IMPORT THE LIBRARIES

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler

IMPORT THE DATASET

In [2]: df= pd.read_csv('Life Expectancy Data.csv')
df

Out[2]:

•		Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percenta expenditu
	0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.2796
	1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.5235
	2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.2192
	3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.1842
	4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.0971
	•••							•••	
	2933	Zimbabwe	2004	Developing	44.3	723.0	27	4.36	0.0000
	2934	Zimbabwe	2003	Developing	44.5	715.0	26	4.06	0.0000
	2935	Zimbabwe	2002	Developing	44.8	73.0	25	4.43	0.0000
	2936	Zimbabwe	2001	Developing	45.3	686.0	25	1.72	0.0000
	2937	Zimbabwe	2000	Developing	46.0	665.0	24	1.68	0.0000

2938 rows × 22 columns

•

DATA EXPLORATION

In [3]: df.head(5)

Out[3]:

•	Country Ye		Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure
() Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624
1	l Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582
2	2 Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243
3	3 Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215
4	• Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109
5 rows × 22 columns								

In [4]: df.shape

Out[4]: (2938, 22)

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	Country	2938 non-null	object
1	Year	2938 non-null	int64
2	Status	2938 non-null	object
3	Life expectancy	2928 non-null	float64
4	Adult Mortality	2928 non-null	float64
5	infant deaths	2938 non-null	int64
6	Alcohol	2744 non-null	float64
7	percentage expenditure	2938 non-null	float64
8	Hepatitis B	2385 non-null	float64
9	Measles	2938 non-null	int64
10	BMI	2904 non-null	float64
11	under-five deaths	2938 non-null	int64
12	Polio	2919 non-null	float64
13	Total expenditure	2712 non-null	float64
14	Diphtheria	2919 non-null	float64
15	HIV/AIDS	2938 non-null	float64
16	GDP	2490 non-null	float64
17	Population	2286 non-null	float64
18	thinness 1-19 years	2904 non-null	float64
19	thinness 5-9 years	2904 non-null	float64
20	Income composition of resources	2771 non-null	float64
21	Schooling	2775 non-null	float64
d+vn	oc. $float64/16$ \ int64/4\\ object	(2)	

dtypes: float64(16), int64(4), object(2)

memory usage: 505.1+ KB

In [6]: df.isnull().sum()

```
Out[6]: Country
                                               0
                                               0
         Year
                                               0
         Status
         Life expectancy
                                              10
                                              10
         Adult Mortality
         infant deaths
                                               0
         Alcohol
                                             194
         percentage expenditure
                                               0
         Hepatitis B
                                             553
         Measles
                                               0
          BMI
                                              34
         under-five deaths
                                               0
         Polio
                                              19
         Total expenditure
                                             226
         Diphtheria
                                              19
          HIV/AIDS
                                               0
         GDP
                                             448
         Population
                                             652
         thinness 1-19 years
                                              34
         thinness 5-9 years
                                              34
         Income composition of resources
                                             167
         Schooling
                                             163
         dtype: int64
```

In [7]: df.duplicated().sum()

Out[7]: 0

In [8]: df.describe()

Out[8]:

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure
count	2938.000000	2928.000000	2928.000000	2938.000000	2744.000000	2938.000000
mean	2007.518720	69.224932	164.796448	30.303948	4.602861	738.251295
std	4.613841	9.523867	124.292079	117.926501	4.052413	1987.914858
min	2000.000000	36.300000	1.000000	0.000000	0.010000	0.000000
25%	2004.000000	63.100000	74.000000	0.000000	0.877500	4.685343
50%	2008.000000	72.100000	144.000000	3.000000	3.755000	64.912906
75%	2012.000000	75.700000	228.000000	22.000000	7.702500	441.534144
max	2015.000000	89.000000	723.000000	1800.000000	17.870000	19479.911610

