Q1(1):

$$\log_{10}(ax)\log_{10}(bx) + 1 = 0$$

$$\iff (\log_{10} a + \log_{10} x)(\log_{10} b + \log_{10} x) + 1 = 0$$

$$\iff (\log_{10} x)^2 + (\log_{10} a + \log_{10} b)(\log_{10} x) + (1 + \log_{10} a \log_{10} b) = 0$$

Regard it as a quadratic equation for $\log_{10} x$, we have

$$\Delta = (\log_{10} a + \log_{10} b))^2 - 4(1)(1 + \log_{10} a \log_{10} b) \ge 0$$

$$(\log_{10} a - \log_{10} b)^2 \le 4$$

$$\log_{10} \frac{a}{b} \le -2 \text{ or } \log_{10} \frac{a}{b} \ge 2$$

$$\frac{a}{b} \le 10^{-2} \text{ or } \frac{a}{b} \ge 10^2$$

For the former case, we have also the constrain $\frac{a}{b} > 0$ and a, b > 0.

Therefore, we have
$$\frac{a}{b} \ge \boxed{100}$$
 or $\boxed{\frac{1}{100}} > \frac{a}{b} > \boxed{0}$.

Q1(2):

We have $\sin 2\theta = 2\sin\theta\cos\theta$

$$= -2\sqrt{\left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right)\left(\frac{1}{2} - \frac{1}{2\sqrt{2}}\right)}$$

$$= -2\sqrt{\left(\frac{1}{4} - \frac{1}{8}\right)}$$

$$= -\frac{1}{\sqrt{2}}.$$

$$=-\frac{1}{\sqrt{2}}$$
.

Also, $\cos 2\theta = 2\cos^2 \theta - 1$

$$=2(\frac{1}{2}+\frac{1}{2\sqrt{2}})-1$$

$$=\frac{1}{\sqrt{2}}.$$

As $\sin 2\theta < 0$ and $\cos 2\theta > 0$, we have 2θ lies on quadrant IV. Therefore, for

 $0 \le 2\theta < 4\pi$, we have $2\theta = \frac{7\pi}{4}$ or $\frac{15\pi}{4}$.

Moreover, as $\sin\theta < 0$ and $\cos\theta > 0$, we have θ also lies on quadrant IV. Therefore, we have only $2\theta = \boxed{\frac{15\pi}{4}}$.

(Note: One must evaluate at least two among those trigonometric ratios of 2θ so as to reject one possible value of 2θ .)

Q1(3):

$$\begin{aligned} 2^y - 2^{-y} &= x + \sqrt{x^2 + 1} + \frac{1}{x + \sqrt{x^2 + 1}} \\ &= x + \sqrt{x^2 + 1} + x - \sqrt{x^2 - 1} \text{ (rationalised the latter part)} \\ &= \boxed{2}x. \end{aligned}$$

Q1(4):

As the domain for $\log_2(x)$ is $x \in (0, +\infty)$, we have:

$$\log_3(\log_2(\log_3(\log_2 x))) > 0$$
$$\log_2(\log_3(\log_2 x)) > 1$$
$$\log_3(\log_2 x) > 2$$
$$\log_2 x > 9$$
$$x > 2^9 = \boxed{512}.$$

Q1(5):

The only case that two digits 11 are remained after borrowing happened in the substraction is 20 - 9. However, this case is prohibited as 0 is not allowed to use. Therefore, no borrowing is allowed in the subtraction.

Then, the leading digit of the five-digit number will be 1, and other digits of the five-digit number will be in a pair of (9,8),(7,6),(5,4) or (3,2) with the corresponding digits of the four-digit number.

Therefore, the total number of such five-digit number and four-digit number will be the number of permutations of that four pairs, i.e. $4! = \boxed{24}$.

Q2:

(1),(2),(3): Refer to the draft:

By counting directly, we have:

 $c_1, ..., c_6: \boxed{0, 1, 3, 6, 10, 15}$

 $i_1,...,i_6: \boxed{0,0,0,1,5,15}$

 $r_1, ..., r_6: \boxed{1, 2, 4, 8, 16, 31}$

(2): As two points can join a line, we have $c_n = \boxed{\binom{n}{2}}$.

As four distanct points guarantees an intersection, we have $i_n = \boxed{\binom{n}{4}}$

Observe that each chord increases the number of regions by 1 and each intersection increases further the number of regions by 1. With the original 1 region of the circle, we have $r_n = \boxed{1 + \binom{n}{2} + \binom{n}{4}}$.

(Note: The cases n=5,6 are a bit complicated and the corresponding values might be difficult to count. It is recommended to find out the general expression first and then calculate the value rather than counting.)

Q3:

(1): Firstly, as 3 is a x-intercept of C, we have 27-36+3a+b=0, i.e. 3a+b=9. Also, the slope of the tangent to C is given by $y'=3x^2-8x+a$. As C is tangent to the x-axis (whose slope is 0) at x=3, we have 27-24+a=0, i.e. $a=\boxed{-3}$. Substitue a=-3 into the former equation, we have $b=9+9=\boxed{18}$.

(2): We are going to solve $x^3 - 4x^2 - 3x + 18 = 0$. As we know, x = 3 is a solution. Therefore, we can do the factorisation:

$$(x-3)(x^2 - x - 6) = 0$$

$$(x-3)^2(x+2) = 0$$

$$x = \boxed{-2,3}$$

(3): The area=
$$\int_{-2}^{3} (x^3 - 4x^2 - 3x + 18) dx$$

= $\left[\frac{x^4}{4} - \frac{4x^3}{3} - \frac{3x^2}{2} + 18x\right]_{-2}^{3}$

$$= \frac{81}{4} - 36 - \frac{27}{2} + 54 - 4 - \frac{32}{3} + 6 + 36$$
$$= \left\lceil \frac{625}{12} \right\rceil.$$

Alternative To simplify the calculation, we can compute the integral in the following way instead:

$$\begin{split} &\int_{-2}^{3} (x-3)^2 (x+2) dx \\ &= \frac{1}{3} \int_{-2}^{3} (x+2) d((x-3)^3) \\ &= \frac{1}{3} (x-3)^3 (x+2) |_{-2}^3 - \frac{1}{3} \int_{-2}^3 (x-3)^3 d(x+2) \\ &= -\frac{1}{3} \int_{-2}^{3} (x-3)^3 d(x-3) \\ &= -\frac{1}{12} (x-3)^4 |_{-2}^3 \\ &= \frac{5^4}{12} \\ &= \boxed{\frac{625}{12}}. \end{split}$$