РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 5

дисциплина: Администрирование локальных сетей

Студент: Каримов Зуфар

Группа: НПИ-01-18

Оглавление

1. Цель работы	3
2. Постановка задачи	4
3. Порядок выполнения работы	5
4. Выводы	30
5. Контрольные вопросы	31

1. Цель работы

Получить основные навыки по настройке VLAN на коммутаторах сети.

2. Постановка задачи

- 1. На коммутаторах сети настроить Trunk-порты на соответствующих интерфейсах (см. табл. 3.2 из раздела 3.3), связывающих коммутаторы между собой.
- 2. Коммутатор msk-donskaya-sw-1 настроить как VTP-сервер и прописать на нём номера и названия VLAN согласно табл. 3.1 из раздела 3.3.
- 3. Коммутаторы msk-donskaya-sw-2 msk-donskaya-sw-4, mskpavlovskaya-sw-1 настроить как VTP-клиенты, на интерфейсах указать принадлежность к соответствующему VLAN (см. табл. 3.3 из раздела 3.3).
- 4. На серверах прописать IP-адреса, как указано в табл. 3.2 из раздела 3.3.
- 5. На оконечных устройствах указать соответствующий адрес шлюза и прописать статические IP-адреса из диапазона соответствующей сети, следуя регламенту выделения ір-адресов (см. табл. 3.4 из раздела 3.3).
- 6. Проверить доступность устройств, принадлежащих одному VLAN, и недоступность устройств, принадлежащих разным VLAN.
- 7. При выполнении работы необходимо учитывать соглашение об именовании (см. раздел 2.5).

3. Последовательность выполнения работы

- 1. Используя приведённую ниже последовательность команд из примера по конфигурации Trunk-порта на интерфейсе g0/1 коммутатора mskdonskaya-sw-1, настройте Trunk-порты на соответствующих интерфейсах всех коммутаторов.
- 2. Используя приведённую ниже последовательность команд по конфигурации VTP, настройте коммутатор msk-donskaya-sw-1 как VTP-сервер и пропишите на нём номера и названия VLAN (см. табл. 3.1 из раздела 3.3).
- 3. Используя приведённую ниже последовательность команд по конфигурации диапазонов портов, настройте коммутаторы msk-donskaya-sw-2 msk-donskaya-sw-4, msk-pavlovskaya-sw-1 как VTP-клиенты и на интерфейсах укажите принадлежность к VLAN (см. табл. 3.3 из раздела 3.3).
- 4. После указания статических IP-адресов на оконечных устройствах проверьте с помощью команды ping доступность устройств, принадлежащих одному VLAN, и недоступность устройств, принадлежащих разным VLAN.
- 5. Используя режим симуляции в Packet Tracer, изучите процесс передвижения пакета ICMP по сети. Изучите содержимое передаваемого пакета и заголовки задействованных протоколов.


```
msk-konkova-zikarimov-swl(config) #interface f0/1
msk-konkova-zikarimov-swl(config-if) #swit
msk-konkova-zikarimov-swl(config-if) #switchport mode tru
msk-konkova-zikarimov-swl(config-if) #switchport mode
trunk

msk-konkova-zikarimov-swl(config-if) #
%LINEPROTO-5-UPDOWN: Line protocol on Interface
FastEthernet0/1, changed state to down

%LINEPROTO-5-UPDOWN: Line protocol on Interface
FastEthernet0/1, changed state to up

msk-konkova-zikarimov-swl(config-if) #exit
```


Настроил Trunk-порты на соответствующих интерфейсах всех коммутаторов. А также посмотрел их с помощью команды sh running-config.

msk-konkova-zikarimov-sw2#conf t Enter configuration commands, one per line. End with CNTL/Z. msk-konkova-zikarimov-sw2(config)#vtp mode client Setting device to VTP CLIENT mode. msk-konkova-zikarimov-sw2(config)#vtp password cisco Setting device VLAN database password to cisco msk-konkova-zikarimov-sw2(config)# %LINK-5-CHANGED: Interface Vlan2, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan2, changed state to up msk-konkova-zikarimov-sw2(config)#exit msk-konkova-zikarimov-sw2# %SYS-5-CONFIG I: Configured from console by console Building configuration... [OK] msk-konkova-zikarimov-sw2# Ctrl+F6 to exit CLI focus Copy Paste

