

San Francisco | April 16 – 20 | Moscone Center

SESSION ID: HTA-R14





Principal Consultant CrowdStrike Services @ixe la



#### Overview



- Exploiting DNS tunneling in laaS
- Exploiting VPC / VNet service endpoints
- Practical defenses
- Amazon Web Services, Microsoft Azure, and Google Cloud Platform

#### Motivation



- DNS Tunneling
  - "Hackers have recently used this technique in cases involving the theft of millions of accounts" – Ed Skoudis, RSAC 2012
  - Hasn't gone away
- VPC/Vnet Service endpoints
  - New "side channels" that didn't exist in legacy data centers
- By understanding the risk you can drive change for your organization

#### Important notes



- These techniques might not be attackers' first choice if your cloud hosts have unrestricted access to the Internet
  - Prioritize accordingly
  - Specific defensive investments would best be reserved for environments with high security needs
  - Otherwise, address these techniques with more general security controls
- These are <u>not</u> bugs in cloud providers' services
  - They are published specifications
  - They can be misused

#### This talk in one slide



- You already know unrestricted outbound Internet access is high risk
  - DNS tunneling and service endpoints are part of of that risk family
- DNS tunneling still works in cloud environments
  - Less obvious that it is possible in your designs (vs legacy data centers)
  - Less obvious that it is happening from operational analysis
- Growing trend of "Cloud services as cover" for malicious activity
  - Service endpoints are a safer way to access them
  - Service endpoints can still be abused
- These are <u>not</u> bugs in cloud providers' services
  - They are published specifications
  - They can be misused

## Avoiding unexpected outcomes



#### **TECHNOLOGY RESPONSIBILITIES IN THE CLOUD**







#### **DNS TUNNELING – RAPID REVIEW**

## DNS Tunneling – Rapid Review



- Using DNS to evade firewalls and detection
- Encodes data in DNS packets
- Usually quite low performance vs network
- MITRE ATT&CK mapping
  - T1043 "Commonly Used Port" traffic blends in
  - T1071 "Standard Application Layer Protocol" Command & Control (C2)
  - T1048 "Exfiltration Over Alternative Protocol"
  - PRE-T1097 "Data hiding" exfiltration and C2



## DNS Tunneling – Rapid Review



- For data transmission: queries w/ max record size 250 characters
- = 6 Primary Account Numbers + CVV2 & Expiration dates (base64\*)
  - Mzc4MjgyMjQ2MzEwMDA1LjAxMTkuMTlzNAo-.NjAxMTAwMDk5MDEz OTQyNC4wMjIwLjEyMwo-.MzU2NjAwMjAyMDM2MDUwNSAwMzIxLjQ 1Ngo-.NDAxMjg4ODg4ODg4MTg4MS4wNDIyLjc4OQo-.NTEwNTEwNT EwNTEwNTEwMC4wNTIzLjAxMjMK .MzA1NjkzMDkwMjU5MDQuMDExOS40NTYK.xfI.ml
  - DNS should be case insensitive but case is often preserved
- For data reception: TXT records typically much larger data payload

# DNS Tunneling in public clouds





# DNS resolution by provider



| AWS                                                                             | Azure                                     | GCP                                         |
|---------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|
| DNS Resolver IP: 169.254.169.253, "VPC+2"                                       | 168.63.129.16<br>(internal API server IP) | 169.254.169.254<br>(the metadata server IP) |
| Can disable on per VPC basis; req'd for certain features, <i>eg</i> PrivateLink | Cannot disable                            | Cannot disable                              |
| Cannot block with VPC Security Groups                                           | Cannot block with Network Security Groups | Cannot block with GCP<br>Firewall Rules     |
| Invisible in VPC Flow logs                                                      | -                                         | -                                           |
| Max 1024 q/sec per host                                                         | No published rate limit                   | No published rate limit                     |

## Most critical difference vs legacy data centers



No user-accessible DNS query logs



# DEMO SETUP #1 DNS TUNNELING IN CLOUD IAAS

## Hypothetical victim



- CatSwap.io the leading startup for trading cats
- Databases
  - Celebrity cat demographic info (PII)
  - Credentials & payment info
- Files
  - Private cat photos
- API keys

