

Review on the topic of

Simultaneous localization and mapping (SLAM)

Course: Robotics

Advisor:

prof. Miloš Jovanović

Student:

Vanja Kovinić

Contents

1	Introduction to SLAM		2
	1.1	Definition and Problem Statement	2
	1.2	Historical Context and Importance in Robotics	2
2	Fundamental Challenges in SLAM		2
	2.1	The Chicken-and-Egg Problem	2
	2.2	Sensor Limitations and Environmental Factors	2
	2.3	Loop Closure and Data Association	2
3	Classical Approaches to SLAM		2
	3.1	Filter-Based Methods	2
	3.2	Graph-Based Optimization	2
	3.3	Traditional Visual SLAM Systems	2
4	Deep Learning in Modern SLAM		2
	4.1	Learned Features vs. Handcrafted Features	2
	4.2	End-to-End SLAM Architectures	2
	4.3	Neural Implicit Representations for Mapping	2
	4.4	Depth Estimation Networks	2
5	Computer Vision Advancements in SLAM		2
	5.1	Visual Odometry and Place Recognition	2
	5.2	Semantic SLAM	2
	5.3	Dynamic Environment Handling	2
6	Current Research and Applications		2
	6.1	Self-Supervised and Few-Shot Learning	2
	6.2	Real-World Applications	2
	6.3	Challenges and Future Directions	2

- 1 Introduction to SLAM
- 1.1 Definition and Problem Statement
- 1.2 Historical Context and Importance in Robotics
- 2 Fundamental Challenges in SLAM
- 2.1 The Chicken-and-Egg Problem
- 2.2 Sensor Limitations and Environmental Factors
- 2.3 Loop Closure and Data Association
- 3 Classical Approaches to SLAM
- 3.1 Filter-Based Methods
- 3.2 Graph-Based Optimization
- 3.3 Traditional Visual SLAM Systems
- 4 Deep Learning in Modern SLAM
- 4.1 Learned Features vs. Handcrafted Features
- 4.2 End-to-End SLAM Architectures
- 4.3 Neural Implicit Representations for Mapping
- 4.4 Depth Estimation Networks
- 5 Computer Vision Advancements in SLAM
- 5.1 Visual Odometry and Place Recognition