# Assignment Project Exam Help

COMP0020 Functional Programming https://powwoeder.com
Further Lambda Calculus

Add WeChat powcoder

#### Contents

- Review : rules for evaluation.
   Review : representing in this res
- $\beta$ -reduction, name clashes and Free Variable Capture
- Reduction strategies and the Church Rosser theorem
   Different kinds of ton Corn VeChat powcoder

#### Review : rules for evaluation

# Assignment Project Exam Help

α-reduction

$$https://powcoder.com$$

https://powcoder.com •  $\beta$ -reduction

η-reduction

•  $\delta$ -rules — there is a separate  $\delta$ -rule for each operator (such as +,  $\times$ ), e.g. the  $\delta$ -rule for + says that 3 + 4 evaluates to 7

•

#### Review : $\eta$ -reduction example

# Assignment Project Exam Help

https://poweoder.comction)

• In context (left hand side) :

Add WeChat powcoder

#### **Review: representing numbers**

- In the pure type-free  $\lambda$ -calculus there are no constants.
- In the previous lecture we said that we can represent 0 and 1 by  $\lambda f.\lambda x.x$  and  $\lambda f.\lambda x.(fx)$ .
- This extends to high property potty in the discrete prof.  $\lambda x.(f(f(f(x))))$
- What makes this an *effective* representation is that we can write  $\lambda$ -calculus functions to perform arithmetic on these representation. For example, it is possible to write a function  $\lambda x. \lambda y. E$  that will take a representation of the number 1 and a representation of the number 2 and performs addition to return a representation of the number 3. **100WCOCE**
- Challenge can you write the  $\lambda$ -calculus function for addition, given this representation of numbers ?

#### **Name Clashes**

- Using a normal order reduction strategy, the next step is a  $\beta$ -reduction using the rule  $(\lambda x.E) z \rightarrow E_{\beta} x$  where  $z \neq 5$  and  $E_{\beta} x$  ( $\lambda x.E = 3$ ) ( $\lambda x.E = 3$ )

Add We chat powcoder

$$((\lambda x.(5+3))(x+4))$$
?

• NB : E[z/x] means "for each *free* occurrence of x in E replace that x with z". It can help to annotate each occurrence of x according to whether it is bound or free, as follows :  $E = ((\lambda x.(x_{bound} + 3))(x_{free} + 4))$ . Thus, the correct reduction result is  $((\lambda x.(x + 3))(5 + 4))$ 

#### Free Variable Capture

### For Assignment Project Exam Help

• Consider the "free variable capture" problem as demonstrated by the following example subexpression where the first a is bound and the second a (in the argument) is free: 1

https://powcoder.com

- This  $\beta$ -reduces to the following, where *both* copies of the name a are now bound (the second a, previously free, has been "captured" and is now bound by the  $\lambda a$ , which is **not** the behaviour we want):  $(\lambda a.((\lambda f.(fa))a))$
- So  $\beta$ -reduction needs to be more sophisticated in the way that it operates.

<sup>1.</sup> Assume this subexpression is part of a larger enclosing expression which contains a lambda binding for the second a.

### **Avoiding Free Variable Capture**

- During  $\beta$ -reduction of  $(\lambda x.E)$  z, if z is an expression that contains any free variables that are bound inside E, then each such free variable must be  $\alpha$ -converted inside E before performing the  $\beta$ -reduction substitutions://powcoder.com
- Thus:

$$(\lambda f.(\lambda a.(f \ a))) \quad (\lambda f.(f \ a)) \quad \rightarrow \alpha \ reduce \ \lambda a \ to \ \lambda b$$



### **Reduction Strategies**

- Any expression that matches the left-hand-side of a reduction rule is called a "reducible expression" or "redex"
- An expression conditions redexes (Sittle on (Control of Foro))
- Execution is the successive application of reduction rules (primarily  $\beta$ -reduction) until Normal Form is reached.
- Whether an arbitrary expression Exhas NF is undecideable (it is equivalent to the Halting Problem). Add WeChat powcoder
- Many different sequences of reductions are possible how does this affect the result?

