Communication Systems (25751-4)

Problem Set 04

Fall Semester 1401-02

Department of Electrical Engineering

Sharif University of Technology

Instructor: Dr. M. Pakravan

Due on Aban 24, 1401 at 18:00

(*) starred problems are optional and have a bonus mark!

1 DSB Modulation with Periodic Waveforms

A DSB signal is generated by multiplying the message signal m(t) with the periodic rectangular waveform shown in Figure 2 and filtering the product with a bandpass filter tuned to the reciprocal of the period T_p , with bandwidth 2W, where W is the bandwidth of the message signal.

Figure 2: s(t)

1. Demonstrate that the output $x_c(t)$ of the BPF is the desired DSB signal

$$x_c(t) = A_c m(t) \sin(2\pi f_c t)$$

where
$$f_c = \frac{1}{T_p}$$
, and find A_c .

2. Show that it is not necessary that the periodic signal be rectangular. This means that any periodic signal with period T_p can substitute for the rectangular signal in Figure 2.

2 Weaver's SSB Modulator

Weaver's SSB modulator is illustrated in Figure 3. By taking the input signal as $x(t) = \cos(2\pi f_m t)$, where $f_m < W$, demonstrate that by proper choice of f_1 and f_2 the output is a SSB signal.

Figure 3: Weaver's SSB Modulator

3 VSB Signal

A VSB signal y(t) is as below. α is a non negative constant less than one.

$$y(t) = \frac{\alpha}{2}\cos(2\pi(f_c + f_m)t) + \frac{1 - \alpha}{2}\cos(2\pi(f_c - f_m)t) + \cos(2\pi f_c t)$$

1. Prove that the envelop of the signal can be calculated as below. d(t) represents the distortion.

$$e(t) = \left[1 + \frac{1}{2}\cos(2\pi f_m t)\right] d(t)$$
$$d(t) = \sqrt{1 + \left[\frac{(1 - 2\alpha)\sin(2\pi f_m t)}{2 + \cos(2\pi f_m t)}\right]^2}$$

2. Find α such that it maximize d(t).

4 A Simple Scrambler System

The message signal m(t) has a Fourier transform shown in Figure 4. This signal is applied to the system shown in Figure 5 to generate the signal y(t).

Figure 4: Fourier Transform of m(t)

Figure 5: simple scrambler

- 1. Plot Y(f), the Fourier transform of y(t).
- 2. Show that if y(t) is transmitted, the receiver can pass it through a replica of the system shown in Figure 5 to obtain m(t) back. This means that this system can be used as a simple scrambler to enhance communication privacy.

5 VSB Modulation System

A vestigial sideband modulation system is shown in Figure 5. The bandwidth of the message signal m(t) is W and the transfer function of the bandpass filter is shown in the figure 7.

Figure 6: VSB Modulator

Figure 7: H(f)

- 1. Determine $h_{lp}(t)$, the lowpass equivalent of h(t), where h(t) represents the impulse response of the bandpass filter.
- 2. Derive an expression for the modulated signal $x_c(t)$.

6 (*) Modulation and Chirp Signals

The message signal m(t) has a Fourier transform M(f). This signal is applied to the system shown in Figure 8 to generate the signal y(t). Assume that $h(t) = A_1 e^{j\pi\omega_0^2 t^2}$ and ω_0 is constant.

- 1. Find an expression for y(t), in term of m(t) and M(f).
- 2. Design a system to reconstruct m(t) from y(t).

Figure 8: a system with chirp signals