Notas de aula de Lógica para Ciência da Computação

Daniel Oliveira Dantas

11 de setembro de $2020\,$

Sumário

1	A linguagem da lógica proposicional										
2	$\mathbf{A} \mathbf{s}$	emântica da lógica proposicional	3								
3	\mathbf{Pro}	Propriedades semânticas da lógica proposicional									
	3.1	Propriedades semânticas	5								
	3.2	Relações entre propriedades semânticas	6								
	3.3	Relações semânticas entre os conectivos da lógica proposicional .	7								
	3.4	Formas normais na lógica proposicional	8								
	3.5	Exercícios	9								
	3.6	Exercícios v.2	11								
4	Mé	Métodos semânticos de dedução na lógica proposicional									
	4.1	Introdução	13								
	4.2	Método da tabela verdade	13								
	4.3	Método da negação ou absurdo	14								
	4.4	Método da árvore semântica	15								
	4.5	Método dos tableaux semânticos	16								
		4.5.1 Prova de que uma fórmula é uma contradição	19								
		4.5.2 Prova de que um conjunto de fórmulas é insatisfatível	20								
	4.6	Exercícios	20								
5	Um	método sintático de dedução na lógica proposicional	21								
	5.1	Introdução	21								
	5.2	O sistema formal Pa	22								
	5.3	Exercícios	28								
6	A i	nguagem da lógica de predicados	29								
	6.1	O alfabeto da lógica de predicados	29								
	6.2	Fórmulas da lógica de predicados	29								
	6.3	Correspondência entre quantificadores	30								
	6.4	Símbolos de pontuação	30								
	6.5	Características sintáticas das fórmulas	30								
	6.6	Formas normais	31								

6.7	Classificações de variáveis	31
6.8	Exercícios	32

Capítulo 1

A linguagem da lógica proposicional

Capítulo 1 de Souza, Lógica para Ciência da Computação [2].

- Alfabeto: o alfabeto da Lógica Proposicional é composto por
 - Símbolos de pontuação: ()
 - Símbolos de verdade: true false
 - \bullet Símbolos proposicionais: A B C P Q R A₁ A₂ A₃ a b c . . .
 - o Não se usam as letras V, v, F, f, T e t para não confundir com os valores de verdade.
 - Conectivos proposicionais: $\sim \lor \land \rightarrow \leftrightarrow$
- Fórmula: as fórmulas da linguagem da lógica proposicional são construídas a partir dos símbolos do alfabeto conforme as regras a seguir:
 - Todo símbolo de verdade é uma fórmula.
 - Todo símbolo proposicional é uma fórmula.
 - Se H é fórmula, $\sim H$ é fórmula.
 - Se H e G são fórmulas, $(H \vee G), (H \wedge G), (H \to G)$ e $(H \leftrightarrow G)$ são fórmulas.
- Fórmulas mal formadas: são fórmulas não obtidas da definição anterior.
- Ordem de precedência:
 - $\bullet \sim$ Precedência maior.
 - $\bullet \to \leftrightarrow A \to B \leftrightarrow C$ possui duas interpretações.
 - \
 - ullet \vee Precedência menor.

- Comprimento de uma fórmula:
 - Se H é um símbolo proposicional ou de verdade, comp(H) = 1.
 - Se H é fórmula, $comp(\sim H) = comp(H) + 1$.
 - \bullet Se He Gsão fórmulas:
 - $\circ \operatorname{comp}(H \vee G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \wedge G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \to G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \leftrightarrow G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$

— Subfórmulas:

- \bullet H é subfórmula de H.
- Se $H = \sim G$, G é subfórmula de H.
- Se H é uma fórmula do tipo $(G \vee E), (G \wedge E), (G \rightarrow E)$ ou $(G \leftrightarrow E),$ então G e E são subfórmulas de H.
- \bullet Se G é subfórmula de H, então toda subfórmula de G é subfórmula de H.

Capítulo 2

A semântica da lógica proposicional

Capítulo 2 de Souza, Lógica para Ciência da Computação [2].

- Função: é uma relação entre dois conjuntos que associa cada elemento do conjunto de entrada a um único elemento do conjunto de saída
- Função binária: é uma função em que seu contradomínio possui apenas dois elementos
- Interpretação I é uma função binária tal que:
 - ullet O domínio de I é constituído pelo conjunto de fórmulas da lógica proposicional.
 - O contradomínio de I é o conjunto $\{T, F\}$.
 - I(true) = T, I(false) = F.
 - Se P é um símbolo proposicional, $I(P) \in \{T, F\}$.
- Interpretação de fórmulas: dadas uma fórmula E e uma interpretação I, o significado ou interpretação de E, denotado por I(E), é determinado pelas regras:
 - Se E=P, onde P é um símbolo proposicional, então I(E)=I(P), onde $I(P)\in\{T,F\}.$
 - Se E = true, então I(E) = I(true) = T.
 - Se E = false, então I(E) = I(false) = F.
 - Seja H uma fórmula, se $E = \sim H$ então:
 - $\circ I(E) = I(\sim H) = T \Leftrightarrow I(H) = F.$
 - $\circ I(E) = I(\sim H) = F \Leftrightarrow I(H) = T.$

- Sejam H e G duas fórmulas, se $E = (H \lor G)$ então: • I(H) = T e/ou $I(G) = T \Leftrightarrow I(E) = I(H \lor G) = T$. • I(H) = F e $I(G) = F \Leftrightarrow I(E) = I(H \lor G) = F$.
- Sejam H e G duas fórmulas, se $E=(H \land G)$ então: • I(H)=T e $I(G)=T \Leftrightarrow I(E)=I(H \land G)=T$. • I(H)=F e/ou $I(G)=F \Leftrightarrow I(E)=I(H \land G)=F$.
- Sejam H e G duas fórmulas, se $E=(H\to G)$ então: • I(H)=T então $I(G)=T\Leftrightarrow I(E)=I(H\to G)=T$. • I(H)=F e/ou $I(G)=T\Leftrightarrow I(E)=I(H\to G)=T$. • I(H)=T e $I(G)=F\Leftrightarrow I(E)=I(H\to G)=F$.
- Sejam H e G duas fórmulas, se $E = (H \leftrightarrow G)$ então: • $I(H) = I(G) \Leftrightarrow I(E) = I(H \leftrightarrow G) = T$. • $I(H) \neq I(G) \Leftrightarrow I(E) = I(H \leftrightarrow G) = F$.

Capítulo 3

Propriedades semânticas da lógica proposicional

Capítulo 3 de Souza, Lógica para Ciência da Computação [2].

3.1 Propriedades semânticas

— Tautologia: uma fórmula H é tautologia ou válida se e somente se (sse) para toda interpretação I

$$I(H) = T$$

— Satisfatibilidade: uma fórmula H é satisfatível ou factível se e somente se (sse) existe pelo menos uma interpretação I tal que

$$I(H) = T$$

— Contingência: uma fórmula H é uma contingência se e somente se (sse) existem interpretações I e J tais que

$$I(H) = T \in J(H) = F$$

— Contradição: uma fórmula H é contraditória se e somente se (sse) para toda interpretação I

$$I(H) = F$$

— Implicação: dadas duas fórmulas H e G, $H \vDash G$ (H implica G) sse para toda interpretação I

se
$$I(H) = T$$
 então $I(G) = T$

— Equivalência: dadas duas fórmulas H e G, H equivale a G sse para toda interpretação I

$$I(H) = I(G)$$

— Dada uma fórmula H e uma interpretação I, dizemos que I satisfaz H se

$$I(H) = T$$

— Um conjunto de fórmulas $\beta = \{H_1, H_2, \dots, H_n\}$ é satisfatível sse existe interpretação I tal que

$$I(H_1) = I(H_2) = \cdots = I(H_n) = T$$

— Um conjunto de fórmulas $\beta = \{H_1, H_2, \dots, H_n\}$ é insatisfatível sse não existe interpretação I tal que

$$I(H_1) = I(H_2) = \cdots = I(H_n) = T$$

3.2 Relações entre propriedades semânticas

— Proposição 3.1: seja H uma fórmula,

H é tautologia $\Rightarrow H$ é satisfatível.

- Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Rightarrow$ existe interpretação I tal que $I(H) = T \Leftrightarrow H$ é satisfatível. ■
- Proposição 3.3: seja H uma fórmula,

H é tautologia $\Rightarrow H$ não é contingência.

- Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Leftrightarrow$ não existe interpretação I tal que $I(H) = F \Rightarrow$ não existem interpretações I e J tais que I(H) = F e $J(H) = T \Leftrightarrow H$ não é contingência.
- Proposição 3.4: seja H uma fórmula,

H é contingência $\Rightarrow H$ é satisfatível.

- Demonstração: H é contingência \Leftrightarrow existem interpretações I e J tais que I(H) = T e J(H) = F \Rightarrow existe interpretação I tal que I(H) = T \Leftrightarrow H é satisfatível. ■
- Proposição 3.5: seja H uma fórmula,

H é tautologia $\Leftrightarrow \sim H$ é contraditória.

- Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Leftrightarrow$ para toda interpretação I, $I(\sim H) = F \Leftrightarrow \sim H$ é contraditória.
- Proposição 3.7: sejam $H \in G$ duas fórmulas,

H equivale a $G \Leftrightarrow (H \leftrightarrow G)$ é tautologia.

- Demonstração: H equivale a G ⇔ para toda interpretação I, I(H) = I(G) ⇔ para toda interpretação I, $I(H \leftrightarrow G) = T \Leftrightarrow (H \leftrightarrow G)$ é tautologia. \blacksquare
- Proposição 3.8: sejam H e G duas fórmulas,

H implica $G \Leftrightarrow (H \to G)$ é tautologia.

• Demonstração: H implica $G \Leftrightarrow \text{para toda interpretação } I$, se I(H) = T então $I(G) = T \Leftrightarrow \text{para toda interpretação } I$, $I(H \to G) = T \Leftrightarrow (H \to G)$ é tautologia. \blacksquare

3.3 Relações semânticas entre os conectivos da lógica proposicional

- Conjunto de conectivos completo: o conjunto de conectivos ψ é dito completo se é possível expressar os conectivos $\{\sim, \lor, \land, \rightarrow, \leftrightarrow\}$ usando apenas os conectivos de ψ .
 - O conectivo \rightarrow pode ser expresso com $\{\sim, \vee\}$:

$$(P \to Q) \equiv (\sim P \lor Q)$$

• O conectivo \land pode ser expresso com $\{\sim, \lor\}$:

$$(P \land Q) \equiv \sim (\sim P \lor \sim Q)$$

• O conectivo \leftrightarrow pode ser expresso com $\{\sim, \vee\}$:

$$(P \leftrightarrow Q) \equiv \sim (\sim (\sim P \lor Q) \lor \sim (\sim Q \lor P))$$

— O conjunto $\{\sim, \lor\}$ é completo, pois é possível expressar os conectivos $\{\sim, \lor, \land, \rightarrow, \leftrightarrow\}$ usando apenas $\{\sim, \lor\}$.

- Proposição 3.15 (regra da substituição): sejam G, G', H e H' fórmulas da lógica proposicional tais que:
 - \bullet G e H são subfórmulas de G' e H' respectivamente.
 - G' é obtida de H' da substituição de H por G em H'.

$$G \equiv H \Rightarrow G' \equiv H'$$

- Definição: o conectivo NAND $(\bar{\wedge})$ é definido por $(P \bar{\wedge} Q) \equiv \sim (P \wedge Q)$.
 - O conectivo \sim pode ser expresso com $\{\overline{\wedge}\}$:

$$(\sim P) \equiv (P \bar{\wedge} P)$$

• O conectivo \vee pode ser expresso com $\{\overline{\wedge}\}$:

$$(P \lor Q) \equiv ((P \overline{\land} P) \overline{\land} (Q \overline{\land} Q))$$

3.4 Formas normais na lógica proposicional

- Literais: um literal na lógica proposicional é um símbolo proposicional ou sua negação.
- Forma normal: dada uma fórmula H da lógica proposicional, existe uma fórmula G, equivalente a H, que está na forma normal. Forma normal é uma estrutura de fórmula pré-definida.
 - \bullet Forma normal disjuntiva (FND): é uma disjunção (\vee) de conjunções (\wedge).
 - Forma normal conjuntiva (FNC): é uma conjunção (\wedge) de disjunções (\vee).
- Obtenção de formas normais:
 - FND:
 - o Obtenha a tabela verdade da fórmula.
 - \circ Selecione as linhas cuja interpretação é T.
 - o Para cada linha selecionada, faça a conjunção (\land) de todos os símbolos proposicionais cuja interpretação é T com a negação dos símbolos proposicionais cuja interpretação é F.
 - ∘ Faça a disjunção (∨) das fórmulas obtidas no passo anterior.
 - FNC:
 - \circ Obtenha a tabela verdade da fórmula.
 - \circ Selecione as linhas cuja interpretação é F.
 - o Para cada linha selecionada, faça a disjunção (\vee) de todos os símbolos proposicionais cuja interpretação é F com a negação dos símbolos proposicionais cuja interpretação é T.
 - ∘ Faça a conjunção (∧) das fórmulas obtidas no passo anterior.

— Exemplo: encontre a FND e a FNC da fórmula $((P \rightarrow Q) \land R)$.

P	Q	R	$P \rightarrow Q$	$(P \to Q) \land R$	FND	FNC
\overline{T}	T	T	T	T	$P \wedge Q \wedge R$	
T	T	F	T	F		$\sim P \vee \sim Q \vee R$
T	F	T	F	F		$\sim P \vee Q \vee \sim R$
T	F	F	F	F		$\sim P \vee Q \vee R$
F	T	T	T	T	$\sim P \wedge Q \wedge R$	
F	T	F	T	F		$P \vee \sim Q \vee R$
F	F	T	T	T	$\sim P \wedge \sim Q \wedge R$	
F	F	F	T	F		$P \vee Q \vee R$

- FND: $(P \land Q \land R) \lor (\sim P \land Q \land R) \lor (\sim P \land \sim Q \land R)$
- FNC: $(\sim P \vee \sim Q \vee R) \wedge (\sim P \vee Q \vee \sim R) \wedge (\sim P \vee Q \vee R) \wedge (P \vee \sim Q \vee R) \wedge (P \vee Q \vee R)$

3.5 Exercícios

- 1. Determine o comprimento e o conjunto de subfórmulas das fórmulas a seguir.
 - (a) $P \vee P$
 - (b) $((\sim \sim P \lor Q) \leftrightarrow (P \to Q)) \land true$
 - (c) $P \to ((Q \to R) \to ((P \to R) \to (P \to R)))$
 - (d) $((P \rightarrow \sim P) \leftrightarrow \sim P) \lor Q$
 - (e) $\sim (P \to \sim P)$
- 2. Dentre as concatenações de símbolos a seguir, quais são fórmulas bem formadas e quais são fórmulas mal formadas?
 - (a) $(P \rightarrow \wedge true)$
 - (b) $(P \land Q) \rightarrow ((Q \leftrightarrow P) \lor \sim \sim R)$
 - (c) $\sim \sim P$
 - (d) $\vee Q$
 - (e) $(P \lor Q) \to ((Q \leftrightarrow R))$
 - (f) PQR
 - (g) $A \sim$
- 3. Demonstre as proposições abaixo usando as regras de interpretação de fórmulas.
 - (a) $I(P \land Q) = T \Leftrightarrow I(\sim(\sim P \lor \sim Q)) = T$
 - (b) $I(P \land Q) = F \Leftrightarrow I(\sim(\sim P \lor \sim Q)) = F$

- (c) $I(P \land Q) = T \Leftrightarrow I(\sim P \lor \sim Q) = F$
- (d) $I(P \to Q) = F \Leftrightarrow I(\sim P \lor Q) = F$
- (e) $I(P \to Q) = T \Leftrightarrow I(\sim P \lor Q) = T$
- (f) $I(P \to Q) = F \Leftrightarrow I(P \land \sim Q) = T$

Responda as questões 4, 5 e 6 conforme os exemplos abaixo.

- (a) Se I(P) = F, o que se pode concluir a respeito de I(H)? R: Pode-se concluir que I(H) = T.
- (b) Se I(P) = T, o que se pode concluir a respeito de I(H)? R: Nada se pode concluir.
- 4. Seja $H=(P\to Q)$ e I uma interpretação.
 - (a) Se I(H) = T, o que se pode concluir a respeito de I(P) e I(Q)?
 - (b) Se I(H) = T e I(P) = T, o que se pode concluir a respeito de I(Q)?
 - (c) Se I(Q) = T, o que se pode concluir a respeito de I(H)?
 - (d) Se I(H) = T e I(P) = F, o que se pode concluir a respeito de I(Q)?
 - (e) Se I(Q) = F e I(P) = T, o que se pode concluir a respeito de I(H)?
- 5. Seja Iuma interpretação tal que $I(P \leftrightarrow Q) = T.$ O que se pode concluir a respeito de:
 - (a) $I(\sim P \land Q)$
 - (b) $I(P \vee \sim Q)$
 - (c) $I(Q \rightarrow P)$
 - (d) $I((P \land R) \leftrightarrow (Q \land R))$
 - (e) $I((P \lor R) \leftrightarrow (Q \lor R))$
- 6. Repita o exercício anterior considerando $I(P \leftrightarrow Q) = F$.
- 7. Sejam H e G as fórmulas indicadas a seguir. Identifique, justificando sua resposta, os casos em que H implica G.
 - (a) $H = (P \land Q), G = P$
 - (b) $H = (P \lor Q), G = P$
 - (c) $H = (P \lor \sim Q), G = false$
 - (d) H = false, G = P
 - (e) H = P, G = true
- 8. Demonstre as proposições abaixo ou dê um contra-exemplo.
 - (a) Proposição 3.6: H não é satisfatível $\Leftrightarrow H$ é contraditória.
 - (b) H é satisfatível $\Leftrightarrow H$ não é contraditória.

- (c) $\sim H$ é tautologia $\Leftrightarrow H$ é contraditória.
- (d) H não é tautologia $\Leftrightarrow H$ é contraditória.
- 9. Encontre a FND e a FNC das das fórmulas a seguir.
 - (a) $(P \leftrightarrow Q) \land (P \lor R)$
 - (b) $(P \to Q) \land (P \to R)$

3.6 Exercícios v.2

- 1. Determine o comprimento e o conjunto de subfórmulas das fórmulas a seguir.
 - (a) $P \vee Q$
 - (b) $\sim (P \to Q) \leftrightarrow (R \land S)$
 - (c) $(\sim P \lor \sim Q) \leftrightarrow \sim (P \land Q)$
 - (d) $(A \wedge (B \wedge (C \wedge D))) \vee (\sim A \wedge (\sim B \wedge (C \wedge D)))$
- 2. Dentre as concatenações de símbolos a seguir, quais são fórmulas bem formadas e quais são fórmulas mal formadas?
 - (a) $P \to ((Q \to R) \to ((P \to R) \to (P \to R)))$
 - (b) $(P \lor \to Q) \land R$
 - (c) $((P \rightarrow \sim P) \leftrightarrow \sim P) \lor Q$
 - (d) $P \sim \rightarrow Q$
- Demonstre as proposições abaixo usando as regras de interpretação de fórmulas.
 - (a) $I(P \to Q) = T \Leftrightarrow I(\sim (P \land Q)) = T$
 - (b) $I(\sim P \rightarrow \sim Q) = T \Leftrightarrow I(\sim (\sim P \land Q) = T$

Responda as questões 4 conforme os exemplos abaixo.

- (a) Se I(P) = F, o que se pode concluir a respeito de I(H)? R: Pode-se concluir que I(H) = T.
- (b) Se I(P) = T, o que se pode concluir a respeito de I(H)? R: Nada se pode concluir.
- 4. O que se pode concluir a respeito de
 - (a) $I(P \land Q)$ se I(P) = T
 - (b) $I(P \wedge Q)$ se I(P) = F
 - (c) $I(P \vee Q)$ se I(Q) = T
 - (d) $I(P \vee Q)$ se I(Q) = F

- (e) $I(P \to Q)$ se I(P) = T
- (f) $I(P \to Q)$ se I(Q) = T
- (g) $I(P \to Q)$ se I(P) = F
- (h) $I(P \to Q)$ se I(Q) = F
- (i) $I(P \leftrightarrow Q)$ se I(P) = T
- (j) $I(P \leftrightarrow Q)$ se I(P) = F
- Mostre se os conjuntos de fórmulas a seguir são satisfatíveis ou insatisfatíveis.
 - (a) $\{(P \land Q), (P \lor Q)\}$
 - (b) $\{(P \land Q), (P \rightarrow Q)\}$
 - (c) $\{(P \lor Q), (P \leftrightarrow Q)\}$
 - (d) $\{(P \land Q), (P \rightarrow \sim Q)\}$
- 6. Demonstre as proposições abaixo ou dê um contra-exemplo.
 - (a) H é satisfatível $\Leftrightarrow \sim H$ é satisfatível
 - (b) H é contraditória $\Leftrightarrow \sim H$ é tautologia
 - (c) H é tautologia $\Leftrightarrow \sim H$ é contraditória
 - (d) H é tautologia $\Rightarrow H$ é satisfatível
 - (e) H implica $G \Leftrightarrow (H \to G)$ é tautologia
 - (f) H equivale a $G \Leftrightarrow (H \leftrightarrow G)$ é tautologia
- 7. Demonstre se as fórmulas a seguir são tautologias usando o método da tabela verdade e o da árvore semântica.
 - (a) $H = (P \lor Q) \leftrightarrow (\sim P \rightarrow Q)$
 - (b) $H = \sim (P \leftrightarrow Q) \leftrightarrow (\sim P \leftrightarrow Q)$
 - (c) $H = (\sim P \leftrightarrow \sim Q) \leftrightarrow \sim (P \leftrightarrow \sim Q)$
 - (d) $H = (P \lor \sim Q) \leftrightarrow (\sim P \to \sim Q)$
- 8. Demonstre por absurdo se as fórmulas a seguir são ou não tautologias.
 - (a) $(P \land Q) \leftrightarrow (\sim P \lor Q)$
 - (b) $(P \lor Q) \leftrightarrow (\sim P \lor Q)$
 - (c) $(P \land Q) \leftrightarrow (P \land \sim P)$

Capítulo 4

Métodos semânticos de dedução na lógica proposicional

Capítulo 4 de Souza, Lógica para Ciência da Computação [2].

4.1 Introdução

— Validade de fórmulas: uma fórmula é válida s
se todas as suas interpretações são iguais a ${\cal T}.$

4.2 Método da tabela verdade

- Método da tabela verdade: é um método exaustivo, ou seja, enumera todas as possibilidades. A desvantagem é que, se houver muitos símbolos proposicionais, a tabela fica muito grande.
- Exemplo: seja $H = \sim (P \land Q) \leftrightarrow (\sim P \lor \sim Q)$, demonstre que H é uma tautologia usando o método da tabela verdade.

P	Q	$\sim P$	$\sim Q$	$(P \wedge Q)$	$ \sim (P \land Q)$	$(\sim P \lor \sim Q)$	H
\overline{T}	T	F	F	T	F	F	T
T	F	F	T	F	T	T	T
F	T	T	F	F	T	T	T
F	F	T	T	F	T	T	T

4.3 Método da negação ou absurdo

- Método da negação ou absurdo: funciona da seguinte maneira.
 - Faça uma suposição.
 - Se todas as substituições possíveis levarem a contradições, a suposição é falsa. Ou seja, a negação da suposição é verdadeira.
- Exemplo: seja $H=((P\to Q) \land (Q\to R))\to (P\to R)$, demonstre por absurdo que H é uma tautologia.
 - \bullet Demonstração: assuma por absurdo que existe interpretação I tal que I(H)=F.

Então
$$I((P \to Q) \land (Q \to R)) = T$$
 e $I(P \to R) = F$.
Como $I(P \to R) = F$, então $I(P) = T$ e $I(R) = F$.

Distribuindo na fórmula os valores de verdade encontados, temos

$$\begin{array}{ccc} ((P \rightarrow Q) \ \land \ (Q \rightarrow R)) \rightarrow (P \rightarrow R) \\ T & F & F & T & F \\ \end{array}$$

de onde obtemos

Portanto, a suposição inicial de que existe interpretação I tal que I(H) = F é falsa. Em outras palavras, para todo I, I(H) = T, ou seja, H é tautologia.

- Exemplo: seja $H=(P\to Q) \wedge (\sim (\sim P \vee Q))$, demonstre por absurdo que H é uma contradição.
 - \bullet Demonstração: assuma por absurdo que existe interpretação I tal que I(H)=T.

Então
$$I(P \to Q) = T$$
 e $I(\sim (\sim P \lor Q)) = T$.

Como
$$I(\sim(\sim P \lor Q)) = T$$
, então $I(\sim P \lor Q) = F$. E portanto, $I(Q) = F$, $I(\sim P) = F$ e $I(P) = T$.

Distribuindo na fórmula os valores de verdade encontados, temos

$$\begin{array}{cccc} (P \rightarrow Q) \ \land \ ({\sim}({\sim}P \ \lor \ Q)) \\ T & T & T & F & T & F \end{array}$$

mas se I(P)=T, temos que I(Q) precisa ser T já que $I(P\to Q)=T$, portanto obtemos

Absurdo

Portanto, a suposição inicial de que existe interpretação I tal que I(H)=T é falsa. Em outras palavras, para todo $I,\ I(H)=F,$ ou seja, H é contradição.

Observe que para demonstrar corretamente que uma fórmula H é tautologia, é necessário chegar a um absurdo em todas as substituições possíveis.
 Caso alguma substituição não chegue a um absurdo, pode-se interromper a demonstração e concluir que a fórmula não é tautologia. Isso é evidente,

pois, se você assume que I(H)=F e não chega a um absurdo, significa que essa substituição específica faz com que I(H) seja F e, portanto, com que H não seja tautologia. Diferentes substituições representam diferentes linhas da tabela verdade, e pode ocorrer de algumas linhas serem iguais a T, caso em que há absurdo, e outras linhas iguais a F, caso em que não há absurdo. Por isso é necessário explorar todas as substituições possíveis. O mesmo vale para a contradição.

4.4 Método da árvore semântica

- Método da árvore semântica: é um método que permite a verificação da validade de uma fórmula sem ser exaustivo. A depender da fórmula, pode ser possível obter a resposta sem verificar todas as interpretações possíveis. Este conteúdo está na primeira edição do livro de Souza Lógica para Ciência da Computação [1].
- Exemplo: seja $H = \sim (P \land Q) \leftrightarrow (\sim P \lor \sim Q)$, demonstre que H é uma tautologia usando o método da árvore semântica.

	$ \sim$	(P	\wedge	Q)	\leftrightarrow	$(\sim$	P	\vee	\sim	Q)
2		T				F	T			
3	T	F	F		T	T	F	T		
4	F	T	T	T	T	F	T	F	F	\overline{T}
5	T	T	F	F	T	F	T	T	T	\overline{F}

— Exemplo: seja $H=(P\vee \sim Q)\leftrightarrow (\sim P\rightarrow \sim Q)$, demonstre que H é uma tautologia usando o método da árvore semântica.

	P	\vee	\sim	Q)	\leftrightarrow	$(\sim$	P	\rightarrow	\sim	Q)
2	T	T			T	F	T	T		
3	F					T	F			
4	F	F	F	T	T	T	F	F	F	\overline{T}
5	F	T	T	\overline{F}	T	T	\overline{F}	T	T	\overline{F}

4.5 Método dos tableaux semânticos

- Tableau semântico: sequência de fórmulas construída de acordo com um conjunto de regras e apresentada em forma de árvore. O método dos tableaux semânticos é um mecanismo de decisão para a pergunta $\beta \vdash H$, sim ou não?
- Elementos do sistema de tableaux semânticos da lógica proposicional:
 - Alfabeto da lógica proposicional sem os símbolos de verdade true e false.
 - Conjunto das fórmulas da lógica proposicional.
 - Um conjunto de regras de dedução.
- Regras de dedução do tableau semântico: sejam A e B duas fórmulas da lógica proposicional, as regras de dedução do sistema de tableaux semânticos são

- Construção de um tableau semântico: se dá aplicando alguma regra de dedução uma vez para cada linha que não seja um literal (símbolo proposicional ou sua negação). O tableau resultante tende a ficar mais simples se aplicarmos primeiro as regras de dedução que não geram bifurcações $(R_1, R_5, R_7, R_8).$
 - Exemplo: considere o conjunto de fórmulas: $\{A \to B, \sim (A \lor B), \sim (C \to A)\}$ A) $\}$. Encontre o tableau semântico iniciado com esse conjunto de fórmulas.

$$\{P \ \lor \ (Q \ \lor \ \sim\!\! R), P \to \sim\!\! R, Q \to \sim\!\! R\} \vdash \sim\!\! R \ P \ ^{\sim}P$$

- $P \vee (Q \vee \sim R) \checkmark$ 1.
- Ass $P \rightarrow \sim R \checkmark$ 2. Ass
- $Q \rightarrow \sim R \checkmark$ 3. Ass
- $\sim {\rm Conc}$ 4.
- $1 \vee \text{Elim}$ 5.
- $\sim P$ $\sim R$ $2 \to \text{Elim}$ 6.
- $5 \vee \text{Elim}$ 7. 4, 65,6
- $3 \to \text{Elim}$ 8. 4,8

- Ramo: é uma sequência de fórmulas onde cada fórmula é derivada das anteriores através das regras de dedução. A primeira fórmula do ramo é sempre a primeira fórmula do tableau.
- Ramo saturado: é um ramo onde, para todas as suas fórmulas,
 - já foi aplicada alguma regra de dedução; ou
 - não é possível aplicar nenhuma regra de derivação, isto é, a fórmula é um literal
- Ramo fechado: é um ramo que contém uma fórmula e sua negação. Um ramo pode ser fechado sem ser saturado.
- Ramo aberto: é um ramo saturado não fechado.
- Tableau fechado: é um tableau onde todos os ramos são fechados.
- Tableau aberto: é um tableau onde algum ramo é aberto.
- Prova de H no sistema de tableaux semânticos: é um tableau fechado iniciado com a fórmula $\sim \! H$
 - Exemplos: verifique se as fórmulas abaixo são tautologias:

$$\circ H_1 = \sim ((P \to Q) \land \sim (P \leftrightarrow Q) \land \sim \sim P)$$

$$\circ H_2 = (P \leftrightarrow Q) \lor \sim P$$

$$\circ H_3 = (((P \land Q) \land (Q \to Q_1)) \land ((P \land Q_1) \to \sim P_1)) \to \sim P_1$$

11.
$$\sim (P \wedge Q_1) \checkmark \sim P_1$$
 $R_3 \text{ em } 5$

12. $\sim Q$ Q_1 $\sim Q$ Q_1 $R_3 \text{ em } 8$

13. $\sim P$ $\sim Q_1$ $\sim P$ $\sim P$

■ Observe que o tableau foi desenvolvido até que todos os ramos ficassem saturados. Alternativamente, é possível fechar os ramos à medida que são encontrados pares de fórmulas contraditórias entre si, como na versão abaixo

13,12

12,10

12,10

13,9

- Pergunta: um tableau iniciado com uma tautologia necessariamente terá todos os ramos abertos?
- Para provar que uma fórmula H é tautologia, iniciamos um tableau semântico com $\sim H$, que é uma contradição. Se H for realmente uma tautologia, todas as interpretações de $\sim H$ devem ser iguais a F, fazendo com que todos os ramos do tableau sejam fechados. O método do tableau semântico pode ser visto como uma variação do método da negação ou absurdo, onde ramos fechados correspondem a substituições que levam a um absurdo. Ramos abertos por sua vez correspondem a substituições que não levam a um absurdo, ou seja, substituições que fazem $I(\sim H) = T$.

4.5.1 Prova de que uma fórmula é uma contradição

— Na seção anterior, vimos que é possível mostrar que H é uma tautologia iniciando um tableau semântico com $\sim H$, que é uma contradição e obtendo um tableau com todos os ramos fechados. Da mesma maneira, é possível mostrar que H é uma contradição iniciando um tableau com H e obtendo um tableau com todos os ramos fechados.

4.5.2 Prova de que um conjunto de fórmulas é insatisfatível

— Como foi visto na seção 3.1, um conjunto de fórmulas $\beta = \{H_1, H_2, \ldots, H_n\}$ é dito insatisfaftível sse não existe interpretação que faça com que todas as fórmulas tenham interpretação igual a T ao mesmo tempo. Em outras palavras, se o conjunto β é insatisfatível, podemos dizer que $I(H_1 \land H_2 \land \ldots \land H_n) = F$ para toda interpretação, ou seja, essa fórmula é contraditória. É possível então mostrar que o conjunto de fórmulas β é insatisfatível através de um tableau semântico fechado iniciado por $H_1 \land H_2 \land \ldots \land H_n$.

4.6 Exercícios

- 1. Determine por absurdo se as fórmulas a seguir são ou não tautologias.
 - (a) $H_1 = (H \vee H) \rightarrow H$
 - (b) $H_2 = H \rightarrow (G \lor H)$
 - (c) $H_3 = (H \rightarrow G) \rightarrow ((E \lor H) \rightarrow (G \lor E))$
 - (d) $H_4 = (H \to G) \to ((G \to E) \to (H \to E))$
 - (e) $H_5 = ((G \rightarrow (E \rightarrow H)) \land (G \rightarrow E)) \rightarrow (G \rightarrow H)$
 - (f) $H_6 = A \rightarrow ((B \land C) \rightarrow ((D \land E) \rightarrow ((G \land H) \rightarrow A)))$
 - (g) $H_7 = ((((A \rightarrow B) \rightarrow (\sim C \rightarrow \sim D)) \rightarrow C) \rightarrow E) \rightarrow ((E \rightarrow A) \rightarrow (D \rightarrow A))$
- 2. Determine por absurdo se as fórmulas a seguir são ou não tautologias.
 - (a) $H_1 = \sim (\sim H) \leftrightarrow H$
 - (b) $H_2 = \sim (H \to G) \leftrightarrow (\sim H \leftrightarrow G)$
 - (c) $H_3 = \sim (H \leftrightarrow G) \leftrightarrow (\sim H \leftrightarrow G)$
 - (d) $H_4 = (H \leftrightarrow G) \leftrightarrow ((H \to G) \land (G \to H))$
 - (e) $H_5 = (H \land (G \lor E)) \leftrightarrow ((H \land G) \lor (H \land E))$
 - (f) $H_6 = ((H \to G) \land (G \to H)) \to (H \to H)$
 - (g) $H_7 = ((H \leftrightarrow G) \land (G \leftrightarrow H)) \rightarrow (H \leftrightarrow H)$
 - (h) $H_8 = H \rightarrow (H \land G)$
- 3. Repita os exercícios anteriores usando o método do tableau semântico.

Capítulo 5

Um método sintático de dedução na lógica proposicional

Capítulo 5 de Souza, Lógica para Ciência da Computação [2].

5.1 Introdução

- Métodos sintáticos são diferentes dos métodos semânticos de dedução. Enquanto nos métodos semânticos é levada em consideração a semântica das fórmulas, ou seja, a sua interpretação, nos métodos sintáticos as deduções são puramente simbólicas, ou seja, dependem da sequência de símbolos da fórmula.
- Para denotar implicação semântica, usamos o símbolo ⊨, mas para denotar implicação sintática, usamos o símbolo ⊢.
- Um método semântico nos permitiria inferir diretamente que $\sim \sim P \vDash P$, já que sabemos que ambos possuem a mesma tabela verdade ou que uma dupla negação, se eliminada, resulta na mesma interpretação. Em um método sintático, não podemos simplesmente afirmar que $\sim \sim P \vDash P$. Para demonstrar essa implicação, precisamos usar os axiomas e regras de dedução disponíveis.

5.2 O sistema formal Pa

- Alfabeto da lógica proposicional na forma simplificada: é constituído por
 - Símbolos de pontuação: ()
 - Símbolos de verdade: false
 - \bullet Símbolos proposicionais: A B C P Q R A₁ A₂ A₃ a b c . . .
 - \bullet Conectivos proposicionais: $\sim \lor$
- Sistema axiomático Pa: é um sistema formal composto por
 - Alfabeto da lógica proposicional na forma simplificada sem o símbolo de verdade false.
 - Conjunto das fórmulas da lógica proposicional.
 - Um subconjunto das fórmulas, denominadas axiomas.
 - Um conjunto de regras de dedução ou de inferência.
- Axiomas do sistema Pa
 - Axioma 1: $\sim (H \vee H) \vee H$
 - Axioma 2: $\sim H \vee (G \vee H)$
 - Axioma 3: $\sim (\sim H \ \lor \ G) \ \lor \ (\sim (E \lor H) \lor (G \lor E))$

Usando outros conectivos, os axiomas do sistema Pa podem ser denotados por

- \bullet Axioma 1: $(H \ \lor \ H) \to H$
- Axioma 2: $H \to (G \lor H)$
- Axioma 3: $(H \to G) \to ((E \lor H) \to (G \lor E))$
- Notação:
 - $(H \to G)$ denota $(\sim H \lor G)$
 - $(H \leftrightarrow G)$ denota $(H \to G) \land (G \to H)$
 - $(H \wedge G)$ denota $\sim (\sim H \vee \sim G)$
- Postulado modus ponens: é uma regra de inferência do sistema Pa definida pelo procedimento

tendo
$$H$$
 e ($\sim H \vee G$) deduza G

ou, usando a notação alternativa,

tendo
$$H$$
 e $(H \to G)$ deduza G .

Em outras palavras, se H e $(H \to G)$ são fórmulas válidas, então G também é válida. Uma regra de inferência nos permite inferir novas fórmulas a partir de fórmulas já inferidas.

Exercícios

1. Prove $H_1 = P \rightarrow (Q \lor P)$.

R: Fazendo $H = P \in G = Q$, a fórmula H_1 é obtida do axioma 2.

- 2. Prove $H_2=(P \to (Q \lor P)) \to ((\sim P \lor P) \to ((Q \lor P) \lor \sim P))$. R: Fazendo $H=P,~G=(Q \lor P)$ e $E=\sim P,$ a fórmula H_2 é obtida do axioma 3.
- 3. Considere o conjunto de hipóteses $\beta=\{G_1,G_2\}$ onde $G_1=P$ e $G_2=(P\to Q)$. Prove $(R\vee Q)$ a partir de β no sistema axiomático Pa.

R:

Fórmulas	Justificativa
$H_1 = P$	Hipótese G_1
$H_2 = P \to Q$	Hipótese G_2
$H_3 = Q$	Modus ponens em H_1 e H_2
$H_4 = Q \to (R \lor Q)$	Axioma 2, $H = Q \in G = R$
$H_5 = R \ \lor \ Q$	Modus ponens em H_3 e H_4

4. Considere o conjunto de hipóteses $\beta = \{G_1, \dots, G_9\}$ onde

$$\begin{array}{lll} G_1 = (P \, \wedge \, R) \to P & G_4 = (P_1 \, \wedge \, P_2) \to Q & G_7 = P_1 \\ G_2 = Q \to P_4 & G_5 = (P_3 \, \wedge \, R) \to R & G_8 = P_3 \to P \\ G_3 = P_1 \to Q & G_6 = P_4 \to P & G_9 = P_2 \end{array}$$

Prove $(S \vee P)$ a partir de β no sistema axiomático Pa.

R:

Fórmulas	Justificativa
$H_1 = P_1$	Hipótese G_7
$H_2 = P_1 \to Q$	Hipótese G_3
$H_3 = Q$	Modus ponens em H_1 e H_2
$H_4 = Q \to P_4$	Hipótese G_2
$H_5 = P_4$	Modus ponens em H_3 e H_4
$H_6 = P_4 \rightarrow P$	Hipótese G_6
$H_7 = P$	Modus ponens em H_5 e H_6
$H_8 = P \rightarrow (S \lor P)$	Axioma 2, $H = P \in G = S$
$H_9 = S \vee P$	Modus ponens em H_7 e H_8

- Consequência lógica sintática no sistema Pa: dada uma fórmula H e um conjunto de hipóteses β , dizemos que H é consequência lógica sintática de β em Pa se existe uma prova de H em Pa a partir de β . A notação para isso é $\beta \vdash H$.
- Teorema no sistema Pa: uma fórmula H é um teorema em Pa se existe uma prova de H em Pa que utiliza apenas os axiomas. É permitido usar

outros teoremas, já que também foram provados usando apenas axiomas. Teoremas são denotados por $\vdash H$, já que o conjunto de hipóteses é vazio.

— Proposição 1: sejam β um conjunto de hipóteses, e A, B e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow B)$$
 e $\beta \vdash (C \lor A)$ então $\beta \vdash (B \lor C)$

Demonstração:

$\beta \vdash (A \to B)$
Axioma 3, $H = A$, $G = B$ e
E = C
Modus ponens (MP) em H_1 e
H_2
$\beta \vdash (C \lor A)$
MP em H_4 e H_3

— Proposição 2: temos que $\vdash (P \lor \sim P)$.

Demonstração:

2 cmcnotragac.	
$H_1 = ((P \lor P) \to P) \to ((\sim P \lor (P \lor P)) \to P)$	Axioma 3, $H = (P \lor P), G =$
$(P \lor \sim P))$	$P \in E = \sim P$
$H_2 = (P \lor P) \to P$	Axioma 1, $H = P$
$H_3 = (\sim P \lor (P \lor P)) \rightarrow (P \lor \sim P)$	MP em H_2 e H_1
$H_4 = \sim P \lor (P \lor P)$	Axioma 2, $H = P e G = P$
$H_5 = (P \lor \sim P)$	MP em H_4 e H_3

- Proposição 3, regra da substituição: sejam β um conjunto de hipóteses e H uma fórmula da lógica proposicional, tais que $\beta \vdash H$. Seja $\{P_1, \ldots, P_n\}$ um conjunto de símbolos proposicionais que ocorrem em H mas não ocorrem em β , seja G a fórmula obtida de H substituindo P_1, \ldots, P_n pelas fórmulas E_1, \ldots, E_n respectivamente. Temos que $\beta \vdash G$.
 - Para entender o porque de evitar substituir símbolos que ocorrem em β , observe os seguintes exemplos.
 - o Considere $\beta = \{P_1, P_2\}$ e a substituição $P_1 = P$ e $P_2 = \sim P$. Acabamos de obter resultados contraditórios entre si, o que torna nosso sistema inconsistente.
 - o Considere $\beta = \{P_1, P_2, P_1 \land P_2\}$ e a substituição $P_1 = P$ e $P_2 = \sim P$. Acabamos de demonstrar a contradição $(P \land \sim P)$ o que torna nosso sistema incorreto.

— Proposição 4a: temos que $\vdash (P \to {\sim}{\sim} P)$.

Demonstração:

$H_1 = P \lor \sim P$	Prop. 2
$H_2 = \sim P \lor \sim \sim P$	Regra da Substituição (RS) em H_1
$H_3 = P \rightarrow \sim \sim P$	Mudança de notação (MN) em H_2

— Proposição 4b: temos que $\vdash (\sim \sim P \rightarrow P)$.

Demonstração:

Demonstração.	
$H_1 = P \rightarrow \sim \sim P$	Prop 4a
$H_2 = \sim P \rightarrow \sim \sim \sim P$	RS em H_1
$H_3 = (\sim P \rightarrow \sim \sim \sim P) \rightarrow ((P \lor \sim P) \rightarrow$	Axioma 3, $H = \sim P$, $G =$
$(\sim \sim \sim P \vee P))$	$\sim \sim \sim P \in E = P$
$H_4 = (P \lor \sim P) \to (\sim \sim P \lor P)$	MP em H_2 e H_3
$H_5 = P \lor \sim P$	Prop. 2
$H_6 = \sim \sim \sim P \lor P$	MP em H_5 e H_4
$H_3 = \sim \sim P \to P$	MN em H_6

— Proposição 5: temos que $\vdash (P \to P)$.

Demonstração:

Demonstração.	
$H_1 = P \rightarrow \sim \sim P$	Prop. 4a
$H_2 = (P \rightarrow \sim \sim P) \rightarrow ((P \lor P) \rightarrow (\sim \sim P \lor P))$	Axioma 3, $H = P$, $G = \sim \sim P$ e
	E = P
$H_3 = (P \lor P) \to (\sim \sim P \lor P)$	MP em H_1 e H_2
$H_4 = (P \rightarrow \sim \sim P) \rightarrow ((\sim \sim P \lor P) \rightarrow (\sim \sim P \lor P))$	Axioma 3, $H = P$, $G = \sim \sim P$ e
$\sim \sim P))$	$E = \sim \sim P$
$H_5 = (\sim \sim P \lor P) \to (\sim \sim P \lor \sim \sim P)$	$MP \text{ em } H_1 \text{ e } H_4$
$H_6 = \sim P \lor (P \lor P)$	Axioma 2, $H = P e G = P$
$H_7 = (\sim \sim P \lor P) \lor \sim P$	Prop. 1 em H_3 e H_6
$H_8 = \sim P \rightarrow \sim \sim \sim P$	RS em Prop. 4a
$H_9 = \sim \sim \sim P \lor (\sim \sim P \lor P)$	Prop. 1 em H_8 e H_7
$H_{10} = (\sim \sim P \lor \sim \sim P) \lor \sim \sim \sim P$	Prop. 1 em H_5 e H_9
$H_{11} = \sim \sim \sim P \rightarrow \sim P$	RS em Prop. 4b
$H_{12} = \sim P \lor (\sim \sim P \lor \sim \sim P)$	Prop. 1 em H_{11} e H_{10}
$H_{13} = (\sim \sim P \lor \sim \sim P) \to \sim \sim P$	Axioma 1, $H = \sim \sim P$
$H_{14} = \sim \sim P \lor \sim P$	Prop. 1 em H_{13} e H_{12}
$H_{15} = \sim \sim \sim P \lor \sim \sim P$	RS em H_{14}
$H_{16} = \sim \sim P \to P$	Prop. 4b
$H_{17} = P \lor \sim \sim \sim P$	Prop. 1 em H_{16} e H_{15}
$H_{18} = \sim P \lor P$	Prop. 1 em H_{11} e H_{17}
$H_{19} = P o P$	$MN \text{ em } H_{18} \blacksquare$

— Proposição 6, comutatividade: temos que

$$\vdash (A \lor B) \to (B \lor A).$$

Demonstração:

$$H_1 = B \to B$$
 RS em Prop. 5
 $H_2 = (B \to B) \to ((A \lor B) \to (B \lor A))$ Axioma 3, $H = B$, $G = B$ e $E = A$
 $H_3 = (A \lor B) \to (B \lor A)$ MP em H_1 e H_2

— Proposição 6b: sejam β um conjunto de hipóteses, e A e B duas fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \lor B)$$
 então $\beta \vdash (B \lor A)$.

— Proposição 7: sejam β um conjunto de hipóteses, e A, B e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow B)$$
 e $\beta \vdash (B \rightarrow C)$ então $\beta \vdash (A \rightarrow C)$.

Demonstração:

Demonstração.	
$H_1 = B \to C$	$\beta \vdash (B \to C)$
$H_2 = \sim A \vee B$	$\beta \vdash (A \to B)$
$H_3 = C \lor \sim A$	Prop. 1 em H_1 e H_2
$H_4 = (C \lor \sim A) \to (\sim A \lor C)$	RS em Prop. 6
$H_5 = \sim A \lor C$	MP em H_3 e H_4
$H_6 = A \to C$	MN em $H_5 \blacksquare$

— Proposição 8: sejam β um conjunto de hipóteses, e $A,\,B$ e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow C)$$
 e $\beta \vdash (B \rightarrow C)$ então $\beta \vdash ((A \lor B) \rightarrow C)$.

Demonstração:

$$H_1 = B \rightarrow C$$

$$H_2 = (B \rightarrow C) \rightarrow ((A \lor B) \rightarrow (C \lor A))$$

$$H_3 = (A \lor B) \rightarrow (C \lor A)$$

$$H_4 = A \rightarrow C$$

$$H_5 = (A \rightarrow C) \rightarrow ((C \lor A) \rightarrow (C \lor C))$$

$$H_6 = (C \lor A) \rightarrow (C \lor C)$$

$$H_7 = (A \lor B) \rightarrow (C \lor C)$$

$$H_8 = (C \lor C) \rightarrow C$$

$$H_9 = (A \lor B) \rightarrow C$$

$$\beta \vdash (B \rightarrow C)$$

$$Axioma 3, H = B, G = C e$$

$$E = A$$

$$MP em H_1 e H_2$$

$$\beta \vdash (A \rightarrow C)$$

$$Axioma 3, H = A, G = C e$$

$$E = C$$

$$MP em H_4 e H_5$$

$$Prop. 7 em H_3 e H_6$$

$$Axioma 1, H = C$$

$$Prop. 7 em H_7 e H_8 \blacksquare$$

— Proposição 9: sejam β um conjunto de hipóteses, e $A,\,B$ e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow C)$$
 e $\beta \vdash (\sim A \rightarrow C)$ então $\beta \vdash C$.

Demonstração:

$H_1 = A \to C$	$\beta \vdash (A \to C)$
$H_2 = \sim A \to C$	$\beta \vdash (\sim A \to C)$
$H_3 = (A \lor \sim A) \to C$	Prop. 8 em H_1 e H_2
$H_4 = (A \lor \sim A)$	Prop. 2
$H_5 = C$	MP em H_4 e H_3

— Proposição 10: sejam β um conjunto de hipóteses, e A,B e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow B)$$
 então $\beta \vdash (A \rightarrow (C \lor B))$ e $\beta \vdash (A \rightarrow (B \lor C))$.

Demonstração:

Demonstração.	
$H_1 = A \to B$	$\beta \vdash (A \to B)$
$H_2 = B \to (C \lor B)$	Axioma 2, $H = B \in G = C$
$H_3 = A \to (C \lor B)$	Prop. 7 em H_1 e H_2
$H_4 = (C \lor B) \to (B \lor C)$	Prop. 6
$H_5 = A \rightarrow (B \lor C)$	Prop. 7 em H_3 e H_4

— Proposição 11, associatividade: temos que

$$\vdash ((A \lor B) \lor C) \to (A \lor (B \lor C)).$$

Demonstração:

Demonstração.	
$H_1 = A \rightarrow A$	Prop. 5
$H_2 = A \to (A \lor (B \lor C))$	RS, Prop 10 em H_1
$H_3 = B \rightarrow B$	Prop. 5
$H_4 = B \to (B \lor C)$	Prop 10 em H_3
$H_5 = B \rightarrow (A \lor (B \lor C))$	Prop 10 em H_4
$H_6 = (A \lor B) \to (A \lor (B \lor C))$	Prop 8 em H_2 e H_5
$H_7 = C \to C$	Prop. 5
$H_8 = C \rightarrow (B \lor C)$	Prop 10 em H_7
$H_9 = C \rightarrow (A \lor (B \lor C))$	Prop 10 em H_8
$H_{10} = ((A \lor B) \lor C) \to (A \lor (B \lor C))$	Prop 8 em H_6 e H_9

— Proposição 12, associatividade: sejam β um conjunto de hipóteses, e A, B e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash ((A \lor B) \lor C)$$
 então $\beta \vdash (A \lor (B \lor C))$.

— Proposição 13: sejam β um conjunto de hipóteses, e $A,\,B$ e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow B)$$
 e $\beta \vdash (A \rightarrow (B \rightarrow C))$ então $\beta \vdash (A \rightarrow C)$.

Demonstração:

$H_1 = A \to B$	$\beta \vdash (A \to B)$
$H_2 = A \to (B \to C)$	$\beta \vdash (A \to (B \to C))$
$H_3 = \sim A \lor (\sim B \lor C)$	$MN \text{ em } H_2$
$H_4 = (\sim B \lor C) \lor \sim A$	Prop. 6b em H_3
$H_5 = \sim B \lor (C \lor \sim A)$	Prop. 12 em H_4
$H_6 = B \to (C \lor \sim A)$	MN em H_5
$H_7 = A \rightarrow (C \lor \sim A)$	Prop. 7 em H_1 e H_6
$H_8 = \sim A \lor (C \lor \sim A)$	$MN \text{ em } H_7$
$H_9 = (C \lor \sim A) \lor \sim A$	Prop. 6b em H_8
$H_{10} = C \lor (\sim A \lor \sim A)$	Prop. 12 em H_9
$H_{11} = (\sim A \lor \sim A) \to \sim A$	Axioma 1, $H = \sim A$
$H_{12} = \sim A \lor C$	Prop. 1 em H_{11} e H_{10}
$H_{13} = A \to C$	MN em $H_{12} \blacksquare$

5.3 Exercícios

- 1. Demonstre os teoremas abaixo no sistema axiomático Pa. Use os axiomas e proposições vistos em aula.
 - (a) $\vdash (\sim P \lor P)$
 - (b) $\vdash (\sim P \lor \sim \sim P)$
 - (c) $\vdash (H \rightarrow (H \lor G))$
 - (d) $\vdash (H \to (G \to H))$
 - (e) $\vdash ((H \rightarrow G) \rightarrow (\sim G \rightarrow \sim H))$
- 2. Demonstre os teoremas abaixo no sistema axiomático Pa. Use os axiomas e proposições vistos em aula.
 - (a) Se $\beta \vdash (A \rightarrow B)$ e $\beta \vdash (C \lor A)$ então $\beta \vdash (C \lor B)$
 - (b) Se $\beta \vdash (A \rightarrow \sim B)$ e $\beta \vdash (C \rightarrow A)$ então $\beta \vdash (B \rightarrow \sim C)$
- 3. Considere um sistema axiomático igual ao Pa mais o axioma 4 dado abaixo. Mostre que se $\beta \vdash H$ então $\beta \vdash \sim H$.

Axioma 4: $H \to (H \lor G)$

Capítulo 6

A inguagem da lógica de predicados

Capítulo 6 de Souza, Lógica para Ciência da Computação [2].

6.1 O alfabeto da lógica de predicados

- Alfabeto: o alfabeto da lógica de predicados é composto por
 - Símbolos de pontuação: ()
 - Símbolos de verdade: true false
 - Símbolos para variáveis: $x y z w x_1 y_1 z_1 x_2 \dots$
 - \bullet Símbolos para funções: $f~g~h~f_1~g_1~h_1~f_2\dots$
 - Símbolos para predicados: $p q r s p_1 q_1 r_1 s_1 p_2 \dots$
 - Conectivos: \sim \vee \wedge \rightarrow \leftrightarrow \forall \exists
- Associado a cada função ou predicado está um número inteiro $k \ge 0$ que indica a sua "aridade", ou seja, seu número de argumentos.
- Os símbolos para funções zero-árias, isto é, funções constantes, são: $a\ b\ c\ a_1\ b_1\ c_1\ a_2\dots$
- Os símbolos para predicados zero-ários, isto é, símbolos proposicionais, são: $P\ Q\ R\ S\ P_1\ Q_1\ R_1\ S_1\ P_2\dots$

6.2 Fórmulas da lógica de predicados

- Termo: um termo pode ser
 - uma variável
 - $f(t_1, \ldots, t_n)$ onde f é uma função n-ária e t_1, \ldots, t_n são termos.

A INTERPRETAÇÃO DE UM TERMO É UM OBJETO MATEMÁTICO

- Átomo: um átomo pode ser
 - um símbolo de verdade
 - $p(t_1, \ldots, t_n)$ onde p é um predicado n-ário e t_1, \ldots, t_n são termos.

A INTERPRETAÇÃO DE UM ÁTOMO É UM VALOR DE VERDADE $\in \{T,F\}$

- Fórmula: as fórmulas da linguagem da lógica de predicados são construídas a partir dos símbolos do alfabeto conforme as regras a seguir:
 - Todo átomo é uma fórmula.
 - Se H é fórmula, $\sim H$ é fórmula.
 - Se H e G são fórmulas, então $(H \vee G), (H \wedge G), (H \to G)$ e $(H \leftrightarrow G)$ são fórmulas.
 - Se H é fórmula e x é variável, então, $((\forall x)H)$ e $((\exists x)H)$ são fórmulas.
- Expressão: uma expressão pode ser
 - um termo
 - uma fórmula

6.3 Correspondência entre quantificadores

$$\begin{array}{rcl} -- ((\forall x)H) & \equiv & \sim ((\exists x)(\sim H)) \\ -- ((\exists x)H) & \equiv & \sim ((\forall x)(\sim H)) \end{array}$$

6.4 Símbolos de pontuação

- Ordem de precedência:
 - $\bullet \sim$ Maior
 - $\bullet \ \forall \ \exists$

 - \bullet \land
 - V Menor

6.5 Características sintáticas das fórmulas

- Subtermo, subfórmula e subexpressão:
 - Se E = x então x é subtermo de E.
 - Se $E = f(t_1, \ldots, t_n)$ então $t_1, \ldots, t_n, f(t_1, \ldots, t_n)$ são subtermos de E.
 - \bullet Se H é fórmula, H é subfórmula de H.
 - \bullet Se $E=\sim\!\!H,$ então He $\sim\!\!H$ são subfórmulas de E.
 - Se E é uma fórmula do tipo $(G \vee H), (G \wedge H), (G \to H)$ ou $(G \leftrightarrow H),$ então G e H são subfórmulas de E.
 - Se E é uma fórmula do tipo $(\forall x)H$ ou $(\exists x)H$, então H é subfórmula de E.

- \bullet Se G é subfórmula de H, então toda subfórmula de G é subfórmula de H.
- Todo subtermo ou subfórmula é também subexpressão.
- Comprimento de uma fórmula:
 - Se H é um átomo, comp(H) = 1.
 - Se H é fórmula, $comp(\sim H) = comp(H) + 1$.
 - \bullet Se H e G são fórmulas:
 - $\circ \operatorname{comp}(H \vee G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \wedge G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \to G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \leftrightarrow G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - Se $H = ((\forall x)G)$ ou $H = ((\exists x)G)$, então comp(H) = comp(G) + 1.

6.6 Formas normais

- Literal: um literal pode ser
 - um átomo
 - a negação de um átomo
- Forma normal: uma fórmula está na
 - forma normal conjuntiva (FNC) se for uma conjunção (\land) de disjunções (\lor) de literais
 - \bullet forma normal disjuntiva (FND) se for uma disjunção (\vee) de conjunções (\wedge) de literais

6.7 Classificações de variáveis

- Escopo de um quantificador: seja G uma fórmula da lógica de predicados:
 - Se $(\forall x)H$ é uma subfórmula de G, então o escopo de $(\forall x)$ em G é a subfórmula H.
 - Se $(\exists x)H$ é uma subfórmula de G, então o escopo de $(\exists x)$ em G é a subfórmula H.

Exercícios

1. Considere a fórmula abaixo.

$$G = (\forall x)(\exists y)((\forall z)p(x, y, z, w) \rightarrow (\forall y)q(z, y, x, z_1))$$

Qual é o escopo de

- (a) $(\forall x)$
- (b) $(\exists y)$
- (c) $(\forall z)$
- (d) $(\forall y)$
- Ocorrência livre e ligada: sejam x uma variável e G uma fórmula.
 - Uma ocorrência de x em G é ligada se x está no escopo de um quantificador $(\forall x)$ ou $(\exists x)$.
 - \bullet Uma ocorrência de x em G é livre se não for ligada.
- Variável livre e ligada: sejam x uma variável e G uma fórmula.
 - A variável x é ligada em G se existe pelo menos uma ocorrência ligada de x em G.
 - A variável x é livre em G se existe pelo menos uma ocorrência livre de x em G.
- Símbolo livre: seja G uma fórmula, os seus símbolos livres são as variáveis com ocorrência livre em G, símbolos de função e símbolos de predicado.
- Fórmula fechada: uma fórmula é fechada quando não possui variáveis livres.
- Fecho de uma fórmula: seja H uma fórmula da lógica de predicados, e $\{x_1, \ldots, x_n\}$ o conjunto das variáveis livres de H.
 - O fecho universal de H, indicado por $(\forall *)H$, é dado pela fórmula $(\forall x_1)(\forall x_2)\dots(\forall x_n)H$.
 - O fecho existencial de H, indicado por $(\exists *)H$, é dado pela fórmula $(\exists x_1)(\exists x_2)\dots(\exists x_n)H$.

6.8 Exercícios

- 1. Determine o comprimento das fórmulas a seguir.
 - (a) $H_1 = p(x, y, f(z))$
 - (b) $H_2 = (P \lor \sim Q) \rightarrow \sim (q(x, y) \lor r(z))$
 - (c) $H_3 = (\exists y) r(y) \leftrightarrow \sim (\exists y) P$)
 - (d) $H_4 = \sim (p(x, y, z)) \rightarrow \sim ((\forall x)(\forall y)(\forall z)p(x, y, z))$
- 2. Determine o conjunto de subespressões das expressões a seguir.
 - (a) $H_1 = p(x, y, f(z))$

- (b) $H_2 = g(x, y, f(z))$
- (c) $H_3 = (\exists y)r(y) \leftrightarrow \sim (\exists y)P$
- (d) $H_4 = \sim (p(x, y, z)) \rightarrow \sim ((\forall x)(\forall y)(\forall z)p(x, y, z))$
- 3. Verdadeiro ou falso?
 - (a) Toda variável é um termo
 - (b) Todo termo é uma variável
 - (c) Toda função é um termo
 - (d) Todo termo é uma função
 - (e) Toda variável é um átomo
 - (f) Todo átomo é uma variável
 - (g) Todo termo é um átomo
 - (h) Todo átomo é um termo
 - (i) Todo termo é uma fórmula
 - (j) Toda fórmula é um termo
 - (k) Todo átomo é um literal
 - (l) Todo literal é um átomo
 - (m) Todo átomo é uma fórmula
 - (n) Toda fórmula é um átomo
 - (o) Todo literal é uma fórmula
 - (p) Toda fórmula é um literal
 - (q) Toda variável é uma expressão
 - (r) Toda expressão é uma variável
 - (s) Todo átomo é uma expressão
 - (t) Toda expressão é um átomo
 - (u) Todo literal é uma expressão
 - (v) Toda expressão é um literal
 - (w) Todo termo é uma expressão
 - (x) Toda expressão é um termo
- 4. Indique se os itens abaixo são ou não variáveis, termos, funções, átomos, literais, fórmulas e expressões.
 - (a) z
 - (b) a
 - (c) $P \leftrightarrow Q$
 - (d) g(x, y, z)

- (e) p(x, y, z)
- (f) $\sim P$
- 5. Escreva uma fórmula equivalente usando o quantificador existencial \exists .
 - (a) $H_1 = (\forall x)P$
 - (b) $H_2 = \sim (\forall x)P$
 - (c) $H_3 = (\forall x) \sim P$
 - (d) $H_4 = \sim ((\forall x) \sim P)$
- 6. Considere a fórmula $(\forall y)((\exists x) \sim q(x) \land (\exists y)(\forall z)p(y,z))$. Qual é o escopo de
 - (a) $(\forall y)$
 - (b) $(\exists x)$
 - (c) $(\exists y)$
 - (d) $(\forall z)$
- 7. Indique o escopo de todos os quantificadores das fórmulas abaixo.
 - (a) $(\forall x)((\forall z)p(x,y,z) \leftrightarrow (\forall y)q(x,y,z))$
 - (b) $(\forall x)p(x,y,z) \to (\forall y)(\exists z)q(x,y,z)$
- 8. Indique se as ocorrências de variáveis nas fórmulas abaixo são livres ou ligadas.
 - (a) $(\forall x)((\forall z)p(x,y,z,w) \leftrightarrow (\forall y)q(x,y,z,z_1))$
 - (b) $(\forall x)(p(x,y,z_1) \rightarrow (\forall y)(\exists z)(q(w,x,y) \land (\forall w)r(w,x,z))$
- 9. Indique se as variáveis nas fórmulas da questão anterior são livres ou ligadas.
- 10. Encontre o fecho universal e o fecho existencial das fórmulas da questão anterior.

Referências Bibliográficas

- [1] João Nunes de Souza. Lógica para Ciência da Computação. Campus, Brasil, 1st edition, 2002.
- [2] João Nunes de Souza. Lógica para Ciência da Computação e Áreas Afins. Campus-Elsevier, Brasil, 3rd edition, 2014.