```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy import stats
import seaborn as sns
df = pd.read_csv('heart.csv')

print(df)
```

	age	sex	ср	trestbps	chol	fbs	 exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	 0	2.3	0	0	1	1
1	37	1	2	130	250	0	 0	3.5	0	0	2	1
2	41	0	1	130	204	0	 0	1.4	2	0	2	1
3	56	1	1	120	236	0	 0	0.8	2	0	2	1
4	57	0	0	120	354	0	 1	0.6	2	0	2	1
298	57	0	0	140	241	0	 1	0.2	1	0	3	0
299	45	1	3	110	264	0	 0	1.2	1	0	3	0
300	68	1	0	144	193	1	 0	3.4	1	2	3	0
301	57	1	0	130	131	0	 1	1.2	1	1	3	0
302	57	0	1	130	236	0	 0	0.0	1	1	2	0

[303 rows x 14 columns]

Checking if for any NULL values

```
print("No of NULL values in the dataset ",len(df)-len(df.isna()))

No of NULL values in the dataset 0
```

Removing random NULL values

```
for col in df.columns:
df.loc[df.sample(frac=0.2).index, col] = np.nan
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	Ci
0	NaN	NaN	3.0	145.0	NaN	1.0	0.0	150.0	0.0	2.3	0.0	Nal
1	37.0	1.0	2.0	130.0	250.0	0.0	1.0	187.0	0.0	3.5	0.0	0.0
2	41.0	0.0	1.0	130.0	NaN	NaN	0.0	172.0	0.0	1.4	2.0	0.0
3	56.0	1.0	1.0	120.0	NaN	0.0	1.0	NaN	NaN	0.8	2.0	0.0
4	NaN	NaN	0.0	120.0	354.0	0.0	NaN	163.0	1.0	0.6	2.0	0.0

1

Removing NULL values from the dataset

- 1 for col in df.columns:
- 2 df[col].fillna(df[col].mode()[0], inplace=True)
- 1 df 2

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
0	58.0	1.0	3.0	145.0	234.0	1.0	0.0	150.0	0.0	2.3	0.0	0.0
1	37.0	1.0	2.0	130.0	250.0	0.0	1.0	187.0	0.0	3.5	0.0	0.0
2	41.0	0.0	1.0	130.0	234.0	0.0	0.0	172.0	0.0	1.4	2.0	0.0
3	56.0	1.0	1.0	120.0	234.0	0.0	1.0	160.0	0.0	0.8	2.0	0.0
4	58.0	1.0	0.0	120.0	354.0	0.0	0.0	163.0	1.0	0.6	2.0	0.0
298	57.0	0.0	0.0	140.0	241.0	0.0	1.0	123.0	1.0	0.2	1.0	0.0
299	45.0	1.0	3.0	110.0	264.0	0.0	1.0	132.0	0.0	1.2	1.0	0.0
300	68.0	1.0	0.0	144.0	193.0	1.0	1.0	160.0	0.0	3.4	1.0	0.0
301	57.0	1.0	0.0	120.0	234.0	0.0	0.0	115.0	1.0	1.2	1.0	1.0
302	58.0	0.0	1.0	130.0	236.0	0.0	0.0	160.0	0.0	0.0	2.0	1.0

303 rows × 14 columns

1

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	Cŧ
0	58.0	1.0	3.0	145.0	234.0	1.0	0.0	150.0	0.0	2.3	0.0	0.0
1	37.0	1.0	2.0	130.0	250.0	0.0	1.0	187.0	0.0	3.5	0.0	0.0
2	41.0	0.0	1.0	130.0	NaN	NaN	0.0	172.0	0.0	1.4	2.0	0.0
3	56.0	1.0	1.0	120.0	NaN	0.0	1.0	NaN	NaN	0.8	2.0	0.0
4	NaN	NaN	0.0	120.0	354.0	0.0	NaN	163.0	1.0	0.6	2.0	0.0
298	57.0	0.0	0.0	140.0	241.0	0.0	1.0	123.0	1.0	0.2	1.0	NaN
299	45.0	NaN	3.0	110.0	264.0	NaN	1.0	132.0	0.0	1.2	1.0	0.0
300	68.0	1.0	0.0	144.0	193.0	1.0	1.0	NaN	0.0	3.4	1.0	Nan
004	^	4 ^	~ ~			~ ~	K 1 K 1	4450	4.0	4.0	4.0	4 4

Computing Mean

1 print(df.mean())

age	55.115512
sex	0.755776
ср	0.693069
trestbps	127.838284
chol	242.254125
fbs	0.122112
restecg	0.349835
thalach	153.056106
exang	0.231023
oldpeak	0.754785
slope	1.600660
ca	0.498350
thal	2.188119
target	0.676568
dtype: float	t64

Computing Median

print(df.median())

age	58.0
sex	1.0
ср	0.0
trestbps	120.0
chol	234.0
fbs	0.0
restecg	0.0
thalach	160.0
exang	0.0

