2024-2025学年微甲提高1班辅学讲义

#1 数列极限梳理与拓展

yuanhongyi2004 2024.10.18

基础回顾

• 数列极限定义: $\varepsilon - N$ 语言, 无穷大数列

定义 1.1.2 设 $\{a_n\}$ 是 \mathbb{R} 中的一个数列. 如果存在 $a \in \mathbb{R}$, 使得 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+$, 当 $n \geqslant N$ 时, 都有

$$|a_n - a| < \varepsilon$$
,

就称数列 $\{a_n\}$ 是收敛的并且收敛于 a (或趋于 a), 记为

$$\lim_{n \to \infty} a_n = a$$
 或者 当 $n \to \infty$ 时, $a_n \to a$.

这时称 a 是数列 $\{a_n\}$ 的极限. 如果上述条件不成立, 就称 $\{a_n\}$ 是发散的或者不收敛.

有一类发散数列有着特殊的性质, 我们称其为无穷大数列.

定义 1.1.19 设 $\{a_n\}$ 是 $\mathbb R$ 中的一个数列, 如果 $\forall M>0$, $\exists N\in\mathbb N_+$, 当 $n\geqslant N$ 时, $|a_n|>M$, 那么称 $\{a_n\}$ 为无穷大数列, 或称 $\{a_n\}$ 趋于 ∞ , 记为 $\lim_{n\to\infty}a_n=\infty$.

特别地, 如果 $\forall M > 0$, $\exists N \in \mathbb{N}_+$, 当 $n \geq N$ 时, $a_n > M$ (或者 $a_n < -M$), 就称 $\{a_n\}$ 趋于 $+\infty$ (或者 $-\infty$), 记为

$$\lim_{n\to\infty} a_n = +\infty \ (\vec{o}\vec{a} \ \lim_{n\to\infty} a_n = -\infty).$$

定义的否定也要掌握

几何意义?

• 数列极限性质: 唯一性、有界性、保号性、四则运算(注意极限要存在才能用) 定理 1.1.9 (有界性) 如果数列 $\{a_n\}$ 收敛, 那么 $\{a_n\}$ 有界, 即存在 M>0, 使得对于所有的 $n\in\mathbb{N}_+$, 均有 $|a_n|\leqslant M$.

定理 1.1.10 (保号性) 如果 $\lim_{n\to\infty} a_n = a > 0$, 那么 $\forall p \in (0,a)$, $\exists N > 0$, 当 $n \ge N$ 时, 有 $a_n > p > 0$.

值得一提的是, 上述推论中,即使数列 $\{a_n\}$ 满足: 对所有的 $n\in\mathbb{N}, a_n>0$ 且有极限 a, 也不能得出 a>0. 例如: 数列 $\left\{\frac{1}{n}\right\}$ 满足 $\frac{1}{n}>0$, 但其极限为零而非大于零.

• 证明数列收敛或求极限: 单调有界原理, 夹逼准则, Cauchy收敛原理

定理 1.2.6 (单调收敛准则) 若单调数列 $\{a_n\}$ 有界,则 $\{a_n\}$ 必收敛.

定理 1.1.15 (夹逼定理) 设数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ 满足当 $n \ge N_0 \in \mathbb{N}_+$ 时, 有 $b_n \le a_n \le c_n$, 并且 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = a$, 则数列 $\{a_n\}$ 也是收敛的, 并且 $\lim_{n \to \infty} a_n = a$.

定义 1.3.4 设 $\{a_n\}$ 是 \mathbb{R} 中一个数列. 若对于任意 $\epsilon > 0$, 存在正整数 N、当 $m, n \ge N$ 时, $|a_m - a_n| < \epsilon$, 则称 $\{a_n\}$ 是柯西数列, 简称柯西列.

定理 1.3.5 (柯西准则) 设 $\{a_n\}$ 是 \mathbb{R} 中的一个数列,则 $\{a_n\}$ 收敛当且仅当 $\{a_n\}$ 是柯西数列.

