Inhaltsverzeichnis

1	Gru	Grundlagen der Differentialrechnung reeller Funktionen mit mehreren Va-			
	riablen				
	1.1	Partielle Ableitungen	2		
	1.2	Totale Differenzierbarkeit	7		
	1.3	Extremwerte	11		
2	Gru	ndlagen der Integralrechnung reeller Funktionenmit mehreren Variablen	16		
	2.1	Zweidimensionale Integralrechnung	16		
	2.2	Dreidimensionale Integralrechnung	23		
3	Diff	erentialgleichungen	26		
	3.1	Einführung	26		
	3.2	Trennung der Variablen	26		
	3.5	Lineare Differentialgleichungen	27		
	3.6	Lineare Differentialgleichungen mit konstanten Koeffizienten	29		
	3.7	Differentialgleichungssysteme (DGLS)	31		

1 Grundlagen der Differentialrechnung reeller Funktionen mit mehreren Variablen

1.1 Partielle Ableitungen

Definition 1.1.1 (reelle Funktionen mit n Variablen) Eine Funktion

 $y = f(x_1, \ldots, x_n)$ mit $(x_1, \ldots, x_n) \mathbb{D} \subset \mathbb{R}^n$ und $y \in \mathbb{R}$ heißt reelle Funktion mit mehreren Variablen.

 \mathbb{D} beschreibt den Definitionsbereich und wir schreiben $f: \mathbb{D} \to \mathbb{R}$

Bemerkung 1.1.2 Definition für Differenzierbarkeit im eindimensionalen Fall: Es sei $f: \mathbb{D} \to \mathbb{R}$ eine Funktion mit $\mathbb{D} \subset \mathbb{R}$ und $x_0 \in \mathbb{R}$ f ist differenzierbar in x_0 , falls der Grenzwert $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} \in \mathbb{R}$ existiert. In diesem Fall heißt $f'(x_0) = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ die Ableitung von f in x_0 Man bezeichnet $f'(x_0)$ als den Differentialquotienten von f im Punkt x_0 .

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Definition 1.1.3 $P=(p_1,\ldots,p_n)$ und $Q=(q_1,\ldots,q_n)$ bezeichnen zwei Punkte im n-dimensionalen Raum \mathbb{R}^n

mensionalen Raum
$$\mathbb{R}^n$$
 $|P-Q| = \sqrt{(p_1-q_1)^2 + \cdots + (p_n+q_n)^2}$ heißt Abstand der Punkte P und Q .

Die Delta-Umgebung des Punktes P ist eine Teilmenge des \mathbb{R}^n mit der Eigenschaft $U_{\delta}(P) = \{Q \in \mathbb{R}^n : |Q - P| < \delta\}.$

Definition 1.1.4 Der Punkt P heißt innerer Punkt der Menge $M(M \subset \mathbb{R}^n)$, wenn eine Umgebung des Punktes P existiert, für die $U_{\delta} \subset M$ gilt.

Bemerkung 1.1.5 Eine Menge heißt <u>offene Menge</u>, wenn dir nur aus inneren Punkten besteht.

Definition 1.1.6 Wenn (x_{0n}, \ldots, x_{0n}) ein innerer Punkt der Menge D ist und wenn der Grenzwert existiert, dann heißt die Funktion $f(x_1, \ldots, x_n)$ an der Stelle $(x_{01}, \ldots, x_{0n}) \in D$ nach x_i partiell differenzierbar. Den Grenzwert bezeichnet man als partielle Ableitung der Funktion f nach x_i an der Stelle $(x_{01}, \ldots, x_{0n}) \in D$

Die Funktion f heißt in $(x_{01}, \ldots, x_{0n}) \in D$ partiell differenzierbar, wenn die partiellen Ableitungen nach allen Komponenten $x_j (j = 1, \ldots, n)$ existieren.

Die Funktion heißt in \mathbb{D} partiell differenzierbar, wenn f in allen inneren Punkten aus \mathbb{D} partiell differenzierbar ist.

Bemerkung 1.1.7 Die partielle Ableitung der Funktion $f(x_1, ..., x_n)$ nach der Komponente x_i kann wie folgt bezeichnet werden:

$$f_{x_j}(x_1,\ldots,x_n)$$
 oder $\frac{\partial f(x_1,\ldots,x_n)}{\partial x_j}$

Beispiel 1.1.8 Gesucht sind die partiellen Ableitungen der Funktion $f(x_1, x_2, x_3) = x_3 * \sin(x_1^2 + x_2) + e^{2x_3}$

$$\frac{\partial f}{\partial x_1}(x_1, x_2, x_3) = x_3 \cdot \cos(x_1^2 + x_2) \cdot 2x_1$$

$$\frac{\partial f}{\partial x_2}(x_1, x_2, x_3) = x_3 \cdot \cos(x_1^2 + x_2)$$

$$\frac{\partial f}{\partial x_2}(x_1, x_2, x_3) = \sin(x_1^2 + x_2) \cdot 2e^{2x_3}$$

Bemerkung 1.1.9 Die Tangentialebene an die Funktion $f(x_1, x_2)$ berührt die Funktion $f(x_1, x_2)$ im Punkt $\bar{P} = (\bar{x_1}, \bar{x_2}, f(\bar{x_1}, \bar{x_2}))$ und enthält alle Tangenten an die Funktion $f(x_1, x_2)$ im Punkt \bar{P} .

Satz 1.1.10 Es seien $\mathbb{D} \subset \mathbb{R}^2$, $f: \mathbb{D} \to \mathbb{R}$ eine partiell differenzierbare Funktion und $(x_{01}, x_{02}) \in \mathbb{D}$. Dann lautet die Gleichung der Tangentialebene für den Punkt (x_{01}, x_{02}) :

$$x_3 = f(x_{01}, x_{02}) + \frac{\partial f}{\partial x_1}(x_{01}, x_{02})(x_1 - x_{01}) + \frac{\partial f}{\partial x_2}(x_{01}, x_{02})(x_2 - x_{02})$$
$$= f(x_{01}, x_{02}) + \left(\frac{\partial f}{\partial x_1}(x_{01}, x_{02}) - \frac{\partial f}{\partial x_2}(x_{01}, x_{02})\right) \cdot \begin{pmatrix} (x_1 - x_{01}) \\ (x_2 - x_{02}) \end{pmatrix}$$

Beispiel 1.1.11 Gegeben sei
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 durch $f(x_1, x_2) = \sin(x_1 \cdot x_2^2)$

$$\begin{split} &\frac{\partial f}{\partial x_1}(x_1, x_2) = \cos(x_1 \cdot x_2^2) \cdot x_2^2 \\ &\frac{\partial f}{\partial x_2}(x_1, x_2) = \cos(x_1 \cdot x_2^2) \cdot 2x_2 \cdot x_1 \\ &\rightarrow \textit{Tangentialebene: } x_3 = f(x_{01}, x_{02}) + \cos(x_1 \cdot x_2^2) \cdot x_2^2 \cdot (x_1 - x_{01}) + \cos(x_1 \cdot x_2^2) \cdot 2x_2 \cdot x_2 \end{split}$$

$$\rightarrow Tangentialebene: x_3 = f(x_{01}, x_{02}) + \cos(x_1 \cdot x_2^2) \cdot x_2^2 \cdot (x_1 - x_{01}) + \cos(x_1 \cdot x_2^2) \cdot 2x_2$$

$$x_1 \cdot (x_2 - x_{02})$$

$$(x_{01}, x_{02}) = (0, 0)$$

 $x_3 = 0 + \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 - 0 \\ x_2 - 0 \end{pmatrix} = 0$

Beispiel 1.1.12
$$(x_{01}, x_{02}) = (\sqrt[3]{\pi}, \sqrt[3]{\pi})$$

$$f(\sqrt[3]{\pi}, \sqrt[3]{\pi}) = \sin(\sqrt[3]{\pi} \cdot \sqrt[3]{\pi^2}) = 0$$

$$\frac{\partial f}{\partial x_1}(\sqrt[3]{\pi}, \sqrt[3]{\pi}) = \cos(\sqrt[3]{\pi} \cdot \sqrt[3]{\pi^2}) \cdot \sqrt[3]{\pi^2} = -\pi^{\frac{2}{3}}$$

$$\frac{\partial f}{\partial x_2}(\sqrt[3]{\pi}, \sqrt[3]{\pi}) = \cos(\sqrt[3]{\pi} \cdot \sqrt[3]{\pi^2}) \cdot 2\sqrt[3]{\pi} \cdot \sqrt[3]{\pi} = -2\pi^{\frac{2}{3}}$$

$$x_3 = 0 + \left(-\pi^{\frac{2}{3}} - 2\pi^{\frac{2}{3}}\right) \begin{pmatrix} x_1 - \sqrt[3]{\pi} \\ x_2 - \sqrt[3]{\pi} \end{pmatrix} = -\pi^{\frac{2}{3}} \cdot (x_1 - \sqrt[3]{\pi}) + -2\pi^{\frac{2}{3}} \cdot (x_2 - \sqrt[3]{\pi})$$

$$x_3 = -\pi^{\frac{2}{3}} x_1 - 2\pi^{\frac{2}{3}} x_2 + 3\pi$$

Beispiel 1.1.13 Gegeben sei $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x_1, x_2) = |x_1| + x_2 \frac{\partial f}{\partial x_2}(x_1, x_2) = 1$ $|x_1|$ ist nur für $x_1 \neq 0$ differenzierbar, d.h. f ist nicht auf dem gesamten Definitionsbereich partiell differenzierbar.

