Coheirs and invariant types

Advanced Model Theory

March 10, 2022

Reference in the book: Section 12.1–12.2 (loosely).

1 Conclusion of the last lecture

Let λ be an infinite cardinal. Recall that T is λ -stable if the following equivalent conditions hold:

- 1. For any $A \subseteq \mathbb{M}$, if $|A| \leq \lambda$, then $|S_1(A)| \leq \lambda$.
- 2. For any $A \subseteq \mathbb{M}$, if $|A| \leq \lambda$, then $|S_n(A)| \leq \lambda$.

(These are equivalent by Lemma 11 in last week's notes.) If $\lambda \geq |L|$, then (1) and (2) are also equivalent to the following:

- 3. For any $M \leq M$, if $|M| \leq \lambda$, then $|S_1(M)| \leq \lambda$.
- 4. For any $M \leq M$, if $|M| \leq \lambda$, then $|S_n(M)| \leq \lambda$.
- (1) \Longrightarrow (3) trivially. Conversely, assume (3). If $A \subseteq \mathbb{M}$ and $|A| \leq \lambda$, then downward Löwenheim-Skolem gives a small model $M \preceq \mathbb{M}$ with $M \supseteq A$ and $|M| \leq \lambda$. Every type over A extends to a type over M, so $|S_1(A)| \leq |S_1(M)| \leq \lambda$. Thus (1) \iff (3). The equivalence (2) \iff (4) is similar.

Lemma 1. Suppose for every model M and every $p \in S_1(M)$, p is definable. Then M is λ -stable for some λ .

Proof. Take $\lambda = 2^{|L|} > |L|$. It suffices to show that if $M \leq \mathbb{M}$ and $|M| \leq \lambda$, then $|S_1(M)| \leq \lambda$. Every type in $S_1(M)$ is definable. A definable type is determined by the map $\varphi \mapsto d\varphi$. There are |L|-many possibilities for φ , and |L(M)|-many possibilities for $d\varphi$. So the number of (definable) types is at most $|L(M)|^{|L|} \leq \lambda^{|L|} = (2^{|L|})^{|L|} = 2^{|L|^2} = 2^{|L|} = \lambda$.

Theorem 2. The following are equivalent for a theory T with monster model M:

1. All types over models are definable.

- 2. All 1-types over models are definable.
- 3. No formula $\varphi(\bar{x}; \bar{y})$ has the dichotomy property.
- 4. No formula $\varphi(x; \bar{y})$ has the dichotomy property.
- 5. T is λ -stable for at least one λ .

Proof. (5)
$$\Longrightarrow$$
 (3) by Proposition 10 last week. (3) \Longrightarrow (4) and (1) \Longrightarrow (2) are trivial. (4) \Longrightarrow (2) and (3) \Longrightarrow (1) by Proposition 8 last week. (2) \Longrightarrow (5) by Lemma 1.

A theory is **stable** if the equivalent conditions of Theorem 2 hold.

2 Coheirs

Definition 3. Suppose $p \in S_n(M)$, $N \succeq M$, $q \in S_n(N)$, and $q \supseteq p$. Then q is a coheir of p if for any L(N)-formula $\varphi(\bar{x}) \in q(\bar{x})$, there is $\bar{a} \in M$ with $N \models \varphi(\bar{a})$.

Note if $\varphi_1, \ldots, \varphi_n \in q$, we can let $\psi = \bigwedge_{i=1}^n \varphi_i$ and then $\psi \in q$, so there is $\bar{a} \in M$ satisfying ψ , or equivalently, $\bar{a} \in M$ satisfying the finite subtype $\{\varphi_1, \ldots, \varphi_n\} \subseteq q$. Thus:

q is a coheir of p iff q is finitely satisfiable in M.

Example. p is a coheir of itself, because a type over M is finitely satisfiable in M.

Example. Suppose M is strongly minimal and $N \succeq M$. Let p and q be the transcendental 1-types over M and N, respectively. Then q is a coheir of p.

Proof. If $\varphi(x) \in q(x)$, then $\varphi(N)$ is finite or cofinite. If $\varphi(N)$ is finite, then $\varphi(x) \notin q(x)$. If $\varphi(N)$ is cofinite, it intersects M because M is infinite.