课本例题、习题选讲

幂平均极限

 $(4) \lim_{n\to\infty} \sqrt[n]{1^n+2^n+\cdots+9^n};$

(4) 由于
$$9 = \sqrt[n]{9^n} < \sqrt[n]{1^n + 2^n + 3^n + \dots + 9^n} < \sqrt[n]{9 \cdot 9^n} = 9\sqrt[n]{9}$$
,且 $\lim_{n \to \infty} \sqrt[n]{9} = 1$,由夹逼定理则有

$$\lim_{n \to \infty} \sqrt[n]{1^n + 2^n + 3^n + \dots + 9^n} = 9.$$

幂平均:

$$M_{p}\left(a_{i}
ight)=\left(rac{\displaystyle\sum_{i=1}^{n}a_{i}^{p}}{n}
ight)^{rac{1}{p}}=\left(rac{a_{1}^{p}+a_{2}^{p}+\cdots+a_{n}^{p}}{n}
ight)^{rac{1}{p}}$$
 ($a_{i}\geqslant0$, $p\in\mathbf{R}$)

为 a_i 的 p 次幂平均.

此外,不难发现,当p取特殊值时:

$$M_1\left(a_i\right) = rac{a_1 + a_2 + \dots + a_n}{n}$$
 (算术平均值)

$$M_{-1}\left(a_i
ight)=rac{n}{rac{1}{a_1}+rac{1}{a_2}+\cdots+rac{1}{a_n}}$$
 (调和平均值)

$$\lim_{p o 0}M_p\left(a_i
ight)=\sqrt[n]{a_1a_2\cdots a_n}$$
 (几何平均值)

$$\lim_{p o +\infty} M_p\left(a_i
ight) = \max\left\{a_1,a_2,\cdots,a_n
ight\}$$
 (最大值)

$$\lim_{p o -\infty}M_{p}\left(a_{i}
ight)=\min\left\{ a_{1},a_{2},\cdots,a_{n}
ight\}$$
 (最小值)

简单证明:

$$egin{aligned} \therefore \lim P(m) &= \lim_{m o 0} rac{N}{m} \ &= \lim_{m o 0} rac{\sum_{i=1}^n a_i^m}{n} - 1 \ &= rac{1}{n} \lim_{m o 0} rac{\sum_{i=1}^n a_i^m}{m} - n \ &= rac{1}{n} \lim_{m o 0} rac{\sum_{i=1}^n a_i^m - n}{m} \ &= rac{1}{n} \lim_{m o 0} rac{\sum_{i=1}^n (a_i^m - 1)}{m} \ &= \lim_{m o 0} t^m \ln t = \ln t \ &= rac{1}{n} \sum_{i=1}^n \ln a_i \end{aligned}$$

证毕。

16. 求极限
$$\lim_{n\to\infty}\left(1+\frac{1}{n^2}\right)\left(1+\frac{2}{n^2}\right)\cdots\left(1+\frac{n}{n^2}\right)$$
.
Hint: $\frac{x}{x+1}\leq \ln(1+x)\leq x,\; x-\frac{1}{2}x^2\leq \ln(1+x)\leq x$ Answer: \sqrt{e}

欧拉常数 γ

(5) 利用单调有界准则证明下面极限存在:
$$\lim_{n\to\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n\right)$$
. $u_{n+1} - u_n = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} - \ln(n+1)\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n\right)$
$$= \frac{1}{n+1} - \ln(n+1) + \ln n$$
$$= \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) < 0.$$

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$

$$> \ln \left(1 + \frac{1}{1} \right) + \ln \left(1 + \frac{1}{2} \right) + \ln \left(1 + \frac{1}{3} \right) + \dots + \ln \left(1 + \frac{1}{n} \right) - \ln n$$

$$= \ln \left[2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \dots \cdot \frac{n+1}{n} \right] - \ln n$$

$$= \ln(n+1) - \ln n > 0.$$

也即
$$\lim_{n\to\infty} \left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln n\right)$$
 存在.

