

DATA PREPARATION & CLEANING

Chapter 7: Record Linkage – Blocking & Indexing

Victor Christen

AGENDA

- Record Linkage
 - Benefit, Applications & Techniques
- Blocking & Indexing
- Taxonomy
- Traditional Blocking
 - Suffix Blocking
 - Soundex, SLK-581 for person data specialized
- Sorted Neighbourhood
- Automatic Blocking Key Selection
- LSH-Blocking
 - Approximation of the Jaccard similarity

WHAT IS RECORD-LINKAGE

Process to identify records from different or the same data source representing the same entity such as patients, customers, product, publications

Dr Smith, Peter 42 Miller Street 2602 O'Connor

Pete Smith 42 Miller St 2600 Canberra A.C.T.

P. Smithers 24 Mill Rd 2600 Canberra ACT

- Also known as Data Linkage, Data Matching, Entity Resolution, Duplicate Detection, etc.
- Required due to missing global entity identifier across different data sources

BENEFIT

Data Quality

- Resolve inconsistencies
- Integration in master datasets → data is up-to-date

Analysis

- Avoiding statistical bias
- Enable analysis across various data sources
 - E.g., dependencies between diseases and medications
- Feature enrichment

Abteilung Datenbanken

RECORD LINKAGE IN THE ADMINISTRATION

What is ATO Data Matching?

ATO data matching is best described as a two-step process.

- **1.** The ATO collects information about you from:
 - · your employers,
 - your bank and other financial institutions (now including banks overseas),
 - · health insurance funds,
 - BAS Statements.
 - · superannuation accounts,
 - ride share companies (Uber, Didi, Ola, etc.),
 - holiday let businesses (Airbnb, etc.), and
 - · other property information your state has.

The ATO data matching technology is designed to catch wrongdoers. Are you in the clear?

"Tracey Donaldson* says her problems began when a bill arrived in the mail last month.

It was a Centrelink debt for \$45,500.

The letter was intended for another woman with the same name, who lived in a suburb with the same name, in a different state, said Ms Donaldson, whose name has been changed for legal reasons.

The woman was also born on the same day of the same month as Ms Donaldson, but in a different year. ..."

ABC News, 17 Feb 2020

BUSINESS

SOCIAL SCIENCE - HISTORICAL CENSUS DATA

 Analysis of social developments based on historical census data (changes in family structure, healthcare, education, immigration)

TECHNIQUES

Manual configured

Rule-based matching (not scalable, difficult to maintain)

Machine learning

- Unsupervised
 - Clustering methods achieve worse results than
- Supervised
 - Generic due to automated training process
 - Utilize high training volume to achieve high quality
- Active Learning
 - Moderate labelling effort to obtain qualitative training data
- Transfer learning
 - Reuse of existing models on an unsolved linkage problem

7-8

RECORD LINKAGE PROCESS

BLOCKING & INDEXING

- Number of comparisons between two sets of records is the product of the cardinalities
- Deduplication: n (n-1) / 2
- Feasibility?
 - Data sources with 1 Mio an 5 Mio records
 - $-10^6 \cdot 5*10^6 = 5 \cdot 10^{12}$
 - 1 comparison in 1ms → ≈158 years
- Performance bottleneck caused by attribute comparison between record pairs

TECHNIKEN DER SUCHRAUMREDUKTION

Goal: Reduction of unnecessary comparisons

Blocking	Indexing
 Usage of Blocking Keys specifying the blocking key function and the attributes being applied on each record Records with the same blocking key values regarding all blocking keys or at least one build a block Comparison of records within one block Overlapping vs disjoint Independent regarding the similarity computation and the classification step 	 Using a similarity metric and a similarity threshold to compare records Efficient elimination of pairs that can not achieve a similarity above the threshold simple estimation based on value characteristics such as value length, suffixes metric space in combination with mathematical defined approximations Depends on the similarity computation and classification

BLOCKING

- Input: R und S sets of records
- Application of a set of blocking keys (bf, a₁),
 (bf, a₂), ..., (bf, a_k) for all records r and s from R and S
- Group records by the determined blocking key values

record	BK1	BK2
r1	Α	1
r2	Α	2
R3	В	1
r4	С	2

record	BK1	BK2
s1	Α	1
s2	Α	1
s3	С	2
s4	С	2

BLOCKING SCHEMES – CNF VS DNF

- Grouping of all records by blocking key values
- Conjunctive Normal Form: Block consists of records, where the values from all blocking keys are the same
 - Concatenation of blocking key values
- Disjunctive Normal Form: Block consists of records, where the values from at least one blocking key are

identical

Block	Records
A1	r1, s1, s2
A2	r2
B1	r3
C2	r4, s3, s4

Block	Records
Α	r1, r2, s1, s2
В	r3
С	r4, s3, s4
1	r1,r3, s1, s2
2	r2, r4, s3, s4

TAXONOMY

Attribute selection

- Supervised
- Unsupervised

Key type

- Hash-based
- Similarity-based

Schema awareness

- Schema-aware
- Schema-agnostic

Matching awareness

- static
- dynamic

Redundancy awareness

- Redundancy-free
 - Records is assigned to only one block
- Redundancy-positive
 - Records occur in multiple blocks

Abteilung Datenbanken

- Similarity of a record pair is related to the number of common occurrences
- Redundancy-neutral
 - Records occur in multiple blocks where most record pairs share the same number of blocks
 - No meaning

Constraint awareness

- Lazy block creation without any restrictions
- Proactive restrictions regarding the block creation are addressed such as maximum block size or reducing the number of comparisons within a block

George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas. 2020. Blocking and Filtering Techniques for Entity Resolution: A Survey. ACM Comput. Surv. 53, 2, Article 31 (March 2021), 42 pages. https://doi.org/10.1145/3377455

TRADITIONAL BLOCKING(SCHEMA-AWARE, REDUNDANCY-FREE, HASH-BASED, LAZY)

- Blocking function use the identity of an attribute value for an attribute as blocking key value
- Multiple attributes
 - DNF: Concatenation of attribute values
 - High reduction, but high risk to loose correct matches
 - CNF: at least one Blocking key value is the same
- Attribute Selection
 - Schema-aware
 - Small reduction vs high loss of correct matches
 - Skewed blocks → efficiency problem for distributed computations

SUFFIX ARRAYS BLOCKING (SCHEMA-AWARE, REDUNDANCY-POSITIVE, HASH-BASED, PROACTIVE)

Problem: skewed block size distribution

Approach

- Create list of suffixes with the minimum suffix size of I_{min}
- Create a block with a maximum number b_{max} of records
- E.g., Christen, Hansen, Kristen, Kirsten with I_{min} =3,

$$b_{max} = 2$$

- Suffix list := [ten, sten, isten, risten, hristen, Christen, sen, nsen, ansen, Hansen, Kristen, rsten, irsten, Kirsten]
- B_{risten} = {Christen, Kristen} , B_{sten} = {Christen, Kristen, Kirsten}

TRADITIONAL BLOCKING – PHONETIC ENCODING

- Frequent occurences of different name variations
- Many variations are valid, e.g., Victor, Vicktor, Viktor, Christen, Kristen
- Names are often recorded by audio
- Phonetic encoding considers different name variations
- Phonetic encoding is language dependent e.g., Soundex vs Kölner Phonetik

Issues

Typos lead potentially to different Soundex-Codes

PHONETIC ENCODING- APPROACH

- Transformation of attribute values to a code with a letter and 3 digits
 - 1. Keep the 1st letter
 - 2. Remove the following letters: a, e, i, o, u, y, h, w
 - Replace all consonants starting from position 2 with the following rules
- b, f, p, $v \rightarrow 1$ c, g, j, k, q, s, x, $z \rightarrow 2$
 - d, $t \rightarrow 3$ $l \rightarrow 4$
 - m, $n \rightarrow 5$ $r \rightarrow 6$
 - 4. Keep the unique neighboring digits
 - 5. Fill up with 0 if the length is smaller than 4, otherwise truncate the length to 4 ".victor" \rightarrow V236 "vicktor" \rightarrow V236

TRADITIONAL BLOCKING – SLK-581

- Developed by the Australian Institute for Health and Welfare¹
- Specialized for person records
- Blocking is also similarity computation
- Idea
 - Selection of the 2nd, 3rd and 5th letter from the last name
 - Selection of the 2nd and 3rd letter from the first name
 - Transformation of the birth data to ddmmyyyy
 - Encode the gender(1=male, 2=female, 9=unknown)
 - Fill up short names with 2, missing values with 999

AUTOMATIC SELECTION OF BLOCKING KEYS

 Selection of "good" blocking keys are essential for a high reduction ratio of unnecessary comparisons without loosing correct matches

Goal

Selection of blocking keys for DNF blocking

Idea

- Utilize a (weak) training dataset with record pairs in Matches M and Non Matches NM
- Filter blocking keys generating too large blocks or blocks with too many pairs in NM
- Add blocking keys to the current solution until M is covered by the resulting blocks

