Miejsce na naklejkę z kodem szkoły dysleksja

MIN-R1 1P-072

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

Czas pracy 90 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zaw po stron (zadania 1-3). Ewentualny brak zgłoś przywaniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowe zamieść w miejscu na to przeznaczonym
- 3. Pisz czytelnie. Waj długopisu/pióra tylko z czarnym tuszem/atrawo (cz.
- 4. Nie używa wyraźnie przekreśl.
- 5. Pany aj ze zapisy w brudnopisie nie podlegają ocenie.
- 6. Vypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 7. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.

Życzymy powodzenia!

MAJ ROK 2007

Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów

Wypełnia zdający przed rozpoczęciem pracy										
PESEL ZDAJĄCEGO										

KOD ZDAJĄCEGO

Zadanie 1. (10 pkt)

Każdy z punktów tego zadania zawiera stwierdzenie lub pytanie. Zaznacz (otaczając odpowiednią literę kółkiem) właściwą kontynuację zdania lub poprawną odpowiedź. W każdym z punktów tylko jedna odpowiedź jest prawidłowa.

1.1. Ile różnych liczb całkowitych bez znaku można zapisać za pomocą 1 bajta?

- a) 8^2
- b) 256
- c) 2^{10}
- d) 128

1.2. Iteracja to

- a) instrukcja zmniejszająca o jeden wartość zmiennej podanej jako argument.
- b) wyrażenie matematyczne powodujące zwiększenie wartości zmiennej o jeden.
- c) instrukcja pozwalająca na sprawdzenie warunku na poziomie wyrażenia.
- d) czynność powtarzania wykonywania instrukcji (ciągu instrukcji) w pętli.

1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to

- a) 2^8-1
- b) 210
- c) 65535
- d) 32767

1.4. Liczba (BA)₁₆ równa się

- a) $(186)_{10}$
- b) $(252)_8$
- c) $(10101010)_2$
- d) (2232)₄

1.5. Ułamek $(0,125)_{10}$ równa się

- a) $(0.011)_2$
- b) $(0.005)_8$
- c) $(0,101)_2$
- d) $(0.100)_8$

1.6. Liczba (-120) zapisana na 8-bitach w kodzie uzupełnieniowym do dwóch ma postać

- a) 01110111
- b) 11110111
- c) 10001000
- d) 01111000

1.7. Sieć oznaczona skrótem MAN

- a) łaczy komputery w obrębie jednego budynku.
- b) łączy komputery w obrębie jednej instytucji.
- c) łączy komputery w obrębie aglomeracji miejskiej.
- d) łączy komputery w różnych miastach.

1.8. Spośród czterech algorytmów, o podanych niżej złożonościach, najbardziej wydajny jest algorytm o złożoności

- a) liniowej.
- b) wykładniczej.
- c) kwadratowej.
- d) logarytmicznej.

1.9. Z ilu bitów składa się adres IPv4?

- a) 8
- b) 16
- c) 32
- d) 64

1.10. Oprogramowanie, z którego możesz dowolnie długo i bezpłatnie korzystać to

- a) wszystkie programy dostępne w Internecie.
- b) kopie zapasowe oprogramowania zainstalowanego w szkole.
- c) shareware.
- d) freeware.

Wypełnia egzaminator!	Nr zadania	1.1.	1.2.	1.3.	1.4.	1.5.	1.6.	1.7.	1.8.	1.9.	1.10.
	Maks. liczba pkt	1	1	1	1	1	1	1	1	1	1
	Uzyskana liczba pkt										

Zadanie 2. (19 pkt)

Zgodnie z regułami gry w szachy, hetman (królowa) może atakować figury ustawione na polach w kolumnie, wierszu oraz dwóch przekątnych przechodzących przez pole, w którym jest ustawiony. O tych polach mówimy, że są atakowane przez hetmana.

Na rysunku hetman stoi w polu (2,6) i atakuje (7+7+6+3) = 23 pola. Zostały one zamalowane kolorem szarym.

a) Poniżej znajduje się tabela o wymiarach **5x5**. Korzystając z powyższej obserwacji, uzupełnij pola tabeli wpisując do każdego z nich liczbę pól, które atakowałby hetman znajdujący się w tym polu. Hetman stojący w polu (1,1) atakuje 12 pól planszy.

	1	2	3	4	5
1	12	12	12	12	12
2	12	14	14	14	12
3	12	14	16	14	12
4	12	14	14	14	12
5	12	12	12	12	12

b) Określ liczbę atakowanych pól na szachownicy **32x32**, gdy dane są współrzędne ustawienia hetmana.

Dla (2,2) wynik =
$$95$$

Dla
$$(5,4)$$
 wynik = 99

Dla (20,18) wynik =
$$117$$

Dla (25,30) wynik =
$$97$$

c) Podaj specyfikację i zapisz algorytm (w postaci listy kroków, schematu blokowego lub w języku programowania), który dla dowolnej dodatniej liczby całkowitej $n \le 50$ i położenia hetmana (x,y) na szachownicy o wymiarach $n \times n$, gdzie $1 \le x,y \le n$, pozwoli obliczyć liczbę pól atakowanych przez tego hetmana.

Dane: n-dowolna dodatnia liczba całkowita $n \le 50$ (rozmiar szachownicy); x, y-dowolne dodatnie liczby całkowite określające położenie hetmana, gdzie $1 \le x, y \le n$

Wynik: liczba pól atakowanych przez hetmana

<u>Algorytm</u>

wynik = 2*(n-1) + min(x-1, y-1) + min(x-1, n-y) + min(n-x, y-1) + min(n-x, n-y)

	Nr zadania	2 a)	2 b)	2 c)
Wypełnia	Maks. liczba pkt	3	6	10
egzaminator!	Uzyskana liczba pkt			

Zadanie 3. (11 pkt)

W tabeli podany jest algorytm, który pozwala obliczyć wartość pewnej *sumy* dla danej dodatniej liczby całkowitej *n*.

1	<i>p</i> 1←1
2	suma←0
3	dla <i>k</i> ←1 <i>n</i> wykonuj
4	<i>p</i> 1← <i>p</i> 1* <i>n</i>
5	<i>p</i> 2←1
6	dla i ←1 n wykonuj
7	<i>p</i> 2← <i>p</i> 2* <i>k</i>
8	suma← suma +p1+p2

3.1. Podaj, jaką wartość przyjmie zmienna p1 w wyniku działania powyższego algorytmu dla n = 3.

$$p1 = 27$$

3.2. Podaj, jaką wartość przyjmie zmienna p2 w wyniku działania powyższego algorytmu dla n = 3.

$$p2 = 27$$

3.3. Podaj, jaką wartość przyjmie zmienna *suma* w wyniku działania powyższego algorytmu dla n = 3.

$$suma = 75$$

3.4. Zakreślając właściwą odpowiedź, zaznacz, jaką wartość przyjmie zmienna *suma* w wyniku działania powyższego algorytmu.

a)
$$\sum_{k=1}^{n} \left(k^k + n^2 \right)$$

b)
$$\sum_{n=1}^{n} \left(n^{n} + k^{n} \right)$$

$$c) \quad \sum_{i=1}^k \left(n^k + k^2 \right)$$

$$d) \quad \sum_{k=1}^{n} \left(n^k + k^n \right)$$

$$e) \quad \sum_{k=1}^{n} \left(n^{n} + k^{k} \right)$$

gdzie
$$\sum_{k=1}^{n} a_k = a_1 + a_2 + ... + a_n$$
.

- **3.5.** Zakreślając właściwą odpowiedź, podaj, ile wynosi liczba operacji arytmetycznych (dodawań i mnożeń) wykonywanych w czasie realizacji przedstawionego algorytmu.
 - a) 3*n*
 - b) $n^2 + 3n$
 - c) $2^n + n^2$
 - d) $n^{n} + 2^{n}$
 - e) $n!+2^n$
- **3.6.** Zmień wiersze 6 i 7 w rozważanym algorytmie w taki sposób, aby po jego wykonaniu wartością zmiennej *suma* było $\sum_{k=1}^{n} (n^k + k!)$, gdzie $k! = 1 \cdot 2 \cdot ... \cdot k$.

6	dla i←1 k wykonuj
7	<i>p2</i> ← <i>p2</i> * <i>i</i>

	Nr zadania	3.1.	3.2.	3.3.	3.4.	3.5.	3.6.
Wypełnia	Maks. liczba pkt	1	1	1	3	2	3
egzaminator!	Uzyskana liczba pkt						

BRUDNOPIS