Group 6: Land-use Impacts on Biodiversity along FW-Coastal Gradients

Marc Los Huertos

2025-04-30

Introduction

The Shannon-Weaver Index, also known as the Shannon-Wiener Index or simply the Shannon Diversity Index, is a widely used metric in ecology for measuring biodiversity. It incorporates both species richness and evenness into a single value.

Historical Background

• 1948: Claude Shannon introduced the concept of *entropy* in his paper "A Mathematical Theory of Communication", where he quantified the uncertainty in a message source using:

$$H = -\sum p_i \log_2 p_i$$

- Warren Weaver later helped interpret and popularize this theory, leading to the combined attribution as the Shannon-Weaver Index.
- In the 1950s-60s, ecologists adapted the entropy formula to describe biodiversity, treating species as symbols and their relative abundances as probabilities.
- Sometimes incorrectly referred to as the **Shannon-Wiener Index** due to confusion with Norbert Wiener.

Implemented in R

```
group6.csv = "/home/mwl04747/RTricks/00_Project_Group_Demos/Group6_FakeData.csv"

# Read in the data
group6 = read.csv(group6.csv, header = TRUE)

# check read data
head(group6)
```

##		Х	Athecate.dinoflagellates	Thecate.dinoflagellates
##	1	San Onofre	120	90
##	2	Aliso Creek	60	45
##	3	Aliso Beach	100	80
##	4	Laguna Lake	20	15
##	5	Bonelli Park	15	10

##		Silicoflage	llates Di	atoms	Coccol	ithoph	ores	Cent	rarch	nidae	Salmonidae
##	1		35	200			140			5	30
##	2		10	100			25			12	18
##	3		30	180			110			7	22
##	4		5	140			8			90	10
##	5		2	130			5			85	8
##		Cyprinidae	Serranida	e Sci	aenidae	Ecosy	stem	Туре	pН	Tempe	eratureC.
##	1	2	6	0	80		Salt	vater	8.2		16.7
##	2	30		5	10	F	resh	vater	7.4		16.0
##	3	5	5	5	70		Salt	vater	7.5		15.0
##	4	75		1	0	Fr	eshwa	ater	7.1		14.0
##	5	65		0	0	F	resh	vater	7.1		16.6
##		Salinityp	pt. Disso	lved.	Oxygen.	.mgL.	Turbi	idity	NTU	J.	
##	1		33			4.8			4	10	
##	2		0			6.7			3	35	
##	3		15			3.9			4	18	
##	4		0			5.0			4	1 5	
##	5		0			5.0			4	1 5	

names(group6)

```
[1] "X"
                                    "Athecate.dinoflagellates"
##
    [3] "Thecate.dinoflagellates"
                                    "Silicoflagellates"
##
    [5] "Diatoms"
                                    "Coccolithophores"
    [7] "Centrarchidae"
                                    "Salmonidae"
                                    "Serranidae"
    [9] "Cyprinidae"
##
        "Sciaenidae"
                                    "Ecosystem.Type"
## [11]
## [13] "pH"
                                    "Temperature..C."
## [15] "Salinity..ppt."
                                    "Dissolved.Oxygen..mgL."
## [17] "Turbidity..NTU."
```

Calculating Shannon-diversity index

Definition

The Shannon Diversity Index (also known as the Shannon-Wiener or Shannon-Weaver Index) is a measure of biodiversity that accounts for both species richness and species evenness. It is defined mathematically as:

$$H' = -\sum_{i=1}^{S} p_i \ln p_i$$

Where:

- H' is the Shannon diversity index.
- \bullet S is the total number of species.
- p_i is the proportion of individuals belonging to the *i*-th species.
- In is the natural logarithm.

Calculation Steps

To calculate the index:

- 1. Count the total number of individuals across all species, denoted N.
- 2. For each species i, calculate the proportion $p_i = \frac{n_i}{N}$, where n_i is the number of individuals in species i.
- 3. Plug each p_i into the formula and compute the sum.

Alternate Formula Using Counts

Using species counts directly:

$$H' = -\sum_{i=1}^{S} \left(\frac{n_i}{N} \ln \frac{n_i}{N} \right)$$

Example Calculation in R

```
library(vegan)

## Loading required package: permute

## Loading required package: lattice

# Example data: rows = sites, columns = species counts

species_data <- matrix(
    c(5, 10, 15,
        8, 12, 10),
    nrow = 2,
    byrow = TRUE
)

# Calculate Shannon index
shannon_index <- diversity(species_data, index = "shannon")

# Print result
print(shannon_index)</pre>
```

[1] 1.011404 1.085189

The diversity() function defaults to the Shannon index when index = "shannon". It computes the index for each row (e.g., sample or site).

Example Calculation with Fake Data!

```
# Load the required library
library(vegan)
# Calculate the Shannon diversity index
shannon_diversity = function(data) {
    # Remove any rows with NA values
    data = na.omit(data)

# Calculate the Shannon diversity index
shannon_index = diversity(data, index = "shannon")
```

```
return(shannon_index)
}
# Calculate the Shannon diversity index for phytoplankton and fish from group6 data
shannon_diversity_phytoplankton <- shannon_diversity(group6[, c("Athecate.dinoflagellates", "Thecate.di
##
           1
                               3
## 1.2360911 1.1822503 1.2280767 0.7462206 0.6115810
shannon_diversity_fish <- shannon_diversity(group6[, c("Coccolithophores", "Centrarchidae", "Salmonidae
str(shannon_diversity_fish)
## Named num [1:5] 1.344 1.651 1.414 1.039 0.961
## - attr(*, "names")= chr [1:5] "1" "2" "3" "4" ...
fish = as.data.frame(shannon_diversity_fish); fish
##
     shannon_diversity_fish
## 1
                  1.3440054
## 2
                  1.6509059
## 3
                  1.4143310
## 4
                  1.0385452
## 5
                  0.9609695
fish$Location = group6$X; fish
     shannon_diversity_fish
                                Location
## 1
                  1.3440054
                              San Onofre
## 2
                  1.6509059 Aliso Creek
## 3
                  1.4143310 Aliso Beach
                  1.0385452 Laguna Lake
## 4
                  0.9609695 Bonelli Park
## 5
## Let's add the location to dataframe
shannon_diversity_phytoplankton$Location = group6$X; shannon_diversity_phytoplankton
## Warning in shannon_diversity_phytoplankton$Location = group6$X: Coercing LHS to
## a list
## $`1`
## [1] 1.236091
##
## $`2`
## [1] 1.18225
##
## $`3`
## [1] 1.228077
##
## $`4`
## [1] 0.7462206
##
## $`5`
## [1] 0.611581
##
## $Location
```

[1] "San Onofre" "Aliso Creek" "Aliso Beach" "Laguna Lake" "Bonelli Park"

$Combine\ with\ \mathbf{WQ}\ data!\ super\ neat\ dataset-great\ job!!$

Hypotheses

How do phytoplankton and fish diversity vary with sampling location?

Plots