Lineare Algebra I - Prüfung Sommer 2019

- 1. (20 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete Teilaufgabe erhalten Sie 2 Punkte, sonst 0 Punkte. Bei dieser Aufgabe müssen Sie die Antworten nicht begründen.
 - (I) Sei A wahr und B falsch. Welcher der folgenden Ausdrücke ist dann wahr?
 - (a) $(\neg B \land \neg A) \lor (B \land A)$
 - **(b)** $(A \wedge (B \vee \neg A)) \vee (B \vee \neg A)$

 - (d) $B \wedge (A \vee (B \wedge A) \vee \neg A)$
 - (II) Welcher Ausdruck ist äquivalent zur Aussage $C \Leftrightarrow D$?
 - (a) $(C \wedge D) \wedge (\neg C \wedge \neg D)$
 - **(b)** $(C \vee \neg C) \vee (D \vee \neg D)$
 - (c) $(C \lor D) \land (\neg C \lor \neg D)$
 - (III) Welche Eigenschaft gilt *nicht* für jede Gruppe (G, \circ, e) ?
 - **(a)** Für alle $a, b \in G$ ist $a \circ b = b \circ a$.
 - (b) Für alle $a \in G$ ist $a \circ e = e \circ a = a$.
 - (c) Für alle $a \in G$ existiert ein $b \in G$ so dass $a \circ b = b \circ a = e$ ist.
 - (d) Für alle $a, b, c \in G$ gilt $(a \circ b) \circ c = a \circ (b \circ c)$.

Erklärung: Eigenschaft (a) ist die Kommutativität, die nicht jede Gruppe erfüllt.

- (IV) Im Körper \mathbb{F}_{23} ist $\overline{8} \cdot \overline{9}$ gleich
 - (a) 3.
 - $\overline{\mathbf{(b)}} \ \overline{20}.$
 - (c) $\overline{22}$.
 - (d) $\overline{8}$.
- (V) Für welche $\alpha \in \mathbb{R}$ ist die Matrix $\binom{0 \ \alpha}{1 \ 0}$ reell diagonalisierbar?
 - (a) Für alle $\alpha \neq 0$ mit $\alpha^2 \in \mathbb{Q}$.
 - (b) Für alle $\alpha > 0$.
 - (c) Für alle geraden ganzen Zahlen $\alpha \neq 0$.
 - (d) Für alle α mit $\alpha^2 = 1$.

Erklärung: Das charakteristische Polynom ist $X^2 - \alpha = (X - \sqrt{\alpha})(X + \sqrt{\alpha})$. Für $\alpha > 0$ ist $\sqrt{\alpha}$ reell und die Matrix hat zwei verschiedene reelle Eigenwerte, ist also diagonalisierbar. Für $\alpha < 0$ hat die Matrix keine reellen Eigenwerte, ist also nicht diagonalisierbar. Für $\alpha = 0$ ist die Matrix die Transponierte eines Jordanblocks der Grösse 2 und ist deshalb nicht diagonalisierbar.

- (VI) Ein homogenes lineares Gleichungssystem bestehend aus n Gleichungen in m Variablen hat garantiert eine von Null verschiedene Lösung, wenn gilt:
 - (a) n = m.
 - (b) n > m.
 - (\mathbf{c}) n < m.
 - (d) $n \neq m$.

 $Erkl\"{a}rung$: In der praktischen Rechnung kann man mit jeder von Null verschiedenen Gleichung eine Variable eliminieren. Im Fall n < m bleiben am Ende noch mindestens m-n>0 freie Variablen übrig, mit denen man eine von Null verschiedene Lösung finden kann.

Aliter: Die Lösungsmenge des Gleichungssystems ist der Kern einer linearen Abbildung $\varphi \colon K^m \to K^n$. Dieser Kern hat die Dimension $\dim(\operatorname{Kern}(\varphi)) = \dim(K^m) - \dim(\operatorname{Bild}(\varphi)) \geqslant \dim(K^m) - \dim(K^n) = m - n$. Nur für m - n > 0 ist dieser Kern garantiert ungleich Null.

