

IRISET

टी.सी.टी. 3

पी.डी.एच. उपकरण

भारतीय रेल सिगनल इंजीनियरी और दूरसंचार संस्थान सिकंदराबाद-500017

टी.सी.टी. 3

पी.डी.एच. उपकरण

दर्शन: इरिसेट को अंतर्राष्ट्रीय प्रसिद्धि का संस्थान बनाना, जो कि अपने

मानक व निर्देशचिह्न स्वयं तय करे.

लक्ष्य : प्रशिक्षण के माध्यम से सिगनल एवं दूरसंचार कर्मियों की

गुणवत्ता में सुधार तथा उनकी उत्पादक क्षमता में वृद्धि लाना.

इस इरिसेट नोट्स में उपलब्ध की गई सामग्री केवल मार्गदर्शन के लिए प्रस्तुत की गयी है. इस नियमावली या रेलवे बोर्ड के अनुदेशों में निहित प्रावधानों को निकालना या परिवर्तित करना मना है.

भारतीय रेल सिगनल इंजीनियरी और दूरसंचार संस्थान सिकंदराबाद - 500 017

टी.सी.टी. 3 पी.डी.एच. उपकरण विषय - सूची

अनु. क्र.	अ ध्याय का नाम	पृष्ठ संख्या
1.	वर्सटाइल मक्स	1
2.	वेबफिल फ़्लेक्सी मल्टीप्लेक्सिंग इक्विपमेंट	22
3.	नोकिया मक्स	55
4.	2/34 एम.बी स्कीप मल्टीप्लेक्सर	93
5.	पनकोम व्ही मक्स (वीएमएक्स) -0100 सिस्ट्म	100
6.	पीडी - मक्स में कन्ट्रोल सर्किट प्रोटेक्शन योजना	134

- 1. पृष्ठों की संख्या 72
- 2. जारी करने की तारीख जून 2015
- 3. हिंदी और अंग्रेजी संस्करण में कोई विसंगति या विरोधाभास होने पर इस विषय का अंग्रेजी संस्करण ही मान्य होगा.

© IRISET

"यह केवल भारतीय रेलों के प्रयोगार्थ बौद्धिक संपत्ति है. इस प्रकाशन के किसी भी भाग को इरिसेट, सिकंदराबाद, भारत के पूर्व करार और लिखित अनुमित के बिना न केवल फोटो कॉपी, फोटो ग्रॉफ, मेग्नेटिक, ऑप्टिकल या अन्य रिकार्ड तक सीमित नहीं, बल्कि पुन: प्राप्त की जाने वाली प्रणाली में संग्रहित, प्रसारित या प्रतिकृति तैयार नहीं किया जाए."

http://www.iriset.indianrailways.gov.in

अध्याय 1

वर्सटाइल मक्स

1.1 परिचय: वर्सटाइल मक्स - 30 A (VERSATILE MUX) पंजाब कम्यूनिकेशन लिमिटेड, चंडीगढ़, द्वारा निर्मित है. यह एक उन्नत "सब्सक्राइबर कॉन्फिगरेबल" मॉड्यूलर TDM ड्रॉप/इंसर्ट मल्टीप्लेकसर है.

वर्सटाइल मक्स निम्नलिखित नेटवर्क एप्लिकेशन में से किसी में भी उपयोग किया जा सकता है:

- 1. यह "पॉइंट-टु-पॉइंट" मक्स के रूप में E1 ट्रंक पर वॉइस और डॉटा ट्रांसिमशन के लिए उपयोग किया जाता है.
- 2. एक डिजिटल ट्रांसिमशन नेटवर्क में टेल एंड मल्टीप्लेक्सर के रूप में उपयोग किया जा सकता है.
- 3. TDM ड्रॉप/इंसर्ट मल्टीप्लेक्सिर के रूप में उपयोग किया जा सकता है.
- 4. एक सब्सक्राइबर के लिए 2.048 एम.बी.पी.एस प्राथमिर-रेट-मल्टीप्लेक्सर के रूप में उपयोग किया जा सकता है.

वर्सटाइल मक्स में विभीन्न प्रकार के कार्ड है. डॉटा और वॉइस चैनलों के लिए आवश्यक इंटरफेस भी है. यह मक्स 30 आइटीयू-टी Rec G.703, G.704, G.732 और G.823 के सभी आवश्यकताओं के अनुरूप बना है.

कृपया चित्र.1.1 मे वर्सटाइल मक्स का एप्लिकेशन देखें.

1.2 सिस्टम कॉन्फ्रिगरेशन: वर्सटाइल मक्स 30-ए एक "मल्टी-प्रोसेसर" सिस्ट्म है. सिस्ट्म मे ऑपरेशन के लिए चार बेसिक कार्ड हैं साथ में एक पावर सप्लाइ कार्ड है, और यहां पर नौ प्रकार युजर स्पेसिफीक कार्ड हैं.

फ्रंट से देखा जाए तो चेसिस मे 14 स्लॉटें हैं. 10 से 14 स्लॉट, सिस्ट्म कार्ड के लिए आरक्षित है और यह इस प्रकार है.

स्लॉट 14 : पॉवर सप्लाइ कार्ड (पी.एस)

स्लॉट 13 : ज़नरल मेंटनेंस अलार्म प्रोसेसिंग कार्ड (GMAP)

स्लॉट 12 : पी.सी.एम इंटरफेस कार्ड (पी.सी.एम I /F)

स्लॉट 11 : सिगनलिंग मल्टीप्लेक्सिंग और डी मल्टीप्लेक्सिंग कार्ड (एस.एम.एक्स.)

स्लॉट 10 : ऑक्ज़ीलरी कार्ड

स्लॉट 09 : युजर स्पेसिफिक या कॉन्फ्रेंस कार्ड.

स्लॉट संख्या 1 से 8 कोइ भी यूजर इंटरफेस कार्ड का उपयोग किया जा सकता है, जैसे कि:

सब्सक्राइबर इंटरफ़ेस कार्ड.

एक्सचेंज इंटरफ़ेस कार्ड.

इ एंड एम इंटरफ़ेस कार्ड.

Composite incoming

को-डायरेक्शनल 64 केबीपीएस डॉटा कार्ड.

कार्ड क्षेत्र के ऊपर मदर-बोर्ड पर सभी इनपुट और आउटपुट कनेक्शन उपलब्ध है.

चित्र.1.1 वर्सटाइल मक्स 30-ए का एप्लिकेशन

व्ही.मक्स, -48 V DC पर काम करता है और उसमें 75 V/25 हर्ट्ज रिंगर होता है. यह एक टर्मिनल ब्लॉक में रहता है. सभी यूजर इंटरफेस के साथ पी.सी.एम 1, पी.सी.एम 2 में 120 Ω इंटरफेस, नेटवर्क CLK इन, CLK आउट और अलार्म आदी सामिल है .मदर- बोर्ड पर छह 64 पिन यूरो कनेक्टर्स का टर्मिनेशन है.

इनमें पी.सी.एम 1, पी.सी.एम 2 और CLK इन/आउट के लिए 75 Ω इंटरफ़ेस, मदर-बोर्ड के उपर के किनारे पर BNC कनेक्टर्स पर लगया जाता है.

चित्र 1.2 वर्सटाइल मक्स में सब रैक सिस्टम

- 1.3 सिस्ट्म के फ़िचर और अन्य 30-CH पी.सी.एम मक्स के साथ त्लनाएं (प्राइमरी मक्स):
 - 1. व्ही.मक्स नेटवर्क सिंक्रनाइज़ेशन के लिए क्लॉक स्रोत के कइ विकल्पों मौजुद है.
 - 1) पी.सी.एम 1 क्लॉक स्रोत.
 - 2) पी.सी.एम 2 क्लॉक स्रोत.
 - 3) एक्सटूर्नल 2.048 मेगाहर्ट्ज क्लॉक.
 - 4) इंटरनल 2.048 मेगाहर्ट्ज ऑसिलेटऱ.

ये क्लॉक स्रोतों प्राथमिकता के आधार पर सिलेक्ट किया जाता है. उच्च प्राथमिकता क्लॉक की फेलिऊर होने पर स्वचालित रूप से अगले उपलब्ध कम प्राथमिकता क्लॉक में चला जाता है. इसके साथ ही अलार्म उत्पन्न होता है. यह अगले उपकरण को सिंक्रनाइज़ करने के लिए $120/75~\Omega$ के G.703~2.048 मेगाहर्ट्ज सिस्टम क्लॉक आउटपुट देता है.

- 2. प्रत्येक चैनलों को टर्मिनल या ड्रॉप इंसर्ट के लिए कॉन्फ़िगर किया जा सकता है.
- 3. टर्मिनल कॉन्फ़िगरेशन में चैनल 'इंटरफ़ेस VF के स्तर पर होता है.
- 4. "ड्रॉप और इंसर्ट" कॉन्फ़िगरेशन के लिए पी.सी.एम 1 के किसी भी टाइम स्लॉट पी.सी.एम 2 पर या किसी भी लोकल टाइम-स्लॉट में मैप किया जा सकता है.
- 5. NV RAM कॉन्फ़िगरेशन को अपडेट करता है.
- 6. क्रॉस कनेक्ट और रूटिंग: दो पी.सी.एम. के बीच कनेक्ट करने की सुविधाएँ उपलब्ध है और किसी भी टाइम स्लॉट किसी भी सब्सक्राइबर के लिए मैप किया जा सकता है.

- 7. डायनेमिक पुनर्विन्यास: व्ही.मक्स मे चार प्री-सेटेबल रूटिंग टेबिल है इसे री-कॉन्फ़िगर करने के लिए प्रोग्राम किया जा सकता है. यह मैनुअल या स्वचालित रूप से किया जा सकता है. विभीन्न अलार्म, या फ़ेल्यूअर के कारण डायनेमिक प्नर्विन्यास हो सकता है.
- 8. एर्रोर सांख्यिकी संग्रह: व्ही.मक्स, "एर्रोर सेकंड" के आँकड़े (ES), "सिभियर्ली एर्रोर सेकंड" (SES) और अनुपलब्ध सेकंड (UAS) का सांख्यिकी संग्रह प्रदान कर सकता है, और यह किसी भी टाइम यह टेस्ट आरंभ किया जा सकता है.
- 9. कौन्फ़ारेन्स सुविधाएँ: कोन्फ़ारेन्स कार्ड 15 सब्सक्राइबर को एक साथ तिन/चार पार्टी कौन्फ़ारेन्स प्रदान कर सकता है.
- 10. अलार्म: पी.सी.एम ट्रान्क, VF/डॉटा सब्सक्राइबर पोर्ट, क्लाक और व्यवस्था की स्थिति में अलार्म का पता चलता है.
 - a) सिस्टम अलार्म:
 - 1. इनपुट में पॉवर सप्लाइ फेलिऊर.
 - 2. सिस्टम का पॉवर सप्लाइ फेलिऊर.
 - 3. प्रायोरिटी पोर्ट फेलिऊर.
 - 4. कॉन्फ़िगरेशन मिसमैच.
 - b) ट्रान्क अलार्म:
 - 1. सिगन्ल की लॉस (LOS)
 - 2 सिंक फ़्रेम के लॉस
 - 3 मल्टी-फ्रेम सिंक के लॉस
 - 4 अत्यधिक एफ.ए.एस
 - 5 अत्यधिक स्लीप
 - 6 रिमोट अलार्म
 - 7 ए.आइ.एस अलार्म
- 11. ये अलार्म मेजर/माइनर अलार्म या कोइ भी अलार्म के रूप में सब्सक्राइबर द्वारा प्रोग्राम किया जा सकता है. एक बार उत्पन्न अलार्म कंसोल पर प्रदर्शित होता है और यह 100 तक अलार्म इतिहास फाइल में संग्रहीत हो जाता है.
- 12. डायग्नॉस्टिक: सिस्टम के डायग्नॉस्टिक, दोष को तेजी से पता लगाना , आसान मेंटनेंस और स्थान के लिए स्परविज़न और मेंटनेंस प्रदान करता है.

1.4 एप्लिकेशन :

1. सिंगल लिंक ऑपरेशन (पॉइंट-टु-पॉइंट): सिस्टम को NMT के द्वारा नियंत्रित किया जाता है. यदि NMT, लिंक के पास है तो V.24/RS 232 सीरियल पोर्ट GMAP मॉड्यूल पर COM पोर्ट के साथ एक केबल के द्वारा क्नेक्ट कर सकते है. एक मॉडेम लिंक भी दूरी को कवर करने के लिए उपयोग किया जा सकता है. इस सिस्टम में अधिकतम 30 टाइम स्लॉट्स उपलब्ध हैं. फिगर 1.3 देखें .

चित्र. 1.3 पोइन्ट से पोइन्ट ऑपरेशन

2. **डबल लिंक ऑपरेशन** : दो E1 लिंक व्ही.मक्स से जुड़ा जा सकता है, यह दो आंशिक रूप से भरे E1 लिंक हो सकते है.सब्सक्राइबर पोर्ट दो आंशिक रूप से भरे E1 ट्रंक में पी.सी.एम टाइम स्लॉट मे मैप किया जा सकता है |

चित्र: 1.4 डॉटा लिंक ऑपरेशन

3. **ड्रॉप और इंसर्ट ऑपरेशन**: व्ही.मक्स ड्रॉप/इनसर्ट एप्लिकेशन में उपयोग किया जाता है जिसमे लिंक से लिंक को चयनित टाइम स्लॉट्स मे जोडे जाते है. यह दोनों लिंक पर स्वतंत्र रूप से एक ही टाइम स्लॉट का उपयोग कर सकते है. चित्र 1.5 में ड्रॉप इनसर्ट ऑपरेशन दिखाया गया है.

चित्र 1.5 ड्रॉप और इंसर्ट ऑपरेशन

1.5 वर्सटाइल मक्स नेटवर्क: वर्सटाइल मक्स डिजाइन एकाधिक प्रोसेसर पर आधारित है. GMAP के केंद्र में एक 10MHz मोटोरोला 68000 प्रोसेसर है. यही कारण है की इसमे स्कैनिंग, अलार्म, प्रोग्रामिंग और मैन मशीन इंटरफेस मौजूद है. SMX में एक और 68000 प्रोसेसर सिग्नलिंग के लिए मौजूद है.

व्ही.मक्स में निम्नलिखित विशेषताएं हैं.

- 1. प्रोग्रामेबल टाइम स्लॉट
- 2. नेटवर्क सिंक्रनाइज़ेशन
- 3. प्रोग्रामेबल अलार्म और थ्रेसहोल्ड
- 4. ओमनी-बस कॉन्फ्रेंसिंग
- 5. लोकल नेटवर्क मैनेजमेंट के लिए नेटवर्क मैनेजमेंट टर्मिनल (NMT).
- 6. पी.सी.एम के लिए क्रॉस-कनेक्टिविटी.
- 1.6 प्रोग्रामेबल टाइम स्लॉट: व्ही.मक्स के ऑपरेशन एक वी.टी 100 नेटवर्क मैनेजमेंट टर्मिनल (NMT) से प्रोग्राम किया जाता है. इस NMT के माध्यम से प्रोग्रामर व्ही.मक्स पर मौजूदा कॉन्फ़िगरेशन को नए कॉन्फ़िगरेशन में चेंज करता है. इस कॉन्फ़िगरेशन कि इन्फरमेसन एक नॉन-वोलाटाइल रैम (NVRAM) में संग्रहीत होता है तथा संचालन को नियंत्रित करता है। इस NVRAM मे कइ वर्षों की बैटरी जीवन होती है। यह NVRAM प्रोग्राम पैरामीटर के साथ एक डिफ़ॉल्ट कॉन्फ़िगरेशन के साथ फ़ैकट्री से प्रोग्राम किया हुआ आता है. यह डिफ़ॉल्ट सेटिंग NMT का साइट पर देखा या बदला जा सकता है. डिफ़ॉल्ट सेटिंग मे एक विशिष्ट वातावरण में व्ही.मक्स के संचालन के लिए आम तौर पर पर्याप्त होता है और एक विशिष्ट सब्सक्राइबर आवश्यकता के अनुरूप प्रोग्राम भी की जा सकती है.
- 1.7 नेटवर्क सिंक्रनाइज़ेशन: व्ही.मक्स नेटवर्क सिंक्रनाइज़ेशन के लिए बिभीन्न क्लॉक इनपुट के विकल्पों का समर्थन करता है।
 - 1. रिसीव PCM1 क्लॉक
 - 2. रिसीव PCM2 क्लॉक
 - 3. एक्सट्रर्नल 2.048 मेगाहर्ट्ज क्लॉक
 - 4. इंटरनल 2.048 मेगाहर्ट्ज ओसिलेटर

सब्सक्राइबर प्राथिमिकता के क्रम में 10 सिंक्रनाइज़ तक क्लॉक चुन सकते हैं. एक उच्च प्राथिमिकता क्लॉक फेल होने पर, अगले उपलब्ध कम प्राथिमिकता क्लॉक मे स्वचालित रूप से ट्रान्स्फर हो जाता है. व्हि मक्स शृंखला में अगले उपकरण को सिंक्रनाइज़ करने के लिए आउटपुट मे एक 120 Ω /75 Ω G. 703 2.048 मेगाहर्टज नेटवर्क क्लॉक भैजता है.

1.8 प्रोग्रामेबल अलार्म और थ्रेसहोल्ड: व्ही. मक्स पी.सी.एम ट्रंक, VF/डॉटा सब्सक्राइबर पोर्ट, क्लॉक पर यह अलार्म का पता लगाता है.

A. पी.सी.एम ट्रंक पर अलार्म

सिगनल लॉस फ्रेम सिंक्रनाइज़ेशन लॉस मल्टी फ्रेम सिंक्रनाइज़ेशन लॉस अत्यधिक एफ.ए.एस एरर

अत्यधिक सी.आर.सी एरर अत्यधिक स्लीप (SLIP) रिमोट अलार्म ए.आइ.एस रिसीव

B. अन्य सभी अलार्म:

प्राथमिकता 1 या 2 क्लॉक फ़ेल VF/ डॉटा पोर्ट फ़ेल मिस-मैच कॉन्फ़िगरेशन की समस्या

इन अलार्म शर्तों में से एक मेजर अलार्म, माइनर अलार्म या कोइ अलार्म न उत्पन्न करने के लिए सब्सक्राइबर से प्रोग्राम किया जा सकता है. इन दोनों अलार्म बे रैक पर ऑडियो/विजुअल अलार्म उत्पन्न करते हैं.

एक बार अलार्म उत्पन्न होने पर कंसोल पर दिखता है और एक 100 गहरी अलार्म इतिहास फाइल में स्टोर होता है. इस फाइल में अलार्म के स्रोत, अलार्म की पीढ़ी और अलार्म के टाइम होता है.

- 1.9 ओमनी-बस कॉन्फ्रेंसिंग: व्ही. मक्स में दो, 4-वे ओमनी-बस कॉन्फ्रेंसिंग चैनलों का समर्थन करता है. इन कॉन्फ्रेंसिंग चैनलों किसी व्ही.एक PCM-1 और PCM-2 ट्रंक के टाइम स्लॉट और दो लोकल VF के पोर्ट से सेट किया जाता है जो प्रत्येक कॉन्फ्रेंसिंग में भाग ले सकते है. एक कॉन्फ्रेंसिंग कार्ड मे 30 तीन पार्टियों या 15 चार पार्टियों कॉन्फ्रेंसिंग चैनलों को प्रोग्राम कर सकते हैं.
- 1.10 लोकल नेटवर्क मैनेजमेंट पर कंट्रोल डायगोन्स्टीक (NMT): NMT से व्ही. मक्स में प्रोग्रामिंग, विभिन्न लाइनों और पोर्ट के स्थिति तथा अलार्म इतिहास को प्रदर्शित करने, टेस्ट करने, और फ़ाल्ट के डॉटा को प्रदर्शित करने के लिए प्रयोग किया जाता है. NMT को दूर से एक और पोर्ट में मॉडेम के द्वारा जुड़ा जा सकता है.जिससे एक रिमोट व्ही. मक्स से कनेक्ट करके एक नेटवर्क NMT के व्दारा मैनेजमेंट में उपयोग किया जा सकता है.
- **1.11 पी.सी.एम** ट्रंक पर क्रॉस-कनेक्टिविटी: व्ही. मक्स, दो पी.सी.एम ट्रंक और 30 सब्सक्राइबर पोर्ट दोनों के बीच क्रॉस कनेक्ट को समर्थन करता है. किसी भी टाइम स्लॉट को किसी भी सब्सक्राइबर पोर्ट में मैप किया जा सकता है. इसके अलावा PCM1 के किसी भी. टाइम स्लॉट ड्रॉप / इंसर्ट या बायपास करने के PCM2 के किसी भी टाइम स्लॉट में मैप किया जा सकता है.

किसी भी चार क्रॉस कनेक्ट टेबल व्ही. मक्स में प्रोग्रामिंग किया जा सकता है.

1.12 स्पेसिफ़िकेशन जनरल स्पेसिफिकेशन

पी.सी.एम ट्रंक की संख्या : 2 सब्सक्राइबर पोर्ट की संख्या : 32

इंटरफेस के प्रकार : इ एंड एम (2W और 4W)

लूप इन-कमिंग लूप आउट-गोइंग

सब्सक्राइबर लूप इंटरफ़ेस

एक्सचेंज लूप इंटरफ़ेस

रिंग इंटरफ़ेस (Magneto)

हॉट लाइन इंटरफ़ेस

डॉटा इंटरफेस के प्रकार : 64 केबीपीएस G.703 को-डायरेक्शनल

लो-स्पीड : 1.2-19.2 केबीपीएस

V.24 डायरेक्ट लाइन

64केबिपिएस V.35 डायरेक्ट लाइन

64 केबीपीएस V.35/NIU के माध्यम से V.11 लाइन

पॉवर सप्लाइ : -40V से -60V नॉमिनल (-48V)

नेटवर्क क्लॉक सिंक्रनाइज़ेशन : विकल्प इस प्रकार

रिसीव PCM1 क्लॉक रिसीव PCM2 क्लॉक

एक्सटर्नल 2.048 मेगाहर्ट्ज क्लॉक इंटरनल 2.048 मेगाहर्ट्ज ऑसिलेटर

ओमनी-बस कॉन्फ्रेंसिंग : 30 तिन पार्टी या 15 चार पार्टी कॉन्फ्रेंसिंग उपलब्ध हैं.

अलार्म : सभी अलार्म मेजर/माइनर/कोइ भी रूप में सीमा और को प्रोग्राम

कर सकते हैं.

अलार्म इतिहास फाइलों में लॉग होता है .

नेटवर्क कंसोल टर्मिनल : वीटी-100 टर्मिनल नेटवर्क नियंत्रण और मैनेजमेंट के लिए

उपलब्ध है.

पी.सी.एम ट्रंक इंटरफ़ेस

आउटपुट इम्पीडेन्स : $75~\Omega$ अन-बैलेंस/ $120~\Omega$ बैलेंस इनप्ट इम्पीडेन्स : $75~\Omega$ अन-बैलेंस/ $120~\Omega$ बैलेंस

VF इंटरफेस

इ एंड एम (4W)

कोडिंग : A-law rec G 711

इम्पीडेन्स : 600 Ω

TX स्तर : -11dBr से + 4dBr, 0.1dB के चरणों में Rx स्तर : -14dBr से 1 DBR 0.1dB के चरणों में

इ एंड एम (2W)

कोडिंग : A-law rec G 711

इम्पीडेन्स : 600 Ω

सब्सक्राइबर लूप इंटरफ़ेस

मैक्स लूप रेजिस्टेन्स : 2400Ω

बैटरी रिवर्सल : हाँ

रिंग वोल्टेज : 75 V आर.एम.एस (एक्सट्रर्नल रिंग)

रिंग फ़्रिकोएन्स : 17-25 हर्ट्ज पल्स स्पीड डायल : 8-12 पी.पी.एस

VF स्पेक : 2W, इ एंड एम के समान

एक्सचेंज इंटरफ़ेस

ओपेन लूप रेजिस्टेन्स : 10 किलो Ω से अधिक

क्लोज लूप रेजिस्टेन्स : 20 ma

न्यूनतम वोल्टेज : 15 V आर.एम.एस. पल्स स्पीड डायल : 8-12 पी.पी.एस.

VF स्पेक : 2W, इ एंड एम के समान

हॉट लाइन

अधिकतम लूप रेजिस्टेन्स : 2400 Ω

रिंगिंग वोल्टेज : 75 V आरएमएस (एक्सट्रर्नल रिंग)

रिंगिंग फ्रीक्वेंसी : 17-25 हर्ट्ज

VF स्पेक : 2W, इ एंड एम के समान

डॉटा इंटरफेस स्पेसिफिकेशन (64 केबीपीएस G.703)

इंटरफ़ेस : को-डायरेक्शनल के रूप में आइटीयू-टी Rec.G.703

आउटपुट रेजिस्टेन्स : 120 Ω इनपुट रेजिस्टेन्स : 120 Ω

क्लॉक इंटरफेस के लिए स्पेसिफिकेशन

2.048 मेगाहर्ट्ज क्लॉक इनपुट

टर्मिनल : $75~\Omega$ अन-बैलेंस/ $120~\Omega$ बैलेंस रेट : $2048~{\rm KHz}$ के $\pm~50~{\rm Thr}$

अधिकतम लाइन एटिन्एश्न : 6 dB

4 kHz क्लॉक इनप्ट

टर्मिनल : 600 Ω बैलेंस

रेट : 4 kHz ± 50 पी.पी.एम.

2.048 मेगाहर्ट्ज क्लॉक आउटपुट

रेजिस्टेन्स : $120 \Omega \ \mbox{बैलेंस}/75 \Omega \ \mbox{अन बैलेंस}$ रेट : सिस्टम क्लॉक से सिंक्रनाइज़

1.13 पॉवर सप्लाइ कार्ड

- * यह कार्ड स्लॉट नं. 14 में हैं.
- * कार्ड लगाने का टाइम पॉवर सप्लाइ को बंद किया जाना चाहिए.
- * पॉवर सप्लाइ कार्ड के शीर्ष पर स्विच है.

- * ओवर-लोड या रिवर्स पोलॅरिटी के कारण इंटरनल फ्यूज उड़ जाता है.
- फ्यूज एल.इ.डी लाल होता है.
- * फ्यूज निचले यूरो कनेक्टर J 2 के निकट है.
- * मॉनिटरिंग बिंदुओं असुरक्षित हैं और इसे ध्यान से नापा जाना चाहिए.
- * इनपुट और आउटपुट के बीच मापन किया जाना चाहिए.

फिगर 1.6: पॉवर सप्लाइ कार्ड के इंडिकेशन को देखें

चित्र.1.6 पॉवर सप्लाइ कार्ड के इंडिकेशन

1.14 GMAP कार्ड:

यह सामान्य मेंटनेंस और अलार्म प्रोसेसिंग कार्ड है.

- * इसमें मोटोरोला 68000 माइक्रोप्रोसेसर प्रयुक्त किया जाता है.
- * यह सिस्ट्म को नियंत्रण करता है .
- * यह सिस्ट्म के सारे प्रोग्राम स्विधाओं को इंप्लिमेंट करता है.
- यह अलार्म को स्कैन करता है.
- * यह अलार्म का पता लगाता है .
- * सभी कार्य के लिए सिस्टम हार्डवेयर को स्कैन करता है और किसी भी विषमता को इंगित करता है.
- * यह NMT के माध्यम से सब्सक्राइबर के साथ सूचना का आदान प्रदान करता है.
- * यह कार्ड 13 वीं स्लॉट में हैं.
- * कार्ड को पॉवर-ऑफ़ स्थिति में निकालना चाहिये.
- * ACO कट ऑफ ऑडियो अलार्म बंद करने के लिए है.
- * सामान्य स्थिति में स्वास्थ्य सूचक, हरे रंग एक हर्ट्ज की दर पर एल.इ.डी ब्लिंक करता है, फेलिऊर के मामले में एक उच्च दर में ब्लिंक करता है.

चित्र.1.7 GMAP कार्ड के इंडिकेशन

इस कार्ड में,

- * COM के एक कनेक्टर NMT जोड़ने के लिए एक 15 पिन डी प्रकार फ़ीमेल कनेक्टर है.
- * COM के दो कनेक्टर रिमोट NMT या जोड़ने के लिए एक 15 पिन डी प्रकार फ़ीमेल कनेक्टर है. पीसी आधारित NMS (कॉन्फ्रेंस कार्ड के माध्यम से)
- * सभी सिस्टम कार्ड डालने पर स्विच ओन किया जाता है.
- 1.15 पी.सी.एम इंटरफेस कार्ड: यह कार्ड 12 वें स्लॉट में रहता हैं। इनके सिगन्ल इस प्रकार हैं
- * लोकल = पिला, सामान्य रूप से बंद
 स्थायी रूप से जले तो सिगनल की लॉस (Loss of signal)

 िहलंक करने पर फ्रेम/मल्टी फ्रेम के लोस
- * रिमोट = पीला, सामान्य रूप से बंद स्थायी रूप से जल रहा है - RX के AIS ब्लिंक - फ़ार एंड अलार्म
- * **एरर** = **पीला,** सामान्य रूप से बंद स्थायी रूप से, अतिरिक्त एरर रेट (> मेजर थ्रेशोल्ड) Loss of signal ब्लिंक - (> थ्रेशोल्ड)
- * स्लिप = पीला सामान्य रूप से बंद, ब्लिंकींग - स्लिप हो रहा है . स्थायी रूप से - स्लिप > सेट थ्रेशोल्ड

- * **लूप = पीला,** सामान्य रूप से बंद ON - रिमोट लूप
- * लूप स्विच: 2 सेकंड के लिए अधिक से अधिक प्रेस करने पर पी.सी.एम ट्रंक मे लूप होता है
- * यह 5 से 6 मिनट के लिए लूप में बनी रहती है। परीक्षण खत्म होने पर फिर स्विच दबाने से लूप को हटाया जा सकता है.
- * TC 6 या BNC s पी.सी.एम टर्मिनेशन है.

पी.सी.एम इंटरफेस कार्ड के सामने पैनल फिगर 1.8 कृपया देखें

चित्र 1.8 पी.सी.एम इंटरफेस कार्ड के फ्रंट पैनल

1.16 एस.एम.एक्स (SMX) कार्ड : यह कार्ड स्लॉट न.11 में है.

- * हैल्थ के लिए ग्रीन एल.इ.डी, लगभग 2 हर्ट्ज पर ब्लिंक करेगा निरंतर बंद GMAP फेलिऊर को इंगित करता है.
- सब्सक्राइबर सेटिंग्स.
- * सब्सक्राइबर के इनपुट / आउट्पुट .
- * फ़ैकट्री सेटिंग को परेशान नहीं करना चाहिए.

कृपया एसएमएक्स कार्ड का फ्रंट पैनल चित्र.1.9 में देखें

चित्र.1.9 SMX कार्ड के फ्रंट पैनल

- 1.17 ऑक्ज़ीलरी (AUX) कार्ड: यह कार्ड 10 वें स्लॉट में है.
- * **हैल्थ एल.इ.डी = ग्रीन** आम तौर पर बंद रहता है। जब जलता है तो ऑक्ज़ीलरी कार्ड की फेलिऊर को इंगित करता है
- * CLK = पीला, सामान्य रूप से बंद (क्लॉक उपलब्ध है और स्थिर होने को इंगित करता है)
- * ऑक्ज़ीलरी कार्ड GMAP कार्ड का एक हिस्सा है.
- * टर्मिनेशन टीसी 5 या BNCs पर घड़ियों के लिए प्रदान की जाती हैं.
- * फैक्ट्री सेटिंग को परेशान नहीं किया जाना चाहिए.
- * इस कार्ड को पॉवर-ऑफ़ स्थिति में निकालना या लगाना चाहिये.

चित्र 1.10 में ऑक्जीलरी कार्ड के फ्रंट पैनल को देखें.

चित्र.1.10 AUX कार्ड के फ्रंट पैनल

1.18 इ एंड एम कार्ड

यह कार्ड 1-8 स्लॉट में से किसी एक में रखा जा सकता है।

- * 2W या 4W के विकल्प सेटेब्ल है.
- * चार 2W / 4W इ एंड एम पोर्ट प्रत्येक कार्ड पर है.
- * पोर्ट के कॉन्फ़िगरेशन NMT का उपयोग कर किया जा सकता है.
- * 'इ'- एल.इ.डी = पीला OFF = इ लीड ओपन ON = इ लीड पर ग्राउंड
- * 'एम' -एल.इ.डी = पीला OFF = एम -लीड ओपन ON = एम- लीड पर ग्राउंड
- * लूप एल.इ.डी = पीला, सामान्य रूप से बंद जब लिट होता है तब चैनल को लुप किया गया है (लोकल या रिमोट)

चित्र 1.11 इ एंड एम कार्ड के फ्रंट पैनल देखें

चित्र 1.11 E&M कार्ड के फ्रंट पैनल

- 1.19 सब्सक्राइबर इंटरफेस कार्ड: यह कार्ड 1-8 स्लॉट में से किसी एक में रखा जा सकता है। इसके कार्य इस प्रकार हैं
- * चार 2 W सब्सक्राइबर लाइनें प्रदान करता है.
- * एक्सचेंज के इंटरफ़ेस या हॉट लाइन इंटरफेस के साथ संयोजन के रूप में काम करता है.
- * हॉट लाइन इंटरफ़ेस एक ही कार्ड के मामले में दोनों एंड पर प्रयोग किया जाता है.
- * विभीन्न सिगन्ल स्टेट्स और सब्सक्राइबर इंटरफ़ेस के लिए आदि डायल प्रदान की जाती हैं.
- * पहले ही NMT के साथ पोर्ट को कॉन्फ़िगर करें
- पीला एल.इ.डी चैनल की सिजर को इंगित करता है.

चित्र 1.12 सब्सक्राइबर इंटरफेस कार्ड के फ्रंट पैनल

1.20 एक्सचेंज इंटरफेस कार्ड : यह कार्ड 1-8 मे किसी स्लॉट में रह सकता हैं.

- * इस कार्ड को कम्पोजिट इंटरफेस कार्ड के रूप में जाना जाता है.
- * प्रत्येक कार्ड एक्सचेंज / जंक्शन लाइन के लिए चार / दो बायर इंटरफेस मौजूद है .
- दूसरे छोर पर सब्सक्राइबर इंटरफ़ेस के साथ काम करने के लिए एक्सचेंज के इंटरफेस के रूप में कॉन्फ़िगर किया जा सकता है.
- * दूसरे छोर पर लूप आउटगोइंग इंटरफेस के साथ काम करने के लिए जंक्शन इंटरफेस के रूप में कॉन्फ़िगर किया जा सकता है .(टाइ लाइन)
- * विभीन्न सिगन्ल स्टेट्स और कोड, आदि डायल, कर सकते हैं.
- * सिजर एल.इ.डी (पीला) पर जब्त को इंगित करता है.
- * एनसर एल.इ.डी (पीला) पर जवाब को इंगित करता है.
- * 'JF' एल.इ.डी (पीला) जंक्शन फेलिऊर या ब्लॉक को इंगित करता है.

चित्र.1.13 मे एक्सचेंज इंटरफेस कार्ड के फ्रंट पैनल को देखें

चित्र.1.13 एक्सचेंज इंटरफेस कार्ड के फ्रंट पैनल

- **1.21 64 केबिपिएस को-डायरेक्शनत्मक डॉटा इंटरफेस कार्ड (G.703)**: यह कार्ड 1-8 में से किसी एक स्लॉट में रखा जा सकता है.
- * इसमे चार 64 केबिपिएस डॉटा पोर्ट है.
- * कार्ड और पोर्ट कॉन्फ़िगरेबल है .
- * कनेक्टर और पिन स्लॉट पर निर्भर करता है.
- * एल.इ.डी (पीला) चैनल के सिगन्ल लॉस या डॉटा इनपुट लॉस को इंगित करता है.
- * लूप एल.इ.डी चैनल लुप को इंगित करता है.
- इस कार्ड में कइ सब्सक्राइबर सेटेब्ल हेडर हैं.
 (इस कार्ड मे फ़ैकट्री सेटिंग्स को परेशान नहीं किया जाए इसकी कृपया ध्यान रखे)

चित्र 1.14 G.703 कार्ड के फ्रंट पैनल को कृपया देखें:

चित्र.1.14 G.703 काई के फ्रंट पैनल

1.22 कॉन्फ्रेंस कार्ड : यह कार्ड 9 वे स्लॉट में रखा गया है

- * इस कार्ड मे तीन पोर्ट है.
- * पोर्ट P1 और P2 RS 485 पोर्ट हैं.
- * इसमे 15 पिन डी-प्रकार फ़िमेल कनेक्टर है.
- * पोर्ट P3 में एक 15 पिन डी प्रकार फ़िमेल कनेक्टर है जो एक RS 232 पोर्ट है.
- * NMS GMAP कार्ड के माध्यम से कॉन्फ्रेंस कार्ड के पोर्ट 3 से जुड़ा है.
- * स्वास्थ्य एल.इ.डी (पीला) कॉन्फ्रेंस प्रोसेसर सामान्य अवस्था का पता चलता है,
- इस कार्ड पर कोइ सब्सक्राइबर सेटेब्ल हेडर हैं.
- * फ़ैकट्री सेटिंग्स को परेशान न करे.

चित्र.1.15 कॉन्फ्रेंस कार्ड के सामने पैनल को कृपया देखें

चित्र. 1.15 कॉन्फ्रेंस कार्ड के फ्रंट पैनल

1.23 नोड मैनेजमेंट टर्मिनल: व्ही. मक्स का संचालन एक वीटी-100 नोड मैनेजमेंट टर्मिनल (NMT) से की जाति है. NMT व्ही.मक्स के साथ के नोड मैनेजमेंट टर्मिनल के माध्यम से कम्युनिकेट करता है, और मौजूदा कॉन्फ़िगरेशन को स्क्रीन मे प्रदर्शित करता है. हाल में प्रवेश किया कॉन्फ़िगरेशन एक नॉन वोलाटाइल रैम में संग्रहीत होता है. इस नॉन वोलाटाइल रैम मे बैटरी की जीवन कइ वर्षों का होता है.

आम तौर पर NVRAM प्रोग्राम पैरामीटर के साथ एक डिफ़ॉल्ट कॉन्फ़िगरेशन के साथ फ़ैकट्री से प्रोग्राम किया हुआ आता है. डिफ़ॉल्ट सेटिंग में, व्ही.मक्स के संचालन के लिए यह आम तौर पर पर्याप्त होता है. NMT सिस्टम की स्टेटास को प्रदर्शित करता है.

विभीन्न लाइनों और पोर्ट और फाल्ट की स्थिति को प्रदर्शित करने के लिए सिस्टम की स्टेटास को प्रदर्शित करन अलार्म डायगोन्स्टीक को रन करे.

GMAP पर COM1 पोर्ट लोकल प्रोग्रामिंग पोर्ट है. यह एक V. 24/RS 232 पोर्ट है. इसकी बॉड रेट 300, 9600 बाड हो सकता है और डिफॉल्ट सेटिंग 9600 बाड है.

ऑपरेशन में तीन स्तरें हैं:

1. यूजर मोड: इस मोड मे केबल कॉन्फ़िगरेशन, स्थिति और अलार्म के इतिहास को देख सकते हैं. इस मोड मे कॉन्फ़िगरेशन में कोइ भी परिवर्तन से नहीं कर सकते है.

2. स्परवाइजरी मोड (लेबेल 1)

यह मोड पासवर्ड से सुरक्षित है. नोड मैनेजमेंट टर्मिनल यूजर हार्डवेयर को कॉन्फ़िगर / पासवर्ड बदलने को छोड़कर यूजर मोड के सभी स्विधाएँ हैं।

3. स्परवाइजरी मोड (लेवल 2)

यह मोड पासवर्ड से सुरक्षित है नोड मैनेजमेंट टर्मिनल युजर सिस्ट्म को पूरा नियंत्रण कर सकते है जैसे पासवर्ड बदलने/देखा जा सकता है. सुपरवाइजरी मोड (स्तर 1) के सारे कार्या इस लेबेल में संभव हैं। इन दोनों मोड पासवर्ड सुरक्षित हैं

1.24 नेटवर्क मैनेजमेंट सिस्ट्म (NMS)

मक्स का नेटवर्कींग एक पी.सी आधारित नेटवर्क मैनेजमेंट सिस्ट्म (NMS) से किया जाता है. व्ही.मक्स -30A को NMS से प्रोग्राम किया जा सकता है.

एम.एस Windows आधारित NMS आसान ऑपरेशन के लिए सब्सक्राइबर के अनुकूल स्क्रीन प्रदान करता है. अलार्म आदि को NMS नज़र रखता है और इसे इतिहास फ़ाइलों मे स्टोर करता है |

NMS नेटवर्क मे उपयोग किया जाता है. यह GMAP कार्ड से कॉन्फ्रेंस कार्ड के माध्यम से पोर्ट 3 से ज्ड़ा होता है.

1.25 हार्डवेयर सेटअप प्रक्रिया: एक बार ठीक से प्रोग्रामिंग करने के बाद, NMT स्वचालित रूप से अलार्म और असामान्य स्थितियों के लिए हार्डवेयर और नेटवर्क लाइनों को स्कैन करता है और सब्सक्राइबर द्वारा परिभाषित उपयुक्त वैकल्पिक कार्यों के में भाग लेता है। व्ही.मक्स कार्ड पर और साथ ही बे पर एल.इ.डी इंडोकेसन लगावायर मक्स और सभी टाइम पर लाइन की स्थिति को प्रदर्शित करते हैं। NMT से

डायगोन्स्टिक रन करने से नेटवर्क स्थिति और यदि आवश्यक हो तो एक मक्स के कॉन्फ़िगरेशन प्रोग्रामिंग इस प्रकार कर सकते है।

पहले **लॉग इन** करे

फिर (F11) प्रेस करे

पासवर्ड दर्ज (यदि आवश्यक) करने के बाद मेनू स्क्रीन आता है.

कोइ संपर्क न होने पर कुछ समय के बाद सिस्टम स्वचालित रूप से लॉग आउट हो जाता है .

केबल एक ही युजर किसी एक टाइम पर प्रवेश कर सकते हैं .

लोकल युजर रिमोट युजर से अधिक उच्च प्राथमिकता में रहता है.

लोकल युजर एक साथ कंट्रोल एंड ए कुंजी दबाने से किसी भी टाइम NMT से प्रवेश कर सकते हैं

मेन मेनू: मेन मेन् इस प्रकार है-

- 1. स्टेटस 2. रूटिंग टेबल्स
- 3. हार्डवेयर डिस्प्ले 4. युजर ओप्शन
- 5. मेनटेंनैंस 6. लॉग ओफ़्

अपने ओपशन (1-6) चयन करे: युजर अपने ओपशन में प्रवेश करने के बाद अन्य मेनू को चयन कर सकते है.

हार्डवेयर सेटअप (युजर सिलेक्सन 3): एक युजर अपने स्क्रीन मे निम्नलिखित नेटवर्क इंटरफेस को प्रोग्राम कर सकता है.

पी.सी.एम ट्रंक 1 और 2: इस स्क्रीन में चयनित पी.सी.एम के लिए एनेबल/डीसेबल की अनुमति देता है.

V.F इंटरफेस (1-32) और डॉटा इंटरफेस (1-32): सब्सक्राइबर VF और डॉटा दोनों को 32 लोजिक्ल पोर्ट मे रख सकते हैं. यह विकल्प केबल सुपरवाइजरी मोड युजर द्वारा किया जा सकता है और डिफ़ॉल्ट कॉन्फ़िगरेशन करके पूरे हार्डवेयर को चालू कर सकते है।

कॉर्न्फ्रेंसिंग चैनल सेटअप: लोकल V.F पोर्ट और PCM-1 और PCM-2 पर एक टाइम स्लॉट कॉर्न्फ्रेंसिंग में डाल देता है। इसके अतिरिक्त यह कॉर्न्फ्रेंसिंग चैनल को एनेबल / डीसेबल की अन्मति देता है.

1.26 युजर ओपशन (युजर ओपशन 4): युजर ओपशन के तहत आइटम निम्नलिखित हैं:

पासवर्ड: पासवर्ड युजर अपने दो स्तर पासवर्ड देता है.

रूटिंग टेबल को सिक्रय करना : व्ही.मक्स किसी भी टाइम चार रूटिंग टेबेलओं मे से एक रूटिंग टेबेल को एनेबेल कर सकता है. यह रूटिंग टेबेल संख्या को परिभाषित करता है.

