Method for coding image signals.

Publication number:	EP0283715 (A2)		Also publish	ed as:
Publication date:	1988-09-28	雹	EP0283715	(A3)
Inventor(s):	LOHSCHELLER HERBERT DR ING; FRANKE UWE DIPL-ING +	·雹	EP0283715	(B1)
Applicant(s):	ANT NACHRICHTENTECH [DE] +	团	DE3709094	(A1)
Classification:				
- international:	G06T9/00; H04N1/64; H04N7/26; H04N7/30; H04N11/04;		Cited docum	ents:
	G06T9/00; H04N1/64; H04N7/26; H04N7/30; H04N11/04; (IPC1-7): H04N1/41		DE3708288	, ,
- European:	G06T9/00T; H04N1/64B; H04N7/26A6Q; H04N7/30E7;		EP0238254	. ,
	H04N11/04B1		EP0066697	• •
Application number:	EP19880102345 19880218		US464439	٠,
Priority number(s):	DE19873709094 19870323		DE3546337	(A1)

Abstract of EP 0283715 (A2)

For coding image signals, particularly for the colour transmission of individual images, spectral coefficients are formed by means of a DCT. The sensitivity of a perceptibility threshold decision arrangement applied to blocks of these spectral coefficients is controlled in dependence on the occurrence of edge structures in the image content. The threshold decision is followed by a quantisation and an entropy encoding. For the data reduction, classes are allocated block by block to the spectral coefficients. The transmission of a class information is sufficient for identifying the spectral coefficients for such classes.

Data supplied from the espacenet database — Worldwide

① Veröffentlichungsnummer: 0 283 715 B1

(12)

EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag der Patentschrift: 15.07.92

(5) Int. Cl.5: **H04N** 1/415, H04N 1/41

(21) Anmeldenummer: 88102345.1

2 Anmeldetag: 18.02.88

- 54) Verfahren zur Codierung von Bildsignalen.
- Priorität: 23.03.87 DE 3709094
- (43) Veröffentlichungstag der Anmeldung: 28.09.88 Patentblatt 88/39
- 45 Bekanntmachung des Hinweises auf die Patenterteilung: 15.07.92 Patentblatt 92/29
- 84 Benannte Vertragsstaaten: DE FR IT NL
- (56) Entgegenhaltungen:

EP-A- 0 066 697

EP-A- 0 238 254

DE-A- 3 546 337

DE-A- 3 708 288

US-A- 4 644 392

US-A- 4 670 851

US-A- 4 727 422

IEEE TRANSACTIONS ON COMMUNICA-TIONS, Band COM-32, Nr. 3, März 1984, CHEN PRATT "Scene Adaptive Coder", Seiten 225-232.

SPIE, vol. 594 Image Coding, 1985, page 120.

- (73) Patentinhaber: ANT Nachrichtentechnik GmbH Gerberstrasse 33 W-7150 Backnang(DE)
- 2 Erfinder: Lohscheller, Herbert, Dr. Ing. Mairichweg 8 W-7152 Aspach(DE) Erfinder: Franke, Uwe, Dipl.-Ing.

Weberstrasse 13 W-5100 Aachen(DE)

Ò

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

15

30

35

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1. Ein solches Verfahren ist bekannt aus "Digital Image Processing, William K. Pratt, Wiley - Interscience Publication, New York/Chichester/Brisbane/Toronto, Seiten 471-499". Dort werden verschiedene Verfahren zur Erkennung von Kantenstrukturen in Bildsignalen vorgestellt, die einer diskreten Transformation unterzogen wurden.

Aus "IEEE Transactions on Communications, Vol.Com-32, No. 3, March 1984, Seiten 225-232" ist es bekannt, Bildsignale einer Diskreten Cosinus Transformation zu unterziehen. Um eine niedrige Codierrate zu erhalten, werden die Transformationskoeffizienten in dem Sinne adaptiv quantisiert, daß Blöcken von Koeffizienten, die große Energieanteile enthalten, mehr Quantisierungsschwellen und Codierbits zugeordnet werden als Blöcken mit geringen Energieanteilen.

Aus "Orthogonal Transforms for Digital Signal Processing, N. Ahmed, K.R. Rao, Springer Verlag, Berlin/Heidelberg/New York, Seiten 225-253", ist es bekannt, Bildsignale zur Datenreduktion zu klassifizieren

Aufgabe der Erfindung ist es, das Verfahren ausgehend vom Oberbegriff des Patentanspruchs 1 so auszugestalten, daß eine Einzelbildübertragung, insbesondere eine Farbeinzelbildübertragung über einen Übertragungskanal mit begrenzter Kapazität ohne Qualitätseinbußen möglich ist. Diese Aufgabe wird durch die Maßnahmen des Patentanspruchs 1 gelöst.

