Gradient Descent Method

Backpropagation

Derivative of Loss function w.r.t. Vectors and Matrices

Sunmook Choi

Dept. of Mathematics Korea University

Settings

- For practical reasons, we express each data x into a row vector.
- There are different layouts to express derivatives with respect to vectors or matrices.
- In this presentation, we use the 'denominator layout'.

 For more information, you can see more details in this Wikipedia page.

Linear Regression

Gradients

For real-valued function $f: \mathbb{R}^n \to \mathbb{R}$, the derivative of f is the gradient of f

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

where $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \in \mathbb{R}^n$ (\mathbf{x} is a row vector).

Examples

- Let $\mathbf{a} \in \mathbb{R}^n$ and $f(\mathbf{x}) = \mathbf{x}\mathbf{a}^\top = \sum_{i=1}^n a_i x_i$, then the gradient is $\nabla_{\mathbf{x}} f = \mathbf{a}$.
- Let $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ and $f(x) = xAx^{\top}$, then the gradient is $\nabla_x f = x(A + A^{\top})$.
 - * Why? → Homework
 - * Hint) $f(x) = xAx^{\top} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}x_{j}$.

Linear Regression

Consider a dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ where $x_i = [x_{i1} \ x_{i2} \ \dots \ x_{id}] \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. We assume that the relation is linear, that is, there exists $\mathbf{w} = [w_1 \ \dots \ w_d] \in \mathbb{R}^d$ such that

$$y_i = x_i w^{\top} = w x_i^{\top} = \sum_{j=1}^d w_j x_{ij}$$
 where $x_{i1} = 1$.

- $X = \begin{bmatrix} x_1^\top & x_2^\top & \cdots & x_n^\top \end{bmatrix}^\top \in \mathbb{R}^{n \times d}$: the design matrix of \mathcal{D} (each row is an input vector).
- $y = [y_1 \ y_2 \cdots y_n] \in \mathbb{R}^n$: the row vector containing the labels.

Then we want to find $\mathbf{w} \in \mathbb{R}^d$ that satisfies

$$y = wX^{\top},$$

so we will try to minimize the mean squared loss function: (Ordinary Least Squares)

$$L(w) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - wx_i^{\top})^2 = \frac{1}{2n} (y - wX^{\top}) (y - wX^{\top})^{\top}.$$

Analytic Solution for Linear Regression

MSE loss of Linear Regression:

$$L(w) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - wx_i^{\top})^2 = \frac{1}{2n} (y - wX^{\top}) (y - wX^{\top})^{\top}.$$

Since L(w) is convex w.r.t. w, the minimum is the point where $\nabla_w L(w) = 0$ (gradient!).

$$\nabla_{\mathbf{w}} L(\mathbf{w}) = \frac{1}{2n} \nabla_{\mathbf{w}} (\mathbf{y} \mathbf{y}^{\top} - \mathbf{y} X \mathbf{w}^{\top} - \mathbf{w} X^{\top} \mathbf{y}^{\top} + \mathbf{w} X^{\top} X \mathbf{w}^{\top})$$

$$= \frac{1}{2n} \nabla_{\mathbf{w}} (\mathbf{y} \mathbf{y}^{\top} - 2 \mathbf{w} X^{\top} \mathbf{y}^{\top} + \mathbf{w} X^{\top} X \mathbf{w}^{\top})$$

$$= \frac{1}{2n} \left(-2 \mathbf{y} X + \mathbf{w} (X^{\top} X + (X^{\top} X)^{\top}) \right)$$

$$= \frac{1}{n} \left(-\mathbf{y} X + \mathbf{w} (X^{\top} X) \right)$$

Analytic Solution for Linear Regression

MSE loss of Linear Regression:

$$L(w) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - wx_i^{\top})^2 = \frac{1}{2n} (y - wX^{\top}) (y - wX^{\top})^{\top},$$

and

$$\nabla_{\mathbf{w}} L(\mathbf{w}) = \frac{1}{n} \left(-\mathbf{y} X + \mathbf{w} (X^{\top} X) \right) = 0$$

Hence, if $X^{T}X$ is invertible, then we have an optimal solution: $\hat{w} = yX(X^{T}X)^{-1}$.

- The rank of $X^{T}X$ is equal to the rank of X.
- Hence, $X^{\top}X \in \mathbb{R}^{d \times d}$ is invertible if and only if $X \in \mathbb{R}^{n \times d}$ has a full rank of d, that is, when each column vector (feature) of X is linearly independent of each other (: $d \ll n$).

