Math 20250: Abstract Linear Algebra Problem Set 3

Hung Le Tran

 $17~\mathrm{Apr}~2023$

Textbook: Linear Algebra by Hoffman and Kunze (2nd Edition)

Problem 3.1 (Sec 2.4. Problem 4)

Let W be the subspace of \mathbb{C}^3 spanned by $\alpha_1 = (1,0,i), \alpha_2 = (1+i,1,-1).$

- (a) Show that α_1 and α_2 form a basis for W
- (b) Show that the vectors $\beta_1=(1,1,0)$ and $\beta_2=(1,i,1+i)$ are in W and form another basis for W
- (c) What are the coordinates of α_1, α_2 in the ordered basis $\{\beta_1, \beta_2\}$ for W?

(a) Suppose there exists c_1, c_2 s.t. $c_1\alpha_1 + c_2\alpha_2 = 0$

It follows that $c_1(1) + c_2(1+i) = 0 + 0i \Rightarrow c_2 = 0 \Rightarrow c_1 = 0$.

 α_1, α_2 are therefore linearly independent. Since they also span W, it can be concluded that they form a basis for W

(b) It can be observed that:

$$\beta_1 = (1, 1, 0) = -i(1, 0, i) + (1 + i, 1, -1) = -i\alpha_1 + \alpha_2$$

$$\beta_2 = (1, i, 1 + i) = (2 - i)(1, 0, i) + i(1 + i, 1, -1) = (2 - i)\alpha_1 + i\alpha_2$$

Therefore $\beta_1, \beta_2 \in W$.

We now prove that β_1, β_2 span W and are linearly independent.

First, we can rewrite α_1, α_2 as linear combinations of β_1, β_2 :

$$\alpha_1 = \frac{1-i}{2}\beta_1 + \frac{1+i}{2}\beta_2, \alpha_2 = \frac{3+i}{2}\beta_1 + \frac{-1+i}{2}\beta_2$$

Since α_1, α_2 span W, it can be concluded that β_1, β_2 also span W.

Second, there exists c_1, c_2 s.t. $c_1\beta_1 + c_2\beta_2 = 0$, it follows that $c_1 + c_2 = 0$, $c_2(1+i) = 0$ $0 \Rightarrow c_1 = c_2 = 0$. Thus, β_1, β_2 are linearly independent.

Therefore, β_1, β_2 form another basis for W.

(c) Following our expressions of α_1, α_2 as linear combinations of β_1, β_2 , their coordinates in the ordered basis $\{\beta_1, \beta_2\}$ is

$$\alpha_1: \left(\frac{1-i}{2}, \frac{1+i}{2}\right), \alpha_2: \left(\frac{3+i}{2}, \frac{-1+i}{2}\right)$$

Problem 3.2 (Sec 3.1. Problem 1)

Which of the following functions T from \mathbb{R}^2 into \mathbb{R}^2 are linear transformations?

- (a) $T(x_1, x_2) = (1 + x_1, x_2)$ (b) $T(x_1, x_2) = (x_2, x_1)$ (c) $T(x_1, x_2) = (x_1^2, x_2)$ (d) $T(x_1, x_2) = (\sin x_1, x_2)$

(e)
$$T(x_1, x_2) = (x_1 - x_2, 0)$$

Solution (a)
$$T(x_1, x_2) = (1 + x_1, x_2)$$

No. $T((0,0)) = (1 + 0, 0) = (1,0) \neq 0 \in \mathbb{R}^2$

(b) $T(x_1, x_2) = (x_2, x_1)$ Yes. Let $\alpha = (x_1, x_2), \beta = (y_1, y_2)$ then:

$$T(c\alpha + \beta) = T((cx_1 + y_1, cx_2 + y_2))$$

$$= (cx_2 + y_2, cx_1 + y_1)$$

$$= c(x_2, x_1) + (y_2, y_1)$$

$$= cT(\alpha) + T(\beta)$$

(c) $T(x_1, x_2) = (x_1^2, x_2)$

No. Counter-example:

$$T((1,0) + (-1,0)) = T((0,0)) = (0,0)$$
 while $T(1,0) + T(-1,0) = (1,0) + (1,0) = (2,0)$