Anspruch 2 zeigt eine vorteilhafte Weiterbildung auf, die die Übertragungsrate erheblich reduziert. Dies ist dadurch möglich, daß für jeden Block eines Bildes ein Satz von Spektralkoeffizienten, der zu einer Klasse gehört, ausgewählt wird und für diese Auswahl nur eine Klassenzugehörigkeitsinformation übertragen werden muß.

Das Verfahren gemäß der Erfindung hat insbesondere den Vorteil, daß sich das übertragene Einzelbild auf der Empfängerseite sehr schnell aufbaut (ca. 2 sec bei einer Übertragungsrate von 64 kbits/s). Die Datenkompression beim Verfahren nach der Erfindung ist so stark, daß die durchschnittliche Bitrate, die zur Codierung der Farbbilder nötig ist, weniger als 0,7 bit per pel (picture element) beträgt.

Anhand der Zeichnungen wird ein Ausführungsbeispiel der Erfindung nun näher erläutert. Es zeigen

Fig. 1 die Verfahrensschritte der Erfindung in einem Ablaufdiagramm,

Fig. 2 a,b,c Tabellen der Wahrnehmbarkeitsschwellwerte für die einzelnen Bildkomponenten,

Fig. 3 das Blockschaltbild eines Prädiktors,

Fig. 4 die Anordnung der Referenzwerte für die DC-Prädiktion,

Fig. 5 die Prädiktionskoeffizienten für den DC-Anteil,

Fig. 6 einen Übersichtsplan der Kantenerkennung,

Fig. 7 die Edgepoint Entscheidung,

Fig. 8 den Funktionsablauf der Klassifikation,

Fig. 9 eine Wahrheitstabelle zur Klassenselektion bezüglich der I-Komponente,

Fig. 10 eine Wahrheitstabelle zur Klassenselektion bezüglich der Q-Komponente,

Fig. 11 aus Klassen abgeleitete Terme der Luminanzkomponente y,

Fig. 12 die Bildung der Kardinalzahlen tk_d,

40 Fig. 13 aus Termen gebildete Klasseninformationen cn_y

Fig. 14 den Ablauf der Blockquantisierung,

Fig. 15 den Ablauf der Transmission Coding,

Fig. 16 die Entropiecodierung für die Luminanzkomponente y,

Fig. 17 die Entropiecodierung für die Chromakomponente I,

45 Fig. 18 die Entropiecodierung für die Chromakomponente Q,

Fig. 19 die Entropiecodierung für AC-Koeffizienten,

Fig. 20 die Codierung der DC Koeffizienten.

Das Ablaufdiagramm gemäß Fig. 1 zeigt die einzelnen Verfahrensschritte der Erfindung. Das zur Verfügung stehende Bildsignal wird zuerst in Blöcke zerlegt (Block Decomposition). Die bei der Blockbildung erzeugten Teilbildbereiche werden zweckmäßigerweise gleich groß und quadratisch gewählt. Die Teilbildbereiche können durch die Bildelementwerte $x_{i,j}$ vollständig beschrieben werden, wobei i und j Indexvariablen sind, die von 1 bis N laufen. Die Bildelemente lassen sich durch die Blockfunktion BC (cc, bn, N) darstellen, wobei cc die Luminanzkomponente Y oder die Farbkomponenten I und Q, bn die Blocknummer und N die Größe des Blocks Nx N mit N beispielsweise 8 angibt. Die in Blöcke zerlegten Teilbildbereiche werden nun einer Diskreten Cosinus Transformation DCT(Discrete Cosine Transform) unterzogen. Es entstehen dadurch Spektralkoeffizienten W_{k,I} mit k und I als Indexvariablen, die von 1 bis N laufen. Parallel zur DCT wird eine Kantenerkennung ED (Edge detection) vorgenommen, die zu Kantenblockinformationen

 $eb = ED(x_{i,j})$

führt.

Die DCT Transformation ist hinreichend bekannt, beispielsweise aus IEEE Transactions on Communications, Vol. COM-32, No. 3, March 1984, Seiten 225 bis 232, so daß an dieser Stelle nicht näher darauf eingegangen wird.

Aus den Speichern einer solchen DCT Transformationseinheit werden Gleich- und Wechselanteile getrennt ausgelesen, d.h. die Spektralkoeffizienten stehen blockweise aufgespalten zur Weiterverarbeitung zur Verfügung. Gleichanteile, nachfolgend mit DC bezeichnet, bedeuten in diesem Zusammenhang jeweils mittlere Helligkeitswerte bezüglich der Luminanzkomponente und mittlere Farbsättigungswerte bezüglich der Chromakomponenten für jeden Block von Spektralkoeffizienten. Wechselanteile, nachfolgend mit AC bezeichnet, bilden die jeweiligen örtlichen Abweichungen von diesen mittleren Werten innerhalb eines Blockes für jeden Spektralkoeffizienten.

