Respiration Analysis F1 Scallops 2021

Samuel Gurr

10/6/2021

merge master resp data frame

Date	Channel	Filename	Lpc	Leq	Lz	alpha	Food	pН	Replicate
9/14/2021	CH1	Run_1_restart_raw.txt	-0.0105879	-0.0090352	-0.0108642	0.4	NA	8	A
9/14/2021	CH1	Run_2_raw.txt	0.0009955	0.0020145	0.0020145	0.4	NA	8	D
9/14/2021	CH1	Run_3_raw.txt	-0.0106760	-0.0106760	-0.0106760	0.4	NA	8	С
9/14/2021	CH1	Run_4_raw.txt	-0.0233471	-0.0241120	-0.0241120	0.4	NA	8	В
9/14/2021	CH2	Run_1_restart_raw.txt	-0.0202747	-0.0206863	-0.0208296	0.4	NA	8	В
9/14/2021	CH2	Run_2_raw.txt	-0.0143181	-0.0144040	-0.0225380	0.4	NA	8	A

Visual diagnostics of plots to correct poor data

• View on github: Airradians_OA/RAnalysis/Output/Respiration/plots_alpha0.4_increm15sec/

found three calls that inaccurately represent the rates of oxygen consumption

- (1) https://github.com/SamGurr/Airradians_OA/blob/master/RAnalysis/Output/Respiration/plots_alpha0.4 increm15sec/20210930 Plate 2 Run 2 C5 regression.pdf
 - solution = call 'Lz' instead of the default Leq
- $(2) \ https://github.com/SamGurr/Airradians_OA/blob/master/RAnalysis/Output/Respiration/plots_alpha0.4_increm15sec/20210930_Plate_2_Run_1_C1_regression.pdf$
 - solution = call 'Lz' instead of the default Leq
- $(3) \ https://github.com/SamGurr/Airradians_OA/blob/master/RAnalysis/Output/Respiration/plots_alpha0.4_increm15sec/20210930_Plate_1_Run_2_C1_regression.pdf$
 - solution = omit

resp.data_merged[77,c(1:6)]

```
## Date Channel Filename Lpc Leq
## 77 9/30/2021 C5 RR_9.30.21_PM_Plate_2_Run_2.csv 0.02905235 -0.07603444
## Lz
## 77 -0.07603444
```

```
resp.data_merged[61,c(1:6)]
##
           Date Channel
                                               Filename
                                                                 Lpc
## 61 9/30/2021
                     C1 RR_9.30.21_AM_Plate_2_Run_1.csv -0.02890813 -0.0608251
## 61 -0.0608251
resp.data_merged[62,c(1:6)]
##
           Date Channel
                                               Filename
## 62 9/30/2021
                     C1 RR_9.30.21_PM_Plate_1_Run_2.csv 0.01165649 0.01165649
##
## 62 0.01165649
resp.data_merged[77,4] <- resp.data_merged[77,5] # 20210930_Plate_2_Run_2_C5_regression - Lz and Leq ca
resp.data_merged[61,4] <- resp.data_merged[61,5] # 20210930_Plate_2_Run_1_C1_regression - Lz and Leq ca
resp.data_merged[62,4] <- NA # 20210930_Plate_1_Run_2_C1_regression - Lz and Leq call better regression
resp.data_merged[77,c(1:6)]
           Date Channel
                                               Filename
                                                                Lpc
                     C5 RR_9.30.21_PM_Plate_2_Run_2.csv -0.07603444 -0.07603444
## 77 9/30/2021
## 77 -0.07603444
resp.data_merged[61,c(1:6)]
##
           Date Channel
                                               Filename
                                                                Lpc
## 61 9/30/2021
                     C1 RR_9.30.21_AM_Plate_2_Run_1.csv -0.0608251 -0.0608251
## 61 -0.0608251
resp.data_merged[62,c(1:6)]
           Date Channel
                                               Filename Lpc
## 62 9/30/2021
                     C1 RR_9.30.21_PM_Plate_1_Run_2.csv NA 0.01165649 0.01165649
call blanks
## `summarise()` has grouped output by 'Date'. You can override using the `.groups` argument.
```

