

Technical nuances of machine learning: Implementation and validation of supervised methods for genomic prediction in plant breeding

Alencar Xavier Research Scientist at Corteva Biostatistics Adjunct professor at Purdue University

1. Introduction

2. Machines

- Linear models
- Kernel methods
- Neural networks
- Tree ensembles

3. Validation

- Schemes and metrics
- Information and case of study

4. Conclusion

Outline

1. Introduction

2. Machines

- Linear models
- Kernel methods
- Neural networks
- Tree ensembles

3. Validation

- Schemes and metrics
- Information and case of study

4. Conclusion

Introduction

Genomic prediction

Objective of this presentation

Describe machine learning methods without (too many) jargons

Review validations strategies to contrast methods

Divergency in philosophy

- In quantitative genetics:
 - Parameters: Variance components + Regression coefficients
 - Function: Likelihood (complex and convex)
 - Tuning: Generally, not needed
 - Method: First order (EM, MCMC), second order (AI, MIVQUE)
- In machine learning:
 - Parameters: Regression coefficients (NO VARIANCES!)
 - Function: MSE, L2 (simple)
 - Tuning: Cross validations, need secondary objective function
 - Method: First order: coordinate & gradient descent

1. Introduction

2. Machines

- Linear models
- Kernel methods
- Neural networks
- Tree ensembles

3. Validation

- Schemes and metrics
- Information and case of study
- 4. Conclusion

Machines

1. Linear methods

$$y = X\beta + e$$

- Phenotype is described as a linear combination of markers
- Easy to compute; easy to store (vector β); easy to interpret
- LMs do not capture any patter that is not explicitly declared in X

Solution for linear models

Conditioning to univariate: (Coordinate descent)

$$y = Xb + e y = X_{-j}b_{-j} + x_{j}b_{j} + e y - X_{-j}b_{-j} = x_{j}b_{j} + e y_{j} = x_{j}b_{j} + e,$$

Univariate solutions for b_i

•
$$b_j(OLS) = \frac{x_j'y_j}{x_j'x_j}$$
 * Unique solution (1722)

•
$$b_j(RR) = \frac{x_j'y_j}{x_j'x_j + \lambda}$$
 * Unique solution (1970)

•
$$b_j(EN) = \frac{x'_j y_j - \lambda}{x'_j x_j + \lambda}$$
 (2005)

•
$$b_j(LAR) = \frac{MED(y_j \# x_j)}{Var(x_j)}$$
(1935)

•
$$b_j(LASSO)_+ = \frac{x_j'y_j - \lambda}{x_j'x_j}$$
(1996)

"Translation" table for geneticists

- Penalization = Shrinkage
- Multiple "penalizations" = Mixed model
- Least squares = Fixed effect
- Ridge regression = Random effect

The shrinkage parameter λ

- Quantitative genetics
 - Analytical solution: $\lambda = \sigma_e^2 \div \sigma_\beta^2$ (only applies to ridge)
 - Variances found via REML, Bayesian, others (MIVQUE, Tilde-Hat)
- Machine learning
 - Run a cross-validation to find λ
 - Secondary criteria to define the best λ ... usually some metric of prediction

Solving: y = Xb + e

Finding \rightarrow argmin($e'e + \lambda b'b$)

I've created a monster!!

Coordinate descent

(Use diagonals of LHS)

$$\hat{b}_{j}^{t+1} = \frac{x_{j}'(y - X_{-j}\hat{b}_{-j})}{x_{j}'x_{j} + \lambda}$$

Used for WGR (RR, BayesA)

glmnet, BGLR, bWGR, GS3

Gradient descent

(Does not build LHS)

$$\hat{\mathbf{b}}^{t+1} = \mathbf{b}^t - \frac{2\mathbf{r}}{\mathbf{n}} \left[\mathbf{X}' \left(\mathbf{y} - \mathbf{X} \hat{\mathbf{b}}^t \right) + \lambda \hat{\mathbf{b}}^t \right]$$

Used for Deep Neural Nets

TF/Keras, PyTorch, MXNet, h2o

Second order

(Builds entire LHS)

$$\hat{\mathbf{b}} = (\mathbf{X}'\mathbf{X} + \lambda)^{-1}(\mathbf{X}'\mathbf{y})$$

Used for everything else

ASREML, Ime4, SAS, BLUPF90

Coordinate descent of ridge regression (RR) and elastic net (EN)

CD solved using Gauss-Seidel:

$$\hat{b}_{j}^{t+1}=rac{x_{j}^{\prime}\hat{e}^{t}+x_{j}^{\prime}x_{j}\hat{b}_{j}^{t}}{x_{i}^{\prime}x_{i}+\lambda}$$

$$\hat{e}^{t+1} = \hat{e}^t - x_j \Big(\hat{b}_j^{t+1} - \hat{b}_j^t\Big)$$

Marker effects

Impact of different models on the marker effects

Dataset tpod from bWGR has one QTL on Chr19

2. Kernel methods

$$y = K(X) + e$$

- Markers are used to "map" individuals by similarity / relationship
- Capture complex patterns; Good for P>N and interactions; Solved as LMs;
- Requires factorization; Not possible to store the model from K ("lazy learner")

Creating kernels

- Kernels (K) are transformations of X
- Before solving the model, we must compute K = f(X)

Kernel	Linear	Linear interaction	Gaussian (RBF)	Arccosine
f(X)	$K = \alpha X X'$	$K = \alpha(XX')\#(XX')$	$K = \exp(-\alpha D^*)$	$K(i,j) = \pi(x_i'x_i)(x_j'x_j)\sin(\theta_{ij}) + (\pi - \theta_{ij})\cos(\theta_{ij})$
Parameter	$\alpha = n^{-1}tr(XX')$	$\alpha = n^{-1}tr[(XX')\#(XX')]$	$\alpha = median(D)$ Tuning?	$\theta_{ij} = cor^{-1}Corr(x_i, x_j)$
Known as	GBLUP, Kalman filter	Epistatic kernels	RKHS, SVR	"Deep kernel"

^{*} D = Euclidean distance = $\sum (x_i - x_j)^2$

Solution for kernel methods

$$y = g + e$$

$$y \sim N(0, K\sigma_g^2 + I\sigma_e^2)$$

$$y = g + e$$

$$y \sim N(0, K\sigma_q^2 + I\sigma_e^2)$$

$$y = g + e \qquad y = U\alpha + e \qquad y = L\alpha + e y \sim N(0, K\sigma_g^2 + I\sigma_e^2) \qquad y \sim N(0, UDU'\sigma_g^2 + I\sigma_e^2) \qquad y \sim N(0, LL'\sigma_g^2 + I\sigma_e^2)$$

$$y = La + e$$

$$y \sim N(0, LL'\sigma_g^2 + I\sigma_e^2)$$

	None	Inversion	Eigen (Spectral)	Cholesky
Factorization	f(K) = K	$f(K) = K^{-1}$	f(K) = UDU'	f(K) = LL'
Solution	$(K + \lambda I)g = Ky$	$(I + \lambda K^{-1})g = y$	$(I + \lambda D^{-1})a = U'y$	$(L'L + \lambda I)a = L'y$
Genomic prediction	g = g	g = g	g = Ua	g = La

When K is too big to factorize K^{-1} sometimes can be estimated directly from data (e.g., pedigree)

- 1) When K is not inversible;
- 2) Speed up convergence;
- 3) Reduction of dimensionality;

Cheaper than Eigen, but K must be inversible

Prediction of new individuals?

- Approach 1 **Conditional expectation**
 - $\hat{g}_{new} = K_{obs,new} K_{obs}^{-1} \hat{g}_{obs}$
 - $\hat{g}_{\text{new}} = K_{\text{obs,new}} \hat{\sigma}_{g}^{2} (K_{\text{obs}} \hat{\sigma}_{g}^{2} + I \hat{\sigma}_{e}^{2})^{-1} y_{\text{obs}}$

- Approach 2 Missing value
 - Fit the model where K has both observed and new individuals
 - New individuals are fit with weights = 0

3. Neural networks

$$y = \alpha(\alpha(XB_1)B_2)b_3 + e$$

- Markers are used to create non-linear latent spaces
- Can capture complex patterns; Deal with large datasets;
- Requires extensive tuning; Not objectively interpretable;

Progression from LM to Deep Neural Network

Models illustrated without intercept

Linear model

$$y = Xb + e$$

PLS/PCR model

$$y = (XB_1)b_2 + e$$

NN model

$$y = \alpha(XB_1)b_2 + e$$

Deep NN model

$$y = \alpha(\alpha(XB_1)B_2)b_3 + e$$

 α = activation function

Solution for neural networks

Let's start with Gradient descent for a simple ridge regression

$$y = Xb + e$$

$$\hat{b}^{t+1} = \hat{b}^t - r \nabla$$

$$\hat{b}^{t+1} = \hat{b}^t - r \Big[-2n^{-1}X' \Big(y - X\hat{b}^t \Big) + 2n^{-1}\lambda \hat{b}^t \Big]$$

$$\hat{b}^{t+1} = \hat{b}^t - r \Big(-2n^{-1}X' \hat{e} + 2n^{-1}\lambda \hat{b}^t \Big)$$

$$\hat{b}^{t+1} = \hat{b}^t + 2rn^{-1}X' \hat{e} - 2n^{-1}\lambda \hat{b}^t$$

$$\hat{b}^{t+1} = \hat{b}^t + 2n^{-1}x' \hat{e} - \lambda \hat{b}^t \Big)$$

$$\nabla = \frac{\partial (y - Xb)'(y - Xb) + \lambda b'b}{\partial b}$$

No matrix inversion, just multiplications

Gradient descent of a ridge regression

Solution for neural networks

$$y = \alpha(\alpha(XB_1)B_2)b_3 + e$$

- Fit layers
 - $H_1 = \alpha(XB_1)$
 - $H_2 = \alpha(H_1B_2)$
 - $h_3 = H_2 b_3$
- Compute residuals for gradients
 - $e_3 = y h3$
 - $E_2 = \alpha(E_3 B_3')$
 - $E_1 = \alpha(E_2B_2')$
- Update coefficient

•
$$B_1^{t+1} = B_1^t - \gamma \left(\frac{2r_1}{n} [X'E_1 - \lambda B_1^t] \right)$$

- $B_2^{t+1} = B_2^t \gamma \left(\frac{2r_2}{n} [H_1' E_2 \lambda B_2^t] \right)$
- $b_3^{t+1} = b_3^t \gamma \left(\frac{2r_3}{n} [H_2'e_3 \lambda b_3^t] \right)$

Scary? Top-to-bottom code ~ 30 lines

```
function(y, X, nit=1000, batch=250, RELU=FALSE, Leak=0.1,
                     dropout=0, Lambda=0.1,LrnRate = 1,Nodes1=4, Nodes2=4) {
  if(is.null(ncol(y))) y = matrix(y)
  \begin{array}{ll} m Y = colleans(y,na.rm=7); & s dY = apply(y,2,sd,na.rm=7); & y = apply(y,2,scale) \\ ActFun = tanh; & if(RELU) ActFun = function(x)(x|x=0)=x[x=0]=kax(return(x)) \\ DropOut = function(x,prc=dropout)(x[sample(length(x),length(x)*prc)]; return(x) \\ \end{array} 
  n = nrow(X); p = ncol(X); k = ncol(y)

n1 = Nodes1; n2 = Nodes2; lmb = Lambda; rate = LrnRate/c(p,n1,n2)
  b1 = matrix(rnorm(n1*p,0,1/p),p,n1)
b2 = matrix(rnorm(n1*n2,0,1/n1),n1,n2)
 b3 = matrix(rnorm(n2,0,1/n2),n2,k)
  CNV1 = CNV2 = c(
 for(i in 1:nit){ # Iterations (backgrop)
  if((i+1)%%100=1) cat('Iteration',i,'\n') # Sample batch
     w = sample(n,batch,replace=T); y0 = y[w,]; X0 = X[w,]
    H1 = ActFun(X0%%b1); H2 = ActFun(H1%%%b2); H3 = H2%%%b3
     e3 = y0-H3; if(anyNA(e3)) e3[is.na(e3)]=
     e2 = ActFun(e3 % t(b3)); e1 = ActFun(e2 % t(b2)
    \begin{array}{lll} b1 &= b1 + DropOut(t(X0)\%\%(e1) - lmb^*b1)^*(2/n)^*rate[1] \\ b2 &= b2 + DropOut(t(H1)\%\%(e2) - lmb^*b2)^*(2/n)^*rate[2] \end{array}
           b3 + DropOut(t(H2)%*%(e3))*(2/n)*rate
     CNV1 = c(CNV1, mean(apply(e3,2, var, na.rm=T
    CNV2 = c(CNV2, mean(diag(cor(H3,y0,use=')
  out = list(af-ActFun,b1-b1,b2-b2,b3-b3,conv_MSE-CNV1,conv_GOF-CNV2,mu=muY,sd-sdY
  class(out) = 'smalldnn'; return(out)
predict.smalldnn = function(object,newdata)
  x = object: h = xsaf(xsaf(newdatas**xsb1)***xsb2)***xsb3
   for(i in 1:ncol(h)) h[,i] = x5mu[i] + x5sd[i] h[,i]
```


DNN jargons and nuisances

- Latent spaces = non-linear <u>principal components</u>
- "Nodes" = number of PCs = columns of H1 and H2 (driven by the # of columns of B1 and B2)

- Adaptative momentum speed up convergence: $B^{t+1} = B^t \gamma \nabla^t m\gamma \nabla^{t-t}$
- Lazy loading: Each iteration (update of B) uses a different chunk of data
- **<u>Dropoff</u>**: In each iteration, ignore parameters at random to mitigate overfit
- Coefficients **must** start with random values, e.g., $b \sim N(0, p^{-1})$
- No guarantees of similar results even if you fit the same model twice on the same data

Activation functions (α)

Linear between -0.5 and 0.5 ? (most coefficients sit in this intervals)

4. Tree ensembles

$$y = n_t^{-1} \sum T(X) + e$$

- Predictions are averages from several 'haplotypes' of random markers
- Can capture complex patterns; Deal with large datasets;
- Requires some tuning; Not objectively interpretable;

Solution for tree ensembles

No algebra. Tree methods are fully algorithmic.

