Materiais condutores II: Materiais de elevada resistividade

Grupo: Eduardo Clark 96716 Gabriel Uliana 90286

- O que são materiais com alta resistividade?
- Resistência x Resistividade
- Segunda lei de Ohm:

$$R = \rho.L$$

R = Resistência

L = Comprimento do fio

A = Área de secção transversal do fio (bitola)

 ρ = Resistividade do material

Material	(ho) em $\Omega.m$ a 20 °C
Prata	1.59×10 ⁻⁸
Cobre	1.72×10 ⁻⁸
Ouro	2.44×10 ⁻⁸
Alumínio	2.82×10 ⁻⁸
Tungstênio	5.60×10 ⁻⁸
Niquel	6.99×10 ⁻⁸
Latão	0.8×10 ⁻⁷
Ferro	1.0×10 ⁻⁷
Estanho	1.09×10 ⁻⁷
Platina	1.1×10 ⁻⁷
Chumbo	2.2×10 ⁻⁷
Manganin	4.82×10 ⁻⁷
Constantan	4.9×10 ⁻⁷
Mercúrio	9.8×10 ⁻⁷
Nicromo	1.10×10 ⁻⁶
Carbono	3.5×10 ⁻⁵
Germânio	4.6×10 ⁻¹
Silício	6.40×10 ²
Vidro	10 ¹⁰ a 10 ¹⁴
Ebonite	approx. 10 ¹³
Enxofre	10 ¹⁵
Parafina	10 ¹⁷
Quartzo (fundido)	7.5×10 ¹⁷
PET	10 ²⁰
Teflon	10 ²² a 10 ²⁴

Rigidez dielétrica dos materiais

Isolantes Gasosos

Gases: Ar, anidrido carbônico, azoto, hidrogênio, gases raros, hexafluoreto de enxofre.

Líquidos

Os isolantes líquidos atuam geralmente em duas áreas, ou seja a refrigeração e a isolação. Seu efeito refrigerante é o de retirar o calor gerado internamente ao elemento condutor, transferindo-o aos radiadores de calor, mantendo, assim, dentro de níveis admissíveis o aquecimento do equipamento.

Líquidos:

Óleos minerais: óleos para transformadores, interruptores e cabos.

- Dielétricos líquidos: Óleos de silicone
- Óleos vegetais:

Tabela – 01: Estudo da rigidez dielétrica, teor de água e índice de acidez de óleo vegetal isolante

Amostras Öleo vegetal isolante 1 Mamona		Regidez dielétrica (kV)	Teor de água (ppm)	Indice de acidez (mmKOH/g) 0,919	
		83,90	290,03		
2	80% Mamona 20% Soja	78,56	224,73	0,814 0,647	
3	60% Mamona 40% Soja	74,29	232,91		
4	50% Mamona 50% Soja	71,36	218,75	0,596	
5	40% Mamona 60% Soja	67,74	173,47	0,431	
6	20% Mamona 80% Soja	63,86	96,52	0,271	
7	Soja	49,58	58,14	0,163	

Pastosos e Ceras:

As pastas ou ceras utilizadas eletricamente se caracterizam por um baixo ponto de fusão, podendo ter estrutura cristalina, baixa resistência mecânica e baixa higroscopia.

Pastosos e Ceras:

- Resinas e plásticos naturais: resinas fósseis e vegetais, materiais asfálticos, goma laca.
- Ceras: cera de abelhas de minerais, parafina.
- Vernizes e lacas: preparados de resinas e óleos naturais, produtos sintéticos, esmaltes para fios, vernizes solventes, lacas.
- Resinas sintéticas: (plásticos moldados e laminados) resinas fenólicas, caseína, borracha sintética, silicones.
- Compostos de celulose: (termoplásticos) acetato de celulose, nitrocelulose.

Isolantes Sólidos

Isolantes fibrosos

Fibras isolantes podem ser orgânicas e inorgânicas. As orgânicas mais encontradas são a celulose, o papel, o algodão, a seda e outras fibras sintéticas ou naturais. Já as inorgânicas são representadas sobretudo pelo amianto e fibra de vidro.

Materiais fibrosos (tratados e não tratados): algodão, seda, linha, papel, vidro, asbesto, madeira, celofane, rayon, nylon.

Materiais Cerâmicos

 Materiais cerâmicos se caracterizam geralmente pelo preço baixo, por um processo de fabricação relativamente simples, e devido às características elétricas, térmicas e físicas vantajosas que podem apresentar, quando o processo de fabricação é bem cuidado. • Cerâmicos: porcelana, vidro, micalex.

Materiais da Classe da Borracha

A borracha natural é obtida a partir do látex, que é o líquido retirado de certas plantas, e que, para seu uso industrial, sofre um tratamento com enxofre e outros aditivos, dando origem à vulcanização da borracha. Entretanto, com o desenvolvimento de borrachas sintéticas, a borracha natural perdeu sua importância, sendo que, para as aplicações elétricas, são válidas, hoje, praticamente apenas as borrachas sintéticas.

Tabela 4.4 - Características de Materiais Isolantes

Material	Fg × 10 ⁻⁴ a 60Hz e 20°C	Rigidez diel. E _d (kV/mm)	Temperat. limite (°C)	Resirri- transversal $(\Omega \times cm)^{br}$	Constante dielétrica E	Densidade g/cm³
Óleo mineral	10	10 a 14	95	25 × 1012	2	0,8 - 0,9
Askarel	10 a 20	13 a 16	135	1013 a 1014	- 5	1,3 1,7
Óleo silicone	2 a 10	10 a 30	- 60 a 200	7,9 × 1014	2,1 a 2,8	05, a 1,0
Parafina	1 a 2	20 a 25	70	> 1016	1,9 a 2,2	0,8 a 0,9
Goma-laca	100	20 a 30	70	1015 a 1016	3,5	1,3 a 1,5
PVC	10 a 10 ⁻²	40 a 50	75	1013 a 1016	3 a 4	1,2 a 1,4
Polietileno	2 a 5	- 30	85	1016 a 1017	2,3 a 2,4	0,9
Polistirol	3 a 50	25 a 50	50 a 80	1014 a 1018	2,5	1,05
Baquelite	100 a 400	20	150	1012 a 1014	4 a 4,5	4 a 7
Betume	170	50 a 100	60	1010	2,7	0,9 - 1,1
Papel para capacitores	20 a 30	35	100	101*	3,7	1,5
Papel para cabos	100 a 200	8 a 10	100	1016	3 a 3,5	0,8 a 0,9
Vidro e fibra de vidro	até 100	35 a 50	200 a 250	1011 a 1017	5 a 8	2 a 6
Amianto	-	2 a 30	200 a 250	1011 a 1017	5 a 8	2 a 6
Mica muscovita	0,5 a 3	5 a 40	500 a 600	1015 a 1016	6 a 7	3
Flogopita	0,5 a 5	4 a 40	800 a 1000	1013 a 1014	5 a 6	3