BEST AVAILABLE COPY

日本国特許庁 JAPAN PATENT OFFICE

18.10.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年10月13日

REC'D 0 9 DEC 2004

WIPO

PCT

出 願 番 号 Application Number:

特願2004-299181

[ST. 10/C]:

[JP2004-299181]

出 願 人 Applicant(s):

セイコーエプソン株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年11月26日

【書類名】 特許願

【整理番号】 J010346602 【あて先】 特許庁長官殿 【国際特許分類】 G03G 15/00

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内

【氏名】 中里 博

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内

【氏名】 井熊 健

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内

【氏名】 田口 恵一

【特許出願人】

【識別番号】 000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】 100105980

【弁理士】

【氏名又は名称】 梁瀬 右司

【選任した代理人】

【識別番号】 100105935

【弁理士】

【氏名又は名称】 振角 正一【電話番号】 06-6365-5988

【連絡先】 担当 【先の出願に基づく優先権主張】

> 【出願番号】 特願2003-357639 【出願日】 平成15年10月17日

【手数料の表示】

【予納台帳番号】 054601 【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】明細書 1【物件名】図面 1【物件名】要約書 1【包括委任状番号】0003737

【曹類名】特許請求の範囲

【請求項1】

装置本体に対し着脱可能に構成されたプロセスユニットと、

前記プロセスユニットを着脱可能な状態と着脱不可能な状態との間で装置を切り替える切り替え手段と、

前記装置本体に対し開閉自在に構成されて、その閉状態でユーザによるプロセスユニットの着脱操作を規制するカバー部材と、

前記切り替え手段を制御する制御手段と

を備え、

前記制御手段は、

装置が前記プロセスユニットを着脱可能な状態にあるときに前記カバー部材が閉じられた場合には、前記切り替え手段を制御して装置を前記プロセスユニットを着脱不可能な状態に切り替える着脱禁止処理を実行し、しかも、

前記カバー部材が閉じられる前に前記プロセスユニットの着脱がなされていなかった場合には、前記プロセスユニットの着脱がなされていた場合よりも、前記カバー部材が閉じられてから前記着脱禁止処理を実行開始するまでの開始待ち時間を長くすることを特徴とする画像形成装置。

【請求項2】

前記制御手段は、前記開始待ち時間の間に前記カバー部材が開かれたときには、前記着脱禁止処理の実行を中止する請求項1に記載の画像形成装置。

【請求項3】

前記プロセスユニットの着脱がなされたか否かに関する装置の状態変化を検知するための検知手段をさらに備え、

前記制御手段は、該検知手段の検知結果に基づき前記プロセスユニットの着脱の有無を 判定する請求項1または2に記載の画像形成装置。

【請求項4】

前記プロセスユニットが前記装置本体に設けられた着脱口を通して着脱可能となるように構成されるとともに、該着脱口に対し開閉自在に設けられてその閉状態で前記プロセスユニットの着脱を規制する規制部材をさらに備え、

前記検知手段は、前記規制部材の開閉を検知するように構成され、

前記制御手段は、前記規制部材が開かれた後に再度閉じられるのを前記検知手段が検知したことをもって前記プロセスユニットの着脱がなされたと判定する請求項3に記載の画像形成装置。

【請求項5】

前記制御手段は、前記規制部材が開かれてから再び閉じられるまでの時間が所定時間以下であったときには、前記プロセスユニットの着脱がなされていないと判定する請求項4 に記載の画像形成装置。

【請求項6】

前記検知手段は、前記カバー部材の開閉を検知するように構成され、

前記制御手段は、前記カバー部材が開かれてから再び閉じられるまでの時間が所定時間以下であったときには、前記プロセスユニットの着脱がなされていないと判定する請求項3に記載の画像形成装置。

【請求項7】

前記プロセスユニットが当該ユニットに関する情報を記憶する記憶手段を備え、

前記制御手段は、前記プロセスユニットの着脱がなされた後に行う前記着脱禁止処理では、前記記憶手段からの前記情報の読み出し動作を行う請求項1ないし6のいずれかに記載の画像形成装置。

【請求項8】

ユーザからのプロセスユニット着脱指示を受け付けるための指示入力手段をさらに備え

【請求項9】

前記プロセスユニットとしての現像器を装着可能に構成されるとともに、駆動手段により回転駆動される現像ロータリーをさらに備え、

前記駆動手段が、前記現像器に対応して定められて当該現像器の着脱が可能となる所定 の着脱位置またはこれ以外の位置に前記現像ロータリーを選択的に位置決めすることで前 記切り替え手段として機能する請求項1ないし8のいずれかに記載の画像形成装置。

【請求項10】

装置本体に対し着脱可能に構成されたプロセスユニットと、前記プロセスユニットを着脱可能な状態と着脱不可能な状態との間で装置を切り替える切り替え手段と、前記装置本体に対し開閉自在に構成されて、その閉状態でユーザによるプロセスユニットの着脱操作を規制するカバー部材とを備える画像形成装置の制御方法において、

装置が前記プロセスユニットを着脱可能な状態にあるときに前記カバー部材が閉じられた場合には、前記切り替え手段を制御して装置を前記プロセスユニットを着脱不可能な状態に切り替える着脱禁止処理を実行し、しかも、

前記カバー部材が閉じられる前に前記プロセスユニットの着脱がなされていなかった場合には、前記プロセスユニットの着脱がなされていた場合よりも、前記カバー部材が閉じられてから前記着脱禁止処理を実行開始するまでの開始待ち時間を長くすることを特徴とする画像形成装置の制御方法。

【書類名】明細書

【発明の名称】画像形成装置および該装置の制御方法

【技術分野】

[0001]

この発明は、装置本体に対し着脱可能なプロセスユニットを有する画像形成装置およびその制御方法に関するものである。

【背景技術】

[0002]

プリンタ、複写機およびファクシミリ装置などの画像形成装置では、一般に、消耗品交換のため、プロセスユニットが装置本体に対し着脱可能に構成されている。このような装置として、各ユニットの使用状況を管理して消耗品交換を適切に行うために、装置がユニット着脱を確認できる状態でのみ、ユーザによるユニット着脱操作を許容するように構成されたものがある。例えば、特許文献1に記載された画像形成装置では、現像ユニットを装着可能に構成された現像ロータリーが所定の取り出し専用位置に回転位置決めされたときには取り出しができないようにしている。取り出し専用位置への現像ロータリーへの位置決めは、ユーザからの交換指示に基づき実行される。そして、現像ロータリーの位置決めをコントローラの制御下で行っているため、ユーザによるユニット着脱操作の有無を装置側で確認することが可能となっている。

[0003]

また、この種の画像形成装置では、装置内部のメンテナンス性を高めるため、装置筐体の一部に開閉自在のカバーを設けるのが一般的である。

[0004]

【特許文献1】特開2002-333756号公報(図3)

【発明の開示】

【発明が解決しようとする課題】

[0005]

上記した特許文献1の画像形成装置においては、ユーザによる着脱操作終了後、装置は通常の状態、つまり現像器の着脱が不可能な状態に戻る。具体的には、現像ロータリーが取り出し専用位置とは別に設けられたホームポジションに移動することで、現像器の着脱は不可能となる。なお、ユーザによる操作の終了は、例えばカバーが閉じられたことをもって推定することができる。

[0006]

しかしながら、ユーザの操作ミスによって、現像器などのプロセスユニットの着脱が正しく行われないままカバーが閉じられてしまう場合がある。このような場合、ユーザが再度カバーを開き、作業の続きを行おうとしても、装置はユニット着脱不可能な状態に戻ってしまっている。そのため、ユーザは作業を始めからやり直さなければならず、また装置が再びユニット着脱可能な状態となるまで待たなければならないという煩わしさがある。

[0007]

この発明は上記課題に鑑みなされたものであり、装置本体に対し着脱可能なプロセスユニットを有する画像形成装置およびその制御方法において、ユーザによるプロセスユニットの着脱操作の利便性を向上させることを目的とする。

【課題を解決するための手段】

[0008]

