SEMÁFORO INTELIGENTE
Breno De Souza Almeida Barroso
Daniel Araújo Chaves Souza Francisco Rodrigo Alexandre Brasileiro

VISÃO GERAL

1. Descrição e histórico do projeto

Um dia comum nas nossas metrópoles chega a ser uma calamidade devido ao tempo perdido no trânsito. No vai e vem do dia-a-dia muito tempo e dinheiro são perdidos por conta das várias horas que ficamos parados por conta das más condições de mobilidade urbana. São horas de trabalho ou lazer que são desperdiçadas inutilmente. É o gasto com os combustíveis e com as peças de veículos que aumentam devido ao anda e para. É o estresse, a ansiedade e por fim o desespero.

Uma das causas deste problema é a falta de eficiência do semáforo de transito, muito comum em cruzamentos de vias movimentadas, que vezes permanece fechado quando não há mais carros na outra via por exemplo.

2. Escopo do projeto

O projeto é fundamentado basicamente em tornar o mais eficiente possível o semáforo. Para isso faremos uso de sensores, que por meio de um micro controlador, possa ler e entender a situação atual das vias que este gere e assim possa escolher a melhor opcão para o momento. Ou seja, o sistema que compõe o semáforo saberá por meio de sensores se a outra via contem carros parrados no sinal vermelho, então se já estiver transcorrido o tempo base de permanência do sinal verde aberto na outra via a mesma será fechada.

3. Requisitos de alto nível

Para possibilitar que o semáforo tome decisões baseadas nos dados obtidos por seus sensores será utilizado o micro controlador ARM Cortex-M3 que oferece robustez e dinamismo ao sistema.

O sistema deve incluir as seguintes características:

- Leitura das vias bem como suas faixas de pedestre
- Capacidade de escolher qual via deve estar liberada para melhorar o fluxo
- Não fechar a via quando não houver nem pedestres na faixa nem carros na outra via
- Sinais sonoros para deficientes visuais

4. Materiais utilizados

- Placa Desenvolvimento Stm32f103c8t6 ARM Cortex-m3
- Gravador / Programador St-link V2 Stm8 Stm32 Mcu
- LEDs nas cores verde, amarelo e vermelho
- Sensores Ultrassônicos HC-SR04
- Módulo Buzzer Passivo 5V
- Chaves Push Button
- Cabos/Jumper
- Protoboard

5. Cronograma/agenda de alto nível

- 09/10 a 20/10 Estudo do projeto e compra dos materiais
- 23/10 a 27/11 Desenvolvimento do firmware
- 30/11 a 15/12 Elaboração do protótipo final