Vorlesung 20 am 07.12.2022

Inhalte: Funktionen 2

- Grenzwerte und Stetigkeit

5 Funktionen1		
5.1 Definition und Darstellung2		
	genschaften von Funktionen4	l
5.2.1	Monotonie4	l
5.2.2	Beschränktheit4	l
5.2.3	Symmetrie5	l
5.2.4	Periodizität5	l
5.2.5	Nullstellen5	l
5.2.6	Minimum und Maximum 6	
	Umkehrfunktion6	
5.3 Koordinatentransformationen		
5.3.1	Parallelverschiebung eines kartesischen Koordinatensystems7	
5.3.2	Drehung eines kartesischen Koordinatensystems8	
5.3.3	Übergang Kartesische Koordinaten - Polarkoordinaten9	
5.4 Grenzwert und Stetigkeit10		
5.4.1	Grenzwerte von Funktionen10	
5.4.2	Stetigkeit von Funktionen13	
5.5 Elementare Funktionen		
5.5.1	Ganzrationale Funktionen16	
5.5.2	Gebrochen rationale Funktionen22	
5.5.3	Potenz- und Wurzelfunktionen26	
5.5.4	Exponential- und Logarithmusfunktionen29	
5.5.5	Trigonometrische Funktionen34	
5.5.6	Zyklometrische Funktionen40	
5.5.7	Hyperbel-und Areafunktionen42	

Grenzwerte für Funktionen

jetzt

Grenzwert $x \to \infty$ Grenzwert $x \to -\infty$

Grenzwert $x \rightarrow x_0$ /Grenzwert $x \rightarrow x_0$ /Grenzwert $x \rightarrow x_0$ /Stetigkeit

ling f(x)

$$f(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Rdd Scilipe Grenzwer

5.4 Grenzwert und Stetigkeit

Grenzwerte von Funktionen

Grenzwertermittlung $x \rightarrow \infty$ (bzw. $x \rightarrow -\infty$)

Berechnung, wie sich die Funktion für immer größer (bzw. immer kleiner) werdende x-Werte verhält?

Beispiel 1: $f(x) = \frac{1}{x}$

Grenzwert einer Funktion für x->∞

Grenzwert einer Funktion für x->-∞

Beispiel 2: $y = f(x) = \frac{2}{2^{\frac{1}{x}} + 2}$

Grenzwert einer Funktion für x->∞

Grenzwert einer Funktion für x->-∞

lim f(x) = lim

Beispiel 3: $f(x) = e^x$

Grenzwert einer Funktion für x->∞

line f(x)=limex=

Grenzwert einer Funktion für x->-∞

x >> +00 sledt x-> -00

Bemerkung:

Der Grenzwert einer Funktion für x->-∞ kann auf den Grenzwert einer Funktion für x->+∞ zurückgeführt werden, wenn in dem zu betrachtenden Ausdruck x durch (-x) ersetzt wird.

Short fine f(x) = line f(-x) behaliter

0

5.4 Grenzwert und Stetigkeit

5.4.1 Grenzwerte von Funktionen

Definition 5.15: Grenzwert $x \to \pm \infty$ - Definition mit Hilfe von Folgen

Besitzt für alle Folgen $(x_n)_{n\in\mathbb{N}}$ mit $x_n\to\infty(-\infty)$ für $n\to\infty$ die Folge der Funktionswerte $(f(x_n))_{n\in\mathbb{N}}$ den gleichen Grenzwert g, so heißt g der **Grenzwert von** f(x) für $x\to\infty(-\infty)$.

Schreibweise: $\lim_{x \to \infty} f(x) = g$ (bzw. $\lim_{x \to -\infty} f(x) = g$)

(1) Folge: Xu= u² veit des Eigenschaft lieu Xu=00

Beispiel: Grenzwertberechnung über Folgen

$$f(x) = \frac{1}{\sqrt{x}}$$

$$\lim_{x \to \infty} \frac{1}{\sqrt{x}} = \lim_{x \to \infty} f(x_u) = \lim_{x \to \infty} \frac{1}{\sqrt{x}} = \lim_{x \to \infty} \frac{1}{x} = 0$$
Folgy $x_u = u^2$
and 6 received $u \to \infty$

Beispiele: Grenzwert einer Funktion für x->x0

Grenzwertermittlung $x \rightarrow x_0$

Grenzwert $x \rightarrow x_0$ /Grenzwert $x \rightarrow x_0^-$ /Grenzwert $x \rightarrow x_0^+$

Berechnung des Grenzwertes an einer Stelle xo

Definition 5.12: Grenzwert $x \rightarrow x_0$ - Definition mit Hilfe von Folgen

Sei f eine reelle Funktion.

Wenn für jede Folge $(x_n)_{n\in\mathbb{N}}$ mit dem Grenzwert x_0 mit $x_n\in D$ und $x_n\neq x_0$ $\forall n\in\mathbb{N}$, die Folge $\left(f(x_n)\right)_{n\in\mathbb{N}}$ den Grenzwert g besitzt (d.h. $\lim_{n\to\infty}f(x_n)=g$), dann heißt g der Grenzwert von f bei der Annäherung an x_0 .

Schreibweise: $\lim_{x \to x_0} f(x) = g$

Definition 5.14: linksseitiger/ rechtsseitiger Grenzwert $x \rightarrow x_0$

Für jede von links gegen x_0 strebende Folge $(x_n)_{n \in \mathbb{N}}$ (d.h. $x_n < x_0 \ \forall n \in \mathbb{N}$) sei

$$\lim_{n\to\infty} f(x_n) = \lim_{\substack{x\to x_0\\x< y_0}} f(x) = g_t \qquad \qquad \left(=: \lim_{x\to x_0^-} f(x)\right)$$

 g_l heißt linksseitiger Grenzwert von f(x) für $x \to x_0^-$.)

Für jede von rechts gegen x_0 strebende Folge $(x_n)_{n\in\mathbb{N}}$ (d.h. $x_n > x_0 \ \forall n \in \mathbb{N}$) sei

$$\lim_{n\to\infty} f(x_n) = \lim_{\substack{x\to x_0\\ x>x_0}} f(x) = g_r \qquad \qquad \left(=: \lim_{x\to x_0+} f(x) \right)$$

 g_r heißt rechtsseitiger Grenzwert von f(x) für $x \to x_0^+$.

Grenzwert einer Funktion für x->x₀

(1) rechtsseitiger Grenzwert für x->x0

$$g_r = \lim_{x \to x_0^+} f(x) = \lim_{x \to \infty} f(x_0 + \frac{1}{x_0})$$
gunstige Verwendung des Folge $x_n = x_0 + \frac{1}{x_0}$

(2) linksseitiger Grenzwert für x->x₀

$$g_{k} = \lim_{x \to x_{0}} f(x) = \lim_{x \to \infty} f(x_{0} - \frac{1}{x_{0}})$$
gunstige Verwendung der Folge $X_{n} = X_{0} - \frac{1}{x_{0}}$

(3) Grenzwert für x->x₀

Existive die Grenzwerte grund ge i d.h. grige # ±00, und gilt gr = ge, so existiet der Grenzwert ling f(x)

Bemerkung 1:

Es ist ausreichend, nur eine Folge von links und und eine Folge von rechts zu wählen, da diese repräsentativ sind!

Bemerkung 2:

Sobald der Grenzwert von einer Seite nicht existiert, existiert der Grenzwert in dem Punkt nicht.

Beispiel zur Grenzwertberechnung:

$$f(x) = \frac{x^2 - 4}{(x^2 - 7x) + 10} = \frac{x^2 - 4}{(x - 5)(x - 2)}$$

Df. bezieh D=1R/{2,5}

Beispiel: Grenzwert für x->5

= lime $\frac{21+\frac{1}{10}(\frac{1}{12})}{3+\frac{1}{12}}$ = $+\infty$ = $\frac{21+\frac{1}{10}(\frac{1}{12})}{3+\frac{1}{12}}$ = $\frac{21+\frac{1}{10}}{3+\frac{1}{12}}$ = $\frac{21+\frac{1}{10}(\frac{1}{12})}{3+\frac{1}{12}}$ = $\frac{21+\frac{1}{10}(\frac{1}{12})}{3+\frac{1}{12}}$ = $\frac{21+\frac{1}{10}(\frac{1}{12})}{3+\frac{1}{12}}$ = $\frac{21+\frac{1}{10}(\frac{1}{12})}{3+\frac{1}{12}}$ = $\frac{21+\frac{1}{10}(\frac{1}{12})}{3+\frac{1}{12}}$ = $\frac{21+\frac{1}{10}(\frac{1}{12})}{3+\frac{1}$

