Алгоритмы и структуры данных на Python. Интерактивный курс **Урок 8**

Графы

Алгоритм Дейкстры. Поиск кратчайшего пути в ширину.

План

- Задача о семи мостах
- Что такое граф?
- Классификация графов
- Сферы применения

Леонард Эйлер

В 1736 году Леонард Эйлер написал статью «Решение вопроса, связанного с геометрией положения», которая положила начало теории графов как математической дисциплине.

Как пройти по всем городским мостам, не проходя ни по одному из них дважды?

Каждый участок суши - вершина графа.

Линий, которые соединяют вершины - рёбра графа.

Граф — абстрактный математический объект, представляющий собой множество вершин графа и набор рёбер, которые соединяют пары вершин.

Для наличия Эйлерова цикла в графе нужно, чтобы у каждой вершины её степень была чётной.

Граф, состоящий из вершин

Граф с изолированной вершиной

Несвязный граф

Связный граф, имеющий цикл

Связный граф без циклов

Связный граф с петлёй

Ориентированный граф

Взвешенный граф

Взвешенный ориентированный граф

Задачи теории графов

- Задача о семи мостах Кёнигсберга
- Проблема четырёх красок
- Задача коммивояжёра

Сферы применения теории графов

- Химия (описание структур, путей сложных реакций)
- Коммуникационные и транспортные системы (протоколы маршрутизации)
- Схемотехника (топология межсоединений элементов на печатной плате или микросхеме)
- Информатика и программирование
- Экономика
- Логистика

Итоги:

Теория

- Задача о семи мостах
- Определение графа
- Классификация графов
- Сферы применения

План

- Представление графов в Python
 - Матрицы смежности
 - о Списки смежности
 - о Списки рёбер

	0	1	2	3
0	0	1	1	0
1	1	0	1	1
2	1	1	0	0
3	0	1	0	0

	0	1	2	3
0	0	1	1	0
1	0	0	1	1
2	0	1	0	0
3	0	0	0	0

	0	1	2	3
0	0	2	3	0
1	0	0	2	1
2	0	2	0	0
3	0	0	0	0

Списки смежности

0	1	2	
1	0	2	3
2	0	1	
3	1		

Списки смежности

0	1, 2	2, 3	
1	0, 2	2, 2	3, 1
2	0, 3	1, 2	
3	1, 1		

Список рёбер

0	1
0	2
1	2
1	3
2	1

Итоги:

Практика

- Представление графов в Python
 - Матрицы смежности
 - Списки смежности
 - о Списки рёбер

План

• Поиск кратчайшего пути в ширину (Breadth-First Search)

Поиск кратчайшего пути в ширину

- 1. Поместить вершину, с которого начинается поиск, в пустую очередь.
- 2. Извлечь из начала очереди вершину.
 - а. Если вершина является целевой, то завершить поиск.
 - b. В противном случае, в конец очереди добавляются все смежные вершины, которые ещё не пройдены и не находятся в очереди.
- 3. Если очередь пуста, то все вершины графа были просмотрены, следовательно, целевой узел недостижим из начального; завершить поиск.

Поиск кратчайшего пути в ширину

Итоги:

Теория и Практика

• Поиск кратчайшего пути в ширину (Breadth-First Search)

План

• Поиск кратчайшего пути по алгоритму Дейкстры

Нидерландский учёный Эдсгер Дейкстра изобрёл в 1959 году алгоритм нахождения кратчайшего пути от одной из вершин графа до всех остальных.

Итоги:

Теория и Практика

• Поиск кратчайшего пути по алгоритму Дейкстры

Домашнее задание

1. На улице встретились N друзей. Каждый пожал руку всем остальным друзьям (по одному разу). Сколько рукопожатий было?

Примечание: Решите задачу при помощи построения графа.

Домашнее задание

2. Доработать алгоритм Дейкстры, чтобы он дополнительно возвращал список вершин, которые необходимо обойти.

0	0				
1	0	2	1		
2	0	2			
3	0	3			
4	0	2	4		
5	0	2	4	6	5
6	0	2	4	6	
7	нет пути				

Домашнее задание

 Написать программу, которая обходит не взвешенный ориентированный граф без петель, в котором все вершины связаны, по алгоритму поиска в глубину (Depth-First Search).

Примечания:

- граф должен храниться в виде списка смежности;
- генерация графа выполняется в отдельной функции, которая принимает на вход число вершин.

Поиск в глубину

План

• Разбор домашнего задания

