# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Математического обеспечения и применения ЭВМ

## ОТЧЕТ

по лабораторной работе №6
по дисциплине «Искусственные нейронные сети»
Тема: Прогноз успеха фильмов по обзорам

| Студент гр. 7382 | Бахеров Д.В. |
|------------------|--------------|
| Преподаватель    | Жукова Н.А.  |

Санкт-Петербург 2020

#### Цель работы.

Прогноз успеха фильмов по обзорам (Predict Sentiment From Movie Reviews).

## Порядок выполнения работы.

- 1. Ознакомиться с задачей регрессии.
- 2. Изучить способы представления текста для передачи в ИНС.
- 3. Достигнуть точность прогноза не менее 95%.

#### Требования к выполнению задания.

- 1. Построить и обучить нейронную сеть для обработки текста.
- 2. Исследовать результаты при различном размере вектора представления текста.
- 3. Написать функцию, которая позволяет ввести пользовательский текст (в отчете привести пример работы сети на пользовательском тексте).

#### Основные теоретические положения.

Датасет IMDb состоит из 50 000 обзоров фильмов от пользователей, помеченных как положительные (1) и отрицательные (0). Это пример бинарной или двуклассовой классификации, важный и широко применяющийся тип задач машинного обучения.

- 1. Рецензии предварительно обрабатываются, и каждая из них кодируется последовательностью индексов слов в виде целых чисел.
- 2. Слова в обзорах индексируются по их общей частоте появления в датасете. Например, целое число «2» кодирует второе наиболее частое используемое слово.
- 3. 50 000 обзоров разделены на два набора: 25 000 для обучения и 25 000 для тестирования.

# Ход работы.

- 1. Была построена и обучена нейронная сеть для обработки текста. Код предоставлен в приложении А. С архитектурой:
  - Оптимизатор adam, скорость обучения = 0.001.
  - Epochs = 2, batch\_size = 500, loss = binary\_crossentropy
  - Мах кол. слов в обзоре 500, тах. размер словаря слов 10000.
  - Модель:

```
# Input - Layer
model.add(Dense(50, activation="relu", input_shape=(10000,)))
# Hidden - Layers
model.add(Dropout(0.2, noise_shape=None, seed=None))
model.add(Dense(50, activation="linear", kernel_regularizer=regularizers.l2()))
model.add(Dropout(0.5, noise_shape=None, seed=None))
model.add(Dense(100, activation="relu", kernel_regularizer=regularizers.l2()))
model.add(Dropout(0.5, noise_shape=None, seed=None))
model.add(Dense(50, activation="relu"))
model.add(Dense(50, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
model.compile(Adam(), loss='binary_crossentropy', metrics=['accuracy'])
history = model.fit(train_x, train_y, batch_size=500, epochs=2, verbose=1, validation_data=(test_x, test_y))
```

Данная архитектура дает точность: на тренировочной выборке ~ 82,3%, на контрольной ~ 83%. Графики точности и ошибки предоставлены на рис. 1 и рис. 2 соответственно.



Рисунок 1 – График точности при размере словаря 10 тыс. обзоров



Рисунок 2 – График потерь при размере словаря 10 тыс. обзоров

2. Исследуем результаты при различном размере вектора представлении текста.

Графики точности и ошибки предоставлены на рис. 3 и рис. 4 соответственно.



Рисунок 3 – График точности при размере словаря 1 тыс. обзоров



Рисунок 4 – График потерь при размере словаря 1 тыс. обзоров

3. Напишем функцию, которая позволяет ввести пользовательский текст.

```
def get_text(custom_x, word_index):
    def get_index(a, index):
        new_list = a.split()
        for i, v in enumerate(new_list):
            new_list[i] = index.get(v)
        return new_list
        for i in range(len(custom_x)):
            custom_x[i] = get_index(custom_x[i], word_index)
        return custom_x
```

При помощи данной функции можно получить из массива строк (обзоров) массив представлений в виде индексов слов в imdb датасете и подготовленные для прогона через модель. График точности оценки фильма, при прогоне через написанный датасет из 5 обзоров (см. рис. 7), предоставлена на рис 8.

```
custom x = [
"It is bad, i hate it",
"It's too boring and awful"
"It's amazing, fantastic and exiting",
"Fine film, i love it too much",
"Really good, fantastic actors, i like",
]
```

Рисунок 7 – Пользовательский текст



Рисунок 8 — График точности оценки фильма Из графика на рис. 8 видно, что точность оценки фильма  $\sim 65\%$ .

