LATENT VARIABLE MODELS

Session 1 – Introduction

1

Course prerequisites

- Knowledge of statistics
 - □ Statistical testing (e.g., chi-square & normal distributions)
 - Regression (GLMs)
 - Var, cov, cor, mean
 - □ Knowledge of psychometrics
 - Validity
 - □ PCA, EFA, CFA
 - Reliability
 - □ IRT
 - □ Programming in R

Course materials

Book(s):

- □ Beaujean, A. A. (2014). Latent variable modeling using R: A step-by-step guide.
 - □ Good as a starting guide, not an authorative standard
- □ Kaplan, D. (2009). Structural Equation Modeling: Foundations and Extensions.
 - Authorative standard. But more technical and not focused on specific software, so less practical.

Brightspace materials:

- □ Lecture slides
- Markdown files for examples and exercises

3

Book examples

- You are strongly advised to copy and run R code from examples in Beaujean book and from Brightspace:
 - They give you a step-by-step guide on how to perform analyses
 - □ They give you a starter for making the exercises
 - If you make a mistake, you will get an error or warning message, from which you learn A LOT! (But only you read and try to decipher! (red = good!)

Structural Equation Modeling

SEM: the modeling of structural equations

- **Modeling**: we construct models (hypotheses, theories) of reality. The models (theory, hypothesis) can be statistically tested. That is: rejected by the data (or not), but never proven 'true' or 'right'.
 - In fact, all models are wrong, but some are useful.
- **Structural**: the model is used to explain the interrelations between (that is, the structure of) observed variables
- **Equations**: the interrelations between variables in the model are described using mathematical formulae (equations)

5

Structural Equation Modeling

SEMS are graphically represented using these building blocks:

Observed (manifest) variable
Observed (manifest) variable

Directional relationship (regression relationship)

Structural Equation Modeling

- □ The arrows in SEM denote regression relationships
- □ All generalized linear models (GLMs) can be formulated as SEM models:
 - t-test
 - ANOVA
 - □ Multiple linear regression
 - Multiple logistic regression
 -
- Also, SEM can be used to models for multilevel or longitudinal data (i.e., GLMMs)

7

Example dataset

Variables in the model:

grade

ethnicity

homework

SES

Prev_ach

- GPA in 10th grade
- Ethnicity
- Homework (8th grade)
- Socio-economic status
- Previous achievement (8th grade)
- □ Sample covariance matrix **S**:

prev_ach 6.429 2.067 79.092 ethnicity 0.081 0.028 1.201 0.175

SES 0.338 0.176 3.541 0.106 0.690

Model: Univariate regression

- grade
- Dependent:
 - GPA in 10th grade
- Independent:
 - ethnicity (0=ethnic minority; 1=ethnic majority)
- Regression coefficient easy to calculate by hand:

ethnicity

$$\hat{b}_{xy} = \frac{cov_{x,y}}{var_x} = \frac{0.0814}{0.1752} = 0.4646$$

- $\hat{b}_{xy} = \hat{\rho}_{xy} = \frac{cov_{x,y}}{s_x s_y} = s_x \frac{\hat{b}_{xy}}{s_y} = 0.132$
- \square Measure of fit or (strength of) association: ${\hat{
 ho}_{xy}}^2$

9

Model: Multiple regression

- Dependent:
 - GPA in 10th grade
 - □ Independent:
 - Ethnicity
 - □ Homework (8th grade)
 - □ Previous achievement (8th grade)
 - Socio-economic status

- \square Regression estimates are now a vector of partial regression coefficients, need matrix algebra to compute: $\widehat{m{\beta}}=(X^TX)^{-1}X^Ty$
- \square Measure of fit: multiple correlation (R=.512), or variance explained (R²=.262)
- \Box Measure of (strength of) association: \hat{b}_{xy} or standardized $\hat{b}_{xy} = s_x \frac{\hat{b}_{xy}}{s_y}$ (where \hat{b}_{xy} is now a partial regression coefficient)

SEM using lavaan

14

To fit a SEM in R with lavaan, we need two things:

- 1. Data, which can be:
 - Raw data, which is often an external file (e.g., .sav, .xls) which needs to be loaded into R (most common case in practice)
 - Covariance or correlation matrix, which can be an external file, or can be entered manually (most often the case in book's examples and exercises)
- 2. Model specification:
 - A long character string that specifies whether population parameters (associations) are restricted (e.g., to a constant like 1 or 0, or to equality) or should be freely estimated, using lavaan model syntax

	ıan model syn	
Syntax	Command	Example
~	Regress onto	Regress B onto A: B ~ A
~~	(Co)variance	Variance of A: A ~~ A
		Covariance of A and B: A ~~ B
~1	Constant/mean/intercept	Regress B onto A, and and include the
		intercept in the model: $B \sim 1 + A$ or
		B ~ A
		B ~ 1
=~	Define reflective latent variable	Define Factor 1 by A-D:
		F1 =~A+B+C+D
<~	Define formative latent variable	Define Factor 1 by A-D:
		F1 <~ 1*A+B+C+D
:=	Define non-model parameter	Define parameter u2 to be twice the
		square of u:
		$u2 := 2*(u^2)$
*	Label parameters	Label the regression of Z onto X as b:
	(the label has to be pre-multiplied)	Z ~b*X
1	Define the number of thresholds	Variable u has three thresholds:
150	(for categorical endogenous variables)	u t1 + t2 + t3

Computation time!

17

Example 2.4.1

get PDF from Github

Make Exercise 2.1:

☐ Get Exercises_week_1.pdf from Github (adapted version of the exercises in the Beaujean book)

17

Structural Equation Modeling

18

- □ Fitted model is used to **explain the structure** of, or the interrelations between observed variables
- ☐ That is, to explain covariances between observed variables:

$$cov_{xy} = \left(\frac{1}{N-1}\right) \sum_{i} (X_i - \overline{X})(Y_i - \overline{Y})$$
$$cov_{xy} = r_{xy} SD_x SD_y$$

■ Note: means, and skewness & kurtosis can be also be involved in SEM (discussed later in course)

Structural Equation Modeling

19

- With SEM, we obtain a fitted model that minimizes the difference between
 - □ sample matrix of observed covariances S and
 - $lue{\Sigma}$ population matrix of model-implied covariances $\widehat{\Sigma}$
 - In addition, we try to keep the model parsimoneous through applying restrictions (i.e., specifying the model) so that not all possible paths are estimated
- □ These covariance matrices contain all (co)variances of the observed variables in the model. Note that:
 - Covariance matrices are always symmetric, because cov(x,y)=cov(y,x)
 - Covariance matrices have the variance of the observed variables on the diagonal. I.e., cov(x,x) = var(x)

19

Model-implied (co)variances

20

□ Variables in the model:

□ Observed covariance matrix **S**:

```
grade homwrk prv_ch ethnct SES
grade 2.185
homework 0.335 0.649
prev_ach 6.429 2.067 79.092
ethnicity 0.081 0.028 1.201 0.175
SES 0.338 0.176 3.541 0.106 0.690
```

 $\ \square$ Once the model is estimated, the model-implied covariance matrix $\widehat{\Sigma}$ can be calculated using path analysis, or equivalently, matrix algebra

Model-implied (co)variances

21

Path analysis:

- Model-implied covariance between variables X and Y can be computed as follows:
 - □ Find all paths leading from X to Y
 - Multiply all parameter values along a given path from X to Y, but:
 - No loops: may not go through same variable more than once
 - May switch forward/backward direction only once within a path
 - May go through double-headed arrow only once within a path
 - Summing all values thus obtained
- □ Variances of variables are calculated as follows:
 - For exogenous variables, model-implied variances are equal to sample variances, so are given (not computed)
 - For endogenous variables, variances are computed like covariances (rules above)

21

Note that Beaujean's examples in section Model-implied (c 2.1.3 seem more simple, because he uses the standardized soluttion. Then all variances of exogenous variables equal 1 and can be omitted, which simplifies model-implied cov(SES,grade)= calculations a lot. var(SES) * b(SES, homework) * b(homework, graae) var(SES) * b(SES, prev_ach) * b(prev_ach, grade) + cov(SES, ethnicity) * b(ethnicity, homework) * b(homework, grade) + cov(SES, ethnicity) * b(ethnicity, prev_ach) * b(prev_ach, grade) = .690 * .254 * .281 + grade homework 0.281 .690 * 4.496 * .074 + homework prev_ach .106 * .007 * .281 + prev_ach homework 1.158 prev_ach .106 * 4.147 * .074 = grade homework ~~ homework prev_ach ~ prev_ach 58.190 ethnicity ~ ethnicity 0.175 ethnicity ~ SES 0.106 SES ~ SES 0.690 0.3115514

Model-implied (co)variances

25

- □ A SEM is a system of linear equations, which we can represent by matrices
 - Although non-linear SEM also exists, but outside the scope of this course
- □ The tracing rules represent matrix algebra but more tedious/confusing/error prone
- Beaujean's book hardly involves formulas, and no matrix notation. To get a good understanding of SEM, you need to know about underlying matrices and vectors

25

Model-implied (co)variances

26

- In lavaan, the (co)variance stucture of a fitted model is given by four parameter matrices
- Matrix algebra gives us the model-implied covariance matrix:

$$\widehat{\boldsymbol{\Sigma}} = \boldsymbol{\Lambda} (\boldsymbol{I} - \boldsymbol{\beta})^{-1} \, \boldsymbol{\psi} \big[(\boldsymbol{I} - \boldsymbol{\beta})^{-1} \, \big]^T \boldsymbol{\Lambda}^T + \boldsymbol{\Theta}$$

 \Box Today, our models assume no measurement error, so Λ is an identity matrix and Θ all zeros. Thus, the above formula simplifies to:

$$\widehat{\Sigma} = (I - \beta)^{-1} \, \psi \big[(I - \beta)^{-1} \, \big]^T$$

Model-implied (co)variances

27

- □ Let p be the number of observed variables in the model
- □ If we have observed variables only:
 - $f \beta$ is a p x p matrix of regression coefficients, relating predictor to criterion variables
 - 'Contains' single-headed (directed) arrows, therefore non-symmetric
 - The columns reflect the variables as predictors, the rows reflect the variables as responses
 - $\ \ \ \psi$ is a p x p matrix of (co)variances not explained by the regression equations
 - 'Contains' double headed (undirected) arrows, therefore symmetric
- \Box Often, SEM models also involve a **measurement** model (described by Λ and Θ , which will be introduced next session)

27

Model-implied (co)variances > beta grade homwrk prv_ch ethnct 0.000 0.000 0.007 0.254 grade 0.281 0.074 homework 0.000 0.000 0.000 0.000 4.496 0.000 ethnicity 0.000 0.000 0.000 0.000 > psi homwrk prv_ch ethnct SES grade homework 0.000 0.604 prev_ach ethnicity 0.000 1.158 58.190 0.000 0.000 0.000 0.000 0.000 0.106

Structural and measurement model

29

Two main components of SEMs:

- the <u>structural model</u> contains causal regression relationships between endogenous and exogenous variables
 - path models (without measurement errors) can be viewed as SEMs that contain only the structural model
- the <u>measurement model</u> contains the associations between latent variables and their indicators
 - confirmatory factor analysis models contain only the measurement part

29

Model-implied (co)variances

Model:

Parameter estimates:

Model-implied covariance matrix $\widehat{\Sigma}$:

```
grade homwrk prv_ch ethnct SES
grade 2.185
homework 0.335 0.649
prev_ach 6.429 2.067 79.092
ethnicity 0.097 0.028 1.201 0.175
SES 0.311 0.176 3.541 0.106 0.690
```

