The Landscape of Sparse Ax=b Solvers

 $\begin{array}{ll} \underline{\text{Direct}} & \underline{\text{Iterative}} \\ A = LU & y' = Ay \end{array}$

Nonsymmetric

Symmetric positive definite

Pivoting GMRES, BiCGSTAB, ...

Cholesky Conjugate gradient

More General

More Robust

More Robust

Less Storage

$$x_0 = 0$$
 approx solution $r_0 = b$ residual = b - Ax

$$r_0 = b$$
 residual = b - Ax

$$d_0 = r_0$$
 search direction

for
$$k = 1, 2, 3, \dots$$

$$X_k = X_{k-1} + ...$$

$$r_k = \dots$$

new approx solution

new residual

$$d_k = \dots$$

new search direction

$$x_0 = 0$$
 approx solution

$$r_0 = b$$
 residual = b - Ax

$$d_0 = r_0$$
 search direction

for
$$k = 1, 2, 3, \dots$$

$$\alpha_k = \dots$$

$$x_k = x_{k-1} + \alpha_k d_{k-1}$$

$$r_k = \dots$$

step length

new approx solution

new residual

$$d_k = \dots$$

new search direction

Conjugate gradient iteration

$$\begin{array}{lll} x_0 = 0, & r_0 = b, & d_0 = r_0 \\ \hline \textbf{for} & k = 1, 2, 3, \dots \\ & \alpha_k = \left(r^T_{k-1}r_{k-1}\right) / \left(d^T_{k-1}Ad_{k-1}\right) & \text{step length} \\ & x_k = x_{k-1} + \alpha_k \, d_{k-1} & \text{approx solution} \\ & r_k = r_{k-1} - \alpha_k Ad_{k-1} & \text{residual} \\ & \beta_k = \left(r^T_k \, r_k\right) / \left(r^T_{k-1}r_{k-1}\right) & \text{improvement} \\ & d_k = r_k + \beta_k \, d_{k-1} & \text{search direction} \end{array}$$

- One matrix-vector multiplication per iteration
- Two vector dot products per iteration
- Four n-vectors of working storage

Conjugate gradient: Orthogonal sequences

- Krylov subspace: $K_t(A, b) = \text{span}(b, Ab, A^2b, \dots, A^{t-1}b)$
- Conjugate gradient algorithm:

for
$$t = 1, 2, 3, ...$$

find $x_t \in K_t(A, b)$
such that $r_t = (b - Ax_t) \perp K_t(A, b)$

- Notice $r_t \in K_{t+1}(A, b)$, so $r_t \perp r_k$ for all k < t
- Similarly, the "directions" are A-orthogonal:

$$(x_t - x_{t-1})^T \cdot A \cdot (x_k - x_{k-1}) = 0$$

The magic: Short recurrences. . .

A is symmetric => can get next residual and direction from the previous one, without saving them all.

Conjugate gradient: Convergence

- In exact arithmetic, CG converges in n steps (completely unrealistic!!)
- Accuracy after t steps of CG is related to:
 - consider polynomials of degree t that are equal to 1 at 0.
 - how small can such a polynomial be at all the eigenvalues of A?
- Thus, eigenvalues close together are good.
- Condition number: $\kappa(A) = \|A\|_2 \|A^{-1}\|_2 = \lambda_{\max}(A) / \lambda_{\min}(A)$
- Residual is reduced by a constant factor by $O(\varkappa^{1/2}(A))$ iterations of CG.

Preconditioners

- Suppose you had a matrix B such that:
 - 1. condition number $\kappa(B^{-1}A)$ is small
 - 2. By = z is easy to solve
- Then you could solve (B⁻¹A)x = B⁻¹b instead of Ax = b
 - Actually $(B^{-1/2}AB^{-1/2})$ $(B^{1/2}x) = B^{-1/2}b$, but never mind...
- B = A is great for (1), not for (2)
- B = I is great for (2), not for (1)
- Domain-specific approximations sometimes work
- B = diagonal of A sometimes works
- Better: blend in some direct-methods ideas. . .

Preconditioned conjugate gradient iteration

$$\begin{aligned} x_0 &= 0, \quad r_0 = b, \quad d_0 = B^{\text{-1}} r_0, \quad y_0 = B^{\text{-1}} r_0 \\ \underline{\text{for}} \quad k &= 1, 2, 3, \dots \\ \alpha_k &= \left(y^T_{k\text{-1}} r_{k\text{-1}}\right) / \left(d^T_{k\text{-1}} A d_{k\text{-1}}\right) \quad \text{step length} \\ x_k &= x_{k\text{-1}} + \alpha_k \; d_{k\text{-1}} & \text{approx solution} \\ r_k &= r_{k\text{-1}} - \alpha_k \, A d_{k\text{-1}} & \text{residual} \\ y_k &= B^{\text{-1}} r_k & \text{preconditioning solve} \\ \beta_k &= \left(y^T_k r_k\right) / \left(y^T_{k\text{-1}} r_{k\text{-1}}\right) & \text{improvement} \\ d_k &= y_k + \beta_k \; d_{k\text{-1}} & \text{search direction} \end{aligned}$$

- One matrix-vector multiplication per iteration
- One solve with preconditioner per iteration

Incomplete Cholesky factorization (IC, ILU)

- Compute factors of A by Gaussian elimination, but ignore fill
- Preconditioner B = $R^TR \approx A$, not formed explicitly
- Compute B⁻¹z by triangular solves (in time nnz(A))
- Total storage is O(nnz(A)), static data structure
- Either symmetric (IC) or nonsymmetric (ILU)

Incomplete Cholesky and ILU: Variants

- Allow one or more "levels of fill"
 - unpredictable storage requirements

- Allow fill whose magnitude exceeds a "drop tolerance"
 - may get better approximate factors than levels of fill
 - unpredictable storage requirements
 - choice of tolerance is ad hoc
- Partial pivoting (for nonsymmetric A)
- "Modified ILU" (MIC): Add dropped fill to diagonal of U or R
 - A and R^TR have same row sums
 - good in some PDE contexts

Incomplete Cholesky and ILU: Issues

Choice of parameters

- good: smooth transition from iterative to direct methods
- bad: very ad hoc, problem-dependent
- tradeoff: time per iteration (more fill => more time)
 vs # of iterations (more fill => fewer iters)

Effectiveness

- condition number usually improves (only) by constant factor (except MIC for some problems from PDEs)
- still, often good when tuned for a particular class of problems

Parallelism

- Triangular solves are not very parallel
- Reordering for parallel triangular solve by graph coloring

Sparse approximate inverses

- Compute $B^{-1} \approx A$ explicitly
- Minimize $\|\mathbf{A}\mathbf{B}^{-1} \mathbf{I}\|_{F}$ (in parallel, by columns)
- Variants: factored form of B⁻¹, more fill, . .
- Good: very parallel, seldom breaks down
- Bad: effectiveness varies widely

The Landscape of Sparse Ax=b Solvers

 $\begin{array}{ll} \underline{\text{Direct}} & \underline{\text{Iterative}} \\ A = LU & y' = Ay \end{array}$

Nonsymmetric

Symmetric positive definite

Pivoting GMRES, BiCGSTAB, ...

Cholesky Conjugate gradient

More General

More Robust

More Robust

Less Storage

Complexity of linear solvers

Time to solve model problem (Poisson's equation) on regular mesh

Dense Cholesky:	O(n ³)	O(n ³)
Sparse Cholesky:	O(n ^{1.5})	O(n ²)
CG, exact arithmetic:	O(n²)	O(n²)
CG, no precond:	O(n ^{1.5})	O(n ^{1.33})
CG, modified IC:	O(n ^{1.25})	O(n ^{1.17})
Low-stretch trees:	O~(n)	O~(n)
Multigrid:	O(n)	O(n)

Hierarchy of matrix classes (all real)

- General nonsymmetric
- Diagonalizable
- Normal
- Symmetric indefinite
- Symmetric positive (semi)definite = Factor width n
 - Factor width 2 < k < n
- Diagonally dominant SPSD = Factor width 2
- Generalized Laplacian = Symm diag dominant M-matrix
- Graph Laplacian

Other Krylov subspace methods

- Nonsymmetric linear systems:
 - GMRES:

```
for i = 1, 2, 3, ...

find x_i \in K_i(A, b) such that r_i = (Ax_i - b) \perp K_i(A, b)

But, no short recurrence => save old vectors => lots more space

(Usually "restarted" every k iterations to use less space.)
```

- BiCGStab, QMR, etc.:
 Two spaces K_i (A, b) and K_i (A^T, b) w/ mutually orthogonal bases
 Short recurrences => O(n) space, but less robust
- Convergence and preconditioning more delicate than CG
- Active area of current research
- Eigenvalues: Lanczos (symmetric), Arnoldi (nonsymmetric)