goal: optimal estimation through linear observations ref: Stergel (h 4.1

previously: use observations y = Cx to estimate \hat{x} — solve linear equations — applying observer

now: use noisy observations z = Cx + y to estimate \hat{x} where y is an external disturbance / we conserved naise

ive wort to choose \hat{x} to mininge $||x - \hat{x}||$, i.e. estimation error but: we don't know x, so con't evaluate

instead, we'll minimize $||z - C\hat{x}||_1$ i.e observation error $||x - \hat{x}||_2 = (z - C\hat{x})^T (z - C\hat{x})$ $||x - \hat{x}||_2 = (z - C\hat{x})^T (z - C\hat{x})$

$$\longrightarrow \text{ solve } \text{NLI'} \quad \text{min } \|3 - (\hat{x})\|_2 = (3 - (\hat{x})) (3 - (\hat{x}))$$

- let
$$J(\hat{x}) = ||_{\mathcal{Z}} - C\hat{x}||_{2}^{2}$$
, then minima are stationary:
 $D_{\hat{x}}J = C^{T}C\hat{x} - C^{T}Z$
 $= 0 \iff \hat{x} = (C^{T}C)^{-1}C^{T}Z \leftarrow "least squares" estimate$

assume rank CTC =
$$\dim \hat{x}$$
 - recessory that $\# \operatorname{rank} C \ge \# \operatorname{cols} C$

- to confirm
$$\hat{X}$$
 is minimum: $\hat{D}_{\hat{X}}^2 J(\hat{X}) = C^T C > 0$

- let
$$v \neq 0$$
, $\lambda \in \mathbb{R}$ be eigenvalue/eigenvector pair for CTC
so $CTCv = \lambda v$

SO
$$0 \le \|CN\|^2 = N^T C^T CN = \lambda \|N\|^2$$
, Since $\|N\| \ne 0$,

So
$$0 \le \|Cv\|^2 = v' C' Cv = |x||v||$$
; since $\|x\| \ne 0$, $x > 0$
 $x > 0 \le \|Cv\|^2 = v' C' Cv = |x||v||$; since $\|x\| \ne 0$, $x > 0$

Campute $x \ne 0$ $y = 0$ $y =$

$$-\hat{\chi} = (CTC)^{-1}CT_3 = \frac{1}{k}\sum_{l=1}^{k} 3_{k-1}i.l. \text{ sample mean}$$

$$= \hat{k} = \sum_{l=1}^{k} 3_{l}$$

· nou consider neighted least-squares objective: $J(\hat{x}) = (3 - C\hat{x})^T S^{-1} (3 - C\hat{x}), S = S^T > 0$ \rightarrow verify that $S^{-1} = (S^{-1})^T > 0$ \rightarrow solve NLP min $J(\hat{x})$ $-\hat{x} = (C + S^{-1}C)^{-1}C + S^{-1}Z \leftarrow \text{agrees with previous onswer}$ when S = I- could have changed coordinates to 8="15"-3 and applied? $- \xi = M_3 \implies 3 = M^{-1} \xi$ SO $J(\hat{x}) = (M^{-1}g - C\hat{x})^{T}(M'g - C\hat{x})$ $= (\varsigma - MC\hat{x})^{T}(M^{-1})^{T}M^{-1}(\varsigma - M\hat{x})$ S-1 i.o. MTM= S, i.e. "M= JS"

fact: if $S = Cov[\eta]$, $E[\eta] = 0$, then $\hat{\chi}$ has the minimum (10-)variance at of all unbiased estimates - note that $E[\hat{\chi}] = (CTS^{-1}C)^{-1}CTS^{-1}E[3]$, $E[3] = E[CX] + E[\eta]^{-0}$

so $E[\hat{X}] = (CTS^{-1}C)^{-1}(CTS^{-1}C)E[X] = E[X]$

o suppose we estimate \hat{x}_i using bothch of measurements $\mathbf{3}_i = \mathbf{C}_i \mathbf{x} + \mathbf{v}_i$ $\in \mathbb{R}^k$

and subsequently obtain new measurements $3_2 = C_2 \times + \eta_2$ other we want to minimize $J(\hat{x}) = \|3 - C\hat{x}\|_{S^{-1}}^2 = (3 - C\hat{x})^T S^{-1}(3 - C\hat{x})$ where $3 = \begin{bmatrix} 3_1 \\ 3_2 \end{bmatrix}$, $C = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$ $S = \begin{bmatrix} S_1 & O \\ O & S_2 \end{bmatrix}$, $\hat{x} = \begin{bmatrix} \hat{x} \\ \hat{x} \end{bmatrix}$ $\hat{x} = \begin{bmatrix} \hat{x} \\ \hat{x} \end{bmatrix}$

* we want to solve for $\hat{\chi}_z$ in terms of $\hat{\chi}_i$ that minimizes T

 \rightarrow solve $D_{\hat{X}_2} = 0$ for \hat{X}_2 in terms of \hat{X}_3 , \hat{X}_2

 $-\hat{\chi}_{2} = \left(C_{1}^{T}S_{1}^{-1}C_{1} + C_{2}^{T}S_{2}^{-1}C_{2}\right)^{-1}\left(C_{1}^{T}S_{1}^{-1}S_{1} + C_{2}^{T}S_{2}^{-1}S_{2}\right)$

 $- J(\hat{x}) = (3 - C\hat{x})^T S^{-1} (3 - C\hat{x}) = \| \begin{bmatrix} 3_1 - C_1 \hat{x}_2 \\ 3_2 - C_2 \hat{x}_2 \end{bmatrix} \|_{S^{-1}}^2$

 $=0 \iff C_1^T S_1^T C_1 \hat{\chi}_2 + C_2^T S_2^T C_2 \hat{\chi}_2$

$$= C_{1}^{T} S_{1}^{-1} S_{1} + C_{2}^{T} S_{2}^{-1} S_{2}$$

$$\iff \hat{X}_{2} = \left(C_{1}^{T} S_{1}^{-1} C_{1} + C_{2}^{T} S_{2}^{-1} C_{2} \right)^{-1} \left(C_{1}^{T} S_{1}^{-1} S_{1} + C_{2}^{T} S_{2}^{-1} S_{2} \right)$$

- \rightarrow apply matrix inversion Lemma with $P_1' = C_1'S_1'C_1$ $(A + U + V)^{-1} = A^{-1} - A^{-1}U(H^{-1} + VA^{-1}U)^{-1}VA^{-1}$
 - $-\left(\frac{CTS_{1}'C_{1}+C_{2}'S_{2}'C_{2}'}{P_{1}^{-1}}\right)^{2}=P_{1}-P_{1}C_{2}^{+}\left(\frac{C_{2}P_{1}C_{2}^{+}+S_{2}^{+}}{C_{2}P_{1}}\right)^{2}C_{2}P_{1}$
- \rightarrow substitute into formula for $\hat{\chi}_2$ w/ $\hat{\chi}_1$ = (CTSTC)-1CTST31
 - $-\hat{x}_{2} = \hat{x}_{1} + K_{2}(3_{2} C_{2}\hat{x}_{1}), K_{2} = P_{1}C_{2}^{T}(C_{2}P_{1}C_{2}^{T} + S_{2})^{T}$