$R: \{(x,y) \text{ for } (x,y) \in A^2 \text{ if } xRy\}$

 $T \cdot R : \{ \langle a, c \rangle \mid \exists b \in B (\langle a, b \rangle \in T \land \langle b, c \rangle \in R) \}$

 R^2 : $aR^2c \leftrightarrow \{\langle a,c \rangle \mid \exists b \in A \ (\langle a,b \rangle \in R \land \langle b,c \rangle \in R)\}$

an ordered pair $(a,c) \in \mathbb{R}^2$ means there's a "middle" bEB that satisfie $(b,c) \in \mathbb{R}$

Examples

- $(a=-b)^2 = I_{\mathbb{R}}$
- $\langle a,b \rangle \in \mathbb{R}^2 \Leftrightarrow \langle a,c \rangle, \langle c,b \rangle \in \mathbb{R}$

Empty ∅_Δ

 $R := rel(A \times B) = \emptyset$

No pair \in A×B satisfies (a,b) \in R

Properties

- $S \cdot \varnothing_{\Delta} = \varnothing$
- anti-symmetric
- symmetric ?

Examples

• $\{(x,y) \in \mathbb{N}^2 \mid x+y < x\}$

Identity I_{A}

Properties

 $\bullet \quad R \cdot I_{\Delta} = R$

Reflexivity

R := rel(A) is reflexive if $\forall a \in A(\langle a, a \rangle \in R)$

R is reflexive if every a \in A satisfies $\langle \, {\tt a} \, , {\tt a} \, \rangle \in R$. In other words: $I_{\mathbb{A}} \, \subseteq \, R$

 $A = \{ -1, 0, 1 \}$. Is \cdot contained $\in R$?

 $R = \text{lambda a,b: } a \circ b; all(R(x,x) for x \in A)?$

Properties

- R^{-1} is reflexive
- $\rightarrow R \subseteq R^2$ (and R^2 is reflexive)

- $\rightarrow R \subseteq R^2$
- if $S \subseteq R$ then S is reflexive
- if S is reflexive then both $R \cup S$ \land $R \cap S$ are reflexive

Examples

- U_{Λ} : $\forall a \in A(\langle a,a \rangle \in A \times A = UA)$
- I_{Δ} : $\forall a \in A(\langle a,a \rangle \in \{\langle -1, -1 \rangle, \langle 0, 0 \rangle, \langle 1, 1 \rangle\})$
- ≤, ≥ both contain ·.

Counter Examples

- \neq (which is $U_A IA$)
- <, >, ØA
- a=-b .∴

Anti-Reflexivity

R:=rel(A) is anti-reflexive iff $\neg\exists a \in A(\langle a,a \rangle \in R)$

R is reflexive if every a \in A satisfies $\langle a,a \rangle \notin R$. In other words:

 $I_{\mathsf{A}} \cap R = \emptyset$ just $I_{\mathsf{A}} \nsubseteq R$ isn't enough; $I_{\mathsf{A}} = \{\langle 1,1 \rangle, \langle 2,2 \rangle\} \nsubseteq R = \{\langle 1,1 \rangle, \langle 2,2 \rangle\} <caption>$

Examples

Counter Examples

•
$$U_{\Delta}$$
, I_{Δ} , a=-b \cdot , \leq , \geq

Symmetry

R := rel(A) is symmetric iff $R = R^{-1}$

R is symmetric if every $(x,y) \in R$ satisfies $(y,x) \in R$ assuming both $x \land y$ exist $\in A$

$$\forall x \forall y (\langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R)$$

 $R = \text{lambda a,b: } a \circ b; all(rel(y,x) for x,y \in R)?$

Properties

- if S is symmetric then both $R \cup S$ \wedge $R \cap S$ are reflexive
- if S is symmetric then $R \setminus S$ is symmetric

Examples

- \varnothing_{Λ} can't point at $\langle x,y \rangle$ Λ say $\langle y,x \rangle$ is $\neg \in \varnothing^{-1}$
- U_{Δ} , I_{Δ} , a=-b \therefore , \neq

Counter Examples

Anti-Symmetry

R := rel(A) is anti-symmetric iff $R \cap R^{-1} = \emptyset$

R is anti-symmetric if every $\langle x,y \rangle \in R$ satisfies $\langle y,x \rangle \notin R$ $\forall x \forall y ((x,y) \in R \rightarrow (y,x) \notin R)$

 $R \cap R^{-1} = \emptyset$ means there can't be a $\langle x, x \rangle$ Properties

- → R is anti-reflexive
- $\rightarrow R^{-1}$ is anti-symmetric
- if $S \subseteq R$ then S is anti-symmetric
- if $S \cup T$ is anti-symmetric then both $S \wedge T$ are anti-symmetric
- $\rightarrow R \cap S$ is anti-symmetric
- if R is antireflexive Λ transitive then it's asymmetric Λ anti-s

Examples

- <, >, Ø
- $b > a^2$

Counter Examples

- $\bullet \ \neq \text{, } \leq \text{, } \geq \text{, } U_{\text{A}}\text{, } I_{\text{A}}\text{, } \text{a=-b } \text{..., } \neq$
- $b < a^2$ (3,4) \wedge (4,3) are symmetric

Weak Anti-Symmetry

$$R \cap R^{-1} \subseteq I_{\Lambda}$$

 $\forall x \forall y (\langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x=y)$

if both $\langle x,y \rangle \in R$ $\land \langle y,x \rangle \in R$ it's only because they're equal for $x,y \in A$: if $x \neq y$ $\land \langle x,y \rangle \in R$ then must $\langle y,x \rangle \notin R$

 A_S vs WA_S : A_S requires every pair's opposite to \neg be \in \emph{R} , whereas W_S the same only for pairs that x=y

Examples

• IA

Transitivity

$$R^2 \subseteq R$$

 $\forall x \forall y \forall z \left(\left(R \left(x, y \right) \ \, \Lambda \ \, R \left(y, z \right) \right) \ \, \rightarrow \ \, R \left(x, z \right) \right)$

Every $(x,y,z) \in A$ that satisfy $(x,y) \in R$ \land $(y,z) \in R$ also satisfy $(x,z) \in R$. If you see an x that leads to y that leads to z, then expect x to leads is why $R^2 \subseteq R$.

Properties

- if T is symmetric Λ anti-symmetric then it's also transitive Examples
 - A={1,2,3}; $R = \{\langle 1,2 \rangle, \langle 2,3 \rangle, \langle 1,3 \rangle\} \Rightarrow R^2 = \{\langle 1,3 \rangle\} \subseteq R$
 - A={1,2,3}; $T = \{\langle 1,2 \rangle\} \Rightarrow T^2 = \emptyset \subseteq T$
 - $W = \{\langle 1, 1 \rangle\} \Rightarrow W^2 = \{\langle 1, 1 \rangle\} \subseteq W$
 - I_A
 - ø_A
 - U_A if $(a,b) \in A^2 \land (b,a) \in A^2$ then $(a,c) \in A^2$
 - if |A| > 1 then ≠ is trans
 - <, ≤

Counter Examples

- $P=\{\langle 1,2\rangle,\ \langle 2,1\rangle\} \Rightarrow P^2=\{\langle 1,1\rangle,\ \langle 2,2\rangle\} \not\subseteq P$ iow: 1 leads to 2 leads to 1, but $\langle 1,1\rangle \not\subseteq P$
- $\exists x \exists y \exists z (R(x,y) \land R(y,z) \land \neg R(x,z))$

Equivalance

 $\it R$ over A is equivalence iff $\it R$ is reflexive, symmetric $\it \Lambda$ transitive $\it Examples$

- U_A , I_A , equality
- "Has the same absolute value" on the set of real numbers
- if $A=\varnothing$ then \varnothing_Δ is symmetric, transitive \uplambda reflexive

Counter Examples

- ≥ reflexive ∧ transitive but ¬ symmetric
- if $\mathsf{A} \neq \varnothing$ then \varnothing_{Λ} is symmetric Λ transitive, but \neg reflexive

Connexivity

lesson 7 00:06:00

R over A is connexive iff $\forall (x,y) \in A \ (x \neq y \rightarrow \langle x,y \rangle \in R \ \lor \ \langle y,x \rangle \in R)$

Order

lesson 7 00:00:00

Partial Order

R over A (\leq) is a partial order iff it's <u>antireflexive</u> \land <u>transitive</u> *Properties*

• Antisymmetric because antireflexive Λ transitive

Examples

• \subset over $\mathcal{P}(A)$

777

for all a, b, Λ c:

- a ≤ a reflex
- if $a \le b \land b \le a$, then a = b antisymm
- if $a \le b \land b \le c$, then $a \le c$ trans

Examples

equality ???

Total Order

Partial order \land connexive (aka "linearly ordered") $\forall (x,y) \in A \ (x \neq y \rightarrow \langle x,y \rangle \in R \ \lor \ (y,x) \in R)$ note the xor. verify

Examples

• c over N also over R?

Counter Examples

• if $A\neq\emptyset$ then I_A isn't total order because for all aEA: a=a

Partitions

Partition of A is a set of non-empty, non-overlapping subsets of A variable Properties

- every aEA is E exactly one block
- no block contains ø
- u of blocks = A
- n of any two blocks = Ø
- \rightarrow A is finite \Rightarrow rank of P is |X| |P|?

Examples

- {A} is partition of A trivial
- ø's only partition is ø

• $\{1,2,3\}$ has five partitions: $\{\{1\},\{2\},\{3\}\}, \{\{1,2\},\{3\}\}, \{\{1\},\{2,3\}\}, \{\{1,2,3\}\}$

Counter Examples

- ¬ partitions of {1,2,3}:
 - \circ {{}, {1,3}, {2}} contains \varnothing
 - ∘ {{1, 2}, {2, 3}} 2 exists ∈ more than one block
 - {{1}, {2}} no block contains 3

Equivalence Class: $\{x \in S \mid x \equiv a\}$ where $a \in S$

Given R is an equivalence relation on S, the equivalence class of an $\in S$ is the set $\{x \in S \mid \langle x, a \rangle \in R\}$

$$[a] = \{b \mid aRb\} = \{b \mid (a,b) \in R\}$$

all elements $\in S$ that when paired with a, exist $\in R$

In other words: going over R, the elements \in [a] are all the element paired with

Properties

- \bigcup of all equivalence classes = S ?
- a ∈ [a] every element exists ∈ its equivalence class
- the items \in each equivalence class of s exist only \in their equivalence \circ
- every possible pair of eq. classes is zar ?

Examples

- X = all cars; relation \equiv_X = "has the same color as"; one particular equivlance class consists of all green cars
- Relation $\equiv_{\mathbb{Z}}$ is $(a,b) \in \equiv_{\mathbb{Z}} \Leftrightarrow (a-b) \% 2 == \emptyset \Rightarrow two equivalence classes numbers <math>\land$ odd numbers
- $S = \{1, 2, 3, 4, 5\}$
 - $= {\langle 1, \mathbf{1} \rangle, \langle 1, \mathbf{2} \rangle, \langle 1, \mathbf{3} \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle, \langle 5, 5 \rangle, \langle 2, 1 \rangle }$ $\langle 3, 2 \rangle, \langle 3, 1 \rangle }$
 - [1] = {1, 2, 3} everything that 1 is related to
 - · [2] = {2, 1, 3}
 - \circ [3] = {3, 2, 1} note that [1] \equiv [2] \equiv [3]
 - $\circ [4] = \{4\}$
 - \circ $[5] = {5}$