E-commerce Cart Abandonment Analysis

Table of Contents

Section No.	Section Title
1	Overview
2	Introduction
3	Problem Statement
4	Business Value
5	Dataset Description
6	Methodology
6.1	Data Preprocessing
6.2	Exploratory Data Analysis (EDA)
6.3	Model Building
6.4	Model Evaluation
6.5	Unsupervised Learning
7	Deployment
8	Results and Observations
9	Conclusion
10	Tools and Technologies Used
11	References
12	Appendix
13	Submitted by

1. Overview

This project addresses the challenge of cart abandonment in e-commerce using machine learning. By analyzing customer session behavior, we build and deploy a predictive model that estimates whether a user is likely to abandon their cart or complete the purchase. The model is integrated into a Streamlit web application for real-time decision-making, enhancing user engagement and boosting conversion rates.

2. Introduction

In today's digital economy, online retailers face a major hurdle in converting potential buyers into customers. A significant percentage of users abandon their shopping carts before completing a purchase. Predictive analytics powered by machine learning can provide insights into user behavior and allow for preemptive engagement strategies. This project aims to build a complete AI/ML pipeline to detect and respond to potential cart abandonment.

3. Problem Statement

High cart abandonment rates on the e-commerce platform result in lost sales and reduced customer lifetime value.

The objective is to leverage behavioral session data to build a predictive model capable of identifying abandonment-prone sessions.

4. Business Value

- Improve overall conversion rate and revenue
- Trigger timely interventions like discounts or reminders
- Automate marketing and retention workflows
- Understand user behavior patterns to optimize UX

5. Dataset Description

The dataset used consists of anonymized e-commerce session logs with the following fields:

Feature	Description
session_id	Unique identifier for each session
pages_visited	Number of pages visited
time_on_site	Time spent on site (in seconds)
cart_value	Total value of items in the cart (USD)
abandoned	Target variable (1 = abandoned, 0 = purchase)

There are no missing values. Class imbalance was handled during model training using class_weight='balanced'.

6. Methodology

6.1 Data Preprocessing

- Verified data types, ranges, and nulls
- Scaled continuous features for clustering
- Used class weighting for model imbalance

6.2 Exploratory Data Analysis (EDA)

- Visualized relationships between time, cart value, and abandonment
- Used histograms, boxplots, and pairplots
- Identified lower engagement as a leading cause of abandonment

6.3 Model Building

- Models used:
 - Logistic Regression
 - o Random Forest Classifier
- Split: 80% train / 20% test
- Used sklearn pipeline for reproducibility

6.4 Model Evaluation

- Evaluation Metrics:
 - o Accuracy, F1-score, Precision, Recall
 - o ROC Curve and AUC
- Feature Importance:
 - o time_on_site > pages_visited > cart_value
- Random Forest outperformed Logistic Regression with ~69% accuracy

6.5 Unsupervised Learning

- Applied KMeans to identify user clusters
- Used PCA to reduce dimensions to 2D
- Helped visualize session behavior groups for segmentation

7. Deployment

The trained Random Forest model was saved as final_model.pkl and used in a **Streamlit app** for live predictions.

App Features:

- Inputs: pages visited, time on site, cart value
- Outputs:
 - "Likely to Abandon Cart" or "Likely to Complete Purchase"
 - o **Probability Score** of prediction

8. Results and Observations

- Random Forest performed best on evaluation metrics
- Sessions with low engagement had significantly higher abandonment risk
- Clustering revealed distinct behavior segments
- Model predictions aligned with expected patterns from EDA

9. Conclusion

This project demonstrates an end-to-end ML workflow to solve a real-world business problem. The deployed app allows stakeholders to identify and act on at-risk sessions in real-time. The model can be further improved by incorporating features like user device, traffic source, or browsing history.

10. Tools and Technologies Used

• Language: Python

Libraries: pandas, numpy, matplotlib, seaborn, scikit-learn, joblib

• **Deployment:** Streamlit

• Environment: Jupyter Notebook, VS Code

11. References

- scikit-learn Documentation: https://scikit-learn.org/
- Streamlit Docs: https://docs.streamlit.io/
- Kaggle e-commerce behavior datasets
- Research blogs on cart abandonment prediction

12. Appendix

• Streamlit App Interface

• ROC Curve

• Feature Importance Plot

13. Submitted By

Name: Koushik Palakurthi

Email: koushik_palakurthi@srmap.edu.in

University: SRM University, AP

Project Title: E-commerce Cart Abandonment Analysis

Submission Date: 5th July 2025