

Scuba Diving Equipment

Tanks

Cylinders Inspection

Valves

Regulators

Gauges

Tanke

Cylinders Inspection

Valve

Regulators

Gauges

Tanks

Cylinders Inspection

Valves

Regulators

Gauges Nitrox

Steel

Thinner walls, less buoyant, more corrosion

Aluminium

Thicker walls, more buoyant, less corrosion

Size

Ban's (S80) = 11.1L aluminum tank

Reference

PADI Encyclopedia 3-49

Markings

Cylinders Inspection

Valves

Regulators

Gauges Nitrox

Serial number

Steel or aluminium alloy

Working and test pressures

Manufacturer

Hydrostatic inspection date

"+" allows overfilled by 10%

Reference

PADI Encyclopedia 3-52

Cylinders Inspection

Tanks
Cylinders
Inspection

Valves Regulators Gauges

Visual Inspection

Tanks

Cylinders Inspection

Valves

Gauges Nitrox

Regulators

Why?

Industry Standard

Check tanks between hydrostatic inspections

Avoid excessive corrosion around the valve

Usually once a year (but national standards may vary)

Visual Inspection

Tanks

Cylinders Inspection

Valves Regulators

Gauges

Nitrox

How?

Remove valve

Check inside with bright light

Inspect outside for unusual impacts or marks

Hydrostatic Inspection

Tanks

Cylinders Inspection

Valves Regulators

Gauges

Nitrox

Why?

Every few years (follow National standards)

Exposed to high temperature (>82°C)

Damaged due to impact

After tumbling due to internal corrosion

Empty for 2 years or more

Hydrostatic Inspection

Tanks

Cylinders Inspection

Valves Regulators

Gauges

Nitrox

How?

Fill tank with water Immerged in water chamber Pressurize above working pressure ($\approx 5/3$) Mesure volume displacement under pressure (metal fatigue) Check volume displacement after the test (metal elesticity)

Valves

Tanks

Cylinders Inspection

Valves

Regulators

Gauges

Valves

Tanks

Cylinders Inspection

Regulators

Gauges Nitrox

K-Valve

Most common valve Simple ON/OFF valve Burst disk between 125% and 166% of the working pressure

J-Valve

Lever used as a reserve
Spring close the valve at around 20-40 bar

Lever must be open when filling (lower position)

Valves

Tanks
Cylinders
Inspection
Valves

Regulators Gauges

Nitrox

DIN

Regulator screws inside the valve Stronger, used for overhead diving Can be used up to 300 bar

Yoke, A-Clamp, Int

Screw holding the regulator against the valve o-ring on the valve Can be used up to 232 bar

Regulators

Tanks

Cylinders Inspection

Valves

riegulat

Gauges

Definitions

Tanks

Cylinders Inspection

Valves

Gauges

Nitrox

Upstream

Open against the air flow

Downstream

Open with the air flow

Demand valve

Air is given only upon inhalation

Fail safe design

Downstream design
Will freeflow if the regulator freeze

First Stages

Tanks

Cylinders Inspection

Valves

riegulato

Gauges Nitrox

Types

Unbalanced Piston

Balanced Piston

Balanced Membrane

Reference

PADI Encyclopedia 3-60 and 3-62

First Stages

Tanks

Cylinders

Valves

negulato

Gauges Nitrox

Aims

Reduce High Pressure to Intermediate Pressure

Fail safe design

Balanced design:

Same air flow and IP throughout the dive

IP doesn't change with tank pressure

Air flow stable with 2 divers

Environmental seal

Prevent regulator from freezing

Avoid freeflow in cold water

Second Stages

Tanks

Cylinders Inspection

Valves

riogalato

Gauges Nitrox

Types

Unbalanced Upstream (obsolete)

Unbalanced Downstream

Balanced Downstream

Servo or pilot valve

Reference

PADI Encyclopedia 3-61

Second Stages

Tanks

Cylinders Inspection

Valves

Gauges

Nitrox

Aims

Reduce Intermediate Pressure to Ambiant Pressure Not always a fail safe design!

Balanced design:

Same inspiration effort throughout the dive Effort doesn't change with IP or depth

Principle:

Classic: On inhalation, a diaphragm flexes and open a valve

Servo: the diaphragm opens a pilot valve which opens the main valve

Regulators

Tanks

Cylinders Inspection

Valves

Regulators

Gauge

Gauges

Tanks

Cylinders

Valves

Regulators

Nitrox

Submersible Pressure Gauges (SPG)

Open Bourdon tube

Spiral which expands under pressure

Depth gauge

Capillary gauge (water moving in a transparant tube)

Open Bourdon tube

Oil-filled Bourdon tube

Diaphragm

Computer

Transducer converting the pressure in electrical current

Cylinders Inspection

Valves

Regulators

Gauges

Nitrox

Tanks

Cylinders Inspection

Valves

Regulators

Gauges

Equipment compatibility

Follow manufacturer guidelines

O2 clean equipment with >40% oxygen

Follow national regulations

Procedures

Mix analysed by the diver

Content sticker on the tank