Aplikovaná matematika – učební text

J. Stebel

9. října 2013

1 Úvod – základní pojmy

1.1 Značení

\mathbb{N}	množina přirozených čísel $(1, 2, 3, \ldots)$
\mathbb{Z}	množina celých čísel
\mathbb{Q}	množina racionálních čísel
\mathbb{R}	množina reálných čísel
\mathbb{C}	množina komplexních čísel
$A \subset B$	A je částí (podmnožinou) B
$A \cap B$	průnik
$A \cup B$	sjednocení
$A \setminus B$	rozdíl množin
$A \times B$	kartézský součin
(a_1,\ldots,a_n)	uspořádaná <i>n</i> -tice
(a,b)	otevřený interval
[a,b]	uzavřený interval

1.2 Relace a zobrazení

Definice 1 Binární relace, nebo také jen relace, mezi množinami A a B je libovolná podmnožina kartézského součinu $A \times B$.

Je-li R relace mezi A a B, pak skutečnost, že $(a,b) \in R$ zapisujeme také výrazem aRb. Např. mezi množinami $A = \{\text{Adam, Sókratés, Karel IV.}\}$ a $B = \{\text{Eva, Xantippa, Marie Terezie}\}$ lze zavést relaci partnerství $P = \{(\text{Adam,Eva}), (\text{Sókratés,Xantippa})\}$. Jiným příkladem relace je uspořádání na množině \mathbb{R} , reprezentované symbolem \leq , nebo rovnost prvků v \mathbb{R} .

Symetrická relace je taková relace Rna množině A (tedy $R\subset A\times A),$ která splňuje

$$(a,b) \in R \Leftrightarrow (b,a) \in R.$$

Příkladem symetrické relace je rovnost mezi reálnými čísly.

Tranzitivní relace R na množině A splňuje

$$(a,b) \in R\&(b,c) \in R \Rightarrow (a,c) \in R.$$

Relace < na množině \mathbb{R} je tranzitivní.

Reflexivní relace je taková relace R na množině A, pro kterou platí:

$$\forall a \in A : (a, a) \in R.$$

Relace =, \leq jsou reflexivní, < není reflexivní.

Zobrazení f množiny A do množiny B je relace $f \subset A \times B$, která splňuje:

$$\forall a \in A \ \exists ! b \in B : \ (a, b) \in f.$$

Píšeme také $f: A \to B, f: a \mapsto b, f(a) = b.$

Obraz množiny A' při zobrazení $f: A \rightarrow B$ je množina

$$f(A') := \{ f(a); \ a \in A' \}.$$

Prosté zobrazení má vlastnost

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2.$$

Inverzní zobrazení k prostému zobrazení $f:A\to B$ je zobrazení $f^{-1}:f(A)\to A$ definované předpisem

$$f^{-1}(b) = a \Leftrightarrow f(a) = b.$$

Surjektivní zobrazení splňuje

$$f(A) = B$$
.

Někdy také říkáme, že f zobrazuje A na B.

Isomorfní zobrazení, nebo jen isomorfismus, je zobrazení, které je zároveň prosté a surjektivní. Existuje-li mezi A a B isomorfismus, říkáme, že A a B jsou isomorfní.

Pomocí isomorfismů můžeme zavést tyto kategorie množin: Řekneme, že množina je konečná, pokud je isomorfní s množinou $\{1,\ldots,n\}$ pro nějaké číslo $n\in\mathbb{N}$. Spočetná množina je isomorfní s nějakou (ne nutně konečnou) podmnožinou \mathbb{N} . Množina, která není konečná, se nazývá nekonečná. Množina, která není spočetná, se nazývá nespočetná.

Např. \mathbb{N} , \mathbb{Z} , \mathbb{Q} jsou spočetné, \mathbb{R} je nespočetná.

Složené zobrazení. Je-li $f:A\to B$ a $g:B\to C$, pak $g\circ f:A\to C$ je zobrazení složené z f a g, které je definováno vztahem

$$g \circ f(a) = g(f(a)).$$

1.3 Vektorové prostory

Definice 2 Neprázdná množina V, na které je definováno sčítání $+: V \times V \to V$ a násobení reálným číslem $\cdot: \mathbb{R} \times V \to V$, se nazývá **reálný vektorový prostor** (nebo také lineární prostor), jestliže pro každé $\vec{x}, \vec{y}, \vec{z} \in V$ a každé $\alpha, \beta \in \mathbb{R}$ platí:

- 1. $\forall \vec{x}, \vec{y} \in V : \vec{x} + \vec{y} = \vec{y} + \vec{x}$ (komutativita sčítání)
- 2. $\forall \vec{x}, \vec{y}, \vec{z} \in V : (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$ (asociativita sčítání)
- 3. $\forall \alpha, \beta \in \mathbb{R} \ \forall \vec{x} \in V : \ \alpha \cdot (\beta \cdot \vec{x}) = (\alpha \beta) \cdot \vec{x}$ (asociativita násobení)
- 4. $\forall \alpha \in \mathbb{R} \ \forall \vec{x}, \vec{y} \in V: \ \alpha \cdot (\vec{x} + \vec{y}) = \alpha \cdot \vec{x} + \alpha \cdot \vec{y} \ (\textit{distributivita sčítání prvků z V})$
- 5. $\forall \alpha, \beta \in \mathbb{R} \ \forall \vec{x} \in V : \ (\alpha + \beta) \cdot \vec{x} = \alpha \cdot \vec{x} + \beta \cdot \vec{x}$ (distributivita sčítání čísel)
- 6. $\forall \vec{x} \in \mathbb{R}: \ 1 \cdot \vec{x} = \vec{x}$ (vlastnost reálného čísla 1)
- 7. $\exists \vec{0} \in V \ \forall \vec{x} \in V : \ 0 \cdot \vec{x} = \vec{0}$ (existence nulového prvku)

Prvky vektorového prostoru nazýváme **vektory**. Reálným číslům v kontextu násobení $\cdot: \mathbb{R} \times V \to V$ říkáme **skaláry**. Prvek $\vec{0}$ nazýváme **nulový prvek** nebo **nulový vektor**. Z axiómů uvedených v definici vektorového prostoru lze odvodit, že pro nulový prvek $\vec{0} \in V$ platí:

- $\forall \vec{x} \in V : \vec{x} + \vec{0} = \vec{x}$,
- $\forall \alpha \in \mathbb{R} : \alpha \cdot \vec{0} = \vec{0}$.
- $\forall \vec{x} \in V \ \forall \alpha \in \mathbb{R}, \alpha \neq 0: \alpha \cdot \vec{x} = \vec{0} \Rightarrow \vec{x} = \vec{0}.$

Příklady vektorových prostorů:

- euklidovské prostory \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^n (násobení skalárem i sčítání po složkách)
- triviální prostor $\{\vec{0}\}\ (\alpha\vec{0} = \vec{0} + \vec{0} = \vec{0})$
- prostor $\mathcal F$ reálných funkcí jedné reálné proměnné $((\alpha f)(x):=f(\alpha x),\,(f+g)(x):=f(x)+g(x))$
- ullet prostor polynomů ${\mathcal P}$
- prostor \mathcal{P}_n polynomů stupně $\leq n$

Definice 3 Řekneme, že W je **podprostorem** vektorového prostoru V, jestliže je $W \subset V$ a množina W s operacemi sčítání a násobení skalárem převzatými z V je vektorový prostor.