(这里定义的极限的值即为欧拉常数 γ , 值约为0.5772...)

p级数

例 1.3.7 证明数列
$$\left\{1+\frac{1}{2}+\cdots+\frac{1}{n}\right\}$$
 发散.
证明: 设 $a_n=1+\frac{1}{2}+\cdots+\frac{1}{n}$, 则对任意 $n\in\mathbb{N}_+$, 取 $m=2n$, 有
$$|a_m-a_n|=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}$$

$$\geqslant \frac{1}{n+n}+\frac{1}{n+n}+\cdots+\frac{1}{n+n}=\frac{1}{2}.$$

放缩证明发散: $\ln(1+\frac{1}{n}) < \frac{1}{n}$

31. 证明数列 $\left\{ \frac{1}{1^{\alpha}} + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}} \right\} (\alpha > 1)$ 收敛.

证明: 令 $a_n = \frac{1}{1^{\alpha}} + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}}$, 显然 a_n 单调增加.

再证明有上界. 由于 $\forall n \in \mathbb{N}_+$, 存在 $i \in \mathbb{N}_+$ 使得 $2^{i-1} \le n < 2^i$ 成立.

则应有 $\frac{1}{(2^i)^{\alpha}} < \frac{1}{n^{\alpha}} \le \frac{1}{(2^{i-1})^{\alpha}}$ 成立. 此时对 a_n 进行加括号处理, 并进行放缩有

$$a_{n} = \frac{1}{1^{\alpha}} + \left(\frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}}\right) + \dots + \left[\frac{1}{(2^{i-1})^{\alpha}} + \frac{1}{(2^{i-1}+1)^{\alpha}} + \dots + \frac{1}{n^{\alpha}}\right]$$

$$< 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{2^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \dots + \left[\frac{1}{(2^{i-1})^{\alpha}} + \frac{1}{(2^{i-1})^{\alpha}} + \dots + \frac{1}{(2^{i-1})^{\alpha}}\right]$$

$$\leq 1 + \frac{2}{2^{\alpha}} + \frac{4}{4^{\alpha}} + \dots + \frac{2^{i-1}}{(2^{i-1})^{\alpha}}$$

$$= 1 + \frac{1}{2^{\alpha-1}} + \left(\frac{1}{2^{\alpha-1}}\right)^{2} + \dots + \left(\frac{1}{2^{\alpha-1}}\right)^{i-1}$$

$$= \frac{1 - \left(\frac{1}{2^{\alpha-1}}\right)^{i}}{1 - \frac{1}{2^{\alpha-1}}}$$

$$< \frac{1}{1 - \frac{1}{2^{\alpha-1}}}.$$

即 $\{a_n\}$ 有上界. 因此数列 $\{a_n\}$ 单调递增有上界, 从而收敛.

压缩映射

定理 1.1. 利用压缩映射原理求递推数列极限的两种方法:

(I) 数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)$, 证明 $\lim_{n \to \infty} x_n = A$. 我们只要证明:

$$|x_{n+1} - A| \le k|x_n - A|, 0 < k < 1$$

$$\Rightarrow 0 \le |x_{n+1} - A| \le k^n |x_1 - A| \Rightarrow |x_n - A| \to 0 \Rightarrow x_n \to A.$$

(II) 数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)$, 我们证明:

$$\begin{split} |x_{n+1}-x_n| \leqslant k|x_n-x_{n-1}|, 0 < k < 1 \\ \Rightarrow |x_{n+1}-x_n| \leqslant k^{n-1}|x_2-x_1| \Rightarrow \sum_{n=1}^\infty |x_{n+1}-x_n| 收敛 \Rightarrow \sum_{n=1}^\infty (x_{n+1}-x_n) 收敛 \Rightarrow \lim_{n\to\infty} x_n \\ 存在. \end{split}$$

设 $\lim_{n\to\infty} x_n = A$, 由 A = f(A), 求解 $\lim_{n\to\infty} x_n = A$.

没有学过级数,就用柯西收敛原理

36. 设数列 $\{a_n\}$ 满足: 对任意 $n \geq 1$, 有 $|a_{n+2} - a_{n+1}| \leq \frac{1}{2} |a_{n+1} - a_n|$, 证明 $\{a_n\}$ 收敛.

证明: 由题可递推得

$$|a_{n+1} - a_n| \le \frac{1}{2} |a_n - a_{n-1}| \le \dots \le \left(\frac{1}{2}\right)^{n-1} |a_2 - a_1|.$$

由于 $|a_2 - a_1|$ 是常数, 记为 k, 则应有 $|a_{n+1} - a_n| \le k \left(\frac{1}{2}\right)^{n-1}$ 成立.

