NO1531531

# 日本国特許庁 JAPAN PATENT OFFICE

PCT/JP03/13209

1 2.1 1.03 RECEIVED 0 4 DEC 2003 WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年10月17日

出願番号 Application Number:

特願2002-303648

[ST. 10/C]:

[JP2002-303648]

出願人 Applicant(s):

シャープ株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)



特許庁長官 Commissioner, Japan Patent Office 2003年10月14日

今井康



BEST AVAILABLE COPY

【書類名】

特許願

【整理番号】

02J04104

【提出日】

平成14年10月17日

【あて先】

特許庁長官 殿

【国際特許分類】

G11B 11/00

【発明者】

【住所又は居所】

大阪府大阪市阿倍野区長池町22番22号 シャープ株

式会社内

【氏名】

木山 次郎

【発明者】

【住所又は居所】

大阪府大阪市阿倍野区長池町22番22号 シャープ株

式会社内

【氏名】

岩野 裕利

【発明者】

【住所又は居所】

大阪府大阪市阿倍野区長池町22番22号 シャープ株

式会社内

【氏名】

山口 孝好

【特許出願人】

【識別番号】

000005049

【氏名又は名称】

シャープ株式会社

【代理人】

【識別番号】

100080034

【弁理士】

【氏名又は名称】

原 謙三

【電話番号】

06-6351-4384

【選任した代理人】

【識別番号】

100113701

【弁理士】

【氏名又は名称】 木島 隆一

【選任した代理人】

【識別番号】

100115026

【弁理士】

【氏名又は名称】 圓谷 徹

【選任した代理人】

【識別番号】

100116241

【弁理士】

【氏名又は名称】 金子 一郎

【手数料の表示】

【予納台帳番号】 00

003229

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

0208489

【プルーフの要否】

要

# 【書類名】 明細書

【発明の名称】 AVデータ記録方法、AVデータ記録装置、並びにデータ記録 媒体、

# 【特許請求の範囲】

# 【請求項1】

記録媒体上に、複数のストリームデータが所定の多重化規則に従って多重化されたAVデータを、前記AVデータと同期する関連データと共に記録するAVデータ記録方法であって、

前記AVデータおよび前記関連データを所定の間隔毎に部分AVデータおよび 部分関連データに分割する第1のステップと、

前記記録媒体上において、一続きの前記部分AVデータと前記部分関連データとを記録するための連続領域である第1の連続領域を確保する第2のステップと

前記第1の連続領域に前記部分AVデータと前記部分関連データとを連続的に 記録する第3のステップと、

前記部分AVデータおよび前記部分関連データとをそれぞれ別のファイルとして管理すると共に、前記部分AVデータおよび前記部分関連データを別のファイルとして扱うための情報を管理するファイルシステム管理情報を前記記録媒体上に記録する第4のステップとを備えることを特徴とするAVデータ記録方法。

# 【請求項2】

前記部分AVデータの再生開始時刻と、前記第1の連続領域の位置情報の対応 情報とを前記記録媒体に記録する第5のステップを備えることを特徴とする請求 項1記載のAVデータ記録方法。

# 【請求項3】

前記部分関連データが、対応する前記部分AVデータの近傍に記録されているか否かを管理する情報を前記記録媒体に記録する第6のステップを備えることを特徴とする請求項1記載のAVデータ記録方法。

# 【請求項4】

記録媒体上に、複数のストリームデータが所定の多重化規則に従って多重化さ



れたAVデータを、前記AVデータと同期する関連データと共に記録するAVデ ータ記録装置であって、

前記AVデータおよび前記関連データを所定の間隔毎に部分AVデータおよび 部分関連データに分割する手段と、

前記記録媒体上において、一続きの前記部分AVデータと前記部分関連データ とを記録するための連続領域である第1の連続領域を確保する手段と、

前記第1の連続領域に前記部分AVデータと前記部分関連データとを連続的に 記録する手段と、

前記部分AVデータおよび前記部分関連データとをそれぞれ別のファイルとし て管理すると共に、前記部分AVデータおよび前記部分関連データを別のファイ ルとして扱うための情報を管理するファイルシステム管理情報を前記記録媒体上 に記録する手段とを備えることを特徴とするAVデータ記録装置。

# 【請求項5】

複数のストリームデータが所定の多重化規則に従って多重化されたAVデータ と、前記AVデータと同期する関連データとを記録したデータ記録媒体であって

前記AVデータおよび前記関連データが所定の間隔毎に部分AVデータおよび 部分関連データに分割された状態で、かつ、一続きの前記部分AVデータと前記 部分関連データとが連続して記録されており、

さらに、前記部分AVデータおよび前記部分関連データとをそれぞれ別のファ イルとして管理すると共に、前記部分AVデータおよび前記部分関連データを別 のファイルとして扱うための情報を管理するファイルシステム管理情報が記録さ れていることを特徴とするデータ記録媒体。

# 【発明の詳細な説明】

# [0001]

#### 【発明の属する技術分野】

本発明は、ハードディスク、光ディスク、半導体メモリ等のランダムアクセス 可能な記録媒体に対して、映像データ、音声データを記録する記録方法、記録装 置、並びに記録媒体に関するものである。

# [0002]

# 【従来の技術】

ディスクメディアを用いたビデオのディジタル記録再生装置(以下、ビデオディスクレコーダと呼ぶ)が普及しつつある。それらにおいて、テープメディアと同様にアフターレコーディング(アフレコ)機能を安価に実現する技術が求められている。アフレコ機能は、既に記録したオーディオやビデオに対し、後から情報、特にオーディオを追記する機能である。

# [0003]

ディスクメディアを用いてアフレコ機能を実現している従来技術として、当出 願人による特許文献 1 がある。以下、図 2 0 を用いてその概要を説明する。

# [0004]

特許文献1では、ストリームファイル3000は独自のストリームフォーマットであり、所定の再生時間ごとに分割したオリジナルストリームデータ(初期録画したビデオ・オーディオデータ)の間に同期再生するアフレコデータ用領域を挿入して構成する。図20(a)を例に取ると、部分オリジナルストリームデータ3021の直前には、同期再生するアフレコオーディオデータを格納するためのアフレコデータ用領域3011を挿入する。3012と3022および3013と3023の間の関係も同様である。

# [0005]

ストリームファイル3000を光ディスク3001に記録する際、図20(b)に示すように、同期再生する部分オリジナルストリームデータとアフレコデータ用領域とを物理的な近傍に配置することで、アフレコデータを含めた再生時にシークを最小限にすることができ、シークによる再生の途切れを抑えている。また、部分オリジナルストリームデータの再生時間を、シーク時間等を考慮しリアルタイムアフレコが可能な値に設定(数秒程度)することで、リアルタイムアフレコを保証している。

# [0006]

また、世の中で広く用いられているデータ記録方法として、上記特許文献1に記載のストリーム構成とは異なる構成を持ったISO/IEC 13818-1

に定義されるTransport Stream (以下MPEG-2 TS) や、Program Stream (以下MPE G-2 PS) がある。例えば、DVD-VideoはMPEG-2 PSであり、ディジタル放送やIEEE -1394による機器間のデータ転送形式はMPEG-2 TSである。MPEG-2 PS/TSを考慮したアフレコに関する従来技術については、特許文献 2 や特許文献 3 がある。

[0007]

