on**

In Analogie zu Beispiel 1e erhält man aus 3,3 g des in Beispiel 5d hergestellten Aldehyds 1,4 g der Titelverbindung.

- 25 **¹H-NMR (CDCl₃): δ = 0,95 (3H), 2,7 (3H), 3,38 (1H), 3,45-3,55 (1H), 3,56 (1H), 4,8 (1H), 4,89 (1H), 5,7 (1H), 7,18 (1H), 7,28-7,48 (5H), 7,83 (1H) ppm.**

Beispiel 5f**(3S,4Z)-5-(2-Methylthiazol-4-yl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-3-(tert.-butyl-dimethylsilyloxy)-4-chlor-4-penten-1-on**

- 30 In Analogie zu Beispiel 1f erhält man aus 1,4 g des in Beispiel 5e hergestellten Alkohols 580 mg der Titelverbindung.

- 35 **¹H-NMR (CDCl₃): δ = 0,11 (3H), 0,15 (3H), 0,9 (9H), 0,85-0,95 (3H), 2,7 (3H), 3,26 (1H), 3,58 (1H), 4,77 (1H), 4,99 (1H), 5,64 (1H), 7,05 (1H), 7,25-7,46 (5H), 7,83 (1H) ppm.**

Beispiel 5g

(3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-chlor-4-pentensäureethylester

- 5 In Analogie zu Beispiel 1g erhält man aus 12,5 g des in Beispiel 5f hergestellten Silylethers 9,1 g der Titelverbindung.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0,09$ (3H), 0,1 (3H), 0,9 (9H), 1,26 (3H), 2,68-2,78 (2H), 2,72 (3H), 4,15 (2H), 4,82 (1H), 7,04 (1H), 7,8 (1H) ppm.

10 **Beispiel 5h**

(3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-chlor-4-penten-1-ol

In Analogie zu Beispiel 1h erhält man aus 9,1 g des in Beispiel 5g hergestellten Ethylesters 7,5 g der Titelverbindung.

- 15 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,09$ (3H), 0,14 (3H), 0,94 (9H), 1,92-2,12 (3H), 2,72 (3H), 3,68-3,88 (2H), 4,58 (1H), 7,04 (1H), 7,81 (1H) ppm.

Beispiel 5i

(3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-1-iod-4-chlor-4-penten

- 20 In Analogie zu Beispiel 1i erhält man aus 1,7 g des in Beispiel 5h hergestellten Alkohols 2,02 g der Titelverbindung.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0,08$ (3H), 0,14 (3H), 0,92 (9H), 2,1-2,33 (2H), 2,72 (3H), 3,2 (2H), 4,45 (1H), 7,03 (1H), 7,82 (1H) ppm.

25

Beispiel 5j

(3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-chlor-4-penten-triphenylphosphoniumiodid

- 30 In Analogie zu Beispiel 1j erhält man aus 9,6 g des in Beispiel 5i hergestellten Iodids 14,8 g der Titelverbindung.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0,1$ (3H), 0,18 (3H), 0,9 (9H), 2,07 (2H), 2,69 (3H), 3,47-3,63 (1H), 3,68-3,85 (1H), 4,99 (1H), 7,21 (1H), 7,67-7,87 (16H) ppm.

Beispiel 5k

(2S,6E/Z,9S,10Z)-10-chlor-9-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-11-(2-methyl-4-thiazoly)-2,6-dimethyl-und ca-6,10-di nol-tetrahydropyran-2-yl-ether

- 5 Zu einer Lösung aus 8 g des in Beispiel 5j hergestellten Phosphoniumsalzes in 22 ml Tetrahydrofuran werden, bei 0°C unter Stickstoff, vorsichtig 6,94 ml Butyllithium (1,6molar in Hexan) getropft und 20 Minuten gerührt (dunkelrote Lösung). Nun wurden 1,69 g (6S)-6-Methyl-7-(tetrahydro-2H-pyran-2-yl(oxy)-heptan-2-on, gelöst in 11 ml Tetrahydrofuran, zum Reaktionsgemisch getropft. Das Reaktionsgemisch rührte 30
- 10 Minuten nach und wurde anschließend mit 11 ml gesättigter Ammoniumchlorid-Lösung versetzt. Nach weiteren 5 Minuten wurde das Reaktionsgemisch mit Essigester verdünnt, 1x mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Nach Säulenchromatographie mit Hexan/Ether 0-50% erhält man 4,8 g der Titelverbindung.
- 15 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,05\text{-}0,1$ (6H), 0,85-0,95 (12H), 1,0-2,52 (14H), 1,6 (3H), 2,7 (3H), 3,07-3,27 (1H), 3,42-3,54 (3H), 3,86 (1H), 4,26 (1H), 4,56 (1H), 5,12 (1H), 6,97 (1H), 7,81 (1H) ppm.

Beispiel 5l

- 20 (2S,6E/Z,9S,10Z)-10-chlor-9-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-11-(2-methyl-4-thiazoly)-2,6-dimethyl-undeca-6,10-dienol

- Zu einer Lösung aus 2,9 g des in Beispiel 5k hergestellten Olefins in 40 ml Ethanol werden 134,38 mg Pyridinium-p-toluolsulfonat addiert und 6 Stunden, bei 55°C unter
- 25 Stickstoff, gerührt. Anschließend wird im Vakuum eingedampft. Nach Säulenchromatographie mit Hexan/Essigester 0-30% erhält man 1,73 g der Titelverbindung.

- $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,05\text{-}0,1$ (6H), 0,92 (9H), 1,02/1,09 (3H), 1,59/1,61 (3H), 1,15-1,8 (4H), 1,93-2,08 (2H), 2,23-2,52 (3H), 2,72 (3H), 4,27 (1), 5,15 (1H), 6,95/6,98 (1H), 7,81 (1H), 9,54/9,6 (1H) ppm.

Beispiel 5m

(2S,6E/Z,9S,10Z)-10-chlor-9-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-11-(2-methyl-4-thiazoly)-2,6-dimethyl-undeca-6,10-dienal

- Zu einer Lösung aus 1,5 g des in Beispiel 5l hergestellten Alkohols in 32,7 ml Methylchlorid und 11 ml Dimethylsulfoxid gibt man bei Raumtemperatur unter Stickstoff 2,28 ml Triethylamin. Anschließend wird das Reaktionsgemisch mit 1,042 g SO₃-Pyridin-Komplex versetzt und 35 Minuten gerührt. Nach Zugabe von gesättigter 5 Ammoniumchlorid-Lösung wird 5 Minuten nachgerührt, mit Ether verdünnt, mit halbgesättigter Natriumchlorid-Lösung gewaschen, die organische Phase über Natriumsulfat getrocknet und im Vakuum eingedampft. Man erhält 216 mg der Titelverbindung.
- 10 Beispiel 5n
(3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-1,3,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4,6,8,12-pentamethyl-heptadeca-12,16-dien-7-ol
- 15 3,3 ml Butyllithium (1,6 molar in Hexan) werden auf 0°C gekühlt und vorsichtig mit einer Lösung aus 535 mg Diisopropylamin in 12 ml Tetrahydrofuran versetzt. Anschließend wird das Reaktionsgemisch auf -70°C gekühlt und mit einer Lösung aus 1,78 g (3S)-1,3-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4-dimethyl-heptan-5-on in 12 ml Tetrahydrofuran zugetropft. Es wird 1 Stunde bei bleibender Temperatur gerührt.
- 20 Nun wird eine Lösung aus 1,34 g des in Beispiel 5m herstellten Aldehyds in 9,7 ml Tetrahydrofuran zum Reaktionsgemisch getropft und nochmals 1,5 Stunden gerührt. Anschließend wird mit gesättigter Ammoniumchlorid-Lösung versetzt, mit Ether verdünnt, 2 x mit halbgesättigter Natriumchlorid-Lösung gewaschen, die organische Phase mit Natriumsulfat getrocknet und im Vakuum eingeengt. Nach 25 Säulenchromatographie mit Hexan/Essigester 25% erhält man 2,52 g der Titelverbindung.
- 30 ¹H-NMR (CDCl₃): δ = 0,0-0,1 (18H), 0,77/0,81 (3H), 0,7-1,8 (8H), 0,85-0,9 (27H), 1,0 (3H), 1,07 (3H), 1,21 (3H), 1,58 (3H), 1,9-2,04 (2H), 2,34-2,47 (2H), 2,71 (3H), 3,28 (2H), 3,53-3,7 (2H), 3,88 (1H), 4,18-4,28 (1H), 5,11 (1H), 6,92 (1H), 7,79 (1H) ppm.
- Beispiel 5o
(3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-1,3,7,15-tetrakis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4,6,8,12-pentamethyl-heptadeca-12,16-dien

Zu einer Lösung aus 1,52 g des in Beispiel 5n hergestellten Alkohols gelöst in 21,3 ml Methylenechlorid tropft man bei 0°C unter Stickstoff 722 µl Lutidin. Nach 5 Minuten gibt man 813 µl t rt.-Butyldimethylsilyltriflat zum Reaktionsgemisch und röhrt 1,5 Stunden nach. Anschließend wird mit Ether verdünnt, 1x mit 1N Salzsäure, 2x mit gesättigter

- 5 Natriumchlorid-Lösung gewaschen, die organische Phase mit Natriumsulfat getrocknet und im Vakuum eingedampft. Nach Säulenchromatographie mit Hexan/Ether 0-20% erhält man 221 mg der Titelverbindung.

Beispiel 5p

- 10 (3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-3,7,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4,6,8,12-pentamethyl-heptadeca-12,16-dien-1-ol

Zu einer Lösung aus 1,9 g des in Beispiel 5o hergestellten Silylethers in 15 ml 15 Methylenchlorid und 15 ml Methanol gibt man bei 0°C unter Stickstoff 453,45 mg Campher-10-sulfonsäure und röhrt 2 Stunden nach. Anschließend wird mit 13 ml Triethylamin versetzt, nach 5 Minuten wird das Reaktionsgemisch auf gesättigte Natriumhydrogencarbonat-Lösung gegeben, mit Methylenchlorid verdünnt, die organische Phase 1x mit gesättigter Natriumchlorid-Lösung gewaschen, über 20 Natriumsulfat getrocknet und im Vakuum eingedampft. Man erhält 1,41 g der Titelverbindung.

1H-NMR (CDCl_3): $\delta = 0,02\text{--}0,13$ (18H), 0,85-0,96 (30H), 1,08 (3H), 1,23 (3H), 1,6 (3H), 1,0-2,1 (10H), 2,32-2,52 (2H), 2,72 (3H), 3,13 (1H), 3,65 (2H), 3,8 (1H), 4,08 (1H), 4,21-4,3 (1H), 5,13 (1H), 6,98 (1H), 7,8 (1H) ppm.

25

Beispiel 5q

(3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-3,7,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4,6,8,12-pentamethyl-heptadeca-12,16-dienal

30

Zu einer Lösung aus 1,4 g des in Beispiel 5p hergestellten Alkohols in 19 ml Methylenchlorid und 4,5 ml Dimethylsulfoxid gibt man bei Raumtemperatur unter Stickstoff 1,14 ml Triethylamin. Anschließend wird das Reaktionsgemisch mit 520 mg SO_3 -Pyridin-Komplex versetzt und 2 Stunden gerührt. Nach Zugabe von gesättigter 35 Ammoniumchlorid-Lösung wird 5 Minuten gerührt, mit Ether verdünnt, 2x mit halbgesättigter Natriumchlorid-Lösung gewaschen, die organische Phase über

Natriumsulfat getrocknet und im Vakuum eingedampft. Man erhält 1,44 g der Titelverbindung.

Beispiel 5r

- 5 (3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-3,7,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4,6,8,12-pentamethyl-heptadeca-12,16-diensäure

Zu einer Lösung aus 1,44 g des in Beispiel 5q hergestellten Aldehyds in 35 ml Aceton
10 gibt man bei -30°C unter Stickstoff 1,89 ml Jones Reagenz. Nach 45 Minuten wird das Reaktionsgemisch mit 1,3 ml Isopropanol versetzt, 10 Minuten gerührt, mit Ether verdünnt, 3x mit halbgesättigter Natriumchlorid-Lösung gewaschen, die organische Phase über Natriumsulfat getrocknet und im Vakuum eingedampft. Nach Reinigung des Rohproduktes mittels präparativer Dünnschichtchromatographie mit Hexan/Ether 50%
15 (3x gelaufen) erhält man 202 mg der Titelverbindung.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0,03\text{-}0,16$ (18H), 0,88-0,94 (30H), 1,09 (3H), 1,15 (3H), 1,18 (3H), 1,7 (3H), 1,0-2,44 (12H), 2,7 (3H), 3,15 (1H), 3,72 (1H), 4,32 (1H), 4,42 (1H), 5,19 (1H), 7,25 (1H), 7,87 (1H) ppm.

20 **Beispiel 5s**

(3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-3,7-bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-15-hydroxy-4,4,6,8,12-pentamethyl-heptadeca-12,16-diensäure

25 Zu einer Lösung aus 22 mg der in Beispiel 5r hergestellten Carbonsäure in 4,3 ml Tetrahydrofuran gibt man bei Raumtemperatur unter Stickstoff 433,7 mg Tetrabutylammoniumfluorid und röhrt 1,5h nach. Anschließend wird mit Essigester verdünnt, 1x mit 0,5 N Salzsäure, 2x mit halbgesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Nach
30 Säulenchromatographie mit Hexan/Essigester 50% erhält man 43 mg der Titelverbindung.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0,03\text{-}0,17$ (12H), 0,83-0,98 (21H), 1,08 (3H), 1,18 (6H), 1,1-2,6 (12H), 1,73 (3H), 1,95 (2H), 2,22 (2H), 2,71 (3H), 3,16 (1H), 3,77 (1H), 4,33 (1H), 4,42 (1H), 5,2 (1H), 7,29 (1H), 7,85 (1H) ppm.

Beispiel 5t

(A) (4S,7R,8S,9S,13(E),16S(Z))-4,8-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

- 5 (B) (4S,7R,8S,9S,13(Z),16S(Z))-4,8-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

Zu einer Lösung aus 180 mg des in Beispiel 5s hergestellten Alkohols in 3,4 ml
 10 Tetrahydrofuran gibt man bei 0°C unter Stickstoff 72,7 µl Triethylamin. Anschließend werden 48,2 µl 2,4,6-Trichlorbenzoylchlorid addiert und 1 Stunde gerührt. Nun wird diese Suspension über 3 Stunden mit einer Dosierpumpe zu einer Lösung aus 289,91 mg 4-N,N-Dimethylaminopyridin in 25,4 ml Toluol getropft und 1 Stunde gerührt. Dann wird das Reaktionsgemisch im Vakuum eingedampft. Nach
 15 Säulenchromatographie mit Hexan/Essigester 20% und anschließender Reinigung mittels präparativer Dünnschichtchromatographie mit Methylenchlorid/Methanol 0,5% erhält man 32 mg (E-Verbindung) Titelverbindung A und 81 mg (Z-Verbindung) der Titelverbindung B.
 (B) $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,02\text{-}0,15$ (12H), 0,85 (9H), 0,97 (9H), 0,9-2,95 (11H), 1,0 (3H), 1,1 (3H), 1,15 (3H), 1,27 (3H), 1,57 (3H), 2,71 (3H), 3,04 (1H), 3,9 (1H), 4,03 (1H),
 20 5,13 (1H), 5,19 (1H), 7,06 (1H), 7,83 (1H) ppm.

Beispiel 5

- (4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-
 25 1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

Zu einer Lösung aus 80 mg der in Beispiel 5t hergestellten Titelverbindung B in 314 µl
 Methylenchlorid gibt man bei -20°C unter Stickstoff 702 µl einer 20%ige Lösung von
 Trifluoressigsäure in Methylenchlorid und röhrt 5,5 Stunden bei 0°C nach. Anschließend
 30 wird das Reaktionsgemisch im Vakuum eingedampft. Nach Säulenchromatographie mit
 Hexan/Essigester 50% erhält man 43,8 mg der Titelverbindung.

$^1\text{H-NMR}$ (DMSO-d_6 , 100°C): $\delta = 0,94$ (3H), 0,82-3,3 (14H), 1,11 (3H), 1,23 (6H), 1,67 (3H), 2,64 (3H), 3,58 (1H), 4,27 (1H), 5,16 (1H), 5,39 (1H), 7,06 (1H), 7,77 (1H) ppm.

Beispiel 6

(4S,7R,8S,9S,13(E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

- 5 Zu einer Lösung aus 45 mg der in Beispiel 5t hergestellten Titelverbindung A in 177 µl Methylenechlorid gibt man bei -20°C unter Stickstoff 395 µl einer 20%ige Lösung von Trifluoressigsäure in Methylenchlorid und röhrt 5,5 Stunden bei 0°C nach. Anschließend wird das Reaktionsgemisch im Vakuum eingedampft. Nach Säulenchromatographie mit Hexan/Essigester 50% erhält man 27 mg der Titelverbindung.
- 10 ¹H-NMR (DMSO-d₆, 100°C): 0,8-2,7 (13H), 0,91 (3H), 1,11 (3H), 1,12 (6H), 1,6 (3H), 2,65 (3H), 3,25 (1H), 3,54 (1H), 4,46 (1H), 5,18 (1H), 5,44 (1H), 7,05 (1H), 7,83 (1H) ppm.

