Probability theory I Facts

Taeyoung Chang

Textbook : R. Durrett \ulcorner Probability : Theory and Examples \lrcorner 5th edition

Last Update : September 19, 2021

Contents

1	Probability Space	2
2	Random Variable	4
3	Distributions	5
4	Expected Value and Independence	6
5	Convergence in Probability	9
6	Convergence in Distribution	10
7	Random Series	12
8	Law of Large Numbers	13
9	Characteristic function	14
10	Central Limit Theorem	16

1 Probability Space

- * Sigma field \mathcal{F} and event $A \in \mathcal{F}$
 - A family of subsets of Ω , named \mathcal{F} , is said to be a σ -field if
 - (a) \mathcal{F} contains Ω (b) \mathcal{F} is closed under taking complement
 - (c) \mathcal{F} is closed under taking countable union.
 - (d) \mathcal{F} is closed under taking countable intersection. : by (a),(b),(c)
 - A σ -field \mathcal{F} is usally called as an event space and an element $A \in \mathcal{F}$ is said to be an event.
- * Sigma field $\sigma(\mathcal{A})$ generated by a collection \mathcal{A}
 - Given a collection \mathcal{A} of subsets of Ω , the smallest σ -field containing \mathcal{A} is said to be a σ -field generated by \mathcal{A} and denoted as $\sigma(\mathcal{A})$
- * Borel field $\mathcal{B}(\mathbb{R})$
 - Borel field $\mathcal{B}(\mathbb{R})$ is a σ -field on \mathbb{R} generated by the family of all open subsets of \mathbb{R} .
- Various collections generating $\mathcal{B}(\mathbb{R})$
 - i. Collections of open sets
 - ii. Collections of bounded open intervals
 - iii. Collections of bounded closed intervals
 - iv. Collections of bounded half open intervals
 - v. Collections of open rays
 - vi. Collections of closed rays
- * Measure μ and Probability Measure P
 - A set function $\mu:(\Omega,\mathcal{F})\to\mathbb{R}$ is said to be a measure if
 - (a) μ is nonnegative (b) μ is countably additive
 - (c) $\mu(\phi) = 0$: by convention
 - Additionally, if $\mu(\Omega) = 1$, then it is called as probability measure and denoted as P instead of μ .
- Elementary properties of measure
 - i. Monotonicity
 - ii. Subadditivity
 - iii. Continuity from above
 - iv. Continuity from below

- * π system \mathcal{P} and λ system \mathcal{L}
 - A collection \mathcal{P} of subsets of Ω is a π -system if \mathcal{P} is closed under taking intersection.
 - A collection \mathcal{L} of subsets of Ω is a λ -system if
 - (a) \mathcal{L} contains Ω (b) \mathcal{L} is closed under taking complement
 - (c) \mathcal{L} is closed under taking countable disjoint union.
- A $\pi \lambda$ system is a sigma field.
- $\pi \lambda$ system thm
 - let \mathcal{P} , \mathcal{L} be a π -system and λ -system on Ω respectively. If $\mathcal{P} \subset \mathcal{L}$ then $\sigma(\mathcal{P}) \subset \mathcal{L}$
- Checking two probability measures are the same
 - If P_1 and P_2 are two probability measures on the same event space and $P_1 = P_2$ on a π -system \mathcal{P} then $P_1 = P_2$ on $\sigma(\mathcal{P})$
 - \Box If two probability measures are the same on π -system generating a given event space then two probability measures are the same

2 Random Variable

- * Random Variable X
 - A function $X: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is said to be a random variable if $(X \in B) = X^{-1}(B) = \{\omega \in \Omega : X(\omega \in B)\} \in \mathcal{F} \quad \forall B \in \mathcal{B}(\mathbb{R})$
- Checking whether a mapping is a random variable is nearly same with checking whether a function is measurable.
- Elementary properties of random variable
 - i. If X is a r.v. then c + X and cX are r.v.'s for any real num. c
 - ii. If X and Y are r.v.'s then X + Y and XY are r.v.'s
 - iii. If $\{X_n\}$ is a random seq. then $\inf X_n$, $\sup X_n$, $\liminf X_n$, $\limsup X_n$ are all r.v.'s
 - iv. If X is a r.v. and f is Borel measurable then f(X) is a r.v.
- * Simple random variable
 - A random variable X is called simple if X takes a finite number of values.
- If X is a nonnegative random variable then \exists a seq of nonnegative simple random variables $\{X_n\}$ s.t. $X_n \nearrow X$
 - For each $n \in \mathbb{N}$, we can define X_n by

$$X_n = \sum_{k=1}^{n \cdot 2^n} \frac{k-1}{2^n} I\left(\frac{k-1}{2^n} \le X < \frac{k}{2^n}\right)$$

- \square If X is a random variable then \exists a seq of simple random variables $\{X_n\}$ s.t. $X_n \to X$
- * σ -field $\sigma(X)$ generated by random variable X

$$-\sigma(X) = \{ (X \in B) : B \in \mathcal{B}(\mathbb{R}) \}$$

- * \mathcal{G} -measurable random variable
 - For a sub σ -field $\mathcal{G} \subset \mathcal{F}$, a random variable X is said to be \mathcal{G} -measurable if $(X \in B) \in \mathcal{G} \quad \forall B \in \mathcal{B}(\mathbb{R})$. Denote it as $X \in \mathcal{G}$
- If X and Y are random variables and Y is $\sigma(X)$ -measurable then \exists a Borel function f s.t. Y = f(X)

3 Distributions

- * Distribution function F
 - A function $F: \mathbb{R} \to \mathbb{R}$ is said to be a distribution function if
 - (a) F is monotone increasing
 - (b) F is right continuous (c) F has left limits.
 - (d) $F(x) \to 1$ as $x \to \infty$ & $F(x) \to 0$ as $x \to -\infty$
- * The inverse of distribution function $F^{-1}(u)$
 - let F be a distribution function. For each $u \in [0, 1]$, $F^{-1}(u)$ is defined as $F^{-1}(u) = \inf\{x \in \mathbb{R} : F(x) > u\}$
- Properties of the inverse of distribution function
 - i. $u \mapsto F^{-1}(u)$ is monotone increasing
 - ii. $-\infty < F^{-1}(u) < \infty$ whenever 0 < u < 1
 - iii. $F^{-1}(0) = -\infty$ and $F^{-1}(1) = \infty$ or M for some $M < \infty$. If $F^{-1}(1) = M$ for some $M < \infty$ then X is bounded above by M a.s. where $X \sim F$
 - $\begin{array}{ll} \text{iv. } F^{-1}(u) \leq x \Leftrightarrow u \leq F(x) & \forall x \in \mathbb{R}, u \in [0,1] \\ F(x) < u \Leftrightarrow x < F^{-1}(u) & \forall x \in \mathbb{R}, u \in [0,1] \\ \end{array}$
 - v. $u \le F(F^{-1}(u))$ and $F(F^{-1}(u)-) \le u$ $\forall u \in [0,1]$
 - vi. If F is continuous then $F(F^{-1}(u)) = u$ $\forall u \in [0, 1]$
- \square If a r.v. $X \sim F$ and $\mathcal{U} \sim unif[0,1]$ then $F^{-1}(\mathcal{U}) \stackrel{D}{=} X$
- \square If X is a continuous r.v. with $X \sim F$ where F is strictly increasing, then $F(X) \sim unif[0,1]$ (X is said to be continuous r.v. provided there is no point mass i.e. $P(X=x) = 0 \ \forall x \in \mathbb{R}$)
- * Probability Borel measure μ
 - Any probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is called as a probability Borel measure.
- 1-1 correspondence of distribution function and prob. Borel measure
 - For any distribution function F, \exists a unique prob. Borel measure μ s.t. $\mu((-\infty, x]) = F(x) \quad \forall x \in \mathbb{R}$
 - For any prob. Borel measure μ , $F: \mathbb{R} \to \mathbb{R}$ defined by $F(x) = \mu((-\infty, x])$ is a distribution function
- If a function F is monotone increasing and right-continuous satisfying $F(-\infty) = 0$ and $F(\infty) = 1$ then \exists a probability space (Ω, \mathcal{F}, P) and a random variable X s.t. $P(X \le x) = F(x) \ \forall x \in \mathbb{R}$ i.e. Given F is a distribution function for X

4 Expected Value and Independence

- * Expected Value E[X] / Integrability of a random variable X
 - Given prob. space (Ω, \mathcal{F}, P) , $E[I_A] = \int I_A dP = P(A) \ \forall A \in \mathcal{F}$
 - For simple nonnegative random variable $X = \sum_{i=1}^{k} \alpha_i I_{A_i}$ $E[X] = \int X dP = \sum_{i=1}^{k} \alpha_i P(A_i)$
 - For nonnegative random variable X,

$$E[X] = \sup\{E[X] : 0 \le X \le X \quad simple\}$$
$$= \lim_{n \to \infty} E[X_n] \quad \forall simple \ X_n \quad s.t. \ 0 \le X_n \nearrow X$$

- For a random variable X,
 - i. $E[X] = E[X^+] E[X^-]$
 - ii. X is called integrable if $E[X] < \infty$ or if $E[X^+], E[X^-] < \infty$
- * Independence of events $\{A_n\}$ & collections of events $\{\mathcal{G}_n\}$
 - $-A \perp \!\!\!\perp B \in \mathcal{F} \text{ if } P(A \cap B) = P(A)P(B)$
 - $-A_1, \cdots, A_n \text{ independent if } P(A_{i_1} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdots P(A_{i_k})$ $\forall 1 \leq i_1 < i_2 < \cdots < i_k \leq n$
 - $-\{A_n\}$ independent if A_1, \dots, A_m are independent $\forall m \in \mathbb{N}$
 - For subcollections $\{\mathcal{G}_n\} \subset \mathcal{F}$, $\{\mathcal{G}_n\}$ are independent if $\{A_n\}$ are independent $\forall A_i \in \mathcal{G}_i$
- If $\mathcal{G}_1, \dots, \mathcal{G}_n \subset \mathcal{F}$ are independent and each \mathcal{G}_i is a π -system then $\sigma(\mathcal{G}_1), \dots, \sigma(\mathcal{G}_n)$ are independent
- * Independence of Random variables
 - R.V.'s $\{X_n\}$ are independent if $\{\sigma(X_n)\}$ are independent
- For a collection \mathcal{C} of subsets of \mathbb{R} and a r.v. X, $X^{-1}(\sigma(\mathcal{C})) = \sigma(X^{-1}(\mathcal{C}))$ where $X^{-1}(\mathcal{A}) = \{(X \in A) : A \in \mathcal{A}\} \# 1.3.1$
- \square If $P(X_1 \leq x_1, \dots, X_n \leq x_n) = P(X_1 \leq x_1) \dots P(X_n \leq x_n) \quad \forall x_i \in \mathbb{R}$ then X_1, \dots, X_n are independent
- \square If (X_1, \dots, X_n) has a joint density $f(x_1, \dots, x_n)$ and f can be written as $f(x) = g_1(x_1) \dots g_n(x_n)$ where g_k 's are nonnegative and measurable, then X_1, \dots, X_n are independent # 2.1.1
- □ If X_1, \dots, X_n are r.v.'s taking values in countable sets C_1, \dots, C_n . Then $P(X_1 = x_1, \dots, X_n = x_n) = P(X_1 = x_1) \dots P(X_n = x_n)$ whenever $\forall x_i \in C_i$ implies that X_1, \dots, X_n are independent. # 2.1.2
- If X and Y are independent and f, g are Borel measurable functions, then f(X) and g(Y) are independent # 2.1.6
- * limsup and liminf of seq of events. $\limsup A_n$, $\liminf A_n$
 - $\limsup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k > n} A_k$ $\liminf A_n = \bigcup_{n=1}^{\infty} \bigcap_{k > n} A_k$
- \square $\limsup A_n = A_n$ infinitely often $\liminf A_n = A_n$ all but finitely many n's

