See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231339183

Transition-metal silyl complexes. 46. Reaction of anionic silyl complexes [Fe(CO)3(SiR3) (PR'3)]-with CdX2 (X = Cl, Br) to probe the influence of PR '3 and X on nuclearity and geom...

**ARTICLE** in INORGANIC CHEMISTRY · APRIL 1993

Impact Factor: 4.76 · DOI: 10.1021/ic00061a022

**CITATIONS** 

26

READS

67

# 7 AUTHORS, INCLUDING:



Michael Knorr University of Franche-Comté

193 PUBLICATIONS 2,016 CITATIONS

SEE PROFILE



Pierre Braunstein
University of Strasbourg

627 PUBLICATIONS 12,205 CITATIONS

SEE PROFILE

Transition-Metal Silyl Complexes. 46.<sup>1</sup> Reaction of Anionic Silyl Complexes  $[Fe(CO)_3(SiR_3)(PR'_3)]^-$  with  $CdX_2$  (X = Cl, Br) To Probe the Influence of PR'<sub>3</sub> and X on Nuclearity and Geometry of the Resulting Polynuclear Complexes

Georg Reinhard,† Brigitte Hirle,† Ulrich Schubert,\*,† Michael Knorr,‡ Pierre Braunstein,\*,‡ André DeCian,§ and Jean Fischer§

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, W-8700 Würzburg, Germany, and Laboratoire de Chimie de Coordination, URA 416 CNRS, and Laboratoire de Cristallochimie et de Chimie Structurale, URA 424 CNRS, Université Louis Pasteur, 4, rue Blaise Pascal, F-67070 Strasbourg Cédex, France

Received September 2, 1992

Reaction of the anionic silyl complexes  $[Fe(CO)_3(SiR_3)(PR'_3)]^-$  with  $CdX_2$  (X = Cl, Br) in THF results in the formation of three different types of products, depending on the nature of the PR'3 ligand and X. The PMe3substituted complexes [Fe(CO)<sub>3</sub>(SiR<sub>3</sub>)(PMe<sub>3</sub>)] (SiR<sub>3</sub> = SiPh<sub>3</sub>, SiMePh<sub>2</sub>) exclusively give the 2:1 compounds [fac-(Me<sub>3</sub>P)(R<sub>3</sub>Si)(CO)<sub>3</sub>Fe]<sub>2</sub>Cd, even if the reaction is carried out with a 2-3-fold excess of CdCl<sub>2</sub>. The 2:1 compounds are also formed in the reactions of [Fe(CO)<sub>3</sub>(SiPh<sub>2</sub>Me){P(OMe)<sub>3</sub>}] or [Fe(CO)<sub>3</sub>(Si(OMe)<sub>3</sub>](Ph<sub>2</sub>Ppy)]  $(Ph_2Ppy = 2-(diphenylphosphino)pyridine)$  with  $CdCl_2$ . However, the arrangement of the CO ligands in the products [{(MeO)<sub>3</sub>P}(Ph<sub>2</sub>MeSi)(CO)<sub>3</sub>Fe]<sub>2</sub>Cd and [{(MeO)<sub>3</sub>Si}(CO)<sub>3</sub>Fe(μ-Ph<sub>2</sub>Ppy)]<sub>2</sub>Cd is meridional. In contrast to these reactions, the 1:1 compounds mer-[(R'<sub>3</sub>P)(R<sub>3</sub>Si)(CO)<sub>3</sub>FeCd(\(\mu-X)\)]<sub>2</sub> are obtained in the reaction of [Fe(CO)<sub>3</sub>{Si-(OMe)<sub>3</sub>}(Ph<sub>2</sub>Ppy)] with CdBr<sub>2</sub>, the reaction of [Fe(CO)<sub>3</sub>(SiPh<sub>2</sub>Me){P(OMe)<sub>3</sub>}] with CdCl<sub>2</sub>, and the reaction of [Fe(CO)<sub>3</sub>(SiR<sub>3</sub>)(PPh<sub>2</sub>H)] (SiR<sub>3</sub> = SiPh<sub>3</sub>, SiMePh<sub>2</sub>) with CdCl<sub>2</sub> or CdBr<sub>2</sub>. The bromo bridge in mer-[{(MeO)<sub>3</sub>Si}(CO)<sub>3</sub>Fe(μ-Ph<sub>2</sub>Ppy)Cd(μ-Br)]<sub>2</sub> is cleaved by 4-picoline to give [(MeO)<sub>3</sub>Si](CO)<sub>3</sub>Fe(μ-Ph<sub>2</sub>Ppy)Cd(4pic)Br.  $[(Ph_3Si)(Ph_2HP)(CO)_3FeCd(\mu-Br)]_2$  crystallizes in the triclinic space group  $P\bar{1}$  (Z=1) with a=1048.9(5)pm, b = 1268.6(4) pm, c = 1515.5(7) pm,  $\alpha = 75.51(3)^{\circ}$ ,  $\beta = 86.58(5)^{\circ}$ , and  $\gamma = 72.94(5)^{\circ}$  (Cd-Fe = 254.0(3) pm, Fe-Si = 236.4(5) pm, and Cd-Br = 268.9(2) and 260.4(2) pm), and  $[\{(MeO)_3Si\}(CO)_3Fe(\mu-Ph_2Ppy)]_2Cd$ crystallizes in the monoclinic space group  $C^2/c$  (Z = 4) with a = 2968.4(8) pm, b = 1004.3(3) pm, c = 2098.8(6)pm, and  $\beta = 91.87(2)^{\circ}$  (Cd-Fe = 269.70(5) pm, Fe-Si = 228.6(1) pm, Cd-N = 249.3(3) pm).

### Introduction

Anionic silyl complexes, such as [MeCpMn(CO)<sub>2</sub>(SiR<sub>3</sub>)]<sup>-</sup> or [Fe(CO)<sub>3</sub>(SiR<sub>3</sub>)(PR'<sub>3</sub>)]<sup>-</sup>, readily undergo substitution reactions with some metal halides to yield di- and trinuclear complexes with unsupported metal-metal bonds.<sup>2</sup> This method was extended to complexes containing bridging phosphine ligands, which also allowed the unusual occurrence of  $\mu$ - $\eta$ <sup>2</sup>-SiO bridges with alkoxysilyl ligands.<sup>3</sup> Silyl-substituted polynuclear complexes are preparatively very interesting. They offer the opportunity to stepwise increase the nuclearity of metal cluster compounds due to the relatively easy cleavage of metal-silicon bonds.

By reaction of  $HgCl_2$  or  $HgBr_2$  with the anionic complexes  $[MeCpMn(CO)_2(SiPh_2Me)]^-$  and  $[Fe(CO)_3(SiR_3)(PR'_3)]^-$  the 2:1 complexes  $[(SiR_3)L_nM]_2Hg$  and the 1:1 complexes  $(SiR_3)L_nM-HgX$  ( $L_nM=MeCpMn(CO)_2$  or  $Fe(CO)_3(PR'_3)$ ) were obtained in a stepwise manner.  $^{2a,d}$  While both types of complexes were also found in the reaction of  $[MeCpMn(CO)_2(SiPh_2Me)]^-$  with  $CdCl_2$ , reaction of  $[Fe(CO)_3(SiPh_2Me)(PPh_3)]^-$  with  $CdCl_2$  only gave the 1:1 complex  $[(Ph_2MeSi)(Ph_3P)(CO)_3FeCdCl]_2$ ,  $^{2e}$  even if the two compounds were reacted in a 2:1 ratio.  $^{2a}$  Treatment of  $[Fe(CO)_3(Si(OMe)_3)(L)]^-$  ( $L=dppm-P[dppm=Ph_2PCH_2-PPh_2]$ ,  $Ph_2PCH_2C(O)Ph$ , or  $Ph_2PCH_2C(O)(\eta-C_5H_4)FeCp)$  with 1 equiv of  $CdCl_2$ ·2.5 $H_2O$  in THF afforded the 1:1 complexes with the  $Fe-Cd(\mu-Cl)_2Cd-Fe$  arrangement

$$(OC)_{3}Fe \xrightarrow{Cd} Cd \xrightarrow{Cl} Fe(CO)_{3}$$

$$(MeO)_{2}Si \xrightarrow{Me} OPh_{2}$$

However, the 2:1 complex

with the functional ferrocenyl-substituted ketophosphine could also be isolated and structurally characterized.<sup>4</sup> Surprisingly, interconversion between these different structural types upon reaction of the 2:1 complex with CdCl<sub>2</sub>·2.5H<sub>2</sub>O or by reaction of the 1:1 compound with a second equivalent of the silyl-substituted metalate (bridge-splitting reaction) was not observed.<sup>4</sup>

<sup>\*</sup> University of Würzburg.

Laboratoire de Chimie de Coordination, Université Louis Pasteur.

Laboratoire de Cristallochimie et de Structurale, Université Louis Pasteur.
 Part 45: Gilbert, S.; Schubert, U. J. Organomet. Chem. 1993, 444, C12.

