MM3 Sensor Layer (Version 10) Documentation

ZhiYoong Foo¹, SeokHyeon Jeong², Yejoong Kim³, and Inhee Lee⁴

Michigan Integrated Circuits Laboratory, University of Michigan, Ann Arbor

Last Updated: March 21, 2019

¹ zhiyoong@umich.edu

² seojeong@umich.edu

³ yejoong@umich.edu

⁴ inhee@umich.edu

Contents

I.	R	evision History	4
	A.	SNSv1	4
	В.	SNSv2	4
	C.	SNSv3	4
	D.	SNSv3E	4
	E.	SNSv3E2	4
	F.	SNSv4	4
	G.	SNSv5	4
	Н.	SNSv6	4
	l.	SNSv7	5
	J.	SNSv9	5
	K.	SNSv10	5
II.	S	ensor Layer Description	6
Ш		MBUS Register File	9
	A.	Register File Mapping	9
	В.	Register Descriptions	10
IV	•	CDC	19
IV	A.	Power Domains	
IV			21
IV	A.	Power Domains	21 21
IV	A. B.	Power Domains	21 21 21
IV	A. B. C.	Power Domains	21 21 21
IV	A. B. C. D.	Power Domains	21 21 21 21
IV	A. B. C. D.	Power Domains Reset Considerations Interrupt Considerations Operation Sample Operation	21 21 21 21
IV	A. B. C. D. F.	Power Domains Reset Considerations Interrupt Considerations Operation Sample Operation Power Draw / Current Draw / Energy Consumption	21 21 21 22 22
IV	A. B. C. D. E. F.	Power Domains Reset Considerations Interrupt Considerations Operation Sample Operation Power Draw / Current Draw / Energy Consumption Sensor Connection	21 21 21 22 22
v.	A. B. C. D. E. H.	Power Domains Reset Considerations Interrupt Considerations Operation Sample Operation Power Draw / Current Draw / Energy Consumption Sensor Connection Clock Generator	2121212122222222
	A. B. C. D. E. H.	Power Domains Reset Considerations Interrupt Considerations Operation Sample Operation Power Draw / Current Draw / Energy Consumption Sensor Connection Clock Generator SNSv9 Capacitor Change	21 21 22 22 22 23
	A. B. C. D. E. F. G.	Power Domains Reset Considerations Interrupt Considerations Operation Sample Operation Power Draw / Current Draw / Energy Consumption Sensor Connection Clock Generator SNSv9 Capacitor Change	21 21 22 22 22 23 24
	A. B. C. D. E. F. G. H. I. T	Power Domains Reset Considerations Interrupt Considerations Operation Sample Operation Power Draw / Current Draw / Energy Consumption Sensor Connection Clock Generator SNSv9 Capacitor Change EMP_SENSOR Power Domains	21 21 22 22 22 22 24
	A. B. C. D. F. G. H. I. T A. B.	Power Domains Reset Considerations Interrupt Considerations Operation Sample Operation Power Draw / Current Draw / Energy Consumption Sensor Connection Clock Generator SNSv9 Capacitor Change EMP_SENSOR Power Domains Interrupt Considerations	212121222222222424

VI.	LDO	30
A.	Power Domains	30
В.	Operation	30
C.	Post-PEX Simulation Results	32
D.	Measurement Results	46

I. Revision History

A. SNSv1

• First Revision

B. SNSv2

- Fixed Isolation Issues
- Fixed spurious MBUS_CLOCK toggling when interrupted during sleep
- Added Linear Regulator
- Changed CDC's V0P6 Power Domain to output of Linear Regulator

C. SNSv3

- Width Fixed at 1050um including crackstop
- Height Fixed at 1630um including crackstop

D. SNSv3E

Isolation for CDC_LV ECO-ed to METAL 3 connected to output of register CDC_on_adap

E. SNSv3E2

Grounded CDC's IRQ. IRQ no longer fires

F. SNSv4

- CDC's Output Level Converter's Isolate signal now on separate Register CDC_LV_ISO
- Added IRQ Enables for CDC, TEMP_SENSOR, & Error! Reference source not found.
- Changed several default values for TEMP_SENSOR

TEMP_SENSOR_DELAY_SEL	3'h2	3'h5
TEMP_SENSOR_SEL_CT	3'h3	3'h5

- Moved CDC_LV to SNS_LV and pushed to cpf flow
- TEMP_SENSOR is now on Error! Reference source not found.'s output. (VDD_1P2_ADC)
- Added TSNS for TEMP SENSOR.
- Added TSNS RESETn for TEMP SENSOR.
- CDC_LDO and ADC_LDO has new CURRENT_2X pins (Inhee Lee)
- ADC LDO has cap on output
- Added LDO output observability to back of chip

G. SNSv5

Changed CDC from Hyunsoo's to Inhee's

H. SNSv6

- Changed SAR_ADC_IRQ_REPLY_ADDR to SAR_ADC_IRQ_REPLY_PACKET
- Changed CDC_IRQ_ADDR to CDC_IRQ_REPLY_PACKET
- Changed TEMP_SENSOR_IRQ_ADDR to TEMP_SENSOR_IRQ_REPLY_PACKET
 - Above changes maintains backward compatibility with PR*v11 and PR*v12

- Updated Schmitt Trigger Pad for MBUS_CLKIN
- Updated Layer Control for double latching fixes

I. SNSv7

- Changed TEMP_SENSOR
- Changed several Register File registers

J. SNSv9

- Removed CDC_LDO and ADC_LDO
- Removed ADC
- Added LDO TOP
- Changed several Register File Registers
- PAD Changes
- Fiducial now has PAD Layer
- Changed CDC's MIM caps to be Temperature Invariant (See Section CDC)
- MIMCAPS added to V3P6 and V1P2

Voltage Domain	Decap Cells
V3P6	407xMIM cells ≈ 730pF
V1P2	130xMIM cells ≈ 233pF

Table I-1 Number of Decap Cells Added to SNSv9

K. SNSv10

• Updated TEMP_SENSOR

II. Sensor Layer Description

The Sensor Layer (SNSv10) (Figure II-i & Figure II-ii) contains one Temperature Sensor, one Capacitance to Digital Converter, two Linear Regulators.

- Designed in TSMC180 tsmc18
- Tapedout on June 12th 2017
- Top-Level layout is located at: /afs/eecs.umich.edu/vlsida/projects/mm3_node/icfb_tsmc180/SNSv10_CANOPY/SNSv10/layout
- Top-Level LVS CDL is located at: /afs/eecs.umich.edu/vlsida/projects/mm3_node/netlist/cdl/SNSv10/top/SNSv10.cdl
- Top-Level Finesim CDL is located at: /afs/eecs.umich.edu/vlsida/projects/mm3_node/netlist/cdl/SNSv10/top/SNSv10.ckt
- MBUS Long Address is 20'h0E009

SNSv10

Figure II-i Sensor Layer (Version10) (SNSv10) (1050um X 1630um)

Figure II-ii SNSv10 Wirebonding Diagram

III. MBUS Register File

A. Register File Mapping

Please see Table III-1.

Address	Register Name	W/R	Size & Reset	Bit Field	Module
0x00	LDO_ VREF_I_AMP	W/R	4'h0	[13:10]	LDO
0x00	LDO_SEL_TSNS	W/R	3'h4	[9:7]	LDO
0x00	LDO_ SEL_CDC	W/R	3'h4	[6:4]	LDO
0x00	LDO_EN_VREF	W/R	1'h0	[3]	LDO
0x00	LDO_EN_IREF	W/R	1'h0	[2]	LDO
0x00	LDO_ EN_TSNS_OUT	W/R	1'h0	[1]	LDO
0x00	LDO_EN_CDC_OUT	W/R	1'h0	[0]	LDO
0x01	TSNS_EN_MONITOR	W/R	1'h0	[9]	TEMP_SENSOR
0x01	TSNS_EN_IRQ	W/R	1'h0	[8]	TEMP_SENSOR
0x01	TSNS_CONT_MODE	W/R	1'h0	[7]	TEMP_SENSOR
0x01	TSNS_BURST_MODE	W/R	1'h0	[6]	TEMP_SENSOR
0x01	TSNS_EN_SENSOR_LDO	W/R	1'h0	[5]	TEMP_SENSOR
0x01	TSNS_EN_SENSOR_V1P2	W/R	1'h0	[4]	TEMP_SENSOR
0x01	TSNS_SEL_LDO	W/R	1'h0	[3]	TEMP_SENSOR
0x01	TSNS_SEL_V1P2	W/R	1'h0	[2]	TEMP_SENSOR
0x01	TSNS_ISOLATE	W/R	1'h1	[1]	TEMP_SENSOR
0x01	TSNS_RESETn	W/R	1'h0	[0]	TEMP_SENSOR
0x02	TSNS_R_REF	W/R	4'h8	[21:18]	TEMP_SENSOR
0x02	TSNS_I_BUF	W/R	4'h0	[17:14]	TEMP_SENSOR
0x02	TSNS_I_BUF2	W/R	4'h0	[13:10]	TEMP_SENSOR
0x02	TSNS_I_CMP	W/R	4'h1	[9:6]	TEMP_SENSOR
0x02	TSNS_I_MIRROR	W/R	2'h1	[5:4]	TEMP_SENSOR
0x02	TSNS_I_SOSC	W/R	4'h0	[3:0]	TEMP_SENSOR
0x03	TSNS_MIM	W/R	3'h4	[18:16]	TEMP_SENSOR
0x03	TSNS_MOM	W/R	3'h4	[15:13]	TEMP_SENSOR
0x03	TSNS_SEL_VVDD	W/R	4'hE	[12:9]	TEMP_SENSOR
0x03	TSNS_SEL_STB_TIME	W/R	3'h3	[8:6]	TEMP_SENSOR
0x03	TSNS_SEL_REF_STB_TIME	W/R	2'h2	[5:4]	TEMP_SENSOR
0x03	TSNS_SEL_CONV_TIME	W/R	4'h6	[3:0]	TEMP_SENSOR
0x04	TSNS_PDIFF	W/R	15'h0200	[14:0]	TEMP_SENSOR
0x05	TSNS_POLY	W/R	24'h004000	[23:0]	TEMP_SENSOR
0x06	TSNS _DOUT	R	24'hX	[23:0]	TEMP_SENSOR
0x07	TSNS_INT_RPLY_SHORT_ADDR	W/R	8'h10	[15:8]	
0x07	TSNS_INT_RPLY_REG_ADDR	W/R	8'h00	[7:0]	
0x08	CDCW_PG_VLDO	W/R	1'h1	[12]	CDC
0x08	CDCW_PG_V1P2	W/R	1'h1	[11]	CDC
0x08	CDCW_PG_VBAT	W/R	1'h1	[10]	CDC
0x08	CDCW_ISO	W/R	1'h1	[9]	CDC

