Masterclass on Tensorflow for beginners

By
Odemakinde Elisha Jesutofunmi

About Data Science Nigeria (DSN)

Data Science Nigeria is a non-profit driven by a vision to build a world-class Artificial Intelligence knowledge, research and innovation ecosystem that delivers high impact research, business use applications, locally-relevant Al-first start-ups, increase employability and drive for social good use cases.

Dr. Bayo Adekanmbi CTO, MTN Nigeria, Convener, Data Science Nigeria

For more about DSN kindly check us out at https://www.datasciencenigeria.org

About myself

Name: Odemakinde Elisha Jesutofunmi

Job: Data Scientist & Researcher

Where: Data Science Nigeria

Twitter: @elishatofunmi

Medium:@elishatofunmi

Github: @elishatofunmi

Email: elisha@datasciencenigeria.ai

CONTENT

- What's Next?
- Tensorflow prerequisites.
- Introduction to Tensorflow.
- Setting up tensorflow.
- Tensorflow operations (Basics).
- Neural Networks with Tensorflow (loss, optimizers, activation function, neurons).
- Putting it all together (titanic/house pricing).
- Model parameter hypertuning of neural nets.
- Tensorboard (visual).
- Useful links.

What's Next?

What's Next?

Everyone tends to ask the question after trying their possible best on using all the machine learning algorithms they have ever known. Take note, not all machine learning problem requires deep learning but for some, it is mandatory.

What if trying a neural network will give you the best solution to your problem (Tensorflow is the first library you would love to experiment with in solving your problem).

Tensorflow prerequisites

Tensorflow Prerequisites

- Must be convenient to write python efficiently.
- Good grasp of object oriented programming (OOP).
- Get familiar with numpy operations.
- Handling errors, debugging (your favorite as a scriptwriter).

Tensorflow Introduction

Tensorflow is a symbolic math library and its used for machine learning applications such as neural networks, deep learning.

Tensorflow was developed by the google brain team, the first version was released on the 11th of February, 2017. Its an open source library written in python, c++ and CUDA. It is a cross-platform application that is, it is available on Linux, macOS, Windows, android, JavaScript.

Tensors are containers that can house data in N dimensions. For example, matrices are 2 dimensional tensors.

We can further say, a tensor is a generalization of matrices to N-dimensional space.

This implies, with tensors we can visualize N-dimensional space vectors.

How tensors differ from numpy (multi-dimensional array).

- Tensors are containers or function that needs to be defined.
- Numpy can be referred to as generic tensor.

Setting up Tensorflow

Setting up Tensorflow

- Setting up on windows/linux via conda (virtual environment).
- pip install tensorflow==2.0 (conda/ command prompt).

Tensorflow Operations

Tensorflow Operations

Importing Tensorflow:

import tensorflow as tf

Tensorflow Operations

- Data types.
- tf.tensors.
- tf.variable.
- tf.placeholder.
- tf.add
- tf.matmul
- tf.zeros, tf.ones
- tf.confusion_matrix

Neural Networks with Tensorflow (loss, optimizers, activation function, neurons).

Neural Networks (neurons and layers)

Neural Network (Activation Functions)

Activation functions are computational functions for the neuron cells. They are algorithms that enhances learning in each neuron cell. They include:

Relu, softmax, sigmoid, elu, maxout, tanh etc.

Neural Network (Activation Functions)

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

source: here

Neural Networks (losses)

This includes:

- 1. Binary cross entropy (computes the loss between true labels and predicted values).
- 2. Categorical cross entropy (computes the loss between labels and predicted classes).

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

Source: here

loss
$$CCE = -\frac{1}{N} \sum_{i=0}^{N} \sum_{j=0}^{J} y_j \cdot log(\hat{y}_j) + (1 - y_j) \cdot log(1 - \hat{y}_j)$$

Neural Networks (losses)

This includes:

- 1. Cosine similarity (Computes the categorical hinge loss between y true hinge loss between y true and y pred).
- 2. mean absolute error (Computes the mean of absolute difference between labels and predictions).

$$similarity(A,B) = \frac{A \cdot B}{\|A\| \times \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Source: here

MAE =
$$\frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

@easycalculation.com

Source: here

Neural Networks (losses)

This includes:

- 1. mean absolute percentage error(Computes the mean MAPE = absolute percentage error between y_true and y_pred).
- 2. mean squared error (Computes the mean of squares of errors between labels and predictions).

$$MAPE = \frac{100\%}{N} \sum_{i=0}^{N} \frac{|y_i - \hat{y}_i|}{\hat{y}_i}$$

Source: here

Source: here

Neural Networks (Optimizers)

Optimizers are algorithms. $\mathbf{m} \leftarrow \beta_1 \mathbf{m} + (1 - \beta_1) \nabla_{\theta} J(\theta)$ Examples includes:

- 1. adadelta.
- 2. Adam.
- 3. RMSprop.
- 4. Adamax.
- 5. Adagrad.
- 6. Nadem.
- 7. SGD.

$$\mathbf{m} \leftarrow \beta_1 \mathbf{m} + (1 - \beta_1) \nabla_{\theta} J(\theta)$$
$$\mathbf{s} \leftarrow \beta_2 \mathbf{s} + (1 - \beta_2) \nabla_{\theta} J(\theta) \otimes \nabla_{\theta} J(\theta)$$

$$\mathbf{m} \leftarrow \frac{\mathbf{m}}{1 - {\beta_1}^T}$$

$$\mathbf{s} \leftarrow \frac{\mathbf{s}}{1 - {\beta_2}^T}$$

$$\theta \leftarrow \theta - \eta \, \mathbf{m} \oslash \sqrt{\mathbf{s} + \epsilon}$$

Adam optimizer (algorithm)

Neural Networks (Optimizers)

Optimizers are algorithms. $\mathbf{s} \leftarrow \beta \mathbf{s} + (1 - \beta) \nabla_{\theta} J(\theta) \otimes \nabla_{\theta} J(\theta)$ Examples includes:

- 1. adadelta.
- 2. Adam.
- 3. RMSprop.
- 4. Adamax.
- 5. Adagrad.
- 6. Nadem.
- 7. SGD.

$$\mathbf{s} \leftarrow \beta \mathbf{s} + (1 - \beta) \nabla_{\theta} J(\theta) \otimes \nabla_{\theta} J(\theta)$$
$$\theta \leftarrow \theta - \eta \nabla_{\theta} J(\theta) \otimes \sqrt{\mathbf{s} + \epsilon}$$

RMSprop optimizer (algorithm)

$$\mathbf{s} \leftarrow \mathbf{s} + \nabla_{\theta} J(\theta) \otimes \nabla_{\theta} J(\theta)$$

$$\theta \leftarrow \theta - \eta \, \nabla_{\theta} J(\theta) \oslash \sqrt{\mathbf{s} + \epsilon}$$

Adagrad optimizer (algorithm)

Neural Networks (Optimizers)

Optimizers are algorithms. Examples includes:

- 1. adadelta.
- 2. Adam.
- 3. RMSprop.
- 4. Adamax.
- 5. Adagrad.
- 6. Nadem.
- 7. SGD.

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$) }

$$egin{aligned} w_k
ightarrow w_k' &= w_k - \eta rac{\partial C}{\partial w_k} \ b_l
ightarrow b_l' &= b_l - \eta rac{\partial C}{\partial b_l}. \end{aligned}$$

Gradient descent algorithm

putting it all together
(titanic/ house pricing)

Model parameter hypertuning (neural networks)

Tensorboards

TensorBoard

Tensorboard gives us the flexibility of visualizing the training parameters, metrics or any statistics in our Neural Network.

TensorBoard is a tool for providing the measurements and visualizations needed during the machine learning workflow. It enables tracking experiment metrics like loss and accuracy, visualizing the model graph, projecting embeddings to a lower dimensional space, and much more.(https://www.tensorflow.org).

TensorBoard

With tensorboard you can visualize the following:

- 1. Scalers (something like accuracy of your predictions).
- 2. Neural network graph (Visualize your neural network model).
- 3. Distribution (visualize how data changes, that is, weights and biases).
- 4. Input Data (images, audio, text etc).

Reference Materials

- https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/
- https://www.easy-tensorflow.com/tf-tutorials/basics/graph-and-session
- https://www.tensorflow.org
- https://www.analyticsvidhya.com/blog/2017/03/tensorflow-understanding-tensors-and-graphs/
- https://machinelearningmastery.com/introduction-to-tensors-for-machine-learning/
- https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretationof-performance-measures/
- https://www.kaggle.com/c/caterpillar-tube-pricing/data
- https://www.datacamp.com/community/tutorials/tensorboard-tutorial

Reference Materials

- https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
- https://www.tensorflow.org/learn
- https://www.tensorflow.org/guide/data
- https://www.tensorflow.org/guide/keras/overview
- https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
- http://miguelromao.me/2018/03/19/a-simple-low-level-tensorflow-classifier/
- https://machinelearningmastery.com/display-deep-learning-model-training-history-in-keras/
- https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretationof-performance-measures/

Website: www.datasciencenigeria.org Email: info@datasciencenigeria.org

Twitter: Datasciencenig

Instagram: Datasciencenigeria

Facebook: facebook.com/datasciencenig

YouTube: https://goo.gl/Vcjjyp

Phone: +2348140000853, +2348140033300

For videos and other reports, you can see a link to 25 key milestones of the non-profit via this link https://goo.gl/Hc5Bhd