Beispiel 7

- 15 (A) (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion
- (B) (1R,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion
- 20

- Zu einer Lösung aus 14 mg des in Beispiel 5 hergestellten Epothilon-D-Derivates in 0,3 ml Acetonitril gibt man bei 0°C unter Stickstoff 154,8 µg Ethylendiamintetraessigsäure-di-Natriumsalz und 324,73 µg 1,1,1-Trifluoraceton. Anschließend werden 34,65 µg Oxone und 17,74 µg Natriumhydrogencarbonat zum Reaktionsgemisch gegeben und 4 Stunden gerührt. Nun wird mit 2 ml Natriumthiosulfat-Lösung versetzt, mit 100 ml Essigester verdünnt, mit halbgesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Nach Reinigung des Rohproduktes mittels präparativer Dünnschichtchromatographie mit Methylenechlorid/Methanol 20% erhält man 3,8 mg (polar) A und 2,5 mg (unpolar) B der Titelverbindung.
- 30 (A) ¹H-NMR (MeOH-d⁴): δ = 0,8-2,6 (9H), 1,03 (3H), 1,2 (3H), 1,29 (6H), 1,33 (3H), 2,7 (3H), 2,93 (1H), 3,67 (1H), 4,23 (1H), 5,63 (1H), 7,12 (1H), 7,44 (1H) ppm.

Beispiel 8

- (A) (1S,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion
- 5 (B) (1R,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

Zu einer Lösung aus 14 mg der in Beispiel 6 hergestellten Epothilon-D-Derivates in 0,3 ml Acetonitril gibt man bei 0°C unter Stickstoff 154,8 µg Ethyldiamintetraessigsäure-di-Natriumsalz und 324,73 µg 1,1,1-Trifluoraceton. Anschließend werden 34,65 µg Oxone und 17,74 µg Natriumhydrogencarbonat zum Reaktionsgemisch gegeben und 4 Stunden gerührt. Nun wird mit 2 ml Natriumthiosulfat-Lösung versetzt, mit 100 ml Essigester verdünnt, mit halbgesättigter Natriumchlorid-Lösung gewaschen, über 15 Natriumsulfat getrocknet und im Vakuum eingedampft. Nach Reinigung des Rohproduktes mittels präparativer Dünnschichtchromatographie mit Methylenechlorid/Methanol 20% erhält man 6,8 mg (polar) A und 3,4 mg (unpolar) B der Titelverbindung.

20 Beispiel 9

(4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

Analog zu Beispiel 5 werden aus 431 mg (0,585 mmol) der unter 9j beschriebenen 25 Verbindung A 235 mg der Titelverbindung erhalten.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 1.00$ (3H), 1.27 (3H), 1.66 (3H), 2.70 (3H), 2.75-3.04 (3H), 3.43 (1H), 3.68 (1H), 4.42 (1H), 5.13 (1H), 5.37-5.46 (1H), 6.15-6.29 (1H), 7.36 (1H) ppm.

Beispiel 9a

30 (2S,6E/Z,9S,10Z)-9-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-10-fluor-11-(2-methyl-4-thiazolyl)-2,6-dimethylundeca-6,10-dienol-tetrahydropyran-2-yl-ether

Analog zu Beispiel 5k werden aus 2,47 g (10,8 mmol) 6(S)-6-Methyl-7-(tetrahydro-2H-pyran-2-yl(oxy))heptan-2-on (Darstellung siehe: DE 19751200.3) und 11,4 g (16,2 mmol) der unter Beispiel 1j beschriebenen Verbindung 3,52 g der Titelverbindung erhalten.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.08$ (6H), 0.85-0.95 (12H), 0.60 + 0.69 (3H), 2.37-2.50 (2H), 2.70 (3H), 3.10-3.30 (1H), 3.45-3.65 (2H), 3.82-3.92 (1H), 4.13-4.26 (1H), 4.57 (1H), 5.14 (1H), 5.98-6.12 (1H), 7.33 (1H) ppm.

5 Beispiel 9b

(2S,6E/Z,9S,10Z)-9-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-10-fluor-11-(2-methyl-4-thiazoly)-2,6-dimethylundeca-6,10-dienol

Aus 3,52 g (6,70 mmol) der unter 9a beschriebenen Verbindung werden analog zu
10 Beispiel 5l 2,81 g der Titelverbindung erhalten.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.09$ (6H), 0.87 (3H), 0.91 (9H), 1.58 + 1.69 (3H), 1.95-2.05 (2H), 2.35-2.52 (2H), 2.70 (3H), 3.38-3.55 (2H), 4.32 (1H), 5.14 (1H), 5.95-6.12 (1H), 7.34 (1H) ppm.

15 Beispiel 9c

(2S,6E/Z,9S,10Z)-9-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-10-fluor-11-(2-methyl-4-thiazoly)-2,6-dimethylundeca-6,10-dienal

Aus 2,81 g (6,37 mmol) der unter 9b beschriebenen Verbindung werden analog zu
20 Beispiel 5m 2,80 g der Titelverbindung erhalten.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.08$ (6H), 0.90 (9H), 1.03-1.10 (3H), 1.58 + 1.67 (3H), 1.86 (1H), 1.95-2.11 (2H), 2.24-2.51 (3H), 2.70 (3H), 3.75 (1H), 4.15-4.27 (1H), 5.18 (1H), 5.97-6.14 (1H), 7.34 (1H), 9.55 + 9.59 (1H) ppm.

25 Beispiel 9d

(3S,6R,7S,8S,12E/Z,15S,16Z)-16-Fluor-17-(2-methyl-4-thiazoly)-5-oxo-6,8,12-trimethyl-4,4-(1,3-trimethylen)-1,3,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]heptadeca-12,16-dien-7-ol

Aus 2,77 g (6,68 mmol) (S)-1-(1,3-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxypropyl]cyclobutyl)-propan-1-on (Darstellung siehe: DE 19751200.3) und 1,65 g (3,75 mmol) der unter 9c beschriebenen Verbindung werden analog zu Beispiel 5n 2,18 g der Titelverbindung erhalten.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.04$ (6H), 0.08 (6H), 0.15 (3H), 0.17 (3H), 0.79 (3H), 0.86-0.97

35 (27H), 1.03 (3H), 1.25-1.41 (2H), 1.59 + 1.68 (3H), 1.69-1.87 (4H), 1.90-2.09 (2H), 2.23-

2.50 (4H), 2.70 (3H), 3.20-3.36 (2H), 3.58 (2H), 4.08-4.25 (2H), 5.14 (1H), 5.98-6.13 (1H), 7.33 (1H) ppm.

Beispiel 9e

5 (3S,6R,7S,8S,12E/Z,15S,16Z)-16-Fluor-17-(2-methyl-4-thiazolyl)-5-oxo-1,3,7,15-tetrakis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-6,8,12-trimethyl-4,4-(1,3-trimethylen)heptadeca-12,16-dien

Aus 2,18 g (2,55 mmol) der unter 9d beschriebenen Verbindung werden analog zu

10 Beispiel 5o 2,47 g der Titelverbindung erhalten.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.00\text{-}0.20$ (24H), 0.85-1.00 (39H), 1.06 (3H), 1.48 + 1.67 (3H), 2.20-2.47 (4H), 2.72 (3H), 3.08 (1H), 3.59 (2H), 3.78 (1H), 4.10 (1H), 4.14-4.25 (1H), 5.15 (1H), 6.00-6.13 (1H), 7.35 (1H) ppm.

15 **Beispiel 9f**

(3S,6R,7S,8S,12E/Z,15S,16Z)-16-Fluor-17-(2-methyl-4-thiazolyl)-5-oxo-6,8,12-trimethyl-4,4-(1,3-trimethylen)-3,7,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]heptadeca-12,16-dien-1-ol

20 Aus 2,47 g (2,55 mmol) der unter 9e beschriebenen Verbindung werden analog zu Beispiel 5p 1,626 g der Titelverbindung erhalten.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.03\text{-}0.13$ (12H), 0.04-0.20 (6H), 0.86-1.03 (30H), 1.08 (3H), 1.59+ 1.68 (3H), 1.70-2.50 (10H), 2.72 (3H), 3.12 (1H), 3.64 (2H), 3.81 (1H), 4.08 (1H), 4.13-4.27 (1H), 5.15 (1H), 6.00-6.17 (1H), 7.35 (1H) ppm.

25

Beispiel 9g

(3S,6R,7S,8S,12E/Z,15S,16Z)-16-Fluor-17-(2-methyl-4-thiazolyl)-5-oxo-6,8,12-trimethyl-4,4-(1,3-trimethylen)-3,7,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]heptadeca-12,16-dienal

30

Aus 1,626 g (1,91 mmol) der unter 9f beschriebenen Verbindung werden analog zu Beispiel 5q 1,628 g der Titelverbindung erhalten.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.02\text{-}0.12$ (15H), 0.18 (3H), 0.85-1.00 (30 H), 1.05-1.10 (3H), 1.59 + 1.68 (3H), 1.70-2.55 (10H), 2.71 (3H), 3.75 (1H), 4.12-4.25 (1H), 4.53 (1H), 5.17 (1H), 6.00-6.15 (1H), 7.33 (1H), 9.75 (1H) ppm.

B Beispiel 9h

(3S,6R,7S,8S,12E/Z,15S,16Z)-16-Fluor-17-(2-methyl-4-thiazolyl)-5-oxo-6,8,12-trimethyl-4,4-(1,3-trimethylen)-3,7,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]heptadeca-12,16-diensäure

Aus 1,628 g (1,91 mmol) der unter 9g beschriebenen Verbindung werden analog zu Beispiel 5r 1,161 g der Titelverbindung erhalten.

¹H-NMR (CDCl₃): δ = 0.02-0.15 (15H), 0.19 (3H), 0.84-1.00 (30H), 1.10-1.07 (3H), 1.56

+ 1.69 (3H), 2.10-2.55 (10H), 2.70 (3H), 2.97-3.14 (1H), 3.78 (1H), 3.84 (1H), 4.09-4.27 (2H), 4.41 + 4.48 (1H), 5.10-5.23 (1H), 6.10 + 6.31 (1H), 7.37 (1H) ppm.

Beispiel 9i

(3S,6R,7S,8S,12E/Z,15S,16Z)-3,7-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-16-fluor-15-hydroxy-17-(2-methyl-4-thiazolyl)-5-oxo-6,8,12-trimethyl-4,4-(1,3-trimethylen)heptadeca-12,16-diensäure

Aus 1,161 g (1,34 mmol) der unter 9h beschriebenen Verbindung werden analog zu Beispiel 5s 1,01 g der Titelverbindung erhalten.

¹H-NMR (CDCl₃): δ = 0.01-0.15 (9H), 0.17 (3H), 0.83-1.01 (21H), 1.07-1.15 (3H), 1.61 + 1.73 (3H), 2.07-2.60 (10H), 2.71 (3H), 2.92-3.11 (2H), 2.85 (1H), 3.80 (1H), 4.18-4.30 (1H), 4.40 + 4.48 (1H), 5.11-5.22 (1H), 6.19 + 6.37 (1H), 7.37 (1H) ppm.

Beispiel 9j

25 4S,7R,8S,9S,13(Z),16S(Z)-4,8-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexa-dec-13-en-2,6-dion (A) und 4S,7R,8S,9S,13(E),16S(Z)-4,8-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexa-dec-13-en-2,6-dion (B)

30 Aus 1,01 g (1,34 mmol) der unter 9i beschriebenen Verbindung werden analog zu Beispiel 5t 434 mg der Titelverbindung A und 395 mg der Titelverbindung B erhalten.

¹H-NMR (CDCl₃) von A: δ = -0.07 (3H), 0.07-0.20 (9H), 0.80 (9H), 0.93 (9H), 0.98 (3H), 1.22 (3H), 1.68 (3H), 1.80-1.90 (1H), 2.00-2.10 (1H), 2.20-2.50 (4H), 2.60-2.68 (4H),

2.72 (3H), 2.76-3.00 (2H), 3.92 (1H), 4.41 (1H), 5.08-5.12 (2H), 6.08-6.22 (1H), 7.38 (1H) ppm.

¹H-NMR (CDCl₃) von B: δ = 0.02 (3H), 0.07 (3H), 0.11 (3H), 0.14 (3H), 0.90 (9H), 0.93

(9H), 1.02 (3H), 1.25 (3H), 1.51 (3H), 1.70-2.15 (8H), 2.30-2.60 (4H), 2.72 (3H), 2.77-

5 2.93 (2H), 4.19 (1H), 4.59 (1H), 5.10 (1H), 5.42 (1H), 6.09-6.23 (1H), 7.36 (1H) ppm.

Beispiel 10

(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-((1-fluor)-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-

10 dioxabicyclo[14.1.0]hepta-deca-5,9-dion (A) und (1R,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-((1-fluor)-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-deca-5,9-dion (B)

Aus 50 mg (0,098 mmol) der unter Beispiel 9 beschriebenen Verbindung werden analog 15 zu Beispiel 7 31 mg der Titelverbindung A und 7 mg der Titelverbindung B erhalten.

¹H-NMR (CDCl₃) von A: δ = 0.99 (3H), 1.25 (3H), 1.28 (3H), 2.71 (3H), 2.81 (1H), 3.02-3.12 (1H), 3.62-3.77 (2H), 4.40 (1H), 5.56-5.68 (1H), 6.17-6.81 (1H), 7.37 (1H) ppm.

¹H-NMR (CDCl₃) von B: δ = 0.92 (3H), 1.20 (3H), 1.38 (3H), 2.75 (3H), 3.00 (1H), 3.11 (1H), 3.86 (1H), 4.42 (1H), 5.29 (1H), 6.26-6.39 (1H), 7.41 (1H) ppm.

20

Beispiel 11

(4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-16-((1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

25 Aus 395 mg (0,54 mmol) der unter 9j beschriebenen Verbindung B werden analog zu Beispiel 5t 200 mg der Titelverbindung erhalten.

¹H-NMR (CDCl₃): δ = 1.00 (3H), 1.25 (3H), 1.54 (3H), 2.69 (1H), 2.97-3.08 (1H), 3.63 (1H), 4.44 (1H), 5.09 (1H), 5.54-5.63 (1H), 6.11-6.25 (1H), 7.38 (1H) ppm.

30 Beispiel 12

(1S,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-((1-fluor)-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion (A) und (1R,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-((1-fluor)-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion (B)

Aus 100 mg (0,197 mmol) der unter Beispiel 11 beschriebenen Verbindung werden analog zu Beispiel 7 41 mg der Titelverbindung A und 36 mg der Titelverbindung B erhalten.

- 5 $^1\text{H-NMR}$ (CDCl_3) von A: $\delta = 0.93$ (3H), 1.19 (3H), 1.22 (3H), 2.70 (3H), 2.88 (1H), 3.11 (1H), 3.19 (1H), 3.65 (1H), 3.72 (1H), 4.45 (1H), 5.61-5.72 (1H), 6.12-6.26 (1H), 7.37 (1H) ppm.
10 $^1\text{H-NMR}$ (CDCl_3) von B: $\delta = 0.98$ (3H), 1.22-1.27 (6H), 2.72 (3H), 2.93 (1H), 3.07-3.17 (1H), 3.30 (1H), 3.67 (1H), 3.85 (1H), 4.40 (1H), 5.68-5.77 (1H), 6.22-6.36 (1H), 7.41 (1H) ppm.

Beispiel 13

(4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

- 15 Analog zu Beispiel 5 werden aus 400 mg (0,534 mmol) der unter 13g beschriebenen Verbindung 181 mg der Titelverbindung erhalten.
10 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0.94$ (3H), 1.01 (3H), 1.69 (3H), 2.68-2.82 (1H), 2.71 (3H), 2.96 (1H), 3.38 (1H), 3.68 (1H), 4.42 (1H), 5.10 (1H), 5.42 (1H), 6.13-6.27 (1H), 7.37 (1H) ppm.

Beispiel 13a

(3S,6R,7S,8S,12E/Z,15S,16Z)-8,12-Dimethyl-6-ethyl-16-fluor-17-(2-methyl-4-thiazolyl)-5-oxo-4,4-(1,3-trimethylen)-1,3,15-tris[[dimethyl(1,1-dimethylethyl)sily]oxy]heptadeca-25 12,16-dien-7-ol

- Aus 2,975 g (6,937 mmol) (S)-1-(1,3-Bis[[dimethyl(1,1-dimethylethyl)sily]oxypropyl]-cyclobutyl)-butan-1-on (Darstellung siehe: DE 19751200.3) und 1,695 g (3,854 mmol) der unter 9c beschriebenen Verbindung werden analog zu Beispiel 5n 2,042 g der Titelverbindung erhalten.

10 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0.01-0.20$ (18H), 0.84-1.00 (33H), 1.60 + 1.69 (3H), 2.69 (3H), 3.11 (1H), 3.22 (1H), 3.40 (1H), 3.62 (2H), 4.06-4.25 (2H), 5.97-6.12 (1H), 7.34 (1H) ppm.

- 35 Beispiel 13b

(3S,6R,7S,8S,12E/Z,15S,16Z)-8,12-Dimethyl-6-ethyl-16-fluor-17-(2-methyl-4-thiazolyl)-5-oxo-1,3,7,15-tetrakis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4-(1,3-trimethylen)heptadeca-12,16-dien

- 5 Aus 2,042 g (2,351 mmol) der unter 13a beschriebenen Verbindung werden analog zu Beispiel 5o 2,311 g der Titelverbindung erhalten.
 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0.00\text{-}0.20$ (24 H), 0.80-0.99 (42 H), 1.60 + 1.68 (3H), 2.70 (3H), 3.02 (1H), 3.60 (2H), 3.86 (1H), 4.04-4.25 (2H), 5.97-6.13 (1H), 7.32 (1H) ppm.

10 Beispiel 13c

(3S,6R,7S,8S,12E/Z,15S,16Z)-8,12-Dimethyl-6-ethyl-16-fluor-17-(2-methyl-4-thiazolyl)-5-oxo-4,4-(1,3-trimethylen)-3,7,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]heptadeca-12,16-dien-1-ol

- 15 Aus 2,311 g (2,351 mmol) der unter 13b beschriebenen Verbindung werden analog zu Beispiel 5p 1,593 g der Titelverbindung erhalten.
 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0.02\text{-}0.19$ (18H), 0.80-0.99 (33H), 1.57 (3H) + 1.67 (3H), 2.70 (3H), 3.04 (1H), 3.60-3.71 (2H), 3.87 (1H), 4.04-4.25 (2H), 5.13 (1H), 5.95-6.11 (1H), 7.33 (1H) ppm.

20

Beispiel 13d

(3S,6R,7S,8S,12E/Z,15S,16Z)-8,12-Dimethyl-6-ethyl-16-fluor-17-(2-methyl-4-thiazolyl)-5-oxo-4,4-(1,3-trimethylen)-3,7,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]heptadeca-12,16-dienal

25

Aus 1,593 g (1,834 mmol) der unter 13c beschriebenen Verbindung werden analog zu Beispiel 5q 1,589 g der Titelverbindung erhalten.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0.04\text{-}0.20$ (18H), 0.82-1.00 (33H), 1.58 (3H) + 1.68 (3H), 2.71 (3H), 3.04 (1H), 3.86 (1H), 4.19 (1H), 4.55 (1H), 5.17 (1H), 5.98-6.12 (1H), 7.33 (1H),

30 9.79 (1H) ppm.

Beispiel 13e

(3S,6R,7S,8S,12Z,15S,16Z)-8,12-Dimethyl-6-ethyl-16-fluor-17-(2-methyl-4-thiazolyl)-5-oxo-4,4-(1,3-trimethylen)-3,7,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]hepta-deca-

35 12,16-diensäure (A) und (3S,6R,7S,8S,12E,15S,16Z)-8,12-Dimethyl-6-ethyl-16-fluor-

17-(2-methyl-4-thiazolyl)-5-oxo-4,4-(1,3-trimethylen)-3,7,15-tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]hepta-d ca-12,16-diensäure (B)

Aus 1,589 g (1,834 mmol) der unter 13d beschriebenen Verbindung werden analog zu
 5 Beispiel 5r 664 mg der Titelverbindung A sowie 566 mg der Titelverbindung B erhalten.

$^1\text{H-NMR}$ (CDCl_3) von A: δ = 0.00 (3H), 0.07-0.09 (9H), 0.12 (3H), 0.19 (3H), 0.86-1.03 (33H), 1.70 (3H), 2.70 (3H), 2.90 (1H), 3.73 (1H), 4.21 (1H), 4.48 (1H), 5.21 (1H), 6.38-6.52 (1H), 7.38 (1H) ppm.

$^1\text{H-NMR}$ (CDCl_3) von B: δ = 0.00 (3H), 0.05 (3H), 0.07 (3H), 0.09 (3H), 0.15 (3H), 0.20 (3H), 0.84-0.99 (33H), 1.56 (3H), 2.69 (3H), 2.98 (1H), 3.87 (1H), 4.40 (1H), 5.12 (1H), 6.07-6.22 (1H), 7.38 (1H) ppm.

Beispiel 13f

(3S,6R,7S,8S,12Z,15S,16Z)-3,7-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-8,12-dimethyl-
 15 6-ethyl-16-fluor-15-hydroxy-17-(2-methyl-4-thiazolyl)-5-oxo-4,4-(1,3-trimethylen)heptadeca-12,16-diensäure

Aus 663 mg (0,752 mmol) der unter 13e beschriebenen Verbindung A werden analog zu Beispiel 5s 578 mg der Titelverbindung erhalten.

20 $^1\text{H-NMR}$ (CDCl_3): δ = 0.03 (3H), 0.06 (3H), 0.09 (3H), 0.17 (3H), 0.85-1.00 (24H), 1.75 (3H), 2.71 (3H), 2.89 (1H), 3.78 (1H), 4.25 (1H), 4.49 (1H), 5.21 (1H), 6.43-6.57 (1H), 7.39 (1H) ppm.

Beispiel 13g

25 4S,7R,8S,9S,13(Z),16S(Z)-4,8-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-9,13-dimethyl-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

Aus 578 mg (0,752 mmol) der unter 13f beschriebenen Verbindung werden analog zu
 30 Beispiel 5t 400 mg der Titelverbindung erhalten.

$^1\text{H-NMR}$ (CDCl_3): δ = -0.09 (3H), 0.09 (3H), 0.15 (3H), 0.17 (3H), 0.80-0.97 (21H), 1.00 (3H), 1.68 (3H), 2.70 (3H), 2.75-2.88 (1H), 2.98 (1H), 4.04 (1H), 4.42 (1H), 5.17 (3H), 6.07-6.20 (1H), 7.37 (1H) ppm.

Beispiel 14

(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[4.1.0]hepta-

decan-5,9-dion (A) und (1R,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-12,16-

5 dimethyl-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[4.1.0]hepta-decan-5,9-dion (B)

Aus 40 mg (0,0767 mmol) der unter Beispiel 13 beschriebenen Verbindung werden analog zu Beispiel 7 26 mg der Titelverbindung A und 6 mg der Titelverbindung B erhalten.

10 $^1\text{H-NMR}$ (CDCl_3) von A: $\delta = 0.95$ (3H), 0.98 (3H), 1.29 (3H), 2.71 (3H), 2.78 (1H), 3.03 (1H), 3.67 (1H), 4.40 (1H), 5.66 (1H), 6.16-6.79 (1H), 7.38 (1H) ppm.

15 $^1\text{H-NMR}$ (CDCl_3) von B: $\delta = 0.95-1.00$ (6H), 1.26 (3H), 2.70 (3H), 2.91 (1H), 2.95-3.05 (2H), 3.34 (1H), 3.73 (1H), 4.48 (1H), 5.73 (1H), 6.22-6.35 (1H), 7.40 (1H) ppm.

Beispiel 15

(4S,7R,8S,9S,13(E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

20 Analog zu Beispiel 5 werden aus 433 mg (0,5778 mmol) der unter 15b beschriebenen Verbindung 214 mg der Titelverbindung erhalten.

25 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0.94$ (3H), 1.02 (3H), 1.54 (3H), 2.61-2.74 (1H), 2.68 (3H), 3.08 (1H), 3.73 (1H), 3.98 (2H), 4.52 (1H), 5.09 (1H), 5.54 (1H), 6.06-6.20 (1H), 7.37 (1H) ppm.

Beispiel 15a

(3S,6R,7S,8S,12E,15S,16Z)-3,7-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-8,12-dimethyl-6-ethyl-16-fluor-15-hydroxy-17-(2-methyl-4-thiazolyl)-5-oxo-4,4-(1,3-trimethylen)heptadeca-12,16-diensäure

30 Aus 566 mg (0,642 mmol) der unter 13e beschriebenen Verbindung B werden analog zu Beispiel 5s 493 mg der Titelverbindung erhalten.

35 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0.01$ (3H), 0.04 (3H), 0.09 (3H), 0.17 (3H), 0.82-0.95 (24H), 1.62 (3H), 2.68 (3H), 2.95 (3H), 3.82 (1H), 4.17-4.30 (1H), 4.40 (1H), 5.15 (1H), 6.15-6.28 (1H), 7.37 (1H) ppm.

Beispiel 15b

4S,7R,8S,9S,13(E),16S(Z)-4,8-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-9,13-dimethyl-

7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5-(1,3-

5 trimethylen)cyclohexadec-13-en-2,6-dion

Aus 493 mg (0,642 mmol) der unter 15a beschriebenen Verbindung werden analog zu Beispiel 5t 433 mg der Titelverbindung erhalten.

¹H-NMR (CDCl₃): δ = 0.07 (3H), 0.10 (3H), 0.12 (3H), 0.15 (3H), 0.85-1.04 (24H), 2.71

10 (3H), 2.92 (1H), 4.06 (1H), 5.15 (1H), 5.36-5.47 (1H), 6.10-6.23 (1H), 7.37 (1H) ppm.

Beispiel 16

(1S,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-4,17-

15 dioxabicyclo[14.1.0]heptadecan-5,9-dion (A) und (1R,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion (B)

Aus 100 mg (0,1917 mmol) der unter Beispiel 15 beschriebenen Verbindung werden 20 analog zu Beispiel 7 40 mg der Titelverbindung A und 39 mg der Titelverbindung B erhalten.

¹H-NMR (CDCl₃) von A: δ = 0.94 (3H), 0.96 (3H), 1.27 (3H), 2.68 (3H), 2.90 (2H), 3.08 (1H), 3.59 (1H), 3.77 (1H), 5.67 (1H), 6.11-6.24 (1H), 7.37 (1H) ppm.

¹H-NMR (CDCl₃) von B: δ = 0.89-1.00 (6H), 1.24 (3H), 2.67 (3H), 2.89 (1H), 3.11 (1H),

25 3.47 (1H), 3.68-3.81 (2H), 4.46 (1H), 5.68 (1H), 6.19-6.32 (1H), 7.38 (1H) ppm.

Beispiel 17

(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

30

Beispiel 17a

2-Pyridyl-carbaldehyd

Die Lösung von 50 ml (370 mmol) 2-Picolinsäureethylester in 1 l wasserfreiem 35 Dichlormethan kühlte man unter einer Atmosphäre aus trockenem Argon auf -78°C,

versetzt mit 500ml einer 1,2 molar n Lösung von Diisobutylaluminiumhydrid in Toluol und röhrt noch 1 Stunde. Man versetzt mit 152 ml Isopropanol, 253 ml Wasser, läßt auf 23°C erwärmen und röhrt noch so lange, bis sich ein feinkörniger Niederschlag gebildet hat. Nach Filtration und Lösungsmittelabzug isoliert man 32,6 g (304 mmol, 82%) der
5 Titelverbindung als blass gelbes Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 7,52$ (1H), 7,89 (1H), 7,99 (1H), 8,80 (1H), 10,10 (1H) ppm.

Beispiel 17b

(2E/Z)-3-(2-Pyridyl)-2-fluor-2-propensäureethylester

Zu 20,7 g einer 55%igen Natriumhydrid-Dispersion in 230 ml wasserfreiem Ethylenglykoldimethylether tropft man unter einer Atmosphäre aus trockenem Argon bei 10 0°C die Lösung von 115 g 2-Fluor-2-phosphonoessigsäuretriethylester in 230 ml Ethylenglykoldimethylether und röhrt 1 Stunde nach. Anschließend versetzt man mit der 15 Lösung von 27,6 g (258 mmol) der nach Beispiel 17a dargestellten Verbindung in 230 ml Ethylenglykoldimethylether und läßt innerhalb 1 Stunde auf 23°C erwärmen. Man gießt auf eine gesättigte Ammoniumchloridlösung, extrahiert mehrfach mit Ethylacetat, wascht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen 20 Rückstand reinigt man durch Vakuumdestillation. Isoliert werden 33,7 g (173 mmol, 67%) der Titelverbindungen als farbloses Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 1,22+1,39$ (3H), 4,25+4,37 (2H), 6,90+7,13 (1H), 7,23+7,26 (1H),
7,56+7,90 (1H), 7,67+7,76 (1H), 8,59+8,67 (1H) ppm.

25 Beispiel 17c

(2Z)-3-(2-Pyridyl)-2-fluor-2-propensäureethylester

Die Lösung von 29,2 g (149 mmol) des nach Beispiel 17b dargestellten E/Z-Gemisches in 280 ml wasserfreiem Toluol versetzt man unter einer Atmosphäre aus trockenem 30 Argon mit 2,0 g Iod und erhitzt 7 Tage auf 100°C. Die erkaltete Lösung wascht man mit gesättigter Natriumthiosulfatlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an ca. 1l feinem Kis Igel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 26,3 g (135 mmol, 90%) der Titelverbindung als farbloses Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 1,39$ (3H), 4,37 (2H), 7,13 (1H), 7,26 (1H), 7,76 (1H), 7,90 (1H), 8,67 (1H) ppm.

Beispiel 17d

- 5 (2Z)-3-(2-Pyridyl)-2-fluor-2-propen-1-ol

Die Lösung von 26,3 g (135 mmol) der nach Beispiel 17c dargestellten Verbindung in 800ml wasserfreiem Tetrahydrofuran kühlt man unter einer Atmosphäre aus trockenem Argon auf -78°C , versetzt mit 80 g Lithium-tri-tert.-butoxyaluminiumhydrid, lässt auf 10 23°C erwärmen und röhrt 16 Stunden. Man versetzt mit Wasser, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an ca. 15 1,5l feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 17,3 g (113 mmol, 84%) der Titelverbindung als farbloses Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 1,93$ (1H), 4,32 (2H), 6,19 (1H), 7,16 (1H), 7,69 (1H), 7,77 (1H), 8,52 (1H) ppm.

Beispiel 17e

- 20 (2Z)-3-(2-Pyridyl)-2-fluor-2-propenal

Die Lösung von 17,3 g (113 mmol) der nach Beispiel 17d dargestellten Verbindung in 2,5 l wasserfreiem Toluol versetzt man mit 100 g Braunstein und röhrt 16 Stunden bei 25 23°C . Man filtriert über Celite und isoliert 13,8 g (91 mmol, 81%) der Titelverbindung als blass gelbes Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 6,87$ (1H), 7,32 (1H), 7,81 (1H), 7,99 (1H), 8,72 (1H), 9,43 (1H) ppm.

Beispiel 17f

- 30 (3S,4Z)-5-(2-Pyridyl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-3-hydroxy-4-fluor-4-penten-1-on (A) und (3R,4Z)-5-(2-Pyridyl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-3-hydroxy-4-fluor-4-penten-1-on (B)

Zu der Lösung von 16,8 ml Diisopropylamin in 800 ml wasserfrei m Tetrahydrofuran 35 tropft man bei -30°C unter iner Atmosphäre aus trockenem Argon 50 ml einer 2,4

- molaren Lösung von n-Butyllithium in n-Hexan, röhrt 20 Minuten, kühlt auf -70°C und versetzt innerhalb von 4 Stunden mit der Lösung von 23,6 g (4S,5R)-3-Acetyl-4-methyl-5-phenyloxazolidin-2-on in 800 ml Tetrahydrofuran. Nach 1 Stunde tropft man innerhalb von 2 Stunden die Lösung von 10,3 g (68 mmol) der nach Beispiel 17e dargestellten Verbindung in 390 ml Tetrahydrofuran zu und röhrt 16 Stunden bei -70°C. Man gießt auf eine gesättigte Ammoniumchloridlösung, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand trennt man durch wiederholte Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan, Ethylacetat und Ethanol. Isoliert werden 8,60 g (23,2 mmol, 34%) der Titelverbindung A als kristalliner Feststoff sowie 5,04 g (13,6 mmol, 20%) der Titelverbindung B als farbloser Schaum.
- 1H-NMR (CDCl_3) von A: $\delta = 0,94$ (3H), 3,38 (1H), 3,56 (1H), 4,83 (1H), 4,89 (1H), 5,70 (1H), 6,33 (1H), 7,14 (1H), 7,23-7,48 (5H), 7,68 (1H), 7,76 (1H), 8,58 (1H) ppm.
- 1H-NMR (CDCl_3) von B: $\delta = 0,94$ (3H), 3,47 (2H), 4,19 (1H), 4,81 (1H), 4,89 (1H), 5,72 (1H), 6,29 (1H), 7,16 (1H), 7,22-7,49 (5H), 7,69 (1H), 7,76 (1H), 8,59 (1H) ppm.

Beispiel 17 g

- (4Z)-5-(2-Pyridyl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-4-fluor-4-penten-1,3-dion.

- In Analogie zu Beispiel 17e setzt man 3,54 g (9,56 mmol) der nach Beispiel 17f dargestellten Verbindung B um und isoliert nach Aufarbeitung 3,01 g (8,17 mmol, 85%) der Titelverbindung als kristallinen Feststoff.
- 1H-NMR (CDCl_3) als Keton/Enol-Gemisch: $\delta = 0,97$ (3H), 4,39+7,17+13,19 (2H), 4,88 (1H), 5,72+5,76 (1H), 6,99+7,07 (1H), 7,20-7,50 (6H), 7,75+7,78 (1H), 7,91 (1H), 8,65+8,70 (1H) ppm.

Beispiel 17h

- (3S,4Z)-5-(2-Pyridyl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-3-hydroxy-4-fluor-4-penten-1-on (A) und (3R,4Z)-5-(2-Pyridyl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-3-hydroxy-4-fluor-4-penten-1-on (B)

- Die Lösung von 12,2 g (33,1 mmol) der nach Beispiel 17g dargestellten Verbindung in einem Gemisch aus 610 ml wasserfreiem Dichlormethan und 65 ml wasserfrei m

Methanol versetzt man unter einer Atmosphäre aus trockenem Argon bei -40°C mit 732 mg Natriumborydrid und röhrt 1 Stunde. Man gießt in eine gesättigte Natriumhydrogencarbonatlösung, extrahiert mehrfach mit Dichlormethan und trocknet die vereinigten organischen Extrakte über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand trennt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus Dichlormethan und Ethanol. Isoliert werden neben Ausgangsmaterial 3,46 g (9,3 mmol, 28%) der Titelverbindung A sowie 3,38 g (9,1 mmol, 28%) der Titelverbindung B die jeweils mit den unter Beispiel 17f beschriebenen Verbindungen identisch sind.

10

Beispiel 17i

(3S,4Z)-5-(2-Pyridyl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4-fluor-4-penten-1-one

- 15 Die Lösung von 9,96g (26,89 mmol) der nach Beispiel 17f und/oder 1h dargestellten Verbindung A in 85ml wasserfreiem Dichlormethan kühlt man unter einer Atmosphäre aus trockenem Argon auf -70°C, versetzt mit 7 ml 2,6-Lutidin, 12,4 ml Trifluormethansulfonsäure-tert.-butyldimethylsilylester und röhrt 2 Stunden. Man gießt auf eine gesättigte Natriumhydrogencarbonatlösung, extrahiert mehrfach mit Dichlormethan, wäscht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand trennt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan, Ethylacetat und Ethanol. Isoliert werden 12,9g (26,6 mmol, 99%) der Titelverbindung als farbloses Öl.
- 20 25 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,16$ (6H), 0,90 (12H), 3,29 (1H), 3,59 (1H), 4,78 (1H), 4,92 (1H), 5,67 (1H), 6,12 (1H), 7,13 (1H), 7,24-7,47 (5H), 7,68 (1H), 7,76 (1H), 8,58 (1H) ppm.

Beispiel 17j

(3S,4Z)-5-(2-Pyridyl)-3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4-fluor-4-

30 pentensäureethylester

Die Lösung von 12,8g (26,5 mmol) der nach Beispiel 17i dargestellten Verbindung in 130 ml wasserfreiem Ethanol versetzt man bei 23°C unter einer Atmosphäre aus trockenem Argon mit 6,7 ml Titan(tetraethyl)at und erhitzt 2 Stunden auf 85°C. Man engt ein und reinigt den Rückstand durch Chromatographie an feinem Kieselgel mit einem

Gradientensystem aus n-Hexan und Ethylacetat. Isoliert wird ein 9,3g (26,3 mmol, 99%) der Titelverbindung als farbloses Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0,12$ (6H), 0,91 (9H), 1,28 (3H), 2,72 (2H), 4,17 (2H), 4,77 (1H), 6,09 (1H), 7,15 (1H), 7,68 (1H), 7,73 (1H), 8,59 (1H) ppm.

5

Beispiel 17k

(3S,4Z)-5-(2-Pyridyl)-3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4-fluor-4-penten-1-ol

In Analogie zu Beispiel 17a setzt man 9,7g (27,4 mmol) der nach Beispiel 17j dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 6,8g (21,8 mmol, 80%) der Titelverbindung als farbloses Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0,12$ (3H), 0,14 (3H), 0,93 (9H), 1,83 (1H), 2,00 (2H), 3,78 (1H), 3,85 (1H), 4,53 (1H), 6,09 (1H), 7,12 (1H), 7,65 (1H), 7,72 (1H), 8,57 (1H) ppm.

15 **Beispiel 17l**

(3S,4Z)-5-(2-Pyridyl)-3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-1-iod-4-fluor-4-penten

Die Lösung von 6,75g Triphenylphosphin in 120 ml wasserfreiem Dichlormethan versetzt man bei 23°C unter einer Atmosphäre aus trockenem Argon mit 1,78 g Imidazol, 6,47g Iod und tropft unter Kühlung die Lösung von 6,8g (21,8 mmol) der nach Beispiel 17k dargestellten Verbindung in 40 ml Dichlormethan zu. Man röhrt 1 Stunde und reinigt direkt durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 6,7g (15,9 mmol, 73%) der Titelverbindung als farbloses Öl.

25 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,13$ (3H), 0,19 (3H), 0,93 (9H), 2,25 (2H), 3,28 (2H), 4,38 (1H), 6,09 (1H), 7,17 (1H), 7,69 (1H), 7,75 (1H), 8,58 (1H) ppm.

Beispiel 17m

(3S,4Z)-5-(2-Pyridyl)-3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4-fluor-4-penten-1-
30 triphenylphosphoniumiodid

6,7g (15,9 mmol) der nach Beispiel 17l dargestellten Verbindung versetzt man mit 8,4 ml Ethyldiisopropylamin, 50,3g Triphenylphosphin und erwärmt 4 Stunden auf 85°C. Den ölichen Rückstand reinigt man durch Chromatographie an feinem Kieselg I mit

einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 8,9g (13,0 mmol, 82%) der Titelverbindung als kristalliner Feststoff.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0,16$ (3H), 0,22 (3H), 0,90 (9H), 2,01 (1H), 2,18 (1H), 3,50 (1H), 4,07 (1H), 4,90 (1H), 6,19 (1H), 7,12 (1H), 7,59-7,88 (17H), 8,54 (1H) ppm.

5

Beispiel 17n

(2S,6E/Z,9S,10Z)-9-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-10-fluor-11-(2-pyridyl)-1-(tetrahydropyran-2-yloxy)-2,6-dimethyl-undeca-6,10-dien

- 10 Die Suspension von 3,32 g (4,86 mmol) der nach Beispiel 17m dargestellten Verbindung in 22 ml wasserfreiem Tetrahydrofuran versetzt man bei 0°C unter einer Atmosphäre aus trockenem Argon mit 4,86 ml einer 1 M Lösung von Natrium-bis(trimethylsilyl)-amid in Tetrahydrofuran. Zu der roten Lösung tropft man langsam die Lösung von 753 mg (3,30 mmol) (2S)-2-Methyl-6-oxo-heptan-1-(tetrahydropyran-2-yloxy), das man in Analogie zu den in DE 197 51 200.3 beschriebenen Verfahren hergestellt hat, in 22 ml Tetrahydrofuran, lässt 3 Stunden röhren, gießt auf gesättigte Ammoniumchloridlösung und extrahiert mehrfach mit Ethylacetat. Die vereinigten organischen Extrakte trocknet man über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie an Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat werden neben 1,30 g (2,57 mmol, 78%) der Titelverbindung als farblosen Schaum erhalten.
- 15
- 20

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0,10$ (6H), 0,83-0,96 (12H), 1,10 (1H), 1,20-2,07 (12H), 1,60+1,68 (3H), 2,43 (2H), 3,04-3,27 (1H), 3,42-3,63 (2H), 3,85 (1H), 4,22 (1H), 4,57 (1H), 5,19 (1H), 6,04 (1H), 7,13 (1H), 7,68 (1H), 7,76 (1H), 8,57 (1H) ppm.

25

Beispiel 17o

(2S,6E/Z,9S,10Z)-9-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-10-fluor-11-(2-pyridyl)-1-hydroxy-2,6-dimethyl-undeca-6,10-dien

- 30 Zu einer Lösung von 1,30 g (2,57 mmol) der nach Beispiel 17n hergestellten Verbindung in 50 ml Ethanol gibt 700 mg Pyridinium-p-toluolsulfonat und röhrt 3 Stunden bei 23°C. Anschließend wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat gereinigt. Isoliert werden 832 mg (1,97 mmol, 77%) der Titelverbindung als farbloses Öl.
- 35

¹H-NMR (CDCl₃): δ = 0,11 (6H), 0,88+0,91 (3H), 0,95 (9H), 1,07 (1H), 1,24-1,71 (5H), 1,60+1,69 (3H), 1,92-2,11 (2H), 2,34-2,58 (2H), 3,34-3,54 (2H), 4,24 (1H), 5,19 (1H), 6,00+6,02 (1H), 7,12 (1H), 7,66 (1H), 7,75 (1H), 8,56 (1H) ppm.

5 Beispiel 17p

(2S,6E/Z,9S,10Z)-9-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-10-fluor-11-(2-pyridyl)-2,6-dimethyl-undeca-6,10-dienal

Zu 598 µl Oxalychlorid gelöst in 25 ml Dichlormethan tropft man unter Stickstoff vorsichtig bei -70°C 971 µl Dimethylsulfoxid und röhrt 10 Minuten bei dieser Temperatur. Anschließend tropft man eine Lösung von 1,45 g (3,44 mmol) des nach Beispiel 17o hergestellten Alkohols in 25 ml Dichlormethan zu und röhrt 0,5 Stunden zwischen -60°C und -70°C. Dann gibt man 2,84 ml Triethylamin zu und nach 1 Stunde Röhren bei -60°C wird die Reaktionsmischung auf 30 ml Wasser gegeben. Nach Phasentrennung wird die wäßrige Phase mehrfach mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen. Nach dem Trocknen über Natriumsulfat und Filtration wird im Vakuum eingeengt. Den Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Man erhält 1,31 g (3,12 mmol, 91%) der Titelverbindung als farbloses Öl.

Beispiel 17q

(4S(4R,5S,6S,10E/Z,13S,14Z))-4-(13-[(1,1-Dimethylethyl)dimethylsilyl]oxy)-4-ethyl-14-fluor-15-(2-pyridyl)-3-oxo-5-hydroxy-2,6,10-trimethyl-pentadeca-10,14-dien-2-yl)-2,2-dimethyl-[1,3]dioxan (A) und (4S(4S,5R,6S,10E/Z,13S,14Z))-4-(13-[(1,1-Dimethylethyl)dimethylsilyl]oxy)-4-ethyl-14-fluor-15-(2-pyridyl)-3-oxo-5-hydroxy-2,6,10-trimethyl-pentadeca-10,14-dien-2-yl)-2,2-dimethyl-[1,3]dioxan (B)

Die Lösung von 1,57 ml Diisopropylamin in 40 ml wasserfreiem Tetrahydrofuran kühlte man unter einer Atmosphäre aus trockenem Argon auf -30°C, versetzt mit 4,72 ml einer 2,4 molaren Lösung von n-Butyllithium in n-Hexan und röhrt noch 30 Minuten. Bei -78°C tropft man die Lösung von 1,31 g (3,12 mmol) der nach Beispiel 17p dargestellten Verbindung in 40 ml Tetrahydrofuran zu und lässt 1 Stunde reagieren. Anschließend versetzt man mit der Lösung von 2,36 g (10,3 mmol) (4S)-4-(2-Methyl-3-oxo-hex-2-yl)-2,2-dimethyl-[1,3]dioxan, das man nach dem in DE 19751200.3 beschriebenen Verfahren hergestellt hat, in 40 ml Tetrahydrofuran und gießt nach 60 Minuten in

gesättigte Ammoniumchloridlösung. Man verdünnt mit Wasser, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit g sättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie an Kieselgel mit einem Gradientensystem aus n-Hexan und
5 Ethylacetat werden neben Ausgangsmaterial 1,56 g (2,41 mmol, 77%) der Titelverbindung A sowie 287 mg (0,44 mmol, 14%) der Titelverbindung B erhalten.

10 $^1\text{H-NMR}$ (CDCl_3) von A: $\delta = 0,09$ (6H), 0,81 (3H), 0,85 (3H), 0,92 (9H), 1,00 (3H), 1,08 (1H), 1,18-1,83 (8H), 1,26 (3H), 1,32 (3H), 1,39 (3H), 1,60+1,68 (3H), 1,88-2,08 (2H), 2,32-2,52 (2H), 2,87+2,91 (1H), 3,19 (1H), 3,44 (1H), 3,87 (1H), 3,98 (1H), 4,16 (1H),
15 4,22 (1H), 5,18 (1H), 6,00 (1H), 7,11 (1H), 7,65 (1H), 7,73 (1H), 8,56 (1H) ppm.

Beispiel 17r

(3S,6R,7S,8S,12E/Z,15S,16Z)-15-[(1,1-Dimethylethyl)dimethylsilyl]oxy]-6-ethyl-16-fluor-1,3,7-trihydroxy-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-dien-5-on

15 Die Lösung von 1,45 g (2,24 mmol) der nach Beispiel 17q dargestellten Verbindung in 36 ml wasserfreiem Ethanol versetzt man unter einer Atmosphäre aus trockenem Argon mit 1,06 g Pyridinium-p-Toluolsulfonat und röhrt 4 Stunden bei 23°C. Nach Lösungsmittelabzug chromatographiert man den Rückstand an feinem Kieselgel mit
20 einem Gemisch aus n-Hexan und Ethylacetat. Isoliert werden 1,36 g (2,24 mmol, 93%) der Titelverbindung als farbloses Öl.

25 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,10$ (6H), 0,78-0,90 (6H), 0,92 (9H), 0,99-2,12 (11H), 1,08 (3H), 1,26 (3H), 1,58+1,68 (3H), 2,32-2,53 (2H), 2,79-3,03 (2H), 3,19 (1H), 3,41 (1H), 3,73-3,93 (3H), 4,06-4,25 (2H), 5,13+5,21 (1H), 5,93 (1H), 7,13 (1H), 7,67 (1H), 7,77 (1H),
8,58 (1H) ppm.

Beispiel 17s

(3S,6R,7S,8S,12E/Z,15S,16Z)-6-Ethyl-1,3,7,15-tetrakis-[(1,1-dimethylethyl)dimethylsilyl]oxy]-16-fluor-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-dien-5-on

30

Die Lösung von 1,36 g (2,24 mmol) der nach Beispiel 17r dargestellten Verbindung in ml wasserfreiem Dichlormethan kühlt man unter einer Atmosphäre aus trockenem Argon auf -78°C, versetzt mit 3,45 ml 2,6-Lutidin, 3,36 ml Trifluormethansulfonsäure-tert.butyldimethylsilylester, lässt innerhalb von 2 Stunden auf 0°C erwärmen und röhrt noch 2 Stunden. Man gibt in gesättigte Natriumhydrogencarbonatlösung und extrahiert

35

mehrfach mit Dichlormethan. Die vereinigten organischen Extrakte trocknet man über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie an Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat isoliert man 1,83 g (1,92 mmol, 86%) der Titelverbindung als farbloses Öl.

5 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,00\text{-}0,12$ (24H), 0,83 (3H), 0,85-0,98 (39H), 1,00-1,82 (9H), 1,03 (3H), 1,21 (3H), 1,61+1,68 (3H), 1,98 (2H), 2,42 (2H), 3,01 (1H), 3,47-3,73 (2H), 3,82 (1H), 3,91 (1H), 4,21 (1H), 5,19 (1H), 6,01 (1H), 7,12 (1H), 7,65 (1H), 7,73 (1H), 8,58 (1H) ppm.

10 Beispiel 17t

(3S,6R,7S,8S,12E/Z,15S,16Z)-6-Ethyl-3,7,15-tris-[(1,1-dimethylethyl)dimethylsilyloxy]-1-hydroxy-16-fluor-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-dien-5-on

Die Lösung von 1,83 g (1,92 mmol) der nach Beispiel 17s dargestellten Verbindung in
15 einem Gemisch aus 20 ml Dichlormethan und 20 ml Methanol versetzt man bei 23°C
unter einer Atmosphäre aus trockenem Argon mit 446 mg Campher-10-sulfonsäure und
röhrt 2 Stunden. Man gießt in eine gesättigte Natriumhydrogencarbonatlösung und
extrahiert mehrfach mit Dichlormethan. Die vereinigten organischen Extrakte trocknet
man über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie an
feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat isoliert man
20 1,40 g (1,67 mmol, 87%) der Titelverbindung als farbloses Öl.

25 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,02\text{-}0,14$ (18H), 0,85 (3H), 0,88-0,97 (30H), 1,03-1,80 (9H), 1,08 (3H), 1,20 (3H), 1,60+1,68 (3H), 1,90-2,06 (3H), 2,42 (2H), 3,01 (1H), 3,68 (2H), 3,83 (1H), 4,08 (1H), 4,21 (1H), 5,18 (1H), 6,01 (1H), 7,12 (1H), 7,63 (1H), 7,72 (1H), 8,56 (1H) ppm.

Beispiel 17u

(3S,6R,7S,8S,12E/Z,15S,16Z)-6-Ethyl-3,7,15-tris-[(1,1-dimethylethyl)dimethylsilyloxy]-16-fluor-5-oxo-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-dienal

30 Die Lösung von 400 μl Oxalylchlorid in 16 ml wasserfreiem Dichlormethan kühlt man
unter einer Atmosphäre aus trockenem Argon auf -70°C, versetzt mit 650 μl
Dimethylsulfoxid, der Lösung von 1,51 g (1,81 mmol) der nach Beispiel 17t
dargestellten Verbindung in 16 ml wasserfreiem Dichlormethan und röhrt 0,5 Stunden.
35 Anschließend versetzt man mit 2 ml Triethylamin, lässt 1 Stunde bei -30°C reagieren
und versetzt mit n-Hexan und gesättigter Natriumhydrogencarbonatlösung. Die

organische Phase wird abgetrennt, die wässrige noch mehrfach mit n-Hexan extrahiert, die vereinigten organischen Extrakte mit Wasser gewaschen und über Magnesiumsulfat getrocknet. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-
5 Hexan und Ethylacetat. Isoliert werden 1,48 g (1,77 mmol, 98%) der Titelverbindung als blass gelbes Öl.

1H-NMR (CDCl_3) einer gereinigten Probe: $\delta = 0,02\text{-}0,13$ (18H), 0,82 (3H), 0,85-0,97
10 (30H), 1,01-1,80 (7H), 1,10 (3H), 1,22 (3H), 1,60+1,68 (3H), 1,89-2,07 (2H), 2,32-2,48
(3H), 2,57 (1H), 3,00 (1H), 3,81 (1H), 4,21 (1H), 4,48 (1H), 5,18 (1H), 6,01 (1H), 7,12
(1H), 7,66 (1H), 7,73 (1H), 8,57 (1H), 9,78 (1H) ppm.

Beispiel 17v

(3S,6R,7S,8S,12Z,15S,16Z)-6-Ethyl-3,7,15-tris-[(1,1-dimethylethyl)dimethylsilyloxy]-
16-fluor-5-oxo-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-diensäure (A) und
15 (3S,6R,7S,8S,12E,15S,16Z)-6-Ethyl-3,7,15-tris-[(1,1-dimethylethyl)dimethylsilyloxy]-
16-fluor-5-oxo-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-diensäure (B)

Die Lösung von 1,48 g (1,77 mmol) der nach Beispiel 17u dargestellten Verbindung in
54 ml tert.-Butanol versetzt man mit 50 ml einer 2 molaren Lösung von 2-Methyl-2-
20 buten in Tetrahydrofuran, kühlt auf 2°C, versetzt mit 14 ml Wasser, 731 mg
Natriumdihydrogenphosphat, 1,24 g Natriumchlorit, lässt auf 15°C erwärmen und röhrt 2
Stunden. Man gießt in gesättigte Natriumthiosulfatlösung, verdünnt mit Wasser und
extrahiert mehrfach mit Ethylacetat. Die vereinigten organischen Extrakte trocknet man
über Natriumsulfat und reinigt den nach Filtration und Lösungsmittelabzug erhaltenen
25 Rückstand durch Chromatographie an feinem Kieselgel mit einem Gradientensystem
aus n-Hexan und Ethylacetat. Isoliert werden 487 mg (573 µmol, 32%) der
Titelverbindung A sowie 506 mg (595 µmol, 34%) der Titelverbindung B jeweils als
farbloses Öl.

1H-NMR (CDCl_3) von A: $\delta = 0,00$ (3H), 0,03-0,11 (12H), 0,13 (3H), 0,79-0,98 (33H),
30 1,03-1,80 (8H), 1,12 (3H), 1,20 (3H), 1,71 (3H), 1,89 (1H), 2,18 (1H), 2,30-2,48 (3H),
2,52 (1H), 3,03 (1H), 3,75 (1H), 4,22 (1H), 4,41 (1H), 5,20 (1H), 6,38 (1H), 7,20 (1H),
7,72 (1H), 7,82 (1H), 8,51 (1H) ppm.

1H-NMR (CDCl_3) von B: $\delta = 0,00$ (3H), 0,04 (3H), 0,07 (3H), 0,09 (3H), 0,11 (3H), 0,15
(3H), 0,74-0,95 (33H), 0,99-1,72 (8H), 1,10 (3H), 1,22 (3H), 1,53 (3H), 1,86 (1H), 1,98

(1H), 2,27-2,66 (4H), 3,08 (1H), 3,82 (1H), 4,16 (1H), 4,33 (1H), 5,13 (1H), 6,04 (1H),
7,18 (1H), 7,71 (1H), 7,82 (1H), 8,52 (1H) ppm.

Beispiel 17w

5 (3S,6R,7S,8S,12Z,15S,16Z)-6-Ethyl-3,7-bis-[(1,1-dimethylethyl)dimethylsilyloxy]-16-fluor-15-hydroxy-5-oxo-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-diensäure

Die Lösung von 487 mg (573 µmol) der nach Beispiel 17v dargestellten Verbindung A in
23 ml wasserfreiem Tetrahydrofuran versetzt man unter einer Atmosphäre aus
10 trockenem Argon mit 8,55 ml einer 1 molaren Lösung von Tetrabutylammoniumfluorid in
Tetrahydrofuran und röhrt 1,5 Stunden bei 23°C. Man versetzt mit gesättigter
Natriumhydrogencarbonatlösung, extrahiert mehrfach mit Ethylacetat, wäscht mit
gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration
und Lösungsmittelabzug erhaltenen Rückstand setzt man ohne Reinigung weiter um.

15

Beispiel 17x

(4S,7R,8S,9S,13Z,16S(Z))-4,8-Bis-[(dimethyl(1,1-dimethylethyl)silyloxy)-16-(1-fluor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

20 Die Lösung von 486 mg (max. 570 µmol) der nach Beispiel 17w dargestellten
Verbindung in einem Gemisch aus 5 ml wasserfreiem Tetrahydrofuran und 50 ml Toluol
versetzt man unter einer Atmosphäre aus trockenem Argon mit 474 µl Triethylamin,
454µl 2,4,6-Trichlorbenzoylchlorid und röhrt 20 Minuten. Man tropft diese Lösung
innerhalb von 4,5 Stunden zu der Lösung von 727mg 4-Dimethylaminopyridin in 215ml
25 Toluol und röhrt 0,5 Stunden bei 23°C nach. Man engt ein, nimmt in wenig
Dichlormethan auf und reinigt durch Chromatographie an feinem Kieselgel mit einem
Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 310mg (432 µmol,
76%) der Titelverbindung als farbloses Öl.

30 Beispiel 17

(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

Die Lösung von 308 mg (429 µmol) der nach Beispiel 17x dargestellten Verbindung in 27
35 ml wasserfreiem Tetrahydrofuran versetzt man unter einer Atmosphäre aus trockenem
Argon portionsweise mit insgesamt 4,6 ml HF-Pyridin-Komplex und röhrt bei 23°C 24

Stunden. Man gießt in gesättigte Natriumhydrogencarbonatlösung, extrahiert mehrfach mit Dichlormethan und trocknet die vereinigten organischen Extrakte über Natriumsulfat. Nach Filtration und Lösungsmittelabzug reinigt man den erhaltenen Rückstand durch Chromatographie an feinem Kieselgel mit einem Gemisch aus n-Hexan und Ethylacetat. Isoliert werden 135 mg (276 µmol, 64%) der Titelverbindung als farbloses Öl.

5

¹H-NMR (CDCl₃): δ = 0,88 (3H), 1,03 (3H), 1,10 (3H), 1,13-1,95 (8H), 1,32 (3H), 1,71 (3H), 2,28 (1H), 2,34-2,49 (3H), 2,56 (1H), 2,80 (1H), 3,21 (1H), 3,56 (1H), 3,70 (1H), 4,22 (1H), 5,13 (1H), 5,41 (1H), 6,12 (1H), 7,16 (1H), 7,63-7,75 (2H), 8,53 (1H) ppm.

10

Beispiel 18

(4S,7R,8S,9S,13E,16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

15 Beispiel 18a

(3S,6R,7S,8S,12E,15S,16Z)-6-Ethyl-3,7-bis-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]-16-fluor-15-hydroxy-5-oxo-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-diensäure

In Analogie zu Beispiel 17w setzt man 506 mg (595 µmol) der nach Beispiel 17v dargestellten Verbindung B um und setzt das nach Aufarbeitung erhaltene Rohprodukt weiter umsetzt.

Beispiel 18b

(4S,7R,8S,9S,13E,16S(Z))-4,8-Bis-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-16-(1-fluor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

In Analogie zu Beispiel 17x setzt man 577mg (max. 595 µmol) der nach Beispiel 18a dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 273 mg (380 µmol, 64%) der Titelverbindung als farbloses Öl.

30 ¹H-NMR (CDCl₃): δ = 0,01-0,13 (12H), 0,78-0,96 (24H), 1,09 (3H), 1,20 (3H), 1,26-1,90 (8H), 1,59 (3H), 2,16 (1H), 2,39 (1H), 2,59 (1H), 2,68 (2H), 2,91 (1H), 3,91 (1H), 4,35 (1H), 5,22 (1H), 5,45 (1H), 6,08 (1H), 7,12 (1H), 7,65 (1H), 7,71 (1H), 8,56 (1H) ppm.

Beispiel 18

(4S,7R,8S,9S,13E,16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

In Analogie zu Beispiel 18 setzt man 273 mg (380 µmol) der nach Beispiel 18b dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 115 mg (235 µmol, 62%) der Titelverbindung als farbloses Öl.

- 5 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,72$ (1H), 0,84 (3H), 1,00 (6H), 1,22-2,02 (8H), 1,30 (3H), 1,60 (3H), 2,21 (1H), 2,33-2,57 (3H), 2,62 (1H), 3,40 (1H), 3,78 (1H), 4,51 (1H), 5,09 (1H), 5,22 (1H), 5,53 (1H), 6,11 (1H), 7,16 (1H), 7,70 (1H), 7,80 (1H), 8,43 (1H) ppm.

Beispiel 19

- 10 (1SR,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(N-oxido-2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

Die Lösung von 50 mg (102 µmol) der nach Beispiel 17 dargestellten Verbindung in 3 ml Acetonitril versetzt man bei 0°C mit 958 µl einer 0,1M wässrigen Lösung von Ethyldiamintetraacetat, 1,45 ml Trifluoraceton, 373 mg Natriumhydrogencarbonat, 15 448 mg Oxone und röhrt 1,5 Stunden bei 23°C. Man versetzt mit Natriumthiosulfatlösung, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Isoliert werden 61 mg (max. 102 µmmol) der Titelverbindungen, die man 20 ohne Reinigung weiter umsetzt.

Beispiel 20

- (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion (A)
und (1R,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion (B)

Die Lösung von 60 mg (max. 102 µmol) der nach Beispiel 19 dargestellten Verbindungen in 12 ml Trichlormethan versetzt man unter einer Atmosphäre aus trockenem Argon mit Molsieb, 2,2 ml Isopropanol, 39 mg Tetrapropylammoniumperruthenat und röhrt 2 Tage bei 60°C. Man engt ein und reinigt den Rückstand durch Chromatographie an analytischen Dünnschichtplatten. Als Laufmittel dient ein Gemisch aus Dichlormethan und Isopropanol, als Elutionsmittel ein Gemisch aus Dichlormethan und Methanol. Isoliert werden 17 mg (34 µmol, 28%) der Titelverbindung A sowie 4,3 mg (9 µmol, 8%) der Titelverbindung B.

1H-NMR (CDCl_3) von A: $\delta = 0,87$ (3H), 1,00 (3H), 1,04 (3H), 1,25-1,98 (9H), 1,29 (3H),
1,37 (3H), 2,10-2,21 (2H), 2,42 (1H), 2,51 (1H), 2,62 (1H), 2,89 (1H), 3,33 (1H), 3,69
(1H), 4,21 (1H), 4,44 (1H), 5,69 (1H), 6,17 (1H), 7,18 (1H), 7,70 (2H), 8,54 (1H) ppm.
1H-NMR (CDCl_3) von B: $\delta = 0,83$ (3H), 0,94 (3H), 1,07 (3H), 1,16-2,03 (10H), 1,30
5 (3H), 1,38 (3H), 2,27 (1H), 2,49-2,52 (2H), 2,90-3,04 (2H), 3,21 (1H), 3,72 (1H), 3,89
(1H), 4,32 (1H), 5,78 (1H), 6,19 (1H), 7,18 (1H), 7,61-7,79 (2H), 8,52 (1H) ppm.

Beispiel 21

10 (1S_R,3S(Z),7S,10R,11S,12S,16S_R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(N-oxido-2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

In Analogie zu Beispiel 19 setzt man 112 mg (229 μmol) der nach Beispiel 18 dargestellten Verbindung um und isoliert nach Aufarbeitung 150 mg (max. 229 μmol) der Titelverbindungen als farbloses Öl.

15

Beispiel 22

(4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

20 In Analogie zu Beispiel 1 und 5 unter Verwendung von (3S)-1,3-Bis[[dimethyl(1,1-dimethyl)silyl]oxy]-4,4-dimethyl-octan-5-on als Aldolkomponente (siehe Beispiel 5n) erhält man 86 mg der Titelverbindung als schwach gelbgefärbtes Öl.

1H-NMR (CDCl_3): $\delta = 0.87$ (3H), 1.04 (3H), 1.15-1.75 (8H), 1.10 (3H), 1.33 (3H), 1.72 (3H), 1.86 (2H), 2.20-2.40 (2H), 2.42 (1H), 2.56 (1H), 2.73 (3H), 2.82 (1H), 3.23 (1H),

25 3.71 (1H), 4.18 (1H), 5.12 (1H), 5.42 (1H), 6.23 (1H), 7.38 (1H) ppm.

Beispiel 23

(4S,7R,8S,9S,13(E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

30 In Analogie zu Beispiel 2 und 6 unter Verwendung von (3S)-1,3-Bis[[dimethyl(1,1-dimethyl)silyl]oxy]-4,4-dimethyl-octan-5-on als Aldolkomponente (siehe Beispiel 5n) erhält man 96 mg der Titelverbindung als schwach gelbgefärbtes Öl.

1H-NMR (CDCl_3): $\delta = 0.85$ (3H), 0.7-1.6 (7H), 1.00 (3H), 1.02 (3H), 1.31 (3H), 1.62 (3H),
35 1.78 (1H), 1.82-2.01 (2H), 2.20 (1H), 2.40-2.67 (3H), 2.68 (3H), 3.37 (1H), 3.73 (1H),
4.40 (1H), 4.48 (1H), 5.10 (1H), 5.53 (1H), 6.15 (1H), 7.35 (1H) ppm.

Beispiel 24

(1R,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

5 (A) und

(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(B)

10 In Analogie zu Beispiel 3 erhält man aus der in Beispiel 22 hergestellten Titelverbindung 8 mg der Titelverbindung A und B im Verhältnis 1:4 als schwach gelbgefärbtes Öl.

¹H-NMR (charakteristische Signale des Gemisches A und B, CDCl₃): δ= 0.86 (3H), 0.94 (3H, A), 1.00 (3H, B), 1.05 (3H), 1.26 (3H), 1.29 (3H), 1.36 (3H), 1.69 (1H, B), 1.75-1.95 (1H), 2.34 (1H, B), 2.22 (1H, A), 2.44 (1H), 2.60 (1H), 2.75 (3H), 2.86 (1H, B), 2.97 (1H, A), 3.22 (1H, A), 3.35 (1H, B), 3.70 (1H, B), 3.88 (1H, A), 4.21 (1H, B), 4.31 (1H, A), 5.68 (1H, B), 5.76 (1H, A), 6.29 (1H), 7.41 (1H) ppm.

Die reinen Titelverbindungen A und B werden durch HPLC an einer Chiralpak AD 10μ Säule mit Hexan/Ethanol 20-50% getrennt.

20

Beispiel 25

(1R,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(A) und

25 (1S,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(B)

In Analogie zu Beispiel 3 erhält man aus der in Beispiel 23 hergestellten Titelverbindung 4,9 mg der Titelverbindung A als unpolare Komponente und 3,4 mg der Titelverbindung B als polare Komponente als farblose Öle.

¹H-NMR (CDCl₃) von A, δ= 0.86 (3H), 0.95 (3H), 1.0-1.7 (6H), 1.04 (3H), 1.30 (3H), 1.38 (3H), 1.76 (1H), 1.85 (2H), 1.90-2.30 (3H), 2.55 (2H), 2.70 (3H), 2.89 (1H), 3.32 (1H), 3.79 (1H), 4.13 (1H), 4.30 (1H), 5.66 (1H), 6.25 (1H), 7.39 (1H) ppm.

¹H-NMR (CDCl₃) von B, δ= 0.86 (3H), 0.96 (3H), 1.10 (3H), 1.15-1.93 (7H), 1.23 (3H), 1.35 (3H), 1.95-2.38 (4H), 2.58 (2H), 2.70 (3H), 2.99 (1H), 3.01 (1H), 3.27 (1H), 3.65-3.75 (2H), 4.24 (1H), 5.62 (1H), 6.21 (1H), 7.35 (1H) ppm.

5 Beispiel 26

(4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

In Analogie zu Beispiel 5 unter Verwendung von (3S)-1,3-Bis[[dimethyl(1,1-dimethyl)silyl]oxy]-4,4-dimethyl-octan-5-on als Aldolkomponente (siehe Beispiel 5n) erhält man die Titelverbindung.

10 Beispiel 27

(4S,7R,8S,9S,13(E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

In Analogie zu Beispiel 6 unter Verwendung von (3S)-1,3-Bis[[dimethyl(1,1-dimethyl)silyl]oxy]-4,4-dimethyl-octan-5-on als Aldolkomponente (siehe Beispiel 5n) erhält man die Titelverbindung.

20

Beispiel 28

(1S,3S(Z),7S,10R,11S,12S,16SR)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion
(A) und

(1R,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion
(B)

In Analogie zu Beispiel 3 erhält man aus der in Beispiel 26 hergestellten Titelverbindung
30 die Titelverbindung.

Beispiel 29

(1S,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

35 (A) und

(1R,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion (B)

- 5 In Analogie zu Beispiel 3 erhält man aus der in Beispiel 27 hergestellten Titelverbindung die Titelverbindung.

Beispiel 30

- 10 (1S,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion (A)
und (1R,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion (B)

- 15 In Analogie zu Beispiel 20 setzt man 150 mg (max. 229 µmol) der nach Beispiel 21 dargestellten Verbindungen um und isoliert nach Aufarbeitung und Reinigung 19 mg (38 µmol, 16%) der Titelverbindung A sowie 35 mg (69 µmol, 30% der Titelverbindung B jeweils als farbloses Öl.