- $\Box (\limsup A_n)^C = \liminf A_n^C$
- Borel Cantelli lemma
 - For a seq. of events $\{A_n\}$, if $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \ i.o.) = 0$
 - For a seq. of independent events $\{A_n\}$, if $\sum_{n=1}^{\infty} P(A_n) = \infty$ then $P(A_n \ i.o.) = 1$
- □ Given a seq. of independent events $\{A_n\}$, $\sum_{n=1}^{\infty} P(A_n) < \infty \Leftrightarrow P(A_n \ i.o.) = 0$ and $\sum_{n=1}^{\infty} P(A_n) = \infty \Leftrightarrow P(A_n \ i.o.) = 1$ This is called as Borel Cantelli 0-1 law
- \square Note that $P(A_n \ i.o.) = 0$ implies $P(A_n^C \ \text{all but finitely many n's}) = 1$
- * Almost sure convergence $X_n \to X$ a.s.
 - $\{X_n\}$ converges a.s. if P(C) = 1 where $C = \{\omega \in \Omega : X_n(\omega) \ converges\}$
 - $-X_n \to X$ a.s. if $P(X_n \to X) = 1$
- Classic results about interchanging limits and integrals(expectations)
 - i. [Fatou's lemma] If $X_n \geq 0$ then $E[liminf X_n] \leq liminf E[X_n]$ If $X_n \geq 0$ and $X_n \to X$ a.s. then $E[X] \leq liminf E[X_n]$
 - ii. [MCT] If $0 \le X_n \nearrow X$ a.s. then $E[X_n] \nearrow E[X]$ If $X_n \nearrow X$ a.s. and \exists a r.v. Y s.t. $Y \le X_n \ \forall n \in \mathbb{N}$ and $E[Y] < \infty$ then MCT $E[X_n] \nearrow E[X]$ also holds
 - iii. [DCT] If $|X_n| \leq Y$ a.s. $\forall n \in \mathbb{N}$ for some r.v. Y s.t. $E|Y| < \infty$ then $X_n \to X$ a.s. implies that $E[X_n] \to E[X]$
 - iv. [BCT] If $|X_n| \leq B$ a.s. $\forall n \in \mathbb{N}$ for some constant B > 0 then $X_n \to X$ a.s. implies that $E[X_n] \to E[X]$
- Almost sure convergence and convergence of expectation
 - $-X_n \to X$ a.s. implies $E[h(X_n)] \to E[h(X)]$ if the following conditions for continuous g and h are satisfied.
 - i. g > 0 (or $g \ge 0$ and g(x) > 0 unless $|x| \le M$ for some M > 0)
 - ii. $|h(x)|/g(x) \to 0$ as $|x| \to \infty$ (kind of "h is dominated by g")
 - iii. $\exists M > 0$ s.t. $E[g(X_n)] \leq M \ \forall n \in \mathbb{N}$
- \square If p > 1 and $E|X_n|^p \le M \ \forall n \in \mathbb{N}$ for some M > 0 then $X_n \to X$ a.s. implies $E[X_n] \to E[X]$
- Almost sure convergence is closed under continuous map # 1.3.3
 - If Borel measurable $f : \mathbb{R} \to \mathbb{R}$ is continuous then $X_n \to X$ a.s. implies $f(X_n) \to f(X)$ a.s.
- Change of measure
 - For any Borel measurable function f and a r.v. X, if $f \ge 0$ or $E|f(X)| < \infty$ then E[f(X)] is calculated by

$$E[f(X)] = \int_{\Omega} f(X)dP = \int_{\mathbb{R}} fd(PX^{-1})$$

- ☐ Change of measure and calculating probability
 - i. $P(X \in B) = E[I_B(X)] \ \forall B \in \mathcal{B}(\mathbb{R})$
 - ii. $P(f(X) \in A) = P(X \in f^{-1}(A)) \quad \forall A \in \mathcal{B}(\mathbb{R})$ given f is nonnegative or integrable
- * \mathcal{L}_p space
 - \mathcal{L}_0 = The class of all random variables on (Ω, \mathcal{F}, P) $\mathcal{L}_p = \{X \in \mathcal{L}_0 : E|X|^p < \infty\} \ (0 < p < \infty) : \text{ normed vector space with } ||X||_p = (E|X|^p)^{1/p}$
- Essential inequalities
 - i. [Markov] $P(|X| \ge c) \le \frac{1}{c}E|X| \quad \forall c > 0$
 - ii. [Hölder] Given $X \in \mathcal{L}_p$ and $Y \in \mathcal{L}_q$ with p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, $E|XY| = ||XY||_1 \le ||X||_p ||Y||_q$
 - iii. [Cauchy-Schwarz] $(E|XY|)^2 \le E[X^2]E[Y^2]$
 - iv. [Jensen] If $\phi : \mathbb{R} \to \mathbb{R}$ convex then $\phi(E[X]) \leq E[\phi(X)]$ provided both expectations exist. If ϕ strictly convex then $\phi(E[X]) < E[\phi(X)]$ unless X = E[X] a.s. # 1.6.1
- If X is a nonnegative r.v. then $E[X] = \int_0^\infty P(X > t) dt$
- Product measures of independent random variables
 - If X_1, \dots, X_n are independent with distributions $X_i \sim \mu_i \ \forall i$, then a random vector (X_1, \dots, X_n) has a distribution $\mu = \mu_1 \times \dots \times \mu_n$
- Fubini theorem
 - Suppose X,Y are independent r.v.'s with distributions $X \sim \mu, Y \sim \nu$. If $f: \mathbb{R}^2 \to \mathbb{R}$ is Borel measurable with $f \geq 0$ or $E|f(X,Y)| < \infty$ then $E[f(X,Y)] = \iint f(x,y) \, d\mu(x) d\nu(y) = \iint f(x,y) \, d\nu(y) d\mu(x)$
 - \square Suppose X,Y are independent r.v's and $f,g:\mathbb{R}\to\mathbb{R}$ are Borel measurable functions. If $f,g\geq 0$ or $E|f(X)|,\, E|g(Y)|<\infty$ then E[f(X)g(Y)]=E[f(X)]E[g(Y)]
- * Tail σ -field \mathcal{T}
 - The tail σ -field of events $\{A_n\}$ is $\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma(A_n, A_{n+1}, \cdots)$
- Kolmogorov's 0-1 law
 - Suppose $\{A_n\}$ is a seq of independent events and \mathcal{T} is the tail σ -field of $\{A_n\}$. If $A \in \mathcal{T}$ then P(A) = 0 or 1.
- * Tail σ -field of random seq $\{X_n\}$
 - The tail σ -field of random seq. $\{X_n\}$ is $\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma(X_n, X_{n+1}, \cdots)$ $\sqrt{\sigma(X_n, X_{n+1}, \cdots)} = \sigma(\{(X_i \in B) : B \in \mathcal{B}(\mathbb{R}), i = n, n+1, \cdots\})$
- \square If $\{X_n\}$ is a seq of independent r.v.'s and $\mathcal{C} = \{\omega \in \Omega : X_n(\omega) \text{ converges}\}$ then \mathcal{C} lies in a tail σ -field of $\{X_n\}$ and $P(\mathcal{C}) = 0$ or 1
- Constructing independent random variables
 - Given a finite number of distribution functions, F_1, \dots, F_n , it is possible to construct independent random variables X_1, \dots, X_n with $X_i \sim F_i$ for each $i = 1, \dots, n$

5 Convergence in Probability

- * Convergence in probability $X_n \xrightarrow{P} X$
 - $-X_n \xrightarrow{P} X$ if $P(|X_n X| \ge \epsilon) \to 0$ as $n \to \infty$ $\forall \epsilon > 0$
- Equivalent condition with almost sure convergence

$$-X_n \to X \ a.s. \Leftrightarrow \forall \epsilon > 0, \ P(\bigcup_{k \ge n} (|X_k - X| \ge \epsilon)) \to 0 \ as \ n \to \infty$$

$$\Leftrightarrow \forall \epsilon > 0, \ P(|X_n - X| > \epsilon \ i.o.) = 0$$

- Almost sure convergence is stronger than convergence in probability
 - $-X_n \to X$ a.s. implies $X_n \xrightarrow{P} X$
- The limit is unique both for in almost sure sense or in probability sense
 - $-X_n \to X$ a.s. and $X_n \to Y$ a.s. then X = Y a.s.
 - $-X_n \xrightarrow{P} X$ and $X_n \xrightarrow{P} Y$ then X = Y a.s.
- Convergence in probability is closed under continuous map
 - If Borel measurable $f: \mathbb{R} \to \mathbb{R}$ is continuous then $X_n \xrightarrow{P} X$ implies $f(X_n) \xrightarrow{P} f(X)$

$$\square$$
 If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$ then $X_n + Y_n \xrightarrow{P} X + Y$ and $X_n Y_n \xrightarrow{P} XY$

- \bullet Convergence in \mathcal{L}_p is stronger than convergence in probability
 - If $E|X_n X|^p \to 0$ for some $p \ge 1$ then $X_n \xrightarrow{P} X$
- If $X_n \xrightarrow{P} X$ then \exists a subseq $\{X_{n_k}\}$ of $\{X_n\}$ s.t. $\{X_{n_k}\} \to X$ a.s.
- Lemma about convergence of real seq
 - For real seq. $\{x_n\}$, if every subseq. of $\{x_n\}$ has a further subseq. converging to x, then $\{x_n\}$ converges to x
- $X_n \xrightarrow{P} X$ if for every subseq. $\{X_{n_m}\}$ of $\{X_n\}, \exists$ a further subseq. $\{X_{n_{m_k}}\}$ s.t. $X_{n_{m_k}} \to X$ a.s.
- Revisiting classic convergence thm
 - i. [Fatou's lemma] If $X_n \geq 0$ and $X_n \xrightarrow{P} X$ then $E[X] \leq \lim\inf E[X_n]$
 - ii. [MCT] If $0 \le X_n$ increasing and $X_n \xrightarrow{P} X$ then $E[X_n] \nearrow E[X]$
 - iii. [DCT] If $|X_n| \leq Y$ a.s. $\forall n \in \mathbb{N}$ for some r.v. Y s.t. $E|Y| < \infty$ then $X_n \xrightarrow{P} X$ implies that $E[X_n] \to E[X]$
- If $X_n \xrightarrow{P} X$ and f is continuous and bounded then not only $f(X_n) \xrightarrow{P} f(X)$ but also $E[f(X_n)] \to E[f(X)]$

6 Convergence in Distribution

- * Sub probability Borel measure
 - a prob. Borel measure μ s.t. $\mu(\mathbb{R}) \leq 1$
- * Weak convergence of sub prob. Borel measures $\mu_n \xrightarrow{w} \mu$
 - For sub prob. Borel measures $\{\mu_n\}$ and μ , $\mu_n \xrightarrow{w} \mu$ if \exists a dense $D \subset \mathbb{R}$ s.t. $\mu_n(a,b] \to \mu(a,b]$ as $n \to \infty \ \forall a,b \in D$
- Lemma about countable set and dense set
 - If $D \subset \mathbb{R}$ and D^C is countable then D is dense in \mathbb{R}
- \square Point mass set of a finite measure is at most countable.
 - If μ is a measure on measurable space (S, A) with $\mu(S) < \infty$ then $E = \{x \in S : \mu(\{x\}) > 0\}$ is at most countable.
- Equivalent condition of weak convergence

$$-\mu_n \xrightarrow{w} \mu \Leftrightarrow \mu_n(a,b] \to \mu(a,b]$$
 whenever $\mu(\{a\}) = \mu(\{b\}) = 0$

