Countering Simpson's Paradox with Counterfactuals

Arran Zeyu Wang, David Borland, and **David Gotz**University of North Carolina at Chapel Hill

Introduction

- **Aggregation** is a powerful tool to show summary statistics in visualizations.
- However, it can also introduce additional risks, such as Simpson's Paradox — trends that appear at one level of aggregation may disappear or reverse when data is subdivided into lower levels of aggregation.

Simpson's Paradox

Stone Size	T_A	T_B
Small	93% (81/87)	87% (234/270)
Large	73 % (192/263)	69% (55/80)
All	78% (273/350)	83% (289/350)

The above Kidney Stone study included patients with stones of variable size, classified as large or small.

Compared to **Treatment B** (*TB*), **Treatment A** (*TA*) performed best on small stones and best on large stones. However, counter-intuitively, **Treatment B** appeared to have a higher success rate overall, as a result of the *unequal distribution* of patient groups.

Visualization of Counterfactuals

Counterfactual reasoning, by constructing **hypothetical scenarios** ("what if things were the same except for this one fact?"), can be used to balance the distributions.

Counterfactuals can be simulated by sampling from the population receiving *TB* a subset of patients similar to those patients receiving *TA*, refer to *TB(CF)*.

TB(CF) will comprise a group of patients with similar variable distributions to **TA**. In the Kidney example, we sample a group of patients from **TB** with the same ratio of large:small kidney stones as **TA** to include in **TB(CF)**. The reminder samples are noted as **TB(REM)**.

- (a-b) are typical visualizations comparing *TA* and *TB* without considering counterfactuals.
- (c) shows the construction of counterfactual subset *TB(CF)* and reminder subset *TB(REM)*.
- (d) shows a visualization comparing *TA* and *TB(CF)* which can avoid Simpson's Paradox.

Countering Simpson's Paradox

Compared to (a) a traditional visualization of the two treatments, designs that incorporate counterfactuals (b-d) can more accurately communicate the desired comparison (TB(CF)) is worse than TA) between treatments.

When Simpson's Paradox is not present, a traditional visualization (e) and designs that incorporate counterfactuals (f-h) can both accurately communicate the desired comparison (*Male(cF)* is lower than *Female*).

