配加斯

## P-Channel Enhancement-Mode Power Field-Effect Transistors

10 A, -120V and -150 V  $r_{DS(on)} = 0.5 \Omega$ 

#### Features:

- SOA is power-dissipation limited
- Nanosecond switching speeds
- Linear transfer characteristics
- High input impedance
- Majority carrier device

#### **TERMINAL DIAGRAM**



### P-CHANNEL ENHANCEMENT MODE

#### **TERMINAL DESIGNATIONS**

The RFM10P12 and RFM10P15 and the RFP10P12 and RFP10P15\* are p-channel enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits.

The RFM-types are supplied in the JEDEC TO-204 A  $\bf A$  steel package and the RFP-types in the JEDEC TO-220AB plastic package.

\*The RFM and RFP series were formerly RCA developmental TA9404 and TA9405, respectively.





JEDEC TO-220AB

## MAXIMUM RATINGS, Absolute-Maximum Values (Tc = 25° C):

| ,                                  | RFM10P12     | RFM10P15     | RFP10P12     | RFP10P15  |            |
|------------------------------------|--------------|--------------|--------------|-----------|------------|
| DRAIN-SOURCE VOLTAGE               | -120<br>-120 | -150<br>-150 | -120<br>-120 | -150      | v          |
| GATE-SOURCE VOLTAGE                |              |              | 20           | -150      | . V        |
| Pulsed                             |              |              | 30           |           | . A<br>. A |
| Derate above T <sub>C</sub> = 25°C | 100<br>0.8   | 100<br>0.8   | 75<br>0.6    | 75<br>0.6 | W/°C       |
| OPERATING AND STORAGE TEMPERATURE  |              |              | o +150       |           | °C.        |

# RFM10P12, RFM10P15, RFP10P12, RFP10P15 erature (Tc = 25°C) unless otherwise specified 7.39-2

ELECTRICAL CHARACTERISTICS, At Case Temperature (T<sub>C</sub> = 25°C) unless otherwise specified

| CHARACTERISTIC               | SYMBOL                   | TEST<br>. CONDITIONS              |                      |      |                      |      |       |
|------------------------------|--------------------------|-----------------------------------|----------------------|------|----------------------|------|-------|
|                              |                          |                                   | RFM10P12<br>RFP10P12 |      | RFM10P15<br>RFP10P15 |      | UNITS |
|                              |                          |                                   | MIN.                 | MAX. | MIN.                 | MAX. | 1     |
| Drain-Source Breakdown       | BV <sub>DSS</sub>        | f <sub>D</sub> = 1 mA             | -120                 | _    | -150                 |      | V     |
| Voltage                      |                          | $V_{GS} = 0$                      |                      |      |                      |      |       |
| Gate-Threshold Voltage       | V <sub>GS(th)</sub>      | V <sub>GS</sub> = V <sub>DS</sub> | -2                   | -4   | -2                   | -4   | V     |
|                              |                          | I <sub>D</sub> = 1 mA             |                      |      |                      |      | 1     |
| Zero-Gate Voltage Drain      | loss                     | V <sub>DS</sub> = -100 V          |                      | 1    | -                    | _    |       |
| Current                      |                          | V <sub>DS</sub> = -120 V          | -                    |      |                      | 1    |       |
|                              |                          | T <sub>C</sub> = 125° C           |                      |      |                      |      | μΑ    |
|                              |                          | $V_{DS} = -100 \text{ V}$         |                      | 50   | -                    |      |       |
|                              |                          | $V_{DS} = -120 \text{ V}$         | _                    | _    | _                    | 50   |       |
| Gate-Source Leakage Current  | lass                     | V <sub>GS</sub> = ±20 V           | _                    | 100  |                      | 100  | nA    |
|                              |                          | V <sub>DS</sub> = 0               |                      |      |                      |      |       |
| Drain-Source On Voltage      | V <sub>DS(on)</sub> a    | I <sub>D</sub> = 5 A              | _                    | -2.5 | _                    | -2.5 |       |
|                              |                          | $V_{GS} = -10 \text{ V}$          |                      |      |                      |      | l     |
|                              |                          | I <sub>D</sub> = 10 A             | _                    | -6.0 | _                    | -6.0 | \ \   |
|                              |                          | V <sub>GS</sub> = -10 V           |                      |      |                      |      | 1     |
| Static Drain-Source On       | r <sub>DS(on)</sub> a    | I <sub>D</sub> = 5 A              |                      | 0.5  |                      | 0.5  | Ω     |
| Resistance                   |                          | V <sub>GS</sub> = -10 V           |                      |      |                      |      |       |
| Forward Transconductance     | g <sub>ts</sub> a        | V <sub>DS</sub> = -10 V           | 2                    |      | 2                    | _    | mho   |
| -                            | Ţ                        | I <sub>D</sub> = 5 A              |                      |      |                      |      |       |
| Input Capacitance            | Ciss                     | V <sub>DS</sub> = -25 V           | _                    | 1700 | _                    | 1700 | 1     |
| Output Capacitance           | Coss                     | $V_{GS} = 0 V$                    | _                    | 600  |                      | 600  | pF    |
| Reverse Transfer Capacitance | Cras                     | f = 1MHz                          | _                    | 150  | _                    | 150  | 1     |
| Turn-On Delay Time           | t <sub>d(on)</sub>       | V <sub>DS</sub> = -75 V           | 24(typ)              | 50   | 24(typ)              | 50   |       |
| Rise Time                    | t <sub>r</sub>           | I <sub>D</sub> = 5 A              | 74(typ)              | 150  | 74(typ)              | 150  | ns    |
| Turn-Off Delay Time          | tatom                    | $R_{gen} = R_{gs} = 50 \Omega$    | 138(typ)             | 225  | 138(typ)             | 225  | 7     |
| Fall Time                    | tr                       | V <sub>GS</sub> = -10 V           | 61(typ)              | 100  | 61(typ)              | 100  | 1     |
| Thermal Resistance           | R <i>θ</i> <sub>JC</sub> | RFM10P12,                         |                      |      |                      |      |       |
| Junction-to-Case             |                          | RFM10P15                          | -                    | 1.25 | -                    | 1.25 |       |
|                              |                          | RFP10P12,                         |                      | 1 67 |                      | 1.07 | °C/W  |
|                              |                          | RFP10P15                          | -                    | 1.67 | -                    | 1.67 |       |

## **SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS**

| CHARACTERISTIC SYMB   |                   | L TEST CONDITIONS                      | LIMITS               |        |                      |            |       |
|-----------------------|-------------------|----------------------------------------|----------------------|--------|----------------------|------------|-------|
|                       | SYMBOL            |                                        | RFM10P12<br>RFP10P12 |        | RFM10P15<br>RFP10P15 |            | UNITS |
|                       |                   |                                        | MIN.                 | MAX.   | MIN.                 | MAX.       |       |
| Diode Forward Voltage | V <sub>SD</sub> & | I <sub>SD</sub> = 5A                   | _                    | 1.4    | _                    | 1.4        | V     |
| Reverse Recovery Time | t <sub>rr</sub>   | $I_F = 4A$ , $d_{1F}/d_1 = 100A/\mu s$ | 210                  | (typ.) | 210                  | 210 (typ.) |       |

<sup>♣</sup> Pulsed: Pulse duration = 300 μs max., duty cycle = 2%.

## RFM10P12, RFM10P15, RFP10P12, RFP10P15



Fig. 1 - Maximum safe operating areas for all types.



Fig. 2 - Power dissipation vs. case temperature derating curve for all types.



Fig. 4 - Normalized drain-to-source on resistance as as function of junction temperature for all types.



Fig. 3 - Typical normalized gate threshold voltage as a function of junction temperature for all types.



Fig. 5 - Typical transfer characteristics for all types.

## RFM10P12, RFM10P15, RFP10P12, RFP10P15



Fig. 6 - Normalized switching waveforms for constant gate-current drive. Refer to RCA Power MOSFETs PMP411A.



Fig. 8 - Typical drain-to-source on resistance as a function of drain current for all types.



Fig. 10 - Typical forward transconductance as a function of drain current for all types.



Fig. 7 - Typical saturation characteristics for all types.



Fig. 9 - Capacitance as a function of drain-to-source voltage for all types.



Fig. 11 - Switching Time Test Circuit.