COMP20003 Algorithms and Data Structures Distribution Counting

Nir Lipovetzky
Department of Computing and
Information Systems
University of Melbourne
Semester 2

Sorting by Counting

- Distribution counting: an unusual approach to sorting.
- Later we will look at more common approaches.
- Distribution counting requires:
 - Key values to be within a certain range, lower to upper.

Sorting by Counting: Approach

- Steps in distribution counting:
 - Start with array of:
 - Records, or
 - Keys + pointers to records
 - Count number of records associated with each key value (lower to upper)
 - Redistribute array elements
- Net result:
 - Sorted array
 - Stable sort

 Stable sorting algorithms maintain relative order of records with equal key values.

 Want file sorted on one key, and within each group, sorted on another key:

Back to Distribution Counting: Approach

- Steps in distribution counting:
 - Input: array of:
 - records, or
 - keys + pointers to records
 - Count number of records associated with each key value (*lower* to *upper*).
 - Redistribute array elements.
 - Output: stably sorted array.

Back to Distribution Counting: Example:

- Sort [4,4,2,2,0,2,1,3,2,4,3,1,4,3,1,4]
- Count records for each key [1,3,4,3,5]
 - CumulativeCount = [0,1,4,8,11]
- Redistribute
 - Create auxiliary array
 - traverse original array copying each item to position:
 - aux_array[cumulativeCount[item.key]] = item
 - Increase cumulativeCount[itemkey] + 1

Distribution Counting: Analysis

- Time:
 - Worst-case:
 - Average-case:
- Space:

Does the key range influence the complexity?

- O(n) if range r of keys is in O(n).
 - count[] array size is r.
 - Initialization and shuffling are O(r).
 - So if *r* > *n*...

- we said weeks ago:
 - Comparison-based sorting is $\Omega(n \log n)$.
- Does distribution counting contradict that statement?

- Other non-comparison-based sorting algorithms include:
 - LSD Radix sort
 - MSD Radix sort
 - Several others

• Drawbacks:

- Take extra space.
- Generally less flexible than comparison-based.
- Can be fiddly if keys are not the same length, e.g. variable length strings in MSD radix.