R Workshop Session 2

Nichole Bouffard

7/22/2020

Description

This is a printable version of the script we'll be going over in today's session. Feel free to print it out and follow along. We will be covering how to run anovas and t tests for the single item recognition data. We will use the package 'afex' to run anovas and plot the effects.

First load in the three packages below

Note, if you don't already have them downloaded you can uncomment the "install.packages" lines (delete #) and run those first, then load them using the library() line.

- tidyverse useful datawrangling functions, piping, and ggplot
- afex this is package I like to use to run my stats. It has a function "aov_ez" that I use instead of R's built in anova function "aov". It takes a more intutive input compared the aov formulas
- emmeans for running the pairwise comparisons (t tests) after the anova

```
library(tidyverse)
# install.packages(afex)
library(afex)
#install.packages(emmeans)
library(emmeans)
```

Read in data

```
sirdat <-read_csv('/Users/nicholebouffard/Dropbox/Baycrest_Rworksh</pre>
```

```
## Parsed with column specification:
## cols(
## subid = col_double(),
## stimulus = col_character(),
## group = col_character(),
## DO_SS = col_double(),
## SO_DS = col_double(),
## SO_SS = col_double()
```

I'm using read_csv here instead of read.csv. You must have the tidyverse loaded first before you can use read_csv, but it reads your data into a tibble way quicker and more efficient than reading your data into a data.frame using read.csv

Data wrangle from wide to long format (long = one observation per row)

```
sirdat <- sirdat %>% #shortcut to pipe = command+shift+M
gather(condition, hit_minus_fa,4:6)
```

Look at how the different variables are categorized. Change grouping factors to factors

```
str(sirdat)
```

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 354 obs. of 5 var
## $ subid : num 10 10 11 11 12 12 13 13 14 14 ...
## $ stimulus : chr "object" "scene" "object" "scene" ...
## $ group : chr "YA" "YA" "YA" "YA" ...
## $ condition : chr "DO_SS" "DO_SS" "DO_SS" "DO_SS" ...
## $ hit_minus_fa: num 0.912 0.715 0.632 0.562 0.824 ...
```

```
sirdat$subid <- as.factor(sirdat$subid)
sirdat$stimulus<- as.factor(sirdat$stimulus)
sirdat$group <- as.factor(sirdat$group)
sirdat$condition <- as.factor(sirdat$condition)
str(sirdat)</pre>
```

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 354 obs. of 5 var
## $ subid : Factor w/ 59 levels "10","11","12",...: 1 1 2 2
## $ stimulus : Factor w/ 2 levels "object","scene": 1 2 1 2 1
## $ group : Factor w/ 2 levels "OA","YA": 2 2 2 2 2 2 2 2
## $ condition : Factor w/ 3 levels "DO_SS","SO_DS",...: 1 1 1 1
## $ hit_minus_fa: num   0.912 0.715 0.632 0.562 0.824 ...
```

DESCRIPTIVE STATISTICS

Calculate number of subjects

```
# Younger Adults
nYA <- length(unique(sirdat$subid[sirdat$group == 'YA'])) #31
nYA</pre>
```

```
## [1] 31
```

```
# Older Adults
OA <- sirdat %>%
  filter(group == 'OA')
nOA <- length(unique(OA$subid)) #28
nOA</pre>
```

```
## [1] 28
```

Plot Data

```
#Qplot
qplot(x=condition, y=hit_minus_fa, data=sirdat)
```



```
# Add boxplot
qplot(x=condition, y=hit_minus_fa, data=sirdat, geom='boxplot')
```


Compute means, standard deviation, standard error, range, median

```
sirdat_summary<- sirdat %>%
  group_by(condition, stimulus, group) %>%
  summarise(mean = mean(hit_minus_fa), sd = sd(hit_minus_fa))

# Compute standard error
sirdat_summary <- sirdat_summary %>%
  mutate(n = ifelse(group == 'YA', nYA, nOA)) %>%
  mutate(se = sd/sqrt(n))

# Range, median
range(sirdat$hit_minus_fa)
```

```
## [1] -0.07647 1.00000
```

```
median(sirdat$hit_minus_fa)
```

```
## [1] 0.6485295
```

Check balance with ezDesign

```
#install.packages('ez')
library(ez)
ezDesign(sirdat, x=subid, y=condition)
```


ANOVA 2x2x3 (group, stimulus, condition)

```
# This is something I like to run at the top of my scripts. It bas
set_sum_contrasts()
```

```
## setting contr.sum globally: options(contrasts=c('contr.sum', 'c
```

```
## Anova Table (Type 3 tests)
##
## Response: hit minus fa
                   Effect df MSE F
##
                                                    ges
                    group 1, 57 0.12 0.01 <.0001
## 1
## 2
                 condition 1.95, 111.06 0.02 56.96 ***
                                                   .14
## 3 group:condition 1.95, 111.06 0.02 0.94
                                                   .003
                 stimulus 1, 57 0.02 3.61 +
                                                   .007
## 4
                              1, 57 0.02 0.80
                                                   .002
## 5
            group:stimulus
         condition:stimulus 1.92, 109.71 0.02 206.11 ***
                                                   .36
## 6
## 7 group:condition:stimulus 1.92, 109.71 0.02 1.74 .005
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
##
## Sphericity correction method: GG
```

