Describing the Game

This is a game for two players, who take turns making moves.

We have two points P_1 and P_2 in a plane, connected by an edge.

Consider a function $s: \{P_1, P_2\} \to \mathbb{N}$.

Initially, $s(P_1) \geq s(P_2)$.

There are $s(P_1)$ stones at P_1 and $s(P_2)$ stones at P_2 .

A player can move stones from P_1 to P_2 , but not from P_2 to P_1 , but the invariant $s(P_1) \ge s(P_2)$ should always be maintained.

If a player starts her turn with $s(P_1) = s(P_2)$, then she loses.

What is the nimber of this game? It ought to be $\frac{s(P_1)-s(P_2)}{2}$.

A Modified Version

Suppose that a few things change from before:

- 1. Either $s(P_1) > s(P_2)$ or $s(P_2) > s(P_1)$ initially
- 2. We can move stones from P_1 to P_2 or P_2 to P_1
- 3. Suppose at the beginning of some turn, $|s(P_1) s(P_2)| = d$, and at the end of that turn $|s(P_1) s(P_2)| = d'$. Then it must be that d' < d.
- 4. If a player starts with $s(P_1) = s(P_2)$ then the player loses.

How does that change the nimber of the game?

If we start with $s(P_1) = 10$ and $s(P_2) = 5$ then $G \cong *2$.

The nimber ought to be $\left|\frac{s(P_1)-s(P_2)}{2}\right|$.

Three Points

Our point set \mathbb{P} is now $\{P_1, P_2, P_3\}$, with directed edges (P_1, P_2) and (P_2, P_3) .

Start with the configuration $s(P_1) > s(P_2) > s(P_3)$.

Maintain the following invariants:

- 1. $s(P_1) > s(P_2)$
- 2. $s(P_2) \ge s(P_3)$

If a player cannot make any moves, then the player loses.

This means we can describe a game of this form with a tuple (a, b, c) which means $s(P_1) = a, s(P_2) = b, s(P_3) = c$ initially. Examples:

- 1. $(3,2,1) \cong *0$
- $2. (3,2,2) \cong *0$
- $3. (3,3,0) \cong *1$
- 4. $(3,3,1) \cong *1$
- 5. $(3,3,2) \cong *0$
- 6. $(4,1,1) \cong *1$
- 7. $(4,2,0) \cong *0$
- 8. $(4,2,1) \cong *0$
- 9. $(4,2,2) \cong *1$
- 10. $(4,3,0) \cong *1$
- 11. $(4,3,1) \cong *0$
- 12. $(4,4,0) \cong *2$

13.
$$(5,1,1) \cong *2$$

14.
$$(5,2,0) \cong *0$$

15.
$$(5,2,1) \cong *1$$

16.
$$(5,3,0) \cong *0$$

17.
$$(6,1,1) \cong *2$$

18.
$$(6,2,0) \cong *1$$

A New Three Point Situation

The point set \mathbb{P} is again $\{P_1, P_2, P_3\}$ where the directed edge set \mathbb{E} is $\{(P_2, P_1), (P_2, P_3)\}$. The initial state is of the form $s(P_1) = 0, s(P_2) = n, s(P_3) = 0$.

The rest of the rules are as before.

What is the nimber for some given value of n?

According to the program:

•
$$(0,1,0) \cong *0$$

•
$$(0,2,0) \cong *1$$

•
$$(0,3,0) \cong *0$$

•
$$(0,4,0) \cong *2$$

•
$$(0, e, 0) \cong *1$$
 for $e = 2i$ where $i \in \mathbb{N}, i > 2$

•
$$(0, o, 0) \cong *0$$
 for $o = 2i - 1$ where $i \in \mathbb{N}, i > 2$

A helpful identity to prove

$$(l, m, r) \cong (l+i, m+i, r+i)$$

Three Point Situation, 1-Position Proof, Case 8

We want to prove the following proposition:

$$P(n): (0, 6n+8, 0) \cong *1 \text{ where } n \ge 0$$

We will use strong induction to prove the above statement.

Base Cases:

Using our program, we have verified that P(n) holds for $n \in \{0, 1, 2, 3\}$.

The fact that $(0, 2, 0) \approx *1$ will also be useful.

Induction Hypothesis:

Assume for some $k \ge 1$ that $\forall n < k, P(n)$ holds.

