Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

ЛАБОРАТОРНАЯ РАБОТА №4 ЭМИССИОННАЯ ТОМОГРАФИЯ ПЛАЗМЫ. ПОСТРОЕНИЕ СЛАУ

4 КУРС, ГРУППА 3630102/60201

Студент Д. А. Плаксин

Преподаватель Баженов А. Н.

Содержание

1.	Список иллюстраций	3
2.	Постановка задачи	4
3.	Теория 3.1. Построение разбиения сетки 3.2. Информация о детекторе 3.3. Нахождение сечения плазмы плоскостью x = H	4 4 5 6
4.	Реализация	6
5.	Результаты	7
6.	Обсуждение	19
7.	Список литературы	19
8.	Приложения	20

1 Список иллюстраций

1	График плоскости детектора	5
2	График сепаратрисы и магнитной оси	7
3	Разбиение сепаратрисы	8
4	график положения сечений	9
5	график положения лучей для 16 столбца детектора	10
6	Сечение 1	11
7	Сечение 2	11
8	Сечение 3	12
9	Сечение 4	12
10	Сечение 5	13
11	Сечение 6	13
12	Сечение 7	14
13	Сечение 8	14
14	Сечение 9	15
15	Сечение 10	15
16	Сечение 11	16
17	Сечение 12	16
18	Сечение 13	17
19	Сечение 14	17
20	Сечение 15	18
21	Сечение 16	18
22	Разреженная матрица	19

2 Постановка задачи

- Считать данные из д-файла.
- Построить разбиение («паутинку») расчётной области плазмы (сепаратрисы)
- Построить геометрическую матрицу хорд
- Поставить задачу о нахождении различных областей (переопределённая СЛАУ)

Более подробное описание задачи предствлено в [3].

3 Теория

Сепаратрисы – граница плазмы, последняя замкнутая поверхность магнитного потока.

Магнитная ось - экстремум магнитного потока.

3.1 Построение разбиения сетки

Алгоритм построения взять из [3]

- Делим область на 2 сектора (по экватору)
- Делим область на 2 сектора (по экватору)
- Найдены 4 особые точки (2 на экваторе, 2 в точках с максимальным радиусом кривизны)
- \bullet Внутри каждого сектора проводим ещё N дополнительных отрезков. Итого получено 4N отрезка
- Находим у каждого из отрезков середину и соединяем их между собой
- В итоге получили разбиение пространства (сетку)

3.2 Информация о детекторе

0.015 00 00 $\overline{\odot}$ • 0.005 $\bar{\odot}$ • • \odot -0.005 ŌŌ ŌŌ $\bar{\odot}$ \odot 00 00 \odot \odot $\bar{\odot}\bar{\odot}$ $\bar{\odot}\bar{\odot}$ 00 00 00 \Box 00 \odot \odot -0.015 0.005 0.01 0.015 0.02 0.025 0.03

Рис. 1: График плоскости детектора

Информация о детекторе получена из [4] и [5].

Угол между направлением камеры-обскуры и направлением на центр (между 8 и 9 лучами):

$$ang = \arccos\left(\frac{708^2 + 720^2 - 31^2}{2 \cdot 708 \cdot 720}\right)$$

Положение края детектора (1-го столбца) (в кординатах

$$XY$$
): spd $start = (0, -0.708)$

Положение 16-го столбца (в координатах XY):

$$spd end = (0.72 \cdot \sin(anq), 0.72 \cdot (-\cos(anq))) = (0.002886 - 0.7194)$$

Вектор направления камеры-обскуры в экваториальной плоскости (в координатах XY) :

$$spd_vect = \frac{spd_{end} - spd_{start}}{\|spd_{end} - spd_{start}\|} = (0.0015, -0.3685)$$

Шаг между столбцами в плоскости детектора, 2 числа («малый» и «большой» ша-ги):

$$spd_xy_step = (2.3375 - 0.88, 3.81 - 2.3375 + 0.88) \cdot 10^{-3} = (0.0015, 0.0024)$$

Центр детектора (в координатах XY):

$$pp = spd_{start} + spd_{vect} \frac{\left(spd_{xy_{step(1)}} + spd_{xy_{step(2)}}\right) \cdot 8 + 0.52 \cdot 1e - 03}{2} = \left(0.00144, -0.7137\right)$$

