All-Pairs Shortest Paths

• Check if there is a better path from one vertex to other through each vertex

- we shall use a different dynamic—programming formulation to solve the all—pairs shortest—paths problem on a directed graph G = (V, E)
- runs in θ (V³) time
- negative—weight edges may be present, but we assume that there are no negative—weight cycles

- considers the intermediate vertices of a shortest path, where an intermediate vertex of a simple path $p = \langle v_1, v_2, ..., v_l \rangle$ is any vertex of p other than v_1 or v_l , that is, any vertex in the set $\{v_2, v_3, ..., v_{l-1}\}$
- If k is not an intermediate vertex of path p, then all intermediate vertices of path p are in the set {1, 2,..., k-1}

- Thus, a shortest path from vertex i to vertex j with all intermediate vertices in the set {1, 2,...,k −1} is also a shortest path from i to j with all intermediate vertices in the set {1, 2,...,k}
- If k is an intermediate vertex of path p, then we decompose p into $i \rightarrow^{p_1} k \rightarrow^{p_2} j$, as Figure 25.3 illustrates.

all intermediate vertices in $\{1, 2, ..., k-1\}$ all intermediate vertices in $\{1, 2, ..., k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

Figure 25.3 Path p is a shortest path from vertex i to vertex j, and k is the highest-numbered intermediate vertex of p. Path p_1 , the portion of path p from vertex i to vertex k, has all intermediate vertices in the set $\{1, 2, ..., k-1\}$. The same holds for path p_2 from vertex k to vertex j.

A recursive solution to the all—pairs shortest—paths problem

- we define a recursive formulation of shortest—path estimates that differs from the one in Section 25.1.
- Let $d^{(k)}_{ij}$ be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set $\{1, 2, ..., k\}$
- When k = 0, a path from vertex i to vertex j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all.

A recursive solution to the all–pairs shortest–paths problem

- Such a path has at most one edge, and hence $d^{(0)}_{ij} = w_{ij}$.
- Following the above discussion, we define $d^{(k)}_{ij}$ recursively by

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$
 (25.5)

• We can give a recursive formulation of $\Pi^{(k)}_{ij}$. When k = 0, a shortest path from i to j has no intermediate vertices at all.

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

A recursive solution to the all–pairs shortest–paths problem

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$
(25.7)

```
FLOYD-WARSHALL(W)
1 \quad n = W.rows
D^{(0)} = W
3 for k = 1 to n
         let D^{(k)} = (d_{ij}^{(k)}) be a new n \times n matrix
5 for i = 1 to n
           for j = 1 to n
                    d_{ij}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)
    return D^{(n)}
```


$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

- Iteration 1 Find path to all pair of vertices through vertex 1
- Fill cost of edges from 1 and into 1

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞				
3	∞				
4	2				
5	∞				

•
$$D^{(1)}_{2,3} = \min (D^{(0)}_{2,3}, D^{(0)}_{2,1} + D^{(0)}_{1,3}) = \min (\infty, \infty + 8)$$

$D^{(0)} =$	$ \begin{pmatrix} 1 & 0 \\ 2 & \infty \\ 3 & \infty \\ 4 & 2 \end{pmatrix} $	23 0 4 ∞	3 8 ∞ 0 −5	\bullet \int \int \int \int \int \int \int \in	5 -4 7 ∞ ∞	$\Pi^{(0)} = \begin{cases} NIL \\ NIL \\ NIL \\ 4 \\ NIL \end{cases}$	1 NIL 3 NIL	3 NIL NIL 4	NIL 2 NIL NIL	1 2 NIL NIL
	500	∞	-5 ∞	6	${\stackrel{\infty}{\circ}}$	t 4 NIL	NIL NIL	4 NIL	5	NIL /

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞		
3	∞		0		
4	2			0	
5	∞				0

•
$$D^{(1)}_{2,4} = \min (D^{(0)}_{2,4}, D^{(0)}_{2,1} + D^{(0)}_{1,4}) = \min (1, \infty + \infty)$$

$D^{(0)} =$	2 [∞] 3 [∞] 4 ²	23 0 4 ∞	3 8 ∞ 0 −5	\bigsize \int \int \int \int \int \int \int \int	5 -4 7 ∞ ∞	$\Pi^{(0)} = \frac{2}{8} \text{ NIL}$ 4	1 NIL 3 NIL	3 NIL NIL 4	NIL 2 NIL NIL	1 2 NIL NIL
	500	∞	∞	6	$\frac{\infty}{0}$	NIL	NIL	NIL	5	NIL /

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	
3	∞		0		
4	2			0	
5	∞				0

