

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών

Συνεχής έμμεση αυθεντικοποίηση χρηστών κινητού τηλεφώνου με συνδυασμό των δεδομένων πλοήγησης και συμπεριφοράς

Χρήστος Εμμανουήλ

Επιβλέπων Καθηγητής: Ανδρέας Συμεωνίδης

Επιβλέπων Υποψήφιος Διδάκτωρ: Θωμάς Καρανικιώτης

Περιεχόμενα

Εισαγωγή **Κίνητρο**

Συνεχώς αυξανόμενος αριθμός χρηστών smartphones

Παραγωγή και αποθήκευση προσωπικών και επαγγελματικών πληροφοριών

Ανάγκη για την ασφάλεια των δεδομένων που αποθηκεύονται στην συσκευή.

Προβληματισμοί για την επάρκεια των υφιστάμενων τρόπων αυθεντικοποίησης.

Ανάγκη για υλοποίηση νέων μεθοδολογιών αυθεντικοποίησης.

Εισαγωγή

Συνεχής - Έμμεση Αυθεντικοποίηση

Πλεονεκτήματα:

- Ενισχυμένο σύστημα ασφάλειας
- Καλύτερη εμπειρία χρήστη
- Δυνατότητα εκμετάλλευσης συμπεριφορικών χαρακτηριστικών
 - Εύκολη προσαρμογή
 - Χαμηλό κόστος υλοποίησης
 - Προοπτικές εξέλιξης

Προβληματισμοί:

- Ο Υψηλή ρυθμοί δειγματοληψίας
- ο Πόροι υψηλής κατανάλωσης ισχύος
- Δευτερεύων συσκευές (wearables)
- Ο Ανεπαρκή αξιολόγηση
 - Μικρό πλήθος δεδομένων
 - Δεδομένα 'εργαστηρίου'
 - 'Λανθασμένες' μετρικές
- Ο Ανεπάρκεια δεδομένων κατά την εκτέλεση

Εισαγωγή

Κεντρική Ιδέα

Στόχος:

- Ο Ικανοποιητικά επίπεδα ασφάλειας και διαφάνειας
- Χρήση δεδομένων που παράγονται από το smartphone
- Ο Ανθεκτικό σε σφάλματα ή/και ελλείψεις δεδομένων

Ερωτήματα:

- ο Σύνολο δεδομένων
- Εξαγωγή χαρακτηριστικών και προεπεξεργασία
- ο Δομή ταξινομητών
- ο Δομή υποσυστήματος εμπιστοσύνης
- Αντικειμενική αξιολόγηση

Σύνολο Δεδομένων

BrainRun:

- ο Σύνολο συμπεριφορικών δεδομένων
- Δεδομένα αισθητήρων κίνησης και χειρονομιών
- Εφαρμογή συλλογής δεδομένων (android & iOS)
- 5 διαφορετικά παιχνίδια, με διαφορετικά επίπεδα δυσκολίας

Χαρακτηριστικά:

- 2218 χρήστες
- 60% άντρες, 26% γυναίκες, 14% άγνωστα
- 90% android, 10% iOS

Παιχνίδια & Τελικά Σύνολα (μετά την εφαρμογή κριτηρίων επιλογής):

Παιχνίδια	Τύπος Δεδομένων	Αριθμός Χρηστών Εκπαίδευσης	Αριθμός Χρηστών Αξιολόγησης	
Mathisis	Acc, Gyr, Swp	15	24	
Focus	Acc, Gyr, Swp	15	30	
Reacton	Acc, Gyr, Swp, Tap	15	45	
Memoria	Acc, Gyr, Tap	15	44	
Speedy	Acc, Gyr, Tap	15	45	

Acc: Επιταχυνσιόμετρο, Gyr: Γυροσκόπιο, Swp: Swipe

Εξαγωγή Χαρακτηριστικών

Επιταχυνσιόμετρο, Γυροσκόπιο (1)

Επιλέχθηκαν: x, y και magnitude

Εξαγωγή Χαρακτηριστικών

Επιταχυνσιόμετρο, Γυροσκόπιο (2)

Μέγεθος Παραθύρου: 50 δείγματα

Ποσοστό Επικάλυψης: 60%

Εξαγωγή Χαρακτηριστικών

Επιταχυνσιόμετρο, Γυροσκόπιο (3)

