

Cumulative Indexes

Contributing Authors, Volumes 76-80

A

- Adler J, 80:42-70
Aitken CE, 77:177-203
Alber F, 77:443-77
Anckar J, 80:1089-115
Antebi A, 80:885-916
Antony B, 80:101-23

B

- Bakal C, 79:37-64
Baker D, 77:363-82
Baker TA, 80:587-612
Balch WE, 78:959-91
Balci H, 77:51-76
Barlowe C, 79:777-802
Barnes G, 76:563-91
Baron GS, 78:177-204
Barrera NP, 80:247-71
Bates M, 78:993-1016
Beavo J, 76:481-511
Begley TP, 78:569-603
Beltrao P, 77:415-41
Berg P, 77:14-44
Bishop RE, 76:295-329
Blobel G, 80:613-43
Block SM, 77:149-76
Bogdanov M, 78:515-40
Bolen DW, 77:339-62
Bono F, 76:647-71
Borgia A, 77:101-25
Bowen M, 78:903-28
Brakman I, 80:71-99

C

- Breaker RR, 78:305-34
Brown S, 78:743-68
Brunger AT, 78:903-28
Bulleid NJ, 80:71-99
Buranachai C, 77:51-76
Bustamante C, 77:45-50, 205-28
- Cairns BR, 78:273-304
Cane DE, 76:195-221
Carman GM, 80:859-83
Carrasco S, 80:973-1000
Caughey B, 78:177-204
Chait BT, 80:239-46
Chang HY, 78:245-71
Chang Y-F, 76:51-74
Chapman ER, 77:615-41
Chemla YR, 77:205-28
Chen AY, 76:195-221
Chen ZJ, 78:769-96
Cheng Y, 78:723-42
Chesbro B, 78:177-204
Chu S, 78:903-28
Ciccia A, 77:259-87
Clapier CR, 78:273-304
Clarke J, 77:101-25
Cole PA, 78:797-825
Collier RJ, 76:243-65
Colman PM, 78:95-118
Conti E, 76:647-71
Conti M, 76:481-511
Cook A, 76:647-71
- Cotruvo JA Jr, 80:733-67
Cox J, 80:273-99
Crane BR, 79:445-70
Cravatt BF, 77:383-414
Crawford ED, 80:1055-87
- Dalbey RE, 80:161-87
Dancourt J, 79:777-802
Dar AC, 80:769-95
Das R, 77:363-82
Davies GJ, 77:521-55
Dean DR, 78:701-22
Debler EW, 80:613-43
DeGrado WF, 80:211-37
Dennis EA, 80:301-25
Deshaies RJ, 78:399-434
Dietrich JA, 79:563-90
Dillin A, 77:727-54; 78:959-91
Dillingham MS, 76:23-50
Dimroth P, 78:649-72
Di Noia JM, 76:1-22
Doherty GJ, 78:857-902
Dorywalska M, 77:177-203
Dowhan W, 78:515-40
Driessens AJM, 77:643-67
Drubin DG, 76:563-91

