Memory Architecture IV

CS2053 Computer Architecture

Computer Science & Engineering
University of Moratuwa

Sulochana Sooriyaarachchi Chathuranga Hettiarachchi

Outline

- Memory types
- Memory access
- Memory hierarchy
 - Main memory
 - Cache
 - Permanent storage
- Example architecture RV32I
 - Superscalar architecture
 - Pipelining
- Virtual memory

Virtual Memory

Virtual Memory

- Main memory act as "cache" for secondary storage
- Motivation
 - To share memory among several programs
 - To relieve the programmer from limited memory constraint
- Protection needed to avoid read/ write to memory portions of other programs/ virtual machines
 - Programs have own address space

Program's address space to physical address mapping

- Physical address: an address is main memory
- Protection: a set of mechanisms to ensure that
 - multiple processes sharing
 - the processor, memory, or I/O devices
 - cannot interfere intentionally/ unintentionally with one another
 - by reading/ writing to each other's data
 - Protection also isolates OS from user processes
- Operation of cache and virtual memory have similarities, but terminology is different

Virtual memory terminology

- Main memory = physical memory
- Secondary storage: e.g. magnetic disks
- Virtual memory blocks = pages
- A page not in main memory = page fault

Address translation

Virtual address

Physical address

Virtual memory configuration

- Locate pages
 using a table
 that indexes the
 main memory =
 page table
- Page table resides in main memory
- □ Valid bit = 0→ page fault
 - OS should manage
 - Swap space

Page Table

- Maps virtual address to physical address
- Stored in main memory
- Virtual page number to index page table entry
 - Assume Byte-addressing
 - 4KiB pages → 2¹² bytes in a page
 - 48-bit Virtual address → 12 bit page offset
 - 36 bits for indexing page table entries
 - 2³⁶ page table entries ~ 64 billion entries!
- Techniques to reduce page table size
 - E.g. page the page table, multi-level table

Translation Look-aside Buffer

TLB

- A special cache to keep address translations
- Accesses within a page may have
 - Temporal locality
 - Spatial locality
- Reduce memory accesses needed to lookup the page table
- TLB includes additional status bits
 - dirty bit, reference bit

References

- Waterman, A., Lee, Y., Patterson, D. A., & Asanovi, K. (2014). The risc-v instruction set manual. volume 1: User-level isa, version 2.0.
 California Univ Berkeley Dept of Electrical Engineering and Computer Sciences.
- Harris, S. L., Chaver, D., Piñuel, L., Gomez-Perez, J. I., Liaqat, M. H., Kakakhel, Z. L., ... & Owen, R. (2021, August). RVfpga: Using a RISC-V Core Targeted to an FPGA in Computer Architecture Education. In 2021 31st International Conference on Field-Programmable Logic and Applications (FPL) (pp. 145-150). IEEE.
- Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a quantitative approach. Elsevier.
- Patterson, D. A., & Hennessy, J. L. (2016). Computer organization and design ARM edition: the hardware software interface. Morgan kaufmann.

THANK YOU