msk-konkova-zikarimov-sw3#conf t Enter configuration commands, one per line. End with CNTL/Z. msk-konkova-zikarimov-sw3(config)#vtp mode client Setting device to VTP CLIENT mode. msk-konkova-zikarimov-sw3(config)#vtp password cisco Setting device VLAN database password to cisco msk-konkova-zikarimov-sw3(config)# %LINK-5-CHANGED: Interface Vlan2, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan2, changed state to up msk-konkova-zikarimov-sw3(config)#exit msk-konkova-zikarimov-sw3# %SYS-5-CONFIG I: Configured from console by console Building configuration... [OK] msk-konkova-zikarimov-sw3#sh vla Ctrl+F6 to exit CLI focus Copy Paste


```
msk-konkova-zikarimov-sw4#conf t
Enter configuration commands, one per line. End with
CNTL/Z.
msk-konkova-zikarimov-sw4(config) #vtp mode client
Setting device to VTP CLIENT mode.
msk-konkova-zikarimov-sw4(config)#vtp password cisco
Setting device VLAN database password to cisco
msk-konkova-zikarimov-sw4(config)#
%LINK-5-CHANGED: Interface Vlan2, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan2,
changed state to up
msk-konkova-zikarimov-sw4(config)#exit
msk-konkova-zikarimov-sw4#
%SYS-5-CONFIG I: Configured from console by console
wr m
Building configuration...
[OK]
msk-konkova-zikarimov-sw4#
Ctrl+F6 to exit CLI focus
                                                 Сору
                                                        Paste
```


1003 token-ring-default active
1004 fddinet-default active
1005 trnet-default active

VLAN Type SAID MTU Parent RingNo BridgeNo Stp

BrdgMode Trans1 Trans2
--More-
Ctrl+F6 to exit CLI focus Copy Paste

Используя приведённую ниже последовательность команд по конфигурации VTP, настроил коммутатор msk-konkova-zikarimov-sw1 как VTP-сервер и прописал на нём номера и названия VLAN.

Используя приведённую ниже последовательность команд по конфигурации диапазонов портов, настроил коммутаторы msk-konkova-zikarimov-sw2 — msk-konkova-zikarimov-sw4, msk-obrucheva-sw1 как VTP-клиенты и на интерфейсах указал принадлежность к VLAN

```
msk-konkova-zikarimov-sw4(config)#interface range f0/1 - 5
msk-konkova-zikarimov-sw4(config-if-range)#sw
msk-konkova-zikarimov-sw4(config-if-range)#switchport mode ac
msk-konkova-zikarimov-sw4(config-if-range)#switchport mode access
msk-konkova-zikarimov-sw4(config-if-range)#switchpor
msk-konkova-zikarimov-sw4(config-if-range)#switchport acc
msk-konkova-zikarimov-sw4(config-if-range)#switchport access vlan 101
msk-konkova-zikarimov-sw4(config-if-range)#ex
msk-konkova-zikarimov-sw4(config)#interface range f0/6 - 10
msk-konkova-zikarimov-sw4(config-if-range)#switchport mode access
msk-konkova-zikarimov-sw4(config-if-range)#switchport access vlan 102
msk-konkova-zikarimov-sw4(config-if-range)#ex
msk-konkova-zikarimov-sw4(config)#interface range f0/11 - 15
msk-konkova-zikarimov-sw4(config-if-range)#switchport mode access
msk-konkova-zikarimov-sw4(config-if-range)#switchport access vlan 103
msk-konkova-zikarimov-sw4(config-if-range)#ex
msk-konkova-zikarimov-sw4(config)#interface range f0/16 - 24
msk-konkova-zikarimov-sw4(config-if-range) #switchport mode access
msk-konkova-zikarimov-sw4(config-if-range)#switchport access vlan 104
msk-konkova-zikarimov-sw4(config-if-range)#
Ctrl+F6 to exit CLI focus
                                                             Сору
                                                                    Paste
```



```
msk-konkova-zikarimov-sw2(config)#interface range f0/1 -
msk-konkova-zikarimov-sw2(config-if-range)#swi
msk-konkova-zikarimov-sw2(config-if-range)#switchport
mode acc
msk-konkova-zikarimov-sw2(config-if-range)#switchport
mode access
msk-konkova-zikarimov-sw2(config-if-range)#swit
msk-konkova-zikarimov-sw2(config-if-range)#switchport acc
msk-konkova-zikarimov-sw2(config-if-range)#switchport
msk-konkova-zikarimov-sw2(config-if-range)#switchport
access vlan 3
msk-konkova-zikarimov-sw2(config-if-range)#ex
msk-konkova-zikarimov-sw2(config)#int
msk-konkova-zikarimov-sw2(config)#interface f0/1
msk-konkova-zikarimov-sw2(config-if)#switchport mode
msk-konkova-zikarimov-sw2(config-if)#switchport access
msk-konkova-zikarimov-sw2(config-if)#ex
msk-konkova-zikarimov-sw2(config)#ex
Ctrl+F6 to exit CLI focus
                                                Copy
                                                        Paste
```


