

SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC.
LAL, Preeti
HILLMAN, Jennifer L.
GORONE, Gina
CORLEY, Neil C.
PATTERSON, Chandra
YUE, Henry
TANG, Y. Tom
AZIMZAI, Yalda

<120> HUMAN SOCS PROTEINS

<130> PF-0525 PCT

<140> To Be Assigned

<141> Herewith

<150> 60/087,104; 09/216,006
<151> 1998-05-28; 1998-12-17

<160> 18

170 PERL Program

<210> 1

<211> 288

<212> PRT

<213> Homo sapiens

<220>

<221> misc feature

<223> Incyte clone 1758450

RECEIVED
MAR 13 2002
TECH CENTER 1600/2900

MAR 13 2002

TECH CENTER 1600/2900

RECEIVED
19

MAP 1

STAR 1
ECH CENTER 1600/2900

RECEIVED
1-2002

MAR 11 2002
TECH CENTER 1600/2900

RECEIVED

MAY 09 2002

TECH CENTER 1600/1300

Asn Asp Thr Pro Leu Ser Trp Ala Ala Met Lys Gly Asn Leu Glu
 155 160 165
 Ser Val Ser Ile Leu Leu Asp Tyr Gly Ala Glu Val Arg Val Ile
 170 175 180
 Asn Leu Ile Gly Gln Thr Pro Ile Ser Arg Leu Val Ala Leu Leu
 185 190 195
 Val Arg Gly Leu Gly Thr Glu Lys Glu Asp Ser Cys Phe Glu Leu
 200 205 210
 Leu His Arg Ala Val Gly His Phe Glu Leu Arg Lys Asn Gly Thr
 215 220 225
 Met Pro Arg Glu Val Ala Arg Asp Pro Gln Leu Cys Glu Lys Leu
 230 235 240
 Thr Val Leu Cys Ser Ala Pro Gly Thr Leu Lys Thr Leu Ala Arg
 245 250 255
 Tyr Ala Val Arg Arg Ser Leu Gly Leu Gln Tyr Leu Pro Asp Ala
 260 265 270
 Val Lys Gly Leu Pro Leu Pro Ala Ser Leu Lys Glu Tyr Leu Leu
 275 280 285
 Leu Leu Glu

<210> 2
 <211> 423
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1834242

<400> 2
 Met Lys Leu Thr Pro Arg Thr Ala Gly Arg Ala Trp Ala Gln Ser
 1 5 10 15
 Arg Lys Gly Lys Arg Ser Ser Trp Gly Gly Thr Ala Ala Val Ala
 20 25 30
 Glu Leu Lys Pro Gly Arg Pro His Gln Phe Asp Trp Lys Ser Ser
 35 40 45
 Cys Glu Thr Trp Ser Val Ala Phe Ser Pro Asp Gly Ser Trp Phe
 50 55 60
 Ala Trp Ser Gln Gly His Cys Ile Val Lys Leu Ile Pro Trp Pro
 65 70 75
 Leu Glu Glu Gln Phe Ile Pro Lys Gly Phe Glu Ala Lys Ser Arg
 80 85 90
 Ser Ser Lys Asn Glu Thr Lys Gly Arg Gly Ser Pro Lys Glu Lys
 95 100 105
 Thr Leu Asp Cys Gly Gln Ile Val Trp Gly Leu Ala Phe Ser Pro
 110 115 120
 Trp Pro Ser Pro Pro Ser Arg Lys Leu Trp Ala Arg His His Pro
 125 130 135
 Gln Val Pro Asp Val Ser Cys Leu Val Leu Ala Thr Gly Leu Asn
 140 145 150
 Asp Gly Gln Ile Lys Ile Trp Glu Val Gln Thr Gly Leu Leu Leu
 155 160 165
 Leu Asn Leu Ser Gly His Gln Asp Val Val Arg Asp Leu Ser Phe
 170 175 180

Thr Pro Ser Gly Ser Leu Ile Leu Val Ser Ala Ser Arg Asp Lys
 185 190 195
 Thr Leu Arg Ile Trp Asp Leu Asn Lys His Gly Lys Gln Ile Gln
 200 205 210
 Val Leu Ser Gly His Leu Gln Trp Val Tyr Cys Cys Ser Ile Ser
 215 220 225
 Pro Asp Cys Ser Met Leu Cys Ser Ala Ala Gly Glu Lys Ser Val
 230 235 240
 Phe Leu Trp Ser Met Arg Ser Tyr Thr Leu Ile Arg Lys Leu Glu
 245 250 255
 Gly His Gln Ser Ser Val Val Ser Cys Asp Phe Ser Pro Asp Ser
 260 265 270
 Ala Leu Leu Val Thr Ala Ser Tyr Asp Thr Asn Val Ile Met Trp
 275 280 285
 Asp Pro Tyr Thr Gly Glu Arg Leu Arg Ser Leu His His Thr Gln
 290 295 300
 Val Asp Pro Ala Met Asp Asp Ser Asp Val His Ile Ser Ser Leu
 305 310 315
 Arg Ser Val Cys Phe Ser Pro Glu Gly Leu Tyr Leu Ala Thr Val
 320 325 330
 Ala Asp Asp Arg Leu Leu Arg Ile Trp Ala Leu Glu Leu Lys Thr
 335 340 345
 Pro Ile Ala Phe Ala Pro Met Thr Asn Gly Leu Cys Cys Thr Phe
 350 355 360
 Phe Pro His Gly Gly Val Ile Ala Thr Gly Thr Arg Asp Gly His
 365 370 375
 Val Gln Phe Trp Thr Ala Pro Arg Val Leu Ser Ser Leu Lys His
 380 385 390
 Leu Cys Arg Lys Ala Leu Arg Ser Phe Leu Thr Thr Tyr Gln Val
 395 400 405
 Leu Ala Leu Pro Ile Pro Lys Lys Met Lys Glu Phe Leu Thr Tyr
 410 415 420
 Arg Thr Phe

<210> 3
 <211> 349
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1849725

<400> 3
 Met Glu Asp Pro Gln Ser Lys Glu Pro Ala Gly Glu Ala Val Ala
 1 5 10 15
 Pro Ala Leu Leu Glu Ser Pro Arg Pro Glu Gly Gly Glu Glu Pro
 20 25 30
 Pro Arg Pro Ser Pro Glu Glu Thr Gln Gln Cys Lys Phe Asp Gly
 35 40 45
 Gln Glu Thr Lys Gly Ser Lys Phe Ile Thr Ser Ser Ala Ser Asp
 50 55 60
 Phe Ser Asp Pro Val Tyr Lys Glu Ile Ala Ile Thr Asn Gly Cys
 65 70 75
 Ile Asn Arg Met Ser Lys Glu Glu Leu Arg Ala Lys Leu Ser Glu