Отступ Апертуры от центра детектора:

aperture
$$xy$$
 of $fset = 0.0395$

Координата апертуры (в плоскости XY):

$$aperture_xy = (pp(1) - spd_vect(2) * aperture_xy_offset,$$

 $pp(2) + spd_vect(1) * aperture_xy_offset) = (0.0290, -0.6770)$

$$spd_xz - \text{устройство детектора в меридиональной плоскости}$$

$$spd_z_start = \frac{27.52 - 0.49}{2}1e - 03 = 0.0135$$

$$spd_z_step = -1.72 \cdot 1e - 03 = -0.0017$$

$$spd_xy = spd_start + spd_vect\left(\frac{spd_xy_step(2)}{2} + 0.26 \cdot 1e - 03\right) = (0.0013, -0.7085)$$

3.3 Нахождение сечения плазмы плоскостью х = Н

Плазма представляется как фигура вращения. Роль образующей выполняет сетка разбиения сепаратрисы. Для каждого вертикального ряда пикселей детектора вычисляется прямая, проходящая через этот пиксель и апертуру детектора. После чего вычисляет H - расстояние от центра токамака до прямой.

Сечение плазмы плоскость x = H. Далее каждый элемента сетки представляется как фигура вращения, ось вращения совпадает с осью токамака, образующая — текущий элемент сетки. Для этой фигуры рассчитывается сечение плоскость x=H. В этом сечении для каждого пикселя в вертикальном ряду вычисляется прямая, проходящая через центр пикселя и апертуру детектора.

Далее для ищутся пересечения прямой и элементов сетки, и по точкам пересечений вычисляются длины хорд.

4 Реализация

Все задания были выполнены на языке программирования Matlab в среде разработки MATLABR2014b [1]

Данные из фала считаны функцией "gfile extractor 1t" [2]

Радиус кривизны вычислялся по 3 точкам (как радиус окружности, описанной вокруг треугольника)

R(i)вычисляется по трём точкам: A=p(i-1), B=p(i), C=p(i+1),где p – точки сепаратрисы

Для крайних точек сепаратрисы учитывается её замкнутость

Данные о расположении и параметрах детектора взяты пособия к лабораторной работе [5]

Результаты **5**

Рис. 2: График сепаратрисы и магнитной оси

Рис. 5: график положения лучей для 16 столбца детектора

Сечения для всех 16-ти столбцов:

Рис. 22: Разреженная матрица

6 Обсуждение

На сечениях 14, 15, 16 плоскость сечения Н меньше самой левой точки сепаратрисы, следовательно, область получается двусвязной. В случае двусвязной области считаем, что луч упирается в центральную ось токамака, и учитываем только левую (ближайшую к детектору) область.

СЛАУ представляет собой матрицу $256 \times N$, где N – это количество элементов разбиения. Каждая строка матрицы отвечает за свой луч, притом коэффициенты для каждого элемента разбиения – сумма длин хорд.

7 Список литературы

- [1] Документация по Матлаб: https://www.mathworks.com/help/
- [2] Код функции g_file_extractor_1t: https://cloud.mail.ru/public/5o3T/4G4dD71hL
- [3] Пособие к Лабораторным работам https://cloud.mail.ru/public/4ra6/5wwqBzMBC/LabPractics.pdf
- [4] Пособие к Лабораторным работам «Построение матриц СЛАУ» https://vk.com/doc38035266_528474113?hash=8c9ddc720dfadef7b6&dl=48b180ef19a7dc0f33
- [5] Выпуская квалификационная работа бакалавра «Исследование разрешимости обратных задач с помощью распознающего функционала» https://cloud.mail.ru/public/4ra6/5wwqBzMBC/2019%20Затылкин%20бакалавр.pdf

8 Приложения

Koдотчёта: https://github.com/MisterProper9000/computing-complex/blob/lab-4-linear-system/Lab_4(linear_system)/texReport/lab4.tex
Кодлаборатрной: https://github.com/MisterProper9000/computing-complex/blob/
lab-4-linear-system/Lab_4(linear_system)