Binary Trees Problems

Binary Trees Problems

The definition of the trees is given by:

data $Tree \ a = Node \ a \ (Tree \ a) \ | \ Empty \ deriving \ (Show)$

That is, a tree with elements of type a is, either an empty tree, either a node with an element (of type a) and two other trees of the same type. The *deriving (Show)* statement simply enables an visualization of trees.

Problem 5

Write a function $preOrder :: Tree \ a \rightarrow [a]$ that, given a tree, return its pre-order traversal.

<pre>let t7 = Node 7 Empty Empty let t6 = Node 6 Empty Empty let t5 = Node 5 Empty Empty let t4 = Node 4 Empty Empty let t3 = Node 3 t6 t7</pre> <pre>[1,2,4,5,3,6,7]</pre>	Input		Outpu
let t4 = Node 4 Empty Empty		preOrder t1	[1,2,4,5,3,6,7]
	let t5 = Node 5 Empty Empty		
let t3 = Node 3 t6 t7	let t4 = Node 4 Empty Empty		
	let t3 = Node 3 t6 t7		
	let t1 = Node 1 t2 t3		
let t1 = Node 1 t2 t3	let t1' = Node 1 t3 t2		

Problem 5

Preorder traversal: 1 2 4 5 3 6 7

Instructor Youtube Channel: Lucas Science

