Лабораторная работа №4

Аналоговый ввод-вывод. АЦП. Компаратор. Потенциометр. Сенсорная клавиатура

Цель: Изучить принципы работы с аналоговыми сигналами на базе микроконтроллера MSP430F5529.

Задача: Написать программу с использованием АЦП, компаратора, потенциометра и сенсорных элементов в соответствии с заданием.

4.1 Аналого-цифровой преобразователь

Микроконтроллер MSP430F5529 содержит 16-канальный АЦП ADC12A, обладающий следующими возможностями:

- максимальная скорость преобразования более 200 тысяч выборок / c;
- выборка и сохранение с программируемым периодом выборки;
- запуск преобразования программно или от таймера;
- программно конфигурируемый внутренний генератор опорного напряжения (1.5, 2.0, 2.5 B);
- программный выбор внешнего или внутреннего источника опорного напряжения;
- 12 отдельно конфигурируемых внешних входных каналов;
- каналы для внутреннего датчика температуры, Vcc и внешних опорных напряжений;
- независимый для каждого канала опорный источник, как положительного, так и отрицательного напряжения;
- конфигурируемый источник тактового сигнала;
- четыре режима преобразования: одноканальный, повторноодноканальный, последовательный и повторно-последовательный;
- ядро АЦП и ИОН могут выключаться независимо друг от друга;
- быстрое декодирование 18 источников прерываний АЦП;
- сохранение 16 результатов;
- ядро АЦП автоматически отключается, если не идет цикл измерения.
 Цифровое значение измеряемой величины вычисляется по формуле:

NADC =
$$4095 * (V_{IN} - V_{R-}) / (V_{R+} - V_{R-}),$$

где V_{IN} – измеряемый (входной) сигнал, $V_{\text{R-}}$ и $V_{\text{R+}}$ источники опорного напряжения.

Структура АЦП представлена на рис. 4.1, описание полей регистров приведено в таблицах 4.1 - 4.4.

Рис. 4.1 Структура АЦП ADC12A

Выбор тактирования возможен из 4 источников: MCLK, SMCLK, ACLK, ADC12OSC. Тактовая частота может делиться /1, /2, ... /8, /12, ... /32 раза при использовании двух делителей: ADC12DIVx, ADC12PDIV. Модуль ADC12OSC связан со внутренним генератором 5 МГц. В АЦП используется независимый генератор опорного напряжения (1.5, 2.0, 2.5 В), который может быть доступен как внутри АЦП, так и снаружи (выход V). Сигнал REF ON REF+

включает/отключает генератор, REFBURST = 1 включает буферный усилитель автоматически только когда используется АЦП; = 0 — постоянно.

Цикл преобразования начинается по фронту входного сигнала SHI (выбирается из ADC12SC и сигналов от таймера). Сигналы ADC12RES задают точность (8, 10 или 12 бит), что требует 9, 11 или 13 тактов генератора, ADC12DF определяет знаковое или беззнаковое хранение результата,

SAMPCON управляет периодом выборки и началом преобразования. Преобразование начинается по спаду сигнала ADC12SHP – 2 режима преобразования (расширенный и импульсный).

Диаграмма работы в расширенном режиме представлена на рис. 4.2. Режим задается сигналами ADC12SHP = 0, SAMPCON = SHI.

Рис. 4.2 Расширенный режим

В импульсном режиме преобразования (ADC12SHP = 1) сигнал SHI определяет начало выборки, биты ADC12SHT0x и ADC12SHT1x регистра ADC12CTL0 задают длительность времени выборки:

Рис. 4.3 Импульсный режим

Таблица 4.1. Регистры АЦП

Регистр	Адрес	Назначение
ADC12CTL0	0700h	Регистры управления
ADC12CTL1	0702h	
ADC12CTL2	0704h	
ADC12IFG	070Ah	Флаги прерываний
ADC12IE	070Ch	Разрешение прерываний
ADC12IV	070Eh	Вектор прерываний
ADC12MCTL0 ADC12MCTL15	0710h 071Fh	Управление памятью
ADC12MEM0 ADC12MEM15	0720h 073Dh	Память