Bezüglich der AC-Anteile erfolgt nun ein Vergleich der Spektralkoeffizienten mit visuellen Wahrnehmbarkeitsschwellen, die gemäß der Empfindlichkeit des menschlichen Auges gewählt sind, mittels einer Wahrnehmbarkeitsschwellwertentscheidung (Spectral Thresholding), die sich durch die Beziehung

 $Ssth_{k,l} = TR(th_{k,l}, W_{k,l}, cc, eb)$

beschreiben läßt.

sth_{k,i} (supra-threshold information)

wird als Binärwort mit N x N bits als Ausgangssignal abgegeben. Die Wahrnehmbarkeitsschwellwertentscheidung wird von der Kantenerkennung ED in dem Sinne gesteuert, daß eine Schwellwertreduzierung erfolgt, wenn Kantenstrukturen festgestellt wurden. Die vorgegebenen Wahrnehmbarkeitsschwellwerte th $_{k,l}$ sind für Luminanz- und Chrominanzkomponenten Y, I, Q jeweils verschieden. Für die Luminanzkomponente muß die Auflösung der Schwellwerte im Gegensatz zu den Chromakomponenten relativ hoch sein.

Die Figuren 2a, b und c zeigen die Wahrnehmbarkeitsschwellwerte th_{k,1} für die Y, I, Q-Komponenten eines 8x8 Blockes. Die gekreuzten Stellen bei den Chromakomponenten brauchen nicht berücksichtigt werden, da das menschliche Auge für Farbsignale nicht so empfindlich ist.

Für die DC-Anteile ist eine solche Schwellwertentscheidung im allgemeinen nicht erforderlich, kann jedoch nach Bedarf vorgenommen werden, insbesondere mit fest vorgegebenen Schwellwerten. Die DC-Anteile werden im Ausführungsbeispiel blockweise linear quantisiert - QDC - und anschließend einem Prädiktor zugeführt. Das Blockschaltbild für einen solchen Prädiktor ist in Fig. 3 dargestellt. Ein Prädiktionswert S' wird erhalten durch eine gewichtete Summierung von 3 benachbarten DC-Koeffizienten, die zuvor für die Übertragung benutzt wurden. Fig. 4 zeigt schematisch die Anordnung der Referenzwerte A₁, A₂ und A₃ für eine zweidimensionale Prädiktion der DC-Koeffizienten. Die gekreuzte Stelle entspricht dem Prädiktionswert. Die Prädiktionskoeffizienten für A₁, A₂ und A₃ bezüglich der Signalkomponenten Y, I, Q zeigt Fig. 5. Eine Integer(Ganzzahl-)Rundung NINT zur Redundanzreduktion führt nur zu ganzzahligen Prädiktionsfehlern für die Übertragung. Am Ausgang des Prädiktors ist eine Subtrahierstufe angeordnet, die vom Eingangswert S für die Prädiktion das Ausgangssignal der Rundung subtrahiert.

Für den AC-Anteil wird das Ausgangssignal der Wahrnehmbarkeitsschwellwertentscheidung einer Klassifikation (Classification) unterzogen. Diese Klassifikation läßt sich durch den Ausdruck

 $cn_{cc} = CL (sth_{k,l}, cc)$

40

beschreiben. Sie ist also von der Supra-threshold-Information und der Signalkomponente cc abhängig. cn_{cc} bedeutet die Klassennummer einer Signalkomponente. Durch die Klassifikation wird die Zugehörigkeit der Spektralkoeffizienten eines Blockes zu vorher festgelegten Klassen beschrieben. Eine ausführliche Behandlung der Klassifikation erfolgt noch an anderer Stelle.

Nach der Klassifikation wird für die AC-Anteile eine Block-Quantisierung BQ (Block Quantisition) vorgenommen, die zu folgender Beziehung führt:

 $V_{k,l} = BQ (w_{k,l}, th_{k,l}, eb)$

V_{k,l} stellen quantisierte Spektralkoeffizienten dar. Diese Blockquantisierung kann gegebenenfalls auch für den DC-Anteil vorgenommen werden, wie noch erläutert wird.

Übertragungsdaten werden bezüglich des DC-Anteils durch Codieren der quantisierten Prädiktionsfehler COD-QF aufbereitet und bezüglich der AC-Anteile durch Codieren der blockquantisierten Spektralkoeffizienten $V_{k,l}$ - Transmission Coding. Die Transmission Coding läßt sich durch die Beziehung

 $h = TC (V_{k,l}, cn_{cc}, cc)$

beschreiben. Sie erfolgt im Sinne einer Entropiecodierung. Durch die Klassifikation werden Zusatzübertragungsdaten gewonnen, die die Zugehörigkeit der Spektralkoeffizienten eines Blockes zu vorher festgelegten Klassen kennzeichnen. Durch Übertragen dieser Zusatzdaten können die Übertragungsdaten anhand der Klassenzugehörigkeit ausgedünnt werden; denn für jene Spektralkoeffizienten, die zu einer Klasse gehören, reicht es aus, nur eine Klassenzugehörigkeitsinformation zu übertragen.

Der in Fig. 1 vorgestellte Übersichtsablauf wird nun näher erläutert. Die DCT läßt sich durch folgende Beziehung ausdrücken:

$$w_{k,l} = \frac{c(k) \cdot c(1)}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{i,j} \cos(2i-1) \cdot (k-1) \frac{\pi t}{2N} \cdot \cos(2j-1) \cdot (l-1) \frac{\pi t}{2N}$$

$$c(n) = \begin{cases} 1 & \text{if } n = 1 \\ \sqrt{2} & \text{if } n \neq 1 \end{cases}$$

$$\sqrt{2}$$
 n \pm 1

$$i,j,k,l = 1,...,N$$

Die Kantenerkennung ist in der DE Patentanmeldung P 35 42 484.2 ausführlich beschrieben, soll hier aber nochmals in allgemeiner Form erläutert werden. Den Übersichtsplan der Kantenerkennung (Edge Detector) zeigt Fig. 6. Zuerst wird ein Operatorfenster definiert (Operator window Definition),

$$a_{n,m} = OW(x_{i,j})$$
,

wobei 25

5

15

20

$$a_{m,n} = X_{i1,j1}$$

 $m = 1, 2, 3$
 $n = 1, 2, 3$
 $i1 = i-2+n$
 $i1 = i-2+m$ ist,

was einer 3x3 Matrix für Spektralkoeffizienten entspricht. Dieses Operatorfenster wird auf eine "Edgepoint detection" EP abgebildet, derart daß "Edge-point"-Koeffizienten epi, entstehen.

Die Edgepointdetection läßt sich beschreiben zu:

35

$$s_{m,n} = \begin{cases} -1 & , & \alpha_{m,n} - \overline{m} \leq -\varepsilon \\ 0 & , & -\varepsilon < \alpha_{m,n} - \overline{m} \leq \varepsilon \\ 1 & , & \alpha_{m,n} - \overline{m} \geq \varepsilon \end{cases}$$

45

40

$$\overline{m} = \frac{1}{8} \left[\sum_{n=1}^{3} \sum_{m=1}^{3} \alpha_{m,n} - \alpha_{2,2} \right]$$

sensitivity threshold

50

Anschließend erfolgt eine "Edgepoint"-Entscheidung EPD $ep_{i,i} = EPD(S_{m,n})$

Diese Entscheidung ist in Fig. 7 dargestellt.

Zu jedem ep, gehört eine Matrix Sm,n (Darstellung ohne s2,2), aus deren Elementen -1 und 1 sich Kantenorientierungen in Vielfachen von $\pi/8$ vereinbaren lassen. Der zugehörige Orientierungswinkel der Kanten (angle of edge) ist in Fig. 7 ebenfalls dargestellt.

Im Ablauf wird nun untersucht, ob alle Edge points abgearbeitet sind. Ist dies nicht der Fall, wird mit den weiteren Variablen i,j = 2 ... 7 die Entscheidung nochmals vorgenommen.

Nach der Abarbeitung aller Edgepoints erfolgt eine "Edgeblockdetection"

 $eb = EB (ep_{i,i}),$

5 die durch folgende Vereinbarungen zu erfolgen hat:

$$\epsilon b = \begin{cases} 1 & , & n_r \ge \epsilon \\ 0 & , & n_r < \epsilon \end{cases}$$

$$r = 1, 2, ..., 6$$

nr =
$$\sum_{i=2}^{7} \sum_{j=2}^{7} \delta(r, ep_{i,j})$$

$$\delta (r, ep_{i,j}) = \begin{cases} 0, & r \neq ep_{i,j} \\ 1, & r = ep_{i,j} \end{cases}$$

Die Schwellwertentscheidung erfolgt nach folgenden Beziehungen:

sth =
$$\begin{cases} 0 ; |w_{k,l}| < th_{k,l} (eb, cc) \\ 1 ; |w_{k,l}| \ge th_{k,l} (eb, cc) \end{cases}$$

$$th_{k,l}(0,cc) = th_{k,l}(1,cc) \neq 2$$

Die Wahrnehmbarkeitsschwellwerte

th_{k,1} (eb, cc)

30

45

wurden schon in den Figuren 2 a,b,c vorgestellt.

Die Klassifikation ist in der DE P 37 08 288.4 ausführlich beschrieben. Es soll jedoch hier in allgemeiner Form darauf eingegangen werden.

