Chapter 3 Hydrograph Analysis

Hydrograph Analysis

- © Components of Runoff
- Q Hydrograph Characteristics
- Unit Hydrograph Theory
- Synthetic Unit Hydrographs

- The major characteristics of streamflow are:
 - its volume for a certain duration (month or year)
 - different uses & storage
 - its extreme values

Hydrograph Analysis

Components of Runoff

- Channel Precipitation
- Surface Runoff
- Interflow
- Groundwater Flow

- Interception, depression storage, soil moisture are LOSSES for streamflow.
- The other portions of precipitation reach streams sooner or later.

COMPONENTS OF RUNOEF

In a rainfall block

In the channel

Channel Precipitation

- The part of the precipitation which falls directly on the stream or lake surfaces.
- @ Usually very small \rightarrow Surface area_{streams & lakes} < Basin area.
- Important when catchment has large lakes or reservoirs.
- @ Channel precipitation = rainfall depth x Surface area streams & lakes
- Channel precipitation_{streams} < Channel precipitation_{lakes}

Surface Runoff

The flow occurring due to gravity on the soil surface:

surface runoff = overland flow + streamflow in channels

- At the beginning of the storm no surface runoff occurs for some time (i.e. all the precipitation infiltrates)
- When infiltration capacity < rainfall intensity:</p>
 - water starts filling the depression then detention storages
 - a thin layer of water is formed on the soil surface & flows by gravity along the greatest slope (overland flow)
- After the overland flow reaches a stream channel, streamflow or channel flow begins to move toward the outlet of catchment.
- The rate of surface runoff depends on:
 - permeability & initial humidity of the soil,
 - rainfall intensity.

Interflow

• Infiltrated water fills the voids in the soil & brings the water content to field capacity.

• After that, water may move in the soil vertically or horizontally in the upper soil layers

feeds forms groundwater interflow (subsurface flow)

- Amount of interflow depends on the geological characteristics of the basin:
 - ★ A thin soil cover over an impermeable layer Tes interflow.
 - * A thick and uniformly permeable soil ↓es interflow but
 ↑es percolation.

Groundwater Flow

- Infiltrated water may
 - fill the voids in the soil above the groundwater table
 - percolate down to feed groundwater (gw flow, base flow, dry weather flow)
- If GW table intersects with the river cross sections
 - gw may feed the river or
 - river may feed gw
- Since gw flow occurs through the soil particles with very small velocity, the rate of GW flow does not change rapidly.

Hydrograph

- Sometimes plotted as stage vs time.

The comparison of hydrographs with the corresponding rainfall hyetographs provides a lot of information about the rainfall-runoff relation of the basin.

The Shape of Hydrograph

- @ Effective rainfall
- Infiltrated amount
- Surface runoff
- @ Baseflow
- Rising limb
- @ Crest
- Falling limb
- Ouration of net rain (t_r)
- Basin lag (t_L)
- Time to peak (tp)
- Base time (t_b)

Hydrograph

The crest of the hydrograph is governed by the duration of rainfall.

- Shape of the rising limb = f(rainfall intensity & basin characteristics s.a. infiltration capacity, shape, slope, etc.)
- Shape of falling limb = f(basin characteristics s.a. surface storage, etc.)
- Characteristics of the rainfall do not impact the falling limb since recession starts after the end of the rainfall.

Hydrograph shapes for different conditions

i :rainfall rate

f :infiltration rate

F :total amount of

infiltrated water

SMD : soil moisture deficiency

Hydrograph Analysis

Effect of different orientations of the same shape

Effect of shape of the basin

The shape of the hydrograph varies with the orientation of the storm in the basin.

Time-area concept for hydrograph

After an effective rainfall of 1 cm depth in 1 hour

HYDROGRAPH ANALYSIS

- Consider a rainfall with a certain pattern, which uniformly covers the entire basin.
- @ Assume there is no infiltration \rightarrow all the rainfall will be effective, and it will produce only surface runoff.

If the drainage area is divided into a larger number of subareas & hyetographs into smaller time intervals, a better shaped hydrograph would be obtained.

Separation of Hydrograph Components

- Surface runoff & base flow are very different in character.
- @ Since baseflow represents the flow through soil pores, changes occur very slowly.
- There is a lag between cause and effect, (days, weeks, or months).
- This will depend on the transmissivity of the aquifers bordering the stream, as well as the climate.

