

Kierunek: Elektronika i Telekomunikacja Specjalność: Teleinformatyka

Praca dyplomowa inżynierska

Stacja meteorologiczna oparta o ESP8266

Damian Zaręba Nr albumu 8389

Promotor: dr inż. Tadeusz Leszczyński

Mława 2019r.

Spis treści

Sp	pis treści	2		
1 Wstęp				
2	Elementy składowe projektu 2.1 ESP8266EX	9		
3	Wykorzystane protokoły komunikacyjne 3.1 I ² C			
4	Schemat funkcjonalny	15		
5	Schemat elektryczny	16		
6	Kod źródłowy	17		
7	Opis anemometru	18		
8	Infografika	19		
Sp	ois rysunków	20		
Sp	pis tabel	21		
Bi	bliografia	22		
9	Streszczenie	23		

1. Wstęp

Celem pracy jest zaprojektowanie i zrealizowanie stacji meteorologicznej opartej o mikroprocesor ESP8266, złożonej z kilku modułów. Aby zrealizować założony cel, zrealizowane zostały następujące zadania:

- Zaprojektowanie i wykonanie płyty głównej z mikrokontrolerem ESP8266EX dla przetwarzania informacji z sensorów oraz sterowania zasilaniem całego urządzenia;
- Zaprojektowanie i wykonanie anemometru do pomiaru kierunku i prędkości wiatru ze względów na koszty, ponieważ gotowe są zbyt drogie w stosunku do reszty;
- Zaimplementowanie sensora firmy BOSCH o nazwie BME280, który służy do odczytu temperatury, ciśnienia i wilgotności powietrza;
- Zaimplementowanie czujnika firmy PLANTOWER o nazwie PMS7003, który mierzy ilość pyłu zawieszonego w powietrzu, o wielkości PM1.0, PM2.5 oraz PM10, mierzone w μg/m³.

W kolejnych rozdziałach pracy przedstawiono schemat blokowy urządzenia oraz ogólny opis poszczególnych modułów wykorzystanych do zbudowania tego urządzenia, wliczając w to charakterystyki głównych komponentów dla każdego modułu. Udokumentowane zostało m.in. konfiguracja środowiska, które zostało wykorzystana do stworzenia tego projektu.

Przeanalizowano szczegółowo schemat urządzenia, a konkretnie płyty głównej, sekcji zasilania dla wykorzystanych sensorów oraz innych elementów niezbędnych do realizacji projektu. Poddana dokładnej analizie będzie każda z części schematu, takie jak sekcja zasilania czy połączeniowa między płytą główną a sensorami.

Przedstawiono i opisano algorytmy oraz kod źródłowy programu sterującego stacją pogodową oraz omówiono protokoły komunikacyjne. Wykonuje on wiele zadań, m.in. odczytuje dane z sensorów czy kontroluje układy zasilania poszczególnych części.

W przedostatnim rozdziale przedstawiono krótko projekt anemometru służącego do pomiaru prędkości i kierunku wiatru. Omówiony i opisany został schemat blokowy anemometru i jego elektryczna reprezentacja.

W ostatnim rozdziale przedstawione zostały wyniki badań wykonanego modelu stacji pogodowej.

2. Elementy składowe projektu

2.1 ESP8266EX

ESP8266EX to mikroukład z pełnym stosem TCP/IP oraz mikrokontrolerem wyprodukowanym przez Espressif w Szanghaju, Chiny.

Istnieje jego odmiana o nazwie ESP8285 z 1 MiB wbudowanej pamięci typu flash, co umożliwiało wykorzystanie go jako pojedynczego układu zdolnego do podłączenia się do sieci Wi-Fi, po podłączeniu zasilania. W odróżnieniu od rodziny mikrokontrolerów AVR nie może być zasilany napięciem 5V, jedynie 3.3 wolta.

