CSC12001

Data Security in Information Systems

C02 - User Authentication

Dr. Phạm Thị Bạch Huệ MSc. Lương Vĩ Minh

Information System Department – Faculty of Information Technology
University of Science, VNU-HCM

What is authentication?

- Positive verification of identity (man or machine)
- Verification of a person's claimed identity
- Who are you? Prove it.

- There exists two reasons for authenticating users:
 - The user identity is a parameter in access control decisions
 - The user identity is recorded when logging security-relevant events in the audit trail
- It is not always necessary or desirable to base access control on user identities, while there is a much stronger case for using identities in the audit logs

- When a user connects to a computer system has to enter
 - Username this step is called identification
 - Password this step is called authentication
- Authentication: the process of verifying a claimed identity

How to authenticate?

- 4 categories:
 - What you know
 - What you have
 - Who you are
 - Where you are

Authentication Process

- It consists of several steps:
 - Obtaining the authentication information from an entity
 - Analyzing the data
 - Determining if the authentication information is associated with that entity

What you know

- Password
- Passphrase
- PIN

- Sequence of characters
 - Examples: 10 digits, a string of letters, etc.
 - Generated randomly, by user, by computer with user input
- Sequence of words
 - Examples: pass-phrases

Note: A pass-phrase is a sequence of characters that it is too long to be a password and it is thus turned into a shorter virtual password by the password system

- Algorithms
 - Examples: challenge-response, one-time passwords

Passwords-based Authentication

- A password is information associated with an entity that confirms its identity.
- How can passwords be protected?
- A solution: one-way hashing

A user's password is encrypted and then stored. The stored password is never decrypted. It should be difficult for an attacker to revert the stored password to the plaintext password. A user A may try to guess the password of another user, B, and thus *impersonate* B.

- Store as cleartext
 - If password file compromised, all passwords are revealed
- Encipher file
 - Need to have encryption, decryption keys in memory
 - Reduces to previous problem
- Store one-way hash of password
 - If file read, attacker must still guess passwords or invert the hash

- Goal: slow dictionary attacks aimed at finding any user's password (as opposed to a particular user's password)
- Method: perturb hash function so that:
 - Parameter controls which hash function is used
 - Parameter differs for each password
 - To determine if the string s is the password for any of a set of n users, the attacker has to perform n complementations, each of which generates a different complement

Challenge-Response

- Passwords have the fundamental problems that they are reusable
- If an attacker sees a password, she can later replay the password
- An alternative is to authenticate in such a way that the transmitted password changes each time
- Let a user u wishing to authenticate himself to a system S.
 - Let u and S have an agreed-on secret function f.
 - A challenge-response authentication system is one in which S sends a random message m (the challenge) to u
 - \circ Then *u* replies with the transformation r = f(m) (the response).
 - S then validates r by computing it separately.

Challenge-Response

• The user and system share a secret function f (in practice, f can be a known function with unknown parameters, such as a cryptographic key)

Challenge-Response Pass Algorithms

- Challenge-response with the function *f* itself a secret
 - Example:
 - Challenge is a random string of characters such as "abcdefg", "ageksido"
 - Response is some function of that string such as "bdf", "gkio"
 - The algorithm is every other letter beginning with the second
 - Usually used in conjunction with fixed, reusable password

One-Time Passwords

- Password that can be used exactly once
 - After use, it is immediately invalidated
- Problems
 - Synchronization of user and system
 - Generation of good random passwords
 - Password distribution problem

Approaches: Password Selection

- Random selection
 - Any password from A equally likely to be selected
 - Such passwords are difficult to remember for users, especially when they have multiple randomly-selected passwords
- Pronounceable passwords
- User selection of passwords

Pronounceable Passwords

- Generate phonemes randomly
 - Phoneme is unit of sound, eg. cv, vc, cvc, vcv where
 - c is a consonant
 - v is a vowel
 - Examples: helgoret, juttelon are pronounceable; przbqxdfl, zxrptglfn are not pronounceable
- Problem: the number of pronounceable passwords of length *n* is considerably lower than the number of random passwords of length *n*

User Selection

- Problem: people pick easy to guess passwords
 - Based on account names, user names, computer names, place names
 - Dictionary words
 - Too short, digits only, letters only
 - License plates, acronyms, social security numbers
 - Personal characteristics or foibles (pet names, nicknames, job characteristics, etc.)

Selecting Good Passwords

- Good passwords can be constructed in several ways
 - A password containing at least one digit, one letter, one punctuation symbol, and one control character is usually a strong password
- "LIMm*2^Ap"
 - Letters chosen from the names of members of 2 families

- Consider the case of a 4-digit PIN
- Suppose that the number of possible passwords (PINs) is N=10⁴ (assuming that the digits 0-9 are allowed in each of the 4 positions of the PIN
- Assume that an attacker can make G=10,000 per second in an offline attack
- How long would it take to guess a PIN with absolute certainty?

What you have

- Digital authentication
 - physical devices to aid authentication
- Common examples:
 - eToken
 - smart cards
 - RFID

- · Can be implemented on a USB key fob or a smart card
- Data physically protected on the device itself
- On the client side, the token is accessed via password
- Successful client-side authentication with the password invokes the token to generate a stored or generated passcode, which is sent to the server-side for authentication.

eToken

- May store credentials such as passwords, digital signatures and certificates, and private keys
- Can offer on-board authentication and digital signing

Smart cards

- Size of a credit card
- Usually an embedded microprocessor with computational and storage capabilities
- Contact vs. contactless
- Memory vs. microprocessor

Card body
(front)
Card body
(back)
Chip
Antenna

Source: Gemplus - All About Smart Cards

- RFID Radio Frequency IDentification
- Integrated circuit(s) with an antenna that can respond to an RF signal with identity information
- No power supply necessary—IC uses the RF signal to power itself
- Susceptible to replay attacks and theft
- Examples:
 - Smart Tag, EZPass
 - Garage parking permits

Who you are

- Biometric authentication
 - Use of a biometric reading to confirm that a person is who he/she claims to be
- Biometric reading
 - A recording of some physical or behavioral attribute of a person

Physical Biometrics

- Fingerprint
- Iris
- Hand Geometry
- Finger Geometry
- Face Geometry
- Ear Shape
- Retina

- Smell
- Thermal Face
- Hand Vein
- Nail Bed
- DNA
- Palm Print

Behavioral Biometrics

- Signature
- Voice
- Keystroke
- Gait

- Vast amount of data available on fingerprint pattern matching
- Data originally from forensics
- Over 100 years of data to draw on
 - Thus far all prints obtained have been unique

Fingerprint Basics

- Global features
 - Features that can be seen with the naked eye
 - Basic ridge patterns
- Local features
 - Minutia points
 - Tiny unique characteristics of fingerprint ridges used for positive identification

Basic Ridge Patterns

Local Features

- Also known as minutia points
- Used for positive identification
- Two or more individuals may have the same global features, but different minutia
- Minutia points do not have to be inside the pattern area

Types of Minutia

- Ridge ending
- Ridge bifurcation
- Ridge divergence
- Dot or island ridge so short it appears DIVERGENCE

Short ridge – bigger than a dot

Fingerprint Scanners

Digital Persona U.are.U Pro

HP IPAQ

IBM Thinkpad T42

Where you are

- If you know where user is, validate identity by seeing if person is where the user is
 - Requires special-purpose hardware to locate user
 - GPS (global positioning system) device gives location signature of entity
 - Host uses LSS (location signature sensor) to get signature for entity

Review: Four Categories

- What you know
 - Password
 - o PIN
- What you have
 - 。 e-Token
 - o RFID
- Who you are
 - Biometrics
- Where you are
 - Location

Example - Enrollment

Example - Verification

Motivation

- Real-world considerations:
 - What you know and what you have
 - Can be stolen or forgotten
 - Susceptible to replay attacks
 - Who you are
 - Unique biometrics that hinder replay attacks and imposters
 - Privacy issues arise

Multiple Methods

- Example: "where you are" also requires entity to have LSS and GPS, so also "what you have"
- Can assign different methods to different tasks
 - As users perform more and more sensitive tasks, must authenticate in more and more ways (presumably, more stringently) File describes authentication required
 - Also includes controls on access (time of day, etc.), resources, and requests to change passwords
 - Pluggable Authentication Modules

Bibliography

- Authentication
 - L. O'Gorman, "Comparing Passwords, Tokens, and Biometrics for User Authentication," Proc. IEEE, Vol. 91, No. 12, Dec. 2003, pp. 2019-2040.
- · Class slides of Elisa Bertino, Paul Bui.

Q&A

Dr. Phạm Thị Bạch Huệ - ptbhue@fit.hcmus.edu.vn
MSc. Lương Vĩ Minh - lvminh@fit.hcmus.edu.vn

