# Visualisation interactive des clones V(D)J en fonction des distances d'édition, et suivi de la Leucémie Aigüe Lymphoblastique

#### **Antonin Carette**

Tuteur entreprise: Mathieu Giraud Tuteur Universitaire: Samy Meftali

LIFL - Équipe Bonsai Université Lille1

27 Juin 2014





- Introduction et objectifs
  - Le LIFL et l'équipe Bonsai
  - Contexte biologique
  - Le projet Vidjil
  - Objectifs
- 2 A la recherche de la distance d'édition perdue...
- 3 La distribution "Graphe"
  - Le graphe de distances d'édition
  - Le graphe DBSCAN
- 4 Conclusion et remerciements

# Sommaire

- 1 Introduction et objectifs
  - Le LIFL et l'équipe Bonsai
  - Contexte biologique
  - Le projet Vidjil
  - Objectifs
- A la recherche de la distance d'édition perdue...
- 3 La distribution "Graphe"
- 4 Conclusion et remerciements

Le LIFL (Laboratoire d'Informatique Fondamentale de Lille) est un laboratoire Français rattaché à l'Institut des Sciences de l'Information et de leurs Interactions (INS2I) du CNRS (Centre National de la Recherche Scientifique) - basé sur le campus de Lille1.

Dirigé par **Sophie Tison**, il comprend actuellement 10 équipes-projets et équipes du centre de recherche INRIA Lille - Nord Europe.

Le LIFL (Laboratoire d'Informatique Fondamentale de Lille) est un laboratoire Français rattaché à l'Institut des Sciences de l'Information et de leurs Interactions (INS2I) du CNRS (Centre National de la Recherche Scientifique) - basé sur le campus de Lille1.

Dirigé par **Sophie Tison**, il comprend actuellement 10 équipes-projets et équipes du centre de recherche INRIA Lille - Nord Europe.

L'équipe **Bonsai** est une équipe de bio-informaticiens. Elle comprend actuellement 20 membres (chercheurs, enseignants chercheurs, thésards, ...), et est actuellement dirigée par Hélène Touzet. Travail avec Mathieu Giraud, Mikaël Salson et Marc Duez sur l'ADN / LAL.

#### Généralités sur l'ADN

**ADN** : molécule modélisée en double-hélice, support universel de l'information génétique.

Constituée d'un alphabet de 4 lettres : A,T,G,C.

Peut être sujette à des **recombinaisons**, par différents phénomènes biologiques.

#### Généralités sur l'ADN

ADN: molécule modélisée en double-hélice, support universel de l'information génétique.

Constituée d'un alphabet de 4 lettres : A,T,G,C.

Peut être sujette à des recombinaisons, par différents phénomènes biologiques.

## Les Leucocytes : gardiens de notre corps

Leucocyte = globule blanc.

Les **lymphocytes** font partie d'une classe de leucocytes.

Lors de la reconnaissance (spécifique) : activation -> multiplication.

Lymphocytes strictement identiques = clones V(D)J.













Chaque lymphocyte porte une portion d'ADN V(D)J permettant son identification!

 $2.10^{12}$  recombinaisons possibles.

# La Leucémie Aigüe Lymphoblastique (LAL)

Cancer liquide affectant majoritairement les enfants. Surproduction de lymphocytes cancéreux

# La Leucémie Aigüe Lymphoblastique (LAL)

Cancer liquide affectant majoritairement les enfants.

Surproduction de lymphocytes cancéreux

#### Problème

L'accumulation de lymphocytes cancéreux provoque :

- une anémie chez le patient,
- une diminution du nombre de plaquettes,
- une diminution des globules blancs normaux.

Peut amener à la mort, chez le malade.

Vidjil : collaboration entre l'équipe Bonsai et le Centre d'Hématologie de l'Université Lille2. Projet maintenu par Claude Preudhomme, Mathieu Giraud et Mikaël Salson. Ingénieur sur le projet : Marc Duez.

#### Composition du projet

Vidjil est composé de deux programmes :

- un programme en C++ (algorithme),
- une interface Web (interface): HTML5, Javascript, Ajax, frameworks D3JS et JQuery, Python (web2py)

Vidjil : collaboration entre l'équipe Bonsai et le Centre d'Hématologie de l'Université Lille2. Projet maintenu par Claude Preudhomme, Mathieu Giraud et Mikaël Salson. Ingénieur sur le projet : Marc Duez.

#### Composition du projet

Vidjil est composé de deux programmes :

- un programme en C++ (algorithme),
- une interface Web (interface): HTML5, Javascript, Ajax, frameworks D3JS et JQuery, Python (web2py)

# À quoi sert-il?

- Détection, dénombrement et suivi des clones V(D)J.
- Précision des traitements thérapeutiques.



Présentation de l'Interface





# Visualisation selon la distribution V/J Genes



Visualisation selon la distribution V/J Alleles

#### Problème

Sur une distribution déjà implanté, comment savoir, dans un groupe de clones, lesquels sont les plus similaires les uns des autres?

