- □ Μια διαφορετική εφαρμογή του φορμαλισμού Lagrange
- Ταλαντωτής αποτελεί ένα σύστημα του οποίου μπορούμε να λύσουμε τις εξισώσεις κίνησης
 - > σε κάποιο γενικό σύστημα οι εξισώσεις κίνησης αρκετά πολύπλοκες
- Μελετούμε ταλαντωτές γιατί είναι μαθηματικά εύκολο; ΟΧΙ
 - Τα περισσότερα φαινόμενα στην φυσική μπορούν να αναλυθούν με βάση το μοντέλο ενός αρμονικού ταλαντωτή;
 - Οι λύσεις των εξισώσεων κίνησης μπορούν να γραφούν σαν συνάρτηση απλών μαθηματικών συναρτήσεων

- Θεωρήστε ένα μονοδιάστατο σύστημα:
 - 1 βαθμός ελευθερίας: q
 - ightharpoonup Η Lagrangian είναι συνάρτηση των q,\dot{q} ightharpoonup $L = L(q,\dot{q})$ (αρχικά) L δεν εξαρτάται ακριβώς από τον χρόνο, t
- lacksquare Μια κατάσταση ισορροπίας του συστήματος: $q=const=q_0$
 - ightarrow Το σύστημα ξεκινά από μια κατάσταση q_0 και παραμένει σε αυτή
 - lacksquare Ισοδύναμο με το να πούμε ότι q ανεξάρτητο του t
- □ Ποιες οι συνθήκες ώστε ένα σύστημα να έχει σαν λύση της εξίσωσης κίνησης αυτή της κατάστασης ισορροπίας?
 - ightharpoonup Εξίσωση κίνησης: $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = \frac{\partial L}{\partial q}$
 - ightharpoonup Διαφορική εξίσωση $2^{\eta\varsigma}$ τάξης ightharpoonup 2 αρχικές συνθήκες: q(t=0) $\dot{q}(t=0)$
 - ightharpoonup Λύση που αντιστοιχεί σε κατάσταση ισορροπίας: $q=q_0$ και $\dot{q}=0$
 - ightharpoonup Το σύστημα θα παραμείνει σε ισορροπία αν: $\ddot{q}=0$

 \Box Τι σημαίνει αυτό? $L = T - V \Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = \frac{\partial L}{\partial q}$

και για το σύστημά μας:
$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}} \right) = \frac{\partial T}{\partial q} + \frac{\partial V}{\partial q} \longrightarrow \text{συνάρτηση } q$$

συνάρτηση \dot{q}, \ddot{q} συνάρτηση \dot{q}

lacksquare Αλλά σε λύση ισορροπίας: $\ddot{q} = \dot{q} = 0 \Rightarrow \left. \frac{\partial V}{\partial q} \right|_{q=q_0} = 0$

- Ποιοτικά δυο διαφορετικές θέσεις ισορροπίας:
 - Α και C: τοπικό ελάχιστο φ ευσταθής ισορροπία
 - ▶ B: τοπικό μέγιστο ⇒ ασταθής ισορροπία

- Θεωρήστε μικρή διαταραχή ως προς σημείο ισορροπίας
 - ightharpoonup Έστω $q = q_0 = 0$

lacktriangle Αναπτύσουμε την εξίσωση κίνησης ως προς το σημείο q_0

$$L(q,\dot{q})\big|_{q=q_0} = L(q_0,\dot{q}=0) + q\frac{\partial}{\partial q}L(q_0,\dot{q}) + \dot{q}\frac{\partial}{\partial \dot{q}}L(q_0,\dot{q}) + Dq^2 + Eq\dot{q} + F\dot{q}^2 + \dots$$

