Parte I

Na parte I do teste não será pedido apresentar os cálculos auxiliares.

- 1. A função $y(t) = e^{t^2}$:
 - \square é solução da EDO y'=2y
 - \boxtimes é solução da EDO y'=2ty
 - □ não é solução de nenhuma das EDOS anteriores.

Cálculos auxiliares:

Se $y(t)=e^{t^2}$ então $y'(t)=2te^{t^2}$, para todo o $t\in {f R}$ pelo que

$$y'(t) = 2te^{t^2} = 2ty(t) \qquad \forall t \in \mathbf{R}$$

- 2. A função $y(t)=t\ln(2t)$ é solução da EDO $y'-\frac{1}{t}y=a$
 - \boxtimes se a=1
 - \square se a=2
 - \Box y não é solução para nenhum dos valores anteriores.

Cálculos auxiliares:

A função $y(t) = t \ln(2t)$ verifica $y'(t) = \ln(2t) + 1$. Assim

$$y'(t) - \frac{1}{t}y(t) = \ln(2t) + 1 - \frac{1}{t}t\ln(2t) = 1$$

3. O campo de direcções

corresponde à EDO

$$\boxtimes y' = \frac{y-3}{t+1}$$

$$\Box y' = 4;$$

$$\Box y' = t.$$

Cálculos auxiliares:

A soluções da EDO y'=4 têm declive constante em todos os pontos (igual a 4) e as soluções da EDO y'=t têm declive constante ao longo das rectas verticais (mesma coordenada t). Por outro lado, observa-se que no campo de direcções apresentado as soluções têm declive nulo nos pontos com coordenada y=3 e tendem a ser verticais quando nos aproximarmos dos pontos com coordenada t=-1.

Resolução alternativa:

Trata-se de uma EDO separável que podemos resolver:

- A solução constante é y(t)=3, para todo $t \in \mathbf{R}$.
- As soluções não constantes verificam

$$\frac{y'}{y-3} = \frac{1}{t+1}$$

donde ln(|y-3|) = ln(|t+1|) + C e então

$$y(t) = K(t+1) + 3$$

com K constante. Assim, as soluções desta EDO são as rectas que passam pelo ponto (-1,3).

4. A mudança de variável $u=y^2+t$ transforma a EDO $y'=\frac{ty^2+t^2-1}{2y}$

$$\square$$
 na EDO $u'=tu-1$

$$\square$$
 na EDO $u'=2tu$.

Cálculos auxiliares:

Se $u=y^2+t$ então u'=2yy'+1. A EDO indicada pode escrever-se

$$2yy' = ty^2 + t^2 - 1$$

ou, equivalentemente, $2yy'+1=ty^2+t^2$. Como u'=2yy'+1 e $ty^2+t^2=t(y^2+t)$ obtemos

$$u' = tu$$

Parte II

Considere a EDO de primeira ordem:

$$y' - ty = -ty^3$$

- 1. Resolva a EDO encontrando a solução geral. (Sugestão: multiplique a equação por y^{-3} e efectue a mudança de variável $u=y^{-2}$.)
- 2. Determine a solução desta EDO que verifica y(0) = -2. Determine a solução desta EDO que verifica y(0) = -2. Qual o intervalo aberto maximal onde está definida esta solução?

Resolução:

1. Multiplicando a equação por y^{-3} obtemos a EDO

$$y^{-3}y' - ty^{-2} = -t$$

Se $u=y^{-2}$ então $u'=-2y^{-3}y'$. Multiplicando ainda a EDO anterior por -2 obtemos

$$-2y^{-3}y' + 2ty^{-2} = +2t$$

Efectuando a mudança de variável indicada obtemos

$$u' + 2tu = +2t$$

Resolvemos esta EDO lineal: uma primitiva de a(t)=2t é $A(t)=t^2$. Como

$$\int 2te^{t^2}dt = e^{t^2} + C$$

obtemos $u(t) = e^{-t^2}(e^{t^2} + C) = 1 + Ce^{-t^2}$ donde $y(t)^2 = \frac{1}{1 + Ce^{-t^2}}$ e portanto

$$y(t) = \pm \frac{1}{\sqrt{1 + Ce^{-t^2}}}$$

ou y(t) = 0 (solução perdida ao multiplicar por y^{-3}).

2. Se y(0)=-2 então y(t) deve ser da forma $y(t)=-\frac{1}{\sqrt{1+Ce^{-t^2}}}$, verificando

$$-2 = -\frac{1}{\sqrt{1 + Ce^0}}$$

pelo que $\sqrt{1+C}=1/2$ e C=1/4-1=-3/4, donde

$$y(t) = -\frac{1}{\sqrt{1 - 3/4e^{-t^2}}}$$

A solução está definida para $1-3/4e^{-t^2}>0$, ou seja $4/3>e^{-t^2}$ ou, equivalentemente,

$$ln(4/3) > -t^2$$

Como $\ln(4/3)$ é positivo e $-t^2$ é sempre negativo, o domínio é ${f R}$.