E/R to a Bases Examples.

Theory " extend reduce to a bajes"

V finite dimensional vedorspace and scv. finite

(i) if s is linearly independent then there is a basis 3 of v with 3 25

(ii) if spans(s) - v then there exists about 5 of v with, 8 cs

Escample

Complete l'extend
$$s = \left\{ \begin{pmatrix} 1 \\ 3 \\ 6 \\ -3 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ -4 \\ 2 \end{pmatrix} \right\}$$
 le α baies of R^{r}

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \in \text{Span} (s)$$

recall = { v, , v, ... , vn } e'v a vedor space

= col(A), where
$$A = \begin{bmatrix} \uparrow & \uparrow \\ V_1 & V_2 & --- & V_k \end{bmatrix}$$

(recall $A \in M_{n,n}$ (IR), $col(A) = span ({columns of A})$

we can perform column operations to preserve col (A)

A column operation on A row operation on A)

Executed of column operations on A as above: $V; \longrightarrow V; +\lambda V; i \in i, j \in k$ $V; \longmapsto V; \qquad | i \notin j \in k$

Vi Haiv, OFRER

e.g.
$$V=1$$
, $\lambda=2$, $k=2$

$$A=\begin{bmatrix} \uparrow & \uparrow \\ V_1 & V_2 \\ \downarrow & \downarrow \end{bmatrix}$$

$$\xrightarrow{c} C_1 + 2C_2 \qquad \left[\begin{array}{c} \uparrow & \uparrow \\ V_1 + 2C_2 \\ \downarrow & \downarrow \end{array} \right]$$

 $span (\{V_1 + 2V_2, V_2\})$ = $\{\lambda (V_1 + 2V_2) + \mu \lambda_2 \mid \lambda_1 \mu \in \mathbb{R}\}$ = $\{\lambda V_1 + \lambda V_2 \mid \lambda_1 \lambda_2 \in \mathbb{R}\}$ = $span (V_1, V_2)$

Zack to essample

$$\int_{0}^{2\pi} \left\{ \begin{pmatrix} 1 \\ 3 \\ 6 \\ -3 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ -4 \\ 2 \end{pmatrix} \right\}$$

$$\sim \int_{0}^{2\pi} \left\{ \begin{pmatrix} 1 \\ 3 \\ -2 \\ 6 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 3 \\ -4 \\ -3 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \\ 6 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 6 \\ -3 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0$$

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \not\in Sbav(7)$$

How to exclude to a basis of R" using slandard basis vector?

Assume s= {v, , v2 ..., vn}c R^

1) Form a matrix,
$$A = \begin{pmatrix} \uparrow & \uparrow \\ \lor & \lor \\ \downarrow & \downarrow \end{pmatrix}$$

- 2) Perform column operations on A to reduce A as much as possible A' col (A) = col (A')
- 3) Change C; (?) such that C; & col(A)

5) Return to slep (2)

6) Slop when A has nodumus. (L.I. set of n vectors is a basis)

Reducing to a basis

Problem: $s \in V$ finite $span(s) = V s \circ k$ $J \subseteq s$ linearly independent to do this, find a basis for col(A) where $A = (\hat{V}_1, \dots, \hat{V}_n)$ $(s = \{V_1, \dots, V_n\})$

Eseanyole

Calculate a boins
$$span\left(\left\{\left(\frac{1}{6}\right),\left(\frac{9}{6}\right),\left(\frac{9}{6}\right),\left(\frac{9}{6}\right)\right\}\right)$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$m \Rightarrow span(\{(0)(0)(0)\})$$