2024.05.27

1. 证明 Poisson 问题的混合变分形式的弱解在一定光滑条件下是古典解 Poisson 问题:

$$\begin{cases} \mathbf{p} - \nabla u = 0 \\ div\mathbf{p} = -f \\ u|_{\partial\Omega} = 0 \end{cases}$$

混合变分形式: 求 $(\mathbf{p}, u) \in H(\operatorname{div}, \Omega) \times L^2(\Omega)$, 使

$$\begin{cases} \int_{\Omega} \mathbf{p} \cdot \mathbf{q} dx + \int_{\Omega} div \mathbf{q} u dx = 0, & \forall \mathbf{q} \in H(\operatorname{div}, \Omega) \\ \int_{\Omega} div \mathbf{p} v dx = \int_{\Omega} -f v dx, & \forall v \in L^{2}(\Omega) \end{cases}$$

Proof. 当解足够光滑,由 $\int_{\Omega} div \mathbf{p} v = \int_{\Omega} -fv dx$, $\forall v \in L^2(\Omega)$, 有

$$\int_{\Omega} (div\mathbf{p} + f)vdx = 0, \quad \forall v \in L^2(\Omega)$$

由 v 的任意性, 得到 $div\mathbf{p} + f = 0$. 即 $div\mathbf{p} = -f$.

在 $\int_{\Omega} \mathbf{p} \cdot \mathbf{q} dx + \int_{\Omega} div \mathbf{q} u dx = 0$ 中取 $\forall \mathbf{q} \in H(\text{div}, \Omega) \cap (H_0^1(\Omega))^2$, 得到

$$\int_{\Omega} \mathbf{q} \cdot (\mathbf{p} - \nabla u) dx = 0$$

由 **q** 的任意性,得到 $\mathbf{p} - \nabla u = 0$.

再在 $\int_{\Omega} \mathbf{p} \cdot \mathbf{q} dx + \int_{\Omega} div \mathbf{q} u = 0$ 中取 $\forall \mathbf{q} \in H(\text{div}, \Omega)$, 得到

$$\int_{\partial\Omega}u\mathbf{q}\cdot\mathbf{n}ds=0$$

由 **q** 的任意性,得到 $u|_{\partial\Omega}=0$.

2. 推导 Stokes 问题的混合变分形式

Stokes 问题:

$$\begin{cases}
-\Delta \mathbf{u} + \nabla p = \mathbf{f}, 在 \Omega 内 \\
\operatorname{div} \mathbf{u} = 0, 在 \Omega 内 \\
\mathbf{u}|_{\partial \Omega} = 0
\end{cases}$$

Proof. 在 $-\Delta \mathbf{u} + \nabla p = \mathbf{f}$ 中,对 $\forall \mathbf{v} \in (H_0^1(\Omega))^2$ 有

$$\int_{\Omega} -\Delta \mathbf{u} \cdot \mathbf{v} + \nabla p \mathbf{v} dx = \int_{\Omega} \mathbf{f} \mathbf{v} dx$$

利用两次 Green 公式和 $\mathbf{v}|_{\partial\Omega}=\frac{\partial\mathbf{v}}{\partial\mathbf{n}}|_{\partial\Omega}=0$ 以及散度积分公式可得

$$\int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{v} + div \mathbf{v} p dx = \int_{\Omega} \mathbf{f} \mathbf{v} dx$$

在 $div\mathbf{u} = 0$ 中,对 $\forall q \in L_0^2(\Omega)$,有

$$\int_{\Omega} div \mathbf{u} q dx = 0$$

得到混合变分形式.

3. 证明 inf-sup 条件的定理中 (3) 等价于 (1) 和 (2).

Proof. 已有 $(1) \Leftrightarrow (2)$.

 $(2) \Rightarrow (3)$:

假设 (2) 成立,则对给定的 $u \in U^{\perp}$,定义函数 $g \in U'$ 如下

$$g(w) = (u, w), \quad \forall w \in U$$
 (*)

容易验证 $g \in U^0$, 又因为 B' 是 V 到 U^0 的同构, 故存在 $\lambda \in V$, 使

$$b(w,\lambda) = (w,B'\lambda) = g(w) \tag{*}$$

又由 (*) 易证 $||g||_{U'} = ||u||_{U}$,从而

$$||u||_U = ||g||_{U'} = ||B'\lambda||_{U'} \ge \beta ||\lambda||_V.$$

在 (\star) 中令 w=u, 则有

$$\sup_{v \in V} \frac{b(u, v)}{||v||_{V}} \ge \frac{b(u, \lambda)}{||\lambda||_{V}} = \frac{(u, u)}{||\lambda||_{V}} \ge \beta ||u||_{U},$$

从而 $B:U^{\perp}\to V'$ 满足 Babuška 定理的三个条件, 故 B 是一个同构映射.

