Dispense del corso di Teoria della Rappresentazione

Fabio Zoratti

23 novembre 2016

1 Teoria dei gruppi

Definizione 1.1 (Gruppo). Un gruppo è un insieme con associata un operazione binaria $\cdot: G \times G \to G$ che gode di alcune proprietà

- 1. Associatività (ab)c = a(bc)
- 2. Esistenza unità ea = ae = a
- 3. Esistenza inverso a' per ogni elemento a a'a = aa' = e

Esempi

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ con l'operazione di somma.
- 2. $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ con l'operazione di moltiplicazione. (Senza lo 0)
- 3. $GL_n(\mathbb{R})$ oppure GL(V)
- 4. $f: I \to I$ biunivoca, con I insieme e con l'operazione di composizione. Nel caso in cui I sia un insieme finito, tanto vale scegliere $I = \{1, 2, 3, \dots, n\}$. In tal caso questo gruppo si chiama S_n

Alcuni teoremi elementari

1. L'unità e è unica

Dimostrazione: supponiamo per assurdo che siano due distinte, e, e'. Allora vale

$$e = ee' = e' \quad \square$$

2. L'inverso è unico.

Dimostrazione:

Supponiamo per assurdo che siano due, a', a''

$$(a'a)a'' = a'(aa'') \Rightarrow ea'' = a'e \quad \square$$

- 3. Se ho a_1, a_2, \ldots, a_n , il prodotto di questi termini è ben definito senza bisogno di parentesi
- 4. Esistono le potenze, ovvero $\forall k \in \mathbb{Z}, \forall a \in G \exists b \in G | a^k = b$

Vale sempre la regola

$$a^{k+h} = a^k \cdot a^h$$

Ricorda che

$$(ab)^{-1} = b^{-1}a^{-1}$$

Definizione 1.2 (Sottogruppo).

Definizione 1.3 (Sottogruppo normale).

Definizione 1.4 (Gruppo quoziente).

Definizione 1.5 (Classi di coniugio).

Esempio 1.1 (Le classi di coniugio di $GL_n(\mathbb{C})$).

Definizione 1.6 (Prodotto di gruppi).

Definizione 1.7 (Azione di un gruppo su un insieme). Sia G un gruppo e I un insieme. Definiamo un azione a di G su I una funzione $a:G\times I\to I$ che rispetti la regola di composizione, ovvero che se $h,h\in G$ e $i\in I$, valga

$$a(h, a(g, i)) = a(hg, i)$$

Normalmente si usa una notazione abbreviata in cui invece di scrivere a(g,i) si scrive direttamente $g \cdot i$ o addirittura gi

Definizione 1.8 (Azione transitiva).

Definizione 1.9 (Orbita di un elemento).

Definizione 1.10 (Azione semplicemente transitiva).

1.1 Proprietà del gruppi simmetrici

Teorema 1.1 (Ogni elemento $\sigma \in S_n$ si scrive in modo unico come prodotto di cicli disgiunti a meno dell'ordine dei fattori).

Proposizione 1.2. Il segno di un ciclo di lunghezza k è esattamente $(-1)^{k-1}$

- 1.2 Proprietà dei gruppi ciclici
- 1.3 Proprietà dei gruppi diedrali

2 Algebra multilineare

2.1 Alcune generalizzazioni di algebra lineare

Definizione 2.1 (Base di uno spazio vettoriale).

2.2 Prodotto tensoriale

Definizione 2.2 (Prodotto tensoriale).

Definizione 2.3. DEFINISCI TRACCIA DEL PRODOTTO TENSORE, OVVERO

$$tr(f \otimes g)$$

Teorema 2.1. Se $f:V \to V$ e $g:W \to W$ sono endomorfismi di spazi vettoriali, allora vale la formula

$$tr(f \otimes g) = tr(f)tr(g)$$

DIMOSTRAZIONE:

2.3 Prodotto esterno e prodotto simmetrico

Definizione 2.4 (Prodotto esterno).

Teorema 2.2 (Dimensione del prodotto esterno).

