AKADEMIA NAUK STOSOWANYCH W NOWYM SĄCZU

Wydział Nauk Inżynieryjnych Katedra Informatyki

OBRONA CZĘSTOCHOWY

SYSTEMY OPERACYJNE

Wielki Finał Trylogii

Autor:

Adrian "Gargi" Gargisonovsky

Prowadzący:

dr inż. Plichta Stanisława

Nowy Sącz 2025

I. Zadania i rodzaje SO.

System operacyjny to środowisko, w którym użytkownik może wykonywać programy a jego podstawowym zadaniem jest, aby był **wygodny** w użyciu i **wydajny**. Wyróżniamy **trzy** rodzaje systemów operacyjnych:

Systemy Równoległe	Systemy Rozproszone	Systemy czasu rzeczywistego
-Wyposażone w wiele procesorów wykonujących obliczenia równolegle (wyróżniamy procesory symetryczne i asymetryczne), Przy czym procesory mogą być: • ściśle powiązane (współdzielą magistrale, pamięć itp.), • luźno powiązane (każdy procesor posiada własną	-To szczególny przypadek systemu równoległego, -Wiele komputerów połączonych sieć tworzy jeden system, - Zalety: Przetwarzanie bezpośrednie, Przyśpieszenie obliczeń, Podział zasobów na prywatne i publiczne,	-Działa w określonych ograniczeniach czasowych, -Wyróżniamy dwie klasy takich systemów: • Rygorystyczne (znajduje zastosowanie jako sterownik urządzenia specjalnego przeznaczenia), • Łagodne (ma mniej napięte ograniczenia czasowe i nie zapewnia planowania w terminach
pamięć, magistrale itd.),	 Przejęcie zadań uszkodzonej jednostki przez inne), Łączność między użytkownikami, 	nieprzekraczalnych),

Do zadań systemu operacyjnego należy:

- Zarządzanie procesami,
- Zarządzanie pamięcią operacyjną,
- Zarządzanie plikami,
- Zarządzanie systemem I/O,
- Zarządzanie pamięcią pomocniczą,
- Zapisywanie zasobów komputerowych,
- Planowanie prac,
- Ochrona zasobów,
- Umożliwienie wielodostępności,
- Umożliwienie dobrego sposobu komunikowania się z operatorem,

II. Systemy plików Windows i Linux.

System operacyjny **Windows** wykorzystuje różne systemy plików do zarządzania danymi przechowywanymi na dyskach twardych, SSD, pamięciach USB i innych nośnikach. Najważniejsze systemy plików stosowane w **Windows** to:

FAT	NTFS	ReFS
-Starszy system plików stosowany głównie w pamięciach USB i starszych systemach operacyjnych,	-Domyślny system plików w Windows. -Obsługuje duże pliki i partycje.	- Zaprojektowany do obsługi dużych systemów magazynowania danych.
-Warianty:	-Zawiera funkcje takie jak:	- Odporny na uszkodzenia i zoptymalizowany pod kątem wydajności.
• FAT16,	 uprawnienia dostępu, 	
• FAT32,	• szyfrowanie,	- Stosowany głównie w środowiskach serwerowych i macierzach dyskowych.
• exFAT,	 dokumentowanie zmian, 	
-FAT32 obsługuje pliki do 4 GB i partycje do 2 TB ,	-Zapewnia większą stabilność i bezpieczeństwo niż FAT,	

Główne funkcje systemu plików Windows:

- Zarządzanie przestrzenią dyskową,
- Organizacja danych w katalogach i podkatalogach,
- Ochrona dostępu do plików i katalogów,
- Obsługa metadanych (np. uprawnień, daty utworzenia, atrybutów plików),
- Mechanizmy szyfrowania i kompresji danych,
- Odzyskiwanie danych po awarii systemu,
- Uprawnienia są przydzielane na poziomie użytkowników i grup z większą kontrolą dostępu,

Każdy plik jest **zbiorem danych**, które użytkownik traktuje jako pewną całość, a sam plik jest jednostką **logiczną**. System operacyjny **Linux** obsługuje wiele różnych systemów plików, dostosowanych do różnych zastosowań. Najważniejsze z nich to:

Ext	Brtfs	XFS	
-Najczęściej używany system plików w systemach Linux, -Warianty:	-Zapewnia zaawansowane funkcje, takie jak migawki, kompresja i kontrola integralności danych,	-Wysokowydajny system plików przeznaczony do dużych serwerów i dużych systemów plików,	
Ext2,Ext3,	-Umożliwia łatwe skalowanie systemu plików oraz zarządzanie dyskami w trybie RAID ,	-Obsługuje dokumentowanie i dynamiczne alokowanie przestrzeni dyskowej,	
• Ext4,			
-Ext3 wprowadza dokumentowanie, co poprawia niezawodność,			
-Ext4 oferuje większą wydajność, obsługę dużych plików i lepszą optymalizację pamięci,			
ReiserFS			

-Zoptymalizowany do pracy z dużą liczbą małych plików,

- Oferuje szybkie operacje na katalogach i efektywne wykorzystanie przestrzeni dyskowej,

Główne funkcje systemu plików Linux:

- Obsługa wielu systemów plików w jednym systemie operacyjnym,
- Mechanizmy dokumentowania zapewniające bezpieczeństwo danych,
- Zaawansowane zarządzanie uprawnieniami użytkowników,
- Możliwość montowania systemów plików zdalnie (np. NFS, SMB),
- Wsparcie dla migawkowych kopii zapasowych i elastycznego zarządzania przestrzenią dyskowa,
- Optymalizacja pod kątem wydajności i stabilności,
- Uprawnienia są przydzielane na poziomie właściciela, grupy i innych użytkowników, w postaci trzech grup znaków rwx (read, write, execute),

III. Dowiązania w systemach Windows i UNIX.

W różnych częściach systemu możemy utworzyć linki, które będą wskazywać na jeden plik. Nie musimy w ten sposób tworzyć wielu kopii tego samego pliku i możemy zaoszczędzić miejsce na dysku.

Dla Windows:

- Windows obsługuje dowiązania symboliczne i dowiązania twarde w systemie NTFS,
- Dowiązania symboliczne wskazują na ścieżkę pliku lub katalogu,
- **Dowiązania twarde** umożliwiają wiele nazw dla tego **samego pliku** na tej **samej partycji**,
- Skróty najprostszy typ dowiązań w systemie Windows,

Dla UNIX:

- Dowiązania twarde umożliwia tworzenie kilku nazw dla jednego i-węzła,
- Dowiązania symboliczne jest plikiem, który wskazuje na nazwę innego pliku,

IV. Sposoby zarządzania wolną przestrzenią.

Ponieważ obszar dysku jest ograniczony, więc w miarę możliwości należy dbać o wtórne zagospodarowanie dla nowych plików przestrzeni po plikach usuniętych. Lista wolnych obszarów może być implementowana w postaci:

- Wektor bitowy:

- Każdy blok dyskowy jest reprezentowany przez jeden bit w wektorze,
- Wartość 1 oznacza, że dany blok jest wolny, natomiast 0 oznacza, że dany blok jest zajęty,
- To rozwiązanie jest mało wydajne i nadaje się tylko dla małych dysków,

Lista powiązana:

- Powiązanie wszystkich wolnych bloków w ten sposób, że w bloku poprzednim znajduje się indeks bloku następnego,
- Indeks pierwszego bloku znajduje się w specjalnym miejscu w systemie plików,
- To rozwiązanie jest mało wydajne, ponieważ aby przejrzeć listę trzeba odczytać każdy blok,

Grupowanie:

- Pierwszy wolny blok zawiera indeksy n innych wolnych bloków,
- Umożliwia **szybkie** odnajdywanie większej liczby wolnych bloków,
- To rozwiązanie jest wydajne,

- Zliczanie:

- W przypadku kilku kolejnych (przylegających do siebie) wolnych bloków pamiętany jest tylko indeks pierwszego z nich oraz liczba wolnych bloków znajdujących się bezpośrednio za nim,
- To rozwiązanie jest wydajne dla dużych ciągłych obszarów,

V. Co się dzieje z procesem od jego utworzenia do zakończenia?

Stany procesu:

- **Nowy** tworzenie procesu i przydzielenie mu zasobów,
- Gotowy proces czeka na przydział procesora,
- Aktywny proces otrzymał czas CPU i działa,
- Czekający proces czeka na jakieś zdarzenie np. Operacje
 I/O
- Zakończony proces kończy działanie, zasoby są zwalniane,

Procesy przechodzą między tymi stanami zgodnie z **decyzjami planisty** i **występującymi zdarzeniami. System operacyjny** dynamicznie **zarządza procesami**, decydując, które mają zostać wykonane i w jakiej kolejności.

VI. Zadania planistów w systemie UNIX i Windows.