```
oldpeak 0.0 slope 2.0 ca 0.0 thal 2.0 target 1.0 dtype: float64
```

Computing Mode

```
for col in df.columns:
1
2
     print("Mode of column ",col," is",df[col].mode()[0])
   Mode of column age is 58
   Mode of column sex is 1
   Mode of column cp is 0
   Mode of column trestbps is 120
   Mode of column chol is 197
   Mode of column fbs is 0
   Mode of column restecg is 1
   Mode of column thalach is 162
   Mode of column exang is 0
   Mode of column oldpeak is 0.0
   Mode of column slope is 2
   Mode of column ca is 0
   Mode of column thal is 2
   Mode of column target is 1
   for col in df.columns:
1
2
     print(col, max(df[col])-min(df[col]))
   age 47.0
   sex 1.0
   cp 3.0
   trestbps 106.0
   chol 268.0
   fbs 1.0
   restecg 2.0
   thalach 106.0
   exang 1.0
   oldpeak 6.2
   slope 2.0
   ca 4.0
   thal 3.0
   target 1.0
   Q1 = np.percentile(df, 25, interpolation = 'midpoint')
1
   Q3 = np.percentile(df, 25, interpolation = 'midpoint')
2
3
4
   IQR = Q3 - Q1
5
6
   print(IQR)
7
   print(Q1)
```

```
print(Q3)
   0.0
   0.0
   0.0
   IQR = stats.iqr(df, interpolation = 'midpoint')
1
   print(IQR)
1
   55.0
1
   for col in df.columns:
2
     IQR = stats.iqr(df[col], interpolation = 'midpoint')
3
     print("IQR for feature ",col," ",IQR)
   IQR for feature age
                          13.5
   IQR for feature sex
                         1.0
   IQR for feature cp
                         2.0
   IQR for feature trestbps
                              20.0
   IQR for feature chol 63.5
   IQR for feature fbs
                         0.0
   IQR for feature restecg 1.0
   IQR for feature thalach
                              32.5
   IQR for feature exang 1.0
   IQR for feature oldpeak 1.6
   IQR for feature slope 1.0
   IQR for feature ca 1.0
   IQR for feature thal
                          1.0
   IQR for feature target 1.0
1
   df.std()
               9.082101
   age
   sex
               0.466011
               1.032052
   ср
   trestbps
               17.538143
   chol
               51.830751
   fbs
               0.356198
   restecg
               0.525860
   thalach
              22.905161
                0.469794
   exang
   oldpeak
               1.161075
   slope
               0.616226
   ca
               1.022606
   thal
                0.612277
   target
                0.498835
   dtype: float64
   pd.qcut(range(4),4,labels=["typical","atypical","non-anginal","asymptomatic"])
1
   ['typical', 'atypical', 'non-anginal', 'asymptomatic']
```

