## Week 9 Recitation

### Potential Function and Second Derivative

Yahoo

UM-SJTU Joint Institu(te

Summer 2017

- Potential Function
- Second Derivative

## Gradient

#### Definition

The transpose of the Jacobian is the gradient

$$\nabla f(x) := (J_f(x))^T = \begin{pmatrix} \frac{\partial f}{\partial x_1} |_{x} \\ \vdots \\ \frac{\partial f}{\partial x_n} |_{x} \end{pmatrix}$$

## Gradient

#### Definition

The transpose of the Jacobian is the gradient

$$\nabla f(x) := (J_f(x))^T = \begin{pmatrix} \frac{\partial f}{\partial x_1} |_{x} \\ \vdots \\ \frac{\partial f}{\partial x_n} |_{x} \end{pmatrix}$$

#### Comment.

The gradient acts on a map from  $\mathbb{R}^n$  to  $\mathbb{R}$ .

### Definition

 $h \in \mathbb{R}^n$ , ||h|| = 1, the directional derivative is

$$D_h f|_{x} := \frac{d}{dt} f(x + th) \Big|_{t=0}.$$

#### Definition

 $h \in \mathbb{R}^n$ , ||h|| = 1, the directional derivative is

$$D_h f|_{x} := \frac{d}{dt} f(x + th) \Big|_{t=0}.$$

### Question.

Calculate the directional derivative of function  $f(x_1, x_2) = x_1^2 + x_2^2$ 

### Question.

Calculate the directional derivative of function  $f(x_1, x_2) = x_1^2 + x_2^2$ 

#### Solution.

$$D_h f \bigg|_{x} = \frac{d}{dt} f(x+th) \bigg|_{t=0}$$

$$= \frac{d}{dt} [(x_1 + th_1)^2 + (x_2 + th_2)^2] \bigg|_{t=0}$$

$$= 2x_1 h_1 + 2x_2 h_2$$

Comment.

$$D_h f \bigg|_{x} = \langle \nabla f, h \rangle$$

Comment.

$$D_h f \bigg|_{X} = \langle \nabla f, h \rangle$$

Solution.

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right) = (2x_1, 2x_2)$$

$$D_h f \bigg|_{x} = (2x_1, 2x_2) \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$
$$= 2x_1 h_1 + 2x_2 h_2$$

## Normal Derivative

#### Definition

Normal derivative is directional derivative along the normal vector direction of a curve

$$\left. \frac{\partial f}{\partial n} \right|_{p} := D_{N(p)} f|_{p}$$

## Normal Derivative

### Definition

Normal derivative is directional derivative along the normal vector direction of a curve

$$\left. \frac{\partial f}{\partial n} \right|_{p} := D_{N(p)} f|_{p}$$

### Question.

Find the normal derivative of function  $f(x_1, x_2) = x_1^2 + x_2^2$  on the curve  $\{(x_1, x_2) \in \mathbb{R}^2 : x_2 = x_1^2\}$ 

## Normal Derivative

#### Question.

Find the normal derivative of function  $f(x_1, x_2) = x_1^2 + x_2^2$  on the curve  $\{(x_1, x_2) \in \mathbb{R}^2 : x_2 = x_1^2\}$ 

### Solution.

Let  $\gamma(t)=(t,t^2)$ . The normal vector of function  $f(x_1,x_2)=x_1^2+x_2^2$  on the curve  $\{(x_1,x_2)\in\mathbb{R}^2:x_2=x_1^2\}$  is

$$N \circ \gamma(t) = \frac{(T \circ \gamma)'(t)}{\|(T \circ \gamma)'(t)\|} = \frac{1}{\sqrt{1+4t^2}} \begin{pmatrix} -2t \\ 1 \end{pmatrix}$$

At a point  $p = \gamma(t)$  on C the normal derivative is hence

$$\left. \frac{\partial f}{\partial t} \right|_{\gamma(t)} = \langle \nabla f(\gamma(t)), N \circ \gamma(t) \rangle = \frac{-2t^2}{\sqrt{1+4t^2}}$$

## Gradient

•  $\nabla f(x)$  points in the direction of the greatest directional derivative of f at x.

$$D_h f \bigg|_{x} = \langle \nabla f, h \rangle = |\nabla f(x)| \cos \angle \langle \nabla f, h \rangle$$

•  $\nabla f(x)$  is perpendicular to the contour line of f at x.

# Tangent Plane to the Graph of a Function

2.4.6. Definition. Let  $\Omega \subset \mathbb{R}^n$  be open and  $f: \Omega \to \mathbb{R}$  differentiable at  $x_0 \in \Omega$ . Then the equation

$$x_{n+1} = Tf(x; x_0),$$
  $x = (x_1, \dots, x_n) \in \mathbb{R}^n,$ 

defines the tangent plane to the graph  $\Gamma(f) \in \mathbb{R}^n \times \mathbb{R}$  of f at the point  $(x_0, f(x_0)) \in \mathbb{R}^{n+1}$ .

# Tangent Plane to the Graph of a Function

The tangent plane of a function  $f: \mathbb{R}^2 \to \mathbb{R}$  at  $(x_0, y_0)$  is given by

$$z = f(x_0, y_0) + \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right) \left(\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}\right)$$
$$= f(x_0, y_0) + (x - x_0)\frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0)\frac{\partial f}{\partial y}(x_0, y_0)$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ f(x_0, y_0) \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ \frac{\partial f}{\partial x}(x_0, y_0) \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix},$$

which defines a plane in  $\mathbb{R}^3$ . The vectors

$$t_1 := egin{pmatrix} 1 \ 0 \ rac{\partial f}{\partial x}(x_0,y_0) \end{pmatrix}$$
 and  $t_2 := egin{pmatrix} 0 \ 1 \ rac{\partial f}{\partial y}(x_0,y_0) \end{pmatrix}$ 

# Normal Vector to the Graph of a Function

we can find a vector orthogonal to the tangent plane by taking the vector product

$$n = \begin{pmatrix} 1 \\ 0 \\ \frac{\partial f}{\partial x} \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ \frac{\partial f}{\partial y} \end{pmatrix} = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y} \end{pmatrix}$$
$$= \begin{pmatrix} -\frac{\partial f}{\partial x} \\ -\frac{\partial f}{\partial y} \\ 1 \end{pmatrix}$$

# Tangent Plane to the Graph of a Function

### Example

Find the tangent plane and normal line of the curve at point (1,2,6)

$$f(x,y) = 4x^2 + y$$

# Tangent Plane to the Graph of a Function

### Solution.

The partial derivative of f over x and y at (1,2) is

$$\left. \frac{\partial f}{\partial x} (1,2) = 8x \right|_{x=1} = 8$$

$$\left. \frac{\partial f}{\partial x}(1,2) = 1 \right|_{y=2} = 1$$

The tangent plane is 
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 8 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Normal vector is 
$$\begin{pmatrix} -\frac{\partial f}{\partial x}(1,2) \\ -\frac{\partial f}{\partial x}(1,2) \\ 1 \end{pmatrix} = \begin{pmatrix} -8 \\ -1 \\ 1 \end{pmatrix}$$

- Potential Function
- Second Derivative

## The Second Derivative

2.5.1. Definition. Let X,V be finite-dimensional normed vector spaces and  $\Omega\subset X$  an open set. A function  $f\colon\Omega\to V$  is said to be *twice differentiable* at  $x\in\Omega$  if

- ▶ f is differentiable in an open ball  $B_{\varepsilon}(x)$  around x and
- ▶ the function  $Df: B_{\varepsilon}(x) \to \mathcal{L}(X, V)$  is differentiable at x.

We say that f is twice differentiable on  $\Omega$  if f is twice differentiable at every  $x \in \Omega$ .

## The Second Derivative

2.5.1. Definition. Let X,V be finite-dimensional normed vector spaces and  $\Omega\subset X$  an open set. A function  $f\colon\Omega\to V$  is said to be *twice differentiable* at  $x\in\Omega$  if

- f is differentiable in an open ball  $B_{\varepsilon}(x)$  around x and
- ▶ the function  $Df: B_{\varepsilon}(x) \to \mathcal{L}(X, V)$  is differentiable at x.

We say that f is twice differentiable on  $\Omega$  if f is twice differentiable at every  $x \in \Omega$ .

#### Comment.

The derivative of Df (if it exists) is a map

$$D(Df) =: D^2 f: \Omega \to \mathcal{L}(X, \mathcal{L}(X, V)).$$

## Hessian

The Hessian of f is

$$D(\nabla f)|_{X} = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} \Big|_{X} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} \Big|_{X} & \dots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \Big|_{X} \\ \vdots & \vdots & & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \Big|_{X} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \Big|_{X} & \dots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}} \Big|_{X} \end{pmatrix} \in \mathsf{Mat}(n \times n; \mathbb{R})$$

## Hessian

The Hessian of f is

$$D(\nabla f)|_{X} = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} \Big|_{X} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} \Big|_{X} & \dots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \Big|_{X} \\ \vdots & \vdots & & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \Big|_{X} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \Big|_{X} & \dots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}} \Big|_{X} \end{pmatrix} \in \mathsf{Mat}(n \times n; \mathbb{R})$$

$$D^{2}f|_{x}h = D((\cdot)^{T} \circ \nabla f(x))h = D(\cdot)^{T}|_{\nabla f(x)} \circ D(\nabla f)|_{x}h$$
  
=  $(\cdot)^{T} \circ D(\nabla f)|_{x}h = (\operatorname{Hess} f(x)h)^{T}.$ 

$$(D^2 f|_{x}h)\tilde{h} = (\operatorname{Hess} f(x)h)^T \tilde{h} = \langle \operatorname{Hess} f(x)h, \tilde{h} \rangle$$

$$D^2 f|_{X} \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \qquad (h, \tilde{h}) \mapsto \langle \operatorname{Hess} f(x)h, \tilde{h} \rangle$$

# The Second Derivative as a Bilinear Map

#### Recall that

The derivative of Df (if it exists) is a map

$$D(Df) =: D^2f: \Omega \to \mathcal{L}(X, \mathcal{L}(X, V)).$$

Let

$$L \in \mathcal{L}(X, \mathcal{L}(X, V))$$

Then

$$Lx_1 \in \mathcal{L}(X, V)$$
  
 $(Lx_1)(x_2) \in V.$ 

# The Second Derivative as a Bilinear Map

To 
$$L \in \mathcal{L}(X,\mathcal{L}(X,V))$$
 we can associate a map  $\widetilde{L}\colon X\times X\to V$  
$$\widetilde{L}(x_1,x_2):=(Lx_1)(x_2)$$

We can check this map is bilinear

$$\widetilde{L}(x_1, x_2 + x_2') = (Lx_1)(x_2 + x_2') = (Lx_1)(x_2) + (Lx_1)(x_2')$$

$$= \widetilde{L}(x_1, x_2) + \widetilde{L}(x_1, x_2'),$$

$$L(x_1, \lambda x_2) = (Lx_1)(\lambda x_2) = \lambda(Lx_1)(x_2) = \lambda \widetilde{L}(x_1, x_2)$$

because  $Lx_1 \in \mathcal{L}(X, V)$  is linear. Furthermore, since  $L \in \mathcal{L}(X, \mathcal{L}(X, V))$ ,

$$\widetilde{L}(x_1 + x_1', x_2) = (L(x_1 + x_1'))(x_2) = (Lx_1 + Lx_1')(x_2) 
= (Lx_1)(x_2) + (Lx_1')(x_2) = \widetilde{L}(x_1, x_2) + \widetilde{L}(x_1', x_2), 
\widetilde{L}(\lambda x_1, x_2) = (\lambda Lx_1)(x_2) = \lambda (Lx_1)(x_2) = \lambda \widetilde{L}(x_1, x_2).$$

# Multilinear Maps

The set of multilinear maps from X to V is denoted by

$$\mathcal{L}^{(n)}(X,V) := \Big\{L \colon X \times \dots \times X \to V \colon L \text{ linear in each component}\Big\}.$$

Example. Let  $X = \mathbb{R}^n$  and  $V = \mathbb{R}$ . Then we have seen that

$$\mathcal{L}^{(2)}(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}) \cong \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R})).$$

We know that  $\mathcal{L}(\mathbb{R}^n,\mathbb{R})=(\mathbb{R}^n)^*\cong\mathbb{R}^n$ , so we have

$$\mathcal{L}^{(2)}(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}) \cong \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n) \cong \mathsf{Mat}(n \times n, \mathbb{R}).$$

# Multilinear Maps

Suppose

$$A \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}))$$

then

$$\mathsf{Mat}(n \times n, \mathbb{R}) \cong \mathcal{L}^{(2)}(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R})$$
 via  $A \leftrightarrow \langle \cdot, A(\cdot) \rangle$ 

## Schwarz's Theorem

2.5.5. Schwarz's Theorem. Let X, V be normed vector spaces and  $\Omega \subset X$  an open set. Let  $f \in C^2(\Omega, V)$ . Then  $D^2 f|_X \in \mathcal{L}^{(2)}(X \times X, V)$  is symmetric for all  $X \in \Omega$ , i.e.,

$$D^2 f(u, v) = D^2 f(v, u),$$
 for all  $u, v \in X$ .

which means

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

