53 3-94/13

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

информационная технология

КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ

ФУНКЦИЯ ХЭШИРОВАНИЯ

Издание официальное

ГОССТАНДАРТ РОССИИ Москва

Предисловие

1 РАЗРАБОТАН Главным управлением безопасности связи Федерального агентства правительственной связи и информации и Всероссийским научно-исследовательским институтом стандартизации

ВНЕСЕН Техническим комитетом по стандартизации ТК 22 «Информационная технология» и Федеральным агентством правительственной связи и информации

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 23.05.94 № 154
 - з введен впервые

С Издательство стандартов, 1994

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта России

СОДЕРЖАНИЕ

1 Область применения			٠					Į
2 Нормативные ссылки]
3 Обозначения								1
4 Общие положения .								
5 Шаговая функция хэ	широ	ваня	19					3
6 Процедура в <mark>ычисл</mark> ени	ех к	ш-ф	ункі	тии				4
Приложение А Проверо	чные	прі	імег)Ы				ϵ

ВВЕДЕНИЕ

Расширяющееся применение информационных технологий при создании, обработке, передаче и хранении документов требует в определенных случаях сохранения конфиденциальности их содержания, обеспечения полноты и достоверности.

Одним из эффективных направлений защиты информации является криптография (криптографическая защита), широко применяемая в различных сферах деятельности в государственных и коммерческих структурах.

Криптографические методы защиты информации являются объектом серьезных научных исследований и стандартизации на национальных, региональных и международных уровнях.

Настоящий стандарт определяет процедуру вычисления хэшфункции для любой последовательности двоичных символов.

Функция хэширования заключается в сопоставлении произвольного набора данных в виде последовательности двоичных символов и его образа фиксированной небольшой длины, что позволяет использовать эту функцию в процедурах электронной цифровой подписи для сокращения времени подписывания и проверки подписи. Эффект сокращения времени достигается за счет вычисления подписи только под образом подписываемого набора данных.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Информационная технология

КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ

Функция хэширования

Information technology.
Cryptographic Data Security.
Hashing function

Дата введения

1995---01---01

ŀ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт определяет алгоритм и процедуру вычисления хэш-функции для любой последовательности двоичных символов, которые применяются в криптографических методах обработки и защиты информации, в том числе для реализации процедур электронной цифровой подписи (ЭЦП) при передаче, обработке и хранении информации в автоматизированных системах.

Определенная в настоящем стандарте функция хэширования используется при реализации систем электронной цифровой подписи на базе асимметричного криптографического алгоритма по ГОСТ Р 34.10.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 28147—89 Системы обработки информации. Защита криптографическая. Алгоритмы криптографического преобразования.

ГОСТ Р 34.10—94 Информационная технология. Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма.

з обозначения

В настоящем стандарте используются следующие обозначения:

Издание официальное

B — множество всех конечных слов в алфавите $B = \{0,1\}$. Чтение слов и нумерэция знаков алфавита (символов) осуществляются справа налево (номер правого символа в слове равен единице, второго справа — двум и т. д.).

IA -- длина слова A e B*.

 $V_k(2)$ — множество всех бинарных слов длины k.

 $A\|B$ — конкатенация слов A, $B \in B^*$ — слово длины |A|+|B|, в котором левые |A| символов образуют слово A, а правые |B| символов образуют слово B. Можно также использовать обозначение $A\|B=AB$.

А ^к — конкатенация k экземпляров слова A (A e B*).

 $N>_k$ — слово длины k, содержащее двоичную запись вычета $N \pmod{2^k}$ неотрицательного целого числа N.

- \widehat{A} неотрицательное целое число, имеющее двоичную запись A ($A \in B^*$).
 - ⊕ побитовое сложение слов одинаковой длины по модулю 2.
 - Φ '— с пожение по правилу $A \Phi 'B = \langle \hat{A} + \hat{B} \rangle_k$, (k=|A|=|B|). M— последовательность двоичных символов, подлежащая хэ-

мировачню (сообщение в системах ЭЦП), М є В*.

 $h = \lambda \ni u_1$ -функция, отображающая последовательность $M \in B^*$ в слове $h(M) \in V_{256}(2)$.

