Exercises Hartshorne

Oriol Velasco Falguera

October 8, 2020

1 Sheaves

Exercise 1.1. Let A be an abelian group, and define the constant presheaf associated to A on the topological space X to be the presheaf $U \mapsto A$ for all $U \neq \emptyset$, with restriction maps the identity. Show that the constant sheaf A defined in the text is the sheaf associated to this presheaf.

Solution. Let sF denote the constant presheaf. Let's first see that each stalk \mathscr{F}_P is a copy of A. Indeed, the elements of \mathscr{F}_P are represented by pairs $\langle U, s \rangle$, with U open neighbourhood of P and $s \in A$. As the restriction maps are the identity, two pairs $\langle U, s \rangle$ and $\langle V, t \rangle$ represent the same element if and only if s = t, so $\mathscr{F}_P = A$.

Let s be an application from U to $\bigcup_{P\in U} \mathcal{F}_P$ satisfying properties (1) and (2) from the definition of associated sheaf. By (1), $s(P) \in \mathcal{F}_P$ is an element of A, and therefore s can be regarded as an application from U to A (that we will denote s'). In addition, let $B\subseteq A$. For each $P\in s'^{-1}(B)$, $\exists V_P$ neighbourhood of P such that $s'(V_P)=t\in B$. Then $s'^{-1}(B)=\bigcup_{P\in s'^{-1}(B)}V_P$ which is open. We have proved that the antiimage of every subset is open and therefore s' is continuos with A being given the discrete topology.

Reciprocally, any countinuous application s' from U to A can be regarded as an application s from U to $\bigcup_{P\in U} \mathscr{F}_P$, defining $s(P)=s'(P)\in \mathscr{F}_P$. This assignation guarantees that s satisfies (1). In addition, for each $P\in U$, the set $V=s'^{-1}(s'(P))$ is an open neighbourhood of P (by continuity of s'), and every $Q\in V$ has the same image s'(P), which proves that s satisfies (2).

In conclusion, $\mathcal{F}^+(U)$ is the group of continuous maps from U into A, and therefore \mathcal{F}^+ is indeed the sheaf \mathcal{A} defined in the text.

- **Exercise 1.2.** a) For any morphism of sheaves $\varphi : \mathcal{F} \to \mathcal{G}$ show that for each point P, $(\ker \varphi)_P = \ker(\varphi_P)$ and $(im\varphi)_P = im(\varphi_P)$.
 - b) Show that φ is injective (respectively surjective) if and only if the induced map on the stalks φ_P is injective (respectilevy surjective) for all P.
 - c) Show that a sequence $\ldots \to \mathcal{F}^{i-1} \xrightarrow{\varphi^{i-1}} \mathcal{F}^i \xrightarrow{\varphi^i} \mathcal{F}^{i+1} \to \ldots$ of sheaves and morphisms is exact if and only if for each $P \in X$ the corresponding sequence of stalks is exact as a sequence of abelian groups.
- **Solution.** a) $(\ker \varphi)_P = \{(U,s), s \in \ker(\varphi(U))\}$, modulo the usual germ equivalence relationship. Thus it can be regarded as a subset of \mathcal{F}_P as $\ker(\varphi(U)) \subseteq \mathcal{F}(U)$. On the other side $\ker(\varphi_P)$ is a subset of \mathcal{F}_P . To see that the two sets are equal it's enough to check the double inclusion. Let $\overline{(U,s)} \in (\ker \varphi)_P$. Then, $\varphi_P(\overline{(U,s)}) = \overline{(U,(\varphi(U))(s))} = \overline{(U,0)} = 0 \Rightarrow \overline{(U,s)} \in \ker(\varphi_P)$. Reciprocally, given $\overline{(U,s)} \in \ker(\varphi_P) \Rightarrow \exists V \subset U$ such that $\varphi(U)(s)|_V = 0$. As restrictions commute with morphisms of sheaves, $\varphi(V)(s|_V) = \varphi(U)(s)|_V = 0$. Then, $\overline{(U,s)} = \overline{(V,s|_V)} \in \ker(\varphi_P)$. In conclusion, $(\ker \varphi)_P = \ker(\varphi_P)$.

As $\mathscr{F}_P = \mathscr{F}_P^+$, $(\operatorname{im}\varphi)_P$ is equal to the stack of the presheaf image at point P. $\operatorname{im}(\varphi_P) = \{\overline{(U,s)} \in \mathscr{G}_P \text{ such that } \exists \overline{(V,t)} \in \mathscr{F}_P | \varphi_P(\overline{(V,t)} = \overline{(U,s)}\}$. But as $\varphi_P(\overline{(V,t)}) = \overline{(V,\varphi(V)(t))}$ then $\overline{(U,s)} \in \operatorname{im}(\varphi_P) \iff \exists W$ neighbourhood of $P, W \subseteq V \cap U$ such that $\varphi(V)(t)|_W = s_W \iff \varphi(W)(t|_W) = s|_W \iff \overline{(U,s)} = \overline{(W,\varphi(W)(t|_W))} \iff \overline{(U,s)} \in (\operatorname{im}\varphi)_P$.

