(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 October 2001 (25.10.2001)

PCT

(10) International Publication Number WO 01/79274 A2

(51) International Patent Classification7: C07K 14/195

(21) International Application Number: PCT/DK01/00276

(22) International Filing Date: 19 April 2001 (19.04.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

DK 19 April 2000 (19.04.2000) PA 2000 00666 DK 21 February 2001 (21.02.2001) PA 2001 00283

(71) Applicant (for all designated States except US): STATENS SERUM INSTITUT [DK/DK]; Artillerivej 5, DK-2300 Copenhagen S (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): AGGER, Else, Marie [DK/DK]; Krudtmøllegårds Allé 9, DK-2300 Copenhagen S (DK). ANDERSEN, Peter [DK/DK]; Sparreholmvej 47, DK-2700 Brønshøj (DK). OKKELS, Li, Mei, Meng [DK/DK]; Aldershvilevej 116A, st.th., DK-2880 Bagsværd (DK). WELDINGH, Karin [DK/DK]; Nørrebrogade 224, 3.tv., DK-2200 Copenhagen N (DK).

- (74) Agent: PLOUGMANN, VINGTOFT & PARTNERS A/S; Sankt Annæ Plads 11, P.O. Box 3007, DK-1021 Copenhagen K (DK).
- (81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: M. TUBERCULOSIS ANTIGENS

(57) Abstract: The present invention is based on the identification and characterization of a number of novel M. tuberculosis derived proteins and protein fragments. The invention is directed to the polypeptides and immunologically active fragments thereof, the genes encoding them, immunological compositions such as vaccines and skin test reagents containing the polypeptides.

BNSDOCID: <WO _0179274A2_I_>

M. TUBERCULOSIS ANTIGENS

Field of invention

The present invention discloses new immunogenic polypeptides and new immunogenic compositions based on polypeptides derived from the short time culture filtrate of M. tuberculosis.

General Background

Human tuberculosis caused by *Mycobacterium tuberculosis* (*M. tuberculosis*) is a severe global health problem, responsible for approx. 3 million deaths annually, according to the WHO. The world-wide incidence of new tuberculosis (TB) cases had been falling during the 1960s and 1970s but during recent years this trend has markedly changed in part due to the advent of AIDS and the appearance of multidrug resistant strains of *M. tuberculosis*.

The only vaccine presently available for clinical use is BCG, a vaccine whose efficacy remains a matter of controversy. BCG generally induces a high level of acquired resistance in animal models of TB, but several human trials in developing countries have failed to demonstrate significant protection. Notably, BCG is not approved by the FDA for use in the United States because BCG vaccination impairs the specificity of the Tuberculin skin test for diagnosis of TB infection.

20

This makes the development of a new and improved vaccine against TB an urgent matter, which has been given a very high priority by the WHO. Many attempts to define protective mycobacterial substances have been made, and different investigators have reported increased resistance after experimental vaccination. However, the demonstration of a specific long-term protective immune response with the potency of BCG has not yet been achieved.

Immunity to *M. tuberculosis* is characterized by some basic features; specifically sensitized T lymphocytes mediates protection, and the most important mediator molecule seems to be interferon gamma (IFN-γ).

M. tuberculosis holds, as well as secretes, several proteins of potential relevance for the generation of a new TB vaccine. For a number of years, a major effort has been put into

the identification of new protective antigens for the development of a novel vaccine against TB. The search for candidate molecules has primarily focused on proteins released from dividing bacteria. Despite the characterization of a large number of such proteins only a few of these have been demonstrated to induce a protective immune response as subunit vaccines in animal models, most notably ESAT-6 and Ag85B (Brandt et al 2000).

In 1998 Cole et al published the complete genome sequence of *M. tuberculosis* and predicted the presence of approximately 4000 open reading frames (Cole et al 1998). Among others, nucleotide sequences comprising Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878 and Rv3879c are described, and putative protein sequences for the above sequences are suggested. However important, this sequence information cannot be used to predict if the DNA is translated and expressed as proteins *in vivo*. More importantly, it is not possible on the basis of the sequences to predict whether a given sequence will encode an immunogenic or an inactive protein. The only way to determine if a protein is recognized by the immune system during or after an infection with *M. tuberculosis* is to produce the given protein and test it in an appropriate assay as described herein.

Diagnosing *M. tuberculosis* infection in its earliest stage is important for effective treatment of the disease. Current diagnostic assays to determine *M. tuberculosis* infection are expensive and labour-intensive. In the industrialized part of the world the majority of patients exposed to *M. tuberculosis* receive chest x-rays and attempts are made to culture the bacterium *in vitro* from sputum samples. X-rays are insensitive as a diagnostic assay and can only identify infections in a very progressed stage. Culturing of *M. tuberculosis* is also not ideal as a diagnostic tool, since the bacteria grows poorly and slowly outside the body, which can produce false negative test results and take weeks before results are obtained. The standard tuberculin skin test is an inexpensive assay, used in third world countries, however it is far from ideal in detecting infection because it cannot distinguish *M. tuberculosis*-infected individuals from *M. bovis* BCG-vaccinated individuals and therefore cannot be used in areas of the world where patients receive or have received childhood vaccination with bacterial strains related to *M. tuberculosis*, e.g. a BCG vaccination.

Animal tuberculosis is caused by *Mycobacterium bovis*, which is closely related to *M. tu-berculosis* and within the tuberculosis complex. *M. bovis* is an important pathogen that can infect a range of hosts, including cattle and humans. Tuberculosis in cattle is a major

cause of economic loss and represents a significant cause of zoonotic infection. A number of strategies have been employed against bovine TB, but the approach has generally been based on government-organized programs by which animals deemed positive to defined screening test are slaughtered. The most common test used in cattle is Delayed-type hypersensitivity with PPD as antigen, but alternative in vitro assays are also developed. However, investigations have shown the both the in vivo and the in vitro tests have a relative low specificity, and the detection of false-positive is a significant economic problem (Pollock et al 2000). There is therefore a great need for a more specific diagnostic reagent, which can be used either *in vivo* or *in vitro* to detect *M. bovis* infections in animals.

Summary of the invention

The invention is related to preventing, treating and detecting infections caused by species of the tuberculosis complex (*M. tuberculosis*, *M. bovis*, *M. africanum*) by the use of a polypeptide comprising a *M. tuberculosis* antigen or an immunogenic portion or other variant thereof, or by the use of a DNA sequence encoding a *M. tuberculosis* antigen or an immunogenic portion or other variant thereof.

Detailed disclosure of the invention

The present invention discloses a substantially pure polypeptide, which comprises an amino acid sequence selected from

- 20 (a) Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1;
 - (b) an immunogenic portion, e.g. a T-cell epitope, of any one of the sequences in (a); and /or
- (c) an amino acid sequence analogue having at least 70% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic.

Preferably, the amino acid sequence analogue has at least 80%, more preferred at least 90% and most preferred at least 95% sequence identity to any one of the sequences in (a) or (b).

The invention further discloses a fusion polypeptide, which comprises an amino acid sequence selected from

30

- (a) Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1
- (b) an immunogenic portion, e.g. a T-cell epitope, of any one of the sequences in (a); and /or
- 5 (c) an amino acid sequence analogue having at least 70% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic; and at least one fusion partner.

Preferably, the fusion partner comprises a polypeptide fragment selected from

- 10 (a) a polypeptide fragment derived from a virulent mycobacterium, such as ESAT-6, MPB64, MPT64, TB10.4, CFP10, RD1-ORF5, RD1-ORF2, Rv1036, Ag85A, Ag85B, Ag85C, 19kDa lipoprotein, MPT32, MPB59 and alpha-crystallin;
 - (b) a polypeptide according to the invention and defined above and/or
- (c) at least one immunogenic portion, e.g. a T-cell epitope, of any of such polypeptides in (a) or (b)

The invention further relates to a polypeptide, which comprises an amino acid sequence selected from

- (a) Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, 20 Rv3879c or MT3106.1
 - (b) an immunogenic portion, e.g. a T-cell epitope, of any one of the sequences in (a); and /or
 - (c) an amino acid sequence analogue having at least 70% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
- 25 which is lipidated so as to allow a self-adjuvating effect of the polypeptide.

Further, the invention relates to a polypeptide, which comprises an amino acid sequence selected from

- (a) Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, --- 30 Rv3879c or MT3106.1
 - (b) an immunogenic portion, e.g. a T-cell epitope, of any one of the sequences in (a); and /or
 - (c) an amino acid sequence analogue having at least 70% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
- 35 for use as a vaccine, as a pharmaceutical or as a diagnostic reagent.

In another embodiment, the invention relates to the use of a polypeptide as defined above for the preparation of a pharmaceutical composition for diagnosis, e.g. for diagnosis of tuberculosis caused by virulent mycobacteria, e.g. by *Mycobacterium tuberculosis*, *Mycobacterium africanum* or *Mycobacterium bovis*, and the use of a polypeptide as defined above for the preparation of a pharmaceutical composition, e.g. for the vaccination

above for the preparation of a pharmaceutical composition, e.g. for the vaccination against infection caused by virulent mycobacteria, e.g. by *Mycobacterium tuberculosis*, *Mycobacterium africanum* or *Mycobacterium bovis*.

In a still further embodiment, the invention relates to an immunogenic composition comprising a polypeptide as defined above, preferably in the form of a vaccine or in the form of a skin test reagent.

In another embodiment, the invention relates to a nucleic acid fragment in isolated form which

- (a) comprises a nucleic acid sequence which encodes a polypeptide as defined above, or comprises a nucleic acid sequence complementary thereto; or
- (b) has a length of at least 10 nucleotides and hybridizes readily under stringent hybridization conditions with a nucleotide sequence selected from Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1 nucleotide sequences or a sequence complementary thereto, or with a nucleotide sequence selected from a sequence in (a)

The nucleic acid fragment is preferably a DNA fragment. The fragment can be used as a pharmaceutical.

In one embodiment, the invention relates to a vaccine comprising a nucleic acid fragment according to the invention, optionally inserted in a vector, the vaccine effecting in vivo expression of antigen by an animal, including a human being, to whom the vaccine has been administered, the amount of expressed antigen being effective to confer substantially increased resistance to tuberculosis caused by virulent mycobacteria, e.g. by Mycobacterium tuberculosis, Mycobacterium africanum or Mycobacterium bovis, in an animal, including a human being.

In a further embodiment, the invention relates to the use of a nucleic acid fragment according to the invention for the preparation of a composition for the diagnosis of tuberculosis caused by virulent mycobacteria, e. g. by *Mycobacterium tuberculosis*, *Mycobacterium africanum* or *Mycobacterium bovis*, and the use of a nucleic acid fragment according to the invention for the preparation of a pharmaceutical composition for the vaccination against tuberculosis caused by virulent mycobacteria, e.g. by *Mycobacterium tuberculosis*, *Mycobacterium africanum* or *Mycobacterium bovis*.

In a still further embodiment, the invention relates to a vaccine for immunizing an animal, including a human being, against tuberculosis caused by virulent mycobacteria, e.g. by *Mycobacterium tuberculosis*, *Mycobacterium africanum* or *Mycobacterium bovis*, comprising as the effective component a non-pathogenic microorganism, wherein at least one copy of a DNA fragment comprising a DNA sequence encoding a polypeptide as defined above has been incorporated into the microorganism (e.g. placed on a plasmid or in the genome) in a manner allowing the microorganism to express and optionally secrete the polypeptide.

In another embodiment, the invention relates to a replicable expression vector, which comprises a nucleic acid fragment according to the invention, and a transformed cell harbouring at least one such vector.

In another embodiment, the invention relates to a method for producing a polypeptide as defined above, comprising

- (a) inserting a nucleic acid fragment according to the invention into a vector which is
 able to replicate in a host cell, introducing the resulting recombinant vector into
 the host cell, culturing the host cell in a culture medium under conditions sufficient
 to effect expression of the polypeptide, and recovering the polypeptide from the
 host cell or culture medium;
- (b) isolating the polypeptide from a whole mycobacterium, e.g. *Mycobacterium tuber-*30 *culosis*, *Mycobacterium africanum* or *Mycobacterium bovis*, from culture filtrate or from lysates or fractions thereof; or
 - (c) synthesizing the polypeptide e.g. by solid or liquid phase peptide synthesis.

The invention also relates to a method of diagnosing tuberculosis caused by virulent my-35 cobacteria, e.g. by *Mycobacterium tuberculosis*, *Mycobacterium africanum* or *Myco-* bacterium bovis, in an animal, including a human being, comprising intradermally injecting, in the animal, a polypeptide as defined above or an immunogenic composition as defined above, a positive skin response at the location of injection being indicative of the animal having tuberculosis, and a negative skin response at the location of injection being indicative of the animal not having tuberculosis.

In another embodiment, the invention relates to a method for immunizing an animal, including a human being, against tuberculosis caused by virulent mycobacteria, e.g. by *Mycobacterium tuberculosis*, *Mycobacterium africanum* or *Mycobacterium bovis*, comprising administering to the animal the polypeptide as defined above, the immunogenic composition according to the invention, or the vaccine according to the invention.

Another embodiment of the invention relates to a monoclonal or polyclonal antibody, which is specifically reacting with a polypeptide as defined above in an immuno assay, or a specific binding fragment of said antibody. Preferably, said antibody is for use as a diagnostic reagent, e.g. for detection of mycobacterial antigens in sputum, urine or other body fluids of an infected animal, including a human being.

In a further embodiment the invention relates to a pharmaceutical composition which comprises an immunologically responsive amount of at least one member selected from the group consisting of:

- (a) a polypeptide selected from Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1, or an immunogenic portion thereof;
- 25 (b) an amino acid sequence which has a sequence identity of at least 70% to any one of said polypeptides in (a) and is immunogenic;
 - (c) a fusion polypeptide comprising at least one polypeptide or amino acid sequence according to (a) or (b) and at least one fusion partner;
- (d) a nucleic acid sequence which encodes a polypeptide or amino acid sequence according to (a), (b) or (c);
 - (e) a nucleic acid sequence which is complementary to a sequence according to (d);
 - (f) a nucleic acid sequence which has a length of at least 10 nucleotides and which hybridizes under stringent conditions with a nucleic acid sequence according to
 (d) or (e); and

- (g) a non-pathogenic micro-organism which has incorporated (e.g. placed on a plasmid or in the genome) therein a nucleic acid sequence according to (d), (e) or (f) in a manner to permit expression of a polypeptide encoded thereby.
- In a still further embodiment the invention relates to a method for stimulating an immunogenic response in an animal which comprises administering to said animal an immunologically stimulating amount of at least one member selected from the group consisting of:
- (a) a polypeptide selected from Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195,
 10 Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1, or an immunogenic portion thereof;
 - (b) an amino acid sequence which has a sequence identity of at least 70% to any one of said polypeptides in (a) and is immunogenic;
- (c) a fusion polypeptide comprising at least one polypeptide or amino acid sequence according to (a) or (b) and at least one fusion partner;
 - (d) a nucleic acid sequence which encodes a polypeptide or amino acid sequence according to (a), (b) or (c);
 - (e) a nucleic acid sequence which is complementary to a sequence according to (d);
- (f) a nucleic acid sequence which has a length of at least 10 nucleotides and which hybridizes under stringent conditions with a nucleic acid sequence according to (d) or (e); and '
 - (g) a non-pathogenic micro-organism which has incorporated therein (e.g. placed on a plasmid or in the genome) a nucleic acid sequence according to (d), (e) or (f) in a manner to permit expression of a polypeptide encoded thereby.

The vaccine, immunogenic composition and pharmaceutical composition according to the invention can be used prophylactically in a subject not infected with a virulent mycobacterium; or therapeutically in a subject already infected with a virulent mycobacterium.

- 30 The invention also relates to a method for diagnosing previous or ongoing infection with a virulent mycobacterium, said method comprising
 - (a) contacting a sample, e.g. a blood sample, with a composition comprising an antibody according to the invention, a nucleic acid fragment according to the invention and/or a polypeptide as defined above, or

25

WO 01/79274 PCT/DK01/00276

9

(b) contacting a sample, e.g. a blood sample comprising mononuclear cells (e.g. T-lymphocytes), with a composition comprising one or more polypeptides as defined above in order to detect a positive reaction, e.g. proliferation of the cells or release of cytokines such as IFN-γ.

5

Finally, the invention relates to a method of diagnosing *Mycobacterium tuberculosis* infection in a subject comprising:

- (a) contacting a polypeptide as defined above with a bodily fluid of the subject;
- (b) detecting binding of a antibody to said polypeptide, said binding being an indication that said subject is infected by *Mycobacterium tuberculosis* or is susceptible to *Mycobacterium tuberculosis* infection.

Definitions

The word "polypeptide" in the present invention should have its usual meaning. That is an amino acid chain of any length, including a full-length protein, oligopeptides, short peptides and fragments thereof, wherein the amino acid residues are linked by covalent peptide bonds.

The polypeptide may be chemically modified by being glycosylated, by being lipidated (e.g. by chemical lipidation with palmitoyloxy succinimide as described by Mowat et al. 1991 or with dodecanoyl chloride as described by Lustig et al. 1976), by comprising prosthetic groups, or by containing additional amino acids such as e.g. a his-tag or a signal peptide.

Each polypeptide may thus be characterised by specific amino acids and be encoded by specific nucleic acid sequences. It will be understood that such sequences include analogues and variants produced by recombinant or synthetic methods wherein such polypeptide sequences have been modified by substitution, insertion, addition or deletion of one or more amino acid residues in the recombinant polypeptide and still be immunogenic in any of the biological assays described herein. Substitutions are preferably "conservative". These are defined according to the following table. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other. The amino acids in the third column are indicated in one-letter code.

ALIPHATIC	Non-polar	GAP
		ILV
	Polar-uncharged	CSTM
		NQ
	Polar-charged	DE
		KR
AROMATIC		HFWY

A preferred polypeptide within the present invention is an immunogenic antigen from *M. tuberculosis*. Such antigen can for example be derived from *M. tuberculosis* and/or *M. tuberculosis* culture filtrate. Thus, a polypeptide comprising an immunogenic portion of one of the above antigens may consist entirely of the immunogenic portion, or may contain additional sequences. The additional sequences may be derived from the native *M. tuberculosis* antigen or be heterologous and such sequences may, but need not, be immunogenic.

10 Each polypeptide is encoded by a specific nucleic acid sequence. It will be understood that such sequences include analogues and variants hereof wherein such nucleic acid sequences have been modified by substitution, insertion, addition or deletion of one or more nucleic acid. Substitutions are preferably silent substitutions in the codon usage which will not lead to any change in the amino acid sequence, but may be introduced to enhance the expression of the protein.

In the present context the term "substantially pure polypeptide fragment" means a polypeptide preparation which contains at most 5% by weight of other polypeptide material with which it is natively associated (lower percentages of other polypeptide material are preferred, e.g. at most 4%, at most 3%, at most 2%, at most 1%, and at most ½%). It is preferred that the substantially pure polypeptide is at least 96% pure, *i.e.* that the polypeptide constitutes at least 96% by weight of total polypeptide material present in the preparation, and higher percentages are preferred, such as at least 97%, at least 98%, at least 99%, at least 99,25%, at least 99,5%, and at least 99,75%. It is especially preferred that the polypeptide fragment is in "essentially pure form", *i.e.* that the polypeptide fragment is essentially free of any other antigen with which it is natively associated, *i.e.* free of

11

any other antigen from bacteria belonging to the tuberculosis complex or a virulent myco-bacterium. This can be accomplished by preparing the polypeptide fragment by means of recombinant methods in a non-mycobacterial host cell as will be described in detail below, or by synthesizing the polypeptide fragment by the well-known methods of solid or liquid phase peptide synthesis, e.g. by the method described by Merrifield or variations thereof.

PCT/DK01/00276

By the term "virulent mycobacterium" is understood a bacterium capable of causing the tuberculosis disease in an animal or in a human being. Examples of virulent mycobacteria are *M. tuberculosis*, *M. africanum*, and *M. bovis*. Examples of relevant animals are cattle, possums, badgers and kangaroos.

10

WO 01/79274

By "a TB patient" is understood an individual with culture or microscopically proven infection with virulent mycobacteria, and/or an individual clinically diagnosed with TB and who is responsive to anti-TB chemotherapy. Culture, microscopy and clinical diagnosis of TB are well known by any person skilled in the art.

15

By the term "PPD-positive individual" is understood an individual with a positive Mantoux test or an individual where PPD induces a positive *in vitro* recall response determined by release of IFN-y.

- 20 By the term "delayed type hypersensitivity reaction" (DTH) is understood a T-cell mediated inflammatory response elicited after the injection of a polypeptide into, or application to, the skin, said inflammatory response appearing 72-96 hours after the polypeptide injection or application.
- 25 By the term "IFN- γ " is understood interferon-gamma. The measurement of IFN- γ is used as an indication of an immunological response.

By the terms "nucleic acid fragment" and "nucleic acid sequence" are understood any nucleic acid molecule including DNA, RNA, LNA (locked nucleic acids), PNA, RNA, dsRNA and RNA-DNA-hybrids. Also included are nucleic acid molecules comprising non-naturally occurring nucleosides. The term includes nucleic acid molecules of any length, e.g. from 10 to 10000 nucleotides, depending on the use. When the nucleic acid molecule is for use as a pharmaceutical, e.g. in DNA therapy, or for use in a method for producing a polypeptide according to the invention, a molecule encoding at least one epitope is preferably used, having a length from about 18 to about 1000 nucleotides, the molecule being op-

tionally inserted into a vector. When the nucleic acid molecule is used as a probe, as a primer or in antisense therapy, a molecule having a length of 10-100 is preferably used. According to the invention, other molecule lengths can be used, for instance a molecule having at least 12, 15, 21, 24, 27, 30, 33, 36, 39, 42, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 or 1000 nucleotides (or nucleotide derivatives), or a molecule having at most 10000, 5000, 4000, 3000, 2000, 1000, 700, 500, 400, 300, 200, 100, 50, 40, 30 or 20 nucleotides (or nucleotide derivatives). It should be understood that these numbers can be freely combined to produce ranges.

- 10 The term "stringent" when used in conjunction with hybridization conditions is as defined in the art, i.e. the hybridization is performed at a temperature not more than 15-20°C under the melting point Tm, cf. Sambrook et al, 1989, pages 11.45-11.49. Preferably, the conditions are "highly stringent", i.e. 5-10°C under the melting point Tm.
- 15 Throughout this specification, unless the context requires otherwise, the word "comprise", or variations thereof such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.
- 20 The term "sequence identity" indicates a quantitative measure of the degree of homology between two amino acid sequences of equal length or between two nucleotide sequences of equal length. If the two sequences to be compared are not of equal length, they must be aligned to best possible fit possible with the insertion of gaps or alternatively truncation at the ends of the protein sequences. The sequence identity can be calculated as $\frac{(w_{ref} \cdot N_{eff}) loo}{N_{ref}}, \text{ wherein N}_{dif} \text{ is the total number of non-identical residues in the two sequences when aligned and wherein N}_{ref} \text{ is the number of residues in one of the sequences. Hence, the DNA sequence AGTCAGTC will have a sequence identity of 75% with the sequence AATCAATC (N}_{dif} = 2 \text{ and N}_{ref} = 8). A gap is counted as non-identity of the specific residue(s), i.e. the DNA sequence AGTGTC will have a sequence identity of 75% with the DNA sequence AGTCAGTC (N}_{dif} = 2 \text{ and N}_{ref} = 8). Sequence identity can alternatively be calculated by the BLAST program e.g. the BLASTP program (Pearson W. R. and D. J. Lipman (1988))(www.ncbi.nlm.nih.gov/cgi-bin/BLAST). In one aspect of the invention, alignment is performed with the sequence alignment method ClustalW with default parameters as described by Thompson J., et al 1994, available at http://www2.ebi.ac.uk/clustalw/.$

A preferred minimum percentage of sequence identity is at least 80%, such as at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, and at least 99.5%.

5 In a preferred embodiment of the invention, the polypeptide comprises an immunogenic portion of the polypeptide, such as an epitope for a B-cell or T-cell. The immunogenic portion of a polypeptide is a part of the polypeptide, which elicits an immune response in an animal or a human being, and/or in a biological sample determined by any of the biological assays described herein. The immunogenic portion of a polypeptide may be a T-cell epitope or a B-cell epitope. Immunogenic portions can be related to one or a few relatively small parts of the polypeptide, they can be scattered throughout the polypeptide sequence or be situated in specific parts of the polypeptide. For a few polypeptides epitopes have even been demonstrated to be scattered throughout the polypeptide covering the full sequence (Ravn et al 1999).

15

In order to identify relevant T-cell epitopes which are recognised during an immune response, it is possible to use a "brute force" method: Since T-cell epitopes are linear, deletion mutants of the polypeptide will, if constructed systematically, reveal what regions of the polypeptide are essential in immune recognition, e.g. by subjecting these deletion 20 mutants e.g. to the IFN-γ assay described herein. Another method utilises overlapping oligopeptides for the detection of MHC class II epitopes, preferably synthetic, having a length of e.g. 20 amino acid residues derived from the polypeptide. These peptides can be tested in biological assays (e.g. the IFN-y assay as described herein) and some of these will give a positive response (and thereby be immunogenic) as evidence for the 25 presence of a T cell epitope in the peptide. For the detection of MHC class I epitopes it is possible to predict peptides that will bind (Stryhn et al. 1996) and hereafter produce these peptides synthetic and test them in relevant biological assays e.g. the IFN-y assay as described herein. The peptides preferably having a length of e.g. 8 to 11 amino acid residues derived from the polypeptide. B-cell epitopes can be determined by analysing the B 30 cell recognition to overlapping peptides covering the polypeptide of interest as e.g. described in Harboe et al 1998.

Although the minimum length of a T-cell epitope has been shown to be at least 6 amino acids, it is normal that such epitopes are constituted of longer stretches of amino acids.

Hence, it is preferred that the polypeptide fragment of the invention has a length of at

least 7 amino acid residues, such as at least 8, at least 9, at least 10, at least 12, at least 14, at least 16, at least 18, at least 20, at least 22, at least 24, and at least 30 amino acid residues. Hence, in important embodiments of the inventive method, it is preferred that the polypeptide fragment has a length of at most 50 amino acid residues, such as at most 40, 35, 30, 25, and 20 amino acid residues. It should be understood that these numbers can be freely combined to produce ranges.

It is expected that the peptides having a length of between 10 and 20 amino acid residues will prove to be most efficient as MHC class II epitopes and therefore especially preferred lengths of the polypeptide fragment used in the inventive method are 18, such as 15, 14, 13, 12 and even 11 amino acid residues. It is expected that the peptides having a length of between 7 and 12 amino acid residues will prove to be most efficient as MHC class I epitopes and therefore especially preferred lengths of the polypeptide fragment used in the inventive method are 11, such as 10, 9, 8 and even 7 amino acid residues.

15

Immunogenic portions of polypeptides may be recognised by a broad part (high frequency) or by a minor part (low frequency) of the genetically heterogenic human population. In addition some immunogenic portions induce high immunological responses (dominant), whereas others induce lower, but still significant, responses (subdominant). High frequency><low frequency can be related to the immunogenic portion binding to widely distributed MHC molecules (HLA type) or even by multiple MHC molecules (Kilgus et al. 1991, Sinigaglia et al 1988).

In the context of providing candidate molecules for a new vaccine against tuberculosis, the subdominat epitopes are however as relevant as are the dominat epitopes since it has been show (Olsen et al 2000) that such epitopes can induce protection regardless of being subdominant.

A common feature of the polypeptides of the invention is their capability to induce an im-30 munological response as illustrated in the examples. It is understood that a variant of a polypeptide of the invention produced by substitution, insertion, addition or deletion is also immunogenic determined by any of the assays described herein.

An immune individual is defined as a person or an animal, which has cleared or controlled as an infection with virulent mycobacteria or has received a vaccination with *M. bovis* BCG.

10

15

20

25

30

An immunogenic polypeptide is defined as a polypeptide that induces an immune response in a biological sample or an individual currently or previously infected with a virulent mycobacterium. The immune response may be monitored by one of the following methods:

An in vitro cellular response is determined by release of a relevant cytokine such as IFN-y, from lymphocytes withdrawn from an animal or human being currently or previously infected with virulent mycobacteria, or by detection of proliferation of these T cells. The induction being performed by the addition of the polypeptide or the immunogenic portion to a suspension comprising from 1x10⁵ cells to 3x10⁵ cells per well. The cells being isolated from either the blood, the spleen, the liver or the lung and the addition of the polypeptide or the immunogenic portion resulting in a concentration of not more than 20 µg per ml suspension and the stimulation being performed from two to five days. For monitoring cell proliferation the cells are pulsed with radioactive labeled Thymidine and after 16-22 hours of incubation detecting the proliferation by liquid scintillation counting. A positive response being a response more than background plus two standard derivations. The release of IFN-y can be determined by the ELISA method, which is well known to a person skilled in the art. A positive response being a response more than background plus two standard derivations. Other cytokines than IFN-y could be relevant when monitoring the immunological response to the polypeptide, such as IL-12, TNF- α , IL-4, IL-5, IL-10, IL-6, TGF-β. Another and more sensitive method for determining the presence of a cytokine (e.g. IFN- γ) is the ELISPOT method where the cells isolated from either the blood, the spleen, the liver or the lung are diluted to a concentration of preferable of 1 to 4 x 10⁶ cells /ml and incubated for 18-22 hrs in the presence of of the polypeptide or the immunogenic portion resulting in a concentration of not more than 20 µg per ml. The cell suspensions are hereafter diluted to 1 to 2 x 10⁶/ ml and transferred to Maxisorp plates coated with anti-IFN-γ and incubated for preferably 4 to 16 hours. The IFN-y producing cells are determined by the use of labeled secondary anti-IFN-y antibody and a relevant substrate giving rise to spots, which can be enumerated using a dissection microscope. It is also a possibility to determine the presence of mRNA coding for the relevant cytokine by the use of the PCR technique. Usually one or more cytokines will be measured utilizing for example the PCR, ELISPOT or ELISA. It will be appreciated by a person skilled in the art that a significant increase or decrease in the amount of any of these cytokines induced by a specific polypeptide can be used in evaluation of the immunological activity of the polypeptide.

