Volume 05

20.05 - 24.05 **Adressed to:** Jan Macdonald

# **Functional Analysis**

By Viet Duc Nguyen (395220), Lukas Weißhaupt (391543), Jacky Behrendt (391049)



# We need your help!

We the People want Moses back to rate us. We believe this is crossing a moral line and ask that the law concerning the banishment of Moses be overturned.

You can support us on by signing the petition under

https://petitions.whitehouse.gov/petition/bring-moses-back

This will help us to bring the issue to the desk of the currently in charged first President of the United States *Donald Trump*.

Thanks!

# Exercise 1

### To prove

If E is separable, then  $F \coloneqq \{x \in E : ||x|| = 1\}$  is separable.

*Proof.* Let E be a normed space, which is separable. This means that there exists a *countable dense* subset  $Q \subset E$ .

**Claim:**  $\tilde{Q} := \{ \frac{x}{||x||} : x \in Q \}$  is a countable dense subset of F.

1. *Countable subset:* For all  $x \in \tilde{Q}$  it holds ||x|| = 1. Thus,  $x \in F$ .

We know Q is countable. There exists a bijection  $\tau: \tilde{Q} \to Q$  with

$$\tau(\tilde{q}) = \tilde{q}||\tilde{q}||.$$

So,  $\tilde{Q}$  is countable.

2. **Dense in** F: Let  $x \in F$ . We know that Q is dense in E. Hence, there exists a sequence  $(x_n)_{n \in \mathbb{N}} \subset Q$  with  $x_n \neq 0$  for all  $n \in \mathbb{N}$  such that

$$\lim_{n\to\infty} x_n = x.$$

Define a new sequence  $(y_n)_{n\in\mathbb{N}}$  with

$$y_n \coloneqq \frac{x_n}{||x_n||} \in \tilde{Q} \quad \forall n \in \mathbb{N}.$$

We will see that  $y_n \to x$ :

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{x_n}{||x_n||} = \underbrace{\frac{\lim_{n \to \infty} x_n}{||\lim_{n \to \infty} x_n||}}_{||\cdot|| \text{ is continuous}} = \underbrace{\frac{x}{||x||}}_{=1} = x.$$

So,  $\tilde{Q}$  is dense in F.

We have shown the claim. Therefore, F is separable per definition, as we have found a countable dense subset of F, namely Q.

### To prove

If  $F:=\{x\in E:||x||=1\}$  is separable, then there exists a sequence  $(x_n)_{n\in\mathbb{N}}\subset E$  such that

$$\overline{\operatorname{span}((x_n)_{n\in\mathbb{N}})}=E.$$

2

*Proof.* Let  $F = \{x \in E : ||x|| = 1\}$  be separable. Hence, we find a countable subset  $Q \subset F$ , that is dense in F where Q is of the Form  $Q = (x_n)_{n \in \mathbb{N}} \subset E$  and  $||x_n|| = 1$  for all  $n \in \mathbb{N}$ . Let now  $x \in E$  be arbitrary. We want to find a sequence  $(y_n)_{n \in \mathbb{N}}$  in Q with  $y_n \to x$  for  $n \to \infty$  and every  $y_n$  a finite linear combination of our  $(x_n)$ 

Note that in any case where  $x \neq 0$  (for x = 0 everything is clear) we know  $\frac{x}{||x||} = 1$ . Thus,  $\frac{x}{||x||} \in F$  so by assumption we can find a sequence  $(\tilde{y}_n)_{n \in \mathbb{N}} \subset Q$  with  $\tilde{y}_n \overset{n \to \infty}{\longrightarrow} \frac{x}{||x||}$  and . This of course means

$$\lim_{n\to\infty}\tilde{y}_n=\frac{x}{||x||}\iff ||x||\lim_{n\to\infty}\tilde{y}_n=\lim_{n\to\infty}||x||\tilde{y}_n=x.$$

Since for all natural numbers n we can find an  $i_n \in \mathbb{N}$  with  $y_n = x_{i_n}$  and hence we know that  $||x||y_n \in \operatorname{span}((x_n)_n)$  and that means

$$x \in \overline{\operatorname{span}((x_n)_n)} \implies E = \overline{\operatorname{span}((x_n)_n)}$$

To show:  $\overline{\operatorname{span}((x_n)_{n\in\mathbb{N}})}\subset E$ . Let  $x\in\overline{\operatorname{span}((x_n)_{n\in\mathbb{N}})}$ .