Rysunek 2.1: Zdjęcie przedstawiające układ ESP8266EX

Źródło: [3]

ESP8266EX [1] posiada 32 bitowy procesor oparty o rdzeń Xtensa Diamond Standard 106Micro (LX106) firmy Tensillica o nominalnej wartości zegara wynoszącym 80 MHz. Charakteryzuje się on następującymi funkcjami:

- 16 pinów GPIO
- SPI
- I²C (programowa implementacja)
- I²S z funkcją Direct Memory Access (współdzieli piny z GPIO)
- UART na wyznaczonych pinach GPIO oraz dodatkowy UART na GPIO2 służący jedynie do wysyłania danych
- 10-bitowy ADC oparty o sukcesywną aproksymację.

 Wbudowana obsługa Wi-Fi o standardach b/g/n według IEEE 802.11 z wbudowanym przełącznikiem TR,LNA,Balunem, wzmacniaczem mocy oraz siecią dopasowującą oraz możliwością podłączenia się lub tworzenia sieci z zabezpieczeniami WEP lub WPA/WPA2

Pamięć ulotna tego mikrokontrolera jest podzielona w następujący sposób :

- 32 KiB RAM dla instrukcji
- 32 KiB RAM typu cache dla instrukcji
- 80 KiB RAM dla danych użytkownika
- 16 KiB RAM typu ETS dla danych "systemowych"

Obsługuje pamięć nieulotną typu flash po protokole SPI do pojemności 16 MiB, choć zazwyczaj korzysta się z pamięci o rozmiarach 512 KiB lub 4 MiB.

Rysunek 2.2: Zdjęcie przedstawiające wyprowadzenia dla układu ESP8266EX

Źródło: [4]

Układ ESP8266EX posiada kilka linii zasliania:

- 2x VDDA (Zasilanie sekcji analogowej)- 2.5 wolt do 3.6 wolt
- VDDD (To samo, co VDDA) 2.5 wolt do 3.6 wolt.
- 2x VDD3P3 (Zasilanie wzmacniacza sygnału Wi-Fi) 2.5 wolt do 3.6 wolt.
- 2x VDDPST (Zasilanie sekcji cyfrowej i wejść/wyjść) 1.8 wolt do 3.6 wolt.

Używa się pinów GPIO2, GPIO0 oraz GPIO15/MTDO dla ustawienia trybu uruchamiania układu.

	GPIO0	GPIO2	GPIO15
Tryb programowania	L	Н	L
Uruchamianie z pamięci flash	Н	Н	L
Uruchamianie z karty SD	X	X	Н

Tabela 2.1: Tabela przedstawiająca tryby uruchamiania dla układu ESP8266EX Źródło: [2]

ESP8266EX obsługuje 14 kanałów w łączności Wi-Fi

Numer	Częstotliwość
kanału	[MHz]
1	2412
2	2417
3	2422
4	2427
5	2432
6	2437
7	2442
8	2447
9	2452
10	2457
11	2462
12	2467
13	2472
14	2484

Tabela 2.2: Tabela przedstawiająca dostępne kanały łączności Wi-Fi dla układu ESP8266EX Źródło: [2]

Maksymalny pobór prądu przez sam układ, nie licząc łączności Wi-Fi wynosi 12mA. Pobór wzrasta w zależności od mocy transmisji lub odbioru pakietów za pomocą Wi-Fi. Pomiary były wykonane dla napięcia 3 wolt w temperaturze 25°C. Wszystkie pomiary przesyłu danych były bazowane na 50% długości cyklu

Parametry	Minimalny	Typowy	Maksymalny	Jednostka	
łączności	willimaniy	Typowy	Wiaksymamy	Jeunostka	
TX 802.11b					
CCK 11 Mbps		170		mA	
$P_{OUT} =$	-	170	-	IIIA	
+15 dBm					
TX 802.11g					
OFDM 54 Mbps		140		mA	
P_{OUT} =	-	140	_	IIIA	
+17 dBm					
TX 802.11n					
MCS7		120		mA	
$P_{OUT} =$	-	120	_	IIIA	
+13 dBm					
RX 802.11b					
1024 bajtów	-	50	-	mA	
-80 dBm					
RX 802.11g					
1024 bajtów	-	56	-	mA	
-70 dBm					
RX 802.11n					
1024 bajtów	-	56	-	mA	
-65 dBm					