80	85	90
Phe Lys Leu Glu Thr Arg Gly Val Lys Asp Val	Leu Lys Lys	Arg
95	100	105
Leu Lys Asn Tyr Tyr Lys Lys Gln Lys	Leu Met Leu Lys Glu Ser	
110	115	120
Asn Phe Ala Asp Ser Tyr Tyr Asp Tyr	Ile Cys Ile Ile Asp Phe	
125	130	135
Glu Ala Thr Cys Glu Glu Gly Asn Pro	Pro Glu Phe Val His Glu	
140	145	150
Ile Ile Glu Phe Pro Val Val Leu Leu Asn	Thr His Thr Leu Glu	
155	160	165
Ile Glu Asp Thr Phe Gln Gln Tyr Val	Arg Pro Glu Ile Asn Thr	
170	175	180
Gln Leu Ser Asp Phe Cys Ile Ser Leu	Thr Gly Ile Thr Gln Asp	
185	190	195
Gln Val Asp Arg Ala Asp Thr Phe Pro	Gln Val Leu Lys Lys Val	
200	205	210
Ile Asp Trp Met Lys Leu Lys Glu Leu	Gly Thr Lys Tyr Lys Tyr	
215	220	225
Ser Leu Leu Thr Asp Gly Ser Trp Asp	Met Ser Lys Phe Leu Asn	
230	235	240
Ile Gln Cys Gln Leu Ser Arg Leu Lys	Tyr Pro Pro Phe Ala Lys	
245	250	255
Lys Trp Ile Asn Ile Arg Lys Ser Tyr	Gly Asn Phe Tyr Lys Val	
260	265	270
Pro Arg Ser Gln Thr Lys Leu Thr Ile	Met Leu Glu Lys Leu Gly	
275	280	285
Met Asp Tyr Asp Gly Arg Pro His Cys	Gly Leu Asp Asp Ser Lys	
290	295	300
Asn Ile Ala Arg Ile Ala Val Arg Met	Leu Gln Asp Gly Cys Glu	
305	310	315
Leu Arg Ile Asn Glu Lys Met His Ala	Gly Gln Leu Met Ser Val	
320	325	330
Ser Ser Ser Leu Pro Ile Glu Gly Thr	Pro Pro Pro Gln Met Pro	
335	340	345
His Phe Arg Lys		

<210> 4
<211> 355
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2547840

<400> 4
Met Ala Arg Arg Pro Arg Asn Ser Arg Ala Trp His Phe Val Leu
1 5 10 15
Ser Ala Ala Arg Arg Asp Ala Asp Ala Arg Ala Val Ala Leu Ala
20 25 30
Gly Ser Thr Asn Trp Gly Tyr Asp Ser Asp Gly Gln His Ser Asp
35 40 45
Ser Asp Ser Asp Pro Glu Tyr Ser Thr Leu Pro Pro Ser Ile Pro

50	55	60
Ser Ala Val Pro Val Thr Gly Glu Ser	Phe Cys Asp Cys Ala Gly	
65	70	75
Gln Ser Glu Ala Ser Phe Cys Ser Ser	Leu His Ser Ala His Arg	
80	85	90
Gly Arg Asp Cys Arg Cys Gly Glu Glu	Asp Glu Tyr Phe Asp Trp	
- 95	100	105
Val Trp Asp Asp Leu Asn Lys Ser Ser	Ala Thr Leu Leu Ser Cys	
110	115	120
Asp Asn Arg Lys Val Ser Phe His Met	Glu Tyr Ser Cys Gly Thr	
125	130	135
Ala Ala Ile Arg Gly Thr Lys Glu Leu	Gly Glu Gly Gln His Phe	
140	145	150
Trp Glu Ile Lys Met Thr Ser Pro Val	Tyr Gly Thr Asp Met Met	
155	160	165
Val Gly Ile Gly Thr Ser Asp Val Asp	Leu Asp Lys Tyr Arg His	
170	175	180
Thr Phe Cys Ser Leu Leu Gly Arg Asp	Glu Asp Ser Trp Gly Leu	
185	190	195
Ser Tyr Thr Gly Leu Leu His His Lys	Gly Asp Lys Thr Ser Phe	
200	205	210
Ser Ser Arg Phe Gly Gln Gly Ser Ile	Ile Gly Val His Leu Asp	
215	220	225
Thr Trp His Gly Thr Leu Thr Phe Phe	Lys Asn Arg Lys Cys Ile	
230	235	240
Gly Val Ala Ala Thr Lys Leu Gln Asn	Lys Arg Phe Tyr Pro Met	
245	250	255
Val Cys Ser Thr Ala Ala Arg Ser Ser	Met Lys Val Thr Arg Ser	
260	265	270
Cys Ala Ser Ala Thr Ser Leu Gln Tyr	Leu Cys Cys His Arg Leu	
275	280	285
Arg Gln Leu Arg Pro Asp Ser Gly Asp	Thr Leu Glu Gly Leu Pro	
290	295	300
Leu Pro Pro Gly Leu Lys Gln Val Leu	His Asn Lys Leu Gly Trp	
305	310	315
Val Leu Ser Met Ser Cys Ser Arg Arg	Lys Ala Pro Val Ser Asp	
320	325	330
Pro Gln Ala Ala Thr Ser Ala His Pro	Ser Ser Arg Glu Pro Arg	
335	340	345
Pro Cys Gln Arg Lys Arg Cys Arg Arg	Thr	
350	355	

<210> 5
<211> 421
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 3071986

<400> 5
Met Ala Ser Phe Pro Pro Arg Val Asn Glu Lys Glu Ile Val Arg
1 5 10 15

Leu Arg Thr Ile Gly Glu Leu Leu Ala Pro Ala Ala Pro Phe Asp
 20 25 30
 Lys Lys Cys Gly Arg Glu Asn Trp Thr Val Ala Phe Ala Pro Asp
 35 40 45
 Gly Ser Tyr Phe Ala Trp Ser Gln Gly His Arg Thr Val Lys Leu
 50 55 60
 Val Pro Trp Ser Gln Cys Leu Gln Asn Phe Leu Leu His Gly Thr
 65 70 75
 Lys Asn Val Thr Asn Ser Ser Leu Arg Leu Pro Arg Gln Asn
 80 85 90
 Ser Asp Gly Gly Gln Lys Asn Lys Pro Arg Glu His Ile Ile Asp
 95 100 105
 Cys Gly Asp Ile Val Trp Ser Leu Ala Phe Gly Ser Ser Val Pro
 110 115 120
 Glu Lys Gln Ser Arg Cys Val Asn Ile Glu Trp His Arg Phe Arg
 125 130 135
 Phe Gly Gln Asp Gln Leu Leu Leu Ala Thr Gly Leu Asn Asn Gly
 140 145 150
 Arg Ile Lys Ile Trp Asp Val Tyr Thr Gly Lys Leu Leu Leu Asn
 155 160 165
 Leu Val Asp His Thr Glu Val Val Arg Asp Leu Thr Phe Ala Pro
 170 175 180
 Asp Gly Ser Leu Ile Leu Val Ser Ala Ser Arg Asp Lys Thr Leu
 185 190 195
 Arg Val Trp Asp Leu Lys Asp Asp Gly Asn Met Met Lys Val Leu
 200 205 210
 Arg Gly His Gln Asn Trp Val Tyr Ser Cys Ala Phe Ser Pro Asp
 215 220 225
 Ser Ser Met Leu Cys Ser Val Gly Ala Ser Lys Ala Val Phe Leu
 230 235 240
 Trp Asn Met Asp Lys Tyr Thr Met Ile Arg Lys Leu Glu Gly His
 245 250 255
 His His Asp Val Val Ala Cys Asp Phe Ser Pro Asp Gly Ala Leu
 260 265 270
 Leu Ala Thr Ala Ser Tyr Asp Thr Arg Val Tyr Ile Trp Asp Pro
 275 280 285
 His Asn Gly Asp Ile Leu Met Glu Phe Gly His Leu Phe Pro Pro
 290 295 300
 Pro Thr Pro Ile Phe Ala Gly Gly Ala Asn Asp Arg Trp Val Arg
 305 310 315
 Ser Val Ser Phe Ser His Asp Gly Leu His Val Ala Ser Leu Ala
 320 325 330
 Asp Asp Lys Met Val Arg Phe Trp Arg Ile Asp Glu Asp Tyr Pro
 335 340 345
 Val Gln Val Ala Pro Leu Ser Asn Gly Leu Cys Cys Ala Phe Ser
 350 355 360
 Thr Asp Gly Ser Val Leu Ala Ala Gly Thr His Asp Gly Ser Val
 365 370 375
 Tyr Phe Trp Ala Thr Pro Arg Gln Val Pro Ser Leu Gln His Leu
 380 385 390
 Cys Arg Met Ser Ile Arg Arg Val Met Pro Thr Gln Glu Val Gln
 395 400 405
 Glu Leu Pro Ile Pro Ser Lys Leu Leu Glu Phe Leu Ser Tyr Arg
 410 415 420

