CMSC828T Vision, Planning And Control In Aerial Robotics

QUADROTOR CONTROL

High Level Picture

Most of these slides are inspired by MEAM620 Slides at UPenn

Root Locus Plot

Open Loop System

Open Loop Example

$$G(s) = \frac{s+1}{s^2+s+4}$$
$$G_{tot}(s) = G(s)$$

Closed Loop

Closed Loop

Closed Loop

Unity Gain Feedback

Unity Gain Feedback Example

$$G(s) = \frac{s+1}{s^2 + s + 4}$$

$$G_{tot}(s) = \frac{G(s)}{1 + G(s)}$$

$$G_{tot}(s) = \frac{s+1}{s^2 + 2s + 5}$$

Compare with Open Loop

P Control

a.k.a. Proportional control

P Control Example

$$G(s) = \frac{s+1}{s^2 + s + 4}$$

$$G_{tot}(s) = \frac{K_p G(s)}{1 + K_p G(s)}$$
Let $K_p = 2$

$$G_{tot}(s) = \frac{2s+2}{s^2 + 3s + 6}$$

PD Control

a.k.a. Proportional Derivative control

PD Control Example

$$G(s) = \frac{s+1}{s^2 + s + 4}$$

$$G_{tot}(s) = \frac{(K_p + K_d s)G(s)}{1 + (K_p + K_d s)G(s)}$$
Let $K_p = 2, K_d = 1$

$$G_{tot}(s) = \frac{s^2 + 3s + 2}{2s^2 + 4s + 6}$$

PID Control

a.k.a. Proportional Integral Derivative control

PID Control

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

PID Control Example

$$G(s) = \frac{s+1}{s^2 + s + 4}$$

$$G_{tot}(s) = \frac{\left(K_p + K_d s + \frac{K_i}{s}\right) G(s)}{1 + \left(K_p + K_d s + \frac{K_i}{s}\right) G(s)}$$
Let $K_p = 2, K_d = 1, K_i = 1$

$$G_{tot}(s) = \frac{s^3 + 3s^2 + 3s + 1}{2s^3 + 4s^2 + 7s + 1}$$

PID Control

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

Gain Tuning

Physical Intuition

Stable

Marginally Stable

Unstable

Good Gains

Overdamped

Underdamped

Manual Tuning

Parameter Increased	K_p	K_d	K_i
Rise Time	1	-	\
Peak Overshoot	1	\downarrow	1
Settling Time	_	\	1
Steady-State Error	\downarrow	_	Eliminate

Ziegler-Nichols Method

Control Type	K_p	$T_d = K_p / K_d$	$T_i = K_p/K_i$
P	$\frac{K_u}{2}$	-	-
PI	$\frac{9K_u}{20}$	-	$\frac{5T_u}{6}$
PD	$\frac{4K_u}{5}$	$\frac{T_u}{8}$	-
PID	$\frac{3K_u}{5}$	$\frac{T_u}{8}$	$\frac{T_u}{2}$
Some overshoot	$\frac{K_u}{3}$	$\frac{T_u}{3}$	$\frac{T_u}{2}$
No overshoot	$\frac{K_u}{5}$	$\frac{T_u}{3}$	$\frac{T_u}{2}$

 K_u : Ultimate Gain, T_u : Oscillation Time Period

High Level Picture

The Nominal Hover State

Conditions

$$r = r_0$$

$$\theta \sim \phi \to 0 \quad \Rightarrow \cos \phi \approx \cos \theta \approx 1 \quad \sin \phi \approx \phi \text{ and } \sin \theta \approx \theta$$

$$\dot{r} = 0$$

$$\dot{\theta} = \dot{\phi} = \dot{\psi} = 0$$

At this state, thrust F_i is given by

$$F_i = \frac{mg}{4}, F_i = k_F \omega_i^2$$

$$\omega_i = \sqrt{\left(\frac{mg}{4k_{\rm F}}\right)}$$

Euler Notation: ZXY

High Level Picture

Recall Angular Velocity

Recall $\omega^b = R^T \dot{R}$

For the ZXY Euler angles: (ψ, ϕ, θ)

$$\omega^b = \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} c_\theta & 0 & -c_\phi s_\theta \\ 0 & 1 & s_\phi \\ s_\theta & 0 & c_\phi c_\theta \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} \begin{array}{c} \text{Roll Rate} \\ \text{Pitch Rate} \\ \text{Yaw Rate} \end{array}$$

Body Frame

World/Inertial Frame

Attitude Control

Recall Euler's equation,

$$I\begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} L(F_2 - F_4) \\ L(F_3 - F_1) \\ M_1 - M_2 + M_3 - M_4 \end{bmatrix} - \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times I\begin{bmatrix} p \\ q \\ r \end{bmatrix}, p, q, r \text{ are angular velocities w.r.t. } x, y, z \text{ direction}$$

