## Teoría de Autómatas y Matemáticas Discretas

## INSTRUCCIONES

- 1. En las páginas siguientes encontrarás preguntas de respuesta múltiple sobre los conceptos impartidos en clase.
- 2. Cada pregunta tiene una única opción correcta.
- 3. Cada respuesta correcta suma tres puntos y cada respuesta incorrecta resta uno.
- 4. No está permitido el uso de apuntes, notas ni dispositivos de ningún tipo.
- 5. Al finalizar el examen entrega todas las páginas.
- 6. Tiempo de realización: 50 minutos
- Pon tu nombre e identificación UO a continuación.

| 1. | Nombre: |  |  |  |
|----|---------|--|--|--|
| 2. | UO:     |  |  |  |

Page 1

1. Considérese el  $\lambda$ -AFND de la figura 1



Figura 1:  $\lambda$ -AFND

entonces la  $\lambda$ -clausura ( $\{q_1,q_3\}$ ) es:

- a)  $\{q_1, q_3\}$
- b)  $\{q_0, q_1, q_2, q_3\}$
- c)  $\{q_1, q_2, q_3\}$
- d) Ninguna de las anteriores.
- 2. Considérese el  $\lambda$ -AFND de la figura 1. Si se aplica el algoritmo visto en clase para construir el AFND equivalente, entonces se verifica para  $\delta'$ , función de transición del nuevo autómata:
  - a)  $\delta'(q_0, a) = \{q_3, q_4\}$
  - b)  $\delta'(q_0, a) = \{q_1, q_2, q_3\}$
  - c)  $\delta'(q_0, a) = \{q_2, q_3, q_4\}$
  - d) Ninguna de las anteriores.
- 3. Considérese el AFND de la figura 2



Figura 2: AFND

Si se aplica el algoritmo visto en clase para calcular el AFD equivalente A, el número de estados finales de A es:

- a) 1
- b) 3
- c) 6
- d) Ninguna de las anteriores.
- 4. Considérese el AFND de la figura 2. En el AFD equivalente
  - a)  $\delta'(\{0,3\},a) = \{0,3\}$
  - b)  $\delta'(\{0,3\},a) = \{0,1,3\}$
  - c)  $\delta'(\{0,3\},a) = \{0,1,2,3\}$
  - d) Ninguna de las anteriores.
- 5. Dado el siguiente lenguaje regular  $L=\{w\in\{a,b,c\}^*\mid w \text{ tiene exactamente dos a's}\}$ . Cuál de las siguientes expresiones lo denota:
  - a)  $(b+c)^*a(b+c)^*a(a+b+c)^*$
  - b)  $(b+c)^*a(b+c)^*a(b+c)^*$
  - c)  $(b+c)^*aa(b+c)^*$
  - d) Ninguna de las anteriores.

Exam 0



Figura 3: Minimícese

- **6.** Utilícese el algoritmo de minimización visto en clase, para minimizar el AFD de la figura 3 Cuántos estados tiene el AFD mínimo equivalente
  - a) 3
  - b) 5
  - c) 7
  - d) Ninguna de las anteriores.
- 7. Utilícese el algoritmo visto en clase para calcular la expresión regular equivalente al AFD de la figura 4



Figura 4: Calcúlese la expresión equivalente

Una de las ecuaciones del sistema inicial es:

- a)  $l_1 = al_2 + bl_0$
- b)  $l_3 = (a+b)l_3$
- c)  $l_2 = al_3 + bl_0$
- d) Ninguna de las anteriores.
- 8. Una expresión regular equivalente al AFD de la figura 4 es:
  - a)  $((\lambda + a + aa)b^*)(aa + a + \lambda)$
  - b)  $((a + aa)b)^*(aa + a + \lambda)$
  - c)  $((\lambda + a + aa)b)^*(a + aa)$
  - d) Ninguna de las anteriores.
- 9. Considérese el alfabeto  $\{a,b,c\}$  utilícense las reglas de desarrollo para construir el  $\lambda$ -AFND equivalente a la expresión regular  $(a+(ac)^*(bc)^*b)$  Dicho  $\lambda-AFND$  posee

Exam 0 Page 2

- a) 8 estados y 4  $\lambda mov$
- b) 7 estados y 4  $\lambda mov$
- c) 9 estados y 6  $\lambda mov$
- d) Ninguna de las anteriores.
- **10.** Si  $L_1, L_2, L_3$  son lenguajes regulares entonces:
  - a)  $(L_1 \cup L_2) \cap L_3$  es siempre un lenguaje regular. b)  $(L_1 \cup L_2) \cap L_3$  nunca es un lenguaje regular.

  - c) No se tiene la suficiente información para saber si  $(L_1 \cup L_2) \cap L_3$  es o no un lenguaje regular.
  - d) Ninguna de las anteriores.

Exam 0 Page 3