Q-Learning & DQN

Deep-Learning seminar

AILAB 김건 권명하

CONTENTS

O 1 Q-learning

- Q-learning?
- Q-function
- Q-Table

02
DQN

- Q-Network
- DQN (NIPS 2013)
- DQN (Nature 2015)

03

A3C

- A3C란?
- Policy gradient
- Actor-Critic
- A3C (ICML 2016)

04 CODE 01

Q-Learning

01. **Q-Learning**

Q-learning?

강화 학습이란? 어떤 환경(Environment) 안에서 정의된 에이전트(Actor)가 현재의 상태(State)를 인식하여, 선택 가능한 행동들(Actions) 중 보상(Reward)을 최대화하는 행동 혹은 행동 순서를 선택(Policy)하는 방법이다. (Wikipedia)

강화 학습 기법 중 하나인 Q-러닝은 Q 함수(state-action value function)을 업데이트 해주면서 주어진 환경에서 가장 나은 action을 구하는 알고리즘

observation

강화학습 개념 그림 http://www.cs.utexas.edu/~eladlieb/RLRG.html ====

Q-function(state-action value function)

Q (state, action) = r

state와 action을 넣어주면 reward 값을 주는 함수

Policy using Q-function

Policy(정책): 주어진 상태에서 어떤 행동을 수행할지 나타내는 규칙

$$Q$$
 (state, action) = r

$$Q(s1, LEFT) = 0$$

$$Q (s1, RIGHT) = 0.5$$

$$Q(s1, UP) = 0$$

$$Q (s1, DOWN) = 0.3$$

Policy using Q-function

Policy(정책) : 주어진 상태에서 어떤 행동을 수행할지 나타내는 규칙 ->π로 표현 Q함수를 학습하고 나면 각 상태에서 최고의 Q를 주는 행동을 수행함으로써 최적의 정책을 유도할 수 있다.

Q (state, action) = r

Q(s1, LEFT) = 0

Q (s1, RIGHT) = 0.5

Q(s1, UP) = 0

Q (s1, DOWN) = 0.3

보상이 최대인 행동을 선택!

Policy using Q-function

Q (state, action) = r

Optimal Policy : π^*

$$\mathbf{Max} \ \mathbf{Q} = \max_{\mathbf{a}} \mathbf{Q}(\mathbf{s}, \mathbf{a}')$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$$

01. **Q-Learning**

Q-function

Learning Q-function

Q-Learning의 기본 아이디어

- s'이라는 state가 존재한다.
- s라는 state에서 a라는 action을 하면 s'으로 이동하고 보상 r을 받는다.
- 그리고 s'이라는 state에서 할 수 있는 각 행동들에 대해 어떤 보상을 받을지 알고 있을 때

Optimal policy를 찾기 위한 Q-function은 다음과 같이 표현 할 수 있다.

$$\widehat{Q}(s,a) \leftarrow r + \max_{a} \widehat{Q}(s',a')$$

 $\widehat{m{Q}}$: 중간중간 학습할 때는 최종적인 Q가 아니기에 ^을 씌워서 표현

01. Q-Learning Q-Table

Q-Learning with table

Frozen_Lake Game Q-Learning의 대표 예제

초록색: Start Point

파란색: Hole

노란색: Goal Point

Start Point에서 출발하여 Goal Point에 도달하는 것이 게임의 목표

Hole에 빠지면 게임이 끝난다.

각 지점에서는 상하좌우로 움직일 수 있다.

Goal Point에 도달하면 Reward를 받음

Q-Learning을 통하여 최적의 경로(정책)을 학습한다.

01. Q-Learning

Q-Table

Q-Learning with table

$$\widehat{Q}(s,a) \leftarrow r + \max_{a'} \widehat{Q}(s',a')$$

Table을 초기화 한다.

랜덤하게 학습을 진행 하던 중 S_{14} 에 도착 후 right action을 하면 Q-table이 다음과 같이 업데이트된다.

$$Q(S_{14}, a_{right}) = r = 1$$

01. Q-Learning

Q-Table

Q-Learning with table

$$\widehat{Q}(s,a) \leftarrow r + \max_{a'} \widehat{Q}(s',a')$$

 $Q(S_{13}, a_{right}) = r + max(Q(S_{14}, a)) = 0 + max(0,0,1,0) = 1$

 S_{13} 에서 right action 을 하면 Q-table이 다음과 같이 업데이트된다.

일련의 과정을 거쳐서 Q-table이 위와 같이 학습될 수 있다.

01. Q-Learning Q-Table

Exploit VS Exploration

하지만 여기서 문제점이 발생한다. 한번 경로를 찾으면 다른 경로를 찾지 못한다.

여기서 한가지 개념을 더 Q-learning에 추가한다.

Exploit : 이전의 경로를 이용할 것이냐? Exploration : 안 가본 경로로 가볼 것이냐?

01. **Q-Learning**

Q-Table

Exploit VS Exploration

2가지 방법으로 위 개념을 적용함

E-greedy

e = 0.1 If rand < e: a = random else: a = argmax(Q(s,a))

Add random noise

```
a = argmax(Q(s,a) + random_values)
```

 $a = argmax([0.5 \ 0.6 \ 0.3 \ 0.1] + [0.1 \ 0.2 \ 0.7 \ 0.3]$

===

decaying 개념 학습이 진행될 수록 모험을 덜함

decaying E-greedy

```
for i in range(1000)
e = 0.1 / (i+1)
If random(1) < e:
a = random
else:
a = argmax(Q(s,a))
```

decaying random noise

```
for i in range(1000)

a = argmax(Q(s,a) + random_values / (i+1))
```

01. Q-Learning Q-Table

Discounted future reward

Exploit VS Exploration 개념을 추가하여 다양한 경로를 학습함 그런데 최적의 정책은 어떻게 찾을 것인가?

여기서 한가지 개념을 Q-function에 추가한다.

Discounted future reward : 100년 뒤에 50억을 받을실래요? 아니면 1년 뒤에 10억을 받으실래요?

->나중에 받는 보상일 수록 그 값어치를 적게 처리한다

이를 통해 최적 경로를 찾음.

01. **Q-Learning**

Q-Table

Discounted future reward

$$\widehat{Q}(s,a) \leftarrow r + \max_{a'} \widehat{Q}(s',a')$$

위 식에서의 Future reward는 다음과 같다.

$$R_t = r_t + r_{t+1} + r_{t+2} + \dots + r_n$$

다음과 같이 Q-function에 0~1사이의 임의의 값 감마를 추가하여 미래의 보상에 대한 가중치를 줄일 수 있다.

$$\widehat{Q}(s,a) \leftarrow r + \gamma \max_{\alpha} \widehat{Q}(s',\alpha')$$

위 식의 future reward는 다음과 같다.

$$R_{t} = r_{t} + \gamma^{1} r_{t+1} + \gamma^{2} r_{t+2} + \dots + \gamma^{n-t} r_{n}$$

= $r_{t} + \gamma R_{t+1}$

최적의 정책은 discounted future reward를 최대화 시키는 것이다.

01. Q-Learning Q-Table

Discounted future reward

Discounted future reward를 적용하여 돌아가는 길이 아니라 최소 경로를 찾아낸다.

Q function:

지금 상태에서 이 행동을 선택했을 때 미래에 받을 것이라 기대하는 보상의 합

02

DQN

02. DQN
Q-Network

Q-Network training

기본아이디어

좀 더 복잡한 환경을 표현하기 위해 Neural Network에 Q-Learning을 적용함

- Input: state, (action)
- Output: Q-function = reward

각 입력들에 대하여 제일 좋은 Q-function을 찾자

Q-Network 2가지 모델링

Q-Network

Q-Network training

MSE loss function $(\widehat{Q}(s,a|w)-y)^2$ 를 gradient descent 로 최소화 시킴 $y = \text{optimal } Q = r + \gamma \max_{a'} Q(s',a') \rightarrow r + \gamma \max_{a'} \widehat{Q}(s',a'|w)$

- (정답 예측)의 오차를 이용해서 인공신경망에 역전파
- → 인공신경망의 업데이트

Q-Network

Q-Network training

Q-Table과 다르게 Q-Network는 수렴하지 않음.

- 1) Correlations between samples
- 2) Non-stationary target

Q-Network

Correlations between samples

게임을 순서대로 진행하는 것을 학습하는데 이 때 input 값들이 너무 비슷해서 학습이 제대로 이루어 지지 않는다.

