Total No. of Questions: 6

Total No. of Printed Pages:2

Enrollment No.....

Q.1

Faculty of Science End Sem Examination May-2024 FS3EG04 Chemistry

Programme: B.Sc. (Hons.) Branch/Specialisation: Forensic

Science

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

i.	Which of the following condensation of solid withou		•	1			
	(a) Crystallisation (b) Sublimation						
	(c) Differential Extraction (d) Chromatography						
ii.	For electrical neutrality of an atom, the condition is:						
	(a) No. of protons = no. of neutrons						
	(b) No. of electrons = no. of neutrons						
	(c) No. of protons = no. of electrons						
	(d) No. of protons $>$ no. of e	lectrons					
iii.	Covalent bonds are formed by	between:		1			
	(a) Two non-metals	(b) A metal a	and a non-metal				
	(c) Two metals	(d) Two ligar	nds				
iv.	Which of the following is an	example of co	o-ordinate compound?	1			
	(a) NH ₃ –BF ₃ (b) NaCl	(c) O_2	(d) CO_2	1			
V.	Number of possible oxidation state for p-block elements:						
	(a) Increases across the period						
	(b) Decreases across the period						
	(c) Increases down the group						
	(d) Decreases down the group						
vi.	Which of the following has lowest melting point?						
	(a) Li (b) Na	(c) K	(d) Rb				
vii.	Which of the following is no	-		1			
	(a) HCl (b) HClO ₄	` /	(d) $AlCl_3$	1			
viii.	i. The conjugate base of HSO ₄ is:						
	(a) SO_4^{2-} (b) H_2SO_4	(c) HSO_3^-	(d) SO_3^-				

P.T.O.

[2]

	ix.	Larger is the value of K_a :	1
		(a) Stronger is the acid(b) Stronger is the base(c) Weaker is the acid(d) Weaker is the base	
	х.	The ionic product of water at 25°C is:	1
		(a) 1.0×10^{-14} (b) 1.0×10^{-7} (c) $1.0 \times 10^{+7}$ (d) $1.0 \times 10^{+14}$	
Q.2	i.	Define atomic mass with suitable example.	2
	ii.	The estimated average requirement for dietary calcium is 4.8 g. What is the estimated average requirement of calcium in moles? (Molar mass of $Ca = 40.078u$).	3
	iii.	Define chromatography. Write its principle. Explain any one chromatographic technique.	5
OR	iv.	A compound contains 4.07% hydrogen, 24.27% carbon and 71.65% chlorine. Its molar mass is 98.96 g. Determine it's empirical and molecular formula.	5
Q.3	i.	Define bond length and bond order.	2
	ii.	Define ionic and covalent bond. Write their characteristics. Mention suitable examples of ionic and covalent compound.	8
OR	iii.	Write postulates of VSEPR theory. Explain the geometry of three different molecules based on VSEPR theory.	8
Q.4	i.	Briefly explain biological importance of sodium.	3
	ii.	What are alkali metals? Explain their general characteristics.	7
OR	iii.	What are p-block elements? Write three characteristics of p-block elements. Explain anomalous properties of carbon.	7
Q.5	i.	Define pH and pK _a . How are they calculated.	4
	ii.	Explain Bronsted-Lowry and Lewis concept of acids and bases.	6
OR	iii.	Write suitable examples of each. Calculate the solubility of A_2X_3 in pure water.	6
OK	111.	Given: $K_{sp} = 1.1 \times 10^{-23}$.	U
Q.6		Attempt any two:	
	i.	Write two properties of water. Explain its structure.	5
	ii.	What is pH scale? Explain its importance.	5
	iii.	Explain common ion effect with suitable example.	5

Marking Scheme

Chemistry (T) - FS3EG04 (T)