$$Ra$$

- Α $Bq C\dot{q}$ Έχουμε δει (1η κατ'οίκον) ότι αν $L' = L + \frac{dF}{dt} \Longrightarrow$ εξ. κίνησης αμετάβλητη
 - ightharpoonup Ελαχιστοποίηση της δράσης: $S = \int_{t_1}^{t_2} L \, dt$ $ightharpoonup S' = \int_{t_1}^{t_2} \left(L + \frac{dF}{dt} \right) dt$ $S' = S + \int_{t_1}^{t_2} \frac{dF}{dt} \, dt \Rightarrow S' = S + F(t_2) F(t_1) \Rightarrow \delta S' = \delta S$
- Γιατί έχει αυτό ενδιαφέρον?
 - ightharpoonup Μπορούμε να αγνοήσουμε στο ανάπτυγμα της L όλους τους όρους που περιέχουν ολικά διαφορικά ως προς χρόνο: A, C, E

όρος
$$A: \frac{d}{dt}(At)$$
 όρος $C: \frac{d}{dt}(Cq)$ όρος $E: \frac{d}{dt}\left(\frac{1}{2}Eq^2\right)$

Ψάχνουμε για σημείο ισορροπίας

$$\Rightarrow \frac{dV}{dq} = 0$$

- \Box Η Lagrangian όμως είναι: $L(q,\dot{q})\big|_{q=q_0} = A + Bq + C\dot{q} + Dq^2 + Eq\dot{q} + F\dot{q}^2 + \cdots$
 - ightharpoonup Οι όροι του δυναμικού είναι: $Bq + Dq^2 + \cdots$ $\Rightarrow B = 0$
- **Ε**πομένως η Lagrangian για μικρή διαταραχή ως προς το σημείο q_0

$$L(q,\dot{q})\Big|_{q=q_0} = Dq^2 + F\dot{q}^2 = 2F\left(\frac{D}{2F}q^2 + \frac{1}{2}\dot{q}^2\right)$$

- \Box Έχουμε επίσης αναφέρει ότι οι εξισώσεις κίνησης είναι αμετάβλητες αν η Lagrangian πολ/στεί με κάποια σταθερά: L'=kL
 - ightharpoonup Οι εξ. κίνησης επομένως είναι αμετάβλητες αν πολ/σω με: $\frac{1}{2F}$
 - ightharpoonup Άρα οι εξ. κίνησης περιγράφονται από: $L = \frac{1}{2} \left(\frac{D}{F} q^2 + \dot{q}^2 \right)$
- Δηλαδή: μικρές διαταραχές ως προς ένα τυχαίο σημείο ισορροπίας περιγράφονται μόνο από: D

⊨ ένα νούμερο 🛶 συχνότητα²

- Ορίζουμε σαν συχνότητα διαταραχής: $\omega^2 = -\frac{D}{F}$
 - $ightharpoonup \omega$ πραγματικός αριθμός αν: D/F < 0
 - ho ω μιγαδικός αριθμός αν: D/F > 0
- \Box Οι εξισώσεις κίνησης θα είναι: $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = \frac{\partial L}{\partial q}$

$$\Rightarrow \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}} \left[\frac{1}{2} (\dot{q}^2 - \omega^2 q^2) \right] \right) = \frac{\partial}{\partial q} \left[\frac{1}{2} (\dot{q}^2 - \omega^2 q^2) \right] \Rightarrow \ddot{q} = -\omega^2 q \Rightarrow \ddot{q} + \omega^2 q = 0$$

- Ποιες είναι οι λύσεις αυτής της διαφορικής εξίσωσης?
 - \triangleright ω πραγματικός: $D/F < 0 \Rightarrow q(t) = A\cos(\omega t) + B\sin(\omega t)$
 - \checkmark Οι λύσεις ταλαντώνονται ως προς q=0 με συχνότητα ω
 - ✓ Το σημείο ισορροπίας είναι ευσταθές(το μέγεθος της διαταραχής ως προς q παραμένει σταθερό)
 - $ightharpoonup \omega$ μιγαδικός: $D/F > 0 \Rightarrow \ddot{q} |\omega|^2 q = 0$ $\Rightarrow q(t) = Ae^{+|\omega|t} + Be^{-|\omega|t}$
 - ✓ Η διαταραχή αυξάνει με την πάροδο του χρόνου εκτός και αν A=0
 - ✓ Το σημείο ισορροπίας είναι ασταθές

