

Atividade 02

Métodos Numéricos para resolução de Sistemas de Equações Diferenciais com condições iniciais.

> Licenciatura em Engenharia Informática Análise Matemática II

Alunos:

Francisco Ruivo - 2021142022

Daniel Rodrigues - 2021142013

2021 / 2022

Índice

Conteúdo

1. Introdução	3					
1.1. Enunciado da atividade proposta e interpretação do mesmo	3					
1.2 Definição de PVI para sistemas de ED	4					
2. Métodos Numéricos para resolução de SED						
2.0.1 Cálculo do Passo	5					
2.1 Método de Euler Melhorado ou Modificado	6					
2.1.1 Fórmulas	6					
2.1.2 Algoritmo/Função	8					
2.2 Método de Runge-Kutta de Ordem 2	9					
2.2.1 Fórmulas	9					
2.2.2 Algoritmo/Função	13					
2.3 Método de Runge-Kutta de Ordem 4	14					
2.3.1 Fórmulas	14					
2.3.2 Algoritmo/Função	20					
3. Exercícios de aplicação	21					
3.1 Pêndulo	21					
3.2 Modelo Vibratório Mecânico	22					
3.3 Mola Massa Sem Amortecimento	23					
3.4 Circuitos Elétricos	24					
3.5 Mola Massa Com Amortecimento	25					
4.Conclusão	26					
5. Bibliografia	27					
6. Autoavaliação e heteroavaliação	28					

1. Introdução

1.1. Enunciado da atividade proposta e interpretação do mesmo

No seguimento das aulas teórico-prática da 2ª quinzena de abril » PVI_SistemaEquaçõesDiferenciais - Problema do Pêndulo, implemente em Matlab:

- Método de Euler
- Método de Euler Melhorado
- Métodos de Runge-Kutta de ordem 2 (RK2) e de ordem 4 (RK4)

para resolver sistemas de equações diferenciais com condições iniciais. Sempre que possível, obtenha a solução exata do problema de aplicação!

Sugestões

- a) Útilize os documentos das aulas para desenvolver a atividade, assim como, a redefinição e adaptação das funções que implementou na Actividade01Trabalho.
 b) Utilize o exemplo/exercício sobre o pêndulo e outros, tais como: sistemas mecânicos mola-massa com amortecimento e sem amortecimento, circuitos elétricos modelados por ED de ordem 2 » para testar as funções implementadas.
- c) Faça uma pesquisa sobre a aplicação de equações diferenciais lineares de 2ª ordem a outros problemas em áreas da engenharia, biologia ou economia. Resolva esses problemas de aplicação recorrendo à aplicação a criar nesta atividade.
- d) O tipo de interface para esta atividade é livre, no entanto, é de considerar a utilização de uma App semelhante às de outras atividades com a inclusão de um Menu Pop-up para escolha do problema de aplicação.
- e) Apresente um relatório da atividade

Sendo este trabalho quase como uma continuação do primeiro, o objetivo é adaptar as funções feitas anteriormente em MatLab para serem capazes de resolver sistemas de equações diferenciais. Para além disso, temos também que adaptar a GUI de modo a sermos capazes de escolher o problema de aplicação em questão. Por último temos também o dever de verificar se é possível obter solução exata para os problemas escolhidos.

1.2 Definição de PVI para sistemas de ED

Um sistema de equações diferenciais é um sistema constituído por duas ou mais equações envolvendo derivadas (não necessariamente de primeira ordem) de duas ou mais variáveis dependentes relativamente a uma só variável independente Problema de valor inicial ou problema de Cauchy é uma equação diferencial que se faz acompanhar do valor da função num determinado ponto. Isto é chamado de valor inicial. Para o caso dos sistemas, um PVI é na verdade um sistema de ED que se faz acompanhar do valor das funções num determinado ponto, valor a esse que chamamos de valor inicial. No nosso programa apenas consta a resolução de PVI com no máximo duas equações, obtidas maior parte das vezes através duma equação diferencial de segunda ordem. Assim, podemos definir a equação geral de um PVI para sistemas de ED como

$$\begin{cases} u' = f(t, u, v) \\ v' = g(t, u, v) \\ t \in [a, b] \\ u(a) = u_0 \end{cases}, a, b, u_0, v_0 \in \mathbb{R} e \alpha \in \mathbb{N} \\ v(a) = v_0 \\ v = \alpha \end{cases}$$

onde:

- t → intervalo de iteração;
- n → número de iterações (no caso de uso de métodos numéricos para aproximação da solução);
- u₀ → valor inicial para a equação u';
- $v_0 \rightarrow \text{valor inicial para a equação } v'$;

2. Métodos Numéricos para resolução de SED

2.0.1 Cálculo do Passo

O valor do passo, **h**, será usado por todos os Métodos Numéricos implementados. Assim, a fim de evitar repetição desnecessária, decidimos apresentar aqui a sua definição e fórmula de cálculo.

