## 法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
  - 微信公众号:大数据分析挖掘
  - 新浪微博: ChinaHadoop





### 第五讲



## 时间序列数据分析

--梁斌



### 目录

- Python的日期和时间处理及操作
- Pandas的时间序列数据处理及操作
- 时间数据重采样
- 时间序列数据统计—滑动窗口
- 时序模型:ARIMA
- 实战案例:股票数据分析



### 目录

- Python的日期和时间处理及操作
- Pandas的时间序列数据处理及操作
- 时间数据重采样
- 时间序列数据统计—滑动窗口
- 时序模型:ARIMA
- 实战案例:股票数据分析



#### 时间序列分类

- 时间戳(timestamp),特定的时刻
- 固定周期(period),某月或某年
- 时间间隔(interval),由起始时间戳和结束时间戳表示。





#### datetime, time及calendar模块

- · datetime, 以毫秒形式存储日期和时间
- datime.timedelta , 表示两个datetime对象的时间差
- datetime模块中包含的数据类型

| 类型        | 说明                        |  |  |
|-----------|---------------------------|--|--|
| date      | 以公历形式存储日历日期(年、月、日)        |  |  |
| time      | 将时间存储为时、分、秒、毫秒            |  |  |
| datetime  | 存储日期和时间                   |  |  |
| timedelta | 表示两个datetime值之间的差(日、秒、毫秒) |  |  |

示例代码: 01\_python\_datetime.ipynb



#### 字符串和datetime转换

- datetime -> str,
  - str(datetime\_obj)
  - datetime.strftime()
- str -> datetime
  - 1. datetime.strptime() 需要指定时间表示的形式
  - 2. dateutil.parser.parse() 可以解析大部分时间表示形式
  - 3. pd.to datetime() 可以处理缺失值和空字符串

示例代码: 01\_python\_datetime.ipynb



| 代码 | 说明                                                       |                                                 |  |
|----|----------------------------------------------------------|-------------------------------------------------|--|
| %Y | 4位数的年                                                    | 字符串和datetime转换                                  |  |
| %y | 2位数的年                                                    | ┛╸┺╺┺╬╌╸╸ <del>╒╇</del> ╒═┼ <del>╱╸┡</del> ╒╸╵╵ |  |
| %m | 2位数的月[01, 12]                                            | • datetime常用格式定义                                |  |
| %d | 2位数的日[01, 31]                                            |                                                 |  |
| %H | 时(24小时制)[00, 23]                                         |                                                 |  |
| %I | 时(12小时制)[01,12]                                          |                                                 |  |
| %M | 2位数的分[00, 59]                                            |                                                 |  |
| %S | 秒[00,61](秒60和61用于闰秒)                                     |                                                 |  |
| %w | 用整数表示的星期几[0(星期天),6]                                      |                                                 |  |
| %U | 每年的第几周[00,53]。星期天被认为是每周的第一天,每年的那几天被认为是"第0周"              | 第一个星期天之前                                        |  |
| %W | 每年的第几周[00, 53]。星期一被认为是每周的第一天,每年第一个星期一之前<br>的那几天被认为是"第0周" |                                                 |  |
| %z | 以+HHMM或-HHMM表示的UTC时区偏移量,如果时区为nai<br>字符串                  | ve <sup>译注3</sup> ,则返回空                         |  |
| %F | %Y-%m-%d简写形式,例如2012-4-18 <sup>译注4</sup>                  |                                                 |  |
| %D | %m/%d/%y简写形式,例如04/18/12                                  |                                                 |  |



### 目录

- Python的日期和时间处理及操作
- Pandas的时间序列数据处理及操作
- 时间数据重采样
- 时间序列数据统计—滑动窗口
- 时序模型:ARIMA
- 实战案例:股票数据分析



- 基本类型,以时间戳为索引的Series -> DatetimeIndex
- 创建
  - 1. 指定index为datetime的list
  - 2. pd.date\_range()
- 运算仍然符合按索引对齐,即按时间索引对齐运算
- 索引
  - 1. 索引位置
  - 2. 索引值
  - 3. 可以被解析的日期字符串
  - 4. 按 "年份" 、 "月份" 索引
  - 5. 切片操作
- 过滤 truncate

