

Instituto Federal de Educação, Ciência e Tecnologia do Ceará PPGER — PPGCC

Aula 3: Técnicas Básicas de PDI

Visão Computacional

Prof. Dr. Pedro Pedrosa

pedrosarf@ifce.edu.br

professorpedrosa.com

Tipos de operações

Pixel-a-pixel

 A matriz resultante, Z, é obtida calculando X operação Y = Z, onde X e Y podem ser imagens (matrizes) ou escalares, Z é necessariamente uma matriz. operação é uma operação de matemática binária (+, -, x, /) ou lógica (AND, OR, XOR).

De vizinhança

 O pixel resultante na coordenada (x,y) depende do seu valor original e do valor dos pixeis seus vizinhos (Exemplo: convolução).

Linear

$$- H(af + bg) = aH(f) + bH(g)$$

Não linear

As restantes operações.

Operações

Pixel a Pixel

Varredura na imagem

Jargão que significa percorrer a imagem toda...

Operações com matrizes/imagens

Soma de matrizes

O mesmo é válido para subtração, multiplicação e divisão.

Limiarização

$$s = T(r)$$

Exemplo:

Figura 2.27 (a) Imagem em infravermelho da área de Washington, D.C. (b) Imagem obtida zerando o bit menos significativo de todos os pixels de (a). (c) Diferença entre as duas imagens ajustada para a faixa [0, 255] para melhor visualização.

Exemplo:

Figura 2.28 Angiografia por subtração digital. (a) Imagem máscara. (b) Uma imagem ativa. (c) Diferença entre (a) e (b). (d) Imagem da diferença realçada. (Figuras (a) e (b): cortesia do Instituto de Ciência de Imagem, Centro Médico da Universidade de Utrecht, Holanda.)

Realce:

Figura 3.10 Alargamento de contraste. (a) Forma da função de transformação. (b) Uma imagem de baixo contraste. (c) Resultado do alargamento de contraste. (d) Resultado da limiarização. (Imagem original: cortesia do Dr. Roger Heady, Faculdade de Pesquisas em Ciências Biológicas, Universidade Nacional Australiana, Camberra, Austrália.)

Contraste:

Figura 2.41 Imagens mostrando (a) baixo contraste, (b) médio contraste e (c) alto contraste.

Operações

Vizinhança

Convolução de duas funções contínuas:

$$f(x) * h(x) = \int_{-\infty}^{\infty} f(\alpha)h(x - \alpha)d\alpha$$

Convolução discreta

$$f[n]*h[n] = \sum_{m=-\infty}^{\infty} f[m]h[n-m]$$

Caso Discreto 2D

$$f[n_1, n_2] * *h[n_1, n_2] = \sum_{m_1 = -\infty}^{\infty} \sum_{m_2 = -\infty}^{\infty} f[m_1, m_2] h[n_1 - m_1, n_2 - m_2]$$

h

1	1	1
-1	2	1
-1	-1	1

f

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

$$f[n]*h[n] = \sum_{m=-\infty}^{\infty} f[m]h[n-m]$$

Passo 1

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	1	1		
-1	4	2	2	3
-1	-2	1	3	3
	2	2	1	2
	1	3	2	2

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

h

1	1	1		
-2	4	2	3	
-2	-1	3	3	
2	2	1	2	
1	3	2	2	
£				

5	4		
f*h			

 Π

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

Ī				
	1	1	1	
2	-2	4	3	
2	-1	-3	3	
2	2	1	2	
1	3	2	2	
•				

5	4	4		
f*h				

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	თ	3
2	2	1	2
1	3	2	2

h

		1	1	1	
2	2	-2	6	1	
2	1	-3	-3	1	
2	2	1	2		
1	3	2	2		
	c			•	

5	4	4	-2		
f*h					

t^n

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	2	2	2	3		5	4	4	-2
-1	4	1	3	3		9			
-1	-2	2	1	2					
	1	3	2	2					_22.2
		f			'		f*	h	

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

2	2	2	3		5	4	4	-2
-2	2	3	3		9	6		
-2	-2	1	2					
1	3	2	2					
	f			'		f*	h	

Filtro da média

$$\star \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} =$$

$$\star \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix} =$$

Filtro da média

Exemplo de convolução 2D

Passo 1

1	1	1
1	1	1
1	1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	1	1		
1	2	2	2	3
1	2	1	3	3
	2	2	1	2
	1	3	2	2