Bemerkung 1.1.15 Anstelle von grad f(x) wird auch häufig $\nabla f(x)$ geschrieben.

Beispiel 1.1.16 Berechnen Sie den Gradienten für:

1.
$$f(x_1, x_2) = x_1^2 + x_2^2$$

2.
$$g(x_1, x_2, x_3) = 2 \cdot \sin(x_1 x_2) + x_1 x_2 x_3$$

$$zu \ 1. \ \nabla f(x_1, x_2) = \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix}$$

$$zu \ 2. \ \nabla g(x_1, x_2, x_3) = \begin{pmatrix} 2x_2 \cos(x_1 x_2) + x_2 x_3 \\ 2x_1 \cos(x_1 x_2) + x_1 x_3 \\ x_1 x_2 \end{pmatrix}$$

Beispiel 1.1.17 Partielle Differenzierbarkeit impliziert nicht Stetigkeit.

Betrachtet wird die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x_1, x_2) = \begin{cases} \frac{x_1 \cdot x_2}{x_1^2 + x_2^2} & (x_1, x_2) \neq (0, 0) \\ 0 & (x_1, x_2) = (0, 0) \end{cases}$$

Im Punkt (0,0) existieren die partiellen Ableitungen:

$$\frac{\partial f}{\partial x_1}(0,0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x, 0) - f(0,0)}{\Delta x} = 0$$

$$\frac{\partial f}{\partial x_2}\left(0,0\right) = \lim_{\Delta x \to 0} \frac{f(0,0+\Delta x) - f(0,0)}{\Delta x} = 0$$

Aber f ist in (0,0) nicht stetig:

Es gilt
$$f(x_1, 0) = 0; x_1 \in \mathbb{R}, f(0, x_2) = 0; x_2 \in \mathbb{R}$$

 $F\ddot{u}r \ x := x_1 = x_2$:

$$f(x,x) = \begin{cases} \frac{x^2}{2x^2} = \frac{1}{2} & (x,x) \neq (0,0) \\ 0 & (x,x) = (0,0) \end{cases}$$

Definition 1.1.18 (Stetigkeit) Die Funktion $y = f(x_1, ..., x_n), (x_1, ..., x_n) \in \mathbb{D}$ ist an der Stelle $\bar{P} = (\bar{x_1}, ..., \bar{x_n}) \in \mathbb{D}$ stetig, wenn für den Funktionsgrenzwert

$$\lim_{P \to \bar{P}} f(x_1, \dots, x_n) = f(\bar{x_1}, \dots, \bar{x_n})$$

gilt.

Aufgaben:

1. Berechnen Sie alle ersten und zweiten partiellen Ableitungen der Funktion

$$f(x_1, x_2) = e^{-2.5x_1^2 - (x_2 - 1)^2}, (x_1, x_2) \in \mathbb{R}$$

- 2. Berechnen die den Gradienten der Funktion $f(x_1, x_2, x_3) = \frac{(x_1-1)\cdot \ln(x_1+1)}{x_2^2+x_3^2+1}$ an der Stelle (0,0,0)
- 3. Berechnen Sie die Tangentialebene an die Funktion $f(x_1, x_2) = e^{-2.5x_1^2 (x_2 1)^2}, (x_1, x_2) \in \mathbb{R}$ im Punkt $(0, \frac{3}{2}, e^{-\frac{1}{4}})$

Definition 1.1.19 (k-mal partiell differenzierbar) Es sei $D \subset \mathbb{R}^n$, $f: D \to \mathbb{R}$ eine partiell differenzierbare Funktion und $x_0 \in D$. Die Funktion f heißt zweimal partiell differenzierbar in x_0 , wenn alle partiellen Ableitungen $\frac{\partial f}{\partial x_i}$ in x_0 wieder partiell differenzierbar sind.

Man schreibt $\frac{\partial^2 f}{\partial x_j x_i}(x_0) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)(x_0) = f_{x_j x_i}(x_0)$

Dieser Ausdruck heißt dann zweite partielle Ableitung von f.

Allgemein heißt f k-mal partiell differenzierbar, wennn alle (k-1)-ten partiellen Ableitungen von f wieder partiell differenzierbar sind. Man schreibt:

$$\frac{\partial f}{\partial x_{ik}\partial x_{i(k-1)}\dots\partial x_{i1}}(x_0) = \frac{\partial}{\partial x_{ik}}\left(\frac{\partial^{k-1} f}{\partial x_{i(k-1)}\dots\partial x_{i1}}\right)(x_0) = f_{x_{ik}\dots x_{i1}}$$

Aufgabe 1.1.20 Gegeben sei $f : \mathbb{R}^2 \to \mathbb{R}$ durch $f(x_1, x_2) = x_1^2 \cdot x_2 - x_1 \cdot x_2^2$ Berechnen Sie alle ersten und zweiten Ableitungen von f und $\frac{\partial^3 f}{\partial x_1 \partial x_1 \partial x_2}(x_1, x_2)$.

$$\frac{\partial f}{\partial x_1}(x_1, x_2) = 2x_1 \cdot x_2 - x_2^2$$

$$\frac{\partial f}{\partial x_2}(x_1, x_2) = x_1^2 - x_1 \cdot 2x_2$$

$$\frac{\partial^2 f}{\partial x_1^2}(x_1, x_2) = 2x_2; \frac{\partial^2 f}{\partial x_2^2}(x_1, x_2) = -2x_1$$

$$\frac{\partial^2 f}{\partial x_1 x_2}(x_1, x_2) = 2x_1 - 2x_2; \frac{\partial^2 f}{\partial x_2 x_1}(x_1, x_2) = 2x_1 - 2x_2$$

$$\frac{\partial^3 f}{\partial x_1 \partial x_1 \partial x_2}(x_1, x_2) = +2$$

Definition 1.1.21 (stetig partiell differenzierbar) Es sei $D \subset \mathbb{R}^n$, $f: D \to \mathbb{R}$. f heißt k-mal stetig partiell differenzierbar, falls f k-mal partiell differenzierbar ist und alle partiellen Ableitungen der Ordnung k stetig sind.

Satz 1.1.22 (Satz von Schwarz) Es sei $D \subset \mathbb{R}^n$, $f: D \to \mathbb{R}$ zweimal stetig partiell differenzierbar. Dann ist $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$ für alle $i, j \in \{1, ..., n\}$. Die Reihenfolge der Ableitungsvariablen spielt also keine Rolle,

Bemerkung 1.1.23 Es sei $f: D \to \mathbb{R}$ k-mal stetig partiell differenzierbar. Dann spielt die Reihenfolge der Ableitungsvariablen bei der k-ten partiellen Ableitung keine Rolle.

Aufgabe 1.1.24 Berechnen Sie alle ersten und zweiten partiellen Ableitungen der Funktion $f(x_1, x_2, x_3) = x_3 \cdot \sin(x_1^2 + x_2) + e^{2x_3} (x_1, x_2, x_3) \in \mathbb{R}^3$

$$\frac{\partial f}{\partial x_1}(x_1, x_2, x_3) = x_3 \cdot 2x_1 \cdot \cos(x_1^2 + x_2)$$

$$\frac{\partial f}{\partial x_2}(x_1, x_2, x_3) = x_3 \cdot 2x_1 \cdot \cos(x_1^2 + x_2)$$

$$\frac{\partial f}{\partial x_3}(x_1, x_2, x_3) = \sin(x_1^2 + x_2) + 2e^{2x_3}$$

$$\frac{\partial^2 f}{\partial x_1^2}(x_1, x_2, x_3) = 2x_3 \left(\cos(x_1^2 + x_2) - 2x_1^2 \sin(x_1^2 + x_2)\right)$$

$$\frac{\partial^2 f}{\partial x_1 \partial x_2}(x_1, x_2, x_3) = -2x_1 x_3 \sin(x_1^2 + x_2)$$

$$\frac{\partial^2 f}{\partial x_2^2}(x_1, x_2, x_3) = -x_3 \sin(x_1^2 + x_2)$$

$$\frac{\partial^2 f}{\partial x_1 \partial x_3}(x_1, x_2, x_3) = 2x_1 \cos(x_1^2 + x_2)$$

$$\frac{\partial^2 f}{\partial x_2 \partial x_3}(x_1, x_2, x_3) = \cos(x_1^2 + x_2)$$

$$\frac{\partial^2 f}{\partial x_2 \partial x_3}(x_1, x_2, x_3) = \cos(x_1^2 + x_2)$$

$$\frac{\partial^2 f}{\partial x_2 \partial x_3}(x_1, x_2, x_3) = 4e^{2x_3}$$

1.2 Totale Differenzierbarkeit

Definition 1.2.1 (Betrag eines Vektors) Der Betrag eines Vektors

 $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ ist definiert als:

$$|x| = \sqrt{x_1^2 + \dots + x_n^2}$$

Definition 1.2.2 (Vektorfunktion) Eine eindeutige Abbildung $f : \mathbb{D} \to W, \mathbb{D} \subset \mathbb{R}^n, W \subset \mathbb{R}^m, m > 1$ mit mehrdimensionalem Wertebereich heißt Vektorfunktion.