HANDLING MISSING VALUES

```
In [9]: df.fillna(df.median(numeric_only=True),inplace=True)
```

```
In [10]: categorical_cols=df.select_dtypes(include=['object']).columns
for col in categorical_cols:
    df[col].fillna(df[col].mode()[0])
```

```
print("\n Missing values after imputation:")
         print(df.isnull().sum())
         Missing values after imputation:
        Country
                                           0
        Year
                                           0
        Status
                                           0
        Life expectancy
                                           0
        Adult Mortality
                                           0
        infant deaths
                                           a
        Alcohol
        percentage expenditure
                                           0
        Hepatitis B
                                           0
        Measles
                                           0
        BMT
                                           0
        under-five deaths
                                           0
        Polio
                                           0
        Total expenditure
                                           0
        Diphtheria
                                           0
        HIV/AIDS
                                           0
        GDP
                                           a
        Population
        thinness 1-19 years
                                           0
        thinness 5-9 years
                                           0
        Income composition of resources
                                           0
        Schooling
        dtype: int64
In [ ]: STANDARDIZING THE FEATURES
In [11]: df=pd.get dummies(df, drop first=True)
In [12]: | numeric_cols=df.select_dtypes(include=['int64','float64']).columns
         scaler=StandardScaler()
         df[numeric_cols]=scaler.fit_transform(df[numeric_cols])
         data_scaled=scaler.transform(df[numeric_cols])
         print(data_scaled)
        [[-434.83042485 -7.3289667
                                        -1.32135105 ...
                                                         -0.46303607
            -6.67139887
                          -3.85802803]
         [-434.87741671 -7.38538731
                                        -1.3208313 ...
                                                         -0.45309375
            -6.74271209 -3.86741109]
         [-434.92440857 -7.38538731
                                        -1.32102621 ...
                                                         -0.44315143
            -6.88533853
                         -3.87679415]
         [-435.44131899 -7.55243659
                                        -1.333695
                                                          -1.25842143
            -7.90749471
                         -3.86741109]
         [-435.48831085
                         -7.54690515
                                        -1.2938695 ...
                                                          -1.2385368
            -7.90749471 -3.88617721]
                                                          -0.76627674
         [-435.53530271
                         -7.53916115
                                        -1.29523384 ...
            -7.74109719
                         -3.88617721]]
         VISUALIZING THE FEATURES
In [13]: for col in numeric cols:
             plt.figure(figsize=(8,4))
             sns.boxplot(x=df[col])
             plt.title(f'Boxplot of {col}')
             plt.show()
```

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

Boxplot of Year

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

Boxplot of Life expectancy

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

Boxplot of Adult Mortality

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

Boxplot of infant deaths

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

Boxplot of Alcohol

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

Boxplot of percentage expenditure

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

Boxplot of Hepatitis B

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

Boxplot of Measles

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

Boxplot of BMI

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

Boxplot of under-five deaths

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

Boxplot of Polio

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

Boxplot of Total expenditure

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

Boxplot of Diphtheria

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

Boxplot of HIV/AIDS

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

Boxplot of GDP

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

Boxplot of Population

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

Boxplot of thinness 1-19 years

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

Boxplot of thinness 5-9 years

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

Boxplot of Income composition of resources

C:\Users\Gnanesh\AppData\Local\Programs\Python\Python312\Lib\site-packages\seabor
n\categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will
be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

Boxplot of Schooling


```
In [ ]: REMOVING OUTLIERS
```

```
In [14]: for col in numeric_cols:
    Q1=df[col].quantile(0.25)
    Q3=df[col].quantile(0.75)
    IQR=Q3-Q1
    df=df[(df[col]>=Q1-1.5*IQR)&(df[col]<=Q3+1.5*IQR)]
print("\n Final dataset shape after removal of outliers:",df.shape)</pre>
```

Final dataset shape after removal of outliers: (623, 213)

```
In [15]: df
```

Out[15]:

		Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	
	16	1.621762	0.900898	-0.731275	-0.257017	0.013548	-0.187805	0.694900	-(
	17	1.404986	0.869344	-1.263253	-0.257017	-0.009404	-0.155718	0.651408	-(
	18	1.188210	0.837790	-0.650672	-0.257017	0.054351	-0.154648	0.694900	-(
	19	0.971434	0.806236	-0.634551	-0.257017	0.151258	-0.163922	0.694900	-(
	20	0.754658	0.774682	-0.618431	-0.257017	0.209912	-0.151536	0.694900	-(
	•••								
	2858	1.621762	0.511731	-0.062271	-0.180685	-0.201943	-0.371433	0.173003	-(
	2860	1.188210	0.480177	-0.046150	-0.180685	0.551638	-0.371433	-0.044454	-(
	2861	0.971434	0.469659	-0.030030	-0.180685	0.549087	-0.371433	-0.087945	-(
	2864	0.321106	0.459141	0.010272	-0.180685	0.776054	-0.371433	0.042529	-(
	2869	-0.762774	0.427587	-0.030030	-0.172204	0.765853	-0.371433	-0.044454	-(

623 rows × 213 columns

In []: