Examen FINAL Estructura de Computadores II

curso 2004-2005 Q2

- La duración del examen es de 2 horas y media.
- Los problemas 1 y 2 se han de entregar juntos.
- Los problemas 3 y 4 se han de entregar juntos.
- Los problemas 5 y 6 se han de entregar juntos.
- El resto se ha de entregar en las hojas de respuestas.
- Las notas finales se publicarán el 30 de junio.
- La revisión se realizará el 5 de julio.

Dado el siguiente codigo y bloque de activación de la subrutina "final1", y teniendo en cuenta que la variable local "i" de "final1" se almacena en el registro "esi" y la variable local "j" en el registro "edi", se pide:

```
typedef struct{
   int W[10];
   char a;
   int *pa;
}s1;

int A (int k, char c, int v[10]);

int final1(s1 *p, int M[15][10], int x)
{ int i, j;
   . . .
}
```


Problema 1 (1 punto)

Traducid a ensamblador del IA32 la siguiente sentencia escrita en C:

```
j=A(i, p->a, &M[3][0]);
```

suponiendo que está dentro de la rutina "final1".

Problema 2 (1.5 puntos)

Traducid a ensamblador del IA32 la siguiente sentencia escrita en C:

```
if ((i < p->W[j]) || (j^0xfff3))
  *(p->pa)++;
else
  p->pa = &M[i][j];
```

suponiendo que está dentro de la rutina "final1".

Problema 3 (1 puntos)

Traducid de forma **óptima** a ensamblador del IA32 la siguiente sentencia escrita en C:

```
for (i=0; i<15; i++)
  for (j=0; j<10; j++)
     M[i][j] = x * M[i][j];</pre>
```

suponiendo que está dentro de la rutina "final1".

Problema 4 (0.5 puntos)

Traducid a ensamblador del IA32 la siguiente sentencia escrita en C:

```
return(p->W[j] * i);
```

suponiendo que está dentro de la rutina "final1".

curso 2004-2005 (Q2)

Problema 5 (1,5 puntos)

Disponemos de un procesador de 16 bits con direcciones de 16 bits que tiene una memoria cache de datos con las siguientes características:

- 3-asociativa, con algoritmo de reemplazo FIFO
- 8 bytes por línea
- 12 líneas
- política de escritura: write through + write allocate

El contenido inicial de la cache (Memoria de Etiquetas) es el siguiente:

conjunto 0	conjunto 1	conjunto 2	conjunto 3
1BC	105	036	0A7
038	609	146	44B
-	111	022	72F

La información de reemplazo está implicita en la posición. Las posiciones inferiores corresponden a las líneas que llevan más tiempo en la cache. Las posiciones superiores corresponden a las líneas que llevan menos tiempo en la cache. Por ejemplo, en el conjunto 3, la línea 0A7 es la que lleva menos tiempo en la cache, y la línea 72F la que lleva más tiempo en la cache.

Rellenad la siguiente tabla, indicando para cada referencia, el TAG (etiqueta), a qué conjunto de MC va a parar, si es acierto o fallo, si hay lectura de MP, si hay escritura en MP y el TAG de la línea reemplazada cuando proceda.

dirección (hex)	TAG (en hex)	conjunto MC	¿acierto o fallo?	lectura MP ¿si/no?	Escritura MPċsi/no?	¿TAG de línea reemplazada?
LECT C128						
ESCR 8978						
ESCR 8608						
ESCR BAA0						
LECT BAA0						
LECT 8608						
LECT 0450						
LECT 2228						
LECT E5F8						
ESCR 20A8						

¿Cuál es el contenido final de la Memoria Cache?

conjunto 0	conjunto 1	conjunto 2	conjunto 3

curso 2004-2005 (Q2) 2 / 4

Problema 6 (1.5 puntos)

Tenim una CPU amb una cache amb les següents característiques:

- CPI ideal: 1.8 cicles / instrTemps de cicle (Tc): 10 ns
- Nombre de referències per instrucció (nr): 1.4 ref / instr
- Mida de la línia: 16 bytes
- Política de escriptura en cas d'encert: Copy Back
- Política de escriptura en cas de fallo: Write Allocate
- Temps de servei en cas d'encert (tsa): 1 cicle
- MP organitzada en: 8 mòduls entrellaçats
- Latència dels mòduls de MP: 5 cicles
- Amplada de banda del bus MP MC: 32 bits que es transfereixen en 2 cicles
- Quan es reemplaça una linea modificada, primer escriu la linea reemplaçada a MP i despres es llegeix la nova linea.
- % escriptures (pe): 15%
- % de linees modificades (pm): 20%
- Tassa encerts (h): 90%
- a) Quin sera el temps de servei (en cicles) en cas de fallo (Tsf)?
- b) Quin será el temps mig d'accés a memòria en cicles?
- c) Quin serà el temps mig d'execució d'una instrucció en ns.?

Problema 7 (1 punto)

Disposem d'una cache amb les segunets caracteristiques:

- Mapeig associatiu de grau 2
- Capacitat: 4096 bytes
- Linia de cache: 128 bytes

Es demana:

- a) Calculeu quantes linies hi ha a la cache
- b) Donada la seguent declaracio en C:

```
char v[3*4096];
```

Escriu en C un codi en el que es pugui assegurar que no hi haura cap encert en cache i hi haura exactament 3*32 fallades. Considereu que la cache estara buida en el moment d'executar el codi. Justifiqueu breument la resposta.

curso 2004-2005 (Q2) 3 / 4

Pregunta 8 (0.5 puntos)

	ara cada una de las siguientes afirmaciones, indicad si son ciertas (C) o falsas (F) ada acierto son $+0.1$ puntos y cada fallo -0.1
•	El comando continue de GDB ejecuta hasta el final de la rutina.
•	El rango de un int es 0 2 ³² -1.
•	La instrucción movl (%eax, %ebx, 6), %ecx almacena en el registro %ecx el contenido de la posicion de memoria M[%eax + %ebx*6].
•	La instrucción pushl suma 4 al valor del registro %esp.
•	Los bits de condición no se activan con la instrucción mov1.
P	regunta 9 (0.5 puntos)
	ara cada una de las siguientes afirmaciones, indicad si son ciertas (C) o falsas (F) ada acierto son +0.1 puntos y cada fallo -0.1
•	Para el mismo tamaño de memoria, una memoria cache directa tiene un tiempo de acceso menor que una memoria cache asociativa por conjuntos.
•	Si la cache de datos de primer nivel es directa, la cache de instrucciones de primer nivel también tiene que serlo.
•	Los algoritmos de reemplazo LRU siempre van mejor que los aleatorios.
•	El TLB no es imprescindible para que el mecanismo de traducciones de la memoria virtual funcione.
•	Las memorias cache hacen que los programas tengan localidad espacial y localidad temporal.
P	regunta 10 (0.5 puntos)
	ara cada una de las siguientes afirmaciones, indicad si es cierta (C) o falsa (F) ada acierto son +0.1 puntos y cada fallo -0.1
•	Los buses asíncronos tienen que ser cortos debido a los problemas de sesgo (skew) de reloj
•	El master de un bus responde a las distintas peticiones de entrada salida relizadas por otros dispositivos
•	En un bus solo puede existir un único bus master que usa el BUS siempre que lo necesita
•	El Bus PCI tiene arbitraje basado en Daisy-chain
•	El bus serie tiene menor numero de líneas y mayor frecuencia que el bus paralelo
P	regunta 11 (0.5 puntos)
	ara cada una de las siguientes afirmaciones, indicad si es cierta (C) o falsa (F) ada acierto son +0.1 puntos y cada fallo -0.1
•	En un disco magnetico con un número fijo de sectores por pista la densidad de bits es variable.
•	Los registros de estado pueden ser modificados por la CPU para indicar como ha de funcionar el dispositivo
•	Es imprescindible que la RAI salve, en la pila, todos los registros que utilice excepto % eax, % ecx, %edx
•	En la sincronización por interrupciones el propio procesador avisa al controlador, mediante un mecanismo hardware, que se puede realizar la operación de E/S
•	El controlador de DMA habitualmente envia una interrupción despues de cada dato transmitido

curso 2004-2005 (Q2)