Date	Channel	Filename	рН	Chamber_tank	Lpc	Leq	
9/14/2021	CH4	Run_1_restart_raw.txt	8.0	blank	-0.0014879	-0.0016125	0.00
9/14/2021	CH4	Run_2_raw.txt	8.0	blank	-0.0024339	-0.0024339	-0.00
9/14/2021	CH4	Run_3_raw.txt	8.0	blank	-0.0042119	-0.0042201	-0.00
9/14/2021	CH4	Run_4_raw.txt	8.0	blank	-0.0064080	-0.0064596	-0.00
9/14/2021	CH8	Run_2_raw.txt	7.5	blank	-0.0029619	-0.0030399	-0.00
9/14/2021	CH8	Run_3_raw.txt	7.5	blank	-0.0037013	-0.0041097	-0.00
9/14/2021	CH8	Run_4_raw.txt	7.5	blank	-0.0044681	-0.0045407	-0.00
9/30/2021	A1	RR_9.30.21_PM_Plate_1_Run_2.csv	7.5	blank	-0.0118063	-0.0124888	-0.01
9/30/2021	A2	RR_9.30.21_PM_Plate_2_Run_2.csv	8.0	blank	-0.0116445	-0.0148425	-0.01
9/30/2021	A3	$RR_9.30.21_PM_Plate_1_Run_2.csv$	8.0	blank	-0.0154144	-0.0154144	-0.01
9/30/2021	A4	RR_9.30.21_PM_Plate_1_Run_2.csv	7.5	blank	-0.0103471	-0.0117755	-0.01
9/30/2021	A5	RR_9.30.21_PM_Plate_2_Run_2.csv	8.0	blank	-0.0086168	-0.0121027	-0.01
9/30/2021	A6	RR_9.30.21_AM_Plate_2_Run_1.csv	7.5	blank	-0.0038102	-0.0041451	-0.00
9/30/2021	A6	RR_9.30.21_PM_Plate_1_Run_2.csv	8.0	blank	-0.0058170	-0.0136642	-0.01
9/30/2021	B1	$RR_9.30.21_PM_Plate_2_Run_2.csv$	8.0	blank	-0.0134095	-0.0095129	-0.00
9/30/2021	B2	RR_9.30.21_AM_Plate_1_Run_1.csv	7.5	blank	-0.0236932	-0.0226223	0.00
9/30/2021	В3	RR_9.30.21_AM_Plate_2_Run_1.csv	8.0	blank	-0.0132592	-0.0138365	-0.01
9/30/2021	B5	RR_9.30.21_PM_Plate_1_Run_2.csv	8.0	blank	-0.0217783	-0.0195525	-0.01
9/30/2021	B6	RR_9.30.21_PM_Plate_2_Run_2.csv	7.5	blank	-0.0066049	-0.0038889	-0.00
9/30/2021	C2	RR_9.30.21_PM_Plate_2_Run_2.csv	7.5	blank	-0.0219181	-0.0226875	-0.02
9/30/2021	C6	RR_9.30.21_PM_Plate_1_Run_2.csv	7.5	blank	-0.0137323	-0.0186497	-0.01
9/30/2021	C6	RR_9.30.21_PM_Plate_2_Run_2.csv	7.5	blank	-0.0205009	-0.0200935	-0.02
9/30/2021	D1	RR_9.30.21_PM_Plate_1_Run_2.csv	8.0	blank	-0.0079405	-0.0077582	-0.00
9/30/2021	D5	RR_9.30.21_AM_Plate_1_Run_1.csv	8.0	blank	-0.0024248	-0.0020850	-0.00
9/30/2021	D5	RR_9.30.21_PM_Plate_2_Run_2.csv	7.5	blank	-0.0098883	-0.0115005	-0.01

Date	pН	BLANK.mean_Lpc	BLANK.mean_Leq	BLANK.mean_Lz	n
9/14/2021	7.5	0.0037104	0.0038968	0.0037690	3
9/14/2021	8.0	0.0036354	0.0036815	0.0034417	4
9/30/2021	7.5	0.0135890	0.0142058	0.0117710	9
9/30/2021	8.0	0.0111450	0.0120854	0.0122455	9

```
[1] Date
                       рΗ
                                      Channel
                                                      Filename
                                                                     Lpc
  [6] Leq
                       Lz
                                      alpha
                                                      Food
                                                                     Replicate
## [11] Chamber_tank
                       Number
                                      Plate
                                                                     Fed_Unfed
                                                      Run
## [16] Center
                       Length.um.
                                      Instrument
                                                                     BLANK.mean_Lpc
                                                      Notes
## [21] BLANK.mean_Leq BLANK.mean_Lz n
                                                      resp_norm
## <0 rows> (or 0-length row.names)
```