【特許文献1】

特開2001-43616号公報

[0008]

【特許文献2】

特開2000-306327号公報

[0009]

【特許文献3】

特開平11-298845号公報

[0010]

【発明が解決しようとする課題】

しかしながら、MPEG-2 PS/TSに対して、上記特許文献1に記載のストリーム構成を適用した場合、一般的に用いられているデコーダで再生しようとしても、デコードが正しくできない可能性がある。その理由を以下に説明する。

[0011]

MPEG-2 TS/PSにおいては、基準となるデコーダモデルを設定し、そのデコーダモデル中のオーディオ・ビデオのデコーダのバッファメモリがアンダーフローしたりオーバーフローしたりしないように、ビデオデータとオーディオデータとを多重化することが定められている。しかし、上記特許文献1のストリーム構成の場合、各アフレコデータ用領域には1秒以上のオーディオデータを格納することになる。このストリームファイルを一般的なMPEG-2 TS/PSデコーダで再生した場合、1秒分以上のオーディオデータがまとめて送られることになり、オーディオデコーダのバッファメモリがオーバーフローすることになる。

[0012]

また、特許文献2に記載のアフレコ機能は、前述のMPEG-2 PS多重化規定に従



# [0013]

他方、特許文献3は、アフレコデータを別ファイルに記録することで、個々のファイルではMPEG-2 PS多重化規定を満たすというものである。この場合、アフレコ結果を再生する場合にアフレコデータを記録するファイルとオリジナルストリームファイルを交互に読み出すためシークを繰り返す必要がある。そのため、アフレコした結果に対し非破壊編集(ディスク上のストリームデータは動かさず、再生経路情報によって見た目上の編集を行うこと)を行った場合に、シークにより特にシーン間において再生が途切れる可能性が高まる。また、消費電力の面でも不利である。

# [0014]

本発明は、上記課題を鑑みてなされたものであり、一般的なMPEG-2 PS/TSデコーダ上での再生やリアルタイムアフレコが可能であり、かつ、アフレコ結果を非破壊編集した場合の再生の途切れが少ないデータ記録方法を提供することを目的とする。

#### [0015]

# 【課題を解決するための手段】

本発明のAVデータ記録方法は、上記の課題を解決するために、記録媒体上に、複数のストリームデータが所定の多重化規則に従って多重化されたAVデータを、前記AVデータと同期する関連データと共に記録するAVデータ記録方法であって、前記AVデータおよび前記関連データを所定の間隔毎に部分AVデータおよび部分関連データに分割する第1のステップと、前記記録媒体上において、一続きの前記部分AVデータと前記部分関連データとを記録するための連続領域である第1の連続領域を確保する第2のステップと、前記第1の連続領域に前記部分AVデータと前記部分関連データとを連続的に記録する第3のステップと、前記部分AVデータおよび前記部分関連データとをそれぞれ別のファイルとして管理すると共に、前記部分AVデータおよび前記部分関連データとを別のファイ



### [0016]

上記の構成によれば、上記記録媒体上に記録されるAVデータ(例えば、オリジナルストリーム)および関連データ(例えばアフレコデータ)は、第1のステップによって部分AVデータおよび部分関連データに分割され、シームレス再生やリアルタイムアフレコが保証される記録単位に設定される。

# [0017]

分割された部分AVデータおよび部分関連データは同期するデータ同士を一続きとして、第2,第3の処理によって上記記録媒体上で互いに物理的に近傍した位置に記録される。

### [0018]

さらに、第4のステップにおいて記録されるファイルシステム管理情報では、部分AVデータおよび部分関連データが別のファイルとして管理されることによって、リアルタイムアフレコを保証し非破壊編集性能の高く、なおかつ一般的なMPEG-2 PSのデコーダでの再生が可能になる。また、AVデータの再生と関連データの再生とを同期させて行った場合に、部分AVデータおよび部分関連データが近傍して記録されていることから、シークの頻度が低くなり、その他のデータとさらに同期再生させる余地が大きい。例えば、アフレコオーディオ以外にさらにグラフィックスデータ等を非破壊編集で付加しても再生が途切れる可能性が低い。

### [0019]

また、別ファイルであるファイルシステム管理情報において、記録媒体上の近 傍に配置されている部分AVデータおよび部分関連データの対応関係を示す情報 を記録媒体に記録することによって、ファイルシステム管理情報を参照すること なく容易に連続記録されている部分AVデータおよび部分関連データを知り、最 適なデータ読み込みが可能になる。

#### [0020]

また、本発明のAVデータ記録方法において、前記部分AVデータの再生開始



### [0021]

上記の構成よれば、アフレコの対象となる部分AVデータに対応する部分関連 データ (アフレコ用領域) の位置を容易に特定することが可能となる。

# [0022]

また、本発明のAVデータ記録方法において、前記部分関連データが、対応する前記部分AVデータの近傍に記録されているか否かを管理する情報を前記記録 媒体に記録する第6のステップを備える構成としてもよい。

# [0023]

上記部分AVデータおよび部分関連データの記録時にディフェクトに遭遇した場合、記録中の部分関連データは破棄し、別の領域に新規にCAを記録することがある。

# [0024]

上記の構成よれば、その際に、その部分関連データを管理する情報において対応する部分AVデータの近傍に部分関連データが存在しないことがわかるようにしておくことで、非破壊編集時や非破壊編集結果の再生時に、部分AVデータおよび部分関連データが連続して記録されていない区間が容易に判断可能であり、その区間は再生が途切れる可能性が高いことを事前にユーザに伝えることが可能となる。

# [0025]

# 【発明の実施の形態】

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。ここでの説明は、本発明において共通に用いる構成、個々の実施形態に固有の内容という順に行っていく。

# [0026]

# くシステム構成>

図2は、後述する各実施形態において共通のビデオディスクレコーダの基本システム構成図である。



このビデオディスクレコーダは、図2に示すように、バス100、ホストCPU101、RAM102、ROM103、ユーザインタフェース104、システムクロック105、光ディスク106、ピックアップ107、ECC (Error Correcting Coding) デコーダ108、ECCエンコーダ109、オーディオ再生用バッファ111、デマルチプレクサ112、マルチプレクサ113、記録用バッファ114、オーディオデコーダ115、ビデオデコーダ116、オーディオエンコーダ117、ビデオエンコーダ118、オーディオ記録用バッファ119、ビデオ記録用バッファ120、デマルチプレクサ121、アフレコデータ再生用バッファ122、分割処理部123(AVデータと部分関連データに分割する手段)、空き領域管理部125(連続領域を確保する手段)、管理情報処理部126および図示しないカメラ、マイク、スピーカ、ディスプレイ等で構成される。また、ピックアップ107、ECCデコーダ108、ECCエンコーダ109は、ドライブ127(部分AVデータと部分関連データとを連続的に記録する手段、ファイルシステム管理情報を前記記録媒体上に記録する手段)を構成する。

# [0028]

ホストCPU101は、デマルチプレクサ112、マルチプレクサ113、ピックアップ107、オーディオデコーダ115、ビデオデコーダ116、オーディオエンコーダ117、ビデオエンコーダ118の制御をバス100を通じて行う。

# [0029]

再生時に、光ディスク106からピックアップ107を通じて読み出されたデータは、ECCデコーダ108によって誤り訂正される。誤り訂正されたデータは、管理情報処理部126によってファイルシステム管理情報が処理されて、デマルチプレクサ112あるいはデマルチプレクサ121に送られる。

