Formale Grundlagen der Informatik II 4. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach Alexander Kreuzer SS 2012

Gruppenübung

Pavol Safarik

Aufgabe G1

Wir betrachten die folgenden Formeln:

$$\varphi_1 := \forall x [\exists y (Rxy \land \neg \exists x Ryx) \lor \forall y \exists z (Rxz \land Rzy)]$$

$$\varphi_2 := \exists x [\forall y \neg Rxy \to \exists y \forall z (Rxy \land Rzy)]$$

$$\varphi_3 := \forall x \forall y [Rxy \to \exists z (Rxz \land Rzy \land \neg \exists x (Rzx \land Rxz))]$$

- (a) Geben Sie äquivalente Formeln in Pränex-Normalform an.
- (b) Wandeln Sie ihre Ergebnisse aus (a) in Skolem-Normalform um.
- (c) Betrachten Sie die Formel $\varphi := \forall x \exists y Rxy$ und die Skolem-Normalform $\psi := \forall x Rxsx$.
 - i. Beweisen Sie, daß $\psi \models \varphi$ gilt.
 - ii. Geben Sie ein Gegenbeispiel an, welches zeigt, dass $\varphi \not\models \psi$.

Lösungsskizze:

(a)

$$\varphi_1 \equiv \forall x \exists y \forall u \forall v \exists z [(Rxy \land \neg Ryu) \lor (Rxz \land Rzv)]$$

$$\varphi_2 \equiv \exists x \exists y \exists u \forall z [\neg Rxy \to (Rxu \land Rzu)]$$

$$\varphi_3 \equiv \forall x \forall y \exists z \forall u [Rxy \to (Rxz \land Rzy \land \neg (Rzu \land Ruz))]$$

(b)

$$\varphi_1 : \forall x \forall u \forall v [(Rxfx \land \neg Rfxu) \lor (Rxgxuv \land Rgxuvv)]$$

$$\varphi_2 : \forall z [\neg Rcd \rightarrow (Rce \land Rze)]$$

$$\varphi_3 : \forall x \forall y \forall u [Rxy \rightarrow (Rxfxy \land Rfxyy \land \neg (Rfxyu \land Rufxy))]$$

- (c) i. Angenommen $(A, \beta) \models \psi$. Um zu zeigen, daß $(A, \beta) \models \varphi$ betrachten wir ein beliebiges Element $a \in A$. Nach Annahme gilt $(a, s^{A}(a)) \in R^{A}$. Insbesondere gibt es also ein Element b (nämlich $b = s^{A}(a)$) mit $(a, b) \in R^{A}$. Wir haben gezeigt, daß $(A, \beta) \models \forall x \exists y Rxy$.
 - ii. Sei $\mathcal{A} = (A, s^{\mathcal{A}}, R^{\mathcal{A}})$ die Struktur mit

$$A = \{0, 1\}, \quad s^{\mathcal{A}}(a) := 0, \quad R^{\mathcal{A}} := \{(0, 1), (1, 1)\}.$$

Dann gilt $\mathcal{A} \models \varphi$ aber $\mathcal{A} \not\models \psi$.

Aufgabe G2

- (a) Geben Sie für folgende FO-Formeln jeweils eine Skolem-Normalform an:
 - i. $\forall x \exists y Rxy$
 - ii. $\forall x (\forall y R y y \rightarrow \exists y R y f(x))$
- (b) Geben Sie einige verschiedene Herbrandmodelle für die Skolem-Normalformen aus (a) an.

Lösungsskizze:

- (a) Wir geben jeweils eine mögliche Lösung an:
 - i. $\forall x Rxs(x)$
 - ii. $\forall x (\forall y Ryy \to \exists y Ryf(x)) \equiv \forall x \exists z \exists y (Rzz \to Ryf(x)),$ Skolem-Normalform: $\forall x (Rs(x)s(x) \to Rs'(x)f(x))$
- (b) In beiden Fällen geben wir noch ein Konstantensymbol c zur Signatur hinzu. Dann erhalten wir für (i) die Trägermenge $T=\{s^i(c):i\in\mathbb{N}\}$, wobei s^i für das i-malige Anwenden von s steht (d.h. T ist isomorph zur Menge der natürlichen Zahlen). Die Relation R kann z.B. durch $\{(s^i(c),s^{i+1}(c)):i\in\mathbb{N}\}$ bzw. jeder Obermenge davon interpretiert werden.
 - In Fall (ii) erhalten wir die Termstruktur $T=\bigcup_{i\in\mathbb{N}}T_i$, wobei $T_0=\{c\}$ und $T_{i+1}=\{s(t),s'(t),f(t):t\in T_i\}$ für alle $i\in\mathbb{N}$ (d.h. einen Baum, wobei jeder Knoten genau drei Nachfolger hat). Die Relation R kann z.B. durch \emptyset oder $T\times T$ interpretiert werden.

Aufgabe G3

Zeigen Sie, dass wenn T_1 und T_2 zwei Theorien sind, so dass $T_1 \cup T_2$ keine Modelle hat, es ein Satz σ gibt, so dass $T_1 \models \sigma$ und $T_2 \models \neg \sigma$.

