

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика, искусственный интеллект и системы управления
КАФЕДРА	Системы обработки информации и управления

ОТЧЁТ *К ЛАБОРАТОРНОЙ РАБОТЕ №*2

HA TEMY:

Обработка признаков. Часть 1

Студент: Громоздов Д.Р.

Группа: ИУ5-23М

Преподаватель: Гапанюк Ю.Е.

Цель лабораторной работы: изучение продвинутых способов предварительной обработки данных для дальнейшего формирования моделей. Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Просьба не использовать датасет, на котором данная задача решалась в лекции.
- 2. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
 - > устранение пропусков в данных;
 - > кодирование категориальных признаков;
 - > нормализацию числовых признаков.

Лабораторная работа №2. "Обработка признаков (часть 1)"

Выполнил: Громоздов Д.Р.; группа ИУ5-23М

Цель лабораторной работы: изучение продвинутых способов предварительной обработки данных для дальнейшего формирования моделей.

Задание:

Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Просьба не использовать датасет, на котором данная задача решалась в лекции. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:

а) устранение пропусков в данных; b) кодирование категориальных признаков; c) нормализацию числовых признаков.

```
In [2]: #импортируем библиотеки
      import numpy as np
      import pandas as pd
      import seaborn as sns
      import matplotlib.pyplot as plt
      import scipy.stats as stats
      from sklearn.impute import SimpleImputer
      from sklearn.impute import MissingIndicator
      from category encoders.target encoder import TargetEncoder as ce TargetEncoder
      from sklearn.preprocessing import LabelEncoder
      %matplotlib inline
      sns.set(style="ticks")
```

Устранение пропусков в данных

```
In [3]: skip = pd.read csv('data/gold.csv', sep=",")
In [4]: skip.shape
Out[4]:(172, 20)
In [5]: list(zip(skip.columns, [i for i in skip.dtypes]))
Out[5]:[('Date', dtype('O')),
        ('US dollar (USD)', dtype('float64')),
        ('Euro (EUR)', dtype('float64')),
        ('Japanese yen (JPY)', dtype('float64')),
        ('Pound sterling (GBP)', dtype('float64')),
        ('Canadian dollar (CAD)', dtype('float64')),
        ('Swiss franc (CHF)', dtype('float64')),
        ('Indian rupee (INR)', dtype('float64')),
        ('Chinese renmimbi (CNY)', dtype('float64')),
        ('Turkish lira (TRY)', dtype('float64')),
        ('Saudi riyal (SAR)', dtype('float64')),
        ('Indonesian rupiah (IDR)', dtype('float64')),
        ('UAE dirham (AED)', dtype('float64')),
        ('Thai baht THB)', dtype('float64')),
        ('Vietnamese dong (VND)', dtype('float64')),
        ('Egyptian pound (EGP)', dtype('float64')),
        ('Korean won (KRW)', dtype('float64')),
        ('Russian ruble (RUB)', dtype('float64'))
        ('South African rand (ZAR)', dtype('float64')),
        ('Australian dollar (AUD)', dtype('float64'))]
In [6]: skip.head()
```

Out[6]:

	Date	dollar (USD)	Euro (EUR)	Japanese yen (JPY)	a d a ullia a	Canadian dollar (CAD)	franc (CHF)	rupee (INR)	renmimbi (CNY)	Turkish lira (TRY)	riyal (SAR)	Indonesian rupiah (IDR)	dirham (AED)	baht THB)	Vietnamese dong (VND)	Egy
0	Q1 1979	240.10	148.04	50274.29	116.22	278.16	406.20	1940.16	0.0	0.0	796.73	148844.15	910.39	4812.88	0.0	
1	Q2 1979	277.50	169.03	60161.40	127.29	322.55	457.71	2190.55	0.0	0.0	923.02	166854.38	1049.81	5477.29	0.0	
2	Q3 1979	397.25	233.23	89088.49	180.36	460.72	616.45	3190.26	0.0	0.0	1306.81	242994.79	1474.44	7894.94	0.0	
3	Q4 1979	512.00	299.12	125630.27	230.63	611.81	835.57	4189.64	0.0	0.0	1749.03	324101.29	2055.87	10645.23	0.0	
4	Q1 1980	494.50	321.56	125800.01	228.51	599.47	931.87	4155.35	0.0	0.0	1683.53	316964.84	1890.49	10312.81	0.0	