We know that  $\mathbb{C}_{\mathbb{Q}}:=\{z=a+ib:a,b\in\mathbb{Q}\}$  is countable and dense in  $\mathbb{C}$ . Thus,  $\operatorname{span}_{\mathbb{Q}}:=\{x\in E\mid \exists m_x\in\mathbb{N}:x=\sum_{i=1}^{m_x}\lambda_ix_{\tau_x(i)}\in\operatorname{span}((x_n)_n)\text{ and }\lambda_i\in\mathbb{C}_{\mathbb{Q}}\}$  - where  $\tau_x$  is some permutation of  $\mathbb{N}$  - is also dense in  $\operatorname{span}((x_n)_n)$ 

Now we can see that

$$\begin{split} \operatorname{span}_{\mathbb{Q}} &= \bigcup_{m \in \mathbb{N}} \left\{ x = \sum_{i=1}^m \lambda_i x_{\tau_x(i)} \in E \mid \lambda_i \in \mathbb{C}_{\mathbb{Q}} \text{ for all } i \in \{1,...,m\} \right\} \\ &= \bigcup_{m \in \mathbb{N}} \bigcup_{(n_1,...,n_m) \in \mathbb{N}^m} \bigcup_{(\lambda_1,...,\lambda_m) \in (\mathbb{C}_{\mathbb{Q}})^m} \left\{ \sum_{i=1}^m \lambda_i x_{n_i} \right\} \end{split}$$

which is countable. Thus we have a countable set for which

$$\overline{\operatorname{span}_{\mathbb{Q}}} = \overline{\operatorname{span}((x_n)_n)} = E.$$

Hence E is separable.

Now for the second part of the task: We show that  $E^*$  being separable implies E being separable by proving that  $\mathrm{span}((x_n)_n)$  is dense in E for a sequence  $(x_n)$  as discussed in the task. We will, however, assume that  $||x_n||=1$  for all natural n. We can do that because  $1=||\ell_n||=\sup_{||x||=1}|\ell(x)|$  implies that for all positive  $\epsilon$  we can find an x with ||x||=1 and still  $|\ell_n(x)|>1-\epsilon$ .

Now towards a contradiction assume there exists a  $x \in E$  with  $x \notin \operatorname{span}((x_n)_n)$ . This means we have

$$\inf_{y \in \operatorname{span}((x_n)_n)} ||x - y|| > 0.$$

Then Corollary 4.8 in the script yields us an  $\ell \in E^*$  with  $\ell|_{\text{span}((x_n)_n)} = 0$  and  $||\ell|| = 1$ , so  $\ell \in S$ .

This leads us for any  $n \in \mathbb{N}$  to

$$||\ell - \ell_n|| = \sup_{x \neq 0} \frac{|\ell(x) - \ell_n(x)|}{||x||} \ge \frac{|\ell(x_n) - \ell_n(x_n)|}{||x_n||} = \frac{|\ell_n(x_n)|}{||x_n||} = \frac{1}{2||x_n||} > 0.$$

Thus,  $\ell \notin \overline{(\ell_n)_n}$  and hence  $(\ell_n)_n$  is not dense in S. That is a contradiction!

# Exercise 2

Let E be a  $\mathbb C$  vector space with a seminorm  $\rho: E \to \mathbb R$  on E, and let F be a linear subspace  $F \subset E$ . Let  $x: F \to \mathbb K$  with

$$|x(y)| \le \rho(y), \quad \forall y \in F.$$

There exists an extension  $\ell:E\to\mathbb{K}$  such that  $\ell_{|F}=x \text{ and } |\ell(y)|\leq \rho(y) \quad \forall y\in F.$ 

$$\ell_{|F} = x \text{ and } |\ell(y)| < \rho(y) \quad \forall y \in F$$

Let  $l \in E'$ . Define  $l_{re} : E \to \mathbb{R}, z \mapsto \operatorname{Re}(l(z))$ . The map  $l_{re}$  is  $\mathbb{R}$ -linear and it holds

$$||l_{re}|| = ||l||.$$

*Proof.* Let  $l \in E'$ . We show the  $\mathbb{R}$ -linearity of  $l_{re}$ .

• Let  $x, y \in E$ . It holds

$$\begin{split} l_{re}(x+y) &= \operatorname{Re}(l(x+y)) = \operatorname{Re}(l(x) + l(y)) = \operatorname{Re}(l(x)) + \operatorname{Re}(l(y)) \\ &= l_{re}(x) + l_{re}(y). \end{split}$$

• Let  $\lambda \in \mathbb{R}$  and  $x \in E$ . It holds

$$l_{re}(\lambda x) = \text{Re}(l(\lambda x)) = \lambda \text{Re}(l(x)) = \lambda l_{re}(x).$$

We now show  $||l_{re}|| = ||l||$ . For every  $x \in E$  it holds

$$|l_{re}(x)| = |\operatorname{Re}(l(x))| \le ||l(x)||,$$

which implies  $||l_{re}|| \leq ||l||$ .

Let  $x \in E$  with ||x|| = 1. By using the  $\mathbb{C}$ -linearity of  $l_{re}$  we obtain

$$0 \le |l(x)| = \underbrace{\frac{|l(x)|}{l(x)}}_{\in \mathbb{C}} l(x) = \underbrace{l(\frac{|l(x)|}{l(x)}x)}_{\in \mathbb{R}} = l_{re}(\frac{|l(x)|}{l(x)}x).$$

Since  $||\frac{|l(x)|}{l(x)}x|| = 1$  for all ||x|| = 1 it follows  $|l(x)| \le ||l_{re}||$ , implying  $||l|| \le ||l_{re}||$ . Thus,  $||l|| = ||l_{re}||$ . 

Let  $l_{re}: E \to \mathbb{R}$  be  $\mathbb{R}$ -linear. Set  $l(x) \coloneqq l_{re}(x) - il_{re}(ix)$  for all  $x \in E$ . Then  $l \in E'$ ,  $||l|| = ||l_{re}||$  and  $Re(l) = l_{re}$ .

*Proof.* Let  $x \in E$ . Then

$$\operatorname{Re}(l(x)) = \operatorname{Re}(l_{re}(x)) - \operatorname{Re}(i\underbrace{l_{re}(ix)}_{\in \mathbb{R}}) = \operatorname{Re}(l_{re}(x)) = \operatorname{Re}(l_{re}(x)) = l_{re}(x).$$

We use the  $\mathbb R$  linearity of  $l_{re}$  to show that l is linear with complex scalars. Let  $x \in E$ .

$$\begin{split} l((a+bi)x) &= l_{re}(ax+ibx) - il_{re}(iax-bx) \\ &= al_{re}(x) + bl_{re}(ix) - ial_{re}(ix) + ibl_{re}(x) \\ &= (a+bi)l_{re}(x) - (ai-b)l_{re}(ix) \\ &= (a+bi)l(x). \end{split}$$

Let  $x, y \in E$ . It holds

$$l(x+y) = l_{re}(x) + l_{re}(y) - il_{re}(x) - il_{re}(y) = l(x) + l(y).$$

The proof for  $||l|| = ||l_{re}||$  is the same as in the first lemma. We use that  $\text{Re} \circ l = l_{re}$  which implies  $||l_{re}|| \le ||l||$ , and then we show the converse way  $||l_{re}|| \ge ||l||$  in the exact same way as in lemma 0.1 by using the  $\mathbb{C}$ -linearity of l.

Now to the actual proof.

