

SEQUENCE LISTING

<110> Roche Diagnostics GmbH

<120> Method for producing an active heterodimeric AMV-RT in prokaryotic cells

<130> 5272/00/

<140>

<141>

<160> 22

<170> PatentIn Ver. 2.1

<210> 1

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 1

gatgactgga attcatgact gttgcgtac atctggct

38

<210> 2

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 2

gatgactgct gcagttatta tgcaaaaaga gggctcgcc

40

<210> 3

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 3

gatgactgct gcagttatta atacgcttga aaggtaggtt g

41

<210> 4

<211> 1716

<212> DNA

<213> Avian Myeloblastosis Virus

<400> 4

actgttgcgc tacatctggc tattccgctc aaatggaagc caaaccacac gcctgtgtgg 60

attgaccagt ggccccttcc tgaaggtaaa cttgttagcgc taacgcaatt agtgaaaaaa 120

gaattacagt taggacatat agaaccttca cttagttgtc ggaacacacc tgtctttgtg 180

atccggaagg cttccgggtc ttatcgctta ttgcataact tgcgcgtgt taacgctaag 240
 ctgttcctt ttggggccgt ccaacagggg gcgcgggtc tctccgcgt cccgcgtggc 300
 tggcccctga tggtagtgcgt cctcaaggat tgcttcttt ctattcctct tgccgaacaa 360
 gatcgcaag ctttgatt tacgctcccc tctgtgaata accaggcccc cgctcgaaga 420
 ttccaatggg aggtcttgcc ccaagggatg acctgttctc ccactatctg tcagttgata 480
 gtgggtcaaa tacttgagcc ctgcgcgtc aagcacccat ctgcgcgtat gttgcattat 540
 atggatgatc ttttgcttagc cgctcaagt catgatgggt tggaaagcggc aggggaggag 600
 gtatcgatc cattggaaag agccgggttc accatttcgc ctgataaggt ccagaggagg 660
 cccggagtagc aatatcttgg gtacaagttt ggcagtagt atgttagcacc cgtaggcctg 720
 gtacgagaac ccaggatagc caccttggg gatgttgcgt agctgggtgg gtcacttcag 780
 tgcttcgcgc cagcgttagg aatccgcct cgactgtatgg gccccttta tgagcgttta 840
 cgagggtcgtc atccataacga ggcgaggggaa tggaaatctag acatgaaaat ggcctggaga 900
 gagatcgatc agctcagcac cactgtgc tggaaacgtat gggaccctgc cctgcctctg 960
 gaaggagcgg tcgcttagatg tggaaacgggg gcaatagggg tcctgggaca gggactgtcc 1020
 acacacccaa ggccatgtt ttgggttattc tccacccaac ccaccaaggc gtttactgtc 1080
 tggtagaaag tgctcaccct ttgttattact aagctacgtg ctgcgcgtat gcaacccttt 1140
 ggcaaggagg ttgatatacct cctgttgcct gcatgtttc gggaggacat tccgcctccg 1200
 gagggatcc tggtagccct taggggggtt gcaaggaaaa tcaggagtag tgacacgcca 1260
 tctattttg acattgcgc tccactgtcat gtttctctga aagtggggat taccgaccac 1320
 cctgtaccgg gacccactgt cttaaccgac gcctcctcaa gcacccataa ggggggtgta 1380
 gtctggaggg agggccaaag gtgggagata aaagaaatag ctgatttggg ggcaagtgtta 1440
 caacaactgg aagcacgcgc tggccatgc gcaacttgc tggccgcac aacgcccact 1500
 aatgtatgtg cttgactctgc gtttggcgtc aaaatgttac tcaagatggg gcaggaggga 1560
 gtccogtcta cagcggcggc ttttattttt gaggatgcgt taagccaaag gtcagccatg 1620
 gccgcccgttc tccacgtgcg gaggatgttcat gagggtccag gtttttac agaaggaaat 1680
 gacgtggcag atagccaaacg caccttcaa gcgtat 1716

