Theory Assignment-3: ADA Winter-2024

Vivaswan Nawani (2021217) Animesh Pareek (2021131)

1 Subproblem Definition

- We need only one subproblem definition.
- Max_profit(i, j) is the maximum profit that we can earn from selling the marble (after some cuts along breadth and length) which is i centimeters long and j centimeters wide.
- We need to note that this marble, whose sides are i and j cm(s), can be cut vertically or horizontally in multiples of 1 cm.

2 Recurrence of the subproblem

ASSUMPTION:

- The shape of the Spot Price array (Array P) is $(n \times m)$ where n and m are at least 1.
- First index of this array refers to the height of the marble while the second index represents the breadth of the marble.
- We assume that P(i,j) is not necessarily same as P(j,i)
- Also please note that we will be using 1 based indexing.

Base Cases:

$$\text{Max_profit(i, j)} = \begin{cases} P(1,1) & \text{if } i = 1 \text{ and } j = 1 \\ 0 & \text{if } i < 1 \text{ or } j < 1 \text{ or } i > n \text{ or } j > m \end{cases}$$

Recurrence case: For any index 1 < i < |P| and 1 < j < |P(0)| where $i, j \in N$, we have the following recurrence relation:

Also, please note here that, we are considering k only from 1 to floor(j/2) (or i/2, as a matter of fact) because after floor(j/2) to j-1 we will start repeating the cases that we have already accounted. (sum's first term of this sequence can be related to the second term of the accounted sequence and vice versa)

3 The specific subproblem(s) that solve the actual problem

- The actual problem is Max_Profit(n, m)
- We need to solve (n-1)+(m-1) subproblems to solve the actual problem.
- These subproblems are Max_Profit(n,i), $1 \le i \le m-1$, and Max_Profit(j,m), where $1 \le j \le n-1$.
- This is explained by the recurrence relation above where (i 1) + (j 1) calls are made in total for Max_Profit(i, j)

4 Algorithm description

- Input:
 - -n, the height of the marble
 - -m, the breadth of the marble
 - -P[i][j] $0 \le i \le n-1, 0 \le j \le m-1$, which store the Spot Price of the marble of size (i x j).
- Let DP[i][j], $0 \le i \le n-1$ and $0 \le j \le m-1$, store the max possible Profit that we can earn from marble of size (i x j).
- Let's then define 2 nested inner loops, which uses integers i (varying from 0 to n 1) and j (varying from 0 to m 1), respectively. This nest is needed for filling up the array DP. Thus we have:
- for(i < 0 to n-1):
 - for(j < 0 to m-1):
 - * Initialize maxy = P[i][j] where maxy represents the maximum profit that can be earned from marble of size (i x j).
 - * Now run a loop which uses integer k varying from 1 to $\lfloor i/2 \rfloor$.
 - * for(k <- 1 to |i/2|):
 - · Initialize sum = DP[i-k][j] + DP[k][j] where sum represents the maximum profit that can be earned by splitting the marble in the sizes $(k \times j)$ and $((i-k) \times j)$.
 - · In Next step, maxy = max(maxy, sum), we choose the maximum of previous profit and the new profit after splitting at k horizontally.
 - * Now run a loop which uses integer k varying from 1 to |j/2|.
 - * for(k <- 1 to |j/2|):
 - · Initialize sum = DP[i][j-k] + DP[i][k] where sum represents the maximum profit that can be earned by splitting the marble in the sizes (i x k) and (i x (j-k)).
 - · In Next step, maxy = max(maxy, sum), we choose the maximum of previous profit and the new profit after splitting at k vertically.
 - * Now we finally do DP[i][j] = maxy. In this step we write this computed maximum profit (maxy) to its correct destination (DP[i][j]).
- Output DP[n-1][m-1]

5 Complexity Analysis

Let T(n, m) denote the time complexity of the algorithm for the input array P of dimension $(n \times m)$.

- Base Cases: Setting up the base cases takes constant time as they involve simple conditional assignments, O(1).
- Recurrence Relation Evaluation: Evaluating the recurrence relation involves computing each entry of the DP array. This is mainly done via our nested loop's execution which works for n * m times. For each entry DP[i][j], we make some comparisons:
 - Initialization: Initializing the maxy variable requires DP array access which takes O(1) time.
 - Each entry in the array involves computation in the comparing and selecting the maximum profit out of $(\lfloor i/2 \rfloor + \lfloor j/2 \rfloor)$ choices.

- Each selection requires summing up of two values which can be done in constant (O(1)) time.
- These values are DP array accesses which again can be done in constant (O(1)) time.
- Also Each comparison can be done in constant (O(1)) time.
- Thus the operation in the nested loop takes O(n+m) time.

Therefore, the time complexity of evaluating the recurrence relation (with Nested Loop in consideration) is $O((n*m)*(n+m)) = O((n^2)m + (m^2)n)$.

• Find end Result: At the end we return DP[n-1][m-1] which takes O(1) time.

Therefore, the overall time complexity T(n,m) of the algorithm is:

$$T(n,m) = O(n*m)*O(n+m) = O(n*m*(n+m))$$

$$T(n,m) = O(n*m*(n+m))$$