# Теоретическая информатика - 1

Теория графов

# Граф



Вершины = точки

Ребра = линии, соединяющие некоторые пары вершин

Графы представляют объекты и связи между ними, например:

- города и дороги
- люди и знакомства
- атомы и межатомные связи



# Задача о Кенингсбергских мостах

# Кенигсбергские мосты



Можно ли обойти все Кенигсбергские мосты, проходя только один раз через каждый из этих мостов?

# Кенингсбергские мосты

Головоломке о мостах можно сопоставить граф (части города — вершины, мосты — ребра):



Эквивалентная формулировка: можно ли "обойти" данный граф, пройдя по каждому ребру ровно один раз и вернуться в исходную точку.

T.е. существует ли последовательность ребер графа со следующими свойствами:

- любые два соседних ребра имеют общую вершину;
- последнее ребро имеет общую вершину с первым;
- каждое ребро графа встречается в последовательности ровно один раз.



# Эйлеровы циклы

Путем полного перебора вариантов несложно убедиться, что этот граф обойти нельзя.

Более общая задача:

Задача[Эйлер, 1736]

Дан произвольный граф. Определить, можно ли его обойти в указанном выше смысле. (Сейчас такой обход называется Эйлеровым циклом).

Исторически первый серьезный математический результат в теории графов.

# Дома и колодцы

#### Головоломка о трех колодцах

В деревне три дома и три общих колодца. Можно ли протоптать тропинки так, чтобы от каждого дома к каждому колодцу вела тропинка и никакие две тропинки не пересекались?

Переведем на язык теории графов: 6 вершин, три из которых дома, другие три — колодца; ребра соединяют каждую вершину-дом с вершиной-колодцем:



Задача: можно ли перерисовать это граф на плоскости так, чтобы никакие два ребра не пересекались?

# Дома и колодцы

Головоломка не имеет решения, но доказательство нетривиально, т.к. полный перебор тут бесполезен, поскольку способов нарисовать граф бесконечно много (будет позже).

Тип задач: изображение, или "укладка" графа так, чтобы выполнялись определенные свойства:

- проектирование транспортных развязок (транспортные потоки разных направлений не должны пересекаться)
- печатных плат (не должны пересекаться проводящие дорожки).

# Деревенские свадьбы

Третья задача, в отличие от двух предыдущих, является не индивидуальной, а "массовой" т. е. в ее условии присутствуют параметры, которые можно менять.

### Задача о деревенских свадьбах

В деревне живут несколько юношей и несколько девушек. Некоторые юноши знакомы с некоторыми девушками. Требуется поженить максимально возможное число пар при условии, что женить можно только знакомые пары.

# Деревенские свадьбы

Третья задача, в отличие от двух предыдущих, является не индивидуальной, а "массовой" т. е. в ее условии присутствуют параметры, которые можно менять.

### Задача о деревенских свадьбах

В деревне живут несколько юношей и несколько девушек. Некоторые юноши знакомы с некоторыми девушками. Требуется поженить максимально возможное число пар при условии, что женить можно только знакомые пары.

На языке теории графов:

- вершины графа юноши и девушки,
- ребра знакомые пары юноша-девушка.

Требуется найти максимальное по размеру множество ребер, никакие два из которых не имеют общих вершин.

К такой же математической модели сводятся и другие задачи (например, задача о назначениях).



# Раскраска карты

#### Другая массовая задача:

### Задача о раскраске карты

Дана политическая карта мира. Требуется раскрасить каждую страну в какой-либо цвет так, чтобы любые две граничащие между собой страны были раскрашены в разные цвета, использовав при этом минимально возможное число красок. (Две страны считаются граничащими, если их границы имеют общую линию, а не точку.)

#### На языке теории графов:

- вершины графа страны,
- ребра соединяют граничащие страны.

#### Получаем

### Задача о раскраске графа

Дан граф. Требуется раскрасить вершины графа в минимальное число цветов так, чтобы любые две смежные вершины имели различный цвет.



# Определение

Графом называется пара G = (V, E), где V — конечное множество вершин, а  $E \subseteq V \times V$  — множество ребер.

Граф можно задать матрицей смежности  $A=(a_{ij})$  порядка |V|:

$$a_{ij} = egin{cases} 1, & \mathsf{если}\; (i,j) \in E, \ 0, & \mathsf{иначе}. \end{cases}$$

Граф неориентированный, если  $(u,v) \in E$  влечет  $(v,u) \in E$ . Иначе граф называется ориентированным (орграф). Если не указано, что граф ориентированный, то подразумевается, что он неориентированный.

