Expected Value and Variance

Ansar Shahzadi

School of Electrical Engineering & Computer Science

National University of Science and Technology(NUST)

Expected Value and Variance

- Expected Value of Discrete Random Variables
- Variance and Standard Deviation of Discrete Random Variables
- Expected Value of continuous Random Variables
- Variance and Standard Deviation of Continuous Random Variables

Expected Value of Discrete Random Variables

The mean, or expected value, of a discrete random variable is

$$\mu = E(x) = \sum xp(x).$$

$$Mean = \frac{\sum fx}{\sum f} = \frac{Sum \ of \ all \ observation}{total \ no \ of \ observation}$$

Mean=
$$\sum \frac{f}{\sum f} \cdot x$$

Mean of discrete p.d= $\sum xp(x)$

Х	f(x)	xf(x)
x_1	$f(x_1)$	$x_1 f(x_1)$
x_2	$f(x_2)$	$x_2 f(x_2)$
•••	•••	•••
x_n	$f(x_n)$	$x_n f(x_n)$
Total	1	E(X)
		$= \sum x_i f(x_i)$

Example: die

Mean=3.5

X	p(x)	xp(x)
1	1/6	1/6
2	1/6	2/6
3	1/6	3/6
4	1/6	4/6
5	1/6	5/6
6	1/6	6/6
Total	1	21/6=3.5

Variance and Standard Deviation

The variance of a discrete random variable x is

$$\sigma^2 = E[(x-\mu)^2] = \sum (x-\mu)^2 p(x).$$

The standard deviation of a discrete random variable x is

$$\sqrt{\sigma^2} = \sqrt{E[(x-\mu)^2]} = \sqrt{\sum (x-\mu)^2 p(x)}.$$

Example: die

Variance= 2.91

X	p(x)	xp(x)	(x-μ)	$(x-\mu)^2 p(x)$
1	1/6	1/6	-2.5	1.041
2	1/6	2/6	-1.5	0.3751
3	1/6	3/6	-0.5	.04167
4	1/6	4/6	0.5	.01467
5	1/6	5/6	1.5	0.3751
6	1/6	6/6	2.5	1.041
Total	1	21/6=3.5		2.9

Example: die

Variance= $\sigma^2 = E(X^2) - (E(X))^2$

Variance=
$$\frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{105}{36} = 2.91$$

Х	p(x)	xp(x)	x^2	x^2 p(x)
1	1/6	1/6	1	1/6
2	1/6	2/6	4	4/6
3	1/6	3/6	9	9/6
4	1/6	4/6	16	16/6
5	1/6	5/6	25	25/6
6	1/6	6/6	36	36/6
Total	1	21/6=3.5		91/6

Question

The repair cost of electrical components is \$50, \$200, and \$250 with respective probability values of 0.3, 0.2, and 0.5. Find the expected value and variance of following distribution?

Expected Value: \$180

Variance: \$7600

Standard Deviation = \$87.17

				$(x-\mu)^2 f(x$
X	f(x)	xf(x)	(x-µ))
50	0.3	15	-130	5070
200	0.2	40	20	80
250	0.5	125	70	2450
Total	1	180		7600

Question 2

A multiple-choice quiz has 5 question, each with 4 possible answers of which only one is correct.

- Let X denotes the number of correct answers, what is the expected number of correct answers.
- If Y denotes the marks and each question have 5 marks, then find the expected marks of a student.

Expected number of correct answers= 1.25

Expected Marks= 6.25

X	p(x)	xp(x)	Y	yp(y)
0	0.237305	0	0	0
1	0.395508	0.395508	5	1.977539
2	0.263672	0.527344	10	2.636719
3	0.087891	0.263672	15	1.318359
4	0.014648	0.058594	20	0.292969
5	0.000977	0.004883	25	0.024414
	1	1.25	75	6.25

Expected Values of continuous Random Variables

If the X is continuous with probability density function is f(x) thus

$$\mu = E(x) = \int_{-\infty}^{\infty} x f(x) dx$$

Provided the integral converges

Variance and Standard Deviation

$$\sigma^2 = E(X^2) - (E(X))^2 = \text{variance}$$

Where

$$\mu = E(x) = \int_{-\infty}^{\infty} x f(x) dx$$

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

$$S.D = \sigma = \sqrt{E(X^2) - (E(X))^2}$$

Question 3

The arrival time of a student in a class is uniformly distributed with first 10 minutes. Find the mean and standard deviation.

The p.d.f of X is

$$f(x) = \begin{cases} \frac{1}{10} & \text{for} & 0 \le x \le 10\\ 0 & \text{for} & \text{all other values} \end{cases}$$

$$E(x) = \int_{-\infty}^{0} x.0 dx + \int_{0}^{10} x.\frac{1}{10} dx + \int_{10}^{\infty} x.0 d(x)$$

$$E(x) = 0 + 5 + 0$$

$$E(x) = 5$$

Mean= average arrival time of a student in a class is 5 minutes

Standard deviation= $\sqrt{E(X^2) - (E(X))^2}$

Here we know that, E(X)=5

$$E(x^2)$$

$$= \int_{-\infty}^{0} x^2 \cdot 0 dx + \int_{0}^{10} x^2 \cdot \frac{1}{10} dx + \int_{10}^{\infty} x^2 \cdot 0 dx$$

$$E(x^2) = 0 + \frac{1000}{30} + 0 = \frac{100}{3}$$

Standard deviation=
$$\sqrt{\frac{100}{3} - 5^2} = \frac{25}{3} = 8.33$$