(d) $T(x_1, x_2) = (\sin x_1, x_2)$

No. Counter-example:

$$T((\tfrac{\pi}{2},0)+(\tfrac{3\pi}{2},0))=T(2\pi,0)=(0,0) \text{ while } T((\tfrac{\pi}{2},0))+T((\tfrac{3\pi}{2},0))=(1,0)+(1,0)=(2,0)$$

(e) $T(x_1, x_2) = (x_1 - x_2, 0)$

Yes. Let $\alpha = (x_1, x_2), \beta = (y_1, y_2)$ then:

$$T(c\alpha + \beta) = T((cx_1 + y_1, cx_2 + y_2))$$

$$= (cx_1 + y_1 - cx_2 - y_2, 0)$$

$$= c(x_1 - x_2, 0) + (y_1 - y_2, 0)$$

$$= cT(\alpha) + T(\beta)$$

Problem 3.3 (Sec 3.2. Problem 2)

Let T be the (unique) linear operator on \mathbb{C}^3 for which:

$$T\varepsilon_1 = (1,0,i)$$

$$T\varepsilon_2 = (0, 1, 1)$$

$$T\varepsilon_3 = (i, 1, 0)$$

Is T invertible?

Solution

From the textbook, T is invertible iff $\{T\varepsilon_1, T\varepsilon_2, T\varepsilon_3\}$ forms a basis for \mathbb{C}^3 . However, it can be observed that they are not linearly independent:

$$i(1,0,i) + (0,1,1) - (i,1,0) = (0,0,0)$$

 $\Rightarrow iT\varepsilon_1 + T\varepsilon_2 - T\varepsilon_3 = 0 \in \mathbb{C}^3$

It follows that $\{T\varepsilon_1, T\varepsilon_2, T\varepsilon_3\}$ does not form a basis for \mathbb{C}^3 , and therefore T is not invertible. \square

Problem 3.4 (Sec 3.2. Problem 7)

Find two linear operators T, U on \mathbb{R}^2 s.t. TU = 0 but $UT \neq 0$

Solution

We define operators T,U by their associated matrices:

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right], B = \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right]$$

where for $X \in \mathbb{R}^{2 \times 1}$, T(X) = AX, U(X) = BX. Then,

$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ while } BA = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \neq 0$$

It follows that TU(X) = ABX = 0 but $UT \neq 0$

Problem 3.5 (Sec 3.3. Problem 3)

Let W be the set of all 2×2 complex Hermitian matrices, that is, the set of 2×2 complex matrices A s.t. $A_{ij} = \overline{A_{ji}}$ (the bar denoting complex conjugation). As we pointed out in Example 6 of Chapter 2, W is a vector space over the field of *real* numbers, under the usual operations. Verify that

$$(x, y, z, t) \rightarrow \left[\begin{array}{cc} t + x & y + iz \\ y - iz & t - x \end{array} \right]$$

is an isomorphism of \mathbb{R}^4 onto W.

Solution

We first recognize that W is trivially isomorphic to $W' \subseteq \mathbb{C}^4$: (t+x,y+iz,y-iz,t-x). We now want to prove that there exists a linear transformation from $\mathbb{R}^4 \to W'$, that is characterized by an invertible T:

$$T\begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} t+x \\ y+iz \\ y-iz \\ t-x \end{bmatrix}$$

This implies the characteristic matrix:

$$T = \left[egin{array}{cccc} 1 & 0 & 0 & 1 \ 0 & 1 & i & 0 \ 0 & 1 & -i & 0 \ -1 & 0 & 0 & 1 \end{array}
ight]$$

4

Row-reducing T:

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & i & 0 \\ 0 & 1 & -i & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{(3) = \frac{(2) - (3)}{2i}, (4) = \frac{1}{2}((1) + (4))} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & i & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{(2)=(2)-i(3),(1)=(1)-(4)} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Therefore T is invertible, implying that \mathbb{R}^4 is isomorphic to W', which is isomorphic to W. \square