北京交通大学 2022-2023 学年暑期学期

计算机与信息技术学院 硕士研究生《智能计算数学基础》试题 出题教师:《智能计算数学基础》课程组

班级:	姓名:	学号:	上课教师:	
注意: 1. 试卷共 56	0 道题,每题 2 分,满分 10	0 分。2. 题目排序与难度无关。	3. 判断题请回答"是"或"否"。	
1。计算序列极图	$ \lim_{n \to +\infty} \left(\frac{n^2 + n + 1}{n \log n} \right) \circ $			
答案:	$ \exists : \lim_{x \to 0} \frac{\sin(x^3)}{x^2} \circ \exists \lambda \nu $			
答案: 0				
3。计算二元函数		2xy + x - 2在点 $(1,0)$ 处	的Hessian矩阵。	
答案:				
732	义在R ⁿ 上的Lipschitz图		$ -f(y) _2 \le K x-y _2$ 对任何 $x, y \in \mathbb{R}$	™ 2 × 1 × 1 × 1
答案:	→ M/JLipscintZ函数,A	ロ行任市 奴 A > 0 区行 <i>f</i> (<i>t</i>) -	$-\int (y)\ _2 \leq K \ x-y\ _2$ as the $x,y \in \mathbb{R}$	™ #b//X°
5。计算二元函数		:约束条件 x + y ≤ 1以 <i>]</i>	$ \mathbf{g} x-y \leq 2$ 下的极大值。	
答案:		}的面积。		
答案.			7	
7。计算二次函数	$x f(x) = \frac{1}{2}x^t P x + q^t x$	+ r的梯度和Hessian矩[$\in \mathbb{R}$ 。
答案:	于任何 $P \in \mathbb{S}^n_{++}$,二次		\mathbb{E} 条件 $\ x\ _2 \le 1$ 下有唯一的极小	 ·值点。
答案:				
9。求出下述优化	1 1101 65 111/1/2/1110 5	nimize $f(x, y, z) = 3x^2$ - eject to $x + y - z = 1$	$+y^2-z^2+yz$	

3。 计算二元函数 $f(x,y)=x^3-y^2+2xy+x-2$ 在点(1,0)处的Hessian矩阵。

$$t_{x}^{2} = 3x^{2} + 2y + 1$$
 $t_{y}^{2} = -2y + 2x$
 $t_{x}^{2} = 6x$ $t_{y}^{2} = 2$ $t_{y}^{2} = -2$
 $= 6$ $[6]$ 2
 $[2]$

5。计算二元函数 $f(x,y)=2x^2+y^2$ 在约束条件 $|x+y|\leq 1$ 以及 $|x-y|\leq 2$ 下的极大值。

7。计算二次函数
$$f(x)=\frac{1}{2}x^tPx+q^tx+r$$
的梯度和Hessian矩阵,其中 $P\in\mathbb{S}^n_{++},\ q\in\mathbb{R}^n,\ r\in\mathbb{R}$ 。

$$\nabla f(x) = \frac{1}{2}Px + \frac{1}{2}P^{t}x + 2 = Px + 2$$

$$\nabla f(x) = P^{t} \quad \text{Hessian} \quad \text{Tex} \quad \text{Tpt}$$

9。求出下述优化问题的极小值 $\begin{cases} \text{minimize} \quad f(x,y,z) = 3x^2 + y^2 - z^2 + yz \\ \text{subject to} \quad x + y - z = 1 \end{cases}$ 。

$$t(x,y,z,\lambda) = 3x^{2}+y^{2}-z^{2}+yz+\lambda(x+y-z-1)$$
 $t(x) = 6x+\lambda = 0$
 $t(x) = 6x+\lambda = 0$

$$\Theta.0Hi\lambda\Theta$$
 $-\frac{18}{7}$ $y=\frac{18}{29}$

10。设 $f(A) = \|X - AY\|^2$,其中A、X和Y分别是维度为 $n \times m$ 、 $n \times k$ 和 $m \times k$ 的矩阵,计算Df(A)。

11。方程组
$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ 2x_1 + 5x_2 - 5x_3 = 1 \\ 2x_1 - x_2 + x_3 = 3 \end{cases}$$
 是否存在实数解?若存在,解空间的维数是多少?

日末: 12。判断题:矩阵
$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$
 是正交方阵。

14。对于实矩阵 $A_{m \times n}$ 和 $B_{n \times m}$,若存在非零向量 α 以及 $c \neq 0$ 满足 $AB\alpha = c\alpha$,请写出矩阵BA的特征值 为c的一个特征向量。

.....

15。计算向量(1,-2,3)的 ℓ_1 范数。

答案: H2+3=6

2-107+75=0 (2-4)(2-4)=0

16。给定矩阵 $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 3 \end{bmatrix}$,计算函数 $f(x) = \frac{\|Ax\|_2}{\|x\|_2}$ 的最大值。 $\begin{vmatrix} \lambda - b & -3 \\ -3 & \lambda - 4 \end{vmatrix} = D$ 答案: $\begin{vmatrix} x & x \\ y & x \end{vmatrix} = \begin{vmatrix} x & y \\ y & x \end{vmatrix} = \begin{vmatrix} x & y \\ y & x \end{vmatrix}$

17。判断题:假设矩阵A的行向量线性无关,请问 AA^t 是否是可逆方阵?