•
$$D^{(1)}_{2,5} = \min (D^{(0)}_{2,5}, D^{(0)}_{2,1} + D^{(0)}_{1,5}) = \min (7, \infty -4)$$

$D^{(0)} =$	$ \begin{pmatrix} 1 & 0 \\ 2 & \infty \\ 3 & \infty \\ 1 & 2 \end{pmatrix} $	23 0 4	3/8 ∞ 0 -5	\bigsigma_\infty \infty \inom{\infty} \infty \infty \infty \infty \infty \infty \infty \inft	-4 7 ∞	$\Pi^{(0)} = \begin{cases} NIL \\ NIL \\ NIL \\ 4 \\ NIL \end{cases}$	1 NIL 3	3 1 NIL NIL 4	NIL 2 NIL NIL	1 2 NIL
	4 2 5∞	∞	-5 ∞	0 6	$\binom{\infty}{0}$	4 NIL	NIL NIL	4 NIL	NIL 5	NIL NIL

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞		0		
4	2			0	
5	∞				0

•
$$D^{(1)}_{3,2} = \min (D^{(0)}_{3,2}, D^{(0)}_{3,1} + D^{(0)}_{1,2}) = \min (4, \infty + 3)$$

$D^{(0)} =$	2 [∞] 3 [∞] 4 ²	23 0 4 ∞	3/8 ∞ 0 −5	\text{\frac{\fin}}}}}}{\frac}\frac{	√4 7 ∞ ∞	$\Pi^{(0)} = \frac{1}{2} \begin{cases} \text{NIL} \\ \text{NIL} \\ \text{NIL} \\ 4 \\ \text{NIL} \end{cases}$	1 NIL 3 NIL	3 NIL NIL 4	NIL 2 NIL NIL	1 2 NIL NIL
	500	∞	-3 ∞	6	$\binom{\infty}{0}$	NIL	NIL	NIL	5	NIL /

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0		
4	2			0	
5	∞				0

•
$$D^{(1)}_{3,4} = \min (D^{(0)}_{3,4}, D^{(0)}_{3,1} + D^{(0)}_{1,4}) = \min (\infty, \infty + \infty)$$

$D^{(0)} =$	2 [∞] 3 [∞] 4 ²	23 0 4 ∞	3/8 ∞ 0 −5	\text{\frac{\fin}}}}}}{\frac}\frac{	√4 7 ∞ ∞	$\Pi^{(0)} = \frac{1}{2} \begin{cases} \text{NIL} \\ \text{NIL} \\ \text{NIL} \\ 4 \\ \text{NIL} \end{cases}$	1 NIL 3 NIL	3 NIL NIL 4	NIL 2 NIL NIL	1 2 NIL NIL
	500	∞	-3 ∞	6	$\binom{\infty}{0}$	NIL	NIL	NIL	5	NIL /

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	
4	2			0	
5	∞				0

•
$$D^{(1)}_{3.5} = \min (D^{(0)}_{3.5}, D^{(0)}_{3.1} + D^{(0)}_{1.5}) = \min (\infty, \infty -4)$$

$D^{(0)} =$	$\begin{pmatrix} 1 & 0 \\ 2 & \infty \\ 3 & \infty \\ 4 & 2 \end{pmatrix}$	23 0 4 ∞	3 8 ∞ 0 −5	\bigsize \int \int \int \int \int \int \int \int	-4 7 ∞ ∞	$\Pi^{(0)} = \begin{cases} NIL \\ NIL \\ NIL \\ 4 \\ NIL \end{cases}$	1 NIL 3 NIL	3 NIL NIL 4	NIL 2 NIL NIL	1 2 NIL NIL
	500	∞	-3 ∞	6	$\frac{\infty}{0}$	NIL	NIL	NIL	5	NIL /

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2			0	
5	∞				0

•
$$D^{(1)}_{4,2} = \min (D^{(0)}_{4,2}, D^{(0)}_{4,1} + D^{(0)}_{1,2}) = \min (\infty, 2 + 3)$$

$D^{(0)} =$	(1 0 2 ∞ 3 ∞	23 0 4	3/8 ∞ 0	₩ 0 1 ∞	-4 7 ∞	$\Pi^{(0)} = \frac{1}{2} \begin{cases} \text{NIL} \\ \text{NIL} \\ \text{NIL} \\ 4 \\ \text{NIL} \end{cases}$	2 1 NIL 3	3 NIL NIL	NIL 2 NIL	1 2 NIL
	4 2 5∞	∞	-5 ∞	0 6	$\binom{\infty}{0}$	4 NIL	NIL NIL	4 NIL	NIL 5	NIL NIL

