# LaTeX: A Document Preparation System

An Introduction

#### Dr. Fred Barnes

S113, School of Computing (ext. 4278)

frmb@kent.ac.uk



- A generic typesetting system.
  - often written LaTEX (LaTEX).
  - **pronounced lay-tek** (the 'X' is from the Greek letter  $\chi$  *chi* ).
- Uses TEX as its formatting engine.
  - invented by Donald Knuth, first released in 1978.
  - most recent revision January 2014.
- A structured way of formatting documents.
  - particularly suited to large things: books, PhD theses, MSc dissertations, project reports, technical manuals, ...
  - the small: letters, reports, handouts, invoices, cover-sheets, ...
  - academic articles and anything with maths or science.
- Familiar examples:
  - these slides; the handouts for the practical sessions later; the "Early Computing at Kent" poster in the Cornwallis Foyer.

- A generic typesetting system.
  - often written LaTeX (LaTeX).
  - **pronounced lay-tek** (the 'X' is from the Greek letter  $\chi$  chi).
- Uses TEX as its formatting engine.
  - invented by Donald Knuth, first released in 1978.
  - most recent revision January 2014.
- A structured way of formatting documents.
  - particularly suited to large things: books, PhD theses, MSc dissertations, project reports, technical manuals, ...
  - the small: letters, reports, handouts, invoices, cover-sheets, ...
  - academic articles and anything with maths or science.
- Familiar examples:
  - these slides; the handouts for the practical sessions later; the "Early Computing at Kent" poster in the Cornwallis Foyer.

- A generic typesetting system.
  - often written LaTeX (LaTeX).
  - **pronounced lay-tek** (the 'X' is from the Greek letter  $\chi$  *chi* ).
- Uses TEX as its formatting engine.
  - invented by Donald Knuth, first released in 1978.
  - most recent revision January 2014.
- A structured way of formatting documents.
  - particularly suited to large things: books, PhD theses, MSc dissertations, project reports, technical manuals, ...
  - the small: letters, reports, handouts, invoices, cover-sheets, ...
  - academic articles and anything with maths or science.
- Familiar examples:
  - these slides; the handouts for the practical sessions later; the "Early Computing at Kent" poster in the Cornwallis Foyer.

- A generic typesetting system.
  - often written LaTEX (TATEX).
  - **pronounced lay-tek** (the 'X' is from the Greek letter  $\chi$  *chi* ).
- Uses TEX as its formatting engine.
  - invented by Donald Knuth, first released in 1978.
  - most recent revision January 2014.
- A structured way of formatting documents.
  - particularly suited to large things: books, PhD theses, MSc dissertations, project reports, technical manuals, ...
  - the small: letters, reports, handouts, invoices, cover-sheets, ...
  - academic articles and anything with maths or science.
- Familiar examples:
  - these slides; the handouts for the practical sessions later; the "Early Computing at Kent" poster in the Cornwallis Foyer.

#### What It Is Not

- LATEX is **not** a word-processor.
- Nor it is straightforward much of the time.
  - errors can be particularly hard to unpick sometimes.

### Why Should I Use It?

- If you care about producing documents of a professional standard.
  - where "professional document" is something like a solicitor's letter, newspaper or magazine page.
  - and not the badly laid out flyer or office memo in Comic Sans.
    - there is a place for Comic Sans; most are not it. http://inappropriatecomicsans.tumblr.com/
- If you want to write things that have accented characters.
  - lēgibus pārendum est.
  - À l'œuvre, on connaît l'artisan.
- Or mathematics:

$$X = \sqrt{42}, \qquad Y = \sum_{i=0}^{n-1} \mathbb{E}_i \times \left( \int_0^\infty \mu(s) \ ds \right)$$

## Why Should I Use It?

- If you care about producing documents of a professional standard.
  - where "professional document" is something like a solicitor's letter, newspaper or magazine page.
  - and not the badly laid out flyer or office memo in Comic Sans.
    - there is a place for Comic Sans; most are not it. http://inappropriatecomicsans.tumblr.com/
- If you want to write things that have accented characters.
  - lēgibus pārendum est.
  - À l'œuvre, on connaît l'artisan.
- Or mathematics:

$$X = \sqrt{42}, \qquad Y = \sum_{i=0}^{n-1} \mathbb{E}_i \times \left( \int_0^\infty \mu(s) \ ds \right)$$

### Why Should I Use It?

- If you care about producing documents of a professional standard.
  - where "professional document" is something like a solicitor's letter, newspaper or magazine page.
  - and not the badly laid out flyer or office memo in Comic Sans.
    - there is a place for Comic Sans; most are not it. http://inappropriatecomicsans.tumblr.com/
- If you want to write things that have accented characters.
  - lēgibus pārendum est.
  - À l'œuvre, on connaît l'artisan.
- Or mathematics:

$$X = \sqrt{42}, \qquad Y = \sum_{i=0}^{n-1} \mathbb{E}_i \times \left( \int_0^\infty \mu(s) \ ds \right)$$

#### One View ...

- One way to see T<sub>E</sub>X is as a **programming language**.
  - 'programs' written in this language are transformed (compiled) into pages of output (DVI, PostScript and/or PDF).
- LATEX is a set of **macros** (library 'functions') for TEX.
  - vastly simplifies the creation of standard documents (article, book, letter, slides, ...).
  - T<sub>E</sub>X is more concerned with "layout of things on a page".

#### One View ...

- One way to see T<sub>E</sub>X is as a **programming language**.
  - 'programs' written in this language are transformed (compiled) into pages of output (DVI, PostScript and/or PDF).
- LATEX is a set of **macros** (library 'functions') for TEX.
  - vastly simplifies the creation of standard documents (article, book, letter, slides, ...).
  - TEX is more concerned with "layout of things on a page".

#### The Software

- Several predominant distributions of LATEX.
  - TeX Live: http://www.tug.org/texlive/ (my preferred)
  - MacTeX: http://tug.org/mactex/
  - MiKTeX: http://miktex.org/
- Not a vast difference between them now.
  - variations in the individual packages, fonts, etc.
  - available packages number in the thousands.
- Typically an assortment of command-line tools.
  - some that invoke TEX and LATEX in different ways to produce specific types of output (e.g. "musixtex" for typesetting musical scores).
  - we'll mostly be using **pdflatex** (it's moderately simple!).

