Introducción al Aprendizaje de Máquina

David Ricardo Pedraza Silva

April 17, 2021

Exercice 1.1

Express each of the following tasks in the framework of learning from data by specifying the input space χ , output space Y, target function $f: \chi \to Y$, and the specifics of the data ser that we will learn from.

Solution:

(a) Medical diagnosis: A patient walks in with a medical history and some symptons, and you want to identify the problem.

 χ is the set of all patients codified through this relevant information (medical history and symptons) while Y is the set of all illnesses that could coincide with that info. Our target function f associates χ with Y and, by definition, there is no better function which could fit χ to Y.

- (b) The handwriten digits must be represented in a way it is understandable to the machine. Let it be a matrix of 0's and 1's which represent blank and black space, respectively. f map the set of all matrices of this kind to $Y = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- (c) f maps χ , the set of lists of words; each of these lists the words in an email, to $Y = \{False, True\}$. "True"; it's spam. "False": it's not spam.
- (d) χ is the set of triples of the form (*price*, *temperature*, day of the week) and f maps χ to Y, where Y is a subset of the real numbers which, in turn, represents the electric load.
- (e) Predicting if a videogame is going to go viral. $\chi = \{x : x = (x_1, \dots, x_n)\}$ where x_i is a significative characteristic (Is it a psequel?, an RTS?, multiplayer?, etc...). $Y = \{True, False\}$, although this assumes "viral" is well defined.

Exercice 1.2

Suppose that we use a perceptron to detect spam messages. Let's say that each email message is represented by the frequency of ocurrence of keywords, and output is +1 if the message is considered spam.

(a) Can you think of some keywords that will end up with a large weight in perceptron?

Everything having to do with prices "Winner", "Congratulations". Too many exclamation signs after a word (we could treat this as a word with some regex). The frase "Visitor umber x".

(b) What about words that will get a negative weight?

If the remitent is an offical account, it might be legit. Using words in context and a mesured use of punctuation are also signs of legitimate activity.

(c) Our bias, I suppose. How many of these words are we willing to tolerate in a single message.

Exercice 1.3

The wight update rule in (1.3) has the nice interpretation that it moves in the direction of classifying x(t) correctly.

(a) Show that $y(t)W^T(t)x(t) < 0$.

solution: Note that if x(t) is missclasified $y(t) \neq sig(W^T(t)x(t))$, then $y(t)W^T(t)x(t) < 0$ by mere definition.

(b) Show that $y(t)W^{T}(t+1)x(t) > y(t)W^{T}(t)x(t)$.

Solution: Let's use that W(t+1) = W(t) + y(t)x(t), then

$$y(t)W^{T}(t+1)x(t) = y(t)(W(t) + y(t)x(t))^{T}x(t)$$

That is

$$y(t)W^{T}(t+1)x(t) = y(t)W^{T}(t)x(t) + y(t)(x^{T}(t)y^{T}(t))x(t)$$

Note that $y(t)(x^T(t)y^T(t))x(t) > 0$. We conclude that

$$y(t)W^T(t+1)x(t) > y(t)W^T(t)x(t)$$

(c) Argue that the move from W(t) to W(t+1) is a move in the "right direction".

Solution: suppose y(t) is negative and $W^T(t)x(t)$ is positive. If we take W(t+1) = W(t) + y(t)x(t) we see that $W^T(t+1)x(t) = W^T(t)x(t) + y(t)|x(t)|^2$. In this case $W^T(t+1)x(t) < W^T(t)x(t)$, which is good. If we have the opposite case; that in which y(t) is positive and $W^T(t)x(t)$ negative, we get that $W^T(t+1)x(t) > W^T(t)x(t)$, which is also good.

Exercice 1.11

From now on I won't write the formulation of the problem.

(a) No. As good as S might be at adjusting D the posibility of it being completely useless outside of D is non zero.

(b) Yes: Consider f(x) = 1 if $x \in D$ and f(x) = -1 otherwise. In this case C is better than S.

(c) I want to do it without assuming all the $y_n = 1$ first, I will then address this patological case.

We know that for $x \in \mathbb{R}$, P[f(x) = 1] = p with p = 0.9.

Let $D = \{(x_1, y_1), \dots, (x_{25}, y_{25})\}$. If $D' = \{d \in D : d = (x_i, y_i) \text{ and } y_i = 1\}$, for S to predict worst than C we need |D'| < 13. The probability of this is easy to calculate:

$$P(|D'| < 13) = \sum_{k=0}^{12} {25 \choose k} p^k (1-p)^{n-k}$$

The result of this calculation is 1.62083×10^{-7} , extremely unlikely.

If we take it as all $y_n = 1$, then the probability is 0.9, as S will choose h_1 and for any x the probability of $f(x) = h_1(x)$ is not other than 0.9.

(d) If p > 0.5 we need |D'| < 13 for C to predict better than S. The probability of this happening is always less than 0.5.

If p < 0.5 we need $|D'| \ge 13$. Again, the probability of this happening is less than 0.5. We conclude that taking S as our model is always smarter, at least a priori.

If we assume that all $y_n = 1$, then it suffices that p < 0.5 for C to be better than S, because in that case S will choose h_1 and C h_2 , and the probability for C to predict properly any x outside of D will be 1 - p > 0.5, greater than p; the probability of S predicting correctly.