네트워크

■ 루프백이란?

논리적인 인터페이스 혼자서도 단독사용 관리자가 셧다운 명령어를 넣기 전까지는 꺼지지 않음

■ 루프백 특징

라우터를 대표하는 ID로 사용이 가능하다.(EIGRP, OSPF에서) 127 대역 -> 루프백 주소 컴퓨터에서 외부로 나가지만 자기에게 돌아옴. 자기 자신에게 보내는 신호

GNS3 이용

실습 1)

<loopback과 RIP연습>

R1 R2 R3 3개의 노드

R1 s0/0 192.168.10.1/24

R2 s0/0 192.168.10.254/24

s0/1 192.168.20.1/24

R3 s0/1 198.168.20.254/24

loopback

R1 lo 0 192.168.100.1/24 R3 lo 0 10.10.10.1/24 lo 1 20.20.20.1/24

RIP

R1은 v1로 구성 R2와 R3은 v2로 구성

<R1>

router r

net 192.168.100.0

net 192.168.10.0

<R2>

router r

v 2

net 192.168.10.0

net 192.168.20.0

no au

<R3>

router r

v 2

net 10.0.0.0

net 20.0.0.0

net 192.168.20.0

no au

ip rip re v 1 2 : 주고 받을 때 rip v1 v2를 다 받겠다는 명령어

rip 받는 쪽에서만 바꿔주면 됨 rip 교환할 때 인증필드가 존재 하지 않음

keychain (키체인)? <명령어> key chain+키 이름(R2-Key) key+번호(1) key-string 0204 exit int s 0/1ip rip authentication key-chain R2-KEY ip rip authentication mode text

* text mode로 하면 암호화가 되지 않았기에 보안에 취약함. md5 message digit 알고리즘에 의해서 복잡한 문자형태로 암호화를 해줌 키 번호는 비교 대상이 아님.

키 방법도 중요 하지만 암호화 방식이 중함 md5면 md5 string은 string으로 설정을 해야함.

■ EIGRP

Cisco에서 만든 Cisco 전용 라우팅 프로토콜 (2016년부터 EIGRP 문서 공개 RFC(Request For Comment: 피드백을 기다리는 문서) 7868)

기존 Distance Vector(거리방향)에 대한 단점은 보완 개선한 Advance Distance Vector Routing Protocol

Data에 대한 경로를 산출할 때 거리와 방향만을 보는 개념이 아니라 속도와 대역의 개념을 이용하 여 경로를 산출하고 주기적인 업데이트를 하지 않는 것이 특징(Link State처럼 동작)

주기적인 업데이트가 아니라 인접관계를 통해서 변화된 부분만 라우팅 업데이트(추가, 수정, 삭제) 를 함

RIP와 동일하게 Spilt-Horizon이 적용되고, 기본적으로 Auto-Summary 활성, No Auto-Summary로 해제를 할 수 있다.

IGRP가 발전된 라우팅 프로토콜

DUAL(Diffusing Update Algorithm)을 사용하여 최적경로(Successor)와 후속경로(Feasible Successor)를 선출

Convergence time이 빠르다

※ Feasible Successor(후속경로)가 존재 할 경우 Best Path(최적경로)에 이상이 생기면 후속경로 를 최적경로로 올림

AD(Administrative Distance)값 내부(Internal) 90 외부(External) 170 - 외부에서 온 정보

AS(Autonomous System)단위로 구성

하나의 네트워크 관리자에 의해 관리되는 라우터 집단, 하나의 관리 전략으로 구성관 라우터의 집 단(하나의 회사, 기업, 단체의 라우터 집단)

Classless Routing Protocol VLSM과 CIDR을 사용가능

멀티캐스트 주소(224.0.0.10)을 사용해서 Route 정보 광고

1. EIGRP의 장 단점

▶ 장점

Fast Covergence(빠른 수렴) - DUAL 알고리즘 사용 Unequal(≠) cost(metric의 단위 - cost) 부하분산(load balancing) 지원 OSPF에 비해서 설정이 간단

▶ 단점

중, 소규모 네트워크에서는 잘 돌아가지만 엄청나게 큰 대규모 네트워크에서는 관리가 힘들다. (SIA현상 발생)

★ SIA(Stuck In Active) 현상

EIGRP 라우팅 정보요청패킷(Query Packet)을 보낸 후 응답패킷을 받지 못한 상태가 장시간 계속되는 것

기본적으로 3분간 기다리며, 이 기간이 경과하면 네이버관계를 해제

SIA가 발생하는 것은 Query Packet의 성능이 떨어지고 저속의 링크로 연결된 말단 라우터까지 전송되었다가 응답을 받지 못하기 때문

와일드카드 마스크(와일드 마스크): 서브넷 비트의 반대 서브넷 마스크는 1이나 0이 연속되어야 한다. 와일드 마스크는 네트워크 픽스하기 편리함

Query가 갔지만 Reply가 오지 않으면 SIA상태가 됨.

재분배

분배는 3계층 프로토콜에서 역할을 함.

Connected Protocol, RIP Protocol, EIGRP Protocol을 Redistribute(재분배)

<eigrp에서 AD값 변경 명령어> distance eigrp 90 119

<ri>rip에서 메트릭값 변경 명령어>redistribute rip metric 1544 2000 255 1 1500</ri>

connected 재분배 하면 외부값이 없기 때문에 RIP는 AD값이 120으로 되돌아옴 EIGRP 외부 AD 값이 170이기 때문에 170으로 됨.

AD값 변경 AD값을 120보다 적게 변경해야 함.