

L L a progettazione di L L L A A A A A

un linguaggio a dominio specifico per giochi di carte collezionabili

AGENDA

11 MAGIC: THE GATHERING

02 LLM

13 LUNAR VS FORGESCRIPT

14 ANALISI ESPLORATIVA

05 ESPERIMENTO

06 RISULTATI

CONCLUSIONI

01. Una carta di Magic

- Nome della carta
- Layout
- Costo di mana
- Tipo, supertipo e sottotipo
- Effetto
- Note legali e artista
- forza / costituzione Lealtà

I Large Language Models (LLM) sono potenti modelli di apprendimento profondo addestrati su enormi set di dati testuali. Il loro nucleo, è composto da encoder e decoder, ognuno con capacità di auto-attenzione, che permettono di estrarre significati e relazioni da sequenze di testo.

Sono flessibili e possono eseguire diversi compiti:

- rispondere a domande
- riassumere documenti
- tradurre lingue
- completare frasi
- trasformare e creare contenuti

03. Lunar v ForgeScript

ForgeScript

Name:Lightning Helix
ManaCost:R W
Types:Instant
A:SP\$ DealDamage | Cost\$ R W |
ValidTgts\$ Any | NumDmg\$ 3 |
SubAbility\$ DBGainLife |
SpellDescription\$ CARDNAME
deals 3 damage to any target and
you gain 3 life.
SVar:DBGainLife:DB\$ GainLife |
LifeAmount\$ 3
Oracle:Lightning Helix deals 3
damage to any target and you
gain 3 life.

Lunar

```
name: Lightning Helix
mana_cost: R W
card_type: instant
effects:
  effect:
    type: base
    mode: damage
    target: any_target
    amount: 3
  effect:
    type: base
    mode: life_gain
    target: card_owner
    amount: 3
oracle_text: <Lightning Helix deals 3
damage to any target and you gain 3
life.>
```


O5. Autotrain Advanced

• Strumento per addestrare svariati tipi di modello

• Usa metodi di addestramento allo stato dell'arte

• PEFT — Lora — Qlora

05. QLoRA

05. Train loss trend

06. Accuracy e Edit Distance

Accuracy

Edit Distance

06. Perplexity

LLM	PARAMETRI	MEDIA PERPLEXITY	VARIANZA PERPLEXITY
phi-2	2.7B	460	2,0699 E+4
orca-2	13B	205	1,6395 E+5
Mistral	7B	208	2,9106 E+5
TinyLlama	1.1B	12494	8,7219 E+8

O6. Dati qualitivi

LLM	PARAMETRI	EPOCHE	RISULTATO QUALITATIVO	TEMPO RISPOSTA
phi-2	2.7B	3		5 min
orca-2	13B	3		14 min
Mistral	7B	10		23 min
TinyLlama	1.1B	20		9 min
OpenHermes	7B	10		2h 28 min

O7. Conclusioni

Orca-2 e phi-2 hanno ottenuto prestazioni del **50%** migliori sugli altri LLM di taglia media e di **60 volte** migliori sul meno performante TinyLlama, ma **phi-2**:

- è migliore nel test qualitativo
- è più piccolo (risparmio del 70%)
- ha ottenuto prestazioni allo stato dell'arte pari di un LLM di taglia medio-alta (Orca-2)

SMALL BUT MIGHTY

Phi-2

2.7 billion parameters

Common sense, language understanding, and logical reasoning

GRAZIE DELL'ATTENZIONE

