CURS 13 CRIPTOGRAFIA PE CURBE ELIPTICE

- ➤ **Neal Koblitz** (University of Washington) şi **Victor Miller** (Institute for Defense Analyses Princeton) → **1985**
- Principalul avantaj al utilizării curbelor eliptice în criptografie îl constituie asigurarea unui nivel înalt de securitate folosind chei mai scurte decât alți algoritmi similari:

Sistem de criptare simetric	Sistem bazat pe curbe eliptice	Sistemul RSA
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

- În prezent, criptografia bazată pe curbe eliptice este utilizată în Bitcoin, Ethereum, PGP, SSH, TLS etc.
- > Curbe eliptice reale:

How Elliptic Curve Cryptography Works - Technical Articles (allaboutcircuits.com)

ightharpoonup Curbe eliptice peste \mathbb{Z}_p

Fie p > 3 un număr prim.

Curba eliptică $y^2=x^3+ax+b$ peste \mathbb{Z}_p este mulțimea

$$E = \{(x, y) \in \mathbb{Z}_p \times \mathbb{Z}_p | y^2 \equiv x^3 + ax + b \pmod{p}\} \cup \{\mathcal{O}\}$$

unde $4a^3 + 27b^2 \not\equiv 0 \pmod{p}$, iar \mathcal{O} se numește *punctul la infinit*.

Exemplu:

Fie curba eliptică E: $y^2 = x^3 + x + 5$ peste \mathbb{Z}_{19} . Punctele curbei E sunt:

$$E = \{(x, y) \in \mathbb{Z}_{19} \times \mathbb{Z}_{19} | y^2 \equiv x^3 + x + 5 \pmod{19}\} \cup \{\mathcal{O}\}$$

• Calculăm y^2 pentru $y \in \mathbb{Z}_{19}$:

y	0	1	2	3	4	5	6	7	8	9
y^2	0	1	4	9	16	6	17	11	7	5

y	10	11	12	13	14	15	16	17	18
y^2	5	7	11	17	6	16	9	4	1

• Determinăm punctele curbei *E*:

•
$$x = 0 \implies y^2 = 5 \implies y \in \{9, 10\} \implies A_1(0, 9), A_2(0, 10)$$

•
$$x = 1 \implies y^2 = 7 \implies y \in \{8, 11\} \implies A_3(1, 8), A_4(1, 11)$$

•
$$x = 2 \implies y^2 = 15 \implies y \in \emptyset$$

•
$$x = 3 \implies y^2 = 16 \implies y \in \{4, 15\} \implies A_5(3, 4), A_6(3, 15)$$

•
$$x = 4 \implies y^2 = 16 \implies y \in \{4, 15\} \implies A_7(4, 4), A_8(4, 15)$$

•
$$x = 5 \implies y^2 = 2 \implies y \in \emptyset$$

•
$$x = 6 \implies y^2 = 18 \implies y \in \emptyset$$

•
$$x = 7 \implies y^2 = 13 \implies y \in \emptyset$$

•
$$x = 8 \implies y^2 = 12 \implies y \in \emptyset$$

•
$$x = 9 \implies y^2 = 2 \implies y \in \emptyset$$

•
$$x = 10 \implies y^2 = 8 \implies y \in \emptyset$$

•
$$x = 11 \implies y^2 = 17 \implies y \in \{6, 13\} \implies A_9(11,6), A_{10}(11, 13)$$

•
$$x = 12 \implies y^2 = 16 \implies y \in \{4, 15\} \implies A_{11}(12, 4), A_{12}(12, 15)$$

•
$$x = 13 \implies y^2 = 11 \implies y \in \{7, 12\} \implies A_{13}(13,7), A_{14}(13, 12)$$

