

Urychlovací metody pro Ray-tracing

© 1996-2018 Josef Pelikán CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
http://cgg.mff.cuni.cz/~pepca/

Průsečík paprsku s 3D scénou

- spotřebuje většinu strojového času (až 95% podle Whitteda, 1980)
- scéna je složena z elementárních těles
 - koule, kvádr, válec, kužel, jehlan, polygon, ...
 - elementární tělesa v CSG
 - počet elementárních těles .. N
- klasický algoritmus testuje každý paprsek
 (do hloubky rekurze H) s každým element. tělesem
 - O(N) testů pro jeden paprsek

Klasifikace urychlovacích metod

- urychlení výpočtu "paprsek × scéna"
 - urychlení testu "paprsek × těleso"
 - » <u>obalová tělesa</u>, efektivní algoritmy výpočtu průsečíků
 - → menší počet testů "paprsek × těleso"
 - » <u>hierarchie obalových těles</u>, <u>dělení prostoru</u> (prostorové adresáře), <u>směrové techniky</u> (+2D adresáře)
- menší počet testovaných paprsků
 - » dynamické řízení rekurze, adaptivní vyhlazování
- **zobecněné paprsky** (dávající více informace)
 - » polygonální svazek paprsků, kužel, ..

Obalové těleso

Obalové těleso

- výpočet průsečíku je jednodušší než u původního tělesa
 - koule, kvádr v obecné nebo osově rovnoběžné poloze, průnik pásů, ..
- obal by měl co nejtěsněji obklopovat původní těleso (pro maximální urychlení)
- efektivita obalového tělesa záleží na vhodném kompromisu mezi a 2
 - celková asymptotická složitost zůstává O(N)

Efektivita obalového tělesa

Očekávaný **průměrný čas výpočtu** průsečíku paprsku s tělesem:

- I.. čas výpočtu průsečíku s původním tělesem
- B.. čas výpočtu průsečíku s **obalovým tělesem**
- p.. pravděpodobnost zásahu obalového tělesa paprskem (kolik procent paprsků protne obalové těleso)

- lepší aproximace tvaru původního tělesa
- sjednocení a průniky jednodušších obalových těles:

Aproximace konvexního obalu

- výhodné obalové těleso pro konvexní objekty
- průnik několika pásů ("k-dops")
 - pás je omezen dvěma rovnoběžnými rovinami
 - nutnost efektivního výpočtu konstant d a D:

$$\mathbf{d} = \min_{\left[x,y,z \right] \in T} \left\{ ax + by + cz \right\}, \quad \mathbf{D} = \max_{\left[x,y,z \right] \in T} \left\{ ax + by + cz \right\}$$

- výpočítám průsečíky paprsku se všemi obalovými tělesy
- protnutá obalová tělesa seřadím podle vzdálenosti od počátku paprsku
- objekty testuji v tomto pořadí (od nejbližších ke vzdálenějším)
- skončím, jestliže jsem našel průsečík a otestoval všechny objekty sahající před něj

Efektivní implementace

Speedup 2018 12 / 49

- v ideálním případě snižuje asymptotickou složitost na O(log N)
- vyplatí se zejména u dobře strukturovaných scén
 - množství dobře oddělených malých objektů
 - přirozená implementace v CSG reprezentaci (prořezávání CSG stromu)
- možnost automatické konstrukce hierarchie
 - inkrementální algoritmus
- v orientaci "AABB" je to přesně **R-tree** (Guttman, 1984)
 - viz databázové vyhledávací datové struktury

Speedup 2018

Efektivita hierarchie

$$K \cdot B + \sum_{i=1}^{K} p_i I_i \stackrel{?}{<} \sum_{i=1}^{K} I_i$$

- **B** .. čas výpočtu průsečíku s obalovým tělesem
- p_i .. pravděpodobnost zásahu i-tého obalového tělesa

I_i... čas výpočtu pro objekty uzavřené v i-tém obalovém tělese

Efektivita hierarchie

P(d), **P**_i(**d)** .. plocha průmětu tělesa ze směru **d**

S, S_i.. povrch tělesa

Pro jeden směr pohledu d:

$$\mathbf{p_i} = \mathbf{Pr}(\mathbf{z} \mathbf{a} \mathbf{s} \mathbf{a} \mathbf{h} \mathbf{C}_i \mid \mathbf{z} \mathbf{a} \mathbf{s} \mathbf{a} \mathbf{h} \mathbf{C}) = \frac{\mathbf{P_i}(\mathbf{d})}{\mathbf{P}(\mathbf{d})}$$

Pro všechny směry a **konvexní tělesa**:

$$p_i = \frac{\int P_i(d) dd}{\int P(d) dd} = \frac{S_i}{S}$$

Inkrementální konstrukce

- vytvořím prázdnou hierarchii (kořen stromu)
- vezmu nový objekt a přidám ho do kořene
 - opravím obalové těleso kořene
- vyberu nejvýhodnější možnost (v rámci obal.t.):
 - objekt bude <u>samostatný</u> (bez vlastního obalu)
 - objekt bude mít sám <u>nové obalové podtěleso</u>
 - objekt přidám do <u>existujícího obalového podtělesa</u>
- záleží na pořadí přidávání objektů!
 - setřídění podle 3D polohy a náhodné zamíchání