Ile

<210> 6
<211> 278
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 3484619

<400> 6
Met Glu Pro Arg Ala Ala Asp Gly Cys Phe Leu Gly Asp Val Gly
1 5 10 15
Phe Trp Val Glu Arg Thr Pro Val His Glu Ala Ala Gln Arg Gly
20 25 30
Glu Ser Leu Gln Leu Gln Gln Leu Ile Glu Ser Gly Ala Cys Val
35 40 45
Asn Gln Val Thr Val Asp Ser Ile Thr Pro Leu His Ala Ala Ser
50 55 60
Leu Gln Gly Gln Ala Arg Cys Val Gln Leu Leu Leu Ala Ala Gly
65 70 75
Ala Gln Val Asp Ala Arg Asn Ile Asp Gly Ser Thr Pro Leu Cys
80 85 90
Asp Ala Cys Ala Ser Gly Ser Ile Glu Cys Val Lys Leu Leu Leu
95 100 105
Ser Tyr Gly Ala Lys Val Asn Pro Pro Leu Tyr Thr Ala Ser Pro
110 115 120
Leu His Glu Ala Cys Met Ser Gly Ser Ser Glu Cys Val Arg Leu
125 130 135
Leu Ile Asp Val Gly Ala Asn Leu Glu Ala His Asp Cys His Phe
140 145 150
Gly Thr Pro Leu His Val Ala Cys Ala Arg Glu His Leu Asp Cys
155 160 165
Val Lys Val Leu Leu Asn Ala Gly Ala Asn Val Asn Ala Ala Lys
170 175 180
Leu His Glu Thr Ala Leu His His Ala Ala Lys Val Lys Asn Val
185 190 195
Asp Leu Ile Glu Met Leu Ile Glu Phe Gly Gly Asn Ile Tyr Ala
200 205 210
Arg Asp Asn Arg Gly Lys Lys Pro Ser Asp Tyr Thr Trp Ser Ser
215 220 225
Ser Ala Pro Ala Lys Cys Phe Glu Tyr Tyr Glu Lys Thr Pro Leu
230 235 240
Thr Leu Ser Gln Leu Cys Arg Val Asn Leu Arg Lys Ala Thr Gly
245 250 255
Val Arg Gly Leu Glu Lys Ile Ala Lys Leu Asn Ile Pro Pro Arg
260 265 270
Leu Ile Asp Tyr Leu Ser Tyr Asn
275

<210> 7
<211> 281
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1275743

<400> 7

Met	Gly	Ser	Gln	Gly	Ser	Pro	Val	Lys	Ser	Tyr	Asp	Tyr	Leu	Leu
1									10					15
Lys	Phe	Leu	Leu	Val	Gly	Asp	Ser	Asp	Val	Gly	Lys	Gly	Glu	Ile
									25					30
Leu	Glu	Ser	Leu	Gln	Asp	Gly	Ala	Ala	Glu	Ser	Pro	Tyr	Ala	Tyr
									40					45
Ser	Asn	Gly	Ile	Asp	Tyr	Lys	Thr	Thr	Ile	Leu	Leu	Asp	Gly	
									55					60
Arg	Arg	Val	Lys	Leu	Glu	Leu	Trp	Asp	Thr	Ser	Gly	Gln	Gly	Arg
									70					75
Phe	Cys	Thr	Ile	Phe	Arg	Ser	Tyr	Ser	Arg	Gly	Ala	Gln	Gly	Ile
									85					90
Leu	Leu	Val	Tyr	Asp	Ile	Thr	Asn	Arg	Trp	Ser	Phe	Asp	Gly	Ile
									100					105
Asp	Arg	Trp	Ile	Lys	Glu	Ile	Asp	Glu	His	Ala	Pro	Gly	Val	Pro
									115					120
Arg	Ile	Leu	Val	Gly	Asn	Arg	Leu	His	Leu	Ala	Phe	Lys	Arg	Gln
									130					135
Val	Pro	Thr	Glu	Gln	Ala	Arg	Ala	Tyr	Ala	Glu	Lys	Asn	Cys	Met
									145					150
Thr	Phe	Phe	Glu	Val	Ser	Pro	Leu	Cys	Asn	Phe	Asn	Val	Ile	Glu
									155					165
Ser	Phe	Thr	Glu	Leu	Ser	Arg	Ile	Val	Leu	Met	Arg	His	Gly	Met
									170					180
Glu	Lys	Ile	Trp	Arg	Pro	Asn	Arg	Val	Phe	Ser	Leu	Gln	Asp	Leu
									185					195
Cys	Cys	Arg	Ala	Ile	Val	Ser	Cys	Thr	Pro	Val	His	Leu	Ile	Asp
									200					210
Lys	Leu	Pro	Leu	Pro	Val	Thr	Ile	Lys	Ser	His	Leu	Lys	Ser	Phe
									215					225
Ser	Met	Ala	Asn	Gly	Met	Asn	Ala	Val	Met	Met	His	Gly	Arg	Ser
									230					240
Tyr	Ser	Leu	Ala	Ser	Gly	Ala	Gly	Gly	Gly	Ser	Lys	Gly	Asn	
									245					255
Ser	Leu	Lys	Arg	Ser	Lys	Ser	Ile	Arg	Pro	Pro	Gln	Ser	Pro	Pro
									260					270
Gln	Asn	Cys	Ser	Arg	Ser	Asn	Cys	Lys	Ile	Ser				
									275					280