Также сконфигуровал диапазоны портов.


```
dk-konkova-1
 Physical Config Desktop Programming
                              Attributes
 Command Prompt
 Packet Tracer PC Command Line 1.0
 C:\>ping 10.128.3.202
 Pinging 10.128.3.202 with 32 bytes of data:
 Reply from 10.128.3.202: bytes=32 time=2ms TTL=128
 Reply from 10.128.3.202: bytes=32 time=5ms TTL=128
 Reply from 10.128.3.202: bytes=32 time<1ms TTL=128
 Reply from 10.128.3.202: bytes=32 time=11ms TTL=128
 Ping statistics for 10.128.3.202:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% lo
 Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 11ms, Average = 4ms
 C:\>
```

```
dk-konkova-1
 Physical
       Config Desktop Programming
                              Attributes
 Command Prompt
 Pinging 10.128.3.202 With 32 bytes of a
 Reply from 10.128.3.202: bytes=32 time=
 Reply from 10.128.3.202: bytes=32 time=
 Reply from 10.128.3.202: bytes=32 time<1ms TTL=128
 Reply from 10.128.3.202: bytes=32 time=11ms TTL=128
 Ping statistics for 10.128.3.202:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
     Minimum = Oms, Maximum = 11ms, Average = 4ms
 C:\>ping 10.128.4.1
 Pinging 10.128.4.1 with 32 bytes of data:
 Request timed out.
 Ping statistics for 10.128.4.1:
     Packets: Sent = 2, Received = 0, Lost = 2 (100%
 loss),
 Control-C
```

Указал статические IP-адресов на оконечных устройствах и проверил с помощью команды ping доступность устройств, принадлежащих одному VLAN, и недоступность устройств, принадлежащих разным VLAN.

Используя режим симуляции в Packet Tracer, изучил процесс передвижения пакета ICMP по сети. Изучил содержимое передаваемого пакета и заголовки задействованных протоколов.

Здесь у нас все пингуется, проверили доступность узла.

Изменили адресс.

Здесь не удалось проверить доступность узла, потому что находится не в той же самой сети, что и это устройство, а если не в этой сети, то он должен пойти на маршрутизатор, а агр таблицы маршрутизатора нету.

Request timed out.
Request timed out.

Ping statistics for 10.128.4.1:
 Packets: Sent = 3, Received = 0, Lost = 3 (100% loss),

Control-C
^C
C:\>arp -a

Internet Address Physical Address Type 00.128.3.202 00e0.a327.637d dynamic

C:\>

4. Выводы

Получил основные навыки по настройке VLAN на коммутаторах сети.

5. Контрольные вопросы

1. Какая команда используется для просмотра списка VLAN на сетевом

устройстве?

show vlan

2. Охарактеризуйте VLAN Trunking Protocol (VTP). Приведите перечень команд с пояснениями для настройки и просмотра информации о VLAN.

VLAN — протокол сети, разработанной фирмой Cisco служащий для обмена информацией о VLAN (виртуальных сетях), имеющихся на выбранном транковом порту.

Прежде всего, преимущества VLAN состоит в том, что он позволяет централизовано синхронизировать изменения в структуре VLAN сетей внутри VTP домена, что избавляет администратора сети от множества рутинной ручной работы по конфигурации каждого отдельного коммутатора.

Настройка Trunk-портов на соответствующих интерфейсах коммутаторов:

//выбор интерфейса

msk-donskaya-sw-1(config)#interface g0/1

//настройка Trunk-порта

msk-donskaya-sw-1(config-if)#switchport mode trunk

· Настройка коммутатора как VTP-сервера и прописывание на нём номера и названия VLAN:

//назначение устройству роли VTP сервера

msk-donskaya-sw-1(config)#vtp mode server

//настройка имени домена

msk-donskaya-sw-1(config)#vtp domain donskaya

//настройка доступа по паролю

msk-donskaya-sw-1(config)#vtp password cisco

```
//настройка vlan2 сети
msk-donskaya-sw-1(config-vlan)#vlan 2
//настройка имени vlan2 сети
msk-donskaya-sw-1(config-vlan)#name management
// настройка vlan3 сети
msk-donskaya-sw-1(config-vlan)#vlan 3
// настройка имени vlan3 сети
msk-donskaya-sw-1(config-vlan)#name server
Настроить коммутатор как VTP-клиенты и на интерфейсах принадлежность к
VLAN:
// назначение устройству роли VTP-клиента
msk-donskaya-sw-4(config)#vtp mode client
//настройка имени домена
msk-donskaya-sw-1(config)#vtp domain donskaya
//настройка доступа по паролю
msk-donskaya-sw-1(config)#vtp password cisco
// выбор интерфейсов
msk-donskaya-sw-4(config)#interface range f0/1 - 5
//конфигурирование режима порта
msk-donskaya-sw-4(config-if-range)#switchport mode access
//настройка принадлежности к vlan 101
msk-donskaya-sw-4(config-if-range)#switchport access vlan 101
```

3. Охарактеризуйте Internet Control Message Protocol (ICMP). Опишите формат пакета ICMP.

ICMP (протокол межсетевых управляющих сообщений) — сетевой протокол, входящий в стек протоколов TCP/IP. В основном ICMP используется для передачи сообщений об ошибках и других исключительных ситуациях, возникших при передаче данных, например, запрашиваемая услуга недоступна, или хост, или маршрутизатор не отвечают. Также на ICMP возлагаются некоторые сервисные функции.

Тип сообщения -0x08 – запрос;

Koд - 0x00 - echo reply (echo-ответ, пинг);

CHECKSUM - контрольная сумма (2 байта) — вычисляется для всего ICMP-

сообщения;

Идентификатор (ID:0x0002)

Порядковый номер (SEQ NUMBER:1)

4. Охарактеризуйте Address Resolution Protocol (ARP). Опишите формат пакета ARP.

ARP (протокол определения адреса) — протокол в компьютерных сетях, предназначенный для определения MAC-адреса по IP-адресу другого компьютера.

Формат пакета ARP:

Ниже проиллюстрирована структура пакета, используемого в запросах и ответах ARP. В сетях Ethernet в этих пакетах используется EtherType 0x0806, и запросы рассылаются на широковещательный MAC-адрес — FF:FF:FF:FF: Отметим, что в структуре пакета, показанной ниже, в качестве SHA, SPA, THA и TPA условно используются 32-битные слова — реальная длина определяется физическим устройством и протоколом.

Hardware type (HTYPE) - Каждый канальный протокол передачи данных имеет свой номер, который хранится в этом поле. Например, Ethernet имеет номер 0x0001.

Protocol type (РТҮРЕ) - Код сетевого протокола. Например, для IPv4 будет записано 0x0800.

Hardware length (HLEN) - Длина физического адреса в байтах. Адреса Ethernet имеют длину 6 байт (0 \times 06).

Protocol length (PLEN) - Длина логического адреса в байтах. IPv4 адреса имеют длину 4 байта (0x04).

Operation - Код операции отправителя: 0x0001 в случае запроса и 0x0002 в случае ответа.

Sender hardware address (SHA) - Физический адрес отправителя.

Sender protocol address (SPA) - Логический адрес отправителя.

Target hardware address (THA) - Физический адрес получателя. Поле пусто при запросе.

Target protocol address (TPA) - Логический адрес получателя.

5. Что такое МАС-адрес? Какова его структура?

MAC-адрес (управление доступом к среде, физический адрес) — уникальный идентификатор, присваиваемый каждой единице активного оборудования или некоторым их интерфейсам в компьютерных сетях Ethernet.

Стандарты IEEE определяют 48-разрядный (6 октетов) MAC-адрес, который разделён на четыре части.

Первые 3 октета (в порядке их передачи по сети; старшие 3 октета, если рассматривать их в традиционной бит-реверсной шестнадцатеричной записи МАС-адресов) содержат 24-битный уникальный идентификатор организации (OUI), или код MFG (Manufacturing, производителя), который производитель получает в IEEE. При этом, в самом первом октете используются только 6 старших разрядов, а два младших имеют специальное назначение:

Нулевой бит — указывает: для одиночного (0) или группового (1) адресата предназначен кадр;

Первый бит — указывает, является ли MAC-адрес глобально (0) или локально (1) администрируемым.

Следующие три октета — выбираются изготовителем для каждого экземпляра устройства (за исключением сетей системной сетевой архитектуры SNA).

Таким образом, глобально администрируемый MAC-адрес устройства глобально уникален и обычно «зашит» в аппаратуру.

Администратор сети имеет возможность вместо использования «зашитого» назначить устройству МАС-адрес по своему усмотрению. Такой локально администрируемый МАС-адрес выбирается произвольно и может не содержать информации об ОИІ. Признаком локально администрируемого адреса является соответствующий бит первого октета адреса.