Ensemble Learning

Lectured by Shangsong Liang Sun Yat-sen University

Outline

- An overview of ensemble methods
 - Motivations
 - Overview
- Supervised ensemble
- Unsupervised ensemble
- Semi-supervised ensemble
 - Multi-view learning
 - Consensus maximization among supervised and unsupervised models
- Applications
 - Transfer learning, stream classification, anomaly detection

Ensemble

Applications: classification, clustering, collaborative filtering, anomaly detection.....

Example: Ensemble for Classification

$$h_1(x) \in \{-1, +1\}$$
 $h_2(x) \in \{-1, +1\}$
 \vdots
 $h_T(x) \in \{-1, +1\}$

 $H_T(x) = sign\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$

Weak classifiers

strong classifier

slightly better than random

How to get weak classifiers?

Different weak classifiers as base classifiers.

- 2. The same weak classifier, but different parameters.
- 3. Using different subset of features/dimensions of the training data.
- 4. Different subset of training data: **bagging** (such as boostrap aggregating), and **boosting**

How to combine weak classifiers?

1. Multiple experts: Parallel architecture. Vote for the final decisions.

2. Cascade connection: The next base classifier can only make decision based on the output of the previous base classifier. E.g., cascading ensemble learning.

Stories of Success

- Million-dollar prize
 - Improve the baseline movie recommendation approach of Netflix by 10% in accuracy
 - The top submissions all combine several teams and algorithms as an ensemble

- Data mining competitions
 - Classification problems
 - Winning teams employ an ensemble of classifiers

Netflix Prize

Supervised learning task

- Training data is a set of users and ratings (1,2,3,4,5 stars) those users have given to movies.
- Construct a classifier that given a user and an unrated movie, correctly classifies that movie as either 1, 2, 3, 4, or 5 stars
- \$1 million prize for a 10% improvement over Netflix's current movie recommender

Competition

- At first, single-model methods are developed, and performances are improved
- However, improvements slowed down
- Later, individuals and teams merged their results, and significant improvements are observed

Leaderboard

Rank		Team Name		Best Test Score	% Improvement	Best Submit Time					
<u>Grand Prize</u> - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos											
1	1	BellKor's Pragmatic Chaos		0.8567	10.06	2009-07-26 18:18:28					
2	-	The Ensemble	i	0.8567	10.06	2009-07-26 18:38:22					
3	1	Grand Prize Team		0.8582	9.90	2009-07-10 21:24:40					
4	-	Opera Solutions and Vandelay Unit	ted	0.8588	9.84	2009-07-10 01:12:31					
5	-	Vandelay Industries!		0.8591	9.81	2009-07-10 00:32:20					
6	-	PragmaticTheory		0.8594	9.77	2009-06-24 12:06:56					
7	-	BellKor in BigChaos		0.8601	9.70	2009-05-13 08:14:09					
8	-	<u>Dace</u>		0.8612	9.59	2009-07-24 17:18:43					
9	-	Feeds2		0.8622	9.48	2009-07-12 13:11:51					
10	1	RigChaos	- 1	0.8623	9.47	2009-04-07 12:33:59					

"A good solution (RMSE=0.8712) consists of blending 107 individual results. "

Pr	ogre	ess Prize 2008 -	RMSE = 0.8627 - Winning Team: I	BellKor in BigCha	05
13	-	xiangliang	0.8642	9.27	2009-07-15 14:53:22
14	-	<u>Gravity</u>	0.8643	9.26	2009-04-22 18:31:32
15	- 1	Ces	0.8651	9.18	2009-06-21 19:24:53

"Predictive accuracy is substantially improved when blending multiple predictors. Our experience is that most efforts should be concentrated in deriving substantially different approaches, rather than refining a single technique."

<u>Cinematch score</u> - RMSE = 0.9525

Motivations

- Motivations of ensemble methods
 - Ensemble model improves accuracy and robustness over single model methods
 - Applications:
 - distributed computing
 - privacy-preserving applications
 - large-scale data with reusable models
 - multiple sources of data
 - Efficiency: a complex problem can be decomposed into multiple sub-problems that are easier to understand and solve (divide-andconquer approach)

Relationship with Related Studies (1)

Multi-task learning

- Learn multiple tasks simultaneously
- Ensemble methods: use multiple models to learn one task

Data integration

- Integrate raw data
- Ensemble methods: integrate information at the model level

Relationship with Related Studies (2)

