Further Mathematics and Algorithms

Lesson 10: Make Friends with Trees

Binary trees, binary search trees, sets, tree iterators

Outline

- 1 Trees
- 2. Binary Trees
 - Implementing Binary Trees
- 3. Binary Search Trees
 - Definition
 - Implementing a Set
- 4. Tree Iterators

Trees

- Trees are one of the major ways of structuring data
- They are used in a vast number of data structures
 - ★ Binary search trees
 - ⋆ B-trees
 - ★ splay trees
 - ⋆ heaps
 - * tries
 - ★ suffix trees
- We shall cover most of these

Trees

- Trees are one of the major ways of structuring data
- They are used in a vast number of data structures
 - ★ Binary search trees
 - ★ B-trees
 - ★ splay trees
 - ⋆ heaps
 - * tries
 - ★ suffix trees
- We shall cover most of these

Trees

- Trees are one of the major ways of structuring data
- They are used in a vast number of data structures
 - ★ Binary search trees
 - ⋆ B-trees
 - ★ splay trees
 - ⋆ heaps
 - * tries
 - ★ suffix trees
- We shall cover most of these

- Mathematically a tree is an acyclic undirected graph
 - graph: a structure consisting of nodes or vertices joined by edges
 - ★ undirected: the edges goes both ways
 - * acyclic: there are no cycles in the graph

tree = acyclic undirected graph

- Mathematically a tree is an acyclic undirected graph
 - * graph: a structure consisting of nodes or vertices joined by edges
 - ★ undirected: the edges goes both ways
 - * acyclic: there are no cycles in the graph

tree = acyclic undirected graph

- Mathematically a tree is an acyclic undirected graph
 - graph: a structure consisting of nodes or vertices joined by edges
 - * undirected: the edges goes both ways
 - * acyclic: there are no cycles in the graph

tree = acyclic undirected graph

- Mathematically a tree is an acyclic undirected graph
 - * graph: a structure consisting of nodes or vertices joined by edges
 - ★ undirected: the edges goes both ways
 - * acyclic: there are no cycles in the graph

undirected graph

tree = acyclic undirected graph

- We often impose an ordering on the nodes (or a direction on the edges)—known as a rooted tree
- Borrowing from nature, we recognise one node as the root node
- Nodes have children nodes living beneath them
- Each child has a parent node above them except the root
- Nodes with no children are leaf nodes

- We often impose an ordering on the nodes (or a direction on the edges)—known as a rooted tree
- Borrowing from nature, we recognise one node as the root node
- Nodes have children nodes living beneath them
- Each child has a parent node above them except the root
- Nodes with no children are leaf nodes

- We often impose an ordering on the nodes (or a direction on the edges)—known as a rooted tree
- Borrowing from nature, we recognise one node as the root node
- Nodes have children nodes living beneath them
- Each child has a parent node above them except the root
- Nodes with no children are leaf nodes

- We often impose an ordering on the nodes (or a direction on the edges)—known as a rooted tree
- Borrowing from nature, we recognise one node as the root node
- Nodes have children nodes living beneath them
- Each child has a parent node above them except the root
- Nodes with no children are leaf nodes

- We often impose an ordering on the nodes (or a direction on the edges)—known as a rooted tree
- Borrowing from nature, we recognise one node as the root node
- Nodes have children nodes living beneath them
- Each child has a parent node above them except the root
- Nodes with no children are leaf nodes

Spot the Error

One small biological inconsistency

Spot the Error

- One small biological inconsistency
- Yep!, computer scientists draw there trees upside down

Spot the Error

- One small biological inconsistency
- Yep!, computer scientists draw there trees upside down
 - ★ root at the top
 - ⋆ leaves at the bottom

Subtrees

• We can think of the tree made up of subtrees

Subtrees

• We can think of the tree made up of **subtrees**

Subtrees

• We can think of the tree made up of **subtrees**

Level of Nodes

- It is useful to label different levels of the tree
- We take the **level** of a node in a tree as its distance from the root
- We take the height of a tree to be the number of levels

Level of Nodes

- It is useful to label different levels of the tree
- We take the **level** of a node in a tree as its distance from the root
- We take the height of a tree to be the number of levels

Level of Nodes

- It is useful to label different levels of the tree
- We take the level of a node in a tree as its distance from the root
- We take the height of a tree to be the number of levels

Outline

- 1. Trees
- 2. Binary Trees
 - Implementing Binary Trees
- 3. Binary Search Trees
 - Definition
 - Implementing a Set
- 4. Tree Iterators

Binary Trees

- A binary tree is a tree where each node can have zero, one or two children
- ullet The total number of possible nodes at level l is 2^l
- ullet The total number of possible nodes of a tree of height h is

$$1+2+\cdots+2^{h-1}=2^h-1$$

Binary Trees

- A binary tree is a tree where each node can have zero, one or two children
- ullet The total number of possible nodes at level l is 2^l
- ullet The total number of possible nodes of a tree of height h is

$$1 + 2 + \dots + 2^{h-1} = 2^h - 1$$

Level 0	# Nodes
1	2
2	4
3	8

Binary Trees

- A binary tree is a tree where each node can have zero, one or two children
- ullet The total number of possible nodes at level l is 2^l
- ullet The total number of possible nodes of a tree of height h is

$$1+2+\cdots+2^{h-1}=2^h-1$$

Level 0	# Nodes
1	2
2	4
3	8
	15

Uses of Binary Trees

- Binary trees have a huge number of applications
- For example, they are used as expression trees to represent formulae

Uses of Binary Trees

- Binary trees have a huge number of applications
- For example, they are used as expression trees to represent formulae

- We wish to build a generic binary tree class with each node housing an element
- Again we use a Node<T> class as the building block for our data structure—in this case a node of the tree
- The Node<T> class will contain a pointer to left and right children
- To help navigate the tree each node will contain a pointer to its parent

- We wish to build a generic binary tree class with each node housing an element
- Again we use a Node<T> class as the building block for our data structure—in this case a node of the tree
- The Node<T> class will contain a pointer to left and right children
- To help navigate the tree each node will contain a pointer to its parent

- We wish to build a generic binary tree class with each node housing an element
- Again we use a Node<T> class as the building block for our data structure—in this case a node of the tree
- The Node<T> class will contain a pointer to left and right children
- To help navigate the tree each node will contain a pointer to its parent

- We wish to build a generic binary tree class with each node housing an element
- Again we use a Node<T> class as the building block for our data structure—in this case a node of the tree
- The Node<T> class will contain a pointer to left and right children
- To help navigate the tree each node will contain a pointer to its parent

C++ Code

```
template <typename T>
class binary_tree {
private:
                                                          root
                                                                   size
  class Node {
                                                                    4
  public:
     T element;
                                                                   null
    Node* parent;
    Node \star left = 0;
                                                Node<String>
                                                  "B" null null
    Node * right = 0;
                                                                         null
                                                 element left right parent
    Node (const T& value, Node* parent_node) {
                                                               "D" null null
       element = value;
       parent = parent_node;
  };
  unsigned no_elements = 0;
  Node * root = 0;
```

C++ Code

```
template <typename T>
class binary_tree {
private:
                                                          root
                                                                   size
  class Node {
                                                                    4
  public:
     T element;
                                                                   null
    Node* parent;
    Node \star left = 0;
                                                Node<String>
                                                  "B" null null
    Node * right = 0;
                                                                         null
                                                element left right parent
    Node (const T& value, Node* parent_node) {
                                                               "D" null null
       element = value;
       parent = parent_node;
  };
  unsigned no_elements = 0;
  Node * root = 0;
```

Outline

- 1. Trees
- 2. Binary Trees
 - Implementing Binary Trees
- 3. Binary Search Trees
 - Definition
 - Implementing a Set
- 4. Tree Iterators

- We will concentrate on one of the most important binary trees, namely the binary search tree
- The binary search tree keeps the elements ordered
- We can define a binary search tree recursively
 - 1. Each element in the left subtree is less than the root element
 - 2. Each element in the right subtree is greater than the root element
 - 3. Both left and right subtrees are binary search trees