Např. \mathcal{P}_n je podprostorem \mathcal{P} a oba jsou podprostory \mathcal{F} .

Pro zjištění, zda je nějaká množina podprostorem, není nutné ověřovat všech 7 vlastností z Definice 2. Následující tvrzení tuto proceduru usnadňuje.

Věta 1 Nechť V je vektorový prostor a $\emptyset \neq W \subset V$. Pak W je podprostorem V právě tehdy, když platí

- (i) pro každé $\vec{x}, \vec{y} \in W$ je $\vec{x} + \vec{y} \in W$,
- (ii) pro každé $\vec{x} \in W$ a $\alpha \in \mathbb{R}$ je $\alpha \vec{x} \in W$.

Platí, že průnik dvou vektorových prostorů je vektorový prostor. Sjednocení vektorových prostorů tuto vlastnost nemá. Příklad: Jsou-li $A=\{(\alpha,0);\ \alpha\in R\}$ a $B=\{(0,\beta);\ \beta\in\mathbb{R}\}$ dva podprostory \mathbb{R}^2 , pak $A\cap B=\{\vec{0}\}$ je triviální prostor. Naproti tomu $A\cup B=\{(\alpha,\beta);\ \alpha=0\ \text{nebo}\ \beta=0\}$ není vektorový prostor, neboť např. $(1,0)+(0,1)=(1,1)\notin A\cup B$.

Definice 4 Nechť $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ jsou prvky vektorového prostoru V a $\alpha_1, \alpha_2, \dots, \alpha_n$ jsou reálná čísla. Vektor

$$\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \ldots + \alpha_n \vec{x}_n$$

se nazývá lineární kombinací vektorů $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$. Číslům $\alpha_1, \alpha_2, \dots, \alpha_n$ říkáme koeficienty lineární kombinace.

Definice 5 Triviální lineární kombinace vektorů $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ je taková lineární kombinace, která má všechny koeficienty nulové. **Netriviální** lineární kombinace je taková, že alespoň jeden její koeficient je nenulový.

Poznámka: Triviální lineární kombinace je vždy rovna nulovému vektoru.

Definice 6 Konečnou množinu vektorů $\{\vec{x}_1, \ldots, \vec{x}_n\}$ nazýváme **lineárně závislou**, pokud existuje netriviální lineární kombinace těchto vektorů, která je rovna nulovému vektoru. Stručně říkáme, že vektory $\vec{x}_1, \ldots, \vec{x}_n$ jsou lineárně závislé.

Množina vektorů $\{\vec{x}_1,\ldots,\vec{x}_n\}$ se nazývá lineárně nezávislá, pokud není lineárně závislá.

 ${\rm Pro}~2$ a více vektorů platí, že jsou lineárně závislé, právě když jeden z vektorů je roven lineární kombinaci ostatních.

Příklad: Prvky $\cos^2 x$, $\sin^2 x$, $\cos 2x$ prostoru funkcí \mathcal{F} jsou lineárně závislé, neboť pro libovolné $x \in \mathbb{R}$ platí: $\cos 2x = \cos^2 x + (-1)\sin^2 x$.

Pojmy lineární závislost a nezávislost lze zavést také pro nekonečné množiny.

Definice 7 Množina vektorů M se nazývá **lineárně závislá**, pokud v ní existuje konečná podmnožina, která je lineárně závislá.

Množina vektorů M se nazývá lineárně nezávislá, pokud není lineárně závislá.

Příkladem lineárně nezávislé množiny v \mathcal{P} je množina $\{1, x, x^2, x^3, x^4, \ldots\}$.

Definice 8 Lineární obal konečné množiny $\{\vec{x}_1, \ldots, \vec{x}_n\}$ je množina všech lineárních kombinací těchto vektorů. Lineární obal nekonečné množiny M je sjednocení lineárních obalů všech konečných podmnožin množiny M.

Lineární obal množiny $\{\vec{x}_1,\ldots,\vec{x}_n\}$ značíme $\langle \vec{x}_1,\ldots,\vec{x}_n\rangle$. Lineární obal množiny M značíme $\langle M\rangle$. Je-li M podmnožina vektorového prostoru V, pak $\langle M\rangle$ je nejmenší vektorový prostor obsahující množinu M.

Definice 9 Báze vektorového prostoru V je množina $B \subset V$, pro kterou platí:

- (i) B je lineárně nezávislá,
- (ii) $\langle B \rangle = V$.

Věta 2 V každém netriviálním vektorovém prostoru existuje báze. Jsou-li B_1 a B_2 dvě báze vektorového prostoru V, pak jsou obě nekonečné nebo mají stejný počet prvků.

Věta 3 Nechť vektory $\vec{x}_1, \ldots, \vec{x}_n$ tvoří bázi vektorového prostoru V. Je-li $\vec{x} \in V$ libovolný vektor, pak existuje právě jedna uspořádaná n-tice čísel (c_1, \ldots, c_n) taková, že

$$\vec{x} = c_1 \vec{x}_1 + \ldots + c_n \vec{x}_n.$$

Definice 10 Čísla c_1, \ldots, c_n z předchozí věty se nazývají **souřadnice** vektoru \vec{x} v bázi $\vec{x}_1, \ldots, \vec{x}_n$.

Definice 11 Dimenze vektorového prostoru V je počet prvků báze tohoto prostoru. Označujeme ji symbolem dim V. Speciální případy:

- Triviální prostor má dimenzi 0.
- Pokud je báze prostoru nekonečná, pak klademe dim $V = \infty$.

Je-li V vektorový prostor a M je podprostor V, pak $\dim M \leq \dim V$.

Věta 4 Nechť V je vektorový prostor, jehož dimenze je $\dim V = n$ a $M = \{\vec{x}_1, \ldots, \vec{x}_m\}$. Pak platí:

- 1. Je-li M lineárně nezávislá, pak $m \leq n$.
- 2. Je-li m > n, pak M je lineárně závislá.
- 3. Nechť m = n. Pak M je lineárně nezávislá, právě $když \langle M \rangle = V$.

1.4 Lineární zobrazení, matice

Definice 12 Zobrazení f vektorového prostoru V do vektorového prostoru W se nazývá **lineární**, jestliže pro každé $\alpha \in \mathbb{R}$ a $\vec{x}, \vec{y} \in V$ platí:

$$f(\alpha \vec{x} + \vec{y}) = \alpha f(\vec{x}) + f(\vec{y}).$$

Jádrem tohoto zobrazení rozumíme množinu

$$\ker f := \{ \vec{x} \in V; \ f(\vec{x}) = \vec{0} \}.$$

Obraz f je množina

$$\mathcal{R}(f) := f(V).$$

Lineární zobrazení f je prosté právě tehdy, když ker $f = {\vec{0}}$.

Věta 5 Jsou-li vektory $\vec{x}_1, \ldots, \vec{x}_k$ lineárně závislé, pak jsou lineárně závislé také vektory $f(\vec{x}_1), \ldots, f(\vec{x}_k)$. Pokud je navíc f prosté, pak platí i obrácené tvrzení, tedy

 $\vec{x}_1, \ldots, \vec{x}_k$ jsou lineárně závislé $\Leftrightarrow f(\vec{x}_1), \ldots, f(\vec{x}_k)$ jsou lineárně závislé.

Definice 13 (Reálná) matice typu (m, n) je symbol

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ & & \vdots & \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix} = (a_{ij})_{i=1,\dots,m}^{j=1,\dots,n},$$

kde pro i = 1, ..., m a j = 1, ..., n jsou a_{ij} reálná čísla (nazývají se **prvky** matice **A**).

Množinu všech matic typu (m,n) budeme značit $\mathbb{R}^{m\times n}$. Definujeme-li sčítání matic a násobení matic reálným číslem po složkách, pak množina $\mathbb{R}^{m\times n}$ je vektorový prostor.

Definice 14 $\check{R}ekneme$, $\check{z}e$ $\mathbf{B} \in \mathbb{R}^{n \times m}$ je transponovaná matice k matici $\mathbf{A} \in \mathbb{R}^{m \times n}$, $jestli\check{z}e$

$$\forall i = 1, \dots, m \ \forall j = 1, \dots, n : \ a_{ij} = b_{ji}.$$

Píšeme také $\mathbf{B} = \mathbf{A}^{\top}$.

Definice 15 $\check{R}ekneme$, že matice \mathbf{A} je symetrická, jestliže $\mathbf{A} = \mathbf{A}^{\top}$.

Součin matic $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{B} \in \mathbb{R}^{n \times p}$ je matice $\mathbf{C} \in \mathbb{R}^{m \times p}$, jejíž složky splňují:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \ i = 1, \dots, m, \ j = 1, \dots, p.$$

Násobení matic není komutativní, tj. obecně $\mathbf{AB} \neq \mathbf{BA}$. Pro matice vhodných typů (takových, aby je šlo násobit), platí:

$$\mathbf{A}(\mathbf{B}\mathbf{C}) = (\mathbf{A}\mathbf{B})\mathbf{C},$$

$$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C},$$

$$(\alpha \mathbf{A})\mathbf{B} = \mathbf{A}(\alpha \mathbf{B}) = \alpha(\mathbf{A}\mathbf{B}), \ \alpha \in \mathbb{R}.$$

Definice 16 Čtvercovou matici $\mathbf{I} = (e_{i,j}) \in \mathbb{R}^{n \times n}$ nazýváme jednotkovou maticí, jestliže pro její prvky platí: $e_{i,j} = 0$ pro $i \neq j$ a $e_{i,j} = 1$ pro i = j.

Definice 17 Řekneme, že $\mathbf{B} \in \mathbb{R}^{n \times n}$ je inverzní matice k matici $\mathbf{A} \in \mathbb{R}^{n \times n}$, pokud $\mathbf{AB} = \mathbf{BA} = \mathbf{I}$. Tuto matici značíme symbolem $\mathbf{B} = \mathbf{A}^{-1}$. Pokud existuje \mathbf{A}^{-1} , pak matici \mathbf{A} nazýváme regulární. V opačném případě se \mathbf{A} nazývá singulární matice.

Definice 18 Hodnost matice A je počet lineárně nezávislých řádků v této matici. Značíme ji rank A.

Platí také, že hodnost je rovna počtu lineárně nezávislých sloupců, tedy rank \mathbf{A}^{\top} = rank \mathbf{A} . Matice $\mathbf{A} \in \mathbb{R}^{n \times n}$ je regulární právě tehdy, když platí: rank $\mathbf{A} = n$.

Definice 19 Permutace n prvků je uspořádaná n-tice čísel $1, 2, \ldots, n$ taková, že žádné číslo se v ní neopakuje.

Poznámka: Počet různých permutací n prvků je roven číslu n!.

Definice 20 Nechť $(i_1, i_2, ..., i_n)$ je permutace n prvků. **Počet inverzí** této permutace je počet takových dvojic (i_k, i_l) , pro které platí $i_k > i_l$, a přitom k < l.

Definice 21 Pro každou permutaci $\pi = (i_1, \dots, i_n)$ definujeme její **znaménko** sgn π takto:

$$\operatorname{sgn} \pi = \begin{cases} +1 & \text{m\'a-li π sud\'y po\'et inverz\'i} \\ -1 & \text{m\'a-li π lich\'y po\'et inverz\'i} \end{cases}$$

Prohozením dvou prvků v permutaci způsobí změnu jejího znaménka.

Definice 22 Nechť $\mathbf{A} = (a_{i,j}) \in \mathbb{R}^{n \times n}$. **Determinant** matice \mathbf{A} je číslo

$$\det \mathbf{A} = \sum_{\pi = (i_1, i_2, \dots, i_n)} (\operatorname{sgn} \pi) a_{1, i_1} a_{2, i_2} \cdots a_{n, i_n}.$$

V uvedeném vzorci se sčítá přes všechny permutace n prvků, tj. jedná se o n! sčítanců.

Věta 6 Nechť $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$. Pak platí:

1. $\det \mathbf{A} = 0$ právě tehdy, když \mathbf{A} je singulární,

- 2. $\det \mathbf{A}^{\top} = \det \mathbf{A}$.
- 3. $\det(\mathbf{AB}) = (\det \mathbf{A})(\det \mathbf{B})$.
- 4. $\det(\mathbf{A}^{-1}) = 1/\det \mathbf{A}$.
- 5. Jestliže se **B** liší od **A** jen prohozením dvojice řídků, pak $\det \mathbf{B} = -\det \mathbf{A}$.
- 6. Jestliže matice \mathbf{A} má dva stejné řádky, pak det $\mathbf{A} = 0$.

Definice 23 Číslo $\lambda \in \mathbb{C}$ se nazývá vlastním číslem matice $\mathbf{A} \in \mathbb{C}^{n \times n}$, jestliže existuje nenulový vektor $\vec{u} \in \mathbb{C}^n$ takový, že

$$\mathbf{A}\vec{u} = \lambda \vec{u}$$
.

Vektor \vec{u} se pak nazývá **vlastní vektor** matice **A** příslušný vlastnímu číslu λ . Množina všech vlastních čísel A se nazývá **spektrum** matice \mathbf{A} a značí se $\sigma(\mathbf{A})$.

Číslo λ je vlastním číslem **A** právě tehdy, má-li soustava $(\mathbf{A} - \lambda \mathbf{I})$ netriviální řešení, tj. právě tehdy, je-li $\mathbf{A} - \lambda \mathbf{I}$ singulární, což je ekvivalentní podmínce $\det(\lambda \mathbf{I} - \mathbf{A}) = 0$. Polynom $\chi_{\mathbf{A}}(\lambda) := \det(\lambda \mathbf{I} - \mathbf{A})$ se nazývá **charakteristický polynom** matice **A**. Číslo λ je tedy vlastním číslem **A**, je-li kořenem $\chi_{\mathbf{A}}$. Poznamenejme, že polynom s reálnými koeficienty může mít komplexní kořeny, a reálná matice může proto mít komplexní vlastní čísla. Je-li ovšem reálná matice symetrická, pak jsou všechna její vlastní čísla reálná.

1.5 Soustava lineárních rovnic

V dalším ztotožníme vektory z \mathbb{R}^n s maticemi typu (n,1), tj. $\vec{a} \in \mathbb{R}^n$ znamená totéž jako $\vec{a} \in \mathbb{R}^{n \times 1}$.

Definice 24 Nechť
$$\mathbf{A} \in \mathbb{R}^{m \times n}$$
, $\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ a $\vec{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m$. Pak

 $maticovou\ rovnost$

$$\mathbf{A}\vec{x} = \vec{b}$$

mazýváme soustavou m lineárních rovnic o n neznámých. Matici A nazýváme maticí soustavy a vektor b nazýváme vektorem pravých stran. Připíšemeli k matici soustavy do dalšího sloupce vektor b (pro přehlednost oddělený svislou čarou), dostáváme matici $(\mathbf{A}|\vec{b}) \in \mathbb{R}^{m \times (n+1)}$, kterou nazýváme rozšířenou maticí soustavy.

Definice 25 Řešením soustavy $\mathbf{A}\vec{x} = \vec{b}$ je takový vektor $\vec{a} = (\alpha_1, \dots, \alpha_n) \in$ \mathbb{R}^n , pro který platí: Dosadíme-li hodnoty α_i za symboly x_i , pak je splněna požadovaná maticová rovnost, tj.

$$\mathbf{A} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}.$$

Řešit soustavu $\mathbf{A}\vec{x} = \vec{b}$ znamená nalézt všechna její řešení, tj. nalézt podmnožinu \mathbb{R}^n všech řešení této soustavy.

Věta 7 (Frobeniova) Soustava $\mathbf{A}\vec{x} = \vec{b} \ m\acute{a} \ \check{r}e\check{s}en\acute{i} \ pr\acute{a}v\check{e} \ tehdy, \ kdy\check{z}$

$$\operatorname{rank} \mathbf{A} = \operatorname{rank} \mathbf{A} | \vec{b},$$

tj. když hodnost matice soustavy se rovná hodnosti rozšířené matice soustavy.

Definice 26 Nechť $\mathbf{A}\vec{x} = \vec{b}$ je soustava m lineárních rovnice o n neznámých a $\mathbf{C}\vec{x} = \vec{d}$ je soustava k lineárních rovnic o stejném počtu n neznámých. Říkáme, že tyto soustavy jsou **ekvivalentní**, pokud obě soustavy mají stejné množiny řešení.

Věta 8 Ke každé soustavě $\mathbf{A}\vec{x} = \vec{b}$ lze nalézt ekvivalentní soustavu $\mathbf{C}\vec{x} = \vec{d}$, jejíž matice \mathbf{C} je horní trojúhelníková.

Definice 27 Existuje-li v matici \vec{b} aspoň jeden prvek nenulový, říkáme, že soustava $\mathbf{A}\vec{x} = \vec{b}$ je **nehomogenní**. Jsou-li všechny prvky v matici \vec{b} nulové, nazýváme soustavu rovnic **homogenní** a zapisujeme ji takto:

$$\mathbf{A}\vec{x} = \vec{0}$$
.

Věta 9 Množina všech řešení homogenní soustavy $\mathbf{A}\vec{x} = \vec{0}$ s n neznámými tvoří podprostor vektorového prostoru \mathbb{R}^n .

Věta 10 Nechť $\mathbf{A}\vec{x} = \vec{0}$ je homogenní soustava lineárních rovnic o n neznámých. Označme k := n-rank \mathbf{A} . Pak existuje k lineárně nezávislých vektorů $\vec{u}_1, \ldots, \vec{u}_k \in \mathbb{R}^n$ takových, že pro množinu M_0 všech řešení soustavy $\mathbf{A}\vec{x} = \vec{0}$ platí:

$$M_0 = \langle \vec{u}_1, \dots, \vec{u}_k \rangle.$$

Vektory $\vec{u}_1, \dots, \vec{u}_k$ tvoří jednu z možných bází vektorového prostoru všech řešení M_0 .

Důsledek: Je-li M_0 vektorový prostor všech řešení homogenní soustavy lineárních rovnic $\mathbf{A}\vec{x} = \vec{0}$ s n neznámými, pak dim $M_0 = n - \mathrm{rank} \mathbf{A}$.

Definice 28 Libovolné řešení $\vec{v} \in \mathbb{R}^n$ nehomogenní soustavy lineárních rovnic $\mathbf{A}\vec{x} = \vec{b}$ o n neznámých se nazývá **partikulární řešení** této soustavy.

Pokud zaměníme matici \vec{b} za nulovou matici stejného typu, dostáváme homogenní soustavu $\mathbf{A}\vec{x}=\vec{0}$, kterou nazýváme **přidruženou homogenní soustavou** k soustavě $\mathbf{A}\vec{x}=\vec{b}$.

