Sparse Equidistribution of Hyperbolic Orbifolds

Peter Humphries (joint with Asbjørn Nordentoft)

May 13, 2020

Structure of the Talk

- (1) A toy model: modular hyperbolæ
 - Equidistribution
 - Sparse equidistribution
- (2) Heegner Points and Closed Geodesics
 - Equidistribution
 - Sparse equidistribution
- (3) Hyperbolic Orbifolds
 - Equidistribution
 - Sparse equidistribution
 - Level aspect

Modular Hyperbolæ

Let q be a positive integer. For each $d \in (\mathbb{Z}/q\mathbb{Z})^{\times}$, we let $\overline{d} \in (\mathbb{Z}/q\mathbb{Z})^{\times}$ denote its modular inverse, so that $d\overline{d} \equiv 1 \pmod{q}$.

Definition

The modular hyperbola is the set

$$S_q := \left\{ \left(rac{d}{q}, rac{\overline{d}}{q}
ight) \in \mathbb{T}^2 : d \in (\mathbb{Z}/q\mathbb{Z})^ imes
ight\}.$$

Here $\mathbb{T}^2 := (\mathbb{R}/\mathbb{Z})^2$ is the (2-)torus.

Modular Hyperbolæ: Properties

Some properties of S_q :

- $\#S_q = \varphi(q)$,
- $(x_1, x_2) \in S_q$ iff $(x_2, x_1), (1 x_1, 1 x_2), (1 x_2, 1 x_1) \in S_q$
- ullet $\left(\frac{1}{q},\frac{1}{q}\right)\in \mathcal{S}_q$,
- $(x_1, x_2) \in S_q$ with $\frac{1}{q} < x_1 < \frac{1}{\sqrt{q}}$ only if $x_2 > \frac{1}{\sqrt{q}}$.

Modular Hyperbolæ: Limiting Behaviour

Question

What are the limiting statistical properties of $S_q \subset \mathbb{T}^2$ as $q \to \infty$?

The points $S_q\subset \mathbb{T}^2$ appear to behave just like random points on the torus.

Goal

Quantify the limiting behaviour of S_q as $q \to \infty$ in ways that are shared by *randomly chosen* points.

Theorem (Beck-Khan (2002), Zhang (1996))

As $q \to \infty$, the modular hyperbolæ S_q equidistribute on \mathbb{T}^2 .

Informally, the points S_q spread out randomly on \mathbb{T}^2 .

Equidistribution

Let M be a topological space and μ a probability measure on M. Let μ_n be a sequence of probability measures on M.

Definition

The probability measures μ_n equidistribute on M w.r.t. μ if

$$\lim_{n\to\infty}\mu_n(B)=\mu(B)$$

for every continuity set $B \subset M$ (boundary has μ -measure zero).

Equidistribution

Let M be a topological space and μ a probability measure on M. Let μ_n be a sequence of probability measures on M.

Definition

The probability measures μ_n equidistribute on M w.r.t. μ if

$$\lim_{n\to\infty}\int_M f(x)\,d\mu_n(x) = \int_M f(x)\,d\mu(x)$$

for all $f \in C_b(M)$ (continuous bounded).

Equidistribution

Definition

We define a probability measure μ_q on \mathbb{T}^2 by

$$\mu_q := \frac{1}{\varphi(q)} \sum_{x \in S_q} \delta_x.$$

So for $B \subset \mathbb{T}^2$ and $f : \mathbb{T}^2 \to \mathbb{C}$,

$$\mu_q(B) := \frac{\#(S_q \cap B)}{\varphi(q)},$$

$$\int_{\mathbb{T}^2} f(y) \, d\mu_q(y) := \frac{1}{\varphi(q)} \sum_{x \in S_q} f(x).$$

Theorem (Beck-Khan (2002), Zhang (1996))

As $q \to \infty$, the probability measures μ_q equidistribute on \mathbb{T}^2 with respect to the Lebesgue measure μ on \mathbb{T}^2 .

Theorem (Beck-Khan (2002), Zhang (1996))

As
$$q \to \infty$$
,

$$\frac{\#(S_q\cap B)}{\varphi(q)}\to \operatorname{vol}(B)$$

for every continuity set $B \subset \mathbb{T}^2$.

Theorem (Beck-Khan (2002), Zhang (1996))

As
$$q \to \infty$$
,

$$\frac{1}{\varphi(q)} \sum_{x \in S_q} f(x) \to \int_{\mathbb{T}^2} f(y) \, dy$$

for every continuous function f on \mathbb{T}^2 .

Proof of Equidistribution of Modular Hyperbolæ

Idea of proof: approximate $f \in C(\mathbb{T}^2)$ by linear combinations of exponentials.

Reduces problem to showing for each $(m, n) \in \mathbb{Z}^2$ that

$$\frac{1}{\varphi(q)}\sum_{(x_1,x_2)\in S_q}e\left(mx_1+nx_2\right)\to \int_{\mathbb{T}^2}e\left(mx_1+nx_2\right)\,dx_1\,dx_2.$$

Trivial if (m, n) = (0, 0). RHS is zero if $(m, n) \neq (0, 0)$.

LHS is $S(m, n; q)/\varphi(q)$, where

$$S(m, n; q) := \sum_{d \in (\mathbb{Z}/q\mathbb{Z})^{\times}} e\left(\frac{md + n\overline{d}}{q}\right)$$

is a Kloosterman sum. Result then follows from the Weil bound

$$S(m, n; q) \ll_{m,n} \tau(q) \sqrt{q}$$
.

Which *subsets* of S_q equidistribute?

Given a subset H_q of $(\mathbb{Z}/q\mathbb{Z})^{ imes}$ and letting

$$S_{H_q} := \left\{ \left(\frac{d}{q}, \frac{\overline{d}}{q} \right) \in \mathbb{T}^2 : d \in H_q \right\},$$

form the probability measure

$$\mu_{H_q} := \frac{1}{\# H_q} \sum_{x \in S_{H_q}} \delta_x.$$

Question

What conditions on H_q ensure that the probability measures μ_{H_q} equidistribute on \mathbb{T}^2 ?

We cannot expect equidistribution for arbitrary subsets: if we take $H_q = \{a \in (\mathbb{Z}/q\mathbb{Z})^{\times} : a \leq q/2\}$, then

$$\mu_{H_q}\left(\left\{(x_1,x_2)\in\mathbb{T}^2:x_2>\frac{1}{2}
ight\}
ight)=0
eq rac{1}{2}.$$

Conjecture

If H_q has an algebraic structure, then μ_{H_q} equidistributes on \mathbb{T}^2 provided that $\#H_q > q^{\delta}$ for some fixed $\delta > 0$.

Here *algebraic* structure is with respect to the group structure of $(\mathbb{Z}/q\mathbb{Z})^{\times}$, namely we only consider cosets aH_q with $a \in (\mathbb{Z}/q\mathbb{Z})^{\times}$ and H_q a subgroup of $(\mathbb{Z}/q\mathbb{Z})^{\times}$.

Theorem (H. (2020))

Fix $\delta > 0$. For each positive cubefree integer q, pick a subgroup H_q of $(\mathbb{Z}/q\mathbb{Z})^{\times}$ and an associated coset $aH_q \subset (\mathbb{Z}/q\mathbb{Z})^{\times}$ for which $\#H_q \gg q^{\frac{1}{2}+\delta}$. Then the probability measures μ_{aH_q} equidistribute on \mathbb{T}^2 as q tends to infinity.

Sketch of proof.

By character orthogonality,

$$\begin{split} \int_{\mathbb{T}^2} e(mx_1 + nx_2) \, d\mu_{aH_q}(x_1, x_2) \\ &= \frac{1}{\varphi(q)} \sum_{\substack{\chi \pmod{q} \\ \chi \mid H_q = 1}} \overline{\chi}(a) \sum_{d \in (\mathbb{Z}/q\mathbb{Z})^{\times}} \chi(d) e\left(\frac{md + n\overline{d}}{q}\right). \end{split}$$

The sum over $d \in (\mathbb{Z}/q\mathbb{Z})^{\times}$ is the twisted Kloosterman sum $S_{\chi}(m, n; q)$, which satisfies the Weil bound $S_{\chi}(m, n; q) \leq \tau(q) \sqrt{(m, n, q)q}$.

The number of characters χ modulo q for which $\chi|_{H_q}=1$ is $\varphi(q)/\# H_q$.

So this is o(1) for fixed $(m, n) \neq (0, 0)$ if $\#H_a \gg q^{1/2+\delta}$.

Theorem (H. (2020))

Fix $\delta > 0$. For each prime q, pick a subgroup H_q of $(\mathbb{Z}/q\mathbb{Z})^{\times}$ and an associated coset $aH_q \subset (\mathbb{Z}/q\mathbb{Z})^{\times}$ for which $\#H_q \gg q^{\delta}$. Then the probability measures μ_{aH_q} equidistribute on \mathbb{T}^2 as q tends to infinity.

The proof relies on deep bounds for exponential sums due to Bourgain, which require that q be prime.

Binary Quadratic Forms

Definition

An integral binary quadratic form Q is a homogeneous polynomial

$$Q(x,y) = ax^2 + bxy + cy^2$$

for which $a, b, c \in \mathbb{Z}$.

For brevity, we write Q = [a, b, c].

- The discriminant of Q is $b^2 4ac$.
- Q is primitive if (a, b, c) = 1.
- Q is positive definite if D < 0 and a, c > 0.

Let *D* be a fundamental discriminant.

We let Q_D denote the set of primitive integral binary quadratic forms of discriminant D that are positive definite if D < 0.

Binary Quadratic Forms and Narrow Ideal Classes

The group $\Gamma := \operatorname{SL}_2(Z) \ni \gamma$ acts on \mathcal{Q}_D via

$$(\gamma \cdot Q)(x,y) := Q\left(\gamma \begin{pmatrix} x \\ y \end{pmatrix}\right).$$

Proposition

The set $\Gamma \setminus Q_D$ is isomorphic to the narrow class group Cl_D^+ of the quadratic field $\mathbb{Q}(\sqrt{D})$.

$$Q = [a, b, c] \mapsto \begin{cases} \frac{-b + \sqrt{D}}{2a} \mathbb{Z} + \mathbb{Z} & \text{if } a > 0, \\ \frac{b + \sqrt{D}}{-2a} \mathbb{Z} + \mathbb{Z} & \text{if } a < 0, \end{cases}$$

$$\mathfrak{a} = w \mathbb{Z} + \mathbb{Z} \mapsto \frac{\mathsf{N}(x - wy)}{\mathsf{N}(\mathfrak{a})}, \qquad w \in \mathbb{Q}(\sqrt{D}), \ w > \sigma(w).$$