```
Categories (4, object): ['typical' < 'atypical' < 'non-anginal' < 'asymptomatic']</pre>
```

1 df

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
0	63	1	3	145	233	1	0	150	0	2.3	0	0	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	
298	57	0	0	140	241	0	1	123	1	0.2	1	0	
299	45	1	3	110	264	0	1	132	0	1.2	1	0	
300	68	1	0	144	193	1	1	141	0	3.4	1	2	
301	57	1	0	130	131	0	1	115	1	1.2	1	1	
302	57	0	1	130	236	0	0	174	0	0.0	1	1	

303 rows × 14 columns

pd.cut(df.cp, bins=4, labels=["typical","atypical","non-anginal","asymptomatic"],right=1

```
0
       asymptomatic
1
        non-anginal
           atypical
3
           atypical
4
            typical
           . . .
298
            typical
299
       asymptomatic
300
            typical
301
            typical
           atypical
302
```

Name: cp, Length: 303, dtype: category

Categories (4, object): ['typical' < 'atypical' < 'non-anginal' < 'asymptomatic']</pre>

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
0	63	1	3	145	233	1	0	150	0	2.3	0	0	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	
298	57	0	0	140	241	0	1	123	1	0.2	1	0	

- 1 labels=["typical angina","atypical angina","non-anginal pain","asymptomatic"]
- 2 df["Class"]=pd.cut(df.cp, bins=4, right=True,labels=labels)
- 3 df[["Class","cp"]]
- 4 df0=df[df.Class == labels[0]]
- 5 df1 = df[df.Class == labels[1]]
- 6 df2 = df[df.Class == labels[2]]
- 7 df3 = df[df.Class == labels[3]]

1 df0

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
4	57	0	0	120	354	0	1	163	1	0.6	2	0	
5	57	1	0	140	192	0	1	148	0	0.4	1	0	
10	54	1	0	140	239	0	1	160	0	1.2	2	0	
18	43	1	0	150	247	0	1	171	0	1.5	2	0	
20	59	1	0	135	234	0	1	161	0	0.5	1	0	
296	63	0	0	124	197	0	1	136	1	0.0	1	0	
297	59	1	0	164	176	1	0	90	0	1.0	1	2	

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	th
2	41	0	1	130	204	0	0	172	0	1.4	2	0	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	
6	56	0	1	140	294	0	0	153	0	1.3	1	0	
7	44	1	1	120	263	0	1	173	0	0.0	2	0	
12	49	1	1	130	266	0	1	171	0	0.6	2	0	
25	71	0	1	160	302	0	1	162	0	0.4	2	2	
30	41	0	1	105	198	0	1	168	0	0.0	2	1	
32	44	1	1	130	219	0	0	188	0	0.0	2	0	
41	48	1	1	130	245	0	0	180	0	0.2	1	0	
45	52	1	1	120	325	0	1	172	0	0.2	2	0	
55	52	1	1	134	201	0	1	158	0	0.8	2	1	
61	54	1	1	108	309	0	1	156	0	0.0	2	0	
63	41	1	1	135	203	0	1	132	0	0.0	1	0	
67	45	0	1	130	234	0	0	175	0	0.6	1	0	
68	44	1	1	120	220	0	1	170	0	0.0	2	0	
72	29	1	1	130	204	0	0	202	0	0.0	2	0	
75	55	0	1	135	250	0	0	161	0	1.4	1	0	
77	59	1	1	140	221	0	1	164	1	0.0	2	0	
78	52	1	1	128	205	1	1	184	0	0.0	2	0	
81	45	1	1	128	308	0	0	170	0	0.0	2	0	

87	46	1	1	101	197	1	1	156	0	0.0	2	0
93	54	0	1	132	288	1	0	159	1	0.0	2	1
94	45	0	1	112	160	0	1	138	0	0.0	1	0
102	63	0	1	140	195	0	1	179	0	0.0	2	2
108	50	0	1	120	244	0	1	162	0	1.1	2	0
114	55	1	1	130	262	0	1	155	0	0.0	2	0
118	46	0	1	105	204	0	1	172	0	0.0	2	0
125	34	0	1	118	210	0	1	192	0	0.7	2	0
129	74	0	1	120	269	0	0	121	1	0.2	2	1

1 df2

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
1	37	1	2	130	250	0	1	187	0	3.5	0	0	
8	52	1	2	172	199	1	1	162	0	0.5	2	0	
9	57	1	2	150	168	0	1	174	0	1.6	2	0	
11	48	0	2	130	275	0	1	139	0	0.2	2	0	
15	50	0	2	120	219	0	1	158	0	1.6	1	0	

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
0	63	1	3	145	233	1	0	150	0	2.3	0	0	
13	64	1	3	110	211	0	0	144	1	1.8	1	0	
14	58	0	3	150	283	1	0	162	0	1.0	2	0	
17	66	0	3	150	226	0	1	114	0	2.6	0	0	
19	69	0	3	140	239	0	1	151	0	1.8	2	2	
24	40	1	3	140	199	0	1	178	1	1.4	2	0	
34	51	1	3	125	213	0	0	125	1	1.4	2	1	
58	34	1	3	118	182	0	0	174	0	0.0	2	0	
62	52	1	3	118	186	0	0	190	0	0.0	1	0	
83	52	1	3	152	298	1	1	178	0	1.2	1	0	
100	42	1	3	148	244	0	0	178	0	0.8	2	2	
101	59	1	3	178	270	0	0	145	0	4.2	0	0	
106	69	1	3	160	234	1	0	131	0	0.1	1	1	
117	56	1	3	120	193	0	0	162	0	1.9	1	0	
147	60	0	3	150	240	0	1	171	0	0.9	2	0	
152	64	1	3	170	227	0	0	155	0	0.6	1	0	
222	65	1	3	138	282	1	0	174	0	1.4	1	1	
228	59	1	3	170	288	0	0	159	0	0.2	1	0	
254	59	1	3	160	273	0	0	125	0	0.0	2	0	
259	38	1	3	120	231	0	1	182	1	3.8	1	0	
271	61	1	3	134	234	0	1	145	0	2.6	1	2	
286	59	1	3	134	204	0	1	162	0	0.8	2	2	

- 1 print(labels[0])
- 2 print()
- 3 print("1.Mean")
- 4 print(df0.mean())
- 5 print()
- 6 print("2.Median")
- 7 print(df0.median())
- 8 print()
- 9 print("3.Mode")
- 10 print(df0.mode().transpose())
- 11 print()
- 12 print("4.Range")
- 13 for col in df0.columns:
- 1/1 if(coll='Class').

```
6.Standard Deviation
            8.312752
           0.446927
sex
           0.000000
ср
trestbps
          18.036141
chol
           51.540390
fbs
           0.332873
           0.541674
restecg
thalach
           22.999317
exang
           0.498199
oldpeak
            1.297559
slope
            0.589978
ca
            1.057586
thal
            0.678423
target
            0.446927
dtype: float64
```

1

1

- Q7) Comparing the statistical values in the graph for the original dataset with the values of the changed dataset based on class labels, we cn observe that:-
- i) One observation we can make is regarding the mean, where we see that the Mean of the individual Classes do not vary much with respect to the mean of all the values of the dataset taken together.
- ii) Since median is the 2nd quartile value, it also does not change for the individual classes with respect to the overall dataset.
- iii) Mode shows more variation than the mean or median since it gives us the most frequently occurring values and splitting the dataset into classes tends to affect the frequency of particular values too. So, mode is different for many features.

1

- Q8) Line Plots showing the variations of :-
- (i) Age vs Chest Pain Type
- (ii) Chest Pain Type vs Cholestrol
- (iii) Age vs Thal
- (iv) Sex vs Chest Pain type

P---- (--)//

- 2 plt.style.use('ggplot')
- 3 sns.lineplot(df['age'],df['cp'],linewidth=2,hue=df['sex'],ci=None,palette=['blue','yellc

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f7095351e48>

- plt.figure(figsize=(10,5))
- 2 plt.style.use('ggplot')
- 3 sns.lineplot(df["cp"],df['chol'],linewidth=2,hue=df['sex'],ci=None,palette=['purple','ye

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f709507d240>

- plt.figure(figsize=(10,5))
- 2 plt.style.use('ggplot')
- 3 sns.lineplot(df["age"],df['thal'],linewidth=2,hue=df['sex'],ci=None,palette=['yellow','r

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f617ad5d860>

- plt.figure(figsize=(10,5))
- 2 plt.style.use('ggplot')
- 3 sns.lineplot(df["sex"],df['cp'],linewidth=2,hue=df['target'],ci=None,palette=['red','green']

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f7095134828>

Plots Shown along with the labels

- plt.figure(figsize= (20,7))
- 2 plt.style.use('ggplot')
- 3 sns.lineplot(df['age'],df['cp'],linewidth=2,hue=df['sex'],ci=None,palette=['blue','yellc
- 4 plt.xlabel("Age", fontsize=20)
- 5 plt.ylabel("Chest Pain Type", fontsize=20)
- 6 plt.title("Age versus Chest Pain Type",fontsize=25)
- 7 plt.legend(labels=['Male', 'Female'], frameon=True, fontsize='large', bbox_to_anchor=(1.05,
- 8 plt.show()

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

- plt.figure(figsize=(10,5))
- plt.style.use('ggplot')
- 3 sns.lineplot(df["cp"],df['chol'],linewidth=2,hue=df['sex'],ci=None,palette=['purple','y@
- 4 plt.xlabel("Chest Pain",fontsize=20)

- 5 plt.ylabel("Cholestrol",fontsize=20)
- 6 plt.title("Chest Pain versus Cholestrol",fontsize=25)
- 7 plt.legend(labels=['Male','Female'],frameon=True,fontsize='large',bbox_to_anchor=(1.05,
- 8 plt.show()

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning


```
plt.figure(figsize=(10,5))
plt.style.use('ggplot')
sns.lineplot(df["age"],df['thal'],linewidth=2,hue=df['sex'],ci=None,palette=['yellow','
plt.xlabel("Age",fontsize=20)
plt.ylabel("Thal",fontsize=20)
plt.title("Age versus Thal",fontsize=25)
plt.legend(labels=['Male','Female'],frameon=True,fontsize='large',bbox_to_anchor=(1.05, plt.show()
```

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

- 1 plt.figure(figsize=(10,5))
- 2 plt.style.use('ggplot')
- 3 sns.lineplot(df["sex"],df['cp'],linewidth=2,hue=df['target'],ci=None,palette=['red','green']
- 4 plt.xlabel("Sex",fontsize=20)
- 5 plt.ylabel("Chest Pain", fontsize=20)
- 6 plt.title("Sex versus Chest Pain",fontsize=25)
- 7 plt.legend(labels=['Not Heart Attack', 'Heart Attack'], frameon=True, fontsize='large', bbo)
- 8 plt.show()

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

1

Q10)

Observations from the above plots:-

- (i) For Age vs Chest Pain Type plot, we have an irregular graph for both male and female.
- (ii) The Chest Pain vs Cholestrol plot indicates that the cholestrol in men is higher with increase in chest pain than in women.

- (iii) For Cholestrol vs Chest Pain also we have an irregular graph for both male and female.
- (iv) If the person has a lower chest pain, then he has a lesser chance of getting a heart attack.
- (v) Sex Vs Cholestrol The graph is a linear graph which gives us the conculsion that Female's have more chances of not getting a heart attack even with a high Chest pain (i.e they can bear a lot of Chest Pain) than their male counterparts who are not able to bear it to that extent.

Conclusions:-

Women have higher cholestrol compared to men according to these plots.

Men have higher chest pain which could also be inferred from the above plots.

1