12.579

Puni Aditya - EE25BTECH11046

3rd October, 2025

Question

Let V be the vector space of all 3 \times 3 matrices with complex entries over the real field. If

$$W_1 = \left\{ \mathbf{A} \in V : \mathbf{A} = \mathbf{\bar{A}}^{\top} \right\}$$

 $W_2 = \left\{ \mathbf{A} \in V : \mathsf{trace}\left(\mathbf{A}\right) = 0 \right\}$

then the dimension of $W_1 + W_2$ is equal to ______.

A basis for a vector space V over a field F is a set $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ where for any $\mathbf{v} \in V$, there exist unique scalars $c_i \in F$ such that:

$$\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{v}_i \tag{1}$$

This uniqueness implies linear independence, where the only solution to the following equation is $c_1 = \cdots = c_n = 0$.

$$\sum_{i=1}^{n} c_i \mathbf{v}_i = \mathbf{0} \tag{2}$$

Let V be the space of $n \times n$ complex matrices over \mathbb{R} . Let \mathbf{E}_{jk} be the matrix with 1 at position (j,k) and 0 elsewhere. Any $\mathbf{A} \in V$ can be written as:

$$\mathbf{A} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} \mathbf{E}_{jk} = \sum_{j,k} (x_{jk} + iy_{jk}) \mathbf{E}_{jk} = \sum_{j,k} x_{jk} \mathbf{E}_{jk} + \sum_{j,k} y_{jk} (i\mathbf{E}_{jk})$$
(3)

The set

$$\mathcal{B}_{V} = \{ \mathbf{E}_{11}, \dots, \mathbf{E}_{nn}, i\mathbf{E}_{11}, \dots, i\mathbf{E}_{nn} \}$$
 (4)

spans V. Linear independence over \mathbb{R} is shown by:

$$\sum_{j,k} x_{jk} \mathbf{E}_{jk} + \sum_{j,k} y_{jk} (i \mathbf{E}_{jk}) = \mathbf{0} \implies \sum_{j,k} (x_{jk} + i y_{jk}) \mathbf{E}_{jk} = \mathbf{0}$$
 (5)

This implies

$$x_{jk} + iy_{jk} = 0$$
, thus $x_{jk} = 0$ and $y_{jk} = 0$ for all j, k (6)

 \mathcal{B}_V is a basis.

$$\dim(V) = n^2 + n^2 = 2n^2 \tag{7}$$

Let $\mathcal{B}_{1\cap 2}$ be a basis for $W_1 \cap W_2$. Extending it to bases \mathcal{B}_1 for W_1 and \mathcal{B}_2 for W_2 . The set

$$\mathcal{B}_{1+2} = \mathcal{B}_1 \cup \mathcal{B}_2$$

spans $W_1 + W_2$. For linear independence:

$$\sum a_i \mathbf{u}_i + \sum b_j \mathbf{v}_j + \sum c_l \mathbf{w}_l = \mathbf{0} \implies \sum a_i \mathbf{u}_i + \sum b_j \mathbf{v}_j = -\sum c_l \mathbf{w}_l$$
(8)

The vector is in $W_1 \cap W_2$, so $-\sum c_I \mathbf{w}_I = \sum d_i \mathbf{u}_i$. Since \mathcal{B}_2 is a basis, all $c_I = 0, d_i = 0$, which implies all $a_i = 0, b_j = 0$.

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$
 (9)

For W_1 , the Hermitian condition

$$a_{jk} = \bar{a}_{kj} \tag{10}$$

From (10),

$$x_{jk} + iy_{jk} = x_{kj} - iy_{kj} \implies x_{jk} = x_{kj} \text{ and } y_{jk} = -y_{kj}$$
 (11)

For diagonal elements,

$$y_{jj} = -y_{jj} \implies y_{jj} = 0 \tag{12}$$

This gives n real parameters. For off-diagonal elements, there are

$$\frac{n^2-n}{2} \tag{13}$$

pairs. Each pair is determined by one complex number (x_{jk}, y_{jk}) , giving

$$2 \times \frac{n^2 - n}{2} = n^2 - n \tag{14}$$

real parameters.

For W_2 , the trace condition imposes two independent real constraints on the $2n^2$ parameters of V:

trace
$$(\mathbf{A}) = \sum x_{jj} + i \sum y_{jj} = 0 \implies \sum x_{jj} = 0$$
 and $\sum y_{jj} = 0$ (16)

$$\dim(W_2) = 2n^2 - 2 \tag{17}$$

For $W_1 \cap W_2$, matrices are Hermitian, so $y_{jj} = 0$. The trace condition becomes one real constraint on the n^2 parameters of W_1 .

$$\dim (W_1 \cap W_2) = n^2 - 1 \tag{18}$$

Final Calculation

For this problem,

$$n=3 \tag{19}$$

$$\dim(W_1) = 3^2 = 9 \tag{20}$$

$$\dim(W_2) = 2(3^2) - 2 = 16 \tag{21}$$

$$\dim (W_1 \cap W_2) = 3^2 - 1 = 8 \tag{22}$$

$$\therefore \dim(W_1 + W_2) = 9 + 16 - 8 = 17 \tag{23}$$