

sign of a drift chamber tracking system for the IDEA experiment as

Niloufar Alipour Tehrani (CERN), Benedikt Hegner, Giovanni Francesco Tassielli, Francesco Grancagnolo 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, Sydney, Australia

The Future Circular Collider Experiment (FCC)

- A future possibility for the post-LHC era
- 3 options of circular colliders
- FCC-ee: electron positron collisions
- FCC-hh: proton proton collisions
- FCC-eh: electron proton collisions
 ∼100 km tunnel in Geneva area
- FCC-ee collider parameters:

ı ı				
Stages	Z	WW	H (ZH)	tī
Beam energy [GeV]	45.6	80	120	182.5
Average bunch spacing [ns]	19.6	163	994	3396

FCCSW: Physics and Detector simulations with FCCSW

- Common software for all FCC experiments (ee, hh & eh)
- Detector and physics studies
- Fast & full simulations
- One software stack from event generation to physics analysis
- Collaborative approach with other CERN experiments
 - Gaudi from LHC
- DD4hep from CLIC & LHCb
- New solutions where needed

where no				
	Seometry DDhep	Segmen- tation	Geant4 simulation	Digitization

The IDEA detector concept for FCC-ee

- Two detector concepts for the FCC-ee collider
 The IDEA detector concept (focus of this poster)
- A CLIC-based (silicon-based) detector
- Ultimate goal for the IDEA detector concept
 - Vertex detector: MAPS
 - Ultra-light drift chamber with particle identification
 - Double readout calorimetry
 - Aditional silicon disk layers placed in the space between the drift chamber and the dual readout calorimeter to increase the forward coverage
 - 2 T solenoidal magnetic field
 - Instrumented return yoke
- Large tracking volume (R \sim 8 m) for very weakly
- coupled (long-lived) particles

