LDA

(latent Dirichlet allocation)

正田 備也

masada@rikkyo.ac.jp

Contents

VBの回の課題のヒント

PLSAの復習

PLSAの問題点

LDA の変分ベイズ法

VBの回の課題のヒント

- ▶ $q(\lambda_1)$ の shape パラメータは α_1 、 rate パラメータは β_1
- ▶ このとき、 $\int q(\lambda_1; \alpha_1, \beta_1) \ln p(\lambda_1; a, b) d\lambda_1$ を計算せよ。
- ▶ ヒント 1 : $q(\lambda_1)$ のパラメータ α_1 と β_1 を使って答えを表す。
- ト ヒント 2 : $p(\lambda_1; a, b)$ がガンマ分布で、shape パラメータはa、rate パラメータはb であることも当然使う。
- ト ヒント $3: \ln p(\lambda_1; a, b)$ 、つまり、shape パラメータがaで rate パラメータがb であるガンマ分布の密度関数の式の対数を使う。

$$\int q(\lambda_1; \alpha_1, \beta_1) \ln p(\lambda_1; a, b) d\lambda_1 = \int q(\lambda_1; \alpha_1, \beta_1) \ln \left[\frac{b^a}{\Gamma(a)} \lambda_1^{a-1} e^{-b\lambda_1} \right] d\lambda_1
= \int q(\lambda_1; \alpha_1, \beta_1) (a \ln b) d\lambda_1 - \int q(\lambda_1; \alpha_1, \beta_1) \ln \Gamma(a) d\lambda_1
+ \int q(\lambda_1; \alpha_1, \beta_1) (a - 1) \ln \lambda_1 d\lambda_1 + \int q(\lambda_1; \alpha_1, \beta_1) \ln \exp(-b\lambda_1) d\lambda_1
= a \ln b - \ln \Gamma(a) + (a - 1) \int q(\lambda_1; \alpha_1, \beta_1) \ln \lambda_1 d\lambda_1 - b \int q(\lambda_1; \alpha_1, \beta_1) \lambda_1 d\lambda_1
= a \ln b - \ln \Gamma(a) + (a - 1) \mathbb{E}_{q(\lambda_1; \alpha_1, \beta_1)} [\ln \lambda_1] - b \mathbb{E}_{q(\lambda_1; \alpha_1, \beta_1)} [\lambda_1] \tag{1}$$

 $\mathbb{E}_{q(\lambda_1;lpha_1,eta_1)}[\ln\lambda_1]$ は、Wikipedia に以下のように書いてあることを利用する。

$$\mathrm{E}[\ln(X)] = \psi(lpha) - \ln(eta)$$

 $\mathbb{E}_{q(\lambda_1;lpha_1,eta_1)}[\lambda_1]$ は、ガンマ分布の mean。

Contents

VBの回の課題のヒント

PLSAの復習

PLSAの問題点

LDA の変分ベイズ法

PLSA (probabilistic latent semantic analysis)

- ▶ 同じ文書内でも、異なる単語トークンは異なる単語多項分布から生成されうる(=異なるトピックを表現しうる)
- ▶ 文書によって、各トピックの出現確率が異なる

- ▶ PLSA では、単語多項分布をトピック (topic) と呼ぶ
- ▶ PLSA は最もシンプルなトピックモデル
 - ▶ トピックモデルは、単語トークンの"クラスタリング"
 - ▶ 同一文書内の同一単語の異なるトークンは区別されない (bag-of-words)

Notations

- ▶ 語彙集合 {1,..., W}
- ▶ トピック集合 {1,..., *K*}
 - ▶ 語彙やトピックをその添字と同一視している。
- ▶ 文書集合 $\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}$
- ightharpoons 文書 x_i の j 番目のトークンとして現れる単語を、 $x_{i,j}$ という 確率変数で表す
- ightharpoons 文書 $oldsymbol{x}_i$ の j 番目の単語 $x_{i,j}$ が表現するトピックを、 $z_{i,j}$ という確率変数で表す
- $ightharpoonup x_{i,j}$ の値は観測されていない、 $z_{i,j}$ の値は観測されていない
 - ightharpoonup つまり、 $z_{i,j}$ は潜在変数。

PLSAにおける同時分布

PLSA では、文書 x_i の j 番目のトークンがトピック k を表現し、かつそのトピックを表現するために単語 w が使われる同時確率、つまり $p(x_{i,j}=w,z_{i,j}=k)$ は

$$p(x_{i,j} = w, z_{i,j} = k) = p(z_{i,j} = k)p(x_{i,j} = w|z_{i,j} = k)$$
 (2)