- Věta 11 1. Nechť \vec{v} je partikulární řešení nehomogenní soustavy $\mathbf{A}\vec{x} = \vec{b}$ a \vec{u} je libovolné řešení přidružené homogenní soustavy $\mathbf{A}\vec{x} = \vec{0}$. Pak $\vec{v} + \vec{u}$ je také řešením soustavy $\mathbf{A}\vec{x} = \vec{b}$.
 - 2. Nechť \vec{v} a \vec{w} jsou dvě partikulární řešení nehomogenní soustavy $\mathbf{A}\vec{x} = \vec{b}$. Pak $\vec{v} \vec{w}$ je řešením přidružené homogenní soustavy $\mathbf{A}\vec{x} = \vec{0}$.

Věta 12 Nechť \vec{v} je partikulární řešení soustavy $\mathbf{A}\vec{x} = \vec{b}$ a M_0 je vektorový prostor všech řešení přidružené homogenní soustavy $\mathbf{A}\vec{x} = \vec{0}$. Pak pro množinu M všech řešení soustavy $\mathbf{A}\vec{x} = \vec{b}$ platí:

$$M = \{ \vec{v} + \vec{u}; \ \vec{u} \in M_0 \}.$$

Věta 13 (Cramerovo pravidlo) Nechť A je čtvercová regulární matice. Pak pro i-tou složku řešení soustavy $\mathbf{A}\vec{x} = \vec{b}$ platí:

$$\alpha_i = \frac{\det \mathbf{B}_i}{\det \mathbf{A}},$$

kde matice \mathbf{B}_i je shodná s \mathbf{A} až na i-tý sloupec, který je zaměněn za sloupec pravých stran.

2 Iterační metody řešení soustav lineárních rovnic

V této kapitole se budeme zabývat numerickým řešením soustavy

$$\mathbf{A}\vec{x} = \vec{b}$$
.

Předpokládáme, že čtenáři je známa Gaussova eliminační metoda, která je příkladem tzv. přímých metod. Její výhodou je univerzálnost — metoda vyřeší v přesné aritmetice soustavu s libovolnou regulární maticí. Nevýhodou je její neefektivita pro velké matice a také to, že v průběhu výpočtu nemá uživatel žádnou informaci o výsledku. Pro úlohy s velkou řídkou maticí A, se kterými se setkáváme v mnoha praktických problémech, nebo pro úlohy, kde matice není dána explicitně nebo je drahé ji sestavit, může být výhodou použít iterační metody. Tyto metody v zásadě používají jen násobení matic a v průběhu výpočtu postupně vylepšují aproximaci přesného řešení. Konvergence iteračního procesu může být asymptotická nebo v konečném počtu iterací.

Pro detaily ohledně odvození a dalších vlastností iteračních metod odkazujeme na knihu [1].

2.1 Klasické iterační metody

Klasické iterační metody jsou založeny na štěpení matice soustavy ${\bf A}={\bf M}+{\bf N}$ takovém, že matice ${\bf M}$ je regulární a snadno invertovatelná a ${\bf M}$ a ${\bf N}$ jsou zvoleny nějakým vhodným způsobem. Dosazením tohoto štěpení do vztahu ${\bf A}\vec{x}=\vec{b}$ dostáváme $({\bf M}+{\bf N})\vec{x}=\vec{b}$ a odtud

$$\vec{x} = \mathbf{M}^{-1}(\vec{b} - \mathbf{N}\vec{x}) = \mathbf{M}^{-1}(\vec{b} + \mathbf{M}\vec{x} - \mathbf{A}\vec{x}) = \vec{x} + \mathbf{M}^{-1}(\vec{b} - \mathbf{A}\vec{x}).$$

Je-li dána počáteční aproximace řešení $\vec{x}_0,$ můžeme definovat iterační proces následovně:

$$\vec{x}_k = \vec{x}_{k-1} + \mathbf{M}^{-1}(\vec{b} - \mathbf{A}\vec{x}_{k-1}) = (\mathbf{I} - \mathbf{M}^{-1}\mathbf{A})\vec{x}_{k-1} + \mathbf{M}^{-1}\vec{b}.$$

Obrázek 1: Přechodový jev u klasické iterační metody.

Lze ukázat, že pro chybu aproximace platí odhad

$$\frac{\|\vec{x} - \vec{x}_k\|}{\|\vec{x} - \vec{x}_0\|} \le \|(\mathbf{I} - \mathbf{M}^{-1} \mathbf{A})^k\| \le \|\mathbf{I} - \mathbf{M}^{-1} \mathbf{A}\|^k,$$

přičemž pro velká k je $\|(\mathbf{I} - \mathbf{M}^{-1} \mathbf{A})^k\| \approx \rho(\mathbf{I} - \mathbf{M}^{-1} \mathbf{A})^k$ (symbolem $\rho(\mathbf{A})$ značíme tzv. spektrální poloměr, který je definován jako $\max\{|\lambda|;\ \lambda \in \sigma(\mathbf{A})\}$). Vidíme tedy, že metody konvergují k přesnému řešení, pokud $\rho(\mathbf{I} - \mathbf{M}^{-1} \mathbf{A}) < 1$. I v případě, že tato podmínka je splněna, však může být $\|\mathbf{I} - \mathbf{M}^{-1} \mathbf{A}\|^k > 1$ a dochází pak k tzv. přechodovému jevu, kdy chyba aproximace nejprve roste a teprve pak začne klesat (viz obr. 1).

Příklady klasických iteračních metod. Následující metody jsou založeny na štěpení $\mathbf{A} = \mathbf{D} - \mathbf{L} - \mathbf{U}$, kde \mathbf{D} je hlavní diagonála, $-\mathbf{L}$ je striktně dolní trojúhelník matice \mathbf{A} a $-\mathbf{U}$ je striktně horní trojúhelník. Z rovnice

$$(\mathbf{D} - \mathbf{L} - \mathbf{U})\vec{x} = \vec{b}$$

pak lze odvodit jednotlivé metody.

Jacobiova metoda je definována iterací

$$\mathbf{D}\vec{x}_k = \mathbf{L}\vec{x}_{k-1} + \mathbf{U}\vec{x}_{k-1} + \vec{b}.$$

Rozepíšeme-li tento vzorec po složkách $(x_i^k$ značí *i*-tou složku vektoru \vec{x}_k), dostaneme pro $i=1,\ldots,n$:

$$x_i^k = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{k-1} \right).$$

Nevýhodou této metody může být, že v průběhu výpočtu je třeba uchovávat dvě posobě jdoucí aproximace řešení \vec{x}_k , \vec{x}_{k-1} . Metoda **Gauss-Seidelova** se

od předchozí liší v tom, že ihned využívá již spočtené složky vektoru \vec{x}_k , tj. po složkách počítá

$$x_i^k = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^k - \sum_{j=i+1}^n a_{ij} x_j^{k-1} \right).$$

Spočtené složky aproximace řešení je tedy možné ihned přepisovat. Maticově lze tuto iteraci zapsat jako

$$\mathbf{D}\vec{x}_k = \mathbf{L}\vec{x}_k + \mathbf{U}\vec{x}_{k-1} + \vec{b}.$$

Z Gauss-Seidelovy metody je odvozena **Superrelaxační metoda** (SOR, successive over-relaxation). Pracuje s relaxačním parametrem $\omega \in [0,2]$ a je definována vztahem

$$\mathbf{D}\vec{x}_k = \omega(\mathbf{L}\vec{x}_k + \mathbf{U}\vec{x}_{k-1} + \vec{b}) + (1 - \omega)\mathbf{D}\vec{x}_{k-1},$$

tj. kombinuje Gauss-Seidelovu metodu s předchozí iterací.

