Tomographic reconstruction Lectures 2 and 3: Iterative reconstruction methods

Camille Pouchol¹ pouchol@kth.se

Department of Mathematics KTH, Stockholm

HL2027: 3D Image Reconstruction and Analysis in Medicine January/Februrary 2019

¹based on a previous lecture by Sebastian Banert, Ozan Öktem

Review from last lecture

The fully discretised reconstruction problem

Image reconstruction

Recover the digital image $lpha_{\mathsf{true}} \in \mathbb{R}^n$ from measured data $g \in \mathbb{R}^m$ assuming

$$g = \mathbf{A} \cdot \alpha_{\mathsf{true}} + g_{\mathsf{noise}}.$$
 (1)

Here, **A** is the $(m \times n)$ -measurement matrix and $g_{\text{noise}} \in \mathbb{R}^m$ is the noise component of data, $\alpha_{\text{true}} = \langle f, \phi_j \rangle_X$.

Measurement matrix:

$$\mathbf{A} := egin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \ a_{2,1} & a_{2,2} & \dots & a_{2,n} \ dots & dots & \ddots & dots \ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix}.$$

Transmission tomography and using the voxel basis:

$$a_{i,i} = \text{length of } i:\text{th line through } i:\text{th voxel.}$$

One can show that $lpha^\dagger \in \mathbb{R}^n$ solves

$$\min_{\alpha} \|\mathbf{A} \cdot \alpha - g\|_2^2 \tag{2}$$

if it solves the normal equations: $\mathbf{A}^{\mathsf{t}} \cdot (\mathbf{A} \cdot \boldsymbol{\alpha}^{\dagger} - g) = \mathbf{0}$.

- If A is the matrix representing the discretised ray transform, then A^t (the transpose of A) is the matrix representing the discretised backprojection.
- \bullet $A^t \cdot A$ is not necessarily sparse even though A is.
- If there are infinitely many solutions to (2), then it is common to choose the one with least 2-norm.
- If columns of A are linearly independent, then A^t · A is invertible and (2) has a unique solution.
- A solution to (2), there may be infinitely many, is often undesirable (overfitting).

Reconstruction methods Kaczmarz method

Problem: A is huge and cannot be stored.

Stefan Kaczmarz (1895–1939), Polish mathematician active at University of Lviv (now in Ukraine).

Kaczmarz method: Solving linear systems of equations without needing to store the matrix.

- Introduced by Stefan Kaczmarz in 1937.
- Rediscovered in 1970 by Richard Gordon, Robert Bender, and Gabor Herman, then under the name algebraic reconstruction technique (ART).

Kaczmarz method: The case n = m = 2

 $lpha_1:=$ projection of $lpha_0$ into hyperplane $a_1\cdot lpha=g_1.$

Kaczmarz method: The case n = m = 2

 $\alpha_2 :=$ projection of α_1 into hyperplane $a_2 \cdot \alpha = g_2$.

Kaczmarz method: The case n = m = 2

 $\alpha_3 :=$ projection of α_2 into hyperplane $a_1 \cdot \alpha = g_1$.

Kaczmarz method: The case n = m = 2

 $\alpha_4:=$ projection of α_3 into hyperplane $a_2\cdot \alpha=g_2.$

Kaczmarz method: The case n = m = 2

 $\alpha_5:=$ projection of α_4 into hyperplane $a_1\cdot \alpha=g_1.$

Kaczmarz method: The case n = m = 2

 $\alpha_6:=$ projection of α_5 into hyperplane $a_2\cdot \alpha=g_2.$

Kaczmarz method: The case n = m = 2

 $\alpha_7:=$ projection of α_6 into hyperplane $a_1\cdot \alpha=g_1.$

Kaczmarz method: The case n = m = 2

Iterative scheme: If $\pi_i(\alpha)$ denotes the projection of α into the i:th hyperplane $a_i \cdot \alpha = g_i$ (i = 1, ..., m), then

$$\alpha_{k+1} := \pi_i(\alpha_k)$$
 where k sweeps through $1, \ldots, m$.

Kaczmarz method: The case n = m = 2

Iterative scheme:

$$\alpha_{k+1} := \alpha_k + \frac{g_i - a_i \cdot \alpha_k}{\|a_i\|_2^2} a_i$$
, where k sweeps through $1, \ldots, m$.

Orthogonal projection of a vector into a hyperplane.

• The vector a_i is orthogonal to the hyperplane $a_i \cdot \alpha = g_i$.

The equation $a_i \cdot \alpha = g_i$ is the scalar equation of a hyperplane with a_i as the normal, so a_i is orthogonal to all vectors in the hyperplane $a_i \cdot \alpha = g_i$.

• The orthogonal projection $\pi(x)$ of a vector $x \in \mathbb{R}^n$ onto $a_i \cdot \alpha = g_i$ is found by subtracting a multiple of a_i from x:

$$\pi(x) = x - \gamma a_i$$
 for some $\gamma \in \mathbb{R}$.

ullet γ must satisfy

$$g_i = \pi(x) \cdot a_i = (x - \gamma a_i) \cdot a_i = x \cdot a_i - \gamma a_i \cdot a_i$$

ullet Solving this equation for γ gives

$$\gamma = \frac{a_i \cdot \alpha - g_i}{a_i \cdot a_i} \implies \pi(x) = x + \frac{g_i - a_i \cdot \alpha}{\|a_i\|_2^2} a_i$$

Reconstruction methods Kaczmarz method: properties

- Convergence: let α_k denotes the iterates generated by the Kaczmarz method for solving $\mathbf{A} \cdot \alpha = g$.
 - If the linear system has a unique solution, then Kaczmarz iterates converge towards this solution.
 - For overdetermined systems, Kaczmarz method with initial vector $\alpha_0=0$ converges to the least-squares solution.
 - For underdetermined systems, α_k converges to the least-squares solution closest to the initial vector α_0 (Tanabe, 1971).
- Convergence rate: faster convergence when the angle between the hyperplanes is large. Extreme case is when hyperplanes are orthogonal, convergence in m+1 steps.
- Speed-up: often not worth doing Gram-Schmidt orthogonalization. Instead, most efficient approach is to project on random hyperplanes.
- Need a balance between accurately computing **A** and the inconsistencies that result from crude approximations.

Examples of reconstructions

- Simulated parallel beam data of 2D phantom (true image).
- ullet Relative error (in %) $:= 100 \cdot rac{\|oldsymbol{lpha} oldsymbol{lpha}_{\mathsf{true}}\|_2}{\|oldsymbol{lpha}_{\mathsf{true}}\|_2}$

Simulation protocol

- Phantom: 256×256 pixel 2D Shepp-Logan $n = 256 \cdot 256 = 65536$
- Data: Full angular range $[0^{\circ}, 180^{\circ}]$ with 1° step (180 directions) and 400 detector elements. $m = 180 \cdot 400 = 72\,000$.
- Noise component in data: Additive Gaussian noise with relative noise level 5%.

Overdetermined problem since m > n.