lacksquare

In [7]: #converting null-values
skip.loc[(skip['Chinese renmimbi (CNY)'] == 0.0), "Chinese renmimbi (CNY)"] = pd.NA
skip.loc[(skip['Turkish lira (TRY)'] == 0.0), "Turkish lira (TRY)"] = np.nan
skip.loc[(skip['Vietnamese dong (VND)'] == 0.0), "Vietnamese dong (VND)"] = pd.NA
skip.loc[(skip['Egyptian pound (EGP)'] == 0.0), "Egyptian pound (EGP)"] = pd.NA
skip.loc[(skip['Russian ruble (RUB)'] == 0.0), "Russian ruble (RUB)"] = pd.NA
skip.head()

```
Out[7]:
```

4,1,		Date	US dollar (USD)	Euro (EUR)	Japanese yen (JPY)	Pound sterling (GBP)	Canadian dollar (CAD)	Swiss franc (CHF)	Indian rupee (INR)	Chinese renmimbi (CNY)	Turkish lira (TRY)	Saudi riyal (SAR)	Indonesian rupiah (IDR)	UAE dirham (AED)	Thai baht THB)	Vietnamese dong (VND)	Egypi poi (E
	0	Q1 1979	240.10	148.04	50274.29	116.22	278.16	406.20	1940.16	<na></na>	NaN	796.73	148844.15	910.39	4812.88	<na></na>	<1
	1	Q2 1979	277.50	169.03	60161.40	127.29	322.55	457.71	2190.55	<na></na>	NaN	923.02	166854.38	1049.81	5477.29	<na></na>	<1
	2	Q3 1979	397.25	233.23	89088.49	180.36	460.72	616.45	3190.26	<na></na>	NaN	1306.81	242994.79	1474.44	7894.94	<na></na>	<1
	3	Q4 1979	512.00	299.12	125630.27	230.63	611.81	835.57	4189.64	<na></na>	NaN	1749.03	324101.29	2055.87	10645.23	<na></na>	<1
	4	Q1 1980	494.50	321.56	125800.01	228.51	599.47	931.87	4155.35	<na></na>	NaN	1683.53	316964.84	1890.49	10312.81	<na></na>	<1

In [8]: #проверяем, что теперь эти колонки видимы, как пропуски cols_with_na = [col **for** col **in** skip.columns **if** skip[col].isnull().sum() > 0] cols_with_na

Out[8]:['Chinese renmimbi (CNY)',

'Turkish lira (TRY)',

'Vietnamese dong (VND)',

'Egyptian pound (EGP)',

'Russian ruble (RUB)']

In [9]: #считаем пропуски и заодно удостоверимся, что заменились только нули, а не все данные [(col, skip[col].isnull().sum()) for col in cols_with_na]

Out[9]:[('Chinese renmimbi (CNY)', 24),

('Turkish lira (TRY)', 15),

('Vietnamese dong (VND)', 43),

('Egyptian pound (EGP)', 39),

('Russian ruble (RUB)', 56)]

In [10]: #Вычислим проценты пропусков

[(col, skip[col].isnull().mean()) for col in cols_with_na]

Out[10]:[('Chinese renmimbi (CNY)', 0.13953488372093023),

('Turkish lira (TRY)', 0.0872093023255814),

('Vietnamese dong (VND)', 0.25),

('Egyptian pound (EGP)', 0.22674418604651161),

('Russian ruble (RUB)', 0.32558139534883723)]

Пропусков в колонках достаточно много, будем работать с колонкой турецкой лиры, у неё процент пропусков наименьший.