Αισθητήρας	Γνωρίσματα	Τελικά Χαρακτηριστικά
	х	Mean, STD, Max, Min, Percentile25, Percentile50, Percentile75, Kurtosis, Skewness,
		Amplitude1, Amplitude2, Frequency2, Mean Frequency
Επιταχυνσιόμετρο	у	Mean, STD, Max, Min, Percentile25, Percentile50, Percentile75, Kurtosis, Skewness,
Εππαχονοιομέτρο		Amplitude1, Frequency2
	magnitude	Mean, STD, Max, Min, Percentile25, Percentile50, Percentile75, Kurtosis, Skewness,
		Amplitude, Frequency2
	х	Mean, Max, Min, Percentile75, Kurtosis, Skewness, Amplitude1, Frequency2, Mean
Fuga suá sua		Frequency
Γυροσκόπιο	у	Mean, Min, Kurtosis, Skewness, Frequency2
	magnitude	Mean, Min, Kurtosis, Skewness, Frequency2

Μεθοδολογία

Εξαγωγή Χαρακτηριστικών Χειρονομίες

Είδος Gesture	Τελικά Χαρακτηριστικά		
Тар	Duration		
	Duration, Mean X, Mean Y, Trace Length, Trace Projection, Start Velocity,		
Swipe	Stop Velocity, Horizontal Acceleration, Vertical Acceleration, Slope, Mean		
	Square Error, Coefficient of Determination		

Ταξινομητές

Τι γνωρίζουμε;

- Πρόβλημα ταξινόμησης μίας κλάσης
- ο Επίλυση με RBF-OCSVM
- Αδύνατη η χρήση ενός μοντέλου ανά ταξινομητή
- ο Οι παράμετροι (nu, gamma) επηρεάζουν τα RBF-OCSVMs

Τι προτείνουμε;

- Ο Χρήση πολλαπλών RBF-OCSVMs, ανά ταξινομητή
- Ο Χρήση εύρους τιμών για τις παραμέτρους
- Ο Συλλογική τελική απόφαση

Ερωτήματα:

- ο Εύρος παραμέτρων
- ο Αριθμός μοντέλων που αποφασίζουν

Classifier for a Single Data Type

Μεθοδολογία

Ταξινομητές

Εύρος Παραμέτρων

Κατηγορία	Nu			Gamma		
- Kangyopia	Αρχική Τιμή	Τελική Τιμή	Βήμα	Αρχική Τιμή	Τελική Τιμή	Βήμα
Επιταχυνσιόμετρο	0.001	0.06	0.003	0.0001	0.004	0.0002
Γυροσκόπιο	0.11	0.31	0.01	0.001	0.04	0.002
Swipes	0.01	0.21	0.01	0.001	0.06	0.003
Taps	0.02	0.6	0.03	0.7	0.795	0.005

Μεθοδολογία

Ταξινομητές

Αριθμός Μοντέλων

Varnyooia	Βέλτιστος Αριθμός			
Κατηγορία	Μοντέλων			
Επιταχυνσιόμετρο	30			
Γυροσκόπιο	60			
Swipes	60			
Taps	60			

Υποσύστημα Εμπιστοσύνης

$$CL_n = \begin{cases} CL_{n-1} + PositiveStep(Game) * Weights(DataType) * abs(p), & p > 0 \\ CL_{n-1} + NegativeStep(Game) * Weights(DataType) * abs(p), & p \leq 0 \end{cases}$$

Initial Con	60				
Threshold			35		
	Mathisis	Focus	Reacton	Speedy	Memoria
Negative Step	-15	-15	-15	-15	-15
Positive Step	+10	+10	+10	+10	+10

Σύνοψη Συστήματος - Δομή Τελικών Πειραμάτων

Σύστημα Εμπιστοσύνης - Πολλαπλά RBF-OCSVMs

LOF – Περιοχές Nu-Gamma

Ανά Παιχνίδι

Συγκρίσεις (1)

Αποτελέσματα **Συγκρίσεις (2)**

	Mathisis	Focus	Reacton	Memoria	Speedy
Σύστημα Αισθητήρων	5.20	6.00	4.30	5,70	5,70
(FRR %)	-,				
Σύστημα Χειρονομιών	1.92	1,06	2,32 3,58	3.44	0,065
(FRR με Σύστημα Εμπιστοσύνης %)	.,02	.,00	(Swipes Taps)	3,	0,000
Τρέχουσα Εργασία	1.79	1.84	4.56	6.45	6,68
(FRR με Σύστημα Εμπιστοσύνης %)	.,,,,	.,0 1	.,00	5, 10	3,30

	Mathisis	Focus	Reacton	Memoria	Speedy
Σύστημα Αισθητήρων	4.08	3,50	6.90	1.10	5,40
(FAR %)	,	2,22	-,	, -	
Σύστημα Χειρονομιών	1,70	3,92	8,08 11,37	21,83	277,47
(Αριθμός Αποδεκτών Χειρονομιών)	1,70	0,02	(Swipes Taps)	21,00	2,
Τρέχουσα Εργασία					
(Αριθμός Αποδεκτών Δειγμάτων	5,84 & 12,11	11,53 & 16,27	2,98 & 13,54	2,23 & 10,40	1,67 & 17,39
Αισθητήρων & Χειρονομιών)					

Μέγεθος πακέτων αισθητήρων: 500 μετρήσεις

Μέγεθος πακέτων αισθητήρων: ~50 μετρήσεις

Συμπεράσματα

Μεθοδολογία & Τεχνικές

- Η χρήση πολλαπλών RBF-OCSVMs εξυπηρετεί την ασφάλεια του συστήματος.
- Το σύστημα εμπιστοσύνης βοηθάει στην διαμόρφωση ενός εύχρηστου συστήματος.
- Η αποθορυβοποίηση των δεδομένων εκπαίδευσης με LOF βελτιώσει την ασφάλεια.
- Οι παράμετροι nu και gamma των RBF-OCSVMs, παίζουν καθοριστικό ρόλο στην διασφάλιση ισορροπίας μεταξύ ασφάλειας και ευχρηστίας.

Σύστημα

- Ανθεκτικό σε σφάλματα μετρήσεων.
- Ικανοποιητικές μετρικές ασφάλειας και διαφάνειας.
- Γρήγορος έλεγχος
- Ο Αντικειμενική αξιολόγηση

Μελλοντική Εργασία

Ιδέες

- Ο Δυναμικά βάρη στους ταξινομητές.
- Δυνατότητα επιλογής περιοχών nu-gamma
- Συνδυασμός με τεχνικές επίγνωσης πλαισίου.
- Ικανότητα προσαρμογής στις αλλαγές συμπεριφοράς του ιδιοκτήτη.

Ευχαριστώ για την προσοχή σας!

Μηχανική Μάθηση

Εποπτευόμενη Μάθηση (Supervised Learning) Μη Εποπτευόμενη Μάθηση (Unsupervised Learning)

Ημιεποπτευόμενη Μάθηση (Semi-Supervised Learning)

Ενισχυτική Μάθηση (Reinforcement Learning)

Ανίχνευση Ανωμαλιών - Ταξινόμηση Μίας Κλάσης

Ανίχνευση Ακραίων Δειγμάτων (Outlier Detection):

- Unsupervised
- Ανίχνευση Περιοχών Μεγάλης
 Πυκνότητας Δειγμάτων
- Αποθορυβοποίηση Δεδομένων
- Isolation Forest, Elliptic Envelope, Local Outlier Factor

Ανίχνευση Ασυνήθιστων Δειγμάτων (Novelty Detection):

- Semi-Supervised
- Οριοθέτηση Περιοχής Συνόλου Εκπαίδευσης
- Αποθορυβοποιημένα Σύνολα Εκπαίδευσης
- One Class Support Vector Machine

Local Outlier Factor (LOF)

$$RD(Xi, Xj) = max(kDistance(Xj), Distance(Xi, Xj))$$

$$LDR_k(A) = \frac{1}{\sum_{Xj \in N_k(A)} \frac{RD(A, Xj)}{||N_k(A)||}}$$

$$LOF_k(A) = \frac{\sum_{Xj \in N_k(A)} LRD_k(Xj)}{||N_k(A)||} \times \frac{1}{LRD_k(A)}$$

One Class Support Vector Machine (OCSVM)

Μετρικές Αξιολόγησης

False Rejection Rate =
$$\frac{FN}{TP+FN}$$

False Acceptance Rate =
$$\frac{FP}{TN+FP}$$