- We will concentrate on one of the most important binary trees,
 namely the binary search tree
- The binary search tree keeps the elements ordered
- We can define a binary search tree recursively
 - 1. Each element in the left subtree is less than the root element
 - 2. Each element in the right subtree is greater than the root element
 - 3. Both left and right subtrees are binary search trees

- We will concentrate on one of the most important binary trees,
 namely the binary search tree
- The binary search tree keeps the elements ordered
- We can define a binary search tree recursively
 - 1. Each element in the left subtree is less than the root element
 - 2. Each element in the right subtree is greater than the root element
 - 3. Both left and right subtrees are binary search trees

- We will concentrate on one of the most important binary trees,
 namely the binary search tree
- The binary search tree keeps the elements ordered
- We can define a binary search tree recursively
 - 1. Each element in the left subtree is less than the root element
 - 2. Each element in the right subtree is greater than the root element
 - 3. Both left and right subtrees are binary search trees

- We will concentrate on one of the most important binary trees, namely the binary search tree
- The binary search tree keeps the elements ordered
- We can define a binary search tree recursively
 - 1. Each element in the left subtree is less than the root element
 - 2. Each element in the right subtree is greater than the root element
 - 3. Both left and right subtrees are binary search trees

- We will concentrate on one of the most important binary trees,
 namely the binary search tree
- The binary search tree keeps the elements ordered
- We can define a binary search tree recursively
 - 1. Each element in the left subtree is less than the root element
 - 2. Each element in the right subtree is greater than the root element
 - 3. Both left and right subtrees are binary search trees

Example Binary Search Tree

Example Binary Search Tree

Example Binary Search Tree

- Searching a binary search tree is easy
- Start at the root
- Compare with element
 - ★ If less than element go left
 - If greater than element go right
 - ★ If equal to element found

- Searching a binary search tree is easy
- Start at the root
- Compare with element
 - ★ If less than element go left
 - If greater than element go right
 - ★ If equal to element found

- Searching a binary search tree is easy
- Start at the root
- Compare with element
 - ★ If less than element go left
 - If greater than element go right
 - ★ If equal to element found

- Searching a binary search tree is easy
- Start at the root
- Compare with element
 - ★ If less than element go left
 - If greater than element go right
 - ★ If equal to element found

- Searching a binary search tree is easy
- Start at the root
- Compare with element
 - ★ If less than element go left
 - If greater than element go right
 - ★ If equal to element found

- Searching a binary search tree is easy
- Start at the root
- Compare with element
 - ★ If less than element go left
 - If greater than element go right
 - ★ If equal to element found

- Searching a binary search tree is easy
- Start at the root
- Compare with element
 - ★ If less than element go left
 - If greater than element go right
 - ★ If equal to element found

- Searching a binary search tree is easy
- Start at the root
- Compare with element
 - ★ If less than element go left
 - If greater than element go right
 - If equal to element found

- The number of comparisons necessary to find an element in a binary tree depends on the level of the node in the tree
- The worst case number of comparisons is therefore the height of the tree
- This depends on the density of the tree

- The number of comparisons necessary to find an element in a binary tree depends on the level of the node in the tree
- The worst case number of comparisons is therefore the height of the tree
- This depends on the density of the tree

- The number of comparisons necessary to find an element in a binary tree depends on the level of the node in the tree
- The worst case number of comparisons is therefore the height of the tree
- This depends on the density of the tree

- The number of comparisons necessary to find an element in a binary tree depends on the level of the node in the tree
- The worst case number of comparisons is therefore the height of the tree
- This depends on the density of the tree

- The number of comparisons necessary to find an element in a binary tree depends on the level of the node in the tree
- The worst case number of comparisons is therefore the height of the tree
- This depends on the density of the tree