 $E_{\kappa}(A)$ результат зашифрования слова A на ключе K с использованием алгоритма шифрования по ГОСТ 28147 в режиме простой замены (K \in V₂₅₆(2), A \in V₆₄(2)).

Н - стартовый вектор хэширования.

е = g — присвоение параметру е значения g.

4 ОБЩИЕ ПОЛОЖЕНИЯ

Под хэш-функцией h понимается зависящее от параметра с артового вектора хэширования H, являющегося словом из $_{56}(2)$) отображение

1:
$$\mathbb{C}^* - - - - + V_{256}(2)$$
.

Для определения хэш-функции необходимы:

— алгоритм вычисления шаговой функции хэширования и, т. е. отображения

$$x: V_{256}(2) \times V_{2^{6}}(2) \longrightarrow V_{2^{6}}(2);$$

— описание итеративной процедуры вычисления значения хэш-функции h.

5 ШАГОВАЯ ФУНКЦИЯ ХЭШИРОВАНИЯ

Алгоритм вычисления шаговой функции хэширования включает в себя три части, реализующие последовательно:

- генерацию ключей слов длины 256 битов;
- шифрующее преобразование зашифрование 64-битных подслов слова H на ключах K₁ (i=1, 2, 3, 4) с использованием алгоритма по ГОСТ 28147 в режиме простой замены;
 - перемешивающее преобразование результата шифрования.
 - 5.1 Генерация ключей.

Рассмотрим
$$X = (b_{256}, b_{255}, \ldots, b_1) \in V_{256}(2)$$
.

Пусть
$$X = x_4 \|x_3\|x_2\|x_1 =$$

= $\eta_{16} \|\eta_{15}\| \dots \|\eta_1 =$
= $\xi_{22} \|\xi_{23}\| \dots \|\xi_1$

где
$$\mathbf{x_i} = (b_{1 \times 64}, \dots, b_{(i-1) \times 64+1}) \in V_{64}(2), i = \overline{1,4};$$
 $\eta_j = (b_{j \times 16}, \dots, b_{(j-1) \times 16+1}) \in V_{16}(2), j = \overline{1,16};$

$$\xi_k = (b_{k \times 8}, \ldots, b_{(k-1) \times 8 \pm 1}) \in V_8(2), k = \overline{1,32}.$$

Обозначают $A(X) = (x_1 \oplus x_2) |x_4| |x_3| |x_2|$.

Используют преобразование Р: $V_{256}(2)$ — $V_{256}(2)$

слова
$$\xi_{32}$$
|...| ξ_1 в слово $\xi_{\varphi(32)}$ |...| $\xi_{\varphi(1)}$, где $\varphi(i+1+4(k-1))=8i+k$, $i=0\div3$, $k=1\div8$.

Для генерации ключей необходимо использовать следующие исходные данные:

- слова H, M ∈ V₂₅₆(2);
- параметры: слова C_1 (i=2, 3, 4), имеющие значения

$$C_2 = C_4 = 0^{256} \text{ in } C_3 = 1^{8}0^{8}1^{16}0^{24}1^{16}0^{8}(0^{8}1^{8})^{2}1^{8}0^{8}(0^{8}1^{8})^{4}(1^{8}0^{9})^{4}.$$

При вычислении ключей реализуется следующий алгоритм:

1 Присвоить значения

$$i:=1, U:=H, V:=M.$$

2 Выполнить вычисление

$$W = U \oplus V, K_1 = P(W).$$

- 3 Присвоить i := i + 1.
- 4 Проверить условие i = 5.

При положительном исходе перейти к шагу 7. При отрицательном — перейти к шагу 5.

5 Выполнить вычисление

$$U:=A(U)\oplus C_i$$
, $V:=A(A(V))$, $W:=U_i\oplus V$, $K_i=P(W)$.

- 6 Перейги к шагу 3.
- 7 Конец работы алгоритма.
- 5.2 Шифрующее преобразование

На данном этапе осуществляется зашифрование 64-битных подслов слова H на ключах K_1 (i=1, 2, 3, 4).

Для шифрующего преобразования необходимо использовать следующие исходные данные:

$$H = h_4 \|h_3 \|h_2 \|h_1$$
, $h_1 \in V_{04}(2)$, $i = \overline{1,4}$

и набор ключей K₁, K₂, K₃, K₄.

Реализуют алгоритм зашифрования и получают слова

$$s_i = E_{K_i}(h_i)$$
, rge $i = 1, 2, 3, 4$.

- В результате данного этапа образуется последовательность $S = s_4 \|s_3\| s_4 \|s_4\|$.
- 53 Перемешивающее преобразование
- га дейном этапе осуществляется перемешивание полученной нослед вательности с примененьем регистра сдвига.

Исходными данными являются:

слова H, M ($V_{256}(2)$ и слово S ($V_{256}(2)$).

Пусть отображение

$$\psi: V_{456}(2) \longrightarrow V_{256}(2)$$

преобразует слово

$$\eta_{16} | \dots | | \eta_1, \ \eta_1 \in V_{16}(2), \ 1 = \overline{1,16}$$

ь слово

$$\eta_1 \oplus \eta_2 \oplus \eta_3 \oplus \eta_4 \oplus \eta_{13} \oplus \eta_{16} \| \eta_{16} \| \cdots \| \eta_2$$

Тогда в качестве значения шаговой функции хэширования принимается слово

$$x(M, H) = \psi^{01}(H \oplus \psi(M \oplus \psi^{12}(S))),$$

где ψ^l — i-я степень преобразования ψ .

6 ПРОЦЕДУРА ВЫЧИСЛЕНИЯ ХЭШ-ФУНКЦИИ

Исходными данными для процедуры вычисления значения функции h является подлежащая хэшированию последовательность $M \in B^*$. Параметром является стартовый вектор хэширования H — произвольное фиксированное слово из V_{256} (2).

Процедура вычисления функции h на каждой итерации использует следующие величины:

 $M \in B^*$ — часть последовательности M, не прошедшая процедуры хэширования на предыдущих итерациях:

 $H \in V_{256}(2)$ — текущее значение хэш-функции:

 $\Sigma \in V_{256}(2)$ — текущее значение контрольной суммы:

Le V₂₅₆(2) — текущее значение длины обработанной на предыдущих итерациях части последовательности М.

Алгоритм вычисления функции h включает в себя этапы:

Этап 1

Присвоить начальные значения текущих величин

- 1.1 M := M
- 1.2 H = H
- 1.3 $\Sigma := 0^{256}$
- 1.4 L:= 0^{256}
- 1.5 Переход к этапу 2

Этап 2

2.1 Проверить условие |М|>256.

При положительном исходе перейти к этапу 3.

В противном случае выполнить последовательность вычислений:

- 2.2 L:= $\langle \hat{L}+|M| \rangle_{256}$ 2.3 M':= $0^{256-|M|} \parallel M$
- 2.4 $\Sigma := \Sigma \oplus' M'$
- 2.5 H := x(M', H)
- 2.6 H := x(L, H)
- 2.7 $H:=x(\Sigma, H)$
- 2.8 Конец работы алгоритма

Этап 3

- 3.1 Вычислить подслово $M_s \in V_{256}(2)$ слова $M_s \in M_p \| M_s \|_{\infty}$ Далее выполнить последовательность вычислений:
 - 3.2 $H := x(M_s, H)$
 - 3.3 L:= $\langle L+256 \rangle_{256}$
 - 3.4 $\Sigma := \Sigma \oplus M$.
 - $3.5 M = M_0$
 - 3.6 Перейти к этапу 2.

Значение величины Н. полученное на шаге 2.7, является значением функции хэширования h (М).

Проверочные примеры для вышеизложенной процедуры вычисления хэш-функции приведены в приложении А.

проверочные примеры

Заполнение узлов замены π_1 , π_2 , ..., π_8 и значение стартового вектора хэширования H, указанные в данном приложении, рекомендуется использовать только в проверочных примерах для настоящего стандарта

А 1 Использование алгоритма ГОСТ 28147

В качестве шифрующего преобразования в приводимых ниже примерах используется алгоритм ГОСТ 28147 в режиме простой замены

При этом заполнение узлов замены $\pi_1, \ \pi_2, \ \dots, \pi_8$ блока подстановки π следующее.