स्टेशन आइ.डी: प्रत्येक मक्स से रिमोट मक्स को एक्सेस करने के लिए एक स्टेशन आइ.डी का प्रावधान है.

सिस्टम पोर्ट सेट करना : यह स्क्रीन बॉड रेट के लिए, सब्सक्राइबर कार्यक्रम NMT के पोर्ट 1 और 2 को सेट करने कि अनुमित देता है.

दिन/टाइम सेट करना: इस स्क्रीन के माध्यम से दिन और तारीख का टाइम निर्दिष्ट किया जा सकता है.

सिंक स्रोत का चयन करना : इस स्क्रीन के माध्यम से नेटवर्क सिंक क्लॉकऔर उनकी प्राथमिकताओं को स्वचालित रूप से चयन किया जाता है.

मेजर/माइनर अलार्म को परिभाषित करने: यह स्क्रीन युजर को सिस्टम में हर संभव अलार्म को परिभाषित करता है. यह सब्सक्राइबर अलार्म के लिए थ्रेसहोल्ड को परिभाषित करता है.

1.27 **लॉग ओ**फ़् (युजर ओपशन 6): लॉग ऑफ आदेश के सुपरवाइजरी मोड से लॉग ऑफ करे और मक्स के साथ सत्र समाप्त करे.

1.28 इंस्टालेशन प्रक्रिया: सिस्टम में इंस्टालेशन प्रक्रिया निम्नलिखित है..

A. अनिवार्य कार्ड (पी.एस, GMAP, एस.एम.एक्स, ऑक्ज़ीलरी, और पी.सी.एम) संबंधित स्लॉट्स मे डाले और सिस्ट्म चालू करे, बाद मे GMAP कार्ड पर स्वास्थ्य एल.इ.डी की जाँच करें.

NMT को COM में कनेक्ट करें और स्क्रीन पर मेनू देखें.

स्परवाइजरी मोड में लॉग इन करे और सभी चार कार्ड के प्रदर्शन देखें.

- B. आवश्यक स्लॉट में यूजर इंटरफेस कार्ड (1-8) को स्क्रीन पर जांच करें.
- C. वैकल्पिक कोमन कार्ड (कॉन्फ्रेंसिंग आदि) को स्क्रीन पर जांच करें.
- D. पी.सी.एम ट्रंक को कॉन्फ़िगर करे. वांछित प्राथमिकता के अनुसार नेटवर्क क्लॉक को कॉन्फ़िगर करे. पी.सी.एम ट्रंक को कनेक्ट करे. पी.सी.एम I/F कार्ड पर एल.इ.डी जांच करे
- E. एक रूटिंग टेबेल को कॉन्फ़िगर करे.
- F. आवश्यकता के अनुसार सभी V.F और डॉटा इंटरफ़ेस को कॉन्फ़िगर करे.
- G. सभी अलार्म को कॉन्फ़िगर करे.
- H. प्रत्येक सब्सक्राइबर और नेटवर्क के बीच ट्राफ़िक प्रवाह को जाँच करे.
- मक्स के लिए वांछित स्टेशन आइ.डी सेट करे.
- J. ओमनी-बस कान्फ्रेंसिंग चैनल की इंस्टालेशन और कॉन्फ़िगर करे और, लोकल इ एंड एम V.F कान्फ्रेंसिंग पोर्ट को कॉन्फ़िगर करें
- K. स्वचालित बाइपास कार्रवाइ की जाँच करे.
- L. अंत में 2 स्तर के फ़ैकट्री में परिभाषित पासवर्ड हटाने के बाद स्तर 1 और स्तर 2 के लिए नया पासवर्ड दर्ज करें.
- M. सुपरवाइजरी मोड से लॉग ऑफ करें.

ऑब्जेक्टिव टाइप प्रश्न:

1.	व्हि	मक्स	एक	<u> </u>		_ प्रकार	के	मक्स है।			
2.	व्हि	मक्स	के		और			चैनलों के लिए	. आवश्यक	इंटरफेस	से लैस है।
3.	व्हि	मक्स	का	ਜ਼ ਗੱਟ 13 _			को	दिया गया है			
4.	व्हि	मक्स	के	ਜ਼ ਗੱਟ 12 _		;	को	दिया गया है			
5.	व्हि	मक्स	के	स्लॉट 9		;	को	दिया गया है			
6.	व्हि	मक्स	_			पाव	वर '	पर चलती है			
7.	व्हि	मक्स	मे	रूटिंग तालिव	नओ की र	प् रं ख्या _			_ 8		
8.	व्हि	मक्स	के	कॉन्फ्रेंस कार्ड	में कितन	ने चार प	ार्टी	कॉन्फ्रेंस		प्रदान	कर सकते हैं
9.	व्हि	मक्स	में			बेमेल ए	क प	प्रणाली अलार्म	उत्पन्न कर	ता है	
10.	व्हि	मक्स	के	फ्रेम सिंक ले	ॉस में से	एक			है।		
11.	व्हि	मक्स	के	दूरस्थ अलार्म	में एक			अल	ार्म है		
12.	ए.आ	इ.एस	प्रा	म व्हि मक्स	में एक						
13.	100	अला	f f	व्हे मक्स (टी	ं / एफ) में	में एक ग	ाहरी	अलार्म इतिहा	स में संग्रहि	त किया	जा सकता है
14.	NMS	S			- और प्रबं	धिन के	लिप	र उपलब्ध एक	संगत टर्मि	नल है	
15.	व्हि	मक्स	को	डिंग में		लॉ फले	ो हो	ता है.			

सबजेक्टीव :

- 1. व्हि मक्स के सिस्टम विन्यास और इसके महत्वपूर्ण विशेषताओं की व्याख्या करे ?
- 2. व्हि मक्स में अलार्म और ट्रंक अलार्म नीचे लिखें.?
- 3. सार्ट नोट लिखें :
 - क) पी.सी.एल व्हि मक्स में GMap कार्ड
 - ख) पी.सी.एल व्हि मक्स में पीसीएम कार्ड
 - ग) पी.सी.एल व्हि मक्स में एसएमएक्स कार्ड
 - घ) पी.सी.एल व्हि मक्स में औक्स कार्ड
- 4. पी.सी.एल व्हि मक्स में ग्राहकों की आवश्यक इंटरफेसिंग के लिए विभिन्न कार्ड और मॉड्यूल क्या हैं?
- 5. पी.सी.एल व्हि मक्स के आर्किटेक्चर में कांफारेन्स कार्ड का महत्व क्या है और इसे एक चैनल के विन्यास प्राप्त करने में कैसे मदद करता है व्याख्या करे ?
- 6. नोड मैनेज्मेंट या नेटवर्क मैनेज्मेंट सिस्टम के महत्व को लिखें ?

अध्याय 2

वेबिफल फ़्लेक्सी मल्टीप्लेक्सिंग इक्विपमेंट

2.1 परिचय:

वेबिफल फ्लेक्सी मक्स वॉइस और डॉटा ट्राफिक के लिए एक प्रोग्रामेबल एड/ड्रॉप मल्टीप्लेक्सिंग उपकरण है. यह "वेबिफल लिमिटेड" द्वारा निर्मित है. फ्लेक्सी मक्स टाइम डिवीजन मिल्टिप्लेक्स बस के साथ एक उच्च नान ब्लाक स्विच द्वारा लैस है. वॉइस कान्फ्रेंसिंग को डिजिटल स्वरूप में बदलने के लिए एक अलग डिजिटल सिगनल प्रोसेसिंग सर्किट का उपयोग किया गया है. सभी सिगनल इन्फरमेसन एक माइक्रो-कन्ट्रोलर द्वारा कन्ट्रोल किया जाता है.

पोर्टेबल लैपटॉप/कंप्यूटर के माध्यम से दूर से या एक सेंट्रल सुपरवाइजरी टर्मिनल के माध्यम से प्रोग्राम किया जा सकता है. यह नेटवर्क की मोनिटरिंग और कन्ट्रोल के लिए प्रयोग किया जाता है. ऑपरेशन में यह नेटवर्क संरचना के अनुरूप, लूप या स्टार में उपयोग किया जा सकता है. इसमें विभीन्न डायगोन्स्टीक स्विधाएं हैं, तथा नेटवर्क मेंटनेंस भी आसान है.

2.2 आर्किटेक्चर:

फ्लेक्सी मक्स 19 " सब रैक आधारित एक कॉम्पैक्ट युनिट है. सब रैक एक मॉड्यूलर उपकरण है जो एक मॉदर बोर्ड के साथ है. सामने पैनल पर एल.इ. डी सिगन्ल है, और यह अलग-अलग मॉड्यूल की स्थिति को प्रदर्शन करता है. इसमे 2 एम.बी.पी.एस स्ट्रीमओं 75 Ω इंटरफेस के लिए कोएक्सियल-कनेक्टर के माध्यम से या 120 Ω बैलेंस-कनेक्शन-पोस्ट के माध्यम से पीछे की ओर स्थित है.

सभी वइस, सिगनल और डॉटा चैनलों पीछे कनेक्टर्स से मिलते हैं. NMS नेटवर्क इंटरफेस मॉड्यूल से RJ 11 जैक के लिए या बैक प्लेन में 9 पिन डी-टाइप कनेक्टर के माध्यम से क्नेट होता है.

बेसिक सिस्टम इस प्रकार हैं

क) नेटवर्क इंटरफेस मॉड्यूल

ग) पाबर सप्लाइ मॉड्यूल

ख) ट्रीबुटारी मॉड्यूल

घ) सब रैक और बैक प्लेन

प्रत्येक एकसेस युनिट के इंटरफ़ेस 1- 4 चैनल होते हैं। प्रत्येक चैनल 2 एम.बी.पी.एस स्ट्रीम के साथ 30 टाइम स्लॉट में से एक टाइम स्लॉट (वॉइस और डॉटा 64 केबीपीएस तक) और आंशिक टाइम स्लॉट (19.2 केबीपीएस कम गति डॉटा) से जुडा होता है.

वॉइस चैनलों के लिए विभीन्न विकल्प इंटरफ़ेस सब्सक्राइबर की आवश्यकता के अनुरूप उपलब्ध हैं. इंटरफ़ेस युनिटों एक वॉइस एकसेस मॉइयूल पर उपलब्ध चार एडाप्टर सॉकेट में से किसी एक में प्लग किया जा सकता है, जिसमे एक छोटे एडाप्टर कार्ड होता है. प्लग इन मॉइयूल का फ्लेकिसिबिलिटि एक विशेष वॉइस एक्सेस मॉइयूल पर इंटरफ़ेस युनिटों से इंटर-मिश्रण की अनुमित देता है. वर्तमान में उपलब्ध विभीन्न इंटरफ़ेस विकल्प इस प्रकार हैं:

क) 4 W/2 W इ एंड एम

घ) हॉट लाइन इंटरफेस

ख) सब्सक्राइबर इंटरफ़ेस

ग) एक्सचेंज इंटरफ़ेस

चित्र.2.1 फ्लेक्सी - मक्स का ब्लॉक चित्र

सब-रैक: सब-रैक मॉड्यूल में कुल मिलाकर 13 स्लॉट है. इनमें स्लॉट-1 और स्लॉट-2 पी.एस.यू मॉड्यूल के लिए है और स्लॉट-तीन नेटवर्क इंटरफेस मॉड्यूल (एन.आइ.एम) और क्रमश: स्लॉट -4 में ट्रीब्यूटरी मॉड्यूल (टीएम) के लिए हैं। स्लॉट-5 से स्लॉट-13 दोनों वॉइस और डॉटा इंटरफेस के लिए होती है.

यह वॉइस/डॉटा के लिए एक टाइम स्लॉट के सब -मल्टीप्लेक्सिंग के दौरान बिट स्ट्रीम के कुशल उपयोग के लिए किया गया है. उप -रैक और टाइम स्लॉट आवंटन की संरचना नीचे फिगर 2.2 में दिखाया गया है.

SS N SS	PSU
SS N SS	MIM
SS N SS	ТМ
SS N SS	ESS MODUL TO TS-4
SS N SS	ESS MODUL TO TS-8
SS N SS	ESS TO
SS MODUL TO TS-21 SS MODUL TO TS-25 SS MODUL TO TS-29 SS MODUL TO TS-31 SS MODUL SS MODUL	
SS MODUL TO TS-25 SS MODUL TO TS-29 SS MODUL TO TS-31 SS MODUL	MODUL TS-21
SS MODUL TO TS-29 SS MODUL TO TS-31 SS MODUL	SS MODUL TO TS-25
SS MODUL TO TS-31 SS MODUL	MODUL TS-29
SS MODUL	MODUL TS-31
2	MODUL TS-31

चित्र : 2.2 फ्लेक्सी - मक्स का सब-रैक

2 एम.बी.पी.एस पोर्ट पीछे की तरफ उपलब्ध है.इसमे 75 Ω और 120 Ω कनेक्टर्स इम्पीडेन्स मैचिंग के लिए उपलब्ध है. स्पिनर कनेक्टर 75 Ω के लिए तथा 120 Ω मे तीन पिन 1 वर्ग mm सॉकेट के माध्यम से प्रदान की गइ है. एक अलग पोर्ट एक्स्ट्रन्ल क्लाक उपलब्ध है.

वॉइस और डॉटा का एक्सटेंशन यूरो कनेक्टर्स से कराइ गइ है जिसमे सामान्य रूप से 0.5mm या 0.6mm टेलीफोन केबल ही पर्याप्त है. पॉवर सप्लाइ के लिए फ्लेक्सी मक्स के लिए इनपुट मे 48V-DC प्रदान की गइ है. बैक प्लेन में नेटवर्क निगरानी सिस्ट्म NMS का V-24/RS232C लिंक इन्ट्रफ़ेसींग के लिए एक 9 पिन डी- कनेक्टर प्रदान की गइ है. एन.आइ.एम कार्ड के सामने स्थित RJ11 जैक में NMS लगाया जा सकता है.

2.3 मॉड्यूल के विवरण

नेटवर्क इंटरफेस मॉइयूल: नेटवर्क इंटरफेस मॉइयूल में मुख्य रूप से विभीन्न इंटरनल और एक्सट्रर्नल स्रोत से अलार्म अधिग्रहण का काम करता है और "सुपर नेट" नेटवर्क मैनेजमेंट सिस्ट्म के माध्यम से नेटवर्क मैनेजमेंट द्वारा क्वेरी और आदेशों का आदान प्रदान करता है. मॉइयूल अपने ऑपरेशन के लिए संचार और अलार्म इंटरफेस के साथ इंटेल 80C196 microcontroller पर चलता है. नेटवर्क इंटरफेस मॉइयूल के ब्लॉक चित्र 2.3 में प्रस्तुत किया गया है.

नेटवर्क इंटरफेस मॉड्यूल के नेटवर्क मैनेजमेंट ट्रीब्यूटरी मॉड्यूल और बैक प्लेन के माध्यम से जुड़े विभीन्न मॉड्यूल के बीच सूचना के आदान प्रदान के लिए प्रयोग किया जाता है. नेटवर्क मैनेजमेंट की आदान प्रदान के लिए चार संचार इंटरफेस है. नेटवर्क मैनेजमेंट सिस्ट्म मे दो सीरियल इंटरफेस, 2 एम.बी स्ट्रीम और राष्ट्रीय बिट्स प्रयोग किया जाता है.

नेटवर्क सुपरविज़न और उसकी पैरामीटर को अपलोड/डाउनलोड करने के लिए संचार संरचना नीचे एक मानक IEC65 फ़्रेम प्रारूप के माध्यम से दिखाया गया है.

Frame Header	Address	Equipment Identity	Command	Data	End of Frame	
-----------------	---------	--------------------	---------	------	-----------------	--

यह संरचना वेबिफल के सभी ट्रांसिमशन उपकरणों के लिए वेबिफल द्वारा निर्मित एक ही NMS उपयोग किया जा सकता है. इस लिंक के बॉड रेट 1200 बीपीएस है और डिजिटल ओमनीबस लिंक सेमि डुप्लेक्स मास्टर/स्लेभ मोड के रूप में उपयोग किया जा सकता है.

नेटवर्क मैनेजमेंट सिस्ट्म (NMS) से विभीन्न इन्फरमेसन/आदेशों डाउनलोड होता है जैसे

- क) चैनलों का क्रॉस कनेक्ट टेबल
- ख) इंटरफेस कॉन्फ़िगरेशन टेबल
- ग) स्टेटस रिस्पांस कमांड
- घ) डायग्नॉस्टिक कमांड
- इ) अलार्म इतिहास अपलोड कमांड
- च) ग्लोबल टाइम निर्धारित कमांड

चैनल क्रॉस कनेक्ट टेबेल एक मल्टीप्लेक्सर के कॉन्फ़िगरेशन को परिभाषित करता है.किस चैनल को हटा देना चाहिए या कौन सा चैनल बंद कर देना चाहिए इसकी निर्धारण होती है . नेटवर्क मैनेजर से टेबल डाउनलोड होने पर यह EEPROM में जाती है.

कुल मिलाकर छह क्रॉस कनेक्ट टेबल , नेटवर्क के विभीन्न स्थितियों की देखभाल करने के लिए हैं.

- a) सामान्य ऑपरेशन के लिए क्रॉस कनेक्ट टेबल
- b) अल्टरनेट क्रॉस कनेक्ट टेबल जब ए- ट्रीब्यूटरी में मेजर अलार्म है (फाल्टी ए)
- c) अल्टरनेट क्रॉस कनेक्ट टेबल बी ट्रीब्यूटरी में मेजर अलार्म है (फाल्टी बी)
- d) एक ए- ट्रीब्यूटरी में एक रिमोट रिमोट अलार्म है (रिमोट -ए)
- e) बी- ट्रीब्यूटरी मे रिमोट रिमोट अलार्म है (रिमोट बी।)
- f) डिजिटल बाइपास

क्रॉस कनेक्ट टेबल 2 एम.बी.पी.एस बस के विभीन्न अलार्म शर्तों के आधार पर एक से दूसरे में स्वचालित रूप से स्विच होता है .हालांकि डिजिटल बाइपास टेबेल सुपर नेट NMS सिस्ट्म के माध्यम से नेटवर्क सुपरवाइजर से रिमोट कंट्रोल होता है. टेबल सेमी ग्राफिक स्क्रीन संचालित एक मेनू के माध्यम से NMS सीरियल बस के माध्यम से 1200 बॉड में डाउनलोड होता है.

चित्र 2.3 : नेटवर्क इंटरफेस मॉड्यूल का ब्लॉक चित्र

इंटरफेस कॉन्फ़िगरेशन टेबल मुख्य रूप से एक विशेष चैनल की वॉइस या डॉटा एक्सेस मॉड्यूल के पैरामीटर को पिरभाषित करता है. वॉइस चैनल के लिए, यिद 2W/4W है या इ एंड एम या सब्सक्राइबर इंटरफ़ेस या एक्सचेंज इंटरफ़ेस आदि चैनल का गेन/लोस सेटिंग को पिरभाषित करता है. डॉटा चैनल के लिए यह बॉड दर और इंटरफ़ेस आदि के सीरियल डॉटा स्वरूप को पिरभाषित करता है.

अलग-अलग चैनलो के कॉन्फ़िगरेशन NMS कंप्यूटर मे एक मेनू चालित स्क्रीन पर किया जाता है.यह मेनू NMS सीरियल बस के माध्यम से EEPROM मे डाउनलोड किया जाता है. पाबर होने पर, नेटवर्क इंटरफेस मॉड्यूल के microcontroller साइट के अनुसार ड्रॉप/इनसर्ट कॉन्फ़िगरेशन का वांछित संरचना को डाउनलोड करता है. Microcontroller भी बैक प्लेन के सीरियल बस के माध्यम से मॉड्यूल के लिए एनालॉग और डिजिटल चैनल के मापदंडों को डाउनलोड करता है। इन सभी के बारे में इन्फरमेसन की डाउनलोडिंग चैनल क्रॉस कनेक्ट टेबल की जाँच और किसी भी फाल्ट या बेमेल के मामले में एक सेटअप फाल्ट को दिखाता है.

नेटवर्क के सामान्य ऑपरेशन के दौरान NMS को स्कैन मोड में रखा जाता है. इस मोड में NMS कंप्यूटर अपने अलार्म और स्थिति के लिए सभी नेटवर्क एलिमेंट को स्कैन करता है. नेटवर्क एलिमेंट इसका पता और प्रकार (ओपटी मक्स-8, फ्लेक्सी मक्स आदि) द्वारा पहचाने जाते हैं. स्कैनिंग, मास्टर/स्लेब सिंकोएन्सियल मोड में एक के बाद एक को स्कैन करता है. NMS नेटवर्क में सभी एलिमेंट को सुपर नेट सीरियल बस के माध्यम से जोड्ता है.

नेटवर्क इंटरफेस मॉड्यूल के microcontroller यह पैकेट नेटवर्क सुपरवाइजर से प्राप्त करता है और एक विशेष उपकरण के लिए सभी पैकेटो का विश्लेषण करता है. स्टेट्स रिस्पांस कमांड के जवाब में, यह उपकरण की वर्तमान स्टेट्स को अपलोड करता है. नेटवर्क इंटरफेस मॉड्यूल से NMS पर अपलोड विभीन्न अलार्म इस प्रकार हैं:

a) ट्रीब्यूटरी अलार्म: (दोनों ट्रीब्यूटरी के लिए)

- I. 2 एम.बी.पी.एस फेल/लॉस (RXF)
- II. AIS (ए.आइ.एस)
- III. सिंक लौस (सिंक)
- IV. रिमोट मल्टी फ़्रेम अलार्म (आर.एम.ए)
- V. बि.इ.र (BER)
- VI. रिमोट अलार्म (आर.ए)

b) सिस्टम संबंधित अलार्म:

- नेटवर्क इंटरफेस मॉड्यूल या ट्रीब्यूटरी मॉड्यूल के साथ समस्या
- II. कॉन्फ़िगरेशन / सेट-अप मे फाल्ट
- III. पी.एस.यू में अलार्म

c) सुपरवाइजरी इनपुट/आउटपुट कि स्थिति:

d) उपकरण कि तापमान और बैटरी वोल्टेज:

नेटवर्क इंटरफेस मॉड्यूल भी NMS से डाउनलोड कुछ डायग्नॉस्टिक कमांड्स और टेली कमांड्स का जवाब दें और लें सकता है. डायग्नॉस्टिक की विभीन्न कमांड इस प्रकार है:

A) डायग्नॉस्टिक कमांड्स :

- 1) ट्रीब्यूटरी A लोकल लूपबैक: 2 एम.बी.पी.एस ट्रीब-A से बाहर आने वाली स्ट्रीम के इनपुट में लूप होता है.
- 2) ट्रीब्यूटरी B लोकल लूपबैक: ट्रीब B मे लूप होता है.
- 3) ट्रीब्यूटरी A रिमोट लूपबैक: 2 एम.बी.पी.एस ट्रीब A की स्ट्रीम इनपुट में लूप होता है.
- 4) ट्रीब्यूटरी B रिमोट लूपबैक: ट्रीब-B की स्ट्रीम इनपुट में लूप होता है.
- 5) डिजिटल बाइपास: यह आदेश मुख्य रूप से लोकल मक्स को अलग करने के लिए है. जिसमें ट्रीब्यूटरी बी ट्रीब्यूटरी ए के चैनलों को सरल कनेक्शन एक संशोधित टेबल की स्विचिंग के रूप में उपयोग किया जा सकता है.

एक विशेष वॉइस चैनेल के लिए एक KHz के टोन इंजेक् किया जा सकता है. इस टोन का लेबेल आम तौर पर 0 dB है.

उपर्युक्त सभी डायग्नॉस्टिक कमांड्स NMS से एक ऑटो कमांड भेजकर वापस लिया जा सकता है. डायग्नॉस्टिक कमांड (1) से (5) के कमांड स्वचालित रूप से वापस लिया जाता है, जिसके बाद एक प्रोग्राम किया हुआ टाइम अविध के लिए लागू किया जा सकता है.

B) टेली कमांड्स :

NMS दूर से नेटवर्क इंटरफेस मॉड्यूल पर नियंत्रण रिले (2 nos) संचालित कर सकते हैं। पृथक आदेशों पर स्विच ओपेन/क्लोज हो सकता है.

कमांड प्राप्त होने के बाद नेटवर्क इंटरफेस मॉड्यूल कमांड को कार्यान्वित और कमांड निष्पादन की सफलता या फेलिऊर को अपलोड करता है. नेटवर्क मैनेजमेंट सिस्ट्म तदानुसार स्क्रीन पर कमांड निष्पादन की स्थिति को सिगन्ल देता है.

नेटवर्क इंटरफेस मॉड्यूल भी टाइम-स्टाम्प के साथ एक इंटरनल फीफो बफर में अलार्म स्थिति के इतिहास संग्रहीत करता है। अलार्म या सुपरवाइजरी इनपुट/आउटपुट स्थिति एक परिवर्तन टाइम द्वारा मार्क किए गए उपकरणों का पूरा स्नैपशॉट संग्रहीत करता है। इस घटना लॉगिंग का एक मिनट है. फीफो का डेस 32 स्नैपशॉट है, यदि फोटो 32 से अधिक है, तो पहले स्नैप-शॉट के लिए जगह बनाने के लिए वह बाहर पोप-ऊट होता है.

NMS युजर के आदेश पर कंप्यूटर की तारीख और टाइम डाउनलोड करता है. अलार्म इतिहास कमांड प्राप्त करने पर, नेटवर्क इंटरफेस मॉड्यूल अपने फीफो में दर्ज सभी घटनाओं को अपलोड करता है.

सुपरवाइजरी इनपुट में अलार्म अर्जन

नेटवर्क इंटरफेस मॉड्यूल मे सीरियल लिंक के माध्यम से ट्रीब्यूटरी मॉड्यूल से 2 एम.बी.पी.एस पोर्ट रुट होता है. ये नेटवर्क में अलार्म की इन्फरमेसन अनुरोध पर NMS को सूचना देती है जो G.821 के लिए प्रयोग किया जाता है. इसके अलावा नेटवर्क अलार्म आदि उपकरण के बैटरी वोल्टेज और तापमान पर नज़र रखता है, जो नेटवर्क के संचालन और मेंटनेंस के लिए बह्त महत्वपूर्ण है.

अलार्म और क्न्ट्रोल आउटपुट

यह ट्रीब्यूटरी A और B के 2MB स्ट्रीमओं के अलार्म स्थिति पर आधारित है, उपकरण के बाहर अलार्म को भेजने के लिए मेजर अलार्म और माइनर अलार्म रिले आउटपुट से किया जाता है। पृथक रिले ट्रीब्यूटरी-A और ट्रीब्यूटरी-B के लिए प्रदान की जाती है.

ट्रीब्यूटरी या सिस्टम के अलार्म की स्थिति का परिवर्तन होने पर ऑपरेटर का ध्यान आकर्षित करने के लिए एक ह्टर को सक्रिय करने के लिए उपयोग किया जा सकता है.

नेटवर्क इंटरफेस मॉड्यूल में अलार्म डिस्प्ले:

नेटवर्क इंटरफेस मॉड्यूल उपकरणों के अलार्म की स्थिति से सिगन्ल मिलता है और सामने के पैनल पर एल.इ.डी प्रदर्शित करता है. एम्बर माइनर अलार्म एल.इ.डी है, जबिक सभी मेजर अलार्म लाल एल इ डी हैं. सामने पैनल पर उपलब्ध विभीन्न एल.इ.डी इस प्रकार है.

2 एमबी स्ट्रीम के लिए एल.इ.डी अलार्म विवरण

- क) RXF= लाल (2 एम.बी लॉस)
- ख) ए.आइ.एस = लाल
- ग) सिंक लॉस (सिंक) = लाल
- घ) रिमोट मल्टी फ़्रेम अलार्म (आर.एम.ए)= एम्बर
- इ) BER= <10-3 लाल
- च) 10-3 <BER <10-6 ब्लिंकिंग- रेड
- छ) रिमोट अलार्म (आरए) = एंबर

2 एमबी स्ट्रीम के लिए एल.इ.डी अलार्म विवरण:

- क) सिस्टम ओ.के = ग्रीन
- ख)) नेटवर्क गतिविधि का सिगन्ल NMS = ग्रीन
- ग) कॉन्फ़िग एरर = ब्लिंकिंग लाल
- घ) बाइ-पास (BYP) = लाल

सिस्टम ओके एल.इ.डी निम्नलिखित में से किसी एक का अलार्म प्रदान करता है.

- क) मेमोरी खराबी (RAM, ROM , और EEPROM)
- ख) इंटर-प्रोसेसर संचार एरर.
- ग) पी.एस.यू अलार्म.
- घ) कॉन्फ़िगरेशन एरर.

सिस्टम ओके ग्रीन एल.इ.डी सिस्टम ठीक रहने पर जलता है, लेकिन यदि ट्रीब्यूटरी या सुपरवाइजरी I/O में कुछ स्थिति बदलने से इस घटना को रिकॉर्ड भी करता है. नेटवर्क इंटरफेस मॉड्यूल में किसी भी फेलिऊर होने से ट्रीब्यूटरी मॉड्यूल का कॉन्फ़िगरेशन टेबेल बरकरार रहता है और काम जारी रखता हैं. हालांकि, सहायक युनिट के कॉन्फ़िगरेशन टेबेल भ्रष्ट होने पर यह नेटवर्क इंटरफेस मॉड्यूल से टेबेल पुनः प्राप्त करने की कोशिश करता है यदि असफल साबित होता है तो बाइपास में चला जाता है.

नेटवर्किंग इंटरफेस मॉड्यूल का स्विच सेटिंग

स्बीच - S1

स्बीच पोजिशन	स्टेट्स	रिमार्क
1	OFF	NA
ı	ON	NA
2	OFF	NA
2	ON	NA
3	OFF	मास्टर
3	ON	स्लेभ
4	OFF	एक्सट्रन्ल NMS
4	ON	इंटरनल NMS

एक्सट्रन्ल NMS के लिए, अलग सुपरवाइजरी चैनल, नेटवर्क की निगरानी के लिए प्रदान किया जाता है. जबकी इंटरनल NMS के लिए, कोइ अलग सुपरवाइजरी चैनल की आवश्यकता निह है.

TS0, NFAS के स्पेयर बिट्स नेटवर्क की निगरानी के लिए उपयोग किया जाता है. इस मामले में, क्राफ़्ट टर्मिनल स्टेशन को मास्टर बाकी सभी स्टेशनों को स्लेभ के रूप मे उपयोग करता है.

ट्रीब्यूटरी मॉड्यूल:

ट्रीब्यूटरी मॉड्यूल 2 एम.बी.पी.एस स्ट्रीम के लिए इंटरफेसिंग तथा डिजिटल क्रास कनेक्ट से चैनल ऐड-ड्राप करता है. ट्रीब्यूटरी मॉड्यूल इस सिस्ट्म का दिल है. चित्र 2.4 मे ट्रीब्यूटरी मॉड्यूल के ब्लॉक आरेख दिखाया गया है.

ट्रीब्यूटरी मॉड्यूल का कार्य इस प्राकार है :

- रिसीव 2 एम.बी.पी.एस से नेटवर्क के मास्टर क्लॉक (MCLK) निकाल कर नोड MCLK को सिंक्रनाइज़ करता है.
- लोकल उपयोग के लिए इंटरनल 2 एम.बी बस और आने वाली 2 एम.बी.पी.एस स्ट्रीम के फेज को सिंक्रनाइज करता है.
- डॉटा सिगनल के साथ 64 के.बी.पी.एस डिजिटल डाटा का क्रास कनेक्ट करता है.
- डॉटा सिगनल के साथ कान्फ़ारेन्स चैनलों मे पी.सी.एम से योग करता है.
- चैनल युनिटों के लिए 2 एम.बी.पी.एस इंटरनल TDM बस उत्पन्न करता है.
- आइटीयू टी G.703 के साथ 2 एम.बी.पी.एस इनकोडिंग और HDB-3 इंटरफ़ेस संकेतों को उत्पन्न करता है.
- उपकरण के फ़ाल्ट का विश्लेषण करना और आवश्यक कार्रवाइ करता है.
- जिटर आइ.टी.यू (टी) (G.823) को अच्छी तरह से नियंत्रण , सीमा से नीचे रखता है.
- E1 के स्ट्रीम एवं मॉड्यूल में अलार्म के बारे में नेटवर्क इंटरफेस मॉड्यूल को रिपोर्ट देता है.
- नेटवर्क मोनिटरिंग और क्न्ट्रोल के लिए TSO में राष्ट्रीय बिट्स के उपयोग के माध्यम से एक चैनल बनाता है.

ट्रीब्यूटरी मॉड्यूल इंटरफेस के ब्लॉक डायग्राम को चित्र.2.4 मे देखें.

2 एम.बी.पी.एस लाइन इंटरफेस यूनिट:

ट्रीब्यूटरी मॉड्यूल G.732 फ़्रेम में दो डायरेक्शनओं मे 2 एम.बी.पी.एस ,पी.सी.एम चैनल HDB-3 कोडींग (G.703) और तीसरे डायरेक्शन मे पोर्ट (चित्र.2.4) से NRZ सिगनल स्वीकार करता है. HDB-3 फ़्रेम में प्रत्येक 2 एम.बी.पी.एस पहले इसी लॉजिकल स्तर में इसे HDB-3 मे कनवर्ट करता है तािक NRZ को लाइन इंटरफेस यूनिट से सामना न हो. एक डिजिटल फेज लाक लूप (पी.एल.एल) क्लॉक और डॉटा निकालने के लिए रिकोभर क्लॉक का उपयोग किया जाता है और आने वाले बिट स्ट्रीम के बीच फेज और फ़्रिकोएन्स अंतर को कम करता है। दो स्ट्रीमओं से निकाली गइ डॉटा उसके बाद फ्रेम और मल्टी फ़्रेम में सिंक्रनाइज़ करने तथा फ्रेम एलाइनमेंट किया जाता है.

डॉटा के प्रत्येक स्ट्रीम फ्रेम और मल्टी फ्रेम जिटर एटिनुएटर के माध्यम से गुजरता है. फिर आने वाली स्ट्रीम जो एक बफर में प्रवेश करती है वह आउटगोइंग स्ट्रीम मे मास्टर क्लाक के साथ सिंक्रनाइज़ेशन के लिए ट्रांस्मीट किया जाता है.

चित्र.2.4 ट्रीब्यूटरी इंटरफेस मॉड्यूल के ब्लॉक डायग्राम

इस लाइन युनिट पर आवश्यक कार्रवाइ के लिए मुख्य प्रोसेसर यूनिट में आने वाली स्ट्रीम की रिपोर्ट और फाल्ट पर नज़र रखता है.

दोनों इनकिमंग और आउटगोइंग स्ट्रीमओं आइसोलेसन ट्रांसफार्मर के माध्यम से अनबैलेंस 75 Ω या बैलेंस 120 Ω इंटरफ़ेस से लाइन से जोड़ा जाता है.

क्लाक सेक्शन:

इस सिस्ट्म में सब्सक्राइबर द्वारा चयनित, इंटरनल, एक्सट्रर्नल एवं डिराइभ तीन प्रकार के क्लाक स्रोतों से काम लिया जाता है. सिस्ट्म के नोरमल ओपारेशन में 2 एम.बी.पी.एस स्ट्रीम से क्लाक डिराइभ किया जाता है. इस सिस्ट्म में HDB-3 कोडर, क्रिस्टल या एक्सट्रर्नल क्लॉक स्रोत या इंटरनल क्लॉक स्रोतों का चयन कर सकतें हैं.

एक नेटवर्क में, 2 एम.बी स्ट्रीम का (मास्टर क्लॉक) स्रोत और अन्य 2 एम.बी से निकाली गइ ट्रीब्यूटरी क्लॉक के साथ चलाता है. मास्टर क्लॉक सिस्ट्म स्वचालित रूप से परिचालन नेटवर्क के इंटरनल या बाह्य (जम्पर के माध्यम से चयन) यानी वैकल्पिक क्लॉक स्रोत का चयन करती है.

डिजिटल क्रॉस-कनेक्ट और एड/ड्रॉप आपरेशन:

डिजिट्ल क्रास कनेक्ट यह सिस्ट्म के दिल है जहां चार टाइम-डिवीजन मिल्टिप्लेक्स के रुप मे 4 एम.बी.पी.एस के सीरियल बिट स्ट्रीम संभाल सकते हैं जो एक टाइम स्पेस इन्ट्रचेन्जर युनिट है. नेटवर्क से प्राप्त दो 2 एम.बी.पी.एस स्ट्रीमओं इन्ट्रचेन्जर के दो पोर्ट (ए एंड बी) में प्रबेश करता है.

तीसरा पोर्ट (सी) लोकल चैनल के लिए है और चौथे पोर्ट (डी) वॉइस कॉन्फ्रेंसिंग के लिए उपयोग किया जाता है .यह यूनिट सीरियल से पैरालैल कनवर्ज़न करता है और एक इंटरनल टाइम स्लॉट की मेमोरि में डॉटा स्टोर करता है.

आउटगोइंग डॉटा का पता माइक्रोप्रोसेसर के माध्यम से संग्रहीत किया जाता है, जहां एक कनेक्शन मेमोरि का उपयोग किया जाता है. यह मेमोरि ,टाइम स्लॉट से टाइम स्लॉट, मेमोरि इंटरचेंज करता है. आउटपुट सेक्सन, इनपुट सेक्सन का उलटा कार्य करता है और इसे सीरियल स्ट्रीम मे चेंज करता है. चारों पोर्टों के बीच टाइम स्लॉट इंटरचेंज की इन्फरमेसन "सुपर-नेट" नेटवर्क मैनेजमेंट सिस्ट्म से माध्यम से परिभाषित किया जाता है.

एक सेमी-ग्राफिकल इंटरैक्टिव स्क्रीन की मदद से, सब्सक्राइबर लोकल चैनल के साथ कॉन्फ्रेंसिंग के लिए चैनल को टाइम स्लॉट के साथ एइ और ड्रॉप किया जाता है.

सभी स्विचिंग और इंटरचेंज आपरेशन डिजिटल रूप से किया जाता है, और इसलिए वॉइस चैनलों कि गुणवत्ता मे कोइ लॉस नहीं होता है. सॉफ्टवेयर से सभी मैपिंग और संबंधित नोड्स के क्रास कनेक्ट संबंधित इन्फरमेसन को डाउनलोड करता है.

क्रास कनेक्ट कि इन्फरमेसन नेटवर्क इंटरफेस मॉड्यूल में EEPROM में स्टोर किया जाता है. ट्रीब्यूटरी मॉड्यूल मे क्रास कनेक्ट कि संबंधित इन्फरमेसन आवश्यक है. कुल मिलाकर छह ऐसे टेबल विभीन्न नेटवर्क की शर्तों के साथ विभीन्न क्रास कनेक्ट की आवश्यक इन्फरमेसन EEPROM में संग्रहित किया जाता है. यूनिट में स्वचालित रूप से आने वाली 2 एम.बी स्ट्रीम में किसी अलार्म स्थिति के आधार पर एक वैकल्पिक कॉन्फ्रिगरेशन में स्विच करता है.

विभीन्न स्थितियों के लिए विभीन्न चैनल- कॉन्फ़िगरेशन इस रूप हैं.

- 1) किसी भी अलार्म के बिना 'सामान्य स्थिति'
- 2) मास्टर पोर्ट में 'मेजर अलार्म'
- 3) स्लेभ पोर्ट में 'मेजर अलार्म'
- 4) रिसिभ मास्टर पोर्ट में रिमोट अलार्म
- 5) रिसिभ स्लेभ पोर्ट में रिमोट अलार्म
- 6) डिजिटल बाइपास.

ऊपर दिए गए विभीन्न चैनल क्रास कनेक्ट कॉन्फ़िगरेशन से वैकल्पिक मार्गों में चैनलों या लींक की सुरक्षा करने के लिए उपयोग किया जा सकता है.

लोकल-एक्सेस:

लोकल चैनलों ड्रॉप करने के लिए पोर्ट C में "टइम-स्पेस-इन्ट्रचेन्जर" में जोड़ा जाता है. लाइन इंटरफेस यूनिट से प्राप्त टाइम की इन्फरमेसन संबंधित टाइम-स्लॉट के लिए प्रयोग किया जाता है. MCLK और संबंधित 2 एमबी सीरियल डॉटा स्ट्रीम में सिंक्रनाइज़ेशन के लिए चैनल इंटरफ़ेस मे विशिष्ट टाइम स्लॉट है.

वॉयस चैनल मॉड्यूल एक कोडेक का उपयोग करके टाइम स्लॉट के सभी 8 बिटों को खपत/युस करते है। किसी भी वॉइस चैनल का गेन NMS के माध्यम से (0.5 DB के चरणों में) एडज्सट किया जा सकता है. डाटा मॉड्यूल को एक टाइम स्लॉट तथा 64 KB बैंडविड्थ की जरूरत है और कम स्पीड डाटा मॉड्यूल एक टाइम स्लॉट के चयनित बिट्स को V.11 प्रारूप के अनुसार सब मल्टीप्लेक्स करते है .हाइ स्पीड डॉटा मॉड्यूल (48/58/64 केबीपीएस) के लिए पूरा टाइम स्लॉट खपत होता है.

वॉयस और डिजिटल कान्फ्रेंसिंग

वॉयस कान्फ्रेंसिंग A-law - के अनुसार इनकोडिंग की जाती है. यह A-law प्रारूप में G.711 के अनुरूप एक अलग कॉन्फ्रेंसिंग युनिट द्वारा डिजिटल स्वरूप में वास्तविक टाइम में किया जाता है.

टइम-स्पेस इन्ट्रचेन्जर के चौथे पोर्ट एक्सट्रनिल कॉन्फ्रेंसिंग युनिट के लिए अलग-अलग डॉटा चैनल प्रस्तुत करता है। ये डॉटा चैनल को फिर टइम-स्पेस स्विच के माध्यम से आवश्यक रुट के लिए वापस उसी पोर्ट के माध्यम से प्राप्त होता है, जिनमें से (एक गेट वी.एल.एस.आइ और एक EPROM) डिजिटल कॉन्फ्रेंसिंग प्रोसेसर रहता है. यह संबंधित टाइम स्लॉट की डॉटा बस लॉजिकल AND-ing द्वारा हासिल की जाती है. डिजिटल कॉन्फ्रेंसिंग की आवश्यकता कम है, इसलिए इस सुविधा वैकल्पिक रूप से टाइम स्लॉट-31 पर ही प्रदान की जाती है.

क्रॉस-कनेक्शन मे सिग्नलिंग संबंधित इन्फरमेसन

संबंधित सिग्नलिंग की इन्फरमेसन एक 2 एमबी स्ट्रीम के टाइम स्लॉट 16 के माध्यम से भेजा जाता है. "टाइम-स्पेस-इन्ट्रचेन्जर" युनिट में एक टाइम स्लॉट का पूरा 8 बिट है . सिग्नलिंग इन्फरमेसन भी "टाइम -स्लॉट-इन्ट्रचेन्जर" के समानांतर में इन्फरमेसन एक TS16 प्रोसेसर में अलग से निकाला जाता है। प्रोसेस किया हुआ सिग्नलिंग इन्फरमेसन वांछित प्रारूप में इंटरफेस युनिट और लोकल चैनल मॉड्यूल के लिए प्रस्तुत किया जाता है.

कॉन्फ्रेंस चैनलों की सिग्नलिंग इन्फरमेसन इसी सिगन्ल डॉटा की लॉजिकल AND-ing द्वारा हासिल की जाती है.

सर्विस डाटा चैनल :

"सुपर-नेट" सिस्ट्म के माध्यम से नेटवर्क प्रबंधक को इंटरफ़ेस के लिए दो तरीके प्रदान करता है.

आपरेशन के एक्सट्रर्नल मोड में, सिस्ट्म का ऑपरेटिंग 1200 बॉड में एक RS232C पोर्ट प्रदान करता है। "सुपर-नेट" तो उपकरण के ऊपरी बिट स्ट्रीम को समर्थित करता है और यह दोनों प्रसारण उपकरण ओप्टीमक्स-8 और फ्लेक्सी मक्स के लिए एक एकीकृत पहुँच प्रदान करता है।

आपरेशन के इंटरनल मोड में, सिस्टम चैनल सर्विस करने के लिए गैर-फ़्रेमयुक्त टाइम स्लॉट TSO की अप्रयुक्त नेशनल बिट्स को उपयोग करता है। दो नेशनल बिट्स 8 K baud रेट समर्थन करता है. यह एक पोल डॉटा नेटवर्क के रूप में डॉटा का लॉजिक AND ing के साथ एक तीन पोर्ट के डॉटा पुल है. नेशनल प्रबंधक तो नेटवर्क इंटरफेस मॉड्यूल के माध्यम से RS 232C पोर्ट से पोलड- इंटरनेट- नेटवर्क को इंटरफ़ेस करता है.

