Quiz 2: Asymptotic Run Times and Solving Recurrence Relations

Due Oct 6, 2022 at 4:30pm

Points 10

Questions 5

Available Oct 6, 2022 at 8am - Oct 6, 2022 at 4:30pm 8 hours and 30 minutes

Time Limit 25 Minutes

This quiz is no longer available as the course has been concluded.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	25 minutes	6 out of 10

(1) Correct answers are no longer available.

Score for this quiz: **6** out of 10 Submitted Oct 6, 2022 at 8:31am This attempt took 25 minutes.

Question 1
$$1/1 \, \mathrm{pts}$$

True or false: $4n^2 - 103n + 6 \in O(n!)$

True

False

Question 2 1/1 pts

3/30/23, 5:56 PM

True or false: $O\left(17n^2+4n-13
ight)=O\left(n^2
ight)$

- True
- False

Question 3

1 / 1 pts

True or false: $4n^2-103n+6\in\Theta(n)$

- True
- False

Incorrect

Question 4

0 / 2 pts

Prove that $3\sqrt{n-5}\in\Omega(\sqrt{n})$ by providing the appropriate values for constants c and n_0 . Choose the largest integral value possible for c. Note that you may want to square both sides of your inequality to make the math easier.

$$n_0 = \boxed{18}$$

Answer 1:

8

Answer 2:

3/30/23, 5:56 PM

18

Partial

Question 5 1 / 5 pts

Use the 5-step method shown in class:

- 2 backwards substitutions
- 1 general form of the recurrence
- · Use of the initial condition
- Final answer

Solve the following recurrence relation:

$$T\left(n
ight) =T\left(n-1
ight) +2n ext{ for all }n>0,\ T(0)=0$$

Show the 5 steps; 1 point will be given for each correct response.

Answer 1:

$$T(n-2)+2n+2(n-1)$$

Answer 2:

$$T(n-3)+2n+2(n-1)+2(n-2)$$

Answer 3:		
T(n-i)+2i(n-1)		
Answer 4:		
i=n		
Answer 5:		
2n^2+2n		

Quiz Score: 6 out of 10

This quiz score has been manually adjusted by +2.0 points.