Signals and Systems

Lecture 11: Continuous-time Fourier Series

Instructor: Prof. Ting Zhang Zhejiang University

05/07/2024
Adapted from the materials provided on the MIT OpenCourseWare

Fourier Representations

Fourier series represent signals in terms of sinusoids.

→ leads to a new representation for **systems** as **filters**.

Fourier Series: Review

Determining harmonic components of a periodic signal.

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt \qquad \qquad \text{("analysis" equation)}$$

$$x(t) = x(t+T) = \sum_{k=-\infty}^\infty a_k e^{j\frac{2\pi}{T}kt} \qquad \qquad \text{("synthesis" equation)}$$

Simplifying Math By Using Complex Numbers

Our biggest simplification comes from **Euler's formula**, which relates complex exponentials to trigonometric functions (Leonhard Euler, 1748).

$$e^{j\theta} = \cos\theta + j\sin\theta$$
 where $j = \sqrt{-1}.$

Richard Feynman called this "the most remarkable formula in mathematics."

Difference: Negative k

The complex exponential form of the series has positive and negative k's.

$$f(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_O t}$$

Only positive values of k are used in the trig form.

$$f(t) = c_0 + \sum_{k=1}^{\infty} c_k \cos(k\omega_o t) + \sum_{k=1}^{\infty} d_k \sin(k\omega_o t)$$

Q: Why? What does negative k mean?

The negative k's are required by Euler's formula.

$$e^{jk\omega_{o}t} = \cos(k\omega_{o}t) + j\sin(k\omega_{o}t)$$

$$\cos(k\omega_{o}t) = \operatorname{Re}\{e^{jk\omega_{o}t}\} = \frac{1}{2}\left(e^{jk\omega_{o}t} + e^{-jk\omega_{o}t}\right)$$

$$\sin(k\omega_{o}t) = \operatorname{Im}\{e^{jk\omega_{o}t}\} = \frac{1}{2i}\left(e^{jk\omega_{o}t} - e^{-jk\omega_{o}t}\right)$$

The negative k do not indicate negative frequencies. They are the mathematical result of representing sinusoids with complex exponentials.

CTFS: Complex Exponential Form

Represent periodic signal f(t) as a sum of harmonically-related complex exponentials:

$$f(t) = f(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{j\omega_o kt}$$

Q: How to find coefficients?

We can "sift" out the component at $l\omega_o$ by multiplying both sides by $e^{-jl\omega_0t}$ and integrating over a period.

Let's try it!
$$e^{j2\pi}=1; e^{j\pi}=-1; e^{j\pi/2}=j;$$

$$\int_T f(t)e^{-j\omega_Olt}dt=\int_T \sum_{k=-\infty}^\infty a_k e^{j\omega_Okt}e^{-j\omega_Olt}dt=\sum_{k=-\infty}^\infty a_k \int_T e^{j\omega_O(k-l)t}dt=\begin{cases} Ta_l & \text{if } l=k\\ 0 & \text{otherwise} \end{cases}$$

Solving for a_l provides an explicit formula for the coefficients:

$$a_k = \frac{1}{T} \int_T f(t) e^{-j\omega_O kt} dt \,; \quad \text{ where } \omega_O = \frac{2\pi}{T} \,.$$

Q: why can we do this?

Fourier Series: Orthogonal Decomposition

Determining harmonic components of a periodic signal.

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt \qquad \qquad \text{("analysis" equation)}$$

$$x(t) = x(t+T) = \sum_{k=-\infty}^\infty a_k e^{j\frac{2\pi}{T}kt} \qquad \qquad \text{("synthesis" equation)}$$

We can think of Fourier series as an orthogonal decomposition.