- ▶ $p(z_{i,j} = k)$ は、文書 x_i の j 番目のトークンが(他のトピックでなく)トピック k を表現する確率
- ▶ $p(x_{i,j} = w | z_{i,j} = k)$ は、文書 x_i の j 番目のトークンがトピック k を表現するとき(他の単語でなく)単語 w が使われる確率
- ▶ さらに、PLSAでは以下のように仮定する(次スライド)

PLSAにおいて仮定すること

- **>** どの j, j' についても $p(z_{i,j} = k) = p(z_{i,j'} = k)$ と仮定
 - ▶ 同じ文書内なら、どの単語トークンであれ、トピック *k* を表現する 確率は、同じ(場所によってトピックの確率が違ったりしない)
 - ト そこで、 $p(z_{i,\cdot}=k)=\theta_{i,k}$ とおく
- ▶ どの *i*, *i*′ と *j*, *j*′ についても、

$$p(x_{i,j} = w | z_{i,j} = k) = p(x_{i',j'} = w | z_{i',j'} = k)$$
と仮定

- ▶ 同じコーパス内なら、どの文書のどの単語トークンであれ、それが トピック k を表現するために使われるならば(条件付き確率の条件 の部分)、k を表現するためにどの単語が使われるかの確率は、同じ
- ▶ つまり、単語確率分布とトピックが一対一に対応している
- ト そこで、 $p(x_{\cdot,\cdot}=w|z_{\cdot,\cdot}=k)=\phi_{k,w}$ とおく

PLSAにおける観測データの尤度

個々の単語トークンにおけるトピックと単語の同時分布は

$$p(x_{i,j} = w, z_{i,j} = k) = p(z_{i,j} = k)p(x_{i,j} = w|z_{i,j} = k) = \theta_{i,k}\phi_{k,x_{i,j}}$$
(3)

潜在変数である $z_{i,j}$ を周辺化

$$p(x_{i,j} = w) = \sum_{z_i=1}^{K} p(x_{i,j} = w, z_{i,j} = k) = \sum_{k=1}^{K} \theta_{i,k} \phi_{k,x_{i,j}}$$
(4)

各トークンの独立性の仮定より

$$p(\mathbf{x}_i) = \prod_{j=1}^{n_i} p(x_{i,j}) = \prod_{j=1}^{n_i} \left(\sum_{k=1}^K \theta_{i,k} \phi_{k,x_{i,j}} \right)$$

各文書の独立性の仮定より

$$p(\mathcal{X}) = \prod_{i=1}^{N} p(\boldsymbol{x}_i) = \prod_{i=1}^{N} \prod_{j=1}^{n_i} \left(\sum_{k=1}^{K} \theta_{i,k} \phi_{k,x_{i,j}} \right)$$

0/24

(6)

(5)

Contents

VBの回の課題のヒント

PLSAの復習

PLSAの問題点

LDA の変分ベイズ法

PLSAの問題点とベイズ化による改良

- ト 各文書におけるトピック確率 $\theta_i = (\theta_{i,1}, \dots, \theta_{i,K})$ に関して、 異なる文書の間で何の関係性も仮定されていない
 - $lackbrack heta_i arepsilon heta_{i'}$ の間に何の関係もない。
- ▶ このことが過学習をもたらすかもしれない
- ightharpoonup そこで、コーパスに属する全文書の $heta_i$ が、同一のディリクレ事前分布 $\mathsf{Dir}(oldsymbol{lpha})$ から draw されると仮定する
- ▶ 他は PLSA のまま
 - ト 各トピックの単語確率 ϕ_k についても別のディリクレ分布 $Dir(\beta)$ を導入できるが、そうしなくてもよい

Figure: トピック数が3の場合のディリクレ分布(ここから引用)

PLSAとLDAの比較

PLSA における x_i の尤度

$$\begin{aligned} p(\boldsymbol{x}_i; \boldsymbol{\theta}_i, \boldsymbol{\Phi}) &= \sum_{\boldsymbol{z}_i} p(\boldsymbol{x}_i, \boldsymbol{z}_i; \boldsymbol{\theta}_i, \boldsymbol{\Phi}) = \sum_{\boldsymbol{z}_i} p(\boldsymbol{z}_i; \boldsymbol{\theta}_i) p(\boldsymbol{x}_i | \boldsymbol{z}_i; \boldsymbol{\Phi}) \\ &= \prod_{j=1}^{n_i} \left(\sum_{z_{i,j}=1}^K p(z_{i,j}; \boldsymbol{\theta}_i) p(x_{i,j} | z_{i,j}; \boldsymbol{\Phi}) \right) = \prod_{j=1}^{n_i} \left(\sum_{k=1}^K \theta_{i,k} \phi_{k,x_{i,j}} \right) \end{aligned}$$