对任意 $m, n \in \mathbb{N}_+, m > n$ 有

$$|a_{m} - a_{n}| = |(a_{m} - a_{m-1}) + \dots + (a_{n+2} - a_{n+1}) + (a_{n+1} - a_{n})|$$

$$\leq |a_{m} - a_{m-1}| + \dots + |a_{n+2} - a_{n+1}| + |a_{n+1} - a_{n}|$$

$$\leq k \left(\frac{1}{2}\right)^{m-2} + \dots + k \left(\frac{1}{2}\right)^{n} + k \left(\frac{1}{2}\right)^{n-1}$$

$$= \frac{\frac{1}{2^{n-1}} \left[1 - \left(\frac{1}{2}\right)^{m-n}\right]}{1 - \frac{1}{2}} \cdot k$$

$$< \left(\frac{1}{2}\right)^{n-2} \cdot k$$

$$= \frac{4k}{2^{n}} < \frac{4k}{n}.$$

对于任意给定的 $\varepsilon>0,$ 存在正整数 $N=\left[\frac{4k}{\varepsilon}\right]+1,$ 则对任意 $m>n\geq N$ 有

$$|a_m - a_n| < \frac{4k}{n} \le \frac{4k}{N} < \varepsilon,$$

则 $\{a_n\}$ 是柯西列, 从而收敛.

例 1.2.13 已知数列 $\{u_n\}$ 满足: $u_1 > 0$, $u_{n+1} = 3 + \frac{4}{u_n}$ $(n = 1, 2, \dots)$, 证明数列 $\{u_n\}$ 收敛并求其极限.

(方法二) 由已知条件易知 $u_n > 3$, $n = 2, 3, \dots$, 所以

$$0 < |u_{n+1} - 4| = \frac{|u_n - 4|}{u_n} < \frac{1}{3} |u_n - 4|$$
$$< \frac{1}{3^2} |u_{n-1} - 4| < \dots < \frac{1}{3^n} |u_1 - 4|.$$

因为 $|u_1-4|$ 为一个常数, 所以 $\lim_{n\to\infty}\frac{1}{3^n}|u_1-4|=0$, 由夹逼定理知 $\lim_{n\to\infty}u_n=4$.

26. 设数列 $\{u_n\}$ 由下式定义: $u_1=2, u_{n+1}=\frac{u_n(u_n^2+3)}{3u_-^2+1}(n=1,2,\cdots)$. 试证数列 $\{u_n\}$ 收敛, 并求其极限.

证明: 由题, $u_n > 0$. 设 $a = \frac{a(a^2 + 3)}{3a^2 + 1}$, 解得 a = 0 或 a = 1 或 a = -1.

由于 $u_1 = 2, u_2 = \frac{2 \times (2^2 + 3)}{3 \times 2^2 + 1} = \frac{14}{13} > 1$, 则此时考虑该数列可能收敛于 1,

因此用数学归纳法尝试证明是否有 $u_n > 1$ 成立.

假设对任意 $k \in \mathbb{N}_+$ 有 $u_k > 1$, 则对 $u_{k+1} = \frac{u_k(u_k^2 + 3)}{3u_k^2 + 1}$,

(4) 3/2 72 $u_{k+1} - 1 = \frac{u_k^3 + 3u_k - 3u_k^2 - 1}{3u_k^2 + 1} = \frac{(u_k - 1)^3}{3u_k^2 + 1} > 0$, 即有 $u_{k+1} > 1$ 成立. 从而 $u_n > 1$ 始终成立.

再考虑单调性, 此时 $\frac{u_{n+1}}{u_n} = \frac{u_n^2 + 3}{3u_n^2 + 1} = 1 + \frac{2 - 2u_n^2}{3u_n^2 + 1} < 1$, 这里利用了 $u_n > 1$ 的结论,

从而有 $u_{n+1} < u_n$, 则数列 $\{u_n\}$ 单调递减且有下界 1, 从而数列 $\{u_n\}$ 收敛.

