15 Forme quadratiche

Definizione 15.1 (Forme quadratiche) Una forma quadratica è un polinomio omogeneo di secondo grado in n variabili: $F = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_ix_j$. Una forma quadratica può essere scritta in notazione matriciale come $F = \mathbf{x}^T A \mathbf{x}$, essendo

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ x_2 \ \dots \ x_n \end{array}
ight]$$

e

$$m{A} = \left[egin{array}{ccccc} a_{11} & a_{12} & \vdots & a_{1n} \\ a_{21} & a_{22} & \vdots & a_{2n} \\ \vdots & \ddots & \ddots & \ddots \\ a_{n1} & a_{n2} & \vdots & a_{nn} \end{array}
ight]$$

Pertanto chiameremo F forma quadratica associata associata alla matrice A.

Esempio 15.1 Una forma quadratica in due variabili è $a_{11}x_1^2 + a_{12}x_1x_2 + a_{21}x_2x_1 + a_{22}x_2^2$. In forma matriciale essa è data dal prodotto $\mathbf{x}^T \mathbf{A} \mathbf{x}$, dove

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

e

$$\mathbf{A} = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

Definizione 15.2 (Simmetrizzazione della matrice A) La matrice A di una forma quadratica $F = \mathbf{x}^T A \mathbf{x}$ può essere sempre resa simmetrica. Si ha infatti $F = \mathbf{x}^T A \mathbf{x} = \mathbf{x}^T B \mathbf{x}$, dove il generico elemento della matrice B è $b_{ij} = \frac{a_{ij} + a_{ji}}{2}$

Definizione 15.3 (Matrici definite positive) Una matrice quadrata A si dice definita positiva se la forma quadratica associata $F = x^T A x$ assume valori positivi per ogni $x \neq 0$ (è evidente che F = 0 se x = 0), i.e. $F = x^T A x > 0, \forall x \neq 0$.

Definizione 15.4 (Matrici semidefinite positive) Una matrice quadrata A si dice semidefinita positiva se la forma quadratica associata $F = x^T Ax$ assume valori non negativi per ogni x (si può cioè avere $F = x^T Ax = 0$ anche per $x \neq 0$, i.e. $F = x^T Ax \geq 0, \forall x$ ed esiste almento un vettore $x \neq 0$ tale che $x^T Ax = 0$.

Definizione 15.5 (Matrici definite negative) Una matrice quadrata \mathbf{A} si dice definita negativa se la forma quadratica associata $F = \mathbf{x}^T \mathbf{A} \mathbf{x}$ assume valori negativi per ogni $\mathbf{x} \neq \mathbf{0}$ (è evidente che F = 0 se $\mathbf{x} = \mathbf{0}$), i.e. $F = \mathbf{x}^T \mathbf{A} \mathbf{x} < 0, \forall \mathbf{x} \neq \mathbf{0}$.

Definizione 15.6 (Matrici semidefinite negative) Una matrice quadrata \mathbf{A} si dice semidefinita negativa se la forma quadratica associata $F = \mathbf{x}^T \mathbf{A} \mathbf{x}$ assume valori non positivi per ogni \mathbf{x} (si può cioè avere $F = \mathbf{x}^T \mathbf{A} \mathbf{x} = 0$ anche per $\mathbf{x} \neq \mathbf{0}$, i.e. $F = \mathbf{x}^T \mathbf{A} \mathbf{x} \leq 0, \forall \mathbf{x}$ ed esiste almento un vettore $\mathbf{x} \neq 0$ tale che $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$

Definizione 15.7 (Matrici indefinite) Una matrice quadrata \mathbf{A} si dice indefinita se la forma quadratica associata $F = \mathbf{x}^T \mathbf{A} \mathbf{x}$ può assumere sia valori negativi che positivi al variare di \mathbf{x} .

Per riconoscere se una matrice \boldsymbol{A} associata ad una forma quadratica è definita positiva, definita negativa, semidifefinita positiva, semidefinita negativa o indefinita, utilizziamo il seguente teorema per trasformare la forma quadratica F in una forma quadratica che non contiene termini misti.

Teorema 15.1 (Diagonalizzazione di una forma quadratica) Siano $\lambda_1, \lambda_2, \ldots, \lambda_n$ gli n autovalori della matrice quadrata \mathbf{A} . È possibile trovare una trasformazione di variabili per cui una forma quadratica

$$F = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$$

può essere espressa in una forma semplificata del tipo $F = \sum_{i=1}^{n} \lambda_i y_i^2$.

Dimostrazione Essendo \boldsymbol{A} una matrice simmetrica, possiamo utilizzare il teorema spettrale e porre $\boldsymbol{A} = \boldsymbol{Q^T}\boldsymbol{D}\boldsymbol{Q}$, dove \boldsymbol{D} è la matrice diagonale degli autovalori e \boldsymbol{Q} è la matrice degli autovettori normalizzati. Possiamo perciò scrivere $F = \boldsymbol{x^T}\boldsymbol{Q^T}\boldsymbol{D}\boldsymbol{Q}\boldsymbol{x}$. Ponendo poi $\boldsymbol{x} = \boldsymbol{Q}\boldsymbol{y}$ e sostituendo otteniamo $F = \boldsymbol{y^T}\boldsymbol{D}\boldsymbol{y} = \sum_{i=1}^n \lambda_i y_i^2$.

Il seguente teorema ci consente di riconoscere la "natura" di una forma quadratica guardando solo al segno degli autovalori di A, che indichiamo con $\lambda_1, \ldots, \lambda_n$.

Teorema 15.2 Una matrice A associata ad una forma quadratica è:

- definita positiva: se $\lambda_i > 0$ per $i = 1, \ldots, n$;
- definita negativa: se $\lambda_i < 0$ per i = 1, ..., n;
- semidefinita positiva: se $\lambda_i \geq 0$ per i = 1, ..., n ed esiste almeno un $\lambda_j = 0$;
- semidefinita negativa: se $\lambda_i \leq 0$ per i = 1, ..., n ed esiste almeno un $\lambda_j = 0$;
- indefinita: se esistono distinti i e j tali che $\lambda_i > 0$ e $\lambda_j < 0$.

Dimostrazione. Trasformando la forma quadratica $x^T A x$ nella $y^T D y = \sum_{i=1}^n \lambda_i y_i^2$ attraverso la diagonalizzazione, abbiamo che il segno di $y^T D y$ dipende solo dagli elementi della matrice D, cioè dagli autovalori di A. \diamond