Time Series & Volatility Modeling M&M Series

- What is Time Series Analysis?
- 2 Some Forecasting Methods

Section 1

What is Time Series Analysis?

Just what is this?

General definition: A time series is a collection of observations made sequentially through time. The dynamics of said observations are often characterized by short-term/long-term fluctuations, long-term (direction) trends, and seasonal patterns.

Time Series Analysis is the process of analyzing time series data to extract meaningful statistics and other characteristics of the data.

Just what is this?

Our observations can be denoted by y_1, y_2, \ldots, y_T where T is the total number of observations.

- y_1 is the observation at time t=1,
- y_2 is the observation at time t=2, and so on.
- The interval between observations can be any time interval (minute, hours, days, weeks, months, quarters, years, etc.) and we assume that these time periods are equally spaced.

Time Series vs Cross-Sectional Data

1. Cross-sectional data

- Multiple objects observed at a particular (single) point in time.
- Observations are *potentially* independent of each other.
- Examples:
 - Survey data for a single year
 - Census data for a single year
 - Farm Balance Sheets as at the end of the year, etc.

Time Series vs Cross-Sectional Data

2. Time series data

- Single object (GDP, stock price, temperature, etc.) observed at multiple equally-spaced points in time.
- Observations have potentially time dependence, generally called SERIAL CORRELATION OR AUTOCORRELATION.
- Examples:
 - Daily stock prices
 - Half-hourly temperature or CO2 levels
 - Monthly unemployment rates
 - Annual GDP growth rates, etc.

Time Series vs Cross-Sectional Data

3. Panel Data

Panel data is a combination of both cross-sectional and time series data.

- Multiple objects observed at multiple points in time.
- Observations are potentially time and spatially dependent.
- Examples:
 - Household surveys over time
 - Firm-level profits and losses over time
 - The growth rate of GDP across countries over time, etc.

y = "Demand (MWh)") + theme(legend.position = "right")

top = "Seasonal Patterns in Electricity Demand")

labs(x = "Monthly Seasonality",

gridExtra::grid.arrange(p1, p2, p3, ncol = 1,

Main Objectives of Time Series Analysis

- Summary description (graphical and numerical) of data point vs. time
- 2 Interpretation of specific series features (e.g. seasonality, trend, relationship with other series)
- What is the average temperature in June over a 10-year period?
- What is the underlying trend in GDP growth over the last 20 years?
- Has technological advancements caused a change in the trend in corn yield over a 30 year period?

Main Objectives of Time Series Analysis

- 3 To estimate dynamic causal effects
- If the Fed increases the Federal Funds rate now, what will be the effect on the rates of inflation and unemployment in 3 months? in 12 months?
- What is the effect over time on cigarette consumption after a hike in the cigarette tax?
- Forecasting (predicting the future values of the series).
- What is the potential growth in yield in the next quarter?
- What is the expected inflation rate in the next year?

Main Objectives of Time Series Analysis

- Hypothesis testing and Simulation (comparing different scenarios)
- How does the GDP respond to a 1 standard deviation shock in oil prices?
- What is the spillover effect of a shock in the US stock market on the Nigerian stock market?

Section 2

Some Forecasting Methods

Volatility Modelling

• ARCH/GARCH Models

$$returns = \left(\frac{P_t - P_{t-1}}{P_{t-1}}\right) \approx \log\left(\frac{P_t}{P_{t-1}}\right)$$

Example in R for daily S&P 500 prices

Properties of the daily returns:

- Returns are mean zero
- Return variability/volatility (σ_t) changes through time
- Volatility clustering

Daily vs Annualized Volatility

```
# Daily Volatility
cat("Daily Volatility =", sd(sp500returns, na.rm = TRUE), "\n")
## Daily Volatility = 0.01278
# Annualized Volatility
cat("Annualized Volatility =", sqrt(252)*sd(sp500returns, na.rm = TRUE))
## Annualized Volatility = 0.2028
```

Autocorrelation of Returns

##

ACF of S&P 500 Returns


```
## Box-Ljung test
##
## data: sp500returns[-1]
## X-squared = 174, df = 20, p-value <2e-16</pre>
```

Autocorrelation of Squared Returns

ACF of Squared S&P 500 Returns


```
##
## Box-Ljung test
##
## data: sp500returns[-1]^2
## X-squared = 6287, df = 20, p-value <2e-16</pre>
```

Rolling Volatility

```
chart.RollingPerformance(sp500returns ,
width = 22, # 22 trading days in a month
FUN = "sd.annualized",
scale = 252, # 252 trading days in a year
main = "Rolling 1 month volatility")
```


GARCH Models

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are used to model the conditional variance of a time series.

