2.2 磁盘比内存慢几万倍?

大家如果想自己组装电脑的话,肯定需要购买一个 CPU,但是存储器方面的设备,分类比较 多,那我们肯定不能只买一种存储器,比如你除了要买内存,还要买硬盘,而针对硬盘我们 还可以选择是固态硬盘还是机械硬盘。

相信大家都知道内存和硬盘都属于计算机的存储设备,断电后内存的数据是会丢失的,而硬 盘则不会,因为硬盘是持久化存储设备,同时也是一个 I/O 设备。

但其实 CPU 内部也有存储数据的组件,这个应该比较少人注意到,比如寄存器、CPU L1/L2/L3 Cache 也都是属于存储设备,只不过它们能存储的数据非常小,但是它们因为靠近 CPU 核心,所以访问速度都非常快,快过硬盘好几个数量级别。

问题来了,那机械硬盘、固态硬盘、内存这三个存储器,到底和 CPU L1 Cache 相比速度差 多少倍呢?

在回答这个问题之前,我们先来看看「存储器的层次结构」,好让我们对存储器设备有一个 整体的认识。

目录

侧边栏

夜间

技术群

资料

支持我

上一篇

下一篇

存储器的层次结构

我们想象中一个场景,大学期末准备考试了,你前去图书馆临时抱佛脚。那么,在看书的时 候,我们的大脑会思考问题,也会记忆知识点,另外我们通常也会把常用的书放在自己的桌 子上, 当我们要找一本不常用的书, 则会去图书馆的书架找。

就是这么一个小小的场景,已经把计算机的存储结构基本都涵盖了。

我们可以把 CPU 比喻成我们的大脑,大脑正在思考的东西,就好比 CPU 中的**寄存器**,处理 速度是最快的,但是能存储的数据也是最少的,毕竟我们也不能一下同时思考太多的事情, 除非你练过。

我们大脑中的记忆,就好比 CPU Cache,中文称为 CPU 高速缓存,处理速度相比寄存器慢 了一点,但是能存储的数据也稍微多了一些。

CPU Cache 通常会分为 L1、L2、L3 三层,其中 L1 Cache 通常分成「数据缓存」和「指令缓

人脑

首页 图解网络 图解系统 图解 MySQL 图解 Redis 学习路线 ▼ 网站动态 Github □

寄存器和 CPU Cache 都是在 CPU 内部,跟 CPU 挨着很近,因此它们的读写速度都相当的 快,但是能存储的数据很少,毕竟 CPU 就这么丁点大。

当我们大脑记忆中没有资料的时候,可以从书桌或书架上拿书来阅读,那我们桌子上的书, 就好比内存,我们虽然可以一伸手就可以拿到,但读写速度肯定远慢于寄存器,那图书馆书 架上的书,就好比硬盘,能存储的数据非常大,但是读写速度相比内存差好几个数量级,更

知道 CPU 内部的存储器的层次分布,我们放眼看看 CPU 外部的存储器。

目录

《 侧边栏

夜间

技术群

资料

支持我

上一篇

下一篇

别说跟寄存器的差距了。 大脑 --> CPU 书 --> 数据 正在处理 --> 寄存器 图书馆书架 --> SSD/HDD 硬盘 书桌 --> 内存 短期记忆 --> L1 Cache 长度记忆 --> L2/L3 Cache

我们从图书馆书架取书,把书放到桌子上,再阅读书,我们大脑就会记忆知识点,然后再经 过大脑思考,这一系列过程相当于,数据从硬盘加载到内存,再从内存加载到 CPU 的寄存器 和 Cache 中,然后再通过 CPU 进行处理和计算。

书

书桌

书

对于存储器,它的速度越快、能耗会越高、而且材料的成本也是越贵的,以至于速度快的存 储器的容量都比较小。

CPU 里的寄存器和 Cache, 是整个计算机存储器中价格最贵的, 虽然存储空间很小, 但是读 写速度是极快的,而相对比较便宜的内存和硬盘,速度肯定比不上 CPU 内部的存储器,但是 能弥补存储空间的不足。

存储器通常可以分为这么几个级别:

图书馆书架

首页 图解网络 图解系统 图解 MySQL 图解 Redis 学习路线 ▼ 网站动态 Github 🖸

- 寄存器;
- CPU Cache;
 - 1. L1-Cache;

- 囚仔;
- SSD/HDD 硬盘

目录

侧边栏

夜间

技术群

资料

支持我

上一篇

下一篇

寄存器

最靠近 CPU 的控制单元和逻辑计算单元的存储器,就是寄存器了,它使用的材料速度也是最快的,因此价格也是最贵的,那么数量不能很多。

存储器的数量通常在几十到几百之间,每个寄存器可以用来存储一定的字节(byte)的数据。比如:

- 32 位 CPU 中大多数寄存器可以存储 4 个字节;
- 64 位 CPU 中大多数寄存器可以存储 8 个字节。

寄存器的访问速度非常快,一般要求在半个 CPU 时钟周期内完成读写,CPU 时钟周期跟 CPU 主频息息相关,比如 2 GHz 主频的 CPU,那么它的时钟周期就是 1/2G,也就是 0.5ns(纳秒)。

CPU 处理一条指令的时候,除了读写寄存器,还需要解码指令、控制指令执行和计算。如果寄存器的速度太慢,则会拉长指令的处理周期,从而给用户的感觉,就是电脑「很慢」。

CPU Cache

CPU Cache 用的是一种叫 SRAM (Static Random-Access Memory, 静态随机存储器) 的芯片。

SRAM 之所以叫「静态」存储器,是因为只要有电,数据就可以保持存在,而一旦断电,数据就会丢失了。

在 SRAM 里面,一个 bit 的数据,通常需要 6 个晶体管,所以 SRAM 的存储密度不高,同样的物理空间下,能存储的数据是有限的,不过也因为 SRAM 的电路简单,所以访问速度非常快。

CPU 的高速缓存,通常可以分为 L1、L2、L3 这样的三层高速缓存,也称为一级缓存、二级缓存、三级缓存。

L1 高速缓存

L1 高速缓存的访问速度几乎和寄存器一样快,通常只需要 2~4 个时钟周期,而大小在几十 KB 到几百 KB 不等。

每个 CPU 核心都有一块属于自己的 L1 高速缓存,指令和数据在 L1 是分开存放的,所以 L1 高速缓存通常分成**指令缓存**和**数据缓存**。

在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L1 Cache 「数据」缓存的容量大小:

\$ cat /sys/devices/system/cpu/cpu0/cache/index0/size
32K

而查看 L1 Cache 「指令」缓存的容量大小,则是:

\$ cat /sys/devices/system/cpu/cpu0/cache/index1/size
32K

L2 高速缓存

<

上一篇

sh

sh

9/29/2022, 12:59 PM

5 of 14

sh

sh

图解网络 **图解系统** 图解 MySQL 图解 Redis 学习路线 ▼ 网站动态 Github 🖸

个等, 迈问速度则更慢, 速度仕 10~20 个时钟局期。

在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L2 Cache 的容量大小:

目录

《

侧边栏

技术群

资料

支持我

上一篇

L3 高速缓存

256K

L3 高速缓存通常是多个 CPU 核心共用的,位置比 L2 高速缓存距离 CPU 核心 更远,大小也 会更大些,通常大小在几 MB 到几十 MB 不等,具体值根据 CPU 型号而定。

访问速度相对也比较慢一些,访问速度在 20~60 个时钟周期。

\$ cat /sys/devices/system/cpu/cpu0/cache/index2/size

在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L3 Cache 的容量大小:

\$ cat /sys/devices/system/cpu/cpu0/cache/index3/size 3072K

内存

内存用的芯片和 CPU Cache 有所不同,它使用的是一种叫作 DRAM (Dynamic Random Access Memory, 动态随机存取存储器) 的芯片。

相比 SRAM, DRAM 的密度更高,功耗更低,有更大的容量,而且造价比 SRAM 芯片便宜很 多。

DRAM 存储一个 bit 数据,只需要一个晶体管和一个电容就能存储,但是因为数据会被存储 在电容里,电容会不断漏电,所以需要「定时刷新」电容,才能保证数据不会被丢失,这就 是 DRAM 之所以被称为「动态」存储器的原因,只有不断刷新,数据才能被存储起来。

DRAM 的数据访问电路和刷新电路都比 SRAM 更复杂,所以访问的速度会更慢,内存速度大 概在 200~300 个时钟周期之间。

SSD/HDD 硬盘

SSD(Solid-state disk) 就是我们常说的固体硬盘,结构和内存类似,但是它相比内存的优

当然,还有一款传统的硬盘,也就是机械硬盘(Hard Disk Drive, HDD),它是通过物理读写的方式来访问数据的,因此它访问速度是非常慢的,它的速度比内存慢 10W 倍左右。

由于 SSD 的价格快接近机械硬盘了,因此机械硬盘已经逐渐被 SSD 替代了。

存储器的层次关系

现代的一台计算机,都用上了 CPU Cahce、内存、到 SSD 或 HDD 硬盘这些存储器设备了。 其中,存储空间越大的存储器设备,其访问速度越慢,所需成本也相对越少。

CPU 并不会直接和每一种存储器设备直接打交道,而是每一种存储器设备只和它相邻的存储器设备打交道。

比如,CPU Cache 的数据是从内存加载过来的,写回数据的时候也只写回到内存,CPU Cache 不会直接把数据写到硬盘,也不会直接从硬盘加载数据,而是先加载到内存,再从内存加载到 CPU Cache 中。

所以,每个存储器只和相邻的一层存储器设备打交道,并且存储设备为了追求更快的速度,所需的材料成本必然也是更高,也正因为成本太高,所以 CPU 内部的寄存器、L1\L2\L3 Cache 只好用较小的容量,相反内存、硬盘则可用更大的容量,这就我们今天所说的存储器层次结构。

另外, 当 CPU 需要访问内存中某个数据的时候,如果寄存器有这个数据, CPU 就直接从寄存器取数据即可,如果寄存器没有这个数据, CPU 就会查询 L1 高速缓存,如果 L1 没有,则

目录

侧边栏

夜间

技术群

资料

支持我

上一篇

下一篇

下一篇

存储器之间的实际价格和性能差距

前面我们知道了,速度越快的存储器,造价成本往往也越高,那我们就以实际的数据来看看,不同层级的存储器之间的性能和价格差异。

下面这张表格是不同层级的存储器之间的成本对比图:

存储器	硬件介质	单位成本 (美元/MB)	随机访问延时
L1 Cache	SRAM	7	1ns
L2 Cache	SRAM	7	4ns
Memory	DRAM	0.015	100ns
Disk	SSD (NAND)	0.0004	150µs
Disk	HDD	0.00004	10ms

你可以看到 L1 Cache 的访问延时是 1 纳秒,而内存已经是 100 纳秒了,相比 L1 Cache 速度慢了 100 倍。另外,机械硬盘的访问延时更是高达 10 毫秒,相比 L1 Cache 速度慢了 10000000 倍,差了好几个数量级别。

在价格上,每生成 MB 大小的 L1 Cache 相比内存贵了 466 倍,相比机械硬盘那更是贵了 175000 倍。

我在某东逛了下各个存储器设备的零售价,8G内存+1T机械硬盘+256G固态硬盘的总价格,都不及一块Intle i5-10400的CPU的价格,这款CPU的高速缓存的总大小也就十多MB。

总结

目录

夜间

技术群

资料

下一篇

存器处理数据的过程,速度极快,但是容量很小。而 CPU 中的 L1-L3 Cache 好比我们大脑中 的短期记忆和长期记忆,需要小小花费点时间来调取数据并处理。

目录

侧边栏

夜间

技术群

资料

支持我

上一篇

下一篇

我们面前的桌子就相当于**内存**,能放下更多的书(数据),但是找起来和看起来就要花费一 些时间,相比 CPU Cache 慢不少。而图书馆的书架相当于硬盘,能放下比内存更多的数据, 但找起来就更费时间了,可以说是最慢的存储器设备了。

从 寄存器、CPU Cache,到内存、硬盘,这样一层层下来的存储器,访问速度越来越慢,存 储容量越来越大,价格也越来越便宜,而且每个存储器只和相邻的一层存储器设备打交道, 于是这样就形成了存储器的层次结构。

再来回答, 开头的问题: 那机械硬盘、固态硬盘、内存这三个存储器, 到底和 cpu L1 Cache 相比速度差多少倍呢?

CPU L1 Cache 随机访问延时是 1 纳秒,内存则是 100 纳秒,所以 CPU L1 Cache 比内存快 100 倍左右。

SSD 随机访问延时是 150 微秒,所以 CPU L1 Cache 比 SSD 快 150000 倍左右。

最慢的机械硬盘随机访问延时已经高达 10 毫秒,我们来看看机械硬盘到底有多「龟速」:

- SSD 比机械硬盘快 70 倍左右;
- 内存比机械硬盘快 100000 倍左右;
- CPU L1 Cache 比机械硬盘快 10000000 倍左右;

我们把上述的时间比例差异放大后,就能非常直观感受到它们的性能差异了。如果 CPU 访问 L1 Cache 的缓存时间是 1 秒,那访问内存则需要大约 2 分钟,随机访问 SSD 里的数据则需 要 1.7 天, 访问机械硬盘那更久, 长达近 4 个月。

可以发现,不同的存储器之间性能差距很大,构造存储器分级很有意义,分级的目的是要构 造**缓存**体系。

关注作者

新的**技术交流群**已经慢慢人多起来了,群里的大牛真的多,大家交流都很踊跃,也有很多热 心分享和回答问题的小伙伴,是你交朋友好地方,更是你上班划水的好入口。

准备入冬了,一起来抱团取暖吧,加群方式很简单,只需要加我的微信二维码,备注「加 群」即可。

12 of 14

首页 图解网络 <mark>图解系统</mark> 图解 MySQL 图解 Redis 学习路线 ▼ 网站动态 Github ♂

扫一扫,关注「小林coding」公众号

认准小林coding

每一张图都包含小林的认真 只为帮助大家能更好的理解

- ① 关注公众号回复「图解」 获取图解系列 PDF
- ② 关注公众号回复「<mark>加群</mark>」 拉你进百人技术交流群

目录

侧边栏

夜间

技术群

资料

支持我

上一篇

下一篇

哈喽,我是小林,就爱图解计算机基础,如果觉得文章对你有帮助,欢迎微信搜索「小林 coding」,关注后,回复「网络」再送你图解网络 PDF

上次更新: 7/27/2022, 10:39:42 PM

← 2.1 CPU 是如何执行程序的?

2.3 如何写出让 CPU 跑得更快的代码? →

评论

Powered by GitHub & Vssue

登录后才能发表评论 | 支持 Markdown 语法

使用 GitHub 帐号登录后发表评论

图解网络 图解系统 图解 MySQL 图解 Redis 学习路线 ▼ 网站动态 Github □ 首页

登录后查看评论

目录

技术群

资料

支持我

下一篇

9/29/2022, 12:59 PM 14 of 14