第5章 STC单片机CPU子系统

何宾 2018.03

STC15系列单片机内的存储器系统分布

片内基本数据RAM(传统8051)片内扩展4KB RAM(STC扩展)

3840个字节空间

0x0000

片内58KB的程序Flash_{0xE7FF}

没有专门的EEPROM,但是用户可将用户程序区的程序Flash当作 EEPROM使用,使用时不要将自己有效程序擦除。

通过不同的指令,进行区分所访问的存储器空间。

STC单片机程序空间位于0x0000~0xFFFF的地址范围。

- 16位的PC指向下一条要执行的指令。
- CPU只能通过使用MOVC指令,从程序空间读取数据。
- 当单片机复位后,程序计数器 (PC) 的内容为0x0000。
 - □ 因此,从程序存储器地址为0x0000的地方开始执行程序。另外,中断 服务程序的入口地址(也称为中断向量)也放在程序存储单元。
 - □ 中断向量表位于程序存储器低地址空间范围,详见后面。

程序Flash存储器 --程序存储器空间映射

在15系列单片机内集成了8K~61K字节的Flash程序存储器。

类型	程序存储器
STC15W4K08S4	0x0000~0x1FFF (8K)
STC15W4K16S4	0x0000~0x3FFF (16K)
STC15W4K24S4	0x0000~0x5FFF (24K)
STC15W4K32S4	0x0000~0x7FFF (32K)
STC15W4K40S4	0x0000~0x9FFF (40K)
STC15W4K48S4	0x0000~0xBFFF (48K)
STC15W4K56S4	0x0000~0xDFFF (56K)
STC15W4K60S4	0x0000~0xEFFF (60K)
IAP15W4K58S4	0x0000~0xE7FF (58K)
IAP15W4K61S4	0x0000~0xF3FF (61K)

程序Flash存储器 --程序存储器特点

STC的程序存储器可以保存用户程序、数据和表格信息, 其具有下面的特点:

- 提供10万次以上擦写能力;
- 低压保护功能,即:在低压状态下,禁止对程序存储器进行擦除和编程;
- 程序存储器对外不提供读电路。因此,有效地防止对用户程序的破解;
- 只有对程序存储器进行擦除操作后,才能对其进行编程操作;
- 在对程序存储器编程时,可以将程序代码乱序后存放;
- 程序存储器的最后7个字节设置全球唯一的ID号;
- 以扇区为单位擦除;
- 以字节为单位进行编程;
- STC提供了通过通用异步串口,对Flash进行擦除、编程和代码加密的能力。

STC系列单片机内部提供了大容量的数据Flash存储器,用于实现电可擦除的只读存储器 (Electrically Erasable Programmable Read-Only Memory, EEPROM) 功能。

- 数据Flash存储器和程序Flash存储器空间是分开的。
- 对于IAP15W4K58S4而言,没有专门的EEPROM。

STC单片机存储器结构和地址空间

--数据Flash存储器

其特点主要包括:

- □ 通过ISP/IAP技术可以将内部的数据Flash当作EEPROM使用;
- □ 擦写次数在10万次以上;
- □ 以扇区位单位,每个扇区包含512个字节。
- □ 数据存储器的擦除操作是按扇区进行的。

注:由于EEPROM是以是以扇区为单位的,数据存储器的擦除操作是按扇区进行的。因此,建议同一次修改的数据保存在同一个扇区,不是同一次修改的数据需要保存在不同扇区。

STC单片机存储器结构和地址空间

--数据Flash存储器

在STC单片机内提供了用于IAP和EEPROM进行数据擦除和保存的特殊功能寄存器,这些寄存器位于SFR内。

- ISP/IAP数据寄存器
 - □ 用于ISP/IAP的数据寄存器称为IAP_DATA,它位于STC单片机SFR内地址为0xC2的位置。
 - □ 当ISP/IAP从EEPROM读出的数据放在该寄存器中,向EEPROM写的数据也放在这个寄存器中。
 - □ 当复位时,该寄存器值设置为0xFF。

■ ISP/IAP地址寄存器

- 口 用于ISP/IAP的地址寄存器由IAP_ADDRH和IAP_ADDRL构成,这两个寄存器分别位于STC单片机SFR内地址为0xC3和0xC4的位置。
- 口 当进行ISP/IAP时,分别用于保存高八位和第八位地址。
- □ 当复位时,这两个寄存器的值设置为0x00。

