NATIONAL UNIVERSITY OF SINGAPORE Department of Statistics and Applied Probability

(2020/21) Semester 1

ST2334 Probability and Statistics

Tutorial 6

1. Let *X* denote the number of times a certain numerical control machine will malfunction: 1, 2, or 3 times on any given day. Let *Y* denote the number of times a technician is called on an emergency call. Their joint probability distribution is given below.

$f_{X,Y}(x,y)$		х		
		1	2	3
	1	0.05	0.05	0.1
у	2	0.05	0.10	0.35
	3	0	0.2	0.1

- (a) Evaluate the marginal distribution of X.
- (b) Evaluate the marginal distribution of Y.
- (c) Find Pr(Y = 3|X = 2)
- (d) Find the conditional distribution of Y given X = 2.
- (e) Determine whether *X* and *Y* are dependent or independent.
- 2. From a sack of fruit containing 3 oranges, 2 apples, and 3 bananas, a random sample of 4 pieces of fruit is selected. If *X* is the number of oranges and *Y* is the number of apples in the sample, find
 - (a) the joint probability distribution of X and Y;
 - (b) Pr(X = 1, Y = 1);
 - (c) $Pr(X + Y \leq 2)$;
 - (d) $f_X(x)$;
 - (e) $f_{Y|X}(y|2)$ and hence Pr(Y = 0|X = 2).
- 3. Consider an experiment that consists of two rolls of a balanced die. If *X* is the number of fours and *Y* is the number of fives obtained in the two rolls of the die, find
 - (a) the joint probability distribution of X and Y;
 - (b) Pr(2X + Y < 3).
 - (c) Determine whether *X* and *Y* are dependent or independent.
- 4. Each rear tire on an experimental airplane is supposed to be filled to a pressure of 40 pound per square inch (psi). Let *X* denote the actual air pressure (in 10 pound per square inch) for the right tire and *Y* denote the actual air pressure (in 10 pound per square inch) for the left tire. Suppose that *X* and *Y* are random variables with the joint density

$$f_{X,Y}(x,y) = \begin{cases} k(x^2 + y^2), & 3 \le x \le 5; \ 0, & \text{otherwise} \end{cases}$$

- (a) Determine k.
- (b) Compute $Pr(3 \le X \le 4 \text{ and } 4 \le Y < 5)$.
- (c) Find $f_X(x)$ and hence Pr(3.5 < X < 4).

5. A candy company distributes boxes of chocolates with a mixture of creams, toffees, and cordials. Suppose that the weight of each box is 1 kilogram, but the individual weights of the creams, toffees, and cordials vary from box to box. For a randomly selected box, let X and Y represent the weights of the creams and the toffees, respectively, and suppose that the joint density function of these variables is

$$f_{X,Y}(x,y) = \begin{cases} 24xy, & 0 \le x \le 1, & 0 \le y \le 1, & x+y \le 1 \\ 0, & \text{otherwise.} \end{cases}$$

- Find the marginal density for the weight of the creams and the marginal density (a) for the weight of the toffees.
- Determine if *X* and *Y* are independent. (b)
- Find the probability that the weight of the toffees in a box is less than 1/8 of a kilogram if it is known that creams constitute 3/4 of the weight.

Answers to selected problems

1.	(a)				
		X	1	2	3
		$f_X(x)$	0.10	0.35	0.55

(b)				
	у	1	2	3
	$f_{Y}(y)$	0.20	0.50	0.30

(c) 4/7

(d)	у	1	2	3
	$f_{Y X}(y x=2)$	1/7 = 0.14286	2/7 = 0.28571	4/7 = 0.57143

(e) X and Y are dependent

2. (a)
$$f_{X,Y}(x,y) = \begin{cases} {3 \choose x} {2 \choose y} {3 \choose 4-x-y} \\ {8 \choose 4} \end{cases}$$
, $x = 0, 1, 2, 3$; $y = 0, 1, 2$; $1 \le x + y \le 4$
(b) 0.2571 (or 9/35) (c) 0.5

(d)
$$f_X(x) = \begin{cases} \frac{\binom{3}{x}\binom{5}{4-x}}{\binom{8}{4}}, & x = 0, 1, 2, 3 \\ 0, & \text{otherwise.} \end{cases}$$

(b) 0.2571 (or 9/35)
(d)
$$f_X(x) = \begin{cases} \frac{\binom{3}{x}\binom{5}{4-x}}{\binom{8}{4}}, & x = 0, 1, 2, 3; \\ 0, & \text{otherwise.} \end{cases}$$
(e) $f_{Y|X}(y|x) = \begin{cases} \frac{1}{10}\binom{2}{y}\binom{3}{2-y}, & y = 0, 1, 2; \\ 0, & \text{otherwise.} \end{cases}$, 0.3

() [~)	_ (10	0,	(otherw	rise.	, 0.5
$f_{X,Y}($	(x,y)	0	<i>x</i>	2		(b) 11/12(c) <i>X</i> and <i>Y</i> are dependent
	0	4/9	2/9	1/36		
y	1	2/9	1/18	0		
	2	1/36	0	0		

(c)
$$f_X(x) = (3x^2 + 49)/196$$
 for $3 \le x \le 5$, 0.2328

(c)
$$f_X(x) = (3x^2 + 49)/196$$
 for $3 \le x \le 5$, 0.2328
5. (a) $f_X(x) = \begin{cases} 12x(1-x)^2, 0 \le x \le 1; \\ 0, & \text{otherwise.} \end{cases}$ $f_Y(y) = \begin{cases} 12y(1-y)^2, 0 \le y \le 1; \\ 0, & \text{otherwise.} \end{cases}$

(b) X and Y are not independent

(c)
$$f_{Y|X}(y|x = 3/4) = 32y$$
 for $0 \le y \le 1/4$, 0.25