DEPARTMENT OF MATHEMATICS, IIT ROORKEE

MAB-103: Numerical Methods

Assignment-5

Finite Differences and Interpolation

Session: 2025-26

1. Prove the following operator relations:

(a) E=1+
$$\Delta$$
=(1 - ∇)⁻¹, (b) $\mu^2 = 1 + (\frac{\delta^2}{4})$, (c) $\delta y_{n+\frac{1}{2}} + y_{n-\frac{1}{2}} = 2\mu \delta y_n$,

(d)
$$\delta^2(1+\Delta) = \Delta^2$$
, (e) $\nabla \Delta = \Delta - \nabla = \delta^2$, (f) $\Delta = \mu \delta + \left(\frac{\delta^2}{2}\right)$,

(g)
$$\mu \delta = \sinh(hD)$$
, (h) $e^{-hD} = 1 - \nabla$, (i) $\Delta = e^{hD} - 1$,

2. For the quadratic polynomial $f(x) = ax^2 + bx + c$, compute $\Delta^r f(x)$, r = 1, 2, 3, ...

3. For the polynomial $P_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$. Show that $\Delta^n P_n(x) = a_0 n! h^n$. Verify the result by preparing the finite difference table of $P_3(x) = 2x^3 + 3x - 1$. By tabulating it for x = -2(1)3. Extend the table using finite difference to compute $P_3(-3)$ and $P_3(4)$.

4. Determine the lowest degree polynomial which pass through the points:

X:	0	1	2	3	4	5
Y:	3	1	-1	3	19	53

Hence, compute y(1.2).

5. Find the missing term in the following table:

X:	2	3	4	5	6
Y:	45.0	49.2	54.1	?	67.4

6. Find the missing values in the following table:

x:	45	50	55	60	65
f(x):	3.0	?	2.0	?	-2.4

7. Find the value of y for $x=23^{\circ}$ and $x=75^{\circ}$, from the table by using Newton's forward and backward formulae:

x	10°	20°	30°	40°	50°	60°	70°	80°
cos	c: 0.984	8 0.9397	0.8660	0.7660	0.6428	0.5000	0.3420	0.1737

8. From the given table, find the values of y, for x=0.05 and x=0.37, by using suitable Newton's formulae:

x:	0.00	0.10	0.20	0.30	0.40
y:	1.0000	1.2214	1.4918	1.8221	2.2255

9. Use Stirling's formula to evaluate f(1.315) from the following table:

x(deg):	1.0	1.1	1.2	1.3	1.4	1.5	1.6
cos x:	1.54308	1.66852	1.81066	1.97091	2.15090	2.35241	2.57746

10. Use Bessel's formula to evaluate $f(15^{\circ})$ from the following table:

x:	10°	12°	14°	16°	18°	20°
$\cos x$:	0.176327	0.212556	0.249328	0.286745	0.324920	0.363970

11. Find by Lagrange's formula, the interpolation polynomial, which corresponds to the following table:

x:	-1	0	2	5
f(x):	9	5	3	15

Hence, compute f(1).

12. Compute f(11.7) by Lagrange's formula from the following table:

x:	11.5	11.6	11.8	11.9	12.1	12.4
f(x):	0.26969	0.33839	0.39544	0.40022	0.38332	0.32257

13. Let $f \in C^{n+1}[a, b]$, and let the interpolation nodes x_0, x_1, \ldots, x_n be distinct points in [a, b]. The interpolation error for the degree-n Lagrange polynomial $P_n(x)$ is known to satisfy

$$E_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i),$$

for some $\xi_x \in (a, b)$, provided $x \neq x_i$.

Answers:

- (5) 60.05
- (6) 2.925, 0.225
- (8) 1.1052, 2.0959
- (9) 1.99661
- (10) 0.267949
- (11) $x^2 3x + 5$, f(1) = 3