Signali i sustavi

Prvi međuispit (grupa A) - 3. travnja 2009.

- 1. Pronadi neperiodičan kontinuirani signal!
 - a) $\cos(\pi t) \mu(t)$
- **b)** $\cos(\pi t)$
- c) $\sin(\pi t \frac{\pi}{4})$ d) $\sin(\pi t)\cos(\pi t)$ e) $\cos(\pi t \sqrt{2})$
- **2.** Odredite energiju diskretnog signala $x(n) = ne^{-j\pi n} (\mu(n) \mu(n-3))!$
 - **a**) 0
- **b**) 1
- **c**) 3
- **d**) 5
- **e**) 14
- 3. Izbaci netočnu tvrdnju!
 - a) Postoji signal beskonačne energije i konačne snage.
- b) Postoji signal konačne energije i snage nula.
- c) Postoji signal konačne energije i beskonačne snage.
- d) Postoji signal beskonačne energije i beskonačne snage.
- e) Energiju signala $f(t): \mathbb{R} \to \mathbb{R}$ računamo kao $\int_{\mathbb{R}} |f(t)|^2 dt$.
- 4. Samo jedan od zadanih signala ima različitu energiju! Koji?

- Generalizirana derivacija signala zadanog slikom je:

 - **a)** $\mu(t) 3\mu(t-1) + 2\mu(t-2) + \delta(t-1)$ **b)** $\mu(t) 3\mu(t-1) + 2\mu(t-2) + \delta(t-2)$ **c)** $\mu(t) 3\mu(t-1) + 2\mu(t-2) \delta(t-1)$

- d) $\mu(t) 3\mu(t-1) + 2\mu(t-2)$ e) $\mu(t) \mu(t-2) + \delta(t-1)$

- 6. Jedini koeficijenti rastava u Fourierov red nekog signala koji su različiti od nule su $X_{-2} = 2j + 3$ i $X_2 = -2j + 3$. Snaga signala je:
 - **a**) 26
- **b)** 10
- c) 6 d) $2\sqrt{13}$
- e) 13
- 7. Prva četiri koeficijenta za k=1,2,3,4 rastava u Fourierov red signala $x(t)=2\cos(4t)-2\sin(6t)$ su:

 - a) $X_1 = 1, X_2 = j, X_3 = 0, X_4 = 0 \text{ uz } T_0 = \frac{\pi}{2}$ c) $X_1 = 0, X_2 = 1, X_3 = j, X_4 = 0 \text{ uz } T_0 = \pi$ e) $X_1 = 1, X_2 = 0, X_3 = j, X_4 = 0 \text{ uz } T_0 = \frac{\pi}{2}$ d) $X_1 = 1, X_2 = 0, X_3 = j, X_4 = 0 \text{ uz } T_0 = \frac{\pi}{2}$

- 8. Koji signal odgovara Fourierovom redu prikazanom slikom?
 - a) $2\cos(\omega_0 t + \frac{\pi}{3})$

- **b)** $2\sin(\omega_0 t + \frac{\pi}{3})$ **c)** $2\cos(\omega_0 t \frac{\pi}{3})$ **d)** $2\sin(\omega_0 t \frac{\pi}{3})$ **e)** $\sin(\omega_0 t + \frac{\pi}{3}) + \sin(\omega_0 t \frac{\pi}{3})$

- 9. Za periodički kontinuirani signal zadan slikom nulti i prvi član rastava u Fourierov red uz $T_p = 4$ su:

 - a) $(X_0, X_1) = (0, \frac{2}{\pi})$ b) $(X_0, X_1) = (0, \frac{8}{\pi})$ c) $(X_0, X_1) = (1, \frac{2}{\pi})$ d) $(X_0, X_1) = (4, \frac{2}{\pi})$ e) $(X_0, X_1) = (0, \frac{1}{\pi})$

10.	Fourierovom	transformaci	jom funkcije $f(t) = \begin{cases} e^{-3t}, \\ 0, \end{cases}$	$t \ge 0$ inače dobivamo:	
	a) $\frac{1}{3-j\Omega}$	b) $\frac{1}{3+j\Omega}$	c) $\pi \delta(3-\Omega) + \frac{1}{3-j\Omega}$	d) $\pi \delta(3-\Omega) - \frac{1}{3-j\Omega}$	e) $\pi \delta(\Omega - 3) + \frac{j}{\Omega - 3}$
11.	Fourierova transformacija kontinuirane aperiodičke funkcije $3\mu(t)+1$ je:				

a)
$$5\pi \delta(\Omega) + \frac{3}{j\Omega}$$
 b) $2\pi \delta(\Omega) + \frac{3}{j\Omega}$ c) $\frac{3}{j\Omega}$ d) $\frac{4}{j\Omega}$ e) $\frac{3}{j\Omega} + \frac{2\sin(\Omega)}{\Omega}$

b)
$$2\pi \delta(\Omega) + \frac{3}{j\Omega}$$

$$\frac{3}{i\Omega}$$

e)
$$\frac{3}{i\Omega} + \frac{2\sin(\Omega)}{\Omega}$$

12. Ako je signal $x(t): \mathbb{R} \to \mathbb{R}$ svojstva njegovog spektra su:

a) Realni dio spektra je neparan, a imaginarni dio spektra je paran.