<sup>(2) (</sup>a) Kunz, E.; Schubert, U. Chem. Ber. 1989, 122, 231. (b) Schubert, U.; Kunz, E.; Knorr, M.; Müller, J. Chem. Ber. 1987, 120, 1079. (c) Kunz, E.; Knorr, M.; Willnecker, J.; Schubert, U. New J. Chem. 1989, 12, 467. (d) Reinhard, G.; Hirle, B.; Schubert, U. J. Organomet. Chem. 1992, 427, 173. (e) In view of the present results, this complex is now formulated as a dimer instead of a monomer.

To further study the reactions between anionic silyl complexes and metal dihalides and possibly find an explanation for their different outcome, we reacted  $CdX_2$  (X = Cl, Br) with complexes [Fe(CO)<sub>3</sub>(SiR<sub>3</sub>)(PR'<sub>3</sub>)] having different phosphine ligands. The results of these investigations are presented in this paper.

### Results and Discussion

Reaction of [Fe(CO)<sub>3</sub>(SiR<sub>3</sub>)(PR'<sub>3</sub>)] with CdX<sub>2</sub>. The anionic iron silyl complexes 2 were prepared by deprotonation of the corresponding hydrido silyl complexes 1<sup>2d,5</sup> with NaH or KH as previously described (eq 1).2d,3f

Fe(CO)<sub>3</sub>(H)(SiR<sub>3</sub>)(PR'<sub>3</sub>) + MH 
$$\rightarrow$$
1
H<sub>2</sub> + M[Fe(CO)<sub>3</sub>(SiR<sub>3</sub>)(PR'<sub>3</sub>)]
2

|     | M = Na, K           | (1)                               |  |
|-----|---------------------|-----------------------------------|--|
| 1,2 | PR' <sub>3</sub>    | SiR <sub>3</sub>                  |  |
| a   | PMe <sub>3</sub>    | SiMePh <sub>2</sub>               |  |
| b   | PMe <sub>3</sub>    | SiMe <sub>3</sub>                 |  |
| c   | $PHPh_2$            | SiPh <sub>3</sub>                 |  |
| d   | PHPh <sub>2</sub>   | SiMePh <sub>2</sub>               |  |
| e   | P(OMe) <sub>3</sub> | SiPh <sub>3</sub>                 |  |
| f   | P(OMe) <sub>3</sub> | SiMePh <sub>2</sub>               |  |
| g   | PPh <sub>3</sub>    | SiMePh <sub>2</sub> <sup>2a</sup> |  |
| h   | $PPh_2(2-C_5H_4N)$  | Si(OMe) <sub>3</sub>              |  |

Reaction of 2 with CdCl<sub>2</sub> in THF results in the formation of three different types of products, depending on the nature of the phosphine (phosphite) ligand. The PMe<sub>3</sub>-substituted compounds 2a,b exclusively give 2:1 compounds 3a,b with a facial geometry of the Fe(CO)<sub>3</sub> unit. Even if the reaction is carried out with an 2-3-fold excess of CdCl<sub>2</sub>, no 1:1 complexes are formed. A trinuclear compound is also formed if 2 equiv of the P(OMe)3substituted compound 2f are reacted with CdCl<sub>2</sub>. However, the geometry of the product 3f is meridional. Distinction between a facial and meridional geometry is easily made by the number of  $\nu(CO)$  bands in the infrared spectrum.

While the 2:1 compounds 3a,b are also formed if equimolar amounts of CdCl<sub>2</sub> and the PMe<sub>3</sub>-substituted anionic iron complexes 2a,b are used, reaction of the P(OMe)3-substituted complex 2e with CdCl<sub>2</sub> in a 1:1 ratio gives the 1:1 complex 3e. The latter type of product is also found, when the anionic complexes 2c,d,g are analogously reacted with CdCl<sub>2</sub>. The kind of product does not change when different ratios of 2c,d,g and CdCl<sub>2</sub> (2:1 or 1:1) are used. Also, the isolated complex 3d does not give the corresponding 2:1 complex on further reaction with 2d. In the 1:1 compounds 3c-g the geometry of the Fe(CO)<sub>3</sub> fragment is meridional. By analogy with other di- or trinuclear complexes obtained by reaction of [Fe(CO)<sub>3</sub>(SiR<sub>3</sub>)(PR'<sub>3</sub>)] with metal halides,<sup>2,3</sup> the silyl and phosphine ligands are trans, i.e. the Fe-Cd bond is cis to both SiR<sub>3</sub> and PR'<sub>3</sub>.

Molecular weight determinations of 3c,d by vapor pressure osmometry and cryoscopy show that these compounds are dimeric in benzene solutions. Although molecular weights were not determined for 3e and 3g,2a these complexes are probably also

$$OC \longrightarrow Fe \longrightarrow CO$$

$$OC \longrightarrow Fe \longrightarrow CO$$

$$Me_3P$$

$$OC \longrightarrow Fe \longrightarrow CO$$

$$OC \longrightarrow Fe \longrightarrow C$$

dimeric. A dimeric structure (with unsymmetrical halide bridges) was also found by X-ray crystallography for mer-[(Me<sub>3</sub>P)- $(Ph_2MeSi)(CO)_3FeHg(\mu-Br)]_2^{2d}$  and  $[\{(MeO)_3Si\}(CO)_3Fe (\mu\text{-dppm})\text{Cd}(\mu\text{-Cl})]_2$ .3f

 $SiR_3 = SiMePh_2, X = Br$ 

31 PR'3 = PHPh2,

To find out to what extent the kind of the products is influenced by the nature of the halide, we also reacted 2c,d with CdBr<sub>2</sub>. Bromide instead of chloride results in weaker halide bridges but also in a smaller thermodynamic driving force of the reaction due to the smaller lattice energy of NaBr compared to NaCl. In these reactions only the 1:1 compounds 3h,i are formed, even if an excess of 2 is used in the reaction. The bromo-bridged compounds 3h,i have the same structure as the corresponding chloro-bridged complexes 3c,d according to the spectroscopic data and molecular weight determinations.

While the nature of the halide does not influence the outcome of the reaction of the diphenylphosphine substituted anionic compounds 2c,d, it does indeed influence the reaction of the 2-(diphenylphosphino)pyridine-substituted complex 2h. In this compound only the phosphorus atom is coordinated to the iron atom while the pyridine moiety is pending (Scheme I).

If 2h is reacted with CdBr<sub>2</sub>, the 1:1, bromo-bridged compound 4 is formed, while reaction with CdCl<sub>2</sub> gives the 2:1 compound 6, irrespective of the 2h:CdX<sub>2</sub> molar ratio employed. The 2:1 complex 6 cannot be obtained by reaction of 4 with an excess of 2h. This is not due to a lack of reactivity of 4 toward nucleophiles, since reaction of 4 with 4-picoline results in an easy splitting of the bromo bridges and formation of the monomeric 1:1 compound 5. Therefore, the reason for the different outcome of the reaction of 2h with CdCl<sub>2</sub> and CdBr<sub>2</sub> (and the fact that 4 cannot be converted to 6) must be a thermodynamic one. This interpretation is supported by results obtained for the mercury compounds XHgA  $(A = Ru_3(CO)_9(\mu_3-C_2-tBu))$ , where it has been shown that the equilibrium constant for the redistribution reaction, 2XHgA =  $HgX_2 + HgA_2$ , is smaller for X = I than for X = Br.6

In the complexes 4-6 2-(diphenylphosphino)pyridine acts as a bridging ligand. While the phosphine part remains bonded to the iron atom, the pyridine moiety is coordinated the cadmium atom. In each compound the cadmium atom is therefore four-

**Spectroscopic Characteristics.** Apart from the  $\nu(CO)$  bands in the infrared spectrum and the relative intensity of the 1H-NMR signals, the three types of complexes (fac-2:1, mer-2:1, mer-1:1) are easily distinguished by the  ${}^2J_{\text{CdFeP}}$  coupling constants. For the facial 2:1 compounds 3a,b the coupling constant  ${}^2J_{113}_{CdFeP}$ 

<sup>(</sup>a) Braunstein, P.; Knorr, M.; Tiripicchio, A.; Tiripicchio-Camellini, M. Angew. Chem. 1989, 101, 1414; Angew. Chem., Int. Ed. Engl. 1989, 28, 1361. (b) Braunstein, P.; Knorr, M.; Villarroya, E.; Fischer, J. New J. Chem. 1990, 14, 583. (c) Braunstein, P.; Knorr, M.; Piana, H.; Schubert, U. Organometallics 1991, 10, 828. (d) Braunstein, P.; Knorr, M.; Schubert, U.; Lanfranchi, M.; Tiripicchio, A. J. Chem. Soc., Dalton Trans. 1991, 1507. (e) Braunstein, P.; Knorr, M.; Villarroya, E.; DeCian, A.; Fischer, J. Organometallics 1991, 10, 3714. (f) Braunstein, P.; Douce, L.; Knorr, M.; Strampfer, M.; Lanfranchi, M.; Tiripicchio, A. J. Chem. Soc., Dalton. Trans. 1992, 331.

<sup>(4)</sup> Balegroune, F.; Braunstein, P.; Douce, L.; Dusausoy, Y.; Grandjean, D.; Knorr, M.; Strampfer, M. J. Cluster Sci., in press.

<sup>(5)</sup> Bellachioma, G.; Cardaci, G.; Colomer, E.; Corriu, R. J. P.; Vioux, A. Inorg. Chem. 1989, 28, 519.

Rosenberg, E.; Ryckman, D.; Hsu, I.-N.; Gellert, R. W.; Inorg. Chem. 1986, 25, 194,

#### Scheme I



Figure 1. SCHAKAL drawing of the molecular structure of 3h. Hydrogen atoms are omitted.

is about 105 Hz (coupling to <sup>111</sup>Cd is smaller by a factor of 1.046<sup>7</sup>), while for the *meridional* 2:1 compound 3f  $^2J_{113}_{CdFeP}$  is 145.1 Hz. Distinctly higher values of  $^2J_{113}_{CdFeP}$  (about 160–170 Hz) are found for the *meridional* 1:1 compounds 3c-i. In the 1:1 compound 4  $^2J_{113}_{CHFeP}$  (102 Hz) is also higher than in the 2:1 compound 6 (66 Hz). The absolute value of 4 is lower than in 3c-i due to the tetrahedral coordination of cadmium. In the known compounds [{(RO)<sub>3</sub>Si}(CO)<sub>3</sub>Fe( $\mu$ -dppm)Cd( $\mu$ -X)]<sub>2</sub> (X = Cl, 84 Hz; X = Br, 82 Hz<sup>3l</sup>),  $J_{113}_{CHCFeP}$  is smaller than in 3c-i probably due to both the tetrahedral coordination at cadmium and/or opposite signs for  $^2J_{CdFeP}$  and  $^3J_{CdFeP}$ .

The <sup>31</sup>P-NMR signal in the PHPh<sub>2</sub>-substituted compounds **3c,d,h,i** is temperature dependent. At room temperature only a broad singlet (proton decoupled) without cadmium satellites is observed, which appears as a sharp singlet (proton decoupled) with Cd satellites on cooling to 213 or 233 K, showing the expected doublet structure with off-resonace decoupling. This phenomenon is probably not due to a dynamic behavior at Fe, because the <sup>13</sup>C-NMR spectra show two different and well-resolved signals for the CO ligands. A temperature dependent (-45 to +50 °C)

Table I. Selected Bond Lengths (pm) and Angles (deg) for mer-[(Ph-HP)(Ph-Si)(CO)\_FeCd(\(\mu\)-Br)]\_2 (3h)

| Fe-P              | 223.7(5) | Cd-Fe       | 254.0(3)  |  |
|-------------------|----------|-------------|-----------|--|
| Fe-Si             | 236.4(5) | Cd-Br       | 268.9(2)  |  |
| Fe-C(01)          | 171(2)   | Cd-Br*      | 260.4(2)  |  |
| Fe-C(02)          | 178(4)   | Cd···Cd*    | 371       |  |
| Fe-C(03)          | 174(2)   | Br···Br*    | 377       |  |
| P-Fe-C(01)        | 86.3(6)  | Cd-Fe-Si    | 92.6(2)   |  |
| P-Fe-C(02)        | 97.4(6)  | Cd-Fe-P     | 94.5(2)   |  |
| P-Fe-C(03)        | 99.2(5)  | Cd-Fe-C(01) | 176.0(6)  |  |
| P-Fe-Si           | 172.5(2) | Cd-Fe-C(02) | 77.1(5)   |  |
| C(01)-Fe- $C(02)$ | 106.7(8) | Cd-Fe-C(03) | 77.9(5)   |  |
| C(01)-Fe- $C(03)$ | 98.1(8)  | Fe-Cd-Br    | 127.58(8) |  |
| C(01)-Fe-Si       | 86.8(6)  | Fe-Cd-Br*   | 139.9     |  |
| C(02)-Fe- $C(03)$ | 151(1)   | Br-Cd-Br*   | 90.9      |  |
| C(02)-Fe-Si       | 81.9(5)  |             |           |  |
| C(03)-Fe-Si       | 84.6(5)  |             |           |  |

infrared spectrum of 3i shows a shift of the  $\nu(CO)$  bands to lower wavenumbers (about  $10~\rm cm^{-1}$ ) on cooling a toluene solution from 298 to 233 K. However, the *meridional* geometry of the Fe(CO)<sub>3</sub> moiety is retained. We attribute the temperature dependency of the spectra to association phenomema, which currently cannot be quantified, or to a preferred rotational conformer of the phosphine ligand at low temperature.

Molecular Structures of 3h and 6. X-ray structure analysis of 3h (Figure 1 and Tables I and II) clearly shows the dimeric nature of this 1:1 compound. Contrary to mer-[(Me<sub>3</sub>P)-(MePh<sub>2</sub>Si)(CO)<sub>3</sub>FeHg( $\mu$ -Br)]<sub>2</sub>, which is only weakly associated (Hg-Br = 253.5(3) and 306.3(1) pm; Fe-Hg-Br = 161.0(1) and 113.5(1)°), <sup>2d</sup> the Cd-Br distances in 3h, the complex being centrosymmetric by crystallographic symmetry, are very similar (268.9(2) and 260.4(2) pm), and the Fe-Cd-Br angles only differ by 12.3°. The bromo bridges and the iron atom are approximately coplanar with the cadmium atom.

The 2:1 compound 6 possesses a crystallographically imposed  $C_2$  axis (Figure 2 and Tables III and IV) which passes through the Cd atom and relates the atoms Fe and N to Fe\* and N\*, respectively. The geometry about the Cd center is flatened tetrahedral, with a Fe-Cd-Fe\* angle of 143.44(3)°, a N-Cd-N\* angle of 80.7(1)°, and a N-Cd-Fe angle of 89.05(7)°. The Cd-N distance of 249.3(3) pm is longer than the average value

<sup>(7)</sup> Goel, R. G.; Henry, W. P.; Shrivastava, C. Inorg. Chem. 1981, 20, 1727.

Table II. Final Coordinates and Equivalent Isotropic Thermal Parameters and Their Esd's in Parantheses for 3h