Abteilung Datenbanken

AUTOMATIC SELECTION OF BLOCKING KEYS- APPROACH

- Input: data sources R and S, Training dataset (M, NM),
 bk_candidates list of blocking key candidates,
- ε Ratio of uncovered record pairs in **M**, max_size_ratio maximum block size ratio
- Output: determined blocking keys
- 1. Remove blocking keys bk with blocking function bf for attribute a, if $max_{b \in B}(|b|) > max_size_ratio \cdot max(|R|, |S|)$
- Compute Fisher-Score for each blocking key bk based on record pairs of M and NM
- 3. Order blocking keys by determined score

AUTOMATIC SELECTION OF BLOCKING KEYS- APPROACH

- 3. Order blocking keys by determined score
- 4. Add iteratively bk to the result, if at least one more record pair is covered than before
- 5. Repeat steps 1-4 until the number of uncovered pairs is smaller than $\varepsilon \cdot |M|$

AUTOMATISIERTE SELEKTION VON BLOCKING KEYS – FISHER SCORE

- Fisher-Score to measure the coverage of record pairs in M and NM according to blocking key bk_k
 - Coverage in M should be high and small in NM

$$- C_k = \frac{|V_P|(\mu_{p,k} - \mu_k)^2 + |V_N|(\mu_{n,k} - \mu_k)^2}{|V_P|\sigma_{p,k}^2 + |V_N|\sigma_{n,k}^2}$$

- V_P set of vectors \vec{v} representing pairs in **M**
- V_N set of vectors \vec{v} representing pairs in **NM**
- $\vec{v}_k = 1, \text{if } bf_k(r[a]) = bf_k(s[a])$

Abteilung Datenbanken

0 else, for a record pair (r, s) w.r.t to a blocking function bf_k utilizing attribute a

AUTOMATIC SELECTION OF BLOCKING KEYS – FISHER-SCORE

$$- C_k = \frac{|V_P|(\mu_{p,k} - \mu_k)^2 + |V_N|(\mu_{n,k} - \mu_k)^2}{|V_P|\sigma_{p,k}^2 + |V_N|\sigma_{n,k}^2}$$

M/NM	rec	BK1	BK2	rec	BK1	BK2	V _P /V _N	$\overrightarrow{m{v}}$
M	r1	А	1	s1	Α	1	V_P	〈1,1 〉
M	r2	Α	2	s2	Α	1	V_P	〈1,0 〉
NM	r3	В	1	s3	С	2	V_N	(0,0)
NM	r4	С	2	s4	С	2	V_N	〈1,1 〉

- $-\mu_{p,k}$, $\sigma_{p,k}^2$ mean and variance of all bits generated from evaluating the key $k \in K$ on all pairs in V_P
- $-\mu_{n,k}$, $\sigma_{n,k}^2$ mean and variance of all bits generated from evaluating the key $k \in K$ on all pairs in V_N
- $-\mu_k$ expected value of blocking key k for pairs in **M** \cup **NM**

SORTED NEIGHBORHOOD (SCHEMA-AWARE, REDUNDANCY-NEUTRAL, SORTING, PROACTIVE)

- Assumption: similar blocking key values→ likely to be a match
- Sort blocking key values in alphanumerical order
- Compare the last record of a window with length w with all records w-1 (pairwise at the beginning)
- Move the window by 1 position

Problem

Small windows lead to missing comparisons

SORTED NEIGHBORHOOD BLOCKING - IMPROVEMENTS

- Extended Sorted Neighbourhood
 - Window over blocking keys instead of records

Blocking Key	Records
Martin	R1
Martin	R2
Pete	R3
Pete	R4
Peter	R5
Peter	R6
Victor	R7

Blocking Key	Records
Martin	R1,R2
Pete	R3,R4
Peter	R5, R6
Victor	R7

Issue

High number of comparisons for skewed blocking key value distribution

SORTED NEIGHBOURHOOD BLOCKING – IMPROVEMENTS(2)

Adaptive window size

- Blocking Key
 - Adapt window size depending on the blocking key value similarity
- Record similarity
 - Increase/Decrease the window size depending on the amount of record pairs classified as duplicate

DUPLICATE COUNT STRATEGY (SCHEMA-AWARE, REDUNDAN, HASH-BASIERT, PROAKTIV, DYNAMISCH)

- Idea: Extend the window, if the ratio between duplicates and comparison is high
- The more duplicates are found in a window, the larger the window should be

Uwe Draisbach, Felix Naumann, Sascha Szott, Oliver Wonneberg: Adaptive Windows for Duplicate Detection. ICDE 2012: 1073-1083

DUPLICATE COUNT STRATEGY - WORKFLOW

- 1. Sort record by blocking key value
- Initialize window with the size w
- 3. Compare 1st record with all records within the window

- 4. Increase window, if $\frac{\#recognized\ duplicates}{\#comparisons} \ge \Phi$
- 5. Move window (initial size w)

Uwe Draisbach, Felix Naumann, Sascha Szott, Oliver Wonneberg: Adaptive Windows for Duplicate Detection. ICDE 2012: 1073-1083

DUPLICATE COUNT STRATEGY - EXAMPLE

$$w = 4$$

 $\Phi = 0.3$
 $d/c = 0.33$

$$w = 5$$

 $\Phi = 0.3$
 $d/c = 0.25$

$$w = 4$$

 $\Phi = 0.3$
 $d/c = 0$

<u>Uwe Draisbach</u>, <u>Felix Naumann</u>, <u>Sascha Szott</u>, <u>Oliver Wonneberg</u>:Adaptive Windows for Duplicate Detection. <u>ICDE 2012</u>: 1073-1083

DUPLICATE COUNT STRATEGY - EXTENSIONS

Increase by w-1 regarding the identified duplicate

- Skip windows where duplicates were already identified
 - Missing comparisons potentially, if Φ is too high
 - Avoided by $\frac{1}{w-1} = \Phi$

<u>Uwe Draisbach</u>, <u>Felix Naumann</u>, <u>Sascha Szott</u>, <u>Oliver Wonneberg</u>: Adaptive Windows for Duplicate Detection. <u>ICDE 2012</u>: 1073-1083

LSH FOR BLOCKING VIA MIN-HASHING

- Converting of q-gram sets to similarity preserving signatures
 - Similar records cause similar signatures
- Jaccard similarity often used for computing similarities between textual values

$$-jaccard_{sim}(R_1, R_2) = \frac{|Q_1 \cap Q_2|}{|Q_1 \cup Q_2|} = \frac{3}{4}$$

- Approximation by One-Hot encoding and bit operations
 - Also computational intensive for large vocabularies→
 Transformation to similarity preserving signatures

LSH-BLOCKING - STEPS

Shingling

- Generate set of q-grams for each record
- Represent q-gram sets as One-Hot-Encoding C_i based on all occurring q-grams (vocabulary)
- Length of the encoding

 number of q-grams in the vocabulary

MinHash

- Property: If $sim(C_1, C_2)$ is high, $P(h(C_1)=h(C_2))$ is also high
- Computation of k permutations
- Identification of the position with the first 1 in the permutation

Locality Sensitive Hashing

Abteilung Datenbanken

- Split signature into b for each record
- Compute for each band a hash value with the minHash values of the band
- Comparison of records if the hash values of at least one band are the same

LSH BLOCKING - MINHASH IMPLEMENTATION

- Permutations are not applicable for large sets
- Using random hash functions
 - E.g., $h(x) = ((a \cdot x + b) \mod p) \mod N$ where a, b are random numbers and p a prime number with p > N
- Evaluation of k hash functions for each record
- Determine the minimum applying the hash function for each 1 in the One-Hot encoding from 0 to |C|-1

LSH BLOCKING - MINHASH

Example

$$Q = \{ic, ct, to, or\}$$

one-hot-encoding(Q) = 01011001

 $h(x) = (2x+1) \mod 8$

Positions of permutations

3	7	0
4	3	4
5	4	3
2	0	6
1	2	7
0	1	2
6	5	1
7	6	5

Original

0	
1	
0	_
1	[1,0,4
1	
0	
0	
4	

∞	
∞	h(0)=1
3	h(1)=3
3	h(2)=5
3	h(3)=7
1	h(4)=1
1	h(5)=3
1	h(6)=5
1	h(7)=7

LOCALITY SENSITIVE HASHING

- Quadratic complexity
- Approximation of similar signatures by dividing the signature to b bands with k/b
- Generate a hash $f(s_1, ..., s_{k/b})$ for each band b
- Records r_m, r_n are considered as similar if they share at least one common hash value

SUMMARY

- Record Linkage
 - Benefit, Applications, Techniques
- Process of Record Linkage
- Quadratic complexity for record comparisons
 - Reduction of comparisons using blocking and indexing techniques

SUMMARY

- Taxonomy of various blocking methods
- Traditional Blocking
 - Soundex and SLK581 Blocking key functions specified for person data
 - Blocking Key selection is a crucial part
- Sorted Neighbourhood
 - Avoid issues regarding dirty blocking keys
- LSH-Blocking is schema-agnostic to approximate Jaccard similarity for textual values