What are Load Cells?

DAVE VE3OOI APRIL 2022

Agenda

1. Why I did this?

2. Wheatstone Bridge Basics

3. Load Cells, Stain Gauges and all that

- 4. Load Cell Measurements/Simulation
- 5. What about SWR?

Danger Will Robinson

This is my journey:

- Preceding are my rambling
- This is not an engineering tutorial
- Quote Charlie Morris, ZL2CTM:

This NOT a tutorial. Its a log of my journey. Right or wrong.

HOW THIS STARTED...

- I have crashed MANY airplanes and Helicopters
- Many due to stupidity...
- Others due to underpowered aircraft.
 - Thrust-to-Weight ratio too small
- Needed a mechanism to measure thrust from motor & propeller.

Built a "Thrust Measurement Bench"

The Final Product

Wheatstone Bridge

Vout

Wheatstone bridge circuit diagram. The unknown resistance R_x is to be measured; resistances R_1 , R_2 and R_3 are known, where R_2 is adjustable. When the measured voltage V_G is 0, both legs have equal voltage ratios: $R_2/R_1 = R_x/R_3$ and $R_x = R_3R_2/R_1$.

- R1 and R3 are a voltage divider for Vin
- R2 and R4 are a voltage divider for Vin
- Vout = 0 if R1=R2=R3=R4
- If any R changed by small amount, there will be a small voltage at Vout
- Temperature tolerant

Load Cell

Wheatstone Bridge Calculations

From Video,

- Resistances measured 997 and 748 ohms
- ✓ If resistance between Red and Black is 997 (i.e. R2+R4//R1+R3)
- ✓ If resistance between White and Black in 748 (i.e. R4//R1+R2+R3)
- ✓ If R1=R2=R3=R4, then
 - 997 = R2+R4//R1+R3
 - 748 = R4//R1+R2+R3

 \dots 997 = R+R//R+R, R=997

.... 748 = R//R+R+R, R=997

So for my Load Cell, R=997 ohms

Load Cell Calculations

From Video,

Vout measured 2.1mV for 600g

✓ Voltage is 2.1mV for 600g or 3.5uV/g or 0.286g/uV E.g. if Vout is 0.5 mV, weight is 143g

Vout Voltages too small to measure with uC. Need amplification.

Us HX777 amplifier and 24bit ADC

HX777

 $V_{AVDD}=V_{BG}*(R1+R2)/R1$

=1.25*(20+8.2)/20 =1.7625 V

Load Cell & LTSpice

.param Ag=128 .param ADC=1677216/1.7625 .paran GF 457

.meas TRAN Vp AVG V(S+)

.meas TRAN Vn AVG V(S-) .meas TRAN Vd PARAM (Vn - Vp) .meas TRAN Vm PARAM Vd*Ag .meas TRAN Vadc PARAM Vm*ADC

.meas TRAN SF PARAM Vadc/600 .meas TRAN Gms PARAM Vadc/GF

.param R=998.8

.tran 1m

vp: AVG(v(s+))=2.49775 FROM 0 TO 0.001

vn: AVG(v(s-))=2.5 FROM 0 TO 0.001

vd: (vn - vp)=0.00225472

vm: vd*ag=0.288605 vadc: vm*adc=274640 sf: vadc/600=457.733 qms: vadc/gf=600.962

Cursor	1 V(s-)-\	/(s+)					
Horz:	236.8214µs	Vert:	2.2547245mV				
Cursor 2							
Horz:	N/A	Vert:	N/A				
Diff (Cursor2 - Cursor1)							
Horz:	N/A	Vert	N/A				
Freq:	N/A	Slope:	N/A				

SWR with Wheatstone Bridge

			_	
Measurement:	vdiff			
step		RMS (v (v1)	-	v(v2))
1		0.0986397		
2		0.0668205		
3		0.0406164		
4		0.0186616		
5		0		
6		0.0160576		
7		0.0300208		
8		0.0422742		
9		0.0531137		
10		0.0627707		

Detector

Measurement:	vdiff	Measurement: vs	swr
step	RMS(v(v1) - v(v2))	step	RMS (v (vmeas))
1	0.0700472	î	0.00516979
2	0.0454747	2	0.00217436
3	0.0267262	3	0.000863429
4	0.0120013	4	0.000148736
5	1.96664e-006	5	0.000121162
6	0.00989201	6	0.000138377
7	0.0181911	7	0.000224854
8	0.0252524	8	0.000488699
9	0.031334	9	0.000851575
10	0.036642	10	0.00128201