Таблица 4.2 Поля регистра управления АЦП ADC12CTL0

Биты	Поле	Назначение	Определение флагов в msp430f5529.h
12-15	ADC12SHT1x	Количество циклов ADC12CLK (длительность выборки) для ADC12MEM8 ADC12MEM15	ADC12SHT1_0 ADC12SHT1_15
8-11	ADC12SHT0x	Количество циклов ADC12CLK (длительность выборки) для ADC12MEM0 ADC12MEM7 - 4 / 8 / 16 / 32 / 64 / 96 / 128 / 192 / 256 / 384 / 512 / 768 / 1024	ADC12SHT0_0 ADC12SHT0_15
7	ADC12MSC	Для режима последовательности и непрерывного: 0 — для запуска требуется фронт SHI сигнала, 1 — первый по фронту SHI, потом автоматически по окончании цикла начинается новый	ADC12MSC
6	ADC12REF2_5V	Напряжение опорного генератора (ADC12REFON должен быть установлен) 0 – 1.5, 1 – 2.5 В	ADC12REF2_5V
5	ADC12REFON	Включение опорного генератора	ADC12REFON
4	ADC12ON	Включение АЦП	ADC12ON
3	ADC12OVIE	Разрешение прерывания OV	ADC12OVIE
2	ADC12TOVIE	Разрешение прерывания TOV	ADC12TOVIE
1	ADC12ENC	Разрешение измерения	ADC12ENC
0	ADC12SC	Программный запуск выборки и преобразования. Сбрасывается автоматически	ADC12SC

Таблица 4.3 Поля регистров управления АЦП ADC12CTL1-2

Регистр	Биты	Поле	Назначение	Определение флагов в msp430f5529.h	
	12-15	ADC12CSTARTADDx	Стартовый адрес записи результата	ADC12CSTARTADD_0 ADC12CSTARTADD_15	
	10-11	ADC12SHSx	Источник сигнала запуска	ADC12SHS_0 ADC12SHS_3	
TL1	9	ADC12SHP	Выбор источника сигнала SAMPCON (расширенный или импульсный режим)	ADC12SHP	
ADC12CTL1	8	ADC12ISSH	Инвертирование сигнала запуска	ADC12ISSH	
AD	5-7	ADC12DIVx	Делитель тактовой частоты	ADC12DIV_0 ADC12DIV_7	
	3-4	ADC12SSELx	Выбор тактового сигнала	ADC12SSEL_0 ADC12SSEL_3	
	1-2	ADC12CONSEQx	Режим	ADC12CONSEQ_0 ADC12CONSEQ_3	
	0	ADC12BUSY	Индикатор активного режима	ADC12BUSY	
	8	ADC12PDIV	Деление тактовой частоты на 4	ADC12PDIV	
2	7	ADC12TCOFF	Отключение температурного датчика	ADC12TCOFF	
	4-5	ADC12RES	Точность (8, 10, 12 бит)	ADC12RES_0 ADC12RES_3	
2CTL2	3	ADC12DF	Результат - знаковый	ADC12DF	
ADC120	2	ADC12SR	Буфер работает на частоте 0: 200К, 1: 50К выборок / с	ADC12SR	
	1	ADC12REFOUT	Выход опорного напряжения	ADC12REFOUT	
	0	ADC12REFBURST	Режим работы буферного усилителя опорного напряжения: постоянный (0) или автоматический (1)	ADC12REFBURST	

CONSEQx выбирается Битами режим. Одноканальный режим: однократное измерение одного канала. Результат записывается в регистр ADC12MEMx, определяемый битами CSTARTADDx. Повторноодноканальный: непрерывные измерения одного канала. Результат CSTARTADDx. записывается ADC12MEMx, определяемый битами В Необходимо читать результат после каждого измерения, иначе данные Последовательный потеряются. однократное измерение режим: последовательности каналов. Запись начинается с регистра ADC12MEMx,

определяемого битами CSTARTADDx. После каждой записи происходит инкремент номера регистра. Измерение прекращается, когда происходит установленным измерение ADC12EOS. канала битом Повторнопоследовательный режим: постоянное измерение последовательности каналов. регистра ADC12MEMx, определяемого начинается с CSTARTADDx. После каждой записи происходит инкремент номера регистра. Последовательность прекращается, когда происходит измерение канала с установленным битом ADC12EOS. Новый цикл начинается после установки сигнала запуска измерения. Независимо от режима, если источниками запуска выбраны таймеры, то нужно переключать ADC12ENC для следующего измерения.

