Теория по MCS Spinlock

Рубаненко Евгений Апрель 2017

1 Задача №1

Утверждение. Захват и освобождение	е спинлока промахиваются по ке-
шу лишь константное число раз.	

Доказательство:

Единственное пробмленое место в методах Acquire и Release - spin на $is_owner_$. Но он тоже константный - когда другой поток перезапишет этот $is_owner_$, то надо будет инвалидировать кеш, потом он загрузит новое значение и выйдет из цикла.

Утверждение. Cache ping pong отсутствует.

Доказательство:

Сразу же следует из того, что происходит константное число промахов по кещу. \Box

Утверждение. Thundering Herd отсутствует.

Доказательство:

Запись в $is_owner_$ инвалидирует кеш-линию только в одном потоке.

2 Задача №2

Утверждение. TAS, TATAS спинлоки не гарантируют константного числа промахов по кешу.

Доказательство:

При каждой записи происходит инвалидация кеш-линий всех остальных потоков. То есть когда они позовут $test_and_set$, то все сначала промажут.

Утверждение. Тіскеt спинлок не гарантирует константного числа промахов по кещу.

Доказательство:

Рассуждения похожи на рассуждения из предыдущего утверждения, только теперь инвалидируются те потоки, которые имеют номерки, большие чем $current\ ticket$ (соответственно, они промажут при сравнении). \square