ЛАБОРАТОРНАЯ РАБОТА №2 ИССЛЕДОВАНИЕ СЛОЖНЫХ СЛУЧАЙНЫХ СОБЫТИЙ

2.1 Цель работы

Освоить программное моделирования случайных событий, реализуемых комбинационными схемами; выполнить теоретический расчет вероятностей срабатывания комбинационных схем и найти оценки этих вероятностей экспериментальным путем; сравнить теоретические и экспериментальные результаты; оценить применимость теорем сложения и умножения вероятностей и формулы полной вероятности для вычисления вероятностей сложных событий на примере работы комбинационных схем.

2.2. Теоретический раздел

Элементарные (не разложимые на более простые части) случайные события, реализуемые в некотором эксперименте, называются ucxodamu этого эксперимента. Полная совокупность исходов $z_1, z_2, ..., z_m$ (пространство ucxodos) обозначается как

$$Z = \{z_1, z_2, ..., z_m\}.$$
 (2.1)

При осуществлении каждого эксперимента обязательно имеет место некоторый из исходов $z_i \in Z$ и не может быть такого эксперимента, результатом которого могли бы быть два или более исходов. Иными словами, исходы представляют собой *полную группу несовместных событий*.

На практике обычно наибольший интерес представляют не сами исходы, а некоторые их совокупности (комбинации), которые являются подмножествами множества Z. Любое подмножество A множества Z называется coбытием A:

$$A \subseteq Z$$
 (2.2)

Когда говорят, что *происходит* или *осуществляется* событие A, то подразумевается, что в A содержится некоторая совокупность элементарных событий (т.е. исходов) z_i .

Для любых событий A и B, принадлежащих пространству исходов эксперимента Z, имеют место **следующие определения.**

- 1. Объединением (суммой) $A \cup B$ событий A и B называется событие, состоящее в осуществлении хотя бы одного из событий A и B.
- 2. Совмещением (произведением) $A \cap B$ событий A и B называется событие, состоящее в осуществлении $\kappa a \kappa A$, $m a \kappa u B$. События A и B называются несовместными, если осуществление одного из них исключает возможность осуществления другого, т.е. если $A \cap B = \emptyset$.
- \overline{A} события \overline{A} события \overline{A} называется событие, состоящее в неосуществлении события \overline{A} . Событие \overline{A} называется также противоположным событию \overline{A} . Осуществление хотя бы одного из событий пространства \overline{Z} является достоверным событием. Поэтому здесь множество \overline{Z} играет роль универсального множества.

Поскольку не произойти хотя бы одно какое-либо событие из пространства Z не может, то *неосуществление* хотя бы одного события является *невозможным* событием, т.е. это событие представляет собой пустое множество \emptyset .

Под вероятностью $P(z_i)$ исхода z_i понимают численную меру, которая характеризует объективную возможность данного исхода эксперимента. Если некоторый исход z_n невозможен (т.е. является невозможным событием), то ему приписывается вероятность $P(z_n) = 0$. Если же некоторому исходу $z_o \in Z$ приписан вес $P(z_o) = 1$, то данный исход представляет собой достоверное событие. Все остальные исходы имеют вероятности $P(z_i)$, значения которых лежат между этими предельными:

$$0 = P(z_n) \le P(z_i) \le P(z_o) = 1.$$
 (2.3)

Если \overline{A} — событие, противоположное событию A, то $P(A)+P(\overline{A})=1$.

Для вычисления вероятностей различных событий используется ряд теорем. Наиболее часто **применяемые теоремы**.

1. Если события A и B несовместны, т.е. $A \cap B = 0$, то

$$P(A \cup B) = P(A) + P(B) \tag{2.4}$$

2. Для *произвольных* (а не только несовместных) случайных имеет место соотношение событий A и B:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B),$$
 (2.5)

которое носит название *теоремы сложения вероятностей*. Формула (2.4) – ее частный случай для несовместных событий.

3. Для произвольных случайных событий A и B имеет место *теорема умножения вероятностей*:

$$P(A \cap B) = P(A)P(B/A), \tag{2.6}$$

где P(A) - безусловная вероятность события <math>A;

 $P(B \mid A) - y$ словная вероятность события B, вычисленная при условии, что событие A имело место.

Если события A и B независимы, то

$$P(B/A) = P(B), (2.7)$$

и формула (2.6) принимает вид:

$$P(A \cap B) = P(A)P(B). \tag{2.8}$$

4. Пусть $A\subseteq Z$ — случайное событие в пространстве Z, а система множеств $\{S_1,S_2,...,S_n\}$ — некоторое *разбиение* этого пространства. Как известно, разбиение удовлетворяет условиям:

$$Z = S_1 \cup S_2 \cup ... \cup S_n, S_i \cap S_k \neq \emptyset$$
 при $i \neq k$ (2.9)

Входящие в него события S_i называются гипотезами.

Формула полной вероятности:

$$P(A) = \sum_{i=1}^{n} P(A/S_i)P(S_i)$$
(2.10)

позволяет вычислить вероятность P(A) события A, если известны безусловные вероятности $P(S_i)$ всех гипотез S_i и условные вероятности $P(A/S_i)$ осуществления события A при реализации каждой из этих гипотез.

В настоящей работе будет моделироваться работа комбинационных схем со случайным нажатием трех кнопок *A*, *B*, *C*. Комбинационные схемы имеют в своем составе кнопки (которые могут быть нажаты или не нажаты), контакты, связанные с кнопками (которые могут быть разомкнуты или замкнуты), источник питания, провода и лампочку (которая может гореть или не гореть). Такими схемами можно моделировать многие электрические и электронные цепи, сети передачи информации, вычислительные алгоритмы.

На рисунке 2.1 приведена модель комбинационной схемы, на которой блок G содержит различное число нормально разомкнутых и нормально замкнутых контактов, последовательно либо параллельно соединенных между собой проводами и переключаемых кнопками A, B и C.

Рисунок 2.1 – Модель комбинационной схемы

Лампочка F горит в зависимости от того, какова схема блока G и в каком состоянии находятся кнопки A, B, C. Если эти кнопки нажимаются случайным образом, то случайным является и загорание лампочки F. Задача состоит в том, чтобы при заданной схеме блока G и заданных вероятностях P(A), P(B) и P(C)

нажатия кнопок A, B и C определить вероятность P(F) горения лампочки F.

Решить эту задачу можно тремя способами:

- аналитически, используя теоремы сложения и умножения вероятностей;
- аналитически, используя формулу полной вероятности;
- программно, создав генератор элементарных случайных событий, «нажимающий» кнопки A, B и C с заданными вероятностями.

В соответствии со схемой блока G и алгеброй логики эти события должны быть преобразованы в сложное событие F. Иными словами, в каждом отдельном эксперименте кнопки A, B, C нажимаются случайным образом, и при этом необходимо определить состояние лампочки F. Проведя массовую серию таких испытаний, можно определить частоту события F. При большом числе испытаний она практически равна P(F). События здесь носят бинарный характер: кнопки, контакты и лампочки имеют всего по два возможных состояния. Поэтому алгебра множеств здесь может быть заменена алгеброй логики. Иными словами, здесь в вышеуказанных формулах для получения составного события можно заменить операцию \bigcirc на \lor , операцию \bigcirc – на \land , операцию дополнения – на операцию отрицания.

Для программного создания случайных событий используется генератор случайных чисел с равномерным распределением вероятностей в диапазоне от 0 до 1 (рисунок 2.2). В системе MATLAB можно создать имеющую размер $m \times n$ матрицу L таких случайных чисел с помощью функции rand(m,n).

Рисунок 2.2 – Плотность вероятности равномерно распределённых случайных чисел

В рассматриваемой работе будем считать, что эта матрица имеет 4 строки и 1000 столбцов.

Первая строка матрицы L будет положена в основу организации случайных «нажатий» кнопки A. Она может быть получена из матрицы L путем применения оператора двоеточия: A = L(1,:).

В задании на лабораторную работу указаны границы am и aM полуинтервала [am, aM). Если элемент матрицы A оказывается внутри этого полуинтервала, необходимо заменить его числом 1, если же вне — числом 0. Takum образом, матрица-строка A преобразуется в матрицу-строку из случайно расположенных единиц и нулей, причем вероятность появления единиц определяется полуинтервалом [am, aM). Будем считать, что единицы соответствуют «нажатию» кнопки A.

Аналогичным образом создаем матрицы B = L(2,:) и C = L(3,:), которые преобразуем в «1-0»-матрицы В и С в соответствии с полуинтервалами $[bm,bM)_{\rm H}$ [cm,cM). Они моделируют нажатия кнопок В и С.

По заданной карте Карно необходимо найти минимальную ДНФ соответствующей ей комбинационной схемы. По ней надо аналитически рассчитать и на основе разработанной программы путем численного эксперимента оценить вероятность P(F) загорания лампочки F. Сравнить результаты.

В следующей части работы необходимо создать три «1-0»-матрицы-строки A1, B1 и C1, применяя указанную выше методику и те же полуинтервалы [am,aM), [bm,bM) и [cm,cM), однако, из единственной, четвертой строки матрицы L, и применить их к той же комбинационной схеме. Сравнить результаты первой и второй части работы. Объяснить эти результаты. Дать их аналитическое подтверждение.

