

# **OUR TEAM**



Selin Deniz 202011051



Meleksu Özdoğan 202011054



Hanife Müge <u>Karakaya</u> 202011044



Lorin Melek Vural 202011035





Academic Advisor: Dr. Asst. Prof. Serdar Arslan Havelsan SUIT Mentor: Berkay Yılmaz



TeamID: 202412



## Table of Contents

- 1. ChargeMind in General
- 2. Work Plan
- 3. Market Research
- 4. Problems
- 5. Main Functionalities
- 6. ChargeMind Tech Stack
- 7. Architectural Decisions



# ChargeMind in General

- Artificial Intelligence-Based Automation for Increasing Needs of Electric Vehicle
- Customization User-Specific Route Planning
  - Intensity According to Personal Priority,
  - o Time,
  - Pricing Optimization
- Artificial Intelligence Supported Density Estimation and Recommendation System
- Station Rating Based on User Comments
- Eco-Friendly and Sustainable Charging Solutions with Carbon Footprint Tracking





# **WORK PLAN**

| Start Date 21/10/2024               | WORK PLAN     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |
|-------------------------------------|---------------|-----------|----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|----------|-----------|
| Week                                | Current State | 1         | 2        | 3         | 4         | 5         | 6        | 7         | 8         | 9         | 10       | 11       | 12        | 13        | 14        | 15       | 16        |
| Procedural Steps                    |               | 30-Sep-24 | 7-Oct-24 | 14-Oct-24 | 21-Oct-24 | 28-Oct-24 | 4-Nov-24 | 11-Nov-24 | 18-Nov-24 | 25-Nov-24 | 2-Dec-24 | 9-Dec-24 | 16-Dec-24 | 23-Dec-24 | 30-Dec-24 | 6-Jan-25 | 13-Jan-25 |
| Team Setup                          | Completed     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |
| Project Proposal Form               | Completed     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |
| Project Selection Form              | Completed     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |
| Project Work Plan                   | Completed     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |
| Literature Review                   | Completed     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |
| Marketing Research                  | Completed     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |
| Software Requirements Specification | Completed     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |
| Project Webpage                     | Completed     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |
| Software Design Description         | Completed     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |
| Project Report / Tracking Form      | Completed     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |
| Presentation                        | Completed     |           |          |           |           |           |          |           |           |           |          |          |           |           |           |          |           |



# Market Research Features of Current Applications



Lixhium

Navigation Integration:
 It has the feature of
 directing users to the
 selected charging station.



Voltla

 Navigation Integration:
 Provides direct guidance to charging stations.



ChargePrice

- Price Comparison: Provides cost-effective options by comparing prices of different charging providers.
- User-Friendly Price
  Optimization: Price-oriented
  optimization; focuses
  especially on affordable
  charging options.



PlugShare

- User Comments andEvaluations and StationFeatures
- Station Availability

  Notification: Instantly
  shows whether the charging
  station is empty or
  occupied.



Open ChargeMap

- Similar Features with PlugShare
  - PlugShareDirects User toGoogle Maps
  - Open ChargeMap Creates ItsOwn Map



## Problems

Incorrect and insufficiency route determination

Unnecessary use of areas reserved for charging stations

Misleading directions about station locations

Inability to charge due to excessive density



### User Feedback





# MAIN FUNCTIONALITIES



- Plan Personalized Route For EV
- Filter
- User Reviews and Ratings
- Real-Time Availability Updates
- Recommendation System
- Reservation System
- Carbon Emission Calculation





























# General UI Design





# ChargeMind Tech Stack





## **Architectural Decisions**

Micro/Macroservice

**Test Driven Development (TDD)** 

**Distributed Architecture** 

**Event-Driven Architecture** 



# Micro/Macroservices Architecture – Scalability

#### **Handling Peak Demand:**

- Rush hours or holidays
- Multiple EVs may start charging simultaneously at different locations.

#### **User Growth:**

 Support for increasing number of charging sessions, user notifications, and account authentications.

#### **Geographical Expansion:**

Expansion to new regions or countries

#### **Solution:**

• Handling a high volume of concurrent requests without delays.

#### **Solution:**

Independent scaling of components

#### **Solution:**

Seamless integration without re-architecting the system.



## Micro/Macroservices Architecture

Cost efficient due to the horizontal scaling

Flexible, different services for different deployments and customers

Reliable due to the prevention of single point of failure via horizontal scaling

Maintaining data consistency

Complex
Containerization, orchestration,
monitoring, and etc.

Resource overhead risk Especially for early-stage

Operational Latency

Inter-Service communication (Coupling)



## **Event-Driven Architecture**



#### **Handling Peak Demand:**

- Rush hours or holidays
- Thousands of user interacts with the system

#### **High Availability and Fault Tolerance:**

Events are queued and processed later if a service is down

# Solution Asynchronous Communication

#### **Decoupled Service Architecture:**

- Decoupled services need to operate independently
  - With low latency
  - Without blocking each other

#### **Real-Time User Updates:**

- Instant notifications when a charging session starts, without waiting for backend processes to complete
  - Ensuring real-time updates

## **Event-Driven Architecture**

Highly scalable and flexible

Dynamic decision making and supports real-time monitoring

Fault tolerant due to the non-blocking operations of decoupled services (loose coupling high cohesion)

System and event design complexity

Data consistency challenges due to eventual consistency reliability

Handling duplicate events and event failures

Race conditions between services

Saga or CQRS patterns

Operations with stale data



## Distributed Architecture

#### Data Handling and Scalability:

- Diverse and growing datasets
  - Different regions

#### **Need of High Availability:**

- Peak hours
- Thousands of concurrent users accessing services (payments...)

#### **Real-Time Data Handling:**

 Need of instant feedback on charging progress, energy consumption, emissions, and so on

#### **Solution::**

Efficiently partitioning and replicating data across multiple servers

#### **Solution:**

- Processing and updating data in real-time
  - Dynamic progress tracking



## Distributed Architecture

Different flows requires different amount of consistency

Dynamic decision making and supports real-time monitoring

Fault tolerant due to the non-blocking operations of decoupled services (loose coupling high cohesion)

Trade-Offs in decision making between consistency and availability for different flows

Need of balance between eventual and strong consistency

Higher attack surface / Security

Possible cost or resource overhead

Complexity on design and maintenance



Improved performance with data partitioning

Geographic
Redundancy and
Disaster Recovery

# TTD – Test First, Code After

Early bug detection

Increased code volume

Easier maintenance via continuous feedback and better refactoring

Time and effort for test maintenance

Improved code quality, so more reliable product

As the number of external dependencies increased test might be more complex to implement



# Test Driven Development Strategy

#### **Unit tests**

- Individual component test (e.g., functions, methods) for each class
- Whether work as expected in isolation
- JUnit, Mockito
- For normal cases (typical inputs), edge
   cases (extreme or boundary conditions), error
   handling (invalid inputs, exceptions)
- Statement coverage, branch coverage, and path coverages will be
- Fuzz or boundary testing with mock data (mockito)

#### Integration tests

- Validation of the interaction between different components or service
- Spring Boot Test (Spring-based application components), Postman (API calls), embedded databases like H2 (simulation)
- Interaction Between Components:
   Verify that services interact correctly through APIs or service calls.
- End-to-End Functional Flow:
   Business processes work as intended when all components are integrated.
- Error Handling in Integration



# Test Driven Development Strategy

#### Feature tests (BDD)

- Regular tests of the behavior of key features and business workflows
- Determine whether user expectations are met and system works as intended.
- Selenium, saucelab
- Behavioral Coverage: all key user scenarios are covered
- Flow Coverage:
   the workflows tested cover the entire end-toend process
- Interaction Coverage:
   different features or services interact

#### **Security tests**

- Identify vulnerabilities and security flaws
- Data breaches, Authentication issues, Authorization issues, Vulnerabilities in API endpoints
- OWASP ZAP
- Will be applied after first release to the mock customer

#### **Exploratory Tests**

- Potential issues or edge cases through ad-hoc testing for fixing bugs early stage
- Features or areas of the application that may not be covered by formal test cases, based on tester intuition and experience





# Thank you for listening

Questions