- A set is a fundamental abstract data type
- It is a collection of things with no repetition and no order
- Ironically because order doesn't matter we can order the elements

$$\{1, 3, 5, 5, 3, 4\} = \{5, 3, 4, 1\} = \{1, 3, 4, 5\}$$

- This allows rapid search—a feature we care about
- Binary trees are one of the efficient ways of implementing a set

- A set is a fundamental abstract data type
- It is a collection of things with no repetition and no order
- Ironically because order doesn't matter we can order the elements

$$\{1, 3, 5, 5, 3, 4\} = \{5, 3, 4, 1\} = \{1, 3, 4, 5\}$$

- This allows rapid search—a feature we care about
- Binary trees are one of the efficient ways of implementing a set

- A set is a fundamental abstract data type
- It is a collection of things with no repetition and no order
- Ironically because order doesn't matter we can order the elements

$$\{1, 3, 5, 5, 3, 4\} = \{5, 3, 4, 1\} = \{1, 3, 4, 5\}$$

- This allows rapid search—a feature we care about
- Binary trees are one of the efficient ways of implementing a set

- A set is a fundamental abstract data type
- It is a collection of things with no repetition and no order
- Ironically because order doesn't matter we can order the elements

$$\{1, 3, 5, 5, 3, 4\} = \{5, 3, 4, 1\} = \{1, 3, 4, 5\}$$

- This allows rapid search—a feature we care about
- Binary trees are one of the efficient ways of implementing a set

- A set is a fundamental abstract data type
- It is a collection of things with no repetition and no order
- Ironically because order doesn't matter we can order the elements

$$\{1, 3, 5, 5, 3, 4\} = \{5, 3, 4, 1\} = \{1, 3, 4, 5\}$$

- This allows rapid search—a feature we care about
- Binary trees are one of the efficient ways of implementing a set

Fitting In

- The standard template library provides a class std:set<T>
- This contains many functions like
 - * Constructors
 - ★ size()
 - ★ insert(To)
 - ★ find(Objecto)
 - ★ erase(Object o)
 - ★ begin() and end()

Fitting In

- The standard template library provides a class std:set<T>
- This contains many functions like

```
* Constructors

* size()

* insert(To)

* find(Objecto)

* erase(Object o)

* begin() and end()
```

- To sort any objects they must be comparable
- In the STL the set implementation has a second template parameter: std::set<T, Compare = less<T> >
- by default this is defined to be less<T> (which is a function already defined for most common types) which you can define
- If you have a set of complex objects you will have to define Compare

```
bool MyCompare(MyObject left, MyObject right) {
   return something
}

mySet = set<MyObject, MyCompare>;
```

- To sort any objects they must be comparable
- In the STL the set implementation has a second template parameter: std::set<T, Compare = less<T> >
- by default this is defined to be less<T> (which is a function already defined for most common types) which you can define
- If you have a set of complex objects you will have to define Compare

```
bool MyCompare(MyObject left, MyObject right) {
   return something
}

mySet = set<MyObject, MyCompare>;
```

- To sort any objects they must be comparable
- In the STL the set implementation has a second template parameter: std::set<T, Compare = less<T> >
- by default this is defined to be less<T> (which is a function already defined for most common types) which you can define
- If you have a set of complex objects you will have to define Compare

```
bool MyCompare(MyObject left, MyObject right) {
   return something
}

mySet = set<MyObject, MyCompare>;
```

- To sort any objects they must be comparable
- In the STL the set implementation has a second template parameter: std::set<T, Compare = less<T> >
- by default this is defined to be less<T> (which is a function already defined for most common types) which you can define
- If you have a set of complex objects you will have to define Compare

```
bool MyCompare(MyObject left, MyObject right) {
   return something
}

mySet = set<MyObject, MyCompare>;
```

Find an Element

• One of the core operations of a binary tree is to find a node

```
iterator find(const T& element) {
  Node* current = root;
  while (current!=0) {
    if (current->element == element) {
       return iterator(current);
    }
    if (element < current->element) {
       current = current->left;
    } else {
       current = current->right;
    }
}
return iterator(0);
```

