Operacje na obrazach (II)

WYKŁAD 3 Dla studiów niestacjonarnych 2020/2021

Dr hab. Anna Korzyńska, prof. IBIB PAN

Operacje punktowe (lokalne, jednopunktowe) powtórzenie Operacje punktowe jednoargumentowe

Wartość piksla obrazu wyjściowego zależy od wartości piksla o takich samych współrzędnych na obrazie wejściowym (nie uwzględniamy sąsiedztwa)

Wykonywanie po wierszach, "piksel po pikselu"

Operacje punktowe Proste: operacje jednoargumentowe – transformacje jasności nielinowe - wykład 2 slajdy 50-67 operacje arytmetyczne: jedno-, dwu- i wieloargumentowe manipulowanie histogramem (liniowe) - wykład 2 slajdy 50-67 Zaawansowane: metody progowania - wykład 2 slajdy 67-73 wyrównywanie histogramu - wykład 2 slajdy 60 – dokładniej na APO klasyfikacja punktów obrazu – clustering, pseudokoloryzacja – tylko na projektach z APO

Operacje punktowe wieloargumantowe

Realizacja:

- 1. Operacje (Calculation, Operation)
- 2. Na warstwach (add, substract, difference,..)

Operacje jednopunktowe dwuargumentowe i wieloargumentowe

Są to operacje, w których na wartość zadanego piksela obrazu wynikowego o współrzędnych (i,j) mają wpływ tylko wartości pikseli obrazów pierwotnych (argumentów) o współrzędnych (i,j):

$$c_{ij} = f_D(a_{ij}, b_{ij})$$

 $f_{\cal D}$ - operacja **arytmetyczna** lub **logiczna** (dodawanie, odejmowanie, mnożenie, dzielenie, NOT, OR, AND, XOR...)

 $c_{i,j}$ - wartość piksela obrazu wynikowego (w przypadku otrzymania ułamka następuje zaokrąglenie do najbliższej liczby całkowitej(lub obcięcie))

 $a_{i,i}$, $b_{i,i}$ - wartości pikseli obrazów pierwotnych

8

Operacje punktowe wieloargumentowe

Wykonywane na dwóch lub większej liczbie obrazów

- Dodawanie (uśrednianie)
- Odejmowanie (różnica i różnica bezwzględna)
- · Mnożenie
- Dzielenie
- AND
- OR
- XOR
- Uśrednienie obrazów

Dodatkowo jednoargumentowe - pominięte

- NOT
- Pseudokolor

Dodawanie obrazów

Przekroczenie zakresów poziomów

- szarości regulujemy:
- Wagami (np. równymi uśrednianie, nierównymi)
- Funkcją modulo,
 Skalowaniem wyniku (min, max) → (0,Lmax)

Zastosowanie do: łączenia masek i efekty nałożenia obiektów i przenikania

10

Operacje jednopunktowe dwuargumentowe arytmetyczne: uśrednianie (dodawanie ze skalowaniem)

Przykładowe zastosowanie: redukcja zakłóceń

Odejmowanie obrazów

różnica

Przekroczenie zakresów poziomów szarości regulujemy Funkcją modulo,

Skalowaniem wyniku

różnica bezwzględna

Obraz po liniowym rozciągnięciu histogramu do podwojenia zakresu

Zastosowanie do:

- Pokazania różnicy między obrazami, zwłaszcza w przypadku, gdy porównywane obrazy są nierozróżnialne wzrokowo
- 2. Angiografii różnicowej

Najczęściej wykonywana operacja arytmetyczna na obrazach

Operacje logiczne

Poziom jasności n jest zapisany w kodzie dwójkowym jako kombinacja ośmiu 0 i 1:

Czerń 00000000 Biel 11111111 127 10000000 Operacje logiczne:

NOT NOT(1)=0; NOT(0)=1

AND 1=1; 0 AND 0=0; 1 AND 0=0; 0 AND 1=0
OR 1 OR 1=1; 0 OR 0=0; 1 OR 0=1; 0 OR 1=1
XOR 1 XOR 1=0; 0 XOR 0=0; 1 XOR 0=1; 0 XOR 1=1

19

Jak wykonujemy operacje logiczne

W operacjach jednopunktowych dwuargumentowych logicznych na obrazach działania prowadzone są na odpowiednich pikselach obrazów stanowiących argumenty danej operacji.

W szczególności działania prowadzone są na bitach o tej samej wadze.

20

Operacja logiczna AND na obrazach • Maskowanie, czyli selekcja fragmentów obrazów, zwanych ROI (ang. region of interest) na podstawie binarnej maski • Zacieśnianie maski • Przygotowanie do kodowanie informacji (czyszczenie)

Operacje punktowe - podsumowanie

- · Zalety: łatwe do implementacji i szybkie
 - Implementowane przez LUT (manipulacje na palecie szarości lub barw) bo dziedzina funkcji jest skończona
 - Dla różnowartościowych funkcji (bezstratnych) istniej przekształcenie odwrotne
 - Dla nieróżnowartościowych funkcji (stratnych) nie istniej przekształcenie odwrotne – większość praktycznie stosowanych
- Wady: ignorują przestrzenną zależność wartości intensywności w obrazie tzn. lokalną charakterystykę przestrzenną obrazu

31

Operacje sąsiedztwa (kontekstowe o małym otoczeniu)

Operacje kontekstowe (sąsiedztwa)

Są to operacje, w których na wartość zadanego piksela obrazu wynikowego współrzędnych (i,j) mają wpływ wartości:

- pikseli o współrzędnych (i,j) obrazu pierwotnego p , oraz
- pikseli go otaczających, czyli tzw. otoczenia

$$[q(i,j)] = f[p(i,j), p(i-1,j-1), p(i+1,j+1),.]$$

Otoczenie
Otoczenie definiujemy określając jego:

- Kształt: kwadratowe, prostokątne, kołowe

- Wielkość: 3x3, 5x5, 7x7, 9x9, 11x11, itd..

Symetria otoczenia

Proces liczenia operacji sąsiedztwa Problem brzegów marginesów Wynik operacji zależy od wielkości maski, ale głównie od funkcji zdefiniowanej w punkcie i jego otoczeniu.

Działania matematyczne uwzględniające sąsiedztwo

 Całkowanie (sumowanie, uśrednianie)

- Różniczkowanie (pierwsza pochodna)
- Laplasjany (druga pochodna)

Funkcje operacji sąsiedztwa

- Wygładzanie (całkowanie przestrzenne)
 wytłumianie szumu
- Uwypuklające krawędzie (różniczkowanie przestrzenne) wydobywanie informacji przez zwiększenie kontrastu
- Konturowanie (operatory oparte na gradientach, laplasjany, różniczki przestrzenne) wydobywanie informacji przez wskazanie "zera"
- Analiza kształtu i położenia obiektów (morfologia matematyczna)

39

Matematyczny podział operacji sąsiedztwa

- Liniowe (oparte na pewnej liniowej operacji, polegającej na wykonaniu liniowej kombinacji wartości wybranych piksli obrazu wejściowego)
 - Są proste w implementacji, tak na poziomie oprogramowania, jak i procesorów sprzętowych.
 - Łączne i separowalne (rozdzielcze), przemienne.
 - Dają efekty odpowiadające manipulacji pewnymi zakresami częstotliwości.
- Nieliniowe (oparte na funkcjach nieliniowych, np. statystycznych, logicznych i morfologii matematycznej)
 - Są czasochłonne i często skomplikowane.
 - Mają bogatsze możliwości.
 - Nie można ich interpretować w kategoriach manipulowania tylko określonymi częstotliwościami

Operacje wygładzania stanowią praktyczną realizację filtracji dolnoprzepustowej (FD) i dzielą się na operacje filtracji liniowej i nieliniowej.

Operacje filtracji nieliniowej dzielą się na operacje filtracji logicznej i medianowej.

Operacje **wyostrzania** stanowią praktyczną realizację *filtracji górnoprzepustowej* (FG) i dzielą się na operacje filtracji *gradientowej* i *laplasjanowej*

41

Operacje wygładzania

Podstawowe zadanie wygładzania: usuwanie zakłóceń z obrazu

Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksela):

$$g(x,y) = \sum_{k=1}^{n} w_k f_k(x,y)$$

n - liczba punktów (pikseli) otoczenia wraz z pikselem przetwarzanym f(x,y) - wartość piksela o współrzędnych x,y obrazu pierwotnego g(x,y) - wartość piksela o współrzędnych x,y obrazu wynikowego w_k - waga k-tego piksela otoczenia

42

Przykłady macierzy wag i masek operacji filtracji liniowej

Macierz wag 1/10 1/10 1/10 1/10 1/10 2/10 1/10

1/10 | 1/10 | 1/10

1/16 2/16 1/16 2/16 4/16 2/16 1/16 2/16 1/16 Maska filtracji dolnoprzepustowej

Operacje wyostrzania

Metoda: konwolucja + maska filtracji górnoprzepustowej(FG).

 $\ensuremath{\mathbf{W}}$ wyostrzaniu stosuje się metody numeryczne aproksymujące pochodną.

Zadanie wyostrzania:

- podkreślenie na obrazie konturów obiektów
- podkreślenie na obrazie punktów informatywnych (np. wierzchołki dla wielokątów, zakończenia, skrzyżowania, rozgałęzienia linii dla rysunków technicznych, wykresów lub pisma).

Inne zadania wyostrzania: wydobycie i uwypuklenie krawędzi obiektu.

46

Detekcja (wykrywanie) krawędzi (edge detection)

Jest to technika segmentacji obrazu, 4 4 4 8 8 8 8 8 polegająca na znajdowaniu pikseli 4 4 4 8 8 8 8 8 8 krawędziowych przez sprawdzanie ich sąsiedztwa.

Krawędź

Zbiór pikseli na krzywej mający taką właściwość, że piksele w ich sąsiedztwie, lecz po przeciwnych stronach krzywej mają różne poziomy jasności.

Cel detekcji

znalezienie lokalnych nieciągłości w poziomach jasności obrazu oraz granic obiektów zawartych w obrazie.

Opis matematyczny operacji

wyostrzania

Model krawędzi: linia prosta **separująca** dwa obszary o różnej *intensywności (jasności)* I₁ i I₂.

Użycie funkcji u(z) do matematycznego opisu krawędzi

$$u(z) = \begin{cases} 1 & dla \ z > 0 \end{cases}$$
 Jeśli $\delta(t)$ - impuls Diraca, to:
$$u(z) = \begin{cases} \frac{1}{2} & dla \ z = 0 \end{cases}$$
 $u(z) = \int\limits_{-\infty}^{z} \delta(t) dt$ Założenia:
$$0 & dla \ z < 0$$

Krawędź leży wzdłuż linii prostej opisanej równaniem: $x \sin \varphi - y \cos \varphi + \rho = 0$ (postać normalna prostej)

Intensywność obrazu:

 $f(x, y) = I_1 + (I_2 - I_1) u(x \sin \varphi - y \cos \varphi + \rho)$

Cyfrowa wersja gradientu i laplasjanu

Cyfrowa wersja gradientu

Pochodna pionowa G_x funkcji f(x,y)

$$\begin{aligned} G_x &= \left[f(x+1,y-1) + 2f(x+1,y) + f(x+1,y+1) \right] - \\ &- \left[f(x-1,y-1) + 2f(x-1,y) + f(x-1,y+1) \right] \end{aligned}$$

Pochodna pozioma G_v funkcji f(x,y)

$$\begin{aligned} & \det \left[f(x-1,y+1) + 2f(x,y+1) + f(x+1,y+1) \right] - \\ & - \left[f(x-1,y-1) + 2f(x,y-1) + f(x+1,y-1) \right] \end{aligned}$$

$$G(x,y) = \sqrt{G_x^2 + G_y^2}$$

maska:	y-1	у
x-1	-1	0
x	-2	0

1

2

Cyfrowa wersja laplasjanu

L(x, y) = [f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1) - 4f(x, y)]

Własności:

Gradient: wrażliwy na intensywność zmiany; używany tylko do detekcji krawędzi; Laplasjan: podaje dodatkową informację o położeniu piksela względem krawędzi (po jasnej czy po ciemnej stronie).

<u>Uwaga:</u> Dla operacji wyostrzania współczynnik maski K=1

Metody operacji na pikselach wchodzących w skład skrajnych kolumn i wierszy

- 1. Pozostawienie wartości pikseli bez zmian
- 2. Wartości pikseli są nieokreślone (xxxxxxxxxx)
- 3. Nadanie pikselom wartości arbitralnie zadanych przez użytkownika (np. same wartości "0", "15", "10" itd.
- 4. Operacje z zastosowaniem kolumn i wierszy pomocniczych (zdublowanie (powielenie) skrajnych wierszy i kolumn)
- 5. Operacje z wykorzystaniem pikseli z istniejącego sąsiedztwa.
 - Lewa skrajna kolumna (oprócz pikseli górnego i dolnego rogu) kierunki 0,1,2,6,7,
 - Lewa skrajna kolumna piksel w górnym rogu kierunki 0, 6,7, Lewa skrajna kolumna (piksel w dolnym rogu) kierunki 0,1,2,

 - Prawa skrajna kolumna (oprócz pikseli górnego i dolnego rogu) kierunki
 - Prawa skraina kolumna piksel w górnym rogu kierunki 4.5.6.
 - Prawa skrajna kolumna (piksel w dolnym rogu) kierunki 2,3,4,
 - Górny skrajny wiersz (oprócz pikseli z lewego i prawego rogu) kierunki 4,5,6,7,0
 - Dolny skrajny wiersz (oprócz pikseli z lewego i prawego rogu) kierunki 0,1,2,3,4

Zdublowanie/powielenie skrajnych wierszy i kolumn

- -4 -4 -4
- Odbicie v2 (reflect_101) edcb|abcdef|edcb
- Odbicie v1 (reflect) edcba|abcdef|fedcb
- Powielenie (replicate) aaaa abcde eeee
- Stała n (constant) nnnn | abcdef | nnnn

Metody skalowania tablic obrazów wynikowych

Cel skalowania: sprowadzanie wartości pikseli do zakresu [0, (M-1)]

Metoda proporcjonalna

$$g'(x,y) = \frac{g(x,y) - g(x,y)_{\min}}{g(x,y)_{\max} - g(x,y)_{\min}} \cdot (M-1)$$

Równomierne przeskalowanie wszystkich pikseli obrazu. Końcowy efekt: obraz z zakresu [0, (M-1)]

Metoda trójwartościowa

$$g'(x,y) = \begin{cases} 0 & \text{dla } g(x,y) < 0 \\ E[(M-1)/2] & \text{dla } g(x,y) = 0 \\ M-1 & \text{dla } g(x,y) > 0 \end{cases}$$

obrazy o jednolitym tle i dobrze widocznych objektach - np. obrazy binarne. Efekt: czarno-biała krawędź na szarym tle.

Metoda obcinająca

$$g'(x,y) = \begin{cases} 0 \text{ dla } g(x,y) < 0 \\ g(x,y) \text{ dla } 0 \le g(x,y) \le M - 1 \\ M - 1 \text{ dla } g(x,y) > M - 1 \end{cases}$$

Filtracja statystyczna

Filtry: medianowy, maksymalny, minimalny, oparty na najbardziej prawdopodobnej wartości

Filtry działają na otoczeniu, ale ich wpływ na wartość w analizowanym punkcie po filtracji <u>wyraża się warunkiem nie</u>

Mediana – wartość środkowa w uporządkowanym ciągu liczb Maksymalna – największa w uporządkowanym ciągu liczb Minimalna – najmniejsza w uporządkowanym ciągu liczb Najbardziej prawdopodobna – najczęściej występująca w otoczeniu

Mediana i pozostałe filtry statystyczne

0, 0, 0, 0, $\underline{0}$, 1, 1, 2, 3 mediana=0, min=0, max=3, najbardziej prawdopodobna=0

0, 0, 0, 0, <u>1</u>, 2, 3, 3, 3 mediana=1, min=0, max=3, najbardziej prawdopodobna=0

0, 0, 1, 1, <u>2</u>, 2, 3, 3, 3 mediana=2, min=0, max=3, najbardziej prawdopodobna=3

0, 0, 1, 1, 2, 2, 3, 3, 3 mediana=2, min=0, max=3, najbardziej prawdopodobna=3

Metoda filtracji medianowej (wygładzanie medianowe)

p(i,j): q(i,j): p(2,2): 1 1 12 13 14 14 14 15 19 p(2,3): 0 1 11 12 13 13 14 14 15 p(2,4): 0 11 12 12 12 13 13 14 14 p(3,2): 0 0 1 1 1 1 p(3,3): 0 0 1 1 1 p(3,4): 0 1 1 10 11 p(4,2): 0 0 0 0 0 p(4,3): 0 0 0 0 1

p(4,4): 0 0 1 1 1

q(i,j):				
15	15	14	13	14
14	14	13	12	12
1	1	1	11	12
0	0	1	1	10
0	0	0	0	1
	14 1 0	15 15 14 14 1 1 0 0	15 15 14 14 14 13 1 1 1 0 0 1	15 15 14 13 14 14 13 12 1 1 1 11 0 0 1 1

Przykładowy obraz pierwotny

Obraz wynikowy

z pozostawieniem wartości pikseli marginesów -bez zmian

Filtracja medianowa (wygładzanie medianowe)

Usuwanie zakłóceń bez rozmywania krawędzi (por. metodę filtracji liniowej)

Mediana - wartość środkowa (w sensie położenia w ciągu wartości uporządkowanych)