Den Funktionsablauf der Klassifikation zeigt Fig. 8. Zuerst wird in einer Entscheiderstufe auf Chromakomponenten I,Q und Luminanzkomponenten Y hin untersucht. Für die Chromakomponenten I,Q wird eine Klassenselektion durchgeführt anhand der Supra-Threshold-Information sth_{k,1}:

 $cn_{cc} = CS (sth_{k,1})$

Als Klasse cn_{cc} als Klassifikation für die Chromakomponenten wird jene ausgewählt, die alle Schwellwertvariablen sth_{k,1} überdeckt. Diese Klassenselektion ist durch die Wahrheitstabellen gemäß den Figuren 9 und 10 beschreibbar.

Fig. 9 zeigt die Klassenselektion cn_I für die I-Komponente in Abhängigkeit der Supra-Threshold-Informationen sth_{k.1} und Fig. 10 die entsprechende Klassenselektion cn_Q für die Q-Komponente. Für die Luminanzwer-

EP 0 283 715 B1

te Y erfolgt die Klassifikation in einem dreistufigen Prozeß:

- einer Preprocessing Operation $\mathfrak{S}th_{k,1} = PO(sth_{k,1}),$

die durch folgende Beziehungen beschreibbar ist:

$$\widetilde{sth}_{k,l} = \begin{cases} 0, & \sum_{m=1}^{3} \sum_{n=1}^{3} o_{m,n} - o_{2,2} < M \\ o_{2,2}, & \sum_{m=1}^{3} \sum_{n=1}^{3} o_{m,n} - o_{2,2} \ge M \end{cases}$$

$$o_{m,n} = \begin{cases} sth_{k1,l1} & k_1, l_1 = 1,..., N \\ 0 & k_1, l_1 = 0, N+1 \end{cases}$$

$$m_1 n = 1, 2, 3$$

$$k_1 = k - 2 + m$$

$$l_1 = l - 2 + n$$

$$k_1 = 1, ..., N$$

$$M = \begin{cases} 0 & k=1, l=1,..., 4 \\ & l=1, k=1,..., 4 \end{cases}$$
1; for all other k, l

 $\ensuremath{\widetilde{\mathtt{Sh}}}_{k,1}$ bedeutet eine modifizierte Super-Threshold-Information, einer Termentscheidung

$$t_d = TE (sth_{k,l})$$

mit

$$t_{d} = \begin{cases} 0 , & \sum_{q} \sum_{p} \widehat{sth}_{q,p} < NINT(tk_{d}/2) \\ 1 , & \sum_{q} \sum_{p} \widehat{sth}_{q,p} \ge NINT(tk_{d}/2) \end{cases}$$

$$d = 1, \ldots, t_{\alpha}$$

 t_d wird als Termvariable bezeichnet, wobei d eine Indexvariable ist, die von 1 bis t_a = 18 läuft.9 ist ein Zeilenindex für sth und p ist ein entsprechender Spaltenindex. Fig. 11 zeigt die aus den Klassen abgeleiteten 18 Terme der Luminanzkomponente, wobei die Variablen sth_{q,p} horizontal und die Termnummern t_d vertikal aufgetragen sind. Die Abhängigkeit der Kardinalzahl t_{kd} von den Termen t_d bei der Entscheidung zeigt Fig. 12,

einer "Class Approximation"

 $cn_y = AP(t_d)$

5

10

15

20

25

45

Diese "Class Approximation" selektiert die niedrigste Klassenselektionsnummer cn_y , die alle Terme t_d enthält, gemäß Fig. 13.

Wie Fig. 13 zeigt, sind 16 Klassen aus 18 Termen für die Luminanzkomponente gebildet.

Der Ablauf der Blockquantisierung ist in Fig. 14 dargestellt. Zuerst wird festgestellt, ob ein Edgeblock eb detektiert wurde. Fall dies der Fall ist, wird eine Quantisierung gemäß der Beziehung

 $V_{k,l} = NINT (w_{k,l} / th_{kl})$

vorgenommen. Wenn kein Edgeblock detektiert wurde, wird jeweils der Absolutbetrag der Spektralkoeffizienten mit den Wahrnehmbarkeitsschwellwerten th $_{k,l}$ verglichen. Werden diese Wahrnehmbarkeitsschwellwerte überschritten, erfolgt ebenfalls eine Quantisierung nach obiger Beziehung. Andernfalls wird die Quantisierung $V_{k,l}$ der Spektralkoeffizienten auf 0 gesetzt. Dieser Prozeß wird so lange durchgeführt, bis alle Spektralkoeffizienten quantisiert sind.

Der Ablauf der Transmission Coding ist in Fig. 15 dargestellt. Zuerst wird auf das Vorhandensein einer Klassennummer-Information en geprüft. Ist eine solche vorhanden, wird eine Entropiecodierung $h_{en} = HC$ (cn_y) gemäß den Codiertabellen nach Fig. 16 - Entropiecodierung für die Luminanzkomponente Y in Abhängigkeit der Klassennummer cn_y -, Fig. 17 - Entropiecodierung für die Chromakomponente I in Abhängigkeit der Klassennummer cn_l - und Fig. 18 - Entropiecodierung für die Chromakomponente Q in Abhängigkeit der Klassennummer cn_Q - vorgenommen.