Lemma 4. Suppose $M \leq N$, and $\Sigma(\bar{x})$ is a partial type over N that is finitely satisfiable in M. Then there is $q \in S_n(N)$ extending $\Sigma(\bar{x})$ such that q is finitely satisfiable in M, i.e., q is a coheir of $q \upharpoonright M$.

Proof. Let $\Psi(\bar{x}) = \{\psi(\bar{x}) \in L(N) : \forall \bar{a} \in M \ (N \models \psi(\bar{a}))\}$. Any tuple $\bar{a} \in M$ satisfies $\Psi(\bar{x})$. Because $\Sigma(\bar{x})$ is finitely satisfiable in M, so is $\Sigma(\bar{x}) \cup \Psi(\bar{x})$. (The tuple from M satisfying $\Sigma_0 \subseteq_f \Sigma$ will also satisfy Ψ .) Take a completion $q \in S_n(N)$ of $\Sigma \cup \Psi$. We claim q is finitely satisfiable in M. Take $\varphi(\bar{x}) \in q(\bar{x})$. If there is no $\bar{a} \in M$ satisfying φ , then $\neg \varphi \in \Psi$, so $\neg \varphi \in q$, a contradiction.

Here are two consequences of the lemma:

Theorem 5 (Coheirs exist). If $p \in S_n(M)$ and $N \succeq M$, then there is $q \in S_n(N)$ a coheir of p.

Proof. Apply the Lemma with $\Sigma(\bar{x}) = p(\bar{x})$.

Theorem 6. Suppose $M_1 \leq M_2 \leq M_3$ and $p_i \in S_n(M_i)$ for i = 1, 2. If p_2 is a coheir of p_1 , then there is $p_3 \in S_n(M_3)$ a coheir of p_2 and p_1 .

Proof. Take $p_3 \in S_n(M_3)$ finitely satisfiable in M_1 , extending p_2 .

Warning 7. A coheir of a coheir of p needn't be a coheir of p.

3 Invariant types

Work in a monster model M. Let $A \subseteq M$ be a small set. Recall

$$\operatorname{tp}(\bar{a}/A) = \operatorname{tp}(\bar{b}/A) \iff \exists \sigma \in \operatorname{Aut}(\mathbb{M}/A) \ (\sigma(\bar{a}) = \bar{b}).$$

Lemma 8. The following are equivalent for $X \subseteq \mathbb{M}^n$:

- 1. $\sigma(X) = X \text{ for } \sigma \in \operatorname{Aut}(\mathbb{M}/A)$.
- 2. If $\bar{a}, \bar{b} \in \mathbb{M}^n$, then

$$\operatorname{tp}(\bar{a}/A) = \operatorname{tp}(\bar{b}/A) \implies (\bar{a} \in X \iff \bar{b} \in X).$$

3. There is a function $f: S_n(A) \to \{0,1\}$ such that $X = \{\bar{a} \in M^n : f(\operatorname{tp}(\bar{a}/A)) = 1\}$.

Proof. (2) \iff (3) is clear.

 $(1) \iff (2)$: we can rewrite (2) as follows:

If $\bar{a}, \bar{b} \in \mathbb{M}^n$ and $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$ and $\bar{b} = \sigma(\bar{a})$, then $\bar{a} \in X \iff \bar{b} \in X$.

Or equivalently,

If $\bar{a} \in \mathbb{M}^n$ and $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$, then $\bar{a} \in X \iff \sigma(\bar{a}) \in X$.

Or equivalently,

If $\bar{a} \in \mathbb{M}^n$ and $\sigma \in \operatorname{Aut}(\mathbb{M}/a)$, then $\bar{a} \in X \iff \bar{a} \in \sigma^{-1}(X)$

or equivalently, $X = \sigma^{-1}(X)$, which is equivalent to $X = \sigma(X)$.

Definition 9. A set $X \subseteq \mathbb{M}^n$ is $\operatorname{Aut}(\mathbb{M}/A)$ -invariant, or A-invariant for short, if the equivalent conditions of Lemma 8 hold.

Example. If $D \subseteq \mathbb{M}^n$ is A-definable (defined by an L(A)-formula), then D is A-invariant.

Lemma 10. If $D \subseteq \mathbb{M}^n$ is definable and A-invariant, then D is A-definable.

Proof. The usual compactness arguments...