Reconstruction methods Kaczmarz method: impact of number of iterations

of iterations = 1 Relative error = 40.8%

Kaczmarz method: impact of number of iterations

of iterations = 2 Relative error = 31.7%

Kaczmarz method: impact of number of iterations

of iterations = 3 Relative error = 29.7%

Kaczmarz method: impact of number of iterations

of iterations = 4 Relative error = 30.3%

Kaczmarz method: impact of number of iterations

of iterations = 5 Relative error = 31.7%

Kaczmarz method: impact of number of iterations

of iterations = 6 Relative error = 33.2%

Kaczmarz method: impact of number of iterations

of iterations = 7 Relative error = 34.6%

Kaczmarz method: impact of number of iterations

of iterations = 8 Relative error = 35.8%

Kaczmarz method: impact of number of iterations

of iterations = 9 Relative error = 36.9%

Kaczmarz method: impact of number of iterations

of iterations = 10 Relative error = 37.9%

Kaczmarz method: impact of number of iterations

of iterations = 20 Relative error = 44.8%

Kaczmarz method: impact of number of iterations

of iterations = 30 Relative error = 49.5%

Kaczmarz method: impact of number of iterations

of iterations = 40 Relative error = 53.4%

Kaczmarz method: impact of number of iterations

of iterations = 50 Relative error = 57.1%

Kaczmarz method: impact of number of iterations

of iterations = 60 Relative error = 60.4%

Kaczmarz method: impact of number of iterations

of iterations = 70 Relative error = 63.6%

Kaczmarz method: impact of number of iterations

of iterations = 80 Relative error = 66.7%

Kaczmarz method: impact of number of iterations

of iterations = 90 Relative error = 69.7%

Kaczmarz method: impact of number of iterations

of iterations = 100 Relative error = 72.5%

Kaczmarz method: impact of enforcing non-negativity

of iterations = 50 Non-negativity not enforced Relative error = 57.1%

Kaczmarz method: impact of enforcing non-negativity

of iterations = 50 Non-negativity enforced Relative error = 33.9%

Simulation protocol

- Phantom: 256×256 pixel 2D Shepp-Logan $n = 256 \cdot 256 = 65536$
- Data: Full angular range $[0^{\circ}, 180^{\circ}]$ with 5° step (36 directions) and 256 detector elements. $m = 36 \cdot 256 = 9216$.
- Noise component in data: Additive Gaussian noise with relative noise level 5%.

Underdetermined problem since m < n.

Kaczmarz method: impact of enforcing non-negativity

of iterations = 50 Non-negativity not enforced Relative error = 56.7%

Kaczmarz method: impact of enforcing non-negativity

of iterations = 50 Non-negativity enforced Relative error = 35.0%

Kaczmarz method: regularised variants

- Constraints: Enforce bound constraints, such as positivity, by projection techniques.
- Semi-convergence: Reconstruction improves during the first few iterates, then it begins to deteriorate (semi-convergence).
 In medical imaging only a few iterations are used.

or ART: Empirical observation, no theoretical backing:

 T. Elfving, P. C. Hansen, and T. Nikazad. Semi-convergence properties of Kaczmarz's method, Inverse Problems, vol. 30, no. 5 (055007), 2014.

Stopping rule: Rule for choosing the number of iterations.

Regularisation by relaxation: Modification of iterates

$$\alpha_{k+1} := \alpha_k + \lambda_k \frac{g_i - a_i \cdot \alpha_k}{\|a_i\|_2^2} a_i$$
 where $i = k \mod m + 1$.

 $0 < \lambda_k < 2$ is a relaxation parameter

Kaczmarz method: regularised variants

- Constraints: Enforce bound constraints, such as positivity, by projection techniques.
- Semi-convergence: Reconstruction improves during the first few iterates, then it begins to deteriorate (semi-convergence).
 In medical imaging only a few iterations are used.

For ART: Empirical observation, no theoretical backing:

 T. Elfving, P. C. Hansen, and T. Nikazad. Semi-convergence properties of Kaczmarz's method, Inverse Problems, vol. 30, no. 5 (055007), 2014.

Stopping rule: Rule for choosing the number of iterations.

Regularisation by relaxation: Modification of iterates

$$\alpha_{k+1} := \alpha_k + \lambda_k \frac{g_i - a_i \cdot \alpha_k}{\|a_i\|_2^2} a_i$$
 where $i = k \mod m + 1$.

 $0 < \lambda_k < 2$ is a relaxation parameter

Kaczmarz method: regularised variants

- Constraints: Enforce bound constraints, such as positivity, by projection techniques.
- Semi-convergence: Reconstruction improves during the first few iterates, then it begins to deteriorate (semi-convergence).
 In medical imaging only a few iterations are used.

For ART: Empirical observation, no theoretical backing:

 T. Elfving, P. C. Hansen, and T. Nikazad. Semi-convergence properties of Kaczmarz's method, Inverse Problems, vol. 30, no. 5 (055007), 2014.

Stopping rule: Rule for choosing the number of iterations.

Regularisation by relaxation: Modification of iterates

$$\alpha_{k+1} := \alpha_k + \lambda_k \frac{g_i - a_i \cdot \alpha_k}{\|a_i\|_2^2} a_i$$
 where $i = k \mod m + 1$.

 $0 < \lambda_k < 2$ is a relaxation parameter.

Kaczmarz method: regularised variants

- Constraints: Enforce bound constraints, such as positivity, by projection techniques.
- Semi-convergence: Reconstruction improves during the first few iterates, then it begins to deteriorate (semi-convergence).
 In medical imaging only a few iterations are used.

For ART: Empirical observation, no theoretical backing:

 T. Elfving, P. C. Hansen, and T. Nikazad. Semi-convergence properties of Kaczmarz's method, Inverse Problems, vol. 30, no. 5 (055007), 2014.

Stopping rule: Rule for choosing the number of iterations.

Regularisation by relaxation: Modification of iterates

$$\alpha_{k+1} := \alpha_k + \lambda_k \frac{g_i - a_i \cdot \alpha_k}{\|a_i\|_2^2} a_i$$
 where $i = k \mod m + 1$.

 $0 < \lambda_k < 2$ is a relaxation parameter.

Row-action methods

- Algebraic reconstruction technique (ART)
 - Based on vector multiplications: A single iterative update makes use of a single row of A.
 - Good semi-convergence observed (no theory explaining this).

Algorithms: Kaczmarz's method and variants of it.

- Simultaneous iterative reconstruction technique (SIRT)
 - Based on matrix multiplications: A single iterative update uses all the rows of A simultaneously.
 - Slower semi-convergence, but otherwise good understanding of convergence theory.

Algorithms: Landweber, Cimmino, CAV, DROP, and SART

 Krylov subspace methods: Class of iterative methods based on matrix multiplications where iterates are given as

$$\alpha_k = \alpha_{k-1} + \mathbf{K}^{-1} \cdot (g - \mathbf{A} \cdot \alpha_{k-1}).$$

K is here a simple invertible matrix that is "close" to **A**. Algorithms: CGLS_LSOR_GMRES

Row-action methods

- Algebraic reconstruction technique (ART)
 - Based on vector multiplications: A single iterative update makes use of a single row of A.
 - Good semi-convergence observed (no theory explaining this).

Algorithms: Kaczmarz's method and variants of it.

- Simultaneous iterative reconstruction technique (SIRT)
 - Based on matrix multiplications: A single iterative update uses all the rows of A simultaneously.
 - Slower semi-convergence, but otherwise good understanding of convergence theory.

Algorithms: Landweber, Cimmino, CAV, DROP, and SART.

 Krylov subspace methods: Class of iterative methods based on matrix multiplications where iterates are given as

$$\alpha_k = \alpha_{k-1} + \mathbf{K}^{-1} \cdot (g - \mathbf{A} \cdot \alpha_{k-1}).$$

K is here a simple invertible matrix that is "close" to **A**. Algorithms: CGLS, LSQR, GMRES, . . .

Row-action methods

- Algebraic reconstruction technique (ART)
 - Based on vector multiplications: A single iterative update makes use of a single row of A.
 - Good semi-convergence observed (no theory explaining this).

Algorithms: Kaczmarz's method and variants of it.

- Simultaneous iterative reconstruction technique (SIRT)
 - Based on matrix multiplications: A single iterative update uses all the rows of A simultaneously.
 - Slower semi-convergence, but otherwise good understanding of convergence theory.

