Рождественская теорема Ферма

Рождественская теорема Ферма. Натуральное число представимо в виде суммы двух квадратов целых чисел тогда и только тогда, когда в его разложение на простые множители любое простое число вида 4k+3 входит в четной степени.

- Два числа представляются в виде суммы двух квадратов. Докажите, что их произведение представляется в виде суммы двух квадратов.
- Докажите, что для любого простого p = 4k + 1 существует x такое, что $x^2 + 1$ делится на p
- $\boxed{3}$ Докажите, что p=4k+1 представляется в виде суммы двух квадратов.

Доказательство Акселя Туэ:

- (а) Для любого целого в существуют две различные пары (x,y) и (x',y') чисел из множества $\{0,1,\ldots[\sqrt{p}]\}$, такие что $x-sy\equiv x'-sy'\pmod{p}$.
- (b) Для любого s существует ненулевая пара (x, y) чисел из множества $\{0, 1, ... [\sqrt{p}]\}$, такая что $x \equiv \pm sy \pmod{p}$.
- (c) Примените пункт (b) для s такого, что что $s^2 \equiv -1 \pmod{p}$, и закончите доказательство.
- 4 Докажите, что если $x^2 + y^2$ делится на p = 4k + 3,то x и y делятся на p.
 - (a) Рассмотрим пары обратных остатков для чисел $2,3,\ldots,p-2$. Назовем пару (x,y) далекой, если $x<\frac{p}{2}< y$. Докажите, что количество далеких пар четно.
 - (b) Используя пункт (a) докажите, что сравнение $x^2 \equiv -1 \pmod p$ не имеет решений. Завершите доказательство.
- [5] Докажите **рождественскую теорему Ферма**
- [6] Докажите, что p = 4k+1 представляется в виде суммы двух квадратов единственным способом.
- 7 Докажите, что уравнение $x^2 + y^2 = z^5 + z$ имеет бесконечно много целых решений, в которых x, y и z попарно взаимно просты.
- 8 Пусть n нечетное целое число, большее 1. Докажите, что уравнение $x^n + 2^{n-1} = y^2$ не разрешимо в нечетных натуральных числах.
- [9] Докажите, что уравнение $x^3 x^2 + 8 = y^2$ не имеет решений в целых числах.