STC单片机存储器结构和地址空间

--数据Flash存储器

■ ISP/IAP命令寄存器

□ 用于ISP/IAP的命令寄存器称为IAP_CMD,它位于STC单片机SFR内地址为0xC5的位置。

IAP_CMD寄存器各位的含义

比特	В7	В6	В5	B4	В3	В2	B1	ВО
名字							MS1	MS0

注: 当复位时,该寄存器的值设置为xxxxxxx00。在该寄存器中只有MS1和MS0比特位有意义,用于控制对数据Flash (EEPROM) 的操作。

MS1	MS0	功能
0	0	待机模式,无
0	1	从用户的应用程序区对数据
1	0	从用户的应用程序区对数据
1	1	从用户的应用程序区对数据

- 注: (1) 当程序在用户应用程序区时,仅可以对数据Flash (EEPROM) 进行字节读 /字节编程/扇区擦除。
 - (2) IAP15系列单片机可以在用户应用程序区修改用户应用程序区。
- (3) 可以通过MOVC指定读数据Flash (EEPROM) , 但是起始地址不是 0x0000, 而是程序存储器空间结束地址的下一个地址。

■ IAP/ISP命令触发寄存器

- □ 用于IAP/ISP的命令触发寄存器称为IAP_TRIG,它位于STC单片机 SFR内地址为0xC6的位置。当复位时,该寄存器的值设置为 xxxxxxxxx。
- □ 当ICAP_CONTR寄存器B7位的IAPEN设置为1时,对命令触发寄存器 先写入0x5A,然后再写入0xA5。这样,ISP/IAP命令才能生效。
- □ IAP/ISP操作完成后,IAP地址高8位寄存器IAP_ADDRH、IAP地址低8位寄存器IAP_ADDRL,以及IAP命令寄存器IAP_CMD的内容不变。如果接着要对下一个地址的数据进行ISP/IAP操作,需要手动将该地址的高8位和低8位分别写到IAP_ADDRH和IAP_ADDRL寄存器。

■ ISP/IAP控制寄存器

□ 用于ISP/IAP的控制寄存器称为IAP_CONTR,它位于STC单片机 SFR内地址为0xC7的位置,如下表所示。

比特	В7	В6	В5	B4	В3	B2	B1	ВО
名字	IAPEN	SWBS	SWRST	CMD_FAIL		WT2	WT1	WTO

口 当复位时,该寄存器的值设置为0000x000。

STC单片机存储器结构和地址空间

--数据Flash存储器

IAPEN

□ ISP/IAP功能使能位。当该位为0时,禁止IAP读/写/擦除数据Flash (EEPROM);当该位为1时,允许IAP读/写/擦除数据Flash。

SWBS

在复位后,软件选择从用户应用程序区启动还是从系统ISP监控程序区启动。当该位为1时,选择从系统ISP监控程序区启动;当该位为0时,选择从用户应用程序区启动。

注:需要与SWRST一起配合使用。

SWRST

中 软件复位控制位。当该位为0时,表示没有复位操作;当该位为1时, 软件控制产生复位,单片机自动复位

- CMD FAIL: 命令失败指示位。
 - □ 如果IAP地址(由IAP_ADDRH和IAP_ADDRL寄存器确定)指向非法地址或者无效地址,且已经发送了ISP/IAP命令,并对IAP TRIG发送0x5A~和0xA5触发失败,则CMD FAIL为1。

注: 需要使用软件清除该位。

STC单片机存储器结构和地址空间

--数据Flash存储器

■ WT2~WT0

口 设置等待时间,如下表所示。

设置	置等待	时间			CPU	
WT2	WT1	WTO	读(2个周期)	编程(=55µS)	扇区擦除(=21ms)	推荐的系统时钟
1	1	1	2个周期	55个时钟	21012个时钟	≥1MHz
1	1	0	2个周期	110个时钟	42024个时钟	≥2MHz
1	0	1	2个周期	165个时钟	63036个时钟	≥3MHz
1	0	0	2个周期	330个时钟	126072个时钟	≥6MHz
0	1	1	2个周期	660个时钟	252144个时钟	≥12MHz
0	1	0	2个周期	1100个时钟	420240个时钟	≥20MHz
0	0	1	2个周期	1320个时钟	504288个时钟	≥24MHz
0	0	0	2个周期	1760个时钟	672384个时钟	≥30MHz

