

الجامعة اللبنانية كلية الاعلام الفرع الاول

الامتحانات النهائية للفصل الأول

Final 2018-2019

المادة: Statistics and probability

المدة:120 د

الأستاذ: د. مروى الحاج

السنة المنهجية: الاولى

Data science: الاختصاص

Exercise 1 (4 points):

Customers experiencing technical difficulty with their Internet cable hookup may call an 800 number for technical support. It takes the technician between 30 seconds to 10 minutes to resolve the problem. The distribution of this support time follows the uniform distribution.

- a) What are the values for a and b in minutes?
- b) What is the mean time to resolve the problem? What is the standard deviation of the time?
- c) What percent of the problems take more than 5 minutes to resolve?

Exercise 2 (3 points):

The rent for a one-bedroom apartment in Hamra follows the normal distribution with a mean of \$700 per month and a standard deviation of \$200 per month. The distribution of the monthly costs does follow the normal distribution. We select a sample of 9 one-bedroom apartments

- a) What is the standard error of the mean in this example?
- b) What is the likelihood the sample mean is greater than \$840?
- c) What is the likelihood the sample mean is between \$600 and \$750?

Exercise 3 (3 points):

A recent survey by the Lebanese Accounting Association revealed 5 percent of students graduating with a major in accounting select public accounting. Suppose we select a sample of 20 recent graduates. (Use the Poisson probability distribution).

- a) Determine the mean and standard deviation of the distribution
- b) What is the probability that none of the students select public accounting?
- c) What is the probability that at least two select public accounting?

Exercise 4 (5 points):

The recovery room at AUH was recently enlarged. The hope was that with the enlargement the mean number of patients per day would be more than 25. A random sample of 15 days revealed the following numbers of patients. The significance level is 0.01.

25	27	25	26	25	28	28	24	26	25	29	25	27	24	27
1														

- a) Can we use z as the test statistic? Tell why or why not.
- b) State the null hypothesis and the alternate hypothesis.
- c) Show the decision rule graphically.
- d) State your decision regarding the null hypothesis.

Exercise 5 (5 points):

A sample of 40 observations is selected from one population with a population standard

deviation of 5. The sample mean is 102. A sample of 50 observations is selected from

a second population with a population standard deviation of 6. The sample mean is 99.

Conduct the following test of hypothesis using the .04 significance level.

 H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

- a) Is this a one-tailed or a two-tailed test?
- b) State the decision rule.
- c) Compute the value of the test statistic.
- d) What is your decision regarding H₀?
- e) What is the *p*-value?

