CS 758

D.R. Stinson

Example of Bivariate Interpolation

Suppose that p = 13, m = 2, $y_1 = 1$, $y_2 = 2$, $y_3 = 3$ $a_1(x) = 1 + x + x^2$, $a_2(x) = 7 + 4x^2$ and $a_3(x) = 2 + 9x$.

$$\frac{(y-2)(y-3)}{(1-2)(1-3)} = 7y^2 + 4y + 3$$

$$\frac{(y-1)(y-3)}{(2-1)(2-3)} = 12y^2 + 4y + 10$$

$$\frac{(y-1)(y-2)}{(3-1)(3-2)} = 7y^2 + 5y + 1$$

$$A(x,y) = (1+x+x^2)(7y^2+4y+3) + (7+4x^2)(12y^2+4y+10)$$

$$+(2+9x)(7y^2+5y+1) \mod 13$$

$$= y^2+3y+10+5xy^2+10xy+12x+3x^2y^2+7x^2y+4x^2$$

Insecurity wrt k+1 Colluders

• a set of bad users W_1, \ldots, W_{k+1} (collectively) know the polynomials

$$g_{W_i}(x) = f(x, r_{W_i}) \bmod p,$$

$$1 \le i \le k+1$$

- using the bivariate interpolation formula, they can compute f(x,y)
- then they can compute any key

Security wrt k Colluders

• a set of bad users W_1, \ldots, W_k (collectively) know the polynomials

$$g_{W_i}(x) = f(x, r_{W_i}) \bmod p,$$

$$1 \le i \le k$$

- we show that this information is consistent with any possible value of the key
- let K be the real (unknown) key, and let $K^* \neq K$
- define a polynomial $f^*(x,y)$ as follows:

$$f^*(x,y) = f(x,y) + (K^* - K) \prod_{1 \le i \le k} \frac{(x - r_{W_i})(y - r_{W_i})}{(r_U - r_{W_i})(r_V - r_{W_i})}$$

Security wrt k Colluders (cont.)

- f^* is a symmetric polynomial (i.e., f(x,y) = f(y,x))
- for $1 \leq i \leq k$, it holds that

$$f^*(x, r_{W_i}) = f(x, r_{W_i}) = g_{W_i}(x)$$

• further,

$$f^*(r_U, r_V) = f(r_U, r_V) + K^* - K = K^*$$

• For any possible value of the key, K^* , there is a symmetric polynomial f^* such that the key $K_{U,V} = K^*$ and such that the secret information held by the k bad users is unchanged

Subgroups of Cyclic Groups (review)

- suppose that (G, \cdot) is a cyclic group of order n
- let α be a generator of G (i.e., $ord(\alpha) = n$)
- suppose that m is a divisor of n
- there is a unique subgroup H of G having order m
- the subgroup H is cyclic, and $\alpha^{n/m}$ is a generator of H (i.e., $\operatorname{ord}(\alpha^{n/m}) = m$)
- \bullet H consists of all the elements of G that have order dividing m
- if m is prime, then all elements of H other than the identity have order m (and hence they are all generators of H)

The Diffie-Hellman KPS

- the Diffie-Hellman KPS is a public-key based scheme to distribute secret LL-keys
- suppose α is an element having prime order q in the group \mathbb{Z}_p^* , where p is prime, $p-1 \equiv 0 \pmod{q}$, $p \approx 2^{1024}$ and $q > 2^{160}$
- α, p and q are public domain parameters
- every user U has a private LL-key a_U (where $0 \le a_U \le q 1$) and a corresponding public key

$$b_U = \alpha^{a_U} \mod p$$

• the users' public keys are signed by the *TA* and stored on certificates, as usual

CS 758

The Diffie-Hellman KPS (cont.)

• the secret LL-key $K_{U,V}$ for two users U and V is defined as follows:

$$K_{U,V} = \alpha^{a_U a_V} \mod p$$

• V computes

$$K_{U,V} = b_U^{a_V} \mod p,$$

using the public key b_U from U's certificate, together with his own secret key a_V

• *U* computes

$$K_{U,V} = b_V^{a_U} \mod p$$
,

using the public key b_V from V's certificate, together with her own secret key a_U

Security of the Diffie-Hellman KPS

- a coalition of bad users is of no help to the adversary in determining the key belonging to some disjoint pair of users
- the adversary's attempt to compute a key $K_{U,V}$ is an instance of the Computational Diffie-Hellman problem:

Problem: Computational Diffie-Hellman (CDH)

Instance: A multiplicative group (G, \cdot) , an element $\alpha \in G$ having order n, and two elements $\beta, \gamma \in \langle \alpha \rangle$.

Question: Find $\delta \in \langle \alpha \rangle$ such that

$$\log_{\alpha} \delta \equiv \log_{\alpha} \beta \times \log_{\alpha} \gamma \pmod{n}.$$

(Equivalently, given $\beta = \alpha^b$ and $\gamma = \alpha^c$, where b and c are unknown, compute $\delta = \alpha^{bc}$.)

