### МИНИСТЕРССТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

# УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П.О.СУХОГО»

Кафедра «Металлургия и технологии обработки металлов»

### ЛАБОРАТОРНАЯ РАБОТА №1

«Исследование теплопередачи через однослойную огнеупорную плоскую стенку»

Выполнил:

Студент гр.ТТ-31

Буров М.Ю.

Принял преподаватель

Радькин Я.И.

### Лабораторная работа №1

## «Исследование теплопередачи через однослойную огнеупорную плоскую стенку»

**Цель работы:** ознакомление с теоретическими основами стационарного теплового режима и экспериментальное определение плотности теплового потока, проходящего через однослойную плоскую стенку.

### Теоретическая часть

В теплопередаче исследуются распределение температуры в системе тел или внутри отдельного тела, а также процесс перехода тепла, связанный с различием температур.

Различают три вида передачи тепла: теплопроводность, конвекцию и тепловое излучение.

Теплопроводностью называется процесс переноса энергии, происходящий вследствие движения и энергетического взаимодействия микрочастиц (молекул, атомов, ионов, электронов).

Передача тепла теплопроводностью наиболее характерно осуществляется в гомогенных твердых непрозрачных телах. В газах и жидкостях, как правило, одновременно действует теплопередача конвекцией и излучением. В прозрачных телах наряду с теплопроводностью наблюдается излучение.

Тепловое состояние термодинамической системы (тела) характеризуется температурным полем, под которым понимается совокупность значений температур для всех точек тела в данный момент времени. Различают одномерное T = f(x), двухмерное T = f(x,y) и трехмерное T = f(x,y,z) температурное поле.

Процесс, характеризующийся постоянством температуры во времени, называется стационарным (установившимся) тепловым режимом. Для такого поля можно записать:

$$T = f(x,y,z) = \text{const}; \frac{dT}{d\tau} = 0$$

Если по объему тела температурное поле неоднородно, то всегда будут существовать микрообъемы, имеющие одинаковые температуры. Совокупность точек тела с одинаковыми значениями температур образует изотермические линии или поверхности. Конфигурация изотермических линий или поверхностей в реальных процессах может быть различной. Поток теплоты вдоль изотермической поверхности отсутствует, так как вдоль нее нет разности температур. Максимальное изменение температуры имеет место в направлении нормали к изотермической поверхности.

Количественной характеристикой того, насколько резко изменяется температура на бесконечно малом участке тела (практически в точке) служит температурный градиент (°С/м):

grad 
$$T = \frac{dT}{dx} + \frac{dT}{dy} + \frac{dT}{dz} = \lim \left(\frac{\Delta T}{\Delta n}\right)_{An \to 0}$$

Температурный градиент — это вектор, нормальный к изотермической поверхности, направленный в сторону возрастания температуры и численно равный производной от температуры.

Если температурное поле одномерно, т.е. Т изменяется только вдоль одной оси, то

$$gradT = \frac{dT}{dx}$$

Интенсивность процесса переноса теплоты теплопроводностью определяется законом Фурье. Количество переданной теплоты пропорционально падению температуры, времени и площади сечения, перпендикулярного направлению распространения теплоты:

$$dQ = -\lambda gradT dF d\tau = -\lambda \frac{dT}{dn} dF d\tau$$
 или  $Q^* = -\lambda F \tau gradT$  (Дж)

Количество теплоты, проходящее за единицу времени через изотермическую поверхность площадью F, называется тепловым потоком. (Вт).

$$Q = -\lambda F \text{ grad}T$$

Тепловой поток, отнесенный к единице площади изотермической поверхности, называется плотностью теплового потока  $q(BT/m^2)$ :

$$q = -\lambda gradT$$

Знак «- » показывает, что направления векторов градиента температур и теплового потока противоположны.

Коэффициент теплопроводности  $\lambda(\frac{BT}{M^{\circ}C})$ , характеризует способность вещества проводить теплоту и определяется как количество теплоты, которое проходит через единицу площади изотермической поверхности при температурном градиенте равном единице. На величину коэффициента теплопроводности оказывают влияние температура, давление, объемная масса материала, пористость и характер распределения пор, влажность, химический состав и структура материал.

Рассмотрим процесс теплопроводности через неограниченную плоскую однослойную стенку толщиной s и коэффициентом теплопроводности  $\lambda$  (постоянный). Температуры на наружной и внутренней поверхностях ( $T_1$  и  $T_2$ ) известны и постоянны.

Плотность теплового потока по закону Фурье выражается следующим образом:

$$q = -\lambda \text{ grad } T = -\lambda \frac{dT}{dx}$$

Температуру в любой точке рассматриваемой плоской стенки можно определить из выражения:

$$T = T_1 - \frac{T_1 - T_2}{s} x$$

где x — расстояние от поверхности с температурой  $T_1$  до рассматриваемого сечения.

Теплопроводность зависит от температуры и закон распределения температуры по толщине стенки является параболическим. Но обычно зависимость коэффициента теплопроводности от температуры принимают линейной:

$$\lambda = \lambda_0 [1 \pm b(T - T_0)]$$

где  $\lambda_0$  – коэффициент теплопроводности при температуре  $T_0 = 0$ °C; b – температурный коэффициент, определяемый опытным путем.

Чаще закон теплопроводности Фурье для рассматриваемого случая записывают:

$$q = \frac{\lambda}{s}(T_1 - T_2)$$

Отношение  $\frac{\lambda}{s}$  называется тепловой проводимостью, а величина обратная ей – термическим сопротивлением. (R =  $\frac{s}{\lambda}$ )

### Практическая часть

1. Для проведения лабораторной работы необходимы: экспериментальная установка с нагревателями, градусники.





1 - Установка из шамотного кирпича с просверленными отверстиями:  $s_1$  = 0,  $s_2$  = 20,  $s_3$  = 30,  $s_4$  = 40 (мм); 2 - нагреваемые спирали; 3 - градусники; 4 - понижающий трансформатор.

### 2.Заполнили таблицу

| <b>т</b> , мин. | t, ∘C |       |       |       |
|-----------------|-------|-------|-------|-------|
|                 | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
| 0               |       |       |       |       |
| 2               |       |       |       |       |
| 4               |       |       |       |       |
| 6               |       |       |       |       |
| 8               |       |       |       |       |
| 10              |       |       |       |       |
| 12              |       |       |       |       |
| 14              |       |       |       |       |
| 16              |       |       |       |       |
| 18              |       |       |       |       |
| 20              |       |       |       |       |

- 3. По результатам эксперимента построили графики изменения температуры по времени для каждого s1, s2, s3, s4.
- 4. Рассчитали плотность теплового потока для определенного момента времени( $\tau=10$  мин), в каждой из точек s1, s2, s3, s4, принимая  $\lambda_{\text{III}}=0.835$  (средняя справочная величина)  $\frac{\text{Вт}}{\text{м°C}}$  по формуле:

$$q = \frac{\lambda_{uu}}{s} (T_1 - T_2)$$