Meta learning

- Learn on meta-data (include base model output)
- Ensemble methods: besides learn a joint model based on model output, we can also combine the output by consensus

Non-redundant clustering

- Give multiple non-redundant clustering solutions to users
- Ensemble methods: give one solution to users which represents the consensus among all the base models

Why Ensemble Works? (1)

Intuition

 Combining diverse, independent opinions in human decision-making as a protective mechanism (e.g. stock portfolio)

Uncorrelated error reduction

- Suppose we have 5 completely independent classifiers for majority voting
- If accuracy is 70% for each
 - 10 (.7³)(.3²)+5(.7⁴)(.3)+(.7⁵)
 - 83.7% majority vote accuracy
- 101 such classifiers
 - 99.9% majority vote accuracy

Why Ensemble Works? (2)

Ensemble gives the global picture!

Why Ensemble Works? (3)

- Overcome limitations of single hypothesis
 - The target function may not be implementable with individual classifiers, but may be approximated by model averaging

Research Focus

- Base models
 - Improve diversity!
- Combination scheme
 - Consensus (unsupervised)
 - Learn to combine (supervised)
- Tasks
 - Classification (supervised or semi-supervised ensemble)
 - Clustering (unsupervised ensemble)

Summary

	,		!	
Supervised Learning	SVM, Logistic Regressio 	n,	Boosting, rule ensemble, Bayesian model averaging,	Bagging, random forest, random decision tree
Semi- supervised Learning	Semi-supervised Learning, Collective Inferen		Multi-view Learning	Consensus Maximization
Unsupervised Learning	K-means, Spectral Clusterin 	g,		Clustering Ensemble
	Single Models		Combine by learning	Combine by consensus

Review the ensemble methods in the tutorial

Ensemble of Classifiers—Learn to Combine

Algorithms: boosting, stacked generalization, rule ensemble, Bayesian model averaging.....

Ensemble of Classifiers—Consensus

Algorithms: bagging, random forest, random decision tree, model averaging of probabilities.....

Clustering Ensemble—Consensus

Algorithms: direct approach, object-based, cluster-based, object-cluster-based approaches, generative models

Semi-Supervised Ensemble—Learn to Combine

learn the combination from both labeled and unlabeled data

Algorithms: multi-view learning

Semi-supervised Ensemble—Consensus

Pros and Cons

	Combine by learning	Combine by consensus
Pros	Get useful feedbacks from labeled data Can potentially improve accuracy	Do not need labeled data Can improve the generalization performance
Cons	Need to keep the labeled data to train the ensemble May overfit the labeled data Cannot work when no labels are available	No feedbacks from the labeled data Require the assumption that consensus is better

Outline

- An overview of ensemble methods
 - Motivations
 - Tutorial overview
- Supervised ensemble
- Unsupervised ensemble
- Semi-supervised ensemble
 - Multi-view learning
 - Consensus maximization among supervised and unsupervised models
- Applications
 - Transfer learning, stream classification, anomaly detection

Supervised Ensemble Methods

Problem

- Given a data set $D=\{x_1,x_2,...,x_n\}$ and their corresponding labels $L=\{I_1,I_2,...,I_n\}$
- An ensemble approach computes:
 - A set of classifiers $\{f_1, f_2, ..., f_k\}$, each of which maps data to a class label: $f_i(x)=I$
 - A combination of classifiers f^* which minimizes generalization error: $f^*(x) = w_1 f_1(x) + w_2 f_2(x) + ... + w_k f_k(x)$

Bias and Variance

- Ensemble methods
 - Combine learners to reduce variance

from Elder, John. From Trees to Forests and Rule Sets - A Unified Overview of Ensemble Methods. 2007.

Generating Base Classifiers

- Sampling training examples
 - Train k classifiers on k subsets drawn from the training set
- Using different learning models
 - Use all the training examples, but apply different learning algorithms
- Sampling features
 - Train k classifiers on k subsets of features drawn from the feature space
- Learning "randomly"
 - Introduce randomness into learning procedures

Bagging* (1)

Bootstrap

- Sampling with replacement
- Contains around 63.2% original records in each sample

Bootstrap Aggregation

- Train a classifier on each bootstrap sample
- Use majority voting to determine the class label of ensemble classifier

Bagging (2)

Original Data:

Х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
у	1	1	1	7	7	-1	-1	1	1	1

Bootstrap samples and classifiers:

Х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9		
у	1	1	1	1	-1	-1	-1	-1	1	1		
Х	0.1	0.2	0.3	0.4	0.5	0.5	0.9	1	1	1		
У	1	1	1	-1	-1	-1	1	1	1	1		
Х	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	8.0	0.9		
у												
Х	0.1	0.2	0.5	0.5	0.5	0.7	0.7	8.0	0.9	1		
V	1	1	-1	-1	-1	-1	-1	1	1	1		

Combine predictions by majority voting

Bagging (3)

Error Reduction

- Under mean squared error, bagging reduces variance and leaves bias unchanged
- Consider idealized bagging estimator: $\bar{f}(x) = E(\hat{f}_z(x))$
- The error is

$$E[Y - \hat{f}_z(x)]^2 = E[Y - \bar{f}(x) + \bar{f}(x) - \hat{f}_z(x)]^2$$

$$= E[Y - \bar{f}(x)]^2 + E[\bar{f}(x) - \hat{f}_z(x)]^2 \quad E[Y - \bar{f}(x)]^2$$

Bagging usually decreases MSE

Boosting* (1)

Principles

- Boost a set of weak learners to a strong learner
- Make records currently misclassified more important

Example

- Record 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

Boosting (2)

AdaBoost

- Initially, set uniform weights on all the records
- At each round
 - Create a bootstrap sample based on the weights
 - Train a classifier on the sample and apply it on the original training set
 - Records that are wrongly classified will have their weights increased
 - Records that are classified correctly will have their weights decreased
 - If the error rate is higher than 50%, start over
- Final prediction is weighted average of all the classifiers with weight representing the training accuracy

Boosting (3)

Determine the weight

- For classifier *i*, its error is
- The classifier's importance is represented as:

The weight of each record is updated as:

$$\varepsilon_i = \frac{\sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)}{\sum_{j=1}^{N} w_j}$$

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

$$w_j^{(i+1)} = \frac{w_j^{(i)} \exp(-\alpha_i y_j C_i(x_j))}{Z^{(i)}}$$

$$C^*(x) = \arg\max_{y} \sum_{i=1}^{K} \alpha_i \delta(C_i(x) = y)$$

Classifications (colors) and Weights (size) after 1 iteration Of AdaBoost

Forests and Rule Sets - A Unified
Overview of Ensemble Methods. 2007.

Boosting (4)

Explanation

– Among the classifiers of the form:

$$f(x) = \sum_{i=1}^{K} \alpha_i C_i(x)$$

— We seek to minimize the exponential loss function:

$$\sum_{j=1}^{N} \exp(-y_j f(x_j))$$

Not robust in noisy settings

Random Forests* (1)

Algorithm

- Choose *T*—number of trees to grow
- Choose m<M (M is the number of total features) —
 number of features used to calculate the best split at
 each node (typically 20%)
- For each tree
 - Choose a training set by choosing N times (N is the number of training examples) with replacement from the training set
 - For each node, randomly choose m features and calculate the best split
 - Fully grown and not pruned
- Use majority voting among all the trees

Random Forests (2)

Discussions

- Bagging+random features
- Improve accuracy
 - Incorporate more diversity and reduce variances
- Improve efficiency
 - Searching among subsets of features is much faster than searching among the complete set

Random Decision Tree* (1)

Single-model learning algorithms

- Fix structure of the model, minimize some form of errors, or maximize data likelihood (eg., Logistic regression, Naive Bayes, etc.)
- Use some "free-form" functions to match the data given some
 "preference criteria" such as information gain, gini index and MDL.
 (eg., Decision Tree, Rule-based Classifiers, etc.)

Such methods will make mistakes if

- Data is insufficient
- Structure of the model or the preference criteria is inappropriate for the problem

Learning as Encoding

Make no assumption about the true model, neither parametric form nor free form

*[FWM+D3]hot prefer one base model over the other, just average them

Random Decision Tree (2)

Algorithm

- At each node, an un-used feature is chosen randomly
 - A discrete feature is un-used if it has never been chosen previously on a given decision path starting from the root to the current node.
 - A continuous feature can be chosen multiple times on the same decision path, but each time a different threshold value is chosen
- We stop when one of the following happens:
 - A node becomes too small (<= 3 examples).
 - Or the total height of the tree exceeds some limits, such as the total number of features.

Prediction

Simple averaging over multiple trees

Random Decision Tree (3)

Random Decision Tree (4)

Potential Advantages

- Training can be very efficient. Particularly true for very large datasets.
 - No cross-validation based estimation of parameters for some parametric methods.
- Natural multi-class probability.
- Imposes very little about the structures of the model.

Optimal Decision Boundary

Figure 3.5: Gaussian mixture training samples and optimal boundary.

optimal boundary

(a) unpruned C4.5

(b) Bagging

RDT looks
like the optimal
boundary

(c) Random Forests

(d) Complete-random tree ensemble

Outline

- An overview of ensemble methods
 - Motivations
 - Tutorial overview
- Supervised ensemble
- Unsupervised ensemble
- Semi-supervised ensemble
 - Multi-view learning
 - Consensus maximization among supervised and unsupervised models
- Applications
 - Transfer learning, stream classification, anomaly detection

Clustering Ensemble

Problem

- Given an unlabeled data set $D=\{x_1,x_2,\ldots,x_n\}$
- An ensemble approach computes:
 - A set of clustering solutions $\{C_1, C_2, ..., C_k\}$, each of which maps data to a cluster: $f_i(x)=m$
 - A unified clustering solutions f* which combines base clustering solutions by their consensus

Challenges

- The correspondence between the clusters in different clustering solutions is unknown
- Unsupervised
- Combinatorial optimization problem-NP-complete

Motivations

Goal

Combine "weak" clusterings to a better one

46

An Example

base clustering models

	•		\mathcal{C}_1	\mathcal{C}_2	\mathcal{C}_3	\mathcal{C}
objects	→	v_1	1	1	1	1
		v_2	1	2	2	2
		v_3	2	1	1	1
		v_4	2	2	2	2
		v_5	_3	_3	3	3
		v_6	/3	4	3	3
	·					1

they may not represent The goal: get the consensus clustering the same cluster!

Methods (1)

- How to get base models?
 - Bootstrap samples
 - Different subsets of features
 - Different clustering algorithms
 - Random number of clusters
 - Random initialization for K-means
 - Incorporating random noises into cluster labels
 - Varying the order of data in on-line methods such as BIRCH

Methods (2)

How to combine the models?

Hard Correspondence (1)

- Re-labeling+voting
 - Find the correspondence between the labels in the partitions and fuse the clusters with the same labels by voting [DuFr03,DWH01]

	I	I	R	e-labe	ling		I	ı	Voting	
	C_1	C_2	C_3			C_1	C_2	C_3	С	*
V_1	1	3	2		V ₁	1	1	1	1	
V_2	1	3	2		V_2	1	1	1	1	
V_3	2	1	2		V_3	2	2	1) - -
V_4	2	1	3		V_4	2	2	2		,
V ₅	3	2	1		V ₅	3	3	3	- <u>3</u> - 3	
V_6	3	2	1		V_6	3	3	3	_ 0	50

Hard Correspondence (2)

Details

- Hungarian method to match clusters in two different clustering solutions
- Match to a reference clustering or match in a pairwise manner

Problems

In most cases, clusters do not have one-to-one correspondence

Soft Correspondence* (1)

Notations

- Membership matrix M₁, M₂, ..., M_k
- Membership matrix of consensus clustering M
- Correspondence matrix S₁, S₂, ..., S_k
- $-M_iS_i=M$

	C_1	C_2	C_3
V_1	1	3	2
V_2	1	3	2
V_3	2	1	2
V_4	2	1	3
V ₅	3	2	1
)5 3	2	1

 M_2

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

 S_2

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

M

Soft Correspondence (2)

Consensus function

- Minimize disagreement $\min \sum_{j=1}^{k} ||M M_j S_j||^2$
- Constraint 1: column-sparseness
- Constraint 2: each row sums up to 1
- Variables: M, S_1, S_2, \ldots, S_k

Optimization

- EM-based approach
- Iterate until convergence

 - Update *S* using gradient descent Update *M* as $M = \frac{1}{k} \sum_{j=1}^{k} M_j S_j$

Conclusions

Ensemble

- Combining independent, diversified models improves accuracy
- No matter in supervised, unsupervised, or semi-supervised scenarios, ensemble methods have demonstrated their strengths
- Base models are combined by learning from labeled data or by their consensus

Beyond accuracy improvements

- Information explosion motivates multiple source learning
- Various learning packages available
- Combine the complementary predictive powers of multiple models
- Distributed computing, privacy-preserving applications

Thank You!

Shangsong Liang Sun Yat-sen University