

Flowing Datasets with Wasserstein over Wasserstein Gradient Flows

CREST

Clément Bonet*1, Christophe Vauthier*2, Anna Korba1

¹ENSAE, CREST, Institut Polytechnique de Paris; ²Université Paris-Saclay, Laboratoire de Mathématique d'Orsay

Contributions

Goal: move labeled dataset in a coherent way

- Labeled datasets modeled as $\mathbb{P} = \frac{1}{C} \sum_{c=1}^{C} \delta_{\mu^{c,n}} \in \mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d))$ where $\mu^{c,n} = \frac{1}{n} \sum_{i=1}^n \delta_{x_i^c}$
- Endow $\mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d))$ with OT distance WoW
- Minimize $\mathbb{F}: \mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d)) \to \mathbb{R}$ using WoW gradient flows
- Application on image datasets

Wasserstein over Wasserstein Space

WoW distance: Let $\mathbb{P}, \mathbb{Q} \in \mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$, $W_{W_2}(\mathbb{P}, \mathbb{Q})^2 = \inf_{\Gamma \in \Pi(\mathbb{P}, \mathbb{Q})} \int W_2^2(\mu, \nu) d\Gamma(\mu, \nu)$

→ Riemannian structure

WoW Gradient Descent: $\mathbb{P}_{k+1} = \exp_{\mathbb{P}_k} \left(-\tau \nabla_{W_{W_2}} \mathbb{F}(\mathbb{P}_k) \right)$

In practice: For $\mathcal{M} = \mathbb{R}^d$, $\mathbb{P}_k = \frac{1}{C} \sum_{c=1}^C \delta_{\mu_k^{c,n}}$: $\forall k \geq 0, \ x_{i,k+1}^c = x_{i,k}^c - \tau \nabla_{W_{W_2}} \mathbb{F}(\mathbb{P}_k)(\mu_k^{c,n})(x_{i,k}^c)$

Minimization of the MMD on $\mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d))$

Goal: minimize $\mathbb{F}(\mathbb{P}) = \frac{1}{2} \text{MMD}_{K}^{2}(\mathbb{P}, \mathbb{Q}) = \mathbb{V}(\mathbb{P}) + \mathbb{W}(\mathbb{P}) + \text{cst, with } \mathbb{V}(\mathbb{P}) = \int \mathcal{V}(\mu) d\mathbb{P}(\mu), \, \mathcal{V}(\mu) = -\int K(\mu, \nu) d\mathbb{Q}(\nu), \, \mathbb{W}(\mathbb{P}) = \frac{1}{2} \iint K(\mu, \nu) d\mathbb{P}(\mu) d\mathbb{P}(\nu)$

SW distance: $SW_2^2(\mu, \nu) = \int_{S^{d-1}} W_2^2(P_{\#}^{\theta}\mu, P_{\#}^{\theta}\nu) d\sigma(\theta), P^{\theta}(x) = \langle x, \theta \rangle$

Kernel: $K(\mu, \nu) = e^{-\frac{1}{2h}SW_2^2(\mu, \nu)}$ (Gaussian) or $K(\mu, \nu) = -SW_2(\mu, \nu)$ (Riesz)

Computational complexity: $O(C^2Ln\log n)$

 $\nabla_{W_{W_2}} \mathbb{F}(\mathbb{P})(\mu^{c,n})(x_i^c) = nC\nabla_{i,c}F(\mathbf{x}) \text{ for } \mathbf{x} = (x_i^c)_{i,c}$: obtained in closed-form or by auto-differentiation of $F(\mathbf{x}) := \mathbb{F}(\mathbb{P})$

Wasserstein over Wasserstein Gradients

For $(x, v) \in T\mathcal{M}$, define $\pi^{\mathcal{M}}((x, v)) = x$.

