

Artificial Intelligence and Machine Learning Case Studies

Aaron Turner, IANS Faculty

Agenda

- Why Artificial Intelligence?
- Machine Learning and Artificial Intelligence
- Analytics and Machine Learning in Security
- Security Analytics Tools
- Recommendations

Why Artificial Intelligence?

Audience Questions

- How do you define Machine Learning (ML) / Artificial Intelligence (AI)?
- Who has a ML project / budget?
- What are you doing with ML / AI?

The Promise of Artificial Intelligence (AI)

- Analyze massive amounts of data
- Address the skills gap giving your workforce better tools
- Constantly adapt to a changing threat landscape and attack patterns
- Learn from user feedback and actions (remediations, triage, etc.)
- Make analysts more effective leading to better and faster decisions
 - Automation where possible
 - Detection systems with less false positives
 - Tools that provide more context, better visualizations, etc.

What Are Companies Doing With AI?

FIGURE 1 Firms Plan To Use Al To Mitigate Security Risks

Top five use cases/application scenarios firms are planning to use or are currently using artificial intelligence technologies for

Source: Forrester Data Global Business Technographics® Data And Analytics Survey, 2017

Machine Learning and Artificial Intelligence

"Everyone calls their stuff 'machine learning' or even better 'artificial intelligence' - It's not cool to use statistics!"

"Companies are throwing algorithms on the wall to see what sticks - see security analytics market"

Machine Learning & Artificial Intelligence

- Machine Learning (ML)
 - · Algorithms ways to 'describe' data
 - Supervised
 - We are giving the system a lot of training data and it learns from that
 - Unsupervised
 - We give the system some kind of optimization to solve (clustering, dimensionality reduction)
- Anomaly Detection (Outlier Detection)
 - Can be done with ML but simple statistics often work much better
 - Statistical outliers are hardly ever security relevant
 - 2 decades of anomaly detection research in security!

Deep learning

- Is just another ML algorithm significantly improved results for classification problems
- Basically eliminates the feature engineering step
- Artificial Intelligence (AI)
 - "A program that doesn't simply classify or compute model parameters, but comes up with **novel knowledge** that a security analyst finds insightful."

Some Other Analytics Concepts

Predictive Analytics

- Make statements about future or unknown events using methods like machine learning, etc.
- In security some simple approaches exist that try to predict future attacks (you know how hard security is!)
 - Generally identify patterns of suspicious behavior to indicate that something might soon go wrong
- Can we look at the kill-chain and connect a threat actor across the different steps?

Natural Language Processing (NLP)

- How to process language data / speech
 - Understand words (syntax parsing)
 - Extracting meaning (semantics)
- Applications: DGA detection, analyzing threat reports, analyzing emails (SPAM, phishes), source code analysis

	SPRINKLER		
RAIN	Т	F	
F	0.4	0.6	
Т	0.01	0.99	

SPR IN KLER RAIN

A simple belief network

0.2

		GRASS WET		
SPRINKLER	RAIN	Т	F	
F	F	0.0	1.0	
F	т	0.8	0.2	
Т	F	0.9	0.1	
Т	т	0.99	0.01	

GRASS WET

Expert System

- 'If-then' rules
- Knowledge represented as facts and rules
- Inference engine applies the rules to the known facts to deduce new facts.

Belief Networks (extensions of expert systems)

- Probabilistic graph model describing knowledge
- Used to model export knowledge (e.g., tier-1 analyst automation)

Deep Learning - Details

- Deep learning performs much better than traditional neural networks (see graph)
- Deep learning has more complex networks (many hidden layers, fully connected neurons)
 - Possible due to progress in hardware x_1 technology (GPUs, FPGAs, etc.)
- Automatic feature engineering (the input to machine learning algorithms)
 - Overall works well with large amounts of training data

Statistics, Rules, and Models

- Threshold-based systems
 - Simple metric thresholds, moving averages, etc.
 - Doesn't deal with outliers
 - Doesn't adapt well to a changing baseline
 - Simple to implement your SIEM can do this
- Rules
 - A way to model expert input or scenarios (if-then-else, correlations, ...)
 - Cannot always express complexity of scenarios
 - Do not adapt well to changing scenarios and inputs
 - Supported by any SIEM product
- Models
 - What a machine learning algorithm 'learns'
 - Automatically learns 'thresholds' or parameters and updates them over time
 - For example authentication behavior what time of the day are users active?
- Models from ground truth
 - Use ground truth (e.g., an incident) and learn what the factors are that make up the incident
 - For example, for a successful attack, learn what IDS alerts, what logs (activity) lead to the attack

Rules versus Models - An Example

- User profiling detect suspicious or malicious activity from users
- With rules:
 - "Alert if 'sales' user active before 9am or after 5pm'
 - Problem: way too many false positives!
- Build a model for each user:
 - Learn what the normal time is for a user.
 - Problem: Taking into account exceptions like travel, vacation, insomnia, etc.
 - How do we get 'clean' training data for users?
- Build a model for a group of users (e.g., sales):
 - Learn what the normal times of activity are for users. Helps model some 'global' phenomena such as holidays.
 - Problems: Not all user groups are homogeneous (e.g., sysadmins)
- Improvement:
 - Add domain knowledge, such as vacation (from HR system), etc.
- Can we do better?
 - Ensemble models use multiple models at the same time
 - Each component contributes to an 'anomaly' score
 - Look at individual users, their peers, detected cohorts, etc.

Visualization For Model Creation

ML & Al Challenges

- Explainability
 - What did the system just learn?
 - Especially with neural networks and deep learning
- Verifiability
 - Did the system just learn the correct thing?
 - How do you assess false positives and negatives of your anomaly detection tool?
- Data and Context
 - Need 'clean' data
 - Need contextual information for the data, such as machine roles, user groups, input from HR systems, etc.
 - Even deep learning needs well engineered features! (e.g., malware detection)
- "Technical" challenges
 - Parameter choices, such as distance functions
 - Algorithmic approach (drop outs, etc)

Some Important Principles

- False negatives are very expensive
 - Could cause arbitrary damage to our environment by not detecting attacks
- False positives are expensive too
 - Analyst time is valuable
- Alerts should make sense to a human
 - False positives + inexplicable results → signal fatigue

The ROC Curve

 low detection, low false positives

better

Analytics + ML in Cyber Security

Frustrations That Al Analytics Should Solve?

- Better understanding of all security data (e.g. assist our hunters)
- Find security problems (anomaly detection)
- Prioritization of data (e.g. helping with alert triage)
- Reduce false positive (address alert fatigue)
- Improve analyst efficiency
- Increase retention for security analysts (automate boring tasks)
- Retain expert knowledge (document / capture tribal knowledge)

What Industry Analysts Say (Forrester)

[Vendor] conversations that begin with "We have the best data science" are not helpful.

- Data science in security is as old as security itself
- ... not a panacea for the prevention of all cyberattacks ...
- Useful for recognizing
 - Patterns in large quantities of data
 - Informing decision making as a supplement to rules-based or signature-based detection
- What you should do
 - Ignore vendor claims about data science, and concentrate on use cases.
 - Ask for referenceable customers in your industry
 - Challenge them to prove the use-cases, preferably on your own data

ML In Security

ML for Malware Detection - Some History

- Starting with signature based approaches
 - Polymorphic malware becomes common
- AV responds by building decision trees
 - Malware authors respond by encrypting
- AV responds with software emulators
- By 2005 AV companies with just 'check sums' (signatures) were dead
- By 2015 decision trees are beginning to fail

Machine Learning in Malware Detection (~ 2012)

- Detection rate was pretty good
- But legitimate software gets identified as malware too often
 - False Positives

Deep Learning For Malware Detection

- Self learning
 - No feature definition necessary
- Intrinsically scales
 - Hundreds of millions of malware samples used in training
 - Adding over 400K per day
 - Detects and stops threats within 20-100 milliseconds
 - Models are about 10-20 MB (Traditional ML models can get huge 500 MB-10 GB)
- Unparalleled accuracy
 - Proven ability to detect never before seen malware without signatures

The ROC Curve

Other ML Uses in Security

- MLSec
 - Looking at firewall "block" data across a large number of networks to find likely attackers early
- DNS Analytics
 - Co-occurance, domain name classification
 - DNS lookup analysis (frequency)
- Threat Intelligence Feed Analysis
 - IOC prioritization, de-duplication, campaign association, removing false positives
- URL Analytics
 - Identify malicious URLs
 - Turns out, you have to analyze the content of the Web site behind the URL as well
- Security Analytics Solutions (see later)
 - Risk scoring

www.mlsecproject.org

Don't Use Machine Learning and Deep Learning If ...

- Not enough or no quality labeled data
 - Don't use for network traffic analysis you don't have labeled data really, you don't!
- No well trained domain experts and data scientists to oversee the implementation
 - Not enough domain expertise to engineer good features
- Need to understand what ML actually learned (explainability)

Also remember:

- Data cleanliness issues (timestamps, normalization across fields, etc.)
- Operational challenges (scalability and adaptability) of implementing machine learning models in practice

What Do Security Analytics Tools Do?

Security Analytics - A Set of Products

Attackers are using 'allowed' channels and mask in benign looking activity that traditional security tools cannot detect.

User and Entity Behavior Analytics (UEBA)

- Identify anomalies based on user and/or machine behavior.
- Most vendors don't use real machine learning, don't fall for snake oil – ask for real-world proof
- Two groups of products: based on logs or based on network traffic

Automation & Orchestration

Sit on top of SIEM (and some other data) to close the loop of a) prioritizing important attacks and b) automating response.

Hunting

 Enable senior security analysts to explore data within a SIEM or big data store to find environment specific attacks and breaches.

All these products are really features of a larger platform:

- They should all be under one single product
- If they are sold as individual products, make sure they interoperate well. Where is the data stored? etc.

User and Entity Behavior Analytics (UEBA)

- Risk scoring of entities (devices, users)
 - List of top suspicious entities
- Anomaly detection for entities
- Mutli-vector approach for risk scoring
 - Never seen before
 - Cohort behavior
 - Group behavior
 - Hard-coded known bad (countries, etc.)
 - •
- Bayesian Belief Networks (BBN)

Not all anomalies are security problems or attacks

- Former employee requests an authorization token
 - Account revocation bug? Attack?
 - Nope: username typo
- Actor fails authentication 20K times.
 - Brute-force attack?
 - Nope: actor changed password, forgot to update script
- Email address in RPC to location service
 - Privacy violation?
 - Nope: address is "test@123.com"

Recommendations

Practical Considerations for Analytics / ML / Al Projects

- What were the use-cases you wanted to cover?
 - Lateral Movement detection, Exfiltration detection, C2 detection, DAG detection, etc.
- Do you have the right data?
 - Logs
 - Access to taps / SPAN ports to intercept network traffic
- Do you have context for data and do tools and processes incorporate it?
 - Do yo have a **dynamic asset inventory** that can be integrated? Solve this problem first!
 - What other contextual data feeds do you have and would be useful?
- What is the process to deal with alerts?
 - Manual Automation / orchestration capability?
- How do you capture expert knowledge?
 - Manual entry of rules? How do you verify?
 - Collaboration with others?
- Figure out how to share your models
 - STIX technically supports that, but nobody is doing it

Practical Considerations Buying a Product

- Does the solution really detect behavioral anomalies?
- Does the solution provide policy enforcement features?
- Does the solution integrate with the rest of your infrastructure (e.g. SIEM)?
- How does the solution affect employee experience? Does the product learn from user input / feedback
- Does the product deal with **containers**, **VMs**, and the **cloud**?
- How long does it take to begin recognizing suspicious patterns? How long does it take to establish a baseline?
- How does the solution adapt to completely novel attacks?
- Ask for results that have been seen in actual customer environments
 - What data does the solution work on best and have you used the tool in companies of my industry?
 - Do you have metrics on the improvement in capabilities (e.g., detection, analysis, prioritization, investigations, response)?
- Do a PoC on your network to learn
 - How hard it is to **install** the product and how much time does it take to **tune**
 - How much time it will take on ongoing maintenance
 - What does it actually detect in your environment?
 - Are all the detections trivial? Or could they be modeled in your SIEM?
- For log-based SA tools, authentication logs are most useful; then proxy logs.
 - Others are harder to collect and not that useful

Analytics - Do It Yourself

Do you have enough expertise to tackle some of the use-cases in house?

People

- Data scientists to build models
- · Data scientists that understand security
- Security engineers that can help build and validate the models and provide security expertise

Infrastructure

- Necessary data is centralized and easily accessible
- Backend is in place that allows for running rules, models, etc. on all the data necessary
- Make sure you can run these things on Splunk / your SIEM!

Algorithms

- Simple works better (for example monitoring counts over time)
- Don't start with choosing an algorithm EVER
- Always identify the use-cases, the data, and then figure out what algorithm helps most

Finally

Action Plan

- Define your use-cases first understand where you want and should use ML
 - Define a holistic approach (NIST framework? visibility, ...)
 - Make sure you can retain your export's knowledge in case they should ever leave
 - Collaborate with your peers on use-cases and solutions?!
 - How and where does ML support your other security efforts (e.g., continuous risk attestation and enforcement)
- Make sure you have the right data and context
 - Beware the over-collection of data capture the same data many times Asset inventory - up to date!
- Understand your environment inside out!
 - Invest in data exploration capabilities?
- Buy products for you most pressing problems. Make sure they solve them cost effectively!
- Don't ever have an "Al project"

Resources

- Cut Through the AI/ML Hype, IANS Faculty Aaron Turner and John Strand
- Artificial Security Will Revolutionize Cybersecurity But Security Leaders Must View All Vendor Claims With Skepticism by Chase Cunningham, Joseph Blankenship, and Mike Gualtieri -September 2017
- Apache SPOT machine learning routines: https://github.com/apache/incubator-spot/tree/master/spot-ml
- Many ML resources: https://github.com/wtsxDev/Machine-Learning-for-Cyber-Security
- Even more: https://github.com/RandomAdversary/Awesome-Al-Security

BlackHat Workshop

Applied Machine Learning for Identity and Access Management

ML | AI | IAM

August 4,5 & August 6,7 - Las Vegas, USA

http://secviz.org

Questions?

info@iansresearch.com