ARITHMETIC

Chapter 9

4°GRADE OF SECONDARY Divisibilidad I

MOTIVATING | STRATEGY

120 alumnos participaron del viaje de promoción, de los cuales, de las alumnas mujeres se observo que 5/9 llevaron cámara fotográfica, 4/15 fueron acompañadas al viaje por un familiar y 9/10 viajaban por primera vez a dicha ciudad. ¿Cuántos alumnos varones participaron del viaje?

$$H + M = 120$$

$$M=9$$

$$M = 15$$

$$M = 10^{\circ}$$

$$M = MCM(10,15,9)$$

$$M = 90$$

$$M = 90$$

$$H = 30$$

TEORÍA DE LA DIVISIBILIDAD

En general:

Donde:

$$A = B x k$$

$$A \in \mathbb{Z}; B \in \mathbb{Z}+; k \in \mathbb{Z}$$

MÓDU

Notación:

$$A = B = \overline{B} = Bk$$

"A es múltiplo de B"

"A es divisible entre B"

"B es divisor de A"

"B es factor de A"

Para números no divisibles

Por defecto

$$A = Bk + r_d$$

$$A = \overset{\circ}{B} + r_d$$

Por exceso

A
$$B$$

$$r_e \qquad (k+1)$$

$$A = B(k+1) - r_e$$

$$A = \overset{\circ}{B} - r_e$$

Donde:

$$A = \overset{\circ}{B} + r_d = \overset{\circ}{B} - r_e$$

Ej

m

Por defecto

$$39 = 5x7 + 4$$

$$39 = 5 + 4$$

$$39 = 5x8 - 1$$

$$39 = \overset{\circ}{5} - 1$$

$$\mathring{5} + 4 = \mathring{5} - 1$$

Principios fundamentales

$$(n+r)^k = n+r^k$$

✓ Si un numero es múltiplo de cierto módulo, será múltiplo de cualquiera de los divisores de dichos números

Si
$$A = 35 \rightarrow A = \frac{3}{5}$$
 $\frac{1}{5}$
 $\frac{5}{7}$

✓ Si un numero es múltiplo de varios módulos será múltiplo del (m.c.m) de dichos números

Resolution:

0

De la secuencia del 1 al 800

- ¿cuántos son múltiplos de 4?
- ¿cuántos son múltiplos de 7?
- ¿cuántos son múltiplos de 6 pero no de 5?

Dé como respuesta la suma de los resultados

* Para 4

* **Para 7**

4≤ 800

7≤ 800

4k≤ 800

7k≤ 800

k≤ 200

k≤114,3

* Para 6

* Para 30

 $6 \le 800$

30≤ 800

 $6k \le 800$

 $30k \leq 800$

 $k \le 133, 3$

k≤26,7

133 -26=107

¿Cuántos múltiplos de 7, terminados en 4 existen entre el 115 y 993?

Resolution:

Reduzca

F =
$$(13 + 2)^3(13 - 6) + (13 + 4)^2(13 - 2)(13 + 1)$$

Resolution:

$$(13+8)(13-6) + (13+16)(13-2)(13+1)$$
 $(13-48) + (13-32)$
 $13-48+13-32$
 $13-80 = 13-2$

Se reduce a:13+11

En una división inexacta, el divisor es 11 + 4 y el cociente es 11 + 9. ¿Cómo tiene que ser el dividendo si el residuo es un 11 + 10?

Resolution:

$$D = dq + r$$

Reemplazamos

$$D = (\mathring{1}\mathring{1} + 4)(\mathring{1}\mathring{1} + 9) + (\mathring{1}\mathring{1} + 10)$$

$$(\mathring{1}\mathring{1} + 36) + (\mathring{1}\mathring{1} + 10)$$

$$\mathring{1}\mathring{1} + 46$$

$$\mathring{1}\mathring{1} + 44 + 2$$

Si \overline{abcd} es divisible por 73 y \overline{cd} = 3 \overline{ab} + 1, halle el valor de a + b + c + d.

Resolution:

Datos:
$$\overline{cd} = 3(\overline{ab}) + 1$$

$$\overline{abcd} = 73$$

$$100(\overline{ab}) + \overline{cd} = 73$$

$$100(\overline{ab}) + 3(\overline{ab}) + 1 = 73$$

$$103(\overline{ab}) + 1 = 73$$

$$(73 + 30)(\overline{ab}) + 1 = 73$$

$$73 + 30(\overline{ab}) + 1 = 73$$

$$30(\overline{ab}) + 1 = 73$$

$$\overline{cd} = 30(17) + 1$$

$$\overline{cd} = 52$$

$$a = 1$$
; $b = 7$; $c = 5$; $d = 2$

En un congreso participaron 600 personas. De los asistentes varones se observó que 3/7 eran abogados, los 4/9 eran médicos y los 2/5 eran economistas. ¿Cuántas damas asistieron al congreso?

Resolution: Total: 600

DATO:

Asistieron 285 Damas

7. /

Halle el residuo que se obtiene al dividir 688⁸⁵⁷ entre 7.

Resolution:

$$688^{857} = (\mathring{7} + 2)^{857}$$

$$= \mathring{7} + 2^{857}$$

$$= \mathring{7} + (2^3)^{285} \cdot 2^2$$

$$= \mathring{7} + (\mathring{7} + 1)^{285} \cdot 2^2$$

$$= \mathring{7} + (\mathring{7} + 1) \cdot 4$$

$$= \mathring{7} + \mathring{7} + 4$$

$$= \mathring{7} + \mathring{4}$$

El residuo es 4

Si $\overline{ab}^{a} = 9 + 4; \overline{ab}^{b} = 9 + 5$ halle el residuo que se obtiene al dividir abab entre 9.

$$\overline{ab}b=\mathring{9}+5$$

$$\overline{\mathbf{ab}}^{\mathbf{a}} = (\overline{\mathbf{ab}})^{\mathbf{10a+b}} = (\overline{\mathbf{ab}})^{10a} (\overline{\mathbf{ab}})^{b} \\
= (\overline{\mathbf{ab}}^{\mathbf{a}})^{10} (\overline{\mathbf{ab}})^{b} \\
= (\mathring{\mathbf{9}} + \mathbf{4})^{10} (\mathring{\mathbf{9}} + \mathbf{5}) \\
= (\mathring{\mathbf{9}} + \mathbf{4}) (\mathring{\mathbf{9}} + \mathbf{5}) \\
= \mathring{\mathbf{9}} + 20 \\
= \mathring{\mathbf{9}} + 20$$

Residuo = 2