示例代码: 02\_pandas\_time.ipynb



- 生成日期范围 pd.\_date\_range()
  - 1. 传入开始、结束日期,默认生成的该时间段的时间点是按天计算的(频率是D)
  - 2. 只传入开始或结束日期,还需要传入时间段
  - 3. 规范化时间戳 normalize=True
- 频率Freq,由基础频率的倍数组成,基础频率包括:
  - 1. BM: business end of month,每个月最后一个工作日
  - 2. D: 天, M: 月等
- 偏移量,每个基础频率对应一个偏移量
  - 1. 偏移量通过加法连接
- 移动数据 (shifting),沿时间轴将数据前移或后移,保持索引不变



#### • 基础频率Freq

| 别名    | 偏移量类型              | 说明             |
|-------|--------------------|----------------|
| D     | Day                | 每日历日           |
| В     | BusinessDay        | 每工作日           |
| Н     | Hour               | 每小时            |
| T或min | Minute             | 每分             |
| S     | Second             | 每秒             |
| L或ms  | Milli              | 每毫秒 (即每千分之一秒)  |
| U     | Micro              | 每微秒 (即每百万分之一秒) |
| M     | MonthEnd           | 每月最后一个日历日      |
| ВМ    | Business Month End | 每月最后一个工作日      |
| MS    | MonthBegin         | 每月第一个日历日       |

示例代码: 02\_pandas\_time.ipynb



#### • 基础频率Freq (续)

BMS BusinessMonthBegin 每月第一个工作日

W-MON、W-TUE··· Week 从指定的星期几(MON、TUE、

WED、THU、FRI、SAT、SUN) 开始

算起,每周

WOM-1MON、WOM-2MON··· WeekOfMonth 产生每月第一、第二、第三或第四

周的星期几。例如,WOM-3FRI表

示每月第3个星期五

Q-JAN、Q-FEB··· QuarterEnd 对于以指定月份(JAN、FEB、

MAR、APR、MAY、JUN、JUL、

AUG、SEP、OCT、NOV、DEC)结束

的年度,每季度最后一月的最后一

个日历日

BQ-JAN、BQ-FEB··· BusinessQuarterEnd 对于以指定月份结束的年度,每季

度最后一月的最后一个工作日



#### 时间周期计算

- Period类,通过字符串或整数及基础频率构造
- Period对象可进行数学运算,但要保证具有相同的基础频率
- period\_range,创建指定规则的时间周期范围,生成PeriodIndex索引, 可用于创建Series或DataFrame
- 时间周期的频率转换, asfreq
  - 如:年度周期->月度周期
- 按季度计算时间周期频率

示例代码: 02\_pandas\_time.ipynb



### 目录

- Python的日期和时间处理及操作
- Pandas的时间序列数据处理及操作
- 时间数据重采样
- 时间序列数据统计—滑动窗口
- 时序模型:ARIMA
- 实战案例:股票数据分析



### 时间数据重采样

#### 重采样 (resampling)

- 将时间序列从一个频率转换到另一个频率的过程,需要<mark>聚合</mark>
- 高频率->低频率, downsampling, 相反为upsampling
- pandas中的resample方法实现重采样
  - 产生Resampler对象
  - reample(freq).sum(), resampe(freq).mean(), ...

#### 降采样 (downsampling)

- 将数据聚合到规整的低频率
- OHLC重采样, open, high, low, close
- 使用groupby降采样

示例代码: 03\_resample.ipynb



### 时间数据重采样

#### 升采样 (upsampling)

- 将数据从低频转到高频,需要<mark>插值</mark>,否则为NaN
- 常用的插值方法
  - 1. ffill(limit), 空值取前面的值填充, limit为填充个数
  - 2. bfill(limit),空值取后面的值填充
  - 3. fillna('ffill')或fillna('bfill'),
  - 4. interpolate,根据插值算法补全数据

具体可以参考: <u>http://pandas.pydata.org/pandas-</u>

docs/stable/generated/pandas.tseries.resample.Resampler.interp

<u>olate.html#pandas.tseries.resample.Resampler.interpolate</u>

示例代码: 03\_resample.ipynb



### 目录

- Python的日期和时间处理及操作
- Pandas的时间序列数据处理及操作
- 时间数据重采样
- 时间序列数据统计—滑动窗口
- 时序模型:ARIMA
- 实战案例:股票数据分析