Heegner Points

Let D < 0. For each $Q = [a, b, c] \in \mathcal{Q}_D$, define the point

$$z_Q := rac{-b+i\sqrt{-D}}{2a} \in \mathbb{H}.$$

The orbit $\{\Gamma z_Q\}$ is a countable collection of points in \mathbb{H} associated to the equivalence class $\Gamma Q \in \Gamma \backslash \mathcal{Q}_D$, or equivalently a single point on the modular surface $\Gamma \backslash \mathbb{H}$.

We call such a point a *Heegner point* or *CM point*. We let $z_A \in \Gamma \backslash \mathbb{H}$ denote such a point associated to an ideal class $A \in \mathsf{Cl}_D$, or equivalently an element ΓQ of $\Gamma \backslash \mathcal{Q}_D$.

For each D < 0, there are h_D such points, where $h_D := \# \operatorname{Cl}_D$ is the class number of $\mathbb{Q}(\sqrt{D})$. By the class number formula, the number of Heegner points is $\approx \sqrt{-D}$.

Closed Geodesics

Let D > 0. For each $Q = [a, b, c] \in \mathcal{Q}_D$, define the geodesic

$$\mathcal{C}_Q := \left\{ z \in \mathbb{H} : a|z|^2 + b\Re(z) + c = 0
ight\} \subset \mathbb{H}.$$

The orbit $\{\Gamma C_Q\}$ is a countable collection of geodesics in \mathbb{H} associated to the equivalence class $\Gamma Q \in \Gamma \setminus Q_D$, or equivalently a single closed geodesic on the modular surface $\Gamma \setminus \mathbb{H}$.

We let $C_A \in \Gamma \backslash \mathbb{H}$ denote such a closed geodesic associated to an ideal class $A \in \mathsf{Cl}_D^+$, or equivalently an element ΓQ of $\Gamma \backslash \mathcal{Q}_D$.

For each D>0, there are h_D^+ such closed geodesics, where $h_D^+:=\#\operatorname{Cl}_D^+$ is the narrow class number of $\mathbb{Q}(\sqrt{D})$. Each has length $2\log\epsilon_D$, where ϵ_D is the least totally positive unit in $\mathbb{Q}(\sqrt{D})$. By the class number formula, the sum of lengths of closed geodesics is $\approx \sqrt{D}$.

Heegner Points and Closed Geodesics: Limiting Behaviour

Question

What are the limiting statistical properties of Heegner points and closed geodesics as $D \to \pm \infty$?

Heegner points appear to behave just like *random* points on $\Gamma \setminus \mathbb{H}$. Closed geodesics appear to behave just like *random* curves on $\Gamma \setminus \mathbb{H}$.

Goal

Quantify the limiting behaviour of Heegner points and closed geodesics as $D \to \pm \infty$ in ways that are shared by *randomly chosen* points and curves.

Equidistribution of Heegner Points

Definition

For D < 0, we define a probability measure μ_D on $\Gamma \backslash \mathbb{H}$ by

$$\mu_D(B) := rac{\#\{A \in \mathsf{Cl}_D : z_A \in B\}}{h_D} \quad ext{for } B \subset \Gamma ackslash \mathbb{H},$$
 $\int_{\Gamma ackslash \mathbb{H}} f(z) \, d\mu_D(z) := rac{1}{h_D} \sum_{A \in \mathsf{Cl}_D} f(z_A) \quad ext{for } f : \Gamma ackslash \mathbb{H} o \mathbb{C}.$

By the class number formula,

$$h_D = \frac{\omega_D}{2\pi} \sqrt{D} L(1, \chi_D).$$

Equidistribution of Closed Geodesics

Definition

For D > 0, we define a probability measure μ_D on $\Gamma \backslash \mathbb{H}$ by

$$\mu_D(B) := rac{\sum_{A \in \mathsf{Cl}_D^+} \ell(\mathcal{C}_A \cap B)}{2h_D^+ \log \epsilon_D} \quad ext{for } B \subset \Gamma ackslash \mathbb{H}, \ \int_{\Gamma ackslash \mathbb{H}} f(z) \, d\mu_D(z) := rac{1}{2h_D^+ \log \epsilon_D} \sum_{A \in \mathsf{Cl}_D^+} \int_{\mathcal{C}_A} f(z) \, ds \quad ext{for } f : \Gamma ackslash \mathbb{H} o \mathbb{C}.$$

Here $\ell(\mathcal{C}) := \int_{\mathcal{C}} ds$ with $ds^2 = y^{-2} dx^2 + y^{-2} dy^2$ the length element on \mathbb{H} .

By the class number formula,

$$\sum_{A \in \mathsf{Cl}_D^+} \ell(\mathcal{C}_A) = 2h_D^+ \log \epsilon_D = 2\sqrt{D}L(1,\chi_D).$$

Equidistribution of Heegner Points and Closed Geodesics

Theorem (Duke (1988))

(1) As $D \to -\infty$ along negative fundamental discriminants, the probability measures μ_D equidistribute on $\Gamma \backslash \mathbb{H}$ with respect to the normalised Haar measure $\frac{1}{\mathrm{vol}(\Gamma \backslash \mathbb{H})} d\mu = \frac{3}{\pi} \frac{dx \, dy}{y^2}$ on $\Gamma \backslash \mathbb{H}$.

(2) As $D \to \infty$ along positive fundamental discriminants, the probability measures μ_D equidistribute on $\Gamma \backslash \mathbb{H}$ with respect to the normalised Haar measure $\frac{1}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} d\mu = \frac{3}{\pi} \frac{dx \, dy}{y^2}$ on $\Gamma \backslash \mathbb{H}$.

Equidistribution of Heegner Points and Closed Geodesics

Theorem (Duke (1988))

(1) As $D \to -\infty$ along negative fundamental discriminants,

$$\frac{\#\{A\in\mathsf{Cl}_D:z_A\in B\}}{h_D}\to\frac{\mathrm{vol}(B)}{\mathrm{vol}(\Gamma\backslash\mathbb{H})}$$

for every continuity set $B \subset \Gamma \backslash \mathbb{H}$.

(2) As $D \to \infty$ along positive fundamental discriminants,

$$\frac{\sum_{A \in \mathsf{Cl}_D^+} \ell(\mathcal{C}_A \cap B)}{2h_D^+ \log \epsilon_D} \to \frac{\operatorname{vol}(B)}{\operatorname{vol}(\Gamma \backslash \mathbb{H})}$$

for every continuity set $B \subset \Gamma \backslash \mathbb{H}$.

Equidistribution of Heegner Points and Closed Geodesics

Theorem (Duke (1988))

(1) As $D \to -\infty$ along negative fundamental discriminants,

$$\frac{1}{h_D} \sum_{A \in \mathsf{Cl}_D} f(z_A) \to \frac{1}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} \int_{\Gamma \backslash \mathbb{H}} f(z) \, d\mu(z)$$

for every continuous bounded function f on $\Gamma \backslash \mathbb{H}$.

(2) As $D \to \infty$ along positive fundamental discriminants,

$$\frac{1}{2h_D^+\log\epsilon_D}\sum_{A\in\mathsf{Cl}_D^+}\int_{\mathcal{C}_A}f(z)\,ds\to\frac{1}{\mathrm{vol}(\Gamma\backslash\mathbb{H})}\int_{\Gamma\backslash\mathbb{H}}f(z)\,d\mu(z)$$

for every continuous bounded function f on $\Gamma\backslash\mathbb{H}$.

Proof of Equidistribution: Reduction to Weyl Sums

Idea of proof: approximate $f \in C_b(\Gamma \backslash \mathbb{H})$ by linear combinations of the constant function, Maaß cusp forms, and (direct integrals of) Eisenstein series.

Reduces problem to showing for each Maaß cusp form f and each $t \in \mathbb{R}$ that the following Weyl sums are $O(D^{1/2-\delta})$ for some $\delta > 0$:

$$W_{D,f} := \begin{cases} \sum_{A \in \mathsf{Cl}_D} f(z_A) & \text{for } D < 0, \\ \sum_{A \in \mathsf{Cl}_D^+} \int_{\mathcal{C}_A} f(z) \, ds & \text{for } D > 0, \end{cases}$$

$$W_{D,t} := \begin{cases} \sum_{A \in \mathsf{Cl}_D^+} E\left(z_A, \frac{1}{2} + it\right) & \text{for } D < 0, \\ \sum_{A \in \mathsf{Cl}_D^+} \int_{\mathcal{C}_A} E\left(z, \frac{1}{2} + it\right) \, ds & \text{for } D > 0. \end{cases}$$

Proof of Equidistribution: Period Formulæ

Proposition (Waldspurger (1985))

We have that

$$|W_{D,f}|^2 \approx \sqrt{D} \frac{L\left(\frac{1}{2}, f\right) L\left(\frac{1}{2}, f \otimes \chi_D\right)}{L(1, \operatorname{sym}^2 f)},$$
$$|W_{D,t}|^2 \approx \sqrt{D} \left| \frac{\zeta\left(\frac{1}{2} + it\right) L\left(\frac{1}{2} + it, \chi_D\right)}{\zeta(1 + 2it)} \right|^2.$$

Proof of Equidistribution: Subconvexity

Proposition (Iwaniec (1987))

There exists some $\delta > 0$ such that

$$L\left(\frac{1}{2}, f \otimes \chi_D\right) \ll_f |D|^{\frac{1}{2}-\delta},$$

$$L\left(\frac{1}{2} + it, \chi_D\right) \ll_t |D|^{\frac{1}{4}-\frac{\delta}{2}}.$$

Subconvex bound: trivial bounds $O_{\varepsilon}(|D|^{1/2+\varepsilon})$ and $O_{\varepsilon}(|D|^{1/4+\varepsilon})$ are the analogue of the bound $\zeta(1/2+it) \ll_{\varepsilon} (|t|+1)^{1/4+\varepsilon}$ due to the Phragmen–Lindelöf convexity principle.

Conrey–Iwaniec (2000): one can take any $\delta < \frac{1}{6}$.

Generalised Lindelöf hypothesis: one can take any $\delta < \frac{1}{2}$.

