TRIGONOMETRY

Chapter 03

TRIÁNGULO RECTÁNGULO

MOTIVATING STRATEGY

TRIGONOMETRÍA SACO OLIVEROS

TRIÁNGULO RECTÁNGULO

Es aquel triángulo en el cual uno de sus ángulos interiores mide 90°.

Si $m \not ACB = 90^{\circ}$, entonces el $\triangle ABC$ es recto en C

$$\alpha + \theta = 90^{\circ}$$

Elementos:

 \overline{AC} , \overline{BC} : Catetos

AB: Hipotenusa

La hipotenusa tiene mayor longitud que los catetos, es decir:

TEOREMA DE PITÁGORAS

El cuadrado de la longitud de la hipotenusa es igual a la suma de los cuadrados de las longitudes de los catetos.

$$(Hipotenusa)^2 = (cateto)^2 + (cateto)^2$$

TRIÁNGULOS PITAGÓRICOS

Son aquellos triángulos rectángulos donde las medidas de sus lados están expresadas por números enteros y tienen la siguiente

Donde:

m y n son números enteros positivos. m > n

EJEMPLO:

Cuando m = 3 y n = 2, hallar los lados del triángulo pitagórico.

Vamos a reemplazar valores de m y n:

Del gráfico, calcule el valor

RESOLUCIÓN

Por el Teorema de Pitágoras:

(Hipotenusa)² = (cateto)² + (cateto)²

$$x^2 = 2^2 + 5^2$$

$$x^2 = 4 + 25$$

$$x = \sqrt{29}$$

Calcule el valor de n en el gráfico adjunto.

RESOLUCIÓN

Por el Teorema de Pitágoras:

 $(Hipotenusa)^2 = (cateto)^2 + (cateto)^2$

$$n^2 = 5^2 + 12^2$$

$$n^2 = 25 + 144$$

$$n = \sqrt{169}$$

$$n = 13$$

Del gráfico, calcule el valor de a.

RESOLUCIÓN

Por el Teorema de Pitágoras:

$$(\text{cateto})^2 + (\text{cateto})^2 = (\text{Hipotenusa})^2$$

$$a^2 + (\sqrt{3})^2 = (2\sqrt{7})^2$$

$$a^2 + 3 = 4 (7)$$

$$a^2 = 28 - 3$$

$$a = \sqrt{25}$$

$$a = 5$$

Si m = 7 y n = 1; calcule el perímetro del triángulo pitagórico.

Recordar:

RESOLUCIÓN

Por teoría, el perímetro mide:

$$2p = m^2 + n^2 + m^2 - n^2 + 2mn$$

$$2p = 2m^2 + 2mn$$

Luego reemplazamos valores:

$$2p = 2(7)^2 + 2(7)(1)$$

$$2p = 98 + 14$$

$$2p = 112 u$$

Si m = 5 y n = 3; calcule el área del triángulo pitagórico.

$$A_{\triangleright} = \frac{\text{(base)(altura)}}{2}$$

RESOLUCIÓN

Por teoría, el área mide:

$$\mathbf{A}_{\triangle} = \frac{(\mathbf{m}^2 - \mathbf{n}^2)(2\mathbf{m}\mathbf{n})}{2}$$

$$A_{\perp} = (m^2 - n^2) mn$$

Luego reemplazamos valores:

$$A_{\triangleright} = (5^2 - 3^2)(5)(3)$$

$$A_{\perp} = (25 - 9)(15)$$

$$A_{\perp} = (16) (15) = 240 u^{2}$$

Al atardecer, un árbol proyecta una sombra de 5 metros de longitud. - Si la distancia desde la parte más alta del árbol al extremo más alejado de la sombra es de 13 metros, ¿cuál es la altura del árbol?

RESOLUCIÓN

Por el Teorema de Pitágoras :

$$(\text{cateto})^2 + (\text{cateto})^2 = (\text{Hipotenusa})^2$$

$$x^2 + 5^2 = 13^2$$

$$x^2 + 25 = 169$$

$$x^2 = 144$$

$$x = \sqrt{144}$$

x = 12 m

HELICO PRACTICE 7

Un gato se quedó atrapado en la parte más alta de una casa a una altura de 8 m, y para rescatarlo utilizaron una escalera de 10 m. Determine la distancia horizontal a la que se ubicó la escalera para rescatar al gato.

Aplicaremos el Teorema de Pitágoras :

$$(\text{cateto})^2 + (\text{cateto})^2 = (\text{Hipotenusa})^2$$

RESOLUCIÓN

$$x^2 + (8)^2 = (10)^2$$

$$x^2 + 64 = 100$$

$$x^2 = 36$$

$$\mathbf{x} = \sqrt{36}$$