Separation of Hydrograph Components

- @ GW flow from a basin can be simulated by the flow through outlet of a large tank.
- Assuming that there is a band of porous material in the outlet, the flow will be:

$$q = \frac{k p a}{L} h$$
 (1)

q: discharge (m³/s)

k: permeability (m/s)

p: porosity

a: cross-sectional area (m^2)

L: length of the porous material (m)

h: head (m) or depth of water in the tank

Separation of Hydrograph Components

The amount of water that flows for a certain duration is:

$$A dh = -q dt \tag{2}$$

When an expression for dh is obtained from first eq. and introduced into second,

$$q = \frac{k p a}{L} h$$

$$dh = \frac{L}{k p a} dq$$

$$q = \frac{k p a}{L} h$$
 $dh = \frac{L}{k p a} dq$ $\frac{dq}{q} = -\frac{k p a}{A L} dt$

Let
$$\alpha = \frac{k p a}{A L} \left(\frac{L T^{-1} L^2}{L^2 L} = \frac{1}{T} \right)$$
 which is a constant with T^{-1} unit.

$$\int_{q_0}^{q} \frac{dq}{q} = \int_{t_0}^{t} -\alpha \, dt$$

$$q = q_0 e^{-\alpha(t-t_0)}$$

$$q = q_0 e^{-\alpha t}$$

Hydrograph Separation Techniques

- Separation line between surface runoff & baseflow is not definite & varies widely depending on the existing conditions.
- Inaccuracies in separation are not very important for many storms, since the max. rate of discharge is only slightly affected by the base flow.
- Methods for seperation:
 - Simple Method
 - Approximate Method
 - Barnes (Semi-log) Method

Separation by Barnes (Semi-log) Method

1) Total flow (SF+SSF+BF)

$$q = q_0 e^{-\alpha_1 t}$$

- 4 Base flow (BF)
- (2) (SF+SSF) (1) (4) $q = q_0 e^{-\alpha_2 t}$
- 5 Subsurface flow (SSF)
- 3 Surface flow (SF) (2)-(5)

Unit Hydrograph (UH) Theory

- Hydrograph of surface runoff (direct runoff) resulting from 1 cm of excess rainfall which is uniformly distributed over basin area at a uniform rate during a specified period of time.
- Oepth = 1 mm for arid or semi-arid regions or if basin is small.
- @ Given by Sherman in 1932.
- It is assumed that the UH is representative for the runoff process of a basin.
- @ Baseflow should be separated from total flow to find direct runoff, and all the losses should be subtracted from total precipitation before any analysis.

Unit Hydrograph (UH) Theory

Q UH assumptions:

- 1. Excess rainfall is uniformly distributed within a specified period of time.
- 2. Excess rainfall is uniformly distributed over the basin area.
- 3. Base time of direct runoff is constant for a specified duration of rainfall.
- 4. Ordinates of direct runoff hydrograph are directly proportional to the total amount (depth) of direct runoff (= depth of excess rainfall) for the same duration rainfalls.
- 5. Unit hdrograph is unique for a basin.

Discussions of UH assumptions:

1. Short duration rainfalls

2. Small area < 5000 km², otherwise sub-basins A, B, C.

3. Baseflow separation methods.

4. Linearity assumption

(Principle of superposition, Principle of proportionality)

5. Principle of time-invariance

When basin characteristics change \rightarrow UH changes

Unit Hydrograph

- \bigcirc The unit hydrograph is denoted as dUH_{t} (d in cm, t in hr)
- The depth of flow for a hydrograph → the area under the hydrograph.

$$d = rac{V}{A} = rac{\int q \, dt}{A} = rac{\sum q \Delta t}{A}$$

 $\sum q = \text{sum of ordinates of the}$ hydrograph (m³/s)

dt = time interval (s)

 $A = basin area (m^2)$

d = depth(m)

Unit Hydrographs of Different Durations

- There are 2 methods to obtain UHs of different durations for a basin when a UH of certain duration is known
 - The lagging method
 - S-curve method

The Lagging Method

- Q A UH of certain duration can easily be obtained by using the lagging method if a UH of different duration is known for the basin.
- The only condition is that the durations be multiples of each other.

HYDROGRAPH ANALYSIS - lagging method

 $UH_2 + (2 \text{ hr lagged}) UH_2 = 2UH_4$

HYDROGRAPH ANALYSIS - lagging method

 $UH_t + (t hr. lag) UH_t + (2t hr. lag) UH_t = 3UH_{3t}$

$$\begin{array}{c} q_p \downarrow es \\ t_p \uparrow es \\ t_b \uparrow es \end{array}$$

Example 5 UH_1 of a basin is given.

Determine UH2, UH3 and area of this basin by lagging method

Time (hr)	UH ₁ m ³ /s	1 hr.lag UH₁	2UH₂	UH ₂	2 hr.lag UH ₁	3UH ₃	UH ₃
0	0	51	0	0	51.1		
1	12		12	6		0	0
2	36	0	48	24		12	4
3	24	12	60	30	0	48	16
4	18	36	42	21	12	72	24
5	12	24	30	15	36	78	26
6	6		18	9			
7	0	18	6	3	24	54	18
8		12	0	0	18	36	12
9		6			12	18	6
		0			6	6	2
					0	0	0

 Σq 108 108

 $UH_1 + (1 \text{ hr. lag}) UH_1 = 2 UH_2$

 $UH_1 + (1 \text{ hr. lag}) UH_1 + (2 \text{ hr. lag}) UH_1 = 3 UH_3$

$$d = \frac{\sum q * \Delta t}{A} \rightarrow A = \frac{\sum q * \Delta t}{d}$$

$$A = \frac{108 * 1 * 3600}{0.01} = 38.88 * 10^6 \text{ m}^2 = 38.88 \text{ km}^2$$

Example 6

Tabulated below are the ordinates of the total direct runoff hydrograph of an 18-hr complex storm. This storm is supposed to be uniformly distributed over the basin, and the excess rainfall has the following pattern: 2 cm in the first 6 hours, 4 cm in the following 6 hours and 3 cm in the last 6 hours. Catchment area is $732 \, \text{km}^2$. Assuming there is no error in the data, determine the UH₆ of the basin.

Time (hr)	0	2	4	6	8	10	12
Flow (m ³ /s)	0	266	544	656	944	1222	1334

14	16	18	20	22	24	26
1223	1084	1028	618	201	33	0

Solution

The hyetograph of the storm is given in figure below:

The equation of total storm hydrograph can be written as follows:

Total Storm = $2UH_6$ + (6 hr lagged) $4UH_6$ + (12 hr lagged) $3UH_6$

Solution

Since it is assumed that there are no errors in the data, lagging method can be used.

	1				
Time (hr)	Flow (m³/s)	2UH ₆	6 hr lagged 4UH ₆	12 hr lagged 3UH ₆	UH ₆
0	0 🔷	0			0
2	266 秦	266			133
4	544 ←	 544			272
6	656 ←	656	0		328
8	944	412	532		206
10	1222	134 ←	1088		67
12	1334	22 🗲	1312 ←	0	11
14	1223	0	824 ←	399	0
16	1084		268 ←	816	
18	1028		44 🗲	984	
20	618		0 ←	618	
22	201 🔷			201	
24	33 🔷			33	
26	0 🔷			 0	
TOTAL	9153				

The S-Curve Method

- It is used to obtain UHs of different durations that are not multiples of each other.
- @ S-curve is the hydrograph that would result from an infinite series of UHs of t_r durations, each delayed t_r hours wrt the preceding one.
- @ In other words, it is the hydrograph of the runoff of continuous rainfall with an intensity of $1/t_{\rm r}$.
- @ S-curve has the form of a mass curve, the discharge of the basin becoming constant around base time of UH of t_r .
- Thus each S-curve is unique for a specified UH duration, in a particular drainage basin.

5 - Curve

$$n = t_b/t_r$$

$$Q_e = i . A \text{ (mm/hr . km}^2)$$

 $Q_e = d/t_r . A = 1/t_r . A$
 $(d = 1 \text{ cm})$

$$Q_e = 2.78 \frac{A}{t_r}$$

 Q_e = constant outflow (m³/s) A = area of basin (km²) t_r = duration of UH (hr)

Obtaining UH using S-curve $(t_2 < t_1)$

Diff. =
$$S_{t1}$$
 - (t_2 hr. lag) S_{t1}

Diff. =
$$(t_2 . 1/t_1) UH_{t2} = t_2/t_1 UH_{t2}$$

$$UH_{t_2} = \frac{t_1}{t_2} [S_{t_1} - (t_2 \text{ hr. lag}) S_{t_1}]$$

Example 7

Excess rainfall blocks of a precipitation event over a basin are as follows: 150 mm in the first three hours, 90 mm in the consecutive two hours. The ordinates of the S3 curve of the related basin are given below.

- Determine the ordinates of the surface runoff hydrograph resulting from the above given rainfall blocks,
- ii. Assuming constant baseflow of $30 \text{ m}^3/\text{s}$, determine the ordinates of resulting streamflow,
- iii. Determine the size of the basin.

Time (hr)	0	1	2	3	4	5	6	7	8	9	10	11
53 (m³/s)	0	22	50	66	76	84	90	90	90	90	90	90

Solution

DR-equation = $15UH_3 + (3hr lag) 9UH_2$

Time (hr)	S ₃	2 hr lag S ₃	Diff = 2/3 UH ₂	(3/2) Diff = UH ₂	3 hr lag S ₃	Diff = (3/3) UH ₃	(3/3) Diff = UH ₃	15UH ₃	3 hr lag 9UH ₂	DR hyd.	Total Hyd. (+30)
0	0		0	0		0	0	0		0	30
1	22		22	33		22	22	330		330	360
2	50	0	50	75		50	50	750		750	780
3	66	22	44	66	0	66	66	990	0	990	1020
4	76	50	26	39	22	54	54	810	297	1107	1137
5	84	66	18	27	50	34	34	510	675	1185	1215
6	90	76	14	21	66	24	24	360	594	954	984
7	90	84	6	9	76	14	14	210	351	561	591
8	90	90	0	0	84	6	6	90	243	333	363
9	90	90			90	0	0	0	189	189	219
10	90	90			90				81	81	111
11	90	90			90				0	0	30

Solution

(iii)

$$d_{SR} = (\Sigma Q_{SR} dt) / A_{basin}$$

 $d_{SR} = 15 + 9 = 24 cm = 0.24 m$

$$A_{\text{basin}} = (\Sigma Q_{SR} dt) / d_{SR} = (6480 * 60 * 60) / 0.24$$

$$A_{\text{basin}} = 97.2 \times 10^6 = 97.2 \text{ km}^2$$

Also, you can calculate A_{basin} using UH_2 (or UH_3).

Example 8 UH₁ of a basin is given.

Determine UH₂ and UH₃ of this basin by 5-curve method

† (hr)	UH ₁	1 h.l UH ₁	2 h.l UH ₁	3 h.l UH ₁	4 h.l UH ₁	5 h.l UH ₁	6 h.l UH ₁	S ₁	2 h.l S ₁	diff	UH ₂	3 h.l 5 ₁	diff	UH ₃
0	0							0		0	0		0	0
1	12	0						12		12	6		12	4
2	36	12	0					48	0	48	24		48	16
3	24	36	12	0				72	12	60	30	0	72	24
4	18	24	36	12	0			90	48	42	21	12	78	26
5	12	18	24	36	12	0		102	72	30	15	48	54	18
6	6	12	18	24	36	12	0	108	90	18	9	72	36	12
7	0	6	12	18	24	36	12	108	102	6	3	90	18	6
8		0	6	12	18	24	36	108	108	0	0	102	6	2
9			0	6	12	18	24	108	108			108	0	0

$$N = t_{b} / t_{r} = 7/1$$

$$= 7$$

$$UH_{2} = \frac{1}{2} [S_{1} - (2 \text{ hr.lag}) S_{1}]$$

$$= 7$$

$$UH_{3} = \frac{1}{3} [S_{1} - (3 \text{ hr.lag}) S_{1}]$$

$$UH_{3} = \frac{1}{3} [S_{1} - (3 \text{ hr.lag}) S_{1}]$$

Derivation of the Unit Hydrograph

- UH of a basin is derived from a hydrograph resulting from a storm of uniform intensity, which covers the basin uniformly.
- If the basin is very large, it may never be covered by a storm of uniform intensity.
- In such a case the basin should be divided into tributary subbasins, & a UH for each should be determined separately.
- In the derivation of the UH for a certain basin, it is necessary to study as many simple storms as possible, so as to obtain a representative UH.

The procedure:

- Q 1. Study rainfall records to select storms giving reasonably high excess rainfall depths (= direct runoff depths).
- Q 2. Separate direct runoff from the other components in the selected storm hydrographs.
- @ 3. Determine the volume & depth of direct runoff for each hydrograph.

 $DR = d_{dr}UHt_{r}$

- **Q** 4. Determine the Φ -index to find the duration of excess rainfall, which gives the duration of the hydrograph (t_r) .
- 5. Divide ordinates of each of the direct runoff hydrograph by the corresponding DR depth to obtain the UHs
- 6. Obtain the same duration UHs from different duration UHs.

- Q 7. Determine the representative UH for the basin by averaging
 - * the peak flows,
 - times to peak, and
 - time bases of the UHs.

The average UH is then sketched following the shapes of the individual hydrographs.

@ 8. Adjust the area under the curve to unit depth.

