Задача А

Условие

Найти значения переменных в формуле 3SAT, при которых наибольшее число скобок принимают истинное значение.

Доказательство NP

Допустим, что всего n переменных и m скобок.

- 1. Переформулируем задачу Можно ли подобрать такие значения переменных, чтобы истинно было хотя бы K скобок?
- 2. Сертификат: последовательность $(k, x_1, x_2, ..., x_n)$
- 3. Верификатор: Посчитать количество истинных скобок. Сравнить с k.

Доказательство NPH

Надо доказать, что $3SAT \leq_p MAX3SAT$. Допустим мы умеем решать MAX3SAT, то есть мы нашли такой набор $X=(x_1,x_2,...,x_n)$ при котором максимальное число скобок (обозначим k) истинно. Этот набор X и будет решением 3SAT, если k= числу скобок. $k\neq$ числу скобок, то 3SAT не разрешима.

Задача G

Условие

Дана матрица A размера $M \times N$ из целых чисел, вектор B размера M из целых чисел. Найти бинарный вектор x, такой что $Ax \leq B$.

Доказательство NP

- 1. Сертификат: Бинарная последовательность чисел размера M. Очевидно, что размер сертификата равен M, то есть он полиномиален относительно размера самой задачи.
- 2. Верификатор: Непосредственно производит умножение и поэлементное сравнение. Самый очевидный алгоритм умножения матриц имеет сложность $O(n^3), n = max(M,N)$, сравнение выполняется за O(M). А значит, верификатор работает за полиномиальное время от входа.

Доказательство NPH

Задача К

Условие

Дан взвешенный ориентированный граф G=(V,E), найти в нем гамильтонов путь.

Доказательство NP

Допустим, всего N вершин.

- 1. Сертификат: Последовательность вершин размера N. Очевидно, что размер сертификата равен N, то есть он полиномиален относительно размера самой задачи.
- 2. Верификатор: Проверяет, посещены ли все вершины (достаточно проверить, что в сертификате все элементы уникальны) и существуют ли все ребра между соседними элементами в последовательности.

Доказательство NPH

Для доказательства этого факта сведем задачу о поиске гамильтонова цикла (далее - Γ Ц) в ориентированном графе к задаче о поиске гамильнового пути (далее - Γ П) в ориентированном графе.

Пусть дан граф. Выберем произвольную вершину графа d и раздвоим ее на d1 и d2, так, что все входящие дуги в d теперь будут входить в d2, а все исходящие дуги из d теперь будут выходить из d1.

1. В одну сторону.

Утверждается, что если в исходном графе был ориентированный $\Gamma \Pi$, то в полученном будет ориентированный $\Gamma \Pi$. Докажем это утверждение. Допустим, что в исходном графе был $\Gamma \Pi$. Без ограничения общности будем считать, что он начинался и заканчивался в вершине d. Тогда после такого преобразования будет существовать $\Gamma \Pi$ и он будет начинаться в d2 и заканчиваться в d1.

2. В обратную сторону.

Если в полученном графе будет ГП, то есть будет путь соединяющий все вершины, тогда он будет посещать вершины d1 и d2. Это значит, что он будет начинаться в d2 и заканчиваться в d1. Таким образом, если объединить эти вершины, то в полученном графе будет существовать ГЦ.

Использована информация из: Ссылка на источник.

Задача О

Условие

Дан набор задач A, для каждой есть время, за которое ее решает один процессор t_i , M процессоров и общий дедлайн D. Можно ли разбить все задачи на непересекающиеся множества задач A_j , такие что $\bigcup_{j=1}^n A_j = A$ и сумма t_i по каждому $A_j \leq D$. Формально: $\forall j \sum_{i \in A_j} t_i \leq D$

Доказательство NP

Допустим, что всего задач N.

- 1. Сертификат: последовательность $k_1, k_2, ..., k_N : \forall i \ k_i \in \{1, 2, ..., M\}$
- 2. Верификатор: Перебирает все процессоры, считает время работы на нем (суммирует те t_j , у которых k_j равно номеру этого процессора), если оно больше D хоть в одному случае, то возвращает ЛОЖЬ, иначе ИСТИНУ.

Доказательство NPH

Сведем задачу о рюкзаке к этой задаче. В задаче о рюкзаке у каждого объекта есть вес w_j и стоимость c_j . В нашей задаче $w_j=c_j=t_j$. Тогда

Задача R

Условие

Рассмотрим такой алгоритм построения максимальной клики: будем каждый раз удалять из графа вершину минимальной степени, пока не получим полный граф. Докажите или опровергните, что такой алгоритм дает решение, не более чем в X раз отличающееся от оптимального.

Решение

Утверждение. Если клика размера N, то все входящие в нее вершины имеет степень = N-1. Доказательство очевидно.

Утверждение. Для любого n можно построить граф, в котором степень хотя бы одной вершины будет n, а всех остальных вершин будет $\geq n$, а размер максимальной клики будет 2.

Таким графом будет n-мерный куб. Степень каждой вершины в него входящий будет равна n, так как хроматическое число n-мерного куба равно 2. Если хроматическое число графа равно 2, то в нем по определению не существует клик размера больше 2.

Утверждение. Для любого N, существует граф, в котором есть клика размера N и используя этот алгоритм будет получаться клика размера 2. # Возьмем клику C размера N+1. Возьмем граф G, в котором существует вершина v, степень которой N, а степень всех остальных вершин $\geq N$. Соединим C и G любым ребром, главное, чтобы оно не касалось вершины v. В получившемся графе минимальная степень вершины N и существует вершина степени N, входившая в граф C. Допустим алгоритм начнет удаление именно с этой вершины. Затем он будет постоянно удалять все вершины графа C, так как при удалении вершины графа C, степень всех вершин графа C уменьшиться на 1. Таким образом граф C будет полностью удален и задача сведется к нахождению максимальной клики в графе G. А у этого графа максимальная клика имеет размер 2 по определению. #

Вывод

Последнее утверждение опровергает существование константы X.

Задача U

Условие

Предложить $\frac{1}{2}$ -приближенный алгоритм для решения следующей задачи. Требуется разбить множество вершин неориентированного графа G=(V,E) на два непересекающихся множества S и T таким образом чтобы число ребер $(u,v):u\in S$ и $v\in T$ было максимально.

Решение

Начинаем со случайного разбиения. На каждой итерации алгоритма из одного множества переносим вершину в другое множество, таким образом, что бы решение улучшалось. Как только решение перестает улучшаться, алгоритм останавливается. Во время остановки алгоритма верно, что для каждой вершины половина (или больше) ребер ведут в другое множество. Если бы это было не так, то мы могли бы перенести эту вершину и улучшить решение. Это значит, что как минимум половина ребер ведут из одного множества в другое, а значит это $\frac{1}{2}$ -приближенный алгоритм.

Использована информация из: Ссылка на источник.