# [0030]

デマルチプレクサ112はホストCPU101からの指示に従い、読み出されたデータをオーディオデータかビデオデータかに応じてオーディオ再生用バッフ



# [0031]

オーディオデコーダ115は、ホストCPU101からの指示に従って、オーディオ再生用バッファ110およびアフレコデータ再生用バッファ122からデータを読み出し、読み出したデータに対するデコードを行う。同様に、ビデオデコーダ116は、ホストCPU101からの指示に従って、ビデオ再生用バッファ111からデータを読み出し、読み出したデータに対するデコードを行う。

# [0032]

一方、記録時に、オーディオエンコーダ117およびビデオエンコーダ118によって圧縮符号化されたデータは、それぞれオーディオ記録用バッファ119およびビデオ記録用バッファ120に送られる。マルチプレクサ113は、ホストCPU101からの指示に従って、オーディオ記録用バッファ119およびビデオ記録用バッファ120からデータを読み出し、読み出したデータをAV多重化し分割処理部123に送る。分割処理部123はAV多重化されたデータを所定の間隔毎に分割して記録用バッファ114に送る。このとき、空き領域管理部125はデータを記録するための連続領域を確保し、ECCエンコーダ109は、記録用バッファ114から読み出したAV多重化データに対して誤り訂正符号を付加し、ピックアップ107を通じて光ディスク106の確保された連続領域に記録する。

# [0033]

オーディオデータの符号化方式にはISO/IEC 13818-3で規定されるMPEG-1 Laye r-IIを、ビデオデータの符号化方式にはISO/IEC 13818-2で規定されるMPEG-2を それぞれ用いる。光ディスク106は、DVD-RAMのような書き換え可能な 光ディスクであり、2048byteを1セクタとし、誤り訂正のため16セクタでECCブロックを構成する。

# [0034]

<ファイルシステム>



# [0035]

図中のAVDP(Anchor Volume Descriptor Pointer)602は、UDFの管理情報を探すためのエントリポイントに相当し、通常256セクタ目、Nセクタ目あるいはN-256セクタ目(Nは最大論理セクタ番号)に記録する。VDS(Volume Descriptor Sequence)601は、UDFが管理する領域であるボリュームに関する管理情報を記録する。ボリュームは一般に一枚のディスクに1個存在し、その中にパーティションを一般に1個含む。FSD(File Set Descriptor)603は、パーティションに1個存在する。パーティションの中での位置情報はパーティションの先頭からのセクタ番号に相当する論理ブロック番号で示される。なお、1個の論理ブロックは1セクタに対応する。また、各パーティションには図示しないがSpace Bitmapと呼ばれる各論理ブロックがファイルにすでに割り当てられているかそうでないかを示すテーブルが存在する。

# [0036]

FSD603は、ルートディレクトリのFile Entry (FE) であるFE604 の位置情報 (論理ブロック番号と論理ブロック数で構成され "extent" と呼ばれる) を含む。FEは、extentの集合を管理しており、extentを書き換えたり、追加したり、削除することで、ファイルを構成する実データの順番を変えたり、データを挿入したり削除したりすることが可能である。

# [0037]

FE604はルートディレクトリの直下のファイルやディレクトリの名称等を 格納するFile Identifier Descriptor (FID) の集合を格納する領域605を 管理する。領域605中のFID611、FID612は、それぞれファイル6 21、ファイル622のファイル名やextentの集合を管理するFE606、FE 608の位置情報を含む。FE606はファイル621の実データを構成する領域である領域607、領域610をextentとして管理する。このときファイル6 21の実データにアクセスするためには、AVDP602、VDS601、FS



[0038]

「実施の形態1]

本発明の第1の実施形態について、図1および図4~図18を用いて説明する

[0039]

<ファイル・ディレクトリ構成>

本実施の形態1に係るファイル・ディレクトリ構成について、図4を用いて説明する。本実施の形態1に関するデータは、図4に示すように5種類のファイルに格納される。

[0040]

オリジナルストリームファイル(SHRP0001.M2P)は1回の録画によって作成されるファイルであり、MPEG-2 PS(Program Stream)形式である。アフレコデータファイル(SHRP0001.PRE)は、アフレコ用の領域を確保し、アフレコデータを格納するためのファイルである。オリジナルストリーム管理情報ファイル(SHRP0001.0MI)は、オリジナルストリームファイルに関する時間ーアドレス対応情報と属性情報およびアフレコデータファイルに関する属性情報やオリジナルストリームファイルとの対応関係情報とを格納するファイルであり、オリジナルストリームファイル1個につき1個ある。プログラム情報ファイル(SHRP0001.PGM)は、上記のストリームやデータのどの区間をどのような順序で再生するかを指定する情報を格納するファイルである。なお、プログラムは1個のコンテンツに相当し、ユーザが再生を指示する対象である。

[0041]

録画時には、上記4個のファイルを新規に作成する。これらのファイルは、ファイル間の関係を示すため、ファイル名の拡張子以外を共通にする。オーディオアフレコ時には、アフレコオーディオデータをアフレコデータファイル中の所定の位置に上書きし、アフレコデータ管理情報ファイルにおいてもそのことを反映する。さらに、追加したアフレコオーディオデータも再生対象にするようプログ



# [0042]

また、非破壊編集時には、プログラム情報ファイルを新規に作成し、再生したい区間に関して、再生したいデータを管理するオリジナルストリーム管理情報ファイルやアフレコデータ管理情報ファイルのファイル名および再生したい区間を順に記録する。なお、各ファイルのデータ構造については後述する。

### [0043]

<AVストリームの形態>

本実施の形態1において用いるAVストリームの構成について、図5を用いて 説明する。

### [0044]

まず、オリジナルストリームファイルについて図5を用いて説明する。オリジナルストリームファイルの内容はMPEG-2 PS形式であり、図5 (a) に示すように整数個のContinuous Unit (CU) で構成される。CUはディスク上で連続的に記録する単位である。CUの長さは、AVストリームを構成するCUをどのようにディスク上に配置してもシームレス再生(再生中に画像や音声が途切れないで再生できること)やリアルタイムアフレコ(アフレコ対象のビデオをシームレス再生しながらオーディオを記録すること)が保証されるように設定される。この設定方法については後述する。

# [0045]

CUは、図5(b)に示すように整数個のVideo Unit(VU)で構成される。 VUは単独再生可能な単位であり、再生の際のエントリポイントとなり得る。 VUは、図5(c)に示すように整数個のオーディオパック(A#1~A#K)、ビデオパック(V#1~V#L)で構成され、それぞれMPEG-2 PS形式のデコーダモデルが破綻しないようにAV多重される。ディスク読み出しの際に余分なデータを読み出さずに済むように、パックのサイズはセクタサイズに一致させる。 なお、パック化されるビデオデータは、1~2個のGOPで構成されるようにし、オーディオデータは、整数個のAAU(Audio Access Unit)をパック化するようにする。



尚、GOPは、MPEG-2ビデオ規格における画像圧縮の単位であり、複数のビデオフレーム(典型的には15フレーム程度)で構成される。AAUはMPEG-1 Lay er-II規格における音声圧縮の単位で、1152点の音波形サンプル点により構成される。サンプリング周波数が48kHzの場合、AAU1個あたりの再生時間は0.024秒となる。また、VU単位で独立再生を可能とするために、VU中のビデオデータの先頭にはSequence Header (SH) を置く。

