

d) 
$$|\cdot \infty| = ?$$
  
e)  $0 \cdot \infty = ?$   
f)  $\infty + 1 = ?$   
g)  $\infty - \infty = ?$   
N)  $0 = ?$   
N)  $0 = ?$ 





We see that near 2, f(x) is about 1 so we should expect  $\lim_{x\to 2} f(x) = 1$ . Indeed,  $\frac{x-2}{x^2-3x+2} = \frac{x-2}{x-2} \cdot \frac{1}{x-1}$ 

So as long as x is not 2,  $f(x) = \frac{x-2}{x-2} \cdot \frac{1}{x-1} = \frac{1}{x-1}$  which means  $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{1}{x-1} = \frac{1}{2-1} = 1$ .

In the last part of the example, I substituted 2 into x-1 to say  $x \to 2$  x-1 = 2-1. You can only do this when a function is "continuous" at a point. Tormally a function f is continuous at a if  $x \to a$  f(x) = f(a). If f is continuous at every point we say f is continuous. Continuous roughly means the function can be drawn without lifting your pencil.

One sided limits

Limits to infinity:

Example the sign function. • squ

Projects: Interpreting 0:  $\frac{x}{x}$ ,  $\frac{2x}{x}$ ,  $\frac{x^2}{x}$ ,  $\frac{x}{x^3}$ ,  $\frac{x}{x}$ ,  $\frac{x}{x}$ ,  $\frac{x}{x}$  Sincx

Finding limits of type  $\frac{1}{x}$  where f and g are polynomials.

Compute  $\frac{1}{x}$  Sin(x). Hint: the unit circle

• The 5-E definition of the limit:

• check  $x^2$  is continuous at 2 i.e.  $x^2 = 4$ 

| * Using the S-E definition to prove limit identities,                | * Using the S-E definition to prove limit identities, |
|----------------------------------------------------------------------|-------------------------------------------------------|
| I MOL EXAMPLES                                                       | scaling · addition · multiplying · composing          |
| I MOL EXAMPLES                                                       | · Failure of continuity: look up                      |
| I MOL EXAMPLES                                                       | jump discontinuity removable discontinuity, and       |
| I MOL EXAMPLES                                                       | essential discontinuity.                              |
| • • • • • • • • • • • • • • • • • • •                                | Find examples                                         |
| • Hovizoutal Asymptotes. — classify lisso find for f. g polynomials. |                                                       |
| • Horizoufal Asymptotes.  — classify limb f(x) for f.g polynomials.  |                                                       |
| • Horizoutal Asymptotes. — classify lists fam for fr g polynomials.  |                                                       |
| - classify lists for fr g polynarials.                               | · Horizonfal Asymptotes.                              |
|                                                                      | - classifu sing for for for polynomials.              |
|                                                                      | Je y                                                  |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |
|                                                                      |                                                       |