Ingeniería del Software Grado en Ingeniería Informática

Procesos del Desarrollo de Software Doble Grado en Ingeniería Informática y Administración de Empresas

Presentación de la asignatura

Curso 2020-2021

Presentación

- Profesorado
 - Gonzalo Génova (ggenova [at] inf.uc3m.es)
 - Jose María Alvarez (josemaria.alvarez [at] uc3m.es) COORDINADOR
 - Juan Miguel Gómez Berbís (juanmiguel.gomez [at] uc3m.es)
 - Jesús Poza (jepozac@inf.uc3m.es)
 - Román López Cortijo (rlopezco [at] inf.uc3m.es)
 - Eugenio Parra Corredor (eparra [at] inf.uc3m.es)
 - Jose Luis López (jllopez [at] inf.uc3m.es)
 - Roberto Galindos (rgalindo [at] inf.uc3m.es)
 - Belen Ruiz (bruiz[at]in.uc3m.es)
- Dirección para entregas: AULAGLOBAL

INGENIERÍA DE SOFTWARE

Objetivos de la asignatura

Aprender a hacer el análisis y diseño de alto nivel de una aplicación informática

Objetivos de la asignatura

Aprender...

- Redacción de un documento completo de análisis y diseño
- Estándares de documentación de proyectos
- Técnicas del análisis orientado a objetos para ingeniería de requisitos

Desarrollar capacidades

- Abstracción y resolución de problemas
- Lectura crítica y reflexiva
- Trabajo en equipo
- Exposición de resultados propios
- Revisión de trabajos ajenos
- Aprendizaje a partir de errores propios y ajenos

Relación con otras asignaturas (áreas SWEBOK)

Asignatura	PDD	IS	DPDS	TADS	DSIC	MDV
Tipo-Curso-Semestre	OB-2-2	OB-3-1	OB-3-2	ES-3-2	ES-4-1	ES-4-1
Software Requirements	i	р	u	u	u	u
Software Design	i	р	u	u	u	р
Software Construction	р			р	р	р
Software Testing	р	u	u	р		р
Software Maintenance			р	р		
Software Configuration Management			р	р		
Software Engineering Management			р	р	р	
Software Engineering Process	i	i	р			
Software Engineering Models and Methods		р	u	u		р
Software Quality			р		р	u
Software Engineering Professional Practice	i		р			
Software Engineering Economics			р			
Computing Foundations						
Mathematical Foundations						
Engineering Foundations						

i = introductorio; p = profundización; u = usado

Programa de la asignatura: teoría

Bloque I. Ingeniería de requisitos

- 1. Introducción a la ingeniería de requisitos
- 2. Obtención de requisitos
- 3. Propiedades de los requisitos
- 4. Tipos de requisitos

Bloque II. Modelado conceptual

- 5. Introducción al modelado conceptual
- 6. Modelado conceptual: clases y objetos
- 7. Modelado conceptual: asociaciones
- 8. Modelado conceptual: jerarquías

Bloque III. Modelado arquitectónico

- 9. Introducción al modelado arquitectónico
- 10 Componentes
- 11. Interfaces
- 12. Contratos

ACTIVIDADES DE LA ASIGNATURA

Actividades de la asignatura

- Clases magistrales
 - Asistencia no controlada.
 - El examen de Test es un reflejo directo del aprovechamiento de las clases magistrales, de ahí la importancia que se le da en la nota final.
 - Las clases pueden incluir ejercicios en grupos / individuales, discusiones y puestas en común
 - Presentaciones de profesionales de distintas empresas
 - Desarrollo de un proyecto transversal a lo largo de la asignatura
 - One-Minute Quizz al final de cada clase: la mejor preparación para el examen.
- Clases de laboratorio
 - Resolución de ejercicios de redacción de requisitos y modelado
 - Preparación de la práctica final
- Tutorías colectivas (en clases de laboratorio)
 - Asistencia voluntaria.
 - Sirven para que el profesor pueda hacer un seguimiento efectivo del proyecto.
 - Aprovechad la tutoría llevando un borrador bien trabajado.
- Exposiciones/Revisiones (en clases de laboratorio)
 - Asistencia obligatoria a todas las exposiciones, aunque no toque exponer.
 - Dos miembros exponen la práctica, dos responden a las preguntas del profesor.
 - Tiempo máximo por equipo: 12 min/exp + 8 min/preg = 20 min/equipo.