# [0047]

なお、CUは整数個のECCブロックで構成されるように、CUの末尾のVUは、パディングパケットを格納したパックでパディングする。

# [0048]

<アフレコデータファイル>

アフレコデータファイルの構成について図6を用いて説明する。アフレコデータファイルは、図6に示すように整数個のContinuous Area(CA)で構成される。上述したオリジナルストリームファイルにおけるCU1個はCA1個に対応して存在し、CAには対応するCU中の再生データに関するアフレコデータを記録する。たとえば、オリジナルストリームファイル中のCU#nと同期して再生したいアフレコオーディオデータはCA#nに記録する。CAは整数個のECCブロックで構成する。

# [0049]

アフレコデータファイルは、オリジナルストリームファイルと同様MPEG-2 PS 形式であり、初期録画時にはパディングパケットを記録し、アフレコ後にはアフレコデータを格納したパックを上書きする。上書きするパックのパックヘッダ中のSСR(System Clock Reference)およびパケットヘッダ中のPTS(Presentation Time Stamp)は、オリジナルストリームファイル中の対応するオーディオパックのものと合わせる。これにより、CA中のオーディオパックで、CU中の対応するオーディオパックを上書きすることで、容易にオリジナルストリームのオーディオをアフレコデータで差し替えることができる。

### [0050]



オリジナルストリームファイルおよびアフレコデータファイルのディスクへの配置について図1を用いて説明する。図1 (a) に示す互いに対応するオリジナルストリームファイル (SHRP0001.M2P) とアフレコデータファイル (SHRP0001.P RE) とは、光ディスク106でCUの直前に対応するCAが配置されるように記録する(図1(b))。

# [0051]

これにより、同期再生を行うデータ同士(CAおよびCU)がディスク上の近傍に置かれるため、再生時のピックアップの移動が最小限となり、後述するように非破壊編集結果を再生する際に再生が途切れる可能性が減少する。また、サイズの小さいCAをCUより前に読み出されるよう配置することによって、同期再生のためのバッファメモリ量を抑えることが可能である。

# [0052]

# < C U単位決定方法>

C U再生時間の決定方法について、図 7 および図 8 を用いて説明する。この決定方法では、機器間での互換性確保のため、基準となるデバイス(リファレンス・デバイス・モデル)と基準となるアフレコアルゴリズム(リファレンス・アフレコ・アルゴリズム)とを想定し、次にそれらを用いてアフレコを行った際にシームレス再生が破綻しないように C U再生時間を決める。

### [0053]

まず、リファレンス・デバイス・モデルについて図7を用いて説明する。リファレンス・デバイス・モデルは1個のピックアップ(図示せず)と、それにつながるECCエンコーダ・デコーダ501、トラックバッファ502、デマルチプレクサ503、アフレコ用バッファ504、オーディオエンコーダ509、ビデオバッファ505、オーディオバッファ506、ビデオデコーダ507、オーディオデコーダ508とによって構成される。

### [0054]

上記リファレンス・デバイス・モデルでは、ピックアップが1個であるため、 再生用データのディスク500からの読み出しと、アフレコ用データのディスク



# [0055]

オーディオエンコーダ509は、AAU周期でアフレコ用バッファ504にアフレコ用データを出力する。この出力によって、アフレコ用バッファ504中の対応するCAブロックを上書きする。アフレコ用データの記録は、CAブロックを所定のECCブロックに記録することで行う。

# [0056]

ここで、オーディオフレームデータのECCエンコーダ501へのデータの入力速度およびECCデコーダ501からのデータの出力速度をRsとする。また、アクセスによる読み出し、記録の停止する最大期間をTaとする。尚、この期間にはシーク時間、回転待ち時間、アクセス後に最初にディスクから読み出したデータがECCデコーダ501から出力されるまでの時間が含まれる。本実施の形態1ではRs=20Mbps、Ta=1秒とする。

# [0057]

次に、リファレンス・アフレコ・アルゴリズムについて、図8を用いて説明する。尚、図8中の①から⑥までの番号は、以下の説明中の①から⑥までの番号に対応する。アルゴリズムの概要は次の通りである。

- ①再生用データの読み出しを行う。
- ②N番目のCAであるCA(N)に対応するオーディオデータのエンコードが終 了すると同時に、CA(N)へのアクセスを行う。
- ③CA(N)をディスクに記録する。
- ④元の読み出し位置に戻る。
- ⑤再生用データの読み出しを行う。
- ⑥N+1番目のCAであるCA(N+1)に対応するオーディオデータのエンコードが終了すると同時に、CA(N+1)へのアクセスを行う。

以降は③~⑥の動作を繰り返す。

# [0058]



# [0059]

すなわち、AVストリーム中の任意のCUであるCU#iについて最大再生時間をTe(i)、分断ジャンプを含めた最大読み出し時間を<math>Tr(i)、CU#に対応するCAであるCA#iの最大記録時間を<math>Tw(i)としたとき、以下の式(1)が成立すればよい。

[0060]

# 【数1】

$$Te(i) \ge Tr(i) + Tw(i) \cdots (1)$$

### [0061]

なぜなら、上記式(1)は、シームレス再生の十分条件である以下の式(2) を満たすためである。また、以下の式(2)において、TaはCAへの往復のア クセスにかかる最大アクセス時間である。

[0062]

# 【数2】

$$\sum_{i} Te(i) \ge \sum_{i} (Tr(i) + Ta) \quad \cdots (2)$$

### [0063]

また、CAエンコード完了に同期してアフレコデータのディスクへの記録を行っているため、アフレコ用バッファ504中のデータが累積していくことはなく、アフレコ用バッファ504のオーバーフローもない。

# [0064]

式(1)中のTr(i)は、オリジナルストリームの最大ビットレートとアフレコオーディオストリームの最大ビットレートをそれぞれRo、Raとしたとき、以下の式(3)を満たす。また、Rsはオーディオフレームデータの入力速度



[0065]

【数3】

$$Tr(i) = Te(i) \times Ro / Rs + Te(i) \times Ra / Rs + Ta$$
 ...(3)

[0066]

上記式(3)の右辺第1項、第2項はそれぞれCU中のVU読み出し時間およびCA読み出し時間を表す。右辺第3項は読み出しに伴う分断ジャンプによるアクセス時間を表す。CU読み出し中の分断ジャンプは最大1回であるため、上記式(3)は、すなわちTr(i)は、1回分のアクセス時間を示している。

[0067]

また、Tw(i)は、以下の式(4)を満たす。

[0068]

【数4】

$$Tw(i) = 2Ta + Te(i) \times Ra / Rs$$
 ··· (4)

[0069]

ここで、上記式(4)の右辺第1項はCAへの往復アクセス時間を示す。CAへの往復のアクセス時間に最大アクセス時間Taを用いているのは、CA単位で任意の位置に記録可能にしているため、現在読み出し中のCUがディスクの最内周であり記録対象のCAがディスクの最外周ということも考えられ、最大値で見積もる必要があるためである。

[0070]

尚、前述のようにCAをディスク上で連続的に記録するようにしているため、CA記録中のアクセスは発生しない。このことにより、CA記録に伴う時間を短くすることができ、結果としてCU再生時間の下限値を低く抑えることが可能となる。

