

SRM Institute of Science and Technology College of Engineering and Technology SCHOOL OF COMPUTING

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

(ODD SEMESTER)

Mode of Exam

OFFLINE

(OPEN BOOK) SET D

Test: CLAT-1
Course Code & Title: 18CSC301T - Formal Language and Automata
Year & Sem: III-Year & V-Semester

Date:16-08-2023
Duration: 50 minutes
Max. Marks: 25

2023-24

Academic Year:

Course	articul	lation	matrix:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO-1	3														3
CO-2		3	2												3
CO-3		3	3												3
CO-4		3	3												3
CO-5			3	1									2		3

CO-5	3 1			2		3
	D / A / 12 1 12 W 1					
Q. No	Part – A ($13 \times 1 = 13 \text{ Marks}$)	Marks	BL	CO	PΩ	PI
Q. No	Question	Marks	DL	CO	PO	Code
1	A pulmonary embolism is a blood clot that blocks and			1	2	2.5.2
_	stops blood flow to an artery in the lung. When a blood				_	
	clot in the deep veins in your leg breaks off and travels to					
	your lungs are represented as 'a'. A blood clot that travels					
	to another part of your body is called an embolus are					
	represented as 'b'.					
	i. Write a RE to identify people with who has 'a' clot	1	L_1			
	or 'b' clot or any combination of clots followed by					
	'abb'. ANSWER: (a+b)* abb					
	ii. What are the input strings accepted by the R.E.	1	L_1			
	ANSWER: {aabb,babb}	6	L_4			
	iii. Design a E- NFA using Thompson's construction (3	5	L_5			
	marks) and convert the E- NFA to NFA (3 marks)		L5			
	ANSWER:					
	(0,30)					
	$-(q_0) \stackrel{\epsilon}{=} (q_1) \stackrel{\epsilon}{=} (q_2) \stackrel{\epsilon}{=} (q_2) \stackrel{a}{=} (q_3) \stackrel{b}{=} (q_0) \stackrel{b}{=} (q_1)$					
	·					
	The transition table for this NFA is					
	Fig. 2.16.10					
	a b					
	90 90-91 90					
	q ₁					
	q ₂					
	iv. Convert the NFA to DFA.					
	Now let us convert it to equivalent DFA.					
	$[q_0, q_1]$ $[q_0, q_1]$ $[q_0, q_2]$					
	$\rightarrow q_0 (q_0, q_1) q_0$					
	q ₁					
	q ₂					
	(q_0, q_2) (q_0, q_1) (q_0, q_3)					
	• (q ₀ , q ₃) (q ₀ , q ₁) q ₀					
	• q ₃					

	bO 🔵					
	— p ((do-da)))					
	a a					
	b b					
	(q_0,q_1) (q_0,q_2)					
	O _a a					
	(OR)					
2.	i. Which of the following options is correct?	1	L_1	1	2	2.5.3
	Statement x: Initial State of NFA is Initial State of DFA. Statement y: The final state of DFA will be every					
	combination of final state of NFA.					
	(i) Statement x is true and Statement y is true					
	(ii) Statement x is true and Statement y is false					
	(iii) Statement x can be true and Statement y is true (iv) Statement x is false and Statement y is also false					
	ii. What is wrong in the given definition?					
	Def: ({q0, q1, q2}, {0,1}, δ, q3, {q3})	1	L_1			
	(a) The definition does not satisfy 5 Tuple definition of NFA					
	(b) There is no transition definition					
	(c) Initial and Final states do not belong to the Graph					
	(d) Initial and final states can't be same iii. Priya and Kathir are playing a game. They are asked to					
	recite string in such a way that the words start and end	5	L_4			
	with same letter on input {a,b,c}. Create a DFA for the					
	same with a special mention to 5 tuple structure.					
	(iii) Obic	6	L_5			
	a 2 0 m= 8 0, 2, 8, 90, F)					
	m= { 0, 1, 8, 20, F}					
	n= { 1,2,3,4,5,4 }					
	(a.s.c3, 8,1,					
	a, b a, b [5,6,7] }					
	8 function. 1 = {abca, ababca,					
	0 () () ()					
	(abah) = [3]					
	1 (1 · c) = { 4}					
	8 (2,0) = {5}					
	8 (2,5) = {2} 8 (5,0) = {5} TX - Table					
	S(2,c)={23 8(5,c)={23 a b c					
	1 2 3 4					
	(3,4) -(3)					
	(5,5) - (6)					
	0 (3) = (3)					
	8(4,9) = 143					
	8 (4,15) = 542					
	8 (4,1) = {7}					

iv. Choose any acceptable input string and show that the input is accepted in the DFA and check the extended transition function.					
(iv) Extended Tx function = beabab					
81 = 8 (1, 2) = 1					
81(1,6) = 8[81(1,2), 6]					
= 8 {1,6} = {3}					
81(1,50) = 8(81(1,5),0)					
= 8 [3, 6] = [3]					
81 (1, bca) = 8 { 81 (1, bc), a}					
= 8 (3,a) = (33					
8 (1, bcab) = 8 (5 1 (1, bca) b)					
= 8 (3, 5 3 = 263					
8 (1, bcaba)= 8 { 8 (1, bcab) a}					
= 8 8 6, 9 = {3 }					
81 (1, bcases) = 8 { 81 (1, bcaba) b}					
= 8 { 3, 6}					
$= \{6\} =) 3+1's a final steel$	le.				
w= bcabab 8things is accepted.					
Part – B (12 x 1 = 12 Marks)					
3. Ajay wants to build a pattern block. He has two blocks of			1	2	2.1.1
shapes square and rectangle respectively. All the blocks					
are in the box and he picks the shapes in a specific order.					
He picks any blocks and makes the pattern but the pattern should end with a square block, rectangle block and					
square block. If he can build the pattern in this specified					
order then he successfully builds the pattern block. Help					
Ajay to successfully build the pattern.					
i. Construct a regular expression for the above	1	L_1			
scenario. ANSWER : (s+r)* srs	1	L ₁			
ii. Distinguishable states	1	L_1			
a) Move to same output state for same input					
b) Move to different output state for same input					
c) Move to same output state for all inputsd) Move to same output state for unique inputs					
iii. Convert the constructed regular expression to ε-	. 5	L_2			
NFA.	5	L_2			

Approved by Audit Professor / Course Coordinator