Out[11]:(157, 1)

In [12]: fig = plt.figure()

 $ax = fig.add_subplot(111)$

 $skip["Turkish\ lira\ (TRY)"].hist(bins=50,\ ax=ax,\ density=\textbf{True},\ color='green')$

skip_drop["Turkish lira (TRY)"].hist(bins=50, ax=ax, color='blue', density=**True**, alpha=0.5)

plt.show()

Распределение ассиметричное и от удаления пропусков почти не изменилось. Датасет небольшого размера, поэтому не будем использовать метод заполнения случайными значениями. Пропуски распределены случайно, распределение не выглядит однозначно одномодальным. Из-за ассиметричности заполним пустые значения медианой распределения.

In [13]: #заполняем пропуски в одном признаке

def impute_column(dataset, column, strategy_param, fill_value_param=None):

```
temp_data = dataset[[column]].values
         size = temp_data.shape[0]
         indicator = MissingIndicator()
         mask_missing_values_only = indicator.fit_transform(temp_data)
         imputer = SimpleImputer(strategy_strategy_param,
                      fill_value=fill_value_param)
         all data = imputer.fit_transform(temp_data)
         missed data = temp data[mask missing values only]
         filled data = all data[mask missing values only]
         return all_data.reshape((size,)), filled_data, missed_data
In [14]: all_data, filled_data, missed_data = impute_column(skip, 'Turkish lira (TRY)', 'median')
In [15]: all_data
Out[15]:array([4.905400e+02, 4.905400e+02, 4.905400e+02, 4.905400e+02,
           4.905400e+02. 4.905400e+02. 4.905400e+02. 4.905400e+02.
           4.905400e+02. 4.905400e+02. 4.905400e+02. 4.905400e+02.
           4.905400e+02, 4.905400e+02, 4.905400e+02, 8.000000e-02,
           8.000000e-02, 9.000000e-02, 1.000000e-01, 1.100000e-01,
           1.200000e-01, 1.400000e-01, 1.400000e-01, 1.400000e-01,
           1.500000e-01, 1.700000e-01, 1.800000e-01, 1.800000e-01,
           2.200000e-01, 2.300000e-01, 2.900000e-01, 2.800000e-01,
           3.300000e-01, 3.800000e-01, 4.200000e-01, 4.700000e-01,
           5.400000e-01, 6.100000e-01, 6.400000e-01, 7.500000e-01,
           7.800000e-01, 8.000000e-01, 7.900000e-01, 9.200000e-01,
           8.800000e-01, 9.200000e-01, 1.120000e+00, 1.120000e+00,
           1.320000e+00, 1.600000e+00, 1.650000e+00, 1.800000e+00,
           2.140000e+00, 2.370000e+00, 2.530000e+00, 2.860000e+00,
           3.190000e+00, 4.140000e+00, 4.370000e+00, 5.830000e+00,
           1.010000e+01, 1.204000e+01, 1.351000e+01, 1.483000e+01,
           1.654000e+01, 1.712000e+01, 1.890000e+01, 2.357000e+01,
           2.810000e+01, 3.139000e+01, 3.481000e+01, 4.028000e+01,
           4.445000e+01, 4.967000e+01, 5.787000e+01, 6.011000e+01,
           7.316000e+01, 7.893000e+01, 8.158000e+01, 9.077000e+01,
           1.042500e+02, 1.101500e+02, 1.379600e+02, 1.574300e+02,
           1.629900e+02, 1.785100e+02, 1.821200e+02, 1.839600e+02,
           2.712300e+02, 3.396000e+02, 4.485900e+02, 4.023100e+02,
           4.032700e+02, 5.049800e+02, 5.378300e+02, 5.763500e+02,
           5.744300e+02, 4.905400e+02, 5.402900e+02, 5.848300e+02,
           5.567400e+02, 5.873700e+02, 6.257600e+02, 5.874100e+02,
           5.773400e+02, 5.837500e+02, 6.368800e+02, 6.933200e+02,
           7.830800e+02, 9.745400e+02, 9.063700e+02, 8.952300e+02,
           9.181800e+02, 8.495900e+02, 9.000000e+02, 9.773600e+02,
           1.247160e+03, 1.137420e+03, 1.124200e+03, 1.342460e+03,
           1.533350e+03, 1.435580e+03, 1.480030e+03, 1.630110e+03,
           1.698010e+03, 1.969560e+03, 1.890510e+03, 2.163060e+03,
           2.221600e+03, 2.444930e+03, 3.012310e+03, 2.891450e+03,
           2.964070e+03, 2.891210e+03, 3.188990e+03, 2.958140e+03,
           2.892030e+03, 2.299900e+03, 2.683310e+03, 2.587870e+03,
           2.763310e+03, 2.788190e+03, 2.774590e+03, 2.819330e+03,
           3.082040e+03, 3.137110e+03, 3.372910e+03, 3.093980e+03,
           3.483020e+03, 3.798010e+03, 3.968430e+03, 4.030820e+03,
           4.533310e+03, 4.375890e+03, 4.562830e+03, 4.894950e+03,
           5.244300e+03, 5.728560e+03, 7.132170e+03, 6.804150e+03,
           7.318490e+03, 8.149660e+03, 8.386740e+03, 9.014280e+03,
           1.060338e+04, 1.211988e+04, 1.453696e+04, 1.402959e+04,
           1.399555e+04, 1.531736e+04, 1.548347e+04, 2.398124e+04])
In [16]: filled_data
Out[16]:array([490.54, 490.54, 490.54, 490.54, 490.54, 490.54, 490.54, 490.54,
           490.54, 490.54, 490.54, 490.54, 490.54, 490.54, 490.54])
In [17]: missed_data
nan, nan])
```

