- 2. For the given functions f(x), let $x_0 = 1$, $x_1 = 1.25$, and $x_2 = 1.6$. Construct interpolation polynomials of degree at most one and at most two to approximate f(1.4), and find the absolute error.
 - **a.** $f(x) = \sin \pi x$

c. $f(x) = \log_{10}(3x - 1)$

b. $f(x) = \sqrt[3]{x-1}$

- **d.** $f(x) = e^{2x} x$
- **3.** Use Theorem 3.3 to find an error bound for the approximations in Exercise 1.
- **4.** Use Theorem 3.3 to find an error bound for the approximations in Exercise 2.
- 5. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate each of the following:
 - **a.** f(8.4) if f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 18.82091
 - **b.** $f\left(-\frac{1}{3}\right)$ if f(-0.75) = -0.07181250, f(-0.5) = -0.02475000, f(-0.25) = 0.33493750, f(0) = 1.10100000
 - c. f(0.25) if f(0.1) = 0.62049958, f(0.2) = -0.28398668, f(0.3) = 0.00660095, f(0.4) = 0.24842440
 - **d.** f(0.9) if f(0.6) = -0.17694460, f(0.7) = 0.01375227, f(0.8) = 0.22363362, f(1.0) = 0.65809197
- 6. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate each of the following:
 - **a.** f(0.43) if f(0) = 1, f(0.25) = 1.64872, f(0.5) = 2.71828, f(0.75) = 4.48169
 - **b.** f(0) if f(-0.5) = 1.93750, f(-0.25) = 1.33203, f(0.25) = 0.800781, f(0.5) = 0.687500
 - **c.** f(0.18) if f(0.1) = -0.29004986, f(0.2) = -0.56079734, f(0.3) = -0.81401972, f(0.4) = -1.0526302
 - **d.** f(0.25) if f(-1) = 0.86199480, f(-0.5) = 0.95802009, f(0) = 1.0986123, f(0.5) = 1.2943767
- 7. The data for Exercise 5 were generated using the following functions. Use the error formula to find a bound for the error, and compare the bound to the actual error for the cases n = 1 and n = 2.
 - $\mathbf{a.} \quad f(x) = x \ln x$
 - **b.** $f(x) = x^3 + 4.001x^2 + 4.002x + 1.101$
 - c. $f(x) = x \cos x 2x^2 + 3x 1$
 - **d.** $f(x) = \sin(e^x 2)$
- 8. The data for Exercise 6 were generated using the following functions. Use the error formula to find a bound for the error, and compare the bound to the actual error for the cases n = 1 and n = 2.
 - **a.** $f(x) = e^{2x}$
 - **b.** $f(x) = x^4 x^3 + x^2 x + 1$
 - **c.** $f(x) = x^2 \cos x 3x$
 - **d.** $f(x) = \ln(e^x + 2)$
- 9. Let $P_3(x)$ be the interpolating polynomial for the data (0,0), (0.5,y), (1,3), and (2,2). The coefficient of x^3 in $P_3(x)$ is 6. Find y.
- **10.** Let $f(x) = \sqrt{x x^2}$ and $P_2(x)$ be the interpolation polynomial on $x_0 = 0$, x_1 and $x_2 = 1$. Find the largest value of x_1 in (0, 1) for which $f(0.5) P_2(0.5) = -0.25$.
- 11. Use the following values and four-digit rounding arithmetic to construct a third Lagrange polynomial approximation to f(1.09). The function being approximated is $f(x) = \log_{10}(\tan x)$. Use this knowledge to find a bound for the error in the approximation.

$$f(1.00) = 0.1924$$
 $f(1.05) = 0.2414$ $f(1.10) = 0.2933$ $f(1.15) = 0.3492$

12. Use the Lagrange interpolating polynomial of degree three or less and four-digit chopping arithmetic to approximate cos 0.750 using the following values. Find an error bound for the approximation.

$$\cos 0.698 = 0.7661$$
 $\cos 0.733 = 0.7432$ $\cos 0.768 = 0.7193$ $\cos 0.803 = 0.6946$

The actual value of cos 0.750 is 0.7317 (to four decimal places). Explain the discrepancy between the actual error and the error bound.