CLASES MAGISTRALES

FORMATOS

Clases virtuales (BlackBoard)

Contenidos

- Clase magistral teórica
- Aplicación a un proyecto transversal
- Otros ejercicios prácticos en grupo
- Discusión y puesta en común ejercicios / otros temas debate
- Posible presentación de algún profesional
- One minute quiz

CALENDARIO

Se mantendrá un calendario actualizado en AULA GLOBAL

16-sep	PRESENTACIÓN DE LA ASIGNATURA
23-sep	Introducción a la ingeniería de requisitos
30-sep	2. Obtención, descripción y gestión de requisitos
07-oct	3. Propiedades, atributos y organización de requisitos
14-oct	4. Tipos de requisitos
21-oct	5. Introducción al modelado conceptual Examen parcial ingeniería de requisitos.
28-oct	6. Modelado conceptual (1) -CLASES Y OBJETOS
04-nov	7. Modelado conceptual (2) -ASOCIACIONES
11-nov	8. Modelado conceptual (3) - JERARQUÍAS
18-nov	9. Introdución a la arquitectura de SW Examen parcial modelado
25-nov	10. Modelado arquitectónico (1) - COMPONENTES
02-dic	11. Modelado arquitectónico (2) - INTERFACES
09-dic	12. Modelado arquitectónico (3) - CONTRATOS
16-dic	Recapitulación. Examen parcial modelado arquitectónico.
23-dic	Entrega preguntas examen ENTREGA REVISIÓN 3 VACACIONES

SISTEMA DE EVALUACIÓN

SISTEMA EVALUACIÓN

	Individual	Grupal
Magistral (50%) Evaluación continua: 50%	 Examen teórico bloque I (10%) Examen teórico bloque II (10%) Examen teórico bloque III (10%) 1-minute quiz (10%) 	Propuesta de preguntas (10%)
Reducido (50%) Evaluación continua: 30%		 Entrega 1 (10%) Entrega 2 (10%) Entrega 3 (10%) Entrega final (20%)

- En los exámenes parciales teóricos se requiere una nota mínima de 4,5.
- Para superar la teoría se requiere un promedio >= 5,0.
- En el caso de no superar alguno de los parciales, se acudirá a un examen final teórico SOLO con las partes no superadas
- Se requiere una nota mínima de 5,0 en la memoria final de la práctica para asegurar la asignatura

ENTREGABLES EVALUABLES DE LA ASIGNATURA

Resumen de Entregables de la asignatura

Propuesta de tema para la práctica (bonificación extra para la mejor propuesta)

PRÁCTICA (10% por cada entregable)

- Entrega 1 REQUISITOS
- Entrega 2 MODELADO
- Entrega 3 ARQUITECTURA

PRACTICA – Entrega Final documento completo (20%)

Revisiones cruzadas de cada entrega de la práctica

Presentaciones utilizadas para las exposiciones 1 y 2 de la práctica

Propuesta de preguntas para examen final (10%)

Bibliografía

- Ingeniería de requisitos
 - Eric Braude. Software Engineering. An Object-Oriented Perspective. John Wiley & Sons, 2001.
 - Ian Sommerville. Ingeniería del Software. Pearson-Addison Wesley, 2005.
 - Ian Sommerville & Pete Sawyer. Requirements Engineering: A Good Practice Guide. John Wiley & Sons. 1997.
 - Roger Pressman. Ingeniería del software: un enfoque práctico, 6ª ed. McGraw-Hill.
 - lan F. Alexander & Richard Stevens. Writing better requirements. Addison-Wesley, 2002.
- Modelado con UML
 - Martin Fowler, Kendall Scott. UML Distilled. A Brief Guide to the Standard Object Modeling Language. Addison-Wesley, 2004.
 - Jim Arlow, Ila Neustadt. UML and the Unified Process. Practical Object-Oriented Analysis & Design. Addison-Wesley, 2002.
 - Perdita Stevens, Rob Pooley. Using UML. Software Engineering with Objects and Components. Addison-Wesley, 2000.
 - Craig Larman. Applying UML and Patterns. An Introduction to Object-Oriented Analysis and Design and the Unified Process. Prentice Hall. 1998.