True positive rate (Sensitivity)

true positive rate =
$$\frac{\text{# of true positives}}{\text{# of known positives}}$$

(Proportion of actual positives that are correctly identified)

True negative rate (Specificity)

true negative rate =
$$\frac{\text{# of true negatives}}{\text{# of known negatives}}$$

(Proportion of actual negatives that are correctly identified)

False positive rate (1 – Specificity)

false positive rate =
$$\frac{\text{# of false positives}}{\text{# of known negatives}}$$

(Proportion of actual negatives that are incorrectly identified)

Sensitivity and specificity depend on a chosen cutoff

Sensitivity and specificity depend on a chosen cutoff

Do Part 1 of the worksheet now

We usually plot the true pos. rate vs. the false pos. rate for all possible cutoffs

ROC curve

Receiver
Operating
Characteristic
curve

Image from: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

The area under the curve tells us how good a model's predictions are

Let's look at the performance of several different models for the biopsy data set

Predictor	M1
clump_thickness	
normal_nucleoli	
marg_adhesion	
bare_nuclei	
uniform_cell_shape	
bland_chromatin	

Predictor	M1	M2
clump_thickness		
normal_nucleoli		
marg_adhesion		
bare_nuclei		
uniform_cell_shape		
bland_chromatin		

Predictor	M1	M2	M3
clump_thickness			
normal_nucleoli			
marg_adhesion			
bare_nuclei			
uniform_cell_shape			
bland_chromatin			

Predictor	M1	M2	M3	M4
clump_thickness				
normal_nucleoli				
marg_adhesion				
bare_nuclei				
uniform_cell_shape				
bland_chromatin				

Predictor	M1	M2	M3	M4	M5
clump_thickness					
normal_nucleoli					
marg_adhesion					
bare_nuclei					
uniform_cell_shape					
bland_chromatin					

Model	Area Under Curve (AUC)
M1	0.909
M2	0.968
M3	0.985
M4	0.995
M5	0.996

Things usually look much worse in real life

Keller, Mis, Jia, Wilke. Genome Biol. Evol. 4:80-88, 2012

Do Part 2 of the worksheet now