Final Exam for Algebra-Based Physics-1: Mechanics (PHYS135A-01)

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy

December 13th, 2017

1 Conceptual Questions

1.1 Kinematics and Angular Kinematics

- 1. If an object is dropped, it accelerates downward at g m/s 2 (no air resistance). If it is *thrown* downward, the acceleration downward
 - is less than g
 - is more than g
 - remains g
- 2. An object accelerates with constant acceleration. The displacement versus time curve is quadratic. The velocity versus time plot should be _____ and the acceleration versus time plot should be _____.
 - · quadratic, linear
 - · linear, flat
 - · flat, linear
 - · linear, quadratic
- 3. An object experiences constant *angular* acceleration. The angular velocity is a _____ function of time, and the net external torque is _____.
 - · linear, constant
 - · linear, zero
 - · quadratic, constant
 - · quadratic, zero
- 4. A battleship fires simultaneously two shells at enemy ships (Fig. 1). If the shells follow the parabolic trajectories shown, which ship gets hit first?
 - A
 - · Both at the same time
 - B

Figure 1: Which ship is hit first?

1.2 Forces and Torque

- 1. An elevator contains a person standing on a scale. The elevator accelerates upward, then moves at constant velocity, then decelerates to a stop. The scale reads a weight that is ______, then _____, and then _____ the person's actual weight.
 - · More than, equal to, less than
 - · Less than, equal to, more than

- · equal to, equal to, equal to
- · More than, equal to, equal to
- 2. A crate is pushed across a floor at constant velocity against friction. If the crate is flipped so that a side with less surface area is on the bottom, and pushed again at constant velocity, the required force is
 - · More than the first side
 - · Less than the first side
 - · Equal to the first side
- 3. A man needs to pull a rusty lever to release a mechanism, but he can't. Which of the following will increase torque on the lever?
 - Tying a rope to the end of the lever, and pulling on the rope perpendicular to the lever.
 - Bolting a metal rod to the lever, and pulling the rod perpendicular to the lever.
 - Tying a rope to the end of the lever, pulling the rope parallel to the lever.
 - Bolting a metal rod to the lever, and pulling the rod parallel to the lever.
- 4. A racecar makes a turn at constant velocity, and the road is flat. There is friction between the road and tires. Which of the following is true?
 - The car experiences centripetal acceleration, provided by friction.
 - The car experiences centripetal acceleration, provided by the normal force.
 - Moving at constant velocity, the car experiences no acceleration.

1.3 Work and Energy

- 1. In which of the follow situations would energy not be conserved?
 - An object is dropped from some height and experiences free-fall, neglecting air-resistance.
 - An external force compresses a mass against an oscillator for a given displacement and then the mass is released.
 - A pendelum is pulled away from equilibrium and then released.
 - A rock slowly skids to a stop on top of a frozen pond.
- 2. A ball rolls down a hill that has a height h, attaining a speed v at the bottom. In order to attain a speed of 2v at the bottom, how tall would the hill have to be?
 - 2h
 - 3h
 - 4h

1.4 Linear and Angular Momentum

- 1. A star undergoes a supernova, in which significant matter is blown away by a fusion reaction. The remaining also shrinks in size. Suppose the radius decreases by a factor of 10^3 . By what factor does the angular velocity increase, if angular momentum is conserved? (Assume the mass doesn't change significantly).
 - \cdot 10 4
 - 10⁵
 - 10⁶
- 2. A mine cart is moving along a track at constant speed, and passes under a vertical waterfall. Because the cart is filled with water, the speed of the cart
 - increases
 - decreases
 - remains constant (no net forces)
- 3. If ball 1 in the arrangement shown in Fig. 2 is pulled back and then let go, ball 5 bounces forward. If balls 1 and 2 are pulled back and released, balls 4 and 5 bounce forward, and so on. The number of balls bouncing on each side is equal because
 - · of conservation of momentum.
 - · the collisions are elastic.
 - the collisions are inelastic.
 - · neither of the above.

Figure 2: This object is known as a Newton's cradle.

2 Technical Questions

2.1 Kinematics and Angular Kinematics

1. A ball is kicked with an initial velocity of $\vec{v}=4\hat{i}+3\hat{j}$ m/s. (a) For how long does the ball remain in the air? (b) Where does the ball land? $(g=10 \text{ m/s}^2)$.

2.2 Forces and Torque

1. A 900 kg lunar probe hovers above the surface of the Moon. On the Moon, $g\approx 5/3$ m/s². An engine is pointed at a 45 degree angle from straight down, spraying propellant. What force does the engine produce to keep the probe from decreasing in height?

2.3 Work and Energy

1. A snowboarder descends a hill with a height of 50 meters (neglect friction). (a) What is her final speed? (b) After descending, she travels along a flat stretch of snow. She turns the board sideways, the coefficient of friction becomes relevant: $\mu = 0.8$. How far does she travel before stopping?

2.4 Linear and Angular Momentum

1. Two objects each of mass m=0.1 kg rotate around the origin of a coordinate system, both at radius r=0.1 m. If the tangential velocity of each is v=1 m/s (p=mv), (a) what is $L=L_1+L_2=r_1p_1\sin\theta_1+r_2p_2\sin\theta_2$, the total angular momentum? (b) What is the value of the total moment of inertia, $I=2mr^2$, and the angular speed $\omega=v/r$ of the particles? (c) Show numerically that $I\omega=L$ from part (a).

