MH4311 Cryptography

Revision

The final exam covers

- Lecture 1 to 19
 - All the contents except those marked with '*'
- Tutorial 1 to 12
 - All the tutorial questions except those optional questions
- Assignment 3 and 4

- Classical ciphers
- Symmetric key encryption
- Hash function and Message Authentication Code
- Public key encryption
- Digital signature
- Key generation, establishment and management
- Elliptic curve public key cryptosystem
- Introduction to other cryptographic topics

1. Classical ciphers

- 1.1 Caesar cipher
- 1.2 Substitution cipher, frequency cryptanalysis
- 1.3 Vigenere cipher
- 1.4 Playfair cipher
- 1.5 Transposition (permutation) cipher

2. Symmetric key encryption

- 2.1 One time pad, Shannon's information theory
- 2.2 Block ciphers
 - 2.2.1 Data Encryption Standard (DES)
 - 2.2.2 Advanced Encryption Standard (AES)
 - 2.2.3 Modes of operation
 - 2.2.4 Attacks on block ciphers
- 2.3 Stream ciphers

One time pad & Information theory

- One-Time Pad
 - Perfect secrecy
- Information theory
 - Entropy
 - Entropy & redundancy of a language
 - Unicity distance

Block Cipher Introduction

- Information-theoretical security & computational security
- Practical symmetric key ciphers
 - Computationally secure
 - Kerckhoffs' principle
 - Resist known-plaintext attack & ...
- Block Cipher
 - Iterated structure
 - Round function & round key
 - Key schedule

DES

- DES
 - 56-bit key, 64-bit block, 16 rounds
 - Feistel network
 - Always invertible
 - The same network for encryption and decryption
 - The order of the round keys are reversed
- Double DES, Triple DES
 - Their security
 - Should use three-key-triple-DES

AES

- Mathematical preliminaries
 - $-GF(2^8)$
 - You do not need to know the polynomial being used in GF(2⁸) in AES
 - You need to know how to compute the addition, multiplication, and multiplicative inverse in this finite field
 - Polynomial ring with coefficients in GF(2⁸)
 - You need to know how to compute the addition and multiplication in this polynomial ring

AES

AES

- 128-bit key, 10 rounds, 11 round keys
- 192-bit key, 12 rounds, 13 round keys
- 256-bit key, 14 rounds, 15 round keys
- Encryption
 - Substitution-Permutation Network
 - Round function
 - You should know the four operations in each AES round

Modes of Operation

- Modes of operations
 - ECB: not strong
 - Parallel computation of the message blocks
 - CBC: for the same key, the IV needs to be different & unpredictable
 - Reasonably strong when the same IV is reused
 - the most commonly used
 - Parallel decryption
 - CFB: for the same key, the IVs must be different
 - OFB: for the same key, the IVs must be different
 - CTR: for the same key, the IVs must be different
 - Parallel computation is possible
- You need to know how each mode works

Modes of Operation

- Ciphertext stealing for encrypting the partial block
 - -ECB
 - CBC
 - Partial block is not a problem for CFB, OFB &
 CTR
- Message padding for partial block for block cipher in OpenSSL

Attacks on Block Cipher

Meet-in-the-middle attack on double DES

- Attacks on block cipher
 - Solving algebraic equations
 - Statistical approach
 - *Differential cryptanalysis
 - *Linear cryptanalysis

•

Important for block cipher design: Sbox (confusion), diffusion

3. Hash function and Message Authentication Code

- 3.1 Birthday paradox, birthday attack
- 3.2 Cryptographic hash function
 - 3.2.1 Hash function structures
 - 3.2.2 Secure Hash Algorithm (SHA-1, SHA-2)
- 3.3 Message Authentication Code
 - 3.2.1 CBC-MAC & CMAC
 - 3.2.2 HMAC

Birthday Attack

- Birthday problem
 - The probability that at least two elements of n random elements are the same
- Birthday attack
 - Find a collision of a function f
 - Function f is non-injective
 - Methods:
 - Direct birthday attack
 - computational & memory complexity $1.17\sqrt{M}$
 - Rho method
 - Reduce the memory complexity

Hash Function

- Cryptographic hash function
 - Aim: Each message digest represents only one message (computationally)
 - Three security requirements
 - Preimage resistance
 - Second-preimage resistance
 - Collision resistance
- Structure
 - Iterated Structure
 - Merkle-Damgard
 - Compression function structure
 - MMO
 - Davies-Meyer
- Hash function standards
 - SHA-1 (insecure)
 - SHA-2
 - SHA-224,SHA-256, SHA-384, SHA-512
 - SHA 3
 - You do not need to know the details of SHA-1 and SHA-2, but you need to know the overall structure, the compression function structure, message block size, message digest size of SHA-1 and SHA-2.

