1. Неориентированные графы, степени, изоморфизм

- **Граф** (математическая структура для представления связей между объектами):
 - Обозначается как $G = (X, \Gamma)$.
 - Состоит из:
 - 1° Непустое множество X (множество всех вершин графа).
 - 2° Отображение Γ множества X в X (правило, определяющее связи между вершинами).
- Элементы графа:
 - **Вершина** (точка, узел графа): Каждый элемент множества X.
 - Дуга (направленное ребро): Пара элементов (x, y), где $y \in \Gamma x$ (показывает направленную связь от $x \times y$).
- Множество дуг (все связи в графе):
- Обозначается через U (полный набор всех связей).
- Дуги обозначаются буквами α , β , ω (при необходимости с индексами).

Определение. Степень вершины v_i (обозн. d_i или $\deg v_i$) -- число рёбер, инцидентных v_i (количество связей, примыкающих к вершине).

Теорема 2.1 (Эйлера) (фундаментальное свойство графов). Сумма степеней вершин графа равна удвоенному числу рёбер:

$$\sum_{i} \deg v_i = 2q$$

Следствие 2.1(а). Число вершин с нечётными степенями всегда чётно (важно для существования эйлеровых путей).

Ограничения степеней:

В (p,q)-графе (где p -- число вершин, q -- число рёбер): $0 \le \deg v \le p-1$ для любой вершины v

Обозначения:

- $\delta(G) = \min \deg G$ -- минимальная степень (наименьшее число связей у вершины)
- $\Delta(G) = \max \deg G$ -- максимальная степень (наибольшее число связей у вершины)

Определение. Регулярный (однородный) граф (все вершины имеют одинаковое число связей): $\delta(G) = \Delta(G) = r = \deg G$

Классификация регулярных графов (по количеству связей у каждой вершины):

- Степень 0: граф без рёбер (изолированные точки)
- Степень 1: компоненты -- одиночные рёбра (пары связанных вершин)
- Степень 2: компоненты -- циклы (каждая вершина связана ровно с

двумя другими)

• Степень 3: кубические графы (каждая вершина имеет ровно три связи)

Следствие 2.1(б). Каждый кубический граф имеет чётное число вершин (следует из теоремы Эйлера).

Специальные вершины:

- Изолированная: $\deg v = 0$ (вершина без связей)
- Концевая (висячая): $\deg v = 1$ (вершина с единственной связью)

2. Маршруты, связность, метрика графа

Определение. *Маршрут* в графе G (последовательность переходов по вершинам и рёбрам) -- чередующаяся последовательность вершин и рёбер $v_0, x_1, v_1, \ldots, x_n, v_n$, где:

- Начинается и заканчивается вершиной (точкой графа)
- Каждое ребро инцидентно (напрямую соединяет) предшествующей и следующей вершинам

Обозначение: $(v_0 - v_n)$ -маршрут (путь от вершины v_0 до v_n) записывается как $v_0v_1v_2\dots v_n$

Классификация маршрутов:

- Замкнутый: $v_0 = v_n$ (начальная и конечная вершины совпадают)
- *Открытый*: $v_0 \neq v_n$ (начальная и конечная вершины различны)
- *Цепь* (trail): все рёбра различны (по каждому ребру проходим не более одного раза)
- *Простая цепь* (path): все вершины и рёбра различны (нигде не повторяемся)
- Цикл: замкнутая цепь (маршрут возвращается в начальную точку)
- Простой цикл: замкнутый маршрут с $n \geq 3$ различными вершинами (замкнутый путь без повторений вершин, кроме начальной/конечной)

Длина маршрута $v_0v_1\dots v_n=n$ (количество пройденных рёбер) Важные метрики:

- Обхват графа g(G): длина кратчайшего простого цикла (минимальное количество рёбер в замкнутом пути без повторений)
- Окружение графа c(G): длина длиннейшего простого цикла (максимальное количество рёбер в замкнутом пути без повторений)

Примечание: g(G) и c(G) не определены для графов без циклов (для деревьев и лесов).

3. Самодополнительные графы

Определение. Дополнение $\operatorname{грa} \phi a$ \overline{G} (граф с теми же вершинами, но противоположными связями):

- Множество вершин: $V(\overline{G}) = V(G)$
- Две вершины смежны в \overline{G} \Leftrightarrow несмежны в G

Определение. *Самодополнительный граф* -- граф, изоморфный своему дополнению (структура графа совпадает со структурой его дополнения).

Полный граф K_n (все вершины попарно соединены):

- \bullet Содержит p вершин
- Имеет $\binom{p}{2}$ рёбер
- Является регулярным степени p-1
- Частный случай: K_3 -- треугольник

Вполне несвязный граф $\overline{K_p}$ -- дополнение полного графа (регулярный граф степени 0).

4. Экстремальные графы

Теорема 2.3 (Турана) (о максимальном числе рёбер в графе без треугольников):

Наибольшее число рёбер у графов с r вершин без треугольников равно $\lfloor r^2/4 \rfloor$.

Доказательство (по индукции для чётных r):

- 1. База: очевидна для малых r
- 2. Шаг: для r = 2n + 2, где утверждение верно для всех чётных r < 2n:
 - Пусть G -- граф с p = 2n + 2 вершинами без треугольников
 - \bullet Существуют смежные вершины u, v (граф не вполне несвязный)
 - В подграфе $G' = G \{u, v\}$ максимум n^2 рёбер
 - \bullet Нет вершины w, смежной с u и v одновременно
 - Если w смежна с k вершинами G', то v смежна максимум с (2n-k) вершинами
 - Beco pë bep: $n^2 + k + (2n k) + 1 = n^2 + 2n + 1 = p^2/4$

Конструктивное доказательство существования:

Для чётного $p(p, p^2/4)$ -граф без треугольников строится так:

- ullet Берём два множества V_1 и V_2 по p/2 вершин
- ullet Соединяем каждую вершину из V_1 с каждой из V_2

Примечания:

- Доказательство существования чисел r(m,n) см. у М. Холла
- По определению бесконечный граф не является графом
- Обзор бесконечных графов: см. Нэш-Вильямс

5. Числа Рамсея

Мотивационная задача: В любой группе из 6 человек найдутся либо 3 попарно знакомых, либо 3 попарно незнакомых (переформулировка в терминах графов).

Теорема 2.2 (о существовании треугольника): В графе G с 6 вершинами либо G, либо \overline{G} содержит треугольник.

Доказательство: Пусть v -- произвольная вершина графа G. Среди 5 оставшихся вершин найдутся 3 вершины u_1, u_2, u_3 , смежные с v в G (иначе они были бы смежны в \overline{G}). Если любые две из u_1, u_2, u_3 смежны в G -- получаем треугольник с v. Если нет -- u_1, u_2, u_3 образуют треугольник в \overline{G} .

Определение. *Число Рамсея* r(m,n) (минимальное число вершин, гарантирующее наличие либо K_m , либо K_n):

- Симметричность: r(m,n) = r(n,m)
- Верхняя оценка (Эрдёш-Секереш): $r(m,n) \leq {m+n-2 \choose m-1}$

Теорема Рамсея (для бесконечных графов): Каждый бесконечный граф содержит либо \aleph_0 попарно смежных вершин, либо \aleph_0 попарно несмежных вершин.

Примечание: Задача нахождения точных значений r(m,n) остаётся открытой. Известные значения приведены в таблице 2.1.

6. Эйлеровы графы

Определение. Эйлеров граф -- граф, содержащий цикл со всеми вершинами и рёбрами (имеет эйлеров цикл). Обязательно связный.

Теорема 7.1 (критерий эйлеровости). Для связного графа G эквивалентны:

- 1. G -- эйлеров граф
- 2. Все вершины имеют чётную степень
- 3. Рёбра можно разбить на простые циклы

Доказательство:

- $(1)\Rightarrow(2)$: В эйлеровом цикле каждое прохождение вершины даёт +2 к её степени. Каждое ребро используется один раз \Rightarrow степени чётны.
- (2)⇒(3): В связном графе с чётными степенями:
- ullet Найдём простой цикл Z
- \bullet Удалим его рёбра -- получим граф G_1 с чётными степенями
- Повторяем до пустого графа G_n
- $(3) \Rightarrow (1)$: Имея разбиение на циклы:
- Берём цикл Z_1
- \bullet Находим цикл Z_2 с общей вершиной v
- ullet Строим замкнутую цепь из \bar{Z}_1 и Z_2
- Продолжаем до полного эйлерова цикла

Следствие 7.1(a). В связном графе с 2n вершинами нечётной степени $(n \ge 1)$ рёбра можно разбить на n открытых цепей.

Следствие 7.1(б). В связном графе с двумя вершинами нечётной степени существует открытая цепь, содержащая все рёбра (начинается и заканчивается в вершинах нечётной степени).

7. Деревья

Основные определения: Aииклический ϵ раф -- граф без циклов. \mathcal{A} ерево -- связный ациклический граф. \mathcal{A} ес -- граф без циклов (компоненты -- деревья).

Теорема 4.1. Для графа G эквивалентны: 1) G — дерево 2) любые две вершины соединены единственной простой цепью 3) G связен и p=q+1 4) G ациклический и p=q+1 5) G ациклический, и добавление любого ребра создаёт ровно один цикл 6) G связный, не K_p при $p\geq 3$, добавление ребра создаёт один цикл 7) G не $K_3\cup K_1$ и не $K_3\cup K_2$, p=q+1, добавление ребра создаёт один цикл

Доказательство (схема): $1\Rightarrow 2$: От противного: две цепи образуют цикл $2\Rightarrow 3$: Индукция по числу вершин $3\Rightarrow 4$: От противного: цикл длины n требует $q\geq p$ $4\Rightarrow 5$: Единственность компоненты из p=q+k $5\Rightarrow 6$: K_p при $p\geq 3$ содержит цикл $6\Rightarrow 7$: Анализ возможных циклов $7\Rightarrow 1$: Исключение случаев с циклами

Следствие 4.1(a). В нетривиальном дереве есть минимум две висячие вершины. Доказательство: Из $\sum d_i = 2(p-1)$ в дереве.

8. Диаметр и радиус графа

Определение. $Paccmoshue\ d(u,v)$ между вершинами (длина кратчай-шей простой цепи):

$$d(u,v) = \begin{cases}$$
длина кратчайшей $(u-v)$ -цепи, если вершины соединены $\infty,$ если вершины не соединены

Свойства метрики (для связного графа): 1) $d(u,v) \ge 0$; $d(u,v) = 0 \Leftrightarrow u = v$ (неотрицательность) 2) d(u,v) = d(v,u) (симметричность) 3) $d(u,v) + d(v,w) \ge d(u,w)$ (неравенство треугольника)

Термины: • $\Gamma eodesuveckas$ -- кратчайшая простая (u-v)-цепь • $\mathcal{A}ua-memp\ ppa\phi a\ d(G)$ -- длина самой длинной геодезической

Степени графа: Для графа G определяется G^k (k-я степень): \bullet $V(G^k) = V(G)$ (те же вершины) \bullet Вершины u,v смежны в $G^k \Leftrightarrow d(u,v) \leq k$ в G Примеры: $C_5^2 = K_5$, $P_4^2 = K_1 + K_3$

9. Хроматическое число графа

Определение. p-хpомаmичес κ ий ϵ ра ϕ -- ϵ гра ϕ , вершины которого можно раскрасить в р цветов так, чтобы смежные вершины имели разные цвета.

Хроматическое число $\chi(G)$ — минимальное p, при котором граф p-хроматический.

Хроматический класс -- минимальное число цветов q для раскраски рёбер без одинаковых смежных рёбер.

Теорема о двудольных графах. Граф двудольный $(\chi(G)=2)$ \boxtimes не содержит циклов нечётной длины.

Доказательство:

- (\Rightarrow) Алгоритм раскраски в 2 цвета: 1) Выбираем вершину а, красим в синий 2) Смежные с синими красим в красный, с красными -- в синий 3) Отсутствие нечётных циклов гарантирует корректность
- (⇐) От противного: в двудольном графе нельзя раскрасить нечётный цикл в 2 цвета.

Теорема 4. Для симметрического графа G эквивалентны: 1) G является р-хроматическим 2) Существует функция Гранди g(x) с $\max g(x) \leq p-1$

Теорема 5. Для графов G (p+1-хром.) и H (q+1-хром.): $\chi(G \times H) = r+1$, где $r=\max p'+q'$: $p'\boxtimes p$, $q'\boxtimes q$

Теорема 6. Для графов G и H с $\chi(G)$ =p, $\chi(H)$ =q: $\chi(G \times H) = \min\{p,q\}$ Важное свойство: Для плоских графов $\chi(G) \boxtimes 5$ (достаточно 5 цветов для раскраски карты).

10. Цикломатическое число графа

Определение. Мультиграф(X,U) -- пара из множества вершин X и множества рёбер U, где пара вершин может соединяться несколькими рёбрами.

Важные числовые характеристики: Для мультиграфа G с n вершинами, m рёбрами, p компонентами:

$$\rho(G) = n - p$$
 (ранг графа)

$$\nu(G) = m - n + p = m - \rho(G)$$
 (цикломатическое число)

Теорема 1. При добавлении ребра между a и b: Если a,b соединены цепью или совпадают:

$$\rho(G') = \rho(\bar{G}), \quad \nu(G') = \nu(\bar{G}) + 1$$

Иначе:

$$\rho(G) = \rho(\bar{G}) + 1, \quad \nu(G') = \nu(\bar{G})$$

Векторное представление циклов: • Каждому ребру присваивается ориентация • Для цикла μ : $c^k = r_k - s_k$, где r_k, s_k -- число проходов по/против ориентации • Цикл представляется вектором (c^1, \ldots, c^m) • Циклы независимы \Leftrightarrow их векторы линейно независимы

Теорема 2. Цикломатическое число $\nu(G)$ равно максимальному количеству независимых циклов.

Следствия: 1) $\nu(G)=0\Leftrightarrow$ граф без циклов 2) $\nu(G)=1\Leftrightarrow$ граф содержит ровно один цикл

Теорема 3. В сильно связном графе цикломатическое число равно максимальному количеству независимых контуров.