#### The Software

- Several predominant distributions of LATEX.
  - TeX Live: http://www.tug.org/texlive/ (my preferred)
  - MacTeX: http://tug.org/mactex/
  - MiKTeX: http://miktex.org/
- Not a vast difference between them now.
  - variations in the individual packages, fonts, etc.
  - available packages number in the thousands.
- Typically an assortment of command-line tools.
  - some that invoke TEX and LATEX in different ways to produce specific types of output (e.g. "musixtex" for typesetting musical scores).
  - we'll mostly be using **pdflatex** (it's moderately simple!).

#### The Software

- Several predominant distributions of LATEX.
  - TeX Live: http://www.tug.org/texlive/ (my preferred)
  - MacTeX: http://tug.org/mactex/
  - MiKTeX: http://miktex.org/
- Not a vast difference between them now.
  - variations in the individual packages, fonts, etc.
  - available packages number in the thousands.
- Typically an assortment of command-line tools.
  - some that invoke TEX and LATEX in different ways to produce specific types of output (e.g. "musixtex" for typesetting musical scores).
  - we'll mostly be using pdflatex (it's moderately simple!).

#### How it Works

■ The simple view:



- What happens in reality is significantly more complex.
  - but we don't need to concern ourselves with that (until it goes wrong..).

#### How it Works

■ The simple view:



- What happens in reality is significantly more complex.
  - but we don't need to concern ourselves with that (until it goes wrong..).

#### How it Works

■ The simple view:



- What happens in reality is significantly more complex.
  - but we don't need to concern ourselves with that (until it goes wrong..).

### A Simple Example

```
simple.tex:
\% comments start with a percent sign and continue to EOL
% comment symbol at EOL is a continuation
\documentclass[12pt]{article}
\begin{document}
Welcome to a very simple \LaTeX~document!
\end{document}
\endinput
bash$ pdflatex simple
... stuff
\rightarrow simple.pdf.
```

- First thing is a \documentclass directive.
  - determines the overall type of document and particular options.
- Then the **preamble**.
  - if other packages are required, or general other setting-up.
- The start of the document proper:
   \begin{document}
  followed by all of its content.
- And the end of the document:
   \end{document}
  and end of the input:
   \endinput

Aside: you can put whetever after '\endinput'; TEX won't try to read it

- First thing is a \documentclass directive.
  - determines the overall type of document and particular options.
- Then the preamble.
  - if other packages are required, or general other setting-up.
- The start of the document proper: \begin{document} followed by all of its content.
- And the end of the document:
   \end{document}
  and end of the input:
   \endinput

Aside: you can put whetever after '\endinput'; TEX won't try to read it.

- First thing is a \documentclass directive.
  - determines the overall type of document and particular options.
- Then the preamble.
  - if other packages are required, or general other setting-up.
- The start of the **document** proper:

```
\begin{document}
```

followed by all of its content

And the end of the document:
 \end{document}
and end of the input:

\endinput

Aside: you can put whetever after '\endinput'; T<sub>E</sub>X won't try to read it.

- First thing is a \documentclass directive.
  - determines the overall type of document and particular options.
- Then the preamble.
  - if other packages are required, or general other setting-up.
- The start of the **document** proper:

```
\begin{document}
```

followed by all of its content.

And the end of the document:

```
\end{document}
```

and end of the input:

\endinput

Aside: you can put whetever after '\endinput'; T<sub>E</sub>X won't try to read it.

- First thing is a \documentclass directive.
  - determines the overall type of document and particular options.
- Then the preamble.
  - if other packages are required, or general other setting-up.
- The start of the **document** proper: \begin{document}

```
followed by all of its content.
```

And the end of the document:

```
\end{document}
and end of the input:
\endinput
```

Aside: you can put whetever after '\endinput'; TEX won't try to read it

- First thing is a \documentclass directive.
  - determines the overall type of document and particular options.
- Then the preamble.
  - if other packages are required, or general other setting-up.
- The start of the **document** proper:

```
\begin{document}
```

followed by all of its content.

And the end of the document:

```
\end{document}
and end of the input:
\endinput
```

Aside: you can put whetever after '\endinput'; TEX won't try to read it.

- Document structure: how something is arranged in chapters, sections, sub-sections, paragraphs, numbered-lists, etc.
- Document **style**: what it looks like, e.g. **bold**, *italics*, cyan.
- In a markup language (HTML), structure is the main concern.
  - used not to be the case, but for the vastness of the web now, a good idea to manage style separately (CSS).
- In LATEX, structure and style have mostly equal footing.
  - style can be separated (and sometimes is).
  - because we're programming in something that is Turing complete (the TEX engine) can really do it however we like.
- Downside: authors over the years have done it how they liked.
  - the results of which are both clever and powerful, but not necessarily consistent, obvious or pretty.

- Document structure: how something is arranged in chapters, sections, sub-sections, paragraphs, numbered-lists, etc.
- Document **style**: what it looks like, e.g. **bold**, *italics*, cyan.
- In a markup language (HTML), structure is the main concern.
  - used not to be the case, but for the vastness of the web now, a good idea to manage style separately (CSS).
- In LATEX, structure and style have mostly equal footing.
  - style can be separated (and sometimes is).
  - because we're programming in something that is Turing complete (the TEX engine) can really do it however we like.
- Downside: authors over the years have done it how they liked.
  - the results of which are both clever and powerful, but not necessarily consistent, obvious or pretty.

- Document structure: how something is arranged in chapters, sections, sub-sections, paragraphs, numbered-lists, etc.
- Document **style**: what it looks like, e.g. **bold**, *italics*, cyan.
- In a markup language (HTML), structure is the main concern.
  - used not to be the case, but for the vastness of the web now, a good idea to manage style separately (CSS).
- In LATEX, structure and style have mostly equal footing.
  - style can be separated (and sometimes is).
  - because we're programming in something that is Turing complete (the TEX engine) can really do it however we like.
- Downside: authors over the years have done it how they liked.
  - the results of which are both clever and powerful, but not necessarily consistent, obvious or pretty.

- Document structure: how something is arranged in chapters, sections, sub-sections, paragraphs, numbered-lists, etc.
- Document **style**: what it looks like, e.g. **bold**, *italics*, cyan.
- In a markup language (HTML), structure is the main concern.
  - used not to be the case, but for the vastness of the web now, a good idea to manage style separately (CSS).
- In LATEX, structure and style have mostly equal footing.
  - style can be separated (and sometimes is).
  - because we're programming in something that is Turing complete (the TEX engine) can really do it however we like.
- Downside: authors over the years have done it how they liked.
  - the results of which are both clever and powerful, but not necessarily consistent, obvious or pretty.

