Introduction to Medical Image Segmentation

Булат Ибрагимов

Learning objectives

- The idea of image segmentation
- Image segmentation in medical imaging
- Thresholding
- Connected component decomposition
- Morphological operations

Segmentation

- Process of partitioning an image into distinct regions
- How segmentation can be used?

Segmentation of medical images

Computer-aided diagnosis

Segmentation of medical images

Image-guided procedures

Segmentation of medical images

Motion analysis

innopolis Iniversitu

Segmentation of medical images

Radiotherapy planning

Medical image

- Medical image is an array of numbers:
 - 2D arrays for X-ray and ultrasound images
 - 3D arrays for computed tomography and magnetic resonance images

How would you segment lung fields?

Thresholding

Histogram of intensity distribution

Thresholding

3D images with the threshold mask superimposed

Rendered threshold mask

Connected component decomposition (CCD)

Thresholding generates a binary array with:

- Ones for image pixels with intensity above the threshold
- Zeros for image pixels with intensity below the threshold

Thresholding segmented lungs, but also other "dark" regions.

How can you get the lung fields from the binary array?

Connected component decomposition (CCD)

The lung fields almost always belong to the second largest component

/ =	1	1	0	0	0	1
	1	1	0	1	1	1
	0	1	0	1	0	0
	0	0	0	0	0	0
	0	1	1	0	0	0
	0	0	1	0	0	0

Morphological dilation/erosion

INOPOLIS

The lung field mask is imperfect:

- Where are holes in the mask due to vessels in the lungs
- There may be leaks outside lungs

How to remove them?

Morphological dilation/erosion

INOPOLIS

Informally:

- Dilation expanding of binary mask
- Erosion shrinking of binary mask

Dilation/erosion is useful:

- To remove all internal noise pixels in segmentation mask
- To remove all boundary artifacts
- To smooth the boundaries

Dilation->Erosion

INOPOLIS

1) Dilation (1-mm)

V =	0	1	1	1	0	0
	1	1	1	1	1	0
	1	1	1	1	1	0
	1	1	1	1	1	0
	1	1	1	1	0	0
	0	1	1	0	0	0

2) Erosion (1-mm)

	U	1	1	1	U	U
	1	1	1	1	1	0
_	1	1	1	1	1	0
	1	1	1	1	1	0
	1	1	1	1	0	0
	0	1	1	0	0	0

Must-have tools: Erosion->Dilation

innopolis Universitu

1) Erosion (1-mm)

V =	0	0	1	0	0	0
	0	0	1	0	0	0
	0	0	1	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0

2) Dilation (1-mm)

	U	U	1	U	U	U
/ =	0	0	1	0	0	0
	0	0	1	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0

V =	0	1	1	1	0	0
	0	1	1	1	0	0
	0	1	1	1	0	0
	0	0	1	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0

Morphological dilation/erosion

Morphological dilation/erosion

INOPOLIS

Which one is more suitable:

- dilation->erosion
- erosion->dilation

Complete segmentation framework

INOPOLIS

Lung segmentation:

- Thresholding
- CCD, second largest component, save the results to array A
- 4 dilations->4 erosions, array B

Lung vasculature segmentation

- Subtract: C = A − B
- CCD, two largest components

Lesson summary

Moboliz

We learned:

- Segmentation in medical imaging
- Thresholding
- Connected component decomposition
- Morphological dilation/erosion

