Bài tập phần vector

Võ Quốc Phong

Ngày 32 tháng 13 năm ∞

Yêu cầu: Tất cả phải làm hết. Tuần sau ngày 24/03/2024 sẽ kiểm tra.

Bài 1: Nếu biểu diễn tích 2 vector dưới dạng: $\vec{x}\vec{y} = x^{\mu}y_{\mu}$ sau đó chuyển hệ tọa độ. Hãy chứng minh rằng:

a/ Tích này không đổi khi chuyển hệ tọa độ.

b/ Sử dụng câu a trên chỉ ra rằng nếu thành phần hiệp biến biến đổi theo $\Lambda^i_{j'}$ thì thành phần phản biến biến đổi theo $A^{j'}_i = ((\Lambda^i_{j'})^T)^{-1}$. Lưu ý rằng bài tập này làm khác với trong lớp, trong lớp dùng vector cơ sở.

- ${\it Bài}$ 2: Chứng minh rằng ký hiệu Christoffel không phải là tensor hạng 3. Gợi ý: thực hiện phép biến đổi tọa độ của ký hiệu này.
- ${\bf B}$ ài 3: Chứng minh rằng định thức của tensor metric luôn khác không. Gợi ý: nếu $\vec{x}\vec{y}=0$ với mọi \vec{y} , nếu tồn tại \vec{x} với các thành phần không đồng thời bằng không sẽ dẫn đến định thức metric bằng 0.
- \vec{Bai} 4: Nếu ta đặt θ là góc giữa hai vector, và định nghĩa tích vô hướng $\vec{ab} = a.b \cos \theta$. Hãy chứng minh rằng: $\cos \theta = \frac{g_{ij}a^ib^j}{\sqrt{g_{ij}a^ia^j}\sqrt{g_{ij}b^ib^j}}$. Từ đó nêu lên ý nghĩa của việc đưa độ đo vào thông qua tích vô hướng.
 - Bài 5: Chứng minh rằng tích có hướng của hai vector cơ sở:

 $\vec{e}_i \times \vec{e}_j = \sqrt{g} e_{ijk} \vec{e}^k$. g là định thức cảu tensor metric. Từ đó đưa ra tích vô hướng của hai vector bất kỳ.