令 $\lim_{n\to\infty} u_n = b$, 则 $b = \frac{b(b^2+3)}{3b^2+1}$, 对应解得 b = 1 或 b = -1 (舍) 或 b = 0 (舍),

则 $\lim_{n \to \infty} u_n = 1$. (求出的极限不能小于下界)

39. 设数列 $\{a_n\}$ 满足条件 $|a_{n+1} - a_n| \le cq^n \ (c > 0, 0 < q < 1)$, 试证 $\{a_n\}$ 收敛.

证明: 由题, 对任意 $m,n \in \mathbb{N}_+, m > n$, 有

$$|a_m - a_n| = |(a_m - a_{m-1}) + \dots + (a_{n+2} - a_{n+1}) + (a_{n+1} - a_n)|$$

$$\leq |a_m - a_{m-1}| + \dots + |a_{n+2} - a_{n+1}| + |a_{n+1} - a_n|$$

$$\leq cq^{m-1} + \dots + cq^{n+1} + cq^n$$

$$= \frac{cq^n(1 - q^{m-n})}{1 - q}$$

$$< \frac{c}{1 - q}q^n.$$

对任意给定的 $\varepsilon>0,$ 存在正整数 $N=\left[\log_q\frac{\varepsilon(1-q)}{c}\right]+1,$ 则对任意 $m>n\geq N$ 有

$$|a_m - a_n| < \frac{c}{1 - q}q^n \le \frac{c}{1 - q}q^N < \varepsilon,$$

则 $\{a_n\}$ 是柯西列, 从而收敛.

有界变差数列

37. 证明: 对数列 $\{a_n\}$, 若存在常数 c>0, 使对任何 n, 有

$$|a_2 - a_1| + |a_3 - a_2| + \dots + |a_{n+1} - a_n| \le c$$
,

则 $\{a_n\}$ 收敛.

证明: 记 $b_n = |a_2 - a_1| + |a_3 - a_2| + \dots + |a_{n+1} - a_n|, n \in \mathbb{N}_+.$

由于 $b_{n+1}-b_n=|a_{n+2}-a_{n+1}|\geq 0$ 成立, 即 $\{b_n\}$ 单调增加;

又 $b_n \leq c$, 则数列 $\{b_n\}$ 单调增加有上界, 从而 $\{b_n\}$ 收敛.

由柯西准则, 对任意 $\varepsilon>0$, 存在正整数 N, 对任意正整数 $m>n\geq N$ 有 $|b_m-b_n|\leq \varepsilon$.

此时考虑 $\{a_n\}$, 对任意正整数 m,n 满足 $m>n\geq N$ 有

$$|a_{m+1} - a_{n+1}| = |(a_{m+1} - a_m) + (a_m - a_{m-1}) + \dots + (a_{n+2} - a_{n+1})|$$

$$\leq |a_{m+1} - a_m| + |a_m - a_{m-1}| + \dots + |a_{n+2} - a_{n+1}|$$

$$= b_m - b_n = |b_m - b_n| < \varepsilon,$$

因此 $\{a_n\}$ 是柯西列, 从而收敛.

知识拓展

Stolz公式与柯西命题

设 $\{x_n\}$, $\{y_n\}$ 为数列,且 $\{y_n\}$ 严格单调地趋于 $+\infty$,如果

$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=A$$

则

$$\lim_{n o\infty}rac{x_n}{y_n}=A$$

• 算数平均形式:

$$\lim_{n o\infty}rac{x_1+x_2+\cdots+x_n}{n}=\lim_{n o\infty}x_n$$

• 几何平均形式:

$$x_n$$
收敛且 $x_n>0$,则 $\lim_{n o\infty}\sqrt[n]{x_1x_2\cdots x_n}=\lim_{n o\infty}x_n$

解:记 $\,a=\lim_{n o\infty}x_n$,则 $\,a\geq0$

若 a>0 ,则也有 $\lim_{n o \infty} rac{1}{x_n} = rac{1}{a}$.用平均值不等式 $H \leq G \leq A$

$$rac{n}{rac{1}{x_1} + ... + rac{1}{x_n}} = rac{1}{rac{1}{x_1} + ... + rac{1}{x_n}} \leq \sqrt[n]{x_1 x_2 \dots x_n} \leq rac{x_1 + ... + x_n}{n}$$

令 $n o \infty$ 并在两边用柯西命题,可见它们都收敛于 a ,因此得到 $\lim_{n o \infty} \sqrt[n]{x_1 x_2 \dots x_n} = a$

对于 a=0 的情况则只要如上写出右边的不等式后再用柯西命题即可.

