Universidade do Sul de Santa Catarina Ciência da Computação

Técnicas de Inteligência Artificial

Aula 06 Redes Neurais Artificiais

Max Pereira

Formas de Aprendizado

Aprendizado Supervisionado

- ✓ Árvores de decisão
- ✓ K-Nearest Neighbor (KNN)
- ✓ Support Vector Machines (SVM)
- ✓ Redes Neurais

Aprendizado não Supervisionado

Aprendizado por Reforço

Cérebro humano:

Processador Ideal

Capaz de:
-Aprender
-Generalizar
-Memorizar
-Criar

- Maior órgão do Sistema Nervoso humano.
- Possui de 10 a 100 bilhões de células nervosas

- No cérebro, o comportamento inteligente é uma propriedade emergente de um grande número de unidades simples (ao contrário do que acontece com regras e algoritmos simbólicos).
- Neurônios ligam e desligam em alguns milissegundos, enquanto o hardware atual faz o mesmo em nano segundos.
 - Entretanto, o cérebro realiza tarefas cognitivas complexas (visão, reconhecimento de voz) em décimos de segundo.
- O cérebro deve estar utilizando um paralelismo massivo.

- Através dos dentritos, o neurônio recebe sinais de outros neurônios a ele conectados por meio das sinapses.
- Os sinais são acumulados no corpo do neurônio.
- Quando a soma dos sinais passa de um certo limiar (~ 50mV) um sinal é propagado no axônio.
- As sinapses tem um peso que pode ser:
 - excitatório: incrementam a soma dos sinais.
 - inibidor: decrementam.

Capacidade de processar informação incompleta ou com ruído.

Consegue identificar estes rostos?

Consegue identificar estes rostos?

Qual é o diferente?

Capacidade de associar, extrapolar, inferir.

	Computador Von	Sistema neural
	Neumann	biológico
Processador	complexo	simples
	alta velocidade	baixa velocidade
	um ou poucos	grande número
Memória	Separada do processador	integrada com processador
	localizada	distribuída
	não-endereçavel pelo conteúdo	endereçável pelo conteúdo
Computação	centralizada	distribuída
	sequencial	paralela
	programas armazenados	aprendizado
Confiabilidade	muito vulnerável	robusto
Adequação	manipulações num. e simbólica	Problemas de percepção
Ambiente	bem definido	pouco definido
operacional	muito restrito	não restrito

- Redes Neurais podem ser consideradas um paradigma diferente de computação.
- Inspirado na arquitetura paralela do cérebro humano.

- Elementos de processamento simples.
- Grande grau de interconexões.
- Interação adaptativa entre os elementos.

- Uma RNA é composta por várias unidades de processamento (nós), cujo funcionamento é bastante simples
- Essas unidades geralmente são ligadas por conexões (links) que estão associados a um determinado peso
- As unidades fazem operações apenas sobre seus dados locais, que são entradas recebidas pelas suas conexões
- O comportamento inteligente de uma RNA vem das interações entre as unidades de processamento da rede

- Uma ligação de uma unidade j para unidade i serve para propagar a ativação a, de j para i
- Cada ligação possui um peso $w_{j,i}$ associado, que determinar a força e o sinal da conexão
- Cada unidade i primeiro computa a soma dos pesos de suas entradas:

$$in_i = \sum_{j=0}^n W_{j,i} a_j$$

Função de Ativação

 Então se aplica uma função de ativação g nesta soma para derivar a saída:

$$a_i = g(in_i) = g\left(\sum_{j=0}^n W_{j,i}a_j\right)$$

 Se este nível de atividade exceder um certo limite ou limiar (threshold) a unidade produz uma determinada resposta de saída

$$a_i \ge \theta$$

Função limiar (threshold)

- Este modelo foi simplificado
 - os nós em cada camada da rede disparam sincronicamente
 - as entradas em um instante t produzem a sua saída no tempo t+1
 - diferente do biológico, onde não existe sincronismo e nem ativação em tempo discreto
- Além disso, possuem outras limitações
 - com apenas uma camada só conseguem implementar funções linearmente separáveis
 - pesos fixos, não ajustáveis, não há aprendizado

Exemplo de funcionamento

Características das RNAs

- O comportamento inteligente vem das interações entre as unidade de processamento da rede
- Elas aprendem através de exemplos
- Processo de treinamento a partir dos casos reais
- Capaz de extrair regras básicas a partir de dados reais, diferindo da computação programada

Aprendizagem das RNAs

- A maioria dos modelos de redes neurais possui alguma regra de treinamento
 - onde os pesos de suas conexões são ajustados de acordo com os padrões apresentados
 - elas aprendem através de exemplos

 Certificar-se de que todas as respostas estão corretas para cada conjunto de entradas pela tabela-verdade