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	5		0	
5	∞				0

•
$$D^{(1)}_{4,3} = \min (D^{(0)}_{4,3}, D^{(0)}_{4,1} + D^{(0)}_{1,3}) = \min (-5, 2 + 8)$$

$D^{(0)} =$	$ \begin{pmatrix} 1 & 0 \\ 2 & \infty \\ 3 & \infty \\ 1 & 2 \end{pmatrix} $	23 0 4	3/8 ∞ 0 -5	\bigsigma_\infty \infty \inom{\infty} \infty \infty \infty \infty \infty \infty \infty \inft	-4 7 ∞	$\Pi^{(0)} = \begin{cases} NIL \\ NIL \\ NIL \\ 4 \\ NIL \end{cases}$	1 NIL 3	3 1 NIL NIL 4	NIL 2 NIL NIL	1 2 NIL
	4 2 5∞	∞	-5 ∞	0 6	$\binom{\infty}{0}$	4 NIL	NIL NIL	4 NIL	NIL 5	NIL NIL

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	5	- 5	0	
5	∞				0

•
$$D^{(1)}_{4,5} = \min (D^{(0)}_{4,5}, D^{(0)}_{4,1} + D^{(0)}_{1,5}) = \min (\infty, 2-4)$$

$D^{(0)} =$	(1 0 2 ∞ 3 ∞ 4 2	23 0 4 ∞	3 8 ∞ 0 −5	1 ∞ 0	-4 7 ∞ ∞	$\Pi^{(0)} = \begin{cases} NIL \\ NIL \\ NIL \\ 4 \\ NIL \end{cases}$	1 NIL 3 NIL	3 NIL NIL 4	NIL 2 NIL NIL	1 2 NIL NIL
	500	∞	∞	6	0/	NIL	NIL	NIL	5	NIL /

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	5	- 5	0	-2
5	∞				0

•
$$D^{(1)}_{5,2} = \min (D^{(0)}_{5,2}, D^{(0)}_{5,1} + D^{(0)}_{1,2}) = \min (\infty, \infty + 3)$$

$D^{(0)} =$	$\begin{pmatrix} 1 & 0 \\ 2 & \infty \\ 3 & \infty \\ 4 & 2 \end{pmatrix}$	23 0 4 8	3/8 ∞ 0 −5	\bigsize \int \int \int \int \int \int \int \int	5 -4 7 ∞ ∞	$\Pi^{(0)} = \begin{cases} NIL \\ NIL \\ NIL \\ 4 \\ NIL \end{cases}$	1 NIL 3 NIL	3 NIL NIL 4	NIL 2 NIL NIL	1 2 NIL NIL
	4 2 5∞	∞	-5 ∞	0 6	${ \infty \atop 0 }$	4 NIL	NIL NIL	4 NIL	NIL 5	NIL NIL

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	5	- 5	0	- 2
5	∞	∞			0

•
$$D^{(1)}_{5,3} = \min (D^{(0)}_{5,3}, D^{(0)}_{5,1} + D^{(0)}_{1,3}) = \min (\infty, \infty + 8)$$

$D^{(0)} =$	$\begin{pmatrix} 1 & 0 \\ 2 & \infty \\ 3 & \infty \\ 4 & 2 \end{pmatrix}$	23 0 4 ∞	3 8 ∞ 0 −5	\bigsip \int \int \int \int \int \int \int \int	-4 7 ∞ ∞	$\Pi^{(0)} = 2 \begin{cases} \text{NIL} \\ \text{NIL} \\ \text{NIL} \\ \text{A} \\ \text{NIL} \end{cases}$	1 NIL 3 NIL	3 NIL NIL 4	NIL 2 NIL NIL	1 2 NIL NIL
	500	∞	∞	6	$\frac{\infty}{0}$	NIL	NIL	NIL	5	NIL /

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	5	- 5	0	-2
5	∞	∞	∞		0

•
$$D^{(1)}_{5,4} = \min (D^{(0)}_{5,4}, D^{(0)}_{5,1} + D^{(0)}_{1,4}) = \min (6, \infty + \infty)$$

$D^{(0)} =$	$\begin{pmatrix} 1 & 0 \\ 2 & \infty \\ 3 & \infty \\ 4 & 2 \end{pmatrix}$	23 0 4 ∞	3/8 ∞ 0 −5	\bigsip \int \int \int \int \int \int \int \int	-4 7 ∞ ∞	$\Pi^{(0)} = 2 \begin{cases} \text{NIL} \\ \text{NIL} \\ \text{NIL} \\ 4 \\ \text{NIL} \end{cases}$	1 NIL 3 NIL	3 NIL NIL 4	NIL 2 NIL NIL	1 2 NIL NIL
	500	∞	-5 ∞	6	${0 \choose 0}$	NIL A	NIL	4 NIL	5	NIL /