•
$$x = 14 \implies y^2 = 8 \implies y \in \emptyset$$

•
$$x = 15 \implies y^2 = 13 \implies y \in \emptyset$$

•
$$x = 16 \implies y^2 = 13 \implies y \in \emptyset$$

•
$$x = 17 \implies y^2 = 14 \implies y \in \emptyset$$

•
$$x = 18 \implies y^2 = 3 \implies y \in \emptyset$$

În concluzie, curba E are 15 puncte:

$$E = \{ O, A_1(0,9), A_2(0,10), A_3(1,8), A_4(1,11), A_5(3,4), A_6(3,15), A_7(4,4), A_8(4,15), A_9(11,6), A_{10}(11,13), A_{11}(12,4), A_{12}(12,15), A_{13}(13,7), A_{14}(13,12) \}$$

Teorema lui Hasse (1933):

Pentru o curbă eliptică E peste \mathbb{Z}_p are loc inegalitatea:

$$p + 1 - 2\sqrt{p} \le |E| \le p + 1 + 2\sqrt{p}$$

Exemplu:

Pentru o curbă eliptică E peste \mathbb{Z}_{19} are loc inegalitatea:

$$19 + 1 - 2\sqrt{19} \le |E| \le 19 + 1 + 2\sqrt{19} \Longrightarrow 11 \le |E| \le 28$$

ightharpoonup Grupul abelian aditiv asociat unei curbe eliptice E peste \mathbb{Z}_p

Fie $P(x_1, y_1), Q(x_2, y_2) \in E$ și definim P + Q astfel (toate calculele se efectuează modulo p):

- P + O = O + P = P (deci O este elementul neutru al grupului)
- Dacă $Q(x_1, -y_1) \Rightarrow P + Q = Q + P = \mathcal{O} \Rightarrow Q = -P$ (deci Q este elementul simetric/opusul lui P)
- $P + Q = Q + P = R(x_3, y_3)$

$$\begin{cases} x_3 = m^2 - x_1 - x_2 \\ y_3 = m(x_1 - x_3) - y_1 \end{cases}$$

$$m = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & \operatorname{dacă} P \neq Q\\ \frac{3x_1^2 + a}{2y_1}, & \operatorname{dacă} P = Q \end{cases}$$

Exemple:

Fie curba eliptică $E: y^2 = x^3 + x + 5$ peste \mathbb{Z}_{19} .

•
$$2 \cdot A_1 = A_1(0,9) + A_1(0,9) = R(x_3, y_3)$$

$$m = \frac{3 \cdot 0^2 + 1}{2 \cdot 9} = 1 \cdot 18^{-1} \pmod{19} = 18$$

$$\begin{cases} x_3 = 18^2 - 0 - 0 \pmod{19} = 1\\ y_3 = 18(0 - 1) - 9 \pmod{19} = -27 \pmod{19} = 11 \end{cases}$$

$$A_1(0,9) + A_1(0,9) = A_4(1,11) \implies 2 \cdot A_1 = A_4$$

•
$$3 \cdot A_1 = 2 \cdot A_1(0,9) + A_1(0,9) = A_4(1,11) + A_1(0,9) = R(x_3, y_3)$$

$$m = \frac{9 - 11}{0 - 1} = 2 \pmod{19} = 2$$

$$\begin{cases} x_3 = 2^2 - 1 - 0 \pmod{19} = 3 \\ y_3 = 2(1 - 3) - 11 \pmod{19} = -15 \pmod{19} = 4 \end{cases}$$

Observatie:

Punctul A_1 este generator al grupului asociat curbei eliptice ${\it E}$ deoarece:

 $3 \cdot A_1 = 2 \cdot A_1(0,9) + A_1(0,9) = A_4(1,11) + A_1(0,9) = A_5(3,4)$

$A_1 = 1 \cdot A_1$	$A_6 = 12 \cdot A_1$	$A_{11} = 8 \cdot A_1$
$A_2 = 14 \cdot A_1$	$A_7 = 4 \cdot A_1$	$A_{12} = 7 \cdot A_1$
$A_3 = 13 \cdot A_1$	$A_8 = 11 \cdot A_1$	$A_{13} = 10 \cdot A_1$
$A_4 = 2 \cdot A_1$	$A_9 = 6 \cdot A_1$	$A_{14} = 5 \cdot A_1$
$A_5 = 3 \cdot A_1$	$A_{10} = 9 \cdot A_1$	$\mathcal{O}=15\cdot A_1$

Punctul A_1 are ordinul 15, deoarece $15 \cdot A_1 = \mathcal{O}$.

