

Encaminhamento de Dados

Projeto de planeamento e configuração de uma rede

2020 - 2021

Bruno Teixeira - 2019100036

Conteúdo

1	Introdução	3
2	Topologia	3
3	Endereçamento 3.1 Endereçamento privado	3 3 4
4	Filiais 4.1 Coimbra	4
	4.2 Porto	5 5
	4.4 Funchal	5 6
	4.6 Comunicação entre filiais	6
5	Saída primária e secundária	7
6	Tabelas de routing	8
7	Conclusão	10

Lista de Figuras

1	Topologia
2	Endereçamento Privado
3	Tabela para o endereçamento público das filiais
4	VLSM de Coimbra
5	VLSM do Porto
6	VLSM de Lisboa
7	Planeamento IPv6
8	VLSM do Funchal
9	VLSM de Faro
10	Saída primária pelo R5-Coimbra
11	Saída secundária pelo R5-Lisboa
12	Excerto da tabela de routing do Funchal
13	Excerto da tabela de routing do Porto
14	Excerto da tabela de routing de Coimbra
15	Excerto da tabela de routing de Lisboa

1 Introdução

Este trabalho tem como objetivo o planeamento de uma rede de dados alargada e distríbuida de uma organização fictícia com o intuito de alargar a competência do aluno no que toca a planeamento do projeto, desenho e implementação de redes locais e alargadas e respetiva configuração de routers baseados no sistema operativo Cisco IOS/IOU.

2 Topologia

Figura 1: Topologia

3 Endereçamento

3.1 Endereçamento privado

Para o endereçamento privado foi usada a gama 192.168.1.0/29(filiais) e 192.168.1.0/28(sede) para a ligação entre routers dentro da mesma filial.

Para o endereçamento privado entre routers de saída de filiais foi usado o 10.10.10.0/30.

ID	Máscara	Rede	Primeiro Endereço	Último Endereço	Endereço Broadcast	- 1
Porto	255.255.255.248	192.168.1.0	192.168.1.1	192.168.1.6	192.168.1.7	/29
Faro	255.255.255.248	192.168.1.8	192.168.1.9	192.168.1.14	192.168.1.15	/29
Lisboa	255.255.255.248	192.168.1.16	192.168.1.17	192.168.1.22	192.168.1.23	/29
Funchal	255.255.255.248	192.168.1.24	192.168.1.25	192.168.1.30	192.168.1.31	/29
Coimbra	255.255.255.240	192.168.1.32	192.168.1.33	192.168.1.46	192.168.1.47	/28
R5Porto-R8Coimbra	255.255.255.252	10.10.10.4	10.10.10.5	10.10.10.6	10.10.10.7	/30
R5Porto-R5Faro	255.255.255.252	10.10.10.0	10.10.10.1	10.10.10.2	10.10.10.3	/30
R4Coimbra-R5Lisboa	255.255.255.252	10.10.10.8	10.10.10.9	10.10.10.10	10.10.10.11	/30
R5Lisboa-R5Funchal	255.255.255.252	10.10.10.16	10.10.10.17	10.10.10.18	10.10.10.19	/30
R5Faro-R5Funchal	255.255.255.252	10.10.10.12	10.10.10.13	10.10.10.14	10.10.10.15	/30

Figura 2: Endereçamento Privado

3.2 Endereçamento público

Foi usado VLSM no endereçamento público, fazendo com que cada link de cada router representasse uma subrede diferente. A máscara usada no VLSM de cada filial é sempre igual, ou seja ,/29, no entanto em Coimbra, uma vez que é a sede, foi usado o /28.

O endereçamento atribuido pelo ISP foi o 194.65.72.0 e o 194.65.73.0.

4 Filiais

Todos os protocolos pedidos no enunciado foram usados nas filiais com a devida autenticação, assim como tambem foram mudadas as larguras de banda de cada *link*. Todos os routers contêm uma única autenticação por **telnet** e é apresentado um **banner** aquando da entrada no mesmo. Prestouse especial atenção para as rotas que não faziam sentido, ou seja, todas as subredes que saiam de uma filial para outra vão sempre pelo caminho mais eficiente não dando saltos desnecessários.

Filial	Hosts Precisos	Hosts Disponiveis	Hosts não usados
Porto	4	8	2
Lisboa	4	8	2
Faro	4	8	2
Funchal	4	8	2
Coimbra	8	14	6

Figura 3: Tabela para o endereçamento público das filiais

4.1 Coimbra

Em Coimbra foi usado o protocolo **OSPF** com a intenção de haver várias áreas. Uma vez que existiam áreas que não estavam ligadas à area 0, foi preciso fazer links virtuais, links estes que tambem contêm autenticação.

No **R3-Coimbra** foi criada a **área 2** como sendo uma área **stub** de modo a que fosse possível receber rotas de outras áreas (**O IA**) e não fosse permitido propagar rotas externas nos dois sentidos.

Existe uma ligação primária, ligação esta que parte do **R5-Coimbra** para o **RISP** em que foi usado o comando default-information originate metric-type 1 indicando que este é o router de saída e que as rotas são do tipo 1. No **R4-Coimbra** tambem foi definido o comando default-information originate caso a saída primária esteja desligada, todo o trafégo sai pelo **R4-Coimbra**.

ID	Máscara	Rede	Primeiro Endereço	Último Endereço	Endereço Broadcast
Coimbra-1	255.255.255.240	194.65.72.0	194.65.72.1	194.65.72.14	194.65.72.15
Coimbra-2	255.255.255.240	194.65.72.16	194.65.72.17	194.65.72.30	194.65.72.31
Coimbra-3	255.255.255.240	194.65.72.32	194.65.72.33	194.65.72.46	194.65.72.47
Coimbra-4	255.255.255.240	194.65.72.48	194.65.72.49	194.65.72.62	194.65.72.63
Coimbra-5	255.255.255.240	194.65.72.64	194.65.72.65	194.65.72.78	194.65.72.79
Coimbra-6	255.255.255.240	194.65.72.80	194.65.72.81	194.65.72.94	194.65.72.95
Coimbra-7	255.255.255.240	194.65.72.96	194.65.72.97	194.65.72.110	194.65.72.111
Coimbra-8	255.255.255.240	194.65.72.112	194.65.72.113	194.65.72.126	194.65.72.127
Coimbra-9	255.255.255.240	194.65.72.128	194.65.72.129	194.65.72.142	194.65.72.143
Coimbra-10	255.255.255.240	194.65.72.144	194.65.72.145	194.65.72.158	194.65.72.159

Figura 4: VLSM de Coimbra

4.2 Porto

No Porto foi usado o protocolo **EIGRP** conforme pedido no enunciado. A sumarização foi desligada porque estavamos presentes numa rede **não contígua** e, mesmo o **EIGRP** tendo atenção à má sumarização de rotas, o melhor foi desligar. Por causa disto foram introduzidas *discard routes* manuais para que a tabela de *routing* ficasse com a informação correta.

ID	Máscara	Rede	Primeiro Endereço	Último Endereço	Endereço Broadcast
Porto-1	255.255.255.248	194.65.72.160	194.65.72.161	194.65.72.166	194.65.72.167
Porto-2	255.255.255.248	194.65.72.168	194.65.72.169	194.65.72.174	194.65.72.175
Porto-3	255.255.255.248	194.65.72.176	194.65.72.177	194.65.72.182	194.65.72.183
Porto-4	255.255.255.248	194.65.72.184	194.65.72.185	194.65.72.190	194.65.72.191
Porto-5	255.255.255.248	194.65.72.192	194.65.72.193	194.65.72.198	194.65.72.199
Porto-6	255.255.255.248	194.65.72.200	194.65.72.201	194.65.72.206	194.65.72.207
Porto-7	255.255.255.248	194.65.72.208	194.65.72.209	194.65.72.214	194.65.72.215
Porto-8	255.255.255.248	194.65.72.216	194.65.72.217	194.65.72.222	194.65.72.223
Porto-9	255.255.255.248	194.65.72.224	194.65.72.225	194.65.72.230	194.65.72.231
Porto-10	255.255.255.248	194.65.72.232	194.65.72.233	194.65.72.238	194.65.72.239