Таблица 4.4 Поля иных регистров АЦП ADC12

Регистр	Биты	Поле	Назначение	Определение флагов в msp430f5529.h
ADC12MEMx	0-15		Результат измерения	
ADC12MCTLx	7	ADC12EOS	Маркер конца последовательности	ADC12EOS
	4-6	ADC12SREFx	Выбор пары опорных напряжений VR+, VR-	ADC12SREF_0 ADC12SREF_7
	0-3	ADC12INCHx	Выбор входного канала	ADC12INCH_0 ADC12INCH_15
ADC12IE			Разрешение прерывания по соответствующему флагу	ADC12IE0 ADC12IE15
ADC12IFG			Флаг запроса на прерывание	ADC12IFG0 ADC12IFG15
ADC12IV			Вектор запросов на прерывания	ADC12IV_NONE, ADC12IV_ADC12OVIFG, ADC12IV_ADC12TOVIFG, ADC12IV_ADC12IFG0 ADC12IV_ADC12IFG15

Для получения максимальной частоты измерений используется бит ADC12MSC = 1 (Multiple Sample and Convert) при режиме CONSEQx > 0 и использовании таймера выборок. В этом случае первый фронт SHI запускает первое измерение, после измерения автоматически запускается следующее. «Лишние» фронты SHI игнорируются, пока не окончится цикл измерения.

Использование встроенного температурного датчика: помимо выбора номера канала (1010), устанавливается либо ADC12REFON = 1 (при REFMSTR = 0), либо REFON = 1 (при REFMSTR = 1), при этом необходимо использовать период выборки больше 30 мкс.

Доступно 18 источников прерывания. ADC12IFG0 ... ADC12IFG15 (эти флаги устанавливаются, когда происходит запись в соответствующий регистр

ADC12MEMx), ADC12OV (переполнение ADC12MEMx – запись нового **ADC12TOV** (превышение результата до прочтения старого), времени преобразования __ вызывается новый ЦИКЛ измерения окончания предыдущего). Запрос на прерывание возникает, если установлен разрешения соответствующего ADC12IEx и установлен глобальный флаг разрешения GIE. Любой доступ к ADC12IV автоматически сбрасывает флаги ADC12OV, ADC12TOV (если запрос ОТ них был c максимальным приоритетом). ADC12IFGx сбрасывается программно либо автоматически при доступе к соответствующему регистру ADC12MEMx.

4.2 Компаратор

Компаратор в составе MSP430F5529 обладает следующими возможностями: прямое и инверсное сравнение; программное подключение RC-фильтра на выходе; выход подключается ко входу таймера A; программный выбор каналов (из 16 возможных); использование прерываний; программируемый генератор опорного напряжения.

Структура компаратор представлена на рис 4.4, а принцип работы фильтрации на выходе — на рис. 4.5.

Рис. 4.4 Структура компаратора

Рис. 4.5 Использование фильтра на выходе компаратора

Регистры управления компаратором CBCTL0 ... CBCTL3 имеют адреса 08C0h, 0802h, 0804h, 0806h, регистр управления прерываниями CBINT – 080Ch, регистр флагов прерываний CBIV – 080Eh. Состав и назначение полей регистров компаратора приведены в таблице:

Таблица 4.5 Поля регистров компаратора

Регистр	Биты	Поле	Назначение	Определение флагов в msp430f5529.h
CBCTL0	15	CBIMEN	Разрешение входного канала на V-	CBIMEN
	8-11	CBIMSEL	Выбор входного канала V-	CBIMSEL_0 CBIMSEL_15
	7	CBIPEN	Разрешение входного канала на V+	CBIPEN
	0-3	CBIPSEL	Выбор входного канала V+	CBIPSEL_0 CBIPSEL_15
CBCTL1	12	СВМRVS 0 – выход компаратора управляет выбором между VREF0 и VREF1 1 – управляет CBMRVL		CBMRVS
	1		Выбор VREFx	CBMRVL
			Включение компаратора	CBON
	8-9	CBPWRMD	Режим питания	CBPWRMD_0 CBPWRMD_3
	6-7	CBFDLY	Величина задержки фильтра (0.6, 1.0, 1.8, 3.4 мкс)	CBFDLY_0 CBFDLY_3
	5	CBEX	Инверсный режим	CBEX
	4	CBSHORT	Закорачивание входных каналов	CBSHORT
	3	CBIES	Выбор прерывания по фронту или спаду	CBIES

Окончание табл. 4.5

Регистр	Биты	Поле	Назначение	Определение флагов в msp430f5529.h
CBCTL1	2	CBF	Выходной фильтр	CBF
	1	CBOUTPOL	Полярность выхода	CBOUTPOL
	0	CBOUT	Выход компаратора	CBOUT
CBCTL2	15	CBREFACC	Точность	CBREFACC
	13-14	CBREFL	Опорное напряжение (отключено, 1.5, 2, 2.5 B)	CBREFL_0 CBREFL_3
	8-12	CBREF1	Устанавливает напряжение на выходе резисторного делителя	CBREF1_0 CBREF1_31
	6-7	CBRS	Источник опорного напряжения	CBRS_0 CBRS_3
	5	CBRSEL	Коммутация опорного напряжения к + и - входам	
	0-4	CBREF0	Как и CBREF1	CBREF0_0 CBREF0_31
CBCTL3	0-15	CBPD	Отключение входного буфера для каждого вывода	CBPD0 CBPD15
CBINT	9	CBIIE	Выход разрешения прерывания по инверсному выходу	CBIIE
	8	CBIE	Выход разрешения прерывания	CBIE
	1	CBIIFG	Флаг инверсного прерывания	CBIIFG
	0	CBIFG	Флаг прерывания	CBIFG
CBIV			Вектор прерываний	CBIV_NONE, CBIV_CBIFG, CBIV_CBIIFG

4.3 Потенциометр

Схема подключения потенциометра на макете MSP-EXP430F5529 приведена на рис. 4.6. Сигнал с потенциометра подан на вывод А5 контроллера. Он соединен с соответствующими каналами (СВ5, А5) на входах компаратора и АЦП. Поскольку данный вывод разделен с цифровым I/O (Р6.5), его необходимо переключить в режим периферийных устройств на ввод данных. Порт Р8.0 необходимо использовать в цифровом режиме на выход, подав на него высокий уровень, чтобы подать на резистор разность потенциалов.

Рис. 4.6 Схема подключения потенциометра

4.4 Сенсорная клавиатура

На плате расположены пять площадок, совмещенных со светодиодными индикаторами. Каждая из таких площадок представляет собой емкостный сенсорный элемент. Сенсор сконструирован таким образом, что его электрическое поле и емкость могут быть изменены внешним токопроводящим объектом, например пальцем:

Рис. 4.7 Принцип действия сенсорного элемента

При приближении к сенсору меняется магнитное поле и, следовательно, емкость. Количественная характеристика нажатия получается путем измерения емкости тач-сенсора. Очевидно, что магнитное поле сильно зависит от условий внешней среды, поэтому требуется отслеживание фонового уровня.

Один из методов измерения — RC-метод. Он основан на измерении времени разряда RC-цепи и пояснен на рис. 4.8. Резистор включается между землей и сенсором, сенсор подключается к цифровому I/O. На I/O подается «1» и конденсатор быстро заряжается. Читается время таймера. После этого I/O устанавливается на вход с прерыванием по спаду, контроллер переводится в режим LPM0. Конденсатор разряжается через резистор, когда напряжение станет меньше порога, произойдет прерывание. Обработчик прерывания вновь

читает таймер, вычисляет время разряда, после чего микроконтроллер выводится из LPM0.

