Lecture 9: Adding Fiscal Policy to the OLG model

ECON30009/90080 Macroeconomics Semester 2, 2025

> Shu Lin Wee Department of Economics The University of Melbourne

☐ Macro effects of fiscal policy can depend upon differences in marginal propensities to consume between the working and the retired generation.

- ☐ Macro effects of fiscal policy can depend upon differences in marginal propensities to consume between the working and the retired generation.
- ☐ We will first consider a case where government spending is wasteful

- Macro effects of fiscal policy can depend upon differences in marginal propensities to consume between the working and the retired generation.
- ☐ We will first consider a case where government spending is *wasteful*
- By wasteful, we mean that the government spending:

Macro effects of fiscal policy can depend upon differences in marginal propensities to consume between the working and the retired generation.
 We will first consider a case where government spending is wasteful

neither contributes to consumer utility via provision of public goods

By wasteful, we mean that the government spending:

- Macro effects of fiscal policy can depend upon differences in marginal propensities to consume between the working and the retired generation.
- ☐ We will first consider a case where government spending is wasteful
- By wasteful, we mean that the government spending:
 - o neither contributes to consumer utility via provision of public goods
 - nor does it contribute to production of output (e.g., government investment in infrastructure or capital goods contributes to production of output)

Macro effects of fiscal policy can depend upon differences in marginal propensities to consume between the working and the retired generation.
We will first consider a case where government spending is wasteful
By wasteful, we mean that the government spending:
o neither contributes to consumer utility via provision of public goods
 nor does it contribute to production of output (e.g., government investment in infrastructure or capital goods contributes to production of output)
Later we will relax the assumption that government spending is wasteful

Financing Government Consumption

- \square Suppose the govt. consumes G_t units of goods each period.
- ☐ To finance this, the govt. can raise taxes from working or retired individuals in each period, or by issuing government debt.
 - Suppose in period t, the govt. levies proportional taxes τ_t^y and τ_t^o on the consumption spending of the young and old respectively
 - The govt. can also issue **one-period** govt. bonds B_{t+1} at the end of period t, which are then repaid in period t+1.
 - \circ Suppose each working individual purchases b_{t+1} govt. bonds in period t and there are N individuals in each generation

Household Budget Constraints

☐ Budget constraint when working:

$$(1 + \tau_t^y)c_t^y + a_{t+1} + b_{t+1} = w_t + \pi_t$$

Household Budget Constraints

☐ Budget constraint when working:

$$(1 + \tau_t^y)c_t^y + a_{t+1} + b_{t+1} = w_t + \pi_t$$

■ Budget constraint when retired:

$$(1 + \tau_{t+1}^o)c_{t+1}^o = (1 + r_{t+1})(a_{t+1} + b_{t+1})$$

Household Budget Constraints

Budget constraint when working:

$$(1+\tau_t^y)c_t^y + a_{t+1} + b_{t+1} = w_t + \pi_t$$

Budget constraint when retired:

$$(1 + \tau_{t+1}^o)c_{t+1}^o = (1 + r_{t+1})(a_{t+1} + b_{t+1})$$

- \square Note: we <u>assume</u> the net rate of return on b_{t+1} and a_{t+1} are the same.
- ☐ In the absence of default, individuals view the two assets as **perfect substitutes**.

Household Lifetime Budget Constraints

 \square We can collectively denote $A_{t+1} = a_{t+1} + b_{t+1}$

Household Lifetime Budget Constraints

- \square We can collectively denote $A_{t+1} = a_{t+1} + b_{t+1}$
- ☐ This gives us:

$$(1 + \tau_t^y)c_t^y + A_{t+1} = w_t + \pi_t$$

and

$$\frac{(1+\tau_{t+1}^o)c_{t+1}^o}{1+r_{t+1}} = A_{t+1}$$

Household Lifetime Budget Constraints

- \square We can collectively denote $A_{t+1} = a_{t+1} + b_{t+1}$
- ☐ This gives us:

$$(1 + \tau_t^y)c_t^y + A_{t+1} = w_t + \pi_t$$

and

$$\frac{(1+\tau_{t+1}^o)c_{t+1}^o}{1+r_{t+1}} = A_{t+1}$$

 \square Substitute out A_{t+1}

$$c_t^y + \frac{c_{t+1}^o}{1 + r_{t+1}} = w_t + \pi_t - \tau_t^y c_t^y - \frac{\tau_{t+1}^o c_{t+1}^o}{1 + r_{t+1}}$$

