Announcements

- Webwork due on Wednesday
- Keep in mind: Poor test scores with high homework scores are recoverable. Poor test scores with poor homework scores will definitely hurt.
- Lab Group A meeting tonight!
- Test 3 one week from Friday
- Polling: rembold-class.ddns.net

APOD!

Let's Review...

We can determine the age of a star cluster by:

- A. Estimating the number of stars in the cluster
- B. Finding the average luminosity of its stars
- C. Looking at the average temperature of the cluster
- D. Determining where it leaves the main sequence

Let's Review...

We can determine the age of a star cluster by:

- A. Estimating the number of stars in the cluster
- B. Finding the average luminosity of its stars
- C. Looking at the average temperature of the cluster
- D. Determining where it leaves the main sequence

Making a Star: Gather Your Ingredients

- Ch 21.1 and 21.2
- Stars are formed in giant molecular clouds
 - Dense, cold, dusty regions of interstellar space
 - "Dense" is relative here. . .

Bring it in...

- Need gravity to be greater than any internal gas pressure
 - Easiest with dense, cold regions
 - Hence the molecular clouds
- Densest regions attract the most gas
 - Breaks a cloud up into various smaller clouds
 - Each smaller, dense cloud can continue to contract to become a protostar

Protostars

- Molecular cloud moves towards random regions of density
- Gravity further isolates and condenses dense regions
- The resulting cloud fragment is generally called a protostar
 - Not yet hot enough to start nuclear fusion!
 - Can still be bright due to the energy loss of inward moving gas

Yo Momma So Fat. . .

• For a cloud of some density and temperature, how much mass do we need to "win" and collapse to form protostars?

$$M_{min} = 18 M_{\odot} \sqrt{\frac{T^3}{n}}$$

where

- T is the temperature of the gas cloud
- n is the gas density in terms of particles per cubic centimeter
- ullet M_{min} is the minimum mass needed for the cloud to collapse and start creating stars
- M_{\odot} is the mass of the Sun

Example

Example

Suppose I observed a massive molecular cloud, with the below properties:

- $T = 25 \, \text{K}$
- $n = 500 \, \text{particles/cm}^3$
- $M = 75 M_{\odot}$

Should I expect this molecular cloud to collapse into protostars?

Example

Example

Suppose I observed a massive molecular cloud, with the below properties:

- $T = 25 \, \text{K}$
- $n = 500 \, \text{particles/cm}^3$
- $M = 75 M_{\odot}$

Should I expect this molecular cloud to collapse into protostars?

NO!

 $\overline{M_{min}} = 100.62 M_{\odot}$

Jets!

- Life as a protostar is often violent!
- Rapid rotations lead to disk flattening
- We commonly see jets emanating from the poles
 - Help shed angular momentum?
 - Influenced by strong magnetic fields

Jets!

- Life as a protostar is often violent!
- Rapid rotations lead to disk flattening
- We commonly see jets emanating from the poles
 - Help shed angular momentum?
 - Influenced by strong magnetic fields

Onward toward the Main Sequence!

- More massive stars do everything faster!
- Protostar lifetimes
 - O or B type: a million years or so
 - G type: 30 million years
 - M type: >100 million years
- Makes it possible for some massive stars to ignite, shine, run out of fuel and die before a smaller baby star even starts fusion!

What's being born?

- High mass stars are rare
- Low mass stars are much more common

The Highs and Lows of Life

- Upper limit of star mass
 - Largest observed about $150 M_{\odot}$
 - May be some a bit larger
 - Luminosity actually gets so high it starts blowing parts of the star itself away
- Lower limit
 - Need at least $0.08 M_{\odot}$ to ignite nuclear fusion reliably
 - Radiate primarily in the infrared
 - Slowly cool due to missing an energy source
 - Called Brown Dwarfs

The Brown Dwarfs

- Occupy the space between large planet and tiny star
- Glow reddish
- Without fusion to provide an energy source, why does gravity not crush them?
 - Degeneracy Pressure

- Pauli Exclusion Principle limits numbers of particles in certain states
- "Backs up traffic" as particles have to search and work harder to find space

- Pauli Exclusion Principle limits numbers of particles in certain states
- "Backs up traffic" as particles have to search and work harder to find space

- Pauli Exclusion Principle limits numbers of particles in certain states
- "Backs up traffic" as particles have to search and work harder to find space

- Pauli Exclusion Principle limits numbers of particles in certain states
- "Backs up traffic" as particles have to search and work harder to find space

A Massive Undertaking

- A star's mass is likely its most influential property
- Determines:
 - Luminosity
 - Temperature
 - Lifetime
 - And its ultimate fate!
- Catagorize:
 - Low-mass: stars born with a mass $< 2 M_{\odot}$
 - Intermediate-mass: stars born with mass between 2 and 8 M_{\odot}
 - ullet High-mass: stars born with mass $> 8 M_{\odot}$

A Massive Undertaking

- A star's mass is likely its most influential property
- Determines:
 - Luminosity
 - Temperature
 - Lifetime
 - And its ultimate fate!
- Catagorize:
 - Low-mass: stars born with a mass $< 2M_{\odot}$
 - Intermediate-mass: stars born with mass between 2 and 8 M_{\odot}
 - ullet High-mass: stars born with mass $> 8 M_{\odot}$
- We'll look at low mass star lifetimes first, then look at intermediate and high mass lifetimes together