

Lecturer Erhan AKAGÜNDÜZ

- ✓ Kurumlarda ağ'lar büyüdükçe ağdaki mesajlaşma trafiği de artar.
- ✓ Bu trafiği düzenlemek amacıyla ağlar alt ağlara bölünür.
- ✓ Böylece internet adres yapısı daha verimli kullanılır.
- ✓ Alt ağlar, ağdaki bilgisayarları gösteren bazı bitlerin ağ numarası olarak kullanılmasıyla oluşturulur.
- ✓ Böylece bilgisayar sayısı azaltılarak ağ sayısı arttırılır.

- ✓ Alt ağ yapısı kurumların kullandığı ağ yapısına ve topolojilerine göre değişir.
- ✓ Alt ağlar oluşturulduğunda bilgisayarların adresleme işlemi merkezi olmaktan çıkar ve yetki dağılımı yapılır.
- ✓ Dışarıdan bir kullanıcı alt ağ kullanılan bir ağa ulaşmak istediğinde o ağda kullanılan alt ağ yönteminden haberdar olmadan istediği bilgisayara ulaşabilir.
- ✓ Yani oluşturulan alt ağlar sadece kurumun kendisini ilgilendirir.

- ✓ Kurum sadece kendi içinde kullandığı geçiş yolları ya da yönlendiriciler üzerinde hangi alt ağ'a nasıl gidilebileceği tanımlamalarını yapar.
- ✓ A sınıfı bir ağ tasarlandığında ağda toplam 16.777.214 adet bilgisayara IP adresi atanabilir.
- ✓ Ancak bu sayı çok büyüktür ve birçok IP adresinin kullanılmamasına neden olur.

- ✓ Ayrıca ağ, farklı konumlarda bulunan dağınık bir ağ ise her bir lokasyonda farklı IP adresleri kullanılması gerekir.
- ✓ Bu da IP yönetimini zorlaştırır.
- ✓ Bütün bu problemler tek bir IP adresini alt ağlara (Subnet) bölerek çözümlenebilir.
- ✓ Bu hiyerarşik adresleme yapısı yerleşim alanlarının adreslenmesine benzer; önce mahallelere ayrılır, ardından caddelere ve sonra da sokaklara ayrılır.
- ✓ Tam bir hiyerarşik yapı vardır; Özalp, Gazi Mahallesi, pınar sokak gibi.

CREATING A SUBNET

- ✓ Kurumların farklı ihtiyaçlarına göre (kullanıcı sayısı, lokasyon farklılıkları, farklı departmanlar) çeşitli alt ağlar oluşturulur.
- ✓ Herhangi bir IP sınıfında host için ayrılmış bazı bitler ödünç alınarak değerleri "1" yapılır ve alt ağlar oluşturulur.
- ✓ Örneğin C sınıfı bir IP adresini kullanan bir kurum değişik yerleşim bölgelerinde 3 farklı ağ oluşturmak istemektedir.

CREATING A SUBNET

- ✓ Her bir ağda maksimum 50 adet kullanıcı bulunacaktır.
- ✓ Kurum 168.125.20.0 adresini almış olursa, toplam 150 kullanıcısı olan bu kurumda 168.125.20.1 168.125.20.254 arasında ip adresleri kullanılabilir.
- ✓ Bu ip adresleri farklı 3 ağda kullanılacaksa, mevcut ağ, alt ağlara bölünür.
- ✓ Böylece bir adres bloğu 3 farklı ağda kullanılabilir.
- ✓ Bu durumda ağ adres aralığı büyür, bilgisayarlara verilen adres aralığı küçülür.
- ✓ Yani bilgisayarların adreslendiği bitlerden bazıları ödünç alınarak ağ bitlerine katılır.

- ✓ Yukarıdaki örneğe baktığımızda 3 adet alt ağ oluşturmak için, 2 bit host kısımdan alınarak ağ bitlerine katılmalıdır.
- ✓ C sınıfı default ağ maskesi 255.255.255.0'dır. ancak 2 bit 1 yapıldığında oluşan yeni maske;
- ✓ 11111111.11111111.11111111.11000000 → 255.255.255.192 olur.

