

Figure 4: PointCNN architecture for classification (a and b) and segmentation (c), where N and C denote the output representative point number and feature dimensionality, K is the neighboring point number for each representative point, and D is the \mathcal{X} -Conv dilation rate.

图 1: PointCNN

X-transformation:

- 给点的特征进行赋权重
- 将点转置到一个潜在的标准顺序

ALGORITHM 1: \mathcal{X} -Conv Operator

Input :K, p, P, F

Output:F_p
1: P' \leftarrow P - p2: F_{δ} \leftarrow MLP_{δ} (P')
3: F_{*} \leftarrow [F_{δ}, F]
4: $\mathcal{X} \leftarrow$ MLP(P')
5: F_{$\mathcal{X} \leftarrow$} $\mathcal{X} \times$ F_{*}
6: F_p \leftarrow Conv(K, F_{\mathcal{X}})

图 2: X-conv

$$\mathbf{F}_p = \mathcal{X} - \operatorname{Conv}(\mathbf{K}, p, \mathbf{P}, \mathbf{F}) = \operatorname{Conv}(\mathbf{K}, MLP(\mathbf{P} - p) \times [MLP_{\delta}(\mathbf{P} - p), \mathbf{F}])$$

分类任务 有两种网络,分别对应图 1 的 a,b。b 在保留相同卷积深度的基础上,加入了卷积 dilation,增加了感受域,但未卷积核的大小。

语义分割 在特征提取之后,进行"反卷积",还原回最初的点的个数。