□ LBC shows that PDV of lifetime consumption spending = PDV of lifetime income less PDV of tax payments

Household problem

- □ Note the household problem is largely still the same:
 - Households wants to make itself as happy as possible (by maximizing lifetime utility)
 - Subject to how much they can afford (subject to their lifetime budget constraint)
 - Our household still chooses how much to consume $-c_t^y, c_{t+1}^o$ and how much to save a_{t+1}, b_{t+1} .
 - o Our household takes prices and taxes as given when making these choices

Household utility maximization

 \Box The household chooses c_t^y and c_{t+1}^o taking prices and taxes as given

$$\max_{\{c_t^y, c_{t+1}^o\}} U(c_t^y, c_{t+1}^o)$$

s.t.

$$(1 + \tau_t^y)c_t^y + \frac{(1 + \tau_{t+1}^o)c_{t+1}^o}{1 + r_{t+1}} = w_t + \pi_t$$

Can write down the Lagrangian:

$$\mathcal{L} = \max_{\{c_t^y, c_{t+1}^o\}} U(c_t^y, c_{t+1}^o) + \lambda_t \left[w_t + \pi_t - (1 + \tau_t^y) c_t^y - \frac{(1 + \tau_{t+1}^o) c_{t+1}^o}{1 + r_{t+1}} \right]$$

and take FOCs wrt c_t^y, c_{t+1}^o and λ_t

Household utility maximization

 \square FOC wrt c_t^y :

$$\frac{\partial U(c_t^y, c_{t+1}^o)}{\partial c_t^y} = \lambda_t (1 + \tau_t^y)$$

 \square FOC wrt c_{t+1}^o :

$$\frac{\partial U(c_t^y, c_{t+1}^o)}{\partial c_{t+1}^o} = \lambda_t \frac{1 + \tau_{t+1}^o}{1 + r_{t+1}}$$

 \square FOC wrt λ_t

$$w_t + \pi_t - (1 + \tau_t^y) c_t^y - \frac{(1 + \tau_{t+1}^o) c_{t+1}^o}{1 + r_{t+1}} = 0$$

Household optimality conditions

- ☐ Equations characterizing household optimal choices continue to be:
 - Euler equation:

$$\frac{\partial U(c_t^y, c_{t+1}^o)}{\partial c_t^y} \frac{1}{1 + \tau_t^y} = \frac{\partial U(c_t^y, c_{t+1}^o)}{\partial c_{t+1}^o} \frac{1 + r_{t+1}}{1 + \tau_{t+1}^o}$$

Lifetime budget constraint :

$$(1 + \tau_t^y) c_t^y + \frac{(1 + \tau_{t+1}^o) c_{t+1}^o}{1 + r_{t+1}} = w_t + \pi_t$$

Firm profit maximization

☐ Firm's problem is unchanged:

$$\max_{K_t, L_t} \pi_t = F(z_t, K_t, L_t) - w_t L_t - R_t K_t$$

 \square Optimal L and K demand implicitly given by marginal product = marginal cost:

$$F_L(z_t, K_t, L_t) = w_t$$

and

$$F_K(z_t, K_t, L_t) = R_t$$

where $R_t = 1 + r_t$, gross rate of return

Government budget constraint

- □ Now in addition to households and firms, we have a 3rd agent: the government
- \square **Govt. budget constraint** is now another equilibrium condition. GBC in period t:

$$G_t + (1 + r_t)B_t = \underbrace{N\tau_t^y c_t^y + N\tau_t^o c_t^o}_{T_t} + B_{t+1}$$

