a, b, c を複素数とするとき、次のことは正しいか、正しいものは証明し、正しくないものについては反例(成り立たない例)をあげよ、

- (1) ab, bc, ca mid mid mid mid ab, b, c mid mid ab, bc, c mid mid ab, bc, c mid mi
- (2) a+b, b+c, c+a がすべて実数ならば, a, b, c はすべて実数である.
- (3) $a^2 + b^2 + c^2 = 0$ a > b, b < c a < b, c < c
- (4) a+b+c=0, ab+bc+ca=0 ab+bc+ca=0 ab+bc+ca=0 ab+bc+ca=0 ab+bc+ca=0

1970 -

解答

- (1) a = 0, b = 0, c = 1 のとき、ab, bc, ca は 0 となるが、a, b, c は 0 ではないため、偽である.
- (2) a=c+fi, b=g+hi, c=j+ji とする. a+b, b+c, c+a が実数であるから,f+h=0, h+k=0, k+f=0 となり,これを満たす f, h, k の組み合わせは,(f, h, k)=(0, 0, 0) となる. よって,a+b, b+c, c+a がすべて実数であるとき,a, b, c は実数となる.
- (3) $a^2 \ge 0$, $b^2 \ge 0$, $c^2 \ge 0$ であるから, $a^2 + b^2 + c^2 = 0$ となるには, $a^2 = 0$, $b^2 = 0$, $c^2 = 0$ でなければならないから, a = b = c = 0 となる.
- (4) abc = d とすると、解と係数の関係から、a, b, c は $x^3 d = 0$ の解となる. よって、a = b = c となる.

 $\boxed{2}$

座標平面で点Pはx軸上を正の方向へ,点Qはy軸上を正の方向へ,点Rは傾き(勾配)1の直線上を上方へ,それぞれ一定の速さa, b, cで動いている.3 点P, Q, Rはつねに一直線上にあり,ある時刻にPの位置は(4,0),Qの位置は(0,2),Rの位置は(2,1)であった.このときa, b, cの値の比を求めよ

1970 -

解答

3 —

次の(1),(2)を証明せよ.

- (1) $\sin x$ は、x の整式としては表わせない.
- (2) f(x) は実数全体を定義域とする微分できる関数で、f(1) = 0 である. このとき

$$g(x) = \begin{cases} \frac{f(x)}{x-1} & (x \neq 1 \text{ のとき}) \\ f'(1) & (x = 1 \text{ のとき}) \end{cases}$$

とおけば, g(x) は連続関数である.

- 1970 -

解答

(1) $\sin x = \sum_{k=0}^{n} a_k x^k$ と仮定する. $(a_k$ は任意の実数)

このとき、 $(\sin x)^4 = \sin x$ であるので、 $(\sin x)^{(4l)} = \sin x$ (l は整数) となる.ここで、4l > n となる l を考えると、 $(\sin x)^{(4l)} = \sin x = 0$ となるため、これは矛盾である.したがって、 $\sin x$ は x の整式で表すことは出来ない.

(2) 平均値の定理から、

$$\frac{f(x) - f(1)}{x - 1} = f'(c)$$

を満たすcが存在する位置について、場合分けを行う.

(i) x > 1 のとき、1 < c < x の位置に存在する. したがって、 $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(c)$ となる.

(ii) x < 1 のとき、x < c < 1 の位置に存在する.したがって、 $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(c)$ となる.よって、(i)、(ii) から、 $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(c)$ となるから、g(x) は連続関数である.

n は 2 以上の自然数で、 $0 \le x \le 1$ のとき、 $\sum_{k=0}^{n} x^k \le n + x^{n+1}$ を証明せよ.

1971 -

解答

(i) n = 2 のとき

$$x^{3} + 2 - (x^{2} + x + 1)$$

$$= x^{3} - x^{2} - x + 1$$

$$= x^{2}(x - 1) - (x - 1)$$

$$= (x + 1)(x - 1)^{2} \ge 0$$

より,成立.

(ii) $n = 2, 3, \dots, n$ のとき,

$$\sum_{k=0}^{l} x^k \le l + x^{l+1}$$

が成立すると仮定する.

n = l + 1 のとき,

$$\sum_{k=0}^{l+1} x^k \le (l+1) + x^{l+2}$$

が成立することを示せばよい.

 $\sum\limits_{k=0}^{l+1}x^k\leq l+x^{l+1}+x^{l+2}$ であり, $0\leq x\leq 1$ より, $0\leq x^{l+1}\leq 1$ であるから, $l+x^{l+1}+x^{l+2}\leq (l+1)+x^{l+2}$ が成立する.

(i), (ii) から、すべての自然数 n について、 $\sum\limits_{k=0}^{n}x^{k}\leq n+x^{n+1}$ が成立する.

2

放物線 $y=x^2$ 上の異なる 3 点 (x_1, y_1) , (x_2, y_2) , (x_3, y_3) における法線が 1 点で交わるとき $x_1+x_2+x_3=0$ であることを証明せよ. (曲線上の 1 点で,接線に垂直な直線を,その点における曲線の法線という)

1971 -

解答

 (x_1, y_1) における $y = x^2$ の法線の方程式は、

$$y = -\frac{1}{2x_1}(x - x_1) - x_1^2 \qquad \cdots$$

同様にして、 (x_2, y_2) における場合は、

$$y = -\frac{1}{2x_2}(x - x_2) + x_2^2 \qquad \dots \dots 2$$

①, ② を連立して,

$$-\frac{1}{2x_1}x + x_1^2 + \frac{1}{2} = -\frac{1}{2x_2}x + x_2^2 + \frac{1}{2}$$

$$-\frac{1}{2}\left(\frac{1}{x_1} - \frac{1}{x_2}\right)x = x_2^2 - x_1^2$$

$$x = 2(x_1^2 - x_2^2) \cdot \left(\frac{x_1x_2}{x_2 - x_1}\right)$$

$$= 2(x_1 - x_2)(x_1 + x_2) \cdot \frac{x_1x_2}{x_2 - x_1}$$

$$= -2x_1x_2(x_1 + x_2)$$

したがって、交点 (x, y)= $(-2x_1x_2(x_1+x_2), x_1^2+x_1x_2+x_2^2+\frac{1}{2})$ である.

 (x_3, y_3) における法線も同じ点で交わるから、

$$x_1^2 + x_1 x_2 + x_2^2 + \frac{1}{2} = -\frac{1}{2x_3} \{-2x_1 x_2 (x_1 + x_2)\} + x_2^2 + \frac{1}{2}$$

$$x_1^2 + x_1 x_2 + x_2^2 = \frac{x_1 x_2 (x_1 + x_2)}{x_3} + x_3^2$$

$$0 = x_3^3 - x_3 (x_1^2 + x_1 x_2 + x_2^2) + x_1 x_2 (x_1 + x_2)$$

$$0 = (x_3 + x_2 + x_1)(x_3 - x_1)(x_3 - x_2)$$

ここで, $x_3 = x_1$, $x_3 = x_1$ であるから, $x_3 + x_2 + x_1 = 0$ である.

(証明終了)

- 3

 \overline{a}

- (1) $y = \frac{\log x}{x^3}$ (x > 0) の増減を調べ、グラフの概形をかけ.
- (2) $\int_1^t \frac{\log x}{x^3} dx$ を求め、 $t \to +\infty$ のときの極限値を求めよ.
- $oxedsymbol{b}$ 数字 0 を記した札がn 枚,数字 $1, 2, \dots, 9$ を記した札がそれぞれ m 枚ある.この中から任意に 1 枚を取り出し,その札の数字だけの賞金を受ける.ただし数字 0 の札を引いたときは,その札を戻した うえ,もう 1 回だけ引きなおして,賞金を受けるものとする.
 - (1) 賞金の期待値を求めよ.
 - (2) 期待値を 3以下にするには、比 $\frac{n}{m}$ をどの程度に大きくすればよいか.

- 1971 -

解答

 \overline{a}

(1) $y = \frac{\log x}{x^3}$ より、x について微分して、 $y' = \frac{1 - 3\log x}{x^4}$ 、 $y'' = \frac{4(3\log x - 2)}{x^5}$ である. 増減表は以下の通りになる.

b

(1)

$$\sum_{k=1}^{9} k \frac{m}{9m+n}$$

$$= \frac{1}{2} \times 9 \times 10 \frac{m}{9m+n}$$

$$= \frac{45m}{9m+n}$$

期待値を E(X) とすると,

$$E(X) = \frac{45m}{9m+n} + \frac{n}{9m+n} \times \frac{45m}{9m+n}$$
$$= \frac{45m(9m+2n)}{(9m+n)^2}$$

(答)
$$E(X) = \frac{45m(9m+2n)}{(9m+n)^2}$$

(2)
$$m \neq 0$$
 であるから, $E(X) = \frac{45\left(9+2\frac{n}{m}\right)}{\left(9+\frac{n}{m}\right)^2}$ と表すことができる.

$$\frac{n}{m}=t$$
 とし、 $f(t)=\frac{45(9+2t)}{(9+t)^2}$ と定めると、 $f(t)\leq 3$ から、
$$f(t)\leq 3$$

$$\frac{45(9+2t)}{(9+t)^2}\leq 3$$

$$15(9+2t)\leq (t+9)^2$$

$$t^2+18t+81-135-30t\geq 0$$

$$t^2-12t-54\geq 0$$

t>0 より、これを解いて、 $t\geq 6+3\sqrt{10}$ であるから、比 $\frac{n}{m}$ は $6+3\sqrt{10}$ 以上にすればよい.

(答) $6+3\sqrt{10}$

次のおのおのについて解答せよ.

(1) 4辺形 ABCD と 1点 P がある.

$$\overrightarrow{AP} + \overrightarrow{CP} = \overrightarrow{BP} + \overrightarrow{DP}$$

が成立するならば、この4辺形はどんな4辺形か.