Figura 5: VLSM do Porto

4.3 Lisboa

Em Lisboa foi usado o protocolo **RIP** usando a versão 2 para "transformar" o **RIP** num protocolo classless de modo a podermos usar VLSM e o mesmo perceber. Aqui existe uma ligação secundária fazendo com que esta fique ativa caso a saída primária esteja em baixo. Para isto, no **RISP** usou-se uma métrica maior para a rota de saída para Lisboa e em Lisboa foi criada uma default route com métrica de 125 fazendo com que esta seja a rota secundária.

Em Lisboa era tambem pedido que fosse criada uma *prefix list* para que um router não recebesse rotas RIP vindas de um router qualquer dentro da filial. Então para isso foi criada uma *prefix list* no **R3-Coimbra** de modo a que não fosse possível receber mensagens RIP vindas do **R4-Coimbra**.

```
ip prefix-list NEGA1_R4-LISBOA deny 194.65.73.48/29
ip prefix-list NEGA1_R4-LISBOA deny 194.65.73.56/29
ip prefix-list NEGA1_R4-LISBOA permit 0.0.0.0/0 le 32
router rip ... distribute-list prefix NEGA1_R4-LISBOA in e0/0
```

ID	Máscara	Rede	Primeiro Endereço	Último Endereço	Endereço Broadcast
Lisboa-1	255.255.255.248	194.65.72.240	194.65.72.241	194.65.72.246	194.65.72.247
Lisboa-2	255.255.255.248	194.65.72.248	194.65.72.249	194.65.72.254	194.65.72.255
Lisboa-3	255.255.255.248	194.65.73.0	194.65.73.1	194.65.73.6	194.65.73.7
Lisboa-4	255.255.255.248	194.65.73.8	194.65.73.9	194.65.73.14	194.65.73.15
Lisboa-5	255.255.255.248	194.65.73.16	194.65.73.17	194.65.73.22	194.65.73.23
Lisboa-6	255.255.255.248	194.65.73.24	194.65.73.25	194.65.73.30	194.65.73.31
Lisboa-7	255.255.255.248	194.65.73.32	194.65.73.33	194.65.73.38	194.65.73.39
Lisboa-8	255.255.255.248	194.65.73.40	194.65.73.41	194.65.73.46	194.65.73.47
Lisboa-9	255.255.255.248	194.65.73.48	194.65.73.49	194.65.73.54	194.65.73.55
Lisboa-10	255.255.255.248	194.65.73.56	194.65.73.57	194.65.73.62	194.65.73.63

Figura 6: VLSM de Lisboa

4.4 Funchal

No Funchal foi usado o **IPv6** com túneis dinâmicos em três subredes assim como o protocolo **EI-GRP**, protocolo este que tanto foi usado no **IPv6** como no **IPv4**. Mais uma vez aqui a sumarização do **EIGRP** está desligada, tendo então colocado discard routes manualmente.

