1. Eine Kugel der Masse  $m=30\,\mathrm{kg}$  soll um die Höhe  $h=2\,\mathrm{m}$  angehoben werden.



Abbildung 1: Eine Kugel auf der schiefen Ebene

(a) Wie groß ist ihre Gewichtskraft?

# Lösung:

$$F_g = mg = 30 \, \mathrm{kg} \cdot 9.81 \, \frac{\mathrm{N}}{\mathrm{kg}} = 294 \, \mathrm{N}$$

(b) Welche Arbeit wird aufgewendet, wenn man sie direkt um die Höhe *h* anhebt?

## Lösung:

Die Hubarbeit ist

$$W_{hub} = mgh = 30 \, \text{kg} \cdot 9.81 \, \frac{\text{N}}{\text{kg}} \cdot 2 \, \text{m} = 589 \, \text{N} \, \text{m} = 589 \, \text{J}$$

(c) Die Kathete a ist 5 m lang. Wie lang ist  $\Delta s$ ?

#### Lösung:

Pythagoras sagt uns

$$\begin{split} \Delta s^2 &= h^2 + a^2 \quad \big| \, \sqrt{\phantom{a}} \\ \Delta s &= \sqrt{h^2 + a^2} = \sqrt{(2\,\mathrm{m})^2 + (5\,\mathrm{m})^2} = \sqrt{29\,\mathrm{m}^2} = 5{,}39\,\mathrm{m} \end{split}$$

(d) Wie groß ist die Kraft  $F_{\parallel}$ , die parallel zu  $\Delta s$  verläuft?

Lösung:

$$F_{||}=rac{h}{\Delta s}\cdot F_g=rac{2\,\mathrm{pr}}{5.39\,\mathrm{pr}}\cdot 294\,\mathrm{N}=109\,\mathrm{N}$$

(e) Wie groß ist die Kraft  $F_{\perp}$ , die senkrecht zu  $\Delta s$  verläuft?

## Lösung:

Pythagoras:

$$\begin{split} F_{\perp}^2 + F_{\parallel} &= F_g^2 \quad \big| \, - F_{\parallel}^2 \\ F_{\perp}^2 &= F_g^2 - F_{\parallel}^2 \, \, \big| \, \sqrt{\phantom{A}} \\ F_{\perp} &= \sqrt{F_g^2 - F_{\parallel}^2} = \sqrt{(294 \, \mathrm{N})^2 - (109 \, \mathrm{N})^2} = 273 \, \mathrm{N} \end{split}$$

(f) Wie groß ist die Arbeit, die wir aufbringen müssen, wenn wir die Kugel über die Rampe rollen. Sie legt dann den Weg  $\Delta s$  gegen die in 1d berechnete Kraft zurück.

### Lösung:

Die Arbeit, die wir entlang der Rampe aufwenden müssen ist

$$W_{\mathsf{Rampe}} = F_{||} \cdot \Delta s = 109 \, \mathsf{N} \cdot 5{,}39 \, \mathsf{m} = 589 \, \mathsf{N} \, \mathsf{m}$$

Dies ist offensichtlich genau die vorhin direkt berechnete Hubarbeit  $W_{hub}=mgh.$ 

Dieses Resultat hatten wir im Untericht ganz allgemein erhalten. Es gilt immer. Eine Rampe kann keine Energie sparen.