Digital Communication

Youlong Wu

ShanghaiTech University

wuyl1@shanghaitech.edu.cn

Probability and Stochastic Process

Probability and Stochastic Process

Objectives:

- Know some useful probability distributions
- Can calculate E(g(X)) and Var(g(X))

Probability

Given events A, B

- $P(A), P(\bar{A}),$
- $P(A \cap B)$ or P(A, B), $P(A \cup B)$
- $P(A|B) = P(A \cap B)/P(B) = P(A,B)/P(B)$

Two important properties

- $P(A \cup B) = P(A) + P(B)$, only if $A \cap B = \emptyset$
- P(A|B) = P(A), only if A and B are independent

Questions:

- $A \cap B = \emptyset$ v.s. $A \perp B$
- For P(A|B) and P(A), which one is larger? (hint: check when $A \cap B = \emptyset$ and $A \cap B = B$)

Discrete Random variable

Given a discrete random variable X:

• Probability :

$$p(x), x \in \mathcal{X}$$

Cumulative distribution function (CDF):

$$F(x) = P(X \le x) = \sum_{X \le x} p(x)$$

Expectation:

$$E(X) = \sum_{i=1}^{\infty} x_i p(x_i), \quad E(g(X)) = \sum_{i=1}^{\infty} g(x_i) p(x_i)$$

Variance

$$\operatorname{Var}(X) = E(X^2) - E^2(X), \quad \operatorname{Var}(g(X)) = E(g(X)^2) - E^2(g(X))$$

Continuous Random variable

Given a continuous random variable X:

Cumulative distribution function (CDF):

$$F(x) = P(X \le x), -\infty \le x \le +\infty$$

Probability density function (PDF):

$$f(x) = \frac{dF(x)}{dx} \Longrightarrow F(X) = \int_{-\infty}^{x} f(u)du$$

• Expectation (e.g, g(X) = X):

$$E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Variance

$$\mathsf{Var}(X) = E(X^2) - E^2(X)$$

Function of Random Variable

Example 1: Find PDF of

$$Y = aX + b$$

where a > 0 and b > 0 are constant.

Solution:

$$F_Y(y) = P(aX + b \le y) = P(x \le \frac{y - b}{a})$$
$$= \int_{-\infty}^{\frac{y - b}{a}} f_X(x) dx$$

By differentiation $\frac{\partial F_Y(y)}{\partial y}$, we obtain

$$f_Y(y) = \frac{1}{a} f_X\left(\frac{y-b}{a}\right)$$

Function of Random Variable

Example 2: Find PDF of

$$Y = aX^2 + b$$

where a > 0 and b > 0 are constant.

Solution:

Function of Random Variable

Example 2: Find PDF of

$$Y = aX^2 + b$$

where a > 0 and b > 0 are constant.

Solution:

$$F_Y(y) = P(aX^2 + b \le y) = P\left(|x| \le \sqrt{\frac{y-b}{a}}\right)$$
$$= \int_{-\sqrt{\frac{y-b}{a}}}^{\sqrt{\frac{y-b}{a}}} f_X(x)dx$$

By differentiation $\frac{\partial F_Y(y)}{\partial y}$, we obtain

$$f_Y(y) = \frac{f_X(\sqrt{y - b/a})}{2a\sqrt{y - b/a}} + \frac{f_X(-\sqrt{y - b/a})}{2a\sqrt{y - b/a}}$$

Conditional Expectation

 $\bullet \ E(X|Y=y)$

$$E(X|Y=y) = \int_{x} x f(x|y) dx \tag{1}$$

- E(X|Y) a function of RV Y, i.e., g(Y) = E(X|Y)
- E(E(X|Y)) = E(X)

$$E(E(X|Y)) = \int_{x} f(y)E(X|Y = y)dy$$

$$= \int_{x} f(y) \int_{y} \frac{f(x,y)}{f(y)} x dx dy$$

$$= \int_{x} x \int_{y} f(x,y) dy dx$$

$$= \int_{x} f(x) x dx$$

Useful Probability Distributions

Binomial distribution: (e.g. tossing coin)

Given X, where P(X = 1) = p and P(X = 0) = 1 - p. Now

$$Y = \sum_{i=1}^{n} X_i$$

where $X_i, i = 1, 2, ..., n$ are statistically independent and identically distributed (i.i.d), with pdf same as X. Then,

$$P(Y = k) = \binom{n}{k} p^k (1-p)^{(n-k)}$$

where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
.

$$E(Y)=np, \quad E(Y^2)=np(1-p)+n^2p^2$$

Uniform Distribution

Given a RV X, with $a \leq X \leq b$. Its PDF follows

$$f_X(x) = \frac{1}{b-a}$$

And,

$$E(X) = \frac{a+b}{2}, \quad Var(X) = \frac{(a-b)^2}{12}$$

Gaussian (Normal) Distribution

Given a RV $X \sim \mathcal{N}(u, \sigma^2)$, its PDF follows

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

And,

$$E(X) = \mu, \quad \mathsf{Var}(X) = \sigma^2$$

Note:

The sum of n statistically independent Gaussian RVs is also Gaussian RV.

Question: $Y = 3X_1 + 2X_2 + X_3$, with X_i i.i.d $\sim \mathcal{N}(0,1)$, Y's distribution is?

Q function: (not a distribution!)

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt$$

Properties of Q(x):

$$Q(0) = \frac{1}{2}, \quad Q(-x) = 1 - Q(x),$$

 $Q(\infty) = 0, \quad Q(-\infty) = 1$

Useful bounds for Q(x): if x > 0

$$\begin{split} Q(x) &< \frac{1}{2} e^{-\frac{x^2}{2}} \\ Q(X) &< \frac{1}{x\sqrt{2\pi}} e^{-\frac{x^2}{2}} \\ Q(X) &> \frac{x}{(1+x^2)\sqrt{2\pi}} e^{-\frac{x^2}{2}} \\ Q(x) &\approx \frac{1}{x\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \text{ when } x \text{ is large}; \end{split}$$

Q function

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt$$

CDF of Gaussian distribution: $F_X(x) = P(X \le x)$

$$\begin{split} F_X(x) &= \int_{-\infty}^x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt = 1 - \int_x^\infty \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt \\ &= 1 - \int_{\frac{x-\mu}{\sigma}}^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{\mathbf{u}^2}{2}} d\mathbf{u} = 1 - Q(\frac{x-\mu}{\sigma}) \end{split}$$

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$P(X > a) = Q(\frac{a - \mu}{\sigma}), \quad P(X < a) = Q(\frac{\mu - a}{\sigma})$$

Usefulness: Given μ and σ , we obtain P(X < a) directly by checking table of Q function values.

Complementary Error Function (erfc)

x	Q(x)	x	Q(x)	x	Q(x)	x	Q(x)
0	0.500000	1.8	0.035930	3.6	0.000159	5.4	3.3320×10 ⁻⁸
0.1	0.460170	1.9	0.028717	3.7	0.000108	5.5	1.8990×10^{-8}
0.2	0.420740	2	0.022750	3.8	7.2348×10^{-5}	5.6	1.0718×10 ⁻⁸
0.3	0.382090	2.1	0.017864	3.9	4.8096×10^{-5}	5.7	5.9904×10 ⁻⁹
0.4	0.344580	2.2	0.013903	4	3.1671×10^{-5}	5.8	3.3157×10 ⁻⁹
0.5	0.308540	2.3	0.010724	4.1	2.0658×10^{-5}	5.9	1.8175×10^{-9}
0.6	0.274250	2.4	0.008198	4.2	1.3346×10^{-5}	6	9.8659×10^{-1}
0.7	0.241960	2.5	0.006210	4.3	8.5399×10^{-6}	6.1	5.3034×10^{-1}
0.8	0.211860	2.6	0.004661	4.4	5.4125×10^{-6}	6.2	2.8232×10^{-1}
0.9	0.184060	2.7	0.003467	4.5	3.3977×10^{-6}	6.3	1.4882×10^{-1}
1	0.158660	2.8	0.002555	4.6	2.1125×10^{-6}	6.4	7.7689×10^{-1}
1.1	0.135670	2.9	0.001866	4.7	1.3008×10^{-6}	6.5	4.0160×10^{-1}
1.2	0.115070	3	0.001350	4.8	7.9333×10^{-7}	6.6	2.0558×10^{-1}
1.3	0.096800	3.1	0.000968	4.9	4.7918×10^{-7}	6.7	1.0421×10^{-1}
1.4	0.080757	3.2	0.000687	5	2.8665×10^{-7}	6.8	5.2309×10^{-1}
1.5	0.066807	3.3	0.000483	5.1	1.6983×10^{-7}	6.9	2.6001×10 ⁻¹
1.6	0.054799	3.4	0.000337	5.2	9.9644×10^{-8}	7	1.2799×10^{-1}
1.7	0.044565	3.5	0.000233	5.3	5.7901×10^{-8}	7.1	6.2378×10^{-1}

$$erfc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$

Relation between $\operatorname{erfc}(x)$ and Q(x)

$$Q(x) = \frac{1}{2} \mathrm{erfc}(\frac{x}{\sqrt{2}}), \quad \mathrm{erfc}(x) = 2Q(\sqrt{2}x)$$

χ^2 Distribution

Let $X \sim \mathcal{N}(\mu, \sigma^2)$, and

$$Y = X^2$$

Then, the Y follows χ^2 distribution:

$$f_Y(y) = \frac{1}{\sqrt{2\pi y}\sigma} e^{-\frac{y^2}{2\sigma^2}}, \quad y \ge 0$$

Let X_1, X_2, \dots, X_n are i.i.d. $\mathcal{N}(\mu, \sigma^2)$, and

$$Y = \sum_{i=1}^{n} X_i^2$$

Then, the Y is a χ^2 RV with n degree of freedom. see [Proakis'45]

Rayleigh Distribution

Let X_1 and X_2 be i.i.d $\mathcal{N}(0, \sigma^2)$, and

$$Y = X_1^2 + X_2^2$$

Then, the PDF of

$$R = \sqrt{X_1^2 + X_2^2}$$

follows Rayleigh distribution:

$$f_R(r) = \frac{r}{\sigma^2} e^{-\frac{r^2}{2\sigma^2}}, \quad r \ge 0$$

Rice distribution

Let
$$X_1 \sim \mathcal{N}(\mu_1, \sigma^2)$$
, $X_2 \sim \mathcal{N}(\mu_2, \sigma^2)$, $X_1 \perp X_2$ and

$$Y = X_1^2 + X_2^2$$

Then, the PDF of

$$R = \sqrt{X_1^2 + X_2^2}$$

follows Rayleigh distribution:

$$f_R(r) = \frac{r}{\sigma^2} e^{-\frac{r^2 + s^2}{2\sigma^2}} I_0(rs/\sigma^2), \quad r \ge 0$$

where $s^2=\mu_1^2+\mu_2^2$ and $I_\alpha(\cdot)$ is $\alpha {\rm th\text{-}order}$ modified Bessel function [Proakis'B].

Jointly Gaussian Distribution

• Given an $n \times 1$ column vector \boldsymbol{X} , its pdf follows:

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} (\det \boldsymbol{C})^{1/2}} e^{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{m})^T \boldsymbol{C}^{-1} (\boldsymbol{x} - \boldsymbol{m})}$$

where

$$egin{aligned} m{m} &= E[m{X}] \\ m{C} &= E[(m{X} - m{m})(m{X} - m{m})^t] \end{aligned}$$

with
$$C_{i,j} = \text{cov}(X_i, X_j) = E[(X_i - \mu_i)(X_j - \mu_j)].$$

- $\bullet \ \operatorname{cov}(\boldsymbol{X},\boldsymbol{Y}) = \operatorname{cov}(\boldsymbol{Y},\boldsymbol{X})^T$
- $\bullet \ \operatorname{cov}(A\boldsymbol{X} + \boldsymbol{b}, \boldsymbol{Y}) = A\operatorname{cov}(\boldsymbol{X}, \boldsymbol{Y})$
- $\bullet \ \operatorname{cov}(\boldsymbol{X} + \boldsymbol{Y}, \boldsymbol{Z}) = \operatorname{cov}(\boldsymbol{X}, \boldsymbol{Y}) + \operatorname{cov}(\boldsymbol{X}, \boldsymbol{Z})$

Jointly Gaussian Distribution: n = 2

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} (\mathsf{det}\boldsymbol{C})^{1/2}} e^{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{m})^T \boldsymbol{C}^{-1} (\boldsymbol{x} - \boldsymbol{m})}$$

• Special case: n=2

$$m{m} = \left[egin{array}{c} \mu_1 \ \mu_2 \end{array}
ight], \quad m{C} = \left[egin{array}{cc} \sigma_1^2 &
ho\sigma_1\sigma_2 \
ho\sigma_1\sigma_2 & \sigma_2^2 \end{array}
ight]$$

where $\rho = \frac{\text{cov}[X_1, X_2]}{\sigma_1 \sigma_2}$. Thus:

$$f(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{(\frac{x_1-\mu_1}{\sigma_1})^2+(\frac{x_2-\mu_2}{\sigma_2})^2-2\rho(\frac{x_1-\mu_1}{\sigma_1})(\frac{x_2-\mu_2}{\sigma_2})}{2(1-\rho^2)}}$$

• When $\rho = 0$

$$f(x_1, x_2) = \mathcal{N}(\mu_1, \sigma_1^2) \times \mathcal{N}(\mu_2, \sigma_2^2)$$

For jointly Gaussian RVs, uncorrelated = independent (In general?)