Good luck

B.2 Student's t Distribution

Confidence Intervals, c							Confidence Intervals, c							
	80%	90%	95%	98%	99%	99.9%		80%	90%	95%	98%	99%	99.9%	
	Level of Significance for One-Tailed Test, a							Level of Significance for One-Tailed Test, α						
df	0.10					df	0.10	0.05	0.025	0.01	0.005	0.0008		
	Level of Significance for Two-Tailed Test, α							Level of Significance for Two-Tailed Test, α						
	0.20	0.10	0.05	0.02	0.01	0.001		0.20	0.10	0.05	0.02	0.01	0.001	
1	3.078	6.314	12.706	31.821	63.657	636.619	36	1.306	1.688	2.028	2.434	2.719	3.582	
2	1.886	2.920	4.303	6.965	9.925	31.599	37	1.305	1.687	2.026	2.431	2.715	3.574	
3	1.638	2.353	3.182	4.541	5.841	12.924	38	1.304	1.686	2.024	2.429	2.712	3.566	
4	1.533	2.132	2.776	3.747	4.604	8.610	39	1.304	1.685	2.023	2.426	2.708	3.558	
5	1.476	2.015	2.571	3.365	4.032	6.869	40	1.303	1.684	2.021	2.423	2.704	3.551	
6	1.440	1.943	2.447	3.143	3.707	5.959	41	1.303	1.683	2.020	2.421	2.701	3.544	
7	1.415	1.895	2.365	2.998	3.499	5.408	42	1.302	1.682	2.018	2.418	2.698	3.538	
8	1.397	1.860	2.306	2.896	3.355	5.041	43	1.302	1.681	2.017	2.416	2.695	3.532	
9	1.383	1.833	2.262	2.821	3.250	4.781	44	1.301	1.680	2.015	2.414	2.692	3.526	
10	1.372	1.812	2.228	2.764	3.169	4.587	45	1.301	1.679	2.014	2.412	2.690	3.520	
11	1.363	1.796	2.201	2.718	3.106	4.437	46	1.300	1.679	2.013	2.410	2.687	3.515	
12	1.356	1.782	2.179	2.681	3.055	4.318	47	1.300	1.678	2.012	2.408	2.685	3.510	
13	1.350	1.771	2.160	2.650	3.012	4.221	48	1.299	1.677	2.011	2.407	2.682	3.505	
14	1.345	1.761	2.145	2.624	2.977	4.140	49	1.299	1.677	2.010	2.405	2.680	3.500	
15	1.341	1.753	2.131	2.602	2.947	4.073	50	1.299	1.676	2.009	2.403	2.678	3.496	
16	1.337	1.746	2.120	2.583	2.921	4.015	51	1.298	1.675	2.008	2.402	2.676	3.492	
17	1.333	1.740	2.110	2.567	2.898	3.965	52	1.298	1.675	2.007	2.400	2.674	3.488	
18	1.330	1.734	2.101	2.552	2.878	3.922	53	1.298	1.674	2.006	2.399	2.672	3,484	
19	1.328	1.729	2.093	2.539	2.861	3.883	54	1.297	1.674	2.005	2.397	2.670	3.480	
20	1.325	1.725	2.086	2.528	2.845	3.850	55	1.297	1.673	2.004	2.396	2.668	3.476	
21	1.323	1.721	2.080	2.518	2.831	3.819	56	1.297	1.673	2.003	2.395	2.667	3.473	
22	1.321	1.717	2.074	2.508	2.819	3.792	57	1.297	1.672	2.002	2.394	2.665	3.470	
23	1.319	1.714	2.069	2.500	2.807	3.768	58	1.296	1.672	2.002	2.392	2.663	3.466	
24	1.318	1.711	2.064	2.492	2.797	3.745	59	1.296	1.671	2.001	2.391	2.662	3.463	
25	1.316	1.708	2.060	2.485	2.787	3.725	60	1.296	1.671	2.000	2.390	2.660	3.460	
26	1.315	1.706	2.056	2.479	2.779	3.707	61	1.296	1.670	2.000	2.389	2.659	3.457	
27	1.314	1.703	2.052	2.473	2.771	3.690	62	1.295	1.670	1.999	2.388	2.657	3.454	
28	1.313	1.701	2.048	2.467	2.763	3.674	63	1.295	1.669	1.998	2.387	2.656	3.452	
29	1.311	1.699	2.045	2.462	2.756	3.659	64	1.295	1.669	1.998	2.386	2.655	3.449	
30	1.310	1.697	2.042	2.457	2.750	3.646	65	1.295	1.669	1.997	2.385	2.654	3.447	
31	1.309	1.696	2.040	2.453	2.744	3.633	66	1.295	1.668	1.997	2.384	2.652	3.444	
32	1.309	1.694	2.037	2.449	2.738	3.622	67	1.294	1.668	1.996	2.383	2.651	3.442	
33	1.308	1.692	2.035	2.445	2.733	3.611	68	1.294	1.668	1.995	2.382	2.650	3.439	
34	1.307	1.691	2.032	2.441	2.728	3.601	69	1.294	1.667	1.995	2.382	2.649	3.437	
35	1.306	1.690	2.030	2.438	2.724	3.591	70	1.294	1.667	1.994	2.381	2.648	3.435	

B.1 Areas under the Normal Curve

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
8.0	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990