- 20 $^1\text{H-NMR}$ (CDCl_3) von A: $\delta = 0,83$ (3H), 0,93 (3H), 1,08 (3H), 1,18-1,97 (9H), 1,21 (3H), 1,36 (3H), 2,09 (1H), 2,31 (1H), 2,59 (2H), 2,99 (1H), 3,30 (1H), 3,44 (1H), 3,70 (1H), 4,33 (1H), 4,40 (1H), 5,67 (1H), 6,19 (1H), 7,18 (1H), 7,70 (2H), 8,51 (1H) ppm.

25 $^1\text{H-NMR}$ (CDCl_3) von B: $\delta = 0,85$ (3H), 0,94 (3H), 1,00-1,97 (9H), 1,02 (3H), 1,29 (3H), 1,38 (3H), 2,06 (1H), 2,28 (1H), 2,54 (2H), 2,90 (1H), 3,35 (1H), 3,61 (1H), 3,79 (1H), 4,39 (2H), 5,67 (1H), 6,22 (1H), 7,18 (1H), 7,69 (1H), 7,78 (1H), 8,51 (1H) ppm.

25 Beispiel 31

(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

Beispiel 31a

- 30 3-(2-Pyridyl)-2-propin-1-ol

- Das Gemisch aus 16,6 ml (173 mmol) 2-Brompyridin, 21,6 ml Propargylalkohol, 2,5 g Palladium-bis-triphenylphosphin-dichlorid und 173 mg Kupfer(I)iodid versetzt man mit 510 ml Diethylamin und erhitzt 1,5 Stunden auf 80°C. Nach Filtration und Lösungsmittelabzug reinigt man den Rückstand durch Chromatographie an einem

Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 17,8 g (134 mmol, 77%) der Titelverbindung als farbloses Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 3,70$ (1H), 4,54 (2H), 7,24 (1H), 7,42 (1H), 7,67 (1H), 8,53 (1H) ppm.

5

Beispiel 31b

(2Z)-3-(2-Pyridyl)-2-chlor-2-propen-1-ol

12,3 g (92,6 mmol) der nach Beispiel 31a dargestellten Verbindung versetzt man mit 10 238 ml konz. Salzsäure und erhitzt 2,5 Stunden auf 80°C. Nach dem Erkalten gießt man vorsichtig in gesättigte Kaliumcarbonatlösung, extrahiert mehrfach mit Dichlormethan, wäscht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert 15 werden 14,8 g (87,3 mmol, 94%) der Titelverbindung als kristalliner Feststoff.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 4,36$ (2H), 5,47 (1H), 7,18 (1H), 7,21 (1H), 7,72 (1H), 7,99 (1H), 8,56 (1H) ppm.

20 **Beispiel 31c**

(2Z)-3-(2-Pyridyl)-2-chlor-2-propenal

In Analogie zu Beispiel 17e setzt man 14,8g (87,5 mmol) der nach Beispiel 31b dargestellten Verbindung um und isoliert nach Aufarbeitung 14,6g (87,1 mmol, 99%) 25 der Titelverbindung als blass gelbes Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 7,36$ (1H), 7,74 (1H), 7,83 (1H), 8,34 (1H), 8,77 (1H), 9,57 (1H) ppm.

Beispiel 31d

30 (3S,4Z)-5-(2-Pyridyl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-3-hydroxy-4-chlor-4-penten-1-on (A) und (3R,4Z)-5-(2-Pyridyl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-3-hydroxy-4-chlor-4-penten-1-on (B)

In Analogie zu Beispiel 17f setzt man 14,6g (87,1 mmol) der nach Beispiel 31c 35 dargestellten Verbindung um und isoliert nach Aufarbeitung und Trennung 12,3g (31,8

mmol, 37%) der kristallinen Titelverbindung A sowie 9,6g (24,8 mmol, 28%) der Titelverbindung B als farbloses Öl.

$^1\text{H-NMR}$ (CDCl_3) von A: $\delta = 0,94$ (3H), 3,42 (1H), 3,58 (1H), 4,50 (1H), 4,81 (1H), 4,91 (1H), 5,70 (1H), 7,14-7,48 (7H), 7,72 (1H), 7,96 (1H), 8,62 (1H) ppm.

5 $^1\text{H-NMR}$ (CDCl_3) von B: $\delta = 0,96$ (3H), 3,50 (2H), 4,82 (1H), 4,96 (1H), 5,72 (1H), 7,13-7,50 (7H), 7,73 (1H), 7,97 (1H), 8,65 (1H) ppm.

Beispiel 31e

(4Z)-5-(2-Pyridyl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-4-chlor-4-

10 penten-1,3-dion

In Analogie zu Beispiel 17g setzt man 11,3g (29,2 mmol) der nach Beispiel 31d dargestellten Verbindung B um und isoliert nach Aufarbeitung 9,8g (25,5 mmol, 87%) der Titelverbindung als kristallinen Feststoff.

15 $^1\text{H-NMR}$ (CDCl_3) als Keton/Enol-Gemisch: $\delta = 0,99$ (3H), 4,49 (0,6H), 4,60 (0,6H), 4,87 (1H), 5,71+5,76 (1H), 7,21-7,52 (6,4H), 7,79 (1H), 7,92 (1H), 8,10+8,20 (1H), 8,72 (1H), 13,66 (0,4H) ppm.

Beispiel 31 f

20 (3S,4Z)-5-(2-Pyridyl)-1-[(4S,5R)-4-methyl-5-phenyl-1,3-oxazolidin-2-on-3-yl]-3-
[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4-chlor-4-penten-1-on

In Analogie zu Beispiel 17i setzt man 12,3g (31,7 mmol) der nach Beispiel 31d und/oder Beispiel 31f dargestellten Verbindung A um und isoliert nach Aufarbeitung und Reinigung 12,2g (24,3 mmol, 77%) der Titelverbindung als farbloses Öl.

$^1\text{H-NMR}$ (CDCl_3): $\delta = 0,13$ (6H), 0,90 (12H), 3,30 (1H), 3,59 (1H), 4,78 (1H), 5,01 (1H), 5,66 (1H), 7,02 (1H), 7,19 (1H), 7,23-7,48 (5H), 7,71 (1H), 7,97 (1H), 8,62 (1H) ppm.

Beispiel 31g

30 (3S,4Z)-5-(2-Pyridyl)-3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4-chlor-4-
pentensäureethylester

In Analogie zu Beispiel 17j setzt man 12,1g (24,1 mmol) der nach Beispiel 31f dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 8,3g (22,4 mmol, 93%) der Titelverbindung als farbloses Öl.

¹H-NMR (CDCl₃): δ = 0,11 (6H), 0,90 (9H), 1,26 (3H), 2,75 (2H), 4,14 (2H), 4,83 (1H), 7,00 (1H), 7,18 (1H), 7,69 (1H), 7,91 (1H), 8,61 (1H) ppm.

Beispiel 31h

5 (3S,4Z)-5-(2-Pyridyl)-3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4-chlor-4-penten-1-ol

In Analogie zu Beispiel 17k setzt man 8,1g (21,9 mmol) der nach Beispiel 31g dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 6,3g (19,2 mmol, 88%) der Titelverbindung als farbloses Öl.

10 ¹H-NMR (CDCl₃): δ = 0,13 (3H), 0,18 (3H), 0,96 (9H), 1,98-2,10 (3H), 3,70-3,91 (2H), 4,60 (1H), 7,00 (1H), 7,19 (1H), 7,70 (1H), 7,93 (1H), 8,62 (1H) ppm.

Beispiel 31i

(3S,4Z)-5-(2-Pyridyl)-3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-1-iod-4-chlor-4-penten

15 In Analogie zu Beispiel 17l setzt man 6,3g (19,2 mmol) der nach Beispiel 31h dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 7,8g (17,8 mmol, 93%) der Titelverbindung als farbloses Öl.

1¹H-NMR (CDCl₃): δ = 0,12 (3H), 0,19 (3H), 0,93 (9H), 2,25 (2H), 3,24 (2H), 4,48 (1H), 7,00 (1H), 7,20 (1H), 7,71 (1H), 7,97 (1H), 8,63 (1H) ppm.

Beispiel 31k

(3S,4Z)-5-(2-Pyridyl)-3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4-chlor-4-penten-1-triphenylphosphoniumiodid

25 In Analogie zu Beispiel 17m setzt man 7,8g (17,8 mmol) der nach Beispiel 31i dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 11,4g (16,3 mmol, 91%) der Titelverbindung als kristallinen Feststoff.

1¹H-NMR (CDCl₃): δ = 0,15 (3H), 0,21 (3H), 0,90 (9H), 1,96-2,20 (2H), 3,52-3,91 (2H), 5,02 (1H), 7,18 (1H), 7,25 (1H), 7,63-7,88 (17H), 8,61 (1H) ppm.

Beispiel 31l

(2S,6E/Z,9S,10Z)-9-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-10-chlor-11-(2-pyridyl)-1-(tetrahydropyran-2-yloxy)-2,6-dimethyl-undeca-6,10-dien

In Analogie zu Beispiel 17n setzt man 3,00 g der nach Beispiel 31k dargestellten Verbindung mit 653 mg (2,86 mmol) (2S)-2-Methyl-6-oxo-heptan-1-(tetrahydropyran-2-yloxy), das man in Analogie zu den in DE 197 51 200.3 bzw. WO 99/07692 beschriebenen Verfahren hergestellt hat, um und isoliert nach Aufarbeitung und 5 Reinigung neben ausgangsmaterial 202 mg (0,39 mmol, 14%) der Titelverbindung als farbloses Öl.

¹H-NMR (CDCl₃): δ = 0,08 (6H), 0,80-0,96 (12H), 1,08 (1H), 1,22-2,05 (12H), 1,61+1,67 (3H), 2,31-2,55 (2H), 3,03-3,25 (1H), 3,40-3,62 (2H), 3,84 (1H), 4,28 (1H), 4,53 (1H), 5,15 (1H), 6,91 (1H), 7,16 (1H), 7,68 (1H), 7,95 (1H), 8,60 (1H) ppm.

10

Beispiel 31m

(2S,6E/Z,9S,10Z)-9-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-10-chlor-11-(2-pyridyl)-1-hydroxy-2,6-dimethyl-undeca-6,10-dien

15 In Analogie zu Beispiel 17o setzt man 472 mg (904 μmol) der nach Beispiel 31l dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 278 mg (635 μmol, 70%) der Titelverbindung als farbloses Öl.

¹H-NMR (CDCl₃): δ = 0,09 (6H), 0,82-0,97 (12H), 0,98-2,12 (8H), 1,60+1,68 (3H), 2,32-2,58 (2H), 3,36-3,54 (2H), 4,30 (1H), 5,11+5,19 (1H), 6,89+6,92 (1H), 7,19 (1H), 7,70

20 (1H), 7,98+8,04 (1H), 8,59 (1H) ppm.

Beispiel 31n

(2S,6E/Z,9S,10Z)-9-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-10-chlor-11-(2-pyridyl)-2,6-dimethyl-undeca-6,10-dienal

25

In Analogie zu Beispiel 17p setzt man 278 mg (635 μmol) der nach Beispiel 31m dargestellten Verbindung um und isoliert nach Aufarbeitung 273 mg (626 μmol, 99%) der Titelverbindung als blass gelbes Öl.

30 Beispiel 31o

(4S(4R,5S,6S,10E/Z,13S,14Z))-4-(13-[(1,1-Dimethylethyl)dimethylsilyl]oxy)-4-ethyl-14-chlor-15-(2-pyridyl)-3-oxo-5-hydroxy-2,6,10-trimethyl-pentadeca-10,14-dien-2-yl)-2,2-dimethyl-[1,3]dioxan (A) und (4S(4S,5R,6S,10E/Z,13S,14Z))-4-(13-[(1,1-Dimethylethyl)dimethylsilyl]oxy)-4-ethyl-14-chlor-15-(2-pyridyl)-3-oxo-5-hydroxy-2,6,10-

35 trimethyl-pentadeca-10,14-di-n-2-yl)-2,2-dimethyl-[1,3]dioxan (B)

In Analogie zu Beispiel 17q setzt man 273 mg (626 µmol) der nach Beispiel 31n dargestellten Verbindung mit (4S)-4-(2-Methyl-3-oxo-hex-2-yl)-2,2-dimethyl-[1,3]dioxan, das man nach dem in DE 19751200.3 bzw. WO 99/07692 beschrieben n Verfahren hergestellt hat, um und isoliert nach Aufarbeitung und Reinigung 275 mg (414 µmol, 5 66%) der Titelverbindung A sowie Reinigung 58 mg (87 µmol, 14%) der Titelverbindung B jeweils als farbloses Öl.

¹H-NMR (CDCl₃) von A: δ = 0,07 (6H), 0,82 (6H), 0,91 (9H), 0,99 (3H), 1,08 (1H), 1,17-
2,08 (9H), 1,23 (3H), 1,31 (3H), 1,39 (3H), 1,60+1,68 (3H), 2,31-2,56 (2H), 2,89 (1H),
3,19 (1H), 3,43 (1H), 3,88 (1H), 3,98 (1H), 4,18 (1H), 4,29 (1H), 5,16 (1H), 6,91 (1H),
10 7,18 (1H), 7,69 (1H), 7,97 (1H), 8,60 (1H) ppm.

Beispiel 31p

(3S,6R,7S,8S,12E/Z,15S,16Z)-15-[[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-6-ethyl-16-chlor-1,3,7-trihydroxy-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-dien-5-on

15 In Analogie zu Beispiel 17r setzt man 275 mg (414 mmol) der nach Beispiel 31o dargestellten Verbindung A um und isoliert nach Aufarbeitung und Reinigung 234 mg (375 µmol, 91%) der Titelverbindung als farbloses Öl.

¹H-NMR (CDCl₃): δ = 0,03-0,12 (6H), 0,78-0,95 (15H), 0,98-2,18 (10H), 1,09 (3H), 1,26-
20 (3H), 1,60+1,68 (3H), 2,32-2,58 (2H), 2,72-2,98 (2H), 3,19 (1H), 3,41 (1H), 3,71-4,00
(3H), 4,12 (1H), 4,28 (1H), 5,11+5,21 (1H), 6,82+6,83 (1H), 7,20 (1H), 7,71 (1H), 8,03
(1H), 8,63 (1H) ppm.

Beispiel 31q

25 (3S,6R,7S,8S,12E/Z,15S,16Z)-6-Ethyl-1,3,7,15-tetrakis-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]-16-chlor-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-dien-5-on

30 In Analogie zu Beispiel 17s setzt man 234 mg (375 µmol) der nach Beispiel 31p dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 325 mg (336 µmol, 90%) der Titelverbindung als farbloses Öl.

¹H-NMR (CDCl₃): δ = -0,04-0,10 (24H), 0,76-1,78 (51H), 1,01 (3H), 1,23 (3H),
1,59+1,63 (3H), 1,89-2,03 (2H), 2,29-2,54 (2H), 3,00 (1H), 3,50-3,71 (2H), 3,80 (1H),
3,(1H), 4,26 (1H), 5,13 (1H), 6,91 (1H), 7,15 (1H), 7,68 (1H), 7,94 (1H), 8,60 (1H) ppm.

Beispiel 31r

(3S,6R,7S,8S,12E/Z,15S,16Z)-6-Ethyl-3,7,15-tris-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1-hydroxy-16-chlor-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-dien-5-on

5 In Analogie zu Beispiel 17t setzt man 325 mg (336 µmol) der nach Beispiel 31q dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 264 mg (310 µmol, 92%) der Titelverbindung als farbloses Öl.

10 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,01\text{-}0,12$ (18H), 0,79-0,97 (33H), 1,01-2,08 (12H), 1,08 (3H),
4,29 (1H), 5,18 (1H), 6,93 (1H), 7,19 (1H), 7,69 (1H), 7,97 (1H), 8,61 (1H) ppm.

Beispiel 31s

(3S,6R,7S,8S,12E/Z,15S,16Z)-6-Ethyl-3,7,15-tris-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]-16-chlor-5-oxo-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-dienal

15 In Analogie zu Beispiel 17u setzt man 264 mg (310 µmol) der nach Beispiel 31r dargestellten Verbindung um und isoliert nach Aufarbeitung 238 mg (280 µmol, 90%) der Titelverbindung als blass gelbes Öl, das man ohne Reinigung weiter umsetzt.

20 Beispiel 31t

(3S,6R,7S,8S,12Z,15S,16Z)-6-Ethyl-3,7,15-tris-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]-16-chlor-5-oxo-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-diensäure (A) und
(3S,6R,7S,8S,12E,15S,16Z)-6-Ethyl-3,7,15-tris-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]-16-chlor-5-oxo-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-diensäure (B)

25 In Analogie zu Beispiel 17v setzt man 238 mg (280 µmol) der nach Beispiel 31s dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 111 mg (128 µmol, 46%) der Titelverbindung A sowie 102 mg (118 µmol, 42%) der Titelverbindung B jeweils als farbloses Öl.

30 $^1\text{H-NMR}$ (CDCl_3) von A: $\delta = -0,01\text{-}0,15$ (18H), 0,79-0,97 (33H), 1,02-2,43 (13H), 1,12 (3H), 1,21 (3H), 1,71 (3H), 2,56 (1H), 3,01 (1H), 3,77 (1H), 4,31 (1H), 4,39 (1H), 5,19 (1H), 7,16 (1H), 7,24 (1H), 7,76 (1H), 8,09 (1H), 8,59 (1H) ppm.

