Álgebra lineal II, Grado en Matemáticas

Septiembre 2018

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Importante: utilice una única cara para las cuatro definiciones. Si utiliza más espacio no se tendrá en cuenta.

- (a) Isometría vectorial.
- (b) Polinomio anulador y polinomio mínimo.
- (c) Forma cuadrática y forma polar.
- (d) Proyección ortogonal de un vector sobre un subespacio vectorial.

Ejercicio 1: (2 puntos)

Sea f un endomorfismo de un \mathbb{K} —espacio vectorial V. Demuestre que si v_1, \ldots, v_k son autovectores no nulos de f asociados a autovalores distintos $\lambda_1, \ldots, \lambda_k$, repectivamente; entonces v_1, \ldots, v_k son linealmente independientes.

Ejercicio 2: (3 puntos)

Sean V un espacio vectorial real de dimensión 3, $\mathcal{B} = \{v_1, v_2, v_3\}$ una base de V y f un endomorfismo de V tal que:

- $f(e_1 + 2e_2 + e_3) = e_1 + 2e_2 + e_3.$
- El plano de ecuación x + 2y + z = 0 es un subespacio propio de f.
- (a) Determine si f es diagonalizable.
- (b) Encuentre las ecuaciones implícitas de un plano f-invariante que contenga sólo dos rectas invariantes.

Ejercicio 3: (3 puntos)

Dada la forma cuadrática $\Phi: \mathbb{R}^3 \to \mathbb{R}$ cuya expresión analítica es:

$$\Phi(x, y, z) = 4xy + 2xz - 2yz - z^{2}$$

- (a) Calcule su signatura y diga de qué tipo es.
- (b) Determine todos los vectores isótropos (o autoconjungados) contenidos en el subespacio vectorial

$$U = \{(\lambda + \mu, \lambda, \mu) : \lambda, \mu \in \mathbb{R}\}$$

y estudie si forman un subespacio vectorial.