Quarterly data earnings per share of Coca-Cola Company

 Original data (y) is clearly not stationary, taking consideration of both adf_test result and acf with a decreasing trend. According to arima analysis, there are 1 regular difference and 1 seasonal difference.

Fig. 1 Original series y

2. To discover a possible model based on suggested differences: Taking **SARIMAX (0,1,0)x(0,1,0) of s=4 model**, the residual becomes stationary around zero mean:

Fig. 2 Residual of SARIMAX (0,1,0)x(0,1,0) of s=4 model

3. Observing the ACF/PACF of residual for SARIMAX (0,1,0)x(0,1,0) of s=4 model: lag 1 and lag 5 of both ACF and PACF are out of bounds, indicating either a AR(1) or MA(1) for the non-seasonal part. Lag 4 for both ACF/PACF are out of bounds, indicating a possible S-MA(1) model for the seasonal part.

SARIMAX Results							
Dep. Variat Model: Date: Time: Sample:	ole:	MAX(1, 1, 1	value)x(0, 1, 1, 4) i, 22 Oct 2021 19:41:36 0 - 107	No. Ob Log Li AIC	oservations: ikelihood		107 197.680 -387.359 -376.859 -383.107
Covariance			opg				
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1 ma.L1 ma.S.L4 sigma2	0.6445 -0.9594 -0.3806 0.0012	0.082 0.052 0.105 0.000	7.857 -18.316 -3.610 10.621	0.000 0.000 0.000 0.000	0.484 -1.062 -0.587 0.001	0.805 -0.857 -0.174 0.001	

4. The parameters are all significant (the absolute value of z is greater than 1.96) for SARIMAX(1,1,1)x(0,1,1,4) model. The residual of this model is WHITE NOISE, but NOT Gaussian White Noise, NEITHER SWN.

Fig. 3 Residual of SARIMAX (1,1,1)x(0,1,1) of s=4 model

SARIMAX(1,1,1)x(0,1,1,4) Statistics (p-value)	
$CADIDAAV(A,A,A) \cdot (O,A,A,A)$ $Chartistics (a.s.a)$	conclusion

Stationary(adf_test)	1.742328416728474e-17	The residual is stationary, and NO transformation is needed.			
Linear Model(LjungBox)	0.09483397	Residual is independently distributed; therefore, NO linear model is needed			
Normal distribution	3.8048994611017406e-05	The residual is NOT normally distributed			
WN	zero mean, constant variance, acf/pacf is zero	The residual of this model is WHITE NOISE			
GWN	Residual is not normally distributed	NOT Gaussian WHITE NOISE			
SWN	Acf/pacf of Squared residuals have non-zero lags out of bounds	There is a linear relation to explain squared residuals, and the residual is NOT Strict White Noise.			

5. To discover a possible model, considering no difference is taken. Observing original y's ACF/PACF, an AR(1) and an S-AR(1) models are estimated. However, the residual only becomes stationary and white noise after taking the 1 seasonal difference.

Fig. 4 Residual of SARIMAX (1,0,0)x(1,1,0) of s=4 model

SARIMAX Results

========	=========	========		=======		========	
Dep. Variab	ole:	value No. Observations:					107
Model:		MAX(1, 0, 0)	$0) \times (1, 1, 0, 4)$	Log Likelihood		198.799	
Date:		Fr:	i, 22 Oct 2021	AIC			-391.597
Time:			19:18:39	BIC			-383.693
Sample:			6	HQIC			-388.396
			- 107	,			
Covariance	Type:		opg				
=======							
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	0.8255	0.063	13.041	0.000	0.701	0.950	
ar.S.L4	-0.4360	0.105	-4.153	0.000	-0.642	-0.230	
sigma2	0.0012	0.000	10.017	0.000	0.001	0.001	

6. The parameters are all significant (the absolute value of z is greater than 1.96) for **SARIMAX(1,0,0)x(1,1,0,4) model**. The residual is WHITE NOISE, but NOT Gaussian White Noise, NEITHER SWN.

SARIMAX(1,0,0)x(1,1,0,4)

Statistics (p-value/rationale)

conclusion

Stationary(adf_test)	3.736052668333992e-19 < 0.05	The residual is stationary, and NO transformation is needed.
Linear Model(LjungBox)	0.30533436>0.05	Residual is independently distributed; therefore, NO linear model is needed
Normal distribution	0.0002930311602540314 < 0.05	The residual is NOT normally distributed
WN	zero mean, constant variance, acf/pacf is zero	The residual of this model is WHITE NOISE
GWN	Residual is not normally distributed	NOT Gaussian WHITE NOISE
SWN	Acf/pacf of Squared residuals have non-zero lags out of bounds	There is a linear relation to explain squared residuals, and the residual is NOT Strict White Noise.

Comparing SARIMAX(1,0,0)x(1,1,0,4) model vs SARIMAX(1,1,1)x(0,1,1,4) model

Fig. 5 24 points of predication from SARIMAX (1,0,0)x(1,1,0) of s=4 model.

Variance of prediction is 0.01612

Fig. 6 24 points of predication from SARIMAX (1,1,1)x(0,1,1) of s=4 model.

Variance of prediction is 0.02186

Theoretically, the **SARIMAX(1,1,1)** x **(0,1,1,4)** model is a better model, judging from greater variance of 24 points of prediction, comparing to the other model. The greater variance indicates better capturing of slope estimation, which is also observable from two graphs above.

However, 24 points of predication cover a period of 6 years. As we try to predict the earning per shares of a multinational beverage company, there are many risk factors that impact the continuing growth of the stock prices within the six years. Therefore, **SARIMAX** (1,0,0)x(1,1,0) of s=4 model might be a more accurate model for a short-term point prediction (less than 4 points prediction that cover only one year).