Кодирование категориальных признаков

In [36]: data_code = pd.read_csv('data/prices_tunisia.csv', sep=",") In [19]: data_code.head()

```
Out[19]:
                         category room_count bathroom_count
                                                                                                   city
                                                                     size
                                                                               type
                                                                                         price
                                                                                                             region log_price
                Terrains et Fermes
                                                                          À Vendre
                                                                                      100000.0
                                                                                                                      5.000000
                                            -1.0
                                                              -1.0
                                                                     -1.0
                                                                                                Ariana
                                                                                                             Raoued
                Terrains et Fermes
                                            -1.0
                                                                           À Vendre 316000.0
                                                                                                                      5.499687
                                                              -1.0
                                                                     -1.0
                                                                                                Ariana
                                                                                                        Autres villes
         1
                                                                                                                      2.579784
         2
                     Appartements
                                            2.0
                                                               1.0
                                                                     80.0
                                                                            À Louer
                                                                                         380.0
                                                                                               Ariana
                                                                                                        Autres villes
                      Locations de
                                            1.0
                                                               1.0
                                                                     90.0
                                                                            À Louer
                                                                                          70.0 Ariana
                                                                                                        Autres villes
                                                                                                                      1.845098
                         vacances
                     Appartements
                                            2.0
                                                               2.0
                                                                   113.0 À Vendre 170000.0 Ariana
                                                                                                         Ariana Ville
                                                                                                                      5.230449
```

In [20]: #target encoding, в качестве целевого признака - призанк "десятичный логарифм от стоимости" data_coded = ce_TargetEncoder().fit_transform(data_code[data_code.columns.difference(['category', 'region', 'log_price'])], data_code['log_price'])

In [21]: # закодировали признаки city и type. data_coded

Out[21]:	bathroom_count	city	price	room_count	size	type
0	-1.0	4.396202	100000.0	-1.0	-1.0	5.377462
1	-1.0	4.396202	316000.0	-1.0	-1.0	5.377462
2	1.0	4.396202	380.0	2.0	80.0	2.814535
3	1.0	4.396202	70.0	1.0	90.0	2.814535
4	2.0	4.396202	170000.0	2.0	113.0	5.377462
12743	-1.0	4.097203	3200000.0	-1.0	-1.0	5.377462
12744	1.0	4.097203	600.0	1.0	100.0	2.814535
12745	1.0	4.097203	1950000.0	3.0	760.0	5.377462
12746	1.0	4.097203	240000.0	3.0	190.0	5.377462
12747	1.0	4.097203	500.0	2.0	70.0	2.814535

12748 rows × 6 columns

In [22]: data_code['city'].unique()

Out[22]:array(['Ariana', 'Béja', 'Ben arous', 'Bizerte', 'Gabès', 'Gafsa',

'Jendouba', 'Kairouan', 'Kasserine', 'Kébili', 'La manouba',

'Le kef', 'Mahdia', 'Médenine', 'Monastir', 'Sidi bouzid',

'Siliana', 'Sousse', 'Tataouine', 'Tozeur', 'Zaghouan', 'Sfax',

'Nabeul', 'Tunis'], dtype=object)

In [23]: data_code['type'].unique()

Out[23]:array(['À Vendre', 'À Louer'], dtype=object)

In [24]: data_coded['type'].unique()

Out[24]:array([5.3774619, 2.81453498])

In [25]: data_coded['city'].unique()

Out[25]:array([4.39620214, 4.90930135, 4.15538361, 4.78524077, 3.96298515,

4.44028374, 4.18190954, 4.61209125, 5.11869215, 4.53633001,

4.56126995, 4.73824287, 4.45284526, 4.4577953, 4.16867301,

4.87923999, 4.89301342, 4.31520906, 5.28244075, 3.06856425,

4.9728682 , 4.41526039, 5.0677924 , 4.0972025])

In [31]: #закодировать лейблами категории и конкатенировать

le = LabelEncoder()

category_le = le.fit_transform(data_code['category'])

In [50]: np.unique(category_le)

Out[50]:array([0, 1, 2, 3, 4, 5, 6])

In [33]: #преобразуем полученный массив в колонку

data_tempor = np.array(category_le)

data_le = pd.DataFrame(data_tempor, columns=['category_le'])

In [55]: #объединяем колонки оригинальной таблицы с кодированными колонками data_result = pd.concat([data_le['category_le'], data_code.iloc[:, 1:4], data_coded['type'], data_code['price'], data_coded['city'], data_code(['region', 'loc

In [56]: #итоговая таблица с кодированными категориальными признаками. data_result.head(10)

Out[56]:	category_le	room_count	bathroom_count	size	type	price	city	region	log_price
0	6	-1.0	-1.0	-1.0	5.377462	100000.0	4.396202	Raoued	5.000000
1	6	-1.0	-1.0	-1.0	5.377462	316000.0	4.396202	Autres villes	5.499687
2	0	2.0	1.0	80.0	2.814535	380.0	4.396202	Autres villes	2.579784
3	3	1.0	1.0	90.0	2.814535	70.0	4.396202	Autres villes	1.845098
4	0	2.0	2.0	113.0	5.377462	170000.0	4.396202	Ariana Ville	5.230449
5	3	1.0	1.0	70.0	2.814535	80.0	4.396202	Autres villes	1.903090
6	0	2.0	1.0	100.0	2.814535	670.0	4.396202	Borj Louzir	2.826075
7	4	2.0	1.0	20.0	2.814535	650.0	4.396202	Borj Louzir	2.812913
8	6	-1.0	-1.0	-1.0	5.377462	180000.0	4.396202	Autres villes	5.255273
9	4	1.0	1.0	40.0	2 814535	450.0	4 396202	Ariana Ville	2 653213

Нормализация числовых признаков:

In [38]: *#нормализуем признак из предыдущего да тасе та* skip.hist(figsize=(20,20))

In [45]: stats.probplot(skip['Korean won (KRW)'], dist="norm", plot = plt) plt.show()

In [57]: #применяем преобразование Бокса-Кокса. skip['Korean won (KRW)_bxcx'], param = stats.boxcox(skip['Korean won (KRW)']) print('Оптимальное значение λ = {}'.format(param))

stats.probplot(skip['Korean won (KRW)'], dist="norm", plot = plt) plt.show()

Оптимальное значение $\lambda = -0.5002434258851536$

Результат, в целом, плохой, но учитывая степень отклонения исходного распределения от нормальности, ситуация несколько улучшилась.

In [50]: stats.probplot(skip['Swiss franc (CHF)'], dist="norm", plot = plt) plt.show()

In [53]: # применяем логарифмическое преобразование #получаем достаточно неплохой результат skip['Swiss franc (CHF)_log'] = np.log(skip['Swiss franc (CHF)'])

stats.probplot(skip['Swiss franc (CHF)_log'], dist="norm", plot = plt) plt.show()

