Contents

1	Ma	trix
	1.1	Definitions
	1.2	Notation
	1.3	Equality of matrices
		1.3.1 Definitions
	1.4	Submatrices
		1.4.1 Definitions
		1.4.2 Sample
	1.5	Matrix addition
		1.5.1 Definitions
		1.5.2 Notation
		1.5.3 Theorem
	1.6	Scalar Multiplication
		1.6.1 Definitions
		1.6.2 Notation
		1.6.3 Theorem
	1.7	Zero Matrices
		1.7.1 Definitions
		1.7.2 Properties
	1.8	Matrix Substraction
		1.8.1 Definitions
		1.8.2 Theorem
	1.9	Matrix Transpose
		1.9.1 Definitions
		1.9.2 Properties
		1.9.3 Theorem
2	Vec	
	2.1	Definitions
	2.2	Notation
	2.3	Vector Addition/Substraction, Scalar Multiplication and Zero Vector
3	Lin	ear Combinations
J	3.1	Definitions
	3.1	Samples
	ال.∠	3.2.1 Given coefficients, computes linear combination
		3.2.2 Given linear combination, computes coefficients
	2 2	Parallel/Collinear Vectors
	3.3	raraner/Commear vectors

4	Standard Vectors	
	4.1 Definitions	
	4.2 Properties	
5	Matrix-Vector Product	
	5.1 Definitions	
	5.2 Cautions	
	5.3 Theorems	
6	Identity Matrix	
	6.1 Definitions	
	6.2 Sample	
	6.3 Properties	
7	Stochastic Matrix	
-	7.1 Definitions	

Chapter 1 Basic Concepts on Matrices and Vectors

fsjohnhuang

January 30, 2017

1 Matrix

1.1 Definitions

A matrix is a rectangular array of scalars.

If the matrix has m rows and n columns, we say the **size** of matrix is **m** by **n**, written $m \times n$. The matrix is called square if m = n.

The scalar in ith row and jth column is called (i, j)-entry of the matrix.

1.2 Notation

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}] \in M_{m \times n}$$

$$\tag{1}$$

 $M_{m\times n}$ denotes the set that contains all matrices whose size is $m\times n$.

1.3 Equality of matrices

1.3.1 Definitions

We say two matrices A and B are equal if

- 1. they have the same size.
- 2. they have equal corresponding entries.

Let
$$A, B \in M_{m \times n}$$

Then
$$A = B \iff a_{ij} = b_{ij}, \forall i = 1, \dots, m, j = 1, \dots, n$$

1.4 Submatrices

1.4.1 Definitions

A submatrix is obtained by deleting from a matrix entire rows and/or columns.

1.4.2 Sample

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \end{bmatrix} is a submatrix of \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 1 & 3 & 2 \end{bmatrix}$$
 (2)

1.5 Matrix addition

1.5.1 Definitions

Let A and B be in matrix $m \times n$. We define the sum of A and B, denoted A + B, to be a $m \times n$ matrix obtained by adding the corresponding entries of A and B; that is the $m \times n$ matrix whose (i, j) - entry is $a_{ij} + bij$.

1.5.2 Notation

Let
$$A, B \in M_{m \times n}$$

Then $A + B = [a_{ij} + b_{ij}], \forall i = 1, ..., m, j = 1, ..., n$

1.5.3 Theorem

Commutative A + B = B + A

Associative (A + B) + C = A + (B + C)

1.6 Scalar Multiplication

1.6.1 Definitions

Let A be an $m \times n$ matrix and c be a scalar. The scalar multiple cA of matrix A is defined to be the $m \times n$ matrix whose (i, j) - entries is $c \times a_{ij}$.

1.6.2 Notation

Let
$$A \in M_{m \times n}$$
 and $c \in R$
Then $cA = [c \times a_{ij}], \forall i = 1, ..., m, j = 1, ..., n$

1.6.3 Theorem

Associative (st)A = s(tA), $(s, t \in R)$

Distributive s(A+B) = sA + sB or (s+t)A = sA + tA, $(s \in R)$

1.7 Zero Matrices

1.7.1 Definitions

A zero matrix with all zero entries, denoted by O(any size) or $O_{m \times n}$.

1.7.2 Properties

1.
$$A = O + A, \forall A \in M_{m \times n}$$

2.
$$0 \cdot A = O, \forall A \in M_{m \times n}$$

1.8 Matrix Substraction

1.8.1 Definitions

We define the matrix -A to be -1(A). The matrix substraction of the two matrix A and B is define to be as

$$A - B = A + (-B)$$

1.8.2 Theorem

1.
$$A - A = O, \forall A \in M_{m \times n}$$

1.9 Matrix Transpose

1.9.1 Definitions

The transpose of a $m \times n$ matrix A is the $n \times m$ matrix A^T whose (i, j) - enrty is the (j, i) - enrty of A.

1.9.2 Properties

$$A \in M_{m \times n} \Rightarrow A^T \in M_{n \times m}$$

1.9.3 Theorem

associative $(sA)^T = s(A^T)$, $\forall s \in R$

Distributive $(A+B)^T = A^T + B^T$

$$(A^T)^T = A$$

2 Vector

2.1 Definitions

Vector can refer to either a **row vector** or a **column vector**. Row vector is a matrix with **one** row.

$$\underline{v} = [a_1, \cdots, a_n]$$

Column vector is a matrix with **one** column.

$$\underline{v} = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix} \text{ or } \underline{v}^T = [a_1, \cdots, a_m]$$
(3)

So row vector can transpose to column vector, vice versa.

