HW 10: Sequential Processor for the Term Project

Table of Contents

Initialize

```
clearvars -except function_list pub_opt P_joseph_store x_est_batch P0_est_batch P_
global function_list;
function list = {};
close all
stat_od_proj_init
ObsData = load('ObsData.txt');
consts.Re = Re;
consts.area = draq.A;
consts.rho = compute_density(ri);
consts.theta_dot = theta_dot;
consts.m = drag.m;
consts.state len = 18;
P0 = eye(consts.state_len)*1e6;
P0(7,7) = 1e20;
P0(10:12,10:12) = eye(3)*1e-10;
x0_ap = zeros(consts.state_len,1);
sig_range = 0.01; % m
sig_rangerate = 0.001; %m/s
W = [1/(sig_range*sig_range) 0; 0 1/(sig_rangerate*sig_rangerate)];
R = [(sig range*sig range) 0; 0 (sig rangerate*sig rangerate)];
```

Sequential Processor

```
dt = 0.1;
times = 0:dt:18340;
ode_opts = odeset('RelTol', 1e-12, 'AbsTol', 1e-20);
% for iter = 1:3
[T,X] = ode45(@two_body_state_dot, times, state, ode_opts, propagator_opts);
```

```
% Store off every 20 seconds of data
X_store = X(mod(times, 20) == 0,:);
T_store = T(mod(times, 20) == 0);
[num_obs, ~] = size(ObsData);
chol_P0 = chol(P0,'lower');
P0_inv = chol_P0'\inv(chol_P0);
info_mat = P0_inv;
norm_mat = P0_inv*x0_ap;
H_tilda_given = load('BatchHtilda.mat');
cntr =1 ;
% Obs. deviation
y1 = zeros(num obs, 1);
y2 = zeros(num_obs, 1);
for ii = 1:num_obs
    site_num = 0;
    for jj = 1:3
        if ObsData(ii, 2) == site(jj).id
            site_num = jj;
            break
        end
    end
    t_obs = ObsData(ii,1);
    ostate = X(T(:,1)==t_{obs},1:6);
    r_comp = compute_range_ECFsite(ostate(1:3),...
        site(site_num).r,theta_dot*t_obs);
    rr_comp = compute_range_rate_ECFsite(ostate(1:6),...
        site(site_num).r,theta_dot*t_obs, theta_dot);
    y1(ii) = (ObsData(ii,3)-r\_comp);
    y2(ii) = (ObsData(ii,4)-rr\_comp);
end
% CKF init
x_est = x0_ap;
P = P0;
obs_time_last = ObsData(ii,1);
use_joseph = 0;
if use_joseph
    P_joseph_store = zeros(num_obs,1);
else
    P_trace_store = zeros(num_obs,1);
end
STM_accum = eye(consts.state_len);
% Run CKF
for ii = 1:num_obs
    obs time = ObsData(ii,1);
    obs_site = ObsData(ii,2);
```

```
% STM from last obs to this one.
% Not very efficient, since I'm running the integrator again.
if ii == 1
    STM_obs2obs = eye(consts.state_len);
else
    times_temp = obs_time_last:dt:obs_time;
    last_state = X_store(T_store == ObsData(ii-1,1),:)';
    STM obs2obs = eye(consts.state len);
    % Make the STM reflect an epoch time == the last msmnt time
    last_state(consts.state_len+1:end) = ...
        reshape(STM_obs2obs(1:important_block(1),1:important_block(2)),...
        important_block(1)*important_block(2),1);
    [T_{temp}, X_{temp}] = \dots
        ode45(@two_body_state_dot, times_temp, last_state, ...
        ode_opts, propagator_opts);
    STM_obs2obs(1:important_block(1),1:important_block(2)) = ...
        reshape(X_temp(end,consts.state_len+1:end), ...
        important_block(1), important_block(2));
end
obs_time_last = obs_time;
% Time update
STM accum = STM obs2obs*STM accum;
x_ap = STM_obs2obs*x_est;
P_ap = STM_obs2obs*P*STM_obs2obs';
consts.t = obs_time;
for xx = 1:3
    if site(xx).id == obs site
        consts.site = xx;
        break
    end
end
state_at_obs = X_store(T_store == obs_time,1:consts.state_len);
H_tilda = stat_od_proj_H_tilda(state_at_obs, consts);
% Kalman gain
K = P_ap*H_tilda'/(H_tilda*P_ap*H_tilda'+R);
% Measurement Update
y = [y1(ii);y2(ii)];
x_est = x_ap + K*(y - H_tilda*x_ap);
I = eye(consts.state_len);
if use joseph
    P = (I-K*H\_tilda)*P\_ap*(I-K*H\_tilda)' + K*R*K';
    P_{joseph\_store(ii)} = trace(P(1:3,1:3));
else
    P = (I-K*H_tilda)*P_ap;
    P_trace_store(ii) = trace(P(1:3,1:3));
end
```

end

```
% Estimated state at t=0
STM_18340_0 = eye(consts.state_len);
STM_18340_0(1:important_block(1),1:important_block(2)) = ...
    reshape(X_store(end,consts.state_len+1:end), ...
    important_block(1), important_block(2));
est_x0 = STM_18340_0\x_est;

% Result of accumulated STM
Phi_given = load('BatchPhi.mat');
relDiffSTMend = abs((STM_accum-Phi_given.Phi_t18340)./Phi_given.Phi_t18340);
figure
hist(reshape(log10(relDiffSTMend(1:6, 1:9)),6*9,1))
title('I(18340,0) Matrix relative diff histogram.')
xlabel('Exponent')
ylabel('Num Elements')
```

Warning: Matrix is close to singular or badly scaled. Results may be inacc

Compare results with Online Solution and Batch Solution

The relative difference between CKF and the online solution is worse than the batch-vs-online difference. I suspect it has to do with the usage and update of the covariance matrix at each step, since it's not well-conditioned.

HW 10: Sequential Processor for the Term Project

```
% Covariance matrix rel diffs from batch soln
% relDiffCov = abs((STM accum\P/(STM accum')-P0 est batch)./P0 est batch);
% figure
% hist(reshape(log10(relDiffCov),18*18,1))
% title('P Matrix relative diff histogram.')
% xlabel('Exponent')
% ylabel('Num Elements')
format long
est_x_18340 = x_est
est_x0
% Compare with online answers
x hat given = load('BatchXhat');
x_diff = abs((est_x0 - x_hat_given.xhat_pass1)./x_hat_given.xhat_pass1);
fprintf('Estimated State Deviation Error with online answers\n')
for ii = 1:consts.state_len
    fprintf('%.0e\n',x_diff(ii))
end
fprintf('\n')
% Compare with batch-derived state.
x_diff = abs((est_x0 - x_est_batch)./x_est_batch);
fprintf('Estimated State Deviation Error with batch solution\n')
for ii = 1:consts.state len
    fprintf('%.0e\n',x_diff(ii))
end
        est_x_18340 =
           1.0e+06 *
          -0.000587587573647
          -0.001075141074919
           0.001887072629805
           0.000000417695298
           0.000001990050205
           0.000001226254719
          -8.942208560827096
          -0.000000000000656
           0.000000155506456
           0.00000000001829
           0.00000000001353
          -0.000000000000249
          -0.000010552784646
           0.000009947713568
           0.000005797860704
          -0.000005750500009
           0.000002291907091
           0.000001485087375
        est_x0 =
```

```
1.0e+06 *
   0.000000003676901
  -0.000000315587998
  -0.000000145958197
   0.000000040901421
   0.000000032792862
  -0.000000014735473
  -8.942208560827096
  -0.000000000000656
   0.000000155506456
   0.00000000001829
   0.00000000001353
  -0.000000000000249
  -0.000010552784646
   0.000009947713568
   0.000005797860704
  -0.000005750500009
   0.000002291907091
   0.000001485087375
Estimated State Deviation Error with online answers
1e+00
2e-01
2e-01
8e-04
1e-03
1e-03
5e-02
2e-03
5e-02
2e-02
2e-02
2e-02
1e-03
4e-03
6e-04
5e-03
2e-02
2e-02
Estimated State Deviation Error with batch solution
1e+00
2e-01
2e-01
8e-04
1e-03
1e-03
6e-02
2e-03
5e-02
2e-02
2e-02
```

2e-02

1e-03 4e-03 6e-04 5e-03 2e-02 2e-02

Covariance Matrix Traces

The Joseph formulation follows the same basic shape of the regular Kalman P formulation, but is generally slightly larger. The Joseph formulation will better consider measurements because of this.

```
figure
semilogy(ObsData(:,1),abs(P_trace_store))
hold on
semilogy(ObsData(:,1),abs(P_joseph_store),'r')
legend('Kalman P trace', 'Joseph P trace')
title('Traces of Covariance Matrix')
xlabel('Measurement'), ylabel('Position Variance Trace (m^2)')
```


Error Ellipsoid

```
[U,Pprime] = eigs(P0_est_batch(1:3,1:3));
Semi = [sqrt(9*Pprime(1,1)) sqrt(9*Pprime(2,2)) sqrt(9*Pprime(3,3))];
figure
```

```
plotEllipsoid(U,Semi);
title('3-sigma Position Error Probability Ellipsoid')
xlabel('x (m)'),ylabel('y (m)'),zlabel('z (m)'),
```

3-sigma Position Error Probability Ellipsoid

Published with MATLAB® R2013b