Which *subsets* of Heegner points and closed geodesics equidistribute?

For a subset H of Cl_D^+ , define the probability measure μ_H by

$$\mu_H(B) := \begin{cases} \frac{\#\{A \in H : z_A \in B\}}{\#H} & \text{for } D < 0, \\ \frac{\sum_{A \in H} \ell(\mathcal{C}_A \cap B)}{2\#H \log \epsilon_D} & \text{for } D > 0. \end{cases}$$

Question

What conditions on $H \subset \operatorname{Gl}_D^+$ ensure that the probability measures μ_H equidistribute on $\Gamma \backslash \mathbb{H}$?

Proposition (Aka-Einsiedler (2016))

If D > 0 and $\#H \log D/h_D^+ \to \infty$, then the probability measures μ_H equidistribute on $\Gamma \backslash \mathbb{H}$.

Proposition (Bourgain-Kontorovich (2018))

If D>0, then for each $\delta>0$, there exist subsets H of Cl_D^+ for which $\#H\,D^{-\delta}/h_D^+\to\infty$ but the probability measures μ_H do not equidistribute on $\Gamma\backslash\mathbb{H}$.

Sparse Equidistribution

We cannot expect sparse equidistribution for arbitrary subsets; we need H to have an *algebraic* structure, so that we consider cosets CH with $C \in Cl_D^+$ and H a subgroup of Cl_D^+ .

Conjecture (Michel-Venkatesh (2006))

Fix $0 \le \delta < \frac{1}{2}$.

- (1) For each negative fundamental discriminant D<0, let CH be a coset of Cl_D with $\#H\gg (-D)^{-\delta}h_D$. Then the probability measures μ_H equidistribute on $\Gamma\backslash\mathbb{H}$.
- (2) For each positive fundamental discriminant D>0, let CH be a coset of Cl_D^+ with $\#H\gg D^{-\delta}h_D^+$. Then the probability measures μ_H equidistribute on $\Gamma\backslash\mathbb{H}$.

Sparse Equidistribution

Theorem (Michel-Venkatesh (2006))

The conjecture is true in the range $\delta < \frac{1}{4}$ under the assumption of the generalised Lindelöf hypothesis.

Theorem (Harcos-Michel (2006))

The conjecture is true unconditionally in the range $\delta < \frac{1}{23042} \approx 0.00004$.

Hyperbolic Orbifolds

When D>0 is a fundamental discriminant, there is another geometric invariant associated to each narrow ideal class $A\in \operatorname{Cl}_D^+$, or equivalently each equivalence class of binary quadratic forms $\Gamma Q\in \Gamma \backslash \mathcal{Q}_D$.

Theorem (Duke-Imamoglu-Tóth (2016))

- Associated to each $A \in \mathsf{Cl}_D^+$ is a thin subgroup Γ_A of Γ , a Fuchsian group of the second kind.
- Let $\mathcal{N}_A \subset \mathbb{H}$ be the Nielsen region of Γ_A : the smallest nonempty Γ_A -invariant open convex subset of \mathbb{H} . Then $\Gamma_A \backslash \mathcal{N}_A$ is a hyperbolic orbifold (hyperbolic Riemann surface with signature).
- The boundary of $\Gamma_A \backslash \mathcal{N}_A$ is a simple closed geodesic whose image in $\Gamma \backslash \mathbb{H}$ is the closed geodesic \mathcal{C}_A .

Hyperbolic Orbifolds: Limiting Behaviour

Question

What are the limiting statistical properties of hyperbolic orbifolds as $D \to \infty$?

Hyperbolic orbifolds appear to behave just like random covers of $\Gamma \backslash \mathbb{H}$.

Goal

Quantify the limiting behaviour of hyperbolic orbifolds as $D \to \infty$ in ways that are shared by *randomly chosen* covers of $\Gamma \backslash \mathbb{H}$.

Definition

For D > 0, we define a probability measure μ_D on $\Gamma \backslash \mathbb{H}$ by

$$\mu_D(B) := \frac{\sum_{A \in \mathsf{Cl}_D^+} \mathsf{vol}(\mathsf{\Gamma}_A \backslash \mathcal{N}_A \cap B)}{\sum_{A \in \mathsf{Cl}_D^+} \mathsf{vol}(\mathsf{\Gamma}_A \backslash \mathcal{N}_A)} \quad \text{for } B \subset \mathsf{\Gamma} \backslash \mathbb{H},$$

$$\int_{\mathsf{\Gamma} \backslash \mathbb{H}} f(z) \, d\mu_D(z) := \frac{1}{\sum_{A \in \mathsf{Cl}_D^+} \mathsf{vol}(\mathsf{\Gamma}_A \backslash \mathcal{N}_A)} \sum_{A \in \mathsf{Cl}_D^+} \int_{\mathsf{\Gamma}_A \backslash \mathcal{N}_A} f(z) \, d\mu(z)$$

$$\quad \text{for } f : \mathsf{\Gamma} \backslash \mathbb{H} \to \mathbb{C}.$$

We have the bounds

$$\frac{\log \epsilon_D}{\log D} \ll \operatorname{vol}(\Gamma_A \backslash \mathcal{N}_A) \ll \log \epsilon_D,$$

so that by the class number formula,

$$D^{\frac{1}{2}-\varepsilon} \ll_{\varepsilon} \sum_{A \in \mathsf{Cl}_D^+} \mathrm{vol}(\Gamma_A \backslash \mathcal{N}_A) \ll \sqrt{D} \log D.$$

Theorem (Duke-Imamoglu-Tóth (2016))

As $D \to \infty$ along positive fundamental discriminants, the probability measures μ_D equidistribute on $\Gamma \setminus \mathbb{H}$ with respect to the normalised Haar measure $\frac{1}{\operatorname{vol}(\Gamma \setminus \mathbb{H})} d\mu = \frac{3}{\pi} \frac{d \times d y}{v^2}$ on $\Gamma \setminus \mathbb{H}$.

Theorem (Duke-Imamoglu-Tóth (2016))

As $D o \infty$ along positive fundamental discriminants,

$$\frac{\sum_{A \in \mathsf{CI}_D^+} \mathrm{vol}(\Gamma_A \backslash \mathcal{N}_A \cap B)}{\sum_{A \in \mathsf{CI}_D^+} \mathrm{vol}(\Gamma_A \backslash \mathcal{N}_A)} \to \frac{\mathrm{vol}(B)}{\mathrm{vol}(\Gamma \backslash \mathbb{H})}$$

for every continuity set $B \subset \Gamma \backslash \mathbb{H}$.

Theorem (Duke-Imamoglu-Tóth (2016))

As $D \to \infty$ along positive fundamental discriminants,

$$\frac{1}{\sum_{A \in \mathsf{Cl}_D^+} \mathsf{vol}(\Gamma_A \backslash \mathcal{N}_A)} \sum_{A \in \mathsf{Cl}_D^+} \int_{\Gamma_A \backslash \mathcal{N}_A} f(z) \, d\mu(z) \\
\rightarrow \frac{1}{\mathsf{vol}(\Gamma \backslash \mathbb{H})} \int_{\Gamma \backslash \mathbb{H}} f(z) \, d\mu(z)$$

for every continuous bounded function $f: \Gamma \backslash \mathbb{H} \to \mathbb{C}$.

Proof of Equidistribution of Hyperbolic Orbifolds

Idea of proof: approximate $f \in C_b(\Gamma \backslash \mathbb{H})$ by linear combinations of the constant function, Maaß cusp forms, and (direct integrals of) Eisenstein series.

Reduces problem to showing for each Maaß cusp form f and each $t \in \mathbb{R}$ that the following Weyl sums are $O(D^{1/2-\delta})$ for some $\delta > 0$:

$$egin{aligned} W_{D,f} &:= \sum_{A \in \mathsf{Cl}_D^+} \int_{\Gamma_A \setminus \mathcal{N}_A} f(z) \, d\mu(z), \ W_{D,t} &:= \sum_{A \in \mathsf{Cl}_D^+} \int_{\Gamma_A \setminus \mathcal{N}_A} E\left(z, rac{1}{2} + it
ight) \, d\mu(z). \end{aligned}$$

Proof of Equidistribution of Hyperbolic Orbifolds

Lemma

For each Maaß cusp form f and each $t \in \mathbb{R}$,

$$W_{D,f}=W_{D,t}=0.$$

Idea of proof.

The pair of hyperbolic orbifolds $\Gamma_A \backslash \mathcal{N}_A$ and $\Gamma_{JA^{-1}} \backslash \mathcal{N}_{JA^{-1}}$ cover $\Gamma \backslash \mathbb{H}$ evenly, where $J = (\sqrt{D}) \in \mathsf{Cl}_D^+$.

Corollary

Equidistribution is trivial!

Which *subsets* of hyperbolic orbifolds equidistribute?

For an element C of Cl_D^+ and a subgroup H of Cl_D^+ , define the probability measure μ_{CH} on $\Gamma \backslash \mathbb{H}$ by

$$\mu_{CH}(B) := \frac{\sum_{A \in CH} \operatorname{vol}(\Gamma_A \backslash \mathcal{N}_A \cap B)}{\sum_{A \in CH} \operatorname{vol}(\Gamma_A \backslash \mathcal{N}_A)} \quad \text{for } B \subset \Gamma \backslash \mathbb{H},$$

$$\int_{\Gamma \backslash \mathbb{H}} f(z) \, d\mu_{CH}(z) := \frac{1}{\sum_{A \in CH} \operatorname{vol}(\Gamma_A \backslash \mathcal{N}_A)} \sum_{A \in CH} \int_{\Gamma_A \backslash \mathcal{N}_A} f(z) \, d\mu(z)$$

$$\text{for } f : \Gamma \backslash \mathbb{H} \to \mathbb{C}.$$

We have the bounds

$$\frac{\#H}{h_D^+}D^{\frac{1}{2}-\varepsilon} \ll_{\varepsilon} \sum_{A \in \mathsf{Cl}_D^+} \mathrm{vol}(\Gamma_A \backslash \mathcal{N}_A) \ll \frac{\#H}{h_D^+} \sqrt{D} \log D.$$

Take $H = (CI_D^+)^2$ to be the subgroup of CI_D^+ for which every narrow ideal class is a square. A coset CH is a genus in the group of genera $Gen_D := CI_D^+/(CI_D^+)^2$.