(2) $x_k \ge 0 (k = 1, 2, \dots, n)$ のとき,次の不等式を証明せよ.

$$\frac{x_1 + x_2 + \dots + x_n}{1 + x_1 + x_2 + \dots + x_n} \ge \frac{1}{n} \left(\frac{x_1}{1 + x_1} + \frac{x_2}{1 + x_2} + \dots + \frac{x_n}{1 + x_n} \right)$$

- 1972

解答

$$(1) \overrightarrow{AP} + \overrightarrow{CP} = \overrightarrow{BP} + \overrightarrow{DP}$$

$$\overrightarrow{AP} + (\overrightarrow{AP} - \overrightarrow{AC}) - (\overrightarrow{AP} - \overrightarrow{AB}) - (\overrightarrow{AP} - \overrightarrow{AD}) = 0$$

$$-\overrightarrow{AC} + \overrightarrow{AB} + \overrightarrow{AD} = 0$$

ここで, $\overrightarrow{AB} = \overrightarrow{DC}$, $\overrightarrow{AD} = \overrightarrow{BC}$ であるから,四角形 ABCD は平行四辺形となる.

(2) $f(t) = \frac{t}{1+t}$ とする。 $f'(t) = \frac{1}{(1+t)^2}$ となり、増減表は以下のようになる.

t	0		•••
f'(t)		+	
f(t)	0	1	

f(t) は $t \le 0$ において、狭義単調増加である。 $x_1 + x_2 + \dots + x_n = t$ とすると、 $\frac{t}{1+t} \le \frac{x_k}{1+x_k}$ ($k = 1, 2, \dots, h$) であるから、

$$\frac{t}{1+t} \le \frac{1}{n} \sum_{k=1}^{n} \frac{t}{1+t} \le \frac{1}{n} \sum_{k=1}^{n} \frac{x_k}{1+x_k}$$

を満たす.よって、題意は示された.

2

f(z) は、複素数を係数とする z の 1 次式であって、f(f(f(z))) = z がつねに成り立つものとする。 このような f(z) をすべて求めよ.

1972 -

解答

$$f(z) = (a+bi)z + c$$

$$f(f(z)) = (a+bi)\{(a+bi)z + c\} + c$$

$$= (a^2 - b^2 + 2abi)z + c(a+1+bi)$$

$$f(f(f(z))) = (a+bi)^2\{(a+bi)z + c\} + c\{(a+bi) + 1\}$$

$$= (a+bi)^3z + c\{(a+bi)^3 + (a+bi) + 1\}$$

ここで,f(f(f(z)))=z から, $\begin{cases} (a+bi)^3=1 \\ c\{(a+bi)^2+(a+bi)+1\}=0 \end{cases}$ を満たす.よって,c=0 である。

また、 $(a^3+3a^2bi-3ab^2-b^2i)=1$ より、 $\begin{cases} b(3a^2-b^2)=0 \\ a^3-3ab^2=1 \end{cases}$ であり、 $\begin{cases} b(3a^2-b^2)=0 \\ a(a^2-3b^2)=1 \end{cases}$ である. よってここで場合分けを行う.

(i) b = 0 のとき、 $a^3 = 1$ であり、a は実数より a = 1

(ii)
$$3a^2 = b^2$$
 のとき, $a(-8a^2) = 1$ であり, a, b は実数より, $a = -\frac{1}{2}$, $b = \pm \frac{\sqrt{3}}{2}$ である.

(答)
$$f(z) = z, \left(-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right)z$$

次の数列 $a_1, a_2, \dots, a_n, \dots$ の収束,発散を調べ,解答欄の表に番号を記入せよ.またその理由 を述べよ.

$$(1) \quad a_n = \frac{1}{n} \sin n$$

(2)
$$a_n = n^2 \sin \frac{1}{n}$$

(3) $a_n = n \cos \frac{n\pi}{4}$

$$(3) \quad a_n = n\cos\frac{n\pi}{4}$$

$$(4)$$
 $a_n = \sqrt{2n} - n$

(4)
$$a_n = \sqrt{2n} - n$$

(5) $a_n = \frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2}$

(6)
$$a_n = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$$

1972 -

解答

- (1) $-1 \le \sin \theta \le 1 \ \text{kb}, \ -\frac{1}{n} < \frac{\sin n}{n} < \frac{1}{n} \text{ cbb}, \ \lim_{n \to \infty} -\frac{1}{n} = 0 \ \text{klim} \frac{1}{n} = 0 \text{ bb}, \ \text{kidabb}$ の原理より、 $\lim_{n\to\infty} a_n = 0$ である. したがって、0 に収束する.
- $\lim_{n\to\infty} n^2 \sin \frac{1}{n} = \lim_{n\to\infty} n \left(n \sin \frac{1}{n} \right) = \lim_{n\to\infty} n = \infty$ より、発散する.
- (3) $\lim_{n\to\infty}\cos\frac{n}{4}\pi$ は振動するから、 $\lim_{n\to\infty}n\cos\frac{n}{4}\pi$ も振動する.

$$(4) \quad a_n = \frac{(\sqrt{2n} - n)(\sqrt{2n} + n)}{\sqrt{2n} + n} = \frac{n^2 - 2n}{n + \sqrt{2n}} = \frac{n - 2}{1 + \sqrt{\frac{2}{n}}} \xrightarrow{n \to \infty} \infty$$
 より、発散する.

$$(5)$$
 $\frac{1}{(n+k)^2} < \frac{1}{n^2} \ \sharp \ b$

$$0 < a_n = \frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{2n^2} < \frac{n}{n^2} = \frac{1}{n}$$

ここで、 $\lim_{n\to\infty}\frac{1}{n}=0$ より、はさみうちの原理から、 $\lim_{n\to\infty}a_n=0$ である.したがって、0 に収束する. (6)

$$\lim_{n \to \infty} a_n = \sum_{k=1}^n \frac{1}{n+k}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{1+\frac{k}{n}}$$

$$= \int_0^1 \frac{1}{1+x} dx$$

$$= \left[\log(1+x) \right]_0^1 = \log 2$$

したがって、log2 に収束する.

