UNIT 4.2

Artificial variables, Big –M method (method of penalty).

Big -M method

- step 1:In the Simplex method all constraints were of less than type. If atleast one of constraints is of greater than type then use Big – M method
- step 2: Z must be of maximization type
- step 3: For constraint of greater than type subtract surplus variable add artificial variable
- step 4: Write object function free from artificial variable
- step 5: Follow usual steps of Simplex method After required no. of iterations, we find one of the situation
- A. The artificial variables leave the process and the optimum soln. gets arrived

B Atleast one of the artificial variables remains in the basis with zero value & the optimality condition is satisfied. This is optimal basic feasible soln(degenerate)

C Atleast one of the artificial variables remains in the basis with nonzero value & the optimality condition is satisfied. This is pseudo SQ 102023

EXAMPLE 1: Solve the given LPP by Big-M method

• Maximise $z = 3x_1 - x_2$ Subject to $2x_1 + x_2 \ge 2$ $x_1 + 3x_2 \le 3$ $x_2 \le 4$ With $x_i \ge 0$

•
$$Z = 3x_1 - x_2 + 0s_1 + 0s_2 + 0s_3 - MA_1$$
R0

•
$$2x_1 + x_2 - s_1 + 0 s_2 + 0 s_3 + A_1 = 2$$
R1

•
$$x_1 + 3x_2 + 0s_1 + 1s_2 + 0s_3 - 0A_1 = 3$$
.....R2

•
$$x_2 + 0s_1 + 0s_2 + 1s_3 - 0A_1 = 4$$
R3

- Where $x_1, x_2, s_1, s_2 \ge 0$ To eliminate A1 from Z , R0+MR1 gives
- Z-(3+2M)x1-(-1+M)x2+Ms1+0s2+0s3+0A1=-2M

Simplex Table

			75.000						
Iteration Number	Basic	Coefficients of						R.H.S.	Ratio
	Var.	x,	×2	51	s ₂	s,	A,	Sol.	i tozelistki
0	z	-3 - 2M	1 – M	м	0	0	0	- 2M	
A, leaves x, enters	Α,	2.	1	-1	0	0	1	2	2/2=1
	s_2	1	3	0	1	0	0	3	3/1=3
	s_3	0	1	0	0	1	0	4	1/0=
		Ť	-						
1	z	0	5/2	- 3/2	0	0		3	
s ₂ leaves	×,	1	1/2	-1/2	0	0		1	-2
s, enters	S ₂	0	5/2	1/2*	1	0		2	4 -
	s_3	0	1	•	0	1		4	-
2	z	0	10	0	3	0		9	
	<i>x</i> ₁	1	3	0	1	0		3	
	s ₁	0	5	1	2	0		4	
	S ₃	0	1	0	0	1		4	

 $x_1 = 3$, $x_2 = 0$, $z_{\text{Max}} = 9$.

EXAMPLE 2: Solve the given LPP by Big-M method

Maximise
$$z = 3x_1 + 2x_2$$

subject to $2x_1 + x_2 \le 2$
 $3x_1 + 4x_2 \ge 12$
 $x_1, x_2 \ge 0$.

Simplex Table

Iteration Number			Coeffic	R.H.S.	Ratio			
		x ₁	X ₂	S ₁	s ₂	A ₂	Sol.	, '
. 0	z -	- 3 – 3 <i>M</i>	- 2 - 4M	0	М	0	– 12 <i>M</i>	
s ₁ leaves	s ₁	2	1*	1	0	0	2	2 ←
x ₂ enters	A_2	.3	4	0	-1	1	12	3
			\uparrow			•		
1	z	1 + 5M	0	2 + 4M	М	0	4 – 4M	
	x ₂	2	1	1	0	0	2	
	A_2	- 5	0	-4	÷1	1	4	

Since the artificial variable A_2 appears not at zero level and all entries in the row of z have M with positive coefficient, feasible solution does not exit. The solution is called pseudo-optimum basic feasible solution.