• The limit is unique in weak convergence sense

- If
$$\mu_n \xrightarrow{w} \mu$$
 and $\mu_n \xrightarrow{w} \nu$ then $\mu = \nu$ i.e. $\mu(B) = \nu(B) \ \forall B \in \mathcal{B}(\mathbb{R})$

* Weak convergence of distribution functions $F_n \Rightarrow F$

$$-F_n \Rightarrow F \text{ if } \mu_n \xrightarrow{w} \mu \text{ where } \mu_n \sim F_n \text{ and } \mu \sim F$$

- Continuity set C_F of a distribution function F is dense in \mathbb{R}
- $F_n \Rightarrow F \Leftrightarrow F_n(x) \to F(x) \ \forall x \in C_F$
- * Convergence in distribution $X_n \xrightarrow{D} X$

$$-X_n \xrightarrow{D} X$$
 if $\mu_n \xrightarrow{w} \mu$ where $X_n \sim \mu_n$ and $X \sim \mu$

- Convergence in probability is stronger than convergence in distribution
 - $-X_n \xrightarrow{P} X$ implies $X_n \xrightarrow{D} X$
- For a constant $c \in \mathbb{R}$, if $X_n \xrightarrow{D} c$ then $X_n \xrightarrow{P} c$
- Slutsky's thm
 - i. If $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} c$ where c is a constant, then $X_n + Y_n \xrightarrow{D} X + c \# 3.2.13$ Especially, if $X_n \xrightarrow{D} X$ and $Z_n X_n \xrightarrow{P} 0$ then $Z_n \xrightarrow{D} X$
 - ii. If $X_n \xrightarrow{D} X$ and $\delta_n \xrightarrow{P} 0$ then $X_n \delta_n \xrightarrow{P} 0$
 - iii. If $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} c$ where c is a constant, then $X_n Y_n \xrightarrow{D} c X$ # 3.2.14

- Scheffe's thm
 - Sps $\{X_n\}$ and X have density functions $\{f_n\}$ and f respectively. If $f_n \to f$ $\mu a.e.$ where μ is Lebesgue measure, then $X_n \xrightarrow{D} X$
- Skorohod's thm
 - Suppose that $\{\mu_n\}$ and μ are prob. Borel measures s.t. $\mu_n \xrightarrow{w} \mu$. Then \exists a prob. space $(\Omega', \mathcal{F}', P')$ and r.v $\{X_n'\}$ and X' s.t. $X_n' \sim \mu_n$, $X' \sim \mu$ and $X_n' \to X'$ P' a.s.
- Continuous mapping thm
 - If Borel measurable $f: \mathbb{R} \to \mathbb{R}$ satisfies $P(X \in D_f) = 0$ where D_f is discontinuity set of f then $X_n \xrightarrow{D} X$ implies $f(X_n) \xrightarrow{D} f(X)$
- If $X_n \xrightarrow{D} X$ then $E[g(X_n)] \to E[g(X)] \ \forall$ continuous bounded g
- If $E[g(X_n)] \to E[g(X)] \ \forall$ unif. continuous(or Lipschitz) bounded g then $X_n \xrightarrow{D} X$
- $X_n \xrightarrow{D} X$ if for every subseq. $\{X_{n_m}\}$ of $\{X_n\}$, \exists a further subseq. $\{X_{n_{m_k}}\}$ s.t. $X_{n_{m_k}} \xrightarrow{D} X$
- The Portmanteau thm
 - The followings are equivalent
 - i. $X_n \xrightarrow{D} X$
 - ii. $\liminf P(X_n \in G) \ge P(X \in G) \ \forall \text{ open } G \subset \mathbb{R}$
 - iii. $\limsup P(X_n \in F) \leq P(X \in F) \ \forall \ \text{closed} \ F \subset \mathbb{R}$
 - iv. $P(X_n \in A) \to P(X \in A) \ \forall A \in \mathcal{B}(\mathbb{R}) \text{ with } P(X \in \partial A) = 0$
- Polya's thm # 3.2.9
 - If $F_n \Rightarrow F$ and F is continuous then $F_n \to F$ uniformly on $\mathbb R$
- $\{X_n\}$ and X are integer valued random variables. Then $X_n \xrightarrow{D} X$ iff $P(X_n = m) \to P(X = m) \ \forall m \in \mathbb{Z} \quad \# 3.2.12$
- * Big O_p and small o_p notation
 - $-X_n = o_p(1) \text{ if } X_n \xrightarrow{P} 0$
 - $X_n = O_p(1)$ if $\lim_{M\to\infty} \sup_n P(|X_n| > M) = 0$ or equivalently $\forall \epsilon > 0$, $\exists M_\epsilon \& N_\epsilon$ s.t. $P(|X_n| > M_\epsilon) < \epsilon \ \forall n \geq N_\epsilon$ $O_p(1)$ is also called as 'stochastically bounded'
- Elementary properties of Big O_p and small o_p

i.
$$X_n = o_p(1), Y_n = o_p(1) \Rightarrow X_n + Y_n = o_p(1), X_n Y_n = o_p(1)$$

ii.
$$X_n=O_p(1), Y_n=O_p(1)\Rightarrow X_n+Y_n=O_p(1), X_nY_n=O_p(1)$$

iii.
$$X_n = O_p(1), Y_n = o_p(1) \Rightarrow X_n + Y_n = O_p(1), X_n Y_n = o_p(1)$$

iv.
$$X_n \xrightarrow{D} X \Rightarrow X_n = O_p(1)$$

- Helly's selection principle
 - For a seq. $\{F_n\}$ of distribution functions, \exists a subseq. $\{F_{n_k}\}$ and a distribution-like func. F s.t. $F_{n_k}(x) \to F(x)$ as $k \to \infty \ \forall x \in C_F$
- * Tightness of seq. of distribution functions
 - A seq. of distribution functions $\{F_n\}$ is called tight if $\forall \epsilon > 0, \exists M_{\epsilon} > 0 \text{ s.t. } limsup_n \ 1 F_n(M_{\epsilon}) + F_n(-M_{\epsilon}) \leq \epsilon$
- For a seq. of distribution functions $\{F_n\}$, every subsequential limit is a distribution function iff $\{F_n\}$ is tight