	8	7	6	5	4	3	2	1	
0	1	D	4	6	7	5	E	4	
i	F	B	В	Č	Ď	8	B	À	
2	D	4	A	1	A	1	4	9	
3	0	1	0	1	1	D	C	2	
4	! 5	3	7	5	b	Α	6	D	
5	7	F 5	2	F	8	3	D	8	
6	A	5	1	D	9	4	F	<u>o</u>	
7	4	9	Ď	8	F	2	A	E	
8	9	0	3	4	E	E	2	6	
9	2	A E	6	A	4	F	3	В	
10	3	E	8	9	6	Ċ	8	l	
11	E	7	5	E	č	7	I .	Č	
12	6	6	9	0	В	6	Q 2	/	
13	B	8	C	3	2	0	7	F.	
14	8	2	F	В	5	9 B	5	ð	
15	C	C	E	2	3	Ď	9	3	

В столбце с номером $_{1}$, $_{1}=\overline{1,8}$, в строке с номером $_{1}$, $_{1}=\overline{0,15}$, приведено значение $\pi_{1}(1)$ в шестнадцатеричной системе счисления

А2 Представление векторов

Последовательности двоичных символов будем записывать как строки шестнадцатеричных цифр, в когорых каждая цифра соответствует четырем знакам ее двоичного представления

АЗ Примеры вычисления значения хэш-функции

В качестве стартового вектора хэширования принимают, например, нулевой вектор

А 3 1 Пусть необходимо выполнить хэширование сообщения

M= 73657479 62203233 3D687467 6E656C20 2C656761 7373656D 20736920 73696854

Выполняют присвоение начальных заачений: текста

M=73657479 59203233 3D687467 6E656C20 9C656761 75.C356D 20736920 73696854

хэш-функции

H = 00000000 0000000000000000 00000000 00000000 00000000 00000000 00000000

суммы блоков текста

 $\Sigma = 000000000 000000000$ 00000000 00000000 00000000 00000000 00000000 00000000

длины текста

00000000 00000000 L = 000000000 0000000000000000 00000000 00000000 00000000

Так как длина сообщения, подлежащего хэшированию, равна 256 битам (32 байтам).

00000000 00000000 I = 000000000 00000000000000000 00000000 00000000 00000100

M' = M = 73657479 62203233 3D687467 6E656C202C656761 7373656D 20736920 73696854, TO

нет необходимости дописывать текущий блок нулями,

 $\Sigma = M' = 73657479 62203233 3D687467 6E656C20$ 2C656761 7373656D 20736920 73696854

Переходят к вычислению значения шаговой функции хэширования ж (М. Н).

Вырабатывают ключи

733D2C20 K. = 65686573 74746769 79676120 626E7373 20657369 326C6568 33206D54 06417967 K , == 110C733D 0D166568 130E7474 1D00626E 4D393320 161A2065 090D326C

 $K_3 =$ 80B111F3 730DF216 850013F1 C7E1F941 620C1DFF 3ABAE91A 3FA109F2 F513B239

E7B8C7E1 $K_{4}=$ A0E2804E FF1B73F2 ECE27A00 EE1D620C AC0CC5BA A804C05E A18B0AEC

Осуществляют зашифрование 64-битных подслов блока Н с помощью алго-

= 42ABBCCE 32BC0B1B.

Блок $h_2 = 00000000 \ 00000000$ зашифровывают на ключе K_2 и получают $s_2 =$ = 5203EBC8 5D9BCFFD.

блок $h_3 = 00000000 \, 000000000$ зашифровывают на ключе K_3 и получают $s_3 =$ =8D345899 00FF0E28.

Блок $h_4 = 00000000 \ 00000000$ зашифровывают на ключе K_4 и получают $s_4 =$ = E7860419 0D2A562D.