Мультиграф: допускаются кратные ребра (в матрице смежности соответствуют натуральным числам).

Две вершины v, u называются смежными, если  $(u,v) \in E$ .

Вершина v и ребро e называются инцидентными, если e=(v,u) для некоторой вершины u.

Ребро, концевые вершины которого совпадают, называется петлей.

Степень deg(v) вершины v — число инцидентных ей ребер (петля считается дважды).



- 1. Во всяком графе сумма степеней всех вершин равна удвоенному числу ребер:  $\sum_{v \in V} deg(v) = 2|E|$ .
- 2. В ориентированном графе сумма входящих степеней равна сумме исходящих степеней.
- 3. Всякий конечный граф содержит четное число вершин нечетной степени.

- 1. Во всяком графе сумма степеней всех вершин равна удвоенному числу ребер:  $\sum_{v \in V} deg(v) = 2|E|$ .
- 2. В ориентированном графе сумма входящих степеней равна сумме исходящих степеней.
- 3. Всякий конечный граф содержит четное число вершин нечетной степени.

### Доказательство.

(1) Каждое ребро инцидентно двум вершинам, поэтому его удаление уменьшает сумму степеней всех вершин на 2. Удаляя по очереди все ребра (пусть их k), придем к пустому графу, в котором сумма степеней равна 0. Значит, вначале она была равна 2k.

- 1. Во всяком графе сумма степеней всех вершин равна удвоенному числу ребер:  $\sum_{v \in V} deg(v) = 2|E|$ .
- 2. В ориентированном графе сумма входящих степеней равна сумме исходящих степеней.
- 3. Всякий конечный граф содержит четное число вершин нечетной степени.

#### Доказательство.

- (1) Каждое ребро инцидентно двум вершинам, поэтому его удаление уменьшает сумму степеней всех вершин на 2. Удаляя по очереди все ребра (пусть их k), придем к пустому графу, в котором сумма степеней равна 0. Значит, вначале она была равна 2k.
- (2) В ориентированном случае при удалении ребра как сумма входящих, так и сумма исходящих степеней уменьшается на 1, откуда аналогично следует второе утверждение леммы.

- 1. Во всяком графе сумма степеней всех вершин равна удвоенному числу ребер:  $\sum_{v \in V} deg(v) = 2|E|$ .
- 2. В ориентированном графе сумма входящих степеней равна сумме исходящих степеней.
- 3. Всякий конечный граф содержит четное число вершин нечетной степени.

#### Доказательство.

- (1) Каждое ребро инцидентно двум вершинам, поэтому его удаление уменьшает сумму степеней всех вершин на 2. Удаляя по очереди все ребра (пусть их k), придем к пустому графу, в котором сумма степеней равна 0. Значит, вначале она была равна 2k.
- (2) В ориентированном случае при удалении ребра как сумма входящих, так и сумма исходящих степеней уменьшается на 1, откуда аналогично следует второе утверждение леммы.
- (3) Получено, что сумма степеней вершин четна. А для этого необходимо, чтобы нечетных слагаемых было четное число.



# Пути и циклы

Путь, соединяющий вершины  $v_0$  и  $v_n$ : последовательность вершин и ребер  $v_0 \xrightarrow{e_1} v_1 \xrightarrow{e_2} v_2 \dots v_n$  из  $v_0$  в  $v_n$ , так что  $e_i = (v_{i-1}, v_i) \in E$  для всех  $i = 1, 2, \dots, n$ .

Если все вершины пути различны, путь называется простым; если различны все ребра — реберно-простым.

Если  $v_0 = v_n$ , путь называется циклом.

Цикл называется простым (соответственно, реберно-простым), если различны вершины  $v_0, v_1, \ldots, v_{n-1}$  (соответственно, различны все ребра).

Замечание: Если между двумя вершинами есть путь, то есть и простой путь. В частности, если в графе есть цикл, то есть и простой цикл.

#### Связность

Если две вершины неориентированного графа совпадают или соединены некоторым путем, они называются связанными.

В ориентированном случае связанными называются такие вершины a и b, что существуют пути как из a в b, так и из b в a (либо a=b).

#### Отношение эквивалентности

Бинарное отношение на множестве X — это подмножество  $X \times X$ .

Отношение эквивалентности  $\sim$  на множестве X — это бинарное отношение, для которого выполнены следующие условия:

- ightharpoonup Рефлексивность:  $a\sim a$  для любого  $a\in X$ ,
- lacktriangle Симметричность: если  $a\sim b$ , то  $b\sim a$ ,
- lacktriangle Транзитивность: если  $a\sim b$  и  $b\sim c$  то  $a\sim c$ .

#### Классы эквивалентности

Для каждого  $x \in X$  определим класс  $\mathcal{C}_x = \{y \in X | y \sim x\}.$ 

### Предложение

Х разбивается на (непересекающиеся) классы эквивалентности.

#### Классы эквивалентности

Для каждого  $x \in X$  определим класс  $C_x = \{y \in X | y \sim x\}.$ 

### Предложение

Х разбивается на (непересекающиеся) классы эквивалентности.

Доказательство.

Рефлексивность  $\Rightarrow x \in C_x$ ;

Симметричность  $\Rightarrow$  если  $x \in C_y$ , то  $y \in C_x$ ;

Транзитивность  $\Rightarrow$  если  $y \in C_x$ , то  $C_y \subseteq C_x$  (действительно, для всякого  $z \in C_y$  имеем  $z \sim y \sim x$ , следовательно  $x \sim z$ , то есть  $z \in C_x$ ).

Меняя x и y местами, получаем  $C_x\subseteq C_y$ , то есть  $C_x=C_y$ . Наконец, если  $C_x$  и  $C_y$  пересекаются,  $z\in C_x\cap C_y$ , то по доказанному выше  $C_x=C_z=C_y$ . ЧТД

Связанность — отношение эквивалентности на множестве вершин.

Классы эквивалентности называются компонентами связности (в ориентированном случае иногда говорят компоненты сильной связности).

Связанность — отношение эквивалентности на множестве вершин.

Классы эквивалентности называются компонентами связности (в ориентированном случае иногда говорят компоненты сильной связности).

Граф связный, если в нем ровно одна компонента связности.

Орграф, в котором одна компонента связности, называют сильно связным.

Связанность — отношение эквивалентности на множестве вершин.

Классы эквивалентности называются компонентами связности (в ориентированном случае иногда говорят компоненты сильной связности).

Граф связный, если в нем ровно одна компонента связности.

Орграф, в котором одна компонента связности, называют сильно связным.

Замечание: Компонента связности является связным графом. Компонента связности орграфа является сильно связным орграфом.

Доказательство: для вершин u, v одной компоненты связности (или сильной связности для орграфа) есть путь P из u в v в исходном графе, а доказать надо, что есть путь в компоненте. Это следует из того, что любая промежуточная вершина пути P в исходном графе связана как с u, так и с v, так что все они действительно лежат в компоненте связности.

Связанность — отношение эквивалентности на множестве вершин.

Классы эквивалентности называются компонентами связности (в ориентированном случае иногда говорят компоненты сильной связности).

Граф связный, если в нем ровно одна компонента связности.

Орграф, в котором одна компонента связности, называют сильно связным.

Замечание: Компонента связности является связным графом. Компонента связности орграфо является сильно связным орграфом.

Доказательство: для вершин u, v одной компоненты связности (или сильной связности для орграфа) есть путь P из u в v в исходном графе, а доказать надо, что есть путь в компоненте. Это следует из того, что любая промежуточная вершина пути P в исходном графе связана как с u, так и с v, так что все они действительно лежат в компоненте связности.

В неориентированном случае между вершинами из разных компонент связности ребер нет. В ориентированном случае все ребра между вершинами двух компонент A и B направлены в одну сторону (либо все из A в B, либо все из B в A).

# Эйлеровы циклы

Эйлеров путь: путь без повторяющихся ребер, проходящий по всем ребрам графа.

Эйлеров путь, возвращающийся в исходную вершину: эйлеров цикл.

## Теорема

Связный граф содержит эйлеров цикл ⇔ все вершины в нем имеют четную степень.

Связный граф содержит эйлеров путь ⇔ он содержит две или ни одной вершины нечетной степени.

⇒ очевидно: эйлеров путь, проходя каждую промежуточную вершину, использует два инцидентных ей ребра; следовательно, степени всех вершин, кроме начала и конца, четны. Аналогично для цикла.

⇒ очевидно: эйлеров путь, проходя каждую промежуточную вершину, использует два инцидентных ей ребра; следовательно, степени всех вершин, кроме начала и конца, четны. Аналогично для цикла.

⇐ индукцией по количеству ребер. Докажем для пути.

Рассмотрим путь между двумя вершинами нечетной степени. Удалим его.

⇒ очевидно: эйлеров путь, проходя каждую промежуточную вершину, использует два инцидентных ей ребра; следовательно, степени всех вершин, кроме начала и конца, четны. Аналогично для цикла.

⇐ индукцией по количеству ребер. Докажем для пути.

Рассмотрим путь между двумя вершинами нечетной степени. Удалим его.

Граф, возможно, распадется на компоненты связности, в каждой из которых степени всех вершин будут четными.

Следовательно, в них по индукционному предположению будут существовать эйлеровы циклы.

⇒ очевидно: эйлеров путь, проходя каждую промежуточную вершину, использует два инцидентных ей ребра; следовательно, степени всех вершин, кроме начала и конца, четны. Аналогично для цикла.

⇐ индукцией по количеству ребер. Докажем для пути.

Рассмотрим путь между двумя вершинами нечетной степени. Удалим его.

Граф, возможно, распадется на компоненты связности, в каждой из которых степени всех вершин будут четными.

Следовательно, в них по индукционному предположению будут существовать эйлеровы циклы.

Будем двигаться в исходном графе по удаленному пути.

Каждый раз, встречая вершину из очередной не обойденной компоненты, будем обходить ее по эйлерову циклу этой компоненты и продолжать движение по пути.

# Ориентированные графы

## Теорема

Сильно связный ориентированный граф содержит эйлеров цикл  $\Leftrightarrow$  каждая его вершина имеет равные степень захода и степень исхода.

# Ориентированные графы

## Теорема

Сильно связный ориентированный граф содержит эйлеров цикл ⇔ каждая его вершина имеет равные степень захода и степень исхода.

Сильно связный ориентированный граф содержит эйлеров путь  $\Leftrightarrow$  все его вершины, кроме, возможно двух, имеют равные степень захода и степень исхода.

# Ориентированные графы

## Теорема

Сильно связный ориентированный граф содержит эйлеров цикл ⇔ каждая его вершина имеет равные степень захода и степень исхода.

Сильно связный ориентированный граф содержит эйлеров путь  $\Leftrightarrow$  все его вершины, кроме, возможно двух, имеют равные степень захода и степень исхода.

Из двух особых вершин одна имеет степень исхода на единицу большую, чем степень захода, а другая — степень захода на единицу большую, чем степень исхода.

Доказательство: упражнение.

Граф де Брейна (de Bruijn) порядка n для k-символьного алфавита  $\Sigma$ :

- ightharpoonup множество вершин  $V = \Sigma^n$ .
- lacktriangle k исходящих дуг у каждой вершины  $w_1 \dots w_n \in \Sigma^n$ : для всех  $b \in \Sigma$  дуга из  $w_1 \dots w_n$  в  $w_2 \dots w_n b$ .

Для n = 3, k = 2:



#### Теорема

В графе де Брейна существует эйлеров цикл. Существует строка длины  $k^{n+1}+n$ , содержащая все подстроки длины n+1.

#### Теорема

В графе де Брейна существует эйлеров цикл. Существует строка длины  $k^{n+1}+n$ , содержащая все подстроки длины n+1.

Доказательство. В каждой вершине wb ( $w \in \Sigma^{n-1}$ ,  $b \in \Sigma$ ) ровно k входящих дуг, идущих из всех вершин вида aw, для  $a \in \Sigma$ . Поэтому эйлеров цикл есть.

## Теорема

В графе де Брейна существует эйлеров цикл. Существует строка длины  $k^{n+1}+n$ , содержащая все подстроки длины n+1.

Доказательство. В каждой вершине wb ( $w \in \Sigma^{n-1}$ ,  $b \in \Sigma$ ) ровно k входящих дуг, идущих из всех вершин вида aw, для  $a \in \Sigma$ . Поэтому эйлеров цикл есть.

Искомая строка строится так:

- ightharpoonup сперва записывается произвольная n-символьная строка  $w^0$ ,
- ightharpoonup затем, начиная с вершины  $w^0$ , проходится весь эйлеров цикл
- при этом символы, соответствующие посещаемым дугам, приписываются к строке.

## Теорема

В графе де Брейна существует эйлеров цикл. Существует строка длины  $k^{n+1}+n$ , содержащая все подстроки длины n+1.

Доказательство. В каждой вершине wb ( $w \in \Sigma^{n-1}$ ,  $b \in \Sigma$ ) ровно k входящих дуг, идущих из всех вершин вида aw, для  $a \in \Sigma$ . Поэтому эйлеров цикл есть.

Искомая строка строится так:

- ightharpoonup сперва записывается произвольная n-символьная строка  $w^0$ ,
- ightharpoonup затем, начиная с вершины  $w^0$ , проходится весь эйлеров цикл
- при этом символы, соответствующие посещаемым дугам, приписываются к строке.

При прохождении дуги b из вершины aw в вершину wb последние n+1 символов строки равны awb, и все подстроки так обходятся.

# Гамильтоновы циклы и пути

Простой путь или цикл в графе называется гамильтоновым, если он проходит через каждую вершину (ровно) один раз.