<210> 8
<211> 635
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1722533

<400> 8

Met	Ala	Thr	Gln	Ile	Ser	Thr	Arg	Gly	Ser	Gln	Cys	Thr	Ile	Gly
1									5					10

Gln Glu Glu Tyr Ser Leu Tyr Ser Ser Leu Ser Glu Asp Glu Leu
 20 25 30
 Val Gln Met Ala Ile Glu Gln Ser Leu Ala Asp Lys Thr Arg Gly
 35 40 45
 Pro Thr Thr Ala Glu Ala Thr Ala Ser Ala Cys Thr Asn Arg Gln
 50 55 60
 Pro Ala His Phe Tyr Pro Trp Thr Arg Ser Thr Ala Pro Pro Glu
 65 70 75
 Ser Ser Pro Ala Arg Ala Pro Met Gly Leu Phe Gln Gly Val Met
 80 85 90
 Gln Lys Tyr Ser Ser Leu Phe Lys Thr Ser Gln Leu Ala Pro
 95 100 105
 Ala Asp Pro Leu Ile Lys Ala Ile Lys Asp Gly Asp Glu Glu Ala
 110 115 120
 Leu Lys Thr Met Ile Lys Glu Gly Lys Asn Leu Ala Glu Pro Asn
 125 130 135
 Lys Glu Gly Trp Leu Pro Leu His Glu Ala Ala Tyr Tyr Gly Gln
 140 145 150
 Val Gly Cys Leu Lys Val Leu Gln Arg Ala Tyr Pro Gly Thr Ile
 155 160 165
 Asp Gln Arg Thr Leu Gln Glu Glu Thr Ala Val Tyr Leu Ala Thr
 170 175 180
 Cys Arg Gly His Leu Asp Cys Leu Leu Ser Leu Leu Gln Ala Gly
 185 190 195
 Ala Glu Pro Asp Ile Ser Asn Lys Ser Arg Glu Thr Pro Leu Tyr
 200 205 210
 Lys Ala Cys Glu Arg Lys Asn Ala Glu Ala Val Lys Ile Leu Val
 215 220 225
 Gln His Asn Ala Asp Thr Asn His Arg Cys Asn Arg Gly Trp Thr
 230 235 240
 Ala Leu His Glu Ser Val Ser Arg Asn Asp Leu Glu Val Met Gln
 245 250 255
 Ile Leu Val Ser Gly Gly Ala Lys Val Glu Ser Lys Asn Ala Tyr
 260 265 270
 Gly Ile Thr Pro Leu Phe Val Ala Ala Gln Ser Gly Gln Leu Glu
 275 280 285
 Ala Leu Arg Phe Leu Ala Lys Tyr Gly Ala Asp Ile Asn Thr Gln
 290 295 300
 Ala Ser Asp Asn Ala Ser Ala Leu Tyr Glu Ala Cys Lys Asn Glu
 305 310 315
 His Glu Glu Val Val Glu Phe Leu Leu Ser Gln Gly Ala Asp Ala
 320 325 330
 Asn Lys Thr Asn Lys Asp Gly Leu Leu Pro Leu His Ile Ala Ser
 335 340 345
 Lys Lys Gly Asn Tyr Arg Ile Val Gln Met Leu Leu Pro Val Thr
 350 355 360
 Ser Arg Thr Arg Ile Arg Arg Ser Gly Val Ser Pro Leu His Leu
 365 370 375
 Ala Ala Glu Arg Asn His Asp Glu Val Leu Glu Ala Leu Leu Ser
 380 385 390
 Ala Arg Phe Asp Val Asn Thr Pro Leu Ala Pro Glu Arg Ala Arg
 395 400 405
 Leu Tyr Glu Asp Arg Arg Thr Ser Ala Leu Tyr Phe Ala Val Val
 410 415 420
 Asn Asn Asn Val Tyr Ala Thr Glu Leu Leu Leu Gln His Gly Ala
 425 430 435
 Asp Pro Asn Arg Asp Val Ile Ser Pro Leu Leu Val Ala Ile Arg

440	445	450
His Gly Cys Leu Arg Thr Met Gln Leu	Leu Leu Asp His Gly Ala	
455	460	465
Asn Ile Asp Ala Tyr Ile Ala Thr His	Pro Thr Ala Phe Pro Ala	
470	475	480
Thr Ile Met Phe Ala Met Lys Cys Leu	Ser Leu Leu Lys Phe Leu	
485	490	495
Met Asp Leu Gly Cys Asp Gly Glu Pro	Cys Phe Ser Cys Leu Tyr	
500	505	510
Gly Asn Gly Pro His Pro Pro Ala Pro	Gln Pro Ser Ser Arg Phe	
515	520	525
Asn Asp Ala Pro Ala Ala Asp Lys Glu	Pro Ser Val Val Gln Phe	
530	535	540
Cys Glu Phe Val Ser Ala Pro Glu Val	Ser Arg Trp Ala Gly Pro	
545	550	555
Ile Ile Asp Val Leu Leu Asp Tyr Val	Gly Asn Val Gln Leu Cys	
560	565	570
Ser Arg Leu Lys Glu His Ile Asp Ser	Phe Glu Asp Trp Ala Val	
575	580	585
Ile Lys Glu Lys Ala Glu Pro Pro Arg	Pro Leu Ala His Leu Cys	
590	595	600
Arg Leu Arg Val Arg Lys Ala Ile Gly	Lys Tyr Arg Ile Lys Leu	
605	610	615
Leu Asp Thr Leu Pro Leu Pro Gly Arg	Leu Ile Arg Tyr Leu Lys	
620	625	630
Tyr Glu Asn Thr Gln		
635		

<210> 9
<211> 518
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1759763

<400> 9			
Met Asp Phe Thr Glu Ala Tyr Ala Asp Thr Cys Ser Thr Val Gly			
1	5	10	15
Leu Ala Ala Arg Glu Gly Asn Val Lys Val Leu Arg Lys Leu Leu			
20	25	30	
Lys Lys Gly Arg Ser Val Asp Val Ala Asp Asn Arg Gly Trp Met			
35	40	45	
Pro Ile His Glu Ala Ala Tyr His Asn Ser Val Glu Cys Leu Gln			
50	55	60	
Met Leu Ile Asn Ala Asp Ser Ser Glu Asn Tyr Ile Lys Met Lys			
65	70	75	
Thr Phe Glu Gly Phe Cys Ala Leu His Leu Ala Ala Ser Gln Gly			
80	85	90	
His Trp Lys Ile Val Gln Ile Leu Leu Glu Ala Gly Ala Asp Pro			
95	100	105	
Asn Ala Thr Thr Leu Glu Glu Thr Thr Pro Leu Phe Leu Ala Val			
110	115	120	

