List 06: Multicollinearity

Nikita V. Artamonov

Contents

sleep equation #1	1
sleep equation #2	2
sleep equation #3	4
wage equation #1	5
wage equation #2 (structural breaks)	7

sleep equation #1

For the dataset sleep75 consider a regreaion sleep $\sim 1 + I(totwrk/100) + I(totwrk^2/10000) + age + smsa + , male.$

Evaluate VIF for each regressors

smsa	age	I(totwrk^2/10000)	I(totwrk/100)
1.004459	1.005968	8.199290	8.370495
			male
			1.169198

Calculate correlation matirx for regressosrs

	I(totwrk/100)	I(totwrk^2/10000)	age	smsa male	
I(totwrk/100)	1.000	0.937	-0.050	-0.038 0.376	
I(totwrk^2/10000)	0.937	1.000	-0.046	-0.051 0.351	
age	-0.050	-0.046	1.000	0.025 0.032	
smsa	-0.038	-0.051	0.025	1.000 0.007	
male	0.376	0.351	0.032	0.007 1.000	

and visualize it

Significant level is 5%. Which coefficients are sognoficant (perform non-robust t-test)?

We test the significance of working time, i.e. the hypothesis $H_0: \beta_{totwrk/100} = \beta_{totwrk^2/10000} = 0$. Testing result (Non-robust test):

Calculate the required critical value. Round to 2 decimal places.

[1] 3.01

Inferences:

[1] "We reject the null hypothesis"

At first glance we have a contradiction. It is caused by multicollinearity.

sleep equation #2

For the dataset sleep75 consider a regreaion sleep ~ totwrk + age + I(age^2) + smsa + male + union.

Evaluate VIF for each regressors

```
totwrk age I(age^2) smsa male union 1.195469 65.397082 65.561373 1.004278 1.171666 1.007332
```

Calculate correlation matirx for regressosrs

	totwrk	age	I(age^2)	smsa	male	union
totwrk	1.000	-0.050	-0.067	-0.038	0.376	0.002
age	-0.050	1.000	0.992	0.025	0.032	-0.037
I(age^2)	-0.067	0.992	1.000	0.024	0.026	-0.042
smsa	-0.038	0.025	0.024	1.000	0.007	-0.039
male	0.376	0.032	0.026	0.007	1.000	0.040
union	0.002	-0.037	-0.042	-0.039	0.040	1.000

and visualize it

Significant level is 5%. Which coefficients are sognoficant (perform non-robust t-test)?

[1] "totwrk" "smsa" "male"

We test the significance of age, i.e. the hypothesis $H_0: \beta_{age} = \beta_{age^2} = 0$. Testing result (Non-robust test):

F Pr(> F)
----2.497 0.083

Calculate the required critical value. Round to 2 decimal places.

[1] 3.01

Inferences:

[1] "We do not reject the null hypothesis"

At first glance we have a contradiction. It is caused by multicollinearity.

sleep equation #3

For the dataset sleep75 consider a regreaion sleep \sim totwrk + age + smsa + south + I(totwrk * south) + I(age * , south) + I(smsa * south).

Evaluate VIF for each regressors

totwrk	age	smsa	south
1.148498	1.249261	1.187071	22.001994
<pre>I(totwrk * south)</pre>	<pre>I(age * south)</pre>	<pre>I(smsa * south)</pre>	
8.851673	12.277039	1.286230	

Calculate correlation matirx for regressors

	totwrk	age	gmga	gouth	T(totwrk	* south)	I(age * south)
totwrk		0	-0.038		1(UUUMIK	0.175	•
COUWIK							
age	-0.050	1.000	0.025	-0.018		-0.038	0.126
smsa	-0.038	0.025	1.000	-0.238		-0.224	-0.222
south	0.051	-0.018	-0.238	1.000		0.932	0.947
<pre>I(totwrk * south)</pre>	0.175	-0.038	-0.224	0.932		1.000	0.868
I(age * south)	0.033	0.126	-0.222	0.947		0.868	1.000
<pre>I(smsa * south)</pre>	0.012	0.008	0.209	0.359		0.328	0.351
	I(smsa	* south	n)				
totwrk		0.0	12				
age		0.00	80				
smsa		0.20	9				
south		0.3	59				
<pre>I(totwrk * south)</pre>		0.32	28				
<pre>I(age * south)</pre>		0.3	51				
<pre>I(smsa * south)</pre>		1.00	00				

and visualize it

Significant level is 5%. Which coefficients are sognoficant (perform non-robust t-test)?

