

14 – 15 March 2022 · on-site event 16 – 23 March 2022 · online event

The European Event for Electronic System Design & Test

Design and Evaluation Frameworks for Advanced RISC-based Ternary Processor

<u>D. Kam</u>, J. G. Min, J. Yoon, S. Kim, S. Kang and Y. Lee
 Department of Electrical Engineering
 Pohang University of Science and Technology (POSTECH), South Korea

Biography

Email address
rkaehddbs@postech.ac.kr
Personal information:
https://sites.google.com/view
/epiclab/member/dykam?aut
huser=0

Dongyun Kam

- Ph.D. student
 - Department of Electrical Engineering
 - Pohang University of Science and Technology (POSTECH)
 - South Korea
- Interesting topics
 - 5G/B5G wireless communication systems
 - Error correcting codes
 - VLSI circuit designs
 - Ternary processors
 - RISC-V processors

Outline

- Introduction
- Ternary number systems and operators
- Proposed frameworks for ternary processors
- Proposed ART-9 core design
- Simulation results
- Conclusion

Outline

- Introduction
- Ternary number systems and operators
- Proposed frameworks for ternary processors
- Proposed ART-9 core design
- Simulation results
- Conclusion

Introduction

- Downscaling digital circuits met limitation
 - Limitation caused by increased interconnecting/routing overhead

Fig.1. Down-scaling of CMOS technology [R1]

Fig.2. Change of the CPU perfoamones [R2]

Introduction

- Multi-valued logic (MVL) circuits & Ternary processor
 - MVL based circuits can be the solution of addressing limitation

Fig.3. Graphene barristors [R1]

Fig.4. Carbon nanotube field-effect transistor (CNTFET) [R2]

Outline

- Introduction
- Ternary number systems and operations
- Proposed frameworks for ternary processors
- Proposed ART-9 core design
- Simulation results
- Conclusion

Ternary Number Systems

- 1 trit: three voltage levels (GND, VDD/2, VDD)
- Fixed-point number systems
 - *n*-trit number $X = (x_{n-1}, x_{n-2}, ..., x_0)_3$

$$Y_{integer} = \sum_{k=0}^{n-1} x_k * 3^k$$

- Unsigned number : $x_i \in \{0, 1, 2\}$
- Signed (balanced) number : $x_i \in \{-1, 0, 1\}$

Ternary Operators

- Ternary-based logical operations
 - Based on balanced number system

Fig. 1. Truth tables of ternary logic operations

Ternary Operators

- Ternary-based arithmetic operations
 - Based on RISC-based binary processors
 - The existing arithmetic operators
 - Ternary adder [R1]
 - Ternary comparator [R2]
 - Ternary divider [R2]
 - Ternary multiplier [R3]

Previous Works

- Existing ternary processors
 - CISC-based 4-trit processor (Fig. 5)
 - RISC-based 9-trit processor (Fig. 6)

Fig. 5. CISC-based 4-trit processor [R1]

Abstract

The Trillium instruction set is designed for a small ternary computer with a 9-trit word and a 19.68 suitable for a microcontroller or programmable interface processor in modern terms.

Warning: The material presented here is very preliminary. First posting on the web, Nov. 21, 2017.

- · Data Representations
- Instruction Format
- Addressina Modes
- Registers Processor Status Word
- Instructions
 - Store
 - Load
 - Load Immediate

 - Subtract
 - Add With Carry
 - Subtract With Borrow Shift Left

 - Shift Right Unsigned
- Shift Right Signed

Fig.6. RISC-based 9-trit ternary processor [R2]

Limitation of Previous Works

- Lack of open-literature
 - Only few papers for ternary processors.
- Not considering the technology-level design
 - Previous ternary processors are just designed for functionality.

- Inefficient ternary processor
 - CISC-based ternary processor
 - Inefficient instructions and architecture

What we propose

- Frameworks to design and evaluate ternary processors
 - Software-level compiling framework
 - Hardware-level evaluation frameworks

- Advanced RISC-based ternary 9-trit processor (ART-9)
 - Optimized instruction set architecture (ISA)
 - 5-stage pipelined core architecture

Outline

- Introduction
- Ternary number systems and operators
- Proposed frameworks for ternary processors
- Proposed ART-9 core design
- Simulation results
- Conclusion

- Software-level compiling framework
 - Given ternary-based ISA
 - Converting C-level codes into ternary assembly
 - Adopting RV-32I ISA and the existing GCC [R1]

Fig.7. Overall procedure of the proposed softwre-level framework

- Software-level compiling framework
 - Three compiling steps
 - Instruction mapping, operand conversion, redundancy check