Este valor é o tamanho de cada subintervalos no intervalo original [a, b], e pode ser calculado da seguinte forma:

$$h = \frac{b - a}{n}$$

Onde:

- $h \rightarrow \text{Tamanho de cada subintervalo (passo)};$
- $b \rightarrow \text{Limite esquerdo do intervalo}$;
- $a \rightarrow \text{Limite direito do intervalo}$;
- n → Número de subintervalos;

2.1 Método de Euler Melhorado ou Modificado

O método de Euler melhorado é em tudo semelhante ao método de Euler tradicional, a única diferença é que este método utiliza uma média das inclinações em cada ponto para cada iteração, ou seja, tendo um x0 e um x1 este método calcula a inclinação em x0 a inclinação em x1 e consegue assim um resultado mais aproximado.

2.1.1 Fórmulas

Sugestão: Fórmula do método de Euler Melhorado

$$\begin{split} y_{i+1} &= y_i + h f(t_i, y_i) \\ y_{i+1} &= y_i + \frac{h}{2} \Big(f(t_i, y_i) + f(t_{i+1}, y_{i+1}) \Big), \ i = 0, 1, ..., n-1 \end{split}$$

onde:

- $y_{i+1} \rightarrow \text{Pr\'oximo valor aproximado da solu\'ção do problema original (na abscissa <math>t_{i+1}$);
- ullet $y_i
 ightarrow Valor aproximado da solução do problema original na abscissa atual;$
- $t_i \rightarrow \text{Valor da abscissa atual};$
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $f(t_i, y_i) \rightarrow \text{Valor de f no ponto } (t_i, y_i)$.

Fórmula Geral modificada para um Sistema de Equações

$$u_{i+1} = u_i + h * u_k$$

$$v_{i+1} = v_i + h * v_k$$

- $u_{i+1} \rightarrow \text{Aproximação da iésima iteração do método de Euler Modificado;}$
- v_{i+1} → Aproximação da iésima iteração do método de Euler Modificado;
- u_i → Ordenada atual da função aproximada y(t);
- v_i → Ordenada atual da função aproximada y'(t);
- h →Cálculo do passo;
- u_k → Cálculo da média das inclinações;
- v_k → Cálculo da média das inclinações.

Cálculo de u_k/v_k

$$u_k = \frac{1}{2} * (u_{k1} + u_{k2})$$

- u_k → Cálculo da média das inclinações;
- u_{k1} → Inclinação do início do intervalo;
- u_{k2} → Inclinação do fim do intervalo.

Cálculo de u_{k1} / v_{k1}

$$u_{k1} = \boldsymbol{f}(t_i, u_i, v_i)$$

- u_{k1} → Inclinação no início do intervalo;
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } \boldsymbol{f} \text{ no ponto } (t_i, u_i, v_i).$

2.1.2 Algoritmo/Função

- 1. Definir e calcular o passo h;
- 2. Criar um vetor u e um vetor \boldsymbol{v} para guardar as soluções e atribuir $u_1 = u_0$ e $v_1 = v_0$;
- 3. Atribuir os primeiros valores a \boldsymbol{u} e v .
- 4. Cálculo da da inclinação no início e no fim do intervalo;
- 5. Aproximação do método de Euler para a iésima iteração.

```
f, g - funções do 2.º membro das Equações Diferenciais
    [a, b] - extremos do intervalo da variável independente t
    n - número de subintervalos ou iterações do método
% u0, v0 - condições iniciais t=a -> u=u0 e v=v0
   [t,u,v] - vector das soluções aproximações e da discretização de t
% 28/05/2021 - Francisco Ruivo .: a2021142024@isec.pt
% 28/05/2021 - Daniel Rodrigues .: a2021142013@isec.pt
function [t,u,v] = NEulerMelhoradoSED(f,g,a,b,n,u0,v0)
                                 %Calculo do passo
%Alocação de memória
h = (b-a)/n;
t = a:h:b;
                                  %Alocação de memória
%Alocação de memória
%Alocação de memória
% O primeiro valor de u é sempre u0
v = zeros(1,n+1);
u(1) = u0;
v(1) = v0;
                                        % O primeiro valor de v é sempre v0
for i = 1:n
                                        % O número de iterações vai ser igual a n
   r 1 = 1:n % O numero de Iterações val ser igual u(i+1) = u(i)+h*f(t(i),u(i),v(i)); 
v(i+1) = v(i)+h*g(t(i),u(i),v(i)); 
u(i+1) = u(i)+(h/2)*(f(t(i),u(i),v(i))+f(t(i+1),u(i+1),v(i+1))); 
v(i+1) = v(i)+(h/2)*(g(t(i),u(i),v(i))+g(t(i+1),u(i+1),v(i+1)));
                                                                                                       % Aproximação do método de Euler melhorado para a iésima iteração
                                                                                                      % Aproximação do método de Euler melhorado para a iésima iteração
```

2.2 Método de Runge-Kutta de Ordem 2

É um método de passo simples que requer apenas derivadas de primeira ordem e pode fornecer aproximações precisas. Isto deve-se em muito à sua fórmula que considera para cada iteração dois valores denominados normalmente por "k" onde o primeiro é a inclinação no início do intervalo, o segundo é a inclinação no final do intervalo, assim fazendo uma "média" das inclinações obtém-se a inclinação para cada iteração, tornando este método eficiente.

2.2.1 Fórmulas

O Método de RK2 para resolver um PVI é dado pelas seguintes equações:

$$y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2), i = 0, 1, 2, ..., n - 1$$

onde:

- $y_{i+1} \rightarrow \text{Pr\'oximo valor aproximado da solu\'ção do problema original (na abscissa <math>t_{i+1}$);
- y_i → Valor aproximado da solução do problema original na abscissa atual;

Cálculo de k1 e k2:

$$k_2 = h * f(t_{i+1}, y_i + k_1)$$

$$k_1 = f(t_i, y_i)$$

- $k_1 \rightarrow$ Inclinação no início do intervalo
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $f(t_i, y_i) \rightarrow \text{Valor da equação em } t_i \text{ e } y_i;$
- ullet $k_2
 ightarrow ext{Inclinação}$ no fim do intervalo;
- $t_i \rightarrow \text{Valor da abscissa atual};$

- *h* →Tamanho de cada subintervalo (passo);
- y_i → Valor aproximado da solução do problema original na abscissa atual;

Fórmula Geral modificada para um Sistema de Equações

$$u_{i+1} = u_i + u_k$$

$$v_{i+1} = v_i + v_k$$

onde:

- u_{i+1} → Aproximação do método de RK2 para a ié sima iteração;
- v_{i+1} → Aproximação do método de RK2 para a iésima iteração;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y'(t);
- u_k → Cálculo da média das inclinações;
- v_k → Cálculo da média das inclinações.

Cálculo de uk:

$$u_k = \frac{(u_{k1} + u_{k2})}{2}$$

- u_k → Cálculo da média das inclinações;
- $u_{kl} \rightarrow$ Inclinação no início do intervalo;
- u_{k2} → Inclinação no fim do intervalo.

Cálculo de v_k:

$$v_k = \frac{(v_{k1} + v_{k2})}{2}$$

- v_k → Cálculo da média das inclinações;
- $v_{kl} \rightarrow$ Inclinação no início do intervalo;
- $v_{k2} \rightarrow$ Inclinação no fim do intervalo.

Cálculo de uk1:

$$u_{k1} = h * \boldsymbol{f}(t_i, u_i, v_i)$$

- $u_{k1} \rightarrow$ Inclinação no início do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i).$

Cálculo de vk1:

$$v_{k1} = h * \boldsymbol{g}(t_i, u_i, v_i)$$

- $v_{kl} \rightarrow$ Inclinação no início do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_i \rightarrow$ Abcissa atual do intervalo escolhido;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);

- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i).$

Cálculo de uk2:

$$u_{k2} = h * f(t_{i+1}, u_i + u_{k1}, v_i + v_{k1})$$

- $u_{k2} \rightarrow$ Inclinação no fim do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_{i+1} \rightarrow \text{Pr}$ Próxima abcissa do intervalo escolhido;
- $u_{kl} \rightarrow$ Inclinação no início do intervalo;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);
- $v_{kl} \rightarrow$ Inclinação no início do intervalo.

