A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 1EJ

Bookmark

Show all steps: ON

ON

Problem

Let f be a homomorphism from G onto H with kernel K:

$$f: G \longrightarrow H$$

If *S* is any subgroup of *H*, let $S^* = \{x \in G: f(x) \in S\}$. Prove:

 S^* is a subgroup of G.

Step-by-step solution

Step 1 of 4

Suppose that G is any group. Let the mapping

$$f: G_K \to H$$

is a homomorphism from G onto H with kernel K. Assume that S is any subgroup of H and consider the following set:

$$S^* = \{x \in G : f(x) \in S\}$$

Objective is to prove that the set S^* forms a subgroup of G.

One step test: If H is a nonempty subset of group G, then H will be subgroup of G if and only if for all $a, b \in H$

$$ab^{-1} \in H$$

Comment

Step 2 of 4

Since S is a subgroup, so identity will be there in S. Also identity is self-imaged element, so it will belong to S^* too. Because of the existence of identity, the set S^* is nonempty subset of G.

If one is able to show that $f(xy^{-1}) \in S$, then this will ensure that $xy^{-1} \in S^*$.

Let $x, y \in S^*$. Consider $f(xy^{-1})$ and expand it by the homomorphism rule as: $f(xy^{-1}) = f(x)f(y^{-1})$ $= f(x)[f(y)]^{-1}.$	
= f(x)[f(y)]. The second step is the well-known property of homomorphism.	
Comment	
Step 3 of 4	
Since $x, y \in S^*$, therefore by the above definition $f(x), f(y) \in S$. Also S is a subgroup, so $[f(y)]^{-1} \in S$. Being operation closed, $f(x)[f(y)]^{-1} \in S$. Thus, $f(xy^{-1}) \in S$ and correspondingly $xy^{-1} \in S^*$.	
Comment	
Step 4 of 4	
Hence, by one-step test it can be conclude that S^* forms a subgroup of G .	
Comment	