Tema 1: Introducción a las Redes y Sistemas Distribuidos

- Conceptos y Teoría de Comunicaciones
 - Definición y Caracterización de los Sistemas en Red
 - Evolución de las Redes de Comunicación
 - Transmisión Física de la Información
- Estructura y Componentes de una Red
 - Funciones de un Sistema de Comunicación
 - Modelos Físicos de Transmisión
 - Tipologías de Red
 - Computación Distribuida y Comunicación
- Modelos en Capas y Estándares
 - Una Arquitectura en Capas
 - Estandarización de Protocolos de Comunicación
 - La Torre de Protocolos de Internet

CONCEPTOS Y TEORÍA DE LAS COMUNICACIONES

Redes de ordenadores

Definición: Es un conjunto de dispositivos hardware interconectados entre si, a través de algún medio de conexión. Compartir información y servicios

Sistemas distribuidos: sistema único, distribución física de los recursos es transparente

- -Red de ordenadores: infraestructura de comunicaciones
- -Sistema distribuido: Procesos software

Aplicaciones distribuidas: se ejecutan en los nodos de la red y se comunican mediante el intercambio de mensajes

- Web
- Correo electrónico
- ◆ Intercambio de ficheros mediante P2P
- Voz sobre IP(VoIP)
- Juegos en red
- Mensajería instantánea

Componentes

Acceso a un servidor Web a través de un router y una red de fibra óptica

Historia de las redes de ordenadores

Transmisión física de la información

· Topología física: Estructura de red física, conjunto de nodos conectados mediante enlaces

Una red totalmente conectada de N nodos requeriría: Nx(N-1)/2 enlaces -> muy costoso

Transmisión física de la información: conmutación

Red parcialmente conectada:

- Solamente hay algunos enlaces
- Problema: hay que encontrar el camino para llegar entre nodos
- Solución: Conmutación

Conmutación: Una red conmutada consta de una serie de nodos interconectados a través de conmutadores. Un conmutador es capaz de enlazar temporalmente dos o más dispositivos

- Conmutación de circuitos
 - o Los recursos para la transmisión se reservan mientras duran la comunicación
 - Los enlaces no se comparten con otros circuitos
 - o EJ: Red de telefonía móvil
- Conmutación de paquetes
 - o Los enlaces y conmutadores se comparten
 - o EJ: la red Internet
 - Store and foward: Se almacena el paquete, se decide por qué enlace debe retransmitirse y se retransmite

Transmisión física de la información: multiplexado

- Ancho de banda
 - Señal analógica como la anchura del espectro de frecuencias y se mide en Hercios(Hz)
 - o Mayor ancho de banda en Hz => mayor velocidad en bps
- Motivación del multiplexado
 - o Aumentar la velocidad de transmisión mediante la compartición del ancho de banda del canal
- Multiplexado
 - o Utiliza un recurso para transmitir más de un mensaje simultáneamente
 - Las entrada son datos/voz de baja velocidad y se combinan en una sola banda de alta velocidad que se transmite por un único canal
 - o Beneficio: aumenta la eficiencia
- Dos tipos básicos de multiplexado
 - División de frecuencias(FDM)
 - División de tiempo(TDM)

Tecnología ADSL

- Motivación: se requiere mayor ancho de banda
- Solución:
 - o ADSL
 - o Mas capacidad de transmisión en el enlace descendente que en el ascendente

División en varios subcanales por TDM

0

- ADSL: Rangos de frecuencia
 - Canal de voz: 0 4 Khz
 - Canal de datos: 25 Khz 1.1 Mhz
 - Envío: 25 Khz 150 Khz
 - Recepción: 150 Khz 1.1 Mhz
- ADSL 2+: Rangos de frecuencia
 - Canal de voz: 0 4 Khz
 - Canal de datos: 25 Khz 2.2 Mhz
 - Envío: 25 Khz 500 Khz
 - Recepción: 500 Khz 2.2 Mhz

Modos de comunicación

- Tres modos
 - o Símplex: se transmite en una sola dirección
 - o Semi-dúplex: transmite en ambas direcciones pero de forma alternada
 - o Dúplex: transmite en ambas direcciones