LDA における
$$x_i$$
 の尤度 $(p(x_i; \theta_i, \Phi))$ は $p(x_i|\theta_i; \Phi)$ に変わる)

$$p(\boldsymbol{x}_i; \boldsymbol{\Phi}, \boldsymbol{\alpha}) = \int p(\boldsymbol{\theta}_i; \boldsymbol{\alpha}) p(\boldsymbol{x}_i | \boldsymbol{\theta}_i; \boldsymbol{\Phi}) d\boldsymbol{\theta}_i$$
$$= \int \sum_{\boldsymbol{z}_i} p(\boldsymbol{\theta}_i; \boldsymbol{\alpha}) p(\boldsymbol{z}_i | \boldsymbol{\theta}_i) p(\boldsymbol{x}_i | \boldsymbol{z}_i; \boldsymbol{\Phi}) d\boldsymbol{\theta}_i$$

$$= \int \left(\frac{\Gamma(\sum_{k} \alpha_{k})}{\prod_{k} \Gamma(\alpha_{k})} \prod_{k=1}^{K} \theta_{i,k}^{\alpha_{k}-1} \right) \prod_{i=1}^{n_{i}} \left(\sum_{k=1}^{K} \theta_{i,k} \phi_{k,x_{i,j}} \right) d\boldsymbol{\theta}_{i}$$

(7)

Contents

VBの回の課題のヒント

PLSAの復習

PLSAの問題点

LDA の変分ベイズ法

LDA の変分ベイズ法

Jensen の不等式を適用して ELBO を求める

$$\ln p(\boldsymbol{x}_i; \boldsymbol{\Phi}, \boldsymbol{\alpha}) = \ln \int \sum_{\boldsymbol{z}_i} p(\boldsymbol{\theta}_i; \boldsymbol{\alpha}) p(\boldsymbol{z}_i | \boldsymbol{\theta}_i) p(\boldsymbol{x}_i | \boldsymbol{z}_i; \boldsymbol{\Phi}) d\boldsymbol{\theta}_i$$

$$= \ln \int \sum_{\boldsymbol{z}_i} q(\boldsymbol{z}_i, \boldsymbol{\theta}_i) \frac{p(\boldsymbol{\theta}_i; \boldsymbol{\alpha}) p(\boldsymbol{z}_i | \boldsymbol{\theta}_i) p(\boldsymbol{x}_i | \boldsymbol{z}_i; \boldsymbol{\Phi})}{q(\boldsymbol{z}_i, \boldsymbol{\theta}_i)} d\boldsymbol{\theta}_i$$

$$\geq \int \sum_{\boldsymbol{z}_i} q(\boldsymbol{z}_i, \boldsymbol{\theta}_i) \ln \frac{p(\boldsymbol{\theta}_i; \boldsymbol{\alpha}) p(\boldsymbol{z}_i | \boldsymbol{\theta}_i) p(\boldsymbol{x}_i | \boldsymbol{z}_i; \boldsymbol{\Phi})}{q(\boldsymbol{z}_i, \boldsymbol{\theta}_i)} d\boldsymbol{\theta}_i$$

以下、 $q(\boldsymbol{z}_i, \boldsymbol{\theta}_i) = q(\boldsymbol{z}_i)q(\boldsymbol{\theta}_i)$ と factorize すると仮定する。

(8)

$$q(\boldsymbol{\theta}_i)$$
を求める

 $q(z_i)$ を固定する。

$$\ln p(\boldsymbol{x}_{i}; \boldsymbol{\Phi}, \boldsymbol{\alpha}) \geq \int \sum_{\boldsymbol{z}_{i}} q(\boldsymbol{z}_{i}) q(\boldsymbol{\theta}_{i}) \ln \frac{p(\boldsymbol{\theta}_{i}; \boldsymbol{\alpha}) p(\boldsymbol{z}_{i} | \boldsymbol{\theta}_{i}) p(\boldsymbol{x}_{i} | \boldsymbol{z}_{i}; \boldsymbol{\Phi})}{q(\boldsymbol{z}_{i}) q(\boldsymbol{\theta}_{i})} d\boldsymbol{\theta}_{i}$$