b) φ injective $\Rightarrow \ker \varphi = 0 \Rightarrow (\ker \varphi)_P = 0 \forall P$. Using part a) of the problem, $\ker \varphi_P = (\ker \varphi)_P = 0 \Rightarrow \varphi_P$ is injective $\forall P$. Reciprocally, let $x \in \ker \varphi(U)$. $\forall P \in U, (\ker \varphi)_P = 0$ so the image of x in the stalk $(\ker \varphi)_P$ is zero, which means that $\exists W_P \subseteq U$ neighbourhood of P such that $x|_{W_P} = 0$. But open sets W_P cover U and therefore, by property (3) of the definition of shieves, x = 0. In conclusion, $\ker \varphi(U) = 0 \ \forall U \Rightarrow \ker \varphi = 0 \Rightarrow \varphi$ injective.

We proceed similarly with the surjectivity. $\operatorname{im}\varphi = \mathcal{G} \Rightarrow (\operatorname{im}\varphi)_P = \mathcal{G}_P \Rightarrow \operatorname{im}(\varphi_P) = \mathcal{G}_P \Rightarrow \varphi_P$ surjective. To prove the other implication, First we will prove a fact that is stated but not proved in the text: $\mathcal{F}^+ \cong \mathcal{F}$ if \mathcal{F} is already a sheaf. Given an open set U, let V_P be the

neighbourhood of P contained in U such that $\exists t \in \mathcal{F}(V_P)$ such that $t_Q = s(Q) \, \forall Q \in V_P$. The sets V_P cover U, and given two of these sets, V, V' and the respective elements t, t' we have that $\overline{(V', t')} = \overline{(V, t)}$ in every stalk $\mathcal{F}_Q \Rightarrow \exists W_Q$ such that $t'|_{W_Q} = t|_{W_Q} \, \forall Q \in V \cap V'$. Then these W_Q cover $V \cap V'$, and by property (3) applied to $t'|_{V \cap V'} - t_{V \cap V'}$, we have that $t_{V \cap V'} = t'_{V \cap V'}$. Then, by property (4) applied to the sets $V_P, \, \exists t \in \mathcal{F}(U)$ such that $t_Q = s(Q) \, \forall Q \in U$, which means that each application s is uniquely determined by $t \in \mathcal{F}(U)$, and then $\mathcal{F}^+(U) \cong \mathcal{F}(U)$. Now it's easy to check that φ is surjective. We have that $(\operatorname{im}\varphi)_P = \operatorname{im}(\varphi_P) = \mathcal{G}_P$ and so we have that $\operatorname{\mathfrak{m}}\varphi(U)$ is the set of functions s from U to $\bigcup_{P \in U} \mathcal{G}_P$, which means that $\operatorname{im}\varphi$ is in fact $\mathcal{G}^+ \cong \mathcal{G}$ as \mathcal{G} is already a sheaf.

c) Given a sequence of sheaves and morphisms $\ldots \to \mathcal{F}^{i-1} \xrightarrow{\varphi^{i-1}} \mathcal{F}^{i} \xrightarrow{\varphi^{i}} \mathcal{F}^{i+1} \to \ldots$, it is exact $\iff \ker \varphi^{i} = \operatorname{im} \varphi^{i-1}$. If the sequence is exact, taking direct limits at both sides and using section a) we have that $\ker(\varphi_{P}^{i}) = (\ker \varphi^{i})_{P} = (\operatorname{im} \varphi^{i-1})_{P} = \operatorname{im}(\varphi_{P}^{i-1})$, and so the sequence of stalks at each point P is exact.

The other implication is consequence of a more general result that we will prove now: Two subsheaves are equal \iff the corresponding stalks at each point are equal. Let $\mathcal{F}_1, \mathcal{F}_2$ be two subsheaves of \mathcal{F} , such that $(\mathcal{F}_1)_P = (\mathcal{F}_2)_P$. Let $t \in \mathcal{F}_1(U)$. For every $P \in U \exists V_P$ neighbourhood of P and $s \in \mathcal{F}_2(V)$ such that $s_P = t_P$. The sets $V_P \cap U$ cover U, and given two of these sets, V, V' and the respective elements s, s' we have that $\overline{(V', s')} = \overline{(V, s)} = \overline{(U, t)}$ in every stalk $\mathcal{F}_Q \Rightarrow \exists W_Q$ such that $s'|_{W_Q} = s|_{W_Q} \forall Q \in V \cap V'$. Then these W_Q cover $V \cap V'$, and by property (3) applied to $s'|_{V \cap V'} - s|_{V \cap V'}$, we have that $s|_{V \cap V'} = s'|_{V \cap V'}$. Then, by property (4) applied to the sets $V_P \cap U$, $\exists r \in \mathcal{F}_2(U)$ such that $t_P = r_P \forall P$. By property (3) applied to r - t we get s = t and so $t \in \mathcal{F}_2(U)$. So $\mathcal{F}_1(U) \subseteq \mathcal{F}_2(U)$ and by symmetry $\mathcal{F}_1(U) = \mathcal{F}_2(U)$.

Exercise 1.3.