Fig.8. Proposed software-level compiling framework

- Software-level compiling framework
 - Instruction mapping

Fig.9. Instruction mapping step in the proposed framework

- Software-level compiling framework
 - Operand conversion

Fig.10. Operand conversion step in the proposed framework

- Software-level compiling framework
 - Redundancy check

Fig.11. Redundancy check in the proposed framework

- Hardware-level evaluation framework
 - Considering the practical implementation

Fig.12. Proposed hardware-level evaluation framework

- Hardware-level evaluation framework
 - Cycle-accurate simulator

Fig.13. Proposed cycle-accurate simulator

- Hardware-level evaluation framework
 - Gate-level analyzer

Fig.14. Proposed gate-level analyzer using technology information

- Hardware-level evaluation framework
 - Total performance evaluator

Fig.15. Prototype design using performance evaluator

Outline

- Introduction
- Ternary number systems and operators
- Proposed frameworks for ternary processors
- Proposed ART-9 core design
- Simulation results
- Conclusion

- Advanced RISC-based ternary 9-trit processor (ART-9)
 - Properties of contempoaray RISC-type binary processors.
 - ART-9 instruction set architecture (ISA)
 - Pipelined core architecture

- ART-9 ISA
 - 9-trit length instructions
 - 24 instructions
 - 2-trit opcode
 - R-type, I-type, B-type, M-type
 - Ternary instruction memory (TIM)
 - 9-trit length data
 - Ternary data memory (TDM)
 - Nine 9-trit length registers
 - General-purpose ternary register file (TRF)
 - Program counter (PC) register

- ART-9 ISA
 - 9-trit length instructions
 - R-type (12 logical/arithmetic operations)
 - Register addressing
 - Two operands

Type	9-trit instructions	Operation
	MV Ta,Tb	TRF[Ta] = TRF[Tb]
	PTI Ta,Tb	TRF[Ta] = PTI(TRF[Tb])
	NTI Ta,Tb	TRF[Ta] = NTI(TRF[Tb])
	STI Ta,Tb	TRF[Ta] = STI(TRF[Tb])
	AND Ta,Tb	TRF[Ta] = TRF[Ta] & TRF[Tb]
R	OR Ta,Tb	$TRF[Ta] = TRF[Ta] \mid TRF[Tb]$
IX	XOR Ta,Tb	$TRF[Ta] = TRF[Ta] \oplus TRF[Tb]$
	ADD Ta,Tb	TRF[Ta] = TRF[Ta] + TRF[Tb]
	SUB Ta,Tb	TRF[Ta] = TRF[Ta] - TRF[Tb]
	SR Ta,Tb	$TRF[Ta] = TRF[Ta] \gg TRF[Tb][1:0]$
	SL Ta,Tb	$TRF[Ta] = TRF[Ta] \ll TRF[Tb][1:0]$
	COMP Ta,Tb	TRF[Ta] = compare(TRF[Ta], TRF[Tb])

- ART-9 ISA
 - 9-trit length instructions
 - I-type (6 immediate-based processing)
 - Supporting 2~5-trit immediate values

8	7	6	5	4	3	2	1	0	
Func/imm imm		R	D	Opcode		Mnemonics			
1	0	imm[2]	imm	[1:0]	Т	à	-1	-1	ADDI
	:								
	imm[8:6] imm[5] 0		T	à	-1	0	LUI		
	imm[2:0] imm[4:3]		_ T	'n_	1	-1	LI		

Type	9-trit instructions	Operation
	ANDI Ta,imm	TRF[Ta] = TRF[Ta] & imm[2:0]
	ADDI Ta,imm	TRF[Ta] = TRF[Ta] + imm[2:0]
ī	SRI Ta,imm	$TRF[Ta] = TRF[Ta] \gg imm[1:0]$
1	SLI Ta,imm	$TRF[Ta] = TRF[Ta] \ll imm[1:0]$
	LUI Ta,imm	$TRF[Ta] = \{imm[3:0],00000\}$
	LI Ta,imm	$TRF[Ta] = \{TRF[Ta][8:5], imm[4:0]\}$

Various imm length

I-type

- ART-9 ISA
 - 9-trit length instructions
 - B-type (4 jump/branch instructions)
 - Calculating next PC values with an immediate

8 7	6	5	4	3	2	1	0	
Func/imm		imm/RS		R	RD Opcode		code	Mnemonics
imn	n[2:0]	В	imm[3]	T	a	0	-1	BEQ
imm[2:0]		В	imm[3]	Ta		0	0	BNE
imm[2:0] imm[4:3		[4:3]	T	'a	1	0	JAL	
imm[2:0]		Т	'b	T	a	1	1	JALR

