ALU Design Submission and Implementation Computer Architecture Sessional CSE-306

Lab Group: 03

Roll Numbers:

1505069

1505082

1505083

1505084

1505085

1505087

May 16,2018

Department Of Computer Science and Engineering Bangladesh University of Engineering and Technology (BUET) Dhaka 1000

Truth Table

cs2	cs1	cs0/cin	Output
0	0	0	A
0	0	1	A+1
0	1	0	A or B
0	1	1	A or B
1	0	0	A + B
1	0	1	$A + \overline{B} + 1$
1	1	0	A & B
1	1	1	A & B

Here, cs1 is the mode selection variable because when cs1 = 0, arithmetic operations happen and when cs1 = 1, logical operations happen.

Arithmetic Section: (cs1 = 0)

cs2	cs0/cin	Output
0	0	A
0	1	A+1
1	0	$A + \overline{B}$
1	1	$A + \overline{B} + 1$

cs2	cs0/cin	X	Y
0	0	A	0
0	1	A	0
1	0	A	\overline{B}
1	1	A	\overline{B}

cs2	cs0	В	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$$\therefore Y = cs2\overline{B}$$

Logical Section: (cs1 = 1)

cs2	X	Y	Required Operation
0	A	0	A or B
1	A	\overline{B}	A & B

Now for the transfer operation if we can give A+B instead of A in X, then we can complete the required operation.

$$\therefore X = A + cs1\overline{cs2}B$$

For logical AND operation, let's introduce a variable K such that,

output =
$$(A + K) \oplus \overline{B} = (\overline{A}\overline{K})\overline{B} + AB + KB = \overline{A}\overline{K}\overline{B} + AB + KB$$

if, $K = \overline{B}$, then we have,

output =
$$AB\overline{B} + AB + B\overline{B} = 0 + AB + 0 = AB = AND$$
 operation

So, we have,

$$X = A + cs1cs2\overline{B}$$

So, the overall input function becomes,

$$X = A + cs1\overline{cs2}B + cs1cs2\overline{B}$$

$$Y = cs2\overline{B}$$

$$Z = \overline{cs1}cs0 \quad [\because cs0 = cin]$$

For logical operation, cs1 = 1 so Z is kept 0.

Final Truth Table

cs2	cs1	cs0/cin	X	Y	Z	Output
0	0	0	A	0	0	A
0	0	1	A	0	1	A+1
0	1	0	A + B	0	0	A or B
0	1	1	A + B	0	0	A or B
1	0	0	A	\overline{B}	0	$A + \overline{B}$
1	0	1	A	\overline{B}	1	$A + \overline{B} + 1$
1	1	0	$A + \overline{B}$	\overline{B}	0	A & B
1	1	1	$A + \overline{B}$	\overline{B}	0	A & B

