which is equivalent to

$$\left(\left(a_j \le a_j - \delta \right) \land \left(a_j < a_j - \frac{\beta}{2} - \delta \right) \right) \lor \left(\left(a_j > a_j - \delta \right) \land \left(a_j \ge a_j - \frac{\beta}{2} - \delta \right) \right).$$

Our choice has been $\delta \in (0, \frac{\beta}{2})$, and $\beta > 0$ from the definition of $\Omega \in \mathbb{C}^{0,0}$, so the second statement is clearly true $\forall j \in 1, \ldots, m$. Consequently $\partial \Omega \notin \overline{S}_j$ which leads to $\partial \Omega \subset \Omega_j^{\delta}$, and since also $\Omega \subset \Omega_j^{\delta}$, we have $\overline{\Omega} \subset \Omega_j^{\delta}$.

Approximation of $\tau_{\delta}u_{j}$. Since Ω_{j}^{δ} is open there $\exists v_{j} \in \mathbb{C}^{\infty}\left(\Omega_{j}^{\delta}\right)$ such that

$$\|\tau_{\delta}u_j - v_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} \le \|\tau_{\delta}w_j - v_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega_j^{\delta})} < \frac{\varepsilon}{2(m+1)}.$$

What is more, since $\overline{\Omega} \subset \Omega_i^{\delta}$, we see $v_i \in \mathbb{C}^{\infty}(\overline{\Omega})$ in fact.

 $Approximation\ of\ u.$

Finally, let us set

$$v = \sum_{j=0}^{m} v_j.$$

Then $v \in C^{\infty}(\overline{\Omega})$ and it holds

$$\|u - v\|_{\mathbf{W}^{k,p}(\Omega)} = \left\| \sum_{j=0}^{m} u_j - \sum_{j=0}^{m} v_j \right\|_{\mathbf{W}^{k,p}(\Omega)} = \left\| \sum_{j=0}^{m} u_j - v_j \right\|_{\mathbf{W}^{k,p}(\Omega)} \le \sum_{j=0}^{m} \|u_j - v_j\|_{\mathbf{W}^{k,p}(\Omega)} \le$$

$$\le \frac{\varepsilon}{m+1} + \sum_{j=1}^{m} \|v_j - u_j\|_{\mathbf{W}^{k,p}(\Omega)} \le \frac{\varepsilon}{m+1} + \sum_{j=1}^{m} \|v_j - \tau_\delta u_j\|_{\mathbf{W}^{k,p}(\Omega)} + \sum_{j=1}^{m} \|\tau_\delta u_j - u_j\|_{\mathbf{W}^{k,p}(\Omega)}$$

$$< \frac{\varepsilon}{m+1} + 2\sum_{j=1}^{m} \frac{\varepsilon}{2(m+1)} = \varepsilon$$

Remark (What is $C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d)$). Recall

$$C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d) = \left\{ u|_{\overline{\Omega}}, u \in C^{\infty}(\mathbb{R}^d) \right\}.$$

In other literature, it is stated that also $C^{\infty}(\overline{\Omega})$ is dense in $W^{k,p}(\Omega)$ if $\Omega \in C^{0,0}$. This probably means

$$C^{\infty}(\overline{\Omega}) \subset C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d).$$

2.3 Extension of Sobolev functions

Problem of extension: For $u \in W^{k,p}(\Omega)$, does there exist $\overline{u} \in W^{k,p}(\mathbb{R}^d)$, $s.t.\overline{u}|_{\Omega} = u$, $\|\overline{u}\|_{W^{k,p}(\mathbb{R}^d)} \le C(\Omega)\|u\|_{W^{k,p}(\Omega)}$?

The answer is **yes**, if Ω is nice enough.

Lemma 4. Let $\alpha, \beta > 0, K \subset U(0, \alpha) \times [\alpha, \beta]$ be compact. Then

$$\exists C > 0, \exists E : C^{1}(\overline{U(0,\alpha)} \times [0,\beta]) \to C^{1}(\overline{U(0,\alpha)} \times [-\beta,\beta]), \exists \tilde{K} \subset U(0,\alpha) \times [-\beta,b) \ compact$$

such that: