Решение задач-"Предел функции в точке" - Модуль 2 - 2018/2019			Отметки о верном решении				
ФИО	Номер группы	Дата	Номера	Категория А:	Категория В:	Категория С:	Итого
			заданий				
Преподаватель							
			Баллы				
×			×				

Задача: вычислить пределы.

Выберите категорию, вычислите <u>по одному пределу из каждого блока</u> категории (номер внутри блока выбирается по желанию) и сверьтесь с ответами. В случае верного решения выбранных пределов запишите их номера и набранные баллы в соответствующее поле на отрывном корешке. Категории А и В должны быть выбраны минимум по одному разу. Один балл ставится за каждые верно вычисленные:

✓ 1 балл=5 пределов кат. А✓ Min=1 балл, max=2 балла

- ✓ 1 балл=3 предела кат. В
- ✓ Min=1 балл, max=3 балла

- ✓ 1 балл=1 предел кат. С
- ✓ без ограничений.

По завершении работы отрежьте отрывной корешок по пунктирной линии и сдайте преподавателю. Лист с заданиями оставьте для самоподготовки.

Категория А

Блок 1:	Блок 2:	Блок 3:	Блок 4:	Блок 5:
1) $\lim_{x \to \infty} \left(2^{1/ x } + \frac{\cos(1/x)}{x^2 + 3x} \right) = 1$	11) $\lim_{x \to 4} \frac{x - 4}{\sqrt{x - 3} - 1} = 2$	$21) \lim_{x \to \infty} \frac{7x^2 - 4x + 7}{\sqrt{x^4 + 6x^2 - 7}} = 7$	31) $\lim_{x \to +\infty} \left(3x - \sqrt{9x^2 + 4x} \right) = -\frac{2}{3}$	41) $\lim_{x \to 0} \frac{e^{x+1} - e}{x} = e$
2) $\lim_{x \to \infty} \left(\ln \left(5 + \frac{2}{x} \right) + \frac{\arccos\left(1/x\right)}{1 - 4x^2} \right) = \ln 5$	12) $\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{1 - \sqrt[4]{x}} = -\frac{4}{3}$	$22) \lim_{x \to \infty} \frac{\sqrt{x^6 - x^2 - 1}}{x^4 - 9x^3 - 1} = 0$	32) $\lim_{x \to +\infty} \left(2\sqrt{x^2 + 2} - 4x^2 \right) = -\infty$ 33) $\lim_{n \to \infty} \left(\sqrt{8n^2 + 3n} - 2\sqrt{2}n \right) = \frac{3}{4\sqrt{2}}$	42) $\lim_{x \to 1} \frac{x - 1}{2^{x - 1} - 1} = \frac{1}{\ln 2}$
3) $\lim_{x \to \infty} \left(\operatorname{tg} \left(\frac{\pi}{4} - \frac{\pi}{3x^2 + 1} \right) + \frac{1 - x}{5} \right) = \infty$	13) $\lim_{x \to 16} \frac{x - 16}{\sqrt[4]{x} - 2} = 32$	$23) \lim_{n \to \infty} \frac{n^6 + 3n^4 + 2}{\sqrt{3n^{10} + n^9 + 1}} = \infty$	34) $\lim_{n \to \infty} (3n - \sqrt{(3n-2)(3n+2)}) = 0$	43) $\lim_{x \to 0} \frac{\ln(1-x)}{2x} = -\frac{1}{2}$
4) $\lim_{x \to \infty} \left(\operatorname{ctg} \left(\frac{\pi}{x^3} + \frac{\pi}{3} \right) + \frac{\arcsin(1/x)}{x + x^3} \right) = \frac{1}{\sqrt{3}}$	14) $\lim_{x \to 1} \frac{\sqrt[4]{x} - 1}{\sqrt[5]{x} - 1} = \frac{5}{4}$	$24) \lim_{n \to \infty} \frac{\left(5n^3 - 1\right)^2 \left(2n^2 - 7\right)^3}{10\sqrt{n^{12} - 8}} = \infty$	35) $\lim_{n \to \infty} \left(\sqrt{n^2 + 3n} - \sqrt{n^2 - 4} \right) = \frac{3}{2}$	44) $\lim_{x \to 1} \frac{x - 1}{\log_2 x} = \ln 2$
5) $\lim_{x \to \infty} \left(\sin \left(\frac{\pi}{2} - \frac{\pi}{x} \right) + \frac{5}{(2x-1)^{-1}} \right) = \infty$	15) $\lim_{x \to -1} \frac{4x^2 + 5x + 1}{x^3 + 1} = -\frac{3}{2}$		36) $\lim_{x \to 3} \left(\frac{1}{x - 3} - \frac{1}{x^2 - 5x + 6} \right) = 1$	45) $\lim_{x \to 1} \frac{\sin(x-1)}{3(x-1)} = \frac{1}{3}$
