Facobi's votation method

- We want to diagonalize A using similarity transf., or in other words, find S such that STAS = D
- Will do it by a series of sim. transf S, Sz, ..., SM $S_{2}^{\mathsf{T}}S_{1}^{\mathsf{T}}AS_{1}S_{2}\equiv A^{(3)}$ until we get an A(i) that is close enough to diagonal:
 - $S_{M-1}^{T}...S_{2}^{T}S_{1}^{T}AS_{1}S_{2}...S_{M-1} \approx A^{(M)} \approx D$
 - o Then we have Sas S, Sz. Sm
 - · S routains eigenvectors of A
 - o D contains eigenvalues of A
- Notation in our algorithm: $A^{(m+1)} = S_m A^{(m)} S_m$

$$A^{(m+1)} = S_m A^{(m)} S_m$$

$$A^{(2)} = S_1^T A^{(1)} S_1$$

$$A^{(2)} = S_1^T A^{(1)} S_1$$

$$A^{(3)} = S_z^T A^{(2)} S_z$$

bookkeeping!)

$$a_{11} = S_{2} A S_{2}$$

$$a_{11} = A_{12} \dots$$

$$a_{21}^{(m)} = A_{22}^{(m)} \dots$$

$$A^{(m)} = R^{(m)} S_{m}$$

$$R^{(3)} = R^{(2)}S_2 = R^{(1)}S_1S_2 = S_1S_2$$

o Sm matrices are rotation matrices

of the Smil defined as clockwise rotation to match Morten's Perture notes.

Then Smis a counterclockwise rotation

4x4 examples

$$S = \begin{bmatrix} co16 & sin & 0 & 0 \\ -sin & co10 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Rotation
in
$$(x_1, x_2)$$
plane

$$S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & 0 & \sin \theta \\ 0 & 0 & 1 & 0 \\ 0 & -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{cases} Rotation \\ (x_2, x_4) \\ plane \end{cases}$$

Never need to construct the full Sm

· Cook at 2x2 rase to see where the algorithm will come from.

o Symmetric A
$$(a_{21}=a_{12})$$

$$A'' = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(1)} \end{bmatrix}$$

o We want
$$A^{(2)} = \begin{bmatrix} a_{11}^{(2)} & a_{12}^{(2)} \\ a_{21}^{(2)} & a_{22}^{(2)} \end{bmatrix} = \begin{bmatrix} a_{11}^{(1)} & 0 \\ 0 & a_{12}^{(1)} \end{bmatrix}$$

· Write out
$$A^{(2)} = S^T A^{(1)} S$$

$$\begin{bmatrix} a_{11}^{(2)} & a_{12}^{(2)} \\ a_{12}^{(2)} & a_{22}^{(2)} \end{bmatrix} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} \\ a_{12}^{(1)} & a_{22}^{(1)} \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$$

o We get:

·
$$Q_{12}^{(2)} = \left(Q_{11}^{(1)} - Q_{22}^{(1)}\right) c s + Q_{12}^{(1)}\left(c^2 - s^2\right)$$

$$\Rightarrow \left(\frac{a_{11}^{(i)} - a_{22}^{(i)}}{a_{12}^{(i)}}\right) c s + c^2 - s^2 = 0 \tag{*}$$

o Notation :
$$tan \theta = t = \frac{S}{C}$$

$$T = \frac{a_{22} - a_{11}}{2a_{12}}$$

• Then
$$(*) \Rightarrow S^2 + 2 & c - c^2 = 0$$

o Divide by
$$c^2$$
: $t^2 + 2\epsilon t - 1 = 0$ 2nd ord. eq. for t

o Solutions:
$$t = -2 \pm \sqrt{1 + 2^2}$$

These choices of ten
$$\theta$$
 (so angle θ) ensures that $Q_{12}^{(2)} = 0$

o Compute:
$$C = \frac{1}{\sqrt{1+t^2}}$$

 $S = ct$

later iteration.

6 Can now compute
$$q_{11}^{(2)}$$
 and $q_{22}^{(2)}$

The need to compute
$$a_{12}^{(2)}$$
 or $a_{21}^{(2)}$ — they are 0 by our choice of θ

$$\Rightarrow \text{ Have the new } A^{(2)} = \begin{bmatrix} a_{11}^{(2)} & 0 \\ 0 & a_{22}^{(2)} \end{bmatrix}$$
 Eigenvalues of A

o Eigenvectors:
$$R^{(2)} = R^{(1)}S_1 = IS_7 = \begin{pmatrix} c \\ -s \end{pmatrix} \begin{pmatrix} s \\ c \end{pmatrix}$$
 Eigenvectors of A

Frotems

o For N×N matrix we need many iterations, because

Som also affect other elements along vows/columns k and I

o Can end in situation where element any that have

prev. been set to an = 0 is transformed back to an #0 at

Algorithm

1) • Choose tolerance
$$\mathcal{E}$$
 , e.g. $\mathcal{E} = 10^{-8}$

3.7) Compute
$$\mathscr{E} = \frac{a_{11}^{(m)} - a_{1ck}^{(m)}}{2a_{k1}}$$

3.2) Compute tout, cost, sind
$$(t,c,s)$$
:
$$t = -2 \pm \sqrt{1 + e^{2}}$$

•
$$t = -2 \pm \sqrt{1 + e^{2}}$$

Choose solution that gives smallest
$$t$$
,

i.e. smallest angle θ

Soi if $\ell > 0$, use $t = -\ell + \sqrt{1 + \ell^{2}} = \frac{1}{\ell^{2} + \sqrt{1 + \ell^{2}}}$

if $\ell < 0$, use $t = -\ell^{2} - \sqrt{1 + \ell^{2}} = \frac{1}{\ell^{2} + \sqrt{1 + \ell^{2}}}$

if
$$C < 0$$
, use $t = -(7 - \sqrt{1 + c^{-1}}) = -1$

$$C = \frac{1}{\sqrt{1++^2}}$$

If
$$a_{\mathbf{k}_{1}}^{(m)} = 0$$
:
$$c = 1$$

$$s = 0$$

$$t = 0$$

$$A^{(m)} \rightarrow A^{(m+2)} = S_m^T A^{(m)} S_m$$

by updating elements :

•
$$a_{kk}^{(m+1)} = a_{kk}^{(m)} c^2 - 2a_{kl}^{(m)} cs + a_{ll}^{(m)} s^2$$

o
$$a_{kl}^{(m+1)} = 0$$
 This was the requirement we used to determine tand, i.e. that these elements should be transf. to 0.

· For all i + k,l:

$$a_{il}^{(m+1)} = a_{il}^{(m)}c + a_{ik}^{(m)}s$$

Must keep separate copies of some elements, ie. don't use the new

aik here

3.4) Update the overall rotation matrix,

by updating elements :

· For all i:

Again, make swe to use the cornect value here !

3.5) Find the (6,1) indices of the new max off-diag. elemont

[while loop returns to 3)]