

CHEMISTRY

Practice written examination

DATA BOOK AND ANSWER SHEET

Instructions

This data book is provided for your reference.

A question and answer book is provided with this data book.

At the end of the examination

Place the answer sheet for multiple-choice questions inside the front cover of your question book.

You may keep the data book.

Table of contents

		Page
1.	Periodic table of the elements	3
2.	Electrochemical series	4
3.	Chemical relationships	5
4.	Physical constants and standard values	5
5.	Unit conversions	6
6.	Metric (including SI) prefixes	6
7.	Acid-base indicators	6
8.	Representations of organic molecules	7
9.	Formulas of some fatty acids	7
10.	Formulas of some biomolecules	8–9
11.	Heats of combustion of common fuels	10
12.	Heats of combustion of common blended fuels	10
13.	Energy content of food groups	10
14.	Characteristic ranges for infra-red absorption	11
15.	¹³ C NMR data	11
16.	¹ H NMR data	12-13
17	2-amino acids (α-amino acids)	14_15

1. Periodic table of the elements

2 He 4.0 helium	01 S	20.2 neon	18 Ar 39.9	argon	36 Kr	83.8	krypton	54 Xe	131.3	xenon 86	Rn	(222) radon	118	$_{ m go}$	(294)	oganesson
	9	19.0 fluorine	17 Cl 35.5	chlorine	35 Br	6.67	bromine	53	126.9	sodine 85	¥	(210) astatine	117	Ts	(294)	tennessine
	& C	16.0 oxygen	16 S 32.1	sultur	34	79.0	selenium	52 Te	127.6	tenumum 84	P0	(210) polonium	116	Ľ	(292)	livermorium
	r 2	14.0 nitrogen	15 P	phosphorus	33 As	74.9	arsenic	5 S	121.8	antimony	B S	209.0 bismuth	115	Mc	(588)	moscovium
	9	12.0 carbon	14 Si 28.1	silicon	32	72.6	germanium	S. S.	118.7	un 68	Pb	207.2 lead	114	E	(289)	flerovium
	v x	10.8 boron	13 Al 27.0	aluminium	<u>ن</u> ع	69.7	gallium	49 In	114.8	manum 81	E [204.4 thallium	113	Nh	(280)	nihonium
					30 Zn	65.4	zinc	48 Cd	112.4	cadmium	Hg	200.6 mercury	112	$C_{\mathbf{n}}$	(285)	copernicium
	symbol of element	name of element			29	63.5	copper	47 A o	107.9	79 Z	Au	197.0 gold	111	Rg	(272)	roentgenium
		197.0 gold name			% Z	58.7	nickel	46 Pd	106.4	panadum 78	L S	195.1 platinum	110	Ds	(271)	darmstadtium
	L				27	58.9	cobalt	45 Rh	102.9	rnodium 77	ľ	192.2 irridium	109	Mt	(268)	meitnerium
	atomic number	relative atomic mass			26 Fe	55.8	iron	44 Ru	101.1	rumennum 76	os O	190.2 osmium	108	Hs	(267)	hassium
		ū			25 Mn	54.9	manganese	43 Tc	(86)	recnneuum 75	Re	186.2 rhenium	107	Bh	(264)	bohrium
					2 4	52.0	chromium	42 Mo	96.0	molybdenum 74	: A	183.8 tungsten	106	Sa	(566)	seaborgium
					23 V	50.9	vanadium	4 Z	92.9	miobium 73	Ta	180.9 tantalum	105			
					22 T.	47.9	titanium	40 7.7	91.2	Zirconium	H	178.5 hafnium	104	Rf	(261)	rutherfordium
					21	45.0	scandium	39	88.9	yarınım	57–71	lanthanoids		89–103	actinoids	_
	4 Re	9.0 beryllium	12 Mg 24.3	magnesium	20	40.1	calcium	38 r	87.6	Strontum	Ba	137.3 barium	88	Ra	(226)	radium
1 H 1.0 hydrogen	3	6.9 lithium	11 Na 23.0	wnipos	19 7	39.1	potassium	37 Rh	85.5	rubidium	కి చ	132.9 caesium	87	Fr	(223)	francium

71	Lu	175.0	lutetium
70	ΧP	173.1	ytterbium
69	Tm	168.9	thulium
89	Er	167.3	erbinm
29	Ho	164.9	holmium
99	Dy	162.5	dysprosium
65	Tb	158.9	terbium
2	P.S	157.3	gadolinium
63	Eu	152.0	europium
62	Sm	150.4	samarium
19	Pm	(145)	promethium
09	Nd	144.2	neodymium
59	Pr	140.9	praseodymium
28	Ce	140.1	cerium
57	La	138.9	lanthanum

103	Lr	(262)	rencium
			um law
102	N _o	(259)	n nobeli
101	Md	(258)	mendeleviun
100	Fm	(257)	fermium
66	Es	(252)	einsteinium
86	Cf	(251)	californium
97	Bk	(247)	berkelium
96	Cm	(247)	curium
95	Am	(243)	americium
94	Pu	(244)	plutonium
93	ď	(237)	neptunium
92	Ω	238.0	uranium
91	Pa	231.0	protactinium
90	Th	232.0	thorium
68	Ac	(227)	actinium

The value in brackets indicates the mass number of the longest-lived isotope.

2. Electrochemical series

Reaction	Standard electrode potential (E ⁰) in volts at 25 °C
$F_2(g) + 2e^- \implies 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \implies 2H_2O(1)$	+1.77
$Au^{+}(aq) + e^{-} \implies Au(s)$	+1.68
$Cl_2(g) + 2e^- \implies 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \implies 2H_2O(1)$	+1.23
$Br_2(l) + 2e^- \implies 2Br^-(aq)$	+1.09
$Ag^{+}(aq) + e^{-} \implies Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \implies Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \implies H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \implies 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \implies 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \implies \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^{+}(aq) + 2e^{-} \implies H_2S(g)$	+0.14
$2H^+(aq) + 2e^- \implies H_2(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \Rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \implies \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^- \implies Ni(s)$	-0.25
$Co^{2+}(aq) + 2e^{-} \implies Co(s)$	-0.28
$Cd^{2+}(aq) + 2e^{-} \implies Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \implies Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	-0.76
$2H_2O(1) + 2e^- \implies H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^- \implies Mn(s)$	-1.18
$Al^{3+}(aq) + 3e^{-} \implies Al(s)$	-1.66
$Mg^{2+}(aq) + 2e^- \implies Mg(s)$	-2.37
$Na^{+}(aq) + e^{-} \implies Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \implies Ca(s)$	-2.87
$K^+(aq) + e^- \implies K(s)$	-2.93
$Li^{+}(aq) + e^{-} \rightleftharpoons Li(s)$	-3.04

©Edrolo 2020

4

3. Chemical relationships

Name	Formula
number of moles of a substance	$n = \frac{m}{M}; n = cV; n = \frac{V}{V_m}$
universal gas equation	pV = nRT
calibration factor (CF) for bomb calorimetry	$CF = \frac{VIt}{\Delta T}$
heat energy released in the combustion of a fuel	$q = mc\Delta T$
enthalpy of combustion	$\Delta H = \frac{q}{n}$
electric charge	Q = It
number of moles of electrons	$n(e^{-}) = \frac{Q}{F}$
% atom economy	$\frac{\text{molar mass of desired product}}{\text{molar mass of all reactants}} \times \frac{100}{1}$
% yield	$\frac{\text{actual yield}}{\text{theoretical yield}} \times \frac{100}{1}$

