Fuzzy Patterns

V. V. Vishnevskiy

Introduction T-Patterns

Fuzzy Patterns

Patterns construction Redundant patterns The method analysis

Fuzzy Patterns

V. V. Vishnevskiy¹

¹Moscow State University

Fuzzy Patterns

V. V. Vishnevskiy

Introduction T-Patterns

Fuzzy Patterns

Patterns construction Redundant patterns The method analysis 1 Introduction

T-Patterns

2 Fuzzy Patterns

Patterns construction Redundant patterns

The method analysis

Basic notions

Fuzzy Patterns

V. V. Vishnevskiy

Introduction

T-Patterns

Fuzzy Patterns

- Behavioral events(acts): A, B, C, D...
- Each event occurs at certain time moments: t_{A_1}, \ldots, t_{A_N} .
- Pattern is a chain of events, that occur one after another quite often.

Fuzzy Patterns

V. V. Vishnevskiy

Introduction

T-Patterns

Fuzzy Patterns

Patterns construction Redundant patterns The method analysis 1 Introduction

T-Patterns

2 Fuzzy Patterns

T-Patterns data types

Fuzzy Patterns

V. V. Vishnevskiy

Introduction

T-Patter

Fuzzy Patterns

- Events are joined with critical intervals. $A[d_1, d_2]B$.
- Critical interval relation means that event B occurs after event A in time span $[t_A + d_1, t_A + d_2]$, more often than usual.

T-Patterns detection procedure

Fuzzy Patterns

V. V. Vishnevski

Introduction

T-Pattern

Fuzzy Patterns

Patterns construction Redundant patterns The method analysis

Repeat while new patterns are detected:

- For each two patterns try to join them with critical interval relation.
- Delete duplicate and incomplete patterns.

Proposed method

Fuzzy Patterns

V. V. Vishnevskiy

Introduction T-Patterns

Fuzzy Patterns

- Probabilistic pattern representation.
- Same iterative process.

Pattern representation

Fuzzy Patterns

V. V. Vishnevskiy

Introduction T-Patterns

Fuzzy Patterns

- Pattern consists of events.
- Each event in pattern characterized by mean shift and variance from previous event.
- $P = A[0, \sigma_A]B[\mu_B, \sigma_B]C[\mu_C, \sigma_C].$

Fuzzy Patterns

V. V. Vishnevskiy

Introduction T-Patterns

Fuzzy Patterns

Patterns construction
Redundant patterns
The method analysis

1 Introduction
T-Pattern

2 Fuzzy Patterns

Patterns construction

Redundant patterns
The method analysis

Loss function

Fuzzy Patterns

V. V. Vishnevskiy

Introduction T-Patterns

Fuzzy Patterns

Redundant patterns
The method analysis

• Penalty for missing x events in pattern of length N:

$$f_{LOSS}(x, N) = \begin{cases} \exp(-\frac{\lambda x}{N}), & x < N, \\ 0, & x = N. \end{cases}$$

• λ defines level of pattern's fuzziness.

Likelihood

Fuzzy Patterns

V. V. Vishnevskiy

Introduction T-Patterns

Fuzzy Patterns

Redundant patterns
The method analysis

For every pattern P of length N, for every time moment $\varepsilon \in [0, N_t]$

$$L_P(\varepsilon) = f_{LOSS}(N_-, N) \prod_{i=1}^{N} \left(\frac{1}{\sqrt{2\pi}\sigma_i}\right) \prod_{i=1}^{N_+} \exp\left(-\frac{\delta_i^2}{2\sigma_i^2}\right)$$

Detecting co-occurrences

Fuzzy Patterns

V. V. Vishnevskiy

Introduction T-Patterns

Fuzzy Patterns

- Computing distribution of distances between two patterns.
- Searching μ and σ , that fits that distribution.
- Determine, if there is a relation between patterns.

Fuzzy Patterns

V. V. Vishnevskiy

Introduction
T-Patterns
Fuzzy Patterns

Patterns construction
Redundant patterns
The method analysis

1 Introduction T-Pattern

2 Fuzzy Patterns

Patterns construction

Redundant patterns

The method analysis

Type of unnecessary patterns

Fuzzy Patterns

V. V. Vishnevskiy

T-Patterns
Fuzzy Patterns
Patterns construction
Redundant patterns
The method analysis

Introduction

- **Duplicates:** (AB)(CD), ((AB)C)D.
- Incomplete copies: BCD doesn't occur outside of ABCD.
- Similarity of patterns, using likelihood vector \overrightarrow{L} . Correlation coefficient:

$$cor(\overrightarrow{L_1}, \overrightarrow{L_2}) = \frac{\overrightarrow{L_1} \overrightarrow{L_2}^T}{\sqrt{\overrightarrow{L_1} \overrightarrow{L_1}^T} \sqrt{\overrightarrow{L_2} \overrightarrow{L_2}^T}}$$

Elimination of patterns

Fuzzy Patterns

V. V. Vishnevskiy

Introduction T-Patterns

Fuzzy Patterns

Patterns construction

Redundant patterns

The method analysis

Consider patterns P_1 and P_2 . If P_1 consists of all events, that are met in P_2 and $\exists m : cor(\overrightarrow{L_{P_1,1}}, \overrightarrow{L_{P_2,m}}) > \nu$, then P_1 is dropped.

Fuzzy Patterns

V. V. Vishnevskiy

Introduction
T-Patterns
Fuzzy Patterns

Patterns construction Redundant patterns The method analysis 1 Introduction T-Patterns

2 Fuzzy Patterns

Parameters of algorithm

Fuzzy Patterns

V. V. Vishnevskiy

T-Patterns
Fuzzy Patterns
Patterns construction
Redundant patterns

Introduction

Parameter	Possible	Default	Has influence
	values	value	on
ω	[0, 1]	0.995	Significance of
			pattern
μ	$[0,+\infty]$	3	Minimal pattern
			occurrences
μ	$[0,+\infty]$	6	Fuzziness of pat-
			terns
ν	[0, 1]	0.7	Similarity of pat-
			terns for elimina-
			tion
M	$[0, N_t]$	None	Max time span be-
	_		tween events in
			patterns

Experiments on real data

Fuzzy Patterns

V. V. Vishnevskiy

Introduction
T-Patterns
Fuzzy Patterns
Patterns construction
Redundant patterns

• Patterns found, using different methods:

T-Patterns	T-Patterns found,	New fuzzy
	using Fuzzy pat-	patterns
	terns	
21	18	3
87	84	21
96	80	13
58	57	21

• Histogram of pattern's lengths:

Pattern's length	2	3	4	5	6	7	8
T-Patterns	18	38	12	18	3	1	0
Fuzzy patterns	22	41	14	20	6	4	2

Conclusion

Fuzzy Patterns

V. V. Vishnevskiy

Introduction
T-Patterns
Fuzzy Patterns

Patterns construction Redundant patterns

- Longer and more complex patterns are found.
- Statistical roots.
- Computational complex.