In []]: # 导入numpy库,用于进行科学计算 import numpy as np
	# 导入matplotlib.pyplot库,用于数据可视化 import matplotlib.pyplot as plt # 导入sympy库,用于符号数学计算 import sympy as syp
	# 导入scipy库,用于科学计算和数值分析 import scipy as sp # 导入3D绘图工具 from mpl_toolkits.mplot3d import Axes3D
Tn [下面我们首先来对一些较为简单的微分方程做一个尝试来引出我们想要讨论的 Topic \ 我们有一个方程: $f''(x) + \omega^2 f(x) = 0$ 下面,我们尝试使用符号库 sympy 来求解函数 $f(x)$ 的表达式
In [<pre>f = syp.Function("f") equation = syp.Eq(f(x).diff(x,1) + omega**2*f(x),0) print(syp.dsolve(equation,f(x)))</pre>
	Eq (f (x) , C1*exp ($-w**2*x$)) 容易看到,对于一阶齐次线性ODE而言,sympy库可以很快的运算得出结果,那么我们下面来尝试非齐次的情况。\ 对于方程 $f(x)-f'(x)=x^2e^x$ 而言,其解析解应为: $f(x)=\frac{1}{3}x^3e^x+Ce^x, C\in \backslash \mathbb{R}$
In []	<pre> x = syp.Symbol('x') f = syp.Function('f') equation1 = syp.Eq(f(x).diff(x, 1) - f(x) , x**2 * syp.exp(x))</pre>
	print(syp.dsolve(equation1, f(x)))
In []]: $x = syp.Symbol('x')$ f = syp.Function('f') equation2 = $syp.Eq(f(x).diff(x,1) + f(x),syp.exp(x) * syp.sin(x**2))$
	print (syp.dsolve (equation2, f (x))) Eq (-Integral (-f (x)*exp(x), x) - Integral (exp(2*x)*sin(x**2), x), C1) 此时,对于非线性微分方程问题,我们发现,sympy无法给出有效的解析解,实际上,这一方面受限于sympy的解析能力,另一方面,由于非线性方程一般无法通过简单的代数运算给出解析解,所以,在不要求精确解析解的情况下,一方面,在一个局部范围内数值计算就成了一件必要的事情,另一方面,解的延拓性质与唯一性在局部范围内也成为了必须要考虑的问题
	首先,我们来给出一些数学上的定义与推论:\ 考虑一阶ODE问题 $y'=f(x,y)=f(x,y(x))$ Lipschitz 条件:\ 定义:我们称 f 关于 y 满足 Lipschitz 条件,如果函数满足: $\ f(x,y)-f(x,z)\ \leq L\ y-z\ , \forall y,z\in\mathbb{R}$
	而后,我们有如下定理: 1. 解的存在唯一性:当 f 在区域 $D=\{(x,y) a\leq x\leq b,y\in\mathbb{R}\}$ 满足 Lipschitz 条件时,存在连续的唯一解. 2. 解的初值敏感性:当 f 在区域 $D=\{(x,y) a\leq x\leq b,y\in\mathbb{R}\}$ 满足 Lipschitz 条件时,有如下不等式成立:
	$\ y(x,s_0)-y(x,s_1)\ \leq e^{L\ x-x_0\ }\ s_0-s_1\ $ 对于第二点的证明,我们可以利用 Gronwall 不等式来证明它,这里从略 下面,我们给出一些简单的数值计算办法,来完成相对简单的ODE问题.
	Method1 Euler方法: Euler方法是一种最简单的数值方法,它通过简单的计算来逼近函数的数值
	介绍 欧拉方法(Euler's method)是最简单的数值解法之一,用于求解一阶常微分方程的初值问题。其形式为: $y'=f(t,y), y(t_0)=y_0$
	其中, y' 表示 y 对时间 t 的导数, f 是给定的函数, y_0 是初始条件。
	步骤
	初始化: $_{ m Qc}$ $_{ m DM}$ $_{ m CM}$
	• a. 计算当前点的斜率 $k=f(t_n,y_n)$ 。 • b. 更新 y 的值: $y_{n+1}=y_n+k\cdot\Delta t$ 。 • c. 更新时间: $t_{n+1}=t_n+\Delta t$ 。 • d. 检查是否达到终止条件 $t_{n+1}\leq T$,若未达到则返回步骤2a继续迭代。 ### 输出结果: 最终得到一系列近似解 (t_n,y_n) ,用于近似表示 $y(t)$ 在 $[t_0,T]$ 区间内的解。
	注意事项 • 欧拉方法简单但精度较低,适合教学和简单问题的初步探索。 • 实际应用中,通常会采用更高阶的数值方法(如 Runge-Kutta方法)以获得更准确的解。 • 时间步长 \(\triangle \) 的选择对解的稳定性和精度至关重要,过大的步长可能导致数值不稳定或解的偏差增大。
In []]: def euler_method(f, t_initial, y_initial, t_end1 = None , dt = 1e-3, max_iter = 500):
	t0: 初始时间 y0: 初始值 t_end: 终止时间 .Default: None, 表示不指定终止时间. dt: 时间步长 .Default: 1e-3. max_iter: 最大迭代次数 .Default: 500.
	t_values: 时间和对应的解的列表 """ t0,y0,t_end = t_initial,y_initial,t_end1 t_values = [t0] y_values = [y0] i = 0
	<pre>if t_end is None: t_end = t0 + 10 while t_values[-1] < t_end and i < max_iter: t_n = t_values[-1]</pre>
	y_n = y_values[-1] # 计算斜率 k = f(t_n, y_n) # 更新y和t y_n_plus_1 = y_n + k * dt t_n_plus_1 = t_n + dt
	t_values.append(t_n_plus_1) y_values.append(y_n_plus_1) return t_values, y_values # 示例: 求解 y' = y - 2x / y, y(0) = 1
	<pre>def example_function(t, y): return 9 - 2 * t ** 2 t_initial = 0 y_initial = 1</pre>
Out[]	<pre>t_points, y_points = euler_method(example_function, t_initial, y_initial) plt.plot(t_points, y_points) [<matplotlib.lines.line2d 0x1f5f4fafa90="" at="">] 0 -</matplotlib.lines.line2d></pre>
	-100 - -200 -
	-200 - -300 - -400 -
	-500 - -600 -
	$oldsymbol{0}$ 2 4 6 8 10 Definition:\ 如果在初值问题 $y'=f(x,y)$ 里,我们构造的迭代格式为 $y_{n+1}=arphi(x_n,y_n,y_n+1)$ 的格式,则称其为隐式迭代\ 而如果构造的迭代格式为 $y_{n+1}=arphi(x_n,y_n)$ 的格式,则称其为显式迭代\ Explicit:\ 显式迭代的迭代格式为 $y_{n+1}=arphi(x_n,y_n)$.\\ Implicit:\ 隐式迭代的迭代格式为 $y_{n+1}=arphi(x_n,y_n,y_{n+1})$.\\ 一般来说,对于隐式迭代而言,我们需要对某一迭代步,在进行多次迭代,即: $y_{n+1}^{(k)}=arphi(x_n,y_n,y_{n+1}^{(k-1)})$
In []	来逐步显化这一结果,直至满足精度要求. 下面我们来介绍改进欧拉公式
2	使用改进欧拉法求解ODE Parameters: f:函数 t_initial:初始时间 y_initial:初始值 t_end:终止时间 .Default: None.
	dt:步长 .Default: 1e-3. max_iter: 最大迭代次数 .Default: 500. Returns: t_points:时间序列 y_points:数值解序列
	t_initial, y_initial, t_end = t_initial, y_initial, t_end tlist = [t_initial] avglist = [y_initial] i = 0
	<pre>if t_end is None: t_end = t_initial + 10 while tlist[-1] < t_end and i < max_iter: y_p = avglist[-1] + dt * f(tlist[-1], avglist[-1]) y_c = avglist[-1] + dt / 2 * (f(tlist[-1], avglist[-1]) + f(tlist[-1] + dt, y_p))</pre>
In []	<pre>tlist.append(tlist[-1] + dt) avglist.append(y_c) return tlist,avglist [: t_points,y_points = avg_euler_method(example_function,t_initial,y_initial)</pre>
Out[]	<pre>plt.plot(t_points,y_points) [<matplotlib.lines.line2d 0x1f5f60a3250="" at="">] 0 -</matplotlib.lines.line2d></pre>
	-100 -
	-200 -
	-200 - -300 - -400 -
	-300 -
	-300 -400 -600
	-300 -400 -400 -500 -600 -2 -4 -6 -8 -10 -1
	-300 -400 -600 -2 -4 -6 -8 -10 -500 -600 -2 -4 -6 -8 -10
	-300 -400 -400 -200
	正統 是力法的运动和强和标差与的 对于更高地 $y_{n+1} = y_n + b \phi(x_1, y_2, y_{n+1}, h)$ 商志 赵钊忠义 $T_{p_1, \dots} = y_{n+1} - y_n + b \phi(x_1, y_2, y_{n+1}, h)$ 为万用的效的标差。如此 之后以本之为 何形 是思为这种技术,之前以为许是主义是否体制的技术,之前以为许是全国的基础的一个概念,这样的一个人们,这样的一个人们,这样的一个人们,我们就会不是一个人们的,我们就会不是一个人们,我们就会不是一个人们,我们就会不是一个人们,我们就会就会不是一个人们的,我们就会就会不是一个人们的,我们就会就会不是一个人们的,我们就会就会就会就会就会就会就会就会就会就会就会就会就会就会就会就会就会就会就会
	Tips 立と連和の連続を持ち、対于も関係を 第四十分の・わか(またが、今日は と) 西高利用型が 万・1分に、 かいました。 かいました。 かいました。 かいました。 かいました。 では、 かいました。 ないました。 ないました
	$y_{i+1} = y_i - h_i y(x_i, y_i, y_{i+1}, h)$ 面蓋 截 证法: $y_{i+1} = y_i - h_i y(x_i, y_i, y_{i+1}, h)$ 那点 数 证法: $y_{i+1} = y_{i+1} - y_i - h_i y(x_i, y_i, y_{i+1}, h)$ 那点 数 证法: $y_{i+1} = y_{i+1} - y_i - h_i y(x_i, y_i, y_{i+1}, h)$ 即為公 法共同分 证据: $y_{i+1} = y_{i+1} - y_i - h_i y(x_i, y_i, y_{i+1}, h)$ 即為公 法共同的 证据: $y_{i+1} = y_{i+1} - y_i - h_i y(x_i, y_i, y_{i+1}, h)$ 即為公 法共同的 证据: $y_{i+1} = y_{i+1} - y_i - h_i y(x_i, y_i, h)$ $y_{i+1} = y_i - h_i y(x_i, h)$ $y_{i+1} = y_$
	- 250
	1-20
	100
	1985 年 1985 日本 198
	1000
	### 100
	The second secon
	Section of the second section of the second section of the second section section of the second section sectio
	### 1
In []	TO STATE OF THE PROPERTY OF TH
In []	The process of the control of the co
In []	The Control of Control
In []	The state of the s
In []	Equipment of the control of the cont
In []	Territorial designation of the control of the contr
In []	The control of the co
In []	The content of the co
In []	The Action of Control
In []	Section 1997 A Principle of the Committee of the Committe
In []	The control of the co
In []	The control of the co
In []	Section of the control of the contro
In []	The control of the co
In [: : : : : : : : : : : : : : : : : :	Exercises and the same of the
In []	Exercises and the same of the
In [: : : : : : : : : : : : : : : : : :	Section 1. The control of the contro
In [: : : : : : : : : : : : : : : : : :	The control of the co
In [: : : : : : : : : : : : : : : : : :	Section of the content of the conten
In [: : : : : : : : : : : : : : : : : :	The second secon