<210> 5

<211> 2574

<212> DNA

<213> Avian Myeloblastosis Virus

<400> 5
 actgttgcgc tacatctggc tattccgc taaatggaaac caaaccacac gcctgtgtgg 60
 attgaccagt ggcccttcc tgaaggtaaa ctgttagcgc taacgcaatt agtggaaaaaa 120
 gaattacagt taggacatata agaaccttca cttagttgt ggaacacacc tgcgttgc 180
 atccggaagg cttccgggtc ttatcgctta ttgcataact tgcgcgtgt taacgctaag 240
 ctgttcctt ttggggccgt ccaacagggg gcgcgggttc tctccgcgt cccgcgtggc 300
 tggccctga tggtagtgcgt cctcaaggat tgcttcttt ctattcctct tgccgaacaa 360
 gatcgcaag ctttgatt tacgctcccc tctgtgaata accaggcccc cgctcgaaga 420
 ttccaatggg aggtcttgcc ccaagggatg acctgttctc ccactatctg tcagttgata 480
 gtgggtcaaa tacttgagcc ctgcgcgtc aagcacccat ctgcgcgtat gttgcattat 540
 atggatgatc ttttgcttagc cgctcaagt catgatgggt tggaaagcggc aggggaggag 600
 gttatcgatc cattggaaag agccgggttc accatttcgc ctgataaggt ccagaggagg 660
 cccggatcc aatatcttgg gtacaagttt ggcagtagt atgttagcacc cgtaggcctg 720
 gtagcagaac ccaggatagc caccttggg gatgttgcgt agctgggtgg gtcacttcag 780
 tggcttcgc cagcgttagg aatccgcct cgactgtatgg gccccttta tgagcgttta 840
 cgagggtcag atccataacga ggcgaggggaa tggaaatctag acatgaaaat ggcctggaga 900
 gagatcgatc agctcagcac cactgtgc tggaaacgtat gggaccctgc cctgcctctg 960
 gaaggagcgg tcgcttagatg tggaaacgggg gcaatagggg tcctgggaca gggactgtcc 1020
 acacacccaa ggccatgtt ttgggttattc tccacccaac ccaccaaggc gtttactgtc 1080
 tggtagaaag tgctcaccct ttgttattact aagctacgtg ctgcgcgtat gcaacccttt 1140
 ggcaaggagg ttgatatacct cctgttgcct gcatgtttc gggaggacat tccgcctccg 1200
 gagggatcc tggtagccct taggggggtt gcaaggaaaa tcaggagtag tgacacgcca 1260
 tctattttg acattgcgc tccactgtcat gtttctctga aagtggggat taccgaccac 1320
 cctgtaccgg gacccactgt cttaaccgac gcctcctcaa gcacccataa ggggggtgta 1380
 gtctggaggg agggccaaag gtgggagata aaagaaatag ctgatttggg ggcaagtgtta 1440

caacaactgg aagcacgcgc tgtggccatg gcacttctgc tgtggccgac aacgcccaact 1500
 aatgtatgta ctgactctgc gtttgttgcg aaaatgttac tcaagatggg gcaggaggga 1560
 gtcccgtcta cagcggcgcc ttttatttta gaggatgcgt taagccaaag gtcagccatg 1620
 gccgcgcgttc tccacgtgcg gagtcattct gaagtgcgcg gtttttcac agaaggaaat 1680
 gacgtggcag atagccaagc cacctttcaa gcgtatccct tgagagaggc taaagatctc 1740
 cataccgctc tccatatcg acccccgcgct ctagccaaag cgtgtaatat atctatgcag 1800
 caggctaggg aggttgttca gacctgccccg catgttaatt cagccctgc gttggaggcc 1860
 ggggtaaacc ctaggggttt gggaccctta cagatatggc agacagactt tacactagag 1920
 cctagaatgg ctccccgttc ctggctcgct gttactgtgg ataccgcctc atctgcgata 1980
 gtcgttaactc agcatggccg tgcacatcg gttgctgcac aacatcattg ggcacggct 2040
 atcggcgttt tggyaagacc aaaggccata aaaacagata atgggtcctg cttcacgtct 2100
 aaatccacgc gagagtggct cgcgagatgg gggatagcac acaccaccgg gattccgggt 2160
 aattcccaagg gtcaagctat ggtagagcgg gccaaccggc tcctgaaaga taagatccgt 2220
 gtgcttgcgg agggggatgg ctttatgaaa agaatccccca ccagcaaaaca gggggaaacta 2280
 tttagccaagg caatgtatgc ccttaatcac tttgagcgtg gtgaaaacac aaaaacaccg 2340
 atacaaaaac actggagacc taccgttctt acagaaggac ccccggttaa aatacgaata 2400
 gagacaggggg agtggggaaaa agatgaaac gtgctggct ggggacgagg ttatgcagct 2460
 gtgaaaaaca gggacactga taagtttatt tggttaccct ctcgaaaagt taaaccggac 2520
 atcggccaaa agatgagggt gactaagaaa gatgaggcga gccctcttt tgca 2574

<210> 6
<211> 572
<212> PRT
<213> Avian Myeloblastosis Virus

<400> 6
 Thr Val Ala Leu His Leu Ala Ile Pro Leu Lys Trp Lys Pro Asn His
 15
 1 5
 Thr Pro Val Trp Ile Asp Gln Trp Pro Leu Pro Glu Gly Lys Leu Val
 20 25 30
 Ala Leu Thr Gln Leu Val Glu Lys Glu Leu Gln Leu Gly His Ile Glu
 35 40 45
 Pro Ser Leu Ser Cys Trp Asn Thr Pro Val Phe Val Ile Arg Lys Ala
 50 55 60
 Ser Gly Ser Tyr Arg Leu Leu His Asp Leu Arg Ala Val Asn Ala Lys
 65 70 75 80
 Leu Val Pro Phe Gly Ala Val Gln Gln Gly Ala Pro Val Leu Ser Ala
 85 90 95
 Leu Pro Arg Gly Trp Pro Leu Met Val Leu Asp Leu Lys Asp Cys Phe
 100 105 110
 Phe Ser Ile Pro Leu Ala Glu Gln Asp Arg Glu Ala Phe Ala Phe Thr
 115 120 125
 Leu Pro Ser Val Asn Asn Gln Ala Pro Ala Arg Arg Phe Gln Trp Lys
 130 135 140
 Val Leu Pro Gln Gly Met Thr Cys Ser Pro Thr Ile Cys Gln Leu Il
 145 150 155 160
 Val Gly Gln Ile Leu Glu Pro Leu Arg Leu Lys His Pro Ser Leu Ar