Beispiel 1.2.3 Es sei $\mathbb{D} \subset \mathbb{R}^3 \to \mathbb{R}^2$ gegeben durch

$$f(x_1, x_2, x_3) = \begin{pmatrix} x_1 + x_3 \\ x_2 + x_3 \end{pmatrix}$$

f hat 2 Ergebniskomponenten:

$$f_1(x_1, x_2, x_3) = x_1 + x_2, f_2(x_1, x_2, x_3) = x_2 + x_3$$

Definition 1.2.4 (total differenzierbar) Es sei $f: \mathbb{D} \to \mathbb{R}^m$, $\mathbb{D} \subset \mathbb{R}^n$ eine Abbildung und $x_0 \in \mathbb{D}$. Die Funktion f heißt total differenzierbar in x_0 , falls es eine Matrix $A \in \mathbb{R}^{m \times n}$ und eine Restfunktion $R: \mathbb{D} \to \mathbb{R}^m$ gibt, für die gilt: $f(x) = f(x_0) + A(x - x_0) + |x - x_0| \cdot R(x)$ und

$$\lim_{x \to x_0} R(x) = 0$$

Satz 1.2.5 (Jacobi-Matrix) Es sei $f : \mathbb{D} \to \mathbb{R}^m$, $\mathbb{D} \subset \mathbb{R}^n$ eine Abbildung und $x_0 \in \mathbb{D}$. Weiterhin sei f in x_0 total differenzierbar mit der Matrix

$$A = (a_{ij}); i = 1, ..., m; j = 1, ..., n \in \mathbb{R}^{m \times n}$$

Dann ist f in x_0 stetig und alle Komponentenfunktionen $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ sind in x_0 partiell differenzierbar, wobei gilt: $a_{ij} = \frac{\partial f_i}{\partial x_i}(x_0)$.

$$A = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} (x_0) & \frac{\partial f_1}{\partial x_2} (x_0) & \cdots & \frac{\partial f_1}{\partial x_n} (x_0) \\ \frac{\partial f_2}{\partial x_1} (x_0) & \frac{\partial f_2}{\partial x_2} (x_0) & \cdots & \frac{\partial f_2}{\partial x_n} (x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} (x_0) & \frac{\partial f_m}{\partial x_2} (x_0) & \cdots & \frac{\partial f_m}{\partial x_n} (x_0) \end{pmatrix}$$

Die Matrix heißt Funktionalmatrix oder auch Jacobi-Matrix von f und wird mit $Df(x_0)$ oder $J_f(x_0)$ bezeichnet.

Beispiel 1.2.6 Gegeben sei die Funktion $q: \mathbb{R} \to \mathbb{R}^2$ durch

$$g(x) = \begin{pmatrix} 2x^3 \\ \ln(x^2 + 1) \end{pmatrix} = \begin{pmatrix} g_1(x) \\ g_2(x) \end{pmatrix}$$

Berechnen Sie die Jacobi-Matrix $D_q(x)$:

$$D_g(x) = \begin{pmatrix} 6x^2 \\ \frac{1}{x^2 + 1} \cdot 2x \end{pmatrix}$$

Aufgabe 1.2.7

$$f(x) = \begin{pmatrix} x_1 + x_2 \\ x_1^2 \cdot \sin x_2 \\ e^{x_1 x_2} \end{pmatrix}$$
$$D_f(x_1, x_2) = ?$$

Bemerkung 1.2.8 Nach Definition 1.2.4 kann eine Funktion f(x), die total differenzierbar ist, in der Nähe von x_0 durch

$$f(x_0) + D_f(x_0)(x - x_0)$$

angenähert werden.

Da die Annäherungsfunktion linear ist, spricht man auch von Linearisierung. Hierfür muss aber klar sein, dass f auch wirklich total differenzierbar ist.

Satz 1.2.9 Es sei $f: \mathbb{D} \to \mathbb{R}^m, \mathbb{D} \subset \mathbb{R}^n$ eine Abbildung, deren Komponentenfunktionen f_1, \ldots, f_m alle stetig partiell differenzierbar sind. Dann ist f total differenzierbar.

Beispiel 1.2.10 Gegeben sei $f : \mathbb{R}^3 \to \mathbb{R}$ durch

$$f(x_1, x_2, x_3) = x_1^2 x_2 + x_1 x_2 \sin(x_3)$$

 $Df(x_1, x_2, x_3) = \begin{pmatrix} 2x_1x_2 + x_2\sin(x_3) & x_1^2 + x_1\sin(x_3) & x_1x_2\cos(x_3) \end{pmatrix}$ $f \ soll \ in \ der \ N\ddot{a}he \ des \ Punktes \ x_0 = (x_{01}, x_{02}, x_{03}) = (1, 1, \frac{\pi}{2}) \ angen \ddot{a}hert \ werden.$

Zur Berechnung der Näherung wird benötigt: $f(x_0) + Df(x_0)(x - x_0)$

$$f(x_0) = 1 + 1 \cdot 1 = 2$$

$$Df(x_0) = \begin{pmatrix} 3 & 2 & 0 \end{pmatrix}$$

$$2 + \begin{pmatrix} 3 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \\ x_3 - \frac{\pi}{2} \end{pmatrix}$$

$$f(x_1, x_2, x_3) = 3x_1 + 2x_2 - 3$$

Aufgabe 1.2.11 Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}^3$ durch $f(x_1, x_2) = \begin{pmatrix} x_1 + x_2 & x_1^2 \sin(x_2) & e^{x_1 x_2} \end{pmatrix}^T \text{ (siehe Aufgabe 1.2.7)}$ Berechnen Sie die Näherung der Funktion in der Nähe von $x_0 = (1,0)$

Aufgabe 1.2.12 Berechnen Sie die Tangentialebenen an die Funktion

$$f(x_1, x_2) = e^{-2.5x_1^2 - (x_3 - 1)^2} (x_1, x_2) \in \mathbb{R}^2 \text{ im Punkt } (x_{01}, x_{02}, f(x_{01}, x_{02})) = (0, 1, 1).$$

Verwenden Sie dazu zunächst die Formel für die Tangentialebenen und dann die Formel für die totale Differenzierbarkeit.

Definition 1.2.13 (totale Differenzierbarkeit) Sei $f:\mathbb{R}^2 \to \mathbb{R}$ eine total differenzierbare Funktion. Dann kann f in der Nähe eines Punktes $(x_{01}, x_{02}) \in \mathbb{R}^2$ durch $f(x_{01}, x_{02}) + Df(x_{01}, x_{02}) \begin{pmatrix} x_1 - x_{01} \\ x_2 - x_{02} \end{pmatrix}$ angenähert werden.

Es gilt also
$$f(x_1, x_2) = f(x_{01}, x_{02}) + \left(\frac{\partial f}{\partial x_1}(x_{01}, x_{02}) - \frac{\partial f}{\partial x_2}(x_{01}, x_{02})\right) \begin{pmatrix} x_1 - x_{01} \\ x_2 - x_{02} \end{pmatrix}$$

$$f(x_1, x_2) - f(x_{01}, x_{02}) \approx \frac{\partial f}{\partial x_1} (x_{01}, x_{02}) \cdot \underbrace{(x_1 - x_{01})}_{=:\Delta x_1} + \frac{\partial f}{\partial x_2} (x_{01}, x_{02}) \cdot \underbrace{(x_2 - x_{02})}_{=:\Delta x_2}$$

also gilt: $\Delta f \approx \frac{\partial f}{\partial x_1} \cdot \Delta x_1 + \frac{\partial f}{\partial x_2} \cdot \Delta x_2$

Für "beliebig kleines" Δx_1 und Δx_2 schreiben wir "d" statt " Δ " und "=" statt " \approx ".

$$df = \frac{\partial f}{\partial x_1} (x_{01}, x_{02}) \cdot dx_1 + \frac{\partial f}{\partial x_2} (x_{01}, x_{02}) \cdot dx_2$$

Diesen Ausdruck bezeichnet man als totales Differenzial der Funktion f.

Für eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$ gilt:

$$df = \frac{\partial f}{\partial x_1} \cdot dx_1 + \frac{\partial f}{\partial x_2} \cdot dx_2 + \dots + \frac{\partial f}{\partial x_2} \cdot dx_n$$

Bemerkung 1.2.14 Mit Hilfe des totalen Differentials kann der Einfluss der Änderung der Inputgrößen auf den Funktionswert abgeschätzt werden.