Cálculo de v_{k2}:

$$v_{k2} = h * \boldsymbol{g}(t_{i+1}, u_i + u_{k1}, v_i + v_{k1})$$

- $v_{k2} \rightarrow$ Inclinação no fim do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_{i+1} \rightarrow \text{Próxima abcissa do intervalo escolhido}$;
- $u_{kl} \rightarrow$ Inclinação no início do intervalo;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);
- $v_{kl} \rightarrow$ Inclinação no início do intervalo.

2.2.2 Algoritmo/Função

- 1. Definir e calcular o passo h;
- 2. Criar um vetor y para guardar a solução;
- 3. Atribuir o primeiro valor de y que é igual ao ao valor inicial do PVI;
- 4. Cálculo da inclinação no início do intervalo;
- 5. Cálculo da inclinação no final do intervalo;
- 6. Cálculo da média das inclinações;
- 7. Cálculo do valor aproximado para a iésima iteração.

```
function [t,u,v] = NRK2SED(f,g,a,b,n,u0,v0)
%NRK2SED Método de Runge-Kutta de prdem 2 para um Sistema de SED/PVI
%Alunos:
    15/05/2021 - Francisco Ruivo .: a2021142024@isec.pt
    15/05/2021 - Daniel Rodrigues .: a2021142013@isec.pt
h = (b-a)/n;
t = a:h:b;
u = zeros(1,n+1);
v = zeros(1,n+1);
u(1) = u0;
v(1) = v0;
for i = 1:n
    k1u = h*f(t(i),u(i),v(i));
    k1v = h*g(t(i),u(i),v(i));
    k2u = h*f(t(i+1),u(i)+k1u,v(i)+k1v);
    k2v = h*g(t(i+1),u(i)+k1u,v(i)+k1v);
    u(i+1) = u(i)+(k1u+k2u)/2;
    v(i+1) = v(i)+(k1v+k2v)/2;
end
end
```

2.3 Método de Runge-Kutta de Ordem 4

O método de Runge-Kutta de ordem 4, não necessita do cálculo de qualquer derivada de f, mas depende de outra função que é definida avaliando f em diferentes pontos.

2.3.1 Fórmulas

O Método de RK2 para resolver um PVI é dado pelas seguintes equações:

Método de Runge-Kutta de 4ª ordem
$$k_1 = hf(t_i, y_i); \ k_2 = hf(t_i + \frac{h}{2}, y_i + \frac{1}{2}k_1); \ k_3 = hf(t_i + \frac{h}{2}, y_i + \frac{1}{2}k_2); \ k_4 = hf(t_i + h, y_i + k_3)$$

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), \quad i = 0, \dots, n-1$$

- y_{i+1} → representa a aproximação pelo método RK4 de y(xn+1), que é determinado pelo valor atual de y(n) somado com o produto do tamanho do intervalo (h) e uma inclinação estimada, inclinação essa que é calculada pela média ponderada de inclinações como é representada em baixo;
- y_i →Valor aproximado da solução do problema original na abscissa atual;

$$\operatorname{inclinac}$$
ão $=rac{k_1+2k_2+2k_3+k_4}{6}.$

- k₁ →Inclinação no início do intervalo;
- k₂ →Inclinação no ponto médio do intervalo;
- k₃ →Inclinação no ponto médio do intervalo;
- $k_4 \rightarrow$ Inclinação no final do intervalo.

Fórmula Geral modificada para um Sistema de Equações:

$$u_{i+1} = u_i + u_k$$

$$v_{i+1} = v_i + v_k$$

onde:

- $u_{i+1} \rightarrow$ Aproximação do método de RK4 para a iésima iteração;
- $v_{i+1} \rightarrow$ Aproximação do método de RK4 para a iésima iteração;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);
- $u_k \rightarrow$ Cálculo da média das inclinações;
- $v_k \rightarrow$ Cálculo da média das inclinações.

Cálculo de uk:

$$u_k = \frac{(u_{k1} + 2 * u_{k2} + 2 * u_{k3} + u_{k4})}{6}$$

- u_k → Cálculo da média das inclinações;
- $u_{kl} \rightarrow$ Inclinação no início do intervalo;
- u_{k2} → Inclinação no ponto médio do intervalo;
- $u_{k3} \rightarrow$ Inclinação (novamente) no ponto médio do intervalo;
- u_{k4} → Inclinação no fim do intervalo.

Cálculo de v_k:

$$v_k = \frac{(v_{k1} + 2 * v_{k2} + 2 * v_{k3} + v_{k4})}{6}$$

- v_k → Cálculo da média das inclinações;
- $v_{kl} \rightarrow$ Inclinação no início do intervalo;
- v_{k2} → Inclinação no ponto médio do intervalo;
- $v_{k3} \rightarrow$ Inclinação (novamente) no ponto médio do intervalo;
- v_{k4} → Inclinação no fim do intervalo.

