Optimisation

Christophe Gonzales

LIP6 - Université Paris 6, France

Objectifs du cours

Présentation des algorithmes fondamentaux d'optimisation

Objectifs du cours

Présentation des algorithmes fondamentaux d'optimisation

- optimisation linéaire
 - algorithme simplexe
 - dualité
 - applications

Objectifs du cours

Présentation des algorithmes fondamentaux d'optimisation

- optimisation linéaire
 - algorithme simplexe
 - dualité
 - applications
- optimisation non linéaire
 - méthodes de gradient
 - conditions de Kuhn et Tucker
 - programmation quadratique

Plan du cours (1/2)

Partie I: programmation linéaire

- Forme générale, standard, canonique
- 2 L'algorithme du simplexe
- Pièges du simplexe (dégénérescence...)
- Phases I et II
- Aspect géométrique : polyèdres ; points extrêmes
- Dualité en programmation linéaire
- Théorème d'existence et de dualité
- Lemme de Minkowski-Farkas
- Applications pratiques

Plan du cours (2/2)

Partie II: optimisation sans contraintes

- Rappels d'optimisation sans contraintes
- Optimisation uni-dimensionnelle
- Méthodes de gradient et de gradient conjugué

Plan du cours (2/2)

Partie II: optimisation sans contraintes

- Rappels d'optimisation sans contraintes
- Optimisation uni-dimensionnelle
- Méthodes de gradient et de gradient conjugué

Partie III : programmation non linéaire

- Généralités : programmation convexe ; lagrangien
- 2 Théorème du col en programmation convexe
- Conditions de Kuhn et Tucker en programmation convexe
- Programmes quadratiques
- Sappels sur les formes quadratiques. Méthode de Wolfe en PQ
- Programmation convexe à contraintes linéaires

Introduction à la programmation linéaire (1/5)

Problème: combien d'argent doit-on dépenser pour couvrir les besoins énergétiques (2000 Kcal), en protéines (55g) et en calcium (800mg) pour une journée?

nourriture	taille	Kcal	protéines	calcium	prix
céréales	28g	110	4g	2mg	3
poulet	100g	205	32g	12mg	24
œufs	2	160	13g	54mg	13
lait	237cl	160	8g	285mg	9
clafoutis	170g	420	4g	22mg	20
cassoulet	260g	260	14g	80mg	19

Introduction à la programmation linéaire (2/5)

nourriture	taille	Kcal	protéines	calcium	prix
céréales	28g	110	4g	2mg	3
poulet	100g	205	32g	12mg	24
œufs	2	160	13g	54mg	13
lait	237cl	160	8g	285mg	9
clafoutis	170g	420	4g	22mg	20
cassoulet	260g	260	14g	80mg	19

Exemple: 10 rations de cassoulet ⇒ 2600Kcal, 140g de protéines, 800mg de calcium, prix = 190

Introduction à la programmation linéaire (2/5)

nourriture	taille	Kcal	protéines	calcium	prix
céréales	28g	110	4g	2mg	3
poulet	100g	205	32g	12mg	24
œufs	2	160	13g	54mg	13
lait	237cl	160	8g	285mg	9
clafoutis	170g	420	4g	22mg	20
cassoulet	260g	260	14g	80mg	19

Exemple: 10 rations de cassoulet ⇒ 2600Kcal, 140g de protéines, 800mg de calcium, prix = 190

Peut-on faire mieux?

Introduction à la programmation linéaire (3/5)

nourriture	taille	Kcal	protéines	calcium	prix	quantité
céréales	28g	110	4g	2mg	3	X ₁
poulet	100g	205	32g	12mg	24	<i>X</i> ₂
œufs	2	160	13g	54mg	13	<i>X</i> ₃
lait	237cl	160	8g	285mg	9	<i>X</i> ₄
clafoutis	170g	420	4g	22mg	20	<i>X</i> 5
cassoulet	260g	260	14g	80mg	19	<i>x</i> ₆

Problème: combien d'argent doit-on dépenser pour couvrir les besoins énergétiques (2000 Kcal), en protéines (55g) et en calcium (800mg) pour une journée?