	16) $\lim_{x \to 2} \frac{3x^2 - 4x - 4}{16 - 4x^2} = -\frac{1}{4}$	$25) \lim_{x \to \infty} \frac{\left(x^4 + x^2 + 1\right)^{25}}{\left(2x + 1\right)^5 \left(x^4 + 1\right)^5} = \infty$	37) $\lim_{x \to \frac{1}{2}} \left(\frac{1}{4x^2 - 1} - \frac{2}{2x + 1} \right) = \infty$	46) $\lim_{x \to 0} \frac{\sin 2x}{\tan 3x} = \frac{2}{3}$
6) $\lim_{x \to \infty} \left(\cos \left(\frac{4}{1 + 4x^3} \right) + \frac{\sin(5/x)}{(x-1)(x+3)} \right) = 1$	17) $\lim_{x \to 2} \frac{2x^2 + 6x - 20}{x^4 - 16} = \frac{7}{6}$	$26) \lim_{n \to \infty} \frac{(2n+3)^{30}}{(2n-3)^{48} (n+3)^3} = 0$	38) $\lim_{x \to \frac{1}{3}} \left(\frac{1}{3x - 1} - \frac{2}{3 - 9x} \right) = \infty$	47) $\lim_{x \to 0} \frac{(1+x)^5 - 1}{5x} = 1$
7) $\lim_{x \to \infty} \left(\arctan\left(1 + 3x^3\right) + \frac{1}{\left(x^2 + x + 1\right)^{-1}} \right) = \infty$	18) $\lim_{x \to 1} \frac{x^2 - 7x + 6}{x^2 + 3x - 4} = -1$	$27) \lim_{x \to +\infty} \frac{\sqrt[3]{x^5 + 4x^3} + \sqrt[4]{16x^6 + 1}}{-\sqrt[6]{x^7 - 2x^5}} = \infty$	39) $\lim_{x \to 2} \left(\frac{1}{x^2 - 4} - \frac{1}{x^2 - 4x + 4} \right) = \infty$	48) $\lim_{x \to 0} \frac{x^2}{(1+x^2)^7 - 1} = \frac{1}{7}$
8) $\lim_{x \to \infty} \left(\operatorname{arcctg} \left(\frac{4}{2x^2 + 1} \right) + \frac{\ln 2}{\sqrt{25x^2 + 4}} \right) = \frac{\pi}{2}$	19) $\lim_{x \to 4} \frac{x - 2\sqrt{x}}{x^2 - x - 12} = 0,1$	$28) \lim_{n \to \infty} \frac{\sqrt[6]{n^5 + n} + \sqrt[8]{n^7 + 3}}{\sqrt[4]{n^3 + 2n} - 3} = \infty$	40) $\lim_{x \to 9} \left(\frac{1}{\sqrt{x} - 3} - \frac{3}{9 - x} \right) = \infty$	49) $\lim_{x \to 1} \frac{\arctan(x+1)}{x^2 - 1} = -\frac{1}{2}$
9) $\lim_{x \to \infty} \left(\ln \left(\frac{2}{x^2 - 1} + 2 \right) + \left(x^2 + 2x + 5 \right)^{-2} \right) =$	$20) \lim_{x \to 2} \frac{3x^2 - 7x + 2}{\sqrt{x^3} - \sqrt{2}x} = 5\sqrt{2}$	29) $\lim_{x \to +\infty} \frac{\sqrt[4]{x^8 + x^3} + \sqrt[5]{x^{10} + x^8}}{6(\sqrt{x} + 4)^4} = \frac{1}{3}$		$50) \lim_{x \to 0} \frac{2x}{\arcsin\left(x^2 + x\right)} = 2$
$\ln 2$		$30) \lim_{x \to +\infty} \frac{\sqrt[8]{n^9 - n^3} \cdot \sqrt[3]{n^8 + n}}{\sqrt[4]{n^{12} - n^6}} = 1$		
10) $\lim_{x \to \infty} \left(3^{1 - \frac{2}{x^2 - 1}} + \frac{\sqrt[3]{2}}{\sqrt[3]{x} + 4} \right) = 3$		$\sqrt[4]{n^{12}-n^6}$		

Блок 6:

><

Категория В

51) $\lim_{x \to \infty} \left(\frac{x-4}{x+5} \right)^{\frac{2x-1}{7}} = e^{-\frac{18}{7}}$

52)
$$\lim_{x \to \infty} \left(\frac{x^2 - 2}{x^2 + 3} \right)^{2x^2 + 6} = e^{-10}$$

53)
$$\lim_{n \to \infty} \left(\frac{3 - 2n}{5 - 2n} \right)^{\frac{n - 6}{5}} = e^{\frac{1}{5}}$$

54)
$$\lim_{n \to \infty} \left(\frac{n^2 + 3}{n^2 - 2} \right)^{n^2 - 3} = e^5$$

55)
$$\lim_{n \to \infty} \left(\frac{5n+7}{5n-2} \right)^{\frac{3n+1}{5}} = e^{\frac{27}{25}}$$

56)
$$\lim_{\alpha \to 0} (1+3\alpha)^{\frac{2}{7\alpha}} = e^{\frac{6}{7}}$$

57)
$$\lim_{t \to 6} (7-t)^{\frac{4}{t-6}} = e^{-1}$$

58)
$$\lim_{x \to 3} (4-x)^{\frac{2}{x-3}} = e^{-2}$$

59)
$$\lim_{u \to 2} (3-u)^{\frac{4}{2-u}} = e^4$$

60)
$$\lim_{x \to 5} (6-x)^{\frac{4}{x^2-25}} = e^{-0.4}$$

Блок 7:

61)
$$\lim_{x \to 0} \frac{\sqrt{1 - \cos 6x}}{x} = -3\sqrt{2}$$

62)
$$\lim_{x \to 0} \frac{x \arcsin(x/2)}{1 - \cos 4x} = \frac{1}{16}$$

63)
$$\lim_{x \to 0} \frac{1 - \cos 2x}{\sqrt{x^4 + 1} - 1} = \infty$$

64)
$$\lim_{x \to 0} \frac{\sin 3x}{3 - \sqrt{2x^2 + 9}} = \infty$$

65)
$$\lim_{x \to 0} \frac{\ln(2x+1)}{x \cot(x+\pi/4)} = 2$$

66)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = 0$$

67)
$$\lim_{x \to 0} \frac{\lg 3x \cdot \sin 2x}{1 - \cos x} = 12$$

68)
$$\lim_{x \to 0} \frac{\ln(1+4x)^2}{e^{\sin x} - 1} = 8$$

69)
$$\lim_{x \to 0} \frac{e^{\lg x} - 1}{\ln(1 + 3x)} = \frac{1}{3}$$

70)
$$\lim_{x \to +0} \frac{\arcsin 3x}{1 - \cos \sqrt{x}} = 6$$

Блок 8:

71)
$$\lim_{x \to \pi} \frac{\sqrt{1 - \lg x} - \sqrt{1 + \lg x}}{\sin 2x} = \frac{1}{2}$$

72)
$$\lim_{x \to \infty} x (e^{2/x} - 1) = 2$$

73)
$$\lim_{x \to 3} \frac{\ln\left(x^2 - 6x + 10\right)}{e^{x^2 - 9} - 1} = 0$$

74)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\cos 2x} = -\frac{1}{\sqrt{2}}$$

75)
$$\lim_{x \to -3} \frac{\ln(x^2 + 3x + 1)}{x^2 - 9} = \frac{1}{2}$$

76)
$$\lim_{x \to 1} \frac{\sin(1-x)}{\sqrt[3]{x} - 1} = -3$$

77)
$$\lim_{x \to \frac{\pi}{4}} \frac{2\cos 2x}{\sqrt{2} - 2\sin x} = 2\sqrt{2}$$

78)
$$\lim_{x \to \frac{1}{2}} \frac{\arcsin(1-2x)}{4x^2 - 1} = -\frac{1}{2}$$

79)
$$\lim_{x \to -3} \frac{\sqrt[3]{x-5}+2}{x+3} = \frac{1}{4}$$

80)
$$\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{(\pi - 4x)^2} = \frac{1}{8}$$

Категория С

Блок 9:

$$81) \quad \lim_{x \to 0} \sqrt[x]{1 - 2\sin x} = e^{-2}$$

82)
$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{\operatorname{ctg}^2 x}} = \sqrt{e}$$

83)
$$\lim_{x \to +\infty} \left(x + \sqrt{x^2 + 1} \right)^{\frac{3}{\ln x}} = e^3$$
 85)
$$\lim_{x \to 0} \left(e^x + \sin x \right)^{\frac{1}{x}} = e^2$$

85)
$$\lim_{x \to 0} \left(e^x + \sin x \right)^{\frac{1}{x}} = e^{-\frac{1}{x}}$$

84)
$$\lim_{x \to +\infty} (5x^2 - 3x - 2)^{\frac{1}{\ln(x - 1)}} = e$$
86)
$$\lim_{x \to \frac{\pi}{4}} (\operatorname{tg} x)^{\operatorname{tg} 2x} = e^{-1}$$

87)
$$\lim_{x \to 0} \frac{\sqrt[10]{1024 + x} - 2}{x} = \frac{1}{5120}$$
 89)
$$\lim_{x \to +\infty} \frac{\ln(1 + e^{3x})}{\ln(1 + e^{7x})} = \frac{3}{7}$$

89)
$$\lim_{x \to +\infty} \frac{\ln\left(1 + e^{3x}\right)}{\ln\left(1 + e^{7x}\right)} = \frac{3}{5}$$

88)
$$\lim_{x \to 0} \frac{\ln\left(\sin x + \cos x\right)}{x} = 1$$

90)
$$\lim_{x \to +\infty} x \operatorname{arcctg} x = 1$$