Computational Diffie-Hellman \propto_T Discrete Logarithm

- the Computational Diffie-Hellman problem is no harder to solve than the Discrete Logarithm problem in the same subgroup $\langle \alpha \rangle$
- given an oracle for the *DLP*, it is easy to solve the *CDH* problem, as follows:
- given inputs α, β, γ for CDH,
 - 1. use the oracle to compute $b = \log_{\alpha} \beta$
 - 2. compute $\delta = \gamma^b$
- the Computational Diffie-Hellman problem is thought to be infeasible when $G = \mathbb{Z}_p$ where $p \approx 2^{1024}$ is prime, n is a divisor of p-1, and n has at least one prime divisor q with $q > 2^{160}$

CS 758

D.R. Stinson

Partial Information about Diffie-Hellman Keys

- the adversary may be unable to compute a Diffie-Hellman key but he could still (possibly) determine some partial information about the key
- we desire *semantic security* of the keys, which means that an adversary can compute no partial information about them (in polynomial time, say)
- in other words, distinguishing Diffie-Hellman keys from random elements of the subgroup $\langle \alpha \rangle$ should be infeasible
- semantic security of Diffie-Hellman keys is equivalent to the infeasibility of the *Decision Diffie-Hellman* problem

The Decision Diffie-Hellman Problem

Problem: Decision Diffie-Hellman (DDH)

Instance: A multiplicative group (G, \cdot) , an element $\alpha \in G$ having order n, and three elements $\beta, \gamma, \delta \in \langle \alpha \rangle$.

Question: Is it the case that $\log_{\alpha} \delta \equiv \log_{\alpha} \beta \times \log_{\alpha} \gamma \pmod{n}$? (Equivalently, given α^b , α^c and α^d , where b, d and d are unknown, determine if $d \equiv bc \pmod{n}$.)

• It is easy to see that the *Decision Diffie-Hellman* problem is no harder to solve than the *Computational Diffie-Hellman* problem in the same subgroup $\langle \alpha \rangle$

Decision Diffie-Hellman \propto_T Computational Diffie-Hellman

- given an oracle for *CDH*, it is easy to solve the *DDH* problem, as follows:
- given inputs $\alpha, \beta, \gamma, \delta$ for *DDH*,
 - 1. use the oracle to to find the value δ' such that

$$\log_{\alpha} \delta' \equiv \log_{\alpha} \beta \times \log_{\alpha} \gamma \pmod{n}$$

2. check to see if $\delta' = \delta$

CDH in Cyclic Subgroups of Composite Order

- for a fixed α of order n, a triple $(\beta, \gamma, \delta) \in \langle \alpha \rangle \times \langle \alpha \rangle \times \langle \alpha \rangle$ that is a yes-instance of DDH is called a Diffie- $Hellman\ triple$
- there are n^3 triples in $\langle \alpha \rangle \times \langle \alpha \rangle \times \langle \alpha \rangle$, of which n^2 are Diffie-Hellman triples
- suppose α is an element of order n, and suppose that q is a proper prime divisor of n
- if q is "small" (e.g., $q \approx 2^{40}$), then it is easy to solve DDH for most triples
- for any $\beta \in \langle \alpha \rangle$, the Pohlig-Hellman algorithm can be used to compute $\log_{\alpha} \beta \mod q$ in time $O(\sqrt{q})$

Pohlig-Hellman Algorithm

- let $a = \log_{\alpha} \beta$ and let $a_0 = a \mod q$
- then $a = a_0 + Kq$ for some integer K
- then we have the following:

$$\beta^{n/q} = (\alpha^a)^{n/q}$$

$$= (\alpha^{a_0+Kq})^{n/q}$$

$$= \alpha^{a_0n/q}\alpha^{Kn}$$

$$= \alpha^{a_0n/q}$$

Pohlig-Hellman Algorithm (cont.)

- since $\beta^{n/q} = \alpha^{a_0 n/q}$, where $0 \le a_0 \le q 1$, it is simple matter to determine a_0 by exhaustive search
- we begin by computing $\beta^{n/q}$ and $\gamma = \alpha^{n/q}$
- then we compute γ^i , $i = 0, \ldots, q 1$, by repeated multiplication by γ
- when we discover that

$$\gamma^i = \beta^{n/q}$$

for some i, where $0 \le i \le q-1$, we know that $a_0 = i$

• this gives a O(q) algorithm, but a modification can reduce the complexity to $O(\sqrt{q})$

Solving DDH when q is small

• suppose we use the Pohlig-Hellman algorithm to compute

$$b_q = \log_{\alpha} \beta \mod q,$$
 $c_q = \log_{\alpha} \gamma \mod q,$ and
 $d_q = \log_{\alpha} \delta \mod q$

• if (β, γ, δ) is a Diffie-Hellman triple, then

$$\log_{\alpha} \delta \equiv \log_{\alpha} \beta \log_{\alpha} \gamma \pmod{n}$$
,

and hence

$$d_q \equiv b_q c_q \pmod{q}$$

- therefore, if $d_q \not\equiv b_q c_q \pmod{q}$, then (β, γ, δ) is not a Diffie-Hellman triple
- hence, we can efficiently solve DDH for a (q-1)/q fraction of the possible triples

Secruity of DDH

- the Decision Diffie-Hellman problem is thought to be infeasible when $G = \mathbb{Z}_p$ where $p \approx 2^{1024}$ is prime, n is a divisor of p-1, and n has no prime divisor q with $q < 2^{160}$
- this is a stronger condition than the one that is conjectured for the security of the *Computational Diffie-Hellman* problem