OPENCV_Day1

Day1_HW1

• 가우시안 필터를 사용하지 않은 경우

가우시안 필터를 사용한 경우

- 1. 가우시안 필터를 사용하지 않은 경우
- 작은 픽셀 기반의 노이즈가 두드러짐 (차선 외)
 노란색 차선 외에 양옆에 잔디에 노란색 노이즈들을 많이 줄여줌→차선만 감지하고 싶을 때 방해요소
- 노란색 hsv필터로 감지된 영역이 더 날카롭고 경계선이 뚜렷햄 차선의 경계선을 확인하면 날카로운게 느껴짐
- 차선 주변의 작은 픽셀 노이즈가 덜 보임, 주된 차선만 더 강조된 상태
- 2. 가우시안 필터를 사용한 경우

- 기본적으로 노이즈가 줄어든 포함되어 있고
 차선외에 노란색 잔디에서의 노이즈가 줄어든
- 차선 주변의 작은 픽셀 기반의 잡음이 더 많이 보이고, 차선 감지가 약간 더 퍼져있다
 → 오히려 차선이 살짝 퍼지면서 안정적으로 차선 감지가 가능해짐
 즉 작은 노이즈가 있더라도, 더 큰 특징(경계선)이 강조되는 효과가 있다.
- 차선의 경계선이 약간 흐려짐, 전체적인 이미지가 부드러워짐

가우시안 블러를 주로 사용하는 이유 노이즈 감소와 안정적인 경계 감지를 위해서이다.

1. 노이즈 감소

위 사진들로 잔디에서의 노이즈가 줄어듬

비전 시스템 같은 경우 센서나 카메라로 이미지를 받아 처리할 때 다양한 환경적 요인(조명 변화 등)으로 인해 노이즈가 발생할 수 있다.

노이즈가 많으면 경계 감지나,

객체 인식의 정확도가 떨어질 수 있다.

가우시안 블러는 이러한 노이즈를 효과적으로 줄여주는 역할을 한다.

2. 부드러운 경계 감지

이미지가 부드러워짐, 경계선이 흐릿해지지만, 노이즈가 제거되어 안정적인 감지 가능 비전 시스템에서 중요한 것은 주요 객체나 차선과 같은 구조적인 경계선을 안정적으로 감지 하는 것

가우시안 블러는 경계선 주변의 작은 세부 노이즈를 제거함으로써 감지 알고리즘이 더 잘 작동하게 함

3. 신호 처리의 안정성

필터링 된 이미지가 더 연속적이고 부드럽게 표현

비전 시스템은 이미지 데이터를 바탕으로 연속적인

결정을 내리기 때문에 신호의 안정성이 필요

가우시안 블러를 사용하면 이미지의 불필요한 변화를 줄여서, 시스템이 더 안정적이고 일관 된 결정을 내릴 수 있다.

OPENCV_Day1 2

결론

가우시안 블러는 전체적인 이미지 품질을 개선하고, 로봇같은 경우 안정적이고 정확하게 환경을 인식할 수 있도록 도와줌.

day1_HW2

소벨 필터 (Sobel Filter):

- 특징: 이미지의 밝기 변화가 급격한 부분을 감지하여 엣지를 추출하는 데 사용되는 1차 미분 기반 필터 수평 및 수직 방향으로 엣지를 감지하여 경계선을 강조
- 기댓값: 이미지에서 물체의 형태나 구조를 명확하게 인식할 수 있으며,
 경계선 감지에 강력한 효과를 제공
 이를 통해 로봇이 장애물이나 도로 차선을 정확하게 인식하고 추적할 수 있다.

$$f(x) = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

양방향 필터 (Bilateral Filter):

- 특징: 이미지의 엣지를 보존하면서도 부드러운 영역의 노이즈를 효과적으로 제거 공간적 거리와 픽셀 강도 차이를 고려하여 가중치를 적용해 블러링을 수행
- 기댓값: 엣지를 흐리게 하지 않고, 중요한 윤곽선은 유지하면서도 노이즈를 줄일 수 있다
 (블러링 정도 조절)

복잡한 텍스처를 포함한 이미지에서도 객체의 세부 사항을 잘 보존하며, 이미지 처리 결과가 더 자연스럽고 정확해진다.

가우시안 블러의 단점인 이미지의 엣지 부분이 심하게 훼손되는데, 이를 극복 가능

양방향 필터는 <mark>기준 픽셀과 이웃 픽셀과의 거리</mark>, 그리고 <mark>픽셀 값의 차이</mark>를 함께 고려하여 블러링 정도를 조절합니다.

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}} (\| \mathbf{p} - \mathbf{q} \|) G_{\sigma_{\mathbf{r}}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

양방향 필터 수식

이처럼 에지 부근 에서는 가우시안의 일부분만을 가져와 필터링을 합니다.

픽셀 값의 차이가 크면 0으로 채워넣고, 가우시안 필터의 고정점과 픽셀차이가 비슷하면 필터값을 가져옵니다.

OPENCV_Day1 4

미디안 필터 (Median Filter):

- 특징: 커널 내 픽셀 값을 크기 순으로 정렬하고 중앙값으로 대체하는 방식으로 작동 특히 소금-후추 노이즈(Salt-and-Pepper Noise)를 제거하는 데 효과적
- 기댓값: 경계선을 손상시키지 않고, 이미지에서 점 형태의 노이즈를 효과적으로 제거할수 있다.

이를 통해 이미지의 품질이 향상되고, 경계선이 명확하게 보존되어 후속 이미지 처리 및 분석에 유리해짐.

OPENCV_Day1 5

원본영상

미디언 필터 적용