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	5	- 5	0	-2
5	∞	∞	∞	6	0

•
$$D^{(2)}_{1,3} = \min (D^{(1)}_{1,3}, D^{(1)}_{1,2} + D^{(1)}_{2,3}) = \min (8, 3 + \infty)$$

$$D^{(1)} = \begin{pmatrix} 0 & 23 & 8 & \infty & -4 \\ 1 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & \infty & \infty \\ 1 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 21 & 31 & \text{NIL} & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{SNIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8		
2	∞	0	∞	1	7
3		4	0		
4		5		0	
5		∞			0

•
$$D^{(2)}_{1,4} = \min (D^{(1)}_{1,4}, D^{(1)}_{1,2} + D^{(1)}_{2,4}) = \min (\infty, 3+1)$$

$$D^{(1)} = \begin{pmatrix} 0 & 23 & 8 & \infty & 4 \\ 2 & 0 & \infty & 1 & 7 \\ 3 & 0 & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 21 & 31 & \text{NIL} & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	
2	∞	0	∞	1	7
3		4	0		
4		5		0	
5		∞			0

•
$$D^{(2)}_{1,5} = \min (D^{(1)}_{1,5}, D^{(1)}_{1,2} + D^{(1)}_{2,5}) = \min (-4, 3+7)$$

$$D^{(1)} = \begin{pmatrix} 0 & 23 & 8 & \infty & -4 \\ 1 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & \infty & \infty \\ 1 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 21 & 31 & \text{NIL} & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{SNIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3		4	0		
4		5		0	
5		∞			0

•
$$D^{(2)}_{3,1} = \min (D^{(1)}_{3,1}, D^{(1)}_{3,2} + D^{(1)}_{2,1}) = \min (\infty, 4 + \infty)$$

$$D^{(1)} = \begin{pmatrix} 0 & 23 & 8 & \infty & -4 \\ 2 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 21 & 31 & \text{NIL} & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{SNIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0		
4		5		0	
5		∞			0

•
$$D^{(2)}_{3,4} = \min (D^{(1)}_{3,4}, D^{(1)}_{3,2} + D^{(1)}_{2,4}) = \min (\infty, 4+1)$$

$$D^{(1)} = \begin{pmatrix} 0 & 23 & 8 & \infty & -4 \\ 2 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & \infty & \infty \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 21 & 31 & \text{NIL} & 51 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 3 & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{SNIL} & \text{NIL} & \text{NIL} & 1 \\ \text{SNIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	
4		5		0	
5		∞			0

•
$$D^{(2)}_{3,5} = \min (D^{(1)}_{3,5}, D^{(1)}_{3,2} + D^{(1)}_{2,5}) = \min (\infty, 4+7)$$

$D^{(1)} =$	2 \infty \(\frac{1}{2} \infty \) 3 \infty \(\frac{1}{2} \)	² 3 0 4 5	38 ∞ 0 -5	‰ 1 ∞ 0	≤4 7 ∞ -2	$\Pi^{(1)} = \begin{pmatrix} 1 & \text{NIL} \\ 2 & \text{NIL} \\ 3 & \text{NIL} \\ 4 & 4 \\ 5 & \text{NIL} \end{pmatrix}$	² 1 NIL 3 1	31 NIL NIL 4	NIL 2 NIL NIL	51 2 NIL 1
	¥ 2 √∞	5 ∞	-5 ∞	0 6	$\binom{-2}{0}$	4 4 SNIL	1 NIL	4 NIL	NIL 5	$\frac{1}{\text{NIL}}$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4		5		0	
5		∞			0

•
$$D^{(2)}_{4,1} = \min (D^{(1)}_{4,1}, D^{(1)}_{4,2} + D^{(1)}_{2,1}) = \min (2, 5 + \infty)$$

$$D^{(1)} = \begin{pmatrix} 0 & 23 & 8 & \infty & -4 \\ 2 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 21 & 31 & \text{NIL} & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5		0	
5		∞			0

•
$$D^{(2)}_{4,3} = \min (D^{(1)}_{4,3}, D^{(1)}_{4,2} + D^{(1)}_{2,3}) = \min (-5, 5 + \infty)$$

$$D^{(1)} = \begin{pmatrix} 0 & 23 & 8 & \infty & -4 \\ 2 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 21 & 31 & \text{NIL} & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	- 5	0	
5		∞			0

