1 Proven

1 Phụ đề (*)

Ta có: Vector từ điểm O(0,0) đến đường thẳng $\vec{w}\vec{x} + w_0 = 0(d)$ hay vector từ điểm O(0,0) đến hình chiếu của điểm O lên đường thẳng d là:

$$(\vec{O,d}) = \frac{-w_0}{||\vec{w}||}$$

Từ đây ta có: Vector từ điểm I đến đường thẳng $\vec{w}\vec{x} + w_0 = 0(d)$ là:

$$(\vec{I,d}) = -(\vec{O,d'}) + (\vec{O,d})$$

Với $\vec{w}(\vec{x}-\vec{I})=0(d')$ là đường thẳng đi qua I và song song với đường thẳng d

$$\Rightarrow (\vec{I,d}) = -\frac{\vec{w}\vec{I}}{||\vec{w}||} + \frac{-w_0}{||\vec{w}||}$$

$$\Rightarrow (\vec{I,d}) = -\frac{\vec{w}\vec{I} + w_0}{||\vec{w}||}$$

Từ đó khoảng cách từ điểm I đến đường thẳng $\vec{w}\vec{x} + w_0 = 0(d)$ là:

$$d(d,O) = ||\frac{\vec{w}\vec{I} + w_0}{||\vec{w}||}||$$

2 Phụ đề (**)

Luôn chọn được một cách biểu diễn cho một đường thẳng bất kỳ có dạng $\vec{w}\vec{x} + w_0 = 0(d)$ sao cho hai đường thẳng song song và cách đều đường thẳng d một khoảng cách bất kỳ có dạng:

$$\vec{w}\vec{x} + w_0 - 1 = 0(d_1)$$

$$\vec{w}\vec{x} + w_0 + 1 = 0(d_2)$$

Chứng minh

Giả sử hai đường thẳng d_1 và d_2 có dạng:

$$\vec{w}\vec{x} + w_0 - m = 0(d_1)$$

$$\vec{w}\vec{x} + w_0 + m = 0(d_2)$$

Giả sử khoảng cách giữa d_1 và d_2 là $\Delta_{12}=p$. Theo Phụ đề (*) ta có khoảng cách giữa d_1 và d_2 là: $\Delta_{12}=\frac{2m}{||\vec{w}||}\Rightarrow m=\frac{p||\vec{w}||}{2}$ Vậy để khoảng cách giữa d_1 và d_2 là p thì d_1 và d_2 có dạng:

$$\vec{w}\vec{x} + w_0 - \frac{p||\vec{w}||}{2} = 0(d_1)$$

$$\vec{w}\vec{x} + w_0 + \frac{p||\vec{w}||}{2} = 0(d_2)$$

hay

$$\frac{2\vec{w}}{p||\vec{w}||}\vec{x} + \frac{2w_0}{p||\vec{w}||} - 1 = 0(d_1)$$
$$\frac{2\vec{w}}{p||\vec{w}||}\vec{x} + \frac{2w_0}{p||\vec{w}||} + 1 = 0(d_2)$$

và phương trình đường thẳng d có thể được viết lại thành:

$$\frac{2\vec{w}}{p||\vec{w}||}\vec{x} + \frac{2w_0}{p||\vec{w}||} = 0$$

Đặt $\vec{w'} = \frac{2\vec{w}}{p||\vec{w}||}$ và $\vec{w'_0} = \frac{2w_0}{p||\vec{w}||}$, ta có: phương trình đường thẳng d,d_1,d_2 được viết lại thành:

$$\vec{w'}\vec{x} + w'_0 = 0(d)$$
$$\vec{w'}\vec{x} + w'_0 - 1 = 0(d_1)$$
$$\vec{w'}\vec{x} + w'_0 + 1 = 0(d_2)$$

Vậy ta có điều phải chứng minh.

3 Support Vector Machine

Bài toán: Cho hai lớp và các điểm thuộc hai lớp đấy. Gọi các điểm đấy là điểm dữ liệu. Cần tìm đường thẳng d để khoảng cách giữa hai đường thẳng song song, cách đều đường thẳng d mà vùng không gian tạo bởi hai đường thẳng đó vẫn không chứa bất kỳ điểm dữ liệu nào là lớn nhất.

Theo mệnh đề (**) ta có: Chọn cách biểu diễn đường thẳng d là $\vec{w}\vec{x}+w_0=0$ (d) sao cho hai đường thẳng song song và cách đều đường thẳng d có dạng:

$$\vec{w}\vec{x} + w_0 - 1 = 0(d_1)$$

$$\vec{w}\vec{x} + w_0 + 1 = 0(d_2)$$

Khoảng cách giữa d_1 và d_2 là:

$$\Delta_{12} = \frac{2}{||\vec{w}||}$$