5

10

15

20

- An *in vitro* cellular response may also be determined by the use of T cell lines derived from an immune individual or an *M. tuberculosis* infected person where the T cell lines have been driven with either live mycobacteria, extracts from the bacterial cell or culture filtrate for 10 to 20 days with the addition of IL-2. The induction being performed by addition of not more than 20 μg polypeptide per ml suspension to the T cell lines containing from 1x10⁵ cells to 3x10⁵ cells per well and incubation being performed from two to six days. The induction of IFN-γ or release of another relevant cytokine is detected by ELISA. The stimulation of T cells can also be monitored by detecting cell proliferation using radioactively labeled Thymidine as described above. For both assays a positive response being a response more than background plus two standard derivations.
- An *in vivo* cellular response which may be determined as a positive DTH response after intradermal injection or local application patch of at most 100µg of the polypeptide or the immunogenic portion to an individual who is clinically or subclinically infected with a virulent Mycobacterium, a positive response having a diameter of at least 5 mm 72-96 hours after the injection or application.
- An in vitro humoral response is determined by a specific antibody response in an immune or infected individual. The presence of antibodies may be determined by an ELISA technique or a Western blot where the polypeptide or the immunogenic portion is absorbed to either a nitrocellulose membrane or a polystyrene surface. The serum is preferably diluted in PBS from 1:10 to 1:100 and added to the absorbed polypeptide and the incubation being performed from 1 to 12 hours. By the use of labeled secondary antibodies the presence of specific antibodies can be determined by measuring the OD e.g. by ELISA where a positive response is a response of more than background plus two standard derivations or alternatively a visual response in a Western blot.

5

Another relevant parameter is measurement of the protection in animal models induced after vaccination with the polypeptide in an adjuvant or after DNA vaccination. Suitable animal models include primates, guinea pigs or mice, which are challenged with an infection of a virulent Mycobacterium. Readout for induced protection could be decrease of the bacterial load in target organs compared to non-vaccinated animals, prolonged survival times compared to non-vaccinated animals.

In general, *M. tuberculosis* antigens, and DNA sequences encoding such antigens, may be prepared using any one of a variety of procedures. They may be purified as native proteins from the *M. tuberculosis* cell or culture filtrate by procedures such as those described above. Immunogenic antigens may also be produced recombinantly using a DNA sequence encoding the antigen, which has been inserted into an expression vector and expressed in an appropriate host. Examples of host cells are *E. coli*. The polypeptides or immunogenic portion hereof can also be produced synthetically having fewer than about 100 amino acids, and generally fewer than 50 amino acids and may be generated using techniques well known to those ordinarily skilled in the art, such as commercially available solid-phase techniques where amino acids are sequentially added to a growing amino acid chain.

20

In the construction and preparation of plasmid DNA encoding the polypeptide as defined for DNA vaccination a host strain such as *E. coli* can be used. Plasmid DNA can then be prepared from overnight cultures of the host strain carrying the plasmid of interest, and purified using e.g. the Qiagen Giga -Plasmid column kit (Qiagen, Santa Clarita, CA, USA) including an endotoxin removal step. It is essential that plasmid DNA used for DNA vaccination is endotoxin free.

The immunogenic polypeptides may also be produced as fusion proteins, by which methods superior characteristics of the polypeptide of the invention can be achieved. For instance, fusion partners that facilitate export of the polypeptide when produced recombinantly, fusion partners that facilitate purification of the polypeptide, and fusion partners which enhance the immunogenicity of the polypeptide fragment of the invention are all interesting possibilities. Therefore, the invention also pertains to a fusion polypeptide comprising at least one polypeptide or immunogenic portion defined above and at least one fusion partner. The fusion partner can, in order to enhance immunogenicity, be an-

other polypeptide derived from *M. tuberculosis*, such as of a polypeptide fragment derived from a bacterium belonging to the tuberculosis complex, such as ESAT-6, TB10.4, CFP10, RD1-ORF5, RD1-ORF2, Rv1036, MPB64, MPT64, Ag85A, Ag85B (MPT59), MPB59, , Ag85C, 19kDa lipoprotein, MPT32 and alpha-crystallin, or at least one T-cell epitope of any of the above mentioned antigens ((Skjøt et al 2000; Danish Patent application PA 2000 00666; Danish Patent application PA 1999 01020; US patent application 09/0505,739; Rosenkrands *et al* 1998; Nagai et al 1991). The invention also pertains to a fusion polypeptide comprising mutual fusions of two or more of the polypeptides (or immunogenic portions thereof) of the invention.

10

Other fusion partners, which could enhance the immunogenicity of the product, are lymphokines such as IFN-γ, IL-2 and IL-12. In order to facilitate expression and/or purification, the fusion partner can e.g. be a bacterial fimbrial protein, e.g. the pilus components pilin and papA; protein A; the ZZ-peptide (ZZ-fusions are marketed by Pharmacia in Sweden); the maltose binding protein; gluthatione S-transferase; β-galactosidase; or poly-histidine. Fusion proteins can be produced recombinantly in a host cell, which could be *E. coli*, and it is a possibility to induce a linker region between the different fusion partners.

Other interesting fusion partners are polypeptides, which are lipidated so that the immunogenic polypeptide is presented in a suitable manner to the immune system. This effect
is e.g. known from vaccines based on the Borrelia burgdorferi OspA polypeptide as described in e.g. WO 96/40718 A or vaccines based on the Pseudomonas aeruginosa Oprl
lipoprotein (Cote-Sierra J 1998). Another possibility is N-terminal fusion of a known signal
sequence and an N-terminal cystein to the immunogenic polypeptide. Such a fusion results in lipidation of the immunogenic polypeptide at the N-terminal cystein, when produced in a suitable production host.

Another part of the invention pertains to a vaccine composition comprising a polypeptide (or at least one immunogenic portion thereof) or fusion polypeptide according to the invention. In order to ensure optimum performance of such a vaccine composition it is preferred that it comprises an immunologically and pharmaceutically acceptable carrier, vehicle or adjuvant.

An effective vaccine, wherein a polypeptide of the invention is recognized by the animal, will in an animal model be able to decrease bacterial load in target organs, prolong sur-

WO 01/79274 PCT/DK01/00276

19

vival times and/or diminish weight loss after challenge with a virulent Mycobacterium, compared to non-vaccinated animals.

Suitable carriers are selected from the group consisting of a polymer to which the polypeptide(s) is/are bound by hydrophobic non-covalent interaction, such as a plastic, e.g. polystyrene, or a polymer to which the polypeptide(s) is/are covalently bound, such as a polysaccharide, or a polypeptide, e.g. bovine serum albumin, ovalbumin or keyhole limpet haemocyanin. Suitable vehicles are selected from the group consisting of a diluent and a suspending agent. The adjuvant is preferably selected from the group consisting of dimethyldioctadecylammonium bromide (DDA), Quil A, poly I:C, aluminium hydroxide, Freund's incomplete adjuvant, IFN-γ, IL-2, IL-12, monophosphoryl lipid A (MPL), Treholose Dimycolate (TDM), Trehalose Dibehenate and muramyl dipeptide (MDP).

Preparation of vaccines which contain peptide sequences as active ingredients is gen-15 erally well understood in the art, as exemplified by U.S. Patents 4,608,251; 4,601,903; 4,599,231 and 4,599,230, all incorporated herein by reference.

Other methods of achieving adjuvant effect for the vaccine include use of agents such as aluminum hydroxide or phosphate (alum), synthetic polymers of sugars (Carbopol), aggregation of the protein in the vaccine by heat treatment, aggregation by reactivating with pepsin treated (Fab) antibodies to albumin, mixture with bacterial cells such as C. parvum or endotoxins or lipopolysaccharide components of gram-negative bacteria, emulsion in physiologically acceptable oil vehicles such as mannide mono-oleate (Aracel A) or emulsion with 20 percent solution of a perfluorocarbon (Fluosol-DA) used as a block substitute may also be employed. Other possibilities involve the use of immune modulating substances such as cytokines or synthetic IFN-y inducers such as poly I:C in combination with the above-mentioned adjuvants.

Another interesting possibility for achieving adjuvant effect is to employ the technique de-30 scribed in Gosselin *et al.*, 1992 (which is hereby incorporated by reference herein). In brief, a relevant antigen such as an antigen of the present invention can be conjugated to an antibody (or antigen binding antibody fragment) against the Fcy receptors on monocytes/macrophages. The vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective and immunogenic. The quantity to be administered depends on the subject to be treated, including, e.g., the capacity of the individual's immune system to mount an immune response, and the degree of protection desired. Suitable dosage ranges are of the order of several hundred micrograms active ingredient per vaccination with a preferred range from about 0.1μg to 1000 μg, such as in the range from about 1 μg to 300 μg, and especially in the range from about 10 μg to 50 μg. Suitable regimens for initial administration and booster shots are also variable but are typified by an initial administration followed by subsequent inoculations or other admini-

The manner of application may be varied widely. Any of the conventional methods for administration of a vaccine are applicable. These are believed to include oral application on a solid physiologically acceptable base or in a physiologically acceptable dispersion, parenterally, by injection or the like. The dosage of the vaccine will depend on the route of administration and will vary according to the age of the person to be vaccinated and, to a lesser degree, the size of the person to be vaccinated.

The vaccines are conventionally administered parenterally, by injection, for example, either subcutaneously or intramuscularly. Additional formulations which are suitable for other modes of administration include suppositories and, in some cases, oral formulations. For suppositories, traditional binders and carriers may include, for example, polyalkalene glycols or triglycerides; such suppositories may be formed from mixtures containing the active ingredient in the range of 0.5% to 10%, preferably 1-2%. Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and advantageously contain 10-95% of active ingredient, preferably 25-70%.

30

In many instances, it will be necessary to have multiple administrations of the vaccine. Especially, vaccines can be administered to prevent an infection with virulent mycobacteria and/or to treat established mycobacterial infection. When administered to prevent an infection, the vaccine is given prophylactically, before definitive clinical signs or symptoms of an infection are present.

Due to genetic variation, different individuals may react with immune responses of varying strength to the same polypeptide. Therefore, the vaccine according to the invention may comprise several different polypeptides in order to increase the immune response. The vaccine may comprise two or more polypeptides or immunogenic portions, where all of the polypeptides are as defined above, or some but not all of the peptides may be derived from virulent mycobacteria. In the latter example, the polypeptides not necessarily fulfilling the criteria set forth above for polypeptides may either act due to their own immunogenicity or merely act as adjuvants.

10

The vaccine may comprise 1-20, such as 2-20 or even 3-20 different polypeptides or fusion polypeptides, such as 3-10 different polypeptides or fusion polypeptides.

The invention also pertains to a method for immunising an animal, including a human being, against TB caused by virulent mycobacteria, comprising administering to the animal the polypeptide of the invention, or a vaccine composition of the invention as described above, or a living vaccine described above.

The invention also pertains to a method for producing an immunologic composition according to the invention, the method comprising preparing, synthesising or isolating a polypeptide according to the invention, and solubilizing or dispersing the polypeptide in a medium for a vaccine, and optionally adding other *M. tuberculosis* antigens and/or a carrier, vehicle and/or adjuvant substance.

The nucleic acid fragments of the invention may be used for effecting *in vivo* expression of antigens, *i.e.* the nucleic acid fragments may be used in so-called DNA vaccines as reviewed in Ulmer et al 1993, which is included by reference.

Hence, the invention also relates to a vaccine comprising a nucleic acid fragment according to the invention, the vaccine effecting in vivo expression of antigen by an animal, including a human being, to whom the vaccine has been administered, the amount of expressed antigen being effective to confer substantially increased resistance to infections caused by virulent mycobacteria in an animal, including a human being.

The efficacy of such a DNA vaccine can possibly be enhanced by administering the gene encoding the expression product together with a DNA fragment encoding a polypeptide which has the capability of modulating an immune response.

One possibility for effectively activating a cellular immune response for a vaccine can be achieved by expressing the relevant antigen in a vaccine in a non-pathogenic microorganism or virus. Well-known examples of such microorganisms are *Mycobacterium bovis* BCG, *Salmonella* and *Pseudomona* and examples of viruses are Vaccinia Virus and Adenovirus.

10

Therefore, another important aspect of the present invention is an improvement of the living BCG vaccine presently available, wherein one or more copies of a DNA sequence encoding one or more polypeptide as defined above has been incorporated into the genome of the micro-organism in a manner allowing the micro-organism to express and secrete the polypeptide. The incorporation of more than one copy of a nucleotide sequence of the invention is contemplated to enhance the immune response

Another possibility is to integrate the DNA encoding the polypeptide according to the invention in an attenuated virus such as the vaccinia virus or Adenovirus (Rolph et al 1997).

The recombinant vaccinia virus is able to replicate within the cytoplasma of the infected host cell and the polypeptide of interest can therefore induce an immune response, which is envisioned to induce protection against TB.

The invention also relates to the use of a polypeptide or nucleic acid of the invention for use as therapeutic vaccines as have been described in the literature exemplified by D. Lowry (Lowry et al 1999). Antigens with therapeutic properties may be identified based on their ability to diminish the severity of *M. tuberculosis* infection in experimental animals or prevent reactivation of previous infection, when administered as a vaccine. The composition used for therapeutic vaccines can be prepared as described above for vaccines.

30

The invention also relates to a method of diagnosing TB caused by a virulent mycobacterium in an animal, including a human being, comprising intradermally injecting, in the animal, a polypeptide according to the invention, a positive skin response at the location of injection being indicative of the animal having TB, and a negative skin response at the location of injection being indicative of the animal not having TB.

When diagnosis of previous or ongoing infection with virulent mycobacteria is the aim, a blood sample comprising mononuclear cells (*i.e.* T-lymphocytes) from a patient could be contacted with a sample of one or more polypeptides of the invention. This contacting can be performed *in vitro* and a positive reaction could e.g. be proliferation of the T-cells or release of cytokines such as IFN-γ into the extracellular phase. It is also conceivable to contact a serum sample from a subject with a polypeptide of the invention, the demonstration of a binding between antibodies in the serum sample and the polypeptide being indicative of previous or ongoing infection.

10

The invention therefore also relates to an *in vitro* method for diagnosing ongoing or previous sensitisation in an animal or a human being with a virulent mycobacterium, the method comprising providing a blood sample from the animal or human being, and contacting the sample from the animal with the polypeptide of the invention, a significant release into the extracellular phase of at least one cytokine by mononuclear cells in the blood sample being indicative of the animal being sensitised. A positive response being a response more than release from a blood sample derived from a patient without the TB diagnosis plus two standard derivations. The invention also relates to the *in vitro* method for diagnosing ongoing or previous sensitisation in an animal or a human being with a virulent mycobacterium, the method comprising providing a blood sample from the animal or human being, and by contacting the sample from the animal with the polypeptide of the invention demonstrating the presence of antibodies recognizing the polypeptide of the invention in the serum sample.

The immunogenic composition used for diagnosing may comprise 1-20, such as 2-20 or even 3-20 different polypeptides or fusion polypeptides, such as 3-10 different polypeptides or fusion polypeptides.

The nucleic acid probes encoding the polypeptide of the invention can be used in a variety of diagnostic assays for detecting the presence of pathogenic organisms in a given sample. A method of determining the presence of mycobacterial nucleic acids in an animal, including a human being, or in a sample, comprising administering a nucleic acid fragment of the invention to the animal or incubating the sample with the nucleic acid fragment of the invention or a nucleic acid fragment complementary thereto, and detecting the presence of hybridised nucleic acids resulting from the incubation (by using the hybridisation

assays which are well-known in the art), is also included in the invention. Such a method of diagnosing TB might involve the use of a composition comprising at least a part of a nucleotide sequence as defined above and detecting the presence of nucleotide sequences in a sample from the animal or human being to be tested which hybridise with the nucleic acid fragment (or a complementary fragment) by the use of PCR technique.

A monoclonal or polyclonal antibody, which is specifically reacting with a polypeptide of the invention in an immuno assay, or a specific binding fragment of said antibody, is also a part of the invention. The antibodies can be produced by methods known to the person skilled in the art. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of a polypeptide according to the present invention and, if desired, an adjuvant. The monoclonal antibodies according to the present invention may, for example, be produced by the hybridoma method first described by Kohler and Milstein (1975), or may be produced by recombinant DNA methods such as described in U.S. Pat. No. 4,816,567. The monoclonal antibodies may also be isolated from phage libraries generated using the techniques described by McCafferty et al (1990), for example. Methods for producing antibodies are described in the literature, e.g. in US 6,136,958.

A sample of a potentially infected organ may be contacted with such an antibody recognizing a polypeptide of the invention. The demonstration of the reaction by means of
methods well known in the art between the sample and the antibody will be indicative of
an ongoing infection. It is of course also a possibility to demonstrate the presence of antimycobacterial antibodies in serum by contacting a serum sample from a subject with at
least one of the polypeptide fragments of the invention and using well-known methods for
visualising the reaction between the antibody and antigen.

In diagnostics, an antibody, a nucleic acid fragment and/or a polypeptide of the invention can be used either alone, or as a constituent in a composition. Such compositions are known in the art, and comprise compositions in which the antibody, the nucleic acid fragment or the polypeptide of the invention is coupled, preferably covalently, to at least one other molecule, e.g. a label (e.g. radioactive or fluorescent) or a carrier molecule.

25

Concordance list

	Protein SEQ ID NO:	DNA SEQ ID NO:	Synonyms
Rv0284	2	1	
Rv0284ct	4	3	
Rv0285	6	5	
R v 0455c	8	7	TB13.7
Rv0569	10	9	TB9.5
Rv1195	12	11	
Rv1386	14	13	
Rv3477	16	15	
Rv3878	18	17	
ORF13A	20	19	
Rv3879c	22	21	
Rv0285-P1	23		
Rv0285-P2	24		
Rv0285-P3	25		
Rv0285-P4	26		
Rv0285-P5	27		
Rv0285-P6	28		
Rv0285-P7	29		
Rv0285-P8	30		
Rv0285-P9	31		
Rv0285-P10	32		
Rv1386-P1	[*] 33		
Rv1386-P2	34		
R v13 86-P3	35		
Rv1386-P4	36		
Rv1386-P5	37		
Rv1386-P6	38		
Rv1386-P7	39		
Rv1386-P8	40		
R v1 386-P9	41		
Rv1386-P10	42		
TB9.5-1	43		
TB9.5-2	44		
TB9.5-3	45		
TB9.5-4	46		
TB13.7-1	47		
TB13.7-2	48		
TB13.7-3	49		
TB13.7-4	50		

TB13.7-5	51		
MT3106.1	53	52	
Rv0284-P1	54		
Rv0284-P2	55		
Rv0284-P3	56		•
Rv0284-P4	57		
Rv0284-P5	58		
Rv0284-P6	59		
Rv0284-P7	60		
Rv0284-P8	61		
Rv0284-P9	62	•	
Rv0284-P10	63	·	·
Rv0284-P11	64		
Rv0284-P12	65		~
Rv0284-P13	66		
Rv0284-P14	67		
Rv0284-P15	68		
Rv0284-P16	69		
Rv0284-P17	70		
Rv0284-P18	71		
Rv0284-P19	72		
Rv0284-P20	73		
Rv0284-P21	7 4		
Rv0284-P22	7,5		
Rv0284-P23	76		
Rv0284-P24	77		
Rv0284-P25	78		
Rv0284-P26	79		
Rv0284-P27	80		
Rv0284-P28	81		
Rv0284-P29	82	•	
Rv0284-P30	, 83		
Rv0284-P31	84		
Rv0284-P32	85		
Rv0284-P33	86		
Rv0284-P34	87		
Rv0284-P35	88	•	
Rv0284-P36	89		
Rv0284-P37	90		
Rv0284-P38	91	•	
Rv0284~P39	92		T. 2

Rv0284-P40	93	
Rv0284-P41	94	
Rv0284-P42	95	
Rv0284-P43	96	
Rv0284-P44	97	
Rv0284-P45	98	
Rv0284-P46	99	
Rv0284-P47	100	
Rv0284-P48	101	
Rv0284-P49	102	
Rv0284-P50	103	
Rv0284-P51	104	
Rv0284-P52	105	
Rv0284-P53	106	
Rv0284-P54	107	
Rv0284-P55	108	
Rv0284-P56	, 109	
Rv0284-P57	110	
Rv0284-P58	111	
Rv0284-P59	112	
Rv0284-P60	113	
Rv0284-P61	114	
Rv0284-P62	115	
Rv0284-P63	116	
Rv0284-P64	117	
Rv0284-P65	118	
Rv0284-P66	119	
Rv0284-P67	120	
Rv0284-P68	121	
Rv0284-P69	122	
Rv3878-P1	123	
Rv3878-P2	124	
Rv3878-P3	125	
Rv3878-P4	126	
Rv3878-P5	127	
Rv3878-P6	128	
Rv3878-P7	129	
Rv3878-P8	130	
Rv3878-P9	131	
Rv3878-P10	132	
Rv3878-P11	133	

Rv3878-P12	134		
Rv3878-P13	135		
Rv3878-P14	136		
Rv3878-P15	137		
Rv3878-P16	138		
Rv3878-P17	139		
Rv3878-P18	140		
Rv3878-P19	141		
Rv3878-P20	142		
Rv3878-P21	143		
Rv3878-P22	144		
Rv3878-P23	145		
MT3106.1-p1	146	•	
MT3106.1-p2	147		
MT3106.1-p3	148		
MT3106.1-p4	149		
MT3106.1-p5	150		
MT3106.1-p6	151		
MT3106.1-p7	152		
MT3106.1-p8	153		
MT3106.1-p9	154		
MT3106.1-p10	155		
MT3106.1-p11	156	-	
Rv0284-F	•	157	
Rv0284-R		158	
Rv0285-F		159	
Rv0285-R		160	
Rv3878-F		161	
Rv3878-R		162	
ORF13A-F		163	
ORF13A-R		164	
Rv1195-F		165	
Rv1195-R		166	
Rv1386-F		167	
Rv1386-R		168	
Rv3477-F		169	
Rv3477-R		170	
TB9.5 15AA from	171		
sequencing			
TB13.7 15AA from	172		
sequencing			

Legends to figures

Figure 1: Stimulation of IFN-γ production by synthetic peptides in PBMC from PPD positive healthy donors. Single peptides were tested at concentrations of 10 μg, 5 μg and 2.5 μg/ml in 200 μl of cell culture. Pools of peptides were tested at 1 μg, 0.5 μg and 0.25 μg/ml of each peptide. Results are presented as pg IFN-γ/ml of the maximum stimulation. Recombinant antigens were included for comparison.

Figure 2A: The antibody response of 48 TB patients to ORF13A evaluated by ELISA. The OD indicated is the mean of two wells coated with 1ug/ml ORF13A and the serum is diluted 1:100 in PBS.

Figure 2B: The antibody response of 15 BCG vaccinated healthy donors to ORF13A evaluated by ELISA. The OD indicated is the mean of two wells coated with 1 μg/ml ORF13A and the serum is diluted 1:100 in PBS.

15

Figure 2C: The antibody response of 19 non BCG-vaccinated healthy donors to ORF13A evaluated by ELISA. The OD indicated is the mean of two wells coated with 1 μ g/ml ORF13A and the serum is diluted 1:100 in PBS.

Figure 3: Stimulation of T-cell proliferation by synthetic peptides derived from Rv3878. T-cell lines against STCF were derived from PBMC isolated from PPD positive donors.

Peptides were tested at 10 μg and 5 μg/ml. Results are presented as cpm of the maximum stimulation. n.d = not determined.

Examples

25 Example 1: Cloning and expression of Rv0284, Rv0285, Rv3878, Rv1195, Rv1386, Rv3477 and ORF13A

The coding region of Rv0285, Rv3878, the 3'-part (380 bp) of Rv0284 and 5'-part of ORF13A (543 bp of Rv3879c) were amplified by PCR using following primer sets:

30

Rv0284-F: CTG AGA TCT CAG GTA CCG GAT TCG CCG

Bg1II

Rv0284-R: CTC CCA TGG TCA TGA CTG ACT CCC CTT

NcoI

Rv0285-F: CTG AGA TCT ATG ACG TTG CGA GTG GTT

Bg1II

5 Rv0285-R: CTC CCA TGG TCA GCC GCC CAC GAC CCC

Ncol

Rv3878-F: CTG AGA TCT GCT ACT GTT AAC AGA TCG Bg1II

10

Rv3878-R: CCG CTC GAG CTA CAA CGT TGT GGT TGT

XhoI

ORF13A-F: CCC AAG CTT ATG AGT ATT ACC AGG CCG

HindIII

ORF13A-R: CTC CCA TGG TCA CGA CTT CTG CTG AAG CAA

PCR reactions contained 10 ng of M. tuberculosis H37Rv DNA in 1x low salt Taq⁺ buffer from Stratagene supplemented with 250 μM of each of the four nucleotides (Boehringer Mannheim), 0.5 mg/ml BSA (IgG technology), 1% DMSO (Merck), 5 pmoles of each primer and 0.5 unit Taq⁺ DNA polymerase (Stratagene) in 10 μl reaction volume. Reactions were initially heated to 94°C for 15 sec, followed by 30 cycles of 94°C for 30 sec, 55°C for 30 sec and 72°C for 90 sec, and finally by 72°C for 5 min.

The PCR fragments were cloned into the TA cloning vector pCR2.1 (Invitrogen) and then transferred to the pMCT3 expression vector at the restriction sites indicated by the primers above. The coding regions of Rv1195, Rv1386 and Rv3477 were amplified by PCR using the following primer sets:

Rv1195-F: gggg A'CA AgT TTg TAc AAA AAA gCA ggC TTA gTgTCTTTCgTgATggCATACC Rv1195-R: gggg AC CAC TTT gTA CAA gAA AgC Tgg gTC CTA TTAgCTggCCgCCgC

Rv1386-F: gggg ACA AgT TTg TAc AAA AAA gCA ggC TTA gTgACgTTgCgAgTCgTTCC Rv1386-R: gggg AC CAC TTT gTA CAA gAA AgC Tgg gTC CTA TAgCCCACCgCTgAgATACg

Rv3477-F: gggg ACA AgT TTg TAC AAA AAA gCA ggC TTA gTgTCTTTCACTgCgCAACCg
40 Rv3477-R: gggg AC CAC TTT gTA CAA gAA AgC Tgg gTC CTA gCCggTgACCACAgCgTT

35

PCR reactions were carried out by Platinum® Tag DNA Polymerase (GIBCOBRL®) in 50µl reaction volume containing 60 mM Tris-SO₄ (pH 8.9), 18 mM Ammonium Sulfate, 0.2 mM of each of the four nucleotides, 0.2µM of each primer and 10 ng of M. tuberculosis H37Rv DNA. The reaction mixtures were initially heated to 95°C for 5 min, followed by 35 cycles of 95°C for 45 sec, 60°C for 45 sec and 72°C for 2 min, and finally by 72°C for 15 min. The PCR products were precipitated by PEG/MgCl₂, and then dissolved in 50 μl of TE buffer. DNA fragments were then cloned and expressed in Gateway™ Cloning system (GIBCOBRL®). First, to create Entry Clones, 5 μl of each DNA fragment was mixed with 1 µl of pDONR201, 2 µl of BP CLONASE Enzyme Mix and 2 µl of BP Reaction Buffer. The 10 recombination reactions were carried out at 25°C for 60 min. After degrading the Enzymes by Proteinase K at 37°C for 10 min, 5 μl of each sample was used to transform E. coli DH5 α competent cells. The transformants were selected on LB plates containing 50 μ g/ml kanamycin. Second, to create Expression clones, 2 μl of each Entry Clone DNA was mixed with 1 µl of the expression vector, pDest17, 2 µl LR reaction buffer and 2µl LR 15 CLONASE Enzyme Mix in a total volume of 10 μl. After the recombination reaction at 25°C for 60 min and proteinase K treatment at 37°C for 10 min, 5 μl of the samples were used to transform E. coli BL21-SI competent cells. The transformants were selected on LBON (LB without NaCl) plates containing 100 µg/ml ampicillin. The resulting recombinant antigens carried 6-histine residues at the N-terminal. All clones were confirmed by DNA 20 sequencing.

To express his-tagged recombinant antigens in pMCT3 vector, 100 ml of an overnight culture of XL-1 blue carrying the plasmid construct was added to 900 ml of LB-media containing 100 µg/ml ampicillin, grown at 37°C with shaking. 1 mM IPTG was added at OD₆₀₀ =0.4-0.6 and the culture was incubated for additional 3 - 16 hours before harvesting of cells.

To express his-tagged recombinant antigens in pDest17, BL21-SI cells were cultured in LBON medium at 30°C and the induction of recombinant antigen synthesis was achieved by adding 0.3 M NaCl to the medium at OD600 =0.4-0.6, and cells were harvested 3 hours later.

For purification, the cell pellet was resuspended in 20 ml of Sonication buffer (20 mM Tris-Cl, pH 8.0, 0.5 M NaCl, 10% Glycerol, 5 mM β-ME, 0.01% Tween 20 and 1 mM imida-

zole). Cells were lysed and DNA was digested by treating with lysozyme (0.1 mg/ml) and DNase I (2.5 μ g/ml) at room temperature for 20 min with gentle agitation. The recombinant protein was bring to solution by adding 80 ml of Sonication Buffer containing 8 M urea and sonicated the sample 5 x 30 sec, with 30 sec pausing between the pulses.

