$\mathbf{ULB} \\ \mathbf{2018/2019}$

MATHF214 - Compléments de mathématiques

Assistant : Robson Nascimento Titulaire : Paolo Roselli

LISTE 6 - TRANSFORMATION DE FOURIER

Exercice 1. Soit

$$\mathcal{F}[f(x)] = \widehat{f}(\xi) := \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\xi} dx$$

la transformée de Fourier de la fonction f(x). Montrer que

- a) $\mathcal{F}[f(ax)] = a^{-1}\widehat{f}(a^{-1}\xi)$, où a > 0.
- b) $\mathcal{F}[f(x+h)] = e^{2\pi i h \xi} \widehat{f}(\xi)$, où $h \in \mathbb{R}$.
- c) $\mathcal{F}[f'(x)] = 2\pi i \xi \widehat{f}(\xi)$.
- d) $\mathcal{F}[-2\pi i x f(x)] = \frac{d}{d\xi} \widehat{f}(\xi).$

Exercice 2. Calculer la tranformée de Fourier $\widehat{f}(\xi)$ de f lorsque

- a) $f(x) = e^{-kx^2}$, où k > 0.
- b) $f(x) = e^{-a|x|}$, où a > 0.
- c) $f(x) = \frac{1}{1+x^2}, x \in \mathbb{R}.$

Exercice 3 (Équation d'onde amortie). On considère l'équation aux dérivées partielles

$$\frac{\partial y}{\partial t} + c \frac{\partial y}{\partial x} + \alpha y = 0,$$

où $c\alpha > 0$, dont on cherche la solution y(x,t), pour $x \in \mathbb{R}$ et $t \in \mathbb{R}^+$, telle que

$$y(x,0) = f(x),$$

où f(x) est une fonction donnée.

- a) Déterminer la transformée de Fourier $\widehat{y}(\xi,t)$ par rapport à la variable x de la solution y(x,t) cherchée.
- b) En déduire l'expression de la solution y(x,t) en termes de la fonction f(x).

Exercice 4 (Équation de la diffusion, ou équation de la chaleur). On considère l'équation aux dérivées partielles

$$\frac{\partial^2 y}{\partial x^2} - \frac{1}{k} \frac{\partial y}{\partial t} = 0,$$

où k>0, dont on cherche la solution y(x,t), pour $x\in\mathbb{R}$ et $t\in\mathbb{R}^+$, telle que

$$y(x,0) = f(x),$$

où f(x) est une fonction donnée.

- a) Déterminer la transformée de Fourier $\widehat{y}(\xi,t)$ par rapport à la variable x de la solution y(x,t) cherchée.
- b) En déduire l'expression de la solution y(x,t) en termes de la fonction f(x).
- c) Déterminer en particulier cette solution lorsque $f(x) = \delta(x)$, où $\delta(x)$ est la "distribution" de Dirac.
- d) Déterminer en particulier cette solution lorsque $f(x) = \begin{cases} 1 \text{ pour } x < 0, \\ 0 \text{ pour } x > 0. \end{cases}$

Exercice 5 (Équation des cordes vibrantes ou équation des ondes). On considère l'équation aux dérivées partielles

$$\frac{\partial^2 y}{\partial t^2} - c^2 \frac{\partial^2 y}{\partial x^2} = 0,$$

où c > 0, dont on recherche la solution y(x,t), pour $x \in \mathbb{R}$ et $t \in \mathbb{R}^+$, telle que

$$y(x,0) = f(x)$$
, $\frac{\partial y}{\partial t}(x,0) = g(x)$,

- où f(x) et g(x) sont deux fonctions données.
- a) Déterminer la transformée de Fourier $\widehat{y}(\xi,t)$ par rapport à la variable x de la solution y(x,t) cherchée.
- b) En déduire l'expression de la solution y(x,t) en termes des fonctions f(x) et g(x).
- c) Déterminer en particulier cette solution lorsque $f(x) = e^{-x^2}$ et $g(x) = cxe^{-x^2}$.

Exercice 6 (Équation des télégraphistes). On considère l'équation aux dérivées partielles

$$\frac{\partial^2 y}{\partial t^2} - c^2 \frac{\partial^2 y}{\partial x^2} + 2k \frac{\partial y}{\partial t} + k^2 y = 0,$$

où c, k > 0, dont on cherche la solution y(x, t), pour $x \in \mathbb{R}$ et $t \in \mathbb{R}^+$, telle que

$$y(x,0) = f(x)$$
, $\frac{\partial y}{\partial t}(x,0) = -kf(x)$,

- où f(x) est une fonction donnée.
- a) Déterminer la transformée de Fourier $\widehat{y}(\xi,t)$ par rapport à la variable x de la solution y(x,t) cherchée.
- b) En déduire l'expression de la solution y(x,t) en termes de la fonction f(x).