

# Aufgabenblatt 7 Ausgabe: 30.11., Abgabe: 07.12. 12:00

| Gruppe  |                   |
|---------|-------------------|
| Name(n) | Matrikelnummer(n) |
|         |                   |
|         |                   |
|         |                   |
|         |                   |

## **Aufgabe 7.1** (Punkte 15+15)

*Kanonische Formen*: Die beiden folgenden Funktionen einer 3-bit Variablen x sind in der kanonischen DNF, der kanonischen KNF und der Reed-Muller-Form zu notieren.

(a) 
$$f(x) = (x_3 \vee \overline{x_2}) \wedge (x_2 \vee \overline{x_1})$$

(b) 
$$g(x) = \overline{x_3} \oplus \overline{x_1}$$

### Aufgabe 7.2 (Punkte 10+10)

NAND als vollständige Basis

- (a) Geben Sie an, wie die Grundfunktionen der Boole'schen Algebra (Negation, UND, ODER) durch geeignete Schaltungen nur aus (einem oder mehreren) NAND-Gattern gebildet werden können. Die Realisierung aller drei Schaltungen liefert den Nachweis, dass die NAND-Funktion eine vollständige Basismenge bildet, aus der sich beliebige Schaltungen aufbauen lassen.
- (b) Formen Sie die folgende Schaltfunktion so um, dass Sie ausschließlich mit NAND-Schaltgliedern realisiert werden kann:

$$f(x_3, x_2, x_1) = (\overline{x_3} (\overline{x_2} \vee x_1)) \vee (x_1 (\overline{x_2} \vee x_1))$$

#### **Aufgabe 7.3** (Punkte 10+10)

*KV-Diagramme: Siebensegmentanzeige*: Erstellen Sie die Funktionstabellen für die Segmente A (oben) und B (rechts oben) einer Siebensegmentanzeige. Wir codieren die Ziffern 0 bis 9 im 4-bit Dualcode als 0000 bis 1001, die verbleibenden Codewörter sind nicht definiert.



(a) Geben Sie die Funktionstabellen für die beiden Funktionen an und zeichnen Sie die KV-Diagramme. Verwenden Sie dabei die in der Vorlesung verwendete Anordnung der Variablen:

| ∖ x1 x0 |    |    |    |    |  |
|---------|----|----|----|----|--|
| x3 x2   | 00 | 01 | 11 | 10 |  |
| 00      | 0  | 1  | 3  | 2  |  |
| 01      | 4  | 5  | 7  | 6  |  |
| 11      | 12 | 13 | 15 | 14 |  |
| 10      | 8  | 9  | 11 | 10 |  |

| \ x1 x0 |      |      |      |      |  |  |
|---------|------|------|------|------|--|--|
| x3 x2   | 00   | 01   | 11   | 10   |  |  |
|         | 0000 | 0001 | 0011 | 0010 |  |  |
| 01      | 0100 | 0101 | 0111 | 0110 |  |  |
| 11      | 1100 | 1101 | 1111 | 1110 |  |  |
| 10      | 1000 | 1001 | 1011 | 1010 |  |  |

(b) Versuchen Sie, den Realisierungsaufwand für die beiden Funktionen zu minimieren. Finden Sie dazu möglichst große Schleifen in den KV-Diagrammen und geben Sie die zugehörigen Terme in disjunktiver Form an.

### **Aufgabe 7.4** (Punkte 10+5+10+5 (+10))

Entwurf einer Schaltung: In einer Fabrikhalle stehen vier Motoren mit der folgenden Leistungsaufnahme in Kilowatt.

| Motor | Leistungsaufnahme [KW] |
|-------|------------------------|
| $x_0$ | 2                      |
| $x_1$ | 1                      |
| $x_2$ | 5                      |
| $x_3$ | 3                      |

Entwerfen Sie ein Schaltnetz mit einem Ausgang y zur Leistungsüberwachung der Motoren. Der Ausgang y soll genau dann den Wert 1 annehmen, wenn dem Stromnetz durch die eingeschalteten Motoren mehr als 6 KW entnommen werden.

- (a) Erstellen Sie die Funktionstabelle für das Schaltnetz. Verwenden Sie die Variablen  $\{x_3, x_2, x_1, x_0\}$ , wobei der Wert 1 für einen eingeschalteten Motor und der Wert 0 für einen abgeschalteten Motor steht.
- (b) Übertragen Sie die Funktionstabelle in ein KV-Diagramm. Verwenden Sie dabei wieder die oben vorgegebene Variablenanordnung.
- (c) Überlegen Sie sich geeignete Schleifen und zeichnen Sie diese in das Diagramm ein. Geben Sie die zugehörige Schaltfunktion *y* in disjunktiver Form an.
- (d) Zeichnen Sie den Schaltplan für die Schaltfunktion in disjunktiver Form.
- (e) (optional, Nikolaus: 10 Zusatzpunkte) Zeichnen Sie ein ROBDD (Reduced Ordered Binary Decision Diagram) der Schaltung. Die Reihenfolge der Variablen sei:  $x_0, x_1, x_2, x_3$ .