Beispiel 1.2.15 Gegeben sei $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x_1, x_2) = x_1^2 + \sin(x_1 \cdot x_2)$. Wir betrachten f in der Nähe des Punktes $f(x_{01}, x_{02}) = (\sqrt{\pi}, \sqrt{\pi})$

Was passiert wenn wir leicht von dem Wert abweichen?

$$\frac{\partial f}{\partial x_1} = 2x_1 + \cos(x_1 \cdot x_2)x_2$$
$$\frac{\partial f}{\partial x_2} = \cos(x_1 \cdot x_2)x_1$$

 $df = 2\sqrt{\pi} + \cos(\pi) \cdot \sqrt{\pi} \cdot (x_1 - \sqrt{\pi}) + \cos(\pi) \cdot \sqrt{\pi} \cdot (x_2 - \sqrt{\pi}) df = \sqrt{\pi} \cdot dx_1 + (-\sqrt{\pi}) \cdot dx_2$ Veränderung der Inputgrößen z.B. $dx_1 = 0.1 dx_2 = -0.1$

$$df = 0.2 \cdot \sqrt{\pi}$$

Bemerkung 1.2.16 Durch Einsetzen der Maximalen absoluten Fehler und Bilden der Beträge ergibt sich der (lineare) maximale absolute Fehler:

$$|\Delta f| \approx \left| \frac{\partial f}{\partial x_1} (x_1, \dots, x_n) \right| \cdot |\Delta x_1| + \dots + \left| \frac{\partial f}{\partial x_n} (x_1, \dots, x_n) \right| \cdot |\Delta x_n|$$

Aufgabe 1.2.17 Das Volumen V eines geraden Kreiskegels wird berechnet durch: $V = \frac{\pi}{3} \cdot r^2 \cdot \sqrt{k^2 - r^2}$.

r...Radius r=1m und absoluter Fehler von 0.01m

 $k...Mantellinie\ k=1.5m\ und\ der\ absolute\ Fehler:\ 0.005m$

Berechnen Sie den (linearen) maximalen absoluten Fehler.

Papula zu Abschnitt 2 S. 332: 12, 13, 15

1.3 Extremwerte

Definition 1.3.1 (Lokales Extremum) Es seien $U \subset \mathbb{R}^n$ eine offene Menge und $f: U \to \mathbb{R}$ eine Abbildung.

- (i) Ein Punkt $x_0 \in U$ heißt <u>lokales Maximum</u> von f, falls f in der Nähe von x_0 nicht größer wird als bei x_0 , das heißt: $f(x) \leq f(x_0)$ für alle x in der Nähe von x_0 .
- (ii) Ein Punkt $x_0 \in U$ heißt <u>lokales Minimum</u> von f, falls f in der Nähe von x_0 nicht kleiner wird als bei x_0 , das heißt: $f(x) \geq f(x_0)$ für alle x in der Nähe von x_0 .

Ein lokales Extremum ist ein lokales Minimum oder ein lokales Maximum.

Bemerkung 1.3.2 Wie im eindimensionalen Fall liefert die Differentialrechnung nur Informationen über lokale und nicht über globale Extrema.

Bemerkung 1.3.3 Es sei $f:(a,b) \to \mathbb{R}$ differenzierbar in $x_0 \in (a,b)$ mit einem lokalen Extremum in x_0 . Dann ist $f'(x_0) = 0$.

Satz 1.3.4 Es sei $U \subset \mathbb{R}^n$ eine offene Menge und $f: U \to \mathbb{R}$ differenzierbar. Besitzt f in $x_0 \in U$ ein lokales Extremum, so gilt:

$$\nabla f(x_0) = 0$$
,

$$d.h. \frac{\partial f}{\partial x_1}(x_0) = \dots = \frac{\partial f}{\partial x_n}(x_0) = 0$$

Beispiel 1.3.5 $f: \mathbb{R}^2 \to \mathbb{R}$ $f(x_1, x_2) = 1 - x_1^2 - x_2^2$

$$\frac{\partial f}{\partial x_1}(x_1, x_2) = -2x_1 \qquad \frac{\partial f}{\partial x_2}(x_1, x_2) = -2x_2$$

$$\rightarrow x_1 = x_2 = 0$$

Das heißt falls es ein Extremum gibt, dann liegt es bei (0,0).

Aufgabe 1.3.6

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 $f(x_1, x_2) = \sin(x_1) \cdot \sin(x_2)$

$$\nabla f(x_1, x_2) = \begin{pmatrix} \cos(x_1) \cdot \sin(x_2) \\ \sin(x_1) \cdot \cos(x_2) \end{pmatrix} =: \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$cos(x_1) \cdot sin(x_2) = 0$$
$$(x_1 = \pi) od. sin(x_2) = 0$$

Bemerkung 1.3.7 Es sei $f:(a,b)\to\mathbb{R}$ zweimal differenzierbar und $f'(x_0)=0$.

- (i) Ist $f''(x_0) > 0$, so hat f in x_0 ein lokales Minimum.
- (ii) Ist $f''(x_0) < 0$, so hat f in x_0 ein lokales Maximum.

Definition 1.3.8 Eine Matrix $A = (a_{ij}), i, j = 1, ..., n \in \mathbb{R}^{n \times n}$ heißt <u>positiv definit</u>, falls gilt:

$$a_{11} > 0$$
, det $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} > 0$, ..., det $\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} > 0$,

also det
$$\begin{pmatrix} a_{11} & \cdots & a_{1k} \\ a_{21} & \cdots & a_{2k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix} > 0 \text{ für alle } k = 1, \dots, n.$$

A heißt negativ definit, falls -A positiv definit ist

Beispiel 1.3.9 Es sei
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

$$\underline{k=1}: 1 > 0$$

$$\underline{k=2}: \det \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix} = 1 \cdot 4 - 1 \cdot 1 = 3 > 0$$

Aufgabe 1.3.10
$$B = \begin{pmatrix} -6 & 2 \\ 2 & -1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

$$-6 < 0 \rightarrow B \text{ nicht positiv definit}$$

$$-B = \begin{pmatrix} 6 & -2 \\ -2 & 1 \end{pmatrix}$$

$$\underline{k = 1} : 6 > 0$$

$$\underline{k = 2} : \det \begin{pmatrix} 6 & -2 \\ -2 & 1 \end{pmatrix} = 6 \cdot 1 - (-2) \cdot (-2) = 2 > 0$$

$$\rightarrow B \text{ ist negativ definit.}$$

Aufgabe 1.3.11 Prüfen Sie
$$C = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix} \in \mathbb{R}^{3\times3}$$
 auf positive Definitheit.

Bemerkung 1.3.12 $D = \begin{pmatrix} 0 & 1 \\ 1 & 4 \end{pmatrix} \in \mathbb{D}^{2\times 2}$ ist weder positiv noch negativ definit: $d_{11} \not> 0 \rightarrow nicht$ positiv definit $-d_{11} \not> 0 \rightarrow nicht$ negativ definit

Definition 1.3.13 Es seien $U \subset \mathbb{R}^n$ eine offene Menge, $f: U \to \mathbb{R}$ eine zweimal stetig partiell differenzierbare Funktion und $x_0 \in U$. Unter der <u>Hesse-Matrix</u> von f in x_0 versteht man die Matrix:

$$H_f(x_0) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x_0) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x_0) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x_0) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x_0) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x_0) \end{pmatrix}$$

Beispiel 1.3.14 Gegeben sei $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x_1, x_2) = x_1^2 + x_2^2$. Gesucht ist die Hesse-Matrix.

$$H_f(x_1, x_2) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x_1, x_2) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x_1, x_2) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x_1, x_2) & \frac{\partial^2 f}{\partial x_2^2}(x_1, x_2) \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Aufgabe 1.3.15 Gegeben sei $f: \mathbb{R}^3 \to \mathbb{R}$ durch

$$f(x_1, x_2, x_3) = x_1^3 \cdot x_2^3 \cdot \sin(x_3)$$

Berechnen Sie die Hesse-Matrix $H_f(0,0,0)$ & $H_f(1,1,0)$.

Satz 1.3.16 Es sei $U \subset \mathbb{R}^n$ eine offene Menge, $f: U \to \mathbb{R}$ zweimal stetig differenzierbar und $x_0 \in U$ ein Punkt mit $\nabla f(x_0) = 0$.

- (i) Ist $H_f(x_0)$ positiv definit, so hat f in x_0 ein lokales Minimum.
- (ii) Ist $H_f(x_0)$ negative definit, so hat f in x_0 ein lokales Maximum.
- (iii) Ist $U \subset \mathbb{R}^2$ und gilt $\det H_f(x_0) < 0$, so liegt kein Extremwert vor.

Beispiel 1.3.17 Gegeben sei $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x_1, x_2) = 1 + x_1^2 + x_2^2$

$$\nabla f(x_1, x_2) = \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix} := 0 \to x_1 = x_2 = 0$$

 $\rightarrow (0,0)$ könnte ein Extremum sein

Überprüfen durch Hesse-Matrix

$$H_f(x_1, x_2) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
$$2 > 0, \det \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 4 > 0$$

 $\rightarrow H_f(0,0)$ positiv definit \rightarrow in (0,0) liegt ein lokales Minimum vor.

Aufgabe 1.3.18 Gegeben sei $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x_1, x_2) = \sin(x_1) \cdot \sin(x_2)$

Untersuchen Sie die Funktion auf lokale Extrema.