② linbssatige Grenzwer ge

Xn=5-1

$$= \lim_{u \to \infty} \frac{25 - \frac{10}{u} + \frac{1}{u^2} - 4}{25 - \frac{10}{u} + \frac{1}{u^2} - 35 + \frac{3}{u} + 10} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} = \lim_{u \to \infty} \frac{(21 - \frac{10}{u} + \frac{1}{u^2}) \cdot u}{(-\frac{3}{u} + \frac{1}{u^2}) \cdot u} =$$

=
$$\lim_{u \to \infty} \frac{\left(21 - \frac{10}{u} + \frac{1}{u^2}\right) \cdot u}{\left(-\frac{3}{u} + \frac{1}{u^2}\right) \cdot u}$$

3 geneinsama Granzwotz ?

Mun Grunzwert vostanden, da ge wicht existiert (und and go will existent) Beispiel zur Grenzwertberechnung - Fortsetzung:

$$f(x) = \frac{x^2 - 4}{x^2 - 7x + 10}$$

Beispiel: Grenzwert für x->2

1 Heldssilige Grenzwer gr

$$\int_{0}^{\infty} = \lim_{x \to 2^{+}} f(x) = \lim_{x \to \infty} f(2+\frac{1}{x}) = \lim_{x \to \infty} \frac{(2+\frac{1}{x})^{2} - 7(2+\frac{1}{x}) + 10}{(2+\frac{1}{x})^{2} - 7(2+\frac{1}{x}) + 10}$$

 $\int_{0}^{2} = \lim_{x \to 2^{-}} \int_{0}^{2} \lim_{x \to \infty} f(2-\frac{1}{x}) = \lim_{x \to \infty} \frac{(2-\frac{1}{x})^{2} - 7(2-\frac{1}{x}) + 10}{(2-\frac{1}{x})^{2} - 7(2-\frac{1}{x}) + 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10} = \lim_{x \to \infty} \frac{(2-\frac{1}{x})^{2} - 7(2-\frac{1}{x}) + 10}{(2-\frac{1}{x})^{2} - 7(2-\frac{1}{x}) + 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10} = \lim_{x \to \infty} \frac{(2-\frac{1}{x})^{2} - 10}{(2-\frac{1}{x})^{2} - 7(2-\frac{1}{x}) + 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10} = \lim_{x \to \infty} \frac{(2-\frac{1}{x})^{2} - 10}{(2-\frac{1}{x})^{2} - 7(2-\frac{1}{x}) + 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x^{2}} - 10}{4 - \frac{1}{x} + \frac{1}{x} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x} - 10}{4 - \frac{1}{x} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} + \frac{1}{x} - 10}{4 - \frac{1}{x} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} - 10}{4 - \frac{1}{x} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} - 10}{4 - \frac{1}{x} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} - 10}{4 - \frac{1}{x} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} - 10}{4 - \frac{1}{x} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} - 10}{4 - \frac{1}{x} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} - 10}{4 - \frac{1}{x} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} - 10}{4 - \frac{1}{x} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} - 10}{4 - \frac{1}{x} - 10}$ $= \lim_{x \to \infty} \frac{4 - \frac{1}{x} - 10}{4 -$

3) Jenneinsonn v Grunework g?

Let $g = g_r$? $g_r = -\frac{y}{3} = g_e = -\frac{y}{3} = g$ Greez vert

Umformen durch Kürzen in eine ähnliche Funktion, aber nicht gleiche Funktion:

$$\Rightarrow f(x) = \frac{x^2-4}{x^2-7x+10}$$

Beispiel zur Grenzwertberechnung - Zusammenfassung:

$$f(x) = \frac{x^2 - 4}{x^2 - 7x + 10} = \frac{x^2 - 4}{(x - 2)(x - 5)}$$

Definitionsbereich $D = \mathbb{R} \setminus \{2,$

Definitionslücke im Punkt $x_0 = 2$: Grenzwert existiert

$$g_r = g_l = -\frac{4}{3}$$

$$\lim_{x\to 2} f(x) = \frac{x^2 - 4}{x^2 - 7x + 10} = -\frac{4}{3}$$

Grenzwert existiert - Heben der Definitionslücke möglich

- durch minimale Veränderung der Funktion
- Grenzwert wird als Funktionswert in der Definitionslücke definiert

$$f_1(x) = \begin{cases} \frac{x^2 - 4}{x^2 - 7x + 10}, & x \neq 2 \\ \frac{4}{3}, & x = 2 \end{cases}$$
Umformen durch Kürzen in eine ähnliche Funktion, aber ni

