ESO205 Lab-1

SHUBHAM GUPTA 180749

SEC-3, GROUP-3

Part A: SC, BCC and FCC crystals from different views SC Crystal:

Part B: Visualizing planes using Calistry Plane with miller indices [103]

The plane with miller indices [120].

The plane with miller indices [123].

The plane with miller indices [412].

Part C: The crystal structure and lattice parameter for X-ray diffraction pattern

 2θ equals 43.0343° , 49.9934° , 73.6542° , 89.2792° , and 94.6363° corresponding to (111), (200), (220), (311) and (222) respectively.

 $\sin^2(\theta_1)/\sin^2(\theta_2) = (h^2+k^2+l^2)/(h^2+k^2+l^2)$ R = $\sin^2(21.51715)/\sin^2(24.9967) = 0.753$

Therefore, this XRD data is FCC.

The first peak in the XRD pattern occurs at $2\theta = 43.0343^{\circ}$ which is close to 43.2° . Therefore it is copper. Now we use Bragg's law to calculate the lattice parameter.

The lattice parameter comes out to be ~3.63 angstroms.

Calculations are in the following table.

λ (Å)	2θ	θ	sin²θ	h	k	I	d= λ/2sinθ	$\mathbf{a} = \mathbf{d}/(\sqrt{\mathbf{h}^2 + \mathbf{k}^2 + \mathbf{l}^2})$
1.5406	43.0343	21.51715	0.134527353	1	1	1	2.100170719	3.637602389
1.5406	49.9934	24.9967	0.178562076	2	0	0	1.822910239	3.645820478
1.5406	73.6542	36.8271	0.359283075	2	2	0	1.285113596	3.634850153
1.5406	89.2792	44.6396	0.493709999	3	1	1	1.096286172	3.635969896
1.5406	94.6363	47.31815	0.540415211	2	2	2	1.047842757	3.629833785

Error Analysis:

Equate the partial derivative of Bragg's law with respect to d and θ with λ as constant to 0.

$$2 \cdot \Delta d \cdot \sin \theta + 2 \cdot d \cdot \cos \theta \cdot \Delta \theta = 0$$
$$\frac{\Delta d}{d} = -\cot \theta \cdot \Delta \theta$$

From the error equation, as θ increases, the error decreases. This relation indicates to use of the highest peak for lattice parameter for the most negligible error value. The value of θ will be 47.31815. The corresponding value of the lattice parameter is 3.629833785 angstroms.