Cálculo Numérico (521230)

Test 2 – Tema 1

Fecha: 15-May-02; 15:00-16:00. Duración: 45 minutos

Nombre y apellidos	
Matrícula	
Especialidad o carrera	

1. Sean

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 4 & 0 & \cdots & 0 & -1 \\ -1 & 0 & \cdots & 0 & 4 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 0 & \cdots & 0 & 4 \end{bmatrix} \in \mathbb{R}^{2n \times 2n} \quad \mathbf{y} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \in \mathbb{R}^{2n}.$$

Haga un programa MATLAB que genere la matriz anterior para n = 10 como matriz sparse y que resuelva mediante el **método del gradiente conjugado** el sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$. Indique el nombre del archivo donde ha guardado el programa en el diskette y los valores obtenidos de las componentes x_1 y x_{n+1} de la solución:

Archivo	
x_1	
x_{n+1}	

[10 PTS.]

2. Un meteorito que cae sobre el mar es fotografiado justo antes de su caída a razón de una foto por segundo. En esas fotografías se mide la altura h sobre el nivel del mar del meteorito en cada instante y se obtiene la siguiente tabla:

t (seg)	1	2	3	4	5
h (m)	345.0	280.5	206.0	121.0	27.5

Si la altura h se modela como la de un objeto en caída libre, se tiene que

$$h(t) \approx h_0 - v_0 t - \frac{1}{2}gt^2,$$

donde h_0 y v_0 son la altura y velocidad del objeto en el instante t=0, y g es la aceleración media de la gravedad.

Determine los valores de h_0 , v_0 y g a partir de la tabla dada y el instante t_c en el que el meteorito cae al mar.

Indique el nombre del archivo donde ha guardado el programa en el diskette y los resultados obtenidos:

Archivo	
h_0	
v_0	
g	
$t_{ m c}$	

[15 PTS.]

3. Se tiene la siguiente tabla de valores de una función f(x), que se sabe que es infinitamente derivable en el intervalo [0,5]:

x	0	1	2	3	4	5
f(x)	0.0000	0.7854	1.1071	1.2490	1.3258	1.3734

(a) Determine el valor de la función en x=2.5 mediante interpolación polinomial. Indique también el nombre del archivo donde ha guardado el programa en el diskette:

f(2.5)	
Archivo	

(b) Indique si cada una de las siguientes afirmaciones es verdadera o falsa:

Afirmación	Verdadera	Falsa
El resultado obtenido es bueno, porque la interpolación polinomial es confiable en la mitad de la tabla.		
Habría sido conveniente usar splines, pues la interpolación polinomial jamás es confiable.		
No es posible usar splines para interpolar esta tabla, porque la función es infinitamente derivable.		

[10 PTS.]