Umformen durch Kürzen in eine ähnliche Funktion, aber nicht $\int \frac{1}{2} \int \frac{1}{3} \int \frac{$

$$f_1(x) = \frac{x^2 - 4}{x^2 - 7x + 10} = \frac{(x-2)(x+2)}{(x-2)(x-5)} = \frac{x+2}{x-5}$$

Definitions bereich $D_1 = \mathbb{R} \setminus \{5\}$

Definitionslücke im Punkt $x_0 = 5$: **kein Grenzwert vorhanden**

$$g_r = \infty$$

$$g_1 = -\infty$$

kein Grenzwert vorhanden - Heben der Definitionslücke nicht möglich

- Funktionswerte streben an der Definitionslücke gegen $\pm \infty$
- Funktion hat einen Pol im Punkt xo

Weiteres Beispiel: Grenzwert x₀=0

Beispiel:
$$f(x) = \frac{|x| + x}{x}$$

(1) Rechtsseitiger Grenzwert g_R in dem Punkt x₀=0

$$\int_{0}^{\infty} = \lim_{x \to 0^{+}} \frac{|x| + x}{x} = \lim_{x \to \infty} \frac{|0 + \frac{1}{u}| + 0 + \frac{1}{u}}{0 + \frac{1}{u}} = \sqrt{\frac{\frac{1}{u} + \frac{1}{u}}{\frac{1}{u}}} = 2$$

(2) Linksseitiger Grenzwert g_L in dem Punkt x₀=0

$$\int_{0}^{\infty} e^{\frac{|x|+x}{x}} = \lim_{x \to \infty} \frac{\left| \frac{\sqrt{0}}{\sqrt{-\frac{1}{u}}} + 0 - \frac{1}{u} \right|}{\sqrt{-\frac{1}{u}}} = \lim_{x \to \infty} \frac{\sqrt{0}}{-\frac{1}{u}} = \lim_{x \to \infty} \frac{\sqrt{0}}{-\frac{1}{u}}$$

(3) Da der Linksseitige Grenzwert g_L ungleich dem Rechtsseitigen Grenzwert g_R ist, existiert kein Grenzwert g_R in dem Punkt x_0 =0!

Satz 5.1: Rechenregeln für Grenzwerte von Funktionen

Voraussetzung: Die jeweiligen Grenzwerte der Funktionen $\lim_{x\to x_0} f_1(x) = g_1$ und $\lim_{x\to x_0} f_2(x) = g_2$ existieren. $\lim_{x\to x_0} \left(C\cdot f_1(x)\right) = C\cdot \lim_{x\to x_0} f_1(x) \ (=C\cdot g_1)$ mit konstantem $C\in\mathbb{R}$

(1)
$$\lim_{x \to x_0} (f_1(x) \pm f_2(x)) = \lim_{x \to x_0} f_1(x) \pm \lim_{x \to x_0} f_2(x) = g_1 \pm g_2$$

(2)
$$\lim_{x \to x_0} (f_1(x) \cdot f_2(x)) = \lim_{x \to x_0} f_1(x) \cdot \lim_{x \to x_0} f_2(x) = g_1 \cdot g_2$$

(3)
$$\lim_{x \to x_0} \left(\frac{f_1(x)}{f_2(x)} \right) = \lim_{x \to x_0} \frac{f_1(x)}{f_2(x)} \quad \left(= \frac{g_1}{g_2} \right) \text{ mit } g_2 \neq 0$$

(4)
$$\lim_{x \to x_0} \left(\sqrt[n]{f_1(x)} \right) = \sqrt[n]{\lim_{x \to x_0} f_1(x)} \quad (= \sqrt[n]{g_1})$$

(5)
$$\lim_{x \to x_0} (f_1(x))^n = \left(\lim_{x \to x_0} f_1(x)\right)^n (= (g_1)^n)$$

(6)
$$\lim_{x \to x_0} \left(a^{f_1(x)} \right) = a^{\lim_{x \to x_0} f_1(x)} \quad (= a^{g_1})$$

(7)
$$\lim_{x \to x_0} (\log_a f_1(x)) = \log_a \left(\lim_{x \to x_0} f_1(x) \right) \cdot (= \log_a g_1)$$

Satz 5.2: Rechenregeln für Grenzwerte mit 0 und $\pm \infty$

Alle Grenzwerte gelten für $x \to x_0$ mit $x_0 \in \mathbb{R} \cup \pm \infty$.

(1)
$$f(x) \to +\infty$$
 \Leftrightarrow $-f(x) \to -\infty$

(2)
$$f(x) \to +\infty$$
, $g(x) \to t \in \mathbb{R} \cup +\infty$ \Rightarrow $f(x) + g(x) \to +\infty$

(3)
$$f(x) \to +\infty$$
, $g(x) \to t \Rightarrow f(x) \cdot g(x) \to \begin{cases} +\infty, & \text{fix } 0 < t \le +\infty \\ -\infty, & \text{fix } -\infty \le t < 0 \end{cases}$

(4)
$$g(x) \to \pm \infty$$
 \Rightarrow $\frac{1}{g(x)} \to 0$

$$(5) \quad 0 < g(x) \to 0 \quad \Rightarrow \quad \frac{1}{g(x)} \to +\infty$$

Für $f(x) \rightarrow 0$, $g(x) \rightarrow +\infty$, $h(x) \rightarrow t$ gilt bei positiver Basis

$$f(x)^{h(x)} \to \begin{cases} 0, & \text{für } 0 < t \le +\infty \\ \infty, & \text{für } -\infty \le t < 0 \end{cases}$$

(6)
$$g(x)^{h(x)} \to \begin{cases} \infty, & \text{für } 0 < t \le +\infty \\ 0, & \text{für } -\infty \le t < 0 \end{cases}$$
$$h(x)^{g(x)} \to \begin{cases} 0, & \text{für } 0 < t < 1 \\ \infty, & \text{für } 1 < t \le +\infty \end{cases}$$

(7) Die folgenden noch unbestimmten Ausdrücke

 $\frac{0}{0}, \frac{\circ}{\circ}, 0 \cdot \circ, \circ - \circ, 0^0, \circ^0, 1^{\circ}$ können häufig mit den Regeln von Bernoulli-l'Hospital(siehe Kapitel 6) bestimmt werden.

14

3.4.2 Stetigkeit von Funktionen

Definition 3.16: Stetigkeit

Eine in x_0 und einer gewissen Umgebung von x_0 definierte Funktion y = f(x) heißt an der Stelle x_0 stetig, wenn der Grenzwert an dieser Stelle vorhanden ist und mit dem Funktionswert übereinstimmt

 $\lim f(x) = f(x_0).$

Eine Funktion, die an jeder Stelle ihres Definitionsbereiches stetig ist, wird als stetige Funktion bezeichnet.

aus www.mathematik.de

3 Bedingungen für die Stetigkeit an einer Stelle x₀:

(1) Funktion uness in Xo definion seen:

Grenzist in xo valeander:

Greenet=Funktionswet:

Beispiel 1:

$$f(x) = |x|$$

f(x) erfüllt Punkt 1), Punkt 2), und Punkt (3) und ist daher stetig.

Beispiel 2:

$$f(x) = \begin{cases} x^2, & \text{wenn } x \neq 0 \\ \underline{1}, & \text{wenn } x = 0 \end{cases}$$

f(x) erfüllt Punkt 1) und Punkt 2), aber Punkt (3) nicht. f(x) ist daher nicht stetig. D=R 3,=3e=0=9

Beispiel 3:

Sgu(X) = $f(x) = \begin{cases} 1, & \text{wenn } x > 0 \\ 0, & \text{wenn } x = 0 \\ -1, & \text{wenn } x < 0 \end{cases}$

Vorzichung f(x) erfüllt Punkt 1), aber Punkt 2) ist nicht erfüllt, da kein Grenzwert in x = 0 vorhanden. f(x) ist daher nicht stetig.