Message Authentication Code

- Message Authentication Code
 - Compress a secret key and a message into an fixedlength authentication tag
 - MAC based on block cipher
 - CBC-MAC (insecure)
 - CMAC (NIST recommendation)
 - MAC based on hash function
 - HMAC (NIST standard)
- You need to know the specifications of the above three MACs.
- You need to know how to attack the CBC-MAC

- 4. Public key encryption
 - 4.1 RSA encryption
 - 4.2 ElGamal encryption

RSA Encryption

- Public key encryption
 - Allows two parties to communicate secretly without sharing a secret key before communication
- RSA
 - Specification
 - Implementation
 - Primality testing: Fermat's primality test, Miller-Rabin primality test
 - Extended Euclidean algorithm
 - Fast modular exponentiation
 - Security
 - Integer factorization
 - Dixon's Random Squares algorithm
 - Other attacks
 - Short message
 - Shared public key
 - Small public key
 - Small private key

OAEP

- "Textbook" RSA encryption
 - Deterministic & public encryption algorithm
 - Do not use it in practice
- Padding is needed
 - Use the strong OAEP
 - Introduce the randomness into the encryption process

RSA Blinding

- RSA decryption vulnerable to timing attack
- RSA blinding is needed in applications
 - A one-time secret number is used in decryption

ElGamal Encryption

- Specification
- Implementation
 - Find a generator of a multiplicative cyclic group
- Security
 - Discrete logarithm algorithms
 - Shank's baby-step giant-step algorithm
 - Pollard's Rho algorithm
 - Pohlig-Hellig algorithm
 - -p-1 should have a large prime factor
 - Index calculus algorithm
 - Large *p*: 2048-bit or 3072-bit
 - Do not re-use the per-message secret k

- 5. Digital Signature
 - 5.1 RSA signature scheme
 - 5.2 ElGamal signature scheme
 - 5.3 Digital Signature Standard (DSS)
 - 5.3.1 Digital Signature Algorithm (DSA)
 - 5.3.2 RSA Digital Signature Algorithm
 - **5.3.3 ECDSA**

- Digital Signature
 - Authentication
 - Everyone can verify; non-repudiation
 - Schemes
 - RSA signature scheme
 - padding is needed for message digest
 - ElGamal signature scheme
 - Digital Signature Standards
 - Digital Signature Algorithm (DSA)
 - RSA digital signature algorithm
 - ECDSA (ECDSA will be given later)
- In ElGamal signature and DSA, one-time secret number is needed
- Application
 - Authenticate digital documents (public key, e-passport ...)
 - Signing contract ...
- You need to know the details of the above digital signature algorithms
- You need to know how to launch the man-in-the middle attack when the public key is not authenticated

6. Key establishment and management

- 6.1 Key generation
- 6.2 Key establishment with symmetric key cryptography
- 6.3 Key establishment with public key cryptography
 - 6.3.1 Public key infrastructure (PKI)
 - 6.3.2 Applications: SSL/TLS
- 6.4 Secret Sharing
 - 6.4.1 Shamir's Threshold Scheme
 - 6.4.2 Threshold public key cryptosystem

Key generation

- Good entropy source is needed
 - Avoid using the function "random()" to generate key
- Try to use the random number generated by the operating system
- Key establishment
 - Key establishment using symmetric key cryptography
 - Kerberos
 - Bellare-Rogaway key establishment scheme
 - Key establishment using public key cryptography
 - Public key encryption
 - Diffie-Hellman key exchange

- SSH
- TLS/SSL
 - PKI, public key certificate: authenticate public keys
 - You need to know how to read a ciphersuite
 - You need to know how DHE (Ephemeral Diffie-Hellman key exchange) works in TLS
- You need to know how to use RSA or DHE for key exchange in TLS/SSL

- Secret sharing
 - -(n, n) secret sharing
 - Shamir's secret sharing scheme
 - Threshold public key cryptosystem
 - (n, n) threshold public key cryptosystem
 - (*t*, *n*) threshold public key cryptosystem
 - (t, n) threshold ElGamal encryption scheme based on Shamir's secret sharing scheme

7. Elliptic Curve Public Key Cryptosystem

- 7.1 Elliptic curve over a finite field
- 7.2 Elliptic curve Diffie-Hellman key exchange (ECDH)
- 7.3 Elliptic curve digital signature algorithm (ECDSA)

You need to know how to compute the addition in the Elliptic curve group over a finite field.

You need to know the specifications of ECDH and ECDSA.

8. Introduction to other topics

- 8.1 Post-Quantum cryptography
- 8.2 Side-channel attacks

Consultation before the exam:

```
23 Nov, Friday, 2pm to 5pm
30 Nov, Friday, 2pm to 5pm
3 Dec, Monday, 2pm to 5pm
4 Dec, Tuesday, 2pm to 5pm
```