Material covered

Book: Chapters 1, 2, 4 (mostly 1 and 4).

- Technology and performance
 - o Moore's law
 - Energy and power of CMOS devices
 - o Latency, bandwidth, and their relation
 - o Iron law
 - o Amdahl's law and speedup
- Machine representation of programs
 - Definition of ISA
 - Instructions
 - Assembly and machine "language"
- Simple processor
 - Steps to process an instruction
 - Instruction behavior (r-type, lw/sw, branches, jumps)
 - Single cycle processor design
 - o Performance of single-cycle and multi-cycle processors
- **Pipelining**
 - Reason for pipelined processors
 - Changes in control > beq/i) mp

finish executing prv.

Instruction-level parallelism

Tradeoffs of deeper pipelines and instruction-level parallelism

Tradeoffs of deeper pipelines and instruction-level parallelism

claims that the number of transistors per chip will double every 18-24 months.
ncreasing the frequency of the processor leads to increased performance and increased $\int \mathcal{W} \mathcal{C}$
What are three ways to compare two systems to determine the "better" system?
predicts the performance of a real-world application but often has shorter runtime and is standardized to allow comparisons across systems.

There is a processor with three stages: fetch&decode, execute, and memory&writeback. The stages require 350ps, 250ps, and 400ps, respectively.

- a) What is the cycle time if you implemented this as a *single cycle* processor (not pipelined)?
- b) What is the CPI of this processor?
- c) How long (in seconds) does it take to execute an application with 4 billion instructions?
- d) If you were to design this processor to pipelined, what is the required CPI to perform as well as the single cycle processor?

Student ID#	
Juacii ibii	

Processor A can run 1 billion instructions in 0.5 seconds at a frequency of 500 MHz. You are proposing a pipelined design for a new processor, design B. Your processor has a CPI of 4. The company you work for will not release a new design unless it has at least a 1.5x speedup compared to processor A. What is your target frequency?

The ISA defines the interface between _____ and _____.

In the diagram above, shade the wires and structures used for a jump instruction.

In the diagram above, explain the "Instructions[5-0]" wire going into the ALU control.

What does the "Control" block in the diagram above do?

Student ID#	
Juacii ibii	

What instructions cause the PC to be written?

branks jumps every instruction

What is a pipeline bubble?

is one technique to eliminate many hazards due to read-after-write dependencies.

Generally, as you increase the number of pipeline stages the does the CPI increase or decrease? Why?

What are the three types of hazards? Describe each and describe a technique to reduce their performance impact.

Given the following systems, which will have a higher performance for a constant number of instructions? Why? Show your work.

0		
N	zq	_

			_
	System A	System B 7	_
Pipeline depth	5	10	Y.
Cycle time	2 GHz	2.5 GHz	$oxed{oxed}$
Average CPI	3	5	

Iron law: time=inst X (PI x cycletime

A: \(\) time = 3.800ps -> 500ps = \(\) 2.109

= 1500 \(\)

= 1500 \(\)

Explain why predicting all branches as taken is better than predicting all branches as not taken.

What are the two pieces of information that a branch predictor predicts?

On an exception, the processor must save the cause of the exception and the ______.

A processor that executes more than one instruction per cycle is leveraging ______ for increased performance.

Fill in the per-cycle pipeline diagram table for the following code. Show all cycles where forwarding occurs and the stages between which the data is forwarded. Assume there is **no** branch prediction and branches are resolved **in the decode stage**. The branch is resolved not taken in the decode stage.

decode stage.				_											
				\bigvee	7										
ADD \$3, \$7, \$11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SUB \$2, \$4, \$5	IF	ID	ΕX	Mem	MŘ.	6 3									
ADD \$6, \$3, \$2 LW \$8, 20(\$6)		JF	ID	Ey	Men	MB									
BEØ (\$8,) \$0, 4			IF:	IDA	EX EX	Men	MZ								
ADD \$4, \$7, \$9				IF	ID	V	>	WB.	\$8						
Swait for end Mem (WB)				_	IF(W	Q :	ID T		hen	MB				
4									IF	ID	Ex	Mem	WB		
with BP toke	· .	_			>>	> ad	1	IF	ID	EX	Mon	NB			
assure not the															