Stetigkeit von Funktionen - Beispiele

$$(\Lambda)$$
 $f(x) = x^2$

- . Sklig auf D

(2)
$$f(x) = |x| = \begin{cases} x_1 \times > 0 \\ -x_1 \times < 0 \end{cases}$$

- · D=R
- · Sking auf D

(3)
$$f(x) = Sgn(x) = \begin{cases} +1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

- D=12
- · widel sking in x0=0

(4)
$$f(x) = \frac{1}{X}$$

- · D= 12/204
- · Steling and D

$$(5)$$
 $f(x) = \frac{\sin x}{x}$

- · D= 12/{0}
- · Sking and D

- · esgiblasser linea Greezeet in X0=0: gr=ge=1=:9

$$(6) \quad \sqrt{(x)} = \begin{cases} \sqrt{x} \times 0 & \longrightarrow x \\ 0, \times 0 & \longrightarrow x \end{cases}$$

- · n=R
- · widet skieg in xo=0, da Bed 2 9,=9e widt efillt
- · Skligin R/203

- · D = 12/40/
- · SkhyaufD

Definition 5.17: Unstetigkeitsstellen

Eine in x_0 und einer gewissen Umgebung von x_0 definierte Funktion y = f(x) heißt an der Stelle x_0 unstetig, wenn eine der beiden Aussagen zutrifft:

(1) Der Grenzwert von f(x) in x_0 ist vorhanden, aber verschieden von $f(x_0)$.

(2) Der Grenzwert von f(x) in x_0 ist nicht vorhanden.

Bedingungen für Unstetigkeit:

Funklin f(X) in to definiet: [XoED]

Gruzuel wich valeanden: | gr + ge oder gr/ge = ±00

Beispiel:

$$f(x) = \frac{\sin x}{x}$$

weder stetig noch unstetig, da im Punkt x₀=0 nicht definiert,

Beispiel:

$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

unstetig im Punkt $x_0=0$,

da Bedingung "Grenzwert ungleich Funktionswert" zutrifft.

Beispiel:

$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

stetig im Punkt $x_0=0$,

da alle Bedingung für Stetigkeit erfüllt sind:

- 1) x₀ definiert
- 2) Grenzwert in x₀ existiert
- 3) Grenzwert gleich Funktionswert in x₀

Definition 5.18: linksseitige/rechtseitige Stetigkeit

Eine Funktion y = f(x) heißt an der Stelle x_0

linksseitig stetig, wenn $\lim_{x \to x_n^-} f(x) = f(x_0)$,

rechtsseitig stetig, wenn $\lim_{x \to x_0^+} f(x) = f(x_0)$.

Definition 5.19: Stetigkeit im Intervall

Eine Funktion y = f(x) heißt stetig im offenen Intervall (a,b), wenn f(x) in jedem Punkt des Intervalls stetig ist.

Eine Funktion y=f(x) heißt stetig im abgeschlossenen Intervall [a,b], wenn f(x) im offenen Intervall (a,b) stetig ist, sowie in x=a rechtsseitig und in x=b linksseitig stetig ist.

Definition 5.20: stetig ergänzbar

Eine Funktion y = f(x) mit eine <u>r Definitionslücke ist **stetig ergänzbar**</u>, wenn für diese <u>Stelle der Grenzwert existiert</u>. Der <u>Grenzwert wird dann als Funktionswert eingesetzt</u>.

Man spricht in diesem Fall auch von einer "hebbaren" Definitionslücke.

Beispiele: sielee Siex und gebrochen rationale Funktion

Satz 5.3: Rechenregeln für stetige Funktionen

Sind die Funktionen $f_1(x)$ und $f_2(x)$ bei $x=x_0$ stetig, so sind auch die folgenden zusammengesetzten Funktionen im Punkt $x=x_0$ stetig:

- (1) $C_1 \cdot f_1(x) \pm C_2 \cdot f_2(x)$ mit konstanten $C_1, C_2 \in \mathbb{R}$
- (2) $f_1(x) \cdot f_2(x)$
- (3) $\frac{f_1(x)}{f_2(x)}$ mit $f_2(x_0) \neq 0$
- (4) $f_1(x)^{f_2(x)}$ mit $f_1(x_0) > 0$

Zusammenfassung: Grenzwerte und Stetigkeit von Funktionen

(1) Grenzwert in x₀

(2) Stetigkeit in x₀

- (λ) $(\lambda) \in \mathcal{D}$
- (2) 9:= 9,=9,
- (3) g= f(x0)

(3) Unstetigkeit in x₀

(4) Stetige Ergänzbarkeit in x₀

- · in Xo definier de and wider
- · Grenzwelin Xo existict: gr=ge
- · ander Stelle Xo wind Funktion web f(X) durch Greezwert estat: f(Xo):= 9

(bi oghsvalen valionalen Funktion entspricht dieses dem Hermskirzen des Linearfassons)

In line Definitionslüße ist die Funktion uxder sklig woch unsklig.