#### Problème

Sur une distribution déjà implanté, comment savoir, dans un groupe de clones, lesquels sont les plus similaires les uns des autres?

#### Solution 1

La solution est de comparer les clones un par un, nucléotide par nucléotide... Ce qui est fastidieux, et pouvant être un source d'erreur!

IGHV3-64\*02 -0/17/-8 IGHD6-19\*01 -1/15/-8 IGHJ6\*02 IGHV3-74\*01 -1/0/-10 IGHD1-26\*01 -0/0/-2 IGHJ6\*02 T-02b

IGHV3-30\*03 -2/0/-15 IGHD3-9\*01 -7/0/-4 IGHJ6\*02

33.33% \*CTGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACG
8.089% \*CACAAGCTACGCGGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACACA
0.0075% \*TACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACACA

3.163% \*AGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCC

#### Problème

Sur une distribution déjà implanté, comment savoir, dans un groupe de clones, lesquels sont les plus similaires les uns des autres?

#### Solution 1

Comparer les clones un par un avec l'interface, nucléotide par nucléotide... Ce qui est fastidieux, et peut être une source d'erreur!

IGHV3-64\*02 -0/17/-8 IGHD6-19\*01 -1/15/-8 IGHJ6\*02 IGHV3-74\*01 -1/0/-10 IGHD1-26\*01 -0/0/-2 IGHJ6\*02 T-02b

IGHV3-30\*03 -2/0/-15 IGHD3-9\*01 -7/0/-4 IGHJ6\*02

CACAAGCTACGCGGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGA

TACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAA **★**AGTAATAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTC(

#### Solution 2

Créer un outil permettant de visualiser directement les clones en fonction de leurs similarités.



#### **Objectifs**

#### Deux objectifs:

- création d'un graphe représentant les distances d'édition entre les clones,
- implantation de l'algorithme de partitionnement DBSCAN.

#### **Objectifs**

#### Deux objectifs:

- création d'un graphe représentant les distances d'édition entre les clones,
- implantation de l'algorithme de partitionnement DBSCAN.

#### Mais avant...

...il faut d'abord commencer à calculer les distances d'édition!

# Sommaire

- Introduction et objectifs
- 2 A la recherche de la distance d'édition perdue...
- 3 La distribution "Graphe"
- Conclusion et remerciements

Une distance d'édition est un nombre de modifications à apporter selon trois opérations, permettant de passer d'une chaîne de caractères à une autre.

3 opérations : insertion/délétion/substitution.

Nous prendrons le poids suivant :  ${f 0}$  pour un  ${\it match},\,{f 1}$  pour

insertion/délétion/substitution -> Levenshtein.

Une distance d'édition est un nombre de modifications à apporter selon trois opérations, permettant de passer d'une chaîne de caractères à une autre.

3 opérations : insertion/délétion/substitution.

Nous prendrons le poids suivant :  $oldsymbol{0}$  pour un  $\mathit{match}, \ oldsymbol{1}$  pour

insertion/délétion/substitution -> Levenshtein.

#### Exemple 1

Prenons deux chaînes de caractères de même longueur : CHIEN / NICHE.

|   | C | Н | - 1 | Ε | N |
|---|---|---|-----|---|---|
| Ν | - | - | -   | - | - |
| I | - | - | -   | - | - |
| C | - | - | -   | - | - |
|   |   | - | -   | - | - |
| _ |   |   |     |   |   |

Une distance d'édition est un nombre de modifications à apporter selon trois opérations, permettant de passer d'une chaîne de caractères à une autre.

3 opérations : insertion/délétion/substitution.

Nous prendrons le poids suivant :  ${f 0}$  pour un  ${\it match}, {f 1}$  pour

insertion/délétion/substitution -> Levenshtein.

#### Exemple 1

Prenons deux chaînes de caractères de même longueur : CHIEN / NICHE.

|   | C | Н | ı | Ε | Ν |
|---|---|---|---|---|---|
| Ν | 1 | 2 | 3 | 4 | 4 |
| 1 |   | 2 |   | 3 | 4 |
| C | 2 | 3 | 3 | 3 | 4 |
| Н | 3 | 2 | 3 | 4 | 4 |
| Ε | 4 |   |   | 3 | 4 |

Une distance d'édition est un nombre de modifications minimal à apporter selon trois opérations, permettant de passer d'une chaîne de caractères à une autre.

```
3 opérations : insertion/délétion/substitution.
Nous prendrons le poids suivant : 0 pour un match, 1 pour insertion/délétion/substitution -> Levenshtein.
```

#### Exemple 1

Prenons deux chaînes de caractères de même longueur : CHIEN / NICHE. Le résultat du calcul est : - -  $\mathbf{C}$   $\mathbf{H}$  -  $\mathbf{E}$  - :

- deux insertions : N, I,
- deux délétions : I, N.

Soit une distance d'édition de 4.

Implantation du calcul dans le programme C++. Environ 5000 distances retournées pour 100 clones, reprises dans l'interface

#### Mais, sur quoi calcule-t-on?

Comparaison sur deux séquences de 40 nucléotides comprises entre la fin de la région V, et le début de la région J = les **windows** 

Implantation du calcul dans le programme C++.

Environ 5000 distances retournées pour 100 clones, reprises dans l'interface

#### Mais, sur quoi calcule-t-on?

Comparaison sur deux séquences de 40 nucléotides comprises entre la fin de la région V, et le début de la région J = les windows

#### Pourquoi les windows?

Window = marqueur spécifique d'un lymphocyte.

Avantage par rapport au suivi au cours du temps, en calcul de distances....

# Sommaire

- 1 Introduction et objectifs
- 2 A la recherche de la distance d'édition perdue...
- 3 La distribution "Graphe"
  - Le graphe de distances d'édition
  - Le graphe DBSCAN
- Conclusion et remerciements

# Qu'est-ce qu'un graphe?

En informatique, un graphe est une structure de données représentée par deux éléments de base :

- les noeuds,
- les arêtes.

# Qu'est-ce qu'un graphe?

En informatique, un graphe est une structure de données représentée par deux éléments de base :

- les noeuds,
- les arêtes.

25/39

#### Idée de la visualisation

- Noeuds : clones,
- Arêtes : distances.
- Visualisation des distances en fonction d'une distance d'édition maximale, dans le scatterPlot.
- Permission de faire varier la distance d'édition maximale, de façon interactive (avec l'utilisation d'un slider).
- Implémentation en HTML5, Javascript et les frameworks D3JS et JQuery.

#### Deux idées :

- visualisation en un seul graphe,
- visualisation en plusieurs graphes indépendants.

Représentation d'un graphe complet

Visualisation interactive des clones V(D)J

# Représentation d'un graphe complet

### Problème

Faiblesse du moteur physique

### Solution

Réduction du nombre d'arêtes inutiles

Représentation d'un graphe complet

#### Problème

Faiblesse du moteur physique

### Solution

Réduction du nombre d'arêtes inutiles

#### Problème

Représentation non-respectueuse des distances d'édition

### Recherche et solution

Semi-échec.

Recherches par rapport à la meilleure visualisation possible avec les outils disponibles : visualisation de graphes indépendants.

# Avec plusieurs graphes (indépendants)

Solution retenue.

### **Avantages**

- Rapidité du calcul, et de la représentation
- Visualisation d'un graphe intéressant en particulier
- Respect (dans la grande majorité) des données recueillies par le moteur physique

# Avec plusieurs graphes (indépendants)

Solution retenue.

### **Avantages**

- Rapidité du calcul, et de la représentation
- Visualisation d'un graphe intéressant en particulier
- Respect (dans la grande majorité) des données recueillies par le moteur physique

#### Inconvénients

 Représentation de tous les clones V(D)J entre eux impossible, car prise en compte de 50% de similarité maximum.





Distance d'édition de 9.



Distance d'édition de 5.



Distance d'édition de 1.

Visualisation basée sur l'algorithme de clusterisation DBSCAN

## **DBSCAN**

DBSCAN = Density-Based Spatial Clustering of Applications with Noise Algorithme publié en 1996 par Martin Ester, Hans-Peter Kriegel, Jörg Sander et Xiaowei Xu.

Utilise la densité estimée des clusters (la distance d'édition -  $\epsilon$  - ainsi que le nombre de voisin minimum - MinPts - d'un clone) pour partitionner.



#### Idée de la visualisation

- Permission de faire varier  $\epsilon$  ainsi que *MinPts* de façon interactive pour partitionner.
- Instanciation d'un objet DBSCAN à chaque modification d'un/des paramètre(s).
- Cluster = sphère contenant le voisinage, autour du noeud CORE.
- Ajout d'une couleur aléatoire pour chaque cluster, pour mieux les différencier sur cette visualisation et les précédentes.
- HTML5, Javascript, et les frameworks D3JS et JQuery création d'une classe objet spécifique pour faire de l'algorithme un objet + tests unitaires QUnit.





Distribution en fonction des gènes, sans colorisation



Même distribution, avec colorisation DBSCAN ( $\epsilon = 2$ )

# Sommaire

- 1 Introduction et objectifs
- 2 A la recherche de la distance d'édition perdue...
- 3 La distribution "Graphe"
- 4 Conclusion et remerciements

# Résolution de la problématique

- Problématique résolue via le graphe de distances d'édition et DBSCAN
- Perspectives :
  - implémentation d'un arbre phylogénétique, remplacement au graphe de distribution (PJI?)
  - implémentation des distances d'édition entre clones sur la sortie PDF.

# Résolution de la problématique

- Problématique résolue via le graphe de distances d'édition et DBSCAN
- Perspectives :
  - implémentation d'un arbre phylogénétique, remplacement au graphe de distribution (PJI?)
  - implémentation des distances d'édition entre clones sur la sortie PDF.

### Bilan personnel

- Intérêt confirmé pour le monde de la recherche
- Apports dans l'organisation et le travail en groupe
- Apports quant à l'ingénierie logicielle ainsi que l'IHM (Intéraction Homme-Machine)

Merci pour votre attention!

Avez-vous des questions?