After centrifugation, the lysate was applied to a 5 ml TALON column (Clonetech). The column was then washed with 25 ml of urea containing Sonication buffer, and the bound protein was eluted by imidazole steps (5, 10, 20, 40 and 100 mM) in the same buffer. The fractions were analyzed by silver stained SDS-PAGE, and recombinant protein containing fractions were pooled. Further purifications were achieved either by anion- and cation-

exchange chromatography on Hitrap columns (Pharmacia, Uppsala, Sweden) or by electroelution as described below: The pooled TALON fractions were dialyzed against 3 x 1 L of 10 mM Tris-CI (pH 8.0), 0.15 M NaCl and 0.1% SDS. Two mg of TALON purified recombinant antigen was subjected to SDS-PAGE on a 16 x 16 cm gel. After separation, the recombinant antigen band was cut out and the protein was eluted by a Model 422

5 Electro-Eluter (Bio-Rad). SDS was removed from eluted protein by Chloroform/Methanol extraction.

Example 2: Biological activity of the recombinant antigens.

The purified recombinant proteins were screened for the ability to induce a T cell response measured as IFN-γ release and/or cell proliferation. A preliminary screening involved testing of the IFN-γ induction and/or cell proliferation of T cell lines generated from PPD positive donors. This test was followed by measuring the response in PBMC preparations obtained from TB patients, PPD positive as well as negative healthy donors.

Interferon-y induction and cell proliferation of T cell lines:

25 Human donors: PBMC were obtained from healthy donors with a positive in vitro response to PPD.

T cell line preparation: T cell lines were prepared by culturing 5 x 10⁶ freshly isolated PBMC/ml with viable *M. tuberculosis* at a ratio of 5 bacteria per macrophage in a total volume of 1 ml. The cells were cultured in RPMI 1640 medium (Gibco, Grand Island, N.Y) supplemented with HEPES, and 10% heat-inactivated NHS. After 7 days in culture at 37°C and 5% CO₂, T cells were supplemented with 50 U/ml of r-IL-2 (Boehringer Mannheim) for approximately 7 days. Finally, in one experiment (Table 1), the T cell lines were

33

WO 01/79274 PCT/DK01/00276

tested for reactivity against the recombinant antigens by stimulating 1-5 x 10^5 cells/ml with 5 μ g/ml of PPD, 3 μ g/ml of rRv0284ct (C-terminal part), 5 μ g/ml of rRv0285, and 2.5 μ g/ml of rRv3878 in the presence of 5 x 10^5 autologous antigen-presenting cells/ml. In another experiment (Table 1a), T cells were stimulated with 5 μ g/ml and 1 μ g/ml of each recombinant antigen indicated in the table. No ag and PHA were used as negative and positive controls, respectively. The supernatants were harvested after 4 days of culture and stored at -80°C until the presence of IFN- γ were analysed.

Cytokine analysis: Interferon-γ (IFN-γ) was detected with a standard sandwich ELISA technique using a commercially available pair of monoclonal antibodies (Endogen, MA, US) and used according to the manufacturer's instructions. Recombinant IFN-γ (Endogen, MA, US) was used as a standard. All data are means of duplicate wells and the variation between the wells did not exceed 10 % of the mean. Responses obtained with five T cell lines are shown in Table 1 and Table 1a.

15

T-cell proliferation assays: After removal of supernatant for IFN-γ assays, 0.5 μCi of [methyl-3H]thymidine were added to the same wells supplemented with 10% NHS in RPMI for another 16-20 hours. The cells were thereafter harvested with a Skatron cell harvester onto filter mats, dried, and immersed in scintillation fluid before reading the incorporation of thymidine on a beta liquid scintillation counter (Wallac). Results from 3 T cell lines are shown in Table 1b.

As shown in Table 1, high levels of IFN-γ release are observed after stimulation with the recombinant antigens ranging from 33% (rRv0284ct) to 83% (rRv3878) of the response seen after stimulation with PPD. The antigenicity of the recombinant antigens was confirmed by three additional T-cell lines as shown in Table 1a and Table 1b.

Table 1. Stimulation of two T cell lines with recombinant rRv0284ct, rRv0285, and rRv3878. Responses to PHA and PPD are shown for comparison. Results are presented as pg IFN-γ/ml.

-				
- 1	ce	П	11	ne

Donor	No ag	PHA	PPD	rRv0284ct	rRv0285	rRv3878
		(1 μg/ml)	(5 μg/ml)	(3 μg/ml)	(5 μg/ml)	(2.5 μg/ml)
1	50	2975	2742	914	2019	1072
2	50	1482	803	352	548	667

Table 1a. Stimulation of three T cell lines with rRv0285 and rRv3878. Responses to PHA and PPD are shown for comparison. Results are presented as pg IFN- γ /ml of the maximum stimulation in the presence of either 5 μ g/ml or 1 μ g/ml of recombinant antigens.

_			
T	ce	E 8	no
	LE		

I CCII III	10				
Donor	No ag	PHA	PPD	rRv0285	rRv3878
		(1 μg/ml)	(5 μg/ml)		
3	136	4467	2425	1189	504
4	2	1996	1175	626	413
5	4	5410	4490	2804	2034

5

Table 1b. Stimulation of T cell proliferation by rRv0285 and rRv3878. Results are presented as Stimulation Index (SI). The maximum stimulation in the presence of either 5

μg/ml or 1 μg/ml of recombinant antigens is given.

Donor	rRv0285	rRv3878
3	8.4	N.D
4	5.8	4.3
5	31.3	16.1

10

Interferon-y release from PBMC isolated from human TB patients and PPD positive and negative healthy donors

Human donors: PBMC were obtained from healthy donors with a positive *in vitro* response to purified protein derivative (PPD) or non-vaccinated healthy donors with a negative *in vitro* response to PPD. PBMC were also obtained from TB patients with microscopy or culture proven infection. Blood samples were drawn from TB patients 0-6 months after diagnosis.

Lymphocyte preparations and cell culture: PBMC were freshly isolated by gradient centrifugation of heparinized blood on Lymphoprep (Nycomed, Oslo, Norway) and stored in liquid nitrogen until use. The cells were resuspended in complete RPMI 1640 medium (Gibco BRL, Life Technologies) supplemented with 1% penicillin/streptomycin (Gibco BRL, Life Technologies), 1% non-essential-amino acids (FLOW, ICN Biomedicals, CA, USA), and 10% heat-inactivated normal human AB serum (NHS). The viability and number of the cells were determined by Nigrosin staining. Cell cultures were established with 1.25 x 10⁵ PBMCs in 100 μl in microtitre plates (Nunc, Roskilde, Denmark) and stimulated with 5 μg/ml PPD or rRv0284ct and rRv3878 in a final concentration of 2.5 and 5 μg/ml, respectively; or with 2.5 and 10 μg/ml of rRv0285, Rv1195, rRv1386 and Rv3477. No antigen (No ag) was used as a negative control, whereas phytohaemagglutinin (PHA) was

WO 01/79274 PCT/DK01/00276

35

used as a positive control. Moreover, the response to a well-known TB-specific protein, ESAT-6, was included for comparison. Supernatants for the analysis of secreted cytokines were harvested after 5 days of culture, pooled, and stored at -80 °C until use.

5 **Cytokine analysis**: IFN-γ was detected as above. Responses obtained with PBMCs from 14 individual donors are shown in Table 2.

As shown in Table 2, stimulation of PBMC from TB patients as well as PPD positive donors with rRv0284ct and rRv3878 resulted in a marked release of IFN-y with 55% of the donors recognizing the recombinant antigens at a level of more than 500 pg/ml. As expected, none of the recombinant antigens gave rise to IFN-y release in PPD negative donors. The effects of stimulating with rRv0285, rRv1386, rRv1195 and rRv3477 on IFN-y release in PBMC are demonstrated in Table 2a.

Table 2. Stimulation of PBMCs from 4 TB patients, 7 PPD positive healthy donors, and 3 PPD negative healthy donors with recombinant antigen. Responses to PHA, PPD, and ESAT6 are shown for comparison. Results are given as pg IFN-γ/ml.

TB patients

Donor No ag	No ag	PHA	PPD	ESAT-6	ESAT-6 rRv0284ct		
		(1 μg/ml)	(5 μg/ml)	(5 μg/ml)	(2.5 μg/ml)	(5 μg/ml)	
1	3	4541	4074	2154	809	3	
2	92	3408	4891	611	236	2029	
3	5	5282	464Ť	2827	308	149	
4	10	4531	2077	38	140	287	

5

PPD positive healthy donors

			•			
Donor	No ag	PHA (1 wa/ml)	PPD (5 μg/ml)	ESAT-6 (5 μg/ml)	rRv0284ct (2.5 μg/ml)	rRv3878 (5 μg/ml)
		(1 μg/ml)				والتناسي والتناسي
1	74	5413	3339	0	382	77
2	14	5614	3852	198	1324	633
3	7	6165	5808	4	2951	2732
4	63	6532	6314	1567	3009	3482
5	43	4733	6195	1272	5166	2589
6	5	3809	2582	15	5	71
7	31	6716	2275	424	1449	832

PPD negative healthy donors

	The fine grant of the data of the first of t									
Donor	No ag	PHA (1 μg/ml)	PPD (5 μg/ml)	ESAT-6 (5 μg/ml)	rRv0284ct (2.5 μg/ml)	rRV3878 (5 μg/ml)				
1	0	3354	113	0	269	17				
2	0	38Ó3	563	0	22	0				
3	0	3446	525	10	203	34				

Table 2a. Stimulation of IFN-γ production by rRv0285, rRv1386, rRv1195 and rRv3477 in PBMC from PPD negative controls, PPD positive healthy donors as well as TB patients. TB10.4 was included for comparison.

Donor	No ag	PPD	Rv0285	Rv1386	Rv1195	Rv3477	TB10.4
PPD negative							
healthy							ļ
donors ¹⁾							
K150	12	265	0	5	2	3	0
K151	22	50	0	nd	nd	nd	10
K156	17	522	0	166	86	71	2
K159	27	155	1	16	12	19	3
K160	16	242	6	62	9	26	4
K161	35	510	2	40	23	33	0
K162	31	352	89	71	nd	0	9
TB-patients	<u> </u>						-
98-160	5	>5549	nd	2885	nd	nd	nd
99-203	0	2232	914	nd	nd	nd	903
99-208	2	4098	317	186	nd	11	. 8
00-199	11	2592	456	nd	nd	nd	3116
00-211	0	10633	2533	2862	1814	1243	4161
00-217	22	4140	124	57	nd	66	535
00-218	0	1578	21	28	nd	13	38
00-220	18	9476	77	106	437	34	3063
00-222	28	9824	2226	1071	226	44	3600
00-223	89	10412	2458	nd	nd	nd	4537
PPD positive							
healthy donors							
K119	0	7464	227	296	nd	111	585
K131	29	1730	1777	20	17	31	7
K147	,86	4520	18	79	47	26	12
K148	52	8293	78	11	86	58	3843
K149	72	12730	932	243	nd	489	38
K152	96	6120	0	946	40	517	1303
K153	5	12391	2	467	nd	622	709
K155	5	9397	0	9	15	37	973
K167	105	15770	3531	1811	nd	nd	4881
k172	10	18811	21420	4	3717	10	110
K174	3	1443	492	44	56	17	160
KTB1	34	13748	3067	1307	nd	nd	9431
KTB2	23	8104*	391	nd	nd	nd	2237
KTB10	4	2394*	292	nd	nd	nd	46
L	46	7832*	949	nd	nd	nd	349
C	33	6538	303	3	255	116	5

1) IFN-γ median=13294 pg/ml on stimulation with PHA . * IFN-γ on stimulation with STCF

BMC from 6 additional TB patients were obtained, and the T-cell stimulatory effect of rRv1195 was also tested in these PBMCs. The results are shown in Table 2b.

Table 2b Stimulation of IFN-y production by rRv1195 in PBMCs from six TB patients.

Donor	No ag	PPD	Rv1195	
97-83	42	>3531	1060	•
97-138	13	>3366	231	
98-149	256	>3449	2855	
99-163	45	>2303	422	
01-226	68	>3994	2133	
PT36	342	1510	411	

Together, these analyses using PBMC and T cell lines, respectively, indicate that rRv0284ct, rRv0285, rRv1386 and rRv3878 are highly biologically active and frequently recognized by PPD positive donors and TB patients. Though less frequently recognized by these donors rRv1195 and rRv3477 are additionally highly biologically active.

As is expected, due to the genetical heterogeneity of the human population some of the recombinant antigens are recognized more frequently and to a higher level than others

are.

10

Skin test reaction in TB infected guinea pigs

The skin test reactivity of the recombinant antigens was tested in *M. tuberculosis* infected guinea pigs. A group of 5 female outbred guinea pigs of the Dunkin Hartley strains (Møllegaard Breeding and Research Center A/S, Lille Skensved, Denmark) were infected by the aerosol route in an exposure chamber of a Glas-Col® Inhalation Exposure System, which was calibrated to deliver approximately 20-25 *M. tuberculosis* Erdman bacilli into the lungs of each animal. As a control, the skin test reactivity of uninfected guinea pigs was tested. Skin tests were performed 28 days after infection with injection of 5 μg of rRv0284ct, rRv0285, and rRv3878. As a positive control, the guinea pigs were sensitised with 10 tuberculin units (TU) of PPD (1TU = 0.02 μg) whereas injection of phosphate-buffered saline (PBS) was used as a negative control. Skin test responses (diameter of erythema) were read 24 h later by two experienced examinators and the results were expressed as the mean of the two readings. The variation between the two readings was less than 10%. Skin test responses larger than 5 mm were regarded as positive.

As seen in Table 3, injection of rRv3878 induced a marked Delayed Type Hypersensitivity (DTH) reaction at the same level as after injection with PPD. rRv0284ct and rRv0285 resulted in a highly significant DTH reaction (P < 0.005; Tukey test). As expected, none of the antigens induced non-specific response in uninfected guinea pigs (Table 4).

Table 3. DTH erythema diameter (shown in mm) in guinea pigs aerosol infected with *M. tuberculosis* after stimulation with recombinant antigens.

Antigen ^a	Skin reaction (mm) ^b	SEM	
PBS	3.10	0.30	
PPD	13.10	1.18	
rRv0284ct	8.40	0.45	
rRv0285	7.00	1.08	
rRv3878	14.56	1.05	

 $^{^{}a}$ The recombinant antigens were tested in a concentration of 5 μ g, whereas 10 TU of PPD were used.

Table 4. DTH erythema diameter (shown in mm) in non-infected guinea pigs after stimulation with recombinant antigens.

Antigen ^a	Skin reaction (mm) ^b	SEM
PBS	2.60	0.36
PPD	3.00	0.44
rRv0284ct	2.5	0.18
rRv0285	3.45	0.74
rRv3878	2.5	0.18

^a The recombinant antigens were tested in a concentration of 5 μ g, whereas 10 TU of PPD were used.

Example 3: Immunological response to synthetic polypeptides

5

Peptide synthesis: Ten overlapping peptides to Rv0285 and Rv1386 respectively, were synthesized. Synthetic polypeptides were purchased from Mimotopes Pty Ltd. The peptides were synthesized by Fmoc solid phase strategy. No purification steps were performed. Lyophilised peptides were stored dry until use.

10

Rv0285 peptides:

	·	
	Rv0285-P1	TLRVVPEGLAAASAAVEA
	Rv0285-P2	ASAAVEALTARLAAAHAS
15	Rv0285-P3	TARLAAAHASAAPVITAV
	Rv0285-P4	AAPVITAVVPPAADPVSL
	Rv0285-P5	PAADPVSLQTAAGFSAQG
	Rv0285-P6	AAGFSAQGVEHAVVTAEG
	Rv0285-P7	HAVVTAEGVEELGRAGVG
20	Rv0285-P8	GVEELGRAGVGVGESGAS
	Rv0285-P9	GVGESGASYLAGDAAAAA
	Rv0285-P10	SYLAGDAAAAATYGVVGG

^b The skin reactions are measured in mm erythema 24 h after intradermal injection. The values are the mean of erythema diameter of five animals and the SEM are indicated. The values for rRv3878 are the mean of four animals.

^b The skin reactions are measured in mm erythema 24 h after intradermal injection. The values are the mean of erythema diameter of five animals and the SEM are indicated.

Rv1386 peptides:

	Rv1386-P1	TLRVVPESLAGASAAIEA
5	Rv1386-P2	ASAAIEAVTARLAAAHAA
	Rv1386-P3	TARLAAAHAAAAPFIAAV
	Rv1386-P4	AAPFIAAVIPPGSDSVSV
	Rv1386-P5	PGSDSVSVCNAVEFSVHG
	Rv1386-P6	AVEFSVHGSQHVAMAAQG
10	Rv1386-P7	HVAMAAQGVEELGRSGVG
	Rv1386-P8	GVEELGRSGVGVAESGAS
	Rv1386-P9	GVAESGASYAARDALAAA
	Rv1386-P10	SYAARDALAAASYLSGGL

PBMC culture and IFN-γ assay: PBMC were isolated and cultured as described in Example 2. Single peptides were tested at concentrations of 10 μg, 5μg and 2.5μg/ml in 200 μl of cell culture. Pools of peptides were tested at 1 μg, 0.5 μg and 0.25 μg/ml of each peptide. IFN-γ levels were measured by the method described in Example 2.

20 PBMC recognition of peptides from Rv0285 and Rv1386

The ability of these peptides to induce IFN-γ production in PBMC was assayed. The results from three PPD positive healthy donors (referred to as KTB1, KTB10 and K172, respectively) are shown in Fig.1. The pools of peptides from Rv0285 (referred to as Rv0285 p1 – Rv0285 p10) stimulated IFN-γ production in PBMC from all three donors. This is consistent with the results obtained with recombinant Rv0285 (Table 2a and Fig.1). When tested singly, seven peptides were recognized by the three donors, indicating the presence of multiple immunogenic portions scattered through out the protein sequence of Rv0285.

30 The pools of peptides from Rv1386 and recombinant Rv1386 stimulated IFN-γ production in PBMC from two of the three donors. Four of the peptides were also positive when tested as single peptides. The synthetic peptides were also tested in PBMC from two PPD negative controls; as expected, no stimulation of IFN-γ production was detected for these donors (results not shown).

35

Example 3a: PBMC recognition of peptides derived from MT3106.1

A BLAST-P search of the GMT pep database at TIGR CMR revealed an open reading frame which is highly related to Rv0285. This ORF is designated MT3106.1, and the pre-

dicted initiation codon is 33 codons upstream of the corresponding initiation codon in Rv0285. Amino acid sequence alignment revealed that the Rv0285-corresponding part of MT3106.1 has 80% sequence identity to the former, and a peptide fragment spanning residues 2 –29 on Rv0285 is 100% conserved on Mt3106.1. This segment of peptide contains at least 2 distinct T-cell epitopes as demonstrated by the results in Fig. 1 (Rv0285-p1 and Rv0285-p2, respectively). Eleven additional overlapping peptides of MT3106.1 (MT3106.1-p1 - MT3106.1-p11, SEQ ID NO 146-156) were synthesized and analyzed for their ability to induce IFN-γ production in PBMCs from donor K172. Peptide MT3106.1-p7 was highly reactive and stimulated IFN-γ production to a level of 12079 pg/ml, which corresponds to 87% of the activity obtained with PPD.

PBMC from 6 additional TB patients were obtained, and the T-cell stimulatory effect of rRv1195 was also tested in these PBMCs. The results are shown in Table 2b.

15 Example 3b. Recognition of synthetic peptides by T-cell lines derived from PBMC of PPD positive subjects.

Non-overlapping peptides (Rv0284-p1 - Rv0284-p69, SEQ ID NO 54-122) were synthesized for the part of Rv0284 that was not included in rRv0284ct. Peptides were tested as pools consisting of 2 or 3 peptides each. T-cell stimulatory effects were seen in a number of peptide pools. The largest effects on stimulation of IFN-γ release were obtained with peptide pools containing Rv0284-p3, Rv0284-p4, Rv0284-p7, Rv0284-p8, Rv0284-p9, Rv0284-p13, Rv0284-p17, Rv0284-p18, Rv0284-p19, Rv0284-p27, Rv0284-p37, Rv0284-p41, Rv0284-p42, Rv0284-p43, Rv0284-p47, Rv0284-p50, Rv0284-p51, Rv0284-p52, and Rv0284-p53.

Twenty-three overlapping peptides were synthesised for Rv3878 (Rv3878-p1 - Rv3878-p23, SEQ ID NO 123-145). An initial screening of the peptides in four T-cell lines revealed a number of T-cell epitopes (Fig. 3).

30

Example 4: Identification of TB9.5 and TB13.7

Short-time culture filtrate (ST-CF) was produced from living *Mycobacterium tuberculosis* as previously described and used as an antigen source (Andersen, P. et al 1991). In brief, ST-CF was produced by growing *M. tuberculosis* H37Rv (4 x 10⁶ CFU/ml) on modified

Sauton medium in an incubator at 37 °C at gentle agitation for 7 days. The culture supernatant was steril-filtered and concentrated on a Amicon YM3 membrane. The culture filtrate was hereafter precipitation with 80 % ammonium sulphate and the precipitated proteins were removed by centrifugation and after washing resuspended in buffer containing 5 8 M urea, CHAPS 0.5% (w/v) and 5% glycerol. 250 mg of protein was separated on the Rotofor Isoelectrical Cell (Bio-Rad) in a pH gradient with 3% Biolyt 3/5 and 1% Biolyt 4/6. Fraction 3-8 were pooled, concentrated and buffer exchanged to PBS on a Centriprep concentrator with a 3 kDa cut off membrane. 100 ug of protein as separated by twodimensional electrophoresis by applying the sample on immobilized pH 4-7 linear gradient 10 13 cm strips (Amersham Pharmacia Biotech) and the focusing was performed at 500 V for 1 hour, 1000 V at 1 hour followed by 2 hours at 8000 V in a IPGphor unit. The second dimension was performed in 10-20% SDS-PAGE gradient gels in the protean llxi system (Bio-Rad). The proteins were transferred to a PVDF membrane which was stained for by Coomassie brilliant Blue and two spots was excised and subjected to N-terminal se-15 quencing analysis by automated Edman degradation using a Procise 494 sequencer (Applied Biosystems) as described by the manufacturer.

Sequence analysis and peptide synthesis

The two spots were named TB9.5 and TB13.7. For each of the two protein spots a sequence of 15 amino acids was obtained.

20 For TB9.5: MKAKVGDILVIKGAT (SEQ ID NO 171)

For TB13.7: DSTEDFPIPXRMXAT (SEQ ID NO-172)

"X" denotes an amino acid, which could not be determined.

The two sequences were used for a homology search using the BLAST program on the
25 *M. tuberculosis* database: http://genolist.pasteur.fr/TubercuList/. For TB9.5 the 15 determined amino acids was 100% identical to the sequence of Rv0569, which is an 88 amino acids long protein. For TB13.7 the 13 determined amino acids was 100% identical to the sequence of Rv0455c. The 13 N-terminally determined amino acids starts at amino acids 31 in the predicted sequence of Rv0455c, indication the presence of a signal peptide,
30 which has been cleaved off. This is in agreement with the prediction of a signal peptide in Rv0455c by database analysis of the amino acids sequence using the program Signal P at http://www.cbs.dtu.dk/services/SignalP/, which also predicts the most likely cleavage site between position 30 and 31.

Overlapping peptides was produced for the mature version of each of the two proteins by Schafer-N, Copenhagen, Denmark as indicated below. The peptides were synthesized on polyamide resins using Fmoc-strategy and purified by reverse phase HPLC on C18-columns in water/acetonitrile gradients containing 0.1%TFA (trifluoracetic acid). Purified

TB9.5-1: MKAKVGDWLVIKGATIDQPDHRGLIIEVRS

peptides were lyophilized and stored dry until reconstitution in PBS.

- TB9.5-2: HRGLIIEVRSSDGSPPYVVRWLETDHVATV
- 10 TB9.5-3: VRWLETDHVATVIPGPDAVVVTAEEQNAAD
 - TB9.5-4: VTAEEQNAADERAQHRFGAVQSAILHARGT
 - TB13.7-1: DSTEDFPIPRRMIATTCDAEQYLAAVRDTS
 - TB13.7-2: QYLAAVRDTSPVYYQRYMIDFNNHANLQQA
- 15 TB13.7-3: FNNHANLQQATINKAHWFFSLSPAERRDYS
 - TB13.7-4: LSPAERRDYSEHFYNGDPLTFAWVNHMKIF
 - TB13.7-5: FAWVNHMKIFFNNKGVVAKGTEVCNGY

Immunological activity of TB9.5 and TB13.7

25 scribed in example 2.

The immunological relevance of the peptides in TB patients was tested by analysing the ability of the peptides to induce an IFN-γ production or a cell proliferation on PBMC isolated from human TB patients and PPD negative healthy controls (table 5 and table 7). The TB9.5 peptides were in addition tested for ability to induce IFN-γ and cell proliferation on T cell lines generated from TB patients driven by ST-CF or *M. tuberculosis* sonicate (table 6). Lymphocyte preparation and T-cell lines generation were performed as de-

Table 5: Stimulation of PBMC from three TB patients and three PPD negative healthy controls with pools of synthetic peptides from TB9.5 and TB.13.7 in total of 10 ug/ml. 2.5 ug/ml of each peptide TB9.5-1, TB9.5-2, TB9.5-3 and TB9.5-4 were pooled and tested as TB9.5. 2 ug/ml of each peptide TB13.7-1, TB13.7-2, TB13.7-3, TB13.7-4 and TB13.7-5 were pooled and tested as TB13.7. The response to 5 ug/ml ST-CF is shown for comparison. Results are presented as pg IFN-γ/ml.

		TB patients		Healthy controls		
Antigen	PT1	PT2	PT3	H1	H2	Н3
Control	0	0	0	9	10	0
ST-CF	4803	11810	3221	28	10	0
TB9.5	38	59	479	39	0	2
10ug/ml				•		
TB9.5	. 37	56	115	9	. 7	40
2.5ug/ml						
TB13.7	160	36	29	5	15	13
10ug/ml						
TB13.7	131	54	70	15 .	0	0
2.5ug/ml	-					

Pools of the peptides are tested on PBMC purified from human TB patients and healthy controls as seen in table 5. The pools of peptides from TB9.5 were recognized more frequently by TB patients than by the healthy controls. This demonstrates that a positive response is specific for TB patients. TB13.7 was also recognized more frequently by the tested TB patients compared to the healthy controls. It is to be expected that not all of the patients recognized each of the peptides pools, due to the genetically heterogeneity of the human population.

Interestingly, it was not the same patient recognizing the two peptide pools indication that the use of a combination of two peptide pools could be superior compared to using the single peptide pools.

The peptides from TB9.5 was in addition tested for ability to induce an IFN-γ response or cell proliferation on five T cell lines derived from TB patients (table 6). TB9.5-1 was positive in most of the tested T-cell lines demonstrating the presence of one or more broadly recognized T cell epitope within this sequence (table 6). Furthermore, TB9.5-2, TB9.5-3 and T9.5-4 were positive in at least one out of the five T cell lines tested demonstrating that these sequences also contains at least one T cell epitope. The presence of multiple

epitopes in the TB9.5 protein makes the full-length protein or peptides derived hereof an attractive candidate for a TB vaccine.

Tabel 6: Stimulation of five T cell lines derived from TB patients with synthetic overlapping peptides from TB9.5. Results are presented as pg IFN- γ /ml and cell proliferation. The peptides are tested in 1ug/ml and 10ug/ml and results are shown for the concentration given the highest response. The response to 5 ug/ml ST-CF is shown for comparison.

Antigen	T-cell line 1		T-cell line 2		T-cell line 3		T-cell line 4		T-cell line 5	
	IFN-γ	СРМ	IFN-γ	CPM	IFN-γ	СРМ	IFN-γ	СРМ	IFN-γ	CPM
Control	133	1359	0	184	120	397	62	2550	9	333
ST-CF	4581	26296	3552	21239	2748	12118	2860	18624	4294	29736
TB9.5-1	1438	9116	407	3987	512	1749	42	2033	17	1252
TB9.5-2	3	919	341	3395	69	606	20	1718	10	322
TB9.5-3	26	1145	120	1859	88	537	49	2410	1	331
TB9.5-4	86	2556	519	3887	219	839	28	2860	3	1036
TB9.5-pool	208	3544	52	1825	127	831	6	1738	2	626

Table 7: Stimulation of PBMCs from two TB patients and two healthy controls with synthetic peptides from the TB13.7 protein. Responses to PPD are given for comparison. Control is stimulation without antigen. Results are given as pg IFN-γ/ml

Antigen/	conc.	ТВ ра	tients	Healthy controls		
Control		, PT1	PT2	H1	H2	
PPD	5 ug/ml	5549	1269	_1570	11	
13.7-1	10 ug/ml	20	2	26	42	
13.7-1	2.5 ug/ml	6	1	23	47	
13.7-2	10 ug/ml	. 7	2	21	55	
13.7-2	2.5 ug/ml	5	3	21	49	
13.7-3	10 ug/ml	11	4	20	54	
13.7-3	2.5 ug/ml	10	2	28	45	
13.7-4	10 ug/ml	8	7	15	24	
13.7-4	2.5 ug/ml	8	6	16	30	
13.7-5	10 ug/ml	648	5	18	27	
13.7-5	2.5 ug/ml	205	7	22	29	

The 13.7 peptides were tested on PBMC isolated from two TB patients and two healthy controls. As seen in table 7 one of the two TB patients recognized peptide TB13.7-5 while

5

no of the healthy controls recognized any of the peptides tested. This demonstrates that an epitope is presence in peptide TB13.7-5, but does not rule out the presence of epitopes in any of the other peptides. To demonstrate this it would be necessary to test a higher number of TB patients due to the genetically heterogeneity of the human population.

