Ubiquitous International

Full Title of JIHMSP Template

Hsiang-Cheh Huang

Department of Electrical Engineering National University of Kaohsiung 700 University Road, Kaohsiung, 811, Taiwan hchuang@nuk.edu.tw

Jeng-Shyang Pan and Bin-Yih Liao

Department of Electronic Engineering National Kaohsiung University of Applied Sciences 415 Chien-Kung Road, Kaohsiung, 807, Taiwan jspan@cc.kuas.edu.tw; byliao@cc.kuas.edu.tw

ABSTRACT. Please write down the abstract of your paper here....

Keywords: Please write down the keywords of your paper here, such as, Watermarking, Video compression,

- 1. **Introduction.** Please write down the Introduction of your paper here....
- 2. **Problem Statement and Preliminaries.** Please write down your section. When you cite some references, please give numbers, such as,In the work of [1, 2, 3, 5], the problem of...... For more results on this topic, we refer readers to [1, 4, 5, 7] and the references therein....
- 2.1. **Several definitions and theorems.** Please write down your subsection. Examples for writing definition, lemma, theorem, corollary, example, remark.

Definition 2.1. System (1) is stable if and only if....

Lemma 2.1. If system (1) is stable, then....

Theorem 2.1. Consider system (1) with the control law....

Proof: Let....

Corollary 2.1. If there is no uncertainty in system (1), i.e., $\Delta A = 0$, then...

Remark 2.1. It should be noted that the result in Theorem 2.1.....

Example 2.1. Let us consider the following example....

$$\dot{x}(t) = Ax(t) + Bu(t) + B_1 w(t) \tag{1}$$

$$y(t) = Cx(t) + Du(t) + D_1w(t)$$
(2)

.....

3. Main Results. Here are the main results in this paper.....

Definition 3.1. System (3) is stable if and only if....

Lemma 3.1. *If system* (3)-(4) *is stable, then.....*

$$\dot{x}(t) = Ax(t) + Bu(t) + B_1 w(t) \tag{3}$$

$$y(t) = Cx(t) + Du(t) + D_1w(t)$$

$$\tag{4}$$

Theorem 3.1. Consider system (3) with the control law....

Proof: Let....

Corollary 3.1. If there is no uncertainty in system (3), i.e., $\Delta A = 0$, then...

Remark 3.1. It should be noted that the result in Theorem 2.1.....

Example 3.1. Let us consider the following example....

.....

4. Control Design. In this section, we present.....

$$\dot{x}(t) = Ax(t) + Bu(t) + B_1 w(t) \tag{5}$$

$$y(t) = Cx(t) + Du(t) + D_1w(t)$$

$$\tag{6}$$

Definition 4.1. System (5) is stable if and only if....

Lemma 4.1. If system (5) is stable, then.....

Theorem 4.1. Consider system (5)-(6) with the control law....

Proof: Let....

Corollary 4.1. If there is no uncertainty in system (5)-(6), i.e., $\Delta A = 0$, then...

Remark 4.1. It should be noted that the result in Theorem 2.1.....

Example 4.1. Let us consider the following example....

.....

FIGURE 1. Example of figure

- 5. Numerical Example.
- 6. **Conclusions.** The conclusion of your paper is here.....

Table 1. Sample data

Channel erasure probability		Watermarked image	Extracted BCR
p_1	p_2	quality (in dB)	(in %)
0	0	32.53	100
0.05	0.05	30.69	97.56
0.1	0.1	28.90	95.14
0.25	0.25	24.59	88.18
0.3	0.3	23.14	86.04
0.4	0.4	21.52	81.46
0.5	0.5	19.98	76.25
0	1	26.18	73.34
1	0	26.09	80.55

Acknowledgment. This work is partially supported by The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

- [1] J. S. Pan, H. C. Huang, L. C. Jain, and W. C. Fang (eds.), *Intelligent Multimedia Data Hiding: New Directions*, Springer, Berlin-Heidelberg, Germany, 2007.
- [2] H. C. Huang, J. S. Pan, Y. H. Huang, F. H. Wang, and K. C. Huang, Progressive watermarking techniques using genetic algorithms, *Circuits, Systems, and Signal Processing*, vol.26, no.5, pp.671–687, 2007.
- [3] J. S. Pan, H. Luo, and Z. M. Lu, Look-up table based reversible data hiding for error diffused halftone images, *INFORMATICA*, vol.18, no. 4, pp.615–628, 2007.
- [4] H. C. Huang, J. S. Pan, and C. M. Chu, Optimized copyright protection systems with genetic-based robust watermarking, Proc. of the 3rd Int'l Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kaohsiung, Taiwan, pp.II-465–II-468, 2007.
- [5] C. C. Lai, H. C. Huang and C. C. Tsai, Image watermarking scheme using singular value decomposition and micro-genetic algorithm, *Proc. of the 4th Int'l Conf. on Intelligent Information Hiding and Multimedia Signal Processing*, Harbin, China, pp.239–242, 2008.
- [6] Y. H. Chen, A Study on Digital Watermarking and Its Application on Network Multimedia, Ph.D. Thesis, National Chiao-Tung University, Hsinchu, Taiwan, 2008.
- [7] F. C. Chang, H. C. Huang, and H. M. Hang, Combined encryption and watermarking approaches for scalable multimedia coding, in 5th Pacific Rim Conference on Multimedia, K. Aizawa, Y. Nakamura, and S. Satoh (eds.), Berlin/Heidelberg/New York, Springer-Verlag, LNCS 3333, pp.356–363, 2004.