2.2 Notation

$$\underline{v} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = [a_i] \in R^n, \forall i = 1, \dots, n$$

$$\tag{4}$$

We denote the set of all column vectors with n components by \mathbb{R}^n . That is $\mathbb{R}^n = M_{n \times 1}$.

2.3 Vector Addition/Substraction, Scalar Multiplication and Zero Vector

Follow those for matrices.

Zero Vector is denoted **0**

A matrix is often regarded as a stack of row vectors or a cross list of column vectors. Let $C \in M_{m \times n}$

$$C = [\underline{c_1}, \dots, \underline{c_j}, \dots, \underline{c_n}]$$

$$\underline{c_j} = \begin{bmatrix} c_{1j} \\ \vdots \\ c_{mj} \end{bmatrix} = [c_i] \in R^m, \forall i = 1, \dots, m$$
(5)

3 Linear Combinations

3.1 Definitions

A linear combination of vectors $\underline{u_1}, \cdots, \underline{u_n}$ is a vector of the form

$$\underline{u} = c_1 u_1 + \dots + c_n u_n$$

Where c_1, \dots, c_n are scalars which called **coefficients** of the linear combination.

3.2 Samples

3.2.1 Given coefficients, computes linear combination

Let
$$\underline{u_1}^T = [-1, -3, 4], \ \underline{u_2}^T = [-4, 1, 2], \ c_1 = 3 \text{ and } c_2 = 2$$

Then
$$c_1 \underline{u_1}^T + c_2 \underline{u_2}^T = \begin{bmatrix} -3 & -9 & 12 \end{bmatrix} + \begin{bmatrix} -12 & 3 & 6 \end{bmatrix} = \begin{bmatrix} -15 & -6 & 18 \end{bmatrix}$$
 (6)

$$\therefore c_1 \underline{u_1}^T + c_2 \underline{u_2}^T = (c_1 \underline{u_1} + c_2 \underline{u_2})^T$$
 (7)

$$\therefore c_1 \underline{u_1} + c_2 \underline{u_2} = \begin{bmatrix} -15 \\ -6 \\ 18 \end{bmatrix}$$
 (8)

3.2.2 Given linear combination, computes coefficients

Which could be transform to solve a system of linear equations. But there are three solution.

Unique solution when sc_1 and c_2 are not collinear vectors.

Infinitely many solutions when $s\underline{c_1}$, $\underline{c_2}$ are **collinear vectors** and $\underline{c} = s\underline{c_1}$, \underline{c} is linear combination

No solutions when $s\underline{c_1}, \ \underline{c_2}$ are **collinear vectors** and $\underline{c} \neq s\underline{c_1}, \ \underline{c}$ is linear combination

3.3 Parallel/Collinear Vectors

Let \underline{a} and \underline{b} not be in zero vector. We define \underline{a} is parallel with \underline{b} when $s\underline{a} = \underline{b}$, $s \in R$.

3.3.1 Notations

Let $\forall \underline{a}, \underline{b} \in \mathbb{R}^n$

Then $\underline{a} \parallel \underline{b} \Rightarrow s\underline{a} = \underline{b}$, $s \in R$

 $\underline{a} \parallel \underline{b}$ denotes the vectors $\underline{a}, \underline{b}$ are the parallel or collinear vector

4 Standard Vectors

4.1 Definitions

The standard vectors of \mathbb{R}^n are defined as

$$\underline{e_1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \underline{e_2} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \cdots \underline{e_n} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$
(9)

4.2 Properties

Every vector in \mathbb{R}^n may be uniquely linearly combined by standard vectors.

5 Matrix-Vector Product

5.1 Definitions

Let A be an $m \times n$ matrix and \underline{v} be an $n \times 1$ vector. We define the **matrix-vector product** of A and \underline{v} , denoted by $A\underline{v}$, to be the linear combination of the columns of A whose coefficients are the corresponding components of \underline{v} . That is

$$A\underline{v} = v_1\underline{a_1} + v_2\underline{a_2} + \dots + v_n\underline{a_n}$$

5.2 Cautions

- 1. the size of \underline{v} must be equal to the count of columns of A.
- 2. the solution of matrix-vector product is a new vector whose size is same with the count of rows of A.

5.3 Theorems

Distributive
$$A(\underline{u} + \underline{v}) = A\underline{u} + A\underline{v}$$
 and $(A + B)\underline{u} = A\underline{u} + B\underline{u}$
Associative $A(c\underline{u}) = c(A\underline{u}) = (cA)\underline{u}$, $\forall c \in R$
 $A\underline{0} = \underline{0}$ and $O\underline{v} = \underline{0}$, $\forall A \in M_{m \times n}$ and $\underline{v} \in R^n$
 $A\underline{e_j} = \underline{a_j}$, $A = [\underline{a_1} \cdots \underline{a_m}]$
 $B\underline{w} = A\underline{w} \Rightarrow A = B$, $\forall B, A \in M_{m \times n}$ and $\forall \underline{w} \in R^n$.

6 Identity Matrix

6.1 Definitions

For each positive integer n, the $n \times n$ identity matrix I_n is the $n \times n$ matrix whose respective columns are the standard vectors $\underline{e_1}$, $\underline{e_2}$, \cdots , $\underline{e_n}$ in R^n Sometime I_n is simply written as \overline{I} .

6.2 Sample

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{10}$$

6.3 Properties

$$I_n v = v$$
, $\forall v \in \mathbb{R}^n$

7 Stochastic Matrix

7.1 Definitions

An matrix $A \in M_{m \times n}$ is called a stochastic matrix if all entries of A is nonnegative and the sum of all entries in each columns is unity.