Find an Element

One of the core operations of a binary tree is to find a node

```
iterator find(const T& element) {
  Node* current = root;
  while (current!=0) {
    if (current->element == element) {
       return iterator(current);
    }
    if (element < current->element) {
       current = current->left;
    } else {
       current = current->right;
    }
}
return iterator(0);
```

Find an Element

One of the core operations of a binary tree is to find a node

```
iterator find(const T& element) {
  Node* current = root;
while (current!=0) {
  if (current->element == element) {
    return iterator(current);
  }
  if (element < current->element) {
    current = current->left;
  } else {
    current = current->right;
  }
}
return iterator(0);
```

Find an Element

One of the core operations of a binary tree is to find a node

```
iterator find(const T& element) {
  Node* current = root;
  while (current!=0) {
    if (current->element == element) {
       return iterator(current);
    }
    if (element < current->element) {
       current = current->left;
    } else {
       current = current->right;
    }
}
return iterator(0);
```

Find an Element

One of the core operations of a binary tree is to find a node

```
iterator find(const T& element) {
  Node* current = root;
  while (current!=0) {
    if (current->element == element) {
       return iterator(current);
    }
    if (element < current->element) {
       current = current->left;
    } else {
       current = current->right;
    }
}
return iterator(0);
```

Add an Element

```
pair<iterator, bool> insert(const T& element) {
  if (no elements==0) {
    root = new Node(element, 0);
    ++no elements;
    return pair<iterator, bool>(iterator(root), true);
  Node * parent = 0;
  Node* current = root;
  while (current != 0) {
    if (current->element == element) {
      return pair<iterator, bool>(iterator(0), false);
    parent = current;
    if (element < current->element) {
      current = current->left;
    } else {
      current = current->right;
```

Add an Element

```
pair<iterator, bool> insert(const T& element) {
  if (no elements==0) {
    root = new Node(element, 0);
    ++no elements;
    return pair<iterator, bool>(iterator(root), true);
  Node * parent = 0;
  Node* current = root;
  while (current != 0) {
    if (current->element == element) {
      return pair<iterator, bool>(iterator(0), false);
    parent = current;
    if (element < current->element) {
      current = current->left;
    } else {
      current = current->right;
```

Add an Element

```
pair<iterator, bool> insert(const T& element) {
  if (no elements==0) {
    root = new Node(element, 0);
    ++no elements;
    return pair<iterator, bool>(iterator(root), true);
  Node * parent = 0;
  Node* current = root;
  while (current != 0) {
    if (current->element == element) {
      return pair<iterator, bool>(iterator(0), false);
    parent = current;
    if (element < current->element) {
      current = current->left;
    } else {
      current = current->right;
```

```
current = new Node(element, parent);
if (element < parent->element) {
  parent->left = current;
} else {
  parent->right = current;
}
++no_elements;
return pair<iterator, bool>(iterator(current), true);
```


Shape of Tree

 The structure of the tree depends on the order in which we add elements to it

Suppose we add

To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune, Or to take arms against a sea of troubles,

Ignoring punctuation we get the following tree

Shape of Tree

 The structure of the tree depends on the order in which we add elements to it

Suppose we add

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,

Ignoring punctuation we get the following tree

Shape of Tree

 The structure of the tree depends on the order in which we add elements to it

Suppose we add

To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune, Or to take arms against a sea of troubles,

Ignoring punctuation we get the following tree

Hamlet

Outline

- 1. Trees
- 2. Binary Trees
 - Implementing Binary Trees
- 3. Binary Search Trees
 - Definition
 - Implementing a Set
- 4. Tree Iterators

- As with most container classes it is very useful to define iterators
- begin() should return a "pointer" to the start of the tree
- end() provides a "pointer" past the end
- operator*() returns the element
- opeator++() increments the "pointer"
- operator!=(lhs, rhs) is used to compare iterators
 set<int> mySet;
 ...
 for(auto pt=mySet.begin(), pt!=mySet.end(), ++pt) {
 cout << *pt;</pre>