0x08	CDCW_RESETn	W/R	1'h0	[8]	CDC
0x08	CDCW_ENABLE	W/R	1'h0	[7]	CDC
0x08	CDCW_CTRL_RING	W/R	2'h1	[6:5]	CDC
0x08	CDCW_CTRL_DIV	W/R	2'h1	[4:3]	CDC
0x08	CDCW_MODE_REF	W/R	1'h1	[2]	CDC
0x08	CDCW_MODE_PAR	W/R	1'h1	[1]	CDC
0x08	CDCW_IRQ_EN	W/R	1'h1	[0]	CDC
0x09	CDCW_N_INIT_CLK	W/R	10'h80	[19:10]	CDC
0x09	CDCW_N_CYCLE_SINGLE	W/R	10'h8	[9:0]	CDC
0x0A	CDCW_N_CYCLE_SET	W/R	10'h10	[19:10]	CDC
0x0A	CDCW_T_CHARGE	W/R	10'h80	[9:0]	CDC
0x0B	CDCW_FSM_STATE	R	4'hX	[4:1]	CDC
0x0B	CDCW_DONE	R	1'hX	[0]	CDC
0x0C	CDCW_OUT0[23:0]	R	24'hX	[23:0]	CDC
0x0D	CDCW_OUT0[39:24]	R	16'h	[15:0]	CDC
0x0E	CDCW_OUT1	R	24'hX	[23:0]	CDC
0x0F	CDCW_OUT2	R	24'hX	[23:0]	CDC
0x10	CDCW_OUT3	R	24'hX	[23:0]	CDC
0x11	CDCW_OUT4	R	24'hX	[23:0]	CDC
0x12	CDCW_OUT5	R	24'hX	[23:0]	CDC
0x13	CDCW_CNTM	R	24'hX	[23:0]	CDC
0x14	CDCW_CNTA	R	24'hX	[23:0]	CDC
0x15	CDCW_CNTB	R	24'hX	[23:0]	CDC
0x16		W/R	8'h00	[23:16]	
0x16		W/R	8'h10	[15:8]	
0x16		W/R	8'h01	[7:0]	
0x17	WUP_ENABLE	W/R	1'h0	[23]	
0x17	WUP_LC_IRQ_EN	W/R	1'h1	[22]	
0x17	WUP_AUTO_RESET	W/R	1'h1	[21]	
0x17	WUP_INT_RPLY_SHORT_ADDR	W/R	8'h10	[15:8]	
0x17	WUP_INT_RPLY_REG_ADDR	W/R	8'h07	[7:0]	
0x18	WUP_INT_RPLY_PAYLOAD	W/R	24'h00E00A	[23:0]	
0x19	WUP_THRESHOLD	W/R	24'h00EA60	[23:0]	
0x1A	WUP_CNT_VALUE	R	24'hX	[23:0]	
0x1B	LC_CLK_DIV	W/R	2'h2	[3:2]	
0x1B	LC_CLK_RING	W/R	2'h1	[2:1]	

Table III-1 Register File Mapping

B. Register Descriptions

LDO_ VREF_I_AMP

LDO's Amplifier Bias tuning bits

LDO_SEL_TSNS

LDO's Voltage Tuning for VDD_TEMP

LDO SEL CDC

LDO Voltage Tuning for VDD_CDC

LDO_EN_VREF

Enables LDO's Voltage Reference

LDO EN IREF

Enables LDO Current Reference

LDO EN TSNS OUT

Enables LDO's VDD_TEMP output

LDO_EN_CDC_OUT

Enables LDO's VDD_CDC output

TSNS EN SENSOR LDO

Power gate signal (Active low). Selects LDO as analog power source.

TSNS EN SENSOR V1P2

Power gate signal (Active low). Selects V1P2 as analog power source.

TSNS SEL LDO

Power gate signal (Active low). Selects LDO as digital power source

TSNS SEL V1P2

Power gate signal (Active low). Selects V1P2 as digital power source.

TSNS RESETn

Global reset. Starts conversion when released.

TSNS ISOLATE

Isolates clock signals (CLK_{SENSE} and CLK_{REF}) from digital block

TSNS CONT MODE

Enables TEMP_SENSOR's Continuous Mode. This mode eliminates startup time by keeping the sensor always-on (i.e., no power gating). Therefore, (TSNS_EN_SENSOR_LDO or TSNS_EN_SENSOR_V1P2) and (TSNS_SEL_LDO or TSNS_SEL_V1P2) should be kept high for this mode.

TSNS BURST MODE

Enables TEMP_SENSOR's Burst Mode. Requires TSNS_CONT_MODE high. In addition to TSNS_CONT_MODE, this mode starts conversion as soon as asserted CLR signal is cleared.

TSNS SEL VVDD

Adjust virtual VDD of the CLK_{SENS}.

TSNS R REF

Adjust resistance of the current source.

TSNS I BUF

Adjust the buffer bias current (Current REF).

TSNS I BUF2

Adjust the buffer bias current (Composite Resistor).

TSNS_I_CMP

Adjust the comparator bias current. Increasing bit increases comparator speed and thus improves temperature coefficient (TC) of the reference clock (CLK_{REF}) at the cost of higher power consumption. TC improves until comparator delay becomes negligible to the overall period.

TSNS I MIRROR

Adjust main current.

TSNS_I_SOSC

Adjust speed of the start-up oscillator. Increasing bit increases current which also increases the frequency of the oscillator.

TSNS_MIM

Adjust MIM cap size.

TSNS MOM

Adjust MOM cap size.

TSNS PDIFF

Adjust P+ diffusion resistor size.

TSNS POLY

Adjust P+ poly resistor size.

TSNS SEL STB TIME

Controls the start-up time ($t_{startup}$, Time between TSNS_RESETn and internal start signal). Analog part of the temperature needs certain start-up time for its internal voltages to stabilize after a releasing its power gate (TSNS_EN_SENSOR_LDO or TSNS_EN_SENSOR_V1P2). This start-up time is controlled with a speed of the s-oscillator (TSNS_I_SOSC) and asynchronous 10-bit counter (TSNS_SEL_STB_TIME). Higher bit results longer start-up time.

TSNS_SEL_STB_TIME	0	1	2	3	4	5	6	7
Counter bit	2 ³	2 ⁴	2 ⁵	2 ⁶	2 ⁷	2 ⁸	2 ⁹	2 ¹⁰

There are 2 parts that need to stabilize upon a power gate release; 1) a sensing clock (CLK_{SENSE}) and 2) a current reference inside the reference clock (CLK_{REF}). At low temperature (\leq -10°C), sensing clock is a bottle neck. However, current reference becomes a bottle neck for higher temperatures.

Temp.		CLK	SENSE		CLK _{REF}									
(°C)		Time	(ms)			Time	(ms)		Number of Cycles					
	Mean Std Max Min		Mean	Std	Max	Min	Mean	Std	Max	Min				
-30	8.58	4.03	28.86	1.83	3.02	1.36	8.10	0.319	15.5	5.82	37	5		
-10	2.65	1.12	7.94	0.7	2.79	1.26	7.39	0.257	16.3	6.15	37	5		
10	0.99	0.40	2.95	0.28	2.67	1.14	6.81	0.0961	17.3	6.18	38	5		
30	0.44	0.16	1.14	0.13	2.59	1.04	6.35	0.0608	18.5	6.19	40	5		

50	0.22	0.074	0.55	0.067	2.57	0.928	5.98	0.0451	20.0	6.08	41	5
70	0.12	0.037	0.27	0.041	2.5	0.856	5.67	0.144	21.0	6.12	42	5
90	0.069	0.020	0.16	0.027	2.47	0.784	5.39	0.0649	22.5	6.10	45	5
110	0.043	0.012	0.089	0.017	2.47	0.759	5.26	0.126	24.3	6.39	54	5
130	0.028	0.007	0.054	0.011	2.81	0.799	5.55	0.0476	29.3	6.85	64	5

TSNS_SEL_REF_STB_TIME

Controls the stabilization time (t_{stb}) of the reference clock (CLK_{REF}) after releasing internal start signal. Stabilization time is controlled with a speed of the reference clk (CLK_{REF}) and synchronous 4-bit counter (TSNS_SEL_REF_STB_TIME). Increasing control bit increases stabilization time. When designated value is reached, RST_Counter gets released and count starts.

TSNS_SEL_REF_STB_TIME	0	1	2	3
Counter bit	2 ¹	2 ²	2 ³	2 ⁴

TSNS SEL CONV TIME

Controls the conversion time (t_{conv}) of the temperature sensor. Increasing control bit increases conversion time. It will cause more energy consumption at the expense of better resolution.

Conversion Time = Counter bit / Frequency of CLK_{REF}

TSNS_SEL_CONV_TIME	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Counter bit	2 ⁵	2 ⁶	2 ⁷	2 ⁸	2 ⁹	2 ¹⁰	2 ¹¹	2 ¹²	2 ¹³	2 ¹⁴	2 ¹⁵	2 ¹⁶	2 ¹⁷	2 ¹⁸	2 ¹⁹	2 ²⁰

TSNS EN MONITOR

Enables frequency monitoring (CLK_{SENSE} and CLK_{REF}) through debug pads.

TSNS DOUT

Digital output of temperature.

TSNS_EN_IRQ

Enables Interrupt for the temperature sensor

TSNS_INT_RPLY_SHORT_ADDR

TSNS INT RPLY REG ADDR

CDCW PG VLDO

CDC VLDO power domain power gate enable (Active High).

CDCW_PG_V1P2

CDC V1P2 power domain power gate enable (Active High).

CDCW PG VBAT

CDC VBAT power domain power gate enable (Active High).

CDCW ISO

CDC output isolate enable (Active High).

CDCW RESETn

Holds CDC in reset (Active Low).

CDCW ENABLE

Enables CDC (Active High).

CDCW_CTRL_RING

CDC Clock Generator's ring control. Use in conjunction with CDCW_CTRL_DIV. See Table III-2 & Table IV-3 for more information. Defaults to 0.821MHz.

Value	Speed
2'h0	Fastest
2'h1	•••
2'h2	•••
2'h3	Slowest

Table III-2 CDCW_CTRL_RING Register

CDCW CTRL DIV

CDC Clock Generator's division control. Use in conjunction with CDCW_CTRL_RING. See Table III-3 & Table IV-3 for more information. Defaults to 0.821MHz.

Value	Division Ratio
2'h0	1
2'h1	2
2'h2	4
2'h3	8

Table III-3 CDCW_CTRL_DIV Register

CDCW MODE REF

CDC reference mode. Uses reference capacitor (Active High).

CDCW MODE PAR

CDC parasitic mode. Uses parasitic calibration (Active High).

CDCW IRQ EN

CDC interrupt enable (Active High).

CDCW N INIT CLK

Number of cycles for CDC to initialize clock before operation of its FSM. Defaults to 156us.

CDCW N CYCLE SINGLE

Number of CDC measurements without 'compensation using the reference cap' and 'parasitic calibration technique' after the initial CDC measurement with 'compensation using the reference cap' or 'parasitic calibration technique'.

Total CDC measurement = {#1 * (measurements with compensation & calibration (CDCW_MODE_REF=1 and/or CDCW_MODE_PAR=1) + CDCW_N_CYCLE_SINGLE *(measurements without compensation & calibration (CDCW MODE REF=0 & CDCW MODE PAR=0))}*CDCW N CYCLE SET.

Defaults to repeating the measurements 8 times without compensation & calibration.

CDCW N CYCLE SET

Number of repeated CDC measurements. Minimum value is 1.

Total CDC measurement = {#1 * (measurements with compensation & calibration (CDCW_MODE_REF=1 and/or CDCW_MODE_PAR=1) + CDCW_N_CYCLE_SINGLE *(measurements without compensation & calibration (CDCW_MODE_REF=0 & CDCW_MODE_PAR=0))}*CDCW_N_CYCLE_SET.

Defaults to 16times without compensation & calibration.

CDCW T CHARGE

Time to charge the sensor cap or reference cap to VDD_BAT. Takes < 80usec for 99.9% charging over temperature (10° C $\sim 50^{\circ}$ C) and corners. Defaults to 156us.

CDCW FSM STATE

CDC's current FSM State for debugging purposes.

CDCW DONE

End of CDC request. Cleared via asserting CDCW_RESETn or deasserting CDCW_ENABLE.

CDCW OUTO

CDC measurements with "configuration=0" are accumulated. CDC_OUT0 is striped across two registers! Bits [23:0] in Register 0x4 and bits [39:24] in Register 0x5.

CDCW OUT1

CDC measurements with "configuration=1" are accumulated.

CDCW OUT2

CDC measurements with "configuration=2" are accumulated.

CDCW OUT3

CDC measurements with "configuration=3" are accumulated.

CDCW OUT4

CDC measurements with "configuration=4" are accumulated.

CDCW OUT5

CDC measurements with "configuration=5" are accumulated.

CDCW CNTM

Debugging purpose. The half number of discharging operation in one CDC measurement. Only the number of rising 'feedback' are counted.

CDCW CNTA

Debugging purpose. The counted comparator output in one CDC measurement only for rising 'feedback'.

CDCW_CNTB

Debugging purpose. The counted comparator output in one CDC measurement only for falling 'feedback'.

WUP_ENABLE

WUP_LC_IRQ_EN

WUP_AUTO_RESET

WUP_INT_RPLY_SHORT_ADDR

WUP_INT_RPLY_REG_ADDR

WUP_INT_RPLY_PAYLOAD

WUP_THRESHOLD

WUP_CNT_VALUE

LC_CLK_DIV

Layer Controller's Clock Divider. See Table III-4. Used in conjunction with **Error! Not a valid bookmark self-reference.**.

Value	Clock Division
2'h0	8
2'h1	4
2'h2	2
2'h3	0

Table III-4 LC_CLK_DIV Register

LC_CLK_RING

Layer Controller's Ring Oscillator's Speed. See Table III-5 & Table III-6 for post-pex simulation results. Use in conjunction with LC_CLK_DIV.

27°C						
LC_CLK_DIV: 2'h3						
V0P6 (V)	0.45	0.50	0.55	0.60	0.65	0.70
V1P2 (V)	0.90	1.00	1.10	1.20	0.30	1.40
LC_CLK_RING: 2'h3						
Frequency (KHz)	38.6	64.7	95.4	129	166	204
V0P6 Power (nW)	7.64	17.2	33.3	58.0	93.2	141

		1		1				
V1P2 Power (nW)	3.78	6.62	12.0	19.6	29.7	43.0		
V0P6 Leakage (pW)	94.0	107	121	135	150	166		
V1P2 Leakage (pW)	≈0	≈0	≈0	≈0	≈0	≈0		
LC_CLK_RING: 2'h2								
Frequency (KHz)	31.8	31.8 53.3 78.6 107 137 169						
V0P6 Power (nW)	6.30	14.2	27.5	47.8	76.8	116		
V1P2 Power (nW)	2.60	5.60	9.90	16.0	24.4	35.5		
V0P6 Leakage (pW)	96.8	110	125	140	154	171		
V1P2 Leakage (pW)	≈0	≈0	≈0	≈0	≈0	≈0		
Frequency (KHz)	27.1	45.4	67.0	90.8	116	144		
V0P6 Power (nW)	5.4	12.1	23.5	40.8	65.6	99.2		
V1P2 Power (nW)	2.4	4.7	8.6	13.6	20.9	30.3		
V0P6 Leakage (pW)	96.8	110	125	140	155	171		
V1P2 Leakage (pW)	≈0	≈0	≈0	≈0	≈0	≈0		
Frequency (KHz)	24.1	40.4	59.7	80.9	104	128		
V0P6 Power (nW)	4.9	10.8	20.9	36.3	58.4	88.4		
V1P2 Power (nW)	2.0	4.2	7.5	12.1	18.7	27.0		
V0P6 Leakage (pW)	99.4	114	129	144	159	177		
V1P2 Leakage (pW)	≈0	≈0	≈0	≈0	≈0	≈0		

Table III-5 LC_CLK_RING Register Post-Pex Results (27°C) (TT)⁵

40°C							
LC_CLK_DIV: 2'h3							
V0P6 (V)	0.45	0.50	0.55	0.60	0.65	0.70	
V1P2 (V)	0.90	1.00	1.10	1.20	0.30	1.40	
LC_CLK_RING: 2'h3							
Frequency (KHz)	43.4	70.0	100	134	170	207	
V0P6 Power (nW)	8.9	19.2	36.2	61.6	97.5	145	
V1P2 Power (nW)	3.7	7.3	12.7	20.4	30.7	43.9	
V0P6 Leakage (pW)	189	216	244	273	303	335	
V1P2 Leakage (pW)	≈0	≈0	≈0	≈0	≈0	≈0	
LC_CLK_RING: 2'h2							
Frequency (KHz)	35.7	57.6	83.0	111	140	171	
V0P6 Power (nW)	7.4	15.9	29.9	50.9	80.4	120	
V1P2 Power (nW)	3.0	6.0	10.6	16.8	25.3	36.2	
VOP6 Leakage (pW)	196	223	252	282	313	346	
V1P2 Leakage (pW)	≈0	≈0	≈0	≈0	≈0	≈0	
LC_CLK_RING: 2'h1							
Frequency (KHz)	30.4	49.1	70.8	94.3	119	145	
V0P6 Power (nW)	6.4	13.6	25.5	44.5	68.7	103	
V1P2 Power (nW)	2.5	5.2	8.9	14.4	21.7	31.1	
VOP6 Leakage (pW)	195	220	252	282	313	346	
V1P2 Leakage (pW)	≈0	≈0	≈0	≈0	≈0	≈0	

⁵ Leakage Power does not include power-gating

LC_CLK_RING: 2'h0						
Frequency (KHz)	27.1	43.7	63.0	83.9	106	129
V0P6 Power (nW)	5.7	12.1	22.8	38.7	61.2	91.3
V1P2 Power (nW)	2.4	4.6	8.1	12.8	19.3	27.7
V0P6 Leakage (pW)	202	230	260	291	323	357
V1P2 Leakage (pW)	≈0	≈0	≈0	≈0	≈0	≈0

Table III-6 LC_CLK_RING Register Post-Pex Results (40°C) (TT)⁶

⁶ Leakage Power does not include power-gating

IV. CDC

This is an Oversampling Capacitance to Digital Converter designed by Inhee Lee. See Figure IV-i & Figure IV-ii.

Figure IV-i CDC Block Diagram

Figure IV-ii CDC Schematic

A. Power Domains

- VDD BAT
- VDD_1P2
- VDD_1P2_ADC (ADC_LDO output. See Section Error! Reference source not found.)
- VDD_0P9_CDC (CDC_LDO output. See Section Error! Reference source not found.)

There is a known problem where CDC will draw current from VDD when VDD_D is powergated. There is currently no isolation from VDD_D \rightarrow VDD. You must turn on both Error! Reference source not found. & REF _Ref412462929 \h Error! Reference source not found. simultaneously in order to circumvent unnecessary current draw.

B. Reset Considerations

Reset is not done automatically. Controlled via CDCW_RESETn.

C. Interrupt Considerations

Interrupts after CDCW_ENABLE is asserted. Interrupts when request is serviced. See CDCW_IRQ_EN.

D. Operation

The CDC accumulates multiple CDC measurements (oversampling). Each set is identical.

$$CDC_{measurement} = 2 * CDC_{CNTM} - CDC_{CNTA} - CDC_{CNTB}$$

Configuration	Connections
0	Connects CSNS_P to CDC
U	Connects CSNS_M to VSS
1	Connects Reference cap
1	to CDC & VSS
2	Connects CSNS_P to VSS
2	Connects CSNS_M to CDC
2	Connects Reference cap
3	Similar to configuration 1
4	Connects CSNS_P to CDC
4	Connects CSNS_M to CDC
_	Connects Reference cap
5	Similar to configuration 1

E. Sample Operation

• See Table IV-1.

VLDO	0.7V	0.8V	0.9V
Operating Frequency (Mhz)	1.4	4.1	8.4
Pulse Conversion Time (us)	745	240	109
Counter Outputs	1057 88 88 1938	979 106 107 1745	917 131 132 1571

Table IV-1 CDC Sample Outputs with 20pF Sensor Capacitor. Required Charging Time of 67.1us (Max 6.29uA)

F. Power Draw / Current Draw / Energy Consumption

• See Table IV-2.

Mode	VLDO (0.8V)	V1P2 (1.2V)	VBAT (4.0V)
Active	1.1uA	4.3uA	0.55uA
Standby	0.2pA	0.36pA	1.47pA

Table IV-2 CDC Current Draw

G. Sensor Connection

CSNS_P and CSNS_M can be hooked up to either side of the sensor.

H. Clock Generator

• See Table IV-3.

CTRL_DIV	CTRL_RING	Frequency (Mhz)	Current Draw (nA)
	0	2.228	1131
0	1	1.642	840
U	2	1.316	672
	3	1.122	576
	0	1.114	1095
1	1	0.821	813
1	2	0.685	651
	3	0.561	558
	0	0.557	1099
2	1	0.411	815
	2	0.329	653
	3	0.280	560
	0	0.279	1079
3	1	0.205	801
3	2	0.165	642
	3	0.140	550

Table IV-3 CDC's Clock Generator Pex (Only C) Frequency and Current Draw @1.2V, TT, 27°C

I. SNSv9 Capacitor Change

V. TEMP SENSOR

This is a Temperature Sensor on designed by SeokHyeon Jeong. The TEMP_SENSOR is designed for -30°C to 130°C temperature range and consumes ~250W at 25°C when active. Figure V-i shows the TEMP_SENSOR block diagram and Figure V-ii, Figure V-iii, and Figure V-iv show its timing diagram for different operation modes. The TEMP_SENSOR is power-gated to minimize standby power consumption. Output code requires Post-processing to restore linear profile.

Figure V-i TEMP_SENSOR Block Diagram

A. Power Domains

- VDD 1P2 (PMU)
- VDD_LDO_TSNS (LDO)

B. Interrupt Considerations

Interrupts when request is serviced (after ≈ 0.5s)

C. Operation

Release TSNS_RESETn to start a request. The request is edge triggered. IRQ will be asserted once the request is serviced. IRQ will stay high until it is cleared or the next TSNS_RESETn assertion. For detailed operation of each modes, refer to the following timing diagrams.

1. Normal operation

Figure V-ii TEMP_SENSOR Timing Diagram (Normal operation, i.e., TSNS_CONT_MODE=0 & TSNS_BURST_MODE = 0)

2. Continuous Mode SEL LDO – 1) Power up digital block SEL_V1P2 EN_SENSOR_LDO - 2) Power up analog block * Power-gating signal and isolate signal are EN_SENSOR_V1P2 kept the same after initial conversion - 3) Release Isolate & Reset **ISOLATE** 6) Assert Reset 7) Release Reset for RESETn the next converison 4) Conversion, starts RESETn_STARTUP RST_CLK_{REF} No start-up time from tstartup 2nd conversion RST_Counter t_{stb} t_{double_latch} 5) End of conversion **IRQ** CLR

Figure V-iii TEMP_SENSOR Timing Diagram (Continuous mode operation, i.e., TSNS_CONT_MODE=1 & TSNS_BURST_MODE = 0)

Figure V-iv TEMP_SENSOR Timing Diagram (Burst mode operation, i.e., TSNS_CONT_MODE=1 & TSNS_BURST_MODE = 1)

D. Post-processing

Output code requires post-processing in order to get linear code vs temperature. For each calibration points, perform the following.

$$Code_{Post-processing} = \ln \left(\frac{\text{TSNS_DOUT} \times f_{CLK_REF}}{2^{(\text{TSNS_SEL_CONV_TIME}+5)}} \right) \times (temp + 273)$$

For two-point calibration, use resulting codes to get first order coefficient a and b (aT+b).

ex) Code_{post-prcessing}= 1140 @ 20°C & Code_{post-prcessing}= 1707 @ 80°C
$$\mathbf{a} = (1707-1140)/(80-20) = 9.45$$
$$\mathbf{b} = 1140 - (20+273) \times 9.45 = -1628.85$$

Similarly, for one-point calibration, get offset **b** using predetermined slope **a**.

Then, use following equation to get temperature from the code.

$$Temperature = \frac{-b}{a - \ln\left(\frac{TSNS_DOUT \times f_{CLK_REF}}{2^{(TSNS_SEL_CONV_TIME+5)}}\right)} - 273$$

Additional note: for Y5 run, the value for f_CLK_REF is 17500.

E. Post-PEX simulation results

- Figure V-v shows simulation results with LDO over different corners after post processing.
- Slopes and data points differ across chips and requires 2-point calibration.

Figure V-v TEMP_SENSOR Simulation Results after post-processing

VI. LDO

This is a Linear Regulator used to regulate VDD (Analog VDD of CDC), and VDD (VDD of TEMP_SENSOR), originally designed by Inhee Lee. See Figure VI-i & Figure VI-ii.

A. Power Domains

- VDD 3P6
- VDD_1P2
- CDC's VDD
- TEMP_SENSOR's VDD

B. Operation

- Select desired output voltage via LDO_SEL_ & LDO_ SEL_CDC. See Error! Reference source not found..
- Select desired amplifier current via LDO_VREF_I_AMP.