Numerical Solution for Linear Regression

MSE loss of Linear Regression:

$$L(w) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - wx_i^{\top})^2 = \frac{1}{2n} (y - wX^{\top}) (y - wX^{\top})^{\top}.$$

and

$$\nabla_{\mathbf{w}} L(\mathbf{w}) = \frac{1}{n} \left(-\mathbf{y} X + \mathbf{w} X^{\top} X \right) = \frac{1}{n} \left(\mathbf{w} X^{\top} - \mathbf{y} \right) X$$

so that

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_{\mathbf{w}} L(\mathbf{w}^t) = \mathbf{w}^t - \frac{\eta}{n} (\mathbf{w} X^\top - \mathbf{y}) X$$

or equivalently, for j = 1, ..., d,

$$w_j^{t+1} = w_j^t - \frac{\eta}{n} \sum_{i=1}^n (w x_i^\top - y_i) x_{ij}.$$

MLP Classification

Jacobian Matrix

For vector-valued function $f: \mathbb{R}^n \to \mathbb{R}^m$, the derivative of y = f(x) is the Jacobian matrix

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_i}{\partial x_j} \end{bmatrix}_{ij} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

Example

• Let $A = [a_{ij}] \in \mathbb{R}^{n \times m}$, and y = xA. Then the Jacobian matrix is

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \left[\frac{\partial y_i}{\partial x_j} \right]_{ij} = A^{\top}.$$

Derivative w.r.t. matrices

Let $X = [x_{ij}] \in \mathbb{R}^{p \times q}$ and y be a real-valued function of X of independent variables.

- Here, independent variables of *X* means the matrix *X* has no special structure, e.g., not symmetric nor positive definite, etc.
- Then, the derivative of y with respect to X is given by

$$\frac{\partial y}{\partial X} = \left[\frac{\partial y}{\partial x_{ij}}\right]_{ij} \in \mathbb{R}^{p \times q}.$$

• Example: Define $f(X) = aXb^{\top}$ for $a \in \mathbb{R}^{1 \times p}$ and $b \in \mathbb{R}^{1 \times q}$, we have

$$\frac{\partial f}{\partial X} = \left[\frac{\partial f}{\partial x_{ij}}\right]_{ij} = \boldsymbol{a}^{\mathsf{T}}\boldsymbol{b} \in \mathbb{R}^{p \times q}.$$

Derivative w.r.t. matrices

Let y = xW + b where $W \in \mathbb{R}^{n \times m}$, $x \in \mathbb{R}^n$, and $b \in \mathbb{R}^m$.

- Then, the derivative $\frac{\partial y}{\partial W}$ of y with respect to W should be three dimensional!
- If L is a real-valued function of y, then the derivative of L w.r.t. W is

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial W} = \frac{\partial L}{\partial \mathbf{y}} \frac{\partial (\mathbf{x}W + \mathbf{b})}{\partial W} = \mathbf{x}^{\top} \frac{\partial L}{\partial \mathbf{y}}$$

by the chain rule.

*
$$\mathbf{x}^{\top} \in \mathbb{R}^{n \times 1}$$
, $\frac{\partial L}{\partial \mathbf{y}} \in \mathbb{R}^{1 \times m}$ so that $\frac{\partial L}{\partial W} \in \mathbb{R}^{n \times m}$.

MLP Classification Forward Pass

Let $\mathcal{D} = \{(x^n, y^n)\}_{n=1}^N$ be a dataset of K classes. Consider 2-layer Multi-layer Perceptron.

• Input dim: *d*, Hidden dim: *h*, Output dim: *K* (# of classes)

$$x^n \mapsto z^{n,1} = x^n W^1 + b^1 \mapsto a^n = \sigma(z^{n,1}) \mapsto z^{n,2} = a^n W^2 + b^2 \mapsto \hat{y}^n = Softmax(z^{n,2})$$

- Here, the parameteres are $W^1 \in \mathbb{R}^{d \times h}$, $\boldsymbol{b}^1 \in \mathbb{R}^h$, $W^2 \in \mathbb{R}^{h \times K}$, $\boldsymbol{b}^2 \in \mathbb{R}^K$.
- The activation function $\sigma(\cdot)$ is the sigmoid function, that is, $\sigma(z) = \frac{1}{1 + e^{-z}}$.
- Notice that $\frac{d}{dz}\sigma(z) = \sigma(z)(1 \sigma(z))$.

MLP Classification Loss

$$x^n \mapsto z^{n,1} = x^n W^1 + b^1 \mapsto a^n = \sigma(z^{n,1}) \mapsto z^{n,2} = a^n W^2 + b^2 \mapsto \hat{y}^n = Softmax(z^{n,2})$$

• Categorical Cross Entropy loss with respect to $\theta = (W^1, \boldsymbol{b}^1, W^2, \boldsymbol{b}^2)$

$$L(\theta) = \frac{1}{N} \sum_{n=1}^{N} \sum_{j=1}^{K} \left[-y_j^n \log(\hat{y}_j^n) \right]$$

• We use one-hot encoding so that if the data x^n belongs to j_* th class, then

$$y^n = \begin{bmatrix} y_1^n & y_2^n & \cdots & y_K^n \end{bmatrix} \quad \text{where} \quad y_j^n = \begin{cases} 1 & \text{if } j = j_* \\ 0 & \text{if } j \neq j_* \end{cases}.$$

• Notice that the summation over *j* is actually not a summation due to one-hot encoding.

Then gradients are...

$$x^n \mapsto z^{n,1} = x^n W^1 + b^1 \mapsto a^n = \sigma(z^{n,1}) \mapsto z^{n,2} = a^n W^2 + b^2 \mapsto \hat{y}^n = Softmax(z^{n,2}) \mapsto L$$

We want to find the following gradients: $\frac{\partial L}{\partial W^1}$, $\frac{\partial L}{\partial \boldsymbol{b}^1}$, $\frac{\partial L}{\partial W^2}$, $\frac{\partial L}{\partial \boldsymbol{b}^2}$.

Using the chain rule, we first find that

$$\frac{\partial L}{\partial W^2} = \sum_{n} \frac{\partial L}{\partial \hat{\mathbf{y}}^n} \frac{\partial \hat{\mathbf{y}}^n}{\partial z^{n,2}} \frac{\partial z^{n,2}}{\partial W^2} \quad \text{and} \quad \frac{\partial L}{\partial \boldsymbol{b}^2} = \sum_{n} \frac{\partial L}{\partial \hat{\mathbf{y}}^n} \frac{\partial \hat{\mathbf{y}}^n}{\partial z^{n,2}} \frac{\partial z^{n,2}}{\partial \boldsymbol{b}^2}.$$

$$x^n \mapsto z^{n,1} = x^n W^1 + b^1 \mapsto a^n = \sigma(z^{n,1}) \mapsto z^{n,2} = a^n W^2 + b^2 \mapsto \hat{y}^n = Softmax(z^{n,2}) \mapsto L$$

For
$$L(\theta) = \frac{1}{N} \sum_{n=1}^{N} \sum_{j=1}^{K} \left[-y_j^n \log(\hat{y}_j^n) \right],$$
 we have $\frac{\partial L}{\partial \hat{\mathbf{y}}^n} = \frac{1}{N} \left[-y_1^n / \hat{y}_1^n - y_2^n / \hat{y}_2^n - \cdots - y_K^n / \hat{y}_K^n \right]$ and

$$\frac{\partial \hat{\mathbf{y}}^n}{\partial \mathbf{z}^{n,2}} = \begin{bmatrix} \partial \hat{\mathbf{y}}^n_i \\ \partial z^{n,2}_j \end{bmatrix}_{ij} \text{ where } \frac{\partial \hat{\mathbf{y}}^n_i}{\partial z^{n,2}_j} = \begin{cases} \hat{y}^n_i (1 - \hat{y}^n_i) & \text{if } i = j \\ -\hat{y}^n_i \hat{y}^n_j & \text{if } i \neq j \end{cases} \text{ because } \hat{y}^n_i = \frac{e^{z^{n,2}_i}}{\sum_{k=1}^K e^{z^{n,2}_k}}.$$

Using the fact that \mathbf{y}^n is one-hot encoded, we have $\frac{\partial L}{\partial \mathbf{z}^{n,2}} = \frac{\partial L}{\partial \hat{\mathbf{y}}^n} \frac{\partial \hat{\mathbf{y}}^n}{\partial \mathbf{z}^{n,2}} = \frac{1}{N} (\hat{\mathbf{y}}^n - \mathbf{y}^n) \in \mathbb{R}^{1 \times K}$.

$$\therefore \frac{\partial L}{\partial W^2} = \sum_{n} \frac{\partial L}{\partial z^{n,2}} \frac{\partial z^{n,2}}{\partial W^2} = \frac{1}{N} \sum_{n} (\hat{\mathbf{y}}^n - \mathbf{y}^n) \frac{\partial (\mathbf{a}^n W^2 + \mathbf{b}^2)}{\partial W^2} = \frac{1}{N} \sum_{n} (\mathbf{a}^n)^\top (\hat{\mathbf{y}}^n - \mathbf{y}^n)$$
$$\frac{\partial L}{\partial \mathbf{b}^2} = \sum_{n} \frac{\partial L}{\partial z^{n,2}} \frac{\partial z^{n,2}}{\partial \mathbf{b}^2} = \frac{1}{N} \sum_{n} (\hat{\mathbf{y}}^n - \mathbf{y}^n) I_K = \frac{1}{N} \sum_{n} (\hat{\mathbf{y}}^n - \mathbf{y}^n)$$

$$\boldsymbol{x}^n \mapsto \boldsymbol{z}^{n,1} = \boldsymbol{W}^1 \boldsymbol{x}^n + \boldsymbol{b}^1 \mapsto \boldsymbol{a}^n = \sigma(\boldsymbol{z}^{n,1}) \mapsto \boldsymbol{z}^{n,2} = \boldsymbol{W}^2 \boldsymbol{a}^n + \boldsymbol{b}^2 \mapsto \hat{\boldsymbol{y}}^n = Softmax(\boldsymbol{z}^{n,2}) \mapsto \boldsymbol{L}$$

