- **30** This A is not invertible for c = 7 (equal columns), c = 2 (equal rows), c = 0 (zero column).
- **31** Elimination produces the pivots a and a-b and a-b. $A^{-1} = \frac{1}{a(a-b)} \begin{bmatrix} a & 0-b \\ -a & a & 0 \\ 0-a & a \end{bmatrix}$.
- **32** $A^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. When the triangular A alternates 1 and -1 on its diagonal,

 A^{-1} is *bidiagonal* with 1's on the diagonal and first superdiagonal.

- **33** x = (1, 1, ..., 1) has Px = Qx so (P Q)x = 0.
- **34** $\begin{bmatrix} I & 0 \\ -C & I \end{bmatrix}$ and $\begin{bmatrix} A^{-1} & 0 \\ -D^{-1}CA^{-1} & D^{-1} \end{bmatrix}$ and $\begin{bmatrix} -D & I \\ I & 0 \end{bmatrix}$.
- **35** A can be invertible with diagonal zeros. B is singular because each row adds to zero.
- **36** The equation LDLD = I says that LD = pascal(4, 1) is its own inverse.
- **37** hilb(6) is not the exact Hilbert matrix because fractions are rounded off. So inv(hilb(6)) is not the exact either.
- **38** The three Pascal matrices have $P = LU = LL^{T}$ and then $inv(P) = inv(L^{T})inv(L)$.
- **39** Ax = b has many solutions when A = ones (4,4) = singular matrix and b = ones (4,1). $A \setminus b$ in MATLAB will pick the shortest solution x = (1,1,1,1)/4. This is the only solution that is combination of the rows of A (later it comes from the "pseudoinverse" $A^+ = \text{pinv}(A)$ which replaces A^{-1} when A is singular). Any vector that solves Ax = 0 could be added to this particular solution x.
- **40** The inverse of $A = \begin{bmatrix} 1 & -a & 0 & 0 \\ 0 & 1 & -b & 0 \\ 0 & 0 & 1 & -c \\ 0 & 0 & 0 & 1 \end{bmatrix}$ is $A^{-1} = \begin{bmatrix} 1 & a & ab & abc \\ 0 & 1 & b & bc \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$. (This

would be a good example for the cofactor formula $A^{-1} = C^{T}/\det A$ in Section 5.3)

41 The product $\begin{bmatrix} 1 & & & \\ a & 1 & & \\ b & 0 & 1 & \\ c & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ 0 & 1 & & \\ 0 & d & 1 & \\ 0 & e & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & f & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ a & 1 & & \\ b & d & 1 & \\ c & e & f & 1 \end{bmatrix}$

that in this order the multipliers shows a, b, c, d, e, f are unchanged in the product (important for A = LU in Section 2.6).

- **42** $MM^{-1} = (I_n UV) (I_n + U(I_m VU)^{-1}V)$ (this is testing formula 3) $= I_n UV + U(I_m VU)^{-1}V UVU(I_m VU)^{-1}V$ (keep simplifying) $= I_n UV + U(I_m VU)(I_m VU)^{-1}V = I_n$ (formulas 1, 2, 4 are similar)
- **43** 4 by 4 still with $T_{11} = 1$ has pivots 1, 1, 1, 1; reversing to $T^* = UL$ makes $T_{44}^* = 1$.
- **44** Add the equations $Cx = \mathbf{b}$ to find $0 = b_1 + b_2 + b_3 + b_4$. Same for $Fx = \mathbf{b}$.
- **45** The block pivots are A and $S = D CA^{-1}B$ (and d cb/a is the correct second pivot of an ordinary 2 by 2 matrix). The example problem has $S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 3 & 3 \end{bmatrix} = \begin{bmatrix} -5 & -6 \\ -6 & -5 \end{bmatrix}$.

46 Inverting the identity A(I + BA) = (I + AB)A gives $(I + BA)^{-1}A^{-1} = A^{-1}(I + AB)^{-1}$. So I + BA and I + AB are both invertible or both singular when A is invertible. (This remains true also when A is singular: Problem 6.6.19 will show that AB and BA have the same nonzero eigenvalues, and we are looking here at $\lambda = -1$.)

Problem Set 2.6, page 102

1
$$\ell_{21} = 1$$
 multiplied row 1; $L = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ times $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix} = c$ is $Ax = b$: $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$.

2
$$Lc = b$$
 is $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$, solved by $c = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$ as elimination goes forward. $Ux = c$ is $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$, solved by $x = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ in back substitution.

3 $\ell_{31} = 1$ and $\ell_{32} = 2$ (and $\ell_{33} = 1$): reverse steps to get Au = b from Ux = c: 1 times (x+y+z=5)+2 times (y+2z=2)+1 times (z=2) gives x+3y+6z=11.

4
$$Lc = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix}; \quad Ux = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 \\ 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix}; \quad x = \begin{bmatrix} 5 \\ -2 \\ 2 \end{bmatrix}.$$

5
$$EA = \begin{bmatrix} 1 \\ 0 & 1 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 4 & 2 \\ 6 & 3 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 4 & 2 \\ 0 & 0 & 5 \end{bmatrix} = U$$
. With E^{-1} as L , $A = LU = \begin{bmatrix} 1 \\ 0 & 1 \\ 3 & 0 & 1 \end{bmatrix} U$.

6
$$\begin{bmatrix} 1 \\ 0 & 1 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 & 1 \\ 0 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -6 \end{bmatrix} = U$$
. Then $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} U$ is the same as $E_{21}^{-1}E_{32}^{-1}U = LU$. The multipliers $\ell_{21}, \ell_{32} = 2$ fall into place in L .

8
$$E = E_{32}E_{31}E_{21} = \begin{bmatrix} 1 & & & \\ & 1 & \\ & -c & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ & 1 \\ -b & & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ -a & 1 \\ & & 1 \end{bmatrix} = \begin{bmatrix} 1 & & \\ -a & 1 \\ ac - b & -c & 1 \end{bmatrix}.$$

The multipliers are just a, b, c and the upper triangular U is I. In this case A = L and its inverse is that matrix $E = L^{-1}$.

9 2 by 2:
$$d = 0$$
 not allowed; $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & & \\ l & 1 & \\ m & n & 1 \end{bmatrix} \begin{bmatrix} d & e & g \\ f & h \\ i \end{bmatrix}$ $d = 1, e = 1$, then $l = 1$ $f = 0$ is not allowed **no pivot in row 2**

10 c=2 leads to zero in the second pivot position: exchange rows and not singular. c=1 leads to zero in the third pivot position. In this case the matrix is *singular*.

11
$$A = \begin{bmatrix} 2 & 4 & 8 \\ 0 & 3 & 9 \\ 0 & 0 & 7 \end{bmatrix}$$
 has $L = I$ (A is already upper triangular) and $D = \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix}$; $A = LU$ has $U = A$; $A = LDU$ has $U = D^{-1}A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ with 1's on the diagonal.

$$\mathbf{12} \ A = \begin{bmatrix} 2 & 4 \\ 4 & 11 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = LDU; \ \boldsymbol{U} \ \text{is} \ \boldsymbol{L}^{\mathrm{T}}$$

$$\begin{bmatrix} 1 & 4 & 0 \\ 4 & 1 & \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 0 \\ 0 & -4 & 4 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 1 & \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = LDL^{\mathrm{T}}.$$

13
$$\begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix} = \begin{bmatrix} 1 & & & & & & a & & a \\ 1 & 1 & & & & \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a & a & a & a & a \\ & b - a & b - a & b - a \\ & & c - b & c - b \\ & & & d - c \end{bmatrix}$$
. Need
$$\begin{bmatrix} a \neq 0 \text{ All of the} \\ b \neq a \text{ multipliers} \\ c \neq b \text{ are } \ell_{ij} = 1 \\ d \neq c \text{ for this } A$$

15
$$\begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} c = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$$
 gives $c = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Then $\begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix} x = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ gives $x = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$. $Ax = b$ is $LUx = \begin{bmatrix} 2 & 4 \\ 8 & 17 \end{bmatrix} x = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$. Forward to $\begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix} x = \begin{bmatrix} 2 \\ 3 \end{bmatrix} = c$.

16
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} c = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 gives $c = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$. Then $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} x = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$ gives $x = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$. Those are the forward elimination and back substitution steps for $Ax = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$.