2.2 Metody Krylovových podprostorů

Důležitá třída iteračních metod je založena na myšlence projektovat soustavu $\mathbf{A}\vec{x}=\vec{b}$ na posloupnost tzv. Krylovových prostorů a tím získávat postupně aproximace řešení.

Definice 29 Nechť $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\vec{v} \in \mathbb{R}^n$ a $k \leq n$. k-tým Krylovovým prostorem nazýváme podprostor

$$\mathcal{K}_k(\mathbf{A}, \vec{v}) := \langle \vec{v}, \mathbf{A}\vec{v}, \mathbf{A}^2\vec{v}, \dots, \mathbf{A}^{k-1}\vec{v} \rangle.$$

Metody, které zmíníme v následující části, mají společnou vlastnost tzv. projekčních metod, tj. hledají aproximace ve tvaru

$$\vec{x}_k \in \vec{x}_0 + \mathcal{S}_k, \quad \vec{r}_k \perp \mathcal{C}_k,$$

kde $\vec{r}_k := \vec{b} - \mathbf{A}\vec{x}_k$ je tzv. reziduum a \mathcal{S}_k a \mathcal{C}_k jsou vhodné podprostory. Prostor \mathcal{S}_k je obvykle roven Krylovovu podprostoru $\mathcal{K}_k(\mathbf{A}, \vec{r}_0)$, ale jsou možné i jiné volby, např. $\mathbf{A}\mathcal{K}_k(\mathbf{A}, \vec{r}_0)$. Volbou prostoru \mathcal{C}_k lze docílit optimality aproximace řešení v tom smyslu, že chyba aproximace $\vec{x} - \vec{x}_k$ je v nějaké normě minimální. Pokud dimenze podprostorů \mathcal{S}_k , \mathcal{C}_k roste, pak pro k = n dostáváme $\mathcal{C}_n = \mathbb{R}^n$ a z podmínky $\vec{r}_k \perp \mathbb{R}^n$ plyne $\vec{r}_n = \vec{0}$, tedy $\vec{x}_n = \vec{x}$ je přesné řešení. Jinak řečeno, rostou-li dimenze prostorů \mathcal{S}_k , \mathcal{C}_k , pak projekční metody najdou řešení systému $\mathbf{A}\vec{x} = \vec{b}$ nejvýše v n krocích.

2.2.1 Metoda sdružených gradientů (CG)

Tato metoda (stručně ji budeme označovat symbolem CG — z anglického *Conjugate gradients*) je určena pro symetrické pozitivně definitní matice.

Definice 30 Matice $\mathbf{A} \in \mathbb{R}^{n \times n}$ je pozitivně definitní, pokud pro každý nenulový vektor $\vec{x} \in \mathbb{R}^n$ platí:

$$\mathbf{A}\vec{x}\cdot\vec{x}>0.$$

Výraz

$$\|\vec{x}\|_{\mathbf{A}} := \sqrt{\vec{x} \cdot \mathbf{A} \vec{x}}$$

se nazývá energetická norma nebo také **A**-norma. Řekneme, že vektory $\vec{u}, \vec{v} \in \mathbb{R}^n$ jsou navzájem **A**-ortogonální, jestliže

$$\vec{u} \cdot \mathbf{A} \vec{v} = 0.$$

Aproximace řešení je v metodě CG konstruována podle vzorce

$$\vec{x}_k := \vec{x}_{k-1} + \gamma_{k-1} \vec{p}_{k-1},$$

kde \vec{p}_{k-1} je směrový vektor a γ_{k-1} je délka kroku. Tyto parametry se určí následujícím způsobem:

• \vec{p}_k volíme ve tvaru $\vec{p}_k := \vec{r}_k + \delta_k \vec{p}_{k-1}$ tak, aby byl **A**-ortogonální na \vec{p}_{k-1} , tj. $\vec{p}_k \cdot \mathbf{A} \vec{p}_{k-1} = 0$. Toho docílíme pro

$$\delta_k := \frac{\vec{r}_k \cdot \vec{r}_k}{\vec{r}_{k-1} \cdot \vec{r}_{k-1}}.$$

• γ_{k-1} volíme takové, aby byla minimální energetická norma $\|\vec{x}-\vec{x}_k\|_{\mathbf{A}}$. To nastane právě tehdy, když

$$\gamma_{k-1} := \frac{\vec{r}_{k-1} \cdot \vec{r}_{k-1}}{\vec{p}_{k-1} \cdot \mathbf{A} \vec{p}_{k-1}}.$$

Na základě předchozích vztahů lze ukázatm že CG patří mezi Krylovovské metody, neboť platí:

$$\vec{x}_k \in \vec{x}_0 + \mathcal{K}_k(\mathbf{A}, \vec{r}_0), \quad \vec{r}_k \perp \mathcal{K}_k(\mathbf{A}, \vec{r}_0).$$

Na metodu sdružených gradientů lze také nahlížet jako na metodu, která hledá minimum kvadratického funkcionálu $\frac{1}{2}\vec{x}\cdot\mathbf{A}\vec{x}-\vec{x}\cdot\vec{b}$. Následující algoritmus reprezentuje standardní implementaci metody CG.