 A RNA possui um único neurônio de duas entradas e uma saída

Tabela Verdade - AND			
Entrada 1	Entrada 2	Saída	
1	1	1	
1	0	0	
0	1	0	
0	0	0	

Para treinar a rede vamos seguir alguns passos:

$$\theta$$
= 0,5

Função Soma

$$\sum_{i=1}^{n} x_i w_i \ge \theta$$

- Para treinar a rede vamos seguir alguns passos:
 - Passo 1: Aplicar a função Soma

$$\sum_{i=1}^{n} x_{i} w_{i} \geq \theta$$

$$Soma = 1*0 + 1*0 = 0$$

 Passo 2: Aplicar a função de Transferência

Soma
$$\leq 0.5 \rightarrow y = 0$$

Soma > 0,5 →
$$y = 1$$

Transferido 0 para a saída. Erro!!!!!

$$\theta$$
=0,5

Função Soma

$$\sum_{i=1}^{n} x_{i} w_{i} \ge \theta$$

Passo 3: Ajuste do peso

Equação do erro:

$$E = S_d - S_o$$

onde

 S_d é a saída desejada S_o é a saída obtida

Fator de correção:

$$F = c^*x^*E$$

onde

c = 0,5 (constante)

x é a entrada

E é o erro

Equação do ajuste:

$$W_{novo} = W + F$$

Passo 3: Ajuste do peso

Calcular o erro: E = 1 - 0 = 1

Calcular o fator de correção:

$$F_1 = c^* E^* X_1$$

$$F_2 = c^*E^*x_2$$

$$F_1 = 0.5*1*1$$

$$F_{2} = 0.5*1*1$$

$$F_1 = 0.5$$

$$F_2 = 0.5$$

Calcular o novo peso:

$$W_{10000} = W_1 + F_1$$

$$W_{2novo} = W_1 + F_2$$

$$W_{10000} = 0 + 0.5$$

$$W_{2novo} = 0 + 0.5$$

$$W_{10000} = 0.5$$

$$W_{2novo} = 0,5$$

Equação do erro:

$$E = S_d - S_o$$

onde

 S_d é a saída desejada S_a é a saída obtida

Fator de correção:

$$F = c^*x^*E$$

onde

c = 0,5 (constante)

x é a entrada

E é o erro

Equação do ajuste:

$$W_{novo} = W + F$$

- Para treinar a rede vamos seguir alguns passos:
 - para as entradas [1, 1] ...
 - pesos iniciais [0,5, 0,5]
 - Passo 1: Aplicar a função Soma Soma = 1*0,5 + 1*0,5 = 1
 - Passo 2: Aplicar a função de *Transferência*

Soma ≤
$$0.5 \rightarrow y = 0$$

Soma > 0,5 →
$$y = 1$$

Transferido 1 para a saída. Correto!!!!!

Exercício

- Continuar treinando a rede
 - para as entradas [0, 0] e pesos [0,5, 0,5]

- Testar a rede
 - Para as entradas [0, 1] e [1, 0]

- Para treinar a rede vamos seguir alguns passos:
 - para as entradas [0, 0] e pesos [0,5, 0,5]
 - Passo 1: Aplicar a função Soma Soma = 0*0,5 + 0*0,5 = 0

<u>Passo 2</u>: Aplicar a função de *Transferência*

Soma
$$\leq 0.5 \rightarrow y = 0$$

Soma $> 0.5 \rightarrow y = 1$

Transferido 0 para a saída. Correto!!!!!

- Testar a rede: para as entradas [0, 1] e pesos [0,5, 0,5]
 - Passo 1: Aplicar a função Soma
 Soma = 0*0,5 + 1*0,5 = 0,5
 - Passo 2: Aplicar a função de *Transferência* Soma ≤ $0,5 \rightarrow y = 0$

Soma > 0,5 →
$$y = 1$$

Transferido 0 para a saída. Correto!!!!!

- Testar a rede: para as entradas [1, 0] e pesos [0,5, 0,5]
 - Passo 1: Aplicar a função Soma Soma = 1*0,5 + 0*0,5 = 0,5
 - Passo 2: Aplicar a função de *Transferência* Soma ≤ $0.5 \rightarrow y = 0$

Soma > 0,5 →
$$y = 1$$

Transferido 0 para a saída. Correto!!!!!

Modelo MCP

- O Modelo MCP é um discriminador linear que pode ser usado, em certos casos, como classificador de padrões.
- As funções lógicas E e OU são linearmente separáveis (implementáveis com o modelo MCP)
- A função XOR ou ou-exclusivo não é linearmente separável.

Funções Booleanas representadas no plano binário

Face Recognition

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces
Neural Networks
NN 1
33

Handwritten digit recognition

40004 (4310)
37802 75376
355460 44209

10119134857268U3226414186 63597202992947722510046701 3084114591010615406103631 1064111030475262001179966 8912056788557131427955460 1014730187112991089970984 0109707597331972015519056 1075518255182814358010963 1787521655460554603546055 18255108503067520439401

FIGURE 10.8

Examples of ZIP code image, and segmented and normalized numerals from the testing set. (Source: Reprinted with permission from Y. Le Cun, et al., "Backpropagation Applied to Handwritten Zip Code Recognition," Neural Computation, 1:541–551, 1989. ©1989 The MIT Press.)