Video 13-2: ODBC API基础 (教科书8.4.2)

ODBC API

- ❖ODBC 应用程序编程接口的一致性
 - ■API一致性
 - ●包含核心级、扩展1级、扩展2级
 - ■语法一致性
 - ●包含最低限度SQL语法级、核心SQL语法级、扩展SQL 语法级

ODBC API 基础(续)

- 1. 函数概述
- 2. 句柄及其属性
- 3. 数据类型

1. 函数概述

管理多个连接句柄。

连接句柄:

(1)连接某一个数据源;

(2)同一个RDBMS下每个数据库可以创建一个数据源

An Introduction to Database System

语句句柄:执行SQL语句

函数概述 (续)

- ❖ODBC 3.0 标准提供了76个函数接口
 - ■分配和释放环境句柄、连接句柄、语句句柄
 - ■连接函数 (SQLDriverconnect等)
 - ■与信息相关的函数(SQLGetinfo、SQLGetFuction等)
 - ■事务处理函数(如SQLEndTran)
 - 执行相关函数 (SQLExecdirect、SQLExecute等)
 - ■編目函数,ODBC 3.0提供了11个编目函数,如 SQLTables、SQLColumn等。应用程序可以通过对编目 函数的调用来获取数据字典的信息,如权限、表结构等

函数概述 (续)

❖ ODBC不同版本上的函数和函数使用是有差异的, 读者必须注意使用的版本

2. 句柄及其属性

- ❖句柄是32位整数值,代表一个指针
- **❖ODBC 3.0**中句柄分类
 - ■环境句柄
 - ■连接句柄
 - ■语句句柄
 - ■描述符句柄

句柄及其属性(续)

- ❖应用程序句柄之间的关系
 - ■每个ODBC应用程序需要建立一个ODBC环境,分配一个环境句柄,存取数据的全局性背景,如环境状态、当前环境状态诊断、当前在环境上分配的连接句柄等
 - 一个环境句柄可以建立多个连接句柄,每一个连接句柄 实现与一个数据源之间的连接

应用程序句柄之间的关系

句柄及其属性(续)

- ❖应用程序句柄之间的关系(续)
 - ■在一个连接中可以建立多个语句句柄,它不只是一个 SQL语句,还包括SQL语句产生的结果集以及相关的 信息等
 - 在ODBC 3.0中又提出了描述符句柄的概念,它是描述 SQL语句的参数、结果集列的元数据集合

3. 数据类型

- ❖ ODBC标准数据类型
 - SQL数据类型:用于数据源
 - SQLCHAR、SQLDOUBLE 、SQLINTEGER 、SQLREAL 等
 - C数据类型:用于应用程序的C代码
 - SQL_C_BIT、SQL_C_DOUBLE、SQL_C_SLONG[j]、 SQL_C_FLOAT
- ❖ 由DBMS的驱动程序完成自身数据类型和ODBC标准数据 类型的映射

ODBC中c数据类型、SQL数据类型、C数据类型三者对应关系

ODBC中c数据类型	SQL数据类型	C数据类型
SQL_C_CHAR	SQLCHAR *	unsigned char *
SQL_C_WCHAR	SQLWCHAR *	wchar_t *
SQL_C_SSHORT[j]	SQLSMALLINT	short int
SQL_C_USHORT[j]	SQLUSMALLINT	unsigned short int
SQL_C_SLONG[j]	SQLINTEGER	long int
SQL_C_ULONG[j]	SQLUINTEGER	unsigned long int
SQL_C_FLOAT	SQLREAL	float
SQL_C_DOUBLE	SQLDOUBLE, SQLFLOAT	double
SQL_C_BIT	SQLCHAR	unsigned char

ODBC中c数据类型、SQL数据类型、C数据类型三者对应关系

SQL_C_STINYINT[j]	SQLSCHAR	signed char
SQL_C_UTINYINT[j]	SQLCHAR	unsigned char
SQL_C_SBIGINT	SQLBIGINT	_int64[h]
SQL_C_UBIGINT	SQLUBIGINT	unsigned _int64[h]
SQL_C_BINARY	SQLCHAR *	unsigned char *
SQL_C_BOOKMARK[i]	BOOKMARK	unsigned long int[d]
SQL_C_VARBOOKMARK	SQLCHAR *	unsigned char *

三者完整的映射关系请参考:

https://msdn.microsoft.com/en-us/library/ms714556(v=vs.85).aspx

数据类型 (续)

❖SQL数据类型和C数据类型之间的转换规则

	SQL数据类型	C数据类型
SQL数据类型	数据源之间转换	应用程序变量传送到语句 参数(SQLBindparameter)
C数据类型	从结果集列中返回到应用 程序变量(SQLBindcol)	应用程序变量之间转换 (

select sno, sname into sSno, Sname from student

select * from student where sno = sSno