- 13. Construct the Lagrange interpolating polynomials for the following functions, and find a bound for the absolute error on the interval $[x_0, x_n]$.
 - **a.** $f(x) = e^{2x} \cos 3x$, $x_0 = 0, x_1 = 0.3, x_2 = 0.6, n = 2$
 - **b.** $f(x) = \sin(\ln x), \quad x_0 = 2.0, x_1 = 2.4, x_2 = 2.6, n = 2$
 - **c.** $f(x) = \ln x$, $x_0 = 1$, $x_1 = 1.1$, $x_2 = 1.3$, $x_3 = 1.4$, n = 3
 - **d.** $f(x) = \cos x + \sin x$, $x_0 = 0, x_1 = 0.25, x_2 = 0.5, x_3 = 1.0, n = 3$
- **14.** Let $f(x) = e^x$, for $0 \le x \le 2$.
 - **a.** Approximate f(0.25) using linear interpolation with $x_0 = 0$ and $x_1 = 0.5$.
 - **b.** Approximate f(0.75) using linear interpolation with $x_0 = 0.5$ and $x_1 = 1$.
 - **c.** Approximate f(0.25) and f(0.75) by using the second interpolating polynomial with $x_0 = 0$, $x_1 = 1$, and $x_2 = 2$.
 - **d.** Which approximations are better and why?
- **15.** Repeat Exercise 11 using Maple with *Digits* set to 10.
- **16.** Repeat Exercise 12 using Maple with *Digits* set to 10.
- 17. Suppose you need to construct eight-decimal-place tables for the common, or base-10, logarithm function from x = 1 to x = 10 in such a way that linear interpolation is accurate to within 10^{-6} . Determine a bound for the step size for this table. What choice of step size would you make to ensure that x = 10 is included in the table?
- **18. a.** The introduction to this chapter included a table listing the population of the United States from 1950 to 2000. Use Lagrange interpolation to approximate the population in the years 1940, 1975, and 2020.
 - **b.** The population in 1940 was approximately 132,165,000. How accurate do you think your 1975 and 2020 figures are?
- **19.** It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter moth (*Operophtera bromata L., Geometridae*) larvae that extensively damage these trees in certain years. The following table lists the average weight of two samples of larvae at times in the first 28 days after birth. The first sample was reared on young oak leaves, whereas the second sample was reared on mature leaves from the same tree.
 - **a.** Use Lagrange interpolation to approximate the average weight curve for each sample.
 - **b.** Find an approximate maximum average weight for each sample by determining the maximum of the interpolating polynomial.

Day	0	6	10	13	17	20	28
Sample 1 average weight (mg)	6.67	17.33	42.67	37.33	30.10	29.31	28.74
Sample 2 average weight (mg)	6.67	16.11	18.89	15.00	10.56	9.44	8.89

20. In Exercise 26 of Section 1.1 a Maclaurin series was integrated to approximate erf(1), where erf(x) is the normal distribution error function defined by

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

- **a.** Use the Maclaurin series to construct a table for erf(x) that is accurate to within 10^{-4} for $erf(x_i)$, where $x_i = 0.2i$, for i = 0, 1, ..., 5.
- **b.** Use both linear interpolation and quadratic interpolation to obtain an approximation to $erf(\frac{1}{3})$. Which approach seems most feasible?
- 21. Prove Taylor's Theorem 1.14 by following the procedure in the proof of Theorem 3.3. [Hint: Let

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \cdot \frac{(t - x_0)^{n+1}}{(x - x_0)^{n+1}},$$

where *P* is the *n*th Taylor polynomial, and use the Generalized Rolle's Theorem 1.10.]