Lösungsskizze: Wenn $T_1 \cup T_2$ keine Modelle hat, gibt es, nach dem Kompaktheitssatz, schon eine endliche Teilmenge $\Gamma \subseteq T_1 \cup T_2$ die keine Modelle hat. Sei $\Gamma_1 = \{ \gamma \in \Gamma : \gamma \in T_1 \}$, $\Gamma_2 = \{ \gamma \in \Gamma : \gamma \in T_2 \}$ und $\sigma = \bigwedge \Gamma_1$. Klar ist, dass $T_1 \models \sigma$, also haben wir nur noch zu beweisen, dass $T_2 \models \neg \sigma$. Nehmen wir an, dass $T_2 \not\models \neg \sigma$, also dass es ein Modell M gibt, so dass $M \models T_2$ und $M \models \sigma$. Dann $M \models \Gamma_2$, weil $\Gamma_2 \subseteq T_2$ und $M \models T_2$, und $M \models \Gamma_1$, weil $M \models \sigma$ und $\sigma = \bigwedge \Gamma_1$. Das widerspricht, dass $\Gamma = \Gamma_1 \cup \Gamma_2$ keine Modelle hat. Also $T_2 \models \neg \sigma$.

Aufgabe G4

Ein Pfad in einem Graph $\mathcal{G}=(V,E)$ ist eine Sequenz $\langle x_0,x_1,\ldots,x_n\rangle$ von Knoten, so dass

$$x_i E x_{i+1}$$

für alle i < n. Der Graph heißt zusammenhängend, wenn es für alle Paaren von Knoten (x, y) einen Pfad $\langle x_0, x_1, \dots, x_n \rangle$ gibt, mit $x = x_0$ und $y = x_n$.

Zeigen Sie, dass es keine Formelmenge Γ in der Sprache der Graphen gibt, so dass $\mathcal{G} \models \Gamma$ genau dann wenn \mathcal{G} zusammenhängend ist.

Lösungsskizze:

Wir verwenden, dass man eine Formel $\varphi_n(x,y)$ definieren kann, die aussagt, dass es einen Pfad der Länge n vom Startzustand nach y gibt:

$$\varphi_n(y) = \exists x_0 \dots \exists x_n (x_0 = x \land x_n = y \land \bigwedge_{i < n} x_i E x_{i+1}).$$

Nehmen wir an, dass es eine Formelmenge Γ gibt in der Sprache der Graphen, so dass ein Graph \mathcal{G} ein Modell von Γ ist, genau dann wenn \mathcal{G} zusammenhängend ist. Wir erweiteren die Signatur mit zwei Konstanten c und d und betrachten die folgende Formelmenge in der erweiterten Sprache:

$$\Gamma_{\infty} = \Gamma \cup \{ \neg \varphi_n(c, d) : n \in \mathbb{N} \}.$$

Die Formelmenge Γ_{∞} is unerfüllbar, da man in einem Modell $\mathcal G$ die Konstanten c und d nicht widerspruchsfrei interpreteren kann: einerseits soll der Zustand $d^{\mathcal G}$ von $c^{\mathcal G}$ aus erreichbar sein, da Γ erfüllt ist und der Graph $\mathcal G$ deshalb zusammenhängend sein muss; andererseits kann $d^{\mathcal G}$ nicht von $c^{\mathcal G}$ aus erreichbar sein: dann würde es einen Pfad von $c^{\mathcal G}$ nach $d^{\mathcal G}$ geben; dieser Pfad hat eine bestimmte Länge n, was unmöglich ist, da $\mathcal G \models \neg \varphi_n(c,d)$.

Also ist schon eine endliche Teilmenge von Γ_∞ unerfüllbar und insbesondere ist schon eine Teilmenge von der Form

$$\Gamma_n = \Gamma \cup \{\varphi_k(c, d) : k < n\}$$

unerfüllbar (da jede endliche Teilmenge in einer Γ_n enthalten ist). Aber jedes Γ_n hat ein Modell, wobei es einen Pfad von $c^{\mathcal{G}}$ nach $d^{\mathcal{G}}$ gibt, aber keinen mit einer Länge kürzer als n. (Ein Modell könnte so aussehen:

$$0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow n$$

wobei wir c als der 0-Knoten und d als der n-Knoten interpretieren.)

Also haben wir einen Widerspruch und schliessen, dass es keine Formel Γ geben kann, die die Zusammenhang eines Graphen ausdrückt.

Hausübung

Aufgabe H1 (6 Punkte)

Betrachte Sätze φ der Form $\varphi := \forall x_1, \dots, x_n \exists y_1, \dots, y_m \varphi_{qf}(x_1, \dots, x_n, y_1, \dots, y_m)$, wobei φ_{qf} keine Quantoren und kein "=" und keine Funktionssymbole enthält. Geben Sie ein Entscheidungsverfahren für " $\models \varphi$ " an.

Gibt es ein Entscheidungsverfahren auch wenn φ_{qf} Funktionssymbole enthält?

Aufgabe H2 (6 Punkte)

Betrache das Axiom $\Gamma := \forall x (S(x) \neq 0)$ in einer Sprache mit zwei 1-stelligen Funktionssymbolen S und f und einem Konstantensymbol 0.

- a) Zeigen Sie (informell): $\Gamma \models \exists x (f(S(f(x))) \neq x)$.
- b) Konstruieren Sie aus Ihrem Beweis von a) endliche viele nur aus 0, S, f aufgebaute geschlossene Terme t_1, \ldots, t_n mit $\Gamma \models \bigvee_{i=1}^n (f(S(f(t_i))) \neq t_i)$.

Hinweis

Man betrachte, ob f injektiv oder nicht-injektiv sein muss.