Vector representation of 3-space: let \bar{r} represent a vector with components $\{x, y, \text{ and } z\}$ in the $\{\hat{x}, \hat{y}, \text{ and } \hat{z}\}$ directions, respectively.

```
\begin{array}{ll} x=\bar{r}\cdot\hat{x}\\ y=\bar{r}\cdot\hat{y}\\ z=\bar{r}\cdot\hat{z}\\ \\ \bar{r}=x\hat{x}+y\hat{y}+z\hat{z} \end{array} \qquad \hbox{("analysis" equations)}
```

Vector representation of 3-space: let \bar{r} represent a vector with components $\{x, y, \text{ and } z\}$ in the $\{\hat{x}, \hat{y}, \text{ and } \hat{z}\}$ directions, respectively.

$$\begin{array}{ll} x=\bar{r}\cdot\hat{x}\\ y=\bar{r}\cdot\hat{y}\\ z=\bar{r}\cdot\hat{z}\\ \end{array} \tag{"analysis" equations)}$$

$$\bar{r}=x\hat{x}+y\hat{y}+z\hat{z}$$
 ("synthesis" equation)

Fourier series: let x(t) represent a signal with harmonic component $\{a_0, a_1, ..., a_k\}$ for harmonics $\{e^{j0t}, e^{j\frac{2\pi}{T}t}, ..., e^{j\frac{2\pi}{T}kt}\}$ respectively.

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt$$
 ("analysis" equation)

$$x(t)=x(t+T)=\sum_{k=-\infty}^{\infty}a_ke^{jrac{2\pi}{T}kt}$$
 ("synthesis" equation)

Vector representation of 3-space: let \bar{r} represent a vector with components $\{x, y, \text{ and } z\}$ in the $\{\hat{x}, \hat{y}, \text{ and } \hat{z}\}$ directions, respectively.

$$\begin{array}{ll} x=\bar{r}\cdot\hat{x}\\ y=\bar{r}\cdot\hat{y}\\ z=\bar{r}\cdot\hat{z}\\ \\ \bar{r}=x\hat{x}+y\hat{y}+z\hat{z} \end{array} \qquad \text{("analysis" equations)}$$

Fourier series: let x(t) represent a signal with harmonic component $\{a_0, a_1, \ldots, a_k\}$ for harmonics $\{e^{j0t}, e^{j\frac{2\pi}{T}t}, \ldots, e^{j\frac{2\pi}{T}kt}\}$ respectively.

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt \qquad \qquad \text{("analysis" equation)}$$

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{T}kt} \qquad \qquad \text{("synthesis" equation)}$$

Vector representation of 3-space: let \bar{r} represent a vector with components $\{x, y, \text{ and } z\}$ in the $\{\hat{x}, \hat{y}, \text{ and } \hat{z}\}$ directions, respectively.

$$x = \overline{r} \cdot \hat{x}$$

$$y = \overline{r} \cdot \hat{y}$$
 ("analysis" equations)
$$z = \overline{r} \cdot \hat{z}$$

$$\overline{r} = x\hat{x} + y\hat{y} + z\hat{z}$$
 ("synthesis" equation)

Fourier series: let x(t) represent a signal with harmonic component $\{a_0, a_1, \ldots, a_k\}$ for harmonics $\{e^{j0t}, e^{j\frac{2\pi}{T}t}, \ldots, e^{j\frac{2\pi}{T}kt}\}$ respectively.

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt \qquad \qquad \text{("analysis" equation)}$$

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{T}kt} \qquad \qquad \text{("synthesis" equation)}$$

Integrating over a period **sifts** out the k^{th} component of the series.

Sifting as a dot product:

$$x = \bar{r} \cdot \hat{x} \equiv |\bar{r}||\hat{x}|\cos\theta$$

Sifting as an inner product:

$$a_k = e^{j\frac{2\pi}{T}kt} \cdot x(t) \equiv \frac{1}{T} \int_T x(t)e^{-j\frac{2\pi}{T}kt}dt$$

where

$$a(t) \cdot b(t) = \frac{1}{T} \int_{T} a^{*}(t)b(t)dt.$$

Integrating over a period **sifts** out the k^{th} component of the series.