- As with most container classes it is very useful to define iterators
- begin () should return a "pointer" to the start of the tree
- end() provides a "pointer" past the end
- operator*() returns the element
- opeator++() increments the "pointer"
- operator!=(lhs, rhs) is used to compare iterators
 set<int> mySet;
 ...
 for(auto pt=mySet.begin(), pt!=mySet.end(), ++pt) {
 cout << *pt;</pre>

- As with most container classes it is very useful to define iterators
- begin() should return a "pointer" to the start of the tree
- end() provides a "pointer" past the end
- operator*() returns the element
- opeator++() increments the "pointer"
- operator!=(lhs, rhs) is used to compare iterators
 set<int> mySet;
 ...
 for(auto pt=mySet.begin(), pt!=mySet.end(), ++pt) {
 cout << *pt;
 }</pre>

- As with most container classes it is very useful to define iterators
- begin() should return a "pointer" to the start of the tree
- end() provides a "pointer" past the end
- operator*() returns the element
- opeator++() increments the "pointer"
- operator!=(lhs, rhs) is used to compare iterators
 set<int> mySet;
 ...
 for(auto pt=mySet.begin(), pt!=mySet.end(), ++pt) {
 cout << *pt;</pre>

- As with most container classes it is very useful to define iterators
- begin() should return a "pointer" to the start of the tree
- end() provides a "pointer" past the end
- operator*() returns the element
- opeator++() increments the "pointer"
- operator!=(lhs, rhs) is used to compare iterators
 set<int> mySet;
 ...
 for(auto pt=mySet.begin(), pt!=mySet.end(), ++pt) {
 cout << *pt;
 }</pre>

Tree Iterators

- As with most container classes it is very useful to define iterators
- begin() should return a "pointer" to the start of the tree
- end() provides a "pointer" past the end
- operator*() returns the element
- opeator++() increments the "pointer"
- operator!=(lhs, rhs) is used to compare iterators

```
set < int > mySet;
...
for (auto pt=mySet.begin(), pt!=mySet.end(), ++pt) {
  cout << *pt;
}</pre>
```

Tree Iterators

- As with most container classes it is very useful to define iterators
- begin() should return a "pointer" to the start of the tree
- end() provides a "pointer" past the end
- operator*() returns the element
- opeator++() increments the "pointer"
- operator!=(lhs, rhs) is used to compare iterators
 set<int> mySet;
 ...
 for(auto pt=mySet.begin(), pt!=mySet.end(), ++pt) {
 cout << *pt;
 }</pre>

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

{15 25 28 30 32 <mark>36</mark> 37 50 53 59 61 68 75}

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

 $\{15\ 25\ 28\ 30\ 32\ 36\ 37\ 50\ 53\ {\color{red}59}\ 61\ 68\ 75\}$

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

 $\{15\ 25\ 28\ 30\ 32\ 36\ 37\ 50\ 53\ 59\ 61\ 68\ 75\}$

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- To find the successor we first start in the left most branch
- We follow two rules
 - 1. **If** right child exist **then** move right once and then move as far left as possible
 - 2. **else** go up to the left as far as possible and then move up right

- Trees and particularly binary trees are one of the most important tools of a computer scientist
- Conceptually they are quite simple
- However, there are a lot of details that need to be understood
- Coding even simple trees needs great care
- As we will see things get more complicated

- Trees and particularly binary trees are one of the most important tools of a computer scientist
- Conceptually they are quite simple
- However, there are a lot of details that need to be understood
- Coding even simple trees needs great care
- As we will see things get more complicated

- Trees and particularly binary trees are one of the most important tools of a computer scientist
- Conceptually they are quite simple
- However, there are a lot of details that need to be understood
- Coding even simple trees needs great care
- As we will see things get more complicated

- Trees and particularly binary trees are one of the most important tools of a computer scientist
- Conceptually they are quite simple
- However, there are a lot of details that need to be understood
- Coding even simple trees needs great care
- As we will see things get more complicated

- Trees and particularly binary trees are one of the most important tools of a computer scientist
- Conceptually they are quite simple
- However, there are a lot of details that need to be understood
- Coding even simple trees needs great care
- As we will see things get more complicated