Определение доходности облигаций по данным ММВБ

Куликова Наталия Владимировна

Осебе

- Куликова Наталия Владимировна
- г. Москва
- Высшее экономическое
- Опыт в Сбере (Корпоративный блок Московский и Среднерусский ТБ, кредитный инспектор, рассмотрение сделок по кредитованию юридических лиц, финансовый и комплексный анализ Заемщика/Группы/Холдинга, презентация кредитных сделок на КПКИ ТБ, ЦА, работа с проблемной задолженностью. Учетные системы СПАРК, CRM, EKC, PEGA, ЕФС / процессы НКП 2.0, К7М, Простые сделки
- 8 960 506 13 54
 - kulikova.n.vladimiro@sberbank.ru

Описание проекта

Суть проекта:

Провести оценку рынка рублевых облигаций по распределению купонной доходности, провести кластеризацию ценных бумаг по купонной доходности, предложить графическое представление полученных групп/кластеров.

Используемый функционал:

- Python 3
- Jupyter Notebook

Ссылка на репозиторий с кодом:

https://github.com/Natalia251976/PROJECT_DA

План

- 1.3агрузка данных с сайта ММВБ https://iss.moex.com/iss/apps/infogrid/emission/rates.csv
- 2. Работа с полученными данными:
 - Анализ
 - Очистка и перевод данных в нужный формат
- 3. Расчет показателей доходности
- 4. Построение диаграмм

Результат запроса к https://iss.moex.com/iss/apps/infogrid/emission/rates.csv Dataframe (Bond)

Ввод [1179]:	bor	nd.head()												
Out[1179]:		SECID	SHORTNAME	NAME	TYPENAME	ISIN	REGNUMBER	LISTLEVEL	FACEVALUE	FACEUNIT	ISSUESIZE		RTH2	
	0	AMUNIBB2AER2	UBANK11/22	UNIBANK OJSC Series 1	Корпоративные еврооблигации	AMUNIBB2AER2	NaN	3.0	100,0	USD	10000.0		14457,44	
	1	AMUNIBB2DER6	UBANK02/24	UNIBANK OJSC Series 1 21	Корпоративные еврооблигации	AMUNIBB2DER6	NaN	3.0	100,0	USD	33478.0		14983,58	
	2	CH0248531110	VTB-24 CHF	VTB CAPITAL S.A. 24 CHF	Корпоративные еврооблигации	CH0248531110	NaN	NaN	5000,0	CHF	70000.0	80	08520,36	
	3	CH0346828400	GAZ-21 CHF	GAZ CAPITAL SA 2.75 30/11/21	Корпоративные еврооблигации	CH0346828400	NaN	NaN	5000,0	CHF	100000.0	46	63890,63	3
	4	CH0374882816	GAZ-22 CHF	GAZ CAPITAL SA 2.25 19/07/22	Корпоративные еврооблигации	CH0374882816	NaN	NaN	5000,0	CHF	100000.0	46	60076,83	3

bond.shape (2697, 53)

Оставляем только рублевые облигации:

```
bond_rub = bond.drop(bond[bond['FACEUNIT']!='RUB'].index )
```

Результат анализа используемого Dataframe:

```
~ 80% - object
```

~ 20% - float64

Процент строк, содержащих Nan:

100%

Вывод:

1. df.dropna() - не используем. Удалять Nan будем только из полей, которые используются в расчетах.

```
bond_rub = bond_rub.dropna(subset = ['COUPONLENGTH', 'COUPONPERCENT', 'COUPONFREQUENCY', 'PRICE', 'COUPONVALUE'])
bond_rub = bond_rub.reset_index(drop=True)
```

2. Приводим поля, необходимые для расчетов к соответствующим типам (float64, datetime)

<pre>bond_rub2.isna().sum()</pre>	
SECID	0
SHORTNAME	0
NAME	0
FACEVALUE	0
FACEUNIT	0
DURATION	670
IS_QUALIFIED_INVESTORS	0
HIGH_RISK	0
COUPONFREQUENCY	355
COUPONDAYSPASSED	5
COUPONPERCENT	60
COUPONLENGTH	5
COUPONVALUE	63
OFFERDATE	1802
EMITENTNAME	142
INN	142
PRICE	157
PRICE_RUB	157
COUPONDATE	5
ISSUEDATE	142
dtype: int64	

bond.dtypes	
SECID	object
SHORTNAME	object
NAME	object
TYPENAME	object
ISIN	object
REGNUMBER	object
LISTLEVEL	float64
FACEVALUE	object
FACEUNIT	object
ISSUESIZE	float64
IS_COLLATERAL	int64
IS_EXTERNAL	int64
PRIMARY_BOARDID	object
PRIMARY_BOARD_TITLE	object
MATDATE	object
IS_RII	object
ISSUEDATE	object
EVENINGSESSION	int64
DURATION	float64
IS_QUALIFIED_INVESTORS	int64
HIGH_RISK	int64
COUPONFREQUENCY	float64
YIELDATWAP	object
COUPONDATE	object
COUPONPERCENT	object
COUPONVALUE	object
COUPONDAYSPASSED	float64
COUPONDAYSREMAIN	float64
COUPONLENGTH	float64

При приведении полей к типу float64 возникла ошибка - наличие "мусорных" символов в полях Dataframe

Решение:

Очистка полей ['PRICE_RUB','PRICE','FACEVALUE','COUPONPERCENT','COUPONVALUE'] с использованием регулярного выражения, замена «,» на «.» и приведение к соответствующему типу

```
bond_rub[i].replace(regex=|True, inplace=True, to_replace=r'[^0-9,\.\-]',value=r'')
bond_rub[i] = bond_rub[i].str.replace(',', '.').astype(float)
```

Приводим формат столбцов с датами к типу datetime

На основании анализа рынка доходных облигаций в 2021 (длинных и коротких) определено, что эффективная доходность к погашению в % годовых колеблется от 4.2 до 8.5 % На основании вышепреведенных данных, оставляем значения эффективной доходности ~ 20 (убираем выбросы, которые могут серьезно повлиять на результаты дальнейших расчетов)

```
bond_rub = bond_rub[bond_rub['PROFIT'] <= 20]
bond_rub['PROFIT'].max()
19.776301595412487</pre>
```

Результат обработки исходного Dateframe:

```
bond_rub.shape
(1604, 62)
```

Расчеты

На основании полученных данных проводим расчет показателя «Доходность ценных бумаг» через промежуточные показатели:

- Цена покупки в рублях
- Купонный доход в рублях
- НКД в рублях
- Прибыль/убыток в рублях
- Купонный доход с уплатой 13% НДФЛ в рублях

Процентный доход =
$$\frac{\left(\text{Цена}_{\text{Номинальная}} - \text{Цена}_{\text{покупки}} - H \text{КД} + 0.87 * \text{Купонный}_{\text{доход}} * X_{\text{лет}} \right) * 100 \%}{\left(\text{Цена}_{\text{покупки}} + H \text{КД}} \right)}$$

Расчеты

Проводим кластеризацию анализируемых данных , используя «Метод локтя» на основании показателей доходности :

Строим диаграмму распределения кластеров по средним значениям доходности

Результаты

Строим диаграммы по Топ 5 облигаций/эмитентов в разрезе кластеров

Результаты

Проводим расчет доходности последующих купонов по низкорисковым рублевым облигациям с датой промежуточной выплаты по купонам не более 20% купонного периода назад до текущей даты и облигациям выпущенным в аналогичный период с учетом разницы номинала и цены продажи, а также с учетом налоговых отчислений на период год с текущей дата.

Решение:

Оставляем данные, удовлетворяющие условию: "COUPONDATE" и "ISSUEDATE" меньше или равны "date_NEW " и "HIGH_RISK" = 0

Определяем Топ 5 эмитентов по доходности и строим диаграмму.

Используемые технологии

• Используемые технологии:

- Python 3
- Pandas
- Numpy
- Sklearn
- Matplotlib

СПАСИБО ЗА ВНИМАНИЕ!