

ELEDIA@UniTN - University of Trento

Dept. of Civil, Environmental, and Mechanical Engineering Via Mesiano 77, I-38123 Trento, Italy E-mail: contact@eledia.org

Web: www.eledia.org/eledia-unitn

Introduction to ML and AI Methods (Part I)

Dr. Marco SALUCCI

Day 1 - August 29th, 2022

2022 ELEDIA@ICAM PhD Summer Schools **Machine Learning & AI Methods** Theory, Techniques, and Advanced Engineering Applications 29 Aug. - 02 Sept. 2022, Trento, Italy (Onsite and Online)

Copyright Notice

All rights to the content of this document are reserved. Any use, in whole or in part, of the contents included in this document, including the storage, reproduction, editing, dissemination or distribution of their content through any technology platform, support, or computer network is forbidden without the prior written permission from the author.

Tutti i diritti relativi ai contenuti del presente documento sono riservati. È vietato qualsiasi utilizzo, totale o parziale, dei contenuti inseriti nel presente documento, ivi inclusa la memorizzazione, riproduzione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque piattaforma tecnologica, supporto o rete telematica, senza previa autorizzazione scritta da parte dell'autore.

ELEDIA Research Center - All Rights Reserved

Notation Guidelines

Light YELLOW Light GRAY

Proofs/Maths

Light GBLU

Redundant

Light ORANGE

Repetitions/Reminder

Light RED

Alternative Flow

Glossary/Math Defs/Key

Outline

- Introduction and Motivation
- Prediction Through Interpolation Techniques
 - Nearest Neighbor Interpolation
 - Linear Interpolation
- 3-Steps Learning-by-Examples (LBE) Framework
 - Step 1: Dimensionality Reduction
 - Sequential Feature Selection (SFT)
 - Principal Component Analysis (PCA)
 - Sammon Mapping
 - Partial Least Squares (PLS)

ELEDIA Research Center - All Rights Reserved ELEDIA Research Center - All Rights Reserved

Efficient Evaluation of $\Phi(f)$

Approximate $\Phi(f)$ computation through a predictor ("Surrogate Model")

with form is postulated in advance (e.g.,

polynomials, splines, ecc..)

Often implies exact fit at training points

Learning-by-Examples (LBE)

Exact fit at training points not mandatory

Efficient Evaluation of $\Phi(f)$

Approximate $\Phi(f)$ computation through a predictor (large problems)

Interpolation

- Simple and efficient strategies
- Requires to *a-priori* know/estimate functional dependency (e.g.: polynomial, exponential, etc.)
- Low generalization capabilities \downarrow
- Examples: nearest neighbor interpolation, linear interpolation, polynomial interpolation, spline interpolation

Learning-by-Examples (LBE)

- Numerically efficient
- No a-priori knowledge required
- Good generalization capabilities 1
- Examples: Support Vector Machines (SVM), Artificial Neural Networks (ANN), Gaussian Processes (GP), Radial Basis Function (RBF)

ELEDIA Research Center - All Rights Reserved

Prediction Through Interpolation

11

Given the function value $\Phi(f)$ at S N-dimensional samples, how to estimate the function value at f*?

Interpolate available data ("easiest" prediction) Solution

Nearest Neighbor (NN) interpolation Linear interpolation

ELEDIA Research Center - All Rights Reserved

(A) Nearest Neighbor (NN) Interpolation

Approach

Steps

The function value in f^* is equal to the value assumed by the **nearest** training sample

1) Compute the **Euclidean distance** between **f*** and **f**_i, i=1,...,S

$$d(\mathbf{f}^*,\mathbf{f}_i) = \sqrt{\sum_{n=1}^{N} (f_{n,i} - f_n^*)^2}$$

N-dimensional

(2) Predict at f*

$$\widetilde{\Phi}(\mathbf{f}^*) = \Phi(\mathbf{f}_i) \text{ if } d(\mathbf{f}^*, \mathbf{f}_i) < d(\mathbf{f}^*, \mathbf{f}_j) \quad \forall i, j = 1, ..., S \quad i \neq j$$

ELEDIA Research Center - All Rights Reserved

NN Interpolation - 1D Case

$\widetilde{\Phi}(\mathbf{f}^*) = \Phi(\mathbf{f}_i)$ if $d(\mathbf{f}^*, \mathbf{f}_i) < d(\mathbf{f}^*, \mathbf{f}_i)$ $\forall i, j = 1, ..., S \quad i \neq j$

The nearest neighbor of f^* is f_2

ELEDIA Research Center - All Rights Reserved

13

Prediction Through Interpolation

Given the function value $\Phi(f)$ at S N-dimensional samples, how to estimate the function value at f*?

Solution Interpolate available data ("easiest" prediction)

Linear Interpolation - 1D Case

6

Linear Interpolation - ND Case

14

Let be given a set of S N-dimensional training samples $[\mathbf{f}_i; \Phi(\mathbf{f}_i)] = 1,...,S$ •

How to identify?

(в)

Voronoi cells boundaries

Voronoi Cells/Diagrams

Voronoi cell $V(\mathbf{f}_i)$ associated to sample \mathbf{f}_i : Region of points whose Euclidean distance to f, is lower than the distance to all other samples

ELEDIA Research Center - All Rights Reserved

Complete set of S Voronoi cells

ND Linear Interpolation - Step 1/5

ND Linear Interpolation - Step 2/5

ND Linear Interpolation - Step 3/5

ND Linear Interpolation - Step 4/5

ND Linear Interpolation - Step 5/5 Weights Computation (1/2)

<u>Volume</u> of a N-dimensional simplex: $Vol(\mathbf{f}_1, ..., \mathbf{f}_{N+1}) = \det \begin{pmatrix} \mathbf{f}_1 & \cdots & \mathbf{f}_{N+1} \\ & & & \end{pmatrix}$

EXAMPLE:

Signs depends on the ordering of the 2 points

For N>1 volume ∞ area

ND Linear Interpolation - Step 5/5

Weights Computation (2/2)

