Positivity of polynomials in the symbolic square

1 Introduction

We denote as \mathbb{P}^n the *n*-dimensional projective space over \mathbb{C} . We write $S=\mathbb{C}[x_0,\cdots,x_n]$ and $\mathfrak{m}=(x_0,\cdots,x_n)\subset S$.

Definition 1.1. *Let* $I \subseteq S$ *be a homogeneous ideal. The saturation of* I *is defined to be*

$$I^{\text{sat}} = \{ f \in S \mid f \mathfrak{m}^k \subseteq I \text{ for some } k \geqslant 0 \}.$$

Theorem 1.2 ([1]). Let $X \subseteq \mathbb{P}^n$ be a smooth variety and $I \subseteq S$ be its homogeneous ideal. Then $I^{(d)} = (I^d)^{\text{sat}}$ for all d.

Theorem 1.3. Let $X \subseteq \mathbb{P}^n$ be a smooth irreducible variety and $I \subseteq S$ be its homogeneous ideal. Let $P \in \mathbb{P}^n$ be a real point of X, then I^2 and $I^{(2)}$ coincide when localized at P.

Proof. We only need to prove $I^{(2)}\subseteq I$ when localized at P. Let $I=(g_1,\cdots,g_m)$ and d be the maximal degree of the g_i . As I is prime, I^2 and $I^{(2)}$ agree when localized at I. Take any form $f\in I^{(2)}$, then by Theorem 1.3 we have $f\in (I^2)^{\mathrm{sat}}$, and so $f\mathfrak{m}^k\subset I^2$ for some k. In particular, $(x_0^k+\cdots+x_n^k)f\in I^2$ for some k. Take k to be even, then $x_0^k+\cdots+x_n^k\neq 0$ at P, so $f\in I^{(2)}$ when localized at P.

Theorem 1.4. Let $X \subseteq \mathbb{P}^n$ be a smooth irreducible variety and $I \subseteq S$ be its homogeneous ideal.

References

[1] Robert Lazarsfeld Lawrence Ein, Huy Tai Ha. Saturation bounds for smooth varieties. *Algebra & Number Theory*, 16:1531–1546, 2022.