Kandidaten: $(0,0), (\frac{\pi}{2}, \frac{\pi}{2})$

Aufgabe 1.3.19 Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x_1, x_2) = \cos(x_1) + \cos(x_2)$

Gradient:
$$\nabla f(x_1, x_2) = \begin{pmatrix} -\sin x_1 \\ -\sin x_2 \end{pmatrix} := \begin{pmatrix} 0 \\ 0 \end{pmatrix} \to -\sin x_1 = -\sin x_2 = 0$$

 $(k_1\pi, k_2\pi), k_1, k_2 \in \mathbb{Z}$

$$Hesse\text{-}Matrix$$

$$H_f(x_1, x_2) = \begin{pmatrix} -\cos x_1 & 0\\ 0 & -\cos x_2 \end{pmatrix}$$

$$H_f(k_1\pi, k_2\pi) = \begin{pmatrix} -(-1)^{k_1} & 0\\ 0 & -(-1)^{k_2} \end{pmatrix}$$

	k_1 gerade	k_1 ungerade
k_2 gerade	lokales Maximum	kein Extremwert
$k_2 \ ungerade$	kein Extremwert	lokales Minimum

Beispiel 1.3.20 (Nebenbedingungen) Gegeben sei 12m langer Draht, aus dem die Kanten eines Quaders von möglichst großem Volumen hergestellt werden sollen. Gesucht sind die Kantenlängen x_1, x_2, x_3 des optimalen Quaders.

$$4x_{1} + 4x_{2} + 4x_{3} = 4(x_{1} + x_{2} + x_{3}) = 12$$

$$x_{1} + x_{2} + x_{3} = 3$$

$$V = x_{1} \cdot x_{2} \cdot x_{3}$$

$$x_{1}, x_{2}, x_{3} > 0$$

$$V = x_{1}x_{2}(3 - x_{1} - x_{2})$$

$$V = 3x_{1}x_{2} - x_{1}^{2}x_{2} - x_{1}x_{2}^{2}$$

$$\mathbb{D} = (x_{1}, x_{2}) \in \mathbb{R}^{2} : x_{1} > 0, x_{2} > 0, x_{1} + x_{2} < 3, \mathbb{D} \text{ ist eine offene Menge}$$

$$\nabla V(x_{1}, x_{2}) = \begin{pmatrix} 3x_{2} - 2x_{1}x_{2} - x_{2}^{2} \\ 3x_{1} - x_{1}^{2} - 2x_{1}x_{2} \end{pmatrix} := \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\rightarrow x_{1} = 1, x_{2} = 1, x_{3} = 1$$

Berechnen Sie die Hesse-Matrix

Beispiel ***:

$$f: \mathbb{R}^2 \to \mathbb{R}f(x,y) = \begin{cases} x \cdot y \cdot \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

(a) Stetigkeit in (0,0)

$$\bar{P} \lim_{P \to \bar{P}} f(x_1, \dots, x_n) = f(\bar{x_1}, \dots, \bar{x_n})$$

$$Es \ gilt: \lim_{(x,y) \to (0,0)} f(x,y) = \lim_{(x,y) \to (0,0)} |x \cdot y \cdot \frac{x^2 - y^2}{x^2 + y^2}| = \lim_{(x,y) \to (0,0)} \underbrace{|x \cdot y|}_{\to 0} \cdot \underbrace{|\frac{x^2 - y^2}{x^2 + y^2}|}_{\to 0}$$

Aufgabe 1.3.21 Papula S.332 zu Abschnitt $2 \rightarrow Aufg$. 24

(i)
$$f(x_1, x_2) = x_1^2(1 - x_2) - x_2^3 + 12x_2 + 13$$

(ii)
$$f(x_1, x_2) = (x_1 - 1)^2 (1 - x_2) - x_2^3 + 12x_2 + 3$$

(iii)
$$f(x_1, x_2) = 4(x_1^2 - 25)(x_2 - 2) + 5x_2^2 + 12x_2$$

2 Grundlagen der Integralrechnung reeller Funktionenmit mehreren Variablen

2.1 Zweidimensionale Integralrechnung

Definition 2.1.1 (beschränkt) Eine Menge $U \subset \mathbb{R}^2$ heißt <u>beschränkt</u>, wenn es ein Rechteck R gibt, sodass $U \subset R$ gilt.

Bemerkung 2.1.2

Bemerkung 2.1.3 Es sei $U \subset \mathbb{R}^2$ eine beschränkte Menge und $f: U \to \mathbb{R}$ eine stetige Funktion. Da ein Volumen betrachtet wird, werden die alten Näherungsrechtecke durch Näherungsquader ersetzt und deren Volumen zusammengezählt.

U wird also in n kleine Teilbereiche u_1, \ldots, u_n zerlegt. Die Fläche dieser Teilbereiche wird mit $\delta u_1, \ldots, \Delta u_n$ bezeichnet.

Zur Berechnung des Rauminhalts des Quaders wird weiterhin die Quaderhöhe benötigt. Dazu wird ein Punkt $(x_i, y_i) \in U_i$ gewählt und sein Funktionswert $f(x_i, y_i)$ als Höhe des Quaders betrachtet. Das Teilvolumen beträgt dann $f(x_i, y_i) \cdot \Delta u_i$

Falls U_i ein Rechteck ist mit den Seiten Δx_i und Δy_i , so ergibt sich das Teilvolumen

$$\Delta V_i = f(x_i, y_i) \cdot \Delta U_i = f(x_i, y_i) \cdot \Delta x_i \cdot \Delta y_i$$

Als Näherung für das Gesamtvolumen eribt sich also

$$V_n(f) = \sum_{i=1}^n f(x_i, y_i) \cdot \Delta U_i$$

Hier wurde der gesamte Definitionsbereich U in die n Teilbereiche U_1, \ldots, U_n zerlegt.

Der genaue Wert für das Volumen kann berechnet werden, indem n gegen ∞ geht. Deshalb wird definiert:

$$\int_{U} f(x,y)dU = \int_{U} f(x,y)dxdy$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i, y_i) \cdot \Delta U_i$$

Um klarzustellen, dass es sich um ein zweidimensionales Integral handelt, werden oft die zwei Integralsymbole verwendet:

$$\iint_{U} f(x,y)dU = \iint_{U} f(x,y)dxdy$$

Definition 2.1.4 (konvex) Eine Menge $U \subset \mathbb{R}^2$ oder $U \subset \mathbb{R}^3$ heißt <u>konvex</u>, falls für alle Punkte $x, y \in U$ auch die gesamte Verbindungsstrecke von x nach y in U liegt.

Bemerkung 2.1.5 Es sei $U \subset \mathbb{R}^2$ eine beschränkte und konvexe Menge und $f: U \to \mathbb{R}$ eine stetige Funktion. Da U beschränkt ist, gibt es einen kleinsten vorkommenden x-Wert a und einen größten vorkommenden x-Wert b.

Der Flächeninhalt der Schnittfläche des Körpers bei einem beliebigen x-Wert zwischen a und b wird mit I(x) bezeichnet.

Der Körper, dessen Volumen wir ausrechnen, setzt sich aus all diesen Schnittflächen zusammen. Für jedes $x \in [a,b]$ existiert eine Schnittfläche mit Flächeninhalt I(x), das heißt durch Aufsummieren dieser unendlich vielen Flächeninhalte ergibt sich das Volumen des Körpers.

$$\iint_{U} f(x,y)dxdy = \int_{b}^{a} I(x)dx$$

Der Flächeninhalt von I(x) kann einfach mit einem eindimensionalen Integral berechnet werden.

$$I(x) = \int_{y_n(x)}^{y_o(x)} f(x, y) dy$$

Insgesamt ergibt sich also:

$$\iint_{U} f(x,y)dxdy = \int_{a}^{b} \left(\int_{y_{u}(x)}^{y_{o}(x)} f(x,y)dy \right) dx$$

Satz 2.1.6 Es sei $U \subset \mathbb{R}^2$ eine beschränkte und konvexe Menge und $f: U \to \mathbb{R}$ eine stetige Funktion. Weiterhin sei a der kleinste in U vorkommende x-Wert und b der größete in U vorkommende x-Wert. Für $x \in [a,b]$ bezeichnen wir den kleinsten y-Wert für den $(x,y) \in U$ gilt, als $y_u(x)$ und den größten y-Wert als $y_o(x)$.

