A Container description

Glyn Normington

Steve Powell

April 2, 2014

This document attempts to describe containers (see in, for example, [2]) in a precise fashion.

ii		Draft
\mathbf{C}	Contents	
1	Introduction	1
2	Overview of this document	1
3	Containers	1
4	Initial whiteboard stuff	2
\mathbf{A}	Z Notation	3
В	References	4

Version 0.1

1 Introduction

This is a document that records the deliberations of Glyn and Steve as they come to grips with "what containers really are" ¹.

2 Overview of this document

This document is a rag-bag of concepts and ideas (at the moment). The intention is to find the right decomposition of ideas to simply describe the state, and state transitions, of *Containers* and the *Jobs* that they *Run*.

3 Containers

MultiSS
$dummy: \mathbb{N}$
[FILESYSTEM, NETWORK, PID, TASK]
$ContainerState ::= STARTED \mid STOPPED$
Container
fs:FILESYSTEM

network: NETWORK
MultiSS

¹ "What are containers?" Jerzy Czaykowski (adapted)

2 Draft

4 Initial whiteboard stuff

Version 0.1

A Z Notation

	-	
_ I\	1111	bers:

 \mathbb{N} Natural numbers $\{\texttt{0,1,...}\}$

Propositional logic and the schema calculus:

∧	And	$\langle\!\langle\dots\rangle\!\rangle$	Free type injection
∨	Or	[]	Given sets
$\ldots \Rightarrow \ldots$	Implies	$', ?, !,_0 \dots _9$	Schema decorations
∀ •	For all	⊢	theorem
∃ •	There exists	$ heta\dots$	Binding formation
\	Hiding	$\lambda \dots$	Function definition
≘	Schema definition	$\mu\dots$	Mu-expression
==	Abbreviation	$\Delta \dots$	State change
:=	Free type definition	Ξ	Invariant state change

Sets and sequences:

$\{\ldots\}$	Set	\	Set difference
$\{\mid\bullet\}$	Set comprehension	[]	Distributed union
$\mathbb{P}\dots$	Set of subsets of	#	Cardinality
Ø	Empty set	⊆	Subset
×	Cartesian product	\subset	Proper subset
$\dots \in \dots$	Set membership	partition	•
∉	Set non-membership	seq	Sequences
∪	Union	⟨⟩	Sequence
∩	Intersection	disjoint	Disjoint sequence of sets

Functions and relations:

$\ldots \leftrightarrow \ldots$	Relation	*	Reflexive-transitive
$\dots + \!$	Partial function		closure
$\ldots \to \ldots$	Total function	()	Relational image
≻→	Partial injection	$\dots \oplus \dots$	Functional overriding
$\dots \rightarrowtail \dots$	Injection	⊲	Domain restriction
$\operatorname{dom}\dots$	Domain	⊳	Range restriction
ran	Range	∢	Domain subtraction
$\ldots \mapsto \ldots$	maplet	≽	Range subtraction
~	Relational inverse		

Axiomatic descriptions:

Declarations
Predicates

Schema definitions:

SchemaName Declaration			
Predicates			

4 Draft

B References

- [1] Various authors, Warden github repository, https://github.com/cloudfoundry/warden.
- [2] Various authors, *Garden github repository*, https://github.com/pivotal-cf-experimental/garden.
- [3] Various authors *libcgroup*, http://libcg.sourceforge.net/html/index.html.
- [4] Paul Menage, Paul Jackson and Christoph Lameter, CGROUPS, https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt, 2004-2006.
- [5] Linus Torvalds, et al, Linux kernel source tree, https://github.com/torvalds/linux.
- [6] Various authors, *Memory Resource Controller*, https://www.kernel.org/doc/Documentation/cgroups/memory.txt.
- [7] Kamezawa Hiroyuki, et al, NOOP cgroup subsystem, http://thread.gmane.org/gmane.linux.kernel/777763.
- [8] Martin Prpič, Rüdiger Landmann, and Douglas Silas, Red Hat Enterprise Linux 6.5 GA: Resource Management Guide, https://access.redhat.com/site/documentation/en-US/ Red_Hat_Enterprise_Linux/6/pdf/Resource_Management_Guide/ Red_Hat_Enterprise_Linux-6-Resource_Management_Guide-en-US.pdf.
- [9] Bertrand Meyer, On Formalism In Specifications, IEEE Software, Vol. 2(1), 1985.