4. Physical constants and standard values

Name	Symbol	Value
Avogadro constant	$N_{\rm A}$ or L	$6.02 \times 10^{23} \text{ mol}^{-1}$
charge on one electron (elementary charge)	е	$-1.60 \times 10^{-19} \mathrm{C}$
Faraday constant	F	96 500 C mol ⁻¹
molar gas constant	R	8.31 J mol ⁻¹ K ⁻¹
molar volume of an ideal gas at SLC (25 °C and 100 kPa)	$V_{ m m}$	24.8 L mol ⁻¹
specific heat capacity of water	С	$4.18 \text{ kJ kg}^{-1} \text{ K}^{-1} \text{ or } 4.18 \text{ J g}^{-1} \text{ K}^{-1}$
density of water at 25 °C	d	997 kg m $^{-3}$ or 0.997 g mL $^{-1}$

5

5. Unit conversions

Measured value	Conversion
0 °C	273 K
100 kPa	750 mm Hg or 0.987 atm
1 litre (L)	$1~\text{dm}^3~\text{or}~1 \times 10^{-3}~\text{m}^3~\text{or}~1 \times 10^3~\text{cm}^3~\text{or}~1 \times 10^3~\text{mL}$

6. Metric (including SI) prefixes

Metric (including SI) prefixes	Scientific notation	Multiplying factor
giga (G)	109	1 000 000 000
mega (M)	10^{6}	1 000 000
kilo (k)	10^{3}	1000
deci (d)	10-1	0.1
centi (c)	10-2	0.01
milli (m)	10-3	0.001
micro (μ)	10 ⁻⁶	0.000001
nano (n)	10 ⁻⁹	0.000000001
pico (p)	10 ⁻¹²	0.000000000001

7. Acid-base indicators

Name	pH range	Colour change from lower pH to higher pH in range
thymol blue (1st change)	1.2–2.8	$red \rightarrow yellow$
methyl orange	3.1-4.4	$red \rightarrow yellow$
bromophenol blue	3.0-4.6	yellow → blue
methyl red	4.4–6.2	$red \rightarrow yellow$
bromothymol blue	6.0–7.6	yellow → blue
phenol red	6.8-8.4	$yellow \rightarrow red$
thymol blue (2nd change)	8.0–9.6	yellow → blue
phenolphthalein	8.3–10.0	colourless → pink

8. Representations of organic molecules

The following table shows different representations of organic molecules, using butanoic acid as an example.

Formula	Representation
molecular formula	$C_4H_8O_2$
structural formula	H H H O H-C-C-C-C O-H
semi-structural (condensed) formula	CH ₃ CH ₂ CH ₂ COOH or CH ₃ (CH ₂) ₂ COOH
skeletal structure	O H

9. Formulas of some fatty acids

Name	Formula	Semi-structural formula
lauric	C ₁₁ H ₂₃ COOH	CH ₃ (CH ₂) ₁₀ COOH
myristic	C ₁₃ H ₂₇ COOH	CH ₃ (CH ₂) ₁₂ COOH
palmitic	C ₁₅ H ₃₁ COOH	CH ₃ (CH ₂) ₁₄ COOH
palmitoleic	C ₁₅ H ₂₉ COOH	CH ₃ (CH ₂) ₄ CH ₂ CH=CHCH ₂ (CH ₂) ₅ CH ₂ COOH
stearic	C ₁₇ H ₃₅ COOH	CH ₃ (CH ₂) ₁₆ COOH
oleic	C ₁₇ H ₃₃ COOH	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH
linoleic	C ₁₇ H ₃₁ COOH	$CH_3(CH_2)_4(CH=CHCH_2)_2(CH_2)_6COOH$
linolenic	C ₁₇ H ₂₉ COOH	CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COOH
arachidic	C ₁₉ H ₃₉ COOH	CH ₃ (CH ₂) ₁₇ CH ₂ COOH
arachidonic	C ₁₉ H ₃₁ COOH	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₃ CH=CH(CH ₂) ₃ COOH

10. Formulas of some biomolecules

$$\begin{array}{c} O \\ O \\ OH \\ CH_2 \\ HO \end{array}$$

vitamin C (ascorbic acid)

