Problems for Putnam Seminar

P 1. Putnam 04A6 Suppose that f(x,y) is a continuous real-valued function on the unit square $0 \le x \le 1, 0 \le y \le 1$. Show that

$$\int_0^1 \left(\int_0^1 f(x,y) dx \right)^2 dy + \int_0^1 \left(\int_0^1 f(x,y) dy \right)^2 dx$$

$$\leq \left(\int_0^1 \int_0^1 f(x,y) dx dy \right)^2 + \int_0^1 \int_0^1 \left(f(x,y) \right)^2 dx dy.$$

P 2. Putnam 04B2 Let m and n be positive integers. Show that

$$\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^m}\frac{n!}{n^n}.$$

P 3. Putnam 03A2 Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be nonnegative real numbers. Show that

$$(a_1 a_2 \cdots a_n)^{1/n} + (b_1 b_2 \cdots b_n)^{1/n} \le [(a_1 + b_1)(a_2 + b_2) \cdots (a_n + b_n)]^{1/n}.$$

P 4. Putnam 03A3 Find the minimum value of

$$|\sin x + \cos x + \tan x + \cot x + \sec x + \csc x|$$

for real numbers x.

P 5. | Putnam 03A4 | Suppose that a, b, c, A, B, C are real numbers, $a \neq 0$ and $A \neq 0$, such that

$$|ax^2 + bx + c| \le |Ax^2 + Bx + C|$$

for all real numbers x. Show that

$$|b^2 - 4ac| \le |B^2 - 4AC|.$$

P 6. Putnam 03B6 Let f(x) be a continuous real-valued function defined on the interval [0,1]. Show that

$$\int_{0}^{1} \int_{0}^{1} |f(x) + f(y)| \, dx \, dy \ge \int_{0}^{1} |f(x)| \, dx.$$

P 7. Putnam 02B3 Show that, for all integers n > 1,

$$\frac{1}{2ne} < \frac{1}{e} - \left(1 - \frac{1}{n}\right)^n < \frac{1}{ne}.$$

- P 8. Putnam 01A6 | Can an arc of a parabola inside a circle of radius 1 have a length greater than 4?
- **P 9.** Putnam 99A5 Prove that there is a constant C such that, if p(x) is a polynomial of degree 1999, then

$$|p(0)| \le C \int_{-1}^{1} |p(x)| dx.$$

- **P 10.** Putnam 99B4 Let f be a real function with a continuous third derivative such that f(x), f'(x), f''(x), f'''(x) are positive for all x. Suppose that $f'''(x) \le f(x)$ for all x. Show that f'(x) < 2f(x) for all x.
- **P 11.** Putnam 98B4 Let $a_{m,n}$ denote the coefficient of x^n in the expansion of $(1+x+x^2)^m$. Prove that for all integers $k \ge 0$,

$$0 \le \sum_{i=0}^{\lfloor \frac{2k}{3} \rfloor} (-1)^i a_{k-i,i} \le 1.$$

P 12. Putnam 98B1 Find the minimum value of

$$\frac{\left(x+\frac{1}{x}\right)^{6}-\left(x^{6}+\frac{1}{x^{6}}\right)-2}{\left(x+\frac{1}{x}\right)^{3}+\left(x^{3}+\frac{1}{x^{3}}\right)}$$

for x > 0.

P 13. Putnam 96B2 Show that for every positive integer n,

$$\left(\frac{2n-1}{e}\right)^{\frac{2n-1}{2}} < 1 \cdot 3 \cdot 5 \cdots (2n-1) < \left(\frac{2n+1}{e}\right)^{\frac{2n+1}{2}}.$$

P 14. Putnam 96B3 Given that $\{x_1, x_2, ..., x_n\} = \{1, 2, ..., n\}$, find, with proof, the largest possible value, as a function of n (with $n \ge 2$), of

$$x_1x_2 + x_2x_3 + \dots + x_{n-1}x_n + x_nx_1$$

P 15. Putnam 91B6 Let a and b be positive numbers. Find the largest number c, in terms of a and b, such that

$$a^x b^{1-x} \le a \frac{\sinh ux}{\sinh u} + b \frac{\sinh u(1-x)}{\sinh u}$$

for all u with $0 < |u| \le c$ and for all x, 0 < x < 1.