•
$$D^{(2)}_{4,5} = \min (D^{(1)}_{4,5}, D^{(1)}_{4,2} + D^{(1)}_{2,5}) = \min (-2, 5+7)$$

$$D^{(1)} = \begin{pmatrix} 0 & 23 & 8 & \infty & -4 \\ 1 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & \infty & \infty \\ 1 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 21 & 31 & \text{NIL} & 51 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	- 5	0	-2
5		∞			0

•
$$D^{(2)}_{5,1} = \min (D^{(1)}_{5,1}, D^{(1)}_{5,2} + D^{(1)}_{2,1}) = \min (\infty, \infty + \infty)$$

$$D^{(1)} = \begin{pmatrix} 0 & 23 & 8 & \infty & -4 \\ 2 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 21 & 31 & \text{NIL} & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{SNIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	- 5	0	-2
5	∞	∞			0

•
$$D^{(2)}_{5,3} = \min (D^{(1)}_{5,3}, D^{(1)}_{5,2} + D^{(1)}_{2,3}) = \min (\infty, \infty + \infty)$$

$$D^{(1)} = \begin{pmatrix} 0 & 23 & 8 & \infty & -4 \\ 2 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 21 & 31 & \text{NIL} & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 3 & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{SNIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	- 5	0	-2
5	∞	∞	∞		0

•
$$D^{(2)}_{5,4} = \min (D^{(1)}_{5,4}, D^{(1)}_{5,2} + D^{(1)}_{2,4}) = \min (6, \infty + 1)$$

$$D^{(1)} = \begin{pmatrix} 0 & 23 & 8 & \infty & -4 \\ 2 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 31 & \text{NIL} & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{SNIL} & \text{NIL} & \text{NIL} & 1 \\ \text{SNIL} & \text{NIL} & \text{NIL} & 1 \\ \text{SNIL} & \text{NIL} & \text{NIL} & 1 \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	- 5	0	- 2
5	∞	∞	∞	6	0

•
$$D^{(3)}_{1,2} = \min (D^{(2)}_{1,2}, D^{(2)}_{1,3} + D^{(2)}_{3,2}) = \min (3, 8 + 4)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 23 & 38 & 4 & -4 \\ 2\infty & 0 & \infty & 1 & 7 \\ 3\infty & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 1 & 2 & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 4 & 1 & 4 & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8		
2		0	∞		
3	∞	4	0	5	11
4			- 5	0	
5			∞		0

•
$$D^{(3)}_{1,4} = \min (D^{(2)}_{1,4}, D^{(2)}_{1,3} + D^{(2)}_{3,4}) = \min (4, 8 + 13)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 2 & 3 & 8 & 4 & -4 \\ 2 & 0 & 0 & \infty & 1 & 7 \\ 3 & 0 & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 1 & 2 & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 4 & 1 & 4 & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	
2		0	∞		
3	∞	4	0	5	11
4			- 5	0	
5			∞		0

•
$$D^{(3)}_{1,5} = \min (D^{(2)}_{1,5}, D^{(2)}_{1,5} + D^{(2)}_{3,5}) = \min (-4, 8+11)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 2 & 3 & 8 & 4 & -4 \\ 2 & 0 & 0 & \infty & 1 & 7 \\ 3 & 0 & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 1 & 2 & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 4 & 1 & 4 & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2		0	∞		
3	∞	4	0	5	11
4			- 5	0	
5			∞		0

•
$$D^{(3)}_{2,1} = \min (D^{(2)}_{2,1}, D^{(2)}_{2,3} + D^{(2)}_{3,1}) = \min (\infty, \infty + \infty)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 2 & 3 & 8 & 4 & -4 \\ 2 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 1 & 2 & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞		
3	∞	4	0	5	11
4			- 5	0	
5			∞		0

•
$$D^{(3)}_{2,4} = \min (D^{(2)}_{2,4}, D^{(2)}_{2,3} + D^{(2)}_{3,4}) = \min (1, \infty + 5)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 2 & 3 & 8 & 4 & -4 \\ 2 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 1 & 2 & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	
3	∞	4	0	5	11
4			- 5	0	
5			∞		0

•
$$D^{(3)}_{2,5} = \min (D^{(2)}_{2,5}, D^{(2)}_{2,3} + D^{(2)}_{3,5}) = \min (7, \infty + 11)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 23 & 38 & 4 & -4 \\ 2\infty & 0 & \infty & 1 & 7 \\ 3\infty & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 1 & 2 & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 4 & 1 & 4 & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4			- 5	0	
5			∞		0

•
$$D^{(3)}_{3,1} = \min (D^{(2)}_{3,1}, D^{(2)}_{3,2} + D^{(2)}_{2,1}) = \min (4, \infty + 3)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 23 & 8 & 4 & -4 \\ 2\infty & 0 & \infty & 1 & 7 \\ 2\infty & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 2 & 1 \\ 2 & NIL & NIL & NIL & 2 & 2 \\ 3 & NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

•
$$D^{(3)}_{3,4} = \min (D^{(2)}_{3,4}, D^{(2)}_{3,1} + D^{(2)}_{1,4}) = \min (\infty, \infty + \infty)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 2 & 3 & 8 & 4 & -4 \\ 2 & 0 & 0 & \infty & 1 & 7 \\ 3 & 0 & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 2 & 1 \\ 2 & NIL & NIL & NIL & 2 & 2 \\ 3 & NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

•
$$D^{(3)}_{3,5} = \min (D^{(2)}_{3,5}, D^{(2)}_{3,1} + D^{(2)}_{1,5}) = \min (\infty, \infty -4)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 2 & 3 & 8 & 4 & -4 \\ 2 & 0 & 0 & \infty & 1 & 7 \\ 3 & 0 & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & NIL & 1 & 1 & 2 & 1 \\ 2 & NIL & NIL & NIL & 2 & 2 \\ 3 & NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

•
$$D^{(3)}_{4,1} = \min (D^{(2)}_{4,1}, D^{(2)}_{4,2} + D^{(2)}_{2,1}) = \min (\infty, 2 + 3)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 2 & 3 & 8 & 4 & -4 \\ 2 & 0 & 0 & \infty & 1 & 7 \\ 3 & 0 & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & NIL & 1 & 2 & 1 \\ 2 & NIL & NIL & NIL & 2 & 2 \\ 3 & NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

•
$$D^{(3)}_{4,3} = \min (D^{(2)}_{4,3}, D^{(2)}_{4,2} + D^{(2)}_{2,3}) = \min (-5, 2 + 8)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 2 & 3 & 8 & 4 & -4 \\ 2 & 0 & 0 & \infty & 1 & 7 \\ 3 & 0 & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

•
$$D^{(3)}_{4,5} = \min (D^{(2)}_{4,5}, D^{(2)}_{4,2} + D^{(2)}_{2,5}) = \min (\infty, 2-4)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 2 & 3 & 8 & 4 & -4 \\ 2 & 0 & \infty & 1 & 7 \\ 3 & 0 & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 3 & 1 & 1 & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

•
$$D^{(3)}_{5,1} = \min (D^{(2)}_{5,1}, D^{(2)}_{5,2} + D^{(2)}_{2,1}) = \min (\infty, \infty + 3)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 23 & 8 & 4 & -4 \\ 2\infty & 0 & \infty & 1 & 7 \\ 2\infty & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & 1 & 1 & 2 & 1 \\ 2 & NIL & NIL & NIL & 2 & 2 \\ 3 & NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

•
$$D^{(3)}_{5,3} = \min (D^{(2)}_{5,3}, D^{(2)}_{5,2} + D^{(2)}_{2,3}) = \min (\infty, \infty + 8)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 2 & 3 & 8 & 4 & -4 \\ 2 & 0 & 0 & \infty & 1 & 7 \\ 3 & 0 & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 1 & 2 & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

•
$$D^{(3)}_{5,4} = \min (D^{(2)}_{5,4}, D^{(2)}_{5,2} + D^{(2)}_{2,4}) = \min (6, \infty + \infty)$$

$$D^{(2)} = \begin{pmatrix} 1 & 0 & 2 & 3 & 8 & 4 & -4 \\ 2 & \infty & 0 & \infty & 1 & 7 \\ 3 & 0 & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & NIL & NIL & NIL & 2 & 2 \\ 3 & NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

•
$$D^{(4)}_{1,2} = \min (D^{(3)}_{1,2}, D^{(3)}_{1,4} + D^{(3)}_{4,2}) = \min (\infty, \infty + 8)$$

•
$$D^{(4)}_{1,3} = \min (D^{(3)}_{1,3}, D^{(3)}_{1,4} + D^{(3)}_{4,3}) = \min (1, \infty + \infty)$$

•
$$D^{(4)}_{1,5} = \min (D^{(3)}_{1,5}, D^{(3)}_{1,2} + D^{(3)}_{2,5}) = \min (7, \infty -4)$$

•
$$D^{(4)}_{3,1} = \min (D^{(3)}_{3,1}, D^{(3)}_{3,2} + D^{(3)}_{2,1}) = \min (4, \infty + 3)$$

•
$$D^{(4)}_{3,4} = \min (D^{(3)}_{3,4}, D^{(3)}_{3,1} + D^{(3)}_{1,4}) = \min (\infty, \infty + \infty)$$