Theorem (Duke-Imamoglu-Tóth (2016))

As $D \to \infty$ along positive fundamental discriminants, the probability measures μ_{CH} equidistribute on $\Gamma \backslash \mathbb{H}$ with respect to the normalised Haar measure $\frac{1}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} d\mu = \frac{3}{\pi} \frac{dx \, dy}{y^2}$ on $\Gamma \backslash \mathbb{H}$.

Nontrivial!

Proof of Sparse Equidistribution

Need to show for each Maa β cusp form f that

$$\sum_{A\in CH}\int_{\Gamma_A\setminus\mathcal{N}_A} f(z)\,d\mu(z) = o_f\left(\sum_{A\in CH}\operatorname{vol}(\Gamma_A\setminus\mathcal{N}_A)\right).$$

(Similarly for Eisenstein series.)

By character orthogonality, LHS is

$$\frac{\#H}{h_D^+} \sum_{\substack{\chi \in \widehat{\mathsf{Cl}}_D^+ \\ \chi|_{\mathcal{H}} = 1}} \overline{\chi}(C) \sum_{A \in \mathsf{Cl}_D^+} \chi(A) \int_{\Gamma_A \setminus \mathcal{N}_A} f(z) \, d\mu(z),$$

while RHS is $\approx \frac{\#H}{h_D^+} \sqrt{D}$.

Number of characters $\chi \in \widehat{\operatorname{Cl}}_D^+$ for which $\chi|_H = 1$ is $h_D^+/\#H$.

Proof of Sparse Equidistribution

Corollary

Equidistribution follows from the bound

$$W_{\chi,f} := \sum_{A \in \mathsf{Cl}_D^+} \chi(A) \int_{\Gamma_A \setminus \mathcal{N}_A} f(z) \, d\mu(z) = O_f\left(\frac{\#H}{h_D^+} D^{\frac{1}{2} - \delta}\right)$$

uniformly for $\chi \in \widehat{\operatorname{Cl}}_D^+$ for which $\chi|_H = 1$.

Problem is hardest when #H is very small compared to h_D^+ . For $H=(\operatorname{Cl}_D^+)^2$, we have that $\#H/h_D^+=2^{1-\omega(D)}\gg_\varepsilon D^{-\varepsilon}$. Not very sparse!

So we need to show that there exists $\delta>0$ such that $|W_{\chi,f}|^2\ll_f D^{1-\delta}$.

Proof of Sparse Equidistribution

For $H=(\operatorname{Cl}_D^+)^2$, each $\chi\in\operatorname{Cl}_D^+$ for which $\chi|_H=1$ is a *genus* character associated to a factorisation $D=D_1D_2$ and a pair of quadratic Dirichlet characters χ_1,χ_2 modulo D_1,D_2 .

Lemma (Duke-Imamoglu-Tóth (2016))

For each $\chi \in \widehat{\operatorname{Cl}}_D^+$ for which $\chi|_H = 1$, we have that

$$|W_{\chi,f}|^2 \approx \sqrt{D} \frac{L\left(\frac{1}{2}, f \otimes \chi_1\right) L\left(\frac{1}{2}, f \otimes \chi_2\right)}{L(1, \operatorname{sym}^2 f)}.$$

Proof of sparse equidistribution.

Input Iwaniec's subconvex bound

$$L\left(\frac{1}{2},f\otimes\chi_1\right)\ll_f D_1^{\frac{1}{2}-\delta},\qquad L\left(\frac{1}{2},f\otimes\chi_2\right)\ll_f D_2^{\frac{1}{2}-\delta}.$$

Sparser Equidistribution

Question

Can one prove sparse equidistribution for cosets other than genera?

Conjecture (à la Michel-Venkatesh)

As $D \to \infty$ along positive fundamental discriminants, the probability measures μ_{CH} equidistribute on $\Gamma \backslash \mathbb{H}$ with respect to the normalised Haar measure $\frac{1}{\mathrm{vol}(\Gamma \backslash \mathbb{H})} d\mu = \frac{3}{\pi} \frac{dx \ dy}{y^2}$ on $\Gamma \backslash \mathbb{H}$ provided that $\#H \gg D^{-\delta} h_D^+$ for some fixed $\delta < \frac{1}{2}$.

Theorem (H.-Nordentoft (2020+))

The conjecture holds in the range

- (1) $\delta < \frac{625}{3309568} \approx 0.0001888$ unconditionally,
- (2) $\delta < \frac{1}{4}$ assuming the generalised Lindelöf hypothesis.

Proof of Sparser Equidistribution

We need to show

$$W_{\chi,f} := \sum_{A \in \mathsf{Cl}_D^+} \chi(A) \int_{\Gamma_A \setminus \mathcal{N}_A} f(z) \, d\mu(z) = O_f\left(\frac{\#H}{h_D^+} D^{\frac{1}{2} - \delta}\right)$$

uniformly for $\chi \in \widehat{\mathrm{Cl}_D^+}$ for which $\chi|_H = 1$.

The method of Duke–Imamoglu–Tóth's proof for $H = (Cl_D^+)^2$ relies on the fact that each χ is a genus character. For such χ ,

$$W_{\chi,f} \approx D^{\frac{3}{4}}b(D_1)b(D_2)$$

where b(n) denotes the n-th Fourier coefficient of the Katok–Sarnak lift of f, a Maaß form of weight 1/2. Then work of Waldspurger in an explicit form due to Baruch and Mao shows that $|b(D_i)|^2 \approx |D_i|^{-1}L(1/2, f \otimes \chi_i)$.