Sifting as a dot product:

$$x = \bar{r} \cdot \hat{x} \equiv |\bar{r}||\hat{x}|\cos\theta$$

Sifting as an inner product:

$$a_k = e^{j\frac{2\pi}{T}kt} \cdot x(t) \equiv \frac{1}{T} \int_T x(t)e^{-j\frac{2\pi}{T}kt}dt$$

where

$$a(t) \cdot b(t) = \frac{1}{T} \int_T a^*(t)b(t)dt.$$

The complex conjugate (*) makes the inner product of the $k^{\rm th}$ and $m^{\rm th}$ components equal to 1 iff k=m:

$$\frac{1}{T}\int_T \left(e^{j\frac{2\pi}{T}kt}\right)^* \left(e^{j\frac{2\pi}{T}mt}\right) dt = \frac{1}{T}\int_T e^{-j\frac{2\pi}{T}kt} e^{j\frac{2\pi}{T}mt} dt = \begin{cases} 1 & \text{if } k=m\\ 0 & \text{otherwise} \end{cases}$$

How many of the following pairs of functions are orthogonal (\perp) in T=3?

- 1. $\cos 2\pi t \perp \sin 2\pi t$?
- 2. $\cos 2\pi t \perp \cos 4\pi t$?
- 3. $\cos 2\pi t \perp \sin \pi t$?
- 4. $\cos 2\pi t \perp e^{j2\pi t}$?

How many of the following are orthogonal (\perp) in T=3?

 $\cos 2\pi t \perp \sin 2\pi t$?

$$\int_0^3 dt = 0 \text{ therefore YES}$$

How many of the following are orthogonal (\perp) in T=3?

 $\cos 2\pi t \perp \cos 4\pi t$?

$$\int_0^3 dt = 0 \text{ therefore YES}$$

How many of the following are orthogonal (\perp) in T=3?

 $\cos 2\pi t \perp \sin \pi t$?

$$\int_0^3 dt \neq 0$$
 therefore NO

How many of the following are orthogonal (\perp) in T=3?

$$\cos 2\pi t \perp e^{2\pi t}$$
?
 $e^{2\pi t} = \cos 2\pi t + j \sin 2\pi t$
 $\cos 2\pi t \perp \sin 2\pi t$ but not $\cos 2\pi t$

Therefore NO

How many of the following pairs of functions are orthogonal (\perp) in T=3?

1.
$$\cos 2\pi t \perp \sin 2\pi t$$
?

2.
$$\cos 2\pi t \perp \cos 4\pi t$$
?

3.
$$\cos 2\pi t \perp \sin \pi t$$
?

4.
$$\cos 2\pi t \perp e^{j2\pi t}$$
?

Convergence: The Dirichlet Conditions

Condition 1:

Over any period, x(t) must be absolutely integrable

$$\int_{T} |x(t)| dt < \infty$$

Counter example

$$x(t) = \frac{1}{t}, \quad 0 < t \le 1$$

Convergence: The Dirichlet Conditions

Condition 2:

In any finite interval of time, x(t) is of bounded variation; i.e. there are no more than a finite number of maxima and minima during any single period of the signal.

Counter example

Convergence: The Dirichlet Conditions

Condition 3:

In any finite interval of time, there are only a finite number of discontinuities. Each of these discontinuities is finite.

Counter example

Review: Fourier Series

Representing periodic signals as sums of sinusoids.

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt$$

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{T}kt}$$

("analysis" equation)

("synthesis" equation)

Notion of a filter.

LTI systems

- cannot create new frequencies.
- can scale magnitudes and shift phases of existing components.

The output of an LTI system is a "filtered" version of the input.

Input: Fourier series \rightarrow sum of complex exponentials.

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{T}kt}$$

Complex exponentials: eigenfunctions of LTI systems.

$$e^{j\frac{2\pi}{T}kt} \to H(j\frac{2\pi}{T}k)e^{j\frac{2\pi}{T}kt}$$

Output: same eigenfunctions, amplitudes/phases set by system.

itput: same eigenfunctions, amplitudes/phases set
$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{T}kt} \to y(t) = \sum_{k=-\infty}^{\infty} a_k H(j\frac{2\pi}{T}k) e^{j\frac{2\pi}{T}kt}$$

Note: |H| = 1 and $\angle H = 0$ for the ideal filters in the passbands, no need for the phase plot.

Highpass

Bandpass

Example: Low-Pass Filtering with an RC circuit

Calculate the frequency response of an RC circuit.

Let the input be a square wave.

Low frequency square wave: $\omega_0 << 1/RC$.

$$x(t) = \sum_{k \text{ odd}} \frac{1}{j\pi k} e^{j\omega_0 kt} \; ; \quad \omega_0 = \frac{2\pi}{T}$$

Higher frequency square wave: $\omega_0 < 1/RC$.

Still higher frequency square wave: $\omega_0 = 1/RC$.

High frequency square wave: $\omega_0 > 1/RC$.

Properties of CTFS

- Linearity, time reversal, symmetry, time shift, time derivative → making it easier to find the Fourier coefficients of a new signal
- The Complex Exponential Form is much easier in math
- Get more familiar with the CE form

Properties of CTFS: Linearity

Consider $y(t) = Ax_1(t) + Bx_2(t)$, where $x_1(t)$ and $x_2(t)$ are periodic in T. What are the CTFS coefficients Y[k], in terms of $X_1[k]$ and $X_2[k]$?

Q: Is y(t) periodic in T?

$$\begin{split} Y[k] &= \frac{1}{T} \int_{T} y(t) e^{-j\frac{2\pi kt}{T}} \, dt &= \frac{1}{T} \int_{T} (Ax_{1}(t) + Bx_{2}(t)) e^{-j\frac{2\pi kt}{T}} \, dt \\ &= A \frac{1}{T} \int_{T} x_{1}(t) e^{-j\frac{2\pi kt}{T}} \, dt + B \frac{1}{T} \int_{T} x_{2}(t) e^{-j\frac{2\pi kt}{T}} \, dt \\ &= AX_{1}[k] + BX_{2}[k] \end{split}$$

Q: Why is this property useful?

If $y(t) = Ax_1(t) + Bx_2(t)$, then $Y[k] = AX_1[k] + BX_2[k]$

Properties of CTFS: Time flip (reversal)

• Consider y(t) = x(-t), where x(t) is periodic in T. What are the CTFS coefficients Y[k], in terms of X[k]?

First, y(t) must also be periodic in T

$$x(t) = \sum_{k = -\infty}^{\infty} X[k] e^{j\frac{2\pi kt}{T}} \qquad y(t) = x(-t) = \sum_{k = -\infty}^{\infty} X[k] e^{j\frac{2\pi k(-t)}{T}} = \sum_{k = -\infty}^{\infty} X[k] e^{j\frac{2\pi(-k)t}{T}}$$
Let $m = -k$

$$y(t) = x(-t) = \sum_{m = -\infty}^{\infty} X[-m] e^{j\frac{2\pi mt}{T}} = \sum_{m = -\infty}^{\infty} X[-m] e^{j\frac{2\pi mt}{T}}$$
we know

Since we know

$$y(t) = \sum_{m=-\infty}^{\infty} Y[m]e^{j\frac{2\pi mt}{T}} \qquad \longrightarrow \qquad Y[k] = X[-k]$$

If
$$y(t) = x(-t), Y[k] = X[-k] = X^*[k]$$

Q: What happens when the signal is real?

Properties of CTFS: Symmetric and Antisymmetric Parts

Any arbitrary signal f(t) can be written into two parts:

$$f(t) = f_S(t) + f_A(t)$$

 $f_S(t)$ is symmetric about t = 0, if $f_S(t) = f_S(-t)$ for all t.

 $f_A(t)$ is **antisymmetric** about t=0, if $f_A(t)=-f_A(-t)$ for all t.

$$f_S(t) = \frac{f(t) + f(-t)}{2}$$
 $f_A(t) = \frac{f(t) - f(-t)}{2}$

If $f(t) = f_S(t) + f_A(t)$ is a real-valued signal and periodic in time with fundamental period T, what are the Fourier Series coefficients of $f_S(\cdot)$ and $f_A(\cdot)$, in terms of F[k]?

Properties of CTFS: Symmetric and Antisymmetric Parts

If $f(t) = f_S(t) + f_A(t)$ is a real valued signal and periodic in time with fundamental period T, what are the Fourier coefficients of $f_S(\cdot)$ and $f_A(\cdot)$, in terms of F[k]?

