

<u>Homework 1: Estimation,</u> <u>Confidence Interval, Modes of</u>

课程 > Unit 2 Foundation of Inference > Convergence

> 7. Modes of convergence

7. Modes of convergence

Convergence in distribution

4.0/4 points (graded)

Let T_n be a sequence of random variables that converges to $\mathcal{N}\left(0,1\right)$ in distribution. What family of distribution does the limit of $2T_n+1$ belong to?

 $^{\circ}$ χ^2 distribution

Normal distribution

Call this limit $oldsymbol{Y}$. Compute:

$$\mathbb{E}\left[Y\right]=egin{array}{cccc} 1 & & & \checkmark & \text{Answer: 1} \end{array}$$

Let Φ be the cumulative distribution function (cdf) of the standard Gaussian distribution. In terms of Φ , what is the limit, as $n \to \infty$, of $\mathbf{P}(|T_n+2| \le 8)$?

(Write Phi, with capital P, for Φ).

Phi(6)+Phi(10)-1 **✓ Answer:** Phi(6) - Phi(-10)

STANDARD NOTATION

Solution:

Since convergence in distribution is equivalent to convergence for all continuous bounded test functions f, let $f: \mathbb{R} \to \mathbb{R}$ be a continuous bounded function. Then, let g(x) = 2x + 1 and observe

$$\mathbb{E}\left[f\left(2T_{n}+1
ight)
ight]=\mathbb{E}\left[f\left(g\left(T_{n}
ight)
ight)
ight] \mathop{\longrightarrow}\limits_{n o\infty}\mathbb{E}\left[f\left(g\left(Z
ight)
ight)
ight],$$

where $Z\sim\mathcal{N}\left(0,1
ight)$. Now, $g\left(Z
ight)\sim\mathcal{N}\left(1,4
ight)$, and therefore $2T_{n}+1$ converges to $\mathcal{N}\left(1,4
ight)$ in distribution.

To calculate $\left|\mathbf{P}\left(\left|T_{n}+2\right|\leq8
ight)$, write

$$P(|T_n+2| \le 8) \to P(|Z+2| \le 8)$$

by convergence in distribution, and then

$$\mathbf{P}(|Z+2| \le 8) = \mathbf{P}(-10 \le Z \le 6) = \Phi(6) - \Phi(10)$$
.

Convergence in probability and variance

3/3 points (graded)

For $n\geq 2$, let X_n be a random variable such that $\mathbf{P}\left(X_n=rac{1}{n}
ight)=1-rac{1}{n^2}$ and $\mathbf{P}\left(X_n=n
ight)=rac{1}{n^2}$.

Does X_n converge in probability? If yes, enter the value of the limit; if no, enter DNE.

Compute $\lim_{n o \infty} \mathbb{E}\left[X_n\right]$ and $\lim_{n o \infty} \mathsf{Var}\left(X_n\right)$. Enter DNE if the limit diverges or does not exist.

$$\lim_{n o \infty} \mathbb{E}\left[X_n\right] = \boxed{0}$$
 Answer: 0

STANDARD NOTATION

Solution:

 $X_n \xrightarrow[n o \infty]{\mathbf{P}} 0$ in probability: It is enough to check that for every $\, arepsilon > 0 \,$, $\, \mathbf{P} \, (|X_n| \le arepsilon) o 1 \,$ as $\, n o \infty$, which is true since

$$egin{align} \mathbf{P}\left(|X_n| \leq arepsilon
ight) &=& \mathbf{P}\left(X_n = n
ight) & & ext{if } n > rac{1}{arepsilon} \ &=& 1 - rac{1}{n^2}
ightarrow 1 & & ext{as } n
ightarrow \infty. \end{split}$$

Now, compute $\lim_{n o \infty} \mathbb{E}\left[X_n\right]$:

$$\mathbb{E}\left[X_n
ight] = rac{1}{n}igg(1-rac{1}{n^2}igg) + rac{n}{n^2} \stackrel{n o\infty}{\longrightarrow} 0.$$

For the variance, the computation yields:

$$\mathsf{Var}\left(X_n
ight) \,=\, \mathbb{E}\left[\left|X_n
ight|^2
ight] = \left(rac{1}{n}
ight)^2\left(1-rac{1}{n^2}
ight) + rac{n^2}{n^2} \stackrel{n o\infty}{\longrightarrow} 1.$$

Remark: Convergence in probability does not necessarily imply convergence in variance.

提交 你已经尝试了

你已经尝试了3次(总共可以尝试3次)

• Answers are displayed within the problem

Modes of convergence

3/3 points (graded)

Let X_n and Y_n be two sequences of random variables. For each of the following statement, say whether it is true or false. When your answer is "false", try to think of a counter example.

1. If
$$X_n \xrightarrow[n \to \infty]{\mathbf{a.s.}} X$$
 and $Y_n \xrightarrow[n \to \infty]{\mathbf{a.s.}} Y$, then $X_n + Y_n \xrightarrow[n \to \infty]{\mathbf{a.s.}} X + Y$.

True

False

^{2.} If
$$X_n \xrightarrow[n \to \infty]{\mathbf{P}} X$$
 and $Y_n \xrightarrow[n \to \infty]{\mathbf{P}} Y$, then $X_n + Y_n \xrightarrow[n \to \infty]{\mathbf{P}} X + Y$.

- True
- False

3. If
$$X_n \xrightarrow[n o \infty]{(\mathrm{d})} X$$
 and $Y_n \xrightarrow[n o \infty]{(\mathrm{d})} Y$, then $X_n + Y_n \xrightarrow[n o \infty]{(\mathrm{d})} X + Y$.

- True
- False ✔

Solution:

The first statement is true. To prove it, let the variables all be defined on the probability space $(\Omega, \mathcal{F}, \mathbf{P})$. (Remember that this means that Ω denotes an abstract set and we consider all random variables X_n, Y_n, X, Y as functions from Ω to \mathbb{R} that are measurable with respect to the sigma algebra \mathcal{F} .) Let \mathcal{A} be the set where the convergence $X_n(\omega) \to X(\omega)$ holds, and similarly \mathcal{B} the set where $Y_n(\omega) \to Y(\omega)$. Then on $\mathbf{P}(\mathcal{A} \cap \mathcal{B}) = 1 - \mathbf{P}(\mathcal{A}^c \cup \mathcal{B}^c) \geq 1 - \mathbf{P}(\mathcal{A}^c) - \mathbf{P}(\mathcal{B}^c)$, but $\mathbf{P}(\mathcal{A}^c) = \mathbf{P}(\mathcal{B}^c) = 0$ by the assumption of almost sure convergence, so $\mathbf{P}(\mathcal{A} \cap \mathcal{B}) = 1$. Therefore, $X_n + Y_n \to X + Y$ almost surely.

The second statement is true as well. To show convergence of X_n+Y_n in probability, let $\varepsilon,\delta>0$. By definition of this mode of convergence, we can choose n_1 and n_2 such that

$$\mathbf{P}\left(|X_n-X|>rac{arepsilon}{2}
ight)< \;\;rac{\delta}{2} \qquad ext{ if } n\geq n_1\mathbf{P}\left(|Y_n-Y|>rac{arepsilon}{2}
ight)< \;\;rac{\delta}{2} \qquad ext{ if } n\geq n_2$$

Hence, by triangle inequality and sub-additivity of $\, {f P} \,$, if $\, n \geq \max\{n_1, n_2\} \,$, we have

$$\mathbf{P}\left(\left|X_n+Y_n-(X+Y)\right|>\varepsilon\right)\leq\mathbf{P}\left(\left|X_n-X\right|>\frac{\varepsilon}{2}\right)+\mathbf{P}\left(\left|Y_n-Y\right|>\frac{\varepsilon}{2}\right)<\frac{\delta}{2}+\frac{\delta}{2}=\delta,$$

which shows the desired convergence.

The last statement is not true. The intuition is that random variables can be **coupled** in strange ways to make this statement false. In particular, there can be multiple different constructions of X and Y that exhibit counterexamples. This is an important feature of the definition of random variables as a function on the underlying probability space Ω .

To demonstrate this point, consider the following: let Z and Z_1, Z_2, \ldots be a sequence of i.i.d. standard Gaussian RVs $\mathcal{N}(0,1)$. Using (Z_n) , we now define a pair of sequences (X_n) and (Y_n) : let $X_n = Z_n$ and $Y_n = -Z_n$. Let X = Y = Z. It is clear that $X_n \to Z$ in probability; and (even though it looks bizarre) by symmetry of the Gaussian, $Y_n \to Z$ in probability as well. However, $X_n + Y_n = 0$, so the sequence $(X_n + Y_n)$ converges to the constant 0 in probability. This is decidedly not the same as X + Y = 2Z, which has a Gaussian distribution.