Получают

0D2A562D 8D345899 00FF0E28 S =E7860419 5D9BCFFD 42ABBCCE 32BC0B1B 5203EBC8

Выколняют перемешивающее преобразование с применением регистра сдвига и получают

 $E = \kappa (M, H) =$ CF9A8C65 505967A4 68A03B8C 42DE7624 D99C4124 883DA687 561C7DE3 3315C034

FOCT P 34.11-94

```
Полагают H = \Xi, вычисляют x (L. H).
K_1 =
       CF68D956
                   94A09C1C
                              8C3B417D
                                         658C24E3
                              6776A6C1
                                         A4248734
       50428833
                   59DE3D15
                                         C7658C24
K .==
       8FCF68D9
                   809 A A C9 C
                              3C8C3B41
       BB504288
                   2859DF3D
                              666676A6
                                         B3442487
                              853C8CC4
                                         57389A8C
K3=
       4E70CF97
                   3C8065A0
       CABB50BD E3D7A6DE D1936788
                                         5CB35B24
K.=
       584E70CF
                   C53C8065
                              48853C8C
                                         1657389A
       EDCABB50 78E3D7A6
                                         7F5CB35B
                              EED19867
                   F163F461
                              468A9528
                                         61D60593
S ==
       66B70F5E
                                         DD783E86
       E5EC8A37
                  3FD42279
                              3CD1602D
\Xi =
                              2ABC2692
                                         5FEA7285
       2B6EC233
                   C7BC89E4
       DD3848D1
                  C6AC997A
                              24F74E2B
                                         09A3AEF7
Вновь полагают H = \Xi и вычисляют x (\Sigma, H)
                              B6522F27
K_1 =
       5817F104
                  0BD45D84
                                         4AF5B00B
                  9C8FDFCA
                              BB1EFCC6
                                         D7A517A3
       A531B57A
K_2 =
       E82759E0
                   C278D950
                              15CC523C
                                         FC72EBB6
       D2C73DA8
                  19A6CAC9
                              3E8440F5
                                         CODDB65A
                   F7C29CAA
                                         841BCAD3
K_2 =
       77483AD9
                              FB06D1D7
       FBC3DAA0 7CB555F0
                              D4968080
                                         0A9E56BC
       A1157965
                   2D9FBC9C
                              088C7CC2
                                         46FB3DD2
K_{4} =
       7684ADCB
                  FA4ACA06
                              53EFF7D7
                                         C0748708
       2AEBFA76
                  A85FB57D
                              6F164DE9
                                         2951A581
S=
       C31E7435
                   4930FD05
                              1F8A4942
                                         550A582D
ॼ ==
       FAFF37A6
                   15A81669
                              1CFF3EF8
                                         B68CA247
       F09525F3
                  9F811983
                              2EB81975
                                         D366C4B1
Таким образом, результат хэширования есть
H =
       FAFF37A6
                              1CFF3EF8
                                         B68CA247
                  15A81669
       E09525F3
                   9F811983
                              2EB81975
                                         D366C4B1
А 3 2 Пусть необходимо выполнить хэширование сообщения
M= 7365 74796220 3035203D 20687467 6E656C20 73616820 65676173
          73656D20 6C616E69 6769726F 20656874 2065736F 70707553
Так как длина сообщения, подлежащего хэшированию, равна
```

(50 байтам), то разбивают сообщение на два блока и второй (старший) блок дописывают нулями В процессе вычислений получают.

HIAL I

H = 00000000 00000000 00000000 0000000000000000 00000000 00000000 00000000

M ==	73616820	65676173	73656D20	6C616E69
	6769726F	20656874	2065736F	70707553
$K_1 =$	73736720	61656965	606D7273	20206F6F
	ა56C2070	67616570	616E6875	73697453