Synthetic Unit Hydrograph

- In case of lack rainfall-runoff data, a unit hydrograph can be generated synthetically.
- Synthetic unit hydrographs relate peak flow, time to peak, basin lag, & base time statistically to watershed characteristics like length, slope, area, & percent imperviousness, etc.
- Synthetic unit hydrographs may be synthesized on the basis of past experience in other areas & applied as first approximations to the ungaged catchments.

http://unithydro.sdsu.edu/

Synthetic Unit Hydrograph

- Snyder Method
- SCS Method(developed by Soil Conservation Services, 1957)
- Espey Method
- @ Mockus Method
- OSİ Synthetic Unit Hydrograph Method
- Time Area Method

SCS Method

- It is based on the evaluation of many UHs from basins ranging in size and geographic location.
- @ Then a dimensionless hydrograph, which has a simple triangular shape, is developed from these UHs.

Figure 7.27 Triangular unit hydrograph

 Q_p : peak flow (m³/s)

: duration of excess rainfall

: time to peak or time of rise (hr)

: time of fall or recession time (hr)

: base time

SCS Method

$$Q_p = \frac{2.08A}{t_p}$$

$$A : basin area in (km2)$$

$$t_p : time to peak (hr)$$

$$Q_p : peak discharge (m3/s)$$

@ Potential max. retention, S (inch): $S = \frac{1000}{CN} - 10$

CN = f (soil group, surface cover, & antecedent moisture condition)

- @ Basin lag (hr): $t_L = \frac{L^{0.8}(S+1)^{0.7}}{1900.S_*^{0.5}}$
- **@** Time to peak (hr): $t_p = \frac{t_r}{2} + t_L$
- @ Base time (hr): $t_b = 2.67t_p$ t_L: basin lag (hr)

L: the main stream length (ft)

 S_h : the bed slope of the main stream.

Curve Number Table

	Description and Curve Numbers from TR-55									
Land Use Description on Input Screen	Cover Description	Curve Number for Hydrologic Soil Group								
	Cover Type and Hydrologic Condition	% Impervious Areas	Α	В	С	D				
Agricultural	Row Crops - Staight Rows + Crop Residue Cover- Good Condition (1)		64	75	82	85				
Commercial	Urban Districts: Commerical and Business	85	89	92	94	95				
Forest	Woods ⁽²⁾ - Good Condition		30	55	70	77				
Grass/Pasture	Pasture, Grassland, or Range ⁽³⁾ - Good Condition		39	61	74	80				
High Density Residential	Residential districts by average lot size: 1/8 acre or less	65	77	85	90	92				
Industrial	Urban district: Industrial	72	81	88	91	93				
Low Density Residential	Residential districts by average lot size: 1/2 acre lot	25	54	70	80	85				
Open Spaces	Open Space (lawns, parks, golf courses, cemeteries, etc.) ⁽⁴⁾ Fair Condition (grass cover 50% to 70%)		49	69	79	84				
Parking and Paved Spaces	Impervious areas: Paved parking lots, roofs, drivesways, etc. (excluding right-of-way)	100	98	98	98	98				

With the use of the above relations, a triangular unit hydrograph is obtained. Using the dimensionless coordinates of SCS unit hydrograph, the actual coordinates can be obtained.

t/t _p	Q/Q _p	t/t _p	Q/Q _p
0.0	0.00	1.7	0.46
0.1	0.03	1.8	0.39
0.2	0.10	1.9	0.33
0.3	0.19	2.0	0.28
0.4	0.31	2.2	0.207
0.5	0.47	2.4	0.147
0.6	0.66	2.6	0.107
0.7	0.82	2.8	0.077
0.8	0.93	3.0	0.055
0.9	0.99	3.2	0.040
1.0	1.00	3.4	0.029
1.1	0.99	3.6	0.021
1,2	0.93	3.8	0.015
1.3	0.86	4.0	0.011
1.4	0.78	4.5	0.005
1.5	0.68	5.0	0.000
1.6	0.56		

Example 9

Given: t_r=2 hrs, A=150 km², CN=75, L=21 km, S_h=1%

NOTE: 1 m=3.28 ft L=68800 ft

$$S = \frac{1000}{75} - 10 = 3.33 \text{ inch}$$

$$t_{\rm L} = \frac{(68800)^{0.8} (3.33 + 1)^{0.7}}{1900\sqrt{1}} = 10.9 \,\text{hr}$$

$$t_p = \frac{2}{2} + 10.9 = 11.9 \text{ hr}$$

$$Q_p = \frac{2.08 \times 150}{11.9} = 26.2 \,\mathrm{m}^3 / s$$

$$t_b = 2.67 \times 11.9 = 31.77 \text{ hrs}$$

Let us check if the depth of runoff is 1 cm

$$d = \frac{V}{A} = \frac{0.5 \times Q_p t_b}{150 \times 10^6} = \frac{0.5 \times 26.2 \times 31.77 \times 3600}{150 \times 10^6} = 0.01 \, m = 1 \, \text{cm}, \text{ O.K.}$$