$$= \int q(\boldsymbol{\theta}_{i}) \Big[\sum_{\boldsymbol{z}_{i}} q(\boldsymbol{z}_{i}) \ln p(\boldsymbol{\theta}_{i}; \boldsymbol{\alpha}) p(\boldsymbol{z}_{i} | \boldsymbol{\theta}_{i}) \Big] d\boldsymbol{\theta}_{i} - \int q(\boldsymbol{\theta}_{i}) \ln q(\boldsymbol{\theta}_{i}) d\boldsymbol{\theta}_{i} + const.$$

$$= -D_{\mathsf{KL}}(q(\boldsymbol{\theta}_{i}) \parallel \frac{1}{Z} \exp \Big[\sum_{\boldsymbol{z}_{i}} q(\boldsymbol{z}_{i}) \ln p(\boldsymbol{\theta}_{i}; \boldsymbol{\alpha}) p(\boldsymbol{z}_{i} | \boldsymbol{\theta}_{i}) \Big]) + const. \tag{9}$$

以上より、
$$q(\boldsymbol{\theta}_i) \propto \exp\left[\sum_{\boldsymbol{z}_i} q(\boldsymbol{z}_i) \ln p(\boldsymbol{\theta}_i; \boldsymbol{\alpha}) p(\boldsymbol{z}_i | \boldsymbol{\theta}_i)\right]$$
 のとき、ELBO は最大。つまり、 $q(\boldsymbol{\theta}_i) \propto p(\boldsymbol{\theta}_i; \boldsymbol{\alpha}) \exp\left[\sum_{\boldsymbol{z}_i} q(\boldsymbol{z}_i) \ln p(\boldsymbol{z}_i | \boldsymbol{\theta}_i)\right]$ のとき、ELBO は最大。

$$\sum_{\mathbf{z}_{i}} q(\mathbf{z}_{i}) \ln p(\mathbf{z}_{i}|\boldsymbol{\theta}_{i}) = \sum_{\mathbf{z}_{i}} q(\mathbf{z}_{i}) \ln \prod_{j=1}^{n_{i}} \theta_{i,z_{i,j}} = \sum_{j=1}^{n_{i}} \sum_{\mathbf{z}_{i}} q(\mathbf{z}_{i}) \ln \theta_{i,z_{i,j}}$$

$$= \sum_{j=1}^{n_{i}} \sum_{z_{i,j}=1}^{K} q(z_{i,j}) \ln \theta_{i,z_{i,j}} = \sum_{k=1}^{K} \left(\sum_{j=1}^{n_{i}} q(z_{i,j}=k) \right) \ln \theta_{i,k} = \sum_{k=1}^{K} n_{i,k} \ln \theta_{i,k}$$
(10)

ただし、 $n_{i,k} \equiv \sum_{i=1}^{n_i} q(z_{i,j} = k)$ と定義した。よって

$$q(m{ heta}_i) \propto \prod_{k=1}^K heta_{i,k}^{lpha_k-1} imes \exp\left[\sum_{k=1}^K n_{i,k} \ln heta_{i,k}
ight]$$

$$= \prod_{k=1}^K heta_{i,k}^{lpha_k+n_{i,k}-1} \tag{11}$$
これは、変分事後分布 $q(m{ heta}_i)$ がディリクレ分布であることを意味する。

変分ディリクレ事後分布 $q(m{ heta}_i)$ のパラメータを $m{\zeta}_i$ とすると、 $\zeta_{i,k}=lpha_k+n_{i,k}$ が成り立つ。

$$q(z_i)$$
を求める

今度は $q(oldsymbol{ heta}_i)$ を固定する。

$$\ln p(\boldsymbol{x}_{i}; \boldsymbol{\Phi}, \boldsymbol{\alpha}) \geq \int \sum_{\boldsymbol{z}_{i}} q(\boldsymbol{z}_{i}) q(\boldsymbol{\theta}_{i}) \ln \frac{p(\boldsymbol{\theta}_{i}; \boldsymbol{\alpha}) p(\boldsymbol{z}_{i} | \boldsymbol{\theta}_{i}) p(\boldsymbol{x}_{i} | \boldsymbol{z}_{i}; \boldsymbol{\Phi})}{q(\boldsymbol{z}_{i}) q(\boldsymbol{\theta}_{i})} d\boldsymbol{\theta}_{i}$$

