Probabilidade e Estatística

Estatística Descritiva!

O que é a estatística ?

Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os estatísticos são pessoas que coletam esses dados.

- A estatística originou-se com a coleta e construção de tabelas de dados para os governos
- A situação evoluiu e esta coleta de dados representa somente um dos aspectos da estatística.

Definição de Estatística

A estatística é um conjunto de técnicas que permite, de forma sistemática, organizar, descrever, analisar e interpretar dados oriundos de estudos ou experimentos, realizados em qualquer área do conhecimento.

Áreas e aplicações da Estatística:

- 1. Estatística descritiva;
- 2. Probabilidade;
- 3. Inferência estatística;
- 4. Machine learning.

ESTATÍSTICA DESCRITIVA

A estatística descritiva é a etapa inicial da análise utilizada para descrever e resumir os dados. A disponibilidade de uma grande quantidade de dados e de métodos computacionais muito eficientes revigorou está área da estatística.

PROBABILIDADE

A teoria de probabilidades nos permite descrever os fenômenos aleatórios, ou seja, aqueles em que está presente a incerteza.

INFERENCIA ESTATISTICA

E o estudo de técnicas que possibilitam a extrapolação, a um grande conjunto de dados, das informações e conclusões obtidas a partir da amostra.

Machine learning:

Método de análise de dados da área da Inteligência Artificial que automatiza a criação de modelos analíticos. Por meio de algoritmos que aprendem a partir de diversas bases de dados e de experiências acumuladas, o Machine Learning possibilita a predição e o aprendizado de certos padrões e comportamentos automaticamente, sem a intervenção humana.

Quando falamos em Machine Learning, estamos abordando também a estatística. Isso porque o Aprendizado de Máquina só pôde ser criado graças à ampla variedade de técnicas estatísticas desenvolvidas nos últimos tempos.

Machine learning:

Técnicas estatísticas que são geralmente aplicadas em cada tipo de aprendizado:

- Aprendizado Supervisionado: Árvores de Classificação, Suport Vector Machine (SVM), classificação (Regressão Logística, KNN-K vizinhos mais próximos), regressão (Regressão Linear, Splines, Árvores de Regressão, Redes Neurais);
- Aprendizado Não Supervisionado: redução de dimensionalidade (Análise de Componentes Principais, Escalonamento Multidimensional), análise de agrupamento (K-médias, Métodos Hierárquicos), regras de associação, sistemas de recomendação.

Graças ao aumento do poder de processamento dos computadores, as abordagens estatísticas e matemáticas evoluíram ao ponto de permitir o uso em Machine Learning.

Etapas da Analise Estatística

AMOSTRAGEM

Uma área importante em muitas aplicações Estatísticas é a da **Tecnologia de Amostragem**.

Exemplos de Aplicação:

- · Pesquisa de mercado,
- · Pesquisa de opinião,
- · Avaliação do processo de produção,
- · Praticamente em todo experimento.

Amostragem Aleatória

Cada elemento da população tem a mesma chance de ser escolhido.

Amostragem Estratificada

Classificar a população em, ao menos dois estratos e extrair uma amostra de cada um.

Amostragem Sistemática

Escolher cada elemento de ordem k.

Amostragem por Conglomerados

Dividir em seções a área populacional, selecionar aleatoriamente algumas dessas seções e tomar todos os elementos das mesmas.

Amostragem de Conveniência

Utilizar resultados de fácil acesso.

Exemplo 1

Numa pesquisa eleitoral, um instituto de pesquisa procura, com base nos resultados de um levantamento aplicado a uma amostra da população, prever o resultado da eleição.

Na eleição Presidencial

Os Institutos de Pesquisa de opinião colhem periodicamente amostras de eleitores para obter as estimativas de intenção de voto da população. As estimativas são fornecidas com um valor e uma margem de erro.

O quadro do Instituto Toledo & Associados, a seguir refere-se à intenção de voto no 1º turno das eleições para o governo em 2002.

<u>Intenção de voto para presidente do Brasil-2002</u>

Voto estimulado, em % do total de votos. A ultima pesquisa ouviu 2.202 eleitores - Margem de erro de 2,09%

Confronto no segundo turno.

Gráfico de setores ou em forma de pizza

Tabela 1.1 Informação do estado civil, grau de instrução, número de filhos, idade e procedência de 36 funcionários sorteados ao acaso da empresa MB.(Bussab e Morettin)

- 1		Lietado.	Gran de	No de	Salário (X	Idade	Dogião do	
- 1	N°	Estado Civil	Grau de		Salano (X Sal. Min)		Região de	
-	1	Solteiro	Instrução 1º grau	filhos	4,00	anos meses 26 03	procedência Interior	1
	1			-				
	2	Casado Casado		1 2	4,56	32 10 36 05	Capital	
				2	5,25		Capital	
	4 5 6	Solteiro	-, 8	-	5,73	20 10	Outro	
)	Solteiro	- 0 5- 1111	-	6,26	40 07	Outro	
	7	Casado	- , 5	0	6,66	28 00	Interior	
		Solteiro	- , 8	-	6,86	41 00	Interior	
	8	Solteiro		-	7,39	43 04	Capital	
	9 10	Casado	- ^ 0	1	7,59	34 10	Capital	
		Solteiro	Λ -	-	7,44	23 06	Outro	
	11	Casado	A 0	2	8,12	33 06	Interior	
	12	Solteiro	- , 5	-	8,46	27 11	Capital	
	13	Solteiro		-	8,74	37 05	Outro	
	14	Casado	1º grau 2º grau	3	8,95	44 02	Outro	
	15	Casado	Λ -	0	9,13	30 05	Interior	
	16	Solteiro		-	9,35	38 08	Outro	
	17	Casado		1	9,77	31 07	Capital	
	18	Casado	0	2	9,80	39 07	Outro	
	19	Solteiro	Superior	-	10,53	25 08	Interior	
	20	Solteiro	20 ⁶ grau 20 grau	-	10,76	37 04	Interior	
	21	Casado	A 0	1	11,06	30 09	Outro	
	22	Solteiro	8	-	11,59	34 02	Capital	
	23	Solteiro		-	12,00	41 00	Outro	
	24	Casado	Superior	0	12,79	26 01	Outro	
	25	Casado	20 grau	2 2	13,23	32 05	Interior	
	26	Casado	2º grau 1º grau		13,60	35 00	Outro	
	27	Solteiro		-	13,85	46 07	Outro	
	28	Casado		0	14,69	29 08	Interior	
	29	Casado	20 grau	5	14,71	40 06	Interior	
	30	Casado	2º grau	2	15,99	35 10	Capital	
	31	Solteiro	Superior	:	16,22	31 05	Outro	
	32	Casado	20 grau	1	16,61	36 04	Interior	
	33	Casado	Superior	3	17,26	43 07	Capital	
	34	Solteiro	Superior	-	18,75	33 07	Capital	
	35	Casado	20 grau	2 3	19,40	48 11	Capital	
	36	Casado	Superior	3	23,30	42 02	Interior	

Estatítica Descritiva

O que fazer com as observações que coletamos?

Primeira Etapa:

Resumo dos dados = Estatística descritiva

Variável

Qualquer característica associada a uma população

Medidas Resumo Variáveis Quantitativas

MEDIDAS DE POSIÇÃO: Moda, Média, Mediana, Percentís, Quartis.

MEDIDAS DE DISPERSÃO: Amplitude, Intervalo-Interquartil, Variância, Desvio Padrão, Coeficiente de Variação.

Medidas de Posição

Moda(mo): É o valor (ou atributo) que ocorre com maior freqüência.

Ex: 4,5,4,6,5,8,4,4

Mo = 4

Média aritmética simples

A média aritmética simples é obtida dividindo a soma de todos os valores que temos pela quantidade de valores. Geralmente expressamos a média pelo símbolo \overline{X} .

Suponhamos que existam uma quantidade n de dados $(x_1, x_2, x_3, ..., x_n)$. A média entre esses dados será:

$$\overline{X} = \frac{x_1 + x_2 + x_3 + \ldots + x_n}{n}$$

Exemplo:

Um aluno obteve as seguintes notas durante um bimestre: 9.2, 8.5 e 8.4. Qual será a média de suas notas?

Temos 3 notas. Basta somá-las e dividir este resultado por 3:

$$\overline{X} = \frac{9,2+8,5+8,4}{3} = \frac{26,1}{3} = 8,7$$

A média será 8.7

Média aritmética ponderada

A média ponderada considera "pesos" para cada item, ou seja, em um conjunto de dados, cada item recebe uma importância. Vamos supor que tenhamos um conjunto com n dados $(x_1, x_2, x_3, ..., x_n)$, onde cada dado receberá um peso, respectivamente $(p_1, p_2, p_3, ..., p_n)$.

Cada item será multiplicado pelo seu peso. A média será dada pela divisão entre esta soma e a soma dos pesos considerados. A média entre esses dados será representada por \overline{P} e será dada por:

$$\overline{P} = \frac{x_1 p_1 + x_2 p_2 + x_3 p_3 + \dots + x_n p_n}{p_1 + p_2 + p_3 + \dots + p_n}$$

Exemplo: Uma aluna fez uma prova e obteve nota 9.1 e um trabalho, com nota 8,7. A média considera que a prova tenha peso 6 e o trabalho peso 4. Assim, a média dessa aluna será:

$$\overline{P} = \frac{9,1 \cdot 6 + 8,7 \cdot 4}{6 + 4} = \frac{54,6 + 34,8}{10} = \frac{89,4}{10} = 8,94$$

A média dessa aluna será 8,94.

