Formulas – Confidence Intervals and Inference Tests (Rev 1_16)

Standard error of the mean $s_{\bar{x}} = \sigma / \sqrt{n}$

In formulas, point estimator s may be substituted for σ as appropriate.

CI for Means- Large sample size

Two sided: $\bar{x} \pm z\alpha/2 \frac{\sigma}{\sqrt{n}}$

One sided: $\bar{x} + Z_{\alpha} \frac{\sigma}{\sqrt{n}}$ or $\bar{x} - Z_{\alpha} \frac{\sigma}{\sqrt{n}}$

Sample size: $n = \left(\frac{Z\alpha/2}{w}\right)^2$

CI for Means – small sample size - substitute t for Z in above equations

Two sided: $\bar{x} \pm t \alpha_{/2} \frac{s}{\sqrt{n}}$

One sided: $\bar{x} + Z_{\alpha} \frac{\sigma}{\sqrt{n}}$ or $\bar{x} - t_{\alpha} \frac{s}{\sqrt{n}}$

Comparing 1 sample mean with a known μ .

	Null Hypothesis	Alternate Hypothesis	Test statistic	Rejection Region
Normal		$\mu \neq \mu_0$		$\left z_{test}\right > z_{\alpha/2}$
Distribution	$\mu = \mu$	$\mu < \mu_0$	$Z_{test} = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	$z_{test} < -z_{\alpha}$
(Large Sample)	$\mu = \mu_0$	$\mu > \mu_0$	σ/\sqrt{n}	$z_{test} > z_{\alpha}$
Students t Distribution		$\mu \neq \mu_0$		$\left t_{test}\right > t_{\alpha/2,\nu}$
(σ unknown,		$\mu < \mu_0$	$t_{test} = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$	$t_{test} < -t_{\alpha, v}$
Small sample) $v = n - 1$	$\mu = \mu_0$	$\mu > \mu_0$	s/\sqrt{n}	$t_{test} > t_{\alpha, v}$

Sample size for 1 sample Z: $n = \frac{\left(Z\alpha_{/2} + Z\beta\right)^2 \sigma^2}{(\mu - \mu_0)^2}$

two sample means

two sample means					
	Null Hypothesis	Alternate Hypothesis	Test statistic	Rejection Region	
Normal		$\mu_1 \neq \mu_2$	$\overline{x}_1 - \overline{x}_2$	$\left z_{test}\right > z_{\alpha/2}$	
Distribution (Large Sample)	$\mu_1 = \mu_2$	$\mu_1 < \mu_2$	$Z_{test} = \frac{x_1 - x_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$z_{test} < -z_{\alpha}$	
(Zurge zumpte)		$\mu_1 > \mu_2$	$\bigvee n_1 \qquad n_2$	$z_{test} > z_{\alpha}$	
Students t Distribution		$\mu_1 \neq \mu_2$	$t_{test} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_p^2 (\frac{1}{n_s} + \frac{1}{n_s})}}$	$\left t_{test}\right > t_{\alpha/2,v}$	
(Small sample sizes, assumes	$\mu_1 = \mu_2$	$\mu_1 < \mu_2$	$\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}$ with	$t_{test} < -t_{\alpha,v}$	
Equal Variances) t-test with		$\mu_1 > \mu_2$	$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	$t_{test} > t_{\alpha,v}$	
$v = n_1 + n_2 - 2$			$S_p = {n_1 + n_2 - 2}$		
Students t Distribution		$\mu_1 \neq \mu_2$	$t_{test} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{{S_1}^2}{{n_1}} + \frac{{S_2}^2}{{n_2}}}}$	$\left t_{test}\right > t_{\alpha/2,\nu}$	
(Small sample sizes, assumes Variances not	$\mu_1 = \mu_2$	$\mu_1 < \mu_2$	$\sqrt{\frac{1}{n_1} + \frac{2}{n_2}}$ where	$t_{test} < -t_{\alpha, v}$	
equal)		$\mu_1 > \mu_2$	$v = \frac{\left[\left(s_X^2 / n_X \right) + \left(s_Y^2 / n_Y \right) \right]^2}{\left[\left(s_X^2 / n_X \right)^2 / (n_X - 1) \right] + \left[\left(s_Y^2 / n_Y \right)^2 / (n_Y - 1) \right]}$	$t_{test} > t_{\alpha,v}$	
Students t distribution		$\mu_d \neq \mu_0$	$t_{\text{total}} = \frac{\overline{D} - \mu_0}{\overline{D}}$	$\left t_{test}\right > t_{\alpha/2,\nu}$	
Paired comparison	$\mu_d = \mu_0$	$\mu_d < \mu_0$	$t_{test} = \frac{D - \mu_0}{S_d / \sqrt{n}}$	$t_{test} < -t_{\alpha,v}$	
t- test with $v = n - 1$		$\mu_d > \mu_0$	Where \overline{D} = average difference S_d = standard deviation of the differences	$t_{test} > t_{\alpha,v}$	

