Pattern Reduction Test Instances

Contents

Background	1
Description of Test Instances	2
Structure of the Input Files (PRX)	
First Section – Parameters	
Second Section – List of Sizes	
Third Section – Multi-pack	
Fourth Section – Pattern Multiplicity	
Fifth Section – Pattern Contents	
Questions & Corrections	

Background

These instances are solutions to the 1D-CSP and are intended to provide a test-bed to evaluate pattern reduction heuristics, i.e. whether the solution be transformed into another with fewer patterns, but the same run length, order allocation and waste. See for example

Foerster, H., & Wascher, G. (2000). Pattern reduction in one-dimensional cutting stock problems. International Journal of Production Research, 1657-1676.

Although most of the problems are randomly generated, they have been designed broadly to represent real-world problems.

These instances have a lot of potential in terms of pattern reduction. For example, #87 has 61 patterns, but solutions with 46 are known. However trivial reductions (e.g. Johnston's 2:1 rule) are not possible (in the initial solution).

In looking at algorithms, we would suggest that two measures (other than computational time) are employed:

a. The total number of patterns across all the instances

It is known that there is considerable room for fewer patterns, particularly in the larger instances. For example, PR_00010.PRX, with 49 patterns, is known to have a solution with only 29:

Original		Best Known
0	1000 2000 3000 4000 5000	5600 0 1000 2000 3000 4000 5000 5600
1) 16	2030 9 1900 9 1670	
2) 14 🕨	2050 9 2015 9 1535	1) 22) 2000 1 1900 1 1700
3) 11 +	2020	2) 19) 2090 ° 2020 ° 1490
5) 10	2020 Y 1880 Y 1700	3) 17 > 2050 1880 1670
6) 10 >	2135 2090 1370	4) 16 > 1715 1370 1265 1250
7) 9 1	2090 Y 2020 Y 1490 2000 Y 1900 Y 1700	
9) 7	2050 9 1790 9 1760	5) 14) 2030 1 2030 1 1535
10) 7 •	2000 1760 920 93	6) 12) 2020 1 1865 1 1715
11) 6 1	2225	7) 12 > 2135 1265 1250 950
13) 6	2225 Ŷ 1265 Ŷ 1085 Ŷ 102	
14) 5 🕨	2050 9 1835 9 1715	8) 12 1 2225 1370 1085 920
15) 5)	2135 1730 1730	9) 12) 1500 1500 1400 1200
16) 5)	2135 1265 1265 93 1880 1760 980 98	10) 9) 2135 1730 1730
18) 5 🕨	1730 Y 1370 Y 1250 Y 1250	11) 9 2050 2015 1535
19) 5 1	1700	
21) 4	1535 Y 1400 Y 1400 Y 1265 2000 Y 1370 Y 1265 Y 96	12) 7 1500 1 1490 1 1410 1 1200
22) 4	1500 Y 1500 Y 1400 Y 1200	13) 6) 1880 1760 980 980
23) 3 •	2030 Y 2030 Y 1535	14) 6 2015 1760 935 890
24) 3 • 25) 3 •	2015 Y 1250 Y 1250 Y 108 1880 Y 1370 Y 1370 Y 98	15) 5 1790 1760 1085 965
26) 3	1650 Y 1500 Y 1500 Y 95	
27) 3 🕨	2135 Y 1265 Y 1250 95	16) 5 1790 1410 1200 1200
28) 2 1	2255	17) 3) 1900 1865 1835
30) 2 1	1880 Y 1880 Y 950 Y 8	18) 3) 2135 1760 1700
31) 2 •	1865 Ŷ 1865 Ŷ 950 Ŷ 93	
32) 2 1	1895 1370 7 1250 7 108 1895 1730 7 1085 8	19) 3) 1880 1880 920 920
34) 1	2020 Y 1790 Y 1790	20) 2) 1835 1715 1025 1025
35) 1	2030 9 1880 9 1685	21) 2) 2255 1400 1025 920
36) 1 •	2000	22) 2 1650 1650 1410 890
37) 1 1	2030	
39) 1 •	1410 Y 1410 Y 1410 Y 1370	23) 2 1895 1490 1295 920
40) 1 •	2135 Ŷ 1685 Ŷ 890 Ŷ 8	24) 2 • 2015 1895 1685 1
41) 1 +	1730	25) 1 2255 9 2135 9 1205
43) 1 -	2030 9 1400 9 1205 9 96	
44) 1 •	1650 1500 1250 1200	26) 1 2135 1 1370 1 1295 1 800
45) 1)	1715 \ \ \ 1670 \ \ \ 1265 \ \ 95 1760 \ \ \ 1490 \ \ \ 1265 \ \ 108	27) 1) 1880 1430 1265 1025
47) 1	1760	28) 1 > 2255 1430 965 950
48) 1 .	2030 Y 1790 Y 890 Y 8	29) 1 2255 1430 980 935

Description of Test Instances

Name	Widths	Description
PR_00001.PRX - PR_00005.PRX	45	Correspond to the 8o random cases of the pattern reduction test suite

Name	Widths	Description
PR_00006.PRX - PR_00010.PRX	43	Correspond to the 8o random cases of the pattern reduction test suite
PR_00011.PRX - PR_00015.PRX	41	Correspond to the 8o random cases of the pattern reduction test suite
PR_00016.PRX - PR_00020.PRX	39	Correspond to the 8o random cases of the pattern reduction test suite
PR_00021.PRX - PR_00025.PRX	37	Correspond to the 8o random cases of the pattern reduction test suite
PR_00026.PRX - PR_00030.PRX	35	Correspond to the 8o random cases of the pattern reduction test suite
PR_00031.PRX - PR_00035.PRX	33	Correspond to the 8o random cases of the pattern reduction test suite
PR_00036.PRX - PR_00040.PRX	31	Correspond to the 8o random cases of the pattern reduction test suite
PR_00041.PRX - PR_00045.PRX	29	Correspond to the 8o random cases of the pattern reduction test suite
PR_00046.PRX - PR_00050.PRX	27	Correspond to the 8o random cases of the pattern reduction test suite
PR_00051.PRX - PR_00055.PRX	25	Correspond to the 8o random cases of the pattern reduction test suite
PR_00056.PRX - PR_00060.PRX	23	Correspond to the 8o random cases of the pattern reduction test suite
PR_00061.PRX - PR_00065.PRX	21	Correspond to the 8o random cases of the pattern reduction test suite
PR_00066.PRX - PR_00070.PRX	19	Correspond to the 8o random cases of the pattern reduction test suite
PR_00071.PRX - PR_00075.PRX	17	Correspond to the 8o random cases of the pattern reduction test suite
PR_00076.PRX - PR_00080.PRX	15	Correspond to the 8o random cases of the pattern reduction test suite
PR_00081.PRX - PR_00085.PRX	47	Based on the first 5 problems of the (random) pattern reduction test suite, but with two additional orders each, so with 47 orders in total.
PR_ooo86.PRX	86	From PRoo4 (SAPPI). Solutions with as few as 75 patterns are known.
PR_00087.PRX	60	From PRo ₃₂ (IP). Solutions with as few as 46 patterns are known.
PR_ooo88.PRX	53	From PRo56 (Liansheng).
PR_00089.PRX	51	From PRo14 (Bemis Finland).

Name	Widths	Description
PR_00090.PRX	25	From PRo51 (Orora).
PR_00091.PRX - PR_00095.PRX	45	Randomly generated with 45 distinct sizes. Winder has a set multiple of 2.
PR_00096.PRX - PR_00100.PRX	45	Randomly generated with 45 distinct sizes (derived from the above). Winder has a set minimum of 3.
PR_00101.PRX	60	Randomly generated with 60 distinct sizes. Best known answer has 51 patterns.
PR_00102.PRX	60	Randomly generated with 60 distinct sizes. Best known answer has 57 patterns.
PR_00103.PRX	60	Randomly generated with 60 distinct sizes. Best known answer has 49 patterns.
PR_00104.PRX	60	Randomly generated with 60 distinct sizes. Best known answer has 51 patterns.
PR_00105.PRX	60	Randomly generated with 60 distinct sizes.
PR_00106.PRX	37	From J'ian, min sets / pattern = 4; manually generated solution
PR_00107.PRX	37	From J'ian, min sets / pattern = 4; different solution to the same problem.
PR_00108.PRX	37	From J'ian, min sets / pattern = 4; variation of above.
PR_00109.PRX	49	From J'ian, solutions with 21 patterns are possible.
PR_00110.PRX	46	From the same J'ian run, different starting solution. The seven 1-set patterns are reducible.
PR_00111.PRX	46	From the same J'ian run, different starting solution. The six 1-set patterns are reducible.
PR_00112.PRX	36	From Kipas, one of the largest runs.
PR_00113.PRX	22	From Blue Paper, one of the largest runs (35831). Solutions with 12 patterns are possible.
PR_00114.PRX	28	From Blue Paper, one of the largest runs (38270). Solutions with 18 patterns are possible.
PR_00115.PRX	70	Randomly generated, solutions with 49 patterns are possible.
PR_00116.PRX	72	Randomly generated, solutions with 47 patterns are possible.
PR_00117.PRX	74	Randomly generated, solutions with 51 patterns are possible.
PR_00118.PRX	76	Randomly generated, solutions with 45 patterns are possible.
PR_00119.PRX	78	Randomly generated, solutions with 60 patterns are possible.
PR_00120.PRX	80	Randomly generated, solutions with 51 patterns are possible.

Structure of the Input Files (PRX)

The text files with the input have a PRX extension, which has five sections:

First Section – Parameters

This section contains (in sequence):

- 1. Number of threads should be ignored
- 2. Maximum width
- 3. Minimum width
- 4. Maximum number of items / pattern
- 5. Maximum number of distinct items / patterns
- 6. Minimum pattern utilisation
- 7. Number of patterns in solution NPAT
- 8. Number of sizes in solution NPAR
- 9. Run number should be ignored

Second Section – List of Sizes

Array of size NPAR, contains the list of sizes.

Third Section – Multi-pack

Array of size NPAR, containing the number of times each size appears in each pattern. For these problems the number is 1, so can be ignored.

Fourth Section – Pattern Multiplicity

Array of size NPAT, containing the number of times each pattern should be produced.

Fifth Section – Pattern Contents

Array of size NPAT x NPAR, the (i,j) element contains the number of times the j^{th} size appears in the i^{th} pattern.

Questions & Corrections

Please contact Constantine Goulimis, cng@greycon.com

London 28 September 2015 Updated 10 December 2015