Announcements

Upcoming Deadlines:

- Project 2 Phase 2 due March 5th.
- Hope it's been fun and not too stressful.

There's a live lecture questions thread today.

Lab:

- This week will be working on project 2 (free points).
- Labs next will be project 2 demos.
 - We will ask you to provide a gradescope link to the submission you want to demo.
 - If submitted after the project 2 phase 2 deadline, we'll deduct late points (but only from the demo part).

CS61B

Lecture 18: Asymptotics II: Analysis of Algorithms

- Review of Asymptotic Notation
- Examples 1-2: For Loops
- Example 3: A Basic Recurrence
- Example 4: Binary Search
- Example 5: Mergesort

Example 1/2:For Loops

Loops Example 1: Based on Exact Count

Find the order of growth of the worst case runtime of dup1.


```
int N = A.length;
for (int i = 0; i < N; i += 1)
    for (int j = i + 1; j < N; j += 1)
        if (A[i] == A[j])
        return true;
return false;</pre>
```

Worst case number of == operations:

$$C = 1 + 2 + 3 + ... + (N - 3) + (N - 2) + (N - 1) = N(N-1)/2$$

operation	worst case count
==	$\Theta(N^2)$

Worst case runtime: $\Theta(N^2)$

Loops Example 1: Simpler Geometric Argument

Find the order of growth of the worst case runtime of dup1.


```
int N = A.length;
for (int i = 0; i < N; i += 1)
    for (int j = i + 1; j < N; j += 1)
        if (A[i] == A[j])
        return true;
return false;</pre>
```

Worst case number of == operations:

- Given by area of right triangle of side length N-1.
- Area is $\Theta(N^2)$.

operation	worst case count
==	$\Theta(N^2)$

Worst case runtime: $\Theta(N^2)$

Loops Example 2 [attempt #1]: http://yellkey.com/nature

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$. By simple, we mean there should be no unnecessary multiplicative constants or additive terms.

```
public static void printParty(int N) {
    for (int i = 1; i <= N; i = i * 2) {
        for (int j = 0; j < i; j += 1) {
            System.out.println("hello");
            int ZUG = 1 + 1;
        }
    }
}</pre>
```

A. 1 D. N log N

 $8. \log N \qquad \qquad E. \quad N^2$

Other

Note that there's only one case for this code and thus there's no distinction between "worst case" and otherwise.


```
public static void printParty(int N) {
   for (int i = 1; i <= N; i = i * 2) {
     for (int j = 0; j < i; j += 1) {
        System.out.println("hello");
        int ZUG = 1 + 1;</pre>
```

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
C(N)	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	


```
public static void printParty(int N) {
   for (int i = 1; i <= N; i = i * 2) {
     for (int j = 0; j < i; j += 1) {
        System.out.println("hello");
        int ZUG = 1 + 1;</pre>
```

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C(N)	1																	


```
public static void printParty(int N) {
   for (int i = 1; i <= N; i = i * 2) {
     for (int j = 0; j < i; j += 1) {
        System.out.println("hello");
        int ZUG = 1 + 1;</pre>
```

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

Ν	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C(N)	1	3																


```
public static void printParty(int N) {
   for (int i = 1; i <= N; i = i * 2) {
     for (int j = 0; j < i; j += 1) {
        System.out.println("hello");
        int ZUG = 1 + 1;</pre>
```

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C(N)	1	3	3															


```
public static void printParty(int N) {
   for (int i = 1; i <= N; i = i * 2) {
      for (int j = 0; j < i; j += 1) {
        System.out.println("hello");
        int ZUG = 1 + 1;</pre>
```

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C(N)	1	3	3	7														


```
public static void printParty(int N) {
    for (int i = 1; i <= N; i = i * 2) {
        for (int j = 0; j < i; j += 1) {
            System.out.println("hello");
            int ZUG = 1 + 1;</pre>
```