If f(t) is real valued periodic signal, $F[k] = F^*[-k]$

$$f_S(t) = \frac{f(t) + f(-t)}{2} \quad \xrightarrow{time\, slip} \quad F_S[k] = \frac{F[k] + F[-k]}{2} \quad = \frac{F[k] + F^*[k]}{2} \quad = \frac{2Re(F[k])}{2} = Re(F[k])$$

$$f_A(t) = \frac{f(t) - f(-t)}{2} \quad \xrightarrow{\text{Linearity}} \quad F_A[k] = \frac{F[k] - F[-k]}{2} \quad = \frac{F[k] - F^*[k]}{2} = \frac{2j \cdot Im(F[k])}{2} = j \cdot Im(F[k])$$

The real part of F[k] comes from the symmetric part of the signal, the imaginary part of F[k] comes from the antisymmetric part of the signal

Properties of CTFS: Time Shift

• Consider $y(t) = x(t - t_0)$, where x is periodic in T. What are the CTFS coefficients Y[k], in terms of X[k]?

$$\begin{split} Y[k] &= \frac{1}{T} \int_{T} y(t) e^{-j\frac{2\pi kt}{T}} \, dt &= \frac{1}{T} \int_{T} x(t-t_0) e^{-j\frac{2\pi kt}{T}} \, dt & \text{tlet } u = t-t_0, \\ &= \frac{1}{T} \int_{T} x(u) e^{-j\frac{2\pi k(u+t_0)}{T}} \, du \\ &= \frac{1}{T} \int_{T} x(u) e^{-j\frac{2\pi ku}{T}} e^{-j\frac{2\pi kt_0}{T}} \, du \\ &= e^{-j\frac{2\pi kt_0}{T}} \frac{1}{T} \int_{T} x(u) e^{-j\frac{2\pi ku}{T}} \, du \\ &= e^{-j\frac{2\pi kt_0}{T}} \frac{1}{T} \int_{T} x(u) e^{-j\frac{2\pi ku}{T}} \, du = e^{-j\frac{2\pi kt_0}{T}} X[k] \end{split}$$

Each coefficient Y[k] in the series for y(t) is a constant $e^{-jk\omega_0\tau}$ times the corresponding coefficient X[k] in the series for x(t).

Properties of CTFS: Time Derivative

Consider $y(t) = \frac{d}{dt}x(t)$, where x(t) and y(t) are periodic in T. What are the CTFS coefficients Y[k], in terms of X[k]?

Start with the synthesis equation:
$$x(t) = \sum_{k=-\infty}^{\infty} X[k] e^{j\frac{2\pi kt}{T}}$$

Then, from the definition of $y(\cdot)$, we have:

$$y(t) = \dot{x}(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{k=-\infty}^{\infty} X[k] e^{j\frac{2\pi kt}{T}} \right) = \sum_{k=-\infty}^{\infty} \left(j\frac{2\pi k}{T} X[k] \right) e^{j\frac{2\pi kt}{T}} = \sum_{k=-\infty}^{\infty} Y[k] e^{j\frac{2\pi kt}{T}}$$

From this form, we can see that $Y[k] = j\frac{2\pi k}{T}X[k]$.

Properties of CTFS: Summary

• Linearity If
$$y(t) = Ax_1(t) + Bx_2(t)$$
, then $Y[k] = AX_1[k] + BX_2[k]$

• Time reversal If
$$y(t) = x(-t), Y[k] = X[-k]$$

• Time shift If
$$y(t)=x(t-t_0)$$
, then $Y[k]=e^{-jrac{2\pi kt_0}{T}}X[k]$

• Time derivative If
$$y(t)=\dot{x}(t)$$
, then $Y[k]=jrac{2\pi k}{T}X[k]$

These can help us find the Fourier coefficients of a new signal without explicitly integrating!

Fourier Series: Summary

Fourier series represent signals by their frequency content.

Representing a signal by its frequency content is useful for many signals, e.g., music.

Fourier series motivate a new representation of a system as a filter.