Tabela 2.3: Tabela przedstawiająca pobór mocy dla łączności Wi-Fi przez ESP8266EX

Źródło: [2]

2.2 BME280

BME280 to sensor temperatury, wilgotności i ciśnienia wykonany przez firmę Bosch. Jego rozmiary to 2.5 milimetra na 2.5 milimetra w obudowie typu LGA (Land Grid Array). Komunikuje się z mikrokontrolerem za pomocą protokołu I²C (Do 3.4 MHz) lub SPI (3 lub 4 przewodowego, do 10 MHz)

Rysunek 2.3: Zdjęcie przedstawiające układ BME280

Źródło: [6]

Zasilany jest w projekcie napięciem 3.3V, choć jego specyfikacja podaje, że pin zasilania VDD samego układu toleruje napięcia od 1.71 wolt do 3.6 wolt, a pin zasilania wejść/wyjść VDDIO od 1.2 wolt do 3.6 wolt.

Rysunek 2.4: Zdjęcie przedstawiające moduł zawierający BME280, komunikujący się przez protokół I²C

Źródło: [7]

Pobiera w zastosowanej aplikacji około 3.6µA, czyli pomiaru wilgotności, ciśnienia i temperatury z częstotliwością 1Hz, choć może być niższy, ponieważ pomiary będą dokonywane rzadziej, około co pół godziny lub godzinę, w zależności od wymagań. Będzie możliwość ustawienia tego w kodzie źródłowym programu dla tej aplikacji.

Kluczowe parametry sensora wilgotności:

- Czas odpowiedzi ($\tau_{63\%}$) wynosi 1 sekundę
- Tolerancja dla dokładności pomiaru wynosi ±3 % relatywnej wilgotności
- Histereza pomiaru wynosi ±1 % relatywnej wilgotności

Kluczowe parametry części pomiarowej dla ciśnienia:

- Średni poziom szumów wynosi 0.2 Pa, co jest odpowiednkiem dla 1.7 cm
- Współczynnik odchylenia temperaturowego wynosi ±1.5 Pa/K, co jest równoważne dla ±12.6 cm przy zmianie temperatury o 1°C

2.3 PMS7003

Sensor PMS7003 służy do pomiaru ilości cząsteczek w powietrzu o gradiacji PM1.0, PM2.5 oraz PM10 (odpowiednio: cząsteczki o średnicy około 1μm, 2.5μm oraz 10μm). Powszechnie korzyta się z niego do pomiaru jakości powietrza. Wykorzystuje on do tego laserowy czujnik pyłków.

Rysunek 2.5: Zdjęcie przedstawiające moduł PMS7003, komunikujący się przez protokół UART Źródło: [9]

Czujnik ten charakteryzuje się następującymi parametrami:

- Pojedynczy czas odpowiedzi wynosi mniej niż 1s
- Całkowity czas odpowiedzi wynosi do 10 sekund
- Zasilany jest napięciem 5 wolt
- Pobór pradu podczas pomiarów wynosi do 100 mA
- Stały pobór prądu, kiedy czujnik nie wykonuje pomiaru wynosi do 200 μA
- Napięcie operacyjne dla przesyłu i odbioru danych to 3.3 wolta.
- Pracuje w temperaturze od -10 do +60 stopni Celcjusza.
- "Pojemność" czujnika wynosi 0.1L

Rysunek 2.6: Zdjęcie przedstawiające wyprowadzenia czujnika PMS7003 Źródło: [8]

Lista wyprowadzeń tego sensora jest następująca:

Wyprowadzenia PMS7003				
Pin 1	VCC	Zasilanie 5V		
Pin 2	VCC	Zasilanie 5V		
Pin 3	GND	Masa zasilania		
Pin 4	GND	Masa zasilania		
Pin 5	RESET	Pin resetu modułu		
Pin 6	NC	-		
Pin 7	RX	Pin odbierania danych		
Pin 8	NC	-		
Pin 9	TX	Pin wysyłania danych		
Pin 10	SET	Stan wysoki - normalna operacja Stan niski - uśpienie układu		