Weight for *i*-th neighbor
$$\mathbf{f}_i$$
: $\alpha_i = \frac{Vol(\mathbf{f}_1, ..., \mathbf{f}_{i-1}, \mathbf{f}^*, \mathbf{f}_{i+1}, ..., \mathbf{f}_{N+1})}{Vol(\mathbf{f}_1, ..., \mathbf{f}_{N+1})}$

B

Linear Interpolation - Example

(1) Volume calculation

$$Vol(\mathbf{f}_1, \mathbf{f}_2) = Vol(f_1, f_2) = \left| \det \begin{pmatrix} f_1 & f_2 \\ 1 & 1 \end{pmatrix} \right| = f_2 - f_1$$

Weights calculation
$$\alpha_{1} = \frac{Vol(f^{*}, f_{2})}{Vol(f_{1}, f_{2})} = \frac{f_{2} - f^{*}}{f_{2} - f_{1}} \quad \alpha_{2} = \frac{Vol(f_{1}, f^{*})}{Vol(f_{1}, f_{2})} = \frac{f^{*} - f_{1}}{f_{2} - f_{1}}$$

3 Function approximation

1 Volume calculation

$$Vol(\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3) = \begin{vmatrix} \det \begin{pmatrix} \mathbf{f}_1 & \mathbf{f}_2 & \mathbf{f}_3 \\ & & \\ 1 & 1 & 1 \end{vmatrix} = 2Area(\Delta(\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3))$$

2 Weights calculation

$$\alpha_{1} = \frac{Vol(\mathbf{f}^{*}, \mathbf{f}_{2}, \mathbf{f}_{3})}{Vol(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3})} \quad \alpha_{2} = \frac{Vol(\mathbf{f}_{1}, \mathbf{f}^{*}, \mathbf{f}_{3})}{Vol(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3})} \quad \alpha_{3} = \frac{Vol(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}^{*})}{Vol(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3})}$$

3 Function approximation

ELEDIA Research Center - All Rights Reserved

25

Nearest Neighbor Vs. Linear Interpolation (1/2)

6

Nearest Neighbor Vs. Linear Interpolation (2/2)

Training

Testing

LBE Algorithm

LBE Algorithm

The 3-Steps LBE Framework

В

C

Offline

Online

Reduction of the DoFs

Why?

If the number of variables N is large, the number of required training samples **S must be large**

The number of required I/O samples (S) increases much faster than N!

Map the N variables to a lower number (and therefore, reduce S)

How to mitigate it?

dimensionality space to reduce their

ELEDIA Research Center - All Rights Reserved

34

known

How to deal with a large number of variables (N)?

Solution

Reduce the DoFs of the functional space:

Φ(f)

Look for the H<N variables showing the largest impact on the output ("sensitivity analysis")

How?

Reduction of the

input space dimensionality

"Exhaustive" representation

of the reduced input space

Definition of the LBE

prediction method

ELEDIA Research Center - All Rights Reserved

33

Mapping Samples to a Lower Dimensional Space

Map P N-dimensional samples into P H-dimensional samples with H<N Approach

Space-Reduction: Overview

ELEDIA Research Center - All Rights Reserved

Selection Vs. Extraction? Function Dependent Vs. Independent?

Linear Vs. Non-Linear?

How to map?

ELEDIA Research Center - All Rights Reserved

35

Feature Selection vs. Feature Extraction

6

Feature Selection

Select a subset of H < N **most relevant** variables (on Φ)

Most informative measured features are kept

Sensitivity analysis required to understand which features must be selected

Feature Extraction

Generate H new variables Goal

as a **combination** of the original ones

$$\mathbf{f}_{p} = \begin{bmatrix} f_{p,1}, f_{p,2}, f_{p,3}, f_{p,4}, \dots, f_{p,n}, \dots f_{p,N} \end{bmatrix}$$
Feature
"combination" $\mathbf{z}_{p} = \Im\{\mathbf{f}_{p}\}$

$$\mathbf{z}_{p} = \begin{bmatrix} \mathbf{z}_{p,1}, \mathbf{z}_{p,2}, \dots, \mathbf{z}_{p,h}, \dots \mathbf{z}_{p,H} \end{bmatrix}$$

All measured features used to extract new features

ELEDIA Research Center - All Rights Reserved

Idea

37

When Feature Selection and When Extraction? **Feature Selection Feature Extraction** Example $\Phi(f_1, f_2) = \cos\{f_1 \cos(\theta) - f_2 \sin(\theta)\}\$ Example $\Phi(f_1, f_2) = \cos(f_1)$

 $\Phi(f_1, f_2)$ depends only on f_1 $\Phi(f_1, f_2) = \Phi(f_1)$

 $z_1 = f_1$

 $\Phi(f_1, f_2)$ can be expressed as $\Phi(z_1)$

Non-Linear Feature Extraction

The new H variables are NOT linear

combinations of the old N variables

 $[P \times N]$

Old variables

 $z_1 = \Im\{f_1, f_2\} = f_1 \cos(\vartheta) - f_2 \sin(\vartheta)$

Function Independent vs. Function Dependent 💖

Function Independent

Reduction of the DoFs is based only on the Idea analysis of the input samples

Most suitable for enhancing visualization of input data

Function Dependent

Reduction of the DoFs is based on the

analysis of the input-output relationship

Old input variables Corresponding output $F = \{f_p, p = 1,..., P\}$ $\Phi = \{\Phi(f_p), p = 1,..., P\}$

$$Z = \Im\{F; \Phi\}$$

 $\left|\mathbf{f}_{p}=\left[f_{p,n},n=1,...,N\right]\right|$

Most suitable for the prediction of Φ

FLEDIA Research Center - All Rights Reserved

6

Linear vs. Non-Linear Feature Extraction

Def.

New variables

Linear Feature Extraction

The new H variables are linear combinations Def. of the old N variables

transformation matrix

h-th component of p-th transformed sample

$$z_{p,h} = \sum_{n=1}^{N} f_{p,n} \mathbf{w}_{n,h}$$
Linear combination

of the old N variables

 $z_{p,h} = \Im\{f_{p,n}; n = 1..., N\}$

Non-linear

transformation function

P: Number of transformed samples

 $P \times H$

ELEDIA Research Center - All Rights Reserved

Sequential Feature Selection (SFS)

ELEDIA Research Center - All Rights Reserved

41

Sequential Feature Selection (SFS) - Basic Idea 😥

Given a set of N variables, select the subset of H<N variables having Idea the largest impact on the function

 $\Phi(f_1, f_2) = \cos(f_1)$

 $\Phi(f_1, f_2)$ depends only on f_1 $\Phi(f_1, f_2) = \Phi(f_1)$

Select only f_1

How to select f_1 ?

ELEDIA Research Center - All Rights Reserved

42

Idea

SFS - Block Diagram

Given a set of N variables, select the subset of H<N variables having the largest impact on the function

SFS – How to Select Variables (1/4)

EXAMPLE: Dimension of the input space : N = 4Number of variables to select: H = 3

$$\Phi(f_1, f_2, f_3, f_4) = 10f_2 + f_3 + \cos(f_4) + 0.1f_1$$

relevant on Φ

More relevant on Φ

 f_1 f_2 f_3 f_4 Number of selected variables: q=0

Consider all possible variables

Which is the first variable to select?

SFS – How to Select Variables (2/4)

SFS – How to Select Variables (3/4)

EXAMPLE:

Dimension of the input space: N = 4Number of variables to select: H = 3

$$\Phi(f_1, f_2, f_3, f_4) = 10f_2 + f_3 + \cos(f_4) + 0.1f_1$$

f, is the variable most relevant on Φ according to selected criterion

 $z = \{f_2\}$

How to select the remaining H-1 variables?

ELEDIA Research Center - All Rights Reserved

45

EXAMPLE: Start from an empty Dimension of the input space : N = 4Number of variables to select: H = 3set of selected variables $\Phi(f_1, f_2, f_3, f_4) = 10f_2 + f_3 + \cos(f_4) + 0.1f_1$ q=0 Add the variable that optimizes singularly the f_1 f_2 f_3 f_4 selected criterion Add the variable that, together with those f_2 f_1 f_2 f_4 $f_2 f_3$ already selected, optimizes the selected criterion Selected best pair including f. q=q+1 STOP $z = \{f_2, f_3\}$

SFS – How to Select Variables (4/4)

SFS – Selection Criterion?

ELEDIA Research Center - All Rights Reserved

EXAMPLE:

Dimension of the input space : N = 4Number of variables to select: H = 3

$$\Phi(f_1, f_2, f_3, f_4) = 10f_2 + f_3 + \cos(f_4) + 0.1f_1$$

q=1 Add the variable that, together with those already selected, optimizes the

Start from an empty

set of selected variables

Add the variable that

optimizes singularly the

selected criterion

selected criterion q=q+1 q==H?

EXAMPLE:

Dimension of the input space: N = 4Number of variables to select: H = 3

ELEDIA Research Center - All Rights Reserved

Which criterion?

Feature Selection: Minimization of Criterion J(·)

Feature Selection: How to Evaluate $J(\cdot)$?

EXAMPLE:

Dimension of the input space : N = 4Number of variables to select: H = 3

 $\Phi(f_1, f_2, f_3, f_4) = 10f_2 + f_3 + \cos(f_4) + 0.1f_1$

$$\mathbf{f} = [f_1, f_2, f_3, f_4] \quad \mathbf{f} = [f_1, f_2, f_3, f_4] \quad \mathbf{f} = [f_1, f_2, f_3, f_4]$$

$$\mathbf{z}_a = [f_1, f_2, f_3] \quad \mathbf{z}_b = [f_1, f_2, f_4] \quad \mathbf{z}_c = [f_1, f_3, f_4]$$

$$\mathbf{z}_d = [f_2, f_3, f_4]$$

$$\mathbf{z}_d = [f_$$

ELEDIA Research Center - All Rights Reserved

How to comupte $J(\cdot)$?

49

of J(.)

Goal

4

Compute the **prediction error** when using only the set of selected variables z

$$\mathbf{f} = [f_1, f_2, f_3, f_4]$$

$$\mathbf{z}_d = [f_2, f_3, f_4]$$

Prediction error obtained when considering variables f_2, f_3, f_4 and discarding variable f₁

$$J(\mathbf{z}_d) = 3.6 \times 10^{-2}$$

Approach: Cross-Validation

ELEDIA Research Center - All Rights Reserved

50

6

Computation of Prediction Error: Cross-Validation

Let's consider P H-dimensional samples, where $\mathbf{z}_p = |f_{p,2}, f_{p,3}, f_{p,4}|; p = 1,...,P$

(1.) Subdivide the P samples into **V subsets** of T samples

- (2.) For each v-th subset train a predictor using the remaining V-1 subsets
- Use the resulting model to check prediction accuracy on the v-th subset of selected samples

6

Computation of Prediction Error: Cross-Validation

(4.) Compute Mean Squared Error (n) of the feature subset z

For each v-th validation subset
$$\eta_{v}(\mathbf{z}) = \frac{1}{T} \sum_{i=1}^{T} \left\{ \Phi_{i,v} - \widetilde{\Phi}_{i,v}(\mathbf{z}) \right\}_{\text{Predicted output}}^{2} \underbrace{= \left\{ f_{2}, f_{3}, f_{4} \right\}_{\text{Selected features}}^{2}}_{\text{Selected features}}$$

(5.) Average Mean Squared Error over all V validation subsets

Final criterion (to be minimized)

$$J(\mathbf{z}_d) = \left[\frac{1}{V} \sum_{v=1}^{V} \right] \frac{1}{T} \sum_{i=1}^{T} \left\{ \Phi_{i,v} - \widetilde{\Phi}_{i,v}(\mathbf{z}) \right\}^2$$

Average over all V subsets

Feature Selection

Function

Dependent

SFS

SFFS

Principal Component Analysis (PCA)

Space-Reduction Techniques

PCA - Basic Idea (1/2)

Given *P N*-dimensional samples $\mathbf{F} = \{\mathbf{f}_p, p = 1,...,P\}$ find the $H \leq N$ **principal components** of data, i.e., the **directions** where there is the **largest variance**

Function

Independent

Non-Linear

53

54

Stepwise

PCA - Basic Idea (2/2)

ELEDIA Research Center - All Rights Reserved

Sammon Mapping

Given *P N*-dimensional samples $\mathbf{F} = \{\mathbf{f}_p, p = 1,...,P\}$ find the $H \leq N$ principal components of data, i.e., the <u>directions</u> where there is the **most variance**

Disposition of samples in the original 2D space

Which directions?

Compute the <u>N eigenvectors</u> of the <u>covariance matrix</u> in the original input space

Feature Extraction

Linear

PLS

Function

Dependent

Non-Linear

Bottleneck NN

How much variance?

Compute the <u>eigenvalues</u> associated to each eigenvector: larger eigenvalue means larger variance

Two possible projection directions

Feature extraction: Project input samples onto the H<N eigenvectors {W_h, h=1,...,H}

showing the largest eigenvalues (the principal components)

 W_h ; h = 1,...,H Basis of the *J*-dimensional subspace

How to compute?

e

PCA – Computation of The Basis

ELEDIA Research Center - All Rights Reserved

Linear Transformation

How to Compute?

The basis vectors $\{\underline{W}_h; h=1,...,H\}$ are the <u>eigenvectors</u> of the <u>covariance</u> <u>matrix</u> associated to the H <u>highest eigenvalues</u>

Covariance Matrix

$$\mathbf{C} = \frac{1}{P-1} \sum_{\rho=1}^{P} (\mathbf{f}_{\rho} - \overline{\mathbf{f}}) (\mathbf{f}_{\rho} - \overline{\mathbf{f}})^{T}$$

 $\bar{\mathbf{f}} = \frac{1}{S} \sum_{s=1}^{S} \mathbf{f}_{p}$

Properties

- {W_h; h=1,...,H} are called **principal components**
- {W_h; h=1,...,H} are mutually orthogonal
- \underline{W}_1 has the <u>largest possible variance</u> (followed by \underline{W}_2 , ..., \underline{W}_H)

55 ELEDIA Research Center – All Rights Reserved

Covariance Matrix

 $\operatorname{cov}(f_2, f_1)$ $\operatorname{var}(f_2)$ \cdots $\operatorname{cov}(f_2, f_N)$ \vdots \vdots \vdots

 $cov(f_N, f_{N-1})$

 $cov(f_1, f_2)$

 $cov(f_1, f_N)$

 $var(f_N)$

Average of i-th variable

 $\overline{f_i} = \frac{1}{P} \sum_{p=1}^{P} f_{p,i}$

Meaning of

cov(f_i,f_i)?

Covariance Between Two Variables

Covariance between i-th and j-th variables

$$cov(f_{i}, f_{j}) = \frac{1}{P - 1} \sum_{p=1}^{P} (f_{p,i} - \bar{f}_{i}) (f_{p,j} - \bar{f}_{j}) \qquad cov(f_{i}, f_{j}) = cov(f_{j}, f_{i})$$

Measure of how much two variables f_i and f_i change together Meaning

> If f_i assumes <u>larger values</u> when f_i <u>increases</u>, covariance is <u>posivive</u> If f_i assumes <u>lower values</u> when f_i <u>increases</u>, covariance is <u>negative</u>

Correlation Coefficient r (Normalized Covariance)

$$r(f_i, f_j) = r(f_j, f_i) = \frac{\operatorname{cov}(f_i, f_j)}{\operatorname{std}(f_i)\operatorname{std}(f_j)}$$
$$-1 \le r(f_i, f_j) \le +1$$

$$std(f_i) = \sqrt{\frac{1}{P-1} \sum_{p=1}^{P} (f_{p,i} - \bar{f}_i)^2}$$

Stadard deviation of i-th variable

Disposition of samples

 f_1

ELEDIA Research Center - All Rights Reserved

Input 2-dimensional samples

PCA – 2-D Example

ELEDIA Research Center - All Rights Reserved

57

 $var(f_1)$

 $cov(f_N, f_1)$

Diagonal: Variance of i-th (i=1,...,N) variables

 $var(f_i) = \frac{1}{P-1} \sum_{p=1}^{P} (f_{p,i} - \overline{f_i})^2$

Off-Diagonal: Covariance between i-th and j-th variables

 $cov(f_i, f_i) = cov(f_i, f_i)$ **C** is symmetric

 $cov(f_i, f_j) = \frac{1}{P-1} \sum_{i=1}^{P} (f_{p,i} - \bar{f}_i) (f_{p,j} - \bar{f}_j)$

Eigenvector w₁ corresponds to the highest eigenvalue

Greatest variance of the data lies on the first principal component w₁

> Project samples onto the principal component w₁

- The total number of eigenvectors is equal to N
- The eigenvectors are mutually orthogonal

PCA - Example (1/7)

EXAMPLE:

Number of unknowns: N = 2Number of samples: P = 10

Project samples onto eigenvectors

PCA - Example (2/7)

PCA - Example (3/7)

EXAMPLE:

Number of unknowns: N = 2Number of samples: P = 10

Compute the covariance matrix C

Compute the eigenvalues of C

Compute the eigenvectors of C

Project samples onto eigenvectors

Variance of i-th variable $\mathbf{C} = \begin{bmatrix} Var(f_1) & Cov(f_1, f_2) \\ Cov(f_2, f_1) & Var(f_2) \end{bmatrix}$ Average of i-th variable $\bar{f}_i = \frac{1}{P} \sum_{p=1}^{P} f_{p,i}$

Covariance between variables f_1 and f_2 $Cov(f_1, f_2) = Cov(f_2, f_1) = \frac{1}{P-1} \sum_{p=1}^{P} (f_{p,1} - \bar{f}_1) (f_{p,2} - \bar{f}_2)$

$$\overline{f}_1 = -0.45$$
 $Var(f_1) = 6.4228$ $Var(f_2) = 9.9528$ $Cov(f_1, f_2) = Cov(f_2, f_1) = 7.9876$

6.4228 7.9876 7.9876 9.9528

ELEDIA Research Center - All Rights Reserved

EXAMPLE:

Number of unknowns: N = 2

Number of samples: P = 10

Compute the covariance matrix C

> Compute the eigenvalues of C

Compute the eigenvectors of C

Project samples onto eigenvectors

Find the eigenvalues of C by solving

$$\det(\mathbf{C} - \lambda \mathbf{I}) = 0$$

$$\det(\mathbf{C} - \lambda \mathbf{I}) = \det\begin{bmatrix} Var(f_1) - \lambda & Cov(f_1, f_2) \\ Cov(f_2, f_1) & Var(f_2) - \lambda \end{bmatrix} = 0$$

 $\mathbf{C} = \begin{vmatrix} 6.4228 & 7.9876 \\ 7.9876 & 9.9528 \end{vmatrix}$

 $Var(f_1) = 6.4228$ $Var(f_2) = 9.9528$

 $\lambda_1 = 16.368$

 $\lambda_2 = 0.00746$

Eigenvalues of the covariance matrix

Note

The sum of the eigenvalues equals the sum of the variances $\lambda_1 + \lambda_2 = 16.3756 = Var(f_1) + Var(f_2)$

ELEDIA Research Center - All Rights Reserved

62

PCA - Example (4/7)

61

EXAMPLE:

Number of unknowns: N = 2Number of samples: P = 10

Compute the covariance matrix C

Compute the eigenvalues of C

Compute the eigenvectors of C

Project samples onto eigenvectors

For each i-th eigenvalue solve

$$\begin{cases} \left(\mathbf{C}-\lambda_{i}\mathbf{I}\right)\times\mathbf{w}_{i}=0 & \Rightarrow \begin{bmatrix} Var(f_{1})-\lambda_{i} & Cov(f_{1},f_{2})\\ Cov(f_{2},f_{1}) & Var(f_{2})-\lambda_{i} \end{bmatrix} \begin{bmatrix} w_{i,1}\\ w_{i,2} \end{bmatrix}=0 \\ \text{Subject to} \\ w_{i,1}^{2}+w_{i,2}^{2}=1 & \text{Eigenvector associated to the i-th eigenvalue} \end{cases}$$

PCA - Example (5/7)

Number of unknowns: N = 2Number of samples: P = 10

 $Z = F_0W = (F - \overline{F})(\overline{W_1}, \overline{W_2})$ Projected samples Zero-mean input samples

Compute the covariance matrix C

Compute the eigenvalues of C

Compute the eigenvectors of C

Project samples onto eigenvectors

2.2175 2.5425 -1.2075 -0.95 -1.55 -1.9575 -2.55 -3.3825 2.5925

-3.4825

-4.2825

ELEDIA Research Center - All Rights Reserved

-2.75

-3.65

 $[P \times H]$

 W_2 0.6262 -0.7797 0.6262

2.8874 -0.0538 3.2660 -0.0062 -1.5363 -0.0154 -2.4968 -0.0173 -4.2340 -0.12994.6246 0.0589 3.2424 0.1031 4.3086 -0.0667 -4.4372 -0.0366

Projected samples

 $[P \times H]$

0.1641

-5.6245

PCA - Example (6/7)

PCA - Example (7/7)

Number of unknowns: N = 2

Number of samples: P = 10

Compute the covariance matrix C

Compute the eigenvalues of C

Compute the eigenvectors of C

Project samples onto eigenvectors

Z = F	$\mathbf{F}_0 \mathbf{W} = \left(\mathbf{F} - \overline{\mathbf{F}}\right) \left[\mathbf{w}_1\right]$	$\mathbf{\tilde{w}}_{2}$
Projected samples	Zero-mean input samples	

	$\boldsymbol{z_1}$	$\boldsymbol{z_2}$
	2.8874	-0.0538
	3.2660	-0.0062
	-1.5363	-0.0154
Z =	-2.4968	-0.0173
	-4.2340	-0.1299
	4.6246	0.0589
	3.2424	0.1031
	4.3086	-0.0667
	-4.4372	-0.0366
	-5.6245	0.1641

Note

Eigenvectors of the covariance matrix

 $Var(z_1) = 16.368 = \lambda_1$

 $Var(z_2) = 0.00746 = \lambda_2$

The variance of the projections onto the principal components is equal to the eigenvalues of the covariance matrix

The first eigenvector expresses around 99% of total variance

ELEDIA Research Center - All Rights Reserved

Projected samples

65

Sammon Mapping

Sammon Mapping – Basic Idea

Goal

Preserve the topological structure (**distance between samples**) between the two N-dimensional and H-dimensional (H<N) spaces

6

Sammon Mapping – Minimization of E(Z)

Goal

Minimize the mismatch E(**Z**): $\mathbf{z}^{opt} = \underset{\mathbf{z}}{\operatorname{argmin}} \{ \mathbf{F}(\mathbf{z}) \} = \underset{\mathbf{z}}{\operatorname{argmin}} \{ \frac{1}{\sum_{i=1}^{p} d_{ij}} \sum_{\substack{i=1 \ i < j}}^{p} \frac{\left(d_{ij} - \hat{d}_{ij}\right)}{d_{ij}} \}$

How

Gradient Descent Optimization

How to Choose Z⁽⁰⁾?

ELEDIA Research Center - All Rights Reserved

69

Sammon Mapping - Initialization

Sammon Mapping – Minimization of E(Z)

How **Gradient Descent Optimization**

Partial Least Squares (PLS)

ELEDIA Research Center - All Rights Reserved

6

PLS – Goal (1/2)

Goal

Find a <u>new</u> set of <u>variables Z</u> such that the <u>input-output</u> relationship is **linearized** as much as possible

Example: N=1, V=1, H=1

Input-output relation is non-linear w.r.t. the "old" variable f

Input-output relation is almost linear w.r.t. the "new" variable z

ELEDIA Research Center - All Rights Reserved

73

PLS – Goal (2/2)

Find a **new** set of **variables Z** such that the **input-output** relationship Goal is **linearized** as much as possible

