Tópicos de Matemática - 1º ano

exame - época especial -

– juľ16 –

- 1. Diga, justificando, se as afirmações seguintes são verdadeiras ou falsas:
 - (a) Sejam p,q e r proposições. Se as proposições $\sim p \Rightarrow q, \sim p \lor (\sim q \Rightarrow r)$ e $\sim q$ são verdadeiras, então, a proposição r é verdadeira.
 - (b) Sejam $A = \{a, b, c\}$ e \mathcal{R} uma relação de equivalência em A. Se $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \cap [c]_{\mathcal{R}} = \emptyset$ então, \mathcal{R} é a relação identidade.
 - (c) Sejam (A, \leq) um c.p.o. e X um subconjunto não vazio de A. Se X admite mínimo, então, $A \setminus X$ admite máximo.
 - (d) Seja A um conjunto numerável. Então, $A \sim A \times \mathbb{N}$.
- 2. Dê exemplo, ou justifique que não existe, de:
 - (a) conjuntos $A \in B$ tais que $A \subseteq B$ e $A \in B$;
 - (b) uma família de conjuntos $(A_i)_{i\in\mathbb{N}}$ tal que $\bigcup_{i\in\mathbb{N}}A_i=[0,2]$ e $\bigcap_{i\in\mathbb{N}}A_i=\{1\}$;
 - (c) Uma relação de equivalência \mathcal{R} em $A=\{1,2,3\}$ com exatamente 6 elementos;
 - (d) Uma função $f:\{1,2,3\} \rightarrow \{a,b\}$ injetiva.
- 3. Usando indução matemática, prove que:
 - (a) $2^n > n$, para todo $n \ge 2$;
 - (b) para todo natural n, $n(n^2 + 5)$ é múltiplo de 6.
- 4. Sejam $A=\{1,2,3\}$, $B=\{a,b\}$ e $f:A\to B$ a aplicação definida por f(1)=f(2)=a e f(3)=b. Considere $F: \mathcal{P}(A) \to \mathcal{P}(B)$ definida por

$$F(X) = \{f(x) : x \in X\}$$
 para todo $X \in \mathcal{P}(A)$.

- (a) Determine:
 - i. $F(\{1,3\})$;
 - ii. $F^{-1}(\{a\})$.
- (b) Mostre que F é sobrejetiva.
- (c) Será F injetiva? Justifique.
- (d) Considere, em $\mathcal{P}(A)$, a relação de equivalência igualdade de imagem \mathcal{R}_F . Determine $[\{1,2\}]_{\mathcal{R}_F}$.
- 5. Considere o c.p.o. (A, \leq) definido pelo seguinte diagrama de Hasse:

Indique, caso exista:

- (a) Maj $\{2, 4, 5, 7\}$;
- (b) sup ∅;
- (c) $\inf \emptyset$;
- (d) um elemento x de A tal que $\{3,5,9,x\}$ seja um reticulado para a ordem parcial induzida pela ordem do c.p.o. A.