Calculate rates as ng L-1 O2 um shell length-1 hr-1

note: this chunk calls the data that used the 8-channel loligo system and the SDR system to correct for total respiration chamber (vial/vessel, well, etc.) volume separately

```
• loligo 8-channel on 9/14/21 = 2.2 ml vessels
```

• SDR 24-channel on 9/3-/21 = 1.7 ml wells

Analysis

9/14/2021 F1 juvenile scallops

About - two pCO2 treatments - before we culled and started the food limitation trials

number of replicates for analysis...

```
## # A tibble: 8 x 2
    Chamber_tank `n()`
##
##
     <chr>
                  <int>
## 1 7.5 A
## 2 7.5_B
                      3
## 3 7.5_C
                      3
## 4 7.5_D
## 5 8_A
                      3
## 6 8_B
## 7 8_C
                      3
## 8 8_D
```

```
LMmod_0914 <- aov(lm(resp_ng_L_umlLength_hr~pC02,data=Resp_0914))
pander(summary(LMmod_0914), style='rmarkdown')</pre>
```

linear model, diagnostics, and plots

Table 1: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
$\overline{\mathrm{pCO2}}$	1	0.1162	0.1162	0.6327	0.4348
Residuals	22	4.041	0.1837	NA	NA

check_model(LMmod_0914) # observe the diagnostics of the model

Linearity

Homogeneity of Variance Reference line should be flat and horizontal -1e+14 Std. 0.86 0.82 0.90 0.94

Influential Observations

cints should be inside the contour lines

Fitted values

Normality of Residuals

Distribution should be close to the normal curve

shapiro.test(residuals(LMmod_0914)) # non normal

```
##
   Shapiro-Wilk normality test
##
##
## data: residuals(LMmod_0914)
## W = 0.95735, p-value = 0.3875
```

leveneTest(LMmod_0914) # good

```
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
         Df F value Pr(>F)
## group
            0.2549 0.6186
##
         22
```

```
<- paste( (summary(LMmod_0914)[[1]][["Df"]])[1], (summary(LMmod_0914)[[1]][["Df"]])[2], sep = '/')
Fval <- (summary(LMmod_0914)[[1]][["F value"]])[1]</pre>
pval <- (summary(LMmod_0914)[[1]][["Pr(>F)"]])[1]
```

 $\#\ pdf(paste0("C:/Users/samuel.gurr/Documents/Github_repositories/Airradians_OA/RAnalysis/Output/Respiralised for the property of the proper$ pdf(paste0("C:/Users/samjg/Documents/Github_repositories/Airradians_OA/RAnalysis/Output/Respiration/202

```
ggplot(Resp_0914, aes(x = factor(pC02, level = c('Low', 'High')), resp_ng_L_umlLength_hr , fill = pC02)
  theme(panel.grid=element_blank()) +
  geom_boxplot(size=0.2, alpha=0.1, aes(fill=pCO2)) +
  scale_fill_manual(values=c("grey50","white")) +
  geom_point(shape = 21, size = 2, position = position_jitterdodge(jitter.width = 0.1)) +
  theme_classic() +
  scale_x_discrete(labels= c('~500 atm', '~800 atm')) +
  ylim(0, 3) +
  theme(axis.text=element_text(size=12),
       axis.title=element_text(size=14,face="bold")) +
  labs(title = "F1 Scallops: respiration rates on 20210914",
      y = expression(Respiration~rate~"("~ng~L^{-1}~0[2]%.%*m^{-1}%.% hr^{-1}~")"),
       x = expression(italic(p)*CO[2]~Treatment~"("~ *atm~")")) # +
  \# annotate("text", x=1.2, y=2.8, size = 4, label = "aov(Resp~pCO2)") +
  \# annotate("text", x=1.2, y=2.6, size = 4, label= paste('DF =',DF,'F =', signif(Fval, digits=3), 'p v
dev.off()
## pdf
##
```

9/14/2021 F1 juvenile scallops

About

- two pCO2 treatments
- before we culled and started the food limitation trials

number of replicates for analysis...

```
## `summarise()` has grouped output by 'Chamber_tank'. You can override using the `.groups` argument.
## # A tibble: 16 x 3
## # Groups: Chamber_tank [8]
```

```
Chamber_tank Food `n()`
##
                 <int> <int>
      <chr>
## 1 7.5_A
                       1
## 2 7.5_A
                       2
                             5
## 3 7.5_B
                       1
                             5
## 4 7.5_B
                       2
                             4
## 5 7.5_C
                       1
                             5
## 6 7.5_C
                       2
                             3
## 7 7.5_D
                             5
## 8 7.5_D
                       2
                             2
## 9 8_A
                       1
                             5
## 10 8_A
                      2
                             5
## 11 8_B
                      1
                             5
## 12 8_B
                      2
                             6
## 13 8_C
                       1
                             5
                      2
                             4
## 14 8_C
## 15 8_D
                             5
## 16 8_D
                       2
                             4
```

```
LMmod_0930 <- aov(lm(resp_ng_L_umlLength_hr~pC02*Fed_Unfed ,data=Resp_0930))
pander(summary(LMmod_0930), style='rmarkdown')</pre>
```

linear model, diagnostics, and plots

Table 2: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
hoCO2	1	0.7427	0.7427	4.12	0.0463
${f Fed_Unfed}$	1	0.8203	0.8203	4.55	0.03653
$pCO2:Fed_Unfed$	1	0.00405	0.00405	0.02247	0.8813
Residuals	68	12.26	0.1803	NA	NA

check_model(LMmod_0930) # observe the diagnostics of the model

shapiro.test(residuals(LMmod_0930)) # non normal

```
##
## Shapiro-Wilk normality test
##
## data: residuals(LMmod_0930)
## W = 0.96927, p-value = 0.0752
```

```
leveneTest(LMmod_0930) # good
## Levene's Test for Homogeneity of Variance (center = median)
                     Df F value Pr(>F)
## group 3 1.6481 0.1865
##
                     68
DF_pC02 <- paste( (summary(LMmod_0930)[[1]][["Df"]])[1], (summary(LMmod_0930)[[1]][["Df"]])[4], sep =</pre>
Fval_pCO2 <- (summary(LMmod_0930)[[1]][["F value"]])[1]</pre>
pval_pCO2 <- (summary(LMmod_0930)[[1]][["Pr(>F)"]])[1]
                       <- paste( (summary(LMmod_0930)[[1]][["Df"]])[2], (summary(LMmod_0930)[[1]][["Df"]])[4], sep =
DF Fed
Fval_Fed <- (summary(LMmod_0930)[[1]][["F value"]])[2]</pre>
pval_Fed <- (summary(LMmod_0930)[[1]][["Pr(>F)"]])[2]
Resp_0930$Fed_Unfed <- as.factor(Resp_0930$Fed_Unfed)</pre>
levels(Resp_0930$Fed_Unfed) <- c("High food", "Low food")</pre>
# pdf(pasteO("C:/Users/samuel.qurr/Documents/Github_repositories/Airradians_OA/RAnalysis/Output/Respira
pdf(paste0("C:/Users/samjg/Documents/Github_repositories/Airradians_OA/RAnalysis/Output/Respiration/202
ggplot(Resp_0930, aes(x = factor(pC02, level = c('Low', 'High')), resp_ng_L_umlLength_hr , fill = pC02)
    theme(panel.grid=element_blank()) +
    geom_boxplot(size=0.2, alpha=0.1, aes(fill=pCO2)) +
    scale_fill_manual(values=c("grey50","white")) +
    geom point(shape = 21, size = 2, position = position jitterdodge(jitter.width = 0.1)) +
    theme_classic() +
    ylim(0, 3) +
    scale_x_discrete(labels=c('~500 atm', '~800 atm')) +
    theme(axis.text=element_text(size=12),
                   axis.title=element_text(size=14,face="bold")) +
    stat_summary(fun.y=mean, geom="point", shape=18, size=4, color="black", fill="white") +
    labs(title = "Respiration rate; F1 Scallops (juveniles) 66 days post-fertilization",
                 y = \exp(-1)^{-1} \cdot (-1)^{-1} \cdot
                 x = expression(italic(p)*C0[2]~Treatment~"("~mu*atm~")")) +
    facet_wrap(~factor(Fed_Unfed, level = c('Low food', 'High food'))) # +
## Warning: `fun.y` is deprecated. Use `fun` instead.
dev.off()
## pdf
##
```