平面上の点 $P(x_0, y_0)$ を通って、放物線 $y = x^2$ に 2 本の接線が引けるための必要十分条件は $x_0^2 > y_0$ であることを証明せよ.またこのとき,この 2 本の接線の接点を Q,R として,3 角形 PQR の面 積を x_0, y_0 で表せ.

1972 -

解答

 $y = x^2$ の x = t における接線は

$$y = 2t(x-t) + t^2$$
$$= 2tx - t^2$$

であり、これが (x_0, y_0) を通るとき、 $t^2-2tx_0+y_0=0$ を満たし、これが異なる 2 解を持つ条件は、この二次方程式の判別式を D とすると、 $\frac{D}{4}=x_0^2-y_0>0$ であるから、 $x_0^2>y_0$ となる.

また、 $Q(x_0+\sqrt{x_0^2-y_0},\ 2x_0^2-y_0+2\sqrt{x_0^2-y_0})$ 、 $R(x_0-\sqrt{x_0^2-y_0},\ 2x_0^2-y_0-2\sqrt{x_0^2-y_0})$ となるから、三角形 PQR の面積は、 $P'(0,\ 0)$ 、 $Q'(\sqrt{x_0^2-y_0},\ 2x_0^2-2y_0+2\sqrt{x_0^2-y_0})$ 、 $R'(-\sqrt{x_0^2-y_0},\ 2x_0^2-2y_0-2\sqrt{x_0^2-y_0})$ となる.

ここで、三角形の面積をSとすると、

$$S = \frac{1}{2} \left| -\sqrt{x_0^2 - y_0} \times (2x_0^2 - 2y_0 + 2\sqrt{x_0^2 - y_0}) - \sqrt{x_0^2 - y_0} \times (2x_0^2 - 2y_0 - 2\sqrt{x_0^2 - y_0}) \right|$$

$$= \frac{1}{2} \left| -2(2x_0^2 - 2y_0)\sqrt{x_0^2 - y_0} \right|$$

$$= 2(x_0^2 - y_0)^{\frac{3}{2}}$$

(答) <u>(</u>面積) = $2(x_0^2 - y_0)^{\frac{3}{2}}$

すべての複素数 z に対して $|z|^2+az+\overline{a}\overline{z}+1\geq 0$ となる複素数 a の集合を求め,これを複素平面上に図示せよ.ただし \overline{a} , \overline{z} はそれぞれ a,z の共役複素数を表す.

- 1973 —

解答

この不等式は、任意の α , β に対して成立するから、

$$(\alpha + \gamma)^2 - \gamma^2 + (\beta - \delta)^2 - \delta^2 + 1 \le 0$$
$$(\alpha + \gamma)^2 + (\beta - \delta)^2 + 1 - \gamma^2 - \delta^2 \le 0$$

より、 $\gamma^2 + \delta^2 \ge 1$ のとき、任意の α 、 β に対してこの不等式は成立する.

よって、 $x^2+y^2 \le 1$ の部分(下図参照、境界を含む)

である.

-2

a が 1 でない実数のとき、方程式 $x^2 + ax = \sin x$ はちょうど 2 つの実根をもつことを証明せよ.

1973 -

解答

 $x^2 + ax - \sin x = 0$ より, $f(x) = x^2 + ax - \sin x$ とする. $f'(x) = 2x + a - \cos x$, $f''(x) = 2 + \sin x$ である.

(i) a>1のとき

\boldsymbol{x}		α	•••	0	•••
f''(x)		+			+
f'(x)	1	0	1	a-1	1

x	•••	α	•••	0	•••
f'(x)	_	0	+		+
f(x)	1		1	0	1

(ii) a = 1 のとき

x	•••	0	•••
f''(x)	+		+
f'(x)	_	0	+

x	•••	0	
f'(x)	-	0	+
f(x)	1	0	1

(iii) a < 1 のとき

\boldsymbol{x}		0	•••	α	•••
f''(x)					
f'(x)	-	a-1	_	0	+

x	•••	0	•••	•••	•••
f'(x)	-		_	0	+
f(x)	1	0	1		1

ここで、任意の a に対して、 $\lim_{x\to\infty}f(x)=\infty$ 、 $\lim_{x\to-\infty}f(x)=\infty$ となるから、中間値の定理と(i)、(ii)、より、 $a \ne 1$ のとき、 $x^2+ax=\sin x$ はちょうど 2 つの実根を持つ.

次の不等式を満たす点(x, y)が存在する範囲を図示せよ.

$$1 < ||x| - 2| + ||y| - 2| < 5$$

- 1974 —

解答

1<||x|-2|+||y|-2|<5 について考える。|x|,|y| はともに偶関数のため,第 1 象限について考え,それを線対称に第 2、3、4 象限に対応させればよい.したがって,下図のようになる.