Couplings. For any $\gamma \in \mathcal{P}_2(T\mathcal{M})$, let $\phi^{\mathcal{M}}(\gamma) = \pi_{\#}^{\mathcal{M}} \gamma$, $\phi^{\exp}(\gamma) = \exp_{\#} \gamma$. $\exp_{\mathbb{P}}^{-1}(\mathbb{Q}) := \{ \tilde{\Gamma} \in \mathcal{P}_2(\mathcal{P}_2(T\mathcal{M})), \ \phi_{\#}^{\mathcal{M}} \tilde{\Gamma} = \mathbb{P}, \ \phi_{\#}^{\exp} \tilde{\Gamma} = \mathbb{Q},$ $\iint \|v\|_x^2 d\gamma(x,v) d\widetilde{\Gamma}(\gamma) = W_{W_2}^2(\mathbb{P},\mathbb{Q}).$

WoW Gradient

Let \mathbb{F} : $\mathcal{P}_2(\mathcal{P}_2(\mathcal{M})) \to \mathbb{R}$. \mathbb{F} is WoW differentiable at \mathbb{P} if there exists $\nabla_{W_{W_2}} \mathbb{F}(\mathbb{P}) : \mathcal{P}_2(\mathcal{M}) \to T\mathcal{P}_2(\mathcal{M}) \text{ s.t. for any } \mathbb{Q} \in \mathcal{P}_2(\mathcal{P}_2(\mathcal{M})), \tilde{\Gamma} \in \exp^{-1}_{\mathbb{P}}(\mathbb{Q}),$ $\mathbb{F}(\mathbb{Q}) = \mathbb{F}(\mathbb{P}) + \iint \langle \nabla_{W_{W_2}} \mathbb{F}(\mathbb{P})(\pi_{\#}^{\mathcal{M}} \gamma)(x), v \rangle_x \, d\gamma(x, v) d\tilde{\Gamma}(\gamma) + o(W_{W_2}(\mathbb{P}, \mathbb{Q})).$

Potentials: $\mathbb{V}(\mathbb{P}) = \int \mathcal{F}(\mu) d\mathbb{P}(\mu)$, $\nabla_{W_{W_2}} \mathbb{V}(\mathbb{P}) = \nabla_{W_2} \mathcal{F}(\mu)$ Interactions: $\mathbb{W}(\mathbb{P}) = \iint \mathcal{W}(\mu, \nu) d\mathbb{P}(\mu) d\mathbb{P}(\nu)$, $\nabla_{\mathbf{W}_{\mathbf{W}_{2}}} \mathbb{W}(\mathbb{P})(\mu) = \int (\nabla_{\mathbf{W}_{2},1} \mathcal{W}(\mu,\nu) + \nabla_{\mathbf{W}_{2},2} \mathcal{W}(\mu,\nu)) \, d\mathbb{P}(\nu)$

For $K_{
u}(\mu)=K(\mu,
u)=e^{-\frac{1}{2h}\mathrm{SW}_2^2(\mu,
u)}$, $\nabla_{\mathrm{W}_{\mathrm{W}_2}}\mathbb{F}(\mathbb{P})(\mu)=\int\!\nabla_{\mathrm{W}_2}\!K_{
u}(\mu)\;\mathrm{d}(\mathbb{P}-\mathbb{Q})(
u)$, $\nabla_{W_2} K_{\nu}(\mu) = -\frac{1}{h} e^{-\frac{1}{2h} SW_2^2(\mu,\nu)} \int_{S^{d-1}} \psi_{\theta}'(\langle x,\theta \rangle) \theta \, d\sigma(\theta), \, \psi_{\theta}'(u) = u - F_{P_{\mu\nu}}^{-1} \left(F_{P_{\mu\mu}}(u) \right).$

Tangent space: $T_{\mathbb{P}}\mathcal{P}_2(\mathcal{P}_2(\mathcal{M})) = \{\nabla_{W_2}\varphi, \ \varphi \in \mathrm{Cyl}(\mathcal{P}_2(\mathcal{M}))\}$

Properties: There is at most one element in $\partial \mathbb{F}(\mathbb{P}) \cap T_{\mathbb{P}}\mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$. If $\xi \in \partial \mathbb{F}(\mathbb{P}) \cap T\mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$, then ξ is a strong differential of $\hat{\mathbb{F}}$ at \mathbb{P} (*i.e.* the Taylor expansion holds for any $\widetilde{\Gamma} \in \mathcal{P}_2(\mathcal{P}_2(T\mathcal{M}))$ s.t. $\phi_\#^{\mathcal{M}}\widetilde{\Gamma} = \mathbb{P}$).

Domain Adaptation

Minimize $\mathbb{F}(\mathbb{P}) = \frac{1}{2} \text{MMD}_K(\mathbb{P}, \mathbb{Q})$ starting from \mathbb{P}_0 (FMNIST or SVHN) towards Q (MNIST or CIFAR10).