#### Attack #1 overview



- Blind code injection to vulnerable Struts web server (CVE-2017-5638)
- Downloads dnscat2 over VPC DNS server
- dnscat2 creates tunnel for C2 and exfiltration
- Runs a few reconnaissance commands
- Dump data from cat user database
- Exfiltrate through DNS tunnel

# Attack #1 - CatSwap.io web server & DNS







and the same

### Attack #1 demo

#### Recap – Demo #1 VPC DNS



- Security groups did not stop the traffic that is normal
- AWS VPC flow logs did not register anything that is normal
- Attack utilities were downloaded over DNS by the attackers
  - AWS
  - Azure
  - GCP
- Simulated demographic info was exfiltrated without a trace at the cloud infrastructure level.



# DEMO SETUP #2 – DNS TUNNELING IN CLOUD-BASED CONTAINERS

# Attack #2 - CatSwap.io container design







### Attack #2 demo

#### Recap – Demo #2: DNS Tunnels in Containers



- Sensitive data was taken through the same channels as in Demo #1
- Not substantially different from instances/virtual machines model
- Containers can make it easier to deny attackers to the commands they need to set up subsequent stages of attack

## Applying – containers (and hosts)



- Reduce attackers' ability to "live off the land" from stock images
  - Remove/block DNS utilities like: host, dig, nslookup, getent
  - Remove/block cloud utilities: AWS CLI/Boto, Google Cloud SDK, Azure CLI/SDK
- Use read-only disks, or minimize local writable storage (noexec)
- Recycle containers before attackers can gain a foothold
- Many endpoint security & container security options

#### Applying what you have learned - DNS



- Focus on limiting full egress first
- In AWS, Azure and GCP:
  - Block & detect DNS traffic to unauthorized (not built-in) servers if possible
  - Host-based query logging is an option;
  - Advanced Endpoint Protection, WAFs, and other host controls can compensate
  - Application performance monitoring may be able to aid detection
- In AWS:
  - Consider building sensitive VPCs without EnableDnsSupport
  - Be aware of the many implications of doing this
- Configure your environment to use a DNS firewall or DNS filtering services



# EXFILTRATION AND C2 THROUGH SERVICE ENDPOINTS

## **Exploiting Service Endpoints**



Many interesting services in laaS beyond cloud servers



- Hosts access these laaS APIs via public IP space
  - Not just a simple network range
  - Not just a simple network range
  - Uncontrolled access to public IP space is how data is stolen

O Google Cloud Platform
Private Google Access

Microsoft Azure
Virtual Network Service Endpoints

Private service endpoints avoid the need to expose outbound access







## **Exploiting Service Endpoints**



- Attackers can use service endpoints in your environment...
   to access services in their environment
  - AWS VPC endpoint policies can be used narrow use of service endpoints
- Mostly, policy capabilities prevent attackers from accessing victim resources – not vice versa



# Service endpoints types & exfiltration options



| AWS                                |                                                                  | Azure                 |  | GCP                           |
|------------------------------------|------------------------------------------------------------------|-----------------------|--|-------------------------------|
| Interface                          | Gateway                                                          |                       |  |                               |
| EC2 & ELB                          | DynamoDB△                                                        | Blob Storage          |  | Cloud Storage                 |
| Key Management Svc                 | S3 <sup>a</sup>                                                  | SQL Database          |  | Pub/Sub                       |
| Service Catalog                    |                                                                  | SQL Data<br>Warehouse |  | Cloud Spanner &<br>BigQuery   |
| System Manager (SSM & ec2messages) | — support policies to restrict accounts & resources used through |                       |  | Bigtable & Cloud<br>Datastore |
| Kinesis Data Streams               | the endpoint                                                     |                       |  | []                            |



