Önnur laugardagsæfingin í eðlisfræði 2019-2020

Nafn:

Bekkur:

Fastar

Nafn	Tákn	Gildi
Hraði ljóss í tómarúmi	c	$3.00 \cdot 10^8 \mathrm{ms^{-1}}$
Þyngdarhröðun við yfirborð jarðar	g	$9.82\mathrm{ms^{-2}}$
Frumhleðslan	e	$1,602 \cdot 10^{-19} \mathrm{C}$
Massi rafeindar	m_e	$9.11 \cdot 10^{-31} \mathrm{kg}$
Gasfastinn	R	$8,3145\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
Fasti Coulombs	k_e	$8,988 \cdot 10^9 \mathrm{N}\mathrm{m}^2\mathrm{C}^{-2}$
Rafsvörunarstuðull tómarúms	ϵ_0	$8.85 \cdot 10^{-12} \mathrm{C^2 s^2 m^{-3} kg^{-1}}$
Pyngdarfastinn	G	$6.67 \cdot 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$
Geisli jarðarinnar	R_{\oplus}	$6.38 \cdot 10^6 \mathrm{m}$
Geisli sólarinnar	R_{\odot}	$6.96 \cdot 10^8 \mathrm{m}$
Massi jarðarinnar	M_{\oplus}	$5.97 \cdot 10^{24} \mathrm{kg}$
Massi sólarinnar	M_{\odot}	$1,99 \cdot 10^{30} \mathrm{kg}$
Stjarnfræðieiningin	AU	$1,50 \cdot 10^{11} \mathrm{m}$

Krossar

 $Hver\ kross\ gildir\ 3\ stig.\ Vinsamlegast\ skráið\ svörin\ ykkar\ við\ tilheyrandi\ krossi\ hér\ fyrir\ neðan:$

K1	K2	K 3	K 4	K5	K 6	K7	K 8	K9	K10	K11	K12	K13	K14	K15

Krossar (45 stig)

K1. Eitt ljósár er skilgreint sem sú vegalengd sem ljósið ferðast á einu ári. Hvað er eitt ljósár langt?

 $(A) \quad 3,43 \cdot 10^{14} \, \mathrm{m} \quad (B) \quad 9,46 \cdot 10^{15} \, \mathrm{m} \quad (C) \quad 2,94 \cdot 10^{16} \, \mathrm{m} \quad (D) \quad 4,39 \cdot 10^{17} \, \mathrm{m} \quad (E) \quad 7,53 \cdot 10^{18} \, \mathrm{m} \quad (D) \quad 4,10 \cdot 10^{18} \, \mathrm{m} \quad (D)$

K2. Snæfríður stendur á lestarstöð og er að veifa frænku sinni, Ragnheiði, á sama tíma og lestin er að taka af stað úr kyrrstöðu með jafnri hröðun $0.25\,\mathrm{m/s^2}$. Hversu langur tími líður þar til að lestin hefur náð hámarkshraða sínum, $108\,\mathrm{km/klst?}$

(A) 12 s (B) 45 s (C) 72 s (D) 99 s (E) 120 s

K3. Jörmunrekur stendur á vog og heldur á þungri eðlisfræðibók sem er kyrrstæð við tímann t = 0 s. Við tímann t = 1 s byrjar hann að lyfta bókinni upp þannig að við tímann t = 2 s hefur hún færst upp um hálfan metra og er aftur kyrr. Hvert eftirfarandi grafa sýnir best hvað stóð á voginni sem fall af tíma?