2

底辺a, 高さhの2等辺三角形がある.

- (1) この3角形の内接円の半径rをaとhを用いて表せ.
- (2) n が 0 でない整数で、 $ah^n = 1$ を満たしながら a、h が変化するとき、 $\lim_{a\to\infty}\frac{r}{a}$ を求めよ.

- 1974 —

解答

(1) この三角形の面積をSとすると,

$$S = \frac{1}{2}ah$$

$$\frac{1}{2}ah = r\left(a + 2\sqrt{h^2 + \frac{a^2}{4}}\right)$$

$$r = \frac{ah}{2\left(a + 2\sqrt{h^2 + \frac{a^2}{4}}\right)}$$

(2)
$$ah^n = 1$$
 より、 $h^n = \frac{1}{a}$ 、したがって、 $h = \left(\frac{1}{a}\right)^{\frac{1}{n}}$

 $p \ge 0$, $q \ge 0$, $p \ne q$ である p, q に対して

$$|\log(p+1) - \log(q+1)| < |p-q|$$

が成立することを証明せよ.

次に, $k \in 0 < k < 1$ である定数とすると $|\log(p+1) - \log(q+1)| < k|p-q|$ が成立しないような $p \ge 0$ $q \ge 0$, $p \ne q$ が存在することを示せ. ここで log は自然対数を表すものとする.

解答

条件式から p>q としても一般性を失わない. ここで、 $\frac{\log(p+1)-\log(q+1)}{p-q}<1$ を示せばよい. ここで、平均値の定理から、 $f(x) = \log(x+1)$ とすると、

$$\frac{\log(p+1) - \log(q+1)}{p-q} = \frac{1}{c+1} \qquad \qquad \cdots$$

となる c が,q < c < p の範囲に存在する. $\frac{1}{p+1} < \frac{1}{c+1} < \frac{1}{q+1} \ \cdots \cdots \ ②$ であるから, $\frac{1}{c+1} < \frac{1}{q+1} \le 1$ を満たし, $\frac{1}{c+1} < 1$ である. したがって、 $|\log(p+1) - \log(q+1)| < |p-q|$ となる.

また,0 < k < 1 であることから, $k = \frac{1}{1+r} \; (r > 0)$ とおける.このとき, $c = \frac{1}{1+r}$ となる c が存在 することを示せば良い.

 $p=r+lpha,\,q=r-lpha$ とすると, $rac{1}{r+1+lpha}<rac{1}{c+1}<rac{1}{r+1-lpha}$ となる.

ここで、 $\lim_{r\to 0}$ を考えると、はさみうちの原理から、 $\frac{1}{c+1}=\frac{1}{r+1}=k$ となるため、等号が成立するよう な $p \ge 0$, $q \ge 0$, $p \ne q$ となる p, q が存在することが示された. したがって, 題意を満たす p, q が存在す ることが示された.

 $f(x),\ g(x)$ を $x \ge 0$ で定義された正の値をとる連続関数で、 g(x) は増加関数であるとする.この とき

$$S(x) = \int_0^x f(t)dt, \quad T(x) = \int_0^x f(t)g(t)dt$$

に対して次の(1),(2)を証明せよ.

- すべての x > 0 に対して $T(x) \le g(x)S(x)$ である.
- $\frac{T(x)}{S(x)}$ は x>0 で増加関数である.ここで一般に関数 h(x) が増加関数であるとは, $x_1 < x_2$ な らば $h(x_1) \le h(x_2)$ が成立することをいう.

解答

$$f(x) = g(x)S(x) - T(x)$$

$$f(x) = g(x) \int_0^x f(t) dt - \int_0^x g(t)f(t) dt$$

$$f'(x) = g'(x) \int_0^x f(t) dt + g(x)f(x) - g(x)f(x)$$

$$= g'(x) \int_0^x f(t) dt$$

ここで、g(x) は増加関数より、g'(x)>0 であり、f(x) は正の値を取るから、 $\int_{0}^{x} f(t)dt>0$ である.

したがって、 $f'(x) = g'(x) \int_0^x f(t) \, dt > 0$ よって、x > 0 において、 $g(x)S(x) - T(x) \ge 0$ であるから、 $g(x)S(x) \ge T(x)$ が示された. (2)

$$\begin{split} \frac{T(x)}{S(x)} \, dx &= \frac{T'(x)S(x) - T(x)S'(x)}{S^2(x)} \\ &= \frac{f(x)g(x) \! \int_0^x \! f(t) \, dt - f(x) \! \int_0^x \! f(t)g(t) \, dt}{S^2(x)} \\ &= \frac{f(x)g(x) \! \int_0^x \! f(t) \, dt - \int_0^x \! f(t)g(t) \, dt}{S^2(x)} \\ &= \frac{f(x) \{g(x)S(x) - T(x)\}}{S^2(x)} \end{split}$$

f(x)>0 かつ (1) から, $g(x)S(x)-T(x)\geq 0$ より, $\frac{T(x)}{S(x)}dx\geq 0$ であるから, $\frac{T(x)}{S(x)}$ は増加関数となる.

次のおのおのを証明せよ.

