INCOMPRESSIBILITY BARRIERS TO NEIGHBORHOOD-PRESERVING DATA VISUALIZATIONS

A PREPRINT

Szymon Snoeck

Applied Mathematics Department Columbia University New York, NY 10027 sgs2179@columbia.edu

Noah Bergam

Computer Science Department Columbia University New York, NY 10027 njb2154@columbia.edu

Nakul Verma

Computer Science Department Columbia University New York, NY 10027 verma@cs.columbia.edu

February 26, 2025

ABSTRACT

To what extent is it possible to visualize the neighborhood structure of high-dimensional point clouds in two- or three-dimensional space? We reframe this question in terms of embedding n-vertex graphs (representing the neighborhood structure of the input) into metric spaces of low doubling dimension d, in such a way that maintains the separation between neighbors and non-neighbors. We show preserving almost any n-vertex graph in this sense requires $d = \Theta(\log n)$. A similar bound holds for almost any k-regular graph for constant k. The landscape changes dramatically when we require that a single algorithm preserve $all\ n$ -vertex graphs or $all\ k$ -regular graphs in a normed space: the former requires $d = \Theta(n)$ (an exponential jump!) while the latter requires $d = \Omega(k\log n)$. Finally, we show that a point clouds sampled from a distribution over \mathbb{R}^d with a continuous density function will with high probability require $\Theta(d)$ dimensions. Overall, these results challenge the aspiration that constant-dimensional visualizations can faithfully preserve neighborhood structure.