The expression of TB 9.5 is induced under low oxygen conditions

Immunogenic proteins may be identified by the means of their upregulation in vivo or in environments which reflects the in vivo situation. This may be different stress situations 10 such as low oxygen. To investigate the upregulation of M.tuberculosis proteins during low oxygen conditions the following experiments were performed: M. tuberculosis H37Rv (ATCC 27240) was cultured in Sauton medium enriched with 0.5 % sodium pyruvate and 0.5 % glucose. Sterile 10 ml (Nunc, Roskilde, Denmark) polystyrene tubes or 125 ml polycarbonate Erlenmeyer flasks (Corning, Acton, MA, USA) containing 6.7 ml or 20 ml of medium, respectively, was inoculated with 2×10⁶ bacteria per ml. Erlenmeyer flasks were placed in a standard 37°C shaking incubator (normal cultures), whereas tubes with tightly screwed caps (low oxygen cultures) were placed at 37°C under magnetic stirring at 100 rpm. After 3 h metabolic labelling was performed by addition of 10 μCi/ml of L-[35S]methionine and L-[35] cysteine (Redivue Promix, Amersham Pharmacia Bioctech, Buck-20 inghamshire, United Kingdom). After 19 h, bacteria were harvested by centrifugation, and the medium was collected. The bacterial pellet was washed once in PBS, pH 7.4, and resuspended in 300 µl of a suspension containing equal volumes of 0.1 mm glass beads and PBS, pH 7.4, added 0.1 % SDS and 1 mM PMSF. The bacteria were lysed for 5 min at maximum speed on a MS2 minishaker (IKA Works inc., Wilmington, NC). 20 µl of the 25 lysates was analysed by two-dimensional gel electrophoresis (2-D PAGE): Samples were applied to 13 cm IPG pH 4-7L strips (Amersham Pharmacia Bioctech, Uppsala, Sweden) during rehydration according to the manufacturer's instructions. Focusing started at 500 V (1 h), was increased to 1000 V (1 h), and finally to 8000 V (2 h) in an IPGphor unit (Amersham Pharmacia Biotech). The second dimensional separation was performed in 10-20 % 30 SDS-PAGE gradient gels in the Protean lixi system (Bio-Rad, Richmond, CA, USA). The gel was blotted to PVDF membrane, and the membrane was exposed to Biomax MR film (Kodak, Rochester, NY, USA) for 3-21 days. The autoradiographs were scanned and analysed by the Phoretix 2D gel analysis software (Non Linear Dynamics, Newcastle upon Tyne, United Kingdom). Spots which showed more than two-fold induction under low oxygen conditions compared to normal cultures were selected. A spot with observed

mass of approx. 12 kDa and pl of 6.3 was found to be induced under low oxygen conditions. For identification of this spot, 35 μl of the low oxygen lysate was analysed by 2-D PAGE as described above and the gel was silver stained. The relevant spot was excised and identified by MALDI-MS peptide mass fingerprinting. Four fragments corresponding to the peptides 23-29, 30-40, 75-86 and 75-88 of TB9.5 (Rv0569) were matched, giving a sequence coverage of 36 % for this protein. This result demonstrates that the TB9.5 protein is upregulated under conditions that mimics the *in vivo* situation, which indicates that this protein may be a good vaccine candidate or a therapeutic vaccine candidate.

10 Example 5: ORF13A is a serological target in TB patients

To test the potential of ORF13A as a serological antigen, sera were collected from 48 TB patients (all proven culture positive for *M. tuberculosis*) and 15 healthy BCG vaccinated controls and 19 non-BCG vaccinated healthy controls. The sera were assayed for antibodies recognizing the recombinantly produced ORF13A in an ELISA assay as follows:

Each of the sera was absorbed with Promega *E. coli* extract (S37761) for 4 hours at room temperature and the supernatants collected after centrifugation. 1 ug/ml of ORF13A in Carbonatbuffer pH 9.6 were absorbed over night at 5 °C to a polystyrene plate (Maxisorp, Nunc). The plates were washed in PBS-0.05% Tween-20 and the sera applied in a dilution of 1:100. After 1 hour of incubation the plates were washed 3 times with PBS-0.05% Tween-20 and 100 ul pér well of peroxidase-conjugated Rabbit Anti-Human IgA, IgG, IgM was applied in a dilution of 1:8000. After 1 hour of incubation the plates were washed 3 times with PBS-0.05% Tween-20. 100 ul of substrate (TMB PLUS, Kem-En-Tec) was added per well and the reaction stopped after 30 min with 0.2 M Sulphuric acid and the absorbance was read at 405 nm. The results are shown in figure 2A, 2B and 2C.

56% of the TB patients recognized ORF13A with an absorbance more than OD 0.3. The mean for all 48 patients was OD 0.44. In contrast only one BCG vaccinated individual recognized ORF13A slightly above the cutoff and three of the non BCG-vaccinated healthy donors recognized ORF13A, only one significant above the cutoff. The mean for BCG vaccinated individuals were OD 0.18 and for non BCG-vaccinated OD 0.3.

Table 8: Serological responses to ORF13A and the 38kDa antigen evaluated by ELISA on 48 TB patients, 15 BCG vaccinated and 19 non BCG vaccinated individuals.

	TB patients		BCG vaccina	ted	Non BCG vac	cinated
Antigen	Percent (n) responders	Mean of OD	Percent (n) responders	Mean of OD	Percent (n) responders	Mean of OD
ORF13A	56% (27)	0.44	7% (1)	0.18	16% (3)	0.3
38 kDa	50% (24)	0.38	20% (3)	0.21	26% (5)	0.24

In table 8 the response to ORF13A is compared to an antigen which is known as one of the best serological antigens; the 38kDa phosphate binding proteins (Luashchenko, K. P., et al J Immunological Methods 242 (2000) 91-100). The two proteins were tested in parallel on the same donors. The 38 kDa antigens is recognized by 50% of these TB patients and 20% of the BCG vaccinated and 26% of the non BCG-vaccinated in this study population. Thus ORF13A is recognized by more TB patients and by less of the healthy controls (both BCG vaccinated and non-vaccinated) than the 38 kDa antigen. This clearly demonstrates the potential of ORF13A as a serological antigen for the diagnosis of TB, 10 and demonstrates that ORF13A has the potential to differentiate between BCG vaccinated and M. tuberculosis infected individuals something, which is not possible with the current diagnostic reagent PPD. It is well known that the antibody repertoire of TB patients is very heterogeneous and it is therefore not likely that all patients will recognized the same mycobacterial antigen, as also demonstrated by these results. It is therefore most likely that a serological kit for the diagnosis of M. tuberculosis infection will consist of more than one component and in this respect it will be obvious to combine ORF13A with other antigens, which are recognized by TB patients. This could be the 38 kDa antigens, but also other proteins could be included.

References

Andersen, P. et al 1991. Infect. Immun. 59:1905-1910

Andersen, P., and Heron, I. 1993 J. Immunol. Methods 161 29-39

Brandt, L., et al. 2000 Infect.Immun. 68:2; 791-795.

5 Cole, S.T et al 1998 Nature 393: 537-544

Cote-Sierra J, et al 1998, Gene Oct 9;221(1):25-34

Danish Patent application PA 1999 01020 (WO 01/23388) "Tuberculosis vaccine and diagnostic based on the *Mycobacterium tuberculosis* esat-6 gene family".

Danish Patent application PA 2000 00666 "Nucleic acid fragments and polypeptide

10 fragments derived from M. tuberculosis"

Gosselin et al., (1992) J. Immunol. 149: 3477-3481

Harboe, M., et al 1998 Infect. Immun. 66:2; 717-723

Kilgus J et al, J Immunol. 1991 Jan 1;146(1):307-15

Kohler and Milstein, Nature, 256:495 (1975)

15 Lowry, D.B. et al 1999, Nature 400: 269-71

Luashchenko, K.P., et al 2000. J Immunological Methods 242: 91-100

Lustig et al 1976, Cell Immunol 24(1):164-72

McCafferty et al, Nature, 348:552-554 (1990)

Merrifield, R. B. Fed. Proc. Am. Soc. Ex. Biol. 21: 412, 1962 and J. Am. Chem. Soc. 85:

20 2149, 1963

Mowat et al 1991, Immunology 72(3):317-22

Nagai et al 1991, Infect. Immun 59:1; 372-382

Olsen A.W et al, Eur J Immunol. 2000 Jun; 30(6):1724-32

Patent application US 09/0505,739 "Nucleic acid fragments and polypeptide fragments

25 derived from M. tuberculosis"

Pearson W.R and D.J. Lipman (1988) PNAS USA 85:2444-2448

Pollock. J., et al, 2000. The Veterinary record, 146:659-665

Ravn, P. et al 1999. J.Infect.Dis. 179:637-645

Rolph, M.S, and I. A. Ramshaw. 1997. Curr.Opin.Immunol.9:517-24

30 Rosenkrands, I., et al 1998, Infect. Immun 66:6; 2728-2735

Sambrook et al Molecular Cloning; A laboratory manual, Cold Spring Harbor Laboratories, NY, 1989

Sinigaglia F et al. Nature 1988 Dec 22-29;336(6201):778-80

Skjøt, R.L.V., et al 2000, Infect. Immun 68:1; 214-220

Stryhn, A., et al 1996 Eur. J. Immunol. 26:1911-1918
Thompson J., et al Nucleic Acids Res 1994 22:4673-4680
Ulmer J.B et al 1993, Curr. Opin. Invest. Drugs 2(9): 983-989

Claims

- 1. A substantially pure polypeptide, which comprises at least one amino acid sequence selected from the group consisting of:
- 5 (a) an amino acid sequence selected from Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1;
 - (b) an immunogenic portion of any one of the sequences in (a); and
 - (c) an amino acid sequence analogue having at least 70% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic.

- 2. A substantially pure polypeptide according to claim 1, wherein the amino acid sequence analogue has at least 80% sequence identity to any of the sequences in (a) or (b).
- 3. A fusion polypeptide, which comprises at least one amino acid sequence selected from15 the group consisting of:
 - (a) an amino acid sequence selected from Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1;
 - (b) an immunogenic portion of any one of the sequences in (a); and
- (c) an amino acid sequence analogue having at least 70% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic; and at least one fusion partner.
 - 4. A fusion polypeptide according to claim 3, wherein the fusion partner comprises a polypeptide fragment selected from the group consisting of:
- 25 (a) a polypeptide fragment derived from a virulent mycobacterium;
 - (b) a polypeptide according to claim 1; and
 - (c) at least one immunogenic portion of any of such polypeptides in (a) or (b).
- 5. A polypeptide, which comprises at least one amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence selected from Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1;
 - (b) an immunogenic portion of any one of the sequences in (a); and
- (c) an amino acid sequence analogue having at least 70% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;

which is lipidated so as to allow a self-adjuvating effect of the polypeptide.

- 6. A substantially pure polypeptide, which comprises at least one amino acid sequence selected from the group consisting of:
- 5 (a) an amino acid sequence selected from Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1;
 - (b) an immunogenic portion of any one of the sequences in (a); and
 - (c) an amino acid sequence analogue having at least 70% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
- 10 for use as a vaccine, as a pharmaceutical or as a diagnostic reagent.
 - 7. Use of a polypeptide according to any of the preceding claims for the preparation of a pharmaceutical composition for diagnosis of tuberculosis.
- 15 8. Use of a polypeptide according to any of claims 1-6 for the preparation of a pharmaceutical composition.
 - 9. An immunogenic composition comprising at least one polypeptide according to any of claims 1-6.

10. An immunogenic composition according to claim 9, which is in the form of a vaccine.

11. An immunogenic composition according to claim 9, which is in the form of a skin test reagent.

25

- 12. A nucleic acid fragment in isolated form which
- (a) comprises at least one nucleic acid sequence which encodes a polypeptide as defined in any of claims 1-6, or comprises a nucleic acid sequence complementary thereto; and/or
- has a length of at least 10 nucleotides and hybridizes under stringent hybridization conditions with a nucleotide sequence selected from Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1, or a nucleotide sequence complementary to any one of these sequences; or with a nucleotide sequence selected from a sequence in (a).

- 13. A nucleic acid fragment according to claim 12, which is a DNA fragment.
- 14. A nucleic acid fragment according to claim 12 or 13 for use as a pharmaceutical.
- 5 15. A vaccine comprising at least one nucleic acid fragment according to claim 12 or 13, optionally inserted in a vector, the vaccine effecting *in vivo* expression of antigen by an animal, including a human being, to whom the vaccine has been administered, the amount of expressed antigen being effective to confer substantially increased resistance to tuberculosis caused by virulent mycobacteria in an animal, including a human being.

10

- 16. Use of a nucleic acid fragment according to claim 12 or 13 for the preparation of a composition for the diagnosis of tuberculosis caused by virulent mycobacteria.
- 17. Use of a nucleic acid fragment according to claim 12 or 13 for the preparation of a pharmaceutical composition for the vaccination against tuberculosis caused by virulent mycobacteria.
 - 18. A vaccine for immunizing an animal, including a human being, against tuberculosis caused by virulent mycobacteria comprising as the effective component a non-pathogenic microorganism, wherein at least one copy of a DNA fragment comprising a DNA sequence encoding a polypeptide according to any of claims 1-6 has been incorporated into the microorganism in a manner allowing the microorganism to express and optionally secrete the polypeptide.
- 19. A replicable expression vector, which comprises at least one nucleic acid fragment according to claim 12 or 13.
 - 20. A transformed cell harbouring at least one vector according to claim 19.
- 30 21. A method for producing a polypeptide according to any of claims 1-6, comprising:
 - inserting a nucleic acid fragment according to claim 12 or 13 into a vector which is able to replicate in a host cell, introducing the resulting recombinant vector into the host cell, culturing the host cell in a culture medium under conditions sufficient to effect expression of the polypeptide, and recovering the polypeptide from the host cell or culture medium;

- (b) isolating the polypeptide from a whole mycobacterium from culture filtrate or from lysates or fractions thereof; or
- (c) synthesizing the polypeptide.
- 5 22. A method of diagnosing tuberculosis caused by virulent mycobacteria in an animal, including a human being, comprising intradermally injecting, in the animal, at least one polypeptide according to any of claims 1-6 or an immunogenic composition according to claim 9, a positive skin response at the location of injection being indicative of the animal having tuberculosis, and a negative skin response at the location of injection being indicative of the animal not having tuberculosis.
- 23. A method for immunising an animal, including a human being, against tuberculosis caused by virulent mycobacteria comprising administering to the animal at least one polypeptide according to any of claims 1-6, an immunogenic composition according to claim 9, or a vaccine according to claim 18.
 - 24. A monoclonal or polyclonal antibody, which is specifically reacting with a polypeptide according to any of claims 1-6 in an immuno assay, or a specific binding fragment of said antibody.
 - 25. A monoclonal or polyclonal antibody, which is specifically reacting with a polypeptide according to any of claims 1-6 in an immuno assay, or a specific binding fragment of said antibody for use as a diagnostic reagent.
- 25 26. A pharmaceutical composition which comprises an immunologically responsive amount of at least one member selected from the group consisting of:
 - (a) a polypeptide selected from Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1, or an immunogenic portion thereof;
- 30 (b) an amino acid sequence which has a sequence identity of at least 70% to any one of said polypeptides in (a) and is immunogenic;
 - (c) a fusion polypeptide comprising at least one polypeptide or amino acid sequence according to (a) or (b) and at least one fusion partner;
- (d) a nucleic acid sequence which encodes a polypeptide or amino acid sequence according to (a), (b) or (c);

- (e) a nucleic acid sequence which is complementary to a sequence according to (d);
- (f) a nucleic acid sequence which has a length of at least 10 nucleotides and which hybridizes under stringent conditions with a nucleic acid sequence according to (d) or (e); and
- a non-pathogenic micro-organism which has incorporated therein a nucleic acid sequence according to (d), (e) or (f) in a manner to permit expression of a polypeptide encoded thereby.
- 27. A method for stimulating an immunogenic response in an animal which comprises administering to said animal an immunologically stimulating amount of at least one member selected from the group consisting of:
 - (a) a polypeptide selected from Rv0284, Rv0285, Rv0455c, Rv0569, Rv1195, Rv1386, Rv3477, Rv3878, Rv3879c or MT3106.1, or an immunogenic portion thereof;
- 15 (b) an amino acid sequence which has a sequence identity of at least 70% to any one of said polypeptides in (a) and is immunogenic;
 - (c) a fusion polypeptide comprising at least one polypeptide or amino acid sequence according to (a) or (b) and at least one fusion partner;
- (d) a nucleic acid sequence which encodes a polypeptide or amino acid sequence according to (a), (b) or (c);
 - (e) a nucleic acid sequence which is complementary to a sequence according to (d);
 - (f) a nucleic acid sequence which has a length of at least 10 nucleotides and which hybridizes under stringent conditions with a nucleic acid sequence according to (d) or (e); and
- 25 (g) a non-pathogenic micro-organism which has incorporated therein a nucleic acid sequence according to (d), (e) or (f) in a manner to permit expression of a polypeptide encoded thereby.
- 28. Vaccine according to claim 15 or 18, immunogenic composition according to claim 10 or pharmaceutical composition according to claim 26, characterized in that said vaccine/immunogenic composition/pharmaceutical composition can be used prophylactically in a subject not infected with a virulent mycobacterium; or therapeutically in a subject already infected with a virulent mycobacterium.

- 29. A method for diagnosing previous or ongoing infection with a virulent mycobacterium, said method comprising:
- (a) contacting a sample with a composition comprising at least one antibody according to claim 24 or 25, at least one nucleic acid fragment according to any of claims 12-14 and/or at least one polypeptide according to any of claims 1-6; or
 - (b) contacting a sample with a composition comprising at least one polypeptide according to any of claims 1-6 in order to detect a positive reaction.
 - 30. A method of diagnosing Mycobacterium tuberculosis infection in a subject comprising:
- 10 (a) contacting at least one polypeptide according to any of the claims 1-6 with a bod-ily fluid of the subject;
 - (b) detecting binding of an antibody to said polypeptide, said binding being an indication that said subject is infected by *Mycobacterium tuberculosis* or is susceptible to *Mycobacterium tuberculosis* infection.

3/6

Figure 2A

4/6

Figure 2B

Sera

Figure 2C

Sera

Figure 3

1

SEQUENCE LISTING

5	<110> Statens Serum Institut																
		<1	120>	M. t	uber	culo	sis	Anti	.gens	3							
10					30PC0												
					,0100												
4 =			160>							_							
15	<170> FastSEQ for Windows Version 3.0																
20	<210> 1 <211> 3990 <212> DNA <213> Mycobacterium tuperculosis																
			220>	•													
		<2	221>		, -	2000											
25					(3	990)											•
30	-	agc		ctg			gag Glu										48
30			_				atc Ile						=	=		=	96
35				_		_	cta Leu	_	_	-	_			-			144
40						_	atc Ile 55				_	_			_	-	192
45				_	_	_	ttg Leu						_	_	_		240
50	_					_	ggc Gly		_	_	_	_	_				288
							gac Asp										336
55	_				_	_	gcc Ala	_				_	_		_		384
60				-	_	_	gcg Ala 135	_		_		_			_	_	432
65				-	-	-	cac	_		_		_				_	480

BNSDOCID: <WO____0179274A2_I_>

5					_	ccg Pro											528
J	-				-	ctg Leu											576
10	-		_			cgc Arg								_			624
15	_		_		_	ccg Pro			_								672
20	_		-		_	gcc Ala 230											720
25		_				gtg Val		_	_								768
20						aag Lys											816
30		_				ccg Pro	•										864
35						Gly											912
40						gcg Ala 310											960
45						ggc Gly											1008
,	-		_			tgc Cys		_	-								1056
50			_	_		ccg Pro											1104
55			-			ggc Gly											1152
60		-	_	_		gcc Ala 390	-										1200
65	_					cat His	-					-					1248
	gcg	agt	ttc	acc	aca	ctg	ctg	ggc	atc	gag	gac	gca	tcc	cga	ctg	gat	1296

	Ala	Ser	Phe	Thr 420	Thr	Leu	Leu	Gly	Ile 425	Glu	Asp	Ala	Ser	Arg 430	Leu	Asp	
5												gag Glu					1344
10												atg Met 460					1392
15												ctg Leu					1440
												att Ile					1488
20	ttg Leu	acc Thr	aca Thr	cac His 500	tcc Ser	gcg Ala	gag Glu	cgg Arg	ctc Leu 505	atc Ile	gtc Val	atc Ile	tac Tyr	gcc Ala 510	gac Asp	ttc Phe	1536
25												ttc Phe					1584
30												ttg Leu 540					1632
35												gag Glu					1680
	gag Glu	gcc Ala	ggc	cgc Arg	aag Lys 565	gtc Val	cag Gln	ggc Gly	agc Ser	gcg Ala 570	Phe	aac Asn	tcg Ser	gtg Val	ctc Leu 575	gag Glu	1728
40												ccg Pro					1776
45				Val								ctg Leu					1824
50			Ala									aag Lys 620					1872
55		Ile										gac Asp					1920
						Asn					Ile	GJA					1968
60					Ser					Gly		gag Glu			Tyr		2016
65				Gly					Gly			ttt Phe		Val			2064

5											acc Thr						2112
											gtc Val 715						2160
10			_	_			_	_			gaa Glu						2208
15.			_	_		_	_		_		gcc Ala						2256
20	_						_		_		cgc Arg						2304
25											acg Thr						2352
											cag Gln 795						2400
30											cgc Arg						2448
35								Asn			atc Ile						2496
40											atc Ile						2544
45	_		_	=							tgc Cys				_		2592
											cac His 875						2640
50											acc Thr						2688
55											gta Val						2736
60											ggt Gly						2784
65		_									aac Asn					aac Asn	2832
	acc	cgt	aat	ccg	ttg	ctg	gcc	agg	gta	acc	gaa	ctg	gtc	aac	gtg	ggc	2880

	Thr 945	Arg	Asn	Pro		Leu 950	Ala	Arg	Val	Thr	Glu 955	Leu	Val	Asn	Val	Gly 960	
5	ctt Leu	gcc Ala	tac Tyr	ggg Gly	atc Ile 965	cac His	gtg Val	atc Ile	att Ile	acc Thr 970	acg Thr	ccg Pro	agc Ser	tgg Trp	ctg Leu 975	gaa Glu	2928
10	gtg Val	ccg Pro	ttg Leu	gcg Ala 980	atg Met	cgc Arg	gac Asp	ggg	ctc Leu 985	GJ A GG A	ctg Leu	cgt Arg	ctc Leu	gag Glu 990	ctg Leu	cga Arg	2976
15	ctg Leu	cac His	gac Asp 995	gcg Ala	cgc Arg	gac Asp	agc Ser	aac Asn 1000	Val	cgg Arg	gtg Val	gtc Val	ggc Gly 1005	Ala	ctg Leu	cgc Arg	3024
15	cgc Arg	ccg Pro 101	Ala	gac Asp	gcc Ala	gtc Val	ccg Pro 1015	His	gac Asp	cag Gln	ccc Pro	ggc Gly 1020	Arg	gga Gly	ctg Leu	acc Thr	3072
20	atg Met 102	Ala	gcc Ala	gag Glu	cac His	ttc Phe 1030	Leu	ttc Phe	gcg Ala	gct Ala	cca Pro 103	Glu	ctg Leu	gac Asp	gcg Ala	caa Gln 1040	3120
25	aca Thr	aac Asn	ccg Pro	gtg Val	gcc Ala 1045	Ala	atc Ile	aac Asn	gcc Ala	cgc Arg 1050	Tyr	ccc Pro	ggc Gly	atg Met	gcg Ala 105	Ala	3168
30	ccc Pro	ccg Pro	gtt Val	cgg Arg 106	Leu	ttg Leu	ccc Pro	acc	aac Asn 106	Leu	gcg Ala	ccg Pro	cac His	gcc Ala 107	Val	ggc Gly	3216
25	gaa Glu	ctg Leu	tat Tyr 107	Arg	ggt Gly	ccc Pro	gac Asp	caa Gln 108	Leu	gtg Val	att Ile	ggc Gly	cag Gln 108	Arg	gaa Glu	gaa Glu	3264
35	gac Asp	ctg Leu 109	Ala	ccg Pro	gtg Val	ata Ile	ctc Leu 109	Asp	ctc Leu	gcc Ala	gcc Ala	aac Asn 110	Pro	ctg Leu	ctg Leu	atg Met	3312
40	gtg Val 110	Phe	ggc	gat Asp	gcc Ala	agg Arg 111	Ser	gga Gly	aag Lys	acg Thr	acg Thr 111	Leu	ctg Leu	cgc Arg	cac His	atc Ile 1120	3360
45	atc Ile	cgc Arg	acc Thr	gtc Val	cgc Arg 112	Glu	cac His	tcc Ser	acc Thr	gcc Ala 113	Asp	cgg Arg	gtc Val	gcg Ala	ttc Phe 113	acc Thr	3408
50	gtg Val	r ctg . Lev	gac Asp	cgc Arg	Arg	cta Leu	cac His	ctg Leu	gtc Val 114	Asp	gaa Glu	cca Pro	ctg Leu	ttc Phe 115	Pro	gac Asp	3456
EE	aac Asn	gag Glu	tac Tyr 115	Thr	gcc Ala	aac Asn	atc	gat Asp 116	Arg	atc Ile	atc Ile	ccg Pro	gcg Ala 116	Met	cto Lev	: ggg	3504
55	cto Lev	g gcc n Ala 117	AST	ctc Leu	atc Ile	gag Glu	gcg Ala 117	Arg	cgg Arg	ccg Pro	ccg Pro	gcc Ala 118	Gly	atg Met	tct Ser	gcg Ala	3552
60	gcc Ala 118	a Glu	g cto 1 Lev	g tcc 1 Ser	cgc Arg	tgg Trp	Thr	ttt Phe	gcc Ala	ggg Gly	cac His	Thr	cac His	tac Tyr	cto	atc lle 1200	3600
65	ato Ile	c gad e Ası	c gad o Asp	gto Val	gac Asp 120	Glr	gta Val	ccç Pro	g gat Asp	tcg Ser 121	Pro	g gcg Ala	atç Met	acc Thr	ggt Gly 12:	ccc Pro 15	3648

