IAML: Dimensionality Reduction

Victor Lavrenko and Nigel Goddard School of Informatics

Semester 1

Overview

- Curse of dimensionality
- Different ways to reduce dimensionality
- Principal Components Analysis (PCA)
- Example: Eigen Faces
- PCA for classification
- Witten & Frank section 7.3
 - only the PCA section required

True vs. observed dimensionality

- Get a population, predict some property
 - instances represented as {urefu, height} pairs
 - what is the dimensionality of this data?

- Data points over time from different geographic areas over time:
 - X₁: # of traffic accidents
 - X₂: # of burst water pipes
 - X₃: snow-plow expenditures
 - X₁: # of forest fires
 - X₅: # patients with heat stroke

Temperature below freezing?

Copyright © 2013 Victor Lavrenko

Curse of dimensionality

- Datasets typically high dimensional
 - vision: 10⁴ pixels, text: 10⁶ words
 - the way we observe / record them
 - true dimensionality often much lower
 - a manifold (sheet) in a high-d space
- Example: handwritten digits
 - -20×20 bitmap: $\{0,1\}^{400}$ possible events
 - will never see most of these events
 - actual digits: tiny fraction of events
 - true dimensionality:
 - possible variations of the pen-stroke

Curse of dimensionality (2)

- Machine learning methods are statistical by nature
 - count observations in various regions of some space
 - use counts to construct the predictor f(x)
 - e.g. decision trees: p₊/p₋ in {o=rain,w=strong,T>28°}
 - text: #documents in {"hp" and "3d" and not "\$" and ...)
- As dimensionality grows: fewer observations per region

Dealing with high dimensionality

Dimensionality reduction

- Goal: represent instances with fewer variables
 - try to preserve as much structure in the data as possible
 - discriminative: only structure that affects class separability
- Feature selection
 - pick a subset of the original dimensions $X_1 X_2 X_3 \dots X_{d-1} X_d$
 - discriminative: pick good class "predictors" (e.g. gain)
- Feature extraction
 - construct a new set of dimensions $E_1 E_2 \dots E_m$ $E_i = f(X_1 \dots X_d)$
 - (linear) combinations of original $X_1 X_2 X_3 ... X_n$

Copyright © 2013 Victor Lavrenko

Principal Components Analysis

- Defines a set of principal components
 - 1st: direction of the greatest variability in the data
 - 2nd: perpendicular to 1st, greatest variability of what's left
 - ... and so on until d (original dimensionality)
- First m<<d components become m new dimensions
 - change coordinates of every data point to these dimensions

Why greatest variability?

- Example: reduce 2-dimensional data to 1-d
 - $-\{x_1,x_2\} \rightarrow e'$ (along new axis **e**)
- Pick e to maximize variability
- Reduces cases when two points are close in e-space but very far in (x,y)-space
- Minimizes distances between original points and their projections

Copyright © 2013 Victor Lavrenko

Principal components

- "Center" the data at zero: $x_{i,a} = x_{i,a} \mu$
 - subtract mean from each attribute
- Compute covariance matrix Σ
 - covariance of dimensions x_1 and x_2 :
 - do x₁ and x₂ tend to increase together?
 - or does x₂ decrease as x₁ increases?
- $\operatorname{cov}(b,a) = \frac{1}{n} \sum_{i=1}^{n} x_{ib} x_{ia}$ • Multiply a vector by Σ : $\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} -1 \\ +1 \end{pmatrix} \rightarrow \begin{pmatrix} -1.2 \\ -0.2 \end{pmatrix}$ again $\rightarrow \begin{pmatrix} -2.5 \\ -1.0 \end{pmatrix} \rightarrow \begin{pmatrix} -6.0 \\ -2.7 \end{pmatrix} \rightarrow \begin{pmatrix} -14.1 \\ -6.4 \end{pmatrix}$ - turns towards direction of variance

x 2.0 0.8

 $x_2^1 0.8 0.6$

 \rightarrow var(a) = $\frac{1}{n}\sum_{i=1}^{n}x_{ia}^{2}$

- Want vectors **e** which aren't turned: Σ **e** = λ **e**
 - e ... eigenvectors of Σ , λ ... corresponding eigenvalues
 - principal components = eigenvectors w. largest eigenvalues

