Lý thuyết Điều khiển tự động 1

Chuyển từ mô hình liên tục sang mô hình rời rạc

ThS. Đỗ Tú Anh

Bộ môn Điều khiển tự động Khoa Điện, Trường ĐHBK HN

Khâu giữ mẫu

Sơ đồ khâu giữ mẫu

$$y(t) = u(kT)$$
, với $kT \le t < (k+1)T$

Hàm truyền đạt

$$G_{ZOH}(s) = \frac{1 - e^{-sT}}{s}$$

Chuyển từ G(s) sang G(z)

Phương pháp sai phân lùi

$$s = \frac{1 - z^{-1}}{T}$$

Phương pháp sai phân tiến

$$s = \frac{1 - z^{-1}}{Tz^{-1}}$$

Phương pháp Tustin

$$s = \frac{2}{T} \left[\frac{1 - z^{-1}}{1 + z^{-1}} \right]$$

Chuyển từ G(s) sang G(z) (tiếp)

Phương pháp sử dụng đáp ứng xung

$$G(z) = Z[g(kT)],$$
 trong đó $g(kT) = [L^{-1}G(s)]_{t=kT}$

Phương pháp sử dụng đáp ứng bước nhảy

$$Z^{-1} \left[G(z) \frac{1}{1 - z^{-1}} \right] = \left[L^{-1} \left[G(s) \frac{1}{s} \right] \right]_{t=kT}$$

$$G(z) = \left(1 - z^{-1}\right) Z \left[\frac{G(s)}{s}\right] = Z \left[\frac{1 - e^{-Ts}}{s} G(s)\right]$$

Chuyển từ G(s) sang G(z) (tiếp)

Cho
$$H(s) = \frac{2}{(s+1)(s+2)}$$

Tìm H(z) theo phương pháp sử dụng đáp ứng bước nhảy

Ta có

$$H(z) = Z\left[\left[\frac{1 - e^{-Ts}}{s}\right]H(s)\right] = (1 - z^{-1})Z\left[\frac{H(s)}{s}\right]$$

Do

$$\frac{H(s)}{s} = \frac{2}{s(s+1)(s+2)} = \frac{1}{s} - \frac{2}{s+1} + \frac{1}{s+2}$$

Và tra bảng biến đổi Z, ta được

$$Z\left[\frac{H(s)}{s}\right] = \frac{1}{1 - z^{-1}} - \frac{2}{1 - e^{-T}z^{-1}} + \frac{1}{1 - e^{-2T}z^{-1}}$$

Vậy

$$H(z) = (1 - z^{-1})Z \left[\frac{H(s)}{s} \right] = (1 - z^{-1}) \left[\frac{1}{1 - z^{-1}} - \frac{2}{1 - e^{-T}z^{-1}} + \frac{1}{1 - e^{-2T}z^{-1}} \right]$$

Xét hệ thống liên tục được mô tả bởi

$$\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{m}(t) \tag{1}$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{m}(t) \tag{2}$$

Xét vector $\mathbf{m}(t)$ không đối từng đoạn, tức là

$$\mathbf{m}(t) = \mathbf{u}(kT), \quad \text{v\'oi} \quad kT \le t < (k+1)T \tag{3}$$

Giải (1) để tìm $\mathbf{x}(t)$, ta được

$$\mathbf{x}(t) = \mathbf{e}^{\mathbf{F}t}\mathbf{x}(0) + \int_0^t \mathbf{e}^{\mathbf{F}(t-\xi)}\mathbf{Gm}(\xi)d\xi$$

Từ (3) suy ra $\mathbf{m}(0) = \mathbf{u}(0)$ với $0 \le t < T$ Do đó

$$\mathbf{x}(t) = e^{\mathbf{F}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{F}(t-\xi)}\mathbf{G}\mathbf{u}(0)d\xi, \qquad 0 \le t < T$$
 (4)

Vector trạng thái $\mathbf{x}(t)$, với t = T sẽ là

$$\mathbf{x}(T) = \mathbf{e}^{\mathbf{F}T}\mathbf{x}(0) + \int_0^T \mathbf{e}^{\mathbf{F}(T-\xi)}\mathbf{G}\mathbf{u}(0)d\xi$$

Định nghĩa

$$\mathbf{A}(T) = \mathbf{e}^{\mathbf{F}T}$$

$$\mathbf{B}(T) = \int_0^T e^{\mathbf{F}(T-\xi)} \mathbf{G} d\xi = \int_0^T e^{\mathbf{F}\lambda} \mathbf{G} d\lambda, \qquad \lambda = T - \xi$$

Thì (4), với t = T được viết lại là

$$\mathbf{x}(T) = \mathbf{A}(T)\mathbf{x}(0) + \mathbf{B}(T)\mathbf{u}(0)$$

Tương tự với $T \le t < 2T$, $2T \le t < 3T$..., ta đi đến công thức tổng quát

$$\mathbf{x}[(k+1)T] = \mathbf{A}(T)\mathbf{x}(kT) + \mathbf{B}(T)\mathbf{u}(kT)$$

