Performance Evaluation

1

Understanding the Language

• Performance Measurement:

The calculation of the return realized by an investment manager over some time interval called the evaluation period.

• Performance Evaluation:

Determining whether the manager added value by outperforming an established benchmark, and understanding how the manager achieved the calculated returns.

Performance Evaluation

- There are many different ways to measure the performance of a portfolio or investment strategy.
- Key Questions:
 - Are we examining well diversified portfolios?
 - Are we comparing performance to a risk adjusted benchmark?
 - Are we comparing the performance of portfolio A with the performance of portfolio B?

3

Arithmetic Average Returns

- In year 1 your investment earned returns of 100%, while in year 2 your investment earned returns of -50%.
- What is the return on the investment?
 - You make an initial investment of \$10.
 - At the end of each period you rebalance to maintain the value of the investment at \$10.

•

Geometric Average Returns

- In year 1 your investment earned returns of 100%, while in year 2 your investment earned returns of -50%.
- What is the return on the investment?
 - You make an initial investment of \$10 and adopt a buy and hold strategy.

_

5

Arithmetic and Geometric Means

• Arithmetic Mean – Unbiased estimate of future return.

Av Ret =
$$\frac{r_1 + r_2 + ... + r_n}{n}$$

- Example:
- Geometric Mean the return that would have been needed to match the past actual performance.

Av Ret =
$$\sqrt[n]{(1+r_1)(1+r_2)...(1+r_n)} - 1$$

• Example:

Portfolio weighting method

- Equally-weighted average(EW)
- Value-weighted average(VW)
- Show how to construct EW and VW in the excel.

-

Possible pattern between EW and VW

	Equally-weighted		Value-weighted	
	Raw	Risk adjusted	Raw	Risk adjusted
P1	1.76	-0.72	1.27	-0.84
P2	2.24	-0.20	1.77	-0.08
P3	2.29	-0.11	1.76	-0.18
P4	2.57	0.20	1.99	0.21
P5	2.93	0.71	2.25	0.66
P5-P1	1.17***	1.43***	0.99***	1.50***
<i>t</i> -stat	(4.88)	(6.46)	(2.76)	(4.91)

Event study

- An event study attempts to measure the effect of an economic event on the value of the firm
- Given the rationality in the market place, the effect of an event will be reflected directly in asset prices.
- Examples:
 - The effect of earning announcement on stock prices
 - The effect of credit rating agency downgrade of firm XX on its bond prices/yield

Types of Events

- Within the firm's control, for example:
 - Mergers and acquisitions
 - Earnings announcements
 - Issue of new debt and equity
 - IPO
 - Dividend announcements
- Outside the firm's control, such as a macroeconomic announcement that will affect the firm's future operation in some way
 - Unexpected announcement by Federal Reserve to lower the interest rate by 50bp
 - Announcements of the results of the 2016 US Presidential Election – Donald Trump

Statistical Model

The market model

 The abnormal return of stock i on day t in the event window is then calculated as:

$$a\mathbf{r}_{it} = \mathbf{r}_{it} - \hat{\alpha}_{i} - \hat{\beta}_{i}\mathbf{r}_{mt}$$

- rit is observed raw stock i return on day t
- $\widehat{a_i}$ is the estimated alpha from the estimation window (note that there is no "t" meaning?)
- $\hat{\beta}_i$ is the estimated beta from the estimation window
- r_{mt} is the observed market return on day t

Economic Model

- Sorts/Characteristic Matching (DGTW, 1997)
 - Suppose that there are two factors that affect returns: Size and (B/M). We do not know whether there is a stable or linear relationship as the one specified in the FF model.
 - What to do?
 - Sort all returns in the universe, e.g. CRSP or WRDS, into 10 deciles according to size
 - Conditional on size, sort returns into ten deciles according to BM this gives us 100 portfolios
 - Compute the average return of the 100 portfolios for each period. This gives us the expected returns of stocks given the characteristics.

reference: Daniel, K., Grinblatt, M., Titman, S., Wermers, R., 1997, Measuring mutual fund performance with characteristic-based benchmarks, *Journal of Finance* 52, 35–58.

Short/Long-term Performance of Event study

• CAR(cumulative abnormal returns)

$$CAR(-1,+1)_i = \sum_{t=-1}^{1} AR_{it}$$

• BHAR(buy-and-hold abnormal returns)

$$BHR_{i,n} = \left[\prod_{t=0}^{t=n} \left(1 + R_{it}\right)\right] - 1$$

where R_{it} is the raw return for firm i on day t.

• The BHAR for firm *i from day 0 through day n is* defined as $BHAR(0, n) = BHR_{i,n} - BHR_{control_i,n}$

1

Event Study: An example: targets of takeover attempts

• Suppose that you collected prices of two stocks of firms that were targets of takeover attempts.

