

Instituto Federal do Ceará - Embarcatech

Pré-Projeto de Conclusão de Residência Técnica

Sistema IoT para Medição e Análise de Consumo Elétrico Residencial com Raspberry Pi Pico W e Sensor HLW8032

Autor: José Adriano Filho

Matrícula: 2025101109806

Sistema IoT para Medição e Análise de Consumo Elétrico Residencial

Sumário

Resumo:3	
ustificativa:3	,
Requisitos do Sistema:	,
1. Requisitos Funcionais (RF)	,
2. Requisitos Não Funcionais (RNF)4	
3. Requisitos de Interface (RI)	
4. Requisitos de Hardware (RH)4	Ŀ
Problemática a Ser Resolvida:4	
Solução Proposta em IoT:4	
1. Diagrama de Blocos de Hardware:	,
2. Sensores e Atuadores:	,
3. Protocolos:	,
Cronograma de Execução:6)

Resumo:

Este projeto propõe o desenvolvimento de um sistema IoT voltado para o monitoramento do consumo elétrico residencial em tempo real. O sistema utiliza o módulo Raspberry Pi Pico W como unidade principal, responsável por adquirir dados do sensor HLW8032 (medição de corrente, tensão e potência), dos sensores AHT10 (temperatura e umidade ambiente), BH1750 (luminosidade) e um RTC DS3231 para manutenção do relógio de tempo real. As informações coletadas são processadas e enviadas, via Wi-Fi, para uma plataforma em nuvem MQTT, permitindo análise remota, o sistema também fará registro histórico em um datalogger local. O projeto visa promover a eficiência energética, fornecendo ao usuário informações precisas e acessíveis sobre o uso de energia elétrica em sua residência, podendo ser utilizado para identificação de padrões de consumo.

Justificativa:

Com o aumento do consumo de energia elétrica e das tarifas, torna-se essencial que consumidores residenciais tenham meios de acompanhar e entender seu padrão de consumo. Sistemas inteligentes de monitoramento permitem identificar desperdícios e otimizar o uso da energia, contribuindo para a sustentabilidade e economia doméstica. A utilização do Raspberry Pi Pico W oferece uma plataforma de baixo custo, baixo consumo e conectividade sem fio, adequada para soluções IoT acessíveis. O sensor HLW8032, amplamente utilizado em medidores inteligentes, fornece medições precisas de potência e corrente, enquanto o AHT10 em conjunto com o BH1750 agrega informações ambientais que podem auxiliar em análises de eficiência térmica e energética. Assim, o projeto combina acessibilidade tecnológica com aplicabilidade prática no contexto da automação residencial.

Requisitos do Sistema:

Obs.: Padrão de tabelas de requisitos: Conhecimento adquirido ao longo dos anos de estudos, bem como, durante a residência técnica na empresa VMI Médica.

1. Requisitos Funcionais (RF)

Código	Descrição	Prioridade
RF01	Medir tensão, corrente e potência ativa com o sensor HLW8032.	Alta
RF02	Coletar dados de temperatura, umidade e luminosidade com os sensores AHT10 e BH1750.	Média
RF03	Processar as leituras no Raspberry Pi Pico W.	Alta
RF04	Enviar dados via MQTT para o broker remoto.	Alta
RF05	Utilizar comunicação segura TLS (porta 8883).	Alta
RF06	Exibir leituras e status no display OLED SSD1306.	Média
RF07	Indicar status de conexão com LED.	Média
RF08	Permitir reinicialização do sistema por botão físico.	Média
RF09	Reconectar automaticamente ao Wi-Fi e broker em falhas.	Alta
RF10	Publicar mensagens MQTT em formato JSON.	Alta
RF11	Registrar logs locais para análise posterior.	Baixa
RF12	Permitir configurar o intervalo de envio de dados.	Média
RF13	Manter relógio atualizado por meio de RTC local	Alta

