3 DE NOVIEMBRE - 5 DE NOVIEMBRE

Controlador LQG para estabilización de vehículo auto-equilibrado de dos ruedas

Gonzalo Gabriel Fernández*, Rodrigo Gonzalez (Asesor)*†

* Ingeniería en Mecatrónica, Universidad Nacional de Cuyo. Mendoza, Argentina † GridTICs, Universidad Tecnológica Nacional, Mendoza, Argentina

Abstract—En el presente trabajo se expone el modelo matemático de un vehículo de dos ruedas auto-equilibrado y el diseño de un controlador lineal cuadrático gaussiano LQG, para la estabilización y seguimiento de consignas de traslación. Además, se prove un análisis de desempeño del controlador ante ángulos iniciales distintos de 0 y fuerzas de empuje sobre el vehículo.

Keywords—control óptimo; regulador lineal cuadrático; filtro de Kalman; control lineal cuadrático gaussiano; péndulo invertido

Introducción

Se modela matemáticamente un vehículo de dos ruedas auto-equilibrado (Fig. 1). Se propone un controlador óptimo gaussiano LQG, y se evalúan resultados con simulación dinámica del modelo.

Fig 1. Sesquema simplificado del vehículo

Método

- Definición de requerimientos del controlador
- Obtención de modelo dinámico del vehículo mediante formulación lagrangiana y linealización para modelo LTI.
- Descripción matemático de sensores: Encoder incremental, giróscopo y acelerómetro.
- Análisis de controlabilidad y obtención de regulador LQR, utilizando como primer ajuste ponderación diagonal y regla de Bryson.
- Análisis de observabilidad y obtención de filtro de Kalman utilizando como primer ajuste las varianzas de los sensores.
- Evaluación de resultados a nivel simulación en base a los requerimientos iniciales.

Fig 2. Acción de control asociada a consigna sinusoidal.

Resultados

En la Fig. 3 se observa el seguimiento de posición sinusoidal respetando las toleracncias impuestas, en la Fig. 2 la acción de control asociada dentro de los límites máximos admitidos.

Fig 3. Seguimiento de consigna del modelo no lineal con controlador LQR y filtro de Kalman

El máximo ángulo al que el controlador puede estabilizar el vehículo es 29° y la máxima fuerza de empuje estabilizable es de 3,7N.

Conclusiones

Se implementó un controlador LQG que al interactuar con el modelo no lineal del vehículo se desempeña adecuadamente cumpliendo los requerimientos impuestos.

Referencias

- [1] R. Gonzalez, "Modelado de sistemas físicos" Apuntes de la cátedra de Control y Sistemas, Facultad de Ingeniería, Universidad Nacional de Cuyo, 2020.
- [2] Z. Ogata, *Modern Control Engineering*. Pearson Education, fourth ed., 2002.
- [3] L. Tan and J. Jiang, *Digital Signal Processing*. Katey Birtcher, third ed., 2019.
- [4] A. E. Bryson and Y.-C. Ho, *Applied Optimal Control: Optimization, Estimation, and Control.* Taylor & Francis, 1975.
- [5] B. D. O. Anderson and J. B. Moore, *Optimal Control: Linear Quadratic Methods*. Dover Publications, Inc., 2007.