- **(VII)** Für wieviele Teilmengen $B \subset \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \right\}$ ist B eine Basis des \mathbb{R} -Vektorraumes \mathbb{R}^3 ?
 - **(a)** 0
 - **(b)** 2
 - (c) 5
 - (d) 7

 $Erkl\ddot{a}rung$: Jede Basis muss aus $\dim_{\mathbb{R}}(\mathbb{R}^3)=3$ linear unabhängigen Vektoren bestehen. Nennen wir die Vektoren in der gegebenen Reihenfolge v_1,\ldots,v_5 . Da v_3 und v_5 skalare Vielfache voneinander sind, kann eine Basis nur höchstens einen davon enthalten; und für jede Basis, die einen davon enthält, erhalten wir durch Ersetzen durch den anderen eine weitere Basis. Wir betrachten daher zuerst nur die Vektoren v_1,\ldots,v_4 . Wegen

$$det(v_1, v_2, v_3) = 0, det(v_1, v_2, v_4) = 2,$$

$$det(v_1, v_3, v_4) = -2, det(v_2, v_3, v_4) = 2$$

bilden von diesen nur $\{v_1, v_2, v_4\}$ und $\{v_1, v_3, v_4\}$ und $\{v_2, v_3, v_4\}$ eine Basis. Für die letzteren beiden liefert Ersetzen von v_3 durch v_5 eine weitere Basis. Insgesamt gibt es also 3 + 2 = 5 verschiedene Teilmengen, die eine Basis von \mathbb{R}^3 bilden.

- (VIII) Welche Aussage über Homomorphismen von Vektorräumen ist falsch?
 - (a) Die Komposition zweier Isomorphismen ist ein Isomorphismus.
 - (b) Jeder injektive Endomorphismus ist ein Automorphismus.
 - (c) Jeder Automorphismus ist die Komposition zweier Isomorphismen.
 - (d) Jeder surjektive Homomorphismus ist ein Isomorphismus.

Erklärung: Ein Homomorphismus ist ein Isomorphismus genau dann, wenn er injektiv und surjektiv ist. Die Surjektivität allein genügt dabei nicht; daher ist (d) falsch.

- (IX) Seien A und B zwei $n \times n$ -Matrizen. Welche Rechenregel gilt im Allgemeinen nicht?
 - (a) $\det(2A) = 2\det(A)$
 - **(b)** $\det(A)\det(B) = \det(AB)$
 - (c) $\det(AB) = \det(BA)$
 - (d) $\det(I_n) = 1$

 $Erkl\ddot{a}rung$: Multipliziert man eine Zeile einer Matrix mit einem Skalar a, so multipliziert sich die Determinante ebenfalls mit a. Multipliziert man die gesamte Matrix A mit a, so multipliziert man n verschiedene Zeilen mit a, und insgesamt multipliziert sich die Determinante mit a^n . Es gilt also $\det(2A) = 2^n \det(A)$, und die Aussage (a) ist im Allgemeinen falsch.

- (X) Welche Aussage ist richtig für jede lineare Abbildung zwischen Vektorräumen $f: V \to W$?
 - (a) Der Rang von f ist abhängig von der Wahl von Basen in V und W.
 - (b) Ist f ein Isomorphismus, so gilt $Rang(f) = \dim V = \dim W$.
 - (c) Ist f kein Isomorphismus, so gilt Rang(f) = 0.
 - (d) Es gilt $\operatorname{Rang}(f) = \min \{ \dim V, \dim W \}.$

2. Sei V der Vektorraum aller reellen Folgen $(x_n)_{n\geqslant 0}$, und betrachte die beiden Verschiebungsoperatoren

$$T_+: V \to V, (x_n)_n \mapsto (x_{n+1})_n,$$

 $T_-: V \to V, (x_n)_n \mapsto (x_{n-1})_n \text{ mit } x_{-1} := 0.$

- (a) (3 Punkte) Zeige, dass die Folgen, welche nur endlich viele verschiedene Werte annehmen, einen Unterraum W von V bilden.
- (b) (2 Punkte) Zeige, dass der Unterraum W invariant ist unter T_+ und T_- .
- (c) (7 Punkte) Finde alle Eigenwerte und Eigenvektoren von $T_{+}|_{W}$ und $T_{-}|_{W}$.
- (d) (3 Punkte) Finde alle Eigenwerte von $T_+ + T_-$ (auf V!) und ihre geometrischen Vielfachheiten.

Lösung:

- (a) Sei W die Menge aller Folgen in V, die nur endlich viele verschiedenen Werte annehmen. Die Nullfolge ist eine solche Folge; daher ist W nicht leer. Seien $(x_n)_{n\geqslant 0}$ und $(y_n)_{n\geqslant 0}$ zwei Folgen in W mit jeweiligen Wertemengen X und Y, die nach Voraussetzung beide endlich sind. Dann nimmt die Folge $(x_n+y_n)_{n\geqslant 0}$ Werte in der Menge $\{x+y\mid x\in X,\ y\in Y\}$ an. Diese Menge ist endlich, also liegt die Folge $(x_n+y_n)_{n\geqslant 0}$ wieder in W. Sei nun $\lambda\in\mathbb{R}$. Dann nimmt die Folge $(\lambda x_n)_{n\geqslant 0}$ Werte in der Menge $\{\lambda x\mid x\in X\}$ an. Da diese Menge endlich ist, liegt die Folge $(\lambda x_n)_{n\geqslant 0}$ wieder in W. Somit ist W ein Unterraum von V.
- (b) Sei $(x_n)_{n\geqslant 0}$ eine Folge in W. Die Wertemenge der Folge $(x_{n+1})_{n\geqslant 0}$ ist eine Teilmenge der Wertemenge der Folge $(x_n)_{n\geqslant 0}$ und deshalb wieder endlich. Die Wertemenge der Folge $(x_{n-1})_{n\geqslant 0}$ ist die Wertemenge der Folge $(x_n)_{n\geqslant 0}$ vereinigt mit der Menge $\{0\}$, also auch wieder endlich. Dies zeigt, dass W invariant ist unter den Operatoren T_+ und T_- .
- Eine Folge $x = (x_n)_{n \ge 0} \in V$ erfüllt die Eigenwertgleichung $T_+ x = \lambda x$ genau dann, wenn für alle $n \ge 0$ die Gleichung $x_{n+1} = \lambda x_n$ gilt. Nach Induktion über n ist dies äquivalent zu $x_n = \lambda^n x_0$ für alle $n \ge 0$. Damit x ein Eigenvektor ist, muss zusätzlich $x \neq 0$, also $x_0 \neq 0$ sein. Für $x \in W$ darf zudem die Folge $(\lambda^n x_0)_{n\geqslant 0}$ nur endlich viele verschiedene Werte annehmen. Insbesondere existieren $n > m \ge 0$ mit $\lambda^n x_0 = \lambda^m x_0$. Wegen $x_0 \ne 0$ bedeutet dies $(\lambda^{n-m}-1)\lambda^m=0$. Für $\lambda\in\mathbb{R}$ ist dies nur möglich mit $\lambda\in\{0,\pm 1\}$. Umgekehrt liegt die Folge $f^{\lambda} := (\lambda^n)_{n \geq 0}$ in $W \setminus \{0\}$ für jedes $\lambda \in \{0, \pm 1\}$. Somit hat $T_+|_W$ genau die Eigenwerte $\lambda \in \{0,\pm 1\}$ mit dem jeweiligen Eigenraum $\langle f^{\lambda} \rangle$. Betrachte nun einen Eigenvektor $x = (x_n)_{n \ge 0} \in V$ von T_- zum Eigenwert λ . Dann gilt $T_{-}x = \lambda x$, also $x_{n-1} = \lambda x_n$ für alle $n \ge 0$ mit $x_{-1} := 0$. Ausserdem ist mindestens ein x_n ungleich Null. Sei $m \ge 0$ minimal mit $x_m \ne 0$. Nach der Eigenwertgleichung ist dann $0 = x_{m-1} = \lambda x_m$ mit $x_m \neq 0$; also folgt $\lambda = 0$. Für n := m + 1 folgt dann aber $x_m = \lambda x_{m+1} = 0 \cdot x_{m+1} = 0$, im Widerspruch zu $x_m \neq 0$. Somit besitzt T_- keine Eigenvektoren und Eigenwerte. Dasselbe gilt dann erst recht für die Einschränkung $T_{-}|_{W}$.

- (d) Eine Folge $x=(x_n)_{n\geqslant 0}\in V$ erfüllt die Eigenwertgleichung $(T_++T_-)x=\lambda x$ genau dann, wenn für alle $n\geqslant 0$ die Gleichung $x_{n+1}+x_{n-1}=\lambda x_n$ gilt mit $x_{-1}:=0$. Dies ist äquivalent zu der linearen Rekursion $x_{n+1}=\lambda x_n-x_{n-1}$ für alle $n\geqslant 0$ mit den Startwerten $x_{-1}=0$ und einer Zahl $x_0\in\mathbb{R}$. Für jede Wahl von λ und x_0 ist diese Rekursion eindeutig lösbar. Für jedes $\lambda\in\mathbb{R}$ sei $g^\lambda\in V$ die eindeutige Lösung mit dem Anfangswert $x_0=1$. Für jedes $c\in\mathbb{R}$ ist dann cg^λ die eindeutige Lösung mit dem Anfangswert $x_0=c$. Also ist der Eigenraum zum Eigenwert λ gleich $\langle g^\lambda\rangle$ und wegen $g^\lambda\neq 0$ somit eindimensional. Zusammenfassend besitzt T_++T_- also jede reelle Zahl als Eigenwert mit der geometrischen Vielfachheit 1.
- 3. Für jede ganze Zahl $n \ge 1$ betrachte die reelle Matrix

$$M_n := \left(\binom{i+j}{2}\right)_{i,j=1,\dots,n}.$$

- (a) (1 Punkt) Gib die Definition der Determinante einer allgemeinen $n \times n$ -Matrix an.
- (b) (2 Punkte) Schreibe M_n explizit aus.
- (c) (3 Punkte) Berechne $det(M_n)$ für die Werte n = 1, 2, 3.
- (d) (9 Punkte) Berechne die Determinante und den Rang von M_n für alle $n \ge 1$. Lösung:
- (a) Die Determinante einer $n \times n$ -Matrix $A = (a_{ij})_{1 \le i,j \le n}$ ist

$$\det(A) := \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \cdot \prod_{i=1}^n a_{i,\sigma i}.$$

Aliter: Eine andere in Lehrbüchern übliche Definitionen, sofern vollständig.

(b) Es ist $\binom{n}{2} = \frac{n(n-1)}{2}$ und somit:

$$\begin{pmatrix} 1 & 3 & 6 & \dots & \frac{(n+1)n}{2} \\ 3 & 6 & 10 & \dots & \frac{(n+2)(n+1)}{2} \\ 6 & 10 & 15 & \dots & \frac{(n+3)(n+2)}{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{(n+1)n}{2} & \frac{(n+2)(n+1)}{2} & \frac{(n+3)(n+2)}{2} & \dots & \frac{2n(2n-1)}{2} \end{pmatrix}$$

- (c) Es ist $det(M_1) = 1$ und $det(M_2) = -3$ und $det(M_3) = -1$.
- (d) Für n = 1, 2, 3 wurde die Determinante in (c) bestimmt. Da sie jeweils ungleich Null ist, ist die Matrix invertierbar und ihr Rang gleich n.

Sei nun $n \ge 4$. Sowohl die Determinante als auch der Rang einer Matrix sind invariant unter elementaren Zeilenoperationen. Wir gehen vor wie folgt.

Zuerst subtrahieren wir jede Zeile von M_n von der folgenden. Die resultierende Matrix hat an der Stelle (i,j) für $i \ge 2$ den Eintrag $\frac{(i+j)(i+j-1)}{2} - \frac{(i+j-1)(i+j-2)}{2} = i+j-1$. Danach subtrahieren wir jede Zeile ausser der ersten von der folgenden. Die entstehende Matrix hat an der Stelle (i,j) für $i \ge 3$ den Eintrag (i+j-1)-(i+j-2)=1. Schliesslich subtrahieren wir jede Zeile ausser den ersten beiden von der jeweils folgenden. In der resultierenden Matrix sind dann alle Zeilen ab der vierten Zeile identisch Null.

Wegen $n \ge 4$ ist also mindestens eine Zeile dieser Matrix identisch Null. Da die Determinante unter den genannten Zeilenumformungen invariant ist, gilt somit $\det(M_n) = 0$.

Ausserdem hat die resultierende Matrix nur 3 von Null verschiedene Zeilen. Da der Rang unter den genannten Zeilenumformungen invariant ist, gilt somit $\operatorname{Rang}(M_n) \leq 3$. Andererseits ist die linke obere 3×3 -Untermatrix von M_n gleich M_3 mit $\det(M_3) \neq 0$. Somit sind die ersten drei Zeilen von M_n linear unabhängig und daher $\operatorname{Rang}(M_n) \geq 3$. Also gilt $\operatorname{Rang}(M_n) = 3$ für alle $n \geq 4$. Zusammenfassend ist daher $\operatorname{Rang}(M_n) = \min\{n,3\}$ für alle $n \geq 1$.

