Shanghai Jiao Tong University UM Joint Institute ECE4530J

Homework 1: Due 2022.5.18

Problem 1

- a) What is a mapping? What is a function?
- b) What is asymptotic convergence?

Problem 2

Consider a one-dimensional linear time-invariant system

$$\dot{x} = ax + bu$$
.

- a) What is the system state? What is the system state space?
- b) What is the control input?
- c) Given the initial condition $x(0) = x_0$ and a linear controller $\mu(x) = -kx$, find x(t).
- d) When does the feedback-controlled system in c) converge?

Problem 3

Consider an *n*-dimensional linear time-invariant system

$$\dot{x} = Ax + Bu$$
.

- a) What is the state space?
- b) Suppose that $u \in \mathbb{R}^2$. What are the dimensions of matrices A and B?
- c) Discretize the system into discrete time with step size δ . You need to express $x((k+1)\delta)$ in terms of $A, B, \delta, x(k\delta), u(k\delta)$. To make the notation easier to read, you can use x[k+1] instead of $x((k+1)\delta)$ to denote the discrete-time state and express x[k+1] in terms of x[k]; note that you still need to consider the impact of δ .
- d) Suppose that we use a linear controller $\mu(x) = -Kx$. Write the difference equation for the discretized system; i.e., write how to obtain x[k+1] from x[k]. Find x[k] in terms of A, B, K and the initial condition $x[0] = x_0 \in \mathbb{R}^n$.
- e) [Bonus] Suppose that $u \in \mathbb{R}^n$. What are the domain and the range for μ ? Hint: the range will depend on the rank of K.