- Step 1: If $\bar{a} \in D$, then $\operatorname{tp}(\bar{a}/A) \vdash \bar{x} \in D$. By compactness/saturation, there is an L(A)formula $\varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/A)$ such that $\varphi(\bar{x}) \vdash \bar{x} \in D$. That is, $\varphi(\mathbb{M}^n) \subseteq D$.
- **Step 2:** D is covered by A-definable sets $\varphi(\mathbb{M}^n)$. By compactness/saturation, D is covered by finitely many $\{\varphi_i(\mathbb{M}^n): 1 \leq i \leq m\}$. Then D is the A-definable set $\bigcup_{i=1}^m \varphi_i(\mathbb{M}^n)$.

Definition 11. A global type is a complete type over the monster.

Definition 12. A global type $p \in S_n(\mathbb{M})$ is A-invariant if $\sigma(p) = p$ for $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$. Equivalently, p is A-invariant if the sets

$$\{\bar{b} \in \mathbb{M}^n : \varphi(\bar{x}, \bar{b}) \in p(\bar{x})\}$$

are A-invariant for each $\varphi \in L$.

Explicitly, p is A-invariant if for any formula $\varphi(\bar{x}, \bar{y})$ and any $\bar{b}, \bar{c} \in \mathbb{M}$,

$$\operatorname{tp}(\bar{b}/A) = \operatorname{tp}(\bar{c}/A) \implies (\varphi(\bar{x}, \bar{b}) \in p(\bar{x}) \iff \varphi(\bar{x}, \bar{c}) \in p(\bar{x})).$$

Definition 13. A global type $p \in S_n(\mathbb{M})$ is A-definable if the sets

$$\{\bar{b} \in \mathbb{M}^n : \varphi(\bar{x}, \bar{b}) \in p(\bar{x})\}$$

are A-definable for each $\varphi \in L$.

Remark 14.

- 1. An A-definable type is A-invariant.
- 2. A definable type that is A-invariant is A-definable.
- 3. Every definable type is A-invariant for some small $A \subseteq \mathbb{M}$, since each $d\varphi$ uses finitely many parameters and there are only |L|-many $d\varphi$.

Proposition 15. Suppose $M \subseteq M$ is a small model.

- 1. If p is a definable type over M and $p^{\mathbb{M}}$ is its heir over \mathbb{M} , then $p^{\mathbb{M}}$ is M-definable.
- 2. This gives a bijection between definable types over M, and M-definable types over M. Proof. 1. $p^{\mathbb{M}}$ and p have the same $d\varphi$, which are L(M)-formulas, so $p^{\mathbb{M}}$ is M-definable.
 - 2. If $q \in S_n(\mathbb{M})$ is M-definable, then $q \upharpoonright M$ is M-definable and $q = (q \upharpoonright M)^{\mathbb{M}}$. Therefore $q \mapsto q \upharpoonright M$ is the inverse of $p \mapsto p^{\mathbb{M}}$.

Warning 16. An M-invariant type is *not* necessarily determined by its restriction to M. If $A \subseteq M$ isn't a model, an A-definable type is *not* necessarily determined by its restriction to A.

Theorem 17. Suppose $M \leq M$ is a small model and $p \in S_n(M)$ is any type.

- 1. If $q \in S_n(\mathbb{M})$ is a coheir of p, then q is M-invariant.
- 2. In particular, there is an M-invariant global type $q \supseteq p$.

Proof. If q isn't M-invariant, then there are $\varphi(\bar{x}, \bar{y})$, \bar{b} , and \bar{c} such that

$$\operatorname{tp}(\bar{b}/M) = \operatorname{tp}(\bar{c}/M)$$
 but $\varphi(\bar{x}, \bar{b}) \in q(\bar{x}), \ \varphi(\bar{x}, \bar{c}) \notin q(\bar{x}).$

Then $\varphi(\bar{x}, \bar{b}) \wedge \neg \varphi(\bar{x}, \bar{c}) \in q(\bar{x})$, so there is $\bar{a} \in M$ such that $\mathbb{M} \models \varphi(\bar{a}, \bar{b}) \wedge \neg \varphi(\bar{a}, \bar{c})$. This contradicts $\operatorname{tp}(\bar{b}/M) = \operatorname{tp}(\bar{c}/M)$.

(2) follows because coheirs exist by Theorem 5.

Remark 18. If $p \in S_n(M)$ and $N \succeq M$ and $q \in S_n(N)$ extends p, then Poizat calls q a special son of p if there is a global M-invariant type $q' \in S_n(\mathbb{M})$ extending q. Theorems 17 and 6 imply that coheirs are special sons.

