Theorem (Kirchberger', 8.2).

Seien P und Q nichtleere, kompakte Teilmengen von E^n .

Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset \mathsf{E}^n$ mit höchstens n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Theorem (9.5).

Seien P und Q nichtleere, kompakte Teilmengen von E^n .

Angenommen, für $1 \leq k \leq n$ kann jede Teilmenge von Q mit höchstens k Punkten streng von P mit einer Hyperebene getrennt werden. Dann gibt es zu jedem k-Zylinder $Z_1 = (\mathsf{conv}P) + F_1$ einen (k-1)-Zylinder $Z_2 = (\mathsf{conv}P) + F_2$ mit $Z_2 \subset Z_1$ und $Z_2 \cap Q = \emptyset$.

Lemma (9.4).

Sei $S=S_1(0)$ die Einheitssphäre um den Nullpunkt im E^n und $F=\{A_i\mid i\in I\}$ eine Familie von kompakten, stark konvexen Teilmengen von S. Angenommen, je n (oder weniger) Elemente von F haben einen Punkt gemeinsam. Dann gibt es ein Paar von antipodalen Punkten $\{p,-p\}$, sodass $\{p,-p\}\cap A_i\neq\emptyset$ für alle $i\in I$.

Theorem (10.2).

Seien P und Q nichtleere, kompakte Teilmengen von E^n ($n \ge 2$). Dann sind für eine Basis β von E^n äquivalent:

- (a) Es gibt eine β -Box B, sodass $P \subset B$ und $Q \cap B = \emptyset$.
- (b) Für jede Teilmenge $S \subset P \cup Q$ mit maximal n+1 Punkten gibt es eine β -Box B_S , sodass $(P \cap S) \subset B_S$ und $(Q \cap S) \cap B_S = \emptyset$.
- (c) Für jede Teilmenge $T\subset P$ mit maximal n Punkten ist die minimale β -Box B_T , die T enthält, disjunkt von Q, also $B_T\cap Q=\emptyset$.