この発明は、装置本体に対し着脱可能に構成されたプロセスユニットと、前記プロセスユニットを着脱可能な状態と着脱不可能な状態との間で装置を切り替える切り替え手段と、前記装置本体に対し開閉自在に構成されて、その閉状態でユーザによるプロセスユニットの着脱操作を規制するカバー部材とを備える画像形成装置およびその制御方法において、上記目的を達成するため、装置が前記プロセスユニットを着脱可能な状態にあるときに前記カバー部材が閉じられた場合には、前記切り替え手段を制御して装置を前記プロセス

2/

ユニットを着脱不可能な状態に切り替える着脱禁止処理を実行し、しかも、前記カバー部材が閉じられる前に前記プロセスユニットの着脱がなされていなかった場合には、前記プロセスユニットの着脱がなされていた場合よりも、前記カバー部材が閉じられてから前記着脱禁止処理を実行開始するまでの開始待ち時間を長くすることを特徴としている。

[0009]

なお、本明細書において、プロセスユニットの「着脱」とは、ユーザによる装置本体からのプロセスユニット取り出しおよび/または装置本体へのプロセスユニット装着作業を意味する。

[0010]

このように構成された発明では、ユーザによりカバー部材が閉じられると、着脱禁止処理が実行されて、装置はプロセスユニット着脱が不可能な状態に切り替わる。ただし、プロセスユニットの着脱作業がなされないままカバー部材が閉じられたときには、着脱作業後にカバー部材が閉じられたときよりも、着脱禁止処理を開始するまでの開始待ち時間を長くする。このようにする理由は次の通りである。

[0011]

プロセスユニットの着脱がなされた後でカバー部材が閉じられた場合は、ユーザによる着脱操作は完了したものとみなすことができるので、カバーが閉じられた後、比較的短時間で着脱禁止処理を実行してもよい。これに対して、ユニット着脱がなされないままカバー部材が閉じられた場合、ユーザの操作ミスによる場合もありうる。しかしながら、カバー部材が閉じられて短時間のうちに装置がユニット着脱不可能な状態に移行したのでは、ユーザは再度カバー部材を開いて直ちに着脱作業に移ることができず不便である。

[0012]

そこで、このような場合には着脱禁止処理を開始するまでの間に待ち時間を設ける。こうすれば、この待ち時間の間にユーザが再びカバー部材を開けば装置はプロセスユニットが着脱可能な状態に維持されているので、そのまま着脱作業を続けることができる。このように、この発明によれば、ユーザによるプロセスユニットの着脱操作の利便性を向上させることができる。

[0013]

なお、上記のように構成された画像形成装置では、前記開始待ち時間の間に前記カバー部材が開かれたときには、前記着脱禁止処理の実行を中止するのが好ましい。こうすることで、再度カバー部材が開かれたのに装置がプロセスユニット着脱不可能な状態に移行するのを防止することができる。

[0014]

また、前記プロセスユニットの着脱がなされたか否かに関する装置の状態変化を検知するための検知手段をさらに備え、該検知手段の検知結果に基づき前記プロセスユニットの着脱の有無を判定するようにしてもよい。こうすることで、プロセスユニットの着脱があったか否かを確実に判定することができる。

[0015]

また、前記プロセスユニットが前記装置本体に設けられた着脱口を通して着脱可能となるように構成されるとともに、該着脱口に対し開閉自在に設けられてその閉状態で前記プロセスユニットの着脱を規制する規制部材をさらに備え、前記検知手段は、前記規制部材の開閉を検知するように構成されるとともに、前記制御手段は、前記規制部材が開かれた後に再度閉じられるのを前記検知手段が検知したことをもって前記プロセスユニットの着脱がなされたと判定するようにしてもよい。つまり、規制部材によるプロセスユニットの着脱規制がいったん解除された後再び規制されるという一連のユーザ作業を、プロセスユニットに対する着脱作業が行われたものとみなすことができる。このような構成とすれば、装置本体側のみで着脱の有無を判定することができ、プロセスユニット側に着脱を検知するための構成は不要である。

[0016]

また、前記規制部材が開かれてから再び閉じられるまでの時間が所定時間以下であった。出証特20%04-3107496

ときには、前記プロセスユニットの着脱がなされていないと判定するようにしてもよい。 プロセスユニットの着脱作業にはある程度の時間を要するから、規制部材が開かれていた 時間が着脱作業に必要な時間よりも短ければ作業はなされなかったと判断してよい。前記 所定時間としては、熟練作業者による着脱作業の所要時間よりは短い時間とすることが望 ましく、例えば数秒程度とすることができる。

[0017]

また、前記検知手段が前記カバー部材の開閉を検知するように構成されている場合も同様であり、前記カバー部材が開かれてから再び閉じられるまでの時間が所定時間以下であったときには、前記プロセスユニットの着脱がなされていないと判定することができる。装置が上記した規制部材を備えるか否かに関係なく、このような構成を適用することができる。

[0018]

また、前記プロセスユニットが当該ユニットに関する情報を記憶する記憶手段を備え、前記プロセスユニットの着脱がなされた後に行う前記着脱禁止処理では前記記憶手段からの前記情報の読み出し動作を行うようにしてもよい。これにより、プロセスユニットに関する情報が装置本体側に把握され、その寿命や使用状況の管理を適正に行うことが可能となる。

[0019]

また、ユーザからのプロセスユニット着脱指示を受け付けるための指示入力手段をさらに備え、前記指示入力手段への指示入力があったときに前記切り替え手段により装置を前記プロセスユニットを着脱可能な状態とするようにしてもよい。こうすることで、プロセスユニットの着脱を行おうとするユーザの意向に応じて、プロセスユニットを着脱可能な状態に装置を移行させることができる。また、ユーザの意思に基づく操作を受けない限りプロセスユニットの着脱が可能な状態にはならないので、操作すべきプロセスユニットを取り違える等のミスが発生し難い。

[0020]

本発明にいうプロセスユニットとしては、例えば、装置本体に設けられた現像ロータリーに対して着脱可能な現像器がある。そして、この現像ロータリーを回転駆動する駆動手段を前記切り替え手段として機能させることが可能である。つまり、駆動手段が、前記現像器に対応して定められた所定の着脱位置またはそれ以外の位置に現像ロータリーを選択的に位置決めすることで、当該現像器の着脱を可能な状態と、現像器の着脱が不可能な状態とを切り替えることができる。

【発明を実施するための最良の形態】

[0021]

<第1実施形態>

図1はこの発明にかかる画像形成装置の第1実施形態を示す図である。また、図2は図1の画像形成装置の電気的構成を示すプロック図である。この装置1は、イエロー(Y)、シアン(C)、マゼンタ(M)、プラック(K)の4色のトナー(現像剤)を重ね合わせてフルカラー画像を形成したり、プラック(K)のトナーのみを用いてモノクロ画像を形成する画像形成装置である。この画像形成装置1では、ホストコンピュータなどの外部装置から画像信号がメインコントローラ11に与えられると、このメインコントローラ11からの指令に応じてエンジンコントローラ10がエンジン部EG各部を制御して所定の画像形成動作を実行し、シートSに画像信号に対応する画像を形成する。

[0022]

このエンジン部EGでは、感光体22が図1の矢印方向D1に回転自在に設けられている。また、この感光体22の周りにその回転方向D1に沿って、帯電ユニット23、ロータリー現像ユニット4およびクリーニング部25がそれぞれ配置されている。帯電ユニット23は所定の帯電バイアスを印加されており、感光体22の外周面を所定の表面電位に均一に帯電させる。クリーニング部25は一次転写後に感光体22の表面に残留付着したトナーを除去し、内部に設けられた廃トナータンクに回収する。これらの感光体22、帯

電ユニット23およびクリーニング部25は一体的に感光体カートリッジ2を構成しており、この感光体カートリッジ2は一体として装置1本体に対し着脱自在となっている。

[0023]

そして、この帯電ユニット23によって帯電された感光体22の外周面に向けて露光ユニット6から光ビームしが照射される。この露光ユニット6は、外部装置から与えられた画像信号に応じて光ビームしを感光体22上に露光して画像信号に対応する静電潜像を形成する。

[0024]

こうして形成された静電潜像は現像ユニット4によってトナー現像される。現像ユニット4は、図1紙面に直交する回転軸中心に回転自在に設けられた支持フレーム40、支持フレーム40に対して着脱自在のカートリッジとして構成されてそれぞれの色のトナーを内蔵するイエロー用の現像器4Y、シアン用の現像器4C、マゼンタ用の現像器4M、ブラック用の現像器4K、およびこれらを一体的に回転させるためのロータリー駆動部(後述)を備えている。この現像ユニット4は、エンジンコントローラ10により制御されている。そして、このエンジンコントローラ10からの制御指令に基づいて、現像ユニット4が回転駆動されるとともにこれらの現像器4Y、4C、4M、4Kが選択的に感光体2と当接してまたは所定のギャップを隔てて対向する所定の現像位置に位置決めされるとと当接してまたは所定のギャップを隔てて対向する所定の現像位置に位置決めされると2の表面にトナーを付与する。これによって、感光体22上の静電潜像が選択トナー色で顕像化される。

[0025]

上記のようにして現像ユニット 4 で現像されたトナー像は、一次転写領域 T R 1で転写ユニット 7 の中間転写ベルト 7 1 上に一次転写される。転写ユニット 7 は、複数のローラ7 2 ~ 7 5 に掛け渡された中間転写ベルト 7 1 と、ローラ 7 3 を回転駆動することで中間転写ベルト 7 1 を所定の回転方向 D 2 に回転させる駆動部とを備えている。そして、カラー画像をシート S に転写する場合には、感光体 2 2 上に形成される各色のトナー像を中間転写ベルト 7 1 上に重ね合わせてカラー画像を形成するとともに、カセット 8 から 1 枚ずつ取り出され搬送経路 F に沿って二次転写領域 T R 2 まで搬送されてくるシート S 上にカラー画像を二次転写する。

[0026]

このとき、中間転写ベルト71上の画像をシートS上の所定位置に正しく転写するため、二次転写領域TR2にシートSを送り込むタイミングが管理されている。具体的には、搬送経路F上において二次転写領域TR2の手前側にゲートローラ81が設けられており、中間転写ベルト71の周回移動のタイミングに合わせてゲートローラ81が回転することにより、シートSが所定のタイミングで二次転写領域TR2に送り込まれる。

[0027]

また、こうしてカラー画像が形成されたシートSは定着ユニット9、排出前ローラ82および排出ローラ83を経由して装置本体の上面部に設けられた排出トレイ部89に搬送される。また、シートSの両面に画像を形成する場合には、上記のようにして片面に画像を形成されたシートSの後端部が排出前ローラ82後方の反転位置PRまで搬送されてきた時点で排出ローラ83の回転方向を反転し、これによりシートSは反転搬送経路FRに沿って矢印D3方向に搬送される。そして、ゲートローラ81の手前で再び搬送経路Fに乗せられるが、このとき、二次転写領域TR2において中間転写ベルト71と当接し画像を転写されるシートSの面は、先に画像が転写された面とは反対の面である。このようにして、シートSの両面に画像を形成することができる。

[0028]

また、図2に示すように、各現像器4 Y、4 C、4 M、4 Kには該現像器の製造ロットや使用履歴、内蔵トナーの残量などに関するデータを記憶するメモリ9 $1\sim9$ 4 がそれぞれ設けられている。さらに、各現像器4 Y、4 C、4 M、4 Kにはコネク9 4 9 Y、4 9 C、4 9 M、4 9 Kがそれぞれ設けられている。そして、必要に応じて、これらが選択的

に本体側に設けられたコネクタ109と接続され、インターフェース105を介してCPU101と各メモリ91~94との間でデータの送受を行って該現像器に関する消耗品管理等の各種情報の管理を行っている。なお、この実施形態では本体側コネクタ109と各現像器側のコネクタ49K等とが機械的に嵌合することで相互にデータ送受を行っているが、例えば無線通信等の電磁的手段を用いて非接触にてデータ送受を行うようにしてもよい。

[0029]

[0030]

また、この他に、この装置1のCPU101には、装置筐体に設けられたカバーの開閉を検知するためのリミットスイッチ122、132が接続されている。これらについては後に詳述する。

[0031]

図3は図1の画像形成装置の外観斜視図である。前述したように、この画像形成装置1では、各現像器4Y等が支持フレーム40に対して着脱自在となっているとともに、感光体カートリッジ2が装置本体に対して着脱自在となっている。図3に示すように、装置本体1の側面部には開閉自在の外部カバー120が設けられており、ユーザがこの外部カバー120を開くと装置本体に設けられた感光体用開口部125を通して感光体カートリッジ2の側面部が露出する。そして、感光体カートリッジ2を固定するためのロックレバー126を矢印方向D4に回転させることでロックが解除され、図3の(ーy)軸方向に沿って感光体2を引き出すことが可能となる。また、感光体用開口部125を通して、感光体カートリッジ2を図3のy軸方向に挿入することで、新たな感光体カートリッジ2を装着することができる。そして、ロックレバー125により感光体カートリッジ2を置定する。こうして感光体カートリッジ2が装着されると、感光体用開口部125は感光体カートリッジ2の側面部によりほぼ塞がれる。

[0032]

また、装置本体には、現像器カートリッジの着脱操作を行うための現像器用開口部135が設けられている。そして、この現像器用開口部135を覆うように、開閉自在の内部カバー130が設けられている。この内部カバー130は、外部カバー120の内側に設けられている。つまり、外部カバー120が現像器用開口部135をも覆うように形成されているため、外部カバー120が閉じられた状態では内部カバー130を開くことはできない。逆に、内部カバー130を閉じなければ外部カバー120を閉じることができない。そして、ユーザがこの内部カバー130を開いたとき、現像ユニット4が所定の着脱位置に停止していれば、装着されている現像器の1つを現像器用開口部135を通して取り出すことが可能となる。また、1つの現像器を現像器用開口部135を通して装着することが可能となる。

[0033]

また、外部カバー120には突起部121aが設けられる一方、この突起部121aに対応する本体側の位置には孔121bが設けられている。さらに、孔121bの底部には、後述するリミットスイッチ122が取り付けられている。そして、外部カバー120が

閉じられるとこの突起部121aが本体側に設けられた孔121bに挿通され、孔121 bの底部に設けられたリミットスイッチ122を押すことでその接点を閉じるようになっている。

[0034]

内部カバー130にもこれと同様の機構が設けられている。すなわち、内部カバー130に突起部131aが設けられる一方、それと対応する本体側の位置には孔131bが設けられている。そして、内部カバー130が閉じられると突起部131aが孔131bに挿通され、孔131bの底部に設けられたリミットスイッチ132(後述)を押すことでその接点を閉じるようになっている。

[0035]

さらに、感光体用開口部 1 2 5 の奥にも図示を省略するリミットスイッチが設けられており、感光体カートリッジが装置本体に装着されるとその接点が閉じるようになっている。このリミットスイッチは、感光体カートリッジ 2 が装置本体に正しく装着された状態でその接点を閉じる一方、不完全な装着状態ではその接点を閉じることのないように設置されることが望ましい。というのは、不完全な装着状態で現像ユニット 4 を回転させて装置を破損することのないように、確実に装着されたことを検出する必要があるからである。

[0036]

このように、この画像形成装置1では、外部カバー120および内部カバー130のそれぞれについて、各リミットスイッチの接点の状態から当該カバーの開閉状態を知ることができるとともに、感光体カートリッジ2が装着されているか否かを知ることができるようになっている。そして、外部カバー130および内部カバー130が閉じられ、かつ、感光体カートリッジ2が装着された状態でのみ、前記した画像形成動作を実行するようになっている。

[0037]

[0038]

