Detecting Cancer Metastases on Gigapixel Pathology Images

Final Project of Applied Deep Learning

Rui Bai (rb3454) Yichi Liu (yl4327)

Project Introduction

- Motivation
- Flow of the Project

Motivation

- Metastasis detection :
 - Detect whether the breast cancer has spread to nearby cells
 - Early diagnosis will help doctors to give treatment
- However, manually labelling the cell will be time-consuming and error-prone.
- We designed an automatically cancer detection model on the pathology image with CNN models

Flow of the Project

- Project Flow Introduction: introduce the overall steps as below
- Data Processing
 - Training & Validation & Testing
 - Patch extraction for training & validation data
- Model Architectures
 - Different transferred models
 - Different Scales
- Heatmap Construction
- Model Comparison
- Comparison of Results
- Final Prediction for 3 testing data

Data Processing

- Training & Validation & Testing
- Patch Extraction for Training& Validation Data

Training & Validation & Testing

- Some slides have little cancer cell.
 We don't take them into consideration.
- Training and validation image:Patches from 8 slides:

slide 016, 031, 064, 075, 078, 084, 094, 101

- o Training: 80% of patches
- Validation: 20% of patches
- Testing image:

Patches from 3 slides:

Slide 091, 096, 110

Observation: imbalanced dataset

Slide 035: Almost no cancer cell. Drop it.

Positive Patch Extraction for Training & Validation Data

Randomly get 200 positive 299*229 patches:

If the center point of the patch is not cancer: Drop 150
 it

If the center point of the patch is cancer:
 Save the patch and label as Positive

Condition a:

No cancer at the center point.

Solution:

Drop it

Condition b:

The center point is cancer.

Solution:

Label is **POS**

Negative Patch Extraction for Training & Validation Data

Randomly get 200 negative 299*229 patches:

- If the center point is not tissue (intensity > 0.8): Drop 150
 it
- If the center point is tissue:
 - If the center region (128*128) contains cancer:

Drop it

 If the center region doesn't contain cancer:
 Save the patch and label as Negative

Condition a:

No tissues at the center point.

Solution:

Drop it

Condition b:

The center region (128*128) contains cancer. **Solution:**

Drop it

Condition c:

The center region (128*128) has no cancer.

Solution:

Label is **NEG**

Avoiding Memory Issues

- Don't Read the whole slide image
- Extract the mask and the slide image only with size 229*229
- Save the patches into folders

We could run our script with even level 0 without crashing in Colab (without update to Colab Pro)

Multi Scale Patch Extraction

Data Augmentation

- Augmentations from the paper:
 - Rotate the patch by 0°, 90°, 180°, 270°
 - Apply a left-right flip and repeat rotations
 - Perturb color (proved not successful)
 - Small offset of some pixels
- Additional augmentations we did:
 - Apply an up-down flip, since pathology slides do not have canonical orientations

Model Architectures

Model Architecture

Heatmap Construction

Heatmap Construction Methodology

For each testing slide:

- Sliding a window of size 299*299 through the entire image to extract patches
- Using stride = 128 to match the center region's size, so that the prediction do not overlap
- Predict only If the patch contains tissue in its center 128*128 region

Prediction of Patch

For each patch, we calculate prediction result in two ways:

Method 1:

Do a single Prediction on the patch

Method 2:

Apply the rotations and left-right flip to obtain predictions for each of the 8 orientations, and average the 8 predictions.