Algoritmus A1 Metoda sdružených gradientů input $\mathbf{A}, \vec{b}, \vec{x}_0$ $\vec{r}_0 := \vec{b} - \mathbf{A}\vec{x}_0$ $\vec{p}_0 := \vec{r}_0$ for $k = 1, 2, \dots$ $\gamma_{k-1} := \frac{\vec{r}_{k-1} \cdot \vec{r}_{k-1}}{\vec{p}_{k-1} \cdot \mathbf{A}\vec{p}_{k-1}}$ $\vec{x}_k := \vec{x}_{k-1} + \gamma_{k-1} \vec{p}_{k-1}$ $\vec{r}_k := \vec{r}_{k-1} - \gamma_{k-1} \mathbf{A}\vec{p}_{k-1}$ $\delta_k := \frac{\vec{r}_k \cdot \vec{r}_k}{\vec{r}_{k-1} \cdot \vec{r}_{k-1}}$ $\vec{p}_k := \vec{r}_k + \delta_k \vec{p}_{k-1}$ end

Vidíme, že v každé iteraci je třeba provést 1 násobení matice \mathbf{A} s vektorem a v průběhu výpočtu je třeba uchovávat pouze 4 vektory. Metoda CG je tedy velmi efektivní zejména pro velké řídké matice. Je-li matice symetrická pozitivně definitní, pak v přesné aritmetice algoritmus nalezne řešení nejvýše po n iteracích. V praxi ovšem kvůli zaokrouhlovacím chybám dochází ke ztrátě \mathbf{A} -ortogonality vektorů $\{\vec{p}_k\}$ (resp. ortogonality vektorů $\{\vec{r}_k\}$), což způsobuje zpoždění konvergence, tedy že i po n krocích je $\vec{x}_n \neq \vec{x}$. Tento nedostatek se někdy odstraňuje tak, že se vektor \vec{r}_k ortogonalizuje proti všem předchozím $\{\vec{r}_i\}_{i=0}^{k-1}$ a proces ortogonalizace se zopakuje vícekrát (obvykle stačí dvakrát).

Nyní si uvedeme, co je známo o rychlosti konvergence metody CG. K tomu potřebujeme znát pojem *číslo podmíněnosti*.

Definice 31 Nechť **A** je symetrická pozitivně definitní matice. Číslo podmíněnosti matice **A** je definováno předpisem

$$\varkappa(\mathbf{A}) := \frac{\lambda_{max}(\mathbf{A})}{\lambda_{min}(\mathbf{A})},$$

 $kde \ \lambda_{max}(\mathbf{A}), \ \lambda_{min}(\mathbf{A}) \ značí největší, resp. nejmenší vlastní číslo matice <math>\mathbf{A}$.

Označíme-li $\vec{e}_k := \vec{x}_k - \vec{x}$ chybu k-té aproximace řešení, pak platí následující odhad chyby:

$$\frac{\|\vec{e}_k\|_{\mathbf{A}}}{\|\vec{e}_0\|_{\mathbf{A}}} \le 2\left(\frac{\sqrt{\varkappa(\mathbf{A})} - 1}{\sqrt{\varkappa(\mathbf{A})} + 1}\right)^k.$$

Všimněme si, že číslo v závorce v předchozí nerovnosti je vždy menší než 1. Pokud je $\varkappa(\mathbf{A})$ blízké 1, pak odhad chyby říká, že chyba klesá velmi rychle. Pro špatně podmíněné matice (tj. je-li $\varkappa(\mathbf{A})$ velké) je číslo v závorce blízké jedné a odhad často nadhodnocuje skutečnou velikost \mathbf{A} -normy chyby. Špatná podmíněnost matice přesto může mít za následek pomalou konvergenci metody. Tuto skutečnost lze řešit pomocí tzv. předpodmínění, které spočívá v tom, že původní soustava $\mathbf{A}\vec{x}=\vec{b}$ se nahradí ekvivalentní soustavou $\hat{\mathbf{A}}\hat{\vec{x}}=\hat{\vec{b}}$ s maticí $\hat{\mathbf{A}}$, která má menší číslo podmíněnosti než \mathbf{A} .

2.2.2 Zobecněná metoda minimálních reziduí (GMRES)

Metodu GMRES (generalized minimal residual method) lze charakterizovat ve smyslu projekčních metod pomocí vztahů

$$\vec{x}_k \in \vec{x}_0 + \mathcal{K}_k(\mathbf{A}, \vec{r}_0), \quad \vec{r}_k \perp \mathbf{A} \mathcal{K}_k(\mathbf{A}, \vec{r}_0).$$

Jak napovídá název, její vlastností je, že v každé iteraci minimalizuje normu rezidua $\|\vec{r}_k\|$. To vede na úlohu nejmenších čtverců, jejíž efektivní implementace je poměrně technicky obtížná. Proto zde její algoritmus neuvádíme. Nepříjemnou vlastností metody GMRES je, že produkuje posloupnost ortogonálních vektorů $\{\vec{v}_k\}$, které je třeba uchovávat, (říkáme, že metoda generuje dlouhé rekurence) a to klade vysoké nároky na paměť. Za tuto cenu ovšem metoda dokáže řešit soustavu s libovolnou regulární maticí.

Stejně jako u metody CG, vlivem zaokrouhlovacích chyb dochází ke zpomalení konvergence kvůli ztrátě ortogonality systému $\{\vec{v}_k\}$. I u GMRES tedy obvykle provádíme vícenásobnou ortogonalizaci. Problém s paměťovou náročností se obvykle řeší pomocí tzv. restartu — program uchovává místo celé posloupnosti jen posledních m vektorů $\{\vec{v}_i\}_{i=k-m+1}^k$.

2.2.3 Metoda bikonjugovaných gradientů (BiCG)

Posledním a často používaným příkladem krylovovské metody je metoda BiCG, jež na rozdíl od předchozích dvou řeší zároveň dvě soustavy $\mathbf{A}\vec{x} = \vec{b}$ a $\mathbf{A}^{\top}\vec{y} = \vec{c}$. Označíme-li $\vec{s}_k := \vec{c} - \mathbf{A}^{\top}\vec{y}_k$, pak je metoda BiCG charakterizována vztahy

$$ec{x}_k \in ec{x}_0 + \mathcal{K}_k(\mathbf{A}, ec{r}_0), \qquad ec{r}_k \perp \mathcal{K}_k(\mathbf{A}^\top, ec{s}_0),$$

 $ec{y}_k \in ec{y}_0 + \mathcal{K}_k(\mathbf{A}^\top, ec{s}_0), \qquad ec{s}_k \perp \mathcal{K}_k(\mathbf{A}, ec{r}_0).$

Vektory $\{\vec{r}_k\}$ a $\{\vec{s}_k\}$ jsou navzájem biortogonální: $\vec{s}_i \cdot \vec{r}_j = 0$ pro $i \neq j$.