We test the significance of geographical dummy, i.e. the hypothesis $H_0: \beta_{south} = \beta_{totwrk*south} = \beta_{age*south} = \beta_{smsa*south} = 0$. Testing result (Non-robust test):

Calculate the required critical value. Round to 2 decimal places.

[1] 2.38

Inferences:

[1] "We reject the null hypothesis"

At first glance we have a contradiction. It is caused by multicollinearity.

wage equation #1

For the dataset wage2 consider a regreaion $log(wage) \sim age + I(age^2) + IQ + married + south + urban.$

Evaluate VIF for each regressors

```
age I(age^2) IQ married south urban 632.868517 632.964483 1.049260 1.013807 1.061287 1.016749
```

Calculate correlation matirx for regressosrs

	age	I(age^2)	IQ	${\tt married}$	south	urban
age	1.000	0.999	-0.044	0.107	-0.029	-0.007
I(age^2)	0.999	1.000	-0.043	0.107	-0.031	-0.009
IQ	-0.044	-0.043	1.000	-0.015	-0.210	0.039
married	0.107	0.107	-0.015	1.000	0.023	-0.040
south	-0.029	-0.031	-0.210	0.023	1.000	-0.110
urban	-0.007	-0.009	0.039	-0.040	-0.110	1.000

and visualize it

Significant level is 5%. Which coefficients are sognoficant (perform non-robust t-test)?

We test the significance of age, i.e. the hypothesis $_0:\beta_{age}=\beta_{age^2}=0.$ Testing result (Non-robust test):

F Pr(> F)
----14.833 0.00000

Calculate the required critical value. Round to 2 decimal places.

[1] 3.01

Inferences:

[1] "We reject the null hypothesis"

At first glance we have a contradiction. It is caused by multicollinearity.

wage equation #2 (structural breaks)

For the dataset wage2 consider a regreaion $log(wage) \sim age + IQ + south + urban + I(age * urban) + I(IQ * , urban) + I(south * urban).$

Evaluate VIF for each regressors

Calculate correlation matirx for regressosrs

	age	IQ	south	urban	<pre>I(age * urban)</pre>	<pre>I(IQ * urban)</pre>
age	1.000	-0.044	-0.029	-0.007	0.137	-0.020
IQ	-0.044	1.000	-0.210	0.039	0.030	0.260
south	-0.029	-0.210	1.000	-0.110	-0.106	-0.136
urban	-0.007	0.039	-0.110	1.000	0.985	0.964
<pre>I(age * urban)</pre>	0.137	0.030	-0.106	0.985	1.000	0.947
<pre>I(IQ * urban)</pre>	-0.020	0.260	-0.136	0.964	0.947	1.000
<pre>I(south * urban)</pre>	0.010	-0.097	0.741	0.334	0.332	0.288
	I(south	ı * urba	an)			

age 0.010
IQ -0.097
south 0.741
urban 0.334
I(age * urban) 0.332
I(IQ * urban) 0.288
I(south * urban) 1.000

and visualize it

Significant level is 1%. Which coefficients are sognoficant (perform non-robust t-test)?

[1] "age" "IQ"

We test the significance of dwelling dummy, i.e. the hypothesis $H_0: \beta_{urban} = \beta_{age*urban} = \beta_{IQ*urban} = \beta_{south*urban} = 0$. Testing result (Non-robust test):

F Pr(> F)
-----10.250 0.00000

Calculate the required critical value. Round to 2 decimal places.

[1] 3.34

Inferences:

[1] "We reject the null hypothesis"

At first glance we have a contradiction. It is caused by multicollinearity.