[0071]

式(1)に式(3)および式(4)を代入してTe(i)で解くと、リアルタ



[0072]

# 【数5】

 $Te(i) \ge (3Ta \times Rs) / (Rs - Rv - 3Ra)$  ... (5)

[0073]

つまり、アフレコ保証可能なCU再生時間下限値Teminは、以下の式(6)に示すものとなる。

[0074]

# 【数 6】

 $Temin = (3Ta \times Rs) / (Rs - Rv - 3Ra) \qquad \cdots (6)$ 

[0075]

このとき、CU再生時間の上限値Temaxは、以下の式(7)のように設定する。ここで、TymaxはVUの最大再生時間である。

[0076]

### 【数7】

 $Temax = (3Ta \times Rs) / (Rs - Rv - 3Ra) + Tvmax \qquad \cdots (7)$ 

[0077]

CU再生時間の上限値を設定するのは、アフレコ用音声と通常音声との同期再生に必要な遅延用メモリの最大量を見積り可能にし、再生互換性を保証するためである。尚、本実施の形態1では、オーディオビットレートRaおよびビデオビットレートRvに応じて多重化間隔下限値Teminを設定しているが、ビットレートに関わらず一定の下限値を設定しても良い。ただし、その値は最大のビットレートに基づいたものでなければならない。

[0078]



# [0079]

また、本実施の形態1では、分断ジャンプと過去のCUへのピックアップの移動とを非同期に行うことを想定している。この理由は、非同期に行った方が同期して行った場合に比べ、リアルタイムアフレコを行うための条件として厳しい(再生用データの読み出しが途切れる期間が長い)ため、非同期でリアルタイムアフレコが可能であれば同期でも可能であり、実装の自由度を高めることが可能になるためである。

# [0080]

従って、分断ジャンプと過去のCUへのピックアップの移動を同期して行うことを前提にTeminを設定しても良い。この場合、式(3)の右辺第2項を取り除いて考えれば良い。

# [0081]

<管理情報ファイルフォーマット>

本発明に係る管理情報ファイルフォーマットについて図9ないし図15を用いて説明する。

#### [0082]

まず、オリジナルストリーム管理情報ファイルについて説明する。オリジナルストリーム管理情報ファイルは、図9に示すように、このファイルが管理するオリジナルストリームファイル全体に関する属性情報を格納するo\_\_attribute()、VUに関する情報を格納するvideo\_\_unit\_\_table()、このファイルが管理するアフレコデータファイル全体に関する属性情報を格納するp\_\_attribute()、およびCAに関する情報を格納するcontinuous\_\_area\_\_table()で構成される。

### [0083]

video\_\_unit\_\_table()は、図10(a)に示すように、VUの数を示すnumber \_\_of\_\_video\_\_unitと各VUに関する情報を格納するvideo\_\_unit\_\_info()とで構成される。

### [0084]

video\_unit\_info()は、図10(b)に示すように、所定のVUに関する各種属性情報を示すVU\_flags、所定のVUの先頭表示フレームのPTS(Present ation Time Stamp)を格納するVU\_PTS、およびファイルの先頭からの相対パック番号を格納するVU\_PNで構成される。VU\_PTSおよびVU\_PNによって特定のPTSに対応するVUの位置を特定することが可能になる。すなわち、VU\_PTSはオリジナルストリーム(AVデータ)の再生開始時刻を示し、VU\_PNはCA及びCUを記録する第1の連続領域の位置情報、言い換えるとCAの先頭位置情報を示す。

# [0085]

WU\_flags()は、図11 (a) に示すようにフラグfirst\_unit\_flagを含む。 first\_unit\_flagは1bitの情報であり、図11 (b) に示すように、0b の場合には管理するVUがCUの先頭でないことを意味し、1bの場合には管理するVUがCUの先頭であることを意味する。

# [0086]

continuous\_area\_table()は、図12(a)に示すように、CAの数を示すnumber\_of\_continuous\_areaと各CAに関する情報を格納するcontinuous\_area\_info()とで構成される。

#### [0087]

continuous\_area\_info()は、図12(b)に示すように、所定のCAに関する各種属性情報を示すCA\_flags、所定のCAに関して対応するCUの先頭表示フレームのPTS(Presentation Time Stamp)を格納するCA\_PTS、およびファイルの先頭からの相対パック番号を格納するCA\_PNで構成される。CA\_PTSおよびCA\_PNによって、オリジナルストリーム中の特定のPTSに対応するCAの位置を特定することが可能になる。

### [0088]

CA\_\_flags()は、図13 (a)に示すようにフラグplacement\_\_flagを含む。placement\_\_flagは1bitの情報であり、図13 (b)に示すように、0bの場合には管理するCAが対応する(同期再生する)CUの直前にないことを意味し、1bの場合には管理するCAが対応する(同期再生する)CUの直前にあるこ

とを意味する。

### [0089]

このフラグを参照することで、非破壊編集結果を再生する際に再生が途切れる 可能性を知ることが可能である。すなわち、このフラグが 0 b であれば、C Aへ のシークが発生し、再生が途切れる可能性が高いことがわかる。

### [0090]

なお、o\_attribute()およびp\_attribute()については説明を省略する。

# [0091]

最後にプログラム情報ファイルについて説明する。プログラム情報ファイルは 図14に示すように、プログラム情報全般の属性情報を格納するpg\_\_attribute()と、プログラムを構成する各シーンに関する情報を格納するscene\_\_table()と で構成される。

# [0092]

scene\_table()は、図15(a)に示すように、シーン数を格納するnumber\_of\_sceneと各シーンに関する情報を格納するscene\_info()とで構成される。scene\_info()は図15(b)に示すように、所定のシーンを含むオリジナルストリームファイルを管理するオリジナルストリーム管理情報ファイルのファイル名を格納するsc\_filename、所定のシーンをそのオリジナルストリームのどこから再生するかの情報を格納するsc\_start\_PTS、および所定のシーンの再生時間を格納するsc\_durationで構成される。

#### [0093]

#### <記録時の処理>

次に、ユーザから録画が指示された場合の処理を、図16のフローチャートに沿って説明する。このとき記録するAVストリームはビットレートRo=12M bps、オーディオのビットレートRa=256kbpsで、VU再生時間固定の対応ストリームであるとする。また、すでにファイルシステムの管理情報はR AM上に読み込まれているものとする。

#### [0094]

まず、ストリームの構成や連続領域の構成を決定する(S701)。1VUを



# [0095]

このときのCAの領域サイズは、3秒分のオーディオデータにパックヘッダやパケットヘッダがつくことを考慮して決定する。以上より、上記S701の処理は、AVデータであるオリジナルストリーム及びその関連データであるアフレコデータを所定の間隔毎に部分AVデータ(CU:すなわち、6個のVU)および部分関連データ(CA)に分割する第1のステップに相当する。

# [0096]

6個のVUと1個のCAとを連続的に記録可能な空き領域をRAM102上の Space Bitmapを参照して探す。存在しなければ録画を中止し、録画できないこと をユーザに知らせる(S702)。

#### [0097]

次に、オーディオエンコーダ117、ビデオエンコーダ118をそれぞれ起動する(S703)。また、記録用バッファに1ECCブロック分(32KB)以上のデータが蓄積されているかどうかをチェックし(S704)、蓄積されている間、S705からS708の処理を繰り返す。