Enable LDO's Reference via LDO_VREF_I_AMP

LDO's Amplifier Bias tuning bits

LDO_SEL_TSNS

LDO's Voltage Tuning for VDD_TEMP

LDO SEL CDC

LDO Voltage Tuning for VDD_CDC

- LDO_EN_VREF (Active High).
- Enable LDO IREF & output via LDO_VREF_I_AMP, LDO_SEL_ & LDO_SEL_CDC (Active High).

Figure VI-i LDO_TOP Block Diagram

Figure VI-ii IREF+1 LDO

C. Post-PEX Simulation Results

VDD_3P6 Drop at LDO ON

- Transient Simulation
- Connected 5kohm between VDD_3P6 & circuits
- Connected 1nF to supply of the circuits (VDD_3P6x)
- Measured the maximum voltage drop of VDD_3P6x

VDD_3P6 Voltage Drop [V]

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.2	3.3	7.51E-03	7.71E-03	7.32E-03	7.51E-03	7.51E-03
27	1.1	2.5	5.28E-03	5.49E-03	5.11E-03	5.28E-03	5.29E-03
27	1.1	4.2	5.29E-03	5.49E-03	5.11E-03	5.28E-03	5.30E-03
27	1.4	2.5	1.00E-02	1.02E-02	9.87E-03	1.00E-02	1.00E-02
27	1.4	4.2	1.00E-02	1.02E-02	9.87E-03	1.00E-02	1.00E-02
-40	1.1	2.5	5.18E-03	5.39E-03	4.99E-03	5.18E-03	5.17E-03
-40	1.1	4.2	5.18E-03	5.39E-03	5.00E-03	5.18E-03	5.18E-03
-40	1.4	2.5	9.92E-03	1.01E-02	9.70E-03	9.91E-03	9.91E-03
-40	1.4	4.2	9.91E-03	1.01E-02	9.69E-03	9.92E-03	9.90E-03
130	1.1	2.5	5.47E-03	5.66E-03	5.27E-03	5.47E-03	5.46E-03
130	1.1	4.2	5.47E-03	5.66E-03	5.27E-03	5.47E-03	5.46E-03
130	1.4	2.5	1.02E-02	1.03E-02	1.00E-02	1.02E-02	1.02E-02
130	1.4	4.2	1.02E-02	1.03E-02	1.00E-02	1.02E-02	1.02E-02

Charge Loss from VDD_3P6 at LDO ON

- Transient Simulation
- Measured charge loss from VDD 3P6 when 'IREF + 2 LDOs' are turned on
- I(VDD_3P6) < 1uA @ outside of the integration window

Charge Loss from VDD 3P6 [C]

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.2	3.3	8.14E-12	8.29E-12	8.00E-12	8.13E-12	8.15E-12
27	1.1	2.5	5.75E-12	5.96E-12	5.57E-12	5.75E-12	5.76E-12
27	1.1	4.2	1.08E-11	1.09E-11	1.07E-11	1.08E-11	1.08E-11
27	1.4	2.5	5.75E-12	5.96E-12	5.58E-12	5.75E-12	5.76E-12
27	1.4	4.2	1.08E-11	1.09E-11	1.07E-11	1.08E-11	1.08E-11
-40	1.1	2.5	5.38E-12	5.85E-12	4.87E-12	5.66E-12	5.15E-12
-40	1.1	4.2	1.04E-11	1.08E-11	1.02E-11	1.05E-11	1.03E-11
-40	1.4	2.5	5.38E-12	5.85E-12	4.87E-12	5.67E-12	5.15E-12
-40	1.4	4.2	1.04E-11	1.08E-11	1.02E-11	1.05E-11	1.03E-11
130	1.1	2.5	6.04E-12	6.21E-12	5.85E-12	6.06E-12	6.02E-12
130	1.1	4.2	1.11E-11	1.12E-11	1.10E-11	1.11E-11	1.11E-11
130	1.4	2.5	6.04E-12	6.22E-12	5.85E-12	6.06E-12	6.03E-12
130	1.4	4.2	1.11E-11	1.12E-11	1.10E-11	1.11E-11	1.11E-11

Charge Loss from VDD_1P2 at VREF ON

- Transient Simulation
- Measured charge loss from VDD_1P2 when VREF is turned on
- I(VDD_3P6) < 1uA @ outside of the integration window

Charge Loss from VDD_3P6 [C]

Temp	1P2	TT	FF	SS	FS	SF
27	1.2	4.55E-12	5.56E-12	3.40E-12	5.68E-12	3.53E-12
27	1.1	4.32E-12	5.31E-12	3.19E-12	5.45E-12	3.30E-12
27	1.4	5.02E-12	5.90E-12	3.88E-12	6.20E-12	3.93E-12
-40	1.1	3.03E-12	3.98E-12	2.04E-12	4.05E-12	2.15E-12
-40	1.4	3.59E-12	4.60E-12	2.55E-12	4.63E-12	2.70E-12
130	1.1	6.31E-12	7.12E-12	5.15E-12	7.57E-12	5.09E-12
130	1.4	6.55E-12	7.34E-12	5.51E-12	7.91E-12	5.27E-12

LDO Start-Up Time at LDO ON

- Transient Simulation
- Measured 1% settling time after 'IREF + LDO' are turned on

Start-Up Time of LDO [s]

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.2	3.3	3.87E-02	7.95E-03	1.83E-01	2.63E-02	5.71E-02
27	1.1	2.5	3.89E-02	8.07E-03	1.85E-01	2.64E-02	5.74E-02
27	1.1	4.2	3.88E-02	7.95E-03	1.85E-01	2.60E-02	5.70E-02
27	1.4	2.5	3.85E-02	8.00E-03	1.82E-01	2.62E-02	5.68E-02
27	1.4	4.2	3.84E-02	7.88E-03	1.84E-01	2.60E-02	5.71E-02
-40	1.1	2.5	2.77E+00	3.74E-01	5.66E+00	1.67E+00	4.32E+00
-40	1.1	4.2	2.68E+00	3.66E-01	5.48E+00	1.61E+00	4.22E+00
-40	1.4	2.5	2.74E+00	3.69E-01	5.68E+00	1.65E+00	4.28E+00
-40	1.4	4.2	2.65E+00	3.62E-01	5.48E+00	1.58E+00	4.17E+00
130	1.1	2.5	1.18E-03	6.13E-04	3.18E-03	8.64E-04	1.47E-03
130	1.1	4.2	1.13E-03	4.47E-04	3.09E-03	8.92E-04	1.40E-03
130	1.4	2.5	1.18E-03	6.14E-04	3.17E-03	8.64E-04	1.46E-03
130	1.4	4.2	1.12E-03	4.48E-04	3.07E-03	8.84E-04	1.40E-03

VREF Start-Up Time at VREF ON

- Transient Simulation
- Measured 1% settling time after VREF is turned on
- Safe to turn on VREF one sleep cycle before

Start-Up Time of VREF [s]

Clark Op Time of Vital [6]									
Temp	1P2	TT	FF	SS	FS	SF			
27	1.2	3.96E-02	7.13E-03	2.05E-01	2.60E-02	5.88E-02			
27	1.1	3.98E-02	7.24E-03	2.08E-01	2.58E-02	5.97E-02			
27	1.4	3.87E-02	6.89E-03	2.00E-01	2.54E-02	5.75E-02			
-40	1.1	2.74E+00	3.17E-01	1.39E+01	1.56E+00	4.52E+00			
-40	1.4	2.65E+00	3.10E-01	1.39E+01	1.56E+00	4.32E+00			
130	1.1	9.89E-04	2.42E-04	3.71E-03	6.08E-04	1.45E-03			
130	1.4	9.60E-04	2.37E-04	3.66E-03	5.84E-04	1.42E-03			

Sleep Mode Current

DC Simulation

I(VDD_3P6) @ Sleep Mode [A]

	(<u></u>									
Temp	1P2	3P6	TT	FF	SS	FS	SF			
27	1.1 - 1.4	3.3	3.08E-12	1.37E-11	1.20E-12	2.55E-12	4.34E-12			
27	1.1 - 1.4	2.5	2.54E-12	1.23E-11	8.18E-13	2.00E-12	3.78E-12			
27	1.1 - 1.4	4.2	1.33E-11	3.34E-11	6.89E-12	1.24E-11	1.51E-11			
-40	1.1 - 1.4	2.5	3.12E-13	3.37E-13	2.97E-13	3.16E-13	3.09E-13			
-40	1.1 - 1.4	4.2	7.21E-12	1.29E-11	4.28E-12	6.96E-12	7.50E-12			
130	1.1 - 1.4	2.5	1.64E-09	5.19E-09	6.97E-10	1.30E-09	2.21E-09			
130	1.1 - 1.4	4.2	1.85E-09	5.88E-09	7.93E-10	1.53E-09	2.42E-09			

I(VDD_1P2) @ Sleep Mode [A]

