

Общероссийский математический портал

Ф. Г. Авхадиев, Функционал Минковского по областям значений логарифма производной и условия однолистности, $Tp.~ceм.~no~\kappa paee.~sadaчam,~1992,$ выпуск 27,~3–21

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки: ТР: 178.205.19.235

7 июня 2024 г., 16:24:37

Ф.Г.Авхадиев

ФУНКЦИОНАЛ МИНКОВСКОГО ПО ОБЛАСТЯМ ЗНАЧЕНИЙ ЛОГАРИФМА ПРОИЗВОЛНОЙ И УСЛОВИЯ ОЛНОЛИСТНОСТИ

При изучении аналитических функций часто возникает такая ситуация: разрешимость той или иной проблемы зависит от области задания функций. Если задача решена для простейшей области, например, для круговой или выпуклой, то распространение результата на области более сложного вида связано с поиском новых методов доказательства и подходящих классов областей. И лишь в редких случаях удается описать в геометрических терминах предельно широкий класс областей. характеризуемых разрешимостью проблемы. В конце 70-х и в 80-е годы рядом авторов было показано (см. обзор Геринга [I]), что для нескольких задач, связанных в основ ном с продолжимостью или с достаточными условиями инъективности отображений, таким предельно широким классом служит класс о днородных областей. Напомним (2. 3), что конечносвязная область $\mathcal{Q} \subset \overline{\mathcal{C}}$ однородна тогда и только тогда, когда любая ее граничная компонента есть либо квазиконформная кривая, либо точĸa.

В терминах функционала Минковского по областям значений $\ln f'(\mathcal{Z})$ или $\ln \left[f'(\mathcal{Z})/R'(\mathcal{Z})\right]$, где $R(\mathcal{Z})$ — рациональная функция, в настоящей статье даны достаточные условия однолистности или ρ —листности аналитических или мероморфных функций, заданных в однородных областях. Центральный результат (теорема I) относится к функционалу Минковского специального вида, равносиль — кому функционалу $f(f) = \sup\{|\alpha rg|f'(\mathcal{Z})|: \mathcal{Z} \in \mathcal{D}\}$, и связан с выходом за пределы однородных областей.

§ I. Определения и основные результаты

Пусть $\mathcal Q$ — область в расширенной плоскости $\overline{\mathcal C}$, $\mathcal M=\mathcal M(\mathcal Q)$ — некоторое подмножество мероморфных в $\mathcal Q$ функций $\mathcal L(\mathcal Z)$, $\mathcal I$ —

неотрицательный функционал на \mathscr{M} со значениями $t=\mathscr{I}(f)\varepsilon[\mathscr{O},\infty]$, \mathscr{O} — натуральное число.

Определение I. Функционал $\mathcal I$ назовем ρ -допустимым (допустимым при $\rho=\mathrm I$) для $\mathcal M$ в $\mathcal O$, если существует постоянная $\mathscr H_D>\mathcal O$ такая, что

 $f \in \mathcal{M}, \mathcal{I}(f) < x_{\rho} \Rightarrow f(x)$ не более чем ρ -листна в \mathcal{Q} , в частности, при $\rho = I$,

 $f \in \mathcal{M}, \mathcal{I}(f) < \mathcal{H}_{\mathcal{A}} \Rightarrow f(\mathcal{A})$ однолистна в \mathcal{D} .

Очевидно, наилучшее из возможних значений \mathscr{R}_{ρ} определяется как решение экстремальной задачи

$$\mathcal{H}_{p}^{*} = \mathcal{H}_{p}(\mathcal{M}, \mathcal{D}, \mathcal{I}) = \inf \left\{ \mathcal{I}(f) : f \in \mathcal{M}, n(f, \mathcal{D}) > p + 1 \right\}, \quad (I)$$
THE $n(f, \mathcal{D})$ - Wicho dictor $f(\mathcal{A})$ b \mathcal{D} , t.e.

$$n(f, \mathcal{D}) = \sup_{\mathbf{w} \in \mathcal{C}} \# \left\{ f^{-1}(\mathbf{w}) \right\}.$$

Здесь #X означает число элементов множества X .

Таким образом, ρ -допустимость функционала $\mathcal I$ равносильна существованию нетривиального решения $\underset{\rho}{\mathscr{A}} > \mathcal O$ экстремальной проблемы (I).

Для фиксированного множества $\mathcal{M}=\mathcal{M}(\mathcal{Q})$ функционал \mathcal{J} определяет класс областей $\mathcal{G}(\mathcal{J})$ такой, что \mathcal{J} допустим в

$$\mathcal{D} \Leftrightarrow \mathcal{Z} \in \mathcal{G}(\mathcal{I}). \tag{2}$$

В утверждениях вида (2) возникает необходимость ограничиться усеченными множествами областей. В случаях, когда $\mathcal{C}(\mathcal{I})$ виделяется из некоторого собственного подмножества всех областей на плоскости, мы будем писать $\mathcal{C}(\mathcal{I})$, где штрих указывает на то, что рассматриваются лишь области с некоторым дополнительным свойством, оговоренным заранее. Ниже используются два вида усеченных множеств областей: конечносвязные области в предположении ку сочной гладкости граничных кривых и без этого предположения.

Утверждение (2) станет содержательным, если будет найдено описание $\mathcal{C}(\mathcal{I})$ в геометрических терминах. Введем сейчас некоторые классы областей, которые нам потребуются.

Через $\gamma = \gamma(\mathcal{Z}_{1},\mathcal{Z}_{2})$ будем обозначать жорданову спрямляемую

дугу, соединяющую точки \mathscr{Z}_{ℓ} и \mathscr{Z}_{ℓ} . Пусть $\mathscr{Z} = \mathscr{Z}(S)$ — парамет рическое представление этой дуги от натурального параметра S , $\mathcal{O} \leq S \leq \ell = \ell(\mathscr{Z},\mathscr{Z}_{\ell})$. Гие $\ell = \ell(\mathscr{Z},\mathscr{Z}_{\ell})$ — плина пуги $\mathscr{X} = \mathscr{X}(\mathscr{Z},\mathscr{Z}_{\ell})$

 $\mathcal{O} \leq \mathcal{S} \leq \mathcal{C} = \mathcal{C}(\mathcal{Z}_1, \mathcal{Z}_2)$, где $\mathcal{C} = \mathcal{C}(\mathcal{Z}_1, \mathcal{Z}_2)$ — длина дуги $\mathcal{F} = \mathcal{F}(\mathcal{Z}_1, \mathcal{Z}_2)$. Определение 2. Пусть \mathcal{O} — область в \mathcal{C} , \mathcal{A} — положи — тельная постоянная. Будем писать $\mathcal{O} \in \mathcal{G}_1(\mathcal{A})$, если для любых двух точек \mathcal{Z}_1 и \mathcal{Z}_2 из $\mathcal{O} \setminus \{\infty\}$ существует дуга $\mathcal{F} = \mathcal{F}(\mathcal{Z}_1, \mathcal{Z}_2)$ такая, что

$$\frac{\ell \min\{s, \ell - s\}}{\operatorname{dist}(\mathcal{Z}(s), \partial \mathcal{D})} \leq \lambda |\mathcal{Z}_1 - \mathcal{Z}_2| \quad , \quad \forall \mathcal{Z} = \mathcal{Z}(s) \in \gamma \quad , \tag{3}$$

где $\ell=\ell(z_1,z_2)$, $dist(z,\partial\mathcal{D})$ — расстояние от точки z до границы области \mathcal{D} .

Положим

$$G_{\underline{I}}^{I} = U_{A>0} G_{\underline{I}}^{I}(A) \qquad (4)$$

Как показано нами [4], условие (3) равносильно двум неравен-

$$\ell \leq A|\mathcal{Z}_1-\mathcal{Z}_2|$$
, $min\{s,\ell-s\}\leq B dist(\mathcal{Z}(s),\partial\mathcal{D})$, $\forall \mathcal{Z}(s)\in\mathcal{J}$, (5) с некоторыми постоянными $A\geq 1$, $B\geq 1$. Следовательно, определенный в (4) класс областей G_1^{-1} есть в точности класс однородных областей (см. определения Мартио и Сарваса [2], Геринга и Осгуда [3] с ограничениями вида (5)).

В дальнейшем под кусочной гладкостью кривой \angle в $\widehat{\mathcal{C}}$ подра — зумевается следующее: угол между касательной к кривой \angle и фиксированиям направлением является кусочно-непрерывной функцией точек кривой, причем эта функция имеет конечное число точек разрыва и при подходе к этим точкам сохраняет односторонном непрерывность.

Определение 3. Будем писать $\mathcal{D} \in \mathcal{G}^*$ и говорить, что \mathcal{D} удовлетворяет условию расходимости лучей, если \mathcal{D} – конечносвязная область с кусочно-гладкой границей $\partial \mathcal{D} = \mathcal{U} \mathcal{L}_{\gamma}$ и выполняются требования:

а) либо каждая компонента \angle , граници $\partial \mathcal{D}$ является кусочно-гладкой замкнутой жордановой кривой в \mathcal{C} , либо $\infty \in \angle$, и \angle , $\{\infty\}$ представляет собой конечное объединение взаимно непересекающихся кривых \angle , таких, что \angle , \mathcal{C} $\{\infty\}$ — кусочно-гладкая замкнутая жорданова кривая в $\overline{\mathcal{C}}$;

б) область $\mathcal Q$ не имеет нулевых внешних углов, и, кроме Toro, jindo ha $(\partial \mathcal{D}) \setminus \{\infty\}$ het touer bosbpata, t.e. odjactb имеет и внутренних нулевых углов в конечных точках;

в) либо пусть \mathcal{Z}_i , ..., $\mathcal{Z}_{j,l}$ — все точки возврата на $(\partial \mathcal{O}) \setminus \{\infty\}$, $\mathcal{I}_j = \{\varnothing: \varnothing = \mathscr{Z}_j + W_j t, | W_j| = 1$, $0 \le t \le \infty\}$ — дуч, проведен — ний из \mathscr{Z}_j в направлении острия, причем \mathcal{I}_j является односто ронней касательной к обеим дугам $\partial \mathcal{D}$, подходящим к точке \mathcal{Z}_{i} ,

j = I, ..., p. Тогда $\mathbf{B}_{\mathbf{I}}$) $f_{j} \cap f_{j'} = \emptyset$, $w_{j} \neq w_{j'}$ при $j \neq j'$; \mathbf{B}_{2}) $f_{j} \cap \overline{\mathcal{D}} = \left\{\mathcal{Z}_{j}\right\}$, j = 1, ..., p;

 \mathbf{B}_{2}) f_{j} $\mathcal{D} = \{\mathcal{Z}_{j}\}$, $j = 1, ..., \mathcal{J}\mathcal{U}$; \mathbf{B}_{3}) в случае $\infty \in \mathcal{L}_{\chi} \subset \partial \mathcal{D}$, $\mathcal{Z}_{j} \in \mathcal{L}_{\chi}^{\kappa} \subset \mathcal{L}_{\chi}$ луч f_{j} не является касательной к $\mathcal{L}^{\kappa}_{\mathfrak{I}}$ в точке $\mathscr{A}=\infty$, т.е. оба предельных значения $(\mathscr{Z}-\mathscr{Z}_j)/(w_j\mid \mathscr{Z}-\mathscr{Z}_j\mid)$ при $\mathscr{Z}\in L_{\gamma}^{\kappa}$, $\mathscr{Z}\to\infty$, отличны от единицы. Отметим, что если область \mathscr{O} конечносвязна, ограничена кусочно-гладкими кривыми и $\mathscr{D}\in \mathscr{C}_{\mathfrak{Z}}^{\mathscr{Z}}$, то $\mathscr{D}\in \mathscr{C}^{\mathscr{X}}$.

Пусть $\mathcal{M}_{o} = \mathcal{M}_{o}(\mathcal{D})$ — множество всех мероморфных в области $\mathcal{D} \subset \overline{\mathcal{C}}$ функций $f(\mathcal{Z})$, для которых можно определить ветвь $\ln f(\mathcal{Z})$ в \mathscr{D} . В частности, $\mathscr{J}(\mathscr{Z})$ должна быть аналитичной в $\mathscr{D}\setminus \{\infty\}$ иметь простой полюс в точке $\mathcal{J}=\infty$, если $\infty\in\mathcal{O}$. Полагаем $ln f'(\mathcal{D}) = \{ ln f'(\mathcal{Z}) : \mathcal{Z} \in \mathcal{D} \}$

Заметим, что если конформное отображение $f:\mathcal{Q}\to \overline{\mathcal{C}}$ произ вольной области $\mathcal{Q}\subset \overline{\mathcal{C}}$ однолистно и $f(\mathcal{Q})\neq \mathcal{O}$ и ∞ в \mathcal{Q} , то изменение arg df(x) вдоль любой замкнутой жордановой кривой из $\mathcal D$ равно изменению $lpha rg \, d a$, т.е. $lpha rg \, (d f/d a)$ допускает выделение однозначной ветви и, следовательно, $f \in \mathcal{M}_{\alpha}(\mathcal{Q})$.

Пусть, далее, $\mathcal Q$ — односвязная область в $\mathcal C$, имеющая не менее двух граничных точек, $\mathcal{O} \in \mathcal{Q}$, $t\mathcal{Q} = \{ tz : z \in \mathcal{Q} \}$, $z(\mathcal{Q}, w)$ конформный радиус Q в точке w, $z_{o}(Q) = \sup\{z(Q, w) : w \in Q\}$. Искодя из функционала Минковского, определенного на подмножест вах плоскости, образуем функционал

$$\mathcal{I}(f;\Omega) = \inf \left\{ t \geq 0 : \ln f'(\mathcal{D}) \subset tQ \right\}. \tag{6}$$

Если $R(\mathcal{Z})$ — рациональная функция, $R(\mathcal{Z}) \neq const$ и $\ln[f(\mathcal{D})/R(\mathcal{D})] = \{ \ln[f(\mathcal{Z})/R(\mathcal{D})] : \mathcal{Z} \in \mathcal{D} \}$, то можно определить функционал, обоб щающий (6). А именно, полагаем

 $\mathcal{I}(f;Q,R)=\inf\left\{t>0:\ln\left[f'(\mathcal{D})/R'(\mathcal{D})\right] c t Q\right\}. \tag{7}$

Очевилно, $\mathcal{I}(f,Q)=\mathcal{I}(f,Q,R)$ при $R(\mathcal{Z})=\mathcal{Z}$; далее, если $Q_o=\left\{w: |\Im w|<1\right\}$, то $\mathcal{I}(f,Q_o)=\mathcal{I}_1(f)=\sup\left\{|\arg f'(\mathcal{Z})|:\mathcal{Z}\in\mathcal{D}\right\}$.

Сформулируем центральный результат относительно класса $\mathcal{M}_o(\mathcal{Q})$, в котором корректно определен \mathcal{I}_{t} .

Teopena I. a) $G_{\bullet}^{I}UG^{*} \subset G(\mathcal{I}_{\bullet})$.

б) В классе конечносвязных областей из C , ограниченных кусочно-гладкими в C кривыми, $C(C_I) = C^*$, т.е. если $\mathcal Q$ – конечносвязная область в C , ограниченная кусочно-гладкими в C кривыми, то

Теорема I является прямым аналогом утверждения, полученного к 1980 году усилиями ряда авторов (Альфорс, Мартио и Сарвас, Геринг и Осгуд, см. обзор [5]): если $\mathcal{D} \in \mathcal{C}_{\mathcal{I}}^{\mathcal{I}}$, то функционал $\mathcal{I}(f) = \sup\{dist^2(\mathcal{I},\partial\mathcal{D})\setminus (f'/f')^2/2\} : \mathcal{Z} \in \mathcal{D}\}$ допустим в \mathcal{D} ; если дополнительно предположить конечносвязность областей \mathcal{D} , то $\mathcal{G}_{\mathcal{I}}^{\mathcal{I}} \supset \mathcal{G}'(\mathcal{I}_{\mathcal{O}})$.

Обозначим $J_2(f) = \sup \{ dist(\mathcal{I}, \partial \mathcal{D}) | f'(\mathcal{J}) / f(\mathcal{J}) | : \mathcal{J} \in \mathcal{D} \}$. Известный факт $G(J_2) \in G(J_2)$ (см., напр., [3]), теорема I и ее доказательство позволяют дать следующее утверждение в классе мероморф – ных в области \mathcal{D} функций.

Следствие I.I. $\mathcal{G}(\mathcal{I}_{\mathcal{I}}) \subset \mathcal{G}(\mathcal{I}_{\mathcal{I}}) \subset \mathcal{G}(\mathcal{I}_{\mathcal{I}})$.

Отметим, что из теоремы I (с учетом определения \mathcal{G}^*) следует, что $\mathcal{G}(\mathcal{I}_{\mathcal{I}})$ существенно шире, чем $\mathcal{G}(\mathcal{I}_{\mathcal{O}})$. Но имеется ряд доводов в пользу следующего утверждения.

<u>Гипотеза.</u> Если область $\mathcal{D}\in\mathcal{G}(\mathcal{I}_{\!\!1})$ и $\infty\in\mathcal{D}$, то $\mathcal{D}\in\mathcal{G}_{\!\!1}^{\ 2}$, т. ө. область однородна.

Следующие теоремы развивают и дополняют пункт а) теоремы I. Теорема 2. а) Пусть \mathcal{Q} — конечносвязная область в $\overline{\mathcal{C}}$ с невирожденными граничными компонентами, $\mathcal{Q} \in \mathcal{G}_{\ell}^{\mathcal{I}}$. Тогда

 $\mathcal{I}(\cdot;\mathcal{D})$ допустим для \mathcal{M}_o в $\mathcal{D} \Leftrightarrow \mathcal{I}(\mathcal{Q}) < \infty$. 6) Если $\mathcal{D} \in \mathcal{G}(\mathcal{A})$ и $\mathcal{I}(\mathcal{Q}) < \infty$, то однолистность $\mathcal{I}(\mathcal{Z})$

б) Если $\mathcal{Q} \in \mathcal{G}_{\mathcal{A}}^{-}(\mathcal{A})$ и $\mathcal{C}_{o}(\mathcal{Q}) < \infty$, то однолистность $\mathcal{A}(\mathcal{Q})$ в \mathcal{Q} гарантируется условиями: $f \in \mathcal{M}_{o}$, $\mathcal{I}(f;\mathcal{Q}) \leq \mathscr{U}/[\mathcal{A} \, \mathcal{C}_{o}(\mathcal{Q})]$, где постоянная $\mathcal{H} = 0,6...$ – единственный в интервале (0,1) корень уравнения

$$(1-x) \exp x = x \int_{0}^{1} \exp \left[x e^{t/(1-xe)}\right] dt \qquad (8)$$

Следствие 2.1. Пусть $\mathcal{D}\in\mathcal{G}_1(\Lambda)$, $f\in\mathcal{M}_0(\mathcal{D})$. Если $\mathcal{I}_1(f)\leq \pi_2e/(4\Lambda)$, то f(x) однолистна в \mathcal{D} .

