

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

OptiMOS[™]

OptiMOS[™] Power-Transistor, 60 V IPT007N06N

Data Sheet

Rev. 2.1 Final

IPT007N06N

1 **Description**

Features

- 100% avalanche tested
- Superior thermal resistance
- N-channel
- Qualified according to JEDEC ¹⁾ for target applications
 Pb-free lead plating; RoHS compliant
 Halogen-free according to IEC61249-2-21

Table 1 **Kev Performance Parameters**

Table 1 Roy 1 of formation 1 aramotors							
Parameter	Value	Unit					
V _{DS}	60	V					
$R_{\mathrm{DS(on),max}}$	0.75	mΩ					
I_{D}	300	A					
Q _{oss}	227	nC					
Q _G (0V10V)	216	nC					

Type / Ordering Code	Package	Marking	Related Links
IPT007N06N	PG-HSOF-8-1	007N06N	-

OptiMOS[™] Power-Transistor, 60 V

IPT007N06N

Table of Contents

Description	2
Maximum ratings	2
Thermal characteristics	
Electrical characteristics	5
Electrical characteristics diagrams	7
Package Outlines	11
Revision History	12
Disclaimer	12

IPT007N06N

2 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 **Maximum ratings**

D = 11 = 11 = 11 = 11 = 11 = 11 = 11 =	Symbol	Values				
Parameter		Min.	Тур.	Max.	Unit	Note / Test Condition
Continuous drain current	I _D	- - -		300 300 52	A	$V_{\rm GS}$ =10 V, $T_{\rm C}$ =25 °C $V_{\rm GS}$ =10 V, $T_{\rm C}$ =100 °C $V_{\rm GS}$ =10 V, $T_{\rm C}$ =25 °C, $R_{\rm thJA}$ =40 K/W
Pulsed drain current ²⁾	I _{D,pulse}	-	-	1200	Α	T _C =25 °C
Avalanche energy, single pulse 3)	E AS	-	-	1100	mJ	I _D =150 A, R _{GS} =25 Ω
Gate source voltage	V _{GS}	-20	-	20	V	-
Power dissipation	P _{tot}	-	-	375	W	T _C =25 °C
Operating and storage temperature	T _j , T _{stg}	-55	-	175	°C	IEC climatic category; DIN IEC 68-1: 55/175/56

3 Thermal characteristics

Table 3 **Thermal characteristics**

Doromotor	Cumbal	Values			Unit	Note / Test Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Thermal resistance, junction - case	R _{thJC}	-	0.2	0.4	K/W	-	
Device on PCB, minimal footprint	R _{thJA}	-	-	62	K/W	-	
Device on PCB, 6 cm² cooling area 1)	R _{thJA}	-	-	40	K/W	-	

 $^{^{1)}}$ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical in still air. $^{2)}$ See figure 3 for more detailed information $^{3)}$ See figure 13 for more detailed information

4 Electrical characteristics

Table 4 Static characteristics

Dawamatan	Cumbal		Values			Note / Took Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain-source breakdown voltage	$V_{(BR)DSS}$	60	-	-	V	V _{GS} =0 V, I _D =1 mA	
Gate threshold voltage	$V_{\rm GS(th)}$	2.1	2.8	3.3	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 280 \ \mu {\rm A}$	
Zero gate voltage drain current	I _{DSS}	-	0.5 10	1 100	μΑ	V _{DS} =60 V, V _{GS} =0 V, T _j =25 °C V _{DS} =60 V, V _{GS} =0 V, T _j =125 °C	
Gate-source leakage current	I _{GSS}	-	10	100	nA	V _{GS} =20 V, V _{DS} =0 V	
Drain-source on-state resistance	R _{DS(on)}	-	0.66 0.85	0.75 1	mΩ	V _{GS} =10 V, I _D =150 A V _{GS} =6 V, I _D =75 A	
Gate resistance	<mark>R_G</mark>	-	<mark>1.8</mark>	<mark>2.7</mark>	Ω	<u>-</u>	
Transconductance	g fs	160	320	-	S	$ V_{DS} > 2 I_D R_{DS(on)max}, I_D = 100 A$	