求极限
$$\lim_{n\to\infty} \frac{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}}{\ln n}$$

解:上述极限满足stolz第一公式,

$$\lim_{n o \infty} rac{1 + rac{1}{2} + rac{1}{3} + \dots + rac{1}{n}}{\ln n}$$

$$= \lim_{n o \infty} rac{rac{1}{n}}{\ln n - \ln(n-1)}$$

$$= \lim_{n o \infty} rac{rac{1}{n}}{\ln(1 + rac{1}{n-1})}$$

$$= 1$$

设
$$x_1\in(0,1), x_{n+1}=x_n(1-x_n), orall n\geq 1$$
,证明 $\lim_{n o\infty}nx_n=1$

解:可以由数学归纳法证明 x_n 为单调递减的有界数列, $x_{n+1}=x_n(1-x_n)$ 两边取极限可以得到 $x_n \to 0$.

$$egin{aligned} &\lim_{n o\infty}rac{n}{rac{1}{x_n}}\ &=\lim_{n o\infty}rac{n-(n-1)}{rac{1}{x_n}-rac{1}{x_{n-1}}}\ &=\lim_{n o\infty}rac{1}{rac{1}{1-x_{n-1}}}\ &=1 \end{aligned}$$

• 求 $\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}}$ Hint: $a_n = \frac{n^n}{n!}$,Calculate: $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ 然后用柯西命题的几何形式,当然Stolz也可以做

松弛变量

2、若 $\lim_{n o\infty}a_n=a$, $\lim_{n o\infty}b_n=b$,则 $\lim_{n o\infty}rac{a_1b_n+a_2b_{n-1}+...+a_nb_1}{n}=ab$.(《数学 分析新讲》P66 例11; 《数学分析》(第4版)P57.17)

证明: $b_n = b + c_n$

$$\text{ If } \lim_{n \to \infty} \frac{a_1b_n + a_2b_{n-1} + \ldots + a_nb_1}{n} = \lim_{n \to \infty} \frac{a_1(c_n + b) + a_2(c_{n-1} + b) + \ldots + a_n(c_1 + b)}{n}$$

$$\frac{a_1(c_n+b) + a_2(c_{n-1}+b) + \dots + a_n(c_1+b)}{n} = \frac{a_1c_n + a_2c_{n-1} + \dots + a_nc_1}{n} + \frac{a_1b + a_2b + \dots + a_nb}{n}$$

$$= \frac{a_1c_n + a_2c_{n-1} + \dots + a_nc_1}{n} + b \cdot \frac{a_1 + a_2 + \dots + a_n}{n}$$

上面的方法证明过 $\lim_{n o \infty} b \cdot rac{a_1 + a_2 + \ldots + a_n}{n} = ab$

则只需证明
$$\lim_{n o\infty}rac{a_1c_n+a_2c_{n-1}+...+a_nc_1}{n}=0$$

 c_n 就是上种解法的 b_n-b , 证明同上。

证得
$$\lim_{n o\infty}rac{a_1c_n+a_2c_{n-1}+...+a_nc_1}{n}=0$$
 , 加绝对值后,an有界用上界放大,对cn用

则

$$\lim_{n o \infty} rac{a_1 b_n + a_2 b_{n-1} + ... + a_n b_1}{n} = \lim_{n o \infty} rac{a_1 c_n + a_2 c_{n-1} + ... + a_n c_1}{n} + \lim_{n o \infty} b \cdot rac{a_1 + a_2 + ... + a_n}{n} = ab$$

3、设
$$\lim_{n o\infty}x_n=a$$
 ,求证 $\lim_{n o\infty}rac{x_1+2x_2+...+nx_n}{n^2}=rac{a}{2}$.(《数学分析新讲》P67 例12)