#### Commands

- Commands in LATEX (and also TEX) start with a **black-slash**.
  - arguments to commands normally occur immediately after, surrounded by curly-braces.
  - also common to specify options in square-brackets between the command and its arguments.
- Not limited to this.
  - the free-form nature of the TEX macro language means commands can collect arguments in any number of ways.
  - you will doubtless encounter some very strange looking things.

#### Commands

- Commands in LATEX (and also TEX) start with a **black-slash**.
  - arguments to commands normally occur immediately after, surrounded by curly-braces.
  - also common to specify options in square-brackets between the command and its arguments.
- Not limited to this.
  - the free-form nature of the TEX macro language means commands can collect arguments in any number of ways.
  - you will doubtless encounter some very strange looking things.

### Special Characters

- Some characters have a special meaning to LATEX.
  - foremost, back-slash: used to start commands.
  - the curly braces { and }, used to group things (usually arguments to commands).
  - the dollar sign \$, used to go in and out of maths-mode.
  - the ampersand &, used to handle alignment in various things.
  - $\blacksquare$  the hash #, used to refer to arguments inside commands.
  - the tilde ~, that is a non-breaking space.
- This means we cannot just **write** these if we want them output.
  - need to be escaped in some way.

| write:             | to get: | write: | to get: |
|--------------------|---------|--------|---------|
| \textbackslash     |         |        |         |
| \\$                | \$      |        |         |
| \#                 |         | \&     | &       |
| $\$ textasciitilde |         |        |         |

### Special Characters

- Some characters have a special meaning to LATEX.
  - foremost, back-slash: used to start commands.
  - the curly braces { and }, used to group things (usually arguments to commands).
  - the dollar sign \$, used to go in and out of maths-mode.
  - the ampersand &, used to handle alignment in various things.
  - $\blacksquare$  the hash #, used to refer to arguments inside commands.
  - the tilde ~, that is a non-breaking space.
- This means we cannot just **write** these if we want them output.
  - need to be escaped in some way.

| write:                               | to get: | write: | to get: |
|--------------------------------------|---------|--------|---------|
| \textbackslash                       | \       | \{     | {       |
| \\$                                  | \$      | \}     | }       |
| \#                                   | #       | \&     | &       |
| $\backslash \texttt{textasciitilde}$ | ~       |        |         |

- High-level structuring:
  - commands such as \documentclass, \section, \subsection.
  - typically take some arguments.
- Environments (grouping):
  - things that start \begin{env} and finish \end{env} with arbitrary content inbetween (some restrictions).
  - may take various options.
  - may change the way input text is processed within.
- Styling:
  - generally small commands that change how something is displayed.
  - lacktriangledown \textbf{some bold text} ightarrow some bold text.
  - $\blacksquare$  {\bf some bold text}  $\rightarrow$  some bold text.
- Low-level things:
  - commands that define new commands, setup if-then-else structures or even loops.

- High-level structuring:
  - commands such as \documentclass, \section, \subsection.
  - typically take some arguments.
- Environments (grouping):
  - things that start \begin{env} and finish \end{env} with arbitrary content inbetween (some restrictions).
  - may take various options.
  - may change the way input text is processed within.
- Styling:
  - generally small commands that change how something is displayed.
  - lacktriangledown \textbf{some bold text} ightarrow some bold text.
  - $\blacksquare$  {\bf some bold text}  $\rightarrow$  some bold text.
- Low-level things:
  - commands that define new commands, setup if-then-else structures or even loops.

- High-level structuring:
  - commands such as \documentclass, \section, \subsection.
  - typically take some arguments.
- Environments (grouping):
  - things that start \begin{env} and finish \end{env} with arbitrary content inbetween (some restrictions).
  - may take various options.
  - may change the way input text is processed within.
- Styling:
  - generally small commands that change how something is displayed.

  - lacksquare {\bf some bold text} ightarrow some bold text.
- Low-level things:
  - commands that define new commands, setup if-then-else structures or even loops.

- High-level structuring:
  - commands such as \documentclass, \section, \subsection.
  - typically take some arguments.
- Environments (grouping):
  - things that start \begin{env} and finish \end{env} with arbitrary content inbetween (some restrictions).
  - may take various options.
  - may change the way input text is processed within.
- Styling:
  - generally small commands that change how something is displayed.
  - $\text{textbf}\{\text{some bold text}\}$   $\rightarrow$  some bold text.
  - lacksquare {\bf some bold text} ightarrow some bold text.
- Low-level things:
  - commands that define new commands, setup if-then-else structures or even loops.

## Commands and Groups

- From the previous slide, two ways of producing bold text.
  - \textbf{some bold text} → some bold text.
  - lacksquare {\bf some bold text} ightarrow some bold text.
- The first is a **command**, \textbf with one argument.
  - the text to show in bold.
- The second is a **group**.
  - the first command, \bf, changes the active formatting style to bold.
  - the effect of this lasts until the end of the group.

## Commands and Groups

- From the previous slide, two ways of producing bold text.
  - \textbf{some bold text} → some bold text.
  - $\blacksquare \ \{ \backslash \mathtt{bf} \ \mathtt{some} \ \mathtt{bold} \ \mathtt{text} \} \ \to \ \mathbf{some} \ \mathbf{bold} \ \mathbf{text}.$
- The first is a **command**, \textbf with one argument.
  - the text to show in bold.
- The second is a **group**.
  - the first command, \bf, changes the active formatting style to bold.
  - the effect of this lasts until the end of the group.

## Commands and Groups

- From the previous slide, two ways of producing bold text.
  - \textbf{some bold text} → some bold text.
  - $\blacksquare \ \{ \backslash \mathtt{bf} \ \mathtt{some} \ \mathtt{bold} \ \mathtt{text} \} \ \to \ \mathbf{some} \ \mathbf{bold} \ \mathbf{text}.$
- The first is a **command**, \textbf with one argument.
  - the text to show in bold.
- The second is a **group**.
  - the first command, \bf, changes the active formatting style to bold.
  - the effect of this lasts until the end of the group.