Cálculo de uk1:

$$u_{k1} = h * \boldsymbol{f}(t_i, u_i, v_i)$$

- $u_{kl} \rightarrow$ Inclinação no início do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i).$

Cálculo de v_{k1}:

$$v_{k1} = h * \boldsymbol{g}(t_i, u_i, v_i)$$

- $v_{kl} \rightarrow$ Inclinação no início do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i).$

Cálculo de uk2:

$$u_{k2} = h * f(t_i + \frac{h}{2}, u_i + 0.5 * u_{k1}, v_i + 0.5 * v_{k1})$$

- $u_{k2} \rightarrow$ Inclinação no ponto médio do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_i \rightarrow$ Abcissa atual do intervalo escolhido;
- $u_{kl} \rightarrow$ Inclinação no início do intervalo;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);
- $v_{kl} \rightarrow$ Inclinação no início do intervalo.

Cálculo de vk2:

$$u_{k2} = h * \boldsymbol{g}(t_i + \frac{h}{2}, u_i + 0.5 * u_{k1}, v_i + 0.5 * v_{k1})$$

- $v_{k2} \rightarrow$ Inclinação no ponto médio do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- \bullet $t_i \rightarrow$
- $u_{kl} \rightarrow$ Inclinação no início do intervalo;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada v'(t);
- $v_{kl} \rightarrow$ Inclinação no início do intervalo.

Cálculo de uk3:

$$u_{k3} = h * f(t_i + \frac{h}{2}, u_i + 0.5 * u_{k2}, v_i + 0.5 * v_{k2})$$

- $u_{k3} \rightarrow$ Inclinação (novamente) no ponto médio do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_i \rightarrow$ Abcissa atual do intervalo escolhido;
- $u_{k2} \rightarrow$ Inclinação no ponto médio do intervalo;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);
- $v_{k2} \rightarrow$ Inclinação no ponto médio do intervalo.

Cálculo de vk3:

$$v_{k3} = h * \boldsymbol{g}(t_i + \frac{h}{2}, u_i + 0.5 * u_{k2}, v_i + 0.5 * v_{k2})$$

- $v_{k3} \rightarrow$ Inclinação (novamente) no ponto médio do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_i \rightarrow$ Abcissa atual do intervalo escolhido:
- $u_{k2} \rightarrow$ Inclinação no ponto médio do intervalo;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada v'(t);
- $v_{k2} \rightarrow$ Inclinação no ponto médio do intervalo.

Cálculo de uk4:

$$u_{k4} = h * f(t_{i+1}, u_i + u_{k3}, v_i + v_{k3})$$

- $u_{k4} \rightarrow$ Inclinação no final do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_{i+1} \rightarrow \text{Pr}$ Próxima abcissa do intervalo escolhido;
- $u_{k3} \rightarrow$ Inclinação no ponto médio do intervalo;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada $y \ll (t)$;
- $v_{k3} \rightarrow$ Inclinação no ponto médio do intervalo.

Cálculo de vk4:

$$v_{k4} = h * \boldsymbol{g}(t_{i+1}, u_i + u_{k3}, v_i + v_{k3})$$

- $v_{k4} \rightarrow$ Inclinação no final do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_{i+1} \rightarrow \text{Pr}$ Próxima abcissa do intervalo escolhido;
- $u_{k3} \rightarrow$ Inclinação no ponto médio do intervalo;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada $y \ll (t)$;
- $v_{k3} \rightarrow$ Inclinação no ponto médio do intervalo.

