The Singular Value Decomposition and Least Squares Problems

Tom Lyche

University of Oslo Norway

Applications of SVD

- 1. solving over-determined equations
- 2. statistics, principal component analysis
- 3. numerical determination of the rank of a matrix
- 4. search engines (Google,...)
- 5. theory of matrices
- 6. and lots of other applications...

Singular Value Decomposition

- 1. Works for any matrix $\boldsymbol{A} \in \mathbb{C}^{m,n}$
- 2. $A = U\Sigma V^H$ with U, V unitary and $\Sigma = \begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \in \mathbb{C}^{m,n}$
- 3. $\Sigma_1 = \text{diag}(\sigma_1, \dots, \sigma_r)$ with $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$,
- 4. r is the rank of A.
- 5. We define $\sigma_{r+1} = \cdots \sigma_n = 0$ if r < n and call $\sigma_1, \ldots, \sigma_n$ the singular values of A.
- 6. The columns u_1, \ldots, u_m of U and v_1, \ldots, v_n of V are called left- and right singular vectors respectively.

Relation to eigenpairs for A^TA and AA

- 1. $\mathbf{A}^T \mathbf{A} \mathbf{v}_i = \sigma_i^2 \mathbf{v}_i$ for $i = 1, \dots, n$.
- 2. The columns of V are orthonormal eigenvectors of A^TA
- 3. The columns of U are orthonormal eigenvectors of AA^T

Three forms of SVD

Suppose $A \in \mathbb{R}^{m,n}$, $A = U\Sigma V^T$ is the SVD of $A \in \mathbb{R}^{m,n}$ and let $r := \#\Sigma_1$. We partition U and V as follows

$$m{U} = [m{U}_1, m{U}_2], \ m{U}_1 \in \mathbb{R}^{m,r}, \ m{U}_2 \in \mathbb{R}^{m,m-r}$$

$$m{V} = [m{V}_1, m{V}_2], \ m{V}_1 \in \mathbb{R}^{n,r}, \ m{V}_2 \in \mathbb{R}^{n,n-r}.$$

The three forms

1.
$$A = U\Sigma V^T$$

full form

2.
$$A = U_1 \Sigma_1 V_1^T$$

3.
$$A = \sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T = \sum_{i=1}^{\min(m,n)} \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T$$

outer product form

Subspaces of A

column space and the null space of a matrix

$$\operatorname{span}(\boldsymbol{A}) := \{ \boldsymbol{y} \in \mathbb{R}^m : \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}, \text{ for some } \boldsymbol{x} \in \mathbb{R}^n \},$$

$$\ker(\boldsymbol{A}) := \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A}\boldsymbol{x} = \boldsymbol{0} \}.$$

- $\operatorname{span}(\boldsymbol{A})$ is a subspace of \mathbb{R}^m .
- $\ker(\mathbf{A})$ is a subspace of \mathbb{R}^n .

We say that A is a basis for a subspace S of \mathbb{R}^m if

1.
$$S = \operatorname{span}(A)$$
,

2. A has linearly independent columns, i. e., $ker(A) = \{0\}$.

Recall the four fundamental subspaces

$$\operatorname{span}(\boldsymbol{A})$$
, $\operatorname{span}(\boldsymbol{A}^T)$, $\ker(\boldsymbol{A})$, $\ker(\boldsymbol{A}^T)$.

The 4 fundamental Subspaces

Let $A = U\Sigma V^T$ be the SVD of $A \in \mathbb{R}^{m,n}$. Then $A^T = V\Sigma^T U^T$ and $AV = U\Sigma$, $A^TU = V\Sigma^T$ or

$$A[V_1,V_2] = [U_1,U_2]\begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, \quad A^T[U_1,U_2] = [V_1,V_2]\begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

$$AV_1 = U_1\Sigma_1$$
, U_1 is an orthonormal basis for $\operatorname{span}(A)$

$$\boldsymbol{A}^T \boldsymbol{U}_2 = \boldsymbol{0}, \qquad \boldsymbol{U}_2 \text{ is an orthonormal basis for } \ker(\boldsymbol{A}^T)$$

$$m{A}^Tm{U}_1 = m{V}_1m{\Sigma}_1, \quad m{V}_1$$
 is an orthonormal basis for $\mathrm{span}(m{A}^T)$

$$AV_2 = 0$$
, V_2 is an orthonormal basis for $ker(A)$.