Type	9-trit instructions	Operation
	BEQ Ta,B,imm	PC = PC + imm[3:0] if TRF[Ta][0] == B
В	BNE Ta,B,imm	PC = PC + imm[3:0] if TRF[Ta][0] != B
	JAL Ta,imm	TRF[Ta] = PC+1, PC = PC + imm[4:0]
	JALR Ta,Tb,imm	TRF[Ta] = PC+1, $PC = TRF[Tb]+imm[2:0]$

Various imm length

B-type

- ART-9 ISA
 - 9-trit length instructions
 - M-type (2 memory access instructions)
 - Harvard architecture (separate two memory; TIM/TDM)

8	7	6	5	4	3	2	1	0	
Func/imm		RS		R	D	Opcode		Mnemonics	
	imn	n[2:0]	T	b	Т	'n	-1	1	LOAD
imm[2:0]		T	b	Т	`a	0	1	STORE	

Type	9-trit instructions	Operation
M	LOAD Ta,Tb,imm	TRF[Ta] = TDM[TRF[Tb] + imm[2:0]
141	STORE Ta,Tb,imm	TDM[TRF[Tb]+imm[2:0]] = TRF[Ta]

TRF address

- ART-9 core architecture
 - Similar to binary RISC-V architecture
 - 5-stage pipelining
 - IF, ID, EX, MEM, WB

Fig.16. 5-stage pipelined ART-9 core architecture

- ART-9 core architecture
 - TIM/TDM: Synchronous write/read
 - TRF: Synchronous write / Asynchronous read

Fig.17. TIM, TRF and TDM for the proposed ART-9 processor

- ART-9 core architecture
 - Ternary ALU
 - Supporting ART-9 ISA

Fig.18. TALU of the proposed ART-9 processor

- ART-9 core architecture
 - Minimizing stall instructions
 - Handling data/control hazards

Fig.19. Pipelined processing of binary RISC-V processor [R1]

- ART-9 core architecture
 - Hazard control
 - Data-forwarding, Load-use/branch hazard (NOP Instruction)

Fig.20. Hazard control for the minimum number of stall instructions

Outline

- Introduction
- Ternary number systems and operators
- Proposed frameworks for ternary processors
- Proposed ART-9 core design
- Simulation results
- Conclusion

- Benchmark evaluations
 - Utilizing the proposed comiling framework
 - RV-32I (32b ISA), ARMv6M (16b ISA)

Fig.21. Required memory size for four benchmark programs

- Benchmark evaluations
 - In terms of processing cycles,
 - Comparison with Light-weight processors using RV-32IM [25]
 - Fast processing

	Bubble sort	GEMM	Sobel filter	Dhrystone
This work	2,432	10,748	7,822	134,200
PicoRV32 [R1]	9,227	11,290	18,250	186,607

38

- Benchmark evaluations
 - Dhrystone benchmark
 - Comparison with Light-weight processors using RV-32I(M) [24], [25]

	This work	VexRiscv [R1]	PicoRV32 [R2]
ISA Architecture	ART-9 ISA	RV-32I	RV-32IM
# of instructions	24	40	48
Pipelined stages	5	5	1
Multiplier	X	О	О
DMIPS/MHz	0.42	0.65	0.31
# of memory-cells	11.6K trits	25.4K bits	23.7K bits

- Hardware-level evaluation
 - 32nm CNTFET ternary models
 - Gate-level hardware cost
 - Even superior to the neat-threshold ARM Cortex-M3 [R1]

Voltage	Total gates	Power	DMIPS/W
0.9V	652	$42.7~\mu\mathrm{W}$	3.06×10^{6}

Fig.22. Proposed gate-level analyzer

- Hardware-level evaluation
 - FPGA-based platfrom
 - 2b-encoded ternary gates

Voltage	Frequency	ALMs	Registers	RAM	Power
0.9V	150MHz	803	339	9,216 bits	1.09W

Fig.23. FPGA-based evaluation platform

Outline

- Introduction
- Ternary number systems and operators
- Proposed frameworks for ternary processors
- Proposed ART-9 core design
- Simulation results
- Conclusion

Conclusion

- There are many transistor-level works for ternary circuits.
- However, only few works have studied ternary processors.
- In this paper,
 - We firstly proposed software-and hardware-level frameworks to design ternary processors.
 - We also proposed advanced RISC-based ternary 9-trit (ART-9) processor, which is designed with ART-9 ISA and pipelined architecture.
 - We finally evaluate the proposed ART-9 core by using the proposed frameworks.

DESIGN, AUTOMATION & TEST IN EUROPE

14 – 15 March 2022 · on-site event 16 – 23 March 2022 · online event

The European Event for Electronic System Design & Test

Design and Evaluation Frameworks for Advanced RISC-based Ternary Processor

Thank you