Зачетная работа по программированию на ПЛИС

Автор работы:

студент 207 группы Зуев Никита Викторович

Руководитель работы:

к. ф.-м. н. н. с.

Степанов Антон Сергевич

Цель проекта

- Изучить принципы фильтрации изображения
- Реализовать схему фильтра,
 работающего в реальном времени,
 на ПЛИС

Принцип фильтрации изображений

- На каждый пиксель исходного изображения накладывается матрица свертки (ядро).
- Значение интенсивности каждого участвующего в свертке пикселя умножается на соответствующее значение ядра. Затем полученные значения складываются.

Без изменений:

0	0	0
0	1	0
0	0	0

Размытие:

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

Увеличение четкости:

Увеличение яркости:

0,1	0,2	0,1
0,2	5	0,2
0,1	0,2	0,1

Что такое ПЛИС?

- ПЛИС программируемая логическая интегральная схема.
- В отличие от обычных микросхем, логика ПЛИС задается посредством программирования.
- Важная особенность данной схемы возможность реконфигурации.

Как устроена ПЛИС?

Упрощенно, ПЛИС состоит из мультиплексоров и конфигурационной памяти

Преимущества ПЛИС для данного проекта

Эффективное потребление ресурсов

Проектирование схемы на низком уровне задействует меньшее число логических элементов.

Низкая задержка сигнала

Архитектура ПЛИС позволяет совмещать последовательную логику процессов и комбинационную логику их взаимодействия.

Вариативность

Имеется возможность изменить конструкцию текущей схемы и мгновенно запустить ее.

Концептуальная схема

Реализация. Камера

- Свет проходит через фильтр Байера. Матрица регистрирует значения цветных пикселей.
- Блок из четырех RGGB пикселей соединяется в один пиксель.
- Методом интерполяции получаются значения соседних «пустых» пикселей

Реализация. Фильтр

Среда разработки

Модуль фильтра реализован в среде HLS, позволяющей описать схемы для ПЛИС на языке С.

Интерфейс

Исходный код был написан с помощью готовых функций из библиотеки OpenCV, разработанной для обработки изображений.

Тестирование

Среда HLS позволяет провести тест исходного кода фильтра до его интеграции в схему проекта.

Тест фильтра в среде HLS

Тестовый стенд

Выход на монитор

Питание

Переключатель режимов

Камера

ПЛИС

Заключение

Данный проект может быть использован для:

- Анализа быстропротекающих процессов, например, движения границы раздела оптических сред
- Мгновенной обработки распределений, как, например, световые пучки