- At some level, what T<sub>E</sub>X does is related to sticking **boxes** together.
  - with fixed glue or elastic glue.



- Individual characters glue together (fixed) to form words.
  - that also become boxes themselves (e.g. the LATEX macro above).
  - words glue together (elastic) to form paragraphs (also boxes).
  - and these get packed onto the page.
- T<sub>E</sub>X is aware of **page layout** and is able to:
  - break words at the ends of lines (hyphenation).
  - break paragraphs over page boundaries.
- Why do we care?
  - when LaTeX doesn't quite do what we want, boxes may be a contributing factor — warnings and errors.
  - can do some crafty things by manipulating boxes.

- At some level, what T<sub>E</sub>X does is related to sticking **boxes** together.
  - with fixed glue or elastic glue.



- Individual characters glue together (fixed) to form words.
  - that also become boxes themselves (e.g. the LATEX macro above).
  - words glue together (elastic) to form paragraphs (also boxes).
  - and these get packed onto the page.
- T<sub>E</sub>X is aware of **page layout** and is able to:
  - break words at the ends of lines (hyphenation).
  - break paragraphs over page boundaries.
- Why do we care?
  - when LaTEX doesn't quite do what we want, boxes may be a contributing factor — warnings and errors.
  - can do some crafty things by manipulating boxes.

- At some level, what T<sub>E</sub>X does is related to sticking **boxes** together.
  - with fixed glue or elastic glue.



- Individual characters glue together (fixed) to form words.
  - that also become boxes themselves (e.g. the LATEX macro above).
  - words glue together (elastic) to form paragraphs (also boxes).
  - and these get packed onto the page.
- T<sub>E</sub>X is aware of **page layout** and is able to:
  - break words at the ends of lines (hyphenation).
  - break paragraphs over page boundaries.
- Why do we care?
  - when LaTeX doesn't quite do what we want, boxes may be a contributing factor — warnings and errors.
  - can do some crafty things by manipulating boxes.

- At some level, what T<sub>E</sub>X does is related to sticking **boxes** together.
  - with fixed glue or elastic glue.



- Individual characters glue together (fixed) to form words.
  - that also become boxes themselves (e.g. the LATEX macro above).
  - words glue together (elastic) to form paragraphs (also boxes).
  - and these get packed onto the page.
- T<sub>E</sub>X is aware of **page layout** and is able to:
  - break words at the ends of lines (hyphenation).
  - break paragraphs over page boundaries.
- Why do we care?
  - when LaTeX doesn't quite do what we want, boxes may be a contributing factor — warnings and errors.
  - can do some crafty things by manipulating boxes.

### Weights and Measures

- A lot of markup in LATEX is related to where and how big.
  - to help, T<sub>E</sub>X supports a whole raft of length related units.
- Generally written as a **number** followed by two unit characters:

```
0.5in, 5pt, 4em, 42mm
```

```
• 'pt': 1 point = \frac{1}{72.27}in = 0.351mm.
```

• 'mu': 1 math-unit = 
$$\frac{1}{18}$$
em (for positioning in math mode).

## Weights and Measures

- A lot of markup in LATEX is related to where and how big.
  - to help, T<sub>E</sub>X supports a whole raft of length related units.
- Generally written as a number followed by two unit characters:

```
0.5in, 5pt, 4em, 42mm
```

```
• 'pt': 1 point = \frac{1}{72.27}in = 0.351mm.
```

- 'in': 1 inch = 25.4mm = 72.27pt = 6.022pc.
- 'mm': 1 millimeter = 2.845pt.
- 'ex': height of a small 'x' in the current font.
- 'em': width of capital 'M' in the current font.
- 'mu': 1 math-unit =  $\frac{1}{18}$ em (for positioning in math mode).

# Weights and Measures

- A lot of markup in LATEX is related to where and how big.
  - to help, T<sub>E</sub>X supports a whole raft of length related units.
- Generally written as a number followed by two unit characters:

```
0.5in, 5pt, 4em, 42mm
```

- 'pt': 1 point =  $\frac{1}{72.27}$ in = 0.351mm.
- 'in': 1 inch = 25.4mm = 72.27pt = 6.022pc.
- 'mm': 1 millimeter = 2.845pt.
- 'ex': height of a small 'x' in the current font.
- 'em': width of capital 'M' in the current font.
- 'mu': 1 math-unit =  $\frac{1}{18}$ em (for positioning in math mode).

### Page Layout

A typical A4 page using the 'article' document-class:

diagram produced using the layout package and '\layout' command.

```
layout.tex
```

```
\documentclass[11pt]{article}
\usepackage{layout}
```

\begin{document}

\layout

\end{document} \endinput

 $\rightarrow$  layout.pdf



- one inch + \hoffset \oddsidemargin = 54pt
- \headheight = 12pt
- \textheight = 541pt
- \marginparsep = 10pt \footskip = 30pt
- \hoffset = Opt \paperwidth = 614pt
- one inch + \voffset
- \topmargin = 21pt
- \headsep = 25pt \textwidth = 360pt
- \marginparwidth = 59pt
  - \marginparpush = 5pt (not shown) \voffset = Opt \paperheight = 794pt

## Manipulating The Page Layout

- The standard LATEX article leaves a lot of whitespace around a page.
  - typical when preparing an article for an academic journal, less so for general writing (e.g. your coursework).
- Easy to manipulate these in the document's **preamble**.

```
\addtolength{\oddsidemargin}{-1.0in}
\addtolength{\evensidemargin}{-1.0in}
\addtolength{\textwidth}{1.8in}
\addtolength{\textheight}{1.8in}
\addtolength{\topmargin}{-0.8in}
```

- Note: **odd** and **even** refer to double-sided pages.
- layout2.tex  $\rightarrow$  layout2.pdf
- And someone else already did this for us!

```
\usepackage{fullpage}
```

### Writing a Document

Enough with the background, time to write something!

```
\documentclass[a4paper,12pt]{article}
\usepackage{times} % nicer font
\pagestyle{empty}
\begin{document}
\title{My Assessment}
\author{J.~Random User}
\date{\today}
\maketitle
For this assessment we were asked to find out about how
widgets are made inside a fictitious software system,
which was hard since such a thing doesn't really exist.
Anyhow, this is what I discovered:
```

## Writing a Document

## Writing a Document

- use of the times package to get a particular font.
- commands to set title, etc. and \maketitle to typeset it.
- the \today command to get today's date.
- bulleted lists with the itemize environment; new items introduced with \item.
- lacktriangle emphasised text with ' $\{\ensuremath{\mbox{\mbox{em}}}$  ... $\}$ '.
- bold text with '{\em ...}'.
- footnotes with '\footnote{...}'.

```
doc1.tex \rightarrow doc1.pdf
```

#### My Assessment

J. Random User March 17, 2014

For this assessment we were asked to find out about how widgets are made inside a fictitious software system, which was hard since such a thing doesn't really exist. Anyhow, this is what I discovered:

- There is no ISO standard for widget sizing, though various ECMA standards dictate the flavours of widgets that should be provided in hardware<sup>1</sup>.
- Raptor is a CS unix host. Raptors were also flying dinosaurs that probably lived on cave-men around at that time.

