Major

Chemical Reactor Analysis and Design (CHL-103)

Marks: - 40 28th Nov., 06

Venue- II 378 10.30 AM – 12.30 PM

(There are two parts. Use separate answer script for each part)

Part - I

- **Q1.** The elementary irreversible organic liquid phase reaction $A+B \rightarrow C$ is carried out in a flow reactor. An equal molar feed in A and B enters at 27°C, and the volumetric flow rate is 2 dm³/s.
 - a) Calculate the PFR and CSTR volumes necessary to achieve 85 % conversion when the reaction is carried out adiabatically.
 - b) What is the maximum inlet temperature one could have so that the boiling point of the liquid (550K) would not be exceeded even for complete conversion?
 - c) Plot the conversion and temperature as a function of PFR volume (i.e. distance down the reactor)
 - d) Calculate the conversion that can be achieved in a 500 dm³ CSTR.

Additional data:

 $\begin{array}{lll} H_{A}^{\, \circ}(273) & = -20 \text{ kcal/mol} \\ H_{B}^{\, \circ}(273) & = -15 \text{ kcal/mol} \\ H_{C}^{\, \circ}(273) & = -41 \text{ kcal/mol} \\ C_{Ao} & = 0.1 \text{ kmol/m}^3 \\ C_{PA} = C_{PB} & = 15 \text{ cal/mol.K} \\ C_{PC} & = 30 \text{ cal/mol. K} \end{array}$

 $k = 0.01 \text{ dm}^3/\text{mol.s at } 300\text{K}$

E = 10,000 cal/mol

(15)

Q2. Short Notes

- (a) Show how to calculate volume of the reactor from the $(-1/r_A)$ versus X_A curve for a CSTR and a PFR.
 - (b) What is the expression for the Damkohler number for a third order reaction?
 - (c) Write two industrial applications of a CSTR.
 - (d) State the difference between space time and holding time of a reactor with example?
 - (e) Write the energy balance equation for an open system.

(1+1+1+1+1)

(There are two parts. Use separate answer script for each part)

Part - II

Q1. Derive in details the expression of time to reach for steady operation of a CSTR (with constant overflow) for any $\mathbf{1}^{st}$ order liquid phase reaction. Can you write that time for a fast first order reaction?

(6)

Q2. An isothermal reversible reaction $A \rightleftharpoons B$ is carried out in an aqueous solution. The reaction is first-order in both directions. The forward rate constant is 0.4 h⁻¹ and the equilibrium constant is 4.0. The feed to the plant contains 100 kg.m⁻³ of \bf{A} and enters at the rate of 12m^3 .h⁻¹. Reactor effluents pass to a separator, where \bf{B} is completely recovered. The reactor is a stirred tank of volume 60 m³. A fraction 'y' of the unreacted effluent is recycled as a solution containing 100 kg.m⁻³ of \bf{A} and the reminder is discarded.

Product \boldsymbol{B} is worth Rs. 2/- per kilogram and operating costs are Rs. 50/- per cubic meter of solution entering the separator.

- (a) What value of 'y' maximizes the operational profit of the plant?
- (b) What fraction of **A** fed to the plant is converted at the optimum?

(14)