Và (2) có thể được viết là

$$\mathbf{y}(kT) = \mathbf{C}\mathbf{x}(kT) + \mathbf{D}\mathbf{u}(kT)$$

Chú ý

• Nếu gọi hàm truyến đạt của hệ liên tục (1)-(2) là

$$G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{G} + \mathbf{D}$$

và hàm truyền đạt của hệ rời rạc tương ứng là

$$\mathbf{G}(z) = \mathbf{C}[z\mathbf{I} - \mathbf{A}(T)]^{-1}\mathbf{B}(T) + \mathbf{D}.$$

ta có
$$G(z) = Z[G_{ZOH}(s)G(s)] = Z\left[\frac{1 - e^{-sT}}{s}G(s)\right]$$

• Các ma trận $\mathbf{A}(T)$ và $\mathbf{B}(T)$ có thể được xác định như sau

$$\mathbf{A}(T) = \mathbf{e}^{\mathbf{F}t} \Big|_{t=T} = \left[L^{-1} [s\mathbf{I} - \mathbf{F}]^{-1} \right]_{t=T}$$

$$\mathbf{B}(T) = \int_0^T \left[L^{-1} [s\mathbf{I} - \mathbf{F}]^{-1} \right]_{t=\lambda} \mathbf{G} d\lambda = \int_0^T \mathbf{A}(\lambda) \mathbf{G} d\lambda$$

Xét hệ

$$\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{g}m(t)$$

$$y(t) = \mathbf{c}^T \mathbf{x}(t)$$

trong đó

$$\mathbf{F} = \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}, \qquad \mathbf{g} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \qquad \mathbf{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Hãy tìm mô hình trạng thái cho hệ rời rạc tương ứng, tức là hãy xác định $\mathbf{A}(T)$ và $\mathbf{b}(T)$

Ta có

$$s\mathbf{I} - \mathbf{F} = \begin{bmatrix} s+1 & 0 \\ -1 & s \end{bmatrix}, \qquad (s\mathbf{I} - \mathbf{F})^{-1} = \begin{bmatrix} \frac{1}{s+1} & 0 \\ \frac{1}{s(s+1)} & \frac{1}{s} \end{bmatrix},$$

$$L^{-1}[s\mathbf{I} - \mathbf{F}]^{-1} = \begin{bmatrix} e^{-t} & 0 \\ 1 - e^{-t} & 1 \end{bmatrix}$$

$$L^{-1}[s\mathbf{I} - \mathbf{F}]^{-1} = \begin{bmatrix} e^{-t} & 0\\ 1 - e^{-t} & 1 \end{bmatrix}$$

Do đó

$$\mathbf{A}(T) = \left[L^{-1} [s\mathbf{I} - \mathbf{F}]^{-1} \right]_{t=T} = \mathbf{e}^{\mathbf{F}T} = \begin{bmatrix} \mathbf{e}^{-T} & 0 \\ 1 - \mathbf{e}^{-T} & 1 \end{bmatrix}$$

$$\mathbf{b}(T) = \int_0^T e^{\mathbf{F}\lambda} \mathbf{g} d\lambda = \int_0^T \begin{bmatrix} e^{-\lambda} & 0 \\ 1 - e^{-\lambda} & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} d\lambda = \int_0^T \begin{bmatrix} 2e^{-\lambda} \\ 3 - 2e^{-\lambda} \end{bmatrix} d\lambda$$
$$= \begin{bmatrix} 2(1 - e^{-T}) \\ 3T - 2(1 - e^{-T}) \end{bmatrix}$$

Phụ lục

Các cặp biến đổi Z

f(kT)	$F(s) = \int_0^\infty f(t) e^{-st} dt$	$F(z) = \sum_{k=0}^{\infty} f(kT)z^{-k}$
$\delta(kT - aT)$	e^{-aTs}	z^{-a}
$\delta(kT)$	1	1 or z^{-0}
$\beta(kT-aT)$	$\frac{e^{-aTs}}{s}$	$\frac{z^{-a+1}}{z-1}$
$\beta(kT)$	$\frac{1}{s}$	$\frac{z}{z-1}$
kT - aT	$\frac{e^{-aTs}}{s^2}$	$\frac{Tz^{-a+1}}{(z-1)^2}$
kT	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$

Phụ lục

Các cặp biến đổi Z (tiếp)

$$e^{-akT}$$

$$kTe^{-akT}$$

$$1 - e^{-akT}$$

$$kT - \frac{1 - e^{-akT}}{a}$$

$\sin \omega_0 kT$

 $\cos \omega_0 kT$

 $e^{-akT}\sin\omega_0kT$

 $e^{-akT}\cos\omega_0 kT$

 $\frac{1}{s+a}$

 $\frac{1}{(s+a)^2}$

 $\frac{a}{s(s+a)}$

 $\frac{1}{s^2(s+a)}$

 $\frac{\omega_0}{s^2 + \omega_0^2}$

 $\frac{s}{s^2 + \omega_0^2}$

 $\frac{\omega_0}{(s+a)^2 + \omega_0^2}$

 $\frac{s+a}{(s+a)^2+\omega_0^2}$

 $\frac{z}{z - e^{-aT}}$

 $\frac{Tze^{-aT}}{(z - e^{-aT})^2}$

 $\frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})}$

 $\frac{T}{(z-1)^2} - \frac{1 - e^{-aT}}{a(z-1)(z - e^{-aT})}$

 $\frac{z\sin\omega_0 T}{z^2 - 2z\cos\omega_0 T + 1}$

 $\frac{z(z-\cos\omega_0 T)}{z^2-2z\cos\omega_0 T+1}$

 $\frac{ze^{-aT}\sin\omega_0 T}{z^2 - 2ze^{-aT}\cos\omega_0 T + e^{-2aT}}$

 $\frac{z^2 - ze^{-aT}\cos\omega_0 T}{z^2 - 2ze^{-aT}\cos\omega_0 T + e^{-2aT}}$