## Regression extensions

#### Chrysafis Vogiatzis

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Lecture 33



ISE | Industrial & Enterprise Systems Engineering GRAINGER COLLEGE OF ENGINEERING

©Chrysafis Vogiatzis. Do not distribute without permission of the author



What if our data looks like this?





$$\hat{y} = \beta_0 + \beta_1 x$$



$$\hat{y} = \beta_0 + \beta_1 x$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2$$





$$\hat{y} = \beta_0 + \beta_1 x$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$







$$\hat{\mathbf{y}} = \beta_0 + \beta_1 \mathbf{x}$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$











$$\hat{\mathbf{y}} = \beta_0 + \beta_1 \mathbf{x}$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$















### Overfitting

















How to fit data points with a line of the form:

$$y = \beta_0 + \beta_1 x + \beta_{11} x_1^2?$$

- First, create a "new" predictor variable x<sub>2</sub>
- Set it equal to  $x_1^2$ !
- Create matrix X based on  $x_1$  and  $x_2 = x_1^2$ .

Solve for 
$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_{11} \end{bmatrix} = (X^T X)^{-1} X^T y.$$





How to fit data points with a line of the form:

$$y = \beta_0 + \beta_1 x + \beta_{11} x_1^2?$$

- First, create a "new" predictor variable  $x_2$ .
- $\blacksquare$  Set it equal to  $x_1^2$
- Create matrix X based on  $x_1$  and  $x_2 = x_1^2$ .

Solve for 
$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_{11} \end{bmatrix} = (X^T X)^{-1} X^T y.$$





How to fit data points with a line of the form:

$$y = \beta_0 + \beta_1 x + \beta_{11} x_1^2?$$

- First, create a "new" predictor variable  $x_2$ .
- Set it equal to  $x_1^2$ !
- Create matrix X based on  $x_1$  and  $x_2 = x_1^2$ .

Solve for 
$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_{11} \end{bmatrix} = (X^T X)^{-1} X^T y$$
.



How to fit data points with a line of the form:

$$y = \beta_0 + \beta_1 x + \beta_{11} x_1^2?$$

- First, create a "new" predictor variable  $x_2$ .
- Set it equal to  $x_1^2$ !
- Create matrix X based on  $x_1$  and  $x_2 = x_1^2$ .

Solve for 
$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_{11} \end{bmatrix} = (X^T X)^{-1} X^T y$$
.





How to fit data points with a line of the form:

$$y = \beta_0 + \beta_1 x + \beta_{11} x_1^2?$$

- First, create a "new" predictor variable  $x_2$ .
- Set it equal to  $x_1^2$ !
- Create matrix X based on  $x_1$  and  $x_2 = x_1^2$ .

■ Solve for 
$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_{11} \end{bmatrix} = (X^T X)^{-1} X^T y$$
.





## **Example**

### Consider the following data:

| Х | У   |
|---|-----|
| 7 | 310 |
| 3 | 59  |
| 5 | 153 |
| 5 | 162 |
| 4 | 91  |
| 6 | 212 |
| 7 | 297 |
| 5 | 151 |
| 9 | 823 |

We tried a linear regression and got the line:

$$y = 7.2404x - 2.2194$$
.



Since it does not look great, we decide to try a second degree polynomial regression of the form:  $y = \beta_0 + \beta_1 x + \beta_{11} x^2$ .



First, create a new column in the data:  $x^2$ .

```
        x
        x²
        y

        7
        49
        310

        3
        9
        59

        5
        25
        153

        5
        25
        162

        4
        16
        91

        6
        36
        212

        7
        49
        297

        5
        25
        151

        9
        81
        823
```

2 Build X



**1** First, create a new column in the data:  $x^2$ .

 $\mathbf{2}$  Build X.



1 First, create a new column in the data:  $x^2$ .

| X | $x^2$ | y y |
|---|-------|-----|
| 7 | 49    | 310 |
| 3 | 9     | 59  |
| 5 | 25    | 153 |
| 5 | 25    | 162 |
| 4 | 16    | 91  |
| 6 | 36    | 212 |
| 7 | 49    | 297 |
| 5 | 25    | 151 |
| 9 | 81    | 823 |
|   |       |     |

 $\mathbf{2}$  Build X.



