Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-11-05

Anything Wrong?

```
v \in (S - (T \cap U))
\equiv \langle \text{ Set difference } (11.22) \rangle
v \in S \wedge v \notin (T \cap U)
\equiv \langle \text{ Intersection } (11.21) \rangle
v \in S \wedge (v \notin T \wedge v \notin U)
\equiv \langle \text{ Distributivity of } \wedge \text{ over } \wedge \rangle
(v \in S \wedge v \notin T) \wedge (v \in S \wedge v \notin U)
\equiv \langle \text{ Intersection } (11.21) \rangle
(v \in S \wedge v \notin T) \cap (v \in S \wedge v \notin U)
\equiv \langle \text{ Set difference } (11.22) \rangle
(v \in (S - T)) \cap (v \in (S - U))
\equiv \langle \text{ Intersection } (11.21) \rangle
v \in ((S - T) \cap (S - U))
```

Plan for Today

- Textbook Chapter 11: Set Theory
 - set comprehension

The Axioms of Set Theory — Overview

(11.2e) Membership in Set Enumerations:

$$v \in \{e_1, \dots, e_n\}$$
 \equiv $v = e_1 \vee \dots \vee v = e_n$

(11.2f) **Empty Set:** $v \in \{\}$ = false

(11.4) **Axiom, Extensionality:** Provided $\neg occurs('x', 'S, T')$,

$$S = T \equiv (\forall x \bullet x \in S \equiv x \in T)$$

(11.13T)**Axiom**, **Subset:** Provided $\neg occurs('x', 'S, T')$,

$$S\subseteq T \quad \equiv \quad \big(\forall\,x\,\bullet\,x\in S\,\Rightarrow\,x\in T\big)$$

(11.14) **Axiom, Proper subset:** $S \subset T \equiv S \subseteq T \land S \neq T$

(11.20) **Axiom, Union:** $v \in S \cup T \equiv v \in S \lor v \in T$

(11.21) **Axiom, Intersection:** $v \in S \cap T \equiv v \in S \land v \in T$

(11.22) Axiom, Set difference: $v \in S - T \equiv v \in S \land v \notin T$

(11.23) Axiom, Power set: $v \in \mathbb{P} S \equiv v \subseteq S$

Set Equality and Inclusion

(11.4) **Axiom, Extensionality:** Provided $\neg occurs('x', 'S, T')$,

$$S = T \equiv (\forall x \bullet x \in S \equiv x \in T)$$

(11.13T)**Axiom**, **Subset:** Provided $\neg occurs('x', 'S, T')$,

$$S \subseteq T \equiv (\forall x \bullet x \in S \Rightarrow x \in T)$$

(11.11b) Metatheorem Extensionality:

Let *S* and *T* be set expressions and *v* be a variable.

Then S = T is a theorem iff $v \in S \equiv v \in T$ is a theorem.

(11.13m) Metatheorem Subset:

Let *S* and *T* be set expressions and *v* be a variable.

Then $S \subseteq T$ is a theorem iff $v \in S \implies v \in T$ is a theorem.

Extensionality (11.11b) and Subset (11.13m) will mostly be used **by LADM** as the following inference rules:

$$\begin{array}{cccc} \underline{v \in S} & \equiv & v \in T \\ \hline S & = & T \end{array} \qquad \begin{array}{cccc} \underline{v \in S} & \Rightarrow & v \in T \\ \hline S & \subseteq & T \end{array}$$

Using Set Extensionality — LADM-Style

Extensionality (11.11b) inference rule: $v \in S \equiv v \in T$

Ex. 8.2(a) Prove: $\{E, E\} = \{E\}$ for each expression *E*.

By extensionality (11.11b):

Proving $v \in \{E, E\} \equiv v \in \{E\}$:

$$v \in \{E, E\}$$

 \equiv (Membership in set enumerations (11.2e))

$$v = E \lor v = E$$

 \equiv (Idempotency of \vee (3.26))

$$v = E$$

 \equiv (Membership in set enumerations (11.2e))

$$v \in \{E\}$$

Using Set Extensionality — More CALCCHECK-Style Axiom (11.4) "Set extensionality": $S = T \equiv (\forall x \bullet x \in S \equiv x \in T)$ — provided $\neg occurs('x', 'S, T')$ Example (8.2a): $\{E, E\} = \{E\}$ Proof: Using "Set extensionality": Subproof for ` $\forall v \bullet v \in \{E, E\} \equiv v \in \{E\}$ `: For any `v`: $v \in \{E, E\}$ $\equiv \langle \text{ Membership in set enumerations (11.2e)} \rangle$ $v = E \lor v = E$ $\equiv \langle \text{ Idempotency of } \vee (3.26) \rangle$

Cardinality of Finite Sets

(11.12) **Axiom, Size:** Provided $\neg occurs('x', 'S')$, $\#S = (\Sigma x \mid x \in S \bullet 1)$

This uses: $\#_: set(t) \to \mathbb{N}$

v = E

 $v \in \{E\}$

Note: • $(\Sigma x \mid x \in S \bullet 1)$ is defined only if *S* is finite.

