ECE 606, Fall 2019, Assignment 9

Zhijie Wang, Student ID number: 20856733

zhijie.wang@uwaterloo.ca

November 12, 2019

1. Proof. Suppose each state remember the past 4 bits in order to make decision on where the fourth from last bit is '0'. If there is a DFA which has states fewer than 16, then, there must be some state, said state q, where both $a_1a_2a_3a_4$ and $b_1b_2b_3b_4$ lead to this state. $(a_i, b_i \in \{0, 1\})$

Since $a_1a_2a_3a_4 \neq b_1b_2b_3b_4$, then they must differ in at least one bit, say $a_i \neq b_i$, here we assume $a_i =$ $1, b_i = 0.$

If i=1, then, since $1a_2a_3a_4$ has the fourth from last bit equals to 0, then state q must be acceptable, which makes contradiction because $0b_2b_3b_4$ is unacceptable.

If i=2, then, we have $a_11a_3a_4$ and $b_10b_2b_3b_4$ at state q. Suppose we have input 0 to pass state q to state p, then, $1a_3a_40$ is acceptable, which makes contradiction again because $0b_3b_40$ is unacceptable.

If i = 3, 4, suppose we input 00 and 000, then, it will make the same contradiction as before.

Therefore, no DFA of fewer than 16 states exists for the following language: bit-strings of length at least 4, whose fourth from last bit is '0'.

2. Suppose we have a solution consists of an $n^2 \times n^2$ matrix, therefore, for each row, column and square, it takes $\Theta(n^2)$ times to check if every element is distinct. We have n^2 rows, n^2 columns and n^2 squares, and also k slots which have been filled before, so, it takes $3n^2\Theta(n^2) + \Theta(1) = \Theta(n^4)$ times. If n is binary-encoding, suppose $n=2^s$, then it takes $\Theta(2^{4s})$ times to check a solution.

Therefore, this problem is $\notin \mathbf{NP}$, but $\in \mathbf{NEXP}$.

```
3. Suppose G = \langle V', E' \rangle, H = \langle V, E \rangle.
1: S \leftarrow \{\}
2: for each i from 1 to |V'| do
      Non-deterministically pick a vertex v_i in V \setminus S
      f(v_i') = v_i
4:
      S \cup \{v_i\}
6: for each i from 1 to |E'| do
7:
      e'_{i} = (a', b')
      if e_i(f(a'), f(b')) is not exist then
8:
```

return False

10: **return** True

Here we have a brief discussion. For the first for-loop, we build a 1-1 f from vertexes in G to some vertexes in H, which is done with non-deterministically pick vertexes from H. Therefore, we check for each edge e'=(a',b') in G, whether H also has a edge e=(f(a'),f(b')). If all the edges exist, then there is a subgraph of H which is isomorphic to G.

The first for-loop runs $\Theta(|V'|)$ times, and computing $V \setminus S$ takes $\Theta(|V|)$ times. The second for-loop runs $\Theta(|E'|)$ times for the worst case. Therefore, the algorithm runs $\Theta(|V'||V|+|E'|)$ for the worst case.

4. a9p4.py