## Гамильтоновы циклы и пути

Простой путь или цикл в графе называется гамильтоновым, если он проходит через каждую вершину (ровно) один раз.

В отличие от эйлерового пути, простых критериев существования гамильтонова пути или цикла в графе не известно (NP-полная задача — позже в курсе — 1000000 долларов за решение от института Клэя).

Достаточное условие существования гамильтонова пути или цикла в терминах степеней вершин:

Теорема (Дирак, 1952)

Если в графе G с  $n \geq 3$  вершинами сумма степеней любых двух вершин не меньше n-1 (соответственно, не меньше n), в нем существует гамильтонов путь (соответственно, цикл).

Достаточное условие существования гамильтонова пути или цикла в терминах степеней вершин:

# Теорема (Дирак, 1952)

Если в графе G с  $n \geq 3$  вершинами сумма степеней любых двух вершин не меньше n-1 (соответственно, не меньше n), в нем существует гамильтонов путь (соответственно, цикл).

#### Лемма

Если в графе с  $k \ge 3$  вершинами имеется гамильтонов путь, и сумма степеней концов этого пути не меньше, чем k, то в нем имеется и гамильтонов цикл.

Назовем зелеными вершины, предшествующие (в смысле порядка от  $A_1$  до  $A_k$ ) в пути p тем l вершинам, с которыми смежна  $A_1$ . Очевидно, зеленых вершин ровно l.

Назовем зелеными вершины, предшествующие (в смысле порядка от  $A_1$  до  $A_k$ ) в пути p тем l вершинам, с которыми смежна  $A_1$ . Очевидно, зеленых вершин ровно l.

Предположим, что вершина  $A_k$  не соединена с зелеными вершинами. Тогда степень вершины  $A_k$  не больше k-1-l, то есть сумма степеней вершин  $A_1$  и  $A_k$  не больше k-1 — противоречие.

Назовем зелеными вершины, предшествующие (в смысле порядка от  $A_1$  до  $A_k$ ) в пути p тем l вершинам, с которыми смежна  $A_1$ . Очевидно, зеленых вершин ровно l.

Предположим, что вершина  $A_k$  не соединена с зелеными вершинами. Тогда степень вершины  $A_k$  не больше k-1-l, то есть сумма степеней вершин  $A_1$  и  $A_k$  не больше k-1 — противоречие.

Значит, вершина  $A_k$  соединена с какой-то зеленой вершиной  $A_i$ . В этом случае в графе существует гамильтонов цикл  $A_1A_2\ldots A_iA_kA_{k-1}\ldots A_{i+1}A_1$ . Лемма доказана.

Доказательство теоремы. Лемма  $\Rightarrow$  если теорема верна для пути, то верна и для цикла. Докажем для пути.

Доказательство теоремы. Лемма ⇒ если теорема верна для пути, то верна и для цикла. Докажем для пути.

Рассмотрим самый длинный простой путь p. Предположим, что он не гамильтонов и содержит k < n вершин.

Граф, образованный вершинами пути p, назовем H.

Доказательство теоремы. Лемма ⇒ если теорема верна для пути, то верна и для цикла. Докажем для пути.

Рассмотрим самый длинный простой путь p. Предположим, что он не гамильтонов и содержит k < n вершин.

Граф, образованный вершинами пути p, назовем H.

Концы самого длинного пути p соединены только с другими вершинами p, так что к H применима лемма: сумма степеней концов пути p, являющегося в H гамильтоновым, не меньше чем  $n-1 \geq k$  (легко видеть, что  $k \geq 3$ , так что лемму применять можно).

 $\Rightarrow$  в G есть цикл длины k.

Доказательство теоремы. Лемма  $\Rightarrow$  если теорема верна для пути, то верна и для цикла. Докажем для пути.

Рассмотрим самый длинный простой путь p. Предположим, что он не гамильтонов и содержит k < n вершин.

Граф, образованный вершинами пути p, назовем H.

Концы самого длинного пути p соединены только с другими вершинами p, так что к H применима лемма: сумма степеней концов пути p, являющегося в H гамильтоновым, не меньше чем  $n-1 \geq k$  (легко видеть, что  $k \geq 3$ , так что лемму применять можно).

 $\Rightarrow$  в G есть цикл длины k.

Если из него ведет хотя бы одно ребро вне цикла, то имеем путь длины k+1. Противоречие с максимальностью p. Иначе степени всех вершин цикла  $\leq k-1$ , а степени не входящих в цикл вершин  $\leq n-k-1$ , что в сумме дает  $\leq n-2$ . Противоречие.