CONIC SECTIONS

EE24BTECH11030 - J.KEDARANANDA

1)	If $a > 2b > 0$ then the positive value of m for
	which $y = mx - b\sqrt{1 + m^2}$ is a common tangent
	to $x^2 + y^2 = b^2$ and $(x - a)^2 + y^2 = b^2$ is (2002S)

a)
$$\frac{2b}{\sqrt{a^2-4b^2}}$$

c)
$$\frac{\sqrt{a^2-4b^2}}{2b}$$

b)
$$\frac{2b}{a-2b}$$

d)
$$\frac{b}{a-2b}$$

- 2) The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $y^2 = 4ax$ is another parabola with directrix (2002S)
 - a) x=-a
- b) x=-a/2 c) x=a
- d) x=a/2
- 3) The equation of the common tangent to the curves $y^2 = 8x$ and xy = -1 is (2002S)

a)
$$3y = 9x + 2$$

c)
$$2y = x + 8$$

b)
$$y = 2x + 1$$

d)
$$y = x + 2$$

- 4) The area of the quadrilateral formed by the tangents at the end points of the latus rectum to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$, is (2003S)
 - a) 27/4 sq.units
- c) 27/2 sq.units
- b) 9 sq.units
- d) 27 sq.units
- 5) The focal chord to $y^2 = 16x$ is tangent to $(x 1)^2$ $(6)^2 + y^2 = 2$, then the possible values of the slope of this chord, are (2003S)
 - a) -1, 1

c)
$$-2, -1/2$$

b)
$$-2, 2$$

d)
$$2, -1/2$$

6) For hyperbola $\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{\sin^2 \alpha} = 1$ which of the following remains constant with change in ' α ' (2003S)

- a) abscissae of ver- c) eccentricity tices
 - d) directrix

1

b) abscissae of foci

2

7) If tangents are drawn to ellipse $x^2+2y^2=2$, then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is (2004S)

a)
$$\frac{1}{2x^2} + \frac{1}{4y^2}$$

a)
$$\frac{1}{2x^2} + \frac{1}{4y^2}$$
 c) $\frac{x^2}{2} + \frac{y^2}{4} = 1$

b)
$$\frac{1}{4x^2} + \frac{1}{2x^2}$$

d)
$$\frac{x^2}{4} + \frac{y^2}{2} = 1$$

- 8) The angle between the tangents drawn from the point (1, 4) to the parabola $y^2 = 4x$ is (2004S)
- a) $\pi/6$ b) $\pi/4$ c) $\pi/3$
- d) $\pi/2$
- 9) If the line $2x + \sqrt{6}y = 2$ touches the hyperbola $x^2-2y^2=4$, then the point of contact is (2004S)

a)
$$(-2, \sqrt{6})$$

c)
$$(\frac{1}{2}, \frac{1}{\sqrt{6}})$$

b)
$$(-5, 2\sqrt{6})$$

d)
$$(4, -\sqrt{6})$$

- 10) The minimum area of the triangle formed by the tangent to the $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ & coordinate axes
 - a) ab sq. units

c)
$$\frac{(a+b)^2}{2}$$
 sq. units

b)
$$\frac{a^2+b^2}{2}$$
 sq. units

b)
$$\frac{a^2+b^2}{2}$$
 sq. units d) $\frac{a^2+ab+b^2}{3}$ sq. units

11) Tangent to the curve $y = x^2 + 6$ at a point (1, 7)touches the circle $x^2+y^2+16x+12y+c=0$ at a point Q.Then the coordinates of Q are (2005S)

a)
$$(-6, -11)$$

c)
$$(-10, -15)$$

b)
$$(-9, -13)$$

d)
$$(-6, -7)$$

12) The axis of the parabola is along the line y=xand the distance of its vertex and focus from origin are $\sqrt{2}$ and $2\sqrt{2}$ respectively. If the vertex and focus both lie in the first quadrant, then the equation of the parabola is (2006-3M,-1)

a)
$$(x+y)^2 = (x-y-2)$$
 c) $(x-y)^2 = 4(x+y-2)$

b)
$$(x-y)^2 = (x+y-2)$$
 d) $(x-y)^2 = 8(x+y-2)$

13) A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3x^2 +$ $4y^2 = 12$. Then its equation is (2007-3 marks)

a)
$$x^2 \csc^2 \theta - y^2 \sec^2 \theta = 1$$

b)
$$x^2 \sec^2 \theta - y^2 \csc^2 \theta = 1$$

c)
$$x^2 \sin^2 \theta - y^2 \cos^2 \theta = 1$$

d)
$$x^2 \cos^2 \theta - y^2 \sin^2 \theta = 1$$

- 14) Let a and b be non-zero real numbers. Then, the equation $(ax^2 + by^2 + c)(x^2 - 5xy + 6y^2 = 0)$
 - a) four straight lines, when c=0 and a,b are of the same sign.
 - b) two straight lines and a circle, when a=b, and c is of sign opposite to that of a
 - c) two straight lines and a hyperbola, when a and b are of the same sign and c is of opposite to that of a
 - d) a circle and a ellipse, when a and b are of the same sign and c is of sign opposite to that of a
- 15) Consider a branch of the hyperbola $x^2 - 2y^2 - 2\sqrt{2}x - 4\sqrt{2}y - 6 = 0$ with vertex at a point A.Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A, then the area of the triangle ABC is (2008)

a)
$$1 - \sqrt{\frac{2}{3}}$$
 b) $\sqrt{\frac{3}{2}} - 1$ c) $1 + \sqrt{\frac{2}{3}}$ d) $\sqrt{\frac{3}{2}} + 1$

16) The line passing through the extremity A of the major axis and extremity **B** of the minor axis of the ellipse

$$x^2 + 9y^2 = 9$$

meets its auxillary circle at the point M. Then the area of the triangle with the vertices at A,M and the origin **O** is (2009)

a)
$$\frac{31}{10}$$

b)
$$\frac{29}{10}$$

b)
$$\frac{29}{10}$$
 c) $\frac{21}{10}$ d) $\frac{27}{10}$

d)
$$\frac{27}{10}$$