| Parameters and Their Esd's in Parantheses for 3h |            |           |            |                 |
|--------------------------------------------------|------------|-----------|------------|-----------------|
| atom                                             | x          | у         | z          | $B(eq)$ , $a^2$ |
| Cd                                               | 0.1279(1)  | 0.4391(1) | 0.09279(9) | 5.21(3)         |
| Br                                               | -0.1383(2) | 0.4825(2) | 0.0827(1)  | 6.02(5)         |
| Fe                                               | 0.2714(2)  | 0.3878(2) | 0.2351(2)  | 4.06(6)         |
| P                                                | 0.2236(5)  | 0.5669(4) | 0.2484(3)  | 4.5(1)          |
| Si                                               | 0.3464(5)  | 0.1934(4) | 0.2337(3)  | 4.0(1)          |
| O(1)                                             | 0.418(1)   | 0.324(1)  | 0.4040(8)  | 7.2(4)          |
| O(2)                                             | 0.467(1)   | 0.401(1)  | 0.0910(8)  | 6.9(4)          |
| O(3)                                             | 0.027(1)   | 0.333(1)  | 0.3066(8)  | 6.2(4)          |
| C(1)                                             | 0.279(2)   | 0.097(1)  | 0.332(1)   | 4.3(4)          |
| C(01)                                            | 0.359(2)   | 0.350(1)  | 0.335(1)   | 4.9(5)          |
| C(02)                                            | 0.388(2)   | 0.398(1)  | 0.146(1)   | 5.7(5)          |
| C(2)                                             | 0.290(2)   | 0.177(1)  | 0.124(1)   | 4.5(4)          |
| C(03)                                            | 0.126(2)   | 0.357(1)  | 0.280(1)   | 5.7(5)          |
| C(3)                                             | 0.531(2)   | 0.131(1)  | 0.243(1)   | 4.3(4)          |
| C(4)                                             | 0.200(2)   | 0.693(1)  | 0.152(1)   | 4.8(4)          |
| C(5)                                             | 0.088(2)   | 0.615(1)  | 0.323(1    | 4.8(5)          |
| C(11)                                            | 0.196(2)   | 0.038(2)  | 0.321(1)   | 6.5(5)          |
| C(12)                                            | 0.150(2)   | -0.031(2) | 0.396(2)   | 9.5(7)          |
| C(13)                                            | 0.197(2)   | -0.045(2) | 0.477(1)   | 10.1(8)         |
| C(14)                                            | 0.288(2)   | 0.007(2)  | 0.490(1)   | 7.7(7)          |
| C(15)                                            | 0.329(2)   | 0.076(1)  | 0.419(1)   | 7.0(6)          |
| C(21)                                            | 0.155(2)   | 0.202(1)  | 0.101(1)   | 4.6(4)          |
| C(22)                                            | 0.109(2)   | 0.205(1)  | 0.017(1)   | 5.4(4)          |
| C(23)                                            | 0.201(2)   | 0.179(2)  | -0.049(1)  | 7.6(6)          |
| C(24)                                            | 0.332(2)   | 0.147(1)  | -0.028(1)  | 6.0(5)          |
| C(25)                                            | 0.380(2)   | 0.147(1)  | 0.055(1)   | 5.7(5)          |
| C(31)                                            | 0.586(2)   | 0.015(2)  | 0.244(1)   | 6.3(5)          |
| C(32)                                            | 0.0721(2)  | -0.037(2) | 0.253(1)   | 8.1(7)          |
| C(33)                                            | 0.810(2)   | 0.024(2)  | 0.257(1)   | 8.2(7)          |
| C(34)                                            | 0.762(2)   | 0.134(2)  | 0.260(1)   | 7.8(7)          |
| C(35)                                            | 0.625(2)   | 0.186(2)  | 0.248(1)   | 5.4(5)          |
| C(41)                                            | 0.138(2)   | 0.801(1)  | 0.161(1)   | 6.5(6)          |
| C(42)                                            | 0.135(2)   | 0.895(1)  | 0.095(1)   | 7.0(6)          |
| C(43)                                            | 0.195(2)   | 0.882(2)  | 0.014(1)   | 7.2(6)          |
| C(44)                                            | 0.259(2)   | 0.777(2)  | 0.001(1)   | 6.6(6)          |
| C(45)                                            | 0.262(2)   | 0.679(1)  | 0.069(1)   | 5.1(5)          |
| C(51)                                            | -0.039(2)  | 0.623(2)  | 0.299(2)   | 7.1(6)          |
| C(52)                                            | -0.146(2)  | 0.660(2)  | 0.355(2)   | 10.1(8)         |
| C(53)                                            | -0.117(2)  | 0.683(2)  | 0.435(2)   | 10.9(8)         |
| C(54)                                            | 0.006(3)   | 0.679(2)  | 0.454(2)   | 12(1)           |
| C(55)                                            | 0.115(2)   | 0.638(2)  | 0.401(1)   | 8.2(7)          |
| C(100)                                           | 0.544(2)   | -0.397(2) | 0.395(2)   | 8.5(6)*         |
| C(200)                                           | 0.608(2)   | -0.475(2) | 0.340(2)   | 9.4(7)*         |
| C(300)                                           | 0.595(3)   | -0.438(2) | 0.246(2)   | 10.8(8)*        |
| C(400)                                           | 0.528(3)   | 0.663(2)  | 0.212(2)   | 11.9(9)*        |
| C(500)                                           | 0.461(3)   | -0.250(2) | 0.250(2)   | 11.4(8)*        |
| C(600)                                           | 0.473(3)   | -0.283(2) | 0.354(2)   | 10.3(7)*        |
| C(700)                                           | 0.688(4)   | -0.585(3) | 0.374(3)   | 16(1)*          |

<sup>&</sup>lt;sup>a</sup> Starred values denote atoms that were refined isotropically.

of 238.1 pm found for Cd-pyridine distances (where the coordination number is 6 or 7),8 the average Cd-N value of 237 pm in [(bipy)CdFe(CO)<sub>4</sub>]<sub>3</sub>, in which the cadmium is fourcoordinate, and similar to the Cd-N distances (250(1) and 254(1) pm) in four-coordinate (2,2'-bipyridyl)dimethylcadmium.<sup>10</sup>

When the Cd-Fe bond is ignored, then geometry about the Fe atom is of the trigonal bipyramidal type (C(CO<sub>equ</sub>)-Fe-C(CO<sub>equ</sub>) in 3h is 151(1)°; in 6 it is 146.9(2)°), as found in other bimetallic complexes containing Fe(PR'3)(CO)3(SiR3) fragments connected to d<sup>10</sup> metal moieties.<sup>2,3</sup> The Cd-Fe distance in 6 (269.70(5) pm) is distinctly longer than in 3h (254.0(3) pm), mer-[{(MeO)<sub>3</sub>-Si $\{(CO)_3Fe(\mu\text{-dppm})Cd(\mu\text{-}Cl)\}_2$  (262.4(2) pm),<sup>3f</sup> [L(CO)<sub>3</sub>- $FeSi(OMe)_2(\mu-OMe)]_2Cd(L = Ph_2PCH_2C(O)(\eta-C_5H_4)FeCp)$ (261.2(1) pm) and  $mer-[L(CO)_3FeSi(OMe)_2(\mu-OMe)Cd(\mu-Cl)]_2$ (260.1(1) pm).4 The different Cd-Fe bond lengths in these complexes are probably not due to different polarities of this



Figure 2. ORTEP drawing of the molecular structure of 6. Hydrogen atoms are omitted.

Table III. Selected Bond Lengths (pm) and Angles (deg) for mer. [(MeO).Sil(CO).Fe(u.Ph.Pnv)].Cd (6)

| $mer-\{\{(MeO)_3S1\}(CO)_3Fe(\mu-Fn_2Fpy)\}_2Cd(0)$ |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 249.3(3)                                            | Fe-P                                                                                                                                                                                                                                                 | 221.8(1)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 269.70(5)                                           | Fe-C(18)                                                                                                                                                                                                                                             | 175.0(5)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 134.2(5)                                            | Fe-C(19)                                                                                                                                                                                                                                             | 175.7(5)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 134.5(5)                                            | Fe-C(20)                                                                                                                                                                                                                                             | 176.8(5)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 137.5(6)                                            | Fe-Si                                                                                                                                                                                                                                                | 228.6(1)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 138.4(6)                                            | Si-O(4)                                                                                                                                                                                                                                              | 164.3(3)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 136.3(6)                                            | Si-O(5)                                                                                                                                                                                                                                              | 164.2(3)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 137.0(6)                                            | Si-O(6)                                                                                                                                                                                                                                              | 164.0(3)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 184.6(4)                                            | P-C(6)                                                                                                                                                                                                                                               | 183.3(4)                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                     | P-C(12)                                                                                                                                                                                                                                              | 182.5(4)                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                     |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 94.7(1)                                             | N-Cd-N*                                                                                                                                                                                                                                              | 80.7(1)                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 90.8(1)                                             | N-Cd-Fe                                                                                                                                                                                                                                              | 89.05(7)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 99.2(1)                                             | N-Cd-Fe*                                                                                                                                                                                                                                             | 119.64(7)                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 173.21(5)                                           | Fe-Cd-Fe*                                                                                                                                                                                                                                            | 143.45(3)                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 105.5(2)                                            | Cd-N-C(4)                                                                                                                                                                                                                                            | 148.5(2)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 146.9(2)                                            | N-C(1)-P                                                                                                                                                                                                                                             | 115.7(3)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 82.6(1)                                             | C(1)-P-C(6)                                                                                                                                                                                                                                          | 101.1(2)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 104.2(2)                                            | C(1)-P-C(12)                                                                                                                                                                                                                                         | 101.9(2)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 84.0(1)                                             | C(1)-P-Fe                                                                                                                                                                                                                                            | 116.7(1)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 86.3(1)                                             | C(6)-P-C(12)                                                                                                                                                                                                                                         | 102.1(2)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 108.4(1)                                            | C(6)-P-Fe                                                                                                                                                                                                                                            | 114.7(1)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 112.0(1)                                            | C(12)-P-Fe                                                                                                                                                                                                                                           | 117.8(1)                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 117.8(1)                                            |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                     | 249.3(3)<br>269.70(5)<br>134.2(5)<br>134.5(5)<br>137.5(6)<br>138.4(6)<br>136.3(6)<br>137.0(6)<br>184.6(4)<br>94.7(1)<br>90.8(1)<br>99.2(1)<br>173.21(5)<br>105.5(2)<br>146.9(2)<br>82.6(1)<br>104.2(2)<br>84.0(1)<br>86.3(1)<br>108.4(1)<br>112.0(1) | 249.3(3) Fe-P 269.70(5) Fe-C(18) 134.2(5) Fe-C(19) 134.5(5) Fe-C(20) 137.5(6) Fe-Si 138.4(6) Si-O(4) 136.3(6) Si-O(5) 137.0(6) Si-O(6) 184.6(4) P-C(6) P-C(12)  94.7(1) N-Cd-N* 90.8(1) N-Cd-Fe 99.2(1) N-Cd-Fe* 173.21(5) Fe-Cd-Fe* 105.5(2) Cd-N-C(4) 146.9(2) N-C(1)-P 82.6(1) C(1)-P-C(6) 104.2(2) C(1)-P-C(12) 84.0(1) C(1)-P-Fe 86.3(1) C(6)-P-C(12) 108.4(1) C(6)-P-Fe 112.0(1) C(12)-P-Fe |  |

bond, because the  $\nu(CO)$  bands in the infrared spectra are very similar. The reason for the longer Cd-Fe distances in the dppmor phosphinopyridine-bridged complexes is probably the different coordination geometry at the cadmium atom or geometric constraints imposed by the bridging ligands.