<sup>&</sup>lt;sup>1</sup>Orange and peach have reportedly been popular

- Most document types support a range of **sectioning** commands.
  - for article, mainly 'section', 'subsection' and 'subsubsection'.
  - for book and report, 'chapter' and 'part' as well.
- These commands typically just appear throughout the document.breaking up the content as appropriate.
- They can have complex **side-effects**:
  - e.g. inserting entries into a *table-of-contents*.

- Most document types support a range of **sectioning** commands.
  - for article, mainly 'section', 'subsection' and 'subsubsection'.
  - for book and report, 'chapter' and 'part' as well.
- These commands typically just appear throughout the document.
  - breaking up the content as appropriate.
- They can have complex **side-effects**:
  - e.g. inserting entries into a *table-of-contents*.

- Most document types support a range of **sectioning** commands.
  - for article, mainly 'section', 'subsection' and 'subsubsection'.
  - for book and report, 'chapter' and 'part' as well.
- These commands typically just appear throughout the document.
  - breaking up the content as appropriate.
- They can have complex **side-effects**:
  - e.g. inserting entries into a *table-of-contents*.

```
\documentclass[a4paper,12pt]{article}
\usepackage{times}
\pagestyle{empty}
\begin{document}
\title{My Assessment 2}
\author{J.~Random User\\{\small\tt jru2@kent.ac.uk}}
\date{\today}
\maketitle
\section{Introduction}
For this assessment we were asked to find out about how
widgets are made inside a fictitious software system,
which was hard since such a thing doesn't really exist.
Section ~\ref{sec:results} describes what I found.
```

```
\section{Results}\label{sec:results}
There is no ISO standard for widget sizing,
though various ECMA standards dictate the
{\em flavours} of widgets that should be
provided in hardware\footnote{Orange and peach
have reportedly been popular.}.
```

\subsection{Observations}
Raptor is a CS unix host. Raptors were also
flying {\bf dinosaurs} that probably lived on
cave-men around at that time.

\end{document} \endinput

- the \author command takes a more complex argument:
  - \\ forces a line break.
  - \small sets font size.
  - \tt sets typewriter font.
- various sectioning commands.
- labels placed with \label{...}.
- referenced with \ref{...}.
  - or page with \pageref{..}.

With this example, need to run pdflatex **twice** to resolve the cross-references.

```
doc2.tex \rightarrow doc2.pdf
```

#### My Assessment 2

J. Random User jru2@kent.ac.uk

March 17, 2014

#### 1 Introduction

For this assessment we were asked to find out about how widgets are made inside a fictitious software system, which was hard since such a thing doesn't really exist. Section 2 describes what I found.

#### 2 Results

There is no ISO standard for widget sizing, though various ECMA standards dictate the flavours of widgets that should be provided in hardware<sup>1</sup>.

#### 2.1 Observations

Raptor is a CS unix host. Raptors were also flying **dinosaurs** that probably lived on cave-men around at that time.

1

<sup>&</sup>lt;sup>1</sup>Orange and peach have reportedly been popular

### Documentation, Help and Support

- Documentation for the vast range of LATEX packages varies.
  - many come with neat, although sometimes lengthy, PDF and HTML.
  - often generated using something like docbook.
- Whatever question you have, chances are it's been answered already (somewhere out there).
  - Google is your friend: start the query with "TeX" or "LaTeX" to get relevant hits.
- For any serious LaTeX use, "The LaTeX Companion" [1].
  - numerous on-line introductions, guides, references, etc.
  - http://tobi.oetiker.ch/lshort/lshort.pdf

## Documentation, Help and Support

- Documentation for the vast range of LATEX packages varies.
  - many come with neat, although sometimes lengthy, PDF and HTML.
  - often generated using something like docbook.
- Whatever question you have, chances are it's been answered already (somewhere out there).
  - Google is your friend: start the query with "TeX" or "LaTeX" to get relevant hits.
- For any serious LaTeX use, "The LaTeX Companion" [1].
  - numerous on-line introductions, guides, references, etc.
  - http://tobi.oetiker.ch/lshort/lshort.pdf

### Documentation, Help and Support

- Documentation for the vast range of LATEX packages varies.
  - many come with neat, although sometimes lengthy, PDF and HTML.
  - often generated using something like docbook.
- Whatever question you have, chances are it's been answered already (somewhere out there).
  - Google is your friend: start the query with "TeX" or "LaTeX" to get relevant hits.
- For any serious LaTeX use, "The LaTeX Companion" [1].
  - numerous on-line introductions, guides, references, etc.
  - http://tobi.oetiker.ch/lshort/lshort.pdf

# Dealing With Errors

- Before long, you will probably run into an **error**.
  - or more commonly, a warning.
- Amongst the messages generated in the output will be some reference to where the problem lies.
  - usually a line number in your source file.
  - common mistakes include typos in use of brackets (e.g. wrong ones), not escaping special characters, unbalanced environments.

### The Second Lecture

- This is the second lecture :-).
- The earlier lecture briefly covered:
  - introduction to LaTeX and its syntax (commands, groups, etc.).
  - document structure and some style.
  - layout of the page (margins, etc.).
  - TEX as a box-gluing machine.

- One of the motivations for using LATEX.
  - and one of the reasons Don Knuth invented TEX.
- Maths is integral to the point of T<sub>E</sub>X having a **maths-mode**.
  - though given its US origins, usually written/said math-mode.
- In the flow of text:
  - can switch in and out using '\$' (dollar) or '\(' and '\)'.
  - looks much nicer in roman (serif) fonts than in these slides!
- Dedicated environments:
  - several environments are automatically math-mode.
  - common ones include 'equation', 'align', 'alignat' and 'multline'.
  - most have a starred version (e.g. 'equation\*') that supresses numbering.

- One of the motivations for using LATEX.
  - and one of the reasons Don Knuth invented TEX.
- Maths is integral to the point of TEX having a maths-mode.
  - though given its US origins, usually written/said math-mode.
- In the flow of text:
  - can switch in and out using '\$' (dollar) or '\(' and '\)'.
  - looks much nicer in roman (serif) fonts than in these slides!
- Dedicated environments:
  - several environments are automatically math-mode.
  - common ones include 'equation', 'align', 'alignat' and 'multline'.
  - most have a starred version (e.g. 'equation\*') that supresses numbering.

- One of the motivations for using LATEX.
  - and one of the reasons Don Knuth invented TEX.
- Maths is integral to the point of TEX having a maths-mode.
  - though given its US origins, usually written/said math-mode.
- In the flow of text:
  - can switch in and out using '\$' (dollar) or '\(' and '\)'.
  - looks much nicer in roman (serif) fonts than in these slides!
- Dedicated environments:
  - several environments are automatically math-mode.
  - common ones include 'equation', 'align', 'alignat' and 'multline'.
  - most have a starred version (e.g. 'equation\*') that supresses numbering.

- One of the motivations for using LATEX.
  - and one of the reasons Don Knuth invented TEX.
- Maths is integral to the point of TEX having a maths-mode.
  - though given its US origins, usually written/said math-mode.
- In the flow of text:
  - can switch in and out using '\$' (dollar) or '\(' and '\)'.
  - looks much nicer in roman (serif) fonts than in these slides!
- Dedicated environments:
  - several environments are automatically math-mode.
  - common ones include 'equation', 'align', 'alignat' and 'multline'.
  - most have a starred version (e.g. 'equation\*') that supresses numbering.

1. The point (x, y) as a function of  $\theta$  is defined as:

2. The odd looking 'P',  $\mathbb P$  is from the  $\mathit{blackboard\text{-}bold}$  set.

#### ABCDEFGHIJKLMNOPQRSTUVWXYZ

Inline math here:  $\mathbb{P}(x,y) = (R \times \sin(\theta), R \times \cos(\theta)).$ 

- The package amsmath defines an assorted set of macros for common mathematical typesetting.
  - the package amsfonts makes available the blackboard-bold font.
  - AMS = American Mathematical Society.
- Ordinary characters appear italicized in math-mode.
  - more noticeable in serif (Roman) fonts than sans-serif ones.
- The equation environment is used here (\begin{equation}).single formula, split over two lines in the input.
- Greek letters available with  $\alpha$  ( $\alpha$ ),  $\beta$  ( $\beta$ ), ...
  - multiply symbol with \times.
  - ordinary text (in a Roman font) with \mathrm{...}.

- The package amsmath defines an assorted set of macros for common mathematical typesetting.
  - the package amsfonts makes available the blackboard-bold font.
  - AMS = American Mathematical Society.
- Ordinary characters appear italicized in math-mode.
  - more noticeable in serif (Roman) fonts than sans-serif ones.
- The equation environment is used here (\begin{equation}).
  - single formula, split over two lines in the input.
- Greek letters available with  $\alpha$  (lpha),  $\beta$  (eta), ...
  - multiply symbol with \times.
  - ordinary text (in a Roman font) with \mathrm{...}.

- The package amsmath defines an assorted set of macros for common mathematical typesetting.
  - the package amsfonts makes available the blackboard-bold font.
  - AMS = American Mathematical Society.
- Ordinary characters appear italicized in math-mode.
  - more noticeable in serif (Roman) fonts than sans-serif ones.
- The **equation** environment is used here (\begin{equation}).
  - single formula, split over two lines in the input.
- Greek letters available with  $\alpha$  ( $\alpha$ ),  $\beta$  ( $\beta$ ), ...
  - multiply symbol with \times.
  - ordinary text (in a Roman font) with \mathrm{...}.

- The package amsmath defines an assorted set of macros for common mathematical typesetting.
  - the package amsfonts makes available the blackboard-bold font.
  - AMS = American Mathematical Society.
- Ordinary characters appear italicized in math-mode.
  - more noticeable in serif (Roman) fonts than sans-serif ones.
- The **equation** environment is used here (\begin{equation}).
  - single formula, split over two lines in the input.
- Greek letters available with  $\alpha$  ( $\alpha$ ),  $\beta$  ( $\beta$ ), ...
  - multiply symbol with \times.
  - ordinary text (in a Roman font) with \mathrm{...}.

# Making It Nice

At the moment we have:

$$\mathbb{P}(x,y) = (R \times \sin(\theta), R \times \cos(\theta))$$

■ Could use some extra space:

And maybe some larger brackets on the outside:

 $math1-d.tex \rightarrow math1-d.pdf$ 

## Making It Nice

At the moment we have:

$$\mathbb{P}(x,y) = (R \times \sin(\theta), R \times \cos(\theta))$$

Could use some extra space:

$$\mathbb{P}(x,y) = (R \times \sin(\theta), \ R \times \cos(\theta))$$

And maybe some larger brackets on the outside:

## Making It Nice

At the moment we have:

$$\mathbb{P}(x,y) = (R \times \sin(\theta), R \times \cos(\theta))$$

Could use some extra space:

$$\mathbb{P}(x,y) = (R \times \sin(\theta), \ R \times \cos(\theta))$$

And maybe some larger brackets on the outside:

```
\label{eq:pathon} $$ \mathbf{P}_{(x,y)} = \mathbf{R} \times \mathrm{mathrm}_{\sin}(\theta), $$ : R \times \mathrm{mathrm}_{\cos}(\theta) \to \mathbb{P}(x,y) = (R \times \sin(\theta), R \times \cos(\theta))$$
```

$$math1-d.tex \rightarrow math1-d.pdf$$

### Superscripts and Subscripts

- Have many uses when writing maths.
  - when writing about code (arrays).
  - typesetting above and below things like *sum* or *integrate*  $(\int)$ .
  - subscripts typeset with the underscore, superscripts with hat (caret).

```
\begin{equation}
   \mathit{SumOf}(x) = \sum_{i=0}^{N-1} x_{i},\qquad
   \bar{x} = \frac{\sum_{i=0}^{N-1} x_{i}}{N}
\end{equation}
```

$$SumOf(x) = \sum_{i=0}^{N-1} x_i, \qquad \bar{x} = \frac{\sum_{i=0}^{N-1} x_i}{N}$$
 (1)

