Exercice 1:

Comme pour les équivalents de Thérenin il faut annuler les sources.

On cont-circuite les bornes, la résistance de 41 est court-circuitée, le comant qui la traverse est rul.

(no fair s'en convaincre: court-cinaiter (=) la diff de potentiel () $\frac{1}{2}$ (aux bornes de la résistance est mulle, et $i = \frac{V}{R} = 0$ A

Divisem de courant entre deux résistance de 6 r

Equivalent de Norton:

Exercia 2

$$Z_{N} = ?$$

6.0 MV

1.1 $Z = \frac{V}{4} + \frac{V - 12}{6} = 1$
 $Z_{N} = \frac{V - 12}{6} = 0$
 $Z_{N} = \frac{V - 12}{6} = 0$

$$2 = \frac{V}{4} + \frac{V - 12}{6} = 0$$
 $V = 9.6V$

i= 1.

Current dividus

Exercice 3:

IN=?

120V (+) 42 L

$$\frac{120-V}{6} = \frac{V}{3} + \frac{V-12}{2}$$
 (57 V= 26 V

Reg ?

Reg= 14 Ks

IN=? ! Attention are unites!

$$\frac{\ln A}{360-V_1} = \frac{V_1}{24} + \frac{V_1-U_2}{2}$$

V1 = 24 V

$$\frac{V_1 - V_2}{2} = \frac{V_2}{10} + \frac{2}{30}$$

Vz = -301

IN= -30V = -3 mA

Equivalent:

$$i = \frac{14}{15} \cdot -3 \, \text{mA} = -2,8 \, \text{mA}$$