 $(3) \Rightarrow (1)$:

因 (3) 成立,故 $B: U^{\perp} \to V'$ 是一个同构,对给定的 $v \in V$,

$$||v||_{V} = \sup_{g \in V'} \frac{\langle g, v \rangle}{||g||_{V'}} = \sup_{u \in U^{\perp}} \frac{\langle Bu, v \rangle}{||Bu||_{V'}}$$
$$= \sup_{u \in U^{\perp}} \frac{b(u, v)}{||Bu||_{V'}} \le \sup_{u \in U^{\perp}} \frac{b(u, v)}{\beta ||u||_{U}} \le \frac{1}{\beta} \sup_{u \in U} \frac{b(u, v)}{||u||_{U}},$$

从而 (1) 成立, 证毕.

4. 如果 $\dim U_h = \dim V_h$, 离散的 inf-sup 条件

$$\inf_{u_h \in U_h} \sup_{v_h \in V_h} \frac{b(u_h, v_h)}{\|u_h\|_U \|v_h\|_V} = \beta_h > 0$$

成立. 说明离散问题: 求 $u_h \in U_h$ 使得

$$b(u_h, v_h) = \langle f, v \rangle_{V' \times V}$$

存在唯一解.

(注: 该结果说明对于离散问题只需验证 Babuška 定理中 (b) 对应的离散形式和维数相等,无需验证 (c) 的离散形式)

Proof. 定义算子 B 以及对偶算子 B'

$$B: U \to V' < Bu, v >_{V' \times V} = b(u, v) \quad \forall u \in U, v \in V$$

$$B': V \to U' < B'v, u >_{U' \times U} = b(u, v) \quad \forall u \in U, v \in V.$$

当 $\dim U = \dim V$ 时,根据闭值域定理, 算子 B 有连续逆算子 $B^{-1}: V' \to U, B'$ 有连续逆算子 $(B')^{-1}: U' \to V$, 满足

$$\|(B')^{-1}\| = \|(B^{-1})'\| = \|B^{-1}\|$$

从而有

$$\inf_{u_h \in U_h} \sup_{v_h \in V_h} \frac{b(u_h, v_h)}{\|u_h\|_U \|v_h\|_V} = \inf_{v_h \in V_h} \sup_{u_h \in U_h} \frac{b(u_h, v_h)}{\|u_h\|_U \|v_h\|_V} = \beta_h > 0$$

从而 (b) 与 (b') 成立, 进而可以推出 (b) 与 (c) 成立.

5. 证明 $H(div,\Omega)$ 空间在范数 $\|\cdot\|_{div,\Omega}$ 下是完备的

$$\|\cdot\|_{div,\Omega} := (\|\cdot\|_{L^2(\Omega)}^2 + \|div(\cdot)\|_{L^2(\Omega)}^2)^{\frac{1}{2}}$$

Proof. 设 $\{u_m = (u^1, \dots, u^n)\}_{m \in \mathbb{N}}$ 是 $(H(div, \Omega), \|\cdot\|_{div, \Omega})$ 中的 Cauchy 列。 对于 $i \in \{1, \dots, n\}$,有

$$(u_m^i - u_l^i, u_m^i - u_l^i) = \|u_m^i - u_l^i\|_{L^2(\Omega)}^2 \le \|u_m - u_l\|_{div,\Omega}^2$$

由于 $\{u_m\}_{m\in\mathbb{N}}$ 是 $(H(div,\Omega),\|\cdot\|_{div,\Omega})$ 中的 Cauchy 列,有 $\{u_m^i\}_{m\in\mathbb{N}}$ 是 $L^2(\Omega)$ 中的 Cauchy 列。由于 $L^2(\Omega)$ 的完备性,有 $u_m^i\to u^i\in L^2(\Omega),\quad m\to\infty$. 因此 $u=(u^1,\cdots,u^n)\in\{L^2(\Omega)\}^n$

类似地,

$$(\operatorname{div}(u_m - u_l), \operatorname{div}(u_m - u_l))_{L^2(\Omega)} = \|\operatorname{div} u_m - \operatorname{div} u_l\|_{L^2(\Omega)}^2 \le \|u_m - u_l\|_{H(\operatorname{div},\Omega)}^2$$

因此 $\{\operatorname{div} u_m\}_{m\in\mathbb{N}}$ 在 $L^2(\Omega)$ 中是 Cauchy 列。由于 $L^2(\Omega)$ 的完备性,有 $\operatorname{div} u_m\to g\in L^2(\Omega),\quad m\to\infty$

下面只需要说明 divu=g, 这等价于证明 $\int_{\Omega}g\phi dx=-\int_{\Omega}u\cdot\nabla\phi dx$, $\forall\phi\in C_0^{\infty}(\Omega)$. 事实上,只需注意到

$$\int_{\Omega} \phi \operatorname{div} u_m dx = -\int_{\Omega} u_m \cdot \nabla \phi dx.$$

$$\operatorname{div} u_m \to g \text{ in } \| \cdot \|_{L^2(\Omega)} \implies \int_{\Omega} \phi \operatorname{div} u_m dx \to \int_{\Omega} \phi g dx$$

$$u_m \to u \text{ in } \| \cdot \|_{L^2(\Omega)} \implies \int_{\Omega} u_m \cdot \nabla \phi dx \to \int_{\Omega} u \cdot \nabla \phi dx.$$

即可得到。