一方、24 V直流電源224の出力電圧は、装置1の可動部各部を駆動するモータ等のパワー系負荷に供給されている。このような負荷には、現像ユニット4を回転駆動するためのモータ48Mおよびそのドライバ48D(ロータリー駆動部)、感光体22を回転駆動するためのモータ28Mおよびそのドライバ28D、転写ユニット7のローラ75を回転駆動して中間転写ベルト71を回転させるためのモータ78Mおよびそのドライバ78Dなどが含まれる。

[0039]

また、CPU101は、3種類のイネーブル制御信号EN1、EN2およびEN3を出力可能となっている。これらの制御信号EN1~EN3は、それぞれ当該信号が入力されているユニットを動作状態/非動作状態に切り替えるための制御信号である。例えば、24 V直流電源 2 24 に入力されている制御信号EN1がHレベルのとき該電源 2 24 が動作する一方、制御信号EN1がLレベルのとき該電源 2 24 は動作停止状態となる。同様に、ドライバ48 Dは制御信号EN2により、またドライバ28 D、78 Dおよび 24 V電源で動作するその他のユニットは制御信号EN3により、それぞれ動作状態/非動作状態に制御される。このように、CPU101 は必要に応じて各ユニットを非動作状態に移行させることができるので、必要なユニットのみを動作状態とすることで装置の不必要な

動作を禁止したり、装置全体の消費電力の低減を図ることができる。

[0040]

次に、この画像形成装置における現像器の着脱操作について、図5および図6を参照してさらに詳しく説明する。図5は現像器カートリッジの停止位置を示す模式図である。また、図6はこの画像形成装置の現像器操作部を示す図である。なお、ここではユーザによる現像器の交換操作、すなわち装置に装着されている現像器が取り出され、新たに別の現像器が装着されるという操作について説明するが、取り出し、装着いずれかの操作についても動作は基本的に同じである。

[0041]

この画像形成装置では、エンジンコントローラ10および図示を省略するロータリーロック機構によって、現像ユニット4を図5に示す3種類の位置に位置決めし固定する。その3種類の位置とは:(a)ホームポジション;(b)現像位置;(c)着脱位置である。このうち、(a)ホームポジションは、装置1が画像形成動作を行わない待機状態にあるときに位置決めされる位置であり、図5(a)に示すように、各現像器4Y等に設けられた現像ローラ44がいずれも感光体22から離間した状態にあり、かつ、装置本体に設けられた現像器用開口部135を通していずれの現像器をも取り出すことのできない位置である。

[0042]

また、(b) 現像位置は、感光体22上の静電潜像を選択トナー色で顕像化する際に位置決めされる位置である。図5(b)に示すように、一の現像器(同図の例ではイエロー用現像器4Y)に設けられた現像ローラ44が感光体22と対向配置され、所定の現像バイアスを印加されることによって、静電潜像がトナーにより顕像化される。この現像位置においても、現像器用開口部135を通していずれかの現像器を取り出すことはできない。なお、画像形成動作中に外部カバー120が開かれた場合には、画像形成動作は直ちに中止され、現像ユニット4はホームポジションに移動した後停止する。

[0043]

この現像位置では、図5(b)に示すように、現像ユニット4に取り付けられた現像器のうち1つに設けられたコネクタ(この図ではシアン現像器4Cに設けられたコネクタ49C)と、本体側コネクタ109とが互いに対向配置されることとなる。この状態で、本体側コネクタ109が現像器に向けて移動することにより両コネクタが嵌合し、CPU101から現像器側のメモリ92等へのアクセスが可能となる。すなわち、この実施形態では、各現像器4Y等に設けられたメモリ91等とCPU101との通信を行うのに先立って、現像ユニット4を回転駆動して現像位置に位置決め固定するというステップを要する。

[0044]

また、CPU101から各メモリへのアクセスは、コネクタ109等の損耗を抑えて装置寿命の延伸を図るため、必要最小限の回数に制限している。具体的には次のようにしている。現像ユニット4に新たな現像器が装着されたときには、当該現像器のメモリに記憶された情報を読み出し、その情報をエンジンコントローラ10のRAM108に記憶しておく。そして、装置の使用状況に応じてその情報を随時更新記憶しておき、現像器が取り出されるときに、該取り出しに先立って、RAM108に記憶された最新の情報を現像器のメモリに書き込む。こうすることにより、現像器のメモリへのアクセスは、現像器の装着時および取り出し時のみ行えばよいこととなる。

[0045]

さらに、(c) 着脱位置は、現像器の着脱操作を行うときのみ取りうる位置である。現像ユニット4がこの着脱位置に位置決めされると、図5(c)に示すように、一の現像ユニットが現像器用開口部135に現れ、該開口部135を通して取り出すことができるようになる。図5(c)は、イエロー用の現像器4Yが現像器用開口部135に現れた状態を示している。また、現像器を装着されていない支持フレーム40に対しては、新たに現像器を装着することができるようになる。この着脱位置においては、いずれの現像器に設

けられた現像ローラ44も感光体22から十分に離間した位置におかれる。このように、 現像ユニット4が着脱位置に位置決めされたときに現像器用開口部135に現れた一の現 像器のみを取り出し可能としている。そのため、ユーザが不用意に現像器の着脱を行って 装置を損傷することがない。

[0046]

なお、この画像形成装置1では、4つの現像器4Y,4C,4M,4Kのそれぞれに対して上記した現像位置および着脱位置が設定されているので、現像ユニット4の停止位置は1つのホームポジションを含めて都合9箇所である。

[0047]

このように、この画像形成装置1では、画像形成動作を行わない待機状態では現像ユニット4はホームポジションに位置決めされている。また、画像形成動作中に外部カバー120が開かれたときにも現像ユニット4はホームポジションまで移動して停止する。そのため、ユーザが外部カバー120を開き、次いで内部カバー130を開いて現像器用開口部135を露出させたとしても、直ちに現像器が取り出せる状態とはならない。

[0048]

この画像形成装置1では、ユーザが図6に示す現像器操作部150を操作することによって、ロータリー現像ユニット4が着脱位置に移動し、これにより初めて現像器の着脱が可能となる。具体的には、現像器操作部150に設けられた交換指示ボタン151M、151K、151Cおよび151Yのうちユーザが交換を希望するトナー色に対応したボタンを押すと、エンジンコントローラ10に制御されたモータ48Mにより現像ユニット4が所定量回転駆動されて着脱位置に位置決めされ、これによって選択されたトナー色に対応する現像器が現像器用開口部135に現れる。そして、ユーザは、このように現像ユニット4が着脱位置に位置決めされた状態で内部カバー130を開き、現像器用開口部135を通して現像器4Y等の着脱を行うこととなる。

[0049]

上記のように構成された装置1では、CPU101が装置各部を制御することにより、以下の4つの動作モード:画像形成動作を実行可能な通常動作モード;画像形成動作の実行を禁止するが、現像器の着脱作業が可能な交換動作モード;画像形成動作および現像器の着脱作業を禁止する全停止モード;および、24V直流電源224の動作を停止する節電モードを選択的に実行可能となっている。

[0050]

図7は各動作モードと各制御信号の設定値との対応を示す図である。CPU101は、実行すべき装置の動作モードに応じて、各制御信号 $EN1\sim EN3$ をそれぞれ図7に示す組合せに設定する。これにより、各動作モードでは、必要なユニットが動作可能な状態になるとともに、不要なユニットの動作は停止される。なお、各動作モードのうち節電モードにおいては、各ユニットを動作させるための24 V電源自体の動作を停止するので、このときの制御信号EN2、EN3については任意である。

[0051]

図8はこの装置における動作モードの遷移を説明するフローチャートである。また、図9および図10は、それぞれスリープ処理および交換動作を示すフローチャートである。さらに、図11および図12は交換前処理および交換後処理をそれぞれ示すフローチャートである。

[0052]

この装置1では、外部装置から画像信号が与えられたときには、その画像信号に応じた画像を形成する画像形成動作を実行するが(通常動作モード)、画像信号が与えられない期間が所定時間にわたり継続したときには、装置の消費電力を節減するため、通常動作モードから節電モードに移行するようにしている。図8は、一連の画像形成動作が終了した後、新たな画像信号が与えられていないときのCPU101の処理動作を示している。