$$= \sum_{\boldsymbol{z}_{i}} q(\boldsymbol{z}_{i}) \left[\ln p(\boldsymbol{x}_{i} | \boldsymbol{z}_{i}; \boldsymbol{\Phi}) + \int q(\boldsymbol{\theta}_{i}) \ln p(\boldsymbol{z}_{i} | \boldsymbol{\theta}_{i}) d\boldsymbol{\theta}_{i} \right] - \sum_{\boldsymbol{z}_{i}} q(\boldsymbol{z}_{i}) \ln q(\boldsymbol{z}_{i}) + const.$$

$$= -D_{\mathsf{KL}}(q(\boldsymbol{z}_{i}) \parallel \frac{1}{Z} \exp \left[\ln p(\boldsymbol{x}_{i} | \boldsymbol{z}_{i}; \boldsymbol{\Phi}) + \int q(\boldsymbol{\theta}_{i}) \ln p(\boldsymbol{z}_{i} | \boldsymbol{\theta}_{i}) d\boldsymbol{\theta}_{i} \right]) + const. \tag{12}$$

以上より、 $q(\boldsymbol{z}_i) \propto p(\boldsymbol{x}_i|\boldsymbol{z}_i; \boldsymbol{\Phi}) \exp\left[\int q(\boldsymbol{\theta}_i) \ln p(\boldsymbol{z}_i|\boldsymbol{\theta}_i) d\boldsymbol{\theta}_i\right]$ のとき、ELBO は最大。

変分ディリクレ事後分布 $q(\boldsymbol{\theta}_i)$ のパラメータが $\boldsymbol{\zeta}_i$ であることを使うと、

$$\int q(\boldsymbol{\theta}_i; \boldsymbol{\zeta}_i) \ln p(\boldsymbol{z}_i | \boldsymbol{\theta}_i) d\boldsymbol{\theta}_i = \int q(\boldsymbol{\theta}_i; \boldsymbol{\zeta}_i) \ln \prod_{j=1}^{n_i} \theta_{i, z_{i,j}} d\boldsymbol{\theta}_i = \sum_{j=1}^{n_i} \int q(\boldsymbol{\theta}_i; \boldsymbol{\zeta}_i) \ln \theta_{i, z_{i,j}} d\boldsymbol{\theta}_i$$
$$= \sum_{j=1}^{n_i} \left\{ \psi(\zeta_{i, z_{i,j}}) - \psi(\sum_k \zeta_{i,k}) \right\} = \sum_{j=1}^{n_i} \psi(\zeta_{i, z_{i,j}}) + const.$$

よって、 $q(\boldsymbol{z}_i) \propto p(\boldsymbol{x}_i|\boldsymbol{z}_i; \boldsymbol{\Phi}) \exp\left[\int q(\boldsymbol{\theta}_i) \ln p(\boldsymbol{z}_i|\boldsymbol{\theta}_i) d\boldsymbol{\theta}_i\right] = \prod_{i=1}^{n_i} \phi_{z_{i,j},x_{i,j}} \times \exp\left(\sum_{i=1}^{n_i} \psi(\zeta_{i,z_{i,j}})\right)$ $=\prod_{i=1}^{n_i}\phi_{z_{i,j},x_{i,j}}\times\prod_{i=1}^{n_i}\exp(\psi(\zeta_{i,z_{i,j}}))=\prod^{n_i}\phi_{z_{i,j},x_{i,j}}\exp\left(\psi(\zeta_{i,z_{i,j}})\right)$ (14)

つまり、

 $q(z_{i,j} = k) = \frac{\phi_{k,x_{i,j}} \exp\left(\psi(\zeta_{i,k})\right)}{\sum_{k=0}^{K} \phi_{k,m} \exp\left(\psi(\zeta_{i,k})\right)}$

(15)

(13)

