Logistics:

• The Kaggle competition through this link (due 24/03 at 11:59)

https://www.kaggle.com/c/pistolas-vs-smartphones-con-deep-learning/

• Relevant Machine Learning notions/terminologies in:

https://sihamtabik.github.io/

- Assignment(optional): A DL classifier with data-augumentation for MNIST
- TFM proposals soon in PRADO

Today:

- RNNs and LSTM some theory
- Case study of RNNs
- Warming up examples with CNN and Tensorflow

Recurrent Neural Networks

Siham Tabik

siham@ugr.es

Outline

- Intro to RNNs
- How do RNNs work?
- Back propagation through time
- CNNs versus RNNs
- LSTMs
- LSTMs versus RNNs
- Case study

Recurrent Neural Network

RNNs work well in diverse applications:

- Predicting the next character in a word
- Predicting the next word in a sentence
- Language translation
- Speech recognition
- Action detection

https://www.youtube.com/watch?v=IIHKEs9m3WM

Recurrent Neural Network

The basic idea: Input are a sequence of elements, e.g.,

Sentence: predict the next word in a sentence

the baby is ?

Word: predict the next character in a word

Speech recognition

Recurrent Neural Network

RNNs are **versatile**, they allow us to operate over a sequence of elements and one or a sequence of output

How does RNN work?

• Given input $x(x_0, x_1, x_2, ...)$ and output $o(o_1, o_2, o_3, ...)$

$$S_{t} = f(U \cdot x_{t} + W \cdot S_{t-1})$$

$$O_{t} = V \cdot S_{t}$$

- f is nonlinear function such as ReLU
- S_t is the network's state vector
- U, W and V are matrices parameters

Back propagation through time

- The entire input sequence is considered as a single element of the training set
- The total error gradient is the sum of the error gradients at each instant of time

Problem: When the sequence is too long→ the vanishing or exploding gradient problem

CNNs models versus RNNs models

CNNs	RNNs
Example of one layer CNN $y = f(W \cdot x + b)$ f is a nonlinear funtion	$S_t = f(U \cdot xt + W \cdot St_{-1})$ $O_t = V \cdot St$ • f is nonlinear function such as $ReLU$ • St is the network's state vector • U , W and V are matrices parameters
 learn to recognize patterns across space looks for the same patterns on all the different subfields of the image Learns different parameters in each level 	 learn to recognize patterns across time Do not look for the same patterns over the previous hidden layers Use the same parameters for each instance of the sequence

Long Term Short Term Memory(LSTM)

- LSTM are a special RNN architecture, originally conceived:
 - Long short term memory Sepp Hochreiter, Jurgen Schmidhuber Neural Computation, 9(8):1735-1780, 1997.
- Free from the problem of vanishing gradient and offers excellent results and performance
- Ideal for prediction and classification on long temporal sequences
- LSTM has the ability to forget irrelevant information and remember relevant information

RNNs versus LSTMs

The LSTM cell is a combination of four layers, three sigmoid and one tanh layers

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Cell

- LSTM has the ability to decide whether to remember or discard the information obtained from a given element of the sequence
- Three gates are governed by sigmoid units, outputs a value in [0,1],

To control the in and out information

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Understanding LSTM Networks

LSTM Cell