		Fir	m 1		
Date	2/22	2/23	2/24	2/27	2/28
Day	-2	-1	0	1	2
			(Event)		
Price	8.3	8.4	12.3	12.7	12.8
ret		1.20%	38.14%	3.20%	0.78%
		Fir	m 2		
Date	1/21	1/22	1/23	1/24	1/25
Day	-2	-1	0	1	2
			(Event)		
Price	34.8	35	48	47.8	48
ret		0.57%	31.59%	-0.42%	0.42%

Event Study: An Example

- We will use the constant mean return model to generate the abnormal returns in this example
- Suppose that you estimated the daily average (continuous) return of the two stocks in the 200 days prior to the event window and the results are:

$$\hat{\mu} = 0.10\%$$

$$\hat{\mu}_2 = 0.05\%$$

			Fire	m 1		
	Date	2/22	2/23	2/24	2/27	2/28
M	Day	-2	-1	0	1	2
$\sum_{n=1}^{N}$	·			(Event)		
$\overline{ar_{t}} = \frac{\sum_{i=1}^{N} ar_{it}}{N}$	Price	8.3	8.4	12.3	12.7	12.8
$\overline{ar} = \frac{i=1}{i}$	r		1.20%	38.14%	3.20%	0.78%
t N	ar		1.10%	38.04%	3.10%	0.68%
$CAR(-1,2) = \sum_{i=1}^{2} \overline{ar_i}$	Date Day	1/21 -2	1/22 -1	1/23 0 (Event)	1/24	1/25
t=-1	Price	34.8	35	48	47.8	48
	r		0.57%	31.59%	-0.42%	0.42%
	ar		0.52%	31.54%	-0.47%	0.37%
	ar		0.81%	34.79%	1.32%	0.53%
	CAR		0.81%	35.60%	36.91%	37.44%

Example: The market reaction to the inclusion of A-shares in MSCI

• The findings below suggest that the inclusion of A-shares in MSCI generates a significant positive announcement effect.

	(1)	(2)
	Selected stocks	Matched stocks
T-1	-0.0020	-0.0041
T	0.0106	0.0025
T+1	0.0067	0.0023
CAR(-1, 1)	0.0154	0.0007
	(t-stat=5.21)	(t-stat=0.18)

倪骁然,顾明,2020,金融研究

Example: The long-term after the private equity placements

Buy-and-hold abnormal returns after the private equity placements.

Period	Obs	BHAR mean (%)	t-stat
Panel A: Returns to r	non-participating investors		
(0, 250)	580	2.13	(0.90)
(0, 500)	548	5.95*	(1.69)
(0, 750)	466	10.24**	(2.41)
Panel B: Returns to p	participating investors		
(0, 250)	580	26.85**	(2.02)
(0, 500)	548	31.38***	(4.10)
(0, 750)	466	38.99***	(5.52)

The evidence that participating shareholders benefit more than nonparticipating shareholders from long-term stock returns clearly indicates the existence of self-dealing and wealth appropriation by these large institutional investors.

Dong, Gu and He, 2020, JCF

Jensen's Alpha

• Jensen's α measures abnormal return achieved by a portfolio or stock relative to a risk adjusted benchmark.

 $CAPM : E(r_i) - r_f = \beta_i (E(r_m) - r_f)$

Regression: $r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{m,t} - r_{f,t}) + \varepsilon_t$ PM implies: $\alpha_i = 0$

CAPM implies: $\alpha_i = 0$

- Advantages:
- Can evaluate performance of either well diversified portfolios, or individual firms.
- Can be extended to a multifactor model.
- Statistical Significance.
- Disadvantages:
 - Cannot be used to compare two well diversified portfolios.

Problems comparing portfolios using alphas

- Portfolio A: α = 2%; β _a = 0.7;
- Portfolio B: α = 3%; β_b = 1.4;
- The risk free rate is 5% and the market risk premium is 5%.
- Which portfolio is superior?
- Under Jensen's measure portfolio B is superior.
- Is this really true?

21

Problems comparing portfolios using alphas

We could combine portfolio A with the riskless asset to form portfolio C. Portfolio C has the same systematic risk as portfolio B, but it earns a higher return.

→ Portfolio A is actually superior to Portfolio B.

