Course Code MAT2002	Discrete Mathematics and Graph Theory	Course Type : LT Credits:4
Prerequisite:	Basics of algebra	
Objectives:		

To provide fundamental ideas on Discrete Mathematics and Graph theory required for the study of Computer Science

Expected Outcomes:

By the end of the course, students should be able to

- appreciate the power of discrete mathematics and Graph theory and use them to design mathematical model
- analyze the problems connected with data analysis that arise in their respective engineering courses.
- Emphasize the study of computational and algorithmic aspects of Graph Theory

Student a,e,j,k Learning Outcomes (SLO):			
Module No	Module Contents	No. of lectur	SLOs
1	Set Theory and Boolean Algebra Relations and Functions, Partial Order Relations, Lattices, Boolean Algebra, Laws of Boolean Algebra, Boolean Functions- Normal Forms, Application of Boolean Algebra to Switching Circuits.	9	a,e,j,k
2	Predicate Calculus Introduction - Statements and Notation - Connectives - Tautologies, Logic - Equivalence - Implications, Laws of Statement Calculus. The Theory of Inference for the Statement Calculus. Predicate and Quantifiers- Nested quantifiers-Rules of Inference for Predicates, Rules for Inference for Quantified Statements.	7	a,e,j,k
3	Fundamentals of graphs Graphs — introduction — isomorphism — sub graphs — walks- paths - circuits — connectedness — components — Euler graphs — Hamiltonian paths and circuits.	9	a,e,j,k
4	Trees, Fundamental circuits and Cut sets Trees – properties of trees – distance and centers in tree – rooted and binary trees – spanning trees – spanning trees in a weighted graph. Cut sets – properties of cut set – fundamental circuits and cut sets	9	a,e,j,k
5	Matrix representation of graphs Incidence matrix – sub matrices – circuit matrix – path matrix – adjacency matrix. Chromatic number	9	A,e,j,k

		1		1			
	Directed graphs, Graph Theoretic algorithms						
	Digraphs – types of digraphs – directed paths and connectedness –						
	Euler graphs – adjacency matrix of a digraph - tournament. Algorithms						
	- connectedness and components – spanning tree – fundamental						
	circuits – cut vertices – directed circuits – shortest path algorithm.						
6	General Electricates by year present source outstern postery year prints	;	22				
	•			45			
Mc	ode of Teaching and Learning:						
# C	Class room teaching						
# L	Jse of mathematical software (such as MATLAB, MATHEMATICA, SAGE, ETC.) a	is te	achin	g aid			
# N	Ainimum of 2 lecture periods by experts on contemporary topics						
	ode of Evaluation and assessment: Digital Assignments, Continuous Assessme						
Fin	al Assessment Test and unannounced open book examinations, quizzes, stude	ent's	5				
	rtfolio generation and assessment, innovative assessment practices						
Tex			ours				
1.	Kenneth H. Rosen, Discrete Mathematics and its applications, 6 th Edn.	, Ta	ita M	cGraw			
	Hill,(2003)	,(2003)					
2.	Narasing Deo, Graph theory with application to Engineering and Computer S	Scier	nce, P	rentice			
	Hall India (2010).						
3.	Fundamentals of Discrete Math for Computer Science- A Problem-Solving Primer by Tom						
	Jenkyns and Ben Stephenson , Springer-Verlag , 2013.						
4	Mathematics of Discrete Structures for Computer Science by Gordan J.Pac , 2012.	e, Sp	oringe	er-Verla			
Re	ference Books:						
1.	West, D.B, Introduction to Graph Theory, second ed., <i>Prentice-Hall</i> , Engl 2001).	ewo	od Cl	iffs, NJ,			
2.	crete Mathematical Structures by Kolman, R.C.Busby and S.C.Ross, 6 th Edition, PHI, 2009.						
3.	.M.Reingold, J.Nievergelt, N.Deo, Combinatorial Algorithms: Theory And Practice, Prentice all, N.J (1977).						
4	Richard Johnsonbaugh, "Discrete Mathematics", 5 th Edition, Pearson Educat	ion,	2001				
Re	commendation by the Board of Studies on 19 June 2019						
Ap	proval by Academic council on						
Co	mpiled by Dr. Manisha Jain, I	Dr. R	Reena	Jain and			

Dr. Anant Kant Shukla