GARCH(1,1) model is given by:

$$r_t = \mu + \varepsilon_t; \ \varepsilon_t \sim \mathcal{N}(0, \sigma_t^2)$$
 (1)

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2 \tag{2}$$

where ε_t is the residual at time t and σ_t^2 is the conditional variance at time t.

- $\omega, \alpha, \beta > 0$: ensures that the σ_t^2 is always positive.
- $\alpha + \beta < 1$: ensures that the model is mean-reverting/stationary (returns to the longrun variance).
 - LR variance = $\frac{\omega}{1-\alpha-\beta}$
- Estimate via Maximum Likelihood Estimation (MLE).

GARCH(1,1) Model

Manual Example

$$\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

Step I: Specify parameter values

```
# Remove the first observation
sp500ret <- sp500returns[-1]
# Set parameter values
alpha <- 0.15
beta <- 0.7
omega <- var(sp500ret)*(1-alpha-beta)
# Then: var(sp500ret) = omega/(1-alpha-beta)
# Set series of prediction error
e <- sp500ret - mean(sp500ret) # Constant mean
e2 <- e^2</pre>
```

GARCH(1,1) Model

Manual Example

Step II: Calculate the conditional variance

```
# We predict for each observation its variance.
nobs <- length(sp500ret)
predvar <- rep(NA, nobs)

# Initialize the process at the sample variance
predvar[1] <- var(sp500ret)

# Loop through the rest of the observations
for (t in 2:nobs) {
   predvar[t] <- omega + alpha*e2[t-1] + beta*predvar[t-1]
}</pre>
```

GARCH(1,1) Model

Manual Example

Step III: Plot the predicted conditional variance

```
# Volatility is sqrt of predicted variance
predvol <- sqrt(predvar)
predvol <- xts(predvol, order.by = time(sp500ret))

# We compare with the unconditional volatility
uncvol <- sqrt(omega / (1 - alpha-beta))
uncvol <- xts(rep(uncvol, nobs), order.by = time(sp500ret))

# Plot
pp <- plot(predvol)
(pp <- lines(uncvol, col = "red", lwd = 2))</pre>
```


GARCH(1,1) Model Optimized

```
## mu 7.499e-04 1.039e-04 7.220 5.205e-13
## ar1 6.612e-01 1.526e-01 4.334 1.464e-05
## ma1 -7.140e-01 1.423e-01 -5.018 5.209e-07
## omega 2.943e-06 8.854e-07 3.324 8.862e-04
## alpha1 1.439e-01 1.147e-02 12.549 0.000e+00
## beta1 8.369e-01 1.196e-02 69.956 0.000e+00
```

Estimated Model:

$$r_t = 7.236 \times 10^{-4} + \varepsilon_t \,\varepsilon_t \sim \mathcal{N}(0, \hat{\sigma}_t^2) \tag{3}$$

$$\sigma_t^2 = 2.996 \times 10^{-6} + 0.144\varepsilon_{t-1}^2 + 0.836\sigma_{t-1}^2; \tag{4}$$

GARCH(1,1) Model Optimized

Estimated Volatility

GARCH(1,1) Model Optimized

Forecasting Volatility

T+9

T+10

0.007491

0.007614

```
garchforecast <- ugarchforecast(garchfit, n.ahead = 10)</pre>
(forecast_vol <- sigma(garchforecast))</pre>
##
       2024-01-30
## T+1
         0.006311
## T+2
         0.006481
## T+3 0.006644
## T+4 0.006800
## T+5 0.006949
         0.007092
## T+6
## T+7
         0.007230
         0.007363
## T+8
```

EGARCH Models: Allowing for Asymmetric Effects

- Does the market respond the same to positive and negative news?
- Exponential GARCH (EGARCH) models allow for asymmetric effects in the volatility.
- The leverage effect describes news impacts volatility asymmetrically. $(\alpha < 0)$
- The EGARCH(1,1) model is given by:

$$r_t = \mu + \sigma \varepsilon_t; \ \varepsilon_t ? \mathcal{N}(0, \sigma_t^2)$$
 (5)

$$\log(\sigma_t^2) = \omega + \alpha \varepsilon_{t-1}^2 + \beta \log(\sigma_{t-1}^2) + \gamma |\varepsilon_{t-1}|$$
 (6)

##		Estimate	Std. Error	t value Pr(> t)
##	mu	0.0006529	9.588e-05	6.810 9.778e-12
##	ar1	0.2374131	2.681e-02	8.855 0.000e+00
##	ma1	-0.2874032	2.702e-02	-10.637 0.000e+00
##	omega	-0.2138488	1.329e-02	-16.096 0.000e+00
##	alpha1	-0.1702947	1.176e-02	-14.476 0.000e+00
##	beta1	0.9779075	1.428e-03	684.839 0.000e+00
##	gamma1	0.1719170	1.792e-02	9.593 0.000e+00

shape 5.7064263 5.329e-01 10.708 0.000e+00

Empirical Density of Standardized Residuals

News Impact Curve

The news impact curve is a plot of the impact of a surprise (think shock) on the volatility of the series.


```
par(mfrow=c(1,2))
plot(garchfit, which =12) # Standard GARCH
plot(skew.egarchfit, which =12) # EGARCH - Skewed Student-t
```

GJR-GARCH Models: Allowing for Asymmetric Effects

Again, we believe that negative shocks have greater impacts than positive shocks.

