(Exercícios adaptados do livro "Introdução à Teoria da Computação" de Michael Sipser, 2a. Edição, Ed. Thomson)

Observações:

- 1) No exercício 1.4, considere que a combinação de dois AFDs A₁ e A₂ envolve a utilização de um novo conjunto de estados, construído em função dos estados de A₁ e A₂. Seja n₁ o número de estados de A₁ e n₂ o número de estados de A₂, então a combinação de A₁ e A₂ terá n₁* n₂ estados no total. Por exemplo, no primeiro item (a) do exercício, se um autômato A₁ reconhece o número de símbolos "a" com quatro estados (nenhum "a", um "a", dois "a"s, três ou mais "a"s), e um autômato A₂ reconhece o número de símbolos "b" com três estados (nenhum "b", um "b", dois ou mais "b"s), então a combinação entre os autômatos A₁ e A₂ será capaz de detectar cada um dos 4*3=12 estados que resultam de combinações entre os estados originais de A₁ e A₂.
- 2) No exercício 1.7, o sinal * refere-se a 0 ou mais repetições de um símbolo ou padrão. Já o sinal + refere-se a 1 ou mais repetições de um símbolo ou padrão. O símbolo ε representa uma palavra vazia, ou seja, uma palavra com 0 caracteres. No mesmo exercício, item d, a linguagem {0} contém uma única palavra, que é "0".
 - 1.4 Cada uma das linguagens a seguir é a interseção de duas linguagens mais simples. Em cada caso, construa AFDs nara as linguagens mais simples, e depois combineos para obter o diagrama de estados de um AFD para a linguagem dada. Em todos as casos, Σ = {a, b}.
 - a. $\{w|w \text{ tem pelo menos três as e pelo menos dois bs}\}$
 - b. $\{w|w \text{ tem exatamente dois as e pelo menos dois bs}\}$
 - c. {w| w tem um número par de as e um ou dois bs}
 - ^pd. $\{w \mid w \text{ tem um número par de as e cada a é seguido por pelo menos um b}$
 - e. $\{w | w \text{ tem um número par de as e um ou dois bs}\}$
 - f. $\{w | w \text{ tem um número ímpar de as e termina com um b}\}$
 - g. $\{w | w \text{ tem comprimento par e um número ímpar de as}\}$
 - 1.6 Dé diagramas de estado de AFDs que reconhecem as linguagens a seguir. Em todos os casos o alfabeto é {0,1}
 - a. $\{w \mid w \text{ começa com um 1 e termina com um 0}\}$
 - b. $\{w | w \text{ contém pelo menos três 1s} \}$
 - c. $\{w|\ w\ {\rm cont\'em}\ {\rm a\ subcadeia\ 0101,\ isto\ \'e,}\ w=x{\rm 0101}y\ {\rm para\ algum}\ x\ {\rm e\ algum}\ y\}$
 - d. $\{w | w \text{ tem comprimento pelo menos } 3 \text{ e seu terceiro símbolo } 6 \text{ um } 0\}$
 - e. {w | w começa com 0 e tem comprimento ímpar, ou começa com 1 e tem comprimento par}

- 1.7 Dê diagramas de estado de AFNs linguagens a seguir. reconhecendo cada uma das Em todos os casos o alfabeto é {0,1}.
 - ^Ra. A linguagem $\{w | w \text{ termina com 00}\}$
 - b. A linguagem do Exercício 1.6c
 - d. A linguagem {0}
 - e. A linguagem 0*1*0*
 - Rf. A linguagem 1*(001+)*
 - g. A linguagem $\{\varepsilon\}$
 - h. A linguagem 0*
 - 1.16 1.16a. Obtenha o AFD equivalente ao AFN a seguir:

