Table of Symbols

575

577

Symbol	Meaning
$a, b, c, \alpha, \beta, \gamma$	
x, y, z	Vectors are bold lowercase
$oldsymbol{A}, oldsymbol{B}, oldsymbol{C}$	Matrices are bold uppercase
$oldsymbol{x}^ op, oldsymbol{A}^ op$	Transpose of a vector or matrix
A^{-1}	Inverse of a matrix
$\langle oldsymbol{x}, oldsymbol{y} angle$	Inner product of x and y
$oldsymbol{x}^{ op}oldsymbol{y}$	Dot product of x and y
[x,y,z]	Matrix of column vectors stacked horizontally
$egin{aligned} (oldsymbol{x},oldsymbol{y},oldsymbol{z}) \ \mathbb{R}^n \end{aligned}$	(Ordered) tuple
	n-dimensional vector space of real numbers
a := b	a is defined as b
a =: b	b is defined as a
$a \propto b$	a is proportional to b, i.e., $a = \text{const.} \cdot b$
$g \circ f$	Function composition; " g after f "
∇	Gradient
$egin{array}{c} \mathfrak{L} \end{array}$	Lagrangian
\dim	Negative log-likelihood
	Dimensionality of vector space Rank of matrix A
$\operatorname{rk}(\boldsymbol{A})$	Image of linear mapping Φ
$\operatorname{Im}(\Phi) \ \ker(\Phi)$	Kernel (null space) of a linear mapping Φ
$\operatorname{span}[\boldsymbol{b}_1]$	Span (generating set) of b_1
$\det({m A})$	determinant of A
$tr(\boldsymbol{A})$	trace of A
·	Absolute value
	Norm; Euclidean unless specified
\mathcal{A}, \mathcal{C}	Sets
$a\in\mathcal{A}$	a is an element of the set \mathcal{A}
${\cal B}$	Basis set
Ø	Empty set
λ	Eigenvalue
E_{λ}	Eigenspace of eigenvalue λ
$oldsymbol{e}_i$	Standard/canonical vector (where i is the component that is 1)
D	Number of dimensions; indexed by $d = 1, \dots, D$
N	Number of data points; indexed by $n = 1,, N$
$oldsymbol{ heta}$	Parameter vector
$oldsymbol{I}_m$	identity matrix of size $m \times m$
$0_{m,n}$	matrix of zeros of size $m \times n$
$1_{m,n}$	matrix of ones of size $m \times n$
$\binom{n}{k}$	Binomial coefficient, n choose k
$ extbf{V}[\cdot]$	Variance of argument
${ m I\!E}[\cdot]$	Expectation of argument
$\mathbb{C}^{\mathrm{Cov}[\cdot]}_{\mathcal{N}(oldsymbol{\mu}, \Sigma)}$ Peter D	Covariance of the argument beisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press Gaussian distribution with mean μ and covariance Σ
$\operatorname{Ber}(\mu)$	Bernoulli distribution with parameter μ
$\mathrm{Bin}(N,\mu)$	Binomial distribution with parameters μ, N
$x \sim p(\theta)$	Random variable x is distributed according to $p(\theta)$

578

Table of Acronyms

	Acronym	Meaning	Comments
	\iff	if and only if	
	\Longrightarrow	implies	
	a := f(x)	a is defined as $f(x)$	
579	$ \frac{\partial f}{\partial x} \\ \frac{\mathrm{d}f}{\mathrm{d}x} $	Partial derivative of f with respect to x	
	$\frac{\mathrm{d}\hat{f}}{\mathrm{d}x}$	Total derivative of f with respect to x	
	MLE	Maximum Likelihood Estimation	
	PCA	Principal Component Analysis	
	PPCA	Probabilistic Principal Component Analysis	
	SVM	Support Vector Machines	