K2=	14477373	0C0C6165	1F01686D	4F002020
	4C50656C	04156761	061D616E	1D277369
K3=	CBFF14 B 8	6D04F30C	96051FFE	DFFFB000
	35094C A F	72F9FB15	7 <i>CF006E</i> 2	AB1AE227
K4=	EBACCB00	F7006DF B	E5E16905	B0B0DFFF
	BA1C3509	FD118DF9	F61B830F	F8C554E5
S=	FF41797C	EEAADAC2	43C9B1DF	2E14681C
	EDDC2210	1EE1ADF9	FA67E757	DAFE3AD9
8=	F0CEEA4E	368B5A60	C63D96C1	E5B51CD2
	A93BEFBD	2634F0AD	CBBB69CE	ED2D5D9A
ШΙΑΓ	2			
H=	F0CEEA4E	368B5A60	C63D96C1	E5B51CD2
	A93BEFBD	2634F 0AD	CBBB69CE	ED2D5D9A
M'=			000 00007365 467 6E656C2	
$K_1 =$	F0C6DDEB	CE3D42D3	EA968D1D	4EC19DA9
	36E51683	8BB50148	5A6FD031	60B790BA
Ks=	16Å4C6A9	F9DF3D3B	E4FC96EF	5309C1BD
	FB68E526	2CDBB534	FE161C83	6F7DD2C8
K3=	C49D846D	1780482C	9086887F	C48C9186
	9DCB0644	D1E641E5	A02109AF	9D52C7CF
K4=	BDB0C9F0	756E9131	E1F290EA	50E4CBB1
	1CAD9536	F4E4B674	99F31E29	70C52AFA
S=	62A07EA5	EF3C3309	2CE1B076	173D48CC
	6881EB66	F5C7959F	63FCA1F1	D33C31B8
2=	95BEA0BE	88D5AA02	FE3C9D45	436CE821
	B8287CB6	2CBC135B	3E339EFE	F6576CA9
ЩАГ	3			
H≈	95BEA0BE	88D5AA02	FE3C9D45	436CE821
	B8287CB6	2CBC135B	3E339EFE	F6576CA9
L≈	00000000 000		0000 0000000 0000 0000019	
K 1=	95FEB8 3 E	BE3C2833	A09D7C9E	BE45B6FE
	88432CF6	D56CBC57	AAE8136D	02215B39
K2=	8695FEB8	1BBE3C28	E2A09D7C	48BE45B6
	DA88432C	EBD56CBC	7FABE813	F292215B
K₃=	B9799501	141B413C	1EE2A062	0CB74145
	6 FDA88BC	D0142A6C	FA80AA16	15F2FDB1
K4=	94 B97995	7D141B41	C21EE2A0	040CB741
	3 46FDA88	46D0142A	BDFA81AA	DC1562FD
S=	D42336E0	2A0A6998	6C65478 A	3D08A1B9
	9FDDFF20	4868E 86 3	941 D9D 6D	F776A7AD

FOCT P 34.11-94

Ξ=	47E26AFD	3E7278A1	7D473785	06140773			
	A3D97E7E	A744CB43	08AA4C24	3352C745			
ШАГ 4	ļ						
H=	47E26AFD	3E7278A1	7D473785	06140773			
	A3D97E7E	A744CB43	08AA4C24	3352C745			
$\Sigma =$	73616820	65676173	73656D20	6C61E1CE			
	DBE2D48F	509A88B1	40CDE7D6	DED5E173			
$K_1 =$	340E7848	83223 B67	025AAAAB	DDA5F1F2			
	5B6AF7ED	1575DE87	19E64326	D2BDF236			
K ₂ =	03DC0ED0	F4CD26BC	8B595F13	F5A4A55E			
	A8B063CB	ED3D7325	6511662 A	7963008D			
K3=	C954EF19	D0779A68	ED37D3FB	7DA5ADDC			
	4A9D0277	78EF765B	C4731191	7EBB21B1			
$K_4 =$	6D12BC47	D9363D19	1E3C696F	28F2DC02			
	F2137F37	64E4C18B	69CCFBF8	EF72B7E3			
S=	790DD7 A 1	066544EA	2829563C	3C39D781			
	25EF9645	EE2C05DD	A5ECAD92	25 11A4D1			
2=	0852F562	3B89DD57	AEB4781F	E54DF14E			
	EAFBC135	0613763A	0D770AA6	57BA1A47			
Таким образом, результат хэширования есть							
H=	0852F562	3B89DD57	AEB4781F	E54DF14E			
	EAFBC135	0613763A	0D770AA6	57BA1A47			

УДК 681.3.06:006.354

П85

OKCTY 5002

Ключевые слова: информационная технология, криптографическая защита информации, электронная цифровая подпись, асимметричный криптографический алгоритм, системы обработки информации, защита сообщений, подтверждение подписи, хэш-функция, функция хэширования

Редактор Л. В. Афанасенко Технический редактор Н. С. Гришанова Корректор А. С. Черноусова

Сдано в наб 24 06 94

Подп в печ 19 08 94 Усл п л 0 93 Уч-изд л 0,84 Тираж 300 экз С 1585

Усл кр.-отт 0.98.

Ордена «Знак Почета» Издательство стандартов, 107076, Москва, Колодезный пер., 14. Тип «Московский печатник» Москва, Лялин пер., 6 Зак 208