บทที่ 3 การหาขอบเขตภาพและการแปลงภาพ

การหาขอบภาพ (Edge Detection) เป็นเทคนิคหนึ่งในการประมวลผลภาพ (Image Processing) ที่มีจุดประสงค์เพื่อทำการหาขอบเขตในภาพ คือการทำให้ขอบของภาพนั้นมีความ เด่นชัดขึ้นมา เพื่อที่จะทำการหาขอบเขตของภาพต่าง ๆ ได้ โดยขอบเขตภาพที่เกิดความเด่นชัด ขึ้นมานั้นมาจากความแตกต่างความเข้มของแสงจากจุดภาพหนึ่งไปอีกจุดภาพหนึ่งที่มีความ ต่อเนื่องกัน โดยขอบภาพจะเด่นชัดหรือไม่นั้นขึ้นอยู่กับความเข้มของแสงระหว่างจุดภาพ และ ในการหาขอบภาพที่ถูกต้องสมบูรณ์นั้นไม่ใช่เรื่องที่ง่าย โดยเฉพาะอย่างยิ่งในการหาขอบภาพที่มี กุณภาพต่ำหรือมีความเข้มของแสงไม่สม่ำเสมอทั่วทั้งภาพหรือมีความแตกต่างระหว่างพื้นหน้ากับ พื้นหลังที่มีค่าน้อย มีลายเส้นจำนวนมากที่มีความใกล้เคียงระหว่างจุดภาพที่มีความละเอียดชิด ติดกัน ก็จะทำให้การหาขอบภาพให้ได้ภาพที่สมบูรณ์นั้นยากมากขึ้น

3.1 การหาขอบเขตภาพ (Edge Detection)

การหาขอบเขตภาพ คือ การตรวจสอบว่าเส้นขอบลากผ่านหรือใกล้เคียงกับจุดใด โดยวัด จากการเปลี่ยนแปลงของความเข้มในตำแหน่งที่ใกล้เคียงกับจุดดังกล่าว ซึ่งวิธีการหาขอบเขตภาพ นั้นมีด้วยกันหลายวิธีสามารถแบ่งได้เป็น 2 กลุ่มหลักคือ เกรเดียนต์เมทธอด และ ลาปาเซียน เมทธอด สำหรับงานวิจัยนี้ได้เลือกใช้เกรเดียนต์เมทธอดซึ่งจะหาขอบโดยการหาจุดต่ำสุดและ จุดสูงสุดในรูปของอนุพันธ์อันดับหนึ่งของภาพซึ่งวิธีนี้สามารถที่จะหาขอบภาพได้ด้วยกันหลายวิธี เช่น โซเบล, โรเบิร์ต, พรีวิท, แคนนี่ เป็นต้น ส่วนอีกวิธีหนึ่งจะเป็น ลาปาเซียนเมทธอด จะเป็นการ หาขอบเขตภาพโดยการใช้อนุพันธ์อันดับ 2 โดยที่จะใช้จุดที่มีค่า y เป็น 0 (Zerocrossing) และ Laplacian of Guassian (Log)

สำหรับการหาขอบเขตภาพโดยเลือกใช้เทคนิคโซเบลนั้น เพราะจากรูปภาพที่ได้มานั้นแต่ ละภาพมีลักษณะเฉพาะรูป จึงไม่จำเป็นที่จะต้องหารายละเอียดของภาพให้ครบ แต่จุดสำคัญจะต้อง สามารถหาขอบเขตภาพได้ผลลัพธ์ในระดับดี ดังนั้นจึงได้เลือกใช้เทคนิคโซเบล สำหรับการหาขอบเขตภาพในงานวิจัยนี้

การหาขอบเขตภาพโดยใช้อนุพันธ์อันดับที่หนึ่งเป็นการแปลงเกรเดียนต์ แบบไม่ต่อเนื่อง บนข้อมูลภาพเชิงตัวเลขเนื่องจากการหาขอบภาพเป็นการประมวลผลแบบไม่ต่อเนื่อง ดังนั้นจึงต้อง ใช้อนุพันธ์ย่อยแบบไม่ต่อเนื่องตามทิสทางที่ตั้งฉากกับแกน x และแกน y กำหนดค่าได้ตาม สมการ

$$\nabla_{\mathbf{x}} g(\mathbf{x}, \mathbf{y}) = g(\mathbf{x}, \mathbf{y}) - g(\mathbf{x} - \mathbf{1}, \mathbf{y})$$

ແຄະ

$$\nabla_y \mathbf{g}(x, y) - g(x, y) - g(x, y - 1)$$
 สมการ 3.1

ค่าขนาดโดยการประมาณค่าของเกรเดียนต์ g(x,y) กำหนดค่าได้จาก

$$|\nabla g(x,y)| = \sqrt{(\nabla_{\mathbf{x}} \mathbf{g}(x,y))^2 - (\nabla_{\mathbf{y}} \mathbf{g}(x,y))^2}$$
 and all 3.2

เพื่อให้ง่ายต่อการกำนวณกำหนดให้ประมาณค่าขนาดของเกรเดียนต์ตามทิศทางที่ตั้งฉากกับแกน x และแกน y รวมกันคือ

$$|\nabla g(x,y)| = \left| \left(\nabla_x g(x,y) \right) \right| - \left| \left(\nabla_y g(x,y) \right) \right|$$
 מעחוז 3.3

การค้นหาขอบภาพโดยใช้อนุพันธ์อันดับหนึ่ง เป็นวิธีการของการหาจุดต่ำสุดและจุดสูงสุดของ องค์ประกอบภาพ วิธีการหาขอบภาพโดยใช้โซเบล เขียนเป็นสมการได้

$$|\nabla g(x,y)| = \begin{pmatrix} |g(x,y)+2g(x,y+1)+g(x,y+2)-g(x+2,y)| \\ +2g(x+2,y+1)+g(x+2,y+2)| \\ |g(x,y)+2g(x+1,y)+g(x+2,y)-g(x+2,y)| \\ +2g(x+1,y+2)+g(x+2,y+2) \end{pmatrix} +$$
 and 3.4

จากสมการ กำหนดขนาดของ Masks เท่ากับเมตริกซ์ขนาด 3x3 และมีค่าเท่ากับ

$$\mathbf{E}_{\mathbf{x}} = \begin{bmatrix} \mathbf{1} & \mathbf{0} - \mathbf{1} \\ \mathbf{2} & \mathbf{0} - \mathbf{2} \\ \mathbf{1} & \mathbf{0} - \mathbf{1} \end{bmatrix} \text{ tas } \quad \mathbf{E}_{\mathbf{y}} = \begin{bmatrix} -\mathbf{1} - \mathbf{2} - \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{2} & \mathbf{1} \end{bmatrix}$$

เป็นการหาขอบภาพโดยใช้เทมเพลตขนาด 3x3 สองเทมเพลต โดยเทมเพลตแรกจะใช้หาค่าความ แตกต่างในแนวนอน และเทมเพลตสองจะหาค่าความแตกต่างในแนวตั้ง

ผลที่ได้เมื่อนำค่าคงที่ดังกล่าวไปทำการปรับค่าความสว่างบนภาพ โดยการนำค่าของตัว เลขที่กำหนดไว้ในแผ่นกรองไปคูณกับค่าความสว่างของจุดภาพในแต่ละจุดภาพ โดยการคูณที่ เกิดขึ้นจะถูกวนจากมุมซ้ายบนไปทางขวาจนครบแถวแรกจากนั้นก็จะเริ่มใหม่ในแถวที่ 2 ทาง ด้านซ้ายเช่นเดิมดังรูป 3.1 จนครบทั้งภาพจะทำให้แต่ละจุดภาพแสดงรายละเอียดขอบของวัตถุที่ไม่ เป็นเส้นตรงได้อย่างชัดเจน

