Concours national marocain PSI 2004 math 2

 $\text{notation: pour ne pas surcharger si } A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \text{ je note } \exp(A) = \exp\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \text{ , en "oubliant" une paire de parenthèses.}$

I Résultats généraux

Tous les résultats de cette partie se généralisent à une matrice $n \times n$ en prenant une norme d'algèbre. 1a) On sait que la série $\sum \frac{z^n}{n!}$ est une série entière de rayon de convergence $+\infty$ et telle que $\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z$

$$\sum_{n=0}^{+\infty} \frac{1}{n!} \|A\|^n = e^{\|A\|}$$

1b) On a
$$\left| x_{i,j}^{(k)} \right| \le \sum_{p=1}^{2} \left| x_{i,p}^{(k)} \right| \le \|X_k\| = \left\| \frac{1}{k!} A^k \right\| = \frac{1}{k!} \left\| A^k \right\|$$

Le sujet nous dit d'admettre que l'on a une norme vérifiant $||AB|| \le ||A|| \cdot ||B||$. On a donc $||A^2|| \le ||A||^2$ et par récurrence $||A^k|| \le ||A||^k$ Donc

$$\left| x_{i,j}^{(k)} \right| \le \frac{1}{k!} \left\| A \right\|^k$$

On a le terme général d'une série à termes positifs, majoré par le terme général d'une série convergente donc la série $\sum x_{i,i}^{(k)}$ converge absolument.

donc pour tout i et j la suite $\left(\sum_{k=0}^{n} x_{i,j}^{(k)}\right)$ converge. Une suite de matrices converge si et seulement si la suite de chacune de ses coordonnées converge et donc :

la suite
$$(E_n(A))$$
 converge

- 2) On a $0 \le \|B(A_n A)C\| \le \|B\| \|A_n A\| \|C\|$. Donc par encadrement si (A_n) tend vers A alors (BA_nC) tend vers
- 3a) On a classiquement $(PAP^{-1})^k = PA^kP^{-1}$. Donc $E_n(PAP^{-1}) = \sum_{k=0}^n \frac{1}{k!} PA^k P^{-1} = P\left(\sum_{k=0}^n \frac{1}{k!} A^k\right) P^{-1} = PA^kP^{-1}$
- **3b)** En passant à la limite (qui existe d'après la q1) et en utilisant q2

$$\exp(PAP^{-1}) = P\exp(A)P^{-1}$$

Si deux matrices sont semblables leurs exponentielles sont semblables.

- 4a) En dimension finie toute application linéaire est continue. Or la transposition est linéaire et $\mathcal{M}_2(\mathbb{K})$ est de dimension
- **4b)** Sachant ${}^{t}(AB) = {}^{t}B.{}^{t}A$ on a ${}^{t}(A^{k}) = ({}^{t}A)^{k}$ et donc par linéarité ${}^{t}(E_{n}(A)) = E_{n}({}^{t}A)$. Par définition $\lim (E_n(^tA)) = \exp(^tA)$ et par critère séquentiel de la continuité :

$$\lim (E_n(A)) = \exp(A) \Rightarrow \lim (^t(E_n(A))) = ^t \lim (E_n(A)) = ^t \exp(A)$$

et donc

$$\exp({}^t A) = {}^t \exp(A)$$

II exemples de calculs

1) Par récurrence $D^n = \begin{pmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{pmatrix}$ et donc $E_n(D) = \begin{pmatrix} \sum_{k=0}^n \frac{1}{k} \alpha^k & 0 \\ 0 & \sum_{k=0}^n \frac{1}{k} \beta^k \end{pmatrix}$ et par limite des coordonnées $\exp(D) = \frac{1}{n} \exp(\frac{1}{n} x^n)$

$$\exp\left(\begin{array}{cc} \alpha & 0 \\ 0 & \beta \end{array}\right) = \left(\begin{array}{cc} e^{\alpha} & 0 \\ 0 & e^{\beta} \end{array}\right)$$

remarque on peut généraliser à une matrice diagonale n

2) $A^2 = \begin{pmatrix} a^2 & 2\mu a \\ 0 & a^2 \end{pmatrix}$ et par récurrence $A^k = \begin{pmatrix} a^k & k\mu a^{k-1} \\ 0 & a^k \end{pmatrix}$. et donc $E_n(A) = \begin{pmatrix} \sum_{k=0}^n \frac{1}{k!} a^k & \mu \sum_{k=1}^n \frac{1}{(k-1)!} a^{k-1} \\ 0 & \sum_{k=0}^n \frac{1}{k!} a^k \end{pmatrix}$ pour avoir la limite il suffit de calculer $\sum_{k=1}^{+\infty} \frac{1}{(k-1)!} a^{k-1}$. Si on pose q = k-1 on a $\sum_{q=0}^{+\infty} \frac{1}{q!} a^q = e^a$

$$\exp\left(\begin{array}{cc} a & \mu \\ 0 & a \end{array}\right) = \left(\begin{array}{cc} e^a & \mu e^a \\ 0 & e^a \end{array}\right)$$