### 滑动窗口

#### 滑动窗口函数(moving window function)

- 在时间窗口上计算各种统计函数
- 窗口函数 (window functions)
  - 1. 滚动统计 (rolling) obj.rolling().func
  - 2. window 窗口大小
  - 3. center 窗口是否居中统计

| Method     | Description                                |
|------------|--------------------------------------------|
| count()    | Number of non-null observations            |
| sum()      | Sum of values                              |
| mean()     | Mean of values                             |
| median()   | Arithmetic median of values                |
| min()      | Minimum                                    |
| max()      | Maximum                                    |
| std()      | Bessel-corrected sample standard deviation |
| var()      | Unbiased variance                          |
| skew()     | Sample skewness (3rd moment)               |
| kurt()     | Sample kurtosis (4th moment)               |
| quantile() | Sample quantile (value at %)               |
| apply()    | Generic apply                              |
| cov()      | Unbiased covariance (binary)               |
| corr()     | Correlation (binary)                       |
| cov()      | Unbiased covariance (binary)               |

### 目录

- Python的日期和时间处理及操作
- Pandas的时间序列数据处理及操作
- 时间数据重采样
- 时间序列数据统计—滑动窗口
- 时序模型:ARIMA
- 实战案例:股票数据分析



#### AR (Autoregressive)模型

- 自回归模型描述的是当前值与历史值之间的关系
- 滞后p阶的AR模型AR(p):  $y_t = \mu + \sum_{i=1}^p \gamma_i y_{t-i} + \epsilon_t$   $\mu$  是常数 ,  $\gamma_p$  是t-p时刻滞后变量的系数 ,  $\epsilon_t$  是误差
- AR(1):  $y_t = \mu + \gamma y_{t-1} + \epsilon_t$

AR(1) with 
$$\gamma = 0.8$$



AR(1) with 
$$\gamma = -0.8$$



#### MA (Moving average)模型

- 滑动平均模型描述的事自回归部分的误差累计
- MA(q):  $y_t = \mu + \epsilon_t + \sum_{i=1}^q \theta_i \epsilon_{t-i}$
- MA(1):  $y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$

MA(1) with  $\theta = 0.7$ 



$$MA(1)$$
 with  $\theta = -0.7$ 



#### ARMA (Autoregressive moving average) 模型

AR与MA的结合 ARMA(p, q)

$$y_t = \mu + \sum_{i=1}^p \gamma_i y_{t-i} + \epsilon_t + \sum_{i=1}^q \theta_i \epsilon_{t-i}$$

ARMA(1,1) with  $\gamma = 0.8$  and  $\theta = 0.7$ 



ARMA(1,1) with  $\gamma = -0.8$  and  $\theta = -0.7$ 



#### 平稳性

- · ARMA模型要求时间序列是平稳的
- 一个时间序列,如果均值没有系统的变化(无趋势)、方差没有系统变化, 且严格消除了周期性变化,就称为是平稳的



平稳? 非平稳?



#### 平稳性

- 严平稳
  - 如果对所有时刻t,任意整数k和任意k个正整数

的联合分布与

的联合分布相同,则序列 $\{r_i\}$ 是

严平 
$$(t_1, t_2, \ldots, t_k), (r_{t_1}, r_{t_2}, \ldots, r_{t_k})$$

弱平稳

- $(r_{t_1+t},r_{t_2+t},\ldots\ldots r_{t_k+t})$
- 若时间序列 $\{r_t\}$ 满足两个条件: 即序列的均值、 $r_t$ 与 $r_{t-t}$ 的协方差不随时间而改变,则序列是<mark>弱平稳</mark>的
- 现实中所处理的时序通常是弱平  $E(r_t) = \mu_t$   $Cov(r_t, r_{t-l}) = \gamma_l$



#### 差分

- 由时序  $\{r_t\}$  在 t 时刻的值  $r_t$  与 t-1 时刻的值  $r_{t-1}$  的差  $d_t$ 构造的新序列 $\{d_t\}$ 为 一阶差分。对一阶差分序列 $\{d_t\}$ 进行相同的差分运算,可以得到二阶差分…
- 通常非平稳序列可以经过 6 阶差分得到弱平稳或近似弱平稳的时间序列
- d阶差分表示为I(d)
- · ARIMA(p, d, q)模型:p阶自回归滞后项,q阶滑动平均滞后项,d阶差分