 $math2.tex \rightarrow math2.pdf$ 

- Extra spacing:
  - $\blacksquare$  \quad gives 1 em of spacing; \quad twice this.
  - not used here, but \! is a small **negative** space.
- Text typesetting: \mathit{...} for italicized text.
  - \text{...} can be used for general (non-math-mode) text.
- Symbols:
  - \sum for the "big sum",  $\sum$ , \prod for product,  $\prod$ .
  - that take an optional subscript and superscript:

$$\sum_{i=0}^{N}$$

- Fractions with:  $\{\text{top}\}\{\text{bot}\}$ , e.g.  $\frac{x+1}{x-1}$ 
  - drops general font size for top (numerator) and bottom (denominator) — why 'sum' shows differently.

$$x_{-i+1} = \frac{x_i + 1}{x_i - 1} \implies x_{i+1} = \frac{x_i + 1}{x_i - 1}$$

- Extra spacing:
  - $\blacksquare$  \quad gives 1 em of spacing; \quad twice this.
  - not used here, but \! is a small negative space.
- Text typesetting: \mathit{...} for italicized text.
  - \text{...} can be used for general (non-math-mode) text.
- Symbols:
  - \sum for the "big sum",  $\sum$ , \prod for product,  $\prod$ .
  - that take an optional subscript and superscript:

$$\sum_{i=0}^{N}$$

- Fractions with:  $\{\text{top}\}\{\text{bot}\}$ , e.g.  $\frac{x+1}{x-1}$ 
  - drops general font size for top (numerator) and bottom (denominator) — why 'sum' shows differently.

$$x_{-i+1} = \frac{x_{i+1}}{x_{i-1}} = x_{i+1} = \frac{x_{i+1}}{x_{i-1}}$$

- Extra spacing:
  - $\blacksquare$  \quad gives 1 em of spacing; \quad twice this.
  - not used here, but \! is a small **negative** space.
- Text typesetting: \mathit{...} for italicized text.
  - \text{...} can be used for general (non-math-mode) text.
- Symbols:
  - \sum for the "big sum",  $\sum$ , \prod for product,  $\prod$ .
  - that take an optional subscript and superscript:

$$\sum_{i=0}^{N}$$

- Fractions with:  $\{\text{top}\}\{\text{bot}\}$ , e.g.  $\frac{x+1}{x-1}$ 
  - drops general font size for top (numerator) and bottom (denominator) — why 'sum' shows differently.

$$x_{i+1} = \frac{x_{i+1}}{x_{i-1}} = \frac{x_{i+1}}{x_{i-1}}$$

- Extra spacing:
  - \quad gives 1 em of spacing; \qquad twice this.
  - not used here, but \! is a small **negative** space.
- Text typesetting: \mathit{...} for italicized text.
  - \text{...} can be used for general (non-math-mode) text.
- Symbols:
  - \sum for the "big sum",  $\sum$ , \prod for product,  $\prod$ .
  - that take an optional subscript and superscript:

$$\sum_{i=0}^{N}$$

- Fractions with:  $\{\text{top}\}\{\text{bot}\}$ , e.g.  $\frac{x+1}{x-1}$ 
  - drops general font size for top (numerator) and bottom (denominator) — why 'sum' shows differently.

$$x_{i+1} = \frac{x_{i+1}}{x_{i-1}} = \frac{x_{i+1}}{x_{i-1}}$$

### Typesetting Sets and Related

```
math3.tex Evens = \left\{x \mid (\exists n \in \mathbb{N}) \land (x = 2n)\right\} \rightarrow \text{math3.pdf} \qquad P = (A \cap B) \cup (A \cap C) = A \cap (B \cup C) \text{begin{align*}} \text{mathit{Evens} &= \bigl\{x\,|\,(\exists n \in \mathbb{\mathbb{N}})\wedge (x = 2n)\bigr\}\\ P &= (A \cap B) \cup (A \cap C) = A \cap (B \cup C) \end{align*}
```

- The align environment uses the ampersand (&) to align.
  - with the sans-serif fonts here:

Evens = 
$$\{x \mid (\exists n \in \mathbb{N}) \land (x = 2n)\}$$
  
 $P = (A \cap B) \cup (A \cap C) = A \cap (B \cup C)$ 

- the commands \cap, \cup and \wedge typeset the symbols shown.
- also: \setminus (\), \vee ( $\vee$ ), \neq ( $\neq$ ).
- Note use of \big1\{ and \big1\} for larger curly brackets.

### Captioned Figures

```
front-matter
... something like that shown
in figure ~\ref{fig:sort}:
\begin{figure}[hbt]
  \centering
  \includegraphics[scale=.6]%
    {oddevensort.pdf}
  \caption{Odd-even sort,
    with values.}
  \label{fig:sort}
\end{figure}
For $n$ inputs, there ...
\begin{equation}
\end{equation}
```

#### $math4.tex \rightarrow math4.pdf$

#### How Many Sorts?

nuked@#cs

March 18, 2014

General question is, how many 'sort' processes are needed to construct an ode-even sort (a.k.a. bricksort). The 4-input version looks something like that shown in figure 1:



Figure 1: Odd-even sort, with values.

For n inputs, there need to be  $\frac{n}{2}$  'ranks', where each rank is a combination of even then odd sort processes. Within each rank, there are  $\frac{n}{2}$  even sorts and  $\frac{n}{2}-1$  odd sorts, giving:

$$\frac{n}{2} + \left(\frac{n}{2} - 1\right) = \frac{2n - 2}{2} = n - 1$$
 (1)

and then multiplying by the number of ranks required:

$$\left(\frac{n}{2}\right) \times (n-1) = \frac{n(n-1)}{2} = \frac{n^2 - n}{2}$$
 (2)

And that's that!