3) En posant a = b on obtient ${}^tB = A$ et donc d'après $I4 : \exp(B) = {}^t \exp(A)$

$$\exp\left(\begin{array}{cc} b & 0\\ \mu & b \end{array}\right) = \left(\begin{array}{cc} e^b & 0\\ \mu e^b & e^b \end{array}\right)$$

- Si $\mu = 0$ C est diagonale et la question II.1 donne $\exp(C) = \begin{pmatrix} e^c & 0 \\ 0 & e^c \end{pmatrix}$
- Si $\mu \neq 0$ on a un calcul sans gros problèmes : $P_C(\lambda) = \lambda^2 2c\lambda + c^2 \mu^2$. On a deux valeurs propres distincte $c \pm \mu$ et les sous espaces propres $E_{c+\mu} = Vect\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $E_{c-\mu} = Vect\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. D'où une solution au problèm $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \text{ et } D = \begin{pmatrix} c + \mu & 0 \\ 0 & c \mu \end{pmatrix}$ On en déduit $P^{-1} = \frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ puis $\exp(C) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} e^{c+\mu} & 0 \\ 0 & e^{c-\mu} \end{pmatrix}\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 et $D = \begin{pmatrix} c + \mu & 0 \\ 0 & c - \mu \end{pmatrix}$

$$\exp \left(\begin{array}{cc} c & \mu \\ \mu & c \end{array} \right) = e^{c} \left(\begin{array}{cc} ch(\mu) & sh(\mu) \\ sh(\mu) & ch(\mu) \end{array} \right)$$

• On constate que la formule reste valable si $\mu = 0$

On a

$$\exp(A+B) = \exp\begin{pmatrix} a+b & \mu \\ \mu & a+b \end{pmatrix} = e^{a+b}\begin{pmatrix} ch(\mu) & sh(\mu) \\ sh(\mu) & ch(\mu) \end{pmatrix}$$

et

$$\exp(A)\exp(B) = e^a e^b \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix} = e^{a+b} \begin{pmatrix} 1 + \mu^2 & \mu \\ \mu & 1 \end{pmatrix}$$

Pour avoir égalité on doit avoir $ch(\mu) = 1 + \mu^2 = 1$ donc $\mu = 0$. Réciproquement si $\mu=0$ alors l'égalité est vrai

$$\exp(A+B) = \exp(A) \cdot \exp(B) \iff \mu = 0$$

remarque on peut montrer $AB = BA \Longrightarrow \exp(A + B) = \exp(A) \cdot \exp(B)$

- 5) mêmes calculs qu'au début de la question 4.
 - \bullet Si b=0 le résultat est évident et donne bien le résultat voulu
 - Si $b \neq 0$, $P_R(\lambda) = \lambda^2 a\lambda + a^2 + b^2$, les valeurs propres sont $a \pm ib$, les sous espaces propres $E_{a+ib} = Vect \begin{pmatrix} 1 \\ -i \end{pmatrix}$ $E_{a-ib} = Vect \begin{pmatrix} 1 \\ i \end{pmatrix}$.

Une solution est donc

$$Q = \left(\begin{array}{cc} 1 & 1 \\ -i & i \end{array} \right)$$
 , $D = \left(\begin{array}{cc} a+ib & 0 \\ 0 & a-ib \end{array} \right)$

d'où
$$Q^{-1}=\frac{1}{2i}\left(\begin{array}{cc} i & -1\\ i & 1\end{array}\right)$$
 puis $\exp(R)=Q\left(\begin{array}{cc} e^{a+ib} & 0\\ 0 & e^{a+ib}\end{array}\right)Q^{-1}$

$$\exp\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = e^a \begin{pmatrix} \cos(b) & -\sin(b) \\ \sin(b) & \cos(b) \end{pmatrix}$$

• Pour trouver <u>une</u> solution de $\exp(J) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ il suffit de prendre a = 0 et $b = \pi$

$$\exp\left(\begin{array}{cc} 0 & -\pi \\ \pi & 0 \end{array}\right) = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$$

