## UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Roland Speicher

M.Sc. Tobias Mai



## Übungen zur Vorlesung Analysis I

Wintersemester 2015/2016

## Blatt 5

**Abgabe:** Mittwoch, 25.11.2015, 10:15 Uhr in den Briefkästen im Untergeschoss von Gebäude E2 5

**Aufgabe 1** (10 Punkte). Die *Fibonacci-Zahlen*  $f_n$ ,  $n \ge 0$ , sind definiert durch  $f_0 := 0$ ,  $f_1 := 1$  und  $f_{n+1} := f_n + f_{n-1}$  für  $n \ge 1$ . Für  $n \in \mathbb{N}$  setzen wir  $a_n := \frac{f_{n+1}}{f_n}$ . Ferner sei g der goldene Schnitt, d.h. g ist die eindeutig bestimmte positive Lösung der Gleichung  $g^2 = 1 + g$ .

- (a) Zeigen Sie:  $g = 1 + \frac{1}{g}$  und  $a_{n+1} = 1 + \frac{1}{a_n}$  für alle  $n \in \mathbb{N}$ .
- (b) Beweisen Sie durch vollständige Induktion, dass

$$|a_n - g| = \frac{1}{f_n q^n}$$
 für alle  $n \in \mathbb{N}$ .

(c) Zeigen Sie:  $\lim_{n \to \infty} a_n = g$ 

**Aufgabe 2** (10 Punkte). (Banachscher Fixpunktsatz) Sei  $f : \mathbb{R} \to \mathbb{R}$  eine Abbildung, so dass ein  $0 \le q < 1$  existiert mit

$$|f(x) - f(y)| \le q |x - y|$$
 für alle  $x, y \in \mathbb{R}$ .

Zeigen Sie: Es existiert genau ein  $x \in \mathbb{R}$  mit f(x) = x. (x heißt dann Fixpunkt von f)

Verfahren Sie hierzu wie folgt:

- (a) Zeigen Sie zunächst, dass f höchstens einen Fixpunkt besitzt.
- (b) Wählen Sie ein beliebiges  $x_0 \in \mathbb{R}$  und definieren Sie rekursiv eine Folge  $(x_n)_{n \in \mathbb{N}_0}$  durch  $x_n := f(x_{n-1})$  für alle  $n \geq 1$ . Zeigen Sie: Für alle  $n \in \mathbb{N}$  gilt

$$|x_{n+1} - x_n| \le q^n |x_1 - x_0|.$$

(c) Folgern Sie aus (b), dass die Folge  $(x_n)_{n\in\mathbb{N}_0}$  konvergiert. Zeigen Sie dann, dass  $x=\lim_{n\to\infty}x_n$  ein Fixpunkt von f ist.

bitte wenden

**Aufgabe 3** (10 Punkte). Von der Folge  $(a_n)_{n\in\mathbb{N}}$  sei bekannt, dass die Teilfolgen  $(a_{2n})_{n\in\mathbb{N}}$ ,  $(a_{2n+1})_{n\in\mathbb{N}}$  und  $(a_{5n})_{n\in\mathbb{N}}$  konvergieren. Konvergiert dann  $(a_n)_{n\in\mathbb{N}}$  selbst? (Beweis oder Gegenbeispiel)

**Aufgabe 4** (10 Punkte). Beweisen Sie: Jede Folge  $(a_n)_{n\in\mathbb{N}}$  reeller Zahlen besitzt entweder eine konvergente Teilfolge oder eine, die bestimmt gegen  $+\infty$  oder gegen  $-\infty$  divergiert.

**Aufgabe 5** (10 Punkte). Zeigen Sie, dass die Folge  $(a_n)_{n\in\mathbb{N}}$ , die gegeben ist durch

$$a_n := \sqrt{n} \left( \sqrt[n]{n} - 1 \right)$$
 für alle  $n \in \mathbb{N}$ ,

konvergiert, und bestimmen Sie den Grenzwert von  $(a_n)_{n\in\mathbb{N}}$ .

## Informationen

- Die Zwischenklausur findet in der letzten Woche vor den Weihnachtsferien statt. Der genaue Termin wird noch ermittelt und in der Vorlesung und auf der Homepage bekannt gegeben.
- Falls Sie sich noch nicht für die Bachelorprüfung beim Prüfungsamt

http://www.ps-ntf.uni-saarland.de/index.php?id=35

angemeldet haben, sollten Sie das in den nächsten Tagen tun. Dazu müssen Sie **Frau Kihm** in Raum 202 des Gebäudes E1 3, 2. Stock aufsuchen. Ihre Sprechzeiten sind montags bis donnerstags, 10:30 Uhr bis 11:30 Uhr. (Telefon: +49 (0)681 / 302-2910, E-Mail: mathematik@ps-ntf.uni-saarland.de)

Für die Klausuren (außer der Zwischenklausur) müssen Sie sich dann jeweils (!) über das HISPOS anmelden, sobald die Veranstaltung freigeschaltet ist. Das sollte demnächst der Fall sein; wir werden Sie dann informieren.