Algorithms: Landweber, Cimmino, CAV, DROP, and SART.

• Krylov subspace methods: Class of iterative methods based on matrix multiplications where iterates are given as

$$\alpha_k = \alpha_{k-1} + \mathbf{K}^{-1} \cdot (g - \mathbf{A} \cdot \alpha_{k-1}).$$

K is here a simple invertible matrix that is "close" to **A**. Algorithms: CGLS, LSQR, GMRES, . . .

Typical step: Update of iterate involves a single row of **A**:

$$oldsymbol{lpha}_{k+1} := oldsymbol{lpha}_k + \lambda_k rac{g_{i_k} - a_{i_k} \cdot oldsymbol{lpha}_k}{\|a_{i_k}\|_2^2} a_{i_k} \quad ext{where } k = 1, 2 \dots$$

and $i_k \in \{1, ..., m\}$ is given by the row ordering.

- Relaxation parameter: $0 < \lambda_k < 2$, setting $\lambda_k = 1$ implies projecting α_k onto hyperplane $g_i = a_i \cdot \alpha$ (original un-regularised Kaczmarz's method).
- Row ordering: How $i_k \in \{1, \dots, m\}$ depends on k, *i.e.*, how the iterates sweep through the m rows a_1, \dots, a_m :
 - Classical Kaczmarz: $i_k = 1, 2, \dots, m, 1, 2, \dots, m, \dots$
 - Symmetric Kaczmarz: $i_k = 1, 2, ..., m-1, m, m-1, ..., 2, 1, ...$
 - Randomized Kaczmarz: At each k, let i_k be the i:th row a_i
 - randomly with probability proportional to the row norm $||a_i||_2$.

- Semi-convergence: Not formally proved, only empirically observed
 - Fast initial convergence
 method of choice when only a few iterations can be afforded.
 - After some initial iterations the convergence can be very slow.
- Convergence rate:
 - Estimates of convergence rates are based on quantities of A
 that are hard to compute and difficult to compare with
 convergence estimates of other iterative methods.
 - Need to exploit the analytic structure associated with the forward operator.
 - Rate of convergence depends on the ordering of the equations.

• Choosing relaxation parameter

For $\lambda_k=1$ the high-frequency components (such as noise) show up early in the iteration, while overall features are determined later.

For $\lambda_k \ll 1$, say 0.1, the iterations first determine the smooth parts of the image and small details in later iterates \Longrightarrow suprprisingly small values of λ_k (e.g., $\lambda_k = 0.05$) are quite common in ART.

Stopping rules

- The discrepancy principle
- The L-curve
- Generalised cross-validation (GCV)
- Normalised cumulative periodogram (NCP)
- ...

Problem size & noise n = 16384 m=5400 noise level= 10%

Non negativity: No Lambda = 1 Figure of merits Rel. error = 145% MSE = 0.126 PSNR = 9

$$\lambda_k = 1.0$$

Problem size & noise n = 16384 m=5400 noise level= 10%

Non negativity: No Lambda = 0.9 Figure of merits Rel. error = 129% MSE = 0.0996 PSNR = 10

$$\lambda_k = 0.9$$

Problem size & noise n = 16384 m=5400 noise level=10%

Non negativity: No Lambda = 0.8 Figure of merits Rel. error = 115% MSE = 0.08 PSNR = 11

$$\lambda_{k} = 0.8$$

Problem size & noise n = 16384 m=5400 noise level=10%

Non negativity: No Lambda = 0.7 Figure of merits Rel. error = 104% MSE = 0.0648 PSNR = 11.9

$$\lambda_k = 0.7$$

Problem size & noise n = 16384 m=5400 noise level= 10%

Non negativity: No Lambda = 0.6 Figure of merits Rel. error = 93.8% MSE = 0.0528 PSNR = 12.8

$$\lambda_k = 0.6$$

Problem size & noise n = 16384 m=5400 noise level=10%

Iterates: 5

Non negativity: No Lambda = 0.5 Figure of merits Rel. error = 84.5% MSE = 0.0428 PSNR = 13.7

$$\lambda_k = 0.5$$

Problem size & noise n = 16384 m=5400 noise level= 10%

Non negativity: No Lambda = 0.4 Figure of merits Rel. error = 75.8% MSE = 0.0345 PSNR = 14.6

$$\lambda_k = 0.4$$

Problem size & noise n = 16384m=5400 noise level= 10%

Lambda = 0.3 Figure of merits Rel. error = 68% MSE = 0.0277 PSNR = 15.6

$$\lambda_{k} = 0.3$$

Problem size & noise n = 16384 m=5400 noise level=10%

Iterates: 5

Non negativity: No Lambda = 0.2 Figure of merits Rel. error = 61.9% MSE = 0.023 PSNR = 16.4

$$\lambda_{k} = 0.2$$

Problem size & noise n = 16384 m=5400 noise level=10%

Iterates: 5

Non negativity: No Lambda = 0.1 Figure of merits Rel. error = 60.4% MSE = 0.0219 PSNR = 16.6

$$\lambda_k = 0.1$$

Problem size & noise n = 16384 m=5400 noise level=10%

Iterates: 5

Non negativity: No Lambda = 0.05 Figure of merits Rel. error = 64.4% MSE = 0.0249 PSNR = 16

$$\lambda_{k} = 0.05$$

Problem size & noise n = 16384 m=5400 noise level=10%

Iterates: 5 Non negativity: No Lambda = 0.025

Figure of merits Rel. error = 70% MSE = 0.0294 PSNR = 15.3

$$\lambda_k = 0.025$$

Problem size & noise n = 16384 m=5400 noise level=10%

Iterates: 5

Non negativity: No Lambda = 0.01 Figure of merits Rel. error = 77.7% MSE = 0.0363 PSNR = 14.4

$$\lambda_{k} = 0.01$$

Iterative reconstruction methods Influence of row ordering

Problem size & noise n = 16384 m=5400 noise level=1096 Iterates: 5 Non negativity: No Lambda = 0.2

Figure of merits Rel. error = 61.9% MSE = 0.023 PSNR = 16.4

Classical

Iterative reconstruction methods Influence of row ordering

Problem size & noise n = 16384 m=5400 noise level=10%

Iterates: 5 Non negativity: No Lambda = 0.2 Figure of merits Rel. error = 64.3% MSE = 0.0248 PSNR = 16.1

Symmetric

Iterative reconstruction methods Influence of row ordering

Problem size & noise n = 16384 m=5400 noise level=10%

Iterates: 5 Non negativity: No Lambda = 0.2 Figure of merits Rel. error = 51.5% MSE = 0.0159

PSNR = 18

Random

Least-squares problem for the reconstruction problem:

$$\min_{oldsymbol{lpha} \in \mathbb{R}^n} Q(oldsymbol{lpha}) \quad ext{where} \quad Q(oldsymbol{lpha}) := rac{1}{2} \| \mathbf{A} \cdot oldsymbol{lpha} - g \|_2^2.$$

Gradient-descent method: Solve (3) by the iterative scheme

$$\alpha_{k+1} := \alpha_k - \lambda_{k+1} \nabla Q(\alpha_k)$$
 for $k = 0, 1, 2, \dots$

• The gradient of the quadratic form $Q: \mathbb{R}^n \to \mathbb{R}_+$ is

$$\nabla Q(\alpha) = \mathbf{A}^{\mathsf{t}} \cdot (\mathbf{A} \cdot \alpha - g).$$

- Value of step size λ_k may change at every iteration.
- Convergence to a local minima of (3) can be guaranteed for certain methods for choosing λ_k .
- Serves as a basis for simultaneous iterative reconstruction technique (SIRT) methods.