		(-)					
Q.1	i)	Which of the following involves direct vaporization and	1			and molecular formula?	
Q.1	1)	condensation of solid without intermediate:	•			Solution:	
		(b) Sublimation				Step 1: Conversion of mass percent to grams - 1 mark	
	ii)	For electrical neutrality of an atom, the condition is:	1			Assuming 100 gm of compound,	
	11)	(c) no. of protons = no. of electrons	1			Hydrogen = 4.07 g	
	iii)	Covalent bonds are formed between:	1			Carbon = 24.27 g	
	111)	(a) two non-metals	1			Chlorine = $71.65 g$	
	iv)	Which of the following is an example of co-ordinate compound:	1				
	10)	(a) NH ₃ –BF ₃	1			Step 2: Calculation of number of moles of each element - 1 mark	
	77)	Number of possible oxidation state for p-block elements:	1			Moles of hydrogen = $4.07/1.008 = 4.04$	
	v)	(a) increases Down the group	1			Moles of carbon = $24.27/12.01 = 2.021$	
	· · ·		1			Moles of chlorine = $71.65/35.453 = 2.021$	
	vi)	Which of the following has lowest melting point:	1				
	::\	(d) Rb	1			Step 3: Calculate ratio of elements - 1 mark	
	vii)	Which of the following is not an example of Arrhenius acid:	1			H = 4.04/2.021 = 2, $C = 2.021/2.021 = 1$, $Cl = 2.021/2.021 = 1$, it	
	:::\	(d) AlCl ₃ The conjugate bear of USO 7 in	1			gives a ratio of 2:1:1 for H:C:Cl	
	viii)	The conjugate base of HSO_4^- is:	1				
	:>	(a) SO_4^{2-}	1			Step 4: Deducing the empirical formula - 1 mark	
	ix)	Larger is the value of K_a :	1			empirical formula = CH_2Cl	
	`	(a)	1				
	x)	The ionic product of water at 25°C is:	1			Step 5: Determining molecular weight - 1 mark	
		(a) 1.0×10^{-14}				Empirical weight of $CH_2Cl = 12.01 + 2 \times 1.008 + 35.453$	
0.2		D. C	2			=49.48 g	
Q.2	i.	Define atomic mass with suitable example.	2			n = molar mass/empirical weight	
		Definition of atomic mass - 1 mark				= 98.96/49.48	
		Example - 1 mark	2			= 2	
	ii.	The estimated average requirement for dietary calcium is 4.8 g.	3				
		What is the estimated average requirement of calcium in moles?				Molecular formula = $(empirical formula)_n$	
		(Molar mass of $Ca = 40.078u$)				= (CH2Cl)2 = C2H4Cl2	
		Solution:					
		Number of moles = Given weight of substance / Molar mass		Q.3	i.	Define bond length and bond order.	2
		- 1 mark				Definition of bond length - 1 mark	
		Number of moles = $4.8 / 40.078$ - 1 mark				Definition of bond order - 1 mark	
		Number of moles = 0.12 M - 1 mark			ii.	Define ionic and covalent bond. Write their characteristics.	8
		Therefore, average requirement of Ca in moles is 0.12 M				Mention suitable examples of ionic and covalent compound.	
	iii.	Define chromatography. Write its principle. Explain any one	5			Definition of ionic bond - 1 mark	
		chromatographic technique.				Definition of covalent bond - 1 mark	
		Definition of chromatography - 1 mark				Characteristics of ionic bond - 2 marks	
		Principle - 1 mark				Characteristics of covalent bond - 2 marks	

Any one technique

OR iv. A compound contains 4.07% hydrogen, 24.27% carbon and 71.65% chlorine. Its molar mass is 98.96 g. Determine its empirical

- 3 marks

OR	iii.	Example of ionic compound Example of covalent compound Write postulates of VSEPR theory. Explain the geomet different molecules based on VSEPR theory.	•	8
		Postulates of VSEPR Three examples	- 5 marks - 3 marks	
Q.4	i.	Briefly explain biological importance of sodium. Biological importance	- 3 marks	3
	ii.	What are alkali metals? Explain their general characterism. What are alkali metals		7
OR			-	7
		What are p-block elements Three characteristics	- 1 mark - 3 marks	
		Anomalous properties of carbon	- 3 marks	
Q.5	i.	Define pH and pK _a . How are they calculated?		4
		Definition of pH	- 1 mark	
		Formula of pH calculation	- 1 mark	
		Definition of pK _a	- 1 mark	
		Formula of pK _a calculation	- 1 mark	
	ii.	Explain Bronsted-Lowry and Lewis concept of acids Write suitable examples of each.	and bases.	6
		Bronsted-Lowry acid	- 1 mark	
		Bronsted-Lowry base	- 1 mark	
		Bronsted-Lowry acid and base example	- 1 mark	
		Lewis acid	- 1 mark	
		Lewis base	- 1 mark	
		Lewis acid and base example	- 1 mark	
OR	iii.	Calculate the solubility of A_2X_3 in pure water. Given: $K_{sp} = 1.1 \times 10^{-23}$. Solution:		6
		Solubility equation for A ₂ S ₃	- 1 mark	
		$K_{sp} = [A^{3+}]^2 [X^{2-}]^3 = 1.1 \times 10^{-23}$	- 1 mark	
		$K_{sp} = (2S)^2 (3S)^3 = 108S^5$	- 2 marks	
			mark	
		$S = 1.0 \times 10^{-5} \text{ mol/L}$	- 1 mark	
Q.6		Attempt any two:		
	i.	Write two properties of water. Explain its structure.		5

	Two properties	- 2 marks	
	Structure and its explanation	- 3 marks	
ii.	What is pH scale? Explain its importance.		5
	pH scale	- 3 marks	
	Importance	- 2 marks	
iii.	Explain common ion effect with suitable example.		5
	Common ion effect	- 3 marks	
	Example	- 2 marks	