$^1\text{H-NMR}$ (CDCl_3) von B: $\delta = 0,00\text{-}0,19$ (18H), 0,78-0,97 (33H), 1,00-1,73 (8H), 1,11 (3H), 1,21 (3H), 1,58 (3H), 1,87 (1H), 2,00 (1H), 2,29-2,43 (2H), 2,53 (1H), 2,63 (1H),

3,09 (1H), 3,87 (1H), 4,32 (2H), 5,13 (1H), 6,93 (1H), 7,26 (1H), 7,78 (1H), 8,12 (1H),
8,61 (1H) ppm.

Beispiel 31u

- 5 (3S,6R,7S,8S,12Z,15S,16Z)-6-Ethyl-3,7-bis-[(1,1-dimethylethyl)dimethylsilyl]oxy]-16-chlor-15-hydroxy-5-oxo-4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-diensäure

In Analogie zu Beispiel 17w setzt man 111 mg (128 µmol) der nach Beispiel 31t dargestellten Verbindung A um und isoliert nach Aufarbeitung 105 mg (max. 128 µmol)
10 der Titelverbindung als als Rohprodukt, das man ohne Reinigung weiter umsetzt.

Beispiel 31v

- (4S,7R,8S,9S,13Z,16S(Z))-4,8-Bis-[(dimethyl(1,1-dimethylethyl)silyl)oxy]-16-(1-chlor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

15 In Analogie zu Beispiel 17x setzt man 105 mg (max. 128 µmol) der nach Beispiel 31u dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 61 mg (83 µmol, 65%) der Titelverbindung als farbloses Öl.

1H-NMR (CDCl₃): δ = -0,11 (3H), 0,08 (3H), 0,11 (6H), 0,69-1,98 (19H), 0,73 (3H), 0,84 (9H), 0,94 (3H), 1,22 (3H), 1,68 (3H), 2,29 (1H), 2,45 (1H), 2,65 (1H), 2,84 (1H), 3,02 (1H), 3,99 (2H), 5,14 (2H), 6,98 (1H), 7,19 (1H), 7,69 (1H), 7,98 (1H), 8,61 (1H) ppm.

Beispiel 31

- (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

In Analogie zu Beispiel 17 setzt man 61 mg (83 µmol) der nach Beispiel 31v dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 24 mg (47 µmol, 57%) der Titelverbindung als farbloses Öl.

30 1H-NMR (CDCl₃): δ = 0,88 (3H), 1,03 (3H), 1,09 (3H), 1,20-1,92 (7H), 1,36 (3H), 1,86 (3H), 2,24-2,62 (5H), 2,82 (1H), 3,22 (1H), 3,49 (1H), 3,70 (1H), 4,06 (1H), 4,32 (1H), 5,12 (1H), 5,41 (1H), 7,00 (1H), 7,22 (1H), 7,72 (1H), 7,91 (1H), 8,57 (1H) ppm.

Beispiel 32

- 35 (4S,7R,8S,9S,13E,16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

Beispiel 32a

(3S,6R,7S,8S,12E,15S,16Z)-6-Ethyl-3,7-bis-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]-16-chlor-15-hydroxy-5-oxo-4,4,8,12-tetramethyl-17-(2-pyridyl)-heptadeca-12,16-diensäure

5

In Analogie zu Beispiel 17w setzt man 102 mg (118 µmol) der nach Beispiel 31t dargestellten Verbindung B um und isoliert nach Aufarbeitung 92 mg (max. 118 µmol) der Titelverbindung als Rohprodukt, das man ohne Reinigung weiter umsetzt.

10 Beispiel 32b

(4S,7R,8S,9S,13E,16S(Z))-4,8-Bis-[[[dimethyl(1,1-dimethylethyl)silyl]oxy]-16-(1-chlor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

15 In Analogie zu Beispiel 17x setzt man 92 mg (max. 118 µmol) der nach Beispiel 32a dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 62 mg (84 µmol, 72%) der Titelverbindung als farbloses Öl.

20 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,04-0,19$ (12H), 0,78-2,00 (14H), 0,58 (9H), 0,90 (9H), 1,11 (3H), 1,22 (3H), 1,62 (3H), 2,16 (1H), 2,41 (1H), 2,52-2,81 (3H), 2,91 (1H), 3,91 (1H), 4,36 (1H), 5,23 (1H), 5,47 (1H), 6,98 (1H), 7,18 (1H), 7,69 (1H), 7,89 (1H), 8,61 (1H) ppm.

Beispiel 32

(4S,7R,8S,9S,13E,16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-7-ethyl-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

25

In Analogie zu Beispiel 17 setzt man 62 mg (84 µmol) der nach Beispiel 32b dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 17 mg (34 µmol, 40%) der Titelverbindung als farbloses Öl.

30 $^1\text{H-NMR}$ (CDCl_3): $\delta = 0,76$ (1H), 0,83 (3H), 0,99 (3H), 1,02 (3H), 1,28 (3H), 1,37-2,00 (8H), 1,61 (3H), 2,21 (1H), 2,42 (1H), 2,51 (1H), 2,61 (2H), 3,40 (1H), 3,76 (1H), 4,55 (1H), 5,04 (1H), 5,10 (1H), 5,51 (1H), 6,96 (1H), 7,21 (1H), 7,73 (1H), 8,17 (1H), 8,49 (1H) ppm.

Beispiel 33

35 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

In Analogie zu Beispiel 19 setzt man 17 mg (34 µmol) der nach Beispiel 32 dargestellten Verbindung um und isoliert nach Aufarbeitung 23 mg (max. 34 µmol) der Titelverbindungen als farbloses Öl.

5

Beispiel 34

(1S,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion (A)

und (1R,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion (B)

10 In Analogie zu Beispiel 17 setzt man 23 mg (max. 34 µmol) der nach Beispiel 32 dargestellten Verbindungen um und isoliert nach Aufarbeitung und Reinigung 3,6 mg (6,9 µmol, 20,3 %) der Titelverbindung A sowie 4,9 mg (9,4 µmol, 27,7 %) der
15 Titelverbindung B jeweils als farbloses Öl.

¹H-NMR (CDCl₃) von A: δ = 0,85 (3H), 0,95 (3H), 1,08 (3H), 1,24 (3H), 1,37 (3H), 1,72-1,95 (3H), 2,24 (2H), 2,50-2,64 (2H), 2,98 (1H), 3,23 (1H), 3,30 (1H), 3,69 (1H), 4,07 (1H), 4,34 (1H), 5,64 (1H), 7,07 (1H), 7,23 (1H), 7,73 (1H), 7,97 (1H), 8,58 (1H) ppm.

1H-NMR (CDCl₃) von B: δ = 0,87 (3H), 0,97 (3H), 1,04 (3H), 1,29 (3H), 1,37 (3H), 1,75-2,09 (6H), 2,40 (1H), 2,54 (2H), 2,87 (1H), 3,38 (1H), 3,80 (1H), 4,20 (1H), 4,47 (1H),
20 5,61 (1H), 7,11 (1H), 7,23 (1H), 7,76 (1H), 8,10 (1H), 8,57 (1H) ppm.

Patentanspruch

5 1. Epothilon-Derivate der allgemeinen Formel I

I,

worin

- 10 R^{1a}, R^{1b} gleich oder verschieden sind und Wasserstoff, C₁-C₁₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl, oder gemeinsam eine -(CH₂)_m-Gruppe mit m = 2, 3, 4 oder 5,
- R^{2a}, R^{2b} gleich oder verschieden sind und Wasserstoff, C₁-C₁₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl oder gemeinsam eine -(CH₂)_n-Gruppe mit n = 2, 3, 4 oder 5
- R^3 Wasserstoff, C₁-C₁₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl,
- 15 G ein Sauerstoffatom oder eine Gruppe -CH₂,
- R^{4a}, R^{4b} gleich oder verschieden sind und Wasserstoff, C₁-C₁₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl oder gemeinsam eine -(CH₂)_p-Gruppe mit p = 2, 3, 4 oder 5,
- D-E eine Gruppe
- $\text{H}_2\text{C}-\text{CH}_2$, $\text{HC}=\text{CH}$, $\text{C}\equiv\text{C}$, $\text{HC}-\text{CH}(\text{O})$, $\begin{array}{c} \text{HO} \\ | \\ \text{C}-\text{C} \\ | \\ \text{H} \end{array}$, $\begin{array}{c} \text{HO} \\ | \\ \text{C}-\text{C} \\ | \\ \text{H} \end{array}$, $\begin{array}{c} \text{H} \\ | \\ \text{C}-\text{C} \\ | \\ \text{H} \end{array}$, $\begin{array}{c} \text{H} \\ | \\ \text{C}-\text{C} \\ | \\ \text{H} \end{array}$, $\text{H}_2\text{C}-\text{OH}-\text{CH}_2$,
- 20 R^5 Wasserstoff, C₁-C₁₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl, CO₂H, CO₂-Alkyl, CH₂OH, CH₂O-Alkyl, CH₂O-Acyl, CN, CH₂NH₂, CH₂N(Alkyl, Acyl)_{1,2}, CH₂Hal
- R^6, R^7 je ein Wasserstoffatom, gemeinsam eine zusätzliche Bindung oder ein Sauerstoffatom,
- R^8 ein Halogenatom oder eine Cyanogruppe,

X ein Sauerstoffatom, zwei Alkoxygruppen OR²³, eine C₂-C₁₀-Alkylen- α,ω -dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR⁹ oder eine Gruppierung CR¹⁰R¹¹,

wobei

5 R²³ für einen C₁-C₂₀-Alkylrest,

R⁹ für Wasserstoff oder eine Schutzgruppe PG^X,

R¹⁰, R¹¹ gleich oder verschieden sind und für Wasserstoff, einen C₁-C₂₀-Alkyl-, Aryl-, C₇-C₂₀-Aralkylrest oder R¹⁰ und R¹¹ zusammen mit dem Methylenkohlen-

10 stoffatom gemeinsam für einen 5- bis 7-gliedrigen carbocyclischen Ring

stehen,

T-Y eine Gruppe O-C(=O), O-CH₂, CH₂C(=O), NR²⁴-C(=O), NR²⁴-SO₂,

R²⁴ Wasserstoff, C₁-C₁₀-Alkyl,

15 Z ein Sauerstoffatom oder H/OR¹²,

wobei

R¹² Wasserstoff oder eine Schutzgruppe PG^Z ist,

bedeuten.

20

2. Verbindungen nach Anspruch 1, worin R⁸ ein Fluoratom ist.

25 3. Verbindungen nach Anspruch 1, worin R⁸ ein Chloratom ist.

4. Verbindungen nach Anspruch 1, worin R^{2a} eine Methyl-, Ethyl- oder Propylgruppe bedeuten.

30

5. Verbindungen nach Anspruch 2, worin R^{2a} ein Methyl-, Ethyl- oder Propylgruppe bedeuten.

6. Verbindungen nach Anspruch 3, worin R^{2a} eine Methyl-, Ethyl- oder Propylgruppe bedeuten

5

7. Verbindungen nach Anspruch 1, worin R^{1a} und R^{1b} gemeinsam eine Trimethylengruppe bedeuten.

10 8. Verbindungen nach Anspruch 2, worin R^{1a} und R^{1b} gemeinsam eine Trimethylengruppe bedeuten..

9. Verbindungen nach Anspruch 3, worin R^{1a} und R^{1b} gemeinsam eine Trimethylengruppe bedeuten.

15

10. Verbindungen nach Anspruch 1, worin R^{1a} und R^{1b} je eine Methylgruppe bedeuten.

20 11. Verbindungen nach Anspruch 2, worin R^{1a} und R^{1b} je eine Methylgruppe bedeuten.

12. Verbindungen nach Anspruch 3, worin R^{1a} und R^{1b} je eine Methylgruppe bedeuten.

25

13. Verbindungen nach Anspruch 1, worin R^{10/R11} für 2-Pyridylrest/Wasserstoff stehen.

30 14. Verbindungen nach Anspruch 2, worin R^{10/R11} für 2-Pyridylrest/Wasserstoff stehen.

15. Verbindungen nach Anspruch 3, worin R^{10/R11} für 2-

35 Pyridylrest/Wasserstoff stehen.

16. Verbindungen nach Anspruch 1, worin R¹⁰/R¹¹ für 2-Methyl-4-thiazolylrest/Wasserstoff stehen.

5

17. Verbindungen nach Anspruch 2, worin R¹⁰/R¹¹ für 2-Methyl-4-thiazolylrest/Wasserstoff stehen.

10

18. Verbindungen nach Anspruch 3, worin R¹⁰/R¹¹ für 2-Methyl-4-thiazolylrest/Wasserstoff stehen.

15 19. Verbindungen nach Anspruch 1, worin R¹⁰/R¹¹ für 2-Hydroxymethyl-4-thiazolylrest/Wasserstoff oder 2-Methyl-4-oxazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-oxazolylrest/Wasserstoff stehen.

20 20. Verbindungen nach Anspruch 2, worin R¹⁰/R¹¹ für 2-Hydroxymethyl-4-thiazolylrest/Wasserstoff oder 2-Methyl-4-oxazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-oxazolylrest/Wasserstoff stehen.

25 21. Verbindungen nach Anspruch 3, worin R¹⁰/R¹¹ für 2-Hydroxymethyl-4-thiazolylrest/Wasserstoff oder 2-Methyl-4-oxazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-oxazolylrest/Wasserstoff stehen.

30 22. Verbindungen nach Anspruch 1, worin T-Y eine Gruppe O-C(=O) ist.

23. Verbindungen nach Anspruch 2, worin T-Y eine Gruppe O-C(=O) ist.

24. Verbindungen nach Anspruch 3, worin T-Y eine Gruppe O-C(=O) ist.

25. Verbindungen nach Anspruch 1, worin T-Y eine Gruppe NR²⁴-C(=O) mit R²⁴ in der bereits angegebenen Bedeutung ist.

26. Verbindungen nach Anspruch 2, worin T-Y eine Gruppe NR²⁴-C(=O) mit R²⁴ in der bereits angegebenen Bedeutung ist.

10

27. Verbindungen nach Anspruch 3, worin T-Y eine Gruppe NR²⁴-C(=O) mit R²⁴ in der bereits angegebenen Bedeutung ist.

15

28. Verbindungen nach Anspruch 1, worin G eine Methylengruppe ist.

29. Verbindungen nach Anspruch 2, worin G eine Methylengruppe ist.

20

30. Verbindungen nach Anspruch 3, worin G eine Methylengruppe ist.

25 31. Verbindungen nach Anspruch 1, worin Z ein Sauerstoffatom ist.

32. Verbindungen nach Anspruch 2, worin Z ein Sauerstoffatom ist.

30

33. Verbindungen nach Anspruch 3, worin Z ein Sauerstoffatom ist.

34. Verbindungen nach Anspruch 1, worin -D-E- für eine Ethylengruppe st. ht.

35

35. Verbindungen nach Anspruch 2, worin -D-E- für eine Ethylengruppe steht.

5 36. Verbindungen nach Anspruch 3, worin -D-E- für eine Ethylengruppe steht.

37. Verbindungen nach Anspruch 1, worin R³ für ein Wasserstoffatom steht.

10

38. Verbindungen nach Anspruch 2, worin R³ für ein Wasserstoffatom steht.

39. Verbindungen nach Anspruch 3, worin R³ für ein Wasserstoffatom steht.

15

40. Verbindungen nach Anspruch 1, worin R^{4a}/R^{4b} für H/CH₃ stehen.

20 41.

Verbindungen nach Anspruch 2, worin R^{4a}/R^{4b} für H/CH₃ stehen.

42. Verbindungen nach Anspruch 3, worin R^{4a}/R^{4b} für H/CH₃ stehen.

25

43. Verbindungen nach Anspruch 2, worin R^{2a}/R^{2b} für Methyl oder Ethyl/Wasserstoff stehen.

30

44. Verbindungen nach Anspruch 3, worin R^{2a}/R^{2b} für Methyl oder Ethyl/Wasserstoff stehen.

45. Verbindungen nach Anspruch 8, worin R^{2a}/R^{2b} für Methyl oder Ethyl/Wasserstoff stehen.

35

46. Verbindungen nach Anspruch 9, worin R^{2a}/R^{2b} für Methyl oder Ethyl/Wasserstoff stehen.

5

47. Verbindungen nach Anspruch 8, worin R¹⁰/R¹¹ für für 2-Pyridylrest/Wasserstoff oder 2-Methyl-4-thiazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-thiazolylrest/Wasserstoff oder 2-Methyl-4-oxazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-oxazolylrest/Wasserstoff stehen.

10

48. Verbindungen nach Anspruch 9, worin R¹⁰/R¹¹ für für 2-Pyridylrest/Wasserstoff oder 2-Methyl-4-thiazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-thiazolylrest/Wasserstoff oder 2-Methyl-4-oxazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-oxazolylrest/Wasserstoff stehen.

15

49. Verbindungen nach Anspruch 11, worin R¹⁰/R¹¹ für für 2-Pyridylrest/Wasserstoff oder 2-Methyl-4-thiazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-thiazolylrest/Wasserstoff oder 2-Methyl-4-oxazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-oxazolylrest/Wasserstoff stehen.

20

50. Verbindungen nach Anspruch 12, worin R¹⁰/R¹¹ für für 2-Pyridylrest/Wasserstoff oder 2-Methyl-4-thiazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-thiazolylrest/Wasserstoff oder 2-Methyl-4-oxazolylrest/Wasserstoff oder 2-Hydroxymethyl-4-oxazolylrest/Wasserstoff stehen.

