MONTHLY TEST CLASS XII

SUBJECT-MATHEMATICS (SET-2)

TIME 90 MIN MM 40

GENERAL INSTUCTIONS-

- 1-All questions are compulsory.
- 2-Section A, each question 1 mark, Section B, each question 2 marks, Section C, each question 3 marks, Section D, each question 4 marks, Section E is case based 4 MCQ's, each of 1 mark.

SECTION A

- Q.NO. $\cancel{1}$ -The side of an equilateral triangle is increasing at the rate of $\frac{1}{3}$ cm/sec. Find the rate at which its perimeter is increasing.
- ().NO. 2-Evaluate $\int \sin^2 x \, dx$.

Q.NO.3-Evaluate
$$\int \frac{(\tan^{-1} x)^2}{1+x^2} dx$$

SECTION B

Q.NO.4- At what points on the curve $y = x^3$, at which y –coordinate changes three times more fast than x —

coordinate

- Q.NO.5- Find the intervals in which the function f given by $f(x) = -3x^2 + 12x + 8$ is increasing and Decreasing.
- Q.NO.6 Evaluate $\int \frac{\sin^2 x \cdot \cos^2 x}{\sin^2 x \cdot \cos^2 x} dx$

SECTION C

Q.NO.7-Evaluate $\int \frac{1}{\sqrt{5-8x-x^2}} dx$

Q.NO.8- Evaluate $\int \frac{\sin x}{1-\sin x} dx$

- Q.NQ.8-. Find the intervals in which $f(x) = \sin x + \cos x$, $0 \le x \ge \frac{\pi}{2}$, is (a) increasing (b) decreasing
- Q.NC 10 Find the maximum value of the function $f(x) = x + \sin x$, $x \in [0, 2\pi]$
- Q.NO.11- A man 2m heigh walks at a uniform speed of 6 km/hour away from a lamp post 6m high. Find the rate at which the length of his shadow is increases.

SECTION D

- Q.NO.12-Show that the right circular cone of given volume and least curved surface is such that its height is equal to $\sqrt{2}$ times the radius of the base.
- Q.NO.13- Evaluate $\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$.
- $\frac{2x}{(x^2+3)(x^2+4)}.$ Q.NO.14- Integrate with respect to x, SECTION E

CASE BASE STUDY:

Q.NO. 15 Read the following text and answer the following questions on the bases of same.

An open box is to be made out of a piece of card board measuring (45 cm imes 24 cm) by cutting of equal Squares of side x' from the corners and turning up the sides $\,$

- The volume of the open box is (i)
 - (a) $4x^3 + 138x^2 + 1080x$ (c) $4x^3 138x^2 1080x$
 - (b) $2x^3 138x^2 + 1080x$ (d) $2x^3 + 138x^2 + 1080x$
- The value of $\frac{d^2v}{dx^2}$ (where V is the volume of box so obtained) is (a) 12(2x+21) (b) 12(2x-24) (c) 12(x-24)(ii)

(a)
$$12(2x + 21)$$

 $12(2x - 23)$

(b)
$$12(2x-24)$$

(c)
$$12(x-23)$$

(d)

(iii) The value of x for which volume of the box is maximum

- (a) -12
- (b) 18

(c) 5

(d) 6

- (iv) Length of the box of maximum volume is
 - (a) 15

- (b) 20
- (c) 25
- 'i) 35