Prof. Lupércio França Bessegato

Atividade - Normal Multivariada

Instruções para entrega da lista:

- a) Esses exercícios não precisam ser entregues.
- b) Não hesite em procurar o **Fórum de Dúvidas** do Moodle, caso tenha alguma dúvida com relação à solução da presente lista de exercícios. Caso não resolva, agende atendimento com o professor. Acostume-se a interagir para obter sugestões de solução de suas dúvidas.

Questões:

1. Dado que:

$$egin{bmatrix} X_1 \ X_2 \ X_3 \end{bmatrix} \sim \mathrm{N}_3(oldsymbol{\mu}, oldsymbol{\Sigma}),$$

onde

$$oldsymbol{\mu} = egin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

e

$$\mathbf{\Sigma} = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$

- 1.1. Escreva a função de densidade de probabilidade de X.
- 1.2. Determine a matriz de correlações **P** do vetor aleatório **X**.
- 1.3. Determine a distribuição marginal de X₂.
- 1.4. Determine a distribuição marginal do vetor aleatório [X1, X3]'.
- 1.5. Determine a distribuição marginal do vetor aleatório [X₁, X₂]'.
- 1.6. Determine a distribuição condicional de $X_1 \mid X_3 = -1$.
- 1.7. Determine a distribuição condicional de $X_1 \mid X_2 = 1$; $X_3 = -1$.
- 1.8. Determine a distribuição condicional de $[X_1, X_2]' \mid X_3 = -1$.
- 1.9. $[X_1, X_3]'$ e X_2 são independentes?
- 1.10. $a_1X_1 + a_3X_3$ e a_2X_2 são independentes para quaisquer constantes a_1 , a_2 e a_3 ?
- 1.11. $X_1 + X_2 e X_1 X_2 s\tilde{a}o$ independentes?
- 1.12. Seja $\mathbf{Y} = \mathbf{A}\mathbf{X} + \boldsymbol{a}$ onde $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix}$ e $\boldsymbol{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Determine a distribuição de \mathbf{Y} .
- 1.13. Seja $\hat{W} = (\mathbf{X} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{X} \boldsymbol{\mu})$. Qual é a distribuição, a média e a variância de W?
- 1.14. Determine o elipsoide com 95% de confiança para X.
- 1.15. Seja $\mathbf{X}^* = \begin{bmatrix} X_1 \\ X_3 \end{bmatrix}$. Determine a distribuição de \mathbf{X}^* .
- 1.16. Desenhar a elipse com 95% de confiança para **X***. Determine inicialmente os autovalores e autovetores de **X***.

EST073 – Análise Multivariada

Prof. Lupércio França Bessegato

1.17. Seja **G** tal que $\mathbf{GG'} = \mathbf{\Sigma}^{-1}$. Mostre que $\mathbf{G'X} \sim N_3(\mathbf{G'}\boldsymbol{\mu}, \mathbf{I})$ e $\mathbf{G'}(\mathbf{X} - \boldsymbol{\mu}) \sim N_3(\mathbf{0}, \mathbf{I})$. Dica: $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.

Resolver os seguintes exercícios de JOHNSON e WICHERN (2007):

2. Exercícios 1.6, na página 39 e 4.28 e 4.29, na pág. 206 (conjunto de dados: T1-5.DAT)

Bons estudos!

Fonte:

JOHNSON, R. A.; WICHERN, D. W. *Applied multivariate statistical analysis*. 6th. Edition..Upper Saddle River, NJ: Pearson Prentice Hall, 2007.