

K1. Opis ruchu w układzie biegunowym, ruch po okregu jako specjalny przypadek ruchu krzywolinowego.

Potożenie punktu skreślamy przez jego obległość od środka r oraz kat y.

or -> ciato sadala/zbliża się

-> zmiana ottupośni promienia
i efekt sity dośrodkonej

zmiana ruchu katowego

Galg visto porusara sie po okregu:

Dynamika D1. Zdefiniuj i wymień znane Ci siły pozorne. Z jakich oddziaływań fizycznych wynikaja. Sity poaorne - w nie inergolnych układach odniesiemia;
wynikają z przyspie szemia uktadu odniesiemia

• sita beantadności - związama z przyspie szewiem

linionym uktodu odniesiemia fo = mao

• sita odsrodkowo - shierowana no zewnątrz,

przytopadle do osi obrotu fod = mw²k

• sita Coriolisa - daiata no ciała w obracającym

się uktodaję odniesienia Sity poarorne nie mynikają z żadnych odokiatywań fizycznych, a są konsekwanyą myborn nieineryalnego uktadu odniesienia do opisu ruchu.

Pica	ار ا	ا م	la			c.		1100
1 V Deca		yn ska	ionny	Sily	1 prze	suniqua	- miona	I LOS
energi	i prze	Kazyno	mej	migdz	y ub	xtodami	-miora N= J1	F(K) c
Moc -	· ilość	prom	nyoco	nanej	w je	ednostce	caasu	
E _k -	energia	anioa	ana	2 1	uchem	usts		
Ep - 6	nergia	&wioza	na :	z pos	tozeni	en lub	stanem	
.A SAD A	+ 2AC	HON AN	IA E	NERG	(/:			
atkoni	ta en	ergia	w	lactul	vie i	wholos	nym je	st
orpom		U					O V	

D4. Ruch ciała o zmiennej masie – wyprowadź równanie Mieszczerskiego. $\frac{d\vec{p}}{dt} = \frac{dl}{dt} \left(\frac{1}{mv} \right) = \frac{dm}{dt} + \frac{molv}{dt}$ $\frac{dm}{dt} \overrightarrow{y} + \frac{m d\overrightarrow{v}}{dt} = \overrightarrow{F} + \frac{dm}{dt} \overrightarrow{y} + \frac{dm}{dt} \overrightarrow{w}$ $\frac{mdv^{2}}{dt} = F + \frac{dm}{dt} \Rightarrow \frac{dm} \Rightarrow \frac{dm}{dt} \Rightarrow \frac{dm}{dt} \Rightarrow \frac{dm}{dt} \Rightarrow \frac{dm}{dt} \Rightarrow \frac{dm}{dt} \Rightarrow$ równanie Mieszczerskiogo

Relatywistyka

R1. Opisz doświadczenie Michelsona–Morleya oraz wynik, jakiego sie spodziewali.

Eksperyment miał wyknyć "eter" – hipotetycznę środowisko, w którym miało rozchodnić się światło
lizyli interferometru, aby zmierzyć czy prędkość światła
zodeży od zierunku ruchu Ziomi względen tepo etony
Spodziewony wynik: myśleli, że światło będzie poruczać
się szębciej lub rolniej w zoleżności od knerunku,
w objariatoby się przesunięciem projaków interferencejnych.

- R2. Przestrzeń Minkowskiego opisz i podaj przykłady, gdzie:
 - a) Zdarzenia A i B sa jednoczesne w układzie nieruchomym, a w ruchomym układzie O' zdarzenie B wystepuje przed A.
 - b) Zdarzenia A i B sa jednoczesne w układzie ruchomym O', a A wystepuje przed B w układzie nieruchomym.

Przestren Minkowskiego - cateronymianowa przestrzeń - czas

- Wyobraźmy sobie peron kolejowy (układ nieruchomy) i pociąg poruszający się z dużą prędkością (układ ruchomy 0'). Dwa zdarzenia, A i B, to uderzenia piorunów w przeciwległe końce peronu, które są jednoczesne dla obserwatora stojącego dokładnie w środku peronu. Dla obserwatora w pociągu (0'), poruszającego się w kierunku zdarzenia B, światło z B dotrze do niego szybciej niż światło z A (ponieważ obserwator porusza się w stronę B od strony A), a zatem obserwator w pociągu stwierdzi, że zdarzenie B nastąpiło przed zdarzeniem A.
- Odwróćmy sytuację. Dwa zdarzenia, A i B, są jednoczesne dla obserwatora w pociągu O' (np. zapalają się dwie lampki na przeciwległych końcach pociągu dokładnie w tym samym czasie dla obserwatora w pociągu). Dla obserwatora na peronie (układ nieruchomy), który widzi pociąg poruszający się, światło z lampki A (z przodu pociągu) dotrze do niego później niż światło z lampki B (z tyłu pociągu), ponieważ pociąg porusza się w kierunku A. W rezultacie obserwator na peronie stwierdzi, że zdarzenie A (zapłon lampki z przodu) nastąpiło przed zdarzeniem B (zapłon lampki z tyłu), ponieważ pociąg "uciekał" przed światłem z A.

			e o masie spoczynkowej $m_0 = 0$
da sie rozpec	dzić do predkości świ	atła? Odpowiedź uzas	adnij.
$E^{2} = (pc)^{6}$	2 $+ \left(\frac{2}{2} \right)^2$		
(ha = 0)			
(m ₀ =0)	$E^{z} = (\rho_{c})^{2} +$	(0·c ²) ²	
	[] []		
	E - (pc)		
	E=pc		y
\\ \'\!	, , , , ,		V //- [2]
esu mo=	=0 to ab	700.40	E= x · mo·c?
energie i	pool to y-	>p(p= W. mo.r
czyli 1=c			
TAK, czos	1/2 12 A	posie sorza	Intrivei m=0
(jak foti	on) zowsze	porusza się	nkowej mo=0 z predkosiisz c
w prożwi.	/	1	1 2

laca i	ON 6 V	nio e	\(\tau \)	716100	n 2 nO	<u>, </u>	MODE	byc
lasa i Lagemnie	evi evi	J'e :	2 "				, 95	Ű
Dayennie	pael	ksztjí	COUNT	6				
J							2	2
	E = E	K+ Co	=>	> tk =	te-E	= x	moc - r	n _D C
			- (7 /	1	
	EL	= w,	2 / X	r-//	= mo	- -		1
	~		(0		U	\\J.	- 45 /	1)
						y Z I	0-	

Oscylator harmoniczny

O1. Wahadło matematyczne – wyprowadź wzór na okres T dla małych wychyleń.

$$f = - \underset{S}{\text{mgaind}} = - \underset{S}{\text{mgd}} = - \underset{S}{\text{mgd}}$$

$$F = -mgsind = -mgd = -mg : T$$

$$F = am = \frac{d^2s}{ds} \cdot m$$

$$-mg \cdot \frac{5}{L} = m \cdot \frac{d^{2}s}{ot^{2}}$$

$$\frac{d^{2}s}{dt^{2}} + g \cdot \frac{s}{L} = 0$$

$$\frac{d^2 \times}{dt^2} + \omega_0^2 \cdot \times = 0$$

$$\begin{array}{c}
\omega_{o} = 2\pi \\
\overline{\Gamma_{o}} = 7
\end{array}$$

$$\begin{array}{c}
\overline{\Gamma_{o}} = 2\pi \\
\overline{\overline{\Gamma_{o}}} = 2\pi \\
\end{array}$$

O2. Wyprowadź wzór na energie kinetyczna oscylatora harmonicznego, jeśli wzór na położenie ma postać:

Ex (+)=?

$$x(t) = \frac{f_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\alpha\omega)^2}} \sin(\omega t + \phi)$$

$$E_{k}(t) = \frac{mV^{2}(t)}{2}$$

$$A = \frac{f_0}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(2\omega\omega\right)^2}}$$

$$V(t) = \frac{dx}{dt} = \frac{d[A\sin(\omega t + \psi)]}{dt} = A\omega \cdot \cos(\omega t + \psi)$$

$$E_{k}(t) = \frac{m \cdot A^{2}\omega^{2} \cdot \omega s^{2}(\omega t + \psi)}{2}$$

$$E_{k}(t) = \frac{m \cdot A^{2} \omega^{2} \cdot \omega s^{2} (\omega t + \gamma)}{2}$$

$$E_{K}(t) = \frac{m \cdot f_{o}^{2} \cdot \omega^{2} \cdot \omega s^{2}(\omega t + \varphi)}{2 \cdot \left[\left(\mathcal{O}_{o}^{2} - \omega^{2} \right)^{2} + \left(2 \omega \omega \right)^{2} \right]}$$

 $\frac{dx}{dt} = B \cdot e^{-dt} + (A + Bt) \cdot (-\alpha e^{-dt})$ $\dot{x} = e^{-dt} \cdot (B - dA - \alpha Bt)$ $\dot{x} = -d \cdot e^{-dt} \cdot (B - dA - \alpha Bt) + e^{-dt} \cdot (-dB)$ $\dot{x} = e^{-dt} \cdot (a^2Bt + a^2A - 2aB)$ $2aktadamy, ie (\omega = a \tag{krytycrne} ttumienie)$ $e^{-dt} \cdot (x^2Bt + x^2A - 2aB) + 2a \cdot e^{-dt} (B - dA - xBt) + a^2 \cdot e^{-dt} (A + Bt) = 0$ $a^2Bt + a^2A - 2aB + 2aB - 2aA - 2a^2Bt + a^2A + a^2Bt = 0$ 0=0

O3. Udowodnij, że funkcja $x(t) = (A + Bt)e^{-\alpha t}$ jest rozwiazaniem równania oscylatora

harmonicznego z tłumieniem:

 $\ddot{x} + 2\alpha \dot{x} + \omega_0^2 x = 0$

F1. Jaka relacja wiaże czestotliwość fali f i liczbe falowa k?

$$k = \frac{2\pi}{\lambda} - d\tau \cdot fuli$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$k = \frac{2\pi}{\lambda} \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi \cdot f$$

$$V = \beta \cdot f = 2\pi$$

$$k = \frac{2\pi \cdot f}{V} = 7 f = \frac{kV}{2\pi} \left[H_2 \right]$$

F3. Podaj równanie fali poprzecznej o polaryzacji liniowej wzdłuż osi x, która propaguje sie z predkościa v wzdłuż osi y, jeśli czestość kołowa fali wynosi ω . Udowodnij, że fala spełnia równanie falowe:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$$

