Teoria degli Algoritmi

Corso di Laurea Magistrale in Matematica Applicata a.a. 2020-21

Dipartimento di Informatica Sapienza Università di Roma tolomei@di.uniroma1.it

Recap from Last Lecture(s)

2 unsupervised learning techniques to extract "structural" patterns from raw data

Recap from Last Lecture(s)

2 unsupervised learning techniques to extract "structural" patterns from raw data

Clustering

- Group together similar objects according to a specific distance function
- Formalized as an NP-hard optimization problem
- K-means and its variants as effective heuristics that work in practice

Recap from Last Lecture(s)

2 unsupervised learning techniques to extract "structural" patterns from raw data

Clustering

- Group together similar objects according to a specific distance function
- Formalized as an NP-hard optimization problem
- K-means and its variants as effective heuristics that work in practice

Principal Component Analysis (PCA)

- Reduce data dimensionality
- Automatically extract features from raw data
- Resort to computing the eigenvectors and eigenvalues of the covariance matrix

SUPERVISED LEARNING

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

• Example

Task/Problem: Find the maximum element of a list of 1 million unsorted numbers

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

• Example

- Task/Problem: Find the maximum element of a list of I million unsorted numbers
- Solution/Algorithm: Scan all the numbers in the set and keep track of the largest found "so far"

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

• Example

- Task/Problem: Find the maximum element of a list of I million unsorted numbers
- Solution/Algorithm: Scan all the numbers in the set and keep track of the largest found "so far"
- Code/Program: Encode the algorithm above into one specific programming language (e.g., C/C++, Java, Python)

Problem

Problem

Solution/Algorithm explicitly designed by human

Can We Always Do That?

Chihuahua or Muffin?

Chihuahua

Muffin

Programming vs. "Training" a Computer

• There exist some problems like the chihuahua vs. muffin above which are too hard to be solved directly

Programming vs. "Training" a Computer

- There exist some problems like the chihuahua vs. muffin above which are too hard to be solved directly
- Hard to design an algorithm which is general enough to capture all the nuances of the problem and gives the correct output for any input

Programming vs. "Training" a Computer

- There exist some problems like the chihuahua vs. muffin above which are too hard to be solved directly
- Hard to design an algorithm which is general enough to capture all the nuances of the problem and gives the correct output for any input

Programming vs. "Training" a Computer

Problem

Eventually, the function *f* is **learned** by the learning algorithm from a (large) set of **labeled data**

• A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data

- A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data
- 2 main definitions of it:

- A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data
- 2 main definitions of it:

"The field of study that gives computers the ability to learn without being explicitly programmed"

Arthur Samuel

- A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data
- 2 main definitions of it:

"The field of study that gives computers the ability to learn without being explicitly programmed"

Arthur Samuel

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E"

Tom Mitchell

Machine Learning: Taxonomy

Machine Learning

Machine Learning: Taxonomy

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Machine Learning: Taxonomy

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Supervised Learning

Approximate a function $f: X \rightarrow Y$ from a set of observed labeled examples $\{(X, y)\}$

Machine Learning: Taxonomy

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Supervised Learning

Approximate a function $f: X \rightarrow Y$ from a set of observed labeled examples $\{(X, y)\}$

Reinforcement Learning

Use a Reward-Feedback loop to continuously learn and update the hidden behavior or pattern

Machine Learning: Taxonomy

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Supervised Learning

Approximate a function $f: X \rightarrow Y$ from a set of observed labeled examples $\{(X, y)\}$

Reinforcement Learning

Use a Reward-Feedback loop to continuously learn and update the hidden behavior or pattern

Supervised Learning: What Do We Predict?

Supervised Learning

Supervised Learning: What Do We Predict?

Supervised Learning

Regression

The target y we want to predict is a continuous real value

e.g., y = price of a house

Supervised Learning: What Do We Predict?

Regression

The target y we want to predict is a continuous real value

e.g., y = price of a house

Classification

The target y we want to predict is a discrete value

e.g., y = spam/non-spam

$$\mathcal{X} \subseteq \mathbb{R}^n$$

input feature space

 $\mathcal{X}\subseteq\mathbb{R}^n$ \mathcal{Y}

input feature space output space

$$\mathcal{X} \subseteq \mathbb{R}^n$$

 \mathcal{Y}

$$\mathcal{Y}\subseteq\mathbb{R}$$

$$\mathcal{Y} = \{1, \dots, k\}$$

input feature space

output space

real-value label (regression)

discrete-value label (k-ary classification)

