Workshop on Python (Day 5)

By Suriya G Organized by Suresh Sir, UPNM

TABLE OF CONTENTS

1 Recap

Functions & loops

O2 Exploratory Data Analysis

- Basic definitions
- Use cases

Matplotlib & Seaborn

- Types of graphs
- Implementing using Python

Dashboard

Finally, making it as a dashboard.

What is Data Visualization?

Process of describing information through Visual Rendering

	ilD - Inter- viewer Identifi- cation	Does res- pondent have a mobile phone?	Work Tstatus	Occupa- T tion	≑Age ▼	Top of mind awareness
1	853.0	Yes	Fulltime worker	Associate professional	45-54 yrs	Optus
2	854.0	Yes	Fulltime worker	clerical, sales and services	20-24 yrs	Optus
3	855.0	Yes	Retired		45-54 yrs	Optus
4	851.0	Yes	Fulltime worker	manager/ administrator	25-29 yrs	Optus
5	852.0	Yes	Student		20-24 yrs	Optus
6	883.0	Yes	Fulltime worker	Associate professional	45-54 yrs	Telstra (Mobile Net)
7	884.0	Yes	Fulltime worker	clerical, sales and services	20-24 yrs	Vodafone
8	885.0	Yes	Retired		45-54 yrs	Optus
9	881.0	Yes	Student		16-19 yrs	Optus
10	882.0	Yes	Fulltime worker	manager/ administrator	20-24 yrs	Telstra (Mobile Net)
11	713.0	Yes	Part-time worker		20-24 yrs	Optus

Visualization libraries

- matplotlib
- Seaborn
- Bokeh
- Plotly etc....

Bar Graph

- Category comparison
- Used for comparing different categories or groups
- Example: Sales analysis across regions

Favourite Colour

bar.py

```
# Basic syntax for bar chart
plt.bar() #Method 1
sns.countplot(x,data) #Method 2
```

Line Graph

- Trend over time
- Shows changes over time, useful for tracking trends
- Example: Sales trend over months

line.py

```
# Basic syntax for line chart
plt.plot(x,y) #Method 1
sns.lineplot(x,y,data) #Method 2
```

Pie Chart

- Proportion distribution
- Displays percentage or proportional breakdown of a whole
- Example: Sales across each category

Market Share of Smartphone Brands

pie.py

1 # Basic syntax for pie chart

plt.pie(values, labels, autopct)

Scatter Plot

- Correlation analysis
- Helps identify relationships between two numerical variables
- Example: Sales vs Profit distribution

scatter.py

```
# Basic syntax for scatter plot
plt.scatter(x,y) #Method 1
sns.scatterplot(x,y,data) #Method 2
```

Box Plot

- Summarizes distribution (median, quartiles, outliers) of numerical data.
- Useful for comparing distributions across categories.

box.py

Basic syntax for boxplot

df.plot.box()

Histogram

- Displays the distribution of a single numerical variable.
- Bars represent frequency or count within bins.

hist.py

- # Basic syntax for histogram
- 2 df.plot.hist(bins=5)

How has the average salary changed over the years?

Graph Type: Line Chart

How has the average salary changed over the years? Graph Type: Line Chart

Line_Chart.py

```
# Basic syntax for histogram

df.groupby("work_year")["salary_in_usd"].mean().plot
   (kind="line", marker='o', title="Average Salary Over
   Years")

plt.xlabel("Work Year")

plt.ylabel("Average Salary (USD)")

plt.grid(True)

plt.show()
```

How has the average salary changed over the years?

What is the distribution of employee experience levels?

Graph Type: Count Plot (Bar)

What is the distribution of employee experience levels? Graph Type: Count Plot (Bar)

bar.py

```
import seaborn as sns
sns.countplot(data=df, x="experience_level")
plt.title("Experience Level Distribution")
plt.xlabel("Experience Level")
plt.ylabel("Count")
plt.show()
```

What is the distribution of employee experience levels?

Which job titles pay the most on average? Graph Type: Bar Chart

Which job titles pay the most on average? Graph Type: Bar Chart

hist.py

```
# Basic syntax for histogram
top_jobs =
df.groupby("job_title")["salary_in_usd"].mean().sort_values().head(10)
top_jobs.plot(kind="barh", title="Top 10 Highest Paying Job Titles")
plt.xlabel("Average Salary (USD)")
plt.gca().invert_yaxis()
plt.show()
```

Which job titles pay the most on average?

What is the relationship between remote ratio and salary? Graph Type: Scatter Plot

What is the relationship between remote ratio and salary?

Graph Type: Scatter Plot

hist.py

```
# Basic syntax for histogram

df.plot.scatter(x="remote_ratio", y="salary_in_usd", title="Remote
Ratio vs Salary")

plt.xlabel("Remote Ratio (%)")

plt.ylabel("Salary (USD)")

plt.show()
```

Which job titles pay the most on average?

How many employees work under each employment type? Graph Type: Pie Chart

How many employees work under each employment type? Graph Type: Scatter Plot

hist.py

```
# Basic syntax for histogram

df["employment_type"].value_counts().plot.pie(autopct="%1.1f%%",
   title="Employment Type Distribution")

plt.ylabel("")
plt.show()
```

How many employees work under each employment type?

Employment Type Distribution