Сопоставление практических и экспериментальных данных позволяет оценить степень применимости законов и тождеств алгебры множеств, алгебры ло-

гики и теории вероятностей для расчета работы комбинационных схем при случайных воздействиях.

2.3 Хода работы

2.3.1 Аналитическая часть

1. Получить у преподавателя вариант интервалов случайных величин (таблица 2.1) и вариант комбинационной схемы.

Таблица 2.1 – Варианты задания интервалов случайных чисел

№ вар.	am	аМ	bm	bМ	cm	сМ
1.	0	0.3	0.1	0.5	0.2	0.7
2.	0.3	0.8	0.6	0.9	0.7	1.0
3.	0.4	0.9	0.2	0.6	0.5	0.8
4.	0.2	0.7	0	0.3	0.1	0.5
5.	0.6	0.9	0.7	1.0	0.3	0.8
6.	0.1	0.4	0.3	0.7	0.5	1.0
7.	0	0.3	0.2	0.7	0.1	0.5
8.	0.5	0.7	0.2	0.6	0.6	0.9
9.	0.7	1.0	0.3	0.8	0.5	0.9
10.	0.3	0.8	0.5	0.9	0.7	1.0
11.	0	0.2	0.1	0.8	0.4	1.0
12.	0.3	0.7	0.3	0.4	0.5	0.9
13.	0.4	1.0	0	0.2	0.1	0.8
14.	0.1	0.8	0.4	1.0	0	0.2
15.	0.5	0.9	0.3	0.7	0.3	0.4
16.	0.7	1.0	0.2	0.5	0.4	0.8
17.	0.7	1.0	0.4	0.8	0.3	0.5
18.	0.3	0.5	0.7	1.0	0.4	0.9
19.	0.4	0.8	0.3	0.5	0.7	1.0
20.	0.2	0.6	0.4	0.8	0.7	0.9

- 2. Согласно полученным вариантам вычислить теоретические значения вероятностей нажатия кнопок P(A), P(B) и P(C), P(A1), P(B1) и P(C1).
- 3. Вычислить следующие условные теоретические вероятности: $P(A/B), P(A/C), P(B/A), P(B/C), P(C/A), P(C/B), \\ P(AVB1), P(AVC1), P(BVA1), P(BVC1), P(CVA1), P(CVB1)$

- 4. В соответствии с заданным вариантом схемы найти минимальную ДНФ, связывающую горение лампочки с нажатием кнопок.
- 5. Аналитически определить вероятность горения лампочки для событий A, B и C:
 - а) применяя теоремы сложения и умножения вероятностей;
 - б) применяя формулу полной вероятности.
 - 6. Выполнить пункт 5 для событий *A1*, *B1* и *C1*.

2.3.2 Практическая часть

- 17. Написать в системе Matlab функцию вычисления матрицы L из 4 строк и 1000 столбцов таким образом, чтобы она сохранилась в памяти компьютера, но не выводилась на печать.
- 2. Написать в системе Matlab m-функцию преобразования элементов матрицы L в «1-0» матрицы-строки A,B,C, соответствующие заданным интервалам [am,aM), [bm,bM)и [cm,cM)таким образом, чтобы элементы матрицы L, лежащие внутри этих интервалов, преобразовывались в 1, а вне интервалов в 0.
- 3. Аналогично требованиям пункта 2 написать m-функцию получения «1-0» матриц-строк *A1*, *B1*, *C1*.
- 4. В соответствии с полученным вариантом комбинационной схемы написать в системе Matlab формулу преобразования элементарных событий A, B и C в составное событие F. Считать событие A совпадающим с высказыванием x, событие B-c высказыванием y, а событие C совпадающим с высказыванием z.
 - 5. Написать в системе Matlab m -функцию для расчета частоты события F.

<u>Предупреждение:</u> выбирая название для М-функции, предварительно убедитесь, что оно отсутствует среди названий стандартных функций MATLAB, в противном случае при обращении MATLAB будет вызывать не вашу функцию, а стандартную.

6. Вызвать функцию вычисления матрицы L (см. п.1). Вычислить эту матрицу без вывода на печать. Для контроля правильности вычисления вывести на печать ее первые 10 столбцов.

- 7. Вызвать функцию получения «1-0» матрицы-строки *A* и вычислить ее без вывода на печать. Для контроля вывести на печать ее первые 10 элементов.
 - 8. Выполнить π .7 для строки B.
 - 9. Выполнить п.7 для строки C.
- 10. Воспользовавшись функцией п.3, вычислить без вывода на печать «1-0»-матрицы строки *А1, В1, С1* и проконтролировать их первые 10 элементов (А1, В1 и С1 получаются путем применения указанной выше методики и те же получитервалы, однако, из единственной, четвертой строки матрицы L), и применить их к той же комбинационной схеме.
- 11. Применяя формулу п. 4 и считая, что на вход системы поступают события A, B и C, рассчитать элементы «1-0»- матрицы-строки F, состоящей из единиц, соответствующих горению лампочки, и нулей, когда она не горит. Проверить первые 10 элементов этой матрицы.
 - 12. Подсчитать частоту события F, применяя формулу, полученную в п.5.
- 13. Сравнить найденную экспериментально частоту с теоретическим результатом.
- 14. Выполнить п.11, считая, что на вход схемы поступают события A1, B1 и C1 и обозначая выходную «1-0»-матрицу-строку как F1.
 - 15. Подсчитать частоту события F1, используя формулу п.5.
 - 16. Сравнить найденную частоту с теоретическим результатом.
- 17. Сопоставить результаты п.13 и п.16. Дать развернутые выводы о возможности применения законов и тождеств теории множеств, алгебры логики и теории вероятностей для оценки работы комбинационных схем.
 - 18. Оформить отчет.

2.4. Содержание отчёта

1. Цель работы.

- 2. Подробный аналитический расчёт вероятности горения лампочки по формулам сложения-умножения, как для зависимых, так и для независимых событий.
- 3. Подробный аналитический расчёт вероятности горения лампочки по формуле полной вероятности, как для зависимых, так и для независимых событий.
- 4. Программа на языке Matlab для практического расчёта частоты загорания лампочки, как для зависимых, так и для независимых событий.
- 5. Выводы по работе в развёрнутом виде о возможности применения законов и тождеств теории множеств, алгебры логики и теории вероятностей для оценки работы комбинационных схем.

2.5. Контрольные вопросы

- 1. Что такое случайный исход и случайное событие?
- 2. Что такое вероятность случайного события?
- 3. Свойства вероятности случайного события.
- 4. Основные теоремы о вероятностях случайных событий.
- 5. Что такое безусловная и условная вероятности?
- 6. Объяснить смысл формулы полной вероятности.
- 7. Что такое равномерный закон распределения случайной непрерывной величины?
- 8. Каким образом в системе MATLAB можно получить массив равномерно распределенных случайных чисел? Каковы параметры этого распределения?
- 9. В работе задано P(A1) = P(A), P(B1) = P(B), P(C1) = P(C) для одной и той же комбинационной схемы. Чем объяснить, что вероятность P(F1) равна (или не равна) вероятности P(F)? Какие свойства случайных событий играют здесь принципиальную роль?

Варианты заданий карт Карно:

						1									
		1						2					3		
z xy	00	01	11	10		xy z	00	01	11	10	z	00	01	11	10
0	1	0	0	0	·-	0	0	1	0	0	0	1	0	0	1
1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1
		4			-			5					6		
z xy	00	01	11	10		xy z	00	01	11	10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	00	01	11	10
0	1	1	0	1	-	0	1	0	0	0	0	1	0	1	1
1	0	1	1	1	-	1	0	1	0	0	1	1	1	0	1
		7			-			8				9			
z xy	00	01	11	10		xy z	00	01	11	10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	00	01	11	10
0	0	1	1	0	-	0	0	0	0	0	0	1	1	1	0
1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1
		10			• -			11				12			
z xy	00	01	11	10		xy z	00	01	11	10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	00	01	11	10
0	0	1	0	0	-	0	1	0	0	1	0	1	1	0	1
1	1	1	0	0	-	1	0	1	1	0	1	0	1	1	1
13							14				15				
z xy	00	01	11	10		xy z	00	01	11	10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	00	01	11	10
0	1	0	0	0	-	0	1	0	1	1	0	0	1	1	0
1	1	1	1	0	-	1	1	0	1	0	1	0	0	1	1
	•	16	•	•	•	·	•	17		•	•		18		•
z xy	00	01	11	10		xy z	00	01	11	10	z xy	00	01	11	10
0	0	0	0	0	-	0	1	1	0	0	0	0	1	0	0
1	1	1	1	1	-	1	1	0	0	1	1	1	0	0	1

z	00	01	11	10		
0	1	0	1	1		
1	1	1	1	0		

z	00	01	11	10		
0	1	1	0	1		
1	1	1	1	1		

z	00	01	11	10
0	1	0	0	0
1	0	1	0	1