

Seminar 3

- 1. Let M be a non-empty set and let $S_M = \{f : M \to M \mid f \text{ is bijective}\}$. Show that (S_M, \circ) is a group, called the *symmetric group* of M.
- **2.** Let M be a non-empty set and let $(R,+,\cdot)$ be a ring. Define on $R^M=\{f\mid f:M\to a\}$ R} two operations by: $\forall f, g \in R^M$,

$$f + g: M \to R$$
, $(f + g)(x) = f(x) + g(x)$, $\forall x \in M$,

$$f \cdot g : M \to R$$
, $(f \cdot g)(x) = f(x) \cdot g(x)$, $\forall x \in M$.

Show that $(R^M, +, \cdot)$ is a ring. If R is commutative or has identity, does R^M have the same property?

- **3.** Prove that $H = \{z \in \mathbb{C} \mid |z| = 1\}$ is a subgroup of (\mathbb{C}^*, \cdot) , but not of $(\mathbb{C}, +)$.
- **4.** Let $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ $(n \in \mathbb{N}^*)$ be the set of n-th roots of unity. Prove that U_n is a subgroup of (\mathbb{C}^*,\cdot) .
 - **5.** Let $n \in \mathbb{N}$, $n \geq 2$. Prove that:
 - (i) $GL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid det(A) \neq 0\}$ is a stable subset of the monoid $(M_n(\mathbb{C}), \cdot)$;
 - (ii) $(GL_n(\mathbb{C}), \cdot)$ is a group, called the general linear group of rank n;
 - (iii) $SL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid det(A) = 1\}$ is a subgroup of the group $(GL_n(\mathbb{C}), \cdot)$.
 - **6.** Show that the following sets are subrings of the corresponding rings:

 - (i) $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \text{ in } (\mathbb{C}, +, \cdot).$ (ii) $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\} \text{ in } (M_2(\mathbb{R}), +, \cdot).$
- **7.** (i) Let $f: \mathbb{C}^* \to \mathbb{R}^*$ be defined by f(z) = |z|. Show that f is a group homomorphism between (\mathbb{C}^*, \cdot) and (\mathbb{R}^*, \cdot) .
- (ii) Let $g: \mathbb{C}^* \to GL_2(\mathbb{R})$ be defined by $g(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Show that g is a group homomorphism between (\mathbb{C}^*,\cdot) and $(GL_2(\mathbb{R}),\cdot)$.
- **8.** Let $n \in \mathbb{N}$, $n \geq 2$. Prove that the groups $(\mathbb{Z}_n, +)$ of residue classes modulo n and (U_n,\cdot) of n-th roots of unity are isomorphic.
 - **9.** Let $n \in \mathbb{N}$, $n \geq 2$. Consider the ring $(\mathbb{Z}_n, +, \cdot)$ and let $\widehat{a} \in \mathbb{Z}_n^*$.
 - (i) Prove that \hat{a} is invertible \iff (a, n) = 1.
 - (ii) Deduce that $(\mathbb{Z}_n, +, \cdot)$ is a field $\iff n$ is prime.
- **10.** Let $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R})$. Show that $(\mathcal{M}, +, \cdot)$ is a field isomorphic to $(\mathbb{C}, +, \cdot)$.

		$\mathbb{N}, n \geq$			A) / ()) :a a	at a la l	ماساد	f .	la a a	an aid (
		$(A \in \mathbb{C})$) is				-						$M_n(\mathbb{C}$	·), ·); -					
(iii)	$SL_n($	$\mathbb{C}) = \{A$	$\in M_n($	$(\mathbb{C}) \mid \underline{det}$	(A) =	1) is	a sub	group	of the	group	$G(GL_n)$	$_{n}(\mathbb{C}),\cdot$)					
(i)	(i)	GLn(C)) = \A	- € H, ((c)	det (A)	وه ≠(
		4m 6 6	$3L_{h}(\mathfrak{C})$)	GL,(¢) + L)											
	/ = 1																	
	77	Let A	and 1	3 EG	Ln(C)) =)	det	A· du	t B +c)	1.0	001	a) _			ما		
		Let A					det ((AB) =	≠ 0	J3	H.D.	E GZn (4) -) (vuc	Mai	<i>O</i> 1		
ji)	4550	ciativity	is ent	writed fo	gnu (Mn (0)												
	4	m e GLn	(C) =)) Y 15	Hu	neutral	ولها	eul										
	het	- A e	GLn(P)=) dut	A + C) =)	J A	15.4	A ·A	= J _M	=>	Out 1	· det	A ⁻¹ -	L =	•		
											=)	det A	+ 0	7	A-1	C (1)	(n)	
																C 61	(4)	
<i>i</i> ii.	5L	(((((((((((((((((((A € 0	$\mathcal{A}_{\mathbf{h}}(0)$	det A	= 1}												
	(i) JM	e Bln(1		Bln(C)	<i>≠</i> Ø													
		'																
	(ü) \	F A,B G	3 54n (a) 🕹 A	·B 66	2n(C)												
		det (A·B)	- Oet	A·dut B														
		det A .	det B =	T														
		dut (A	·B) = 1)	A·B€	64 _n (c)												
	(7::)	FAE	GL (p)	A -	1c 6L	(C) ?												
		det (A	A ⁻¹) =	det A · de	t A-1													
		1.1. 4		lot A - dei	L4-1													
		000 J	n = 0	W. # - W	1 71													
		Л	- 1	· dut h-1) (dut A ⁻¹	- L	، (و	410	54n(q))							
																	+-	
																	+	