0	0
0	1
1	0
1	1

0" ve "1" bitlerinin VE (AND) işlemi

- ✓ Yukarıdaki tabloya göre 4 farklı alt ağ oluşturulabilinir.
- ✓ 255.255.255.192 ağ maskesini kullanan 4 adet alt ağ oluşturulur.
- ✓ Her bir alt ağda 64'er adet bilgisayar bulunur.
- ✓ 168.125.20.0 adresini kullanan ağınız 168.125.20.0, 168.125.20.64, 168.125.20.128 ve 168.125.20.192 adreslerini kullanan dört ağ hâline gelir.

✓ Bu dört ağ için geçerli ana bilgisayar adresleri şu şekildedir:

- □ 168.125.20.1-64
- **168.125.20.65-128**
- **168.125.20.129-192**
- □ 168.125.20.193-254

✓ Her birinin ağ maskesi 255.255.255.192

- ✓ Örnek:12.22.128.34 IP adresinin bulunduğu ağ, 8 adet alt ağa bölünecektir. Bu IP adresinin;
 - Alt ağ adresini,
 - Bu alt ağın broadcast adresini,
 - Atanabilir ilk IP adresini,
 - Atanabilir son IP adresini hesaplayınız.

- ✓ Çözüm: Verilen IP adresinin ilk okteti 1-126 aralığında olduğundan verilen IP adresi A sınıfı bir IP adresidir.
 - Dolayısıyla ağ maskesi 255.0.0.0 dır.
 - Yani alt ağ bitleri 2. oktetten itibaren başlayacaktır.
 - \square n = alt ağ biti olmak üzere
 - ☐ (2ⁿ-2)>=8 eşitsizliğinin sağlanması gerekmektedir.
 - Eşitsizliği sağlayan en küçük n değeri 4 dür.
 - \bigcirc (2⁴ = 16) yani **4 adet alt ağ biti** vardır.
 - A sınıfı IP adreslerinde toplam 24 uç biti olduğu için (24 4 = 20) adet uç biti bulunmaktadır.
 - ☐ Buna göre elde edilen yeni maske, 255.240.0.0 dır.
 - **111111111110000.00000000.00000000**

- ✓ Alt Ağ adresi, maske ile IP adresi arasında bir tane "AND" işlemi yapılarak bulunur.
 - **O**0001100.00010110.10000000.00100010 12.22.128.34

 - -----AND-----
 - **O**0001100.00010000.00000000.00000000 12.16.0.0
- ✓ Hesaplanan ağ adresinin "0" olan uç bitlerini "1" yapılarak broadcast adresi elde edilir.

- **✓** 12.16.0.0
- ✓ 00001100.00010000.00000000.00000000

12.31.255.255

- ✓ İlk IP adresini (başlangıç adresi) bulmak için **ağ** adresinden **bir sonraki IP adresi** alınır.
- ✓ Buna göre ağ adresi 12.16.0.0 olduğuna göre ilk IP adresi **12.16.0.1** dir.

- ✓ Son IP adresini (bitiş adresi) bulmak için broadcast adresinden bir önceki IP adresi alınır.
- ✓ Buna göre broadcast adresi 12.31.255.255 olduğuna göre son IP adresi 12.31.255.254 dür.

- ✓ 168.125.20.71 ve 168.125.20.133 olmak üzere iki farklı ip adresini ele alalım.
- ✓ Varsayılan C Sınıfı alt ağ maskesi olan 255.255.255.0 adresini kullanılsaydı, her iki adres de 168.125.20.0 ağında olurdu.
- ✓ Ancak alt ağ maskesi olarak 255.255.255.192 kullanılırsa, her iki bilgisayar farklı ağlarda olurlar; 168.125.20.71 adresi 168.125.20.64 ağında, 168.125.20.133 adresi ise 168.125.20.128 ağında demektir.