We obtain the fundamental relations

- 1. $\dim(\operatorname{span}(A)) + \dim(\ker(A)) = \#A$:=number of columns of A,
- 2. $\dim(\operatorname{span}(\boldsymbol{A}^T)) = \dim(\operatorname{span}(\boldsymbol{A})) =: \operatorname{rank}(\boldsymbol{A}) = \#\boldsymbol{\Sigma}_1.$

Existence of SVD

Theorem 1. Every matrix has an SVD.

Uniqueness

- If the SVD of A is $A = U\Sigma V^T$ then $A^TA = V\Sigma^T\Sigma V^T$.
- Thus $\sigma_1^2, \dots \sigma_n^2$ are uniquely given as the eigenvalues of $\mathbf{A}^T \mathbf{A}$ arranged in descending order.
- Taking the positive square root uniquely determines the singular values.
- From the proof of the existence theorem it follows that the orthogonal matrices U and V are in general not uniquely given.

Application I, rank

- Gauss-Jordan cannot be used to determine rank numerically
- Use singular value decomposition
- numerically will normally find $\sigma_n > 0$.
- Determine minimal r so that $\sigma_{r+1}, \ldots, \sigma_n$ are "close" to round off unit.

Application II, overdetermined Equation

- ullet Given $A^{m,n}$ and $b\in\mathbb{R}^m$.
- The system Ax = b is over-determined if m > n.
- **●** This system has a solution if $b \in \text{span}(A)$, the column space of A, but normally this is not the case and we can only find an approximate solution.
- ullet A general approach is to choose a vector norm $\|\cdot\|$ and find x which minimizes $\|Ax-b\|$.
- We will only consider the Euclidian norm here.

The Least Squares Problem

- Given $A^{m,n}$ and $b \in \mathbb{R}^m$ with $m \ge n \ge 1$. The problem to find $x \in \mathbb{R}^n$ that minimizes $||Ax b||_2$ is called the least squares problem.
- lacksquare A minimizing vector x is called a least squares solution of Ax = b.
- Several ways to analyze:
- Quadratic minimization
- Orthogonal Projections
- SVD

Quadratic minimization

- Define function $E:\mathbb{R}^n \to \mathbb{R}$ by $E(\boldsymbol{x}) = \|\boldsymbol{A}\boldsymbol{x} \boldsymbol{b}\|_2^2$
- $E(\mathbf{x}) = (\mathbf{A}\mathbf{x} \mathbf{b})^T(\mathbf{A}\mathbf{x} \mathbf{b}) = \mathbf{x}^T\mathbf{B}\mathbf{x} 2\mathbf{c}^T\mathbf{x} + \alpha$, where
- $m{B}:=m{A}^Tm{A},\,m{c}:=m{A}^Tm{b}$ and $lpha:=m{b}^Tm{b}$.
- B is positive semidefinite and positive definite if A has rank n.
- Since the Hessian $\mathbf{H}E(\mathbf{x}) := \left(\frac{\partial^2 E(\mathbf{x})}{\partial x_i \partial x_j}\right) = 2\mathbf{B}$ we can find minimum by setting partial derivatives equal zero.
- Normal equations $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$.

A simple example

$$egin{aligned} x_1 &= 1 & & & 1 \ x_1 &= 1, & oldsymbol{A} &= egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}, & oldsymbol{x} &= egin{bmatrix} 1 \ 1 \ 2 \end{bmatrix}, \ x_1 &= 2 & & & \end{bmatrix}, \ oldsymbol{b} &= egin{bmatrix} 1 \ 1 \ 2 \end{bmatrix}, \end{aligned}$$

Quadratic minimization problem:

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} = (x_{1} - 1)^{2} + (x_{1} - 1)^{2} + (x_{1} - 2)^{2}.$$

- Setting the first derivative with respect to x_1 equal to zero we obtain $2(x_1-1)+2(x_1-1)+2(x_1-2)=0$ or $6x_1-8=0$ or $x_1=4/3$
- The second derivative is positive (it is equal to 6) and x = 4/3 is a global minimum.

Theory; Direct sum and Orthogonal Su

Suppose S and T are subspaces of a vector space (V, \mathbb{F}) . We define

- 1. Sum: $\mathcal{X}:=\mathcal{S}+\mathcal{T}:=\{s+t:s\in\mathcal{S} \text{ and } t\in\mathcal{T}\};$
- 2. Direct Sum: If $S \cap T = \{0\}$, then $S \oplus T := S + T$.
- 3. Orthogonal Sum: Suppose $(\mathcal{V}, \mathbb{F}, \langle \cdot, \cdot \rangle)$ is an inner product space. Then $\mathcal{S} \oplus \mathcal{T}$ is an orthogonal sum if $\langle s, t \rangle = 0$ for all $s \in \mathcal{S}$ and all $t \in \mathcal{T}$.
- 4. orthogonal complement:

$$\mathcal{T} = \mathcal{S}^{\perp} := \{ \boldsymbol{x} \in \mathcal{X} : \langle \boldsymbol{s}, \boldsymbol{x} \rangle = 0 \text{ for all } \boldsymbol{s} \in \mathcal{S} \}.$$

Basic facts

Lemma 1. Suppose S and T are subspaces of a vector space (V, \mathbb{F}) .

- 1. S + T = T + S and S + T is a subspace of V.
- 2. $\dim(\mathcal{S} + \mathcal{T}) = \dim \mathcal{S} + \dim \mathcal{T} \dim(\mathcal{S} \cap \mathcal{T})$
- 3. $\dim(\mathcal{S}\oplus\mathcal{T})=\dim\mathcal{S}+\dim\mathcal{T}$. Every $v\in\mathcal{S}\oplus\mathcal{T}$ can be decomposed uniquely as v=s+t, where $s\in\mathcal{S}$ and $t\in\mathcal{T}$. s is called the projection of v into \mathcal{S} .
- 4. Pythagoras: If $\langle {m s}, {m t} \rangle = 0$ then $\| {m s} + {m t} \|^2 = \| {m s} \|^2 + \| {m t} \|^2$.
- 5. Here $\|oldsymbol{v}\| := \sqrt{\langle oldsymbol{v}, oldsymbol{v}
 angle}$.

Column space of A and null space of A

- $m{\varPsi} \quad \mathbb{R}^m = \mathrm{span}(m{A}) \oplus \ker(m{A}^T)$ and this is an orthogonal sum.
- **●** Thus $ker(A^T) = span(A)^{\perp}$ the orthogonal complement of span(A).
- Example

$$oldsymbol{A} = \left[egin{smallmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \end{smallmatrix}
ight], \quad \mathrm{span}(oldsymbol{A}) = \mathrm{span}(oldsymbol{e}_1, oldsymbol{e}_2), \quad \ker(oldsymbol{A}^T) = oldsymbol{e}_3.$$

Proof that $\mathbb{R}^m = \operatorname{span}(\mathbf{A}) \oplus \ker(\mathbf{A}^T)$ using SVD

- $m{s}^T m{t} = 0$ for all $m{s} \in \operatorname{span}(m{A})$ and $m{t} \in \ker(A^T)$.
- For if $s \in \operatorname{span}(A)$ and $t \in \ker(A^T)$ then s = Ax for some $x \in \mathbb{R}^n$ and $A^T t = 0$.
- lacksquare But then $\langle {m s}, {m t} \rangle = ({m A}{m x})^T {m t} = {m x}^T ({m A}^T {m t}) = 0$
- Suppose $A = U\Sigma V^T = U_1\Sigma_1V_1^T$ is the SVD of A.
- $m{ ilde P}$ For any $m{b}\in\mathbb{R}^m$ we have $m{b}=(m{U}_1m{U}_1^T+m{U}_2m{U}_2^T)m{b}=m{b}_1+m{b}_2$, where
- $m{ ilde b}_1 := m{U}_1m{U}_1^Tm{b} = m{A}m{A}^\daggerm{b}$ with $m{A}^\dagger = m{V}_1m{\Sigma}_1^{-1}m{U}_1^T$,
- and $b_2 := U_2 U_2^T$ belongs to $ker(A^T)$ since $A^T b_2 = (V_1 \Sigma_1 U_1^T) U_2 U_2^T b = V_1 \Sigma_1 (U_1^T U_2) U_2^T b = 0.$