5		atc Ile			Arg					Leu					Ala		3696
	gcc Ala	ggc	gac Asp 1235	Leu	ggg Gly	cta Leu	cgg Arg	gtg Val 1240	Ile	gtc Val	acc Thr	Gly	cgt Arg 1245	Ala	act Thr	gga Gly	3744
10	_	gcg Ala 1250	His	-	_	_		Ser					Arg				3792
15							Met					Pro					3840
20		att				Arg					Pro					Ile	3888
25		ttg Leu			Ser		Ser	Pro	Thr	Tyr	Val		Leu		Asn		3936
	_	gtc Val	_	Ala	-	_	-		Gly					Lys			3984
30	_	tca Ser 1330)			-											3990
25																	
35		<2 <2	212>	1330 PRT) bact	ceri	ım tı	ubero	culos	sis							
<i>3</i> 5 40		<2 <2 <2	211> 212>	1330 PRT Myco		ceriu	ım tı	ıbero	culos	sis				·			
		<2 <2 <2	211> 212> 213> 100>	1330 PRT Myco	obact Ile	•	•			Arg	Arg	Leu	Ala	Pro		Ser	
	1	<2 <2 <2 <4	211> 212> 213> 100> Arg	PRT Myco 2 Leu Gly	obact Ile 5	, Phe	Glu	Ala	Arg Glu	Arg 10	_			Leu	15		
	1 Ser	<2 <2 <2 <4 Ser	211> 212> 213> 400> Arg Gln Pro	PRT Myco 2 Leu Gly 20	Ile 5 Thr	, Phe Ile	Glu	Ala Ile Arg	Arg Glu 25	Arg 10 Ala	Pro	Pro	Glu Tyr	Leu 30	15 Pro	Arg	
40	1 Ser Val	<2 <2 <2 Ser His Ile Leu	211> 212> 213> 200> Arg Gln Pro 35	1330 PRT Myco 2 Leu Gly 20 Pro	Ile 5 Thr	Phe Ile Leu	Glu Ile Leu Ile	Ala Ile Arg 40	Arg Glu 25 Arg	Arg 10 Ala Ala	Pro	Pro Pro Ala	Glu Tyr 45	Leu 30 Leu	15 Pro Ile	Arg Gly	
40 45	1 Ser Val Ile Val	<2 <2 <4 Ser His	211> 212> 213> 100> Arg Gln Pro 35 Ile	1330 PRT Myco 2 Leu Gly 20 Pro Val	Ile 5 Thr Ser Gly	Phe Ile Leu Met	Glu Ile Leu Ile 55	Ala Ile Arg 40 Val	Arg Glu 25 Arg	Arg 10 Ala Ala Leu	Pro Leu Val Phe	Pro Pro Ala 60	Glu Tyr 45 Thr	Leu 30 Leu Gly	15 Pro Ile Met	Arg Gly Arg Ala	
40	1 Ser Val Ile Val 65	<2 <2 <2 Ser His Ile Leu 50	211> 212> 213> 300> Arg Gln Pro 35 Ile Ser	1330 PRT Myco 2 Leu Gly 20 Pro Val	Ile 5 Thr Ser Gly Gln	Phe Ile Leu Met Thr 70	Glu Ile Leu Ile 55 Leu	Ala Ile Arg 40 Val	Arg Glu 25 Arg Ala Phe	Arg 10 Ala Ala Leu Pro	Pro Leu Val Phe 75	Pro Pro Ala 60 Val	Glu Tyr 45 Thr	Leu 30 Leu Gly Leu	15 Pro Ile Met Leu Glu	Arg Gly Arg Ala 80	
40 45	1 Ser Val Ile Val 65 Ala	<2 <2 <2 Ser His Ile Leu 50 Ile	211> 212> 213> 200> Arg Gln Pro 35 Ile Ser Ala	1330 PRT Myco 2 Leu Gly 20 Pro Val Pro Leu Glu	Ile 5 Thr Ser Gly Gln	Phe Ile Leu Met Thr 70 Arg	Glu Ile Leu Ile 55 Leu	Ala Ile Arg 40 Val Phe Asn	Arg Glu 25 Arg Ala Phe Asp Leu	Arg 10 Ala Ala Leu Pro Lys 90	Pro Leu Val Phe 75 Lys	Pro Pro Ala 60 Val Met	Glu Tyr 45 Thr Leu Arg	Leu 30 Leu Gly Leu Thr	15 Pro Ile Met Leu Glu 95	Arg Gly Arg Ala 80 Glu	
40 45	1 Ser Val Ile Val 65 Ala Val	<2 <2 <2 Ser His Ile Leu 50 Ile Thr	211> 212> 213> 100> Arg Gln Pro 35 Ile Ser Ala Ala Ile	1330 PRT Myco 2 Leu Gly 20 Pro Val Pro Leu Glu 100	Ile 5 Thr Ser Gly Gln Tyr 85 Arg	Phe Ile Leu Met Thr 70 Arg	Glu Ile Leu Ile 55 Leu Gly Asp	Ala Ile Arg 40 Val Phe Asn Tyr Ala	Arg Glu 25 Arg Ala Phe Asp Leu 105	Arg 10 Ala Ala Leu Pro Lys 90 Arg	Pro Leu Val Phe 75 Lys	Pro Pro Ala 60 Val Met	Glu Tyr 45 Thr Leu Arg Ser	Leu 30 Leu Gly Leu Thr Val 110	15 Pro Ile Met Leu Glu 95 Val	Arg Gly Arg Ala 80 Glu Arg	
40 45 50	1 Ser Val Ile Val 65 Ala Val Asp	<pre> </pre> <pre> </pre> <pre> </pre> <pre> Ser His Ile Leu 50 Ile Thr Asp Asn His </pre>	211> 212> 213> 300> Arg Gln Pro 35 Ile Ser Ala Ala Ile 115	PRT Myco 2 Leu Gly 20 Pro Val Pro Leu Glu 100 Arg	Ile 5 Thr Ser Gly Gln Tyr 85 Arg	Phe Ile Leu Met Thr 70 Arg Ala Gln	Glu Ile Leu Ile 55 Leu Gly Asp Ala Ala	Ala Ile Arg 40 Val Phe Asn Tyr Ala 120	Arg Glu 25 Arg Ala Phe Asp Leu 105 Glu	Arg 10 Ala Ala Leu Pro Lys 90 Arg	Pro Leu Val Phe 75 Lys Tyr Arg	Pro Pro Ala 60 Val Met Leu Ala Pro	Glu Tyr 45 Thr Leu Arg Ser 5er 125	Leu 30 Leu Gly Leu Thr Val 110 Ala	15 Pro Ile Met Leu Glu 95 Val Leu	Arg Gly Arg Ala 80 Glu Arg	
40 45 50 55	l Ser Val Ile Val 65 Ala Val Asp	<2 <2 <2 Ser His Ile Leu 50 Ile Thr Asp Asn	211> 212> 213> 200> Arg Gln Pro 35 Ile Ser Ala Ala Ile 115 Pro	1330 PRT Myco 2 Leu Gly 20 Pro Val Pro Leu Glu 100 Arg	Ile 5 Thr Ser Gly Gln Tyr 85 Arg Ala Pro	Phe Ile Leu Met Thr 70 Arg Ala Gln Thr	Glu Ile Leu Ile 55 Leu Gly Asp Ala Ala 135	Ala Ile Arg 40 Val Phe Asn Tyr Ala 120 Leu	Arg Glu 25 Arg Ala Phe Asp Leu 105 Glu Ala	Arg 10 Ala Ala Leu Pro Lys 90 Arg Gln Ser	Pro Leu Val Phe 75 Lys Tyr Arg Val	Pro Pro Ala 60 Val Met Leu Ala Pro 140	Glu Tyr 45 Thr Leu Arg Ser 125 Gly	Leu 30 Leu Gly Leu Thr Val 110 Ala Ser	15 Pro Ile Met Leu Glu 95 Val Leu Arg	Arg Gly Arg Ala 80 Glu Arg Trp Arg	
40 45 50 55	l Ser Val Ile Val 65 Ala Val Asp Ser Gln 145	<pre> <2 <2 <2 <2 Ser His Ile Leu 50 Ile Thr Asp Asn His 130 Trp</pre>	211> 212> 213> 100> Arg Gln Pro 35 Ile Ser Ala Ala Ile 115 Pro Glu	PRT Myco 2 Leu Gly 20 Pro Val Pro Leu Glu 100 Arg Asp	Ile 5 Thr Ser Gly Gln Tyr 85 Arg Ala Pro	Phe Ile Leu Met Thr 70 Arg Ala Gln Thr Pro 150	Glu Ile Leu Ile 55 Leu Gly Asp Ala Ala 135 His	Ala Ile Arg 40 Val Phe Asn Tyr Ala 120 Leu Asp	Arg Glu 25 Arg Ala Phe Asp Leu 105 Glu Ala Pro	Arg 10 Ala Ala Leu Pro Lys 90 Arg Gln Ser Asp	Pro Leu Val Phe 75 Lys Tyr Arg Val Phe 155	Pro Pro Ala 60 Val Met Leu Ala Pro 140 Leu	Glu Tyr 45 Thr Leu Arg Ser 125 Gly Val	Leu 30 Leu Gly Leu Thr Val 110 Ala Ser Leu	15 Pro Ile Met Leu Glu 95 Val Leu Arg	Arg Ala 80 Glu Arg Trp Arg Ala 160	
40 45 50 55	l Ser Val Ile Val 65 Ala Val Asp Ser Gln 145 Gly	<pre> </pre> <pre> </pre> <pre> </pre> <pre> Ser His Ile Leu 50 Ile Thr Asp Asn His 130 Trp Arg </pre>	211> 212> 213> 400> Arg Gln Pro 35 Ile Ser Ala Ala Ile 115 Pro Glu His	PRT Myco 2 Leu Gly 20 Pro Val Pro Leu Glu 100 Arg Asp Arg	Ile 5 Thr Ser Gly Gln Tyr 85 Arg Ala Pro Asp Val	Phe Ile Leu Met Thr 70 Arg Ala Gln Thr Pro 150 Pro	Glu Ile Leu Ile 55 Leu Gly Asp Ala Ala 135 His	Ala Ile Arg 40 Val Phe Asn Tyr Ala 120 Leu Asp Ala	Arg Glu 25 Arg Ala Phe Asp Leu 105 Glu Ala Pro Thr	Arg 10 Ala Ala Leu Pro Lys 90 Arg Gln Ser Asp Thr 170	Pro Leu Val Phe 75 Lys Tyr Arg Val Phe 155 Leu	Pro Pro Ala 60 Val Met Leu Ala Pro 140 Leu Arg	Glu Tyr 45 Thr Leu Arg Ser 125 Gly Val Val	Leu 30 Leu Gly Leu Thr Val 110 Ala Ser Leu Asn	15 Pro Ile Met Leu Glu 95 Val Leu Arg Arg Asp 175	Arg Ala 80 Glu Arg Trp Arg Ala 160 Thr	
40 45 50 55	l Ser Val Ile Val 65 Ala Val Asp Ser Gln 145 Gly Ala	<pre> <2 <2 <2 <2 Ser His Ile Leu 50 Ile Thr Asp Asn His 130 Trp</pre>	211> 212> 213> 300> Arg Gln Pro 35 Ile Ser Ala Ala Ile 115 Pro Glu His Glu	PRT Myco 2 Leu Gly 20 Pro Val Pro Leu Glu 100 Arg Asp Arg Thr	Ile 5 Thr Ser Gly Gln Tyr 85 Arg Ala Pro Asp Val 165 Asp	Phe Ile Leu Met Thr 70 Arg Ala Gln Thr Pro 150 Pro	Glu Ile Leu Ile 55 Leu Gly Asp Ala Ala 135 His Leu Glu	Ala Ile Arg 40 Val Phe Asn Tyr Ala 120 Leu Asp Ala Pro	Arg Glu 25 Arg Ala Phe Asp Leu 105 Glu Ala Pro Thr Val 185	Arg 10 Ala Ala Leu Pro Lys 90 Arg Gln Ser Asp Thr 170 Ser	Pro Leu Val Phe 75 Lys Tyr Arg Val Phe 155 Leu His	Pro Pro Ala 60 Val Met Leu Ala Pro 140 Leu Arg Ser	Glu Tyr 45 Thr Leu Arg Ser 125 Gly Val Val Ala	Leu 30 Leu Gly Leu Thr Val 110 Ala Ser Leu Asn Leu 190	15 Pro Ile Met Leu Glu 95 Val Leu Arg Arg Arg	Arg Ala 80 Glu Arg Trp Arg Ala 160 Thr	

	Leu	Thr 210	Lys	Val	Ser	Pro	Ile 215	Thr	Val	Leu	Gly	Glu 220	Arg	Ala	Gln	Val
	Arg 225		Val	Leu	Arg	Ala 230	-	Ile	Ala	Gln	Ala 235	Val	Thr	Trp	His	Asp 240
5	Pro				245				Ala	250					255	
				260					Pro 265					270		
10		_	275					280	Asn				285			
		290					295		Leu			300				
4 200	305					310			His		315					320
15		_	_		325				Pro	330					335	
				340					Ser 345					350		
20			355					360	Arg				365			
	_	370					375		Pro			380				Trp
25	385					390			Leu		395					400
20					405				Ile	410					415	
				420					425					430		Val
30			435		_			440					445			
		450	_				455					460				Met
35	465					470			Leu		475					480
				_	485				Leu	490				Ala	495 Asp	
	Lys	Gly	Glu	500 Ala	Gly	Ala	Asp				Asp	Phe				Val
40	Ala				Asn	Met		520 Glu		Lys	Ser				Arg	Phe
		_		Leu	Arg			Val	Ala	Arg				Leu	Leu	Arg
45	545 Glu		Gly	Arg				Gly	Ser	Ala 570			Ser	Val	Leu 575	560 Glu
	Tyr	Glu	Asn	Ala 580			Ala	Gly	His 585	Ser		Pro	Pro	Ile 590	Pro	Thr
50	Leu	Phe	Val 595	Val		Asp	Glu	Phe	Thr		Met	Leu	Ala 605	Asp		Pro
	Glu	Tyr 610	Ala		Leu	Phe	Asp 615	Tyr		Ala	Arg	Lys 620	Gly		Ser	Phe
	Arg 625	Ile		Ile	Leu	Phe 630	Ala		Gln	Thr	Leu 635		Val	Gly	Lys	Ile 640
55	Lys	Asp	Ilė	Asp	Lys 645		Thr	Ala	Tyr	Arg 650		Gly	Leu	Lys	Val 655	Ala
				660					665					670		His
60			675					680)				685	•		Ala
		690	1				695	•				700	1			Ile
05	705					710					715					720
65	Glu	Pro	Lys	Leu	725		Ala	Ala	. Ala	730		Y PTO	ASŢ) PIC	735	Thr

	Val	Ile	Ala	Asp 740	Thr	Asp	Glu	Gln	Glu 745	Pro	Ala	Asp	Pro	Pro 750	Arg	Lys
	Leu	Ile	Ala 755		Ile	Gly	Glu	Gln 760	Leu	Ala	Arg	Tyr	Gly 765	Pro	Arg	Ala
5	Pro	Gln 770	Leu	Trp	Leu	Pro	Pro 775	Leu	Asp	Glu	Thr	Ile 780	Pro	Leu	Ser	Ala
	785			_		790		-			Gln 795					800
10	_				805					810	Arg				815	
				820		-			825		Ile			830	•	
45		_	835					840			Ile		845			
15		850					855	•				860			•	Gly
	865					870		•			His 875					880
20					885			,		890	Thr Val				895	
				900					905	•	Gly			910		
25			915					920			Asn		925			
		930			_	_	935				Glu	940				
	945					950					955 Thr					960
30			_		965					970	Leu				975	
			•	980					985		Val		-	990		
35			995					100	0		Pro		100	5		
	Met	101 Ala		Glu	His	Phe	101: Leu		Ala	Ala				Asp	Ala	Gln
	1025		Pro	Val	Ala	1030 Ala		Asn	Ala	Ara	103: Tyr		Glý	Met	Ala	1040 Ala
40					104	5				105	0				105	
				106	0				106	5	Ile			107	0	
AE			107	5				108	0				108	5		
45		109	0				109	5			Ala	110	0			
	110		сту	Asp	Ald	111		GIY	гуз	1111	111.		теп	Arg	nis	Ile 1120
50	Ile	Arg	Thr	Val	Arg		His	Ser	Thr	Ala 113		Arg	Val	Ala	Phe 113	Thr 5
	Val	Leu	Asp	Arg	_	Leu	His	Leu	Val 114		Glu	Pro	Leu	Phe 115		Asp
			115	5				116	0	ί.			116	5		Gly
55		117	0				117	5				118	0			Ala
	Ala 118		Leu	Ser	Arg	Trp 119		Phe	Ala	Gly	His		His	Tyr	Leu	Ile 1200
60			Asp	Val	Asp 120		Val	Pro	Asp	Ser 121		Ala	Met	Thr	Gly 121	Pro 5
	_			122	0				122	5				123	0	Gln
			123	5	_			124	0		٠		124	5		Gly
65	Ser	Ala 125		Leu	Leu	Met	Thr 125		Pro	Leu	Leu	Arg 126		Phe	Asn	Asp

```
Leu Gln Ala Thr Thr Leu Met Leu Ala Gly Asn Pro Ala Asp Ser Gly
                                             1275
    1265
                         1270
    Lys Ile Arg Gly Glu Arg Phe Ala Arg Leu Pro Ala Gly Arg Ala Ile
                                                              1295
                                         1290
                     1285
    Leu Leu Thr Asp Ser Asp Ser Pro Thr Tyr Val Gln Leu Ile Asn Pro
5
                                                          1310
                 1300
                                     1305
    Leu Val Asp Ala Ala Val Ser Gly Glu Thr Gln Gln Lys Gly Ser
                                 1320
                                                      1325
             1315
    Gln Ser
10
         1330
           <210> 3
           <211> 375
           <212> DNA
15
           <213> Mycobacterium tuberculosis
           <220>
           <221> CDS
           <222> (1) ... (375)
20
           <400> 3
     cag gta ccg gat tcg ccg gcg atg acc ggt ccc tac atc gga cag cgg
                                                                             48
    Gln Val Pro Asp Ser Pro Ala Met Thr Gly Pro Tyr Ile Gly Gln Arg
                                                               15
                                           10
25
                                                                             96
     ccq tqq acc ccg ctg atc ggt ctc ctg gcc cag gcc ggc gac ttg ggg
     Pro Trp Thr Pro Leu Ile Gly Leu Leu Ala Gln Ala Gly Asp Leu Gly
                                                           30
                  20
                                       25
    cta cgg gtg att gtc acc ggg cgt gcc act gga tcg gcg cac ctg ctg
30
                                                                            144
     Leu Arg Val Ile Val Thr Gly Arg Ala Thr Gly Ser Ala His Leu Leu
                                   40
                                                       45
              35
     atg aca agt ccg ttg ctg cgc cgg ttc aac gac ctg cag gcg acc acg
                                                                            192
    Met Thr Ser Pro Leu Leu Arg Arg Phe Asn Asp Leu Gln Ala Thr Thr
35
                                                   60
          50
                               55
     ctg atg ttg gca ggc aat ccg gcc gac agc ggc aag att cgc ggt gag
                                                                            240
     Leu Met Leu Ala Gly Asn Pro Ala Asp Ser Gly Lys Ile Arg Gly Glu
40
                                                                   80
      65
                          70
                                                                            288
     cgg ttt gcc cga ttg cct gct gga cga gca att ctg ttg acc gac agt
     Arg Phe Ala Arg Leu Pro Ala Gly Arg Ala Ile Leu Leu Thr Asp Ser
                                           90
                      85
45
                                                                            336
     gat agt cca acc tac gtg cag ttg atc aac ccg ctg gtc gat gcg gcc
     Asp Ser Pro Thr Tyr Val Gln Leu Ile Asn Pro Leu Val Asp Ala Ala
                                      105
                                                          110
                 100
50
                                                                            375
     gcg gtt tct ggt gaa acc caa cag aag ggg agt cag tca
     Ala Val Ser Gly Glu Thr Gln Gln Lys Gly Ser Gln Ser
                                                      125
                                  120
             115
55
           <210> 4
           <211> 125
           <212> PRT
           <213> Mycobacterium tuberculosis
60
           <400> 4
     Gln Val Pro Asp Ser Pro Ala Met Thr Gly Pro Tyr Ile Gly Gln Arg
      1
     Pro Trp Thr Pro Leu Ile Gly Leu Leu Ala Gln Ala Gly Asp Leu Gly
                                      25
                 20
65
     Leu Arg Val Ile Val Thr Gly Arg Ala Thr Gly Ser Ala His Leu Leu
                                  40
                                                      45
             35
```

```
Met Thr Ser Pro Leu Leu Arg Arg Phe Asn Asp Leu Gln Ala Thr Thr
                             55
    Leu Met Leu Ala Gly Asn Pro Ala Asp Ser Gly Lys Ile Arg Gly Glu
                                             75
                         70
    65
    Arg Phe Ala Arg Leu Pro Ala Gly Arg Ala Ile Leu Leu Thr Asp Ser
    Asp Ser Pro Thr Tyr Val Gln Leu Ile Asn Pro Leu Val Asp Ala Ala
                                     105
                 100
    Ala Val Ser Gly Glu Thr Gln Gln Lys Gly Ser Gln Ser
10
                                                     125
                                 120
            115
           <210> 5
           <211> 306
           <212> DNA
15
           <213> Mycobacterium tuberculosis
           <220>
           <221> CDS
           <222> (1) ... (306)
20
           <400> 5
     atg acg ttg cga gtg gtt ccg gag ggg ctg gcc gca gcc agc gct gcg
                                                                            48
    Met Thr Leu Arg Val Val Pro Glu Gly Leu Ala Ala Ser Ala Ala
                                                               15
                      5 ·
      1
25
     gtg gaa gcg ctg acg gcg cgg ttg gcc gcc gcg cat gcg agc gca gcg
                                                                            96
     Val Glu Ala Leu Thr Ala Arg Leu Ala Ala Ala His Ala Ser Ala Ala
                                                           30
                  20
     ccg gtg att acc gcg gta gtg ccg ccg gcg gcg gat ccg gtg tcg ctg
                                                                           144
.30
     Pro Val Ile Thr Ala Val Val Pro Pro Ala Ala Asp Pro Val Ser Leu
                                                       45
                                  40
              35
     cag acc gcg gcc ggg ttc agt gca cag ggc gtc gag cac gcg gtc gtc
                                                                           192
     Gln Thr Ala Ala Gly Phe Ser Ala Gln Gly Val Glu His Ala Val Val
35
                                                   60
          50
                              55
     acc gcc gaa ggt gtc gaa gag ctg gga cgc gcc ggc gtt ggt gtg ggc
                                                                           240
     Thr Ala Glu Gly Val Glu Glu Leu Gly Arg Ala Gly Val Gly Val Gly
40
                                                                   80
      65
                          70
     gaa too ggc gcc agc tac ctg gcc ggt gat gcg gcc gcc gcc gct acg
                                                                           288
     Glu Ser Gly Ala Ser Tyr Leu Ala Gly Asp Ala Ala Ala Ala Thr
                                                               95
                      85
45
                                                                           306
     tac ggg gtc gtg ggc ggc
     Tyr Gly Val Val Gly Gly
                 100
50
           <210> 6
           <211> 102
           <212> PRT
           <213> Mycobacterium tuberculosis
55
           <400> 6
     Met Thr Leu Arg Val Val Pro Glu Gly Leu Ala Ala Ala Ser Ala Ala
     Val Glu Ala Leu Thr Ala Arg Leu Ala Ala Ala His Ala Ser Ala Ala
60
                                                          30
                 20
     Pro Val Ile Thr Ala Val Val Pro Pro Ala Ala Asp Pro Val Ser Leu
                                  40
             35
     Gln Thr Ala Ala Gly Phe Ser Ala Gln Gly Val Glu His Ala Val Val
                              55
     Thr Ala Glu Gly Val Glu Glu Leu Gly Arg Ala Gly Val Gly Val Gly
65
                                              75
                                                                   80
                         70
     65
```

```
Glu Ser Gly Ala Ser Tyr Leu Ala Gly Asp Ala Ala Ala Ala Thr
                                                              95
                                         90
                     85
    Tyr Gly Val Val Gly Gly
                 100
 5
           <210> 7
           <211> 444
           <212> DNA
           <213> Mycobacterium tuberculosis
10
           <220>
           <221> CDS
           <222> (1)...(444)
15
           <400> 7
    atg tot egg ctg agt too atc ctg egt gee geg gea ttt etg gtt
                                                                            48
    Met Ser Arg Leu Ser Ser Ile Leu Arg Ala Gly Ala Ala Phe Leu Val
                                          10
                                                               15
     1
                      5
20
                                                                            96
    ctc ggc atc gcc gct gcg aca ttt cca caa agc gcg gca gcc gac tcc
    Leu Gly Ile Ala Ala Ala Thr Phe Pro Gln Ser Ala Ala Ala Asp Ser
                                      25
                                                           30
                  20
     acg gaa gac ttt cca ata cct cgc cgg atg atc gca acc acc tgc gac
                                                                           144
25
    Thr Glu Asp Phe Pro Ile Pro Arg Arg Met Ile Ala Thr Thr Cys Asp
                                                       45
              35
                                  40
     gcc gaa caa tat ctg gcg gcg gtg cgg gat acc agt ccg gtg tac tac
                                                                           192
    Ala Glu Gln Tyr Leu Ala Ala Val Arg Asp Thr Ser Pro Val Tyr Tyr
30
          50
                              55
     cag cgg tac atg atc gac ttc aac aac cat gca aac ctt cag caa gcg
                                                                           240
     Gln Arg Tyr Met Ile Asp Phe Asn Asn His Ala Asn Leu Gln Gln Ala
      65
                          70
                                               75
                                                                   80
35
     acq atc aac aaq qcq cac tqq ttc ttc tcg ctg tca ccg gcg gag cgc
                                                                           288
     Thr Ile Asn Lys Ala His Trp Phe Phe Ser Leu Ser Pro Ala Glu Arg
                                           90
                                                               95
                      85
40
     cga gac tac tcc gaa cac ttt tac aat ggc gat ccg ctg acg ttt gcc
                                                                            336
    Arg Asp Tyr Ser Glu His Phe Tyr Asn Gly Asp Pro Leu Thr Phe Ala
                                                          110
                 100
                                     105
     tgg gtc aat cac atg aaa atc ttc ttc aac aac aag ggc gtc gtc gct
                                                                            384
45
    Trp Val Asn His Met Lys Ile Phe Phe Asn Asn Lys Gly Val Val Ala
                                 120
                                                      125
             115
                                                                            432
     aaa ggg acc gag gtg tgc aat gga tac cca gcc ggc gac atg tcg gtg
     Lys Gly Thr Glu Val Cys Asn Gly Tyr Pro Ala Gly Asp Met Ser Val
50
         130
                             135
                                                                            444
     tgg aac tgg gcc
     Trp Asn Trp Ala
     145
55
           <210> 8
           <211> 148
           <212> PRT
60
           <213> Mycobacterium tuberculosis
           <400> 8
     Met Ser Arg Leu Ser Ser Ile Leu Arg Ala Gly Ala Ala Phe Leu Val
                                                              15
                      5
                                          10
65
     Leu Gly Ile Ala Ala Ala Thr Phe Pro Gln Ser Ala Ala Ala Asp Ser
                                      25
                 20
                                                          30
```

```
Thr Glu Asp Phe Pro Ile Pro Arg Arg Met Ile Ala Thr Thr Cys Asp
              35
     Ala Glu Gln Tyr Leu Ala Ala Val Arg Asp Thr Ser Pro Val Tyr Tyr
          50
                              55
     Gln Arg Tyr Met Ile Asp Phe Asn Asn His Ala Asn Leu Gln Gln Ala
                                              75
                          70
     Thr Ile Asn Lys Ala His Trp Phe Phe Ser Leu Ser Pro Ala Glu Arg
                      85
     Arg Asp Tyr Ser Glu His Phe Tyr Asn Gly Asp Pro Leu Thr Phe Ala
10
                                      105
     Trp Val Asn His Met Lys Ile Phe Phe Asn Asn Lys Gly Val Val Ala
                                  120
              115
                                                       125
     Lys Gly Thr Glu Val Cys Asn Gly Tyr Pro Ala Gly Asp Met Ser Val
                                                  140
                              135
          130
 15
     Trp Asn Trp Ala
      145
            <210> 9
            <211> 264
 20
            <212> DNA
            <213> Mycobacterium tuberculosis
            <220>
            <221> CDS
 25
            <222> (1)...(264)
            <400> 9
     atg aag gca aag gtc ggg gac tgg ctg gtg atc aaa ggc gcg acg ata
                                                                             48
     Met Lys Ala Lys Val Gly Asp Trp Leu Val Ile Lys Gly Ala Thr Ile
 30
       1
                                           10
                                                                15
                                                                             96
      gat caa ccg gac cac cga ggg ttg att att gag gtg cgc tca tcc gat
     Asp Gln Pro Asp His Arg Gly Leu Ile Ile Glu Val Arg Ser Ser Asp
                   20
                                       25
                                                            30
 35
     ggt tcg ccg ccg tat gtg gtg cgc tgg ctc gag acc gac cat gtg gcg
                                                                            144
     Gly Ser Pro Pro Tyr Val Val Arg Trp Leu Glu Thr Asp His Val Ala
               35
                                   40
                                                        45
                                                                            192
     acg gtg att ccg ggt ccg gat gcg gtc gtg gtc act gcg gag gag cag
     Thr Val Ile Pro Gly Pro Asp Ala Val Val Val Thr Ala Glu Glu Gln
                                                    60
                               55
     aat gcg gcc gac gag cgg gcg cag cat cgg ttc ggc gcg gtt cag tcg
                                                                            240
 45
     Asn Ala Ala Asp Glu Arg Ala Gln His Arg Phe Gly Ala Val Gln Ser
       65
                           70
                                                75
                                                                            264
     gcg atc ctc cat gcc agg gga acg
     Ala Ile Leu His Ala Arg Gly Thr
 50
                       85
            <210> 10 ·
            <211> 88
 55
            <212> PRT
            <213> Mycobacterium tuberculosis
            <400> 10
     Met Lys Ala Lys Val Gly Asp Trp Leu Val Ile Lys Gly Ala Thr Ile
 60
                                          10
      1
     Asp Gln Pro Asp His Arg Gly Leu Ile Ile Glu Val Arg Ser Ser Asp
                                      25
     Gly Ser Pro Pro Tyr Val Val Arg Trp Leu Glu Thr Asp His Val Ala
              35
                                  40
 65
     Thr Val Ile Pro Gly Pro Asp Ala Val Val Thr Ala Glu Glu Gln
          50
                              55
```

```
Asn Ala Ala Asp Glu Arg Ala Gln His Arg Phe Gly Ala Val Gln Ser
                                                                 80
                                             75
                         70
     65
    Ala Ile Leu His Ala Arg Gly Thr
                     85
 5
           <210> 11
           <211> 297
           <212> DNA
           <213> Mycobacterium tuberculosis
10
           <220>
           <221> CDS
           <222> (1)...(297)
15
           <400> 11
     gtg tct ttc gtg atg gca tac cca gag atg ttg gcg gcg gcg gct gac
                                                                            48
     Val Ser Phe Val Met Ala Tyr Pro Glu Met Leu Ala Ala Ala Asp
                                                               15
                                          10
                      5
      1
                                                                            96
     acc ctg cag agc atc ggt gct acc act gtg gct agc aat gcc gct gcg
20
     Thr Leu Gln Ser Ile Gly Ala Thr Thr Val Ala Ser Asn Ala Ala
                                      25
                                                           30
                  20
     gcg gcc ccg acg act ggg gtg gtg ccc ccc gct gcc gat gag gtg tcg
                                                                           144
     Ala Ala Pro Thr Thr Gly Val Val Pro Pro Ala Ala Asp Glu Val Ser
25
                                                       45
                                  40
              35
     gcg ctg act gcg gcg cac ttc gcc gca cat gcg gcg atg tat cag tcc
                                                                           192
     Ala Leu Thr Ala Ala His Phe Ala Ala His Ala Ala Met Tyr Gln Ser
30
                              55
          50
     gtg agc gct cgg gct gct gcg att cat gac cag ttc gtg gcc acc ctt
                                                                           240
     Val Ser Ala Arg Ala Ala Ile His Asp Gln Phe Val Ala Thr Leu
                                                                   80
                                               75
      65
                          70
35
     gcc agc agc gcc agc tcg tat gcg gcc act gaa gtc gcc aat gcg gcg
                                                                           288
     Ala Ser Ser Ala Ser Ser Tyr Ala Ala Thr Glu Val Ala Asn Ala Ala
                                                               95
                      85
                                           90
                                                                           297
40
     gcg gcc agc
     Ala Ala Ser
45
           <210> 12
           <211> 99
           <212> PRT
           <213> Mycobacterium tuberculosis
50
           <400> 12
     Val Ser Phe Val Met Ala Tyr Pro Glu Met Leu Ala Ala Ala Asp
                                                              15
                                          10
      1
     Thr Leu Gln Ser Ile Gly Ala Thr Thr Val Ala Ser Asn Ala Ala Ala
     Ala Ala Pro Thr Thr Gly Val Val Pro Pro Ala Ala Asp Glu Val Ser
55
                                  40
             35
     Ala Leu Thr Ala Ala His Phe Ala Ala His Ala Ala Met Tyr Gln Ser
                              55
     Val Ser Ala Arg Ala Ala Ile His Asp Gln Phe Val Ala Thr Leu
60
                                              75
                                                                   80
     65
                          70
     Ala Ser Ser Ala Ser Ser Tyr Ala Ala Thr Glu Val Ala Asn Ala Ala
                                                              95
                                          90
                      85
     Ala Ala Ser
65
           <210> 13
```

		<211> <212> <213>	DNA	bact	eriv	ım tu	bero	ulos	sis								
5		<220> <221> <222>		(3	30'6)												
10		<400> acg ttg Thr Leu	cga														48
15		gaa gca Glu Ala			_	_	_	_									96
20	_	ttt atc Phe Ile 35			_		=						_		_	1	.44
25		aac gcc Asn Ala 50														1	. 92
	_	gct cag Ala Gln		_	_	_			_							2	240
30	_	tcg ggt Ser Gly	_	_		_	_		_		=	_	_	_		2	288
35		ctc agc Leu Ser	- -			•										٠.	306
40		<210> <211> <212> <213>	102 PRT	bact	, teri	um ti	ubero	culos	sis								
45	1	<400> Thr Leu	Arg	5					10		_			15			
50	Pro	Glu Ala Phe Ile 35 Asn Ala	20 Ala	Ala	Val	Ile	Pro 40	25 Pro	Gly	Ser	Asp	Ser 45	30 Val	Ser	Val		
	Ala	50 Ala Gln		,	Glu	55				Ser	60				Ala		
55	65 Glu	Ser Gly	Ala	Ser 85	70 Tyr	Ala	Ala	Arg	Asp 90	75 Ala	Leu	Ala	Ala	Ala 95	80 Ser		
	Tyr	Leu Ser	Gly 100		Leu									,,,			
60		<210><211><212><213>	294 DNA	bact	teri	ım tı	uber	culos	sis								
65		<220> <221>	_	•													

<222> (1)...(294)

			00>														
5	gtg Val 1	tct Ser	ttc Phe	act Thr	gcg Ala 5	caa Gln	ccg Pro	gag Glu	atg Met	ttg Leu 10	gcg Ala	gcc Ala	gcg	gct Ala	ggc Gly 15	gaa Glu	48
0	ctt Leu	cgt Arg	tcc Ser	ctg Leu 20	Gly	gca Ala	acg Thr	ctg Leu	aag Lys 25	gct Ala	agc Ser	aat Asn	gcc Ala	gcc Ala 30	gca Ala	gcc Ala	96
	gtg Val	ccg Pro	acg Thr 35	act Thr	ggg ggg	gtg Val	gtg Val	ccc Pro 40	ccg Pro	gct Ala	gcc Ala	gac Asp	gag Glu 45	gtg Val	tcg Ser	ctg Leu	144
15	ctg Leu	ctt Leu 50	gcc Ala	aca Thr	caa Gln	ttc Phe	cgt Arg 55	acg Thr	cat His	gcg Ala	gcg Ala	acg Thr 60	tat Tyr	cag Gln	acg Thr	gcc Ala	192
20	agc Ser 65	gcc Ala	aag Lys	gcc Ala	gcg Ala	gtg Val 70	atc Ile	cat His	gag Glu	cag Gln	ttt Phe 75	gtg Val	acc Thr	acg Thr	ctg Leu	gcc Ala 80	240
· 25	acc	agc Ser	gct Ala	Ser	tca Ser 85	Tyr	Ala	Asp	Thr	gag Glu 90	Ala	gcc Ala	aac Asn	gct Ala	gtg Val 95	Val	288
30		ggc															294
35		< <		98 PRT	obac	teri	um t	uber	culo	sis							
40	1	Ser		Thr	5					10					15	Glu Ala	
	Val	Pro	Thr	20 Thr	Gly	Val	Val	Pro	25 Pro	Ala	Ala	Asp	Glu 45	30 Val	Ser	Leu	
45		50					55					60				Ala Ala 80	
50	Thr	Ser Gly		Ser	Ser 85	Tyr	Ala	Asp	Thr		Ala	Ala	. Asn	Ala	Val 95	. Val	
55		<	:212>	840 DNA		teri	um t	uber	culc	sis							
60		<		CDS	(840)											
65	ato Met	gct	(400> gaa a Glu	ccg	ttg Leu	gcc Ala	gtc Val	gat Asp	cco Pro	c acc	Gly	tto Y Lev	g ago ı Sei	gca Ala	a gco a Ala	g gcc a Ala	48

5			_	-			_			cag Gln					_	_		96
J	gtc Val	agc Ser	gga Gly 35	acg Thr	gat Asp	tcg Ser	gtg Val	gta Val 40	gca Ala	gca Ala	atc Ile	aac Asn	gag Glu 45	acc Thr	atg Met	cca Pro		144
10								Asp		ctg Leu								192
15	_		_							gcg Ala								240
20										ttg Leu 90								288
25	tcg Ser	tcg Ser	ggc	gaa Glu 100	Gly	ctg Leu	Ala	Gly	gtc Val 105	gcc Ala	tcg Ser	gtc Val	ggt Gly	ggt Gly 110	cag Gln	cca Pro		336
										ccc Pro							,	384
30	cag Gln	ctc Leu 130	ggc Gly	gag Glu	acg Thr	gcc Ala	gct Ala 135	gag Glu	ctg Leu	gca Ala	ccc Pro	cgt Arg 140	Val	gtt Val	gcg Ala	acg Thr		432
35					Val											caa Gln 160		480
40										agt Ser 170						Ala		528
45	gcc Ala	cag Gln	agc Ser	gcg Ala 180	cag Gln	ggc Gly	ggc Gly	agc Ser	ggc Gly 185	cca Pro	atg Met	ccc	gca Ala	cag Gln 190	ctt Leu	gcc Ala		576
70									Gln	gcg Ala								624
50	aca	aac Asn 210	gac Asp	gat Asp	cag Gln	ggc Gly	gac Asp 215	cag Gln	ggc Gly	gac Asp	gtg Val	cag Gln 220	Pro	gcc Ala	gag Glu	gtc Val		672
55		Ala					Glu			ggc Gly		Ser						720
60										atg Met 250	Asp					Ala	•	768
ee.	cgc Arg	cca Pro	gcg Ala	gcg Ala 260	Ser	ccg Pro	ctg Leu	gcg Ala	gcc Ala 265	Pro	gtc Val	gat Asp	ccg Pro	tcg Ser 270	Thr	ccg Pro		816
65	gca	ccc	tca	aca	acc	aca	acg	ttg										840

Ala Pro Ser Thr Thr Thr Leu

275

```
5
           <210> 18
           <211> 280
           <212> PRT
           <213> Mycobacterium tuberculosis
10
           <400> 18
    Met Ala Glu Pro Leu Ala Val Asp Pro Thr Gly Leu Ser Ala Ala Ala
                                         10
    Ala Lys Leu Ala Gly Leu Val Phe Pro Gln Pro Pro Ala Pro Ile Ala
                                     25
    Val Ser Gly Thr Asp Ser Val Val Ala Ala Ile Asn Glu Thr Met Pro
15
             35
                                  40
     Ser Ile Glu Ser Leu Val Ser Asp Gly Leu Pro Gly Val Lys Ala Ala
     Leu Thr Arg Thr Ala Ser Asn Met Asn Ala Ala Ala Asp Val Tyr Ala
20
                         70
                                              75
     Lys Thr Asp Gln Ser Leu Gly Thr Ser Leu Ser Gln Tyr Ala Phe Gly
                     85
                                         90
     Ser Ser Gly Glu Gly Leu Ala Gly Val Ala Ser Val Gly Gly Gln Pro
                                     105
25
     Ser Gln Ala Thr Gln Leu Leu Ser Thr Pro Val Ser Gln Val Thr Thr
                                 120
                                                      125
             115
     Gln Leu Gly Glu Thr Ala Ala Glu Leu Ala Pro Arg Val Val Ala Thr
                             135
     Val Pro Gln Leu Val Gln Leu Ala Pro His Ala Val Gln Met Ser Gln
30
     145
                         150
                                              155
     Asn Ala Ser Pro Ile Ala Gln Thr Ile Ser Gln Thr Ala Gln Gln Ala
                                         170
                     165
     Ala Gln Ser Ala Gln Gly Gly Ser Gly Pro Met Pro Ala Gln Leu Ala
                                      185
                 180
35
     Ser Ala Glu Lys Pro Ala Thr Glu Gln Ala Glu Pro Val His Glu Val
                                  200
                                                      205
             195
     Thr Asn Asp Asp Gln Gly Asp Gln Gly Asp Val Gln Pro Ala Glu Val
                             215
                                                  220
     Val Ala Ala Arg Asp Glu Gly Ala Gly Ala Ser Pro Gly Gln Gln
40
     225
                         230
                                              235
     Pro Gly Gly Val Pro Ala Gln Ala Met Asp Thr Gly Ala Gly Ala
                     245
                                          250
     Arg Pro Ala Ala Ser Pro Leu Ala Ala Pro Val Asp Pro Ser Thr Pro
                                      265
45
     Ala Pro Ser Thr Thr Thr Leu
                                  280
             275
           <210> 19
           <211> 543
50
           <212> DNA
           <213> Mycobacterium tuberculosis
           <220>
           <221> CDS
55
           <222> (1)...(543)
           <400> 19
     atg agt att acc agg ccg acg ggc agc tat gcc aga cag atg ctg gat
                                                                            48
     Met Ser Ile Thr Arg Pro Thr Gly Ser Tyr Ala Arg Gln Met Leu Asp
60
      1
                                           10
                                                               15
                                                                            96
     ccg ggc ggc tgg gtg gaa gcc gat gaa gac act ttc tat gac cgg gcc
     Pro Gly Gly Trp Val Glu Ala Asp Glu Asp Thr Phe Tyr Asp Arg Ala
                                       25
                  20
65
                                                                           144
     cag gaa tat agc cag gtt ttg caa agg gtc acc gat gta ttg gac acc
```

	Gln	Glu	Tyr 35	Ser	Gln	Val	Leu	Gln 40	Arg	Val	Thr	Asp	Val 45	Leu	Asp	Thr	
5				cag Gln													192
10				aat Asn													240
15	_	_	_	ctg Leu	_	_			_	_							288
				ggg Gly 100													336
20		-		gct Ala													384
25				gat Asp													432
30	_			gcc Ala		_	-	_	_	_							480
25				aag Lys													528
35		_	_	aag Lys 180	-												543
40		<:	210> 211>	181		•						-					
45				PRT	obact	teri	um ti	uber	culo	sis							
	Met		400> Ile	20 Thr	Arg	Pro	Thr	Gly	Ser	Tyr	Ala	Arg	Gln	Met	Leu	Asp	
50	1 Pro	Gly	Gly	Trp	5 Val	Glu	Ala	Asp		10 Asp	Thr	Phe	Tyr		15 Arg	Ala	
50	Gln	Glu	Tyr 35	20 Ser	Gln	Val	Leu	Gln 40	25 Arg	Val	Thr	Asp	Val 45	30 Leu	Asp	Thr	
	Cys	Arg 50		Gln	Lys	Gly	His 55		Phe	Glu	Gly	Gly 60		Trp	Ser	Gly	
55	Gly 65		Ala	Asn	Ala	Ala 70		Gly	Ala	Leu	Gly 75	Ala	Asn	Ile	Asn	Gln 80	
-	Leu	Met	Thr	Leu	Gln 85	Asp	Tyr	Leu	Ala	Thr 90	Val	Ile	Thr	Trp	His 95	Arg	
60				100					105					110		Asn	
		_	115	Ala				120					125				
G E		130		Asp			135					140					
65	Thr 145		GŢĀ	Ala	Asn	Val 150		ren	·	ATS	G1u 155		WIS	GIU	Arg	160	

	Leu	Glu	Ser	Lys	Asn 165	Trp	Lys	Pro		Lys 170	Asn	Ala	Leu	Glu	Asp 175	Leu	
E	Leu	Gln	Gln	Lys 180	Ser												
5		<2 <2	12>	2187 DNA	bact	eriu	m tu	berc	ulos	is							
10		<2 <2	20>	CDS	(2												
15 .	atg Met 1	agt	00> att Ile	acc	agg Arg 5	ccg Pro	acg Thr	ggc Gly	agc Ser	tat Tyr 10	gcc Ala	aga Arg	cag Gln	atg Met	ctg Leu 15	gat Asp	48
20	ccg Pro	ggc Gly	ggc Gly	tgg Trp 20	gtg Val	gaa Glu	gcc Ala	gat Asp	gaa Glu 25	gac Asp	act Thr	ttc Phe	tat Tyr	gac Asp 30	cgg Arg	gcc Ala	96
25	cag Gln	gaa Glu	tat Tyr 35	agc Ser	cag Gln	gtt Val	ttg Leu	caa Gln 40	agg Arg	gtc Val	acc Thr	gat Asp	gta Val 45	ttg Leu	gac Asp	acc Thr	144
30	tgc Cys	cgc Arg 50	cag Gln	cag Gln	aaa Lys	ggc Gly	cac His 55	gtc Val	ttc Phe	gaa Glu	ggc Gly	Gly 60	cta Leu	tgg Trp	tcc Ser	ggc Gly	192
35	ggc Gly 65	gcc Ala	gcc Ala	aat Asn	gct Ala	gcc Ala 70	aac Asn	Gly	gcc Ala	ctg Leu	ggt Gly 75	gca Ala	aac Asn	atc Ile	aat Asn	caa Gln 80	240
	ttg Leu	atg Met	acg Thr	ctg Leu	cag Gln 85	gat Asp	tat Tyr	ctc Leu	gcc Ala	acg Thr 90	gtg Val	att Ile	acc	tgg Trp	cac His 95	Arg	288
40	cat His	att Ile	gcc Ala	ggg Gly 100	Leu	att Ile	gag Glu	caa Gln	gct Ala 105	aaa Lys	tcc Ser	gat Asp	atc Ile	ggc Gly 110	Asn	aat Asn	336
45	Val	Asp	Gly 115	Ala	Gln	Arg	Glu	Ile 120	Asp	Ile	ctg Leu	Glu	Asn 125	Asp	Pro	Ser	384
50	Leu	Asp 130	Ala	Asp	Glu	Arg	His 135	Thr	Ala	Ile	aat Asn	Ser 140	Leu	Val	Thr	Ala	432
55	Thr 145	His	Gly	Ala	Asn	Val 150	Ser	Leu	Val	Ala	Glu 155	Thr	Ala	Glu	Arg	160	480
	ctg Leu	gaa Glu	tcc Ser	aag Lys	aat Asn 165	Trp	aaa Lys	cct Pro	ccg Pro	aag Lys 170	Asn	gca Ala	ctc Leu	gag Glu	gat Asp 175	Leu	528
60	ctt Leu	cag Gln	cag Glr	aag Lys 180	Ser	ccg Pro	cca Pro	ccc Pro	cca Pro 185	Asp	gtg Val	cct Pro	acc Thr	Leu 190	ı Val	gtg Val	576
65	cca Pro	tcc Ser	2 ccg	Gly	aca Thr	ccg Pro	ggc Gly	aca Thr 200	Pro	gga Gly	a acc	e ccg	ato 11e 205	Thr	ccg Pro	gga Gly	624

5				acc Thr														672
J				atc Ile														720
10	_		_	ccg Pro	_		_											768
15				acc Thr 260														816
20		_	_	acc Thr	_	_	_		-									864
25				gct Ala														912
				act Thr														960
30				ccg Pro	-											caa Gln	٠	1008
35			-	ccg Pro 340		•												1056
40	_			gac Asp	_							Pro						1104
45				ggc												gcc Ala		1152
				ggc	Ala		Ser	Ser	Val	Gly	Thr	Ala		Ala	Ser			1200
50				cat His								_				Asp		1248
55				gca Ala 420						Ala					Ala			1296
60														Asp		agc Ser		1344
65	gag Glu	tct Ser 450	Ala	gat Asp	gac Asp	ggt Gly	acg Thr 455	ccg Pro	gtg Val	tcg Ser	atg Met	atc Ile 460	Pro	gtg Val	tcg Ser	gcg Ala		1392
	gct	cgg	gcg	gca	cgc	gac	gcc	gcc	act	gca	gct	gcc	agc	gcc	cgc	cag		1440

	Ala 465	Arg	Ala	Ala	Arg	Asp 470	Ala	Ala	Thr	Ala	Ala 475	Ala	Ser	Ala	Arg	Gln 480	
5	_	ggc Gly	_		_		_				_	_			_		1488
10		aac Asn	-											_		_	1536
15		gcg Ala				_				_	_	_		_			1584
,0	_	gcc Ala 530				_		_	_	_	_		-				1632
20	_	agc Ser		_		_		-	_	•	_		_	=	=		1680
25		tac Tyr	_	_	_	_			_			_					1728
30	_	ctg Leu		•													1776
35		ggt Gly		_	_						-	-		_		_	1824
		aaa Lys 610	_	- -	-		•		_		-						1872
40		gct Ala	_	_	_	_			-	_	_	_					1920
45	_	ccg Pro		_		_	_			_		_				=	1968
50	_	tgg Trp			_	_	_		_		_		_			- ·	2016
55		gcc Ala	_		=	_				=							2064
		att Ile 690	_	_			_					-		-	-	_	2112
60	_	gtg Val	_	=-				_									2160
65		gac Asp					-										2187

5		<2 <2	210> 211> 212> 213>	729 PRT	bact	eriu	ım tı	ıbero	culos	sis						
10	Met 1		IOO> Ile		Arg 5	Pro	Thr	Gly	Ser	Tyr 10	Ala	Arg	Gln	Met	Leu 15	Asp
	Pro	Gly	Gly	Trp 20	Val	Glu	Ala	Asp	Glu 25	Asp	Thr	Phe	Tyr	Asp 30	Arg	Ala
	Gln	Glu	Tyr 35	Ser	Gln	Val	Leu	Gln 40	Arg	Val	Thr	Asp	Val 45	Leu	Asp	Thr
15	_	50					55	Val				60				
	65					70		Gly			75					80
20					85			Leu		90					95	•
				100				Gln	105					110		
25		_	115			_		11e 120					125			•
25		130			•		135	Thr		•		140				
	145		_			150		Pro			155					160
30			•	_	165			Pro	•	170					175	
				180				Thr	185					190		
35	Thr	Pro	195 Ile	Thr	Pro	Gly	Thr	200 Pro	Ile	Thr	Pro	Ile	205 Pro	Gly	Ala	Pro
		210 Thr	Pro	Ile	Thr		215 Thr	Pro	Gly	Thr		220 Val	Thr	Pro	Val	
40	225 Pro	Gly	Lys	Pro		230 Thr	Pro	Val	Thr		235 Val	Lys	Pro	Gly		240 Pro
40	Gly	Glu	Pro		245 Pro	Ile	Thr	Pro			Pro	Pro	Val		255 Pro	Ala
	Thr	Pro		260 Thr	Pro	Ala	Thr	Pro	265 Val		Pro	Ala		270 Ala	Pro	His
45	Pro	Gln 290	275 Pro	Ala	Pro	Ala	Pro 295	280 Ala	Pro	Ser	Pro	Gly 300	285 Pro	Gln	Pro	Val
	Thr 305		Ala	Thr	Pro	Gly 310		Ser	Gly	Pro	Ala 315		Pro	Gly	Thr	Pro 320
50		Gly	Glu	Pro	Ala 325		His	Val	Lys	Pro 330		Ala	Leu	Ala	Glu 335	
	Pro	Gly	Val	Pro 340	Gly	Gln	His	Ala	Gly 345		Gly	Thr	Gln	Ser 350		Pro
			355	_				Ala 360					365			
55		370					375	Ala				380				
	385			_		390		Ser			395					400
60		_			405			Gly		410					415	
	_			420				Arg	425					430		
e e			435					Asp 440			_	_	445			
65	Glu	Ser 450		Asp	Asp	GIÅ	Thr 455	Pro	val	ser	met	11e 460	PIO	val	ser	WIG

```
Ala Arg Ala Arg Asp Ala Ala Thr Ala Ala Ala Ser Ala Arg Gln
                                             475
                         470
    465
    Arg Gly Arg Gly Asp Ala Leu Arg Leu Ala Arg Arg Ile Ala Ala
                                         490
                     485
    Leu Asn Ala Ser Asp Asn Asn Ala Gly Asp Tyr Gly Phe Phe Trp Ile
                                     505
                                                          510
                 500
    Thr Ala Val Thr Thr Asp Gly Ser Ile Val Val Ala Asn Ser Tyr Gly
                                 520
    Leu Ala Tyr Ile Pro Asp Gly Met Glu Leu Pro Asn Lys Val Tyr Leu
10
         530
                             535
    Ala Ser Ala Asp His Ala Ile Pro Val Asp Glu Ile Ala Arg Cys Ala
                                             555
     545
                         550
     Thr Tyr Pro Val Leu Ala Val Gln Ala Trp Ala Ala Phe His Asp Met
                                                              575
                                         570
                     565
    Thr Leu Arg Ala Val Ile Gly Thr Ala Glu Gln Leu Ala Ser Ser Asp
15
                                                          590
                 580
                                     585
     Pro Gly Val Ala Lys Ile Val Leu Glu Pro Asp Asp Ile Pro Glu Ser
                                 600
     Gly Lys Met Thr Gly Arg Ser Arg Leu Glu Val Val Asp Pro Ser Ala
20
                             615
                                                 620
         610
     Ala Ala Gln Leu Ala Asp Thr Thr Asp Gln Arg Leu Leu Asp Leu Leu
                                             635
     625
                         630
     Pro Pro Ala Pro Val Asp Val Asn Pro Pro Gly Asp Glu Arg His Met
                                         650
                     645
     Leu Trp Phe Glu Leu Met Lys Pro Met Thr Ser Thr Ala Thr Gly Arg
25
                                                          670
                                     665
                 660
     Glu Ala Ala His Leu Arg Ala Phe Arg Ala Tyr Ala Ala His Ser Gln
                                 680
                                                      685
     Glu Ile Ala Leu His Gln Ala His Thr Ala Thr Asp Ala Ala Val Gln
30
                                                 700
         690
                             695
     Arg Val Ala Val Ala Asp Trp Leu Tyr Trp Gln Tyr Val Thr Gly Leu
                                                                  720
                                             715
                         710
     705
     Leu Asp Arg Ala Leu Ala Ala Cys
                     725
35
           <210> 23
           <211> 18
           <212> PRT
           <213> Mycobacterium tuberculosis
40
           <400> 23
     Thr Leu Arg Val Val Pro Glu Gly Leu Ala Ala Ala Ser Ala Ala Val
                                                              15
                                         10
      1
                      5
     Glu Ala
45
           <210> 24
           <211> 18
           <212> PRT
50
           <213> Mycobacterium tuberculosis
           <400> 24
     Ala Ser Ala Ala Val Glu Ala Leu Thr Ala Arg Leu Ala Ala Ala His
                                                              15
      1
                                         10
55
     Ala Ser
           <210> 25
           <211> 18
60
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 25
     Thr Ala Arg Leu Ala Ala Ala His Ala Ser Ala Ala Pro Val Ile Thr
65
                                                              15
                                          10
                      5
      1
     Ala Val
```

```
<210> 26
          <211> 18
 5
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 26
    Ala Ala Pro Val Ile Thr Ala Val Val Pro Pro Ala Ala Asp Pro Val
10
                     5
                                         10
     1
    Ser Leu
          <210> 27
15
          <211> 18
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 27
    Pro Ala Ala Asp Pro Val Ser Leu Gln Thr Ala Ala Gly Phe Ser Ala
20
                                         10
    Gln Gly
25
           <210> 28
          <211> 18
           <212> PRT
          <213> Mycobacterium tuberculosis
30
          <400> 28
    Ala Ala Gly Phe Ser Ala Gln Gly Val Glu His Ala Val Val Thr Ala
                                                              15
                                         10
    Glu Gly
35
           <210> 29
           <211> 18
           <212> PRT
          <213> Mycobacterium tuberculosis
40
           <400> 29
    His Ala Val Val Thr Ala Glu Gly Val Glu Glu Leu Gly Arg Ala Gly
                                         10
   Val Gly
45
           <210> 30
          <211> 18
           <212> PRT
50
           <213> Mycobacterium tuberculosis
           <400> 30
    Gly Val Glu Glu Leu Gly Arg Ala Gly Val Gly Val Gly Glu Ser Gly
                                                              15
                                         10
55
    Ala Ser
           <210> 31
           <211> 18
60
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 31
    Gly Val Gly Glu Ser Gly Ala Ser Tyr Leu Ala Gly Asp Ala Ala
65
                                         10
                                                              15
    Ala Ala
```

```
<210> 32
          <211> 18
 5
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 32
    Ser Tyr Leu Ala Gly Asp Ala Ala Ala Ala Ala Thr Tyr Gly Val Val
10
                                                              15
                                          10
    Gly Gly
           <210> 33
15
           <211> 18
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 33
     Thr Leu Arg Val Val Pro Glu Ser Leu Ala Gly Ala Ser Ala Ala Ile
20
                                                               15
                      5
                                          10
     1
     Glu Ala
25
           <210> 34
           <211> 18
           <212> PRT
           <213> Mycobacterium tuberculosis
30
           <400> 34
     Ala Ser Ala Ala Ile Glu Ala Val Thr Ala Arg Leu Ala Ala Ala His
                                                               15
                                          10
      1
     Ala Ala
35
           <210> 35
           <211> 18
           <212> PRT
           <213> Mycobacterium tuberculosis
40
           <400> 35
     Thr Ala Arg Leu Ala Ala Ala His Ala Ala Ala Ala Pro Phe Ile Ala
                                                               15
                                          10
     Ala Val
45
           <210> 36
           <211> 18
           <212> PRT
50
           <213> Mycobacterium tuberculosis
           <400> 36
     Ala Ala Pro Phe Ile Ala Ala Val Ile Pro Pro Gly Ser Asp Ser Val
                                                               15
                                          10
      1
                       5
55
     Ser Val
           <210> 37
           <211> 18
60
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 37
     Pro Gly Ser Asp Ser Val Ser Val Cys Asn Ala Val Glu Phe Ser Val
65
                                                               15
                       5
                                          10
      1
     His Gly
```

```
<210> 38
          <211> 18
5
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 38
    Ala Val Glu Phe Ser Val His Gly Ser Gln His Val Ala Met Ala Ala
10
                      5
                                         10
                                                              15
     1
    Gln Gly
          <210> 39
15
          <211> 18
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 39
    His Val Ala Met Ala Ala Gln Gly Val Glu Glu Leu Gly Arg Ser Gly
                                                              15
     1
                      5
                                         10
    Val Gly
25
          <210> 40
          <211> 18
          <212> PRT
          <213> Mycobacterium tuberculosis
30
          <400> 40
    Gly Val Glu Glu Leu Gly Arg Ser Gly Val Gly Val Ala Glu Ser Gly
                                                              15
                                         10
    Ala Ser
35
          <210> 41
          <211> 18
          <212> PRT
           <213> Mycobacterium tuberculosis
40
          <400> 41
    Gly Val Ala Glu Ser Gly Ala Ser Tyr Ala Ala Arg Asp Ala Leu Ala
                                         10
    Ala Ala
45
          <210> 42
          <211> 18
           <212> PRT
50
          <213> Mycobacterium tuberculosis
          <400> 42
    Ser Tyr Ala Ala Arg Asp Ala Leu Ala Ala Ala Ser Tyr Leu Ser Gly
                                         10
55
    Gly Leu
           <210> 43 ·
           <211> 30
60
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 43
    Met Lys Ala Lys Val Gly Asp Trp Leu Val Ile Lys Gly Ala Thr Ile
65
                      5
                                                              15
     1
    Asp Gln Pro Asp His Arg Gly Leu Ile Ile Glu Val Arg Ser
```

```
30
                 20
                                     25
           <210> 44
           <211> 30
 5
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 44
    His Arg Gly Leu Ile Ile Glu Val Arg Ser Ser Asp Gly Ser Pro Pro
10
                                         10
    Tyr Val Val Arg Trp Leu Glu Thr Asp His Val Ala Thr Val
                                     25
                 20
           <210> 45
15
           <211> 30
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 45
20
    Val Arg Trp Leu Glu Thr Asp His Val Ala Thr Val Ile Pro Gly Pro
                                                              15
                      5
                                          10
      1
     Asp Ala Val Val Thr Ala Glu Glu Gln Asn Ala Ala Asp
                                                          30
                                      25
                 20
25
           <210> 46
           <211> 30
           <212> PRT
           <213> Mycobacterium tuberculosis
30
           <400> 46
     Val Thr Ala Glu Glu Gln Asn Ala Ala Asp Glu Arg Ala Gln His Arg
                      5
                                          10
      1
     Phe Gly Ala Val Gln Ser Ala Ile Leu His Ala Arg Gly Thr
                                      25
                 20
35
           <210> 47
           <211> 30
           <212> PRT
           <213> Mycobactefium tuberculosis
40
           <400> 47
     Asp Ser Thr Glu Asp Phe Pro Ile Pro Arg Arg Met Ile Ala Thr Thr
                                                              15
                                          10
      1
     Cys Asp Ala Glu Gln Tyr Leu Ala Ala Val Arg Asp Thr Ser
45
                 20
                                      25
           <210> 48
           <211> 30
           <212> PRT
50
           <213> Mycobacterium tuberculosis
           <400> 48
     Gln Tyr Leu Ala Ala Val Arg Asp Thr Ser Pro Val Tyr Tyr Gln Arg
55
     Tyr Met Ile Asp Phe Asn Asn His Ala Asn Leu Gln Gln Ala
                                                           30
                                      25
                 20
           <210> 49
           <211> 30
60
           <212> PRT
           <213> Mycobacterium tuberculosis
            <400> 49
     Phe Asn Asn His Ala Asn Leu Gln Gln Ala Thr Ile Asn Lys Ala His
65
                                          10
                       5
     Trp Phe Phe Ser Leu Ser Pro Ala Glu Arg Arg Asp Tyr Ser
```