- **4.** Betrachte einen beliebigen Körper K. Eine quadratische Matrix A heisst *idempotent*, wenn $A^2 = A$ ist. Zeige:
 - (a) (4 Punkte) Jede idempotente Matrix ist diagonalisierbar mit Eigenwerten in der Menge $\{0,1\}$.
 - (b) (5 Punkte) Zwei idempotente $n \times n$ -Matrizen sind genau dann zueinander konjugiert, wenn sie den gleichen Rang besitzen.
 - (c) (3 Punkte) Ein inhomogenes lineares Gleichungssystem Ax = b mit einer idempotenten $n \times n$ -Matrix A und einem Vektor $b \in K^n \setminus \{0\}$ hat genau dann eine Lösung, wenn b ein Eigenvektor von A zum Eigenwert 1 ist. Beschreibe die Lösungsmenge in diesem Fall.
 - (d) (3 Punkte) Seien nun $K = \mathbb{Q}$ und $A := \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}$ und $b := \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$. Bestimme die Lösungsmenge des linearen Gleichungssystems Ax = b explizit.

Lösung:

(a) Sei A eine idempotente $n \times n$ -Matrix. Für jeden Vektor $v \in K^n$ gilt dann $v = Av + (I_n - A)v$ mit

$$A \cdot Av = A^2v = Av$$
 und
$$A \cdot (I_n - A)v = Av - A^2v = Av - Av = 0.$$

Also liegt Av im Eigenraum zum Eigenwert 1, und $(I_n - A)v$ im Eigenraum zum Eigenwert 0 von A. Diese beiden Eigenräume erzeugen somit den ganzen Vektorraum K^n ; daher ist A diagonalisierbar mit Eigenwerten in $\{0,1\}$.

Aliter: Sei v_1, \ldots, v_m eine Basis des Kerns der linearen Abbildung $L_A \colon K^n \to K^n$, $v \mapsto Av$. Ergänze diese Basis durch v_{m+1}, \ldots, v_n zu einer Basis von V. Dann bilden die Vektoren Av_{m+1}, \ldots, Av_n eine Basis des Bilds von L_A . Ausserdem gilt $Av_i = 0$ für jedes $i \leqslant m$ und $A \cdot Av_i = A^2v_i = Av_i$ für jedes i > m. Für letzteren gilt insbesondere $A \cdot (Av_i - v_i) = 0$ und somit $Av_i - v_i \in \mathrm{Kern}(L_A)$; also ist $Av_i - v_i$ eine Linearkombination der früheren Basisvektoren v_1, \ldots, v_m . Daher ist auch $v_1, \ldots, v_m, Av_{m+1}, \ldots, Av_n$ eine Basis von K^n . Dies ist nun eine Basis aus Eigenvektoren zu den Eigenwerten 0 oder 1, wie gewünscht.

Aliter (mit Lineare Algebra II): Nach Voraussetzung ist $f(A) = A^2 - A = O_n$ für das Polynom $f(X) := X^2 - X = (X - 0)(X - 1)$. Also ist das Minimalpolynom von A ein Teiler von f. Wie f zerfällt daher auch das Minimalpolynom in Linearfaktoren der Multiplizität 1 mit Nullstellen in der Menge $\{0,1\}$. Somit ist A diagonalisierbar mit Eigenwerten in $\{0,1\}$.

- (b) Seien A und B zwei idempotente $n \times n$ -Matrizen. Angenommen A und B sind zueinander konjugiert, das heisst, es existiert eine invertierbare Matrix S so dass $A = SBS^{-1}$ ist. Aus einem Satz aus der Vorlesung folgt dann Rang(A) = Rang(B).
 - Umgekehrt sei angenommen A und B haben den gleichen Rang. Nach (a) ist A konjugiert zu einer Diagonalmatrix D mit Diagonaleinträgen 0 und/oder 1. Nach Konjugation mit einer Permutationsmatrix können wir dabei annehmen, dass die ersten r Diagonaleinträge von D gleich 1 und die übrigen gleich 0 sind. Der Rang jeder Diagonalmatrix ist aber die Anzahl der von Null verschiedenen Diagonaleinträge; also gilt $\operatorname{Rang}(D) = r$. Da der Rang unter Konjugation invariant ist, gilt dann auch $\operatorname{Rang}(A) = r$.

Nach Voraussetzung ist nun auch Rang(B) = r. Dieselbe Überlegung wie für die Matrix A zeigt nun, dass B zu derselben Matrix D konjugiert ist. Somit sind auch A und B zueinander konjugiert, wie zu zeigen war.

(c) Angenommen, es existiert eine Lösung x der Gleichung Ax = b. Dann ist $Ab = A^2x = Ax = b$; der Vektor $b \neq 0$ ist also ein Eigenvektor von A zum Eigenwert 1. Ist umgekehrt b ein Eigenvektor von A zum Eigenwert 1, so gilt Ab = b, also ist x = b eine Lösung des Gleichungssystems. Dies zeigt die Äquivalenz der beiden Aussagen.