7 Random Series

- Komogorov's inequality
 - $-\{X_n\}$: a seq. of indep. r.v.'s with mean zero and finite variance.

$$\forall \epsilon > 0, \ P(\max_{1 \le k \le n} |S_k| \ge \epsilon) \le \frac{1}{\epsilon^2} \sum_{k=1}^n \sigma_k^2$$

- Convergence of random series
 - $-\{X_n\}$: a seq. of indep. r.v.'s with mean zero and finite variance.

$$\sum_{n=1}^{\infty} \sigma_n^2 < \infty \Rightarrow \sum_{n=1}^{\infty} X_n \ converges \ a.s.$$

- Etamadi's inequality
 - $-\{X_n\}$: a seq. of independent r.v.'s.

$$\forall \epsilon > 0, \ P(\max_{1 \le k \le n} |S_k| \ge 3\epsilon) \le 3 \max_{1 \le k \le n} P(|S_k| \ge \epsilon)$$

- Levy's thm
 - $-\{X_n\}$: a seq. of independent r.v.'s. If $S_n \xrightarrow{P} S$ then $S_n \to S$ a.s.
- Lemma for Kolmogorovs's three series thm
 - $-\{X_n\}$: a seq. of independent r.v.'s. If $|X_n - E(X_n)| \le A$ a.s. for some $A > 0 \ \forall n \in \mathbb{N}$, then

$$\forall \epsilon > 0, \ P(\max_{1 \le k \le n} |S_k| \le \epsilon) \le \frac{(2A + 4\epsilon)^2}{Var(S_n)}$$

- * Eventual equivalence of random sequences $\{X_n\} \sim \{Y_n\}$
 - Random seq. $\{X_n\}$ and $\{Y_n\}$ are said to be (eventually) equivalent if $\sum_{n=1}^{\infty} P(X_n \neq Y_n) < \infty$. Denote it as $\{X_n\} \sim \{Y_n\}$

- \Box If $\{X_n\} \sim \{Y_n\}$ then $P(X_n = Y_n$ all but finitely many n's)= 1
- Kolmogorov's three series thm
 - $\{X_n\}$: a seq. of independent r.v.'s. For A>0, $\{Y_n\}$ is defined by $Y_n=X_nI(|X_n|\leq A)$ Then $\sum_n X_n$ converges a.s. \Leftrightarrow (a) $\sum_n P(|X_n|>A)<\infty$ (b) $\sum_n E(Y_n)$ converges. (c) $\sum_n Var(Y_n)<\infty$

8 Law of Large Numbers

- Lemma about eventually equivalent random sequences
 - If random seq $\{X_n\} \sim \{Y_n\}$ and real seq. $\{a_n\}$ s.t. $0 < a_n \to \infty$ then for a random variable Z,

i.
$$\frac{1}{a_n} \sum_{j=1}^n X_j \to Z$$
 a.s. $\Leftrightarrow \frac{1}{a_n} \sum_{j=1}^n Y_j \to Z$ a.s.

ii.
$$\frac{1}{a_n} \sum_{j=1}^n X_j \xrightarrow{P} Z \Leftrightarrow \frac{1}{a_n} \sum_{j=1}^n Y_j \xrightarrow{P} Z$$

• Equivalent condition for integrability

$$-\sum_{n} P(|X| \ge n) \le E|X| \le 1 + \sum_{n} P(|X| \ge n)$$

$$-E|X| < \infty \Leftrightarrow \sum_{n} P(|X| \ge n) < \infty$$

- Weak Law of Large numbers; W.L.L.N
 - $-\{X_n\}$ i.i.d. random seq. with $E|X_1|<\infty,\ E(X_1)=\mu$ Then $\frac{1}{n}\sum_{j=1}^n X_j\xrightarrow{P}\mu$
- Lemmas about convergence of real series
 - [Cesàro mean] If $x_n \to x$ then $\frac{1}{n} \sum_{j=1}^n x_j \to x$
 - [Kronecker's lemma] $0 < a_n \nearrow \infty$. If $\sum_{n=1}^{\infty} \frac{1}{a_n} x_n$ converges then $\frac{1}{a_n} \sum_{j=1}^n x_j \to 0$
- Strong Law of Large numbers ; S.L.L.N
 - $\{X_n\}$ i.i.d. random seq. with $E|X_1| < \infty$, $E(X_1) = \mu$. Then $\frac{1}{n} \sum_{j=1}^n X_j \to \mu$ a.s.
- Strong Law holds even if the mean is infinite
 - $\{X_n\}$ i.i.d. random seq. with $E(X_1^+) = \infty$. $E(X_1^-) < \infty$. Then $\frac{1}{n} \sum_{j=1}^n X_j \to \infty$ a.s.
 - $\{X_n\}$ i.i.d. random seq. with $E(X_1^+) < \infty$. $E(X_1^-) = \infty$. Then $\frac{1}{n} \sum_{j=1}^n X_j \to -\infty$ a.s.
- If $\{X_n\}$ i.i.d. random seq. with $E|X_1| = \infty$ then (a) $P(|X_n| \ge n \ i.o) = 1$ (b) $P(\lim_{n \to \infty} \frac{1}{n} S_n \ exists \ and \ finite) = 0$
- Glivenko Cantelli thm
 - $\{X_n\}$ i.i.d. random seq. $X_1 \sim F$. Empirical distribution function is defined as $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \leq x) \ \forall x \in \mathbb{R}$ for each $n \in \mathbb{N}$ Then $F_n \rightrightarrows F$ a.s. i.e. $\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to 0$ a.s.

