335 HW

TONY DENG

1. Rewrite

Proposition 1.6: A function $f: \mathbb{R} \to \mathbb{R}$ is $\epsilon - \delta$ continuous if and only if $f^{-1}(U)$ is open in \mathbb{R} for any open set $U \subset \mathbb{R}$.

Proof. Forward direction.

Suppose $f: \mathbb{R} \to \mathbb{R}$ is $\epsilon - \delta$ continuous, and U is an open set in \mathbb{R} .

Then we know that given $\epsilon > 0$, for any x, there exist $\delta > 0$, such that whenever $|x - a| < \delta$, we have $|f(x) - f(a)| < \epsilon$.

For any element $f(x) \in U$, we can find an open ball $B(f(x), \epsilon)$. By the continuity, we can find corresponding open ball $B(x, \delta)$ as a subset of the pre-image of $B(f(x), \epsilon)$. Since we know that $B(f(x), \epsilon) \subset U$, by continuity, $f^{-1}(B(f(x), \epsilon)) \subset f^{-1}(U)$. So $B(x, \delta) \subset f^{-1}(U)$. Therefore $f^{-1}(U)$ is open.

Backward direction.

Suppose there exist $U \subset \mathbb{R}$ an open set, we know that $f^{-1}(U)$ is an open set as well. Without lost of any generality, let U be an open ball $B(f(x), \epsilon)$. Since $f^{-1}(U)$ is open, we know that there exists some open ball $B(x, \delta) \subset f^{-1}(U)$. Since for all $|x - a| < \delta$, we have $|f(x) - f(a)| < \epsilon$, we have $\epsilon - \delta$ continuity for f.

2. This week's problems

Example 1.15: (3) $\mathcal{B}_H = \mathcal{B} \cup \{(a,b)\backslash H : a < b\}$, where $H = \{\frac{1}{n}\}_{n \in \mathbb{Z}}$, is a basis for the harmonic topology \mathcal{T}_H .

Proof. Pick an arbitrary $x \in \mathbb{R}$.

Case 1: If x = 0, there exist $\epsilon > 0$ such that $0 \in B(0, \epsilon)$. Suppose $x \in B_1$ and $x \in B_2$. Sub-case 1: $B_1, B_2 \in \mathcal{B}$, let $B_3 = (0, \min(\epsilon_1, \epsilon_2))$, where ϵ_i is the radius of the open ball B_i .

Sub-case 2: Without the loss of generality, suppose $B_1 \in \mathcal{B}$ and $B_2 = (c, d) \in \{(a, b) \setminus H : a < b\}$. If B_1 is an open ball that is a subset of B_2 , it can be our wanted B_3 and satisfies condition B2. If B_1 is not a subset of B_2 . Let $\epsilon_3 = \min(|c|, |d|)$ Since we know that there exist no element of H in (c, d), so for every element in $B(0, \epsilon_3)$, they don't exist in H. We know that ϵ_3 will be smaller than ϵ_1 since B_1 is not a subset of B_2 .

(Personally, I think this sub-case is impossible since H is oscillating around 0, so it should be impossible to find such B_2 .)

Date: September 13, 2021.

Sub-case 3: $B_1 = (a, b)$ and $B_2 = (c, d)$ for some a < b and c < d, and B_1, B_2 doesn't have any element in H.

Let $e = \max(a, c)$ and $f = \min(b, d)$. Let $B_3 = (e, f)$, we know that 0 is in B_3 and, there's no element of H in B_3 , which is a subset of the intersection of B_1 and B_2 by observation.

Case 2: If $x \notin H$ and $x \neq 0$, by the formation of \mathcal{B}_H , we can find such $a, b \in \mathbb{R}$ such that $x \in (a,b)\backslash H$. If such $x \in (a,b)\backslash H$ and in $(c,d)\backslash H$, pick new interval $(e,f) = (\max(a,c),\min(b,d))$. We know that $x \in (e,f)$ for sure and $(e,f) \subset (a,b) \cap (c,d)$.

