Appunti di Algebra

Corso di Ingegneria e Scienze Informatiche - 1 anno

Mattia Ronchi

1 Introduzione

1.1 Relazioni

Una **relazione** é un sottoinsieme del prodotto cartesiano di due o piú insiemi. Una relazione su A é un sottoinsieme di $A \times A$.

 a_1 é in relazione con a_2 e si scrive a_1Ra_2 .

Def. Una relazione é di equivalenza se rispetta le seguenti proprietá:

Riflessiva: $aRa \ \forall a \in A \ (\text{ogni elemento} \ \acute{\text{e}} \ \text{in relazione} \ \text{con se stesso})$

Simmetrica: $a_1Ra_2 \implies a_2Ra_1 \ \forall a_1, a_2 \in A$

Transitiva: $a_1Ra_2 \wedge a_2Ra_3 \implies a_1Ra_3$

1.2 Funzioni/Applicazioni

$$f: X \to Y$$

f iniettiva: $\forall x_1, x_2 \in X, f(x_1) = f(x_2) \implies x_1 = x_2$ f suriettiva: $\forall y \in Y, \exists x \in A : y = f(x)$ f biettiva: $\forall y \in Y, \exists ! x \in A : y = f(x)$

1.3 Insiemi numerici

L'insieme dei numeri razionali $\mathbb Q$ introduce gli inversi del prodotto (es. $3 \to \frac{1}{3}$). L'insieme dei numeri reali $\mathbb R$ introduce limiti, radici e altri valori.

L'insieme dei numeri complessi \mathbb{C} introduce le radici di indice pari di numeri negativi tramite l'unitá immaginaria i e i suoi multipli. Un numero complesso é esprimibile in forma polare come a+ib, con $a,b\in R$.

1.4 Campi

 $(K,+,\cdot)$ é un campo se:

+, · sono associative (a+(b+c)=(a+b)+c), commutative (a+b=b+a) e distributive (a(b+c)=ab+ac)

esistono elementi **neutri** (0 per la somma (a+0=a), 1 per il prodotto $(a \cdot 1 = a)$) e **opposti** (-a per la somma (a-a=0), x^{-1} per il prodotto $(x \cdot x^{-1} = 1)$, che restituscono il valore neutro

Alcuni insiemi campi sono $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

1.4.1 Campi finiti

Dato un numero intero $n \geq 0$, definiamo su \mathbb{Z} la relazione di equivalenza

$$a \equiv b(n) \iff \exists k \in Z : a - b = k \cdot n$$

essa rispetta tutte e 3 le proprietá elencate sopra.

Definiamo $[b] = \{a \in Z : a \equiv b(n)\} \in Z_n = \{[0], [1], ..., [n-1]\}.$ Es. in $Z_2 = \{[0], [1]\}, [0]$ sono i numeri pari, [1] quelli dispari.

Definiamo su \mathbb{Z}_n le operazioni:

$$[a] + [b] = [a + b], [a] \cdot [b] = [a \cdot b]$$

Es. Possiamo scrivere, con la notazione dei campi finiti, il prodotto tra numeri interi:

Dato
$$Z_2$$
: $[0] \cdot [0] = [0], [0] \cdot [1] = [0 \cdot 1] = [0], [1] \cdot [1] = [1 \cdot 1] = [1].$

 Z_n é un campo \iff n é **primo**. Se n non é primo, non esisterá l'inverso di un fattore di n, ovvero non esisterá nessuna classe di elementi che se moltiplicata con la classe del fattore restituisca classe 1.

1.5 Spazi vettoriali

Uno **spazio vettoriale** definito su un campo K é un insieme V con due operazioni:

$$+: V \times V \to V \ (v_1, v_2) \to v_1 + v_2)$$

 $\cdot: K \times V \to V \ (a, v \to av)$

che verificano le seguenti proprietá: + é commutativa, associativa, con elem. neutri (vettore nullo) e opposti (-v), · é associativa, distribuitiva rispetto alla somma e con elemento neutro.

Per ogni campo K, K^n é uno spazio vettoriale su K. $K^n = \{(x_1, x_2, ..., x_n), x_i \in K, \forall i = 1, ..., n\}$ $v = (x_1, x_2, ..., x_n), u = (y_1, y_2, ..., y_n)$ $v + u = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ $av = (ax_1, ax_2, ..., ax_n), a \in K$