Sportial Ver

Vir =
$$Criv$$

St. $rac{1}{1}$

Vir = $Criv$

Vir = $Criv$

Vir = $Criv$

Vir = $Criv$
 $Crik(x)$

Vir = $Criv$
 $Crik(x)$

Vir = $Criv$
 $Crik(x)$

Vir = $Criv$
 $Crik(x)$
 $Criv$
 C

The
$$(x) = \frac{p_{k}(x)}{p_{k}(x)} = (x) - [w_{nk}(x) + C_{nk}] + h_{nk}(x)$$

$$-\int_{x=1}^{K} \int_{x=k}^{x} (x) - [w_{nk}(x) + C_{nk}] + h_{nk}(x)$$

The FoC: $\frac{\partial f_{nk}(x)}{\partial f_{nk}(x)} = 0$.

$$\frac{\partial f_{nk}(x)}{\partial f_{nk}(x)} = \frac{1}{r_{nk}(x)} = w_{nk}(x) + C_{nk}.$$

Nash bargarining:

$$\max \left[\frac{1}{r_{0k}(x)} - w \right]^{1/2} \left[w - b_{nk} \right]^{1/2}.$$

$$\max \left[\frac{1}{r_{0k}(x)} - w \right]^{1/2} \left[w - b_{nk} \right]^{1/2}.$$

$$\max \left[\frac{1}{r_{0k}(x)} - w \right]^{1/2} \left[w - b_{nk} \right] + \frac{1}{r_{0k}(x)} - w + \frac{1}{r_{0k}(x)} - w \right] = F(w).$$

$$\lim_{x \to \infty} \frac{1}{r_{0k}(x)} = \frac{1}{r_{0k}(x)} - w + \frac{1}{r_{0k}$$

0= A D Try Ex - D D Trir Er. 0= 2 P L Hrk Wrk - P L (+2) br Wrk (Lrk - Hrk) Wr = Wr.k Pr.k Lr = Ar ar E L = An ar 2 Prk = "Tjk" [[(| - + ok)] Fok
in Capere, Conjuvic & Rubert-Nicond. = [I (Tipk Cik) - OLE] - OLE] - OLE] - OLE] FOR Endogenous variables: ck, wk, pk, lk, rij, Et, Lk, Ir, Lr, v Wr.k > T - I've written a model that comprises

- internal geography

- unemplyment. - I haven't simulated an equilibrium. - Regional variation in unerplayment is largely than time variation.

- I've found a quantitative model of MLA.

- tying to extend it macro a many-country retting

- hat it's difficult, especially trade costs.