PCON

- 口 电源控制寄存器,它位于STC单片机SFR内地址为0x87的位置,如下表所示。
- 口 当复位时,该寄存器的值设置为00110000。

比特	В7	В6	В5	B4	ВЗ	B2	B1	В0
名字	SMOD	SMOD0	LVDF	P0F	GF1	GF0	PD	IDL

LVDF

口 低电压检测标志位。当单片机的供电电压低于检测门限电压时,该位设置为1。

注: (1) 该位需要由软件清除。

(2) 当STC单片机内的低压检测电路发现STC单片机的供电电压Vcc偏低时,不要对数据Flash进行任何操作。在STC_ISP软件中,选中"低压时禁止EEPROM操作"选项前的复选框。

POF

口 上电复位标志位。当单片机断电后,上电复位标志设置为1,该位由软件清除。

注:该位可以用于判断复位源。

■ GPO和GF1

口 两个通用工作标志位,用户可以任意使用。

PD

口 掉电模式控制位。当该位设置为1时,进入掉电模式。在掉电模式时,内部时钟停止振荡。因此,CPU、定时器等部件停止工作,只有外部中断继续工作。当进入掉电模式时,可以由外部中断上升沿或者下降沿触发事件进行唤醒。

□ 空闲模式控制位。当该位设置为1时,进入空闲模式。在该模式下,除系统不给8051 CPU提供时钟,以及CPU不执行指令外,其余功能部件仍然正常工作。在该模式时,可以由外部中断、定时器中断、低压检测中断以及A/D转换中断将其从空闲模式唤醒。

数据Flash存储器 --数据Flash (EEPROM) 空间映射

STC15W4K32S4系列单片机数据Flash(EEPROM)空间容量和地址

型号	EEPROM	扇区数	用IAP字节读时, 数据Flash的起 始扇区首地址	用IAP字节读时, 数据Flash的结 束扇区首地址	用MOVC指令读时, 数据Flash的起 始扇区首地址	用MOVC指令读时, 数据Flash的结束 扇区首地址
STC15W4K16S4	42KB	84	0x0000	0xA7FF	0x4C00	0xF3FF
STC15W4K32S4	26KB	52	0x0000	0x67FF	0x8C00	0xF3FF
STC15W4K40S4	18KB	36	0x0000	0x47FF	0xAC00	0xF3FF
STC15W4K48S4	10KB	20	0x0000	0x27FF	0xCC00	0xF3FF
STC15W4K56S4	2K	4	0x0000	0x07FF	0xEC00	0xF3FF

以下系列特殊,用户可以在用户程序区直接修改用户程序,所有注:没有专门的数据Flash,但是用户可以将用户程序区的程序Flash当作数据Flash使用,使用时不要擦除字节的有效程序

IAP15W4K61S4	 122	0x0000	0xF3FF	
IRC15W4K63S4	 126	0x0000	0xFBFF	

注:对于其它类型的单片机数据Flash的容量和映射关系,请参阅STC提供的单片机数据手册。

STC单片机存储器结构和地址空间 --内部数据RAM存储器

STC15系列的单片机内部集成了RAM存储器,可用于存放程序执行的中间结果和过程数据。在逻辑和物理上,将其分为两个地址空间:

- 内部RAM,其容量为256个字节;
- 内部扩展RAM,其容量为3840个字节。

内部数据RAM存储器 --内部RAM

STC15系列单片机内部RAM空间可以分成三个部分。

FF		
80	高128字节 内部RAM	特殊功能寄存器 (SFRs)
7F	低128字节 内部RAM	
00		

低128字节RAM(兼容传统8051)

这部分的存储空间,既可采用直接寻址方式又 可采用间接寻址方式。这部分RAM区域也称为 通用RAM区域,如左图所示。这个区域分为:

7FH 用户RAM 和堆栈区 30H 2FH 可位寻址区 2FH 20H 1FH 7fh 7eh 7dh 7ch 7_{bh} 7ah 79h 78h 工作组 3 18H 73h 72h 71h 70h 77h 76h 75h 74h 17H 工作组 2 10H 0FH 工作组 1 08H 0dh 0bh 09h 08h Ofh 0ch 0ah 0eh 07H 工作组 0 00H 20H 07h 06h 05h 03h02h 01h 00h04h 5 6 4 3 2 0

紫色标记的是位地址

内部数据RAM存储器 --内部RAM

■ 工作寄存器组区域

口 该区域的地址从0x00~0x1F, 用32个字节单元, 分为四组,每个称为一个寄存器组。每个寄存器组包含8个工作寄存器区,范围是R0~R7, 但是它们属于不同的物理空间。

■ 可位寻址区域

口 在地址0x20~0x2F的16个字节的区域中,可实现按位寻址。也就是说,可以对这16个单元中的每一位进行单独的寻址,这个区域一个有128位,所对应的地址范围是0x00~0x7F。

