

CSPE32: Combinatrics and Graph Theory Assignment-1

Finding the γ_r (Mixed Roman Domination Number) of P_3 O P_n

 $\begin{array}{c} {\rm KAPILNATH~M} \\ {\rm 106123064} \\ {\rm CSE\text{-}B} \end{array}$

Weak Roman Dominating Function requirements

We need to assign weights of 0, 1, or 2 to each vertex in such a way that:

- Every vertex with weight 0 has a neighboring vertex with weight > 0.
- If a vertex with weight 0 is changed to 1 then a weight of 1 is reduced from one of the adjacent vertices with weight> 0 and still point one satisfies while also not affecting the edges not involved

Lexicographic Product

The lexicographic product of two graphs G = (V(G), E(G)) and H = (V(H), E(H)), denoted G[H], is a graph defined as follows:

- Vertices: The vertex set of G[H] is $V(G) \times V(H)$, where each vertex is represented as a pair (g, h) with $g \in V(G)$ and $h \in V(H)$.
- Edges: There is an edge between two vertices (g_1, h_1) and (g_2, h_2) in G[H] if:
 - 1. $g_1 = g_2$ and $\{h_1, h_2\} \in E(H)$, or
 - 2. $\{g_1, g_2\} \in E(G)$.

Now consider P_3 and P_n , where $P_3 = \{u_1, u_2, u_3\}$ is the path graph on 3 vertices with edges $\{u_1u_2, u_2u_3\}$, and $P_n = \{v_1, v_2, \dots, v_n\}$ is the path graph on n vertices with edges $\{v_iv_{i+1} : 1 \le i < n\}$.

• Vertex Set: The vertices of $P_3[P_n]$ are:

$$\{(u_1, v_1), (u_1, v_2), \dots, (u_1, v_n), (u_2, v_1), (u_2, v_2), \dots, (u_2, v_n), (u_3, v_1), \dots, (u_3, v_n)\}.$$

- Edges: Two vertices (u_i, v_j) and (u_k, v_l) are adjacent if:
 - 1. $u_i = u_k$ and $(v_i, v_l) \in E(P_n)$, or
 - 2. $(u_i, u_k) \in E(P_3)$ (i.e., |i k| = 1).

Thus, the graph P_3OP_n has the following structure:

- Three copies of P_n , corresponding to u_1, u_2 , and u_3 .
- Cross connections:
 - Every vertex in the first copy (corresponding to u_1) is connected to every vertex in the second copy (corresponding to u_2).
 - Every vertex in the second copy (corresponding to u_2) is connected to every vertex in the third copy (corresponding to u_3).

Strategy for Assigning Weights

- We need to assign weight of 0 to each of the vertex.
- Then we start by assigning a weight of 1 to each vertex with max degree, if not satisfied we bump it to 2.
- If still not satisfied we go through the b_n vertices as they are only the ones affected in terms of adjacent weight and try to assign a weight of 1 to any of them and see if it satisfies.
- If not satisfied then we just remove the extra weight given and just assign one of the vertices of a_n or c_n (either is fine) a weight of 2 as it will cover for all the b_n .

Proof

$1 P_3 O P_1$

Starting with $P_3 = \{a, b, c\}$ and $P_1 = \{1\}$, the lexicographic product of the two gives two vertices $V = \{a_1, b_1\}$ and edges $E = \{(a_1, b_1)\}$.

it satisfies the first function which is that b_1 with weight 2 is adjacent to c_1 , a_1 with weight 0 (i.e. 1)

2 $P_3 O P_2$

 $P_3 = \{a, b, c\}$ and $P_2 = \{1, 2\}$, the lexicographic product of the two gives a complete graph with 4 vertices $V = \{a_1, b_1, a_2, b_2\}$ and edges $E = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2)(a_1, a_2)(b_1, b_2)\}$

it satisfies as b_1 is connected to all vertices and when moved to another position it still has a weight of 1 to cover for the other vertices.

The
$$\gamma_r$$
 for $P_3 ext{ O } P_2 = 2$

$\mathbf{3} \quad \mathbf{P}_3 \mathbf{O} \mathbf{P}_3$

 $P_2 = \{a, b\}$ and $P_3 = \{1, 2, 3\}$, the lexicographic product of the two gives as follows

All the vertices are covered by b_2 .

We can observe that b_2 covers for all vertices with its weight of 2. If we put 1 instead of 2 then when moved from b_2 to a_1 , c_3 remains undefended.

The
$$\gamma_r$$
 for P_3 O $P_3=2$

3

4 $P_3 O P_4$

 $P_3 = \{a, b, c\}$ and $P_4 = \{1, 2, 3, 4\}$, the lexicographic product of the two gives as follows

Here b_4 remains undefended so we just assign it a weight of 1 so it satisfies the first and second function.

The
$$\gamma_r$$
 for P_3 O P_4 =3

5 $P_3 O P_5$

 $P_3 = \{a, b, c\}$ and $P_5 = \{1, 2, 3, 4, 5\}$, the lexicographic product of the two gives as follows

We assign b_5 the weight of 1 to cover for both the undefended b_4 and b_5 . This also ensures coverage when weight moves from b_5 to any of the possible ways.

After this for P_3 O P_n where n>5 we have b_n vertices upto 6 where if we try to assign 1 to b_5 . If moved to b_4 then b_6 remains undefended and when moved to b_6 , b_4 remains undefended so we instead of giving assigning 2 to b_5 we instead give one of the a_n with weight of 2 which will be repeated.

The
$$\gamma_r$$
; for P₃ O P₅=3

Summary

The γ_r for $P_3 O P_n$ is given by:

The
$$\gamma_r$$
 for P_3 O $P_1=2$,
The γ_r for P_3 O $P_2=2$,
The γ_r for P_3 O $P_3=2$,
The γ_r for P_3 O $P_4=3$,
The γ_r for P_3 O $P_5=3$,
The γ_r for the rest $=4$,

Bonus next page

Bonus

Finding the γ_R (Mixed Roman Domination Number) of $P_3 \odot P_n$:

Corona Product

One copy of P3 and 3 copies of Pn is taken. Every vertex in P3 is connected to all the vertices of the corresponding copy of Pn.

Strategy for Assigning Weights

- Assign 2 to the vertices a,b,c.
- Assignment to the edges of each copy of Pn follows this pattern.
- \bullet 0 , 1 , 0,2, 0,2,0 , 0,2,0,1, 0,2,0,2 ,0,2,0,2,0 , 0,2,0,2,0,1 etc.

1 $P_3 \odot P_1$

$2 P_3 \odot P_2$

The γ_r for $P_3 \odot P_3 = 6$

Summary

The γ_r for $P_3 \odot P_n$ is given by:

The
$$\gamma_r$$
 for $P_3 \odot P_1 = 3$,

The
$$\gamma_r$$
 for $P_3 \odot P_2 = 3$,

The
$$\gamma_r$$
 for the rest = 6.

Thank You