1			
f*h			

1	1	1
1	1	1
1	1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	1	1	
2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	2		
f*h			

1	1	1
1	1	1
1	1	1

2	2	2	3
2	1	S	3
2	2	1	2
1	3	2	2

h

	1	1	1
2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	2	2	
f*h			

t

f*h

1	1	1
1	1	1
1	1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

h

		1	1	1	
2	2	2	3	1	
2	1	3	3	1	
2	2	1	2		
1	3	2	2		
	f			•	

1	2	2	2
	r*	h	

f*h

1	1	1
1	1	1
1	1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	2	2	2	3		1	2	2	2
1	2	1	3	3		1			
1	2	2	1	2					
	1	3	2	2					
,	f f*h								

1	1	1
1	1	1
1	1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

2	2	2	3		1	2	2	2
2	1	3	3		1	1		
2	2	1	2					
1	3	2	2					
f				'		f*	h	

Filtro da Média

Figura 2.26 (a) Imagem do par de galáxias NGC 3314 corrompida pelo ruído gaussiano aditivo. (b) a (f) Resultados do cálculo da média de 5, 10, 20, 50 e 100 imagens ruidosas, respectivamente. (Imagem original: cortesia da Nasa.)

Operações de Vizinhança Média local

Figura 2.35 Cálculo da média local utilizando processamento por vizinhança. O procedimento é ilustrado em (a) e (b) para uma vizinhança retangular. (c) O angiograma da aorta discutido na Seção 1.3.2. (d) O resultado da utilização da Equação 2.6-21 com m = n = 41. As imagens estão no tamanho 790 \times 686 pixels.

Operações

Vizinhança

Vizinhança 3x3:

Vizinhança 5x5:

8 - Conectado:

4 - Conectado:

- Filtro mediana:
 - Ler todos os pixels da vizinhança
 - 2. Ordenar os pixels em ordem crescente
 - 3. O resultado será o pixel com velor médio
 - Máscara 3x3 = 9 pixels, então pegar o valor que estiver na posição 5

1. Ler pixels da vizinhança

Operações de vizinhança

- Filtro Prewit:
 - 1. Varrer a imagem
 - 2. Calcular P_h e P_v para cada ponto da imagem
 - 3. Calcular o resultado **res** para cada ponto e gerar uma nova imagem
 - > O resultado será as bordas dos objetos presentes na imagem

Máscara Horizontal (Ph)

Máscara vertical (P_v)

$$res = \sqrt{P_h^2 + P_v^2}$$

Exemplo do Operador Prewit

Exemplo do Operador Prewit

Operações de vizinhança

Filtro Sobel:

- Varrer a imagem
- 2. Calcular S_h e S_v para cada ponto da imagem
- 3. Calcular o resultado **res** para cada ponto e gerar uma nova imagem
 - O resultado será as bordas dos objetos presentes na imagem
 - > Resultado semelhante ao Prewit, mas realça mais alguns detalhes

Máscara Horizontal (S_h)

$$res = \sqrt{S_h^2 + S_v^2}$$

Máscara vertical (S_v)

Exemplo do Operador Sobel

Exemplo do Operador Sobel

Diferença

Prewit

Sobel

Diferença

Prewit

Sobel

Curiosidade

Local e Global

 Matematicamente, a limiarização pode ser definida como:

$$g(x,y) = \begin{cases} objeto \ se \ f(x,y) > T \\ fundo \ se \ f(x,y) \le T \end{cases}$$

 Onde f(x,y) é a imagem de entrada, T é o valor do limiar e g(x,y) é a imagem de saída (limiarizada).

- A escolha do limiar influi na qualidade da limiarização.
- Em geral, um bom limiar pode ser selecionado se os picos do histograma são altos, estreitos, simétricos e separados por vales profundos

T = 37

T=128

T=190

- Os métodos de limiarização têm duas abordagens distintas, uma global e outra local.
 - Os métodos de limiarização globais utilizam um único limiar T para toda imagem.
 - Os métodos de limiarização local têm como princípio dividir a imagem em sub-regiões, onde cada sub-região tem seu limiar específico.
- Em função das características da imagem, podem ser necessários diferentes valores de limiar para cada região.
- Há desvantagens para a seleção do limiar global pela dificuldade de se encontrar um vale entre dois picos.
- As imagens nem sempre contém intensidades bem diferenciadas entre fundo e objeto em função de falta de contraste e/ou ruído.

Binarização

Limiar comum, só que a imagem final g só possui 1 bit para cada pixel de coordenadas (x,y), então cada pixel assume apenas o valor 0 ou o valor 1, por isso o termo binário.

$$g(x,y) = \begin{cases} objeto \ se \ f(x,y) > T \\ fundo \ se \ f(x,y) \le T \end{cases}$$

A imagem gerada ocupa menos espaço em seu armazenamento.

Multilimiarização

$$g(x,y) = \begin{cases} 255 \ se \ f(x,y) < T1 \\ 128 \ se \ T1 \le f(x,y) < T2 \\ 0 \ se \ f(x,y) \ge T2 \end{cases}$$

Onde f(x,y) é a imagem de entrada, T1 e T2 são os valores dos limitares e g(x,y) é a imagem de saída (limitarizada).

- Limiares automáticos
 - Otsu
 - Média local/Global
 - Média máximo/minimo
 - Johansen
 - Adaptativo
 - Niblack

Como processar uma imagem?

Onde processar uma imagem?

Como Processar uma Imagem

- O Toolbox de Processamento de Imagens do MATLAB possui um grande conjunto de operações de processamento de imagens;
- A biblioteca OpenCv pode ser utilizada em C, C++, Java, Python;
- Operações:
 - Operações Geométricas
 - Operações Pontuais e em Bloco
 - Filtragem Linear
 - Transformadas
 - Análise de Imagem e Realce
 - Operações Binárias
 - Operações em Regiões de Interesse

Operações Básicas

- Filtros passa-baixa:
 - Média Trabalho 1
 - Mediana Trabalho 2
 - Gaussiano Trabalho 3
- Filtros passa-alta:
 - Laplaciano Trabalho 4
 - Prewit Trabalho 5
 - Sobel Trabalho 6
- Outras operações
 - Cálculo e apresentação do histograma Trabalho 7
 - Equalização do histograma Trabalho 8
 - Limiarização **Trabalho 9**
 - Multilimiarização **Trabalho 10**

Entrega: ...

O que entregar?

- 1. Implementação
- 2. Breve relatório descritivo da técnica e dos resultados obtidos.

Matlab

Exemplo do Matlab

Exemplo do Matlab

» imshow(image);

» imshow(edge(image));

Binária

Níveis de Intensidade

Exemplo do Matlab

Operações Básicas

- Entrada/Saída
 - imread: abre uma imagem
 - imwrite: grava uma imagem
- Exibição
 - Imshow exibe uma imagem
 - imagesc re-escala e exibe
 - colorbar coloca um eixo de cores
 - Getimage pega a imagem do eixo
 - Truesize mostra em tamanho real
- Ajuda
 - help, lookfor,helpwin, helpdesk, demos.

- Conversão
 - gray2ind
 - Im2bw
 - im2double
 - im2uint8
 - im2uint16
 - ind2gray
 - mat2gray
 - rgb2gray
 - rgb2ind
- Ferramenta Interessante
 - imtool
 - conv2

Link com exemplos básicos

OPENCV

C C++ Java Python

OPENC + Linguagem C

Link para tutorial de instalação

http://professorpedrosa.com/livros/introducao-ao-processamento-digital-de-imagens-utilizando-opencv-na-linguagem-c/treinamento-pdi-com-opencv-em-c/

Link para listas de aprendizagem

http://professorpedrosa.com/livros/introducao-ao-processamento-digital-de-imagens-utilizando-opencv-na-linguagem-c/treinamento-pdi-com-opencv-em-c/

- Link para solução das listas
 - http://professorpedrosa.com/livros/introducao-aoprocessamento-digital-de-imagens-utilizando-opencvna-linguagem-c/treinamento-pdi-com-opencv-em-c/

OPENC + Linguagem C

- Dúvidas, vocês devem falar com
 - Diego Moreira (<u>diegumorera@gmail.com</u>)
 - Samuel Luz (<u>samuelluz.g@gmail.com</u>)

Encaminhamentos

- Dúvidas?
- Próximo assunto
 - Técnicas Básicas de PDI Parte 2

