Examen M2 SeCReTS : Rattrapage : Rappels de mathématiques et d'informatique.

Remarques:

- Pour chacune des questions, on demande de justifier les étapes en mentionnant notamment les algorithmes utilisés.
- Aucun document ni aucune calculatrice ne sont admis.
- La durée de l'examen est de deux heures.

Question 1 (Preuve)

Montrez le théorème des restes chinois dans le cas des entiers (en incluant l'étude des systèmes de congruences).

Question 2 (Application de la théorie)

Considérons l'ensemble des classes de congruence \mathbb{Z}_{15} muni de la multiplication modulo 15 que l'on note . Considérons la relation binaire, pour tous $x,y\in\mathbb{Z}_{15}$,

 $x \sim y$ si et seulement si il existe $i \in \mathbb{Z}$ tel que $x = 2^i \cdot y \bmod 15$.

- 1. Montrez que \sim est une relation d'équivalence sur $\mathbb{Z}_{15}\times\mathbb{Z}_{15}.$
- 2. Donnez l'ensemble des classes d'équivalence de l'ensemble \mathbb{Z}_{15} pour cette relation d'équivalence.

Question 3 (Calcul)

Considérons le polynôme irréductible

$$P(X) = 2X^3 + X + 2 \in \mathbb{Z}_3[X]$$

et le corps fini

$$\mathbb{Z}_3[X]/(P(X))$$
.

Considérons les classes A et B dont les représentants sont $X^2 + 1$ et X + 2.

- 1. Déterminer le nombre d'éléments de ce corps.
- 2. Calculez le représentant minimal de la somme de A et B.
- 3. Calculez le représentant minimal du produit de A et B.
- 4. Calculez le représentant minimal de l'inverse de A en utilisant un algorithme systématique.

Question 4 (Calcul)

En précisant les résultats que vous utilisez, calculez toutes les solutions $X\in\mathbb{Z}$ du système de congruences suivant :

 $X = 1 \mod 18$ $X = 2 \mod 13$

Question 1 (Théorie)

- Enoncez un résultat précisant de l'isomorphisme qu'il peut y avoir entre un anneau $(\mathbb{Z}/n\mathbb{Z}, +, *)$ et le produit cartésien d'anneaux de même type (mais avec d'autres paramètres). Montrez ce résultat.
- Enoncez un résultat caractérisant l'inversibilité (multiplicative) d'une classe de $(\mathbb{Z}/n\mathbb{Z}, +, *)$. Montrez ce résultat.

Promo And I't messibility

Question 2 (Application de la théorie)

Considérons l'ensemble des nombres naturels \mathbb{N} (c-à-d $\{0,1,2,3,\cdots\}$) muni de l'opération binaire addition + classique. On supposera les propriétés de cette opération comme acquises. Considérez l'ensemble produit $\mathbb{N} \times \mathbb{N}$. Considérez la relation binaire, pour tous $(a,b),(c,d)\in \mathbb{N} \times \mathbb{N}$,

$$(a,b) \sim (c,d)$$
 si et seulement si $a+d=b+c$

- 1. Montrez que \sim est une relation d'équivalence sur $\mathbb{N} \times \mathbb{N}$.
- 2. Définissez les classes d'équivalence que l'on notera $\overline{(a,b)}$ si (a,b) est une représentant. Représentez graphiquement chacune d'entre-elles sur le plan dont les points sont les points de $\mathbb{N} \times \mathbb{N}$.

Notre but est de définir une opération binaire \oplus sur ces classes d'équivalence.

- 3. Montrez que si $(a, b) \sim (a', b')$ et $(c, d) \sim (c', d')$ alors $(a + c, b + d) \sim (a' + c', b' + d')$.
- 4. Déduisez-en que l'opération binaire $(a,b) \oplus (c,d) = (a+c,b+d)$ pour tous $(a,b),(c,d) \in \mathbb{N} \times \mathbb{N}$ est bien définie (ne dépend pas du représentant choisi). Nous avons donc construit une structure quotient muni d'une opération \oplus .
- Donnez la classe d'équivalence qui est l'élément neutre de la structure quotient.
- 6. Donnez l'opposé de la classe de représentant (a, b).

Question 3 (Calcul)

- a. Considérons le groupe multiplicatif de $(\mathbb{Z}_{539}, +, *)$.
- 1. Calculez le nombre d'éléments de ce groupe en justifiant le raisonnement. Considérons le polynôme irréductible $P(X) = X^3 + 2X + 1 \in \mathbb{Z}_3[X]$ le corps fini

$$P(X) = X^3 + 2X + 1 \in \mathbb{Z}_3[X]$$

$$\mathbb{Z}_3[X]/(P(X)).$$

et le corps fini

- 1. Déterminez le nombre d'éléments de ce corps.
- 2. Soit les classes de représentants $A = 2X^2 + 1$ et $B = X^2$. Donnez le représentant minimal de la somme et du produit de ces classes.
- 3. En utilisant un algorithme systématique, donnez le représentant minimal de l'inverse de la classe dont le présentant est $X^2 + 1$

Question 4

Dénotons par $\bar{\cdot}$ les classes de $(\mathbb{Z}_{11}, +, \cdot)$. On cherche à déterminer le polynôme de degré minimal P(x) de l'ensemble $\mathbb{Z}_{11}[X]$ tel que $P(\overline{1}) = \overline{2}, P(\overline{2}) = \overline{5} \text{ et } P(\overline{4}) = \overline{6}.$

- 1. Exprimez ce problème sous forme de la résolution d'un système de congruences. Expliquez le raisonnement.
- 2. Résolvez le système de congruences ci-dessus à l'aide d'une formule explicite et exhibez le polynôme de degré minimal que l'on recherche.