Differenced variable:  $\Delta y_t = y_t - y_{t-1}$ 



#### 相关系数

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

- 反映向量空间中两个向量之间相关关系密切程度的统计指标
  - 两个向量平行且同向,系数为1;平行且反向,系数为-1
  - 两个向量垂直,不相关,系数为0
  - 向量间夹角越小,相关系数越接近1,相关性越高



#### 自相关函数(Autocorrelation Function, ACF)

• 描述随机信号{r;}在任意两个不同时刻t1,t2,的取值之间的相关程度

$$ACF(k) = \rho_k = \frac{Cov(y_t, y_{t-k})}{Var(y_t)}$$



#### 偏自相关函数(Partial Autocorrelation Function, PACF)

· 阶次为s的偏自相关:去除信号中所有滞后期小于s的信号影响后,当前信号

与滞后s阶的信号之间的关系



$$\rho_k^* = \text{Corr}[y_t - E^*(y_t | y_{t-1}, ..., y_{t-k+1}), y_{t-k})]$$

#### ACF PACF 性质

|      | AR(p) | MA(q) | ARMA(p, q) |
|------|-------|-------|------------|
| ACF  | 趋势衰减  | q阶后截尾 | 趋势衰减       |
| PACF | p阶后截尾 | 趋势衰减  | 趋势衰减       |

#### **AR(1)**

ACF of AR(1) with coefficient 0.8



PACF of AR(1) with coefficient of 0.8



ACF of AR(1) with coefficient -0.8



PACF of AR(1) with coefficient of -0.8





#### **MA(1)**

ACF of MA(1) with coefficient of 0.7



ACF of MA(1) with coefficient of -0.7



PACF of MA(1) with coefficient of 0.7



PACF of MA(1) with coefficient of -0.7





#### **ARMA(1,1)**

ACF of ARMA(1,1) with coeff 0.8 and 0.7



PACF of ARMA(1,1) with coeff 0.8 and 0.7



ACF of ARMA(1,1) with coeff -0.8 and -0.7

PACF of ARMA(1,1) with coeff -0.8 and -0.7







#### ARIMA模型参数选择

- 1. 检查序列是否平稳
  - 若不平稳,使用差分平稳化序列,确定差分阶数d
- 2. ARMA定阶
  - 通过PACF确定AR的阶数p
  - 通过ACF确定MA的阶数q
- 3. 根据参数p, d, q建立模型ARIMA(p, d, q)



### 目录

- Python的日期和时间处理及操作
- Pandas的时间序列数据处理及操作
- 时间数据重采样
- 时间序列数据统计—滑动窗口
- 时序模型: ARIMA
- 实战案例:股票数据分析



### 实战案例:股票数据分析

- pandas\_datareader安装 pip install pandas\_datareader
- 通过pandas\_datareader可以获取yahoo财经, Google财经, world bank 等数据接口提供的股票数据

#### 步骤

- 1. 准备数据
- 2. 可视化数据,审查数据
- 3. 处理数据 (是否需要平稳处理)
- 4. 根据ACF, PACF定阶
- 5. 拟合ARIMA模型
- 6. 预测

示例代码: lect05\_proj



### 参考

Pandas数据重采样
 <a href="http://pandas.pydata.org/pandas-docs/stable/api.html#resampling">http://pandas.pydata.org/pandas-docs/stable/api.html#resampling</a>

Pandas滑动窗口函数
 http://pandas.pydata.org/pandas docs/stable/computation.html#window-functions

ARIMA模型详细讲解
 <a href="https://people.duke.edu/~rnau/411arim.htm">https://people.duke.edu/~rnau/411arim.htm</a>

• ARIMA模型 https://www.otexts.org/fpp/8

pandas-reader模块
 <a href="https://pandas-datareader.readthedocs.io/en/latest/">https://pandas-datareader.readthedocs.io/en/latest/</a>



## 参考

• Python时间序列预测案例

http://it.sohu.com/20160320/n441240758.shtml

## 疑问

□问题答疑: <a href="http://www.xxwenda.com/">http://www.xxwenda.com/</a>

■可邀请老师或者其他人回答问题

小象问答 @Robin\_TY



### 联系我们

### 小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop



