WUOLAH

Relaciontema1resuelta.pdf

Relación 1 resuelta

- 1° Fundamentos del Software
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Fundamentos del Software

Relación de Problemas 1. Sistema de Cómputo

15-sep-2015

- 1. ¿Qué parte de una computadora realiza operaciones con datos?
 - (a) la CPU.
 - (b) la Memoria.
 - (c) el hardware de E/S.
 - (d) Ninguna de las anteriores.
- 2. ¿Qué dispositivo de almacenamiento intermedio maneja datos de forma temporal?
 - (a) la ALU.
 - (b) un Registro.
 - (c) la UC (Unidad de Control).
 - (d) un disco duro.
- 3. ¿Qué unidad puede disponer de dos entradas?
 - (a) una ALU.
 - (b) un Registro.
 - (c) una CU.
 - (d) un disco duro.
- 4. ¿Qué maneja un registro de la CPU?
 - (a) datos.
 - (b) instrucciones.
 - (c) valores para el CP (Contador de Programa).
 - (d) Cualquiera de los anteriores.
- 5. Una palabra de memoria es:
 - (a) El conjunto de bits que representa una dirección de una posición de memoria.
 - (b) La información que se da en el conjunto de las líneas de entrada a la memoria.
 - (c) El conjunto de bits que representa la capacidad máxima de la memoria en un instante dado.
 - (d) El contenido de una posición de memoria.
- 6. Una memoria de 8Mpalabras, con palabras de 32 bits tiene:
 - (a) 32 MB.
 - (b) 8 MB.
 - (c) 16 MB.

- $C = 2^m * n \rightarrow n = 32 \ bits = 4bytes$ $C = 8M \ palabras = 8 * M * 4 = 2^3 * 2^2 * M = 8 * 4 = 32MB$
- (d) Ninguna de las anteriores.
- 7. Una palabra tiene una longitud de
 - (a) 8 bits.
 - (b) 16 bits.
 - (c) 32 bits.
 - (d) Cualquiera de las anteriores.
- 8. Si el espacio de direcciones de memoria es de 16MB y la longitud de palabra es 8 bits, ¿cuántos bits se necesitan para acceder a cada palabra?
 - (a) 8.
 - (b) 16.
 - (c) 24.
 - (d) 32.

- $C = 2^m * n \rightarrow 2^{27} = 2^m * 2^3 \rightarrow m = 24 \text{bits (n}^{\circ} \text{ hilos)}$
- 9. Si la memoria tiene una capacidad de 2³² palabras, el bus de direcciones necesitará disponer un canal de:
 - (a) 8 líneas.
 - (b) 16 líneas.
 - (c) 32 líneas.
 - (d) 64 líneas.

 $C = 2^m * n \rightarrow C = 2^{32} * n \text{ (palabras)}$ $2^{32} * n = 2^m * n \rightarrow m = 32 \text{ (}n^0 \text{ hilos)}$

- **10.** El método de comunicación de E/S en el que la CPU está esperando hasta que la operación de E/S ha finalizado se conoce como:
 - (a) E/S Programada.
 - (b) E/S Dirigida por Interrupciones.
 - (c) DMA.
 - (d) E/S a Distancia.
- **11.** El método de comunicación de E/S en el que el dispositivo de E/S informa a la CPU en qué momento está preparado el dispositivo para la transferencia de datos se conoce como:
 - (a) E/S Programada.
 - (b) E/S Dirigida por Interrupciones.
 - (c) DMA.
 - (d) E/S a Distancia.
- **12.** 64MB es equivalente a:
 - (a) 512 Kbits.
 - (b) 256·10¹⁰ bits.

$$64MB = 2^6 * 2^3 * 2^{20}bits = 512 * 2^{20}bits = 512MBits$$

- (c) 512 Mbits.
- (d) Ninguna de las anteriores.
- 13. Cuál de las siguientes afirmaciones es correcta:
 - (a) En algunas computadoras un programa puede ejecutarse sin necesidad de cargarlo en la memoria principal.
 - (b) Un programa, para que se ejecute, debe estar cargado en la memoria principal.
 - (c) Un programa, para que se ejecute, basta con que esté en el disco duro.
 - (d) Un programa, para que se ejecute, si está en lenguaje máquina, puede estar en cualquier unidad.
- 14. El ancho de banda de un bus:
 - (a) Es la longitud (medida en pulgadas o centímetros) transversal de la banda donde van embebidos los hilos conductores del bus.
 - (b) Representa la cantidad de información que se transfiere a través de él, dada usualmente en Bytes/segundo.
 - (c) Es el número de bits que transmite simultáneamente, en paralelo.
 - (d) Es la longitud (medida en pulgadas o centímetros) total de la banda donde van embebidos los hilos conductores del bus, medida entre las unidades más lejanas que interconecta.
- 15. ¿Cuántos bits hay en 32KB? ¿Y en 64MB? ¿Y en 4GB?

$$32KB = 2^{18}bits \mid 64MB = 2^{29}bits \mid 4GB = 2^{35}bits$$

16. Un computador tiene 36 Kpalabras de memoria principal estructurada en palabras de 32 bits ¿Cuántos bytes caben en dicha memoria?

$$C = 36 * 2^{10} * 2^5 = 36 * 2^{15} bits = 36 * 2^{12} bytes = 147456 bytes = 144 KB$$

- 17. Dado un computador cuya capacidad máxima de memoria es de 32 MB organizado en palabras de 32bits
 - a) ¿Cuántos bits tiene en total?

$$32MB = 2^5 * 2^{20} * 2^3 = 2^{32}bits = 256 Mbits$$

b) ¿Cuál es el ancho (número de hilos) de los buses de datos y direcciones?

$$2^{28}b = 2^m * 2^5b \rightarrow 2^m = 2^{23} \rightarrow m = 23 \text{ hilos}$$

- **18.** Suponiendo que una memoria está direccionada por palabras de 32 bits, si su bus de direcciones dispone de 20 hilos, puede direccionar una memoria de hasta:
 - (a) 1 MB.
 - (b) 4 MB.
 - (c) 5 MB.

 $C = 2^{20} * 2^5 = 2^{25}b = 32 Mb = 4 MB$

(d) 2 MB.

19. Suponiendo un computador con una memoria de 128 MB y que direcciona palabras de memoria de 32 bits, ¿cuál sería el tamaño en bits del contador de programa?

$$128 MB/32b = 2^7b * 2^{20}b * 2^3b \rightarrow 32 = 2^5b \ palabras$$

 $128 MB/32b = 2^{25}b = 32 Mb$

20. ¿Cuántos bits serían necesarios para codificar un conjunto formado por 108 caracteres?

$$1 \ caracter = 1 \ byte \rightarrow 108 \ bytes * 8 \rightarrow 864 \ bits$$

- **21.** Dado el esquema de un computador elemental según se ha descrito en el tema (para mayor detalle, ver figura del ejercicio 30), el puntero de pila (SP) indica:
 - (a) La dirección de memoria donde debe saltar el programa después de ejecutarse la instrucción de retorno correspondiente.
 - (b) La dirección de memoria donde se encuentra la dirección donde debe saltar el programa después de ejecutarse la instrucción de retorno correspondiente.
 - (c) La dirección de memoria a donde se ha producido el último salto.
 - (d) La dirección de memoria donde se encuentra la dirección a donde se ha producido la última llamada a una subrutina.
- **22.** Dado un computador que dispone de 64 MB de memoria principal y una longitud de palabra de 4 bytes. ¿Cuántos bits son necesarios para direccionar cada palabra en memoria?

$$m = 24$$

23. Dado un computador imaginario que dispone de una arquitectura formada por 16 registros de propósito general (R₀, R₁,..., R₁₅), 1024 palabras de memoria principal y 16 instrucciones diferentes (suma, resta, etc.). ¿Cuál sería la longitud de una instrucción en bits si tiene el siguiente formato:

instrucción	М	Ri
24	210	2 ⁴
	_ 218	

Donde M es una dirección de memoria y R_{i} es uno de los registros.

24. Dado un computador imaginario que dispone de una arquitectura formada por 16 registros de propósito general (R₀, R₁,..., R₁₅), 1024 palabras de memoria principal y 16 instrucciones diferentes (suma, resta, etc.). ¿Cuántos bits serían necesarios para direccionar a los registros?

$$2^4 = 4bits \rightarrow 2^4 R \quad 2^{10}M \quad 2^4 I \rightarrow R = 2^4 = 4bits$$

- **25.** Dado un computador imaginario que dispone de una arquitectura formada por 16 registros de propósito general (R₀, R₁,..., R₁₅), 1024 palabras de memoria principal y 16 instrucciones diferentes (suma, resta, etc.) ¿Cuál sería el tamaño de las siguientes instrucciones?
 - (a) Transferencia entre una dirección de memoria y un registro (M[d] \leftarrow R_i).

$$2^{4} (Int) + 2^{10} (Mem) + 2^{4} (Rg) = 18 IR$$

(b) Operación aritmética donde intervienen 3 registros ($R_i \leftarrow R_i$ op R_k).

$$12 + 8 = 20 bits$$

26. Dado un computador imaginario que dispone de una arquitectura formada por 16 registros de propósito general (R₀, R₁,..., R₁₅), 1024 palabras de memoria principal y 16 instrucciones diferentes (suma, resta, etc.). ¿Cuál sería el tamaño del PC?

$$2^{10} = 10 \ bits \rightarrow 2^4 R \quad 2^{10} M \quad 2^4 \ Ir \rightarrow 10 \ bits \rightarrow PC = m$$

Actualizados

DE CRECER

Master en Asesoría Fiscal de Empresas

Relación de problemas nº1

Fundamentos del Software

27. Sea un ordenador elemental con una arquitectura tal y como se muestra en la figura, es decir, tres registros de propósito general, registro contador de programa (PC) y registro de instrucción (IR). La memoria principal dispone de 256 palabras donde cada palabra tiene la longitud necesaria para albergar la instrucción de mayor tamaño. Describa el estado final de ejecución del procesador a partir del estado actual de la CPU mostrado en la figura.

Instrucción	Descripción
MOVER Orig, Dest	Copia el valor del origen (Orig) al destino (Dest).
SUMAR Ri,Rj,Rk	Suma el valor de Ri y Rj, depositando el resultado en Rk.
IN Pi, Dest	Lee del Puerto (Pi) y lo deposita en el destino (Dest).
OUT Pi, Orig	Escribe el contenido del origen (Orig) en el puerto Pi.
HALT	Detiene al procesador.

R_0	R ₁	R ₂	PC	IR	Mem	PD
16	14		12	Mover 22, R ₁		12
16	14	30	13	Sumar R_0 , R_1 , R_2		12
16	14	30	14	Mover R_2 , 23	M[23]=30	12
16	14	30	15	IN PD,24	M[24]=12	12
30	14	30	16	Mover 23,R ₀		12
30	12	30	17	Mover 24,R ₁		12
30	12	42	18	Sumar R_0 , R_1 , R_2		12
30	12	42	19	OUT PD,R ₂	_	42
////	////	////	////	HALT	///////////////////////////////////////	////

- **28.** Suponiendo que el lenguaje máquina de la arquitectura anterior dispone de 14 instrucciones distintas, muestre cuántos bits serían necesarios para codificar las instrucciones SUMAR R₀,R₁,R₂ y MOVER 20,R₀ respectivamente.
- **29.** Suponiendo que el lenguaje máquina de la arquitectura descrita en el ejercicio 27 dispone de 23 instrucciones distintas y posee 4096 palabras de memoria, muestre cuántos bits serían necesarios para codificar las instrucciones IN P_i, DD (suponiendo que hay 64 puertos) y MOVER 23,R₀.
- 30. Sea un ordenador elemental con una arquitectura tal y como se muestra en la figura, es decir, tres registros de propósito general, registro contador de programa (PC), registro de instrucción (IR) y registro de pila (SP). La memoria principal dispone de 512 palabras donde cada palabra tiene la longitud necesaria para albergar la instrucción de mayor tamaño. Describa el estado final de ejecución del procesador a partir del estado actual de la CPU mostrado en la figura y tras la ejecución del programa (nótese que la instrucción de la dirección 10 ya se ha ejecutado).

Fundamentos del Software

Instrucción	Descripción		
MOV M[N],Ri	Copia el valor de la dirección		
MOV M[N], KI	de memoria N al registro Ri		
	Si Ri == Rj, activa el bit de		
COMP Ri,Rj	estado. En otro caso, lo		
	desactiva		
	Lee del Puerto (Pi) y lo		
IN Pi,M[N]	deposita en dirección de		
	memoria N.		
	Si el bit de estado no está		
JNE N	activo, salta a la dirección de		
	memoria N.		
OUT DE DE	Escribe el contenido del		
OUT Ri,Pi	registro Ri en el puerto Pi.		
HALT	Detiene al procesador		
CALL N	Guarda el PC en la pila y salta		
	a la dirección de memoria N.		
	Saca un elemento de la pila y		
RET	lo almacena en PC.		
ADD Ri,Rj,Rk	Rk= Ri+Rj		

CPL	J		Memoria	Dir
	5		MOV M[23],R0	10
R₀ [IN PD,M[26]	11
ALU R ₁	0		MOV M[26],R1	12
R, [0		COMP R0,R1	13
CIL DO	11	1 1	JNE 18	14
CU PC		ll .	MOV M[24],R0	15
IR CD	MOV M[23], R0 30		OUT RO, PD	16
SP	30	J	HALT	17
			CALL 20	18
	15	0	HALT	19
Dispositivo E/S		uerto	ADD R0,R1,R2	20
	Datos (PD) Esta	do (PE)	OUT R2, PD	21
			RET	22
			5	23
			0	24
			1	25
				26
				30

R_0	R_1	R_2	PC	IR	SP	PD	Mem
5	0	0	11	MOV M[23], R ₀	30	15	
5	0	0	12	IN PD, M[26]	30	15	
5	15	0	13	$MOV M[26], R_1$	30	15	M[26]=15
5	15	0	14	COMP R_0 , R_1	30	15	
5	15	0	18	JNE 18	30	15	
5	15	0	20	CALL 20	30	15	
5	15	20	21	ADD, R_0 , R_1 , R_2	29	15	M[30]=19=PC
5	15	20	22	OUT R ₂ ,PD	29	15	
5	15	20	19	RET	29	20	
////	////	////	20	HALT	30	/////	///////////////////////////////////////

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.