Média geométrica

A média geométrica entre um conjunto de n dados é a raiz n-ésima da multiplicação desses dados.

Considere um conjunto de n dados $(x_1, x_2, x_3, ..., x_n)$. A média geométrica entre estes dados será:

$$\overline{X} = \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \cdot \ldots \cdot x_n}$$

Exemplo. Qual a média geométrica entre 2, 8 e 32?

Temos três dados, então a média geométrica será a raiz cúbica de 2.8.32:

$$\overline{X} = \sqrt[3]{2 \cdot 8 \cdot 32} = \sqrt[3]{512} = 8$$

A média geométrica de 2, 8 e 32 será igual a 8.

Média harmônica

A média harmônica de um conjunto de n dados é obtida dividindo a quantidade de dados pela soma dos inversos dos dados.

Considerando um conjunto de n dados $(x_1, x_2, x_3, ..., x_n)$, a média harmônica entre esses dados, indicada por H, será:

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_n}}$$

Por exemplo, dado um conjunto A (2, 3, 5, 6, 9), como ele possui cinco elementos, a média harmônica de A é calculada por:

$$M_h = \frac{5}{\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{6} + \frac{1}{9}}$$

$$M_h = \frac{450}{118} = 3,81$$

Mediana

A mediana é o valor da variável que ocupa a posição central de um conjunto de n dados ordenados.

Posição da mediana: (n+1)/2

Ex: 2,5,3,7,8

Dados ordenados: 2,3,5,7,8 => (5+1)/2=3

=> Md = 5

Ex: 3,5,2,1,8,6

Dados ordenados:1,2,3,5,6,8 => (6+1)/2=3,5 => Md=(3+5)/2=4

Variância

$$S^{2} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n-1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Desvio padrão S

Desvio Padrão : $S = \sqrt{Variância}$

Cálculo da variância para o grupo 1:

G1:3, 4, 5, 6, 7: Vimos que: $\bar{x} = 5$

$$S^{2} = \frac{(3-5)^{2} + (4-5)^{2} + (5-5)^{2} + (6-5)^{2} + (7-5)^{2}}{5-1} = \frac{10}{4} = 2.5$$

Desvio padrão $S = \sqrt{2.5} = 1.58$

$$G1:S^2=2.5$$
 $S=1.58$

$$G2:S^2=10$$
 $S=3,16$

$$G3:S^2=0$$
 $S=0$

Coeficiente de Variação (CV)

- É uma medida de dispersão relativa;
- Elimina o efeito da magnitude dos dados;
- Exprime a variabilidade em relação a média
- 🚁 Útil Comparar duas ou mais variáveis

$$CV = \frac{S}{\overline{X}} \times 100 \%$$

Exemplo 4: Altura e peso de alunos

	Média	Desvio padrão	Coeficiente de		
			variação		
Altura	1,143m	0,063m	5,5%		
Peso	50Kg	6kg	12%		

Conclusão: Com relação as médias, os alunos são, aproximadamente, duas vezes mais dispersos quanto ao peso do que quanto a altura

ORGANIZAÇÃO E REPRESENTAÇÃO DOS DADOS

Uma das formas de organizar e resumir a informação contida em dados observados é por meio de tabela de freqüências e gráficos.

Tabela de freqüência relaciona categorias (ou classes) de valores, juntamente com contagem (ou freqüências) do número de valores que se enquadram em cada categoria ou classe.

1. Variáveis qualitativas: Podemos construir tabela de freqüência que os quantificam por categoria de classificação e sua representação gráfica é mediante gráfico de barras, gráfico setorial ou em forma de pizza.

Exemplo 1: Considere ao variável grau de Instrução dos dados da tabela 1.(Variável qualitativa)

Tabela de frequência

1	I docta de II	equenera		
Grau de instrução	Contagem	f_{i}	f_{r_i}	$f_{r_i}\%$
1o Grau		12	0,3333	33,3%
20 Grau	####	18	0,5000	50 %
Superior	HH I	6	0,1667	16.7%
total		n=36	1,0000	100%

 f_i :Frequência absoluta da categoria i (número de indivíduos que pertencem à categoria i

$$f_{r_i} = \frac{f_i}{n}$$
: Frequência relativa da categoria i

 $f_{r_i}\% = f_{r_i}*100\%$: Frequência relativa percentual da categoria i

Representação gráfica de variáveis qualitativas

- Gráfico de Barras
- Diagrama circular, de sectores ou em forma de "pizza"

Diagrama circular para a variavel grau de instrução

