Mass Relationships in Chemical Reactions

Micro World atoms & molecules

Macro World grams

Atomic mass is the mass of an atom in atomic mass units (amu)

By definition: 1 atom ¹²C "weighs" 12 amu

On this scale

¹H = 1.008 amu

 $^{16}O = 16.00 \text{ amu}$

Natural lithium is:

7.42% ⁶Li (6.015 amu)

92.58% ⁷Li (7.016 amu)

Average atomic mass of lithium:

$$\frac{7.42 \times 6.015 + 92.58 \times 7.016}{100} = 6.941 \text{ amu}$$

The *mole (mol)* is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of ¹²C

1 mol = N_A = 6.0221367 x 10²³

Avogadro's number (N_A)

Molar mass is the mass of 1 mole of shoes marbles

eggs shoes in grams marbles atoms

1 mole
12
C atoms = 6.022 x 10 23 atoms = 12.00 g 1 12 C atom = 12.00 amu

1 mole 12 C atoms = 12.00 g 12 C

1 mole lithium atoms = 6.941 g of Li

For any element atomic mass (amu) = molar mass (grams)

One Mole of:

3.2

$$\frac{1^{12}\text{C atom}}{12.00 \text{ amu}} \times \frac{12.00 \text{ g}}{6.022 \times 10^{23}} = \frac{1.66 \times 10^{-24} \text{ g}}{1 \text{ amu}}$$

1 amu = 1.66×10^{-24} g or 1 g = 6.022×10^{23} amu

 \mathcal{M} = molar mass in g/mol

 N_A = Avogadro's number

Do You Understand Molar Mass?

How many atoms are in 0.551 g of potassium (K)?

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule.

For any molecule

molecular mass (amu) = molar mass (grams)

1 molecule $SO_2 = 64.07$ amu 1 mole $SO_2 = 64.07$ g SO_2

Do You Understand Molecular Mass?

How many H atoms are in 72.5 g of C₃H₈O ?

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

For any ionic compound formula mass (amu) = molar mass (grams)

1 formula unit NaCl = 58.44 amu 1 mole NaCl = 58.44 g NaCl

Do You Understand Formula Mass?

What is the formula mass of $Ca_3(PO_4)_2$?

Mass Spectrometer

Percent composition of an element in a compound =

n x molar mass of element x 100% molar mass of compound

n is the number of moles of the element in 1 mole of the compound

Percent Composition and Empirical Formulas

Determine the empirical formula of a compound that has the following percent composition by mass: K 24.75, Mn 34.77, O 40.51 percent.

Percent Composition and Empirical Formulas

$$g CO_2 \longrightarrow mol CO_2 \longrightarrow mol C \longrightarrow g C$$
 6.0 $g C = 0.5 mol C$

$$g H_2O \longrightarrow mol H_2O \longrightarrow mol H \longrightarrow g H$$
 1.5 $g H = 1.5 mol H$

g of
$$O = g$$
 of sample – $(g \text{ of } C + g \text{ of } H)$ 4.0 g $O = 0.25 \text{ mol } O$

Empirical formula $C_{0.5}H_{1.5}O_{0.25}$

Divide by smallest subscript (0.25)

Empirical formula C₂H₆O

3.6

A process in which one or more substances is changed into one or more new substances is a *chemical reaction*

A *chemical equation* uses chemical symbols to show what happens during a chemical reaction

3 ways of representing the reaction of H₂ with O₂ to form H₂O

3.7

How to "Read" Chemical Equations

$$2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO}$$

2 atoms Mg + 1 molecule O₂ makes 2 formula units MgO

2 moles Mg + 1 mole O₂ makes 2 moles MgO

48.6 grams Mg + 32.0 grams O₂ makes 80.6 g MgO

2 grams Mg + 1 gram O₂ makes 2 g MgO

1. Write the **correct** formula(s) for the reactants on the left side and the **correct** formula(s) for the product(s) on the right side of the equation.

Ethane reacts with oxygen to form carbon dioxide and water

$$C_2H_6 + O_2 \longrightarrow CO_2 + H_2O$$

2. Change the numbers in front of the formulas (*coefficients*) to make the number of atoms of each element the same on both sides of the equation. Do not change the subscripts.

$$2C_2H_6$$
 NOT C_4H_{12}

3. Start by balancing those elements that appear in only one reactant and one product.

4. Balance those elements that appear in two or more reactants or products.

$$C_2H_6 + O_2 \longrightarrow 2CO_2 + 3H_2O$$
 multiply O_2 by $\frac{7}{2}$

2 oxygen 4 oxygen + 3 oxygen = 7 oxygen on left (2x2) (3x1) on right

 $C_2H_6 + \frac{7}{2}O_2 \longrightarrow 2CO_2 + 3H_2O$ remove fraction multiply both sides by 2

 $2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$

5. Check to make sure that you have the same number of each type of atom on both sides of the equation.

Amounts of Reactants and Products

- 1. Write balanced chemical equation
- 2. Convert quantities of known substances into moles
- 3. Use coefficients in balanced equation to calculate the number of moles of the sought quantity
- 4. Convert moles of sought quantity into desired units

Methanol burns in air according to the equation

$$2CH_3OH + 3O_2 \longrightarrow 2CO_2 + 4H_2O$$

If 209 g of methanol are used up in the combustion, what mass of water is produced?

Limiting Reagents

$$2NO + 2O_2 \longrightarrow 2NO_2$$

NO is the limiting reagent

O₂ is the excess reagent

After reaction is complete

Do You Understand Limiting Reagents?

In one process, 124 g of Al are reacted with 601 g of Fe₂O₃

 $2AI + Fe_2O_3 \longrightarrow AI_2O_3 + 2Fe$

Calculate the mass of Al₂O₃ formed.

Use limiting reagent (AI) to calculate amount of product that can be formed.

Reaction Yield

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted.

Actual Yield is the amount of product actually obtained from a reaction.

Chemistry In Action: Chemical Fertilizers

Plants need: N, P, K, Ca, S, & Mg

$$3H_2(g) + N_2(g) \longrightarrow 2NH_3(g)$$

$$NH_3(aq) + HNO_3(aq) \longrightarrow NH_4NO_3(aq)$$

fluorapatite

$$2Ca_5(PO_4)_3F(s) + 7H_2SO_4(aq) \longrightarrow$$

$$3Ca(H_2PO_4)_2(aq) + 7CaSO_4(aq) + 2HF(g)$$