Exemple:

•
$$49 \cdot A_1 = (3 \cdot 15 + 4) \cdot A_1 = 3 \cdot (15 \cdot A_1) + 4 \cdot A_1 = 3 \cdot \mathcal{O} + 4 \cdot A_1 = A_7$$

•
$$A_3 + A_{13} = 13 \cdot A_1 + 10 \cdot A_1 = 23 \cdot A_1 = 8 \cdot A_1 = A_{11}$$

ightharpoonup Problema logaritmului discret pentru o curbă eliptică peste \mathbb{Z}_p

Fie E o curbă eliptică peste \mathbb{Z}_p , un punct $P \in E$ de ordin mare și punctul $Q = nP = \underbrace{P + P + \dots + P}_{n \text{ ori}}$. Atunci $n = \log_P Q$.

• Dacă se cunosc n și P, atunci Q se calculează cu complexitatea $\mathcal{O}(\log_2 n)$.

Exemplu:

$$n = 43 = 101011_2 = 1 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 + 0 \cdot 2^4 + 1 \cdot 2^5$$

$$Q = nP = 43P$$

T (multiplii lui P)	${\cal S}$ (suma curentă)	Bit			
	0	curent			
<u> </u>	U	_			
T = P	S = S + T = P	1			
T = 2T = T + T = 2P	S = S + T = 3P	1			
T = 2T = T + T = 4P	1	0	$\log n = 6$		
T = 2T = T + T = 8P	S = S + T = 11P	1	$\log_2 n = 6$ pași		
T = 2T = T + T = 16P	1	0			
T = 2T = T + T = 32P	S = S + T = 43P	1			

• Dacă se cunosc P și Q, atunci complexitatea celor mai buni algoritmi pentru calculul lui n, adică a logaritmului discret al unui punct de pe o curbă eliptică peste \mathbb{Z}_p , Baby-step giant-step, Pohlig-Hellman, Pollard's rho, Index calculus algorithm este $\mathcal{O}(\sqrt{p}) \approx \mathcal{O}(2^{\lceil \log_2 p \rceil/2})$, deci este o complexitate exponențială!!!

ightharpoonup Algoritmul de criptare ElGamal pentru o curbă eliptică peste \mathbb{Z}_p

Algoritmul de generare a cheilor:

- Se selectează un număr natural p care să fie o putere a unui număr prim, o curbă eliptică E peste \mathbb{Z}_p și un punct $P \in E$ de ordin mare
- ullet Se selectează un număr $n\in\mathbb{Z}_p^*$ și se calculează Q=nP, deci $n=\log_P Q$
- Cheia publică este tripletul (E, P, Q), iar cheia privată este numărul n

Algoritmul de criptare:

- ullet Presupunem că Alice are cheia publică (E,P,Q) și cheia privată n
- Bob criptează un mesaj *M* pentru Alice astfel:
 - alege un număr aleatoriu $r \in \mathbb{Z}_p^*$ (cheie efemeră)
 - criptează mesajul clar M, codificat printr-un punct de pe curba eliptică E, prin perechea:

$$C = \left(\underbrace{r \cdot P}_{A}, \underbrace{M + r \cdot Q}_{B}\right)$$

• Algoritmul de decriptare:

• Alice decriptează un mesaj criptat C = (A, B) astfel:

$$D = B - n \cdot A$$

Corectitudinea algoritmului:

Fie un mesaj criptat $C = \left(\underbrace{r \cdot P}_{A}, \underbrace{M + r \cdot Q}_{B}\right)$, rezultă că mesajul decriptat este

6

$$D = B - n \cdot A = \underbrace{M + r \cdot Q}_{R} - n \cdot \underbrace{r \cdot P}_{A} = M + r \cdot \underbrace{n \cdot P}_{O} - n \cdot r \cdot P = M.$$