TAUX D'ACIDITE DU COCA COLA

Noms: Manon Bruno Romain Blondel

Classe: 2m 8

Date: 27.04.2023

Introduction

L'acide phosphorique est l'acide principalement responsable de l'acidité du Coca-Cola. Pour pouvoir le doser, il faut d'abord éliminer l'acide carbonique présent dans toutes les boissons gazeuses. Les gaz dissous sont toujours moins solubles à chaud qu'à froid. Le Coca-Cola doit être préalablement chauffé à reflux pendant au moins 5 minutes pour éliminer le gaz carbonique.

Méthode expérimentale

- Prélever mL à la pipette de Coca-Cola dont vous aurez préalablement fait dégazer le CO₂ et le mettre dans un bécher large col de 100 mL avec un barreau aimanté.
- Remplir une burette de 50 mL avec NaOH 0.020 M. PORTER DES LUNETTES CASTA DES
- Titrer le Coca-Cola en mesurant le pH après chaque ajout de 0.5 mL de NaOH jurga à 25 mL Stopper le titrage à pH ~ 11
- Représenter la courbe de pH en fonction de l'adjonction du NaOH
 A noter que pour un titrage acide faible polyprotique /base forte une courbe de ce type doit être établie :

- 1/ Ecrire les équations de dissociation de l'acide phosphorique $H_3PO_4 + H_2O \Rightarrow H_2PO_4 + H_3O + H_2PO_4 + H_3O + H_3O_5 + H_2O \Rightarrow PO_4^2 + H_3O_5 + H_2O \Rightarrow PO_4^2 + H_3O_5 + H_3O_$

2/ Quelles sont les valeurs de pH au point de demi-équivalence ?

	P 27	.04.20)23 ,	TAUX	D'ACIDIT	E DU	COCA
7	Base :	& Hydrox	yde de	Sodium	à 0,02 IT		
	Aade	Phosphori	9 uc :	poly protiqu	e : 3 'dea	on position	1000,661
		ne avec e		ase ampha	45.44	byunde	à ~ 430
	Na Hz	Pog			300		H ₂ O ₍₉₎
	Acide	Carbon	igue =	= H ₂ CO ₃	m = CO	2 (9)	1120 (3)
	m4	PH	m2	PH	mL	PH	contrat
	0	2,42	16	6,64	20	9,49	29/06/2022
1	0,5	2,47	10.5	6.75	20,5		30.5 10,21
	1	2,52	11	6,87	21		10 22
	1, 5	2,57	11,5	6,98	21,5	1,4	3 11
	2	2,63	12	7,09		1	
	2,5	2,7	12,5	7, 2	22,5		76 77
	3	2,77 No	item 13	7, 33	23	710	347
	3,5	2,85	13,5	7,99	23,5	9,83	33 10,3
	4	2,94	14	7,50	24	9,86	33,5 K133
	4,5	3,05	14.5	7,76	24,5	9,5	341 10/21
	5	3,19	21	7,97	25	9.04	1971 10/34
	5,5	3,323	6,315,5	8,2	25,5	13/19/2	35 1000
	6	3,51	16	8.42	26	10 00	3515 37
	6,5	3,91	16,5	8,65	26,5	10,00	100
	7	4,5	17	8,82	27	10,01	F72 13-183
	7,5	5 35	17,5	8,87	27,5	10.0	3 hage won
	8	5,87	13	9,11	3228	10,1	Man S bas
	8,5	6,13	18.5	9,26	28,5	10,1	
	9	6.33	19	933	29	10,1	4
		6,51	19.5	1919	29,5	10, 1	7
		73					

36,5 10,4
37 10,43
1 19,913
38 9 10 45
39 10 47
39,5 10, 48
11/10/10/49
1 90,9 10,51
41,5 10,67
1 42 10/62
1 92,5 9,52
1 93 1 10,63
M3,5 10,69
199 100
194,5 10,66
195 10,67
1455 10,68
199 10,68
196,3 10,69
197 10,7
47,5 10,71
198 1 6,72
111111111111111111111111111111111111111
49 10,74
43,9 10,75
50 10,76