P 16. (CMJ 416, Joanne Harris) For what real values of c is

$$\frac{e^x + e^{-x}}{2} \le e^{cx^2}.$$

for all real x?

P 17. (CMJ420, Edward T. H. Wang) It is known [Daniel I. A. Cohen, Basic Techniques of Combinatorial Theory, p.56] and easy to show that $2^n < \binom{2n}{n} < 2^{2n}$ for all integers n > 1. Prove that the stronger inequalities

$$\frac{2^{2n-1}}{\sqrt{n}} < \binom{2n}{n} < \frac{2^{2n}}{\sqrt{n}}$$

hold for all $n \geq 4$.

P 18. (CMJ379, Mohammad K. Azarian) Let x be any real number. Prove that

$$(1 - \cos x) \left| \sum_{k=1}^{n} \sin(kx) \right| \left| \sum_{k=1}^{n} \cos(kx) \right| \le 2.$$

P 19. (CMJ392 Robert Jones) Prove that

$$\left(1 + \frac{1}{x^2}\right) \left(x \sin \frac{1}{x}\right) > 1 \text{ for } x \ge \frac{1}{\sqrt{5}}.$$

P 20. (CMJ431 R. S. Luthar) Let $0 < \phi < \theta < \frac{\pi}{2}$. Prove that

$$[(1 + \tan^2 \phi)(1 + \sin^2 \phi)]^{\csc^2 \phi} < [(1 + \tan^2 \theta)(1 + \sin^2 \theta)]^{\csc^2 \theta}.$$

P 21. (CMJ451, Mohammad K. Azarian) Prove that

$$\pi^{\sec^2 \alpha} \cos^2 \alpha + \pi^{\csc^2 \alpha} \sin^2 \alpha > \pi^2$$
.

provided $0 < \alpha < \frac{\pi}{2}$.

P 22. (CMJ446, Norman Schaumberger) If x, y, and z are the radian measures of the angles in a (non-degenerate) triangle, prove that

$$\pi \sin \frac{3}{\pi} \ge x \sin \frac{1}{x} + y \sin \frac{1}{y} + z \sin \frac{1}{z}.$$

P 23. (CMJ461, Alex Necochea) Let $0 < x < \frac{\pi}{2}$ and 0 < y < 1. Prove that

$$x - \arcsin y \le \frac{\sqrt{1 - y^2 - \cos x}}{y},$$

with equality holding if and only if $y = \sin x$.

- P 24. (CMJ485 Norman Schaumberger) Prove that
 - (1) if $a \ge b > 1$ or $1 > a \ge b > 0$, then $a^{b^b}b^{a^a} \ge a^{b^a}b^{a^b}$; and
 - (2) if a > 1 > b > 0, then $a^{b^b}b^{a^a} \le a^{b^a}b^{a^b}$.
- P 25. (CMJ524 Norman Schaumberger) Let a, b, and c be positive real numbers. Show that

$$a^ab^bc^c \geq \left(\frac{a+b}{2}\right)^a \left(\frac{b+c}{2}\right)^b \left(\frac{c+a}{2}\right)^c \geq b^ac^ba^c.$$

P 26. (CMJ567 H.-J. Seiffert) Show that for all ditinct positive real numbers x and y,

$$\left(\frac{\sqrt{x}+\sqrt{y}}{2}\right)^2 < \frac{x-y}{2\sinh\frac{x-y}{x+y}} < \frac{x+y}{2}.$$

- P 27. (CMJ572, George Baloglou and Robert Underwood) Prove or disprove that for $\theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$, $\cosh \theta \leq \frac{1}{\sqrt{1-\tan^2 \theta}}$.
- P 28. (CMJ603, Juan-Bosco Romero Marquez) Let a and b be distinct positive real numbers and let n be a positive integer. Prove that

$$\frac{a+b}{2} \leq \sqrt[n]{\frac{b^{n+1}-a^{n+1}}{(n+1)(b-a)}} \leq \sqrt[n]{\frac{a^n+b^n}{2}}.$$

P 29. (MM⁵904, Norman Schaumberger) For x > 2, prove that

$$\ln\left(\frac{x}{x-1}\right) \le \sum_{j=0}^{\infty} \frac{1}{x^{2j}} \le \ln\left(\frac{x-1}{x-2}\right).$$

P 30. (MM1590, Constantin P. Niculescu) For given a, $0 < a < \frac{\pi}{2}$, determine the minimum value of $\alpha \ge 0$ and the maximum value of $\beta \ge 0$ for which

$$\left(\frac{x}{a}\right)^{\alpha} \le \frac{\sin x}{\sin a} \le \left(\frac{x}{a}\right)^{\beta}.$$

(This generalize the well-known inequality due to Jordan, which asserts that $\frac{2x}{\pi} \leq \sin x \leq 1$ on $[0, \frac{\pi}{2}]$.)

P 31. (MM1597, Constantin P. Niculescu) For every $x, y \in (0, \sqrt{\frac{\pi}{2}})$ with $x \neq y$, prove that

$$\left(\ln \frac{1 - \sin xy}{1 + \sin xy}\right)^2 \ge \ln \frac{1 - \sin x^2}{1 + \sin x^2} \ln \frac{1 - \sin y^2}{1 + \sin y^2}.$$

P 32. (MM1599, Ice B. Risteski) Given $\alpha > \beta > 0$ and $f(x) = x^{\alpha}(1-x)^{\beta}$. If 0 < a < b < 1 and f(a) = f(b), show that $f'(\alpha) < -f'(\beta)$.

P 33. (MM Q197, Norman Schaumberger) Prove that if b > a > 0, then $\left(\frac{a}{b}\right)^a \ge \frac{e^a}{e^b} \ge \left(\frac{a}{b}\right)^b$.

P 34. (MM1618, Michael Golomb) Prove that $0 < x < \pi$,

$$x\frac{\pi - x}{\pi + x} < \sin x < \left(3 - \frac{x}{\pi}\right)x\frac{\pi - x}{\pi + x}.$$

P 35. (MM1634, Constantin P. Niculescu) Find the smallest constant k > 0 such that

$$\frac{ab}{a+b+2c} + \frac{bc}{b+c+2a} + \frac{ca}{c+a+2b} \le k(a+b+c)$$

for every a, b, c > 0.

P 36. (MM1233, Robert E. Shafer) Prove that if x > -1 and $x \neq 0$, then

$$\frac{x^2}{1+x+\frac{x^2}{2}-\frac{\frac{x^4}{120}}{1+x+\frac{31}{252}x^2}} < [\ln(1+x)]^2 < \frac{x^2}{1+x+\frac{x^2}{2}-\frac{\frac{x^4}{240}}{1+x+\frac{1}{20}x^2}}.$$

P 37. (MM1236, Mihaly Bencze) Let the functions f and g be defined by

$$f(x) = \frac{\pi^2 x}{2\pi^2 + 8x^2}$$
 and $g(x) = \frac{8x}{4\pi^2 + \pi x^2}$

for all real x. Prove that if A, B, and C are the angles of an acuted-angle triangle, and R is its circumradius then

$$f(A) + f(B) + f(C) < \frac{a+b+c}{4R} < g(A) + g(B) + g(C).$$

P 38. (MM1245, Fouad Nakhli) For each number x in open interval (1,e) it is easy to show that there is a unique number y in (e,∞) such that $\frac{\ln y}{y} = \frac{\ln x}{x}$. For such an x and y, show that $x + y > x \ln y + y \ln x$.

P 39. (MM Q725, S. Kung) Show that $(\sin x)y \le \sin(xy)$, where $0 < x < \pi$ and 0 < y < 1.

P 40. (MM Q771, Norman Schaumberger) Show that if $0 < \theta < \frac{\pi}{2}$, then $\sin 2\theta \ge (\tan \theta)^{\cos 2\theta}$.