D

- E
- Ealick SE, 78:569-603
Eck MJ, 76:593-627

- Edwards A, 78:541–68
 Elazar Z, 80:125–56
 Ellenberger T, 77:313–38
 Elofsson A, 76:125–40
 Engel A, 77:127–48
- F**
 Fabian MR, 79:351–79
 Falkenberg M, 76:679–99
 Fersht AR, 77:557–82
 Filipowicz W, 79:351–79
 Finley D, 78:477–513
 Fontes CMGA, 79:655–81
 Förster F, 77:443–77
 Frank J, 79:381–412
- G**
 Gangloff M, 76:141–65
 Gaub HE, 77:127–48
 Gay NJ, 76:141–65
 Geiduschek EP, 78:1–28
 Gelb MH, 77:495–520
 Gerton JL, 79:131–53
 Gilbert HJ, 79:655–81
 Goenrich M, 79:507–36
 Gómez-García MR, 78:605–47
 Gonzalez RL Jr, 79:381–412
 Gonzalez-Cabrera PJ, 78:743–68
 Goode BL, 76:593–627
 Gooptu B, 78:147–76
 Graves BJ, 80:437–71
 Greenleaf WJ, 77:149–76
 Grigoryan G, 80:211–37
 Grunstein M, 76:75–100
 Guan K-L, 80:1001–32
 Gustafsson CM, 76:679–99
- H**
 Ha T, 77:51–76
 Hagan CL, 80:189–210
 Hakemian AS, 76:223–41
 Halford RW, 78:1017–40
 Hamdan SM, 78:205–43
 Han G-S, 80:859–83
 Harbury PB, 76:331–49
 Harkewicz R, 80:301–25
 Hart GW, 80:825–58
 Helenius A, 79:803–33
- Henriksat B, 77:521–55
 Herbert KM, 77:149–76
 Herrmann JM, 76:723–49
 Herschlag D, 80:669–702
 Hiromoto T, 79:507–36
 Hoelz A, 80:613–43
 Hoffman BM, 78:701–22
 Hollenhorst PC, 80:437–71
 Honig B, 79:233–69
 Hoogenraad CC, 76:823–47
 Hoogenraad NJ, 76:701–22
 Hoppins S, 76:751–80
 Huang B, 78:993–1016
 Hunter T, 78:435–75
- I**
 Imam JS, 76:51–74
 Imlay JA, 77:755–76
 Ishitsuka Y, 77:51–76
- J**
 Jeffrey M, 78:177–204
 Jemc J, 76:513–38
 Jensen CJ, 77:583–613
 Jiang X, 78:769–96
 Jin X, 79:233–69
 Jinek M, 76:647–71
 Joazeiro CAP, 78:399–434
 Joerger AC, 77:557–82
 Joo C, 77:51–76
 Joshi R, 79:233–69
 Jurgenson CT, 78:569–603
- K**
 Kahne D, 80:189–210
 Kang JY, 80:917–41
 Kaster A-K, 79:507–36
 Kelly JW, 78:959–91
 Keasling JD, 79:563–90
 Khersonsky O, 79:471–505
 Khosla C, 76:195–221
 Kiel C, 77:415–41
 Kiessling LL, 79:619–53
 Kim J, 80:1001–32
 Kim Y-J, 76:447–80
 Klein H, 77:229–57
 Klug A, 79:1–35, 213–31
 Komeili A, 76:351–66
- Korkin D, 77:443–77
 Kornberg A, 78:605–47
 Kotti T, 78:1017–40
 Kozarich JW, 77:383–414;
 78:55–63
 Kuhn A, 80:161–87
- L**
 Lackner L, 76:751–80
 Lagerlof O, 80:825–58
 Lairson LL, 77:521–55
 Lambeau G, 77:495–520
 Larsson N-G, 76:679–99;
 79:683–706
 Lassila JK, 80:669–702
 Lee J-O, 80:917–41
 Lee MS, 76:447–80
 Lehnart SE, 76:367–85
 Leung EKY, 80:527–55
 Li PTX, 77:77–100
 Lieber MR, 79:181–211
 Lill R, 77:669–700
 Lippard SJ, 80:333–55
 Lippincott-Schwartz J, 80:327–32
 Liu CC, 79:413–44
 Liu Q, 79:295–319
 Lomas DA, 78:147–76
 Lu Z, 78:435–75
 Lutkenhaus J, 76:539–62
- M**
 Mair W, 77:727–54
 Mann M, 80:273–99
 Mann RS, 79:233–69
 Marks AR, 76:367–85
 Marshall RA, 77:177–203
 Masai H, 79:89–130
 Matsumoto S, 79:89–130
 McDonald N, 77:259–87
 McHenry CS, 80:403–36
 McIntosh LP, 80:437–71
 McKee AE, 79:563–90
 McMahon HT, 78:857–902
 Mehta S, 80:375–401
 Mercer J, 79:803–33
 Metcalf WW, 78:65–94
 Meyer T, 80:973–1000
 Miyawaki A, 80:357–73
 Moffitt JR, 77:205–28

Mohr S, 79:37–64
Montal M, 79:591–617
Montell C, 76:387–417
Moore DT, 80:211–37
Moore SD, 76:101–24
Morimoto RI, 78:959–91
Morris DM, 77:583–613
Mosammaparast N, 79:155–79
Mühlenhoff U, 77:669–700
Murphy MP, 77:777–98

N

Nelson WJ, 76:267–94
Neuberger MS, 76:1–22
Neufeld EF, 80:1–15
Neupert W, 76:723–49
Nikaido H, 78:119–46
Nishikura K, 79:321–49
Nocera DG, 78:673–99
Nomura M, 80:16–40
Nouwen N, 77:643–67
Nudler E, 78:335–61
Nunnari J, 76:751–80

O

Oda M, 79:89–130

P

Padrick SB, 79:707–35
Paroo Z, 79:295–319
Partridge L, 77:777–98
Patel BA, 79:445–70
Paulson JC, 80:797–823
Perrimon N, 79:37–64
Pfeffer SR, 76:629–45
Piccirilli JA, 80:527–55
Pluth MD, 80:333–55
Popot J-L, 79:737–75
Powers ET, 78:959–91
Puglisi JD, 77:177–203