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.1 - 1.4	3.3	6.61E-14	6.21E-13	1.03E-14	1.19E-13	5.23E-14
27	1.1 - 1.4	2.5	6.61E-14	6.21E-13	1.03E-14	1.19E-13	5.23E-14
27	1.1 - 1.4	4.2	6.61E-14	6.21E-13	1.03E-14	1.19E-13	5.23E-14
-40	1.1 - 1.4	2.5	1.71E-15	3.50E-15	1.55E-15	1.81E-15	1.71E-15
-40	1.1 - 1.4	4.2	1.71E-15	3.50E-15	1.55E-15	1.81E-15	1.71E-15
130	1.1 - 1.4	2.5	3.65E-11	1.36E-10	1.79E-11	4.62E-11	3.43E-11
130	1.1 - 1.4	4.2	3.65E-11	1.36E-10	1.79E-11	4.62E-11	3.43E-11

Active Mode Current - 1 LDO ON

DC Simulation

I(VDD_3P6) @ Active Mode [A]

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.1 - 1.4	3.3	2.25E-07	2.72E-07	1.92E-07	2.35E-07	2.16E-07
27	1.1 - 1.4	2.5	2.19E-07	2.63E-07	1.86E-07	2.28E-07	2.09E-07
27	1.1 - 1.4	4.2	2.49E-07	3.02E-07	2.11E-07	2.58E-07	2.40E-07
-40	1.1 - 1.4	2.5	1.86E-07	2.25E-07	1.58E-07	1.95E-07	1.78E-07
-40	1.1 - 1.4	4.2	2.10E-07	2.55E-07	1.77E-07	2.18E-07	2.02E-07
130	1.1 - 1.4	2.5	2.74E-07	3.31E-07	2.34E-07	2.85E-07	2.64E-07
130	1.1 - 1.4	4.2	3.19E-07	3.88E-07	2.70E-07	3.29E-07	3.10E-07

I(VDD_1P2) @ Active Mode [A]

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.1 - 1.4	3.3	3.01E-10	1.35E-09	6.99E-11	7.91E-10	1.21E-10
27	1.1 - 1.4	2.5	3.15E-10	1.46E-09	7.18E-11	7.99E-10	1.48E-10
27	1.1 - 1.4	4.2	3.15E-10	1.46E-09	7.18E-11	7.99E-10	1.48E-10
-40	1.1 - 1.4	2.5	3.65E-12	2.52E-11	6.07E-13	1.23E-11	1.44E-12
-40	1.1 - 1.4	4.2	3.65E-12	2.52E-11	6.07E-13	1.23E-11	1.44E-12
130	1.1 - 1.4	2.5	1.69E-08	5.22E-08	5.84E-09	3.23E-08	9.78E-09
130	1.1 - 1.4	4.2	1.69E-08	5.22E-08	5.84E-09	3.23E-08	9.78E-09

Active Mode Current - 2 LDOs ON

DC Simulation

I(VDD_3P6) @ Active Mode [A]

		•		_ ,					
Temp	1P2	3P6	TT	FF	SS	FS	SF		
27	1.1 - 1.4	3.3	3.55E-07	4.29E-07	3.02E-07	3.74E-07	3.37E-07		
27	1.1 - 1.4	2.5	3.47E-07	4.18E-07	2.95E-07	3.66E-07	3.28E-07		
27	1.1 - 1.4	4.2	3.83E-07	4.65E-07	3.24E-07	4.01E-07	3.65E-07		
-40	1.1 - 1.4	2.5	3.03E-07	3.66E-07	2.57E-07	3.20E-07	2.85E-07		
-40	1.1 - 1.4	4.2	3.31E-07	4.02E-07	2.79E-07	3.48E-07	3.14E-07		
130	1.1 - 1.4	2.5	4.20E-07	5.06E-07	3.58E-07	4.40E-07	3.99E-07		
130	1.1 - 1.4	4.2	4.73E-07	5.74E-07	4.01E-07	4.93E-07	4.54E-07		

I(VDD_1P2) @ Active Mode [A]

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.1 - 1.4	3.3	3.02E-10	1.36E-09	7.01E-11	7.92E-10	1.23E-10
27	1.1 - 1.4	2.5	3.02E-10	1.36E-09	7.01E-11	7.92E-10	1.23E-10
27	1.1 - 1.4	4.2	3.02E-10	1.36E-09	7.01E-11	7.92E-10	1.23E-10
-40	1.1 - 1.4	2.5	3.51E-12	2.34E-11	5.96E-13	1.22E-11	1.11E-12
-40	1.1 - 1.4	4.2	3.51E-12	2.34E-11	5.96E-13	1.22E-11	1.11E-12
130	1.1 - 1.4	2.5	1.62E-08	4.93E-08	5.69E-09	3.19E-08	8.72E-09
130	1.1 - 1.4	4.2	1.62E-08	4.93E-08	5.69E-09	3.19E-08	8.72E-09

PSRR - LDO

- AC Simulation from 1uHz to 1GHz
- Assigned AC input signals both to VDD_3P6 and VDD_1P2

Max. PSRR of LDO [dB]

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.2	3.3	-43.60	-43.43	-44.09	-44.08	-41.58
27	1.1	2.5	-45.30	-43.83	-46.36	-44.05	-43.35
27	1.1	4.2	-41.15	-40.34	-41.97	-42.03	-39.37
27	1.4	2.5	-45.68	-44.00	-46.34	-44.49	-43.88
27	1.4	4.2	-41.55	-40.66	-42.41	-42.45	-39.72
-40	1.1	2.5	-44.23	-43.24	-44.71	-43.78	-43.27
-40	1.1	4.2	-41.20	-39.70	-42.56	-42.62	-39.45
-40	1.4	2.5	-44.77	-43.83	-44.97	-44.11	-43.92
-40	1.4	4.2	-41.62	-40.10	-43.04	-43.05	-39.87
130	1.1	2.5	-45.31	-44.24	-46.15	-44.79	-44.87
130	1.1	4.2	-40.99	-40.35	-41.84	-41.36	-40.51
130	1.4	2.5	-45.37	-44.29	-46.20	-45.13	-45.24
130	1.4	4.2	-41.28	-40.63	-42.15	-41.70	-40.77

PSRR Example

VDD_1P2 = 1.2V, VDD_3P6 = 3.3V, Temp = 27°C

PSRR - VREF

- AC Simulation from 1uHz to 1GHz
- Assigned AC input signals both to VDD_3P6 and VDD_1P2

Max. PSRR of VREF [dB]

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.2	3.3	-49.36	-47.90	-50.61	-49.31	-48.42
27	1.1	2.5	-49.11	-47.65	-50.35	-49.07	-48.51
27	1.1	4.2	-48.48	-47.05	-49.83	-49.33	-46.91
27	1.4	2.5	-49.31	-47.85	-50.54	-49.28	-48.99
27	1.4	4.2	-48.91	-47.50	-50.27	-49.55	-47.30
-40	1.1	2.5	-49.07	-47.63	-50.33	-49.03	-48.24
-40	1.1	4.2	-48.91	-47.31	-50.36	-49.30	-46.90
-40	1.4	2.5	-49.27	-47.83	-50.53	-49.25	-48.83
-40	1.4	4.2	-49.41	-47.79	-50.79	-49.52	-47.41
130	1.1	2.5	-48.78	-46.82	-50.17	-48.56	-48.87
130	1.1	4.2	-47.81	-46.07	-49.15	-48.33	-46.81
130	1.4	2.5	-48.97	-46.99	-50.37	-48.73	-49.09
130	1.4	4.2	-48.24	-46.39	-49.60	-48.98	-47.22

LDO Output Variation – Default Setting

- DC Simulation w/ Default setting (3'b100)
- MC Simulation (1k samples) for each parameter set

LDO Output Voltage [V]

Temp	1P2	3P6	MIN	MAX	AVG	STD
27	1.2	3.3	1.137	1.357	1.248	0.033
27	1.1	2.5	1.136	1.356	1.247	0.033
27	1.1	4.2	1.138	1.358	1.248	0.033
27	1.4	2.5	1.138	1.358	1.248	0.033
27	1.4	4.2	1.139	1.359	1.250	0.033
-40	1.1	2.5	1.135	1.353	1.245	0.033
-40	1.1	4.2	1.136	1.355	1.246	0.033
-40	1.4	2.5	1.136	1.355	1.246	0.033
-40	1.4	4.2	1.138	1.356	1.248	0.033
130	1.1	2.5	1.136	1.357	1.247	0.033
130	1.1	4.2	1.139	1.359	1.249	0.033
130	1.4	2.5	1.138	1.358	1.249	0.033
130	1.4	4.2	1.140	1.361	1.251	0.033

VREF Variation – Default Setting

- DC Simulation w/ Default setting (4'b0000)
- MC Simulation (1k samples) for each parameter set

VREF Output Voltage [V]

Temp	1P2	3P6	MIN	MAX	AVG	STD
27	1.2	3.3	0.577	0.688	0.633	0.017
27	1.1	2.5	0.576	0.688	0.632	0.017
27	1.1	4.2	0.576	0.688	0.632	0.017
27	1.4	2.5	0.577	0.689	0.633	0.017
27	1.4	4.2	0.577	0.689	0.633	0.017
-40	1.1	2.5	0.576	0.686	0.631	0.017
-40	1.1	4.2	0.576	0.686	0.631	0.017
-40	1.4	2.5	0.576	0.687	0.632	0.017
-40	1.4	4.2	0.576	0.687	0.632	0.017
130	1.1	2.5	0.576	0.688	0.632	0.017
130	1.1	4.2	0.576	0.688	0.632	0.017
130	1.4	2.5	0.577	0.689	0.633	0.017
130	1.4	4.2	0.577	0.689	0.633	0.017