[0053]

画像形成動作を終了して新たな画像信号が与えられないとき、CPU101は、図8に 出証特2004-3107496 示すように、内部タイマによる計時を開始する(ステップS101)。そして、その計時結果が予め設定された所定の時間(例えば10分)に達したか否かを判定し(ステップS102)、所定時間に達したときには装置を節電モードに移行させるべくスリープ処理(ステップS103)を実行する。スリープ処理については後述する。

[0054]

一方、ステップS102において計時結果が所定時間未満であった場合(例えば、画像形成動作の終了直後など)には、リミットスイッチ122の端子電圧に基づき、外部カバー120の開閉状態を判定する(ステップS105)。このとき、外部カバー120が閉じていればステップS102に戻るので、計時結果が所定時間に達するか、外部カバー120が開かれるかのいずれかの時まで、計時を続けながらステップS102とS105とのループを繰り返すこととなる。この間に外部カバー120が開かれると、装置は交換動作モードに移行する(ステップS106)。すなわち、CPU101は制御信号EN3をLレベルに変化させ、これにより、制御回路、24V電源224および現像ユニット4を除く装置各部の動作は停止状態となる。

[0055]

交換動作モードでは、現像ユニット4の回転は可能であり、これにより現像器の着脱作業は可能である一方、他のユニットは動作停止しているので、通常動作モードに比べ消費電力を低く抑えることが可能である。特に、通常動作モードにおいて消費電力の大きい定着ユニット9のヒータ(図示省略)への通電を停止することで、より顕著な消費電力の削減効果を挙げることができる。交換動作モードでは画像形成を行わないので、上記のほか、露光ユニット6やシート搬送のための各部の動作を停止してもよい。これにより、消費電力をさらに低減することができる。

[0056]

しかしながら、この交換動作モードでは、24V電源224および現像ユニット4は動作状態にあるため、これらによる電力消費は依然として継続される。引き続いてユニットの着脱作業が行われる場合には問題はないとしても、この状態、つまり外部カバー120が開かれた状態のまま装置が放置されてしまった場合には、このような消費電力は無視できないものとなることがある。そこで、このような場合の電力の浪費を抑えるため、外部カバー120が開かれたときにはいったん計時をリセットして再スタートし(ステップS107)、そのまま所定時間が経過するまで放置された場合には(ステップS108)、スリープ処理(ステップS103)を実行して節電モードに移行するようにしている。なお、この実施形態において計時を開始してからスリープ処理を行うまでの上記「所定時間」は、ステップS102とステップS108とで同じ値としてもよいし、互いに異なる値としてもよい。

[0057]

スリープ処理では、図9に示すように、まず装置を節電モードに移行する(ステップS201)。すなわち、CPU101は、24 V直流電源224に与えるイネーブル制御信号EN1をHレベルからLレベルに変化させることで、該電源224の動作を停止させる。これにより、制御回路を除く装置各部の動作が停止され、これらの各部および電源224における電力の消費も最小限に抑えられる。

[0058]

この状態でCPU101は、リミットスイッチ122の端子電圧に基づき、外部カバー120が開いているか否かを判定する(ステップS202)。ここで、外部カバー120が開いていれば、カバーが閉じられるまでステップS202を繰り返す。一方、外部カバー120が閉じられていれば、続くステップS203に進み、カバーが開かれるまで待つ。そして、カバーが開かれると図8のメイン処理に戻ってステップS104を実行し、節電モードから通常動作モードに移行する。すなわち、電源224を再始動するとともに、装置各部を画像形成可能な状態に移行させる。

[0059]

この一連の処理により、節電モード実行中における装置の状態変化は次の通りとなる。

まず、装置が外部カバー120を閉じた状態で節電モードに移行した場合には、そのままカバーが閉じている間は節電モードを維持する一方(ステップS203のループ)、カバー120が開かれたときには節電モードを脱して通常動作モードに移行する。また、外部カバー120が開いた状態で節電モードに移行した場合には、いったんカバーが閉じられるのを待つとともに(ステップS202のループ)、その後カバーが再び開かれるのを待って(ステップS203のループ)、通常動作モードに移行する。このようにする理由については後述する。

[0060]

図8のステップS108に戻って、交換動作モードに移行してから所定時間が経過していなかった場合の処理について説明する。この場合には、リミットスイッチ132の端子電圧に基づき、内部カバー130が開いているか否かをさらに判定する(ステップS109)。内部カバー130が開いている場合には、装置は全停止モードを実行する。このとき、現像器の着脱操作はできない。現像ユニット4が着脱位置にないからである。

[0061]

この全停止モードは、内部カバー130が開いたときに現像ユニット4の回転を禁止することを目的としており、装置の消費電力を抑えることを目的とする前記の節電モードとは相違する。ここでは、CPU101が現像ユニット4に与えるイネーブル制御信号をレレベルとすることで現像ユニット4を停止状態とするが、内部カバー130が開いたときに作動する機械的なロック機構によって現像ユニット4の回転を規制するようにしてもよい。なお、内部カバー130が開かれたときに、節電モードと同様に電源224の動作を停止させた場合には、電源224の再始動に時間がかかる分、内部カバー130を閉じられたときの現像ユニット4の始動が遅れ、作業により時間がかかることになる。

[0062]

また、装置は、こうして全停止モードにあるときも、その状態のまま装置が所定時間放置された場合には、前述したスリープ処理を実行して節電モードに移行する (ステップS111)。

[0063]

一方、ステップS109において内部カバー130が閉じていた場合には、続いて交換指示ボタンが押されたかどうかを判定する(ステップS112)。具体的には、ユーザにより現像器操作部150のいずれかのボタン(図6)を押されたときにはそのボタンに対応した交換指示フラグがセットされているので、このフラグをチェックすることにより交換指示ボタンが押されたかどうかを判断する。

[0064]

ここで、交換指示ボタンが押されていないと判断したときは、ステップS114に進み、外部カバー120が開いていればステップS108に戻る。一方、外部カバー120が閉じていれば、すなわち、交換動作モードへの移行後に外部カバー120が閉じられた場合には、ユーザによる操作は終了したものとして通常動作モード(ステップS104)に移行する。

[0065]

次に、交換指示ボタンが押されていたときに実行する交換動作について、図10ないし図12を参照して説明する。この装置では、図8のステップS113における交換動作として、図10に示す交換動作を実行する。

[0066]

交換動作(図10)では、まず、交換前処理を実行する(ステップS401)。この交換前処理の内容は、図11に示すフローの通りである。すなわち、現像ユニット4を現像位置へ移動させ(ステップS501)、選択されたトナー色の現像器に設けられたメモリへ当該現像器の使用状況を示す情報を書き込み(ステップS502)、その後、選択された現像器が着脱可能な着脱位置に現像ユニット4を移動位置決めする(ステップS503)。これにより、ユーザは内部カバー130を開いて現像器の着脱操作を行うことが可能となる。

[0067]

図10に戻って、交換前処理(ステップS401)が終了すると、ユーザにより外部カバー120が閉じられるのを待つ(ステップS402)。そして、外部カバー120が閉じられると、ユーザによる現像器の交換が行われたか否かを判断する(ステップS403)。ここでの判断基準は、外部カバー120が閉じられる前に、内部カバー130の開閉操作が少なくとも1回行われたかどうかである。すなわち、交換指示ボタンが押された後、外部カバー120が閉じられるまでの間に内部カバー130の開閉が行われていれば、現像器の交換が行われたものと推定することができる一方、内部カバー130の開閉がなされないまま外部カバー120が閉じられた場合には、現像器の交換操作は行われていない。このような判断は、両カバーのそれぞれに対応して設けたリミットスイッチ122、132の端子電圧を監視しておくことにより可能である。

[0068]

現像器の交換がなされていた、つまり内部カバー130の開閉があった場合には、所定の交換後処理を直ちに実行する(ステップS404)。交換後処理の内容は図12に示すフローの通りである。すなわち、まず全停止モードから交換動作モードに移行することで現像ユニット4を回転駆動可能な状態とする(ステップS511)。続くステップS512は、ユーザによる現像器の交換操作が行われたどうかを判定するための処理ステップをある。ここでは、上記の通り、内部カバー130の開閉を検知したことにより交換操作がでわれたものと推定しているので、ここでの判断は「YES」であり、引き続きステップなされたものと推定しているので、ここでの判断は「YES」であり、引き続きステップを513以降の各処理を実行する。すなわち、現像ユニット4を現像位置に移動位置決めし(ステップS513)、新たに装着された現像器のメモリに記憶された情報を読み出し、ステップS514)。こうして読み出した情報については、エンジンコントローラ10のRAM108に記憶しておき、CPU101が随時参照するとともに必要に応じてその内容を更新記憶することで、各現像器の使用履歴を適正に管理することができる。

[0069]

そして、交換指示フラグをクリアし(ステップS515)、現像ユニット4をホームポジション(HP)に移動させる(ステップS516)。こうして一連の交換動作を終了する。

[0070]

図10に戻って、現像器が交換されないまま、つまり内部カバー130の開閉がなされないまま外部カバー120が閉じられた場合には、ステップS403において「NO」と判定される。この場合、直ちに交換後処理を実行するのではなく、所定時間の経過を待ってから交換後処理を実行する。すなわち、前記した放置状態を判定するための計時(図8のステップS101)とは独立に新たに計時を開始し(ステップS405)、そのまま計時結果が所定時間、例えば5秒が経過すれば交換後処理を実行する一方(ステップS406)、その間に外部カバー120が再度開かれた場合には、該カバー120が再度閉じられるのを待つステップS402へ戻る(ステップS407)。

[0071]

なお、現像器交換がされないまま外部カバー120が閉じられた後、所定時間が経過して(つまりステップS406において「YES」と判定されたとき)実行される交換後処理(図12)では、ステップS512における判断は現像器交換がされていないので「NO」となり、この場合、ステップS513およびS514はスキップされる。現在装着されている現像器はもともと装置に装着されていたものと同一であるため、現像器内のメモリの内容は装置本体側で既知のものであり新たに読み出す必要がないからである。以上が交換動作の内容である。

[0072]

以上、外部装置からの画像信号が与えられない場合の装置の状態遷移を説明してきたが、外部装置から新たな画像信号が入力された場合には、上記とは異なる動作をする。まず、装置が画像形成動作の実行を許容してよい状態、つまり外部カバー120、内部カバー130とも閉じられた状態で画像信号が与えられたときには、直ちに上記フローの実行を

中止して、その画像信号に応じた画像形成動作を実行する。例えば、節電モードを実行中に画像信号が与えられたとき両カバーとも閉じられていれば、CPU101は装置各部にHレベルのイネーブル制御信号を出力する。これにより装置は節電モードから通常動作モードへ復帰し、その画像信号に対応した画像形成動作を実行する。

[0073]

一方、いずれかのカバーが開いた状態で画像信号が与えられたときには、画像形成動作は不可能であるため、装置は現状を維持するとともに、外部装置に対し、所定の報知を行う。これにより、外部装置側では、画像形成装置1が画像形成動作を行えない状態にあることを把握し、画像信号の送信を中止したり、ユーザに報知するなど、適切な処置を取ることができる。また、カバーは閉じられていても、必要なユニットが装着されていなかった場合にも同様にすることができる。

[0074]

以上を整理すると、本画像形成装置1の状態遷移は以下のようになる:

- (1) 通常動作モードにおいて、画像信号が与えられず、またユーザによる操作も行われない状態で所定時間(上記の例では10分間)放置されると、節電モードに移行する。節電モードでは、24V電源224の動作が停止されているので、電力消費が少ない;
- (2) 通常動作モード実行中、または節電モード実行中で外部カバー120、内部カバー130とも閉じられているときに、画像信号が与えられたときは、直ちに通常動作モードを実行して画像形成動作を行う;
- (3) 通常動作モード実行中に外部カバー120が開かれたときには、交換動作モードに移行する。交換動作モードでは、現像ユニット4については回転可能として、ユーザによる現像器交換の便宜を図る一方、その他のユニットについては動作停止状態として、画像形成動作を禁止する。さらに、交換動作モードに移行した後、所定時間放置された場合には節電モードに移行する。これにより、装置が放置された場合の電力の浪費が抑えられる;
- (4) 外部カバー120に続き、内部カバー130が開かれたときには、全停止モードに移行する。これにより、現像ユニット4の回転は禁止される。この状態でさらに放置された場合には、節電モードに移行する;
- (5)節電モード中に外部カバー120が閉じられても動作は変化しないが、開かれたときには通常動作モードに復帰する;
- (6) 交換指示ボタンが押された後で外部カバー120が閉じられた場合、その前に現像器の交換(より厳密には、内部カバー130の開閉)がされたと判断したときは、新たな現像器のメモリ内容を読み出す等の交換後処理を直ちに実行する。一方、内部カバー130の開閉がなされないまま外部カバー120が閉じられた場合には、所定の開始待ち時間(上記の例では5秒間)が経過してから交換後処理を実行する。

[0075]

ここで、上記(5)のような動作とする理由は次の通りである。ユーザが節電モードにある装置のカバーを開くのは、装置に対して何らかの操作を行う意図を有しているためと考えられる。それに対して、節電モードの実行を続けたのでは装置は動作せず、ユーザの環保器の着脱を可能な状態とする構成の装置では、カバーが開かれたとき装置は節電モードを脱して何らかの動作、少なくともユニット交換動作が可能な状態となっていることがいる。一方、節電モード実行中に外部カバー120が閉じられた場合には、節電といいを脱する必要は必ずしもない。というのは、カバーが閉じられていれば他の操作(例えば外部装置からの画像信号入力)をきっかけとして通常動作モードに復帰させることができ、単に開いたまま放置されていたカバーが閉じられたというだけで装置が何らかの動作をする必要は必ずしもないからである。

[0076]

そこで、この装置では、節電モード実行中に外部カバー120が閉じられたときには現状を維持する一方、外部カバー120が開かれたときは、通常動作モードに復帰するよう

にしている。これにより、ユーザの望む動作を速やかに実行することができる。なお、外部カバー120が開かれたとき、少なくとも現像器着脱を可能とするための現像ユニット4の回転は可能となっていることが必要である一方、カバーが開いた状態で画像形成動作を行えるようにする必要はない。この装置では、外部カバーが開いていれば、通常動作モードに復帰してもその後直ちに交換動作モードに移行するので、この状態で現像器等の交換動作を行うことができる。

[0077]

また、上記(6)のような動作とする理由は次の通りである。交換指示ボタンを押すという操作は、ユーザが現像器の交換を目的として行うものである。しかしながら、指示ボタンを押した後、操作ミス等によって現像器の交換をしないまま外部カバー120を閉じてしまう場合もある。このような場合に、そのつど交換後処理を実行したのでは、ユーザが再度カバーを開いたときすぐに現像器が取り出せる(または装着できる)状態ではなくなり、ユーザは操作を初めからやり直さなければならない。これに対して、本実施形態のように、外部カバー120が閉じられてから交換後処理を開始するまでに適宜の開始待ち時間を設ければ、ユーザがいったん外部カバー120を閉じてもミスに気づいてすぐに開けば、現像器の着脱が可能な状態が保持されて上記のような問題は生じない。

[0078]

なお、現像器が交換された場合にはこのような開始待ち時間を設ける必要はないばかりか、装置がすぐに動作しないことに対するユーザの不満につながることもある。そこで、現像器の着脱が行われたとみなすことができる場合、具体的には、現像器の着脱が可能な状態(つまり現像ユニット 4 が着脱位置に停止した状態)でユーザによる内部カバー130の開閉操作が行われた場合には、外部カバー120が閉じられた後、直ちに交換後処理を実行する。少なくとも、内部カバー130の開閉がなかったときよりは待ち時間を短くするのがよい。

[0079]

