AMTH140 ASSIGNMENT 3

MARK VILLAR

(1) (a) 10 comparisons will be performed using the Insertion Sort algorithm.

Steps			Lis	sts	Extra comparisons		
0	Е	С	A	D	В	F	0
1	Е	\mathbb{C}	A	D	В	F	0
2	С	Ε	A	D	В	F	1
3	A	С	E	D	В	F	2
4	A	С	D	E	В	F	2
5	A	В	\mathbf{C}	D	Е	$\lceil F \rceil$	4
6	A	В	С	D	Ε	F	1

(b) 9 comparisons will be performed using the Quick Sort algorithm.

Steps			Lis	sts	Extra comparisons		
0				D			0
1				В			5
2	<u>A</u>	В	C^*	D^*	E*	F*	3
3	A*	В*	C^*	D^*	E*	F*	1

(2) (a) Using Fleury's algorithm, we start at e since $\delta(e) = 3$ is odd. We then choose d as the next vertex since the removal of $\{e,d\}$ will not result in breaking the remaining subgraph into disconnected components. Repeating this procedure until all the other edges are removed, we find the following Eulerian path.

$$e \rightarrow d \rightarrow c \rightarrow g \rightarrow d \rightarrow f \rightarrow g \rightarrow b \rightarrow f \rightarrow e \rightarrow a \rightarrow b$$

(b) A circuit with exactly 5 edges that goes through vertex a and edge $\{e, f\}$ is

$$\{a,e\} \rightarrow \{e,f\} \rightarrow \{f,g\} \rightarrow \{g,b\} \rightarrow \{b,a\}$$

(c) A Hamiltonian path that goes through the edges $\{c,d\}$ and $\{e,f\}$ is

$$\{a,b\} \rightarrow \{b,g\} \rightarrow \{g,c\} \rightarrow \{c,d\} \rightarrow \{d,f\} \rightarrow \{f,e\}$$

- (d) A Hamiltonian circuit that goes through the edges $\{c, d\}$ and $\{e, f\}$ is $\{a, b\} \to \{b, g\} \to \{g, c\} \to \{c, d\} \to \{d, f\} \to \{f, e\} \to \{e, a\}$
- (e) By Fleury's algorithm, a Eulerian circuit does not exist. No walk can be found that starts and ends at the same vertex without going through some repeated edges. Hence the graph is not Eulerian.
- (3) (a) G_1 , G_3 and G_5 can be grouped into the same isomorphism class while the remaining 3 graphs are not isomorphic to each other and thus are isomorphism classes in their own right.
 - (b) The isomorphic invariant that distinguishes the group comprising G_1 , G_3 and G_5 is the number of edges, all containing 10 edges each. By contrast, G_2 and G_4 have 12 each while G_6 has 13. It follows that G_6 is distinguished by this same invariant property. Meanwhile, G_2 and G_4 are distinguishable because of vertices of a given degree. G_2 is the only graph that contains a vertex of degree 6 while G_4 is the only one that contains a vertex of degree 5.
 - (c) G_1 and G_5 are isomorphic to each other. The following isomorphism mapping associates the corresponding vertices of the two graphs.

$$V(G_1) \xrightarrow{g} V(G_5)$$

$$g(v_1) = w_3, \ g(v_2) = w_2, \ g(v_3) = w_6, \ g(v_4) = w_1$$

$$g(v_5) = w_5, \ g(v_6) = w_7, \ g(v_7) = w_4$$

(4) (a)

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

(b)

$$A^{2} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 5 \\ 4 & 3 & \boxed{5} \\ 5 & 5 & 7 \end{bmatrix}$$

There are 5 walks from v_2 to v_3 which are of length 3.

(5) (a) By the degree-sum formula, such a graph cannot be a tree since

$$N = \sum_{v \in V} \deg(v) = 2 \cdot 1 + 1 \cdot 2 + 5 \cdot 3 = 19 \text{ (odd)} \neq 2|E|$$

where N is the sum of the total degrees of all vertices and E is the total number of edges. Because for any graph, N must always be even, the following properties suggest that this is not a graph at all, and therefore is not a tree.

(b) For a graph with n vertices to be a tree it must have exactly n-1 edges. A graph with 7 vertices and the following properties cannot be a tree because it doesn't have 6 edges.

$$N = 2 \cdot 1 + 3 \cdot 2 + 2 \cdot 3 = 14 = 2|E|$$

 $E = 7$

(c) Such a graph with 6 vertices could be a tree since it has 5 edges.

$$N = 4 \cdot 1 + 2 \cdot 3 = 10 = 2|E|$$

 $E = 5$

The following tree illustrates these properties.

