· From last time - Stock natrix P has e-values 2,2., In s.t $\lambda_i = 1$ and $|\lambda_i| < 1 + i > 2$ if Pis engodic If Pis egodic and seversible . λ_i are real, $i=\lambda_1>\lambda_2>\ldots>\lambda_n>1$ $\mathcal{T}^{*} = 1 - \max \{1\lambda_{2}, 1\lambda_{n}\}$ $\mathcal{D}^{t}(x,y) = 1 + \sum_{j=2}^{n} \lambda_{j}^{t} v_{j}(x) v_{j}(y) \text{ orthonormal in $l \ge 0$}$ $\overline{T}(y)$ • Para ba $\left(\frac{1}{p^*}-1\right) \ln \left(\frac{1}{2\epsilon}\right) \leq t_{\text{mix}}(\epsilon) \leq \frac{1}{p^*} \ln \left(\frac{1}{T_{\text{min}}}\epsilon\right)$. If \hat{P} is lagy (ie, $\hat{P} = \frac{1}{2}(I + P)$), then $\lambda^* = \lambda_2$, $\lambda_n \ge 0$

No want to bound S^* using "hetwork flows" total flow on e, where S^* is the form of set is first with the standard of th

. The Dinichlet Form

- Note -
$$\mathcal{E}_{\pi}(f,f) = \mathcal{E}_{\pi}(f+c,f+c)$$
 for any constant c

Thm (Rayleigh's Characterization) - For engadic, neversible MC (S2,P,TT), $1-2=\inf\left\{\frac{\mathcal{E}_{\pi}(f,f)}{V_{\alpha_{\pi}(f)}}; f \text{ non-constant}\right\}$

- Note If f non-constant, then $V_{\alpha r_{ij}}(f) = ||f \mathbb{E}_{ii}f||_{2}^{2}$ and $\mathbb{E}(f_{i}f) = \mathbb{E}(f \mathbb{E}_{f_{i}}f \mathbb{E}_{f_{i}}f)$. Thus, the above is equivalent to $|-1| = \inf\left\{\frac{\mathcal{E}_{ii}(f_{i}f)}{\mathsf{k}_{ij}(f)}; f \neq 0, \mathbb{E}_{f_{i}}f = 0\right\}$
- . The proof follows from the same argument as the variational characterization of e-values via the Rayleigh quotient.

Upper bound of the strong of the condity

$$\begin{cases}
\uparrow = x_{\text{min}}f \\
f \mid E_{\text{n}}f = 0
\end{cases}$$

$$\sum_{x,y} \overline{I(x)} P(x,y) \left(f(x) - f(y)\right)^{2}$$

$$\sum_{x,y} \overline{I(x)} \overline{II(y)} \left(f(x) - f(y)\right)^{2}$$

Now let fs = {-TI(s'); \tau \chi \chi \chi \chi \text{En[f] = 0}}. Check \text{En[f] = 0}

 $\frac{1}{\sqrt{2}} = \frac{Q(s,s^c)}{\sqrt{2}} \leq \frac{2Q(s,s^c)}{\sqrt{2}} \qquad (:7(s^c)>1/2)$

Lower bound of Cheeger's Inequality

We first need an important lemma

Lemma (The sweep algorithm) Given non-negative function $f: \Omega \to \mathbb{R}_+$, let $\Omega = \{x_0, x_0, ..., x_m\}$ be ordered in non-twinceusing order of f. Further, if $T = \{x_0, x_0, ..., x_m\} \le 1$, then $E_T = \{x_0, x_0, ..., x_m\} \le 1$. If $T = \{x_0, x_0, ..., x_m\} \le 1$, then $E_T = \{x_0, x_0, ..., x_m\} \le 1$. If $T = \{x_0, x_0, ..., x_m\} \le 1$.