8 Orientations:

Average the 8 predictions

Model Comparison

Single-Scale Models Comparison

Model	Parameters	Validation Accuracy	Best:
InceptionV3	Transferred	0.9594	Fine Tuned InceptionV3
	Fine Tuned	0.9891	
	Transferred	0.9297	
	Fine Tuned	0.9812	
	Transferred	0.9484	Worst: ResNet50
	Fine Tuned	0.9703	
ResNet50	Transferred	0.80	Thus, we used InceptionV3 model for the following analysis
	Fine Tuned	0.82	
	InceptionV3	Transferred Fine Tuned Transferred Fine Tuned Transferred Fine Tuned Transferred Transferred Transferred Fine Tuned Fine Tuned Transferred	Transferred

Multi-Scale Models Comparison

Scale Level	Model	Parameters	Validation Accuracy	Best:
Level 1 & 2		Transferred	0.9869	Fine Tuned InceptionV3 Using Scale Levels 1 & 2
		Fine Tuned	0.9906	Worst: Transferred InceptionV3 Using Levels 1 & 3 We used fined tuned InceptionV3 model for the following analysis
Level 2 & 3		Transferred	0.9731	
	Incontion\/2	Fine Tuned	0.9859	
Level 3 & 4	InceptionV3	Transferred	0.9650	
		Fine Tuned	0.9859	
Level 1 & 3		Transferred	0.9516	
		Fine Tuned	0.9641	

Model Training Process -- For the best model

- Fine-tuned Inception based model
- Take level 1 and level 2 as input. Level 1 is the reference level that we label the patch.
- We used **early stopping** to prevent overfitting
- Learning rate was set to 0.0001 for ADAM

Comparison of Results

This section uses one of the test data, Slide 091, for comparison.

Comparison 1: Single-scale v.s. Multi-scale

F1 score: 0.73. AUC score: 0.97

F1 score: 0.66, AUC score: 0.98

Single Scale Multi Scale

Comparison 2: Low Levels v.s. High Levels Scales

F1 score: 0.66. AUC score: 0.98

Lower level (higher magnification) is better than higher zoom level.

Comparison 3:

Large v.s. Small Surrounding Context

Smaller surrounding context is better than larger surrounding context.

Comparison 4: Single Prediction v.s. Mean of 8 Predictions Per Patch

Single-scale Level 1 - Single Prediction Precision: 0.65, Recall: 0.72 F1 score: 0.69, AUC score: 0.96

Single-scale Level 1 - Mean of 8 Predictions Precision: 0.74, Recall: 0.74 F1 score: 0.74, AUC score: 0.97

Multi-scale Levels 1 & 2 - Single Prediction Precision: 0.63, Recall: 0.87 F1 score: 0.73, AUC score: 0.97

Multi-scale Level 1&2 - Mean of 8 Predictions Precision: 0.60, Recall: 0.58 F1 score: 0.59, AUC score: 0.96

For single-scale model, predicting 8 times and calculating average for each patch is better than single prediction for each patch.

For multi-scale model, single prediction per patch is better than mean of 8 predictions per patch. It has higher recall (important in medical images), competitive F1 score, with much lower running time.

Summary of the Result Analysis

- Multi-scale is better than Single-Scale
- Lower scale level (higher magnification) is better than higher scale level
- Smaller surrounding context is better than larger surrounding context
- Mean prediction of 8 variations is better than a single prediction of a patch only for single-scale model
- Single prediction using multi-scale model for generating the heatmap gives high recall, competitive F1, with much lower running time than predicting 8 times

Best Heatmap Generating Solution:

- Using multi-scale model of level 1&2
- Making Single prediction for each patch

Final Prediction

Predicting the heatmaps for the 3 test slides

Final Predicted Heatmaps on Slide 091

True label

Predicted using Multi-scale model with level 1&2

Precision score: 0.63 Recall score: 0.87 F1 score: 0.73 AUC score: 0.97

Final Predicted Heatmaps on Slide 096

True label

Predicted using Multi-scale model with level 1&2

Precision score: 0.38 Recall score: 0.73 F1 score: 0.50 AUC score: 0.94

Final Predicted Heatmaps on Slide 110

True label

Predicted using Multi-scale model with level 1&2

Precision score: 0.96 Recall score: 0.96 **F1 score: 0.96**

AUC score: 0.99

Code Walkthrough

- data preprocessing
- model construction
- heatmap generation

Thanks for Watching!