- K4. Vésteinn og Hálfdán sitja á löngum sleða sem stendur á núningslausum ís. Vésteinn situr vinstra meginn á sleðanum en Hálfdan situr hægra meginn. Hálfdan kastar bolta til Vésteins, sem grípur boltann. Hvað gerist við sleðann?
 - (A) Hann byrjar á að fara til vinstri en endar á því að vera kyrr.
 - (B) Hann byrjar á að fara til vinstri en endar á því að fara til hægri.
 - (C) Hann byrjar á að fara til hægri en endar á því að vera kyrr.
 - (D) Hann byrjar á að fara til hægri en endar á því að fara til vinstri.
 - (E) Hann er kyrr allan tímann.
- **K5.** Myndin hér til hægri sýnir fætur spýtukalls. Fæturnir eru einsleitir og jafn langir, af lengd L. Hann stendur þannig að fætur hans mynda hornið θ . Núningsstuðullinn milli jarðarinnar og fóta spýtukallsins er μ . Hvert er stærsta hornið, θ , þannig að spýtukallinn detti ekki niður í spíkat. [Ath. Munið eftir **öllum** kröftunum]

- (A) $\arcsin(2\mu)$ (B) $2\arcsin(\frac{\mu}{2})$ (C) $2\arctan(\mu)$ (D) $\arctan(2\mu)$ (E) $2\arctan(2\mu)$
- **K6.** Bolta er sleppt úr hæð h yfir jörðu. Í hæð y < h er búið að koma fyrir planka sem hallar um 45° miðað við lárétt þannig að boltinn skoppar lárétt af plankanum. Finnið y þannig að boltinn lendi í sem mestri láréttri fjarlægð frá plankanum. Gera má ráð fyrir að áreksturinn sé fjaðrandi.
 - (A) $\frac{1}{10}h$ (B) $\frac{1}{5}h$ (C) $\frac{1}{2}h$ (D) $\frac{1}{\sqrt{2}}h$ (E) Boltinn lendir alltaf á sama stað óháð y.

K7. Kubbur með massa m liggur á núningslausu skábretti sem hallar um horn θ miðað við lárétt. Skábrettið hefur hröðun a til hægri sem er þannig að kubburinn helst kyrr miðað við skábrettið. Hver er þverkrafturinn á kubbinn?

K8. Íó er tungl Júpíters. Umferðartími tunglsins er 1,769 dagar og meðalgeisli sporbrautarinnar er 421 800 km. Látum M_J tákna massa Júpíters og m_J tákna massa Jarðarinnar. Hvert er hlutfallið M_J/m_J ?

(A) 51 (B) 94 (C) 141 (D) 318 (E) 637

K9. Tveir gormar hafa sama gormstuðul k og óstrekkt lengd þeirra er svo gott sem núll. Nú er teygt á þeim um lengd ℓ og tveir massar festir við gormana sem og veggur eins og sjá má á myndinni hér til hægri. Mössunum er sleppt úr kyrrstöðu á sama tíma. Látum a_v tákna stærðina á hröðun vinstri massans og a_h hægri massans. Hver eru gildi a_v og a_h á augnablikinu eftir að mössunum hefur verið sleppt?

(A) $a_v = 2k\ell/m$ og $a_h = k\ell/m$.

(B) $a_v = k\ell/m \text{ og } a_h = 2k\ell/m.$

(C) $a_v = k\ell/m \text{ og } a_h = k\ell/m.$

(D) $a_v = 0 \text{ og } a_h = 2k\ell/m.$

(E) $a_v = 0$ og $a_h = k\ell/m$.

K10. Pláneta hefur einsleitan eðlismassa, ρ , geisla R og þyngdarhröðunin við yfirborð plánetunnar er g. Hver er lausnarhraðinn frá yfirborði plánetunnar?

(A)
$$\frac{1}{2}\sqrt{gR}$$
 (B) \sqrt{gR} (C) $\sqrt{2gR}$ (D) $2\sqrt{gR}$ (E) $\sqrt{\frac{1}{2}gR}$

K11. Fjórum ögnum, hver með hleðslu+q er komið fyrir á x-ásnum (samhverft um upphafspunktinn). Fimmtu hleðslunni, með hleðslu-Q, er komið fyrir á jákvæðum y-ásnum eins og sést á myndinni. Í hvaða stefnu er heildar-krafturinn sem verkar á fimmtu hleðsluna?

 $(A) \uparrow (B) \downarrow (C) \rightarrow (D) \leftarrow (E)$ Heildarkrafturinn er núll.

K12. Loftmótstöðu sem verkar á bolta er gjarnan lýst með dragakrafti, F_d . Dragakrafturinn er háður eðlismassa loftsins, ρ , geisla boltans, R og hraða boltans, v. Hver af eftirfarandi stærðum hefur réttar einingar og gæti því hugsanlega verið jöfn dragakraftinum?

(A) ρv (B) $\rho R v$ (C) $\rho R v^2$ (D) $\rho R^2 v$ (E) $\rho R^2 v^2$

K13. Lögmálið um svarthlutsgeislun segir að aflið, P, sem svarthlutur með yfirborðsflatarmál A geislar frá sér er háð hitastigi svarthlutarins, T, samkvæmt Stefan-Boltzman lögmálinu $P = \sigma A T^4$ þar sem $\sigma = 5,67 \cdot 10^{-8} \, \mathrm{Wm}^{-2} \mathrm{K}^{-4}$ er fasti. Því er spáð að eftir 5 milljarða ára muni sólin byrja að þenjast út þar til hún gleypir jörðina. Núna er hitastig sólarinnar 5778 K og geisli hennar $R_{\odot} = 6,96 \cdot 10^8 \, \mathrm{m}$. Því er spáð að hitastigið muni lækka niður í 5000 K. Hvert verður afl sólarinnar eftir þennsluna?

 $\text{(A)} \quad 3.6 \cdot 10^{26} \, \text{W} \quad \text{(B)} \quad 9.4 \cdot 10^{27} \, \text{W} \quad \text{(C)} \quad 4.7 \cdot 10^{29} \, \text{W} \quad \text{(D)} \quad 1.0 \cdot 10^{31} \, \text{W} \quad \text{(E)} \quad 2.2 \cdot 10^{32} \, \text{W}$

- **K14.** Hvert af eftirfarandi mælitækjum er **EKKI** hægt að nota til að mæla þyngdarhröðun jarðar, q?
 - (A) Gormvog (sem mælir byngd) og þekktan massa.
 - (B) Pendúl af þekktri lengd og skeiðklukku.
 - (C) Skábretti sem hallar um þekkt horn, misþunga vagna með þekktan massa og skeiðklukku.
 - (D) Fallbyssu sem skýtur byssukúlum, af þekktum massa, með þekktum upphafshraða og málband.
 - (E) Hús af þekktri hæð H, skeiðklukku og óþekktan massa.
- **K15.** Sporbraut halastjörnu sker sporbraut jarðar undir horni $\alpha = 45^{\circ}$. Gerum ráð fyrir að sporbraut jarðar sé hringlaga með geisla R_0 , sólfirð halastjörnunnar, R_{\max} sé mun meiri en R_0 og að sporbrautirnar liggja í sama plani. Hver er sólnánd halastjörnunnar, R_{\min} ?
 - (A) 1,9 R_0 (B) 1,0 R_0 (C) 0,71 R_0 (D) 0,50 R_0 (E) 0,28 R_0

Dæmi 1: Tjarnarbolti? (USAPhO 2016) [15 stig]

Varmaflæði frá einu efni í annað er lýst með

$$P = \frac{\kappa A \Delta T}{d}$$

þar sem P er varmaaflið, A er þverskurðarflatarmálið þar sem fletirnir snertast, ΔT er hitastigsmunurinn á flötunum, d er þykktin á fletinum sem varminn flæðir í og κ er fasti sem kallast varmaleiðnistuðullinn.

Á vetrardegi nokkrum í Reykjavík er hitastigið -5 °C. Tjörnin í miðbæ Reykjavíkur hefur flatarmál $A=0.25\,\mathrm{km^2}$ og dýpt $d_0=1.3\,\mathrm{m}$. Ofan á vatninu hefur myndast íslag af þykkt $b_0=1.0\,\mathrm{cm}$. Botn vatnsins er við fast hitastig 4.0 °C (snerting við jörð). Markmið okkar er að finna lokaþykktina sem ísinn mun hafa.

Nokkrir fastar sem gætu komið að gagni í þessu dæmi:

Nafn	Tákn	Gildi
Eðlisvarmi vatns	$c_{ m vatn}$	$4200\mathrm{J/(kgK)}$
Eðlisvarmi íss	$c_{ m is}$	$2100\mathrm{J/(kgK)}$
Varmaleiðni vatns	$\kappa_{ m vatn}$	$0.57{ m W/(mK)}$
Varmaleiðni íss	$\kappa_{ m is}$	$2.2\mathrm{W/(mK)}$
Eðlismassi vatns	$ ho_{ m vatn}$	$1000\mathrm{kg/m^3}$
Eðlismassi íss	$ ho_{ m is}$	$920\mathrm{kg/m^3}$

- (a) Vatn þennst út þegar það frýs. Finnið upphaflega dýpt tjarnarinnar, d, áður en íslagið myndaðist.
- (b) Látum $h_{\rm b}$ tákna dýpt vatnsins þegar þykkt ísins er þ. Ákvarðið $h_{\rm b}$ sem fall af d, þ og þekktum föstum.
- (c) Finnið lokaþykktina, þ, sem ísinn mun hafa.

Dæmi 2: Martröð! Skábretti ofan á skábretti [20 stig]

Tveim skábrettum er komið fyrir á láréttum fleti. Núningsstuðullinn milli skábrettanna er μ og núningsstuðullinn milli neðra skábrettisins, B, og lárétta flatarins er μ . Neðra skábrettið hallar um θ gráður miðað við lárétt. Massi skábrettis A er m og massi skábrettis B er M=2m. Láréttur kraftur F verkar á skábretti B eins og sést á myndinni.

Ákvarðið þau gildi á F (sem fall af m, g, θ og μ) þannig að efra skábrettið helst kyrrt miðað við neðra skábrettið (rennur semsagt hvorki upp né niður).

[Ábending: Ekki snúa hnitakerfinu! Skrifið niður kraftajöfnu fyrir öllu kerfinu og síðan fyrir kubb A.]

Dæmi 3: Rennibraut (USAPhO 2016) [20 stig]

Einsleitri kúlu er sleppt úr hæð h á rennibrautinni hér fyrir neðan. Kúlan rúllar án þess að renna á brautinni. Gerum ráð fyrir að núningur sé hverfandi lítill svo að engin orka tapast vegna núnings.

- (a) Ákvarðið, h_{\min} , þ.e. minnsta mögulega gildið á hæðinni h þannig að kúlan nái að rúlla allan hringinn.
- (b) Kúlunni er sleppt úr hæð $h < h_{\min}$ þannig að hún nær ekki að komast í hæsta punkt í gjörðinni. Hún fellur aftur niður í punkt P. Markmið okkar er að ákvarða hæðina sem kúlunni var sleppt úr sem fall af R. Skilgreinum upphafspunkt hnitakerfisins í P. Þá má skrifa staðsetningu á gjörðinni sem:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} R \sin \theta \\ R(1+\cos \theta) \end{pmatrix}, \qquad \quad \theta \in [0^\circ, 180^\circ[.$$

Látum θ vera hornið þar sem ögnin losnar af gjörðinni og v vera hraða hennar þegar hún losnar. Sýnið að hæðin y þar sem hún losnar er gefin með:

$$y = R(1 + \cos \theta) = \frac{1}{2}g\left(\frac{R}{v}\frac{\sin \theta}{\cos \theta}\right)^2 - v\sin \theta\left(\frac{R}{v}\frac{\sin \theta}{\cos \theta}\right)$$

(c) Notið jöfnuna hér á undan til þess að ákvarða hornið θ þar sem ögnin losnar.

[Ábending: Skoðið þverkraftinn sem verkar á kúluna í hæsta punkti.]

[Ábending: Þið þurfið líka að skoða þverkraftinn sem verkar á kúluna einmitt þegar hún dettur.]

(d) Notið niðurstöðuna á undan og orkuvarðveislu til að finna hæðina h, þannig að kúlan lendi í P.