5장 Decomposition 모델1

Time Series Decomposition

- Time series *decomposition* seeks to separate a time series Y into four components
 - Trend (*T*): deterministic trend
 - Cycle (C): long term period
 - Seasonal (S): short term period
 - Irregular (I): stochastic disturbance
- These components are assumed to follow either an additive or a multiplicative model.
- Additive versus Multiplicative Models

Model	Components	Used For
Additive	Y = T + C + S + I	Data of similar magnitude (short run or trend-free data) with constant absolute growth or decline.
Multiplicative	$Y = T \times C \times S \times I$	Data of increasing or decreasing magnitude (long run or trended data) with constant <i>percent</i> growth or decline.

Time Series Decomposition

The multiplicative model becomes additive if logarithms are taken (for nonnegative data)

$$\log(Y) = \log(T \times C \times S \times I) = \log(T) + \log(C) + \log(S) + \log(I)$$

Here is a graphical view of the 4 components of a hypothetical time series.

서강대 김명석

Additive vs. Multiplicative

DGP 1:
$$y_t = 10 + 3\cos\left(2\pi t \frac{10}{300} + 8\right) + \varepsilon_t$$
 additive seasonal

DGP 2:
$$y_t = (20 + 0.1t) + \left(10 + 3\cos\left(2\pi t \frac{10}{300} + 8\right)\right) + \varepsilon_t$$
 additive seasonal linear trend

DGP 3:
$$y_t = (20 + 0.1t) \left(10 + 3\cos\left(2\pi t \frac{10}{300} + 8\right) \right) + \varepsilon_t$$
 multiplicative seasonal linear trend

DGP 4:
$$y_t = \left(200 + 0.001t^2\right) + \left(10 + 3\cos\left(2\pi t \frac{10}{300} + 8\right)\right) + \varepsilon_t$$
 add season nonlinear trend

DGP 5:
$$y_t = (20 + 0.001t^2) \left(10 + 3\cos\left(2\pi t \frac{10}{300} + 8\right) \right) + \varepsilon_t$$
 mult season nonlinear trend

where $\mathcal{E}_t \sim N(0, \sigma^2)$. σ is set to be 0.01, 0.1, 0.5, 1 and 2 for DGPs 1, 2 and 4, 1, 5, 10, 20 and 30 for DGP 3, and 1, 10, 30, 40 and 50 for DGP 5.

Additive vs. Multiplicative

Panels (a) to (e) indicate GDPs 1 to 5 with the smallest levels of noises and panels (f) to (j) indicate DGPs 1 to 5 with the largest levels of noise.

Time Series Decomposition

- Trend (T) is the general movement over all years (t = 1, 2, ..., n).
- Trends may be steady and predictable, increasing, decreasing, or staying the same.
- A mathematical trend can be fitted to any data but may or may not be useful for predictions.
- Cycle (C) is a repetitive up-and-down movement about a trend that covers several years.
- Seasonal (S) is a repetitive cyclical pattern <u>within a year</u> (or within a week, day, or other time period).
- By definition, annual data have no seasonality.
- *Irregular* (*I*) is a random disturbance that follows no pattern.
- It is also called the error component or random noise reflecting all factors other than trend, cycle and seasonality.
- Short run forecasts are best if data are irregular.

• The following three trend models are especially useful in business applications for t = 1, 2, ...n

$$T_t = a + bt$$
 (linear trend)
 $T_t = a \cdot e^{bt}$ (exponential trend)
 $T_t = a + bt + ct^2$ (quadratic trend)

The <u>linear trend model</u> has the form $T_t = a + bt$

- It is the simplest model and may suffice for short-run forecasting or as a baseline model.
- Linear trend is fitted by using <u>ordinary least squares</u> formulas.
- Note: instead of using the actual time values (e.g., years), use an index $t = x_t = 1, 2, 3$,

$$\hat{b} = \frac{\sum_{t=1}^{n} (x_t - \overline{x})(y_t - \overline{y})}{\sum_{t=1}^{n} (x_t - \overline{x})^2}, \quad \hat{a} = \overline{y} - \hat{b}\overline{x}$$

- Once the slope and intercept have been calculated, a forecast can be made for any future time period (e.g., year) by using the fitted model.
- For example,

For 2003 (
$$t = 6$$
): $y_6 = 22,860 - 235(6) = 21,450$
For 2004 ($t = 7$): $y_7 = 22,860 - 235(7) = 21,215$
For 2005 ($t = 8$): $y_8 = 22,860 - 235(8) = 20,980$

R² can be calculated as

Coefficient of determination:
$$R^{2} = 1 - \frac{\sum_{t=1}^{n} (y_{t} - \hat{y}_{t})^{2}}{\sum_{t=1}^{n} (y_{t} - \bar{y})^{2}}$$

- An R^2 close to 1.0 would indicate a good fit to the *past* data.
- However, more information is needed since the forecast is simply a projection of current trend assuming that nothing changes.