165	170	175
Met Leu His Tyr Met Asp Asp	Leu Leu Ala Ala Ser Ser His Asp	
180	185	190
Gly Leu Glu Ala Ala Gly Glu	Val Ile Ser Thr Leu Glu Arg Ala	
195	200	205
Gly Phe Thr Ile Ser Pro Asp Lys	Val Gln Arg Glu Pro Gly Val Gln	
210	215	220
Tyr Leu Gly Tyr Lys Leu Gly Ser Thr Tyr Val Ala Pro Val Gly Leu		
225	230	240
Val Ala Glu Pro Arg Ile Ala Thr Leu Trp Asp Val Gln Lys Leu Val		
245	250	255
Gly Ser Leu Gln Trp Leu Arg Pro Ala Leu Gly Ile Pro Pro Arg Leu		
260	265	270
Met Gly Pro Phe Tyr Glu Gln Leu Arg Gly Ser Asp Pro Asn Glu Ala		
275	280	285
Arg Glu Trp Asn Leu Asp Met Lys Met Ala Trp Arg Glu Ile Val Gln		
290	295	300
Leu Ser Thr Thr Ala Ala Leu Glu Arg Trp Asp Pro Ala Leu Pro Leu		
305	310	320
Glu Gly Ala Val Ala Arg Cys Glu Gln Gly Ala Ile Gly Val Leu Gly		
325	330	335
Gln Gly Leu Ser Thr His Pro Arg Pro Cys Leu Trp Leu Phe Ser Thr		
340	345	350
Gln Pro Thr Lys Ala Phe Thr Ala Trp Leu Glu Val Leu Thr Leu Leu		
355	360	365
Ile Thr Lys Leu Arg Ala Ser Ala Val Arg Thr Phe Gly Lys Glu Val		
370	375	380
Asp Ile Leu Leu Leu Pro Ala Cys Phe Arg Glu Asp Leu Pro Leu Pro		
385	390	400
405	410	415
Glu Gly Ile Leu Leu Ala Leu Arg Gly Phe Ala Gly Lys Ile Arg Ser		
420	425	430
Ser Asp Thr Pro Ser Ile Phe Asp Ile Ala Arg Pro Leu His Val Ser		
435	440	445
Thr Asp Ala Ser Ser Ser Thr His Lys Gly Val Val Val Trp Arg Glu		
450	455	460
Gly Pro Arg Trp Glu Ile Lys Glu Ile Ala Asp Leu Gly Ala Ser Val		

465	470	475	480
Gln Gln Leu Glu Ala Arg Ala Val Ala Met Ala Leu Leu Leu Trp Pro			
485		490	495
Thr Thr Pro Thr Asn Val Val Thr Asp Ser Ala Phe Val Ala Lys Met			
500	505		510
Leu Leu Lys Met Gly Gln Glu Gly Val Pro Ser Thr Ala Ala Ala Phe			
515	520		525
Ile Leu Glu Asp Ala Leu Ser Gln Arg Ser Ala Met Ala Ala Val Leu			
530	535		540
His Val Arg Ser His Ser Glu Val Pro Gly Phe Phe Thr Glu Gly Asn			
545	550	555	560
Asp Val Ala Asp Ser Gln Ala Thr Phe Gln Ala Tyr			
565		570	
<210> 7			
<211> 858			
<212> PRT			
<213> Avian Myeloblastosis Virus			
<400> 7			
Thr Val Ala Leu His Leu Ala Ile Pro Leu Lys Trp Lys Pro Asn His			
1	5	10	15
Thr Pro Val Trp Ile Asp Gln Trp Pro Leu Pro Glu Gly Lys Leu Val			
20	25	30	
Ala Leu Thr Gln Leu Val Glu Lys Glu Leu Gln Leu Gly His Ile Glu			
35	40	45	
Pro Ser Leu Ser Cys Trp Asn Thr Pro Val Phe Val Ile Arg Lys Ala			
50	55	60	
Ser Gly Ser Tyr Arg Leu Leu His Asp Leu Arg Ala Val Asn Ala Lys			
65	70	75	80
Leu Val Pro Phe Gly Ala Val Gln Gln Gly Ala Pro Val Leu Ser Ala			
85	90	95	
Leu Pro Arg Gly Trp Pro Leu Met Val Leu Asp Leu Lys Asp Cys Phe			
100	105	110	
Phe Ser Ile Pro Leu Ala Glu Glu Asp Arg Glu Ala Phe Ala Phe Thr			
115	120	125	
Leu Pro Ser Val Asn Asn Gln Ala Pro Ala Arg Arg Phe Gln Trp Lys			
130	135	140	
Val Leu Pro Gln Gly Met Thr Cys Ser Pro Thr Ile Cys Gln Leu Ile			
145	150	155	160
Val Gly Gln Ile Leu Glu Pro Leu Arg Leu Lys His Pro Ser Leu Arg			

165	170	175
Met Leu His Tyr Met Asp Asp	Leu Leu Ala Ala Ser Ser His Asp	
180	185	190
Gly Leu Glu Ala Ala Gly Glu Glu Val Ile Ser Thr Leu Glu Arg Ala		
195	200	205
Gly Phe Thr Ile Ser Pro Asp Lys Val Gln Arg Glu Pro Gly Val Gln		
210	215	220
Tyr Leu Gly Tyr Lys Leu Gly Ser Thr Tyr Val Ala Pro Val Gly Leu		240
225	230	235
Val Ala Glu Pro Arg Ile Ala Thr Leu Trp Asp Val Gln Lys Leu Val		255
245	250	
Gly Ser Leu Gln Trp Leu Arg Pro Ala Leu Gly Ile Pro Pro Arg Leu		
260	265	270
Met Gly Pro Phe Tyr Glu Gln Leu Arg Gly Ser Asp Pro Asn Glu Ala		
275	280	285
Arg Glu Trp Asn Leu Asp Met Lys Met Ala Trp Arg Glu Ile Val Gln		
290	295	300
Leu Ser Thr Thr Ala Ala Leu Glu Arg Trp Asp Pro Ala Leu Pro Leu		320
305	310	315
Glu Gly Ala Val Ala Arg Cys Glu Gln Gly Ala Ile Gly Val Leu Gly		
325	330	335
Gln Gly Leu Ser Thr His Pro Arg Pro Cys Leu Trp Leu Phe Ser Thr		
340	345	350
Gln Pro Thr Lys Ala Phe Thr Ala Trp Leu Glu Val Leu Thr Leu Leu		
355	360	365
Ile Thr Lys Leu Arg Ala Ser Ala Val Arg Thr Phe Gly Lys Glu Val		
370	375	380
Asp Ile Leu Leu Leu Pro Ala Cys Phe Arg Glu Asp Leu Pro Leu Pro		400
385	390	395
Glu Gly Ile Leu Leu Ala Leu Arg Gly Phe Ala Gly Lys Ile Arg Ser		
405	410	415
Ser Asp Thr Pro Ser Ile Phe Asp Ile Ala Arg Pro Leu His Val Ser		
420	425	430
Leu Lys Val Arg Val Thr Asp His Pro Val Pro Gly Pro Thr Val Phe		
435	440	445
Thr Asp Ala Ser Ser Ser Thr His Lys Gly Val Val Val Trp Arg Glu		
450	455	460
Gly Pro Arg Trp Glu Ile Lys Glu Ile Ala Asp Leu Gly Ala Ser Val		

465 470 475 480

Gln Gln Leu Glu Ala Arg Ala Val Ala Met Ala Leu Leu Leu Trp Pro
 485 490 495
 Thr Thr Pro Thr Asn Val Val Thr Asp Ser Ala Phe Val Ala Lys Met
 500 505 510
 Leu Leu Lys Met Gly Gln Glu Gly Val Pro Ser Thr Ala Ala Ala Phe
 515 520 525
 Ile Leu Glu Asp Ala Leu Ser Gln Arg Ser Ala Met Ala Ala Val Leu
 530 535 540
 His Val Arg Ser His Ser Glu Val Pro Gly Phe Phe Thr Glu Gly Asn
 545 550 560
 Asp Val Ala Asp Ser Gln Ala Thr Phe Gln Ala Tyr Pro Leu Arg Glu
 565 570 575
 Ala Lys Asp Leu His Thr Ala Leu His Ile Gly Pro Arg Ala Leu Ser
 580 585 590
 Lys Ala Cys Asn Ile Ser Met Gln Gln Ala Arg Glu Val Val Gln Thr
 595 600 605
 Cys Pro His Cys Asn Ser Ala Pro Ala Leu Glu Ala Gly Val Asn Pro
 610 615 620
 Arg Gly Leu Gly Pro Leu Gln Ile Trp Gln Thr Asp Phe Thr Leu Glu
 625 630 640
 Pro Arg Met Ala Pro Arg Ser Trp Leu Ala Val Thr Val Asp Thr Ala
 645 650 655
 Ser Ser Ala Ile Val Val Thr Gln His Gly Arg Val Thr Ser Val Ala
 660 665 670
 Ala Gln His His Trp Ala Thr Ala Ile Ala Val Leu Gly Arg Pro Lys
 675 680 685
 Ala Ile Lys Thr Asp Asn Gly Ser Cys Phe Thr Ser Lys Ser Thr Arg
 690 695 700
 Glu Trp Leu Ala Arg Trp Gly Ile Ala His Thr Thr Gly Ile Pro Gly
 705 710 720
 Asn Ser Gln Gly Gln Ala Met Val Glu Arg Ala Asn Arg Leu Leu Lys
 725 730 735
 Asp Lys Ile Arg Val Leu Ala Glu Gly Asp Gly Phe Met Lys Arg Ile
 740 745 750
 Pro Thr Ser Lys Gln Gly Glu Leu Leu Ala Lys Ala Met Tyr Ala Leu
 755 760 765
 Asn His Phe Glu Arg Gly Glu Asn Thr Lys Thr Pro Ile Gln Lys His

