Passo a Passo para Reprodução dos Resultados do HW1

Aqui está o guia para reproduzir a análise, seguindo os passos solicitados.

1. Criar o .venv e instalar as dependências

Primeiro, configure o seu ambiente virtual para isolar o projeto.

Crie o ambiente virtual:

python -m venv venv

Ative o ambiente:

• No macOS / Linux:

source venv/bin/activate

• No Windows (PowerShell / CMD):

.\venv\Scripts\activate

Instale as dependências:

pip install -r requirements.txt

Se o Jupyter Notebook não estiver no requirements.txt, instale-o também:

pip install notebook

2. Rodar os códigos para analisar as métricas estatísticas

Execute os scripts de análise monovariada para gerar as estatísticas descritivas (Tabelas II, III, IV) e os histogramas/boxplots iniciais (Figuras 2, 3, 4).

• Análise Incondicional (geral):

python HW1/class_unconditional.py

• Análise Condicional (por classe):

python HW1/class_conditional.py

3. Rodar o código para analisar a correlação

Execute este script para gerar a matriz de correlação (Figura 5) e os gráficos de dispersão (Figura 6).

python HW1/bivariate_analysis.py

4. Rodar o código para normalizar os dados

Execute este script para aplicar as transformações (Yeo-Johnson + Z-score) e salvar os dados processados (Figura 7). Esses dados transformados serão usados nos próximos passos.

python HW1/save_data_transformation.py

Este script também gera os resultados do **PCA** (Figuras 8, 9) salvando os scores, que serão usados no passo 6.

5. Aplicar as funções do PCA em um ambiente Jupyter Notebook

Para uma análise mais interativa dos Componentes Principais (PCA):

1. Inicie o Jupyter Notebook:

jupyter notebook

- 2. Crie um novo notebook (.ipynb).
- 3. Dentro do notebook:
 - Importe as funções necessárias do diretório HW1/utils/ (ex.: pca_calculation, pca_biplot, pca_scree_plot).
 - Carregue os dados normalizados (criados no passo 4), por exemplo: HW1/data_transformations/data_yeojohnson_zscore.csv
 - Use as funções importadas para calcular o PCA, plotar o scree plot e o biplot interativamente.

6. Rodar o código para realizar a detecção de outliers

Finalmente, execute o script de detecção de outliers, que usará os dados normalizados e os scores do PCA (gerados no passo 4) para identificar e plotar os outliers (Figura 10).

python HW1/outlier.py