Glu Asn Gly Gln Ile Asp Val Leu Arg Leu Leu Leu Gln His Gly
 125 130 135
 Ala Asn Val Asn Gly Ser His Ser Met Cys Gly Trp Asn Ser Leu
 140 145 150
 His Gln Ala Ser Phe Gln Glu Asn Ala Glu Ile Ile Lys Leu Leu
 155 160 165
 Leu Arg Lys Gly Ala Asn Lys Glu Cys Gln Asp Asp Phe Gly Ile
 170 175 180
 Thr Pro Leu Phe Val Ala Ala Gln Tyr Gly Lys Leu Glu Ser Leu
 185 190 195
 Ser Ile Leu Ile Ser Ser Gly Ala Asn Val Asn Cys Gln Ala Leu
 200 205 210
 Asp Lys Ala Thr Pro Leu Phe Ile Ala Ala Gln Glu Gly His Thr
 215 220 225
 Lys Cys Val Glu Leu Leu Leu Ser Ser Gly Ala Asp Pro Asp Leu
 230 235 240
 Tyr Cys Asn Glu Asp Ser Trp Gln Leu Pro Ile His Ala Ala Ala
 245 250 255
 Gln Met Gly His Thr Lys Ile Leu Asp Leu Leu Ile Pro Leu Thr
 260 265 270
 Asn Arg Ala Cys Asp Thr Gly Leu Asn Lys Val Ser Pro Val Tyr
 275 280 285
 Ser Ala Val Phe Gly Gly His Glu Asp Cys Leu Glu Ile Leu Leu
 290 295 300
 Arg Asn Gly Tyr Ser Pro Asp Ala Gln Ala Cys Leu Val Phe Gly
 305 310 315
 Phe Ser Ser Pro Val Cys Met Ala Phe Gln Lys Asp Cys Glu Phe
 320 325 330
 Phe Gly Ile Val Asn Ile Leu Leu Lys Tyr Gly Ala Gln Ile Asn
 335 340 345
 Glu Leu His Leu Ala Tyr Cys Leu Lys Tyr Glu Lys Phe Ser Ile
 350 355 360
 Phe Arg Tyr Phe Leu Arg Lys Gly Cys Ser Leu Gly Pro Trp Asn
 365 370 375
 His Ile Tyr Glu Phe Val Asn His Ala Ile Lys Ala Gln Ala Lys
 380 385 390
 Tyr Lys Glu Trp Leu Pro His Leu Leu Val Ala Gly Phe Asp Pro
 395 400 405
 Leu Ile Leu Leu Cys Asn Ser Trp Ile Asp Ser Val Ser Ile Asp
 410 415 420
 Thr Leu Ile Phe Thr Leu Glu Phe Thr Asn Trp Lys Thr Leu Ala
 425 430 435
 Pro Ala Val Glu Arg Met Leu Ser Ala Arg Ala Ser Asn Ala Trp
 440 445 450
 Ile Leu Gln Gln His Ile Ala Thr Val Pro Ser Leu Thr His Leu
 455 460 465
 Cys Arg Leu Glu Ile Arg Ser Ser Leu Lys Ser Glu Arg Leu Arg
 470 475 480
 Ser Asp Ser Tyr Ile Ser Gln Leu Pro Leu Pro Arg Ser Leu His
 485 490 495
 Asn Tyr Leu Leu Tyr Glu Asp Val Leu Arg Met Tyr Glu Val Pro
 500 505 510
 Glu Leu Ala Ala Ile Gln Asp Gly
 515

```
<210> 10
<211> 1117
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1758450

<400> 10
cacgcctgca cagcggctt caaccccccac ctcagccccag caattcgcca gtttggagca 60
tgtgaacacc ttgagcccttg atgagttcca gtatgtggta tattatgcag agcattcaga 120
gcaaataactc tctctcccgag cgcttaatcc gaacaattgc tgccatccgt tccttccac 180
atgataatgt agaggacctc atcagaggggg gagcagatgt gaactgcact catggcacac 240
tgaaggcctt gcactgtgcc tgtatggtgt cagatgtca ctgtgtggag ttacttctgg 300
aaaaaggagc cgaggtgaat gcccctggatg ggtataaccg aacagccctc cactatgcag 360
cagagaaaga tgaggcttgt gtggagggtcc tattggagta tgggtcaaac cccaatgcctt 420
tggatggcaa cagagatacc ccacttcact gggcagccct taagaacaat gctgagtgtg 480
tgcgggcctt cctagagagc gggggcctctg tcaatgcctt ggattacaac aatgatacac 540
cgctcagctg ggctgccatg aagggaaatc ttgagagtgt cagcatccctt ctggattatg 600
gcgcagaggt cagagtcatc aacctaatacg gccagacacc catctcccgc ctgggtggctc 660
tgcttagtcag gggacttggc acagagaaaag aggactctt ctttgagctc ctccacagag 720
ctgttggaca cttgaatttggaaaaatgcacccatgcc acgagaggtg gccagagacc 780
cgcagctatg tgaaaaaactgt actgttctgt gctcagctcc aggaactcta aaaacactcg 840
ctcgctatgc cgtgcggcgt agcctgggac tccagtatct ccccgatgca gtgaagggcc 900
ttccactgcc agtttcttgc aaggaataacc tgttactttt agaatagccg gagaagatgt 960
ttgcaccatc gtgcaggcag ctctgggtga ggttgccttgcagactcc ttgtcacaga 1020
aaacagaaaaa acagttgttt cctgatgtgtt gggttataga tttcgaagca acatgtcaca 1080
acaataacct gcatacgcaac tcccccttcc aaacaaaa 1117
```

```
<210> 11
<211> 2589
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1834242

<400> 11
cttgaatcaa gctgacacca agaaccgcgg gaagagcttg ggcccaaaggc agggaaaggga 60
agcgctcggat ttggggagga accgctgtg tgccgaact caagcccggg cgccccccacc 120
agtttgcattt gaagtccagc tgtgaaacctt ggagcgctcg cttctccca gatggctcc 180
ggtttgcctt gtctcaagga cactgcatcg tcaaactgtat cccctggccg ttggaggagc 240
agttcatccc taaagggtttt gaagccaaaa gccgaagtag caaaaatgtat agcggaaaggc 300
ggggcagccc aaaagagaag acgctggact gtggtcagat tgcgttggggg ctggcccttc 360
gccccgtggcc ttcccccaccc agcagggaaagc tctgggcacg ccaccacccc caagtggcccg 420
atgtctcttgc cctgggttctt gctacggac tcaacgtatgg gcagatcaag atctggagg 480
tgcagacagg gctcctgttt ttgaatctt ccggccacca agatgtcgat agagatctga 540
gcttcacacc cagtggcagt ttgattttgg tctccgcgtc acgggataag actcttcgc 600
tctggacactt gaataaaacac ggttaaacaga ttcaagtgtt atcggggccac ctgcagtggg 660
tttactgtgt ttccatctcc ccagactgca gcatgtgtg ctctgcagct ggagagaagt 720
cggtctttctt atggagcatg aggtccttaca cgttaattcg gaagcttagag ggccatcaaa 780
gcagtgttgtt ctcttgtgac ttctcccccg actctgcctt gcttgcacg gcttcttacg 840
ataccaatgtt gattatgtgg gacccttaca cccggcgaaag gctgaggtca ctccaccaca 900
cccaagggtga ccccgccatg gatgacagtg acgtccacat tagctcactg agatctgtgt 960
```

gcttctcc ggaaggctt taccttgcac cggcggaga tgacagactc ctcaaggatct 1020
ggcccttgc actgaaaact cccattgtat ttgtcttat gaccaatggg ctttgctgca 1080
catttttcc acatggtggc gtcattgcca caggacaag agatggccac gtccagttct 1140
ggacagctcc tagggtcctt tcctcaactgaa agcaactatcgcc cggaaagcc cttcgaagtt 1200
tcctaacaac ttaccaagtgc ttagcaactgc caatccccaa gaaaatgaaa gagttctca 1260
catacaggac ttttaagca acaccacatc ttgtgtttct ttgttagcagg gtaaatcgctc 1320
ctgtcaaaagg gagttgttggc aataatggc caaacatctggtc ttgtgcatt gaaatagcat 1380
ttctttggc ttgtgaatag aatgttagca aaccagattt cagtgtacta gtcatggatc 1440
tttctctccc tggcatgtga aagtcaigtct tagaggaaga gattccactt gcacggcaac 1500
agagccttac gttaaatctt cagtcaggat atgaacagca agtgttgaac tctttctgt 1560
tggggattt caaagtgcag ttactgtatgt tggggattt atgcaactaa gtaggcctcc 1620
agagcctctc tagtggcaga gcagtcaca ctccctccgc tgggaacgt ggcttctgcc 1680
tagtacctat ccttgcgttt ctgtatgcgtt ggtacgtt gttcaagttc ttcctgtctg 1740
tggtcagagt tgcttcgtat ttggccaaatgt gctttcttc ttgggctccc ttctgacctg 1800
caggacagtt ttcttggcgc cattttgtat gaggtattaa tttagcttaa ctaaattaca 1860
ggggactcag aggccgtgtc cctgaccgtt ccagacacta ttactggctt tttttttttt 1920
tttttaacaa tgggtgtcat gtgcaggaaa tgacaaaattt gtatgtcaga ttatataagg 1980
atgttatctt aaaccgcatg actattcaga tggctactga gttatcgtg gccattttatt 2040
agcatcatat ttatgtat tttctcaaca gatgtttaagg tacaactgtg tttttctcga 2100
ttatctaaaa accatagttac ttaaattgaa cagttgcataa gatgtttaaa ttgtgttaaag 2160
aattgggtta gtcatgactt tagctgatac tctttagtac gagatctgtc tctgtgttt 2220
aacttcattt gattaatcag ctggttcaa ctctactgcg aaacaaaaat agcttccttaa 2280
aagtactgtt ctccctcagt ggcatgttgt tatctaatca agacacccca ttcaaaacaaa 2340
acctgcctt gggaaaattt aatatattttt aattttttt aaagaaaatac aacatcttat 2400
tcttttagtt tcttaatcgg tgctttatgg aggccagtgt aacgttacat gactcggttga 2460
gaaagttgag gaatttcctt taccacctt gttgcttggaa gaaaacatg tctttcaaa 2520
atgagaggct ttcattgtaa aaaagaaaaa aacaacagtt aaaagctaaa aaaaaaaaaaaa 2580
aaaaaaaaaa 2589

```
<210> 12  
<211> 2038  
<212> DNA  
<213> Homo sapiens
```