Jointly Gaussian Distribution: n=2

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} (\mathsf{det}\boldsymbol{C})^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{m})^T \boldsymbol{C}^{-1}(\boldsymbol{x}-\boldsymbol{m})}$$

• Special case: n=2

$$m{m} = \left[egin{array}{c} \mu_1 \ \mu_2 \end{array}
ight], \quad m{C} = \left[egin{array}{cc} \sigma_1^2 &
ho\sigma_1\sigma_2 \
ho\sigma_1\sigma_2 & \sigma_2^2 \end{array}
ight]$$

where $\rho = \frac{\text{cov}[X_1, X_2]}{\sigma_1 \sigma_2}$. Thus:

$$f(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{(\frac{x_1-\mu_1}{\sigma_1})^2+(\frac{x_2-\mu_2}{\sigma_2})^2-2\rho(\frac{x_1-\mu_1}{\sigma_1})(\frac{x_2-\mu_2}{\sigma_2})}{2(1-\rho^2)}}$$

• When $\rho = 0$

$$f(x_1, x_2) = \mathcal{N}(\mu_1, \sigma_1^2) \times \mathcal{N}(\mu_2, \sigma_2^2)$$

For jointly Gaussian RVs, uncorrelated = independent (In general?)

In general: independent \Rightarrow uncorrelated; uncorrelated \Rightarrow independent

Example: Independent v.s. Uncorrelated

Let $f_{XY}(x,y)=\frac{1}{\pi}$, if $x^2+y^2\leq 1$; $f_{XY}(x,y)=0$, otherwise. Find

- $f_X(x)$, $f_Y(y)$, E(X), E(X|y), E(X,Y),
- ullet Prove X and Y are uncorrelated, but not independent

Solution:

Example: Independent v.s. Uncorrelated

Let $f_{XY}(x,y)=\frac{1}{\pi}$, if $x^2+y^2\leq 1$; $f_{XY}(x,y)=0$, otherwise. Find

- $f_X(x)$, $f_Y(y)$, E(X), E(X|y), E(X,Y),
- ullet Prove X and Y are uncorrelated, but not independent

Solution:

$$f_X(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f_{XY}(x,y) dy = \frac{2}{\pi} \sqrt{1-x^2}$$

$$E[X] = \frac{2}{\pi} \int_{-1}^{1} x \sqrt{1-x^2} dy = 0$$

$$E[X|y] = \int_{-1}^{1} x f(x|y) dx = 0, E[X|Y] = E[X,Y] = 0$$

By symmetry: E[Y|X]=E[Y]=0, Thus: $E[XY]=E[X]E[Y]=0,\ X$ and Y are uncorrelated, but,

$$f_X(x)f_Y(y) = \frac{2}{\pi}\sqrt{1-x^2}\frac{2}{\pi}\sqrt{1-y^2} \neq f_{XY}(x,y)$$

Homework: Linear Combination of Gaussian RVs

Given
$$(X_1, X_2) \sim \mathcal{N}(0, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix})$$
, find the pdf of $Y = \frac{X_1 + X_2}{2}$.

Properties of Jointly Gaussian RVs

• Linear combinations of jointly Gaussian RVs are also jointly Gaussian

$$Y = AX$$

where invertible matrix \boldsymbol{A} represents linear combination.

$$m_Y = Am_X$$
 $C_Y = AC_XA^T$

• See problem 2.23 in [Proakis'Book]

Properties of Jointly Gaussian RVs

- For jointly Gaussian RVs, uncorrelated = independent
- Linear combinations of jointly Gaussian RVs are also jointly Gaussian
- All subset and all conditional subsets of joint Gaussian RVs are jointly Gaussian

Random Process

- Random variable X v.s. Random Process X(t)
- Mean: $\mu_X(t) = E[X(t)]$
- Autocorrelation function: $R_X(t_1, t_2) = E[X(t_1)X^*(t_2)]$
- ullet Cross-correlation function: $R_{XY}(t_1,t_2)=E[X(t_1)Y^*(t_2)]$

$$R_X(t_2, t_1) = R_X^*(t_1, t_2)$$

 $R_{YX}(t_2, t_1) = R_{XY}^*(t_1, t_2)$

Stationary Process

• Stationary Process: for all time shift au, time duration k, sample time t_1, \ldots, t_k

$$F_X(x_{t_1+\tau,...,x_{t_k+\tau}}) = F_X(x_{t_1,...,x_{t_k}})$$

CDF or PDF does not change when shift time. (Imply constant mean and variance if they exist)

- Wide-Sense Stationary (WSS) Process:
 - 1) $\mu_X(t)$ is constant;
 - 2) $R_X(t_1, t_2) = R(\tau)$, where $\tau = t_1 t_2$
- Jointly WSS: $R_{XY}(t_1, t_2) = R_{XY}(\tau)$

Power and Energy

Given a signal (or a random process) x(t)

• energy (energy signal, $\mathcal{E}_X \nrightarrow \infty$):

$$\mathcal{E}_X = \int_{-\infty}^{\infty} |x(t)|^2 dt \quad (\text{unit } J)$$

• (average) power (power signal, $\mathcal{P}_X \nrightarrow \infty$)::

$$P_X = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt \quad \text{(unit } W\text{)}$$

• Power spectral density (PSD) $S_X(f)$: the distribution of power as a function of frequency, unit (W/Hz).

$$S_X(f) = \lim_{T \to \infty} E[|\hat{x}_T(f)|^2]$$

 $\hat{x}_T(f) = \frac{1}{\sqrt{T}} \int_{-T/2}^{T/2} x(t) e^{-i2\pi f t} dt$ is truncated Fourier transform of x(t)

Theorems

Parseval's theorem:

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |\hat{x}(f)|^2 df$$

Energy is constant from time and frequency perspectives.

• Wiener-Khinchin Theorem:

$$S_X(f) = \mathcal{F}[R_X(\tau)], \quad S_{XY}(f) = \mathcal{F}[R_{XY}(\tau)]$$

• Power of WSS X(t) (sum of powers at all frequencies):

$$P_X = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt \stackrel{(a)}{=} E[|X(t)|^2] \stackrel{(b)}{=} R_X(0) \stackrel{(c)}{=} \int_{-\infty}^{\infty} S_X(f) df$$

(a) gives physical meaning; (b) is from definition of $R_X(\tau)$; (c) is from Wiener-Khinchin, and provides a convenient way to compute P_X

Proofs

• Prove Wiener-Khinchin Theorem: $S_X(f) = \mathcal{F}[R_X(\tau)]$

$$\begin{split} S_X(f) &= \lim_{T \to \infty} \mathbf{E} \left[|\hat{x}_T(f)|^2 \right] \\ &= \lim_{T \to \infty} E \left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^*(t) e^{i2\pi f t} \, dt \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t') e^{-i2\pi f t'} \, dt' \right] \\ &= \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \mathbf{E} \left[x^*(t) x(t') \right] e^{i2\pi f(t-t')} \, dt \, dt' \\ &= \cdots \\ &= \int_{-\infty}^{\infty} R_X(\tau) e^{iw\tau} \, d\tau \\ &= \mathcal{F}[R_X(\tau)] \end{split}$$

• If X(t) is real WSS, $S_X(f)$ is real, nonnegative, and even function of f; For complex processes, not necessarily even.

Gaussian Random Process and White Process

Gaussian Random Process

• X(t), for all n and t_i , jointly Gaussian vector

$$(X(t_1),\ldots,X(t_n))$$

• Jointly Gaussian Process: for all n, t_i, t'_i , jointly Gaussian vector

$$(X(t_1), \ldots, X(t_n), Y(t'_1), \ldots, Y(t'_n))$$

 \bullet Complex Process: Z(t)=X(t)+jY(t) is Gaussian if X(t) and Y(t) are joint Gaussian process

White Process: a process whose PSD is constant

$$S_X(f) = \frac{N_0}{2}$$

(Infinite power, not practical, but still very useful)

Markov Chain

Physical meaning: a random process of current value depends on the entire values only through the most recent values: jth-order Markov Chain

$$P(X_n = x_n | X_{n-1} = x_{n-1}, X_{n-2} = x_{n-2}, \dots)$$

= $P(X_n = x_n | X_{n-1} = x_{n-1}, X_{n-2} = x_{n-2}, \dots, X_{n-j} = x_{n-j})$

Further look: X-Y-Z forms Markov Chain, then H(Z|Y,X)=H(Z|Y)