Further Mathematics

S.Olivia

March 2024

目录

1	多元	多元函数的极限与连续		
	1.1	基本概念	5	
	1.2	二元函数的极限	5	

4 目录

Chapter 1

多元函数的极限与连续

1.1 基本概念

平面: $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R} = \{(x,y)|x,y \in \mathbf{R}\}$

平面点集: $\{(x,y)|(x,y)$ 满足条件 $P\}$

邻域: $U(P_0, \delta) = \{P | |PP_0| < \delta\}$

内点: P_0 是集合D的内点,如果存在 $\delta > 0$,使得 $U(P_0, \delta) \subset D$

外点: P_0 是集合D的外点, 如果存在 $\delta > 0$, 使得 $U(P_0, \delta) \cap D = \emptyset$

(边) 界点: P_0 是集合D的边界点,如果对任意 $\delta > 0$, $U(P_0, \delta)$ 内既有D内的点,也有D外的点

聚点:对任意 $\delta > 0$, $U(P_0, \delta)$ 内有D内的点

开集:集合D中的每一点都是D的内点,如(a,b)

闭集:集合D中的每一个边界点都是D的点,如[a,b]

开域: 联通的开集

闭域: 联通的闭集

有界集:集合D内的点都在某一邻域内 无界集:集合D内的点没有界限约束

联通集:集合D内的任意两点都可以用D内的折线连接

1.2 二元函数的极限

称f在D上当 $P \rightarrow P_0$ 时以A为极限,记

$$\lim_{P \to P_0} f(P) = A$$

当 P, P_0 分别用坐标 $(x, y), (x_0, y_0)$ 表示时,上式也常写作

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$$

多元函数的逼近可以沿着任何一条路径进行,但是极限只有一个,与逼近的路径无关。如果极限不相等,则称多元函数在该点无极限。