Centering F and Φ

Centered input samples (N dimensional)

$$\mathbf{F}_0 = \begin{bmatrix} \left(f_{1,1} - \bar{f}_1\right) & \left(f_{1,2} - \bar{f}_2\right) & \dots & \left(f_{1,N} - \bar{f}_N\right) \\ \left(f_{2,1} - \bar{f}_1\right) & \left(f_{2,2} - \bar{f}_2\right) & \dots & \left(f_{2,N} - \bar{f}_N\right) \\ \vdots & \ddots & \left(f_{\rho,n} - \bar{f}_n\right) & \vdots \\ \left(f_{\rho,1} - \bar{f}_1\right) & \dots & \ddots & \left(f_{\rho,N} - \bar{f}_N\right) \end{bmatrix}$$

Average of i-th variable (i=1,...,N) over P samples

$$\bar{f}_i = \frac{1}{P} \sum_{p=1}^{P} f_{p,i}$$

Centered output values (V dimensional)

$$\mathbf{\Phi}_{0} = \left(\mathbf{\Phi} - \overline{\mathbf{\Phi}}\right) = \left\{ \left[\left(\Phi_{\rho, \nu} - \overline{\Phi}_{\nu} \right), \nu = 1, \dots, \nu \right], \rho = 1, \dots, \rho \right\}$$

$$\boldsymbol{\Phi}_0 = \begin{bmatrix} \left(\boldsymbol{\Phi}_{1,1} - \overline{\boldsymbol{\Phi}}_1\right) & \left(\boldsymbol{\Phi}_{1,2} - \overline{\boldsymbol{\Phi}}_2\right) & \dots & \left(\boldsymbol{\Phi}_{1,V} - \overline{\boldsymbol{\Phi}}_V\right) \\ \left(\boldsymbol{\Phi}_{2,1} - \overline{\boldsymbol{\Phi}}_1\right) & \left(\boldsymbol{\Phi}_{2,2} - \overline{\boldsymbol{\Phi}}_2\right) & \dots & \left(\boldsymbol{\Phi}_{2,V} - \overline{\boldsymbol{\Phi}}_V\right) \\ \vdots & \ddots & \left(\boldsymbol{\Phi}_{\rho,V} - \overline{\boldsymbol{\Phi}}_V\right) & \vdots & \vdots \\ \left(\boldsymbol{\Phi}_{\rho,1} - \overline{\boldsymbol{\Phi}}_1\right) & \dots & \ddots & \left(\boldsymbol{\Phi}_{\rho,V} - \overline{\boldsymbol{\Phi}}_V\right) \end{bmatrix}$$

Average of v-th output (v=1,...,V) over P samples

$$\overline{\Phi}_{v} = \frac{1}{P} \sum_{p=1}^{P} \Phi_{p,v}$$

ELEDIA Research Center - All Rights Reserved

PLS – Extract The New Variables (Z)

Such that the input-output relationship becomes linear w.r.t. Z

Value of the n-th old variable for the p-th sample (zero-mean)

The new variables are linear combinations of the old ones

How to find W?

Linear Decomposition of Input and Output Matrices

PLS - Approach

z, has maximum covariance with u,

Both input (\mathbf{F}_0) and output $(\mathbf{\Phi}_0)$ can be expressed by linear approximations

$$\mathbf{F}_{0} = \mathbf{Z}\mathbf{A}^{T} + \mathbf{L}$$

$$[P \times N] [P \times H] [H \times N] [P \times N]$$
Errors made by the linear approximation

$$\mathbf{\Phi}_0 = \mathbf{U}\mathbf{Q}^T + \mathbf{G}^T$$

$$[P \times V] \quad [P \times H] \quad [H \times V] \quad [P \times V]$$

W is such that the transformed variables (Z) have maximum correlation with the transformed output (U)

If **Z** and **U** are **correlated**, we will be able to estimate the output directly from **Z**

$$\mathbf{\Phi}_0 = \mathbf{Z}\mathbf{Q}^T + \mathbf{E}$$

ELEDIA Research Center - All Rights Reserved

Approach

Maximize the covariance between corresponding columns of **Z** and **U**

Input $\mathbf{F}_0 = \mathbf{Z}\mathbf{A}^T + \mathbf{L}$

Output $\mathbf{\Phi}_0 = \mathbf{U}\mathbf{Q}^T + \mathbf{G}$

z, has maximum covariance with u, First transformed output $Z_{n,1}$ Z_1 $\mathbf{Z} = \begin{vmatrix} \mathbf{z}_{1,1} & \mathbf{z}_{1,2} & \cdots & \mathbf{z}_{1,H} \\ \mathbf{z}_{2,1} & \mathbf{z}_{2,2} & \cdots & \mathbf{z}_{2,H} \\ \vdots & \ddots & & \vdots \end{vmatrix} \qquad \mathbf{U} = \begin{vmatrix} \mathbf{u}_{1,1} & \mathbf{u}_{1,2} & \cdots & \mathbf{u}_{1,H} \\ \mathbf{u}_{2,1} & \mathbf{u}_{2,2} & \cdots & \mathbf{u}_{2,H} \\ \vdots & \ddots & & \vdots \end{vmatrix}$ Difference w.r.t PCA?

ELEDIA Research Center - All Rights Reserved

78

PLS vs. PCA

PCA finds the directions of maximum variation in F

If applied to Φ it would find the directions of maximum variation in Φ

PLS

PLS finds the directions in F best predicting the output value Φ

6

Eigenvalue Decopomposition Algorithm (1/6)

Average of
$$v$$
-th output
$$\overline{\Phi}_v = \frac{1}{\rho} \sum_{\rho=1}^{\rho} \Phi_{\rho,v} \xrightarrow{\square} \Phi_0 = \Phi - \overline{\Phi} = \begin{bmatrix} \left(\Phi_{1,1} - \overline{\Phi}_1\right) & \left(\Phi_{1,2} - \overline{\Phi}_2\right) & \cdots & \left(\Phi_{1,v} - \overline{\Phi}_v\right) \\ \left(\Phi_{2,1} - \overline{\Phi}_1\right) & \left(\Phi_{2,2} - \overline{\Phi}_2\right) & \cdots & \left(\Phi_{\rho,v} - \overline{\Phi}_v\right) \\ \vdots & \ddots & \left(\Phi_{\rho,v} - \overline{\Phi}_v\right) & \vdots \\ \left(\Phi_{\rho,1} - \overline{\Phi}_1\right) & \cdots & \ddots & \left(\Phi_{\rho,v} - \overline{\Phi}_v\right) \end{bmatrix}$$

