# Multimodal Data Fusion for Image Classification

Stefano Ruggiero

## **Project Goal**

 The goal of this project was to classify objects in the NuScenes dataset (mini version with 400 samples and 18 categories) by combining data from two modalities: LiDAR point clouds and camera images.

• A Vision Transformer (ViT) (<a href="https://huggingface.co/google/vit-base-patch16-224">https://huggingface.co/google/vit-base-patch16-224</a>) to process image data: pre-trained on ImageNet-21k (14 million images, 21,843 classes), and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes). Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.

```
vision_model = ViTModel.from_pretrained("google/vit-base-patch16-224")
image_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
```

```
image_tensor = image_processor(images=image, return_tensors="pt")["pixel_values"] #converte in input adatto a ViT
```

```
# Calcola gli embedding dell'immagine
vision_outputs = vision_model(pixel_values=image_tensor)
image_embedding = vision_outputs.last_hidden_state[:, 0, :]
```

• **PointNet** (PointNetConv) to encode 3D LiDAR data: The PointNetConv set layer from the PointNet and PointNet papers. Utilizza convoluzioni basate su grafi (**Graph Neural Networks**). Knn\_graph computes graph edges to the nearest k points (matrice).

```
class PointNetEncoder(torch.nn.Module):
   def __init__(self):
       super(PointNetEncoder, self).__init__()
       self.conv1 = PointNetConv(local_nn=torch.nn.Sequential(
           torch.nn.Linear(3, 64),
           torch.nn.ReLU(),
          torch.nn.Linear(64, 128),
           torch.nn.ReLU(),
           torch.nn.Linear(128, 256)
       self.conv2 = PointNetConv(local_nn=torch.nn.Sequential(
           torch.nn.Linear(256 + 3, 512),
           torch.nn.ReLU(),
           torch.nn.Linear(512, 1024)
       self.fc = torch.nn.Linear(1024, 256)
   def forward(self, pos, edge_index):
       x = F.relu(self.conv1(None, pos, edge_index))
       x = F.relu(self.conv2(x, pos, edge_index))
       x = torch.max(x, dim=0)[0]
       x = self.fc(x)
       x = x.view(1, -1)
       return x
```

https://pytorch-geometric.readthedocs.io/en/2.6.0/generated/torch\_geometric.nn.pool.knn\_graph.html https://pytorch-geometric.readthedocs.io/en/stable/generated/torch\_geometric.nn.conv.PointNetConv.html

```
# Calcola gli embedding LiDAR
edge_index = knn_graph(lidar_tensor, k=22)
lidar_embedding = lidar_encoder(lidar_tensor, edge_index)
```

• An early fusion strategy (concatenation) that combines features from both modalities into a single representation: a network to get an embadding of the concatenation of the two rapresentation.



```
fusion_layer = torch.nn.Sequential(
    torch.nn.Linear(vision_model.config.hidden_size + 256, 512),
    torch.nn.ReLU(),
    torch.nn.Linear(512, 128) #embadding finale
)
fused_embedding = fusion_layer(torch.cat((image_embedding, lidar_embedding), dim=1))
```

• Classification : with neural network

#### Run the code

- Dataset Loading & Preprocessing
- Fusion
- Classification
- Evaluation (F1- score)

## Result (mean on 1000 runs on 1000 split)

• Fused embeddings F1 Score: 0.914

• Is good a result?



### Results (mean on 1000 runs on 1000 split)

- Camera embeddings achieved the highest F1 score (0.96), highlighting the effectiveness of ViT for image data.
- Fused embeddings performed well (F1 Score: 0.914) but slightly underperformed compared to camera-only embeddings.
- LiDAR embeddings scored the lowest (F1 Score: 0.74).





## Challenges

- LiDAR data lacks the granularity of visual data, which limited its standalone performance. Problably caused by: not enought detail of graph (k), the encoder or the few data.
- The computational cost of processing multimodal data.

## Takeaways

- Encode images with ViT
- Encode point clouds with PointNetConv
- Make early fusion by neaural network
- Make predictions with fused data by neaural network