The K-moment problem for compact semi-algebraic sets

Konrad Schmüdgen

Sektion Mathematik, Karl-Marx-Universität Leipzig, O-7010 Leipzig, Federal Republic of Germany

Received May 14, 1990

Let K be a closed subset of \mathbb{R}^d . A function $s: \mathbb{N}_0^d \to R$ is called a K-moment sequence if there exists a positive Borel measure $\mu \in M(\mathbb{R}^d)$ supported by K such that $s(\alpha)$ is the α -th moment of μ , i.e. $s(\alpha) = \int x^{\alpha} d\mu$, for all $\alpha \in \mathbb{N}_0^d$. The main result of this note characterizes the K-moment sequences for compact semi-algebraic sets K. In particular, it proves a conjecture of Berg and Maserick (cf. [B-M, p. 495] and [B, p. 119) and it subsumes a number of known results for special sets K (see e.g. [A, B-M, C, M]). Our results come out as an interplay between the multidimensional moment problem and semi-algebraic geometry. First we apply the positivstellensatz to solve the K-moment problem, while then the moment problem is used to obtain a representation for the positive polynomials on K.

We collect a few standard notations, cf. [B, F]. Let $M(\mathbb{R}^d)$ denote the set of positive Borel measures μ on \mathbb{R}^d which have moments of all order, i.e. $x^{\alpha} \in L^1(\mu)$ for all $\alpha \in \mathbb{N}_0^d$. We write $x^{\alpha} = x_1^{\alpha_1} \dots x_d^{\alpha_d}$ for $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}_0^d$, where $x_j^0 := 1$. $\mathbb{R}[x_1,...,x_d]$ and $\mathbb{C}[x_1,...,x_d]$ are the real resp. complex polynomials in d indeterminates $x_1, ..., x_d$. Let s be a function $s: \mathbb{N}_0^d \to \mathbb{R}$ and p a complex polynomial $p(x) = \sum a_{\alpha} x^{\alpha}$. We define a polynomial \bar{p} by $\bar{p}(x) := \sum \bar{a}_{\alpha} x^{\alpha}$ and a function $p(E)s: \mathbb{N}_0^d \to \mathbb{C}$ by $(p(E)s)(\beta) := \sum a_{\alpha}s(\alpha + \beta), \beta \in \mathbb{N}_0^d$. We say that s is positive

definite if $\sum_{l=1}^{n} s(\alpha_{k} + \alpha_{l})c_{k}\overline{c_{l}} \ge 0$ for arbitrary $\alpha_{1}, ..., \alpha_{n} \in \mathbb{N}_{0}^{d}, c_{1}, ..., c_{n} \in \mathbb{C}$ and $n \in \mathbb{N}$.

Theorem 1. Let $R = \{r_1, ..., r_m\}$ be a finite subset of $\mathbb{R}[x_1, ..., x_d]$. Suppose that the semi-algebraic set $K_R := \{x \in \mathbb{R}^d : r_j(x) \geq 0 \text{ for } j = 1, ..., m\}$ is compact. Then a function $s : \mathbb{N}_0^d \to \mathbb{R}$ is a K_R -moment function if and only if s and $(r_j, ..., r_{j_k})$ (E)s are positive definite for all possible choices $j_1, ..., j_k$ of pairwise different numbers from $\{1,...,m\}.$

Proof. That the above condition is necessary follows easily from the representation $s(\alpha) = \int x^{\alpha} d\mu$ combined with the fact that supp $\mu \subseteq K_R$. We prove its sufficiency.

Let Σ_R denote the set of all finite sums of elements p^2 and $p^2r_{j_1} \dots r_{j_k}$, where $p \in \mathbb{R}[x_1, ..., x_d]$ and $j_1, ..., j_k \in \{1, ..., m\}$. Then Σ_R is a cone in $\mathbb{R}[x_1, ..., x_d]$ and

204 K. Schmüdgen

closed under multiplication of polynomials. Since K_R is compact, there is a $\varrho > 0$ such that $|x|^2 := x_1^2 + \ldots + x_d^2 < \varrho^2$ for all $x = (x_1, \ldots, x_d) \in K_R$, i.e. $\varrho^2 - |x|^2$ is positive on K_R . From the positivstellensatz in semi-algebraic geometry ([B-C-R, Corollaire 4.4.3, (ii)], cf. [S]) we conclude that there exist polynomials $g, h \in \Sigma_R$ such that $(\varrho^2 - |x|^2)g = 1 + h$.

Let L_s be the (complex) linear functional on $\mathbb{C}[x_1,...,x_d]$ defined by $L_s(x^a) = s(\alpha)$, $\alpha \in \mathbb{N}_0^d$, and let \mathcal{H}_s be the canonical Hilbert space associated with the positive definite function s, see e.g. [F, Sect. 4]. Scalar product and norm of \mathcal{H}_s are denoted by $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$, respectively. For notational simplicity we shall consider the polynomials of $\mathbb{C}[x_1,...,x_d]$ directly as elements of \mathcal{H}_s . (Strictly speaking, we have to take the corresponding elements of the quotient space $\mathbb{C}[x_1,...,x_d]/N$, where

 $N := \{ p \in \mathbb{C}[x_1, ..., x_d] : L_s(p\bar{p}) = 0 \}.$

Then, by this convention and by the construction of \mathscr{H}_s , $\mathbb{C}[x_1, ..., x_d]$ is a dense linear subspace of \mathscr{H}_s and $\langle p, q \rangle = L_s(p\bar{q})$ for $p, q \in \mathbb{C}[x_1, ..., x_d]$. The assumption that s and $(r_{j_1} ... r_{j_k})(E)s$ are positive definite implies that L_s is non-negative on the cone Σ_R . This fact will be used in the sequel without mention.