ELEDIA Research Center - All Rights Reserved

Eigenvalue Decopomposition Algorithm (2/6)

Eigenvalue Decopomposition Algorithm (3/6)

At iteration h:

(1) Compute the matrix

$$\mathbf{M}_{h-1} = \mathbf{F}_{h-1}^{\mathsf{T}} \mathbf{\Phi}_{h-1} \mathbf{\Phi}_{h-1}^{\mathsf{T}} \mathbf{F}_{h-1}$$
$$[\mathsf{N} \times \mathsf{N}] \quad [\mathsf{N} \times \mathsf{P}] \quad [\mathsf{P} \times \mathsf{V}] \quad [\mathsf{V} \times \mathsf{P}] \quad [\mathsf{P} \times \mathsf{N}]$$

(2) Compute and sort the eigenvalues of $\mathbf{M}_{\text{h-1}}$

Solve
$$\det(\mathbf{M}_{h-1} - \lambda \mathbf{I}) = 0 \Longrightarrow \lambda(M_{h-1})_1 > \lambda(M_{h-1})_2 > ... > \lambda(M_{h-1})_N$$

(3) Compute \mathbf{w}_{h} as the <u>eigenvector</u> associated to the <u>highest eigenvalue</u> ($\lambda(M_{h-1})_{1}$)

Solve
$$\left[\mathbf{M}_{h-1} - \lambda \left(\mathbf{M}_{h-1}\right)_1\right]_{\mathbf{W}_h} = 0$$

At iteration h:

Store **z**_h as the h-th column of matrix **Z**

ELEDIA Research Center - All Rights Reserved

82

Eigenvalue Decopomposition Algorithm (4/6)

(7) Compute the matrix

$$\mathbf{N}_{h-1} = \mathbf{\Phi}_{h-1}^{T} \mathbf{F}_{h-1} \mathbf{F}_{h-1}^{T} \mathbf{\Phi}_{h-1}$$
$$[V \times V] \quad [V \times P] \quad [P \times N] \quad [N \times P] \quad [P \times V]$$

(8) Compute and sort the eigenvalues of N_{h-1}

Solve
$$\det(\mathbf{N}_{h-1} - \lambda \mathbf{I}) = 0 \implies \lambda(\mathbf{N}_{h-1})_1 > \lambda(\mathbf{N}_{h-1})_2 > ... > \lambda(\mathbf{N}_{h-1})_N$$

(9) Compute c_h as the <u>eigenvector</u> associated to the <u>highest eigenvalue</u> ($\lambda(N_{h-1})_1$)

Solve
$$\left[\mathbf{N}_{h-1} - \lambda (\mathbf{N}_{h-1})\right]_{1} \mathbf{c}_{h} = 0$$

C

Eigenvalue Decopomposition Algorithm (5/6)

h-th column of Z (z,)

Compute the

h-th column of U (u_b)

 F_{h-1} and Φ_h

END | ← / h==H?)

Store u as the h-th column of matrix U

Initialization: set h=0

Compute F_o and Φ_o

Compute the

h-th column of W (w,)

Compute the

h-th column of Z (z_b)

h=h+1 |<

Initialization: set h=0

Compute F_0 and Φ_0

Compute the

h-th column of W (w_b)

Compute the h-th column of $Z(z_h)$

Compute the h-th column of U (u_b)

(h==H?

F_{h-1} and Φ,

Initialization: set h=0

Compute F_0 and Φ_0

Compute the

h-th column of W (w,)

Compute the

h-th column of $Z(z_h)$

Compute the

h-th column of U (u,)

Update

 F_{h-1} and Φ_{h-1}

END |

h=h+1

no

h=h+1

Eigenvalue Decopomposition Algorithm (6/6)

85

6

PLS Example (1/8)

At iteration h:

(12) Update F_{b.1}

$$\mathbf{F}_h = \mathbf{F}_{h-1} - \mathbf{z}_h \mathbf{z}_h^T \mathbf{F}_{h-1}$$

(13) Update Φ_{h-1}

$$\mathbf{\Phi}_h = \mathbf{\Phi}_{h-1} - \mathbf{z}_h \mathbf{z}_h^T \mathbf{\Phi}_{h-1}$$

EXAMPLE:

Number of variables: N = 2Number of samples: P = 10 Dimension of the output: V=1 Number of new variables: H=1

Initialization: set h=0

Compute F0 and Φ0

Compute the

n-th column of W (w.)

Compute the

h-th column of Z (z_b)

Compute the

h-th column of U (u,)

no

Update F_{h-1} and Φ_{h-1}

END

h=h+1

"Rotated plane"

$$\Phi(f_1, f_2) = f_1 \cos(\theta_r) - f_2 \sin(\theta_r) \qquad \theta_r = 30[\deg]$$

Observation Direction \mathbf{w}_1 is sufficient for computing $\Phi(\mathbf{f})$ univocally

Goal Find w₁ to reduce the number of variables from N=2 to H=1

ELEDIA Research Center - All Rights Reserved

PLS Example (2/8)

ELEDIA Research Center - All Rights Reserved

Number of new variables: H=1 $\Phi(f_1, f_2) = f_1 \cos(\theta_r) - f_2 \sin(\theta_r)$

	f_1	f_2		$\Phi(f_1,f_2)$	
	-4.46	7.09		-7.40	
	4.04	-1.72		4.36	
	-2.73	2.75		-3.74	
	1.50	1.35	_ /	0.62	
F =	-9.00	-3.12	Ψ/=	-6.24	
	8.45	-7.13		10.88	Samples of
	2.40	9.24		-2.55	the function
	-4.79	-8.97		4.07	
	6.34	5.30		2.84	
	-7.82	-4.80		-4.38	

PLS Example (3/8)

EXAMPLE: Number of variables: N = 2Number of samples: P = 10 Dimension of the output: V=1 Number of new variables: H=1

$$\bar{f}_1 = -0.178$$
 $\bar{f}_2 = -0.002$

$$\overline{\Phi} = -0.15$$

Centered (zero-mean) version of both input and output samples

	$f_1 - \bar{f}_1$	$f_2 - \bar{f}_2$
	-4.28	7.09
	4.22	-1.71
	-2.56	2.75
	1.67	1.35
$ \mathbf{F}_0 $	-8.83	-3.11
	8.63	-7.13
	2.57	9.23
	-0.30	-8.97
	6.51	5.30
	-7.65	-4.80
1		

 $\Phi - \overline{\Phi}$

Compute F_0 and Φ_0

Compute the

h-th column of W (w,)

Compute the

h-th column of Z (z_b)

Compute the

h-th column of U (u_h)

 F_{h-1} and Φ_{h-1}

Initialization: set h=0

Compute F_0 and Φ_0

Compute the

h-th column of W (w,)

Compute the

h-th column of Z (z_b)

Compute the

h-th column of U (u,)

Update

 F_{h-1} and Φ_{h-1}

END 4

h=h+1

END ← h==H?

h=h+1

PLS Example (4/8)

$$\mathbf{M}_0 = 10^4 \begin{bmatrix} 6.44 & -3.85 \\ -3.85 & 2.30 \end{bmatrix}$$

(2) Compute and sort the eigenvalues of M₀

solve
$$\det(\mathbf{M}_0 - \lambda \mathbf{I}) = 0$$
 \Longrightarrow

Highest eigenvalue

EXAMPLE: Number of variables: N = 2

Number of samples: P = 10

Dimension of the output: V=1

Number of new variables: H=1

EXAMPLE: Number of variables: N = 2Number of samples: P = 10

Dimension of the output: V=1

Number of new variables: H=1

$$\lambda (M_0)_1 = 8.74 \times 10^4$$

(3) Compute w₁ as the <u>eigenvector</u> associated to the <u>highest eigenvalue</u>

Solve
$$\left[\mathbf{M}_{0} - \lambda \left(\mathbf{M}_{0}\right)_{1}\right]_{\mathbf{W}_{1}} = 0 \quad \Longrightarrow \quad \mathbf{W}_{1} = \begin{bmatrix} 0.86 \\ -0.51 \end{bmatrix}$$

4) Store \mathbf{w}_{1} as the 1-st column of matrix \mathbf{W}

$$\mathbf{W} = \begin{bmatrix} 0.86 & \dots \\ -0.51 & \dots \end{bmatrix}$$

ELEDIA Research Center - All Rights Reserved

PLS Example (5/8)

Initialization: set h=0

Compute F_a and Φ

Compute the

h-th column of W (w.)

Compute the

h-th column of Z (z_b)

Compute the

h-th column of U (u,)

Update

F_{h-1} and Φ_{b-1}

END

h=h+1

ELEDIA Research Center - All Rights Reserved

PLS Example (6/8)

Iteration h=1

(5) Project samples onto w₁: compute the vector z₁

(6) Store z₁ as the 1-st column of matrix Z

Knowledge of z_{n 1} is sufficient for computing

 $\Phi(\mathbf{f})$

89

PLS Example (7/8)

Iteration h=1

(7) Compute the matrix

EXAMPLE: Number of variables: N = 2Number of samples: P = 10 Dimension of the output: V=1 Number of new variables: H=1

 $\mathbf{N}_0 = \mathbf{\Phi}_0^T \mathbf{F}_0 \mathbf{F}_0^T \mathbf{\Phi}_0 = 8.74 \times 10^4$

In this case V=1

Compute and sort the eigenvalues of No.

Solve
$$det(\mathbf{N}_0 - \lambda \mathbf{I}) = 0 \quad \square \rangle \quad \lambda (\mathbf{N}_{h-1})_1 = 8.74 \times 10^4$$

Compute c₀ as the <u>eigenvector</u> associated to the <u>highest eigenvalue</u>

Solve
$$\left[\mathbf{N}_0 - \lambda(\mathbf{N}_0)\right]_{\mathbf{c}_1} = 0 \quad \square \rangle \quad \mathbf{c}_1 = 1$$

Compute the vector u,

$$\mathbf{u}_1 = \mathbf{\Phi}_0 \mathbf{c}_1 = \mathbf{\Phi}_0$$

PLS Example (8/8)

Conclusions

EXAMPLE: Iteration h=1 Number of variables: N = 2Number of samples: P = 10 Dimension of the output: V=1 Number of new variables: H=1 Correlation between z₁ and u₁ is maximized $r(z_1, u_1) \approx 0.99$ Z_1

We can use the new variable z_1 instead of f_1 and f_2 to compute/predict Φ

ELEDIA Research Center - All Rights Reserved

93

- Introduction and Motivation
- Prediction Through Interpolation Techniques
 - Nearest Neighbor Interpolation
 - **Linear Interpolation**
- 3-Steps Learning-by-Examples (*LBE*) Framework
 - Step 1: Dimensionality Reduction
 - Sequential Feature Selection (SFT)
 - Principal Component Analysis (PCA)
 - Sammon Mapping
 - Partial Least Squares (PLS)

ELEDIA Research Center - All Rights Reserved

ELEDIA@UniTN - University of Trento

Dept. of Civil, Environmental, and Mechanical Engineering Via Mesiano 77, I-38123 Trento, Italy E-mail: contact@eledia.org Web: www.eledia.org/eledia-unitn

Introduction to ML and AI Methods (Part I)

Dr. Marco SALUCCI

Day 1 - August 29th, 2022

2022 ELEDIA@ICAM PhD Summer Schools Machine Learning & AI Methods Theory, Techniques, and Advanced Engineering Applications 29 Aug. - 02 Sept. 2022, Trento, Italy (Onsite and Online)

Additional Information

Contact Point: Dr. Marco SALUCCI

ELEDIA Research Center Board Member

Assistant Professor @ DICAM - University of Trento (Trento - Italy)

E-mail: marco.salucci@unitn.it

www.eledia.org Web-site:

summer-schools@eledia.org

https://www.eledia.org

https://twitter.com/ELEDIAResearch

https://www.facebook.com/eledianet

https://www.linkedin.com/company/eledianet

https://www.instagram.com/eledianet

WeChat ID: eledianet

ELEDIA Research Center – All Rights Reserved