•
$$D^{(4)}_{3,5} = \min (D^{(3)}_{3,5}, D^{(3)}_{3,1} + D^{(3)}_{1,5}) = \min (\infty, \infty -4)$$

•
$$D^{(4)}_{4,1} = \min (D^{(3)}_{4,1}, D^{(3)}_{4,2} + D^{(3)}_{2,1}) = \min (\infty, 2 + 3)$$

•
$$D^{(4)}_{4,3} = \min (D^{(3)}_{4,3}, D^{(3)}_{4,2} + D^{(3)}_{2,3}) = \min (-5, 2 + 8)$$

•
$$D^{(4)}_{4,5} = \min (D^{(3)}_{4,5}, D^{(3)}_{4,2} + D^{(3)}_{2,5}) = \min (\infty, 2-4)$$

$$D^{(3)} = \underbrace{\begin{smallmatrix} 1 & 0 & 2 & 3 & 38 & 4 & 54 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{smallmatrix}}_{5} \Pi^{(3)} = \underbrace{\begin{smallmatrix} 1 & \text{NIL} & 2 & 1 & 42 & 51 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 5 & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{smallmatrix}}_{5}$$

•
$$D^{(4)}_{5,1} = \min (D^{(3)}_{5,1}, D^{(3)}_{5,2} + D^{(3)}_{2,1}) = \min (\infty, \infty + 3)$$

•
$$D^{(4)}_{5,3} = \min (D^{(3)}_{5,3}, D^{(3)}_{5,2} + D^{(3)}_{2,3}) = \min (\infty, \infty + 8)$$

$$D^{(3)} = \underbrace{\begin{smallmatrix} 1 & 0 & 2 & 3 & 3 & 4 & 5 & 4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & \infty & 6 & 0 \end{smallmatrix}}_{5} \Pi^{(3)} = \underbrace{\begin{smallmatrix} 1 & \text{NIL} & 2 & 1 & 4 & 2 & 5 & 1 \\ 2 & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 & 2 \\ 3 & \text{NIL} & 3 & \text{NIL} & 2 & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 & 3 & 3 & 4 &$$

•
$$D^{(4)}_{5,4} = \min (D^{(3)}_{5,4}, D^{(3)}_{5,2} + D^{(3)}_{2,4}) = \min (6, \infty + \infty)$$

•
$$D^{(5)}_{1,2} = \min (D^{(4)}_{1,2}, D^{(4)}_{1,3} + D^{(4)}_{3,2}) = \min (\infty, \infty + 8)$$

$$D^{(4)} = \begin{pmatrix} 0 & 23 & -1 & 4 & -4 \\ 23 & 0 & -4 & 1 & -1 \\ 37 & 4 & 0 & 5 & 3 \\ 42 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} NIL & 1 & 34 & 2 & 51 \\ 2 & 4 & NIL & 4 & 2 & 1 \\ 3 & 4 & 3 & NIL & 2 & 1 \\ 4 & 4 & 3 & 4 & NIL & 1 \\ 5 & 4 & 3 & 4 & 5 & NIL \end{pmatrix}$$

•
$$D^{(5)}_{1,4} = \min (D^{(4)}_{1,4}, D^{(4)}_{1,2} + D^{(4)}_{2,4}) = \min (1, \infty + \infty)$$

$$D^{(4)} = \begin{pmatrix} 1 & 0 & 2 & 3 & -1 & 4 & -4 \\ 2 & 3 & 0 & -4 & 1 & -1 \\ 3 & 7 & 4 & 0 & 5 & 3 \\ 4 & 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 3 & 4 & 7 & 2 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

•
$$D^{(5)}_{1,5} = \min (D^{(4)}_{1,5}, D^{(4)}_{1,2} + D^{(4)}_{2,5}) = \min (7, \infty -4)$$

$$D^{(4)} = \begin{pmatrix} 10 & 23 & -1 & 4 & -4 \\ 23 & 0 & -4 & 1 & -1 \\ 37 & 4 & 0 & 5 & 3 \\ 42 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 3 & 4 & 72 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

•
$$D^{(5)}_{3,1} = \min (D^{(4)}_{3,1}, D^{(4)}_{3,2} + D^{(4)}_{2,1}) = \min (4, \infty + 3)$$

$$D^{(4)} = \begin{pmatrix} 1 & 0 & 2 & 3 & -1 & 4 & -4 \\ 2 & 3 & 0 & -4 & 1 & -1 \\ 3 & 7 & 4 & 0 & 5 & 3 \\ 4 & 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 3 & 4 & 72 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