ट्रीब्यूटरी कार्ड के स्विच सेटिंग:

स्विच - एस 1

स्विच पोजिसन	स्टेट्स	रिमार्क
1	OFF	नार्माल मोड़
	ON	CRC4 मोइ
2	OFF	नार्माल एंड ट्रमिनल
	ON	एंड ट्रमिनल प्रोटेक्शन के साथ
3	OFF	ट्रीब-A मास्टर में सेट किया
	ON	ट्रीब-B मास्टर में सेट किया
4	OFF	ट्रान्समिट रिमोट आलर्म दुसरे एंड में
	ON	रिमोट आलर्म को ट्रान्समिट न करे
5	OFF	ट्रमिनल D/I मोड सेट किया
	ON	ट्रमिनल सेट किया End Terminal मोड
6	OFF	ट्रमिनल extracted क्लाक में ओपारेट करे
	ON	ट्रमिनल internal क्लाक में ओपारेट करे
7	OFF	2 Mb/s पोर्ट सेट किया 75 Ω इमपीडेन्स
	ON	2 Mb/s पोर्ट सेट किया 120 Ω इमपीडेन्स
8	OFF	रिमोट टेबल स्बिचिंग डिसेबेल
	ON	रिमोट टेबल स्बिचिंग एनेबेल

जम्पर सेटिंग्स:

मोड	जम्पर	पिन
120 Ω ओपारेशन	E1, E2, E3, E4, E5, E10, E11, E12, E13, E14,E15	1, 2
75 Ω ओपारेशन	E1, E2, E3, E4, E5, E10,E11, E12, E13, E14,	2, 3
	E15	
Normal ET/DT मोड	E33	1, 2
Protected ET मोड	E33	2, 3

वॉयस एक्सेस मॉड्यूल

फ्लेक्सी मक्स का उद्देश्य वॉयस और डॉटा के उपयोग करने के लिए टाइम-डिभिजन-मिल्टिप्लेक्सींग 2 एम.बी डॉटा स्ट्रीम को चुनिंदा टाइम स्लॉट मे एड/ड्रॉप करने के लिए किया जाता है. प्रत्येक एक्सेस मॉड्यूल मे चार चैनल होते हैं. सब्सक्राइबर मॉड्यूल में कनेक्शन देने के लिए सब रैक में स्लॉट है .चैनल क्रास - कनेक्ट सुविधा का उपयोग लचीला है, 2 एमबी स्ट्रीम के किसी भी टाइम स्लॉट परस्पर संपर्क के लिए लोकल चैनल को मैप कर सकता है.

विभीन्न प्रकार के वॉयस इंटरफेस है. निम्न इंटरफेस वॉयस मॉड्यूल के हैं.

- क) 2W/4W इ एंड एम इंटरफ़ेस
- ख) सब्सक्राइबर इंटरफ़ेस
- ग) एक्सचेंज इंटरफ़ेस
- घ) हॉट लाइन इंटरफेस

उपयोगों को फ्लेकिसिबिलिटि बढ़ाने के लिए, विभीन्न वॉयस मॉड्यूल मे चार एडाप्टर इंटरफेस हैं, जो छोटे प्लग इन मॉड्यूल हैं. वॉयस मॉड्यूल 4W मे 3 बिट आइटीयू-टी प्रारूप के अनुसार सिगन्ल के साथ वॉइस प्रदान करता है. यह लचीला सुविधा किसी भी टाइम स्लॉट में चैनल का अधिकतम उपयोग करता है.

आपरेशन के सिद्धांत: वॉयस मॉड्यूल के आपरेशन तीन वर्गों में विभाजित किया जा सकता है.

- 1) वॉयस इंटरफेस
- 2) सिग्नलिंग इंटरफ़ेस और 3) प्रोग्रामिंग इंटरफ़ेस

वॉयस इंटरफेस के लिए 'आइटीयू-टी के A Law' प्रारूप में एक कोडेक के माध्यम से 2 एमबी डिजिटल स्ट्रीमओं को इंटरफेस करता है. इसमे दो भाग है, ट्रांसमीट और रीसिभ. ट्रांसमीट अनुभाग में, सब्सक्राइबर की वॉइस एनालॉग इंटरफेस से डिजिटल रूपांतरण कोडेक के माध्यम से होता है, जो एक बफर के माध्यम से प्राप्त होता है. डिजीटल 2 एमबी बैक प्लेन के बस में निर्दिष्ट टाइम स्लॉट मे डाला जाता है.

रीसिभ मे, कोडेक 2 एमबी बैक प्लेन के बस से नामित टाइम स्लॉट से इनकोडिंग डॉटा को निकालता है. डिजिटल डाटा फिर एनालॉग सिगन्ल प्राप्त करने के लिए डिजिटल से एनालॉग रूपांतरण करता है. यह तो बफर और सब्सक्राइबर के अपेक्षित पहुँच प्रारूप को पूरा करने के लिए इंटरफ़ेस हार्डवेयर के माध्यम से होता है.

सिग्निलंग इन्फरमेसन डिजिटल पोर्ट के माध्यम से नियंत्रित किया जाता है. आने वाली सिग्निलंग इन्फरमेसन, हार्डवेयर इंटरफ़ेस से फिर TS-16 प्रोसेसर द्वारा ट्रीब्यूटरी मॉड्यूल में पढ़ा जाता है जो टी.टी.एल के स्तर तक सिग्निलंग इन्फरमेसन को चेंज करता है . दूसरी ओर 2 एमबी स्ट्रीम से TS16 प्रोसेसर द्वारा प्राप्त सिग्नल इन्फरमेसन टी.टी.एल स्तर पर एक पोर्ट से लैच हो जाता है टी.टी.एल स्तर का सिग्नल को रूपांतरण के लिए इंटरफ़ेस हार्डवेयर मे भेजा जाता है.

ट्रीब्यूटरी मॉड्यूल सभी आवश्यक पाल्स, टाइम स्लॉट और डॉटा की क्लाक प्रदान करता है, बैक प्लेन के माध्यम से . मॉड्यूल का ऑपरेशन के लिए इन सभी पाल्स को सिंक्रनाइज़ करना है. वॉयस सिग्नलिंग के लेबेल कोडेक कुछ मानदंडों के आधार पर सेट करता है। इन मानकों नेटवर्क इंटरफेस मॉड्यूल द्वारा एक बैक प्लेन सीरियल बस के माध्यम से कोडेक के लिए डाउनलोड किया जाता है. जिसकी कुल सीमा 0.1 DB के चरणों में 20 DB है.

2W/4W "इ एंड एम" इंटरफ़ेस:

4W वॉयस इंटरफ़ेस सर्किट के लिए, ट्रांसमीट और रीसिभ दोनों बैलेन्स लाइन पेयर निकाला जाता है. एक अलग लाइन ट्रांसफार्मर 600 Ω इम्पीडेन्स मैचिंग के उद्देश्य के लिए उपयोग किया जाता है.

सिग्निलंग अलग-अलग E और M लीड द्वारा प्रदान की जाती है. एम लीड में एक ऑप्टो आइसोलेटर है, जो आने वाली सिगनल को सेन्स करता है. सब्सक्राइबर के उपकरण सामान्य रूप से अर्त या -48 V के साथ ऑप्टो इसोलेटर द्वारा सेन्स किया जाता है. इ-लीड आउटगोइंग सिग्निलंग प्रदान करता है और यह एक सोलिड स्टेट स्विच के रूप में काम कर रहा एक ट्रांजिस्टर के माध्यम से 'अर्त' या 'नो- अर्त' भेजती है.

वॉयस के लिए 2W इंटरफेस में ट्रांस और रीसिभ दोनों हाइब्रीड-मोड आउटगोइंग ट्रांसफार्मर से एक्सेस किया जाता है.

जम्पर सेटिंग्स:

मोड	जम्पर	पिन
4W	E1, E2, E3, E4	2, 3
2W	E1, E2, E3, E4	1, 2

पोटेन्सिओमीटर सेटिंग्स :

मोड	पोट.	भेल्यु
4W	R22	9.0 KΩ
2W	R22	4.5 KΩ

सब्सक्राइबर इंटरफ़ेस :

यह इंटरफ़ेस आम तौर पर पुराने सादे टेलीफोन सेट (POTS) के लिए प्रयोग किया जाता है. इस इंटरफेस में सिग्नलिंग और वॉयस दोनों को बायर पेयर पर भेज दिया जाता है. टेलीफोन सेट के संचालन के लिए प्राथमिक पाबर यूनिट -48V स्रोत से प्रदान किया जाता है. आन हुक और डायल पाल्स में लूप भेजा जाता है .इंटरफ़ेस मे आने वाली कॉल के लिए बज़्र उत्पन्न करता है.

नीचे वर्णित एक्सचेंज इंटरफेस के साथ-साथ सब्सक्राइबर इंटरफ़ेस फ्लेक्सी मक्स के माध्यम से रिमोट साइटों के लिए एक लोकल एक्सचेंज के ग्राहकों को रीमोट टेली के लिए उपयोग किया जा सकता है. हॉटलाइन के रूप में या इसमे ठीक विपरीत जम्पर सेटिंग्स करते है .

मोड	जम्पर	पिन
Halladal	E1, E2, E3, E5	
सब्सक्राइबर	E4	3, 4
होट लाइन	E1, E2, E3, E4, E5	1, 2

लंबे टाइम से रिंग के लिए, E6 मे 1, 2 के रूप में जम्पर सेटिंग्स किया जाता है.

एक्सचेंज इंटरफ़ेस :

इस इंटरफ़ेस एक सब्सक्राइबर लाइन से एक्सचेंज की ओर इंटरफ़ेस के लिए प्रयोग किया जाता है. यह सब्सक्राइबर के ओन हुक स्थिति पर निर्भर करता है. एक्सचेंज इंटरफ़ेस एक्सचेंज के लिए लूप प्रदान करती है. यह मूल रूप से एक्सचेंज के लिए टेलीफोन सेट की वॉइस और सिग्नलिंग को रीप्रोडुश करता है. यह रीप्रोडक्शन सब्सक्राइबर इंटरफ़ेस करने के लिए भेजा जाता है जो रिंग और लूप को सेन्स करता है.

हॉटलाइन इंटरफ़ेस:

यह मूल रूप से सब्सक्राइबर इंटरफ़ेस है. एक छोर पर आफ़ हुक स्थिति पर निर्भर करता है, रिंग दूसरे छोर पर होती है. हैंडसेट उठाने पर घंटी स्वत होती है. बातचीत के खत्म होने पर, दोनों सब्सक्राइबर फिर से रिंग करने के लिए सक्षम हो सकता है.

सब्सक्राइबर इंटरफेस पर दो स्ट्रप है, एक ही मॉड्यूल को हॉटलाइन इंटरफेस या सब्सक्राइबर इंटरफेस मे परिवर्तित किया जा सकता है.

सब्सक्राइबर इंटरफेस को हॉटलाइन इंटरफेस के रूप काम करने के लिए निम्नलिखित सेटिंग्स किया जाता है.

मोड	जम्पर	पिन
सब्सक्राइबर	E1, E2, E3, E5	2, 3
γιστιμησας	E4	3, 4
होट लाइन	E1, E2, E3, E4, E5	1, 2

पावर सप्लाइ मॉड्यूल

पावर सप्लाइ मॉड्यूल या यूनिट 48V से चलता है. इनपुट मे पावर की लाइन के साथ आने वाले उच्च वोल्टेज स्पाइक और पावर के हमले से रक्षा करने के लिए एक सरज रक्षक और फिल्टर अनुभाग के माध्यम से क्नेक्ट है. पहले चरण के उच्च ऊर्जा प्ल्स अवशोषित होता हैं, जो एक 'गैस अरेस्टर' है. LC फिल्टर द्वारा स्वीकार्य सीमा के व्हि.तर स्पाइक के नीचे लाने के लिए एक क्षणिक रक्षक है। प्राथमिर सप्लाइ AC नोइस को बायपास करने के लिए वोल्टेज केपासिटर के माध्यम से अर्त से जुड़ा है और डीसी आइसोलेशन को स्निश्चित करता है.

प्रत्येक पीएसयू तीन अलग मॉड्यूल एक ± 5V के लिए, और दूसरा ± 10V के लिए, + 80V के लिए है. यह परस्पर एक दूसरे के साथ अलग आइसोलेटेड है. +5 V सिस्ट्म के सभी डिजिटल उपकरणों को संचालित करने के लिए प्रयोग किया जाता है. ± 10V अलग-अलग कार्ड में विनियमित पोस्ट रेगुलेटेड और ± 5V एनालॉग डिवाइसेज ड्राइव करने के लिए प्रयोग किया जाता है .कार्ड में दोनों इनपुट और आउटपुट के लिए कम वोल्टेज और ओभर अधिक वोल्टेज अलार्म है.

एल.इ.डी डिस्प्ले पोजिशन:

पी.एस.यू - ओ.के: यह एक हरे रंग की एल.इ.डी है. जब यह चमकता है तब पॉवर सप्लाइ ठीक से कार्य कर रहा है

पी.एस.यू -इरर: यह एक पीले रंग की एल.इ.डी है यह चमकता है जब वोल्टेज का उत्पादन कम होता है.

शट DN: यह एक लाल रंग की एल.इ.डी है. पॉवर सप्लाइ वोल्टेज से अधिक वोल्टेज होने पर शट डाउन में चला जाता है.

SW1 यह पावर स्विच है.

निम्नान्सार पॉवर सप्लाइ रेट किया गया है:

+5V	2.5 Amp
±10V	0.75 Amp
+80V	0.05 Amp

एक विशिष्ट कॉन्फ़िगरेशन के लिए 20 इ एंड एम, 4 एक्सचेंज, 4 सब्स / हॉटलाइन और 2 G.703 डॉटा के साथ विशिष्ट पावर की खपत 48 वाट है।

आउटप्ट वोल्टेज के एडज्स्ट्मेन्ट निम्नलिखित पोटेन्सिओमीटर के माध्यम से किया जा सकता है।

वोल्टेज	पोट	रेंज
5V	R20	4.75V - 5.6V
±10V	R41	9.20V - 11.8V
80V	R67	70V - 100V

64 के.बी.पी.एस डॉटा इंटरफेस (G.703)

64 केबीपीएस डाटा कार्ड आइटीयू-टी G703 आवश्यकता के अनुरूप है ,जिसमे दो 64 केबीपीएस को डायरेक्शनल डॉटा चैनल है. हर चैनल मे लाइन इंटरफेस चिप (XR-T6164) के होते हैं. यह दोनों ट्रांसमीट और रीसिभ दोनों के लिए है और, XR-T6165, एक आइटीयू टी G.703 संगत 64 केबीपीएस डॉटा युनिट के रूप मे इंटरफेस करता है .

विस्तृत ऑपरेशन:

ट्रांसमीट साइड : लाइन की ओर इंटरफेस और डिजिटल पी.सी.एम इंटरफेस DTE से आने वाले डॉटा सिगन्ल को अलग- अलग करने के लिए एक 1: 1 आइसोलेशन ट्रांसफॉर्मर है | XR-T6164 मीडिया द्वारा एट्न्एट और विकृत जो बइपोलार इनपुट संकेतों,को बैलेंस कर लेता है.

प्राप्त संकेतों कि पीक इनपुट स्तर प्राप्त करने के लिए एक स्लाइसिंग थ्रेशोल्ड , एक पीक डिटेक्टर और थ्रेशोल्ड जनरेटर सर्किट से लगा होता है.

डुयेल मोड comparator XR-T6164 इनपुट संकेतों को स्लाइस और उत्पादन बफ़र्स से गुजरती हैं। एक अलार्म comparator, आउटपुट जिटर को रोकने के लिए हिस्टैरिसीस के साथ, इनपुट सिगन्ल के स्तर पर नज़र रखता है.

ये टी.टी.एल संगत आउटपुट संकेतों फिर XR-T6165 के लिए को डायरेक्शनल डॉटा प्रोसेसर को भेजा जाता है. XR-T6165 एक 2048 केबीपीएस पी.सी.एम स्लोट में सम्मिलन के लिए आवश्यक फार्म में डॉटा को 64 केबीपीएस में भेजता है. एक 128 KHz की क्लाक प्राप्त डॉटा से ली जाती है और इनपुट सिगन्ल के डिकोडिंग करने के लिए प्रयोग किया जाता है. रीसिभ डॉटा के साथ लॉक खो गया है, तो तलाश की मोड में प्रवेश करती है सर्किट के इंटरनल क्लाक से लॉक हासिल करने के लिए कोशिश करती है.

इनपुट सिगन्ल में बिट 1 की पहचान करने के लिए बाइपोलार भाओलेस्न ओकटेट टाइम के लिए तथा सिक आपरेशन को सिंक्रनाइज़ करने के लिए उपयोग किया जाता है. उदाहरण के लिए भाओलेस्न के अभाव में, सिक पिछले मे प्राप्त हुआ भाओलेस्न के सम्मान के साथ सिंक्रनाइज़ेशन में संचालित करने के लिए जारी रहता है साथ में एक अलार्म को प्रेषित करते हैं। इस शर्त के तहत प्राप्त सिगन्ल PCM-OUT (पी.सी.एम आउटपुट डाॅटा प्राप्त) मे AIS का सिगन्ल के साथ मिलता है

इस फ़ंक्शन BLS हो सकता है और खाली इनपुट का उपयोग यदि जरूरी हुआ तो आउटपुट आल ओन (all ones) सेट किया जाता है. आठ लगावायर भाओलेस्न के बाद बे अलार्म पर चला जाता है. (ट्रांसमीट) और लोकल दर के बीच के अंतर को समायोजित करने के लिए, स्लीप क्न्ट्रोल लाजिक रिसीवर डिजाइन में शामिल किया गया है .ऑक्टेट टाइम इन आपरेशनों के दौरान बनाए रखा जाता है। पी.सी.एम आउट के डॉटा पूरी तरह से स्लोट मे तैयार और Glitch मुक्त है.

रीसीभ साइड: रीसीभ डायरेक्शन मे प्राप्त 64 केबीपीएस डाटा को XR-T6165 आठ बिट 2048 केबीपीएस पी.सी.एम स्लोट डॉटा पैकेट में निरंतर परिवर्तन कर देता है. पी.सी.एम डॉटा 2048 KHz के लोकल क्लाक का उपयोग कर ट्रांसमीटर में पढ़ा जाता है. चार अविध (0011) "एक" (0101) "शून्य" कोड और क्रम में एक बिट करने के लिए समर्पित कीया जाता हैं। डाटा एक स्टोरेज बफर मे भरी जाती है और एक्सर्ट्रनल 256 KHz के सिगन्ल द्वारा नियंत्रित किया जाता है. ऑक्टेट टाइम इन आपरेशनों के दौरान बनाए रखता है. कोडित डॉटा वैकल्पिक रूप से AMI कोडिंग जारी करने के लिए दो पिन के द्वारा आउटपुट लिआ जाता है.

लो-स्पीड डिजिटल डॉटा मॉड्यूल :

मक्स के लो स्पीड डॉटा मॉड्यूल मुख्यत एसिंक्रोनस कम गित RS232C डॉटा सिर्किट देने के लिए है. मॉड्यूल बिट ट्रन्सप्रेन्ट मोड में काम करता है और भले ही डॉटा के एक पाइप के रूप में कार्य करता है। यह आने वाली और बाहर जाने वाले डॉटा मॉड्यूल (कॉन्ट्रा डायरेक्शनल डॉटा) द्वारा प्रदान की क्लॉक सिगन्ल को सिंक्रनाइज़ करना होता है, ताकी सिंक्रोनस मोड में काम कर सके.

2 एमबी फ्रेम के प्रत्येक टाइम स्लॉट 64 केबीपीएस की एक बिट दर प्रदान करता है. कम स्पीड डाटा चैनलों बहुत अच्छी तरह से इस उच्च बिट दर चैनल में समायोजित किया जा सकता है. हालांकि, बैंडविड्थ के बेहतर उपयोग के लिए एक V.11 सब मल्टीप्लेक्सिंग प्रारूप ही टाइम स्लॉट पर एकाधिक कम गित डॉटा का समर्थन करने के लिए प्रयोग किया जाता है.

इस मॉड्यूल 600 बॉड से लेकर बॉड दर 19.2 के बॉड का समर्थन करता है। आवश्यक एक टाइम स्लॉट के टुकड़े की संख्या नीचे दी गइ है:

 4800 बॉड के लिए ऊपर : 1 बिट

 9600 बॉड : 2 बिट

 19.2 के बॉड : 4 बिट

डॉटा संचार के लिए कुशलतापूर्वक नेटवर्क बैंडविड्थ का फायदा उठाने करने के लिए, टाइम स्लॉट TS 3O और TS 31 कार्ड स्लॉट्स 8 और 9 सब रैक मे है. यदि जरूरी हुआ तो, यह वॉइस संचार के लिए इन स्लॉट्स के उपयोग कर सकते है।

प्रत्येक डॉटा एक्सेस मॉड्यूल चार चैनलों का समर्थन करता है. चैनलों के संचालन के दोनों सिंक्रोनस या एसिंक्रोनस मोड के रूप कॉन्फ़िगर किया जा सकता है. हर चैनल के लिये V.24 प्रोटोकॉल के लिए आवश्यक सभी handshaking लाइनों का समर्थन करता है। Handshaking संकेतों बस नेटवर्क के माध्यम से बढ़ाया जाता है जो नेटवर्क के दो नोड्स पर जुड़ा DTE और DCE की स्थिति की इन्फरमेसन देते है.

अलार्म प्रदर्शन:

आठ एल.इ.डी (DS8 को DS1) अलार्म स्थिति का सिगन्ल इस प्रकार है :

<u>वर्णन</u>	<u>एल.इ.डी का नाम</u>	<u>कलर</u>
कॉन्फ़िगरेशन ठीक है	CNF ओके	ग्रीन
RX- के डॉटा प्राप्त	DCE डी	ग्रीन
TX के ट्रांस डाटा	DCE डी	ग्रीन
डॉटा चैनल कॉन्फ़िगरेशन में फ़ाल्ट	DCH फ़ाल्ट	<u></u> ભાભ

एल.इ.डी डिस्प्ले की स्थिति:

<u>एल.इ.डी स्टेटस</u>	<u>CNF के ओके</u>	DCH एरर
कॉन्फ़िगरेशन ओके चैनल को डीसएबेल	आफ़	आफ़
कॉन्फ़िगरेशन ओके चैनल एनेबेल है और ब्लिंक ठीक है	आन	आफ़
कॉन्फ़िगरेशन ओके चैनल एनेबेल है लेकिन लिंक विफल है	आन	ब्लींक
कॉन्फ़िगरेशन में फ़ाल्ट	आफ़	आन

NX64 डॉटा इंटरफेस

Nx64 डॉटा इंटरफेस कार्ड फ्लेक्सी मक्स के माध्यम से वैन WAN आधारित डाटा नेटवर्क या वीडियो कॉन्फ्रेंस सर्किट देने के लिए है. यह DCE से slave क्लॉक के साथ V.35 या V.36 इंटरफेस के साथ सिंक्रोनस मोड में काम करता है. मॉड्यूल के कॉन्फ़िगरेशन दो चैनलों का समर्थन करता है 1920 केबीपीएस (एन = 30) और 64 केबीपीएस (एन=1). लूपबैक आदेशों स्विच SW1 और SW2 के माध्यम से व्ही.सामने पैनल से दिया जा सकता है. एल.इ.डी सिगन्ल TXD, RXD और लोकल/रिमोट लुप बैक की स्थिति डिस्प्ले करता है.

एल.इ.डी सिगन्ल

चैनेल	Description	LED का नाम	रंग
	ट्रान्समिट डाटा	TxD	Green
1	रिसीव डाटा	RxD	Green
'	लोकल लुप बैक	LL	Amber
	रिमोट लुप बैक	RL	Amber
2	ट्रान्समिट डाटा	TxD	Green
	रिसीव डाटा	RxD	Green
	लोकल लुप बैक	LL	Amber
	रिमोट लुप बैक	RL	Amber

E1 ब्रांचीग मॉड्यूल

इस मॉड्यूल से एक तीसरी ट्रीब्यूटरी बनाने के लिए है क्रस क्नेक्ट पोर्ट-C को पोर्ट-A या पोर्ट-B से आवश्यक टाइम स्लॉट्स से जोड्ता है। यह स्लॉट की बैक प्लेन कनेक्टर से बैलेंस 120 Ω में 2 एम.बी.पी.एस HDB3 फ़्रेमयुक्त आउटपुट बाहर देता है। इस मॉड्यूल द्वारा यह बइस/डाटा स्तर पर चैनलों को अपेक्षित टाइम स्लॉट मे जोड सकते है। सभी NMS कार्यों स्पर लिंक में उपलब्ध है.

एल.इ.डी सिगन्ल

बिवरण	एल.इ.डी का नाम	रंग
सिस्टम ओके	ओके	Green
रिसीव फ़ेल	RXF	Red
आलर्म इन्डिकेटींग सिगन्ल	AIS	Red
सिंक्रनाइज़ेशन के लोस	LOS	Red
बिट एरर रेट	BER 1E-3	Red
रिमोट आलर्म	RA	Amber
रिमोट मल्टी फ़्रेम	RMA	Amber
लुप बैक स्टेट्स	LPBKC	Amber

डिजिटल सब्सक्राइबर लाइन इंटरफेस सर्किट (IDSL)

डिजिटल सब्सक्राइबर लाइन इंटरफेस सर्किट आइ.एस.डी.एन यू-इंटरफेस में बेसिक रेट एक्सेस (2 बी + डी) प्रदान करने के लिए बनाया गया है। उच्च प्रदर्शन के लिए 2B1Q लाइन कोड के साथ 160 kbits पर फुल डुप्लेक्स डिजिटल ट्रांसिमशन प्रादान करती है , IDSL लूप की लंबाइ > 4 किमी है .

IDSL-एल.टी

IDSL-एल.टी इंटरफ़ेस में (2 बी.एम. बस पर) एलटी के लिए दो बी चैनलों तथा डी-चैनल लाइन पर इनपुट भेजा जाता हैं। सिंक और मेंटनेंस बिट्स को scrambled और डिजिटल 2B1Q फ़्रेम में इनकोडिंग किया जाता है. ट्रांसीवर फुल डुप्लेक्स, 160 केबीपीएस पर टाइम डिवीजन मिल्टिप्लेक्स डॉटा मे दो 64 केबीपीएस पी.सी.एम डॉटा चैनल (बी-चैनल) सिंक्रनाइज़ेशन और ओवरहेड के लिए एक एक 16 केबीपीएस है. ट्रांसीवर मे 2B1Q लाइन कोड का उपयोग किया जाता है जो एक चार लेयर Pulse Amplitude Modulated (पी.ए.एम) कोड है.

IDSL-एल.टी कार्ड में दो IDSL-यू इंटरफेस के होते हैं (IDSL -1 और IDSL-2). प्रत्येक IDSL-यू इंटरफेस मक्स के क्रॉस कनेक्शन टेबेल के अनुसार दो 64 केबीपीएस पी.सी.एम चैनल है. कार्ड किसी व्ही.मैं 1/0 स्लॉट में डाला जा सकता है.

जम्पर सेटिंग :

	IDSL 1		IDSL 2
E9	LT पोजिशन	E12	LT पोजिशन
E10	S पोजिशन	E11	S पोजिशन
E13	EN पोजिशन	E14	EN पोजिशन
E17	To एनेबेल / डिसेबल B1 ch	E19	To एनेबेल / डिसेबल B1 ch
E18	To एनेबेल / डिसेबल B2 oh	E20	To एनेबेल / डिसेबल B2 ch

स्विच सेटिंग:

SW2 (IDSL-1)			nin 	
1	2	3	4	फासन
ON	ON	ON	OFF	B1 चैनल लोकल लुप बैक
ON	ON	OFF	ON	B2 चैनल लोकल लुप बैक
ON	ON	OFF	OFF	B1+B2+D चैनल लोकल लुप बैक
ON	OFF	ON	OFF	B1 चैनल रिमोट लुप बैक
ON	OFF	OFF	ON	B2 चैनल रिमोट लुप बैक
ON	OFF	OFF	OFF	B1+B2+D चैनल रिमोट लुप बैक

SW2	SW2 (IDSL-2)			ising
1	2	3	4	फासन
ON	ON	ON	OFF	B1 चैनल लोकल लुप बैक
ON	ON	OFF	ON	B2 चैनल लोकल लुप बैक
ON	ON	OFF	OFF	B1+B2+D चैनल लुप बैक
ON	OFF	ON	OFF	B1 चैनल रिमोट लुप बैक
ON	OFF	OFF	ON	B2 चैनल रिमोट लुप बैक
ON	OFF	OFF	OFF	B1+B2+D चैनल रिमोट लुप बैक

- लोकल लूपबैक डॉटा 2 एमबी की ओर से वापस एनटी की ओर लुप किया जाता है.
- रिमोट लूपबैक डॉटा यू-इंटरफेस (लाइन) की ओर से 2 एमबी की ओर वापस लुप किया जाता है.

एल.इ.डी सिगन्ल :

IDSL-1

• Green Led - ग्लो- NT-LT लिंक ओके, OFF NT-LT लिंक नाट ओके

• Red - ग्लो- NT-LT लिंक फ़ाल्टी (no communication)

Yellow - लोकल लुप बैक यदि जले
 Yellow - रिमोट ल्प बैक यदि जले

IDSL-2

• Green Led - ग्लो NT-LT लिंक ओके, OFF NT-LT लिंक नाट ओके

• Red - ग्लो NT-LT लिंक फ़ाल्टी (no communication)

Yellow - लोकल लुप बैक यदि जले
 Yellow - रिमोट ल्प बैक यदि जले

IDSL-एनटी

NT युजर इंटरफेस प्रदान करने के लिए 'यू' इंटरफ़ेस प्रदान करती है. NT आवश्यकता के अनुसार नेटवर्क मोनिटरिंग सिस्टम के माध्यम कॉन्फ़िगर किया जा सकता है. यह IDSL लाइनो से 2 बी चैनलों निकलता है और ग्राहकों तक पहुँचने के लिए G.703 (कॉन्फ़िगरेशन के अनुसार) या V.35 इंटरफ़ेस उपयोग करती है. NT मे दो G.703 पोर्ट, दो V.35 पोर्ट और एक यू इंटरफेस होते हैं.NT के लिए पावर एक अलग पी.एस.यू द्वारा प्रदान की जाती है. (230V ±10%, 50 हर्ट्ज इनपुट, आउटपुट +6 VDC). NMS के माध्यम से एनटी को कॉन्फ़िगर कर सकते हैं:

G.703 पोर्ट -1	G.703 पोर्ट -2	V.35 पोर्ट -1	V.35 पोर्ट -2	डाटा रेट
एनेबेल (B1 चैनल)	एनेबेल	नाट एनेबेल	नाट एनेबेल	64 केबिपिएस in सभी
रनवल (छ। यनल)	(B2 ਹੈ ਜ਼ਨ)	नाट एनवल	नाट एनप्रत	G.703
एनेबेल (B1 चैनल)	नाट एनेबेल	एनेबेल	नाट एनेबेल	64 केबिपिएस in सभी चैनल
रगवत (छ। वगत)	गाट रगपरा	(B2 ਹੈ ਜ਼ਕ)	गाट रगवरा	एक G.703 एक V.35
एनेबेल (B1 चैनल)	नाट एनेबेल	नाट एनेबेल	एनेबेल	64 केबिपिएस in सभी चैनल
रनवल (छ। यनल)	नाट एनप्रत	नाट एनवल	(B2 ਹੈ ਜ਼ਨ)	एक G.703 एक V.35
नाट एनेबेल	एनेबेल	एनेबेल	नाट एनेबेल	64 केबिपिएस in सभी चैनल
नाट एनप्रत	(B2 ਹੈ ਜ਼ਨ)	(B1 ਹੈ ਜਕ)	नाट एनप्रत	एक G.703 एक V.35
नाट एनेबेल	एनेबेल	नाट एनेबेल	एनेबेल	64 केबिपिएस in सभी चैनल
नाट एनष्ट	(B2 ਹੈ ਜ਼ਲ)	नाट एनबल	(B1 ਹੈ ਜਲ)	एक G.703 एक V.35
नाट एनेबेल	नाट एनेबेल	एनेबेल(B1 चैनल)	एनेबेल	सभी V.35 at 64 केबिपिएस
नाट एनष्ट	नाट एनबल	एनबल(छ। यनल)	(B2 ਹੈ ਜ਼ਲ)	समा ४.३३ वा ७४ काषापरस
नाट एनेबेल	नाट एनेबेल	एनेबेल(B2 चैनल)	एनेबेल(B1	सभी V.35 at 64 केबिपिएस
नाट एनबल	नाट एनबल	एनबल(Б2 यनल)	चैनल)	समा ४.३३ वा ७४ काषापरस
नाट एनेबेल	नाट एनेबेल	एनेबेल	नाट एनेबेल	V.35 पोर्ट 1 at 128
नाट एनष्ट	नाट एनष्ट	(B1+B2 ਚੈਜਕ)	नाट एनष्ट	केबिपिएस
नाट एनेबेल	नाट एनेबेल	नाट एनेबेल	एनेबेल	V.35 पोर्ट 1 at 128
नाट एनष्ट	नाट रनबल	नाट एनबल	(B1+B2 ਹੈਜਨ)	केबिपिएस

स्विच सेटिंग:

SW2 (SW2 (IDSL-1)			Function
1	2	3	4	Function
ON	ON	ON	OFF	B1 चैनल लोकल लुप बैक
ON	ON	OFF	ON	B2 चैनल लोकल लुप बैक
ON	ON	OFF	OFF	B1+B2+D चैनल लोकल लुप बैक
ON	OFF	ON	OFF	B1 चैनल रिमोट लुप बैक
ON	OFF	OFF	ON	B2 चैनल रिमोट लुप बैक
ON	OFF	OFF	OFF	B1+B2+D चैनल रिमोट लुप बैक
ON	ON	ON	ON	लुप बैक वापस ले लें

एल.इ.डी सिगन्ल:

Green Power LED ग्लो जब NT, ON है.

Green L-ओके LED ग्लो जब NT-LT लिंक ओ.के, Off जब NT-LT लिंक नाट ओ.के है.

Red LF LED ग्लो जब NT-LT लिंक नाट ओ.के

Yellow RLB LED ग्लो जब कोइ भी रिमोट ल्प बैक

Yellow LLB LED ग्लो जब कोइ भी लोकल ल्प बैक

Green B2-P2 LED ग्लो जब B2 चैनल कनफ़िगर V.35 पोर्ट 2 में

Yellow B1-P2 LED ग्लो जब B1 चैनल कनफ़िगर V.35 पोर्ट 2 में

Yellow B2-P1 LED ग्लो जब B2 चैनल कनफ़िगर V.35 पोर्ट 1 में

Green B1-P1 LED ग्लो जब B1 चैनल कनफ़िगर V.35 पोर्ट 1 में

Green TXD-P1 | ट्रांस,रिसीवLED V.35 पोर्ट में

Yellow RXD-P1

Green TXD-P2 न ट्रांस.रिसीवLED V.35 पोर्ट 2 में

Yellow RXD-P2

Yellow Sync

Red LOS | G.703 पोर्ट -1/2 LED - ग्लो जब कोइ समस्या हो G.703 पोर्ट -1/2

Yellow OVF/UVF

2.4 इंस्टालेशन

प्रारंभीक विचार और साइट की तैयारी:

प्रारंभीक कार्यों उपकरणों की स्थापना के लिए पूरा किया जाता है. उचित साइट तैयार करने से फाइनल स्थापना की प्रक्रिया में तेजी लाया जा सकता है. बे निम्न कार्य अग्रिम में पूरा होना चाहिए

- (1) रैक को ठीक से कमरे के फर्श पर ग्राउट करें.
- (2) केबल ट्रे को भी ठीक से रखा जाना चाहिए.
- (3) यह स्निश्चित करें की डिजिटल-वितरण-फ्रेम (DDF) और म्ख्य-वितरण-फ्रेम (MDF) ठीक से रखे हो.
- (4) बैटरी और चार्जर उपकरणों से उचित दूरी पर रखना चाहिए.
- (5) यह सुनिश्चित करें उपकरण कमरे में नमी नहीं होना चाहिए.

पावर सप्लाइ की आवश्यकताएँ: मक्स के लिए मानक इनपुट वोल्टेज -48 V DC है. इनपुट वोल्टेज रेंज -36 से -72 V DC के बीच स्वीकार्य है. मानक बैटरी संयंत्रों लगभग - 52V DC हैं. उपकरणों की पावर आवश्यकता 48 वाट्स है.

फ्लेक्सी मक्स की इंस्टालेशन:

टूलस या उपकरणों की आवश्यकताः

निम्नलिखित टूल या उपकरण इन्स्टोल करने के लिए आवश्यक है.

- (क) मध्यम आकार फिलिप्स पेचकश
- (ख) स्टीपर चाक्
- (ग) छोटा फ्लैट ब्लेड पेचकश

फ्लेक्सी मक्स का एड्ज्समेन्ट: एक मानक EIA 19 इंच चौड़ा उपकरण रैक या कैबिनेट में सिस्टम को माउंट करने के लिए, बढ़ते कोष्ठक (brackets) और स्थापना किट में सप्लाइ screws के उपयोग करते हैं, और इन निर्देशों का पालन करें.

फ्लेक्सी मक्स के लिए पावर कनेक्ट करना: रियर पैनल पर 4-पिन कनेक्टर (J16) का उपयोग फ्लेक्सी मक्स को पावर से कनेक्ट करे. (प्लग फ़ैकट्री से इंस्टॉल पीछे के पैनल पर). पावर इनपुट टर्मिनल रियर पैनल के दाईं ओर स्थित है. चार पिन में से, पिन संख्या 2 और पिन संख्या 3, -48V DC के लिए होती हैं और पिन नंबर 1 और पिन संख्या 4 ग्राउण्ड के लिए है.

वायर के इन्सुलेशन के दो अलग अलग रंग का उपयोग करने से नेगेटिभ और पोजेटिभ लीड आसानी से चयन किया जा सकता है.

सिस्ट्म को पावर से कनेक्ट करने के लिए निम्न चरणों को पूरा करे

- 1) सुनिश्चित करें की पॉवर सप्लाइ कार्ड पर पावर के स्विच बंद हो.
- 2) सुनिश्चित करें पावर लीड पहले से ही शक्ति स्रोत से जुड़े ह्आ हैं, तो शक्ति का स्रोत बंद करे.
- 3) सिस्ट्म रियर पैनल से 4- पिन कनेक्टर निकालें कनेक्टर के नेगेटिभ और ग्राउण्ड का निरीक्षण करे , और पावर की तारों जोडें.
- 4) सिस्ट्म के रियर पैनल में कनेक्टर प्लग में इनपुट को मापने के लिए कनेक्टर में एक वोल्टमीटर के साथ -36 से -72 VDC के बीच होनी है इसकी जाँचें करें.

सिस्टम को ग्राउण्डींग करे: इलेक्ट्रॉनिक्स सर्किट की ग्राउंडिंग पावर कनेक्टर के साथ करना है.अतिरिक्त ग्राउंडिंग उपकरण आपरेशन के लिए आवश्यक नहीं है, यद्यपि यह सिस्ट्म रियर पैनल पर ग्राउण्ड स्क्रू, या किसी भी अन्य उपयुक्त ग्राउण्ड स्थान के लिए उपकरण रैक ग्राउण्ड बस से सीधे सिस्ट्म ग्राउण्ड के लिए उपयोग किया जा सकता है जो कम से कम 18 गेज वायर होना चाहिए.

टुल और परीक्षण उपकरण: फ्लेक्सी मक्स कोइ विशेष उपकरण या महंगी परीक्षण उपकरणों की आवश्यकता होती है. आवश्यक कुछ सामान्य उपकरण और डिजिटल वोल्टमीटर से शुरुआत कर सकते हैं. मेंटनेंस में जरूरी परीक्षण उपकरणों की सूची देखें.

बेसीक काम्पोनेन्ट: जब फ्लेक्सी मक्स आता है, सुनिश्चित किया जाना है की उप कुछ क्रम में है और बेसीक काम्पोनेन्ट के साथ परिचित हो जाते हैं. फ्लेक्सी मक्स के मुख्य कार्ड नेटवर्क इंटरफेस मॉड्यूल,

ट्रीब्यूटरी मॉड्यूल, वॉयस और डॉटा मॉड्यूल (आवश्यक के रूप में) और पॉवर सप्लाइ मॉड्यूल है. इस सिस्ट्म में एक एक करके कार्ड डालें .सिस्ट्म समुचित संचालन के लिए, एक पॉवर सप्लाइ कार्ड, नेटवर्क इंटरफेस मॉड्यूल और ट्रीब्यूटरी मॉड्यूल डाला जाता है. कार्ड कस-कर बैक प्लेन से जुड़ा है यह सुनिश्वित करें.

सिस्टम ले-आउट: आइटीयू टी G.703 सिफारिश के अनुसार, अधिकतम एटिनुएशन, 6 DB सिस्ट्म और टर्मिनल उपकरणों के बीच हो.

सिस्टम को पावर आन करना :

- 1) पावर ठीक से जुड़ा हुआ है यह स्निधित करें
- 2) पावर स्विच टॉगल करें

पावर पहले चालू होने पर, एनआइएम कार्ड के सभीएल इ डी तेजी से चमकेगी जाएगी और ट्रीब्यूटरी कार्ड के सभी एल.इ.डी कुछ टाइम के लिए झपकेगी उचित कनेक्शन उपयुक्त कनेक्टर्स पर पीछे की तरफ 2 एम.बी पर उपलब्ध कराया जाता है .वह संबंधित स्लॉट में चैनल की योजना के अनुसार, चैनल मॉड्यूल डाला जाता है. NMS से कार्ड पैरामीटर और क्रॉस कनेक्शन के साथ कॉन्फ़िगर और सिस्टम में डाउनलोड किया जाता हैं. तब मक्स ऑपरेशन के लिए तैयार हो जाता है.

एक नेटवर्क में कुछ खास कॉन्फ़िगरेशन

केस - । एंड टर्मिनल से निगरानी के साथ सामान्य कॉन्फ़िगरेशन

केस - II सामान्य कॉन्फ़िगरेशन के साथ ड्राप / इंसर्ट के तरफ मोनिट्रिंग

2.5 आपरेशन, मेनटेंनैंस और ट्राब्लस्टींग

ऑपरेशन: लाइन आपरेशन पर म्ख्य रूप से 2.6 से चर्चा में है जो NMS के माध्यम से किया जाता है.

मेनटेंनैंस: मक्स के मॉड्यूलर निर्माण योजना को डिजाइन में अपनाइ गइ है। इस सरल ट्रबुल शूटिंग और डाउनटाइम कम होना का यह परिणाम है. पर्याप्त अलार्म और निगरानी तथा फाल्टी कार्ड पहचाना ताकि उस सिस्टम पर उपलब्धता बडाइ जाए.

जहाँ तक इस सिस्ट्म के मेनटेंनैंस लाइन 1 और मेनटेंनैंस लाइन 2 की अवधारणा का सवाल है । 1 लाइन मेनटेंनैंस स्टाफ फाल्टी कार्ड की पहचान करते और उन्हें बदलते है .

इस प्रकार के रूप में लाइन 1 मेनटेंनैंस स्टाफ के मुख्य कार्य है:

- 1) उपकरण के संतोषजनक प्रदर्शन को सुनिश्वित करने के लिए विभीन्न सिस्ट्म मानकों की टाइम-टाइम पर चेक करना है.
- 2) फेलिऊर के मामले में जल्द से जल्द संचार लिंक को प्नर्स्थापित करना है.