III.A image de l'exponentielle si $\mathbb{K} = \mathbb{C}$

1a) D'après II.1 si $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ est diagonale $\exp(D) = \begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix}$ est diagonale . Mais d'après I.3 si A et D sont semblables $\exp(A)$ et $\exp(D)$ le sont aussi . Donc $\exp(A)$ est semblable à la matrice diagonale $\exp(D)$ De plus le calcul de I.3 montre que les matrices de passage sont les mêmes.

si A et D sont semblables $\exp(A)$ et $\exp(D)$ le sont aussi

1b) Comme on est dans les complexes toute matrice carrée est trigonalisable, donc A est semblable à $T=\begin{pmatrix} a & \mu \\ 0 & b \end{pmatrix}$. Mais si $b \neq a$ T (donc A) admet deux valeurs propres distinctes et est donc diagonalisable (exclu ici). Donc a = b et A est semblable à $\begin{pmatrix} a & \mu \\ 0 & a \end{pmatrix}$. On a donc $\exp(A)$ semblable à $\exp(T) = \begin{pmatrix} e^a & \mu e^a \\ 0 & e^a \end{pmatrix}$ et les matrices de passages sont les mêmes.

 $\exp(A)$ est diagonalisable si et seulement si $\exp(T)$ l'est . Or $\exp(T)$ admet une unique valeur propre e^a et comme $\mu e^a \neq 0$ le calcul donne un sous espace propre qui est une droite. Si A n'est pas diagonalisable $\exp(A)$ ne l'est pas.

- 2) Deux matrices semblables ont même trace et même déterminant donc :
 - Si A est diagonalisable : $\det(\exp(A)) = \det(\exp(D)) = e^a e^b = e^{a+b} = e^{Tr(D)} = e^{Tr(A)}$
 - Sinon: $\det(\exp(A)) = \det(\exp(T)) = e^a e^a = e^{2a} = e^{Tr(T)} = e^{Tr(A)}$

$$\det\left(\exp(A)\right) = e^{Tr(A)}$$

- 3) Pour tout complexe z e^z est un complexe non nul (son module est $e^{\text{Re}(z)}$). Donc pour toute matrice A det $\left(e^A\right) \neq 0$ donc $e^A \in \mathcal{GL}_2\left(\mathbb{C}\right)$
- 4) Soit Y une matrice inversible 2×2 . Pour utiliser les questions précédentes et chercher un antécédent de Y on va distinguer deux cas :
 - Si Y est diagonalisable il existe $D=\begin{pmatrix}u&0\\0&v\end{pmatrix}$ diagonale et P inversible tels que $X=PDP^{-1}$. Si on trouve un matrice Δ telle que $\exp{(\Delta)}=D$ alors $X=P\Delta P^{-1}$ vérifie (d'après I.3)

$$\exp(X) = P \exp(\Delta) P^{-1} = P D P^{-1} = Y$$

Y étant inversible D est inversible donc u et v sont non nuls. il existe a tel que $e^a = u$ (il suffit de prendre $Re(a) = \ln(|u|)$ et Im(a) un argument de u) et b tel que $e^b = v$

On a alors d'après II.1
$$\exp \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix} = \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix}$$
. $X = P \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} P^{-1}$ est une solution du problème

- Si Y n'est pas diagonalisable on trigonalise $Y = PTP^{-1}$ avec $T = \begin{pmatrix} u & \nu \\ 0 & u \end{pmatrix}$ et on cherche $\tau = \begin{pmatrix} a & \mu \\ 0 & a \end{pmatrix}$ telle qu $\exp(\tau) = T$ soit d'après II.2 $e^a = u$ et $\mu e^a = \nu$.
 - Y étant inversible u est non nul donc a existe et donc aussi $\mu = \nu e^{-a}$ et $X = P\tau P^{-1}$ est solution du problème.

$M - > \exp(M)$ est surjective (mais pas injective) de $\mathcal{M}_2(\mathbb{C})$ sur $\mathcal{GL}_2(\mathbb{C})$

III.B image de l'exponentielle si $\mathbb{K} = \mathbb{R}$

- 1) Soit a un endomorphisme de matrice A
 - Si A admet deux valeurs propres réelles distinctes A est diagonalisable
 - Si A admet une valeur propre réelle double et un sous espace propre de dimension 2 A est diagonalisable
 - Si A admet une valeur propre réelle et un sous espace propre de dimension 1 Vect(v) alors dans une base de premie vecteur v la matrice de a est du type $\begin{pmatrix} a & \mu \\ 0 & b \end{pmatrix}$. Et comme il existe une valeur propre double b=a
 - Si A n'admet pas de valeur propre réelle alors A admet deux valeurs propres complexes distinctes et conjuguées . don A est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$ et A est semblable à $\begin{pmatrix} a & 0 \\ 0 & \overline{a} \end{pmatrix}$

remarque : si on admet déjà que deux matrices semblables dans $\mathcal{M}_n(\mathbb{C})$ le sont dans $\mathcal{M}_n(\mathbb{R})$, on peut diagonaliser o trigonaliser dans les complexes puis revenir dans les réels.

