Лабораторная работа 4.3.5 Изучение голограммы

Иван Сладков

19 февраля 2022 г.

1 Аннотация

В данной работе проводится исследование голограмм точечного источника и объёмного предмета, а также изучение их свойств.

2 Теоретические сведения

Голография — способ записи изображения, который позволяет по картине интенсивности восстановить полную информацию о волновом поле. Техника записи голограмм отображена на рис. 1. Важным свойством голограммы является возможность восстановить по её малому участку информацию обо всём объекте.

Назовём волну, падающую на предмет, предметной; а волну, падающую сразу на плёнку— опорной. Эти волны должны быть когерентны. Тогда:

$$t \propto a^2 + a_o^2 + 2aa_o \cos(\varphi - \varphi_o),$$

то есть сохраняется информация о фазе волны.

В частности, для точечного источника, считая, что $f_{\rm n}=ae^{ikz}$ и $f_{\rm o}\approx ae^{ikr}$, получаем голограмму с функцией пропускания

$$t(x,y) \propto \left| a + ae^{ikr} \right|^2$$
.

Для обратного процесса – восстановления – применяют плоскую нормально падающую волну. Считая $f_{-}(x,y) \equiv 1$, на выходе голограммы точечного источника получим:

$$f_{+}(x,y) = |a + ae^{ikr}|^2 = 2a^2(1 + \cos(kr)) = 2a^2 + a^2e^{ikr} + a^2e^{-ikr}.$$

Отсюда видна структура полученной волны: суперпозиция плоской и двух сферических волн (соответствующих действительному и мнимому источникам).

Голограмма точечного источника имеет вид колец (рис. 2) с радиусами

$$\rho_m = \sqrt{m\lambda z_0},$$

Рис. 1: Запись голограммы

Рис. 2: Зонная решётка Габора

Рис. 3: Схема экспериментальной установки

где нечётному m соответствуют тёмные кольца.

Одним из свойств голограммы является её разрешающая способность, определяемая выражением:

$$\Delta x \sim \frac{\lambda}{D} z_0,$$

где z_0 – расстояние от источника до его голограммы, а D – размер голограммы.

3 Оборудование и инструментальные погрешности

Схема экспериментальной установки отображена на рис. 3.

В работе используются:

Лазер: $\lambda = 532 \; \text{нм}$

Голограммы

Набор линз: $f = \{2 \text{ мм}, 43 \text{ мм}, 78 \text{ мм}, 200 \text{ мм}\}$

Предметная шкала

Экран

 Π инейка: $\Delta=\pm 1$ мм

4 Результаты измерений и обработка данных

Все измерения и расчёты в СИ.

Расстояние между лазером и экраном: $L = 98 \pm 0.5$ см

4.1 Изучение голограммы точечного источника

Настройка установки По формуле $\lambda/D=\Delta x/L$, найдём D=0.10 мм. Кроме того, используя линзу f=43 мм, по формуле b/a=D'/D, получим D=0.092, что близко к 1-му значению. В данных условиях 1-й метод даст большую точность, т. к. $\Delta_\lambda\ll\Delta_f$.

Определение расстояния d от голограммы до точечного источника Соберём микроскоп из линз $f_1=43$ мм, $f_2=78$ мм. Зная цену деления шкалы, найдём $\Gamma=32$. Построим график $\rho^2(m)$ на рис. 4. Оттуда $k=0.016\pm0.002$ и

$$d = 30 \pm 3 \text{ mm}.$$

Величина ошибки получена из относительной случайной погрешности k.

Получим изображения мнимого и действительного точечных источников:

$$a_2 = 12 \pm 0.5 \text{ MM},$$

$$a_3 = 82 \pm 2$$
 mm.

Рис. 4: График зависимости $\rho^2(m)$

Тогда расстояния от голограммы до источников $d_i = a_i - fb_i/(b_i - f)$, где $b_i = L - a_i$:

$$d_2 = 33 \pm 1 \text{ mm},$$

$$d_3 = 37 \pm 1$$
 mm.

Ошибки расчёта найдены по формуле инструментальных погрешностей.

Изучение фокусирующих свойств голограммы Определили, что правый пучок соответствует действительному источнику. В этом пучке $D'=1.5\pm0.5$ мм. Тогда по формуле b/f=D'/D найдём

$$f = d = 38 \pm 12$$
 mm.

Такая большая погрешность связана с несовершенством этого метода, т. к. сложно измерять расстояния около 1.5 мм в условиях засветки.

Занесём результаты различных опытов в табл. 1.

По диаметру колец	По расстоянию до изображения	По фокусирующим свойствам
15 ± 1 мм	35 ± 2 mm	38 ± 12 мм

Таблица 1: Расстояния d по результатам разных опытов

4.2 Изучение характеристик голограммы объёмного предмета

Собрали расширитель пучка на основе двух линз. Диаметр пучка $2r \approx 4$ см.

Изучение мнимого изображения Найдём мнимое изображение предмета в голограмме. Фото на рис. 5. Оценим угол поворота голограммы:

$$45^{\circ} \pm 5^{\circ}$$

если вести отсчёт от положения перпендикулярного лучу.

Можно примерно (с погрешностью около 5°) оценить углы, под которыми край стержня совпадает с определёнными отметками линейки:

$$\varphi = 90^{\circ}: l = 195.2,$$

$$\varphi = 110^{\circ} : l = 194.5.$$

Рис. 5: Мнимое изображение объёмного предмета

Тогда расстояние от стержня до линейки

 $h \approx 2.5$ cm.

Эта величина очень приблизительная, так как край стержня видно плохо, и измерение углов «на глаз» даёт большую погрешность.

Изучение действительного изображения Удалось найти действительное изображение и даже сфокусировать его линзой на переносной экран.

При повороте фотоэмульсией от лазера мнимое и действительное изображения меняются местами: теперь действительное наблюдается под углом 45° справа против хода движения луча.

При перемещении короткофокусной линзы вдоль луча мнимое изображение не меняется. Масштаб действительного увеличивается при приближении линзы к голограмме.

4.3 Оценка погрешностей

Оценка погрешностей проводилась как и обычно. В общем, ни один из опытов по определению d не обладает достаточной точностью, т. к. размеры измеряемых объектов часто небольшие, что ведёт к большим погрешностям. Наиболее перспективным является определение d по радиусу колец, но в нашем случае недостаточно точек, т. к. следовало собрать микроскоп с большим увеличением.

5 Вывод

Изучили голограмму точечного источника и определили несколькими способами расстояние до записанного на неё точечного источника. Кроме того, изучили фокусирующие свойства голограмм точечного источника и исследовали некоторые особенности голограмм объёмного объекта. Интересная лабораторная.

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 4 Оптика, 2004
- [2] Кириченко Н. А. Принципы оптики, 2014
- [3] Лабораторный практикум по общей физике. В 3 томах. Том 2. Оптика: учебное пособие под ред. А. В. Максимычева