》 利用奇异值分解计算矩阵 $\begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 3 \end{bmatrix}$ 的 $\operatorname{rank} 1$ 逼近。

19。请用简洁的语言解释大数定理。样本的多,平均值就接近期望

10。设 $f(A) = \|X - AY\|^2$,其中A、X和Y分别是维度为 $n \times m$ 、 $n \times k$ 和 $m \times k$ 的矩阵,计算Df(A)

$$t_{(0)} = [x-\alpha r)[x-\alpha r]^{T} = [x-\alpha r)[x^{T}-r^{T}\alpha^{T}]$$

$$= xx^{T}-x^{T}\alpha^{T}-\alpha r^{X}^{T}+\alpha r^{T}\alpha^{T}$$

$$Dt_{(0)} = -x^{T}-x^{T}-x^{T}+(rr^{T}\alpha^{T})^{T}+\alpha r^{T}T$$

$$= -2x^{T}+v\alpha r^{T}$$

11。方程组 $\begin{cases} x_1 + x_2 - x_3 = 1 \\ 2x_1 + 5x_2 - 5x_3 = 1 \\ 2x_1 - x_2 + x_3 = 3 \end{cases}$ 是否存在实数解? 若存在,解空间的维数是多少?

答案: 20。请用简洁的语言解释中心极限定理。
答案. 减从高斯分布,随机资量无限多 了 21。对于何种被估计量,最大似然估计和最大后验估计是一致的。
答案: 允 於 大概 22。假设随机变量 x 和 y 的联合概率密度为 $f(x,y)=1/4$,其中 $-1 \le x,y \le 1$ 。请问 x 和 y 是否正交?是否独立?是否相关?
答案: 以 ,
答案: $N \sim N(0, \frac{1}{3})$ 24。假设 $y_1 = x_1 + w_1$ 和 $y_2 = x_2 + w_2$,其中 $w_1 \sim N(a, M_1)$ 和 $w_2 \sim N(b, M_2)$ 是独立的高斯噪声信号,注意, a, b, M_1, M_2 都是已知常数。计算似然函数 $p(y_1 x_1)$ 。 [ソース・) $\sim N(x_1 + 0, M_1)$ [ソース・大力・ 答案: $\sim P(y_1 x_1) \sim N(x_1 + 0, M_1)$ [ソース・大力・ 公。接上题,定义2个向量, $y = [y_1, y_2]^t$ 和 $x = [x_1, x_2]^t$,计算似然函数 $p(y x)$ 。
答案: $ 26。接上题, 定义2个向量, y=[y_1,y_2]^t nx = [x_1,x_2]^t, 计算似然函数p(y x)。 26。接上题, 当满足什么条件时,最大似然函数等价于最小距离\ y-x\ ^2。$
答案: 深 声祇 之 ,且 为
答案: 传 28。信息传输系统模型包括信源、编码器、 <u>?</u> 、译码器和信宿五个部分。请问"?"指的是什么?
答案: 传
答案: $U = -hg_y 4 = hg_y 4 = \lambda$ 30。判断题: 信源发出消息 x ,信宿收到消息 y ,则公式 $I(x;y) = I(x) - I(y x)$ 是否正确? χ

31。已知两个信源分别为 $\begin{pmatrix} X \\ P \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \\ 0.5 & 0.5 \end{pmatrix}$ 和 $\begin{pmatrix} Y \\ Q \end{pmatrix} = \begin{pmatrix} b_1 & b_2 & b_3 & b_4 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{pmatrix}$,则在信源 熵H(X)和H(Y)中,较大的是H(Y),其值为多少bit/符号? 答案. H(Y)= 4×のンナ/09,4=レ 32。联合熵公式H(XY) = H(X) + H(Y)成立的条件是什么? 上凸函数。 34。判断题: 假设p和q是同一概率空间上的两种分布,则D(p||q) = D(q||p)。 35。判断题: 博弈问题中的帕雷托最优只是各种理想态标准中的最低标准。 36。判断题:不完全信息博弈中的不确定性比不完美信息博弈中的不确定性要 37。判断题:如下图的博弈矩阵中,策略组合(E,E)是一个纳什均衡解。 Player 2 -1.338。判断题: 斯塔克伯格博弈是多智能体强化学习的理论基础。 39。判断题:在一个完美回忆的不完美信息博弈中,行为策略与混合策略等价。 40。一个正则型博弈可以等价转化为一个带有 ? 的不完美信息扩展型博弈。请问"?"指的是什么?

答案: 不完全信息
41 。判断题: 下图的博弈树中, A 处可以进行 α - β 剪枝。
B MAX
6 4 3 5 2 6 9 1 1 2 1 10 8 20
(6) (4) (3) (5) (2) (6) (9) (1) (1) (1) (10) (10) (10) (10) (10) (
答案:
答案:
答案:
答案:
答案: 47。判断题: 如果一个NP-complete问题有多项式时间复杂度的解法,则所有NP-complete问题均有多项式时间复杂度的解法。
答案: 48。判断题: NP问题的补问题也是NP问题。
答案:
答案:
答案: