因果引擎 ™: 让机器学习更智能

从相关性到因果性的革命

龚鹤阳

August 4, 2025

今天我们要讲什么?

- 传统机器学习有什么问题?
- ② 因果引擎 ™ 是怎么工作的?
- ③ 五种工作模式
- ▲ 因果引擎的性能有多好?
- ⑤ 怎么使用因果引擎?
- 6 理论基础(简单版)
- 7 适用场景
- ⑧ 总结与展望

传统机器学习的局限性

传统机器学习做什么?

- 学习数据中的相关性
- 就像:看到乌云就说要下雨
- 但不知道为什么下雨

问题出现了:

- 数据有噪音就不准了
- 每个人的差异被当作"干扰"
- 只能告诉你"是什么",不知道"为什么"

不知道里面发生了什么

核心问题

现实世界的数据总是有噪音的,传统方法应付不了

我们需要什么样的解决方案?

传统机器学习

- 简单直接
- 容易过拟合
- 噪音敏感

因果机器学习

个体特征

- 理解机制
- 抗噪能力强
- 个性化预测

关键洞察

每个个体都有独特的特征 U, 这不是噪音, 而是有用的信息!

因果引擎 ™ 的四个步骤

核心思想

就像医生看病: 先观察症状, 推断病因, 再对症下药!

为什么选择柯西分布?

柯西分布的特点:

- 有" 重尾巴"——更好地处理极端情况
- 数学性质好——计算简单高效
- 更符合现实——人与人差异很大

打个比方:

- 正态分布: 大部分人都差不多
- 柯西分布: 承认有些人就是很特别

柯西分布的"尾巴"更长

简单理解

柯西分布让我们的模型能更好地理解"特殊"的个体

五种推理模式

不确定性的分解

总的不确定性

认知不确定性
(可以减缘准模无法避免)
同时考虑两者

认知: 我们对个体了解不够

环境:测量误差、随机干扰

8/19

抗噪音能力测试:回归任务

随着噪音增加,性能如何变化? 误差

30% 标签噪音下的表现:

● 传统 MLP: 误差 47.60

• PyTorch: 误差 45.32

● 因果引擎: 误差 11.41

惊人提升

性能提升 76%!

关键发现

噪音越多, 因果引擎的优势越明显!

抗噪音能力测试:分类任务

分类准确率对比

30% 标签噪音下的准确率:

• 传统 MLP: 88.50%

• PyTorch: 88.75%

● 因果引擎: 92.25%

显著改善

错误率降低 31%!

实际意义

在现实的噪音数据中,因果引擎提供更可靠的预测

安装和基本使用

安装很简单

pip install causal-sklearn

基本使用示例

```
from causal_sklearn import MLPCausalRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
```

生成数据

X, y = make_regression(n_samples=1000, n_features=10, noise=20)
X_train, X_test, y_train, y_test = train_test_split(X, y)

创建和训练模型

高级配置

自定义网络结构

```
model = MLPCausalRegressor(
   # 感知层配置
   perception_hidden_sizes=(128, 64),
   perception activation='relu',
   perception dropout=0.2,
   # 推理层配置
   abduction_hidden_sizes=(32,),
   # 推理模式
    inference_mode='standard',
     训练配置
```

learning rate init=0 001

个体选择变量 U 的双重身份

统一数学框架

 $P(\mathbf{输出}|\mathbf{输\lambda}) = \int P(\mathbf{输出}|U) \cdot P(U|\mathbf{输\lambda}) dU$

P(U|输入): 从观察推断原因 P(输出|U): 从原因预测结果

简单理解

为什么这种方法有效?

- 正确的思维方式
 - 个体差异是信息,不是噪音
 - 学习通用规律, 而不是死记硬背
- ② 量化不确定性
 - 明确区分"不知道"和"随机性"
 - 让模型知道自己"不知道什么"
- ◎ 数学优雅
 - 柯西分布的线性稳定性
 - 可以直接计算,不需要复杂的采样
- ◎ 实际有效
 - 在多个真实数据集上验证
 - 在噪音环境中显著优于传统方法

14 / 19

什么时候用因果引擎?

特别适合的场景:

- ✓ 数据有很多噪音的时候
- ✓ 需要理解个体差异
- ✓ 医疗诊断(个性化)
- ✓ 金融风险评估
- ✓ 推荐系统
- ✓ 异常检测

优势不明显的场景:

- × 数据非常干净
- × 纯图像分类
- × 不需要解释性的场景
- × 计算资源极其有限

经验法则

当数据质量不确定或需要鲁棒性时,因果引擎是理想选择

真实数据集上的表现

数据集	传统 MLP	因果引擎	提升
加州房价	0.65	0.78	+20%
葡萄酒质量	0.55	0.71	+29%
波士顿房价	0.62	0.74	+19%
糖尿病	0.41	0.52	+27%

^{*} 在 20% 标签噪音下的 R² 分数

关键洞察

即使在中等噪音水平下,因果引擎也能提供显著的性能改善

核心贡献

- 新的机器学习范式
 - 从学习相关性到学习因果关系
 - 把个体差异当作特征,而不是噪音
- ② 实用的实现
 - 完全兼容 scikit-learn API
 - 高效的分析计算
 - 容易集成到现有工作流程
- ◎ 出色的鲁棒性
 - 在噪音环境中性能优异
 - 适合现实世界的混乱数据

一句话总结

因果引擎通过理解"为什么"而不仅仅是"是什么",为机器学习带来新的可能性

未来发展方向

• 理论扩展

- 扩展到其他概率分布
- 多任务因果学习
- 时间序列因果推断

• 应用拓展

- 大规模数据集优化
- 与深度学习架构集成
- 领域特定定制

• 工具生态

- 可视化工具
- 自动超参数调优
- 云部署支持

谢谢大家!

有问题可以讨论

让机器学习变得更智能