

UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA

NOME DO AUTOR(A)

TÍTULO DO TRABALHO \mathbb{R}^n

Autor(a), Nome do(a)

Título do trabalho / Nome do(a) Autor(a) -- 2021. 100f.

TCC (Graduação) - Universidade Federal de São Carlos, campus São Carlos, São Carlos Orientador (a): Nome do Orientador(a) Banca Examinadora: Orientador, Membro da Comissão Examinadora I, Membro da Comissão Examinadora II Bibliografia

1. Assunto ou Palavra-chave I. 2. Assunto ou Palavra-chave II. 3. Assunto ou Palavra-chave III. I. Autor(a), Nome do(a). II. Título.

Ficha catalográfica desenvolvida pela Secretaria Geral de Informática (SIn)

DADOS FORNECIDOS PELO AUTOR

Bibliotecário responsável: Ronildo Santos Prado - CRB/87325

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia
Programa de Pós-Graduação em

Folha de Aprovação						
Defesa de Dissertação de Mestrado do candidato		, realizada em				

Comissão Julgadora:

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se arquivado junto ao Programa de Pós-Graduação em Ensino de Ciências Exatas.

AGRADECIMENTOS

É um elemento OPCIONAL em que o autor faz agradecimentos aos que contribuíram de maneira relevante à elaboração do trabalho.

RESUMO

Elemento OBRIGATÓRIO, deve apresentar os pontos relevantes do texto, de forma

concisa e que permita uma visão rápida e clara do conteúdo e das conclusões do trabalho.

Indica-se que o resumo tenha no máximo 500 palavras e deve ser elaborado de acordo com

ABNT NBR 6028/2003. Abaixo do resumo devem ser colocadas as palavras-chave. A indicação

Palavra-chave deve ser em negrito seguida de dois pontos e espaço. Cada palavra deve ser

separada uma da outra por ponto final.

Palavras-chave: Chave 1. Chave 2. Chave 3.

ABSTRACT

Version of the abstract in another language for international dissemination. Prepare the

abstract in a foreign language accordingly with ABNT NBR 6028/2003. Below the abstract the

keywords must be placed. The indication Keywords must be in bold followed by a colon and

space. Each word must be separated from each other by a period.

Keywords: Key 1. Key 2. Key 3.

LISTA DE FIGURAS

Figura 3.1 – Superfície Costa.

15

LISTA DE TABELAS

Tabela 3.1 – Rendimentos dos estudantes.

15

SUMÁRIO

1	INTRUDUÇÃO	11
2	ESPAÇOS MENSURÁVEIS	12
3	MODELO MATEMÁTICO PARA O \mathbb{R}^n	13
3.1	A IMPORTÂNCIA DA ESCRITA EM MATEMÁTICA $x,y\in\mathbb{R}^n$	13
3.2	UM EXEMPLO DE TABELA	14
3.3	UM EXEMPLO DE FIGURA	15
4	CONSIDERAÇÕES FINAIS	16
REF	FERÊNCIAS	17
APÊ	NDICE A PARTE QUE NÃO SERÁ LIDA DO TRABALHO	18
ÍNDI	ICE REMISSIVO	19

1 INTRUDUÇÃO

2 ESPAÇOS MENSURÁVEIS

Seja X um conjunto.

Definição 2.1. Uma álgebra de subconjuntos de X é uma família \mathcal{B} de subconjuntos de X que é fechada para as operações elementares de conjuntos, ou seja:

- (i) $X \in \mathcal{B}$
- (ii) $A \in \mathcal{B} \implies A^c = X \setminus A \in X$
- (iii) $A \in \mathcal{B} \land B \in \mathcal{B} \implies A \cup B \in \mathcal{B}$

Note que como $A \cap B = (A^c \cup B^c)^c$ e $A \setminus B = A \cap B^c$ para quaisquer $A, B \in \mathcal{B}$, então tais operações de conjuntos também são fechadas em \mathcal{B} . Note também que, por associatividade, a união e intercecção de qualquer número finito de elementos de \mathcal{B} está em \mathcal{B} .

Definição 2.2. Uma σ -álgebra é uma álgebra de subconjuntos de X que também é fechada para a união enumerável de subconjutos de \mathcal{B} .

$$\bullet A_j \in \mathcal{B}, j \in \mathbb{Z}_+ \implies \bigcup_{i=1}^{\infty} A_j \in \mathcal{B}$$

Note que como $\left(\bigcup_{j=1}^{\infty} A_j^c\right)^c = \bigcap_{j=1}^{\infty} A_j$, nós também temos que as σ -álgebras são fechadas para as intersecções enumeráveis.

Definição 2.3. Um espaço mensurável é uma dupla (X, \mathcal{B}) , onde X é um conjunto e \mathcal{B} uma σ -álgebra de subconjuntos de X. Os elementos de \mathcal{B} são chamados conjuntos mensuráveis.

Abaixo seguem alguns exemplos de σ -álgebras.

Exemplo 2.1. Seja $X = \{a, b, c, d\}$, $\mathcal{B}_0 = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$ é uma σ -álgebra, da mesma forma que $\mathcal{B}_1 = \{\emptyset, X\}$ e $\mathcal{B}_2 = 2^X$ também são σ -álgebras, ainda mais, \mathcal{B}_1 e \mathcal{B}_2 são σ -álgebras para qualquer conjunto X teste

3 MODELO MATEMÁTICO PARA O \mathbb{R}^n

Neste trabalho apresentamos o método relativístico para capturarmos um leão no deserto. Basicamente, distribuiremos sobre o deserto um número grande de iscas para leão contendo a estrela companheira de Sirius. Transcorrido o tempo necessário para que as iscas tenham sido comidas, enviamos um raio de luz através do deserto. Este raio de luz irá se curvar ao redor do leão confundindo-o e assim podemos nos aproximar sem perigo (STEPHANI et al., 2003).

3.1 A IMPORTÂNCIA DA ESCRITA EM MATEMÁTICA $x, y \in \mathbb{R}^n$

Todo iniciante em matemática tem conhecimento que a soma de duas quantidades pode ser expressa na forma

$$1 + 1 = 2. (3.1)$$

No entanto, esta forma de representação não é só banal como também esteticamente inapropriada. Mesmo o mais iniciante sabe que

$$1 = \ln e$$

e que,

$$1 = \operatorname{sen}^2 a + \cos^2 a.$$

Além disso, é imediato que

$$2=\sum_{n=0}^{\infty}\frac{1}{2^n}.$$

Isto permite-nos expressar a equação (3.1) de forma cientificamente mais aceitável:

$$\ln e + (\operatorname{sen}^2 q + \cos^2 q) = \sum_{n=0}^{\infty} \frac{1}{2^n}.$$
 (3.2)

Também é imediatamente óbvio que

$$1 = \cosh p \sqrt{1 - \tanh^2 p}$$

e uma vez que

$$e = \lim_{\delta \to \infty} \left(1 + \frac{1}{\delta} \right)^{\delta}$$

podemos simplificar (3.2) e então obter

$$\ln \left\{ \lim_{\delta \to \infty} \left(1 + \frac{1}{\delta} \right)^{\delta} \right\} + (\operatorname{sen}^2 q + \cos^2 q) = \sum_{n=0}^{\infty} \frac{\cosh p \sqrt{1 - \tanh^2 p}}{2^n}. \tag{3.3}$$

Considerando o fato que

$$0! = 1 \tag{3.4}$$

e que a inversa da transposta de uma matriz é igual a transposta da inversa da matriz, podemos simplificar mais ainda a expressão (3.3) removendo a restrição não natural para um espaço unidimensional introduzindo para isto a matriz **X**¹.

$$(\mathbf{X}^t)^{-1} - (\mathbf{X}^{-1})^t = 0 (3.5)$$

onde

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \ddots & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix}.$$

Substituindo (3.5) em (3.4) teremos

$$[(\mathbf{X}^t)^{-1} - (\mathbf{X}^{-1})^t]! = 1.$$

Substituindo em (3.3) então reduzimos (3.1) em

$$\ln \left\{ \lim_{\delta \to \infty} \left(\left[(X^t)^{-1} - (X^{-1})^t \right]! + \frac{1}{\delta} \right)^{\delta} \right\} + \left(\operatorname{sen}^2 q + \cos^2 q \right)$$

$$= \sum_{n=0}^{\infty} \frac{\cosh p \sqrt{1 - \tanh^2 p}}{2^n}. \tag{3.6}$$

É imediatamente óbvio que (3.6) é matematicamente fácil de compreensão e cientificamente mais respeitável que (3.1).

3.2 UM EXEMPLO DE TABELA

Segue um exemplo de tabela.

Podemos interpretar a matriz **X** como a representação de uma transformação linear $T:V\to V$ sendo que V é um espaço vetorial sobre o corpo dos reais de dimensão finita n e $T\in\mathcal{L}(V,V)\sim M_{n\times n}(\mathbf{R})$

Tabela 3.1 – Rendimentos dos estudantes.

RA	Avaliação 1	Avaliação 2	Média = 60%[Avaliação 1] + 40% [Avaliação 2]
12345	1,16	1,01	1,10
23456	1,10	1,10	1,10
34567	1,04	1,19	1,10

Fonte: Elaborado pelo autor.

O rendimento dos estudantes é mostrado na Tabela 3.1.

3.3 UM EXEMPLO DE FIGURA

Segue um exemplo de figura.

Figura 3.1 – Superfície Costa.

Fonte: Wikipédia².

A Superfície Costa mostrada na Figura 3.1 é uma superfície com curvatura média nula descoberta pelo matemático brasileiro Celso José da Costa.

^{2 &}lt;a href="https://commons.wikimedia.org/wiki/File:Costa%27s_Minimal_Surface.png">https://commons.wikimedia.org/wiki/File:Costa%27s_Minimal_Surface.png. Acesso em: 20 ago. 2021.

4 CONSIDERAÇÕES FINAIS

Filho (2018) faz diversas considerações sobre a boa redação matemática. Recomendamos fortemente este texto.

Anton, Bivens e Davis (2007) mostra uma referência com três autores. Stephani et al. (2003) é um exemplo de referência com mais de três autores.

REFERÊNCIAS

ANTON, H.; BIVENS, C. I.; DAVIS, S. L. **Cálculo - Volume I**. 8. ed. [S.I.]: Bookman, 2007. Citado na página 16.

FILHO, D. C. de M. **Manual de Redação Matemática**. 2. ed. Rio de Janeiro: SBM, 2018. (Coleção do Professor de Matemática). Citado na página 16.

LIMA, E. L. **Curso de Análise - Volume 1**. 4. ed. Rio de Janeiro: Instituto de Matemática Pura e Aplicada, 1976. (Projeto Euclides). Citado na página 5.

STEPHANI, H. et al. **Exact solutions of Einstein's field equations**. 2. ed. [S.I.]: Cambridge University Press, 2003. (Cambridge monographs on mathematical physics). Citado 2 vezes nas páginas 13 e 16.

APÊNDICE A - PARTE QUE NÃO SERÁ LIDA DO TRABALHO

Segue com o texto e partes que irão para o Apêndice.

Remover caso não fizer uso.

ÍNDICE REMISSIVO

Superfície Costa, 15

Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivs 3.0 Brazil