# DEMO SETUP #3 – EXFILTRATION THROUGH STORAGE SERVICE ENDPOINT

#### Attack #3 overview



- CatSwap.io uses an image processing pool to handle cat photos
- Cluster has no access to the Internet except for storage service (S3)
   via service endpoint
- Attacker injects malicious image vulnerable ImageMagick runs the implant
- C2 and exfiltration through objects in attacker's storage
- Attacker retrieves targeted assets from victim storage and uploads to attacker storage

# Attack #3 - CatSwap.io image cluster design







### Attack #3 demo

### Recap – Demo #3: Storage Service Endpoint



- Security groups did not stop the traffic as expected
- AWS: Private cat photos were taken from the victim's S3 bucket and uploaded to the attacker's S3 bucket
- Once the AWS VPC Endpoint Policy was modified, the attack was thwarted as the attacker's S3 bucket could not be reached

## Applying – Service Endpoints



- Be aware of how Service Endpoints can be used to reach hostile resources
- In AWS, configure policies so that only intended resources, not attacker resources, can be accessed
  - Currently available for: S3, DynamoDB
- In AWS, Azure & GCP, consider isolating service endpoints from sensitive hosts by subnet and filtering traffic by proxy
- As always, watch for new feature announcements from the cloud providers

### Key Takeaways



- Simply blocking outbound traffic with network security groups generally does not prevent outbound DNS traffic
  - Hosts with airtight egress rules are not isolated from the Internet
- Hosts which can communicate with trusted cloud-based storage and databases can potentially be made to communicate with malicious cloud-based storage and databases



#### What to do tomorrow



- Harden your critical cloud-based networks
  - Check your most critical hosts/subnets for unrestricted outbound access
  - Don't allow it
  - Don't allow access to unauthorized DNS servers.
- Harden your hosts & containers
  - Potentially block/remove DNS and Cloud API utilities from them
  - Keep instance/container lifetimes short; use read-only disks
  - Many advanced endpoint and container security solutions available
- Log and analyze DNS queries
  - Ask your cloud provider what their plans are for giving you logs
- View rules that allow traffic to cloud service APIs as liabilities
  - Tighten VPC endpoints with endpoint policies where possible

#### Final thoughts



- Each individual "cloud shadow" will shift & drift along with enhancements from laaS providers
- Just as some changes will help defenders, other changes may be exploited by attackers
- Attackers are dissolving into the background using the same cloud providers and services as their victims



#### **RESOURCES**

#### Resources



- Struts vulnerability exploitation https://github.com/tahmed11/strutsy
- Vulnerable application docker images
  - https://hub.docker.com/r/bharghav9/apachestrutscve-vuln-2017-5638/
  - https://github.com/craighurley/docker-imagetragick
- dnscat2 <a href="https://github.com/iagox86/dnscat2">https://github.com/iagox86/dnscat2</a>

#### References & Further Reading



- Ed Skoudis on DNS tunneling https://blogs.sans.org/pen-testing/files/2012/03/RSA-2012-EXP-108-Skoudis-Ullrich.pdf
- Greg Farnham, Detecting DNS tunneling <a href="https://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152">https://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152</a>
- DNSPerf https://www.nominum.com/measurement-tools/
- DNS firewalls in Azure: https://azure.microsoft.com/en-us/blog/dns-security-appliances-in-azure/
- DNS analytics in Azure: <a href="https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-dns">https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-dns</a>
- Using S3 for C2: <a href="https://rhinosecuritylabs.com/aws/hiding-cloudcobalt-strike-beacon-c2-using-amazon-apis/">https://rhinosecuritylabs.com/aws/hiding-cloudcobalt-strike-beacon-c2-using-amazon-apis/</a>
- DNS tunneling in AWS with lodine: <a href="https://dejandayoff.com/using-dns-to-break-out-of-isolated-networks-in-a-aws-cloud-environment/">https://dejandayoff.com/using-dns-to-break-out-of-isolated-networks-in-a-aws-cloud-environment/</a>
- AWS Hybrid Cloud DNS white paper: https://d1.awsstatic.com/whitepapers/hybrid-cloud-dns-options-for-vpc.pdf
- Thanks: Tim S, Julia, Darren, Suresh:)