The <u>exponential trend model</u> has the form $T_t = ae^{bt}$

- Useful for a time series that grows or declines at the same rate (b) in each time period.
- This model is often preferred for financial data or data that covers a longer period of time.
- You can compare two growth rates in two time series variables with dissimilar data units (i.e., a percent growth rate is unit-free)

서강대 김명석

- There may not be much difference between a linear and exponential model when the growth rate is small and the data set covers only a few time periods.
- Calculations of the exponential trend are done by using a transformed variable $z_t = \ln(y_t)$ to produce a linear equation so that the <u>least squares</u> formulas can be used.

$$\hat{b} = \frac{\sum_{t=1}^{n} (t - \overline{t})(z_t - \overline{z})}{\sum_{t=1}^{n} (t - \overline{t})^2} = \frac{32.12329}{82.5} = 0.38937$$

$$\ln \hat{a} = \overline{z} - \hat{b}\overline{t} = 3.481731 - (0.3893732)(5.5) = 1.340178$$

- Once the least squares calculations are completed, transform the intercept back to the original units by exponentiation to get the correct intercept.
- For example, if $\ln \hat{a} = 1.340178$ and $\hat{b} = .3893732$, $\hat{a} = e^{1.340178} = 3.8197$
- In the final form, the fitted trend line would be $\hat{y}_t = \hat{a} \cdot e^{\hat{b}t} = 3.8197e^{0.38937t}$
- A forecast can be made for any future time period (e.g., year) by using the fitted model.
- For example,

$$y_{11} = 3.8197e^{.38937(11)} = 276.8$$

 $y_{12} = 3.8197e^{.38937(12)} = 408.5$
 $y_{13} = 3.8197e^{.38937(13)} = 603.0$

- All calculations of R^2 are done in terms of $z_t = \ln(y_t)$.
- An R^2 close to 1.0 would indicate a good fit to the *past* data.

$$R^{2} = 1 - \frac{\sum_{t=1}^{n} (z_{t} - \hat{z}_{t})^{2}}{\sum_{t=1}^{n} (z_{t} - \bar{z})^{2}}$$

A *quadratic trend* model has the form $T_t = a + bt + ct^2$

- If c = 0, then the quadratic model becomes a linear model (i.e., the linear model is a special case of the quadratic model).
- Fitting a quadratic model is a way of checking for nonlinearity.
- If c does not differ significantly from zero, then the linear model would suffice.
- Depending on the values of b and c, the quadratic model can assume any of four shapes
- Because the quadratic trend model $T_t = a + bt + ct^2$ is a multiple regression with two predictors (t and t^2), the least squares calculations can be obtained from computer software.

13

Criteria for selecting a trend forecasting model

Criterion	Ask Yourself
Occam's Razor	Would a simpler model suffice?
Overall fit	How does the trend fit the past data?
Believability	Does the extrapolated trend "look right"?
Fit to recent data	Does the fitted trend match the last few data points?

- R^2 can usually be increased by choosing a more complex model.
- But R² measures fit to the past data.
- Look at forecasts (i.e., extrapolated trends) to see which of four fitted trends using the same data give the best fit.
- Any trend model's forecasts become less reliable as they are extrapolated farther into the future.

• Consider the following three trend models

Model	Pro	Con
Linear	 Simple, familiar to everyone. May suffice for short-run data. 	 Assumes constant slope. Can't capture nonlinear change.
Exponential	Familiar to financial analysts. Shows compound percent growth rate.	 Some managers are unfamiliar with e^x. Data values must be positive.
Quadratic	 Useful for data with a turning point. 	Complex and no intuitive interpretation.
	Useful test for nonlinearity.	Gives weird forecasts if extrapolated too far.

Assessing Fit

- "Fit" refers to how well the estimated trend model matches the observed historical past data.
- These fit statistics are most useful in comparing different trend models for the same data.
- All the statistics (especially the MSD) are affected by unusual residuals.

Statistic	Description	Pro	Con
$R^{2} = 1 - \frac{\sum_{t=1}^{n} (y_{t} - \hat{y}_{t})^{2}}{\sum_{t=1}^{n} (y_{t} - \bar{y}_{t})^{2}}$	Coefficient of determination	Unit-free measure. Very common.	 Often interpreted incorrectly (e.g., "percent of correct predictions").
$MAPE = \frac{100}{n} \sum_{t=1}^{n} \frac{ y_t - \hat{y}_t }{y_t}$	Mean Absolute Percent Error (MAPE)	Unit-free measure (%). Intuitive meaning.	 Requires y_t > 0. Lacks nice math properties.
$MAD = \frac{1}{n} \sum_{t=1}^{n} y_t - \hat{y}_t $	Mean Absolute Deviation (MAD)	 Intuitive meaning. Same units as y_t. 	 Not unit-free. Lacks nice math properties.
$MSD = \frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{y}_t)^2$	Mean Squared Deviation (MSD)	Nice math properties. Penalizes big errors more.	Nonintuitive meaning. Rarely reported.
$SE = \sqrt{\sum_{t=1}^{n} \frac{(y_t - \hat{y}_t)^2}{n - 2}}$	Standard error	1. Same units as y_t . 2. For confidence intervals.	1. Nonintuitive meaning.

Assessing Fit

• The standard error (SE) is useful if we want to make a prediction interval for a forecast.

$$\hat{y}_t \pm t_{n-2} SE \sqrt{1 + \frac{1}{n} + \frac{(x_t - \bar{x})^2}{\sum_{t=1}^{n} (x_t - \bar{x})^2}}$$

- In sample accuracy & out of sample accuracy
- One time ahead forecast & k time ahead forecast

Moving Averages ⇒ delete irregularity

- In cases where the time series $y_1, y_2, ..., y_n$ is <u>erratic</u> or has <u>no consistent trend</u>, there may be little point in fitting a trend line.
- A conservative approach is to calculate either a *trailing* or *centered moving average*.

Trailing Moving Average (TMA)

• The *TMA* simply averages over the last *m* periods.

$$\hat{y}_t = \frac{y_t + y_{t-1} + \dots + y_{t-m+1}}{m}$$

- The TMA smoothes the past fluctuations in the time series in order to see the pattern more clearly.
- Choosing a larger m yields a "smoother" TMA but requires more data.
- The value of \hat{y}_t may also be used as a forecast for period t+1.
- There is no way to update the moving average beyond the observed data range.
- This is a <u>one-period-ahead forecast</u>.

Centered Moving Average (CMA)

The CMA smoothing method looks forward and backward in time to express the current
"forecast" as a mean of the current observation and observations on either side of the
current data.

$$\hat{y}_t = \frac{y_{t-1} + y_t + y_{t+1}}{3}$$

- When m is odd (m = 3, 5, etc.), the CMA is easy to calculate.
- When m is even, the mean of an even number of data points would lie between two data points and would not be correctly centered.
- For example, m = 4, we would average y_{t-1} through y_{t+1} , then average y_t through y_{t+2} and finally average the two averages.
- In this case, we would take a double moving average to get the resulting CMA centered properly. (taking an average for two averaged CMAs)

Exponential Smoothing

- The <u>exponential smoothing</u> model is a special kind of moving average.
- Its one-period-ahead forecasting technique is utilized for data that has up-and-down
 movements but no consistent trend.
- The updating formula is $F_{t+1} = \alpha y_t + (1 \alpha)F_t$ where

 F_{t+1} = the forecast for the next period α = the "smoothing constant" ($0 \le \alpha \le 1$) y_t = the actual data value in period t F_t = the previous forecast for period t

- The next forecast F_{t+1} is a weighted average of y_t (the current data) and F_t (the previous forecast).
- The value of α (the *smoothing constant*) is the weight given to the latest data.
- A small value of α would give low weight to the most recent observation.