/*前面介绍了拆分数列法,应用到这题就能轻松解出*/

令
$$x_n=a+a_n$$
 ,易得 $\lim_{n o\infty}a_n=0$

$$\frac{x_1 + 2x_2 + ... + nx_n}{n^2} = \frac{(a_1 + a) + 2(a_2 + a) + ... + n(a_n + a)}{n^2} = \frac{n + 1}{2n}a + \frac{\frac{1}{n}a_1 + \frac{2}{n}a_2 + ... + \frac{n}{n}a_n}{n}$$

/*第二个等号右边的第一个分式用了等差数列求和公式,第二个分式上下同除了n*/

$$\left| \frac{\frac{1}{n}a_1 + \frac{2}{n}a_2 + \dots + \frac{n}{n}a_n}{n} \right| \le \frac{|a_1| + |a_2| + \dots + |a_n|}{n}$$

/*通过放大,可以用之前的结论,使 $\lim_{n o\infty} rac{rac{1}{n}a_1+rac{2}{n}a_2+...+rac{n}{n}a_n}{n}=0$ */

故

$$\lim_{n o \infty} rac{x_1 + 2x_2 + ... + nx_n}{n^2} = \lim_{n o \infty} rac{n+1}{2n} a + \lim_{n o \infty} rac{rac{1}{n}a_1 + rac{2}{n}a_2 + ... + rac{n}{n}a_n}{n} = rac{1}{2}a + 0$$
 $= rac{1}{2}a$

得证

取整函数

求
$$\lim_{x \to 0} x[\frac{1}{x}]$$

Hint: $x - 1 \le [x] \le x$

夹逼定理

设
$$x_1=1, x_2=\sqrt{rac{1}{2}+1}, x_3=\sqrt{rac{1}{3}+\sqrt{rac{1}{2}+1}}, \cdots,$$

$$x_n = \sqrt{rac{1}{n} + \sqrt{rac{1}{n-1} + \sqrt{\cdots \sqrt{rac{1}{3} + \sqrt{rac{1}{2} + 1}}}}$$
 ,证明 $\lim_{n o\infty} x_n$ 存在并求出来

解: 由题易得
$$x_n \geq 1, x_n^2 = \frac{1}{n} + x_{n-1} (n \geq 2),$$

现假设 $x_n \leq 1 + \frac{5}{n}$,当n=1时显然成立,设 $x_k \leq 1 + \frac{5}{n}$,则

$$\begin{aligned} x_{k+1}^2 - (1 + \frac{5}{k+1})^2 &= \frac{1}{k+1} + x_k - (1 + \frac{5}{k+1})^2 \\ &\leq \frac{1}{k+1} + 1 + \frac{5}{k} - (1 + \frac{5}{k+1})^2 \\ &= \frac{5}{k} - \frac{9}{k+1} - \frac{25}{(k+1)^2} \\ &= \frac{-4k^2 - 24k + 5}{k(k+1)^2} < 0(k \ge 1) \end{aligned}$$

所以
$$x_{k+1}^2 < (1+rac{5}{k+1})^2 \Rightarrow x_{k+1} < 1+rac{5}{k+1}$$

所以
$$1 \leq x_k \leq 1 + rac{5}{n}$$
 ,由夹逼定理得 $\lim_{x o \infty} x_n = 1$

Given that $c_0 = \alpha \in (0,4), c_1 = \beta \in (4,+\infty), c_{n+2} = \sqrt{c_{n+1}} + \sqrt{c_n}, n \ge 0$ Prove: the limit of $\{c_n\}$ exists and calculate $\lim_{n \to +\infty} c_n$

设
$$a_n=2\sqrt{a_{n-1}},a_0=c_0<4,b_n=\sqrt{2b_{n-1}},b_0=c_1>4$$

容易知道, a_n 递增, b_n 递减,均收敛到4

希望证明: $a_n \leq c_{2n} \leq b_n, a_n \leq c_{2n+1} \leq b_n, \forall n \in N^+$

即 $a_n < \min\{c_{2n}, c_{2n+1}\}, b_n > \max\{c_{2n}, c_{2n+1}\}$

用数学归纳法: $a_0 < \min\{c_0, c_1\}$ 设 $a_k < c_{2k}, a_k < c_{2k+1}$

$$c_{2k+2} = \sqrt{c_{2k+1}} + \sqrt{c_{2k}} > 2\sqrt{a_k} = a_{k+1} > a_k$$

$$c_{2k+3} = \sqrt{c_{2k+2}} + \sqrt{c_{2k+1}} > 2\sqrt{a_k} = a_{k+1}$$

因此 $a_{k+1} < \min\{c_{2k+2}, c_{2k+3}\}$

由归纳法得: $a_n < \min\{c_{2n}, c_{2n+1}\}, \forall n$. 同理 $b_n > \max\{c_{2n}, c_{2n+1}\}, \forall n$

