Comparative analysis of fungal gene structures reveals intron loss

Jason Stajich

Duke University

Fungal Comparative Genomics

- Understand genome evolution
- How does gene structure change over evolutionary time?
- Relative frequency and importance of these events

Fungal Introns per Gene versus Intron Size

Introns per Gene versus Intron Size

Introns per Gene 1007 Frequency Spectrum 80-Percentage of Genes with Intron count 70-Hemiascomycota 60-**U.maydis** S.pombe Euascomycota **50** Basidiomycota Zygomycota 30 20 10-**Intron Count**

Why have introns?

- Enable alternative splicing
- Nuclear export machinery may be coupled to splicing
- Nonsense Mediated Decay (NMD)

Evolution of gene structure

- How does exon-intron structure evolve?
- How the hemiascomycete pattern of intron poor genes arise? Ancestral or derived?
- Was the fungal ancestor intron rich or poor?
- What is mechanism of intron loss and gain?

Genome Annotation Pipeline

Automated Annotation of Gene Models

Ortholog and Intron Evaluation Method

- Pairwise orthologs from best-reciprocal hits of FASTA all-vs-all search
- Multi-way orthologs tie together consistent cycles of pairwise orthologs
- Compute multiple sequence alignment (protein)
- Map intron position back into alignment
- Score shared position on species tree

Number of Shared Introns

		scer	ylip	ncra	mgri	fgra	anid	spom	ccin	pchr	cneo	umay	rory	hsap	atha
	scer	6701	51	31	30	32	36	23	10	10	27	EFB I UBC I	3 21	8	13
	ylip	3015	652	147	118	147	136	91	50	48	92	MMS2 RPS18		71	54
•	ncra	2493	3105	10112	5037	5902	383 I	570	824	77 I	'	RPS27	B 996	79 I	441
	mgri	2326	2945	5357	11109	6055	3910	560	858	806	1107	RPL14 RPL7 <i>A</i>	B ₁ 1999	783	447
35	fgra	2593	3256	5735	5787	11640	5085	692	1066	969	1373	ASCI NOG	232	984	541
holog	anid	2416	3037	4681	4672	5369	9541	698	1236	1103	1589		'	008	566
nber of Orthologs	spom	2516	2814	2651	2530	2766	2599	4970	580	602	938	125	996	874	511
er o	ccin	1779	2179	2495	2374	2633	2450	2025	10119	9168	5930	255	2907	2413	3998
Numb	pchr	1827	2269	2551	2465	2754	2573	2120	4104	12466	5185	255	2781	2191	1150
	cneo	2192	2576	2788	2671	2951	2767	2407	2884	3072	652	367	3608	2991	1627
	umay	1950	2378	2703	2594	2842	2667	2139	2623	2702	3079	6522	239	195	139
-	rory	2349	2800	2724	2619	2930	2701	2673	2467	2685	2723	2488	6468	3 089	2032
	hsap	1791	2078	2061	2018	2203	1994	2132	2025	1838	2053	2803	1844	33965	3398
	atha	1732	2011	1977	1965	2130	1983	2027	1688	1722	1962	2509	2509	2942	29993

Pairwise orthologs summary

- Basal lineages in a clade tend to share more introns with outgroup (loss as an ongoing process)
- Y.lipolytica shares roughly 5x as many intron positions with species outside of Hemiascomycota as S.cerevisiae does.
- •20% more pairwise orthologs for H.sapiens-R.oryzae than H.sapiens-A.thaliana.
 - •[Fungi-Metazoa more closely related]
- C.cinereus or C.neoformans have 2x as many introns shared with H.sapiens as with A.thaliana even with roughly comparable numbers of pairwise orthologs.

Multi-way orthologs & Introns

- 768 orthologous gene clusters across 26 species
- Filtering positions with no gaps in alignment, min 40% average similarity.
- 1311 shared intron positions can be considered
- Use ML method of Roy and Gilbert 2005 to infer ancestral states and rates of gain/ loss.

Example Alignment With Intron

hsap ens:ENSP00000234396.2 atha tigr:At1g76030 rory SNAP:rory 1.17-snap.10 umay brd:UM01618.1 cneo TIGR:CNI01180-2 ccin SNAP:ccin 1.178-snap.1 pchr SNAP:pchr 51-snap.38 spom sang:vma2 ylip geno:CAG80064.1 cgui_SNAP:cgui_1.2-snap.410 clus SNAP:clus 1.1-snap.683 dhan geno:CAG88527.1 agos gbk:ADL380W scer sqd:YBR127C cgla geno:CAG58114.1 klac geno:CAH00566.1 kwal SNAP:kwal 010-snap.14 cglo SNAP:cglo 1.7-snap.769 anid brd:AN6232.1 afum SNAP: afum 72-snap.562 cimm SNAP:cimm 1.97-snap.4 hcap 186R SNAP:hcap-186R 33.39-snap.2 mgri brd:MG03244.4 fgra brd:FG00637.1 pans SNAP:pans 2278-snap.6

ncra brd:NCU08515.1

DVSNQL**0**YACYAIGKDVQ-AMKAVVGEEALTSEDLLYLEFLQKFEKNFINQG**1**PYENRSVFESL DVSNQL-YANYAIGKDVQ-AMKAVVGEEALSSEDLLYLEFLDKFERKFVMQG-AYDTRNIFQSL ♪VSNQL**0**YAKYAIGRDAA-AMKAVVGEEALNQEDKLSLEFLEKFERTFIAQG-AYESRTIYESL DVSNQM-YAAYATGRDAA-AMKAVVGEEALSAEDKLAIEFMENFEGKFIKQG-AYENRHIFESL DVSNQLOYAKYAVGKDAA-SMKAVVGEEALSADDKLALEFLDRFEKEFVGQG-AYEARTIFESL DVSNQLOYAKYAIGRDAA-SMKAVVGEEALSAEDKLALEFLDKFERQFVGQG1AYESRTIFESL DVSNQL**0**YAKYAIGRDAA-AMKAVVGEEALSPEDKLALEFLDKFERQFVGQG**1**AYEARSIFDSL DVSNQL-YAMYAIGRDAA-SMKSVVGEEALSQEDRLALEFLGKFEKTFISQG-AYENRTIFETL DVSNQL-YAKYAIGKDAA-AMKAVVGEEALSTEDKLSLEFLDKFEKQFVSQG-PYEDRSIFESL DVSNQL-YAKYAIGRDAA-AMKAVVGEEALSTEDKLSLEFLEKFEKNFITQG-QYENRTIFESL DVSNQL-YAKYAIGRDAA-AMKSVVGEEALSTEDKLSLEFLEKFEKNFIAQG-AYENRSIFDSL DVSNQL-YAKYAIGRDAA-AMKAVVGEEALSTEDKLSLEFLEKFEKNFVSQG-AYENRTVFESL DVSNQL-YAKYAIGRDAA-AMKAVVGEEALSMEDRLSLEFLENFEKTFISQG-AYENRTIFESL DVSNQL-YAKYAIGKDAA-AMKAVVGEEALSIEDKLSLEFLEKFEKTFITQG-AYEDRTVFESL DVSNQL-YAKYAIGRDAA-AMKAVVGEEALSIEDKLSLEFLEKFEKTFISQG-AYENRTVFESL DVSNQL-YAKYAIGRDAA-AMKAVVGEEALSIEDKLSLEFLEKFEKTFIAQG-AYEDRTVFESL DVSNQL-YAKYAIGRDAA-AMKAVVGEEALSIEDKLSLEFLEKFEKTFISQG-AYENRTVFESL DVSNOL-YAKYAIGRDAA-AMKAVVGEEALSAEDKLSLEFLDKFERTFISOS-PYESRTIFESL DVSNQL-YAKYAIGRDAA1AMKAVVGEEALSSEDKLSLEFLEKFERTFINQS-AYESRSIFESL DVSNQL-YAKYAIGRDAA1AMKAVVGEEALSSEDKLSLEFLEKFERTFISQG-PYESRTIFESL DVSNOL-YAKYAIGRDAA1AMKAVVGEEALSAEDKLSLEFLEKFERTFIAOS-PYESRTIFDSL DVSNQL-YAKYAIGRDAA1AMKAVVGEEALSAEDKLSLEFLDKFERTFISQS-PYESRTIFESL DVSNQL-YAKYAIGRDAA-AMKAVVGEEALSAEDKLSLEFLEKFERTFINQG-PYEARTIYESL DVSNQL-YAKYAIGRDAA-AMKAVVGEEALSAEDKLSLEFLEKFERQFISQG-QYESRSIYESL DVSNQL-YAKYAIGRDAA-AMKAVVGEEALSPEDKKSLEFLDKFERTFINQG-PYEGRTIFESL DVSNQL-YAKYAIGRDAA-AMKAVVGEEALSNEDKLSLEFLDKFERSFIAQG-PYESRTIFESL

Introns shared with Athaliana/Human outgroup

Parsimony Tree based on Intron Position

Intron loss

- If loss predominates, how are introns lost?
- Fink (1987) model proposes mRNA integration into genome
- Boeke et al (1985) showed loss intron through RNA intermediate which is integrated into genome
- Large scale comparisons are too far awy to determine recent loss events

Searching for Intron loss in C. neoformans

- Average of 5 introns per gene (Loftus et al, 2005)
- Average K_s between var. grubii and var. gattii 0.22 (roughly mouse-rat divergence), C.gattii vs
 C.neoformans K_s is 0.35
- 5133 4-way orthologs

Few loss events observed

- 25 out of the 5133 loci had loss or gain events
- 2 had evidence 4 or more intron loss/gain events
- CNI01550, putative RNA helicase missing 10 introns in var. grubii.

10 introns lost in C.neoformans var. grubii

Perfect deletions of introns at the locus

Model for intron loss

A transcription and splicing produce intronless transcript

C homologous recombination of cDNA

BI cDNA integrates into genome

B2 gene conversion from locus 2

Summary

- Fungal ancestor was intron rich
 - Estimate 2+ introns per gene (conservatively)
- Differential rates of loss and gain of introns
 - Loss was ongoing in Hemiascomycota, not all at once (more basal organisms have more introns)
- Homologous recombination at the locus can explain intron loss in some systems

Future work

- Identify unambiguous intron gain
- Evaluate gene structure change in paralogous gene families
- Evolutionary model for change in intron length

Acknowledgments

Fred Dietrich (Duke) Scott Roy (Harvard)

TIGR, Genoluvres, Sanger Centre, Stanford, DOE JGI, Broad - Fungal Genome Initiative

Data and genome browsers available at http://fungal.genome.duke.edu