लाइन 2 के मेंटनेंस स्टाफ डिबगिंग, फाल्टी कार्ड की पहचान, असेंबली ,समायोजन, परीक्षण आदी की मरम्मत का कार्य करता है. नियमित मेंटनेंस का मुख्य उद्देश्य लिंक पर टाइम-टाइम पर जांच करने के लिए और समग्र सर्विस की गुणवत्ता में किसी व्ही.संभव गिरावट को सत्यापित करने के लिए है. एक फाल्टी लिंक की पर शीघ्र बहाली अत्यंत महत्वपूर्ण है. फाल्टी कार्ड की पहचान करना है. नियमित परीक्षण मासिक, साप्ताहिक या वार्षिक मापदंडों और मानव शक्ति की ताकत के आधार पर किया जा सकता है. ऑन लाइन नेटवर्क निगरानी सिस्टम का प्रयोग करें "सुपर-नेट" और लिंक के मेंटनेंस में वृद्धि करें.

डायग्नॉस्टिक एड्स: डायग्नॉस्टिक एड्स विभीन्न प्रकार के सिस्टम के मेंटनेंस सरल करने के लिए उपलब्ध कराइ गइ है। ये इस प्रकार हैं:

- क) अलार्म और सिगन्ल
- ख) परीक्षण एवं मापन बिंदुओं
- ग) NMS के माध्यम से मेंटनेंस और डायग्नॉस्टिक

NMS के माध्यम से मेनटेंनैंस और डायग्नोस्टिक्स

"मुपर-नेट" से जुड़े किसी भी टर्मिनल की वर्तमान स्थित को निरीक्षण कर सकता है. इसमे 99 उपकरणों को एक नेटवर्क में कनेक्ट कर सकते हैं। किसी भी साइट के उपकरण सिक्रय हो जाता है, तो स्कैनिंग जारी हो जाते है और डॉटा को एक निश्चित अंतराल पर अपडेट किया जाता है. वर्तमान स्थिति में कोइ भी परिवर्तन स्क्रीन पर प्रदर्शित होता है. "सुपर-नेट" से किसी भी टर्मिनल के फ़ाल्ट तथा इनपुट, आउटपुट की स्थिति और डॉटा पर्फ़ोरमेन्स जैसे इरर सेक्न्ड, डिग्रेडेड मिनट आदि से की जा सकता है. किसी भी टर्मिनल में किसी भी समस्या के मामले में, "सुपर-नेट" बहुत होशियारी से फाल्टी क्षेत्रों की फाल्ट पा सकते हैं. सभी अलार्म स्थिति कंप्यूटर में एक इतिहास फ़ाइल में टाइम के साथ देखा जा सकता है और अलार्म का ब्यौरा बाद में क्वेरी के आधार पर लॉग ऑन फ़ाइल से लिया जा सकता है. इसके अलावा, 32 इभेंट का अलार्म इतिहास सिस्टम में संग्रहित होता हैं और सेंट्राल मोनिट्रिंग किया जा सकता है.

रेग्लार-मेनटेंनैंस के फिलॉसफी:

सिस्टम ऑपरेशन में महत्वपूर्ण पैरामीटर की जाँच के होते हैं, नियमित मेंटनेंस से एक यूनिट में कुछ हद तक, फेलिऊर का पूर्वानुमान मीलती है.

उपकरण के सामान्य संचालन की शर्तों के लिए निम्नलिखित शेड्यूल है जिस्से लिंक के बेहतर उपयोग हो सकता है:

साप्ताहिक चेक:

- एल.इ.डी ग्लोइंग "पी.एस.यू ओके "
- सभी पावर के तारों और कनेक्शन ठीक से स्रक्षित हैं और केबल ल्ज हैं या नहीं.
- एक रजिस्टर बुक में टाइम के साथ अलार्म की घटना को रिकॉर्ड करना है.
- बैटरी की सप्लाइ -48V की जाँच करें.
- सेंट्राल मोनिट्रिंग स्टेशन से नेटवर्क में अलार्म इतिहास और सभी स्टेशनों की स्थिति की जाँच करें.

इस प्रकार के उपकरणों की सूची रूप परीक्षण के लिए आवश्यक हैं:

S.No.	Name	Make	Qty
1.	Bench Regulated Power Supply (0-80 V)	APLAB	1
2.	Digital Multimeter	HINDITRON	1
3.	Oscilloscope 400 MHz	TEKHIND	1
4.	Frequency Counter 10 MHz	FLUKE 72220 A	1
5.	डिजिटल ट्रांसमिशन Analyzer	HP/W&G	1
6.	PCM Terminal Test Set	APLAB/MARCONI 2830	1
7.	डाटा टेस्टर	HP/W&G	1

आवश्यक सामान की सूची इस प्रकार है :

S.No.	Name	Qty
1.	2 MB cables for 120 Ω and 75 Ω	2
2.	BNC to Banana Cord	2
3.	MDF connection module	2

फाल्ट का पता लगाना और मेनटेंनैंस के निर्देश:

सिस्ट्म में फेलिऊर की स्थिति में समस्या निवारण और फाल्ट आइसोलेसन के साथ हर कार्ड के सामने पैनल पर व्यापक अलार्म संकेतक की सुविधाएँ है. सर्किट के सभी अलार्म मॉड्यूल में व्यवस्था की है. "Built-in diagnostic circuitry "से विशिष्ट मॉड्यूल के लिए फेलिऊर होने पर उसे आइसोलेसन करने की सुविधाएँ है. मॉड्यूल अलार्म के अलावा, रिमोट के टर्मिनलों पर या व्यवस्था है .प्रत्येक अलार्म के लिए कारण और "corrective action" इस खंड में समझाया जाता है.

फाल्टी चैनल मॉड्यूल को बदलने से ट्रांसिमशन बाधित नहीं हो. मक्स की फाल्टी मॉड्यूल को चेंज करे, सिस्टम को बाइपास मोड मे चला जाता है.

इस युनिट के फ़्न्ट पैनल पर प्रदर्शित लोकल और रिमोट डायग्नोस्टीक का उपयोग करके समस्या और फाल्ट को आइसोलेट किया जाता है.

फ़ॉल्ट आइसोलेशन और सिस्टेमेटीक कार्रवाइ:

निम्निलिखित पन्ने मे विशिष्ट समस्याओं, संभावित कारणों और समस्या निवारण के डायरेक्शन निर्देशों और सिस्टेमेटीक कार्रवाइ पर चर्चा किया गया है.

विभीन्न शर्तें और संभाव्य फाल्ट की क्षेत्र की सूची नीचे प्रस्तुत है:

क) पावर सप्लाइ कार्ड:

इन्डीकेशन	डायग्नोसिस	रिमार्क्स
पीएसयू ओके- हरी स्थिर	इनपुट और आउटपुट वोल्टेज ठीक है	
पीएसयू एरर – स्थिर पीला	किसी भी वोल्टेज कम है	पॉवर सप्लाइकार्ड शायद फाल्टी।
शटडाउन - लाल स्थिर	पितर मध्याद में भीतर तीर्द्धन	अधिक वोल्टेज हो सकती है। अन्यथा, O/P पक्ष पर कोइ शॉर्ट सर्किट।

ख) एन आइ एम एवं ट्रीब्यूटरी कार्ड:

	इन्डीकेशन		डायग्नोसिस	रिमार्क्स
सिस्टम उ steady	सिस्टम अोके- green steady steady		यह लिंक में कोइ आलर्म न होने का इन्डिकेट करता है	
	RXF - red steady	TAF – red steady	2 Mb loss A-पोर्ट में.	यदी आलर्म RXF लुप बैक करने पर चला जाता है, तो ट्रांसिमशन फ़ेलिओर इन्डिकेट करता है. यदि cable connection ओके, तो ट्रीब्यूटरी कार्ड में फ़ेलिओर है.
	AIS - red steady		All ones A- पोर्ट में.	ट्रांसिमशन लिंक फ़ेलिओर.
A पोर्ट	LOS-red steady		LOS इन्डिकेट करता है फ़्रेम या मल्टी फ़्रेम loss.	यदी आलर्म RXF लुप बैक करने पर चला जाता है, तो ट्रांसिमशन फ़ेलिओर इन्डिकेट करता है. यदि cable connection ओके, तो ट्रीब्यूटरी कार्ड में फ़ेलिओर है.
	BER-red steady		Steady glow = BER आलर्म इन्डिकेट करता है बिट एरर.	तो Probable cause लिंक परफर्मेन्स. यदि लिंक ओके, तो ट्रीब्यूटरी कार्ड में फ़ेलिओर है.
	BER - red ब्लिंकींग		ब्लिंकींग BER इन्डिकेट करता है बिट एरर or greater than 1X10 ⁻⁶ but less than 1X10 ⁻³	Probable cause लिंक परफर्मेन्स. यदि लिंक ओके, तो ट्रीब्यूटरी कार्ड में फ़ेलिओर है.

	RA - amber		रिमोट आलर्म.	फार एंड फ़ेलिओर.
	RMA - amber steady		रिमोट मल्टी फ़्रेम आलर्म इन्डिकेट MF loss.	फार एंड multi frame loss. यदि RMA, RA के साथ आता है तो adjacent station प्रोबलेम.
В पोर्ट	Same आलर्म, indic diagnosis as A-पो			
CNYG -	CNYG – red ब्लिंकींग		जब CNFG आलर्म ब्लिंक करता है तो कार्ड mismatch और NMS से कोन्फीगुरेशन करे.	Card parameter नाट properly कनफ़िगर या डाउन लोड करे.

इन्डीकेशन	डाय ग्नोसिस	रिमार्क्स	
INT/EXT क्लाक - amber	जब INT/EXT क्लाक LED ग्लो सिस्टम आपने		
steady	क्लाक or एक्सट्रन्ल क्लाक से चले.		
DIG BYP - amber steady	जब DIG BYP LED ग्लो करता है , तब DIG		
DIG BTP - alliber steady	BYP command NMS से दीया गया है.		
	जब LPBK A steadily ग्लो करता है तो लोकल		
LPBK A - amber steady	लुप बैक command NMS से दीया गया है. जब		
LFBK A - alliber steady	ब्लिंक करे तो रिमोट लुप बैक तो command		
	NMS से दीया गया है.		
	जब LPBK B ग्लो steadily ग्लो करता है तो		
I DDI/ P. stoody	लोकल लुप बैक command NMS से दीया गया		
LPBK B - steady	जब ब्लिंक करे तो रिमोट लुप बैक तो		
	command NMS से दीया गया है.		

ग) स्टेटस और इंटरफेस मॉड्यूल का अलार्म :

• E1 ब्राचींग

इन्डीकेशन	डायग्नोसिस	रिमार्क्स
सिस्टम ओके - green steady	यह branching लिंक आलर्म	
सिस्टम जाक - green steady	इन्डिकेट करता है.	
		यदि आलर्म RXF चला जाता है, लुप
		बैक करने से, यह फ़ेलिओर ट्रांसमिशन
RXF - red steady	2 Mb loss in A - पोर्ट	डायरेक्शन इन्डिकेट करता है. यदि
		cable connection ओके, तो
		Branchingmodule में फ़ेलिओर है.
AIS - red steady	All ones A - पोर्ट	ट्रांसिमशन लिंक फ़ेलिओर.

LOS - red steady	LOS इन्डिकेट फ्रेम या मल्टी फ़्रेम loss करता है.	If the आलर्म RXF goes off on लुप बैक, ट्रांसमिशन डायरेक्शन इन्डिकेट करता है. यदि cable connection ओके, तो Branching module में फ़ेलिओर है.
BER - red steady	Steady glow of BER आलर्म इन्डिकेट bit एरर or of more than 1 एरर or bit in 1000 bits i.e., 1E-3.	
RA - amber steady	रिमोट आलर्म	फार एंड फ़ेलिओर.
RMA - amber steady	रिमोट मल्टी फ़्रेम आलर्म MF loss इन्डिकेट करता है.	फार एंड मल्टी फ़्रेम loss. यदि RMA , RA के साथ adjacent station में फ़ेलिओर हो सकता है.
LPBK - amber steady	LPBK ग्लो steadily जब लोकल लुप बैक command NMS से दिया गया है यदि	

• वॉयस मॉड्यूल

E - amber	इन्डिकेट E-lead ON
M - green	इन्डिकेट M-lead ON or Off-
W - green	hook condition.

• G.703

LOS - red	रिसीव पोर्ट में इनपुट नहीं है.	यदि केबल, डाटा लिंक ओके तो प्रोबलेम कार्ड में है.
SYNC - amber	इनपुट में Sync loss	- do -
OVF/UVF - amber	pattern का Violation	- do -

• V.35

DCH एरर or - red	IOff दल्दिकेट लिक भोके दे	ON condition इन्डिकेट cross- connection फ़ेलिओर.
RXD - green	रिसीव डाटा DCE	
TXD - green	ट्रान्समिट डाटा DCE का	
ICONE अकि - areen	Steady glow इन्डिकेट कान्फी गुरेशन ओके है.	

• V.24

CONF ओके - green	Steady glow चैनेल कान्फी	
	गुरेशन ओके इन्डिकेट करता है.	
RXD - green	रिसीव डाटा DCE	
TXD - green	ट्रान्समिट डाटा DCE	
DCH एरर or - red	Off इन्डिकेट लिंक ओके है	ON इन्डिकेट cross-
		connection फ़ेलिओर.

• Nx64

TXD - green	ट्रान्समिट डाटा DCE का	
RXD - green	रिसीव डाटा DCE का	
IIIR - amher	जब लोकल लुप बैक (LLB) ग्लो LLB command NMS से दिया गया है.	
IRLB - amber	ग्लो जब RLB command NMS से दिया गया है.	

• IDSL - LT

IDSL ओके - green	NT - LT लिंक ओके	OFF इन्डिकेट NT-LT लिंक नाट ओके
फ़ाल्टी-red	लिंक फ़ाल्टी	NT-LT लिंक प्रोबलेम
LLB-amber	लोकल लुप बैक	
RLB-amber	रिमोट लुप बैक	

• IDSL - NT

Power LED-green	ग्लो जब NT ON है	
L-ओके LED-green	ग्लो जब NT-LT लिंक ओके है , OFF जब NT-LT लिंक नाट	
	ओके है.	
LF LED-red	ग्लो जब NT-LT लिंक नाट ओके है.	
RLB LED-amber	ग्लो जब रिमोट लुप बैक दिया गया है.	
LLB LED-amber	ग्लो जब रिमोट लुप बैक दिया गया है.	
B2-P2 LED-green	ग्लो जब B2 चैनल कनफ़िगर V.35 पोर्ट 2 में	
B1-P2 LED-amber	ग्लो जब B1 चैनल कनफ़िगर V.35 पोर्ट 2 में	
B2-P1 LED-amber	ग्लो जब B2 चैनल कनफ़िगर V.35 पोर्ट 1 में	
B1-P1 LED-green	ग्लो जब B1 चैनल कनफ़िगर V.35 पोर्ट 1 में	
TXD-P1 - green		
RXD-P1 - amber	ट्रांस,रिसीव LED of V.35 पोर्ट 1	
TXD-P2 - green	ट्रांस,रिसीव LED of V.35 पोर्ट 2	
RXD-P2 - amber	प्रात,रिताय ८६० ०। ४.३० बाट २	

SYNC - amber		
LOS - red	G.703 पोर्ट-2 LED - ग्लो जब G.703 पोर्ट-2 में फेलिऊर है	
OVF/UVF-amber		
SYNC - amber		
LOS - red	G.703 पोर्ट-1 LED - ग्लो जब G.703 पोर्ट-1 में फेलिऊर है	
OVF/UVF-amber		

2.6 नेटवर्क मैनेजमेंट और पर्यवेक्षण:

परिचय: वेबिफल "सुपर नेट मैनेजमेंट सिस्ट्म" (WSMS) संस्करण 4.0, फ्लेक्सी मक्स उपकरणों को कॉन्फ़िगर और नियंत्रित करने के लिए डिज़ाइन किया एक Windows आधारित नेटवर्क मैनेजमेंट सिस्ट्म (NMS), है. यह रियल टाइम मोड में, एक नेटवर्क में जुड़े सभी फ्लेक्सी मक्स उपकरणों से प्राप्त इन्फरमेसन दिखा सकते हैं. इस सॉफ्टवेयर की मदद से, उपकरण और नेटवर्क के स्वास्थ्य की निगरानी भी कर सकते हैं.

इस सॉफ्टवेयर का उपयोग में कंप्यूटर प्रोग्रामिंग के किसी भी ज्ञान की आवश्यकता नहीं है. हालांकि, युजर विभीन्न अनुप्रयोगों और प्रिंटिंग दस्तावेजों को प्रिंटर का उपयोग कर प्रिंट कर सकते है. इसमें युजर को Windows'98 ऑपरेटिंग सिस्टम के सामान्य ऑपरेशन से परिचित होना चाहिए .

वेबिफल सुपरनेट मैनेजमेंट सिस्टम का सिस्ट्म कार्य

- 1. नेटवर्क को रियल टाइम निगरानी करना.
- 2. विभीन्न डायग्नोस्टिक्स एवं टेलिकमांड का निष्पादन करना.
- 3. कार्ड का प्रकार एवं पैरामिटर कॉन्फ़िगरेशन करना.
- 4. टाइम स्लॉट कॉन्फ़िगरेशन करना.
- 5. अलार्म और स्टेटस का इतिहास को लॉगिंग करना.
- 6. निर्दिष्ट क्वेरी के साथ लॉग इन डॉटा देखना.
- 7. उपकरण और नेटवर्क के प्रदर्शन की निगरानी करना.

कम्प्यूटर सिस्टम की आवश्यकताएँ

इस प्रकार के NMS में न्यूनतम पी.सी कॉन्फ़िगरेशन:

- आइबीएम पी.सी संगत पेंटियम-॥ या उच्चतर
- 128 एमबी रैम
- लगभग 150 एमबी रिक्त डिस्क स्थान
- माइक्रोसॉफ्ट Windows'98 ऑपरेटिंग सिस्टम
- मानक RS232C सीरियल पोर्ट (COM1 / COM2)
- मानक पैरालैल पोर्ट.
- मानक PS2 माउस PS2 के पोर्ट से कनेक्टेड.
- मानक CDROM ड्राइव.
- कलर मॉनिटर (800 X 600 के साथ, 24 बिट सेटिंग)

अपने पी.सी को किस तरह फ्लेक्सी मक्स से कनेक्ट करना है

NMS कंप्यूटर और रिमोट उपकरणों के बीच संचार बॉड रेट 1.2 केबीपीएस के साथ I/O RS-232C एसिंक्रोनस सीरियल पोर्ट के माध्यम से किया जाता है .सीरियल पोर्ट COM1 या कंप्यूटर के COM2 की मदद से मक्स उपकरण कनेक्टर J15 (पीछे की ओर) या NMS पोर्ट (सामने की ओर) से किसी सीरियल पोर्ट से जुड़ा है.

अपने पीसी में NMS सॉफ्टवेयर इन्स्टोल करने के लिए :

वेबिफल NMS इन्स्टोल करें:

- 1. आपकी CD-ROM ड्राइव में वेबिफल NMS सीडी डालें.
- 2. Windows Explorer खोलें.
- 3. अपने CD-ROM ड्राइव का चयन करें और ब्राउज़ करें.
- 4. अनुप्रयोग सेटअप Application Setup पर डबल क्लिक करें. पहले स्क्रीन दिखाइ देगा। आगे बढ़ने के लिए ओ.के क्लिक करें.

निर्देशिका बदलें बटन पर क्लिक करके सी\प्रोग्राम फ़ाइलें\NMS\एक नया निर्देशिका नाम असाइन करे 2nd स्क्रीन में आप डिफ़ॉल्ट गंतव्य निर्देशिका बदल सकते हैं। चयनित गंतव्य निर्देशिका के साथ आगे बढ़ने के लिए, इन्स्टोल करें Install बटन पर पर क्लिक करें.

3rd स्क्रीन में आप कार्यक्रम के समूह Program group का चयन करे, डिफ़ॉल्ट प्रोग्राम समूह वेबिफल NMS है Program group क्लिक करें और काम जारी रखें .

परदे पर संदेश का पालन करें जो आप के लिए कहा जाता है और काम जारी रखें.

अंत में, आप को एक संदेश प्राप्त होगा "..... NMS आपके कंप्यूटर में सफलतापूर्वक इन्स्टोल हो रहा है. आपके कंप्यूटर को रिस्टार्ट करें.

अब आप वेबिफल NMS चलाने के लिए तैयार हैं .

महत्वपूर्ण शब्दावली

साइट: साइट उपकरण इन्स्टोल करने के स्थान का नाम है। एक साइट के लिए दो नाम होते हैं. पूरा नाम मे 15 characters हो सकता है, और चार वर्णों के एक छोटा नाम भी हो सकता है. आपरेशन साइट को छोटे नाम से जाना जाता है यह लघु / छोटे नाम पूरे नेटवर्क मे अद्वितीय होना चाहिए, इस प्रकार साइट की एक अनोखी पहचान होती है. साइटों नेटवर्क आरेख में सर्कल द्वारा डिस्प्ले की जाती हैं. लिंक: लिंक नेटवर्क आपरेशन का निरीक्षण करने के साइटों के बीच का कनेक्शन है। यह नेटवर्क आरेख

लिंक: लिंक नेटवर्क आपरेशन का निरीक्षण करने के साइटों के बीच का कनेक्शन है। यह नेटवर्क आरेख में ठोस लाइनों द्वारा डिस्प्ले की जाती हैं.

उपकरण: उपकरण एक साइट में इन्स्टोल मक्स को दर्शाता है. सभी उपकरणों का पता एक अद्वितीय पहचान है.

सिक्रियकरण: सिक्रिय या निष्क्रिय शब्द केवल उपकरण से संबंधित है. उपकरणों को सिक्रिय रूप रूप में चिहित करने पर, NMS आपरेशन स्कैनिंग के दौरान उपकरणों की स्थिति प्रदर्शित करता है. अन्यथा, स्कैनिंग के टाइम में पोल नहीं किया जाएगा और NMS द्वारा नियंत्रित नहीं किया जा सकता है.

स्कैन: स्कैन को ओपन या बंद रखा जा सकता है. NMS स्कैन के मोड में सक्रिय उपकरणों से वास्तविक टाइम मे अलार्म या स्थिति प्राप्त कर सकते हैं.

ओबजेक्टीव:

1.	वेबिफल मक्स के सब-रैक में स्लॉट्स है.
2.	वेबिफल मक्स में स्लॉट -12 और स्लॉट-13टाइम स्लॉट में पैरेलाल एक्सेस है.
3.	वेबिफल मक्स फाल्टी A क्रास-कनेक्ट टेबल का उपयोग करता जब ट्रीबुटारि में मेजर
	अलार्म है.
4.	वेबिफल मक्स फाल्टी B क्रास-कनेक्ट टेबल का उपयोग करता जब ट्रीबुटारि में मेजर
	अलार्म है.
5.	वेबिफल मक्स रिमोट A क्रास-कनेक्ट टेबल का उपयोग करता जब ट्रीबुटारि में मेजर
	अलार्म है.
6.	वेबिफल मक्स का टेबल फेलिऊर की स्थिति में Mux को अलग करने के लिए
	सक्षम बनाता है.
7.	नेटवर्क के सामान्य ऑपरेशन के दौरान वेबफिल मक्स में एनएमएस मोड में रखा
	जाता है .
8.	वेबिफल मक्स नेटवर्क इंटरफेस मॉड्यूल से संबंधित अलार्म प्रदान करता है.
9.	वेबिफल मक्स सभी डायगोन्स्टीक कमांड एन.एम.एस से एक कमांड भेजकर वापस
	लिया जा सकता है.
10.	वेबिफल मक्स में कलाक को एनेबल एनआईएम कार्ड से किया जाता है
11.	वेबिफल मक्स में ट्रिब्युटारि मॉड्यूलआईटीयू-टी के अनुरुप 2 एमबीपीएस HDB-
	3 इनकोडिंग इंटरफ़ेस उत्पन्न करती है.
12.	वेबिफल मक्स मेंट्रिब्युटारि मॉड्यूल को D/I या टर्मिनल मोड में सक्षम बनाता है.

सबजेक्टीभ:

- 1. वेबिफल फ्लेक्सी मक्स के मॉड्यूल और कार्ड के साथ सिस्टम आर्किटेक्चर ड्रा करे और प्रत्येक मॉड्यूल की कार्यक्षमता लिखे ?
- 2. "नेटवर्क इंटरफेस मॉड्यूल "(एनआईएम कार्ड) का कार्यक्षमता लिखें
- 3.वेबिफल फ्लेक्सी मक्स की ट्रिब्युटारि मॉड्यूल का कार्यक्षमता लिखें?
- 4. वेबिफल फ्लेक्सी मक्स के लिए" पिरिओडिकल- चेक "और मापन लिखें?

अध्याय 3 नोकिया मक्स

3.1 परिचयः

नोकिया मल्टीप्लेक्सिंग सिस्ट्म ओ.एफ.सी सिस्टम के साथ एक ही रैक में ऑप्टिकल लाइन टर्मीनल यूनिट के साथ व्यवस्थित है. नोकिया मल्टीप्लेक्सिंग सिस्टम 2, 8 और 34 एमबी के रूप में तीन डॉटा रेटों के लिए उपलब्ध हैं. इस सिस्टम में दो प्रकार के रैकें हैं. एक 19 "रैक और अन्य स्लिम रैक. 19" रैक सभी स्टेशनों पर प्रयोग किया जाता है, अन्यथा, स्लिम रैक स्पेस बचाने के लिए प्रयोग किया जाता है.

नोकिया सिस्ट्म एक डिजिटल मल्टीप्लेक्सिंग सिस्ट्म है ,और इसके साथ एक OLTE (ऑप्टिकल लाइन टर्मीनल यूनिट) होते हैं. नोकिया के मल्टीप्लेक्सिंग सिस्ट्म को दो प्रकार से कॉन्फ़िगर किया जा सकता है. एक DM-2 कॉन्फ़िगरेशन और DB-2 कॉन्फ़िगरेशन. DM-2 कॉन्फ़िगरेशन टर्मिनल स्टेशन पर प्रयोग किया जाता है और DB-2 कॉन्फ़िगरेशन रिपिटर स्टेशनो पर प्रयोग किया जाता है. बाकी यूजर इंटरफेस कार्ड दोनों प्रणालियों के लिए कोमोन है. DM-2 या DB-2 एक मल्टीप्लेक्सिंग युनिट है. इन युनिटों को 2 एमबी डॉटा रेट के लिए प्रयोग किया जाता है. DM-2 या DB-2 सिस्ट्म के साथ OLTE, DF -2/8 का प्रयोग किया जाता है, एक ही कार्ड 2 एमबी सिस्ट्म या 8 MB सिस्ट्म के लिए कॉन्फ़िगर किया जा सकता है. पूरे सिस्टम सॉफ्टवेयर सेटिंग्स के माध्यम से कंट्रोल किया जाता है. एक सर्विस टर्मिनल या एक NMS सॉफ्टवेयर के माध्यम से इस सिस्ट्म को कंट्रोल किया जाता है.

3.2 प्रायमरि मल्टीप्लेक्सिंग उपकरण के जनरल विवरण:

उपकरण के संक्षिप्त विवरण

DM 2 प्रायमरि मल्टीप्लेक्स उपकरण:

DM2, 2.048 मेगाबिट सिगनल में 30 पी.सी.एम कोडित बायस या 31 डॉटा चैनलों को जोड़ती है, जो यूरोपीय मल्टीप्लेक्सिंग पदानुक्रम में पहली ओडर के मल्टीप्लेक्स उपकरण है. DM2 उपकरण का कॉन्फ़िगरेशन एनालॉग और डिजिटल इंटरफ़ेस के लिए एक कोमन डिजिटल 2एम.बी.पी.एस मल्टीप्लेक्स युनिट है. यह आसानी से ग्राहको के विशेषताओं के अनुसार कॉन्फ़िगरेबल इंटरफेस है.इस इंटरफ़ेस सर्किट मे 2/4 वायर VF इंटरफेस है. इ एंड एम सिग्नलिंग के अलावा, विकल्प में जैसे डीसी- लूप सिग्नलिंग या विशेष रूप से सब्सक्राइबर की विशेषताओं के लिए अनुकूलित जटिल सिग्नलिंग, सब्सक्राइबर और जंक्शन लाइन इंटरफेस के लिए सिग्नलिंग आदी शामिल हैं. डिजिटल इंटरफ़ेस युनिट एक या एक से अधिक 64 केबीपीएस चैनलों का उपयोग थोड़ा अलग दरों पर डॉटा ट्राफिक 64 केबीपीएस चैनल से जोड़ा जा सकता है. एक से अधिक लो-स्पीड डॉटा चैनलों एक 64 केबीपीएस चैनल में जोड़ा जा सकता है.

DM2-रियलाइज़ेशन सिद्धांतों

DM 2 उपकरण के अवधारणा TM4 यांत्रिक निर्माण और पाँवर सप्लाइ की अवधारणा के उपयोग पर आधारित है। मूल हिस्सा मे एक माँड्यूलर उपकरण है,इसमे एक अंतर-कार्ट्रिज बस भी शामिल है. उपकरण कार्ट्रिज CEPT ए (120 मिमी) या CEPT बी (600 मिमी) के अनुसार कइ उपकरण लगे है. यूनिट-विशिष्ट प्रोसेसर मेंटनेंस को संभालता है. DM 2 मल्टीप्लेक्स उपकरण के कार्ट्रिज में विभीन्न सर्विसओं प्रदान करती है जहां स्वतंत्र रूप से चैनलो का संचालन होता है.

DM 2 मल्टीप्लेक्स उपकरण एक डिजिटल एक्सचेंज के एनालॉग इंटरफेस (लाल पुस्तक, 1984) के बारे में निम्नलिखित CCITT सिफारिशों को लागू करता है:

- G.703 डिजिटल इंटरफेस
- G.704 बेसिक फ्रेम की संरचना
- G.712 पी.सी.एम कोडिंग के विधि
- G.712 एक वॉइस चैनल 4-वायर इंटरफ़ेस का विशेषताओं
- G.714 ट्रान्स 4-वायर के इंटरफ़ेस का विशेषताओं
- G.713 एक वॉइस चैनल 2-वायर इंटरफ़ेस का विशेषताओं
- G.732 पी.सी.एम मल्टीप्लेक्स उपकरण
- G.735 सिंक्रोनस डॉटा इंटरफेस के सुविधा के लिए पी.सी.एम मल्टीप्लेक्स उपकरण
- G.823 जिटर और वैन्डर (Wander)
- Q.507 एक वॉइस चैनल का ट्रांजिट एक्सचेंज के विशेषताओं
- Q.517 एक टर्मिनल में एक वॉइस चैनल का विशेषताओं

ऍप्लिकेशन्स:

DM 2 उपकरण एक डिजिटल ट्रांसिमशन सिस्टम है .यह G.703 सिफारिश के अनुसार 2 एम.बि.पि.एस इंटरफ़ेस के माध्यम से एनालॉग वॉइस और सिगन्ल को मल्टीप्लेक्सिंग के लिए डिजाइन किया गया है. इसका उपयोग कापर केबल, रेडियो रिले लिंक, या फाइबर ऑप्टिक केबल के माध्यम से ट्रांसिमशन सिस्टम के रूप में किया जा सकता है. एनालॉग इंटरफ़ेस जैसे 2/4 वायर सब्सक्राइबर इंटरफेस (PABX), इ एंड एम इंटरफेस, जंक्शन लाइन इंटरफेस या कुछ अन्य प्रकार के जरूरी सर्किट के साथ सुसज्जित इंटरफ़ेस हो सकता है.

डिजिटल इंटरफ़ेस G.703, nx64 kbps इंटरफ़ेस या CCITT V. या X. शृंखला की सिफारिशों के अनुरूप <19.2 kbps या n x 64 kbps इंटरफ़ेस हो सकता है. चित्र.3.1 मे DM 2 उपकरणों के कुछ विशिष्ट अनुप्रयोगों को दर्शाता है.

यह एक प्रायमिर पी.सी.एम मल्टीप्लेक्सर है. इसमें 30 वॉइस कनेक्शन, या 30 (31) G.703, 64 kbps कनेक्शन के लिए बना है. DM 2 के मूल उपयोग निम्निलिखित है:

चित्र 3.1 DM2 ऍप्लिकेशन्स

स्वतंत्र रूप से V. या X. डॉटा इंटरफेस का चयन कर सकते है.

"यूनिडायरेक्शनल ब्रांचिग" : मुख्य चैनल बस से स्वतंत्र रूप से चैनल सिलेक्ट किया जा सकता है. इस टाइम स्लॉट को पुन: उपयोग नहीं किया जा सकता है. DM 2 का उपयोग डॉटा और वॉइस कनेक्शन को डिजिटल एक्सचेंज से पहले ट्रांसिमसन पथ में से ब्रांच करना है.

DB2 ब्रांचिग उपकरणों में चैनल युनिटों में टाइम स्लॉट के उपयोग स्वतंत्र रूप से सिलेक्ट किया जाता है ब्रांचिग के ब्कत टाइम स्लॉट स्वतंत्र रूप से चैनलों पर पुन: उपयोग भी किया जा सकता है.

डिजिटल एक्सचेंज के लिए सिगनलीग चैनल सिगनल टाइम स्लॉट 16 का उपयोग किया जाता है.

3.3 ओपारेशन:

DM 2 उपकरणों के सिद्धांत को चित्र 3.2 में प्रस्त्त किया गया है.

DM2 या उसके बस के माध्यम से जुड़े सभी उपकरणों और चैनल युनिटों के साथ एक प्रकार का कॉन्फ़िगरेबेल मक्स है . DM2 बस में एक्सट्रर्नल इंटरफेस G.703, 64 kbps और 2048 kbps इंटरफेस मौजुद है. इसके साथ "सर्विस टर्मिनल" या "टी.एम.एस" "ट्रांसिमशन मैनेजमेंट सिस्ट्म" के लिए V.11 सीरियल इंटरफ़ेस भी मौजूद है. एनालॉग और डिजिटल सर्विस भी DM 2 बस से कनेक्टेड है. एनालॉग चैनल इंटरफ़ेस में दस चैनल होते हैं. चैनल युनिट स्वतंत्र स्लॉट में बैठ सकता है, कोइ भी चैनल किसी भी पी.सी.एम टाइम स्लॉट में भेजा जा सकता है. एक चैनल युनिट से जुड़े सिगनल जैसे की 64 kbps इंटरफ़ेस एक एक्सट्रर्नल सिगनलिंग उपकरणों के द्वारा नियंत्रित किया जा सकता है.

चित्र 3.2 : DM2 के ब्लॉक आरेख

मक्स यूनिट के फंक्शन्स: चित्र 3.3 मक्स युनिट के ओपारेशन को ब्लॉक आरेख में प्रस्तुत किया गया है.

चित्र 3.3: मक्स यूनिट का ब्लॉक आरेख

DM-2 उपकरणों के कार्य:

- ट्रान्समिट डायरेक्शन में 2048 kbps क्लाक उत्पन्न करना.
- चैनल य्निटों में होने वाली "टाइम डिबिजन मल्टीप्लेक्सिंग" पर नियंत्रण रखना.
- आउटपुट सिग्नलिंग को फ्रेम में फार्मैट करना.
- CCITT सिफारिश G.703 के अनुरुप इंटरफ़ेस में HDB3 लाइन कोडित सिगन्ल उत्पन्न करना.
- CCITT सिफारिश G.703 के अनुरुप इंटरफ़ेस मे रिसीभ डायरेक्शन में क्लाक तथा लाइन कोड को डिएसेंबल करना.
- आने वाले सिग्नलिंग फ्रेम के फेज को सिंक्रनाइज़ करना.
- चैनल युनिटों में होने वाली "डीमल्टीप्लेक्सिंग" को नियंत्रण करना.
- रिसिभ सिगन्ल को मॉनिटर करना और AIS को पहचान्ना .
- अलार्म कार्यों को नियंत्रण करना.
- उपकरण में फ़ाल्ट का विश्लेषण करना .
- रैक बस और सभींस बस के लिए अलार्म प्रदान करना.

बस संरचना: DM2 मक्स युनिट और चैनल यूनिटों के बीच इंटरफेसींग "टाइम विभाजन मिल्टिप्लेक्स बस" संरचना के माध्यम से होता है. बाइस और डॉटा बस में फ्रेम का उपयोग कर एक साथ भेजा जाता है.यह फ्रेम संरचना पी.सी.एम मल्टीप्लेक्सींग के समान है.

सिग्निलंग इन्फरमेसन एक पैरालाल डॉटा बस के माध्यम से आदन-प्रदान होता है. सिग्निलंग बस में प्रत्येक चैनल के लिए 8 बिट हैं इसमें 4 सिग्निलंग बिट्स और 4 इंटरनल कंट्रोल बिट्स है .इस के अलावा, उपकरणों के लिए एक एसिंक्रोनस सीरियल बस भी है.

आउटपुट डायरेक्शन में : मक्स युनिट के ट्रांसमीटर में एक ओसीलेटर है. जो आउटपुट डायरेक्शन में अपेक्षित टाइम सिगन्ल उत्पन्न करता है. वांछित रिसीभ क्लॉक के लिए यह आपने ओसीलेटर या 2048 kbps एक्सट्रनील क्लॉक से लिया जाता है. लॉकिंग सिगन्ल के चुनाव सर्विस बस के माध्यम से किया जाता है, या प्राथमिकता क्रम के अनुसार अपने आप ही होता है.

मक्स सिंक्रनाइज़ेशन के माध्यम से चैनल युनिटों में होने वाली टाइम डिविजन मल्टीप्लेक्सिंग को नियंत्रित करता है. यह फ्रेम एलाइन्मेन्ट सिगन्ल, रिमोट अलार्म, और उपकरणों के पर्यवेक्षण डॉटा को डॉटा चैनल युनिटों मे मिल्टिप्लेक्स करता है. इसमें CRC की गणना और रिमोट एंड के लिए एक CRC की मल्टी फ्रेम भेजा जाता है.

रिसिब सिग्निलंग बस के माध्यम से वॉइस/ डॉटा समानांतर चैनलों से आता है और यह टाइम स्लॉट 16 में मल्टीप्लेक्स होता है. मल्टी फ्रेम एलाइन्मेन्ट सिगन्ल और अलार्म इन्फरमेसन इसी टाइम स्लॉट में जाता है और औट्पूट एक एडाप्टर इंटरफ़ेस के माध्यम से HDB3 कोडेड सिगन्ल लिआ जाता है .

इनपुट डायरेक्शन में : रिसीभ डायरेक्शन से आने वाली 2048 केबीपीएस सिगन्ल को एम्प्लिफ़इ और रिजेनेरेटेड किया जाता है. इसके अलावा डीमल्टीप्लेक्सिंग में सभी आवश्यक टाइमींग सिगन्ल आने वाले सिगन्ल से जेनेरेट किया जाता है.

उससे पहले, लाइन से आने वाले सिगन्ल को डी-असेंबल किया जाता है. रिसीवर फ्रेम एलाइन्मेन्ट के फेज को खोजता है और इसके साथ अपने ऑपरेशन को सिंक्रनाइज़ करता है. रिसीवर सिंक्रनाइज़ेशन सिगन्ल और क्लॉक सिगन्ल के माध्यम से चैनल युनिटों में होने वाली डीमल्टीप्लेक्सिंग को नियंत्रित करता है.

टाइम डिविजन मिल्टिप्लेक्स डॉटा हर चैनल से संबंधित डॉटा सर्विस बस के माध्यम से संबंधित टाइम स्लॉट के आधार से निकाला जाता है .

64 केबीपीएस इंटरफ़ेस: DM 2 उपकरण में चैनल संबद्ध सिग्नलिंग या कोमन चैनल सिग्नलिंग की सुविधा है.कोमन चैनल सिग्नलिंग चैनल के लिए अलग पी.सी.एम सिग्नलिंग 64 kbps डॉटा इंटरफ़ेस शामिल है. इस इंटरफेस सिग्नलिंग के लिए आवश्यक नहीं है और को या क्न्ट्रा दिशा में 64 kbps इंटरफ़ेस बनाया जा सकता है. टाइम स्लॉट सर्विस इंटरफ़ेस के माध्यम से चयन किया जाता है.

सर्विस इंटरफ़ेस: सर्विस टर्मिनल मक्स में स्थित सर्विस इंटरफ़ेस या "सेंट्राल ट्रांसमिसन मैनेजमेंट सिस्ट्म" से कनेक्ट किया जा सकता है. यह इंटरफ़ेस CCITT सिफारिश V.11 के अनुरूप है . उपकरण में फाल्ट होने पर इस बस के माध्यम से नियंत्रित किया जाता है और सिस्ट्म की गुणवता बस के माध्यम से प्राप्त होता है. उपकरण के कइ सेट एक ही सर्विस बस से जुड़ा जा सकता है फ्रेम संरचना में फ्री बिट्स का लाभ सर्विस टर्मिनल लेता है.

कंट्रोल चैनल : मक्स फ्रेम संरचना में फ्री बिट का उपयोग करता है, जो एक धीमी गित का डॉटा इंटरफेस है इस तरह, एक सैम्पीलिंग सिद्धांत के आधार पर एक डॉटा चैनल का गठन किया जाता है और इसका स्थानांतरण क्षमता 600 2400 बि.पि.एस है इस चैनल में सर्विस इंटरफेस है. इस इंटरफेस में ट्रांसिमशन मैनेजमेंट डॉटा के प्रसारण के लिए उपयोग किया जा सकता है.

मेजरमेंट इंटरफ़ेस : यह इंटरफ़ेस सर्विस इंटरफ़ेस, आउटगोइंग में 2 mbps सिगन्ल, रिसिब 2 mbps सिगन्ल, आउटपुट डायरेक्शन क्लॉक, या रिसिब डायरेक्शन क्लॉक आदी इस इंटरफेस से चुना जा सकता है.

चैनल यूनिट: चैनल यूनिटों की कार्य इस प्राकार है:

- एनालॉग सब्सक्राइबर और जंक्शन लाइन नेटवर्क से स्पीच ट्रांसिमशन चैनलों को जोड़ना.
- CCITT Rec . G.711 (A- Law) के अनुसार स्पिच कोडिंग या डीकोडिंग करना.
- सब्सक्राइबर और जंक्शन लाइन इंटरफेस के सिग्नलिंग को उपकरण के इंटरनल सिग्नलिंग बस के अनुरूप अपनाना.
- औट्पुट डायरेक्शन में, स्पीच / डॉटा को DM2 बस में टाइम-डिविजन मल्टीप्लेक्सिंग करना और इनपुट डायरेक्शन में, स्पीच / डॉटा DM2 बस से मल्टीप्लेक्सिंग को डिएसेम्बेल करना.
- फाल्टी कंडिशन में इंट्रनल आलार्म , एनालॉग सिग्निलंग इंटरफेस को कंट्रोल और मोनिटर करता है.
- बिभिन्न बिट रेट का डॉटा इंटरफेस को DM2 स्पीच / डॉटा बस में मल्टीप्लेक्सिंग और कंट्रोल करना भी है.

ओप्शन: VF सिग्नलिंग और डॉटा के आलावा DM2 में यह ओप्शन है,

- रिंग जनरेटर युनिट
- पी.सी.एम सब्सक्राइबर कनेक्शन के लिए टेस्ट युनिट
- ISDN के लिए U इंट्रफेस

3.4 आपरेशन और मेंटनेंस

एक पोर्टेबल छोटे आकार का सर्विस टर्मिनल कमीशनींग और आपरेशन के लिए प्रयोग किया जाता है. निम्नलिखित पैराग्राफ में DM2 का सामान्य सिद्धांतों और विशेष स्विधाओं का वर्णन किआ गया है.

ओपारेशन और मेंटनेंस सिद्धांतों :सर्विस टर्मिनल कमीशनींग आपरेशन और मेंटेनेन्स के लिए प्रयोग किया जाता है यह DM2 के पैनेल में फ्रन्ट कनेकटर में क्नेक्ट किया जाता है. वैकल्पिक रूप में, सर्विस टर्मिनल स्थायी रूप से मक्स युनिट रैक में सर्विस बस के माध्यम से जुड़ा जाता है और TM-4 रैक, में इन्स्टोल किया जा सकता है. वांछित चैनल को सर्विस टर्मिनल से एड्द्रेस किया जाता है. सर्विस टर्मिनल द्वारा DM 2 युनिटों को सेटिंग किया जाता है. पॉवर सप्लाइ outages या कुछ चैनल युनिट के हटाने और एक स्पेयर युनिट को लगाने से मौजूदा सेटिंग प्रभावित नहीं होते है. DM 2 युनिटों में फाल्ट और मेंटनेंस के लिए, तीन LED संकेत है. उपकरण अलार्म अलार्म बस के माध्यम से ट्रान्सिमट किए जाते है. अलार्म आगे रिले रैक अलार्म के रूप में सेन्ट्रालाइज ट्रांसिमसन मैनेजमेंट केंद्र के लिए A, B और D अलार्म के रूप में NMS में भेजा जाता है

सर्विस टर्मिनल के माध्यम से रिमोट स्टेशनों पर स्थित उपकरणों की निगरानी भी संभव है .सर्विस टर्मिनल TMS ट्रांसिमशन मैनेजमेंट सिस्ट्म के लिए सर्विस इंटरफ़ेस से कनेक्ट होता है, और सेंट्रालाइज ट्रांसिमशन मैनेजमेंट केंद्र पर DM2 से जुड़ी होति है. सर्विस टर्मिनल के आपरेशन मेनू आधारित है. सादी भाषा में सर्विस टर्मिनल फाल्ट की कंडीशन को इंगित करता है. सर्विस टर्मिनल का उपयोग पूरी तरह से स्वतंत्र है. सर्विस टर्मिनल से आवश्यक प्रिंटआउट, सर्विस और मेनू आदी मिलता है.

सर्विस टर्मिनल से DM 2 में निम्नलिखित सेटिंग्स किया जाता है.

- टाइम स्लॉट के चयन
- चैनलों की ब्रांचींग
- लेबेल सेटिंग्स
- नेटवर्क बैलेंसिंग सेटिंग्स
- इम्पीडेन्स सेटिंग
- सिग्नलिंग पैरामीटर सेटिंग्स
- डॉटा इंटरफेस पैरामीटर सेटिंग्स
- टाइम स्लॉट 0 में फ्री बिट्स का अन्प्रयोग
- एक एक्सर्ट्नल 64 केबीपीएस इंटरफ़ेस का उपयोग

सर्विस टर्मिनल सब्सक्राइबर के उपयोग हेत् विभीन्न मापन आदि करता है

उदाहरण के लिए DM2 में एरर रेसीओ की निगरानी, ट्रांसमिसन पथ की गुणवता से जुड़े आँकड़े, सेल्फ डाइगोन्टीक और फाल्ट की इन्फरमेसन पर आंकड़े के निर्माण संकलन आदी संभव है.

पॉवर सप्लाइ: DM2 में आवश्यक इंटरनल वोल्टेज ऑनबोर्ड पॉवर सप्लाइ मॉड्यूल द्वारा सेन्ट्रालाइज बैटरी वोल्टेज से उत्पन्न होता है. सिगनलिंग के लिए आवश्यक सेन्ट्रालाइज बैटरी वोल्टेज से क्राइटेरियन वोल्टेज एक अलग वोल्टेज कनेक्टर के माध्यम से पाया जाता है. जब आवश्यक हो तो अलग से पॉवर सप्लाइ युनिटों में एक रिंग वोल्टेज के रूप में विशेष वोल्टेज के उत्पन्न करता है. सेन्ट्रालाइज बैटरी वोल्टेज और स्टेशन से प्राप्य क्राइटेरियन वोल्टेज पॉवर सप्लाइ कार्ट्रिज के माध्यम से कारट्रीज को दिया जाता है.

3.5 बेसिक इकुयेप्मेन्ट एसोर्ट्मेन्ट

DM2 मे विभीन्न उपकरण है, इनमें से महत्वपूर्ण उपकरण सेट निम्नलिखित पैराग्राफ में वर्णित है.

DM2-EM

इसमें 30 चैनल 2-बायर या 4- बायर इ एंड एम वॉइस चैनलों मौजुद है. प्रति यूनिट में दस चैनल मौजुद है इसमें 8 चैनल कार्ड भी है

DM2-64K/G.703

यह युनिट CCITT Rec G.703 के अनुसार 31 "को" यो "कंट्रा डायरेकशनल" डाटा इंटरफेस है. बेसिक यूनिट में दस चैनल मौजुद है.

DM2- n x 64K / G.703

इस युनिट में 2 mbps पर युनिलेटाराल ब्रांचिग ट्रांसिमशन नेटवर्क की सुविधा है.

DM2-48.....64K/X.21,V.11,V.35

इस युनिट में 48,56,या 64 केबीपीएस V.35, V.11, X.21 डॉटा इंटरफेस मौजुद है. प्रति यूनिट में दस चैनल मौजुद है पर यह कंट्रोल बिट को ट्रान्सिमट नहीं करता है पर जो 5 चैनल प्रति यूनिट वाले में यह कंट्रोल बिट कि सुबिधा है . एक स्पेशल भारसन में 48....64 केबीपीएस में लाक करने कि सुबिधा है.

DM2-19.2K/V.28

लो स्पीड के V. या X. श्रृंखला डॉटा इंटरफेस इन युनिटों में मौजुद है. एक यूनिट में 8 चैनल मौजुद है. यह एक 64 केबीपीएस के चैनल के कुछ पार्ट को युज करता है . यह 4 चैनल के बेस बैन्ड मोड्युल के साथ इस्तेमाल किया जा सकता है .

DM2-SUB

पी.सी.एम सब्सक्राइबर उपकरण अधिक से अधिक 30 चैनल सब्सक्राइबर के उपयोग हेतु 2 mbps पर इस्तेमाल किया जा सकता है. यहां पर 6 पोर्ट सब्सक्राइबर इंटरफेस पर और 6 पोर्ट एक्सेन्ज इंटरफेस पर मौजुद है.

3.6 उपकरणों को लैस करने का बिक्ल्पों :

चित्र 3.4 में कुछ विशिष्ट सब रैक विकल्प प्रस्तुत किया गया है TM 4 के यांत्रिक निर्माण विभीन्न उपकरणों के लिए फ्लेक्सिबल संभावनाएं प्रदान करता है.

बेसिक कार्ट्रिज की साइज 20T(चार स्लाट) और 40T(8 स्लाट) होते है. सब रैक में अधिकतम विकल्प तीन 20T(12 स्लाट) या दो 40T(16 स्लाट) की अनुमित देते है. सभी चैनल युनिट के लिए कार्ट्रिज एक ही प्रकार के है. मक्स, चैनल, और सहायक युनिटों एक स्लॉट (5T) लेती है जब रींग जनरेटर दो स्लॉट (10T) लेता है. कोइ भी युनिट को उसी के कार्ट्रिज में लगाना चाहिए. जब कि रींग जनरेटर को उसी के कार्ट्रिज में लगाना चाहिए जो 30 चैनल सिस्ट्म के लिए कोमन है.

चित्र 3.4 DM 2 से लैस युनिट, उदाहरण के साथ

DM2 से लैस युनिट चित्र 3.4 में दिखाया गया है.

- 20T कार्ट्रिज में 30 चैनल बेसिक पी.सी.एम मल्टीप्लेक्सर युनिट लैस रहता है.
- सब्सक्राइबर सिगनलिंग या डीसी-लूप ,जंक्शन लाइन सिगनलिंग 40T कार्ट्रिज में लैस रहता है. सब्सक्राइबर सिगनलिंग उपयोग के लिए आरक्षित युनिट स्लॉट सब्सक्राइबर इंटरफ़ेस के विकल्पके लिएरखा जा सकता है. रींग जनरेटर 20T कार्ट्रिज मे रखा जा सकता है.
- DB2 ब्रांचिंग युनिट का एक उदाहरण है. यह ब्रांचिंग युनिट के अलावा nx64kbps या 2 mbps इंटरफ़ेस युनिट के उपयोग करता है . DM2 किसी भी चैनल यूनिट में ब्रांचिंग पर उपयोग किया जा सकता है,यह चित्र सब्सक्राइबर कनेक्शन, इ एंड एम सिगन्लन इंटरफेस और डॉटा इंटरफेस युनिटों एक मिसाल पेस करता है.
- स्लिम रैक CEPT-A में तीन 20 T कार्ट्रिज पावर से जुड़े रहते हैं, चित्र 3.4 में दिखाया गया है, सहायक युनिटों कार्ट्रिज के उपर है, वे ऐसे रिंग जनरेटर, सब्सक्राइबर इंटरफ़ेस आदि DM2 उपकरणों के लिए यह कोमन हो सकता है. दो युनिटों कार्ट्रिज के बिच का जगह को 40 T कार्ट्रिज जैसारखा जा सकता है.

3.7 तकनीकी स्पेसिफिकेशन:

फ्रेम संरचना :

CCITT सिफारिशें G731,G 732,G735 और G736

बिट दर: 2048 kbps प्रति फ्रेम टाइम स्लॉट: 32 मैक्स मे स्पीच चैनलों: 30

डॉटा के लिए अधिकतम ट्रांसिमशन क्षमता 1984 kbps

मल्टी फ्रेम प्रति फ्रेम: 16 सीआरसी फ्रेम प्रति मल्टी फ्रेम: 16

ऑडियो फ्रिकोएन्सि प्रफरमेन्स :

पी.सी.एम कोडिंग: CCITT Rec G.711

सैंपलिंग दर: 8 किलोहर्ट्ज़

बिट्स प्रति सैंपल : 8

कम्प्रेशन लां: CCITT A-law

सिगनलींग

सिगनलींग टाइम स्लॉट: 16

सिगनलींग कोड : उदाहरण CCITT Q.421

सैंपलिंग अंतराल : 2ms

एनालॉग सिगनलिंग इंटरफ़े

- इ एंड एम सिगनलिंग
- सब्सक्राइबर सिगनलिंग
 - बेसिक सिगनलिंग
 - अतिरिसिगनलिंग उदा ,सब्सक्राइबर मीटरिंग
- जंक्शन लाइन सिगनलिंग
 - डीसी लूप सिगनलिंग
 - सब्सक्राइबर विशिष्ट सिगनलिंग

3.8 जनरल सिद्धांत:

DM2 एक 31 चैनल-मल्टीप्लेक्सींग उपकरणों के परिवार में है, जिसका बिट रेट 2048 kbps है. यह 2048 kbps में 30 स्पीच या डॉटा सिग्नल डॉटा स्थानांतरण 31 टाइम डिविजन मल्टीप्लेक्सिंग का उपयोग करते हुए इंडिकेशन को जोड़ती है. मल्टीप्लेक्स उपकरण DM2 यूरोपीय डिजिटल मल्टीप्लेक्स पदानुक्रम के पहले चरण का प्रतिनिधित्व करता है. चित्र 3.5 में उपकरणों की स्ट्रक्चरल सिद्धांत को दर्शाता है. इसमें सभी उपकरणों और ऑपरेटिंग पर्यावरण उपकरणों के लिए अनुकूलित है यहां विभीन्न एडाप्टर युनिटों चैनल युनिटों के लिए एक मल्टीप्लेक्स खंड है. DM2 उपकरणों की युनिटों के बीच इंटरनल इंटरफेस टाइम विभाजन मिल्टिप्लेक्स बस संरचना के माध्यम से जुड़ा रहता हैं। इस उपकरणों का ट्रांसिमसन क्षमता बहुत ही लचीला है.

चित्र 3.5 मल्टीप्लेक्सिंग उपकरण DM 2

मल्टीप्लेक्सिंग अनुभाग ,उपकरणों को नियंत्रण, मल्टीप्लेक्सिंग और मॉनीटरिंग करती है. चैनल युनिटों के माध्यम से, DM2 उपकरण ऑपरेटिंग वातावरण के लिए अनुकूल बनाता है.

DM उपकरणों के विभीन्न नियंत्रण आदेश सर्विस टर्मिनल के माध्यम से उपकरणों की सर्विस इंटरफेस (MI) से लिया जाता है.उपकरण मे अलग ट्रांसिमशन कंट्रोल स्विच नहीं है. इस एक ही बस के माध्यम से उपकरण रिमोट नियंत्रित किया जा सकता है, जिसे एक केंद्रीकृत ट्रांसिमशन मैनेजमेंट सिस्ट्म से जुड़ा जा सकता है.

मल्टीप्लेक्स उपकरण DM2 स्वतंत्र रूप से अपनी क्लाक के सिगन्ल उत्पन्न करता है। फिर भी इसे एक्सट्रर्नल क्लाक स्रोत से सिंक्रनाइज़ किया जा सकता है. DM2 ट्रांसमीटर के बेसिक ओसिलेटर 2048 किलो-हर्ट्ज़ क्लाक सिगन्ल उत्पन्न कर सकते है.

विभीन्न सिगनल परिवर्तनों के साथ पी.सी.एम मल्टीप्लेक्स उपकरण DM 2 उपकरण एक मुख्य रूपांतर क्षेत्र है. DM2 का उपयोग एक्सचेंज के लिए सिगनल/डॉटा "चैनल एसोसीएट" या "कोमोन चैनल सिगनलिंग" का उपयोग करता है.

मक्स के ओपारेशन :

मक्स (टीसी 21100, टीसी 21101, और टीसी 21101.1) सभी DM 2 उपकरण एक सामान्य मल्टीप्लेक्सिंग खंड है. इस में टाइम-डिविजन मल्टीप्लेक्सिंग आउटगोइंग सिगनल के लिए फ्रेम स्वरूप उत्पन्न करता है. रिसीवर मे आने वाले सिगन्ल के फ्रेम ऑपरेशन को सिंक्रनाइज़ और चैनल युनिटों में डीमल्टीप्लेक्सिंग को नियंत्रित करता है. यह चैनल युनिटों से फ़ाल्ट और रैक अलार्म इकट्ठा करता है.

मक्स के ब्लॉक डिबिजन:

चित्र 3.6 मे मक्स के संचालन का वर्णन ब्लॉक आरेख प्रस्तुत किया गया है. इसका फांसन्ल य्निट 10 ब्लॉकों में बांटा गया है:

• मक्स - मक्स -डी मक्स सर्किट

• ओसिलेटर - फेज लाक ओसिलेटर

• लाइन I/F - उपकरण इंटरफ़ेस 2048 kbps

सिंक्रनक I/F
 सिंक्रनाइज़ेशन के इंटरफ़ेस

• डॉटा I/F - डॉटा इंटरफ़ेस 64kbps

मेजर I/F - माप इंटरफ़ेसक्नट्रोल - नियंत्रण खंड

• क्नट्रोल I/F - सर्विस और डॉटा चैनल इंटरफ़ेस

• युनिट I/F - चैनल इंटरफ़ेस

• पाबर यूनिट - पावर पॉवर सप्लाइ हेतु

मक्स मल्टीप्लेक्सिंग और डीमल्टीप्लेक्सिंग से संबंधित मामलों का ख्याल रखता है. आउटगोइंग डायरेक्शन में चैनल युनिटों में टाइम डिविजन मल्टीप्लेक्सिंग नियंत्रित करता है और चैनल से आ रही इन्फरमेसन के लिए फ्रेम एलाइन्मेन्ट शब्द नियंत्रण करता है .टाइम स्लॉट 16 मे चैनल के सिग्नलिंग इन्फरमेसन आउटगोइंग सिगन्ल से जोड़ता है. जहाँ इसे रैम मेमोरी में संग्रहीत किया जाता है और सिगनल ब्लॉक लाइन में आउटगोइंग इंटरफ़ेस से HDB3 लाइन कोड में भेजा जाता है .

चित्र 3.6 मक्स यूनिट ब्लॉक आरेख

सिंक्रनाइज़ेशन के मानदंडों : सिंक्रनाइज़ेशन के संबंध में उपकरणों के मानदंडों CCITT द्वारा परिभाषित है . यदि लगातार तीन फ्रेम एलिन्मेन्ट संकेतों को ग़लत होने पर फ़्रेम को खो जाना माना जाता है। टाइम स्लॉट 0 मे क्रमिक ग़लती तीन बार प्राप्त ह्आ तो फ़्रेम खो जाना माना जाता है.

सी.आर.सी फ्रेम एलिन्मेन्ट स्ट्रेटेजि: यदि फ्रेम एलिन्मेन्ट प्राप्त किया गया हो और सीआरसी लॉकिंग कम से कम दो बार होता हो .दो सी.आर.सी मिल्टिफ्रेम एलिन्मेन्ट संकेतों के बीच अंतराल 2 एमएस होता है और जब मिल्टिफ्रेम एलाइन्मेन्ट शब्दों 8 ms के भितर पता चलता है.

साइक्लीक रिङ्न्डेन्सी चेक की जाँच : मक्स की रिसीवर मे आने वाले सिगन्ल के विपरीत अंत मे ट्रांसमीटर एक साइक्लीक रिङ्न्डेन्सी चेक करता है और ट्रांसमीटर के द्वारा भेजे गए चेक परिणाम को प्राप्त चेक परिणाम तुलना करती है। एक जांच के दौरान अधिक से अधिक 915 सीआरसी ब्लॉकों एक सेकेन्ड 1000) ब्लॉक के दौरान पाए जाते हैं, तो एलिन्मेन्ट शब्द खोजा जाता है .फ्रेम एलिन्मेन्ट शब्द > 0.99के भीतर का पता चला है तो फ़ाल्ट अनुपात इ 3- एक गलत खोज के लिए संभावना के कारण चक्रीय अतिरेक की जाँच करने के साथ एक दूसरे के दौरान 1E-4 से कम होता है .

सर्विस इंटरफ़ेस :मक्स के नियंत्रण खंड में प्रोसेसर के सीरियल इंटरफ़ेस के माध्यम से सर्विस बस जुड़ा है, DM2 उपकरण को लोकल या रिमोट नियंत्रित सर्विस टर्मिनल या ट्रान्सिमसन मैनेजमेंट कंप्यूटर द्वारा नियंत्रित किया जा सकता है .मक्स की इंटरनल नियंत्रण बस के माध्यम से अन्य युनिटों नियंत्रण कर सकते है. आने वाली ट्रांसिमशन मैनेजमेंट सिगनल MIA, MIB के नियंत्रण (में इंटरफ़ेस रिसीवर के माध्यम से ले जाया जाता है, तो नियंत्रण ब्लॉक) MIR करने के लिए ब्लॉक बस से जुड़ा उपकरण से प्रत्येक का अपना पता एड्रेस होता है.

अलार्म :मक्स मे फाल्टी हालत मे डॉटा और अलार्म इकट्ठा इंटरफेस और सर्विस बस के माध्यम से इंगित करता है. अलार्म इंटरफेस दो प्रकार के होते है रैक अलार्म इंटरफेस (A,B और D) प्रोग्राम अलार्म इंटरफेस (PA1, PA2).

लाल, पीले और हरे रंग अलार्म उत्पादन करने के लिए प्रत्येक युनिट मे तीन मेंटनेंस एल इ डी है. लाल एल.इ.डी युनिट फाल्टी है और पीले रंग एल.इ.डी फाल्ट उपकरण के बाहर है, हरी एल.इ.डी सर्विस टर्मिनल या ट्रान्सिमिशन मैनेजमेंट कंप्यूटर द्वारा नियंत्रित किया जाता है.

फाल्ट की स्थिति में S अलार्म DM2 उपकरणों की सर्विस जब उपलब्ध न हो . अलार्म एस फाल्टी हालत का पता लगाने से 2 ms के भितर दिया जाता है.

- अलार्म A उपकरण की क्षमता पूरा नहीं है और उपकरण को तत्काल मेंटनेंस करना है.
- अलार्म B उपकरण की क्षमता गड्बड है, लेकिन उपकरण अब भी डॉटा ट्रांसमिशन कर सकता है.
- फ़ार एडं मल्टीप्लेक्स उपकरणों के लिए सिगन्ल भेजा जाता है.
- फ़ार एडं उपकरणों के लिए अलार्म सिगन्ल फ्रेम में टाइम स्लॉट 6 में बिट16 को बदलकर 0 को '1' करके भेजा जाता है

चैनल युनिटों में फाल्ट: चैनल युनिटों से फाल्ट की इन्फरमेसन एकत्र किया जाता है. फाल्ट प्रोसेसिंग के लिए, मक्स पहला फाल्ट उनके प्रकार और चैनल युनिटों से उपकरण अलार्म कि इन्फरमेसन एकत्र करता है. फाल्ट के आधार पर, मक्स अलार्म उत्पादन को सिक्रय करता है और सर्विस इंटरफ़ेस के माध्यम से फाल्ट को इंगित करता है.

पावर सप्लाइ: DM2 उपकरण मुख्य रूप से विकेन्द्रीकृत पाँवर सप्लाइ का उपयोग करता है. प्रत्येक युनिट अपने ऑपरेटिंग वोल्टेज प्राप्त करता है. केंद्रीय बैटरी वोल्टेज से आवश्यक ऑपरेटिंग वोल्टेज उत्पन्न करता है। इसके अतिरिक्त अच्छी तरह से अन्य सभीचैनल युनिटों की बस ट्रांसमीटर सर्किट 5v देती है.

सिगन्ल उपकरण रूपांतरों द्वारा आवश्यक मानदंड वोल्टेज रैक पाँवर सप्लाइ बस के माध्यम से उपकरणों के लिए लिया जाता है। यदि आवश्यक हो तो सब्सक्राइबर सिगन्ल उपकरण के द्वारा जरूरी रींग वोल्टेज RG1, RG2 उपकरण बाहर से लिया जाता है.

विशेष कार्य :

लूप बैक :लूप बेक अपने स्वयं के सिगन्ल के साथ इंटरफेस के आपरेशन की जांच करने के लिए और माप आसान बनाने के लिए उपयोग किया जाता है. लूप बेक सर्विस इंटरफ़ेस के माध्यम से होता हैं। वापस उपकरण लूप बेक वापस और इंटरफ़ेस लूप बेक दो प्रकार के होते हैं.

कार्ट्रेज़ से लैस करना: DM2 उपकरण रैक में इन्स्टोल करने के लिए कारत्स लिआ जाता है. रैक की स्थापना और केबल बिछाना TM4 निर्माण अभ्यास के लिए ऑपरेटिंग हैंडबुक में वर्णित हैं. 20 T कार्ट्रिज चार यूनिट स्थानों और 40 T आठ यूनि कृपया चित्र 3.7 देखें

सर्विस कनेक्टर P1: सर्विस कनेक्टर P1 सर्विस इंटरफेस (MI) है, डॉटा चैनल इंटरफेस (डी.आइ) और DM2 उपकरणों के प्रोग्रामेबल अलार्म इंटरफेस (PA1, PA2, पिन). DM2 सर्विस इंटरफेस के माध्यम से सर्विस टर्मिनल या केंद्रीकृत ट्रांसिमशन मैनेजमेंट सिस्ट्म (टीएमएस) से जुड़ा है. अलार्म इंटरफेस उपकरण-विशिष्ट प्रोग्रामेबल अलार्म निर्गम (PA1,PA2) और एक प्रोग्राम अलार्म इनपुट (PIN) होते है चित्र.3.8 को कृपया देखें.

चित्र: 3.7 DM2 से लैस 20 T कार्ट्रिज

चित्र 3.8: मक्स मे कनेक्टर्स

3.9 DB -2 के मल्टीप्लेक्सिंग कॉन्फ़िगरेशन : DB 2-मल्टीप्लेक्सिंग कॉन्फ़िगरेशन ऑप्टिक फाइबर लिंक में स्टेशन पर चैनलों को ड्रॉप/इनसर्ट करने के लिए प्रयोग किया जाता है और कुछ चैनलों को स्टेशन पर थ्र किया जाता है.

2 एम.बी.पी.एस ब्रान्चींग: DB 2 सिस्ट्म में, चेन और ट्री ट्रांसिमशन सिस्टम में कॉन्फ़िगर कम लागत में किया जा सकता है. ब्रान्चींग के माध्यम से, 2 एम.बी.पी.एस सिस्टम में चैनल यानी, 30-चैनल फ्रेम संरचना को ब्रान्चींग किया जा सकता है, जो चित्र 3.9 में देख जा सकता है.

चित्र 3.9 2 एम.बी.पी.एस सिस्टम में ब्रान्चींग

चैनलों को उनके फ्रेम संरचना में रखते हुए डिजिटल स्वरूप में ब्रान्चींग होती हैं। यह लगावायर ए/डी रूपांतरण को उपयोग नहीं करते है जिसमें एक पूरी तरह से डिजिटल नेटवर्क शृंखला के निर्माण हो पाता है। इस नेटवर्क शृंखला में एक चैनल के प्रदर्शन मूल्यों को एक मानक के रूप में प्राप्त होता हैं. DB 2 में डिजिटल स्वरूप में ब्रान्चींग होते हैं यहा VF चैनलों के अलावा, थोड़ा अलग दरों पर डिजिटल डाटा इंटरफेस की चयन भी साथ मे उपलब्ध है। सभी डिजिटल डॉटा चैनलों पर VF डॉटा मोडेम लगाने की आवश्यकता नहीं है.

DB 2 उपकरण के प्रकार

2 एम.बी.पी.एस ब्रान्चींग उपकरण DB2B

2 एम.बी.पी.एस सिगन्ल (CCITT G.703 / 704/706) दो डायरेक्शनओं (मुख्य शाखा, 2 एम.बी.पी.एस इंटरफेस 1 और 2) उपकरणों के लिए आता है चित्र 3.10 मे देखें । अपेक्षित 64 केबीपीएस चैनलों 2 एम.बी.पी.एस सिगन्ल से अलग हो के एक नया 2 एम.बी.पी.एस फ्रेम उत्पन्न करता है. टाइम स्लॉट TS16 में मौजूदा सभी चैनल-एसोसिएटेड सिगन्लन आमतौर पर 64 kbps टाइम स्लॉट के रूप में एक ही रास्ते में जाती है। इसके अलावा nx32 kbps और nx64 kbps कनेक्शन भी जा सकता है.

चित्र 3.10. 2 एम.बी.पी.एस ब्रांचिग में बंटी उपकरण DB 2 बी

चैनल बिना किसी सीमा के मुख्य ब्रान्च के दोनों डायरेक्शनओं ब्रान्चींग किया जा सकता है। ब्रान्चींग इस प्रकार हैं:

- इंटरफेस 1 और 2 के बीच थ्र कनेक्शन
- इंटरफेस 1 और 2 के बीच चैनलों की व्यवस्था
- डायरेक्शन 1-3 में ब्रान्चींग
- डायरेक्शन 2-3 में ब्रान्चींग
- VF चैनलों
- डिजिटल चैनलों

उदाहरण के लिए, 1-3 ब्रान्चींग में:

Table 1: Dir 1 Dir 2 Dir 3
B1: 11-18 1-8

यह ब्रान्चींग के संबंध में फ्रेम संरचना में चैनलों का स्थान बदलने के लिए की जाती है. यह चैनल अगले ट्रांसिमशन डायरेक्शन (डायरेक्शन) 2 में प्न: उपयोग किया जा सकता है.

ब्रान्चींग शर्त के ट्रांसिमशन उपकरणों सभी के लिए कोमन सर्विस बस के द्वारा परिभाषित किया गया है। इस गतिविधि टीएमसी ट्रांसिमशन मैनेजमेंट कंप्यूटर के माध्यम से या पोर्टेबल सर्विस टर्मिनल का उपयोग करके किया जाता है। एक ही सर्विस टर्मिनल भी नोकिया द्वारा निर्मित अन्य ट्रांसिमशन और मल्टीप्लेक्स के उपकरणों के साथ प्रयोग किया जाता है.

तिसरा डायरेक्शन में 2 एम.बी.पी.एस इंटरफेस एक अलग 2 एम.बी.पी.एस G.704 चैनल के साथ लागू किया जा सकता है। इंटरनल 2 एम.बी.पी.एस बस के लिए एक्सट्रनील 2 एम.बी.पी.एस G.704 सिगन्ल से वांछित टाइम स्लॉट्स लेता है। तिसरे डायरेक्शन मे चैनल युनिटों का शेयर में 30 (31) X 64 केबीपीएस ब्रांचिग में उपकरणों की इंटरनल 2 एम.बी.पी.एस बस से ली जाती है

निम्न प्राथमिक मल्टीप्लेक्स उपकरण युनिटों मे चैनल युनिटों का उपयोग कर सकते हैं

- VF इ एंड एम इंटरफ़ेस,
- विभीन्न प्रकारों सिगनल के साथ VF इंटरफ़ेस
- सब्सक्राइबर युनिटों (एक्सचेंज और सब्सक्राइबर)
- डिजिटल डॉटा इंटरफेस युनिटों 0.। .19.2 केबीपीएस
- डिजिटल डॉटा इंटरफेस युनिटों 48Nx64 केबीपीएस

ब्रान्चींग के प्रकार : एक ही ब्रान्चींग पाइन्ट पर, नीचे वर्णित विभीन्न चैनलों के लिए उपयोग किया जा सकता है.

ड्रॉप-और-इनसर्ट चैनल : चैनलों को दोनों डायरेक्शनओं मे ड्रॉप-और- इनसर्ट करने के लिए ब्रान्चींग किया जाता है चित्र 3.11 देखे यदि आवश्यक हो तो एक दूसरे के इंटरफ़ेस से टाइम स्लॉट बदला जा सकता है.

ब्रान्च होने के लिए चैनल इस प्रकार है:

32 केबीपीएस = एक टाइम स्लॉट के आधा

64 केबीपीएस = एक टाइम स्लॉट

Nx32 केबीपीएस

चैनलों के किसी भी सिगन्ल (बिट पारदर्शिता) के स्थानांतरण के लिए उपयोग किया जा सकता है। चैनल से जुड़े एसोसिएटेड सिग्नलिंग के साथ मिलकर टाइम स्लॉट में एक ही तरीके से ब्रान्चींग की जा सकती है.

चित्र 3.11 ब्रान्चींग सिस्ट्म के कनेक्शनों

VF कोमन चैनल

VF कोमन चैनल इस प्रकार उपयोग किया जा सकता है:

- पोलिंग डॉटा कनेक्शन
- रेडियो टेलीफोन के लिए बेस स्टेशन सिस्टम
- सर्विस टेलीफोन व्यवस्था।

संक्षेप मे VF के लिए पी.सी.एम कोडित, डिजिटल प्रारूप में A-Law के अनुसार किया जाता है. VF कोमन चैनलों के प्रकार हैं:

- 3 तरह से समींग ओमनीबस
- अलग डायरेक्शनओं मे यूनिडायरेक्शनल समींग

एक डिजिटल कोमन चैनल VF आम चैनल का सिग्नलिंग चैनलों में उपयोग किया जा सकता है.

3.10 उपकरणों के कार्य : ब्रान्चींग उपकरण DB2B ,B2, और X2 के होते हैं, चित्र 3.12 मे देखे .

B2 यूनिट:

- 1 और 2 डायरेक्शनओं मे 2 एम.बी.पी.एस इंटरफेस
- मशीनरी उपकरण की निगरानी

X2 यूनिट:

- 3x2 एम.बी.पी.एस डिजिटल कनेक्शन के क्षेत्रों
- कनेक्शन क्षेत्र का नियंत्रण
- मल्टीप्लेक्स उपकरणों के 2 एम.बी.पी.एस इंटरनल बस
- 2 एम.बी.पी.एस इंटरफ़ेस डायरेक्शन 3 की ओर

उपकरणों में, पॉवर सप्लाइ के लिए अलग पीसीबी के लिए कोइ जरूरत नहीं है; प्रत्येक पीसीबी मे डीसी / डीसी कनवर्टर है। DB 2 बी एक 20 टी कार्ट्रिज के आधे जगह का उपयोग करता है. बैटरी वोल्टेज और रैक अलार्म बस एक फ्लैट केबल द्वारा पीछे से कार्ट्रिज मे लाया जाता है.

चित्र 3.12 : DB 2 B ब्लॉक और कार्टरिज से लैस

B2 यूनिट के कार्य :

B2 यूनिट निम्न ब्लॉक के होते हैं चित्र 3.13 देखें

- डायरेक्शनओं 1 और 2 के 2 एम.बी.पी.एस G.703/704/706 इंटरफेस
- सर्विस इंटरफेस (टीएमएस/सर्विस टर्मिनल, V.11)
- डॉटा इंटरफेस (V.11) और 4 बे हाइब्रीड
- उपकरणों की इंटरनल क्लाक
- पॉवर सप्लाड -20 V. -72 V / ± 5 V
- उपकरणों की निगरानी प्रोसेसर से नियंत्रित करने के लिए

- 2 एम.बी.पी.एस इंटरफ़ेस ब्लॉक
- 2 एम.बी.पी.एस Rx-डायरेक्शन के कार्य
- उपकरणों आने वाले सिगन्ल को CCITT सिफारिश G.703 के अनुरूप कन्वर्ट करना
- फ्रेम के फेज और आने वाले सिगन्ल के मल्टी फ्रेम के फेज को सिंक्रनाइज़ करना (CCITT G.706)
- सीआरसी मल्टी फ्रेम के फेज के लिए सिंक्रनाइज़ (CCITT G.706) करना
- प्राप्त सिगन्ल के फ़ाल्ट अन्पात को मॉनिटर करना
- 10 E 3 (TS0 फ्रेम एलाइन्मेन्ट शब्द)
- 10 E -6 (TS0/B 1 सीआरसी)
- 2 एम.बी.पी.एस मे एआइएस की पहचान करना
- दूर के अलार्म बिट्स TS0/B3 और F0/TS16/B -6 (तृतीय दर लो पास फिल्टरिंग) प्राप्त करना
- फाल्ट की स्थिति में आवश्यक उपाय करना

Tx डायरेक्शन मे 2 एम.बी.पी.एस के कार्य:

- CCITT Rec G.703 के अन्सार इंटरफ़ेस में HDB-3 लाइन कोडित सिगन्ल उत्पन्न करना ।
- आउटगोइंग सिगन्ल मे फ्रेम संरचना G.704 और टाइम स्लॉट TS16 मल्टी फ्रेम संरचना उत्पन्न करना
- बिट TS0/B1 के लिए एक G.704 सीआरसी मल्टी फ्रेम उत्पन्न करना
- फार एडं अलार्म बिट्स TS0/B3 और F0/TS16/बी 6 संचारित करना ।

2 एम.बी.पी.एस इंटरफ़ेस का केबिलेंग यूनिट के सामने से किया जाता है। कनेक्टर मे एक 2x32 पिन यूरो कनेक्टर ($120~\Omega$ / $75~\Omega$) या $75~\Omega$ एसएमबी कोएक्सीय्ल कनेक्टर है। यूरो कनेक्टर में केबिलेंग अलग केबल के साथ किया जाता है जो, दोनों के लिए अलग 2x7 पिन ब्लॉक 2 एम.बी.पी.एस इंटरफेस के लिए हैं |

दोनों 2 एम.बी.पी.एस इंटरफ़ेस ब्लॉकों के लिए मॉनिटरिंग.

निगरानी का कार्य इस प्रकार है:

- पूरे उपकरणों की फाल्ट डॉटा का विश्लेषण करना.
- इंटरफेस 1 और 2 के लिए उपलब्धता के मापदंडों (G.821) का विश्लेषण करना.
- फाल्ट के आधार पर रैक बस के लिए अलार्म देना .
- टी.एम.एस या सर्विस इंटरफ़ेस के माध्यम से सर्विस टर्मिनल के साथ काम करना.
- टी.एम.एस को पोलिंग करना.
- मेन् हैंडलिंग करना.
- उपकरणों की अन्य युनिटों के लिए सर्विस इंटरफेस के माध्यम से संदेश प्रसारित करना.

सर्विस इंटरफ़ेस : B2 यूनिट में MI/ MO इंटरफ़ेस के माध्यम से, DB 2 उपकरण ट्रांसिमशन मैनेजमेंट सिस्ट्म (टीएमएस) के साथ इंटरफेस करता है .यह CCITT सिफारिश V.11 का अनुपालन करता है. इसके अलावा नोकिया दूरसंचार द्वारा निर्मित अन्य दूरसंचार उपकरण को एक ही सर्विस के लिए बस से इंटरफ़ेस करता है.

चित्र 3.13 B2 यूनिट के ब्लॉक आरेख

बस के लिए इंटरफ़ेस के प्रत्येक सेट में अपनी पता है. पते के आधार पर उपकरण संदेशों को पहचानती है इन संदेशों के अनुसार कार्रवाइ करता है, और एक प्रतिक्रिया उत्पन्न करता है. उपकरण के सर्विस इंटरफ़ेस के माध्यम से नियंत्रित किया जाता है, और फाल्ट की मद और प्रकृति के बारे में विस्तृत इन्फरमेसन उपलब्ध होती है, मेनू की आइटेम ओबजेक्ट से आता है

डाटा चैनल :

B2 युनिट अपने स्वयं के डॉटा इंटरफेस . टाइम स्लॉट TSO की खाली बिट्स बी 4 - बी 8 (DI / DO) के साथ प्रदान की गइ है। यह Sampling सिद्धांत आधारित है. Sampling फ़िकोएन्सि बिट्स की संख्या पर निर्भर करता हैजो 4, 8, या 16 kHz होता है। आम तौर पर 600, 2400 बॉड मैनेजमेंट एक डॉटा स्टेशन से दूसरे स्टेशन के लिए डॉटा चैनल के माध्यम से स्थानांतरित करता है। बिट TSO / बी 8 (4 किलोहर्ट्ज, 600 बॉड) आमतौर पर इस स्थानांतरण के लिए प्रयोग किया जाता है.

X2 यूनिट के कार्य:

X2 यूनिट निम्न ब्लॉकों के होते हैं चित्र 3.14 देखें

- विभीन्न ट्रांसिमशन डायरेक्शनओं के लिए बफर मे फ्रेम फेजिंग करना
- Nx32 केबीपीएस संकेतों के क्रॉस कनेक्शन करना
- कनेक्शन नियंत्रण (µP) करना
- VF आम चैनलों के पी.सी.एम समिंग करना
- डिजिटल आम चैनलों का लॉजिक समिंग करना
- G.703 क्लॉक इंटरफेस (इनप्ट और आउटप्ट) प्रदान करना
- 2 एम.बी.पी.एस G.703 इंटरफेस (उपकरण के पोर्ट 3) प्रदान करना
- चैनल युनिटों के लिए 2 एम बिट / एस बस इंटरफेस प्रदान करना
- पॉवर सप्लाइ -20 V -72 V / ± 5 V प्रदान करना

चित्र 3.14 : X2 यूनिट के ब्लॉक आरेख

फ्रेम बफर और कनेक्शन क्षेत्र

B2 और X2 युनिटों के इंटरफेस ब्लॉकों से आने वाली 2 एम.बी.पी.एस संकेतों बफर के पहले फेजींग किया जाता हैं। प्रत्येक ट्रांसिमशन डायरेक्शन से बफर मे स्वयं जाता है. वांछित ब्रांचिग में बंटी कनेक्शन बफर मे पड़ा और नियंत्रण किया जाता है.

DB 2 उपकरणों में चैनल युनिटों के उपयोग

मल्टीप्लेक्स उपकरण, 2 एम.बी.पी.एस इंटरफ़ेस के स्थान पर DB2 बी उपकरणों की डायरेक्शन 3 में लग सकता है जो चित्र 3.15 मे देखा जा सकता है. मल्टीप्लेक्स उपकरणों के चैनल युनिटों, DM 2 प्राइमरी मल्टीप्लेक्स उपकरण एक ही प्रकार के होते है. हालांकि पूरी तरह से DM 2 / DB 2-बस मानक को पूरा करना होता है । उदाहरण के लिए, जो उन VF / इ एंड एम युनिटों मे अपने खुद के पॉवर सप्लाइ और प्रोसेसर शामिल नहीं है DB 2 के चैनल यूनिट बस में उपयोग नहीं किया जा सकता है

चित्र 3.15 DB 2 B ब्रान्चींग उपकरण और चैनल युनिटों

चित्र.3.16 मे DB2B के ब्रान्चींग का ब्लॉक आरेख दिखाया गया है

चित्र. 3.16 : DB2B के ब्रान्चींग का ब्लॉक आरेख

B2 कार्ड के सामने कनेक्टर्स चित्र. 3.17 में दिखाए गये हैं

B2 CC24001/120 Ω CC24001/120 Ω CC24001/75 Ω Р1 аьс c7 MO A SERVICE OUT c6 MO B DATA OUT c4 DO B DATA OUT c3 PA 3 c2 PIN c1 MIA a7 MIB a6 DIA a5 DIB a4 a3 PA 1 a2 a1 c7 MO A C6 MO B C5 DO A C4 DO B C3 PA 3 C2 PIN C1 MIA a7 MIB a6 DIA a5 DIB a4 a3 PA 1 a2 a1 c7 MO A]
c6 MO B]
c5 DO A]
c4 DO B]
c3 PA 3
c2 PIN
c1 b1 . . . 7 GND b1 . . . 7 GND MEAS OUT MEAS OUT MEAS
 OUT RED RED RED Ó YELLOW 0 YELLOW 0 YELLOW GREEN GREEN GREEN P3 P3 ② 2M IN c31 TLSS c29 TLSU 2M c27 TLSC OUT RLSU a29 ② 2M OUT RLSC a27 c27 TLSC RISC a27 RLSG a25 c25 TLSG RLSS a15 2M RLSU a13 c11 TLSC 2M OUT c13 TLSU 2M OUT ② 2M OUT RLSC a11 RLSG a9 c9 TLSG

चित्र 3.17 : फ्रंट कनेक्टर्स B2 यूनिट मे 2 एमबी स्विचींग

चित्र 3.18 : फ्रंट कनेक्टर्स X2 यूनिट

सभी चैनल युनिटों बस में समानांतर जुड़ा हुआ है, और सर्विस टर्मिनल में परिभाषित वे बिट्स संबंधित बस से निकाल लेते हैं। चैनल यूनिट में सेटिंग्स एक EEPROM द्वारा संग्रहीत होता है। उपकरण में चैनल इकाइयां रहने पर X2 यूनिट में एकीकृत 2 एम.बी.पी.एस इंटरफ़ेस का प्रयोग नहीं किया जा सकता है

बस संरचना चैनलों के विभीन्न प्रकार के कनेक्शन की अन्मति देता है:

- इ एंड एम इंटरफेस के साथ VF चैनलों
- सिगनल उपकरणों के साथ VF चैनलों
- 0. ..19.2 केबीपीएस V.24 / V.28 डॉटा इंटरफेस
- 64 केबिपिएसV.11 और X.21 डॉटा इंटरफेस
- 64 केबीपीएस G.703 डॉटा इंटरफेस
- एक 2 एम.बी.पी.एस G.703 / 704 सिगन्ल में Nx64 केबीपीएस.

3.11 अलार्म सिस्ट्म की स्ट्रक्चर

अलार्म सिस्टम ट्रांसिमशन उपकरणों की निगरानी और फाल्ट को पता लगाने और मेंटनेंस करने के लिए हैं. उपकरणों की प्राथमिक सर्विस की गुणवत्ता में एक स्वीकार्य सीमा के अंतर्गत जब एक फाल्ट या, उपकरण यातायात सर्विस बाधित होता हैं. फाल्टी अनुभाग और सर्विस अवरुद्ध के अलगाव अलार्म एस और एआइएस सिगन्ल के माध्यम से की जाती हैं. DB 2 में, एआइएस प्रत्येक 2 एम.बी.पी.एस इंटरफ़ेस ब्लॉक में किया जाता है.

DB 2 उपकरणों मे तीन एल.इ.डी सिगन्लक के साथ प्रदान की जाती हैं लाल, पीले और हरे रंग. लाल एल.इ.डी = उपकरण फाल्ट को इंगित करता है . पीले एल.इ.डी = उपकरण के बाहर एक फाल्ट को इंगित करता है जैसे उपकरण के इनपुट मे ए.आइ.एस सिगन्ल है. हरी एल.इ.डी = उपकरणों पर ट्रांसिमिशन मैनेजमेंट कार्यों किया जा रहा है.

उपकरण में urgent तत्काल (A) उपकरणों के संचालन बाधित हो रहा हो और non-urgent गैर अत्यावश्यक (B) उपकरण के प्रदर्शन कमजोर हो गया है और इसकी सर्विसएं अभी भी प्रयोग किया जा सकता है .

उपकरण अलार्म इंटरफेस के माध्यम से एक फाल्ट के बारे में इन्फरमेसन देता है। इंटरफेस के दो प्रकार के होते हैं रैक अलार्म इंटरफेस और सर्विस इंटरफ़ेस

विभीन्न उपकरणों के रैक अलार्म (A, B, D) रैक बस के माध्यम से पॉवर सप्लाइ एडाप्टर कार्ट्रिज में जाता हैं. वहां से अलार्म आगे आर्थ या लूप संपर्क के रूप में जोड़ा जा सकता है.

रैक अलार्म के प्राकार :

- (A) अत्यावश्यक अलार्म
- (B) गैर-अत्यावश्यक अलार्म
- (D) अलार्म अभीस्वीकृति की रिमाइंडर

रैक अलार्म A और B उपकरणों की सर्विस इंटरफ़ेस से स्वीकार किया जाता है. अलार्म D अभी स्वीकृति/ चेतावनी के रूप में प्राप्त किया जाता है. रैक अलार्म फ़िल्टर किए जाते हैं. फ़िल्टरिंग के तहत शॉर्ट अविध के अलार्म हटाया जाता है .

डॉटा जो सर्विस इंटरफेस के माध्यम से उपलब्ध है केंद्रीकृत ट्रांसिमशन मैनेजमेंट सिस्ट्म (टी.एम.एस) या सर्विस टर्मिनल से जोड़ा जा सकता है. विभीन्न उपकरणों की सर्विस इंटरफेस उपकरणों के प्रत्येक सेट के लिए सर्विस बस से जुड़े हैं. सर्विस बस एक से दूसरे स्टेशन से श्रृंखलित है. सर्विस बस के जिरए भी मापन किया जा सकता है और नियंत्रण आदेश उपकरण को दी जाती है. DB2 उपकरणों की सर्विस इंटरफेस B2 यूनिट के सामने कनेक्टर पर है.

DB 2 उपकरणों में, बी 2 यूनिट से नियंत्रण बस उपकरणों के सभी फल्ट डॉटा एकत्र करता है

- रैक अलार्म बस
- पोलिंग सर्विस इंटरफ़ेस से आ रही डॉटा

B2 यूनिट मे फाल्ट की स्थिति:

- 1. फाल्ट यूनिट कि आत्म-परीक्षण
- 2. पॉवर सप्लाइकि फाल्ट
- 3. 2048 केबीपीएस इनप्ट सिगन्ल न मिलना
- 4. फ्रेम एलाइन्मेन्ट न मिलना
- 5. 2048 केबीपीएस इनपुट सिगन्ल में एमएस
- 6. फ्रेम एलाइन्मेन्ट शब्द में फ़ाल्ट अन्पात 10E-3 है
- 7. फ़ाल्ट अनुपात 10 E -6 (सीआरसी)
- 8. फार एंड अलार्म (B3)
- 9. एमएस टाइम स्लॉट TS16 में प्राप्त
- 10. मल्टी फ्रेम एलाइन्मेन्ट न मिलना
- 11. फार एंड अलार्म (B -6)

X2 यूनिट मे फाल्ट की स्थिति:

- 1. फाल्ट यूनिट कि आत्म-परीक्षण
- 2. पॉवर सप्लाइकि फाल्ट
- 3. उपकरण की क्लाक मे सिंक्रनाइज़ेशन फाल्ट (एक्सट्रर्नल क्लाक अनुपलब्ध या एलाइन्मेन्ट सफल नहीं हुआ हो)
- 4. नेटवर्क सिंक्रनाइज़ेशन में फाल्ट (फ्रेम बफ़र्स में स्लीप)

इसके अलावा, B 2 यूनिट के जैसे 2 एम.बी.पी.एस इंटरफ़ेस मे का एक ही फाल्ट स्थिति

चैनल य्निटों मे फाल्ट की स्थिति

B 2 यूनिट भी चैनल युनिटों से फाल्ट स्थिति की डॉटा एकत्र कर के रैक अलार्म बस और सर्विस बस के माध्यम से डाटा भेज सकते है

3.12 सेटिंग्स : ट्रांसिमशन मैनेजमेंट कंप्यूटर या सर्विस टर्मिनल से लोकल या दूर उपकरणों को नियंत्रित कर सकता है. DB2 मेनू का उपयोग कर इंटरनल नियंत्रण बस के माध्यम से उपकरणों या अन्य युनिटों के लिए निर्देश पहुंचाया जाता है.

B2 और X2 युनिटों की सेटिंग्स:

- उपकरण के ऑपरेटिंग मोड का चयन
- उपकरणों की इंटरनल क्लाक नियंत्रण का चयन
- सिंक्रनाइज़ेशन क्लाक का चयन
- 2048 केबीपीएस इंटरफ़ेस का नियंत्रण
- उपकरण मे 2 एम.बी.पी.एस इंटरफेस पर लूप
- उपकरणों के "चेंज ओबर" स्विच
- अलार्म का वर्गीकरण
- TS0 बिट्स का प्रयोग
- ब्रान्चींग परिभाषाओं

चैनल यूनिटों की सेटिंग्स

चैनल य्निटों B2 यूनिट के माध्यम से नियंत्रित होते हैं

इसमे नियंत्रण इस प्रकार है :

- उपकरण लूप
- टाइम स्लॉट की चयन
- बस से कनेक्शन
- ऑपरेटिंग मोड (जैसे डॉटा चैनलों की बिट दर)
- VF के लेबेल

मेजरमेन्ट : अधिकांश भाग के लिए, यूरो कनेक्टर्स DB2 उपकरणों की केबलिंग कनेक्टर्स के रूप में उपयोग करते हैं। एक माप केबल केबलिंग कनेक्टर के पीछे से जोड़ा जाता है. समानांतर मापन इस माप केबल के माध्यम से किया जाता है.

इंटरफ़ेस के लिए माप के विकल्प:

- RX-2 एम.बी.पी.एस डॉटा
- TX 2 एम.बी.पी.एस डॉटा
- RX-2 मेगाहर्ट्ज क्लाक
- TX 2 मेगाहर्ट्ज क्लाक

सर्विस इंटरफ़ेस के माध्यम से उपकरणों को नियंत्रित किया जा सकता है और फाल्ट की स्थिति में उपकरणों से ही परीक्षणों के परिणामों पर प्राप्त की जाती है . B2 और X2 यूनिटों की मेमोरि में एक परीक्षण कार्यक्रम के माध्यम से उपकरण के संचालन का उपयोग कर परीक्षण किया जा सकता है.

2 एम.बी.पी.एस इंटरफेस के सभी प्राप्त संकेतों Rec: G.821 का अनुपालन करना और उपलब्धता के मापदंडों से गुजरना पडता है .

- टोटल टाइम
- उपलब्ध/ एबेलेबेल टाइम
- एरर सेकंड
- BER> 1E-3 सेकंड, आदि

यह एरर की स्थितियों के विभीन्न घटना की निगरानी करता है:

- फ्रेम एलाइन्मेन्ट शब्द की एरर
- सी.आर.सी ब्लॉक में एरर
- फ्रेम बफर में स्लीप

3.13 तकनीकी स्पेसिफ़िकेसन

फ़्रेम और मल्टी फ़्रेम की संरचना.

फ्रेम और मल्टी फ़्रेम की संरचना आइटीयू टी सिफारिशों G.704 / 706 को पूरा करता है. TS0 / B1 CRC मे इस संरचना को लागू किया गया है.

बेसिक गुण:

बिट रेट : 2048 के.बी.पी.एस ± 50 पी.पी.एम

सौंपलिंग रेट : 8 kHz

64 के.बी.पी.एस पी.सी.एम कोडिंग ला : CCITT A-ला

संख्या :

- एक टाइम स्लॉट में बिट्स : 8

- एक फ्रेम में टाइम स्लॉट कि संख्या : 32

- वॉयस और डाटा टाइम स्लॉट : 30 (31)

एक मल्टी फ्रेम में फ्रेम्स : 16वॉयस चैनल मे सिगन्लन बिट्स : 4

- मल्टीप्लेक्सिंग सिद्धांत : 32 केबीपीएस टाइम स्लॉट इन्टरलिबिंग

उपकरणों के आपरेशन एक सर्विस टर्मिनल के साथ B2 यूनिट के सामने सर्विस इंटरफ़ेस के माध्यम से नियंत्रित किया जाता है. इस इंटरफ़ेस के माध्यम से, उपकरणों मे अलार्म डॉटा आदि पढ़ा जाता है इससे नियंत्रण और सेटिंग लूप बेक ब्रान्चींग टेबल आदि सर्विस इंटरफ़ेस से कि जाती है. (सर्विस टर्मिनल के माध्यम से प्रत्येक उपकरण, ऑपरेशन के लिए उपलब्ध सर्विस टर्मिनल के ऑपरेटिंग निर्देश और विवरण देखें)। सारे उपकरण टी.एम.एस ट्रांसिमशन मैनेजमेंट सिस्ट्म (टीएमएस ट्रांसिमशन मैनेजमेंट सिस्ट्म के लिए ऑपरेटिंग हैंडब्क देखें) द्वारा नियंत्रित किया जा सकता है.

टाइम स्लॉट TS0 बिट्स के प्रोसेसिंग

फ्रेम एलाइन्मेन्ट शब्द TSO बिट्स फ्रेम में है

- प्रत्येक इंटरफ़ेस में B1 का चयन
- CRC की उपयोग (CCITT) के अनुसार
- स्थायी रूप से "1"
- B2...... B8 फ्रेम एलाइन्मेन्ट शब्द हमेशा 0,011,011 (CCITT)
- फ़्रेम एलाइन्मेन्ट शब्द DB 2 में रिजेनेरेटेड होता है.

फ्रेम के TSO में अलार्म डॉटा

- B1 ऊपर में वर्णित
- B2 स्थायी रूप से "1"
- B3 फ़ार एन्ड अलार्म, "1" एनेबेल (CCITT) (3 चरण रिसेप्शन में उपयोग किया फिल्टरिंग)
- B4 (CCITT) एक नेटवर्क नियंत्रण के बिट लूप करने (डिफ़ॉल्ट सेटिंग B4 = MCB) या चयन, स्थायी रूप से 0 या 1' 'के रूप में उपयोग किया जा सकता है .
- B5.....B8 चयन योग्य
- अलग दरों पर डॉटा बस (4 तरह हाइब्रीड , 1, 2, 3 और डॉटा इंटरफेस)
- B8 = 4 केबीपीएस
- B7 + B8 = 8 केबीपीएस
- B5 + B -6 + B7 + B8 = 16 केबीपीएस
- लूप नेटवर्क नियंत्रण के लिए (डिफ़ॉल्ट सेटिंग B5 = LCB)
- बिट डॉटा बस स्थानांतरण के लिए या लूप के लिए उपयोग नहीं किया जाता है तो नेटवर्क नियंत्रण- स्थायी रूप से "1" (CCITT) - स्थायी रूप से "0".

टाइम स्लॉट F0 का प्रयोग/टीएस 16 बिट्स ब्रांचिग में चैनल एसोसिएटेड सिगन्लन प्रयोग किया जाता है जब

- B1..... B4 मल्टी फ्रेम एलाइन्मेन्ट शब्द 0000 (CCITT)
- B -6 फ़ार एन्ड अलार्म, "1, 'सक्रिय (CCITT)
- B5, B 7, B8 स्थायी रूप से "0" या "1" (CCITT) चुना जा सकता है।
- 3.14 DB2 के कनेक्शन प्रकार : सर्विस टर्मिनल या टीएमसी ट्रांसिमशन मैनेजमेंट कंप्यूटर का उपयोग ब्रान्चींग या तो सर्विस बस के द्वारा किया जाता है. डिजिटल ब्रान्चींग DB2 में कइ ब्रान्चींग टेबुल स्टोर कर सकते हैं. संग्रहीत ब्रान्चींग टेबुल को स्थायी मेमोरि में रखा जाता है.

एम्प्टी बान्चींग टेबल

ब्रान्चींग बिना डिजिटल ब्रान्चींग उपकरण DB2 सभी चैनलों का सिगनल बिट्स (ए.बी.सी.डी बिट्स) पैटर्न 1111 को ए.आइ.एस पैटर्न (11111111) भेजता है। TS0 फ्रेम संरचना और F0 / TS16 मल्टी फ्रेम की संरचना सामान्य रूप से भेजा जाता हैं। ऑपरेटर द्वारा दिए गए ब्रान्चींग कनेक्शन एक खाली ब्रांचिंग के टाइम स्लॉट के लिए एक नया कनेक्शन को परिभाषित करता है.

DB के डॉटा से सम्बंधित नहीं हैं B-प्रकार के ब्रान्चींग में किसी भी टाइम स्लॉट्स जुड़े जा सकता है:

- 1 और 2 के बीच B0 प्रकार
- 1 और 3 के बीच B1 प्रकार
- 2 और 3 के बीच B2 प्रकार
- ओमनीबस S0

ब्रान्चींग में, फ्रेम में टाइम स्लॉट के स्थान अलग इंटरफेस के बीच बदला जा सकता है.

3.15 यूजर इंटरफेस यूनिट्स :

DIU 64 केबीपीएस डाटा कार्ड :

डॉटा इंटरफेस यूनिट (DIU) G.703 प्राथिमिक मल्टीप्लेक्स उपकरणों के परिवार का चैनल युनिटों के अंतर्गत आता है। यह आइटीयू टी सिफारिश G.703 को पूरा फ़लो करता है जिसमे 10 डॉटा चैनल शामिल हैं।

इसकी विशेषताएं इस प्रकार हैं:

- 10 डॉटा चैनल है
- CCITT सिफारिश G.703 को पूरा फ़लो करता है
- एक सह या विपरीत डायरेक्शनत्मक इंटरफ़ेस या तो चैनल के लिए चुना जा सकता है
- चैनल टाइम स्लॉट स्वतंत्र रूप से चयनित किया जा सकता है
- चैनल सेटिंग्स अलग सर्विस टर्मिनल का उपयोग किया जाता है
- चैनलों की स्थिति सर्विस टर्मिनल का उपयोग पर नजर रखी जा सकती है
- चैनलों परीक्षण के लिए लुप किया जा सकता है.

कन्स्ट्राक्शन: DIU 64 केबीपीएस डाटा कार्ड मे दो DATU सर्किट है, एक नियंत्रण ब्लॉक, लाइन इंटरफेस है, और एक यूनिट पावर सप्लाइ है. DATU सर्किट के प्रत्येक पाँच चैनलों की गतिविधियों को संभालती है.

नियंत्रण ब्लॉक एक माइक्रोप्रोसेसर, 64 KB EPROM स, और एक 8 KB रैम में शामिल हैं. लाइन इंटरफेस एक इंटरफेस हाइब्रीड और चार ट्रांसफार्मर के होते हैं. इसकी जरूरत वोल्टेज पॉवर सप्लाइ से उत्पन्न होते हैं. डाटा कार्ड के ब्लॉक आरेख चित्र 3.19 में है.

ऑपरेशन:

यूनिट में दस समरूप चैनल है. एक चैनल के आपरेशन यहाँ वर्णित है.

इंटरफ़ेस के प्रकार:

चैनलों के इंटरफेस या तो को या कॉन्ट्रा डायरेक्शनत्मक के रूप में चुना जा सकता है. कॉन्ट्रा डायरेक्शनत्मक इंटरफ़ेस संकेतों का प्रयोग किया जा सकता है.

नाम	
TDA	ट्रान्समिट डायरेक्शन डाटा
TDB	
TCA	ट्रान्समिट डायरेक्शन की टाइम
TCB	
RDA	रिसीव डायरेक्शन डाटा
RDB	
RCA	रिसीव डायरेक्शन की टाइम
RCB	

चित्र 3.19 यूनिट ब्लॉक आरेख

DIU और टर्मिनल उपकरण (DTE) के बीच पावर इंटरफ़ेस के माध्यम से ही बना है. DIU डॉटा ट्रांसिमसन के लिए सिगन्ल का उपयोग करता है जो DTE के लिए एक टाइम सिगन्ल है. DATU सिकंट DM2 की इंटरनल बस में चयनित टाइम स्लॉट में DTE से आने वाले डॉटा सिगन्ल देता है। डॉटा सिगन्ल मक्स युनिट के लिए बस से स्थानांतरित करता है. तदनुसार, DM2 बस से प्राप्त डॉटा सिगन्ल DTE के लिए भेजता है. एक टाइम सिगन्ल डॉटा के रूप में एक ही टाइम में DTE के लिए भेजता है। चैनलों द्वारा उपयोग के लिए टाइम स्लॉट्स सिवंस टर्मिनल मे उपयोग कर सकते है.

"को डायरेक्शन्ल" इंटरफ़ेस संकेतों का प्रयोग:

नाम

TDA ट्रान्समिट डायरेक्शन की डॉटा और टाइम

TDB

RDA रिसीव डायरेक्शन की डॉटा और टाइम

RDB

आपरेशन के टाइम सिगन्ल छोड़कर "कॉन्ट्रा डायरेक्शनत्मक" इंटरफ़ेस एक ही होते है. टाइम और ओकटेट टाइम दोनों डायरेक्शनओं में प्रसारित किया जाता है.

नियंत्रण ब्लॉक: नियंत्रण ब्लॉक में जब आवश्यक हो तो अलार्म डॉटा, चैनलों की स्थिति, चैनलों में सब्सक्राइबर द्वारा किए गए सेटिंग्स ,चैनलों के संचालन की निगरानी, भेजने के लिए होते है.

फाल्ट की निगरानी: नियंत्रण ब्लॉक ऑपरेटिंग वोल्टेज और DTE से आने वाले डॉटा और टाइम का सिगन्ल को नज़र रखता है. एक फाल्ट होने पर डॉटा एक या दोनों डायरेक्शनओं में एआइएस सिगनल में बदल जाता है, और फाल्ट की सूचना देती है. जरूरत पड़ने पर अलार्म मिलता है, और DTE के लिए भेजा सिगन्ल एक एआइएस सिगन्ल और ओकटेट में बदल जाता है.

लूप बैंक : दोनों डायरेक्शनओं के चैनल में लूप संभव है. लूप DATU सर्किट के भीतर किया जाता है. एक फाल्ट हालत में वापस स्वत: परीक्षण लूप संभव है .फाल्ट DATU से निकाला जा सकता है.

तकनीकी स्पेक:

डॉटा इंटरफेस:

- CCITT सिफारिश G.703 को पूरा फलो करता है

- इमपिडेन्स = 120 Ω

- पावर की सप्लाइ : 20 .. .72 वोल्ट DC

- पावर की खपत: 5 W

उपकरणों सेट को लैस करने हेतु :

वोल्टेज और रैक अलार्म संकेतों कनेक्टर्स में एक ही स्थानों में स्थित होते हैं, इसलिए कार्ट्रिज में माँदर बोर्ड और उपकरणों की बैक कनेक्टर्स मानकीकृत है. इस के कारण, कार्ट्रिज में कोइ स्लॉट उपकरणों सेट के लिए आरक्षित है. यूनिट में किसी भी युनिट के स्लॉट में इंटरफेस डाला जा सकता है। नोकिया उपकरणों पीढ़ी के अन्य उपकरण भी एक ही कार्ट्रिज में इन्स्टोल किया जा सकता है. एक डॉटा इंटरफेस यूनिट कार्ट्रिज में एक स्लॉट (5 T) लेता है.

इ एंड एम / VF-पी चैनल यूनिट, 8 चैनल :

वॉयस / इ एंड एम -पी चैनल यूनिट DM 2 प्राथिमक मल्टीप्लेक्स उपकरणों के लिए डिज़ाइन किया गया है, इसमे 8 वॉयस - चैनलों है और प्रत्येक वॉयस -चैनल के लिए 2 (3) इ एंड एम सिगन्ल चैनल शामिल हैं. यह एक 2 एम.बी.पी.एस बस मे 30 चैनलों को कनेक्ट करने के लिए प्रयोग किया जाता है. चैनल से जुड़े सिग्नलिंग टाइम स्लॉट 16. मल्टीप्लेक्स उपकरण में वर्णित चैनल यूनिट मे शामिल है.

यूनिट का उद्देश्य इस प्रकार है:

- 2- वायर या 4- वायर चैनल इंटरफ़ेस को इन्स्टोल करना.
- लेबेल और इमपिडेन्स सेट करना .
- औटप्ट डायरेक्शन में ए / डी रूपांतरण करना .
- DM 2 बस मे 2 एम.बी.पी.एस बिट में संकेतों के मल्टीप्लेक्स करना .
- DM 2 बस से प्रत्येक वॉयस चैनल पर रिसीव सिगनल अलग करना .
- ए/डी रिसीवडायरेक्शन में एक रूपांतरण प्रदर्शन करना .
- DM 2 बस के लिए एम वायर में डीसी सिग्नलिंग को कन्वर्ट करना .
- इ वायर के लिए DC सिग्नलिंग को रिसीव डिजिटल सिग्नलिंग को कन्वर्ट करना.
- 2-वायर मोड में इमपिडेन्स सेट करके रिटर्न लास को कम करना.
- DM 2 बस के साथ सिंक्रनाइज़ बनना.

ब्लॉक के ऑपरेशन : चैनल यूनिट मे आठ चैनल ब्लॉक, एक नियंत्रण खंड और एक पावर सप्लाइ सिस्ट्म होते है. ब्लॉक आरेख चित्र 3.20 में दिखाया गया है.

चैनल ब्लॉक: चैनल ब्लॉक वॉयस चैनल और इ एंड एम सिग्नलिंग में शामिल है.

वॉयस चैनल: एनालॉग इंटरफेस कनेक्टर Pa/Pb1 से एक दो वायर इंटरफेस या पिन Pa/Pb2 और पिन Pa/Pb1 के लिए इनपुट डायरेक्शन से जुड़ा आउटपुट डायरेक्शन के चार वायर इंटरफेस मे जाता है. कनेक्शन कॉम्बो COMBO सर्किट की लैच इंटरफेस से नियंत्रित किया जाता है, जो एक प्रोग्राम स्विच के माध्यम से चयन किया जाता है. एनालॉग इंटरफेस ट्रांसफार्मर के माध्यम से एक VF के हाइब्रीड से जुड़ा होता है. हाइब्रीड इमिपडेन्स मैचिंग सर्किट और 2-वायर या 4-वायर कनेक्शन के लिए चयन स्विच भी शामिल है. कॉम्बो सर्किट में बाहर नियंत्रण बस और नियंत्रण खंड स्विच के माध्यम से नियंत्रित करता है.

नियंत्रण रजिस्टर नियंत्रण खंड के पर्यवेक्षण के अंतर्गत निम्नलिखित कार्य करता है:

- दोनों ट्रांसिमशन डायरेक्शनओं में इंटरफ़ेस स्तरों के का निर्धारण करना .
- टाइम स्लॉट का चयन करना.
- एनालॉग या डिजिटल लूप परीक्षण करना.
- 2/4-वायर कनेक्शन में लैच सर्किट को नियंत्रण करना.

सिग्निलंग: चैनल सिग्निलंग दो-बिट इ एंड एम सिग्निलंग है. सिग्निलंग सर्किट में हाइब्रीड का उपयोग किया गया है. एक तीन-बिट इ या एम सर्किट एक विकल्प के रूप में उपलब्ध है. सिग्निलंग रिसीवर टीटीएल स्तर एम वायर से आ रहि डीसी सिग्निलंग को चेंज और नियंत्रण के सेन्स सर्किट मे भेजता है.

चित्र 3.20 : चैनल यूनिट के ब्लॉक आरेख

कंट्रोल ब्लॉक: कंट्रोल ब्लॉक निम्नलिखित कार्य करता है:

- DM 2 बस के लिए एक बार में एक चैनल ट्रांसिमशन अविध में जोड़ता है. अन्य टाइम में, इंटरफ़ेस उच्च इमिपडेन्स पैदा करता है.
- चैनलों मास्टर क्लाक के नियंत्रण के हैं, जहां बस से आने वाले डॉटा ट्रांसिमशन होता है .
- चैनलों से आ रहा सिगनल समानांतर सिगन्ल बस में टाइम स्लॉट 16 में सीरियल मोड में ट्रांसिमशन होता है.
- चैनलों मे टाइम स्लॉट 16 से इनकमिंग सिगन्लन निकालने के बाद इनपुट को नियंत्रण करने के लिए है.
- बस से आउटपुट और मास्टर क्लाक के रूप में चैनलों को देती है.
- दोनों ट्रांसिमशन डायरेक्शनओं मे फ्रेम एलाइन्मेन्ट प्राप्त करता है और कॉम्बो सर्किट के लिए प्रोसेस करता है.
- बस तथा चैनलों का नियंत्रण अनुभाग के बीच डॉटा नियंत्रण करना

नियंत्रण ब्लॉक एक माइक्रोप्रोसेसर के नियंत्रण से चलती है. लाजिक सर्किट एक गेट एरे सर्किट में है। नियंत्रण ब्लॉक के सामने पैनल एक सर्विस टर्मिनल के बस के द्वारा जुड़ा है .चैनल (या तो चैनल-विशिष्ट या यूनिट के सेटिंग) सेटिंग्स सर्विस टर्मिनल के द्वारा कि जाति है. सर्विस टर्मिनल मेनू सिद्धांत के अनुसार चलति है.

पॉवर सप्लाइ: चैनल यूनिट एक बोर्ड द्वारा पॉवर सप्लाइ सिस्ट्म से लैस है. एक चोपर यूनिट 5 V और -5 V वोल्टेज उत्पन्न करता है पॉवर सप्लाइ युनिट सेंट्रल बैटरी वोल्टेज (- 60 वी 24) का उपयोग करता है, सिग्नलिंग के लिए -16 V वोल्टेज उत्पन्न करता है.

समायोजन और सेटिंग्स: जब उपकरण कि कमीशनिंग की आवश्यकता है तब समायोजन, सर्विस टर्मिनल का उपयोग कर किया जाता है. इसके अलावा 2-या 4-वायर मोड के चयन के लिए किया जा सकता है. निम्नलिखित मानकों प्रत्येक चैनल यूनिट के सभी आठ चैनलों के लिए सेट किया जाता हैं:

- टाइम स्लॉट (या पहले चैनल के टाइम स्लॉट)
- इंटरफ़ेस का लेबेल
- टु-वायर या फोर-वायर कनेक्शन
- सिग्नलिंग पोलारिटी
- पावर अप/डाउन
- टु-वायर कनेक्शन, बैलेंस रीट्रन लस के लिए सर्किट में सेटिंग

रिंग जनरेटर कार्ड: TG 21261 टोन / रिंग टेलीफोन सेट के लिए उपयोग किया जाता है। यह टेलीफोन सेट के टोन के लिए आवश्यक वोल्टेज उत्पन्न करता है.

संरचना: रिंग जनरेटर TM4 उपकरण कार्ट्रिज में एक यूरो-2 सर्किट बोर्ड एक प्लग इन युनिट है. यह यूनिट एक स्टील शीट में संलग्न है. सर्किट बोर्ड के सामने एक एल.इ.डी होल्डर एक साथ यूनिट ऐक्स्ट्रैक्टर के रूप में कार्य करता है .इस एल.इ.डी होल्डर यूनिट ऑपरेशन मोड हरे रंग का है. सर्किट बोर्ड के पीछे किनारे एक 2 x 32-पिन यूरो कनेकटर है. इससे कार्ट्रिज के मदरबोर्ड से संचालन और नियंत्रण वोल्टेज प्राप्त करता है.

वस्तुनिष्ठ प्रकार का प्रश्न:

- 1. नोकिया सिस्टम मे दो विन्यास है एक 19 " रैक और अन्य ------.
- 2. नोकिया के मल्टीप्लेक्सिंग सिस्टम दो प्रकार में विन्यस्त है DM2 विन्यास और ------.
- 3. नोकिया सिस्टम में DM-2 विन्यास ----- स्टेशन पर प्रयोग किया जाता है.
- 4. नोकिया सिस्टम DB2-विन्यास ----- स्टेशन में प्रयोग किया जाता है.
- 5. सर्विस टर्मिनल सॉफ्टवेयर के माध्यम से या ----- नोकिया सिस्टम को नियंत्रित किया जाता है.
- 6. सर्विस टर्मिनल के माध्यम से नोकिया सिस्टम में हम DM2 में ------, ------, और -----
- 7. कोमन चैनल सिगन्लिंग में संदेश चैनल-एसोसिएटेड सिगन्लिंग के बजाय ------ टाइम स्लॉट में भेजा जाता है.
- 8. नोकिया सिस्टम में लाल एल.ई.डी ----- कि इंगित करता है.
- 9. नोकिया सिस्टम में DM2 में ----- अौर ल्प बैक के दो प्रकार के होते हैं.
- 10. नोकिया सिस्टम 2 एम ब्रांच. ----- कार्ड का उपयोग किया जाता है.
- 11. नोकिया ----- प्रकार ब्रांच में पीसीएम डायरेक्शन 1 से 2 को जोड़ता है.
- 12. नोकिया ----- प्रकार ब्रांच में लोकल डायरेक्शन 3 से पीसीएम डायरेक्शन 1 से डाटा को जोड़ता है.
- 13. नोकिया ------ प्रकार ब्रांच में लोकल डायरेक्शन 3 से पीसीएम डायरेक्शन 2 से डाटा को जोड़ता है.

सबजेक्टीब :

- 1. नोकिया सिस्टम में DM2 की कार्यप्रणाली के बारे में बताएं ?
- 2. नोकिया सिस्टम में DB2 में विभिन्न विन्यास क्या कर सकते हैं ?
- 3. नोकिया DB2 यूनिट में पर 2 एमबीपीएस ब्रांचींग पर एक नोट लिखें ?
- 4. नोकिया सिस्टम से विभिन्न चैनलों इकाइयों को कैसे जोड़ा जा सकता हैं ?
- 5. नोकिया सिस्टम में B 2 और X2 इकाई के बीच कार्यात्मक अंतर क्या है ?
- 6. नोकिया सिस्टम में प्रारंभिक विन्यास के लिए क्या- क्या सेटिंगस हैं ?

अध्याय 4 2/34 एम.बी स्कीप मल्टीप्लेक्सर

4.1 परिचय:

स्कीप मल्टीप्लेक्सर (2/34 एम.बी.पी.एस) एक हायर ओडर डिजिटल मल्टीप्लेक्सिंग उपकरण है जिसमें उच्च विश्वसनीयता, कॉम्पैक्टनैस और नवीनतम डिजाइन सामिल है. ट्रान्स डायरेक्शन में सोलह E-1 को मल्टीप्लेक्स कर E-3, यानि 34 एम.बी.पी.एस बनाता है, और रीसिभ डायरेक्शन में 34 एम.बी.पी.एस को डिमल्टीप्लेक्सींग कर सोलह 2 एम.बी.पी.एस स्ट्रीमओं को भेजता है .डिजिटल मल्टीप्लेक्सिंग सिद्धांत एक साइक्लिक बिट इंटरलिविंग प्रक्रिया है और इसमे पोजेटिभ जस्टीफ़ीकेशन होता है. इसमें स्लिम रैक का प्रयोग किया जाता है तथा उपकरण में पोजेटिभ आर्थ के साथ -48 V डी.सी (-40 से -60 V) का प्रयोग किया जाता है और इसकी पावर की खपत लगभग 50 वाट है.

4.2 उपकरण के संक्षिप्त विवरण

4.2.1 रैक और सब-रैक के कॉन्फ्रिगरेशन:

उपकरणों बे में सभी सब रैक को चित्र 4.1 में देखें.

उपकरणों के निर्माण मॉड्यूलर है. सब रैक में आवश्यक I/O इमिनेशन के साथ पांच पीसी बोर्डों में हैं। इनमें से चार पी.सी.बि 2/8 एम.बी.पी.एस मक्स/डी- मक्स के काम करता हैं और 5 वें पीसी बोर्ड 8/34 एम.बी.पी.एस मक्स/डी- मक्स है. पी.सी.बि के बीच विभीन्न परस्पर संकेतों के एक प्रीन्टेड सर्किट बैक पैनल के माध्यम से जुड़े हैं. कस्टम निर्मित उपकरण, प्रोग्राम लोजिक उपकरण और क्लाक मॉड्यूल विभीन्न कार्यों करने के लिए हैं. सभी आवश्यक अलार्म/फ़ाल्ट आसानी से पहचाना और उपयुक्त कार्रवाइ के लिए संबंधित एल.इ.डी पीसी कार्ड पर लगे हैं. एक पॉवर सप्लाइ कार्ड सब रैक में पॉवर सप्लाइ मॉड्यूल के रुप मे मौजूद है। पॉवर सप्लाइ मॉड्यूल नोमिनल -48 V में काम करता है तथा -60 V से -48 V DC तक इसका रेंज है.

पॉवर सप्लाइ सब रैक मे दो पॉवर सप्लाइ मॉड्यूल लगा सकते है. एक पॉवर सप्लाइ मॉड्यूल एक सब रैक में होता है. कंट्रोल/प्रोटेक्शन स्विच पॉवर सप्लाइ सब रैक में रहती है. पॉवर सप्लाइ सब रैक में सुपरवाइजरी मॉड्यूल (वैकल्पिक) में एक हैन्ड हेल्ड टर्मिनल होता है जो विभीन्न अलार्म को दर्शाती है . RS 232 सीरियल पोर्ट पर इन अलार्म संचारित करने के लिए प्रोविजन किया गया है. एक सुपरवाइजरी मॉड्यूल मे दो स्किप मक्स लग सकते हैं.

"बे" के शीर्ष पर 2 एम.बी.पी.एस I/O टरमीनेशन बने हैं. हालांकि 34 एम.बी.पी.एस को वही रैक I/O टरमीनेशन पर प्रदान की गइ हैं. आवश्यक श्रव्य अलार्म/विजुअल अलार्म सिस्ट्म अलार्म सिगन्ल को "बे" के शीर्ष पर प्रदान की गइ है.

चित्र: 4.1 पूरी तरह से सुसज्जित 'बे'

2/34 एम.बी स्कीप मल्टीप्लेक्सर

4.2.2 स्कीप मल्टीप्लेक्सर का काम करने का संक्षिप्त विवरण :

यह आइ.टी.आइ द्वारा विकसित 2/34 एम.बी.पी.एस डिजिटल मक्स उपकरण 5 पीसी बोर्डों में कॉन्फ़िगर है. 2/34 एम.बी.पी.एस मक्स/डी- मक्स कार्यों दो चरणों में किया जाता है.

चित्र. 4.2 (क) ट्रान्स के ब्लॉक आरेख देखें. ट्रान्स के तरफ आने वाली 16 Nos 2 एम.बी.पी.एस पिडिH डिजिटल स्ट्रीमओं इकोलाइज़ेशन/कलाक निष्कर्षण के बाद HDB-3 डिकोडिंग और सिंक्रनाइज़ेशन के (पोजेटिभ जस्टीफ़िकेशन सिद्धांत) बाद चक्रीय इंटरलिविंग कर एमबी आठ में से चार ट्रीब्यूटरी को मिल्टिप्लेक्स किया जाता है। आवश्यक फ्रेम एलाइन्मेन्ट शब्द और सर्विस बिट्स जोडा जाता हैं। दूसरे चरण में इन चार 8 एमबी/एस को डिजिटल स्ट्रीमओं मे फिर से एक 34 एम.बी.पी.एस HDB-3 प्राप्त करने के लिए मिल्टिप्लेक्स किया जाता है.

चित्र. 4.2 (ख) रिसिभर के ब्लॉक आरेख देखें. रिसिभर मे HDB-3 इनपुट को इकोअलाइज़ेशन/कलाक निष्कर्षण के बाद HDB-3 डिकोडिंग और डीमल्टीप्लेक्सिंग होने के बाद, 34 एम.बी.पी.एस चार 8 एम.बी.पी.एस डिजिटल स्ट्रीम बटने बाद इन चार 8 एम.बी.पी.एस डिजिटल स्ट्रीमओं को फिर से 2 एम.बी.पी.एस HDB-3 के सोलह ट्रीब्यूटरी प्राप्त करने के लिए और डीमल्टीप्लेक्सिंग होता हैं.

4.3 तकनीकी स्पेसिफ़िकेशन

4.3.1 डिजिटल इंटरफेस 2048 kbps पर

इनपुट पोर्ट पर :

1. ट्रीब्यूटरी के संख्या: 16

2. बिट रेट : 2048 के.बी.पी.एस ± 50 पी.पी.एम

3. कोड: HDB-3

इमपीडेन्श : बैलेंस 120 Ω
 पल्स वोल्ट: 3.0 V ± 0.3 V

6 पल्स चौड़ाइ : 244 एनएस ± 25 एनएस

आउटपुट पोर्ट पर:

1. ट्रीब्यूटरी के संख्या: 16

2. बिट रेट : 2048 केबीपीएस ± 50 पीपीएम

3. कोड: HDB-3

4. इमपीडेन्श : बैलेंस 120 Ω5. पल्स वोल्ट: 3.0 V ± 0.3 V

6 पल्स चौड़ाइ : 244 एनएस ± 25 एनएस

कनेक्टर के प्रकार : वायर लपेटकर

चित्र 4.2 (क) 2/34 मक्स के TX पथ की ब्लॉक चित्र

चित्र 4.2 (ख) 2/34 मक्स के Rx पथ की ब्लॉक

2/34 एम.बी स्कीप मल्टीप्लेक्सर

4.3.2 डिजिटल इंटरफ़ेस 34,368 kbps पर

इनप्ट पोर्ट पर:

1. बिट रेट : 34368 केबीपीएस ± 20 ppm

2. कोड : HDB-3

इमपीडेन्श : 75 Ω आनबैलेंस
 पल्स वोल्ट : 1 V ± 0.1 V

5. पल्स बीथ : 14.55 ns ± 2.24 ns

जिटरः स्वीकार्यता

नीचे दिए गए इनपुट पोर्ट में सिनोसोडाल जिटर द्वारा मोडुलेटेड एक डिजिटल सिगनल के एमप्लीटुड/ फ़ीक्वेंसी के संबंध को सहन करने में सक्षमता इस प्रकार है

आउटप्ट पोर्ट पर:

1. बिट रेट : 34368 केबीपीएस ± 20 ppm

2. कोड : HDB-3

इमपीडेन्श : 75 Ω आनबैलेंस
 पल्स वोल्ट : 1 V ± 0.1 V

5. पल्स बीथ : 14.55 ns ± 2.24 ns

टाइम सिगन्ल

निम्नलिखित सिस्ट्रम क्लाक स्रोतों में से किसी एक को सिंक्रनाइज़ करते हैं।

- 1. इनटनल ओसिलेटर 34,368 केबीपीएस पर
- 2. 34,369 केबीपीएस रिकोभर क्लाक
- 3. एक्सट्रन्ल 34,368 KHz के सिगन्ल

क्लाक स्रोतों के चयन वायर्ड कनेक्शन के द्वारा होता है

कनेक्टर के प्रकार: स्पिनर टाइप

सुपरवाइजरी सुविधाएं:

लुप बैक: यह लुप परीक्षण करने के लिए 2048 केबीपीएस ट्रीब्यूटरी को रिमोट से किसी ट्रीब्यूटरी मे लुप बैक के लिए है.

2/34 एम.बी स्कीप मल्टीप्लेक्सर

4.3.3 8/34 कार्ड पर अलार्म और उन पर एक्शन:

1. सिस्टम: सिस्टम अलार्म

2. HTF: ट्रांस फेलिऊर

3. FAS: सिंक फेलिऊर प्राप्त करें।

4. AIS: आल 1 (all ones) के प्राप्ती 34.368 एम.बी.पी.एस के इनपुट पोर्ट पर

5. RMT : रिमोट अलार्म

6. HRF: इनप्ट पोर्ट पर 34.368 एम.बी.पी.एस सिगन्ल के अभाव

सिस्टम के अलार्मी:

सिस्टम के एल.इ.डी निम्न परिस्थितियों मे लिट होती है

- 1) जब 2 एम.बी.पी.एस इनप्ट ट्रीब्यूटरी मे फ़ाल्ट है
- 2) 2 एम.बी.पी.एस ट्रीब्यूटरी मे लास ओफ़ लॉक (LOL).
- 3) सिंक फ़ाल्ट.
- 4) ट्रांस फ़ाल्ट.
- 5) 34 एम.बी.पी.एस I/P सिगन्ल की अन्पस्थिति (HTF).

HTF अलार्म: 34.368 एम.बी.पी.एस क्लाक स्रोत में फ़ाल्ट.

FAS अलार्म: फ्रेम एलाइन्मेन्ट सही ढंग से नहीं मिलाता है.

HRF अलार्म: 34 एम.बी.पी.एस I/P सिगन्ल फ़ाल्टी है.

RMT अलार्म: इस एल.इ.डी रिमोट मक्स मे फ़ाल्ट है.

AIS अलार्म: आल 1 के प्राप्ती 34.368 एम.बी.पी.एस के इनपुट पोर्ट पर होती है तब इस एल.इ.डी लिट होती है.

4.4 पावर सप्लाइ कार्ड:

पावर सप्लाइ कार्ड करेन्ट केन्ट्रोल मोड के सिद्धांतो पर काम करता है. यह पॉवर सप्लाइ 42 V से 56 V डीसी के बिच काम करता है और निम्न आउटप्ट प्रदान करता है.

5 V : 6 A

- 15 V : 0.8 A

15 V : 0.5 A

- 5V : 0.8 A

सभी आउटपुट पूरी तरह से ओभर/सार्ट सर्किट पर और वोल्टेज के खिलाफ की रक्षा करती है. एक या एक से अधिक आउटपुट पर अधिक वोल्टेज होने पर पॉवर सप्लाइ ट्रीप हो जाती है. सभी चार आउटपुट में वोल्टेज और I/O वोल्टेज सामने निगरानी सॉकेट पर जाँच की जा सकती है। नोमिनल वोल्टेज -48 V डी.सी है.

4.5 मक्स मे सब-रैक व्यवस्था:

मक्स के उप-रैक में कार्ड के लोकेशन चित्र 4.3 में दिखाया गया है.

चित्र 4.3 मक्स के सब-रैक में कार्ड के लोकेशन

ऑब्जेक्टिव टाइप प्रश्न:

1. 2/34 एम.बी.पी.एस डिजिटल मक्स को इस नाम से भी	_ जाना जाता है
2. 2 एम.बी.पी.एस की संख्या एक 34 एम.बी.पी.एस में स्ट्रीम मे	कितने होते है
3. मल्टीप्लेक्सिंग सिद्धांत चक्रीय बिट इंटरलिविंग प्रक्रिया है जिसमे	जस्टीफ़िकेशन होते है
4. स्किप मक्स वोल्ट डी.सी पर चलाता	
5. अलार्म TRF डॉटा की अनुपस्थिति से संबंधित है	
6. अलार्म PLL लॉक के लॉस के लिए संबंधित है	

सब्जेक्टिव प्रकार प्रश्न:

- 1. 2/34 एम.बी.पी.एस मक्स को स्किप मक्स के रूप में क्यों जाना जाता है ?
- 2. 34 एम.बी.पी.एस डिजिटल रेडियो सिस्ट्म के साथ स्किप मक्स की कनेक्टिविटी चित्र बनाए ?
- 3. स्किप मक्स मे जो प्रकार की इंटरलिविंग (बिट या बाइट) कार्यरत हैं उसे विस्तार से व्याख्या करे ?
- 4. हम क्यों स्किप मक्स की आवश्यकता क्यों है ?

अध्याय 5

पनकोम व्ही मक्स (वीएमएक्स) -0100 सिस्ट्म

5.0 परिचय:

पनकोम व्ही मक्स "वी.एम.एक्स.-0100",एक प्रायमिर, 30 चैनल, एड ड्रॉप मल्टीप्लेक्सर है. यह E1 लिंक पर वाइस और डाटा नेटवर्क स्थापित करने के लिए आवश्यक होती है, विभिन्न स्थानों पर स्थित ग्राहकों के लिए वाइस और डिजिटल डाटा सेवाओं प्रदान कराता है. वीएमएक्स-0100 में डिजिटल E1 के सेवाओं के साथ ट्रान्स्मिशन उपकरणों को एकीकृत करने का एक सरल, शिक्तशाली सिस्टम है. इसमें दो E1 पोर्ट है और E1 पोर्टों के बीच क्रास कनेक्ट करने का सुबिधा प्रदान करता है. मल्टीप्लेक्सर में LPC कार्ड का उपयोग करके E1 धारा को पथ प्रोटेक्शन प्रदान कर सकते हैं. वीएमएक्स-0100 नेटवर्क में आपस में जुड़े सिस्टम तथा रिमोट सिस्टम के मोनिटरिंग और मैनेजमैंट किया जा सकता है, जो "नेटवर्क मैनेजमैंट सिस्टम " पर आधारित एक विंडोज है. आसानी से मेंटेनेन्स के लिए अलार्म प्रणाली प्रदान की गई है.

5.1 म्ख्य विशेषताएं:

- > यह Nx64, G.703/फ़्रेक्शन्ल E1 इंटरफ़ेस प्रोभाइड करता है.
- ▶ यह ई एंड एम (2W/4W), FXO, FXS, लूप I/C, लूप O/G और हॉट-लाइन इंटरफेस प्रोभाइड करता है.
- ▶ 64 के.बी.पी.एस G.703 डाटा, V.24, V.35, V.11 और X.21 इंटरफेस के साथ कम बिट दर एसिंक्रोनस/ सिंक्रोनस डेटा प्रोभाइड करता है, जो डाटा इंटरफेस में विविधता प्रदान करता है.
- > आई.एस.डी.एन डिजिटल सब्सक्राइबर लाइन (IDSL) प्रोभाइड करता है.
- > Nx64 सिंक्रोनस डाटा, प्रोभाइड करता है जहां Nmax = 30
- सॉफ्टवेयर डाउनलोड करने का स्बिधा है.
- सिस्टम मैनेजमैंट के लिए वेब ब्राउज़र इंटरफ़ेस (HTTP 1.1) है.
- > E1 लिंक पर 10Base T इथरनेट डेटा प्रोभाइड करता है.
- 🕨 यह 18, 3-पार्टी कॉन्फ्रेंसिंग चैनलों प्रदान करता है, जिनमें से 8, 4-पार्टी कॉन्फ्रेंस किया जा सकता है.
- नेटवर्क मैनेजमैंट सिस्टम के माध्यम से स्थानीय या दूर से प्रोग्राम टेस्टींग एवं डायजोन्स्टीक सुविधाए प्रोभाइड करता है.
- 🕨 व्यापक परीक्षण एवं डायग्नोस्टीक विशेषताएं
- > नेटवर्क की उपलब्धता बडाने के लिए लूप प्रोटेक्शन स्विधा प्रोभाइड करता है.
- ओपसोन्ल डीसी-डीसी कनवर्टर मौजुद है.
- अलार्म इतिहास और स्टेटस एल.इ.डी मौजुद है.
- > SHDSL (सिंगल-पैयर हाई स्पीड डिजिटल सब्सक्राइबर लाइन) G.991.2 के अनुरूप समर्थन करता है.

5.2 एप्लिकेशन:

- > 4 वायर ई एंड एम और FXS/FXO रिमोट सब्सक्राइबर एक्सटेंशन प्रदान करने का सुविधा है.
- स्ट्रींग नेटवर्क जैसे में स्काडा (सुपरवाइजरी कंट्रोल एंड डाटा अधिग्रहण) और एड- ड्रॉप मल्टीप्लेक्सर रेलवे, गैस पाइपलाइनों के लिए प्रदान करने का स्विधा है.

पनकोम व्ही मक्स (वीएमएक्स) -0100 सिस्ट्म

- > डेटा सर्किट पी.आर.एस (पब्लिक रिजर्वेशन सिस्टम)/एफ.ओ.आई.एस (फ्रेट परिचालन सूचना प्रणाली) के लिए प्रदान करने का स्विधा है.
- > SDH नेटवर्क के लिए पी.डी मल्टीप्लेक्सर के रुप मे उपयोग करने का स्विधा है.
- > लीज लाइन्स इंटरफ़ेस IDSL/SHDSL पर प्राथमरि रेट
- ट्रंक पर वॉइस और डॉटा ट्रांसिमशन के लिए एक पाइन्ट टु पाइन्ट मल्टीप्लेक्सर के रुप में उपयोग प्रोभाइड करता है.
- > एक टेल एंड मल्टीप्लेक्सर के रूप में डिजिटल ट्रांसिमशन नेटवर्क में उपयोग प्रोभाइड करता है.
- > 2,048 एमबीपीएस पीसीएम टूंक पर एक ऐड-ड्रॉप MUX के रूप में के रूप में इस्तेमाल किया जाता है.

चित्र 5.1 वीएमएक्स -100 का एप्लिकेशन

5.3 मैकेनिकल विवरण

वीएमएक्स-0100/19 " सब रैक 6U, मानक DIN के अनुरूप है. सब रैक का विवरण इस प्रकार हैं:

फ्रेम ऊंचाइ: 265mm

चौड़ाइ: 483mm गहराइ: 260mm

प्रत्येक कार्ड के डाइमेन्स्न इस प्रकार हैं:

ऊँचाइ: 233.35mm चौड़ाइ: 25.4mm गहराइ: 220mm

चित्र 5.2 VMX-0100 की फ्रंट भीउ

चित्र 5.3 VMX-0100 के रियर व्यू

पनकोम व्ही मक्स (वीएमएक्स) -0100 सिस्ट्म

5.4 सिस्टम आर्किटेक्चर:

शेल्फ व्यवस्था

वीएमएक्स-0100 शेल्फ 14 स्लॉट है. इमे चार स्लॉट आरिक्षत है और यूजर इंटरफेस के लिए बाकी दस स्लॉट है.

स्लॉट # 1	पॉवर सप्लाइ (पीएसयू) कार्ड
स्लॉट # 2	पॉवर सप्लाइ (पीएसयू) कार्ड वैकल्पिक
स्लॉट # 3	TME कार्ड
स्लॉट # 4	लूप संरक्षण (LPC) कार्ड (वैकल्पिक)
स्लॉट # 5-14	यूजर इंटरफेस कार्ड

टेबेल 5.1

ज्यादातर यूजर इंटरफेस कार्ड मे चार VF/डॉटा पोर्ट हैं इसलिए मक्स में अधिकतम 40 VF/डाटा पोर्ट शामिल किया जा सकते है. जिसमें से केवल 30 एक टाइम में कॉन्फ़िगर किया जा सकता है. स्लॉट्स 5-14 यूजर इंटरफेस कार्ड हो सकता है. यह स्वचालित रूप से स्लॉट में उपस्थिति और उपलब्ध इंटरफेस कार्ड के प्रकार का पता लगाता है। सिस्ट्म के फ़ंट पैनेल आंकड़े में दिखाया गया है.

5.4.1 कार्ड्स: व्ही मक्स-100 के डिजाइन मॉड्यूलर है और एकाधिक प्रोसेसर पर आधारित है। इस प्रकार व्ही मक्स -100 सिस्ट्म को निम्नलिखित खंड में विभाजित किया जा सकता है.

1) कॉमन कार्डस

- TME कार्ड
- वैकल्पिक पी.एस.यू कार्ड

2) यूजर इंटरफेस कार्डस

(क) VF कार्डस

- इ एंड एम कार्ड: इ एंड एम 2W और 4W इंटरफेस के लिए आवश्यक है.
- FXO कार्ड: लूप I/O और एक्सचेंज लाइन इंटरफेस के लिए आवश्यक है.
- FXS कार्ड: सब्सक्राइबर, लूप O / G और हॉटलाइन इंटरफेस के लिए आवश्यक है.

(ख) डाटा कार्डस

- G 703 कार्ड: G 703 64 केबीपीएस "को-डायरेक्शनल" डाटा के लिए आवश्यक है.
- UDT कार्ड: 1200/2400/4800/7200/9600/19200 बॉड एसिंक्रोनस डॉटा के लिए आवश्यक है.
- N64 के कार्ड: NX 64 डॉटा जहां N Max = 30 के लिए आवश्यक है.
- UIF कार्ड: रिमोट साइटों के लिए 64/128 केबीपीएस डाटा के लिए आवश्यक है.
- FE1 कार्ड: दो फ्रेकशन्ल (fractional E1) E1 स्ट्रीमओं का समर्थन करने के लिए आवश्यक है.

पनकोम व्ही मक्स (वीएमएक्स) -0100 सिस्ट्म

(ग) वैकल्पिक कार्ड

- LPC कार्ड: ओमनीबस सर्किट को ले जाने वाले 2 एमबी ट्रीब्यूटरी का प्रोटेकशन के लिए आवश्यक होता है तथा नेटवर्क में किसी भी मेजर फेलिऊर के मामले में चैनल के प्रोटेकशन हेत् है.
- DAC कार्ड: वोल्टेज और पर्यावरण, तापमान, दबाव, आर्द्रता, बैटरी वोल्टेज, एसी वोल्टेज, आदि अन्य पैरामीटर के निगरानी के लिए आवश्यक होता है.
- 3) पी.एस.यू कार्ड: व्ही मक्स-100 में पॉवर सप्लाइ एस.एम.पी.एस तकनीक पर आधारित डीसी-डीसी कनवर्टर से होता है। व्ही मक्स-100 उच्च उपलब्धता के लिए रिड्न्डेन्ट पी.एस.यू कार्ड होता है. यह एक और दो स्लॉट में रखे जाते हैं. इसके अलावा सिस्ट्म के कामकाज के लिए अपेक्षित वोल्टेज तथा FXS कार्ड के लिए आवश्यक 75 वोल्टेज आर.एम.एस, 25 हर्ट्ज रिंग उत्पन्न करता है.

इनपुट और आउटपुट स्पेक निम्नानुसार है :

इनप्ट: -36 V से -72 V (-48 V नोमिनल)

आउटपुट :

+5 V/10 A

12 V / 1.05 A

-12V / 1.05 A

फ़िल्टर किया हुआ -48 V VF लूप इंटरफेस लुप करने के लिए दिया जाता है. व्ही मक्स-100 की विशिष्ट पावर की खपत 75 W. है.

- 4) TME कार्ड: TME कार्ड व्ही मक्स -100 सिस्ट्म के दिल है , और यह व्ही मक्स-100 शेल्फ के स्लॉट .3 में स्थित है. इस सिस्टम के क्ल्ट्रोलर के रूप में मोटोरोला MC68EN302 माइक्रोप्रोसेसर और ओभर ओल क्ल्ट्रोलर एक माइक्रोप्रोसेसर आधारित कार्ड है. यह सभी प्रोग्रामेब्ल फ़िचर को लागू करता है और अलार्म की स्थित के लिए मक्स को स्कैन करता है, साथ ही जब अलार्म का पता चलता है तब सब्सक्राइबर परिभाषित कार्रवाइ की जाती है और इसके इतिहास फ़ाइलों को बनाए रखता है. यह मक्स के हार्डवेयर को स्कैन करता है और किसी भी विषमता होने पर सब्सक्राइबर को सिगन्ल देता है। NMT विभीन्न कार्यों के लिए एक सब्सक्राइबर के अनुकूल मेनू आधारित मैन मशीन बातचीत सब्सक्राइबर के साथ सूचना का आदान प्रदान करता है. पी.सी.एम -1, पी.सी.एम -2 ट्रंक के और लोकल सब्सक्राइबर पोर्ट के बीच क्रास कनेक्ट प्रदान करता है. यह सिग्नलिंग प्रोसेसर कार्ड के रूप में भी कार्य करता है और पी.सी.एम -1 और पी.सी.एम -2 के टाइम स्लॉट 16 और VF के पोर्ट पर उन्हें भेजता है. यह भी NMS के साथ नेटवर्क निगरानी और नियंत्रण प्रदान करने के लिए RS-232 या इथरनेट इंटरफेस के माध्यम से सूचना का आदान प्रदान करता है. यह लॉजिक और पी.एल.एल क्लाक को हैंडलिंग करता है.
- V) LPC कार्ड: यह कार्ड नेटवर्क में किसी भी मेजर फेलिऊर के मामले में ट्राफीक ले जाने तथा P1 के और P2 की स्ट्रीमओं की रक्षा करने के लिए प्रयोग किया जाता है .मक्स चेन पर सभी नोड्स में चैनलों एक दूसरे से जुड़े रहते हैं उसे मुख्य 2 Mb स्ट्रीम के लिए सुरक्षा प्रदान करना है. यह दो, 2 Mb को एक स्पेयर और स्रक्षा प्रदान करने के लिए एक बैकअप-स्ट्रीमओं का उपयोग करता है.

VI) DAQ कार्ड:

इस कार्ड का कार्या इस प्रकार है. इसमें आठ अक्सिलारी इनपुट पोर्ट है जो इभेन्ट को दर्जा करने के लिए उपयोग किया जाता है. इसमें आठ अक्सिलारी ड्राइ क्न्टेक्ट है जो कार्यों को नियंत्रित करने के लिए है. इसमें 6 पर्यावरणीय मानकों को निगरानी के लिए एनालॉग क्न्टेक्ट है. यह वोल्टेज की निगरानी भी करता है.

5.4.2 उपकरणों आइ.डी (ID)

एक 8 पोजिशन DIP स्विच उपकरण आइडी सेट करने के लिए माँदर बोर्ड पर उपलब्ध है। 8 पोजिशन पर अधिक से अधिक 256 आइडी सेट किया जा सकता है। इस "आइ-डी" "एन.एम.एस "संचालन के लिए आवश्यक और NMS सिस्ट्म फ्रेम के "एड्रेस" के रूप में है.

5.4.3 बायरिंग और टुमिनेशनस:

सभी कनेक्शन्स मदरबोर्ड के पीछे की तरफ कनेक्टर्स पर ट्रमिनेटेड हैं .व्ही मक्स 100-मदरबोर्ड के पीछे स्थित एक कनेक्टर के माध्यम से 48- V पॉवर सप्लाइ से प्राप्त करती है. सभी यूजर इंटरफेस के साथ ही पी.सी.एम ,1- पी.सी.एम 2-के 120 Ω इंटरफेस ,नेटवर्क क्लाक ,और आउटपुट क्लाक मदरबोर्ड के पीछे की तरफ यूरो कनेक्टर्स पर ट्रमिनेशन होता है .क्लाक इनपुट और क्लाक आउटपुट के लिए 75 Ω इंटरफेस ट्रमिनेशन भी BNC कनेक्टर से किया जाता है। दो 15DB कनेक्टर्स NMS के लिए प्रदान किया गया है .एक 9DB कनेक्टर बे शीर्ष पैनल मे मेजर और माइनर अलार्म डिसप्ले करने के लिए प्रदान किया गया है. व्ही मक्स 100-के ब्लॉक आरेख चित्र 5.4 में दिखाया गया है .

5.5 फंसनल वर्णन :

दो आने वाली पी.सी.एम P1 और P2 पीछे की तरफ से, कनेक्टर के माध्यम से TME कार्ड में जाता है. एक जम्पर के माध्यम से $75/120~\Omega$ या प्रोग्रामिंग द्वारा NMT के माध्यम से चुना जाता है. आने वाली स्ट्रीमओं ST-Bus, दो टी.टी.एल स्तर, लाइन ट्रांसफार्मर, के माध्यम से Framer IC से जुड़े हैं.

संयुक्त लाइन इंटरफेस यूनिट और Framer IC लाइन इकुअलाइजेशन HDB-3 से बाइनरी रूपांतरण के लिए डि-फ्रेमिंग क्लाक एक्सट्रैक्शन स्पेयर बिट्स में से इन्फरमेसन का निष्कर्षण अलार्म के निगरानी आदि सामिल है.

ये टी.टी.एल स्तर VF और सिगनल स्ट्रीमओं मे आगे क्रमश VF और सिगनल द्वारा क्रास कनेक्ट स्विच से जुडते हैं. रूटिंग टेबल्स में सब्सक्राइबर द्वारा प्रोग्राम के रूप में इन स्ट्रीमओं पर TSI कार्य करते हैं.

उपकरणों कि लूप संरक्षण कार्य LPC कार्ड (वैकिल्पिक) का उपयोग करके किया जाता है। यह कार्ड नेटवर्क में किसी भी मेजर फेलिऊर की स्थिति में यातायात ले जाने P1 और P2 स्ट्रीमओं की रक्षा के लिए प्रयोग किया जाता है। एक तरह से मुख्य 2 Mb स्ट्रीम करने के लिए सुरक्षा प्रदान करता है जो चेन पर सभी नोड्स ओमनीबस चैनलों पर एक दूसरे से जुड़े रहते हैं। यह दो 2 Mb एक स्पेयर और प्रोटेक्शन प्रदान करने के लिए एक बैकअप स्ट्रीमओं का उपयोग करता है.

5.5.1 प्रोग्राम-योग्य टाइम स्लॉट

VMX-100 के आपरेशन से जुड़े एक VT 100 के जैसे नेटवर्क मैनेजमेंट टर्मिनल (NMT) से प्रोग्राम किया जाता है. NMT के माध्यम से सब्सक्राइबर मौजूदा कॉन्फ़िगरेशन प्रदर्शित करने के लिए और/या नए कॉन्फ़िगरेशन दर्ज करने के लिए सब्सक्राइबर के अनुकूल है. एक बार प्रवेश किया कॉन्फ़िगरेशन कि इन्फरमेसन एक "नान भोलाटाइल रैम" (NVRAM) में संग्रहीत होता है और आगे मक्स के संचालन को नियंत्रित करता है. NVRAM में कइ वर्षों की बैटरी लाइफ़ है.

NVRAM पहेले से प्रोग्राम पैरामीटर के लिए बेसिक कॉन्फ़िगरेशन की के साथ फ़ैकट्री से आता है. यह डिफ़ॉल्ट सेटिंग NMT का उपयोग कर साइट पर देखा और बदला जा सकता है. डिफ़ॉल्ट सेटिंग एक विशिष्ट वातावरण में व्ही मक्स-100 के संचालन के लिए पर्याप्त है और एक विशिष्ट सब्सक्राइबर आवश्यकता के अन्रूप सप्लाइ की जा सकती.

5.5.2 नेटवर्क सिंक्रनाइज़ेशन

व्ही मक्स -100 नेटवर्क सिंक्रनाइज़ेशन के लिए क्लाक इनपुट विकल्पों में से एक को समर्थन करता है। इनमें ये हो सकते हैं:

- रिसिब पी.सी.एम -1 के क्लाक
- रिसिब पी.सी.एम -2 क्लाक
- रिसिब सिंक्रनाइज़ डाटा चैनल क्लाक
- एक्सटूर्नल 2.048 मेगाहर्ट्ज क्लाक
- इंटरनल ओसिलेटर क्लाक

सब्सक्राइबर के प्राथमिकता के क्रम में क्लाक को सिंक्रनाइज़ करने के लिए निर्दश दे सकते हैं. उच्चतर प्राथमिकता क्लाक की फेलिऊर के मामले में, अगले उपलब्ध कम प्राथमिकता वाली क्लाक स्वतः ही सिंकिट में लाया जाता है.

चित्र 5.4 VMX-0100 की ब्लाक आरेख

5.5.3 प्रोग्राम-योग्य अलार्म और थ्रेसहोल्ड

वीएमएक्स -100 पी.सी.एम ट्रांक, सब्सक्राइबर के VF/डाटा पोर्ट, क्लाक और अन्य व्यवस्था पर अलार्म स्थिति की संख्या का पता लगाता है.

इसमे निम्नलिखित शर्तों शामिल हैं:

1) पी.सी.एम ट्रांक पर:

सिगनल की लॉस फ्रेम सिंक में कमी मल्टी फ्रेम सिंक में कमी अत्यधिक एफएएस फ़ाल्टयों सीआरसी सिंक में कमी अत्यधिक स्लीप रिमोट अलार्म एआइएस प्राप्त

II) अन्य:

प्राथरिटी क्लाक फेलिऊर VF/डाटा पोर्ट में फेलिऊर कॉन्फिगरेशन मिसमैच

इन अलार्म शर्तों में एक मेजर, माइनर या कोइ अलार्म न उत्पन्न करने के लिए सब्सक्राइबर प्रोग्राम कर सकता है. मेजर और माइनर अलार्म भी श्रव्य और दृश्य सिगन्ल उत्पन्न करने के लिए बे के ऊपर पैनल में भेज सकता है.

एक बार उत्पन्न अलार्म कंसोल पर प्रदर्शित हो सकते हैं "एक से सै" प्रविष्टियों अलार्म इतिहास फ़ाइल में रहता है. इस फाइल में अलार्म के प्रविष्टियों अलार्म स्रोत, अलार्म प्रकार, अलार्म साइट, अलार्म पीढ़ी और अलार्म के टाइम आदि शामिल है.

5.5.4 "ओमनी-बस" कॉन्फ्रेंसिंग:

वीएमएक्स -100 अधिक से अधिक आठ 4-पार्टी कॉन्फ्रेंस हो सकता है, जिनमें से 18 को तीन/चार पार्टी कॉन्फ्रेंसिंग के प्रावधान किया जा सकता है. इन कॉन्फ्रेंसिंग चैनलों कि इस तरह से सेट किया जा सकता है कि पी.सी.एम -1 और पी.सी.एम -2 ट्रंक और एक/दो लोकल VF के पोर्ट में से किसी एक टाइम स्लॉट प्रत्येक कॉन्फ्रेंस में भाग ले सकते है.

5.5.5 NMT का उपयोग "डायगोन्स्टीक" टेस्ट करने के लिए:

प्रोग्रामिंग के अलावा वीएमएक्स -100 से, NMT आदि से , मक्स के स्थिति, इसके विभीन्न लाइनों और पोर्ट की स्थिति प्रदर्शित करने, अलार्म इतिहास को प्रदर्शित करने, डायगोन्स्टीक का प्रयोग किया जाता है.

5.5.6 पी.सी.एम ट्रांक मे "क्रॉस कनेक्टिविटी" :

वीएमएक्स -100 दो पी.सी.एम ट्रांक और 40 सब्सक्राइबर पोर्ट दोनों के बीच पूर्ण क्रॉस कनेक्ट करता है. पी.सी.एम ट्रांक पर किसी भी टाइम स्लॉट को किसी भी सब्सक्राइबर के पोर्ट से मैप किया जाता है. इसके अलावा पी.सी.एम -1 के किसी भी टाइम स्लॉट एड/ड्रॉप कॉन्फिगरेशन या बाइपास चैनलों के लिए पी.सी.एम -2 के किसी भी टाइम स्लॉट के लिए मैप किया जा सकता है. हालांकि सब्सक्राइबर के 40 पोर्ट मोडुलारिटी बढ़ाने के लिए प्रदान किया गया है, लेकिन उनमें से केवल 30 पोर्ट एक टाइम में कॉन्फिगर किया जा सकता है. वीएमएक्स -100 चार क्रॉस कनेक्ट टेबल ऊपर बनाए रख सकते हैं जिनमें से किसी एक सब्सक्राइबर कार्रवाइ मे सक्रिय किया जा सकता है.

5.6 कार्ड के इंस्टालेशन

1) पॉवर सप्लाइ कार्ड

पॉवर सप्लाइ कार्ड के प्रन्ट व्य् नीचे का चित्र में दिखाया गया है.

चित्र 5.5 प्रन्ट पैनल व्यु

निम्न टेबेल मे पॉवर सप्लाइ कार्ड के सामने का पैनल का वर्णन दिखाया गया है.

आइटम	वर्णन
ON/OFF स्विच	पावर ON/OFF. उपर पोजिसन OFF. नीचे पोजिसन ON
पावर	ग्रीन एल.इ.डी चमकता है जब -48V इनपुट मौजूद हो
आउटपुट फ़ेल एल.इ.डी	एल.इ.डी लाल बत्ती चमकता है जब 5 V, 12 V या -12V कोइ भी फ़ेल हो
मॉनिटरिंग बिंदुओं	मॉनिटरिंग बिंदुओं इनपुट -48V, -48V रीट्रन, 5 V, ग्राउंड, 12 V और -12V.
	चेतावनीः
	मॉनिटरिंग बिंदुओं असुरक्षित हैं और सावधानी से नजर रखी जानी चाहिए।

टेबेल 5.2

हैडर सेटिंग्स: पॉवर सप्लाइ कार्ड में कइ हेडर है.

फ़्यूज़: पॉवर सप्लाइ कार्ड यूरो कनेक्टर J1 नजदीक स्थित है, जहां एक फ्यूज हैं,

इनस्टोलेशन प्रोसेस: कार्ड पर ओन/ओफ़ स्विच है ऑफ करने के बाद ही स्लॉट में डाले.

स्लॉट नंबर 1 या स्लॉट संख्या 2 में कार्ड डाले और इसे लाक करे.

यह सुनिश्चित करें स्लॉट में कार्ड को हटाने/डालने से पहले, पॉवर सप्लाइ कार्ड स्विच ओफ़ करे नहीं तो पॉवर सप्लाइ कनेक्टर्स को लॉस पहुंच सकता है.

i) TME कार्ड: TME कार्ड के प्रन्ट व्यु नीचे का चित्र में दिखाया गया है.

चित्र 5.6 TME कार्ड फ्रन्ट पैनल व्य्

निम्न टेबेल मे TME कार्ड के सामने का पैनल का वर्णन दिखाया गया है.

आइटम	एल.इ.डी स्थिति	एल.इ.डी फ़ंक्शन		
हैल्थ	ब्लींक	कार्ड ठीक काम कर रहा है		
	(हरी/लाल)			
	लाल ओन	कार्ड के हार्डवेयर फ़ाल्टी है		
P1 LCL	ओन	PCM-1 सिगनल की लोस		
	फ़ास्ट ब्लींक	PCM-1 फ़्रेम सिंक लोस		
	फ़ास्ट ब्लींक	PCM-1 मल्टीफ़्रेम सिंक लोस		
	फ़ास्ट ब्लींक	PCM-1 CRC फ़्रेम सिंक लोस		
	स्लो ब्लींक	PCM-1 इरर दर > E 10 ⁻³		
	स्लो ब्लींक	PCM-1 इरर दर > E 10 ⁻⁶		
P2 LCL	ओन	PCM-2 सिगनल की लोस		
	फ़ास्ट ब्लींक	PCM-2फ़्रेम सिंक लोस		
	फ़ास्ट ब्लींक	PCM-2 मल्टीफ़्रेम सिंक लोस		
	फ़ास्ट ब्लींक	PCM-2 CRC फ़्रेम सिंक लोस		
	स्लो ब्लींक	PCM-2 इरर दर > E 10 ⁻³		
	स्लो ब्लींक	PCM-2 इरर दर > E 10 ⁻⁶		
P1 RMT	ओन	PCM-1 रिसीभ AIS (All 1s)		
	स्लो ब्लींक	PCM-1 रिसीभ रिमोट FSL		
	स्लो ब्लींक	PCM-1 रिसीभ रिमोट MFSL		
	स्लो ब्लींक	PCM-1 रिसीभ AIS in TS16		
P2 RMT	ओन	PCM-1 रिसीभ AIS (All 1s)		
	स्लो ब्लींक	PCM-1 रिसीभ रिमोट FSL		
	स्लो ब्लींक	PCM-1 रिसीभ रिमोट MFSL		
	स्लो ब्लींक	PCM-1 रिसीभ AIS in TS16		
कलाक	ब्लींक	स्लीप		
	ओन	कलाक फ़ेल		
टेस्ट	ओन	कार्ड डायगोन्स्टिक या लूपबैक मोड में		
TD NMS	ब्लींक	NMS polls ट्रान्स		
RD NMS	ब्लींक	NMS Polls रिसीभ		
NMS इथरनेट	ट NMS के लिए कनेक्शन लैन पर RJ-45 कनेक्टर			
कनेक्टर				
NMT कनेक्टर	DB9 फ़िमेल NMT के लिए कनेक्शन.			
NMS RS-232	32 DB9 DB9 फ़िमेल NMT PC के लिए कनेक्शन			
कनेक्टर	कनेक्टर			

टेबल 5.3

हैडर सेटिंग्स: यहाँ केवल आठ सब्सक्राइबर चयन हेडर हैं बाकि हेडर फ़ैकट्री सेट हैं. फ़ैकट्री इन्स्टोल हेडर की सेटिंग बदला नहीं जाना चाहिए अन्यथा उपकरणों की खराबी हो सकती है. इन हेडर के फ़ान्शन नीचे सारणीबद्ध है.

सब्सक्राइबर हेडर चयन:

क्र.सं.	हैडर के नाम	स्थिति	रिमार्क्स
1.	H1	1-2 75 Ω के लिए	PCM-1 आउटपुट इमपिडेन्स चयन। डिफ़ॉल्ट
		2-3 120 Ω के लिए	सेटिंग 120 Ω
2.	H4	1-2 75 Ω के लिए	PCM-1 इनपुट इमपिडेन्स चयन। डिफ़ॉल्ट
		2-3 120 Ω के लिए	सेटिंग 120 Ω
3.	H5	1-2 75 Ω के लिए	PCM-2 आउटपुट इमपिडेन्स चयन। डिफ़ॉल्ट
		2-3 120 Ω के लिए	सेटिंग 120 Ω
4.	H9	1-2 75 Ω के लिए	PCM-2 इनपुट इमपिडेन्स चयन। डिफ़ॉल्ट
		2-3 120 Ω के लिए	सेटिंग 120 Ω
5.	H2 & H3	1-2	PCM-1 आउटपुट कनेक्टेड
		2-3	PCM-1 आउटपुट डिस कनेक्टेड
6.	H6 & H8	1-2	PCM-2 आउटपुट कनेक्टेड
		2-3	PCM-2 आउटपुट डिस कनेक्टेड
7.	H22	1-2 120 Ω के लिए	आउटपुट क्लाक इमपिडेन्स चयन. डिफ़ॉल्ट
		2-3 75 Ω के लिए	इमपिडेन्स 75 Ω

टेबल 5.4

फ़ैकट्री इन्स्टोल हेडर:

क्र.सं.	हैडर के नाम	स्थिति	रिमार्क्स
1.	H16	1-2	Watchdog स्ट्रोब के चयन
2.	H7	1-2 TDM-FE2	डिफ़ॉल्ट सेटिंग TDM4 है
		2-3 TDM4	
3.	H10	1-2 TDM-FE2	डिफ़ॉल्ट सेटिंग TDM4 है
		2-3 TDM4	
4.	H19	1-2	RS-485 पोर्ट मोड
5.	H20	1-2	RS-485 पोर्ट मोड
6.	H24	सार्ट	क्लाक के लिए गेन के चयन
7.	H25	1-2 C16, 2-3 C8	डिफ़ॉल्ट सेटिंग C8 है
8.	H26, H27	ओपेन	उपयोग नहीं किये गए
9.	H11,H12,H14,H15,H17,H19,	ओपेन	टेस्टिंग
	H20,H21, and H23		

टेबल 5.5

मदरबोर्ड टरमिनेशन सिगनल के विवरणः

टरमिनेशन मदरबोर्ड के पीछे पर उपलब्ध विभीन्न कनेक्टर्स पर उपलब्ध हैं जो नामित स्लॉट (स्लॉट संख्या 2) में इन्स्टोल है। इन कनेक्टर्स के सिगन्ल विवरण इस प्रकार है:

कनेक्टर नाम: J3

कनेक्टर प्रकार: 64-पिन यूरो मेल

PIN	Α	С	
1			
2	PCM-1 IN (A)	PCM-1 OUT (A)	
3	GND	GND	
4	PCM-1 IN (B)	PCM-1 OUT (B)	
5	GND	GND	
6	PCM-2 IN (A)	PCM-2 OUT (A)	
7	GND	GND	
8	PCM-2 IN (B)	PCM-2 OUT (B)	
9			
10	EXT क्लाक IN (A)	EXT क्लाक OUT (A)	
11	GND	GND	
12	EXT क्लाक IN (B)	EXT क्लाक OUT (B)	
अन्य सभी पिन उपयोग नहीं करना चाहिए			

टेबल 5.6

कनेक्टर नाम: J31, J43

कनेक्टर का नाम: पावर इनपुट

कनेक्टर प्रकार: 4-पिन मेल

PIN	SIGNAL
1	-48V IN
2	-48V IN
3	-48V RET
4	-48V RET

ਟੇਕਲ 5.7

इंस्टालेशन प्रोसेस :

- पॉवर सप्लाइ बंद करें.
- इंस्टालेशन की योजना के अनुसार 75 या 120 Ω टरिमनेशन के लिए हेडर सेट करें.
- स्लॉट.3 में TME कार्ड डालने हेतु ejectors और स्क्रू की मदद लें.
- मेजर अलार्म आने पर बजर बजेगा तो पीडीपी स्विच तुरंत सेट करें.
- प्रेस ACO ऑडियो अलार्म कट करने के लिए है .

III) LPC कार्ड :

LPC कार्ड के सामने पैनल के नीचे दिखाया गया है

चित्र 5.7

निम्न टेबेल सामने पैनल का वर्णन करता है

आइटम	एल.इ.डी स्थिति	एल.इ.डी फ़ंक्शन		
हैल्थ	ग्रीन ON	कार्ड ठीक काम कर रहा है		
	रेड ON	कार्ड का हार्डवेयर फ़ाल्टी हो गया है		
Е फ़ेल	ON	इस्ट लिंक से जुड़ा पी.सी.एम -1 फ़ेल है		
W फ़ेल	ON	वेस्ट लिंक से जुड़ा पी.सी.एम -1 फ़ेल है		

टेबल 5.8

हैडर सेटिंग्स

यहाँ सब्सक्राइबर चयन हेडर निह हैं सभी हेडर फ़ैकट्री सेट हैं। इन हेडर की सेटिंग बदला नहीं जाना चाहिए अन्यथा उपकरणों में खराबी हो सकती है। इन हेडर नीचे सारणीबद्ध है।

क्र.सं.	हैडर के नाम	स्थिति	रिमार्क्स	
1.	H1	1-2	Watchdog स्ट्रोब के चयन	
2.	H2		सिस्टम रीसेट करने	
3.	H3 - 6		भविष्य में उपयोग के लिए	
4.	H7	1-2	IP कनट्रोल	
5.	H8	Short	ग्राउंड shorting	

टेबल 5.9

मेन- स्टेशन और वे- साइड- स्टेशन में सेटिंग: दो, 8 पोजिशन डिप स्विच SW1 और SW2 है. यदि सभी 16 पोजिशन बंद हो तो यह मेन स्टेशन सिलेक्ट होता है और सभी ओपेन हो तो वे-साइड स्टेशन सिलेक्ट होता है. बेसिकालि मेन स्टेशन का चयन टर्मिनल स्टेशनों के लिए किया जाता है और वे साइड स्टेशन चयन सभी इंटरमीडिएट स्टेशनों के लिए किया जाता है.

टरमिनेशन सिगनल के विवरण :

टरमिनल मदरबोर्ड के पीछे पर उपलब्ध विभीन्न कनेक्टर्स पर उपलब्ध हैं जो नामित स्लॉट (स्लॉट नंबर 4) में है. कनेक्टर का सिगनल विवरण निम्नानुसार हैं:

कनेक्टर पदनाम: J5

कनेक्टर प्रकार: 64-पिन यूरो मेल

PIN	Α	С	
1			
2	PCM-1 IN (A)	PCM-1 OUT (A)	
3	GND	GND	
4	PCM-1 IN (B)	PCM-1 OUT (B)	
5	GND	GND	
6	PCM-2 IN (A)	PCM-2 OUT (A)	
7	GND	GND	
8	PCM-2 IN (B)	PCM-2 OUT (B)	
9			
10	PCM-3 IN (A)	PCM-3 OUT (A)	
11	GND	GND	
12	PCM-3 IN (B)	PCM-3 OUT (B)	
13	GND	GND	
14	PCM-4 IN (A)	PCM-4 OUT (A)	
15	GND	GND	
16	PCM-4 IN (B)	PCM-4 OUT (B)	
17	GND	GND	
18	PCM-5 IN (A)	PCM-5 OUT (A)	
19	GND	GND	
20	PCM-5 IN (B)	PCM-5 OUT (B)	
21	GND	GND	
22	PCM-6 IN (A)	PCM-6 OUT (A)	
23	GND	GND	
24	PCM-6 IN (B)	PCM-6 OUT (B)	
25			
अन्य सभी पिन उपयोग नहीं करना चाहिए			

टेबल 5.10

इंस्टालेशन :

"स्विच ओन" होने पर पॉवर सप्लाइ बंद करे .
स्लॉट 4 में LPC कार्ड डालने हेतु ejectors और स्क्रू की मदद ले .
यह सुनिश्चित करें कि TME कार्ड पहले से ही उसके नामित स्लॉट में डाला जाए .
स्वास्थ्य एल.इ.डी हरी चमके जब सिस्टम स्विच ओन होगी .

iv) इ एंड एम कार्ड :

इ एंड एम कार्ड के सामने पैनल के नीचे चित्र में दिखाया गया है

चित्र 5.8

निम्नलिखित टेबेल फ़ान्ट पैनल का वर्णन करता है

आइटम	एल.इ.डी स्थिति	एल.इ.डी फ़ंक्शन
हैल्थ	Green ON	कार्ड ठीक काम कर रहा है
	Red ON	कार्ड का हार्डवेयर फ़ाल्टी हो गया है
	ब्लिंकींग	कार्ड के हार्डवेयर ठीक है, लेकिन यह मुख्य TME कार्ड
		से कॉन्फ़िगर नहीं है।
टेस्ट-1	ON	चैनल-1 टेस्ट और डायगोन्स्टीक मोड में है
टेस्ट -2	ON	चैनल-2 टेस्ट और डायगोन्स्टीक मोड में है
टेस्ट -3	ON	चैनल-3 टेस्ट और डायगोन्स्टीक मोड में है
टेस्ट -4	ON	चैनल-4 टेस्ट और डायगोन्स्टीक मोड में है

ਟੇਕਕ 5.11

हैडर सेटिंग्स :

यहाँ सब्सक्राइबर चयन हेडर निह हैं सभी हेडर फ़ैकट्री सेट हैं । इन हेडर की सेटिंग बदला नहीं जाना चाहिए अन्यथा उपकरणों मे खराबी हो सकती है । इन हेडर नीचे सारणीबद्ध है।

क्र.सं.	हैडर के नाम	स्थिति	रिमार्क्स	
1.	H1	Short	SPROM प्रोग्राम को एनेबेल/ डिसेबेल	
2.	H2	1-2	Watchdog स्ट्रोब के चयन	
3.	Н3	1-2	सिस्टम रीसेट करने	
4.	H4,6,8,10	Open	भविष्य में उपयोग के लिए	
5.	H12	1-2	IP कनट्रोल	
6.	H14	1-2	सप्लाइ चयन के प्रोग्रामिंग	

टेबल 5.12

सिग्नलिंग कोड्स :

विभीन्न M लीड के लिए ट्रान्स सिगनल कोड नीचे दिए गए हैं:

सिग्नलिंग स्टेट्स	ट्रान्स बिट			
	a b		С	d
M लीड ओपेन	1	0	0	1
M ਨੀਤ ground	0	0	0	1

टेबल 5.13

विभीन्न E लीड के लिए रिसिव सिगनल कोड

सिग्नलिंग स्टेट्स	रिसिव बिट						
	a b c						
E लीड ओपेन	1 X X X						
Ground on E lead	0	Х	Χ	Х			

ਟੇਕਲ 5.14

टरमिनेशन के विवरण :

टरमिनल मदरबोर्ड के पीछे विभीन्न कनेक्टर्स पर उपलब्ध हैं। इन कनेक्टर्स के इंडिकेशन का विस्तार नीचे है।

कनेक्टर पदनाम: J7, 9, 11, 13, 15, 17, 19, 21, 23, 29

कनेक्टर प्रकार: 96-पिन यूरो मेल

Pin	Α	В	С					
1								
2	2W/4W RX1 A (OUT)	NC	2W/4W RX1 B (OUT)					
3	4W TX1 A (IN)	NC	4W TX1 B (IN)					
4	E1	NC	M1					
5	2W/4W RX2 A (OUT)	NC	2W/4W RX2 B (OUT)					
6	4W TX2 A (IN)	NC	4W TX2 B (IN)					
7	E2	NC	M2					
8	NC	NC	NC					
9								
10	2W/4W RX3 A (OUT)	NC	2W/4W RX3 B (OUT)					
11	4W TX3 A (IN)	NC	4W TX3 B (IN)					
12	E3	NC	M3					
13	2W/4W RX4 A (OUT)	NC	2W/4W RX4 B (OUT)					
14	4W TX4 A (IN)	NC	4W TX4 B (IN)					
15	E4	NC	M4					
16	NC	NC	NC					
अन्य	अन्य सभी पिन उपयोग मे नही है							

ਟੇਕਲ 5.15

इंस्टालेशन :

स्लॉट 4 में LPC कार्ड डालने हेतु ejectors और स्क्रू की मदद ले. पहले से ही कॉन्फ़िगर यदि नहीं है तो NMS का उपयोग कर कार्ड और पोर्ट को कॉन्फ़िगर करें. पोर्ट को रूट करे.

V) FXO कार्ड

FXO कार्ड के फ़ोन्ट पैनल नीचे दिखाया गया है.

चित्र 5.9

निम्नलिखित टेबेल FXO कार्ड के फ़्रोन्ट पैनल का वर्णन करता है.

आइटम	एल.इ.डी स्थिति	एल.इ.डी फ़ंक्शन
हैल्थ	Green ON	कार्ड ठीक काम कर रहा है
	Red ON	कार्ड का हार्डवेयर फ़ाल्टी हो गया है
	ब्लिंकींग	कार्ड के हार्डवेयर ठीक है, लेकिन यह मुख्य TME
		कार्ड से कॉन्फ़िगर नहीं है।
टेस्ट -1	ON	चैनल-1 टेस्ट और डायगोन्स्टीक मोड में है
टेस्ट -2	ON	चैनल-2 टेस्ट और डायगोन्स्टीक मोड में है
टेस्ट -3	ON	चैनल-3 टेस्ट और डायगोन्स्टीक मोड में है
टेस्ट -4	ON	चैनल-4 टेस्ट और डायगोन्स्टीक मोड में है

ਟੇਕਲ 5.16

हैडर सेटिंग्स

यहाँ सब्सक्राइबर चयन हेडर निह हैं सभी हेडर फ़ैकट्री सेट हैं । इन हेडर की सेटिंग बदला नहीं जाना चाहिए अन्यथा उपकरणों मे खराबी हो सकती है । इन हेडर नीचे सारणीबद्ध है।

क्र.सं.	हैडर के नाम	स्थिति	रिमार्क्स
1.	H2	2-3	SPROM प्रोग्राम को एनेबेल/ डिसेबेल
2.	H1	1-2	Watchdog स्ट्रोब के चयन
3.	Н3	1-2	सिस्टम रीसेट करने
4.	H4,5,6,7	Open	भविष्य में उपयोग के लिए
5.	H13	1-2	IP कनट्रोल
6.	H15	1-2	सप्लाइ चयन के प्रोग्रामिंग

टेबल 5.17

सिग्नलिंग कोड

FXO कार्ड FXO मोड में सेट करना है, रिमोट सब्सक्राइबर के लिए विभीन्न सिगन्ल स्टेट्स और कोड नीचे दिए गए के रूप में हैं।

एक्सचेंज द्वारा उत्पन्न कॉल

सिग्नलिंग	सब्सक्राइबर	सब्सक्राइबर की स्टेटस इंटरफेस	ट्रांर	समिटेड	इ बि	ट्स	रि	सीव	बिद्	्स
के शर्त	की स्टेटस	कार्ड मे	а	b	С	d	а	b	С	d
Idle	Normal potential	High resistance Loop	1	1	0	1	1	1	Х	Х
Ring	Ringing voltage 75V rms	High resistance Loop	1	1/0	0	1	1	1	Х	Х
Ring Tip	Normal potential	Low resistance Loop	1	1	0	1	0	1	X	X

टेबल 5.18

क) सब्सक्राइबर द्वारा उत्पन्न कॉल :

सिग्नलिंग	सब्सक्राइबर की	सब्सक्राइबर की स्टेटस इंटरफेस	Ţį	समिटे	ड बिट्	्स	रि	सीव	बिट्	स
के शर्त	स्टेटस	कार्ड मे	а	b	С	d	а	b	С	d
Idle	Normal potential - ve on 'a' limb +ve on 'b' limb	High resistance Loop	1	1	0	1	1	1	X	Х
Seizure	-do-	Low resistance Loop	1	1	0	1	0	1	X	X
Dialing	-do-	Loop Make/Break	1	1	0	1	0	1	Х	Х
Answer by called Subscriber	Reverse potential + ve on 'a' limb - ve on 'b' limb (Only in case of CB/PBX otherwise Normal potential)	Low resistance Loop	0	1	o OR o	1	0	1	x	X
Clear forward	Reverse or Normal potential	High resistance Loop	0	1	0 OR 0	1	1	1	Х	Х

ਟੇਕਲ 5.19

इंस्टालेशन :

स्लॉट 4 में LPC कार्ड डालने हेतु ejectors और स्क्रू की मदद ले. पहले से ही कॉन्फ़िगर यदि नहीं है तो NMS का उपयोग कर कार्ड और पोर्ट को कॉन्फ़िगर करें. पोर्ट को रूट करे.

VI) FXS कार्ड: FXS कार्ड के फ़्रोन्ट पैनल नीचे दिखाया गया है.