## Conclusions

Complexes with either Fe-Cd( $\mu$ -Cl)<sub>2</sub>Cd-Fe or Fe-Cd-Fe links are formed in the reactions of [Fe(CO)<sub>3</sub>(SiR<sub>3</sub>)(PR'<sub>3</sub>)]-with CdX<sub>2</sub> (X = Cl, Br). In the trinuclear complexes the  $Fe(CO)_3$  unit is meridional or facial. A subtle interplay of the electronic and steric properties of the PR'<sub>3</sub> ligand as well as the nature of the halide is responsible for a particular composition or stereochemistry of the products. For instance, the only difference between the complexes 3a and 3f is the basicity of the phosphorus ligand (the cone angle of PMe<sub>3</sub> and P(OMe)<sub>3</sub> is about the same). The higher electron density at the metal atom in 2a (and 3a) obviously is responsible for the different structure. A similar phenomenon was found in the complexes Fe(CO)<sub>3</sub>(SiCl<sub>3</sub>)<sub>2</sub>(PR'<sub>3</sub>), where the facial isomer is kinetically favored (upon photochemical preparation) over the meridional isomer if the phosphine is basic and small (PMe3 or PMe2Ph).11 In all reactions of the PMe3 and

Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc., Dalton Trans. 1989, S1. Ernst, R. C.; Marks, T. J.; Ibers, J. A. J. Am. Chem. Soc. 1977, 99, 2098.

Almond, M. J.; Beer, M. P.; Drew, M. G. B.; Rice, D. A. Organometallics 1991, 10, 2072.

Knorr, M.; Schubert, U. Transition Met. Chem. (Weinheim, Ger.) 1986, 11, 268.

Table IV. Final Coordinates and Equivalent Isotropic Thermal Parameters and Their Esd's in Parentheses for 6

| x          | у                                                                                                                                                                                                                                                                                                     | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $B(eq), Å^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.500      | 0.08571(4)                                                                                                                                                                                                                                                                                            | 0.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.680(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.5217(1)  | -0.1035(3)                                                                                                                                                                                                                                                                                            | 0.6805(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.93(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | -0.1080(4)                                                                                                                                                                                                                                                                                            | 0.6583(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.72(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.5803(2)  | -0.2225(4)                                                                                                                                                                                                                                                                                            | 0.6320(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.5539(2)  | -0.3358(4)                                                                                                                                                                                                                                                                                            | 0.6275(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.5113(1)  | -0.3323(4)                                                                                                                                                                                                                                                                                            | 0.6497(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | -0.2150(4)                                                                                                                                                                                                                                                                                            | 0.6753(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.40(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.59625(3) | 0.0479(1)                                                                                                                                                                                                                                                                                             | 0.66527(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.57(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.6538(1)  | -0.0142(4)                                                                                                                                                                                                                                                                                            | 0.6567(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.48(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.6772(2)  | -0.0640(6)                                                                                                                                                                                                                                                                                            | 0.7094(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.7208(2)  | -0.1081(6)                                                                                                                                                                                                                                                                                            | 0.7054(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.5(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.7421(2)  | -0.1024(6)                                                                                                                                                                                                                                                                                            | 0.6492(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.5(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.7193(2)  | -0.0565(6)                                                                                                                                                                                                                                                                                            | 0.5961(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.6755(2)  | -0.0111(5)                                                                                                                                                                                                                                                                                            | 0.5993(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.8(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.5845(1)  | 0.1253(4)                                                                                                                                                                                                                                                                                             | 0.5878(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.01(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.6003(1)  | 0.2525(5)                                                                                                                                                                                                                                                                                             | 0.5788(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.66(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.5958(2)  | 0.3129(5)                                                                                                                                                                                                                                                                                             | 0.5198(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.8(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.5757(2)  | 0.2477(6)                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.5592(2)  | 0.1211(6)                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.5638(2)  | 0.0598(5)                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.58631(2) | 0.16990(5)                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.49(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.18(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.5922(1)  |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.92(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.6420(1)  |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.65(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.95(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.31(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ` ,        |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.01(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.62(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.37(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.6(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.41(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.5259(2)  |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.83(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| . ,        |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 0.4597(7)                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1958(2)  |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.2(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.2(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                       | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.3(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.9(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.32611(7) | 0.4566(2)                                                                                                                                                                                                                                                                                             | 0.3801(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.14(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 0.500<br>0.5217(1)<br>0.5636(1)<br>0.5803(2)<br>0.5539(2)<br>0.5113(1)<br>0.4968(1)<br>0.59625(3)<br>0.6538(1)<br>0.6772(2)<br>0.7208(2)<br>0.7421(2)<br>0.7421(2)<br>0.6755(2)<br>0.5845(1)<br>0.6003(1)<br>0.5958(2)<br>0.5757(2)<br>0.5592(2)<br>0.5638(2)<br>0.58631(2)<br>0.5882(1)<br>0.5922(1) | 0.500         0.08571(4)           0.5217(1)         -0.1035(3)           0.5636(1)         -0.1080(4)           0.5803(2)         -0.2225(4)           0.5539(2)         -0.3358(4)           0.5113(1)         -0.3323(4)           0.59625(3)         0.0479(1)           0.6538(1)         -0.0142(4)           0.6772(2)         -0.0640(6)           0.7208(2)         -0.1081(6)           0.7421(2)         -0.0565(6)           0.6755(2)         -0.0111(5)           0.5845(1)         0.1253(4)           0.6003(1)         0.2525(5)           0.5757(2)         0.2477(6)           0.5592(2)         0.1211(6)           0.5638(2)         0.0598(5)           0.5882(1)         0.0343(4)           0.5922(1)         -0.0563(3)           0.6420(1)         0.2288(4)           0.5351(1)         0.3908(3)           0.58454(4)         0.2885(1)           0.6431(2)         0.3105(8)           0.5417(1)         0.2458(4)           0.6431(2)         0.3105(8)           0.5417(1)         0.2458(4)           0.6431(2)         0.3105(8)           0.5417(1)         0.2458(4) | 0.500         0.08571(4)         0.750           0.5217(1)         -0.1035(3)         0.6805(1)           0.5636(1)         -0.1080(4)         0.6583(2)           0.5803(2)         -0.2225(4)         0.6320(2)           0.5539(2)         -0.3358(4)         0.6497(2)           0.5113(1)         -0.3323(4)         0.6497(2)           0.4968(1)         -0.2150(4)         0.6753(2)           0.59625(3)         0.0479(1)         0.66527(5)           0.6538(1)         -0.0142(4)         0.6567(2)           0.6772(2)         -0.0640(6)         0.7094(2)           0.7208(2)         -0.1081(6)         0.7054(3)           0.7421(2)         -0.1024(6)         0.6492(3)           0.7193(2)         -0.0565(6)         0.5961(3)           0.6755(2)         -0.0111(5)         0.5993(2)           0.5845(1)         0.1253(4)         0.5878(2)           0.5958(2)         0.3129(5)         0.5198(2)           0.5757(2)         0.2477(6)         0.4698(2)           0.5592(2)         0.1211(6)         0.4779(2)           0.5638(2)         0.0598(5)         0.5367(2)           0.5882(1)         0.0343(4)         0.8041(2)           0.5922(1) |

PHPh<sub>2</sub> substituted anionic silyl complexes reported in this paper only one type of complex is formed, irrespective of the employed ratio of  $[Fe(CO)_3(SiR_3)(PR'_3)]^-$  and  $CdX_2$ . Contrary to the related Fe-Hg complexes,<sup>2</sup> no conversion from the 1:1 to the 2:1 stoichiometry, or vice versa, was observed for the Fe-Cd complexes 3, 4, and 6.

# **Experimental Section**

All operations were performed in an atmosphere of dry and oxygenfree nitrogen, using dried and nitrogen-saturated solvents. Melting points were determined by differential thermoanalysis (DuPont Thermal Analyzer). IR spectra: Perkin-Elmer 283, CaF<sub>2</sub>-cells. <sup>1</sup>H NMR spectra: Jeol FX 90 Q; Bruker AC 200 and SY200. <sup>13</sup>C NMR spectra: Bruker AC 200 (50.3 MHz) and Bruker WM 400 (100 MHz). <sup>31</sup>P NMR spectra: Jeol FX-90Q (36.23 MHz), Bruker SY200 (81.02 MHz), and Bruker AMX 400 (161.98 MHz), relative external 85% H<sub>3</sub>PO<sub>4</sub>. Molecular weights were determined by osmometry in benzene with a Knauer vapor pressure osmometer.

Preparation, and spectroscopic data of 1a-d,<sup>2d</sup> 1e,<sup>4</sup> and 2a-d<sup>2d</sup> were already reported.