Hierarchické obalové systémy

- "Sphere tree" (Palmer, Grimsdale, 1995)
 - jednoduchý test i transformace, horší aproximace
- "AABB tree", "R-tree" (Held, Klosowski, Mitchell, '95)
 - jednoduchý test, složitější transformace
- "OBB tree" (Gottschalk, Lin, Manocha, 1996)
 - jednoduchá transformace, složitější test, slušná aproximace
- "K-dop tree" (Klosowski, Held, Mitchell, 1998)
 - složitější transformace a test, výborná aproximace

"Prořezávání" CSG stromu

- efektivní především pro subtraktivní množinové operace (průnik, rozdíl)
- primární obalová tělesa jsou přiřazena (omezeným)
 elementárním tělesům
 - velikost se většinou určuje analyticky
- obalová tělesa se pomocí množinových operací propagují směrem ke kořeni
- u argumentů subtraktivních operací se mohou obalová tělesa zmenšovat

Dělení prostoru (prostorové adresáře)

- uniformní dělení (stejně velké buňky)
 - + jednoduchý průchod
 - mnoho kroků výpočtu
 - velký objem dat
- neuniformní dělení (většinou adaptivní)
 - + méně kroků výpočtu
 - + menší objem dat
 - složitější implementace datové struktury i algoritmu procházení

Uniformní dělení prostoru (grid)

Průchod mřížkou (3D DDA)

Průchod sítí buněk (3D DDA)

- **paprsek**: $P_0 + t \cdot \overrightarrow{p}_1$ pro t > 0
- pro daný směr $\overrightarrow{\mathbf{p}}_1$ se předem spočítají **konstanty** \mathbf{Dx} , \mathbf{Dy} , \mathbf{Dz} :
 - vzdálenost mezi sousedními průsečíky paprsku se sítí rovnoběžných rovin (kolmých na osy X, Y, Z)
- pro bod P₀ se určí počáteční buňka [i, j, k] a hodnoty proměnných t, Lx, Ly, Lz:
 - parametr polopřímky t, vzdálenosti k nejbližším průsečíkům paprsku se stěnami

Průchod sítí buněk (3D DDA)

- zpracování buňky [i, j, k] (výpočet průsečíků)
- postup do sousední buňky:

```
    D = min {Lx,Ly,Lz}; /* předpoklad: D = Lx */
    Lx = Dx; Ly = Ly - D; Lz = Lz - D;
    i = i ± 1; /* podle znaménka P<sub>1x</sub> */
```

4 koncové podmínky:

- našel jsem nejbližší průsečík paprsku se scénou, a ten <u>leží</u>
 <u>v aktuální buňce</u>
- nová buňka leží mimo oblast scény

Neuniformní dělení prostoru

Geometrie adaptivního dělení

- oktantový strom s půlením stran
 - reprezentace pomocí ukazatelů, <u>implicitní reprezentace</u> nebo hašovací tabulkou (Glassner)
- ► **KD-strom** (Bentley, 1975) [dříve "osově orientovaný BSP"]
 - buňky se dělí v polovině, cyklicky se střídají směry dělení
 - buňky se dělí adaptivně, i směry dělení jsou adaptivní
- [obecný BSP strom]
 - dělicí roviny mají libovolnou orientaci

Oktantový strom podle Glassnera

Oktantový strom podle Glassnera

- jednotlivé buňky jsou hierarchicky očíslovány
 - kořen .. 1
 - jeho potomci .. **11** až **18**, .. atd.
 - <u>každý voxel</u> má přiřazen kód bez ohledu na to, zda je listem aktuálního oktantového stromu nebo ne
- skutečné listy stromu se ukládají do řídké hašovací tabulky
 - příklad hašovací fce: Kód mod VelikostTabulky

Průchod stromem (Glassner)

- bod ležící na paprsku .. [x, y, z]
 - umím pro něj najít kód voxelu .. [1 8]^k
- při konstrukci kódu hledám v hašovací tabulce všechny
 prefixy
 - nalezený prefix je listem obsahujícím bod [x, y, z]
- po zpracování buňky stromu pokračuji posunutím
 bodu [x, y, z] ve směru paprsku (P₁)
 - pokračuji opět lokalizací nového bodu, ...