R

Raetz CRH, 76:295–329
Raines RT, 78:929–58
Ramirez DMO, 78:1017–40
Ramirez-Correa G, 80:825–58
Rando OJ, 78:245–71

Rao NN, 78:605–47
Rebay I, 76:513–38
Reece SY, 78:673–99
Reyes-Turcu FE, 78:363–97
Reynolds CM, 76:295–329
Richardson CC, 78:205–43
Rillahan CD, 80:797–823
Riordan JR, 77:701–26
Robinson CV, 76:167–93;
80:247–71
Robinson NJ, 79:537–62
Rohs R, 79:233–69
Rose GD, 77:339–62
Rosen H, 78:743–68
Rosen MK, 79:707–35
Rosenzweig AC, 76:223–41
Ross J, 77:479–94
Roth A, 78:305–34
Russell DW, 78:1017–40
Ryan MT, 76:701–22

S

Sali A, 77:443–77
San Filippo J, 77:229–57
Sanna MG, 78:743–68
Sauer RT, 76:101–24;
80:587–612
Schatz G, 76:673–78
Schelhaas M, 79:803–33
Schick M, 79:507–36
Schnarr NA, 76:195–221
Schneider A, 80:1033–53
Schramm VL, 80:703–32
Schultz PG, 79:413–44
Seefeldt LC, 78:701–22
Seeman NC, 79:65–87
Selinger Z, 77:1–13
Selth LA, 79:271–93
Sengupta R, 80:527–55
Serrano L, 77:415–41
Shah R, 78:1017–40
Shahbazian MD, 76:75–100
Shajani Z, 80:501–26
Sharon M, 76:167–93
Sheng M, 76:823–47
Shi Y, 79:155–79
Shima S, 79:507–36
Shokat KM, 80:769–95
Shoulders MD, 78:929–58
Shvets E, 80:125–56
Sigurdsson S, 79:271–93

Silhavy TJ, 80:189–210
Simon SM, 76:419–46
Singleton MR, 76:23–50
Sistonen L, 80:1089–115
Skaug B, 78:769–96
Slawson C, 80:825–58
Smith SB, 77:205–28
Sonenberg N, 79:351–79
Spiegelman BM, 77:289–312
Splain RA, 79:619–53
Stubbe J, 80:733–67
Sudhamsu J, 79:445–70
Suganuma T, 80:473–99
Sung P, 77:229–57
Suslov N, 80:527–55
Svejstrup JQ, 79:271–93
Sykes MT, 80:501–26

T

Tang Y, 76:195–221
Tarrant MK, 78:797–825
Tawfik DS, 79:471–505
Thauer RK, 79:507–36
Tinoco I Jr, 77:77–100
Tomat E, 80:333–55
Tomkinson AE, 77:313–38
Tontonoz P, 77:289–312
Topf M, 77:443–77
Toyama BH, 80:557–85
Trent MS, 76:295–329
Tuttle N, 80:527–55

V

van der Donk WA, 78:65–94
Venkatachalam K, 76:387–417
Ventii KH, 78:363–97
Vetter IR, 80:943–71
Vieregg J, 77:77–100
Voelker DR, 78:827–56
von Ballmoos C, 78:649–72
von Heijne G, 76:125–40;
80:157–60

W

Wallace DC, 76:781–821
Walz T, 78:723–42
Wang JC, 78:30–54
Wang P, 80:161–87

- Weidberg H, 80:125-56
Weissman JS, 80:557-85
Wells JA, 80:1055-87
Weninger K, 78:903-28
Wennmalm S, 76:419-46
West SC, 77:259-87
West SM, 79:233-69
Westermann S, 76:563-91
Wiedenmann A, 78:649-72
Wigley DB, 76:23-50
Wilkinson KD, 78:363-97
Wilkinson MF, 76:51-74
Williams PM, 77:101-25
- Williamson JR, 80:501-26
Winge DR, 79:537-62
Withers SG, 77:521-55
Wittinghofer A, 80:943-71
Wolfenden R, 80:645-67
Wollam J, 80:885-916
Workman JL, 80:473-99
Wrenn SJ, 76:331-49
Wright AT, 77:383-414
- X**
- Xiong B, 79:131-53
- Y**
- Yamada S, 76:267-94
Yoshizawa-Sugata N, 79:89-130
You Z, 79:89-130
Young JAT, 76:243-65
- Z**
- Zalatan JG, 80:669-702
Zalk R, 76:367-85
Zhang J, 80:375-401
Zhuang X, 78:993-1016

