## Husk/Petra UMA/Muxless Schematics Document Ivy Bridge Intel PCH

DY : None Installed

DIS:DIS installed

DIS Muxless : BOTH DIS or Muxless installed

DIS PX:BOTH DIS or PX installed

DIS\_PX\_Muxless:DIS or PX or Muxless installed.

Muxless: Muxless installed. (PX4.0)

PX:MUX installed. (PX3.0)

PX\_Muxless: BOTH PX or Muxless installed.

UMA: UMA installed

UMA Muxless: BOTH UMA or Muxless installed

UMA PX Muxless: UMA or PX or Muxless installed

ANNIE: ONLY FOR ANNIE solution.

PSL: KBC795 PSL circuit for 10mW solution installed. 10mW: External circuit for 10mW solution installed.

65W: for 65W adaptor installed. 90W: for 90W adaptor installed.





| PCH St                                       | A rapping Huron River Schematic Checklis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B<br>st Rev.0_7                                                                                                                                        |  |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Name                                         | Schematics Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                        |  |  |  |
| SPKR                                         | Reboot option at power-up Default Mode: Internal weak Pull-down. No Reboot Mode with TCO Disabled: Connect to Vcc3_3 with 8.2-kΩ - 10-kΩ weak pull-up resistor.                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |  |  |  |
| INIT3_3V#                                    | Weak internal pull-up. Leave as "No Connect".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |  |  |  |
| GNT3#/GPIO55<br>GNT2#/GPIO53<br>GNT1#/GPIO51 | Mobile: Used as GPIO only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                        |  |  |  |
| SPI_MOSI                                     | MOSI  Enable Danbury: Connect to Vcc3_3 with 8.2-k? weak pull-up resistor.  Disable Danbury: Left floating, no pull-down required.                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        |  |  |  |
| NV_ALE                                       | Enable Danbury: Connect to +NVRAM_VCCQ with 8.2-kohm weak pull-up resistor [CRB has it pul with 1-kohm no-stuff resistor]  Disable Danbury.Leave floating (internal pull-down)                                                                                                                                                                                                                                                                                                                                                                                            | lled up                                                                                                                                                |  |  |  |
| NC_CLE                                       | DMI termination voltage. Weak internal pull-up. Do not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pull low.                                                                                                                                              |  |  |  |
| HAD_DOCK_EN#                                 | Low (0) - Flash Descriptor Security will be override when this signals is sampled on the rising edge of F then it will also disable Intel ME and its features. High (1) - Security measure defined in the Flash Des Platform design should provide appropriate pull-up or the desired settings. If a jumper option is used to required by the functional strap, the signal should be pull-down in order to avoid asserting HDA_DOCK_EN# i Note: CRB recommends 1-kohm pull-down for FD Override pull-up of 20 kohm for DA_DOCK_EN# which is only end strapping functions. | coriptor will be enabled.  or pull-down depending on  o tie this signal to GND as  pulled low through a weak  inadvertently.  le. There is an internal |  |  |  |
| HDA_SDO                                      | Weak internal pull-down. Do not pull high. Sampled at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rising edge of RSMRST#.                                                                                                                                |  |  |  |
| HDA_SYNC                                     | Weak internal pull-down. Do not pull high. Sampled at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rising edge of RSMRST#.                                                                                                                                |  |  |  |
| GPIO15                                       | Low (1) - Intel ME Crypto Transport Layer Security (confidentiality High (1) - Intel ME Crypto Transport I suite with confidentiality Note: This is an un-muxed signal. This signal has a weak internal pull-down of 20 kohm w Sampled at rising edge of RSMRST#. CRB has a 1-kohm pull-up on this signal to +3.3VA ra                                                                                                                                                                                                                                                    | Layer Security (TLS) cipher                                                                                                                            |  |  |  |
| GPIO8                                        | GPIO8 on PCH is the Integrated Clock Enable strap and using a $1k$ +/- $5$ % resistor. When this signal is sample RSMRST#, Integrated Clocking is enabled, When sample enabled.                                                                                                                                                                                                                                                                                                                                                                                           | ed high at the rising edge of                                                                                                                          |  |  |  |
| GPIO27                                       | Default = Do not connect (floating) High(1) = Enables the internal VccVRM to have a clea analog rails. No need to use on-board filter circu: Low (0) = Disables the VccVRM. Need to use on-board circuits for analog rails.                                                                                                                                                                                                                                                                                                                                               | it.                                                                                                                                                    |  |  |  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | USB Table                                                                                                                                              |  |  |  |
| PCIE R                                       | couting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pair Device  0 Touch Panel / 3G SIM  1 USB Ext. port 1 (HS)                                                                                            |  |  |  |
| LANE1                                        | Mini Card2(WWAN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Fingerprint                                                                                                                                          |  |  |  |
| LANE2                                        | Mini Cardl(WLAN) SATA Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 BLUETOOTH 4 Mini Card2 (WWAN)                                                                                                                        |  |  |  |
| _                                            | Card Reader SATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 CARD READER                                                                                                                                          |  |  |  |
|                                              | SAIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 - 1                                                                                                                                                |  |  |  |

| Pin Name | Strap Description                         | Configuration (Default value for each bit is<br>1 unless specified otherwise)                                                                                                                                                     | Default<br>Value |
|----------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| CFG[2]   | PCI-Express Static<br>Lane Reversal       | 1: Normal Operation. 0: Lane Numbers Reversed 15 -> 0, 14 -> 1,                                                                                                                                                                   | 1                |
| CFG[4]   |                                           | Disabled - No Physical Display Port attached to  1: Embedded DisplayPort.  Enabled - An external Display Port device is  0: connectd to the EMBEDDED display Port                                                                 | 0                |
| CFG[6:5] | PCI-Express<br>Port Bifurcation<br>Straps | 11: x16 - Device 1 functions 1 and 2 disabled 10: x8, x8 - Device 1 function 1 enabled; function 2 disabled 01: Reserved - (Device 1 function 1 disabled; function 2 enabled) 00: x8, x4, x4 - Device 1 functions 1 and 2 enabled | 11               |
| CFG[7]   | PEG DEFER TRAINING                        | 1: PEG Train immediately following xxRESETB de assert: 0: PEG Wait for BIOS for training                                                                                                                                          | on <b>1</b>      |

| POWER PLANE                                                                                                                         | VOLTAGE                                                                                              | Voltage Rails  ACTIVE IN | DESCRIPTION                                       |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------|
| 5V_S0<br>3D3V_S0<br>1D8V_S0<br>1D5V_S0<br>1D5V_S0<br>0D75V_S0<br>VCC_CORE<br>VCC_GFXCORE<br>1D8V_VGA_S0<br>3D3V_VGA_S0<br>1V_VGA_S0 | 5V<br>3.3V<br>1.8V<br>1.5V<br>0.95 - 0.85V<br>0.75V<br>0.35V to 1.5V<br>0.4 to 1.25V<br>1.8V<br>3.3V | so                       | CPU Core Rail<br>Graphics Core Rail               |
| 5V_USBX_S3<br>1D5V_S3<br>DDR_VREF_S3                                                                                                | 5V<br>1.5V<br>0.75V                                                                                  | S3                       |                                                   |
| BT+<br>DCBATOUT<br>5V_S5<br>5V_AUX_S5<br>3D3V_S5<br>3D3V_AUX_S5                                                                     | 6V-14.1V<br>6V-14.1V<br>5V<br>5V<br>3.3V<br>3.3V                                                     | All S states             | AC Brick Mode only                                |
| 3D3V_LAN_S5                                                                                                                         | 3.3V                                                                                                 | WOL_EN                   | Legacy WOL                                        |
| 3D3V_AUX_KBC                                                                                                                        | 3.3V                                                                                                 | DSW, Sx                  | ON for supporting Deep Sleep states               |
| 3D3V_AUX_S5                                                                                                                         | 3.3V                                                                                                 | G3, Sx                   | Powered by Li Coin Cell in G3<br>and +V3ALW in Sx |

| FCIE ROUCING |                  |  |  |
|--------------|------------------|--|--|
| LANE1        | Mini Card2 (WWAN |  |  |
| LANE2        | Mini Card1 (WLAN |  |  |
| LANE3        | Card Reader      |  |  |
| LANE 4       | Onboard LAN      |  |  |
| LANE5        | USB3.0           |  |  |
| LANE 6       | Intel GBE LAN    |  |  |
| LANE7        | Dock             |  |  |
| LANE8        | New Card         |  |  |

| SATA Table       |       |  |   |
|------------------|-------|--|---|
| SATA Pair Device |       |  |   |
|                  |       |  | 0 |
| 1                | HDD2  |  |   |
| 2                | N/A   |  |   |
| 3                | N/A   |  |   |
| 4                | ODD   |  |   |
| 5                | ESATA |  |   |

| Pair | Device                       |           |
|------|------------------------------|-----------|
| 0    | Touch Panel / 3G SIM         |           |
| 1    | USB Ext. port 1 (HS)         |           |
| 2    | Fingerprint                  |           |
| 3    | BLUETOOTH                    |           |
| 4    | Mini Card2 (WWAN)            |           |
| 5    | CARD READER                  |           |
| 6    | x                            |           |
| 7    | x                            |           |
| 8    | USB Ext. port 4 / E-SATA /US | B CHARGER |
| 9    | USB Ext. port 2              |           |
| 10   | EDP CAMERA                   |           |
| 11   | Mini Cardl (WLAN)            |           |
| 12   | CAMERA                       |           |
| 13   | New Card                     |           |

| I <sup>2</sup> C / SMBus Addresses                                               | Ref Des | HURON RIVER ORB<br>Address Hex Bus                                                                                                                       |
|----------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| EC SMBus 1<br>Battery<br>CHARGER                                                 |         | BAT_SCL/BAT_SDA<br>BAT_SCL/BAT_SDA<br>BAT_SCL/BAT_SDA                                                                                                    |
| EC SMBus 2<br>PCH<br>eDP                                                         |         | SML1_CLK/SML1_DATA<br>SML1_CLK/SML1_DATA<br>SML1_CLK/SML1_DATA                                                                                           |
| PCH SMBus<br>SO-DIMMA (SPD)<br>SO-DIMMB (SPD)<br>Digital Pot<br>G-Sensor<br>MINI |         | PCH_SMBDATA/PCH_SMBCLK<br>PCH_SMBDATA/PCH_SMBCLK<br>PCH_SMBDATA/PCH_SMBCLK<br>PCH_SMBDATA/PCH_SMBCLK<br>PCH_SMBDATA/PCH_SMBCLK<br>PCH_SMBDATA/PCH_SMBCLK |

Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

Table of Content

Husk/Petra Monday, March 05, 2012









SSID = CPU POWER 6 OF 9 CPU1F Iccmax:8.5A ICC TDC:8.5A 1D05V VTT CPU ULV:17W VCC\_CORE Iccmax:33A VCCIO1 VCCIO3 VCCIO4 VCC CORE AG48 AG50 AG51 AJ21 AJ25 AJ43 AJ47 AK50 AK51 AL14 AL15 AL16 AL20 AL20 AL26 AL26 AL26 Ceso Do Not Staff Do Not Single C880 & C880 & C880 & C880 & C880 PAGE SESSON OF THE PAGE SESSON O SC10U6D3V SC10U6D3 ICC\_TDC:25A PYG S A28, VCC1
A29, VCC2
A31, VCC3
A31, VCC3
A32, VCC2
A33, VCC3
A33, VCC3
A33, VCC3
A34, VCC3
A34, VCC3
A35, VCC3
A36, VCC3
A37, VCC3
A37, VCC3
A38, V VCIOE 700 SC2D2U6D Do Not Stuff SC2D2U6D3 CB08 202060 AL48 AM16 AM17 AM21 AM43 AM47 AN20 AN42 AN45 AN48 C816 Do Not Stuff Do Not Stuff C820 Do Not Strift C815 1D05V\_VTT 1D05V\_VTT\_CPU DDR Do Not Stuff AND PG802 Do Not Stuff 1D05V VTT CPU 10 PG803 VCCIO30 VCCIO31 VCCIO33 VCCIO33 VCCIO33 VCCIO36 VCCIO36 VCCIO40 VCCIO41 VCCIO44 VCCIO4 Do Not Stuff AA14 AA15 AB17 AB20 AC13 CORE 1.XXSAEG90010S Do Not Stuff SC10U6D3V C812 (S) Do Not Stuff 2 000 E SC1U6E SC10603 C813@ SC1U603 0823 8000108 C824 25 Seption Do Not Stuff
PG805 AE14 AE15 AF16 AF18 AF20 AG15 AG16 AG17 AG20 AG21 AJ14 AJ15 Do Not Stuff Ę. ខ្មុំ ġ ឆ្នុំ PG806 Do Not Stuff SESS SESS ABI-XXEASGROOTOS SC100BD3V5KX-1GP ~ CO -1GP 3D3V\_S5 VCCIO50 R810 100KR2J-4-GP ED. BC22 H\_VCCP\_SEL\_L VCCIO\_SEL 1D05V VTT CPU AM25 +V1.058 VCCPQE AN22 1D05V\_VTT\_CPU 1D05V\_VTT\_CPU QUIET RAILS C853 SCTUGD3V2KX-L-1-GP R805 75R3J-L-GP R804 130R2F-1IGP J@\_\_ VIDALERT# VIDSCLK VIDSOUT Place near processor VCC CORE R801 | ~ ~ ~ ~ @D\_ \_ Place near processor Do Not Stuff -01D05V\_VTT\_CPU R802 | 100R2F-L|1-GP-U VCCIO\_SENSE VSS\_SENSE\_VCCIO I\_\_\_(@\_\_\_\_ (D) (GP) <Core Design> B807 Do Not Stuff IVY-BRIDGE-GP-NE **Wistron Corporation** 緯創資通 71.00IVY.A0U

> *CPU (VCC\_CORE)* Husk/Petra

-**1** 















































|     | b | 4 | 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|---|---|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D   |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2   |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| В   |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A   |   |   |      | 《Core Design》    模別資通   Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wi Rd., Hsichih, Taipel Hsien 221, Taiwan, R.O.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |   |   |      | RTS5159 (CARD READER)   Size   Document Number   Husk/Petra   Part   Husk/Petra   Custom   Husk/Petra   Hus |
| . 1 |   |   | <br> | Date: Monday, March 05, 2012 Sheet 32 of 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |























Do Not Stuff
PG4320
1 2
Do Not Stuff
PG4321
1 2
Do Not Stuff



Core Design>

Wistron Corporation
2|F, 88, 8ec. 1, Hein Tai Wu Fid, Heichin,
Taipoi Heien 221, Taiwan, R.O.C.

Title

ISL95836\_CPU\_CORE(3/3)

Size
Obcurrent Number
Custom
Husk/Petra
Place: Tuesday, March Us, 2012

Sheed 44 of 102





SSID = PWR.Plane.Regulator\_1p8v RT9025 for 1D8V\_S0 SA 20111004 3D3V S0 5V\_S5 Iomax>2.22A PSC10U6D3V5MX-L1-GP PC4702 OCP>3A SC1U10V2KX-1GP PG4701 1D8V\_LDO 1D8V\_S0 Vo(cal.) = 1.812VDo Not Stuff PU4701 PG4702 NC#5 Do Not Stuff VDD VOUT PR4704 PC4705 PC4706
20K5R2F-GP PS C 1006 D3V5MX
PR4705 PR4705
16K2R2F-GP PP PC4706 VIN ADJ GND 1 PR4706 2 ĒΝ 19,27,29,36,37 PM SLP S3# > > > 9 45,46 RUNPWROK << PGOOD GND RT9025-25ZSP-GP 74.09025.B3D PC4707 SCD1U10V2KX-L1-GP 2nd = 74.09661.07D <Core Design> Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, 緯創資通 Taipei Hsien 221, Taiwan, R.O.C. Title LDO 1D8V(RT9025) Document Number Rev Husk/Petra -1 Date: Monday, March 05, 2012

# LDO G978 for VCCSA



#### D0, D1 V<sub>0</sub> Selection Table

| D0 | D1 | V <sub>O</sub> , MODE=0 | V <sub>o,</sub> MODE=1 |
|----|----|-------------------------|------------------------|
| 0  | 0  | 0.9V                    | 0.9V                   |
| 0  | 1  | 0.8V                    | 0.85V                  |
| 1  | 0  | 0.725V                  | 0.775V                 |
| 1  | 1  | 0.675∨                  | 0.75V                  |

"x" means "don't care".

#### VEN/MODE Logic

| VEN/MODE (VPP=5V) | EN logic | 1   | VEN/MODE (VPP=5V) | MODE logic |
|-------------------|----------|-----|-------------------|------------|
| <0.6V             | 0        | П   | <2.0V             | 0          |
| ×4.0V/            | 4        | 1 1 | -261/             | 4          |







Wistron Corporation
21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih,
Taipel Hsien 221, Taiwan, R.O.C.

Title

VCCSA LDO G978

Size A3

Date: Monday, March 05, 2012 Sheet 48 of 103













SSID = User.Interface

# ITP Connector

H\_CPURST# use pull-up Resistor close
ITP connector 500 mil ( max ),
others place near CPU side.



Wistron Corporation
21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih,
Taipei Hsien 221, Taiwan, R.O.C.

Title

ITP

Size A4

Husk/Petra
Date: Monday, March 05, 2012 Sheet 55 of 103

## SSID = SATA

# **SATA HDD Connector**





# **ODD Connector**





3D3V\_S0

#### **SATA Zero Power ODD**



Core Design>

Wistron Corporation
21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih,
Taipei Hsien 221, Taiwan, R.O.C.

Fille

HDD/ODD

Size
A3

Document Number
Husk/Petra

Rev
-1





SSID = AUDIO









-1





| USB 3.0 Connector |                          |  |  |  |  |
|-------------------|--------------------------|--|--|--|--|
| Pin definition    |                          |  |  |  |  |
| 1                 | POWER                    |  |  |  |  |
| 2                 | USB 2.0 D-               |  |  |  |  |
| 3                 | USB 2.0 D+               |  |  |  |  |
| 4                 | GND                      |  |  |  |  |
| 5                 | StdA_SSRX- SuperSpeed RX |  |  |  |  |
| 6                 | StdA_SSRX+               |  |  |  |  |
| 7                 | GND                      |  |  |  |  |
| 8                 | StdA_SSTX- SuperSpeed TX |  |  |  |  |
| 9                 | StdA_SSTX+               |  |  |  |  |
|                   | <del>!</del>             |  |  |  |  |















#### Power button LED



### Power STDBY LED



### Battery LED2 (DC\_BATFULL)



### Battery LED1 (CHARGE)









Core Design>

Wistron Corporation
21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih,
Taipei Hsien 221, Taiwan, R.O.C.

Title

LED Bard/Power Button

Size Custom Husk/Petra -1

Date: Monday, March US, 2012 Sheet 68

\_\_\_\_\_













Husk/Petra Monday, March 05, 2012 -1 SSID = ExpressCard +1.5V\_CARD Max. 650mA, Average 500mA. +3.3V\_CARD Max. 1300mA, Average 1000mA +3.3V\_CARDAUX Max. 275mA Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C. New Card Rev -1 A3 Husk/Petra
Date: Monday, March 05, 2012 Sh







SSID = User.Interface Free Fall Sensor

- no via, trace, under the sensor (keep out area around 2mm)
- stay away from the screw hole or metal shield soldering joints
- design PCB pad based on our sensor LGA pad size (add 0.1mm)
- solder stencil opening to 90% of the PCB pad size
- mount the sensor near the center of mass of the NB as possible as you can

<Core Design>



Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

Title

G- Sensor Document Number

Husk/Petra

-1

Date: Monday, March 05, 2012























# 別 京道 Wistron Corporation 2F R R Sec I Note 7 at 10 R Sec I Note 8 at 10 R



| Strap Pin Name | Strap Mapping  | Resistance | Polarity                                                               |
|----------------|----------------|------------|------------------------------------------------------------------------|
| ROM_SCLK       | SMB_ALT_ADDR   | 10k Ω      | Pull-down to GND                                                       |
| ROM_SI         | SUB_VENDOR     | 10k Ω      | Pull-up to 3V3 if VBIOS ROM exists<br>Pull-down to GND if no VBIOS ROM |
| ROM_SO         | VGA_DEVICE     | 10k Ω      | Pull-down to GND (no display)                                          |
| STRAP0         | RAM_CFG[0]     | 10k Ω      | See Note                                                               |
| STRAP1         | RAM_CFG[1]     | 10k Ω      | See Note                                                               |
| STRAP2         | RAM_CFG[2]     | 10k Ω      | See Note                                                               |
| STRAP3         | RAM_CFG[3]     | 10k Ω      | See Note                                                               |
| STRAP4         | PCIE MAX SPEED | 10k Ω      | Pull-down to GND                                                       |

|            | 緯創資通                    | Wistron Corporation<br>21F, 88, Sec. 1, Hein Tei Wu Rd., Heichib,<br>Taipei Heien 221, Taiwan, R.O.C. | n  |
|------------|-------------------------|-------------------------------------------------------------------------------------------------------|----|
|            |                         |                                                                                                       |    |
| re.        | GPU                     | POWER(4/5)                                                                                            |    |
| Size       | GPU_<br>Document Number |                                                                                                       | ev |
| Sine<br>A1 |                         | 1                                                                                                     | -1 |































## Thermal Block Diagram Audio Block Diagram SPKR\_PORT\_D\_L-**SPEAKER** PAGE28 SPKR\_PORT\_D\_R+ MMBT3904-3-GP Thermal Codec Place near CPU NCT7718W PWM CORE **ALC271 CMBO** AUD\_HP1\_JACK\_R1 PCH LOUT AUD\_HP1\_JACK\_L1 SML1\_CLK T8 COMBO MIC **SMBUS** PURE\_HW\_SHUTDOWN# EN 3V/5V AUD\_HP1\_JD# HERM\_SYS\_SHDN# 2N7002 VR Put under CPU(T8 HW shutdown) INT\_MIC\_L\_R AMIC **VGA SMBUS** Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C. Thermal/Audio Block Diagram Husk/Petra -1

