1. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 59.556. This means i = 1. We know n = 11. Determine the percentile ℓ .

$$\ell = \frac{1}{11}$$

$$\ell = 0.0909$$

So, the percentile rank is 0.0909, or 9.09th percentile.

(b) We are given $\ell = 0.545$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by *n*.

$$n\cdot(\ell)=n\cdot\left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (11)(0.545)$$

$$i = 6$$

Determine the x associated with i = 6.

$$x = 77.342$$

- (c) The mean: $\bar{x} = \frac{806.447}{11} = \boxed{73.313}$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=11 and so n is odd.

median =
$$x_{(11+1)/2}$$
, = x_6

So, median = 77.342

2. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 14.301. This means i = 12. We know n = 24. Determine the percentile ℓ .

$$\ell = \frac{12}{24}$$

$$\ell = 0.5$$

So, the percentile rank is $\boxed{0.5}$, or 50th percentile.

(b) We are given $\ell = 0.417$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by n.

$$n\cdot(\ell)=n\cdot\left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (24)(0.417)$$

$$i = 10$$

Determine the x associated with i = 10.

- (c) The mean: $\bar{x} = \frac{362.237}{24} = 15.093$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=24 and so n is even.

$$\text{median} = \frac{x_{12} + x_{13}}{2} = \frac{14.301 + 14.981}{2}$$

So, median = 14.641