

Para o computador, tudo são números. Números, letras, sinais de pontuação, símbolos e até mesmo as instruções do próprio computador são números.

Quando vemos letras, imagens e sons na tela do computador, estamos vendo apenas uma maneira de representar números.

O essencial para reconhecer e entender os diferentes sistemas numéricos é ter consciência de que cada um deles é apenas um método diferente de representar quantidades.

Sistema egípcio (3000 A.C)

- Sistema aditivo onde cada símbolo representa um valor
- Para representar valores maiores, os símbolos eram colocados juntos e os seus valores eram somados
- A ordem dos símbolos não importava na representação

Sistemas Numérico

Sistema Romano

Cada símbolo só pode ser utilizado três vezes

Exemplo:

• 38 ←→ XXXVIII

Sistema decimal

Sistemas Numérico

Sistema de numeração posicional baseado em dez símbolos diferentes para representar valores (decimal)

Números de base 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Ex: 26802

Sistema decimal

Classes	Milhões		Milhares			Unidades simples			
Ordens	C	d	u	Ĉ	d	u	С	d	u
						2	3	:5	
		3	0	4	2	3	0	4	8
	2	4	б	10	0	2	0	2	5

Sistema decimal

Na notação posicional o que indica o valor de cada numeral é a posição na qual ele é escrito.

Cada posição do número tem um significado

Quando um número é lido, é possível decompô-lo, utilizando o significado de cada posição:

Exemplo

1951 (um milhar + nove centenas + cinco dezenas + uma unidade)

Sistema decimal

número decimal	2	6	8	0	2			
coluna	4	3	2	1	0			
potências	10⁴	10 ³	10 ²	10¹	10°			
base 10	2 x 10 ⁴	6 x 10 ³	8 x 10 ²	0 x 10 ¹	2 x 10°			
resultado	20000	6000	800	0	2			
somatória	20000	20000 + 6000 + 800 + 0 + 2 = 26802						

Sistemas Binário

O sistema de computação utiliza o sistema binário como base para seu funcionamento, pois os circuitos eletrônicos podem, facilmente, representar os dígitos binários como sinais elétricos (apenas dos estados: ligado/desligado ou positivo/negativo).

- Número de base 2
- Compreendem somente dois caracteres: 0 e 1.
- Exemplo: 01001

Sistemas Numérico

Sistemas Binário

número binário	0	1	0	0	1		
coluna	4	3	2	1	0		
potências	2 ⁴	2 ³	2 ²	2 ¹	2 º		
base 2	0 x 2 ⁴	1 x 2 ³	0 x 2 ²	0 x 2 ¹	1 x 2º		
resultado	0	8	0	0	1		
somatória (decimal)	0+8+0+0+1=9						

Conversão sistema DECIMAL para BINÁRIO

Método das divisões

Dividir sucessivamente o número representado no sistema decimal por 2 até que seja obtido o quociente 0 (zero)

O resto da última divisão é o dígito mais à esquerda do número correspondente em binário e os restos das divisões anteriores são usados em sequência.

Exemplo:

145

Sistemas Numérico

Conversão sistema DECIMAL para BINÁRIO

Sistemas Numérico

Conversão sistema DECIMAL para BINÁRIO

Notação Posicional

Desenhar colunas na tabela, até que se obtenha uma coluna com o valor correspondente maior que o número decimal a ser convertido.

Exemplo: 150 ←→ 10010110

256	128	64	32	16	8	4	2	1
	1	0	0	1	0	1	1	0

$$128 + 16 + 4 + 2 = 150$$

Conversão sistema BINÁRIO para DECIMAL

O número binário a ser convertido deve ser escrito dentro da tabela. Cada dígito deve ser colocado em uma coluna, sempre da direita para a esquerda

Somar o valor correspondente de cada coluna que tiver o dígito igual a 1 (um)

Exemplo

10001001 <-> 128 + 8 + 1 = **137**

512	256	128	64	32	16	8	4	2	1
		1	0	0	0	1	0	0	1

Endereço IP (Internet Protocol address)

É um identificador numérico único atribuído a cada dispositivo que participa de uma rede que utiliza o protocolo IP para comunicação.

Esse endereço é essencial para que os dispositivos possam se comunicar e trocar dados na rede.

172 . 16 . 254 . 1

Endereço IP (Internet Protocol address)

Sistema Hexadecimal Utiliza 16 dígitos para representar os números

• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Derivou do sistema binário para facilitar a interação entre o homem e o computador, que seria bem mais difícil se fossem utilizados somente zeros e uns.

- decimal → 40335
- binário → 1001110110001111
- hexadecimal → 9D8F

Sistema Hexadecimal - Tabela de comparação

Decimal	Binário	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7

Decimal	Binário	Hexadecimal
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Cada dígito hexadecimal corresponde a um grupo diferente de quatro dígitos binários.

Conversão sistema Hexadecimal para BINÁRIO

Sistemas Numérico

Conversão sistema Hexadecimal para Decimal <u>Exemplo:</u>

$$160 + 3 = 163_{(10)}$$

Hexadecimal	1	Α	8	2		
Valor de Posição	16³	16²	16¹	16º		
Calculo	1 x 16 ³ = 4096	A x 16 ² = 2560	8 x 16¹ = 128	2 x 16° = 2		
Valor Final	4096 + 2560 + 128 + 2 = 6786 (Decimal)					

Conversão sistema Decimal para Hexadecimal

7DE =
$$(7 \times 16^2) + (13 \times 16^1) + (14 \times 16)$$

7DE = $1792 + 208 + 14$ 0
7DE = 2014

Sistema Hexadecimal

• APLICAÇÃO DA BASE 16 NA COMPUTAÇÃO

Endereço físico (MAC):

E4-FD-45-96-07-6C

 O endereço MAC (Media Access Control) é um identificador único atribuído a interfaces de rede para comunicação em uma rede local.

Sistema Hexadecimal

• APLICAÇÃO DA BASE 16 NA COMPUTAÇÃO