#### Выводы.

В ходе работы была изучена задача классификация обзоров из датасета IMDB. Подобрана архитектура, дающая точность 83%. Функция для подготовки вручную введенных обзоров, продемонстрировала точность в  $\sim\!\!65\%$ 

#### ПРИЛОЖЕНИЕ А

# ИСХОДНЫЙ КОД ПРОГРАММЫ

```
import matplotlib.pyplot as plt
mport numpy as np
rom keras import Sequential, regularizers
from keras.datasets import imdb
 rom keras.layers import Dense, Dropout
rom keras.optimizers import Adam
(X train, y train), (X test, y test) = imdb.load data()
(training data, training targets), (testing data, testing targets) = imdb.load data(num words=500)
data = np.concatenate((training data, testing data), axis=0)
targets = np.concatenate((training_targets, testing_targets), axis=0)
index = imdb.get word index()
reverse_index = dict([(value, key) for (key, value) in index.items()])
decoded = " ".join( [reverse_index.get(i - 3, "#") for i in data[0]] )
print(decoded)
def vectorize(sequences, dimension=10000):
  results = np.zeros((len(sequences), dimension))
  for i, sequence in enumerate(sequences):
     results[i, sequence] = 1
  return results
custom_x = [
     "It is bad, i hate it",
     "It's too boring and awful"
     "Fine film, i love it too much",
     "Really good, fantastic actors, i like",
custom_y = [0., 0., 1., 1., 1.]
def get_text(custom_x, word_index):
  def get_index(a, index):
     new list = a.split()
     for i, v in enumerate(new list):
       new_list[i] = index.get(v)
    return new list
  for i in range(len(custom_x)):
     custom_x[i] = get_index(custom_x[i], word_index)
  return custom_x
custom x = get text(custom x, imdb.get word index())
for index_j, i in enumerate(custom_x):
  for index, value in enumerate(i):
     if value is None:
       custom x[index j][index] = 0
data = vectorize(data)
targets = np.array(targets).astype("float32")
custom y = np.asarray(custom y).astype("float32")
test_x = data[:10000]
test y = targets[:10000]
train_x = data[10000:]
```

```
train_y = targets[10000:]
model = Sequential()
# Input - Laver
model.add(Dense(50, activation="relu", input shape=(10000,)))
# Hidden - Layers
model.add(Dropout(0.2, noise_shape=None, seed=None))
model.add(Dense(50, activation="linear", kernel_regularizer=regularizers.l2()))
model.add(Dropout(0.5, noise_shape=None, seed=None))
model.add(Dense(100, activation="relu", kernel_regularizer=regularizers.l2()))
model.add(Dropout(0.5, noise_shape=None, seed=None)) model.add(Dense(50, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
model.compile(Adam(), loss='binary crossentropy', metrics=['accuracy'])
history = model.fit(train x, train y, batch size=500, epochs=2, verbose=1, validation data=(test x, test y))
H = history.history
plt.figure(1, figsize=(8, 5))
plt.plot(H['loss'], 'g', label='train')
plt.plot(H['val loss'], 'r', label='validation')
plt.title('Loss')
plt.ylabel('Loss')
plt.xlabel('Epochs')
plt.legend()
plt.show()
plt.clf()
plt.plot(H['accuracy'], 'g', label='train')
plt.plot(H['val_accuracy'], 'r', label='validation')
plt.title('Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Apochs')
plt.legend()
plt.show()
plt.clf()
a, acc = model.evaluate(test_x, test_y)
print('The accuracy is ', acc)
custom_x = vectorize(custom_x)
custom_loss, custom_acc = model.evaluate(custom_x, custom_y)
print('custom_acc:', custom_acc)
preds = model.predict(custom x)
plt.figure(3, figsize=(8,5))
plt.title("Custom dataset predications")
plt.plot(custom_y, 'r', marker='v', label='truth')
plt.plot(preds, 'b', marker='x', label='pred')
plt.legend()
plt.show()
plt.clf()
```