Least-squares problem for the reconstruction problem:

$$\min_{oldsymbol{lpha} \in \mathbb{R}^n} Q(oldsymbol{lpha}) \quad ext{where} \quad Q(oldsymbol{lpha}) := rac{1}{2} \| \mathbf{A} \cdot oldsymbol{lpha} - g \|_2^2.$$

Gradient-descent method: Solve (3) by the iterative scheme

$$\alpha_{k+1} := \alpha_k - \lambda_{k+1} \nabla Q(\alpha_k)$$
 for $k = 0, 1, 2, \dots$

• The gradient of the quadratic form $Q: \mathbb{R}^n \to \mathbb{R}_+$ is

$$abla Q(lpha) = \mathbf{A}^{\mathrm{t}} \cdot (\mathbf{A} \cdot lpha - g).$$

- Value of step size λ_k may change at every iteration.
- Convergence to a local minima of (3) can be guaranteed for certain methods for choosing λ_k .
- Serves as a basis for simultaneous iterative reconstruction technique (SIRT) methods.

General form of iterates:

$$\alpha_{k+1} := \alpha_k - \lambda_k \mathbf{T} \cdot \mathbf{A}^t \cdot \mathbf{M} \cdot (\mathbf{A} \cdot \alpha_k - g)$$
 for $k = 0, 1, 2, ...$

Iterates are stopped early and $\lambda_k > 0$ is a relaxation parameter.

Methods vary depending on choices of the diagonal $(n \times n)$ -matrix \mathbf{T} and the diagonal $(m \times m)$ -matrix \mathbf{M} .

- Classical Landweber: $T = I_n$ and $M = I_m$.
- Cimmino: $T = I_n$ and M = D.
- CAV: $\mathbf{T} = \mathbf{I}_n$ and $\mathbf{M} = \mathbf{D}_S$.
- DROP: $\mathbf{T} = \operatorname{diag}(1/s_j)$ and $\mathbf{M} = m\mathbf{D}$.
- SART: $\mathbf{T} = \operatorname{diag}\left(1/\sum_{i=1}^{m} a_{i,j}\right)$ and $\mathbf{M} = \operatorname{diag}\left(1/\sum_{j=1}^{n} a_{i,j}\right)$.

General form of iterates:

$$\alpha_{k+1} := \alpha_k - \lambda_k \mathbf{T} \cdot \mathbf{A}^t \cdot \mathbf{M} \cdot (\mathbf{A} \cdot \alpha_k - g)$$
 for $k = 0, 1, 2, ...$

Iterates are stopped early and $\lambda_k > 0$ is a relaxation parameter.

Methods vary depending on choices of the diagonal $(n \times n)$ -matrix \mathbf{T} and the diagonal $(m \times m)$ -matrix \mathbf{M} .

- Classical Landweber: $T = I_n$ and $M = I_m$.
- Cimmino: $T = I_n$ and M = D.
- CAV: $\mathbf{T} = \mathbf{I}_n$ and $\mathbf{M} = \mathbf{D}_S$.
- DROP: $\mathbf{T} = \operatorname{diag}(1/s_j)$ and $\mathbf{M} = m\mathbf{D}$.

• SART:
$$\mathbf{T} = \operatorname{diag}\left(1/\sum_{i=1}^{m} a_{i,j}\right)$$
 and $\mathbf{M} = \operatorname{diag}\left(1/\sum_{i=1}^{n} a_{i,j}\right)$.

Here

$$\mathbf{D} = \frac{1}{m} \operatorname{diag} \left(\frac{1}{\|a_i\|_2^2} \right)$$

General form of iterates:

$$\alpha_{k+1} := \alpha_k - \lambda_k \mathbf{T} \cdot \mathbf{A}^t \cdot \mathbf{M} \cdot (\mathbf{A} \cdot \alpha_k - g)$$
 for $k = 0, 1, 2, ...$

Iterates are stopped early and $\lambda_k > 0$ is a relaxation parameter.

Methods vary depending on choices of the diagonal $(n \times n)$ -matrix **T** and the diagonal $(m \times m)$ -matrix **M**.

- Classical Landweber: $T = I_n$ and $M = I_m$.
- Cimmino: $T = I_n$ and M = D.
- CAV: $\mathbf{T} = \mathbf{I}_n$ and $\mathbf{M} = \mathbf{D}_S$.
- DROP: $\mathbf{T} = \operatorname{diag}(1/s_j)$ and $\mathbf{M} = m\mathbf{D}$.

• SART:
$$\mathbf{T} = \operatorname{diag}\left(1/\sum_{i=1}^{m} a_{i,j}\right)$$
 and $\mathbf{M} = \operatorname{diag}\left(1/\sum_{i=1}^{n} a_{i,j}\right)$.

Here

$$\mathbf{D} = \frac{1}{m}\operatorname{diag}\Bigl(\frac{1}{\|a_i\|_2^2}\Bigr) \quad \text{and} \quad \mathbf{D}_S := \operatorname{diag}\Bigl(\frac{1}{\sum_{j=1}^n s_j a_{i,j}^2}\Bigr)$$

 s_i = number of non-zero elements in j:th column **A**

Iterative reconstruction methods SIRT

General form of iterates:

$$\alpha_{k+1} := \alpha_k - \lambda_k \mathbf{T} \cdot \mathbf{A}^t \cdot \mathbf{M} \cdot (\mathbf{A} \cdot \alpha_k - g)$$
 for $k = 0, 1, 2, ...$

Iterates are stopped early and $\lambda_k > 0$ is a relaxation parameter.

Methods vary depending on choices of the diagonal $(n \times n)$ -matrix \mathbf{T} and the diagonal $(m \times m)$ -matrix \mathbf{M} .

- Classical Landweber: $T = I_n$ and $M = I_m$.
- Cimmino: $T = I_n$ and M = D.
- CAV: $\mathbf{T} = \mathbf{I}_n$ and $\mathbf{M} = \mathbf{D}_S$.
- DROP: $\mathbf{T} = \operatorname{diag}(1/s_i)$ and $\mathbf{M} = m\mathbf{D}$.

• SART:
$$\mathbf{T} = \operatorname{diag}\left(1/\sum_{i=1}^{m} a_{i,j}\right)$$
 and $\mathbf{M} = \operatorname{diag}\left(1/\sum_{i=1}^{n} a_{i,j}\right)$.

Here

$$\mathbf{D} = \frac{1}{m} \operatorname{diag} \left(\frac{1}{\|a_i\|_2^2} \right)$$

 s_i = number of non-zero elements in j:th column **A**

Iterative reconstruction methods SIRT

General form of iterates:

$$\alpha_{k+1} := \alpha_k - \lambda_k \mathbf{T} \cdot \mathbf{A}^t \cdot \mathbf{M} \cdot (\mathbf{A} \cdot \alpha_k - g)$$
 for $k = 0, 1, 2, ...$

Iterates are stopped early and $\lambda_k > 0$ is a relaxation parameter.

Methods vary depending on choices of the diagonal $(n \times n)$ -matrix \mathbf{T} and the diagonal $(m \times m)$ -matrix \mathbf{M} .

- Classical Landweber: $T = I_n$ and $M = I_m$.
- Cimmino: $T = I_n$ and M = D.
- CAV: $\mathbf{T} = \mathbf{I}_n$ and $\mathbf{M} = \mathbf{D}_S$.
- DROP: $\mathbf{T} = \operatorname{diag}(1/s_j)$ and $\mathbf{M} = m\mathbf{D}$.
- SART: $\mathbf{T} = \operatorname{diag}\left(1/\sum_{i=1}^{m} a_{i,j}\right)$ and $\mathbf{M} = \operatorname{diag}\left(1/\sum_{i=1}^{n} a_{i,j}\right)$.