Case 3: If $x \in H$, find open ball $B(x, \epsilon)$ with $\epsilon > 0$. we know that $x \in B(x, \epsilon)$. If such x is in $B(x, \epsilon_1)$ and $B(x, \epsilon_2)$ for $\epsilon_1, \epsilon_2 \in \mathbb{R}$ and greater than 0, we know that $x \in B(x, \min(\epsilon_1, \epsilon_2))$ and $B(x, \min(\epsilon_1, \epsilon_2)) \subset B(x, \epsilon_1) \cap B(x, \epsilon_2)$.

Example 1.18: On \mathbb{R} , compare $\mathcal{T}, \mathcal{T}_l$, and $\mathcal{T}_{l,\mathbb{Q}}$.

Claim: \mathcal{T}_l is strictly finer than \mathcal{T} , and \mathcal{T}_l is finer than $\mathcal{T}_{l,\mathbb{Q}}$.

Proof. Without the loss of generality, pick an arbitrary open set $(a, b) \in \mathbb{R}$. Let $x = \frac{a+b}{2}$, which is the in the middle of (a, b).

Construct a union of open sets in \mathcal{T}_l such that the lower limit of the open sets goes to a yet never touches it; the upper limit of the open sets can b. By T2, we know that the union of the sets in \mathcal{T}_l has to be in \mathcal{T}_l as well, so we know that (a, b) is in \mathcal{T}_l as well.

Thus, we know $\mathcal{T} \subset \mathcal{T}_l$.

Pick an arbitrary open set in \mathcal{T}_l , say, [a, b).

Proof by contradiction. Suppose [a,b) is in \mathcal{T} . Then there exist an open ball $B(a,\epsilon), \epsilon > 0$ such that it equals to [a,b). However, since it's an open ball, there exists elements that is smaller than a which is not in [a,b). Which contradicts with our assumption. Thus \mathcal{T}_l is strictly finer than \mathcal{T} .

We want to show that \mathcal{T}_l is finer than $\mathcal{T}_{l,\mathbb{Q}}$.

Proof. For every open set in $\mathcal{T}_{l,\mathbb{Q}}$, we know that it's in \mathcal{T}_l since every rational number is a real number. So for any [a,b) in $\mathcal{T}_{l,\mathbb{Q}}$, we know that it has to be in \mathcal{T}_l .

Example 1.22: There is a metric on \mathbb{R} whose associated topology is not the same as the standard topology.

Proof. Let our metric d be a function such that $d(x,y) = |x^3 - y^3|$. Since it's in the absolute value sign, we know that $d(x,y) \ge 0$.

Want to show that d(x, y) = 0 if and only if x = y.

Suppose d(x,y) = 0. So we know that $|x^3 - y^3| = 0$. Without the loss of generality, suppose $x^3 \ge y^3$. Then we have

$$x^3 - y^3 = 0$$
$$x^3 = y^3$$

Take the cube root, since cube doesn't change signs, so we don't need to change signs.

$$x = y$$

Suppose x = y. Then $d(x, y) = |x^3 - y^3| = |x^3 - x^3| = 0$.

So d(x, y) = 0 if and only if x = y.

Want to show that d(x,y) = d(y,x). Without loss of generality, suppose $x \ge y$. Then we have

$$d(x,y) = x^{3} - y^{3}$$

$$= -(y^{3} - x^{3})$$

$$= |y^{3} - x^{3}| = d(y,x)$$

Want to show that $d(x,y) + d(y,z) \ge d(x,z)$.

$$d(x,y) + d(y,z) = |x^3 - y^3| + |y^3 - z^3|$$

By the triangle inequality, we have

$$|x^3 - y^3| + |y^3 - z^3| \ge |x^3 - y^3 + y^3 - z^3| = d(x, z)$$

Construct the metric topology \mathcal{T}_d on the metric space (\mathbb{Q}, d) , defined by the basis

$$\mathcal{B}_d = \{B(x, \epsilon) = \{y \in \mathbb{Q} : d(x, y) < \epsilon\} \text{ for all } x \in \mathbb{Q}, \epsilon > 0\}$$

Want to show that \mathcal{T}_d is not the standard topology.

For each open balls in \mathcal{T}_d , when hold the ϵ the same, the open balls in \mathcal{T} will always be bigger and \mathcal{T}_d is not the same as \mathcal{T} .