Week of 10/09 Deliverables

Red Lemurs

Deliverables

- Tech Eval of PySurfer
 - DoD: <u>.md of Plots and Notes</u>
- Background Readings on Biomarkers
 - DoD: <u>Summary of Papers</u>
- Exploratory plots
 - DoD: rmarkdown <u>file1</u>, <u>file2</u>
- API Backbone design
 - DoD: <u>markdown</u>
- Sparkline and Spectrogram Implementations / Backbone integrated
 - DoD: <u>python package</u>, <u>notebook</u>

Tech Eval of PySurfer

Structural MRI Dark = Sulci Light = Gur

Functional MRI One time slice, volume to surface projection

INIEG Vectorized Inverse Solution One time slice, computed using dynamic Statistical Parametric

Tech Eval of PySurfer

Pros	Cons
 Great 3d visualizations, with rotations Actively supported (<10 hour response to Git issue from core dev) Supports many plots for MRI/fMRI Automatically creates good color scales, legends, ect. 	 Uses FreeSurfer file structures, which are not very well documented Algorithms for visualization are not readily available, no 'statistical setting' or pseudocode Cannot currently be launched from iPython / Jupyter, must be done in a vanilla Python shell Unclear whether images can be produced without taking a screenshot

Background Reading on Biomarkers

(uV)

- P300 (P3)
 - a positively inflected ERP peak that occur around 300 milliseconds after a task target stimulus
 - related to disorders include alcohol abuse and schizophrenia
- P50
 - reliably associated with schizophrenia

Independent ERP components

- ICA was used to decompose ERPs into a set of independent components
- Executive independent components
 - Black bars indicating p<0.05

Executive independent component

Time(ms)

Classification of ADHD patients on the basis of independent ERP components using a machine learning system (Mueller et al. 2010)

Exploratory Plots

- Time Series from Average of Electrodes (right)
 - Split data into first half (before the spike), and second half.
- Differenced Time Series, ACF, and PACF to model data (below)
- DoD

PGA

- Used 3 Principle Components to describe the data, and plot each component. See variances retained by each component (right).
- Plots of the 3 components below.
- <u>DoD</u>

API Sparklines + Spectrograms

- DoD: <u>python package</u>, <u>notebook</u>
- Followed API pattern from last year. Made dictionaries to define parameters.

Sparklines:

API Sparklines + Spectrograms cont.

Spectrograms:

Next Week

- Tech Eval of MNE
 - Also these might be useful: https://portal.mrn.org/d3vis_demo/
- Sparklines with averaging filters, (something to view "evoked potentials")
- Get S3 set up so we can store our own derivatives / preprocessed data
- Pairwise distance visualizations (similarity function between scans)