

Convolutional Neural Network -- Filters

Mark 1 Perzeptron-Hardware

Zufällige Verbindungen

Potentiometer: drehbarer variabler Widerstand

"lineare Funktionen"

"Aktivierungsfunktionen"

Frank Rosenblatt, 1957

Perzeptron

AND, OR & XOR-Operationen

inputs		C	output	 S
x_1	x_2	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

Logikgatter

Convolutional Neural Network

faltendes neuronales Netzwerk

Fully Connected Layer vs. Convolutional Layer

die Eingabe der vollverknüpften Schicht, multipliziert mit der Gewichtungsmatrix, um den Ausgabevektor zu erhalten.

eine vollständig verknüpfte Schicht (a fully connected layer)

Fully Connected Layer vs. Convolutional Layer

A = 1 * I + 2 * II + 4 * III + 5 * IV Verfahren der Faltungsschicht

Die Art und Weise, wie die Knoten in einer Faltungsschicht verbunden sind.

Fully Connected Layer vs. Convolutional Layer

Die Art und Weise, wie die Knoten in einer Faltungsschicht verbunden sind.

Luftbilder

Bostelmann, 2024

Luftbilder

- ein Farbbild mit 10³ × 10³ Pixeln, von denen jedes drei Werte hat, die den Intensitäten von Rot, Grün und Blau entsprechen.
- Die erste versteckte Schicht des Netzes hat 1.000 versteckte Knoten, dann haben wir bereits 3 × 10⁹
 Gewichte in der ersten Schicht.
- Luftbild (DOP20, 1km * 1km) mit 5*10³ × 5*10³ Pixeln, von denen jedes drei Werte hat, die den Intensitäten von Rot, Grün und Blau entsprechen.
- Die erste versteckte Schicht des Netzes hat 1.000 versteckte Knoten, dann haben wir bereits 7.5×10^{10} Gewichte in der ersten Schicht.

Digitale Orthophotos Bodenauflösung 20 cm (DOP20): mit einer Bodenauflösung von 20 cm (1 Bildpixel = 20 cm x 20 cm)

Punktwolken...

Feature-Detektoren

Grauwertbilder (d.h., Bilder mit einem einzigen Kanal)

- kleinen rechteckigen Bereich (Patch)
- den Begriff der Lokalität erfassen
- $t = ReLU(w^Tx + w_0)$

Perzeptron

$$z = f\left(\sum_{i=1}^{n} w_i x_i + b\right) = f(\mathbf{w}^T \mathbf{x})$$

Dabei ist:

$$\mathbf{W} = [w_1 \ w_2 \dots wn \ b]^T$$

$$X = [x_1 \ x_2 ... \ x_n \ 1]^T$$

$$f(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{ansonsten} \end{cases}$$

Begrenzungsline:

$$a \cdot x + b \cdot y + c = 0 \implies w_1 \cdot x_1 + w_2 \cdot x_2 + b = 0$$

Begrenzungsfläche:

$$a \cdot x + b \cdot y + c \cdot z + d = 0 \rightarrow w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3 + b = 0$$

Hyperfläche (n-1):

$$w_1 \cdot x_1 + w_2 \cdot x_2 + \cdots + w_n \cdot x_n + b = 0$$

Feature-Detektoren

Grauwertbilder (d.h., Bilder mit einem einzigen Kanal)

- kleinen rechteckigen Bereich (Patch)
- er erfasst den Begriff der Lokalität
- $t = ReLU(w^Tx + w_0)$
- a gewichtete lineare Kombination der Eingangswerte
- eine nichtlineare Aktivierungsfunktion
- x ist ein Vektor von Pixelwerten für das rezeptive Feld
- Kernel (Filter) : Gewichte

$$(f^*g)(t) = \int_{-\infty}^{\infty} f(\tau) * g(t - \tau) d\tau$$

t (Std.)

System: Fahrradgabel

die Größe des Steins ~ Schwingungsamplitude (das Ausmaß der Verformung)

Feature-Detektoren

kleinen rechteckigen Bereich (Patch)

Grauwertbilder (d.h., Bilder mit einem einzigen Kanal)

Image

Convolved Feature

- den Begriff der Lokalität erfassen
- $t = ReLU(w^{T}x + w_0)$
- a gewichtete lineare Kombination der Eingangswerte
- eine nichtlineare Aktivierungsfunktion
- x ist ein Vektor von Pixelwerten für das rezeptive Feld
- Kernel (Filter) : Gewichte
- Maximieren von w^Tx: sieht aus wie das Kernel-Image
- Streng genommen wird die Faltung als Kreuz-Korrelation bezeichnet.