Table 5 Dynamic characteristics

Davamatav	Symbol	Values			11!4	Nata / Tank One William
Parameter		Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	Ciss	-	16000	21280	pF	V _{GS} =0 V, V _{DS} =30 V, f=1 MHz
Output capacitance	Coss	-	3400	4522	pF	V _{GS} =0 V, V _{DS} =30 V, f=1 MHz
Reverse transfer capacitance	C _{rss}	-	229	458	pF	V _{GS} =0 V, V _{DS} =30 V, f=1 MHz
Turn-on delay time	t _{d(on)}	-	38	-	ns	$V_{\rm DD}$ =30 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.8 Ω
Rise time	t _r	-	<mark>18</mark>	-	ns	$V_{\rm DD}$ =30 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.8 Ω
Turn-off delay time	$t_{ m d(off)}$	-	76	-	ns	$V_{\rm DD}$ =30 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.8 Ω
Fall time	t _f	_	22	-	ns	$V_{\rm DD}$ =30 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.8 Ω

Table 6 Gate charge characteristics 1)

Davamatar	Symbol	Values			11:4	Note / Took Condition
Parameter		Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	67	-	nC	$V_{\rm DD}$ =30 V, $I_{\rm D}$ =100 A, $V_{\rm GS}$ =0 to 10 V
Gate charge at threshold	$Q_{g(th)}$	-	47	-	nC	V_{DD} =30 V, I_{D} =100 A, V_{GS} =0 to 10 V
Gate to drain charge	$Q_{ m gd}$	-	39	-	nC	V_{DD} =30 V, I_{D} =100 A, V_{GS} =0 to 10 V
Switching charge	Q _{sw}	-	58	-	nC	V_{DD} =30 V, I_{D} =100 A, V_{GS} =0 to 10 V
Gate charge total	Q _g	-	<mark>216</mark>	<mark>287</mark>	nC)	V_{DD} =30 V, I_{D} =100 A, V_{GS} =0 to 10 V
Gate plateau voltage	V _{plateau}	-	4.2	-	V	V_{DD} =30 V, I_{D} =100 A, V_{GS} =0 to 10 V
Gate charge total, sync. FET	Q _{g(sync)}	-	192	255	nC	V _{DS} =0.1 V, V _{GS} =0 to 10 V
Output charge	Qoss	-	227	-	-	V _{DD} =30 V, V _{GS} =0 V

¹⁾ See "Gate charge waveforms" for parameter definition

OptiMOS[™] Power-Transistor, 60 V

IPT007N06N

Table 7 Reverse diode

Devementer	Symbol	Values			11	Note / Test Condition
Parameter		Min.	Тур.	Max.	Unit	Note / Test Condition
Diode continuous forward current	Is	-	-	300	Α	T _C =25 °C
Diode pulse current	I _{S,pulse}	-	-	1200	Α	<i>T</i> _C =25 °C
Diode forward voltage	V _{SD}	-	0.87	1	V	V _{GS} =0 V, I _F =150 A, T _j =25 °C
Reverse recovery time	t _{rr}	-	87	174	ns	V _R =30 V, I _F =100A, d <i>i</i> _F /d <i>t</i> =100 A/μs
Reverse recovery charge	Qrr	_	144	-	nC	V _R =30 V, I _F =100A, di _F /dt=100 A/μs

5 Electrical characteristics diagrams

6 Package Outlines

Figure 1 Outline PG-HSOF-8-1, dimensions in mm/inches

OptiMOS[™] Power-Transistor, 60 V

IPT007N06N

Revision History

IPT007N06N

Revision: 2014-02-20, Rev. 2.1

Previous Revision

Tevious (Cevision							
Revision	Date	Date Subjects (major changes since last revision)					
2.0	2014-02-06	Release of final version					
2.1	2014-02-20	Update Diagram 12					

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Final Data Sheet 12 Rev. 2.1, 2014-02-20