Preparation of mer-Fe(CO)<sub>3</sub>(H)(SiMePh<sub>2</sub>)[P(OMe)<sub>3</sub>] (1f). To a solution of 1.10 g (3.0 mmol) Fe(CO)<sub>4</sub>(H)SiMePh<sub>2</sub><sup>2a</sup> in 50 mL of petroleum ether was added dropwise a solution of 0.372 g (3.0 mmol) of P(OMe)<sub>3</sub> in 15 mL of petroleum ether at 0 °C. Then the solution was stirred at room temperature until gas evolution had ceased and the  $\nu$ (CO) bands of the reactants had disappeared. The solution was filtered, and the solvent was removed in vacuo. Compound 1f precipitates from the pentane solution at -78 °C as a brown oil. Yield: 0.86 g (62%). IR (THF; cm<sup>-1</sup>):  $\nu$ (CO) 2040 (w), 1995 (sh), 1975 (vs) cm<sup>-1</sup>. <sup>1</sup>H NMR (200 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  -9.33 (d, FeH, 1 H, <sup>2</sup>J<sub>HFeP</sub> = 35.3 Hz), 1.36 (s,

SiC $H_3$ , 3 H), 3.22 (d, POC $H_3$ , 9 H,  ${}^3J_{POCH}$  = 12.1 Hz), 8.07–7.28 (m, C<sub>6</sub>H<sub>5</sub>, 10 H).  ${}^{31}$ P{ $^1$ H} NMR (36.23 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  175.8.

Preparation of mer-Fe(CO)<sub>3</sub>(H)[Si(OMe)<sub>3</sub>](Ph<sub>2</sub>Ppy) (1h). To a stirred solution of 2.89 g (11 mmol) of 2-(diphenylphosphino) pyridine in toluene (90 mL) was added a hexane solution (300 mL) of Fe(CO)<sub>4</sub>-(H)[Si(OMe)<sub>3</sub>]<sup>3d</sup> (11 mmol). After the reaction mixture was kept at -20 °C for 2–3 days, 1g crystallized as pale yellow needles. After filtration and washing with 15 mL of hexane, the crystals were dried for 30 min in vacuo. Yield: 4.33 g (75%). Anal. Calcd for C<sub>23</sub>H<sub>24</sub>FeO<sub>6</sub>P<sub>2</sub>Si ( $M_{\rm r}$  = 525.36) C, 52.58; H, 4.60; N, 2.67. Found: C, 52.10; H, 4.60; N, 2.50. IR (Et<sub>2</sub>O; cm<sup>-1</sup>)  $\nu$ (CO) 2049 (w), 1985 (s, sh), 1978 (vs). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>): δ –8.86 (d, FeH, 1 H, <sup>2</sup>J<sub>PH</sub> = 25.4 Hz), 3.78 (s, 9 H, OCH<sub>3</sub>), 6.41–8.45 (m, 14 H, C<sub>6</sub>H<sub>5</sub>). <sup>31</sup>P{<sup>1</sup>H}NMR (81.02 MHz, CH<sub>2</sub>Cl<sub>2</sub>/C<sub>6</sub>D<sub>6</sub>, 303 K): δ 62.8.

**Preparation of Na[Fe(CO)<sub>3</sub>(SiR<sub>3</sub>)(PR'<sub>3</sub>)] (2e-g)** was performed as already reported for  $2\mathbf{a}-\mathbf{d}$ . Isolation of the compounds is possible but not necessary for the reactions described in this paper. **2e.** IR (THF, cm<sup>-1</sup>):  $\nu$ (CO) 1850 (s), 1810 (s). **2f.** IR (THF, cm<sup>-1</sup>):  $\nu$ (CO) 1845 (s), 1805 (s). **2h.** IR (THF, cm<sup>-1</sup>):  $\nu$ (CO) 1920 (w), 1844 (vs), 1821 (s, sh).

Preparation of fac-[Fe(CO)<sub>3</sub>(SiR<sub>3</sub>)(PMe<sub>3</sub>)]<sub>2</sub>Cd (3a,b). A 0.092-g (0.5-mmol) sample of CdCl<sub>2</sub> was added to a solution of 1.0 mmol 2a or 2b in 50 mL of THF. After 20-25 min of stirring at 0 °C, the heterogeneous reaction, which was monitored by IR spectroscopy, was finished. From the filtered solution the solvent was removed in vacuo, leaving a residue which was dissolved in 70 mL of toluene. The solution was filtered and concentrated in vacuo to 3-5 mL, and 50-80 mL of pentane was added. After 24 h at -78 °C the complexes 3a and 3b precipitated as yellow solids, which were separated from the liquid, washed four times with 15 mL of pentane each, and dried in vacuo.

3a (SiR<sub>3</sub> = SiMePh<sub>2</sub>). Yield: 0.83 g (88%). Mp: 74 °C dec. Anal. Calcd for  $C_{38}H_{44}CdFe_2O_6P_2Si_2$  ( $M_r$  = 938.98): C, 48.61; H, 4.72; Fe, 11.90; Cd, 11.97. Found: C, 48.57; H, 4.75; Fe, 12.18; Cd, 11.83. IR (THF, cm<sup>-1</sup>):  $\nu$ (CO) 1975 (vs), 1905 (vs).  $^{1}H$  NMR (200 MHz,  $C_6D_6$ ):  $\delta$  1.02 (d, P(CH<sub>3</sub>)<sub>3</sub>, 18 H,  $^{2}J_{PCH}$  = 8.8 Hz), 1.40 (s, SiCH<sub>3</sub>, 6 H), 7.09–8.13 (m, phenyl-H, 20 H).  $^{13}C$  NMR (50.32 Hz,  $C_6D_6$ ):  $\delta$  8.30 (s, SiCH<sub>3</sub>), 22.20 (d, P(CH<sub>3</sub>)<sub>3</sub>,  $^{1}J_{PC}$  = 29.5 Hz), 146.10–127.53 ( $C_6H_5$ ), 213.55 (d, CO,  $^{2}J_{PFeC}$  = 14.2 Hz).  $^{31}P_6^{1}H_1^{1}$  NMR (36.23 MHz,  $C_6D_6$ ):  $\delta$  11.5 (s,  $^{2}J_{111}C_{dFeP}$  = 102.6 Hz,  $^{2}J_{111}C_{dFeP}$  = 99.6 Hz).

3b (SiR<sub>3</sub> = SiMe<sub>3</sub>). Yield: 0.60 g (87%). Mp: 82 °C dec. Anal. Calcd for  $C_{18}H_{36}CdFe_2O_6P_2Si_2$  ( $M_r$  = 690.70): C, 31.30; H, 5.25; Fe, 16.17; Cd, 16.27. Found: C, 31.21; H, 5.23; Fe, 15.88; Cd, 16.62. IR (THF, cm<sup>-1</sup>):  $\nu$ (CO) 1973 (vs), 1897 (vs). <sup>1</sup>H NMR (200 MHz,  $C_6D_6$ ):  $\delta$  0.99 (s, Si( $CH_3$ )<sub>3</sub>, 18 H), 1.28 (d, P( $CH_3$ )<sub>3</sub>, 18 H,  $^2J_{PCH}$  = 9.1 Hz). <sup>31</sup>P{<sup>1</sup>H} NMR (36.23 MHz,  $C_6D_6$ ):  $\delta$  8.8 (s,  $^2J_{^{11}CdFeP}$  = 107.0 Hz,  $^2J_{^{11}CdFeP}$  = 102.6 Hz).

Preparation of  $mer-[(Ph_2HP)(R_3Si)(CO)_3FeCd(\mu-X)]_2$  (3c,d,h,i) and  $mer-[\{(MeO)_3P\}(Ph_3Si)(CO)_3FeCd(\mu-Cl)]_2$  (3e). To a solution of 0.8–1.0 mmol of 2c-e in 40 mL of THF was added an equimolar amount of  $CdX_2$  (X = Cl, Br). The reaction mixture was stirred for 20–40 min at room temperature and monitored by IR spectroscopy. After the  $\nu(CO)$  bands of 2c-e have disappeared, the solution was filtered and concentrated in vacuo to 4–5 mL. The product precipitated at –78 °C as a yellow solid after addition of about 50–80 mL of pentane. The solid was separated, washed four times with 15 mL of pentane each, and dried in high vacuum.

3c (SiR<sub>3</sub> = SiPh<sub>3</sub>, X = Cl). Yield: 0.89 g (61%). Mp: 60 °C dec. Anal. Calcd for  $C_{66}H_{52}Cd_2Cl_2Fe_2O_6P_2Si_2$  ( $M_r$  = 1466.67): C, 54.05; H, 3.57. Found: C, 53.90; H, 3.76. IR (toluene, cm<sup>-1</sup>):  $\nu$ (CO) 1984 (m), 1929 (s), 1905 (vs);  $\nu$ (PH) 2340 (vw). <sup>1</sup>H NMR (400 MHz,  $C_6D_5CD_3$ ):  $\delta$  7.14 (d, PH, 2 H, <sup>1</sup> $J_{PH}$  = 360.9 Hz), 7.92–6.90 (m,  $C_6H_5$ , 50 H). <sup>31</sup>P{<sup>1</sup>H} NMR (161.98 MHz,  $C_6D_5CD_3$ ): at 213 K,  $\delta$  18.0 (s, <sup>2</sup> $J_{DAUCGEP}$  = 172.9 Hz); at 298 K,  $\delta$  31.8 (s, br). Vapor pressure osmometry (benzene, 45 °C): Found (calcd) molecular weight, 1462 (1467). Cryoscopy (benzene): Found, 1463.