Chapter Titles, Volumes 76–80

Prefatory

Discovery of G Protein Signaling	Z Selinger	77:1–13
Moments of Discovery	P Berg	77:14–44
Without a License, or Accidents Waiting to Happen	EP Geiduschek	78:1–28
A Journey in the World of DNA Rings and Beyond	JC Wang	78:31–54
From Virus Structure to Chromatin: X-ray Diffraction to Three-Dimensional Electron Microscopy	A Klug	79:1–35
From Serendipity to Therapy	EF Neufeld	80:1–15
Journey of a Molecular Biologist	M Nomura	80:16–40
My Life with Nature	J Adler	80:42–70

DNA

Chemistry and Structure

Nanomaterials Based on DNA	NC Seeman	79:65–87
----------------------------	-----------	----------

Genomics

Genomic Screening with RNAi: Results and Challenges	S Mohr, C Bakal, N Perrimon	79:37–64
---	--------------------------------	----------

Replication

Motors, Switches, and Contacts in a Replisome	SM Hamdan, CC Richardson	78:205–43
Eukaryotic Chromosome DNA Replication: Where, When, and How?	H Masai, S Matsumoto, Z You, N Yoshizawa-Sugata, M Oda	79:89–130

DNA Replicases from a Bacterial Perspective CS McHenry 80:403–36

Mutagenesis

Molecular Mechanisms of Antibody Somatic Hypermutation

JM Di Noia,
MS Neuberger 76:1–22

Chromatin and Chromosomes

Genome-Wide Views of Chromatin Structure
The Biology of Chromatin Remodeling Complexes

OJ Rando, HY Chang 78:245–71

Regulators of the Cohesin Network
Reversal of Histone Methylation: Biochemical and Molecular Mechanisms of Histone Demethylases

CR Clapier,
BR Cairns 78:273–304

B Xiong, JL Gerton 79:131–53

N Mosammaparast,
Y Shi 79:155–79

Recombination and Transposition

Mechanism of Eukaryotic Homologous Recombination

J San Filippo, P Sung,
H Klein 77:229–57

The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway

MR Lieber 79:181–211

Enzymes and Binding Proteins

Structure and Mechanism of Helicases and Nucleic Acid Translocases

MR Singleton,
MS Dillingham,
DB Wigley 76:23–50

Structural and Functional Relationships of the XPF/MUS81 Family of Proteins

A Ciccia,
N McDonald,
SC West 77:259–87

The Discovery of Zinc Fingers and Their Applications in Gene Regulation and Genome Manipulation

A Klug 79:213–31

RNA

Chemistry and Structure

How RNA Unfolds and Refolds

PTX Li, J Vieregg,
I Tinoco Jr. 77:77–100

The Structural and Functional Diversity of Metabolite-Binding Riboswitches

A Roth, RR Breaker 78:305–34

Transcription and Gene Regulation

Single-Molecule Studies of RNA Polymerase: Motoring Along

KM Herbert,
WJ Greenleaf,
SM Block
77:149–76

Fat and Beyond: The Diverse Biology of PPAR γ

P Tontonoz,
BM Spiegelman
77:289–312

RNA Polymerase Active Center: The Molecular Engine of Transcription Origins of Specificity in Protein-DNA Recognition

E Nudler
78:335–61
R Rohs, X Jin,
SM West, R Joshi,
B Honig, RS Mann
79:233–69

Transcript Elongation by RNA Polymerase II

LA Seltz,
S Sigurdsson,
JQ Svejstrup
79:271–93

Genomic and Biochemical Insights into the Specificity of ETS Transcription Factors

PC Hollenhorst,
LP McIntosh,
BJ Graves
80:437–71

Splicing, Posttranscriptional Processing, and Modifications

The Nonsense-Mediated Decay RNA Surveillance Pathway

Y-F Chang, JS Imam,
MF Wilkinson
76:51–74

Biochemical Principles of Small RNA Pathways

Q Liu, Z Paroo
79:295–319

Functions and Regulation of RNA Editing by ADAR Deaminases

K Nishikura
79:321–49

Signals and Combinatorial Functions of Histone Modifications

T Suganuma,
JL Workman
80:473–99

Translation

Regulation of mRNA Translation and Stability by microRNAs

MR Fabian,
N Sonenberg,
W Filipowicz
79:351–79

Structure and Dynamics of a Processive Brownian Motor: The Translating Ribosome

J Frank,
RL Gonzalez Jr.
Z Shajani, MT Sykes,
JR Williamson
79:381–412

Assembly of Bacterial Ribosomes

Z Shajani, MT Sykes,
JR Williamson
80:501–26

The Mechanism of Peptidyl Transfer Catalysis by the Ribosome

EKY Leung, N Suslov,
N Tuttle,
R Sengupta,
JA Piccirilli
80:527–55

Proteins

Amino Acids and Their Chemistry

Adding New Chemistries to the Genetic Code CC Liu, PG Schultz 79:413–44

Protein Chemistry and Structure

Eukaryotic DNA Ligases: Structural and Functional Insights AE Tomkinson, T Ellenberger 77:313–38