### [0098]

すなわち、記録用バッファに1ECCブロック分以上のデータが蓄積されていれば、次に記録するディスク上のECCブロックの空き状況をRAM上のSpace Bitmapを参照して調べる(S705)。空きがあれば、記録用バッファ111中の1ECCブロック分のデータをディスクに記録する(S706)。空きがなければ、9個のVUとCAを記録可能な連続的な空き領域を探して(S707)、その空き領域の先頭へピックアップを移動し(S708)、記録用バッファ111中の1ECCブロック分のデータをディスクに記録する(S706)。

### [0099]



### [0100]

一方、記録用バッファ111に1ECCブロック分以上のデータが蓄積されているければ、記録終了が指示されているかどうかをチェックし(S709)、記録終了でなければS704に移行する。

# [0101]

S709において記録終了が指示されていた場合は、以下の処理を実行する。まず、記録用バッファ中の32KBに満たないデータに関して、末尾にダミーデータを付加し32KBにする(S710)。次に、そのデータをディスク上に記録する(S711~S714)。尚、上記711~S714の処理は、S705~S708の処理と同様の処理である。

# [0102]

さらに、RAM102上のオリジナルストリームに関する管理情報およびアフレコデータに関する管理情報をそれぞれオリジナルストリーム管理情報ファイルおよびアフレコデータ管理情報ファイルに記録する(S715)。また、ファイルシステム管理情報を光ディスク106に記録する(S716)。なお、その際のファイルシステム管理情報は、CAとCUとが別のファイルとして扱われるように構成する。

### [0103]

以上より、上記S715~716の処理は、前記部分AVデータおよび前記部分関連データとをそれぞれ別のファイルとして管理すると共に、前記部分AVデータおよび前記部分関連データと前記第1の連続領域とを別のファイルとして扱うための情報を管理するファイルシステム管理情報を前記記録媒体上に記録する第4のステップに相当する。

#### [0104]

以上の処理と並行するオーディオエンコーダ117、ビデオエンコーダ118



### [0105]

記録用バッファ114に1VU分のデータが送られ、なおかつ、そのVUが9 ×i番目(iは0以上の整数)のVUであれば、上述のサイズを持ったCAを先 に記録用バッファ111に送る。

# [0106]

さらに、ホストCPU101に1VU分のデータがエンコードできたことを通知し、ホストCPU101はVUの先頭PTS、パック数およびCAを構成するパック数を基にRAM102上のオリジナルストリームに関する管理情報およびアフレコデータに関する管理情報を更新する。

# [0107]

### <再生時の処理>

すでにアフレコを行ったプログラムに対してユーザから再生が指示された場合の処理を、図17のフローチャートに沿って説明する。ここで、すでに再生の対象となるプログラム情報ファイルはRAM102に読み込まれているものとする

# [0108]

まず、プログラム情報ファイル中のscene\_\_info()のsc\_\_filenameを参照し、このプログラムが参照しているオリジナルストリームファイルおよびアフレコデータファイルを openする。同時にそれらを管理するオリジナルストリーム管理情報ファイルを読み込む(S901)。

# [0109]

次にシーン番号に0をセットし(S902)、シーン番号がscene\_table()中のnumber\_of\_sceneより小さい間(S903)、以下のシーン番号に対応するscene\_infoの内容を参照して後述するシーンの再生を行い(S904)、終わったらシーン番号をインクリメントする(S905)。

# [0110]

次にシーン再生処理について図18を用いて説明する。まず、scene\_\_info()中のsc\_\_filenameに対応する、すでにRAM102に読み込まれたオリジナル管理情報のvideo\_\_unit\_\_table()を参照し、sc\_\_start\_\_PTS以下でなおかつ最大のVU\_\_PTSを持つ、video\_\_unit\_\_info()を探す(S801)。上記S801の処理は、再生が開始されるシーンのVU番号を求めることとなる。なお、video\_\_unit\_\_table()中でvideo\_\_unit\_\_info()の順番をVU番号と呼ぶ。

### [0111]

次に、continuous\_area\_table()を参照し、sc\_start\_PTS以下でなおかつ最大のCA\_PTSを持つcontinuous\_area\_info()を探す(S802)。上記S802の処理は、再生が開始されるシーンに対応するCAのアドレスを求めることとなる。さらに、その中のCA\_PNで指定されるパックから、次のcontinuous\_area\_info()のCA\_PNで指定されるパックの直前のパックまでをアフレコデータファイルから読み出す(S803)。

# [0112]

次に現在のVU番号に対応するvideo\_unit\_info()のVU\_PNを参照しVUの アドレスを求め(S 8 0 4)、それを基にオリジナルストリームファイルからV Uを読み出す(S 8 0 5)。次に、そのシーンの終わりかどうかを判断する(S 8 0 6)。具体的には、現在のシーンの既再生時間がscene\_info()中のsc\_dur ation以上であればそのシーンの終わりとする。

# [0113]

シーンの再生が終了していなければ、次にVU番号をインクリメントし(S 8 0 7)、video\_\_unit\_\_info()中のfirst\_\_unit\_\_flagを参照することで、そのvideo\_\_unit\_\_info()が管理するVUがCUの先頭であるか否かが判断される(S 8 0 8)。

#### [0114]

このときfirst\_unit\_flagが1であれば、そのvideo\_unit\_info()が管理するVUはCUの先頭であると判断し、前述の手順で対応するCAのアドレスを求め(S809)、アフレコデータファイルからCAの読み出しを行う(S810



### [0115]

上記のストリームおよびデータの光ディスク106からの読み出しと平行して、デコード処理を以下のように行う。まず読み出されたVUは、デマルチプレクサ112に送られ、ビデオPESパケットおよびオーディオPESパケットが取り出され、ビデオPESパケットはビデオ再生用バッファ111に送られ、オーディオPESパケットはオーディオ再生用バッファ110に送られる。

# [0116]

デマルチプレクサ112はパックヘッダからSCRを取り出し、システムクロック105を更新する。ビデオデコーダ116およびオーディオデコーダ115は、システムクロック105が、PESパケットヘッダに付随するタイムスタンプと一致した時点でデコードや出力を行う。

# [0117]

本実施の形態1においては、オリジナルストリームを格納するCUと、同期再生を行うアフレコデータを格納するCAがディスク上で物理的な近傍にあるため、シーン開始がCUの終端付近のVUからであったとしても、CAからVUのシークによって生じるデータ読み出しの停止時間はわずかで済む。

#### [0118]

それに対し、アフレコデータを同期再生するオリジナルストリームの近傍に配置しない場合、シーンの先頭部分におけるアフレコデータの読み出しと、オリジナルストリームの読み出しとの間に生じるシーク時間は最悪ディスクの最内周から最外周に至るものになる。したがって本実施形態に比べ、シーン間で再生が途切れる可能性が高くなる。

# [0119]

<アフレコ時の処理>

次に、ユーザからアフレコが指示された場合の処理について説明する。アフレコ時の処理は前述の再生時の処理にいくつかの処理が加わったものであるため、 差異部分についてのみ説明する。