✓ NAT (Network Address Translation - Ağ Adresi Çeviricisi) bir ağda bulunan bir bilgisayarın, kendi ağı dışında başka bir ağa veya internete çıkarken farklı bir IP adresi kullanabilmesi için kullanılan bir İnternet Protokolüdür.

- ✓ NAT, bilgisayarın sahip olduğu IP adresini istenilen başka bir adrese dönüştürür.
- ✓ Mevcut IP adreslerin yetersiz geldiği durumlar için NAT protokolü geliştirilmiştir.
- ✓ Her IP adresi internette kullanılamaz, bazı adresler sadece yerel ağlarda kullanılmak amacıyla özel adresler (private IP address) olarak ayrılmıştır.

Bu özel adresler:

- **✓** 0.0.0.0 10.255.255.255
- ✓ 172.16.0.0. 172.31.255.255
- ✓ 192.168.0.0 192.168.255.255 dir.
- ✓ Bazı kurumlar şirket içindeki iletişimlerinde özel IP adresleri kullanmakta, dışarıdaki ağlara bağlanırken NAT yapabilen yani ağ adresini dönüştürebilen routerlar kullanmaktadır.
- ✓ Yani kullandıkları özel adresleri genel adreslere dönüştürmekte ve bu şekilde dış ağa bağlanmaktadır..

- ✓ Kullanıcı bilgisayarından bir istek gönderildiğinde bu istek yönlendiricinin Ethernet arayüzüne (yönlendiricinin LAN tarafına) gelir ve NAT bunu çevirip diğer arayüze (yönlendiricinin WAN tarafına) yönlendirir ve o bağlantı için NAT tablosunda bir kayıt tutulur.
- ✓ Bir bilgisayar internete çıkarken iki adet ip kullanır.

- ✓ Bunlardan birisi LAN IP'si yani iç ağda haberleşmede kullanılan IP adresi diğeri ise WAN IP'si yani internete çıkarken kullanılan IP adresidir.
- ✓ Internetten gelen bir paket bilgisayara gelmeden önce yönlendiriciye gelir.
- ✓ Yönlendirici, gelen paketteki numara ile tablosunda kayıtlı olan (NAT Tablosu) ip numarasını karşılaştırır ve paketi ilgili bilgisayara yönlendirir.
- ✓ NAT tablosunda gelen paketle ilgili bir bilgi yoksa paket yönlendirilmez.

NAT server'da IP dönüştürme

- ✓ Aşağıdaki örnekte, NAT tablosuna bakıldığında dışarıdan gelen paket belirtilen porta gönderilmeden önce yönlendiriciye gelir.
- ✓ Yönlendiricide bulunan NAT tablosunda tanımlanan adreslere bakılır.
- ✓ Örnekte 6868 ve 7777 nolu portları sırasıyla kullanıcı-1 ve kullanıcı-2 isimli bilgisayarlara yönlendirdiğinizi düşünürseniz, paket ilgili kullanıcılara gönderilir.
- ✓ Ancak 3333 nolu port tanımlanmış olsa bile paket yönlendirilmez çünkü 192.168.2.5 ip numarası WAN'a ait değildir.

STATIK NAT

- ✓ Statik NAT, yerel bir ağda tanımlanmış özel bir IP'nin dışarıdaki bir ağda kullanılmak üzere genel bir IP adresine çevirilmesi işlemidir.
- ✓ Statik NAT'ta, NAT tablosu ağ yöneticisi tarafından manuel olarak doldurulur.
- ✓ Ağ içinde kullanılan özel IP adresleri genel IP adresleriyle manuel olarak eşleştirilir.
- ✓ NAT tablosuna kaydedilmeyen özel bir IP adresi, hiçbir genel IP adresiyle eşleşmediği için dış ağlara bağlanamaz.

DINAMIK NAT

- ✓ Dinamik NAT (Dynamic NAT) türünde bir IP havuzu vardır.
- ✓ NAT yönlendiricisi otomatik olarak IP adreslerini eşleştirir.
- Yeterli sayıda IP adresi varsa tüm bilgisayarlar otomatik olarak eşleşerek internete çıkarlar, eğer yeterli sayıda IP adresi yoksa ilk eşleşen bilgisayar internete çıkar.
- ✓ Bağlantı kesildikten sonra ise NAT tablosundaki kayıtlar bir sonraki bağlantı kurulana kadar silinir.

STATIK VE DINAMIK NAT

- ✓ Statik ve dinamik NAT işlemi şu sıra ile gerçekleşir;
 - Yerel ağda bulunan bir bilgisayar dıştaki herhangi bir ağa bağlanmak ister.
 - Bağlantı isteği ilk olarak yönlendiriciye gönderilir.
 - ☐ Yönlendirici NAT tablosuna bakar.
 - ☐ Eğer statik NAT kullanılıyor ise özel IP adresini eşleşen genel IP adresine çevirir, dinamik NAT kullanılıyor ise IP havuzunda boşta duran bir IP ile eşleştirme yapılır.

STATIK VE DINAMIK NAT

Statik ve dinamik NAT işlemi şu sıra ile gerçekleşir;

- ✓ Gönderilmek istenen bilgi web sunucuya gönderilir.
- Web sunucu paketi alır ilgili yere gönderir.
- Bağlantı bittiğinde dinamik NAT yapılmışsa bu kayıt bir dahaki bağlantıya kadar tablodan silinir.

ÖRNEK 1

- ✓ Bir yazılım firmasında 6 ayrı departman bulunmaktadır.
- ✓ Her bir departmandaki bilgisayarlar sadece kendi departmanındaki diğer bilgisayarlar ile haberleşecektir.
- ✓ Her departmanda en az 43 kişi (Bilgisayar) çalışmaktadır. Ağ adresi 157.132.0.0 dir.
- ✓ Bu network sisteminin IP adreslemesini yapınız.
- ✓ Host Sayısı : $2^m 2 \ge 1$ alt ağdaki host sayısı
- ✓ Alt Ağ Sayısı : 2^n >= alt ağ sayısı

ÇÖZÜM 1

- ✓ Yani: En az 6 adet alt ağ olmalıdır ve her bir alt ağda en az 45 adet IP adresi oluşturulabilmelidir.
- ✓ Bunun anlamı: 43 Host + 1 Ağ Adresi + 1 Broadcast Adresi = 45
- \checkmark 2ⁿ >= 6 → n = 3 → Subnet Mask Sayısı : 8
- $\checkmark 2^{m} 2 >= 43 \implies m = 6$
- ✓ Ağ adresi 157 ile başladığı için IP, B sınıfıdır.
- ✓ B sınıfındaki Subnet Mask Hesabı;
- ✓ n sayısı kadar 3. oktetin başına 1 konur ve sonrası 0 dır.
- ✓ Eğer C sınıfı olsaydı aynı işlem 4. oktette yapılırdı.
- ✓ Subnet Mask: 255.255.11100000.00000000 → 255.255.226.0

ÇÖZÜM 1

- ✓ Tanımlanabilecek IP Adresi Sayısı: Subnet Mask 'ın binary yazım şeklinde 4.Oktet sonundan başlayıp ilk 1 değerine kadar olan <u>aralıksız</u> sıfır sayısı = 13
- ✓ Toplam: $(2^{13}) 2$ kadar ip tanımlanabilir.
- ✓ 1. Subnet Mask: 157.132.0.1 → 157.132.31.254
- ✓ 2. Subnet Mask: 157.132.32.1 → 157.132.63.254
- ✓ 3. Subnet Mask: 157.132.64.1 → 157.132.95.254
- ✓ 4. Subnet Mask: 157.132.96.1 → 157.132.127.254
- ✓ 5. Subnet Mask: 157.132.128.1 → 157.132.159.254
- ✓ 6. Subnet Mask: 157.132.160.1 → 157.132.191.254
- ✓ 7. Subnet Mask: 157.132.192.1 → 157.132.223.254
- ✓ 8. Subnet Mask: 157.132.224.1 → 157.132.255.254

ÖRNEK 2

- ✓ Bir yazılım firmasında 6 ayrı departman bulunmaktadır.
- ✓ Her bir departmandaki bilgisayarlar sadece kendi departmanındaki diğer bilgisayarlar ile haberleşecektir.
- ✓ Her departmanda en az 43 kişi (Bilgisayar) çalışmaktadır. Ağ adresi 157.132.21.0 dir.
- ✓ Bu network sisteminin IP adreslemesini yapınız.
- ✓ Host Sayısı: $2^m 2 \ge 1$ alt ağdaki host sayısı
- ✓ Alt Ağ Sayısı: $2^n >=$ alt ağ sayısı

ÇÖZÜM 2

- ✓ Yani: En az 6 adet alt ağ olmalıdır ve her bir alt ağda en az 45 adet IP adresi oluşturulabilmelidir. (43 Host + 1 Ağ Adresi + 1 Broadcast Adresi = 45)
- ✓ $2^n >= 6 \rightarrow n = 3 \rightarrow \text{Subnet Mask Sayısı}: 8$
- $\checkmark 2^{m} 2 >= 43 \implies m = 6$
- ✓ Ağ adresi 157 ile başladığı için IP, B sınıfıdır.
- ✓ B sınıfındaki Subnet Mask Hesabı;
- ✓ n sayısı kadar 3. oktetin başına 1 konur ve sonrası 0 dır.
- ✓ Eğer C sınıfı olsaydı aynı işlem 4. oktette yapılırdı.
- ✓ Subnet Mask: 255.255.11100000.00000000 → 255.255.226.0

ÇÖZÜM 2

- ❖ Tanımlanabilecek IP Adresi Sayısı : Subnet Mask'ın binary yazım şeklinde 4.Oktet sonundan başlayıp ilk 1 değerine kadar olan aralıksız sıfır sayısı = 13
- ❖ Toplam: $(2^{13}) 2$ kadar ip tanımlanabilir.

•	1. Subnet Mask:	157.132.21.1	→	157.132.21.32
---	-----------------	--------------	----------	---------------

•	2. Subnet Mask:	157.132.21.33	→	157.132.21.64
---	-----------------	---------------	----------	---------------

- ❖ 4. Subnet Mask: 157.132.21.97 → 157.132.21.128
- ❖ 5. Subnet Mask: 157.132.21.129 → 157.132.21.160
- ❖ 6. Subnet Mask: 157.132.21.161 → 157.132.21.192
- ❖ 7. Subnet Mask: 157.132.21.193 → 157.132.21.224
- ❖ 8. Subnet Mask: 157.132.21.225 → 157.132.21.254

DİKKAT

- ❖ Örnek 2'deki IP Adresi B sınıfı olmasına ramen, subnet mask işlemi 4. oktette yapılmıştır.
- ❖ Çünkü sınıfı ne olursa olsun, ağ adresinin ilk hepsi 0 olan oktetten alt ağ maskesi oluşturulmaya başlanır.

ÇÖZÜM 2

- ✓ Örnek 1'de Subnet Mask için 3. oktet değerimizi değiştiriyorduk.
- ✓ 1. Subnet Mask'da da 0 değerini kullanabildik.
- ✓ Fakat Örnek 2'de Subnet Mask için 4. oktet değerimizi değiştirdiğimizden 0 değerini kullanamadık.
- ✓ (Aynı konu 8. Subnet Masklardaki 255 değeri için de geçerlidir)
- ✓ Ağ ID ve Broadcast Adresi oldukları için.

KAYNAKÇA

Ağ Temelleri Ders Modülleri– MEGEP MEB (2011)