

Instructor: Dr. Noel J. Maalouf

MCE550 – Robotics & Intelligent Systems ROS – Assignment 1 Spring 2023

In this assignment, you will create a ROS package that contains multiple nodes, a custom message, and a launch file. The package will be used to simulate a simple robot that moves in a straight line and detects obstacles.

Requirements

- 1. Create a new ROS package named "simple_robot" using catkin_create_pkg.
- 2. Create a new custom message type named "Obstacle" in the package. The message should have two fields: a **float32** named "distance" and a string named "name".
- 3. Create a node named "motion_controller" in the package. This node should publish messages to the "/cmd_vel" topic to control the robot's motion. The node should subscribe to the "/obstacle_detection" topic to detect obstacles.
- 4. Create a node named "obstacle_detector" in the package. This node should subscribe to the "/scan" topic to detect obstacles and publish Obstacle messages to the "/obstacle_detection" topic.
- 5. Create a launch file named **"robot.launch"** in the package. This launch file should launch the **"motion_controller"** and **"obstacle_detector"** nodes.

After completing the above requirements you can test the "obstacle_detector" and "motion_controller" by launching a TurtleBot3 in an example world. The "motion_controller" will command robot to keep moving forward and the "obstacle_detector" should log the detected obstacles along the way. Use the following command to launch a TurtleBot3 robot in a non-empty world.

> rolaunch turtlebot3_gazebo turtlebot3_world.launch

You should get the below Gazebo environment shown in Fig. 1.

Figure 1: TurtleBot3 Sample World

Grading

Your assignment will be graded based on the following criteria:

- Proper use of ROS packages, nodes, and topics.
- Correct implementation of the custom "**Obstacle**" message type.
- Correct implementation of the **"motion_controller"** node to control the robot's motion and detect obstacles.
- Correct implementation of the "obstacle_detector" node to detect obstacles and publish Obstacle messages.
- Correct implementation of the **"robot.launch"** launch file to launch the necessary nodes.

Submission

Assignments are to be submitted **individually on Blackboard**. Submit a compressed folder containing the **"simple_robot"** package directory, along with a README file that includes instructions on how to build and run the package.

Due Date: Thursday, April 6, 2023.