Tabela 2.4: Tabela przedstawiająca listę wyprowadzeń modułu PMS7003

Źródło: [8]

3. Wykorzystane protokoły komunikacyjne

3.1 I²C

I²C [10] to protokół szeregowy zaprojektowany przez firmę Phillips Semiconductor, która dziś działa jako NXP Semiconductors w 1982 roku. Ma możliwość podpięcia wielu urządzeń w trybie *Master* oraz w trybie *Slave*. Istnieją dwie dodatkowe wersje I²C - SMBus (System Management Bus), wykorzystywany w komputerach klasy PC do zarządzania podzespołami oraz PMBus (Power Management Bus) - do kontroli urządzeń związanych z zasilaniem.

Wykorzystuje on dwie obustronne linie z otwartym kolektorem lub otwartym drenem, Serial Data Line (SDA) i Serial Clock Line (SCL), z rezystorami podiągającymi do zasilania. Zazwyczaj używa się napięć +5V lub +3.3V, ale inne napięcia są również dozwolone.

Magistrala I²C posiada kilka trybów prędkości:

- Low-speed 10 kbit/s
- Standard 100 kbit/s
- Fast 400 kbit/s
- Fast mode plus (Fm+) 1 Mbit/s
- High speed 3.4 Mbit/s

Z tych najszybszych korzysta się w systemach wbudowanych a nie w komputerach osobistych.

Magistrala I²C posiada dwie ważne cechy - rozszerzanie zegara (Clock Stretching) oraz Arbitraż (Arbitation). Rozszerzanie zegara polaga na tym, że urządzenie typu *Slave* może utrzymywać linię zegara SCL w stanie niskim po otrzymaniu lub wysłaniu bajtu informacji, która wskazuje, że nie jest jeszcze gotowe do przetwarzania kolejnej porcji danych. Urządzenie typu *Master* komunikujące się z danym modułem nie może wtedy zakończyć transmisji tylko musi czekać aż linia zegara SCL będzie w stanie wysokim. Jest to jedyna sytuacja, gdzie urządzenie typu *Slave* ma kontrolę nad linią zegara. Urządzenie typu *Master* musi odczekać dodatkowe 4 μs po prześciu linii SCL w stan wysoki zanim będzie mógł podciągnąć linię zegara do stanu niskiego.

Magistrala I²C posiada deterministyczny system arbitrażu. Arbitraż polega na tym, że każde urządzenie typu *Master* monitoruje linię, wyszukując bitów START i STOP i nie zacznie komunikacji, póki linie są zajęte przez inne urządzenia typu *Master*. Jednakże, dwa urządzenia typu *Master* mogą zacząć transmisję w tym samym czasie - wtedy następuje arbitraż. Każdy transmiter sprawdza poziom linii danych (SDA) i porównuje do oczekiwanego; jeśli się nie zgadza to urządzenie transmitujące traci arbitrację i wyłącza się z danej interakcji z protokołem I²C.

Status zajętości magistrali oraz bitów START i STOP.

Tym	Linia Nieaktywna	Start	Oczekiwanie	Stop	Rozszerzanie zegara
Тур	(N)	(S)	(I)	(P)	(CS)
Onis	pis Arbitraż wolny do zajęcia	Zajmowanie linii	Linia zajęta	Zwalnianie linii	Zastopowanie
Opis		(Master)	(Master)	(Master)	(Slave)
SDA	Podciąganie pasywne	Zbocze opadające	Stan niski	Zbocze wzrastające	Nie ma
SDA		(Master)	(Master)	(Master)	znaczenia
SCL	L Podciąganie pasywne	Podciąganie pasywne Podciąganie pasywne		Pasywne podciąganie	Stan niski
SCL		i odciąganie pasywne	Pasywne podciąganie	1 asywne podeiągame	(Slave)

Tabela 3.1: Tabela przedstawiająca stany zajętości linii w magistrali I²C

Źródło: [10]

	Wysłanie jednego bitu danych (1) (0) (Linia SDA jest ustawiona po SCL w celu uniknięcia wykrycia falszywego stanu linii)				Odpowiedź odbiorcy za pomocą bitu NACK (Bajt nie odebrany od nadawcy	
Тур	Ustawienie bitów (Bs)	Gotowość do próbkowania (Bx)	Ustawienie bitów (Bs)	ACK (A)	Ustawienie bitów (Bs)	NACK(A')
Opis	Nadawca ustawia bit (Master/Slave)	ave) Odbiora próbkuje bit (Master/Slave)	Nadawca ustawia stan	Nadawca widzi linię SDA	Nadawca ustawia stan	Nadawca widzi
			wysokiej impedancji	jako w stanie niskim	wysokiej impedancji	stan wysoki
			Utrzymane w stanie niskim (Po opadnieciu SCL)			anem wysokim
SDA	Ustawia bit (Po opadnięciu SCL)	awia bit (Po opadnięciu SCL) Odbiera bit (Po wzroście SCL)			(Lub pasywnie wysokim) przez odbiorcę	
			(10 opaul			nięciu SCL)
SCL	Opadające zbocze (Master)	Wzrastające zbocze (Master)	Opadające zbocze (Master)	Wzrastające zbocze (Master)	Opadające zbocze (Master)	Wzrastające zbocze (Master)

Tabela 3.2: Tabela przedstawiająca stany linii w magistrali I²C przy wymianie informacji między odbiorcą a nadawcą

Źródło: [10]

3.2 UART

UART (Universal asynchronous receiver-transmitter) [11]

4. Schemat funkcjonalny

5. Schemat elektryczny

6. Kod źródłowy

7. Opis anemometru

8. Infografika

Spis rysunków

2.1	ESP8266EX	4
	ESP8266EX - opis wyprowadzeń	
	BME280	
2.4	BME280 - Moduł	9
2.5	PMS7003	11
2.6	PMS7003 - pinout	12

Spis tabel

2.1	ESP8266EX - tryby uruchamiania	6
2.2	ESP8266EX - kanały Wi-Fi	7
2.3	ESP8266EX - pobór mocy przy łączności Wi-Fi	8
2.4	PMS7003 - Lista wyprowadzeń	12
	I ² C - Stany zajętości magistrali	

Bibliografia

- [1] "ESP8266", Wikipedia, Zebrane 3 marca 2019, https://en.wikipedia.org/wiki/ ESP8266
- [2] Nota katalogowa ESP8266, *Espressif*, Zebrane 25 lutego 2019, https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
- [3] Zdjęcie ESP8266EX, alphamicrowireless.com Zebrane 3 marca 2019, http://www.alphamicrowireless.com/media/562039/esp8266ex 370px.gif
- [4] Pinout ESP8266EX, acrobotic.com, Zebrane 3 marca 2019, https://learn.acrobotic.com/uploads/esp8266_pinout.png
- [5] Nota katalogowa BME280, *Bosch*, Zebrane 25 lutego 2019, https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280-DS002.pdf
- [6] Zdjęcie przedstawiające układ BME280, *dnatechindia.com* Zebrane 3 marca 2019, http://www.dnatechindia.com/image/cache/catalog/bme280%201-500x500.jpg
- [7] Zdjęcie przedstawiające gotowy moduł z układem BME280, gunook.com Zebrane 3 marca 2019, http://img.gunook.com/upload/a/1d/a1d0568812635b491d33f680db52a587. jpg
- [8] Przetłumaczona nota katalogowa PMS7003, github.com Zebrane 26 lutego 2019, https://raw.githubusercontent.com/eleparts/PMS7003/master/data%20sheet/ PMS7003%20datasheet.pdf
- [9] Zdjęcie sensora PMS7003, *amazon.com* Zebrane 3 marca 2019, https://images-na.ssl-images-amazon.com/images/I/41KI%2BnbtAGL._SX342_.jpg
- [10] "I²C", Wikipedia Zebrane 3 marca 2019, https://en.wikipedia.org/wiki/I%C2%B2C
- [11] "Universal asynchronous receiver-transmitter", *Wikipedia* Zebrane 3 marca 2019, https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

9. Streszczenie