- **17** (a) L goes to I (b) I goes to L^{-1} (c) LU goes to U. Elimination multiply by L^{-1} !
- **18** (a) Multiply $LDU = L_1D_1U_1$ by inverses to get $L_1^{-1}LD = D_1U_1U^{-1}$. The left side is lower triangular, the right side is upper triangular \Rightarrow both sides are diagonal. (b) L, U, L_1, U_1 have diagonal 1's so $D = D_1$. Then $L_1^{-1}L$ and U_1U^{-1} are both I.

19
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} = LIU; \begin{bmatrix} a & a & 0 \\ a & a+b & b \\ 0 & b & b+c \end{bmatrix} = (same L) \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
 (same U). A tridiagonal matrix A has **bidiagonal factors** L and U .

20 A tridiagonal T has 2 nonzeros in the pivot row and only one nonzero below the pivot (one operation to find ℓ and then one for the new pivot!). T = bidiagonal L times bidiagonal U.

21 For the first matrix A, L keeps the 3 lower zeros at the start of rows. But U may not have the upper zero where $A_{24} = 0$. For the second matrix B, L keeps the bottom left zero at the start of row 4. U keeps the upper right zero at the start of column 4. One zero in A and two zeros in B are filled in.

22 Eliminating *upwards*,
$$\begin{bmatrix} 5 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 2 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix} = L$$
. We reach a *lower* triangular L , and the multipliers are in an *upper* triangular U . $A = UL$ with $U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

- 23 The 2 by 2 upper submatrix A_2 has the first two pivots 5, 9. Reason: Elimination on A_2 starts in the upper left corner with elimination on A_2 .
- **24** The upper left blocks all factor at the same time as A: A_k is $L_k U_k$.
- **25** The i, j entry of L^{-1} is j/i for $i \geq j$. And $L_{i,i-1}$ is (1-i)/i below the diagonal
- **26** $(K^{-1})_{ij} = j(n-i+1)/(n+1)$ for $i \ge j$ (and symmetric): $(n+1)K^{-1}$ looks good.

Problem Set 2.7, page 115

$$\mathbf{1} \ A = \begin{bmatrix} 1 & 0 \\ 9 & 3 \end{bmatrix} \text{has } A^{\mathsf{T}} = \begin{bmatrix} 1 & 9 \\ 0 & 3 \end{bmatrix}, A^{-1} = \begin{bmatrix} 1 & 0 \\ -3 & 1/3 \end{bmatrix}, (A^{-1})^{\mathsf{T}} = (A^{\mathsf{T}})^{-1} = \begin{bmatrix} 1 & -3 \\ 0 & 1/3 \end{bmatrix};$$

$$A = \begin{bmatrix} 1 & c \\ c & 0 \end{bmatrix} \text{has } A^{\mathsf{T}} = A \text{ and } A^{-1} = \frac{1}{c^2} \begin{bmatrix} 0 & c \\ c & -1 \end{bmatrix} = (A^{-1})^{\mathsf{T}}.$$

- **2** $(AB)^{\mathsf{T}}$ is not $A^{\mathsf{T}}B^{\mathsf{T}}$ except when AB = BA. Transpose that to find: $B^{\mathsf{T}}A^{\mathsf{T}} = A^{\mathsf{T}}B^{\mathsf{T}}$.
- **3** (a) $((AB)^{-1})^{\mathrm{T}} = (B^{-1}A^{-1})^{\mathrm{T}} = (A^{-1})^{\mathrm{T}}(B^{-1})^{\mathrm{T}}$. This is also $(A^{\mathrm{T}})^{-1}(B^{\mathrm{T}})^{-1}$. (b) If U is upper triangular, so is U^{-1} : then $(U^{-1})^{\mathrm{T}}$ is *lower* triangular.
- **4** $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ has $A^2 = 0$. The diagonal of $A^T A$ has dot products of columns of A with themselves. If $A^T A = 0$, zero dot products \Rightarrow zero columns $\Rightarrow A =$ zero matrix.

5 (a)
$$x^{T}Ay = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 5$$
 (b) $x^{T}A = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$ (c) $Ay = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$.

6
$$M^{\mathrm{T}} = \begin{bmatrix} A^{\mathrm{T}} & C^{\mathrm{T}} \\ B^{\mathrm{T}} & D^{\mathrm{T}} \end{bmatrix}$$
; $M^{\mathrm{T}} = M$ needs $A^{\mathrm{T}} = A$ and $B^{\mathrm{T}} = C$ and $D^{\mathrm{T}} = D$.

- 7 (a) False: $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$ is symmetric only if $A = A^{T}$. (b) False: The transpose of AB is $B^{T}A^{T} = BA$ when A and B are symmetric $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$ transposes to $\begin{bmatrix} 0 & A^{T} \\ A^{T} & 0 \end{bmatrix}$. So $(AB)^{T} = AB$ needs BA = AB. (c) True: Invertible symmetric matrices have symmetric in verses! Easiest proof is to transpose $AA^{-1} = I$. (d) True: $(ABC)^{T}$ is $C^{T}B^{T}A^{T} (= CBA$ for symmetric matrices A, B, A and C.
- **8** The 1 in row 1 has n choices; then the 1 in row 2 has n-1 choices ... (n!) overall).

- **9** $P_1P_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ but $P_2P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. If P_3 and P_4 exchange *different* pairs of rows, $P_3P_4 = P_4P_3$ does both exchanges.
- **10** (3, 1, 2, 4) and (2, 3, 1, 4) keep 4 in place; 6 more even *P*'s keep 1 or 2 or 3 in place; (2, 1, 4, 3) and (3, 4, 1, 2) exchange 2 pairs. (1, 2, 3, 4), (4, 3, 2, 1) make 12 even *P*'s.
- 11 $PA = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 6 \\ 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$ is upper triangular. Multiplying on the right by a permutation matrix P_2 exchanges the columns. To make this A lower triangular, we also need P_1 to exchange rows 2 and 3: $P_1AP_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 2 & 1 \end{bmatrix}$.
- **12** $(Px)^{T}(Py) = x^{T}P^{T}Py = x^{T}y$ since $P^{T}P = I$. In general $Px \cdot y = x \cdot P^{T}y \neq x \cdot Py$: Non-equality where $P \neq P^{T}$: $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \neq \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$.
- **13** A cyclic $P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ or its transpose will have $P^3 = I : (1, 2, 3) \to (2, 3, 1) \to (3, 1, 2) \to (1, 2, 3)$. $\widehat{P} = \begin{bmatrix} 1 & 0 \\ 0 & P \end{bmatrix}$ for the same P has $\widehat{P}^4 = \widehat{P} \neq I$.
- **14** The "reverse identity" P takes (1, ..., n) into (n, ..., 1). When rows and also columns are reversed, $(PAP)_{ij}$ is $(A)_{n-i+1,n-j+1}$. In particular $(PAP)_{11}$ is A_{nn} .
- **15** (a) If P sends row 1 to row 4, then P^{T} sends row 4 to row 1 (b) $P = \begin{bmatrix} E & 0 \\ 0 & E \end{bmatrix} = P^{T}$ with $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ moves all rows: 1 and 2 are exchanged, 3 and 4 are exchanged.
- **16** $A^2 B^2$ (but not (A + B)(A B), this is different) and also ABA are symmetric if A and B are symmetric.
- **17** (a) $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = A^{T}$ is not invertible (b) $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ needs row exchange (c) $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ has $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- **18** (a) 5+4+3+2+1=15 independent entries if $A=A^{\rm T}$ (b) L has 10 and D has 5; total 15 in $LDL^{\rm T}$ (c) Zero diagonal if $A^{\rm T}=-A$, leaving 4+3+2+1=10 choices.
- **19** (a) The transpose of R^TAR is $R^TA^TR^{TT} = R^TAR = n$ by n when $A^T = A$ (any m by n matrix R) (b) $(R^TR)_{jj} = (\text{column } j \text{ of } R) \cdot (\text{column } j \text{ of } R) = (\text{length squared of column } j) \ge 0$.

$$\mathbf{20} \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -7 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}; \quad \begin{bmatrix} 1 & b \\ b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & c - b^2 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -\frac{1}{2} & 1 \\ 0 & -\frac{2}{3} & 1 \end{bmatrix} \begin{bmatrix} 2 & \frac{3}{2} & \frac{1}{3} \\ 0 & \frac{4}{3} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 1 & -\frac{2}{3} & \frac{1}{3} \end{bmatrix} = \mathbf{LDL}^{\mathrm{T}}.$$

21 Elimination on a symmetric 3 by 3 matrix leaves a symmetric lower right 2 by 2 matrix.

The examples
$$\begin{bmatrix} 2 & 4 & 8 \\ 4 & 3 & 9 \\ 8 & 9 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$ lead to $\begin{bmatrix} -5 & -7 \\ -7 & -32 \end{bmatrix}$ and $\begin{bmatrix} d - b^2 & e - bc \\ e - bc & f - c^2 \end{bmatrix}$.

$$\mathbf{22} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} A = \begin{bmatrix} 1 \\ 0 & 1 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ & 1 & 1 \\ & & -1 \end{bmatrix}; \begin{bmatrix} 1 \\ & 1 \end{bmatrix} A = \begin{bmatrix} 1 \\ 1 & 1 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ & -1 & 1 \\ & & 1 \end{bmatrix}$$

23
$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = P \text{ and } L = U = I.$$
 This cyclic P exchanges rows 1-2 then rows 2-3 then rows 3-4.

24
$$PA = LU$$
 is $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 8 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1/3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 3 & 8 \\ -2/3 \end{bmatrix}$. If we wait

to exchange and
$$a_{12}$$
 is the pivot, $A = L_1 P_1 U_1 = \begin{bmatrix} 1 & & \\ 3 & 1 & \\ & & 1 \end{bmatrix} \begin{bmatrix} & 1 & \\ 1 & & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$.

- 25 The **splu** code will not end when $\mathbf{abs}(A(k,k)) < \text{tol line 4 of the slu code on page 100.} Instead$ **splu**looks for a nonzero entry below the diagonal in the current column <math>k, and executes a row exchange. The 4 lines to exchange row k with row r are at the end of Section 2.7 (page 113). To *find* that nonzero entry A(r,k), follow $\mathbf{abs}(A(k,k)) < \text{tol}$ by locating the first nonzero (or the largest A(r,k) out of $r = k+1,\ldots,n$).
- **26** One way to decide even vs. odd is to count all pairs that *P* has in the wrong order. Then *P* is even or odd when that count is even or odd. Hard step: Show that an exchange always switches that count! Then 3 or 5 exchanges will leave that count odd.

27 (a)
$$E_{21} = \begin{bmatrix} 1 \\ -3 & 1 \\ & 1 \end{bmatrix}$$
 puts 0 in the 2, 1 entry of $E_{21}A$. Then $E_{21}AE_{21}^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 9 \end{bmatrix}$

is still symmetric, with zero also in its 1, 2 entry. (b) Now use
$$E_{32} = \begin{bmatrix} 1 & 1 & 1 \\ & -4 & 1 \end{bmatrix}$$

to make the 3, 2 entry zero and $E_{32}E_{21}AE_{21}^{T}E_{32}^{T}=D$ also has zero in its 2, 3 entry. Key point: Elimination from both sides gives the symmetric LDL^{T} directly.

28
$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{bmatrix} = A^{T}$$
 has 0, 1, 2, 3 in every row. (I don't know any rules for a symmetric construction like this)

- **29** Reordering the rows and/or the columns of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ will move the entry **a**. So the result cannot be the transpose (which doesn't move **a**).
- **30** (a) Total currents are $A^{T}y = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} y_{BC} \\ y_{CS} \\ y_{BS} \end{bmatrix} = \begin{bmatrix} y_{BC} + y_{BS} \\ -y_{BC} + y_{CS} \\ -y_{CS} y_{BS} \end{bmatrix}.$
 - (b) Either way $(Ax)^{T}y = x^{T}(A^{T}y) = x_{B}y_{BC} + x_{B}y_{BS} x_{C}y_{BC} + x_{C}y_{CS} x_{S}y_{CS} x_{S}y_{BS}$.
- **31** $\begin{bmatrix} 1 & 50 \\ 40 & 1000 \\ 2 & 50 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = Ax; A^{\mathsf{T}}y = \begin{bmatrix} 1 & 40 & 2 \\ 50 & 1000 & 50 \end{bmatrix} \begin{bmatrix} 700 \\ 3 \\ 3000 \end{bmatrix} = \begin{bmatrix} 6820 \\ 188000 \end{bmatrix}$ 1 truck 1 plane
- **32** $Ax \cdot y$ is the *cost* of inputs while $x \cdot A^T y$ is the *value* of outputs.
- **33** $P^3 = I$ so three rotations for 360°; P rotates around (1, 1, 1) by 120°.
- **34** $\begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = EH = \text{(elementory matrix) times (symmetric matrix)}.$
- **35** $L(U^{\mathrm{T}})^{-1}$ is lower triangular times lower triangular, so lower triangular. The transpose of $U^{\mathrm{T}}DU$ is $U^{\mathrm{T}}D^{\mathrm{T}}U^{\mathrm{T}\,\mathrm{T}} = U^{\mathrm{T}}DU$ again, so $U^{\mathrm{T}}DU$ is symmetric. The factorization multiplies lower triangular by symmetric to get LDU which is A.
- **36** These are groups: Lower triangular with diagonal 1's, diagonal invertible D, permutations P, orthogonal matrices with $Q^{T} = Q^{-1}$.
- 37 Certainly B^T is northwest. B^2 is a full matrix! B^{-1} is southeast: $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$. The rows of B are in reverse order from a lower triangular L, so B = PL. Then $B^{-1} = L^{-1}P^{-1}$ has the *columns* in reverse order from L^{-1} . So B^{-1} is *southeast*. Northwest B = PL times southeast PU is (PLP)U = upper triangular.
- **38** There are n! permutation matrices of order n. Eventually two powers of P must be the same: If $P^r = P^s$ then $P^{r-s} = I$. Certainly $r s \le n!$

$$P = \begin{bmatrix} P_2 & \\ & P_3 \end{bmatrix}$$
 is 5 by 5 with $P_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $P_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ and $P^6 = I$.

- **39** To split A into (symmetric B) + (anti-symmetric C), the only choice is $B = \frac{1}{2}(A + A^{T})$ and $C = \frac{1}{2}(A A^{T})$.
- **40** Start from $Q^{T}Q = I$, as in $\begin{bmatrix} \boldsymbol{q}_{1}^{T} \\ \boldsymbol{q}_{2}^{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_{1} & \boldsymbol{q}_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - (a) The diagonal entries give $q_1^T q_1 = 1$ and $q_2^T q_2 = 1$: unit vectors
 - (b) The off-diagonal entry is $\boldsymbol{q}_1^{\mathrm{T}}\boldsymbol{q}_2 = 0$ (and in general $\boldsymbol{q}_i^{\mathrm{T}}\boldsymbol{q}_j = 0$)
 - (c) The leading example for Q is the rotation matrix $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

Problem Set 3.1, page 127

- 1 $x + y \neq y + x$ and $x + (y + z) \neq (x + y) + z$ and $(c_1 + c_2)x \neq c_1x + c_2x$.
- **2** When $c(x_1, x_2) = (cx_1, 0)$, the only broken rule is 1 times x equals x. Rules (1)-(4) for addition x + y still hold since addition is not changed.
- **3** (a) cx may not be in our set: not closed under multiplication. Also no **0** and no -x (b) c(x + y) is the usual $(xy)^c$, while cx + cy is the usual $(x^c)(y^c)$. Those are equal. With c = 3, x = 2, y = 1 this is 3(2 + 1) = 8. The zero vector is the number 1.
- **4** The zero vector in matrix space **M** is $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$; $\frac{1}{2}A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$ and $-A = \begin{bmatrix} -2 & 2 \\ -2 & 2 \end{bmatrix}$. The smallest subspace of **M** containing the matrix A consists of all matrices cA.
- **5** (a) One possibility: The matrices cA form a subspace not containing B (b) Yes: the subspace must contain A B = I (c) Matrices whose main diagonal is all zero.
- **6** When $f(x) = x^2$ and g(x) = 5x, the combination 3f 4g in function space is $h(x) = 3f(x) 4g(x) = 3x^2 20x$.
- 7 Rule 8 is broken: If c f(x) is defined to be the usual f(cx) then $(c_1 + c_2)f = f((c_1 + c_2)x)$ is not generally the same as $c_1 f + c_2 f = f(c_1x) + f(c_2x)$.
- 8 If (f+g)(x) is the usual f(g(x)) then (g+f)x is g(f(x)) which is different. In Rule 2 both sides are f(g(h(x))). Rule 4 is broken there might be no inverse function $f^{-1}(x)$ such that $f(f^{-1}(x)) = x$. If the inverse function exists it will be the vector -f.
- 9 (a) The vectors with integer components allow addition, but not multiplication by ½
 (b) Remove the x axis from the xy plane (but leave the origin). Multiplication by any c is allowed but not all vector additions.
- **10** The only subspaces are (a) the plane with $b_1 = b_2$ (d) the linear combinations of \boldsymbol{v} and \boldsymbol{w} (e) the plane with $b_1 + b_2 + b_3 = 0$.
- **11** (a) All matrices $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ (b) All matrices $\begin{bmatrix} a & a \\ 0 & 0 \end{bmatrix}$ (c) All diagonal matrices.
- 12 For the plane x + y 2z = 4, the sum of (4, 0, 0) and (0, 4, 0) is not on the plane. (The key is that this plane does not go through (0, 0, 0).)
- 13 The parallel plane P_0 has the equation x + y 2z = 0. Pick two points, for example (2,0,1) and (0,2,1), and their sum (2,2,2) is in P_0 .
- 14 (a) The subspaces of \mathbb{R}^2 are \mathbb{R}^2 itself, lines through (0,0), and (0,0) by itself (b) The subspaces of \mathbb{R}^4 are \mathbb{R}^4 itself, three-dimensional planes $n \cdot v = 0$, two-dimensional subspaces $(n_1 \cdot v = 0)$ and $n_2 \cdot v = 0$, one-dimensional lines through (0,0,0,0), and (0,0,0,0) by itself.
- **15** (a) Two planes through (0,0,0) probably intersect in a line through (0,0,0)
 - (b) The plane and line probably intersect in the point (0, 0, 0)
 - (c) If x and y are in both S and T, x + y and cx are in both subspaces.
- **16** The smallest subspace containing a plane **P** and a line **L** is *either* **P** (when the line **L** is in the plane **P**) *or* **R**³ (when **L** is not in **P**).
- 17 (a) The invertible matrices do not include the zero matrix, so they are not a subspace
 - (b) The sum of singular matrices $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ is not singular: not a subspace.