因此 $a_n \leq c_{2n} \leq b_n, a_n \leq c_{2n+1} \leq b_n, \forall n \in N^+$

由夹逼定理, c_n 收敛,且 $\lim_{n \to +\infty} c_n = 4$

估阶

例5、设
$$a_1=1, a_{n+1}=a_n+rac{1}{a_n},$$
证明 $(1)\lim_{n o\infty}rac{a_n}{\sqrt{n}}=\sqrt{2}$

$$(2)$$
求 $\lim_{n o\infty}rac{\sqrt{n}(a_n-\sqrt{2n})}{lnn}$

解: $(1)a_1>0$,由数学归纳法易知 $a_n>0$, $a_{n+1}-a_n=rac{1}{a_n}>0$, a_n 单调递增。

$$a_{n+1} = a_n + rac{1}{a_n}$$
两边平方得 $a_{n+1}^2 - a_n^2 = 2 + rac{1}{a_n^2}$

假设数列 $\{a_n\}$ 有上界,那么可设 $\lim_{x \to \infty} a_n = C$, 代入递推公式得C=C+ $\frac{1}{C} \Rightarrow$ 0= $\frac{1}{C}$,矛盾,所以假设不成立,所以 $\{a_n\}$ 无上界,所以 $\lim_{x \to \infty} a_n = +\infty$

$$\lim_{n o \infty} rac{a_n^2}{n} \stackrel{stolz}{=\!=\!=\!=} \lim_{n o \infty} rac{a_n^2 - a_{n-1}^2}{1}$$

$$=\lim_{n o\infty}2+rac{1}{a_{n-1}^2}\stackrel{ ilde{ ilde{ ilde{ ilde{a}}}}=2}{=\!=\!=\!=\!=}\lim_{t o+\infty}2+rac{1}{t^2}=2$$

所以
$$\lim_{n o\infty}rac{a_n}{\sqrt{n}}=\sqrt{2}$$

(2) 由
$$a_{n+1}^2-a_n^2=2+rac{1}{a_n^2}$$
可得 $a_n^2=2(n-1)+\sum_k^{n-1}rac{1}{a_k^2}$

所以
$$\lim_{n o\infty}rac{\sqrt{n}(a_n-\sqrt{2n})}{lnn}\stackrel{ ext{ iny fill plus lim}}{=}\lim_{n o\infty}rac{\sqrt{n}(a_n^2-2n)}{(a_n+\sqrt{2n})lnn}$$

$$=\lim_{n o\infty}rac{\sqrt{n}(\sum_k^{n-1}rac{1}{a_k^2}-2)}{(a_n+\sqrt{2n})lnn}$$

$$rac{$$
 利用第一问结论 $n o\infty$ 时, $a_n\sim\sqrt{2n}}{2\sqrt{2}}\,\lim_{n o\infty}\,rac{\sum_k^{n-1}\,rac{1}{a_k^2}-2}{lnn}$

$$\stackrel{stolz}{=\!=\!=\!=} rac{1}{2\sqrt{2}} \lim_{n o\infty} rac{rac{1}{a_n^2}}{lnn-ln(n-1)} \stackrel{=\!=\!=\!=\!=}{=\!=\!=} rac{1}{2\sqrt{2}} \lim_{n o+\infty} rac{rac{1}{2n}}{lnn-ln(n-1)}$$

$$rac{$$
 洛必达 $}{} rac{1}{4\sqrt{2}} \lim_{n o +\infty} rac{-rac{1}{n^2}}{rac{1}{n}-rac{1}{n-1}} = rac{1}{4\sqrt{2}}$