We now compute
$$\frac{\partial L}{\partial W^1} = \sum_n \frac{\partial L}{\partial z^{n,1}} \frac{\partial z^{n,1}}{\partial W^1}, \quad \frac{\partial L}{\partial \boldsymbol{b}^1} = \sum_n \frac{\partial L}{\partial z^{n,1}} \frac{\partial z^{n,1}}{\partial \boldsymbol{b}^1}.$$

We have
$$\frac{\partial L}{\partial \boldsymbol{a}^n} = \frac{\partial L}{\partial \boldsymbol{z}^{n,2}} \frac{\partial \boldsymbol{z}^{n,2}}{\partial \boldsymbol{a}^n} = \frac{\partial L}{\partial \boldsymbol{z}^{n,2}} (W^2)^{\mathsf{T}}, \quad \frac{\partial L}{\partial \boldsymbol{z}^{n,1}} = \frac{\partial L}{\partial \boldsymbol{a}^n} \frac{\partial \boldsymbol{a}^n}{\partial \boldsymbol{z}^{n,1}}, \quad \text{and} \quad \frac{\partial \boldsymbol{a}^n}{\partial \boldsymbol{z}^{n,1}} = \text{diag}[a_i^n (1 - a_i^n)].$$

Then
$$\frac{\partial L}{\partial z^{n,1}} = \frac{\partial L}{\partial z^{n,2}} (W^2)^{\mathsf{T}} \operatorname{diag}[a_i^n (1 - a_i^n)] \in \mathbb{R}^{1 \times h}.$$

$$\therefore \frac{\partial L}{\partial W^{1}} = \sum_{n} \frac{\partial L}{\partial z^{n,1}} \frac{\partial z^{n,1}}{\partial W^{1}} = \sum_{n} (\boldsymbol{x}^{n})^{\top} \frac{\partial L}{\partial z^{n,1}} = \sum_{n} (\boldsymbol{x}^{n})^{\top} \frac{\partial L}{\partial z^{n,2}} (W^{2})^{\top} \operatorname{diag}[a_{i}^{n}(1 - a_{i}^{n})] \in \mathbb{R}^{d \times h}$$

$$\frac{\partial L}{\partial \boldsymbol{b}^{1}} = \sum_{n} \frac{\partial L}{\partial z^{n,1}} \frac{\partial z^{n,1}}{\partial \boldsymbol{b}^{1}} = \sum_{n} \frac{\partial L}{\partial z^{n,1}} = \sum_{n} \frac{\partial L}{\partial z^{n,2}} (W^{2})^{\top} \operatorname{diag}[a_{i}^{n}(1 - a_{i}^{n})].$$

Gradient Descent Methods

Finally, we apply the gradient descent method to update the parameters.

• Recall that $W^1 \in \mathbb{R}^{d \times h}$, $\boldsymbol{b}^1 \in \mathbb{R}^{1 \times h}$, $W^2 \in \mathbb{R}^{h \times K}$, $\boldsymbol{b}^2 \in \mathbb{R}^{1 \times K}$ and

$$\frac{\partial L}{\partial W^1} \in \mathbb{R}^{d \times h}, \quad \frac{\partial L}{\partial \boldsymbol{b}^1} \in \mathbb{R}^{1 \times h}, \quad \frac{\partial L}{\partial W^2} \in \mathbb{R}^{h \times K}, \quad \frac{\partial L}{\partial \boldsymbol{b}^2} \in \mathbb{R}^{1 \times K}.$$

• Hence, the update equations should be

$$W^1 \leftarrow W^1 - \eta \frac{\partial L}{\partial W^1}, \quad \boldsymbol{b}^1 \leftarrow \boldsymbol{b}^1 - \eta \frac{\partial L}{\partial \boldsymbol{b}^1}$$

 $W^2 \leftarrow W^2 - \eta \frac{\partial L}{\partial W^2}, \quad \boldsymbol{b}^2 \leftarrow \boldsymbol{b}^2 - \eta \frac{\partial L}{\partial \boldsymbol{b}^2}$