1 First, create a new column in the data:  $x^2$ .

| X | $x^2$ | У   |
|---|-------|-----|
| 7 | 49    | 310 |
| 3 | 9     | 59  |
| 5 | 25    | 153 |
| 5 | 25    | 162 |
| 4 | 16    | 91  |
| 6 | 36    | 212 |
| 7 | 49    | 297 |
| 5 | 25    | 151 |
| 9 | 81    | 823 |
|   |       |     |

2 Build X.

$$X = \begin{bmatrix} 1 & 7 & 49 \\ 1 & 3 & 9 \\ 1 & 5 & 25 \\ 1 & 5 & 25 \\ 1 & 4 & 16 \\ 1 & 6 & 36 \\ 1 & 7 & 49 \\ 1 & 5 & 25 \\ 1 & 9 & 81 \end{bmatrix}$$



1 First, create a new column in the data:  $x^2$ .

| X | $x^2$ | y   |
|---|-------|-----|
| 7 | 49    | 310 |
| 3 | 9     | 59  |
| 5 | 25    | 153 |
| 5 | 25    | 162 |
| 4 | 16    | 91  |
| 6 | 36    | 212 |
| 7 | 49    | 297 |
| 5 | 25    | 151 |
| 9 | 81    | 823 |
|   |       |     |

2 Build X.

$$X = \begin{bmatrix} 1 & 7 & 49 \\ 1 & 3 & 9 \\ 1 & 5 & 25 \\ 1 & 5 & 25 \\ 1 & 4 & 16 \\ 1 & 6 & 36 \\ 1 & 7 & 49 \\ 1 & 5 & 25 \\ 1 & 9 & 81 \end{bmatrix}$$



**3** Solve for  $\hat{\beta}$ :

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_{11} \end{bmatrix} = (X^T X)^{-1} X^T y = \begin{bmatrix} 437.74 \\ -190.47 \\ 25.5 \end{bmatrix}$$

Plot  $y = 437.74 - 190.47x_1 + 25.5x_1^2$ 





**3** Solve for  $\hat{\beta}$ :

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_{11} \end{bmatrix} = (X^T X)^{-1} X^T y = \begin{bmatrix} 437.74 \\ -190.47 \\ 25.5 \end{bmatrix}$$

Plot  $y = 437.74 - 190.47x_1 + 25.5x_1^2$ :





- - Introduce new variable  $x_{12} = x_1 x_2$  and solve.
  - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{123} x_1 x_2 x_3$ 
    - Introduce new variable  $x_{123} = x_1 x_2 x_3$  and solve.
- We can even do that with other nonlinear functions: for example  $y = \beta_0 + \beta_1 x_1 + \beta_2 \cos(x_1)$ .
  - Introduce new variable  $x_2 = cos(x_1)$  and solve.
- - Introduce new variable  $x_2 = \log x_1$  and solve





- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$ ■ Introduce new variable  $x_{12} = x_1 x_2$  and solve.
- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{123} x_1 x_2 x_3$ Introduce new variable  $x_{123} = x_1 x_2 x_3$  and solve
- We can even do that with other nonlinear functions: for example  $y = \beta_0 + \beta_1 x_1 + \beta_2 \cos(x_1)$ .
  - Introduce new variable  $x_2 = cos(x_1)$  and solve.
- Or  $y = \beta_0 + \beta_1 x_1 + \beta_2 \log x_1$ .

  Introduce new variable  $x_2 = \log x_1$  and solve.





- - Introduce new variable  $x_{12} = x_1x_2$  and solve.
- - Introduce new variable  $x_{123} = x_1x_2x_3$  and solve.
- We can even do that with other nonlinear functions: for example  $y = \beta_0 + \beta_1 x_1 + \beta_2 \cos(x_1)$ .
  - Introduce new variable  $x_2 = cos(x_1)$  and solve.
- - Introduce new variable  $x_2 = \log x_1$  and solve.





- - Introduce new variable  $x_{12} = x_1 x_2$  and solve.
- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{123} x_1 x_2 x_3$ 
  - Introduce new variable  $x_{123} = x_1x_2x_3$  and solve.
- We can even do that with other nonlinear functions: for example  $y = \beta_0 + \beta_1 x_1 + \beta_2 \cos(x_1)$ .
  - Introduce new variable  $x_2 = cos(x_1)$  and solve.
- Or  $y = \beta_0 + \beta_1 x_1 + \beta_2 \log x_1$ .
  - Introduce new variable  $x_2 = \log x_1$  and solve.





Given *k* predictor variables, we saw that not all need to be significant. So, this begs the question: which variables should I include in my regression?

- All subsets selection.
  - Consider all (2") possible combinations of variables.
     Pick the model with highest 82...
- 2 Backwards selection.

- Forwards selection
- Forwards selection.

ILLINOIS

Given *k* predictor variables, we saw that not all need to be significant. So, this begs the question: which variables should I include in my regression?

#### All subsets selection.

- $\blacksquare$  Consider all (2<sup> $\kappa$ </sup>) possible combinations of variables.
- Pick the model with highest  $R_{adj}^2$ .

#### Backwards selection.

- Start from a regression including all variables.
- Keep removing the least significant variable until R<sup>2</sup><sub>adj</sub> starts decreasing.

- Start from a regression including no variables.
- Keep adding the most significant variable until  $R_{adj}^2$  starts decreasing.





Given *k* predictor variables, we saw that not all need to be significant. So, this begs the question: which variables should I include in my regression?

#### All subsets selection.

- $\blacksquare$  Consider all (2<sup>k</sup>) possible combinations of variables.
- Pick the model with highest  $R_{adj}^2$ .

#### Backwards selection.

- Start from a regression including all variables.
- Keep removing the least significant variable until  $R_{adj}^z$  starts decreasing.

- Start from a regression including no variables.
- Keep adding the most significant variable until R<sup>2</sup><sub>adj</sub> starts decreasing.





Given *k* predictor variables, we saw that not all need to be significant. So, this begs the question: which variables should I include in my regression?

#### All subsets selection.

- $\blacksquare$  Consider all (2<sup>k</sup>) possible combinations of variables.
- Pick the model with highest  $R_{adj}^2$ .

#### Backwards selection.

- Start from a regression including all variables.
- Keep removing the least significant variable until  $R_{adj}^2$  starts decreasing.

- Start from a regression including no variables.
- Keep adding the most significant variable until  $R_{adj}^2$  starts decreasing.





Given *k* predictor variables, we saw that not all need to be significant. So, this begs the question: which variables should I include in my regression?

#### All subsets selection.

- Consider all (2<sup>k</sup>) possible combinations of variables.
- Pick the model with highest  $R_{adj}^2$ .

#### Backwards selection.

- Start from a regression including all variables.
- Keep removing the least significant variable until  $R_{adj}^2$  starts decreasing.

- Start from a regression including no variables.
- Keep adding the most significant variable until R<sup>2</sup><sub>adj</sub> starts decreasing.





#### How can we validate our model?

- Split our data into two parts:
  - training data
  - testing data
- Common split is 80%-20% (in favor of training).
- Use the training data to create the regression.
- Use the testing data to test how well the regression is performing
- Check the performance by calculating the  $MS_E$ :

$$MS_E = \frac{1}{n-2} \sum_{i} (y_i^{test} - \hat{y}_i^{test})^2$$



#### How can we validate our model?

- Split our data into two parts:
  - training data
  - testing data
- Common split is 80%-20% (in favor of training).
- Use the training data to create the regression.
- Use the testing data to test how well the regression is performing.
- Check the performance by calculating the  $MS_E$ :

$$MS_E = \frac{1}{n-2} \sum \left( y_i^{test} - \hat{y}_i^{test} \right)^2$$





How can we validate our model?

- Split our data into two parts:
  - training data
  - testing data
- Common split is 80%-20% (in favor of training).
- Use the training data to create the regression.
- Use the testing data to test how well the regression is performing.
- Check the performance by calculating the  $MS_E$ :

$$MS_E = \frac{1}{n-2} \sum (y_i^{test} - \hat{y}_i^{test})^2$$

Training

Testing



How can we validate our model?

- Split our data into two parts:
  - training data
  - testing data
- Common split is 80%-20% (in favor of training).
- Use the training data to create the regression.
- Use the testing data to test how well the regression is performing.
- Check the performance by calculating the MS<sub>E</sub>:

$$MS_E = \frac{1}{n-2} \sum \left( y_i^{test} - \hat{y}_i^{test} \right)^2$$

Training

Testing



How can we validate our model?

- Split our data into two parts:
  - training data
  - testing data
- Common split is 80%-20% (in favor of training).
- Use the training data to create the regression.
- Use the testing data to test how well the regression is performing.
- Check the performance by calculating the  $MS_E$ :

$$MS_E = \frac{1}{n-2} \sum_i (y_i^{test} - \hat{y}_i^{test})^2$$
.

Training

Testing



- Split our data into *K* parts:
  - K-1 parts with training data.
  - 1 part of testing data.
- Use the training data to create K-1 models.
- Use the testing data to test how well **each of the regressions** are performing.
- Output the best model amongst them.





- Split our data into *K* parts:
  - K-1 parts with training data.
  - 1 part of testing data.
- Use the training data to create K-1 models.
- Use the testing data to test how well each of the regressions are performing.
- Output the best model amongst them.

| Training 1 |            |  |              |         |
|------------|------------|--|--------------|---------|
|            | Training 2 |  |              |         |
|            |            |  | <i>K</i> – 1 |         |
|            |            |  |              | Testing |



- Split our data into *K* parts:
  - K-1 parts with training data.
  - 1 part of testing data.
- Use the training data to create K-1 models.
- Use the testing data to test how well each of the regressions are performing.
- Output the best model amongst them





- Split our data into *K* parts:
  - $\blacksquare$  K-1 parts with training data.
  - 1 part of testing data.
- Use the training data to create K-1 models.
- Use the testing data to test how well each of the regressions are performing.
- Output the best model amongst them.

| Training 1 |            |  |       |         |
|------------|------------|--|-------|---------|
|            |            |  |       |         |
|            | Training 2 |  |       |         |
|            |            |  |       |         |
|            |            |  | K – 1 |         |
|            |            |  |       |         |
|            |            |  |       | Testing |