Pf - Let $S_t = \{x \in \Omega | f(x) > t\}$ for t > 0. Note $TI(S_t) \leq \frac{1}{2}$

 $=) \quad \phi_* \leq Q\left(S_{\epsilon}, S_{\epsilon}^{c}\right) = \sum_{x,y} Q(x,y) \underbrace{\mathbb{I}_{\{\phi\}(x) > t > f(y)\}}_{TT\left(S_{\epsilon}\right)}$

Now we have $E_{\pi}[f] = \int TT(\xi f > t) dt$ < \$\frac{1}{2} \int \int \int \alpha $= \Phi_{*}^{-1} \sum_{z \geq y} Q(z, y) \left[f(z) - f(y) \right]$ $= Q(z, y) \left[f(z) - f(y) \right]$ $= Q(z, y) \left[f(z) - f(y) \right]$ $= Q(z, y) \left[f(z) - f(y) \right]$ Pf of lower bound $\Phi_{+}^{2} \leq \gamma^{*}$ Let $f_2 = 10$ -vector corresponding to 12. Assume $TT(f_2>0) \leq \frac{1}{2}$ Define $f = \max\{f_2, 0\} = f_2 + g$ Claim- $(I-P)f \leq (I-\lambda_2)f$ (i.e., $\forall x \in \mathcal{I}$, $(I-P)f(x) \leq \partial^*f(x)$) To see this, consider two cases (Note $(I-P)f = I^*f_2 + (I-P)g$) i) f(x) = 0: Some $[(I-P)gf](x) = [-Pf](x) \le 0$ as f > 0ii) f(m) >0: Here [(I-P)g](m) = [-Pg](m) <0 as g >0 Thus, since $f \gtrsim 0$, we have $\langle (I-P)f, f \rangle_{\pi} \leq \delta^* \langle f, f \rangle_{\pi}$ = $\int \int \frac{\langle (I-P)f,f\rangle_{\pi}}{\langle f,f\rangle_{\pi}}$. Now from the previous lenna (with f^2) we have $\langle f, f \rangle_{\pi}^{2} \leq \Phi_{*}^{-2} \left[\sum_{x \geq y} \left[f(x) - f(y) \right]^{2} Q(xy) \right]^{2}$ $\leq \Phi_{*}^{-2} \left[\sum_{x \geq y} \left[f(x) - f(y) \right]^{2} Q(xy) \right] \left[\sum_{x \geq y} \left[f(x) + f(y) \right]^{2} Q(xy) \right]$ $\leq \Phi_{\star}^{-2} \mathcal{E}_{\pi}(f,f) \left[2 \langle f,f \rangle_{\pi} - \mathcal{E}_{\pi}(f,f) \right]$

Let $R = \frac{\mathcal{E}_{\pi}(f,f)}{\langle f,f \rangle_{\pi}}$. Dividing above by $(f,f)_{\pi}^{2}$, we get $\Phi_{*}^{2} \leq R(2-R) \Rightarrow 1-\Phi_{*}^{2} > (1-R)^{2} \Rightarrow (1-8)^{2}$ Also $(1-\Phi_{*}^{2})^{2} > 1-\Phi_{*}^{2} \Rightarrow \Phi_{*}^{2} \leq 8^{12}$

Now we see how to extend to general (lazy) MC Lemma - For engodic MCP, and lazy variant $(\hat{P}=\frac{1}{2}(I+P), TI)$ for any $f:\Omega\to R$, we have $Var_{TI}[\hat{P}f] \leq Var_{TI}[f] - \mathcal{E}_{TI}(f,f)$

Note - Let promo $S^{+} \triangleq \inf_{f: non-constant} \frac{\mathcal{E}_{\Pi}(f,f)}{\operatorname{Var}_{\Pi}[f]}$. Then the above result implies that $\operatorname{Var}_{\Pi}[\widehat{P}f] \leq (1-S^{+})^{t} \operatorname{Var}_{\Pi}[f] \leq e^{-S^{+}t} \operatorname{Var}_{\Pi}[f]$ Now let $f = 1_{A}$ and suppose we start at x_{o} $- \operatorname{Var}_{\Pi}[\widehat{P}^{t}f] \leq e^{-S^{+}t} \operatorname{T}(A)(1-\Pi(A)) \leq e^{-S^{+}t} A \leq e^{2} \operatorname{T}(x_{o})$ $for t = \frac{1}{F^{+}} \left(\ln \left(\frac{4}{\Pi(x_{o})} \right) + 2 \ln \left(\frac{1}{E} \right) \right)$