Rendimiento

- Medidas de rendimiento
 - o Latencia: tiempo medio que tarda un paquete de origen a destino
 - o Round trip time: tiempo que tarda en ir y volver
 - o Ancho de banda: cantidad de bps que admite un canal
 - o Paquetes transmitidos por segundo
 - Paquetes perdidos
 - o Tasa de errores

Tipos de enlaces

- Punto a punto: conexión entre conmutadores
- Difusión: ethernet, wifi

ESTRUCTURA Y COMPONENTES DE UNA RED

Funciones/beneficios de las redes

- Las redes permiten:
 - Mejorar el proceso de obtención y almacenamiento
 - o Compartir información
 - Compartir periféricos
 - Comunicación entre usuarios
 - o Mayor capacidad de procesamiento
- Problemas:
 - o El software distribuido es complejo
 - o Problemas producidos por la red de comunicación
 - o Problemas de seguridad

Clasificación

- Criterio: medio de transmisión
 - Redes cableadas
 - Utilizan cable para la transmisión
 - □ Cable par trenzado de cobre
 - □ Cable coaxial
 - □ Fibra óptica
 - ☐ Ej: Ethernet, SDH/Sonet
 - o Redes inalámbricas
 - □ No es un medio sólido
 - □ Rayos infrarrojos
 - □ Ondas de radio terrestres
 - □ Ondas de radio por satélite
 - ☐ Ej: UMTS, IEEE 802.11, Bluetooth
- Criterio: Cobertura geográfica
 - o PAN(Personal Area Network)->bluetooth
 - Cobertura: pocos metros
 - Interconectar dispositivos proximos
 - Bajo consumo
 - Alcance limitado
 - LAN(Local Area Network)
 - Cobertura: uno o varios edificios
 - Varios segmentos interconectados mediante hubs o conmutadores
 - Topología: Bus, Anillo, Fast Ethernet, Wifi
 - MAN(Metropolitan Area Network)->DQDB,WIMAX
 - Cobertura: una ciudad
 - Redes de fibra óptica
 - Redes inalambricas
 - WAN(Wide Area Network)->Internet
 - Cobertura: ciudades, países, el mundo entero
 - Interconexión mediante conmutadores
 - Necesitan infraestructuras proporcionadas por entidades de telecomunicación
 - Latencia alta

Computación distribuida y comunicación

- Aplicaciones distribuidas: consisten en procesos que se comunican y sincronizan entre sí mediante el intercambio de mensajes
- Comunicación distribuida: intercambio de información entre procesos
- Sincronización: Puntos de ejecución en los que dos o más procesos se ponen de acuedo
- Características
 - o Los procesos no comparten memoria
 - Paso de mensajes

MODELO EN CAPAS Y ESTÁNDARES

Arquitectura en capas

- Las redes son sistemas complejos
 - Establecer modelos de capas -> sistemas operativos, compiladores
 - Una capa N proporciona un servicio a la capa N+1 es usuario de la capa N-1
- La funcionalidad de comunicaciones en redes de ordenador se organizan en capas
 - o OSI
- Componentes
 - o Las capas
 - o Las interfaces de servicio
 - o Los protocolos

- Protocolos
 - o Es un conjunto de reglas normalizadas que establecen el formato, contenido y significado de los mensajes
 - o Para que dos equipos se comuniquen deben implementar el mismo protocolo en cada capa
- Arquitecturas de capas en redes de ordenadores
 - o "Arquitecturas de redes" o "familias de protocolos"
 - o Conjunto de protocolos organizados en capas
 - o Torre de control

Protocolos

- Tipos de protocolos
 - o Orientados a la conexión -> TCP,el teléfono
 - Sin conexión -> código postal, UDP

Estándares

- Dos tipos de normas
 - De facto: sin ningún planteamiento formal
 - o De Jure: normas formales promulgadas por organismo
- Dos tipos de entidades de normalización
 - o Gubernamentales
 - Organizaciones voluntarias

El modelo de referencia OSI

Encapsulamiento de mensajes

- Propósito: conseguir estandarizar las tecnologías de la comunicación
- Adopción del modelo
 - Útil para estudiar redes
 - o Lenguaje común
 - Mala implementación -> muy complejo

Arquitectura de TCP/IP

- TCP/IP define cinco capas

- IP es su protocolo más importante
- Nivel de transporte -> con conexión ó sin conexión
- Mayoría de aplicaciones de internet usan TCP -> FTP, HTTP, SMTP

