Лекция №5

Бестраншейные технологии:

> Развитие технологий монтажа «полимерных» трубопроводных систем

 Развитие технологий реконструкции изношенных трубопроводов с использованием полимерных труб

1. Бестраншейные методы прокладки трубопроводов

Учитывая специфику полимерных трубопроводов, в технологии их строительства оказалось возможным использовать бестраншейные технологии прокладки, позволяющие:

- **❖** сократить на 90−95 % объем земляных работ
- ❖ увеличить скорость укладки трубопроводов и уменьшить сроки строительства
- * избежать необходимости проведения рекультивационных работ
- ❖ совместить разработку грунта и укладку полимерного трубопровода

Классификация способов технологии строительства полимерных (пластмассовых) трубопроводов

Способ наклонно-направленного бурения

Проходка горизонтальных (наклонных) скважин и протаскивание в них трубопроводов может производиться следующими методами :

- микротоннелированием
- ударно-импульсным и статическим проколом
- раскаткой (продавливанием)

Способ наклонно-направленного бурения

Схема направленного бурения гидроразмывом с образованием лидерной скважины: 1 — установка направленного бурения, 2 — земляное полотно, 3 — радиолокатор, 4 — струя жидкости, 5 — проектная ось коммуникаций, 6 — буровая головка, 7 — скважина, 8 — штанга.

Технология протаскивания трубопроводов в грунтах

Схема прокладки труб методом протаскивания: 1 - оголовок, 2 - силоизмеритель, 3 - емкость с водой, <math>4 - датчик усилия, 5 - ножевой расширитель, 6 - трактор с плужно-ножевым рабочим органом.

Технология заглубления полимерного трубопровода в грунтах

Схема прокладки труб методом заглубления: 1 - входной котлован, 2 - заглубитель, 3 - трактор, 4 - ножевой расширитель (плуг)

2. Технологий реконструкции изношенных трубопроводов с использованием полимерных труб

Актуальность тематики

Высокая изношенность трубопроводных систем

Актуальность - продление срока их безопасной эксплуатации

Перспективный способ продления ресурса стальных трубопроводов

Технологии реконструкции с использованием полимерных материалов

Преимущества

- > Минимизация земляных работ
- > Минимизация повреждений существующих коммуникаций
- Экологические и экономические показатели
- > Большая долговечность
- > Стойкость к воздействию агрессивных сред
- Высокая технологичность по сравнению со стальными трубопроводами

Технологии реконструкции

^{* -} удельный вес реализации указанных технологий в различных отраслях

Классификация технологий

На основании анализа восстановления изношенных трубопроводов методом футерования пластмассовыми трубами предложена классификация этой технологии по следующим признакам:

- > По цели проведения футерования и состоянию ремонтируемого трубопровода
- > По оболочкам, используемым для футерования
- > По методам введения секции пластмассовых труб в трубопровод
- > По виду взаимодействия стенки трубопровода и футерующей оболочки

Схемы восстановления подземного трубопровода. Технология «труба в трубе»

1, 14 — трубопроводы; 2 — плеть полимерной трубы; 3 —каток; 4 — захват; 5 — экскаватор; 6 — колодец, 7, 12 — котлованы; 8 — раструб ремонтируемого участка трубы; 9 — рабочий полимерный трубопровод; 10 — зажимное устройство; 11 — тяговый трос, 13 — тяговое устройство

Способ «длинной протяжки»

1 – гидравлический домкрат;

2 – тележка;

3 – переключатель;

4 – полимерная труба;

5 – электронагреватель;

6 – зажимные хомуты.

Способ «проталкивания» полимерных труб

Схема восстановления подземного трубопровода. Технология «труба в трубе»

1 – пневмопробойник

2 – разрушаемый трубопровод

3 - Tpoc

Способ «Crack-relining»

с помощью пневмопробойника

1 – раскатчик для разрушения изношенного трубопровода; 2 – рабочий орган;

3 – раскатчик для образования скважины для нового трубопровода;

4 – гидроцилиндр; 5 – приводная штанга;

6 – привод рабочего органа; 7 – винтовой

механизм; 8 – направляющая рама;

9 – опорная рама.

Принципиальная схема устройства для смены старого трубопровода новым

Схема восстановления подземного трубопровода. «Чулочная» технология

Схема нанесения внутреннего покрытия из гибких полимерных материалов

- 1 восстанавливаемый участок трубопровода
- 2 гибкая полимерная оболочка
- 3 направляющий ролик
- 4 лебедка
- 5 трос
- 6 емкость с горячим воздухом (паром)
- 7 специальный груз

Восстановление подземного трубопровода. Технология «U-Liners»

Строительные работы ограничены небольшими котлованами в начале и конце трассы.

Возможность использования существующих колодцев с люками при восстановлении трубопровода.

Труба Compact Pipe наматывается на барабан. Длина трубы на барабане зависит от ее номинального диаметра.

Compact Pipe проектируется как независимая труба, способная самостоятельно выдерживать все нагрузки.

Характеристики технологий

Технология «труба в трубе»

- 1) Способ «длинной протяжки»:
- трубопровода убрать острые выступы и отложения;
- толщина стенки 2-4мм;
- диаметр 100-800 мм;
- обработка полимерных труб на заводеизготовителе.

- 2) Способ «проталкивания»:
- при очистке внутренней поверхности сущ. при очистке внутренней поверхности сущ. трубопровода – убрать острые выступы и отложения;
 - толщина стенки 4-10мм;
 - диаметр 100-800 мм;
 - наращивание трубопровода с помощью сварки.

- 3) Способ «с предварительным разрушением»:
- более дешёвый метод;
- повышение пропускной
- способности за счет увеличения
- диаметра;
- наращивание трубопровода с помощью сварки.

«Чулочная технология»

- очистка внутренней поверхности сущ. трубопровода – до металлического блеска;
- сплошной полимерный рукав;
- толщина стенки 2-10мм;
- диаметр 150-900 мм;
- нанесение клеевых составов (эпоксидная смола).

Технология «U-Liners»

- при очистке внутренней поверхности сущ. трубопровода – убрать острые выступы и отложения;
- диаметр 100-500 мм;
- намотка на барабаны;
- легкая протяжка через существующий трубопровод.

Сравнительные показатели стоимости замены и восстановления эксплуатируемых трубопроводов методом протяжки плетей стандартных полиэтиленовых труб

Условный диаметр эксплуа- тируемого трубопро- вода, мм	Стоимость восстановления трубопроводов с использованием полиэтиленовых труб, тыс. р/км Всего В том числе				Стоимость строительства нового стального трубопровода в	Отношение стоимости восстановления трубопровода к стоимости
води, пп		Стоимость полиэтиле- новых труб	Стоимость технологи- ческих работ	Стоимость очистки трубопро- водов	стеснённых условиях, тыс. р./км	строительства нового, %
200	10,4	2,5	1,9	6,0	35,9	29
250	12,0	3,8	2,0	6,2	39,7	30
300	14,5	5,8	2,3	6,4	43,8	33
350	16,3	7,3	2,5	6,5	51,5	32
400	18,9	9,2	3,2	6,5	60,4	31
500	25,1	14,5	4,0	6,6	80,8	31

Затраты на выполнение восстановительных работ составляют 29-33% от стоимости строительства нового стального трубопровода

Заключение

Перспектива развития соответствующих технологий и технических решений по реконструкции, в том числе, расширения сортамента труб из полимерных материалов, позволяет качественно увеличивать срок эксплуатации действующих трубопроводов, сохраняя его пропускную способность, уменьшать затраты на восстановление трубопровода и минимизировать воздействие на окружающую среду.

Для массового применения данных технологий реконструкции в нефтегазовой отрасли, необходимо формирование полной нормативно-технической базы, проведение исследований, опытно-промышленных и стендовых испытаний.

Таким образом, при выборе метода восстановления изношенного трубопровода, необходимо выполнить всесторонний анализ трубопроводной системы и подобрать оптимальную технологию для каждого конкретного трубопровода.