Suppose $p \in \mathbb{C}[x_1, ..., x_d]$ and $j \in \{1, ..., d\}$. The crucial step in this proof is to show that

$$||x_j p|| \le \varrho ||p||. \tag{1}$$

Since obviously $p\bar{p} = p_1^2 + p_2^2$ with $p_1, p_2 \in \mathbb{R}[x_1, ..., x_d]$, we have $p\bar{p} \in \Sigma_R$. Hence we obtain

$$L_s(|x|^{2n}p\bar{p}g) \le L_s(|x|^{2(n-1)}p\bar{p}(|x|^2g+1+h)) = \varrho^2 L_s(|x|^{2(n-1)}p\bar{p}g)$$

for $n \in \mathbb{N}$, so that

$$L_s(|x|^{2n}p\bar{p}g) \leq \varrho^{2n}L_s(p\bar{p}g), \quad n \in \mathbb{N}.$$
 (2)

Let $v_{p,j} \in M(\mathbb{R})$ be a measure with moments $L_s(x_j^n p\bar{p})$, $n \in \mathbb{N}_0$. We denote by χ_{λ} the characteristic function of $(-\infty, -\lambda) \cup (\lambda, +\infty)$, where $\lambda > 0$. Then we have for $n \in \mathbb{N}$

$$\lambda^{2n} \int_{\chi_{\lambda}} dv_{p,j} \leq \int_{\mathbb{R}} t^{2n} dv_{p,j}(t) = L_{s}(x_{j}^{2n} p \bar{p}) \leq L_{s}(x_{j}^{2n} p \bar{p}(|x|^{2} g + 1 + h))$$

$$= \rho^{2} L_{s}(x_{i}^{2n} p \bar{p} g) \leq \rho^{2} L_{s}(|x|^{2n} p \bar{p} g) \leq \rho^{2n} \rho^{2} L_{s}(p \bar{p} g),$$

where the last inequality follows from (2). If $\lambda > \varrho$, the preceding estimate implies that $\int_{\chi_{\lambda}} dv_{p,j} = 0$. Therefore, $\sup v_{p,j} \subseteq [-\varrho, \varrho]$. Hence we get

$$||x_{i}p||^{2} = L_{s}(x_{i}^{2}p\bar{p}) = \int t^{2}dv_{p,j}(t) \leq \varrho^{2} \int dv_{p,j} = \varrho^{2}L_{s}(p\bar{p}) = \varrho^{2}||p||^{2}$$

which proves (1).

Let X_j denote the multiplication operator by the coordinate x_j on the domain $\mathbb{C}[x_1,...,x_d]$ of \mathscr{H}_s . By (1), X_j is bounded. The operators X_j , j=1,...,d, are symmetric and they pairwise commute on $\mathbb{C}[x_1,...,x_d]$, hence their closures $\overline{X_j}$ are commuting bounded self-adjoint operators on \mathscr{H}_s . If E denotes the spectral

measure of this family, $\mu(\cdot) := \langle E(\cdot)1, 1 \rangle$ is a measure of $M(\mathbb{R}^d)$ with moments $L_s(x^{\alpha}) = s(\alpha)$, $\alpha \in \mathbb{N}_0^d$. Since $\|\overline{X}_i\| \leq \varrho$ by (1),

$$\operatorname{supp} \mu \subseteq Q := [-\varrho, \varrho] \times \ldots \times [-\varrho, \varrho].$$

Thus we have $L_s(r_kp^2) = \int_Q r_kp^2 d\mu \ge 0$ for each polynomial $p \in \mathbb{R}[x_1, ..., x_d]$ and k = 1, ..., m. From this and the Weierstraß approximation theorem we conclude that $\sup \mu \subseteq \{x \in \mathbb{R}^d : r_k(x) \ge 0\}$. Hence $\sup \mu \subseteq K_R$.

Remarks. We sketch a second proof which is less elementary and perhaps less instructive than the previous one. We have

$$||x_j^n||^2 = L_s(x_j^{2n}) \le L_s(x_j^{2n}(|x|^2g + 1 + h)) = \varrho^2 L_s(x_j^{2n}g)$$

$$\le \varrho^2 L_s(|x|^{2n}g) \le \varrho^{2n+2} L_s(g),$$

where the last inequality follows from (2) applied with p=1. Therefore, the sequence

$$\gamma_{2n} := s((2n, 0, ..., 0)) + s((0, 2n, 0, ..., 0)) + ... + s((0, ..., 0, 2n)), \quad n \in \mathbb{N}$$

satisfies Carleman's condition $\sum \gamma_{2n}^{-1/2n} = +\infty$, hence s is a moment sequence by a result of Nussbaum [N, p. 189]. With a bit more work [by verifying first the density of polynomials in $L^p(\mu)$ for $p \ge 2$] it then follows that supp $\mu \subseteq K_R$.

