Estimação pontual e intervalo de confiança

Parte 2

Prof.: Eduardo Vargas Ferreira

Motivação

(a) Encontre os valores de z_1 e z_2 , tal que

P(
$$z_1 < \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} < z_2$$
) = 0.9.

	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.00000	0.00399	0.00798	0.01197	0.01595	0.01994	0.02392	0.02790	0.03188	0.03586
0.1	0.03983	0.04380	0.04776	0.05172	0.05567	0.05962	0.06356	0.06749	0.07142	0.07535
0.2	0.07926	0.08317	0.08706	0.09095	0.09483	0.09871	0.10257	0.10642	0.11026	0.11409
0.3	0.11791	0.12172	0.12552	0.12930	0.13307	0.13683	0.14058	0.14431	0.14803	0.15173
0.4	0.15542	0.15910	0.16276	0.16640	0.17003	0.17364	0.17724	0.18082	0.18439	0.18793
0.5	0.19146	0.19497	0.19847	0.20194	0.20540	0.20884	0.21226	0.21566	0.21904	0.22240
0.6	0.22575	0.22907	0.23237	0.23565	0.23891	0.24215	0.24537	0.24857	0.25175	0.25490
0.7	0.25804	0.26115	0.26424	0.26730	0.27035	0.27337	0.27637	0.27935	0.28230	0.28524
0.8	0.28814	0.29103	0.29389	0.29673	0.29955	0.30234	0.30511	0.30785	0.31057	0.31327
0.9	0.31594	0.31859	0.32121	0.32381	0.32639	0.32894	0.33147	0.33398	0.33646	0.33891
1	0.34134	0.34375	0.34614	0.34849	0.35083	0.35314	0.35543	0.35769	0.35993	0.36214
1.1	0.36433	0.36650	0.36864	0.37076	0.37286	0.37493	0.37698	0.37900	0.38100	0.38298
1.2	0.38493	0.38686	0.38877	0.39065	0.39251	0.39435	0.39617	0.39796	0.39973	0.40147
1.3	0.40320	0.40490	0.40658	0.40824	0.40988	0.41149	0.41309	0.41466	0.41621	0.41774
1.4	0.41924	0.42073	0.42220	0.42364	0.42507	0.42647	0.42785	0.42922	0.43056	0.43189
1.5	0.43319	0.43448	0.43574	0.43699	0.43822	0.43943	0.44062	0.44179	0.44295	0.44408
1.6	0.44520	0.44630	0.44738	0.44845	0.44950	0.45053	0.45154	0.45254	0.45352	0.45449
1.7	0.45543	0.45637	0.45728	0.45818	0.4590/	0.45994	0.46080	0.46164	0.46246	0.46327

Motivação

(a) Encontre os valores de z_1 e z_2 , tal que

$$P(z_1 < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < z_2) = 0.9.$$

(b) Em uma amostra de tamanho 100, observou-se que $\bar{x} = 10$ e $\sigma^2 = 1$. O que podemos inferir sobre μ ?

$$\begin{split} \mathbf{P} \left(\ -1.64 \ < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \ < 1.64 \ \right) & = \quad \mathbf{P} \left(\ \bar{X} - 1.64 \cdot \sigma/\sqrt{n} \ < \mu \ < \bar{X} + 1.64 \cdot \sigma/\sqrt{n} \ \right) \\ \\ & = \quad \mathbf{P} \left(\ 10 - 1.64 \cdot 1/\sqrt{100} \ < \mu \ < 10 + 1.64 \cdot 1/\sqrt{100} \ \right) \\ \\ & = \quad \mathbf{P} \left(\ 9.83 \ < \mu \ < 10.16 \ \right) \ = \ 0.9 \end{split}$$

Intervalo de confiança para a média

Ideia do intervalos de confiança para a média

Fixando a probabilidade em $1-\alpha$, queremos encontrar os pontos c_1 e c_2 , tal que

$$P(c_1 < \mu < c_2) = 1 - \alpha.$$

$$P(z_{1} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < z_{2}) = 1 - \alpha. \qquad P(t_{1} < \frac{\bar{X} - \mu}{S/\sqrt{n}} < t_{2}) = 1 - \alpha. \qquad P(z_{1} < \frac{\hat{p} - p}{\sqrt{p(1 - p)/n}} < z_{2}) = 1 - \alpha.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad N(0, 1)$$

$$t_{n-1} \qquad \qquad N(0, 1)$$

Agora basta isolar μ

Intervalo de confiança para a média com σ conhecido

▶ O projetista de uma indústria tomou uma amostra de 50 funcionários para verificar o tempo médio gasto para montar um determinado brinquedo. Foi verificado que $\bar{x} = 20.5$ e $\sigma = 2$.