Introduction à la programmation linéaire (4/5)

Contraintes additionnelles pour menus variés :

nourriture	contrainte
céréales	au plus 4 rations par jour
poulet	au plus 3 rations par jour
œufs	au plus 2 rations par jour
lait	au plus 8 rations par jour
clafoutis	au plus 2 rations par jour
cassoulet	au plus 2 rations par jour

Introduction à la programmation linéaire (4/5)

Contraintes additionnelles pour menus variés :

nourriture	contrainte
céréales	au plus 4 rations par jour
poulet	au plus 3 rations par jour
œufs	au plus 2 rations par jour
lait	au plus 8 rations par jour
clafoutis	au plus 2 rations par jour
cassoulet	au plus 2 rations par jour

Nouveau Problème: combien d'argent doit-on dépenser pour couvrir les besoins énergétiques (2000 Kcal), en protéines (55g) et en calcium (800mg) pour une journée sous les contraintes ci-dessus?

Introduction à la programmation linéaire (5/5)

nourriture	contrainte
céréales	au plus 4 rations par jour
poulet	au plus 3 rations par jour
œufs	au plus 2 rations par jour
lait	au plus 8 rations par jour
clafoutis	au plus 2 rations par jour
cassoulet	au plus 2 rations par jour

$$\begin{aligned} & \min 3x_1 + 24x_2 + 13x_3 + 9x_4 + 20x_5 + 19x_6 \\ & s.c. & \begin{cases} & 110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \geq 2000 \\ & 4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 \geq 55 \\ & 2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 \geq 800 \\ & 0 \leq x_1 \leq 4, \ 0 \leq x_2 \leq 3, \ 0 \leq x_3 \leq 2, \\ & 0 \leq x_4 \leq 8, \ 0 \leq x_5 \leq 2, \ 0 \leq x_6 \leq 2 \end{cases}$$

Programmation linéaire

Définition

programme linéaire = { fonction objectif linéaire contraintes linéaires

$$s.c. \begin{cases} x_1 - 2x_2 + 10x_4 \\ x_1 + 20x_2 + 20x_5 \ge 200 \\ + 5x_2 + 5x_3 \le 55 \\ 2x_1 + 12x_2 + 10x_3 + 5x_4 + 2x_5 = 80 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0 \end{cases}$$

Programme linéaire sous forme standard

Forme standard

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

Programme linéaire sous forme standard

Forme standard

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

Forme standard en notation matricielle

$$\max c^T x$$
s.c.
$$\begin{cases} Ax \leq b \\ x \geq 0 \end{cases}$$

il existe différentes définitions!

Quelques définitions

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

- fonction objectif = $\max \sum_{j=1}^{n} c_j x_j$
- solution = un *n*-uplet (x_1, \ldots, x_n)
- solution réalisable = solution vérifiant toutes les contraintes

Comment trouver la solution réalisable optimale?

Problème à résoudre :

$$\begin{array}{lll} \max 5x_1 + 4x_2 + 3x_3 \\ s.c. & 2x_1 + 3x_2 + x_3 \leq 5 \\ & 4x_1 + x_2 + 2x_3 \leq 11 \\ & 3x_1 + 4x_2 + 2x_3 \leq 8 \\ & x_1 \geq 0, \ x_2 \geq 0, \ x_3 \geq 0 \end{array}$$

- $lue{1}$ introduire des «*variables d'écart» pour remplacer les* \leq *par des* =
- 2 appeler z la fonction objectif

Problème à résoudre :

$$\max 5x_1 + 4x_2 + 3x_3 s.c. 2x_1 + 3x_2 + x_3 \le 5 4x_1 + x_2 + 2x_3 \le 11 3x_1 + 4x_2 + 2x_3 \le 8 x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

- introduire des « variables d'écart » pour remplacer les ≤ par des =
- \bigcirc appeler z la fonction objectif

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0$$

$$\begin{array}{llll} x_4 &=& 5 - 2x_1 - 3x_2 - x_3 \\ x_5 &=& 11 - 4x_1 - x_2 - 2x_3 \\ x_6 &=& 8 - 3x_1 - 4x_2 - 2x_3 \\ z &=& 5x_1 + 4x_2 + 3x_3 \\ x_1 &\geq 0, & x_2 \geq 0, & x_3 \geq 0, & x_4 \geq 0, & x_5 \geq 0, & x_6 \geq 0 \end{array}$$

résoudre max z s.c. $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$ \iff résoudre problème d'origine

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0$$

résoudre max z s.c. $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$ \iff résoudre problème d'origine

(0,0,0,5,11,8) = solution réalisable.

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0$$

résoudre max z s.c. $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$ \iff résoudre problème d'origine

(0,0,0,5,11,8) = solution réalisable.

Idée force du simplexe

- \odot partir d'une solution réalisable x^0
- ② étant donné une solution réalisable x^i , chercher une solution réalisable x^{i+1} «voisine» telle que z augmente
- 3 Revenir en 2 tant que l'on peut trouver un tel x^{i+1} . Sinon on a trouvé un optimum.

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$
 $z = 5x_1 + 4x_2 + 3x_3$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0$
 $(0,0,0,5,11,8) =$ solution réalisable, $z = 0$

• si on augmente la valeur de x₁, on augmente z

$$\begin{array}{lllll} x_4 &=& 5 - 2x_1 - 3x_2 - x_3 \\ x_5 &=& 11 - 4x_1 - x_2 - 2x_3 \\ x_6 &=& 8 - 3x_1 - 4x_2 - 2x_3 \\ z &=& 5x_1 + 4x_2 + 3x_3 \\ x_1 &\geq 0, & x_2 \geq 0, & x_3 \geq 0, & x_4 \geq 0, & x_5 \geq 0, & x_6 \geq 0 \end{array}$$

- (0,0,0,5,11,8) = solution réalisable, z=0
 - si on augmente la valeur de x₁, on augmente z
 - si $x_1 = 2$ alors (2, 0, 0, 1, 3, 2) réalisable et z = 10

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$
 $z = 5x_1 + 4x_2 + 3x_3$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0$
 $(0,0,0,5,11,8) =$ solution réalisable, $z = 0$

- si on augmente la valeur de x_1 , on augmente z
- si $x_1 = 2$ alors (2, 0, 0, 1, 3, 2) réalisable et z = 10
- si $x_1 = 3$ alors (3, 0, 0, -1, -1, -1) non réalisable

$$(0,0,0,5,11,8)$$
 = solution réalisable, $z = 0$

- si on augmente la valeur de x₁, on augmente z
- si $x_1 = 2$ alors (2,0,0,1,3,2) réalisable et z = 10
- si $x_1 = 3$ alors (3, 0, 0, -1, -1, -1) non réalisable

 \implies ne pas trop augmenter x_1

Idée force

- choisir d'augmenter une variable ayant un coefficient positif dans z
- augmenter cette variable tant que les autres ne deviennent pas négatives

Idée force

- choisir d'augmenter une variable ayant un coefficient positif dans z
- augmenter cette variable tant que les autres ne deviennent pas négatives

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$
 $z = 5x_1 + 4x_2 + 3x_3$

Idée force

- choisir d'augmenter une variable ayant un coefficient positif dans z
- augmenter cette variable tant que les autres ne deviennent pas négatives

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

$$x_4 \Longrightarrow x_1 \le 5/2 = 2, 5$$

$$x_5 \Longrightarrow x_1 \le 11/4 = 2, 75$$

$$x_6 \Longrightarrow x_1 \le 8/3 \approx 2, 66$$

Idée force

- choisir d'augmenter une variable ayant un coefficient positif dans z
- augmenter cette variable tant que les autres ne deviennent pas négatives

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

$$x_4 \Longrightarrow x_1 \le 5/2 = 2, 5$$

$$x_5 \Longrightarrow x_1 \le 11/4 = 2, 75$$

$$x_6 \Longrightarrow x_1 \le 8/3 \approx 2, 66$$

$$\Longrightarrow x_1 = \min\{5/2, 11/4, 8/3\} = 5/2$$

augmentation de la valeur d'une variable ⇒ annulation d'une autre

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

$$x_1 = 5/2 \Longrightarrow x_4 = 0$$

augmentation de la valeur d'une variable ⇒ annulation d'une autre

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

$$x_1 = 5/2 \Longrightarrow x_4 = 0$$

Idée force

- Toujours placer à gauche des signe $\ll = \gg$ les variables $\neq 0$
- Exprimer ces variables en fonction des variables = 0

 \implies exprimer x_1 en fonction des autres variables

augmentation de la valeur d'une variable ⇒ annulation d'une autre

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

$$x_1 = 5/2 \Longrightarrow x_4 = 0$$

Idée force

- **1** Toujours placer à gauche des signe \ll =» les variables \neq 0
- 2 Exprimer ces variables en fonction des variables = 0

 \implies exprimer x_1 en fonction des autres variables

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_{1} = \frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}$$

$$x_{5} = 11 - 4x_{1} - x_{2} - 2x_{3}$$

$$= 11 - 4\left(\frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}\right) - x_{2} - 2x_{3}$$

$$= 1 + 5x_{2} + 2x_{4}$$

$$x_{1} = \frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}$$

$$x_{5} = 11 - 4x_{1} - x_{2} - 2x_{3}$$

$$= 11 - 4\left(\frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}\right) - x_{2} - 2x_{3}$$

$$= 1 + 5x_{2} + 2x_{4}$$

faire le même calcul pour x_6 et z:

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_5 = 1 + 5x_2 + 2x_4$$

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4$$

$$z = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

$$x_{1} = \frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}$$

$$x_{5} = 11 - 4x_{1} - x_{2} - 2x_{3}$$

$$= 11 - 4\left(\frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}\right) - x_{2} - 2x_{3}$$

$$= 1 + 5x_{2} + 2x_{4}$$

faire le même calcul pour x_6 et z:

$$x_{1} = \frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}$$

$$x_{5} = 1 + 5x_{2} + 2x_{4}$$

$$x_{6} = \frac{1}{2} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} + \frac{3}{2}x_{4}$$

$$z = \frac{25}{2} - \frac{7}{2}x_{2} + \frac{1}{2}x_{3} - \frac{5}{2}x_{4}$$

Optimisation 19/22

 \implies recommencer avec x_3

Après augmentation de x_3 :

$$x_1 = 2 - 2x_2 - 2x_4 + x_6$$

$$x_5 = 1 + 5x_2 + 2x_4$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

$$z = 13 - 3x_2 - x_4 - x_6$$

Après augmentation de x_3 :

$$x_1 = 2 - 2x_2 - 2x_4 + x_6$$

$$x_5 = 1 + 5x_2 + 2x_4$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

$$z = 13 - 3x_2 - x_4 - x_6$$

Tous les coefficients de z sont négatifs

⇒ on est à l'optimum

Optimisation 20/22

Après augmentation de x_3 :

$$x_1 = 2 - 2x_2 - 2x_4 + x_6$$

 $x_5 = 1 + 5x_2 + 2x_4$
 $x_3 = 1 + x_2 + 3x_4 - 2x_6$
 $z = 13 - 3x_2 - x_4 - x_6$

Tous les coefficients de z sont négatifs

⇒ on est à l'optimum

Solution optimale: (2, 0, 1, 0, 1, 0)

Optimisation 20/22

L'algorithme du simplexe

- variables à gauche des signe = variables «en base»
- les autres = variables «hors base»
- ◆ base réalisable ⇔ solution correspondante réalisable

L'algorithme du simplexe

- variables à gauche des signe = variables «en base»
- les autres = variables «hors base»
- ▶ base réalisable ⇔ solution correspondante réalisable

Premier algorithme du simplexe

- Choisir une solution réalisable x^0
- 2 Exprimer les variables en base $(\neq 0)$ en fonction des variables hors base (= 0)
- 3 s'il existe un coefficient positif dans z, soit x_i la variable correspondante, sinon aller en $\sqrt{}$
- calculer la valeur maximale de x_i de manière à ce que les variables en base restent positives ou nulles. Soit x_j une des variables en base qui s'annule
- placer x_i dans l'ensemble des variables en base (faire entrer la variable en base) et x_j dans l'ensemble des variables hors base (faire sortir de la base)
- o retourner en 2
- on est à l'optimum. Les variables en base définissent la solution optimale

Références

Bibliographie

- V. Chvatal (1983) « Linear Programming », W.H. Freeman & Company.
- R. J. Vanderbei (1998) « Linear Programming : Foundations and Extensions », Kluwer Academic Publishers.
- M. Minoux (1983) « Programmation mathématique, Théorie et Algorithmes », Dunod.

Optimisation 22/22