

Quiz #7

Monday, April 16 2018

Duration	20 min
NAME:	
	rite clearly and properly.

Problem	Grade
1	
2	
Total	

Problem 1 (\sim 7 points.). Consider the function f of two variables defined by:

$$f(x, y) = 1 - 2x y^2$$

and the rectangle R defined by:

$$\begin{split} R &= [-1,3] \times [-1,2] \\ &= \left\{ (x,y) \in \mathbb{R}^2 \colon -1 \le x \le 3, \ -1 \le y \le 2 \right\} \ . \end{split}$$

(1) Does the domain of definition of the function f contain the rectangle R ?	

(2) Draw a quick sketch of the rectangle R in the xy -plane.					

(3) Compute the integral of f over the rectangle R in two different ways.				

You may continue writing your solution on the next page.

Problem 2 (\sim 3 points.). Find the value of the double integral:

$$\iint_{R} \cos(x+y) \, dx \, dy \qquad \text{where } R = \left[0, \frac{\pi}{2}\right] \times \left[0, \frac{\pi}{2}\right]$$

Remark: Recall that cos(0) = 1, $cos(\pi/2) = 0$ and $cos(\pi) = -1$.