# [0120]

まず、アフレコデータの記録のために、シーンの再生開始と同時にオーディオエンコーダ117を起動し、アフレコデータをエンコードした結果はPESパケットの形式でオーディオ記録用バッファ119に送る。マルチプレクサ113はPESパケットをパック化し、記録用バッファ114に送る。その際、パックヘッダのSCRおよびパケットヘッダのPTSはオリジナルストリームに合わせる

# [0121]

現在デコード中のCUの範囲を超えるPTSを持つパックが記録用バッファ114に到着した時点で、記録用バッファ114に存在するパック列をアフレコデータファイルに記録する。記録対象のCAの位置は現在デコード中のCUのPTSからcontinuous\_area\_table()を参照することで求める。

# [0122]

CA記録時にディフェクトに遭遇した場合、記録中のCAは破棄し、別の領域に新規にCAを記録する。これは、記録中のCAの記録領域はディフェクトによって減少し、対応するCUの再生時間分のデータをCAに記録できなくなってしまうためである。その際に、そのCAを管理するcontinuous\_area\_info()中のplacement\_flagを 0 に変更することで、対応するCUの直前にCAが存在しないことがわかるようにしておく。もちろん、ファイルシステム管理情報における破棄したCAのextentは、新規作成したCAのextentに置き換える。

# [0123]

これにより、非破壊編集時や非破壊編集結果の再生時に、CAとCUとが連続して記録されていない区間が前記placement\_flagを参照するだけでわかり、その区間は再生が途切れる可能性が高いことを事前にユーザに伝えることが可能である。また、このフラグを頼りに連続して記録されていないCAとCUとを後から連続して記録されるよう再配置することも可能である。

### [0124]

<実施の形態1における変形例>

本実施の形態1においては、アフレコデータファイルにオリジナルストリーム



# [0125]

また、本実施の形態1においては、CAにオーディオデータを記録しているが、他の種類のデータを記録してもよい。例えば、オリジナルストリーム中のビデオに重畳して表示するグラフィックスデータを記録してもよい。

# [0126]

また、本実施の形態1においては、1個のAAUが複数のパックにまたがるように記録できるが、またがらないように制限してもよい。このことによって、CAの一部のみのアフレコデータを書き換える際に、書き換えたいAAUの含まれるパックを上書きするだけで済む。

# [0127]

また、本実施の形態1においては、アフレコ時にCA中にディフェクトを検出した場合、そのCAを破棄し別の領域に記録している。しかし、ディフェクトがあることを想定し、初期録画時にディフェクト用にマージンを考慮してCAのサイズを決定し、アフレコ時にディフェクトを検出した場合は、そのCA中の次の位置に記録するようにしてもよい。このことにより、CAとCUとが連続的に記録できる。

# [0128]

また、本実施の形態1においては、別ファイルであるCAとCUとを対応付けるため、CU中のデータの先頭のタイムスタンプからCUおよびCAの先頭アドレスを算出できるようにしているが、対応付けがわかるようになっていればどのような表現形態であってもよいことは言うまでもない。

### [0129]

また、本実施の形態 1 においては、MPEG-2 PSを用いているが、MPEG-2 TSでも同様に実現できることは言うまでもない。

### [0130]

# 〔実施の形態2〕

本発明の第2の実施形態について、図19を用いて説明する。

# [0131]

本実施の形態2における実施の形態1との違いは、第1の実施形態が、同期再生を行う複数のデータを記録媒体上で連続的に配置し、それぞれのデータを別のファイルとして管理するというものであるのに対し、本実施の形態2は、それぞれのデータは同じ再生時間軸上にあるものの同時には再生せず切り替えて再生することを前提にしている点にある。

### [0132]

具体的には、DVD-Videoにおけるマルチアングル機能と呼ばれる、同じ時間軸における複数のアングルからの映像を再生中に切り替え可能な機能を想定したものである。

### [0133]

尚、本実施の形態 2 に係る記録動作は、上記実施の形態 1 に係る記録動作において同期再生されるべきオリジナルストリームとアフレコデータとの関係を、同じ再生時間軸上にある 2 種類のオリジナルストリームの関係に置き換えただけのものであり、実質的な動作は同じである。

#### [0134]

#### <ファイル構成>

ビデオ・オーディオデータをMPEG-2 PS形式で多重化し、アングル毎に別ファイルに記録する。図19(a)の例では、第1のアングルからのデータをANGL00001.M2P、第2のアングルからのデータをANGL0002.M2Pに記録する。

#### [0135]

#### <ディスクへの配置>

図19 (b) に示すように第1のアングルからのデータであるANGL0001.M2Pを 部分データ2021、2022、2023に分割し、第2のアングルからのデータであるANGL0002.M2Pを部分データ2011、2012、2013に分割し、ディスク2001上で交互に配置する。なお、分割の単位の決定方法は、DVD-Vide oにおけるマルチアングルデータの配置と同様であるため、説明を省略する。



このことによって、DVD-Videoにおけるマルチアングル切り替えと同様のアングル切り替えのレスポンスを実現すると同時にそれぞれのデータファイルは一般的なMPEG-2 PS対応デコーダで再生可能とすることができる。

### [0137]

# 【発明の効果】

本発明のAVデータ記録方法は、以上のように、前記AVデータおよび前記関連データを所定の間隔毎に部分AVデータおよび部分関連データに分割する第1のステップと、前記記録媒体上において、一続きの前記部分AVデータと前記部分関連データとを記録するための連続領域である第1の連続領域を確保する第2のステップと、前記第1の連続領域に前記部分AVデータと前記部分関連データとを連続的に記録する第3のステップと、前記部分AVデータおよび前記部分関連データとをそれぞれ別のファイルとして管理すると共に、前記部分AVデータおよび前記部分関連データを別のファイルとして扱うための情報を管理するファイルシステム管理情報を前記記録媒体上に記録する第4のステップとを備える構成である。

#### [0138]

それゆえ、上記記録媒体上に記録されるAVデータおよび関連データは、第1のステップによって部分AVデータおよび部分関連データに分割され、分割された部分AVデータおよび部分関連データは同期するデータ同士を一続きとして、第2,第3の処理によって上記記録媒体上で互いに物理的に近傍した位置に記録される。さらに、第4のステップにおいて記録されるファイルシステム管理情報では、部分AVデータおよび部分関連データが別のファイルとして管理される。

### [0139]

これにより、リアルタイムアフレコを保証し非破壊編集性能の高く、なおかつ一般的なMPEG-2 PSのデコーダでの再生が可能になると共に、AVデータの再生と関連データの再生とを同期させて行った場合に、部分AVデータおよび部分関連データが近傍して記録されていることから、シークの頻度が低くなるといった効果を奏する。

# [0140]

また、本発明のAVデータ記録方法において、前記部分AVデータの再生開始 時刻と、前記第1の連続領域の位置情報の対応情報とを前記記録媒体に記録する 第5のステップを備える構成としてもよい。

# [0141]

それゆえ、アフレコの対象となる部分AVデータに対応する部分関連データ( アフレコ用領域)の位置を容易に特定することが可能となるといった効果を奏す る。

### [0142]

また、本発明のAVデータ記録方法において、前記部分関連データが、対応する前記部分AVデータの近傍に記録されているか否かを管理する情報を前記記録 媒体に記録する第6のステップを備える構成としてもよい。