Finding Principal Components

1. find eigenvalues by solving: $det(\Sigma - \lambda I) = 0$

$$\det\begin{pmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{pmatrix} = (2 - \lambda)(0.6 - \lambda) - (0.8)(0.8) = \lambda^2 - 2.6\lambda + 0.56 = 0$$
$$\left\{\lambda_1, \lambda_2\right\} = \frac{1}{2} \left(2.6 \pm \sqrt{2.6^2 - 4 * 0.56}\right) = \left\{2.36, 0.23\right\}$$

2. find ith eigenvector by solving: $\Sigma \mathbf{e}_i = \lambda_i \mathbf{e}_i$

Direction of greatest variability

- Select dimension **e** which maximizes the variance
- Points \mathbf{x}_i "projected" onto vector \mathbf{e} :
- Variance of $\frac{1}{n}\sum_{i=1}^{n}\left(\sum_{j=1}^{d}x_{ij}e_{j}-\mu\right)^{2}=\frac{1}{n}\sum_{i=1}^{n}\left(\sum_{j=1}^{d}x_{ij}e_{j}\right)^{2}$

 $V = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right)^{2} - \lambda \left(\left(\sum_{j=1}^{d} e_{j}^{2} \right) - 1 \right)$

- Maximize variance
 - want unit length: ||e||=1
 - add Lagrange multiplier

$$- \text{ add Lagrange multiplier}$$

$$\begin{cases} \sum_{j=1}^{d} \operatorname{cov}(1,j)e_{j} = \lambda e_{1} \\ \vdots \\ \sum_{j=1}^{d} \operatorname{cov}(d,j)e_{j} = \lambda e_{d} \end{cases}$$

$$= \text{must be an eigenvector}$$

$$\begin{cases} \sum_{j=1}^{d} \operatorname{cov}(1,j)e_{j} = \lambda e_{1} \\ \vdots \\ \sum_{j=1}^{d} \operatorname{cov}(d,j)e_{j} = \lambda e_{d} \end{cases}$$

$$\Rightarrow \text{hold for } 2\sum_{j=1}^{d} e_{j} \left(\frac{1}{n}\sum_{i=1}^{n} x_{ia}x_{ij}\right) = 2\lambda e_{a}$$

$$\Rightarrow \text{covariance of a,j}$$

Variance along eigenvector

Variance of projected points $(\mathbf{x}^{\mathsf{T}}\mathbf{e})$:

Copyright © 2013 Victor Lavrenko

How many dimensions?

- Have: eigenvectors $\mathbf{e}_1 \dots \mathbf{e}_d$ want: $m \ll d$
- Proved: eigenvalue λ_i = variance along \mathbf{e}_i
- Pick e_i that "explain" the most variance
 - − sort eigenvectors s.t. $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_d$
 - pick first m eigenvectors which explain 90% or the total variance
 - typical threshold values: 0.9 or 0.95

0.9

- Or use a scree plot:
 - like K-means

Projecting to new dimensions

- **e**₁ ... **e**_m are new dimension vectors
- Have instance $\mathbf{x} = \{x_1...x_d\}$ (original coordinates)
- Want new coordinates $\mathbf{x}' = \{x'_1 \dots x'_m\}$:
 - 1. "center" the instance (subtract the mean): x'-μ
 - 2. "project" to each dimension: $(\mathbf{x}' \boldsymbol{\mu})^T \mathbf{e}_i$ for j=1...m