Now, assuming xy symmetric quadrotor and a diagonal moment of Inertia matrix $I\left(I_{xx}=I_{yy}\right)$

$$I_{xx}\dot{p} = u_{2,x} - q r(I_{zz} - I_{yy})$$

 $I_{yy}\dot{q} = u_{2,y} - p r(I_{xx} - I_{zz})$
 $I_{zz}\dot{r} = u_{2,z}$

Assuming angular velocity in the z_B direction ($r \approx 0$) is small

$$\dot{p} = \frac{u_{2,x}}{I_{xx}}$$
; $\dot{q} = \frac{u_{2,y}}{I_{yy}}$; $\dot{r} = \frac{u_{2,z}}{I_{zz}}$

Attitude Control

Recall
$$\gamma = \frac{k_F}{k_M}$$

$$\dot{p} = \frac{u_{2,x}}{I_{xx}} = \frac{L}{I_{xx}} (F_2 - F_4)$$

$$\dot{q} = \frac{u_{2,y}}{I_{yy}} = \frac{L}{I_{yy}} (F_3 - F_1)$$

$$\dot{r} = \frac{u_{2,z}}{I_{zz}} = \frac{\gamma}{I_{zz}} (F_1 - F_2 + F_3 - F_4)$$

Near nominal hover state, the PD control law can be given by

$$u_{2} = \begin{bmatrix} \dot{p}_{des} + k_{p,\phi}(\phi_{des} - \phi) + k_{d,\phi}(p_{des} - p) \\ \dot{q}_{des} + k_{p,\theta}(\theta_{des} - \theta) + k_{d,\theta}(q_{des} - q) \\ \dot{r}_{des} + k_{p,\psi}(\psi_{des} - \psi) + k_{d,\psi}(r_{des} - r) \end{bmatrix}$$

Attitude Control

The input u_{des} can be calculated using

Recall
$$\gamma = \frac{k_F}{k_M}$$

$$u_{des} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & L & 0 & -L \\ -L & 0 & L & 0 \\ \gamma & -\gamma & \gamma & -\gamma \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix}$$

$$u_{des} = \begin{bmatrix} k_{F} & k_{F} & k_{F} & k_{F} \\ 0 & k_{F}L & 0 & -k_{F}L \\ -k_{F}L & 0 & k_{F}L & 0 \\ k_{M} & -k_{M} & k_{M} & -k_{M} \end{bmatrix} \begin{bmatrix} \omega_{1,des}^{2} \\ \omega_{2,des}^{2} \\ \omega_{3,des}^{2} \\ \omega_{4,des}^{2} \end{bmatrix} = \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}$$

High Level Picture

Position Control

Hover Controller

Maintains the position at a desired x, y, z

 u_1 controls position along z_A $u_{2,x}$ and $u_{2,y}$ along controls roll and pitch angle $u_{2,z}$ controls yaw angle

3D Trajectory Controller

Tracks the trajectory

A: World Frame

Position Control

Hover Controller

Let $\begin{bmatrix} r_T(t) \\ \psi_T(t) \end{bmatrix}$ be the trajectory and yaw angle we want to track

Let us assume that our yaw remains fixed,

$$\psi_T(t) = \psi_0$$

PID feedback of position error ($e_i = r_{i,T} - r_i$) to calculate \ddot{r}_i^{des}

$$(\ddot{r}_{i,T} - \ddot{r}_i^{des}) + k_{D,i}(\dot{r}_{i,T} - \dot{r}_i) + k_{P,i}(r_{i,T} - r_i) + k_{I,i} \int (r_{i,T} - r_i) = 0$$
 where $i \in \{x, y, z\}$

For hover, $\dot{r}_{i,T} = \ddot{r}_{i,T} = 0$

Position Control

Hover Controller

Recall Newton's Equation of motion

$$m\ddot{r} = \begin{bmatrix} 0 \\ 0 \\ -mg \end{bmatrix} + {}^{A}R_{B} \begin{bmatrix} 0 \\ 0 \\ F_{1} + F_{2} + F_{3} + F_{4} \end{bmatrix}$$

Now, linearizing the equation, we can say

$$\ddot{r}_{1,des} = g(\Delta\theta_{des}\cos\psi_T + \Delta\phi_{des}\sin\psi_T)$$

$$\ddot{r}_{2,des} = g(\Delta\theta_{des} \sin\psi_T - \Delta\phi_{des} \cos\psi_T)$$

$$\ddot{r}_{3,des} = \frac{u_{1,des}}{m}$$

3D Trajectory Controller with 'Simple' Error Metric

Problems with 'Simple' Error Metric

3D Trajectory Controller

 r_{des}

World Frame

 $r_T(t)$ Desired Trajectory

 \hat{t} : unit tangent vector

 \hat{n} : unit normal vector

 \hat{b} : unit binormal vector

$$e_{pos} = ((r_T - r) \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}} + ((r_T - r) \cdot \hat{\mathbf{b}}) \hat{\mathbf{b}}$$

Error in velocity

$$e_{vel} = \dot{r}_T - \dot{r}$$

$$\ddot{r}_i^{des} = \mathbf{k}_{p,i} \; e_{i,pos} + k_{d,i} \; e_{i,vel} + \ddot{r}_{i,T}$$

