#### PMPP 2015/16



# Performance Tuning (1)



#### **Course Schedule**



| 12.10.2015 | Introduction to PMPP                                       |
|------------|------------------------------------------------------------|
| 13.10.2015 | Lecture CUDA Programming 1                                 |
| 19.10.2015 | Lecture CUDA Programming 2                                 |
| 20.10.2015 | Lecture CUDA Programming 3                                 |
| 26.10.2015 | Lecture Parallel Basics, Exercise 1 assigned               |
| 27.10.2015 | Questions and Answers (Q&A), S3 19, Room 2.8               |
| 2.11.2015  | Intro Final Proj., Ex. 1 due, Ex. 2 assigned, Lecture PRAM |
| 3.11.2015  | Lecture PRAM (2)                                           |
| 9.11.2015  | Final Projects assigned, L. Parallel Sort., Exercise 2 due |
| 10.11.2015 | Questions and Answers (Q&A)                                |
| 16.11.2015 | Questions and Answers (Q&A)                                |
| 17.11.2015 | Questions and Answers (Q&A)                                |
| 23.11.2015 | 1 <sup>st</sup> Status Presentation Final Projects         |
| 24.11.2015 | 1st Status Presentation Final Projects (continued)         |
| 30.11.2015 | Lecture Design Patterns                                    |
| 1.12.2015  | Questions and Answers (Q&A)                                |
|            |                                                            |

# (Preliminary) Course Schedule



7.12.2015 Lecture Design Patterns (2), Performance Tuning

8.12.2015 Questions and Answers (Q&A)

14.12.2015 Performance Tuning (2)

15.12.2015 Questions and Answers (Q&A)

11.1.2016 2<sup>nd</sup> Status Presentation Final Projects

12.1.2016 2<sup>nd</sup> Status Presentation Final Projects (continued)

18.1.2016 Performance Tuning (3)

19.1.2016

25.1.2016

26.1.2016

1.2.2016

2.2.2016

8.2.2016 Final Presentation Final Projects

9.2.2016 Final Presentation Final Projects (continued)



#### **Overview**



- Instruction Level Parallelism
- Identifying Performance Limiters
  - Instruction Limited Kernels
  - Latency Limited Kernels
  - Bandwidth Limited Kernels
  - Local Memory Optimizations
- Multi GPU Multi Threading
  - Brief review of the scenarios
  - Single CPU process, multiple GPUs
    - GPU selection, UVA, P2P
  - Multiple processes
    - Needs CPU-side message passing
  - Dual-IOH CPU systems and NUMA

Images and slides partially by developer.nvidia.com



## **Instruction Level Parallelism (ILP)**



- It is common to recommend
  - Running more threads per multiprocessor
  - Running more threads per thread block
- Motivation
  - This is the only way to hide latencies
- But...
- Two common fallacies
  - Multithreading is the only way to hide latency on a GPU
  - Shared memory is as fast as register



#### **Arithmetic Latency**



- Latency: Time required to perform an operation
  - ≈20 cycles for arithmetic; 400+ cycles for memory
  - Can't start a dependent operation for this time
  - Can hide by overlapping with other code

```
x = a + b; // takes *20 cycles to execute
y = a + c; // independent, can start any time
(stall)
z = x + d; // dependent, must wait for completion
```

## **Arithmetic Throughput**



- Latency is often confused with throughput
  - E.g. "arithmetic is 100x faster than memory costs 4 cycles per warp (G80), whence memory operation costs 400 cycles"
    - One is rate, another is time
- Throughput: how many operations complete per cycle
  - Arithmetic: 1.3 Tflop/s = 480 ops/cycle (op = multiply-add)
  - Memory: 177 GB/s ≈ 32ops/cycle (op = 32-bit load)
- Little's Law
  - Required Parallelism: Latency x Throughput



#### **Arithmetic Parallelism in Numbers**



| GPU model | Latency<br>(cycles) | Throughput<br>(cores/SM) | Parallelism<br>(ops/SM) |
|-----------|---------------------|--------------------------|-------------------------|
| G80-GT200 | ≈24                 | 8                        | ≈192                    |
| GF100     | ≈18                 | 32                       | ≈576                    |
| GF104     | ≈18                 | 48                       | ≈864                    |
| GF110     | ≈18                 | 32                       | ≈576                    |
| GK110     | ≈12                 | 192                      | ≈2304                   |
| GM200     | ≈8                  | 128                      | ≈1024                   |

- Latency varies between different ops
- Can't get 100% throughput with less parallelism
  - Not enough operations in flight = idle cycles



