Assignment 5

(Submission deadline-18 Sept 2020, 5 PM)

1. Methanol is synthesized in a gas phase reaction

$$CO + 2H_2 \leftrightarrow CH_3OH$$

under *constant pressure* <u>adiabatic</u> PFR. The feed is as per the stoichiometric proportion at 300 K.

Standard Gibbs free energy of formation $(g_{f,298K}^0)$ and standard enthalpy of formation $(h_{f,298K}^0)$ of CO and CH₃OH at 298 K are given in the table below.

Species	$g_{f,298K}^0$ kJ/mol	$h_{f,298K}^0$ kJ/mol
CO	-137.17	-110.53
CH ₃ OH	-161.96	-200.66

Assuming that heat of reaction is independent of temperature, calculate equilibrium conversion of CO over a temperature range of 300 - 500 K (take an interval of 50 K), and show a rough sketch of the profile. [Note that concentration equilibrium constant (K_C) and true equilibrium constant (K) are related by $K_C C_{A0}^2 = K$, for the above reaction.]

2. Consider the gas phase pyrolysis of ethane

$$\begin{array}{ccc} C_2H_6 & \longleftarrow & C_2H_4+H_2 \\ (A) & (C) & (D) \end{array}$$

Thermodynamic data are given below. Heat capacity as a function of temperature for each species is given by: $\frac{C_{P,i}}{R} = \alpha_i + \beta_i T + \gamma_i T^2$ (T in K)

Species	$h_{f,298K}^0$ kJ/mol	α	β	γ
C_2H_6	-84.68	1.131	19.225×10^{-3}	-5.561×10^{-6}
C ₂ H ₄	52.26	1.424	14.394×10^{-3}	-4.392×10^{-6}
H_2	-	3.249	0.422×10^{-3}	0

Mean heat capacity is defined over a temperature range T₁ to T₂ as:

$$\bar{C}_P = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} C_P dT$$

Calculate \bar{C}_P over a temperature range of 298 K to 500 K for each species. Using the mean heat capacities, calculate heat of reaction for the above reaction over a temperature range of 298 K - 500K. Based on your result, can you suggest whether or not the heat of reaction can be considered to be independent of temperature over the range 298 - 500?

3. The elementary, irreversible gas-phase reaction

$$A \rightarrow B + C$$

is carried out adiabatically in a PFR packed with a catalyst. Pure A enters the reactor at a volumetric flow rate of 20 dm³/s, at a pressure of 10 atm, and a temperature of 450 K.

Additional information:

$$C_{P,A} = 40 \text{ J/mol.K}, C_{P,B} = 25 \text{ J/mol.K}, C_{P,C} = 15 \text{ J/mol.K}$$

 $h_{f,A}^0 = -70$ kJ/mol, $h_{f,B}^0 = -50$ kJ/mol, $h_{f,C}^0 = -40$ kJ/mol. All heats of formation are referenced to 273 K.

$$k = 0.133 \exp \left[\frac{E}{R} \left(\frac{1}{450} - \frac{1}{T} \right) \right] \frac{\text{dm}^3}{\text{kg-cat} \cdot \text{s}} \text{ with } E = 31.4 \text{ kJ/mol}$$

Plot the conversion and temperature down the plug-flow reactor until an 80% conversion (if possible) is reached. (The maximum catalyst weight that can be packed into the PFR is 50 kg.) Assume that pressure drop is negligible.