Dann ist
$$\iint_U f(x,y)dxdy = \int_a^b \left(\int_{y_u(x)}^{y_o(x)} f(x,y)dy \right) dx$$

Beispiel 2.1.7 (i)
$$U = \{(x,y) : x \in [0,1], y \in [0,2]\}$$
 und $f : U \to \mathbb{R}$ mit $f(x,y) = x^2 + y^2$

$$a = 0, b = 1, y_u(x) = 0, y_o(x) = 2$$

$$\int_0^1 \left(\int_0^2 (x^2 + y^2) dy \right) dx$$

$$\int_0^1 \left(\left[x^2 y + \frac{y^3}{3} \right]_0^2 \right) dx$$

$$\int_0^1 \left(2x^2 + \frac{2^3}{3} \right) dx$$

$$\left[\frac{2}{3} x^3 + \frac{8}{3} x \right]_0^1$$

$$\frac{2}{3} + \frac{8}{3} = \frac{10}{3}$$

(ii)
$$U = \{(x, y) : x \ge 0, x \le 1, y \le x, y \ge 0\}$$

 $f : U \to \mathbb{R} \text{ mit } f(x, y) = x \cdot \sin(y)$
 $a = 0, b = 1, y_u(x) = 0, y_o(x) = x$

$$\int_0^1 \left(\int_0^x x \cdot \sin(y) dy \right) dx$$

$$\int_0^1 \left(\left[x \cdot - \cos(y) \right]_0^x \right) dx$$

$$- \int_0^1 \left(x \cdot \cos(x) + x \right) dx$$

$$- \left[x \cdot \sin(x) + \cos(x) + \frac{x^2}{2} \right]_0^1$$

$$- \left(1 \cdot \sin(1) + \cos(1) + \frac{1^2}{2} - \cos(0) \right) = -\sin(1) - \cos(1) + \frac{3}{2}$$

(iii)
$$U = \{(x, y) : x^2 + y^2 \le 1\}$$

 $f: U \to \mathbb{R}, f(x, y) = 1$

$$\iint_{U} (1) dx dy = \int_{-1}^{1} \left(\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 dy \right) dx$$

$$\int_{-1}^{1} \left([y]_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \right) dx$$

$$2 \int_{-1}^{1} \sqrt{1-x^{2}} dx$$

Einschub Substitution: $f(x) = \sqrt{1 - x^2}$

$$\int f(x(t)) \cdot x'(t)dt = \int f(x)dx$$

$$x(t) = \sin(t) \to t = \arcsin(x)$$

$$\int f(x)dx = \int \sqrt{1-x^2}dx = \int f(\sin(t)) \cdot x'(t)dt = \int \sqrt{1-\sin^2(t)} \cdot \cos(t)dt$$

$$= \int \cos(t) \cdot \cos(t)dt = \cos(t) \cdot \sin(t) + \int \sin(t) \cdot \sin(t)dt = \int \sin^2(t)dt = \int 1 - \cos^2(t)dt$$

$$= \cos(t) \cdot \sin(t) + t - \int \cos^2(t)dt$$

$$\to \int \cos^2(t)dt = \frac{1}{2}\sin(t) \cdot \cos(t) + \frac{t}{2} + C$$

 $R\ddot{u}cksubstitution$

$$\frac{x}{2} \cdot \cos(t) + \frac{t}{2} + C$$

$$\cos(t) = \cos(\arcsin(x)) = \sqrt{1 - \sin^2(\arcsin(x))} = \sqrt{1 - x^2}$$

$$\frac{x}{2} \cdot \sqrt{1 - x^2} + \frac{\arcsin(x)}{2} + C$$

$$\int \sqrt{1 - x^2} dx = \frac{x}{2} \sqrt{1 - x^2} + \frac{\arcsin(x)}{2}$$

$$2\int_{-1}^{1} \sqrt{1 - x^2} dx = \left[x\sqrt{1 - x^2} + \arcsin(x) \right]_{-1}^{1}$$
$$\arcsin(1) - \arcsin(-1) = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

Satz 2.1.8 Es sei $U \subset \mathbb{R}^2$ eine beschränkte und konvexe Menge und $f: U \to \mathbb{R}$ eine stetige Funktion. Weiterhin sei a der kleinste in U vorkommende y-Wert und b der größte in U vorkommende y-Wert.

Für $y \in [a;b]$ bezeichnen wir den kleinsten x-Wert, für den $(x,y) \in U$ gilt als $x_u(y)$ und den größten als $x_o(y)$.

Dann ist
$$\iint_U f(x,y) dx dy = \int_a^b \left(\int_{x_u(y)}^{x_o(y)} f(x,y) dx \right) dy$$

Beispiel 2.1.9

$$\iint_{U} x^2 + y^2 dx dy$$

Aufgabe 2.1.10 $f: U \to \mathbb{R}$ mit $f(x,y) = x^2 + y$

$$\iint_{U} f(x,y) dx dy = \int_{1}^{2} \left(\int_{2}^{3} (x^{2} + y) dy \right) dx = \frac{29}{6}$$

(ii)
$$U = \{(x, y) : 0 \le x \le 1, x^2 \le y \le \sqrt{x}\}$$

$$\iint_{U} f(x,y) dx dy = \int_{0}^{1} \left(\int_{x^{2}}^{\sqrt{x}} (x^{2} + y) dy \right) dx = \frac{33}{140}$$

Einschub (Terassenpunkte) Jeder Punkt $x_0 \in D_f$ (Definitionsbereich) einer Funktion $f: D_f \subset \mathbb{R}^n \to \mathbb{R}$ mit $\nabla f(x_0) = 0$ heißt <u>kritischer Punkt</u> von f.

 $\label{eq:continuous} \textit{Jeder kritische Punkt, von f, der nicht gleichzeitig ein lokales Extremum ist, heißt} \\ \textit{Terassenpunkt von f.}$

Beispiel:

$$f(x,y) = x^2 - y^2 \frac{\partial f}{\partial x}(x,y) = 2x \frac{\partial f}{\partial y}(x,y) = -2y$$

 $\rightarrow (0,0) \text{ ist } Kandidat$

Hessematrix:
$$H_f(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{vmatrix} 2 & 0 \\ 0 & -2 \end{vmatrix} = \underline{-4 < 0}$$

Aufgabe 2.1.11 Berechnen Sie den Flächeninhalt des Dreiecks mit den Eckpunkten (2,2),(0,3),(1,0)

$$f_1(x) = -3x + 3$$

$$f_2(x) = 2x - 2$$

$$f_3(x) = -\frac{1}{2}x + 3$$

$$U_1 = \left\{ (x, y) : 0 \le x \le 1, f_1(x) \le y \le f_3(x) \right\}$$

$$U_2 = \left\{ (x, y) : 1 \le x \le 2, f_2(x) \le y \le f_3(x) \right\}$$

$$\int_0^1 \left(\int_{f_1(x)}^{f_3(x)} 1 dy \right) dx + \int_1^2 \left(\int_{f_2(x)}^{f_3(x)} 1 dy \right) dx$$

Aufgabe 2.1.12 Berechnen Sie den Inhalt der Fläche, die von den Funktionen $f_1(x) = x^2 - 1$ und $f_2(x) = 3x + 3$ begrenzt wird.

 $\int_{-1}^{4} \left(\int_{x^2 - 1}^{3x + 3} 1 dy \right) dx$

Aufgabe 2.1.13 Berechnen Sie $\int_0^\infty x_1x_2\cdot e^{-x_1x_2}dx_1,\ x_2>0$

$$\lim_{c \to \infty} \int_0^C x_1 x_2 \cdot e^{-x_1 x_2} dx_1$$

$$\lim_{c \to \infty} \left(e^{-cx_2} \left(-c - \frac{1}{x_2} \right) + \frac{1}{x_2} \right)$$

$$\lim_{c \to \infty} -\frac{c}{e^{cx_2}} = \lim_{c \to \infty} -\frac{1}{x_2 e^{cx_2}} = 0$$

$$\int_0^\infty x_1 x_2 \cdot e^{-x_1 x_2} dx_1 = \frac{1}{x_2}$$

2.2 Dreidimensionale Integralrechnung

Satz 2.2.1 Es seien $U \subset \mathbb{R}^3$ eine beschränkte und konvexe Menge und $f: U \to \mathbb{R}$ eine stetige Funktion. Weiterhin sei a der in U kleinste vorkommende x-Wert und b der größte.

Für $x \in [a; b]$ bezeichnen wir den kleinsten y-Wert, für den es ein z gibt, sodass $(x, y, z) \in U$ gilt, mit $y_u(x)$, und den größten mit $y_o(x)$.

Schließlich bezeichnen wir für zulässiges (x,y) mit $z_u(x,y)$ den kleinsten z-Wert, sodass $(x,y,z) \in U$, und mit $z_o(x,y)$ den größten z-Wert. Dann ist

$$\iiint_U f(x,y,z)dxdydz = \int_a^b \left(\int_{y_u(x)}^{y_o(x)} \left(\int_{z_u(x,y)}^{z_o(x,y)} f(x,y,z)dz \right) dy \right) dx$$

Beispiel 2.2.2 (i)
$$U = [-1; 1] \times [0, 1] \times [0, 2]$$

$$f(x,y,z) = x^{2} + y^{2} + z^{2}$$
$$int_{-1}^{1} \left(\int_{0}^{1} \left(\int_{0}^{2} x^{2} + y^{2} + z^{2} dz \right) dy \right) dx$$

(ii)
$$U = \{(x, y, z) : x, y, z \ge 0, x \le 1, y \le x, z \le y\}$$

 $f(x, y, z) = x \cdot y^2 \cdot z$

Einschub (Geometrische Betrachtungen zur Tangentialebene) Die Rolle,

die die Kurventangente bei einer Funktion von einer Variablen spielt, übernimmt die sogenannte Tangentialebene bei einer Funktion von zwei Variablen z = f(x,y). Sie enthält sämtliche im Flächenpunkt $P = (x_0, y_0, z_0)$ an die Bildfläche von z = f(x,y) angelegten Tangenten. In der unmittelbaren Umgebung ihres Berührungspunktes P besitzen Fläche und Tangentialebene im Allgemeinen keinen weiteren gemeinsamen Punkt.

Herleitung der Funktionsgleichung dieser Tangentialebene in der Form: z = ax + by + c

Die unbekannten Koeffizienten a, b, c werden aus den bekannten Eigenschaften der Tangentialebene bestimmt.

Fläche und Tangentialebene besitzen im Berührungspunkt P die gleiche Steigung. Das bedeutet, dass dort die entsprechenden partiellen Ableitungen erster Ordnung übereinstimmen müssen. Die partiellen Ableitungen der Tangentialebene sind $z_x(x,y) = a$ und $z_y(x,y) = b$, die der Funktion z = f(x,y) lauten $z_x(x,y) = f_x(x,y)$ und $z_y(x,y) = f_y(x,y)$. An der Berührungsstelle (x_0,y_0) gilt demnach: $a = f_x(x_0,y_0)$ und $b = f_y(x_0,y_0)$.

 $Somit\ sind\ die\ Koeffizienten\ a\ und\ b\ bestimmt.$

Außerdem ist P ein gemeinsamer Punkt von Fläche und Tangentialebene: $z_0 = ax_0 + by_0 + c \rightarrow c = z_0 - ax_0 - by_0$

Einsetzen in die Gleichung für die Tangentialebene:

$$z = ax + by + z_0 - ax_0 - by_0 = a(x - x_0) + b(y - y_0) + z_0 = f_x(x_0, y_0)(x - x_0) + b(y - y_0) + z_0 = f_x(x_0, y_0)(x - x_0) + b(y - y_0) + z_0 = f_x(x_0, y_0)(x - x_0) + b(y - y_0) + z_0 = f_x(x_0, y_0)(x - x_0) + b(y - y_0) + z_0 = f_x(x_0, y_0)(x - x_0) + b(y - y_0) + z_0 = f_x(x_0, y_0)(x - x_0) + b(y - y_0) + z_0 = f_x(x_0, y_0)(x - x_0) + b(y - y_0) + z_0 = f_x(x_0, y_0)(x - x_0) + b(y - y_0) + z_0 = f_x(x_0, y_0)(x - x_0) + b(y - y_0) + z_0 = f_x(x_0, y_0)(x - x_0) + b(y - y_0) + z_0 = f_x(x_0, y_0)(x - x_0) + b(y - y_0)(x - x_0)(x - x_0)(x - x_0) + b(y - y_0)(x - x_0)(x - x_0$$

$$f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$$

3 Differentialgleichungen

3.1 Einführung

Definition 3.1.1 (Gewöhnliche Differentialgleichungen) Eine Gleichung der Form $F(x, y, y', y'', \dots, y^{(n)}) = 0$ für eine unbekannte Funktion y = f(x) und deren Ableitungen heißt gewöhnliche Differentialgleichung n-ter Ordnung.

Bemerkung 3.1.2 Neben gewöhnlichen Differentialgleichungen gibt es auch partielle Differentialgleichungen, diese werden aber in dieser Vorlesung nicht behandelt.

Beispiel 3.1.3 Betrachtet wird eine elastische Feder in Gleichgewichtslage. Wird an den Punkt P_0 ein Körper der Masse m angehängt, so hat die Feder zum Zeitpunkt t eine gewisse Auslenkung y(t). Unter Vernachlässigung der Reibung gilt für die Rückstellkraft F der Feder, die auf die Masse m wirkt: $F = -c \cdot y(t)$. Dabei bezeichnet c die Federkonstante.

Wegen $F = m \cdot y''(t)$ gilt: $m \cdot y''(t) = -c \cdot y(t)$ also $m \cdot y''(t) + c \cdot y(t) = 0$.

$$\int \frac{dy}{y} = \int x dx \to \ln|y| = \frac{x^2}{2} + c$$

$$\to |y(x)| = e^{\frac{x^2}{2} + c} = e^{\frac{x^2}{2}} \cdot \underbrace{e^c}_{c_1}, c_1 \in \mathbb{R}$$

3.2 Trennung der Variablen

Beispiel 3.2.1 Gegeben sei die Gleichung y' = xy.

Gesucht ist die Funktion y(x).

$$y' = \frac{dy}{dx} \to \frac{dx}{dy} = xy \to_{y \neq 0} \frac{dy}{y} = xdx$$

Definition 3.2.2 (Differentialgleichungen mit getrennten Variablen) Es seien $\mathcal{I}, \mathcal{J} \subset \mathbb{R}$ offene Intervalle, $f: \mathcal{I} \to \mathbb{R}$ und $g: \mathcal{J} \to \mathbb{R}$ stetige Funktionen und $g(y) \neq 0$

für alle $y \in \mathcal{J}$. Dann heißt die Differentialgleichung $y' = f(x) \cdot g(y)$ eine Differentialgleichung mit getrennten Variablen.

Auf diese Differentialgleichung lässt sich das gleiche Verfahren anwenden wie in Beispiel 3.2.1. Es kann eine allgemeine Lösungsformel abgeleitet werden.

Einschub (Klausurtestaufgabe) Gegeben seien die Funktionen f,g durch g(x,y) =

$$\begin{pmatrix} x+y\\ x^2-y\\ 2xy \end{pmatrix}, f(x,y,z) = \begin{pmatrix} \sin(x)\\ \sin(y+z) \end{pmatrix}$$

Berechnen Sie die Jacobi-Matrix von $f \circ g$ mit Hilfe der Kettenregel: $D(f \circ g)(x, y) = Df(g(x, y)) \cdot Dg(x, y)$.

<u>Hinweis</u>: Zur Berechnung von Df(g(x,y)) berechnen Sie zunächst Df(x,y,z) und setzen Sie anschließend den Ergebnisvektor von g(x,y) ein.

$$Df(x,y,z) = \begin{pmatrix} \cos(x) & 0 & 0 \\ 0 & \cos(y+z) & \cos(y+z) \end{pmatrix}$$

$$Df(x+y,x^2-y,2xy) = \begin{pmatrix} \cos(x+y) & 0 & 0 \\ 0 & \cos(x^2-y+2xy) & \cos(x^2-y+2xy) \end{pmatrix}$$

$$Dg(x,y) = \begin{pmatrix} 1 & 1 \\ 2x & -1 \\ 2y & 2x \end{pmatrix}$$

$$D(f \circ g)(x,y) = \begin{pmatrix} \cos(x+y) & \cos(x+y) \\ 2\cos\alpha(x+y) & \cos\alpha(2x-1) \end{pmatrix}$$

Papula S. 519 zu Abschnitt 1 Aufg. 1; S. 520 zu Abschnitt 2 Aufg. 4a+d,5a+c

3.5 Lineare Differentialgleichungen

Definition 3.5.1 (Homogene lineare Differentialgleichungen n-ter Ordnung) Es seien $\mathcal{I} \subset \mathbb{R}$ ein Intervall und $a_0, a_1, \ldots, a_{n-1}; \mathcal{I} \to \mathbb{R}$ stetige Funktionen. Die Gleichung

$$y^{(n)}(x) + a_{n-1}(x) \cdot y^{(n-1)}(x) + \dots + a_1(x) \cdot y'(x) + a_0(x) \cdot y(x) = 0$$

heißt homogene lineare Differentialgleichung n-ter Ordnung.

Ist weiterhin $b: \mathcal{I} \to \mathbb{R}$ eine stetige Funktion, so heißt die Gleichung

$$y^{(n)}(x) + a_{n-1}(x) \cdot y^{(n-1)}(x) + \dots + a_1(x) \cdot y'(x) + a_0(x) \cdot y(x) = b(x)$$

inhomogene lineare Differentialgleichung n-ter Ordnung.

Definition 3.5.2 (linear unabhängig) Eine Menge von Funktionen $\{y_1, \ldots, y_n\}$ heißt linear unabhängig, wenn man keine Funktion aus den anderen linear kombinieren kann, d.h. für eine beliebige Funktion y_i gibt es keine Kombination der Form $y_i(x) = c_1 y_1(x) + \cdots + c_{i-1} y_{i-1}(x) + c_{i+1} y_{i+1}(x) + \cdots + c_n y_n(x)$ mit $c_1, \ldots, c_n \in \mathbb{R}$.

Falls man ein y_i aus den anderen Funktionen linear kombinieren kann, heißt die Menge linear abhängig.

Beispiel 3.5.3 Es sei
$$n=2, y_1(x)=\sin(x), y_2(x)=17\sin(x)$$

Dann ist $\{y_1, y_2\}$ linear abhängig, da für $c=17$ gilt: $y_2=cy_1$.

Satz 3.5.4 (Wronski-Determinante) Es sei L_H die Lösungsmenge einer linearen homogenen Differentialgleichung n-ter Ordnung. Dann gibt es n linear unabhängige Lösungen y_1, \ldots, y_n der Differentialgleichung und es gilt: $L_H = \{c_1y_1(x) + \cdots + c_ny_n(x)\}|c_1, \ldots, c_n \in \mathbb{R}$.

Aus den Grundlösungen y_1, \ldots, y_n lässt sich also mit Hilfe von Linearkombinationen die gesamte Lösungsmenge berechnen.

Weiterhin sind n Lösungen $y_1, y_n \in L_H$ genau dann linear unabhängig, wenn für die Wronski-Determinante folgendes gilt:

$$W(x) = \det \begin{pmatrix} y_1(x) & \cdots & y_n(x) \\ y'_1(x) & \cdots & y'_n(x) \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{pmatrix} \neq 0$$

Dabei genügt schon $W(x) \neq 0$ für ein x.

