Übungsblatt 9: Endlich erzeugte Moduln, Basen, Satz von Cayley-Hamilton

In den folgenden Übungen sind alle Ringe kommutativ mit Eins.

Übung 9.1. (wird benotet, auf 3 Punkten) Sei R ein Ring und M ein endlich erzeugtes R-Modul. Beweisen Sie, dass es eine maximale Zahl $k \ge 0$ gibt, so dass ein freies Untermodul $F \subseteq M$ isomorph zu R^k besteht. Beweisen Sie zudem, dass für jedes $x \in M/F$ das Annulator $\mathrm{Ann}(x) \ne (0)$ erfüllt.

Anmerkung. M/F ist in diesem Fall also ein Torsionsmodul.

Übung 9.2. (Zerfällungs-Fehler und -Lemma) Sei R ein Ring, M ein R-Modul, und $N \subset M$ ein Untermodul mit induzierter Faktorraumabbildung:

$$q: M \twoheadrightarrow M/N$$
.

1) Beweisen Sie, dass es ein R-Modul Isomorphismus $\varphi: M \xrightarrow{\sim} M/N \oplus N$ mit $\operatorname{pr}_1 \circ \varphi = q$ genau dann gibt, wenn es eine R-lineare Abbildung $s: M/N \to M$ gibt, die die Gleichung $q \circ s = \operatorname{id}_{M/N}$ erfüllt. Hier bezeichnet

$$\operatorname{pr}_1:(m,n)\in M\oplus N\cong M\times N\mapsto m\in M$$

die erste Projektion.

- 2) Was erfolgt daraus, wenn R = k ein Körper ist?
- 3) Konstruieren Sie ein Beispiel, wo M als direkte Summe von N und M/N nicht zerfällt.

Übung 9.3. Seien R ein Ring und $\varphi: M \to N$ ein R-Modulhomomorphismus. Beweisen Sie, die folgenden ersten zwei Aussagen, und kontruieren Sie ein Beispiel, dass die dritte Aussage illustriert:

- 1) (wird benotet, auf 2 Punkten) Wenn M endlich erzeugt ist, dann ist $\operatorname{im}(\varphi)$ endlich erzeugt.
- 2) Wenn $\ker(\varphi)$ und $\operatorname{im}(\varphi)$ endlich erzeugt sind, dann ist M endlich erzeugt.
- 3) Es kann sein, dass M endlich erzeugt ist, aber $\ker(\phi)$ nicht endlich erzeugt ist.

Übung 9.4. Sei R ein Ring und seien M und N zwei R-Moduln. Seien (x_i, y_i) Elemente von $M \times N$ für jedes $1 \le i \le n$ so dass der folgende Element des Tensorprodukts $M \underset{R}{\otimes} N$ gleich null ist:

$$t = \sum_{i=1}^{n} x_i \otimes y_i.$$

Beweisen Sie, dass es endlich erzeugte Moduln $M_0 \subset M$ und $N_0 \subset N$ gibt, so dass $t \in M_0 \underset{R}{\otimes} N_0$ auch null ist.

Übung 9.5. Sei $\iota: R \hookrightarrow S$ ein injektiver Ringhomomorphismus, der S zu einem endlich erzeugten R-Modul macht. Beweisen Sie, dass jedes $\alpha \in S$ als Wurzel eines normierten Polynoms $P_{\alpha} \in R[X]$ dargestellt werden kann.