- $V_{\alpha_{1}}[\hat{p}^{t}f] > \Pi(x_{0})[P^{t}f](x_{0}) - E_{\pi}[P^{t}f]^{2} = \Pi(x_{0})(P^{t}x_{0}A) - \Pi(A)^{2}$ $e_{x}P^{t}(A)$

 $+ \int f(x, x) - \pi(x) \leq \varepsilon \quad \text{i.e., } \int \frac{1}{\pi(x)} \left(\ln \left(\frac{4}{\pi(x)} \right) + 2\ln \left(\frac{1}{\varepsilon} \right) \right)$ i.e., $\int \frac{1}{\pi(x)} \left(\ln \left(\frac{4}{\pi(x)} \right) + 2\ln \left(\frac{1}{\varepsilon} \right) \right)$

Pfof Lemma

$$-\left[\hat{P}f\right](x) = \frac{f(x)}{2} + \frac{1}{2} \sum_{y} P(x,y)f(y) = \frac{1}{2} \sum_{y} P(x,y) \left(f(x) + f(y)\right)$$

- WLOG, assume
$$E_{\pi}[f]=0$$
 (constant shifts don't affect E_{π} , $V_{\alpha i_{\pi}}$)

$$= \frac{1}{2} \sqrt{\frac{1}{2}} \left(\frac{1}{2} \frac{\sum P(x,y) (f(x)+f(y))^{2}}{\sum P(x,y) (f(x)+f(y))^{2}} \right) \cdot \hat{p} = \frac{1}{2} (I+P), \hat{p} = \Pi$$

$$= \frac{1}{2} \frac{1}{2$$

Also
$$V_{\alpha_{\pi}}(\mathbf{p}_{1}) = \frac{1}{2} \sum_{\lambda} TI(\lambda) f(\lambda)^{2} + \frac{1}{2} \sum_{y} TI(y) f(y)^{2}$$

$$= \frac{1}{2} \sum_{\lambda,y} TI(\lambda) P(\lambda,y) \left(f(\lambda)^{2} + f(y)^{2}\right)$$

=)
$$V_{\alpha_{1}}[f] - V_{\alpha_{1}}[\hat{P}_{f}] \geq \frac{1}{4} \sum_{x,y} \pi(x) P(x,y) (f(x) - f(y))^{2} = \mathcal{E}_{\pi}(f_{1}f)$$

Note - The $\frac{I+P}{2}$ form ensures periodicity; a similar trick can be done by embedding the chain P in a faster' continuous time chain - Can also show $T_{\text{mix}}(\varepsilon) > (\frac{1}{p*}-1) \ln (\frac{1}{2\varepsilon})$ as before

. Now we want to bound 8* in terms of flows

Thm. The inf
$$\mathcal{E}_{\pi}(g,g) \geq \frac{1}{p(f)\ell(f)}$$

(6)

$$\frac{Pf}{Pf} - Van_{\pi}(g) = \frac{1}{2} \sum_{x,y} \frac{TI(x)TI(y)}{P(x,y)} (f(x)-f(y))^{2}$$

$$= \frac{1}{2} \sum_{x,y} \sum_{P \in P_{xy}} f(p) (g(x)-g(y))^{2}$$
flow satisfying $D(x,y)$

- For any path
$$P \in P_{xy}$$
, $g(x) - g(y) = \sum_{(u,v) \in P} (g(v) - g(u))$
=) $2 \text{Var}_{\pi}(g) = \sum_{x,y} \sum_{P \in P_{xy}} f(P) \left(\sum_{(u,v) \in P} g(v) - g(u)\right)^{2}$
 $\leq \sum_{x,y} \sum_{P \in P_{xy}} f(P) |P| \left(\sum_{(u,v) \in P} (g(v) - g(w))^{2}\right) \left(\text{CS Inq}\right)$
= $\sum_{e=(u,v)} (g(v) - g(u))^{2} \sum_{P \ni e} f(P) |P|$
 $\leq l(f) \text{Al} \sum_{e\in(u,v)} (g(v) - g(u))^{2} (e)$

= $2\ell(f)\rho(f)$ $\mathcal{E}_{\pi}(g,g)$