■ 用户RAM区域和堆栈区

口 在地址0x30~0xFF区域(包含了高128字节区域)是用户RAM区域和堆栈区,可以采用直接寻址或者间接寻址的方式访问该区域。

内部数据RAM存储器 --内部RAM

高128字节RAM (Intel在8052中扩展了高128字节 RAM)

■ 这部分区域虽然和SFR区域的地址范围重合,都在0x80~0xFF的区域。但是,它们在物理上是相互独立的,通过不同的寻址方式来区分它们。对于高128字节RAM区域来说,只能采用间接寻址方式。

特殊功能寄存器

■ 对于SFR来说,只能采用直接寻址的方式。

在STC15W4K32S4系列的单片机中,除了集成256字节的内部RAM外,还集成了3840字节的扩展RAM区,其地址范围是0x0000~0x0EFF。

- 在STC15W4K32S4系列单片机中,访问内部RAM的方法如下:
 - 使用汇编语言,通过MOVX指令访问内部扩展RAM区域,访问的命令 为:

MOVX @DPTR 或 MOVX @Ri

ロ 使用C语言,通过使用xdata声明存储类型来访问内部扩展RAM区域。

内部数据RAM存储器 --内部RAM

在STC该系列单片机中,由SFR内地址为0x8E的辅助寄存器AUXR 控制,如下表所示。当复位时,该寄存器的值为0x01。

比特	В7	В6	В5	B4	В3	В2	B1	В0
名字	T0X12	T1x12	UAR_M0x6	T2R	T2_C/T	T2x12	EXTRAM	S1ST2

- ロ EXTRAM为0时,可以存取内部扩展的EXT_RAM。在STC15W4K32S4系列 单片机中,通过指令: MOVX @DPTR,访问0x0000~0x0EFF单元 (3840字节)。
- 口 当访问地址超过0x0F00时,总是访问外部数据存储器。

注: MOVX @Ri 只能访问0x00~0xFF单元。

内部数据RAM存储器 --内部RAM

■ EXTRAM为1时,禁止访问内部扩展RAM,此时指令: MOVX @DPTR/MOVX @Ri 的使用同普通8052单片机。

STC15系列40引脚以上的单片机具有扩展64KB外部数据存储器和I/O口的能力。

- 当访问STC单片机外扩的数据存储器时, WR和RD信号有效。
- 在STC15系列单片机中,增加了一个控制外部数据存储器的数据总线速度的特殊功能寄存器BUS_SPEED。该寄存器在SFR位置为0xA1的位置。当复位时,该寄存器设置为xxxxxx10。

比特	В7	В6	В5	B4	В3	B2	B1	ВО
名字							EXRTS	[1:0]

EXRTS[1:0]	建立/保持/读和写时钟周期个数
00	1
01	2
10	4
11	8

为了方便读者理解外部数据存储器的访问原理,给出了写外部数据存储器和读外部数据存储器的时序。

- STC单片机的低8位地址线和数据线引脚是复用在P0[7:0]端口上的,在XADL建立和保持周期内,P0[7:0]端口上产生出所要访问外部数据存储器的低8位地址。
- P0[7:0]产生的低8位地址和P2[7:0]产生的高8位地址,拼成一个16位的地址。
- 其可访问的外部数据存储器的地址范围0x0000~0xFFFF,即64KB的范围。

外部存储器的写和读操作时序

单片机和外部数据存储器的硬件电路

■ 由于单片机上的低8位地址和8位数据复用在P0端口上,因此需要将复用的低8位地址和8位数据分离。在实际应用中,通过使用74HC573器件将地址和数据进行分离。

■ 74HC573是8位带3态输出的锁存器, 其功能如下表所示。

输入			输出
EN	LE	D	
0	1	1	1
0	1	0	0
0	0	X	Q_0
1	X	X	Z

- 在设计中,74HC573器件的LE引脚与STC单片机P4.5/ALE引脚 连接。
 - □ 当ALE为高时,P0[7:0]端口给出的是用于访问外部数据存储器的低8位地址。通过这个器件,就产生出可以连接到外部型号为IS62C256的SRAM存储器的低8位地址线;而STC单片机的P2[7:0]端口直接产生用于访问外部数据存储器的高8位地址。
 - 口 在非地址周期时, P0[7:0]端口和需要访问的外部数据存储器的8位数据线直接进行连接。此外, P2[7]引脚作为访问外部存储器的片选信号。