また、ユーザが現像器着脱の意思を有していないが故に現像器の着脱を行わずに外部カバー120を閉めるケースもありうる。そこで、外部カバー120が閉じられた状態がある程度継続した場合には、やはり交換後処理を行うようにするのがよい。カバー閉後の動作開始までの待ち時間が短すぎると操作ミスに対する処置として不適切である一方、長すぎると以後の動作に遅滞を生じてしまうので、この開始待ち時間としては数秒程度が適当である。

[0080]

以上のように、この実施形態の画像形成装置では、外部カバー120が開かれ、現像器操作部150の交換指示ボタン151Y等が操作されることによって、現像器4Y等の着脱が可能な状態、より具体的には、現像ユニット4が着脱位置に位置決め停止した状態になる。この状態のとき、ユーザは内部カバー130を開いて現像器4Y等の着脱操作を行うことができる。そして、この状態で外部カバー120が閉じられると、交換後処理を行して現像ユニット4を回転させることで現像器の着脱は不可能な状態となる。このとき、外部カバー閉後、交換後処理を開始するまでの待ち時間は、外部カバー120が閉じられた場合には直ちに交換後処理を行う一方、着脱が行われずに外部カバー120が閉じられた場合には、5秒程度の切開の有無により判断する。現像器着脱の有無は、内部カバー130の開閉の有無により判断する。

[0081]

このようにすることで、次のような作用効果が得られる。まず、現像器の着脱が行われた後で外部カバー120が閉じられた場合には、装置は速やかに動作を開始して次の動作、例えば画像形成動作を実行することができる。一方、現像器の着脱を行わないままユーザが誤って外部カバー120を閉じた場合でも交換後処理はすぐには始まらないので、待ち時間の間にユーザが再び外部カバー120を開ければ、交換後処理は行われず装置はカ

[0082]

以上説明したように、この実施形態では、各現像器 4 Y, 4 M, 4 C, 4 Kが本発明の「プロセスユニット」に相当する。そして、これらの現像器を装着されるとともに、着脱位置および他の位置に位置決めされることで、装置を現像器の着脱可能な状態/不可能な状態に切り替える現像ユニット 4 が、本発明の「現像ロータリー」および「切り替え手段」として機能している。また、現像ユニット 4 を回転駆動するドライバ4 8 Dおよびモータ4 8 Mが、本発明の「駆動手段」に相当している。また、これら各部の動作を制御するエンジンコントローラ10、より詳しくは C P U 1 0 1 が本発明の「制御手段」として機能する。またエンジン部E G を覆う外部カバー120が「カバー部材」に相当している。また、各トナー色毎の交換指示ボタン151 Y 等を含む現像器操作部150が、本発明の「指示入力手段」に相当する。

[0083]

また、この実施形態では、本発明の「着脱口」である現像器用開口部135を覆う内部カバー130が、現像器の着脱を規制する「規制部材」として機能しており、その開閉状態を検知するリミットスイッチ132が本発明の「検知手段」として機能している。また、各現像器4Y等に設けられたメモリ91~94がそれぞれ本発明の「記憶手段」として機能する。さらに、この実施形態では、図10の交換動作において行う交換後処理(図11)が、本発明にいう「着脱禁止処理」に相当する。

[0084]

<第2実施形態>

図13はこの発明にかかる画像形成装置の第2実施形態の外観を示す図である。第2実施形態の装置と第1実施形態の装置との大きな違いは、第2実施形態の装置には現像器用開口部を覆う内部カバーが設けられていないことである。これに伴って、第2実施形態の装置では、内部カバーの開閉を検出するための構成が省かれている。その他の装置構成は前述した第1実施形態の装置とほぼ同じであるので、同一の構成には同一の符号を付して説明を省略する。なお、第2実施形態における外部カバー320および現像器用開口部335については、第1実施形態においてこれらと対応する構成とは異なる形状を有しているため異なる符号を付した。

[0085]

また、この実施形態の装置では、第1実施形態の装置において設けられていた現像器操作部151に代えて、ユーザからの交換指示を受け付ける操作部13が装置の上部パネルの前面に設けられている。この操作部13は、第1実施形態の装置における現像器操作部151と同様、本発明の「指示入力手段」として機能している。そして、この実施形態では、外部カバー320が閉じられた状態でユーザが操作部13に対し所定の交換指示操作を行うと、現像ユニット4が回転して着脱位置に移動する。また、外部カバー320が閉じられるまで現像ユニット4の回転は禁止される。以下、第2実施形態の装置の動作のうち、先に説明した第1実施形態と相違している点について説明する。

[0086]

図14は第2実施形態における動作モードの遷移を説明するフローチャートである。まず、ユーザによるカバーの開閉や交換指示がなかった場合の動作は基本的に第1実施形態と同じである(ステップS601~S604)。ただし、装置構成の相違に伴ってスリープ処理(ステップS603)の内容が異なっている。また、この実施形態では、ユーザにより外部カバー320が開かれると直ちに全停止モードに移行して現像ユニット4の回転を禁止する(ステップS605、S606)。したがって、この状態ではユーザは現像器の着脱作業を行うことはできない。その一方、カバーが閉じられているときには、常にユーザからの交換指示が与えられるのを待っており(ステップS607)、交換指示を受け付けると、後述する交換動作を実行する(ステップS608)。

[0087]

図15はこの実施形態におけるスリープ処理を示すフローチャートである。上記したように、この実施形態では、外部カバー320が閉じられた状態でユーザから操作部13に対し交換指示入力があったときのみ現像器の着脱を可能とする。そこで、この実施形態におけるスリープ処理では、装置が節電モードに移行した後(ステップS211)に外部カバー320が開かれると、再び閉じられるまで装置の状態は変化しない(ステップS212)。カバーが閉じられた状態で、ユーザから交換指示があれば(ステップS213)、交換動作を実行する(ステップS214)。また、外部から画像信号が与えられたときには節電モードを脱して通常の動作に戻る(ステップS215)。これ以外の場合には引き続き節電モードを維持する。

[0088]

図16はこの実施形態における交換動作を示すフローチャートである。ユーザからの交換指示入力を受け付けると、第1実施形態の装置と同様に交換前処理を実行して現像ユニット4を着脱位置へ移動させるとともに、内部タイマによる計時を開始する(ステップS701、S702)。ここで外部カバー320が開かれるのを待ち(ステップS703)、所定の時間(例えば5分)が経っても外部カバー320が開かれなかったときには、交換作業はキャンセルされたものとして現像ユニット4をホームポジションに戻す(ステップS705)。

[0089]

一方、外部カバー320が開かれると、上記したタイマとは別のタイマによる計時を開始する(ステップS706)。そして、外部カバー320が開かれている間、この計時を継続し、外部カバー320が閉じられた時点で計時を停止する(ステップS707、S708)。これにより、外部カバー320が開かれていた時間が計時される。そして、その計時結果に基づいて、現像器の交換がなされたか否かを判定する(ステップS709)。

[0090]

第1実施形態の装置では、内部カバーの開閉が行われたか否かによって交換作業の有無を判断していた。これに対し、内部カバーを設けない第2実施形態の装置では、上記した計時結果、つまり外部カバー320が開かれていた時間によって、交換作業の有無を判定する。すなわち、現像器の交換作業にはある程度の時間を要することから、外部カバー320が開かれていた時間が作業の所要時間よりも短ければ、交換作業はなされなかったものと判断することができる。例えば、外部カバー320が開かれて数秒後に再び閉じられたとすれば、その間に現像器の交換が行われたとは考えられない。その一方、外部カバー320が開かれていた時間が十分に長ければ、その間に現像器の交換が行われた蓋然性が高いといえる。そこで、この実施形態では、内部タイマによって計時された、外部カバー320が開かれていた時間が所定値(例えば10秒)以下であれば交換はなされなかったと判定する一方、これより長い時間カバーが開かれていたときには、交換がなされたものと判定する。

[0091]

