# Motion Planning

Stephen J. Guy

March 2, 2020

Many images from Lavalle, Planning Algorithms and Peter Abbeel

1

# Recap

- Why use spatial-data structures
  - o Exploit locality in the environment
- BSP-tree vs KD-tree
  - o BSP allows arbitrary cuts
- Efficient nearest neighbor search?
  - o Store all agents in kd-tree
  - Intersect kd-tree with circle centered on agent in question

2

# HW3 – Motion Planning

· Posted already?

· Check-in: March 16

• Due: March 30

- Should be able to finish check-in from toady's lecture
- Very different than HW2!

o For good or ill ...

3

# **Burn-out?**

- I know HW2 was difficult
  - o Material is straightforward, but
  - o Different from other type of course work
  - o Lots of parameter tuning & tweaking
  - o Small errors cause big issues
- HW3
  - o You have a long time to complete
  - o Still parameter tuning, but less difficult
  - o Not as much difficult fun new math
  - o A lot of fun new algorithms ©

4

Δ

### Motion in Games/Movies Natural Phenomena (Passive) o Water, Ocean **Physically Based** o Fire, Smoke **Animation** o Snow o Cloth Planned Phenomena (Active) o Walking, Running Animal locomotion o Herding, flocking **Motion Planning** o Planning in complex environments o Intent

5

# Motion Planning

- Problem
  - Given start state X<sub>S</sub> and goal state X<sub>G</sub>
  - o Find a path leading from start to goal
- Difficulties
  - Need to avoid obstacles
  - o Systems may be "underarticulated"
    - · Can not move along any coordinate at will
    - Cars, Tanks, Airplanes
    - Humans, Animals, Robots (e.g. joint limits)

6







# Outline

- Configuration Space
- Probabilistic Roadmaps
  - o Sampling
  - o Collision Checking
- Rapidly-exploring Random Trees (RRTs)
- Smoothing

10

# Representing Paths

- Issues with raw position
  - o Doesn't account for an agent's extent
  - o Doesn't account for orientation
  - o Doesn't allow arbitrary changes in configuration
- What is "correct" path around obstacle
  - o Depends on whose taking the path





11

# Configuration Space (C-Space) • = {x | x is pose of agent} • Key idea: Replace obstacles with configuration space obstacles! \*\*Workspace\*\* \*\*Configuration Space\*\* (2 DOF: translation only, no rotation) \*\*free space obstacles\*\* free space obstacles\*\*



# Planning a Path How to get from one configuration to another

 Must find path in free space of c-space

 Path in c-space that doesn't intersect any c-obstacles



14





# Roadmaps

- Given a start and goal position
- And a representation of Configuration space
- How can we plan a collision free path from start to goal?

17

17





Probabilistic Roadmap (PRM)

Randomly sample configurations

20







Probabilistic Roadmap (PRM)

• Straight lines connect neighboring milestones



24







Finding Path in PRM

Graph search algorithms

- o Dijkstra's / Uniform Cost Search
- 0 A\*



28

# PRM – Overview

- Initialize sets of points with  $X_{\mbox{\scriptsize S}}$  and  $X_{\mbox{\scriptsize G}}$
- Randomly sample points in configuration space
- Connect nearby points if they can be reached from each other
- Find path from X<sub>S</sub> to X<sub>G</sub>
  - $_{\odot}$  Alternatively, track connected components. Stop when  $X_{S}$  and  $X_{G}$  are connected

29

29

# PRM - Examples

 Bruno Adorno - Automation and Robotics Laboratory (LARA) - University of Brasilia





30

# PRM Difficulties

- Connecting neighboring points:
  - o Only easy for holonomic systems
    - Systems where you can move in any direction from any state
  - General solution requires a Boundary Value Problem
    - E.g., Car, Tank, Bicycle

$$\min_{u,x} \quad \|u\|$$
s.t. 
$$x_{t+1} = f(x_t, u_t) \quad \forall t$$

$$u_t \in \mathcal{U}_t$$

$$x_t \in \mathcal{X}_t$$

$$x_0 = x_S$$

$$X_T = x_G$$

Typically solved without collision checking; later verified if valid by collision checking

31

31

# PRM Challenges (cont.)

- Collision Checking
  - o Determining if local path intersects c-space
  - Often the bottleneck in planning (see Lavalle book)
- Sampling
  - o Sample uniformly at random
    - Same strategies as in stochastic animation
  - o Bias sampling based on prior knowledge
    - E.g., more samples near narrow passages

# PRM Analysis

- Advantages:
  - o Probabilistically complete
    - Probability of finding a solution approaches one over time (if solution exists)
- Issues:
  - Required to solve 2-point boundary value problem
  - Graph is built over all state-space without focus on generating a path

33

33

# **Next Several Lectures**

- Search & Maps
- Multi-agent planning
  - o Centralizing
  - o Distributed