Projections and pseudoinverse

- $m{b}_1 := m{A} m{A}^\dagger m{b}$ is the projection of $m{b}$ into $\mathrm{span}(m{A})$.
- $oldsymbol{\Sigma}^\dagger := egin{bmatrix} oldsymbol{\Sigma}_1^{-1} & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{n,m} ext{ is the pseudoinverse of } oldsymbol{\Sigma}.$
- $m{b}_2 := (m{I} m{A} m{A}^\dagger) m{b}$ is the projection of $m{b}$ into $\ker(m{A}^T)$.
- Example

$$oldsymbol{A} = \left[egin{smallmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \end{smallmatrix}
ight] = oldsymbol{U}oldsymbol{\Sigma}oldsymbol{V}^T = oldsymbol{I}_3 oldsymbol{A}oldsymbol{I}_2, \quad oldsymbol{A}^\dagger = oldsymbol{I}_2 \left[egin{smallmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \end{smallmatrix}
ight] oldsymbol{I}_3 = \left[egin{smallmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \end{smallmatrix}
ight].$$

LSQ; Existence and Uniqueness

Theorem 2. The least squares problem always has a solution. The solution is unique if and only if A has linearly independent columns.

- *Proof.* Let $b=b_1+b_2$, where $b_1\in \operatorname{span}(A)$ is the (orthogonal) projection of b into $\operatorname{span}(A)$ and $b_2\in \ker(A^T)$.
 - Since $m{b}_1 \in \mathrm{span}(m{A})$ there is an $m{x} \in \mathbb{R}^n$ such that $m{A}m{x} = m{b}_1.$ Thus $m{b}_2 = m{b} m{A}m{x}.$
 - $m{ ilde P}$ By Pythagoras, for any $m{s}\in \mathrm{span}(m{A})$ with $m{s}
 eq m{b}_1$

$$\|\boldsymbol{b} - \boldsymbol{s}\|^2 = \|\boldsymbol{b}_1 - \boldsymbol{s}\|^2 + \|\boldsymbol{b}_2\|^2 = \|\boldsymbol{b}_1 - \boldsymbol{s}\|^2 + \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|^2 > \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|^2.$$

Since the projection b_1 is unique, the least squares solution x is unique if and only if A has linearly independent columns.

The Normal Equations

Theorem 3. Any solution x of the least squares problem is a solution of the linear system

$$A^T A x = A^T b.$$

The system is nonsingular if and only if $oldsymbol{A}$ has linearly independent columns.

Proof. Since $m{b}-m{A}m{x}\in\ker(m{A}^T)$, we have $m{A}^T(m{b}-m{A}m{x})=m{0}$ or $m{A}^Tm{A}m{x}=m{A}^Tm{b}$.

 $m{A}^Tm{A}$ is nonsingular. Suppose $m{A}^Tm{A}m{x}=m{0}$ for some $m{x}\in\mathbb{R}^n$. Then $0=m{x}^Tm{A}^Tm{A}m{x}=(m{A}m{x})^Tm{A}m{x}=\|m{A}m{x}\|_2^2$. Hence $m{A}m{x}=m{0}$ which implies that $m{x}=m{0}$ if and only if $m{A}$ has linearly independent columns.

The linear system $A^TAx = A^Tb$ is called the normal equations.

Linear Regression

$$m{A} = egin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \quad m{b} = egin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \quad \min_{x_1 x_2} \sum_{i=1}^m (x_1 + t_i x_2 - y_i)^2.$$

Analysis of LSQ using $A = U\Sigma V^T$

Define $m{y}:=m{V}^Tm{x}=\left[m{V}_1^Tm{x}
ight]=\left[m{y}_1\\m{v}_2^Tm{x}
ight]$. Recall $\|m{U}m{v}\|_2=\|m{v}\|_2$ for any $m{U}\in\mathbb{R}^{n,n}$ with $m{U}^Tm{U}=m{I}$ and any $m{v}\in\mathbb{R}^n$.