Wird keine Klassennummer-Information festgestellt, wird untersucht, ob DC oder AC-Koeffizienten V_{dc} oder V_{ac} vorliegen. Beim Auftreten von AC-Koeffizienten wird nach der Beziehung

$$h_{ac} = HC (V_{ac})$$

codiert. Die zugehörige Codiertabelle zeigt Fig. 19. Für die AC-Koeffizienten sind die Absolutbeträge der Amplitudenwerte angegeben. Es wird eine Hufmann-Codierung verwendet.

Beim Auftreten von DC-Koeffizienten wird eine zweidimensionale Prädiktion

$$V'_{dc} = \sum_{n=1}^{3} A_{n,cc} \cdot V_{dc}$$

vorgenommen, wie in Fig. 4 dargestellt. Die zugehörigen Prädiktionskoeffizienten wurden bereits im Zusammenhang mit Fig. 5 erläutert. Nach der Prädiktion erfolgt eine Berechnung gemäß:

$$\Delta = NINT (v'_{dc}) - d_{c}$$

$$mit d_c =$$

Die Codierung

$$h_{dc} = HC (\Delta)$$

wird gemäß der Codiertabelle nach Fig. 20 vorgenommen, die die Prädiktionswertcodierung für I und Q

Komponenten zeigt.

Nachdem alle Blöcke codiert sind, wird von der eigentlichen Übertragung noch eine Übertragungsaufbereitung vorgenommen, d.h. eine Zusammenfassung aller codierten Daten zu einem kontinuierlichen Datenstrom (Transmission Sequenzing). Dazu können übliche Multiplextechniken herangezogen werden.

Zur Decodierung der Bilddaten auf der Empfangsseite sind die zuvor aufgeführten Maßnahmen invers auszuführen - inverse DCT, Decodierung gemäß den angeführten Codiertabellen.

Patentansprüche

5

15

20

25

30

35

45

50

55

- 1. Verfahren zur Codierung von Bildsignalen unter Verwendung einer diskreten Transformation, beispielsweise der Diskreten Cosinus Transformation (DCT) zur Bildung von Spektralkoeffizienten, wobei Kantenstrukturen festgestellt werden und eine visuelle Wahrnehmbarkeits-Schwellwertentscheidung vorgenommen wird, gekennzeichnet durch folgende Maßnahmen:
 - blockweises Aufspalten der Spektralkoeffizienten in Gleich- und Wechselanteile, wobei die Gleichanteile jeweils mittlere Helligkeitswerte bezüglich der Luminanzkomponente und mittlere Farbsättigung bezüglich der Chromakomponenten für jeden Block von Spektralkoeffizienten darstellen und die Wechselanteile die jeweiligen örtlichen Abweichungen von diesen mittleren Werten innerhalb eines Blockes bilden,
 - Steuern der Schwellwertentscheidung bezüglich der Wechselanteile derart, daß eine Schwellenreduzierung bei der Schwellwertentscheidung vorgenommen wird, wenn Kantenstrukturen festgestellt wurden,
 - Quantisieren der durch die gesteuerte Schwellwertentscheidung erhaltenen Signale sowie der Gleichanteile,
 - Ermitteln von Prädiktionsfehlern für die quantisierten Gleichanteile,
 - Aufbereiten von Übertragungsdaten durch Codieren der quantisierten Prädiktionsfehler für die Gleichanteile und der quantisierten Wechselanteile jeweils durch einen für die Übertragung geeigneten datenreduzierenden Code.
 - 2. Verfahren nach Anspruch 1, gekennzeichnet durch
 - Aufbereiten von Zusatzübertragungsdaten, wobei diese Zusatzübertragungsdaten aus Informationen über die Zugehörigkeit der Spektralkoeffizienten eines Blockes zu vorher festgelegten Klassen bestehen,
 - Ausdünnen der Übertragungsdaten anhand der Informationen über die Zugehörigkeit der Spektralkoeffizienten zu Klassen derart, daß die Übertragungsdaten nur jene Spektralkoeffizienten in einem Block berücksichtigen, die zu einer festgelegten Klasse gehören.

Claims

- 1. A method for coding of image signals by using a discrete transformation, for example discrete cosine transformation (DCT) to form spectral coefficients, where edge structures are determined and a visual recognition threshold value determination is made, characterized by the following steps:
 - splitting the spectral coefficients block by block into constant and changing components, where
 each of the constant components represents mean brightness values in respect to the luminance
 component and mean color saturation in respect to the chroma component for each block of
 spectral coefficients, and where the changing components each form the respective local
 divergence from these mean values within a block,
 - controlling the threshold value determination in respect to the changing components in such a
 way that a threshold value reduction is made in the threshold value determination when edge
 structures are detected,
 - quantifying the signals obtained by means of the controlled threshold value determination as well
 as the constant components,
 - detecting prediction errors in regard to the quantified constant components,
 - preparing transmission data by coding the quantified prediction errors for the constant components and the quantified changing components, each one by means of a data-reducing code suitable for transmission.
 - 2. A method in accordance with claim 1, characterized by
 - preparing additional transmission data, where these additional transmission data consist of

EP 0 283 715 B1

- information regarding the affiliation of the spectral coefficients of a block with previously determined classes,
- thinning out the transmission data on the basis of the information in respect to the affiliation of the spectral coefficients with classes in such a way that the transmission data only take those spectral coefficients in a block into account which are members of a fixed class.

Revendications

5

15

20

25

30

35

40

45

50

- 1. Procédé de codage de signaux d'image en utilisant une transformation discrète, par exemple la transformation cosinus discrète (DCT) pour former des coefficients spectraux, dans lequel on détermine des structures de bord et l'on procède à une décision de valeur de seuil de perception visuelle, caractérisé par les dispositions suivantes:
 - partage par blocs des coefficients spectraux en composantes continues et alternatives, les composantes continues représentant à chaque fois des valeurs de brillance moyenne pour ce qui est de la composante luminance et la saturation de couleur moyenne pour ce qui est des composantes degré de teinte pour chaque bloc de coefficients spectraux, et les composantes alternatives constituant à chaque fois les écarts locaux par rapport à ces valeurs moyennes à l'intérieur d'un bloc;
 - commande de la décision de valeur de seuil pour ce qui est des composantes alternatives faite de manière qu'une réduction de seuil soit effectuée lors de la décision de valeur de seuil si des structures de bord ont été constatées,
 - quantification des signaux obtenus par la décision de valeur de seuil commandée, ainsi que des composantes continues,
 - élaboration d'erreurs de prédiction pour les composantes continues quantifiées,
 - préparation de données de transmission par codage des erreurs de prédiction quantifiées pour les composantes continues et par codage des composantes alternatives quantifiées, à chaque fois par un code réducteur de données convenant pour la transmission.
 - 2. Procédé selon revendication 1, caractérisé par
 - préparation de données de transmission supplémentaires, lesquelles sont constituées par des informations concernant l'appartenance des coefficients spectraux d'un bloc à des classes préalablement fixées;
 - départage des données de transmission en se reportant aux informations concernant l'appartenance des coefficients spectraux à des classes, de manière que les données de transmission ne prennent en compte que ceux des coefficients spectraux qui, dans un bloc, appartiennent à une classe fixée.

55

Y-Kor	nponen	te th _k	, (0,Y)	•				
16	11	10	16	24	40	51	61	
12	12	14	19	26	58	60	5 5	
14	13	16	24	40	57	69	56	
14	17	22	29	51	87	80	62	Figur 2a
18	22	37	56	68	108	103	77	-
24	35	55	64	81	104	113	92	
49	64	78	87	103	121	120	101	
72	92	95	98	112	100	103	99	
c ₁ -Ko	mponei	nte th _k	,, (O,D					
35	63	85	92	104	103	*	*	
74	90	118	130	*	*	*	*	
88	120	*	*	*	*	*	*	
120	148	*	*	*	*	*	*	Figur 2b
160	*	*	*	*	*	*	*	_
184	*	*	*	*	*	*	*	
*	*	*	*	*	*	*	*	
*	*	*	*	*	*	*	*	
c ₂ -Ko	mponer	nte th	,1 (0, (<u>)</u>				
41	64	70	*	*	×	* *		
70	97	*	*	*	*	* . *		
81	*	*	*	*	*	* *		
106	*	*	*	*	*	* *		Figur 2c
*	*	*	*	*	*	* *		_
*	*	*	*	*	*	* *		
*	*	*	*	*	*	* *		
*	*	*	•	4	4			

 A ₂	A ₃		
A 1	x		N
		W/	

Figur 4

Blockgröße NxN

	A 1	A ₂	A ₃
Y	5/8	-3/8	3/4
1	1/2	-1/4	3/4
Q	1/2	Ø	1/2

Figur 5

d	^{tk} d
6	2
11	5
15	2
17	2
rest	1

Figur 12

F16.3

ep _{i,j}	s _{m,n}	ohne s _{2,2}			Winkel
1	1 1 1 -1 1 -1 -1 -1	-1 -1 -1 1 -1 1 1 1	·		-א' זר
2	1 -1 -1 1 -1 1 1 1	-1 1 1 -1 1 -1 -1 -1	1 1 1 -1 1 -1 -1 1	-1 -1 -1 1 -1 1 1 -1	- 7 7 /4
3	1 -1 -1 1 -1 1 1 -1	-1 1 1 -1 1 -1 -1 1			-3 % /8
4	1 1 -1 1 -1 1 -1 -1	-1 -1 1 -1 1 -1 1 1			3 7 /8
5	1 1 1 1 -1 1 -1 -1	-1 -1 -1 -1 1 -1 1	1 1 -1 1 -1 -1 -1 -1	-1 -1 1 -1 1 1 1 1	त /4
6	1 1 1 1 -1 -1 -1 -1	-1 -1 -1 -1 1 1 1 1			7 7 /8
0	alle andere	n Möglichkeit	en ,		keine Kante

Figur 7

sth _{1,1}	sth _{1,2}	sth _{1,3}	sth _{1,4}	sth _{2,1}	sth _{2,2}	sth _{3,1} .	cnI
0	0	0	0	0	0	0	co _I
1	0 .	0	0	0	0	0	c1 _I
-	1	. 0	0	0	0	0 .	c2 _I
-	0	0	0	1	0	0	c3 _I
-	-	-	1	0	0	0	c4 _I
•••	-	0	0	-	0	1	c5 _I
-	•	-	0	-	1	0	c6 _I
-	•	1	0	-	-	0	c6 _I
-	-	1	-	-	-	1	c7 _I
-	-	•	1		1	eco	c7 _I
-	-	0	0	-	1	1	c7 _I
-	-	0	1	-	0	1	c7 _I
-	-	-	1	1	0	0	c7 _I

FIG.9

sth _{1,1}	sth _{1,2}	sth _{2,1}	cn _Q
0	0	0	c ⁰ Q
0	0	1	c ⁴ Q
0	1	0	c ⁴ Q c ² Q c ⁶ Q
0	1	1	c ⁶ Q
1	0	О	c ¹ Q
1	0	1	c ⁵ Q
1	1	o	c ⁵ Q c ³ Q c ⁷ Q
1	1	1	c ⁷ Q

Figur	10
-------	----

Klassennummer	Code						
c ⁰ Q	0						
c ¹ Q	1	0					
c ² Q	1	1	1	1	1	0	
c3 _Q	1	1	0		٠		
c ⁴ Q	1	1	1	1	1	1	0
c ⁵ Q	1	1	1	0			
^{c5} Q ^{c6} Q	1	1	1	1	1	1	1
c ⁵ Q	1	1	1	1	0		

Figur 18

	5 6 4 1 2 3 1	× × × ×	
	<i>ش</i>	*	
	2	×	
	4 -	×	
	22	×	
	4	, ×	
	m	×	
	2	×	
	w	×	
h p	5	×	
Variablen sth _q ,	4	×	
iable	ω	×	
Var	7	×	
	7-	×	
	~	×	
	9	×	
	5	×	Ç
	4	×	Figur 11
	m	*	Fig
	7	×	
		×	
	Zeile q Spalte p	Nummer t _d 2 2 4 7 6 9 8 7 6 7 4 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	

17
17

Klassennummer	Codewort					
c1 _y	0	1				
_	1	1	0	0		
c2 _y	1	0	0	0	0	
c4 _y	1	0	0	0	1	
c5 _y	1	1	1	0		
c6 _y	0	0	1	1	0	
c7 _y	. 1	1	1	1		
c8 _y	0	0	1	1	1	
c9 _y	1	1	0	1	1	
c10 _y	0	0	1	0	1	
c11 _y	1	1	0	1	0	1
c12 _y	1	1	0	1	0	0
c13 _y	0	0	1	0	0	
c14 _y	1	0	0	1		
c15 _y	0	0	0			•
c16 _y	1	0	1			

Amplitudenwert	Codewort	
0	1	
1	0 0 1	
2	0 1 1 1	
3	0 0 0 0 1	
4	0 1 1 0 1	
5	0 1 1 0 0 1	
6	0 0 0 0 0 0 1	Figur 19
7	0 1 1 0 0 0 1	
8	0 0 0 0 0 0 0	•
9	0 1 1 0 0 0 0 0	
10	0 0 0 0 0 0 0 1	
11	0 1 1 0 0 0 0 1	
12	0 0 0 0 0 1 + 8 Bits	

Prädiktionswert			Codewort											
Q	1													
,	,													
,	,													
ı	,													
- 5	5		1.	1	0.	1	1	1	1	0				
-4	4		1	1	0	1	1	1	0					
-3	3		1	1	0	1	1	0						
-2	2		1	1	0	1	0							
-1	1		1	1	0	0						Figur	20	
0	Ø		0											
1	-1		1	0										
2	-2		1	1	1	0								
3	-3		1	1	1	1	0							
4	-4		1	1	1	1	1	0						٠
,	1				4									
1	,	Vorzeichen Bit												
,	,	I												