18 (a) *True*: The symmetric matrices do form a subspace (b) *True*: The matrices with $A^{T} = -A$ do form a subspace (c) *False*: The sum of two unsymmetric matrices could be symmetric.

- **19** The column space of A is the x-axis = all vectors (x, 0, 0). The column space of B is the xy plane = all vectors (x, y, 0). The column space of C is the line of vectors (x, 2x, 0).
- **20** (a) Elimination leads to $0 = b_2 2b_1$ and $0 = b_1 + b_3$ in equations 2 and 3: Solution only if $b_2 = 2b_1$ and $b_3 = -b_1$ (b) Elimination leads to $0 = b_1 + 2b_3$ in equation 3: Solution only if $b_3 = -b_1$.
- **21** A combination of the columns of C is also a combination of the columns of A. Then $C = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ have the same column space. $B = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ has a different column space.
- **22** (a) Solution for every b (b) Solvable only if $b_3 = 0$ (c) Solvable only if $b_3 = b_2$.
- 23 The extra column b enlarges the column space unless b is already in the column space. $\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (larger column space) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ (b is in column space) $(Ax = b) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ (b is a solution)
- **24** The column space of AB is *contained in* (possibly equal to) the column space of A. The example B=0 and $A\neq 0$ is a case when AB=0 has a smaller column space than A.
- **25** The solution to $Az = b + b^*$ is z = x + y. If b and b^* are in C(A) so is $b + b^*$.
- **26** The column space of any invertible 5 by 5 matrix is \mathbb{R}^5 . The equation Ax = b is always solvable (by $x = A^{-1}b$) so every b is in the column space of that invertible matrix.
- **27** (a) False: Vectors that are *not* in a column space don't form a subspace.
 - (b) True: Only the zero matrix has $C(A) = \{0\}$. (c) True: C(A) = C(2A).
 - (d) False: $C(A I) \neq C(A)$ when A = I or $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ (or other examples).
- **28** $A = \begin{bmatrix} 1 & 1 & \mathbf{0} \\ 1 & 0 & \mathbf{0} \\ 0 & 1 & \mathbf{0} \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 & \mathbf{2} \\ 1 & 0 & \mathbf{1} \\ 0 & 1 & \mathbf{1} \end{bmatrix}$ do not have (1, 1, 1) in C(A). $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$ has C(A) = line.
- **29** When Ax = b is solvable for all b, every b is in the column space of A. So that space is \mathbb{R}^9 .
- **30** (a) If u and v are both in S + T, then $u = s_1 + t_1$ and $v = s_2 + t_2$. So $u + v = (s_1 + s_2) + (t_1 + t_2)$ is also in S + T. And so is $cu = cs_1 + ct_1$: a subspace.
 - (b) If S and T are different lines, then $S \cup T$ is just the two lines (not a subspace) but S + T is the whole plane that they span.
- **31** If S = C(A) and T = C(B) then S + T is the column space of $M = [A \ B]$.
- 32 The columns of AB are combinations of the columns of A. So all columns of $\begin{bmatrix} A & AB \end{bmatrix}$ are already in C(A). But $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ has a larger column space than $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. For square matrices, the column space is \mathbf{R}^n when A is *invertible*.

29

Problem Set 3.2, page 140

1 (a)
$$U = \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 Free variables x_2, x_4, x_5 (b) $U = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 0 \end{bmatrix}$ Free x_3 Pivot variables x_1, x_3

- **2** (a) Free variables x_2 , x_4 , x_5 and solutions (-2, 1, 0, 0, 0), (0, 0, -2, 1, 0), (0, 0, -3, 0, 1) (b) Free variable x_3 : solution (1, -1, 1). Special solution for each free variable.
- **3** The complete solution to $Ax = \mathbf{0}$ is $(-2x_2, x_2, -2x_4 3x_5, x_4, x_5)$ with x_2, x_4, x_5 free. The complete solution to $Bx = \mathbf{0}$ is $(2x_3, -x_3, x_3)$. The nullspace contains only $x = \mathbf{0}$ when there are no free variables.
- **4** $R = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$, $R = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, R has the same nullspace as U and A.

$$5 \ A = \begin{bmatrix} -1 & 3 & 5 \\ -2 & 6 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & 5 \\ 0 & 0 & 0 \end{bmatrix}; \ B = \begin{bmatrix} -1 & 3 & 5 \\ -2 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & 5 \\ 0 & 0 & -3 \end{bmatrix} = LU.$$

- **6** (a) Special solutions (3, 1, 0) and (5, 0, 1) (b) (3, 1, 0). Total of pivot and free is n.
- 7 (a) The nullspace of A in Problem 5 is the plane -x + 3y + 5z = 0; it contains all the vectors (3y + 5z, y, z) = y(3, 1, 0) + z(5, 0, 1) = combination of special solutions.
 (b) The line through (3, 1, 0) has equations -x + 3y + 5z = 0 and -2x + 6y + 7z = 0. The special solution for the free variable x₂ is (3, 1, 0).

8
$$R = \begin{bmatrix} 1 & -3 & -5 \\ 0 & 0 & 0 \end{bmatrix}$$
 with $I = \begin{bmatrix} 1 \end{bmatrix}$; $R = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ with $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

- **9** (a) *False*: Any singular square matrix would have free variables (b) *True*: An invertible square matrix has *no* free variables. (c) *True* (only *n* columns to hold pivots) (d) *True* (only *m* rows to hold pivots)
- **10** (a) Impossible row 1 (b) A = invertible (c) A = all ones (d) A = 2I, R = I

12
$$\begin{bmatrix} \mathbf{1} & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & \mathbf{1} & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \end{bmatrix}, \begin{bmatrix} 0 & \mathbf{1} & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & \mathbf{1} & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$
 Notice the identity

matrix in the pivot columns of these *reduced* row echelon forms R.

- 13 If column 4 of a 3 by 5 matrix is all zero then x_4 is a *free* variable. Its special solution is x = (0, 0, 0, 1, 0), because 1 will multiply that zero column to give Ax = 0.
- **14** If column 1 = column 5 then x_5 is a free variable. Its special solution is (-1, 0, 0, 0, 1).
- 15 If a matrix has n columns and r pivots, there are n-r special solutions. The nullspace contains only x = 0 when r = n. The column space is all of \mathbb{R}^m when r = m. All important!

- 16 The nullspace contains only x = 0 when A has 5 pivots. Also the column space is \mathbb{R}^5 , because we can solve Ax = b and every b is in the column space.
- 17 $A = \begin{bmatrix} 1 & -3 & -1 \end{bmatrix}$ gives the plane x 3y z = 0; y and z are free variables. The special solutions are (3, 1, 0) and (1, 0, 1).
- **18** Fill in **12** then **4** then **1** to get the complete solution to x 3y z = 12: $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

$$\begin{bmatrix} 12 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = x_{\text{particular}} + x_{\text{nullspace}}.$$

- **19** If LUx = 0, multiply by L^{-1} to find Ux = 0. Then U and LU have the same nullspace.
- 20 Column 5 is sure to have no pivot since it is a combination of earlier columns. With 4 pivots in the other columns, the special solution is s = (1, 0, 1, 0, 1). The nullspace contains all multiples of this vector s (a line in \mathbb{R}^5).
- **21** For special solutions (2,2,1,0) and (3,1,0,1) with free variables x_3,x_4 : R= $\begin{bmatrix} 1 & 0 & -2 & -3 \\ 0 & 1 & -2 & -1 \end{bmatrix}$ and A can be any invertible 2 by 2 matrix times this R.
- **22** The nullspace of $A = \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$ is the line through (4, 3, 2, 1). **23** $A = \begin{bmatrix} 1 & 0 & -1/2 \\ 1 & 3 & -2 \\ 5 & 1 & -3 \end{bmatrix}$ has (1, 1, 5) and (0, 3, 1) in C(A) and (1, 1, 2) in N(A). Which
- 24 This construction is impossible: 2 pivot columns and 2 free variables, only 3 columns.
- **25** $A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix}$ has (1, 1, 1) in C(A) and only the line (c, c, c, c) in N(A).
- **26** $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ has N(A) = C(A) and also (a)(b)(c) are all false. Notice $\text{rref}(A^T) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
- **27** If nullspace = column space (with r pivots) then n r = r. If n = 3 then 3 = 2r is impossible.
- **28** If A times every column of B is zero, the column space of B is contained in the nullspace of A. An example is $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$. Here C(B) equals N(A). (For B = 0, C(B) is smaller.)
- **29** For A = random 3 by 3 matrix, R is almost sure to be I. For 4 by 3, R is most likely to be I with fourth row of zeros. What about a random 3 by 4 matrix?
- **31** If N(A) = line through x = (2, 1, 0, 1), A has three pivots (4 columns and 1 special solution). Its reduced echelon form can be $R = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ (add any zero rows).

32 Any zero rows come after these rows: $R = \begin{bmatrix} 1 & -2 & -3 \end{bmatrix}$, $R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, R = I.

33 (a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (b) All 8 matrices are R 's!

- **34** One reason that R is the same for A and -A: They have the same nullspace. They also have the same column space, but that is not required for two matrices to share the same R. (R tells us the nullspace and row space.)
- **35** The nullspace of $B = \begin{bmatrix} A & A \end{bmatrix}$ contains all vectors $\mathbf{x} = \begin{bmatrix} y \\ -y \end{bmatrix}$ for \mathbf{y} in \mathbf{R}^4 .
- **36** If Cx = 0 then Ax = 0 and Bx = 0. So $N(C) = N(A) \cap N(B) = intersection$.
- **37** Currents: $y_1 y_3 + y_4 = -y_1 + y_2 + y_5 = -y_2 + y_4 + y_6 = -y_4 y_5 y_6 = 0$. These equations add to 0 = 0. Free variables y_3, y_5, y_6 : watch for flows around loops.

Problem Set 3.3, page 151

1 (a) and (c) are correct; (b) is completely false; (d) is false because R might have 1's in nonpivot columns.

3
$$R_A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 $R_B = \begin{bmatrix} R_A & R_A \end{bmatrix}$ $R_C \longrightarrow \begin{bmatrix} R_A & 0 \\ 0 & R_A \end{bmatrix} \longrightarrow$ Zero rows go to the bottom

- **4** If all pivot variables come last then $R = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix}$. The nullspace matrix is $N = \begin{bmatrix} I \\ 0 \end{bmatrix}$.
- **5** I think $R_1 = A_1$, $R_2 = A_2$ is true. But $R_1 R_2$ may have -1's in some pivots.
- **6** A and A^{T} have the same rank r = number of pivots. But *pivcol* (the column number) is 2 for this matrix A and 1 for A^{T} : $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
- **7** Special solutions in $N = [-2 \ -4 \ 1 \ 0; -3 \ -5 \ 0 \ 1]$ and $[1 \ 0 \ 0; 0 \ -2 \ 1]$.
- **8** The new entries keep rank 1: $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \\ 4 & 8 & 16 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 6 & -3 \\ 1 & 3 & -3/2 \\ 2 & 6 & -3 \end{bmatrix}$, $M = \begin{bmatrix} a & b \\ c & bc/a \end{bmatrix}$.

9 If A has rank 1, the column space is a *line* in \mathbb{R}^m . The nullspace is a *plane* in \mathbb{R}^n (given by one equation). The nullspace matrix N is n by n-1 (with n-1 special solutions in its columns). The column space of A^T is a *line* in \mathbb{R}^n .

10
$$\begin{bmatrix} 3 & 6 & 6 \\ 1 & 2 & 2 \\ 4 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 2 & 6 & 4 \\ -1 & -1 & -3 & -2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 3 & 2 \end{bmatrix}$$

- 11 A rank one matrix has one pivot. (That pivot is in row 1 after possible row exchange; it could come in any column.) The second row of U is zero.
- 12 Invertible r by r submatrices $S = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix}$ and $S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- 13 P has rank r (the same as A) because elimination produces the same pivot columns.
- **14** The rank of R^T is also r. The example matrix A has rank 2 with invertible S:

$$P = \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 2 & 7 \end{bmatrix} \qquad P^{T} = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 6 & 7 \end{bmatrix} \qquad S^{T} = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}.$$

- 15 The product of rank one matrices has rank one or zero. These particular matrices have rank(AB) = 1; rank(AM) = 1 except AM = 0 if c = -1/2.
- **16** $(uv^{T})(wz^{T}) = u(v^{T}w)z^{T}$ has rank one unless the inner product is $v^{T}w = 0$.
- 17 (a) By matrix multiplication, each column of AB is A times the corresponding column of B. So if column j of B is a combination of earlier columns, then column j of AB is the same combination of earlier columns of AB. Then rank $(AB) \le \text{rank }(B)$. No new pivot columns! (b) The rank of B is r = 1. Multiplying by A cannot increase this rank. The rank of AB stays the same for $A_1 = I$ and $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. It drops to zero for $A_2 = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$.
- **18** If we know that $rank(B^TA^T) \le rank(A^T)$, then since rank stays the same for transposes, (apologies that this fact is not yet proved), we have $rank(AB) \le rank(A)$.
- **19** We are given AB = I which has rank n. Then $rank(AB) \le rank(A)$ forces rank(A) = n. This means that A is invertible. The right-inverse B is also a left-inverse: BA = I and $B = A^{-1}$.
- **20** Certainly A and B have at most rank 2. Then their product AB has at most rank 2. Since BA is 3 by 3, it cannot be I even if AB = I.
- **21** (a) A and B will both have the same nullspace and row space as the R they share.
 - (b) A equals an *invertible* matrix times B, when they share the same R. A key fact!
- **22** $A = \text{(pivot columns)(nonzero rows of } R) = \begin{bmatrix} 1 & 0 \\ 1 & 4 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} +$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 8 \end{bmatrix}. \quad B = \begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{array}{c} \text{columns} \\ \text{times rows} \end{array} = \begin{bmatrix} 2 & 0 \\ 2 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 0 & 3 \end{bmatrix}$$

23 If
$$c = 1, R = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 has x_2, x_3, x_4 free. If $c \neq 1, R = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

has x_3, x_4 free. Special solutions in $N = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (for c = 1) and $N = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} -2 & -2 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (for $c \neq 1$). If $c = 1$, $R = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and x_1 free; if $c = 2$, $R = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$

and x_2 free; R = I if $c \neq 1, 2$. Special solutions in $N = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (c = 1) or $N = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ (c = 2) or N = 2 by 0 empty matrix.

24
$$A = \begin{bmatrix} I & I \end{bmatrix}$$
 has $N = \begin{bmatrix} I \\ -I \end{bmatrix}$; $B = \begin{bmatrix} I & I \\ 0 & 0 \end{bmatrix}$ has the same N ; $C = \begin{bmatrix} I & I & I \end{bmatrix}$ has $N = \begin{bmatrix} -I & -I \\ I & 0 \\ 0 & I \end{bmatrix}$.

25
$$A = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 1 & 2 & 2 & 5 \\ 1 & 3 & 2 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0} & 2 & 3 \\ \mathbf{0} & \mathbf{1} & 0 & 1 \end{bmatrix} = \text{(pivot columns) times } R.$$

26 The m by n matrix Z has r ones to start its main diagonal. Otherwise Z is all zeros.

27
$$R = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} r \text{ by } r & r \text{ by } n-r \\ m-r \text{ by } r & m-r \text{ by } n-r \end{bmatrix}$$
; $\mathbf{rref}(R^{\mathsf{T}}) = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$; $\mathbf{rref}(R^{\mathsf{T}}R) = \mathbf{same} \ R$

28 The *row-column reduced echelon form* is always $\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$; I is r by r.

Problem Set 3.4, page 163

1
$$\begin{bmatrix} 2 & 4 & 6 & 4 & \mathbf{b}_1 \\ 2 & 5 & 7 & 6 & \mathbf{b}_2 \\ 2 & 3 & 5 & 2 & \mathbf{b}_3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 4 & 6 & 4 & \mathbf{b}_1 \\ 0 & 1 & 1 & 2 & \mathbf{b}_2 - \mathbf{b}_1 \\ 0 & -1 & -1 & -2 & \mathbf{b}_3 - \mathbf{b}_1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 4 & 6 & 4 & \mathbf{b}_1 \\ 0 & 1 & 1 & 2 & \mathbf{b}_2 - \mathbf{b}_1 \\ 0 & 0 & 0 & 0 & \mathbf{b}_3 + \mathbf{b}_2 - 2\mathbf{b}_1 \end{bmatrix}$$

$$Ax = \mathbf{b} \text{ has a solution when } b_3 + b_2 - 2b_1 = 0; \text{ the column space contains all combinations of } (2, 2, 2) \text{ and } (4, 5, 3).$$
 This is the plane $b_3 + b_2 - 2b_1 = 0$ (!). The nullspace contains all combinations of $s_1 = (-1, -1, 1, 0)$ and $s_2 = (2, -2, 0, 1); x_{complete} = x_p + c_1s_1 + c_2s_2;$

$$\begin{bmatrix} R & d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & -2 & 4 \\ 0 & 1 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 gives the particular solution $x_p = (4, -1, 0, 0)$.

Ax = b has a solution when $b_2 - 3b_1 = 0$ and $b_3 - 2b_1 = 0$; C(A) = line through(2,6,4) which is the intersection of the planes $b_2 - 3b_1 = 0$ and $b_3 - 2b_1 = 0$; the nullspace contains all combinations of $s_1 = (-1/2, 1, 0)$ and $s_2 = (-3/2, 0, 1)$; particular solution $x_p = d = (5, 0, 0)$ and complete solution $x_p + c_1 s_1 + c_2 s_2$.

- 3 $x_{\text{complete}} = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}$. The matrix is singular but the equations are still solvable; b is in the column space. Our particular solution has free variable y = 0.
- **4** $x_{\text{complete}} = x_p + x_n = (\frac{1}{2}, 0, \frac{1}{2}, 0) + x_2(-3, 1, 0, 0) + x_4(0, 0, -2, 1).$
- $\begin{bmatrix} 1 & 2 & -2 & b_1 \\ 2 & 5 & -4 & b_2 \\ 4 & 9 & -8 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -2 & b_1 \\ 0 & 1 & 0 & b_2 2b_1 \\ 0 & 0 & 0 & b_3 2b_1 b_2 \end{bmatrix}$ solvable if $b_3 2b_1 b_2 = 0$. Back-substitution gives the particular solution to Ax = b and the special solution to

$$Ax = 0: x = \begin{bmatrix} 5b_1 - 2b_2 \\ b_2 - 2b_1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

- **6** (a) Solvable if $b_2 = 2b_1$ and $3b_1 3b_3 + b_4 = 0$. Then $\mathbf{x} = \begin{bmatrix} 5b_1 2b_3 \\ b_3 2b_1 \end{bmatrix} = \mathbf{x}_p$
 - (b) Solvable if $b_2 = 2b_1$ and $3b_1 3b_3 + b_4 = 0$. $\mathbf{x} = \begin{bmatrix} 5b_1 2b_3 \\ b_3 2b_1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.
- 7 $\begin{bmatrix} 1 & 3 & 1 & b_1 \\ 3 & 8 & 2 & b_2 \\ 2 & 4 & 0 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 1 & b_2 \\ 0 & -1 & -1 & b_2 3b_1 \\ 0 & -2 & -2 & b_3 2b_1 \end{bmatrix}$ One more step gives $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} = \text{row } 3 2 \text{ (row 2)} + 4 \text{ (row 1)}$ provided $b_3 2b_2 + 4b_1 = 0$.
- **8** (a) Every **b** is in C(A): independent rows, only the zero combination gives **0**.
 - (b) We need $b_3 = 2b_2$, because (row 3) -2(row 2) = **0**.
- $\mathbf{9} \ L \begin{bmatrix} U & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 5 & b_1 \\ 0 & 0 & 2 & 2 & b_2 2b_1 \\ 0 & 0 & 0 & b_3 + b_2 5b_1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 5 & b_1 \\ 2 & 4 & 8 & 12 & b_2 \\ 3 & 6 & 7 & 13 & b_3 \end{bmatrix}$ $= |A \ b|$; particular $x_p = (-9, 0, 3, 0)$ means -9(1, 2, 3) + 3(3, 8, 7) = (0, 6, 1)This is $Ax_p = b$.
- **10** $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} x = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ has $x_p = (2, 4, 0)$ and $x_{\text{null}} = (c, c, c)$.
- 11 A 1 by 3 system has at least two free variables. But x_{null} in Problem 10 only has one.
- **12** (a) $x_1 x_2$ and **0** solve Ax = 0(b) $A(2x_1 - 2x_2) = \mathbf{0}, A(2x_1 - x_2) = \mathbf{b}$
- **13** (a) The particular solution x_p is always multiplied by 1 (b) Any solution can be x_p
 - (c) $\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$. Then $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is shorter (length $\sqrt{2}$) than $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ (length 2)
 - (d) The only "homogeneous" solution in the nullspace is $x_n = 0$ when A is invertible.

14 If column 5 has no pivot, x_5 is a *free* variable. The zero vector *is not* the only solution to Ax = 0. If this system Ax = b has a solution, it has *infinitely many* solutions.

- **15** If row 3 of U has no pivot, that is a zero row. Ux = c is only solvable provided $c_3 = 0$. Ax = b might not be solvable, because U may have other zero rows needing more $c_i = 0$.
- **16** The largest rank is 3. Then there is a pivot in every *row*. The solution *always exists*. The column space is \mathbb{R}^3 . An example is $A = \begin{bmatrix} I & F \end{bmatrix}$ for any 3 by 2 matrix F.
- 17 The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in every *column*. The solution is *unique*. The nullspace contains only the zero *vector*. An example is $A = R = [I \ F]$ for any 4 by 2 matrix F.
- **18** Rank = 2; rank = 3 unless q = 2 (then rank = 2). Transpose has the same rank!
- **19** Both matrices A have rank 2. Always $A^{T}A$ and AA^{T} have **the same rank** as A.

20
$$A = LU = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 4 & 1 & 0 \\ 0 & -3 & 0 & 1 \end{bmatrix}; A = LU \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & -2 & 3 \\ 0 & 0 & 11 & -5 \end{bmatrix}.$$

21 (a)
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + z \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. The second equation in part (b) removed one special solution.

- 22 If $Ax_1 = b$ and also $Ax_2 = b$ then we can add $x_1 x_2$ to any solution of Ax = B: the solution x is not unique. But there will be **no solution** to Ax = B if B is not in the column space.
- 23 For A, q = 3 gives rank 1, every other q gives rank 2. For B, q = 6 gives rank 1, every other q gives rank 2. These matrices cannot have rank 3.

24 (a)
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}[x] = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
 has 0 or 1 solutions, depending on \boldsymbol{b} (b) $\begin{bmatrix} 1 & 1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = [b]$ has infinitely many solutions for every b (c) There are 0 or ∞ solutions when A has rank $r < m$ and $r < n$: the simplest example is a zero matrix. (d) *one* solution for all \boldsymbol{b} when A is square and invertible (like $A = I$).

25 (a) r < m, always $r \le n$ (b) r = m, r < n (c) r < m, r = n (d) r = m = n.

26
$$\begin{bmatrix} 2 & 4 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow R = \begin{bmatrix} \mathbf{1} & 0 & -2 \\ 0 & \mathbf{1} & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} 2 & 4 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5 \end{bmatrix} \rightarrow R = I$.

27 If U has n pivots, then R has n pivots equal to 1. Zeros above and below those pivots make R = I.

Free $x_2 = 0$ gives $x_p = (-1, 0, 2)$ because the pivot columns contain I.

29
$$[R \ d] = \begin{bmatrix} 1 & 0 & 0 & \mathbf{0} \\ 0 & 0 & 1 & \mathbf{0} \\ 0 & 0 & 0 & \mathbf{0} \end{bmatrix}$$
 leads to $x_n = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$; $[R \ d] = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 5 \end{bmatrix}$: no solution because of the 3rd equation

$$\mathbf{30} \begin{bmatrix} 1 & 0 & 2 & 3 & \mathbf{2} \\ 1 & 3 & 2 & 0 & \mathbf{5} \\ 2 & 0 & 4 & 9 & \mathbf{10} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 3 & \mathbf{2} \\ 0 & 3 & 0 - 3 & \mathbf{3} \\ 0 & 0 & 0 & 3 & \mathbf{6} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 & -\mathbf{4} \\ 0 & 1 & 0 & 0 & \mathbf{3} \\ 0 & 0 & 0 & 1 & \mathbf{2} \end{bmatrix}; \begin{bmatrix} -4 \\ 3 \\ 0 \\ 2 \end{bmatrix}; \boldsymbol{x}_n = \boldsymbol{x}_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

31 For $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 0 & 3 \end{bmatrix}$, the only solution to $Ax = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is $x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. B cannot exist since

2 equations in 3 unknowns cannot have a unique solution.

32
$$A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 5 \end{bmatrix}$$
 factors into $LU = \begin{bmatrix} 1 & & & \\ 1 & 1 & & \\ 2 & 2 & 1 & \\ 1 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and the rank

is r = 2. The special solution to $Ax = \mathbf{0}$ and $Ux = \mathbf{0}$ is s = (-7, 2, 1). Since b = (1, 3, 6, 5) is also the last column of A, a particular solution to Ax = b is (0, 0, 1) and the complete solution is x = (0, 0, 1) + cs. (Or use the particular solution $x_p = (7, -2, 0)$ with free variable $x_3 = 0$.)

For b = (1, 0, 0, 0) elimination leads to Ux = (1, -1, 0, 1) and the fourth equation is 0 = 1. No solution for this b.

- **33** If the complete solution to $Ax = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ is $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ c \end{bmatrix}$ then $A = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}$.
- **34** (a) If s = (2, 3, 1, 0) is the only special solution to Ax = 0, the complete solution is x = cs (line of solution!). The rank of A must be 4 1 = 3.
 - (b) The fourth variable x_4 is *not free* in s, and R must be $\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
 - (c) Ax = b can be solve for all b, because A and R have full row rank r = 3.
- **35** For the -1, 2, -1 matrix K(9 by 9) and constant right side $b = (10, \dots, 10)$, the solution $x = K^{-1}b = (45, 80, 105, 120, 125, 120, 105, 80, 45)$ rises and falls along the parabola $x_i = 50i 5i^2$. (A formula for K^{-1} is later in the text.)
- **36** If Ax = b and Cx = b have the same solutions, A and C have the same shape and the same nullspace (take b = 0). If b = column 1 of A, x = (1, 0, ..., 0) solves Ax = b so it solves Cx = b. Then A and C share column 1. Other columns too: A = C!

Problem Set 3.5, page 178

1
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = 0$$
 gives $c_3 = c_2 = c_1 = 0$. So those 3 column vectors are

independent. But $\begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 4 \end{bmatrix}$ [c] = $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ is solved by c = (1, 1, -4, 1). Then $v_0 + v_0 = 0$ (dependent)

2 v_1, v_2, v_3 are independent (the -1's are in different positions). All six vectors are on the plane $(1, 1, 1, 1) \cdot v = 0$ so no four of these six vectors can be independent.

- 3 If a = 0 then column 1 = 0; if d = 0 then b(column 1) a(column 2) = 0; if f = 0 then all columns end in zero (they are all in the xy plane, they must be dependent).
- **4** $Ux = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ gives z = 0 then y = 0 then x = 0. A square

triangular matrix has independent columns (invertible matrix) when its diagonal has no zeros.

- **5** (a) $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -7 \\ 0 & -1 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -7 \\ 0 & 0 & -18/5 \end{bmatrix}$: invertible \Rightarrow independent columns
 - (b) $\begin{bmatrix} 1 & 2 & -3 \\ -3 & 1 & 2 \\ 2 & -3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -3 \\ 0 & 7 & -7 \\ 0 & -7 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -3 \\ 0 & 7 & -7 \\ 0 & 0 & 0 \end{bmatrix}; A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, columns add to <math>\mathbf{0}$.
- **6** Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3). Same column numbers (not same columns!) for *A*.
- 7 The sum $\mathbf{v}_1 \mathbf{v}_2 + \mathbf{v}_3 = \mathbf{0}$ because $(\mathbf{w}_2 \mathbf{w}_3) (\mathbf{w}_1 \mathbf{w}_3) + (\mathbf{w}_1 \mathbf{w}_2) = \mathbf{0}$. So the difference are *dependent* and the difference matrix is singular: $A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$.
- **8** If $c_1(\mathbf{w}_2 + \mathbf{w}_3) + c_2(\mathbf{w}_1 + \mathbf{w}_3) + c_3(\mathbf{w}_1 + \mathbf{w}_2) = \mathbf{0}$ then $(c_2 + c_3)\mathbf{w}_1 + (c_1 + c_3)\mathbf{w}_2 + (c_1 + c_2)\mathbf{w}_3 = \mathbf{0}$. Since the \mathbf{w} 's are independent, $c_2 + c_3 = c_1 + c_3 = c_1 + c_2 = 0$. The only solution is $c_1 = c_2 = c_3 = 0$. Only this combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ gives $\mathbf{0}$.
- **9** (a) The four vectors in \mathbb{R}^3 are the columns of a 3 by 4 matrix A. There is a nonzero solution to $Ax = \mathbf{0}$ because there is at least one free variable (b) Two vectors are dependent if $[v_1 \ v_2]$ has rank 0 or 1. (OK to say "they are on the same line" or "one is a multiple of the other" but *not* " v_2 is a multiple of v_1 "—since v_1 might be $\mathbf{0}$.) (c) A nontrivial combination of v_1 and $\mathbf{0}$ gives $\mathbf{0}$: $0v_1 + 3(0, 0, 0) = \mathbf{0}$.
- **10** The plane is the nullspace of $A = \begin{bmatrix} 1 & 2 3 1 \end{bmatrix}$. Three free variables give three solutions (x, y, z, t) = (2, -1 0 0) and (3, 0, 1, 0) and (1, 0, 0, 1). Combinations of those special solutions give more solutions (all solutions).
- **11** (a) Line in \mathbb{R}^3 (b) Plane in \mathbb{R}^3 (c) All of \mathbb{R}^3 (d) All of \mathbb{R}^3 .
- **12** b is in the column space when Ax = b has a solution; c is in the row space when $A^{T}y = c$ has a solution. False. The zero vector is always in the row space.
- **13** The column space and row space of A and U all have the same dimension = 2. The row spaces of A and U are the same, because the rows of U are combinations of the rows of A (and vice versa!).
- **14** $v = \frac{1}{2}(v + w) + \frac{1}{2}(v w)$ and $w = \frac{1}{2}(v + w) \frac{1}{2}(v w)$. The two pairs *span* the same space. They are a basis when v and w are *independent*.
- **15** The *n* independent vectors span a space of dimension *n*. They are a *basis* for that space. If they are the columns of *A* then *m* is *not less* than $n \ (m \ge n)$.

- 16 These bases are not unique! (a) (1,1,1,1) for the space of all constant vectors (c,c,c,c) (b) (1,-1,0,0),(1,0,-1,0),(1,0,0,-1) for the space of vectors with sum of components = 0 (c) (1,-1,-1,0),(1,-1,0,-1) for the space perpendicular to (1,1,0,0) and (1,0,1,1) (d) The columns of I are a basis for its column space, the empty set is a basis (by convention) for $N(I) = \{\text{zero vector}\}$.
- 17 The column space of $U = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$ is \mathbb{R}^2 so take any bases for \mathbb{R}^2 ; (row 1 and row 2) or (row 1 and row 1 + row 2) and (row 1 and row 2) are bases for the row spaces of U.
- **18** (a) The 6 vectors *might not* span **R**⁴ (b) The 6 vectors *are not* independent (c) Any four *might be* a basis.
- 19 *n*-independent columns \Rightarrow rank *n*. Columns span $\mathbb{R}^m \Rightarrow$ rank *m*. Columns are basis for $\mathbb{R}^m \Rightarrow rank = m = n$. The rank counts the number of *independent* columns.
- **20** One basis is (2, 1, 0), (-3, 0, 1). A basis for the intersection with the xy plane is (2, 1, 0). The normal vector (1, -2, 3) is a basis for the line perpendicular to the plane.
- **21** (a) The only solution to Ax = 0 is x = 0 because the columns are independent (b) Ax = b is solvable because the columns span \mathbb{R}^5 . Key point: A basis gives exactly one solution for every b.
- **22** (a) True (b) False because the basis vectors for \mathbb{R}^6 might not be in \mathbb{S} .
- **23** Columns 1 and 2 are bases for the (**different**) column spaces of A and U; rows 1 and 2 are bases for the (**equal**) row spaces of A and U; (1, -1, 1) is a basis for the (**equal**) nullspaces.
- 24 (a) False $A = \begin{bmatrix} 1 & 1 \end{bmatrix}$ has dependent columns, independent row (b) False column space \neq row space for $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ (c) True: Both dimensions = 2 if A is invertible, dimensions = 0 if A = 0, otherwise dimensions = 1 (d) False, columns may be dependent, in that case not a basis for C(A).
- **25** A has rank 2 if c = 0 and d = 2; $B = \begin{bmatrix} c & d \\ d & c \end{bmatrix}$ has rank 2 except when c = d or c = -d.

$$\mathbf{26} \quad \text{(a)} \ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(b) Add
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

(c)
$$\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}.$$

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric matrices (c) skew-symmetric matrices. The dimensions are 3, 6, 3.

27 I, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$; echelon matrices do *not* form a subspace; they *span* the upper triangular matrices (not every U is echelon).

28
$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$; $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$.

- **29** (a) The invertible matrices span the space of all 3 by 3 matrices (b) The rank one matrices also span the space of all 3 by 3 matrices (c) I by itself spans the space of all multiples cI.
- $\mathbf{30} \ \begin{bmatrix} -1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ -1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 2 \end{bmatrix}.$
- **31** (a) y(x) = constant C (b) y(x) = 3x this is one basis for the 2 by 3 matrices with (2, 1, 1) in their nullspace (4-dim subspace). (c) $y(x) = 3x + C = y_p + y_n$ solves dy/dx = 3.
- **32** y(0) = 0 requires A + B + C = 0. One basis is $\cos x \cos 2x$ and $\cos x \cos 3x$.
- **33** (a) $y(x) = e^{2x}$ is a basis for, all solutions to y' = 2y (b) y = x is a basis for all solutions to dy/dx = y/x (First-order linear equation \Rightarrow 1 basis function in solution space).
- **34** $y_1(x)$, $y_2(x)$, $y_3(x)$ can be x, 2x, 3x (dim 1) or x, 2x, x^2 (dim 2) or x, x^2 , x^3 (dim 3).
- **35** Basis 1, x, x^2 , x^3 , for cubic polynomials; basis x 1, $x^2 1$, $x^3 1$ for the subspace with $p(1) = \mathbf{0}$.
- **36** Basis for S: (1, 0, -1, 0), (0, 1, 0, 0), (1, 0, 0, -1); basis for T: (1, -1, 0, 0) and (0, 0, 2, 1); $S \cap T = \text{multiples of } (3, -3, 2, 1) = \text{nullspace for 3 equation in } \mathbb{R}^4 \text{ has dimension 1.}$
- **37** The subspace of matrices that have AS = SA has dimension *three*.
- **38** (a) No, 2 vectors don't span \mathbb{R}^3 (b) No, 4 vectors in \mathbb{R}^3 are dependent (c) Yes, a basis (d) No, these three vectors are dependent
- **39** If the 5 by 5 matrix $\begin{bmatrix} A & b \end{bmatrix}$ is invertible, b is not a combination of the columns of A. If $\begin{bmatrix} A & b \end{bmatrix}$ is singular, and the 4 columns of A are independent, b is a combination of those columns. In this case Ax = b has a solution.
- **40** (a) The functions $y = \sin x$, $y = \cos x$, $y = e^x$, $y = e^{-x}$ are a basis for solutions to $d^4 y/dx^4 = y(x)$.
 - (b) A particular solution to $d^4y/dx^4 = y(x) + 1$ is y(x) = -1. The complete solution is y(x) = -1 + c, $\sin x + c_2 \cos x + c_3 e^x + c_4 e^{-x}$ (or use another basis for the nullspace of the 4th derivative).

41
$$I = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
. The six P 's are dependent.

Those five are independent: The 4th has $P_{11} = 1$ and cannot be a combination of the others. Then the 2nd cannot be (from $P_{32} = 1$) and also 5th ($P_{32} = 1$). Continuing, a nonzero combination of all five could not be zero. Further challenge: How many independent 4 by 4 permutation matrices?

42 The dimension of S spanned by all rearrangements of x is (a) zero when x = 0 (b) one when x = (1, 1, 1, 1) (c) three when x = (1, 1, -1, -1) because all rearrangements of this x are perpendicular to (1, 1, 1, 1) (d) four when the x's are not equal and don't add to zero. No x gives dim S = 2. I owe this nice problem to Mike Artin—the answers are the same in higher dimensions: 0, 1, n - 1, n.

- 43 The problem is to show that the u's, v's, w's together are independent. We know the u's and v's together are a basis for V, and the u's and w's together are a basis for W. Suppose a combination of u's, v's, w's gives 0. To be proved: All coefficients = zero. Key idea: In that combination giving 0, the part x from the u's and v's is in V. So the part from the w's is -x. This part is now in V and also in W. But if -x is in V ∩ W it is a combination of u's only. Now the combination uses only u's and v's (independent in V!) so all coefficients of u's and v's must be zero. Then x = 0 and the coefficients of the w's are also zero.
- 44 The inputs to an m by n matrix fill \mathbb{R}^n . The outputs (column space!) have dimension r. The nullspace has n-r special solutions. The formula becomes r+(n-r)=n.
- **45** If the left side of $\dim(V) + \dim(W) = \dim(V \cap W) + \dim(V + W)$ is greater than n, then $\dim(V \cap W)$ must be greater than zero. So $V \cap W$ contains nonzero vectors.
- **46** If $A^2 = \text{zero matrix}$, this says that each column of A is in the nullspace of A. If the column space has dimension r, the nullspace has dimension 10 r, and we must have $r \le 10 r$ and $r \le 5$.

Problem Set 3.6, page 190

- 1 (a) Row and column space dimensions = 5, nullspace dimension = 4, $\dim(N(A^T))$ = 2 sum = 16 = m + n (b) Column space is \mathbb{R}^3 ; left nullspace contains only 0.
- **2** A: Row space basis = row 1 = (1, 2, 4); nullspace (-2, 1, 0) and (-4, 0, 1); column space basis = column1 = (1, 2); left nullspace (-2, 1). B: Row space basis = both rows = (1, 2, 4) and (2, 5, 8); column space basis = two columns = (1, 2) and (2, 5); nullspace (-4, 0, 1); left nullspace basis is empty because the space contains only y = 0.
- **3** Row space basis = rows of U = (0, 1, 2, 3, 4) and (0, 0, 0, 1, 2); column space basis = pivot columns (of A not U) = (1, 1, 0) and (3, 4, 1); nullspace basis (1, 0, 0, 0, 0), (0, 2, -1, 0, 0), (0, 2, 0, -2, 1); left nullspace (1, -1, 1) = last row of E^{-1} !
- **4** (a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) Impossible: r + (n-r) must be 3 (c) $\begin{bmatrix} 1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} -9 & -3 \\ 3 & 1 \end{bmatrix}$
 - (e) Impossible Row space = column space requires m = n. Then m r = n r; nullspaces have the same dimension. Section 4.1 will prove N(A) and $N(A^T)$ orthogonal to the row and column spaces respectively—here those are the same space.
- **5** $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$ has those rows spanning its row space $B = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$ has the same rows spanning its nullspace and $BA^{T} = 0$.
- **6** A: dim **2**, **2**, **2**, **1**: Rows (0, 3, 3, 3) and (0, 1, 0, 1); columns (3, 0, 1) and (3, 0, 0); nullspace (1, 0, 0, 0) and (0, -1, 0, 1); $N(A^T)(0, 1, 0)$. B: dim **1**, **1**, **0**, **2** Row space (1), column space (1, 4, 5), nullspace: empty basis, $N(A^T)(-4, 1, 0)$ and (-5, 0, 1).