Statistique des Processus M.S.T.2, 2003-2004

Fiche de TD/TP: Modélisation

Modèles ARMA, ARIMA et SARIMA

Ex.1. Soit le processus ARMA(p,q) défini par $\Phi(B)X_t = \Theta(B)\varepsilon_t$, avec $\varepsilon = (\varepsilon_t, t \in \mathbb{Z})$ bruit blanc de var σ^2 , de représentation causale $X_t = \sum_{i=0}^{\infty} \psi_j \varepsilon_{t-j}$ (avec $\sum_{i=0}^{\infty} |\psi_j| < \infty$).

Vérifier que

$$\gamma(k) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+|k|}; \qquad k \in \mathbb{Z}.$$

Ex.2.

Simuler sous SAS un processus AR de votre choix, ainsi qu'un processus MA.

Ex.3.

Quelles transformations pouvez-vous proposer pour stationnariser (si besoin) les séries de l'exercice 1 de la fiche -Introduction-?

Ex.4.

Soit $X = (X_t)_{t>0}$ processus ARIMA(0,2,1) sans constante.

- 1. Ecrire l'équation du modèle en ayant soin de préciser les conditions liées aux différents paramètres.
- 2. Donner l'écriture autorégressive du modèle, puis son écriture moyenne mobile.

Ex.5.

Considérons X un processus $SARIMA(1,1,1)(0,1,0)_4$.

- 1. Ecrire l'équation du modèle.
- 2. Calculer E[X].
- 3. Quel type de séries peut-on modéliser avec ce processus?

Le problème des racines unités.

Ex.6.

On part du modèle

$$X_t - \mu = -\Phi_1(X_{t-1} - \mu) - \dots - \Phi_p(X_{t-p} - \mu) + \varepsilon_t,$$

avec (ε_t) b.b. de var σ^2 .

Montrer qu'on peut l'écrire sous la forme

$$\nabla X_{t} = \Phi_{0}^{*} + \Phi_{1}^{*} X_{t-1} + \Phi_{2}^{*} \nabla X_{t-1} + \dots + \Phi_{p}^{*} \nabla X_{t-p+1} + \varepsilon_{t}$$

avec :
$$\Phi_0^* := \mu(1 + \sum_{i=1}^p \Phi_i), \ \Phi_1^* := -1 - \sum_{i=1}^p \Phi_i \text{ et } \Phi_j^* := \sum_{i=j}^p \Phi_i, \ 2 \le j \le p.$$

Ex.7.

1. A l'aide de SAS, constituer un fichier de 200 observations $(x_1, ..., x_{200})$ d'un modèle ARIMA(1, 1, 0) (X_t) défini par

$$(1 - 0.8B)(1 - B)X_t = \varepsilon_t$$

avec (ε_t) b.b. de var $\sigma^2 = 1$.

En établir le graphe des données, de l'ACF (sample AutoCorrelation Function) et de la PACF (sample Partial AutoCorrelation Function).

2. On choisit de modéliser X par un AR(2). Tester alors la présence d'une racine unité en utilisant le test de Dickey-Fuller. Conclusion.

Ex.8. Soit $(\varepsilon_t)_{t\in\mathbb{Z}}$ un bruit blanc de variance σ^2 . On définit le processus X vérifiant

$$\forall t \in \mathbb{Z}, X_t - \frac{7}{2}X_{t-1} + \frac{3}{2}X_{t-2} = \varepsilon_t.$$

- 1. On pose $\Phi(\mathbb{X}) = (1 7/2\mathbb{X} + 3/2\mathbb{X}^2)$. Factoriser Φ et décomposer $1/\Phi$ en éléments simples.
- 2. En déduire qu'il existe une suite $(a_i)_{i\in\mathbb{Z}}$ telle que

$$X_t = \sum_{i \in \mathbb{Z}} a_i \varepsilon_{t-i}.$$

En déduire que ε_t n'est pas l'innovation du processus X.

3. Soit $\Theta(\mathbb{X}) = \sum_{k \in \mathbb{Z}} \alpha_k \mathbb{X}^k$, avec $\sum_{k \in \mathbb{Z}} |\alpha_k| < \infty$. Soit Y un processus stationnaire quelconque. Montrer que le processus $Z = \Theta(B)Y$ existe et est stationnaire. Montrer que sa densité spectrale f_Z vérifie

$$\forall \omega \in \mathbb{R}, f_z(\omega) = |\Theta(\exp(i\omega))|^2 f_Y(\omega),$$

où f_Y désigne la densité spectrale de Y. (Indication : considérer d'abord le cas où Θ est un polynôme de degré 1, puis un polynôme de degré n, puis une fraction rationnelle)

4. En déduire qu'il existe un polynôme Φ^* de degré 2 avec toutes ses racines en-dehors du cercle unité, et qu'il existe un bruit blanc η tel que

$$\Phi^*(B)X = \eta,$$

en déduire l'existence d'une suite b_k telle que

$$X_t = \sum_{k \in \mathbb{N}} b_k \eta_{t-k},$$

et que η est l'innovation de X.

5. Quelle est la prévision linéaire optimale de X sur son passé?

Ex.9. On considère un processus stationnaire du second ordre vérifiant

$$\forall t \in \mathbb{Z}, X_t = 2X_{t-1} = \varepsilon_t.$$

 ε est un bruit blanc de variance σ_{ε}^2 . X n'est pas observé, on observe $Y=X+\eta$, où η est un bruit blanc non corrélé avec ε , de variance $\sigma_{\eta}^2=\rho\sigma_{\varepsilon}^2$.

- 1. Montrer que $\varepsilon + (1 B)\eta$ est un MA(1).
- 2. Montrer que Y est un ARMA(1,1) et donner sa représentation canonique.
- 3. Montrer qu'il existe une suite absolument convergente a_k telle que

$$\forall t \in \mathbb{Z}, Y_t = e_t + \sum_{k \in \mathbb{N}^*} a_k Y_{t-k},$$

où e désigne l'innovation de Y. Intérêt d'une telle représentation?