			-		1					(10 - TE
Reg. No.		(ele			Page 1			13173			
0	130		I GETA	150	133						

B.Tech. / M.Tech (Integrated) DEGREE EXAMINATION, JULY 2023

Second Semester

21MAB102T - ADVANCED CALCULUS AND COMPLEX ANALYSIS

(For the candidates admitted from the academic year 2022-2023)

Note:

- (i) Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B and Part C should be answered in answer booklet.

Time: 3 Hours

Max. Marks: 75

CO PO

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

1. Evaluation of $\int_{0}^{\pi \pi} \int_{0}^{\pi} d\theta d\phi$ is

(A) 1

(B) 0

(C) $\pi/2$

(D) π^2

2. The area of an ellipse is

- (A) πr^2
- (B) $\pi a^2 b$

(C) πab

(D) πab^2

3. If R is the region bounded by x=0, y=0, x+y=1 then $\iint_R dxdy$ is equal to

1 2 1

(A) 1

(B) 1

(C) $\frac{1}{3}$

(D) $\frac{2}{3}$

4. Area of the double integral in polar coordinates is equal to

1 2 1 2

(A) $\iint dr d\theta$

(B) $\iint r^2 dr d\theta$

(C) $\iint\limits_R (r+1) dr d\theta$

(D) $\iint_{R} r dr d\theta$

5. If r is the position vector of the point (x,y,z) with respect to the origin then $\begin{bmatrix} 1 & 2 & 2 \\ & & 2 \end{bmatrix}$

 $\nabla \cdot \vec{r}$ (A) 2

(B) 3

(C) 0

(D) 1

6. The unit vector normal to the surface $x^2 + y^2 - z^2 = 1$ at (1,1,1) is

1 2 2

(A) $\vec{i} + \vec{j} - \vec{k} / \sqrt{3}$

(B) $2\vec{i} + 2\vec{j} - 2\vec{k} / \sqrt{2}$

 $(C) \quad \frac{3\vec{i} + 3\vec{j} - 3\vec{k}}{2\sqrt{3}}$

(D) $\frac{\vec{i} + \vec{j} - \vec{k}}{3\sqrt{2}}$

7.	If φ (A) (C)	is a scalar point function then cur Solenoidal Constant		dφ) is Irrotational 0	_1	2	2	1
8.	If th	e value of $\int \vec{F} \cdot d\vec{r}$ does not depend	nd on	the curve C but only on terminal	1	2	2	1
	poin (A) (C)	ts A and B then \vec{F} is called Solenoidal vector Conservative vector	(B) (D)	Irrotational vector Neither conservative nor irrotational				
9.	L[e]	3t =			1	1	3	2
		$\frac{1}{s+3}$ $\frac{3}{s+3}$	(B)	$\frac{1}{s-3}$ $\frac{s}{s-3}$				
	(C)	$\frac{3}{s+3}$	(D)	$\frac{s}{s-3}$				
10.		example of a function for which t $f(t) = t^2$		place transforms does not exits is $f(t) = \tan t$	1	1	3	2
		$f(t) = \sin t$	(D)	$f(t) = e^{-at}$				
11.	Inve	rse laplace transform of $\frac{1}{s^2 - a^2}$	is		1	1	3	1
	(A)	$\frac{\sin at}{a}$ $\sin at$	(B) (D)	$\frac{\sinh at}{a}$ $\sinh at$				
12.	,	rse laplace transform of $\frac{1}{c^2}$ is	(1)		1	1	3	1
	(A) (C)	t / 2 t	(B) (D)	$t^2/2$				
13.	The	function $f(z) = u + iv$ is analytic	e if		1	2	4	1
				$u_x = -v_y; u_y = v_x$ $u_x = v_y; u_y = v_x$				
14.	If <i>u</i> · (A)	+iv is analytic, then the curves u are parallel Intersect each other	$=c_I$ a (B)	,	1	2	4	2
15.	(A)	transformation W=CZ where C i Rotation Magnification	(B)	al constant is known as Reflection Magnification and rotation	1	2	4	2
16.		nalytic function with constant m Zero Constant	odulu		1	2	4	1