Figura 7: Planeamento IPv6

ID	Máscara	Rede	Primeiro Endereço	Último Endereço	Endereço Broadcast
Funchal-1	255.255.255.248	194.65.73.144	194.65.73.145	194.65.73.150	194.65.73.151
Funchal-2	255.255.255.248	194.65.73.152	194.65.73.153	194.65.73.158	194.65.73.159
Funchal-3	255.255.255.248	194.65.73.160	194.65.73.161	194.65.73.166	194.65.73.167
Funchal-4	255.255.255.248	194.65.73.168	194.65.73.169	194.65.73.174	194.65.73.175
Funchal-5	255.255.255.248	194.65.73.176	194.65.73.177	194.65.73.182	194.65.73.183
Funchal-6	255.255.255.248	194.65.73.184	194.65.73.185	194.65.73.190	194.65.73.191
Funchal-7	255.255.255.248	194.65.73.192	194.65.73.193	194.65.73.198	194.65.73.199
Funchal-8	255.255.255.248	194.65.73.200	194.65.73.201	194.65.73.206	194.65.73.207
Funchal-9	255.255.255.248	194.65.73.208	194.65.73.209	194.65.73.214	194.65.73.215
Funchal-10	255.255.255.248	194.65.73.216	194.65.73.217	194.65.73.222	194.65.73.223

Figura 8: VLSM do Funchal

4.5 Faro

A escolha de protocolo em Faro era livre, logo optei por usar o **EIGRP** uma vez que é extremamente simples de o configurar. Mais uma vez, a sumarização do mesmo está desligada e foram feitas discard routes manuais.

ID	Máscara	Rede	Primeiro Endereço	Último Endereço	Endereço Broadcast
Faro-1	255.255.255.248	194.65.73.64	194.65.73.65	194.65.73.70	194.65.73.71
Faro-2	255.255.255.248	194.65.73.72	194.65.73.73	194.65.73.78	194.65.73.79
Faro-3	255.255.255.248	194.65.73.80	194.65.73.81	194.65.73.86	194.65.73.87
Faro-4	255.255.255.248	194.65.73.88	194.65.73.89	194.65.73.94	194.65.73.95
Faro-5	255.255.255.248	194.65.73.96	194.65.73.97	194.65.73.102	194.65.73.103
Faro-6	255.255.255.248	194.65.73.104	194.65.73.105	194.65.73.110	194.65.73.111
Faro-7	255.255.255.248	194.65.73.112	194.65.73.113	194.65.73.118	194.65.73.119
Faro-8	255.255.255.248	194.65.73.120	194.65.73.121	194.65.73.126	194.65.73.127
Faro-9	255.255.255.248	194.65.73.128	194.65.73.129	194.65.73.134	194.65.73.135
Faro-10	255.255.255.248	194.65.73.136	194.65.73.137	194.65.73.142	194.65.73.143

Figura 9: VLSM de Faro

4.6 Comunicação entre filiais

Entre filiais foram redistribuidos alguns protocolos, fazendo com que um router conseguisse "traduzir" de um protocolo para o outro. De Coimbra (**R4-Coimbra**) para Lisboa (**R5-Lisboa**) foi usado o **RIPv2** redistribuindo de Lisboa para Coimbra. De Coimbra (**R8-Coimbra**) para o Porto (**R5-Porto**) foi redistribuido o **EIGRP** do Porto para Coimbra.

Entre Porto (**R5-Porto**) e Faro (**R5-Faro**) foi usado o **EIGRP** assim como de Faro (**R5-Faro**) para o Funchal (**R5-Funchal**) e como do Funchal (**R5-Funchal**) para Lisboa (**R5-Lisboa**).

5 Saída primária e secundária

Na primeira imagem em baixo encontra-se um exemplo de uma tabela de *routing* em que mostra algumas rotas assim como a *default route* tendo a saída primária ligada. No segundo exemplo é mostrada a tabela de *routing* do mesmo router (**R2-Coimbra**) mas desta vez com a saída primária desligada, ou seja, fazendo referência à saída secundária que se encontra em Lisboa.

