Deena 20104016

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as pp
import sockers as sockers.
```

Problem Statement

LINEAR REGRESSION

```
In [2]: a = pd.read_csv("Fitness.csv")
Out[2]:
Pow Labels Sum of Jan Sum of Feb Sum of Mar Sum of Total Sales
```

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

HEAD

In [3]: - hand()

Out[3]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179

Data Cleaning and Preprocessing

1 of 4 27-07-2023, 16:33

In [4]: _ _ _

Out[4]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	Α	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179

In [5]: Landocomilla ()

Out[5]:

	Sum of Total Sales
count	9.000000
mean	255.555556
std	337.332963
min	75.000000
25%	127.000000
50%	167.000000
75%	171.000000
max	1150.000000

To display heading

In [7]: [cnc_nainnlat(a)]

Out[7]: <seaborn.axisgrid.PairGrid at 0x1aaf40e6e20>

2 of 4 27-07-2023, 16:33

TO TRAIN THE MODEL - MODEL BUILDING

3 of 4 27-07-2023, 16:33

```
In [12]: from sklearn.linear_model import LinearRegression
          lr = LinearRegression()
Out[12]: LinearRegression()
In [13]: | coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[13]:
                           Co-efficient
                                  1.0
           Sum of Total Sales
In [14]: prediction= lr.predict(x_test)
Out[14]: <matplotlib.collections.PathCollection at 0x1aaf62a32e0>
           180
           170
           160
           150
           140
           130
           120
           110
           100
               100
                          120
                               130
                                     140
                                          150
                                                160
                                                     170
                                                           180
                    110
         1 m ccomo/v +oc+ v +oc+
Out[15]: 1.0
```

4 of 4 27-07-2023, 16:33