चित्र 5.10

निम्नलिखित टेबेल में FXS कार्ड के फ़्रोन्ट पैनल का वर्णन किया गया है.

आइटम	एल.इ.डी स्थिति	एल.इ.डी फ़ंक्शन
हैल्थ	Green ON	कार्ड ठीक काम कर रहा है
	Red ON	कार्ड का हार्डवेयर फ़ाल्टी हो गया है
	ब्लिंकींग	कार्ड के हार्डवेयर ठीक है, लेकिन यह मुख्य TME कार्ड से कॉन्फ़िगर
		नहीं है।
टेस्ट -1	ON	चैनल-1 टेस्ट और डायगोन्स्टीक मोड में है
टेस्ट -2	ON	चैनल-2 टेस्ट और डायगोन्स्टीक मोड में है
टेस्ट -3	ON	चैनल-3 टेस्ट और डायगोन्स्टीक मोड में है
टेस्ट -4	ON	चैनल-4 टेस्ट और डायगोन्स्टीक मोड में है

ਟੇਕਲ 5.20

हैडर सेटिंग्स

यहाँ सब्सक्राइबर चयन हेडर निह हैं सभी हेडर फ़ैकट्री सेट हैं। इन हेडर की सेटिंग बदला नहीं जाना चाहिए अन्यथा उपकरणों मे खराबी हो सकती है। इन हेडर नीचे सारणीबद्ध है।

क्र.सं.	हैडर के नाम	स्थिति	रिमार्क्स
1.	Н3	2-3	SPROM प्रोग्राम को एनेबेल/ डिसेबेल
2.	H2	1-2	Watchdog स्ट्रोब के चयन
3.	H4	1-2	सिस्टम रीसेट करने
4.	H8,9,10,11	Open	भविष्य में उपयोग के लिए
5.	H7	1-2	IP कनट्रोल
6.	H18	1-2	सप्लाइ चयन के प्रोग्रामिंग
7.	H1	1-2	CH-1 के लिए रिंगर के मोड का चयन
8.	H5	1-2	CH-2 के लिए रिंगर के मोड का चयन
9.	H6	1-2	CH-3 के लिए रिंगर के मोड का चयन
10.	H16	1-2	CH-4 के लिए रिंगर के मोड का चयन

ਟੇਕਕ 5.21

कोड सिग्नलिंग: FXS कार्ड के लिए विभीन्न इंडिकेशन के कोड नीचे दिए गए हैं।

क) एक्सचेंज द्वारा कॉल उत्पन्न :

सिग्नलिंग के शर्त	सब्सक्राइबर की स्टेटस	सब्सक्राइबर की ट्रांसा स्टेटस इंटरफेस बिट कार्ड मे a b		ट्स	d		रेसीव	<u> </u>	स d	
		काठ न	а	ט	С	u	а	b	С	u
Idle	High resistance Loop	Normal potential	1	1	0	1	1	1	Χ	Х
Ring	High resistance Loop	Ringing voltage 75V rms	1	1	0	1	1	1/0	Х	X
Ring Tip	Low resistance Loop	Normal potential	0	1	0	1	1	1	Х	Χ

टेबल 5.22

ख) कॉल सब्सक्राइबर द्वारा उत्पत्ति:

सिग्नलिंग	सब्सक्राइबर की	सब्सक्राइबर की स्टेटस इंटरफेस	چi	समिटे	ड बिट्	ृस		रिसीव	बिट्स	Г
के शर्त	स्टेटस	कार्ड मे	а	b	С	d	а	b	С	d
Idle	High resistance Loop	Normal potential - ve on 'a' limb +ve on 'b' limb	1	1	0	1	1	1	X	Х
Seizure	Low resistance Loop	-do-	0	1	0	1	1	1	X	Х
Dialing	Loop Make/Break	-do-	0/1	1	0	1	1	1	X	Х
Answer by called Subscriber	Low resistance Loop	Reverse potential + ve on 'a' limb - ve on 'b' limb (Only in case of CB/PBX otherwise Normal potential)	0	1	0	1	1	1 OR 1	x	X
Clear forward	High resistance Loop	Reverse or Normal potential	1	1	0	1	0	1 OR 1	X	X

ਟੇਕਲ 5.23

इंस्टालेशन :

स्लॉट 4 में LPC कार्ड डालने हेतु ejectors और स्क्रू की मदद ले .

पहले से ही कॉन्फ़िगर यदि नहीं है तो NMS का उपयोग कर कार्ड और पोर्ट को कॉन्फ़िगर करें. पोर्ट को रूट करे

vii) G 703 कार्ड: G.703 कार्ड के फ़ोन्ट पैनल के नीचे दिखाया गया है।

चित्र 5.11

निम्नलिखित टेबेल में G. 703 कार्ड के फ़्रोन्ट पैनल का वर्णन है.

आइटम	एल.इ.डी स्थि	ति एल.इ.डी फ़ंक्शन			
हैल्थ	Green On	कार्ड ठीक काम कर रहा है			
	Red ON	कार्ड का हार्डवेयर फ़ाल्टी हो गया है			
	ब्लिंकींग	कार्ड के हार्डवेयर ठीक है, लेकिन यह मुख्य TME कार्ड से			
		कॉन्फ़िगर नहीं है।			
ALM1	ON	LOS या Bipolar violation CH1 मे			
टेस्ट 1	ON	चैनल-1 टेस्ट और डायगोन्स्टीक मोड में है			
ALM2	ON	LOS या Bipolar violation CH2 मे			
टेस्ट 2	ON	चैनल-2 टेस्ट और डायगोन्स्टीक मोड में है			
ALM3	ON	LOS या Bipolar violation CH3 मे			
टेस्ट 3	ON	चैनल-3 टेस्ट और डायगोन्स्टीक मोड में है			
ALM4	ON	LOS या Bipolar violation CH4 मे			
टेस्ट 4	ON	चैनल-4 टेस्ट और डायगोन्स्टीक मोड में है			

ਟੇਕਲ 5.24

हैडर सेटिंग्स

यहाँ सब्सक्राइबर चयन हेडर निह हैं सभी हेडर फ़ैकट्री सेट हैं । इन हेडर की सेटिंग बदला नहीं जाना चाहिए अन्यथा उपकरणों मे खराबी हो सकती है । इन हेडर नीचे सारणीबद्ध है।

क्र.सं.	हैडर के नाम	स्थिति	रिमार्क्स				
1.	H1	1-2	IP कनट्रोल				
2.	H2	2-3	DCLK टेस्टींग				
3.	Н3	1-2	सिस्टम रीसेट करने				
4.	H4	1-2	Watchdog स्ट्रोब के चयन				
5.	H5	2-3	SPROM प्रोग्राम को एनेबेल/				
			डिसेबेल				
6.	H8,9,10,11	Open	भविष्य में उपयोग के लिए				
7.	H14	1-2	सप्लाइ चयन के प्रोग्रामिंग				

ਟੇਕਲ 5.25

टरमिनेशन के विवरण :

टरमिनल मदरबोर्ड के पीछे विभीन्न कनेक्टर्स पर उपलब्ध है. इन कनेक्टर्स के इंडिकेशन का विस्तार नीचे है.

कनेक्टर पदनाम: J7, 9, 11, 13, 15, 17, 19, 21, 23, 29

कनेक्टर प्रकार: 96-पिन यूरो मेल

Pin	Α	В	С		
1					
2	RX1 A (IN)	NC	RX1 B (IN)		
3	TX1 A (OUT)	NC	TX1 B (OUT)		
4	NC	NC	NC		
5	RX2 A (IN)	NC	RX2 B (IN)		
6	TX2 A (OUT)	NC	TX2 B (OUT)		
7	NC	NC	NC		
8	NC	NC	NC		
9					
10	RX3 A (IN) NC		RX3 B (IN)		
11	TX3 A (OUT)	NC	TX3 B (OUT)		
12	NC	NC	NC		
13	RX4 A (IN)	NC RX4 B (IN)			
14	TX4 A (OUT)	NC	TX4 B (OUT)		
15	NC	NC NC			
16	अन्य सभी पिन उपयोग में नही है				

टेबल 5.26

इंस्टालेशन

स्लॉट 4 में LPC कार्ड डालने हेतु ejectors और स्क्रू की मदद ले.

पहले से ही कॉन्फ़िगर यदि नहीं है तो NMS का उपयोग कर कार्ड और पोर्ट को कॉन्फ़िगर करें. पोर्ट को रूट करें.

5.7 सिस्ट्म के प्रारंभीक ओन करना:

निम्नलिखित प्रक्रिया के बाद इस सिस्ट्म को ओन किया जा सकता है

- सर्वप्रथम कोमन कार्ड डालें. सिस्टम को संबंधित स्लॉट्स में पी.एस.यू और TME कार्ड डालें. TME कार्ड पर एल.इ.डी के हेल्थ देखें 'NMT' चिह्नित पोर्ट में NMT कनेक्ट करें और स्क्रीन पर खोलने के मेनू मिलेगा.
- अपेक्षित स्लॉट में यूजर इंटरफेस कार्ड डाले और NMT के माध्यम से हार्डवेयर डिस्प्ले में कॉन्फ़िगरेशन अपडेट होते हुए देखे .
- > अंत में, वैकल्पिक कार्ड (LPC) डालें और फिर NMT से जाँच करें.
- पी.सी.एम ट्रान्क के लिए NMT पर हार्डवेयर सेट अप स्क्रीन का उपयोग कर पी.सी.एम ट्रान्क को कॉन्फ़िगर करें। इसके अलावा अपेक्षित प्राथमिकता के अनुसार नेटवर्क क्लाक कॉन्फ़िगर करें. अब पी.सी.एम -ट्रान्क कनेक्ट करे और NMT से जाँच करें, TME कार्ड पर एल इ डी से पी.सी.एम ट्रंक स्थित को देखे.

- 🕨 अब योजना अपेक्षित के रूप में क्रास कनेक्ट करे और एक रूटिंग टेबल को सक्रिय करे .
- सभी VF और डॉटा इंटरफ़ेस पोर्ट को इच्छित प्रोग्राम के अनुसार सेटिंग्स करे .
- 🕨 मेजर या माइनर अलार्म को सिस्टम में प्रोग्राम करे .
- अब मक्स पूरी तरह से सब्सक्राइबर पोर्ट के लिए कॉन्फ़िगर है.सब्सक्राइबर पोर्ट में प्रत्येक नेटवर्क पर यातायात का सही प्रवाह जाँच करें.
- वैकल्पिक राउटिंग टेबल को कॉन्फिगर करे.
- ओमनिबस कान्फ्रेंसिंग चैनलों को सेट अप करे. लोकल इ एंड एम VF कान्फ्रेंसिंग पोर्ट को कॉन्फ़िगर करें.
- बाइपास कार्रवाइ (यदि आवश्यक) स्वतः ही सिक्रय किया जाता है .
- > अंत में फ़ैकट्टी में परिभाषित पासवर्ड बदल दें.

5.8 मेन्टेनेन्स :

निम्निलिखित मेन्टेनेन्स नेटवर्क या मक्स की फ़ाल्ट पहचान करने के साथ ही नेटवर्क कॉन्फ़िगरेशन को सिक्रिय करने के लिए उपयोग किया जाता है.

- क) लुप बैक: दोनों ट्रंक और चैनल के स्तर पर लोकल या रिमोट लुप बैक प्रदान किया जा सकता है जो NMT से सक्रिय किया जा सकता है.
- ख) मक्स बाइपास: महत्वपूर्ण हार्डवेयर के फेलिऊर के मामले में, मक्स स्वचालित रूप से बाइपास रिले के माध्यम से PCM 1 ट्रंक को PCM 2 ट्रंक से जुड जाता है। इस बाइपास भी NMT से सिक्रय किया जा सकता है.
- ग) स्टेटिस्टिक आँकड़े संग्रह: मक्स में PCM1 और PCM2 ट्रंक पर फ़ाल्ट के आँकड़े एकत्र करने के लिए प्रोग्राम किया जा सकता है. आँकड़ों के संग्रह के लिए एक निर्धारित अविध के लिए बंद / शुरू किया जा सकता है.
- घ) अलार्म इतिहास: यह अतीत और वर्तमान अलार्म उनकी पीढ़ी और स्पष्ट समय सिहत एक सौ गहरी अलार्म इतिहास के फ़ाइल रखता है. यह पिछले 100 अलार्म के एक कालानुक्रमिक अनुक्रम को देखने के लिए उपयोग किया जा सकता है.

5.9 VMX-100 में प्रोग्रामिंग:

वीएमएक्स -100 के आपरेशन मे अलग-अलग चरणों की आवश्यकता है ट्रंक, उपयोगकर्ता लाइनों और अन्य नेटवर्क के मापदंडों, ऑपरेशन की निगरानी और मक्स की प्रोग्रामिंग .यह हर कॉन्फ़िगरेशन या प्रोग्रामिंग एक नान वोलाटाइल रैम (NVRAM) मे स्टोर करता है. इस NVRAM एक डिफ़ॉल्ट कॉन्फ़िगरेशन के साथ फ़ैकट्री से प्रोग्रामिंग किया हुआ आता है। यह डिफ़ॉल्ट प्रोग्रामिंग NMS/ NMT पर ऑपरेटर को दिखाइ देता है और इंस्टालेशन के लिए विशिष्ट आवश्यकताओं को पूरा करने के लिए उसे बदला जा सकता है.

5.91 वीएमएक्स -100 में प्रोग्रामिंग पैरामीटर

निम्नलिखित मेजर मापदंडों को Vमक्स-100 में प्रोग्राम NMT/NMS से किया जा सकता है।

- I) पी.सी.एम टुंक से संबंधित पैरामीटर
 - फ्रेमिंग फ़ोर्मैट CRC4/मानक
 - > टुंक को एनेबेल/डिसेबेल
 - > टाइम स्लॉट क्रास कनेक्शन
 - 🕨 75/120 Ω लाइन इम्पिडेन्श
- II) VF से संबंधित पैरामीटर
 - > VF के पोर्ट टाइप
 - > ट्रांस मे गेन
 - > रिसीवमे गेन
 - > टाइम स्लॉट का मैपिंग
- III) डॉटा से संबंधित पैरामीटर
 - क) जब डॉटा कार्ड जी 703 है
 - > टाइम स्लॉट का मैपिंग
 - ख) जब डॉटा कार्ड UDT है
 - ➤ बॉड रेट
 - > सिंक/ए सिंक
 - > प्वाइंट से प्वाइंट
 - > Hand shaking
 - > टाइम स्लॉट का मैपिंग
 - > इंटरफ़ेस चयन
 - ग) जब डॉटा कार्ड N64 है
 - > टाइम स्लॉट का मैपिंग
 - > n के मूल्य
 - घ) जब डॉटा कार्ड FE1 है
 - > टाइम स्लॉट का मैपिंग
 - > इंटरफ़ेस को एनेबेल/ डिसेबेल
 - > NMS को एनेबेल/ डिसेबेल
- iv) नेटवर्क क्लाक से संबंधित पैरामीटर
 - > प्राथमिकता के क्रम में नेटवर्क क्लाक के स्रोतों की प्रोग्रामिंग

V) विविध पैरामीटर

- > मेजर/माइनर/कोइ भी रूप में अलार्म को परिभाषित करना
- ओमनीबस कान्फ्रेंसिंग चैनलों की स्थापना करना.
- बाइपास को एनेबेल करने के लिए शर्तों को परिभाषित करना.
- > BER के लिए अलार्म थ्रेसहोल्ड की परिभाषा, सीआरसी फ़ाल्टयों और स्लिप काउन्ट.
- मेजर नेटवर्क के फेलिऊर की स्थिति में वैकल्पिक मार्ग को परिभाषित करना.

5.10 सिस्टम स्पेसिफ़ीकेशन

जनरल

पी.सी.एम ट्रंक की संख्या : 2

उपयोगकर्ता पोर्ट की संख्या : 40, चार की मोड्य्ल मे ।

उपयोगकर्ता पोर्ट की संख्या: 30

VF इंटरफेस का प्रकार : इ एंड एम 2W और 4W

लूप इनकमिंग लूप आउटगोइंग सब्सक्राइबर इंटरफ़ेस एक्सचेंज इंटरफ़ेस

हॉट लाइन

डॉटा के प्रकार : 64 केबीपीएस G.703 सह डायरेक्शनत्मक

1200 से 19200 बॉड सिंक 1200 से 19200 बॉड ए सिंक

NX64 केबीपीएस सिंक

फ़्रेकशन्ल E1

पावर सप्लाइ : -36, वी -72 को -48V नोमिनल

नेटवर्क क्लाक सिंक्रनाइज़ेशन : चयन करे

एक्स्ट्रेक्टेड PCM1 क्लाक एक्स्ट्रेक्टेड PCM2 क्लाक डॉटा इंटरफेस क्लाक

2.048 मेगाहर्ट्ज एक्सट्रर्नल क्लाक

2.048 मेगाहर्ट्ज इंटरनल क्लाक

अन्य सिंक्रनाइज़ेशन : 2.048 मेगाहर्ट्ज नेटवर्क एक्सट्रर्नल क्लाक उपलब्ध है

5.10.1 पी.सी.एम ट्रंक इंटरफ़ेस के स्पेक:

मल्टीप्लेक्सिंग : Rec G.732 के अनुसार स्ट्रक्चर फ्रेमन : Rec G.706 के अनुसार इंटरफ़ेस : Rec G.703 के अनुसार

क्लाक दर : 2048 केबीपीएस ± 50 पी.पी.एम आउटपुट इम्पिडेन्स : $75~\Omega$ असंतुलित/ 120Ω संतुलित इनपुट इम्पिडेन्स : $75~\Omega$ असंतुलित/ 120Ω संतुलित

5.10. 2 VF इंटरफ़ेस

l) इ एंड एम 4W

कोडिंग : A -Law , rec G.711

सामान्य इम्पिडेन्स : इनप्ट और आउटप्ट पोर्ट पर $600~\Omega$

रिट्रन लोस : 20 डीबी से बेहतर रेंज 300-3400 हर्ट्ज में

Quantization डिसट्रशन: rec G.712Linearity: rec G.712फ़िक्योन्सी डिसट्रशन: rec G.712

RX के स्तर : -11 से + 4 DBR 0.1dB के चरणों में एड्ज्स्टेबेल TX स्तर : -14 से 1DBR 0.1dB के चरणों में एड्ज्स्टेबेल

II) इ एंड एम 2W

कोडिंग : A -ला, rec G.711

सामान्य इम्पिडेन्स : 600Ω

वापसी लॉस : 12 डीबी, 300-600 हर्ट्ज

115 डीबी, 600-3400 हर्ट्ज

Quantization डिसट्शन: rec G.712Linearity: rec G.712फ़िक्योन्सी डिसट्शन: rec G.712

RX के स्तर : -15 से शून्य DBR 0.1dB के चरणों में एड्ज्स्टेबेल TX स्तर : -11 से 4 DBR 0.1dB के चरणों में एड्ज्स्टेबेल

III) लूप इनकमिंग

ओपन लूप रेजिस्टेन्स : 10 K से अधिक बंद लूप रेजिस्टेन्स : 1200Ω मैक्स। लाइन रिभर्सल का पता लगाने : प्रदान की जाती है लाइन पोटेन्सीयल का पता लगाने : प्रदान की जाती है ट्रंक ओफ़रींग : प्रदान की जाती है डायल पल्स स्पीड : 8-12 पीपीएस

VF स्पेक : 2W, इ एंड एम के समान है

iv) लूप आउटगोइंग

मैक्स लूप रेजिस्टेन्स : 800Ω

बैटरी रिभर्सल की क्षमता : प्रदान की जाती है ट्रंक ओफ़रींग का पता लगाने : प्रदान की जाती है ब्लोकिंग : प्रदान की जाती है पल्स स्पीड डायल : 8-12 पीपीएस

VF स्पेक : 2W, इ एंड एम के समान है

V) FXS इंटरफ़ेस

मैक्स लूप रेजिस्टेन्स : 1200Ω

बैटरी रिभर्सल की क्षमता : प्रदान की जाती है

रिंग वोल्ट : 75 V आर.एम.एस ±5 V

रिंग फ़्रिक्योन्सी : 17-25 हर्ट्ज पल्स स्पीड डायल : 8-12 पी.पी.एस

VF स्पेक : 2W, इ एंड एम के समान है

VI) FXO इंटरफ़ेस

ओपन लूप रेजिस्टेन्स : 10 K से अधिक बंद लूप रेजिस्टेन्स : 1200Ω मैक्स न्यूनतम रिंग वोल्टेज : 15 V आरएमएस पल्स स्पीड डायल : 8-12 पी.पी. Vस

VF स्पेक : 2W, इ एंड एम के समान ही है

vii) हॉट लाइन

मैक्स लूप रेजिस्टेन्स : 1200Ω

रिंग वोल्ट : 75 V आरएमएस रिंग फ़िक्योन्सी : 17-25 हर्ट्ज

VF स्पेक : 2W, इ एंड एम के समान ही है

5.10.3 डॉटा इंटरफेस

64 केबीपीएस G.703 डॉटा इंटरफेस

इंटरफ़ेस : Rec G.703के अनुसार सह-डायरेक्शनत्मक।

आउटपुट इम्पिडेन्स : 120 Ω इनपुट इम्पिडेन्स : 120 Ω

रिट्रन लोस : 12 db 4-13 KHz के लिए

13-256 KHz के लिए 18db 256-384 KHz के लिए 14 db

5.10.4 क्लाक इंटरफेस

2.048 मेगाहर्ट्ज क्लाक इनपुट

टर्मिनेशन : $75~\Omega$ असंतुलित/ 120Ω संतुलित रेट : 2048~KHz के $\pm~50~\text{पीपीएम}$ सिगनल तरंग आकार : आंकड़ा 21/G.703~क अनुसार

अधिकतम लाइन एटीन्एशन : 6dB

2.048 मेगाहर्ट्ज क्लाक आउटपुट

इम्पिडेन्स : $75~\Omega$ असंतुलित/ 120Ω संतुलित रेट : सिस्टम घड़ी के साथ सिंक्रनाइज़ सिगनल तरंग आकार : आंकड़ा 21/G.703 के अनुसार

पनकोम मकस के लिए ट्राबुल शुटींग चार्ट

अलार्म की स्थिति	संभावित कारण	कार्रवाइ की अनुशंसा		
PSU's "PWR" LED ON और "O/P FAIL" LED off	कार्ड सामान्य स्थिति मे है	कोइ कार्रवाइ आवश्यक नहीं है ।		
PSU's "PWR" LED off	मदरबोर्ड पर पीएसयू के लिए पावर की केबल BTP पर एमसीबी से जुड़ा हुआ नहीं है / बंद है।	IB ID UJ 66-2631-1 661 - 1171 661 1111-11611		
PSU's "O/P FAIL" LED red	एक या अधिक पीएसयू के आउटपुट फ़ेल हो गइ है	पीएसयू बदलें।		
TME's "Health" LED blinking Red-Green और बाकि सब LEDs off (सिबाय TDNMS blinking)	कार्ड सामान्य स्थिति मे है	कोइ कार्रवाइ आवश्यक नहीं है ।		
P1/P2 "Local" LED ON	एसटीएम में समस्या है	एसटीएम की Rx पोर्ट देखें यदि लाल है तो फाइबर टूट गया है या एसटीएम में क्रॉस कनेक्ट कॉन्फ़िगर नहीं है। STM / फाइबर की जाँच करे .		
	मक्स हैन्ग हो गया है	मक्स को रीसेट करे और कुछ मिनट के लिए प्रतीक्षा करें। अलार्म चले जाना चाहिए। नहीं तो अगले कदम में जाना है।		
	मक्स और एसटीएम (DDF के माध्यम से) के बीच तारों ढीली हो गड़ है या टट गया है।	।जाच कर। हाला पाया गया ता सहा कर।।		
P1/P2 "Remote" LED ग्लो	रिमोट साइट अर्थात् अगले स्टेशन पर समस्या है जो p1/ p2 के (जैसी भी स्थिति हो) फाइबर टुट्ने पर ।	थना प्रदेशन की फाटवा को नाँच को ।		
P1/P2 "Local" LED blinking	स्थानीय साइट पर एरर	एसटीएम और मक्स के बीच तारे ढीली हो सकती है		

P1/P2 "Remote" LED blinking	रिमोट साइट पर एरर	एसटीएम और मक्स के बीच दूसरी तरफ तारे ढीली हो सकती है
Clock LED blinking/ permanently ग्लो करता है	ब्लिंकिंग होने पर स्लिप्स और क्लाक फ़ेल होने पर स्थायी है	NMS के माध्यम से क्लाक सेटिंग्स की जाँच करें। सेटिंग्स गलत हो सकता है या प्राथमिक क्लाक फ़ेल हो गइ हो
Test LED ग्लो करता है	डायगोन्स्टीक या लूपबैक मोड में कार्ड	लूपबैक निकाल दे
TDNMS LED blinking	NMS काम कर रहा है	कोइ कार्रवाइ आवश्यक नहीं है ।
LPC Health LED green	LPC काम कर रहा है	कोइ कार्रवाइ आवश्यक नहीं है ।
	सामान्य है , प्रणाली संरक्षण पर काम कर रहा है	संभव हो तो जल्दी पी 1 से जुड़ा प्राथमिक लिंक ठीक कर लें। (यदि TME सामान्य है)
LPC "P2 fail" LED ग्लो करता है	सामान्य ह , प्रणाला सरदाण पर	संभव हो तो जल्दी पी 2 से जुड़ा प्राथमिक लिंक ठीक कर लें। (यदि TME सामान्य है)
कार्ड का E&M,FXO,FXS	कार्ड के हार्डवेयर ठीक है, लेकिन यह TME कार्ड के द्वारा कॉन्फ़िगर नहीं है	NMS के माध्यम से कार्ड कॉन्फ़िगर करे
Health LED किसी भी लाइन कार्ड का E&M,FXO,FXS green		कोइ कार्रवाइ आवश्यक नहीं है ।
Health LED किसी भी लाइन कार्ड का E&M,FXO,FXS red	कार्ड फ़ाल्टी है	कार्ड बदले
Test LED किसी भी लाइन कार्ड का E&M,FXO,FXS green	सम्बन्धित पोर्ट लूपबैक मोड में है	पोर्ट के सामान्य काम के लिए NMS के माध्यम से लूपबैक निकाल दे

रिभीऊ सवाल

ओबजेक्टीभ

1.			9 "सब रैक में					गोर्ट प्रदान	करता है।
			ख) 40						
2.	व्ही व	मक्स-100 मे	अधि	वेकतम ४	1-पार्टी कॉन्फ्रे	त्स के रूप	में कॉन्फ़िगर	किया जा र	प्तकता है।
	क) '	18	ख) 30	ग) 12		घ) (08		
3.	व्ही व	मक्स -100 के	न मदरबोर्ड में स्त	गॉट्स की	संख्या		है		
	क) '	13	ख) 14	ग) 12		घ) 1	5		
4.	व्ही व	मक्स-100 के	TME कार्ड		स्लॉट	में स्थित	किया जा सकत	ता है.	
	क) [*]	1	ख) 2	ग) 3	ਬ)	किसी भी	स्लॉट		
5.			यूजर इंटरफेस ब						
	क) र	तभी स्लॉट	ख) स्लॉट 1से	स्लॉट 4	ग) :	स्लॉट 5 सं	ने स्लॉट 14	घ) कोइ	नहीं
6.	रिड्न	डेन्ट पॉवर सप	लाइ कार्ड व्ही म	क्स-100) के	र ु	त्राट में लगाया	जा सकता	है.
	क) 1	!	ख) 1 और 2		ग) 2	घ) 3			
7.			_ कार्ड व्ही मन	г स-100	के नेटवर्क	में किसी	भी प्रमुख फे	लिऊर के	मामले में
	याता	यात ले जाने :	मे तथा P1 और	' P2 स्ट्री	ोमओं की रक्ष	ता के लिए	प्रयोग किया	जाता है.	
	क) े	ГМЕ	ख) डैक		ग) LPC	घ) व	कोइ नहीं		
8.	एक	आठ स्थिति	ते DIP स्विच	व्ही	मक्स-100	के उपव	करण ID से	ट करने	के लिए
			पर उपलब्ध	ा कराइ व	गइ है।				
7			ख) डैक कार्ड			ਗਤ	घ) मदरबोर्ड		
9.	उपक	रणों की आइ.	डी NMS के संग	यालन के	लिए आवश	यकहै	और वह	मूल फ्रेम के	न एड्रेस है
			ख) NMT					•	
10.	NM	S और RS	232 कनेक्टर्स	व्ही मक्	स-100 के _		कार्ड व	में स्थित है	ं इथरनेट
	क) l	-PC	ख) पीएसयू		ग) TME		घ) कोइ नर्ह	Ť	

सबजेक्टीभ :

- 1. संक्षेप में व्ही मक्स-100 के फ़ान्सन का वर्णन करे
- 2. TME कार्ड के फ़ान्सन के बारे में बताएं.
- 3. LPC कार्ड के फ़ान्सन के बारे में बताएं.
- 4. व्ही मक्स-100 में नेटवर्क सिंक्रनाइज़ेशन के बारे में बताएं.
- 5. व्ही मक्स-100 मैनेजमेन्ट बारे में बताएं.
- 6. व्ही मक्स-100 के TME कार्ड पर प्रदान की गइ विभीन्न एल इ डी के फ़ान्सन के बारे में बताएं.

अध्याय 6

पीडी - मक्स में क्न्ट्रोल सर्किट प्रोटेक्शन योजना

- 6.1 परिचय: क्न्ट्रोल सर्किट पी.डी-मक्स द्वारा कॉन्फ्रेंस मोड में कॉन्फ़िगर एक 64 केबीपीएस चैनल है. यह E1 पर मिल्टिप्लेक्स होते हुए STM1 से होकर ओ.एफ.सी बैक बोन पर चलता है. यह E1 क्न्ट्रोल सेकशन डिवीजन के सीमा तक फैली हुइ है. "ओमिनबस क्न्ट्रोल सर्किट" के अलावा "पोइन्ट टु पोइन्ट" सर्किट भी इसी E1 पर चलता है. पीडी-मक्स ऑप्टिकल फाइबर केबल नेटवर्क पर एस.टी.एम बैक बोन पर E1 के स्तर रिंग प्रोटेक्शन के साथ, लिनियर टोपोलॉजी में काम करता है.
- **6.2 ओ.एफ.सी पर क्न्ट्रोल सर्किट प्रोटेक्शन:** रींग/लूप प्रोटेक्शन सिस्टम दो अलग अलग तरीकों से काम करता है।
- 1. सभी टाइम स्लॉटों के प्रोटेक्शन के लिए हर स्टेशन पर LPC (लूप प्रोटेक्शन कार्ड) और दो E1 का उपयोग करता है.
- 2. E1 में खाली समय स्लॉट का उपयोग कर रिंग प्रोटेक्शन सिस्टम काम करता है. ये नीचे चर्चा की गइ हैं :
- 6.2.1. सभी टाइम स्लॉट के प्रोटेक्शन के लिए हर स्टेशन पर LPC (लूप प्रोटेक्शन कार्ड) और दो E1 का उपयोग होता है: यह स्कीम पनकोम पि.डि.मक्स भि.मक्स -0100 द्वारा प्रयोग किया जाता है.

विशेषताएं: इस योजनाओं में निम्नलिखित स्विधांए है.

- 1. यह सभी 30 चैनलों को सुरक्षा प्रदान करता है.
- 2. यह E1 स्विचिंग दो स्टेशनों पर, एक साथ होते है. (केबल कट सेकशन के दोनों तरफ). इसलिए स्विचिंग बह्त तेजी से किया जा सकता है.
- 3. प्रोटेकटेड सेंकशन में अतिरिक्त पीडी-मक्स के उपयोग के बिना कइ केबल फ़ाल्ट ट्रेस करने के लिए छोटे सेकशन में विभाजित किया जा सकता है.

कृपया चित्र: 6.1 देखें

इस दृष्टिकोण से, E1 के 30 समय-स्लॉट्स ले जाने और के रूप में नामित "वर्कग" 'working' E1 पीडी-मक्स की LPC (लूप प्रोटेक्शन कार्ड) के P2 पोर्ट से लिया जाता है. यह अगले स्टेशन के लिए ऐड-ड्राप मक्स से एस.टी.एम मक्स होकर फिर ओ.एफ.सी माध्यम से LPC कार्ड के पोर्ट P1 से जुड़ा होता है. इसी तरह से E1 के थ्रेड लिंक पर चलते रहते है. और एक E1 जिन्हें हम 'प्रोटेक्शन' कहेंगे बह LPC के पोर्ट P4 से लिया जायेगा अगले स्टेशन के लिए ऐड-ड्राप एसटीएम मक्स से होकर ओ.एफ.सी माध्यम से जोड़ा जाता है और पीडी- मक्स की LPC के पोर्ट P3 से जुड़ा है।इसी तरह दूसरा E1 के थ्रेड भी चलते रहते है.

इसी तरह टर्मिनल स्टेशन से, LPC से लूप -फ़ोर्वाड्र - पोर्ट पर E1 (P6) प्रारंभीक स्टेशन के लिए अलग-अलग मार्ग पर एसटीएम बैक बोन पर प्रोटेक्शन पथ के माध्यम से LPC के लूप -बैक -पोर्ट (P-5) से जुड़ा रहता है.

अलग मार्ग के माध्यम से एसटीएम बैक बोन पर प्रोटेक्शन

चित्र: 6.1 LPC का उपयोग और सारे स्टेशनों पर दो E1 ड्राप और सारे टाइम- स्लटों का प्रोटेक्शन. एस.टी.एम मक्स को नहीं दिखाया गया है.

E1 की फेलिऊर या पोर्ट की फेलिऊर होने से ओ.एफ.सी टर्मिनल स्टेशन और (उदाहरण के लिए स्टेशन ए और स्टेशन-बी के बीच कट होने पर) अगले स्टेशन में LPC मे स्विचींग जो चित्र: 6.2 में दिखाया गया है.

- a. स्टेशन-ए, PCM2 से P2 और L.F (P 6) से P4 कनेक्शन बाधित हैं; इसके बजाय, P6 से PCM 2 LPC में जुड़ा हुआ है. L.F = ल्प फ़ोर्वड़
- b. स्टेशन-बी में, P1 के लिए PCM1 और P3 से P4 कनेक्शन बाधित है; इसके बजाय, PCM1-- P 4 को LPC में जुड़ा हुआ है.

अलग मार्ग के माध्यम से एसटीएम बैक बोन पर प्रोटेक्शन

चित्र: 6.2 E1/ओ.एफ.सी कट होने से टर्मिनल स्टेशन और अगले स्टेशन के बीच LPC कार्ड में स्विचिंग.

पोर्ट की फेलिऊर के कारण E1/ओएफसी की फेलिऊर होने की स्थिति में दो मध्यवर्ती स्टेशनों बीच स्थिति चित्र: 6.3 में दिखाया गया LPC में स्विचिंग (उदाहरण के लिए स्टेशन-C और स्टेशन-D के बीच)

- a) स्टेशन-C पर, PCM- 2-से -P 4- और P 3 से -P4 कनेक्शन बाधित हैं; इसके बजाय, P 3- से -PCM2 को LPC में जुड़ा गया है.
- b) स्टेशन-डी पर, PCM1-से -P 1- और P 3 से P4 कनेक्शन बाधित हैं; इसके बजाय, PCM1- से P 4 को LPC में ज्ड़ा गया है .

चित्र: 6.3 दो इंटरमीडिएट स्टेशनों के बीच E1/ओ.एफ.सी में कट के मामले में LPC में स्विचिंग

इस प्रकार, LPC और हर स्टेशन पर दो E1 का उपयोग करने से इस व्यवस्था में, E1-सूत्र के सभी टाइम-स्लॉट्स प्रोटेकटेड है. लुप बैक प्रोटेक्शन अलग मार्ग के माध्यम से एसटीएम बैक बोन पर है.

ओवर रीच की समस्यायें :

कइ केबल कट के मामले में एक प्रोटेकटेड सेक्शन में, दोनों तरफ स्टेशनों के बिच पृथक खंड (दो केबल फ़ाल्ट से अलग अनुभाग) सीधे जुड़ जाते है.

इस सन्निकट स्टेशनों के बीच बने पोइन्ट से पोइन्ट सर्किट को गैर आसन्न स्टेशनों के बीच विस्तार के कारण होगा.

चित्र: 6.4 मल्टीपल कट की एक परिदृश्य: आइसोलेशन और ओवर रीच की समस्या

चित्र: 6.4 में स्टेशन-सी और स्टेशन डी का आइसोलेशन और टाइम स्लॉट ओबररीच स्टेशन-B से स्टेशन-E तक दिखाया गया है.

यदी टाइम स्लॉट 10 में, स्टेशन C और D स्टेशन के बीच पोइन्ट टू पोइन्ट टेलीफोन काम कर रहा है, और बही टाइम स्लॉट C और D के बीच पोइन्ट टू पोइन्ट और भी D और E के बीच हो तो स्टेशन B और C स्टेशनों और C और D के बीच फ़ाल्ट हो जाए तो स्टेशन B और E के बीच टेलीफोन सीधा क्नेक्ट हो जायेगा. इस तथ्य को ट्रेन मुभमेन्ट के लिए उपयोग किया जाए इसे विचार किया जाना चाहिए.

इसी तरह की समस्या अन्य पोइन्ट टू पोइन्ट सर्किट पर होते है .इस लिए पोइन्ट टू पोइन्ट सर्किट , एक्सल काउंटर चैनलों को विशेष एहतियात की जरूरत है. इससे बचने के लिए, टाइम स्लॉट या मॉडेम के लिए एडरेस सेटिंग अलग-अलग होना चाहिए. तो उदाहरण के लिए दो एक्सल काउंटरों एक ही समय स्लॉट 11 का उपयोग कर रहे हो तो वे एक ही एडरेस का उपयोग नहीं करना चाहिए.

6.2.2 E1 में खाली समय स्लॉट का उपयोग कर रिंग प्रोटेक्शन सिस्टम का काम करना :

चित्र: 6.5 को देखें, इस दृष्टिकोण में, सभी ओमनीबस कान्फ्रेंसिंग चैनलों हमेशा प्रोटेक्शन के उद्देश्य से E 1 में स्पेयर समय स्लॉट में मैप किए जाते हैं, जिसे प्रोटेक्शन मिलता है केवल उन पोइन्ट टू पोइन्ट सर्किट के लिए टाइम स्लॉट के स्तर पर योजना बनाइ जानी है.

यह दृष्टिकोण बेब्फ़िल और नोकिया पीडी-मक्स लूप प्रोटेक्शन मॉड्यूल मे किया जाता है. यदि स्वतः लूपबैक नहीं है जैसे नोकिया/बेब्फ़िल के पुराने संस्करणों के मामले में, E1 प्रोटेक्शन टेस्ट रूम से पैचिंग किया जाता है.

चित्र: 6.5 E1 में खाली टाइम स्लॉट का उपयोग कर रिंग प्रोटेक्शन

ओवर रीच की समस्या :

यह योजना कइ केबल कट के मामले में होता है। हालांकि, यह योजना केवल चयनित समय स्लॉट के संरक्षण देता है। क्न्ट्रोल सर्किट के लिए स्वतः प्रोटेक्शन होने से स्टेशन में हॉट लाइन टेलीफोन ,एक्सल काउंटर जैसे अनुप्रयोगों के मामले में, विवेकपूर्ण टाइम स्लॉट आवंटन से ऐसी समस्या को रोका जा सकता है.

"रेलवे बोर्ड कमेटी" के "पत्र संख्या 2010/टेली/9 (1) दिनांकित 19 /01/2012" द्वारा सभी मौजूदा प्रकार 6.3 के पीडी-मक्स के संस्करणों के लिए सबसे उपयुक्त प्रोटेक्शन योजना और सुविधाओं का सुझाव का रिपोर्ट दी गई है.

6.3.1 सबसे उपयुक्त स्रक्षा योजना की विशेषताएँ:

- 1. क्न्ट्रोल सर्किट ले जाने वाले E1 के थ्रेड के वार्क -पात क्न्ट्रोल सेक्सन सीमा पर समाप्त होगा यह बगल में सटे क्न्ट्रोल सेक्सन पर नहीं जाएगा .
- 2. हालांकि, EC, SCADA आदि जैसे अन्य "ओमनिबस सर्किट" क्न्ट्रोल सीमाओं/ ट्रमिनल पर VF लेबेल पर पैच किया जाता है.
- 3. E1 के लेबेल पर रिंग प्रोटेक्शन अलग- अलग पथ के माध्यम से किया जाएगा ओ.एफ.सी और एस.टी.एम के माध्यम से.
- 4. इसके अलावा, जहां भी संभव हो, अतिरिक्त सुरक्षा पथ (3 पथ) वार्क -पात और प्रोटेक्शन पथ पर एक साथ कट के मामले में सर्किट की उपलब्धता सुनिश्चित करने के लिए एसटीएम "बैक-बोन" पर उपलब्ध कराया जा सकता है.
- 5. प्रोटेक्शन पीडी-मक्स NMS के माध्यम से स्वचालित किया जाना है.
- 6. पीडी-मक्स के फेलिऊरओं/बंद होने पर एसटीएम पर केएलएम को थ्रु होने से ओवर रीच समस्या को टाला जा सकता है.
- 7. कइ ओएफसी कट के मामले में ओवर रीच समस्या को टालाना चाहिए .
- एक से अधिक कट होने पर क्न्ट्रोल सर्किट की बेहतर उपलब्धता के लिए ताकि लूप प्रोटेक्शन अपेक्षाकृत छोटे हिस्से/सीमा तक लागू किया जाना चाहिए.
- 9. सभी सेक्सन पर पीडी- मक्स की एकरूपता बहु खंड नियंत्रण के लिए किया जाना चाहिए.

6.3.2 सबसे उपयुक्त प्रोटेक्शन के लिए माइग्रेशन योजना :

1. आइ.आर.एस टी.सी 68./ 04 के अनुसार पनकोम पी-डी मक्स या वेबिफल पी-डी मक्स या नोकिया पी-डी मक्स में प्रोटेक्शन योजना :

इन पीडी मक्स में कइ ओएफसी कट के मामले में प्रोटेक्शन योजना पोइन्ट टू पोइन्ट सर्किट के साथ ओवर रीच समस्या पैदा करता है। इसलिए, पर्याप्त अतिरिक्त स्लॉट और चैनलों के विवेकपूर्ण योजना का पालन किया जाना चाहिए। चैनल की संख्या अधिक रहना चाहिए, नहीं तो 2 पी.डी. मक्स लगाने की योजना बनाइ जा सकती है.

2. मक्स के प्राने संस्करणों के साथ जो स्वचालित लूप प्रोटेक्शन का समर्थन नहीं करता :

आइ.आर.एस टी.सी 68/97 के अनुसार वेबिफल मक्स के पुराने संस्करण के मामले में स्वतः प्रोटेक्शन योजना केवल टर्मिनल मक्स में एनआइएम और ट्रीब कार्ड मे लागू किया जा सकता है। वेबिफल का एनआइएम और ट्रीब कार्ड आइ.आर.एस टी.सी - 68 /2012 के अनुसार नए संस्करण को इस्तेमाल करे या बाहरी LPM (लूप प्रोटेक्शन मॉड्यूल) का इस्तेमाल किया जा सकता है और चित्र.6.6 के रूप में दिखाया प्रोटेक्शन योजना लागू कर सकते है. इस तरह के पनकोम और वेबिफल के साथ उपलब्ध लूप प्रोटेक्शन मॉड्यूल का इस्तेमाल किया जा सकता है . इस योजना से पोइन्ट टू पोइन्ट सर्किट के साथ ओवर रीच समस्या पैदा हो सकता है.

3. कोरल पी.डी. मक्स के सेक्सन मे प्रोटेक्शन :

"लूप प्रोटेक्शन" के लिए कोरल पीडी-मक्स , पनकोम या वेबिफल पीडी-मक्स मे LPC मॉड्यूल उपलब्ध नहीं है इसिलए बाहरी LPM मॉड्यूल लगाया जाता है जो चित्र 6.6 में दिखाया गया है। इस योजना से "पोइन्ट टू पोइन्ट" सिकंट के साथ "ओवर-रीच" समस्या पैदा हो सकता है |

चित्र 6.6 पी-डी-मक्स में एक्स्ट्रन्ल LPM मॉड्यूल का इस्तेमाल