Transfer Learning Applied to NLP and Computer Vision 15 Marzo 2019

t3chfest

Quiénes Somos

Pablo Vargas Ibarra & Manuel Lopez Sheriff

- Matemáticos UCM
- Consultores Data Scientist

¿Qué es Machine Learning?

Learn From Experience

Data Learn From Experience

¿Qué es Transfer Learning?

After supervised learning—Transfer Learning will be the next driver of ML commercial success. Andrew Ng

Machine Learning Clásico Aprendizaje supervisado

Input (A)	Output (B)	Application
email	spam? (0/1)	spam filtering
audio	text transcript	speech recognition
English	Chinese	machine translation
ad, user info	click? (0/1)	online advertising
image, radar info	position of other cars	self-driving car

Aprendizaje supervisado. Calidad de datos = calidad modelo

Acquiring data

- Manual labeling

not

not

- From observing behaviors

user ID	time	price (\$)	purchased
4783	Jan 21 08:15.20	7.95	yes
3893	March 3 11:30.15	10.00	yes
8384	June 11 14:15.05	9.50	no
0931	Aug 2 20:30.55	12.90	yes

machine	temperature (°C)	pressure (psi)	machine fault
17987	60	7.65	N
34672	100	25.50	N
08542	140	75.50	Y
98536	165	125.00	Y

- Download from websites / partnerships

Casos de uso. Problema de clasificación binaria.

- Cada ejemplo es una persona que quiere solicitar un préstamo.
- El modelo devuelve una probabilidad entre 0 y 1.
- En función del problema, se debe maximizar distintas métricas: AUC, Accuracy...

Casos de uso. Problema de regresión.

House Prices: Advanced Regression Techniques

Predict sales prices and practice feature engineering, RFs, and gradient boosting 4,106 teams · Ongoing

La variable a predecir es continua; precio de la vivienda

1

- Cada ejemplo es una casa con un precio asignado
- En función de la métrica de éxito, se deben maximizar distintas métricas:
 MSE, RMSE, MAE, MAEN...

Casos de uso. Problemas de aprendizaje NO supervisado

Ejemplos:

- Identificar compradores similares en el supermercado.
- Agrupar jugadores de fútbol parecidos.
- Señalar estaciones de BICIMAD semejantes.

Problemas dónde:

- Datos NO etiquetados: no hay una variable a predecir.
- Agrupamos por características similares.

Dificultades:

- Establecer distancia entre elementos d(x, y).
- Elegir número de grupos (clusters).

Machine Learning

Algunos problemas difíciles

¿Cuántas personas hay en esta foto?

Traduce:

"Un banco de peces"

to english...

¿Qué genero musical?

¿Existe tumor en estos pulmones?

Comentarios ✓ o X ?

Speech-to-text

8% punk

4% ska

88% rock

Deep Learning

Redes neuronales

1 sola capa:

- regresión lineal
- regresión logística (clasificación)

varias capas:

Deep Learning Mejoras dentro del ML

- Las NN pueden aproximar cualquier función
- Conforme aumentamos el conjunto de datos podemos conseguir una mayor precisión
- Permite un entrenamiento "online" (warm start)

Deep Learning

Diferencias con ML

Aprende representaciones ricas de los datos de

manera automática

 Menos esfuerzo humano y más esfuerzo computacional

Machine Learning

Deep Learning

Computer Vision Introducción

Computer Vision Tasks

Redes convolucionales. Lectura de imágenes.

CNNs:

- Son invariantes traslacionales.
- Aprenden patrones locales.
- Parámetros compartidos.

Filtros

Una CNN **aprende** cuáles son los filtros ideales para el problema

Sólo tenemos que encargarnos de prescribir la arquitectura

Layer (type)	Output	Shape	Param #
======================================	(None,	80, 3)	0
conv1d_145 (Conv1D)	(None,	71, 100)	3100
conv1d_146 (Conv1D)	(None,	62, 100)	100100
max_pooling1d_39 (MaxPooling	(None,	20, 100)	0
conv1d_147 (Conv1D)	(None,	11, 160)	160160
conv1d_148 (Conv1D)	(None,	2, 160)	256160
global_average_pooling1d_29	(None,	160)	0
dropout_29 (Dropout)	(None,	160)	0
dense_29 (Dense)	(None,	6)	966
Total params: 520,486 Trainable params: 520,486			

Deep Learning with Python (F. Chollet) indoML

Deep CNNs

Computer Vision ImageNet

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

Algunos resultados en el Imagenet Challenge

- Mejora sustancial del error cada año desde el inicio de la competición
- Precisión sobrehumana desde el año 2015
- Actualmente se ha aumentado la complejidad detectando bounding boxes

Un problema: el overfitting

Trainable params: 520,486

Una solución: data scientist equilibrado

Transfer Learning in Computer Vision

Nuevo conjunto de datos pequeño. Feature-Extractor.

- Modelo lineal sobre las últimas capas obtenidas de aplicar una red re-entrenada
- Previene el overfitting al tener pocos datos etiquetados para nuestro problema

Similar da	taset	Different dataset
Transfer lea highest level t + classif	eatures	Transfer learning: lower level features + classifier

Transfer Learning in Computer Vision

Nuevo conjunto de datos grande. Fine-Tuning.

En menos tiempo conseguimos misma o más precisión
 TRAINING
 Random neural network
 Neural network
 Trained neural network
 On ImageNet

Transfer Learning in Computer Vision. Summary Visual.

 Entrenamos más las capas del final dado que son específicas al problema con el que se entrenó.

What do the layers learn?

Transfer Learning in Computer Vision. Example of results. Fastai

Dogs vs. Cats

Create an algorithm to distinguish dogs from cats 215 teams - 5 years ago

- Previo a la competición el estado del arte era un 80% de precisión
- Sólo 4 años después. Conseguimos una precisión de más del 98% en segundos con pocas lineas de código. (fastai transfer learning)

```
arch=resnet34
data = ImageClassifierData.from_paths(PATH, bs=16, tfms=tfms_from_model(arch, sz))
learn = ConvLearner.pretrained(arch, data, precompute=True)
learn.fit(0.01, 2)
```

Natural Language Processing Introducción

Tratamos de resolver problemas relacionados con texto:

- Análisis de sentimiento: comentarios Amazon ✓ o X.
- Traducción: inglés → español.
- Generación de textos automática con estilo.
- Resumir un texto.

Dos desafíos:

- Representación de las palabras.
- Tratamiento de datos secuenciales.

Primer desafío. Representación del texto.

X

- Siglo XX: bolsa de palabras. Frecuencia acumulada relativa.
 - o Lematización: "buena película" ~ "buenísima película". ✓
 - Sin noción de similaridad: "buena película" != "genial película".
 - Orden de palabras inutilizado: "buen guión, mal actor" ~ "buen actor, mal guión"

$$F: \cline{v}ocabulary
ightarrow \mathbb{R}^N$$

• Siglo XXI, objetivo: mapear palabras en vector $(0.1, 0.3, \dots, 0.7, 0.4)$

Natural Language Processing Word Embeddings

Mapean cada palabra a un vector. Hay peores y mejores maneras de hacerlo.

	One hot encoding	Word embeddings
"gato"	(1, 0, 0, 0,, 0)	(0.7, 0.3, 0.1,, 0.9)
"perro"	(0, 1, 0, 0,, 0)	(0.6, 0.3, 0.7,, 0.4)
dimensión N	10000	300
densidad	sparse	densa
aprendido	no	SÍ
similarity("gato", "perro")	0	0.8

Relaciones geométricas del word

Word Embeddings: gigante ejercicio.

Cada palabra de mi vocabulario simple (10k) ha de ser mapeada a un vector de (p. ej) 500 pesos

5 MILLONES de pesos

Tenemos 2 opciones:

- Crear el embedding: preciso mucho texto y computación...
- Heredar uno ya existente: glove, word2vec (2013-14), fasttext

Word Embeddings: cómo se construyen

"Fui al banco a sacar _____"

A. al perro

B. sonrisas

C. dinero

D. la basura

"No quiero ____ tus quejas"

A. oír

B. comer

C. escuchar

D. bailar

Natural Language Processing Word Embeddings: cómo se construyen

2 filters for each region 2 classes Sentence matrix vectors concatenated region size ogether to form a single feature like this movie very much

Transformer

Natural Language Processing ¿Qué nos gustaría?

- Encontrar buenas representaciones de frases / párrafos.
- Arquitecturas útiles para problemas de naturaleza distintas
- Rápidas de entrenar / aplicar fine-tuning
- Varios idiomas
- Aprendizaje de relaciones complejas (negación, subordinación ..)

Limitación de los Word Embeddings. Palabra muñeca.

http://ruder.io/nlp-imagenet/

Natural Language Processing Transfer Learning Models

BERT: Bidirectional Encoder Representations from Transformers **ELMo:** Embeddings from Language Models

ULM-FiT: Universal
Model Fine-Tuning for
Text Classification

Transfer Learning Models: ELMo (contextualized embeddings)

- Las palabras cambian de significado en función del contexto
- Deep. Representaciones más ricas de los datos.

ELMo Embeddings

Words to embed

Transfer Learning Models: How ELMo works?

- Predecir la siguiente palabra
- Modelo pre-entrenado con redes recurrentes LSTM con datos no etiquetados (7000 libros).
- Fine tuning no-supervisado y si supervisado.

Transfer Learning Models: BERT

- Entrenado con datos no etiquetados
- Puede utilizarse como feature-extractor o para realizar fine-tuning sobre él
- Estado del arte en diversos problemas de NLP.

Transfer Learning Models: How BERT works?

- El primer objetivo es predecir dos palabras aleatorias dentro de la frase según su contexto
- El segundo objetivo es predecir si la segunda frase es la siguiente a la primera (binario)

Input

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

Sentence A Sentence B

Transfer Learning Models: How BERT works?

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

Sentence A Sentence B

Transfer Learning Models: ULM-FiT

- De los creadores de fastai
- Diseñado para hacer fine-tuning
- Buenos resultados aún con datasets de sólo 100 ejemplos etiquetados

Data Preparation

```
# Language model data
data_lm = TextLMDataBunch.from_df(train_df = df_trn, valid_df = df_val, path = "")
# Classifier model data
data_clas = TextClasDataBunch.from_df(path = "", train_df = df_trn, valid_df = df_val, vocab=da
ta_lm.train_ds.vocab, bs=32)

learn = language_model_learner(data_lm, pretrained_model=URLs.WT103, drop_mult=0.7)
# train the learner object
learn.fit_one_cycle(1, 1e-2)
```

Summary

Classical NLP

Embeddings

Your Task

BERT / ELMO / ULM-FiT

Transfer Learning in NLP. Summary

- Word2vec > OneHot
- Modelos nuevos que detectan relaciones complejas (BERT, ELMo, ULM-Fit..)
- Disponible en distintos lenguajes, incluido el castellano.
- Modelos desde 2012-2013, es el momento de aprender Deep Learning + NLP

Recursos Transfer Learning NLP Transfer Learning as first iteration

Model	Resource	Paper
fasttext	https://fasttext.cc/docs/en/english-vectors.html	https://arxiv.org/abs/1607.04606
GloVe	https://nlp.stanford.edu/projects/glove/	https://www.aclweb.org/anthology/D14-1162
word2vec	https://code.google.com/archive/p/word2vec/	https://arxiv.org/pdf/1310.4546.pdf
ELMo	https://github.com/allenai/allennlp/blob/master/tutorials/how _to/elmo.md	https://arxiv.org/abs/1802.05365
BERT	https://github.com/google-research/bert	https://arxiv.org/abs/1810.04805
ULMFit	http://nlp.fast.ai/classification/2018/05/15/introducting- ulmfit.html	https://arxiv.org/abs/1801.06146
USE	https://tfhub.dev/google/universal-sentence-encoder/2	https://arxiv.org/abs/1803.11175

Recursos Transfer Learning Computer Vision Transfer Learning as first iteration

Model	Resource	Paper
Xception	https://keras.io/applications/#xception	https://arxiv.org/abs/1610.02357
VGG19	https://keras.io/applications/#vgg19	https://arxiv.org/abs/1409.1556
ResNet	https://keras.io/applications/#resnet	https://arxiv.org/abs/1512.03385
InceptionV3	https://keras.io/applications/#inceptionv3	https://arxiv.org/abs/1409.4842
•••		

Keras Application

Recursos

https://www.nytimes.com/2018/11/18/technology/artificial-intelligence-language.htm

https://medium.com/@14prakash/transfer-learning-using-keras-d804b2e04ef8

https://www.analyticsvidhya.com/blog/2018/11/tutorial-text-classification-ulmfit-fastai-library/

https://blog.insightdatascience.com/using-bert-for-state-of-the-art-pre-training-for-natural-language-processing-1d87142c29e7?fbclid=lwAR2fgnyvpDtZKxBFZiAmojejf4MT8RnG_hdlzZcS0O0HZRGxWxYWHX7baQE

https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a

http://ruder.io/nlp-imagenet/

https://jalammar.github.io/illustrated-bert/

https://medium.com/owkin/transfer-learning-and-the-rise-of-collaborative-artificial-intelligence-41f9e2950657

https://keras.io/applications/

http://nlp.fast.ai/

Contacto y preguntas

Pablo Vargas Ibarra pablovargasibarra12@gmail.com

Manuel López Sheriff manuel.lopez.sheriff@gmail.com