## **Thread Level Parallelism (TLP)**



It is usually recommended to use threads to supply the needed parallelism, e.g. 192 threads per SM on G80:



4 independent operations



# **Instruction Level Parallelism (ILP)**



But you can also use parallelism among instructions in a single thread:



#### You can use both ILP and TLP on GPU



- This applies to all CUDA-capable GPUs, e.g. G80:
  - Get ≈100% peak with 25% occupancy if no ILP
  - Or with 8% occupancy, if 3 operations from each thread can be concurrently processed
- On GF104 you *must* use ILP to get >66% peak
  - 48 cores/SM, one instruction is broadcasted across 16 cores (half-warp)
  - So must issue 3 instructions per cycle
  - But have only 2 half-warp schedulers
  - Instead, it can issue 2 instructions per half-warp in the same cycle



#### Let's check it experimentally



Do many arithmetic instructions with no ILP:

```
#pragma unroll UNROLL
for (int i = 0; i < N_ITERATIONS; i++)
{
   a = a * b + c;
}</pre>
```

- Choose large N\_ITERATIONS and suitable UNROLL
- Ensure **a**, **b** and **c** are in registers and **a** is use later
- Run 1 block (use 1 SM), vary block size
  - See what fraction of peak (1.3TFLOPS/15) we get (gf100)



# **Experimental results (GTX480)**





■ No ILP, need 576 threads to get 100% utilization



#### **Introduce Instruction Level Parallelism**



Try ILP=2: two independent instructions per thread

```
#pragma unroll UNROLL
for (int i = 0; i < N_ITERATIONS; i++)
{
   a = a * b + c;
   d = d * b + c;
}</pre>
```

If multithreading is the only way to hide latency on GPU, we've got to get the same performance

## **GPUs can hide latency using ILP**





■ ILP=2: need 320 threads to get 100% utilization



#### Add more Instruction Level Parallelism



Try ILP=3: three independent instructions per thread

```
#pragma unroll UNROLL

for (int i = 0; i < N_ITERATIONS; i++)
{
   a = a * b + c;
   d = d * b + c;
   e = e * b + c;
}</pre>
```

How far can we push it?

#### Have more ILP – need fewer threads





■ ILP=3: need 256 threads to get 100% utilization



## Unfortunately doesn't scale past ILP=4





■ ILP=4: need 192 threads to get 100% utilization



## **Hiding Memory Latency**



- Apply same formula but for memory operations
  - Needed parallelism = Latency x Throughput

|            | Latency   | Throughput  | Parallelism |
|------------|-----------|-------------|-------------|
| Arithmetic | ≈18       | 32/SM/cycle | 576 ops/SM  |
| Memory     | < 800 (?) | < 177 GB/s  | < 100 KB    |

- So, hide memory latency = keep 100 KB in flight
  - Less if kernel is compute bound (needs fewer GB/s)



## How many threads is 100 KB?



- Again, there are multiple ways to hide latency
  - Use multiple threads to get 100 KB in flight
  - Use instruction parallelism (more fetches per thread)
  - Use bit-level parallelism (use 64/128-bit fetches)
- Do more work per thread need fewer threads
  - Fetch 4B/thread need 25,000 threads
  - Fetch 100B/thread need 1,000 threads



#### **Empirical Validation**



Copy one float per thread

```
__global__ void memcpy(float *dst, float *src)
{
  int block = blockIdx.x + blockIdx.y * gridDim.x;
  int index = threadIdx.x + block * blockDim.x;

  float a0 = src[index];
  dst[index] = a0;
}
```

Run many blocks, allocate shared memory dynamically to control occupancy

# Copying one float per thread (GTX480)





• Must maximize occupancy to hide latency?



#### How far can we go?



Copy 8 float4 per thread

```
global void memcpy(float *dst, float *src)
int block = blockIdx.x + blockIdx.y * gridDim.x;
int index = threadIdx.x + block * blockDim.x;
index = index * 8;
float4 a[8];
for (int i = 0; i < 8; i++)
  a[i] = src[index + i];
for (int i = 0; i < 8; i++)
  dst[index + i] = a[i];
```

# Copying 8 float4 per thread (GTX480)





87% of peak bandwidth at only 8% occupancy!



# Copying 14 float4 per thread (GTX480)





84% of peak bandwidth at only 4% occupancy!



## **Shared Memory Pitfall**





#### Running fast may require less Occupancy



- Must use registers to run close to the peak
- The larger the bandwidth gap, the more data must come from registers
- This may require many registers = low occupancy
- This often can be accomplished by computing multiple outputs per thread

