

A slab experiences three forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, and $\overrightarrow{F_3}$ acting vertically with magnitudes F_1 , F_2 , and F_3 respectively. Determine the resultant force and identify where it acts on the x-y plane (coordinates).

Since all forces act downward:

$$F_R = \Sigma F = F_1 + F_2 + F_3$$

$$\begin{split} F_R \cdot \overline{x} &= \Sigma (F \cdot x) \\ \rightarrow \overline{x} &= \frac{d_1 F_2 + d_2 F_3}{F_R} \\ \Rightarrow \overline{x} &= \frac{d_1}{F_R} \cdot \left(F_2 + \frac{F_3}{2} \right) \end{split}$$

$$\begin{split} F_R \cdot \overline{y} &= \Sigma (F \cdot y) \\ \rightarrow \overline{y} &= \frac{d_1 (F_1 + F_2)}{F_R} \\ \Rightarrow \overline{y} &= \frac{d_1}{F_R} \cdot (F_1 + F_2) \end{split}$$