卒論 ノート

氏名: 久野証

所属:東大工学部計数工学科数理情報工学コース

学籍番号: 03-210599

2023年9月25日

目次

1	Papers	2
1.1	Emergence of a resonance in machine learning	2
2	Lectures	8
2.1	Josef Teichmann: Reservoir Computing for SDEs	8
3	TODOs	10

概要

2023 年 A セメスターの卒論執筆に際して、勉強したことや考えたことのメモをここにまとめた。

1 Papers

1.1 Emergence of a resonance in machine learning

Zheng-Meng Zhai , 1 Ling-Wei Kong , 1 and Ying-Cheng Lai 1,2,* 1School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA 2Department of Physics, Arizona State University, Tempe, Arizona 85287, USA.

(Received 9 June 2022; revised 1 March 2023; accepted 26 July 2023; published 24 August 2023)

キーワード: Resonance in nonlinear dynamical systems,

1.1.1 要旨

- 1. 入力信号にノイズを挿れた場合の Reservoir Computing を考える。
 - (a) hyperparameters が最適化されていない時でも、ノイズを挿れることで予測の精度をあげることができる。
 - (b) もっとも良い精度を達成するには、hyperparameters が最適化されていなければならない。
 - i. Hyperparameters に対する Baysian optimization で最適化可能。
 - ii. 確率共鳴があると決定づけるために、ノイズの振幅を hypermparameter に数える。
- 2. Macky-Glass (MG) system と Kuramoto-Sivashinsky (KS) system に対して、シミュレーションを行う。
- 3. 物理側から、確率共鳴が生まれる原理を考える。

1.1.2 状況設定

Appendix A 参照。

- 1. hyperparameters:
 - (a) ρ : the special radius of the reservoir network.
 - (b) γ : the scaling factor of the input weights.
 - (c) α : the leakage parameter
 - (d) β : the regularization coefficient
 - (e) p: the link connection probability of the random network in the hidden layer.
 - (f) σ : the noise amplitude
- 2. hyperparameters の最適化
 - (a) MATLAB: SURROGATEOPT を用いる。*1
 - (b) σ ごとに hyperparameters の最適化を行うので、 σ に対する他の hyperparameters の組みは異なる。
- 3. シミュレーションを行う。
 - (a) MG system:

$$\dot{s}(t) = as(t - \tau) / (1 + [s(t - \tau)]^c) - bs(t),$$

 τ is the time delay, a, b, and c are parameters. *2

i.
$$a = 0.2, b = 0.1$$
, and $c = 10$ を固定。

ii. $\tau=17$, Lyapunov exponents: $\lambda_+\approx 0.006$ と $\tau=30$, Lyapunov exponents: $\lambda_+\approx 0.011$ and 0.003 の 2 つの場合を比べる.

iii.
$$\Delta t = 100h = 1.0$$
.

iv. Warmup: $10000\Delta t$.

v. 時系列データには事前に z-score normalization: $z(t) = [s(t) - \bar{s}]/\sigma_s$ を施す。

^{*1 &}quot;The Bayesian optimization method can be implemented using PYTHON or other languages. Different packages for Bayesian optimization are now available, such as BAYESIAN-OPTIMIZATION and BOTORCH in PYTHON."としている。

^{*2} The state of the system at time t is determined by the entire prior state history within the time delay, making the phase space of the system infinitely dimensional.

1.1.3 面白いと思ったところ

1. Introduction でも述べられているが、ノイズを入れることによって、初期値鋭敏性を持つカオスシステムに対して。短期的にも長期的にも予測の精度を挙げられるということ。

1.1.4 論文を受けての今後の研究方向

1.1.5 疑問点

- 1. Fig.4 と Fig.5 について,MG system における τ の値が 30 から 17 に変えると, σ にどのような影響があるか. なぜその影響が生まれるか.
- 2. なぜ、 $\operatorname{Fig.2}$ の(逆)ピークを与える σ 帯と $\operatorname{Fig.6(c)}$ の(逆)ピークを与える σ 帯が重なるのか.
- 3. III で、Machine learning における resonance が生まれる Physical reason を挙げているが、これは対象を正しく説明できているか。 extraordinarily complicated な hidden layer の中身を解析することなく、physical reason を与えることが、なにを説明しているのか/なにを説明していないのか。

1.1.6 関連する文献

1.1.7 用語まとめ

1. stochastic/coherence resonance:

1.1.8 Abstract

2. nonlinear dynamical system:
3. regularizer/regularization:
4. reservoir computing:
5. state variables/attractor:
6. hyperparameters:
1.1.9 I. Introduction
1. model-free/data-driven:
2. oscillatoin/Lyapnov times:
3. trajectory:
4. basin boundary:
5. robustness:
6. Baysian optimization:
1.1.10 II. Result
1. SURROGATEOPT function (MATLAB):
2. surrogate approximation function:
3. objective function:
4. global minimum:
5. sampling/updating:
6. radial basis function:
7. Mackey-Glass (MG) system:
8. spatiotemporal chaotic Kuramoto-Sivashinsky (KS) system:

3. periodic boundary condition:
4. Prediction horizon/stability:
1.1.12 B. Emergence of a resonance from long-term prediction
1. collapse:
2. wider/narrower resonance:
1.1.13 III. HEURISTIC REASON FOR THE OCCURRENCE OF A RESONANCE
1. time-scale match:
2. the mean first-passage time:
3. nonlinear activation:
4. linear reservoir computing:
5. noise-enhanced temporal regularity:
6. vector autoregressive process (VAR):
1.1.14 IV. DISCUSSION
1. magnitude:
1.1.15 Appendix A
1. recurrent neural network(RNN):
2. input/hidden/output layer:
3. linear regression:
4. adjacency matrix:
5. state vector:

 $1.1.11\,\,$ A. Emergence of a resonance from short-term prediction

1. transient behavior:

2. z-score normalization:

- 6. dynamical state/evolution:
- 7. neuron:
- 8. leakage parameter α :
- 9. link probability p:
- 10. spectral radius:

2 Lectures

- 1. Reservoir Computing
 - (a) Reservoir Computing for SDEs(Josef Teichmann:)
 - (b) Reservoir Computing & Dynamical Systems Second Sumposium on Machine Learning and Dynamical Systems (Josef Teichmann)
 - (c) Introduction to Next Generation Reservoir Computing(Daniel Gauthier)
- 2. Machine Learning in general
 - (a) Machine Learning in Finance(Josef Teichmann)

2.1 Josef Teichmann: Reservoir Computing for SDEs

Access from here.

1. We consider differential equations of the form

$$dY_t = \sum_{i} V_i(Y_t) du_t^i, Y_0 = y \in E$$

to construction evolutions in state space E (could be a manifold of finite or infinite dimension) depending on local characteristics, initial value $y \in E$ and the control u.

2. Theorem (Universality) Let Evol be a smooth evolution operator on a convenient vector space E which satisfies (again the time derivative is taken with respect to the forward variable t) a controlled ordinary differential equation

$$d\text{Evol}_{s,t}(x) = \sum_{i=1}^{d} V_i \left(\text{Evol}_{s,t}(x) \right) du^i(t).$$

Then for any smooth (test) function $f: E \to \mathbb{R}$ and for every $M \ge 0$ there is a time-homogenous linear $W = W(V_1, \dots, V_d, f, M, x)$ from \mathbb{A}_d^M to the real numbers \mathbb{R} such that

$$f\left(\text{Evol}_{s,t}(x)\right) = W\left(\pi_M\left(\text{Sig}_{s,t}(1)\right)\right) + \mathcal{O}\left((t-s)^{M+1}\right)$$

8

for $s \leq t$

3. Signature as universal dynamical system

- (a) This explains that any solution can be represented up to a linear readout by a universal reservoir, namely signature. Similar constructions can be done in regularity structures, too (branched rough paths, etc).
- (b) This is used in many instances of provable machine learning by, e.g., groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...
- (c) ... at JP Morgan, in particular great recent work on 'Nonparametric pricing and hedging of exotic derivatives' by Terry Lyons, Sina Nejad and Imanol Perez Arribas.
- (d) in contrast to reservoir computing: signature is high dimensional (i.e. infinite dimensional) and a precisely defined, non-random object.
- (e) Can we approximate signature by a lower dimensional random object with similar properties?

3 TODOs

- 1. reservoirpy 関連
 - (a) Understand and optimize ESN hyperparameters などの Tutorial ページを読む.
- 2. Reservoir Computing について学ぶ.
 - (a) レクチャーノートなどを通じて、知識を準備する。
 - (b) Github 環境を整備する。