3d (SiR<sub>3</sub> = SiMePh<sub>2</sub>, X = Cl). Yield: 1.13 g (84%). Mp: 66 °C dec. Anal. Calcd for  $C_{56}H_{48}Cd_2Cl_2Fe_2O_6P_2Si_2$  ( $M_r$  = 1342.52): C, 50.10; H, 3.60; Fe, 8.32; Cd, 16.74. Found: C, 50.38; H, 3.93; Fe, 8.03; Cd, 17.02. IR (toluene, cm<sup>-1</sup>):  $\nu$ (CO) 1982 (m), 1930 (sh), 1904 (vs);  $\nu$ (PH) 2330 (vw). <sup>1</sup>H NMR (200 MHz,  $C_6D_6$ ):  $\delta$  1.46 (s, SiCH<sub>3</sub>, 6 H), 5.56 (s, PH, 1 H,  $^3J_{100411}CaFePH}$  = 14.1 Hz, the second part of the doublet is hidden by the phenyl protons), 6.82–7.88 (m,  $C_6H_5$ , 40 H). <sup>13</sup>C NMR (50.32,  $C_6D_6$ ):  $\delta$  6.51 (s, SiCH<sub>3</sub>), 146.49–124.61 ( $C_6H_5$ ), 214.40 (d, CO<sub>ax</sub>,  $^2J_{PFeC}$  = 10.1 Hz), 213.16 (d,  $CO_{eq}$ ,  $^2J_{PFeC}$  14.3 Hz). <sup>31</sup>P[<sup>1</sup>H] NMR (161.98 MHz,  $C_6D_5CD_3$ ): at 233 K,  $\delta$  19.0 (s,  $^2J_{1010}C_{FeP}$  = 164.1 Hz,  $^2J_{1010}C_{FeP}$  = 158.2 Hz); 298 K,  $\delta$  31.5 (s, br). Vapor pressure osmometry (benzene, 45 °C): found (calcd) molecular weight, 1389 (1343).

3h (SiR<sub>3</sub> = SiPh<sub>3</sub>, X = Br). Yield: 1.12 g (72%). Mp: 117 °C dec. Anal. Calcd for  $C_{66}H_{52}Br_2Cd_2Fe_2O_6P_2Si_2$  ( $M_r = 1555.57$ ): C, 50.96; H, 3.37; Fe, 7.18; Cd, 14.45. Found: C, 51.05; H, 3.55; Fe, 6.96; Cd, 14.80. IR (toluene, cm<sup>-1</sup>):  $\nu$ (CO) 1986 (m), 1928 (sh), 1909 (vs);  $\nu$ (PH) 2321 (vw). <sup>1</sup>H NMR (400 MHz,  $C_6D_5CD_3$ ):  $\delta$  7.13 (d, PH, 2 H, <sup>1</sup> $J_{PH}$ = 360.5 Hz), 6.22-7.05 (m,  $C_6H_5$ , 50 H). <sup>13</sup>C NMR (50.32,  $C_6D_6$ ):  $\delta$ 145.10-127.47 (C<sub>6</sub>H<sub>5</sub>), 213.92 (d,  $CO_{ax}$ ,  ${}^2J_{PFeC}$  = 13.2 Hz), 212.90 (d,  $CO_{eq}$ ,  ${}^{2}J_{PFeC} = 16.6 \text{ Hz}$ ).  ${}^{31}P\{{}^{1}H\}$  NMR (161.98 MHz,  $C_{6}D_{5}CD_{3}$ ): at 213 K,  $\delta$  18.0 (s,  ${}^{2}J_{\text{HI}/\text{HS}CdFeP}$  = 172.9 Hz); at 298 K,  $\delta$  32.8 (s, br). Cryoscopy (benzene): found (calcd) molecular weight, 1533 (1556).

3i (SiR<sub>3</sub> = SiMePh<sub>2</sub>, X = Br). Yield: 1.09 g (76%). Mp: 74 °C dec. Anal. Calcd for  $C_{56}H_{48}Br_2Cd_2Fe_2O_6P_2Si_2$  ( $M_r = 1431.42$ ): C, 46.99; H, 3.38; Fe, 7.80; Cd, 15.70. Found: C, 47.05; H, 3.50; Fe, 7.59; Cd, 15.86. IR (toluene, cm<sup>-1</sup>): at 298 K,  $\nu$ (CO) 1990 (m), 1935 (sh), 1915 (vs);  $\nu$ (PH) 2320 (vw); at 233 K,  $\nu$ (CO) 1980 (m), 1932 (sh), 1913 (vs);  $\nu$ (PH) 2307 (vw). <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>5</sub>CD<sub>3</sub>):  $\delta$  1.53 (s, SiCH<sub>3</sub>, 6 H), 6.14 (d, PH, 2 H,  ${}^{1}J_{PH}$  = 353.3 Hz,  ${}^{3}J_{113/111CdFePH}$  = 12.1 Hz), 6.90–8.21 (m, C<sub>6</sub>H<sub>5</sub>, 40 H).  ${}^{13}C$  NMR (50.32, C<sub>6</sub>D<sub>6</sub>):  $\delta$  6.64 (s, Si*C*H<sub>3</sub>), 146.45-125.63 (C<sub>6</sub>H<sub>5</sub>), 213.89 (d, CO<sub>ax</sub>, <sup>2</sup>J<sub>PFeC</sub> 10.2 Hz), 212.76 (d,  $CO_{eq}$ ,  ${}^{2}J_{PFeC} = 13.7 \text{ Hz}$ ).  ${}^{31}P\{{}^{1}H\}$  NMR (161.98 MHz,  $C_{6}D_{5}CD_{3}$ ): at 233 K,  $\delta$  20.1 (s,  ${}^2J_{\text{13}CdFeP}$  = 164.5 Hz,  ${}^2J_{\text{13}CdFeP}$  = 154.3 Hz); at 298 K, δ 31.9 (s, br). Cryoscopy (benzene): found (calcd) molecular weight, 1353 (1431).

3e. Yield: 0.93 g (87%). Mp: 116 °C dec. Anal. Calcd for  $C_{48}H_{48}Cd_2Cl_2Fe_2O_{12}P_2Si_2$  ( $M_r = 1342.46$ ): C, 42.95; H, 3.60; Fe, 8.32; Cd, 16.75. Found: C, 43.36; H, 3.68; Fe, 8.15; Cd, 17.03. IR (THF, cm<sup>-1</sup>):  $\nu$ (CO) 1986 (m), 1930 (sh), 1916 (vs). <sup>1</sup>H NMR (60 MHz,  $C_6H_6$ ):  $\delta$  3.32 (d, POC $H_3$ , 18 H,  $^3J_{PH}$  13.8 Hz).  $^{31}P\{^1H\}$  NMR (36.23) MHz,  $C_6D_6$ ):  $\delta$  179.9 (s,  $^2J_{113}C_{dFeP}$  = 156.8 Hz,  $^2J_{111}C_{dFeP}$  = 149.1 Hz,  $^{2}J_{PFeSi} = 19.0 \text{ Hz}$ ).

Preparation of mer-[{(MeO)<sub>3</sub>P}(Ph<sub>2</sub>MeSi)(CO)<sub>3</sub>Fe]<sub>2</sub>Cd (3f). A 0.5mmol sample of CdCl<sub>2</sub> was added to a solution of 1.0 mmol of 2f in 50 mL of THF. The reaction mixture was stirred at 0 °C for 10-20 min. The reaction was by monitored IR spectroscopy. Workup was as for 3a,b. Yield: 0.89 g (86%) of a yellow solid. Mp: 58 °C dec. Anal. Calcd for  $C_{38}H_{44}CdFe_2O_{12}P_2Si_2$  ( $M_r = 1034.98$ ): C, 44.10; H, 4.29; Fe, 10.79; Cd, 10.86. Found: C, 44.58; H, 4.28; Fe, 10.62; Cd, 11.03. IR (THF, cm<sup>-1</sup>):  $\nu$ (CO) 1988 (m), 1935 (sh), 1922 (vs). <sup>1</sup>H NMR (60 MHz,  $C_6D_6$ ):  $\delta 1.52$  (s, SiCH<sub>3</sub>, 6 H), 3.40 (d, POCH<sub>3</sub>, 18 H,  $^3J_{PH} = 12.6$ Hz). <sup>31</sup>P{<sup>1</sup>H} NMR (36.23 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  182.7 (s, <sup>2</sup>J<sub>113CdFeP</sub> = 145.1 Hz,  ${}^2J_{\text{III}CdFeP} = 139.2 \text{ Hz}$ ,  ${}^2J_{\text{PFeSi}} = 17.6 \text{ Hz}$ ).

