

Investigation into the correlation between AI in a simulated environment and using a real low-cost UAV

Harkeerat Singh

Applied Artificial Intelligence - MSC

Project Github

Aims & Objectives

AIMS:

The aim of this thesis is to gain an understanding through an investigative experimentation the effectiveness of an object detector under varying illumination conditions and altitudes on its ability to classify and detect trained targets in a simulated and real-world environment by using a camera sensor from a UAV to determine if there are any differences.

OBJECTIVES:

3.0m

.5m

0m

.5m

0m

Experiment

Flowchart

Capture Image

Object

START (Take-off at 0.0m)

END (Landing return to 0.0m)

- 1. Devise an Experiment that is applicable in a simulation and the real world that utilises key "object targets" that the UAV can classify.
- Accurately construct the Real-World experimental space within the simulation environment.
- Synthesise & Train an AI algorithm within the realm of object detection using current methods.
- Integrate the trained object detector algorithm into a UAV within a simulated and real-world environment.
- Conduct both experiments within the environments to obtain valid results.
- 5. Evaluate results by comparing gathered data and establish reasonings using evidence behind any differences or similarities.

Methodology

Experiment to Gather

Results:

of the UAV

and illuminance of the

environment, a set

of experiments are

performed to gather

180 images of the target

objects

in both simulation and

real-world environment

Simulated and Real

Objects

SD CARD Processing **Object Detector** Output Object Confidence Bbox Class output Save Images LOCAL

Implementation

Cranfield Flight Arena Developed within Unreal Engine For AirSim

Illumination was controlled through the real would through LED Lights and Spotlights.

Flowchart

Flowchart

Test CSV

Predict On Tes

Generate

mAP Scores -

IOU

AirSim uses NED coordinates, which need a corresponding z value equivilence, this was found in the real-world and manipulated to work within the simulation.

Training Algorithm

Classes) [From CSV]

Output Processo

By adjusting the altitude AirSim Algorithm

Model Data

Classification

Generate

Classification

Metrics

Labels

esize Bounding

Save All

Take Off UAV Capture Image at **Current Height** Hover to Desired Height START Landing Process

Conclusion

Overall, through perseverance despite the limitations has provided an investigation into the correlation of an Al algorithm performing in a simulated and a real-world environment using a low-cost UAV to capture palpable results.

In terms of the object detection algorithm performing in both environments, the results correlate well, however this correlation is constricted through the model's ability to accurately predict the correct class and bounding box coordinates. The two manipulated values of altitude and illuminance do have an effect on the model's robustness although its very small.

The next step in refining the experiment would perform the experiments in a live scenario utilising a proposed system to access the closed architecture of the UAV through RTMP Streaming.

High-Level Overview STORAGE

Results

Training Loss Curves

System Output

Classification - Metrics

		Object Classes					
Environment	Metrics	Apple	Banana	Broccoli	Tomato	Orange	Average
Real-World	Mean Accuracy	0.833	0.777	0.833	0.666	0.333	0.610
Simulator	Mean Accuracy	0.722	0.777	0.666	0.610	0.277	0.688
		Object Classes					

Environment	Metrics	Apple	Banana	Broccoli	Tomato	Orange	Average
Real-World	Mean Recall	0.833	0.777	0.775	0.660	0.333	0.595
Simulator	Mean Recall	0.667	0.777	0.607	0.590	0.333	0.675
		Object Classes					
Environment	Metrics	Annlo	Ranana	Broccoli	Tomato	Orango	Avorago

		Object Classes					
Environment	Metrics	Apple	Banana	Broccoli	Tomato	Orange	Average
Real-World	Mean F1- Score	0.889	0.777	0.873	0.833	0.500	0.709
Simulator	Mean F1- Score	0.775	0.777	0.753	0.753	0.487	0.774

Regression - Metrics

	lable of mean lous						
Environment	IoU _{Apple}	IoU _{Banana}	IoU _{Broccoli}	IoU _{Tomato}	IoU _{Orange}		
Real - World	0.399	0.424	0.472	0.398	0.396		
Simulation	0.416	0.427	0.517	0.406	0.437		
					_		

	Table of mAP at IoU > 0.4						
Environment	mAP _{APPLE}	mAP _{BANANA}	mAP _{BROCCOLI}	mAP _{TOMATO}	mAP _{ORANGE}		
Real - World	34.1	54.4	62.1	26.5	26.3		
Simulation	24.5	40.3	69.7	22.8	39.2		