α-glucose

sucrose

vitamin D₃ (cholecalciferol)

glycerol

 β -fructose

α-lactose

$$\begin{array}{c} & & & \\ & &$$

amylopectin (starch)

amylose (starch)

11. Heats of combustion of common fuels

The heats of combustion in the following table are calculated at SLC (25 °C and 100 kPa) with combustion products being CO_2 and H_2O . Heat of combustion may be defined as the heat energy released when a specified amount of a substance burns completely in oxygen and is, therefore, reported as a positive value, indicating a magnitude. Enthalpy of combustion, ΔH , for the substances in this table would be reported as negative values, indicating the exothermic nature of the combustion reaction.

Fuel	Formula	State	Heat of combustion (kJ g ⁻¹)	Molar heat of combustion (kJ mol ⁻¹)
hydrogen	H ₂	gas	141	282
methane	CH ₄	gas	55.6	890
ethane	C ₂ H ₆	gas	51.9	1560
propane	C ₃ H ₈	gas	50.5	2220
butane	C ₄ H ₁₀	gas	49.7	2880
octane	C ₈ H ₁₈	liquid	47.9	5460
ethyne (acetylene)	C ₂ H ₂	gas	49.9	1300
methanol	CH ₃ OH	liquid	22.7	726
ethanol	C ₂ H ₅ OH	liquid	29.6	1360

12. Heats of combustion of common blended fuels

Blended fuels are mixtures of compounds with different mixture ratios and, hence, determination of a generic molar enthalpy of combustion is not realistic. The values provided in the following table are typical values for heats of combustion at SLC (25 °C and 100 kPa) with combustion products being CO₂ and H₂O. Values for heats of combustion will vary depending on the source and composition of the fuel.

Fuel	State	Heat of combustion (kJ g ⁻¹)
kerosene	liquid	46.2
diesel	liquid	45.0
natural gas	gas	54.0

13. Energy content of food groups

Food	Heat of combustion (kJ g ⁻¹)
fats and oils	37
protein	17
carbohydrate	16

14. Characteristic ranges for infra-red absorption

Bond	Wave number (cm ⁻¹)	Bond	Wave number (cm ⁻¹)
C-Cl (chloroalkanes)	600–800	C=O (ketones)	1680–1850
C-O (alcohols, esters, ethers)	1050–1410	C=O (esters)	1720–1840
C=C (alkenes)	1620–1680	C-H (alkanes, alkenes, arenes)	2850–3090
C=O (amides)	1630–1680	O–H (acids)	2500–3500
C=O (aldehydes)	1660–1745	O–H (alcohols)	3200–3600
C=O (acids)	1680–1740	N–H (amines and amides)	3300–3500

15. ¹³C NMR data

Typical 13 C shift values relative to TMS = 0 These can differ slightly in different solvents.

Type of carbon	Chemical shift (ppm)
R-CH ₃	8–25
R-CH ₂ -R	20–45
R ₃ –CH	40–60
R ₄ –C	36–45
R-CH ₂ -X	15–80
R ₃ C–NH ₂ , R ₃ C–NR	35–70
R-CH ₂ -OH	50–90
RC≡CR	75–95
R ₂ C=CR ₂	110–150
RCOOH	160–185
R $C = 0$	165–175
R $C=0$	190–200
R ₂ C=O	205–220

16. ¹H NMR data

Typical proton shift values relative to TMS = 0

These can differ slightly in different solvents. The shift refers to the proton environment that is indicated in bold letters in the formula.

Type of proton	Chemical shift (ppm)
R-CH ₃	0.9–1.0
R-CH ₂ -R	1.3–1.4
RCH=CH-C H ₃	1.6–1.9
R ₃ -CH	1.5
CH_3 — C O OR OR OR OR OR OR OR	2.0
R CH ₃	2.1–2.7
$R-CH_2-X$ (X = F, Cl, Br or I)	3.0-4.5
R-С H ₂ -ОH, R ₂ -С H -ОН	3.3–4.5
R — C $NHCH_2R$	3.2
R—O—CH ₃ or R—O—CH ₂ R	3.3–3.7
O C-CH ₃	2.3
$R - C$ OCH_2R	3.7–4.8
R-O- H	1–6 (varies considerably under different conditions)
R-NH ₂	1–5
RHC == CHR	4.5–7.0
ОН	4.0–12.0

Type of proton	Chemical shift (ppm)
Н	6.9–9.0
$R \longrightarrow C$ N N H C H C	8.1
R—C H	9.4–10.0
R—CO—H	9.0–13.0

17. 2-amino acids (α-amino acids)

The table below provides simplified structures to enable the drawing of zwitterions, the identification of products of protein hydrolysis and the drawing of structures involving condensation polymerisation of amino acid monomers.

Name	Symbol	Structure
alanine	Ala	CH ₃
		H ₂ N—CH—COOH
arginine	Arg	NH II
		$\begin{array}{c c} \operatorname{CH}_2 & \operatorname{CH}_2 & \operatorname{NH} & \operatorname{C} & \operatorname{NH}_2 \\ \end{array}$
		H ₂ N—CH—COOH
asparagine	Asn	O
		$\begin{array}{c} O \\ \parallel \\ CH_2 \longrightarrow C \longrightarrow NH_2 \\ \parallel \\ \end{array}$
		H ₂ N—CH—COOH
aspartic acid	Asp	CH ₂ —COOH
		H ₂ N—CH—COOH
cysteine	Cys	CH ₂ —SH
		H ₂ N—CH—COOH
glutamic acid	Glu	СН ₂ —— СН ₂ —— СООН
		H ₂ N—CH—COOH
glutamine	Gln	O
		$\begin{array}{c} \operatorname{CH}_2 \longrightarrow \operatorname{CH}_2 \longrightarrow \operatorname{C} \longrightarrow \operatorname{NH}_2 \end{array}$
		H ₂ N—CH—COOH
glycine	Gly	H ₂ N—CH ₂ —COOH
histidine	His	N
		CH ₂ N
		H ₂ N—CH—COOH
isoleucine	Ile	CH ₃ ——CH——CH ₂ ——CH ₃
		H ₂ N—CH—COOH

Name	Symbol	Structure
leucine	Leu	CH ₃ ——CH——CH ₃
		H_2N —CH—COOH
lysine	Lys	$\begin{array}{c} \operatorname{CH}_2 \longrightarrow \operatorname{CH}_2 \longrightarrow \operatorname{CH}_2 \longrightarrow \operatorname{NH}_2 \\ \\ \operatorname{H}_2\operatorname{N} \longrightarrow \operatorname{CH} \longrightarrow \operatorname{COOH} \end{array}$
methionine	Met	CH_2 — CH_2 — S — CH_3
phenylalanine	Phe	H ₂ N—ĊH—COOH
		H_2N — CH — $COOH$
proline	Pro	СООН
serine	Ser	СН ₂ — ОН Н ₂ N—СН—СООН
threonine	Thr	СН ₃ — СН — ОН Н ₂ N — СН — СООН
tryptophan	Trp	CH ₂
tyrosine	Tyr	H ₂ N — ĊН — СООН — СН ₂ — ОН — Н ₂ N — СН — СООН
valine	Val	CH ₃ —CH—COOH CH ₃ —CH—CH ₃ H ₂ N—CH—COOH

15

Chemistry Units 3&4

Practice written examination

MULTIPLE-CHOICE ANSWER SHEET

DATE:	-
STUDENT NAME:	
TEACHER NAME:	

Instructions

Use a **pencil** for **all** entries. For each question, shade the box which indicates your answer.

Marks will **not** be deducted for incorrect answers.

No mark will be given if more than **one** answer is completed for any question.

If you make a mistake, **erase** the incorrect answer - **do not** cross it out.

All answers must be completed like this example: $|A| \parallel |C| |D|$

