Selected Topics for Derivation

Robert Schmidt

Abstract

The following are notes on the key results from the **Elements of Statistical Learning** text. They were primarily derived from course notes and readings in the Stanford STATS 315: *Modern Applied Statistics* series.

Contents

1	Splines	2
	1.1 Derivation: piecewise polynomials and splines	2
	1.2 Interpolating natural spline minimizes smoothing spline problem	
	1.2.1 Step 1: Integral result	
	1.2.2 Step 2: Inequality result	
	1.2.3 Step 3: Conclusion on minimizer	
2	Smoothing matrices	5
	2.1 Reinsch form and kernel matrix	5
	2.2 Proof of kernel trick	
3	Semi-parametric linear modeling	6
	3.1 Formulation	6
	3.2 Solution	
	3.3 Solution properties	
4	Trees	7
	4.1 Tree estimate	7
	4.2 Improvement in loss by splitting	
5	Neural network backprop overview	S

- 1 Splines
- 1.1 Derivation: piecewise polynomials and splines

Interpolating natural spline minimizes smoothing spline problem

Suppose $N \geq 2$, with g(x) as a natural cubic spline that interpolates $\{x_i, z_i\}_{i=1}^N$, with $a < x_1 < \cdots < x_N < b$. Let \tilde{g} be any other differentiable function on [a, b] that interpolates the N pairs. For this derivation, I follow the outline set forth in ESL problem 5.7.

1.2.1 Step 1: Integral result

Let $h(x) = \tilde{g}(x) - g(x)$. Integrating by parts, we see that

$$\int_{a}^{b} g''(x)h''(x) dx = g''(x)h'(x)\Big|_{a}^{b} - \int_{a}^{b} g'''(x)h'(x) dx$$

Since g(x) is a natural spline: $g''(a) = 0 = g''(b) \implies g''(x)h'(x)\big|_a^b = 0$. So, we see that $\int_a^b g''(x)h''(x)\,dx = -\int_a^b g'''(x)h'(x)\,dx$. We can break $-\int_a^b g'''(x)h'(x)\,dx$ into knots given that the spline is defined piecewise:

$$-\int_{a}^{b} g'''(x)h'(x) dx = -\sum_{j=1}^{N-1} \int_{x_{j}}^{x_{j+1}} g'''(x)h'(x) dx$$

Furthermore, we can do each of the integrals in the sum separately, and integrate each one by parts:

$$-\sum_{j=1}^{N-1} \int_{x_j}^{x_{j+1}} g'''(x)h'(x) dx = -\sum_{j=1}^{N-1} g'''(x)h(x)\Big|_{x_j}^{x_{j+1}} + \sum_{j=1}^{N-1} \int_{x_j}^{x_{j+1}} g^{(4)}(x)h(x) dx$$

Since g(x) is piecewise cubic, $g^{(4)}(x) = 0 \ \forall x$.

Summarizing all steps up to this point, $\int_a^b g''(x)h''(x) dx = -\sum_{j=1}^{N-1} g'''(x)h(x)\Big|_{x_i}^{x_{j+1}}$.

Again noting that g(x) is piecewise cubic, we can rewrite the right hand side expression:

$$-\sum_{j=1}^{N-1} g'''(x)h(x)\Big|_{x_j}^{x_{j+1}} = -\sum_{j=1}^{N-1} g'''(x_j^+)(h(x_{j+1}) - h(x_j))$$

We now consider $\int_a^b g''(x)h''(x) dx = -\sum_{j=1}^{N-1} g'''(x_j^+)(h(x_{j+1}) - h(x_j))$. Recalling the definition of $h(x) = \tilde{g}(x) - g(x)$, we see that $\tilde{g}(x_i) = g(x_i)$ at each endpoint x_i (they are both interpolating functions) $\implies h(x_i) = 0$ for all endpoints.

So,
$$\sum_{j=1}^{N-1} g'''(x_j^+)(h(x_{j+1}) - h(x_j)) = 0.$$

$$\therefore \int_a^b g''(x)h''(x) dx = 0$$

1.2.2 Step 2: Inequality result

In step 1, we showed that $\int_a^b g''(x)h''(x) dx = 0$. We now consider $\int_a^b \tilde{g}''(t)^2 dt$.

$$\begin{split} \int_a^b \tilde{g}''(t)^2 \, dt &= \int_a^b (h''(t) + g''(t))^2 \, dt \quad \text{using the definition of } h(x) \\ &= \int_a^b h''(t)^2 \, dt + \int_a^b g''(t)^2 \, dt + 2 \int_a^b h''(t) g''(t) \, dt \\ &= \int_a^b h''(t)^2 \, dt + \int_a^b g''(t)^2 \, dt + 0 \quad \text{by 5.7 (a)} \\ &= \int_a^b h''(t)^2 \, dt + \int_a^b g''(t)^2 \, dt \end{split}$$

This would imply that $\int_{a}^{b} \tilde{g}''(t)^{2} dt \ge \int_{a}^{b} g''(t)^{2} dt \ \forall t \in [a, b] \text{ since } h''(t)^{2} \ge 0 \text{ everywhere.}$

Note that h''(t) = 0 everywhere would imply that h(x) is linear on [a, b].

Given that $h(x_i) = 0$ for all knots/endpoints x_i and $N \ge 2$, this could only be true if $h = 0 \ \forall \ t \in [a, b]$, which would then imply that $g(x) = \tilde{g}(x)$.

So, equality only holds if h is identically zero in [a, b].

Step 3: Conclusion on minimizer

We now consider the penalized least squares problem:

$$\min_{f} \left[\sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \int_a^b f''(t)^2 dt \right]$$

For a minimizer $f = \tilde{g}$, we can construct a natural cubic spline g with the same values as \tilde{g} at the spline's knots, $\{x_i\}_{i=1}^N$. This implies that $\sum_{i=1}^N (y_i - \tilde{g}(x_i)) = \sum_{i=1}^N (y_i - g(x_i))$. Since \tilde{g} is a minimizer, and due to 5.7 (b) (in the case that h(x) = 0 everywhere), we know that

$$\lambda \int_a^b \tilde{g}''(t)^2 dx = \lambda \int_a^b g''(t)^2 dx$$

This implies that $f = \tilde{g} = g$, and therefore that the natural cubic spline is the minimizer.

- 2 Smoothing matrices
- 2.1 Reinsch form and kernel matrix
- 2.2 Proof of kernel trick

- 3 Semi-parametric linear modeling
- 3.1 Formulation
- 3.2 Solution
- 3.3 Solution properties

- 4 Trees
- 4.1 Tree estimate
- 4.2 Improvement in loss by splitting

8

Neural network backprop overview