2. Requisitos Não Funcionais (RNF)

Código	Descrição	Categoria	Prioridade
RNF01	Operar continuamente sem falhas.	Confiabilidade	Alta
RNF02	Enviar dados ao broker em menos de 10 segundos.	Desempenho	Média
RNF03	Firmware em linguagem C com SDK oficial do Pico.	Implementação	Alta
RNF04	Usar TLS na comunicação.	Segurança	Alta
RNF06	Display legível em ambiente interno.	Usabilidade	Baixa
RNF07	Código-fonte modular e documentado.	Manutenibilidade	Alta
RNF08	Compatível com brokers MQTT populares.	Compatibilidade	Média
RNF09	Mensagens com tópicos padronizados.	Padronização	Alta

3. Requisitos de Interface (RI)

Código	Descrição
RI01	Display mostra tensão, corrente, potência, temperatura e umidade.
RI02	LED verde indica operação normal; vermelho indica erro de conexão.
RI03	Botão entra em modo de configuração ao ser pressionado por 3 segundos.
RI04	Mensagens MQTT no formato JSON com medições e status.

4. Requisitos de Hardware (RH)

Código	Descrição
RH01	Utilizar microcontrolador Raspberry Pi Pico W.
RH02	Conectar HLW8032 via UART.
RH03	Conectar AHT10 via I ² C.
RH04	Conectar BH1750 via I ² C.
RH05	Conectar display SSD1306 via I ² C ou TFT via SPI.
RH06	Fonte de alimentação estável 5V / 3.3V.
RH07	Conectar RTC DS3231 via I ² C.

Problemática a Ser Resolvida:

A maioria das residências não dispõe de um sistema acessível e inteligente que permita monitorar, em tempo real, o consumo elétrico e as condições ambientais. Isso dificulta a identificação de desperdícios e o controle eficiente do uso de energia. Além disso, os medidores convencionais não fornecem dados históricos detalhados nem alertas automatizados sobre consumo excessivo ou falhas no fornecimento.

Solução Proposta em IoT:

A solução proposta consiste em um sistema IoT capaz de medir e analisar o consumo elétrico e as variáveis ambientais, enviando os dados para a nuvem via Wi-Fi. O Raspberry Pi Pico W coleta informações do HLW8032, BH1750 e do AHT10, exibe as leituras em tempo real no display OLED SSD1306 ou um LCD TFT 1.8", decidindo ainda, e publica periodicamente os dados em um broker MQTT seguro (porta 8883 com

TLS). Na nuvem, as informações são processadas e visualizadas em um painel interativo, permitindo acompanhamento remoto, geração de relatórios e notificações automáticas sobre consumo elevado.

1. Diagrama de Blocos de Hardware:

- Raspberry Pi Pico W
- Módulo HLW8032 (medição de energia)
- Sensor BH1750 (luminosidade)
- Sensor AHT10 (temperatura e umidade)
- RTC DS3231 (relógio local)
- Display OLED SSD1306 ou LCD TFT 1.8" (em decisão ainda)
- Wi-Fi doméstico
- LED indicador e botão de reset
- Software em linguagem C (SDK oficial do Pico)
- Comunicação MQTT com TLS
- Dashboard remoto via Node-RED, ThingsBoard ou AWS IoT (em decisão ainda).

2. Sensores e Atuadores:

- HLW8032 Sensor de corrente, tensão e potência
- BH1750 Sensor de luminosidade
- AHT10 Sensor de temperatura e umidade
- DS3231 Relógio de tempo real
- Display OLED SSD1306 Exibição local dos dados
- LED indicador Status de conexão e sistema
- Botão Reset ou configuração inicial

Sistema IoT para Medição e Análise de Consumo Elétrico Residencial

3. Protocolos:

- MQTT Protocolo de comunicação IoT
- TLS Segurança de dados
- Wi-Fi Conectividade sem fio
- TCP/IP Camada de transporte de dados

Cronograma de Execução:

CRONOGRAMA - PROJETO FINAL Embarcatech												
Sistema IoT para Medição e Análise de Consumo Elétrico Residencial												
Data de Início	03/11/2025	D	ata prevista p	ara término:	26/01/2026							
Atividade	Semana 1	Semana 2	Semana 3	Semana 4	Semana 5	Semana 6	Semana 7	Semana 8	Semana 9	Semana 10	Semana 11	Semana 12
Pesquisa e definição de requisitos												
Montagem do hardware												
Desenvolvimwento do Firmware												
Implementação da comunicação MQTT												
Integração com dashboard na nuvem												
Testes e validações												
Documentação e apresentação												