รูป 3.1 แสดงลักษณะการเคลื่อนที่ของแผ่นกรองในการคำนวณ

การเลือกใช่ฟังก์ชันค้นหาขอบภาพของโปรแกรม MATLAB ที่เลือกใช้นั้น 3 วิธีซึ่งเป็น การค้นหาขอบภาพโดยการใช้อนุพันธ์อันคับหนึ่ง ได้แก่ โรเบิร์ต, พรีวิท, แคนนี่ คังแสดงได้ใน ตาราง 3.1

ตาราง 3.1 แสดงฟังก์ชันการค้นหาขอบภาพของโปรแกรม Matlab

วิธีการของฟังก์ชัน	ลักษณะของคำสั่งที่ใช้
1. Robert Operator	BW = edge(I,'roberts',thresh)
2. Prewitt Operator	BW = edge(I,'prewitt',thresh)
3. Canny Operator	BW = edge(I,'canny',thresh)

ดังนั้น ฟังก์ชันของโปรแกรม Matlab มีวิธีการกำหนดค่าดังสมการ BW = Edge(Image,'Method',Parameters)

กำหนดให้

BW คือ ผลลัพธ์ภาพที่มีการค้นหาขอบภาพ (Black&White)
Method คือ Robert , Prewitt และ Canny
Parameter คือ ค่า Threshold ที่ใช้ในแต่ละวิธีการ

3.2 ขั้นตอนในการแปลงภาพกราฟิกเป็นอักษรเบรลล์

ขั้นตอนวิธีในการแปลงภาพกราฟิกเป็นอักษรเบรลล์ สามารถที่จะทำการแยกขั้นตอน ต่าง ๆ อธิบายได้ดังรูป 3.2

รูป 3.2 แสดงโครงสร้างการทำงานของการแปลงภาพกราฟิกให้เป็นภาพอักษรเบรลล์

3.2.1 การรับภาพเข้าระบบ

สำหรับส่วนรับภาพเข้าระบบ ทำหน้าที่ในการอ่านข้อมูลหรือทำการโหลดข้อมูล
รูปภาพซึ่งจะเป็นไฟล์นามสกุล JPG เป็นหลัก และระบบสามารถที่จะลองรับไฟล์รูปภาพ
ที่มีนามสกุลเป็น BRF ได้อีกแบบ โดยภาพที่มีประสิทธิภาพในการใช้งานนั้นควรจะเป็นภาพ
ที่มีขอบที่เค่นชัดเจน ยิ่งมีความคมชัดมากเท่าไหร่การหาขอบเขตภาพก็จะสามารถที่จะได้ขอบภาพ
ออกมาได้ชัดเจนมากยิ่งขึ้น

3.2.2 การแปลงภาพสีให้เป็นภาพสีขาวดำ (Threshold)

การแปลงข้อมูลภาพที่มีความเข้มหลายระดับ ให้เป็นภาพที่มีระดับความเข้ม 2 ระดับ ต่อ 1 จุดภาพ เพื่อทำการหาขอบที่ให้ค่าความคมชัดและแน่นอน โดยการหาขอบจะต้องทำการ แปลงภาพต้นฉบับให้มีค่าเป็นเพียง 0 หรือ 1 หรือที่เรียกว่าเป็นการทำให้ภาพมีลักษณะเป็น ขาว – คำ ในการแปลงภาพให้เป็นภาพขาว – คำ นั้นไม่จำเป็นที่จะต้องทำเฉพาะภาพที่เป็นภาพสีเท่านั้น

ภาพที่เป็นภาพขาว – คำ ก็ต้องผ่านขั้นตอนนี้เช่นกัน ซึ่งในการแปลงภาพนั้นจะพบว่าในส่วนที่มี การแสดงผลของสีที่มีลักษณะเป็นสีเข้ม เมื่อทำการแปลงออกมาภาพที่มีสีเข้มก็จะแสดงผล เปลี่ยนเป็นสีคำยิ่งภาพมีความเข้มภาพ ภาพที่ได้ออกมาก็จะมีสีคำมากตามไปด้วย และในทาง ตรงกันข้ามภาพที่มีสีอ่อนก็จะได้ภาพออกมาเป็นสีเทา หรือออกเป็นสีขาวทั่วไป ในการกำหนดค่า การแปลงภาพสีเป็นขาว-คำ จะทำการกำหนดขึ้นมา 2 ค่า คือ high threshold(T1) และ low threshold(T2) โดยจุดภาพที่มีค่ามากกว่า T1 จะถูกปรับเป็น 1 ซึ่งแสดงว่าเป็นจุดภาพที่มีค่าเป็น ขอบหรือที่มีสีเข้ม (สีคำ) นั่นเอง แต่ถ้าน้อยกว่า T2 ก็จะถูกปรับเป็น 0 โดยภาพที่ได้ผ่าน กระบวนการนี้จะสามารถเห็นขอบที่ชัดเจนมากขึ้น กระบวนการทำให้ความเข้มของแม่สีในภาพมี ระดับเดียวกัน คือในจุดภาพหนึ่งจะประกอบไปด้วย ค่าสี R G B จะเห็นได้ว่ามีถึง 3 ค่าใน 1 จุดภาพการทำให้แม่สี R G B ทั้ง 3 ค่ามีค่าเท่ากัน ใช้สมการดังนี้

$$R_R = \frac{(R_s + G_s + B_s)}{3}$$
 $R_R = \left((0.299 \ xR_s) + (0.587 xG_s) + (0.114 xB_s)\right)$ สมการ 3.5
$$G_R = \frac{(R_s + G_s + B_s)}{3}$$
 หรือ $G_R = \left((0.299 \ xR_s) + (0.587 xG_s) + (0.114 xB_s)\right)$ สมการ 3.6
$$B_R - \frac{(R_s + G_s + B_s)}{3}$$
 $B_R - \left((0.299 \ xR_s) + (0.567 xG_s) + (0.114 xB_s)\right)$

สมการ 3.7

เมื่อ R_R หมายถึง ค่าเอาต์พุต Pixel สีแดง

 G_R หมายถึง ค่าเอาต์พุต Pixel สีเขียว

 B_{R} หมายถึง ค่าเอาต์พุต Pixel สีน้ำเงิน

R_s หมายถึง ค่าอินพุต Pixel สีน้ำเงิน

 $oldsymbol{G_s}$ หมายถึง ค่าอินพุต Pixel สีน้ำเงิน

 $extbf{\emph{B}}_{s}$ หมายถึง ค่าอินพุต Pixel สีน้ำเงิน

จากนั้นทำการหาค่าของการทำ Threshold เพื่อหาขอบที่มีความเค่นชัดมากขึ้น สามารถกำหนดได้ดังนี้ เมื่อผ่านทดลองภาพที่ได้จะมีระดับของสือยู่ 2 ค่า คือ 0 กับ 1 นั่นคือ สี ขาวและคำ เรียกว่า เป็นภาพไบนารี่ (Binary Image) แสดงได้ดังรูป 3.3

$$g(x,y) = \begin{cases} 0, f(x,y) < Threshold \\ 1, f(x,y) \ge Threshold \end{cases}$$

เมื่อ g(x,y) = ระดับสีเท่าที่จุด (x,y) ใดๆ ของภาพ

f(x,y) =เป็นค่าความสว่างของจุด (x,y)