The GJR-GARCH(1,1) model is given by:

$$\log(\sigma_t^2) = \omega + \alpha \varepsilon_{t-1}^2 + \gamma \varepsilon_{t-1}^2 \mathbf{I} \left(\varepsilon_{t-1} < 0 \right) + \beta \sigma_{t-1}^2$$

where $I_{t-1}(\bullet) = 1$ if $\varepsilon_{t-1} < 0$ and 0 otherwise, and $\gamma > 0$.

Therefore:

$$\sigma_t^2 = \begin{cases} \omega + (\alpha + \gamma)\varepsilon_{t-1}^2 + \beta\sigma_{t-1}^2 & \text{if } \varepsilon_{t-1} < 0\\ \omega + \alpha\varepsilon_{t-1}^2 + \beta\sigma_{t-1}^2 & \text{if } \varepsilon_{t-1} \ge 0 \end{cases}$$

GJRGARCH Models: Allowing for Asymmetric Effects

```
##
         Estimate Std. Error t value Pr(>|t|)
         3.390e-04 1.602e-04 2.117e+00 3.429e-02
## m11
## omega 2.319e-06 2.294e-06 1.011e+00 3.120e-01
## alpha1 4.454e-07 2.560e-02 1.740e-05 1.000e+00
## beta1 8.593e-01 1.463e-02 5.872e+01 0.000e+00
## gamma1 2.574e-01 5.942e-02 4.332e+00 1.477e-05
## skew 8.534e-01 1.859e-02 4.591e+01 0.000e+00
## shape 6.324e+00
                     6.156e-01 1.027e+01 0.000e+00
gjrgarch11 <- ugarchspec(</pre>
  mean.model = list(armaOrder = c(0,0)),
  variance.model = list(model = "gjrGARCH",garchOrder = c(1,1)),
                        distribution.model = "sstd")
gjrgarchfit <- ugarchfit(gjrgarch11, sp500ret)</pre>
gjrgarchfit@fit$matcoef
```


DCC-GARCH: Capturing Spillover Effects

##		Estimate	Std. Error	t value Pr(> t)	
##	[CORN.Close].mu	-1.658e-04	2.374e-04	-0.6986 4.848e-01	
##	[CORN.Close].omega	3.824e-06	8.632e-06	0.4430 6.578e-01	
##	[CORN.Close].alpha1	7.607e-02	2.170e-02	3.5048 4.569e-04	
##	[CORN.Close].beta1	9.006e-01	2.528e-02	35.6182 0.000e+00	
##	[IAU.Close].mu	9.754e-05	1.756e-04	0.5554 5.786e-01	
##	[IAU.Close].omega	1.112e-06	4.834e-06	0.2301 8.180e-01	
##	[IAU.Close].alpha1	4.144e-02	5.294e-02	0.7828 4.337e-01	
##	[IAU.Close].beta1	9.444e-01	6.145e-02	15.3682 0.000e+00	
##	[Joint]dcca1	1.529e-02	1.349e-02	1.1331 2.572e-01	

8.252e-01 1.229e-01 6.7117 1.923e-11

[Joint]dccb1

Spillover Effects (Corn to Gold)

##		Estimate	Std. Error	t value Pr	r(> t)
##	[IAU.Close].mu	9.754e-05	1.756e-04	0.5554 5.7	786e-01
##	[IAU.Close].omega	1.112e-06	4.834e-06	0.2301 8.3	180e-01
##	[IAU.Close].alpha1	4.144e-02	5.294e-02	0.7828 4.3	337e-01
##	[IAU.Close].beta1	9.444e-01	6.145e-02	15.3684 0.0	000e+00
##	[CORN.Close].mu	-1.658e-04	2.374e-04	-0.6985 4.8	348e-01
##	[CORN.Close].omega	3.824e-06	8.632e-06	0.4430 6.5	578e-01
##	[CORN.Close].alpha1	7.607e-02	2.170e-02	3.5048 4.5	570e-04
##	[CORN.Close].beta1	9.006e-01	2.528e-02	35.6212 0.0	000e+00
##	[Joint]dcca1	1.529e-02	1.349e-02	1.1335 2.5	570e-01

1.221e-01 6.7567 1.412e-11

8.252e-01

[Joint]dccb1

Thank you!