### [0143]

それゆえ、部分関連データを管理する情報において対応する部分AVデータの 近傍に部分関連データが存在しないことがわかるようにしておくことで、非破壊 編集時や非破壊編集結果の再生時に、部分AVデータおよび部分関連データが連 続して記録されていない区間が容易に判断可能であり、その区間は再生が途切れ る可能性が高いことを事前にユーザに伝えることが可能になるといった効果を奏 する。

#### 【図面の簡単な説明】

#### 【図1】

本発明の一実施形態を示すものであり、図1(a)はオリジナルストリームファイルおよびアフレコデータファイルのデータ構成、図1(b)はオリジナルストリームファイルおよびアフレコデータファイルのディスク上での配置を示す図である。

#### 【図2】

本発明の実施の形態に係るビデオディスクレコーダの概略構成を示すブロック 図である。

# 【図3】



### 【図4】

本発明の実施の形態1におけるファイル/ディレクトリ構成を示す図である。

### 【図5】

図5 (a) ~図5 (c) は、本発明の実施の形態1におけるオリジナルストリームファイルの構成を示す図である。

# 【図6】

本発明の実施の形態 1 におけるアフレコデータファイルの構成を示す説明図である。

#### 【図7】

本発明の実施の形態 1 におけるリファレンス・デバイス・モデルを示す図である。

# 【図8】

本発明の実施の形態1におけるリファレンス・アフレコ・アルゴリズムを示す 図である。

#### 【図9】

本発明の実施の形態1におけるストリーム管理情報ファイルの構成を示す図である。

#### 【図10】

図10(a)〜図10(b)は、本発明の実施の形態1におけるvideo\_\_unit \_\_tableの構成を示す図である。

#### 【図11】

図11 (a) ~図11 (b) は、本発明の実施の形態1におけるVU\_flagsの 構成を示す図である。

### 【図12】

図12(a)~図12(b)は、本発明の実施の形態1におけるcontinuous\_area\_tableの構成を示す図である。

#### 【図13】



### 【図14】

本発明の実施の形態1におけるプログラム情報ファイルの構成を示す図である

### 【図15】

0

図 1 5 (a) ~ 図 1 5 (b) は、本発明の実施の形態 1 における scene\_table の構成を示す図である。

### 【図16】

本発明の実施の形態1における記録処理の流れを示すフローチャートである。

# 【図17】

本発明の実施の形態1における再生処理の流れを示すフローチャートである。

### 【図18】

本発明の実施の形態 1 におけるシーン再生処理の流れを示すフローチャートである。

#### 【図19】

本発明の他の実施形態を示すものであり、図19 (a) は実施の形態2における2種類のストリームファイルのデータ構成、図19 (b) はこれらのストリームファイルのディスク上での配置を示す図である。

### 【図20】

従来技術を示すものであり、図20(a)はストリームファイルのデータ構成、図20(b)はこのストリームファイルのディスク上での配置を示す図である

# 【符号の説明】

- 100 バス
- 101 ホストCPU
- 102 RAM
- 103 ROM
- 104 ユーザインタフェース

- 105 システムクロック
- 106 光ディスク (記録媒体)
- 107 ピックアップ
- 108 ECCデコーダ
- 109 ECCエンコーダ
- 110 オーディオ再生用バッファ
- 111 ビデオ再生用バッファ
- 112 デマルチプレクサ
- 113 マルチプレクサ
- 114 記録用バッファ
- 115 オーディオデコーダ
- 116 ビデオデコーダ
- 117 オーディオエンコーダ
- 118 ビデオエンコーダ
- 119 オーディオ記録用バッファ
- 120 ビデオ記録用バッファ
- 121 デマルチプレクサ
- 122 アフレコデータ再生用バッファ



図面

【図1】



2/











| オリジナルストリームファイル<br>SHRP0001.M2P |      | OU#N           |          | N#n/           | 1     | A#K V#L                                                          |
|--------------------------------|------|----------------|----------|----------------|-------|------------------------------------------------------------------|
|                                |      | $\approx$      |          | $\approx$      |       | A#4                                                              |
|                                |      | CU#3 CU#4 CU#5 |          | VU#3 VU#4 VU#5 |       | V#1 V#2 V#3 A#1 V#4 V#5 A#2 V#6 V#7 V#8 A#3 V#9 V#10V#11V#12 A#4 |
|                                |      |                |          |                |       | 10/#1                                                            |
|                                |      |                |          |                |       | #/ 6#/                                                           |
|                                |      |                |          |                |       | A#3 \                                                            |
|                                |      |                |          |                |       | 8#/                                                              |
|                                |      |                |          |                |       | V#7                                                              |
|                                |      |                |          |                |       | 2 V#6                                                            |
|                                |      |                |          |                |       | 5 A#                                                             |
| 1                              |      | 7              | <u> </u> | 12             |       | #4<br> <br>                                                      |
|                                | 1    | CU#2           |          | VU#2           | į     | <del> </del>                                                     |
|                                |      |                |          |                | /#3 A |                                                                  |
|                                | CU#1 |                | VU#1     |                | V#2   |                                                                  |
|                                | Ì    | O              |          | >              |       | \#1                                                              |
|                                |      | (a)            |          | (a)            |       | (0)                                                              |







8/

【図8】



【図9】

```
ストリーム管理情報ファイル {
               o_attribute()
               video_unit_table()
               p_attribute()
               continuous_area_table()
      }
【図10】
   (a)
  video_unit_table() {
          number_of_video_unit
           for (i=0; i<number_of_video_unit; i++){</pre>
                    video_unit_info()
           }
  }
   (b)
  video_unit_info() {
           VU_flags
           VU_PTS
           VU_PN
   }
```

```
【図11】
```

```
(a) VU_flags(){
          first_unit_flag
}
```

(b)

| first_unit_flag | 0b | CUの先頭ではない |
|-----------------|----|-----------|
|                 | 1b | CUの先頭である  |

### 【図12】

```
(a)
```

(b)

## 【図13】

(b)

| placement_flag | 0ь | 対応するCUの直前に配置されていない |  |  |
|----------------|----|--------------------|--|--|
|                | 1b | 対応するCUの直前に配置されている  |  |  |

```
【図14】
```

```
プログラム情報ファイル {
               pg_attribute()
               scene_table()
      }
【図15】
        scene_table() {
                 number_of_scene
 (a)
                 for (i=0; i<number_of_scene; i++){</pre>
                         scene_info()
                 }
        }
        scene_info() {
 (b)
                 sc_filename
                 sc_start_PTS
        ï
                 sc_duration
        }
```

【図16】



# 【図17】

















#### 【要約】

【課題】 一般的なMPEG-2 PS/TSデコーダ上での再生やリアルタイムアフレコが可能であり、かつ、アフレコ結果を非破壊編集した場合の再生の途切れが少ないデータ記録方法を提供する。

【解決手段】 オリジナルストリームファイルとアフレコデータファイルとがそれぞれ別のファイルとして管理されると共に、オリジナルストリームファイルおよびアフレコデータファイルのそれぞれでは、所定の間隔毎に分割された部分データ (CUおよびCA) としてデータが構成される。これらデータのディスクへの記録時には、アフレコデータ (CA) 用領域を対応するオリジナルストリーム (CU) の近傍に記録する。

【選択図】 図1

#### 特願2002-303648

## 出願人履歴情報

識別番号

[000005049]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月29日 新規登録

大阪府大阪市阿倍野区長池町22番22号

シャープ株式会社