#### A Few More Maths

Beta-reduction in the lambda-calculus is defined by substitution:

$$(\lambda v.E) x \longrightarrow_{\beta} E[x/v]$$
 (1)

math5.tex

 $\rightarrow$  math5.pdf

$$(\lambda vw.E) x \longrightarrow_{\beta} \lambda w.(E[x/v])$$
 (2)

where x may be any lambda term (variable, function or application). E.g.:

$$(\lambda xy.(y(xxy)))(\lambda xy.(y(xxy))) \longrightarrow_{\beta} \lambda y.(y((\lambda xy.(y(xxy)))(\lambda xy.(y(xxy)))y))$$
 (3)

### Simulating Typed Text

- A variety of environments (some from packages) for this:
  - LATEX's default 'verbatim' environment:

```
\begin{verbatim}
This is some text that will come out
exactly as is, including specials ^_^.
\end{verbatim}
```

This is some text that will come out exactly as is, including specials ^\_^.

- The 'alltt' environment (and package) is a bit more featured.
  - backslash and braces keep their existing meaning.
  - makes it possible to tweak the style: emphasized, blue, etc.

### Formatted Code Listings

- We're used to syntax highlighting in our code editors.
  - and now we can do it in **printed** stuff too!
- The **listings** package.
  - highly configurable way of typesetting code listings.
  - what is used in these slides.
- Not without its problems though.
  - the '1stlisting' environment does not co-exist with Beamer's step-by-step slides.
  - crude solution: generate the required listings as stand-alone PDFs and include as images.

See: http://en.wikibooks.org/wiki/LaTeX/Source\_Code\_Listings

### Formatted Code Listings

- We're used to syntax highlighting in our code editors.
  - and now we can do it in printed stuff too!
- The listings package.
  - highly configurable way of typesetting code listings.
  - what is used in these slides.
- Not without its problems though.
  - the '1stlisting' environment does not co-exist with Beamer's step-by-step slides.
  - crude solution: generate the required listings as stand-alone PDFs and include as images.

See: http://en.wikibooks.org/wiki/LaTeX/Source\_Code\_Listings

### Formatted Code Listings

- We're used to syntax highlighting in our code editors.
  - and now we can do it in printed stuff too!
- The listings package.
  - highly configurable way of typesetting code listings.
  - what is used in these slides.
- Not without its problems though.
  - the '1stlisting' environment does not co-exist with Beamer's step-by-step slides.
  - crude solution: generate the required listings as stand-alone PDFs and include as images.

See: http://en.wikibooks.org/wiki/LaTeX/Source\_Code\_Listings

- BibTeX is **not** LATEX, but a mostly separate program.
  - used in conjunction with LATEX to add references to a document.
- A separate bibliography file is kept.
  - contains details of things that can be referenced (e.g. article, book, web-site, private communication).
  - e.g. test.bib (some stuff I scooped off ACM's digital library).

#### In the document:

- use \cite{...} to insert a citation.
- the command \bibliographystyle{...} selects a particular style, e.g. 'unsrt' (unsorted — in document order).
- bibliography style files (.bst) are essentially stack machine programs that format entries from a .bib file.
- the command \bibliography{test} to select and use 'test.bib'.

- BibTeX is **not** LATEX, but a mostly separate program.
  - used in conjunction with LATEX to add references to a document.
- A separate bibliography file is kept.
  - contains details of things that can be referenced (e.g. article, book, web-site, private communication).
  - e.g. test.bib (some stuff I scooped off ACM's digital library).

#### In the document:

- use \cite{...} to insert a citation.
- the command \bibliographystyle{...} selects a particular style, e.g. 'unsrt' (unsorted — in document order).
- bibliography style files (.bst) are essentially stack machine programs that format entries from a .bib file.
- the command \bibliography{test} to select and use 'test.bib'.

- BibTeX is **not** LaTeX, but a mostly separate program.
  - used in conjunction with LATEX to add references to a document.
- A separate bibliography file is kept.
  - contains details of things that can be referenced (e.g. article, book, web-site, private communication).
  - e.g. test.bib (some stuff I scooped off ACM's digital library).
- In the document:
  - use \cite{...} to insert a citation.
  - the command \bibliographystyle{...} selects a particular style, e.g. 'unsrt' (unsorted in document order).
  - bibliography style files (.bst) are essentially stack machine programs that format entries from a .bib file.
  - the command \bibliography{test} to select and use 'test.bib'.

# \usepackage{natbib} \usepackage{hyperref}

... I've also included a reference to the {\em ACM digital library}~% \cite{DL:2014}.

\bibliographystyle{unsrt}
\bibliography{test}

 $doc4.tex \rightarrow doc4.pdf$ 

(using the hyperref package means that the generated PDF will contain links where appropriate)

#### My Assessment 4

J. Random User jru2@kent.ac.uk

March 18, 2014

#### 1 Introduction

This document includes some bibliographic references to things. There's an interesting paper by Donald Knuth, Computer Programming as an  $h\pi$  [1]. And some other papers related to typesetting [2, 3, 4]. I've also included a reference to the ACM digital library [5].

#### References

- Donald E. Knuth. Computer programming as an art. Commun. ACM, 17(12):667–673. December 1974.
- [2] Brian W. Kernighan and Lorinda L. Cherry. A system for typesetting mathematics. Commun. ACM, 18(3):151–157, March 1975.
- [3] Pedro de Almeida. Typesetting apl dialects: A bitter legacy of the 20th century? SIGAPL APL Quote Quad, 34(2):28–31, March 2004.
- [4] Hannah Kaufman. Computer typesetting at a university. In Proceedings of the 9th Annual ACM SIGUCCS Conference on User Services, SIGUCCS '81, pages 121–124, New York, NY, USA, 1981. ACM.
- [5] ACM. Digital library, 2014. (version for Kent users, http://dl.acm.org.chain.kent.ac.uk/).

### Using BibTeX — In Practice

- A minor inconvenience sometimes, but may need to run pdflatex or equivalent several times:
  - pdflatex: collects citations and other relevant information in the '.aux' file.
  - 2 bibtex: uses the .aux information to extract and format particular entries using the appropriate style. This results in a .bb1 file that contains the formatted (in LaTeX) entries.
  - pdflatex: pick up the formatted entries and drop them into the document, assigning numbers/names.
  - 4 pdflatex: pick up the final numbers/names in citation commands.

#### Tabular Material

■ The 'tabular' environment — and all its horridness.

#### Box Tricks

■ Boxing commands, e.g. '\raisebox', '\mbox', parbox, etc.

#### References



Frank Mittelbach and Michel Goossens.

The LaTeX Companion.

Pearson Education, Inc., 2 edition, 2004.

ISBN: 0-201-36299-6.