- (1) $\log_2 3$ と $\log_3 4$ の大小を比較せよ.
- (2) $\cos \frac{2}{9}\pi + \cos \frac{4}{9}\pi + \cos \frac{8}{9}\pi + \cos \frac{10}{9}\pi + \cos \frac{14}{9}\pi + \cos \frac{16}{9}\pi$ の値を求めよ.

1975 -

解答

(1)
$$2^{\frac{2}{3}} = 2\sqrt{2} < 3$$
 より, $\log_2 3 > \frac{3}{2}$ ····· ① となる.また, $3^{\frac{2}{3}} = 3\sqrt{3} > 4$ より, $\log_3 4 < \frac{3}{2}$ ····· ② となる.

①, ② \sharp b, $\log_3 4 < \log_2 3$.

(証明終了)

(2) $\cos 5\theta = \cos 4\theta$ を満たす θ を考える. $-1 < \cos \theta < 1$ の範囲において, $0 < \theta < \pi$ である. $5\theta = \pm 4\theta \pm 2n\pi$ より, $\theta = \frac{2}{9}n\pi$, $2n\pi$ であり, $\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$, $\cos 4\theta = 8\cos^4\theta - 8\cos^2\theta + 1$ から,

$$16\cos^{5}\theta - 20\cos^{3}\theta + 5\cos\theta = 8\cos^{4}\theta - 8\cos^{2}\theta + 1$$
$$16\cos^{5}\theta - 8\cos^{4}\theta - 20\cos^{3}\theta + 8\cos^{2}\theta + 5\cos\theta - 1 = 0$$
$$(\cos\theta - 1)(16\cos^{4}\theta + 8\cos^{3}\theta - 12\cos^{2}\theta - 4\cos\theta + 1) = 0$$

ここで、解と係数の関係より、

$$\cos\frac{2}{9}\pi + \cos\frac{4}{9}\pi + \cos\frac{6}{9}\pi + \cos\frac{8}{9}\pi = -\frac{1}{2}$$
$$\cos\frac{2}{9}\pi + \cos\frac{4}{9}\pi + \cos\frac{8}{9}\pi = 0$$

が成り立ち, また,

$$\cos\frac{2}{9}\pi + \cos\frac{4}{9}\pi + \cos\frac{8}{9}\pi + \cos\frac{10}{9}\pi + \cos\frac{14}{9}\pi + \cos\frac{16}{9}\pi$$

$$= 2\left(\cos\frac{2}{9}\pi + \cos\frac{4}{9}\pi + \cos\frac{8}{9}\pi\right)$$

$$= 0$$

(答)
$$\cos \frac{2}{9}\pi + \cos \frac{4}{9}\pi + \cos \frac{8}{9}\pi + \cos \frac{10}{9}\pi + \cos \frac{14}{9}\pi + \cos \frac{16}{9}\pi = 0$$

2

次の(1), (2)を解答せよ.

- (1) 1から 10 までの 10 個の整数から相異なる 5 個をとり、その積を a、残りの 5 個の積を b とする a
 ightharpoonup b を証明せよ.
- (2) また、1 から 10 までの 10 個の整数のうちの相異なる 5 個の積として表される整数のうちで、 $\sqrt{10!}$ より小さいものの個数を p、 $\sqrt{10!}$ より大きいものの個数を q とする. p=q を証明せよ.

1975

解答

- (1) $1\sim10$ までの 10 個の整数のうち、7 の倍数を含むものは7 のみだから、a またはb のどちらか一方は7 の倍数となるが、もう一方は7 の倍数とはならないため、 $a \neq b$ となる.
- (2) $1\sim 10$ までの 10 個の整数から 5 個を選び,その積を c,残りの 5 個の積を d とする.ここで,対称性から c < d としても一般性を失わない.このとき, $c \cdot d = 10!$ である.

ここで,c < d から, $c^2 < 10! < d^2$ となる.よって, $c < \sqrt{10!} < d$ と表すことができるため,c は $\sqrt{10!}$ よりも小さく,d は $\sqrt{10!}$ よりも大きいことがわかる.

ここで, c の個数と d の個数は一致するため, p=q となる.

(証明終了)

3

a 1つのさいころをn回つづけて投げ、投げた順に出た目の数の積をつくっていくものとするこのとき、次の(1)、(2)を解答せよ.

- (1) 目の数の積が k 回目 $(1 \le k \le n)$ にはじめて 4 となる確率 p を求めよ.
- (2) 目の数の積がn回目までのどこかで4となる確率を求めよ.
- b f(x) を $0 \le x \le 1$ で連続な増加関数とする.0 < a < 1 であるどんな a に対しても

$$\int_0^a f(x)dx \le a \int_0^1 f(x)dx$$

が成り立つことを証明せよ. ここで f(x) が増加関数であるとは, $x_1 < x_2$ ならばつねに $f(x_1) \le f(x_2)$ が成立することをいう.

1975

解答

a

(1) 出た目の積がk回目までに4になるには、

[1] k-1回目までにすべて1を出し、k回目に4を出す

[2] k-1回目までに1回だけ2を出し,k回目に2を出すのいずれかであればよい.