La formule det $(\exp(A)) = e^{Tr(A)}$ étant vraie pour toute matrice complexe elle est vraie pour toute matrice réelle . Et comme maintenant la trace est réelle son exponentielle est un réel positif.

De plus si A est à coefficients réelles les puissance A^k le sont aussi donc aussi $E_n(A)$ et donc aussi $\exp(A)$

$$A \in \mathcal{M}_2(\mathbb{R}) \Longrightarrow \exp(A) \in \mathcal{GL}_2(\mathbb{R}) \text{ et det } (\exp(A)) > 0$$

2)

• N étant triangulaire de terme diagonal -1 sa seule valeur propre est -1. On vérifie ensuite que $E_{-1}(N) = Vect\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ de dimension 1; N n'est pas diagonalisable.

- Si A admet une valeur propre réelle on peut d'après III.B.1 diagonaliser ou trigonaliser A dans $\mathcal{M}_2(\mathbb{R})$. A est don semblable à $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ ou à $\begin{pmatrix} a & \mu \\ 0 & a \end{pmatrix}$. On utilise alors I.3 et les calculs de II.1 ou II.2 pour dire que $\exp(A)$ es semblable à $\begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix}$ ou à $\begin{pmatrix} e^a & \mu e^a \\ 0 & e^a \end{pmatrix}$ et admet donc des valeurs propres strictement positives . absurde. Don
- ullet On est donc dans le cas III.B.1.c et A est diagonalisable dans $\mathcal{M}_{2}\left(\mathbb{C}\right)$. On peut alors utiliser III.A.1.a pour dire que Aest aussi diagonalisable. absurde

$$\exp(A) = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$$
 n'a pas de solution dans $\mathcal{M}_2(\mathbb{R})$

et pourtant det(N) > 0

- 3) on cherche donc à résoudre $\exp(X) = A$.
- **3a)** On cherche à diagonaliser X dans $\mathcal{M}_2(\mathbb{R})$ en reprenant les 3 cas du III.B.1 et les calculs du II.1 et II.2
 - Si X est diagonalisable X est semblable a $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ avec a, b réels. Donc $A = \exp(X)$ est semblable à $\begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix}$ donc $Sp_{\mathbb{R}}(A) = \{e^a, e^b\} \subset \mathbb{R}^{+*}$ et réciproquement si $A = P \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} P^{-1}$ avec u > 0, v > 0 alors $X = P \begin{pmatrix} \ln(u) & 0 \\ 0 & \ln(v) \end{pmatrix} P^{-1}$ est solution .
 - Si X admet une valeur propre réelle double et n'est pas diagonalisable X est semblable à $\begin{pmatrix} a & \mu \\ 0 & a \end{pmatrix}$ avec a et μ rée et réciproquement $A = P \begin{pmatrix} u & \nu \\ 0 & u \end{pmatrix} P^{-1}$ avec $u > 0, \nu \in \mathbb{R}$ alors $X = P \begin{pmatrix} \ln(u) & \nu/u \\ 0 & \ln(u) \end{pmatrix} P^{-1}$ est solution (cf calcul d
 - Si X n'a pas de valeur propre réelle X est semblable a $\left(\begin{array}{cc} a & 0 \\ 0 & \overline{a} \end{array}\right)$ avec a non réel . Donc $A=\exp(X)$ est semblable $\begin{pmatrix} e^a & 0 \\ 0 & e^{\overline{a}} \end{pmatrix}$ donc $Sp_{\mathbb{C}}(A) = \{e^a, e^{\overline{a}}\}$. On veut que l'une des valeurs propres soit réelle, donc le deux sont réels (car l

Or un argument de e^a est Im(a), on veut donc $\text{Im}(a) = 0[\pi]$

- Si Im(a) = 0, a est réelle absurde
- Si $\text{Im}(a)=0[2\pi]$, $e^a=e^{\text{Re}(a)}$ et on est ramené au cas Im(a)=0. (ou faire un calcul du type de celui ci dessous)
- Si $\operatorname{Im}(a) = \pi[2\pi] \ e^a = -e^{|a|}$ et $e^{\overline{a}} = -e^{|a|}$. Donc A est semblable à $-e^{|a|} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et comme $PI_2P^{-1} = I_2$ il rest

réciproquement si $A = \lambda I_2$ avec $\lambda < 0$ (le cas $\lambda > 0$ donne diagonalisable à valeur propres positives strictement $X = \begin{pmatrix} \ln(|\lambda|) & -\pi \\ \pi & \ln(|\lambda|) \end{pmatrix}$ convient d'après le calcul du II.5

Si $Sp_{\mathbb{R}}(A) \neq \emptyset$, $A \in Im(exp) \iff Sp_{\mathbb{R}}(A) \subset \mathbb{R}^{+*}$ ou $\exists \lambda < 0$, $A = \lambda I_2$

3b) C'est la question II.5.a à l'envers : Si A est semblable à $\begin{pmatrix} a & 0 \\ 0 & \overline{a} \end{pmatrix}$, on pose $a = \alpha + i\beta$ avec α et β réels . Alors A est semblable à $\begin{pmatrix} \alpha+i\beta & 0 \\ 0 & \alpha-i\beta \end{pmatrix}$ donc aussi à $\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$.

A est semblable à $\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$ dans $\mathcal{M}_2(\mathbb{C})$ donc aussi dans $\mathcal{M}_2(\mathbb{R})$ d'après le résultat admis. On peut décomposer

$$A = P \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} P^{-1}$$

Si on pose $e^{\varepsilon} = \sqrt{\alpha^2 + \beta^2}$ on a $(\alpha e^{-\varepsilon})^2 + (\beta e^{-\varepsilon})^2 = 1$ et donc il existe un réel θ tel que $\alpha e^{-\varepsilon} = \cos(\theta)$ et $\beta e^{-\varepsilon} = \sin(\theta)$ et donc $\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} = e^{-\varepsilon} \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$.

D'après II.5 $\exp\begin{pmatrix} \varepsilon & -\theta \\ \theta & \varepsilon \end{pmatrix} = e^{-\varepsilon} \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ et donc d'après I.3 si $X = P\begin{pmatrix} \varepsilon & -\theta \\ \theta & \varepsilon \end{pmatrix} P^{-1}$ alors $\exp(X) = A$.

On remarque que dans ce cas $Sp_{\mathbb{R}}(A) = \emptyset \subset \mathbb{R}$

l'image par exp de $\mathcal{M}_2(\mathbb{R})$ est $\{\lambda I_2, \lambda < 0\} \cup \{A, Sp_{\mathbb{R}}(A) \subset \mathbb{R}^{+*}\}$

complément

démonstration de : si A et B deux matrices à coefficients réels sont semblables dans $\mathcal{M}_n(\mathbb{C})$ alors A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$ c'est à dire :

$$(\exists P \in \mathcal{GL}_n(\mathbb{C}), B = PAP^{-1}) \Longrightarrow (\exists Q \in \mathcal{GL}_n(\mathbb{R}), B = QAQ^{-1})$$

En prenant les parties réelles et imaginaires de chaque coefficient de P on peut écrire $P=Q_1+iQ_2$, Q_1 et Q_2 dans $\mathcal{M}_n(\mathbb{R})$ On a alors $BP-PA=0\Rightarrow (BQ_1-Q_1A)+i(BQ_2-Q_2B)=0$. Chaque coefficient de $(BQ_1-Q_1A)+i(BQ_2-Q_2B)$ est nul donc aussi sa partie réelle et sa partie imaginaire donc $BQ_1-Q_1A=0$ et $BQ_2-Q_2B=0$. Si Q_1 ou Q_2 est inversible on a fini . Sinon pour tout x soit $M_x=Q_1+xQ_2$ on a $BM_x-M_xA=0$ par combinaison linéaire . mais $\phi(x)=\det(M_x)$ est un polynôme en x de degré au plus n (car chaque coefficient est de degré au plus 1 et on refait le début de la démonstration du polynôme caractéristique) , ce polynôme étant non nul car $\phi(i)\neq 0$. ϕ admet dons au plus n racines et il existe des réels tels que $\phi(x)\neq 0$. On peut alors choisir un tel x et poser $Q=M_x$ qui est inversible et à coefficients réels telle que BQ-QA=0 et donc $B=QAQ^{-1}$.