Рис. 4.8 Измерение емкости сенсора. RC-метод

Для снижения чувствительности сенсора к шуму используют разные подходы. Например, подавление шума с помощью БИХ-фильтра, либо усреднение времени заряда и времени разряда.

Иногда сенсоры объединяют попарно, что позволяет вдвое снизить количество используемых резисторов. В этом случае, когда один сенсор измеряется, второй заряжается и наоборот:

Рис. 4.9 Попарное объединение сенсоров

Другими методами, используемыми для измерений, являются RO-метод (Relaxation Oscillator) и fRO (fast scan Relaxation Oscillator). В случае RO-метода считается количество тактов релаксационного генератора за некоторое время. Генератор включает в себя сенсор и компаратор:

Рис. 4.10 Измерение емкости сенсора. RO-метод

В случае fRO-метода измеряется длительность периода одного такта релаксационного генератора. Он подобен RC-методу, но использует релаксационный генератор, а не RC-цепочку:

Рис. 4.11 Измерение емкости сенсора. fRO-метод

Схема включения сенсорных элементов и связанных с ними светодиодов представлена на рисунке:

Рис. 4.12 Схема включения сенсорных элементов

Сигналы с сенсорных элементов поданы на выводы CB0 – CB4 контроллера и разделяются с цифровыми I/O P6.0 – P6.4 соответственно, а также подключены к каналам компаратора и АЦП (CB0 – CB4 и A0 – A4 соответственно). Резистор каждого из элементов подключен к выводу CBOUT контроллера, который также разделяется с цифровым I/O (P1.6), и связан с входом TA1CLK таймера TA1.

Задание

1. В соответствии с вариантом написать программу, которая непрерывно сравнивает сигнал на указанных выводах и в зависимости от того, где уровень выше, включает тот или иной светодиод. Для тач-панели использовать соответствующие кнопкам светодиоды, для потенциометра — LED3, для иных сигналов — LED1. Не допускается использовать иные заголовочные файлы, кроме msp430, а также использовать высокоуровневые библиотеки.

2. В отчет по выполнению работы включить исходный текст программы с обязательными комментариями. Комментарии в тексте программы обязательны, они должны пояснять что именно делает данный фрагмент. Описать подробнее используемый метод сравнения сигналов, изобразить соответствующую схему соединения и диаграммы работы. Привести объяснение полученным результатам.

Таблица 4.6. Варианты задания

№ вари- анта	1 сигнал	2 сигнал	Что использовать для сравнения
1	PAD2	потенциометр	компаратор
2	PAD3	PAD1	компаратор
3	PAD4	термодатчик АЦП	АЦП
4	PAD5	опорное напряжение АЦП Vref+	АЦП
5	потенциометр	термодатчик АЦП	АЦП
6	потенциометр	опорное напряжение АЦП Vref+	АЦП
7	термодатчик АЦП	опорное напряжение АЦП V ref+	АЦП
8	потенциометр	PAD5	компаратор
9	PAD4	PAD5	компаратор
10	термодатчик АЦП	PAD2	АЦП
11	опорное напряжение АЦП Vref-	PAD3	АЦП
12	термодатчик АЦП	потенциометр	АЦП
13	опорное напряжение АЦП AV	потенциометр	АЦП
14	опорное напряжение АЦП Vref-	термодатчик АЦП	АЦП
15	PAD1	PAD5	компаратор

Дополнительная литература

- 19. V. Chan, S. Underwood. MSP430 Capacitive Single-Touch Sensor Design Guide. Texas Instruments, Lit. Num. SLAA379, 2008. 19 p.
- 20. Capacitive Touch Software Library. Texas Instruments, Lit. Num. SLAA490B, 2011. Rev. 2013. 63 p.
- 21. Understanding Data Converters. Texas Instruments, Lit. Num. SLAA013, 1995. 22 p.
- 22. Greval H. Oversampling the ADC12 for Higher Resolution. Texas Instruments, Lit. Num. SLAA323, 2006. 8 p.
- 23. Lutz Bierl. Economic Measurement Techniques with Comparator_A Module. Texas Instruments, Lit. Num. SLAA071, 1999. 30 p.