Proof of Sparser Equidistribution

Method fails when χ is not a genus character. Nonetheless. . .

Lemma (H.-Nordentoft (2020+))

We have that

$$|W_{\chi,f}|^2 \approx \sqrt{D} \frac{L\left(\frac{1}{2}, f \otimes \Theta_{\chi}\right)}{L(1, \operatorname{sym}^2 f)}.$$

Here Θ_{χ} is the theta series associated to χ : it is a Maaß form of weight 0, Laplacian eigenvalue 1/4, level D, and nebentypus χ_{D} .

Proof of sparser equidistribution.

Input the Michel-Harcos subconvex bound

$$L\left(\frac{1}{2}, f \otimes \Theta_{\chi}\right) \ll_{f,\varepsilon} D^{1-\frac{625}{3309568}+\varepsilon}.$$

Assuming Lindelöf, we instead have $O_{f,\varepsilon}(D^{\varepsilon})$.

Weyl Sums

The identity for $|W_{\chi,f}|^2$ proceeds in several steps:

(1) We show that

$$W_{\chi,f} pprox \sum_{A \in \mathsf{CI}_D^+} \chi(A) \int_{\mathcal{C}_A} (R_0 f)(z) \, \frac{dz}{\Im(z)},$$

where the weight k raising operator is

$$R_k := \frac{k}{2} + (z - \overline{z}) \frac{\partial}{\partial z}.$$

Weyl Sums

The identity for $|W_{\chi,f}|^2$ proceeds in several steps:

(2) We express this cycle integral adèlically as a period integral,

$$\mathscr{P}_{\Omega}(\phi) := \int\limits_{\mathbb{A}_{\mathbb{Q}}^{\times} E^{\times} \setminus \mathbb{A}_{E}^{\times}} \phi(x) \Omega^{-1}(x) dx,$$

where $E=\mathbb{Q}(\sqrt{D}),\ \Omega:\mathbb{A}_E^{\times}\to\mathbb{C}^{\times}$ is the idèlic lift of the character χ , and $\phi:\mathrm{GL}_2(\mathbb{A}_\mathbb{Q})\to\mathbb{C}$ is the adèlic lift of the weight 2 automorphic form R_0f .

Weyl Sums

The identity for $|W_{\chi,f}|^2$ proceeds in several steps:

(3) We use Waldspurger's formula, in an explicit form due to Martin and Whitehouse (and with additional modifications of our own) to express $|\mathscr{P}_{\Omega}(\phi)|^2$ in terms of $L(1/2, f \otimes \Theta_{\chi})$.

Level-Aspect Equidistribution

In ongoing work, we are investigating a related problem: sparse equidistribution in the level aspect.

Theorem? (H.-Nordentoft (2020++))

Let D be a positive fundamental discriminant. For each positive squarefree integer q for which every prime dividing q splits in $\mathbb{Q}(\sqrt{D})$, there exists a hyperbolic orbifold of level q, $\Gamma_A(q)\backslash\mathcal{N}_A(q)$, associated to each ideal class $A\in\mathsf{Cl}_D^+$.

Previously, Heegner points of level q and closed geodesics of level q have been constructed; one replaces Γ with $\Gamma_0(q)$.

Question

Do these hyperbolic orbifolds equidistribute in the level aspect on $\Gamma_0(q)\backslash\mathbb{H}$?

Hybrid problem: q and D both varying!

Level-Aspect Equidistribution

We partition $\Gamma_0(q)\backslash \mathbb{H}$ into $q\prod_{p|q}(1+p^{-1})$ translates of $\Gamma\backslash \mathbb{H}$:

$$\Gamma_0(q)\backslash \mathbb{H} = \bigcup_{\omega_q \in \Gamma/\Gamma_0(q)} \omega_q^{-1} \Gamma \backslash \mathbb{H}.$$

As q grows, the volume of each translate is constant, whereas $vol(\Gamma_0(q)\backslash \mathbb{H}) \gg q$: sparse equidistribution in the level aspect.

Level-Aspect Equidistribution

For simplicity, take $H = (Cl_D^+)$, so that CH is a genus.

Theorem? (H.-Nordentoft (2020++))

Fix $\delta \geq 0$. Let D be a positive fundamental discriminant and let q be a positive squarefree integer with $q \leq D^{\delta}$ and such that every prime dividing q splits in E. For each such q, choose $\omega_q \in \Gamma/\Gamma_0(q)$. Then as $qD \to \infty$,

$$\frac{\operatorname{vol}(\Gamma_0(q) \backslash \mathbb{H})}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} \frac{\sum_{A \in \mathit{CH}} \operatorname{vol}(\Gamma_A(q) \backslash \mathcal{N}_A(q) \cap \Gamma_0(q) \omega_q^{-1} \Gamma \backslash \mathbb{H})}{\sum_{A \in \mathit{CH}} \operatorname{vol}(\Gamma_A(q) \backslash \mathcal{N}_A(q))} \to 1$$

for $\delta<\frac{1}{12}$ unconditionally and for $\delta<\frac{1}{4}$ assuming the generalised Lindelöf hypothesis.

Thank you!