СОГЛАСОВАНО	УТВЕРЖДАЮ		
Сторона ЗАКАЗЧИКА	Сторона ИСПОЛНИТЕЛЯ		
Попов Д.В.	Старостин Н. В.		
«» сентября 2021 г.	«» сентября 2021 г.		

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

на опытно-конструкторскую работу

Разработка нейронной сети специального вида (автоэнкодера) для решения задачи редукции пространства многомерных функций

(Шифр ПО «Епс»)

Содержание

1. ВВЕДЕНИЕ	3
2. ОСНОВАНИЯ ДЛЯ РАЗРАБОТКИ	3
3. НАЗНАЧЕНИЕ РАЗРАБОТКИ	4
4. ТРЕБОВАНИЯ К ПРОГРАММНОМУ ИЗДЕЛИЮ	
4.1. Требования к входным и выходным данным	4
4.2. Требования к функциональным характеристикам ПО	4
4.3. Требования к разрабатываемому ПО и его состав	5
4.3. Требования к надежности программного обеспечения	5
4.4. Условия эксплуатации	5
4.5. Требования к составу и параметрам технических средств	6
4.6. Требования к маркировке и упаковке	6
4.7. Требования к транспортированию и хранению	6
5. ТРЕБОВАНИЯ К ПРОГРАММНОЙ ДОКУМЕНТАЦИИ	6
6. ТРЕБОВАНИЯ ЗАЩИТЫ ОТ ИТР	7
7. СТАДИИ И ЭТАПЫ РАЗРАБОТКИ	7
8. ТРЕБОВАНИЯ ЗАЩИТЫ ГОСУДАРСТВЕННОЙ ТАЙНЫ ПРИ	
ВЫПОЛНЕНИИ ОКР	8
9. ПОРЯДОК КОНТРОЛЯ И ПРИЕМКИ	9

1. ВВЕДЕНИЕ

1.1. Наименование ОКР

Разработка нейронной сети специального вида (автоэнкодера) для решения задачи редукции пространства многомерных функций (ПО «Enc»).

1.2. Краткая характеристика области применения

Сложность задачи поиска глобального оптимума многоэкстремальной функции в многомерном пространстве экспоненциально зависит от размерности пространства поиска. При наличии существенных корреляций между параметрами исследуемой функции появляется возможность перехода в новое пространство поиска меньшей размерности. Таким образом основной проблемой является идентификация зависимостей и поиск такой свёртки параметров исследуемой функции, которая позволит минимизировать их число (варьируемых параметров). В качестве предлагается решения данной задачи апробировать инструмента автоэнкодеры – вид нейронных сетей, которые сжимают входные данные для представления их в скрытом пространства, а затем восстанавливают из этого представления выходные данные.

2. ОСНОВАНИЯ ДЛЯ РАЗРАБОТКИ

Основание для выполнения ОКР – спецсеминар (3 семестр) в рамках направления подготовки 09.04.03 «Прикладная информатика» по профилю программы магистратуры: «Прикладная информатика в области принятия решений».

Заказчик: НИО-63.

Исполнитель: группа магистрантов 1 года обучения: Куликов В. А. (лидер команды), Батищев А. В., Буянов А. Д., Емелин М. Д., Ерофеев А. С., Ковтун П. П., Краличкин В. В.

Начало разработки – с начала 3 семестра обучения согласно учебному плану по программе магистратуры 09.04.03.

Окончание работ – 20 декабря 2021 г.

3. НАЗНАЧЕНИЕ РАЗРАБОТКИ

3.1. ПО «Епс» предназначено для решения проблемы поиска нелинейной свёртки параметров исходной функции с целью минимизации числа варьируемых параметров с помощью автоэнкодеров.

4. ТРЕБОВАНИЯ К ПРОГРАММНОМУ ИЗДЕЛИЮ

- 4.1. Требования к входным и выходным данным
- 4.1.1. В качестве исходных данных выступает описание исходных функций (для каждой функции должна быть выполнена программная реализация в рамках ПО «Enc»).
- 4.1.2. В качестве выходных данных для каждой исходной функции выступают:
- 4.1.2.1. описание структуры и параметров обученной нейронной сети, обеспечивающей сжатие параметров исходной функции;
- 4.1.2.2. показатели нейронной сети по степени сжатия и точности аппроксимации.
 - 4.2. Требования к функциональным характеристикам ПО «Епс».
- 4.2.1. ПО «Епс» должно содержать реализации всех исходных функций.
- 4.2.2. ПО «Епс» должно содержать функцию генерации данных для обучения автоэнкодера на базе рандомизированных схем с минимальной расходимостью.
- 4.2.3. ПО «Епс» должно содержать набор базовых автоэкодеров (не менее 4).

- 4.2.4. ПО «Епс» должно содержать функции сжатия параметров исходных функций кодировщиком (Encoder) и восстановление сжатых параметров к исходному пространству с помощью декодера (Decoder).
- 4.2.5. ПО «Епс» должно содержать функцию полного перебора гиперпараметров автоэнкодера.

4.3. Требования к разрабатываемому ПО и его состав

ПО «Епс» должно иметь следующий состав:

- исходные коды ПО «Епс» и исполняемые файлы;
- тестовые исходные функций, включая: спектр, сдвинутый спектр, параметрические;
- программная документация (согласно п. 5.1. Т3);

4.4. Требования к надежности программного обеспечения

Требования к надежности ПО «Епс» не предъявляются.

4.5. Условия эксплуатации

Условия эксплуатации ПО «Епс» должны соответствовать условиям эксплуатации вычислительной техники, на которой будет установлено программное обеспечение.

4.5. Требования к составу и параметрам технических средств

ПО «Епс» должно быть разработано с использованием языка программирования Python. ПО «Епс» должно быть работоспособно под управлением операционной системы Windows 10.

Для функционирования ПО «Enc» ПЭВМ должны удовлетворять следующим требованиям: процессор Ryzen 7, видеокарта RTX 2080Ті, оперативная память не менее 16 ГБ DDR4, SSD m2 не менее 1 GB, клавиатура, мышь, интернет-доступ.

4.6. Требования к маркировке и упаковке

Требования к маркировке и упаковке предъявляются в соответствии с требованиями на программное изделие, принятыми у Заказчика. По согласованию с Заказчиком требования уточняются в процессе выполнения работы.

4.7. Требования к транспортированию и хранению

К транспортированию и хранению ПО «Епс» требования не предъявляются.

5. ТРЕБОВАНИЯ К ПРОГРАММНОЙ ДОКУМЕНТАЦИИ

- 5.1. Программная документация должна содержать следующие документы:
 - Отчет НИОКР с описанием результатов работы автоэнкодеров на исходных функциях, согласно п.4.1.;
 - руководство оператора;
 - Руководство программиста;
 - программа и методика испытаний.
- 5.2. Программная документация должна быть выполнена на бумажных носителях в соответствии со стандартом ЕСПД и на машинных носителях информации в форматах «.docx» и «.pdf» в 2 экземплярах.

6. ТРЕБОВАНИЯ ЗАЩИТЫ ОТ ИТР

К ПО «Епс» требования по защите от ИТР не предъявляются.

7. СТАДИИ И ЭТАПЫ РАЗРАБОТКИ

Этапы и стадии ОКР, их содержание, сроки выполнения, отчетные документы за выполнение приведены в таблице 1.

<u>No</u>	Наименование	Исполнитель	Сроки в	ыполнения	Вид
модели,	модели, стадии, этапа		начало	окончание	отчетности
стадии,					
этапа	П		16.00.21	21 10 21	
1	Подготовительный этап		16.09.21	21.10.21	
1.1	Описание задачи	Исполнитель	16.09.21	23.09.21	-
		Заказчик			
1.4	Создание базиса	Исполнитель	07.10.21	14.10.21	Базис функций
	тестовых функций	Заказчик			(цифровой
					архив)
2	Основной этап		14.10.21	10.12.21	
2.1	Реализация	Исполнитель	14.10.21	02.12.21	Исходные коды
	предложенных	Заказчик			
	функций (не менее 5)				
2.1	Разработка алгоритма	Исполнитель	14.10.21	21.10.21	Исходные коды
	генерации данных				
2.2	Разработка базовых	Исполнитель	14.10.21	21.10.21	Исходные коды
	энкодеров (не менее 4)				
2.3	Разработка алгоритма,	Исполнитель	21.10.21	28.10.21	Исходные коды
	оценивающего работу				
	автоэнкодеров				
2.2	Разработка и	Исполнитель	03.12.21	10.12.21	ПМИ
	согласование	Заказчик			
	программы и методики				
	испытаний				
2.3	Разработка	Исполнитель	25.10.21	02.12.21	PO
	программной				
	документации				
3	Отчетный этап		02.12.21	30.12.21	
3.1	Разработка отчета	Исполнитель	02.12.21	23.02.21	Отчет НИОКР
	НИОКР				
3.2	Итоговые испытания,	Исполнитель	-	23.12.21	Протокол
	сдача ПО	Заказчик			
3.3	Доклад по результатам	Исполнитель	23.12.21	30.12.21	Презентация
	ОКР				

8. ТРЕБОВАНИЯ ЗАЩИТЫ ГОСУДАРСТВЕННОЙ ТАЙНЫ ПРИ ВЫПОЛНЕНИИ ОКР

- 8.1. Требования обеспечения режима секретности
- 8.1.1. Сведения о характеристиках работ, выполняемых по настоящему техническому заданию, не содержат информации, составляющей государственную тайну.
- 8.1.2. Требования защиты государственной тайны при выполнении ОКР не предъявляются.

9. ПОРЯДОК КОНТРОЛЯ И ПРИЕМКИ

- 9.1. Порядок выполнения ОКР устанавливается в соответствии с этапами настоящего ТЗ, представленными в Таблице 1. Приёмка работ осуществляется в соответствии с данным ТЗ.
- 9.2. Приёмочные испытания проводятся комиссией на технических средствах Заказчика на контрольных данных и в соответствии с Программой и методикой проведения приёмочных испытаний. Для проведения приемочных испытаний Исполнителю предъявляется следующая документация:
 - -Техническое задание на ОКР;
 - -Программа и методика приёмочных испытаний;
 - -ПО «Enc» (согласно п. 4.3 T3).
 - -Программная документация и отчет по НИОКР.
 - 9.11. Патентные исследования не проводятся.
 - 9.12. Техническое задание может уточняться в установленном порядке.

ЯП
Куликов Владислав
Батищев Андрей
Буянов Артем
Емелин Максим
Ерофеев Александр
Ковтун Павел
_ Краличкин Владимир