Threshold = ระดับสีเทาที่ใช้อ้างอิงการแปลงข้อมูลซึ่งคูได้จากผลการทคลอง

รูป 3.3 แสดงการทำ Threshold

3.2.3 ขั้นตอนของการปรับภาพให้เรียบ

ขั้นตอนนี้ เป็นการแปลงภาพที่ได้จากการทำภาพขาว - ดำ เพื่อที่จะทำการกำจัด สิ่งรบกวน (Noise) ออกจากภาพ โดยการกำจัดสิ่งรบกวนนั้นจะเป็นการช่วยให้ระบบสามารถที่จะ ทำการจับขอบภาพได้คมชัดมากยิ่งขึ้น โดยอาศัยเทคนิคใช้ค่ามัธยฐาน (Median filtering) ซึ่งใน เทคนิคนี้จะเป็นการหาสิ่งรบกวนที่เกิดขึ้นในภาพด้วยการกรอง (Filter)โดยมีรูปแบบการคำนวณ โดยการนำเอาความเข้มแสงของจุดที่ตรงกันในภาพต่าง ๆ มาเรียงถำดับ(Sort) จากน้อยไปหามาก จากนั้นจะเลือกค่าที่อยู่ตรงกลางไปใช้ หากจำนวนภาพทั้งหมดเป็นจำนวนคู่ จะนำค่าทั้งสองที่อยู่ ตรงกลางมาหาค่าเฉลี่ย และเมื่อผ่านกระบวนการออกมาสิ่งรบกวนก็จะถูกกำจัดออกไป ซึ่งอาจจะ ไม่สมบูรณ์แต่ก็สามารถที่จะลดจำนวนของสิ่งรบกวนออกไปให้เหลือน้อยลงไปได้ ซึ่งวิธีนี้จะใช้ เวลาในการคำนวณสูง แต่ข้อดีคือภาพที่ได้ออกมามีความคมชัด ตัวอย่าง

		ภาเ	พที่ 1		ภา	พที่	2			ภ	าพที	1 3			N	ิดลัข	ıś	
1	2	1	3		2	3	4	3		3	2	1	4		2	2	1	3
4	2	2	1		5	3	4	1		2	1	4	0		4	2	4	1
0	1	1	3	,	3	2	4	2	,	1	4	2	0	=	1	2	2	2
2	2	1	1		1	3	1	2		2	4	0	2		2	3	1	2

3.2.4 ขั้นตอนการหาขอบเขตของภาพ

ในการหาขอบเขตของภาพที่ได้ซึ่งในขั้นตอนนี้จะเป็นการนำเทคนิคการหาขอบแบบ โซเบลเข้ามาใช้งาน ดังนั้นภาพที่ผ่านกระบวนการนี้จะได้ขอบที่ชัดเจนมากยิ่งขึ้นแต่ใน ขณะเดียวกัน ระบบก็สามารถที่จะจับขอบของเส้นต่าง ๆ ที่ปรากฏในรูปที่เป็นส่วนที่เราไม่ได้ ต้องการให้ด้วยเช่นกัน ดังที่ได้กล่าวไว้ในหัวข้อข้างต้น

3.2.5 ส่วนของการปรับขนาดภาพตัวอย่าง

ทำหน้าที่ ในการแสดงขนาดตัวอย่างรูปภาพเพื่อเป็นการตรวจเช็คก่อนที่จะมีการส่ง ภาพนั้นไปสู่กระบวนการสุดท้ายนั้นคือ กระบวนการการแปลงภาพเป็นอักษรเบรลล์นั้นเอง ซึ่งจุดนี้ ผู้ใช้งานสามารถที่จะทำการคูภาพได้ตามขนาดที่ได้กำหนดไว้ให้ เช่น 50%, 150% หรือ 200% เพื่อทำการเปรียบเทียบกับภาพต้นฉบับถึงความถูกต้องของการหาขอบภาพที่ได้