☐ And a transversality condition if the govt issues debt (govt must repay its debt):

$$\lim_{s \to \infty} \frac{B_{t+s}}{R_t R_{t+1} \dots R_{t+s}} = 0$$

Market clearing

- ☐ Households, firms and the government interact in markets
- ☐ In addition to the following markets:
 - o a labour market
 - o an asset (physical capital) market
 - o a goods market
- ☐ Households now also trade in a Government bonds market
- ☐ Specifically, government supplies bonds and young individuals purchase them:

$$B_{t+1} = Nb_{t+1}$$

Equilibrium

- □ Equilibrium requires:
 - Households choose consumption and savings optimally
 - Euler Equation holds (MB of consuming today = MC of consuming today)
 - Lifetime Budget Constraint holds (must be afforable)
 - Firms choose capital and labour optimally (maximize profits)
 - The government's budget constraint and transversality condition holds
 - All (labour, asset, goods and government bonds) markets clear

AN EXAMPLE TO EXPLORE DIFFERENT FISCAL POLICIES

Financing government spending

- Governments have a few way to finance their spending in each period. We will consider the implications if G_t in each period is fully financed by:
 - o A tax only on the young $au_t^y>0, au_t^o=0, B_{t+1}=0$ for all t
 - o A tax only on the old $au_t^y=0, au_t^o>0, B_{t+1}=0$ for all t
 - A mix of tax instruments and debt
- ☐ Moreover, the type of tax (proportional vs lump-sum) also has different implications for the economy

Some assumptions

☐ As before, we will assume log utility:

$$U(c_t^y, c_{t+1}^o) = \ln c_t^y + \beta \ln c_{t+1}^o$$

☐ Assume output is produced using a Cobb-Douglas production function:

$$F(z_t, K_t, L_t) = z_t K_t^{\alpha} L_t^{1-\alpha}$$

 \square And capital depreciates completely after use in production, $\delta=1$

$$K_{t+1} = (1 - \delta)K_t + I_t \implies K_{t+1} = I_t$$
 when $\delta = 1$

 \square For simplicity, we will assume that $G_t = G \implies g_t = G_t/N = g$ and $z_t = z$

Government Budget Constraint:

$$g_t + (1 + r_t)b_t = \tau_t^y c_t^y + \tau_t^o c_t^o + b_{t+1}$$

- ☐ The government runs a balanced budget: govt spending **completely** paid for by the proportional tax on old consumption
- This implies

$$au_t^y c_t^y = 0$$
, and $au_t^o c_t^o = g$ and $b_{t+1}, b_t = 0$

☐ So in per-capita terms, government budget constraint becomes:

$$g = \tau_t^o c_t^o$$

Firm's problem and optimality conditions are exactly the same as before

$$\max_{K_t, L_t} z K_t^{\alpha} L_t^{1-\alpha} - w_t L_t - R_t K_t$$

Optimal labour demand satisfies:

$$(1 - \alpha)z \left(\frac{K_t}{L_t}\right)^{\alpha} = (1 - \alpha)zk_t^{\alpha}w_t$$

Optimal capital demand satisfies:

$$\alpha z \left(\frac{K_t}{L_t}\right)^{\alpha - 1} = \alpha z k_t^{\alpha - 1} = R_t$$

 \square And firms earn zero profit, $\pi_t = 0$

Household budget constraints when $\tau_t^y c_t^y = 0, b_{t+1} = 0$:

☐ Budget constraint when young :

Household budget constraints when $\tau_t^y c_t^y = 0, b_{t+1} = 0$:

☐ Budget constraint when young :

$$c_t^y + a_{t+1} = w_t + \pi_t$$

Budget constraint when old

Household budget constraints when $\tau_t^y c_t^y = 0, b_{t+1} = 0$:

☐ Budget constraint when young :

$$c_t^y + a_{t+1} = w_t + \pi_t$$

Budget constraint when old

$$(1 + \tau_{t+1}^o)c_{t+1}^o = (1 + r_{t+1})a_{t+1}$$

Household budget constraints when $\tau_t^y c_t^y = 0, b_{t+1} = 0$:

☐ Budget constraint when young :

$$c_t^y + a_{t+1} = w_t + \pi_t$$

Budget constraint when old

$$(1 + \tau_{t+1}^o)c_{t+1}^o = (1 + r_{t+1})a_{t+1}$$

☐ So LBC is:

$$c_t^y + \frac{(1 + \tau_{t+1}^o)c_{t+1}^o}{1 + r_{t+1}} = w_t + \pi_t$$

Household problem when $\tau_t^y c_t^y = 0, b_{t+1} = 0$:

$$\mathcal{L} = \max \ln c_t^y + \beta \ln c_{t+1}^o + \lambda_t \left[w_t + \pi_t - c_t^y - \frac{(1 + \tau_{t+1}^o) c_{t+1}^o}{1 + r_{t+1}} \right]$$

☐ Euler equation

$$\frac{1}{c_t^y} = \frac{\beta(1+r_{t+1})}{c_{t+1}^o(1+\tau_{t+1}^o)} \implies (1+\tau_{t+1}^o)c_{t+1}^o = \beta(1+r_{t+1})c_t^y$$

□ LBC

$$c_t^y + \frac{\left(1 + \tau_{t+1}^o\right)c_{t+1}^o}{1 + r_{t+1}} = w_t + \pi_t$$

In equilibrium:

☐ Substitute Euler equation into LBC

$$c_t^y = \frac{1}{1+\beta} \left(w_t + \pi_t \right)$$

☐ From budget constraint of young and capital market clearing, we also know:

$$k_{t+1} = a_{t+1} = w_t + \pi_t - c_t^y = \frac{\beta}{1+\beta} (w_t + \pi_t)$$

 \square We know w_t and π_t from firm's optimality conditions:

$$k_{t+1} = \frac{\beta}{1+\beta} (1-\alpha) z k_t^{\alpha}$$

Transition equation

$$k_{t+1} = \frac{\beta}{1+\beta} (1-\alpha) z k_t^{\alpha}$$

- This is the same transition equation we saw in class when there was no government!
- ☐ So in this case, the proportional tax on the consumption of the old does not affect the level of investment and thus the growth path of capital per person.
- $\square \implies$ the growth path of y_t is also unaffected by the introduction of government spending financed by a proportional tax on the consumption of the old

Welfare

- $\hfill \square$ But consumption of the old is certainly affected by the proportion tax, τ^o_{t+1}
- ☐ From budget constraint of the old and using capital market clearing

$$(1 + \tau_t^o)c_t^o = R_t k_t$$

 \square And using firm's optimality condition to sub for R_t :

$$c_t^o + \tau_t^o c_t^o = \alpha z k_t^\alpha$$

And using GBC:

$$c_t^o = \alpha z k_t^\alpha - g$$

Welfare

- ☐ The decline in consumption by the old exactly offsets the increase in government consumption.
- \square Each generation observes lower consumption when old than they would without the introduction of a.
- ☐ So welfare is lower since utility from consumption when old is smaller.

Government Budget Constraint:

$$g_t + (1 + r_t)b_t = \tau_t^y c_t^y + \tau_t^o c_t^o + b_{t+1}$$

- ☐ The govt runs a balanced budget: govt spending each period is **completely** paid for by a proportional tax on young consumption
- This implies

$$\tau_t^y c_t^y = g$$
, and $\tau_t^o c_t^o = 0$ and $b_{t+1}, b_t = 0$

☐ So in per-capita terms, government budget constraint becomes:

$$g = \tau_t^y c_t^y$$

☐ Firm's problem and optimality conditions are exactly the same as before

Household budget constraints when $\tau_{t+1}^o c_{t+1}^o = 0, b_{t+1} = 0$:

☐ Budget constraint when young :

$$(1 + \tau_t^y)c_t^y + a_{t+1} = w_t + \pi_t$$

Household budget constraints when $\tau_{t+1}^o c_{t+1}^o = 0, b_{t+1} = 0$:

☐ Budget constraint when young :

$$(1 + \tau_t^y)c_t^y + a_{t+1} = w_t + \pi_t$$

☐ Budget constraint when old

$$c_{t+1}^o = (1 + r_{t+1})a_{t+1}$$

Household budget constraints when $\tau_{t+1}^o c_{t+1}^o = 0, b_{t+1} = 0$:

☐ Budget constraint when young :

$$(1 + \tau_t^y)c_t^y + a_{t+1} = w_t + \pi_t$$

Budget constraint when old

$$c_{t+1}^o = (1 + r_{t+1})a_{t+1}$$

☐ So LBC is:

$$(1+\tau_t^y)c_t^y + \frac{c_{t+1}^o}{1+r_{t+1}} = w_t + \pi_t$$

Household problem when $\tau_{t+1}^o c_{t+1}^o = 0, b_{t+1} = 0$:

$$\mathcal{L} = \max \ln c_t^y + \beta \ln c_{t+1}^o + \lambda_t \left[w_t + \pi_t - (1 + \tau_t^y) c_t^y - \frac{c_{t+1}^o}{1 + r_{t+1}} \right]$$

☐ Euler equation

$$\frac{1}{(1+\tau_t^y)c_t^y} = \frac{\beta(1+r_{t+1})}{c_{t+1}^o}$$

☐ LBC

$$(1+\tau_t^y)c_t^y + \frac{c_{t+1}^o}{1+r_{t+1}} = w_t + \pi_t$$

In equilibrium

 \square Make $\frac{c_{t+1}^o}{1+r_{t+1}}$ subject of Euler equation and plug into LBC:

$$(1 + \tau_t^y)c_t^y = \frac{1}{1+\beta} (w_t + \pi_t)$$

☐ Use GBC and the wage from firm's optimality condition

$$c_t^y = \frac{1}{1+\beta}(1-\alpha)zk_t^\alpha - g$$

 \square Govt spending g completely off-set by decline in consumption of young.

In equilibrium

☐ From budget constraint of young and capital market clearing:

$$k_{t+1} = w_t + \pi_t - (1 + \tau_t^y)c_t^y$$

 \square which plugging in for w and GBC and form of c_t^y ,

$$k_{t+1} = (1-\alpha)zk_t^{\alpha} - \frac{1}{1+\beta}(1-\alpha)zk_t^{\alpha}$$
$$= \frac{\beta}{\beta+1}(1-\alpha)zk_t^{\alpha}$$

 \square Same transition equation as before. Because decline in c_t^y exactly offsets g, gross investment still the same, and thus growth path of k_t, y_t unchanged.

Welfare

- \square Consumption of young in this case is lower with g>0
- \square Each generation observes lower consumption when young than they would without the introduction of q
- ☐ Welfare is lower since utility from consumption when young is smaller

Proportional taxes on consumption spending

- ☐ We examined two different cases where the government ran a balanced budget and financed its spending ...
 - o either with a proportional tax on consumption spending of the old
 - o or with a proportional tax on consumption spending of the young
 - Both cases affected not just the household's LBC but also his/her optimal intertemporal trade-off in consumption spending, i.e., the household Euler equation
 - Notably, when it became more costly to consume in a particular period, the household optimally lowered that period's consumption

Proportional taxes on consumption spending

Thus far, government spending looks like it overall reduces welfare.
But we made an important assumption that government spending in the two examples that we did:
 In particular, we assumed government spending is wasteful and takes away resources which could have been allocated to households in the economy
Welfare might be very different if instead assumed the spending on g went towards increasing households' utility from consuming a $public\ good$
In your tutorial 5, you will consider a case where government spending goes towards the provision of a public good and analyze welfare under that case

Tax policies and implications

Tax on young vs. old

So far, we've seen that a proportional tax completely on c_t^y or a proportional tax completely on c_{t+1}^o lowers the corresponding type of consumption
Growth paths of k_t and y_t unaffected because decline in corresponding consumption offset increase in government spending
However, this result is dependent on the type of tax instrument used
In your tutorial 5, you will prove that government spending financed completely by a lump-sum tax on the young can actually affect growth paths!

Impact of fiscal policy

- Assumptions about household preferences also affects implications of fiscal policies
- ☐ Key takeaway: Different tax policies and different types of government spending will have different outcomes on the economy!

Wrapping up

- ☐ This class: a look at tax policies in the OLG model
- ☐ Next class: public capital formation and intro to social security