■ (Membership in set enumerations (11.2e))

• #N is undefined!

Calculate!

The size of a finite set *S*, that is, the number of its elements, is written #*S*

• #{1,2} • $\#(\{1,2,3\} \cap \{3,4\})$ • #{1,1} • $\#(\{1,2,3\}\cup\{3,4\})$ • #{1} • $\#(\{1,2,3\}\times\{3,4\})$ • #{} • $\#(\{1,2,3\} \cap \{3,2\})$ • #{{}} • $\#(\{1,2,3\}\cup\{3,2\})$ • #{{{}}}} • $\#(\{1,2,3\}\times\{3,2\})$ • #{{},{{}}} • $\#(\mathbb{P}\{1,2,3\})$ • #{{},{}} • $\#(\mathbb{P} \mathbb{P} \{1,2,3\})$

Power Set

(11.23) **Axiom, Power set:** $v \in \mathbb{P} S \equiv v \subseteq S$

 $\mathbb{P} \mathbb{B} = \{\{\}, \{false\}, \{true\}, \{false, true\}\}$

- Each type *t* is a set of type *set*(*t*)
- For a type t, the **type of subsets of** t is set(t)
- For a type t considered as a set, its powerset is \mathbb{P} t
- According to the textbook, **type annotations** v:t, in particular in variable declarations in quantifications and in set comprehensions, **may only use types** t.
- We occasionally follow the specification notation Z in writing " \mathbb{P} t" also for "set(t)"
- $\#(\mathbb{P}\{1,2,3\})$
- $\#(\mathbb{P} \mathbb{P} \{1,2,3\})$

The Universe, and Set Complement

Frequently, a "domain of discourse" is assumed, that is, a set of "all objects under consideration".

This is often called a "universe".

Special notation: U

(11.17) **Axiom, Complement:** $v \in {}^{\sim}S \equiv v \in \mathbf{U} \land v \notin S$

Complement can be expressed via difference:

$$\sim S = \mathbf{U} - S$$

Complement ~ always implicitly depends on the universe U!

Consider a context where $\mathbb{N} \subseteq \mathbb{Z}$:

- Let *S* be a subset of \mathbb{N} .
- Consider the complement $\sim S$
- Is $-5 \in \sim S$ true or false?

Metatheorem (11.25): Sets \iff Propositions

Let

- P, Q, R, \dots be set variables
- p,q,r,... be propositional variables
- E, F be expressions built from these set variables and \cup , \cap , \sim , U, $\{\}$.

Define the Boolean expressions E_p and F_p by replacing

$$P,Q,R,...$$
 with $p,q,r,...$ ~ with ¬ U with true \cap with \wedge {} with $false$

Then:

- E = F is valid iff $E_p \equiv F_p$ is valid.
- $E \subseteq F$ is valid iff $E_p \Rightarrow F_p$ is valid.
- $E = \mathbf{U}$ is valid iff E_p is valid.

Metatheorem (11.25): Sets \iff Propositions — Examples

Let E, F be expressions built from set variables P, Q, R, ... and \cup , \cap , \sim , U, $\{\}$.

Define the Boolean expressions E_p and F_p by replacing

$$P,Q,R,...$$
 with $p,q,r,...$ ~ with ¬ U with true \cap with \wedge {} with $false$

Then:

- E = F is valid iff $E_p \equiv F_p$ is valid.
- $E \subseteq F$ is valid iff $E_p \Rightarrow F_p$ is valid.
- $E = \mathbf{U}$ is valid iff E_p is valid.

Free theorems!

```
\begin{array}{ll} P \cap (P \cup Q) &= P \\ P \cap (Q \cup R) &= (P \cap Q) \cup (P \cap R) \\ P \cup (Q \cap R) &\subseteq P \cup Q \\ &\vdots \end{array}
```

Set Comprehension

Set comprehension example:

$${x: \mathbb{Z} \mid 0 \le x < 5 \bullet x \cdot x} = {0, 1, 4, 9, 16}$$

(11.1) Set comprehension general shape: $\{x: t \mid R \bullet E\}$

— This set comprehension **binds** variable *x*!

Evaluated in state s, this denotes the set containing the values of E evaluated in those states resulting from s by changing the binding of x to those values from type t that satisfy R.

Note: The braces " $\{...\}$ " are **only** used for set notation!

Abbreviation for special case: $\{x \mid R\} = \{x \mid R \bullet x\}$

(11.2) Provided $\neg occurs('x', 'e_0, \dots, e_{n-1}')$,

$$\{e_0,\ldots,e_{n-1}\} = \{x \mid x = e_0 \lor \cdots \lor x = e_{n-1} \bullet x\}$$