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
C(N)	1	3	3	7	7	7	7												


```
public static void printParty(int N) {
   for (int i = 1; i <= N; i = i * 2) {
     for (int j = 0; j < i; j += 1) {
        System.out.println("hello");
        int ZUG = 1 + 1;
   }
}</pre>
```

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

Cost model C(N), println("hello") calls:

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
C(N)	1	3	3	7	7	7	7	15	15	15	15	15	15	15	15				

These N all print 15 times


```
public static void printParty(int N) {
   for (int i = 1; i <= N; i = i * 2) {
     for (int j = 0; j < i; j += 1) {
        System.out.println("hello");
        int ZUG = 1 + 1;
    }</pre>
```

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
C(N)	1	3	3	7	7	7	7	15	15	15	15	15	15	15	15	31	31	31	

Loops Example 2 [attempt #2]: http://yellkey.com/question

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

A. 1
 B. log N
 E. N²

C. N F. Other

```
public static void printParty(int N) {
  for (int i = 1; i<=N; i = i * 2) {
    for (int j = 0; j < i; j += 1) {
        System.out.println("hello");
        int ZUG = 1 + 1;
    }
}</pre>
```

Cost model C(N), println("hello") calls:

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C(N)	1	3	3	7	7	7	7	15	15	15	15	15	15	15	15	31	31	31

C(N) = 1 + 2 + 4 + ... + N, if N is a power of 2

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

N	C(N)	0.5 N	2N
1	1	0.5	2
4	1 + 2 + 4 = 7	2	14
7	1 + 2 + 4 = 7	3.5	14
8	1+2+4+8=15	4	16
27	1+2+4+8+16=31	13.5	54
185	+ 64 + 128 = 255	92.5	370
715	+ 256 + 512 = 1023	357.5	1430

Loops Example 2 [attempt #3]: http://yellkey.com/article

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

Ν	C(N)	0.5 N	2N
1	1	0.5	2
4	7	2	14
7	7	3.5	14
8	15	4	16
27	31	13.5	54
185	255	92.5	370
715	1023	357.5	1430

```
public static void printParty(int n) {
  for (int i = 1; i<=n; i = i * 2) {
    for (int j = 0; j < i; j += 1) {
        System.out.println("hello");
        int ZUG = 1 + 1;</pre>
```

- $R(N) = \Theta(1 + 2 + 4 + 8 + ... + N)$ if N is power of 2.
 - A. 1 D. N log N
- B. $\log N$ E. N^2
- C. N F. Something else

Loops Example 2 [attempt #3]: http://shoutkey.com/TBA

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

$$R(N) = \Theta(1 + 2 + 4 + 8 + ... + N)$$

= $\Theta(N)$

 $\mathsf{A.} \quad \mathsf{1} \qquad \mathsf{D.} \quad \mathsf{N} \mathsf{log} \, \mathsf{N}$

B. $\log N$ E. N^2

C. N F. Something else

Can also compute exactly:

- 1 + 2 + 4 + ... + N = 2N 1
- Ex: If N = 8
 - \circ LHS: 1 + 2 + 4 + 8 = 15
 - RHS: 2*8 1 = 15

Repeat After Me...

There is no magic shortcut for these problems (well... <u>usually</u>)

- Runtime analysis often requires careful thought.
- CS70 and especially CS170 will cover this in much more detail.
- This is not a math class, though we'll expect you to know these:

```
0 + 2 + 3 + ... + Q = Q(Q+1)/2 = \Theta(Q^2) \leftarrow Sum \text{ of First Natural Numbers (Link)}
```

○
$$1+2+4+8+...+Q = 2Q-1 = \Theta(Q) \leftarrow \text{Sum of First Powers of 2 (Link)}$$

Where Q is a power of 2.

```
public static void printParty(int n) {
  for (int i = 1; i <= n; i = i * 2) {
    for (int j = 0; j < i; j += 1) {
       System.out.println("hello");
       int ZUG = 1 + 1;
    }
}</pre>
```


Repeat After Me...