3.2.6 ส่วนของการแปลงเป็นอักษรเบรลล์

ทำหน้าที่ในการแปลงภาพที่ได้จากกระบวนการต่าง ๆ เพื่อทำการแม็บขอบเขตภาพที่ ได้ให้เป็นภาพกราฟิกอักษรเบรลล์ ซึ่งจะมีด้วยกัน 2 ลักษณะคือ ภาพที่แปลงได้ในลักษณะที่เป็น 6 จุด และภาพที่เป็นตามลักษณะอักษรเบรลล์ ซึ่งประสิทธิภาพที่ได้ก็จะมีความแตกต่างกันออกไป แล้วแต่ภาพที่นำมาทดลอง โดยภาพที่นำมาทดลองก็จะมีการบอกค่าสีขาวดำว่าอยู่ในช่วงสีที่กำหนด ไว้เท่าไหร่ โดยมากแล้วภาพขาวดำจะกำหนดระดับของสีอยู่ที่ 0-255 อาทิเช่น ภาพรูปหลาย เหลี่ยมเมื่อทำการแปลงภาพออกมาแล้วจะได้ค่าความถื่อยู่ที่ 48 ซึ่งจะทำให้ภาพที่ได้ถึงจะมีความ คมชัด แต่ในขณะเดียวกันระบบ ก็สามารถอำนวยความสะดวกผู้ใช้งานโดยสามารถที่จะทำการปรับ เพิ่ม – ลด ระดับสีได้ตั้งแต่ 0-255 ตามความเหมาะสมที่ผู้ใช้ต้องการแสดงได้ ดังนี้ ในการแปลง ออกเป็นภาพอักษรเบรลล์นั้น ได้มีการแสดงภาพในตำแหน่งที่ภาพเบรลล์มีความใกล้เคียงกับภาพ ด้นฉบับ ซึ่งแต่ละภาพที่ได้ออกมาจะไม่มีค่าความเฉลี่ยที่เท่ากันแต่ขึ้นอยู่กับความละเอียด ความ คมชัดของภาพต้นฉบับ การแม็บระหว่างจุดภาพที่หาได้กับกลุ่มอักษรเบรลล์นั้น ได้มีการสร้างกลุ่ม อักษรเบรลล์ไว้รองรับจำนวน 63 ตัวซึ่งจะประกอบด้วย กลุ่มของตัวอักษรภาษาอังกฤษ a-z กลุ่มตัวเลข 0-9 และกลุ่มของสัญลักษณ์พิเศษ เช่น เครื่องหมาย ' , " (,) เป็นด้น ซึ่งแต่ละ

ตัวอักษรที่สร้างขึ้นไว้รองรับนั้น ก็จะเป็นตัวอักษรที่เป็นมาตรฐานที่ใช้ในระบบการเรียนการสอน ของนักเรียนตาบอด ซึ่งจะทำให้การสัมผัสสามารถที่จะบอกได้ว่ากลุ่มเซลนั้นคือตัวอักษรใดบ้าง เช่นกัน อาทิเช่น ตัวอักษร a q 50 = จะมีลักษณะเขียนเป็นสัญลักษณ์อักษรเบรลล์ได้เป็น

โคยขั้นตอนแสคงใค้คังรูป 3.4

รูป 3.4 แสดงขั้นตอนการแม็บอักษรเบรลล์

โดยขั้นตอน ในการแม็บจะเริ่มจากการรับภาพที่มีการปรับภาพที่ได้เป็นสีขาวดำที่ผ่านการ หาขอบเขตภาพมาแล้วนั้นทำให้ได้ความถี่ของสีที่ 0 – 255 ซึ่งเป็นค่าช่วงสีขาว ถึง ดำ และเมื่อได้ ค่าความถี่สีในแต่ละจุด Pixels แล้ว ก็จะมีการนำวัดปรับขนาดให้เท่ากับจำนวนของอักษรเบรลล์ที่ แสดงใน 1 หน้ากระดาษ ซึ่งอักษรเบรลล์ใน 1 หน้ากระดาษจะประกอบไปด้วยจำนวนเซลทั้งหมด 40 เซลหรือ 40 ตัวอักษรต่อ 1 บรรทัด 1 เซลจะประกอบไปด้วยจุด 6 ตำแหน่ง และมีจำนวน บรรทัดทั้งหมด 25 บรรทัดต่อ 1หน้ากระดาษ ในส่วนนี้เราสามารถที่จะทำการกำหนดขนาดของ รูปได้ว่าต้องการให้ภาพที่ออกมานั้นมีขนาดเท่าไหร่ โดยตัวระบบได้จะกำหนดไว้ที่ 40:25 ใน 1 หน้ากระดาษไว้ให้ ซึ่งจะได้ภาพที่มีความสมบูรณ์ แต่จะมีข้อเสียเนื่องจากวิธีนี้เป็นวิธีที่สิ้นเปลือง กระดาษ เพราะจะได้รูปเพียงรูปเดียวต่อกระดาษ 1 แผ่น

