Assessing the Renal Toxicity of Depleted Uranium and Other Uranium Compounds

Laurie E. Roszell, Ph.D., D.A.B.T. US Army CHPPM Fletcher Hahn, Ph.D. LRRI Robyn Lee, MS US Army CHPPM

1991 Persian Gulf War – Combat Use of DU Munitions

M1 Abrams

M60 tank

AV-8B Harrier II

A-10 Thunderbolt

1991 Gulf War: U.S. Vehicles involved in Fratricide Incidents

- 21 U.S. Combat Vehicles struck by DU munitions during 1991 Persian Gulf War
- Estimated 113 soldiers as casualties
- 30-60 individuals provided assistance after impact (First Responders)

Source: http://www.gulflink.osd.mil/

Other Sources & Uses of Uranium

- Mining
- Milling (refinement)
- Nuclear reactors
- Aircraft counterweights
- Semi-conductors (? Research ongoing)

DU Internalization

Inhalation

- Particles <10microns arerespirable
- Soluble forms
 absorbed, distributed
 to other organs
- Less soluble forms removed slowly

- Ingestion
 - Absorption from gut is inefficient (≤ 2.0%)
- Wounds
 - Particles may enter through open wounds
- Embedded fragments
 - Solubilize and distribute

Potential Target Organs

- Kidney
- Lung
- Lymph nodes
- Skeleton
- Brain
- Reproductive

Chemical Guidelines for Uranium

- ACGIH, OSHA & NIOSH STEL
 - 0.6 mg/m³
- AIHA ERPG's
 - 10 50 mg/m³
- DOE TEEL
 - 0.05 10 mg/m³
- ANSI thresholds for renal damage
 - 4 mg inhalation
- ICRP
 - 3 μg U/g kidney

ANSI Guidelines

Health Effects	Uranium intake by 70 kg person (mg)
50% lethality	230
Permanent renal damage	40
Transient renal injury or effect	8
No effect	4

ICRP Guideline- 3 µg U /g kidney

 Based on extrapolation of radiological limit from ICRP Publication 2 (Spoor & Hursh, 1073)

$$\frac{1973)_{10^{-3}}}{0.33 \times 10^{-6}} \times \frac{0.065}{30} = 3.2 \,\mu\text{g/g}$$

 $5 \times 10^{-3} \, \mu\text{Ci} = \text{``q'';permissible whole body content} \ 0.33 \times 10^{-6} = \text{specific activity of natural uranium} \ 0.065 = \text{kidney fraction of q} \ 300g = \text{kidney mass for Standard Man}$

ICRP Guideline- 3 µg U /g kidney

- Extrapolation from radiological limit was in agreement with animal data (Voegtlin & Hodge, 1953)
 - 4 mammalian species
 - 200 μg U/m³
 - ~40 hours/week up to 1 year
 - Average kidney burdens 0.1 μg/g 2.7 μg/g
 - Mild tubular injury after 1 year

Problem:

Predicting an effect based on kidney burden of uranium.

Solution:

Develop a model based on documented effects and kidney burdens

Acute Human Exposures to Uranium

Intake Route (n)	Chemical Form	Intake (ma U)	Peak μg U/g kidnev	Effect	Reference
Ingestion	Acetate	8500	100	+++	Pavlakis et al. 1996
Dermal	Nitrate	130	35	+++	Zhao and Zhao 1990
Inhalation	Tetrafluoride	920	10	++	7han and 7han 1990
Iniection (2)	Nitrate	11 -16	4 - 6	+	Luessenhon et al. 1958
Dermal	Nitrate	10	3	++	Butterworth 1955
Inhalation	Hexafluoride	74	2.5	+	Fisher et al. 1990a
Iniection	Nitrate	5.9	2	+	Luessenhon et al. 1958
		5.5	2	-	
		4.3	1.5	-	
Inhalation (3)	Hexafluoride	40-50	1.2 - 4	+	Kathren and Moore 1986
Inhalation (7)	Hexafluoride	11 - 18	11-19	-	Fisher et al 1990a
Inaestion	Nitrate	470	1	+	Butterworth 1955
Inhalation	Hexafluoride	20	1	-	Boback 1975
Inhalation (5)	Hexafluoride	6 - 8.7	0.62 - 0.9	_	Fisher et al. 1990a

Classification of Renal Symptoms

Clinical symptoms of renal dysfunction		
Severe	+++	
Biochemical indicators of Renal dysfunction		
Protracted	++	
Transient	+	
Negative	_	

Renal Effects Groups

Renal Effects Group	Number of Cases	μg U/ g Kidney Range
0 (-)	15	0.62 - 2
1 (+)	8	1 - 6
2 (++)	2	3 - 10
3 (+++)	2	35 - 100

Risk Model to Predict Effects Groups

- Discriminant analysis used
- Based on log-transformed data
- Discriminant function based on linear combination of
 - Predictor variable
 - μg U/g kidney
- Correctly identified 85.2% of cases

Discriminant Function

 $D = 4.378 \times Log (\mu g U/g kidney) - 1.519$

Renal Effects Groups

Effects Group	Effects	D (range)	μg U/g kidney
0	No effect	≤ 0.0	≤ 2.2
1	Transient	> 0.0 - 2.0	> 2.2 - 6.4
2	Protracted	> 2.0 - 4.0	> 6.4 - 18
3	Severe	> 4.0	> 18

Calculated Kidney Concentration, 2000 HRA

Estimated Kidney Concentration (µg U/g)*	Effects Group
1.5 (upper bound)	0
0.2 (lower bound)	0

^{*}based on a single shot

Capstone DU Aerosol Study, Updated HRA

- Testing of aerosols generated by perforation of armored vehicles with DU penetrators
- Firing at ballistic turrets and hulls
- Characterizing chemical concentration and composition over first 2 hours
- Predicted intakes based on assumption that
 - ventilation systems off
 - no PPE

Risk Model

- Can be used to predict risk to soldiers
- Can be used for other acute exposures to uranium compounds
- Can be used to assess risk of other compounds

Predicting Risk to Soldiers

RES 0	No exposure
RES 1	Some exposure (negligible risk)
RES 2	75 rad < 125 rad (Moderate risk)
RES 3	> 125 rad (Emergency risk)

Issues

- Small N (=2 Groups 2, 3)
- May not apply to longer than acute exposures
- Needs to be validated in an animal model

QUESTIONS?