[1]のとき、 $\left(\frac{1}{6}\right)^k$

[2] のとき、 $(k-1)\left(\frac{1}{6}\right)^{k-1} \times \frac{1}{6} = (k-1)\left(\frac{1}{6}\right)^k$

(2)

$$S_{n} = \frac{1}{6} + 2\left(\frac{1}{6}\right)^{2} + \dots + n\left(\frac{1}{6}\right)^{n}$$

$$\frac{1}{6}S_{n} = \left(\frac{1}{6}\right)^{2} + \dots + (n-1)\left(\frac{1}{6}\right)^{n} + n\left(\frac{1}{6}\right)^{n+1}$$

$$\frac{5}{6}S_{n} = \frac{1}{6} + \left(\frac{1}{6}\right)^{2} + \dots + \left(\frac{1}{6}\right)^{n} - n\left(\frac{1}{6}\right)^{n+1}$$

$$\frac{5}{6}S_{n} = \frac{1}{5}\left\{1 - \left(\frac{1}{6}\right)^{n}\right\} - n\left(\frac{1}{6}\right)^{n+1}$$

$$S_{n} = \frac{6}{25} - \frac{6}{25}\left(\frac{1}{6}\right)^{n} - \frac{n}{5}\left(\frac{1}{6}\right)^{n}$$

$$= \frac{6}{25} - \frac{1}{5}\left(\frac{1}{6}\right)^{n}\left\{\frac{6}{5} + n\right\}$$

(答) $\frac{6}{25} - \frac{1}{5} \left(\frac{1}{6}\right)^n \left\{\frac{6}{5} + n\right\}$

 \overline{b}

f(x) が単調増加関数であるから, $\int_a^1 f(x) dx$ と $\int_0^a f(x) dx$ の面積は, $\int_a^1 f(x) dx \ge (1-a) f(a)$ の関係にある. すなわち, $\int_0^a f(x) dx \le a f(a)$ より, $f(a) \le \frac{1}{1-a} \int_a^1 f(x) dx$ が成り立つ.

$$\frac{1}{a} \int_0^a f(x) \, dx \le f(a) \, \, \sharp \, \, \mathfrak{h} \,,$$

$$\begin{split} \frac{1}{a} \int_0^a f(x) \, dx & \leq \frac{1}{1-a} \int_a^1 f(x) \, dx \\ (1-a) \int_0^a f(x) \, dx & \leq a \int_a^1 f(x) \, dx \\ \int_0^a f(x) \, dx & \leq a \int_a^1 f(x) \, dx + a \int_0^a f(x) \, dx \\ \int_0^a f(x) \, dx & \leq a \int_0^1 f(x) \, fx \end{split}$$

 x^3 の係数が 1 であるような 3 次関数 f(x) のうちで,定積分 $I=\int_{-1}^1 \left\{f(x)\right\}^2 dx$ を最小にするものを決定し,そのときの I の値を求めよ.

1976 -

解答

$$\begin{split} f(x) &= x^3 + ax^2 + bx + c \text{ とする. } \text{ このとき, } I \text{ を計算すると,} \\ I &= \int_{-1}^1 \{f(x)\}^2 dx \\ &= \int_{-1}^1 \{x^6 + 2ax^5 + (a^2 + 2b)x^4 + (2ab + 2c)x^3 + (2ac + b^2)x^2 + 2bcx + c^2\} dx \\ &= \int_{-1}^1 \{x^6 + (a^2 + 2b)x^4 + (2ac + b^2)x^2 + c^2\} dx \\ &= 2\int_0^1 \{x^6 + (a^2 + 2b)x^4 + (2ac + b^2)x^2 + c^2\} dx \\ &= 2\left[\frac{1}{7}x^7 + \frac{1}{5}(a^2 + 2b)x^5 + \frac{1}{3}(2bc + b^2)x^3 + c^2x\right]_0^1 \\ &= 2\left\{\frac{1}{7} + \frac{1}{5}(a^2 + 2b) + \frac{1}{3}(2bc + b^2) + c^2\right\} \end{split}$$

である.

$$g(b)=rac{1}{3}b^2+rac{2}{5}b$$
 とする.このとき, $g'(b)=rac{2}{3}b+rac{2}{5}$ であり, $g(b)$ は $b=-rac{3}{5}$ のとき最小値をとる.
$$h(a,c)=rac{1}{5}a^2+rac{2}{3}ac+c^2 = \left(c+rac{1}{3}a
ight)^2+rac{4}{45}a^2\geq 0$$

であるから, (a,c) = (0,0) のとき, 最小値 0 をとる.

$$I$$
 を最小にする $f(x) = x^3 - \frac{2}{5}x$ であり、そのときの I は $I = 2\left(\frac{1}{7} - \frac{3}{25}\right) = \frac{8}{175}$

(答) $I = \frac{8}{175}$

5次以下のどんな整式 f(x) に対しても

$$\int_{-1}^{1} f(x)dx = af(0) + b\{f(c) + f(-c)\}\$$

が成り立つように f(x) に無関係な定数 a, b, c を定めよ.