Aufgabe 3.5.5 Berechnen Sie die Wronski-Determinante

(i)
$$n = 2, y_1(x) = x, y_2(x) = x^2$$

(ii)
$$n = 3, y_1(x) = 1, y_2(x) = x, y_3(x) = x^2$$

(iii)
$$n = 2, y_1(x) = \sin(x), y_2(x) = 17\sin(x)$$

Definition 3.5.6 (Fundamentalsystem) Sind die Funktionen y_1, \ldots, y_n linear unabhängige Funktionen einer linearen homogenen Differentialgleichung n-ter Ordnung, dann heißt die Menge $\{y_1, \ldots, y_n\}$ ein Fundamentalsystem der Differentialgleichung.

3.6 Lineare Differentialgleichungen mit konstanten Koeffizienten

Definition 3.6.1 (lin. homo. Differentialgleichung mit konst. Koeffizienten) Die Gleichung $y^{(n)}(x) + a_{n-1} \cdot y^{(n-1)}(x) + \cdots + a_1 \cdot y'(x) + a_0 \cdot y(x) = 0$ mit $a_0, \ldots, a_{n-1} \in \mathbb{R}$ heißt lineare homogene Differentialgleichung mit konstanten Koeffizienten.

Bemerkung 3.6.2 Für die Gleichung

$$y^{(n)}(x) + a_{n-1} \cdot y^{(n-1)}(x) + \dots + a_1 \cdot y'(x) + a_0 \cdot y(x) = 0$$

wird ein Ansatz verwendet, der eine e-Funktion enthält.

Ansatz:
$$y(x) = e^{\lambda x}, \lambda \in \mathbb{R}$$

Differenzieren und Einsetzen des Ansatzes führt zu:

$$e^{\lambda x}\underbrace{(\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0)}_{==0} = 0$$

wird 0, falls λ eine Nullstelle des Polynoms $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ ist.

Definition 3.6.3 (charakteristisches Polynom) Es sei $y^{(n)}(x) + a_{n-1} \cdot y^{(n-1)}(x) + \cdots + a_1 \cdot y'(x) + a_0 \cdot y(x) = 0$ eine homogene lineare Differentialgleichung mit konstanten Koeffizienten.

Dann heißt das Polynom $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ charakteristisches Polynom der Differentialgleichung.

Satz 3.6.4 Es sei $y^{(n)}(x) + a_{n-1} \cdot y^{(n-1)}(x) + \cdots + a_1 \cdot y'(x) + a_0 \cdot y(x) = 0$ eine homogene lineare Differentialgleichung mit konstanten Koeffizienten und $\lambda \in \mathbb{R}$ eine Nullstelle des charakteristischen Polynoms P(x), dann ist $y(x) = e^{\lambda x}$ eine Lösung der Differentialgleichung.

Aufgabe 3.6.5 (i) Zu lösen ist:
$$y'' - 3y' + 2y = 0$$

$$P(x) = x^2 - 3x + 2, \lambda_1 = 1, \lambda_2 = 2$$

$$y_1(x) = e^x, y_2(x) = e^{2x}$$

(ii) Zu lösen ist y''' - y'' - 2y' = 0

Satz 3.6.6 Es sei $y^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \cdots + a_1y'(x) + a_0y(x) = 0$ eine homogene lineare Differentialgleichung mit konstanten Koeffizienten, deren charakteristisches Polynom P(x) n verschiedene reelle Nullstellen $\lambda_1, \ldots, \lambda_n$ hat. Dann bilden die Funktionen $y_1(x) = e^{\lambda_1 x}, \ldots, y_n(x) = e^{\lambda_n x}$ ein Fundamentalsystem der Differentialgleichung. Jede Lösung der Differentialgleichung hat deshalb die Form $y(x) = c_1 \cdot e^{\lambda_1 x} + \cdots + c_n \cdot e^{\lambda_n x}$ mit $c_1, \ldots, c_n \in \mathbb{R}$.

Beispiel 3.6.7 Zu lösen ist y'' - 2y' + y = 0

$$P(x) = x^2 - 2x + 1, \lambda_{1,2} = 1$$

$$y_1(x) = e^x$$

Ansatz für die zweite Lösung: $y_2(x) = x \cdot e^x$

Satz 3.6.8 Es sei $y^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \cdots + a_1y'(x) + a_0y(x) = 0$ eine homogene lineare Differentialgleichung mit konstanten Koeffizienten. Ihr charakteristisches Polynom P(x) habe k reelle Nullstellen $\lambda_1, \ldots, \lambda_k$ mit $P(x) = (x - \lambda_1)^{m_1}(x - \lambda_2)^{m_2} \ldots (x - \lambda_k)^{m_k}$, d.h. λ_j ist m_j -fache Nullstelle von P. Dann bilden die Funktionen

$$e^{\lambda_1 x}, x \cdot e^{\lambda_1 x}, \dots, x^{m_1 - 1} \cdot e^{\lambda_1 x}$$

$$e^{\lambda_2 x}, x \cdot e^{\lambda_2 x}, \dots, x^{m_2 - 1} \cdot e^{\lambda_2 x}$$

$$\vdots \qquad \vdots$$

$$e^{\lambda_k x}, x \cdot e^{\lambda_k x}, \dots, x^{m_k - 1} \cdot e^{\lambda_k x}$$

ein Fundamentalsystem der Differentialgleichung.

Aufgabe 3.6.9 (i) Zu lösen ist y'''' - 3y''' + 3y'' - y' = 0

(ii) Zu lösen ist das folgende Anfangswertproblem:

$$y'' - 4y' + 4y = 0$$
 mit $y(0) = 1, y'(0) = 1$

Bemerkung 3.6.10 Liegt eine inhomogene Differentialgleichung mit Störfunktion b(x) vor, so kann in einigen Fällen eine geeignete Ansatzfunktion zur Lösung der Differentialgleichung verwendet werden:

Liegt zum Beispiel die Störfunktion in der folgenden Form vor

 $b(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, so kann die folgende Ansatzfunktion verwendet werden:

$$\alpha_n x^n + \alpha_{n-1} x^{n-1} + \dots + \alpha_1 x + \alpha_0$$

Beispiel 3.6.11 Zu lösen ist $y''' - 3y' - 2y = 4x^2$

Zunächst homogene Differentialgleichung betrachten: $y''' - 3y' - 2y = 0, P(x) = x^3 - 3x - 2$

$$\lambda_1 = -1, \lambda_2 = 2, \lambda_3 = -1$$

Lösung der homogenen Differentialgleichung: $y(x) = c_1 x e^{-x} + c_2 e^{-x} + c_3 e^{2x}$

Ansatz für die Störfunktion: Da $b(x) = x^2$ ein Polynom 2. Grades ist, wird der Ansatz $\alpha_2 x^2 + \alpha_1 x + \alpha_0$ verwendet.

$$\begin{split} y_P''' &= 0, y_P'' = 2\alpha_2, y_P' = 2\alpha_2 x + \alpha_1 \\ -6\alpha_2 x - 3\alpha_1 - 2\alpha_2 x^2 - \alpha_1 x - 2\alpha_0 &= 4x^2 \\ x^2 \underbrace{(-2\alpha_2)}_4 + x \underbrace{(-6\alpha_2 - \alpha_1)}_0 + \underbrace{(-3\alpha_1 - 2\alpha_0)}_0 &= 4x^2 + 0x + 0 \\ \alpha_2 &= -2, \alpha_1 = 6, \alpha_0 = -9 \end{split}$$

Lösung der inhomogenen Differentialgleichung: $y(x) = c_1 x e^{-x} + c_2 e^{-x} + c_3 e^{2x} - 2x^2 + 6x - 9, \ x \in \mathbb{R}, c_i \in \mathbb{R}$

Aufgabe 3.6.12 Lösen Sie
$$y''' - 3y' - 2y = 100\sin(2x)$$

$$b(x) = a \cdot \sin(cx) + b \cdot \sin(cx) \rightarrow Ansatz: \alpha \cdot \sin(cx) + \beta \cdot \sin(cx)$$

3.7 Differentialgleichungssysteme (DGLS)

Definition 3.7.1 (Differentialgleichungssysteme) Ein System von m Gleichungen, dass die unbekannten Funktionen $y_1(x), y_2(x), \ldots, y_m(x)$ sowie deren Ableitungen $y_1'(x), y_1''(x), \ldots, y_1^{(n_1)}(x), \ldots, y_m'(x), y_m''(x), \ldots, y_m^{(n_m)}(x)$ enthält, heißt Differentialgleichungssystem.

Beispiel 3.7.2 Zu lösen ist das Differentialgleichungssystem

$$y_1' = -2y_1 + 8y_2 (*)$$

 $y_2' = -4y_1 + 6y_2 + 10x^2 + 16x - 8 (**)$

Eliminations methode:

(*) ableiten:
$$y_1'' = -2y_1' + 8y_2'$$

(**) einsetzen: $y_1'' = -2y_1' - 32y_1 + 48y_2 + 80x^2 + 128x - 64$