<220>
<221> misc_feature
<223> Incyte clone 1849725

```

<400> 12
cgggAACGCG agccccgtaa ttttcaacg gagaaaaggcg aggcttcgg gctctgcaga 60
gtgagaggtta gcaagtgtcc ggctccagca actctcctct ggcgtacag ccggcatgga 120
ggatccacag agtaaagagc ctggccggcga ggccgtggct cccgcgtgc tggagtgcgc 180
gcggccggag ggcggggagg agccgcgcg tcccagtccc gaggaaactc aacagtgtaa 240
atttgtatggc caggagacaa aaggatccaa gttcattacc tccagtgcga gtgacttcag 300
tgaccgggtt tacaagaga ttgccattac gaatggctgt attaatagaa tgagtaagga 360
agaactcaga gctaagctt cagaattcaa gcttgcggaaact agaggagtaa aggatgttct 420
aaagaagaga ctgaaaaact attataagaa gcagaagctg atgctgaaag agagcaatt 480
tgctgacagt tattatgact acatTTgtat tattgacttt gaagccactt gtgaagaagg 540
aaacccacct gagtttgtac atgaaataat tgaatttccg gttgtttac tgaatacgc 600
tacttagaa atagaagaca cgtttcagca gtatgtaa ccagagatta acacacagct 660
gtctgatttc tgcatcagtc taactggaat tactcaggat caggttagaca gagctgatac 720
cttccctcag gtactaaaaa aagtaattga ctggatgaaa ttgaaggaat taggaacaaa 780
gtataaatac tcactttaa cagatggttc ttgggatatg agtaagttct tgaacattca 840
gtgtcaactc agcaggctca aataccctcc ttttgcgaaa aagtggatca atattcgaa 900
gtcatatgga aatttttaca aggttcctag aagccaaacc aaactgacaa taatgctga 960
aaaatttagga atggattatg atggccggcc tcactgtggt cttgatgact ctaagaat 1020

```

```

cgcccgaaata gcagttcgaa tgcttcagga tgggtgtgaa ctccgaatca acgagaaaaat 1080
gcatgcagga cagctaatttga gtgtgtcctc ttcccttacca atagaggcgtt ccaccacc 1140
acaaaatgcca catttttagaa agtaacagtt ttgtgtgtgg atcattccaa ttgaagttgc 1200
tatgaagagg tagcagatga atcttcatttga attagtcctt tagtgcaaac ttaagcacc 1260
ttaaaacatt taaaatcttta ttacagggtga tagagataga tacatgtatg tgaacagatt 1320
ttgttaggaag gcataactgaa ttctttgtca ccaaggactt ttgataatgg acaggaatcc 1380
ggtaaccttag ataaccaagg tcctggtcta acacaatggg atatttaat aattttaaag 1440
agggggttcc acaggttata aattcccttt ttttgggtgt taaaaaaaaat ggccccaaaaa 1500
tctcttaaat atggggcctt ggtgtctctc gggtttggaaa atggggcaac aaatcccttt 1560
aactcggggg tggtggttta acaaataaaat gggtagaaaaat ggggtgggggt tttcccttt 1620
taaattttaaa accatttcca ccttaaggga ttggtaaaca cccccccttaa atcccccttta 1680
aaaaaaattgg tcccggaaa aattgggatt tgggggcaaa agggttaagga attcctgtaa 1740
tcccttaaagg cctctctttt ggggaatttt tccccagggg gaatatatcc ccttaaggtg 1800
ccccccctttt gtgaaatttt ttccccaaa aggggtttat aataaatgtt gggaaaaggt 1860
ttccacccccc aaggggaaat gggtgggggt gggaaaattt tccggtaaaa gaggtgacac 1920
tttggggtag atgaccctata aataacttgcg cctcaagggg gtttggccctt attttcaaaa 1980
aactccccctta aaaatttggg gggaggagaa ttttatttgg attagggggg tttatata 2038

```

```
<210> 13  
<211> 1537  
<212> DNA  
<213> Homo sapi
```

<220>
<221> misc_feature
<223> Incyte clone 2547840

<210> 14
 <211> 2203
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3071986

<400> 14

ctgtttctt ccgcagcgcg aggctggta cagggtctat tgtctgtgg tgactccgta 60
 ctttggtctg aggcccttcgg gagcttccc gaggcagtta gcagaagccg cagcggccgc 120
 cccccccgtt tcctctgtc cctggggcccg ggagggacca acttggcgtc acgcccctca 180
 gcggtcgcca ctctcttctc ttttttttttgggg tccgcacgtt attcccgaa tcagacggtg 240
 ccccatagat ggccagctt ccccccgggg tcaacgagaa agagatcgta agattacgta 300
 ctataggta acttttagct cctgcagctc cttttgacaa gaaatgtggt cgtaaaaatt 360
 ggactgttgc ttttgcctca gatggttcat actttgctg gtcacaagga catgcacag 420
 taaagttgt tccgtggtcc cagtccttc agaactttct cttgcacatggc accaagaatg 480
 ttaccaattc aagcagtttta agattgccaa gacaaaatag tgatggtggt cagaaaaata 540
 agcctcgta acatattata gactgtggag atatagtctg gagtcttgct tttgggtcat 600
 cagttccaga aaaacagagt cgctgttaa atatagaatg gcacatcgctt agattggac 660
 aagatcagct acttcttgc acagggttga acaatggcg tatcaaaaata tgggatgtat 720
 atacaggaaa actcctcctt aacttggtag atcatactga agtggtcaga gatttaactt 780
 ttgctccaga tggaaagctt gatgggtgt cagttcaag agacaaaact ctcagagttat 840
 gggacctgaa agatgatgaa aacatgatga aagtattggag ggggcacatcg aattgggtgt 900
 acagctgtgc attctctcctt gactcttcata tgctgtgttc agtccggagcc agtaaagcag 960
 ttttccttg gaatatggat aaatacacca tgatacgaa actagaagga catcaccatg 1020
 atgtggtagc ttgtgacttt ttcctctgtc gaggcattact ggctactgca tcttatgata 1080
 ctcgagttata tatctggat ccacataatg gagacattctt gatgaaattt gggcacctgt 1140
 ttccccacc tactccaata tttgtggag gagcaaataa ccgggtggta cgatctgtat 1200
 ctttagcca tgatggactg catgtgcaaa gccttgctga tgataaaaatg gtgagggtct 1260
 ggagaattga tgaggattat ccagtgcaag ttgcacctt gagcaatggt ctggctgtg 1320
 cttctctac tgatggcagt gtttagctg ctggacaca tgacgaaatg gtgtatttt 1380
 gggccactcc acggcaggc cctagcctgc aacattttatg tcgcacatgtca atccgaagag 1440
 tgatgccac ccaagaagtt caggagctgc cgattccttc caagttttt gatgttctt 1500
 cgtatcgat tttagaagatt ctgccttccc tagtagtagg gactgacaga atacacttaa 1560
 cacaaacctc aagctttact gacttcattt atctgtttt aaagacgtt aagattttt 1620
 taatttgata ttttttttgc tgcattttt atcagtttagt ctttttttt attatttata 1680
 gacaatagaa gtatttctg acatatcaaa tataaaattt tttaaagatc taactgtgaa 1740
 aacatacata cctgtacata ttttagatata agctgttata ttttgcacatgg accctttgc 1800
 ttttctgatt tttagttctg acatgtatattt attgttttgc tagagccaca atatgtatct 1860
 ttgctgtaaa gtgcaaggaa attttaaattt ctgggacact gagtttagatg gtaaataactg 1920
 acttacgaaa gttgaattgg gtgaggcgaa caaatcacct gaggtcagca gtttgagact 1980
 agcctggcaa acatgatgaa accctgttcc tactaaaaat aaaaaaaaaaaa aaaaaatattag 2040
 ccaggcgtgg tgggtgcacac ctgttagtcc agtacttgg gaggctgagg caggagaatt 2100
 gtttgcaccc aggaggttggaa gtttgcacgtt agccaagatc acaccactgc actccaaacct 2160
 ggacaacaga gcgagactcc atctcaaaaaa aaaaataaaaaa agg 2203

<210> 15
 <211> 1622
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3484619

<400> 15

ccgcacatggag cccccgggccc cgacggcgtg ctccctgggc gacgtgggtt tctgggtgga 60
 gcggaccacct gtgcacgagg cagcccaagcg gggtgagagc ctgcagctgc aacagctgat 120
 cgagagcggc gcctgcgtga accaggtcac cgtggactcc atcaacgcccc tgacacgcacg 180
 cagtctgcag ggccaggcgcc ggtgtgtgca gtcgtctgtc gcggtgggg cccaggtgga 240
 tgctcgcaac atcgacggca gcaccccgct ctgcgtatgcc tgccgcctcg gcagcatcga 300
 gtgtgtgaag ctcttgcgtc cctacggggc caaggtcaac cctccctgt acacagcgac 360
 cccctgcac gaggcctgca tgagcgggag ttccgaatgt gtgaggcgttc ttattgacgt 420
 cggggccaat ctggaagcgc acgattgcca ttttgggacc cctctgcacg ttgcctgtgc 480
 cggggagcat ctggactgtg tcaaagtgc gtcataatgca gggggcaacg tgaatgcggc 540
 aaagcttcat gagactgccc ttcaccacgc ggccaaaggc aagaatgtt acctcatcga 600
 gatgcttatac gagtttggcg gcaacatcta cggccgggac aaccgcgggaa agaagccgtc 660
 tgactacacg tggagcagca ggcgtccgc caagtgcgtc gactgtactacg aaaagacacc 720
 tctgactctg tcacagctct gcagggtgaa cttgaggaag gccactggcg tccgagggtc 780
 ggagaagatt gccaagttaa acatccccgc cccggtcatt gattacctt cctacaactg 840
 aattgcagggt ggggtccggg cctgtactgc ccccggttgc cccagcattt cccgggtgag 900
 ggctctgcct gttcctctga agcagcgtga ttgctgtaga tagaacaacg ctcccttcgag 960
 tccctcctg cgatcctgtt taggcttctc tccctggatcc tggataatgt ttccagggtc 1020
 ttggaaaggc ctgcgtctca ggtcacagtt gtgggtgtgg ccctgcgtc ttctacagaa 1080
 cctaccctt caatgggcat gggcccaacc atccagttt cctcttttac ggaccatcct 1140
 caaaggcact ctcaaggacag acggcgtggg gaggcacagag gaggctggca gagctgggaa 1200
 ctgagggcat tggctgtat tctcaactcac cggggcagcc tgccgcagat gcacaggccc 1260
 caggtgcagg ccaccaccc cgggtcgcc cccaggactgc cctcggtgc catagggaaat 1320
 ggctggccc acggaaggc ggcctggat gtggcctggg actgctgc tgcgtggctgc 1380
 tgggtggatg ctttcctgg agcactttcc aaggcatccc ccagccccaa gcctgcgcgc 1440
 atctgtcaact cagggactt ctatgggtct ttgtggggaa aggccctggc tttgtattcc 1500
 cacaagtagc actgagtttcc ttaggaaatt tgtcttcagt attaagtctc caactcttgt 1560
 aaaaagttt aatgttaggat aaaaaccttt tagaggacac gtggcggtt ccactaaggt 1620
 tt

<210> 16

<211> 1385

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1275743

<400> 16

cgcaacgggc gcaggtgcgg ggcggggct ctctcacgcgc gcccgcctcac cccggcggtgc 60
 ttcggcaggc ggccggcgcc gggcgccaggc ggcgcggcca tgggctcgca gggcagtcgg 120
 gtgaagagct acgactactt gtcataatgtt ctgctgggtgg ggcacacgcg cgtggggcaag 180
 ggcgagatcc tggagagact gcaggacggc gccggcagagt ccccgtaacgc ctacagtaac 240
 gggatcgact acaagaccac caccatctg ctggacggcc ggcgcgtgaa gctggagctc 300
 tgggacacgt cggggccaggc cccgttctgc accatcttca ggtctactc cagggggcgct 360
 cagggatcc tcttgggtgtt tgacatcacc aaccgcgtgtt ccttgcacgg catgcaccgc 420
 tggatcaagg agatcgatgt gcatgcaccc ggatcccccc ggatcttggt tggaaacccgg 480
 ctgcacatgg cttcaagcg gcaggtcccg acggagcagg cccgcgcgtt cgcagagaag 540
 aactgcataa cttcttttgc ggtcagcccc ctgtgcact tcaacgtcat cgagtccttc 600
 acggagctat cccgcatacg ttcataatgcgg cacggcatgg agaagatctg gaggccccaa 660
 cgaggtttca ggcctgcaggc cccgttctgc cggggccatcg ttcataatgcac ccccggtgcac 720
 ctcatacgaca agcttccact gcccgttccat tcaacagaccc acctcaagtc cttctcgatg 780
 gccaacggca tgaacgcgtt catgtgcac ggcgttccat tccctggc cagcggggcc 840
 gggggccggc gcagcaaggc caacagcctc aagaggttca agtccatccg tccaccccaag 900
 agcccccccccc agaactgcgtc gcccgttccat tcaacatgcac tccgggggggg 960

ccgcctgtgc agatgccagg agggctcgag ctggacactc ctggctggac gccaggccag 1020
 tgccgctac gtggagactg tccacacagc tgcctcagaa gcgcgggct ttcctcacac 1080
 ctgagccggg tgcgaggagg agcatgcacg gaccaagcgc ggcaggcgaa aggagggggc 1140
 gcggctggc tgctggct tccggaaatc ttggctggaa acaagccggg cctccccagc 1200
 tgcctggct tgaccggcgg ggagcctggt tggcctttct tatttatata gagaacactt 1260
 cacttttg tacatTTTA aggggccttc agggaaagctt ggtgtggcc cggtgggtgt 1320
 gcactggta cttcatggcc acgcccagctg cggggacgca cttggactc ctcgagaggg 1380
 gactc 1385

<210> 17
 <211> 2790
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1722533

<400> 17

cccggaggaa cggaaaggcag gattgcagct tcctcagtgc aacctccaaa cagggaaatct 60
 gagatgtata acatttata gtttggcttg tcaacgttgg tcatgcggtg. gccccaaaaat 120
 aaactccctg cttcaaaggaa cagcgttca gaactgcctg gcagagcagc cagaagcttg 180
 gggccaggggc agaaggaaaaa ctgggggagc atgttctgaa ttaagacact ttcaagaaaa 240
 tccttgtat taccctgaa ttgttaccctt gtttcagagc ctaacagggt tttctgattt 300
 gctgtccct cttcccccact gggtgtctgt tctggaggcc agggtgagag gtggaggagg 360
 atggccacgc agatcagcac tcggggcagc cagtgtacca ttggcagga ggagtacagc 420
 ctgtacagca gcctgagcga ggatgaactg gtgcagatgg ccatcgagca gagcctagcg 480
 gacaagacaa ggggccccaaac cactgttag gcccacgcgt ctgcacgtac caaccgc当地 540
 cctgcccatt tctaccatg gaccagggtcc actgcacccctc ctgagagttc gccggccgg 600
 gccccatgg gcttggcata aggggtcatg cagaaataca gcagcagctt gttcaagacc 660
 tcccagctgg cgccctgcca ccccttgata aaggccatca aggatggcga tgaagaggcc 720
 ttgaagacca tgatcaagga agggaaagaat ctgcagagc ccaacaaggaa gggctggctg 780
 ccgctgcacg aggccgcata ctatggccag gtgggctgcc taaaagtccct gcagcagc当地 840
 taccctggaa ccatcgacca ggcgcaccctg caggaggaaa cagccgttta cttggcaacg 900
 tgcagggcc acctggactg tctctgtca ctgcgttcaag caggggcaga gccggacatc 960
 tccaaatcccggagac accgcgttac aaaggctgtg agcgc当地 1020
 gtgaagattc tgggtcagca caacgc当地 1080
 gctctgcacg agtctgtgtc tgc当地 1140
 ggagccaaagg tggaaatccaa gaacgc当地 1200
 agtggacagt tggaggcctt gaggttctt当地 1260
 ggc当地 1320
 gagtttctgc tggc当地 1380
 ctgc当地 1440
 agccgc当地 1500
 cacgacgagg tggc当地 1560
 cccgaacgc当地 1620
 aacaacaacg tggc当地 1680
 gtc当地 1740
 ctggaccacg ggc当地 1800
 accatcatgt tggc当地 1860
 gacggc当地 1920
 ccctccagca ggttcaacgca cggccccc当地 1980
 tgtgagttcg tatctgcccc agaggtgagc cgttggc当地 2040
 ctggactacg tggc当地 2100

gaggactggg ccgtcatcaa ggagaaggca gaacctccaa gacctctggc tcaccttgc 2160
 cgactgcggg ttcgaaaggc cattggaaa taccgtataa aactcctaga caccttgcgg 2220
 ctcccaggca ggctgattag atacctgaaa tacgagaaca cccagtaact ggggccacgg 2280
 ggagagagga gtagccccctc agactcttct tactaagtct caggacgtcg gtgttcccaa 2340
 ctccaagggg acctgggtac agacgaggct gcaggctgcc tccctctcag cctggacacg 2400
 taccaggatc tcactgggtc tcagggccca gagcttgc cagacagag aacagaatgt 2460
 gtcaaggaga agaatcattt gtttacaaac tgatgagcag atccagacc ttctctaccc 2520
 tcaggaatgg cagaaacctc tattcctggg gccaggccag agcttgagg tttctggga 2580
 aggtggtgct cagacgcttc cctgtgcccc tccacttggt ctggaaaact caccactg 2640
 cttcagagct ttctctccaa agactaagat gaagacgtgg cccaaaggtag ggggttaggg 2700
 gagcctgggt cttggagggc tttgttaagt attaatataa taaatgttac acatgtgaca 2760
 cctgcccagt gaaaaactaa aaaaaaaaaaa 2790

<210> 18
 <211> 2263
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1759763

<400> 18
 cggaccgtcc gcctacgggg gccgggacgt cgcctgcgcg tctctcggtt tcggacggct 60
 gcagcatcgc ggtggggatc gaaagcgggg gtttctggg cgcagctctg gagacgcggc 120
 ctcggaccag ccatttcggt gtagaagtgg cagcacggca gactggtaa acaaatggat 180
 tttacagagg cttacgcggg cacgtgctt acagttggac ttgctgccag ggaaggcaat 240
 gttaaagtct taagggaaact gctcaaaaag gcccgaagtg tcgatgttgc tgataacagg 300
 ggtatggatgc caattcatga agcagcttat cacaacttgc tagaatgttt gcaaatttta 360
 attaatgcag attcatctga aaactacatt aagatgaaga cttttaagg tttctgtgct 420
 ttgcatctcg ctgcaagtca aggacattgg aaaatcgtaa agattttttt agaagctggg 480
 gcagatccta atgcaactac tttagaagaa acgacacccat tggttttagc tggtgaaaat 540
 ggacagatag atgtgttaag gctgtgtc ttacacggag caaatgttaa tggatcccat 600
 tctatgtgt gatggaaactc cttgcaccag gtttctttc aggaaaatgc tgagatcata 660
 aaattgcttc ttagaaaagg agcaaacaag gaatgccagg atgactttgg aatcacacct 720
 ttatttgtt ctgctcagta tggcaagcta gaaagcttgc gcatacttat ttcatcaggt 780
 gcaaattgtca attgtcaagc cttggacaaa gtcacaccct tgttcattgc tgctcaagag 840
 ggacacacaa aatgtgttgg gctttgtc tccagtgggg cagatcctga tctttactgt 900
 aatgaggaca gttggcagg acctattcat gcagctgcac aaatgggcca tacaaaaatc 960
 ttggacttgt taataccact tactaaccgg gcctgtgaca ctggctaaa caaagtaagc 1020
 cctgttact cagcagtgtt tggggacat gaagattgc tagaaatatt actccgaat 1080
 ggctacagcc cagacgccc ggcgtgcctt gttttggat tcagttctcc tggatgcatt 1140
 gctttccaaa aggactgtga gtttttggg attgtgaaca ttctttgaa atatggagcc 1200
 cagataaatg aacttcattt ggcatactgc ctgaagtacg agaagtttc gatatttgc 1260
 tacttttga gaaaaagggtt ctcattggg ccatggaaacc atatatatga atttgttaat 1320
 catgcaatta aagcacaagc aaaatataag gagggttgc cacatcttct ggttgcgtt 1380
 tttgacccac tgattctact gtgcaattct tggattgtact cagtcagcat tgacaccctt 1440
 atcttcactt tggagttac taatttggaa acacttgcac cagctgtga aaggatgctc 1500
 tctgctcgtg ctcacaaacgc ttggattcta cagcaacata ttgccactgt tccatccctg 1560
 acccatctt gtcgtttggg aattcggtcc agtctaaaat cagaacgtct acgggtctgac 1620
 agttatatta gtcagctgcc acttcccaga agcctacata attatttgc tcatgaagac 1680
 gttctgagga tgtatgttac tccagaactg gcagcttac aagatggata aatcagtgaa 1740
 actacttaac acagctaatt ttttctctg aaaaatcatc gagacaaaag agccacagag 1800
 tacaagtttt tatgattttt tagtcaaaaag atgattatttgc attgtcagat aggttaggtt 1860
 ttggggggcc agtagttcag tgagaatgtt tatgtttaca actagccttc ccagtaaaaa 1920
 aaaaaaaaaa aaaaaaaaaa aattgttaaac atcacttata ttactttattt gcagcttcat 1980

caccagtaca ttatatgttg taatatttat tacctgatc attttgcata ttttctgctt 2040
tattttgcta ataaaactgtg atgttacttc tagtgctaaa catggcatat ttccacctat 2100
gattcgtgtt tacctggtat taggagctca gaatggaatg cataaagctt cactggaagt 2160
gtataacaact gtgggtgtaga atctgttattt attatcatta ttatTTTATT tagacttgac 2220
tatctttat gtttattaaa gaacatgttt tcctaaaaaa aaa 2263