		20	25	30
5	<210> <211> <212> <213>	30	erculosis	
10	1	Ala Glu Arg Arg As	sp Tyr Ser Glu His Phe 10 al Asn His Met Lys Ile 25	15
15 -	<212>	27	erculosis	
20	1	Val Asn His Met Ly 5 Gly Thr Glu Val Cy	ys Ile Phe Phe Asn Asn 10 ys Asn Gly Tyr 25	Lys Gly Val 15
25	<210><211><211><212>	411		- -
30	<220> <221>	>		
35	<400> atg tca aga Met Ser Arg	a cag gcg tca aga c	ag gtg tca ata att cgc In Val Ser Ile Ile Arg 10	tcc gct ggt 48 Ser Ala Gly 15
40	gac ggt aac Asp Gly Asr	c cgg tcg tgc ggg t n Arg Ser Cys Gly C 20	gt gtg acg cct aag gaa ys Val Thr Pro Lys Glu 25	gga gtg tgg 96 Gly Val Trp 30
45	gtg gtg acg Val Val Thi	r Leu Arg Val Val P	ct gag ggt ttg gcg gcc Pro Glu Gly Leu Ala Ala 40 45	Ala Ser Ala
50	gcg gtg gag Ala Val Glu 50	g gcg ttg acc gca c u Ala Leu Thr Ala A 55	gg ctg gcc gcc gca cac rg Leu Ala Ala Ala His 60	gct ggc gcg 192 Ala Gly Ala
50	gcg ccg gcg Ala Pro Ala 65	g att acg gcg gtg g a Ile Thr Ala Val V 70	tg gcg ccg gcg gcg gat Val Ala Pro Ala Ala Asp 75	ccg gtg tcg 240 Pro Val Ser 80
55	ttg cag ag Leu Gln Se	t gcg gtg ggg ttt a r Ala Val Gly Phe S 85	agc gcc tta ggt agc gag Ser Ala Leu Gly Ser Glu 90	cat gcg gcg 288 His Ala Ala 95
60	atc gcg ggo Ile Ala Gl	c gaa ggg gtc gag g y Glu Gly Val Glu G 100	gag ctg ggt cgt tcc ggg Slu Leu Gly Arg Ser Gly 105	gtc gct gtg 336 Val Ala Val 110
65	ggt gag tc Gly Glu Se 11	r Gly Ile Gly Tyr A	gcc gcc ggt gat gcg gtg Ala Ala Gly Asp Ala Val 120 125	. Ala Ala Ala

WO 01/79274 PCT/DK01/00276

```
411
    acg tat ctg gtt tcg ggt ggg tcg ttg
    Thr Tyr Leu Val Ser Gly Gly Ser Leu
         130
                             135
 5
          <210> 53
          <211> 137
          <212> PRT
          <213> Mycobacterium tuberculosis
10
          <400> 53
    Met Ser Arg Gln Ala Ser Arg Gln Val Ser Ile Ile Arg Ser Ala Gly
    Asp Gly Asn Arg Ser Cys Gly Cys Val Thr Pro Lys Glu Gly Val Trp
15
                 20
                                     25
    Val Val Thr Leu Arg Val Val Pro Glu Gly Leu Ala Ala Ala Ser Ala
             35
                                 40
                                                      45
    Ala Val Glu Ala Leu Thr Ala Arg Leu Ala Ala Ala His Ala Gly Ala
                             55
20
    Ala Pro Ala Ile Thr Ala Val Val Ala Pro Ala Ala Asp Pro Val Ser
                                                                  80
                                              75
     65
                         70
    Leu Gln Ser Ala Val Gly Phe Ser Ala Leu Gly Ser Glu His Ala Ala
     Ile Ala Gly Glu Gly Val Glu Glu Leu Gly Arg Ser Gly Val Ala Val
25
                 100
                                     105
                                                          110
     Gly Glu Ser Gly Ile Gly Tyr Ala Ala Gly Asp Ala Val Ala Ala Ala
                                 120
                                                      125
             115
     Thr Tyr Leu Val Ser Gly Gly Ser Leu
         130
                             135
30
           <210> 54
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 54
     Ser Arg Leu Ile Phe Glu Ala Arg Arg Arg Leu Ala Pro Pro Ser Ser
                                                              15
                                          10
     His Gln Gly Thr
40
           <210> 55
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 55
     Ile Ile Ile Glu Ala Pro Pro Glu Leu Pro Arg Val Ile Pro Pro Ser
                                                              15
                                          10
50
    Leu Leu Arg Arg
                 20
           <210> 56
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 56
     Ala Leu Pro Tyr Leu Ile Gly Ile Leu Ile Val Gly Met Ile Val Ala
60
                                                              15
                                          10
     Leu Val Ala Thr
                 20
           <210> 57
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 57
    Gly Met Arg Val Ile Ser Pro Gln Thr Leu Phe Phe Pro Phe Val Leu
 5
                                                              15
                                         10
    Leu Leu Ala Ala
                 20
           <210> 58
10
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 58
    Thr Ala Leu Tyr Arg Gly Asn Asp Lys Lys Met Arg Thr Glu Glu Val
15
                                                              15
                                         10
    Asp Ala Glu Arg
                 20
20
          <210> 59
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
25
           <400> 59
    Ala Asp Tyr Leu Arg Tyr Leu Ser Val Val Arg Asp Asn Ile Arg Ala
                                         10
                                                              15
    Gln Ala Ala Glu
                 20
30
          <210> 60
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 60
    Gln Arg Ala Ser Ala Leu Trp Ser His Pro Asp Pro Thr Ala Leu Ala
                                                              15
                      5
                                          10
     1
    Ser Val Pro Gly
40
                 20
           <210> 61
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 61
     Ser Arg Arg Gln Trp Glu Arg Asp Pro His Asp Pro Asp Phe Leu Val
                                                              15
                                         10
50
    Leu Arg Ala Gly
                 20
           <210> 62
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
          <400> 62
    Arg His Thr Val Pro Leu Ala Thr Thr Leu Arg Val Asn Asp Thr Ala
60
                                                              15
                      5
                                          10
     1
    Asp Glu Ile Asp
                 20
           <210> 63
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 63
    Leu Glu Pro Val Ser His Ser Ala Leu Arg Ser Leu Leu Asp Thr Gln
5
                                                              15
                                         10
    Arg Ser Ile Gly
                 20
           <210> 64
10
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 64
    Asp Val Pro Thr Gly Ile Asp Leu Thr Lys Val Ser Pro Ile Thr Val
                                                              15
                                          10
     Leu Gly Glu Arg
                 20
20
           <210> 65
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
25
           <400> 65
     Ala Gln Val Arg Ala Val Leu Arg Ala Trp Ile Ala Gln Ala Val Thr
                                                              15
                                          10
                      5
      1
     Trp His Asp Pro
                 20
30
           <210> 66
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 66
     Thr Val Leu Gly Val Ala Leu Ala Ala Arg Asp Leu Glu Gly Arg Asp
                                                               15
                                          10
      1
     Trp Asn Trp Leu
40
                 20
           <210> 67
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 67
     Lys Trp Leu Pro His Val Asp Ile Pro Gly Arg Leu Asp Ala Leu Gly
                                          10
50
     Pro Ala Arg Asn
                 20
           <210> 68
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 68
     Leu Ser Thr Asp Pro Asp Glu Leu Ile Ala Leu Leu Gly Pro Val Leu
60
                                                               15
                                          10
     Ala Asp Arg Pro
                  20
           <210> 69
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 69
    Ala Phe Thr Gly Gln Pro Thr Asp Ala Leu Arg His Leu Leu Ile Val
                                         10
                                                              15
    Val Asp Asp Pro
                 20
          <210> 70
10
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 70
15
   Asp Tyr Asp Leu Gly Ala Ser Pro Leu Ala Val Gly Arg Ala Gly Val
                                         10
    Thr Val Val His
                 20
20
          <210> 71
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
25
          <400> 71
    Cys Ser Ala Ser Ala Pro His Arg Glu Gln Tyr Ser Asp Pro Glu Lys
                                                              15
     Pro Ile Leu Arg
                 20
30
           <210> 72
           <211> 20
           <212> PRT
          <213> Mycobacterium tuberculosis
35
           <400> 72
    Val Ala His Gly Ala Ile Glu Arg Trp Gln Thr Gly Gly Trp Gln Pro
                                         10
                                                              15
     1
     Tyr Ile Asp Ala.
40
                 20
           <210> 73
          <211> 20
           <212> PRT
45
          <213> Mycobacterium tuberculosis
          <400> 73
    Ala Asp Gln Phe Ser Ala Asp Glu Ala Ala His Leu Ala Arg Arg Leu
                                         10
50
     Ser Arg Trp Asp
                 20
           <210> 74
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
          <400> 74
     Ser Asn Pro Thr His Ala Gly Leu Arg Ser Ala Ala Thr Arg Gly Ala
60
                                         10
                      5
                                                              15
     Ser Phe Thr Thr
                 20
           <210> 75
65
           <211> 20
           <212> PRT
```

WO 01/79274 PCT/DK01/00276

```
<213> Mycobacterium tuberculosis
          <400> 75
    Leu Leu Gly Ile Glu Asp Ala Ser Arg Leu Asp Val Pro Ala Leu Trp
 5
    Ala Pro Arg Arg
                 20
          <210> 76
10
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 76
15
    Arg Asp Glu Glu Leu Arg Val Pro Ile Gly Val Thr Gly Thr Gly Glu
                                                              15
                                          10
      1
     Pro Leu Met Phe
                 20
20
          <210> 77
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
25
           <400> 77
    Asp Leu Lys Asp Glu Ala Glu Gly Gly Met Gly Pro His Gly Leu Met
                                                              15
                      5
      1
                                          10
     Ile Gly Met Thr
                 20
30
           <210> 78
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 78
     Gly Ser Gly Lys Ser Gln Thr Leu Met Ser Ile Leu Leu Ser Leu Leu
                                                              15
                                          10
     Thr Thr His Ser
40
                 20
           <210> 79
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 79
     Ala Glu Arg Leu Ile Val Ile Tyr Ala Asp Phe Lys Gly Glu Ala Gly
50
     Ala Asp Ser Phe
                 20
           <210> 80
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 80
     Arg Asp Phe Pro Gln Val Val Ala Val Ile Ser Asn Met Ala Glu Lys
60
                                          10
                                                               15
                      5
     Lys Ser Leu Ala
                 20
           <210> 81
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 81
    Asp Arg Phe Ala Asp Thr Leu Arg Gly Glu Val Ala Arg Arg Glu Met
                                         10
    Leu Leu Arg Glu
                 20
          <210> 82
10
          <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
          <400> 82
    Ala Gly Arg Lys Val Gln Gly Ser Ala Phe Asn Ser Val Leu Glu Tyr
15
                                                             15
                                         10
    Glu Asn Ala Ile
                 20
20
          <210> 83
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
25
           <400> 83
    Ala Ala Gly His Ser Leu Pro Pro Ile Pro Thr Leu Phe Val Val Ala
                                                              15
                                          10
    Asp Glu Phe Thr
                 20
30
           <210> 84
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 84
    Leu Met Leu Ala Asp His Pro Glu Tyr Ala Glu Leu Phe Asp Tyr Val
                                                              15
                                          10
      1
    Ala Arg Lys Gly
40
                 20
           <210> 85
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 85
    Arg Ser Phe Arg Ile His Ile Leu Phe Ala Ser Gln Thr Leu Asp Val
                                                              15
                                          10
      1
50
    Gly Lys Ile Lys
                 20
           <210> 86
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 86
     Asp Ile Asp Lys Asn Thr Ala Tyr Arg Ile Gly Leu Lys Val Ala Ser
60
                                                              15
                                          10
     Pro Ser Val Ser
                 20
           <210> 87
65
           <211> 20
           <212> PRT
```

WO 01/79274 PCT/DK01/00276

```
<213> Mycobacterium tuberculosis
           <400> 87
    Arg Gln Ile Ile Gly Val Glu Asp Ala Tyr His Ile Glu Ser Gly Lys
 5
     Glu His Lys Gly
                 20
           <210> 88
10
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 88
15
    Val Gly Phe Leu Val Pro Ala Pro Gly Ala Thr Pro Ile Arg Phe Arg
                                                              15
                                          10
     Ser Thr Tyr Val
                 20
20
           <210> 89
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
25
           <400> 89
     Asp Gly Ile Tyr Glu Pro Pro Gln Thr Ala Lys Ala Val Val Gln
                                                               15
                      5
                                          10
      1
     Ser Val Pro Glu
                 20
30
           <210> 90
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 90
     Pro Lys Leu Phe Thr Ala Ala Ala Val Glu Pro Asp Pro Gly Thr Val
                      5
                                          10
                                                               15
      1
     Ile Ala Asp Thr
40
                 20
           <210> 91
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 91
     Asp Glu Gln Glu Pro Ala Asp Pro Pro Arg Lys Leu Ile Ala Thr Ile
                                          10
                                                               15
50
     Gly Glu Gln Leu
                 20
           <210> 92
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 92
     Ala Arg Tyr Gly Pro Arg Ala Pro Gln Leu Trp Leu Pro Pro Leu Asp
60
     Glu Thr Ile Pro
                 20
           <210> 93
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 93
    Leu Ser Ala Ala Leu Ala Arg Ala Gly Val Gly Pro Arg Gln Trp Arg
                                         10
     1
    Trp Pro Leu Gly
                 20
          <210> 94
10
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 94
   Glu Ile Asp Arg Pro Phe Glu Met Arg Arg Asp Pro Leu Val Phe Asp
                      5
                                         10
     1
    Ala Arg Ser Ser
                 20
20
           <210> 95
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
25
          <400> 95
    Ala Gly Asn Met Val Ile His Gly Gly Pro Lys Ser Gly Lys Ser Thr
                                         10
                                                             . 15
      1
    Ala Leu Gln Thr
                 20
30
           <210> 96
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 96
     Phe Ile Leu Ser Ala Ala Ser Leu His Ser Pro His Glu Val Ser Phe
                                                              15
                      5
                                          10
      1
     Tyr Cys Leu Asp
40
                 20
           <210> 97
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 97
     Tyr Gly Gly Gln Leu Arg Ala Leu Gln Asp Leu Ala His Val Gly
                                                              15
                                          10
50
     Ser Val Ala Ser
                 20
           <210> 98
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 98
     Ala Leu Glu Pro Glu Arg Ile Arg Arg Thr Phe Gly Glu Leu Glu Gln
60
                                          10
                                                               15
     Leu Leu Ser
                 20
           <210> 99
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
           <400> 99
    Arg Gln Gln Arg Glu Val Phe Arg Asp Arg Gly Ala Asn Gly Ser Thr
 5
                                          10
    Pro Asp Asp Gly
                 20
           <210> 100
10
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 100
15
    Phe Gly Glu Val Phe Leu Val Ile Asp Asn Leu Tyr Gly Phe Gly Arg
                                          10
                                                              15
    Asp Asn Thr Asp
                 20
20
           <210> 101
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
25
           <400> 101
     Gln Phe Asn Thr Arg Asn Pro Leu Leu Ala Arg Val Thr Glu Leu Val
                                                               15
                      5
                                          10
      1
     Asn Val Gly Leu
                 20
30
           <210> 102
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 102
     Ala Tyr Gly Ile His Val Ile Ile Thr Thr Pro Ser Trp Leu Glu Val
                                          10
                                                               15
      1
                      5
     Pro Leu Ala Met
40
                 20
           <210> 103
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 103
     Arg Asp Gly Leu Gly Leu Arg Leu Glu Leu Arg Leu His Asp Ala Arg
                                          10
50
     Asp Ser Asn Val
                 20
           <210> 104
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 104
     Arg Val Val Gly Ala Leu Arg Arg Pro Ala Asp Ala Val Pro His Asp
60
                                                               15
                                          10
     Gln Pro Gly Arg
                 20
           <210> 105
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 105
    Gly Leu Thr Met Ala Ala Glu His Phe Leu Phe Ala Ala Pro Glu Leu
                                         10
     1
    Asp Ala Gln Thr
                20
          <210> 106
10
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 106
   Asn Pro Val Ala Ala Ile Asn Ala Arg Tyr Pro Gly Met Ala Ala Pro
                                                             15
                                         10
                      5
    Pro Val Arg Leu
                 20
20
          <210> 107
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
25
          <400> 107
    Leu Pro Thr Asn Leu Ala Pro His Ala Val Gly Glu Leu Tyr Arg Gly
                                                              15
                                         10
    Pro Asp Gln Leu
                 20
30
           <210> 108
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 108
    Val Ile Gly Gln Arg Glu Glu Asp Leu Ala Pro Val Ile Leu Asp Leu
                                                              15
                                         10
    Ala Ala Asn Pro
40
                 20
           <210> 109
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 109
     Leu Leu Met Val Phe Gly Asp Ala Arg Ser Gly Lys Thr Thr Leu Leu
                                                              15
                                         10
50
    Arg His Ile Ile
                 20
           <210> 110
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 110
     Arg Thr Val Arg Glu His Ser Thr Ala Asp Arg Val Ala Phe Thr Val
60
                                                              15
                                          10
                      5
      1
     Leu Asp Arg Arg
                 20
          <210> 111
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
           <400> 111
    Leu His Leu Val Asp Glu Pro Leu Phe Pro Asp Asn Glu Tyr Thr Ala
                                         10
    Asn Ile Asp Arg
                 20
           <210> 112
10
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 112
    Ile Ile Pro Ala Met Leu Gly Leu Ala Asn Leu Ile Glu Ala Arg Arg
                                                              15
      1
     Pro Pro Ala Gly
                 20
20
           <210> 113
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
25
           <400> 113
    Met Ser Ala Ala Glu Leu Ser Arg Trp Thr Phe Ala Gly His Thr His
                                                              15
                                          10
      1
     Tyr Leu Ile Ile
                 20
30
           <210> 114
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 114
     Asp Asp Val Asp Gln Val Pro Asp Ser Pro Ala Met Thr Gly Pro Tyr
                      5
                                                               15
      1
                                          10
     Ile Gly Gln Arg
40
                 20
           <210> 115
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 115
     Pro Tyr Ile Gly Gln Arg Pro Trp Thr Pro Leu Ile Gly Leu Leu Ala
                                          10
                                                               15
50
    Gln Ala Gly Asp
                 20
           <210> 116
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 116
     Leu Ala Gln Ala Gly Asp Leu Gly Leu Arg Val Ile Val Thr Gly Arg
60
                                                               15
      1
                                          10
     Ala Thr Gly Ser
                 20
           <210> 117
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 117
    Gly Arg Ala Thr Gly Ser Ala His Leu Leu Met Thr Ser Pro Leu Leu
                                         10
                     5
    Arg Arg Phe Asn
                 20
          <210> 118
10
          <211> 20
           <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 118
15 Leu Leu Arg Arg Phe Asn Asp Leu Gln Ala Thr Thr Leu Met Leu Ala
                                         10
    Gly Asn Pro Ala
                 20
20
           <210> 119
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
25
           <400> 119
    Leu Ala Gly Asn Pro Ala Asp Ser Gly Lys Ile Arg Gly Glu Arg Phe
                                         10
    Ala Arg Leu Pro
                 20
30
           <210> 120
           <211> 20 %
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 120
     Glu Arg Phe Ala Arg Leu Pro Ala Gly Arg Ala Ile Leu Leu Thr Asp
                                                              15
                                         10
     Ser Asp Ser Pro
40
                 20
           <210> 121
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 121
     Leu Thr Asp Ser Asp Ser Pro Thr Tyr Val Gln Leu Ile Asn Pro Leu
                                                              15
                                         10
50 Val Asp Ala Ala
                 20
           <210> 122
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 122
     Asn Pro Leu Val Asp Ala Ala Ala Val Ser Gly Glu Thr Gln Gln Lys
60
                                          10
                                                              15
      1
     Gly Ser Gln Ser
                 20
           <210> 123
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 123
    Ala Glu Pro Leu Ala Val Asp Pro Thr Gly Leu Ser Ala Ala Ala
                                         10
    Lys Leu Ala Gly
                 20
          <210> 124
10
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 124
    Ala Ala Ala Lys Leu Ala Gly Leu Val Phe Pro Gln Pro Pro Ala
                                                              15
                                         10
    Pro Ile Ala Val
                 20
20
          <210> 125
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
25
           <400> 125
    Gln Pro Pro Ala Pro Ile Ala Val Ser Gly Thr Asp Ser Val Val Ala
                                                              15
                      5
                                          10
      1
    Ala Ile Asn Glu
                 20
30
           <210> 126
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 126
     Ser Val Val Ala Ala Ile Asn Glu Thr Met Pro Ser Ile Glu Ser Leu
                                          10
                                                              15
      1
                      5
     Val Ser Asp Gly
40
                 20
           <210> 127
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 127
     Ile Glu Ser Leu Val Ser Asp Gly Leu Pro Gly Val Lys Ala Ala Leu
                                                              15
                                          10
      1
50
     Thr Arg Thr Ala
                 20
           <210> 128
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 128
     Lys Ala Ala Leu Thr Arg Thr Ala Ser Asn Met Asn Ala Ala Ala Asp
60
                                                               15
                                          10
     Val Tyr Ala Lys
                 20
           <210> 129
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 129
    Ala Ala Asp Val Tyr Ala Lys Thr Asp Gln Ser Leu Gly Thr Ser
                                         10
    Leu Ser Gln Tyr
                20
          <210> 130
10
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
          <400> 130
   Leu Gly Thr Ser Leu Ser Gln Tyr Ala Phe Gly Ser Ser Gly Glu Gly
                                         10
                                                             15
   Leu Ala Gly Val
                20
20
          <210> 131
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
25
          <400> 131
    Ser Gly Glu Gly Leù Ala Gly Val Ala Ser Val Gly Gly Gln Pro Ser
                                                             15
                                         10
    Gln Ala Thr Gln
                 20
30
          <210> 132
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
35
          <400> 132
    Gly Gln Pro Ser Gln Ala Thr Gln Leu Leu Ser Thr Pro Val Ser Gln
                                                              15
      1
                      5
                                         10
    Val Thr Thr Gln
40
                20
          <210> 133
          <211> 20
          <212> PRT
45
          <213> Mycobacterium tuberculosis
          <400> 133
    Pro Val Ser Gln Val Thr Thr Gln Leu Gly Glu Thr Ala Ala Glu Leu
                                                              15
                                         10
     1
50
    Ala Pro Arg Val
                 20
          <210> 134
           <211> 20 -
55
           <212> PRT
           <213> Mycobacterium tuberculosis
         . <400> 134
    Ala Ala Glu Leu Ala Pro Arg Val Val Ala Thr Val Pro Gln Leu Val
60
                                                              15
                                         10
    Gln Leu Ala Pro
                 20
           <210> 135
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 135
    Pro Gln Leu Val Gln Leu Ala Pro His Ala Val Gln Met Ser Gln Asn
5
                                                              15
                                         10
    Ala Ser Pro Ile
                 20
          <210> 136
10
          <211> 20
          <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 136
15 Met Ser Gln Asn Ala Ser Pro Ile Ala Gln Thr Ile Ser Gln Thr Ala
                                                              15
                                         10
      1
     Gln Gln Ala Ala
                 20
20
           <210> 137
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
25
           <400> 137
     Ser Gln Thr Ala Gln Gln Ala Ala Gln Ser Ala Gln Gly Gly Ser Gly
                                                              15
                      5
                                          10
      1
     Pro Met Pro Ala
                 20
30
           <210> 138
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 138
     Gly Gly Ser Gly Pro Met Pro Ala Gln Leu Ala Ser Ala Glu Lys Pro
                                                              15
                                          10
     Ala Thr Glu Gln
40
                 20
           <210> 139
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 139
     Ala Glu Lys Pro Ala Thr Glu Gln Ala Glu Pro Val His Glu Val Thr
                                                               15
                                          10
      1
50
     Asn Asp Asp Gln
                 20
           <210> 140
           <211> 20
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 140
     His Glu Val Thr Asn Asp Asp Gln Gly Asp Gln Gly Asp Val Gln Pro
60
                                                               15
      1
                                          10
     Ala Glu Val Val
                 20
           <210> 141
65
           <211> 20
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 141
    Asp Val Gln Pro Ala Glu Val Val Ala Ala Ala Arg Asp Glu Gly Ala
                                         10
    Gly Ala Ser Pro
                20
          <210> 142
10
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis -
          <400> 142
    Asp Glu Gly Ala Gly Ala Ser Pro Gly Gln Gln Pro Gly Gly Val
15
                                                             15
                                         10
    Pro Ala Gln Ala
                 20
20
           <210> 143
          <211> 20
          <212> PRT
          <213> Mycobacterium tuberculosis
25
           <400> 143
    Gly Gly Val Pro Ala Gln Ala Met Asp Thr Gly Ala Gly Ala Arg
    Pro Ala Ala Ser
                 20
30
           <210> 144
           <211> 20
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 144
    Ala Gly Ala Arg Pro Ala Ala Ser Pro Leu Ala Ala Pro Val Asp Pro
                                         10
                                                             15
     1
     Ser Thr Pro Ala
40
                 20
           <210> 145
           <211> 20
           <212> PRT
45
           <213> Mycobacterium tuberculosis
           <400> 145
     Ser Pro Leu Ala Ala Pro Val Asp Pro Ser Thr Pro Ala Pro Ser Thr
                                                             15
                                         10
     1
50
    Thr Thr Leu
                 20
           <210> 146
           <211> 18
55
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 146
    Met Ser Arg Gln Ala Ser Arg Gln Val Ser Ile Ile Arg Ser Ala Gly
60
                                         10
                                                             15
      1
    Asp Gly
           <210> 147
65
           <211> 18
           <212> PRT
```

```
<213> Mycobacterium tuberculosis
          <400> 147
    Ile Arg Ser Ala Gly Asp Gly Asn Arg Ser Cys Gly Cys Val Thr Pro
                                                              15
                                         10
    Lys Glu
           <210> 148
10
          <211> 18
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 148
   Gly Cys Val Thr Pro Lys Glu Gly Val Trp Val Val Thr Leu Arg Val
                                                              15
                                          10
                      5
    Val Pro
20
           <210> 149
           <211> 18
           <212> PRT
           <213> Mycobacterium tuberculosis
25
           <400> 149
     Thr Ala Arg Leu Ala Ala Ala His Ala Gly Ala Ala Pro Ala Ile Thr
                                                              15
                                          10
                      5
      1
     Ala Val
30
           <210> 150
           <211> 18
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 150
     Ala Ala Pro Ala Ile Thr Ala Val Val Ala Pro Ala Ala Asp Pro Val
                                                               15
                                          10
                       5
      1
     Ser Leu
40
           <210> 151
           <211> 18
           <212> PRT
           <213> Mycobacterium tuberculosis
45
            <400> 151
     Pro Ala Ala Asp Pro Val Ser Leu Gln Ser Ala Val Gly Phe Ser Ala
                                                               15
                                           10
                       5
      1
50
     Leu Gly
            <210> 152
            <211> 18
 55
            <212> PRT
            <213> Mycobacterium tuberculosis
            <400> 152
      Ala Val Gly Phe Ser Ala Leu Gly Ser Glu His Ala Ala Ile Ala Gly
                                                               15
 60
                                           10
       1
      Glu Gly
            <210> 153
 65
            <211> 18
            <212> PRT
```

```
<213> Mycobacterium tuberculosis
           <400> 153
    His Ala Ala Ile Ala Gly Glu Gly Val Glu Glu Leu Gly Arg Ser Gly
 5
                      5
                                          10
                                                              15
    Val Ala
           <210> 154
10
           <211> 18
           <212> PRT
           <213> Mycobacterium tuberculosis
           <400> 154
15
    Gly Val Glu Glu Leu Gly Arg Ser Gly Val Ala Val Gly Glu Ser Gly
                                          10
     Ile Gly
20
           <210> 155
           <211> 18
           <212> PRT
           <213> Mycobacterium tuberculosis
25
           <400> 155
    Ala Val Gly Glu Ser Gly Ile Gly Tyr Ala Ala Gly Asp Ala Val Ala
                                                              15
     1
                                          10
    Ala Ala
30
           <210> 156
           <211> 18
           <212> PRT
           <213> Mycobacterium tuberculosis
35
           <400> 156
    Ala Ala Gly Asp Ala Val Ala Ala Ala Thr Tyr Leu Val Ser Gly Gly
                                                              15
                                          10
     1
     Ser Leu
40
           <210> 157
           <211> 27 .
           <212> DNA
45
           <213> Artificial Sequence
           <400> 157
                                                                             27 _
     ctgagatctc aggtaccgga ttcgccg
50
           <210> 158
           <211> 27
           <212> DNA
           <213> Artificial Sequence
55
           <400> 158
                                                                              27
     ctcccatggt catgactgac tcccctt
           <210> 159
           <211> 27
60
           <212> DNA
           <213> Artificial Sequence
           <400> 159
                                                                              27
     ctgagatcta tgacgttgcg agtggtt
65
```

<210> 160

	<211> 27	
	<213> Artificial Sequence	
5	<400> 160 ctcccatggt cagccgccca cgacccc	27
	<210> 161	
10	<211> 27 <212> DNA	
	<213> Artificial Sequence	
	<400> 161	27
15	ctgagatctg ctactgttaa cagatcg	
	<210> 162	
	<211> 27 <212> DNA	
20	<213> Artificial Sequence	
20	<400> 162	0.7
	ccgctcgagc tacaacgttg tggttgt	27
25	<210> 163	
25	<211> 27 <212> DNA	
	<213> Artificial Sequence	
00	<400> 163	27
30	cccaagctta tgagtattac caggccg	
	<210> 164 <211> 30	
	<211> 30 <212> DNA	
35	<213> Artificial Sequence	
	<400> 164	30
	ctcccatggt cacgacttct gctgaagcaa	
40	<210> 165	
	<211> 53 <212> DNA	
	<213> Artificial Sequence	
45	<400> 165	53
	ggggacaagt ttgtacaaaa aagcaggctt agtgtctttc gtgatggcat acc	
	<210> 166 <211> 48	
50	<212> DNA	
	<213> Artificial Sequence	
	<400> 166	4.8
55	ggggaccact ttgtacaaga aagctgggtc ctattagctg gccgccgc	
	<210> 167	
	<211> 51	
	<212> DNA <213> Artificial Sequence	
60		
	<400> 167 ggggacaagt ttgtacaaaa aagcaggctt agtgacgttg cgagtcgttc c	51
65	<210> 168 <211> 53	
	<212> DNA	

<213> Artificial Sequence <400> 168 53 ggggaccact ttgtacaaga aagctgggtc ctatagccca ccgctgagat acg 5 <210> 169 <211> 52 <212> DNA <213> Artificial Sequence 10 <400> 169 52 ggggacaagt ttgtacaaaa aagcaggctt agtgtctttc actgcgcaac cg <210> 170 15 <211> 51 <212> DNA <213> Artificial Sequence <400> 170 ggggaccact ttgtacaaga aagctgggtc ctagccggtg accacagcgt t 51 20 <210> 171 <211> 15 <212> PRT 25 <213> Mycobacterium tuberculosis <400> 171 Met Lys Ala Lys Val Gly Asp Ile Leu Val Ile Lys Gly Ala Thr 10 15 5 1 30 <210> 172 <211> 15 <212> PRT . <213> Mycobacterium tuberculosis 35 <400> 172 Asp Ser Thr Glu Asp Phe Pro Ile Pro Xaa Arg Met Xaa Ala Thr 15 10

		•
		•
		•
•		
•		

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date. 25 October 2001 (25.10.2001)

(51) International Patent Classification7:

PCT

(10) International Publication Number WO 01/079274 A3

- A61K 38/00, C12N 1/12
- (74) Agent: PLOUGMANN & VINGTOFT A/S: Sankt Annæ Plads 11, P.O. Box 3007, DK-1021 Copenhagen K (DK).
- (21) International Application Number: PCT/DK01/00276
- (81) Designated States (national): AE. AG. AL. AM, AT. AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, CZ (utility model), DE. DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, Fl, Fl (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US,
- (22) International Filing Date: 19 April 2001 (19.04.2001)
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language:

English

English

C07K 14/35.

(26) Publication Language:

(30) Priority Data:

PA 2000 00666 19 April 2000 (19.04.2000) DK PA 2001 00283 21 February 2001 (21.02.2001) DK

(71) Applicant (for all designated States except US): STATENS SERUM INSTITUT [DK/DK]; Artillerivej 5, DK-2300 Copenhagen S (DK).

Published:

— with international search report

UZ. VN. YU. ZA. ZW.

(72) Inventors; and

(88) Date of publication of the international search report:

(75) Inventors/Applicants (for US only): AGGER, Else, Marie [DK/DK]; Krudtmøllegårds Allé 9. DK-2300 Copenhagen S (DK). ANDERSEN, Peter [DK/DK]; Sparreholmvej 47, DK-2700 Brønshøj (DK). OKKELS, Li, Mei, Meng [DK/DK]; Aldershvilevej 116A. st.th., DK-2880 Bagsværd (DK). WELDINGH, Karin [DK/DK]; Nørrebrogade 224, 3.tv.. DK-2200 Copenhagen N (DK).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TUBERCULOSIS ANTIGENS AND METHODS OF USE THEREOF

(57) Abstract: The present invention is based on the identification and characterization of a number of novel *M. tuberculosis* derived proteins and protein fragments. The invention is directed to the polypeptides and immunologically active fragments thereof, the genes encoding them, immunological compositions such as vaccines and skin test reagents containing the polypeptides.

IN RNATIONAL SEARCH REPORT

International Application No PCT/DK 01/00276

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07K14/35 A61K38/00 C12N1/12 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K A61K C12N C07H C12P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° 1-30 S T COLE ET AL: "Deciphering the biology X of mycobacterium tuberculosis from the complete genome sequence" NATURE, vol. 393, 11 June 1998 (1998-06-11), pages 537-544, XP002901893 SWALL: 069742,100% Identity search in 280 aa with RV3878 1-30 WO 00 66157 A (PUBLIC HEALTH RES INST OF X,PTHE CITY OF NEW YORK) 9 November 2000 (2000-11-09) Geneseq: AAB19849, 100% Identity search in 729 aa with Rv3879c Patent family members are listed in annex. Further documents are listed in the continuation of box C. "T" later document published after the international filing date Special categories of cited documents: or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention "E" earlier document but published on or after the international cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or "Y" document of particular relevance; the claimed invention which is cited to establish the publication date of another cannot be considered to involve an inventive step when the citation or other special reason (as specified) document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. "P" document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 0 2 11 2001 8 October 2001 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Fernando Farieta Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

IN RNATIONAL SEARCH REPORT

PCT/DK 01/00276

		PC1/DK 01/002/0
C.(Continua	ition) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,P	WO 00 66143 A (PUBLIC HEALTH RES INST OF THE CITY OF NEW YORK) 9 November 2000 (2000-11-09) Geneseq: AAB52479, 100% Identity search in 148 aa with Rv0455c	1-30
X	WO 98 53076 A (CORIXA CORP) 26 November 1998 (1998-11-26) Geneseq: AAW73663, 75% Identity search in 99 aa with Rv1195	1-30
X	WO 98 53075 A (CORIXA CORP) 26 November 1998 (1998-11-26) Geneseq:AAW73770, 75% Identity search in 99 aa with Rv1195,65% Identity search in 99 aa with Rv3477	1-30
A	WO 99 24577 A (STATENS SERUM INSTITUTE) 20 May 1999 (1999-05-20) Geneseq:AAY21929, 30% Identity search in 591 aa with RvO284ct	1-30
A	WO 98 44119 A (STATENS SERUM INSTITUTE) 8 October 1998 (1998-10-08) Geneseq:AAW2912, 30% Identity search in 591 aa with Rv0284ct	1-30
		-
		·
:		
		~
-	·	-
	-	

IN RNATIONAL SEARCH REPORT

Information on patent family members

PCT/DK 01/00276

					<u> </u>
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0066157	Α	09-11-2000	AU WO	4702300 A 0066157 A1	17-11-2000 09-11-2000
WO 0066143	Α	09-11-2000	AU WO	4985900 A 0066143 A1	17-11-2000 09-11-2000
WO 9853076	A	26-11-1998	US AU BR NO PL TR WO	2001012888 A1 7591698 A 9809443 A 995690 A 337333 A1 200000113 T2 9853076 A2	09-08-2001 11-12-1998 13-06-2000 18-01-2000 14-08-2000 22-05-2000 26-11-1998
WO 9853075	Α	26-11-1998	AU BR EP NO PL TR WO HU	7690798 A 9809445 A 1012293 A2 995689 A 337330 A1 200000115 T2 9853075 A2 0003402 A2	11-12-1998 13-06-2000 28-06-2000 18-01-2000 14-08-2000 21-11-2000 26-11-1998 28-12-2000
WO 9924577	A	20-05-1999	AU AU WO WO EP EP	6820498 A 9433898 A 9844119 A1 9924577 A1 0972045 A1 1029053 A1	22-10-1998 31-05-1999 08-10-1998 20-05-1999 19-01-2000 23-08-2000
WO 9844119	A	08-10-1998	AU WO EP AU WO EP	6820498 A 9844119 A1 0972045 A1 9433898 A 9924577 A1 1029053 A1	22-10-1998 08-10-1998 19-01-2000 31-05-1999 20-05-1999 23-08-2000

Form PCT/ISA/210 (patent family annex) (July 1992)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 October 2001 (25.10.2001)

PCT

(10) International Publication Number WO 01/079274 A3

- (51) International Patent Classification⁷: C07K 14/35, A61K 38/00, C12N 1/12
- (21) International Application Number: PCT/DK01/00276
- (22) International Filing Date: 19 April 2001 (19.04.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

PA 2000 00666 19 April 2000 (19.04.2000) DK PA 2001 00283 21 February 2001 (21.02.2001) DK

(71) Applicant (for all designated States except US): STATENS SERUM INSTITUT [DK/DK]; Artillerivej 5, DK-2300 Copenhagen S (DK).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): AGGER, Else, Marie [DK/DK]. Krudtmøllegårds Allé 9, DK-2300 Copenhagen S (DK). ANDERSEN, Peter [DK/DK]; Sparreholmvej 47, DK-2700 Brønshøj (DK). OKKELS, Li, Mei, Meng [DK/DK]; Aldershvilevej 116A, st.th., DK-2880 Bagsværd (DK). WELDINGH, Karin [DK/DK]; Nørrebrogade 224, 3.tv., DK-2200 Copenhagen N (DK).
- (74) Agent: PLOUGMANN & VINGTOFT A/S; Sankt Annæ Plads 11, P.O. Box 3007, DK-1021 Copenhagen K (DK).

- (81) Designated States (national): AE, AG, AL, AM, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), DE (utility model), DK (utility model), DM, DZ, EE (utility model), ES, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- with amended claims
- (88) Date of publication of the international search report:

 11 July 2002

Date of publication of the amended claims: 8 August 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TUBERCULOSIS ANTIGENS AND METHODS OF USE THEREOF

(57) Abstract: The present invention is based on the identification and characterization of a number of novel *M. tuberculosis* derived proteins and protein fragments. The invention is directed to the polypeptides and immunologically active fragments thereof, the genes encoding them, immunological compositions such as vaccines and skin test reagents containing the polypeptides.

20

30

AMENDED CLAIMS

[received by the International Bureau on 2 January 2002 (2.01.02); original claims 1-30 replaced by amended claims1-32 (9 pages)]

- An immunogenic composition comprising at least one polypeptide which comprises at
 least one amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
 - (b) an immunogenic portion of any one of the sequences in (a);
 - (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
 - (d) a fusion polypeptide, which comprises at least one amino acid sequence selected from the sequences in (a), (b) or (c), and at least one fusion partner, e.g. a fusion partner which comprises a polypeptide fragment selected from the group consisting of: (i) a polypeptide fragment derived from a virulent mycobacterium; (ii) a polypeptide which comprises at least one amino acid sequence selected from
- (ii) a polypeptide which comprises at least one amino acid sequence selected from the group consisting of (a), (b) and (c); and (iii) at least one immunogenic portion of any of such polypeptides in (i) or (ii); and
 - (e) a polypeptide, which comprises at least one amino acid sequence selected from the groups in (a), (b) or (c), which is lipidated so as to allow a self-adjuvating effect of the polypeptide,

with the proviso that an immunogenic composition comprising full-length Rv3878 as the only polypeptide is excluded.

- A polypeptide according to claim 1, in which the immunogenic portion (b) is selected
 from the group consisting of SEQ ID NO:123, SEQ ID NO:127, SEQ ID NO:128, SEQ ID
 NO:129, SEQ ID NO:133 and SEQ ID NO:135.
 - 3. An immunogenic composition according to claim 1 or 2, which is in the form of a skin test reagent.
 - 4. An immunogenic composition according to claim 1 or 2, which is in the form of a vaccine.
- 5. A vaccine comprising at least one nucleic acid fragment selected from the group consisting of:
 - (A) a nucleic acid sequence which encodes a polypeptide which comprises at least one amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
- (b) an immunogenic portion of any one of the sequences in (a);
 - (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;

10

15

30

35

40

- (d) a fusion polypeptide, which comprises at least one amino acid sequence selected from the sequences in (a), (b) or (c), and at least one fusion partner, e.g. a fusion partner which comprises a polypeptide fragment selected from the group consisting of: (i) a polypeptide fragment derived from a virulent mycobacterium; (ii) a polypeptide which comprises at least one amino acid sequence selected from the group consisting of (a), (b) and (c); and (iii) at least one immunogenic portion of any of such polypeptides in (i) or (ii); and
- (e) a polypeptide, which comprises at least one amino acid sequence selected from the groups in (a), (b) or (c), which is lipidated so as to allow a self-adjuvating effect of the polypeptide;

or comprises a nucleic acid sequence complementary thereto; and/or

(B) a nucleic acid fragment which has a length of at least 10 nucleotides and hybridizes under stringent hybridization conditions with a nucleotide sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284, or a nucleotide sequence complementary to any one of these sequences; or with a nucleotide sequence selected from a sequence in (A);

optionally inserted in a vector, the vaccine effecting *in vivo* expression of antigen by an animal, including a human being, to whom the vaccine has been administered, the amount of expressed antigen being effective to confer substantially increased resistance to tuber-culosis caused by virulent mycobacteria in an animal, including a human being.

- 6. Use of a nucleic acid fragment comprising at least one nucleic acid fragment selected from the group consisting of:
- (A) a nucleic acid sequence which encodes a polypeptide which comprises at least one amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
 - (b) an immunogenic portion of any one of the sequences in (a);
 - (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
 - (d) a fusion polypeptide, which comprises at least one amino acid sequence selected from the sequences in (a), (b) or (c), and at least one fusion partner, e.g. a fusion partner which comprises a polypeptide fragment selected from the group consisting of: (i) a polypeptide fragment derived from a virulent mycobacterium; (ii) a polypeptide which comprises at least one amino acid sequence selected from the group consisting of (a), (b) and (c); and (iii) at least one immunogenic portion of any of such polypeptides in (i) or (ii); and
 - (e) a polypeptide, which comprises at least one amino acid sequence selected from the groups in (a), (b) or (c), which is lipidated so as to allow a self-adjuvating effect of the polypeptide;

or comprises a nucleic acid sequence complementary thereto; and/or

(B) a nucleic acid fragment which has a length of at least 10 nucleotides and hybridizes under stringent hybridization conditions with a nucleotide sequence selected from

20

25

35

Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284, or a nucleotide sequence complementary to any one of these sequences; or with a nucleotide sequence selected from a sequence in (A);

for the preparation of a composition for the diagnosis of tuberculosis caused by virulent mycobacteria.

- 7. Use of a nucleic acid fragment comprising at least one nucleic acid sequence selected from the group consisting of:
- (A) a nucleic acid sequence which encodes a polypeptide which comprises at least one amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
 - (b) an immunogenic portion of any one of the sequences in (a);
 - (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
 - (d) a fusion polypeptide, which comprises at least one amino acid sequence selected from the sequences in (a), (b) or (c), and at least one fusion partner, e.g. a fusion partner which comprises a polypeptide fragment selected from the group consisting of: (i) a polypeptide fragment derived from a virulent mycobacterium; (ii) a polypeptide which comprises at least one amino acid sequence selected from the group consisting of (a), (b) and (c); and (iii) at least one immunogenic portion of any of such polypeptides in (i) or (ii); and
 - (e) a polypeptide, which comprises at least one amino acid sequence selected from the groups in (a), (b) or (c), which is lipidated so as to allow a self-adjuvating effect of the polypeptide;

or comprises a nucleic acid sequence complementary thereto; and/or

(B) a nucleic acid fragment which has a length of at least 10 nucleotides and hybridizes under stringent hybridization conditions with a nucleotide sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284, or a nucleotide sequence complementary to any one of these sequences; or with a nucleotide sequence selected from a sequence in (A);

for the preparation of a pharmaceutical composition for the vaccination against tuberculosis caused by virulent mycobacteria.

- 8. A vaccine for immunizing an animal, including a human being, against tuberculosis caused by virulent mycobacteria comprising as the effective component a non-pathogenic microorganism, wherein at least one copy of a DNA fragment comprising a DNA sequence encoding a polypeptide which comprises at least one amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
 - (b) an immunogenic portion of any one of the sequences in (a);

- (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
- (d) a fusion polypeptide, which comprises at least one amino acid sequence selected from the sequences in (a), (b) or (c), and at least one fusion partner, e.g. a fusion partner which comprises a polypeptide fragment selected from the group consisting of: (i) a polypeptide fragment derived from a virulent mycobacterium; (ii) a polypeptide which comprises at least one amino acid sequence selected from the group consisting of (a), (b) and (c); and (iii) at least one immunogenic portion of any of such polypeptides in (i) or (ii);
- 10 (e) a polypeptide, which comprises at least one amino acid sequence selected from the groups in (a), (b) or (c), which is lipidated so as to allow a self-adjuvating effect of the polypeptide;

has been incorporated into the microorganism in a manner allowing the microorganism to express and optionally secrete the polypeptide.

15

- 9. A method of diagnosing tuberculosis caused by virulent mycobacteria in an animal, including a human being, comprising intradermally injecting, in the animal, at least one polypeptide which comprises at least one amino acid sequence selected from the group consisting of:
- 20 (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
 - (b) an immunogenic portion of any one of the sequences in (a);
 - (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
- a fusion polypeptide, which comprises at least one amino acid sequence selected from the sequences in (a), (b) or (c), and at least one fusion partner, e.g. a fusion partner which comprises a polypeptide fragment selected from the group consisting of: (i) a polypeptide fragment derived from a virulent mycobacterium; (ii) a polypeptide which comprises at least one amino acid sequence selected from the group consisting of (a), (b) and (c); and (iii) at least one immunogenic portion of any of such polypeptides in (i) or (ii);
 - (e) a polypeptide, which comprises at least one amino acid sequence selected from the groups in (a), (b) or (c), which is lipidated so as to allow a self-adjuvating effect of the polypeptide;
- or an immunogenic composition according to claim 1 or 2, a positive skin response at the location of injection being indicative of the animal having tuberculosis, and a negative skin response at the location of injection being indicative of the animal not having tuberculosis, with the proviso that a method comprising injecting full-length Rv3878 as the only polypeptide is excluded.

40

10. A method for immunising an animal, including a human being, against tuberculosis caused by virulent mycobacteria comprising administering to the animal at least one polypeptide which comprises at least amino acid sequence selected from the group consisting of:

30

- (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
- (b) an immunogenic portion of any one of the sequences in (a);
- (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
 - (d) a fusion polypeptide, which comprises at least one amino acid sequence selected from the sequences in (a), (b) or (c), and at least one fusion partner, e.g. a fusion partner which comprises a polypeptide fragment selected from the group consisting of: (i) a polypeptide fragment derived from a virulent mycobacterium;
- (ii) a polypeptide which comprises at least one amino acid sequence selected from the group consisting of (a), (b) and (c); and (iii) at least one immunogenic portion of any of such polypeptides in (i) or (ii);
 - (e) a polypeptide, which comprises at least one amino acid sequence selected from the groups in (a), (b) or (c), which is lipidated so as to allow a self-adjuvating effect of the polypeptide;

an immunogenic composition according to claim 1 or 2, or a vaccine according to claim 5 or 8, with the proviso that a method comprising administering full-length Rv3878 as the only polypeptide is excluded.

- 20 11. A monoclonal or polyclonal antibody, which is specifically reacting with a polypeptide which comprises at least amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
 - (b) an immunogenic portion of any one of the sequences in (a);
- an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
 - (d) a fusion polypeptide, which comprises at least one amino acid sequence selected from the sequences in (a), (b) or (c), and at least one fusion partner, e.g. a fusion partner which comprises a polypeptide fragment selected from the group consisting of: (i) a polypeptide fragment derived from a virulent mycobacterium; (ii) a polypeptide which comprises at least one amino acid sequence selected from the group consisting of (a), (b) and (c); and (iii) at least one immunogenic portion
- of any of such polypeptides in (i) or (ii);

 (e) a polypeptide, which comprises at least one amino acid sequence selected from the groups in (a), (b) or (c), which is lipidated so as to allow a self-adjuvating effect of the polypeptide;

in an immuno assay, or a specific binding fragment of said antibody.

- 12. A monoclonal or polyclonal antibody, which is specifically reacting with a polypeptide which comprises at least amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
 - (b) an immunogenic portion of any one of the sequences in (a);

- (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
- (d) a fusion polypeptide, which comprises at least one amino acid sequence selected from the sequences in (a), (b) or (c), and at least one fusion partner, e.g. a fusion partner which comprises a polypeptide fragment selected from the group consisting of: (i) a polypeptide fragment derived from a virulent mycobacterium; (ii) a polypeptide which comprises at least one amino acid sequence selected from the group consisting of (a), (b) and (c); and (iii) at least one immunogenic portion of any of such polypeptides in (i) or (ii);
- 10 (e) a polypeptide, which comprises at least one amino acid sequence selected from the groups in (a), (b) or (c), which is lipidated so as to allow a self-adjuvating effect of the polypeptide;

in an immuno assay, or a specific binding fragment of said antibody for use as a diagnostic reagent.

15

- 13. A pharmaceutical composition which comprises an immunologically responsive amount of at least one member selected from the group consisting of:
- (a) a polypeptide selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284, or an immunogenic portion thereof;
- 20 (b) an amino acid sequence which has a sequence identity of at least 80% to any one of said polypeptides in (a) and is immunogenic;
 - (c) a fusion polypeptide comprising at least one polypeptide or amino acid sequence according to (a) or (b) and at least one fusion partner;
- (d) a nucleic acid sequence which encodes a polypeptide or amino acid sequence according to (a), (b) or (c);
 - (e) a nucleic acid sequence which is complementary to a sequence according to (d);
 - (f) a nucleic acid sequence which has a length of at least 10 nucleotides and which hybridizes under stringent conditions with a nucleic acid sequence according to (d) or (e); and
- 30 (g) a non-pathogenic micro-organism which has incorporated therein a nucleic acid sequence according to (d), (e) or (f) in a manner to permit expression of a polypeptide encoded thereby,

with the proviso that a composition which comprises full-length Rv3878 as the only polypeptide is excluded.

- 14. A method for stimulating an immunogenic response in an animal which comprises administering to said animal an immunologically stimulating amount of at least one member selected from the group consisting of:
- (a) a polypeptide selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195,
 40 Rv3477, Rv0569 or Rv0284, or an immunogenic portion thereof;
 - (b) an amino acid sequence which has a sequence identity of at least 80% to any one of said polypeptides in (a) and is immunogenic;
 - (c) a fusion polypeptide comprising at least one polypeptide or amino acid sequence according to (a) or (b) and at least one fusion partner;

- (d) a nucleic acid sequence which encodes a polypeptide or amino acid sequence according to (a), (b) or (c);
- (e) a nucleic acid sequence which is complementary to a sequence according to (d);
- a nucleic acid sequence which has a length of at least 10 nucleotides and which hybridizes under stringent conditions with a nucleic acid sequence according to (d) or (e); and
 - (g) a non-pathogenic micro-organism which has incorporated therein a nucleic acid sequence according to (d), (e) or (f) in a manner to permit expression of a polypeptide encoded thereby,
- with the proviso that a method comprising administering full-length Rv3878 as the only polypeptide is excluded.
- 15. Vaccine according to claim 5 or 8, immunogenic composition according to claim 4 or pharmaceutical composition according to claim 13, characterized in that said vaccine/immunogenic composition/pharmaceutical composition can be used prophylactically in a subject not infected with a virulent mycobacterium; or therapeutically in a subject already infected with a virulent mycobacterium.
- 16. A substantially pure polypeptide, which comprises at least one amino acid sequence20 selected from the group consisting of:
 - (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
 - (b) an immunogenic portion of any one of the sequences in (a); and
- (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic; with the proviso that the polypeptides published by Cole et al. (1998) Nature 393:537-544 are excluded.
- 17. A substantially pure polypeptide according to claim 16, wherein the amino acid sequence analogue has at least 90% sequence identity to any of the sequences in (a) or (b).
 - 18. A fusion polypeptide, which comprises at least one amino acid sequence selected from the group consisting of:
- (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
 - (b) an immunogenic portion of any one of the sequences in (a); and
 - (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic; and at least one fusion partner.
 - 19. A fusion polypeptide according to claim 18, wherein the fusion partner comprises a polypeptide fragment selected from the group consisting of:
 - (a) a polypeptide fragment derived from a virulent mycobacterium;

- (b) a polypeptide which comprises at least one amino acid sequence selected from the group consisting of: (i) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284; (ii) an immunogenic portion of any one of the sequences in (i); and (iii) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (i) or (ii) and at the same time being immunogenic; and
- (c) at least one immunogenic portion of any of such polypeptides in (a) or (b).
- 20. A polypeptide, which comprises at least one amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
 - (b) an immunogenic portion of any one of the sequences in (a); and
- (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic; which is lipidated so as to allow a self-adjuvating effect of the polypeptide.
 - 21. A substantially pure polypeptide, which comprises at least one amino acid sequence selected from the group consisting of:
- 20 (a) an amino acid sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284;
 - (b) an immunogenic portion of any one of the sequences in (a); and
 - (c) an amino acid sequence analogue having at least 80% sequence identity to any one of the sequences in (a) or (b) and at the same time being immunogenic;
- 25 with the proviso that full-length Rv3878 is excluded, for use as a vaccine, as a pharmaceutical or as a diagnostic reagent.
- 22. A polypeptide according to any of claims 16-21, in which the immunogenic portion (b) is selected from the group consisting of SEQ ID NO:123, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:133 and SEQ ID NO:135.
 - 23. Use of a polypeptide according to any of claims 16 to 22 for the preparation of a pharmaceutical composition for diagnosis of tuberculosis.
- 35 24. Use of a polypeptide according to any of claims 16 to 22 for the preparation of a pharmaceutical composition.
 - 25. A nucleic acid fragment in isolated form which
- (a) comprises at least one nucleic acid sequence which encodes a polypeptide according to any of claims 16-22, or comprises a nucleic acid sequence complementary thereto; and/or
 - (b) has a length of at least 10 nucleotides and hybridizes under stringent hybridization conditions with a nucleotide sequence selected from Rv3878, Rv0285, Rv1386, MT3106.1, Rv1195, Rv3477, Rv0569 or Rv0284, or a nucleotide se-

quence complementary to any one of these sequences; or with a nucleotide sequence selected from a sequence in (a);

with the proviso that the nucleic acid sequences published by Cole et al. (1998) Nature 393:537-544 are excluded.

5

- 26. A nucleic acid fragment according to claim 25, which is a DNA fragment.
- 27. A nucleic acid fragment according to claim 25 or 26 for use as a pharmaceutical.
- 10 28. A replicable expression vector, which comprises at least one nucleic acid fragment according to claim 25 or 26.
 - 29. A transformed cell harbouring at least one vector according to claim 28.
- 15 30. A method for producing a polypeptide according to any of claims 16-22, comprising:
 - inserting a nucleic acid fragment according to claim 25 or 26 into a vector which is able to replicate in a host cell, introducing the resulting recombinant vector into the host cell, culturing the host cell in a culture medium under conditions sufficient to effect expression of the polypeptide, and recovering the polypeptide from the host cell or culture medium;
 - (b) isolating the polypeptide from a whole mycobacterium from culture filtrate or from lysates or fractions thereof; or
 - (c) synthesizing the polypeptide.
- 25 31. A method for diagnosing previous or ongoing infection with a virulent mycobacterium, said method comprising:
 - (a) contacting a sample with a composition comprising at least one antibody according to claim 11 or 12, at least one nucleic acid fragment according to any of claims 25-27 and/or at least one polypeptide according to any of claims 16-22; or
- 30 (b) contacting a sample with a composition comprising at least one polypeptide according to any of claims 16-22 in order to detect a positive reaction.
 - 32. A method of diagnosing Mycobacterium tuberculosis infection in a subject comprising:
- (a) contacting at least one polypeptide according to any of claims 16-22 with a bodily fluid of the subject;
 - (b) detecting binding of an antibody to said polypeptide, said binding being an indication that said subject is infected by *Mycobacterium tuberculosis* or is susceptible to *Mycobacterium tuberculosis* infection.

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 October 2001 (25.10.2001)

PCT

(10) International Publication Number WO 2001/079274 A3

- (51) International Patent Classification⁷: C07K 14/35, A61K 38/00, C12N 1/12
- (21) International Application Number:

PCT/DK2001/000276

- (22) International Filing Date: 19 April 2001 (19.04.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

PA 2000 00666

19 April 2000 (19.04.2000) DK

PA 2001 00283

21 February 2001 (21.02.2001) DK

- (71) Applicant (for all designated States except US): STATENS SERUM INSTITUT [DK/DK]; Artillerivej 5, DK-2300 Copenhagen S (DK).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): AGGER, Else, Marie [DK/DK]; Krudtmøllegårds Allé 9, DK-2300 Copenhagen S (DK). ANDERSEN, Peter [DK/DK]; Sparreholmvej 47, DK-2700 Brønshøj (DK). OKKELS, Li, Mei, Meng [DK/DK]; Aldershvilevej 116A, st.th., DK-2880 Bagsværd (DK). WELDINGH, Karin [DK/DK]; Nørrebrogade 224, 3.tv., DK-2200 Copenhagen N (DK).
- (74) Agent: PLOUGMANN & VINGTOFT A/S; Sundkrogsgade 9, P.O. Box 831, DK-2100 Copenhagen Ø (DK).
- (81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA,

CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- with amended claims
- (88) Date of publication of the international search report:

11 July 2002

Date of publication of the amended claims: 8 August 2002

(48) Date of publication of this corrected version:

29 April 2004

(15) Information about Correction:

see PCT Gazette No. 18/2004 of 29 April 2004, Section Π

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TUBERCULOSIS ANTIGENS AND METHODS OF USE THEREOF

(57) Abstract: The present invention is based on the identification and characterization of a number of novel *M. tuberculosis* derived proteins and protein fragments. The invention is directed to the polypeptides and immunologically active fragments thereof, the genes encoding them, immunological compositions such as vaccines and skin test reagents containing the polypeptides.

This Page Blank (uspio)