$$(\vec{x} - \vec{\mu}) = \begin{bmatrix} (x_1 - \mu_1) & (x_2 - \mu_2) & \cdots & (x_d - \mu_d) \end{bmatrix}$$

$$\begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_{m'} \end{bmatrix} = \begin{bmatrix} (\vec{x} - \vec{\mu})^T \vec{e}_1 \\ (\vec{x} - \vec{\mu})^T \vec{e}_2 \\ \vdots \\ (\vec{x} - \vec{\mu})^T \vec{e}_m \end{bmatrix} = \begin{bmatrix} (x_1 - \mu_1)e_{1,1} + (x_2 - \mu_2)e_{1,2} + \cdots + (x_d - \mu_d)e_{1,d} \\ (x_1 - \mu_1)e_{2,1} + (x_2 - \mu_2)e_{2,2} + \cdots + (x_d - \mu_d)e_{2,d} \\ \vdots \\ (x_1 - \mu_1)e_{m,1} + (x_2 - \mu_2)e_{m,2} + \cdots + (x_d - \mu_d)e_{m,d} \end{bmatrix}$$

Copyright © 2013 Victor Lavrenko

PCA in a nutshell

- 3. compute covariance matrix
 - h u h 2.0 0.8 $cov(h,u) = \frac{1}{n} \sum_{i=1}^{n} h_i u_i$ u 0.8 0.6
- 4. eigenvectors + eigenvalues

eig(cov(data))

7. uncorrelated low-d data

6. project data points to those eigenvectors

5. pick m<d eigenvectors w. highest eigenvalues

PCA example: Eigen Faces

Eigen Faces: Projection

(Eigen) Face Recognition

- Face similarity
 - in the reduced space
 - insensitive to lighting expression, orientation
- Projecting new "faces"
 - everything is a face

new face

projected to eigenfaces

PCA: practical issues

- Covariance extremely sensitive to large values
 - multiply some dimension by 1000
 - · dominates covariance
 - becomes a principal component
 - normalize each dimension to zero mean and unit variance: $\mathbf{x}' = (\mathbf{x} \text{mean}) / \text{st.dev}$
- PCA assumes underlying subspace is linear
 - 1d: straight line2d: flat sheet
 - transform to handle non-linear spaces (manifolds)

PCA and classification

- PCA is unsupervised
 - maximizes overall variance of the data along a small set of directions
 - does not know anything about class labels
 - can pick direction that makes it hard to separate classes
- Discriminative approach
 - look for a dimension that makes it easy to separate classes

Copyright © 2013 Victor Lavrenko

Linear Discriminant Analysis

- LDA: pick a new dimension that gives:
 - maximum separation between means of projected classes
 - minimum variance within each projected class
- Solution: eigenvectors based on between-class and within-class covariance matrices

PCA vs. LDA

- LDA not guaranteed to be better for classification
 - assumes classes are unimodal Gaussians
 - fails when discriminatory information is not in the mean,
 but in the variance of the data
- Example where PCA gives a better projection:

Dimensionality reduction

- Pros
 - reflects our intuitions about the data
 - allows estimating probabilities in high-dimensional data
 - no need to assume independence etc.
 - dramatic reduction in size of data
 - faster processing (as long as reduction is fast), smaller storage
- Cons
 - too expensive for many applications (Twitter, web)
 - disastrous for tasks with fine-grained classes
 - understand assumptions behind the methods (linearity etc.)
 - there may be better ways to deal with sparseness

Summary

- True dimensionality << observed dimensionality
- High dimensionality → sparse, unstable estimates
- Dealing with high dimensionality:
 - use domain knowledge
 - make an assumption: independence / smoothness / symmetry
 - dimensionality reduction: feature selection / feature extraction
- Principal Components Analysis (PCA)
 - picks dimensions that maximize variability
 - eigenvectors of the covariance matrix
 - examples: Eigen Faces
 - variant for classification: Linear Discriminant Analysis

Copyright © 2013 Victor Lavrenko