Име:	фак. №	2	стр	. 1/	/1	3
FIIVIC.	 wan. I		OID	. 1/	/ 1	-

СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

ДЪРЖАВЕН ИЗПИТ ЗА ПОЛУЧАВАНЕ НА ОКС "БАКАЛАВЪР ПО ИНФОРМАТИКА" 17-18.03.2007 г.

ЧАСТ І (ПРАКТИЧЕСКИ ЗАДАЧИ)

Задача 1 (2 т.)	
Обяснете предназначението на следната функция : int m (int a, int b) { int M[2]={0}; return(M[a>b]=a, M[b>a]=b, M[0]); }	
Задача 2 (общо 10 т.) При условията на следната дефиниция: bool check (int A[], int n) { int N[3]={0}; for (int j=n;j;) (N[1-(A[j-1] <a[j]))+(a[j-1]>A[j])))++; return N[0]== n-1; }</a[j]))+(a[j-1]>	
а) (3 т.) Обяснете накратко какво свойство проверява така дефинираната функция.	
b) (1 т.) Коя от двете алгоритмични идеи: "∀" или "∃" е използвана при проверката? (заградете с кръгче)	
с) (6 т.) Напишете нов вариант на същата проверка, но като приложите другата алгоритмична идея:	
bool check (int A[], int n)	
Задача 3 (3 т.) При условията на следните дефиниции: char S[20] = "12345"; char *f(char *p, char *q) { if (*p == '-') p = p + 1; if (*q == '-') { *q = 0; q = q - 1; } if (*p == '-') *q == '-') return f(p, q); return p; } напишете какво ще се получи при изпълнението на оператора:	
cout << '(' << f(S, S+strlen(S)-1) << "),(" << S << ")\n" ;	

Задача 4 (6 т.)

Отбележете и обяснете грешките в програмата. Поправете ги така, че да се получи работеща програма. Намерете резултата от изпълнението й.

```
#include <iostream.h>
class A
        {public:
                                             A(int, int = 1);
                                             void print();
                                            int f_Ax() const;
                                            int f_Ay() const;
                 private:
                                              int x, y;
        };
        A::A(int a, int b)
         {x = a}
           y = b;
         void A::print()
         \{\text{cout} < \dot{x} < \ddot{x} = (x + y) < (x + y) <
         int A::f_Ax() const
         {return x;
         int A::f_Ay() const
         {return y;
        class B
         {public:
                                             B(double, A);
                                             void print() const;
                                             double f_Bx();
                                             A f_Ba() const;
           private:
                                             double x;
                                            Aa;
        B::B(double d, A e)
        {x = d}
           a = e;
        }
        void B::print() const
         {cout << x << endl;
           a.print();
        double B::f_Bx() const
         \{cout << a.f_Ax() << "" << a.f_Ay() << endl;
          return x;
        }
        A B::f_Ba()
         {return a;
        void main()
         \{A \ a(13), x;
              a.print();
              cout << x.x << " " << x.y << endl;
              B b(6.5, a);
              b.print();
        }
```

∕име: фак. № стр. 3/13

Задача 5 (10 т.)

```
Разгледайте програмата:
    #include <iostream.h>
    class Base
    {public:
      virtual void virt1()
      {cout << "Base::virt1() \n";
      Base()
      {cout << "Base()\n";
       virt1();
       virt2();
       virt3();
     private:
        virtual void virt2()
        {cout << "Base::virt2()\n";
     protected:
        virtual void virt3()
        {cout << "Base::virt3()\n";
    class Der1: public Base
    { void virt1()
      {cout << "Der1::virt1()\n";
     protected:
       void virt2()
       {cout << "Der1::virt2()\n";
     public:
        void virt3()
        {cout << "Der1::virt3()\n";
        }
    class Der2 : public Der1
    {protected:
      void virt1()
      {cout << "Der2::virt1()\n";
     public:
      void virt2()
      {cout << "Der2::virt2()\n";
     private:
      void virt3()
      {cout << "Der2-virt3()\n";
    };
    void main()
    { Base b;
      Der1 d1; Der2 d2;
      Base *p = \&d1;
      Der1 *q = &d2;
      b.virt1();
      b.Base();
      p->virt1();
      p->virt2();
      p->virt3();
      q->virt1();
      q->virt2();
      q->virt3();
```

```
Име: ...... фак. № ...... стр. 4/13
    q->Base();
    p = &d2;
    p->virt1();
    p->virt2();
    p->virt3();
    Der1 *r = new Der2;
    r->virt2();
    r->virt1();
    r->virt3();
   delete r;
```

- а) Намерете и обяснете грешките в процедурата main на горната програма.
- b) Кои връзки в програмата се разрешават статично и кои динамично?
- с) Какъв е резултатът от изпълнението на програмата след отстраняване на неправилните обръщения към виртуалните функции?

Задача 6 (общо 16 т.)

};

```
Шаблонът на класа queue реализира опашка с върхове от тип Т.
    template <class T>
    struct elem q
    {T inf;
    elem_q<T>* link;
    template <class T>
    class queue
    {public:
     // канонично представяне
     queue();
     ~queue();
     queue(queue const &);
     queue& operator=(queue const &);
     // InsertElem включва х в неявната опашка
     void InsertElem(T const& x);
      // DeleteElem изключва елемент от неявната опашка и го записва в х
     int DeleteElem(T & x);
     void print();
                              // извежда на екрана неявната опашка
     bool empty() const;
                              // проверява дали е празна неявната опашка
     private:
     elem_q<T> *front, *rear;
     void delqueue();
     void copy(queue const&);
а) (2 т.) Реализирайте член-функциите от каноничното представяне на шаблона на класа.
```

b) (5 т.) Предефинирайте оператора < като член-функция на шаблона на класа queue<T>, така че да установява дали опашка се съдържа в друга опашка.

(Опашката от цели числа 1, 2, 3 се съдържа в опашката 5, 2, 3, 1, 2, 3, 4 и не се съдържа в опашката 1, 2, 4, 3, 5, 6).

Им	е: фак. № стр. 5/13
- \	
C)	(5 т.) Дефинирайте външна функция, която слива две сортирани във възходящ ред опашки от числа.
d)	(4 т.) Дефинирайте шаблон на външна функция с параметър Т, която прилага функцията f: T → T над всеки от елементите на опашка с елементи от тип Т.
	дача 7 (общо 12 т.) блонът на класа BinOrdTree реализира двоично-наредено дърво (ДНД) с върхове от тип Т.
stru {T i no	nplate <class t=""> ict node_bin inf; ide_bin<t> *Left; ide_bin<t> *Right; inplate <class t=""> iss BinOrdTree blic: ininOrdTree(); BinOrdTree(); BinOrdTree(BinOrdTree<t> const&); BinOrdTree(BinOrdTree<t> const&); BinOrdTree(BinOrdTree<t> const&); BinOrdTree(BinOrdTree<t> const&); BinOrdTree(SinOrdTree) const; // проверява дали неявното ДНД е празно</t></t></t></t></class></t></t></class>
	roid MinTree(T& x, BinOrdTree <t>& mint) const;</t>
	(2 т.) Дефинирайте следните член-функции на шаблона:
~ <i>)</i>	BinOrdTree(); BinOrdTree(BinOrdTree <t> const&);</t>

Им	e:	фак. № стр. 6/13
b)	(5 т.) Член-функцията void DeleteNode(T const&); на шаблона на класкато параметър елемент от неявното двоично-наредено дърво. Рел	
c)	(2 т.) Предефинирайте оператора ==, така че да установява дали де равни, чрез шаблон на функция-приятел на шаблона на класа BinOr	е двоично-наредени дървета са dTree <t>.</t>
d)	(3 т.) Проверете дали дадено двоично-наредено дърво с елементи с негов връх дълбочините на лявото и дясното му поддървета се разл	

viwe	Име:		фак.	Nº		стр	. 7/	/1	3
------	------	--	------	----	--	-----	------	----	---

Задача 8 (5 т.)

Да се напише командна процедура с един параметър - идентификатор на потребител. Процедурата прочита от стандартния вход цяло положително число и проверява дали в сесия работи потребител с подадения като позиционен параметър идентификатор и дали броят на сесиите на този потребител е поголям от прочетеното число. Ако да - процедурата изпраща на същия потребител съобщение със следния текст: "Моля, свържете се незабавно със системния администратор".