Figura 10: Saída primária pelo R5-Coimbra

```
Gateway of last resort is 192.168.1.36, 00:00:03, Ethernet0/0

0*E2 0.0.0.0/0 [110/1] via 192.168.1.36, 00:00:03, Ethernet0/0

10.0.0.0/0 [10.0.0] is subnetted, 6 subnets

0 E2 10.10.10.0 [110/5000] via 192.168.1.39, 00:06:05, Ethernet0/0

0 E2 10.10.10.1 [110/20] via 192.168.1.39, 00:06:05, Ethernet0/0

0 E2 10.10.10.1 [110/5000] via 192.168.1.39, 00:06:05, Ethernet0/0

0 E2 10.10.10.1 [110/5000] via 192.168.1.39, 00:06:05, Ethernet0/0

0 E2 10.10.10.1 [110/5000] via 192.168.1.39, 00:06:05, Ethernet0/0

0 E2 10.20.36.224 [110/20] via 192.168.1.39, 00:06:05, Ethernet0/0

102.168.1.0/24 is variably subnetted, 10 subnets, 5 masks

0 E2 192.168.1.0/24 [110/5000] via 192.168.1.39, 00:06:05, Ethernet0/0

0 E2 192.168.1.0/24 [110/5000] via 192.168.1.39, 00:06:05, Ethernet0/0

0 E2 192.168.1.16/29 [110/5000] via 192.168.1.39, 00:06:05, Ethernet0/0

0 E2 192.168.1.16/29 [110/5000] via 192.168.1.39, 00:06:05, Ethernet0/0

0 E2 192.168.1.32/28 is directly connected, Ethernet0/0

1 192.168.1.34/32 is directly connected, Ethernet0/0

1 192.168.1.34/32 is directly connected, Ethernet0/0

1 192.168.1.34/32 is directly connected, Serial2/0

1 192.168.1.34/32 is directly connected, Serial2/0

1 192.168.1.35/30 [110/74] via 192.168.1.39, 00:06:10, Ethernet0/0

1 192.168.1.35/30 [110/74] via 192.168.1.39, 00:06:10, Ethernet0/0

1 194.65.72.0/24 is variably subnetted, 24 subnets, 4 masks

0 E2 194.65.72.0/24 is variably subnetted, 24 subnets, 4 masks
```

Figura 11: Saída secundária pelo R5-Lisboa

6 Tabelas de routing

```
X R3-Funchal X

EX 2001:1:2::/64 [170/307200]
    via FE80::A8BB:CCFF:FE00:B00, Ethernet0/0

C 2001:1:3::/64 [0/0]
    via Ethernet0/2, directly connected

L 2001:1:3::F/128 [0/0]
    via Ethernet0/2, receive

EX 2001:1:4::/64 [170/307200]
    via FE80::A8BB:CCFF:FE00:E00, Ethernet0/0

C 2001:1:123::/64 [0/0]
    via Ethernet0/0, directly connected

L 2001:1:123::/3/128 [0/0]
    via Ethernet0/0, receive

S 2002::/16 [1/0]
    via Tunnel0, directly connected

EX 2002:C0A8:11A::/64 [170/26905600]
    via FE80::A8BB:CCFF:FE00:B00, Ethernet0/0

C 2002:C0A8:11B::/64 [0/0]
    via Tunnel0, directly connected

L 2002:C0A8:11B::/128 [0/0]
    via Tunnel0, receive

EX 2002:C0A8:11C::/64 [170/26905600]
    via Tunnel0, receive

EX 2002:C0A8:11C::/64 [170/26905600]
    via FE80::A8BB:CCFF:FE00:E00, Ethernet0/0

L FF00::/8 [0/0]
    via Null0, receive
```

Figura 12: Excerto da tabela de routing do Funchal

Figura 13: Excerto da tabela de routing do Porto

Figura 14: Excerto da tabela de routing de Coimbra

Figura 15: Excerto da tabela de routing de Lisboa

7 Conclusão

No fim todos os objetivos propostos no enunciado do trabalho foram conseguidos fazendo com que fossem aplicados todos os conhecimentos e técnicas aprendidas e praticadas tanto nas aulas práticas como nas aulas teóricas da cadeira de encaminhamento de dados.