#### **Church-Rosser Theorem**

- The Church-Rosser theorem states that all reduction sequences (strategies) that terminate will converge on the same power of the converge of the same power of the same powe
- Corollary : the Normal Form, for a given expression is unique (if it exists) Add WeChat powcoder
- So  $\beta$ -reductions can be performed in any order (even in parallel!).

#### **Normalising orders**

- So which should we choose?
- Normal Order Reduction definest Eutermost arts") power of the first of terminate if termination is possible
  - ▶ Strategies that are guaranteed to terminate are called "normalising" reduction orders

- Normal Order Reduction
  - Assignment Project Exam Help
  - Safe, but can be slow
  - Similar to "call-by-reference" passing of function arguments (though simple implementations can suffer from duplication)

$$(\lambda x.3)$$
  $((\lambda x.(x x)) (\lambda x.(x x))) \rightarrow by \beta reduction \rightarrow 3$ 

- Applicative Order Reduction WeChat powcoder
  - Fast, but unsafe (may not terminate)
  - ► Similar to "call by value" passing of function arguments

$$(\lambda x.(x+x))$$
  $(3+5)$   $\rightarrow$  by  $\delta$  reduction  $\rightarrow$   $(\lambda x.(x+x))$  8

$$(\lambda x.3)$$
  $((\lambda x.(x x)) (\lambda x.(x x))) \rightarrow by \beta reduction \rightarrow (\lambda x.3) ((\lambda x.(x x)) (\lambda x.(x x)))$ 

#### **Different kinds of Normal Form**

# Assignment Project Exam Help

• Practical implementations almost never reduce to full Normal Form (to avoid wasted computation)

### https://powcoder.com

- Weak Head Normal Form (WHNF) and Head Normal Form (HNF) are successive stopping points on the journey to full Normal Form
- The definitions consider all possible syncatic variants of an expression. Here we give definitions in terms of the simple uniqued  $\lambda$ -variable, an application, or a lambda abstraction (a function definition). <sup>2</sup>

<sup>2.</sup> If we were to add data constructors to the lambda calculus (which is not strictly necessary), we would extend the definitions appropriately.

# Assignment Project Exam Help

An expression is in Normal Form if it does not contain a redex

- Variable: x is in https://powcoder.com
- Application : MN is in Normal Form if M, N are in Normal Form and M is not a lambda abstraction

• Abstraction :  $(\lambda x.E)$  is in Normal Form if E is in Normal Form Normal Form is unique. And We Chat powcoder

# Definition Assignment Project Exam Help An expression M is in Head Normal Form if it is of the form

 $M \equiv \lambda x_1 \dots x_n \cdot x N_1 \dots N_m$  where  $n, m \geq 0$  and x is a variable

# Note that in the aboundering x is the "matter der.com" • Variable : x is in Head Normal Form (consider the definition where n=m=0)

- Application :  $xN_1 \dots N_m$  is in Head Normal Form (consider  $n = 0, m \ge 1$ )<sup>3</sup>
- Abstraction :  $\lambda x$ . A is in Head Wormal Form if E is in Head Normal Form Head Normal Form is not unique.

<sup>3.</sup> We assume that the variable x will be bound to a lambda abstraction by some enclosing expression — here we just consider whether this subexpression is in HNF.

# Definition Assignment Project Exam Help An expression M is in Weak Head Normal Form if it is of one of the following two forms:

 $M \equiv \lambda x_1 \dots x_n \cdot x N_1 \dots N_m$  where n, m > 0 and x is a variable

or

 $M \equiv \lambda x.N$ 

https://powcoder.com

- Variable: x is in Weak Head Normal Form
- Application: xN is in Weak Head Normal Form
   Abstraction: xxE scil Qeak Head Normal Form

Weak Head Normal Form is not unique.

#### **Examples**

### Assignment Project Exam Help

WHN

https://powcoder.com

HNF

NF

Add WeChat powcoder

 $\lambda x. (+11)$ 

#### Summary

- Review : rules for taupos://powcoder.com
   β-reduction, name classes and Free Variable Capture
- Reduction strategies and the Church Rosser theorem
- Different kinds of Alord ald or We Chat powcoder

# Assignment Project Exam Help

https://poweoder.com

Add WeChat powcoder