### **Linear Algebra and Applications**

#### Sartaj UI Hasan



Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

# Lecture 11

(Aug 20, 2019)

# Finite Groups

- If (G,\*) is a group, and the underlying set G is finite, then we call it a finite group. For a finite group (G,\*), the number of elements in G is called the **order** of the group, written |G| or o(G).
- Some examples of finite groups:
  - 1. Let  $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$  and define  $a +_6 b := (a + b) \mod 6$  for all  $a, b \in \mathbb{Z}_6$ . This operation is known as addition mod 6 (modular addition). Then  $(\mathbb{Z}_6, +_6)$  is an abelian group.
  - 2. We can generalize the above example to any positive integer n. Let  $\mathbb{Z}_n = \{0, 1, \cdots, n-1\}$  and define  $a +_n b := (a + b) \mod n$  for all  $a, b \in \mathbb{Z}_n$ . Then  $(\mathbb{Z}_n, +_n)$  is an abelian group.

### Examples of Finite Groups - continued

3. Let  $K_4 = \{e, a, b, c\}$  and let \* be an operation on  $K_4$  defined by the following table (such a table is known as a group composition table). Then it can be verified that all the group axioms are satisfied by  $(K_4, *)$ , known as Klein's four group.

|   | _ |   |   |   |
|---|---|---|---|---|
| * | е | а | b | С |
| е | е | а | b | С |
| а | а | е | С | b |
| b | b | С | е | а |
| С | С | b | а | е |
|   |   |   |   |   |

4. Let  $\mathbb{Z}_n^{\times} := \text{set of positive integers} < n \text{ and relatively prime to } n, \text{ for } n \geq 2, \text{ that is, } \mathbb{Z}_n^{\times} := \{j : 1 \leq j < n, \gcd(j, n) = 1\}.$ 

Define the operation  $\times_n$  on  $\mathbb{Z}_n^{\times}$  by  $a \times_n b := a \times b \pmod{n}$  for all  $a, b \in \mathbb{Z}_n^{\times}$  (multiplication modulo n).

Then  $(\mathbb{Z}_n^{\times}, \times_n)$  is a group.

Note that  $(\mathbb{Z}_n^{\times}, \times_n)$  is a finite group and  $|\mathbb{Z}_n^{\times}| = \phi(n)$ , where  $\phi$  is Euler's  $\phi$  function, aka totient function.

## Examples of Groups that are NOT abelian

• The set  $\mathrm{GL}_n(\mathbb{R})$  of all  $n \times n$  invertible matrix over  $\mathbb{R}$  forms a group with respect to matrix multiplication, but it is NOT abelian. This group is usually known as **General Linear Group** of order n over  $\mathbb{R}$ . Also note that this is an example of infinite group which is NOT abelian.

• The set  $\mathrm{GL}_n(\mathbb{Z}_p)$  of all  $n \times n$  invertible matrix over  $\mathbb{Z}_p$  forms a group with respect to matrix multiplication, but it is NOT abelian. This is an example of finite group, which is NOT abelian. List all the elements of  $\mathrm{GL}_2(\mathbb{Z}_2)$  and verify!