Review: Image Analytics

- Images are unstructured observations in the collection
- Rely on critical thinking to transform and summarize

Transforming Images to Structured Datasets

- Feature approach:
 - Consider a list of all features that could be in images
 - E.g., Tree, Beach, Animal, Human, House, Flower, etc.
 - Humans go through images, 1 by 1, to look for features
 - Image analyses are based on feature lists
 - O Analogy:
 - Subjective lexicon is to Text Analytics as Feature list is to Image Analytics
- Pixel approach:
 - Automate processing of images to structured data via information of each pixel
 - O TODAY

Transform to structured data via pixel approach

- 1 image is n x m pixels
- Define the amount of a specific color in each pixel:
- Pixel Matrix:

Vectorize: [p₁₁, p₁₂, ... p_{1m}, p₂₁, p₂₂, ..., p_{2m}...,p_{n1}, p_{n2},p_{nm}]

Transform to structured data via pixel approach (cont)

- Stack the vectorized matrices together to make one dataset.
- Each row represents one image (i.e., observation); let N represent the number of images being analyzed.
- Each column represents one color for one pixel; i.e., one variable = one color for one pixel
- If considering ONE color, the dimension of the data is N x (nm)
 - N images
 - o n rows of pixels in an image
 - o m columns of pixels in an image

Image	P ₁₁	P ₁₂	•••	P _{1m}	P ₂₁	P ₂₂	•••	P _{2m}	•••	•••	P _{n1}	P _{n2}	•••	P _{nm}
1														
2														
3														
N														

Transform via pixel approach (cont)

- If considering, say, three colors (e.g., RGB), the dimension of the data is N x (3nm)
 - N images
 - on rows of pixels in an image
 - o m columns of pixels in an image Dimension
 - 3 colors per pixel, thus pixel columns repeated 3 times

Image	P ₁₁	P ₁₂	 	P _{nm}	P ₁₁	P ₁₂	 	P _{nm}	P ₁₁	P ₁₂	 	P _{nm}
1												
2												
3												
N												

Transform via pixel approach (cont)

- If considering a movie that is compiled from, say, 10 (static) snapshots the dimension data dimension is N x (30nm)
 - N movies with 10 images each
 - on rows of pixels in an image
 - o m columns of pixels in an image Dimension
 - 3 colors per pixel, thus pixel columns repeated 3 times
 - 0 10

М	Р	Р		Р	Р	Р		Р	Р	Р		Р	P	Р		P	P	Р		Р	Р	Р		Р	Р	Р		P	Р	Р		Р	Р	P		Р	Р	Р		Р	Р	Р	•
О	1	1		n	1	1	.	n		1		n	1	1 2	•	n	1 1	1 2		n		1 2	•	n	1 1	1 2		n	1	1 2	•	n	1		•	n	1	1		n	1	1	
v	1	2		m	1	2	•	m	1	2		m	1	_	•	m	1			m	-	_	•	m	1			m	1		•	m	1	2	•	m	1	2	•	m	1	2	
i							•								•								•				•				•				•				•				
е							•								•				·				•				•				•				•				•				
S			•				•				•				٠				٠				•				•				•				•				•				•
1																																											
2																																											
3																																											
N																																											

Anatomy of Images (pixel approach)

- Pixels: x-axis (m columns) and y-axis (n rows)
- Number of pixels = nm
- One image has nm pixels
- One movie has nm pixels per depth
 - Static images = 1 depth
 - Movie > 1 deep
- Define amount or "intensity" of color(s) in each pixel
- Color Spectrum (selected by you or image-creator):
 - o RGB: Red, Blue, Green (primary colors for light)
 - o CMYK: Cyan, Magenta, Yellow, Black (primary colors for pigment)
 - Gray Scale
 - "Amount of each color"

Defining color per pixel

- One color (e.g., aqua, tangerine, violet) is defined by combinations of "primary" colors in a color spectrum
- E.g., If the color spectrum is RGB, we define with specifying amounts red, green and blue.
- How do we specify amounts? A: Balance computer constraints with levels or "intensities" of color
- Primary colors are coded with 8 bits each, thus
 - 28=256 different "intensities" of primary color (PC) to specify
 - E.g., 0 = None of the primary color
 - E.g., 255 = Maximum amount/intensity of the primary color
- Ex.
 - Red: 196
 - Greed: 60
 - Blue: 90

Example Static image with RGB

- R, however, uses a scale from 0-1.
 - Maps [0,255] -> [0,1]
 - o [0/255, 1/255,, 255/255] -> [0, 0.00392, ... 1]
- Ex.
 - Red: 196/255 = 0.7686
 - Greed: 60/255 = 0.2353
 - Blue: 90 /255 = 0.3529
- With RGB, one image has three color-matrices:
 - Red-matrix, Green-matrix, Blue-matrix
- I.e., one image is described by an array of 3 matrices

Elements of images in R

- Library(imager)
- An image has the following dimensions
 # Columns x #rows x Depth x #Shades
- Static images have depth=1
 # Columns x # rows x 1 x #Shades
- RGB images
- # Columns x # rows x 1 x 3
- CMYK images
- # Columns x # rows x 1 x 4

Array, matrix, vector, scaler

In words

- Scaler: 1 number
- Vector: a vertical or horizontal sequence of scalers
- Matrix: 1 or more vectors
- Array: 1 or matrices

Scaler, vector, matrix, array,

Notice relationships

- Matrix is a special case of
 - o an array: n x p x 1
- Vector is a special case of
 - o a matrix: 1 x p or p x 1
 - oan array: 1 x p x 1 or n x 1 x 1
- Scaler is a special case of
 - o a vector: 1x1
 - o a matrix: 1x1
 - o an array: 1x1x1

Math Operations

- Simple operations: \times , \div , +, -
- Math
 - +, —: for objects of SAME dimension vectors, element by element in the object
 - \circ Ex
 - $\circ \times, \div$.: for *scalers* with vectors, matrices, arrays.
 - oEx
 - $\circ \times, \div$. : for objects of SAME dimension vectors, element by element in the object
 - Technically, we call element-wise ×,÷ of matries, the Hadamard product or quotient

In R, we can create one from others

- vectorize a matrix
- Put a vector back into a matrix
- Under some conditions, we can merge levels in an array into one matrix
- Or we can spit up a matric to add dimensions in an array