

IN THE CLAIMS:

Please amend claims 3 and 15, **and add** new claim 20 and 21, as shown in the complete list of claims that is presented below.

Claims 1 and 2 (cancelled).

3. (currently amended) A dry etching method for a semiconductor device, comprising: ~~the following steps of:~~

providing a polysilicon layer formed on a silicon substrate, the polysilicon layer having an N type region, a P type region, and a non-doped region;

implanting a first region of a polysilicon layer with N type ions, the first region having a first area;

implanting a second region of the polysilicon layer with P type ions, the second region having a second area; and

simultaneously gate-etching an N type polysilicon gate electrode from the ~~first N type region, a P type polysilicon gate electrode from the second P type region, and a non-doped polysilicon [[body]] arrangement from [[a]] the~~ non-doped region of the polysilicon layer during a two-stage etching process, ~~the N type polysilicon gate electrode occupying an area that is smaller than the first area, the P type polysilicon gate electrode occupying an area that is smaller than the second area, and the non-doped polysilicon [[body]] arrangement occupying an area that is larger than a total area occupied by the N type polysilicon gate electrode and the P type polysilicon gate electrode,~~

wherein an end point detection of one of the stages of the etching process is based on the etching of the non-doped polysilicon [[body]] arrangement.

Claim 4 (cancelled).

5. (previously presented) The dry etching method according to claim 3, wherein the two-stage etching includes a first stage using a mixed gas of HBr and O₂ and a second stage using a mixed gas of HBr, O₂ and He.

Claims 6-10 (cancelled).

11. (previously presented) The dry etching method according to claim 3, wherein the N type polysilicon gate electrode and the P type polysilicon gate electrode are disposed adjacent one another.

Claims 12-13 (cancelled).

14. (previously presented) The dry etching method of claim 3, wherein the non-doped polysilicon body is disposed adjacent to at least one of the N type polysilicon gate electrode and the P type polysilicon gate electrode.

15. (currently amended) A dry etching method for a semiconductor device, comprising:

providing a polysilicon layer formed on a semiconductor substrate, the polysilicon layer having an N type region, a P type region, and a non-doped region, and
implanting a first region of a polysilicon layer with N type ions, the first region having a first area;

implanting a second region of the polysilicon layer with P type ions, the second region having a second area; and

simultaneously etching an N type polysilicon gate electrode from the first N type region, a P type polysilicon gate electrode from the second P type region, and a non-doped polysilicon [[body]] arrangement from [[a]] the non-doped region of the polysilicon layer during an etching process, the N type polysilicon gate electrode occupying an area that is smaller than the first area, the P type polysilicon gate electrode occupying an area that is smaller than the second area, and the non-doped polysilicon [[body]] arrangement occupying an area that is smaller larger than a total area occupied by the N type polysilicon gate electrode and the P type polysilicon gate electrode,

wherein the etching process includes at least one etching stage in which end point detection is based on the etching of the non-doped polysilicon [[body]] arrangement.

16. (previously presented) The dry etching method according to claim 15, wherein the non-doped polysilicon body is disposed adjacent at least one of the P type polysilicon gate electrode and the N type polysilicon gate electrode.

17. (previously presented) The dry etching method according to claim 15, wherein the P type polysilicon gate electrode is disposed adjacent to the N type polysilicon gate electrode.

18. (previously presented) The dry etching method according to claim 15, wherein the at least one etching stage is conducted using a mixed gas of HBr and O₂.

19. (previously presented) The dry etching method according to claim 15, wherein the at least one etching stage is conducted using a mixed gas of HBr, O₂, and He.

20. (new) The dry etching method according to claim 15, wherein the semiconductor device has a plurality of transistors when fabrication of the semiconductor device is completed, and wherein the non-doped polysilicon arrangement is electrically disconnected from all of the transistors in the semiconductor device.

21. (new) The dry method according to claim 3, wherein the semiconductor device has a plurality of transistors when fabrication of the semiconductor device is completed, and wherein the non-doped polysilicon arrangement is electrically disconnected from all of the transistors in the semiconductor device.