- A small value of α would give heavy weight to the previous forecast.
- The larger the value of α , the more quickly the forecasts adapt to recent data.
- If $\alpha = 1$, there is no smoothing at all and the forecast for the next period is the same as the latest data point.
- The effect of our choice of α on the forecast diminishes as time increases.
- To see this, replace F_t with F_{t-1} and repeat this type of substitution indefinitely to
 obtain

$$F_{t+1} = \alpha y_t + \alpha (1-\alpha) y_{t-1} + \alpha (1-\alpha)^2 y_{t-2} + \alpha (1-\alpha)^3 y_{t-3} + \cdots$$

- The next forecast depends on all the prior data.
- Optimal α is the one providing minimum prediction errors.
- Note that F_{t+1} depends on F_t , which in turn depends on F_{t-1} , and so on all the way back to F_1 .

Where do we get the initial forecast F₁ (i.e., how do we initialize the process)?

Method A

Use the first data value. Set $F_1 = y_1$

Although simple, if y_1 is unusual, it could take a few iterations for the forecasts to stabilize.

Method B

Average the first 6 data values. Set $F_1 = (y_1 + y_2 + y_3 + y_4 + y_5 + y_6)/6$.

This method consumes more data and is still vulnerable to unusual *y*-values.

Method C

Backward extrapolation. Set F_1 = prediction from backcasting

<u>Backcasting</u> fits a trend to the data in reverse order and extrapolates the trend to predict
the initial value.

- Single exponential smoothing is for trendless data.
- For data with a trend, use Holt's method with two smoothing constants (one for trend and one for level).
- For data with both trend and seasonality, use Winters's method with three smoothing constants (for trend, level, and seasonality.)
- Exponential smoothing has proven through the years to be very useful in many
 forecasting situations. It was first suggested by C.C. Holt in 1957 and was meant to be
 used for non-seasonal time series showing no trend. He later offered a procedure (1958)
 that does handle trends. Winters(1965) generalized the method to include seasonality,
 hence the name "Holt-Winters Method".

Seasonality (Multiplicative Model)

- When the data periodicity is monthly or quarterly, calculate a seasonal index and use it to deseasonalize it.
- For the multiplicative model, a seasonal index is a *ratio*.
- The seasonal indexes must sum to 12 for monthly data or to 4 for quarterly data.
 - Step 1: Calculate a centered moving average (CMA) for each month (quarter).
 - Step 2: Divide each observed y, value by the MA to obtain seasonal ratios.
 - Step 3: Average the seasonal ratios by the month (quarter) to get raw seasonal indexes.
 - Step 4: Adjust the raw seasonal indexes so they sum to 12 (monthly) or 4 (quarterly).
 - Step 5: Divide each y_t by its seasonal index to get deseasonalized data.
- Estimate a regression model using seasonal binaries as predictors in order to address seasonality.

- Steps of Multiplicative Time Series Model
 - Calculate the centered moving averages (CMAs).
 - Center the CMAs on integer-valued periods.
 - 3. Determine the seasonal and irregular factors $(S_t I_t)$.
 - 4. Determine the average seasonal factors.
 - 5. Scale the seasonal factors (S_t) .
 - 6. Determine the deseasonalized data (Y_t / S_t) .
 - Determine a trend line of the deseasonalized data.
 - 8. Determine the deseasonalized predictions.
 - Take into account the seasonality.

Trend & Seasonality (Additive Model)

 For example, for quarterly data, the fourth quarter binary Qtr4 (arbitrarily chosen), would be excluded in order to prevent multicollinearity.

$$Sales = 161 + 14.4 \ Time + 89.8 \ Qtr1 + 12.9 \ Qtr2 - 83.6 \ Qtr3$$

 $Y = T + S + I$

Periodic extreme event

 can be modeled using
 dummy variable,
 which can be applied to
 forecasting
 (example: holiday)

Year	Quarter	Sales	Time	Qtr1	Qtr2	Qtr3
2002	1	259	1	1	0	0
	2	236	2	0	1	0
	3	164	3	0	0	1
	4	222	4	0	0	0
2003	1	306	5	1	0	0
	2	300	6	0	1	0
	3	189	7	0	0	1
	4	275	8	0	0	0
2004	1	379	9	1	0	0
	2	262	10	0	1	0
	3	242	11	0	0	1
	4	296	12	0	0	0
2005	1	369	13	1	0	0
	2	373	14	0	1	0
	3	255	15	0	0	1
	4	374	16	0	0	0
2006	1	515	17	1	0	0
	2	373	18	0	1	0
	3	339	19	0	0	1
	4	519	20	0	0	0
2007	1	626	21	1	0	0
	2	535	22	0	1	0
	3	397	23	0	0	1
	4	488	24	0	19 7 F F L	7101

• Example: Terry's Tie shop

Business at Terry's Tie Shop can be viewed as falling into three distinct seasons:

- (1) Christmas (November and December); (2) Father's Day (late May to mid June); and
- (3) all other times. Average weekly sales (\$) during each of the three seasons during the past four years are shown on the next slide.

