VERSUCH 400

Relexion, Brechung und Beugung

Tabea Hacheny tabea.hacheny@tu-dortmund.de

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 05.04.2022 Abgabe: 12.04.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung			3
2	2 Theorie			
	2.1	Strahle	enoptik	3
		2.1.1	Reflexion	3
		2.1.2	Brechung	3
			Reflexion und Transmission	
	2.2		optik	
		2.2.1	Beugung am Gitter	4
3 Durchführung				5
4	4 Auswertung			5
5 Diskussion				5
Lit	iteratur			

1 Zielsetzung

In diesem Versuch sollen die grundlegenden Gesetzmäßigkeiten -Relfexion, Beugung und Brechung- der klassischen Optik überprüft werden.

2 Theorie

2.1 Strahlenoptik

Die Ausbreitung von Wellen wird in der Strahlenoptik, die auch geometrische Optik genannt wird, durch die Wellennormale beschrieben. Trifft ein Lichtstrahl nun auf eine Grenzfläche, so wird dieser gebrochen. Durch die Materialabhängigkeit der Lichtgeschwindigkeit im Medium, durch den der Lichtstrahl läuft, können die Ausbreitungsgeschwindigkeiten v_1 und v_2 durch die Brechungsindizes n_1 und n_2 der Materialien und durch den Einfallswinkel α und den Brechungswinkel β durch die Gleichung

$$\frac{\sin\alpha}{\sin\beta} = \frac{v_1}{v_2} = \frac{n_2}{1}$$

beschrieben werden. In diesem Versuch ist das eine Medium Luft, das die Ausbreitungsgeschwindigkeit $v_1 = 22,9979 \cdot 10^8 \,\mathrm{m/s}$ und einen Brechungsindex von $n_1 = 1,000292$ hat [1]. Da der Lichtstrahl immer von Glas auf Luft, in der die Lichtgeschwindigkeit größer ist, trifft, ist Luft das optische dünnere Medium und Glas das optisch dichtere Medium.

2.1.1 Reflexion

Nach dem Reflexionsgesetz ist Einfallswinkel gleich Ausfallswinkel. Dementsprechend gilt

$$\alpha_1 = \alpha_2. \tag{1}$$

2.1.2 Brechung

Wenn ein Lichtstrahl mit Einfallswinkel α auf ein anderes Medium mit Brechungsindx n trifft, erfährt er eine Richtungsänderung. Dieser Umstand wird Brechung genannt und lässt sich durch das Snelliussche Brechungsgesetz

$$n_1 \sin \alpha = n_2 \sin \beta \tag{2}$$

beschreiben. β ist dabei der Ausfallswinkel.

2.1.3 Reflexion und Transmission

Im den meisten Fällen tritt Reflexion und Brechung gleichzeitig auf, wenn Licht auf ein anderes Medium trifft. So wird ein Teil des Lichts reflektiert und ein anderer transmissiert und gebrochen. Das Verhältnis von reflektierten und transmissierten Licht ist material abhängig, aber für die Intensitäten muss gelten R+T=1.

In Abbildung 1 sind die oben genannten Gesetze noch einmal graphisch dargestellt.

Abbildung 1: Skizzen von Reflexion, Brechung und Transmission [1].

2.2 Wellenoptik

Sobald Licht auf Objekte trifft, die verhältnismäßig klein im Vergleich zur Wellenlänge sind, kommt die geometrische Optik an ihre Grenzen, da sich nun das Licht auch im Schattenraum ausbreitet. Die charakteristischen Merkmale einer Welle sind die Frequenz ν , die Wellenlänge λ und die Ausbreitungsgeschwindigkeit v. Licht besteht dabei aus Wellenzügen, die meist nicht länger als 10^{-8} s dauern. Weiterhin können bei gleicher Frequenz und fester Phasenbeziehung durch Superposition der Wellen Interferenzbilder entstehen. Es wird zwischen konstruktiver und destruktiver Interferenz unterschieden. Wenn der Gangunterschied bei gleicher Intensität $\lambda/2$ beträgt, kommt es zur vollständigen Auslöschung der Welle.

2.2.1 Beugung am Gitter

Ist das Hindernis im Vergleich zur Wellelänge klein, so kann es zur Beugung führen. Die Beugung lässt sich dabei durch das Huygensche Prinzip erklären.

Trifft eine ebene Wellenfront auf das Gitter, das zu Anschauungszwecken auch als Einzelspalt vorstellbar ist, so wird jeder Punkt im Spalt gebeugt und Ausgangspunkt einer neuen Elementarwelle mit gleicher Frequenz und fester Phasenbeziehung. Wird im Abstand L zum Spalt ein Schirm aufgestellt, so sind Interferenzmuster beobachtbar. Für die Interferenzmaxima gilt der Zusammenhang

$$a \cdot \sin \alpha = k \cdot \lambda. \tag{3}$$

Dabei ist a die Spaltbreite. Die Intensitätsminima werden dabei mit der Variable k durchnummeriert und befinden sich in einem Winkel α relativ zur geradlinigen Ausbreitungsrichtung der Welle. Dieser Zusammenhang lässt sich auf ein Gitter mit N-Einfachspalten gleicher Breite und mit der Gitterkonstanten d verallgemeinern. Für die Intensitätsmaxima gilt

$$d \cdot \sin \alpha = k \cdot \lambda. \tag{4}$$

Dies gilt solange, dass Licht gerade auf das Gitter einfällt. k wird dabei zur Nummerierung der Intensitätsmaxima verwendet.

3 Durchführung

4 Auswertung

Abbildung 2: Plot.

Siehe Abbildung 2!

5 Diskussion

Literatur

[1] TU Dortmund. Versuch Reflexion, Beugung und Brechung. 2014.