Let us retain the assumptions of Theorem 1 and the notation introduced above. An immediate consequence of Theorem 1 and of the Hahn-Banach separation theorem for convex sets is

Corollary 2. Each polynomial $p \in \mathbb{R}[x_1, ..., x_d]$ which is non-negative on K_R belongs to the closure of Σ_R in the finest locally convex topology on $\mathbb{R}[x_1, ..., x_d]$.

Corollary 3. If $p \in \mathbb{R}[x_1, ..., x_d]$ is positive on the set K_R , then $p \in \Sigma_R$.

Proof. We argue in a similar way as in [C, p. 260]. For $n \in \mathbb{N}$, let P_n be the polynomials $p \in \mathbb{R}[x_1, ..., x_d]$ with degree $p \le 2n$, and let Σ_n^i be the interior of $\Sigma_n := \Sigma_R \cap P_n$ in the finite dimensional space P_n . For $k, l \in \{1, ..., n\}$ and $j_1, ..., j_{k+l} \in \{1, ..., d\}$, we have

$$2x_{j_1} \dots x_{j_{k+1}} = (x_{j_1} \dots x_{j_k} + x_{j_{k+1}} \dots x_{j_{k+1}})^2 - (x_{j_1} \dots x_{j_k})^2 - (x_{j_{k+1}} \dots x_{j_{k+1}})^2.$$

Hence $P_n = \Sigma_n - \Sigma_n$. From the latter it follows that $\Sigma_n^i \neq \emptyset$.

Now assume to the contrary that p is not in Σ_R . Then $p \in P_m$ and $p \notin \Sigma_m^i$ for some $m \in \mathbb{N}$. We show by induction that there are linear functionals F_n , $n \ge m$, on P_n such that $F_n(\cdot) > 0$ on Σ_n^i , $F_n(p) \le 0$ and $F_n \upharpoonright P_{n-1} = F_{n-1}$ if $n-1 \ge m$. The existence of F_n follows from the separation theorem for convex sets in P_n (recall that $\Sigma_n^i \ne \emptyset$). For n = m we use the assumption $p \notin \Sigma_m^i$. If F_n is chosen, then we have $(\ker F_n) \cap \Sigma_{n+1}^i = \emptyset$, so that there exists a linear functional G_{n+1} on P_{n+1} such that $G_{n+1}(\cdot) = 0$ on $\ker F_n$ and $G_{n+1}(\cdot) > 0$ on Σ_{n+1}^i . Then clearly $G_{n+1} \upharpoonright P_n = \gamma F_n$ for some $\gamma > 0$, so $F_{n+1} := \gamma^{-1} G_{n+1}$ has the desired properties. Now $F(q) := F_n(q)$, $q \in P_n$ and $n \in \mathbb{N}$, defines, unambiguously, a linear functional on $\mathbb{R}[x_1, \dots, x_d]$. Since $\Sigma_n^i \ne \emptyset$, Σ_n is contained in the closure of Σ_n^i in P_n , so $F_n(\cdot) \ge 0$ on Σ_n . Thus $F(\cdot) \ge 0$ on Σ_R and $s(\alpha) := F(x^\alpha)$, $\alpha \in \mathbb{N}_0^d$, satisfies the condition required in Theorem 1. Hence there exists a measure $\mu \in M(\mathbb{R}^d)$ such that $\sup \mu \subseteq K_R$ and $F(q) = \int q d\mu$ for all $q \in \mathbb{R}[x_1, \dots, x_d]$. Since $F(p) \le 0$ by construction and p is positive on the compact set K_R , we have the desired contradiction. \square

206 K. Schmüdgen

References

[A] Atzmon, A.: A moment problem for positive measures. Pac. J. Math. 59, 317–325 (1975)

- [B] Berg, C.: The multidimensional moment problem and semigroups. In: Landau, H.J. (ed.) Moments in mathematics. Proc. Symp. Appl. Math., vol. 37, pp. 110–124. Am. Math. Soc., Providence, 1987
- [B-C-R] Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Berlin Heidelberg New York: Springer 1987
- [B-M] Berg, C., Maserick, P.H.: Polynomially positive definite sequences. Math. Ann. 259, 487-495 (1982)
- [C] Cassier, G.: Problème des moments sur un compact de Rⁿ et décomposition de polynômes a plusiers variables. J. Funct. Anal. 58, 254-266 (1984)
- [F] Fuglede, B.: The multidimensional moment problem. Expo. Math. 1, 47–65 (1983)
- [M] McGregor, J.L.: Solvability criteria for certain N-dimensional moment problem. J. Approx. Theory 30, 315-333 (1980)
- [N] Nussbaum, A.E.: Quasi-analytic vectors. Ark. Mat. 6, 179–191 (1965)
- [S] Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87-97 (1974)