Definizione 2.5 (Prodotto simmetrico).

Teorema 2.3 (Dimensione del prodotto simmetrico).

3 Prime proprietà delle rappresentazioni

Definizione 3.1 (Rappresentazione). Sia G un gruppo. Una rappresentazione ρ di G è una coppia composta da uno spazio vettoriale di dimensione qualsiasi V_{ρ} e una funzione $\rho: G \to GL(V_{\rho})$ che manda ciascun elemento del gruppo in un'applicazione lineare di V_{ρ} , ovvero un suo endomorfismo. Affinché ρ sia una rappresentazione deve essere un omomorfismo di gruppi, ovvero in parole semplici deve rispettare la regola di composizione. In formule, se $s,t\in G$ deve valere

$$\rho(st)v = \rho(s)\rho(t)v \qquad \forall v \in V_{\rho}, \quad \forall s, t \in G$$

La dimensione di V_{ρ} viene detta grado della rappresentazione.

Proposizione 3.1. $\rho(G)$ è evidentemente un sottogruppo di $GL(V_{\rho})$, quindi esistono sempre inversi, potenze e tutte le cose che valgono per i gruppi.

Esempi.

1. La rappresentazione banale, di grado qualsiasi, indicata con ρ_1 che manda qualsiasi elemento di g nell'identità di V_{ρ} , ovvero

$$\rho(s) = id_{V_{\rho}} \qquad \forall s \in G$$

- 2. Dato S_n , il segno di un elemento $s \in S_n$ è una rappresentazione di grado 1. Infatti si ha sgn(st) = sgn(s)sgn(t).
- 3. L'azione naturale di S_n sui vettori della base. Prendiamo quindi $G = S_n$ e uno spazio vettoriale di dimensione n, che sarà sicuramente isomorfo a \mathbb{C}^n . Prendiamo la base canonica di \mathbb{C}^n e la chiamiamo e_i . Descriviamo la rappresentazione $\rho: S_n \to GL(\mathbb{C}^n)$ dicendo cosa fa agli elementi della base. Per linearità si estenderà a tutto lo spazio.

$$\rho(s)e_i = e_{s(i)}$$

Notare che in questo caso $deg(\rho) = n$. Notiamo inoltre che se rappresentiamo nella base canonica le matrici associate a $\rho(s)$ queste matrici sono unitarie. Inoltre, ogni colonna (e anche ogni riga) contiene esattamente un 1 e tutti gli altri sono 0.

Prendiamo come esempio S_3 e vediamo cosa succede. Notiamo innanzitutto che $|S_3|=3!=6$ FINISCI DI SCRIVERE

Proposizione 3.2. Sia G un gruppo finito $e \rho : G \to GL(V_{\rho})$ una sua rappresentazione. Allora $\forall g \in G$ la matrice $\rho(g)$ ammette una base di autovettori in V_{ρ} , ovvero è diagonalizzabile. Inoltre, tutti gli autovalori di $\rho(g)$ sono radici n-esime dell'unità.

Nota bene: Per ogni matrice in generale la base è diversa, quindi le varie matrici in generale non sono simultaneamente diagonalizzabili. In particolare, tutte le matrici $\rho(s)$ sono simultaneamente diagonalizzabili $\Leftrightarrow G$ è abeliano.

DIMOSTRAZIONE: Se G è un gruppo finito, allora $\exists k | g^k = e^1$. Dato che $\rho: G \to GL(V_\rho)$ mantiene queste proprietà in quanto omomorfismo, dovrà essere

$$\rho(g)^k = id$$

¹Dato che g è finito, se prendo l'insieme delle potenze $I = \{g^k | k \in \mathbb{Z}\}$, proprio perchè G è finito si ha che I ha un numero finito di elementi, quindi ci saranno $m, n \in \mathbb{Z}$ tali che $g^m = g^n = h$. Dato che nei gruppi esiste l'inverso, sarà $g^{n-m} = e$

Con il polinomio minimo si mostra facilmente che $\rho(g)$ è diagonalizzabile. MATEMATICI SCRIVETE IL PERCHÉ. Inoltre da questa formula è anche evidente che tutti gli autovalori di $\rho(g)$ hanno modulo 1 e in particolare saranno radici k—esime dell'unità.

Ricordiamo un teorema di algebra lineare per finire l'ultima parte della dimostrazione: due endomorfismi di uno spazio vettoriale diagonalizzabili sono simultaneamente diagonalizzabili \Leftrightarrow commutano. Da questo teorema segue facilmente la seconda parte dell'enunciato.

Definizione 3.2 (Omomorfismo di rappresentazioni).

Definizione 3.3 (Rappresentazioni isomorfe).

3.1 Operazioni con le rappresentazioni

Definizione 3.4 (Somma di rappresentazioni).

Definizione 3.5 (Prodotto di rappresentazioni).

Definizione 3.6 (Rappresentazione duale).

Definizione 3.7 (Rappresentazione regolare).

Esempio 3.1 (La rappresentazione regolare di S_3).

Teorema 3.3.

$$R_G \cong \sum_i deg(\rho_i)\rho_i$$

3.2 Sottospazi invarianti e scomposizione delle rappresentazioni

Definizione 3.8 (Sottospazio invariante).

Definizione 3.9 (Rappresentazione irriducibile).

Osservazione. Normalmente la cosa che si fa più spesso in teoria della rappresentazione è cercare di scomporre la rappresentazione di un gruppo come somma di rappresentazioni irriducibili. Vedremo quindi adesso diversi teoremi che ci aiuteranno in questi problemi.

Teorema 3.4 (Le rappresentazioni di un gruppo finito sono completamente riducibili).

Proposizione 3.5 (Prodotto hermitiano invariante).

Teorema 3.6 (Lemma di Schur).

4 Teoria dei caratteri

Definizione 4.1. Sia $\rho: G \to GL(V_{\rho})$ una rappresentazione di un gruppo G. Definiamo carattere di ρ la funzione che associa ad ogni elemento del gruppo G la traccia della matrice associata all'elemento, ovvero

$$\chi_{\rho}(s) := tr(\rho(s)) \quad \forall s \in G$$

Notare che χ è una funzione che va dal gruppo in \mathbb{C}^* , ovvero $\chi:G\to\mathbb{C}^*$

Vediamo delle proprietà elementari del carattere OSSERVAZIONI:

- 1. Se $dim(\rho) = 1$ allora il carattere di s è uguale a $\rho(s)$
- 2. $\chi_{\rho_1} = dim(\rho_1)^2$
- 3. $\chi_{\rho+\sigma}(s) = \chi_{\rho}(s) + \chi_{\sigma}(s)$. Questo è dovuto al fatto che la somma di rappresentazioni si può scrivere come matrice a blocchi. Una volta scritto così è evidente il risultato.
- 4. $\chi_{\rho\sigma}(s) = \chi_{\rho}(s)\chi_{\sigma}(s)$. Questo deriva dal fatto che in generale se $f: V \to V$ e $g: W \to W$ sono endomorfismi di spazi vettoriali, allora vale $tr(f \otimes g) = tr(f)tr(g)$
- 5. $\chi_{\rho^*}(s) = \overline{\chi_{\rho}(s)}$. Se abbiamo un gruppo finito ³, allora $\exists n | (\rho(s))^n = id$, per cui tutti gli autovalori di $\rho(s)$ sono radici ennesime dell'unità e $\rho(s)$ è diagonalizzabile⁴. Dato che possiamo scrivere $\rho(s)$ in una base in modo che sia diagonale per ogni s, è evidente che gli autovalori dell'inversa saranno l'inverso degli autovalori, ma dato che hanno modulo 1, l'inverso è uguale al coniugio.

4.1 Esempi di rappresentazioni di gruppi finiti

²Al solito ρ_1 è la rappresentazione che manda ogni elemento nell'identità di V_{ρ}

³Ricordiamo che $\rho^*(s) = (\rho(s)^{-1})^*$

⁴Si veda la proposizione 3.2