Optics of 2D materials

Homework Assignment 2

- 1. Using matlab/python plot the dispersion relation $\omega(\beta)$, the propagation length $L=\frac{1}{2Im(\beta)}(\lambda)$ and the penetration depth $\zeta=\frac{1}{|Kz|}(\lambda)$ for Surface Plasmon Polariton (SPP) at a metal/dielectric interface. Use a metal with a permittivity from Drude model with $\hbar\omega_p=5eV$ and $\hbar\gamma=0.5eV$ for $\hbar\omega\in[0,10eV]$, and a dielectric with $\varepsilon=\varepsilon_0$.
- 2. Using matlab/python plot the conductivity $\sigma(\omega)$ of graphene, for Kubo and Local models. Use $E_f = 0.3eV$, $\hbar \gamma = 3.7eV$, T = 300K and $\hbar \omega \in [0.1eV]$.
- 3. Solve analytically the dispersion relation of graphene plasmons, and reach the next equation:

$$\frac{\varepsilon_1}{\sqrt{q^2 - \varepsilon_1 \frac{\omega^2}{c^2}}} + \frac{\varepsilon_2}{\sqrt{q^2 - \varepsilon_2 \frac{\omega^2}{c^2}}} + i \frac{\sigma_g}{\omega \varepsilon_0} = 0$$