Structure and Energetics of the Hydrogen-Bonded Backbone in Protein Folding DW Bolen, GD Rose 77:339–62

Amyloid Structure: Conformational Diversity and Consequences BH Toyama, JS Weissman 80:557–85

Methodology

Mass Spectrometry in the Postgenomic Era BT Chait 80:239–46

Folding and Design

Macromolecular Modeling with Rosetta R Das, D Baker 77:363–82

Posttranslational Processing and Modifications

Functions of Site-Specific Histone Acetylation and Deacetylation MD Shahbazian, M Grunstein 76:75–100

Regulation and Cellular Roles of Ubiquitin-Specific Deubiquitinating Enzymes FE Reyes-Turcu, KH Ventii, KD Wilkinson 78:363–97

RING Domain E3 Ubiquitin Ligases RJ Deshaies, CAP Joazeiro 78:399–434

Protein Folding and Modification in the Mammalian Endoplasmic Reticulum I Braakman, NJ Bulleid 80:71–99

Proteolysis and Turnover

The tmRNA System for Translational Surveillance and Ribosome Rescue SD Moore, RT Sauer 76:101–24

Conformational Pathology of the Serpins: Themes, Variations, and Therapeutic Strategies B Gooptu, DA Lomas 78:147–76

Degradation of Activated Protein Kinases by Ubiquitination Z Lu, T Hunter 78:435–75

Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome D Finley 78:477–513

AAA+ Proteases: ATP-Fueled Machines of Protein Destruction	RT Sauer, TA Baker	80:587-612
---	--------------------	------------

Membrane Protein Structure and Function

Membrane Protein Structure: Prediction versus Reality	A Elofsson, G von Heijne	76:125-40
Structure and Function of Toll Receptors and Their Ligands	NJ Gay, M Gangloff	76:141-65
Lipid-Dependent Membrane Protein Topogenesis	W Dowhan, M Bogdanov	78:515-40
Mechanisms of Membrane Curvature Sensing Assembly of Bacterial Inner Membrane Proteins	B Antonny	80:101-23
β-Barrel Membrane Protein Assembly by the Bam Complex	RE Dalbey, P Wang, A Kuhn	80:161-87
Transmembrane Communication: General Principles and Lessons from the Structure and Function of the M2 Proton Channel, K⁺ Channels, and Integrin Receptors	CL Hagan, TJ Silhavy, D Kahne	80:189-210
The Structure of the Nuclear Pore Complex	G Grigoryan, DT Moore, WF DeGrado	80:211-37
	A Hoelz, EW Debler, G Blobel	80:613-43

Families and Evolution

Large-Scale Structural Biology of the Human Proteome	A Edwards	78:541-68
Bacterial Nitric Oxide Synthases	BR Crane, J Sudhamsu, BA Patel	79:445-70

Proteomics

The Role of Mass Spectrometry in Structure Elucidation of Dynamic Protein Complexes	M Sharon, CV Robinson	76:167-93
Activity-Based Protein Profiling: From Enzyme Chemistry to Proteomic Chemistry	BF Cravatt, AT Wright, JW Kozarich	77:383-414
Analyzing Protein Interaction Networks Using Structural Information	C Kiel, P Beltrao, L Serrano	77:415-41

**Integrating Diverse Data for Structure
Determination of Macromolecular
Assemblies**

F Alber, F Förster,
D Korkin,
M Topf, A Sali
77:443–77

**Advances in the Mass Spectrometry of
Membrane Proteins: From Individual
Proteins to Intact Complexes**

NP Barrera,
CV Robinson
80:247–71

**Quantitative, High-Resolution Proteomics for
Data-Driven Systems Biology**

J Cox, M Mann
80:273–99

Enzymology

Kinetics

**From the Determination of Complex Reaction
Mechanisms to Systems Biology**

J Ross
77:479–94

**Enzyme Promiscuity: A Mechanistic and
Evolutionary Perspective**

O Khersonsky,
DS Tawфик
79:471–505

Catalytic Mechanisms

**Structure and Mechanism of the
6-Deoxyerythronolide B Synthase**

C Khosla, Y Tang,
AY Chen,
NA Schnarr,
DE Cane
76:195–221

The Biochemistry of Methane Oxidation

AS Hakeman,
AC Rosenzweig
76:223–41

**Biochemistry and Physiology of Mammalian
Secreted Phospholipases A₂
Glycosyltransferases: Structures, Functions,
and Mechanisms**

G Lambeau, MH Gelb
77:495–520

LL Lairson,
B Henrissat,
GJ Davies,
SG Withers
77:521–55

**Benchmark Reaction Rates, the Stability of
Biological Molecules in Water, and the
Evolution of Catalytic Power in Enzymes
Biological Phosphoryl-Transfer Reactions:
Understanding Mechanism and Catalysis**

R Wolfenden
80:645–67

JK Lassila, JG Zalatan,
D Herschlag
80:669–702

**Enzymatic Transition States, Transition-State
Analogs, Dynamics, Thermodynamics, and
Lifetimes**

VL Schramm
80:703–32

Cofactors and Prosthetic Groups

**The Structural and Biochemical Foundations
of Thiamin Biosynthesis**

CT Jurgenson,
TP Begley,
SE Ealick
78:569–603

Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H₂ Storage	RK Thauer, A-K Kaster, M Goenrich, M Schick, T Hiromoto, S Shima	79:507-36
Metalloenzymes		
Copper Metallochaperones	NJ Robinson, DR Winge	79:537-62
Class I Ribonucleotide Reductases: Metallocofactor Assembly and Repair In Vitro and In Vivo	JA Cotruvo Jr, J Stubbe	80:733-67
Regulation and Metabolic Control		
High-Throughput Metabolic Engineering: Advances in Small-Molecule Screening and Selection	JA Dietrich, AE McKee, JD Keasling	79:563-90
Inhibitors and Toxins		
Anthrax Toxin: Receptor Binding, Internalization, Pore Formation, and Translocation	JAT Young, RJ Collier	76:243-65
Botulinum Neurotoxin: A Marvel of Protein Design	M Montal	79:591-617
The Evolution of Protein Kinase Inhibitors from Antagonists to Agonists of Cellular Signaling	AC Dar, KM Shokat	80:769-95
Carbohydrates		
Sugars and Their Chemistry		
Chemical Approaches to Glycobiology	LL Kiessling, RA Splain	79:619-53
Methodology		
Glycan Microarrays for Decoding the Glycome	CD Rillahan, JC Paulson	80:797-823
Glycoproteins and Protein Glycosylation		
Cross Talk Between O-GlcNAcylation and Phosphorylation: Roles in Signaling, Transcription, and Chronic Disease	GW Hart, C Slawson, G Ramirez-Correa, O Lagerlof	80:825-58

Cell Walls, Extracellular Matrix, and Adhesion Molecules

Synapses: Sites of Cell Recognition, Adhesion, and Functional Specification

S Yamada, WJ Nelson 76:267-94

Cellulosomes: Highly Efficient Nanomachines

Designed to Deconstruct Plant Cell Wall

Complex Carbohydrates

CMGA Fontes, 79:655-81

HJ Gilbert

Lipids

Lipid Chemistry and Structure

Lipid A Modification Systems in Gram-negative Bacteria

CRH Raetz,
CM Reynolds,
MS Trent,
RE Bishop
76:295-329

Methodology

Applications of Mass Spectrometry to Lipids and Membranes

R Harkewicz,
EA Dennis,
80:301-25

Glycerophospholipids

Regulation of Phospholipid Synthesis in the Yeast *Saccharomyces cerevisiae*

GM Carman,
G-S Han
80:859-83

Isoprenoids and Sterols

Sterol Regulation of Metabolism, Homeostasis, and Development

J Wollam, A Antebi
80:885-916

Other Biomolecules

Natural Products

Inorganic Polyphosphate: Essential for Growth and Survival

NN Rao,
MR Gómez-García,
A Kornberg
78:605-47

Antibiotics

Biosynthesis of Phosphonic and Phosphinic Acid Natural Products

WW Metcalf,
WA van der Donk
78:65-94

Drug Discovery and Combinatorial Chemistry

Chemical Evolution as a Tool for Molecular Discovery

SJ Wrenn,
PB Harbury
76:331-49

New Antivirals and Drug Resistance	PM Colman	78:95–118
Biomaterials		
Molecular Mechanisms of Magnetosome Formation	A Komeili	76:351–66
Bioenergetics		
<i>Electron Transport and Oxidative Phosphorylation</i>		
Essentials for ATP Synthesis by F ₁ F ₀ ATP Synthases	C von Ballmoos, A Wiedenmann, P Dimroth	78:649–72
Somatic Mitochondrial DNA Mutations in Mammalian Aging	N-G Larsson	79:683–706
<i>Photosynthesis and Photobiology</i>		
Proton-Coupled Electron Transfer in Biology: Results from Synergistic Studies in Natural and Model Systems	SY Reece, DG Nocera	78:673–99
<i>Nitrogen Fixation</i>		
Mechanism of Mo-Dependent Nitrogenase	LC Seefeldt, BM Hoffman, DR Dean	78:701–22
<i>Permeases and Transporters</i>		
Multidrug Resistance in Bacteria	H Nikaido	78:119–46
<i>Ion Pumps and Channels</i>		
Modulation of the Ryanodine Receptor and Intracellular Calcium	R Zalk, SE Lehnart, AR Marks	76:367–85
TRP Channels	K Venkatachalam, C Montell	76:387–417
<i>Single-Molecule Biomechanics and Biological Nano-Devices</i>		
Studying Individual Events in Biology	S Wennmalm, SM Simon	76:419–46
In <i>singulo</i> Biochemistry: When Less Is More Advances in Single-Molecule Fluorescence Methods for Molecular Biology	C Bustamante C Joo, H Balci, Y Ishitsuka, C Buranachai, T Ha	77:45–50 77:51–76
Single-Molecule Studies of Protein Folding	A Borgia, PM Williams, J Clarke	77:101–25

Structure and Mechanics of Membrane

Proteins
Translation at the Single-Molecule Level

A Engel, HE Gaub
 RA Marshall,
 CE Aitken,

M Dorywalska,
 JD Puglisi

77:127-48
 77:177-203

Recent Advances in Optical Tweezers

JR Moffitt,
 YR Chemla,
 SB Smith,
 C Bustamante

77:205-28

The Advent of Near-Atomic Resolution in
Single-Particle Electron Microscopy
Emerging In Vivo Analyses of Cell Function
Using Fluorescence Imaging
Biochemistry of Mobile Zinc and Nitric Oxide
Revealed by Fluorescent Sensors

Y Cheng, T Walz

78:723-42

Development of Probes for Cellular Functions
Using Fluorescent Proteins and
Fluorescence Resonance Energy Transfer
Reporting from the Field: Genetically Encoded
Fluorescent Reporters Uncover Signaling
Dynamics in Living Biological Systems

A Miyawaki

80:357-73

S Mehta, J Zhang

80:375-401

Signal Transduction***Receptors and Adaptors***

Signaling Pathways Downstream of
Pattern-Recognition Receptors and Their
Cross Talk
Sphingosine 1-Phosphate Receptor Signaling

MS Lee, Y-J Kim
 H Rosen,
 PJ Gonzalez-Cabrera,
 MG Sanna,
 S Brown

76:447-80
 78:743-68

The Role of Ubiquitin in the NF- κ B
Regulatory Pathways

B Skaug, X Jiang,
 ZJ Chen

78:769-96

Structural Biology of the Toll-Like Receptor
Family

JY Kang, J-O Lee

80:917-41

Small GTPases and Heterotrimeric G Proteins

Physical Mechanisms of Signal Integration by
WASP Family Proteins

SB Padrick,
 MK Rosen

79:707-35

Structure-Function Relationships of the G
Domain, A Canonical Switch Motif

A Wittinghofer,
 IR Vetter

80:943-71

Second Messengers

Biochemistry and Physiology of Cyclic Nucleotide Phosphodiesterases: Essential Components in Cyclic Nucleotide Signaling	M Conti, J Beavo	76:481-511
STIM Proteins and the Endoplasmic Reticulum-Plasma Membrane Junctions	S Carrasco, T Meyer	80:973-1000

Kinases, Phosphatases, and Phosphorylation Cascades

The Eyes Absent Family of Phosphotyrosine Phosphatases: Properties and Roles in Developmental Regulation of Transcription	J Jemc, I Rebay	76:513-38
The Chemical Biology of Protein Phosphorylation	MK Tarrant, PA Cole	78:797-825
Amino Acid Signaling in TOR Activation	J Kim, K-L Guan	80:1001-32

Oncogenes and Tumor Suppressor Genes

Structural Biology of the Tumor Suppressor p53	AC Joerger, AR Fersht	77:557-82
--	-----------------------	-----------

Cellular Biochemistry

Cell Cycle and Cell Division

Assembly Dynamics of the Bacterial MinCDE System and Spatial Regulation of the Z Ring	J Lutkenhaus	76:539-62
Structures and Functions of Yeast Kinetochore Complexes	S Westermann, DG Drubin, G Barnes	76:563-91

Cytoskeleton, Cell Motility, and Chemotaxis

Mechanism and Function of Formins in the Control of Actin Assembly	BL Goode, MJ Eck	76:593-627
--	------------------	------------

Biomembranes: Composition, Biology, Structure, and Function

Toward a Biomechanical Understanding of Whole Bacterial Cells	DM Morris, GJ Jensen	77:583-613
Genetic and Biochemical Analysis of Non-Vesicular Lipid Traffic	DR Voelker	78:827-56
Amphipols, Nanodiscs, and Fluorinated Surfactants: Three Nonconventional Approaches to Studying Membrane Proteins in Aqueous Solutions	J-L Popot	79:737-75
Introduction to Theme "Membrane Protein Folding and Insertion"	G von Heijne	80:157-60

Vesicular Trafficking and Secretion

Unsolved Mysteries in Membrane Traffic	SR Pfeffer	76:629–45
How Does Synaptotagmin Trigger Neurotransmitter Release?	ER Chapman	77:615–41
Protein Translocation Across the Bacterial Cytoplasmic Membrane	AJM Driessens, N Nouwen	77:643–67
Mechanisms of Endocytosis	GJ Doherty, HT McMahon	78:857–902
Single-Molecule Studies of the Neuronal SNARE Fusion Machinery	AT Brunger, K Weninger, M Bowen, S Chu	78:903–28
Protein Sorting Receptors in the Early Secretory Pathway	J Dancourt, C Barlowe	79:777–802
Biogenesis and Cargo Selectivity of Autophagosomes	H Weidberg, E Shvets, Z Elazar	80:125–56

Intracellular Targeting and Localization

Structural Biology of Nucleocytoplasmic Transport	A Cook, F Bono, M Jinek, E Conti	76:647–71
--	-------------------------------------	-----------

Organelles and Organelle Biogenesis

The Magic Garden	G Schatz	76:673–78
DNA Replication and Transcription in Mammalian Mitochondria	M Falkenberg, N-G Larsson, CM Gustafsson	76:679–99
Mitochondrial-Nuclear Communications	MT Ryan, NJ Hoogenraad	76:701–22
Translocation of Proteins into Mitochondria	W Neupert, JM Herrmann	76:723–49
The Machines that Divide and Fuse Mitochondria	S Hoppins, L Lackner, J Nunnari	76:751–80
Why Do We Still Have a Maternally Inherited Mitochondrial DNA? Insights from Evolutionary Medicine	DC Wallace	76:781–821
Maturation of Iron-Sulfur Proteins in Eukaryotes: Mechanisms, Connected Processes, and Diseases	R Lill, U Mühlenhoff	77:669–700
Mitochondrial tRNA Import and Its Consequences for Mitochondrial Translation	A Schneider	80:1033–53

Apoptosis

Caspase Substrates and Cellular Remodeling	ED Crawford, JA Wells	80:1055–87
--	--------------------------	------------

Organismal Biochemistry

Development and Differentiation

- Collagen Structure and Stability MD Shoulders,
RT Raines 78:929–58

Biochemical Basis of Disease

- CFTR Function and Prospects for Therapy JR Riordan 77:701–26
- The Biochemistry of Disease: Desperately Seeking Syzygy JW Kozarich 78:55–63
- Getting a Grip on Prions: Oligomers, Amyloids, and Pathological Membrane Interactions B Caughey, GS Baron,
B Chesebro,
M Jeffrey 78:177–204
- Biological and Chemical Approaches to Diseases of Proteostasis Deficiency ET Powers,
RI Morimoto,
A Dillin, JW Kelly,
WE Balch 78:959–91
- Regulation of HSF1 Function in the Heat Stress Response: Implications in Aging and Disease J Anckar, L Sistonen 80:1089–115

Molecular Physiology and Nutritional Biochemistry

- Aging and Survival: The Genetics of Life Span Extension by Dietary Restriction W Mair, A Dillin 77:727–54
- Cellular Defenses against Superoxide and Hydrogen Peroxide JA Imlay 77:755–76
- Toward a Control Theory Analysis of Aging MP Murphy,
L Partridge 77:777–98

Infectious Disease, Host-Pathogen, and Host-Symbiont

- Super-Resolution Fluorescence Microscopy B Huang, M Bates,
X Zhuang 78:993–1016
- Virus Entry by Endocytosis J Mercer,
M Schelhaas,
A Helenius 79:803–33

Neurochemistry

- The Postsynaptic Architecture of Excitatory Synapses: A More Quantitative View M Sheng,
CC Hoogenraad 76:823–47
- Cholesterol 24-Hydroxylase: An Enzyme of Cholesterol Turnover in the Brain DW Russell,
RW Halford,
DMO Ramirez,
R Shah, T Kotti 78:1017–40