$$\|oldsymbol{b} - oldsymbol{A}oldsymbol{x}\|_2^2 = \|oldsymbol{U}oldsymbol{U}^Toldsymbol{b} - oldsymbol{U}oldsymbol{\Sigma}oldsymbol{y}\|_2^2 = \|oldsymbol{U}^Toldsymbol{b} - oldsymbol{\Sigma}oldsymbol{y}\|_2^2 = \|oldsymbol{U}^Toldsymbol{b} - oldsymbol{\Sigma}oldsymbol{y}\|_2^2 = \|oldsymbol{U}^Toldsymbol{b} - oldsymbol{\Sigma}oldsymbol{y}\|_2^2 = \|oldsymbol{U}^Toldsymbol{b} - oldsymbol{\Sigma}oldsymbol{y}\|_2^2 + \|oldsymbol{U}_2^Toldsymbol{b}\|_2^2.$$

We have $\| {m b} - {m A} {m x} \|_2 \ge \| {m U}_2^T {m b} \|_2$ for all ${m x} \in \mathbb{R}^n$ with equality if and only if

$$m{x} = m{V}m{y} = egin{bmatrix} m{V}_1 \ m{V}_2 \end{bmatrix} egin{bmatrix} m{\Sigma}_1^{-1} m{U}_1^T m{b} \end{bmatrix} = m{V}_1 m{\Sigma}_1^{-1} m{U}_1^T m{b} + m{V}_2 m{y}_2, ext{ for all } m{y}_2 \in \mathbb{R}^{n-r}. \end{pmatrix}$$

The general solution of $\min \| \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b} \|_2$

- The columns of V_2 is a basis for $\ker(A)$ so that $\ker(A) = \{z = V_2 y_2 : y_2 \in \mathbb{R}^{n-r}\}.$
- Therefore the solution set is

$$\{ \boldsymbol{x} \in \mathbb{R}^n : \| \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b} \|_2 \text{ is minimized } \} = \boldsymbol{A}^\dagger \boldsymbol{b} + \ker(\boldsymbol{A}).$$

- If r = n then A has linearly independent columns and A^TA is nonsingular.
- Since $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ we obtain $\mathbf{A}^\dagger = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ in this case.

The Minimal Norm Solution

- Suppose A is rank deficient (r < n).
- Let $oldsymbol{x} = oldsymbol{A}^\dagger oldsymbol{b} + oldsymbol{V}_2 oldsymbol{y}_2$ be a solution of $\min \|oldsymbol{A} oldsymbol{x} oldsymbol{b}\|_2$.
- By Pythagoras $\|\boldsymbol{x}\|_2^2 = \|\boldsymbol{A}^{\dagger}\boldsymbol{b}\|_2^2 + \|\boldsymbol{V}_2\boldsymbol{y}_2\|_2^2 \ge \|\boldsymbol{A}^{\dagger}\boldsymbol{b}\|_2^2$.
- The solution $x^* = A^\dagger b$ is called the minimal norm solution to the LSQ problem.
- Orthogonal. Since $\boldsymbol{V}_2^T\boldsymbol{A}^\dagger=(\boldsymbol{V}_2^T\boldsymbol{V}_1)\boldsymbol{\Sigma}_1^{-1}\boldsymbol{U}_1^T=\mathbf{0}$ we have $(\boldsymbol{V}_2\boldsymbol{y}_2)^T\boldsymbol{A}^\dagger\boldsymbol{b}=0$ for any \boldsymbol{y}_2 .

More on the pseudoinverse

- If A is square and nonsingular then $A^{\dagger} = A^{-1}$.
- A^{\dagger} is always defined.
- Thus A^{\dagger} is a generalization of usual inverse.
- If $oldsymbol{B} \in \mathbb{R}^{n,m}$ satisfies

1.
$$ABA = A$$

2.
$$BAB = B$$

3.
$$(BA)^T = BA$$

4.
$$(AB)^T = AB$$

then
$$B=A^{\dagger}$$
 .

• Thus A^{\dagger} is uniquely defined by these axioms.

Example

Show that the pseudoinverse of $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$ is $B = \frac{1}{4} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$.

We have
$$BA = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $AB = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Thus

- 1. ABA = A
- 2. BAB = B
- 3. $(BA)^T = BA$
- 4. $(AB)^T = AB$

and hence $oldsymbol{A}^\dagger = oldsymbol{B}$.