Multiple Choice Questions' Bank:

1. Electrical conducti	ivity of insulators is the	e range	_•		
(a) $10^{-10} (\Omega \text{-mm})^{-1}$	(b) $10^{-10} (\Omega \text{-cm})^{-1}$	(c) $10^{-10} (\Omega - \text{m})^{-1}$	(d) $10^{-8} (\Omega - m)^{-1}$		
2. Units for electric f	ield strength				
(a) A/cm ²	(b) mho/meter	(c) $cm^2/V.s$	(d) V/cm		
3. Energy band gap size for semiconductors is in the range eV.					
(a)1-2	(b) 2-3	(c) 3-4	(d) > 4		
4. Energy band gap s	ize for insulators is in	the rangeeV	<i>7</i> .		
(a)1-2	(b) 2-3	(c) 3-4	(d) > 4		
5. Flow of electrons is affected by the following					
(a) Thermal vibration	ns(b) Impurity atoms	(c) Crystal defects	(d) all		
6. Not a super condu	ctive metallic element				
(a) Fe	(b) Al	(c) Ti	(d) W		
7. Fermi energy level	I for intrinsic semicono	ductors lies			
(a) At middle of the band gap (c) Close to valence band		(b) Close to conduction band(d) None			
8. Fermi energy level	I for <i>p</i> -type extrinsic se	emiconductors lies			
(a) At middle of the band gap (c) Close to valence band		(b) Close to conduction band(d) None			
9. Fermi energy level	I for <i>n</i> -type extrinsic so	emiconductors lies			
(a) At middle of the band gap (c) Close to valence band		(b) Close to conduction band(d) None			
10. Not an example f	or intrinsic semicondu	ctor			
(a) Si	(b) Al	(c) Ge	(d) Sn		

11. In intrinsic semiconductors, number of electrons number of holes.					
(a) Equal	(b) Greater than	(c) Less than	(d) Can not define		
12. In <i>n</i> -type semiconductors, number of holes number of electrons.					
(a) Equal	(b) Greater than	(c) Less than	(d) Can not define		
13. In <i>p</i> -type semiconductors, number of holes number of electrons.					
(a) Equal	(b) Greater than	(c) Less than	(d) Twice		
14. Mobility of holes is mobility of electrons in intrinsic semiconductors.					
(a) Equal	(b) Greater than	(c) Less than	(d) Can not define		
15. Fermi level for extrinsic semiconductor depends on					
(a) Donor element	(b) Impurity concentr	ation (c) Temperatu	re (d) All		
16. Value of dielectric constant for a material					
(a) Equal to 1	(b) Greater than 1	(c) Less than 1	(d) Zero.		
17. High dielectric constant material is must for					
(a) Insulation of wires	s (b) Generators	s (c) Switch bases	(d) Generators.		
18. Dielectric constant for most polymers lies in the range of					
(a) 1-3	(b) 2-5	(c) 4-7	(d) 6-10.		
19. Example for piezo-electric material					
(a) Rochelle salt	(b) Lead zirconate	(c) Potassium niobate	(d) Barium Titanium oxide		
20. Example for ferro-electric material					
(a) Potassium niobate	(b) Lead titanate	(c) Lead zirconate	(d) quartz		
Answers:					

1. a

- 2. c 3. b 4. c 5. d 6. b 7. c 8. b 9. b 10. a

- 11. c 12. d
- 13. a
- 14. d
- 15. d
- 16. a
- 17. a 18. c 19. b 20. b