*Proof.* Let  $X_{\mathbb{R}} \subset X$  be the vector space by restricting X to real scalars. Let  $x \in X'$ . From the first lemma we know that the functional  $y = \operatorname{Re} \circ x$  lies in  $Y_{\mathbb{R}}$  with  $||y|| = ||\operatorname{Re} \circ x||$ . We know from theorem 4.5 (for  $\mathbb{K} = \mathbb{R}$ ) that there exists an extension  $\tilde{\ell} \in E_{\mathbb{R}}'$  for y such that  $||\tilde{\ell}|| = ||y|| = ||x||$ . From the second lemma we obtain a linear functional  $\ell \in E'$  with  $||\ell|| = ||\tilde{\ell}|| = ||x||$  that extends x. To see this we use the  $\mathbb{C}$ -linearity of x:

$$\forall a \in E: \ell(a) = \tilde{\ell}(a) - i\ell(ai) = \operatorname{Re}(x(a)) - i\operatorname{Re}(i\underbrace{x(a)}_{\in \mathbb{R}}) = x(a).$$

# Exercise 3

(i) Let X be a normed space and  $C \subset X$  be open and convex with  $0 \in C$ . We show that  $p_C$  is a sublinear functional.

### To prove

For all  $x, y \in X$  it holds

$$p_C(x+y) \le p_C(x) + p_C(y).$$

*Proof.* Let  $x,y\in X$ . From 3(ii) we know that C is absorbing. Thus,  $p_C(x)\neq \infty, p_C(y)\neq \infty$  and  $p_C(x+y)\neq \infty$ . Let  $\epsilon>0$  be arbitrary. For x there exists  $\mu_x\in \mathbb{R}_{>0}$  and  $z_y\in C$  such that  $x=\mu_x z_x$  and  $\mu_x< p_C(x)+\frac{\epsilon}{2}$ . Likewise for y: there is  $\mu_y\in \mathbb{R}_{>0}$  such that  $y=\mu_y z_y$  with  $\mu_y< p_C(y)+\frac{\epsilon}{2}$ . Adding  $\mu_x$  and  $\mu_y$  together yields

$$\mu_x + \mu_y < p_C(x) + p_C(y) + \epsilon.$$

### Goal

Next, we try to find a vector  $z_{x+y} \in C$  and scalar  $\mu_{x+y} > 0$  such that

$$\mu_{x+y}z_{x+y} = x + y.$$

Consider the vector

$$z_{x+y} \coloneqq \frac{\mu_x}{\mu_x + \mu_y} z_x + \frac{\mu_y}{\mu_x + \mu_y} z_y,$$

which luckily lies in C. To see this, remember that C is a convex set, and note that  $z_{x+y}$  is a convex combination of  $z_x \in C$  and  $z_y \in C$  since

$$\frac{\mu_x}{\mu_x + \mu_y} + \frac{\mu_y}{\mu_x + \mu_y} = 1.$$

Define the scalar  $\mu_{x+y}$  as  $\mu_{x+y} := \mu_x + \mu_y > 0$ . We see that

$$\mu_{x+y}z_{x+y} = \mu_x z_x + \mu_y z_y = x + y.$$

Putting everything together

$$p_C(x+y) \stackrel{(*)}{\leq} \mu_{x+y} = \mu_x + \mu_y < p_C(x) + p_C(y) + \epsilon.$$

## Explanation

(\*) holds by definition of  $p_C(x+y)$ .

As  $\epsilon$  was chosen arbitrarily, it holds

$$p_C(x+y) \le p_C(x) + p_C(y).$$

To prove

For any  $x \in X$  and  $\lambda \in \mathbb{R}_{>0}$  it holds

$$p_C(\lambda x) = \lambda p_C(x).$$

*Proof.* Let  $x \in X$  and  $\lambda > 0$ . Then,

$$\begin{split} p_C(\lambda x) &= \inf\{\alpha > 0: \lambda x \in \alpha C\} = \inf\{\alpha > 0: x \in \frac{\alpha}{\lambda} C\} \\ &= \inf\{\lambda \alpha > 0: x \in \alpha C\} \\ &= \lambda \inf\{\alpha > 0: x \in \alpha C\} \\ &= \lambda p_C(x). \end{split}$$

**Conclusion:**  $p_C: X \to [0, \infty)$  is a sublinear functional.

(ii) C is absorbing: More precisely, there is some  $M \geq 0$  such that for all  $x \in X$  there holds  $p_c(x) \leq M$ .

By assumption we know C is open and that  $0\in C$ . Therefore there exists  $\varepsilon>0$  such that  $U_\varepsilon(0)\subset C$ . Since  $||\frac{\varepsilon}{2}\frac{x}{||x||}||=\frac{\varepsilon}{2},\frac{x\frac{\varepsilon}{2}}{||x||}\in U_\varepsilon(0)$  and therefore  $\frac{x\frac{\varepsilon}{2}}{||x||}\in C$ . Setting  $M:=\frac{2}{\varepsilon}$  we obtain  $x=M||x||\frac{x\frac{\varepsilon}{2}}{||x||}$ , thus

$$p_c(x) = \inf\{\alpha > 0 : x \in \alpha C\} \le M||x||$$

(iii) Let  $C \subset X$  be open and convex. We want to show:

To prove

$$C = \{ x \in X : p_C(x) < 1 \}$$

*Proof.* First, we show  $C \subset \{x \in X : p_C(x) < 1\}$ . Let  $x \in C$ .

### Goal

We want to find  $z \in C$  such that  $x = \alpha z$  with  $\alpha < 1$ .

The subset C is **open**. Thus, there exists a ball with radius  $\epsilon > 0$  around x such that  $U_{\epsilon}(x) \subset C$ . Therefore,  $z := (||x|| + \frac{\epsilon}{2}) \frac{x}{||x||} \in U_{\epsilon}(x)$  because

$$||x-z|| = ||x-(||x|| + \frac{\epsilon}{2})\frac{x}{||x||}||x|| = \frac{\epsilon}{2}\frac{||x||}{||x||} < \epsilon.$$

Hence,  $z \in U_{\epsilon}(x) \implies z \in C$ .

We use the **convexity** of C to show that there exists  $\alpha < 1$  such that  $x = \alpha z$ . Define the scalar value  $\alpha \in \mathbb{R}$  as

$$\alpha \coloneqq \frac{1}{1 + \frac{\epsilon}{2||x||}}.$$

It holds  $\alpha < 1$  since  $\frac{\epsilon}{2||x||} > 0$ . We compute  $\alpha z$ , and we obtain

$$\alpha z = \frac{1}{1 + \frac{\epsilon}{2||x||}} (||x|| + \frac{\epsilon}{2}) \frac{x}{||x||} = \frac{1 + \frac{\epsilon}{2||x||}}{1 + \frac{\epsilon}{2||x||}} x = x.$$

*Proof.* Next, we show  $\{x \in X : p_C(x) < 1\} \subset C$ . Let  $y \in \{x \in X : p_C(x) < 1\}$ .

### Goal

We want to show that  $y \in C$ .

There exists  $z \in C$  with  $\alpha < 1$  such that

$$y = \alpha z$$
.

Note that  $y \in \text{conv}(0, z)$  and in particular  $0 \in C$  by assumption. Since C is convex, it holds  $\text{conv}(0, z) \subset C$ , which implies  $y \in C$ .

**Conclusion:** This proves the claim that  $C = \{x \in X : p_C(x) < 1\}$ .

# Exercise 4

" $\Longrightarrow$ ": Let F be dense in X and let  $f \in X^*$  with  $f|_F = 0$ . For all  $x \in X$  we can then find a sequence  $(x_n)_{n \in \mathbb{N}}$  in F with  $x_n \to x$  for  $n \to \infty$  because F is dense in X. This in turn implies that

$$f(x) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = 0$$

as f is continuous.

" $\Leftarrow$ ": Let  $f\in X^*$  with  $f|_F=0$ . Then, f is continuous. If for some  $x\in X$  we had  $fx\neq 0$  we would also find an  $\epsilon>0$  with  $fx\neq 0$  for all  $x\in U_\epsilon(x)$ . But then, since  $f|_F=0$  we would have  $x\notin \overline{F}$  which would imply  $\overline{F}\neq X$ . Thus F in that case could not be dense in X.