There is no magic shortcut for these problems (well... <u>usually</u>)

- Runtime analysis often requires careful thought.
- CS70 and especially CS170 will cover this in much more detail.
- This is not a math class, though we'll expect you to know these:

○
$$1 + 2 + 3 + ... + Q$$
 = $Q(Q+1)/2 = \Theta(Q^2) \leftarrow Sum \text{ of First Natural Numbers (Link)}$

$$0 1 + 2 + 4 + 8 + ... + Q = 2Q - 1 = \Theta(Q) \leftarrow \text{Sum of First Powers of 2 (Link)}$$

- Strategies:
 - Find exact sum.
 - Write out examples.
 - Draw pictures.

QR decomposition runtime, from "Numerical Linear Algebra" by Trefethen.

Example 3: Recursion

Recursion (Intuitive): http://yellkey.com/sound

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

```
public static int f3(int n) {
   if (n <= 1)
      return 1;
   return f3(n-1) + f3(n-1);
}</pre>
```

Using your intuition, give the order of growth of the runtime of this code as a function of N?

- A. 1
- B. log N
- C. N
- D. N^2
- E. 2^N

Recursion (Intuitive)

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

```
public static int f3(int n) {
   if (n <= 1)
      return 1;
   return f3(n-1) + f3(n-1);
}</pre>
```

2^N: Every time we increase N by 1, we double the work!

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

```
public static int f3(int n) {
   if (n <= 1)
      return 1;
   return f3(n-1) + f3(n-1);
}</pre>
```

Another approach: Count number of calls to f3, given by C(N).

- C(1) = 1
- C(2) = 1 + 2
- C(3) = 1 + 2 + 4

Recursion and Exact Counting: http://yellkey.com/full

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

```
public static int f3(int n) {
   if (n <= 1)
      return 1;
   return f3(n-1) + f3(n-1);
}</pre>
```

Another approach: Count number of calls to f3, given by C(N).

- C(3) = 1 + 2 + 4
- C(N) = 1 + 2 + 4 + ... + ???

What is the final term of the sum?

A. N B. 2^{N} C. $2^{N}-1$ D. 2^{N-1} E. $2^{N-1}-1$

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

```
public static int f3(int n) {
   if (n <= 1)
      return 1;
   return f3(n-1) + f3(n-1);
}</pre>
```

Another approach: Count number of calls to f3, given by C(N).

- C(3) = 1 + 2 + 4
- C(N) = 1 + 2 + 4 + ... + ???

What is the final term of the sum?

D. 2^{N-1}

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

```
public static int f3(int n) {
   if (n <= 1)
      return 1;
   return f3(n-1) + f3(n-1);
}</pre>
```

Another approach: Count number of calls to f3, given by C(N).

•
$$C(N) = 1 + 2 + 4 + ... + 2^{N-1}$$

Give a simple expression for C(N).

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

```
public static int f3(int n) {
   if (n <= 1)
      return 1;
   return f3(n-1) + f3(n-1);
}</pre>
```

Another approach: Count number of calls to f3, given by C(N).

•
$$C(N) = 1 + 2 + 4 + ... + 2^{N-1}$$

Give a simple expression for C(N).

- $C(N) = 2^{N} 1$
- Why? It's the Sum of First Powers of 2.
 - See next slide for details.

Recursion and Exact Counting, Solving for C(N)

$$C(N) = 1 + 2 + 4 + 8 + \dots + 2^{N-1}$$

We know that the Sum of the First Powers of 2 from before, i.e. as long as Q is a power of 2, then:

$$1 + 2 + 4 + 8 + \dots + Q = 2Q - 1$$

Thus, since $Q = 2^{N-1}$, we have that:

$$C(N) = 2Q - 1 = 2(2^{N-1}) - 1 = 2^N - 1$$

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

```
public static int f3(int n) {
   if (n <= 1)
      return 1;
   return f3(n-1) + f3(n-1);
}</pre>
```

Another approach: Count number of calls to f3, given by C(N).