•
$$D^{(5)}_{3,4} = \min (D^{(4)}_{3,4}, D^{(4)}_{3,1} + D^{(4)}_{1,4}) = \min (\infty, \infty + \infty)$$

$$D^{(4)} = \begin{pmatrix} 1 & 0 & 2 & 3 & -1 & 4 & -4 \\ 2 & 3 & 0 & -4 & 1 & -1 \\ 3 & 7 & 4 & 0 & 5 & 3 \\ 4 & 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 3 & 4 & 72 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

•
$$D^{(5)}_{3,5} = \min (D^{(4)}_{3,5}, D^{(4)}_{3,1} + D^{(4)}_{1,5}) = \min (\infty, \infty -4)$$

$$D^{(4)} = \begin{pmatrix} 1 & 0 & 2 & 3 & -1 & 4 & -4 \\ 2 & 3 & 0 & -4 & 1 & -1 \\ 3 & 7 & 4 & 0 & 5 & 3 \\ 4 & 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 3 & 4 & 72 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

•
$$D^{(5)}_{4,1} = \min (D^{(4)}_{4,1}, D^{(4)}_{4,2} + D^{(4)}_{2,1}) = \min (\infty, 2 + 3)$$

$$D^{(4)} = \begin{pmatrix} 10 & 23 & -1 & 4 & -4 \\ 23 & 0 & -4 & 1 & -1 \\ 37 & 4 & 0 & 5 & 3 \\ 42 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 3 & 4 & 72 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

•
$$D^{(5)}_{4,3} = \min (D^{(4)}_{4,3}, D^{(4)}_{4,2} + D^{(4)}_{2,3}) = \min (-5, 2 + 8)$$

$$D^{(4)} = \begin{pmatrix} 1 & 0 & 2 & 3 & -1 & 4 & -4 \\ 2 & 3 & 0 & -4 & 1 & -1 \\ 3 & 7 & 4 & 0 & 5 & 3 \\ 4 & 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 3 & 4 & 72 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

•
$$D^{(5)}_{4,5} = \min (D^{(4)}_{4,5}, D^{(4)}_{4,2} + D^{(4)}_{2,5}) = \min (\infty, 2-4)$$

$$D^{(4)} = \begin{pmatrix} 1 & 0 & 2 & 3 & -1 & 4 & -4 \\ 2 & 3 & 0 & -4 & 1 & -1 \\ 3 & 7 & 4 & 0 & 5 & 3 \\ 42 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 3 & 4 & 72 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

•
$$D^{(5)}_{5,1} = \min (D^{(4)}_{5,1}, D^{(4)}_{5,2} + D^{(4)}_{2,1}) = \min (\infty, \infty + 3)$$

$$D^{(4)} = \begin{pmatrix} 1 & 0 & 2 & 3 & -1 & 4 & -4 \\ 2 & 3 & 0 & -4 & 1 & -1 \\ 3 & 7 & 4 & 0 & 5 & 3 \\ 4 & 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 3 & 4 & 72 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

•
$$D^{(5)}_{5,3} = \min (D^{(4)}_{5,3}, D^{(4)}_{5,2} + D^{(4)}_{2,3}) = \min (\infty, \infty + 8)$$

$$D^{(4)} = \begin{pmatrix} 1 & 0 & 2 & 3 & -1 & 4 & -4 \\ 2 & 3 & 0 & -4 & 1 & -1 \\ 3 & 7 & 4 & 0 & 5 & 3 \\ 4 & 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 3 & 4 & 72 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

•
$$D^{(5)}_{5,4} = \min (D^{(4)}_{5,4}, D^{(4)}_{5,2} + D^{(4)}_{2,4}) = \min (6, \infty + \infty)$$

$$D^{(4)} = \begin{pmatrix} 10 & 23 & -1 & 4 & -4 \\ 23 & 0 & -4 & 1 & -1 \\ 37 & 4 & 0 & 5 & 3 \\ 42 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} 1 & \text{NIL} & 1 & 3 & 4 & 72 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 4 & 3 & 4 & \text{NIL} & 1 \\ 5 & 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 1 & 2 & 3 & 1 & 5 \\ 0 & 1 & -3 & 2 & -4 \\ 23 & 0 & -4 & 1 & -1 \\ 37 & 4 & 0 & 5 & 3 \\ 142 & -1 & -5 & 0 & -2 \\ 58 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} 1 & \text{NIL} & 3 & 4 & 5 & 1 \\ 2 & 4 & \text{NIL} & 4 & 2 & 1 \\ 3 & 4 & 3 & \text{NIL} & 2 & 1 \\ 44 & 3 & 4 & \text{NIL} & 1 \\ 54 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

- Iteration 1 Find path to all pair of vertices through vertex 1
- Fill cost of edges from 1 and into 1

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞				
3	∞				
4	2				
5	∞				

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$