✓ VOLTAR

Normalização de Tabelas: Dependências Funcionais

Apresentar os conceitos necessários para compreender o processo de normalização de tabelas.

NESTE TÓPICO

Marcar tópico

Normalização

A normalização envolve um conjunto de regras aplicadas em um banco de dados com a finalidade de corrigir redundâncias, separando os dados até que seus atributos apresentem valores atômicos, isto é, indivisíveis.

O conceito de normalização foi introduzido em 1970 por Edgard F. Codd e baseia-se no processo matemático formal com fundamento na teoria dos conjuntos.

O processo de normalização aplica uma série de regras sobre as tabelas de um banco de dados para verificar se estas foram corretamente projetadas.

Objetivos da normalização de tabelas

Os objetivos principais da normalização de tabelas são os seguintes:

- Garantir a integridade dos dados, evitando que informações sem sentido sejam inseridas.
- Organizar e dividir as tabelas da forma mais eficiente possível, diminuindo a redundância e permitindo a evolução do banco de dados.

Formas normais

São seis as formas normais mais utilizadas:

- Primeira Forma Normal (1FN).
- Segunda Forma Normal (2FN).
- Terceira Forma Normal (3FN).
- Forma Normal de Boyce e Codd (FNBC).
- Quarta Forma Normal (4FN).
- Quinta Forma Normal (5FN).

Nota: Neste curso abordaremos as três primeiras formas normais, pois estas atendem à maioria dos casos de normalização.

Uma forma normal engloba todas as anteriores, isto é, para que uma tabela esteja na 2FN, ela obrigatoriamente deve estar na 1FN e assim por diante.

Normalmente, após a aplicação das regras de normalização, algumas tabelas acabam sendo divididas em duas ou mais. Este processo colabora significativamente para a estabilidade do modelo de dados e reduz consideravelmente as necessidades de manutenção.

Antes de passarmos à parte prática, aplicando as regras conforme a 1FN, 2FN e 3FN, será necessário apresentar alguns conceitos fundamentais diretamente relacionados às Formas Normais.

Dependência Funcional (DF)

Sempre que um atributo X identifica um atributo Y, dizemos que entre eles há uma **dependência funcional**. A representação é:

X→Y (lê-se X determina Y ou Y é dependente de X). cidade → estado

Neste caso, estado é funcionalmente dependente de cidade ou ainda cidade determina estado.

CIDADE	ESTADO	
Campinas	Sao Paulo	
Natal	Rio Grande do Norte	
Niteroi	Rio de Janeiro	

Transitividade

Se um atributo X determina Y e se Y determina Z, podemos dizer que X determina Z de forma transitiva, isto é, existe uma dependência funcional transitiva de X para Z.

```
cidade → estado
estado → país
cidade → país (cidade determina país de forma transitiva)
```

I	CIDADE	ESTADO	PAIS
I	Campinas	São Paulo	Brasil
I	Miami	Florida	EUA

Dependência funcional irredutível à esquerda

O lado esquerdo de uma dependência funcional é irredutível quando o determinante está em sua forma mínima, isto é, quando não é possível reduzir a quantidade de atributos determinantes sem perder a dependência funcional.

CIDADE	ESTADO	PAIS
Campinas	São Paulo	Brasil
Miami	Florida	EUA

Não está na forma irredutível à esquerda, pois podemos ter somente o estado como determinante.

estado → país

Está na forma irredutível à esquerda.

CIDADE	ESTADO	PAIS
Campinas	São Paulo	Brasil
Miami	Florida	EUA

ESTADO	PAIS	
São Paulo	Brasil	
Florida	EUA	

Dependência Multivalorada (DMV)

A DMV é uma ampliação da Dependência Funcional (DF). Na DMV, o valor de um atributo determina um conjunto de valores de outro atributo.

É representada por X→→ Y (X multidetermina Y ou Y é multidependente de X).

DF: {CPF} → {Nome}

Temos somente um nome para cada CPF

CPF	Dependente
111222333-00	Antonio Santos
	Beatriz Santos
	Claudio Santos

Temos vários dependentes para cada CPF

CPF	Dependente
111222333-00	Antonio Santos
	Beatriz Santos
	Claudio Santos

Referências

CHEN, Peter. *Modelagem de dados*: a abordagem entidade-relacionamento para projeto lógico. São Paulo: Makron Books, 1990.

DATE, C. J. Introdução a sistemas de banco de dados. Rio de Janeiro: Campus, 1991.

ELMASRI, Ramez; NAVATHE, Shamkant B. *Sistemas de banco de dados*. 4. ed. São Paulo: Pearson Addison Wesley, 2005.

HEUSER, Carlos Alberto. Projeto de banco de dados. Porto Alegre: Sagra Luzzatto, 2004.

SETZER, Valdemar W.; SILVA, Flávio Soares Corrêa da. *Banco de dados*: aprenda o que são, melhore seu conhecimento, construa os seus. São Paulo: Edgard Blücher, 2005.

SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. *Sistema de banco de dados*. 3. ed. São Paulo: Makron Books, 1999.

Avalie este tópico

**** Do

ANTERIOR

Derivação do Modelo Conceitual para o Lógico

para de Tiversos Graus de Relacionamentos de Relaci

a-

uninove/biblioteca/sobre-

a-

biblioteca/apresentacao/)

Portal Uninove

(http://www.uninove.br)

Mapa do Site

Ajuda?
P(fittbs://ava.un
Normalização de Banco de Dados: Pr**id@in**so=)
Forma No

® Todos os direitos reservados