4 Coheirs and invariant types in stable theories

Suppose T is stable, meaning all types over models are definable. Then any $p \in S_n(M)$ has a unique global heir.

Lemma 19. If T is stable, then A-invariant global types are A-definable.

Proof. If $p \in S_n(\mathbb{M})$ is A-invariant, then p is definable by stability, so p is A-definable by Remark 14(2).

Theorem 20. Suppose T is stable, $M \leq \mathbb{M}$ is a small model, and $p \in S_n(M)$. Let $p^{\mathbb{M}}$ be the unique heir of p over \mathbb{M} .

- 1. $p^{\mathbb{M}}$ is the unique M-invariant global type extending p.
- 2. $p^{\mathbb{M}}$ is the unique coheir of p over \mathbb{M} .
- 3. If $M \leq N \leq \mathbb{M}$ and q is the unique heir of p over N, then q is the unique coheir of p over N.

Proof. 1. "M-invariant" is equivalent to "M-definable," and Proposition 15 shows that $p^{\mathbb{M}}$ is the unique M-definable global type extending M.

- 2. Coheirs are M-invariant (Theorem 17(1)).
- 3. Suppose q' is a coheir of p over N. Theorem 6 gives $r \in S_n(\mathbb{M})$ a coheir of p and q'. Then $r = p^{\mathbb{M}}$ by (2), so $q' = (p^{\mathbb{M}} \upharpoonright N) = q$.

Corollary 21. In a stable theory, heirs are the same thing as coheirs, and coheirs are unique.

Corollary 22. In a stable theory, a coheir of a coheir is a coheir.

5 Products of invariant types

Work in a monster model M, not assumed to be stable. If $A \subseteq M$ is small and $p \in S_n(A)$, then " $\bar{b} \models p$ " means \bar{b} satisfies p, i.e., $\operatorname{tp}(\bar{b}/A) = p$. Also, $\bar{a} \equiv_C \bar{b}$ means $\operatorname{tp}(\bar{a}/C) = \operatorname{tp}(\bar{b}/C)$.

Lemma 23. Suppose $C \subseteq \mathbb{M}$ is small and we have two C-invariant types $p \in S_n(\mathbb{M})$ and $q \in S_m(\mathbb{M})$. Then there is $r \in S_{n+m}(C)$ such that a tuple (\bar{a}, \bar{b}) realizes r if and only if

$$\bar{a} \models p \upharpoonright C \text{ and } \bar{b} \models q \upharpoonright C\bar{a}.$$
 (*)

Proof. If (\bar{a}, \bar{b}) satisfies (*) and $\sigma \in \text{Aut}(\mathbb{M}/C)$, then $\sigma(\bar{a}, \bar{b})$ satisfies (*) as well, because p, q are C-invariant. Therefore (*) depends only on $\operatorname{tp}(\bar{a}, \bar{b}/C)$.

Take some (\bar{a}_0, \bar{b}_0) satisfying (*), and let $r = \operatorname{tp}(\bar{a}_0, \bar{b}_0/C)$. Realizations of r satisfy (*). Conversely, suppose (\bar{a}, \bar{b}) satisfies (*). Then $\operatorname{tp}(\bar{a}/C) = \bar{a} \upharpoonright C = \operatorname{tp}(\bar{a}_0/C)$. Moving (\bar{a}, \bar{b}) by $\sigma \in \operatorname{Aut}(\mathbb{M}/C)$, we may assume $\bar{a} = \bar{a}_0$. Then (*) shows $\bar{b} \models q \upharpoonright C\bar{a}_0$, so $\bar{b} \equiv_{C\bar{a}_0} \bar{b}_0$. Therefore $(\bar{a}, \bar{b}) = (\bar{a}_0, \bar{b}) \equiv_C (\bar{a}_0, \bar{b}_0)$, and $(\bar{a}, \bar{b}) \models r$.

Proposition 24. Suppose $C \subseteq \mathbb{M}$ is small and we have two C-invariant types $p \in S_n(\mathbb{M})$ and $q \in S_m(\mathbb{M})$. Then there is a C-invariant type $p \otimes q \in S_{n+m}(\mathbb{M})$ such that for any $C \subseteq C' \subseteq \mathbb{M}$,

$$(\bar{a} \models p \upharpoonright C' \text{ and } \bar{b} \models q \upharpoonright C'\bar{a}) \iff (\bar{a}, \bar{b}) \models (p \otimes q) \upharpoonright C'. \tag{**}$$

Proof. Lemma 23 gives a type $r_{C'} \in S_{n+m}(C')$ for each small $C' \supseteq C$ such that

$$(\bar{a}, \bar{b}) \models r_{C'} \iff (\bar{a} \models p \upharpoonright C' \text{ and } \bar{b} \models q \upharpoonright C'\bar{a}).$$

Note that if $C'' \supseteq C' \supseteq C$ then $(\bar{a}, \bar{b}) \models r_{C''} \implies (\bar{a}, \bar{b}) \models r_{C'}$, and so $r_{C'} = r_{C''} \upharpoonright C'$. Let $p \otimes q = \bigcup_{C' \supseteq C} r_{C'}$. Then $p \otimes q$ is a global type and $(p \otimes q) \upharpoonright C' = r_{C'}$, proving (**).

Note $({}^**)$ determines $p \otimes q$ uniquely, because for any $\varphi(\bar{x}, \bar{y}, \bar{c}) \in L(\mathbb{M})$, there is a small $C' \supseteq C$ with $\bar{c} \in C'$. If $\sigma \in \operatorname{Aut}(\mathbb{M}/C)$, then $\sigma(p \otimes q) = \sigma(p) \otimes \sigma(q) = p \otimes q$. Thus $p \otimes q$ is C-invariant.

The type $p \otimes q$ is called the *product* or *Morley product* of p and q. Sometimes it is defined in reverse order, so $(p \otimes q)(x, y)$ here is $(q \otimes p)(y, x)$ in some papers.

Example. If $A \subseteq \mathbb{M}$, then the algebraic closure of A, written $\operatorname{acl}(A)$, is the union of all finite A-definable sets. If \mathbb{M} is strongly minimal and $p \in S_1(\mathbb{M})$ is the transcendental 1-type, one can show that $a \models p \upharpoonright B \iff a \notin \operatorname{acl}(B)$. Therefore, $(a_1, a_2) \models (p \otimes p) \upharpoonright B$ if and only if

$$a_1 \notin \operatorname{acl}(B)$$
 and $a_2 \notin \operatorname{acl}(Ba_1)$.

In ACF, acl(B) is the field-theoretic algebraic closure of B, and this condition says a_1 and a_2 are algebraically independent over A.

Example. Suppose M is a monster model of ACF. Let p_V be the generic type of an (irreducible) variety $V \subseteq \mathbb{M}^n$. If V, W are varieties, then $V \times W$ is a variety and $p_V \otimes p_W = p_{V \times W}$.

Proof. The product $p_V \otimes p_W$ must be p_Z for *some* variety Z. Take a small model M defining V, W, Z. Take $\bar{a} \models p_V \upharpoonright M$, a small model $N \supseteq M\bar{a}$, and $\bar{b} \models p_W \upharpoonright N$. Then $\bar{b} \models p_W \upharpoonright M\bar{a}$, so $(\bar{a}, \bar{b}) \models (p_V \otimes p_W) \upharpoonright M = p_Z \upharpoonright M$.

Note $\bar{a} \in V$ and $\bar{b} \in W$, so $(\bar{a}, \bar{b}) \in V \times W$, implying $Z \subseteq V \times W$. Suppose $Z \subseteq V \times W$. Take $(\bar{a}_0, \bar{b}_0) \in V \times W \setminus Z$. We may assume $(\bar{a}_0, \bar{b}_0) \in M$, as $M \preceq M$. Let $Z_{\bar{a}} = \{\bar{y} \in M : (\bar{a}, \bar{y}) \in Z\}$. Then $Z_{\bar{a}}$ is an N-definable algebraic set, and $\bar{b} \in Z_{\bar{a}}$ because $(\bar{a}, \bar{b}) \in Z$. The fact that $\bar{b} \models p_W \upharpoonright N$ and $\bar{b} \in Z_{\bar{a}}$ implies $W \subseteq Z_{\bar{a}}$. Then $\bar{b}_0 \in W \in Z_{\bar{a}}$, so $(\bar{a}, \bar{b}_0) \in Z$. Let $Z^{\bar{b}_0} = \{\bar{x} \in M : (\bar{x}, \bar{b}_0) \in Z\}$. Then $Z^{\bar{b}_0}$ is an M-definable algebraic set, and $\bar{a} \in Z^{\bar{b}_0}$. The fact that $\bar{a} \models p_V \upharpoonright M$ and $\bar{a} \in Z^{\bar{b}_0}$ implies $V \subseteq Z^{\bar{b}_0}$. Then $\bar{a}_0 \in V \subseteq Z^{\bar{b}_0}$, meaning $(\bar{a}_0, \bar{b}_0) \in Z$, contradicting the choice of \bar{a}_0, \bar{b}_0 .

Remark 25. One says that two invariant types $p(\bar{x})$ and $q(\bar{y})$ commute if $(p \otimes q)(\bar{x}, \bar{y}) = (q \otimes p)(\bar{y}, \bar{x})$. Concretely, this means

$$\bar{a} \models p \upharpoonright C$$
 and $\bar{b} \models q \upharpoonright C\bar{a} \implies \bar{a} \models p \upharpoonright C\bar{b}$ (and $\bar{b} \models q \upharpoonright C$).

In ACF, all types commute:

$$(p_V \otimes p_W)(\bar{x}, \bar{y}) = p_{V \times W}(\bar{x}, \bar{y}) = p_{W \times V}(\bar{y}, \bar{x}) = (p_W \otimes p_V)(\bar{y}, \bar{x}).$$

We will see later that in stable theories, all types commute.

If $p(\bar{x})$ is a definable type and $\varphi(\bar{x}, \bar{y})$ is a formula, let $(d_p \bar{x})\varphi(\bar{x}, \bar{y})$ denote the formula $d\varphi(\bar{y})$. Note that $(d_p \bar{x})$ works like a quantifier—the free variables in $(d_p \bar{x})\varphi(\bar{x}, \bar{y})$ are \bar{y} .

Example. If p is the transcendentaly 1-type in a strongly minimal theory, then

$$(d_p x)\varphi(x,\bar{y}) = \exists^{\infty} x \ \varphi(x,\bar{y}).$$

Proposition 26. If p, q are A-definable types, then $p \otimes q$ is A-definable and

$$(d_{p\otimes q}(\bar{x},\bar{y}))\varphi(\bar{x},\bar{y},\bar{z}) = (d_p\bar{x})(d_q\bar{y})\varphi(\bar{x},\bar{y},\bar{z}).$$

Proof. Fix $\bar{c} \in \mathbb{M}$. Take a small model M such that p,q are M-definable and $\bar{c} \in M$. Take $\bar{a} \models p \upharpoonright M$ and $\bar{b} \models q \upharpoonright M\bar{a}$. Then $(\bar{a},\bar{b}) \models (p \otimes q) \upharpoonright M$, and so

$$\varphi(\bar{x}, \bar{y}, \bar{c}) \in (p \otimes q)(\bar{x}, \bar{y}) \iff$$

$$\mathbb{M} \models \varphi(\bar{a}, \bar{b}, \bar{c}) \iff$$

$$\varphi(\bar{a}, \bar{y}, \bar{c}) \in q(\bar{y}) \iff$$

$$\mathbb{M} \models (d_q \bar{y}) \varphi(\bar{a}, \bar{y}, \bar{c}) \iff$$

$$(d_q \bar{y}) \varphi(\bar{x}, \bar{y}, \bar{c}) \in p(\bar{x}) \iff$$

$$\mathbb{M} \models (d_n \bar{x}) (d_q \bar{y}) \varphi(\bar{x}, \bar{y}, \bar{c}).$$

This holds for any \bar{c} , so $p \otimes q$ is definable and $(d_{p \otimes q}(\bar{x}, \bar{y}))\varphi(\bar{x}, \bar{y}, \bar{z}) \equiv (d_p\bar{x})(d_q\bar{y})\varphi(\bar{x}, \bar{y}, \bar{z})$. The fact that $p \otimes q$ is A-invariant and definable implies that it is A-definable.

Example. In a strongly minimal theory, if p is the transcendental 1-type and $q = p \otimes p$, then $(d_q(x,y)) \cdots = \exists^{\infty} x \exists^{\infty} y \cdots$.

Example. Two definable types p, q commute iff

$$(d_p\bar{x})(d_q\bar{y})\varphi(\bar{x},\bar{y},\bar{z}) \equiv (d_q\bar{y})(d_p\bar{x})\varphi(\bar{x},\bar{y},\bar{z})$$

for any formula φ .