Estimating Dynamic Models Without Solving Value Functions

Gabriel Petrini

October 1st, 2020

Contents

References

(hotzMiller1993)

Dynamic discrete choice models are complicated to estimate because of the future value terms. hotzMiller1993 show:

- Differences in conditional value functions $v_j v_{j'}$ can be mapped into conditional choice probabilities (p_j 's)
- We can pull the p_j 's from the data in a first stage
- Empirical example: optimal stopping with respect to couples' fertility

Difference in v's and logit errors

Consider an individual who faces two choices where the errors are T1EV. The probability of choice 1 is:

$$p_1 = \frac{\exp(v_1)}{\exp(v_0) + \exp(v_1)}$$

The ratio of p_1/p_0 is then:

$$\frac{p_1}{p_0} = \frac{\exp(v_1)}{\exp(v_0)} = \exp(v_1 - v_0)$$

implying that:

$$\ln(p_1/p_0) = v_1 - v_0$$

General structure

The inversion theorem of Hotz and Miller says that there exists a mapping, ψ , from the conditional choice probabilities, the p's, into the differences in the conditional valuation functions, $v_i - v_k$:

$$\begin{split} V_{t+1} &= v_{0t+1} + \mathbb{E} \max\{\epsilon_{0t+1}, v_{1t+1} + \epsilon_{1t+1} - v_{0t+1}, ..., \\ & v_{Jt+1} + \epsilon_{Jt+1} - v_{0t+1}\} \\ V_{t+1} &= v_{0t+1} + \mathbb{E} \max\{\epsilon_{0t+1}, \psi_0^1(p_{t+1}) + \epsilon_{1t+1}, ..., \psi_0^J(p_{t+1}) + \epsilon_{Jt+1}\} \end{split}$$

The p's can be taken from the data. However:

- 1. We need the mapping, ψ ,
- 2. We need to be able to calculate the expectations of the ϵ 's
- 3. We need to do something with the v_0 's