Post hoc t tests

You can play around with this and add different variables to cor

```
pairs(emmeans(mdl1, c('condition')))
## NOTE: Results may be misleading due to involvement in interacti
## contrast estimate SE df t.ratio p.value
## SO_DS - SO_SS    0.1411    0.0172    114    8.187    <.0001
##
## Results are averaged over the levels of: group, stimulus
## P value adjustment: tukey method for comparing a family of 3 es
pairs(emmeans(mdl1, 'stimulus'))
## NOTE: Results may be misleading due to involvement in interacti
## contrast estimate SE df t.ratio p.value
## object - scene 0.0307 0.0162 57 1.899 0.0626
## Results are averaged over the levels of: group, condition
pairs(emmeans(mdl1, c('condition','stimulus')))
## NOTE: Results may be misleading due to involvement in interacti
                       estimate SE df t.ratio p.valu
   contrast
##
   DO_SS,object - SO_DS,object 0.36942 0.0240 228 15.421 <.0001
##
   DO_SS,object - SO_SS,object 0.33650 0.0240 228 14.047 <.0001
##
   DO_SS,object - DO_SS,scene    0.36508    0.0251    166    14.532 <.0001
##
   DO_SS,object - SO_DS,scene 0.05896 0.0255 207 2.310 0.1945
##
## DO_SS,object - SO_SS,scene 0.37408 0.0255 207 14.658 <.0001
## SO_DS,object - SO_SS,object -0.03293 0.0240 228 -1.374 0.7423
```

```
SO_DS,object - SO_DS,scene -0.31046 0.0251 166 -12.358 <.0001
##
   SO_DS,object - SO_SS,scene 0.00466 0.0255 207 0.182 1.0000
##
   SO_SS,object - DO_SS,scene 0.02859 0.0255 207 1.120 0.8726
##
   SO_SS,object - SO_DS,scene
                              -0.27753 0.0255 207 -10.875 <.0001
##
   SO_SS,object - SO_SS,scene 0.03758 0.0251 166 1.496 0.6673
##
   DO SS, scene - SO DS, scene -0.30612 0.0240 228 -12.779 <.0001
##
## DO_SS,scene - SO_SS,scene 0.00900 0.0240 228 0.375 0.9990 ## SO_DS,scene - SO_SS,scene 0.31512 0.0240 228 13.154 <.0001
##
## Results are averaged over the levels of: group
## P value adjustment: tukey method for comparing a family of 6 es
# Bonferroni adjustment
pairs(emmeans(mdl1, c('condition')), adjust='bonferroni')
## NOTE: Results may be misleading due to involvement in interacti
## contrast estimate SE df t.ratio p.value
## DO_SS - SO_SS    0.1727    0.0172    114    10.023    <.0001
##
## Results are averaged over the levels of: group, stimulus
## P value adjustment: bonferroni method for 3 tests
# Can see how the contrasts were coded using coef()
coef(pairs(emmeans(mdl1, c('condition'))))
## NOTE: Results may be misleading due to involvement in interacti
## condition c.1 c.2 c.3
## DO_SS DO_SS 1 1 0
```

SO_DS,object - DO_SS,scene -0.00434 0.0255 207 -0.170 1.0000

##

Object Recognition ANOVA 2x3 (group, condition)

```
## Anova Table (Type 3 tests)
##

## Response: hit_minus_fa
## Effect df MSE F pes p.value
## 1 group 1, 57 0.07 0.08 .001 .77
## 2 condition 1.90, 108.43 0.02 130.14 *** .70 <.0001
## 3 group:condition 1.90, 108.43 0.02 2.18 .04 .12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
##
## Sphericity correction method: GG</pre>
```

```
# Plot effects
afex_plot(mdl2, "condition", "group")
```

```
## Warning: Panel(s) show a mixed within-between-design.
## Error bars do not allow comparisons across all means.
## Suppress error bars with: error = "none"
```


Posthoc t tests

```
pairs(emmeans(mdl2, c('condition')))
```

NOTE: Results may be misleading due to involvement in interacti

```
## contrast estimate SE df t.ratio p.value
## DO_SS - SO_DS     0.3694 0.0253 114 14.576     <.0001
## DO_SS - SO_SS     0.3365 0.0253 114 13.277     <.0001
## SO_DS - SO_SS     -0.0329 0.0253 114 -1.299     0.3986
##
## Results are averaged over the levels of: group</pre>
```

```
## P value adjustment: tukey method for comparing a family of 3 es
pairs(emmeans(mdl2, c('group')))
## NOTE: Results may be misleading due to involvement in interacti
   contrast estimate SE df t.ratio p.value
##
## OA - YA -0.0116 0.0402 57 -0.290 0.7728
##
## Results are averaged over the levels of: condition
pairs(emmeans(mdl2, c('condition', 'group')))
   contrast estimate SE df t.ratio p.value
##
## DO_SS,OA - SO_DS,OA 0.41807 0.0367 114 11.378 <.0001
   DO_SS,OA - SO_SS,OA 0.37878 0.0367 114 10.309 <.0001
##
   DO SS,OA - DO SS,YA 0.04897 0.0497 117 0.986 0.9217
##
   DO SS,OA - SO DS,YA 0.36975 0.0497 117 7.441 <.0001
##
   DO_SS,OA - SO_SS,YA  0.34318  0.0497  117  6.907  <.0001
##
   SO_DS,OA - SO_SS,OA -0.03929 0.0367 114 -1.069 0.8926
##
   SO DS,OA - DO SS,YA -0.36910 0.0497 117 -7.428 <.0001
##
   SO_DS,OA - SO_DS,YA -0.04832 0.0497 117 -0.972 0.9258
##
   SO_DS,OA - SO_SS,YA -0.07488 0.0497 117 -1.507 0.6604
##
   SO SS,OA - DO SS,YA -0.32981 0.0497 117 -6.638 <.0001
##
   SO_SS,OA - SO_DS,YA -0.00903 0.0497 117 -0.182
##
                                                1.0000
   SO SS,OA - SO SS,YA -0.03560 0.0497 117 -0.716 0.9796
##
   ##
   DO SS, YA - SO SS, YA 0.29421 0.0349 114 8.426 <.0001
##
   SO_DS,YA - SO_SS,YA -0.02657 0.0349 114 -0.761 0.9734
##
```

Scene Recognition ANOVA 2x3 (group, condition)

P value adjustment: tukey method for comparing a family of 6 es

##

```
## Anova Table (Type 3 tests)
##

## Response: hit_minus_fa
## Effect df MSE F pes p.value
## 1 group 1, 57 0.07 0.18 .003 .67
## 2 condition 1.97, 112.15 0.02 127.35 *** .69 <.0001
## 3 group:condition 1.97, 112.15 0.02 0.25 .004 .77
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
##
## Sphericity correction method: GG</pre>
```

```
# Plot effects
afex_plot(mdl3, "condition", "group")
```

```
## Warning: Panel(s) show a mixed within-between-design.
## Error bars do not allow comparisons across all means.
## Suppress error bars with: error = "none"
```


Posthoc t tests

```
pairs(emmeans(mdl3, c('condition')))
```

NOTE: Results may be misleading due to involvement in interacti

```
pairs(emmeans(mdl3, c('group')))
```

NOTE: Results may be misleading due to involvement in interacti

```
## contrast estimate SE df t.ratio p.value
## OA - YA  0.0173 0.0403 57 0.429  0.6698
##
## Results are averaged over the levels of: condition
```

```
pairs(emmeans(mdl3, c('condition','group')))
```

```
contrast
                      estimate
                                   SE df t.ratio p.value
##
   DO SS,OA - SO DS,OA -0.318697 0.0326 114 -9.778 <.0001
##
   DO SS,OA - SO SS,OA 0.011345 0.0326 114 0.348 0.9993
##
   ##
   DO SS,OA - SO DS,YA -0.283102 0.0479 105 -5.908 <.0001
##
   DO SS,OA - SO SS,YA 0.017088 0.0479 105 0.357 0.9992
##
   SO_DS,OA - SO_SS,OA 0.330042 0.0326 114 10.127 <.0001
##
   SO_DS,OA - DO_SS,YA  0.329140  0.0479  105  6.869  <.0001
##
   SO_DS,OA - SO_DS,YA 0.035596 0.0479 105 0.743 0.9760
##
   SO DS,OA - SO SS,YA 0.335785 0.0479 105 7.008 <.0001
##
##
   SO SS,OA - DO SS,YA -0.000902 0.0479 105 -0.019 1.0000
   SO SS,OA - SO DS,YA -0.294446 0.0479 105 -6.145 <.0001
##
   SO SS,OA - SO SS,YA 0.005743 0.0479 105 0.120 1.0000
##
   DO SS, YA - SO DS, YA -0.293544 0.0310 114 -9.477 <.0001
##
   DO SS,YA - SO SS,YA 0.006646 0.0310 114 0.215 0.9999
##
##
   SO DS, YA - SO SS, YA 0.300190 0.0310 114 9.691 <.0001
##
## P value adjustment: tukey method for comparing a family of 6 es
```