

freeze()

z=Date()

高校算法大赛

团队介绍 - SYSU_至九

队长:

郭达雅

中山大学本科生,计算机科学与技术特征工程、数据探索

队员:

张俊鸿

中山大学本科生,计算机科学与技术

模型设计与融合

刘昕 中山大学本科生,计算机科学与技术 数据清洗、算法实现

目录

赛题分析

赛题分析

竞赛题目:

竞赛题目以移动App广告为研究对象,对给定广告、用户和上下文情况下,预测App广告点击后被激活的概率。

赛题分析:

对于CVR问题来说,App广告是否被激活的主导因素是用户, 其次是广告信息。

特征工程

特征工程

除了基本特征,我们还生成了以下特征:

- ·计数特征
- ·转化率的贝叶斯平滑
- ·用户历史点击
- ·Word embedding

计数特征

单特征提取

用户点击当前累计 点击次数

用户距离上一次点 击的时间间隔

用户是否点击访问 过该广告 用户对当前APP的 累计点击次数 用户最近一次下载 app总数及最近一次 的时间间隔

用户计数特征

广告计数特征

各广告基本特征总 点击量

各广告基本特征每 分钟点击量 各广告基本特征中 app的占比

计数特征

交叉特征的总点击量

connectionType advertiserID userID positionID 不同广告特征在广告位置的热度

gender adID residence hometown age appID 不同用户特征在 appID的热度

转化率的贝叶斯平滑

由于数据稀疏性的原因,直接观测到的CVR与真实的CVR之间的误差较大。因此利用贝叶斯平滑对CVR预估进行优化

- ·对于某广告,C表示回流次数,I表示点击次数
- ·用平滑转化率r作为特征

$$r_i = \frac{C_i + \alpha}{I_i + \alpha + \beta}$$

用户历史点击

使用01串表示用户历史点击,例如:

Label	user	history
0	user1	
1	user1	0
1	user1	01
0	user1	011
1	user1	0110

Word embedding

用户的点击记录作为文本,使用word2vec进行Word embedding,例如:

history Projection Output Input userID applD user1 app1 $app_1 = \overrightarrow{w_1}$ user1 app2 user1=[app1 , app2 , app3 , app1] $app_2 = \overrightarrow{w_2}$ W2V user1 app3 $app_3 = \overrightarrow{w_3}$ user1 app1

模型设计

GBDT离散特征

Number of trees: 30 Learning rate: 0.1 Maximum tree depth: 8

模型融合

模型	线下成绩	线上成绩
<i>Xgboost</i> 单模型(<i>28, 29</i> 天数据)	0.0981	0.1023
<i>Lightgbm</i> 单模型(<i>28</i> , <i>29</i> 天数据)	0.0977	0.1019
<i>Lightgbm</i> 单模型(<i>28</i> , <i>29</i> , <i>30</i> 天数据)	0.0919	0.1023
<i>FTRL+gbdt</i> 特征(<i>28</i> , <i>29</i> 天数据)	0.0986	0.1028
FFM+gbdt特征(28,29天数 据)	0.0985	0.1027
Lightgbm(28, 29天数据, Lightgbm, Xgboost, FTRL, FFM stacking)		0.1020
Xgboost(28, 29天数据, Lightgbm, Xgboost, FTRL, FFM stacking)		0.1018

模型融合

均值调整

根据训练样本(28,29天数据,转化率为0.0268)推测31天的转化率大致为0.0270左右,使用如下公式对预测结果的均值进行调整:

$$final_prediction = f(f^{-1}(x) + b)$$

其中:

$$f(x) = \frac{1}{1 + e^{-x}}$$

b值通过二分,逐步使得变换后的均值与目标均值误差小于1e-5

总结回顾

总结回顾

Q1,决赛数据量过大,有什么优化方法?

A1:特征构造可以使用流式统计方法,避免数据集读入内存中。同时,对数据进行一定的清洗,挑选能够处理而又有效的数据集。

Q2: Stacking方法在线下线上都得不到提高,如何调整? A2:除了Stacking方法,还可以直接对不同模型进行线性组合。而Stacking方法带来的最重要的启发,其实更在于模型的多样性,模型多样化了,直接线性组合也能够提高非常大。

z=Date()

for THANKS

2017-07-06