Algoritmus A2 Metoda bikonjugovaných gradientů (BiCG)

```
\begin{array}{l} \textbf{input A}, \ \vec{b}, \ \vec{c}, \ \vec{x}_0, \ \vec{y}_0 \\ \vec{r}_0 := \vec{p}_0 := \vec{b} - \mathbf{A} \vec{x}_0 \\ \vec{s}_0 := \vec{q}_0 := \vec{c} - \mathbf{A}^\top \vec{y}_0 \\ \textbf{for } k = 1, 2, \dots \\ \gamma_{k-1} := \frac{\vec{s}_{k-1} \cdot \vec{r}_{k-1}}{\vec{q}_{k-1} \cdot \mathbf{A} \vec{p}_{k-1}} \\ \vec{x}_k := \vec{x}_{k-1} + \gamma_{k-1} \vec{p}_{k-1} \\ \vec{r}_k := \vec{r}_{k-1} - \gamma_{k-1} \mathbf{A} \vec{p}_{k-1} \\ \vec{y}_k := \vec{y}_{k-1} + \gamma_{k-1} \vec{q}_{k-1} \\ \vec{r}_k := \vec{s}_{k-1} - \gamma_{k-1} \mathbf{A}^\top \vec{q}_{k-1} \\ \delta_k := \frac{\vec{s}_k \cdot \vec{r}_k}{\vec{s}_{k-1} \cdot \vec{r}_{k-1}} \\ \vec{p}_k := \vec{r}_k + \delta_k \vec{p}_{k-1} \end{array}
```

Metoda generuje krátké rekurence, je tedy paměťově úsporná, a lze ji použít na obecné regulární matice. Na rozdíl od CG a GMRES však není zaručena konvergence BiCG. Je-li totiž matice $\bf A$ nesymetrická, může dojít k předčasnému zastavení, když $\vec{r}_k \cdot \vec{s}_k = 0$.

2.3 Předpodmínění

 $\vec{q}_k := \vec{s}_k + \delta_k \vec{q}_{k-1}$

 \mathbf{end}

Jak již bylo zmíněno v odst. 2.2.1, konvergence krylovovských metod úzce souvisí s číslem podmíněnosti matice $\bf A$. Ukážeme si myšlenku předpodmínění pro metodu CG (u jiných metod lze postupovat obdobně). Nechť $\bf C$ je libovolná regulární matice. Potom lze soustavu $\bf A \vec x = \vec b$ se symetrickou pozitivně definitní maticí zapsat ve tvaru

$$(\mathbf{C}^{-1}\mathbf{A}\mathbf{C}^{-\top})(\mathbf{C}^{\top}\vec{x}) = \mathbf{C}^{-1}\vec{b}.$$

Označíme-li $\hat{\mathbf{A}} := \mathbf{C}^{-1}\mathbf{A}\mathbf{C}^{-\top}$, $\hat{\vec{x}} := \mathbf{C}^{\top}\vec{x}$ a $\hat{\vec{b}} := \mathbf{C}^{-1}\vec{b}$, pak novou soustavu můžeme zapsat jako $\hat{\mathbf{A}}\hat{\vec{x}} = \hat{\vec{b}}$, přičemž $\hat{\mathbf{A}}$ je opět symetrická pozitivně definitní. Tuto soustavu lze řešit metodou CG a mezi aproximacemi řešení nové a původní soustavy platí vztah $\vec{x}_k = \mathbf{C}^{-\top}\hat{\vec{x}}_k$. Pro úplnost zde uvádíme algoritmus předpodmíněné metody CG:

Algoritmus A3 Předpodmíněná metoda sdružených gradientů (PCG)

```
 \begin{array}{l} \text{input } \mathbf{A}, \, \vec{b}, \, \vec{x}_0 \\ \vec{r}_0 := \vec{b} - \mathbf{A} \vec{x}_0 \\ \vec{z}_0 := \mathbf{C}^{-\top} \mathbf{C}^{-1} \vec{r}_0 \\ \vec{p}_0 := \vec{z}_0 \\ \text{for } k = 1, 2, \dots \\ \hat{\gamma}_{k-1} := \frac{\vec{z}_{k-1} \cdot \vec{r}_{k-1}}{\vec{p}_{k-1} \cdot \mathbf{A} \vec{p}_{k-1}} \\ \vec{x}_k := \vec{x}_{k-1} + \hat{\gamma}_{k-1} \vec{p}_{k-1} \\ \vec{r}_k := \vec{r}_{k-1} - \hat{\gamma}_{k-1} \mathbf{A} \vec{p}_{k-1} \\ \vec{z}_k := \mathbf{C}^{-\top} \mathbf{C}^{-1} \vec{r}_k \\ \hat{\delta}_k := \frac{\vec{z}_k \cdot \vec{r}_k}{\vec{z}_{k-1} \cdot \vec{r}_{k-1}} \\ \vec{p}_k := \vec{z}_k + \hat{\delta}_k \vec{p}_{k-1} \\ \text{end} \end{array}
```

Poznamenejme, že v algoritmu nikdy nepočítáme inverzní matici \mathbf{C}^{-1} , ale operaci $\vec{z}_k := \mathbf{C}^{-\top} \mathbf{C}^{-1} \vec{r}_k$ převedeme na řešení dvou soustav

$$\mathbf{C}\vec{y} = \vec{r}_k, \quad \mathbf{C}^{\top}\vec{z}_k = \vec{y}.$$

Aby bylo řešení nové soustavy efektivnější než řešení soustavy původní, je třeba zvolit matici $\mathbf C$ podle následujících požadavků:

- Matici ${\bf C}$ volíme tak, aby metoda CG konvergovala co nejrychleji. Ideálně $\hat{{\bf A}} = {\bf C}^{-1}{\bf A}{\bf C}^{-\top} \approx {\bf I}.$
- Aby nedošlo k výraznému zvýšení náročnosti výpočtu, je potřeba, aby soustavy $\mathbf{C}\vec{y} = \vec{r}_k$ a $\mathbf{C}^{\top}\vec{z}_k = \vec{y}$ byly rychle řešitelné.
- Pokud je matice A řídká, pak by i C měla být řídká. Jinak výrazně vzrostou paměťové i výpočetní nároky.

Efektivní volba předpodmiňovací matice často vychází z daného (např. fyzikálního) problému nebo z konkrétní struktury matice **A**. Mezi používané obecné předpodmiňovací strategie patří např.:

- neúplný Choleského rozklad, který konstruuje dolní trojúhelníkovou matici \mathbf{C} tak, aby $\mathbf{A} \approx \mathbf{C}\mathbf{C}^{\top}$,
- $\bullet\,$ neúplný LU rozklad: $\mathbf{A}\approx\mathbf{L}\mathbf{U}$, kde \mathbf{L} je dolní trojúhelníková a U je horní trojúhelníková matice. Předpodmíněná soustava pak má tvar

$$(\mathbf{L}^{-1}\mathbf{A}\mathbf{U}^{-1})(\mathbf{U}\vec{x}) = \mathbf{L}^{-1}\vec{b}.$$

Reference

[1] J. Duintjer Tebbens, I. Hnětynková, M. Plešinger, Z. Strakoš, and P. Tichý. Analýza metod pro maticové výpočty. Základní metody. Matfyzpress, 2012. ISBN 978-80-7378-201-6.