LiDAR Road Sign Deterioration Team

Research Problem

- Traffic sign visibility is critical to driver safety
- Sign reflectivity deteriorates over time due to many factors
 - Age
 - Weather / Climate
 - Urban / Suburban location
 - Poor fabrication / installation

Background

Methods of Evaluation

Visual inspection...

Retroreflectometer...

removes bias very tedious not sufficient data

LiDAR!

quick

objective

full retro-intensity point clusters

Problem Statement & Research

Improve current LiDAR algorithm for optimization and efficiency to automate the process of sign detection and deterioration analysis.

This required research into fulling understanding past algorithms of previous sub-teams and pinpointing all edge cases possible in sign detection for first half of the semester...

Why should GDOT care?

- Cost savings over 3 million annually
 - Very conservative calculation
 - Only labor savings
- Our work becomes more valuable as autonomous vehicles become more popular
- Currently, GDOT is mandated by USDT to check signs every 7~10 years

Objectives

- Using only LiDAR data:
 - a. Locate
 - b. Sign Identification
 - c. Classify Condition
- Send GDOT automated sign locations and conditions so they know when to replace road signs at greatest sign life length.

(eventually *predict* sign deterioration)

Methodology

Drove around and collected LiDAR data of van's surroundings for past 6-7 years of various roads

1	Α	В	С	D	E	F	G	Н
1	Id	X	Υ	Z	Angle	Distance	Retro	UTC
2	2000000	-84.4529	33.88139	278.7242	-0.61897	4.322	0.224	69034
3	2000001	-84.4529	33.88139	278.7216	-0.6292	4.27	0.349	69034.01
4	2000002	-84.4529	33.88139	278.7308	-0.63941	4.201	0.333	69034.01
5	2000003	-84.4529	33.88138	278.7178	-0.64965	4.169	0.345	69034.01
6	2000004	-84.4529	33.88138	278.7411	-0.65984	4.082	0.357	69034.01
7	2000005	-84.4523	33.88181	284.9044	0.08881	71.696	0.118	69034.02
8	2000006	-84.4524	33.88179	284.0415	0.07852	68.482	0.212	69034.02
9	2000007	-84.4524	33.88172	283.0219	0.06822	57.533	0.224	69034.02
10	2000008	-84.4525	33.88165	282.2211	0.05792	46.243	0.255	69034.02
11	2000009	-84.4526	33.88163	281.7152	0.04763	42.578	0.267	69034.02

Point

-id -long

-lat -alt

-angle -distance

-retro -utc

Metrics

Comparison to previous implementation:

- Got rid of duplicates
 - o Old: 157 duplicates New: 0 duplicates
- Missed fewer signs
 - Old: 18 missed New: 4 missed
 - Stacked signs
 - Found smaller signs
 - Found signs hidden in brush
- More false positives
 - Old: 0 fp New: 3 fp

Challenges

- Visualization
 - Understand false positives.
 - Create ground truth dataset.
- Testing new algorithms efficiently.

Visualization

- Autodesk ReCap
- Bentley: Pointools
- Leica: Cyclone
- Faro: Scene
- Rigel: RiSCAN ProTrimble: RealWorks
- CloudCompare
- pptk

Key Findings

Defined targeted signs

- Signs immediately right of van excluding construction and overhead signs
- False positives
 - Large signs identified as more than one sign
 - Retro-reflective material on non-sign objects

Key Findings

- False negatives
 - <20 points higher than .7 Ra</p>
 - Stacked signs considered one

Signs not fully identified

Take away from key findings

- Simple filtering can lead to mistakes.
- Need more robust clustering and classification algorithms.

Testbed

```
------ Filtering ------
 df = df.loc[df['Retro'] > 0.7]
 df = df.reset index(drop=True)
cluster manager = ClusterManager()
 cluster manager.cluster list = cluster manager.progressive kdmean(df)
 sign manager = SignManager()
 sign manager.sign list = sign manager.num points(cluster manager.cluster list)
```

- Set up a testbed to try different types of algorithms.
 - Each section has a set input and output.
 - Easy testing.
 - Encapsulation

Once optimal algos are identified, then re-write program for further optimization.

Have a quick way to validate results.

Potential Validation Benchmarks

- Percent of each sign collected
- Percent signs collected
- False positives
 - Splitting a single sign
 - Retroreflective material on non-signs
- False negatives
 - Low satisfactory retro-intensity point count
 - Stacked sign coupling

Must ignore overhead signs, construction signs, and signs beyond immediate right of the van.

New Adjustments

- GPS lat/long to UTM coords
 - Less distortion when analyzing a flattened zone
- Standardized (testbed) and documented code

Conclusions

- Goal is not for 100% automation but rather making condition groupings
 - Satisfactory, needs replacing, and unknown
- New Problem Statement:

Develop robust LiDAR algorithms and establish validation methodology to compare adjusted LiDAR algorithms for sign detection and deterioration analysis.

Future Steps

- Test out new algorithms
 - Clustering
 - Neural Net
 - Kd Mean
- Create autograder system for a short data set for a quick way to compare algorithms.
- Identify other factors for filtering
 - Distance
 - Angle
- Consider how to ignore construction and overhead signs

Future Steps

- Implement transverse maximum distance filter
- Consider how to ignore construction and overhead signs
- Figure out at what LiDAR distance should data start collecting
 - Farther out, lower Ra

References

- 3D Point Cloud Visualization Software Documentation
 - https://docs.google.com/document/d/1IWV_zxo94Qcm9UOF9eZz7UDrj PKru4N7oiLjtXQ0SOY/edit?usp=sharing

Appendix

 Detailed methodology (to be referenced in case of technical questions)