Задание.

Решить задачу ЦЛП:

$$L = -x_1 - 2x_2 \to min$$

$$2x_1 + 3x_2 \le 4$$

$$-5x_1 + x_2 \le 6$$

$$x_1 \ge 0, x_2 \ge 0$$

методом Гомори.

Решение.

Каноническая форма:

$$L = -x_1 - 2x_2 \rightarrow min$$

$$2x_1 + 3x_2 + y_1 = 4$$

$$-5x_1 + x_2 + y_2 = 6$$

$$x_1 \ge 0, x_2 \ge 0, y_1 \ge 0, y_2 \ge 0$$

Специальная форма (базисные переменные y_1 и y_2):

$$L = 0 - (x_1 + 2x_2) \rightarrow min$$

$$y_1 = 4 - (2x_1 + 3x_2)$$

$$y_2 = 6 - (-5x_1 + x_2)$$

$$x_1 \ge 0, x_2 \ge 0, y_1 \ge 0, y_2 \ge 0$$

Допустимая симплексная таблица:

	b	x_1	x_2
L	0	1	1
y_1	4	2	3
y_2	6	-5	1

Оптимальная симплексная таблица (прямой симплекс-метод):

	ь	x_1	y_1
L	8	1	2
	$-\frac{1}{3}$	$-\frac{3}{3}$	$-\frac{1}{3}$

x_2	$\frac{4}{2}$	2	1
	3	3	3
y_2	14	_ <u>17</u>	_1
	3	3	3

Решение $x = (0, \frac{4}{3})$ оптимальное, но не целочисленное, поэтому нужно составить дополнительное ограничение вида:

$$s_1 = -\frac{1}{3} - (-\frac{2}{3} - \frac{1}{3})$$

Добавим ограничение к последней симплекс-таблице:

	Ь	x_1	y_1
L	$-\frac{8}{2}$	_1	_2
	3	3	3
x_2	$\frac{4}{2}$	<u>2</u>	<u>1</u>
	3	3	3
y_2	<u>14</u>	_ <u>17</u>	$-\frac{1}{2}$
	3	3	3
\overline{s}_1	_1	_2	$-\frac{1}{2}$
	3	3	3

Применим двойственные симплекс-метод:

	b	s_1	y_1
L	<u>15</u>	_ 1	_ 1
	6	2	2
x_2	1	1	0
y_2	<u>15</u>	<u>17</u>	5
	2	$-\frac{2}{2}$	$-\frac{1}{2}$
$\overline{x_1}$	1	3	1
	2	2	2

Решение $x=(\frac{1}{2},1)$ оптимальное, но не целочисленное, поэтому нужно составить дополнительное ограничение вида:

$$s_2 = -\frac{1}{2} - (\frac{1}{2} - \frac{1}{2})$$

Добавим ограничение к последней симплекс-таблице:

	b	s_1	y_1
L	_ <u>15</u>	_ 1	_ 1
	6		2

x_2	1	1	0
y_2	$\frac{15}{2}$	$-\frac{17}{2}$	$-\frac{5}{2}$
x_1	$\frac{1}{2}$	$-\frac{3}{2}$	$\frac{1}{2}$
s_2	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$

Применим двойственные симплекс-метод:

	b	s_1	s_2
L	-2	0	-1
x_2	1	1	0
y_2	10	11	-5
x_1	0	-1	1
y_1	1	-3	-2

Решение $x^* = (0, 1)$ является оптимальным и целочисленным. $L^*(x^*) = -2$.

Ответ: $x^* = (0, 1), L^*(x^*) = -2.$