- b) Amplitudni spektar je paran, a fazni spektar je neparan.
- c) Amplitudni spektar je paran i fazni spektar je paran.
- d) Amplitudni spektar je neparan, a fazni spektar je paran.
- e) Amplitudni spektar je neparan i fazni spetkar je neparan.

13. Neka su x(t) i $X(j\Omega)$ Fourierov transformacijski par. Realni signal x(t) prvo vremenski ekspandiramo za faktor 2, a zatim ga pomaknemo za 10 u desno. Spektar tako dobivenog signala je:

a)
$$\frac{1}{2}X(j\frac{\Omega}{2})e^{j\Omega 10}$$

a)
$$\frac{1}{2}X(j\frac{\Omega}{2})e^{j\Omega 10}$$
 b) $\frac{1}{2}X(j\frac{\Omega}{2})e^{-j\Omega 10}$ c) $2X(j2\Omega)e^{j\Omega 10}$

c)
$$2X(j2\Omega)e^{j\Omega 10}$$

d)
$$2X(j2\Omega)e^{-j\Omega 10}$$

e)
$$2X(j\frac{\Omega}{2})e^{-j\Omega 10}$$

14. Izračunajte vrijednost signala čiji spektar odgovara slici za trenutak $t=\frac{\pi}{2}$: a) $\frac{4}{\pi}$ b) $-j\frac{2}{\pi^2}$ c) $j\frac{2}{\pi^2}$ d) $\frac{2}{\pi^2}$

a)
$$\frac{4}{\pi}$$

Ako znate da je signal konačne energije diskretan i da nije periodičan tada je njegov spektar (odaberite najopćenitiju tvrdnju od ponudenih):

- a) kontinuiran i aperiodičan
- **b)** kontinuiran i periodičan
- c) diskretan i aperiodičan
- d) diskretan i periodičan

e) kontinuiran i simetričan

16. Vrijednost DTFT transformacije signala $x(n) = \begin{cases} 2009^n, & 0 \le n < 2009 \\ 0, & \text{inače} \end{cases}$ za $\omega = \pi$ je: a) $\frac{1+2009^{2009}}{2009}$ b) $\frac{1-2009^{2010}}{2010}$ c) $\frac{1+2009^{2010}}{2010}$ d) $\frac{1-2009^{2009}}{2010}$ e) $\frac{1+2009^{2009}}{2010}$

a)
$$\frac{1+2009^{2009}}{2009}$$

b)
$$\frac{1-2009^{2010}}{2010}$$

c)
$$\frac{1+2009^{2010}}{2010}$$

d)
$$\frac{1-2009^{2009}}{2010}$$

e)
$$\frac{1+2009^{2009}}{2010}$$

17. Za diskretni signal konačnog trajanja $x(n)=\{2,1,\underline{0},1,2\}$ faza DTFT transformacije za $\omega=\frac{\pi}{2}$ jest:

- a) $-\frac{\pi}{2}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) π e) $\frac{3\pi}{2}$

18. Za diskretni signal x(n) čija DTFT transformacija jest $X(e^{j\omega}) = \cos(\omega) + \cos(3\omega)$ zbroj uzraka u koracima n = 3 i n = -3

a)
$$x(3) + x(-3) =$$

b)
$$x(3) + x(-3) = \frac{1}{2}$$

a)
$$x(3) + x(-3) = 1$$
 b) $x(3) + x(-3) = \frac{1}{2}$ c) $x(3) + x(-3) = \frac{1}{2\pi}$ d) $x(3) + x(-3) = 0$ e) $x(3) + x(-3) = 2\pi$

d)
$$x(3) + x(-3) = 0$$

$$(x^2) x(3) + x(-3) = 2\pi$$

19. Kontinuirani signal $x(t) = \cos(\frac{\pi}{2}t)$ otipkamo s periodom otipkavanja $T_S = \frac{1}{2}$ te zatim računamo DTFS transformaciju uz N jednak temeljnom periodu otipkanog signala. Nulti i prvi član DTFS transformacije tog signala su:

a)
$$X_0 = 0, X_1 = \frac{1}{2}$$

b)
$$X_0 = \frac{1}{2}, X_1 = 0$$

c)
$$X_0 = 0, X_1 = \frac{1}{16}$$

d)
$$X_0 = 0, X_1 = \frac{\sqrt{2}}{2}$$

a)
$$X_0 = 0, X_1 = \frac{1}{2}$$
 b) $X_0 = \frac{1}{2}, X_1 = 0$ c) $X_0 = 0, X_1 = \frac{1}{16}$ d) $X_0 = 0, X_1 = \frac{\sqrt{2}}{2}$ e) $X_0 = \frac{\sqrt{2}}{2}, X_1 = 0$

Jedan period DTFS transformacije periodičkog diskretnog signala s periodom N=5 ima uzorke $X_k=\{2,2,\underline{0},2,2\}$. Kolika je snaga tog signala?

c)
$$\frac{8}{5}$$

a) 8 **b)** 16 **c)**
$$\frac{8}{5}$$
 d) $\frac{16}{5}$ **e)** ∞

e)
$$\infty$$