	Season			
Year	1	2	3	
1	1856	2012	985	
2	1995	2168	1072	
3	2241	2306	1105	
4	2280	2408	1120	

Determine a forecast for the average weekly sales in year 5 for each of the three seasons.

서강대 김명석

 Step 1: There are three distinct seasons in each year. Hence, take a three-season moving average to eliminate seasonal and irregular factors. For example:

1st CMA =
$$(1856 + 2012 + 985)/3 = 1617.67$$

2nd CMA = $(2012 + 985 + 1995)/3 = 1664.00$

Step 2: The first centered moving average computed in step 1 (1617.67) will be centered
on season 2 of year 1. Note that the moving averages from step 1 center themselves on
integer-valued periods because n is an odd number.

	Season			
Year	1	2	3	
1	1856	2012	985	
2	1995	2168	1072	
3	2241	2306	1105	
4	2280	2408	1120	

- Step 3: Isolate the trend and cyclical components. For each period t, this is given by: $S_t = Y_t / \text{(Moving average for period t)}$
- Step 4: Averaging all S_t values corresponding to that season:

```
Season 1: (1.163 + 1.196 + 1.181)/3 = 1.180
```

Season 2: (1.244 + 1.242 + 1.224 + 1.244)/4 = 1.236

Season 3: (.592 + .587 + .582)/3 = 0.587

		Dollar	Moving	
Year	Season	Sales (Y_t)	Average	$_S_t$. $_$
1	1	1856		
	2	2012	*1617.67	**1.244
	3	985	1664.00	0.592
2	1	1995	1716.00	1.163
	2	2168	1745.00	1.242
	3	1072	1827.00	0.587
3	1	2241	1873.00	1.196

• Step 5: Average the seasonal factors = (1.180 + 1.238 + .587)/3 = 1.002. Then, divide each seasonal factor by the average of the seasonal factors.

Season 1: 1.180/1.002 = 1.178

Season 2: 1.238/1.002 = 1.236Season 3: $0.587/1.002 = 0.586 \rightarrow \text{sum}$: 3.000

		Dollar	Moving		Scaled	
Year	Season	Sales (Y_t)	Average	$_S_t$	S_t	$\underline{} Y_t / S_t$
1	1	1856			1.178	1576
	2	2012	*1617.67	**1.244	1.236	1628
	3	985	1664.00	0.592	0.586	1681
2	1	1995	1716.00	1.163	1.178	1694
	2	2168	1745.00	1.242	1.236	1754
	3	1072	1827.00	0.587	0.587	1829
3	1	2241	1873.00	1.196	1.178	1902

- Step 6: Divide the data point values, Y_t , by S_t
- Step 7: Using the least squares method for t = 1, 2, ..., 12, gives:
- Step 8: Substitute t = 13, 14,
 and 15 into the least squares equation:

$$T_t = 1580.11 + 33.96t$$

$$T_{13} = 1580.11 + (33.96)(13) = 2022$$

 $T_{14} = 1580.11 + (33.96)(14) = 2056$
 $T_{15} = 1580.11 + (33.96)(15) = 2090$

Step 9: Multiply each deseasonalized prediction
 by its seasonal factor to give the

forecasts for year 5: following

Season 1: (1.178)(2022) = 2382

Season 2: (1.236)(2056) = 2541

Season 3: (0.586)(2090) = 1225

Reading lists

- Doane, D.P., Seward, L.E. (2007) Applied Statistics in Business and Economics (Ch. 14), McGraw Hill, Boston, USA.
- [2] Cryer, J.D., Chan, K. (2008) Time Series Analysis with Applications in R, Springer, New York, USA.
- [3] M. Kendall and A. Stuart (1983) The Advanced Theory of Statistics, 3, Griffin. pp. 410-414.