ここで、現像器の交換がなされたと判定したときは、直ちに交換後処理を実行する(ステップS 7 1 3)。交換後処理の内容は第 1 実施形態(図 1 2)と同じである。一方、交換がなされなかったと判定したときは、新たな計時を開始し(ステップS 7 1 0)、所定時間の経過を待ってから(ステップS 7 1 1)、交換後処理を実行する。ここでの「所定時間」は、第 1 実施形態における「開始待ち時間」と同じ意味合いを持つものであり、ユーザの操作ミスを救済するために設けられる待ち時間である。なお、この待ち時間の間に外部カバー 3 2 0 が開かれたときには(ステップS 7 1 2)、ステップS 7 0 6 の処理に戻る。

[0092]

以上のように、この実施形態の画像形成装置では、ユーザにより交換指示がなされた後に外部カバー320が開かれていた時間の長さに基づいて、現像器の交換がなされたか否かを判定している。そして、その判定結果に応じて、外部カバー320が閉じられてから現像ユニット4が回転を始めるまでの時間を変えている。こうすることで、この第2実施

形態においても、第1実施形態の装置と同様の作用効果を得ることができる。

[0093]

<変形例>

なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記各実施形態は、「切り替え手段」である現像ユニット4の回転位置決め動作により、本発明の「プロセスユニット」としての現像器4Y等を着脱可能とする装置である。しかしながら、これに限定されるものでなく、例えば、感光体ユニット2または他のユニットを固定する電磁的ロック機構を備え、これを作動させてロックを解除することで当該ユニットの取り出しが可能となる装置に対しても、本発明を適用することが可能である。この場合には、当該ユニットが本発明の「プロセスユニット」であり、またロック機構が「切り替え手段」として機能することとなる。

[0094]

また、上記第1実施形態では、現像器用開口部135を覆う内部カバー130の開閉をリミットスイッチ132により検出することで、現像器4Y等の着脱の有無を判定している。しかしながら、このようなリミットスイッチ以外にも、例えば、フォトインタラプタやリードスイッチ等の光学的あるいは電磁気学的原理に基づくセンサによって着脱を検出するようにしてもよい。また、これらのセンサを現像ユニット4の支持フレーム40に取り付け、該フレーム40に現像器が装着されているか否かを検出するようにしてもよい。

[0095]

また、第2実施形態における交換作業の有無の判定方法を、第1実施形態の装置に適用することもできる。すなわち、第1実施形態の装置においては、内部カバー130が開かれてから再び閉じられたときには現像器の着脱がなされたと判定している。これを変更して、内部カバー130の開閉が検出されたとしてもその開かれていた時間が短時間であった場合には、現像器の着脱はなされなかったと判定するようにしてもよい。

[0096]

また、上記各実施形態では、その交換後処理において、現像器着脱がなされたときだけ 現像器メモリの読み出しを行うようにしているが、これに限定されるものではない。例え ば、交換後処理を実行する度に読み出しを行うようにしてもよい。ただし、コネクタ10 9、49Y等の損耗を抑制するためにはこれらの嵌合の回数をできるだけ少なくするのが 望ましく、その観点からは本実施形態のようにするのが望ましい。また、現像器または他 のユニットで本発明における「プロセスユニット」に相当するユニットにメモリを設けな い場合には、このような読み出し動作は当然に不要である。

[0097]

また、上記第1実施形態は、現像器を着脱するための内部カバー130を備えるとともに、現像ユニット4を着脱位置に移動させるための交換指示ボタン151Y等を備えているが、これらの一方または両方を備えない装置に対しても本発明を適用することが可能である。少なくとも、ユーザまたは外部装置からの要求を受けてプロセスユニットの着脱が可能な状態に移行するような装置において、本発明は特に有効である。

[0098]

さらに、上記実施形態の構成に限定されず、例えばブラック色トナーに対応した現像器を備えモノクロ画像を形成する装置や、中間転写ベルト以外の転写媒体(転写ドラム、転写シートなど)を備える装置、さらには複写機、ファクシミリ装置など他の画像形成装置に対しても本発明を適用することが可能である。

【図面の簡単な説明】

[0099]

- 【図1】この発明にかかる画像形成装置の第1実施形態を示す図。
- 【図2】図1の画像形成装置の電気的構成を示すブロック図。
- 【図3】図1の画像形成装置の外観斜視図。
- 【図4】この画像形成装置の給電経路を示す図。

ページ: 17/E

- 【図5】現像器カートリッジの停止位置を示す模式図。
- 【図6】この画像形成装置の現像器操作部を示す図。
- 【図7】各動作モードと各制御信号の設定値との対応を示す図。
- 【図8】第1実施形態における動作モードの遷移を説明するフローチャート。
- 【図9】スリープ処理を示すフローチャート。
- 【図10】交換動作を示すフローチャート。
- 【図11】交換前処理を示すフローチャート。
- 【図12】交換後処理を示すフローチャート。
- 【図13】この発明にかかる画像形成装置の第2実施形態の外観を示す図。
- 【図14】第2実施形態における動作モードの遷移を説明するフローチャート。
- 【図15】この実施形態におけるスリープ処理を示すフローチャート。
- 【図16】この実施形態における交換動作を示すフローチャート。

【符号の説明】

[0100]

4…現像ユニット(現像ロータリー、切り替え手段)、 4Y,4M,4C,4K…現像器(プロセスユニット)、 10…エンジンコントローラ(制御手段)、 13…操作部(指示入力手段)、 48D…ドライバ(駆動手段)、 48M…モータ(駆動手段)、 120,320…外部カバー(カバー部材)、 130…内部カバー(規制部材)、 132…リミットスイッチ(検知手段)、 150(151Y,151M,151C,151K)…現像器操作部(指示入力手段)、 224…直流電源(電源部)

【書類名】図面【図1】

【図3】

[図4]

【図5】

(a)ホームポジション

(b)現像位置

(c)着脱位置

【図6】

【図7】

制御信号			動作モード
EN1	EN2	EN3	(動作の説明)
Н	Н	Н	通常動作モード (全ユニット駆動許可)
Н	Н	L	交換動作モード (現像ユニットのみ駆動許可)
Н	L	L	全停止モード (全ユニット駆動禁止)
L	ø	φ	節電モード (駆動電源オフ)

【図9】

【図11】

【図12】

【図15】

【図16】

【書類名】要約書

【要約】

【課題】 ユーザによるプロセスユニットの着脱操作の利便性を向上させる。

【解決手段】 ユーザにより装置筐体の外部カバーが開かれ、交換指示ボタンが押されると、現像器交換動作を実行する。交換前処理(ステップS401)により現像器着脱が可能となった後で再び外部カバーが閉じられたとき(ステップS402)、その間に現像器交換がなされたか否かによって以後の動作が異なる(ステップS403)。交換がなされたときには、直ちに交換後処理を実行する(ステップS404)。一方、交換されなかったときは計時を行い(ステップS405)、所定の待ち時間が経過してから(ステップS406)交換後処理を実行する。この待ち時間の間にユーザが外部カバーを開くと現像器の着脱可能な状態が維持されており、直ちに作業を行うことができる。

【選択図】 図10

認定·付加情報

特許出願の番号 特願2004-299181

受付番号 50401748446

書類名 特許願

担当官 第二担当上席 0091

作成日 平成16年10月18日

<認定情報・付加情報>

【提出日】 平成16年10月13日

【特許出願人】

【識別番号】 000002369

【住所又は居所】 東京都新宿区西新宿2丁目4番1号

【氏名又は名称】 セイコーエプソン株式会社

【代理人】 申請人

【識別番号】 100105980

【住所又は居所】 大阪府大阪市北区西天満5丁目1番19号 高木

ビル4階 梁瀬・振角特許事務所

【氏名又は名称】 梁瀬 右司

【選任した代理人】

【識別番号】 100105935

【住所又は居所】 大阪府大阪市北区西天満5丁目1番19号 高木

ビル4階 梁瀬・振角特許事務所

【氏名又は名称】 振角 正一

特願2004-299181

出願人履歴情報

識別番号

[000002369]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住所

東京都新宿区西新宿2丁目4番1号

氏 名 セイコーエプソン株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
Color or black and white photographs
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.