$$\lambda_1 = 3$$
, $ev_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\lambda_2 = 1$$
 $ev_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$ev_1 \cdot ev_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$= \left(\begin{array}{c} 1 & 1 \\ -1 \end{array}\right) = 0.$$

⇒ eV, I to eV2.

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad D = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$$

length of eigenvector
$$\begin{pmatrix} 1 \end{pmatrix} = \sqrt{2}$$
.
 $\hat{ev}_1 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$ $\hat{ev}_2 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$

$$R = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

$$R^{-1} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$X^{T} R : \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = R^{T}$$

$$Ro = \begin{bmatrix} \cos 0 & -\sin 0 \\ \sin 0 & \cos 0 \end{bmatrix}$$

$$R = \begin{bmatrix} \cos(-0) & -\sin(-0) \\ \sin(-0) & \cos(0) \end{bmatrix}$$

$$R_0^{-1} = R_0 = \begin{bmatrix} \cos 0 & \sin 0 \\ -\sin 0 & \cos 0 \end{bmatrix} = R_0^{-1}$$

A matrix A is Orthogonal matrix. The eigenvectors corresponding to distinct eigenvalues of a real symmetric matrix are ORTHOGONAN to each other

(i) Ai · Aj = 0 i + j

Ai ×. Aj are the columns of A

	•
Suppose A is a 2x2 real	We know that
Symmetric matrix with	$Au = \lambda_i u$
	$Au = \lambda_1 u$ $Av = \lambda_2 v$
distinct eigenvalues $\lambda_1 \approx \lambda_2$.	
	Since A is a real Symmetric matrix we have
Let u be the eigenvector	matrix we have
associated with to and v be	$(Au)^T = (\lambda_i u)^T$
	$\Rightarrow u^T A^T = u^T \lambda_1 = \lambda_1 u^T$
the eigenvector associated with λ_2	$\Rightarrow U^{T}A^{T} = U^{T}\lambda_{1} = \lambda_{1} U^{T}$ $= U^{T}A = \lambda_{1} U^{T} (: A^{T} = A) . \Longrightarrow D$

Multiply both sides of (1)	$u^{T} A v = u^{T} \lambda_2 v$
	$ \begin{array}{cccc} \mathcal{U}^{T} A \mathcal{V} = & \mathcal{U}^{T} \lambda_2 \mathcal{V} \\ \Rightarrow & \mathcal{U}^{T} A \mathcal{V} = & \lambda_2 \mathcal{U}^{T} \mathcal{V} & \rightarrow & (3) \end{array} $
by v.	
U .	Egn (2) & Egn (3) have the
$u^{T} \wedge v_{z} \wedge u^{T} v_{z} \rightarrow (2).$	Same LHS.
Similarly we know that	$\Rightarrow \lambda_1 u^T v = \lambda_2 u^T v$
$Av = \lambda_2 v \cdot (*)$	$\Rightarrow (\lambda_1 - \lambda_2)(U^T V) = 0.$
Pre Multiplying both sides of (*)	
Av = λ_2 v · (*) Pre Multiplying both sides of (*) by u^T	\Rightarrow either $u^T v = 0$ or $\lambda_1 - \lambda_2 = 0$

But $\lambda_1 - \lambda_2 \neq 0$ as $\lambda_1 \neq \lambda_2 \quad (\lambda_1, \lambda_2 \text{ distinct})$ $\Rightarrow \quad \mathcal{U}^T V = 0$

> V.V = 0

 \Rightarrow The eigenvectors Corresponding $\det(A-\lambda I)=0 \Rightarrow (-\lambda)(i-\lambda)=0$ to distinct eigenvalues of a $\Rightarrow \lambda(\lambda-i)=0$ RSM are Orthogonal to each other $\Rightarrow \lambda=0$; $\lambda=1$.

Ex: $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ Projection

Matrix that

Projects every

Vector outo $\chi - \alpha x i s$ $(A - \lambda I) = \begin{pmatrix} 1 - \lambda & 0 \\ 0 & 0 - \lambda \end{pmatrix}.$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$D = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$P^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$