Preparation of mer-[{(MeO)<sub>3</sub>Si}(CO)<sub>3</sub>Fe( $\mu$ -Ph<sub>2</sub>Ppy)Cd( $\mu$ -Br)]<sub>2</sub> (4). To a solution of the potassium salt 2h (0.283 g, 0.5 mmol) in THF (20 mL) was added CdBr<sub>2</sub>·4H<sub>2</sub>O (0.344 g, 1.0 mmol). The reaction mixture was stirred for 2 h. The clear solution was filtered, and the solvent was removed in vacuo. The residue was extracted with CH2Cl2 (20 mL) and filtered again and the solution concentrated to about 10 mL under reduced pressure. Addition of hexane led to the precipitation of colorless microcrystals, which were dried in vacuo. Yield: 0.301 g (84%). Dec at T > 200 °C. Anal. Calcd for  $C_{46}H_{46}Br_2Cd_2Fe_2N_2O_{12}P_2Si_2$  ( $M_r =$ 1433.32): C, 38.55; H, 3.24; N, 1.95. Found: C, 38.67; H, 3.30; N, 1.90. IR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>):  $\nu$ (CO) 1990 (s), 1928 (s), 1908 (vs). IR (polyethylene, cm<sup>-1</sup>):  $\nu$ (CdBr): 171 (s, br). <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  3.69 (s, OCH<sub>3</sub>, 9 H), 7.26–9.38 (m, C<sub>6</sub>H<sub>5</sub>, 14 H). <sup>31</sup>P{<sup>1</sup>H}NMR (81.02) MHz,  $CH_2Cl_2/C_6D_6$ , 303 K):  $\delta$  84.9 (s,  ${}^2J_{CdFeP}$  = 102 Hz).

Preparation of {(MeO)<sub>3</sub>Si}(CO)<sub>3</sub>Fe(μ-Ph<sub>2</sub>Ppy)CdBr(4-pic) (5). Το a solution of 0.072 g (0.05 mmol) of 4 in CH<sub>2</sub>Cl<sub>2</sub> (6 mL) was added 4-picoline (0.0094 g, 0.1 mmol) by a microsyringe. The clear solution was stirred for 5 min, and then the solvent was removed and the residue dried in vacuo for several hours. Yield: 0.081 g (100%). Dec at T >200 °C. Anal. Calcd for  $C_{29}H_{30}BrCdFeN_2O_6PSi$  ( $M_r = 809.79$ ): C, 43.01; H, 3.73; N, 3.46. Found: C, 43.21; H, 3.75; N, 3.52. IR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>):  $\nu$ (CO) 1985 (m), 1925 (s), 1899 (vs). IR (polyethylene, cm<sup>-1</sup>):  $\nu(CdBr)$  200 s. <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  2.38 (s, 3 H, CH<sub>3</sub>), 3.63

Table V. Crystal Data for 6 and 3h

|                                     | 6                                                                | 3h                                                                                                                                                                                 |
|-------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formula                             | $C_{46}H_{46}CdFe_{2}N_{2}O_{12}-P_{2}Si_{2}\cdot 2C_{6}H_{5}Cl$ | C <sub>66</sub> H <sub>52</sub> Br <sub>2</sub> Cd <sub>2</sub> Fe <sub>2</sub> O <sub>6</sub> -<br>P <sub>2</sub> Si <sub>2</sub> ·2C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub> |
| fw                                  | 1386.2                                                           | 1723.8                                                                                                                                                                             |
| space group                         | C2/c                                                             | ₽Ī                                                                                                                                                                                 |
| a, pm                               | 2968.4(8)                                                        | 1048.9(5)                                                                                                                                                                          |
| <i>b</i> , pm                       | 1004.3(3)                                                        | 1268.6(4)                                                                                                                                                                          |
| c, pm                               | 2098.8(6)                                                        | 1515.5(7)                                                                                                                                                                          |
| $\alpha$ , deg                      |                                                                  | 75.51(3)                                                                                                                                                                           |
| $\beta$ , deg                       | 91.87(2)                                                         | 86.58(5)                                                                                                                                                                           |
| $\gamma$ , deg                      |                                                                  | 72.94(5)                                                                                                                                                                           |
| V, pm <sup>3</sup>                  | $6254 \times 10^6$                                               | $1866 \times 10^{6}$                                                                                                                                                               |
| Z                                   | 4                                                                | 1                                                                                                                                                                                  |
| T, °C                               | 20                                                               | 25                                                                                                                                                                                 |
| $d_{\rm calc}$ , g cm <sup>-3</sup> | 1.472                                                            | 1.534                                                                                                                                                                              |
| $\mu(Mo K\alpha), cm^{-1}$          | 10.3                                                             | 21.2                                                                                                                                                                               |
| $\lambda(Mo K\alpha)$ , pm          | 71.073                                                           | 71.073                                                                                                                                                                             |
| $R^a$                               | 0.028                                                            | 0.066                                                                                                                                                                              |
| $R_{\mathbf{w}}{}^{b}$              | 0.040                                                            | 0.072                                                                                                                                                                              |

 $^{a}R = \sum |F_{0} - F_{c}|/\sum |F_{0}|$ .  $^{b}R_{w} = \{\sum w(F_{0} - F_{c})^{2}/\sum wF_{0}^{2}\}^{1/2}$ .

(s, 9 H, OCH<sub>3</sub>), 7.16-8.95 (m, 18 H,  $C_6H_5$ ). <sup>31</sup>P{<sup>1</sup>H} NMR (81.02) MHz,  $CH_2Cl_2/C_6D_6$ , 303 K):  $\delta$  84.9 (s,  ${}^2J_{PFeCd}$  = 82 Hz)

Preparation of mer-[{(MeO)<sub>3</sub>Si}(CO)<sub>3</sub>Fe(μ-Ph<sub>2</sub>Ppy)]<sub>2</sub>Cd (6). To a solution of 0.565 g (1 mmol) of the potassium salt of 2h in THF (25 mL) was added CdCl<sub>2</sub>·2.5H<sub>2</sub>O (0.228 g, 1.0 mmol). The reaction mixture was stirred for 5 h. The clear solution was filtered and concentrated in vacuo. After a few days at -20 °C, 0.401 g (69%) of yellow-green crystals of 6 were formed and collected. Mp: 152-153 °C. Anal. Calcd for  $C_{46}H_{46}CdFe_2N_2O_{12}P_2Si_2$  ( $M_r = 1161.10$ ): C, 47.59; H, 4.00; N, 2.41. Found: C, 48.43; H, 4.24; N, 2.25. IR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>):  $\nu$ (CO) 1990 (m), 1977 (m), 1918 (s), 1894 (vs). IR (KBr, cm<sup>-1</sup>):  $\nu$ (CO) 1993 (m), 1980 (m), 1912 (s), 1885 (vs). <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>): δ 3.30 (s, OCH<sub>3</sub>, 9 H), 7.15–8.54 (m,  $C_6H_5$ , 14 H).  ${}^{31}P{}^{1}H{}^{1}$  NMR (81.02 MHz,  $CH_2Cl_2/C_6D_6$ , 303 K):  $\delta$  83.7 (s,  ${}^2J_{CdFeP}$  = 66 Hz).

Crystal Structure Determination of [(Ph<sub>2</sub>HP)(Ph<sub>3</sub>Si)(CO)<sub>3</sub>FeCd(µ-Br)]<sub>2</sub> (3h) and [ $\{(MeO)_3Si\}(CO)_3Fe(\mu-Ph_2Ppy)\}_2Cd$  (6). Suitable single crystals of 3h were obtained by recrystallization from toluene/pentane, those of 6, by recrystallization from hot chlorobenzene. A crystal of each compound was mounted on a Enraf-Nonius CAD4 four-circle diffractometer. Cell dimensions were determined from 25 reflections with high diffraction angles from different parts of the reciprocal space. Crystal data and experimental parameters for the data collection are given in Table V. For all subsequent calculations the Enraf-Nonius SDP/VAX package was used. The reflections were corrected for polarization and Lorentz effects and by an empirical absorption correction ( $\psi$  scan); no correction for the presence of extinctions was made. The structure was solved by the Patterson method. The positions of the hydrogen atoms were calculated according to an idealized geometry. Refinement was performed by the full-matrix least-squares method with anisotropic thermal parameters for all non-hydrogen atoms. The parameters of the hydrogen atoms were not refined.

Acknowledgment. This work was supported by the Fonds der Chemischen Industrie, the Centre National de la Recherche Scientifique and the PROCOPE program (Programme de Cooperation Scientifique). P.B. is grateful to the Alexander von Humboldt-Stiftung for support under its Forschungspreis.

Supplementary Material Available: Tables of complete crystal data, and anisotropic thermal parameters, the calculated coordinates and isotropic thermal parameters for the hydrogen atoms, and all bond distances and angles for 3h and 6 (11 pages). Ordering information is given on any current masthead page.