

Suites numériques

le me souviens	
1.1	Récurrence
1.2	Suite numérique, convergence, divergence
1.3	Suites remarquables
1.4	Suites récurrentes
Exercices	
Exercices of	et résultats classiques à connaître
Étud	ier une suite récurrente
Le th	éorème de Cesàro
Une	suite définie de façon implicite
	de la banque CCINP
Exercices	
Petits prol	blèmes d'entrainement

Je me souviens

1.1 Récurrence

- 1. Raconter ce qu'est une récurrence.
- 2. Justifier que, pour tout $n \in \mathbb{N}$, il existe un polynôme T_n tel que $\forall x \in \mathbb{R}$, $\cos(nx) = T_n(\cos x)$.

1.2 Suite numérique, convergence, divergence

- 3. C'est quoi, une suite numérique?
- 4. On peut plutôt parler de famille?
- 5. Proposer trois modes de définition pour une suite numérique.
- 6. Comment définir « $(u_n)_n$ converge »? Comment ça se comprend?
- 7. Et « $(u_n)_n$ ne converge pas »?
- 8. Y a-t-il un lien entre « converge » et « bornée »?
- 9. Est-ce que $(u_n)_n$ converge, c'est la même chose que $(u_n)_n$ est stationnaire?
- 10. Est-ce que $(u_n)_n$ converge, c'est la même chose que $u_{n+1} u_n \xrightarrow[n \to +\infty]{} 0$?
- 11. Que dire d'une suite $(u_n)_n$ qui converge vers $\ell > 0$?
- 12. On sait qu'il y a des opérations sur les limites de suites convergentes, des formes indéterminées, etc.
- 13. Qu'est-ce que le résultat « limite par encadrement »?
- 14. Que signifie « étudier une suite »?
- 15. Citer le « théorème de convergence monotone ».
- 16. Donner la définition de « suites adjacentes », et le théorème des suites adjacentes.

1.3 Suites remarquables

17. On est d'accord pour ne pas rappeler les résultats concernant les suites arithmétiques, géométriques, arithmético-géométriques, récurrentes linéaires d'ordre 2 à coefficients constants?

1.4 Suites récurrentes

Parlons maintenant des suites récurrentes. On considère $(u_n)_n$ définie par la donnée de u_0 et de la relation $u_{n+1} = f(u_n), \forall n \in \mathbb{N}$.

- 18. Qu'est-ce qu'un intervalle stable par f? Quel est l'intérêt de les déterminer?
- 19. Qu'est-ce qu'un point fixe pour f? Quel est l'intérêt dans le cadres des suites récurrentes?
- 20. En quoi l'étude du signe de f(x) x informe sur le comportement de la suite $(u_n)_n$?
- 21. Qu'est-ce qu'une fonction lispschitzienne? contractante?

- 22. Si f est contractante et admet un point fixe a, qu'en déduire pour $(u_n)_n$?
- 23. Lorsque f est décroissante, que dire des suites $(u_{2n})_n$ et $(u_{2n+1})_n$?
- 24. Qu'est-ce qui permet d'assurer l'existence d'une borne supérieure?
- 25. Ça veut dire quoi, Sup $A \leqslant 3$?

2024-2025 http://mpi.lamartin.fr **3/6**

Exercices et résultats classiques à connaître

Étudier une suite récurrente

51.1

Étudier la suite définie par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sin u_n & \forall n \in \mathbb{N} \end{cases}$$

51.2

Étudier $(u_n)_{n\in\mathbb{N}}$ une suite réelle définie par :

$$\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = \frac{1}{2}\cos u_n & \forall n \in \mathbb{N} \end{cases}$$

Le théorème de Cesàro

51.3

On considère une suite réelle $(u_n)_n$, et on note $v_n = \frac{1}{n+1} \sum_{k=0}^n u_k$ la moyenne arithmétique de ses premiers termes.

- (a) On suppose que $u_n \xrightarrow[n \to +\infty]{} 0$. Démontrer que la suite $(v_n)_n$ converge vers 0.
- (b) On suppose que $u_n \xrightarrow[n \to +\infty]{} \ell$. Démontrer que la suite $(v_n)_{n \in \mathbb{N}}$ est convergente et déterminer sa limite.
- (c) Que penser de la réciproque?

Une suite définie de façon implicite

51.4

(a) Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique réel $x_n \in I_n = \left[n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{2}\right]$ tel que :

$$\tan x_n = x_n$$

(b) Montrer qu'il existe des réels a, b, c, d que l'on déterminera tels que :

$$x_n \underset{n \to +\infty}{=} a n + b + \frac{c}{n} + \frac{d}{n^2} + o\left(\frac{1}{n^2}\right)$$

4/6 http://mpi.lamartin.fr 2024-2025

On définit la suite (u_n) par $u_0 = x_0$ et, $\forall n \in \mathbb{N}$, $u_{n+1} = \operatorname{Arctan}(u_n)$.

- 1. (a) Démontrer que la suite (u_n) est monotone et déterminer, en fonction de la valeur de x_0 , le sens de variation de (u_n) .
 - (b) Montrer que (u_n) converge et déterminer sa limite.
- 2. Déterminer l'ensemble des fonctions h, continues sur \mathbb{R} , telles que : $\forall x \in \mathbb{R}, h(x) = h(\operatorname{Arctan} x).$

51.6

GNP 55

Soit a un nombre complexe.

On note E l'ensemble des suites à valeurs complexes telles que : $\forall n \in \mathbb{N}, u_{n+2} = 2au_{n+1} + 4(ia - 1)u_n \text{ avec } (u_0, u_1) \in \mathbb{C}^2.$

- 1. (a) Prouver que E est un sous-espace vectoriel de l'ensemble des suites à valeurs complexes.
 - (b) Déterminer, en le justifiant, la dimension de E.
- 2. Dans cette question, on considère la suite de E définie par : $u_0 = 1$ et $u_1 = 1$.

Exprimer, pour tout entier naturel n, le nombre complexe u_n en fonction de n.

Indication: discuter suivant les valeurs de a.

Exercices

51.7

Étudier la monotonie de la suite $(u_n)_n$ définie par :

- (b) $u_0 \in \mathbb{R}$ et $u_{n+1} = e^{u_n} 1$, $\forall n$
- (c) $u_n = \sum_{k=1}^n \frac{1}{n+k}$
- (d) $u_n = \prod_{n=1}^{n} \left(1 \frac{1}{2k^2}\right)$

51.8

Étudier les limites des expressions suivantes :

(a)
$$e^n - n$$

(a)
$$e^n - n$$
 (c) $\sqrt{n+1} - \sqrt{n}$

(f)
$$\frac{(2n)!}{(n!)^2}$$

(d)
$$n^{\frac{1}{r}}$$

(b)
$$\frac{n^3 + n + 1}{2n^2 + 1}$$

(e)
$$(2 + \cos n)^{\frac{1}{r}}$$

(g)
$$\frac{e^{in\theta}}{n}$$

51.9

Étudier les limites des expressions suivantes :

(a)
$$\sum_{k=1}^{n} \frac{1}{n+\sqrt{n}}$$

(a)
$$\sum_{k=1}^{n} \frac{1}{n+\sqrt{k}}$$
 (b) $\sum_{k=1}^{n} \frac{1}{\sqrt{n+k}}$ (c) $\sum_{k=1}^{n} \frac{\sin k}{(n+k)^2}$

(c)
$$\sum_{k=1}^{n} \frac{\sin k}{(n+k)}$$

51.10

Proposer dans chacun des cas un exemple de suite :

- (a) qui n'est ni majorée, ni minorée
- (b) qui est minorée, non majorée, et ne tends pas vers $+\infty$
- (c) positive, de limite nulle, mais non décroissante

51.11

Exprimer le terme général de la suite réelle $(u_n)_n$ définie par :

- (a) $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 3u_n + 1$.
- (b) $u_0 = 1$, $u_1 = -3$ et, pour tout $n \in \mathbb{N}$, $u_{n+2} + 2u_{n+1} + u_n = 0$
- (c) $u_0 = 1$, $u_1 = 2$ et, pour tout $n \in \mathbb{N}$, $u_{n+2} 2u_{n+1} + 2u_n = 0$

51.12

Étudier la suite définie par :

$$u_0 \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n^2 + 1}$$

51.13

Étudier la suite définie par :

$$u_0 \geqslant 1, \ \forall n \in \mathbb{N}, \ u_{n+1} = 1 + \ln(u_n)$$

51.14

Soit $x \in \mathbb{R}$ fixé. On s'intéresse aux suites de terme général :

$$a_n = \frac{\lfloor 10^n x \rfloor}{10^n}$$
 et $b_n = \frac{\lfloor 10^n x \rfloor + 1}{10^n}$

Montrer que $(a_n)_n$ et $(b_n)_n$ sont adjacentes, de limite x.

Petits problèmes d'entrainement

51.15

Soit $a, b \in \mathbb{R}_+$. On considère les suites $(u_n)_n$ et $(v_n)_n$ définies par :

$$\begin{cases} u_0 = a \\ v_0 = b \end{cases} \text{ et } \forall n \in \mathbb{N} \begin{cases} u_{n+1} = \sqrt{u_n v_n} \\ v_{n+1} = \frac{u_n + v_n}{2} \end{cases}$$

Montrer que les suites $(u_n)_n$ et $(v_n)_n$ sont bien définies, et convergent vers une même limite.

51.16

Soit $(u_n)_n$ et $(v_n)_n$ deux suites réelles, qui convergent respectivement vers ℓ et ℓ' . On suppose $\ell < \ell'$. Montrer qu'à partir d'un certain rang, $u_n < v_n$.

51.17

Pour $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

- (a) Vérifier que, pour tout $n \in \mathbb{N}^*$, $H_{2n} H_n \geqslant \frac{1}{2}$.
- (b) En déduire que $H_n \xrightarrow[n \to +\infty]{} +\infty$.

51.18

Soit $(u_n)_n$ une suite réelle, positive, décroissante et de limite nulle. Pour $n \in \mathbb{N}$, on pose :

$$S_n = \sum_{k=0}^{n} (-1)^{k+1} u_k$$

Montrer la convergence de la suite $(S_n)_n$ en étudiant les suites $(S_{2n})_n$ et $(S_{2n+1})_n$.

51.19

Pour $n \in \mathbb{N}$, on définit :

$$u_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $v_n = \frac{1}{n \, n!} + \sum_{k=0}^n \frac{1}{k!}$

Montrer que ce deux suites sont adjacentes. Qu'en déduire?