1 期中考试试题

- 1. 考虑复数域 \mathbb{C} 的子域 $E = \mathbb{Q}(i,\xi)$, 其中 $i = \sqrt{-1}$ 且 $\xi = e^{\frac{2\pi\sqrt{-1}}{5}}$, 参考 $\cos\frac{2\pi}{5} = \frac{\sqrt{5}-1}{4}$.
 - (1) 证明: E/\mathbb{Q} 是多项式 $x^9 x^5 x^4 + 1 \in \mathbb{Q}[x]$ 的分裂域;
 - (2) 计算 ξ 在 $\mathbb{Q}(\sqrt{5})$ 上的最小多项式, 计算 ξ 在 $\mathbb{Q}(i)$ 上的最小多项式;
 - (3) 将多项式 $x^4 + 6x^2 + 5$ 在 $\mathbb{Q}(\xi)[x]$ 中分解成不可约多项式之积, 并给出论证;
 - (4) 计算维数 $\dim_{\mathbb{Q}} E$, $\dim_{\mathbb{Q}} (E \cap \mathbb{R})$. 给出论证;
 - (5) 简要论证并具体构造 Aut(E) 中的全部元素, 判断其是否为 Abel 群.
- 2. 考虑域 $K = \mathbb{F}_3[y]/(y^2 + \overline{1})$. 记 $u = \overline{y}$, 则 $K = \{a + bu | a, b \in \mathbb{F}_3\}$. 将 \mathbb{F}_3 自然视为 K 的子域. 同理, 考虑域 $L = \mathbb{F}_3[z]/(z^2 + z \overline{1})$, 记 $v = \overline{z}$, 论证并给出全部的环同 态 $K \to L$.
- 3. 设 R 是主理想整环, \mathfrak{m} 是 R 的非零极大理想. 若有环同构 $R/\mathfrak{m} \cong \mathbb{F}_p$, 其中 p 为素数. 试计算商环 R/\mathfrak{m}^2 的阶数 (元素个数), 以及计算环 R/\mathfrak{m}^2 的自同构群 $\operatorname{Aut}(R/\mathfrak{m}^2)$ 的阶数 (元素个数).
- 4. 考虑 Gauss 整环 $R = \mathbb{Z}[i]$, 对于任何正素数 p, 定义 R 的子环 $S_p = \{m + ni | m, n \in \mathbb{Z}, p \mid n\}$.
 - (1) 在 R 中将 17 7i 进行不可约分解;
 - (2) 考虑商环 $\overline{R} = R/(17-7i)$. 计算该商环的阶数以及环自同构群 $\operatorname{Aut}(\overline{R})$ 的阶数.
 - (3) 判断或论证: 商环 $S_5/(5)$ 与 $S_5/(5i)$ 是否同构, 对于不同的素数 p,q, 环 S_p 与 S_q 是否同构.