Date	13.07.2024	Time 11.30 AM- 1.00 FM		
TEST		Marks	10+30	
	CIE - I	Maximum Marks	Course Code	MA149TA
Course Title	BRIDGE COURSE MATHEMATICS	3	All branches	
Semester	IV	Programs		BUT TO STATE

Instructions: Answer all question

OI NI		Marks
Sl. No	Part - A	1
	The interval in which the real root of the equation $x^2 - 4x - 7 = 0$ lies is	
2	Given $\frac{dy}{dx} = x + y$, $y(0) = 1$, $h = 0.2$, $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$,	
	$k_4 = $ using Runge- Kutta fourth order method.	1
3	In Newton-Raphson method for finding the root of an equation $f(x) = 0$, in the interval	
	[a, b] the curve $f(x)$ is replace by	1
1	Simpson's 1/3 rd rule is used only when the number of sub intervals is	
5	Given $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
	The value of $\int_0^1 F(x) dx$ is	2
6	$Solve \frac{d^2y}{dx^2} - \frac{dy}{dx} = 0.$	2
7	The Taylor series solution of $y' = x - y^2$, $y(0) = 1$ up to second degree terms is	
	Part - B	6
1	Evaluate $\int_0^1 \frac{x}{1+x^2} dx$ by Weddle's rule taking seven ordinates and hence find $\log_e 2$.	
2	Find a positive real root of the equation $e^x \sin x = 1$ correct to four decimal places using	6
	Newton Raphson method.	6
3	Employ Taylor's series method to obtain approximate value of y at $x = 0.2$ for the	
	differential equation $\frac{dy}{dx} = 2y + 3e^x$ with $y(0) = 0$.	
1	Compute $y(0.1)$ using Runge- Kutta fourth order method given that	
	$\frac{dy}{dx} = y^2 + x$, $y(0) = 1$, taking $h = 0.1$	
	Solve (i) $(D^2 - 4)y = 0$	
	(ii) $\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0.$	

DEPARTMENT OF MATHEMATICS

Academic year 2023-2024 (Even Semester 2024)

	Jear	2023-2024 (1)	
Date	20.00.0		9.30 AM- 11.00 AM
TEST	29.08.2024	Time	10+30
Course Title	CIE - II BRIDGE COURSE MATHEMAT	Maximum Marks	Course Code MA149TA
Semester	IV IV	ics	All branches
E INVESTIGATION	**	Programs	

Instructions: Answer all question

ions: Answer all question	Marks
Part - A	2
If $u = x^2y + 5y^2z + 3z^2x$ then $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y} = \frac{1}{2}$	2
If $\vec{f} = y^2 \hat{\imath} + 2x\hat{\jmath} + z^2\hat{k}$ then $div \vec{f}$ at the point $(1, -2, 0)$ is	2
If $u = 2x + 2y$ and $v = x - 3y$, then $\frac{\partial(u,v)}{\partial x} = -\frac{\partial(u,v)}{\partial x}$	
	2
The P1 of $\frac{1}{dx^2} + \frac{1}{dx} - 2y = 3e^{-2x}$ is	2
The unit tangent vector of the curve $\vec{r}'(t) = \cos 2t \hat{\imath} + \sin 2t \hat{\jmath} + 2t \hat{\imath} = \frac{1}{2}$	
Part - B	6
Solve $(D^2 + 4)y = e^{2x} + \cos 3x$	
$ v = 1$, (u,v,w) $ v = x^2 + y^2 + z^2$, $ v = xy + yz + zx$, $ w = x + y + z$.	6
Find $f(\overline{x,y,z})$ given $u = x + y + z$, $v = xy$.	6
	1
at $(1,-1,2)$. At a curve $x = 2t^2$, $y = t^2 - 4t$, $z = 3t - 5$, where t is	s 6
A particle moves along the curve x - 20 y	
direction of the vector $\hat{i} - 3\hat{j} + 2\hat{k}$ at $t = 1$.	1
Show that $\vec{F} = (e^x \cos y + yz)\hat{\imath} + (xz - e^x \sin y)\hat{\jmath} + (xy + z)\hat{k}$ is irrotational.	
	If $u = x^2y + 5y^2z + 3z^2x$ then $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y} = \frac{1}{2}$. If $\vec{f} = y^2 \hat{\imath} + 2x\hat{\jmath} + z^2\hat{k}$ then $div\vec{f}$ at the point $(1, -2, 0)$ is If $u = 2x + 2y$ and $v = x - 3y$, then $\frac{\partial(u,v)}{\partial(x,y)} = \frac{1}{2}$. The P I of $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 3e^{-2x}$ is The unit tangent vector of the curve $\vec{r}'(t) = \cos 2t\hat{\imath} + \sin 2t\hat{\jmath} + 2t\hat{k}$ is Part - B Solve $(D^2 + 4)y = e^{2x} + \cos 3x$ Find $J\left(\frac{u,v,w}{x,y,z}\right)$ given $u = x^2 + y^2 + z^2$, $v = xy + yz + zx$, $w = x + y + z$. Compute the unit normal vector to the surface $f(x,y,z) = xy^2 - 4x^2y + z^2$ at $(1,-1,2)$. A particle moves along the curve $x = 2t^2$, $y = t^2 - 4t$, $z = 3t - 5$, where t is time. Compute the components of velocity and acceleration in the direction of the vector $\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$ at $t = 1$.