เมื่อทำการกำหนดขนาดของภาพกับกระดาษได้แล้วตัวระบบก็จะทำการเปรียบเทียบ จุดภาพในภาพโดยการแบ่งให้ภาพเป็น Grid ที่มีขนาด 80 x 75 ตามขนาดของกระดายเบรลล์ ดังนั้นจะได้ Grid ทั้งหมด 6000 แล้วทำการวิเคราะห์ต่อไปว่า โดยจะดู Grid ที่เส้นขอบลากผ่าน นั้นมีลักษณะอย่างไรซึ่งจะทำการดูครั้งละ 6 ตำแหน่งตามลักษณะของอักษรเบรลล์ แล้วดูว่ามีส่วน ที่ลาดว่าจะเป็นตัวอักษรนั้นอยู่หรือไม่ ถ้ามีก็ให้กลุ่มของ Grid นั้นมีค่าเป็นจริง ให้เป็นสีดำ ส่วนที่ ไม่ใช่ให้เป็นสีขาว เมื่อวิเคราะห์จนครบทั้ง 6000 ตำแหน่งแล้ว ก็จะได้องค์ประกอบของจุดภาพ ใน ภาพ เมื่อทำการเปรียบเทียบแล้วว่าตรงกับอักษรนั้น ๆ จะแสดงภาพจุดอักษรนั้นออกมาเป็นภาพ เอาต์พุตต่อไปซึ่งในตัวระบบสามารถที่จะทำการเลือกได้ว่าจะให้แสดงภาพในลักษณะใด คือ ภาพที่ เป็นจุดเต็ม 6 จุดที่มีค่าเท่ากับ (=) โดยการแสดงในลักษณะนี้จะทำให้ภาพที่ได้ออกมามีมิติมาก ขึ้นและจะทำให้การสัมผัสสามารถที่จะเข้าถึงได้ง่าย และในลักษณะของอักษรเบรลล์นั้นในการ แสดงผลจะให้ความสมบูรณ์ของภาพเป็นอีกรูปแบบหนึ่งซึ่งจำเป็นต้องอาศัยความจำนาญในการ สัมผัสมากพอสมควรในการบอกว่ารูปที่ได้ออกมามีลักษณะเช่นไร ซึ่งในการแสดงผลเช่นนี้จะมี ความเหมาะสมกับนักเรียนที่โดแล้วหรือผู้ที่มีความจำนาญถึงจะให้ผลการสัมผัสการรับรู้ที่ดี ลักษณะของการแม็บขอบเขตภาพที่ได้กับอักษรเบรลล์ ดังรูป 3.5

		อักษรเบรลล์									
					A	1	DIE				
						d	?				
								-	K	7	
				1		NT	3				
								5	?		
									4		r
		4									

รูป 3.5 แสดงการแม็บขอบภาพกับอักษรเบรลล์

รูป 3.6 แสดงตัวอย่างการแม็บขอบภาพกับอักษรเบรลล์

ตารางแสดงการเปรียบเทียบการแปลงภาพ ด้วยวิธีการใช้โปรแกรม MatLab โดยการใช้ เทคนิคโรเบิร์ต, พรีวิท และ แคนนี่ และการใช้โปรแกรมการแปลงภาพอักษรเบรลล์ ที่ได้จัดทำขึ้น โดยใช้เทคนิคโซเบลโดยผลของการทดลองออกมาได้ดังตาราง 3.2

ตาราง 3.2 แสดงตารางเปรียบเทียบการแปลงภาพที่ได้จากเทคนิคทาง MatLab และ โปรแกรมการ แปลงภาพอักษรเบรลล์

	โปร	โปรแกรมแปลงภาพ			
ภาพต้นฉบับ	Canny	Prewitt	Roberts	ด้วยวิชี Sobel	
			(ES)		
				D'S	
			To see the second		
E		G	E	6	
			P	6	
Service Company			Sign	SP	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved