APPLICATION DE L'OPTIMISATION BAYÉSIENNE SUR UNE CLASSIFICATION SALARIALE BINAIRE

Jonathan Moatti, Florent Fettu, Lyes Ould-Ramoul

HEC MONTREAL

OBJECTIFS

- Tâche de classification pour prédire si un individu gagnera plus de 50k/an
- Optimisation bayésienne des hyper paramètres de 3 modèles d'apprentissage automatique : régression logistique, extreme gradient boosting (xgboost) et réseaux de neurones (keras)

JEU DE DONNÉES

Census Income (UCI) contient 48,842 observations et 15 features provenant de la base de données de recensement des États-Unis en 1994.

PRÉTRAITEMENT

- Traitement des valeurs manquantes
- Transformation des variables catégorielles
- Réduction de la dimensionnalité
- Suppression des doublons

MODÈLES

1. RÉGRESSION LOGISTIQUE

2. EXTREME GRADIENT BOOSTING

3. RÉSEAUX DE NEURONES

9								_								 				*
213301663			4				11				14			sigmoi	id		338	-0.85	72013974	189758
1e-05			4				21				2			sigmoi	id		171	-0.246	15857005	119324
314882457			1				50				46			sigmoi	id		284	-0.856	62794327	735901
1e-05			1				1				50			rel	lu		500	-0.449	91907358	169556
											din	n_num_der	nse_laye	rs						
70																				
60																				
00																				
50																				
40																				
10																				
30																				
20																				
20																				
10																				
0	1	15	4	6	8	5	3	2	7	11	10	9 1	4 1:	2						

RÉSULTATS

MODÈLES	SCORE EN TEST BENCHMARK	SCORE EN TEST SKOPT	SCORE EN TEST RANDOMIZED			
Régression logistique	79,96%	85,38%	84,81%			
Extreme gradient boosting	86,92%	87,44%	87,21%			
Réseau de neurones	84,60%	85,46%	85,14%			

FUTURS TRAVAUX

- Modèle ensembliste : combiner les différents classificateurs par vote ou « stacking » pour améliorer la performance
- « Feature engineering » : créer des nouvelles variables à partir des variables catégorielles et continues

LITTÉRATURES

- [1] Navoneel Chakrabarty, Sanket Biswas: « A Statistical Approach to Adult Census Income Level Prediction »
- [2] Vidya Chockalingam, Sejal Shah and Ronit Shaw: « Income Classification using Adult Census Data »
- [3] Mohammed Topiwalla: « Machine Learning on UCI Adult data Set Using Various Classifier Algorithms And Scaling Up The Accuracy Using Extreme Gradient Boosting »