Spiking neural network simulation with Brian

Marcel Stimberg
Institut de la Vision/Sorbonne Université

marcel.stimberg@inserm.fr

Why study networks of neurons?

- Studying neurons in isolation has its limits
 - the brain is highly recurrent, the output of a neuron affects the network and therefore its input
- Everything we perceive, think, or do, results from the activity of many neurons
- Memories (short and long-term) are stored on the network level, not in individual neurons

Individual elements

Detailed neuronal morphologies → point-neuron models

Individual elements
Point-neuron models

Hodgkin-Huxley formalism

integrate-and-fire model

firing rate models

Excitatory neuron

Synapses

Why can we talk about excitatory/ inhibitory *neurons* and not just synapses?

→ "Dale's law"
Neurons release the same neurotransmitter(s) on every synapse

© 2000 UTHSCH

Synapses

Synapses

Synapses

Dynamics in networks

- Firing rate models are valuable tool:
 - general stability of a homogeneous system
 - global oscillations
- Firing rate models are limited
 - "high activity/firing rate" does not describe:
 - spiking statistics of individual neurons (regular/irregular)
 - synchronicity of spiking in population (synchronous/asynchronous)

Dynamics in spiking models

- Randomly connected (often: sparsely) neurons
- excitatory and inhibitory

Activity regimes

regular firing global synchronization

Activity regimes

irregular firing global synchronization

Brunel (2000)

Activity regimes

irregular firing asynchronous activity

Functional dynamics

- structured connectivity + inhibitory/excitatory connections can create dynamical systems with desirable properties
- Circuit motifs:
 - feedback excitation
 - feedback inhibition
 - local excitation, global inhibition
 - delayed inhibition

– ...

Functional dynamics: Example

Sustained activity

excitatory feedback (amplification/ sustained activity)

inhibitory feedback (stabilization, prevent runaway activity)

The Simulator

Brian's approach

- Philosophy: Mathematical model descriptions
 - Flexible system to define models with equations
 - Takes care of numerical integration / synaptic propagation
 - Physical units
- Technology: Code generation
 - High-level descriptions transformed into low-level code
 - Transparent to user

More info

Website: https://briansimulator.org

Documentation: https://brian2.readthedocs.io

Discussion forum: https://brian.discourse.group

Articles:

Stimberg, Marcel, Romain Brette, and Dan FM Goodman. "Brian 2, an Intuitive and Efficient Neural Simulator." ELife 8 (2019): e47314. https://doi.org/10.7554/eLife.47314.

Stimberg, Marcel, Dan F. M. Goodman, Victor Benichoux, and Romain Brette. "Equation-Oriented Specification of Neural Models for Simulations." Frontiers in Neuroinformatics 8 (2014). https://doi.org/10.3389/fninf.2014.00006