• $\{X_n\}$ i.i.d. random seq. with $E|X_1| = \infty$. $\{a_n\}$ positive real seq s.t. a_n/n is monotone increasing. Then $\lim\sup_{n \to a_n} \frac{|S_n|}{a_n} = \begin{cases} 0 & a.s. & if \sum_n P(|X_1| \ge a_n) < \infty \\ \infty & a.s. & if \sum_n P(|X_1| \ge a_n) = \infty \end{cases}$

- Convergence rate of random series
 - $-\{X_n\}$ i.i.d. random seq. with mean zero and finite variance. Then

$$\forall \epsilon > 0, \ \frac{S_n}{\sqrt{n}(\log n)^{\frac{1}{2} + \epsilon}} \to 0 \ a.s.$$

9 Characteristic function

- * Characteristic function
 - A char. func. ψ corresponding to a prob. Borel measure μ is

$$\psi(t) = \int e^{itx} d\mu(x)$$
$$= \int \cos tx \, d\mu(x) + i \int \sin tx \, d\mu(x)$$

- A char. func. of a r.v. $X \sim \mu$ is $\psi_X(t) = E[e^{itX}] = \int e^{itx} \, d\mu(x)$
- Elementary properties of characteristic functions

i.
$$\psi(0) = 1$$

ii.
$$|\psi(t)| \leq 1 \ \forall t \in \mathbb{R}$$

iii.
$$\sup_{t\in\mathbb{R}} |\psi(t+h) - \psi(t)| \to 0$$
 as $h \to 0$. ψ is uniformly continuous

iv.
$$\psi_{aX+b}(t) = e^{itb}\psi_X(at) \ \forall a, b, \in \mathbb{R}$$

v.
$$\psi(-t) = \overline{\psi}(t)$$
. If $X \sim \psi$ then $-X \sim \overline{\psi}$

• Additional properties of characteristic functions

i. If
$$X_1 \perp \!\!\! \perp X_2$$
 and $X_1 \sim \psi_1, X_2 \sim \psi_2$ then $X_1 + X_2 \sim \psi_1 \psi_2$
If X_1, \dots, X_n independent with $X_i \sim \psi_i$ then $\sum_{i=1}^n X_i \sim \prod_{i=1}^n \psi_i$

ii. If
$$\psi_1, \dots \psi_n$$
 are char. function then $\prod_{i=1}^n \psi_i$ is also a char. function.

iii. If
$$\psi_1, \dots \psi_n$$
 are char. functs with $\psi_i \sim \mu_i$ then $\sum_{i=1}^n \lambda_i \psi_i$ is also a char. function given $\lambda_i > 0$ and $\sum_{i=1}^n \lambda_i = 1$

iv. If
$$\psi$$
 is a char. function $Re(\psi)$ and $|\psi|^2$ are also char. functions.

$$\square$$
 Characteristic function of $X \sim N(0,1)$ is $exp(-\frac{1}{2}t^2)$ $X \sim N(\mu,\sigma)$ is $exp(i\mu t - \frac{1}{2}\sigma^2 t^2)$ Characteristic function of $X \sim Poi(\lambda)$ is $exp(\lambda(e^{it}-1))$

- The Inversion formula
 - If ψ is a char. func. corresponding to a distribution μ , then whenever a < b, the equation below holds true.

$$\frac{1}{2}\{\mu(a,b] + \mu[a,b)\} = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \psi(t) dt$$

- If two distributions μ and ν corresponds to same characteristic function, then μ and ν are indeed the same distributions. In this sense, characteristic functions uniquely determine the distribution.
- Suppose ψ is a char. func. corresponding to $\mu \sim F$. If $\int_{-\infty}^{\infty} |\psi(t)| dt < \infty$ then F is diff.able and the density f is derived as

$$f(x) = F'(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \psi(t) dt$$

• Suppose ψ is a char. func. corresponding to μ . For each $x_0 \in \mathbb{R}$,

$$\mu(\lbrace x_0 \rbrace) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-itx_0} \psi(t) dt$$

• Suppose ψ is a char. func. corresponding to μ .

$$\sum_{x} \left[\mu(\{x\}) \right]^2 = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |\psi(t)|^2 dt$$

- Suppose ψ is a char. func. corresponding to $\mu \sim F$. If F is diff.able with density f then $\lim_{t\to\infty} \psi(t) = 0$
- \square If a distribution μ has a density f where $\mu \sim F$ and f = F' then μ has no point mass. i.e. $\mu(\{x\}) = 0 \ \forall x \in \mathbb{R} \quad \# 3.3.3$
- Lemma for continuity thm
 - $-\mu$: a sub prob. Borel measure. $\psi(t) = \int e^{itx} d\mu(x)$. Then $\forall \delta > 0$,

$$\mu[-\delta.\delta] \ge \frac{\delta}{2} \left| \int_{-2/\delta}^{2/\delta} \psi(t) dt \right| - 1$$

- Levy's Continuity thm
 - let $\{\mu_n\}$ be a seq. of distributions and $\mu_n \sim \psi_n \ \forall n \in \mathbb{N}$. If $\psi_n \to \psi$ pointwise and ψ is continuous at zero, then ψ is a char. func. corresponding to μ and $\mu_n \xrightarrow{w} \mu$
 - let $\{\mu_n\}$ be a seq. of distributions and $\mu_n \sim \psi_n \ \forall n \in \mathbb{N}$. If $\mu_n \xrightarrow{w} \mu$ and $\mu \sim \psi$ then $\psi_n \to \psi$ pointwise.
- Suppose X, Y i.i.d. with mean zero, variance one. If $X + Y \perp \!\!\!\perp X Y$ then X, Y are normal r.v.'s.
- Suppose $\{X_n\}$ and $\{Y_n\}$ are independent and $X \perp \!\!\! \perp Y$. If $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} Y$ then $X_n + Y_n \xrightarrow{D} X + Y \# 3.3.8$

10 Central Limit Theorem

• Lemma about convergence of sequence and exponential

i.
$$(1+\frac{a_n}{n})^n \to e^a$$
 if $a_n \to a$ $(1+c_n)^n \to e^c$ if $nc_n \to c$

ii.
$$(1 + \frac{a_n}{\lambda_n})^{\lambda_n} \to e^a$$
 if $a_n \to a$, $0 < \lambda_n \nearrow \infty$
 $(1 + c_n)^{\lambda_n} \to e^c$ if $\lambda_n c_n \to c$, $0 < \lambda_n \nearrow \infty$

• Lemma about taylor expansion error term of e^{ix}

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \min\left\{ \frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^n}{n!} \right\} \quad \forall x \in \mathbb{R} \ \forall n \in \mathbb{N}$$

- Lemma about taylor expansion of characteristic function
 - i. If $E|X|^n < \infty$ then

$$\left| E\left[e^{itx} - \sum_{k=0}^{n} \frac{(itx)^k}{k!} \right] \right| \le |t|^n E[\min\{|t||X|^{n+1}, 2|X|^n\}]$$

$$\psi(t) = \sum_{k=0}^{n} \frac{i^{k} E(X^{k})}{k!} t^{k} + o(|t|^{n}) \quad as \ t \to 0$$

ii. Especially if E[X] = 0 and $E[X^2] = \sigma^2 < \infty$, then

$$\psi(t) = 1 - \frac{\sigma^2}{2}t^2 + o(t^2)$$
 as $t \to 0$

- Central Limit Thm
 - $\{X_n\}$ i.i.d. random seq. $E[X_1] = \mu, Var(X_1) = \sigma^2 < \infty$. Then

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{D} N(0,1) \quad i.e. \quad \frac{S_n - E[S_n]}{\sqrt{Var(S_n)}} \xrightarrow{D} N(0,1)$$

- * Lindberg's condition
 - $\{X_{nk}: k=1,\cdots,r_n\}$: row-wise independent double array of r.v.'s with mean zero and finite variance. $\{X_{nk}\}$ is said to be satisfying Lindberg's condition if

$$\epsilon > 0, \quad \lim_{n \to \infty} \frac{1}{\mathcal{D}_n^2} \sum_{k=1}^{r_n} \int_{(|X_{nk}| \ge \epsilon \mathcal{D}_n)} X_{nk}^2 dP = 0$$

where
$$S_n = X_{n1} + \cdots + X_{nr_n}$$
 and $\mathcal{D}_n^2 = Var(S_n) = \sigma_{n1}^2 + \cdots + \sigma_{nr_n}^2$

- Lemma about complex numbers
 - i. $\left|\prod_{i=1}^{n} z_i \prod_{i=1}^{n} w_i\right| \le \sum_{i=1}^{n} |z_i w_i|$ if $|z_i|, |w_i| \le 1$
 - ii. $|e^z-(1+z)| \leq \frac{1}{2}e^c|z|^2$ whenever $|z| \leq c$ Especially, $|e^z-(1+z)| \leq |z|^2$ if $|z| \leq 1/2$
 - iii. $|e^z| = e^{Re(z)} < e^{|z|} \quad \forall z \in \mathbb{C}$
 - iv. For $\{z_n\} \in \mathbb{C}$, $e^{z_n} \to e^z \Rightarrow e^{Re(z_n)} \to e^{Re(z)}$
- Feller's Thm
 - $\{X_{nk}: k=1,\dots,r_n\}$: row-wise independent double array of r.v.'s with mean zero and finite variance. $S_n=X_{n1}+\dots+X_{nr_n}$ and $\mathcal{D}_n^2=Var(S_n)=\sigma_{n1}^2+\dots+\sigma_{nr_n}^2$ Lindberg's condition is satisfied if and only if
 - (a) $S_n/\mathcal{D}_n \xrightarrow{D} N(0,1)$ (b) $\frac{1}{\mathcal{D}_n^2} \max_{1 \le k \le r_n} \sigma_{nk}^2 \to 0 \text{ as } n \to \infty$
- * Lyapunov condition
 - $\{X_{nk}: k=1,\cdots,r_n\}$: row-wise independent double array of r.v.'s with mean zero. $\{X_{nk}\}$ is said to be satisfying Lyapunov condition if $\exists \delta > 0$ s.t.
 - i. $E|X_{nk}|^{2+\delta} < \infty$
 - ii. $\lim_{n\to\infty} \frac{1}{\mathcal{D}_n^{2+\delta}} \sum_{k=1}^{r_n} E|X_{nk}|^{2+\delta} = 0$
- Lyapunov condition is stronger than Lindberg's condition
- Poisson approximation of binomial random variable
 - i. $\{X_{nk}: k=1,\dots,n\}$: row-wise independent double array of Bernoulli r.v.'s. $p_{nk}=P(X_{nk}=1)$. If (a) $\sum_{k=1}^n p_{nk} \to \lambda$ where $\lambda \in (0,\infty)$ and (b) $\max_{1\leq k\leq n} p_{nk} \to 0$ then $S_n=X_{n1}+\dots+X_{nn} \xrightarrow{D} Poi(\lambda)$
 - ii. $\{X_{nk}: k=1,\cdots,n\}$: row-wise independent double array of r.v.'s having nonnegative integer values. $p_{nk}=P(X_{nk}=1)$ and $\epsilon_{nk}=P(X_{nk}\geq 2)$
 - If (a) $\sum_{k=1}^{n} p_{nk} \to \lambda$ where $\lambda \in (0, \infty)$ (b) $\max_{1 \le k \le n} p_{nk} \to 0$ and (c) $\sum_{k=1}^{n} \epsilon_{nk} \to 0$ (which means X_{nk} is nearly Bernoulli r.v.)
 - then $S_n = X_{n1} + \dots + X_{nn} \xrightarrow{D} Poi(\lambda)$