Model-implied (co)variances Model: Parameter estimates: The op grade ~ grade ~ grade ~ grade ~ prev_ach ~ prev_ach ~ prev_ach ~ prev_ach ~ prev_ach ~ mrev_ach ~ mrev_ ~ prev_ach ~ homework ~ ethnicity ~ SES 0.073 0.271 -0.119 0.063 grade 1.612 prev_ach 79.092 homework 2.067 ethnicity 1.201 SES 3.541 3.541 0.649 0.028 0.176 0.175 0.106 0.690 prev_ach ~~ homework ~~ homework nomework ~ nomework homework ~ ethnicity homework ~ SES ethnicity ~ ethnicity ethnicity ~ SES SES ~ SES Model-implied covariance matrix $\widehat{\Sigma}$: grade 2.185 prv_ch homwrk ethnct SES grade 6.429 79.092 0.335 2.067 0.081 1.201 prev_ach homework 0.175 ethnicity 0.028 0.176 0.106 0.690

31

Variances of exogenous variables often not explicitly depicted

33

Mean structure often omitted

(co)variance structure only all means omitted (i.e., assumed zero) $Y = aX_1 + bX_2 + cX_3 + error$

(co)variance and mean structure means freely estimated $Y = g + aX_1 + bX_2 + cX_3 + error$

Figure 2.2 Path model of a multiple regression with three predictor (exogenous) variables.

Error terms

35

- Errors are also latent variables: they are hypothetical, not directly observed
- Error is defined as the difference between observed (sample) variance and variance explained by other variables in the model
 - Therefore, a variable that has an error/disturbance term is an endogenous variable
 - Errors/disturbance terms are always exogenous (have no incoming directional arrows)

35

Causation

36

 Causation is a function of the research design, and cannot be determined statistically

- □ Both models above will fit the observed data equally well, it is up to the researcher to decide on the direction of the arrows!
 - In the SEM model, it is merely a matter of scaling:

$$b_x = \frac{cov_{xy}}{var_x} \text{ and } b_y = \frac{cov_{xy}}{var_y}$$

Path & partial regression coefficients

37

- Path coefficients (a, b, c, g and 1) are partial regression coefficients
- That is, the expected increase in the response variable, when the predictor variable increases by 1, controlling for (= keeping constant) all the other predictor variables
 - Note that the intercept is always 1, so cannot in- or decrease

37

Standardized coefficients

38

- Parameter estimates (path coefficients) can be standardized and unstandardized
 - □ Unstandardized: Interpret like regression coefficients
 - Expected increase in Y if X increases by 1
 - □ Standardized: Interpret like correlation coefficients
 - Expected increase in SDs of Y if X increases by 1 SD
 - 0: no linear association; -1: perfect negative association; 1: perfect positive association
 - squared standardized coefficient = prop. of variance in Y explained by X (vice versa)

Lavaan model syntax

Syntax	Command	Example	
~	Regress onto	Regress B onto A: B ~ A	
~~	(Co)variance	Variance of A: A ~~ A	
		Covariance of A and B: A ~~ B	
~1	Constant/mean/intercept	Regress B onto A, and and include the	
		intercept in the model: $B \sim 1 + A$ or	
		B ~ A	
		B ~ 1	
=~	Define reflective latent variable	Define Factor 1 by A-D:	
		F1 =~A+B+C+D	
<~	Define formative latent variable	Define Factor 1 by A-D:	
		F1 <~ 1*A+B+C+D	
:=	Define non-model parameter	Define parameter u2 to be twice the square of u:	
		u2 := 2*(u^2)	
*	Label parameters	Label the regression of Z onto X as b:	
	(the label has to be pre-multiplied)	Z ~b*X	
T.	Define the number of thresholds	Variable u has three thresholds:	
	(for categorical endogenous variables)	u t1 + t2 + t3	

39

Lavaan syntax exercise

- How do we write the model below in lavaan syntax?
- 2) How can we label and refer to the indirect effect from A on D via C in lavaan syntax?

3) What do the beta and psi matrices for this model

look like?

Note that Beaujean often labels paths in lavaan syntax, but that is not required - I never do it, unless there are indirect effects that I want to explicitly define in the model. It does not make a difference for the estimated parameters and model fit.

Homework

41

- □ Exercises 2.2 and 2.3 (see PDF on Brightspace)
- See Example-2.4.1.pdf on Brightspace for instructions on extracting beta and psi matrices