Задача 9 (3 т.)

```
Даден е следният фрагмент от програма:

#define LST "date"

main()

{
    int pid, k=5, status;
    printf( " Stoinostta na k = %d;", k-2 );
    ++k;
    printf( " Stoinostta na k = %d;", k );
    execlp(LST,LST,0);
    if ( (pid = fork() ) = = 0 ) k++;
    else { wait( &status); --k ; }
    printf( " Stoinostta na k = %d;", k );
```

Напишете вдясно какво ще бъде изведено на стандартния изход като резултат от изпълнението на този фрагмент.

Име:		фак. №	 стр. 8/13
_	40.40		

Задача 10 (8 т.) Да се определи за какви стойности на n≥2 е шеферова двоичната функция $f(x_1,...,x_n)=1\oplus x_1x_2\oplus x_2x_3\oplus...\oplus x_ix_{i+1}\oplus...\oplus x_{n-1}x_n$.

Име:		фак. №	 стр.	9/13
_	44.00			

Задача 11 (6 т.) Да се построи краен автомат, разпознаващ езика, представен чрез регулярния израз (ab*+ac)b+(a+b)(cca*b)*. Име: фак. № стр. 10/13

Задача 12 (2 т.)

Кои от изброените формули са логически следствия от формулата $(p \Rightarrow q) \& p$:

- a) p
- b) q
- c) ¬q
- d) $p \Leftrightarrow q$

Задача 13 (3 т.)

Дадена е следната програма на Prolog:

female(mary).

driver(jane).

На кои от изброените цели Prolog ще отговори с "no":

- a) not(female(X)), driver(X).
- b) driver(X), not(female(X)).
- c) not(female(X), driver(X)).
- d) not(female(jane)).

Задача 14 (4 т.)

Нека F е съвкупността от всички едноместни частични функции в множеството N на естествените числа. Кои от изброените оператори

 Γ_i : F \longrightarrow F, 1 \le i \le 4, HE са монотонни? Обосновете отговорите си.

- a) $\Gamma_1(f)(x) \cong \text{if } x = 0 \text{ then } 1 \text{ else } x 1$
- b) $\Gamma_2(f)(x) \cong \text{if } x \equiv 0 \pmod{2} \text{ then } 1 \text{ else } 0$
- c) $\Gamma_4(f)(x) \cong \text{if f e безкрайнa then 1 else недефиниранo}$
- d) $\Gamma_3(f)(x) \cong \text{if } f \text{ e безкрайна then недефинирано else 1}$

Задача 15 (5 т.)

Нека R е следната рекурсивна програма над типа данни Nat:

R: G(X, Y) where

 $F(X) = if X \le 1 then X else F(X-2)$

G(X, Y) = if X = 0 then Y else <math>G(X - 1, F(Y)).

Кои от изброените условия са верни за $D_V(R)$ – денотационната семантика на R с предаване на параметрите по стойност:

- a) \forall x \forall y ($!D_V(R)(x, y) \Rightarrow D_V(R)(x, y) \le 1$)
- b) $\forall x \forall y (x > 0 \Rightarrow \neg!D \ V(R)(x, y))$
- c) $\forall x \forall y (\neg!D_V(R)(x, y) \Rightarrow x > 0)$
- d) $\forall x \forall y (!D_V(R)(x, y) \Rightarrow D_V(R)(x, y) \equiv y \pmod{2})$

Име:		фак. №	 стр. 11/13
_	40.40		

Задача 16 (3 т.)

Дефинирайте функция на езика Scheme, която връща като резултат броя на целите числа в интервала **[a,b]** (**a** и **b** са две дадени цели числа, **a≤b**), в десетичния запис на които се съдържа цифрата **k**, като за целта реализира итеративен изчислителен процес.

Задача 17 (3 т.)

Дефинирайте функция на езика Scheme, която за даден списък *I*, елементите на който са непразни списъци от числа, връща като резултат списък от поредните номера на тези елементи на *I*, произведението на чиито елементи е положително число.

Задача 18 (2 т.)

Даден е ориентиран граф, представен чрез поредица от факти на Prolog от вида arc(<Node1>,<Node2>), всеки от които означава, че в графа съществува дъга с начало <Node1> и край <Node2>:

arc(s,a). arc(s,b). arc(s,c). arc(a,d). arc(b,d). arc(c,d). arc(c,f). arc(d,g). arc(e,g). arc(f,g).

Дадена е също така поредица от факти на Prolog от вида h(<Node>,<Cost>), дефиниращи евристичната функция, с помощта на която се пресмята приближена стойност <Cost> на разстоянието от върха <Node> до върха "g":

arc(b,e).

h(a,3). h(b,2). h(c,1). h(d,3). h(e,2). h(f,3). h(g,0). h(s,5).

Ако задачата е да се намери път от върха "s" до върха "g" по метода Best-first Search, какво ще бъде полученото решение? Запишете решението като списък от съставящите пътя върхове на графа.

Задача 19 (3 т.)

Представете чрез разделена семантична мрежа (partitioned semantic net) следното изречение: "Every player kicked a ball."

Задача 20 (5 т.)

За управление на фактурите в търговска фирама е създадна база от данни. Диаграмата на БД е показана на фиг. 1.

Релационната схема на БД е:

Position(Id, Name)

OrderType(Id, Name)

Good(*Id*, Name)

Employee(Id, PositionId, ManagerId, Name)

Client(Id, Name, Bulstat, Address, Phone)

Order(Id, OrderTypeId, ClientId, EmployeeId, OrderNumber, Date)

OrderItem(OrderId, GoodId, Quantity, Price)

където:

* Table				
Column	Comment	Datatype	Null	Constraints
* Position	Съхранява информация за позициите на	а служителите в	ъв фирмата	
ld	Генерира се автоматично	int	NOT NULL	Primary Key
Name	Име на позицията	varchar	NOT NULL	
* OrderType	Вид фактура			
Id Name	Генерира се автоматично Вид на фактура. Възможни стойности са: - sell - buy	int varchar	NOT NULL NOT NULL	Primary Key
* Good	Стоки			
ld Name	Генерира се автоматично Име на стоката	int varchar	NOT NULL NOT NULL	Primary Key
* Employee	Служители на фирмата			
ld PositionId	Генерира се автоматично Длъжност на служителя - Position.ld	int int	NOT NULL NOT NULL	Primary Key Foreign Key
Managerld	На кого е подчинен - Employee.ld	int	NULL	Foreign Key
Name	Име на стоката	varchar	NOT NULL	- •
* Client	Клиенти на фирмата			

Име:				фак. № стр. 13/13
ld Name	Генерира се автоматично Име на клиент	int varchar	NOT NULL NOT NULL	Primary Key
Bulstat	Уникален идентификационен код (БУЛСТАТ/ЕГН)	varchar	NOT NULL	
Address	Адрес	varchar	NULL	
Phone	Телефон	varchar	NULL	
* Order	Фактури			
ld	Генерира се автоматично	int	NOT NULL	Primary Key
OrderTypeld	Вид на фактурата (покупка или продажба) - OrderType.ld	int	NOT NULL	Foreign Key
ClientId	Име на клиент - Client.ld	int	NOT NULL	Foreign Key
Employeeld	Служител, който е въвел данните за фактура - Employee.ld	int	NOT NULL	Foreign Key
OrderNumber	Номер на фактура	varchar	NOT NULL	
Date	Дата на фактура	datetime	NOT NULL	
* OrderItem	Фактури Фактура - Order.ld			Primary Key, Foreign
Orderld	200	int	NOT NULL	Key
Goodld	Стока - Good.ld	int	NOT NULL	Primary Key, Foreign Key
Quantity	Количество	decimal(18, 4)	NOT NULL	Foreign Key
Price	Единична цена	decimal(18, 4)	NOT NULL	Foreign Key

За всеки клиент, реализирал положителен оборот, да се изведе справка за оборота, който този клиент е направил за фирмата. Оборотът се получава, като от сумата на всички покупки (sell) се извади сумата на всички продажби (buy). Справката да има следния вид:

ClientName	Turnover