Ejemplos de Movimiento de traslación horizontal eje "x"

De partículas subatómicas

- 1) Una partícula elemental (muon) se dispara con una rapidez inicial de 5.22 x 10⁶ m/s, dirigida a una región en donde un campo eléctrico produce una aceleración de 1.33 x 10¹⁴ m/s² en dirección contraria a la velocidad inicial.
- a) Que distancia recorre hasta el punto en donde se detiene
- b) Cuanto tiempo le lleva atravesar esa región

Resolución:

Datos conocidos:

$$v_i = 5.22 \times 10^6 \, m/s$$

$$v_f = 0$$
 $t_i = 0$ s

$$a = -1.33 \times 10^{14} m/s^2$$

Fórmula o ecuación para usar (identificar de las ecuaciones de cinemática)

$$v_f^2 = v_i^2 + 2a\Delta x$$

Despejar para el desplazamiento

$$\Delta x = \frac{{v_f}^2 - {v_i}^2}{2a} = \frac{0^2 - (5.22 \times 10^6 m/s)^2}{2(-1.33 \times 10^{14} m/s^2)} = 0.1024 m$$

b) identificar datos conocidos y escoger que ecuación de cinemática usar para despejar el valor solicitado

$$v_f = v_i + at$$

$$\Delta x = \left(\frac{v_i + v_f}{2}\right)t$$

$$\Delta x = v_i t + \frac{1}{2}at^2$$

$$t = \frac{v_f - v_i}{a} = \frac{0 - 5.22 \times 10^6}{-1.33 \times 10^{14}} = 3.92 \times 10^{-8} \text{s} = \text{ENG} = 39.24 \times 10^{-9} = \text{uso de prefijo} = 39.24 \text{ n/s}$$

Nota: en sus respuestas exprese con uso de prefijo las que apliquen. Use tecla de la calculadora ENG (notación de ingeniería).

- 2) Un electrón con una velocidad inicial de 1.4×10^5 m/s entra en una región (fuente de alto voltaje) de 1.2 cm de largo donde es acelerado eléctricamente. Sale de esa región con una velocidad de 5.7×10^6 m/s. Determine:
 - a) La aceleración que adquiere el electrón
 - b) El tiempo durante el cual atraviesa esa región

Resolución

a) Identificar la ecuación a usar por los datos conocidos, despejar el parámetro solicitado

$$v_f^2 = v_i^2 + 2a\Delta x$$

$$a = \frac{v_f^2 - v_i^2}{2\Delta x} = \frac{(5.7 \times 10^6)^2 - (1.4 \times 10^5)^2}{2(0.012 \, m)} = 1.35 \times 10^{15} \, m/s^2$$

- = $1.35 \text{ P m/s}^2 \text{ con uso de prefijo (peta)}$
 - b) El tiempo se puede calcular por cualquiera de las siguientes ecuaciones

$$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t$$

$$v_f = v_i + at$$

$$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

Despejar el tiempo,

$$t = \frac{2\Delta x}{v_i + v_f} = \frac{2(0.012)}{1.4 \times 10^5 + 5.7 \times 10^6} = 4.1095 \times 10^{-9} \, s = 4.1095 \, \text{ns}$$

La tabla de prefijos la encuentra en la penúltima página del libro de texto de FISICA Serway Jewett

Para unidades del SI

s, newton, joule, watt, pascal, hertz, ampere, coulomb, faradio,

Ejemplo problema # 15 del problemario de Física I página 28

Una caja parte del reposo en la parte superior de una rampa deslizándose hacia abajo con a=cte. La rampa tiene una altura de 1 m y está inclinada 30°. El tiempo que le lleva a la caja para llegar a la parte baja de la rampa es de 3 s.

- a) Cuál es la longitud de la rampa por la cual se desliza la caja
- b) Cuál es la aceleración de esta
- c) Con que velocidad llega a la parte inferior
- d) En cuanto tiempo la caja va a la mitad de su recorrido por la rampa
- e) Cuál es la velocidad de la caja en el punto medio de la rampa

Resolución
Parte del reposo
Altura 1 m
30°
t= 3s

a) Longitud de la rampa (hipotenusa)

$$sen\theta = \frac{co}{hip} = \frac{h}{x}$$

$$x = \frac{h}{sen\theta} = \frac{1}{sen \, 30} = 2 \, m$$

b) La aceleración de la caja

$$\Delta x = v_i \, \Delta t + \frac{1}{2} a \Delta t^2$$

$$a = \frac{2\Delta x}{t^2} = \frac{2(2)}{3^2} = 0.44 \, m/s^2$$

c) Velocidad en la parte baja de la rampa

$$v_f = v_i + a\Delta t$$

$$v_f = 0 + 0.44(3) = 1.32 \text{ m/s}$$

$$v_f^2 = v_i^2 + 2ax = 0 + 2 (0.44)2$$

$$v_f = \sqrt{2(0.44)2} = 1.32 \text{ m/s}$$

$$x = \left(\frac{v_i + v_f}{2}\right)t$$

$$v_f = \frac{2x}{t} = \frac{2(2)}{3} = 1.33 \text{ m/s}$$

d) t =? En x= 1 m datos conocidos x,vel inicial,a

$$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$t = \sqrt{\frac{2\Delta x}{a}} = \sqrt{\frac{2(1)}{0.44}} = 2.13 \, s$$

e) Velocidad en x= 1 m

$$v_f^2 = v_i^2 + 2a\Delta x$$

$$v_f = \sqrt{2(0.44)1} = 0.93 \text{ m/s}$$

$$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t$$

$$v_f = v_i + a\Delta t$$

$$v_f = 0 + (0.44)2.13$$

$$v_f = 0.93 \text{ m/s}$$

Ejercicios para hacer extraaula del problemario de Física 1 FIME

Problemas:8,9,10,11 páginas 26 y 27