Dynamic Path Planning Robot for Crowded Environments

Project Breakdown into Tasks

1. Initial Setup and Planning

- Task 1: Define project goals and deliverables clearly.
- Task 2: Set up the development environment (install ROS 2, Gazebo, Rviz, and Python libraries).
- **Task 3:** Familiarize the team with required tools and technologies (e.g., Dynamic Window Approach (DWA), predictive models).
- Task 4: Develop a timeline for each phase of the project.

2. Environment Simulation

- Task 5: Design a crowded environment in Gazebo (e.g., simulate a train station or mall).
- Task 6: Add dynamic obstacles like moving human-like avatars.
- **Task 7:** Configure environmental parameters (e.g., obstacle speeds, sizes, and crowd density).

3. Perception System Integration

- Task 8: Simulate sensors:
 - o Add LiDAR for obstacle detection.
 - Integrate RGB cameras for visual input.
- Task 9: Write scripts to process sensor data in ROS 2.

4. Dynamic Path Planning

- Task 10: Implement the Dynamic Window Approach (DWA):
 - o Study and modify Nav2's DWA plugin for dynamic environments.
 - o Test with various scenarios in the simulation.
- **Task 11:** Optimize the algorithm for computational efficiency.

5. Predictive Models

- Task 12: Design predictive models for forecasting the motion of dynamic obstacles:
 - Collect sample movement data from the simulation.
 - Train a model using TensorFlow/PyTorch to predict obstacle trajectories.
- Task 13: Integrate the predictive model into the ROS 2 navigation stack.

6. Visualization

- Task 14: Set up Rviz to:
 - o Display the robot's path.
 - Visualize the obstacle map and sensor data.
- **Task 15:** Create a real-time interface for monitoring robot navigation.

7. Testing and Debugging

- Task 16: Run simulation tests under various crowded scenarios (e.g., high density, random movements).
- Task 17: Identify and resolve bugs in:
 - Path planning algorithms.
 - Sensor integration.
 - Predictive models.

8. Performance Evaluation

- **Task 18:** Measure the robot's navigation efficiency (e.g., time to destination, collision rates).
- Task 19: Optimize based on test results:
 - o Improve response time.
 - o Enhance obstacle prediction accuracy.

9. Documentation and Reporting

- Task 20: Document the implementation process, including:
 - Algorithm design.
 - Challenges and solutions.
 - o Performance metrics.
- Task 21: Create a final report and presentation.

10. Project Review and Delivery

- Task 22: Conduct a final review with stakeholders or instructors.
- Task 23: Deliver the project files, documentation, and simulation results.