Äquivarianz der Verschiebung

- Illustration der Faltung für ein eindimensionales Feld von Eingangswerten und einem Kernel der Breite 2.
- Verbindungen mit der gleichen Farbe haben die gleichen Gewichtswerte.
- Dieses Netz hat also sechs Verbindungen, aber nur zwei unabhängige, lernbare Parameter.

- Äquivarianz der Verschiebung
 - Vertikale / Horizontale Kanten erkennen: ein fester, handgefertigter Kernel

Vertikale

-1	0	1
-1	0	1
-1	0	1

Horizontale

-1	-1	-1
0	0	0
1	1	1

Auffüllen (Padding)

4	

Image

Convolved Feature

die Faltungskarte ist kleiner als das Original Bild (5 < 3)

- Die Veränderungen der Dimensionalität ohne das Auffüllen:
- die Dimensionalität des Bildes: M × N Pixel
- die Dimensionalität des Kernels: K × K
- die Dimensionalität der resultierenden Feature Map (i):
 (M K + 1) × (N K + 1) = (5-3+1) * (5-3+1) = 3 * 3
- Die Veränderungen der Dimensionalität mit dem Auffüllen:
- die Dimensionalität des Bildes: M × N Pixel
- die Dimensionalität des Kernels: K × K
- Padding: P Pixel
- die Dimensionalität der resultierenden Feature Map (ii):
 (M + 2P- K + 1) × (N + 2P K + 1) = (6+2*1-3+1) * (6+2*1-3+1) = 6 * 6

Schritteweite (stride)

- Feature-Maps zu verwenden, die deutlich kleiner sind als das Originalbild
- schrittweise Faltungen zu verwenden
- Die Veränderungen der Dimensionalität nach dem Auffüllen:
- die Dimensionalität des Bildes: M × N Pixel
- die Dimensionalität des Kernels: K × K
- Padding: P Pixel
- den Kernel S Pixel nacheinander über das Bild zu führen
- die Dimensionalität der resultierenden Feature Map:

$$\left[\frac{\mathsf{M} + \mathsf{2P-K}}{\mathsf{S}} + 1\right] * \left[\frac{\mathsf{N} + \mathsf{2P-K}}{\mathsf{S}} + 1\right]$$

$$= \left[\frac{5 + 2 \times 1 - 3}{2} + 1 \right] \times \left[\frac{5 + 2 \times 1 - 3}{2} + 1 \right]$$

Max Pooling

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

 den Maximalwert aus dem Feld der Eingabedaten auswählen

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Average Pooling

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

 den Durchschnittswert aus dem Feld der Eingabedaten auswählen

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

Max Pooling & Average Pooling

max pooling

(446, 450)

den Durchschnittswert aus

average pooling

dem Feld der Eingabedaten auswählen

Take Home Messages

Im Vergleich dieser Faltungsstruktur mit einem standardmäßigen vollverknüpften Netz sehen wir mehrere Vorteile:

- Verbindungen sind wenig zahlreich, was selbst bei großen Bildern zu einer weitaus geringeren Anzahl von Gewichten führt.
- Die Gewichtungswerte werden gemeinsam genutzt, wodurch sich die Zahl der unabhängigen Parameter deutlich reduziert und folglich auch die erforderliche Größe der zum Training dieser Parameter benötigten Menge.
- Dasselbe Netz kann auf Bilder unterschiedlicher Größe angewendet werden, ohne dass ein erneutes Training erforderlich ist.
- Durch die Änderung der Größe des Eingangsbildes wird lediglich die Größe der Feature-Map geändert, nicht aber die Anzahl der Gewichte oder die Anzahl der unabhängigen, lernbaren Parameter im Modell.

Take Home Messages

Filters in CNN

- Kernel
- Auffüllen (Padding)
- Schritteweite (stride)
- Max Pooling & Average Pooling

Nächste Schritte:

Convolutional Neural Network (CNN) Aktivierungsfunktionen...

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0,x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