- Three components
 - 1) Recursive partitioning (RP) = Function that splits the data
 - 2) Tree building = Function that runs, organize and store the RPs
 - 3) Ensemble method = Function that runs, organize and store trees

Recursive partitioning

• Univariate operation... y = f(x), where x is a SNP coded as 012

RP function:

• <u>Inputs</u>: x, y

Output: best split rule, MSE

Outputs for SNP x:

Split rule: x>1 MSE: 6.9801

Tree-building

• Multiple responses... $y = f(x_1, x_2, x_3, ..., x_p)$

Ensemble methods

- Trees are known as "weak learners"... addressed by averaging many trees
 - 1) <u>Bagging</u> (e.g., random forest) = multiple independent trees
 - Fit multiple trees (\sim 500) using random samples of observations (bootstrapping or subsampling) and markers (\sqrt{p} or p/3). The final predictor is the average of all trees.
 - 2) **Boosting** (e.g., xgboost, adaboost) = multiple sequential trees
 - <u>Boosting/Stacking</u>: Fit a tree, use residuals to fit the next, and then next, and so on. Each tree may be fit different observations and markers. Final predictor is the <u>sum</u> of all trees.
 - <u>Partial Boosting</u>: Fit a tree, reweight observations based on residuals (learning rate defines reweighting), fit the next tree, reweight, and so on. Final predictor is the <u>average</u> of all trees.

1. Introduction

2. Machines

- Linear models
- Kernel methods
- Neural networks
- Tree ensembles

3. Validation

- Schemes and metrics
- Information and case of study
- 4. Conclusion

Validation

CV schemes

- Random CV = Upper-bound predictive potential
- **Leave-one-out** = Assess structured scenarios (e.g., geography-out, year-out)
- **Holdout** = Reproduce true applications (e.g., predict individuals from upcoming)

	Genotype	Environment	Difficulty
CV00	New	New	****
CV0	Observed	New	***
CV1	New	Observed	***
CV2	Observed	Observed	*

Adapted from Crossa et al. (2017) doi.org/10.1016/j.tplants.2017.08.011

Validation metrics

Correlations

- Most common metrics in breeding (e.g., predictability, accuracy when possible)
- Pertinent to ranking and selection of complex traits

Prediction error

- Utilized when the predicted values must be as close as possible to original scale
- Pertinent to risk prediction (e.g., disease risk)

Success

- Accommodate complex or subjective criteria, independent or otherwise
- Pertinent to decision involving data from multiple sources (e.g., advancement)

Information

Information carried by each marker:

- <u>Linkage disequilibrium (LD)</u>: Marker proximity to a causative locus or regions, irrespective of population source.
- <u>Linkage</u>: Marker inherited from a specific source or parents. Also referred to as: co-segregation, haplotype, short-term LD.
- **Relationship**: Marker information attributed to population structure. Captures differences among families and populations.

NOTE: Whether allelic information is additive, dominant or epistatic depends on parametrization and coding.

Information

Genetic information assessed by cross-validation setup

- Intra-family: Linkage*
- Within-family: Linkage and LD
- Across-family: Relationships**, Linkage and LD
- Leave-family-out: Relationships and LD

Untested environments: Same as above + GxE component

Type of information captured by SNP

Population structure (PS)

CV scheme

Untested

Tested

- Linkage disequilibrium (LD)
- Cosegregation / Haplotype (CS)

Figure 1. Four cross-validation schemes illustrating predictability of various methods utilized for genomic prediction. Grain yield models from the SoyNAM population, validated upon unobserved individuals from tested and untested environments.

1. Introduction

2. Machines

- Linear models
- Kernel methods
- Neural networks
- Tree ensembles

3. Validation

- Schemes and metrics
- Information and case of study

4. Conclusion

Conclusion

Thank you for your attention!

Remarks:

- There are discrepancies in thought and nomenclature between ML and QG
- 2) We reviewed the 4 major types of machines utilized in genomic predictions
- 3) Cross-validation help us to understand methods' strengths and limitations

Questions??

Alencar Xavier

Alencar.Xavier@Corteva.com

Acknowledgements: David Habier for extensive revision of the study; Radu Totir for supporting the publication.

Unnecessarily complex analysis should not be used as a foil to disguise lower quality datasets

Kruuk (2004 apud Walsh and Lynch 2018)

Data > Method

