Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2005-2006. Esame del 20-06-2006

Nome	Cognome
Matricola/	

1. (5 punti) Data la seguente tabella dei costi per un problema del trasporto, applicare l'algoritmo dell'angolo di nordovest per trovare una soluzione di base iniziale. Verificare se tale base è ottima ed in caso negativo calcolare la base successiva utilizzando l'algoritmo per il problema del trasporto.

	1	2	3	4		O_i
1	1	3	5	9	10	
2	4	12	3	7	20	
3	7	12	1	5	20	
	15	10	10	15		

 $d_i \rightarrow$

2. Considerare il seguente problema di programmazione lineare:

$$max \ x_1 + 3x_2$$

$$x_1 + x_2 \ge 3$$

$$-x_1 + x_2 \le -1$$

$$\textbf{-}x_1+2x_2\leq 2$$

$$x_1, x_2 \ge 0.$$

- a) (3 punti) disegnare la regione ammissibile e risolvere il problema graficamente;
- b) (4 punti) Proporre una nuova funzione obiettivo (sempre da massimizzare) in modo tale che il punto (3, 0) diventi soluzione ottima
- c) (4 punti) Spiegare perchè i punti (1, 0) e (4, 1) non potranno mai essere soluzioni ottime del problema, qualunque sia la funzione lineare che si sceglie come funzione obiettivo (attenzione: le ragioni sono diverse per i due punti).

.

•	O '1	.1	11 1	•	1.
4	Conciderare	il comiento	nrohlema di	nrogrammazione	lineare.
	Considerate	II SUBUUILU	илописные иг	programmazione	micaic.

$$min 2x_1 - 5x_2$$

con i vincoli

$$x_1 + x_2 \ge 3$$

 $-x_1 + x_2 \le -1$
 $x_1, x_2 \ge 0$

(4 punti) dopo averlo trasformato in forma standard determinare analiticamente, se esiste, utilizzando una delle tecniche studiate, una soluzione di base ammissibile per il problema.

4. (3 punti) Formulare il duale del seguente problema di programmazione lineare:

$$\begin{aligned} & \text{max} \quad x_1 - 4x_2 + 2x_3 \\ & \text{con i vincoli} \\ & 4x_1 + 24x_2 = 4 \\ & -3x_1 + 32x_2 - 12x_3 \le 6 \\ & 6x_1 - x_2 + 2x_4 \ge 5 \\ & x_1 \ge 0 \;, \; x_2 \; \text{libera} \;, \; x_3 \ge 0, \; x_4 \le 0 \end{aligned}$$

5. (5 punti) Dato il grafo in figura, calcolare l'**albero di copertura minimo** applicando l'algoritmo di **Prim**. Descrivere le diverse iterazioni dell'algoritmo, evidenziando l'arco selezionato in ogni iterazione. Non riportare la descrizione dell' algoritmo.

6. Un' azienda produce due tipologie A e B di aspirapolvere. Per produrre un aspirapolvere di tipo A occorrono 8 ore di lavorazione sulla macchina M1; mentre per produrre un aspirapolvere di tipo B occorrono 4 ore di lavorazione sulla macchina M2 e 10 ore di lavorazione sulla macchina M2. La macchina M1 è disponibile per 80 ore settimanali, mentre la macchina M2 è disponibile per 50 ore settimanali. Inoltre si vuole una produzione tale che il numero di aspirapolvere di tipo B sia uguale ad almeno il triplo di quelle di tipo A. Il guadagno ottenuto dalla vendita di un aspirapolvere di tipo A è di 100 euro, mentre quello ottenuto per una lavatrice di tipo B è di 180 euro. Si vuole conoscere la quantità di aspirapolvere di tipo A e B da produrre settimanalmente per massimizzare il guadagno totale nel rispetto dei vincoli di produzione. Con riferimento al problema descritto:

a) (4 punti) si formuli il corrispondente modello di programmazione lineare;

7. (3 punti) Determinare se i seguenti vettori definiscono una base per \mathbb{R}^3 :

$$A_1 = (2, 0, 3)$$
 $A_2 = (4, 4, 3)$ $A_3 = (3, 2, 0)$

Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2005-2006. Esame del 20-06-2006

Nome	Cognome
Matricola	/

Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2005-2006. Esame del 20-06-2006

Nome	Cognome	
Matricola /		