2.3.2 Algoritmo/Função

- 8. Definir e calcular o passo h;
- 9. Criar um vetor y para guardar a solução e atribuir y(1) = y0;
- 10. Atribuir o valor de y;
- 11. Cálculo da inclinação no início do intervalo;
- 12. Cálculo da inclinação no ponto médio do intervalo;
- 13. Cálculo da inclinação no ponto médio do intervalo;
- 14. Cálculo da inclinação no final do intervalo;
- 15. Cálculo do método RK4.

```
%Alunos:
   15/05/2021 - Francisco Ruivo .: a2021142024@isec.pt
    15/05/2021 - Daniel Rodrigues .: a2021142013@isec.pt
function [t,u,v] = NRK4SED(f,g,a,b,n,u0,v0)
h = (b-a)/n;
t = a:h:b;
u = zeros(1,n+1);
v = zeros(1,n+1);
u(1)=u0;
v(1)=v0;
for i=1:n
    k1u=h*f(t(i),u(i),v(i));
    k1v=h*g(t(i),u(i),v(i));
    k2u=h*f(t(i)+h*(1/2),u(i)+k1u*(1/2),v(i)+k1v*(1/2));
    k2v=h*g(t(i)+h*(1/2),u(i)+k1u*(1/2),v(i)+k1v*(1/2));
    k3u=h*f(t(i)+h*(1/2),u(i)+k2u*(1/2),v(i)+k2v*(1/2));
    k3v=h*g(t(i)+h*(1/2),u(i)+k2u*(1/2),v(i)+k2v*(1/2));
    k4u=h*f(t(i)+h,u(i)+k3u,v(i)+k3v);
    k4v=h*g(t(i)+h,u(i)+k3u,v(i)+k3v);
    u(i+1)=u(i)+(1/6)*(k1u+2*k2u+2*k3u+k4u);
    v(i+1)=u(i)+(1/6)*(k1v+2*k2v+2*k3v+k4v);
end
end
```

3. Exercícios de aplicação

3.1 Pêndulo

3.2 Modelo Vibratório Mecânico

3.3 Mola Massa Sem Amortecimento

23

3.4 Circuitos Elétricos

3.5 Mola Massa Com Amortecimento

4.Conclusão

Com a elaboração deste trabalho concluímos que foram desenvolvidos bastantes conhecimentos sobre métodos numéricos e a aplicação dos mesmos. Para além da componente matemática que este trabalho possui, também se desenvolveu bastante conhecimento em programação com MatLab. O facto de lidar com os pequenos desafios e limitações que esta linguagem de programação nos proporciona desenvolveu também o nosso trabalho de investigação para resolução dos mesmos.

Concluímos, por fim, que os Métodos Numéricos para a resolução de Problemas de Valor Inicial são muito úteis, especialmente quando usados num contexto real e prático, pois originam aproximações com erro mínimo (dependendo do método usado).

Como regra geral, verificamos o esperado: quanto maior for o número de subintervalos n, menor é o erro de todos os Métodos

5. Bibliografia

- http://cee.uma.pt/edu/acn/docs/acn_formul5.pdf
- http://www.mat.uc.pt/~alma/aulas/anem/sebenta/cap6.pdf
- http://www.mat.uc.pt/~alma/aulas/matcomp/documentos/IntroducaoaMatlabParte33
 .pdf
- http://www.mat.uc.pt/~amca/MPII0607/folha3.pdf
- https://en.wikipedia.org/wiki/Heun%27s_method
- https://pt.qwe.wiki/wiki/Heun%27s_method
- https://pt.wikipedia.org/wiki/M%C3%A9todo_de_Euler
- https://www.codecogs.com/latex/eqneditor.php?lang=en-us
- https://www.ime.unicamp.br/~valle/Teaching/MS211/Aula21.pdf

6. Autoavaliação e heteroavaliação

										25	20	20	5	10	5	15	Trab	&At				
			Aulas Frequentadas				Aulas Frequentadas		Aulas Frequentadas						Matlab							
2021/2022 »« Licenciaturas em Eng. Informática »« 1ºA /2ºSem			24.fev a 29.abril																			
Análise Matemática II			9 Semanas			Gabin	Fóruns															
NºAluno Nome Completo do Aluno	LEI{Nor	Trabal	T(9)	TP(9)	P(9)		G	F	AGF - A	At01Tra	At02Tra	At03Tral	At00Trat	At05Tral	Mini-Tes	Atividad	Trabalhos	Trabalho				
202114204 Francisco Carreira Ruivo	x		8	9	8	25	0	0	0	4,5	4,5		5				2,28	9,10				
2021142013 Daniel Ferreira Rodrigues	x		9	8	9	26	0	0	0	4,5	4		5				2,18	8,70				
		L				0	L		0								0,00	0,00				
#		0	2	2	2	2	0	0	0	2	2	0	2			0	0					

Observações:

- 1 Autoavaliação e heteroavaliação das atividades e trabalhos
- 2 As atividades avaliadas de 0 a 5 valores. O parâmetro Trab&At = média ponderada das atividades
- 4 Critérios de Avaliação » consultar FUC de AM2
- 5 A nota final é arredondada às unidades de N = 60%*Trab&At+40%*E
- 6 Se os exames forem presenciais, então N = max(60%*Trab&At+40%*E; 100*E)