25

30

51. Verbindungen nach Anspruch 47, worin R^{2a}/R^{2b} für Methyl oder Ethyl/Wasserstoff stehen.

52. Verbindungen nach Anspruch 48, worin R^{2a}/R^{2b} für Methyl oder Ethyl/Wasserstoff stehen.

5 53. Verbindungen nach Anspruch 49, worin R^{2a}/R^{2b} für Methyl oder Ethyl/Wasserstoff stehen.

10 54. Verbindungen nach Anspruch 50, worin R^{2a}/R^{2b} für Methyl oder Ethyl/Wasserstoff stehen.

55. Verbindungen der allgemeinen Formel I, nämlich

15 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4-thiazoly)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

20 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazoly)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazoly)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

25 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazoly)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

30 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

5 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

10 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

15 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

20 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[4.1.0]heptadecan-5,9-dion

25 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-oxabicyclo[4.1.0]heptadecan-5,9-dion

30 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-1-aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

5 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

10 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

15 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

20 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazoly)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazoly)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

25 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-methyl-4-thiazoly)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

30 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazoly)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyloxazol-4-yl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

5 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-

methyloxazol-4-yl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

10 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

15 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

20 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-pyridyl)ethenyl)-

25 8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

30 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

35 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

35 dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl)-thyloxazol-4-yl)ethenyl)-1-aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyloxazol-4-

5 yl)ethenyl)-8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-methyloxazol-4-yl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

10 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-methyloxazol-4-yl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-

oxabicyclo[4.1.0]heptadecan-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-

15 aza-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-pyridyl)ethenyl)-

8,8,10,12,16-pentamethyl-4-aza-17-oxabicyclo[4.1.0]heptadecan-5,9-dion

20 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-aza-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-10-ethyl-3-(1-chlor-2-(2-

pyridyl)ethenyl)-8,8,12,16-tetramethyl-4-aza-17-oxabicyclo[4.1.0]heptadecan-5,9-dion

25

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

30 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[4.1.0]hepta-deca-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-thyl-16-(1-fluor-2-

35 (2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethyl n)-4,17-dioxabicyclo[14.1.0]hepta-decan-5,9-dion

5 4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

10 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-deca-5,9-dion

15 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

20 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-decan-5,9-dion

25 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

30 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-deca-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

35 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-decan-5,9-dion

4S,7R,8S,9S,13(Z oder E),16S(Z)-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

5 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-deca-5,9-dion

10 (4S,7R,8S,9S,13(Z oder E),16S(Z)-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-aza-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]heptadecan-5,9-dion

15 (4S,7R,8S,9S,13(Z oder E),16S(Z)-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

20 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-pyridyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-deca-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z)-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

25 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion

30 4S,7R,8S,9S,13(Z oder E),16S(Z)-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-aza-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-fluor-2-(2-pyridyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-deca-5,9-dion

35 (4S,7R,8S,9S,13(Z oder E),16S(Z)-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-aza-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethenyl)-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-decan-5,9-dion

5

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-oxa-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

10 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-pyridyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-deca-5,9-dion

(4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

15 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-chlor-2-(2-pyridyl)ethenyl)-8,8-(1,3-trimethylen)-4,17-dioxabicyclo[14.1.0]hepta-decan-5,9-dion

20 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-aza-7,9,13-trimethyl-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

(1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-3-(1-chlor-2-(2-pyridyl)ethenyl)-10,12,16-trimethyl-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-deca-5,9-dion

25 (4S,7R,8S,9S,13(Z oder E),16S(Z))-4,8-Dihydroxy-9,13-dimethyl-7-ethyl-16-(1-chlor-2-(2-pyridyl)ethenyl)-1-aza-5,5-(1,3-trimethylen)cyclohexadec-13-en-2,6-dion

30 (1RS,3S(Z),7S,10R,11S,12S,16RS)-7,11-Dihydroxy-12,16-dimethyl-10-ethyl-3-(1-chlor-2-(2-pyridyl)ethenyl)-8,8-(1,3-trimethylen)-4-aza-17-oxabicyclo[14.1.0]hepta-decan-5,9-dion

56. Pharmazeutische Präparate, enthaltend mindestens eine Verbindung der allgemeinen Formel I gemäß einem der vorstehenden Ansprüche 1 bis 55 sowie einen pharmazeutisch verträglichen Träger.

57. Verwendung der Verbindungen der allgemeinen Formel I gemäß den vorstehenden Ansprüchen 1 bis 55 zur Herstellung von Arzneimitteln.

5

58. Zwischenprodukte der allgemeinen Formel C

worin

- 10 $R^{8'}$ die in der allgemeinen Formel I für R^8 genannte Bedeutung hat und
 $R^{7'}$ ein Wasserstoffatom,
 T' eine Gruppe OR^{20} , wobei R^{20} ein Wasserstoffatom oder eine Schutzgruppe PG^2 ist, ein Halogenatom, vorzugsweise ein Brom- oder Iod-Atom, eine Azido- oder eine geschützte Aminogruppe,
- 15 R^{21} eine Hydroxygruppe, Halogen, eine geschützte Hydroxygruppe OPG^3 , ein Phosphoniumhalogenidrest $PPh_3^+Hal^-$ (Ph = Phenyl; Hal = F, Cl, Br, I), ein Phosphonatrest $P(O)(OQ)_2$ (Q = C₁-C₁₀-Alkyl oder Phenyl) oder ein Phosphinoxidrest $P(O)Ph_2$ (Ph = Phenyl),
- U ein Sauerstoffatom, zwei Alkoxygruppen OR^{23} , eine C₂-C₁₀-Alkylen- α,ω -dioxygruppe, die geradkettig oder verzweigt sein kann, H/ OR^9 oder eine Gruppierung $CR^{10}R^{11}$,
 wobei
 R^{23} für einen C₁-C₂₀-Alkylrest,
 R^9 für Wasserstoff oder eine Schutzgruppe PG^3 ,
- 25 R^{10}, R^{11} gleich oder verschieden sind und für Wasserstoff, einen C₁-C₂₀-Alkyl-, Aryl-, C₇-C₂₀-Aralkylrest oder
 R^{10} und R^{11} zusammen mit dem Methylenkohlenstoffatom gemeinsam für einen 5- bis 7-gliedrigen carbocyclischen Ring stehen,
 bed. unten.

59. Zwischenprodukte der allgemeinen Form I BC

worin R^3 , R^{4a} , R^{4b} , R^5 , R^8 , D, E, G, T' und U die bereits genannten Bedeutungen haben und PG¹⁴ ein Wasserstoffatom oder eine Schutzgruppe PG darstellt.

10

60. Zwischenprodukte der allgemeinen Formel ABC

15

worin $R^{1a'}$, $R^{1b'}$, $R^{2a'}$, $R^{2b'}$, R^3 , $R^{4a'}$, $R^{4b'}$, R^5 , R^6 , R^7 , R^8 , R^{13} , R^{14} , D, E, G, T', U und Z die bereits genannten Bedeutungen haben.

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
24. August 2000 (24.08.2000)

PCT

(10) Internationale Veröffentlichungsnummer
WO 00/49021 A3

(51) Internationale Patentklassifikation⁷: C07D 417/06,
493/04, 405/06, A61K 31/427, 31/4427, A61P 35/00 //
(C07D 493/04, 313:00, 303:00)

(21) Internationales Aktenzeichen: PCT/EP00/01333

(22) Internationales Anmeldedatum:
18. Februar 2000 (18.02.2000)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
199 08 765.2 18. Februar 1999 (18.02.1999) DE
199 54 230.9 4. November 1999 (04.11.1999) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): SCHERRING AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, D-13353 Berlin (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): KLAR, Ulrich [DE/DE]; Isegrimstrasse 8a, D-13503 Berlin (DE).

SKUBALLA, Werner [DE/DE]; Mattersburger Weg 12, D-13465 Berlin (DE). BUCHMANN, Bernd [DE/DE]; Erdmannstrasse 44, D-16540 Hohen Neuendorf (DE). SCHWEDE, Wolfgang [DE/DE]; Klosterheider Weg 35, D-13467 Berlin (DE). SCHIRNER, Michael [DE/DE]; Eichenstrasse 51, D-13156 Berlin (DE).

(81) Bestimmungsstaaten (*national*): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:
— Mit internationalem Recherchenbericht.

[Fortsetzung auf der nächsten Seite]

(54) Title: 16-HALOGEN-EPOTHILONE DERIVATIVES, METHOD FOR PRODUCING THEM AND THEIR PHARMACEUTICAL USE

(54) Bezeichnung: 16-HALOGEN-EPOTHILON-DERIVATE, VERFAHREN ZU DEREN HERSTELLUNG UND IHRE PHARMAZEUTISCHE VERWENDUNG

(I)

WO 00/49021 A3

(57) Abstract: The invention relates to novel epothilone derivatives of general formula (I), wherein R⁸ means a halogen atom, especially a fluorine or chlorine atom, and the remaining substituents have the meanings given in the description. The novel compounds are suitable for producing medicaments.

(57) Zusammenfassung: Die vorliegende Erfindung beschreibt die neuen Epothil n-Derivate der allgemeinen Formel (I), worin R⁸ ein Halogenatom, insbesondere ein Fluor- oder Chloratom, bedeutet, sowie die übrigen Substituenten die in der Beschreibung angegebene Bedeutung haben. Die neuen Verbindungen sind zur Herstellung von Arzneimitteln geeignet.

— Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 28. Dezember 2000

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP 00/01333

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D417/06 C07D493/04 C07D405/06 A61K31/427 A61K31/4427 A61P35/00 // (C07D493/04, 313:00, 303:00)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

CHEM ABS Data, EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 353 732 A (CIBA-GEIGY A.-G., SWITZ.) 7 February 1990 (1990-02-07) page 34; examples D9, D11 page 38; example D29	56-60
X	EP 0 435 843 A (MONSANTO CO., USA) 3 July 1991 (1991-07-03) page 9 -page 10; examples B6-B15	56-60
X	CRICH, DAVID ET AL: "Asymmetric synthesis of a taxol C-ring by aldol condensation and radical cyclization" TETRAHEDRON (1997), 53(21), 7127-7138 , XP004105693 page 7130	57-60

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

20 October 2000

Date of mailing of the International search report

07/11/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3018

Authorized officer

Paisdor, B

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP 00/01333

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	NAGASAWA, KAZUO ET AL: "An efficient asymmetric synthesis of 1. α ,25-(OH)2 vitamin D3 A-ring synthon" J. ORG. CHEM. (1993), 58(9), 2523-9 , XP002150715 page 2524; figure IV page 2525; figures —	56-60
X	ALLMENDINGER, THOMAS ET AL: "Fluoroolefin dipeptide isosteres. II. Enantioselective synthesis of both antipodes of the Phe-Gly dipeptide mimic" TETRAHEDRON LETT. (1990), 31(50), 7301-4 , XP002150716 page 7302 —	56-60
A	WO 99 07692 A (KLAR ULRICH ;SCHERING AG (DE); BUCHMANN BERND (DE); SKUBALLA WERNE) 18 February 1999 (1999-02-18) cited in the application abstract; claims —	1,56,57
A	WO 98 25929 A (CIBA GEIGY AG ;SARABIA FRANCISCO (ES); VALLBERG HANS (SE); NICOLAO) 18 June 1998 (1998-06-18) abstract; claims —	1,56,57
P,A	WO 00 00485 A (KLAR ULRICH ;SCHERING AG (DE); BUCHMANN BERND (DE); MENRAD ANDREAS) 6 January 2000 (2000-01-06) abstract; claims 1,14-18 examples page 41 —	1,56-60

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/01333

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 0353732	A 07-02-1990	JP 2091051 A		30-03-1990
EP 0435843	A 03-07-1991	AT 107303 T AU 624034 B AU 6840290 A BR 9006587 A CA 2033040 A CN 1053428 A DE 69009962 D DE 69009962 T DK 435843 T ES 2025033 T FI 906362 A HU 58719 A JP 8319285 A JP 5320156 A JP 7035380 B NO 905555 A NZ 236591 A OA 9338 A PL 288492 A US 5129943 A ZA 9010359 A ZM 5590 A ZW 20390 A		15-07-1994 28-05-1992 01-08-1991 01-10-1991 28-06-1991 31-07-1991 21-07-1994 15-12-1994 04-07-1994 01-10-1994 28-06-1991 30-03-1992 03-12-1996 03-12-1993 19-04-1995 28-06-1991 25-09-1992 15-09-1992 23-03-1992 14-07-1992 24-12-1991 30-08-1991 19-06-1991
WO 9907692	A 18-02-1999	DE 19735574 A DE 19735575 A DE 19735578 A DE 19748928 A DE 19749717 A DE 19751200 A DE 19813821 A AU 9340998 A EP 1005465 A		11-02-1999 11-02-1999 11-02-1999 29-04-1999 06-05-1999 20-05-1999 23-09-1999 01-03-1999 07-06-2000
WO 9825929	A 18-06-1998	AU 5757798 A BR 9714140 A CN 1246862 A EP 0944634 A		03-07-1998 29-02-2000 08-03-2000 29-09-1999
WO 0000485	A 06-01-2000	DE 19830060 A AU 5036999 A		10-02-2000 17-01-2000

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 00/01333

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 C07D417/06 C07D493/04 C07D405/06 A61K31/427 A61K31/4427
 A61P35/00 // (C07D493/04, 313:00, 303:00)

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchiertes Mindestprästoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 C07D A61K A61P

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

CHEM ABS Data, EPO-Internal, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 353 732 A (CIBA-GEIGY A.-G., SWITZ.) 7. Februar 1990 (1990-02-07) Seite 34; Beispiele D9, D11 Seite 38; Beispiel D29	56-60
X	EP 0 435 843 A (MONSANTO CO., USA) 3. Juli 1991 (1991-07-03) Seite 9 -Seite 10; Beispiele B6-B15	56-60
X	CRICH, DAVID ET AL: "Asymmetric synthesis of a taxol C-ring by aldol condensation and radical cyclization" TETRAHEDRON (1997), 53(21), 7127-7138 , XP004105693 Seite 7130	57-60

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzipieller oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

20. Oktober 2000

07/11/2000

Name und Postanschrift der Internationalen Recherchenbehörde
 Europäisches Patentamt, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Paisdor, B

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 00/01333

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	NAGASAWA, KAZUO ET AL: "An efficient asymmetric synthesis of 1.alpha.,25-(OH) ₂ vitamin D ₃ A-ring synthon" J. ORG. CHEM. (1993), 58(9), 2523-9 , XP002150715 Seite 2524; Abbildung IV Seite 2525; Abbildungen	56-60
X	ALLMENDINGER, THOMAS ET AL: "Fluoroolefin dipeptide isosteres. II. Enantioselective synthesis of both antipodes of the Phe-Gly dipeptide mimic" TETRAHEDRON LETT. (1990), 31(50), 7301-4 , XP002150716 Seite 7302	56-60
A	WO 99 07692 A (KLAR ULRICH ;SCHERING AG (DE); BUCHMANN BERND (DE); SKUBALLA WERNE) 18. Februar 1999 (1999-02-18) in der Anmeldung erwähnt Zusammenfassung; Ansprüche	1,56,57
A	WO 98 25929 A (CIBA GEIGY AG ;SARABIA FRANCISCO (ES); VALLBERG HANS (SE); NICOLAO) 18. Juni 1998 (1998-06-18) Zusammenfassung; Ansprüche	1,56,57
P,A	WO 00 00485 A (KLAR ULRICH ;SCHERING AG (DE); BUCHMANN BERND (DE); MENRAD ANDREAS) 6. Januar 2000 (2000-01-06) Zusammenfassung; Ansprüche 1,14-18 Beispiele Seite 41	1,56-60

INTERNATIONAL RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 00/01333

Im Rech rchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0353732	A	07-02-1990	JP	2091051 A		30-03-1990
EP 0435843	A	03-07-1991	AT	107303 T		15-07-1994
			AU	624034 B		28-05-1992
			AU	6840290 A		01-08-1991
			BR	9006587 A		01-10-1991
			CA	2033040 A		28-06-1991
			CN	1053428 A		31-07-1991
			DE	69009962 D		21-07-1994
			DE	69009962 T		15-12-1994
			DK	435843 T		04-07-1994
			ES	2025033 T		01-10-1994
			FI	906362 A		28-06-1991
			HU	58719 A		30-03-1992
			JP	8319285 A		03-12-1996
			JP	5320156 A		03-12-1993
			JP	7035380 B		19-04-1995
			NO	905555 A		28-06-1991
			NZ	236591 A		25-09-1992
			OA	9338 A		15-09-1992
			PL	288492 A		23-03-1992
			US	5129943 A		14-07-1992
			ZA	9010359 A		24-12-1991
			ZM	5590 A		30-08-1991
			ZW	20390 A		19-06-1991
WO 9907692	A	18-02-1999	DE	19735574 A		11-02-1999
			DE	19735575 A		11-02-1999
			DE	19735578 A		11-02-1999
			DE	19748928 A		29-04-1999
			DE	19749717 A		06-05-1999
			DE	19751200 A		20-05-1999
			DE	19813821 A		23-09-1999
			AU	9340998 A		01-03-1999
			EP	1005465 A		07-06-2000
WO 9825929	A	18-06-1998	AU	5757798 A		03-07-1998
			BR	9714140 A		29-02-2000
			CN	1246862 A		08-03-2000
			EP	0944634 A		29-09-1999
WO 0000485	A	06-01-2000	DE	19830060 A		10-02-2000
			AU	5036999 A		17-01-2000