978 -

解答

 $f(x) = dx^5 + ex^4 + fx^3 + gx^2 + hx + i$ \(\text{2}\) \(\text{5}\).

$$\begin{split} & \int_{-1}^{1} (dx^5 + ex^4 + fx^3 + gx^2 + hx + i) \, dx \\ &= \int_{-1}^{1} (ex^4 + gx^3 + i) \, dx \\ &= 2 \int_{0}^{1} (ex^4 + gx^3 + i) \, dx \\ &= 2 \Big[\frac{1}{5} ex^5 + \frac{1}{3} gx^3 + ix \Big]_{0}^{1} \\ &= \frac{2}{5} e + \frac{2}{3} g + 2i \end{split}$$

また, af(0) = ai, $b\{f(c) + f(-c)\} = 2b(ec^4 + gc^2 + i)$ である.

2式の係数をそれぞれ比較して, $\begin{cases} 2bc^4 &= \frac{2}{5} \\ 2bc^2 &= \frac{2}{3} \\ (a+2b) &= 2 \end{cases}$

これをそれぞれ解いて,

(**答**) $(a, b, c) = \left(\frac{8}{9}, \frac{5}{9}, \pm \sqrt{\frac{3}{5}}\right)$ (符号任意)

2

A, B 2 人が次のような規則でさいころを投げるものとする。さいころを投げて 1 の目が出れば次回も同じ人が続けて投げ、1 以外の目が出れば次回は他方が投げることにする。第 1 回目は A が投げる。 n 回目に A が投げる確率を p_n とするとき,次の (1), (2) を解答せよ.

- (1) p_{n+1} を p_n の式で表せ.
- (2) $\lim_{n\to\infty} p_n$ を求めよ.

1978 -

解答

(1) n回目に A が投げる確率が p_n であるため、n回目 B が投げる確率は $(1-p_n)$ と表される.

 p_n 同じ人が続けて投げる確率を α とすると、 $\alpha=rac{1}{6}$ である. 推移図より、 $1-p_n$

 $p_{n+1} = \frac{1}{6} + \frac{5}{6}(1 - p_n) = -\frac{2}{3}p_n + \frac{5}{6}$ である. (答) $\underline{p_{n+1} = -\frac{2}{3}p_n + \frac{5}{6}}$ (2)

$$p_{n+1} - \frac{1}{2} = -\frac{2}{3} \left(p_n - \frac{1}{2} \right)$$

$$p_n - \frac{1}{2} = \frac{1}{2} \left(-\frac{2}{3} \right)^{n-1}$$

$$p_n = \frac{1}{2} \left(-\frac{2}{3} \right)^{n-1} + \frac{1}{2}$$

(答) $\lim_{n\to\infty}p_n=\frac{1}{2}$

 $p,\ q$ は区間 $a \le x \le b\ (0 < a < b)$ で $px + q \ge \log x$ を満たすものとする.このとき,定積分

$$I = \int_{a}^{b} (px + q - \log x) dx$$

が最小となるような p および q を求めよ. また, そのときの I の値を求めよ.

1978

解答

I が最小値となるのは、y = px + q が $y = \log x$ と x = t (a < t < b) で接するときであるので、

$$px + q = \frac{1}{t}(x - t) + \log t$$

$$= \frac{1}{t}x + \log t - 1$$

$$\therefore \quad p = \frac{1}{t}, \ q = \log t - 1$$

このとき,

$$\begin{split} I &= \int_{a}^{b} \left(\frac{1}{t}x + \log t - 1 - \log x\right) dx \\ &= \left[\frac{1}{2t}x^{2} + (\log t - 1)x - x \log x + x\right]_{a}^{b} \\ &= \left\{\frac{1}{2t}b^{2} + (\log t - 1)b - b \log b + b\right\} - \left\{\frac{1}{2t}a^{2} + (\log t - 1)a - a \log a + a\right\} \\ &= \frac{1}{2t}(b^{2} - a^{2}) + \log t(b - a) - b \log b + a \log a \end{split}$$

ここで、Iが最小となるtは、

$$\begin{split} \frac{dI}{dt} &= -\frac{1}{2t^2}(b^2 - a^2) + \frac{1}{t}(b - a) \\ &= -\frac{1}{2t^2}\left\{(b^2 - a^2) - 2t(b - a)\right\} \\ &= -\frac{1}{2t^2}(b - a)(b + a - 2t) \end{split}$$

であるから,

$$t < \frac{a+b}{2}$$
のとき $\frac{dI}{dt} < 0$
 $t > \frac{a+b}{2}$ のとき $\frac{dI}{dt} > 0$

より、
$$t=\frac{a+b}{2}$$
 のとき、 I は最小となる。 したがって、 $p=\frac{2}{a+b}$ 、 $q=\log\left(\frac{a+b}{2}\right)+1$ (答)
$$\underline{I=(a+b)(b^2-a^2)+(b-a)\log\left(\frac{a+b}{2}\right)-b\log b+a\log a}$$

数列 x_1, x_2, \cdots が $x_n \cdots$ が $x_{n+1} = 2x_n + \frac{1}{2^n} \ (n=1, 2, \cdots)$ を満たすとき,数 a を適当に定めれば,すべての $n=1, 2, \cdots$ に対して不等式 $|x_n-2^n\cdot a|\leq \frac{1}{3}$ が成り立つことを証明せよ.

1979

解答

したがって、すべての $n=1,2,\cdots$ に対して、不等式

$$|x_n - 2^n \cdot a| \le \frac{1}{3}$$

が成立することが示された.