

DUTLINE

Developer

XECUTIVE SUMMARY

Data science is the domain of study that deals with vast volumes of data using modern tools and techniques to find unseen patterns, derive meaningful information, and make business decisions. Data science uses machine learning algorithms to build predictive models.

The data used for analysis can come from many different sources and presented in various formats.

INTRODUCTION

In this project we will predict if the Falcon 9 first stage will land successfully.

SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollar; other providers cost upward of 165 million dollar each, much of the savings is because SpaceX can reuse the first stage.

Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

Developer

IETHODOLOGY

Data Collection: The process of gathering and analyzing accurate data from various sources to find answers to research problems, trends and probabilities to evaluate possible outcomes.

```
X ■ jupyter-labs-spacex-data-cc X +
                                                                                                                        # Python (
21: # Takes the dataset and uses the rocket column to call the API and append the data to the list
   def getBoosterVersion(data):
       for x in data['rocket']:
           response = requests.get("https://api.spacexdata.com/v4/rockets/"+str(x)).json()
           BoosterVersion.append(response['name'])
   From the launchpad we would like to know the name of the launch site being used, the logitude, and the latitude.
  # Takes the dataset and uses the launchpad column to call the API and append the data to the list
   def getLaunchSite(data):
       for x in data['launchpad']:
            response = requests.get("https://api.spacexdata.com/v4/launchpads/"+str(x)).json()
            Longitude.append(response['longitude'])
            Latitude.append(response['latitude'])
            LaunchSite.append(response['name'])
   From the payload we would like to learn the mass of the payload and the orbit that it is going to.
  # Takes the dataset and uses the payloads column to call the API and append the data to the lists
   def getPayloadData(data):
       for load in data['payloads']:
           response = requests.get("https://api.spacexdata.com/v4/payloads/"+load).json()
```

```
X | jupyter-labs-spacex-data-cc X +
B + X □ □ ► ■ C → Markdown ∨ O git Run as Pipeline
                                                                                                                         # Pytho
     [4]: # Takes the dataset and uses the payloads column to call the API and append the data to the lists
           def getPayloadData(data):
              for load in data['payloads']:
                  response = requests.get("https://api.spacexdata.com/v4/payloads/"+load).json()
                  PayloadMass.append(response['mass kg'])
                  Orbit.append(response['orbit'])
           From cores we would like to learn the outcome of the landing, the type of the landing, number of flights with that core,
          whether gridfins were used, wheter the core is reused, wheter legs were used, the landing pad used, the block of the core
          which is a number used to seperate version of cores, the number of times this specific core has been reused, and the serial of
           the core.
     [5]: # Takes the dataset and uses the cores column to call the API and append the data to the lists
           def getCoreData(data):
              for core in data['cores']:
                      if core['core'] != None:
                          response = requests.get("https://api.spacexdata.com/v4/cores/"+core['core']).json()
                         Block.append(response['block'])
                         ReusedCount.append(response['reuse_count'])
                         Serial.append(response['serial'])
                         Block.append(None)
                         ReusedCount.append(None)
                         Serial annend(None)
                                                            SKILLS NETWORK
```

Developer

1ETHODOLOGY

Data Wrangling: The process of removing errors and combining complex data to make them more accessible and easier to analyze.

Developer

1ethodology

ata Wrangling:

Fli	ightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCour
0	1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	
1	2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	
2	3	2013- 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	
3	4	2013- 09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	
4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	

We can use the following line of code to determine the success rate:

1ethodology

EDA and interactive visual analytics:

Data scientists implement Exploratory Data Analysis(EDA) tools and techniques to investigate, analyze and summarize the main characteristics of the dataset often utilizing data visualization methodologies.

Interactive data visualization is the use of tools and processes to produce a visual representation of data which can be explored and analyzed directly within the visualization itself.

Developer

1ethodology

Predictive Ananlysis: Predictive analytics is a branch of advanced analytics that makes predictions about future outcomes using historical data combined with statistical modeling, data mining techniques and machine learning.

Predictive analytics models are designed to assess historical data, discover patterns, observe trends, and use that information to predict future trends.

