Grammar Examples

- \blacksquare G=(N,T,P,S): ({S}, {a,b}, {S \rightarrow aS, S \rightarrow bS, S \rightarrow a, S \rightarrow b}, S), L(G)=?
- $> S \Rightarrow a$
- $S \Rightarrow b$
- $S \Rightarrow aS \Rightarrow aa \text{ or } S \Rightarrow^* aa$
- \triangleright S \Rightarrow aS \Rightarrow ab or S \Rightarrow * ab
- $S \Rightarrow bS \Rightarrow ba \text{ or } S \Rightarrow^* ba$
- \blacksquare S \Rightarrow bS \Rightarrow bb or S \Rightarrow * bb
- Language L(G)={a,b,aa,ab,ba,bb.....} = {a,b}* ε

Grammar Examples

- \blacksquare G=(N,T,P,S): ({S,B}, {a,b}, {S \rightarrow aB, S \rightarrow a, B \rightarrow bB, B \rightarrow aB, B \rightarrow a, B \rightarrow b}, S), L(G)=?
- \blacksquare $S \Rightarrow a$
- $S \Rightarrow aB \Rightarrow aa \text{ or } S \Rightarrow^* aa$
- \triangleright S \Rightarrow aB \Rightarrow ab or S \Rightarrow * ab
- \triangleright S \Rightarrow aB \Rightarrow aaB \Rightarrow aaa
- \triangleright S \Rightarrow aB \Rightarrow aaB \Rightarrow aab
- \triangleright S \Rightarrow aB \Rightarrow abB \Rightarrow aba
- \triangleright S \Rightarrow aB \Rightarrow abB \Rightarrow abb
- Language L(G)={a,aa,ab,aaa,aab,aba,abb....} = {w ∈ {a,b}* | w begins with symbol a}

Grammar Examples

- $G=(N,T,P,S): (\{S\}, \{a,b\}, \{S\rightarrow aSb, S\rightarrow ab\}, S), L(G)=?$
- $> S \Rightarrow ab$
- \blacksquare S \Rightarrow aSb \Rightarrow aabb
- \triangleright S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb
- Language L(G)={ab,aabb,aaabbb,aaaabbbb.....} = { $w \in \{a,b\}^* \mid w \text{ is of the form } a^nb^n, n>=1$ }

Language generated by a Grammar L(G)

- Language generated by a grammar L(G) is defined as set of all possible sentences (strings of terminal symbols only) that can be derived from / generated by the Grammar G.
- L(G)={w ∈ T^* | S \Rightarrow * w under grammar G}

Automata Language accepting Device

 Automata of a language L accepts set of all possible sentences/strings in the language L.

Automata Types

- 1. Finite State Automata
- 2. Pushdown Automata
- 3. Linear Bounded Automata
- 4. Turing Machine

Languages, Grammars and Automata

Grammar	Language	Automata
Type 0 Grammar Unrestriced Grammar	Recursively Enumerable Language	Turing Machine
Type 1 Grammar Context Sensitive Grammar	Context Sensitive Language	Linear Bounded Automata
Type 2 Grammar Context Free Grammar	Context Free Language	Pushdown Automata
Type 3 Grammar Regular Grammar	Regular Language	Finite State Automata