

# Mécanisme 6 barres

**MATLAB** 

## Sixbar.m

Fichier Matlab mettant en œuvre l'algorithme Newton-Raphson pour calculer les positions articulaires du mécanisme et afficher le mécanisme en mouvement.

#### **Autres fichiers Matlab**

- Circle.m
- Bushing.m



Florian Breut

### 1.1 Equations de contrainte du mécanisme

On part des équations vectorielles suivantes :

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AD}$$
 Pour le mécanisme 4 barres (1) et (2)  $\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AE}$  Position du point E (3) et (4)  $\overrightarrow{GA} + \overrightarrow{AE} = \overrightarrow{GF} + \overrightarrow{FE}$  Autre relation vectorielle (5) et (6)  $\phi_2 = \omega$  Relation de pilotage (7)

On en tire les équations de contrainte du mécanisme par projection sur les axes  $\overrightarrow{x_0}$  et  $\overrightarrow{y_0}$ :

$$f1 = l2.c2 + l3.c3 - l4.c4 - l1.c1 = 0$$

$$f2 = l2.s2 - l3.s3 - l4.s4 + l1.s1 = 0$$

$$f3 = l2.c2 + lc.c(3 + \beta) - Xe = 0$$

$$f4 = l2.s2 - lc.s(3 + \beta) - Ye = 0$$

$$f5 = l6.c6 + l5.c5 + l7.c7 - Xe = 0$$

$$f6 = l6.c6 + l5.c5 - l7.s7 - Ye = 0$$

$$f7 = \phi_2 - \omega.t - \phi_{20}$$
(1)
(2)
(3)
(5)

$$\Leftrightarrow \quad \mathsf{F}(\mathsf{X}) = \mathsf{0} \qquad \text{avec} \qquad X = \begin{bmatrix} \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_5 \\ \phi_6 \\ Xe \\ Ye \end{bmatrix} \qquad \text{On a 7 équations et 7 inconnues.}$$

$$\begin{cases} \phi_1 = -30^{\circ} \\ \phi_7 = -75,4^{\circ} \\ \beta = -30^{\circ} \end{cases}$$
 Données du problème

#### 1.2 Calcul de la jacobienne

$$J = \begin{bmatrix} -l2.s2 & -l3.s3 & l4.s4 & 0 & 0 & 0 & 0\\ l2.c2 & -l3.c3 & -l4.c4 & 0 & 0 & 0 & 0\\ -l2.s2 & -lc.s(3+\beta) & 0 & 0 & 0 & -1 & 0\\ l2.c2 & -lc.c(3+\beta) & 0 & 0 & 0 & 0 & -1\\ 0 & 0 & 0 & -l5.s5 & -l6.s6 & -1 & 0\\ 0 & 0 & 0 & l5.c5 & l6.c6 & 0 & -1\\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(8)

La condition de chute de rang de la matrice jacobienne (exprimée de la manière la plus simple pour ce problème) est la suivante :

$$l3.l4.l5.l6.(c3.c5.s4.s6 - c3.c6.s4.s5 + c4.c5.s3.s6 - c4.c6.s3.s5) = 0$$
 (9)

## 1.3 Calcul du Modèle Cinématique Direct

$$J.X = -\frac{\partial F(X)}{\partial t} \qquad \Leftrightarrow \qquad \frac{dF(X)}{dt} = 0$$

$$-l2.s2.\dot{\phi}_2 - l3.s3.\dot{\phi}_3 + l4.s4.\dot{\phi}_4 = 0$$
 (10.1)

$$l2.c2.\dot{\phi}_2 - l2.c3.\dot{\phi}_3 - l4.c4.\dot{\phi}_4 = 0$$
 (10.2)

$$-l2.s2.\dot{\phi}_2 - lc.S(3+\beta).\dot{\phi}_3 - \dot{X}e = 0$$
 (10.3)

$$l2.c2.\dot{\phi}_2 - lc.c(3+\beta).\dot{\phi}_3 - \dot{Y}e = 0$$
 (10.4)

$$-l5.s5.\dot{\phi}_5 - l6.s6.\dot{\phi}_6 - \dot{X}e = 0 \tag{10.5}$$

$$l5.c5.\dot{\phi}_5 + l6.c6.\dot{\phi}_6 - \dot{Y}e = 0 \tag{10.6}$$

$$\dot{\phi_2} - \omega = 0 \tag{10.7}$$

#### 2.2 Solution calculé du mécanisme « monté »



#### 2.3 Influence des conditions initiales sur la convergence et sa vitesse

Les conditions initiales si elles sont mal choisies entrainent la non convergence de la méthode de Newton-Raphson. Pour s'assurer d'un bon fonctionnement de la méthode, on choisira positions articulaires à l'initialisation, des valeurs proches de la position du mécanisme à t=0.

On pourra déterminer l'influence d'une condition initiale en modifiant sa valeur et en comptant le nombre d'itérations de la méthode nécessaire avant la convergence. Pour une valeur de X0(1) égale à la valeur réelle + 30 degrés on passe de 5 itérations à 6 itérations, avec + 90 degré on passe à 7 itérations et à + 180 degrés, la méthode diverge systématiquement.

## 2.5 Influence de l'incrément de temps

Lorsque l'on diminue l'incrément de temps, la résolution sur une durée totale de Tf est plus lente car on appelle la méthode de Newton-Raphson plus souvent. Cependant, la méthode permet une observation temporelle plus précise de la trajectoire.

Ci-dessous on peut voir la forme de la trajectoire pour plusieurs valeurs de cet incrément dt pour une durée de simulation de 7 secondes. On notera également le temps d'exécution total du programme à titre de comparaison.



## 2.6 Tracés des trajectoires et vitesses

## Trajectoire (en vert)

La trajectoire a été tracée pour un incrément de 0.05 et une durée totale de simulation de 5 secondes.



La position du point E dans le temps forme une trajectoire en forme de 8.

Les courbes suivantes ont été obtenues pour une durée de simulation de 3 secondes. On remarque que l'évolution des vitesses de E projetées sur x et y est périodique non sinusoïdale de période  $2\pi$ .

## Vitesse du point E projetée sur x



## Vitesse du point E projetée sur y



## 2.7 Tracé angle de sortie et vitesse de sortie

## Angle de sortie en fonction de langle d'entrée



#### Vitesse de sortie en fonction de l'angle d'entrée