Q-Network

Non-stationary target

$$y = \text{optimal } Q = r + \gamma \max_{a'} Q(s', a') \rightarrow r + \gamma \max_{a'} \widehat{Q}(s', a'|w)$$

$$MSE = (\widehat{Q}(s, a|w) - (r + \gamma \max_{a} \widehat{Q}(s', a'|w)))^{2}$$

정답이 학습 과정에서 계속 바뀌기에 학습이 제대로 이루어지지 않는다.

$$Q(s, a, \mathbf{w}) \approx Q^*(s, a)$$

DQN (NIPS 2013)

DQN

게임 화면을 상태 입력으로 받아서 학습(CNN)

사람보다 게임 플레이를 더 잘하는 에이전트를 만듬

샘플들 간의 강한 상관 관계를 해결

-> 강화 학습을 다시 부흥시킴

DQN (NIPS 2013)

Breakout

행동 : 제자리, 좌, 우

보상 : 벽돌을 깰 때 마다 점수를 받으며

위층의 벽돌을 깰수록 더 큰 점수를 받음

게임 세팅: 1에피소드에서 에이전트는 5개의 목숨을 가짐

목표: 1 에피소드 동안 최대의 점수 얻기

모든 상태의 큐함수를 다 저장하고 업데이트 할 수 없음

DQN (NIPS 2013)

CNN + Q-Learning

현재의 이미지 하나만으로는 게임 화면이 어떤 상황인지 알 수 없기에 4개의 연속된 이미지를 입력으로 받음

DQN을 통하여 각 행동들에 대한 Q함수 값이 출력으로 나옴

상태(히스토리) → 큐-신경망 → 각 행동에 대한 큐함수 값

DQN (NIPS 2013)

CNN + Q-Learning

https://www.nature.com/articles/nature14236

Q함수를 추정하는 DQN의 개념도

DQN (NIPS 2013)

Experience Replay

입력 간의 상관 관계가 너무 크기에 학습이 제대로 되지 않음 (Correlations between samples)

02. **DQN**DQN (NIPS 2013)

Experience Replay

Input들을 미리 100만 사이즈의 버퍼에 저장한 뒤 랜덤 추출하여 학습!
-> Correlations between samples 해결

Frame-skipping 기법을 함께 사용하여 학습을 향상

DQN (Nature 2015)

target Q-network

Solution 3: separate target network

$$\min_{\theta} \sum_{t=0}^{T} [\hat{Q}(s_t, a_t | \theta) - (r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a(\theta)))]^2$$

$$\min_{\theta} \sum_{t=0}^{T} [\hat{Q}(s_t, a_t | \theta) - (r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \theta))]^2$$

Target network를 분리한다.

기존에 같이 학습되었던 target을 분리하여 타겟을 고정시키고, 일정 주기로 q-network를 target-network로 복사한다.

-> non-stationary targets 문제 해결 ->Nature! 03

A3C

03. A3C A3C란?

A3C = Asynchronous Actor-Critic Agents

DQN

- 1. 많은 메모리의 사용
- 2. 느린 학습 속도
- 3. 불안정한 학습 과정 (가치 함수에 대한 greedy policy)

A3C

- 1. 샘플 사이의 상관 관계를 비동기 업데이트로 해결
- 2. 리플레이 메모리를 사용하지 않음
- 3. Policy gradient 알고리즘 사용가능(Actor-Critic) (DQN Value gradient)
- 4. 상대적으로 빠른 학습 속도 (여러 에이전트가 환경과 상호작용)

03. A3C A3C란?

기본 아이디어

여러 개의 에이전트를 만들어서 각각 gradient를 계산한다. 비동기적으로 global network를 업데이트 한다.

04

CODE

04. CODE

OpenAi gym 강화 학습 환경이 구축되어 있는 오픈소스 라이브러리

OpenAi gym을 이용한 다양한 예제 Reference – code 참고

05. REFERENCE

https://www.wikipedia.org/ 위키피디아

https://www.inflearn.com/course/reinforcement-learning/ 모두를 위한 딥러닝 -RL편 http://passi0n.tistory.com/86?category=748105 Q-Table

https://www.youtube.com/watch?v=V7_cNTfm2i8&t=0s&index=6&list=PLlMkM4tgfjnJhhd4wn5aj8fVTYJwlpWkSDQN 2013 논문 리뷰

https://www.nature.com/articles/nature14236 DQN Nature 2015

https://www.slideshare.net/WoongwonLee/ss-78783597 DQN 참조

http://www.modulabs.co.kr/RL_library/3305

https://jay.tech.blog/2017/01/10/deep-q-network-dqn/

https://arxiv.org/abs/1602.01783 A3C ICML 2016 https://www.slideshare.net/WoongwonLee/rlcode-a3c A3C 이해

https://github.com/hunkim/ReinforcementZeroToAll CODE https://gym.openai.com/

Thank you