$12a_{0760} (K12a_{0760})$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle u^{55} - u^{54} + \dots + 2u^2 - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 55 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{55} - u^{54} + \dots + 2u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{9} + 4u^{7} + 5u^{5} - 3u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{22} + 9u^{20} + \dots - 2u^{2} + 1 \\ -u^{22} - 8u^{20} + \dots - 6u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{12} + 5u^{10} + 9u^{8} + 4u^{6} - 6u^{4} - 5u^{2} + 1 \\ -u^{14} - 6u^{12} - 13u^{10} - 10u^{8} + 4u^{6} + 8u^{4} + u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{25} - 10u^{23} + \dots + 10u^{3} - u \\ u^{27} + 11u^{25} + \dots - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{38} + 15u^{36} + \dots - 4u^{2} + 1 \\ -u^{40} - 16u^{38} + \dots + 8u^{6} + 14u^{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{54} 4u^{53} + \cdots + 16u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6, c_8	$u^{55} + 13u^{54} + \dots + 4u + 1$
c_2, c_7	$u^{55} + u^{54} + \dots + 2u^2 - 1$
c_3, c_4, c_{10}	$u^{55} + u^{54} + \dots - 11u - 2$
c_5, c_{11}, c_{12}	$u^{55} - u^{54} + \dots + 2u^2 - 1$
<i>C</i> 9	$u^{55} - 7u^{54} + \dots - 20988u + 4921$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_8	$y^{55} + 59y^{54} + \dots - 36y - 1$
c_2, c_7	$y^{55} - 13y^{54} + \dots + 4y - 1$
c_3, c_4, c_{10}	$y^{55} - 57y^{54} + \dots - 91y - 4$
c_5, c_{11}, c_{12}	$y^{55} + 43y^{54} + \dots + 4y - 1$
<i>c</i> 9	$y^{55} - 29y^{54} + \dots + 402466656y - 24216241$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.886995 + 0.045862I	14.3413 - 2.3988I	10.05032 + 0.51244I
u = -0.886995 - 0.045862I	14.3413 + 2.3988I	10.05032 - 0.51244I
u = 0.885350 + 0.051007I	13.9632 + 8.8219I	9.36443 - 5.35751I
u = 0.885350 - 0.051007I	13.9632 - 8.8219I	9.36443 + 5.35751I
u = -0.864228 + 0.018685I	7.62020 - 1.13554I	10.36949 + 0.23646I
u = -0.864228 - 0.018685I	7.62020 + 1.13554I	10.36949 - 0.23646I
u = 0.079677 + 1.134880I	-1.86120 + 1.73369I	0 4.71715I
u = 0.079677 - 1.134880I	-1.86120 - 1.73369I	0. + 4.71715I
u = 0.856539 + 0.039628I	5.73343 + 5.16675I	5.71941 - 6.13440I
u = 0.856539 - 0.039628I	5.73343 - 5.16675I	5.71941 + 6.13440I
u = 0.124104 + 0.821653I	5.01486 + 3.10577I	5.36912 - 3.19461I
u = 0.124104 - 0.821653I	5.01486 - 3.10577I	5.36912 + 3.19461I
u = 0.830617	3.31017	1.79020
u = -0.134449 + 0.719876I	4.98402 + 3.12049I	4.83515 - 1.88613I
u = -0.134449 - 0.719876I	4.98402 - 3.12049I	4.83515 + 1.88613I
u = 0.140602 + 1.264520I	-3.20902 + 2.28111I	0
u = 0.140602 - 1.264520I	-3.20902 - 2.28111I	0
u = 0.398432 + 1.236750I	2.03590 - 0.66546I	0
u = 0.398432 - 1.236750I	2.03590 + 0.66546I	0
u = 0.431188 + 1.231470I	10.32020 - 4.11571I	0
u = 0.431188 - 1.231470I	10.32020 + 4.11571I	0
u = -0.091117 + 1.302380I	-6.13952 - 0.32984I	0
u = -0.091117 - 1.302380I	-6.13952 + 0.32984I	0
u = -0.431390 + 1.236960I	10.66320 - 2.31354I	0
u = -0.431390 - 1.236960I	10.66320 + 2.31354I	0
u = -0.151057 + 1.311240I	-5.41307 - 5.33764I	0
u = -0.151057 - 1.311240I	-5.41307 + 5.33764I	0
u = -0.404078 + 1.258270I	3.77988 - 3.40970I	0
u = -0.404078 - 1.258270I	3.77988 + 3.40970I	0
u = -0.010529 + 1.328650I	-0.68155 + 2.96620I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.010529 - 1.328650I	-0.68155 - 2.96620I	0
u = 0.375169 + 1.274910I	-0.65198 + 4.33276I	0
u = 0.375169 - 1.274910I	-0.65198 - 4.33276I	0
u = 0.207095 + 1.316430I	1.91268 + 2.83669I	0
u = 0.207095 - 1.316430I	1.91268 - 2.83669I	0
u = -0.199631 + 1.326110I	1.57882 - 9.00165I	0
u = -0.199631 - 1.326110I	1.57882 + 9.00165I	0
u = -0.399305 + 1.288770I	3.55054 - 5.66585I	0
u = -0.399305 - 1.288770I	3.55054 + 5.66585I	0
u = 0.391698 + 1.302460I	1.54641 + 9.64694I	0
u = 0.391698 - 1.302460I	1.54641 - 9.64694I	0
u = -0.577636 + 0.255967I	6.50085 - 6.27951I	7.73444 + 7.40899I
u = -0.577636 - 0.255967I	6.50085 + 6.27951I	7.73444 - 7.40899I
u = 0.585657 + 0.234755I	6.72459 + 0.04895I	8.43887 - 2.19191I
u = 0.585657 - 0.234755I	6.72459 - 0.04895I	8.43887 + 2.19191I
u = -0.410657 + 1.311660I	10.10380 - 7.04613I	0
u = -0.410657 - 1.311660I	10.10380 + 7.04613I	0
u = 0.408466 + 1.314810I	9.6974 + 13.4566I	0
u = 0.408466 - 1.314810I	9.6974 - 13.4566I	0
u = -0.449466 + 0.260084I	-0.59638 - 3.23489I	2.34241 + 9.68420I
u = -0.449466 - 0.260084I	-0.59638 + 3.23489I	2.34241 - 9.68420I
u = 0.435627 + 0.099986I	0.914015 + 0.263108I	10.61137 - 1.72545I
u = 0.435627 - 0.099986I	0.914015 - 0.263108I	10.61137 + 1.72545I
u = -0.224373 + 0.350383I	-1.27930 + 0.82968I	-2.41349 - 0.37291I
u = -0.224373 - 0.350383I	-1.27930 - 0.82968I	-2.41349 + 0.37291I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6, c_8	$u^{55} + 13u^{54} + \dots + 4u + 1$
c_2, c_7	$u^{55} + u^{54} + \dots + 2u^2 - 1$
c_3, c_4, c_{10}	$u^{55} + u^{54} + \dots - 11u - 2$
c_5, c_{11}, c_{12}	$u^{55} - u^{54} + \dots + 2u^2 - 1$
<i>C</i> 9	$u^{55} - 7u^{54} + \dots - 20988u + 4921$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_8	$y^{55} + 59y^{54} + \dots - 36y - 1$
c_2, c_7	$y^{55} - 13y^{54} + \dots + 4y - 1$
c_3, c_4, c_{10}	$y^{55} - 57y^{54} + \dots - 91y - 4$
c_5, c_{11}, c_{12}	$y^{55} + 43y^{54} + \dots + 4y - 1$
<i>C</i> 9	$y^{55} - 29y^{54} + \dots + 402466656y - 24216241$