Induction Step:

We need to prove that P(k) holds. In other words, we need to show:

$$(0, 6k+8, 0) \cong *1$$

Simplifying the problem,

To show that (0, 6k + 8, 0) has nimber 1, it suffices to show the following:

- 1. In one move, we can reach a state with nimber 0
- 2. In one move, we cannot reach a state with nimber 1

Looking at the initial state's children,

Notice that in one move from the original state we can reach any state of the form:

$$(m, 6k + 8 - m, 0)$$
 where $1 \le m \le 3k + 4$

the remaining states that we can reach from the original state are of the form:

$$(0, 6k + 8 - m, m)$$
 where $1 \le m \le 3k + 4$

Since the latter form is symmetric to the former, focusing our analysis on the former is enough to complete the proof.

When m = 3k + 4:

Observe that when m = 3k + 4, we obtain the state (3k + 4, 3k + 4, 0) which clearly has nimber 0, so we have proved the first fact we need.

When m is odd and $1 \le m \le 2k + 2$:

When m is an odd number satisfying $1 \le m \le 2k + 2$, notice that

$$(m+1, 3k+4-\frac{m+1}{2}, 3k+4-\frac{m+1}{2}) \cong *0$$

Work one step backwards from this to get

$$(m, 3k+5-\frac{m+1}{2}, 3k+4-\frac{m+1}{2}) \cong *1$$

Observe that

$$(m, 6k+8-m, 0) \xrightarrow{\text{one move}} (m, 3k+5-\frac{m+1}{2}, 3k+4-\frac{m+1}{2})$$

It follows that the minimum excluded value of the numbers of all the child states of (m, 6k + 8 - m, 0) cannot be 1, and thus the number of this state cannot be 1.

3

When m is even and $1 \le m \le 2k + 2$:

When m is an even number satisfying $1 \le m \le 2k + 2$, observe that

$$(m, 6k+8-m, 0) \xrightarrow{\text{one move}} (m, 6k+8-2m, m)$$

We can replace m with 2i where $1 \le i \le k+1$ to get

$$(2i, 6k+8-2i, 0) \xrightarrow{\text{one move}} (2i, 6k+8-4i, 2i)$$

In the resultant state, the difference between the left and middle values, also the difference between the right and middle values, is

$$6(k-i) + 8$$

Which intuitively suggests that

$$(2i, 6k+8-4i, 2i) \cong (0, 6(k-i)+8, 0) \text{ for } 1 \leq i \leq k+1$$

and although we lack a rigorous argument for this we will assume it is true.

Our knowledge that $(0, 2, 0) \approx *1$ and also our induction hypothesis, tell us:

$$(0, 6(k-i) + 8, 0) \cong *1 \text{ for } 1 \leq i \leq k+1$$

Consequently, $(2i, 6k + 8 - 4i, 2i) \approx *1$.

It follows that the minimum excluded value of the numbers of all the child states of (m, 6k + 8 - m, 0) cannot be 1, and thus the number of this state cannot be 1.

When $m \geq 2k + 3$:

If $m \geq 2k + 3$, it is clear that

$$(m, m, 6k + 8 - 2m) \cong *0$$

Working backwards from this, we get that

$$(m, m+1, 6k+7-2m) \cong *1$$

We know that

$$(m, 6k+8-m, 0) \xrightarrow{\text{one move}} (m, m+1, 6k+7-2m)$$

It follows that the minimum excluded value of the numbers of all the child states of (m, 6k + 8 - m, 0) cannot be 1, and thus the number of this state cannot be 1.

Conclusion:

1 must be the mex of the numbers of the children of (0, 6k+8, 0), so we have proved that $(0, 6k+8, 0) \approx *1$.

Three Point Situation, 1-Position Proof, Case 6 Assume the same inductive 'skeleton' and reasoning style as the previous case. This proof is mainly an illustration of the differences between the two cases:

Consider the initial position

$$(0, 6n+6, 0)$$
 where $n \ge 0$

The first move will take the initial position to a position of the form

$$(m, 6n+6-m, 0)$$
 where $1 \le m \le 3n+3$

If m = 3n:

This is the state (3n, 3n, 0) which clearly has nimber 0.

If $m \leq 2n + 2$ and m is odd:

Then, consider the following move sequence,

$$\begin{array}{ccc} & (m, & 6n+6-m, & 0) \\ & \xrightarrow{\text{one possible child}} & (m, & 3n+4-\frac{m+1}{2}, & 3n+3-\frac{m+1}{2}) \\ & \xrightarrow{\text{only child}} & (m+1, & 3n+3-\frac{m+1}{2}, & 3n+3-\frac{m+1}{2}) \end{array}$$

If $m \leq 2n + 2$ and m is even:

Stuff.

 $\frac{\text{If } m \ge 2n + 3:}{\text{Stuff.}}$

Which provides us with everything we need to fill in the proof skeleton.

Three Point Situation, 1-Position Proof, Case 10