

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

AY: 2025-26

Class:	TE	Semester:	I
Course Code:	CSC 504	Course Name:	Data WareHousing & mining

Name of Student:	Pranita Kumbhar
Roll No.:	70
Assignment No.:	03
Title of Assignment:	Classification
Date of Submission:	
Date of Correction:	

Evaluation

Performance Indicator	Max. Marks	Marks Obtained
Completeness	5	5
Demonstrated Knowledge	3	3
Legibility	2	2
Total	10	10

T. Hanton	Exceed Expectations (EE)	Meet Expectations (ME)	Below Expectations (BE)
Performance Indicator	Exceed Expectations ()	3-4	1-2
Completeness	5	3-4	1
Demonstrated	3	2	1
Knowledge Legibility Legibility	2	1	0

Checked by

Name of Faculty

: Ms. Neha Raut.

Signature

Date

Assignment 3:

Q.I Explain the steps of Min-max normalization and apply them to transform an attribute value from an old range to a new range.

Min-Max normalization is a technique used in data preprocessing to rescale the range of features (attributes) into a specific range, usually [0,1] or [-1]. This ensures that no feature dominates others because of its scale.

- · Steps of Min-Max Normalization!
 - il Identify the old minimum (Old_min) and maximum (Old_max) values of the attribute.
 - 2] Decide the new-range (New-min, New-max) where you want to scale the values.
 - 3] Apply the formula:

Vnew = (Vold - Oldmin) x (Necomax - Newmin) +

(Oldmax - Oldmin) Newmin

where

Vold = original value. Vnew = normalized value.

Example:

Suppose we have exam marks in the range [20,80] and we want to normalize them into [0,1].

- Old _ min = 20,

- Old_max = 80,

- New_min = 0,

- New-max = 1

- Suppose Vold = 50

Vnew = (50-20) × (1-0) +0.

30

Vnew = 0.5

The normalized value of 50 in [0,1] range is 0.5.

O.2] Explain the term True Positive, False Positive,
True Nogative, and False Negative in a
confusion matrix. Apply them in the case
of spam email detection.

A confusion matrix is used to evaluate the performance of a classification model. It compares the predicted values with actual values.

· Confusion matrix for Spam detection:

	Predicted Spam	Predicted	Not Spam
Actual Spam	TP	i Noors	FN
Actual Not Spam	FP	on a bill	TN.

(P.3) For the given dataset. Apply Naive - Bayes algorithm and predict the outcome for Car = (Red, Domestic, SUV).

Car	Type	Origin	Stolen
Red	Sports	Domestic	4
Red	Sports	Domestic	N
Red	Sports	Domestic	4
Yellow	Sports	Domestic	N.
Tellow	Sports	imported	. 4
Yellow	SUV	imported	N
Yellow	SUV	<i>imported</i>	Y
Yellow	SUV	Pomestic	N
Red	SUV	imported	N
Red	Sports	imported	4

 $P(A/B) = P(B/A) \cdot P(A)$ P(B)

X = [Red, Domestic, SUY].

- · True Positive (TP):
 - The model correctly predicts a positive class.
 - In spam detection:
 - An email is actually spam and the model predicts it as spam.
- · False Positive (FP):
 - The model incorrectly predicts positive when it
 - In spam detection:
 - An email is not spam (ham), but the model predicts it as spam. (Type 1 error).
- · True Negative (TAI):
 - The model correctly predicts the negative class.
 - In spam detection:
 - An email is not spam and the model predicts it as not spam.
- · False Negative (FN):
 - The model incorrectly predicts negative when
 - In spam detection:
 - An emaîl is spam but the model predicts it as not spam. (Type II error).

=

ii] P(Domestic/Yes) = 2/5.

iii] P (SUV / Yes) = 1/5.

$$P(X/Yes) = 3 \times 2 \times 1 = 6$$

 $5 \quad 5 \quad 5$
 $= 0.024$

i) P(Red/NO) = P(No/Red). P(Red)
P(NO)

10

ii] P(Domestic / No) = 3/5

$$P(x/N0) = 2 \times 3 \times 2 = 0.072 N0.$$

The predicted outcome for car = [Red, Domestic, SVV]

for 7es = 0.024

and No is 0.072.