KD-strom (statická varianta)

Kritéria adaptivního dělení

- omezení počtu těles i hloubky dělení
 - rozděl buňku, zasahuje-li do ní více než M těles (např.
 M = 1 .. 5)
 - maximální úroveň dělení je K (např. K = 3 .. 25)
- omezení počtu těles a spotřeby paměti místo omezení úrovně dělení:
 - dělení se ukončí při zaplnění vyhrazeného úseku paměti
 - při dělení je nutné postupovat do šířky (fronta kandidátů na dělení)

Průchod adaptivními strukturami

- posunuji se po paprsku a hledám sousední buňku vždy až od kořene (viz Glassnerova metoda)
- přípravná fáze: průchod stromem a rozdělení paprsku na intervaly
 - intervaly parametru t přiřazené jednotlivým buňkám, kterými budu procházet
- pomocné údaje v dat. strukturách (à la "finger tree")
 - ukazatele na sousední buňky (na stejné úrovni ve stromu)
- rekurzivní průchod do hloubky s haldou
 - seznam nejnadějnějších sektorů v haldě

Schránka ("mailbox")

Průsečík musí ležet v aktuální buňce (jinak ho odložím)

Abstraktní dělení prostoru

- není třeba testovat (ani procházet!) seznamy, které jsem již testoval
- seznam musím procházet až v takové buňce, do které zasahuje jiná (větší) množina těles
- buňky mohou sdílet shodné seznamy těles
 - otestované seznamy označuji zvláštním příznakem
 - procházím pouze **neoznačené** seznamy
 - na úrovni těles používám techniku schránek

Abstraktní dělení prostoru

Makrobuňky (M. Šrámek)

Směrové urychlovací techniky

- metody využívající směrové krychle:
- světelný buffer
 - urychluje stínovací paprsky k bodovým zdrojům
- koherence paprsků
 - urychluje všechny <u>sekundární paprsky</u>
- 5D klasifikace paprsků
- adresář v průmětně (předvýpočet viditelnosti)
 - urychluje pouze <u>primární paprsky</u>

Směrová krychle (adaptivní síť)

Směrová krychle

- orientována rovnoběžně s osami x, y, z
- jednotlivé stěny jsou rozděleny na buňky
 - uniformní nebo <u>adaptivní</u> dělení
 - každá buňka obsahuje <u>seznam</u> relevantních <u>objektů</u>
 (mohou být navíc setříděny vzestupně podle vzdálenosti od středu krychle)
- při uniformním dělení lze pro urychlení využít HW výpočtu viditelnosti (z-buffer)

Speedup 2018

Světelný buffer

- urychluje stínovací paprsky k bodovým světelným zdrojům
- do každého zdroje umístím směrovou krychli
 - spočítám potenciální viditelnost jednotlivých těles z místa světelného zdroje
 - některé buňky mohou být zcela zakryty 1 tělesem
- při výpočtu stínovacího paprsku beru v úvahu jen tělesa zaznamenaná v buňce směrové krychle pro příslušný směr

Koherence paprsků

Urychlovací algoritmus

- urychluje všechny sekundární paprsky
 - odražené, zalomené, stínovací
- předpokládám obalová tělesa tvaru koule
- směrové krychle umístím do středu každého obalového tělesa
 - v každé buňce krychle spočítám seznam zasahujících objektů a světelných zdrojů (s využitím koherenční nerovnosti)
 - seznamy mohou být setříděné podle vzdálenosti

5D klasifikace paprsků

- paprsky ve scéně mají 5 stupňů volnosti:
 - počátek P_0 [x, y, z]
 - směr [φ , θ]
- 5D hyperkrychle se rozdělí na buňky
 - každá buňka obsahuje seznam objektů, které mohou být paprskem z daného <u>svazku</u> ("beam") zasaženy
 - adaptivní dělení (slučování sousedních buněk se stejnými nebo podobnými seznamy)
- 6D varianta: urychlení výpočtu animační sekvence

počátek (2-3D) + směr (1D, 2D) = svazek

Adresář v průmětně

- urychluje primární paprsky
- průmětna se (adaptivně) rozdělí na buňky
 - v každé buňce zjistím potenciální viditelnost jednotlivých těles scény (spolu s pořadím)
 - některé buňky mohou být zcela zakryty jedním tělesem (obtížně se testuje – "vepsaná tělesa")
- robustní varianta algoritmu viditelnosti
 - může pro většinu pixelů bezpečně určit zasažené těleso

Zobecněné paprsky

- spočítám najednou více informace než f(x,y)
 - pro <u>vyhlazování</u> (odhad integrální střední hodnoty) nebo <u>měkké stíny</u> (podíl zastínění)
 - vždy musím obětovat obecnost scény
- různé tvary zobecněných paprsků
 - rotační nebo eliptický kužel, pravidelný jehlan
 - jehlan s <u>polygonálním průřezem</u> (scéna složená pouze z polygonů)

Polygonální scéna

Literatura

- A. Glassner: An Introduction to Ray Tracing, Academic Press, London 1989, 201-262
- A. Watt, M. Watt: Advanced Animation and Rendering Techniques, Addison-Wesley, Wokingham 1992, 233-248
- V. Havran: Heuristic Ray Shooting Algorithms, PhD práce, FEL ČVUT Praha, 2001
- **P. Konečný:** *Obalová tělesa v počítačové grafice*, diplomová práce, Masarykova univerzita, Brno 1998

Literatura II

- J. Klosowski, M. Held, J. Mitchell, H. Sowizral, K. Zikan: Efficient collision detection using bounding volume hierarchies of k-dops, IEEE Transactions on VaCG, 21–36, January-March 1998
- **H. Samet:** Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann, 2006
- **H. Samet:** The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1990