- Pretrain a classifier on \mathbb{Q}
- Monitor accuracy of the classifier along the flow

Applications

Dataset distillation. Synthesize a dataset $\mathbb{Q} = \frac{1}{n} \sum_{c=1}^{C} \delta_{\nu^{c,n}}$ (n big) with a dataset $\mathbb{P} = \frac{1}{C} \sum_{c=1}^{C} \delta_{\mu^{c,k}}$ (k small).

 $\rightarrow \min_{\mathbb{P}} \mathbb{E}_{\theta,\omega}[\mathrm{MMD}_K^2(\phi_{\#}^{\theta,\omega}\mathbb{P},\phi_{\#}^{\theta,\omega}\mathbb{Q})] \text{ with } \phi^{\theta,\omega}(\mu) = \psi_{\#}^{\theta}\mathcal{A}_{\#}^{\omega}\mu, \mathcal{A}^{\omega}$ a random augmentation, ψ^{θ} a randomly initialized neural network.

Evaluation: train a classifier on the new synthetic dataset \mathbb{P}

Transfer learning (k-shot learning). Augment a dataset $\mathbb{Q} = \frac{1}{C} \sum_{c=1}^{C} \delta_{\nu^{c,k}}$ (k small) adding flowed samples starting from $\mathbb{P}_0 = \frac{1}{C} \sum_{c=1}^{C} \delta_{\mu^{c,n}}$ a known bigger dataset.

 $\to \min_{\mathbb{P}} \mathrm{MMD}_K^2(\mathbb{P}, \mathbb{Q}) \text{ starting from } \mathbb{P} = \mathbb{P}_0$

Evaluation: train a classifier on the augmented dataset Q

Dataset distillation							Transfer learning					
Dataset	k	$\psi^{ heta}=\mathcal{A}^{\omega}=\operatorname{Id}$ DM MMDSW		Baselines Random Full data		Dataset	k 1	Train on \mathbb{Q} $26.0_{\pm 5.3}$	MMDSW 40.5 _{±4.7}	OTDD $30.5_{\pm 4.2}$	(Hua et al., 2023) $36.4_{\pm 3.3}$	
MNIST	1 10	$61.1_{\pm 6.5}$ $88.2_{\pm 2.8}$ $95.9_{\pm 0.9}$	66.5 $_{\pm 5.5}$ 93.2 $_{\pm 0.7}$ 97.0 $_{\pm 0.2}$	$55.8_{\pm 2.0}$ $92.2_{\pm 1.1}$ $97.6_{\pm 0.2}$	99.4	M to F	5 10	$38.5_{\pm 6.7}$ $53.9_{\pm 7.9}$	$61.5_{\pm 4.6}$ $65.4_{\pm 1.5}$	$59.7_{\pm 1.8}$ $64.0_{\pm 1.4}$	$62.7_{\pm 1.1} \\ 66.2_{\pm 1.0}$	
	50						100	$\frac{71.1_{\pm 1.5}}{18.4_{\pm 3.1}}$	$74.7_{\pm 0.8} $	- 18.8 _{±2.1}	$\frac{73.5_{\pm 0.7}}{19.4_{\pm 1.9}}$	
FMNIST	1 10 50	$54.4_{\pm 3.2} \\ 74.6_{\pm 1.0} \\ 81.3_{\pm 0.5}$	$\begin{array}{c} \textbf{60.0}_{\pm 4.1} \\ \textbf{76.7}_{\pm 1.0} \\ \textbf{84.2}_{\pm 0.1} \end{array}$	$49.0_{\pm 7.5}$ $75.3_{\pm 0.7}$ $83.2_{\pm 0.2}$	92.4	M to K	5 10 100	$25.9_{\pm 4.0}$ $30.9_{\pm 4.6}$ $60.1_{\pm 1.1}$	$37.4_{\pm 2.2}$ 44.7 _{± 1.8} 66.8 _{± 0.8}	$31.3_{\pm 1.4}$ $34.1_{\pm 0.9}$ $66.3_{\pm 0.9}$	$39.0_{\pm 1.0}$ $44.1_{\pm 1.2}$ $62.4_{\pm 1.2}$	