Wenn eine Lösung existiert, so ist somit x=b eine partikuläre Lösung, und die allgemeine Lösung hat die Form x=b+y für eine beliebige Lösung der zugehörigen homogenen Gleichung Ay=0. Die Lösungsmenge ist also $\{b+y\mid y\in \mathrm{Kern}(L_A)\}.$

(d) Durch direkte Rechnung ersehen wir $A^2 = A$ und Ab = b. Nach Teil (d) ist der Lösungsraum der Gleichung Ax = b also gleich $\{b + y \mid y \in \text{Kern}(L_A)\}$. Wir bestimmen $\text{Kern}(L_A)$ mit dem Gauss-Verfahren, wobei jeweils Z_i die i-te Zeile bezeichnet:

$$\begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \xrightarrow{Z_1 \leftrightarrow Z_3} \begin{pmatrix} 1 & -2 & -3 \\ -1 & 3 & 4 \\ 2 & -2 & -4 \end{pmatrix} \xrightarrow{Z_2 := Z_2 + Z_1} \begin{pmatrix} 1 & -2 & -3 \\ 0 & 1 & 1 \\ 2 & -2 & -4 \end{pmatrix}$$

$$Z_{3}:=Z_{3}-2Z_{1} \xrightarrow{\begin{pmatrix} 1 & -2 & -3 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix}} Z_{3}:=Z_{3}-2Z_{2} \xrightarrow{\begin{pmatrix} 1 & -2 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}} Z_{1}:=Z_{1}+2Z_{2} \xrightarrow{\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}}.$$

Der Kern von L_A ist demnach gleich $\{(a, -a, a)^T \mid a \in \mathbb{Q}\}$. Die Lösungsmenge der Gleichung Ax = b ist also $\{(a, 2 - a, a - 1)^T \mid a \in \mathbb{Q}\}$.

Aliter: Wir berechnen die Lösungsmenge direkt durch Anwenden des Gaussverfahrens auf die erweiterte Matrix $(A \mid b)$:

$$\begin{pmatrix}
2 & -2 & -4 & 0 \\
-1 & 3 & 4 & 2 \\
1 & -2 & -3 & -1
\end{pmatrix}
\xrightarrow{Z_1 \leftrightarrow Z_3}
\begin{pmatrix}
1 & -2 & -3 & -1 \\
-1 & 3 & 4 & 2 \\
2 & -2 & -4 & 0
\end{pmatrix}
\xrightarrow{Z_2 := Z_2 + Z_1}
\begin{pmatrix}
1 & -2 & -3 & -1 \\
0 & 1 & 1 & 1 \\
2 & -2 & -4 & 0
\end{pmatrix}$$

$$Z_3 := Z_3 - 2Z_1
\begin{pmatrix}
1 & -2 & -3 & -1 \\
0 & 1 & 1 & 1 \\
0 & 2 & 2 & 2
\end{pmatrix}
\xrightarrow{Z_3 := Z_3 - 2Z_2}
\begin{pmatrix}
1 & -2 & -3 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$Z_1 := Z_1 + 2Z_2
\begin{pmatrix}
1 & 0 & -1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Die Lösungsmenge ist demnach gleich $\{(1+b,1-b,b)^T \mid b \in \mathbb{Q}\}.$

5. Sei V der \mathbb{C} -Vektorraum aller komplexen 2×2 oberen Dreiecksmatrizen und betrachte die Matrix

$$S := \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \in V.$$

(a) (3 Punkte) Zeige, dass

$$\Phi \colon V \to V, A \mapsto SAS$$

eine wohldefinierte lineare Abbildung ist.

(b) (3 Punkte) Zeige, dass die Matrizen

$$b_1 := \begin{pmatrix} i & -2 \\ 0 & i \end{pmatrix}, b_2 := \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, b_3 := \begin{pmatrix} 1 & i \\ 0 & 2 \end{pmatrix}$$

eine Basis von V bilden.

- (c) (4 Punkte) Bestimme die Darstellungsmatrix von Φ bezüglich der Basis in (b).
- (d) (5 Punkte) Finde eine Basis von V, bezüglich welcher Φ trigonal ist.

Lösung:

(a) Das Produkt zweier oberer Dreiecksmatrizen ist wieder eine obere Dreiecksmatrix. Daher ist auch SAS als Produkt dreier oberen Dreiecksmatrizen wieder eine obere Dreiecksmatrix und somit in V. Deshalb ist Φ wohldefiniert. Für alle $A, B \in V$ und $\lambda \in \mathbb{C}$ gilt ausserdem

$$\Phi(\lambda A + B) = S(\lambda A + B)S = \lambda SAS + SBS = \lambda \Phi(A) + \Phi(B).$$

Also ist Φ eine lineare Abbildung.

- (b) Betrachte die Elementarmatrizen E_{11} , E_{12} , E_{22} . Wegen $E_{11} = ib_1 + 3b_2 b_3$ und $E_{12} = ib_2 b_1$ und $E_{22} = b_3 b_2$ liegen diese alle im Erzeugnis $\langle b_1, b_2, b_3 \rangle$. Da die genannten Elementarmatrizen eine Basis von V bilden, folgt daraus $\langle b_1, b_2, b_3 \rangle = V$. Also ist $\{b_1, b_2, b_3\}$ ein Erzeugendensystem von V der Kardinalität $\dim(V) = 3 < \infty$ und somit eine Basis von V.
- (c) Wir bestimmen die Bilder der Basisvektoren unter der Abbildung Φ :

$$\Phi(b_1) = \begin{pmatrix} i & 2 \\ 0 & i \end{pmatrix} = b_1 + 4E_{12} = -3b_1 + 4ib_2$$

$$\Phi(b_2) = \begin{pmatrix} 1 & -i \\ 0 & 1 \end{pmatrix} = b_2 - 2iE_{12} = 2ib_1 + 3b_2$$

$$\Phi(b_3) = \begin{pmatrix} 1 & -1 - i \\ 0 & 2 \end{pmatrix} = b_3 - (2i+1)E_{12} = (2i+1)b_1 + (2-i)b_2 + b_3$$

Also ist die Darstellungsmatrix von Φ bezüglich der geordneten Basis (b_1, b_2, b_3) gleich

$$\begin{pmatrix} -3 & 2i & 2i+1 \\ 4i & 3 & 2-i \\ 0 & 0 & 1 \end{pmatrix}.$$

(d) Weil die Darstellungsmatrix in (c) bereits eine Blockdreiecksmatrix ist, reicht es, den ersten Basisvektor b_1 durch eine geeignete Linearkombination von b_1 und b_2 zu ersetzen. Die linke obere 2×2 -Matrix $\binom{-3}{4i} \binom{2i}{3}$ hat das charakteristische Polynom X^2-1 und somit die Eigenwerte 1 und -1. Ein Eigenvektor zum Eigenwert 1 ist der Spaltenvektor $\binom{i}{2} \in \mathbb{C}^2$. In der geordneten Basis (b_1, b_2, b_3) entspricht dieser der Matrix

$$b_1' := ib_1 + 2b_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in V.$$

Dann gilt $\Phi(b'_1) = b'_1$ und $\Phi(b_2) = 2b'_1 - b_2$ und $\Phi(b_3) = (2-i)b'_1 + (i-2)b_2 + b_3$. In der Basis (b'_1, b_2, b_3) ist die Darstellungsmatrix dann die Dreiecksmatrix

$$\begin{pmatrix} 1 & 2 & 2-i \\ 0 & -1 & i-2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Aliter: Wir gehen vor wie oben, bestimmen aber zusätzlich den Eigenvektor $\binom{i}{1} \in \mathbb{C}^2$ zum Eigenwert -1 von $\binom{-3}{4i} \binom{2i}{3}$. In der geordneten Basis (b_1, b_2, b_3) entspricht dieser der Matrix

$$b_2' := ib_1 + b_2 = \begin{pmatrix} 0 & -i \\ 0 & 0 \end{pmatrix} \in V.$$

Dann gilt $\Phi(b_1') = b_1'$ und $\Phi(b_2') = -b_2'$ und $\Phi(b_3) = (2-i)b_2' + b_3$. In der Basis (b_1', b_2', b_3) ist die Darstellungsmatrix dann die Dreiecksmatrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 - i \\ 0 & 0 & 1 \end{pmatrix}.$$

6. (a) (3 Punkte) Zeige durch Induktion die folgende Formel für alle ganzen Zahlen $n \ge 0$:

$$\sum_{k=1}^{n} (-1)^k k^2 = (-1)^n \cdot \frac{n(n+1)}{2}.$$

(b) (4 Punkte) Seien V_1, V_2 Untervektorräume eines Vektorraumes W. Beweise die Formel

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2).$$

(c) (5 Punkte) Sei V ein endlichdimensionaler K-Vektorraum, und seien V_1 und V_2 Unterräume von V mit der Eigenschaft

$$\dim(V_1) + \dim(V_2) = \dim(V).$$

Zeige, dass die folgenden Aussagen äquivalent sind:

- (i) $V_1 + V_2 = V$
- (ii) $V_1 \cap V_2 = \{0\}.$
- (iii) $V = V_1 \oplus V_2$.
- (d) (3 Punkte) Sei nun K ein endlicher Körper der Kardinalität q. Bestimme die Anzahl der Unterräume von K^2 .

Lösung:

(a) Wir führen Induktion nach n.

Induktionsverankerung: Für n=0 ist die linke Seite der Gleichung die leere Summe, also 0 und die rechte Seite ist ebenfalls gleich 0, also ist die Gleichung erfüllt.

Induktionsschritt: Sei nun n>0 und nimm an, dass die Gleichung für n-1 gilt. Dann ist

$$\sum_{k=1}^{n} (-1)^k k^2 = \sum_{k=1}^{n-1} (-1)^k k^2 + (-1)^n n^2$$

$$\stackrel{IA}{=} (-1)^{n-1} \cdot \frac{(n-1)n}{2} + (-1)^n n^2$$

$$= (-1)^n \cdot \left(n^2 - \frac{(n-1)n}{2}\right)$$

$$= (-1)^n \cdot \frac{n(n+1)}{2}.$$

Also ist die Gleichung durch Induktion für alle $n \ge 0$ bewiesen.

(b) Wähle eine Basis B_{12} von $V_1 \cap V_2$ und vervollständige diese Basis zu einer Basis B_1 von V_1 und zu einer Basis B_2 von V_2 . Dann ist $B_1 \cap B_2 = B_{12}$ und $B_1 \cup B_2$ ist ein Erzeugendensystem von $V_1 + V_2$. Wir behaupten, dass $B_1 \cup B_2$ aber auch linear unabhängig und somit eine Basis von $V_1 + V_2$ ist. Sei dafür $(a_b)_{b \in B_1 \cup B_2} \in K$ so dass $\sum_{b \in B_1 \cup B_2} a_b b = 0$ ist. Wir trennen diese Summe auf und erhalten

$$\sum_{b \in B_1} a_b b = -\sum_{b \in B_2 \setminus B_{12}} a_b b.$$

Da die linke Seite in V_1 liegt, muss auch die rechte Seite in V_1 liegen. Die rechte Seite liegt aber in V_2 , also muss sie in $V_1 \cap V_2$ liegen. Also existiert $(c_b)_{b \in B_{12}}$ so dass $\sum_{b \in B_{12}} c_b b = -\sum_{b \in B_2 \smallsetminus B_{12}} a_b b$ ist. Weil B_2 linear unabhängig ist, folgt daraus insbesondere, dass $a_b = 0$ ist für alle $b \in B_2 \smallsetminus B_{12}$. Dann folgt mit der obigen Gleichung und der linearen Unabhängigkeit von B_1 auch, dass $a_b = 0$ ist für alle $b \in B_1$. Also ist $B_1 \cup B_2$ eine Basis von $V_1 + V_2$. Daher gilt

$$\dim(V_1+V_2) = |B_1 \cup B_2| = |B_1| + |B_2| - |B_{12}| = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2).$$

(c) Nach Definition der direkten Summe ist (iii) äquivalent zu (i)∧(ii). Es genügt daher zu zeigen, dass (i) und (ii) zueinander äquivalent sind. Betrachte dafür die Dimensionsformel für den Durchschnitt und die Summe zweier Unterräume

$$\dim(V_1) + \dim(V_2) = \dim(V_1 \cap V_2) + \dim(V_1 + V_2).$$

Nach Voraussetzung ist hier die linke Seite gleich $\dim(V)$. Also gilt

$$V_1 + V_2 = V \iff \dim(V_1 + V_2) = \dim(V)$$

 $\iff \dim(V_1 \cap V_2) = 0$
 $\iff V_1 \cap V_2 = \{0\},$

was zu zeigen war.

(d) Jeder Vektor $v \neq 0$ in K^2 erzeugt einen 1-dimensionalen Unterraum von K^2 , der aus q-1 Elementen und 0 besteht. Zwei verschiedene Unterräume schneiden sich nur im Nullpunkt. Sei N die Anzahl 1-dimensionaler Unterräume von K^2 . Dann gilt also die Beziehung $N \cdot (q-1) + 1 = q^2$. Daher folgt N = q+1. Zusammen mit dem Nullraum und dem ganzen Raum K^2 gibt es also genau q+3 verschiedene Unterräume von K^2 .