Следствие 2.2. Пусть $\mathcal{D}\in\mathcal{G}_{r}^{f}(\Lambda)$, функция $f(\mathcal{Z})$ аналитична в $\mathcal{D}\setminus\{\infty\}$ и имеет простой полюс в точке $\mathcal{Z}=\infty$, если $\infty\in\mathcal{E}$. Если существуют положительные постоянные α и \mathcal{E} такие, что $\mathcal{E}/\alpha \le \exp\left[\mathcal{R}\mathscr{E}/(2\lambda)\right]$ и

$$a \le |f'(x)| \le \delta$$
, $\forall x \in \mathcal{D}$

то f(z) однолистна в \varnothing .

Следствие 2.3. Пусть $\mathcal{D} \in \mathcal{G}_{1}^{f}(\lambda)$, $f \in \mathcal{M}_{0}(\mathcal{D})$. Функция $f(\mathcal{Z})$ будет однолистной в \mathcal{D} , если для любой точки $\mathcal{Z} \in \mathcal{D}$ либо $\exp(-q) \le |f'(\mathcal{Z})| \le \exp q$ и постоянные δ , q удовлетворяют неравенству $\sqrt{\delta^{2}+q^{2}} \le \pi \mathscr{R}/(4\lambda)$

Следствия 2.1-2.3 получаются из пункта б) теоремы 2, когда область \mathcal{Q} — полоса или объединение двух полос с перпенди — кулярными осями. Величина $\mathcal{E}_{\mathcal{Q}}(\mathcal{Q})$ для таких областей нетрудно вычисляется. Отметим также, что в силу хорошо известных связей между конформным радиусом, коэффициентом гиперболической метрики и расстоянием $dist(w,\partial\mathcal{Q})$ будем иметь

$$r_0(Q) < \infty \Leftrightarrow \sup \left\{ dist(w, \partial Q) : w \in Q \right\} < \infty$$
.

В следующей теореме предполагаем, что рассматриваются меро — морфные в области \mathcal{Q} функции $\mathcal{J}(\mathcal{Z})$, для которых могут быть выделены ветви $\ln[\mathcal{J}(\mathcal{Z})/\mathcal{R}(\mathcal{Z})]$ в \mathcal{Q} . Здесь $\mathcal{R}(\mathcal{Z})$ — фикси — рованная рациональная функция, $\mathcal{R}(\mathcal{Z})$ \neq const

Теорема 3. Пусть \mathcal{D} — конечносвязная область с невырожденными граничными компонентами, $\bar{\mathcal{D}} \subset \mathcal{C}$. Если $\mathcal{D} \in \mathcal{C}_1$ и $\mathcal{C}_o(\mathcal{Q}) < \infty$, то функционал $\mathcal{J}(\cdot;\mathcal{Q},\mathcal{R})$ является ρ — допустимым в \mathcal{D} , причем $\rho = n(\mathcal{R},\mathcal{D}+\mathcal{O}) = \inf_{\mathcal{C}} n(\mathcal{R},\mathcal{D}')$, где нижняя грань берется по всем областям $\mathcal{D}' > \bar{\mathcal{D}}$.

Ясно, что $n(R,\mathcal{D}) \leq n(R,\bar{\mathcal{D}}) \leq n(R,\mathcal{D}+\mathcal{O})$, и в обоих случаях возможны знаки строгого неравенства. В общем случае указанное в теореме 3 значение $\beta = n(R,\mathcal{D}+\mathcal{O})$ нельзя заменить величиной

 $n(\mathcal{R},\mathcal{Q})$ или даже $n(\mathcal{R},\bar{\mathcal{Q}})$: существуют области \mathcal{Q} и \mathcal{Q} , удовлетворяющие условиям теоремы 3, и рациональная функция $\mathcal{R}(\mathcal{Z}) \neq const$ такие, что $n(\mathcal{R},\mathcal{Q}+\mathcal{O}) > n(\mathcal{R},\bar{\mathcal{Q}})$ и функционал $\mathcal{I}(\cdot,\mathcal{Q},\mathcal{R})$) не является \mathcal{P} —допустимым ни при каком $\mathcal{P} < n(\mathcal{R},\mathcal{Q}+\mathcal{O})$.

Для частных случаев областей \mathcal{Q} и функций $\mathcal{R}(\mathcal{Z})$ удается оценить снизу число \mathcal{R}_{ρ} из (2) для функционала $\mathcal{I}(\cdot;\mathcal{Q},\mathcal{R})$. Следующее утверждение соответствует такому выбору: $\mathcal{D} = \mathcal{E} = \{\mathcal{Z}: |\mathcal{Z}| < \ell\}$, $\mathcal{R}(\mathcal{Z}) = \mathcal{Z}^{\mathcal{R}}$.

Пусть n — целое число, $n \neq 0$, функция f(x) аналитич— на в $E \setminus \{0\}$ и в окрестности нуля имеет следующее поведение:

$$\lim_{z\to 0} \left[f(z)z^{-n} \right] = 1 , \left| \lim_{z\to 0} \left[f(z) - z^n \right] / |z|^{|n|} \right| < \infty , \quad (9)$$

в частности, f(x) имеет в точке x = 0 нуль (при n > 0) или полюс (при n < 0) порядка |n| . В этих предположениях имеет место

Теорема 4. Функция $f(\mathcal{J})$ является |n| ¬листной в E , т.е. n(f,E)=|n| , если $\mathcal{I}(f,\mathcal{Q},\mathcal{Z}^n) \leq \mathcal{L}_n/z_o(\mathcal{Q})$, где $\mathcal{L}_n=1$ при $n \geq 1$ и $\mathcal{L}_n=1/2$ при $n \leq -1$.

Следствие 4.І. Пусть функция $f(\mathcal{Z})$ аналитична в E и в точке $\mathcal{Z}=0$ имеет нуль порядка n > 1. Функция $f(\mathcal{Z})$ будет n-листной в E , если для фиксированного $\alpha > 0$ и любого $\mathcal{Z} \in E$ имеют место неравенства $\alpha < |f'(\mathcal{Z})/\mathcal{Z}^{n-1}| \leq \alpha \exp\left(\pi/2\right)$.

Пусть теперь $\mathcal{D}=E=\left\{\mathcal{Z}:|\mathcal{Z}|<1\right\}$, $\mathcal{R}_o(\mathcal{Z})=(\mathcal{Z}+\frac{1}{2})/2$. Для функции Жуковского $\mathcal{R}_o(\mathcal{Z})$ имеем $\pi(\mathcal{R}_o,E)=1$, $\pi(\mathcal{R}_o,E)=\pi(\mathcal{R}_o,E)=1$ по теореме 3 при условии $\mathcal{Z}_o(\mathcal{Q})<\infty$. Имеет место

Теорема 5. Пусть $f(\mathcal{Z})$ аналитична в $E \setminus \{ \mathcal{O} \}$ и имеет простой полюс в точке $\mathcal{Z} = 0$. Если $\mathcal{I}(f; \mathcal{Q}, \mathcal{R}_o) \leq 1/z_o(\mathcal{Q})$, то $f(\mathcal{Z})$ не более чем пвулистна в E.

Случаю, когда \mathcal{Q} — вертикальная или горизонтальная полоса, соответствует

Следствие 5.1. Функция $f(\mathcal{X})$, аналитичная в E за исключением простого полюса в нуле, будет не более чем двулистной в E, если выполняется одно из требований

$$I^{\circ}. \quad 1 \leq |\mathcal{Z}^{2}f'(\mathcal{Z})/(1-\mathcal{Z}^{2})| \leq e^{-\mathcal{R}/2}, \quad \forall \mathcal{Z} \in E ;$$

$$2^{\circ}$$
. $| arg[x^{2}f(x)/(1-x^{2})] | \leq \pi/4$, $\forall x \in E$

Теорема I была анонсирована нами ранее в [5], гл.2, § 4. В пункте 2.2 главы I, а также в § 3 главы 2 обзора [5] имеется подробное описание предшествующих результатов.

§ 2. Вспомогательние результати, доказательства

Наиболее сложным оказывается доказательство теоремы I. Докажем сначала теоремы 4, 3 и 5, затем - теоремы 2 и I.

Доказательство теореми 4. Ввилу (9) и односвязности E существует однозначная ветвь $ln[f(z)/z^{n-1}]$, и значения этой ветви $g(z) = ln[f(z)/z^{n-1}]$ лежат в области $\mathcal{L}_n \mathcal{Q}$. Следовательно, $g(z) = ln[f(z)/z^{n-1}]$ лежат в области отображение E на область $\mathcal{L}_n \mathcal{Q}$, $\mathcal{U}(\mathcal{Q}(z))$, где \mathcal{U} — конформное отображение E на область $\mathcal{L}_n \mathcal{Q}$, $\mathcal{U}(\mathcal{Q}) = g(\mathcal{Q})$, а $|\mathcal{Q}(z)| < 1$ при |z| < 1 \mathbb{Z} в силу (9) при $n \le -1$ имеют место равенства $\mathcal{Q}(\mathcal{Q}) = \ldots = \mathcal{Q}(z)$, и, по определению конформного радиуса $z(w, \mathcal{L}_n \mathcal{Q}) = |\mathcal{U}(w)|$ (1 - $|w|^2$). Кроме того, $z(w, \mathcal{L}_n \mathcal{Q}) = \mathcal{L}_n z(w, \mathcal{Q}) \le \mathcal{L}_n z(\mathcal{Q})$, и в силу известных неравенств [6], гл. УШ, $(1-|\mathcal{G}(z)|^2)^{-1}$ при $n \ge 1$ и $2 |n||z|^{2(n)-1} (1-|z|^{4(n)})^{-1}$ при $n \le -1$ $z \in \mathbb{Z}$. Следовательно, при любом $z \in E$

$$\left|\frac{\mathcal{I}''(z)}{\mathcal{I}'(z)} - \frac{n-1}{z}\right| \leq \begin{cases} z_o(Q) \left(1 - |z|^2\right)^{-1}, & n \geq 1\\ 2z_o(Q) |n| |z|^{2|n|-1} \left(1 - |z|^4|n|\right)^{-1}, & n \leq -1 \end{cases}.$$

Отсюда и следует утверждение теоремы 4, так как справедливо сле - дующее

Предложение I. Пусть $f(\mathcal{Z})$ аналитична при $\mathcal{O}<|\mathcal{Z}|<1$, n целое число, $n\neq 0$, $\lim_{\mathcal{Z}\to\mathcal{O}}[\mathcal{Z}^{-n}f(\mathcal{Z})]=a_1\in\mathcal{C}\setminus\{0\}$. Функция $f(\mathcal{Z})$ будет |n| –листной в E , если

$$f(\mathcal{Z})$$
 будет $|n|$ -листной в E , если
$$\int_{\mathcal{Z},\pi} (f) = \sup_{\mathcal{Z} \in E} \left| (1 - |\mathcal{Z}|^{2\pi}) \left(\mathcal{Z} \frac{f'(\mathcal{Z})}{f'(\mathcal{Z})} - n + 1 \right) \right| \leq |\pi| . \tag{I0}$$

Постоянная |n| в правой части (IO) точна: при любом $\varepsilon > O$ существует 2|n| —листная в E функция f(x) из указанного класса, для которой $J_{2,n}(f) \le |n| + \varepsilon$, т.е. $\mathscr{H}_{\rho}^* = |n|$ при $|n| \le \rho \le 2|n| - 1$

Доказательство предложения І. Пусть $2 \in (0,I)$, рассмотрим функцию $g(\mathscr{E}) = f(z \ \mathscr{E})$ в круге \overline{E} . Запи— шем в явном виде ее продолжение на всю плоскость

$$\widetilde{g}(\bar{z}) = \left\{ g(\bar{z}), |\bar{z}| \leq 1; g(1/\bar{z}) + (\bar{z}^n - 1/\bar{z}^n) g'(1/\bar{z}^n) / (n\bar{z}^{-1-n}), |\bar{z}| \geq 1 \right\},$$

хорошо известное при m = I.

Из аналитичности $g(\mathcal{Z})$ при $|\mathcal{Z}| \leq 1$ и неравенств $\mathcal{I}_{\mathcal{Z},n}(g) < |n|$, $g'(\mathcal{Z}) \neq \mathcal{O}$ при $\mathcal{O} < |\mathcal{Z}| < 1$ следует, что $\widehat{g}(\mathcal{Z})$ непрерывна в $\mathcal{C} \setminus \{\mathcal{O}\}$, якобиан \widehat{g} непрерывен и положителен при $\mathcal{O} < |\mathcal{Z}| \leq 1$ и $1 \leq |\mathcal{Z}| < \infty$. Учитывая локальное поведение $f(\mathcal{Z})$ волизи точки $\mathcal{Z} = 0$, привлекая лемму о склейке [7] и известную теорему Стоилова, получаем, что отображение \widehat{g} топологически эквивалентно отображению с помощью функции \mathcal{Z}^n . Следовательно, функция $f(\mathcal{Z},\mathcal{Z})$ будет |n|—листной в \mathcal{E} . А это дает |n|—листность $f(\mathcal{Z})$ в \mathcal{E} с учетом произвольности $\mathcal{E} \in (0,1)$ и локального поведения $\mathcal{E}(\mathcal{Z})$ в нуле.

При $n=\pm 1$ из (IO) получаем известные достаточные условия однолистности Беккера. Как показали поэже Беккер и Поммеренке [8] с использованием одного примера Мане, Сада и Сулливана, если $n=\pm 1$ и $\epsilon>0$, то существует функция $f_{\pm}(x;\epsilon)$, для которой $f_{2,\pm 1}(f_{\pm})<1+\epsilon$ и $f_{\pm}(f_{\pm})>1$. Точность |n| в (IO) в случае |n|>1 показывает, очевидно, пример $f_{\pm}(x;\epsilon)$.

Предложение I и теорема 4 доказаны полностыю.

Доказательство теоремы 3. Имеем $ln[f(x)/R(x)] \in t\Omega$ при любом $x \in \mathcal{D}$ и $t_o = \mathcal{I}(f; \mathcal{Q}, \mathcal{R})$. Поэтому по принципу гиперболической метрики [6]

$$\frac{1}{\rho(\mathcal{Z},\mathcal{D})} \left| \frac{f'(\mathcal{Z})}{f'(\mathcal{Z})} - \frac{R''(\mathcal{Z})}{R'(\mathcal{Z})} \right| \leq \frac{\mathcal{I}(f;\mathcal{Q},R)}{\rho(f(\mathcal{Z}),\mathcal{Q})} , \forall \mathcal{Z} \in \mathcal{Q} , \quad \text{(II)}$$

где ρ — коэффициент гиперболической метрики. Таким образом, утверждение теоремы 3 — следствие нашей теоремы 2.33 из [5], с. 5I, так как $\mathcal{I}/\rho(w,\mathcal{Q})=z(w,\mathcal{Q})$ ограничен равномерно по $w\in\mathcal{Q}$.

Доказательство теоремы 5. Так как $z(w,Q) \le z_o(Q)$ по определению $z_o(Q)$, то на основании (II) и условия $\mathcal{I}(f;Q,R_o) \le 1/z_o(Q)$ теоремы 5 имеем неравенство

$$\left|\frac{f''(z)}{f'(z)} - \frac{R_o''(z)}{R_o'(z)}\right| = \left|\frac{f''(z)}{f'(z)} - \frac{2}{z^3 - z}\right| \le \frac{1}{1 - |z|^2}, \ \forall z \in E.$$
 (I2)

Предложение 2. Условие (I2) влечет оценку $\pi(f,E) \leq 2$ Д о к а з а т е л ь с т в о. Пусть $\mathcal{Q}_w = \overline{\mathcal{C}} \setminus [-1,1], \mathcal{Q}_o : \mathcal{Q}_w \to E$ -конформное отображение, обратное к \mathcal{R}_o . В силу (I2) для функции $g(w) = f(\mathcal{Q}_o(w))$ имеем

$$\frac{g''(w)}{g'(w)} = \left| \frac{f'(\mathcal{Z})}{f'(\mathcal{Z})} - \frac{R_o''(\mathcal{Z})}{R_o'(\mathcal{Z})} \right| \frac{1}{|R_o'(\mathcal{Z})|} \leq \rho(w, \mathcal{D}_w), w = R_o(\mathcal{Z}).$$

Коэффициент гиперболической метрики не возрастает при расширении области (см., напр., [6]), поэтому $\rho(w, \mathcal{Q}_w)$ не превосходит ко-эффициента гиперболической метрики верхней или нижней полуплоскости, следовательно, $|g'(w)/g'(w)| \le 1/|2 \operatorname{Jm} w|$, $w \in \mathcal{Q}_w$. Но тогда по теореме Кюнау и автора (см. [5], с.42) g(w) однолистна как в верхней, так и в нижней полуплоскости. Следовательно, $n(g, \mathcal{Q}_w) \times 2$. Так как g(w) локально однолистна на отрезках $(-\infty, -1)$, $(1, \infty)$ вещественной оси, то $n(g, \mathcal{Q}_w) \le 2$, что равносильно требуемой оценке $n(f, E) \le 2$.

Таким образом, предложение 2 и теорема 5 доказани. Отметим, что изучая продолжение $\widehat{f}(x) = \{f(x), |x| \le 1\}$

 $f(1/\bar{x})+[R_o(x)-R_o(1/\bar{x})]f'(1/\bar{x})/R_o'(1/\bar{x}),$ да >1 , можно заменить условие (I2) в предложении 2 менее стеснительным требованием: при любом $x\in E$

$$\left|\frac{\int_{0}^{\infty}(\bar{x})}{\int_{0}^{\infty}(\bar{x})} - \frac{R_{o}^{(1/2)}(\bar{x})}{R_{o}^{(1/2)}(\bar{x})}\right| < \frac{\left|R_{o}^{(1/2)}(\bar{x})\right|}{\left|\bar{x}\right|^{2}\left|R_{o}^{(2)}-R_{o}^{(1/2)}(\bar{x})\right|} = \left|\frac{1-\bar{x}^{2}}{\bar{x}-\bar{x}}\right| \frac{1}{1-|\bar{x}|^{2}}$$
(I3)

Условие (I3) сравнимо с (I2), так как $|(1-z^2)/(z-\overline{z})| \ge 1$ при $|z| \le 1$, причем знак равенства имеет место лишь при |z| = 1.

Доказательство теореми 2. С учетом известного соотношения $dist(\mathcal{Z},\partial\mathcal{D})\leq 1/\rho(\mathcal{Z},\mathcal{D})$ из (II) при $\mathcal{R}(\mathcal{Z})\equiv\mathcal{Z}$ получаем

$$|\operatorname{dist}(\mathcal{Z},\partial\mathcal{D})f'(\mathcal{Z})|f'(\mathcal{Z})| \leq r_0(\mathcal{Q}) \, \mathcal{I}(f;\mathcal{Q}) \,. \tag{I4}$$

Поэтому пункт б) теоремы 2 непосредственно вытекает из следую - шего утверждения.

Предложение 3. Мероморфная в области $\mathcal{D} \subseteq \bar{\mathcal{C}}$ функция $f(\mathcal{A})$ будет однолистной в \mathcal{D} , если $\mathcal{D} \in \mathcal{C}_r^{-1}(\lambda)$ и

$$|\operatorname{dist}(z,\partial\mathcal{D})f''(z)/f'(z)| \leq \varkappa/\lambda , \quad \forall z \in \mathcal{D} , \qquad (15)$$

где $\mathcal{X} = 0.6$... - корень уравнения (8).

Условие (I5) — частный случай условия инъективности для отображений n —мерных областей, опубликованного нами в [4]. Отме — тим, что в случае $\infty \notin \mathcal{D}$ условие (I5) влечет аналитичность f(x) в \mathcal{D} . Таким образом, предложение 3 при $\mathcal{D} \not> \infty$ представляет со — бой вариант теоремы Мартио и Сарваса [2]. Но предложение 3 включает и иную ситуацию, когда $\infty \in \mathcal{D}$, f(x) аналитична в $\mathcal{D} \setminus \{\infty\}$ и имеет простой полюс в точке $x = \infty$.

Если $\mathcal{Z}_o(\mathcal{Q}) \, \mathcal{I}(f;\mathcal{Q}) \leq \mathscr{R}/\mathcal{A}$, то из (I4) следует (I5), по – этому f(x) будет однолистной в \mathcal{Q} , что и утверждается в пункте б), а также в обратной импликации в пункте а). Остается обос – новать примую импликацию в пункте а) теоремы 2.

Пусть $\mathcal D$ — конечносвязная область с невырожденными граничными компонентами, $\mathcal Q\in\mathcal G_{\mathfrak q}^{-1}$, и пусть $\mathcal E_{\mathfrak q}(\mathcal Q)=\infty$. Покажем, что $\mathcal I(\cdot\,;\mathcal Q)$ не является допустимым в $\mathcal Q$, а именно, при любом t>0 найдется неоднолистная в $\mathcal Q$ функция $\mathcal I(\mathcal E\,;t)$ из класса $\mathcal M_{\mathfrak q}(\mathcal Q)$, для которой $\mathcal I(\mathcal E\,;t)\in at\mathcal Q$ при любом $\mathcal E\in\mathcal Q$, $\mathcal Q=const$.

Через \mathcal{Q}_{1} обозначим односвязную область со свойствами $\mathcal{D} \subset \mathcal{Q}_{1}$, $\partial \mathcal{D}_{1} \cap \partial \mathcal{D}_{1} = \partial \mathcal{Q}_{2}$, т.е. \mathcal{Q}_{2} ограничена одной из компонент $\partial \mathcal{D}_{2}$, $\mathcal{D} \subset \mathcal{Q}_{2}$. И пусть $w = \varphi(\mathcal{E})$ — однолистная функция, конформно отображающая \mathcal{Q}_{1} на \mathcal{Q}_{2} . Без дополнительных пояснений будем также пользоваться известным фактом: вблизи граници $\partial \mathcal{D}_{1} = \mathcal{D}_{2} + \mathcal{D}_{2} = \mathcal{D}_{2} + \mathcal{D}_{3} = \mathcal{D}_{3} = \mathcal{D}_{3} + \mathcal{D}_{3} = \mathcal{D}_{$

Предположим сначала, что $\infty \notin \mathcal{O}_{I}$. Рассмотрим функцию \mathcal{O}_{I} \ni $\mathcal{Z} \mapsto f(x,t) = \int \exp[t\varphi(x)] dx$, t > 0; обозначим $\alpha(x,t) = \det(x,t)$, $\partial \mathcal{O}_{I}$ f(x,t) / f(x,t). Если f(x,t) однолистна в ∂ , то, как известно (см., напр., [2]), $|\alpha(x,t)| \le 4$ при любом $x \in \mathcal{O}$. Но $|\alpha(x,t)| = t\det(x,\partial \mathcal{O}_{I})|\varphi(x)| = t\det(x,\partial \mathcal{O}_{I})|\varphi(x,\mathcal{O}_{I})|\varphi(x,\mathcal{O}_{I})|\varphi(x,\mathcal{O}_{I})|\varphi(x,\mathcal{O}_{I})|\varphi(x,\mathcal{O}_{I})|\varphi(x,\mathcal{O}_{I})|\varphi(x,\mathcal{O}_{I})|\varphi(x,\mathcal{O}_{I})|$, т.е. при любом $x \in \mathcal{O}_{I}$ величина $|\alpha(x,t)|$ неограничена по $x \in \mathcal{O}_{I}$ в слуу условия $x_{\alpha}(\mathcal{O}_{I}) = \infty$. Следовательно, $x_{\alpha}(x,t)$ неоднолистна

в \mathscr{Q}_{ι} , а значит, и в \mathscr{Q} , при любом $t > \! \mathscr{O}$. Но по построению

 $\mathcal{I}[f(\cdot;t);Q] = t \to Q$ при $t \to Q$. Если же $\infty \in \mathcal{Q}_f$, то можно взять $a_f = \lim_{z \to \infty} \mathcal{I}[g(z) - g(\infty)]$, $f(x,t)=exp\Big\{t\big[\varphi(x)-a_{_{\!\!4}}/(x-x_{_{\!\!6}})\big]\Big\}$, где $x_{_{\!\!6}}\in\mathcal{C}\setminus\bar{\mathcal{Q}}$, и предыдущие рассуждения о неоднолистности f(z;t) сохраняются, $I[f(\cdot;t);Q] \leq ta$, a = const.

Теорема 2 доказана.

Доказательство теоремы I. Нам потребувотся

Теорема В.С.Рогожина [9]. Пусть $\mathcal{O}_{o} \in [\mathcal{O}, \widehat{\mathcal{R}})$, \mathscr{Q} - область в нить гладкой дугой из $\mathscr Q$, колебание угла касательной к которой не превосходит θ_o . Если $f(\mathcal{Z})$ аналитична в \mathcal{D} , $f(\mathcal{Z}) \neq 0$ и $|\arg f(\mathcal{Z})| < (\mathcal{R} - \theta_o)/2$ для любой точки $\mathcal{Z} \in \mathcal{D}$, то $f(\mathcal{Z})$ одно листна в \mathcal{Q}

 $\overline{\mathcal{L}}$, $\overline{\mathcal{Q}}_o$ — подмножество $\overline{\mathcal{Q}}$, f: $\overline{\mathcal{Q}}$ — произвольное отображение. Пусть, далее, K_1 , ..., K_{μ} — конечная система взаимно непересекающихся множеств в C, D, D, C, U. U, K_{μ} , K_{f} — некото — рое подмножество K_j такое, что V_{f} C, K_{f} , где V_{f} C, $V_{$

- I) f инъективно в \mathcal{Q} и в каждом из V_j , $j=1,\ldots,\mathcal{M}$; Π) $f(\mathcal{Q}\setminus \mathcal{U}_{j=1}^{\mathcal{H}}V_j)\mathcal{N}K_j^*=\mathcal{Q}$, $j=1,\ldots,\mathcal{M}$; Π) $f(V_j^*)\subset K_j^*$, $j=1,\ldots,\mathcal{M}$;

Домазательство. Если \mathscr{Z} , и $\mathscr{E}_{\mathcal{E}} \in \mathscr{O}$, $\mathscr{E}_{\mathcal{E}} \neq \mathscr{E}_{\mathcal{E}}$, $f(\mathcal{Z}_1) = f(\mathcal{Z}_2)$, то \mathcal{Z}_1 и \mathcal{Z}_2 не могут лежать одновременно в \mathcal{D}_0 двух типов:

- a) $\mathcal{Z}_{1} \in \mathcal{D} \setminus \mathcal{U}_{j=1}^{\mathcal{H}} V_{j}$, $\tilde{z_{2}} \in V_{j}^{*}$, что противоречит П и Ш:
- 6) $\mathscr{Z}_{1} \in V_{j}$, $\mathscr{Z}_{2} \in V_{j}^{*}$, $j \neq j$, a sto b call be defined at $\mathscr{Z}_{1} \in V_{j} \setminus V_{j}^{*} = V_{j} \cap \mathscr{D}_{0}$, $\mathscr{Z}_{2} \in V_{j}^{*}$

противоречит IУ. Лемма доказана. Как видно из доказательства, существенную роль играет наличие "буферной зоны" $V_i \setminus V_i^* = \mathcal{O}_0$. $\cap V_i$

<u>Лемма о сходимости.</u> Пусть \mathcal{D} — кснечносвязная область с невырожденными граничными компонентами, $\overline{\mathcal{D}} \in \mathcal{C}$, $\mathcal{D} \in \mathcal{C}_{\mathcal{I}}^{\mathcal{I}}$; пусть, далее, последовательность $(f_n) \in \mathcal{M}_o(\mathcal{D})$ нормирована условиями $f_n(\mathcal{Z}) = \mathcal{Z}_o$, $f_n'(\mathcal{Z}_o) = I$ ($n = 1, 2, \ldots$) для некоторой точки $\mathcal{Z}_o \in \mathcal{D}$, $\mathcal{Z}_o(\mathcal{D}) < \infty$. Если $\lim_{n \to \infty} \mathcal{I}(f_n; \mathcal{D}) = \mathcal{O}$, то $f_n(\mathcal{Z})$ непрерывна в $\overline{\mathcal{D}}$ для достаточно больших n , $f_n(\mathcal{Z})$ сходится к $f_o(\mathcal{Z}) \equiv \mathcal{Z}$ при $n \to \infty$ равномерно по $\mathcal{Z} \in \mathcal{D}$.

Действительно, из условия $\mathcal{I}(f_n; \mathcal{D}) \to \mathcal{O}$ при $n \to \infty$ в

Действительно, из условия $\mathcal{I}(f_n ; \mathcal{Q}) \to \mathcal{O}$ при $n \to \infty$ в силу (I3) следует сходимость к нулю $\sup\{|dist(a,\partial a)f_n(a)/f_n(a)|: \mathcal{Z} \in \mathcal{D}\}$, что влечет требуемые свойства $f_n(\mathcal{Z})$ в силу всномога — тельных результатов [2].

Утверждение $G^{\mathcal{I}} \subset G(\mathcal{I})$ теоремы I следует из уже обоснованного пункта б) теоремы 2. Используя это утверждение, а также теорему В.С.Рогожина и обе леммы, докажем, что $G^{\mathcal{X}} \subset G(\mathcal{I}_{\mathcal{I}})$. Построением серии теоретических примеров докажем оставшееся утверждение (прямую импликацию пункта б) теоремы I), чем и завер — шится доказательство теоремы I.

- I. Если любая граничная компонента области $\mathcal Q$ является жордановой в $\mathcal C$ или в $\mathcal C$ кривой и на $\partial \mathcal Q$ нет точек возврата, то, как известно, $\mathcal Q \in \mathcal C_1^{\mathcal I}$, поэтому требуемое утверждение снова получается из теоремы 2.
- 2. Пусть $\infty \notin \overline{\mathcal{Q}}$, на граничной компоненте $\mathcal{L} \subset \partial \mathcal{Q}$ имеется \mathcal{M} точек возврата $\mathscr{E}_{\mathcal{I}}$, ..., $\mathscr{E}_{\mathcal{M}}$. Из определения \mathcal{C}^{\star} следует тогда, что \mathcal{L} является "внешней" границей \mathcal{Q} (т.е. \mathcal{L} граница компоненты $\overline{\mathcal{C}} \setminus \mathcal{Q}$, содержащей точку $\mathscr{Q} = \infty$), на других компонентах $\partial \mathcal{Q}$ точек возврата нет, а в точках $\mathscr{E}_{\mathcal{G}}$ имеются внутренние нулевые углы.

Проведем построения, нозволяющие применить лемму о буферной зоне. Пусть $\mathcal{C}_{\mathcal{O}}$, $\mathcal{C}_{\mathcal{I}}$ и $\mathcal{C}_{\mathcal{O}}$ принадлежат (0,1); обозначим

$$K_{j} = K_{j}(c_{1},c_{2}) = \left\{ \vec{x} : \vec{x}_{j} - c_{j} w_{j} + w_{j} t e^{i\vec{x}}, 0 \leq t < \infty, |\tau| \leq c_{2} \right\},$$

$$K_{j}^{*} = K_{j}(c_{1}/2,c_{2}), \quad \vec{x}_{j}^{*} = \vec{x}_{j} - (c_{1}/2)w_{j},$$

 $V_j = \mathcal{D} \cap K_j$, $V_j^* = \mathcal{D} \cap \left\{ \mathcal{Z} : |\mathcal{Z} - \mathcal{Z}_j| \leq \mathcal{C}_0 \right\}$, $\mathcal{D}_0 = \mathcal{D} \setminus \bigcup_{j=1}^R V_j^*$. Из кусочной гладкости $\partial \mathcal{D}$ и требования расходимости лучей следует возможность вноора \mathcal{C}_1 и \mathcal{C}_2 настолько мальми, чтоон $K_j \cap K_{j'} = \emptyset$ при $j \neq j'$, V_j — односвязная область. И, кроме того, \mathcal{C}_1 и \mathcal{C}_2 оудем считать такими, чтоон, кроме перечис — ленних, выполнялось требование: при любом j область V_j удов — летворяет условиям теоремы В.С.Рогожина с общим для всех j значением $\mathcal{C}_0 \in (\mathcal{O}, \mathcal{T})$. Тогда условие $\mathcal{T}_1(f) \leq (\mathcal{T}_1 - \mathcal{C}_0)/2$ гарантирует инъективность f в каждом из V_j .

инъективность \mathcal{L} в каждом из V_j .

Число \mathcal{E}_0 вноерем настолько малым, чтоон а) $\mathcal{O} < \mathcal{E}_0 < \langle \mathcal{E}_j/2 \rangle \sin \mathcal{E}_2$, $| \arg \left[\overline{W}_j \left(\mathcal{E}' - \mathcal{E}_j \right) \right] | \mathcal{E}_2/2$ для любой точки $\mathcal{Z}' \in \mathcal{E}_j \setminus \{\mathcal{Z}_j\}$; б) V_j^* лежит строго внутри K_j^* ; в) для любой точки $\mathcal{Z}' \in \mathcal{V}_j^*$ существует точка $\mathcal{Z}'' \in \mathcal{D} \cap \partial \mathcal{V}_j^*$ такая, что

 $\left| arg \left[\bar{w}_{j} \int_{2\pi}^{\pi} f(\xi) d\xi \right] \right| < J_{1}(f) + c_{2}/2$

(это неравенство можно удовлетворить при $\mathcal{I}_{1}(f)+c_{2}/2<\mathcal{I}/2$); г) область \mathcal{O}_{0} ограничена простыми кусочно-гладкими кривыми. Поскольку на границе \mathcal{O}_{0} нет нулевых углов, то $\mathcal{O}_{0}\in G_{1}^{T}(\mathcal{A}_{0})$ с некоторым $\mathcal{A}_{0}>0$.

Пусть $\mathscr{X}_o \in \mathscr{Q}_o$, $F(\mathscr{Z}) = \mathscr{Z}_+ \left[f(\mathscr{Z}) - f(\mathscr{Z}_o) \right] / \left| f(\mathscr{Z}_o) \right|$, тогда $F(\mathscr{Z}) = \mathscr{Z}_o$, $|F(\mathscr{Z}_o)| = 1$, $\mathcal{I}_i(f) = \mathcal{I}_i(F)$. Покажем существование посто — янной $\mathscr{X} = \mathscr{X}(\mathscr{Q}) > 0$ такой, что при условии $\mathcal{I}_i(F) \leq \mathscr{X}_o$ отображение F и построенные выше множества \mathscr{Q}_o , K_i

По построению V_i и \mathcal{O}_o функция $\mathcal{F}(\mathcal{J})$ будет однолистной в V_i при условии $\mathcal{O} < \mathcal{H} \leq \mathcal{H}_i = (\mathcal{I} - \mathcal{O}_o)/2$, а в \mathcal{O}_o при условии $\mathcal{O} < \mathcal{H} \leq \mathcal{H}_i = \mathcal{I}/(\mathcal{S} \mathcal{A}_o)$ (см. следствие 2.1). По лемме о сходимости для любого $\mathcal{E}_3 > \mathcal{O}$ существует $\mathcal{H}_3 > \mathcal{O}_o$ такое, что неравенство $\mathcal{I}_1(\mathcal{F}) \leq \mathcal{H}_3$ влечет непрерывность $\mathcal{F}(\mathcal{J})$ в \mathcal{O}_o и оценку $\mathcal{S}_i = \mathcal{O}_o$ $\mathcal{S}_i = \mathcal{S}_o$ $\mathcal{S}_i = \mathcal{S}_o$.

Возьмем $\mathcal{E}_3 = min\left\{\mathcal{E}_4\,,\mathcal{E}_5\,,\mathcal{E}_6\right\}$, где $\mathcal{E}_4 = \mathcal{E}_2(\mathcal{E}_1/2-\mathcal{E}_o)/\mathcal{H} > 0$, $\mathcal{E}_5 = (\mathcal{E}_1/2)\sin\mathcal{E}_2 > 0$, $\mathcal{E}_6 = \inf\left\{ \operatorname{dist}(\mathcal{E},K_{j'})\colon \mathcal{Z}\in V_j\,,\,j\neq j'\right\}$. Пусть $0 < \mathcal{P} < \mathcal{P}_3$. Тогда в силу вноора $\mathcal{E}_6 \gg \mathcal{E}_3$ выполняется требование ІЎ леммы. Далее, если $\mathcal{Z}\in\mathcal{D}\setminus\mathcal{U}_{j=1}^{\mathcal{F}}V_j$ и $W\in\mathcal{K}_j^*$ для некоторого j, то $|\mathcal{Z}-W| \gg \mathcal{E}_5$, следовательно, справедливо — 16—

условие П леммы о буферной зоне. Остается подтвердить свойст-BO III.

Пусть $\mathscr{Z}' \in V_i^*$, уменьшая в случае необходимости \mathscr{X}_3 , будем считать, что $\mathscr{O} < \mathscr{X}_3 < \mathscr{C}_2/2$. По построению V_i^* существует точка $\mathscr{Z}'' \in \mathscr{D} \cap \partial V_i^* \subset \partial \mathscr{D}_0$, для которой

$$|arg\{\bar{w}_{j}[F(\bar{x}')-F(\bar{x}'')]\}| \leq \mathcal{I}_{j}(F)+\mathcal{E}_{2}/2<\mathcal{E}_{2}$$
,

и, кроме того, $| lpha rg [\overline{w}_j ({\it x}'' - {\it x}_j^*)] | < c_2/2$. Пользуясь соотношениями $\mid F(\boldsymbol{\mathcal{Z}}'') - \boldsymbol{\mathcal{Z}}'' \mid < \boldsymbol{\mathcal{C}}_{4} \ , \ \mid \boldsymbol{\mathcal{Z}}'' - \boldsymbol{\mathcal{Z}}_{j}^{\star} \mid > \boldsymbol{\mathcal{C}}_{j}/2 - \boldsymbol{\mathcal{C}}_{0} \ ,$

оценим $\theta^* = arg\left(\overline{w_i}\left[F(x') - x_j^* \right] \right)$. Имеем

$$F(z')-z_j^*=(z''-z_j^*)\left(1+\frac{F(z'')-z'}{z''-z_j^*}\right)+\left(F(z')-F(z'')\right).$$

 $|\log tomy| |\theta^*| \leq max \Big\{ c_2 \cdot c_2/2 + (\pi/2)c_4/(c_2/2 - c_n) \Big\} = c_2 \quad , \text{ r.e.}$ $F(a') \in K$, TO II TPEGOBAJOCE.

Таким образом, $F(\mathscr{Z})$ однолистна в \mathscr{D} , если только $\mathcal{I}_{\ell}(F) \leqslant \mathscr{X} = min\{\mathscr{X}_{\ell}, \mathscr{X}_{\ell}, \mathscr{X}_{\ell}, \mathscr{X}_{\ell}\}$, следовательно, \mathcal{I}_{ℓ} допустим в \mathscr{D} . 3. Пусть $\infty \in \mathcal{L} \subset \partial \mathscr{D}$, \mathcal{L} — граничная компонента области \mathscr{D} . По определению класса \mathscr{G}^{\star} и условию $\mathscr{D} \in \mathscr{G}^{\star}$, точ ки возврата \mathcal{Z}_1 , ..., $\mathcal{Z}_{jl}\in\mathcal{C}$ на границе \mathcal{D} возможны лишь на \mathcal{L} . Построим для этих точек множества \mathcal{K}_j , \mathcal{K}_j , \mathcal{V}_j , \mathcal{V}_j , \mathcal{J}_j = \mathcal{I} , ..., μ так же, как и в предыдущем случае.

Далее, если $\mathcal{E}_q > \mathcal{O}$ достаточно мало, то в силу кусочной гладкости \angle множество $\mathcal{Q}/\{\mathscr{Z}:|\mathscr{Z}|\geq 1/\mathcal{E}_1\}$ состоит из конечного числа односвязных областей $V_{\mathcal{M}+1}(\mathcal{C}_{\mathcal{I}}),\dots,V_{\mathcal{M}+2}(\mathcal{C}_{\mathcal{I}})$, $\mathcal{Y}_{\mathcal{I}}$, каждая из которых ограничена жордановой в \mathscr{C} кривой, проходящей через точку $\mathscr{Z}=\infty$. Учитывая кусочную гладкость границы и от сутствие у области внешних нулевых углов, можно провести следующие построения. Во-первых, подобрать $\mathcal{C}_{_{\! I}} > \mathcal{O}_{_{\! I}}$ настолько малым, чтобы, как и в предыдущем пункте, существовало число $\mathscr{O}_{\mathfrak{a}} \in (\mathscr{O}, \mathscr{R})$ ловие $J_i(f) < (\pi - \theta_0)/2$ гарантировало однолистность f(x) в $V_j(c_2)$, $j = \mu + 1$, ..., $\mu + \lambda$. Во-вторых, построить множества K_j , K_j , V_j , $V_$

$$V_{\mu+j} = V_{\mu+j} (\varepsilon_{\tau}) = \mathcal{D} \wedge K_{\mu+j}, j = 1, \dots, \lambda,$$

$$-17 -$$

$$\begin{array}{l} K_{\mathcal{M}+j} = \left\{ \mathcal{Z} \colon 1/\mathcal{C}_{\mathcal{I}} < |\mathcal{Z}| < \infty , | \operatorname{arg} \left[\overline{w}_{\mathcal{M}+j} \left(\mathcal{Z} - \mathcal{Z}_{\mathcal{M}+j}^* \right) \right] | < \mathcal{G}_{\mathcal{M}+j} \right\}, \\ K_{\mathcal{M}+j}^* = \left\{ \mathcal{Z} \colon 2/\mathcal{C}_{\mathcal{I}} < |\mathcal{Z}| < \infty , | \operatorname{arg} \left[\overline{w}_{\mathcal{M}+j} \left(\mathcal{Z} - \mathcal{Z}_{\mathcal{M}+j}^* \right) \right] | < \mathcal{G}_{\mathcal{M}+j} - \mathcal{C}_{\mathcal{S}} \right\} \\ \text{C некоторыми } \mathcal{Z}_{\mathcal{M}+j}^* \in \mathcal{C}, \, \mathcal{G}_{\mathcal{M}+j} \in (\mathcal{O},\mathcal{X}), \, \mathcal{C}_{\mathcal{S}} = (\mathcal{O},1) \,, \, \text{ причем} \\ \mathcal{D} \cap K_{\mathcal{M}+j}^* = V_{\mathcal{M}+j} \left(\mathcal{C}_{\mathcal{I}} / \mathcal{Z} \right), \, K_{\mathcal{M}+j} \cap K_{\mathcal{M}+j}^* = \emptyset \,, \, \text{ при } j \neq j^* \,, \, \text{ линии} \\ \mathcal{A} \cap \mathcal{G} \left[\overline{w}_{\mathcal{M}+j} \left(\mathcal{Z} - \mathcal{Z}_{\mathcal{M}+j}^* \right) \right] = \pm \left(\mathcal{G}_{\mathcal{M}+j} - \mathcal{E}_{\mathcal{S}} \right) \,, \, \text{ не являются касательными к } \mathcal{L} \, \text{ В точке } \mathcal{Z} = \infty \,. \, \text{ Кроме того, положим } V_{\mathcal{M}+j}^* = \left\{ \mathcal{Z} : |\mathcal{Z}| > 1/\mathcal{C}_{\mathcal{G}} \right\} \cap V_{\mathcal{M}+j}^*, \, \mathcal{D}_{\mathcal{S}} = \mathcal{D} \setminus \mathcal{U}_{j=1}^* \,, \, V_j^* \,, \, \text{ причем выбор } \mathcal{C}_{\mathcal{G}} > \mathcal{O} \,\, \text{ полчиняется } \right. \\ \mathcal{D} \cap \mathcal{V}_{\mathcal{M}+j}^*, \, \mathcal{D}_{\mathcal{S}} = \mathcal{D} \setminus \mathcal{U}_{j=1}^* \,, \, V_j^* \,, \, \, \text{ причем выбор } \mathcal{C}_{\mathcal{G}} > \mathcal{O} \,\, \text{ полчиняется } \right. \\ \mathcal{D} \cap \mathcal{V}_{\mathcal{M}+j}^*, \, \mathcal{D}_{\mathcal{S}} = \mathcal{D} \setminus \mathcal{U}_{j=1}^* \,, \, V_j^* \,, \, \, \text{ причем выбор } \mathcal{C}_{\mathcal{G}} > \mathcal{O} \,\, \text{ полчиняется } \right. \\ \mathcal{D} \cap \mathcal{V}_{\mathcal{M}+j}^*, \, \mathcal{D}_{\mathcal{S}} = \mathcal{D} \setminus \mathcal{U}_{j=1}^* \,, \, V_j^* \,, \, \, \text{ причем выбор } \mathcal{C}_{\mathcal{G}} > \mathcal{O} \,\, \text{ полчиняется } \right. \\ \mathcal{D} \cap \mathcal{V}_{\mathcal{M}+j}^*, \, \mathcal{D}_{\mathcal{S}} = \mathcal{D} \cap \mathcal{U}_{\mathcal{S}} = \mathcal{U}_{\mathcal{S}} + \mathcal{U}_{\mathcal{S$$

Итак, если $\mathcal{D} \in \mathcal{G}$, то $\mathcal{I}_{\mathcal{I}}$ допустим. Построением ряда контриримеров докажем обратное утверждение; если \mathcal{D} — конечно — связная область в $\bar{\mathcal{C}}$, ограниченная кусочно—гладкими кривыми, и $\mathcal{D} \notin \mathcal{G}^{\times}$, то $\mathcal{I}_{\mathcal{I}}$ не является допустимым, т.е. существует последовательность $(f_{\mathcal{I}}) \subseteq \mathcal{M}_{\mathcal{O}}$ неоднолистных в $\mathcal{D}_{\mathcal{O}}$ функций $f_{\mathcal{I}}(\mathcal{S})$, для которых $\mathcal{I}_{\mathcal{I}}(f_{\mathcal{I}}) \to \mathcal{O}$ при $\mathcal{I} \to \infty$.

Нарушения требования а) или б) определения \mathcal{C} отсекаются проще всего. Действительно, пусть \mathcal{Z}_1 и \mathcal{Z}_2 — несовпадающие точки, \mathcal{O} — область, получаемая из $\overline{\mathcal{C}}$ удалением некоторой простой дуги (разомкнутой и кусочно—гладкой) $\mathcal{J}(\mathcal{Z}_1,\mathcal{Z}_2)$ с концами в точках \mathcal{Z}_1 и \mathcal{Z}_2 . При $\mathcal{V}=$ I,2,... рассмотрим неоднолистные в \mathcal{O}' функции $\mathcal{J}_{\mathcal{A}}(\mathcal{Z};\mathcal{Z}_1,\mathcal{Z}_2)$ ($\mathcal{Z}_1\in\mathcal{C}$):

$$\mathcal{Z} = f_{\eta}(\mathcal{Z}; \mathcal{Z}_{1}, \infty) = (\mathcal{Z} - \mathcal{Z}_{1})$$
;
$$\mathcal{Z} = f_{\eta}(\mathcal{Z}; \mathcal{Z}_{1}, \mathcal{Z}_{2}) = \frac{1}{\mathcal{Z}_{1} - \mathcal{Z}_{2}} \frac{\mathcal{W}^{1+1/\eta} + 1}{\mathcal{W}^{1+1/\eta} - 1}, \mathcal{W} = \frac{\mathcal{Z} - \mathcal{Z}_{1}}{\mathcal{Z} - \mathcal{Z}_{2}}, \mathcal{Z}_{2} \in \mathcal{C}$$
. Нетрудно видеть, что $\sup\{|\alpha rg f_{\eta}(\mathcal{Z}; \mathcal{Z}_{1}, \mathcal{Z}_{2})| : \mathcal{Z} \in \mathcal{D}'\} = \mathcal{O}(1/\mathcal{V})$ при $\mathcal{V} \to \infty$. С другой стороны, если \mathcal{D} не удовлетворяет условию а) или б) определения \mathcal{C}^{\star} , то, взяв точки \mathcal{Z}_{1} и \mathcal{Z}_{2} в одной и той же компоненте $\mathcal{C} \setminus \mathcal{D}$, мы получаем $\mathcal{D}' \supset \mathcal{D}$. Причем $f_{\eta}(\mathcal{Z}; \mathcal{Z}_{1}, \mathcal{Z}_{2})$ окажутся неоднолистными не только в \mathcal{D}' , но и в \mathcal{D} ,

если \mathscr{Z}_1 и \mathscr{Z}_2 выбраны так, чтобы точка \mathscr{Z}_1 (или \mathscr{Z}_2) совпала с вершиной нулевого внешнего угла при нарушении требования б) определения \mathscr{C}^* , или при нарушении простоти $\mathit{comp}(\partial \mathcal{D}) \setminus \{\infty\}$ точки \mathscr{Z}_1 и \mathscr{Z}_2 выбраны так, чтобы точка самопересечения компоненты $(\partial \mathcal{D}) \setminus \{\infty\}$ лежала на $\mathcal{J}(\mathscr{Z}_1,\mathscr{Z}_2)$.

