Note

- 1. Allowed Tools: Calculators
- 2. Leaving the classroom during the exam period will be considered as submitting the exam.

Name :

SID: _____

11.Apr. 2023

- (20%) Assume the angular frequency (ω) of power source is 1 rad/s, write a set of mesh equations in terms of the currents shown in Fig. 1.
- 2. (30%) For the circuit of Fig. 2, compute $v_1(t)$, $v_2(t)$, and the average power delivered to each resistor.
- 3. (20%) In Fig. 3, if Vs=1 \angle 0° V, find V₀ and equivalent impedances Z_{eq1}, Z_{eq2} and Z_{eq3}.
- 4. For a <u>balanced</u> circuit of Fig. 4, (a) (10%) convert the Δ-connected network into Y-connected network; (b) (10%) find <u>rms</u> values of the <u>line</u> currents I_a, I_b, I_c and the <u>line</u> voltages V_{AB}, V_{BC}, V_{CA}; (c) (10%) find the complex power and power factor at the source.