17.	If $f(z)$ is analytic inside and on C,	the v	value of $\int_{c}^{c} \frac{f(z)}{z-a} dz$ where C is the	1 1 ₂₀	1	5	2
	simple closed curve and a is any poin	t witl	hin C is				
	(A) $f(a)$	(B)	$2\pi i f(a)$				
	(C) $2\pi i f'(a)$	(D)	0				
18.	If $f(z)$ is not analytic at $z=z_0$ and	ther	e exists a neighborhood of $z=z_0$	1	1	5	2
	containing no other singularity, then		e ad legan, dade que cosido s				
	(A) $z=z_0$ is isolated singularity of $f(z)$	(B)	$z=z_0$ is zero of $f(z)$				
		(D)	$z=z_0$ is non isolated singularity				
			of f(z)				
19	sin z			1	1	5	2
17.	If $f(z) = \frac{\sin z}{z}$, then						
			z=0 is a pole of order 2				
	(C) z=0 is a removable singularity	(D)	z=0 is a zero of $f(z)$				
20.	z + 2			1	1	5	1
	$f(z) = \frac{z+2}{(z-1)^2(z-2)}$ has						
	(A) Only poles	(B)	A simple pole at $z=1/2$				
	(C) Essential singularity	(D)	No poles				
	$PART - B (5 \times 8 =$	40 N	Aarks)				
	Answer ALL Q	uesti	ons	Marks	BL	CO	PO
21.a.			$4a 2\sqrt{ax}$	8	3	1	3
	Change the order of integration and e	valua					
			$0 x^2$				
			4 <i>a</i>				
	(OR)						
21.b.	Evaluate $\int_{0}^{a\sqrt{a^2-x^2}} \int_{0}^{\sqrt{a^2-x^2-y^2}} dz dy dx$			8	3	1	3
	Evaluate \(\int \) \(\int \) \(dz dy dz \)	х.					
	0 0 0						
22.a.	Find a, b, c so that the vector	\overrightarrow{F}	$=(x+2y+az)\vec{i}+(bx-3y-z)\vec{i}+$	8	3	2	3
	$(4x+cy+2z)\vec{k}$ is irrotational.	1	= (x + 2y + 62)t + (6x - 3y - 2)j +				
	(4x+cy+2z)k is irrotational.						
	(OR)						
22.b.	Show that $\vec{F} = (2xy + z^3)\vec{i} - x^2\vec{j} + 3x$	$z^2\vec{k}$	is a conservative vector field. Find	8	3	2	2
	. , ,						

Page 3 of 4

the scalar potential also.

- 23.a. Find the laplace transform of the rectangular wave function given by $f(t) = \begin{cases} 1 & \text{; } 0 < t < b \\ -1 & \text{; } b < t < 2b \end{cases}$
- 23.b. Find $L^{-1} \left[\log \left\{ \frac{s(s+1)}{s^2+1} \right\} \right]$.
- 24.a. Find the bilinear map which maps the points z = 1, i, -1 on to the point a = 1, 0, -i.
- (OR)

 24.b. Find the analytic function f(z) = u + iv where $u v = e^x(\cos y \sin y)$.
- 25.a. If $f(z) = \frac{1}{(z-1)(z-2)}$ expand as Laurent's series about z=0 valid in
 - $\begin{array}{c|c} (1) & |z| < 1 \\ \end{array}$
 - (ii) 1 < |z| < 2
- 25.b. Evaluate $\oint_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{z + z^{2}} dz$ where c is the circle |z|=2.

- Evaluate $\int_{0}^{2\pi} \frac{d\theta}{13 + 5\sin\theta}$ using contour integration.
- 28. Verify divergence theorem for $\vec{F} = (x^2 yz)\vec{i} + (y^2 zx)\vec{j} + (z^2 xy)\vec{k}$ 15 4 2 3 taken over the rectangular parallelopiped $0 \le x \le a; 0 \le y \le b; 0 \le z \le c$.

* * * * *