$$\mathcal{X} \subseteq \mathbb{R}^n$$
 \mathcal{Y}

$$\mathcal{Y}\subseteq\mathbb{R}$$

$$\mathcal{Y} = \{1, \dots, k\}$$

$$(\mathbf{x}_i, y_i)$$

input feature space

output space

real-value label (regression)

discrete-value label (k-ary classification)

i-th labeled instance

$$\mathcal{X} \subseteq \mathbb{R}^n$$

 \mathcal{Y}

$$\mathcal{Y}\subseteq\mathbb{R}$$

$$\mathcal{Y} = \{1, \dots, k\}$$

 (\mathbf{x}_i, y_i)

$$\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n}) \in \mathcal{X}$$

input feature space

output space

real-value label (regression)

discrete-value label (k-ary classification)

i-th labeled instance

n-dimensional feature vector of the i-th instance

47

$$\mathcal{X} \subseteq \mathbb{R}^n$$
 \mathcal{Y}

$$\mathcal{Y} \subseteq \mathbb{R}$$

$$\mathcal{Y} = \{1, \dots, k\}$$
 (\mathbf{x}_i, y_i)
 $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n}) \in \mathcal{X}$
 $y_i \in \mathcal{Y}$

input feature space

output space

real-value label (regression)

discrete-value label (k-ary classification)

i-th labeled instance

n-dimensional feature vector of the i-th instance

label of the i-th instance

$$\mathcal{X} \subseteq \mathbb{R}^n$$

 $\mathcal{Y} \subseteq \mathbb{R}$

$$\mathcal{Y} = \{1, \dots, k\}$$

 (\mathbf{x}_i, y_i)

$$\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n}) \in \mathcal{X}$$

$$y_i \in \mathcal{Y}$$

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}\$$

input feature space

output space

real-value label (regression)

discrete-value label (k-ary classification)

i-th labeled instance

n-dimensional feature vector of the i-th instance

label of the i-th instance

dataset of m i.i.d. labeled instances

Each instance comes with the class label (classification) or the value (regression) we want to predict

Model Training: Intuition

<u>Idea</u>

There is an unknown target function f which puts in a relationship elements of X with elements of Y

Model Training: Intuition

<u>Idea</u>

There is an unknown target function f which puts in a relationship elements of X with elements of Y

$$f = X \rightarrow Y$$

Model Training: Intuition

<u>Idea</u>

There is an unknown target function f which puts in a relationship elements of X with elements of Y

$$f = X \rightarrow Y$$

Problem

We cannot write down an algorithm which just implements f

• Learning f means "finding" another function h^* which best approximates f using the data we observed

- Learning f means "finding" another function h^* which best approximates f using the data we observed
- h^* is chosen among a family of functions H called **hypothesis space** by specifying two components:

- Learning f means "finding" another function h^* which best approximates f using the data we observed
- h^* is chosen among a family of functions H called **hypothesis space** by specifying two components:
 - loss function: measures the error of using h^* instead of the true f

- Learning f means "finding" another function h^* which best approximates f using the data we observed
- h^* is chosen among a family of functions H called **hypothesis space** by specifying two components:
 - loss function: measures the error of using h^* instead of the true f
 - learning algorithm: explores the hypothesis space to pick the function which minimizes the loss on the observed data

• The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f

- The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f
- The larger the hypothesis space:
 - the larger will be the set of functions that can be represented

- The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f
- The larger the hypothesis space:
 - the larger will be the set of functions that can be represented

• the harder will be for the learning algorithm to pick h^*

- The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f
- The larger the hypothesis space:
 - the larger will be the set of functions that can be represented

• the harder will be for the learning algorithm to pick h^*

Trade-off

Put some constraints on H, e.g., limit the search space only to linear functions

The Loss Function

• Measures the error we would make if a hypothesis h is used instead of the true (yet unknown) mapping f

The Loss Function

- Measures the error we would make if a hypothesis h is used instead of the true (yet unknown) mapping f
- It can be computed only on the data we observed, therefore depends on the hypothesis and the dataset

$$L: \mathcal{H} \times \mathcal{D} \mapsto \mathbb{R}$$

The Loss Function

- Measures the error we would make if a hypothesis h is used instead of the true (yet unknown) mapping f
- It can be computed only on the data we observed, therefore depends on the hypothesis and the dataset

$$L: \mathcal{H} \times \mathcal{D} \mapsto \mathbb{R}$$

• This in-sample error (a.k.a. empirical loss) is an estimate of the out-of-sample error (a.k.a. expected loss or risk)

• Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*

- Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*
- Here, "best" means the hypothesis that minimizes the loss function on the observed data (Empirical Risk Minimization)

- Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*
- Here, "best" means the hypothesis that minimizes the loss function on the observed data (Empirical Risk Minimization)
- In other words, among all the hypotheses specified by H the learning algorithm will pick the one that minimizes L

- Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*
- Here, "best" means the hypothesis that minimizes the loss function on the observed data (Empirical Risk Minimization)
- In other words, among all the hypotheses specified by H the learning algorithm will pick the one that minimizes L as measured on D

$$h^* = \operatorname{argmin}_{h \in \mathcal{H}} L(h, \mathcal{D})$$

unknown target (e.g., ideal credit approval function)

$$f = X \rightarrow Y$$

unknown target (e.g., ideal credit approval function)

$$f = X \rightarrow Y$$

unknown target (e.g., ideal credit approval function)

$$f = X \rightarrow Y$$

Hypothesis Space H

candidate formulas

unknown target (e.g., ideal credit approval function)

$$f = X \rightarrow Y$$

candidate formulas

unknown target (e.g., ideal credit approval function)

$$f = X \rightarrow Y$$

• We define the supervised learning problem as an optimization one

- We define the supervised learning problem as an optimization one
- By plugging in different loss functions combined with various hypothesis spaces we must solve a specific optimization problem

- We define the supervised learning problem as an optimization one
- By plugging in different loss functions combined with various hypothesis spaces we must solve a specific optimization problem
- Those choices are usually "mathematically convenient": e.g., convex
 objective functions are guaranteed to have a unique global minimum

- We define the supervised learning problem as an optimization one
- By plugging in different loss functions combined with various hypothesis spaces we must solve a specific optimization problem
- Those choices are usually "mathematically convenient": e.g., convex objective functions are guaranteed to have a unique global minimum
- Even though closed-form solutions to the optimization problem rarely exist, there are numerical methods which work: e.g., gradient descent

• Minimizing the loss function on the observed data D just limits the insample error

- Minimizing the loss function on the observed data D just limits the insample error
- Our ultimate hypothesis is to pick h^* which is able to generalize to unseen instances (i.e., minimize the out-of-sample error)

- \bullet Minimizing the loss function on the observed data D just limits the insample error
- Our ultimate hypothesis is to pick h^* which is able to generalize to **unseen** instances (i.e., minimize the out-of-sample error)
- If we pick a hypothesis which just memorizes all the training instances, we will obtain a 0 in-sample error but this is not learning!

- \bullet Minimizing the loss function on the observed data D just limits the insample error
- Our ultimate hypothesis is to pick h^* which is able to generalize to **unseen** instances (i.e., minimize the out-of-sample error)
- If we pick a hypothesis which just memorizes all the training instances, we will obtain a 0 in-sample error but this is not learning!
- At the same time we do not want h^* to perform poorly on D

Overfitting (High Variance)

Regression

Classification

The hypothesis h^* is not learning the true f but it mimics its noise

Overfitting (High Variance)

Regression

Classification

The hypothesis h^* is not learning the true f but it mimics its noise

low in-sample error high out-of-sample error

Overfitting (High Variance)

Regression

Classification

The hypothesis h^* is not learning the true f but it mimics its noise

low in-sample error high out-of-sample error

- Regularization
- Get more data

Underfitting (High Bias)

Regression

Classification

The hypothesis h^* is too "simple" for approximating the true f

Underfitting (High Bias)

Regression

Classification

The hypothesis h^* is too "simple" for approximating the true f

high in-sample error high out-of-sample error

Underfitting (High Bias)

Regression

Classification

The hypothesis h^* is too "simple" for approximating the true f

high in-sample error high out-of-sample error

- Increase model complexity
- Add more features

Bias-Variance Tradeoff

Regression

Classification

The hypothesis h^* is just right: the simplest one explaining the data

Occam's razor

Bias-Variance Tradeoff

Regression

Classification

The hypothesis h^* is just right: the simplest one explaining the data

Occam's razor

low in-sample error low out-of-sample error

Estimating Generalization Performance

• Measuring the generalization performance online may be too risky

Estimating Generalization Performance

- Measuring the generalization performance online may be too risky
- Example: Don't want to deploy your new spam classifier in production knowing only its training (i.e., in-sample) performance

Estimating Generalization Performance

- Measuring the generalization performance online may be too risky
- Example: Don't want to deploy your new spam classifier in production knowing only its training (i.e., in-sample) performance
- Solution: Estimate the generalization performance using training set
 - As long as it holds true the assumption that training and test instances are both drawn from the same probability distribution (i.i.d. assumption)

April, 28 202 I

96

How Much Data Do We Need?

In general, the more data we have the better we learn

April, 28 202 I source: https://xkcd.com/1838/