M1C03 Lecture 28

Greatest common divisors and the Euclidean Algorithm

Jeremy Lane

Nov 22, 2021

Announcement(s)

- Test 2 Friday
- No quiz this week

Overview

Reference: Lakins, section 6.2.

The Division Algorithm (positive case)

Let a, b positive integers. Want to find q, r such that a = bq + r and $0 \le r < b$.

- 1. q < 0
- 2. r <- a

while $r \ge b$ do:

- 3. r <- r b
- $4. q \leftarrow q + 1$

return q, r

Example a = 924, b = 114.

Greatest common divisor

Definition: An integer a divides an integer b if there exists an integer k such that b = ka.

Definition: The *greatest common divisor* of two integers a and b is the largest positive integer c such that c|a and c|b.

Theorem (Lakins, Lemma 6.2.3)

Let $a,b\in\mathbb{Z}$, $a\neq 0$ and $b\neq 0$. If $q,r\in\mathbb{Z}$ have the property that a=bq+r, then $\gcd(a,b)=\gcd(b,r).$

Proof:

The Euclidean Algorithm

Given positive integers a, b. Assume W.L.O.G. b < a. Want to compute $\gcd(a, b)$.

while b does not divide a do:

- 1. Use the division algorithm to compute q, r such that a = b * q + r and 0 <= r < b
- 2. a <- b
- $3. b \leftarrow r$

return b

Theorem (The Euclidean Algorithm)

The Euclidean algorithm returns gcd(a, b).

Lakins, Example 6.2.5

Find gcd(924, 114).

Bézout's identity

Theorem

Let a and b be integers not both equal to zero. There exists integers n and m such that

$$\gcd(a,b) = n \cdot a + m \cdot b.$$