FYP: Serious Games for CS Education

1 Timeline & Overview

- 1. Proposal (25/10, wk5): What, Why, How (~Dissertation intro)
- 2. Lit. Review (25/11, wk8): "I know what I'm doing"
- 3. Progress Demo (20/2, wk21): "I made this"
- 4. Dissertation (5/5, wk31): "It works because I did it right"

2 Milestones

- Start with Proposal and Lit. Review—they are due quite early
- Proposal (1):
 - Big overview
 - Will be similar to the dissertation intro
 - Should be in future tense
- Lit. Review (2):
 - Show that you know what you're talking about, and what's out there
 - Write up what you've looked at
 - Very early!
- Estimated timeline:
 - Have something complete before progress demo
 - Have time for user testing: get users to try it out, see if they have learnt anything
- Progress Demo (3):
 - Working game with the basic functionality
 - Have something ready that users can test
 - -10%/20% (?) of the final mark
- Dissertation (4): 60 pages, $\sim 30,000$ words

3 Proposal: Why

- Games are good for education because:
 - Accessibility
 - Engagement
 - Instant feedback
- Read and go through literature with these in mind
- Find support and evidence of these (answer the 'why' part)
- See what else can be built upon

4 Proposal: How

- Have a rudimentary game idea in the proposal
- Game design basic outline:
 - 1. Learning objective: What do you want the player to learn?
 - 2. Player goals
 - 3. Player moves
 - 4. Interface
 - 5. Feedback & rewards
 - 6. Level design
 - 7. Platform: Keep it accessible (e.g. a web app is one of the best options)

5 Proposal: What (Foundations of Computation)

- Venn Diagrams
 - Already graphical
 - Think about player interaction
- Sets and Relations
 - Already graphical
- Automata
 - Project already exists—was very good
 - Would need to improve on this enough to justify a project
 - Maybe add push-down automata? (undecidable)
- Turing Machines

- Undecidable
- Hard to make accessible (how to do it?)
- Have to find many simple challenges
- Lambda Calculus
 - Interactive tutorial
 - Hard to find a game in there

6 Proposal: What (History of Proof Theory)

- Aristotle's Syllogisms
 - Can be linked with Venn diagrams
- First-order logic
 - Predicate logic: propositional logic with quantifiers by Gottlob Frege
 - Mathematical notation:
 - * $\wedge, \vee, \neg, \rightarrow, A(x)$ "x is A, A holds for all/some x"
 - * All A are $B, \forall x. A(x) \to B(x)$
 - * Some A are not B, $\exists x. A(x) \land \neg B(x)$
- Natural Deduction
 - Decide on a learning objective
 - Challenge is in making a good interface
- Open Deduction
 - Make derivations from set of rules
 - Assumption + conclusion
- Natural Deduction & Open Deduction
 - Been tried before (last year)
 - Implementation not so good