Для области \mathcal{D} , удовлетворяющей условиям а) и б) определения \mathcal{G}^* , остается обосновать требования \mathbf{B}_1), \mathbf{B}_2), \mathbf{B}_3). Эти обоснования проводятся по единой схеме. А именно, предполагая противное, строим некоторую область $\mathcal{D}' \supset \mathcal{D}$ и неоднолистные отображения $f_{\mathcal{N}} \in \mathcal{M}_{\mathcal{O}}(\mathcal{D}')$, $\mathcal{N} = 1,2,\ldots$ окажется, что $f_{\mathcal{N}}(\mathcal{E})$ неоднолистны и в \mathcal{D} , $\mathcal{D}_{\mathcal{N}} = f_{\mathcal{N}}(\mathcal{D}')$ сходится к \mathcal{D}' как к ядру в смысле Каратеодори, кроме того, $\mathcal{J}_{\mathcal{N}}(f_{\mathcal{N}}) \to \mathcal{O}$ при $\mathcal{N} \to \infty$. Рассмотрим подробно один из случаев и поясним другие.

Пусть, например, существует конечная точка возврата $\mathcal{Z}_{I} \in \partial \mathcal{D}_{I}$ где \mathcal{D} имеет нулевой внутренний угол, причем луч \mathcal{T}_{I} имеет общую с \mathcal{D} точку \mathcal{Z}_{I} . Пусть \mathcal{D}' — односвязная область со свойствами: а) при достаточно малом $\mathcal{C}>\mathcal{O}$ $\mathcal{D}/\mathcal{U}_{\mathcal{E}}=\mathcal{D}'/\mathcal{U}_{\mathcal{E}}$, $\mathcal{U}_{\mathcal{E}}=\mathcal{D}'/\mathcal{U}_{\mathcal{E}}$, $\mathcal{U}_{\mathcal{E}}=\mathcal{E}_{I}$; б) $\mathcal{D}=\mathcal{E}_{I}$; в) $\mathcal{D}=\mathcal{D}'$; г) $\partial \mathcal{D}'=\mathcal{L}_{O}$ — замкнутая жорданова кривая, гладкая за исключением точки $\mathcal{Z}=\mathcal{Z}_{I}$.

Построим неоднолистные области \mathcal{D}_{0} , отправляясь от \mathcal{D}' с помощью "вытягивания острия" вдоль f_{1} . Без ограничения общности можно считать, что $\mathcal{Z}_{1}=0$, $\mathcal{Z}_{1}=1$, $f_{1}=1$ положительная полуось абсписс, волизи точки $\mathcal{Z}=0$ частичные дуги $L'(\mathcal{C})$, $L''(\mathcal{C})$ кривой L_{0} параметризуются функциями $\mathcal{Y}=k_{1}(x)$, $x'\leq x\leq 0$, $\mathcal{Y}=k_{2}(x)$, $x''\leq x\leq 0$, соответственно, причем $k_{1}(x)\geqslant k_{2}(x)$, $k_{1}(0)=k_{1}(0)=0$, $k_{2}(0)=1$

Пусть $x_{j} < 0$ таково, что $\lim_{N \to \infty} x_{j} = 0$, $|h_{j}(x)| < 1/v$ и $|h_{j}(x)| < 1/v$ при любом $x \in [x_{j}, 0]$ ($j = 1, 2; v = 1, 2, \ldots$). Построим замкнутую и гладкую кроме одной точки кривую $L_{j} = L_{j} \cup L_$

I)
$$h_{1}(x) = h_{1}(x)$$
, $h_{2}(x) = h_{2}(x)$ mpm $x \leq x_{2}$;

2)
$$k_{1}(1) = k_{2}(1) = k_{1}(1) = k_{2}(1) = 0$$
;

3)
$$h_{i,j}(x) > h_i(x) > h_i(x) > h_{i,j}(x)$$
 if $x_{i,j} < x < 0$;

5) для всех $\vartheta=1,2,\ldots$ и j=1,2 при любом $x\in[x_{\eta,f}]$ выполнены неравенства $|f_{ij,\gamma}(x)|\leq 2/\gamma$, $|f_{ij,\gamma}(x)|\leq 2/\gamma$. Пусть \mathcal{O}_{γ} – область ("клин"), граница которой образована

Пусть \mathcal{O}_{λ} — область ("клин"), граница которой образована графиками функций $y = h_{j}(x)$, $x_{\lambda} \le x \le 0$, $y = h_{j,\lambda}(x)$, $x_{\lambda} \le x \le 1$. Прикрепляя \mathcal{O}_{λ} к \mathcal{O}_{λ} вдоль $\mathcal{O}_{\lambda}(\mathcal{E})$ и $\mathcal{O}_{\lambda}(\mathcal{E})$, получаем неоднолистную (так как $1 \in \mathcal{O}$ и $1 \in \partial \mathcal{O}_{\lambda}(\mathcal{E})$) область \mathcal{O}_{λ} без то — чек ветвления. По построению $\mathcal{O}_{\lambda} \subset \mathcal{O}_{\lambda}$ при любом $\mathcal{O}_{\lambda}(\mathcal{O}_{\lambda})$ и ($\mathcal{O}_{\lambda}(\mathcal{O}_{\lambda})$) — последовательности убывающих областей, причем $\mathcal{O}_{\lambda}(\mathcal{O}_{\lambda})$ = = [0,I]. Следовательно, последовательность ($\mathcal{O}_{\lambda}(\mathcal{O}_{\lambda})$) сходится к $\mathcal{O}_{\lambda}(\mathcal{O}_{\lambda})$ как к ядру.

Рассмотрим конформные отображения $f_{ij}:\mathcal{D}\to\mathcal{D}_{ij}$, норми — рованные условиями $f_{ij}(\infty)=\infty$, $f_{ij}(0)=1$. Пусть $f_{ij}(w)=f_{ij}(w)$ -обратное отображение, однозначно определенное в $\overline{\mathcal{D}}$. По теореме Фарреля (точную формулировку и обобщения см. в [IO]) $f_{ij}(w)\to w$ при $f_{ij}\to\infty$ равномерно в $\overline{\mathcal{D}}$, что дает равномерное в $\overline{\mathcal{D}}$ стремление к нулю $f_{ij}=f_{ij$

Аналогично рассматриваются нарушения других свойств из тре — бования в) в определении \mathcal{G}^* . Если, например, нарушено условие $f_i \cap f_{j'} = \emptyset$ при $j \neq j'$, то нужно "вытягивать" вдоль f_j и $f_{j'}$ пва острия в точках \mathcal{Z}_j и $\mathcal{Z}_{j'}$ с тем, чтобы \mathcal{D}_j дважды покрывала точку пересечения f_j , $f_{j'}$, и нормировать f_j (\mathcal{Z}) так, чтобы угловые точки \mathcal{D}_j перешли в угловые точки \mathcal{D}_j . Сама область \mathcal{D} в этом случае берется совпадающей с \mathcal{D} в малых окрестностях точек \mathcal{Z}_j и $\mathcal{Z}_{j'}$, $\mathcal{D} \supset \mathcal{D}$, $\partial \mathcal{D}$ имеет лишь две угловые точки.

Этим пояснением и завершается доказательство теоремы І.

Литература

- I. Gehring F. W. Uniform Domains and the Ubiquitous Quasidisk // Iber. d.Dt.Math. Verein. 1987 89. P.88 103.
- 2. Martio O., Sarvas J. Injectivity theorems in plane and space // Ann. Acad. Sci. fenn. ser AI, Math.- 1978/1979-V.4, N 2. - P.383 - 401.
- 3. Gehring F. W., Osgood B. G. Uniform domains and the quasihyperbolic metric // I.Anal. Math. I979. V. 36. P. 50 74.
- 4. А в х а д и е в Ф. Г. Допустимые функционалы в условиях инъективности для дифференцируемых отображений *п*-мерных облас тей // Изв. вузов. Математика. 1989. № 4. С.3 12.
- 5. Авхадиев Ф. Г., Аксентьев Л. А., Елизаров А. М. Достаточные условия конечнолистности аналитических функций и их приложения // Итоги науки и техники. Матем. анализ. - М.: ВИНИТИ, 1987. - Т.25. - С.3 - I2I.
- 6. Голузин Г. М. Геометрическая теория функций комп-лексного переменного. М.: Наука, 1965. 628 с.
- 7. Авхадиев Ф.Г.Достаточные условия однолистности квазиконформных отображений // Матем. заметки. 1975. Т. 18. № 6. С. 793 802.
- 8. Becker J., Pommerenke Ch. Schlichtheits-kriterien and Jordangebiete// J.Reine und Angew. Math. 1984. Bd. 354. S. 74 94.
- 9. Рогожин В. С. Достаточные условия однолистности решения обратных краевых задач // Прикл. мат. и мех. 1958. T.22.- % 6. C.804 807.
- IO. Маркушевич А. И. Sur la représentation conforme des domaines à frontières variables // Матем. co. I936. T.I43. № 6. C.863 886.

Доложено на семинаре 27 января 1986 года и 26 января 1987 года.