Iterative reconstruction methods SIRT

General form of iterates:

$$\alpha_{k+1} := \alpha_k - \lambda_k \mathbf{T} \cdot \mathbf{A}^t \cdot \mathbf{M} \cdot (\mathbf{A} \cdot \alpha_k - g)$$
 for $k = 0, 1, 2, ...$

Iterates are stopped early and $\lambda_k > 0$ is a relaxation parameter.

Methods vary depending on choices of the diagonal $(n \times n)$ -matrix \mathbf{T} and the diagonal $(m \times m)$ -matrix \mathbf{M} .

- Classical Landweber: $T = I_n$ and $M = I_m$.
- Cimmino: $T = I_n$ and M = D.
- CAV: $T = I_n$ and $M = D_S$.
- DROP: $\mathbf{T} = \operatorname{diag}(1/s_j)$ and $\mathbf{M} = m\mathbf{D}$.
- SART: $\mathbf{T} = \operatorname{diag}\left(1/\sum_{i=1}^{m} a_{i,j}\right)$ and $\mathbf{M} = \operatorname{diag}\left(1/\sum_{j=1}^{n} a_{i,j}\right)$.

Note: T and M are diagonal matrices \Rightarrow can be stored.

Iterative reconstruction methods

General form of iterates:

$$\boldsymbol{\alpha}_{k+1} := \boldsymbol{\alpha}_k - \lambda_k \mathbf{T} \cdot \mathbf{A}^{\mathrm{t}} \cdot \mathbf{M} \cdot (\mathbf{A} \cdot \boldsymbol{\alpha}_k - g)$$
 for $k = 0, 1, 2, ...$

Iterates are stopped early and $\lambda_k > 0$ is a relaxation parameter.

Methods vary depending on choices of the diagonal $(n \times n)$ -matrix \mathbf{T} and the diagonal $(m \times m)$ -matrix \mathbf{M} .

- Classical Landweber: $T = I_n$ and $M = I_m$.
- Cimmino: $T = I_n$ and M = D.
- CAV: $\mathbf{T} = \mathbf{I}_n$ and $\mathbf{M} = \mathbf{D}_S$.
- DROP: $\mathbf{T} = \operatorname{diag}(1/s_j)$ and $\mathbf{M} = m\mathbf{D}$.

• SART:
$$\mathbf{T} = \operatorname{diag}\left(1/\sum_{i=1}^{m} a_{i,j}\right)$$
 and $\mathbf{M} = \operatorname{diag}\left(1/\sum_{j=1}^{n} a_{i,j}\right)$.

Several stopping rules and approaches to choose the relaxation parameter λ_k .

Iterates:

$$\alpha_{k+1} := \alpha_k - \lambda_k \cdot \mathbf{A}^{\mathsf{t}} \cdot \left(\mathbf{A} \cdot \alpha - \mathbf{g} \right) = \alpha_k - \lambda_k \nabla Q(\alpha_k)$$

where
$$Q(\alpha) := \frac{1}{2} \|\mathbf{A} \cdot \alpha - g\|_2^2$$
.

- Each step in Landweber's method is a step in the direction of steepest descent.
- Semi-convergence property well-established.
- $0 < \lambda_k < 2/\sigma^2$ where σ is an estimate of the largest singular value of **A**.

Iterative reconstruction methods SIRT: Cimmino

Iterates:

$$\alpha_{k+1} := \alpha_k - \lambda_k \cdot \mathbf{A}^t \cdot \mathbf{D} \cdot (\mathbf{A} \cdot \alpha - g)$$
 for $k = 0, 1, 2, ...$

where
$$\mathbf{D} = \frac{1}{m} \operatorname{diag}\left(\frac{1}{\|a_i\|_2^2}\right)$$
, so

$$\alpha_{k+1} := \alpha_k + \frac{\lambda_k}{m} \sum_{i=1}^m \frac{g_i - a_i \cdot \alpha_k}{\|a_i\|_2^2} a_i.$$

• Each step in Cimmino's method is the average of the projections onto the m hyperplanes $a_i \cdot \alpha = g_i$ with $i = 1, \ldots, m$ (compare with ART).

Iterative reconstruction methods

Non-negativity and box constraints

Assume one knows beforehand that $\alpha_{\mathsf{true}} \in \mathcal{C} \subset \mathbb{R}^n$ where \mathcal{C} is a known convex set. One can incorporate such a constraint into ART and SIRT iterations by projecting iterates onto \mathcal{C} :

Projected ART

$$\alpha_{k+1} := \mathcal{P}_C \left(\alpha_k + \lambda_k \frac{g_{i_k} - a_{i_k} \cdot \alpha_k}{\|a_{i_k}\|_2^2} a_{i_k} \right)$$

with $i_k \in \{1, \ldots, m\}$ given by the row-ordering scheme.

Projected SIRT

$$\alpha_{k+1} := \mathcal{P}_{\mathcal{C}} \Big(\alpha_k - \lambda_k \mathbf{T} \cdot \mathbf{A}^t \cdot \mathbf{M} \cdot (\mathbf{A} \cdot \alpha - g) \Big)$$

Iterative reconstruction methods Non-negativity and box constraints

Assume one knows beforehand that $\alpha_{\mathsf{true}} \in \mathcal{C} \subset \mathbb{R}^n$ where \mathcal{C} is a known convex set. One can incorporate such a constraint into ART and SIRT iterations by projecting iterates onto \mathcal{C} :

Projected ART

$$\alpha_{k+1} := \mathcal{P}_{\mathcal{C}}\left(\alpha_k + \lambda_k \frac{g_{i_k} - a_{i_k} \cdot \alpha_k}{\|a_{i_k}\|_2^2} a_{i_k}\right)$$

with $i_k \in \{1, ..., m\}$ given by the row-ordering scheme.

Projected SIRT

$$oldsymbol{lpha}_{k+1} := \mathcal{P}_{\mathcal{C}} \Big(oldsymbol{lpha}_k - \lambda_k \mathbf{T} \cdot \mathbf{A}^{\!\! \mathrm{t}} \cdot \mathbf{M} \cdot ig(\mathbf{A} \cdot oldsymbol{lpha} - oldsymbol{g} \Big) \Big)$$

C can represent box-constraints $a \le \alpha_i \le b$ in which case

$$\mathcal{P}_{C}(\alpha)_{i} = \begin{cases} \alpha_{i} & \text{if } a < \alpha_{i} < b \\ a & \text{if } \alpha_{i} \leq a \\ b & \text{if } \alpha_{i} \geq b \end{cases} \quad \text{for } i = 1, \dots, n.$$

Iterative reconstruction methods

Non-negativity and box constraints

Assume one knows beforehand that $\alpha_{\mathsf{true}} \in \mathcal{C} \subset \mathbb{R}^n$ where \mathcal{C} is a known convex set. One can incorporate such a constraint into ART and SIRT iterations by projecting iterates onto \mathcal{C} :

Projected ART

$$\alpha_{k+1} := \mathcal{P}_{\mathcal{C}}\left(\alpha_k + \lambda_k \frac{g_{i_k} - a_{i_k} \cdot \alpha_k}{\|a_{i_k}\|_2^2} a_{i_k}\right)$$

with $i_k \in \{1, \dots, m\}$ given by the row-ordering scheme.

Projected SIRT

$$oldsymbol{lpha}_{k+1} := \mathcal{P}_{\mathcal{C}} \Big(oldsymbol{lpha}_k - \lambda_k \mathbf{T} \cdot \mathbf{A}^{\!\! \mathrm{t}} \cdot \mathbf{M} \cdot ig(\mathbf{A} \cdot oldsymbol{lpha} - g ig) \Big)$$

Projected iterates should converge to a least-squares solution in C, *i.e.*, to a solution of

$$\min_{\alpha \in C} \|\mathbf{A} \cdot \alpha - g\|_2^2$$
.

