Universidad Nacional Autónoma de México

ELECTRODINÁMICA CLÁSICA

Semestre 2016-II

17 de marzo de 2016

Tarea # 5. Ecuaciones de Maxwell, electromagnetismo macroscópico y leyes de conservación.

 $\begin{array}{c} \textit{Autor:} \\ \text{Favio V\'AZQUEZ}^{\dagger} \end{array}$

 $^{^\}dagger favio.vazquez@correo.nucleares.unam.mx$

Problema 1. Problema 6.8 de Classical Electromagnetic Radiation de Jackson [1].

Una esfera de constante dieléctrica constante ϵ y radio a está situada en el origen. Hay un campo eléctrico E_0 uniforme aplicado en la dirección x. La esfera rota con una velocidad angular ω sobre el eje z. Muestre que hay un campo magnético $\mathbf{H} = -\nabla \Phi_M$, donde

$$\Phi_M = \frac{3}{5} \left(\frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0} \right) \epsilon_0 E_0 \omega \left(\frac{a}{r_>} \right) \cdot xz,$$

donde $r_{>}$ es el más grande de r y a. El movimiento es no relativista. Puede utilizar los resultados de la sección 4,4 para la esfera dieléctrica en un campo aplicado.

Solución:

Problema 2. Problema 6.9 de Classical Electromagnetic Radiation de Jackson [1].

Discuta la conservación de la energía y el impulso lineal para un sistema macroscópico de fuentes y campos electromagnéticos en un medio uniforme e isotrópico, descrito por una permitividad ϵ y una permeabilidad μ . Muestre en un cálculo simple que la densidad de energía, el vector de Poynting, la densidad de campo-impulso, y el tensor de esfuerzo de Maxwell están dados por las expresiones de Minkowski,

$$u = \frac{1}{2}(\epsilon E^2 + \mu H^2),$$

$$\mathbf{S} = \mathbf{E} \times \mathbf{H},$$

$$\mathbf{g} = \mu \epsilon \mathbf{E} \times \mathbf{H},$$

$$T_{ij} = [\epsilon E_i E_j + \mu H_i H_j - \frac{1}{2} \delta_{ij} (\epsilon E^2 + \mu H^2)].$$

¿Qué modificaciones surgen si ϵ y μ son funciones de la posición?

Solución:

Problema 3. Problema 6.15 de Classical Electromagnetic Radiation de Jackson [1].

Un capacitor de placas paralelas circular ideal de radio a y separación entre las placas $d \ll a$ está conectado a una fuente de corriente mediante hilos de conexión axial, como se muestra en el bosquejo. La corriente en el cable es $I(t) = I_0 \cos \omega t$.

- (a) Calcule el campo eléctrico y el magnético entre las placas a segundo orden en potencias de la frecuencia (o número de onda), despreciado los efectos de campos de borde.
- (b) Calcule las integrales de volumen de w_e y w_m que entran en la definición de la reactancia X, (6.140), a segundo orden en ω . Muestre que en términos de la corriente de entrada I_i , definida por $I_i = -i\omega Q$, donde Q es a la carga total en una placa, estas energías son

$$\int w_e d^3 = \frac{1}{4\pi\epsilon} \frac{|I_i|^2 d}{\omega^2 a^2}, \qquad \int w_m d^3 = \frac{\mu_0}{4\pi} \frac{|I_i|^2 d}{8} \left(1 + \frac{\omega^2 a^2}{12c^2} \right).$$

(c) Muestre que los circuitos en serie equivalentes tienen $C \simeq \pi \epsilon_0 a^2/d$, $L \simeq \mu_0 d/8\pi$, y que un estimado para la frecuencia de resonancia del sistema es $\omega_{res} \simeq 2\sqrt{2}c/a$. Compare con la primera raíz de $J_0(x)$.

Solución:

Referencias

[1] J. Jackson, Classical Electrodynamics, 3ra edición. John Wiley and Sons, Inc. 1999.