一. 如图 1(a)所示直流电路中, $R_1=1$ Ω , $R_2=2$ Ω , $R_3=1$ Ω , $R_4=1$ Ω 。 试按图 1 (b) 的标示选择适当变量,用回路法求独立电压源和电流源供出的功率。

二. 如图 1(a)所示直流电路中, R_1 = $1\,\Omega$, R_2 = $2\,\Omega$, R_3 = $1\,\Omega$, R_4 = $1\,\Omega$ 。 试按图 $1\,(b)$ 的标示选择适当变量,用节点法求独立电压源和 电流源供出的功率。 三(10 分)已知图 3 所示的理想运放电路中 R₂=R₃=2 Ω ,R₁=R₄=R₅=1 Ω , $u_1=12V$,求输出电压 u_o 。

四. $(8\, \odot)$ 图 4 所示电路中,N 为有源线性网络。当 $U_{\rm S}=40{\rm V}$, $I_{\rm S}=0$ 时, $I=40{\rm A}$, 当 $U_{\rm S}=20{\rm V}$, $I_{\rm S}=2{\rm A}$ 时,I=0; 当 $U_{\rm S}=10{\rm V}$, $I_{\rm S}=-5{\rm A}$ 时, $I=10{\rm A}$ 。 求当 $U_{\rm S}=-40{\rm V}$, $I_{\rm S}=20{\rm A}$ 时,I=?

六. (10 分) 图 6 所示复合二端口网络中, 己知 $U_s = 15$ V, $R_1 = 5\Omega$ 。

二端口网络 N 的传输参数矩阵为 $A_{N} = \begin{bmatrix} 2 & 10\Omega \\ 0.4S & 16 \end{bmatrix}$

- 求: (1) 虚线框所示的复合二端口网络传输参数矩阵 A;
 - (2) R_L=? 时,可获最大功率 P_{RLmax},并求 P_{RLmax}。

- 七. (10 分) 正弦稳态电路如图所示,电源角频率 $\omega=100rad/s$,电阻 R=2 Ω 。 电源电压 \dot{U}_S 与电感电压 \dot{U}_L 的有效值均为 10V,且相位差为 90° ; 电阻电流 \dot{I}_2 与电容电流 \dot{I}_3 的有效值相等,即 $I_2=I_3$ 。求:
- (1) 以电容电压 \dot{U}_C 为参考相量,画出电流 \dot{I}_1 、 \dot{I}_2 、 \dot{I}_3 和电压 \dot{U}_L 、 \dot{U}_S 的相量图; (2)求元件参数值L、C和功率表的读数。

- 八. (10分) 图 8 所示对称三相电路中的 $\dot{U}_{AB}=380\angle30^{\circ}V$, $Z=20\angle30^{\circ}$ Ω。求:
 - (1) 线电流 \dot{I}_{A} , \dot{I}_{B} , \dot{I}_{C} , 及相电压 \dot{U}_{CN} ;
 - (2) 三相负载的有功功率 P;
 - (3) 功率表的读数。

九. (10分) 电路如图 9 所示,其中交流电压源 $u_1 = 120\sqrt{2}\cos 1000tV$,

直流电压源 $u_2 = 80V$, 求: (1) 电压表的读数;

(2) 电流表的读数; (3) 电感电流瞬时值 $i_L(t)$ 。

十. 如图 10 所示, 试求从 a b 端看入的戴维宁等效电路。

