Question Number	Scheme	Marks	
3(a)	$\frac{\mathrm{d}v}{\mathrm{d}t} = 2t - 4$	M1	
	$Accel = 2 \left(m/s^2 \right)$	A1	(2)
(b)	$s = \int_0^6 (t^2 - 4t + 7) dt = \left[\frac{t^3}{3} - 2t^2 + 7t \right]_0^6$	M1A1	
	$= \frac{6^3}{3} - 2 \times 6^2 + 7 \times 6 = 42 \text{ (m)}$	dM1 A1 (4)	Icao [6]
(a)			լսյ
M1	Attempt to differentiate the expression for <i>v</i> . Power of <i>t</i> to decrease in at least one term and increase in none.		
A1 (b)	Substitute $t = 3$ and obtain correct acceleration – units may be missing		
M1	Attempt to integrate the expression for <i>v</i> . Power of <i>t</i> to increase in at least one term and decrease in none. Ignore limits if shown. Constant not needed for indefinite integration.		
A1	Correct integration. Limits/constant not needed.		
dM1	Either substitute the limits 0 and 6 or use $s = 0$, $t = 0$ to obtain a value for the constant and substitute $t = 6$ in the complete expression. (Substitution of 0 can be implied if the result would have been 0) Depends on the previous M mark If more values of t are substituted and results used award M0		
A1cao	S = 42 (m)		
NB	Ans 42 w/o working scores 4/4 (Done on a calculator)		
4	$(2x+5)^{2} = (3x-1)^{2} + (5x)^{2} - 2 \times (3x-1) \times 5x \cos 60^{\circ}$	M1A1	
	$15x^2 - 21x - 24(=0) \qquad (5x^2 - 7x - 8 = 0)$	A1	
	$x = \frac{21 \pm \sqrt{21^2 + 4 \times 15 \times 24}}{30}$	M1	
	x = 2.1456 (or -0.7456)		
	$\therefore x = 2.15$	A1	[5]
M1	Use the cosine rule in either form. Rule to be correct either by quoting and using the general formula or by implication from a correct substitution.		
A1	Correct substitution in their cosine rule.		
A1	Simplify to obtain a 3TQ. Terms in any order. = 0 may be missing		
M1	Solve their 3TQ by formula (correct general formula or correct substitution for their equation) or completing the square. Reach a positive value for <i>x</i> . Negative need not be		
	seen. Calculator solutions: Correct answer from correct equation scores M1A1, otherwise M0A0		
A1cao	Correct value for x. Must be 3 sf		
	Negative value (if shown) must be eliminated or positive clearly identified as the required value		