Изпит по ДИС-1(Теория), част 1 специалност "Информатика" 1-ви курс 06.02.2017 година

Име:	фак. номер:
------	-------------

1. (3 точки) Довършете дефиницията:

Редицата $\{a_n\}_{n=1}^{\infty}$ клони към $+\infty$, ако за всяко...

- 2. (7 точки) Формулирайте и докажете теоремата за граница на разлика на две сходящи редици.
- **3.** (3+3 точки) Довършете дефиницията (по два начина):

Казваме, че функцията $f(x):\mathbb{R}\to\mathbb{R}$ клони към $-\infty$ когато x клони към 2, ако: (Коши)

(Хайне)

- **4.** (6 mочки) Нека редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща и нейната граница е равна на Вашия факултетен номер. Докажете, че само краен брой членове на редицата са по-малки от 4000.
 - 5. (3 точки) Довършете дефиницията:

Функцията f(x) се нарича диференцируема в точката a, ако е дефинирана в

И

- **6.** $(3+6 \text{ moч}\kappa u)$ Формулирайте и докажете теоремата на Рол.
- 7. (7 точки) Нека $f: \mathbb{R} \to \mathbb{R}$ е навсякъде диференцируема. Докажете, че ако $f'(x) \leq 0$ за всяко $x \in \mathbb{R}$, то f е намаляваща в \mathbb{R} .
- 8. (3 точки) Нека g(x) е непрекъсната в интервала [0, 2), като g(0) = 1, g(1) = 3 и $\lim_{x \to 2-0} = 2$. Като използвате дефиницията на граница и теоремата на Вайерщрас за затворен краен интервал, докажете, че g(x) има максимум.
- 9. продължение $(3\ mov \kappa u)$ Ако g(x) е непрекъсната в интервала $[0,\ 2)$, като $g(0)=1,\ g(1)=3$ и $\lim_{x\to 2-0}=4$. Дайте пример на фукция g(x) (скицирайте графика), която няма максимум.
 - 10. (3 точки) Формулирайте теоремата Коши за крайните нараствания.

Отговорите на 1, 3, 5 и 6 се попълват на този лист, за 2, 4, 7, 8, 9 и 10 се използват само допълнителни листа.

Изпит по ДИС-1(Теория), част 1 специалност "Информатика" 1-ви курс 06.02.2017 година

Име:	фак. :	номер:
rime.	фак.	номер

- 1. (3 точки) Довършете дефиницията: Редицата $\{a_n\}_{n=1}^{\infty}$ клони към +3, ако за всяко...
- **2.** (7 moчки) Формулирайте и докажете теоремата за граница на произведение на две сходящи редици.
 - 3. $(3+3\ mov\kappa u)$ Довършете дефиницията (по два начина): Казваме, че функцията $f(x): \mathbb{R} \to \mathbb{R}$ клони към -2, когато x клони към ∞ , ако: (Коши)

(Хайне)

- **4.** (6 точки) Нека $a_n < 2017$ за всяко $n \in \mathbb{N}$. Докажете, че ако редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща, то за границата й a е изпълнено $a \leq 2017$;
 - **5.** (3 точки) Довършете дефиницията: Функцията f(x) се нарича диференцируема в точката a , ако е дефинирана в

и

- **6.** $(3+6 \ moч \kappa u)$ Формулирайте и докажете теоремата на Ферма.
- 7. (7 точки) Нека $f: \mathbb{R} \to \mathbb{R}$ е навсякъде диференцируема. Докажете, че ако f е намаляваща в \mathbb{R} , тогава $f'(x) \le 0$ за всяко $x \in \mathbb{R}$.
- 8. (3 точки) Нека g(x) е непрекъсната в интервала $[0, \infty)$, като g(0) = 1, g(1) = 3 и $\lim_{x \to \infty} = 2$. Като използвате дефиницията на граница и теоремата на Вайерщрас за затворен краен интервал, докажете, че g(x) има минимум.
- **9.** продължение (3 точки) Ако g(x) е непрекъсната в интервала $[0, \infty)$, като g(0) = 1, g(1) = 3 и $\lim_{x \to \infty} = 0$. Дайте пример на фукция g(x) (скицирайте графика), която няма минимум.
 - 10. (3 точки) Формулирайте теоремата Лагранж за крайните нараствания.

Отговорите на 1, 3, 5 и 6 се попълват на този лист, за 2, 4, 7, 8, 9 и 10 се използват само допълнителни листа.