LDO Output Variation – Default Setting

- DC Simulation w/ Default setting (3'b100)
- No load current

Temp	1P2	3 P 6	TT	FF	SS	FS	SF
27	1.2	3.3	1.249	1.293	1.206	1.358	1.140
27	1.1	2.5	1.248	1.291	1.205	1.358	1.139
27	1.1	4.2	1.249	1.293	1.207	1.359	1.140
27	1.4	2.5	1.249	1.293	1.207	1.359	1.141
27	1.4	4.2	1.251	1.295	1.209	1.361	1.142
-40	1.1	2.5	1.246	1.289	1.205	1.355	1.137
-40	1.1	4.2	1.247	1.291	1.206	1.356	1.139
-40	1.4	2.5	1.247	1.291	1.206	1.356	1.139
-40	1.4	4.2	1.249	1.292	1.208	1.358	1.140
130	1.1	2.5	1.248	1.291	1.208	1.359	1.138
130	1.1	4.2	1.250	1.293	1.209	1.360	1.140
130	1.4	2.5	1.250	1.294	1.210	1.361	1.141
130	1.4	4.2	1.252	1.295	1.212	1.363	1.142

LDO Output Voltage Drop - Default

- DC Simulation w/ Default setting (3'b100)
- 100uA load current

LDO Output Voltage Drop [V]

Temp	1P2	3 P 6	TT	FF	SS	FS	SF
27	1.2	3.3	0.0004	0.0004	0.0004	0.0004	0.0004
27	1.1	2.5	0.0004	0.0004	0.0005	0.0005	0.0004
27	1.1	4.2	0.0004	0.0004	0.0005	0.0005	0.0004
27	1.4	2.5	0.0005	0.0005	0.0005	0.0005	0.0005
27	1.4	4.2	0.0005	0.0005	0.0005	0.0005	0.0005
-40	1.1	2.5	0.0004	0.0004	0.0004	0.0004	0.0004
-40	1.1	4.2	0.0004	0.0004	0.0004	0.0004	0.0004
-40	1.4	2.5	0.0004	0.0004	0.0004	0.0004	0.0004
-40	1.4	4.2	0.0004	0.0004	0.0004	0.0004	0.0004
130	1.1	2.5	0.0007	0.0006	0.0007	0.0007	0.0007
130	1.1	4.2	0.0007	0.0006	0.0007	0.0007	0.0007
130	1.4	2.5	0.0007	0.0007	0.0008	0.0007	0.0008
130	1.4	4.2	0.0007	0.0007	0.0008	0.0007	0.0008

LDO Output Variation – Max Setting

- DC Simulation w/ Default setting (3'b000)
- No load current

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.2	3.3	1.646	1.704	1.590	1.791	1.502
27	1.1	2.5	1.644	1.702	1.588	1.788	1.500
27	1.1	4.2	1.646	1.704	1.590	1.791	1.502
27	1.4	2.5	1.647	1.705	1.591	1.792	1.503
27	1.4	4.2	1.649	1.707	1.593	1.794	1.505
-40	1.1	2.5	1.641	1.699	1.587	1.785	1.499
-40	1.1	4.2	1.643	1.701	1.589	1.787	1.501
-40	1.4	2.5	1.644	1.702	1.590	1.788	1.501
-40	1.4	4.2	1.646	1.704	1.592	1.790	1.503
130	1.1	2.5	1.644	1.701	1.591	1.790	1.500
130	1.1	4.2	1.646	1.703	1.593	1.792	1.502
130	1.4	2.5	1.648	1.705	1.595	1.794	1.503
130	1.4	4.2	1.650	1.707	1.597	1.796	1.505

LDO Output Voltage Drop – Max Setting

- DC Simulation w/ Default setting (3'b000)
- 100uA load current

LDO Output Voltage Drop [V]

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.2	3.3	0.0007	0.0007	0.0007	0.0008	0.0006
27	1.1	2.5	0.0010	0.0010	0.0011	0.0029	0.0008
27	1.1	4.2	0.0010	0.0010	0.0011	0.0028	0.0008
27	1.4	2.5	0.0007	0.0007	0.0007	0.0008	0.0007
27	1.4	4.2	0.0007	0.0007	0.0007	0.0008	0.0007
-40	1.1	2.5	0.0010	0.0010	0.0011	0.0048	0.0007
-40	1.1	4.2	0.0010	0.0010	0.0011	0.0051	0.0007
-40	1.4	2.5	0.0006	0.0006	0.0006	0.0007	0.0006
-40	1.4	4.2	0.0006	0.0006	0.0006	0.0007	0.0006
130	1.1	2.5	0.0012	0.0012	0.0013	0.0020	0.0010
130	1.1	4.2	0.0013	0.0012	0.0013	0.0021	0.0010
130	1.4	2.5	0.0010	0.0010	0.0011	0.0011	0.0010
130	1.4	4.2	0.0010	0.0009	0.0010	0.0011	0.0010

LDO Output Variation – Min Setting

- DC Simulation w/ Default setting (3'b111)
- No load current

Temp	1P2	3 P 6	TT	FF	SS	FS	SF
27	1.2	3.3	0.951	0.984	0.918	1.034	0.868
27	1.1	2.5	0.950	0.983	0.918	1.034	0.867
27	1.1	4.2	0.951	0.984	0.919	1.035	0.868
27	1.4	2.5	0.951	0.985	0.919	1.035	0.868
27	1.4	4.2	0.952	0.986	0.920	1.036	0.869
-40	1.1	2.5	0.948	0.981	0.917	1.031	0.866
-40	1.1	4.2	0.949	0.982	0.918	1.032	0.867
-40	1.4	2.5	0.949	0.983	0.918	1.032	0.867
-40	1.4	4.2	0.950	0.984	0.919	1.033	0.868
130	1.1	2.5	0.950	0.983	0.920	1.035	0.867
130	1.1	4.2	0.952	0.984	0.921	1.036	0.868
130	1.4	2.5	0.952	0.985	0.921	1.036	0.869
130	1.4	4.2	0.953	0.986	0.923	1.038	0.870

LDO Output Voltage Drop – Min Setting

- DC Simulation w/ Default setting (3'b111)
- 100uA load current

LDO Output Voltage Drop [V]

Temp	1P2	3 P 6	TT	FF	SS	FS	SF
27	1.2	3.3	0.0003	0.0003	0.0003	0.0003	0.0003
27	1.1	2.5	0.0003	0.0003	0.0003	0.0003	0.0003
27	1.1	4.2	0.0003	0.0003	0.0003	0.0003	0.0003
27	1.4	2.5	0.0004	0.0004	0.0004	0.0004	0.0004
27	1.4	4.2	0.0004	0.0004	0.0004	0.0004	0.0004
-40	1.1	2.5	0.0003	0.0003	0.0003	0.0003	0.0003
-40	1.1	4.2	0.0003	0.0003	0.0003	0.0003	0.0003
-40	1.4	2.5	0.0003	0.0003	0.0003	0.0003	0.0003
-40	1.4	4.2	0.0003	0.0003	0.0003	0.0003	0.0003
130	1.1	2.5	0.0005	0.0005	0.0005	0.0005	0.0005
130	1.1	4.2	0.0005	0.0005	0.0005	0.0005	0.0005
130	1.4	2.5	0.0006	0.0006	0.0006	0.0006	0.0006
130	1.4	4.2	0.0006	0.0006	0.0006	0.0006	0.0006

LDO Output Tuning

DC Simulation @ 1.2V, 3.3V, 27°C

Tuning Bits	тт	FF	ss	FS	SF
0	1.646	1.704	1.590	1.791	1.502
1	1.547	1.601	1.494	1.683	1.412
2	1.448	1.498	1.398	1.575	1.321
3	1.348	1.396	1.302	1.467	1.231
4	1.249	1.293	1.206	1.358	1.140
5	1.149	1.190	1.110	1.250	1.049
6	1.050	1.087	1.014	1.142	0.958
7	0.951	0.984	0.918	1.034	0.868

DC Loop Gain

Stability Simulation w/ Default setting (3'b100)

DC Loop Gain [dB]

Temp	1P2	3 P 6	TT	FF	SS	FS	SF
27	1.2	3.3	57.79	57.83	57.74	57.82	57.71
27	1.1	2.5	57.60	57.65	57.54	57.54	57.61
27	1.1	4.2	57.60	57.65	57.54	57.53	57.61
27	1.4	2.5	56.30	56.28	56.31	56.54	56.01
27	1.4	4.2	56.31	56.29	56.32	56.55	56.02
-40	1.1	2.5	58.13	58.18	58.08	57.98	58.20
-40	1.1	4.2	58.13	58.18	58.08	57.98	58.20
-40	1.4	2.5	57.20	57.19	57.21	57.34	56.98
-40	1.4	4.2	57.20	57.19	57.21	57.34	56.99
130	1.1	2.5	55.53	55.70	55.35	55.55	55.49
130	1.1	4.2	55.53	55.70	55.35	55.55	55.49
130	1.4	2.5	53.95	54.01	53.88	54.27	53.59
130	1.4	4.2	53.95	54.02	53.89	54.28	53.60

Phase Margin w/ 20pF Load Cap.

Stability Simulation w/ Default setting (3'b100)

Phase Margin [º]

Temp	1P2	3 P 6	TT	FF	SS	FS	SF
27	1.2	3.3	81.28	80.29	82.00	81.71	80.79
27	1.1	2.5	81.65	80.70	82.34	82.04	81.19
27	1.1	4.2	81.66	80.71	82.35	82.05	81.20
27	1.4	2.5	80.23	79.09	81.07	80.73	79.64
27	1.4	4.2	80.23	79.10	81.07	80.74	79.65
-40	1.1	2.5	83.15	82.31	83.75	83.45	82.79
-40	1.1	4.2	83.15	82.31	83.76	83.46	82.80
-40	1.4	2.5	82.04	81.03	82.78	82.43	81.58
-40	1.4	4.2	82.05	81.03	82.79	82.44	81.59
130	1.1	2.5	79.31	77.90	80.27	79.77	78.73
130	1.1	4.2	79.31	77.91	80.27	79.78	78.74
130	1.4	2.5	77.37	75.75	78.51	77.99	76.64
130	1.4	4.2	77.38	75.76	78.52	78.00	76.65

Unity-Gain Bandwidth w/ 20pF

Stability Simulation w/ Default setting (3'b100)

Unity-Gain Bandwidth [Hz]

Temp	1P2	3P6	TT	FF	SS	FS	SF
27	1.2	3.3	1.62E+04	1.98E+04	1.36E+04	1.68E+04	1.56E+04
27	1.1	2.5	1.59E+04	1.93E+04	1.33E+04	1.65E+04	1.52E+04
27	1.1	4.2	1.59E+04	1.93E+04	1.33E+04	1.65E+04	1.52E+04
27	1.4	2.5	1.73E+04	2.11E+04	1.45E+04	1.79E+04	1.67E+04
27	1.4	4.2	1.73E+04	2.12E+04	1.45E+04	1.79E+04	1.67E+04
-40	1.1	2.5	1.66E+04	2.01E+04	1.39E+04	1.72E+04	1.59E+04
-40	1.1	4.2	1.66E+04	2.01E+04	1.39E+04	1.72E+04	1.59E+04
-40	1.4	2.5	1.80E+04	2.19E+04	1.51E+04	1.86E+04	1.73E+04
-40	1.4	4.2	1.80E+04	2.19E+04	1.51E+04	1.86E+04	1.73E+04
130	1.1	2.5	1.49E+04	1.82E+04	1.25E+04	1.55E+04	1.43E+04
130	1.1	4.2	1.49E+04	1.82E+04	1.25E+04	1.55E+04	1.43E+04
130	1.4	2.5	1.64E+04	2.00E+04	1.37E+04	1.70E+04	1.57E+04
130	1.4	4.2	1.64E+04	2.00E+04	1.37E+04	1.70E+04	1.58E+04

LDO VOUT Recovery Time – 0 → 100uA

- Transient Simulation w/ 5pF load cap
- load current : 0 to 100uA

5% Recovery Time [s]

Temp	1P2	3 P 6	TT	FF	SS	FS	SF
27	1.2	3.3	4.02E-04	2.84E-04	5.40E-04	4.00E-04	4.02E-04
27	1.1	2.5	4.27E-04	3.02E-04	5.78E-04	4.27E-04	4.30E-04
27	1.1	4.2	3.40E-04	2.38E-04	4.62E-04	3.41E-04	3.39E-04
27	1.4	2.5	4.27E-04	3.02E-04	5.78E-04	4.27E-04	4.30E-04
27	1.4	4.2	3.40E-04	2.38E-04	4.62E-04	3.41E-04	3.39E-04
-40	1.1	2.5	4.83E-04	3.41E-04	6.54E-04	4.83E-04	4.84E-04
-40	1.1	4.2	3.85E-04	2.69E-04	5.24E-04	3.86E-04	3.83E-04
-40	1.4	2.5	4.83E-04	3.41E-04	6.54E-04	4.83E-04	4.84E-04
-40	1.4	4.2	3.85E-04	2.69E-04	5.24E-04	3.86E-04	3.83E-04
130	1.1	2.5	3.69E-04	2.58E-04	5.02E-04	3.68E-04	3.72E-04
130	1.1	4.2	2.89E-04	2.00E-04	3.99E-04	2.90E-04	2.90E-04
130	1.4	2.5	3.69E-04	2.58E-04	5.02E-04	3.68E-04	3.72E-04
130	1.4	4.2	2.89E-04	2.00E-04	3.99E-04	2.90E-04	2.90E-04

LDO VOUT Recovery Time −100uA → 0

- Transient Simulation w/ 5pF load cap
- load current : 100uA to 0

5% Recovery Time [s]

Temp	1P2	3 P 6	TT	FF	SS	FS	SF
27	1.2	3.3	4.73E-04	3.30E-04	6.44E-04	4.72E-04	4.74E-04
27	1.1	2.5	5.06E-04	3.53E-04	6.88E-04	5.03E-04	5.08E-04
27	1.1	4.2	3.96E-04	2.74E-04	5.45E-04	3.98E-04	3.96E-04
27	1.4	2.5	5.06E-04	3.53E-04	6.88E-04	5.03E-04	5.08E-04
27	1.4	4.2	3.96E-04	2.74E-04	5.45E-04	3.98E-04	3.96E-04
-40	1.1	2.5	5.69E-04	3.98E-04	7.76E-04	5.68E-04	5.72E-04
-40	1.1	4.2	4.51E-04	3.10E-04	6.19E-04	4.52E-04	4.47E-04
-40	1.4	2.5	5.69E-04	3.98E-04	7.76E-04	5.68E-04	5.72E-04
-40	1.4	4.2	4.51E-04	3.10E-04	6.19E-04	4.52E-04	4.47E-04
130	1.1	2.5	4.40E-04	3.03E-04	6.03E-04	4.36E-04	4.40E-04
130	1.1	4.2	3.39E-04	2.31E-04	4.70E-04	3.39E-04	3.39E-04
130	1.4	2.5	4.40E-04	3.02E-04	6.03E-04	4.36E-04	4.40E-04
130	1.4	4.2	3.39E-04	2.31E-04	4.70E-04	3.39E-04	3.39E-04

LDO w/ nwell/psub diode model

- DC Simulation w/ Default setting (3'b100)
- No load current

LDO Output Voltage w/ nwell/psub diode model [V]

Temp	1P2	3P6	TT	FF	SS	FS	SF	FF_dioS	SS_dioF
130	1.1	2.5	1.246	1.290	1.203	1.358	1.135	1.291	1.201
130	1.1	4.2	1.249	1.293	1.206	1.360	1.138	1.293	1.203
130	1.4	2.5	1.248	1.292	1.205	1.359	1.137	1.292	1.203
130	1.4	4.2	1.250	1.295	1.207	1.362	1.140	1.295	1.205

LDO Output Voltage w/o nwell/psub diode model [V]

Temp	1P2	3 P 6	TT	FF	SS	FS	SF	FF_dioS	SS_dioF		
130	1.1	2.5	1.247	1.291	1.205	1.358	1.137	1.291	1.205		
130	1.1	4.2	1.250	1.293	1.208	1.360	1.140	1.293	1.208		
130	1.4	2.5	1.249	1.292	1.207	1.360	1.138	1.292	1.207		
130	1.4	4.2	1.251	1.295	1.209	1.362	1.141	1.295	1.209		

VREF w/ nwell/psub diode model

- DC Simulation w/ Default setting (4'b0000)
- No load current

VREF Output Voltage w/ nwell/psub diode model [V]

Temp	1P2	3 P 6	TT	FF	SS	FS	SF	FF_dioS	SS_dioF
130	1.1	2.5	0.632	0.654	0.610	0.689	0.576	0.655	0.609
130	1.1	4.2	0.632	0.654	0.610	0.689	0.576	0.655	0.609
130	1.4	2.5	0.633	0.655	0.611	0.689	0.577	0.655	0.610
130	1.4	4.2	0.633	0.655	0.611	0.689	0.577	0.655	0.610

VREF Output Voltage w/o nwell/psub diode model [V]

Temp	1P2	3 P 6	TT	FF	SS	FS	SF	FF_dioS	SS_dioF
130	1.1	2.5	0.632	0.655	0.611	0.689	0.577	0.655	0.611
130	1.1	4.2	0.632	0.655	0.611	0.689	0.577	0.655	0.611
130	1.4	2.5	0.633	0.655	0.612	0.690	0.577	0.655	0.612
130	1.4	4.2	0.633	0.655	0.612	0.690	0.577	0.655	0.612

D. Measurement Results