

Automating Model Validation

Using FMI and OMSimulator

Robert Hällqvist, Magnus Eek, Robert Braun, Petter Krus

Agenda

- Background and Introduction
 - Research projects
 - M&S of aircraft vehicle systems at Saab
- Automating Model Validation
 - Motivation
 - Enablers
- FMI-based digital twin
- Key Results and Conclusions

Research Projects

- Open Cyber-Physical System Model-Driven Certified Development (OPENCPS)*
 - Key innovation: Development of FMI runtime and master simulation framework supporting
 - Scalable and reliable co-simulation
 - Open source FMI Master Simulation Tool
- Compact and Efficient Platform
 - Identified key technology area
 - Identify and mature new technology and methodology
 - Capability to develop and evaluate new concepts quickly

*www.opencps.eu

Aircraft Vehicle Systems

- In civil and military aircraft
- Complex H/W & S/W
- Tightly integrated
- Highly interconnected
- Multiple tasks per system

Extensive use of M&S needed throughout system development

M&S of Aircraft Vehicle Systems

Test-Stations

- Level of Representation: measure of how well the test-station represents the unit under test
- Level of Integration:
 Measure of how many
 aircraft sub systems are
 represented

M&S Application Development Process

- Saab Handbook for Development of Simulation Models*
 - Describes the steps needed to ready models for export to simulator applications
 - Here, the specification activity includes formulation of intended use(s), model requirements etc.
 - Development comprises the assembly of components into a simulation model

M&S Application Development Process

- General to several levels of abstraction
 - Simulators consist of multiple models or other simulators
 - Models consisting of multiple modelled subsystem components
 - Sub-system components are built up of modelling library components

Model Validation

- Verification and Validation (V&V)
 - Verification: Is the simulation application built right?
 - Validation: Is the right simulation application built?
- Operational Domains (ODs) and how they relate to one and another
 - System of interest Operational Domain
 - System Specification
 - Model Operational Domain
 - Intended use->model specification

Model Validation

- Validation Experiments
 - Model validity with respect to model intended use
 - Domain of Validation (DoV)

AUTOMATING MODEL VALIDATION

Motivation

- Reasons for automation
 - Handle large amounts of data
 - Free engineers from repetitive work
 - Enable continous model validation
 - Introduce independence and objectivity

Enablers

Functional Mock-Up Interface

The functional Mock-up Interface (FMI)*

- Standardization effort commenced in the EU financed research project (MODELISAR)
- Specifies a generic format for export of model executables, Functional Mock-up Units (FMUs)
 - FMUs for co-simulation
 - FMUs for model exchange
 - Source code, grey box, black box
- Standardized C API for FMU execution
- Standardized interface description xml schema
- FMI 2.0 Supported by ~50 commercial and open-source tools

Enablers

System Structure and Parameterization (SSP)*

- Under development as a Modelica Association Project
 - Standardized export of simulators
- First official release in March 2019
- SSD:
 - Standardized xml schema for integration and configuration specification of connected models
- SSV
 - Standardized xml schema for specification of the parameters of connected models
- SSP
 - Package containing SSD along with its referenced resources

EnablersOMSIMULATOR

- Open-source
 - Shipped with OpenModelica*
 - Available on github**
- Scripting
 - Lua, Python, C++,
 OM
- Graphical Editing
 - OpenModelica, Papyrus
- Information exchange
 - FMI, SSP

FMI-based Digital Twin

Compact and efficient platform

Automated model validation

-Outlook

Identified areas of model improvment, functionality and representation

Automated model validation

-Outlook

Identified areas of model improvement, functionality and representation

Automated model validation

-Outlook

- Physics-based modeling
 - Standardized export and integration
- Flight test
 - Trigger V&V framework iteration
- Central model storage
 - Models are passed on to storage along with incorporated V&V info
- Simulator applications
- Simulator credibility assessment
 - On-line
 - Connection to latest info from V&V framework

Key Results and Conclusions

- Key enablers advancing the targeted state-ofthe-art in physics-based M&S have been identified, developed/progressed, and evaluated
 - OMSimulator
 - FMI standard update
 - Interoperability
- Prototype of FMI-based digital twin developed and launched at Saab
 - Successively approach automated V&V and anomaly detection
- Continuation of research established via NFFP7-Call 2 and ITEA

Thank you!!

