

Energy-based docking
Docking and restraints
Scoring by energy
Scoring by statistical energy
Scoring and restraints
Applications of energy-based docking

RosettaDock

RANDOM START POSITION

 Creation of a decoy begins with a random orientation of each partner and a translation of one partner along the line of protein centers to create a glancing contact between the proteins

RosettaDock

Monte Carlo Search Rigid body translations and rotations

Residue-scale interaction potentials

Protein representation: backbone atoms + average centroids

Low-Resolution Search

• Mimics physical diffusion process

- Energy-based docking
- Docking and restraints
- Scoring by energy
- Scoring by statistical energy
- Scoring and restraints
- Applications of energy-based docking

Energy-based docking
Docking and restraints
Scoring by energy
Scoring by statistical energy
Scoring and restraints
Applications of energy-based docking

Energy-based docking
Docking and restraints
Scoring by energy
Scoring by statistical energy
Scoring and restraints
Applications of energy-based docking

Energy-based docking: conclusions

- Fewer available methods
- Slower than geometry-based
- Better success rates
- Better geometries
- Better understanding of binding mechanism
- Desolvation is very important in docking

DOCKING VALIDATION CAPRI: A Critical Assessment of PRedicted Interactions

Rank	F _{native}	I-RMSD [Å]	i-RMSD [Å]
High ***	> 0.5	x < 1.0	or x < 1.0
Good **	> 0.3	1 < x < 5	or 1 < x <2
Acceptable *	> 0.1	5 < x < 10	or 2 < x < 4
Incorrect	< 0.1		

- F_{native} : fraction of native contacts (within 5Å)
- I-RMSD: rmsd on second protein after superposition on first
- i-RMSD: rmsd on interface residues (within 10Å)

						OT	PRe			
		7.0.		,				OUN		
Pr	edictor groups		;	37			N		sults	
E۱	/aluated prediction	ons	33	36						
Hi	gh accuracy (***)		1						
Model	Predictor	f _{nat}	f _{n-nat}	f _{IR-R}	f _{IR-L}	#CI	L-rmsd	I- _{rmsd}	Θ	DL
10	Eisenstein	0.827	0.246	0.913	0.840	4	2.203	0.904	2.70	1.482
01	Schomburg	0.808	0.276	0.913	0.920	5	1.829	1.062	3.69	0.407
10 M	PATCHDOCK	0.692		0.913	0.920	19	2.334	1.062	6.28	1.139
01	GRAMM-X	0.827		0.913	0.960	10	2.824	1.246	8 94	1.294
03	Vaida	0.635		0.913	0.960	2	2.832	1.297	9.10	1.293
03	Fernandez- Recio	0.788		0.913	0.880	35	2.844	1.234	9.36	1.563
02	Totrov	0.692	0.122	0.783	0.960	2	3.018	1.246	10.70	1.643
01	Facemyer	0.788	0.211	0.957	0.920	21	3.153	1.415	14.03	1.151
07	SKE-DOCK	0.788	0.281	0.913	0.920	9	3.307	1.330	11.07	
07		0.808		0.913	1.000	8	3.324	1.335	11.08	
07	Weng	0.808		0.913	0.960	6	3.804	1.506		2.450
02	Smith	0.673		0.913	0.960	23	3.929	1.510	9.27	3.085
01	SMOOTHDOCK			0.739	0.760	15	4.849	2.192	23.98	
05	Negi	0.673	0.470	0.913	0.920	55	5.745	1.862	17.36	4.029
01	Bonvin	0.365	0 708	0.913	0.960	10	6.644	3.522	21.05	4.809
04 A	Camacho	0.308		0.816	0.840	7	7.533	4 088		4.202
06	CLUSPRO	0.654		0.739	0.840	12	7.564	2.845	34.45	
05	Bates	0.034		0.739	0.880	17	9.825	3.178	24.43	8.412
	Unbound		0.001	0.957	0.960	0	0.282	1.134	0.65	0.109

	Predictor Summary		
HADDOCK	Bonvin	9/1***/3**	
SwarmDock	Bates	8/2**	
GRAMM/homol	Vakser	7/1***	
PIPER	Vajda	6/2***/3**	
pyDock, SDU	Fernandez-Recio, Shen	6/1***/3**	
ITScore+entropy	Zou	6/1***/2**	
ATTRACT	Zacharias	6/1***	
CLUSPRO	CLUSPRO	6/4**	
MolFit		5/1***/2**	
DOCK server, ZDOCK, RosettaDock		4/1***/1**	
MLSBF	Ivakaiiiula	4/1***	
SwarmDock server		4/1**	
PatchDock/FireDock	Wolfson	3/2**	
	DOCK_PIE, Zhou	3/1**	
	Cui	2/1***/1**	
	HEXSERVER, Luethy	2/1***	
	Mitchell, Elber	2/1**	
	FIBERDOCK, Ritchie, Wang	1***	
11 - 234 2 11	Ten Eyck, Camacho, LZERD	1**	
	Pal, Zhang, SURFIT, Poupon, Kihara, Dokholyan	1*	
过来,原始, 意识现 是	26 other groups	0	