1. Construa um IC de nível 90% para μ .

$$P(c_1 < \mu < c_2) = 0.90$$

▶ O projetista de uma indústria tomou uma amostra de 50 funcionários para verificar o tempo médio gasto para montar um determinado brinquedo. Foi verificado que $\bar{x} = 20.5$ e $\sigma = 2$.

$$P\left(\ z_1 \ < rac{ar{X} - \mu}{\sigma / \sqrt{n}} \ < z_2 \
ight)$$

1. Construa um IC de nível 90% para μ .

$$P(c_1 < \mu < c_2) = 0.90$$

▶ O projetista de uma indústria tomou uma amostra de 50 funcionários para verificar o tempo médio gasto para montar um determinado brinquedo. Foi verificado que $\bar{x} = 20.5$ e $\sigma = 2$.

1. Construa um IC de nível 90% para μ .

$$P(c_1 < \mu < c_2) = 0.90$$

$$P\left(-1.64 < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < 1.64\right) = P\left(-1.64 \cdot \frac{\sigma}{\sqrt{n}} < \bar{X} - \mu < 1.64 \cdot \frac{\sigma}{\sqrt{n}}\right)$$

$$= P\left(\underbrace{\bar{X} - 1.64 \cdot \frac{\sigma}{\sqrt{n}}}_{G_1 = 20.03} < \mu < \underbrace{\bar{X} + 1.64 \cdot \frac{\sigma}{\sqrt{n}}}_{G_2 = 20.96}\right) = 0.90$$

Obtenção do intervalo para μ

▶ Dado o **nível de confiança** $1 - \alpha$, definimos os pontos $-z_{1-\alpha/2}$ e $z_{1-\alpha/2}$

$$P\left(-z_{1-\alpha/2} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{1-\alpha/2}\right) = 1 - \alpha.$$

 \blacktriangleright Em seguida, isolamos μ (quantidade desconhecida) no centro

$$P\left(\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

► Assim, temos:

$$IC_{1-\alpha}(\mu) = \left[\overline{X} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

Interpretação do intervalo de confiança

Como o IC é calculado a partir de uma amostra aleatória, este intervalo também é aleatório!

Interpretação do intervalo de confiança

▶ Suponha um intervalo para μ com 90%. Ou seja, $IC_{0.90}(\mu) = [c_1, c_2]$.

Interpretação errada

Temos 90% de confiança de que a média populacional μ se encontra entre c_1 e c_2 .

Interpretação certa

Temos 90% de confiança de que o intervalo entre c_1 e c_2 contém a média populacional μ .

▶ Note que o intervalo é aleatório e o parâmetro é fixo.

Obtenção do intervalo para μ

▶ Dado o **nível de confiança** $1 - \alpha$, definimos os pontos $-z_{1-\alpha/2}$ e $z_{1-\alpha/2}$

$$P\left(-z_{1-\alpha/2} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{1-\alpha/2}\right) = 1 - \alpha.$$

 \blacktriangleright Em seguida, isolamos μ (quantidade desconhecida) no centro

$$P\left(\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

► Assim, temos:

$$IC_{1-\alpha}(\mu) = \left[\overline{X} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

Exemplo: performance no TOEFL

▶ Uma escola de idiomas afirma que a pontuação média dos seus alunos no TOEFL é acima de 500. Em uma amostra de aleatória de 50 alunos, a pontuação média foi de 560 pontos com $\sigma = 25$ (conhecido).

Construa o intervalo de confiança de 95% e 99% para μ , e discuta o resultado.

Exemplo: performance no TOEFL

1. Para $1 - \alpha = 0.95$, temos:

$$P\left(-1.96 < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < 1.96\right) = P\left(-1.96 \frac{25}{\sqrt{50}} < \overline{X} - \mu < 1.96 \frac{25}{\sqrt{50}}\right)$$
$$= P\left(560 - 1.96 \frac{25}{\sqrt{50}} < \mu < 560 + 1.96 \frac{25}{\sqrt{50}}\right)$$

2. Para $1 - \alpha = 0.99$, temos:

$$P\left(-2.57 < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < 2.57\right) = P\left(-2.57 \frac{25}{\sqrt{50}} < \overline{X} - \mu < 2.57 \frac{25}{\sqrt{50}}\right)$$
$$= P\left(560 - 2.57 \frac{25}{\sqrt{50}} < \mu < 560 + 2.57 \frac{25}{\sqrt{50}}\right)$$

Exemplo: performance no TOEFL

▶ Quando aumentamos o nível de confiança, aumentamos a margem de erro.

$$IC_{0.95}(\mu) = \left[560 - 1.96 \frac{25}{\sqrt{50}}, 560 + 1.96 \frac{25}{\sqrt{50}}\right]$$

$$IC_{0.99}(\mu) = \left[560 - 2.57 \frac{25}{\sqrt{50}}, 560 + 2.57 \frac{25}{\sqrt{50}}\right]$$

Margem de erro

► Seja o intervalo de confiança de $(1-\alpha)$ para μ dado por

$$IC_{1-\alpha}(\mu) = \left[\overline{X} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

riangle Chamamos de erro máximo provável ou margem de erro a quantidade $e = z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$.

$$e = z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Exemplo: o que mais atrai usuários do Airbnb

The Economist

Referências

- ▶ Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