変分事後分布を使ってELBOを書き下す

$$\begin{split} & \ln p(\boldsymbol{x}_i; \boldsymbol{\Phi}, \boldsymbol{\alpha}) \geq \int \sum_{\boldsymbol{z}_i} q(\boldsymbol{z}_i) q(\boldsymbol{\theta}_i) \ln \frac{p(\boldsymbol{\theta}_i; \boldsymbol{\alpha}) p(\boldsymbol{z}_i | \boldsymbol{\theta}_i) p(\boldsymbol{x}_i | \boldsymbol{z}_i; \boldsymbol{\Phi})}{q(\boldsymbol{z}_i) q(\boldsymbol{\theta}_i)} d\boldsymbol{\theta}_i \\ & = \int \sum_{\boldsymbol{z}_i} q(\boldsymbol{z}_i) q(\boldsymbol{\theta}_i) \ln p(\boldsymbol{z}_i | \boldsymbol{\theta}_i) d\boldsymbol{\theta}_i + \sum_{\boldsymbol{z}_i} q(\boldsymbol{z}_i) \ln p(\boldsymbol{x}_i | \boldsymbol{z}_i; \boldsymbol{\Phi}) \\ & - D_{\mathsf{KL}}(q(\boldsymbol{\theta}_i) \parallel p(\boldsymbol{\theta}_i; \boldsymbol{\alpha})) - \sum_{\boldsymbol{z}_i} q(\boldsymbol{z}_i) \ln q(\boldsymbol{z}_i) \end{split}$$

(16)

(17)

式 (16) の右辺の最初の項を計算してみる。

$$\int \sum_{\boldsymbol{z}_{i}} q(\boldsymbol{z}_{i}) q(\boldsymbol{\theta}_{i}) \ln p(\boldsymbol{z}_{i} | \boldsymbol{\theta}_{i}) d\boldsymbol{\theta}_{i} = \sum_{j=1}^{n_{i}} \sum_{z_{i,j}=1}^{K} q(z_{i,j}) \int q(\boldsymbol{\theta}_{i}) \ln \theta_{i,z_{i,j}} d\boldsymbol{\theta}_{i}$$

$$= \sum_{k=1}^{K} \left(\sum_{j=1}^{n_{i}} q(z_{i,j} = k) \right) \left(\psi(\zeta_{i,k}) - \psi(\sum_{l} \zeta_{i,l}) \right)$$

式 (16) の右辺の 2番目の項を計算してみる。

$$\sum_{z_i} q(z_i) \ln p(x_i|z_i; \Phi) = \sum_{j=1}^{n_i} \sum_{z_{i,j}=1}^K q(z_{i,j}) \ln \phi_{z_{i,j},x_{i,j}} = \sum_{j=1}^{n_i} \sum_{k=1}^K q(z_{i,j}=k) \ln \phi_{k,x_{i,j}}$$
(18)

トピック単語確率 Φ は、この項の全文書についての和 $\sum_{i=1}^N \sum_{j=1}^{n_i} \sum_{k=1}^K q(z_{i,j}=k) \ln \phi_{k,x_{i,j}}$ を最大化することで求めることができる。(ELBO の中で Φ を含むのはこの項だけだから。) 全文書の ELBO の和を $\mathcal L$ と書くことにする。

 $\sum_{w=1}^{W} \phi_{k,w} = 1$ が満たされなければならないので、ラグランジュの未定乗数法を使えば、

$$\frac{\partial \mathcal{L}}{\partial \phi_{k,w}} + \frac{\partial}{\partial \phi_{k,w}} \lambda_k \left(1 - \sum_{w=1}^W \phi_{k,w} \right) = \frac{\sum_{i=1}^N \sum_{j=1}^{n_i} q(z_{i,j} = k) \delta(x_{i,j} = w)}{\phi_{k,w}} - \lambda_k \tag{19}$$

$$\therefore \phi_{k,w} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{n_i} q(z_{i,j} = k) \delta(x_{i,j} = w)}{\sum_{i=1}^{N} \sum_{j=1}^{n_i} q(z_{i,j} = k)}$$
(20)

LDAの変分ベイズ法のまとめ

以下の更新を繰り返し実行する。

$$q(z_{i,j} = k) \leftarrow \frac{\phi_{k,x_{i,j}} \exp(\psi(\zeta_{i,k}))}{\sum_{l=1}^{K} \phi_{l,x_{i,j}} \exp(\psi(\zeta_{i,l}))}$$

(21)

$$\zeta_{i,k} \leftarrow \alpha_k + \sum_{j=1}^{n_i} q(z_{i,j} = k)$$

(22)

$$\zeta_{i,k} \leftarrow \alpha_k + \sum_{j=1}^{N} q(z_{i,j} = k)$$

$$\phi_{k,w} \leftarrow \frac{\sum_{i=1}^{N} \sum_{j=1}^{n_i} q(z_{i,j} = k) \delta(x_{i,j} = w)}{\sum_{i=1}^{N} \sum_{j=1}^{n_i} q(z_{i,j} = k)}$$

(23)

$$\sum_{l=1}^{K} \phi_{l,x_i}$$

23 / 24

Figure: $y = e^{\psi(x)}$ のグラフ