Topología, curso 2019-20

Ноја 7

- 1. Sea $\mathbb{D} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ el disco unidad abierto (en \mathbb{R}^2 con la topología usual).
- i) Prueba que \mathbb{D} y $\mathbb{D} \cup \{(1,0)\}$ no son homeomorfos.
- ii) Consideremos $\overline{\mathbb{D}}=\{(x\,,y)\,|\,x^2+y^2\leq 1\}$. Demuestra que un homeomorfismo $f:\overline{\mathbb{D}}\to\overline{\mathbb{D}}$ envía la frontera de $\overline{\mathbb{D}}$ en la frontera y el interior de $\overline{\mathbb{D}}$ en el interior. Indicación: considera los grupos fundamentales de $\overline{\mathbb{D}} \setminus \{p\}$ y $\overline{\mathbb{D}} \setminus \{f(p)\}$.
- 2. Halla el grupo fundamental de cada uno de los siguientes espacios:
- i) $\{(x,y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 4\}$ y de $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \ge 4\}$, ii) el toro sólido: $\mathbb{D} \times \mathbb{S}^1$, donde $\mathbb{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$.
- 3. Indica razonadamente si las siguientes afirmaciones son verdaderas o falsas.
- i) Si A y D son subespacios simplemente conexos con $A \cap D \neq \emptyset$, entonces $A \cup D$ también lo es.
- ii) Si X es homeomorfo a la frontera de $[0,1] \times [0,1]$, el grupo fundamental de X es isomorfo a \mathbb{Z} .
- iii) Si el grupo fundamental de X es isomorfo a \mathbb{Z} entonces X es homeomorfo a \mathbb{S}^1 .
- iv) Si A y D son retractos de deformación fuerte de espacios homeomorfos, entonces A y D son homeomorfos.
- 4. Decide razonadamente si los siguientes espacios topológicos son homeomorfos:
- i) $X_1 = \{(x, y) \in \mathbb{R}^2 \mid (x 1)^2 + y^2 \le 1\} \cup \{(x, y) \in \mathbb{R}^2 \mid (x + 1)^2 + y^2 \le 1\}.$
- ii) $X_2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}.$
- iii) $X_3 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$
- iv) $X_4 = \mathbb{R}^2 \setminus \{(0, y) \in \mathbb{R}^2 \mid -1 < y < 1\}.$