- $C(N) = 1 + 2 + 4 + ... + 2^{N-1}$
- Solving, we get $C(N) = 2^N 1$

Since work during each call is constant:

• $R(N) = \Theta(2^N)$

Recursion and Recurrence Relations

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

```
public static int f3(int n) {
   if (n <= 1)
      return 1;
   return f3(n-1) + f3(n-1)
}</pre>
```

A third approach: Count number of calls to f3, given by a "recurrence relation" for C(N).

- C(1) = 1
- C(N) = 2C(N-1) + 1

Recursion and Recurrence Relations (Extra, Outside 61B Scope)

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

```
public static int f3(int n) {
   if (n <= 1)
      return 1;
   return f3(n-1) + f3(n-1)
}</pre>
```

A third approach: Count number of calls to f3, given by a "recurrence relation" for C(N).

- C(1) = 1
- C(N) = 2C(N-1) + 1

More technical to solve. Won't do this in our course. See next slide for solution.

Recursion and Recurrence Relations (Extra, Outside 61B Scope)

Find a simple f(N) such that the runtime $R(N) \subseteq \Theta(f(N))$.

```
public static int f3(int n) {
   if (n <= 1)
      return 1;
   return f3(n-1) + f3(n-1)
}</pre>
```

This approach not covered in class. Provided for those of you who want to see a recurrence relation solution.

One approach: Count number of calls to f3, given by C(N).

```
C(1) = 1
C(N) = 2C(N-1)+1
= 2(2C(N-2)+1)+1
= 2(2(2C(N-2)+1)+1)+1
= 2(\cdots 2 \cdot 1+1)+1)+\cdots 1
= 2(\cdots 2)\cdot 1+1)+\cdots 1
= 2^{N-1}+2^{N-2}+\cdots +1=2^{N}-1 \in \Theta(2^{N})
```


Example 4: Binary Search

Binary Search (demo: https://goo.gl/3VvJNw)

Trivial to implement?

- Idea published in 1946.
- First correct implementation in 1962.
 - Bug in Java's binary search discovered in 2006. ← http://goo.ql/qQl0FN

```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

See Jon Bentley's book Programming Pearls.

Binary Search (Intuitive): http://yellkey.com/car

```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Goal: Find runtime in terms of N = hi - lo + 1 [i.e. # of items being considered]

- Intuitively, what is the order of growth of the worst case runtime?
 - A. 1
 - **⊣.** ⊥
 - B. log₂ N C. N
 - D. N log₂ N
 - E. 2^N

Binary Search (Intuitive)

```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Goal: Find runtime in terms of N = hi - lo + 1 [i.e. # of items being considered]

• Intuitively, what is the order of growth of the worst case runtime?

Why? Problem size halves over and over until it gets down to 1.

• If C is number of calls to binarySearch, solve for $1 = N/2^{C} \rightarrow C = \log_{2}(N)$

Example 4: Binary Search Exact (Optional) (see web video)

Binary Search (Exact Count): http://yellkey.com/allow

```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]

Cost model: Number of binarySearch calls.

What is C(6), number of total calls for N = 6?

A. 6 D. 2

B. 3 E. 1

C. $\log_2(6) = 2.568$

```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]

Cost model: Number of binarySearch calls.

- What is C(6), number of total calls for N = 6?
 3 calls
 - B. 3

N=6

N=3

N=1

```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]

Cost model: Number of binarySearch calls.

N	1	2	3	4	5	6	7	8	9	10	11	12	13	
C(N)	1					3								

```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]

Cost model: Number of binarySearch calls.

N	1	2	3	4	5	6	7	8	9	10	11	12	13
C(N)	1	2	2			3							


```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]

Cost model: Number of binarySearch calls.

N	1	2	3	4	5	6	7	8	9	10	11	12	13
C(N)	1	2	2	3	3	3	3						


```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]

Cost model: Number of binarySearch calls.

N=3

```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]

Cost model: Number of binarySearch calls.