тоск	BETA	PRICE, DIVI	DEND, AND R	ATE OF RETURN	ESTIMATES	
A	0.70	Stock	CURRENT PRICE (P_t)	EXPECTED PRICE (P_{t+1})	EXPECTED DIVIDEND (D_{t+1})	ESTIMATED FUTURE RATE OF RETURN (PERCENT)
В	1.00	A	25	27	0.50	10.0%
C	1.15	В	40	42	0.50	6.2
D	1.40	C	33	39	1.00	21.2
E	-0.30	D	64	65	1.10	3.3
		Е	50	54	_	8.0
Sтоск	Вета		RETURN <i>R</i> ;)	Estimated Return	Estimated Return Minus $E(R_i)$	Evaluation
Sтоск А	Вета 0.70	E(Evaluation Properly valued
		E(10	R _i)	RETURN	MINUS $E(R_i)$	
A	0.70	E(10 12	R _i)	RETURN 10.0	MINUS <i>E</i> (<i>R_i</i>) -0.2	Properly valued
A B	0.70 1.00	E(10 12 12	R _i) 0.2 2.0	RETURN 10.0 6.2	Minus <i>E</i> (<i>R_i</i>) -0.2 -5.8	Properly valued Overvalued
A B C	0.70 1.00 1.15	E(10 12 12	R _i) 0.2 2.0 2.9	RETURN 10.0 6.2 21.2	Minus <i>E</i> (<i>R_i</i>) -0.2 -5.8 8.3	Properly valued Overvalued Undervalued
A B C D	0.70 1.00 1.15 1.40	E(10 12 12	R;) 0.2 2.0 2.9 4.4	RETURN 10.0 6.2 21.2 3.3	MINUS <i>E</i> (<i>R_i</i>) -0.2 -5.8 8.3 -11.1	Properly valued Overvalued Undervalued Overvalued

Sharpe's Measure

 Sharpe's measure examines fund performance after controlling for the total risk of the fund.

$$SR_p = \frac{r_p - r_f}{\sigma_p}$$

- Advantages:
- Easy to calculate.
- Useful to compare the performance of two or more well diversified portfolios.
- Disadvantages:
- Cannot be used to compare individual stocks or undiversified portfolios.
- - Cannot calculate statistical significance.

2

Treynor Index

• Treynor compares the excess return per unit of β .

$$T_p = \frac{r_p - r_f}{\beta_p}$$

- Advantages:
- Easy to calculate.
- Useful to compare the performance of two or more well diversified portfolios or individual firms.
- Disadvantages:
- Cannot calculate statistical significance.

Information Ratio

$$IR_p = \frac{r_p - r_B}{\sigma_{\varepsilon}}$$

where σ_{ε} is standard deviation of the residual from the regression: $r_p = \delta_0 + \delta_1 r_B + \varepsilon$, and r_B is the return on a relevant benchmark.

- High returns relative to the benchmark portfolio B due to "superior information" are penalized by "tracking error".
- If the manager holds the benchmark then the tracking error will be zero.

2

Problems

- All measures are backward looking.
 - As investors we would like to estimate future performance.
- Statistical tests may lack power.
 - Typically we have only 5 10 years of monthly data for many funds.
 - This may not be sufficient to identify abnormal performance precisely.

Jensen's Alpha

• Jensen's α measures excess return achieved by a portfolio or stock relative to a risk adjusted benchmark.

$$\operatorname{CAPM}: E(r_{i}) - r_{f} = \beta_{i} \left(E(r_{m}) - r_{f} \right)$$

$$\operatorname{Regression}: r_{i,t} - r_{f,t} = \alpha_{i} + \beta_{i} \left(r_{m,t} - r_{f,t} \right) + \varepsilon_{t}$$

$$\operatorname{CAPM implies}: \alpha_{i} = 0$$

$$\operatorname{Jensen's} \alpha$$

Jensen's Alpha

- · Regress monthly excess portfolio returns on excess stock market returns (plus SMB and HML for FF3F).
- Is the intercept $(\alpha) > 0$?

	Fidelity Magellan CAPM FF3F		Berkshire	Hathaway
			CAPM	FF3F
Av Ex Ret	0.0062		0.0113	
Alpha	0.0061	0.0072	0.0107	0.0104

• Both have positive, statistically significant α s at a 5% confidence level. Both funds earn abnormal returns after adjusting for systematic risks.

Calculating Sharpe's Measure
• Sharpe's measure examines fund performance after controlling for the total risk of the fund.

$$SR_p = \frac{r_p - r_f}{\sigma_p}$$

- Sharpe Ratio for Fidelity Magellan: $SR_F = \frac{0.0062}{0.0425} = 0.1459$
- $SR_B = \frac{0.0113}{0.0617} = 0.1831$ • Sharpe Ratio for Berkshire:
- How do these ratios compare to the stock market?

$$SR_M = \frac{0.0062}{0.0409} = 0.1516$$

Calculating Treynor's Measure

• Sharpe's measure examines fund performance after controlling for the total risk of the fund.

$$T_p = \frac{r_p - r_f}{\beta_p}$$

Treynor Ratio for Fidelity Magellan: $T_F = \frac{0.0062}{0.0111} = 0.5584$

 $T_B = \frac{0.0113}{0.0992} = 0.1170$ Treynor Ratio for Berkshire:

How do these ratios compare to the stock market?

$$T_M = \frac{0.0062}{1} = 0.0062$$

Information Ratio

$$IR_p = \frac{r_p - r_B}{\sigma_{\varepsilon}}$$

where σ_{ε} is standard deviation of the residual from the regression: $r_p = \delta_0 + \delta_1 r_B + \varepsilon$, and r_B is the return on a relevant benchmark.