Projected SIRT converges to a solution of the above problem.

Randomized ART All iterative schemes make use of the same stopping rule.

SART

CAV

Landweber

All iterative schemes make use of the same stopping rule.

Randomized ART All iterative schemes make use of the same stopping rule.

SART

CAV

Landweber

The conjugate gradient (CG) method The basic algorithm

A Krylov subspace method – iterative scheme for finding a least-squares solution to the reconstruction problem:

$$\min_{oldsymbol{lpha} \in \mathbb{R}^n} Q(oldsymbol{lpha}) \quad ext{where} \quad Q(oldsymbol{lpha}) := rac{1}{2} \| \mathbf{A} \cdot oldsymbol{lpha} - g \|_2^2.$$

Basic CG algorithm for minimising a non-linear function Q

- 1: α_0 arbitrary, $r_0 := \nabla Q(\alpha_0)$, $d_0 := -r_0$.
- 2: **for** $k := 0, 1, \dots$ **do**
- 3: $\alpha_{k+1} := \text{minima of } Q \text{ on half-line } t \mapsto \alpha_k + t d_k$
- 4: $r_{k+1} := \nabla Q(\alpha_{k+1})$
- 5: $\beta_{k+1} := \|r_{k+1}\|_2^2 / \|r_k\|_2^2$
- 6: $d_{k+1} := -r_{k+1} + \beta_{k+1} d_k$
- 7: end for

The conjugate gradient (CG) method The basic algorithm

A Krylov subspace method – iterative scheme for finding a least-squares solution to the reconstruction problem:

$$\min_{oldsymbol{lpha} \in \mathbb{R}^n} Q(oldsymbol{lpha}) \quad ext{where} \quad Q(oldsymbol{lpha}) := rac{1}{2} \| \mathbf{A} \cdot oldsymbol{lpha} - \mathbf{g} \|_2^2.$$

Basic CG algorithm for minimising a non-linear function Q

- 1: α_0 arbitrary, $r_0 := \nabla Q(\alpha_0)$, $d_0 := -r_0$.
- 2: **for** $k := 0, 1, \dots$ **do**
- 3: $\alpha_{k+1} := \text{minima of } Q \text{ on half-line } t \mapsto \alpha_k + t d_k$
- 4: $r_{k+1} := \nabla Q(\alpha_{k+1})$
- 5: $\beta_{k+1} := \|r_{k+1}\|_2^2 / \|r_k\|_2^2$
- 6: $d_{k+1} := -r_{k+1} + \beta_{k+1} d_k$
- 7: end for

Gradient of
$$Q: \nabla Q(\alpha) = \mathbf{A}^{t} \cdot (\mathbf{A} \cdot \alpha - g).$$

The conjugate gradient (CG) method The basic algorithm

A Krylov subspace method – iterative scheme for finding a least-squares solution to the reconstruction problem:

$$\min_{oldsymbol{lpha} \in \mathbb{R}^n} Q(oldsymbol{lpha}) \quad ext{where} \quad Q(oldsymbol{lpha}) := rac{1}{2} \| \mathbf{A} \cdot oldsymbol{lpha} - g \|_2^2.$$

CGLS algorithm for solving (4)

1:
$$\alpha_0$$
 arbitrary, $r_0 := \mathbf{A}^t \cdot (\mathbf{A} \cdot \alpha_0 - g)$, $d_0 := -r_0$.

2: **for**
$$k := 0, 1, ...$$
 do
3: $t_{k+1} := -\langle r_k, d_k \rangle / \|\mathbf{A} \cdot d_k\|_2^2$

3:
$$t_{k+1} := -\langle r_k, d_k \rangle / \| \mathbf{A} \cdot d_k \|_2^2$$

4: $\alpha_{k+1} := \alpha_k + t_{k+1} d_k$

5:
$$r_{k+1} := \mathbf{A}^t \cdot (\mathbf{A} \cdot \alpha_{k+1} - g)$$

6:
$$\beta_{k+1} := \|r_{k+1}\|_2^2 / \|r_k\|_2^2$$

7:
$$d_{k+1} := -r_{k+1} + \beta_{k+1} d_k$$

The conjugate gradient (CG) method The basic algorithm

A Krylov subspace method – iterative scheme for finding a least-squares solution to the reconstruction problem:

$$\min_{oldsymbol{lpha} \in \mathbb{R}^n} Q(lpha) \quad ext{where} \quad Q(lpha) := rac{1}{2} \| \mathbf{A} \cdot lpha - g \|_2^2.$$

CGLS algorithm for solving (4)

- 1: α_0 arbitrary, $r_0 := \mathbf{A}^t \cdot (\mathbf{A} \cdot \alpha_0 g)$, $d_0 := -r_0$.
- 2: **for** $k := 0, 1, \dots$ **do**
- 3: $t_{k+1} := -\langle r_k, d_k \rangle / \| \mathbf{A} \cdot d_k \|_2^2$
- 4: $\alpha_{k+1} := \alpha_k + t_{k+1} d_k$
- 5: $r_{k+1} := \mathbf{A}^{\mathsf{t}} \cdot (\mathbf{A} \cdot \alpha_{k+1} g)$
- 6: $\beta_{k+1} := \|r_{k+1}\|_2^2 / \|r_k\|_2^2$
- 7: $d_{k+1} := -r_{k+1} + \beta_{k+1} d_k$
- 8: end for

All operations involve multiplication with \mathbf{A} or \mathbf{A}^{t} .

The conjugate gradient (CG) method The basic algorithm

A Krylov subspace method – iterative scheme for finding a least-squares solution to the reconstruction problem:

$$\min_{oldsymbol{lpha} \in \mathbb{R}^n} Q(lpha) \quad ext{where} \quad Q(lpha) := rac{1}{2} \| \mathbf{A} \cdot lpha - g \|_2^2.$$

CGLS algorithm for solving (4)

- 1: α_0 arbitrary, $r_0 := \mathbf{A}^t \cdot (\mathbf{A} \cdot \alpha_0 g)$, $d_0 := -r_0$.
- 2: **for** $k := 0, 1, \dots$ **do**
- 3: $t_{k+1} := -\langle r_k, d_k \rangle / \| \mathbf{A} \cdot d_k \|_2^2$
- 4: $\alpha_{k+1} := \alpha_k + t_{k+1} d_k$
- 5: $r_{k+1} := \mathbf{A}^{\mathsf{t}} \cdot (\mathbf{A} \cdot \alpha_{k+1} g)$
- 6: $\beta_{k+1} := \|r_{k+1}\|_2^2 / \|r_k\|_2^2$
- 7: $d_{k+1} := -r_{k+1} + \beta_{k+1} d_k$
- 8: end for

Need to regularise by early stopping.

Recover a least-squares solution to the ill-posed problem

$$g = \mathbf{A} \cdot \mathbf{lpha}_{\mathsf{true}} + g_{\mathsf{noise}}.$$

- ART and SIRT methods involve two regularisation parameters, the relaxation parameter and the number of iterates.
- CG methods have one regularisation parameter, the number of iterates.

Recover a least-squares solution to the ill-posed problem

$$g = \mathbf{A} \cdot \alpha_{\mathsf{true}} + g_{\mathsf{noise}}.$$

- ART and SIRT methods involve two regularisation parameters, the relaxation parameter and the number of iterates.
- CG methods have one regularisation parameter, the number of iterates.

Two types of errors in regularisation of ill-posed problems:

Noise (perturbation) error: error in iterates due to "inverting" the noise g_{noise} in data.

Iteration (regularisation) error: errors in iterates that are due to semi-convergence (errors get amplified one iterates progress too far).

Both noise and iteration errors are always present in a regularised solution.

 \implies their size depends on the regularisation parameter(s).

Recover a least-squares solution to the ill-posed problem

$$g = \mathbf{A} \cdot \mathbf{lpha}_{\mathsf{true}} + g_{\mathsf{noise}}.$$

- ART and SIRT methods involve two regularisation parameters, the relaxation parameter and the number of iterates.
- CG methods have one regularisation parameter, the number of iterates.

For iterative methods:

- The choice of the relaxation parameter mainly seeks to limit the noise error.
- The choice of number of iterates (stopping rule) mainly seeks to limit the iteration error.

Choosing the regularisation parameter(s) The relaxation parameter

- ART and SIRT methods: Possible to estimate the noise and iteration errors for a fixed relaxation parameter. Albeit pessimistic, these estimates correctly describe the evolution of these errors as iterations progress.
- Choice of relaxation parameter $\lambda_k \Longrightarrow$ limit the noise error

One possible strategy: Choose $\lambda_0=\lambda_1=\sqrt{2}/\sigma^2$ and

$$\lambda_k = \frac{2}{\sigma^2} (1 - \zeta_k)$$
 or $\lambda_k = \frac{2}{\sigma^2} \frac{1 - \zeta_k}{(1 - \zeta_k^k)^2}$ for $k = 2, 3, ...$

Here, σ is an estimate of the largest singular value of **A** and $0<\zeta_k<1$ is the unique root of the polynomial

$$p_{k-1}(\zeta) := (2k-1)\zeta^{k-1} - (\zeta^{k-2} + \ldots + \zeta + 1).$$

Leads to diminishing step-size

Choosing the regularisation parameter(s) The relaxation parameter

- ART and SIRT methods: Possible to estimate the noise and iteration errors for a fixed relaxation parameter. Albeit pessimistic, these estimates correctly describe the evolution of these errors as iterations progress.
- Choice of relaxation parameter $\lambda_k \Longrightarrow$ limit the noise error

One possible strategy: Choose $\lambda_0=\lambda_1=\sqrt{2}/\sigma^2$ and

$$\lambda_k = \frac{2}{\sigma^2} (1 - \zeta_k)$$
 or $\lambda_k = \frac{2}{\sigma^2} \frac{1 - \zeta_k}{(1 - \zeta_k^k)^2}$ for $k = 2, 3, ...$

Here, σ is an estimate of the largest singular value of **A** and $0<\zeta_k<1$ is the unique root of the polynomial

$$p_{k-1}(\zeta) := (2k-1)\zeta^{k-1} - (\zeta^{k-2} + \ldots + \zeta + 1).$$

Leads to diminishing step-size.

Choosing the Regularisation Parameter Stopping rules

- Common to stop the iterations in iterative methods when the residual norm $\|\mathbf{A} \cdot \boldsymbol{\alpha}_k g\|_2$ is "sufficiently small" since this may imply that α_k is close to a least-squares solution.
- Not good for ill-posed problems since a least-squares solution is probably useless as it has overfitting artefacts.
- Stopping rules regulate the iteration error.

Stopping rules: The discrepancy criterion

Principle: Assume the residual norm decreases monotonically with the iterates. Then, stop iterates when the difference to data is smaller than size of the data noise.

- An estimate $\delta > 0$ of the size of the noise component in data, i.e., $\|g_{\text{noise}}\|_2 < \delta$.
- $\tau > 1$, a safety factor.

Find k such that

$$\|\mathbf{A} \cdot \boldsymbol{\alpha}_{k+1} - g\|_2 \le \tau \delta \le \|\mathbf{A} \cdot \boldsymbol{\alpha}_k - g\|_2.$$

- Unique solution for regularisation parameter *k* since residual norm varies monotonically with the iterates.
- Relies on a good estimate δ of the size of the noise in data, which may be difficult to obtain in practice.
- Computed regularisation parameter k is very sensitive to the accuracy of the estimate δ . A too small estimate can lead to dramatic under-smoothing (because k is chosen too large).

Stopping rules: The discrepancy criterion

Principle: Assume the residual norm decreases monotonically with the iterates. Then, stop iterates when the difference to data is smaller than size of the data noise.

- An estimate $\delta > 0$ of the size of the noise component in data, i.e., $\|g_{\text{noise}}\|_2 < \delta$.
- \bullet au > 1, a safety factor.

Find k such that

$$\|\mathbf{A} \cdot \boldsymbol{\alpha}_{k+1} - g\|_2 \le \tau \delta \le \|\mathbf{A} \cdot \boldsymbol{\alpha}_k - g\|_2.$$

- Unique solution for regularisation parameter *k* since residual norm varies monotonically with the iterates.
- Relies on a good estimate δ of the size of the noise in data, which may be difficult to obtain in practice.
- Computed regularisation parameter k is very sensitive to the accuracy of the estimate δ . A too small estimate can lead to dramatic under-smoothing (because k is chosen too large).

Stopping rules: The discrepancy criterion

Principle: Assume the residual norm decreases monotonically with the iterates. Then, stop iterates when the difference to data is smaller than size of the data noise.

- An estimate $\delta > 0$ of the size of the noise component in data, i.e., $\|g_{\text{noise}}\|_2 < \delta$.
- $\tau > 1$, a safety factor.

Find k such that

$$\|\mathbf{A} \cdot \boldsymbol{\alpha}_{k+1} - g\|_2 \le \tau \delta \le \|\mathbf{A} \cdot \boldsymbol{\alpha}_k - g\|_2.$$

- Unique solution for regularisation parameter *k* since residual norm varies monotonically with the iterates.
- Relies on a good estimate δ of the size of the noise in data, which may be difficult to obtain in practice.
- Computed regularisation parameter k is very sensitive to the accuracy of the estimate δ . A too small estimate can lead to dramatic under-smoothing (because k is chosen too large).

Stopping rules: The L-curve criterion

Principle: For small k smaller than some threshold, the iteration error dominates in α_k so the 2-norm $\|\alpha_k\|_2$ is expected to be small while the residual norm $\|\mathbf{A} \cdot \alpha_k - g\|_2$ is large.

- $\|\alpha_k\|_2$ is almost a constant given by $\|\alpha_{\text{true}}\|_2$ except for very small k where $\|\alpha_k\|_2$ gets smaller as $k \to 0$.
- The residual norm $\|\mathbf{A} \cdot \boldsymbol{\alpha}_k g\|_2$ increases as $k \to 0$, until it reaches its maximum value at k = 0.

For k larger than some threshold the noise error dominates α_k leading to the following k dependency:

- $\|\alpha_k\|_2$ increases as k increases (overfitting).
- The residual norm $\|\mathbf{A} \cdot \alpha_k g\|_2$ stays almost constant at the noise level in data.

Stopping rules: The L-curve criterion

The curve

$$k \mapsto \left(\|\boldsymbol{\alpha}_k\|_2, \|\mathbf{A} \cdot \boldsymbol{\alpha}_k - g\|_2\right)$$

is "L"-formed with two distinctly different parts:

- Part where it is quite flat (when the noise error dominates)
- Part that is more vertical (when the iteration error dominates)

A log-log scale emphasizes the different characteristics of these two parts leading to the definition of the L-curve:

The L-curve:

$$k \mapsto \left(\left. \log(\|\boldsymbol{\alpha}_k\|_2), \log(\|\mathbf{A} \cdot \boldsymbol{\alpha}_k - g\|_2) \right) \right)$$

Stopping rules: The L-curve criterion

L-curve criterion: Choose k that corresponds to the corner (point with highest curvature) of the L-curve.

- Heuristic criteria with no guarantee that it will always produce a good regularisation parameter.
- Typically fails when the change in the residual and solution norms is small for two consecutive values of k.
- Computing the corner can be challenging, there may be many small local corners.

Stopping rules: the generalised cross-validation criterion

Principle: Remove data and select the value for the regularisation parameter that minimises the error in predicting the removed data. Consider the reduced problem:

$$\mathbf{A}^i \cdot \boldsymbol{\alpha}_k^i = \mathbf{g}^i$$
 for fixed $i = 1, \dots, m$.

- $g^i \in \mathbb{R}^{m-1}$ is the data after we leave out the *i*:th data point.
- Aⁱ is the A with the i:th row left out
- $\alpha_k^i \in \mathbb{R}^n$ is the reconstruction obtained after k iterates when solving the reduced problem above.

Use $\alpha_k^i \in \mathbb{R}^n$ and the *i*:th row a_i of **A** to predict *i*:th data element:

$$g_i^{\text{predict}} := a_i \cdot \alpha_k^i$$
.

Prediction error = $|g_i^{\text{predict}} - g_i| = |a_i \cdot \alpha_k^i - g_i|$.

Stopping rules: the generalised cross-validation criterion

Principle: Remove data and select the value for the regularisation parameter that minimises the error in predicting the removed data. Consider the reduced problem:

$$\mathbf{A}^i \cdot \alpha_k^i = g^i$$
 for fixed $i = 1, \dots, m$.

- $g^i \in \mathbb{R}^{m-1}$ is the data after we leave out the *i*:th data point.
- Aⁱ is the A with the i:th row left out
- $\alpha_k^i \in \mathbb{R}^n$ is the reconstruction obtained after k iterates when solving the reduced problem above.

Choose the regularisation parameter k (number of iterations) such that the total prediction error is minimised, *i.e.*, solve

$$\min_{k} \sum_{i=1}^{m} \left(g_{i}^{\text{predict}} - g_{i} \right)^{2} = \min_{k} \sum_{i=1}^{m} \left(a_{i} \cdot \alpha_{k}^{i} - g_{i} \right)^{2}.$$

Computationally unfeasible since m different reconstruction problems are involved \implies need to simplify above minimisation.

Stopping rules: the generalised cross-validation criterion

Principle: Remove data and select the value for the regularisation parameter that minimises the error in predicting the removed data. Consider the reduced problem:

$$\mathbf{A}^i \cdot \boldsymbol{\alpha}_k^i = \mathbf{g}^i$$
 for fixed $i = 1, \dots, m$.

- $g^i \in \mathbb{R}^{m-1}$ is the data after we leave out the *i*:th data point.
- Aⁱ is the A with the i:th row left out
- $\alpha_k^i \in \mathbb{R}^n$ is the reconstruction obtained after k iterates when solving the reduced problem above.

- Quite robust and accurate, as long as the noise is white.
- Occasional failure of GCV is well understood, and it often reveals itself by the ridiculous under-smoothing it leads to.
- Statistical and asymptotic properties is very well understood.
- Computationally demanding.

Methods for choosing the regularisation parameter Summary

- The discrepancy principle is a simple method that seeks to reveal when the residual vector is noise-only. It relies on a good estimate of the size of the noise in data which may be difficult to obtain in practice.
- The L-curve criterion is based on an intuitive heuristic and seeks to balance the two error components via inspection (manually or automated) of the L-curve. This method fails when the solution is very smooth.
- The GCV criterion seeks to minimise the prediction error, and it is often a very robust method – with occasional failure, often leading to ridiculous under-smoothing that reveals itself.

Methods for choosing the regularisation parameter Summary

- The discrepancy principle is a simple method that seeks to reveal when the residual vector is noise-only. It relies on a good estimate of the size of the noise in data which may be difficult to obtain in practice.
- The L-curve criterion is based on an intuitive heuristic and seeks to balance the two error components via inspection (manually or automated) of the L-curve. This method fails when the solution is very smooth.
- The GCV criterion seeks to minimise the prediction error, and it is often a very robust method – with occasional failure, often leading to ridiculous under-smoothing that reveals itself.

Methods for choosing the regularisation parameter Summary

- The discrepancy principle is a simple method that seeks to reveal when the residual vector is noise-only. It relies on a good estimate of the size of the noise in data which may be difficult to obtain in practice.
- The L-curve criterion is based on an intuitive heuristic and seeks to balance the two error components via inspection (manually or automated) of the L-curve. This method fails when the solution is very smooth.
- The GCV criterion seeks to minimise the prediction error, and it is often a very robust method – with occasional failure, often leading to ridiculous under-smoothing that reveals itself.

Reconstruction methods General properties

- Imaging, in particular 3D tomography, often leads to solving large-scale linear inverse problems.
- A useful reconstruction method must avoid factorisation of the measurement matrix:
 - The main "building blocks" must be matrix-vector multiplications, avoiding any factorization of the measurement matrix
 - Allow the user to select regularisation parameter(s) via a parameter-choice method that does not require solving the reconstruction problem from scratch for each new parameter.

Reconstruction methods General properties

- Imaging, in particular 3D tomography, often leads to solving large-scale linear inverse problems.
- A useful reconstruction method must avoid factorisation of the measurement matrix:
 - The main "building blocks" must be matrix-vector multiplications, avoiding any factorization of the measurement matrix.
 - Allow the user to select regularisation parameter(s) via a parameter-choice method that does not require solving the reconstruction problem from scratch for each new parameter.

Reconstruction methods General remarks

- Focus on a single application, or a specific and narrow class of applications; no reconstruction method is guaranteed to work for a broad class of problems.
- When implementing the reconstruction method, focus on modularity and clarity of the computer code; it is guaranteed that you need to go back and modify/expand the software at some point in time.
- Make sure you understand the performance of the implementation, including computing times, storage requirements, etc.

Reconstruction methods General remarks

- When testing the reconstruction method, make sure to generate test problems that reflect as many aspects as possible of real, measured data.
- When testing, also make sure to model the noise as realistically as possible, and use realistic noise levels.
- Be aware of the concept of "inverse crime" (same ingredients are used to create synthetic data and to recover image):
 - As a "proof-of-concept" first use tests that commit inverse crime; if the reconstruction method does not work under such circumstances, it can never work.
 - 2 Next, in order to check the robustness to model errors, test the reconstruction method without committing inverse crime.

Reconstruction methods General remarks

- Carefully evaluate the regularised solutions; consider which characteristics are important, and use the appropriate measure of the error (the 2-norm between the exact and regularised solutions is not always the optimal measure).
- Using the same exact data, create many realizations of the noise and perform a systematic study the robustness of the reconstruction method. Use histograms or other tools to investigate if the distribution of the errors has an undesired tail.

Iterative reconstruction methods Summary

Iterative methods produce a sequence of digital images in \mathbb{R}^n

$$\alpha_0 \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \dots$$

Important properties

- Iterates designed to converge to a least-squares solution of $\mathbf{A} \cdot \alpha = g$.
- Semi-convergence, so initial convergence towards α_{true} followed by (slow) convergence to least-squares solution. \Rightarrow Iteration number is a regularisation parameter.

Iterative reconstruction methods Summary

Iterative methods produce a sequence of digital images in \mathbb{R}^n

$$\alpha_0 \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \dots$$

Advantages

- Works with any linear forward problem.
- Only uses matrix-vector multiplications, so the matrix A is only accessed via matrix-vector multiplications and not explicitly required and never altered.
 - \implies Enough to have a "black box" software component for computing the action of **A** and **A**^t.
- Atomic operations in iterative methods (mat-vec product, norm) suited for high-performance computing.
- Often produce a natural sequence of regularised solutions;
 stop when the solution is "satisfactory" (parameter choice).