N	1	2	3	4	5	6	7	8	9	10	11	12	13
C(N)	1	2	2	3	3	3	3	4	4	4	4	4	4
$C(N) = Llog_{\cdot}(N) J + 1$													

datastructur.e

N=3

N=2

N=1

```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]

- Cost model: Number of binarySearch calls.
- $C(N) = Llog_2(N) J+1$
- Since each call takes constant time, $R(N) = \Theta(L\log_2(N)J)$
 - This f(N) is way too complicated. Let's simplify.

Handy Big Theta Properties

Goal: Simplify $\Theta(L\log_2(N)J)$

For proof: See online textbook exercises.

- Three handy properties to help us simplify:
 - $Lf(N)J=\Theta(f(N))$ [the floor of f has same order of growth as f]
 - $\lceil f(N) \rceil = \Theta(f(N))$ [the ceiling of f has same order of growth as f]
 - $\circ \log_{p}(N) = \Theta(\log_{O}(N))$ [logarithm base does not affect order of growth]

$$L\log_2(N)J = \Theta(\log N)$$

Since base is irrelevant, we omit from our big theta expression. We also omit the parenthesis around N for aesthetic reasons.


```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]

- Cost model: Number of binarySearch calls.
- $C(N) = Llog_2(N)J+1 = \Theta(log N)$
- Since each call takes constant time, R(N) = Θ(log N)

... and we're done!

Binary Search (using Recurrence Relations)

```
static int binarySearch(String[] sorts, String x, int lo, int hi)
   if (lo > hi) return -1;
   int m = (lo + hi) / 2;
   int cmp = x.compareTo(sorted[m]);
   if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
   else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
   else return m;
}
```

Approach: Measure number of string comparisons for N = hi - lo + 1.

- \bullet C(0) = 0
- $\bullet \quad \mathsf{C}(1) \qquad = 1$
- C(N) = 1 + C((N-1)/2)

Can show that $C(N) = \Theta(\log N)$. Beyond scope of class, so won't solve in slides.

Log Time Is Really Terribly Fast

In practice, logarithmic time algorithms have almost constant runtimes.

Even for incredibly huge datasets, practically equivalent to constant time.

N	log ₂ N	Typical runtime (seconds)
100	6.6	1 nanosecond
100,000	16.6	2.5 nanoseconds
100,000,000	26.5	4 nanoseconds
100,000,000,000	36.5	5.5 nanoseconds
100,000,000,000	46.5	7 nanoseconds

Example 5: Mergesort

Selection Sort: A Prelude to Mergesort/Example 5

Earlier in class we discussed a sort called selection sort:

- Find the smallest unfixed item, move it to the front, and 'fix' it.
- Sort the remaining unfixed items using selection sort.

Runtime of selection sort is $\Theta(N^2)$:

- Look at all N unfixed items to find smallest.
- Then look at N-1 remaining unfixed.
- ...
- Look at last two unfixed items.
- Done, sum is $2+3+4+5+...+N = \Theta(N^2)$

datastructu © 0 S

Selection Sort: A Prelude to Mergesort/Example 5

Earlier in class we discussed a sort called selection sort:

- Find the smallest unfixed item, move it to the front, and 'fix' it.
- Sort the remaining unfixed items using selection sort.

Runtime of selection sort is $\Theta(N^2)$:

~36 AU N=6

~2048 AU

- Look at all N unfixed items to find smallest.
- Then look at N-1 remaining unfixed.
- ...
- Look at last two unfixed items.
- Done, sum is $2+3+4+5+...+N = \Theta(N^2)$

SS

N=64

Given that runtime is quadratic, for N = 64, we might say the runtime for selection sort is 2,048 arbitrary units of time (AU).

The Merge Operation: Another Prelude to Mergesort/Example 5

Given two sorted arrays, the merge operation combines them into a single sorted array by successively copying the smallest item from the two arrays into a target array.

Merging Demo (<u>Link</u>)

Merge Runtime: http://yellkey.com/west

How does the runtime of merge grow with N, the total number of items?

- $\Theta(1)$
- C. Θ(N)
- $\Theta(\log N)$ D. $\Theta(N^2)$

Merge Runtime: http://shoutkey.com/TBA

How does the runtime of merge grow with N, the total number of items?

C. $\Theta(N)$. Why? Use array writes as cost model, merge does exactly N writes.

Using Merge to Speed Up the Sorting Process

Merging can give us an improvement over vanilla selection sort:

- Selection sort the left half: Θ(N²).
- Selection sort the right half: $\Theta(N^2)$.
- Merge the results: $\Theta(N)$.

N=64: ~1088 AU.

- Merge: ~64 AU.
- Selection sort: ~2*512 = ~1024 AU.

~64 AU N=64 SS SS SS ~512 AU N=32 ~512 N=32

Still $\Theta(N^2)$, but faster since N+2*(N/2)² < N²

~1088 vs. ~2048 AU for N=64.

Two Merge Layers

Can do even better by adding a second layer of merges.

Example 5: Mergesort

Mergesort does merges all the way down (no selection sort):

- If array is of size 1, return.
- Mergesort the left half: $\Theta(??)$.
- Mergesort the right half: $\Theta(??)$.
- Merge the results: $\Theta(N)$.

Total runtime to merge all the way down: ~384 AU

- Top layer: ~64 = 64 AU
- Second layer: ~32*2 = 64 AU
- Third layer: ~16*4 = 64 AU
- Overall runtime in AU is ~64k, where k is the number of layers.
- $k = \log_2(64) = 6$, so ~384 total AU.

Example 5: Mergesort Order of Growth, yellkey.com/friend

For an array of size N, what is the worst case runtime of Mergesort?

- A. $\Theta(1)$
- B. $\Theta(\log N)$
- C. $\Theta(N)$
- D. $\Theta(N \log N)$
- E. $\Theta(N^2)$

Example 5: Mergesort Order of Growth

Mergesort has worst case runtime = $\Theta(N \log N)$.

- Every level takes ~N AU.
 - Top level takes ~N AU.
 - \circ Next level takes $\sim N/2 + \sim N/2 = \sim N$.
 - One more level down: ~N/4 + ~N/4 + ~N/4 + ~N/4 = ~N.
- Thus, total runtime is ~Nk, where k is the number of levels.
 - How many levels? Goes until we get to size 1.
 - \circ k = $\log_2(N)$.
- Overall runtime is $\Theta(N \log N)$.

Exact count explanation is tedious.

Omitted here. See textbook exercises.

Mergesort using Recurrence Relations (Extra)

C(N): Number of calls to mergesort + number of array writes.

$$C(N) = \begin{cases} 1 & : N < 2 \\ 2C(N/2) + N & : N \ge 2 \end{cases}$$

$$C(N) = 2(2C(N/4) + N/2) + N$$

$$= 4C(N/4) + N + N$$

= 8C(N/8) + N + N + N

 $= N \cdot 1 + \underbrace{N + N + \dots + N}_{}$

 $k=\lg N$

 $= N + N \lg N \in \Theta(N \lg N)$

Only works for N=2^k. Can be generalized at the expense of some tedium by separately finding Big O and Big Omega bounds (see next lecture).

Linear vs. Linearithmic (N log N) vs. Quadratic

 $N \log N$ is basically as good as N, and is vastly better than N^2 .

For N = 1,000,000, the log N is only 20.

	n	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

(from Algorithm Design: Tardos, Kleinberg)

Summary

Theoretical analysis of algorithm performance requires careful thought.

- There are **no magic shortcuts** for analyzing code.
- In our course, it's OK to do exact counting or intuitive analysis.
 - \circ Know how to sum 1 + 2 + 3 ... + N and 1 + 2 + 4 + ... + N.
 - We won't be writing mathematical proofs in this class.
- Many runtime problems you'll do in this class resemble one of the five problems from today. See textbook, study guide, and discussion for more practice.
- This topic has one of the highest skill ceilings of all topics in the course.

Different solutions to the same problem, e.g. sorting, may have different runtimes.

- N^2 vs. $N \log N$ is an enormous difference.
- Going from N log N to N is nice, but not a radical change.