CI for variance
$$\frac{(n-1)s^2}{\chi_{\alpha/2}^2} \le \sigma^2 \le \frac{(n-1)s^2}{\chi_{(1-\alpha/2)}^2}$$

Comparison of Normal Distribution Variances

	Null	Alternate	Test statistic	Rejection Region
	Hypothesis	Hypothesis		
2 sample variances	$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$	$F_{test} = \frac{s_1^2}{s^2}$	$F_{test} > F_{\alpha/2,\nu_1,\nu_2}$
F Distribution $v_1 = n_1 - 1$ $v_2 = n_2 - 1$	0, -0,	$\sigma_1^2 > \sigma_2^2$	(larger sample variance always on top)	$F_{test} > F_{\alpha, \nu_1, \nu_2}$

CI for proportions
$$p \pm Z\alpha_{/2}\sqrt{\frac{p(1-p)}{n}}$$

Sample size for CI, p known
$$n = \frac{z_{\alpha/2}^2 p(1-p)}{w^2}$$

Sample size for CI, p unknown
$$n = \frac{z_{\alpha/2}^2}{4w^2}$$

Comparing One proportion with a known p

Binomial Distribution		$p \neq p_0$	$Z_{test} = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)}}$	$\left z_{test} \right > z_{\alpha/2}$
	$p = p_0$	$p < p_0$	$\sqrt{\frac{r_0 \cdot r_0}{n}}$	$z_{test} < -z_{\alpha}$
(Large Sample)		$p > p_0$	with $\hat{p} = \frac{x}{n}$	$z_{test} > z_{\alpha}$

Comparing two proportions

Binomial Distribution		$p_1 \neq p_2$	$Z_{test} = \frac{\hat{p}_1 - \hat{p}_2}{\sigma}$	$\left z_{test}\right > z_{\alpha/2}$
Large Sample	$p_1 = p_2$	$p_1 < p_2$	with $\hat{p}_1 - p_2$	$z_{test} < -z_{\alpha}$
		$p_1 > p_2$	$\sigma_{p_1 - p_2} = \sqrt{\frac{r_1 \cdot r_1}{n_1} + \frac{r_2 \cdot r_2}{n_2}}$	$z_{test} > z_{\alpha}$

Chi Squared tests for attribute data

Cin Squared tests for attribute data				
	Null Hypothesis	Alternate Hypothesis	Test statistic	Rejection Region
$\chi 2$ test for goodness of fit $v = k-1$	k cell probabilities are p_1 , p_2 , p_3 ,, p_k	At least one cell probability is different than in H ₀	$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$	$\chi^2_{test} > \chi^2_{v,\alpha}$
$\chi 2$ test Contingency table v = (r-1)(c-1)	Two variables are independent	Two variables are dependent	$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - E_{ij})^2}{E_{ij}}$ where $E_{ij} = \frac{(R_i)(C_j)}{n}$	$\chi^2_{test} > \chi^2_{v,\alpha}$