

Testing the validity of instruments

Valid instruments satisfy three conditions

- There are enough instruments
 - \rightarrow Easy! Just count.
- 2 Instruments are correlated (enough) with X
 - \rightarrow Check significance of instruments in first stage regression
- **3** Instruments are not correlated with ε
 - \rightarrow Perform Sargan test

- Ezafung

Outline

Given

- Model $y = X\beta + \varepsilon$
- Instruments *Z*

Two important things to test

- $oldsymbol{0}$ Z satisfies assumptions for instruments?
- X exogenous or endogenous?

Lecture 4.4, Slide 2 of 1, Erasmus School of Economics

Test correlation Z vs. X

- \bullet X_1 potentially endogenous variables
- X_2 exogenous variables
- $Z = (Z^*, X_2)$ instruments

First-stage regression: apply OLS to $X_1 = Z^* \gamma_1 + X_2 \gamma_2 + \eta$

Test

Why does 2SLS require $\gamma_1 \neq 0$?

If $\gamma_1 \approx 0$:

- $\hat{X}_1 \approx X_2 \hat{\gamma}_2$
 - $ightarrow \hat{X}_1$ almost perfectly correlated with X_2
- (Extremely) large estimation uncertainty

Test for sufficient correlation:

• Test $H_0: \gamma_1 = 0$ in first-stage regression.

(Zafus

Sargan test

Ingredients:

• Model: $y = X\beta + \varepsilon$

• Explanatory variables: $X = (X_1, X_2)$ X_1 (endogenous), X_2 (exogenous)

• Instruments: $Z = (Z^*, X_2)$

Null hypothesis (H_0): Correlation Z and ε equals 0

Test procedure:

• Rewrite to $H_0: \delta = 0$ in

$$\varepsilon = Z\delta + \xi$$

ullet ε cannot be observed

ightarrow Estimate arepsilon using 2SLS

Erafus

Lecture 4.4, Slide 5 of 1, Erasmus School of Economics

Notes on the Sargan test

- Test only works when there are "too many" instruments (m > k)
- At least k of the instruments should be valid
- Test cannot indicate which instruments are invalid!

Sargan test

Procedure:

- **1** Use Z to obtain 2SLS estimator b_{2SLS} for β
- 2 Calculate $e_{2SLS} = y Xb_{2SLS}$
- **3** Regress e_{2SLS} on Z
- $nR^2 \approx \chi^2(m-k)$ under H_0 (valid instruments)
 - ► *m* instruments in *Z*
 - ► k explanatory variables in X

Test

The Sargan test requires m > k. What happens when m = k?

Ezafus,

Lecture 4.4, Slide 6 of 1, Erasmus School of Economics

Testing for exogeneity of variables – Hausman test

Intuition:

- Use the instruments to split potentially endogenous variables into
 - a guaranteed exogenous part
 - 2 a potentially endogenous part
- Check whether the endogenous and exogenous part affect *y* differently.

Hausman test – procedure

Ingredients:

• Explanatory variables: $X = (X_1, X_2)$

• Potentially endogenous: X_1 (k_1 variables)

• Exogenous variables: X_2 (k_2 variables)

• Instruments: Z

Null hypothesis (H_0) : X_1 is exogenous

Formal procedure:

2 Regress X_1 on $Z \rightarrow$ calculate residuals V

 \odot Regress e on X and V

• $nR^2 \approx \chi^2(k_1)$ under H_0 of exogeneity

Ezafus,

Lecture 4.4, Slide 9 of 1, Erasmus School of Economics

TRAINING EXERCISE 4.4

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

(zafus

Lecture 4.4, Slide 10 of 1, Erasmus School of Economics