Developer

EDA with Visualization Results

ory Data Analysis

the SpaceX dataset into a Pandas dataframe and print its summary

csv("https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset part 2.csv")

e unable to complete the previous lab correctly you can uncomment and load this csv

_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DS0701EN-SkillsNetwork/api/dataset_pa

er	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	La
1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.5
2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.5
3	2013- 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.5
4	2013- 09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.6
5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.5

We see that different launch sites have different success rates. CCAFS LC-40, has a success rate of 60 %, while KSC LC-39A and VAFB SLC 4E has a 77%.

Next, let's drill down to each site visualize its detailed launch records.

Developer

EDA with Visualization Results

(1: Visualize the relationship between Flight Number and Launch Site

efunction catplot to plot FlightNumber vs LaunchSite, set the parameter x parameter to FlightNumber, set the y to Launch Site and set the eter hue to 'class'

t a scatter point chart with x axis to be Flight Number and y axis to be the launch site, and hue to be the class value

```
atplot(y="LaunchSite", x="flightNumber", hue="Class", data=df, aspect = 5)
label("Launch Site", fontsize=20)
how()

ana
```

ASK 3: Visualize the relationship between success rate of each orbit type

lext, we want to visually check if there are any relationship between success rate and orbit type.

's create a ban chant for the sucess rate of each orbit

```
# HINT use groupby method on Orbit column and get the mean of Class column
temp = df groupby ("Torbit"], mean().reset_index()
temp2 = temp[["Orbit", "Class"]*100
temp2 = temp[["Orbit", "Class"]*100
temp2 = temp[["Orbit", "Class"]*100

4: SettingWithCopyWarning:
value is trying to be set on a copy of a slice from a DataFrame.
ry using .loc[row_indexer,col_indexer] = value instead

see the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
temp2["Class"] = temp2["Class"]*100
```


Activate Windov

TASK 2: Visualize the relationship between Payload and Launch Site

We also want to observe if there is any relationship between launch sites and their payload mass.

```
# Plot a scatter point chart with x axis to be Pay Load Mass (kg) and y axis to be the launch site, and hue to be the class value
sns.catplot(y="PayloadMass", x="LaunchSite", hue="Class", data=df, aspect = 5)
plt.xlabel("Launch Site", fontsize=20)
plt.ylabel("Pay load Mass (kg)",fontsize=20)
plt.show()
                                                                                   Launch Site
        # A function to Extract years from the date
        def Extract_year(year):
            for i in df["Date"]
               year.append(i.split("-")[0])
        # Plot a line chart with x axis to be the extracted year and y axis to be the success rate
       year = []

df["year"] = Extract_year(year)

df["Success Rate"] = df["class"] * 100

sns.lineplot(data = df, x = "year", y = "Success Rate")
       g 60 -
              2010 2012 2013 2014 2015 2016 2017 2018 2019 2020
```

Developer

EDA with SQL Results

ames of the unique launch sites in the space mission

DISTINCT LAUNCH_SITE from SPACEXDATASET

a://nxs27972:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/BLUDB

ords where launch sites begin with the string 'CCA'

* from SPACEXDATASET where launch_site like 'CCA%' limit 5

a://nxs27972:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/BLUDB

ie_utc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome	
18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)	
15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success		
07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)		ite Windows ettings No attempte	W
10-25-00	FG v1 N RANAK	CCAFS LC-	SnoreV CRS.1	500	LEO	NASA (CRS)	Currage	No attampt	

Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

%sql select sum(payload_mass__kg_) as sum from SPACEXDATASET where customer like 'NASA (CRS)'

 $* ibm_db_sa://nxs27972: *** @54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/BLUDB Done.$

SUN

45596

Task 4

Display average payload mass carried by booster version F9 v1.1

%sql select avg(payload_mass_kg_) as Average from SPACEXDATASET where booster_version like 'F9 v1.1%'

* ibm_db_sa://nxs27972:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/BLUDB Done.

average

2534

Developer

EDA with SQL Results

the first succesful landing outcome in ground pad was acheived.

In late) as Date from SPACEXDATASET where mission_outcome like 'Success'

127972:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomein.cloud;32733/BLUDB

128 boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

129 cer_version from SPACEXDATASET where (mission_outcome like 'Success')

120 cer_version from SPACEXDATASET where (mission_outcome like 'Success')

121 cer_version from SPACEXDATASET where (mission_outcome like 'Success')

122 cer_version from SPACEXDATASET where (m

hich will display the month names, failure landing outcomes in drone ship ,booster versions, launch site for the months in year 2015

THNAME(DATE) as Month, landing_outcome, booster_version, launch_site SET where DATE like '2015%' AND landing_outcome like 'Failure (drone ship)'

xs27972:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/BLUDB

 outcome
 booster_version
 launch_site

 one ship)
 F9 v1.1 B1012
 CCAFS LC-40

 one ship)
 F9 v1.1 B1015
 CCAFS LC-40

Developer

Task 7

List the total number of successful and failure mission outcomes

%sql SELECT mission_outcome, count(*) as Count FROM SPACEXDATASET GROUP by mission_outcome ORDER BY mission_outcome

* ibm_db_sa://nxs27972:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/BLUDB

	mission_outcome	COUNT
	Failure (in flight)	1
	Success	99
Success (pay	load status unclear)	1

Task 8

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

maxm = %sql select max(payload_mass_kg_) from SPACEXDATASET
maxv = maxw[0][0]
%sql select booster_version from SPACEXDATASET where
payload_mass_kg_(select max(payload_mass_kg_)) from SPACEXDATASET)

* ibm_db_ss://nxs27972:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/BLUDB
Done.

* ibm_db_sa://nxs27972:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/BLUDB
Done.
booster_version

F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3

Activate Windo

Task 10

Rank the count of successful landing_outcomes between the date 2010-06-04 and 2017-03-20 in descending order

%sql select landing_outcome, count(*) as count from SPACEXDATASET
where Date >= '2010-06-04' AND Date <= '2017-03-20'
GROUP by landing_outcome ORDER BY count Desc</pre>

* ibm_db_sa://nxs27972:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/BLUDB Done.

Interactive map with Folium Results

```
nt sub-columns: `Launch Site`, `Lat(Latitude)`, `Long(Longitude)`, `class`
                                                                                                                                                                                         # Create a blue circle at NASA Johnson Space Center's coordinate with a popup label showing its name
                                                                                                                                                                                         circle = folium.Circle(nasa_coordinate, radius=1000, color='#d35400', fill=True).add_child(folium.Popup('NASA Johnson Space Center'))
cex_df[['Launch Site', 'Lat', 'Long', 'class']]
                                                                                                                                                                                         # Create a blue circle at NASA Johnson Space Center's coordinate with a icon showing its name
                                                                                                                                                                                          marker = folium.map.Marker(
                                                                                                                                                                                            nasa_coordinate,
= spacex_df.groupby(['Launch Site'], as_index=False).first()
                                                                                                                                                                                            icon=DivIcon(
                                                                                                                                                                                               icon size=(20,20).
= launch_sites_df[['Launch Site', 'Lat', 'Long', 'class']]
                                                                                                                                                                                                icon anchor=(0.0).
                                                                                                                                                                                                html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % 'NASA JSC'.
                                                                                                                                                                                         site_map.add_child(circle)
                                                                                                                                                                                         site_map.add_child(marker)
```

Developer

Interactive map with Folium results

Developer

Interactive map with Folium results

Developer

Interactive map with Folium results

Developer

Plotly dashboard results

Developer

Developer

```
4
```

ogistic regression object then create a GridSearchCV object logreg_cv with cv = 10. Fit the object to find the best parameters dictionary parameters.

t the GridSearchCV object for logistic regression. We display the best parameters using the data attribute best_params_ and icy on the validation data using the data attribute best_score_.

```
ned hpyerparameters :(best parameters) ",logreg_cv.best_params_)
curacy :",logreg_cv.best_score_)
erparameters :(best parameters) {'C': 0.01, 'penalty': 'l2', 'solver': 'lbfgs'}
: 0.8464285714285713
```


Developer

Developer

TASK 12

ind the method performs best:

rint(methods) rint(accu)

'logistic regression', 'support vector machine', 'decision tree classifier', 'k nearest neighbors'] 0.83333333333334, 0.833333333333334, 0.9444444444444444, 0.833333333333333]

Authors

SKILLS NETWORK

Conclusion

Thus the models have been built using the SpaceX data after performing exploratory data analysis and also visualizing the transformed data. The machine learning models were built(classification) algorithms such as Logistic regression, support vector machine, decission tree classifier and k-NN algorithm and we obtained an accuracy of 83.34%.i.e., the launch of the first stage of the spaceX falcon9.

Developer