770 775 780
Trp Arg Pro Thr Val Leu Thr Glu Gly Pro Pro Val Lys Ile Arg Ile
790 795 800
785 Glu Thr Gly Glu Trp Glu Lys Gly Trp Asn Val Leu Val Trp Gly Arg
805 810 815
Gly Tyr Ala Ala Val Lys Asn Arg Asp Thr Asp Lys Val Ile Trp Val
820 825 830
Pro Ser Arg Lys Val Lys Pro Asp Ile Ala Gln Lys Asp Glu Val Thr
835 840 845
Lys Lys Asp Glu Ala Ser Pro Leu Phe Ala
850 855

<210> 8
<211> 62
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 8
gatgactggaa attcatgcgt cgccgtcgcc gtcgcgtcg cactgttgcg ctacatctgg 60
62
ct

<210> 9
<211> 65
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 9
gatgactggaa attcatgaga ggcagccacc atcaccatca ccatactgtt gcgctacatc 60
65
tggct

<210> 10
<211> 425
<212> DNA
<213> Escherichia coli

<400> 10
ctgtttggc ggtatggaga agatttcag cctgatacag attaaatcag aacgcagaag 60
cggtctgata aaacagaatt tgcctggcg cagtagcgcg gtggtccac ctgacccat 120
gccgaactca gaagtgaaac gccgtagcgc cgatggtagt gtgggtctc cccatgcgag 180
agtagggAAC tgccaggcat caaataaaac gaaaaggctca gtcgaaagac tgggcattc 240
gttttatctg ttgtttgtcg gtgaacgctc tcctgatgt gacaaatccg ccggagcgg 300
atttgaacgt tgcaagcaa cggccccgag ggtggcgggc aggacgcccc ccataaactg 360
ccaggcatca aattaaggcag aaggccatgc tgacggatgg ccttttgcg tttctacaaa 420
ctctt

<210> 11
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 11
aaaactgcag agcagtaagc cggtcataaa a

31

<210> 12
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 12
aaaactgcag cgtgctggat gaagtgtatt a

31

<210> 13
<211> 2155
<212> DNA
<213> Escherichia coli

<400> 13
atcagaatt ttttctttt tcccccttga agggccgaag cctcatcccc atttctctgg 60
tcaccagccg gcaaaccacg taagctccgg cgtcacccat aacagatacg gactttctca 120
aaggagagtt atcaatgaat attcgtccat tgcatgatcg cgtgatcgta aagcgtaaag 180
aagttgaaac taaatctgtc ggcggcatcg ttctgaccgg ctctgcagcg gctaaatcca 240
cccgcggcga agtgcgtggct gtcggcaatg gccgtatcct taaaaatggc gaagtgaagc 300
cgctggatgt gaaagttggc gacatcgta ttttcaacga tggctacggt gtgaardatctg 360
agaagatcga caatgaagaa gtgttgcata tgcggaaag cgacattctg gcaattgttg 420
aagcgtaatc cgcgcacgac actgaacata cgaatttaag gaataaaagat aatggcagct 480
aaagacgtaa aattcggtaa cgacgctcggt gtgaaaaatgc tgcgcggcgt aaacgtactg 540
gcagatgcag taaaagttac cctcggtcca aaaggccgtaa acgttagttt ggataaatct 600
ttcggtgacac cgaccatcac caaagatggt gttccgttg ctcgtgaaat cgaactggaa 660
gacaagttcg aaaatatggg tgcgcagatg gtgaaaaaag ttgcctctaa agcaaacgac 720
gctgcaggcg acggtaccac cactgcaacc gtactggctc aggctatcat cactgaaggt 780
ctgaaagctg ttgtgcggg catgaacccg atggacctga aacgtggat cgacaaagcg 840
gttaccgctg cagtgaaga actgaaagcg ctgtccgtac catgctctga ctctaaagcg 900
attgctcagg ttggtaccat ctccgctaactccgacgaaa ccgttaggtaa actgatcgct 960
gaagcgatgg acaaagtcgg taaaagaaggc gttatcaccg ttgaagacgg taccggctcg 1020
caggacgaac tggacgtgg tgaaggatcg cagttcgacc gtggctacct gtctccctac 1080
ttcatcaaca agccggaaac tggcgcagta gaactggaaa gcccgttcat cctgctggct 1140
gacaagaaaa tctccaaacat ccgcgaaatg ctggcggttc tggaaagctgt tgccaaagca 1200
ggcaaaccgc tgcgtatcat cgctgaagat gttagaaggcg aagcgctggc aactctgggt 1260
gttaacaccca tgcgtggcat cgtgaaagtc gtcgggtta aagcaccggg cttcggcgat 1320
cgctgtaaaag ctatgctgca ggatatcgca accctgactg gcggtacgt gatctctgaa 1380
gagatcggtt tggagctggaa aaaagcaacc ctggaaagacc tgggtcaggc taaacgtgtt 1440
gtgatcaaca aagacaccac cactatcatc gatggcgtgg gtgaagaagc tgcaatccag 1500
ggccgtgttg ctcagatccg tcagcagatt gaagaagcaa cttctgacta cgaccgtgaa 1560
aaactgcagg aacgcgttagc gaaactggca ggccgggttg cagttatcaa agtgggtgct 1620
gctaccgaag ttgaaatgaa agagaaaaaa gcacgcgttg aagatgcct gcacgcgacc 1680
cgtgctgcgg tagaagaagg cgtgggttgct ggtgggttgct ttgcgtatccgcgttagcg 1740

tctaaactgg ctgacctgcg tggcagaac gaagaccaga acgtgggtat caaagttgca 1800
ctgcgtgcaa tggaaatcc gctcgctcg atcgatcg actgcggcga agaacccgtct 1860
gttggctaa acaccgttaa aggccggcgc ggcaactacg gttacaacgc agcaaccgaa 1920
gaatacggca acatgatcg catgggtatc ctggatccaa ccaaagtaac tcgttctgct 1980
ctgcagtacg cagttctgt ggctggcctg atgatcacca ccaaatgcgat ggttaccgac 2040
ctgccaaaa acgatgcgc tgacttaggc gctgctggcg gtatggcgcatgggttggc 2100
atggcggca tgatgtatt gcoctgcacc tcgcagaaat aaacaaaccc ccggg 2155

<210> 14

<211> 3139

<212> DNA

<213> Escherichia coli

<400> 14
atgggtaaaa taattggat cgacctgggt actaccaact cttgtgtac gattatggat 60
ggcaccactc ctcgcgtgct ggagaacgccc gaaggcgatc gcaccacgccc ttctatcatt 120
gcctataccaggatggtgaa aactcttagtt ggtcagccgg ctaaacgtca ggcagtgcg 180
aacccgc当地 acactctgtt tgcgattaaa cgcctgattt gtcggcgtt ccaggacgaa 240
gaagtacagg gtgatgttcc catcatgccc ttcaaaaatattt tgctgtga taacggcgac 300
gcatgggtcg aagttaaagg ccagaaaatgcg acaccggcgc agatttctgc tgaagtgcg 360
aaaaaaaaatgaa agaaaaccgc tgaagattac ctgggtgaac cgttaactga agctgttac 420
accgtaccgg catactttaa cgatgcgtcg cgtcaggcga ccaaagacgc agggcgatc 480
gctggctgg aagttaaacg tatcatcaac gaaccggaccg cagctgcgtt ggcttacgg 540
ctggacaaaag gcactggcaa ccgtactatc gcggtttatg acctgggtgg tggtaacttcc 600
gatatttcta ttatcgaaat cgacgaagttt gacggcgaaa aacacccgttca agttctggca 660
accaacgggtt ataccaccc ggggggtgaa gacttcgaca gccgtctgtt caactatctg 720
gttgaagaat tcaagaaaga tcagggcatt gacctgcgc acgatccgtt ggcaatgcg 780
cgccctgaaat aagcggcaga aaaagcggaaa atcgaactgt ctccgctca gcagaccgac 840
gttaacctgc catacatcac tgcagacgcg accggccgaa aacacatgaa catcaaagt 900
actcgctgaa aactggaaag cttgggtgaa gatctggtaa accgttccat tgagccgtg 960
aaagttgcac tgcaggacgc tggcctgtcc gtatctgttgc tgcacgcgtt ttcctcggt 1020
ggtggtcaga ctcgtatgcc aatggttcag aagaaagttt ctgagttctt tggtaaagag 1080
ccgcgtaaag acgttaaccc ggacgaagttt gtagcaatcg gtgctgtgt tcaggggtt 1140
gttctgactg gtgacgtaaa agacgtactg ctgctggacg ttaccccggt gtctctgggt 1200
atcgaaacca tggcggtgtt gatgacgcgc ctgatcgca aaaacaccac tatcccgacc 1260
aagcacagcc aggtgttctc taccgctgaa gacaaccatgtt ctgcggtaac catccatgtg 1320
ctgcagggtt aacgtaaacg tgcggctgtt aacaaatctc tgggtcaggtaa caacccatgt 1380
ggtatcaacc cggcaccgcg cggcatgcgc cagatcgaaatcg ttaccttcgatc ttcctcggt 1440
gacggtatcc tgcacgtttc cgcgaaagat aaaacacccgc gtaaagagca gaagatcacc 1500
atcaagggtt cttctggctt gaaatcgaaatcg aatgggtacg cgacgcagaa 1560
gctaacccgc aagctgaccg taagtttgc gactgggtac agactcgca ccaggccgac 1620
catctgtgc acagcccccc taagcagggtt gaaatggcgac ggcacaaact gcccgtgac 1680
gacaaaactg ctatcgagtc tgcgtctgtt gcaactggaaa ctgctctgaa aggtgaagac 1740
aaagccgcta tcgaagcgaa aatgcaggaa ctggcacagg tttcccgaaa actgatggaa 1800
atcgccccgc agcaacatgc ccagcgcgcg actggccgtt ctgatgttcc tgcaacaac 1860
gcgaaagatg acgtatgtt gacgtgttgc gacgtgttgc tttgaagaatcg tcaaagacaa 1920
ccctataaac gggtaattat actgacacccg gcaaggggaa atttcctctc cggccgtgca 1980
ttcatctagg ggcattttaa aaaagatggc taagcaagat tattacgaga ttttaggggt 2040
ttccaaacca gggaaagagc gtgaaatcg aaggccctac aaacgcctgg ccatgaaataa 2100
ccacccggac cgttaaccagg gtgacaaaga ggccgaggcg aaatttaaag agatcaagga 2160
agctttagaa gttctgaccg actcgcaaaa acgtgcggca tacgtatcgat atggtcatgc 2220
tgcgttttagt caaggtggca tggcgccgg cgggtttggc ggcggcgcg acgtgcggc 2280
tatttttgtt gacgttttcg gcgatatttt tggcgccgg cgtggctgtc aacgtgcggc 2340
gcccgggtctt gatttacgtt ataacatggc gtcaccctc gaaatggcgat tttggccacg 2400
gaccaaaagag atccgcattc cgactctggc agagtgtgac gtttggccacg gtagcggc 2460
aaaaccaggtt acacagccgc agacttgcctc gacctgtcat gttctggctt aggtgcagat 2520
gcccgggaa ttcttcgtt gacagcagac ctgtccacac tgcaggccgac ggcgtacgt 2580

gatcaaagat ccgtgcaaca aatgtcatgg tcatggcgt gttgagcgca gcaaaacgt 2640
gtccgttaaa atcccgccag gggtagacac tggagaccgc atccgtcttgc cgggcgaagg 2700
tgaagcgccc gagcatggcg caccggcagg cgatctgtac gttcaggttc aggttaaaca 2760
gcacccgatt ttcgagcgtg aaggcaacaa cctgtattgc gaagtcccgta tcaacttcgc 2820
tatggccggcg ctgggtggcg aaatcgaagt accgaccctt gatggcgccg tcaaactgaa 2880
agtgcctggc gaaaccaga ccggtaaagct attccgtatg cgccgtaaag gcgtcaagtc 2940
tgtccgcgtt ggccgcacagg gtgatttgct gtgcgcgtt gtgcgtgaaa caccggtagg 3000
cctgaacgaa aggccggaa acgtgctgca agagctgcaa gaaagcttcg gtggcccaac 3060
cgccgagcac aacagccgc gctcaaagag cttcttgat ggtgtgaaga agtttttga 3120
cgacctgacc cgctaataa 3139

<210> 15
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 15
cccccccggg atggtaaaa taattggat cgac

34

<210> 16
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 16
cgccggatcc ttatttagcgg gtcaggctgt caaaaaa

37

<210> 17
<211> 594
<212> DNA
<213> Escherichia coli

<400> 17
atgagtagta aagaacagaa aacgcctgag gggcaagccc cggaaagaaat tatcatggat 60
cagcacgaag agattgaggg agttgagcca gaagcttctg ctgagcaggt ggatccgcgc 120
gatgaaaaag ttgcgaatct cgaagctcag ctggctgaag cccagaccgg tgaacgtgac 180
ggcattttgc gtgtaaaaggc cgaaatggaa aacctgcgtc gtcgtactga actggatatt 240
gaaaaagccc acaaattcgc gctggagaaa ttcatcaacg aattgctgcc ggtgattgat 300
agcctggatc gtgcgttgg agtggctgtat aaagctaacc cggatatgtc tgcatggtt 360
gaaggcattt agctgacgt gaagtcgtat ctggatgtt tgcatggat ttggcttggaa 420
gtgatcgccg aaactaacgt cccactggac ccgaatgtgc atcaggccat cgcaatggtg 480
aatctgtatc acgttgcgc aggtaacgtt ctggcattt tgcagaaggg ttatagctg 540
aatggtcgtt aatggcgtgc ggcgtatgtt actgtacgtt aagcaaaagc ttaa 594

<210> 18
<211> 34
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 18
cgccggattc atgagtagta aagaacagaa aacg

34

<210> 19
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 19
aaaactgcag ttattaagct tttgcttcg ctacagt

37

<210> 20
<211> 2574
<212> DNA
<213> Escherichia coli

<400> 20
atgcgtctgg atcgttac taataaattc cagcttgctc ttgccatgc ccaatcaatt 60
gcactcgggc acgacaacca atttatcgaa ccacttcatt taatgacgc cctgctaat 120
caggaagggg gttcggttag tcctttatta acatccgctg gcataaatgc tggccagttg 180
cgcacagata tcaatcaggc attaaatcgat ttaccgcagg ttgaaggatc tgggtggat 240
gtccagccat cacagatctt ggtgcgcgtt cttaatctt ggcacaagct ggcgcaaaaaa 300
cgtggtgata actttatctc gtcagaactg ttcgttctgg cggcacttga gtctcgccgc 360
acgctggccg acatcctgaa agcagcagg ggcaccaccg ccaacattac tcaagcgtt 420
gaacaaatgc gtggaggtga aagcgtgaac gatcaaggatc ctgaagacca acgtcaggct 480
ttgaaaaat ataccatcga ctttaccgaa cgagccgaac agggcaaaact cgatccggtg 540
attggtcgtg atgaagaaat tcgcccgtacc attcaaggatc tgcaacgttgc tactaaaaat 600
aaccgggtac tgatttgta accccggctc ggtaaaactg ccatcgttgc aggtctggcg 660
cagcgttata tcaacggcga agtgcggaa gggttgaaag gccgccccgg actggcgctg 720
gatatggccg cgctgggtggc tggggcgaaa tatcgccgtg agtttgaaga acgtttaaaa 780
ggcgtgcttta acgatcttgc caaacaggaa ggcaacgttca tcctattttt cgacgaattt 840
cataccatgg tcggcgccgg taaagccgtt ggcgaatgg acgcccggaaa catgctgaaa 900
ccggcgctgg cgcgttgta attgcacttgc gtagtgttgc ctagcgttgc cgaatatcgc 960
cagtcatttggc aaaaagatgc tgcgttgcggaa cgtcgtttcc agaaatgtt tggttgcggag 1020
ccttcgttgc aagataccat tgcgttgc cgtggccttgc aagaacgttgc cgaatttgcac 1080
caccatgttgc aaattacttgc cccggcaatt gttgcaggcg cgacgttgc tcatcgctac 1140
attgctgacc gtcagctgccc ggataaaagcc atcgacatttgc tcgtatgcg agcatccagg 1200
atcgatgttgc agatgtacttcc aaaaccaggaa gaacttcgacc gacttcgatcg tcgtatcatc 1260
cagtcacaaatcc tggaaacaaca ggcgttaatgg aaagacttgc atgaagccgg taaaaaacgt 1320
ctggatatgc tcaacgaaga actgagcgttcc aaagaacgttgc agtactccgg gttagaagaa 1380
gagttggaaatcc cggggattcc ggtttcttc ggtacgttgc cattaaatgc ggaactggaa 1440
caggcgaaaa tcgttatttgc acaggcttcgc cgtgtgggggg accttggcgccg gatgtctgaa 1500
ctgcaatacg gcaaaatccc ggaactggaa aagcaacttgc aagccgcaac gcagctcgaa 1560
ggcaaaacta tgcgttgcggatcc gctgtatggaa gtcgttgttgc ggcggatccgcgaaa 1620
gcccgttggc cggggattcc ggtttcttc ggtacgttgc atgtggaaa gtcgttgttgcgaaa 1680
cgtatggggc aagaacttgc ccatcgttgc attggatcgttgc acgttgcggatccgcg 1740
tctaaccgttgc ttcgttgcggatcc cgtgtgggggg ctttgcgttgttgc gtcgttgttgc 1800
ttccgttgc tccgttgcggatcc tgggtgggggg aaaacaggatcc gtcgttgttgc gtcgttgttgc 1860
tttgcgttgttgc atagcgttgc ggcgttgttgc cgtatcgttgc ttcgttgttgc gtcgttgttgc 1920
cacttcgttgttgc ctcgttgttgc tgggtgggggg ccggatccgcg ttcgttgttgc gtcgttgttgc 1980
tacctgcgttgttgc aagcggttgcg tccgttgttgc tattccgttgc ttcgttgttgc tggatgttgc 2040
aaagcgatccgc tccgttgttgc caacatttgc ttcgttgttgc tggatgttgc gtcgttgttgc 2100

gacgggcaag ggagaacggt cgacttccgt aatacggcg tcattatgac ctctaacctc 2160
ggtccgatc tgattcagga acgcttcggt gaactggatt atgcgcacat gaaagagctg 2220
gtgctcggtg tggtaagcca taacttccgt ccggaattca ttaaccgtat cgatgaagtg 2280
gtggcttcc atccgctggg tgaacagcac attgcctcgat ttgcgcagat tcagttaaa 2340
cgctctgtaca aacgtctggta agaacgtggt tatgaaatcc acatttctgat cgaggcgctg 2400
aaactgtga gcgagaacgg ttacgatccg gtctatggtg cacgtcctct gaaacgtgca 2460
attcagcgc agatcgaaaa cccgctggca cagcaaatac tgtctggta attggttccg 2520
ggtaaagtga ttgcctgaa agttaatgaa gaccggatttgcggcgtcca gtaa 2574

<210> 21
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 21 34
aaaactgcag atgcgtctgg atcgtttaat

<210> 22
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 22 37
cccgaaaaac ttattactgg acggcgacaa tccggtc

PAGE:
02/11/2002

1

VERIFICATION SUMMARY REPORT
PATENT APPLICATION

DATE:
TIME:

15:27:07

INPUT SEQ: G:\CORE\IPLD\IDS\00100-
00199\00105us\Seq listing items\SEQUENCE LISTING.txt

GENERAL INFORMATION SECTION

3,<110> Roche Diagnostics GmbH
5,<120> Method for producing an active heterodimeric AMV-RT
in prokaryotic cells
7,<130> 5272/00/
9,<140>
10,<141>
12,<160> 22
14,<170> PatentIn Ver. 2.1

ERRORED LINES SECTION

STATISTICS SUMMARY

Application Serial Number:
Alpha or Numeric: Numeric
Application Class:
Application File Date:
Art Unit:
Software Application: PatentIn
Total Number of Sequences: 22
Total Nucleotides: 13698
Total Amino Acids: 1430
Number of Errors: 0
Number of Warnings: 0
Number of Corrections: 0