Αρμονικοί ταλαντωτές

- Έχουμε δει άπειρες φορές το πρόβλημα των αρμονικών ταλαντωτών:
 - Μάζες σε ελατήρια
- Είναι τόσο σημαντικό φυσικό πρόβλημα? ΟΧΙ
- Ας πάρουμε ένα σύστημα γύρω από μια θέση ισορροπίας του
 - > Για ευσταθή ισορροπία και στο όριο μικρών διαταραχών
 - ❖ Το σύστημα περιγράφεται σαν ένας ταλαντωτής
 - ✓ Οχι μόνο για μάζες σε ελατήρια
 - ✓ Εκκρεμές (μικρή διαταραχή ως προς την θέση ισορροπίας)
 - ✓ Μόρια (διαταραχή ως προς την θέση ηρεμίας τους)
 - ✓ Κβαντικό πεδίο (διαταραχή σωματιδίων γύρω από την αναμενόμενη τιμή του κενού του χωροχρόνου)
 - ✓ Κβαντομηχανικά συστήματα που δέχονται μικρές διαταραχές ως προς την κατάσταση ηρεμίας τους
 - Θα δούμε αργότερα συστήματα με Ν βαθμούς ελευθερίας
 - Για μικρές διαταραχές γύρω από μια ευσταθή κατάσταση, περιγράφονται από Ν αρμονικούς ταλαντωτές

Λύσεις εξίσωσης κίνησης αρμονικού ταλαντωτή

- Η εξίσωση κίνησης αρμονικού ταλαντωτή: $\ddot{q} + \omega^2 q = 0$ Με λύσεις της μορφής: $q(t) = A\cos(\omega t) + B\sin(\omega t)$
- □ Ιδιότητες της εξίσωσης κίνησης:
 - Γραμμική Δ.Ε. (ως προς q και χρονικές παραγώγους του q)
 - ❖ Ο γραμμικός συνδυασμός δυο λύσεων είναι λύση της Δ.Ε.
 Αν sin(ωt) και cos(ωt) είναι λύσεις ⇒ sin(ωt)+cos(ωt) είναι λύση
 - ❖ Μια λύση πολ/μενη με σταθερά είναι επίσης λύση της Δ.Ε.
 - ightarrow Συνήθως γράφουμε την λύση της Δ.Ε. με την μορφή: $q = A \sin igl(\omega (t oldsymbol{arphi})igr)$
 - ✓ Α: το πλάτος της ταλάντωσης προσδιορισμός των Α και φ φ: φάση της ταλάντωσης προσδιορίζει την κίνηση
 - > Δυο αρχικές συνθήκες απαραίτητες για τον προσδιορισμό κίνησης
 - > Οι διαστάσεις του ω είναι: $[ω] = [T]^{-1}$
 - ightharpoonup Αν επιλέξουμε κατάλληλη χρονική συντεταγμένη: $\omega = 1$ π.χ. $t = \omega t$ $\Rightarrow q = A \sin(t' \varphi')$

Λύσεις εξίσωσης κίνησης αρμονικού ταλαντωτή

- □ Trick για λύση γραμμικών διαφορικών εξισώσεων:
 - ightharpoonup Αντί να μελετώ πραγματικές λύσεις μπορώ να κοιτάξω μιγαδικές $q(t)^{complex}$ λύση της γραμμικής διαφορικής εξίσωσης
 - Το πραγματικό και μιγαδικό μέρος της λύσης είναι επίσης λύση
- lacksquare Οι μιγαδικές λύσεις της γραμμικής Δ.Ε. $\ddot{q} + \omega^2 q = 0$ είναι: $q = A_c e^{i\omega t}$
 - ightharpoonup ig
- \square Αν η γραμμική Δ.Ε. είναι πραγματική και $q^{complex}$ είναι λύση τότε η συζυγής μιγαδική είναι επίσης λύση