

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09230334 A

(43) Date of publication of application: 05 . 09 . 97

(51) Int. CI

G02F 1/1335 G02B 5/30 G02F 1/1337

(21) Application number: 08039563

(22) Date of filing: 27 . 02 . 96

(71) Applicant:

FUJI PHOTO FILM CO LTD

(72) Inventor:

NISHIURA YOSUKE

(54) LIQUID CRYSTAL DISPLAY ELEMENT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a liquid crystal element excellent in durability and fast responsiveness which improves the visual angle characteristics of the display contrast and display colors without decreasing the front-view contrast of a liquid crystal display device.

SOLUTION: This display element consists of a liquid crystal cell comprising two electrode substrates and a liquid crystal between the substrates, two polarizing elements on both sides of the liquid crystal cell, and at least one optical compensating film between the liquid crystal cell and the polarizing element. The

liquid crystal cell is a bend-oriented liquid crystal cell containing a liquid crystal having twisted orientation in the center part, or a HAN liquid crystal cell. The optical compensating film consists of a transparent polymer film having orientation along the plane direction and positive specific double refraction, and an optical anisotropic layer formed on the film base body. The direction (optical axis) which gives zero retardation is not present in the optical compensating film and the direction which gives the min. absolute value of retardation is not present in the plane direction nor in the normal direction of the film.

COPYRIGHT: (C)1997,JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-230334

(43)公開日 平成9年(1997)9月5日

(51) Int.Cl. ⁶	-	識別記号	庁内整理番号	FΙ			技	術表示箇所
G02F	1/1335	510		G 0 2 F	1/1335	510		
G 0 2 B	5/30	•	•	G 0 2 B	5/30			
G02F	1/1337		·	G 0 2 F	1/1337		·	

審査請求 未請求 請求項の数3 OL (全23 頁)

(21)出願番号 特願平8 = 39563	(71) 出願人000005201
(22)出願日 平成8年(1996)2月27日	富士写真フイルム株式会社 神奈川県南足柄市中沼210番地
	(72)発明者 西浦 陽介 神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内

(54) 【発明の名称】 液晶表示素子

(57)【要約】

【課題】 液晶表示装置の正面コントラストを低下させずに、表示コントラスト及び表示色の視角特性が改善され、耐久性と高速応答性に優れた液晶素子を工業的に提供する事。

【解決手段】 2枚の電極基板間に液晶を挟持してなる液晶セルが中央部にねじれ配向が存在する液晶を含むベンド配向液晶セル、または、HAN型液晶セルであって、液晶セルの両側に2枚の偏光素子を配置し、該液晶セルと該偏光素子との間に少なくとも1枚の光学補償フィルムを配置した液晶表示素子において、該光学補償フィルムは透明で正の固有複屈折値を有するポリマーの面配向性フィルム支持体及びその上に設けられた光学異方性層からなり、かつレターデーション値が0となる方向(光軸)が存在せず、レターデーションの絶対値が最小となる方向がフィルムの面内にも法線方向にもない事を特徴とする液晶表示素子。

【特許請求の範囲】

【請求項1】 2枚の電極基板間に液晶を挟持してなる 液晶セルが中央部にねじれ配向が存在する液晶を含むベンド配向液晶セル、または、HAN型液晶セルであって、液晶セルの両側に2枚の偏光素子を配置し、該液晶セルと該偏光素子との間に少なくとも1枚の光学補償フィルムを配置した液晶表示素子において、該光学補償フィルムが透明で正の固有複屈折値を有するポリマーの面配向性フィルム支持体及びその上に設けられた光学異方性層からなり、該光学補償フィルムにはレターデーショ*10

*ン値が0となる方向(光軸)が存在せず、レターデーションの絶対値が最小となる方向がフィルムの面内にも法線方向にもない事を特徴とする液晶表示素子。

【請求項2】 該透明支持体が式1、及び2を満足する2軸延伸フィルムであって、該光学異方性層が、式3、及び4を満足する円盤状化合物含有層であり、かつ該円盤状化合物の円盤面と透明支持体面とのなす角が、光学異方性層の深さ方向において変化している事を特徴とする請求項1に記載の液晶表示素子。

式1 100 \leq { (nx+ny) /2-nz} ×d1 \leq 1000 式2 0 \leq | (nx-ny) ×d1| \leq 200

式3 $50 \le \{ (n1+n2) / 2-n3 \} \times d2 \le 1000$

式4 $0 \le | (n1-n2) \times d2 | \le 200$

(但し、nx及びnyは支持体の面内の主屈折率を、nzは厚み方向の主屈折率を表し、d1は支持体の厚さを表す。又、n1、n2及びn3は光学異方性層の主屈折率を表し、d2は光学異方性層の厚さを表し、そして上記式の単位はnmである。)

【請求項3】 該透明支持体の少なくとも一方の側にコロナ放電処理、火炎処理、UV処理、グロー放電処理のうちから選ばれた少なくとも一種の表面処理を施した後、その上に下塗り層として設け、更に配向膜を塗設し、ラビングした後、該光学異方性層を設けたものである事を特徴とする請求項1または2に記載の液晶表示素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、表示コントラスト 及び表示色の視角特性が改良され、高速表示に優れた液 晶表示素子に関する。

[0002]

【従来の技術】日本語ワードプロセッサやディスクトップパソコン等のOA機器の表示装置の主流であるCRTは、薄型軽量、低消費電力という大きな利点をもった液晶素子に変換されてきている。現在普及している液晶素子(以下LCDと称す)の多くは、ねじれネマティック液晶を用いている。このような液晶を用いた表示方式としては、複屈折モードと旋光モードとの2つの方式に大別できる。

【0003】複屈折モードを用いたLCDは、液晶分子配列のねじれ角90°以上ねじれたもので、急崚な電気光学特性をもつ為、能動素子(薄膜トランジスタやダイオード)が無くても単純なマトリクス状の電極構造でも時分割駆動により大容量の表示が得られる。しかし、応答速度が遅く(数百ミリ秒)、諧調表示が困難という欠点を持ち、能動素子を用いた液晶素子(TFTーLCDやMIM-LCDなど)の表示性能を越えるまでにはいたらない。

【0004】TFT-LCDやMIM-LCDには、液 50 いるが、それでも視野角特性の改善は十分ではなかっ

■ 届分子の配列状態が90° ねじれた旋光モードの表示方式 (TN型液晶素子)が用いられている。この表示方式 は、応答速度が数+ミリ秒程度であり、高い表示コントラストを示すことから他の方式のLCDと比較して最も 有力な方式である。しかし、ねじれネマティック液晶を 用いている為に、表示方式の原理上、見る方向によって表示色や表示コントラストが変化するといった視角特性 上の問題があり、CRTの表示性能を越えるまでにはいたらない。

【0005】TN型LCDに対して、SID'92 Digest p.798などに見られるように、画素を分割し、それぞれ電圧印加時のチルト方向を逆向きにして、視角特性を補償する方法が提案されている。この方法によると、上下方向の階調反転に関する視角特性は改善されるが、コントラストの視角特性はほとんど改善されない。

【0006】更に、特開平6-75116号、EP0576304A1、および特開平6-214116号公報において、光学的に負の一軸性を示し、その光学軸が傾斜している光学補償フィルムを用いることにより、TN型LCDの視角特性を改良する方法が提案されている。これらの方法によれば視野角は従来のものと比べ、改善はされるが、それでもCRT代替を検討するほどの広い視野角は実現困難であった。

【0007】従来の液晶モード以外に広視野角、高速応答という特徴を有するベンド配向液晶セル(=πセル)がSID '93 Digest p. 273、p. 277、US5、410、422などに見られるように提案された。また、'95第42回春の応用物理学会29a-SZC-20などに見られるように、この考え方を反射型LCDに応用したHAN(Hybrid-Aligned Nematic)型液晶セルが提案されている。これらの液晶モードでは、光学軸がフィルム法線方向にある負の一軸性の光学異方素子、または、二軸性光学異方素子を用いることによって、広視野角を実現しているが、それでも視野角特性の改善は十分ではなかっ

3-

た。

[8000]

【発明が解決しようとする課題】本発明は、正面コントラストを低下させずに、表示コントラスト及び表示色の 視角特性が改善され、耐久性と高速応答性に優れた液晶 素子を工業的に提供するものである。

[0.0.09]

【課題を解決するための手段】上記課題は、以下の手段 により達成された。-----

【0010】(1) 2枚の電極基板間に液晶を挟持してなる液晶セルが中央部にねじれ配向が存在する液晶を含むベンド配向液晶セル、または、HAN型液晶セルであって、液晶セルの両側に2枚の偏光素子を配置し、該液晶セルと該偏光素子との間に少なくとも1枚の光学補*

* 償フィルムを配置した液晶表示素子において、該光学補償フィルムが透明で正の固有複屈折値を有するポリマーの面配向性フィルム支持体及びその上に設けられた光学 異方性層からなり、該光学補償フィルムにはレターデーション値が0となる方向(光軸)が存在せず、レターデーションの絶対値が最小となる方向がフィルムの面内にも法線方向にもない事を特徴とする液晶表示素子。

(2) 該透明支持体が式1、及び2を満足する2軸延伸フィルムであって、該光学異方性層が、式3、及び4 を満足する円盤状化合物含有層であり、かつ該円盤状化 合物の円盤面と透明支持体面とのなす角が、光学異方性 層の深さ方向において変化している事を特徴とする

(1) の液晶表示素子。

式1 $100 \le \{ (nx+ny)/2-nz \} \times d1 \le 1000$ 式2 $0 \le | (nx-ny) \times d1 | \le 200$

式3 $50 \le \{ (n1+n2) / 2-n3 \} \times d2 \le 1000$

式4 $0 \le | (n1-n2) \times d2 | \le 200$

(但し、nx及びnyは支持体の面内の主屈折率を、nzは厚み方向の主屈折率を表し、d1は支持体の厚さを表す。又、n1、n2及びn3は光学異方性層の主屈折率を表し、d2は光学異方性層の厚さを表し、そして上記式の単位はnmである。)

(3) 該透明支持体の少なくとも一方の側にコロナ放電処理、火炎処理、UV処理、グロー放電処理のうちから選ばれた少なくとも一種の表面処理を施した後、その上に下塗り層を設け、更に配向膜を塗設し、ラビングした後、該光学異方性層を設けたものである事を特徴とする(1)または(2)の液晶表示素子。

[0011]

【発明の実施の形態】TN-LCDやSTN-LCDの 視野角が狭い原因の一つは、見る方向によってレターデーションが異なるというものである。図1に示したよう に、方向14は液晶の複屈折の比較的大きい方向である ため、レターデーションが大きい。また、方向15は液 晶の複屈折が比較的小さい方向であるため、レターデーションが小さい。

【0012】これに対して、図2に示したベンド配向液晶セルにおいては、見る方向によるレターデーションの違いが比較的小さい。図2に示したように、方向24は下基板23付近では液晶の複屈折が小さく、上基板21付近では液晶の複屈折が大きい。方向25はこの逆であり、方向24と25でレターデーションは等しい。したがって、液晶セルの厚み方向中央部に対して対称となるために自己補償型のセルだということができる。これらの特徴を有するために、ベンド配向液晶セルでは視野角は原理的に広い。反射型LCDとして用いられるHAN型液晶セルの例を図3に示すが、HAN型液晶セルについても同様なことが言える。

【0013】しかしながら、ベンド配向液晶セル、HA 50

N型反射型LCDにおいても、視角を大きくすることに 20 伴って、黒表示部からの光の透過率が著しく増大し、結果としてコントラストの急激な低下を招いていることになる。本発明は、この様な斜方入射におけるコントラストの低下を防ぎ、視角特性を改善し、同時に、正面のコントラストを改善しようとするものである。

【0014】もし、黒表示において液晶セルが正の一軸性の光学異方体だとするならば、これを光学的に補償するには、図4に示したように、負の一軸性の光学異方体を用いればよい。そうすることによって、斜めから見た場合の液晶セルによって生じるレターデーションは、負の一軸性の光学異方体によってキャンセルされ、光漏れを抑えることができる。

【0015】しかし、実際の液晶セルを正の一軸性の光学異方体とし、負の一軸性の光学異方体によって補償するのには限界がある。本発明者らは、鋭意検討した結果、更に大幅な視野角改善をし、CRT代替の可能性を切り開くためには、図5や図6に示したように、黒表示におけるベンド配向液晶セルやHAN型液晶セルと同様な配向状態を負の一軸性の化合物で実現した光学補償フィルムが必要であることを見出した。

【0016】本発明における液晶表示素子とは、表示のために用いられる直視型、投写型の素子、光変調素子として用いられる素子などを含む。本発明における光学補償フィルムは、透明で正の固有複屈折値を有する面配向性ポリマーフィルム支持体及びその上に設けられた光学異方性層からなり、該光学補償フィルムにはレターデーション値が0となる方向(光軸)が存在せず、レターデーションの絶対値が最小となる方向がフィルムの面内にも法線方向にもない。該光学異方性層は円盤状化合物を含み、該円盤状化合物の円盤面と透明支持体面とのなす角が、光学異方性層の深さ方向において変化している事

ある。

が好ましい。

【0017】正の固有複屈折値を有するポリマーを面配向性させて得たポリマーフィルムは一般に負のアンパン型の屈折率分布を形成し、光軸は法線方向に1本か又は法線を挟んで同一な角度に2本存在する。円盤状化合物は一般に負の固有複屈折を有し、光軸は円盤面の法線方向に存在する。本発明は、これらポリマーフィルム及び円盤状化合物の複屈折性を利用することにより達成したものである。円盤状化合物の例としては、モノマー等の低分子量のディスコティック液晶性化合物の重合により得られるポリマーを挙げることができる。

【0018】本発明における光学補償フィルムは、透明支持体及びその上に設けられた円盤状化合物を含む光学 異方性層からなり、さらに配向膜を透明支持体上に設けることが好ましい。配向膜は、光学異方性層を複数設ける場合は、光学異方性層上に設けても良い。また、下塗り層(接着層)を透明支持体と配向膜との間に設けることが好ましい。保護層を光学異方性層上と基板の裏面に設けても良い。

【0019】本発明における透明支持体の材料としては、光透過率が80%以上を有し、正の固有複屈折値を有する透明なポリマー材料が好ましい。このような材料としては、ゼオネックス(日本ゼオン(株)製)、ARTON(日本合成ゴム(株)製)、ポリカーボネート(帝人化成(株)製)、ポリアリレート、ポリスルフォン及びポリエーテルスルホン及びジアセチルセルロース(ダイセル(株)製)などの市販品を使用することができる。また、フィルムの平面性、レターデーションむらの点から溶液製膜フィルムが好ましく、溶液製膜適正の30ある点でポリカーボネート、ジアセチルセルロースが好ましい。

【0020】透明支持体(フィルム)面内の主屈折率をnx、ny、厚み方向の主屈折率をnz、フィルムの厚さをd1としたとき、三軸の主屈折率の中で<math>nzが一番小さく、式1 において $\{(nx+ny)/2-nz\}$ ×d1で表されるレターデーションが、 $100\sim100$ 0 nmであることが好ましい。 $100\sim800$ nmであることが好ましく、更に、 $100\sim500$ nmであることが好ましい。また、式2 における透明支持体の法線方向のレターデーションの絶対値 $|(nx-ny)\times d1|$ $|(nx-ny)\times d1|$ $|(nx-ny)\times d1|$ $|(nx-ny)\times d1|$ $|(nx-ny)\times d1|$ $|(nx-ny)\times d1|$

【0021】次に本発明の表面処理及び下塗り処理について説明を加える。支持体と、その上に塗設する配向膜層との接着性を得るため、下塗り層を設けるが、それに先だって表面処理を行うのが好ましい。好ましい表面処理としてグロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理を挙げることができる。中でも好ま

しいのが、グロー放電処理、コロナ放電処理である。こ れらの処理は、単独で行っても良く、2種以上を組み合 わせて行っても良い。以下にこれらの方法について詳細 に説明する。グロー処理は、従来知られている方法、例 えば特公昭35-7578号、同36-10336号、 同45-22004号、同45-22005号、同45 -24040号、同46-43480号、特開昭53-129262号、米国特許3,057,792号、同 3, 0.57, 795号、同3, 179, 482号、同 3, 288, 638号、同3, 309, 299号、同 3, 424, 735号、同3, 462, 335号、同 3, 475, 307号、同3, 761, 299号、同 4, 072, 769号、英国特許891, 469号、同 9-9-7,-0-9-3-号、等を用いることができる。このよう なグロー処理では、特に雰囲気に水蒸気を導入した場合 において最も優れた接着効果を得ることができる。ま た、この手法は支持体の黄色化抑制、ブロッキング防止 にも非常に有効である。水蒸気の存在下でグロー処理を 実施する時の水蒸気分圧は、10%以上、100%以下 が好ましく、更に好ましくは40%以上、90%以下で ある。10%未満では充分な接着性を得ることが困難と なる。水蒸気以外のガスは酸素、窒素等からなる空気で

【0022】さらに、表面処理すべき支持体を加熱した 状態で真空グロー処理を行うと、常温で処理するのに比 べ短時間の処理で接着性が向上し、有効である。予熱温 度は50℃以上、Tg以下が好ましく、60℃以上、T. g以下がより好ましく、70℃以上、Tg以下がさらに 好ましい。Tg以上の温度で予熱すると接着が悪化す る。グロー処理時の真空度は0.005~20Torr とするのが好ましい。より好ましくは0.02~2To rrである。また、電圧は、500~5000Vの間が 好ましい。より好ましくは500~3000Vである。 使用する放電周波数は従来技術に見られるように、直流 から数1000MHz、好ましくは50Hz~20MH. z、さらに好ましくは1KHz~1MHzである。放電 処理強度は、O. O1KV・A・分/m²~5KV・A・ 分/m²が好ましく、更に好ましくは0.15KV・A・ 分/m²~1KV·A·分/m²で所望の接着性能が得られ る。このようにして、グロー処理を施した支持体は、直 ちに冷却ロールを用いて温度を下げることが好ましい。 【0023】コロナ処理は、最もよく知られている方法 であり、従来公知のいずれの方法、例えば特公昭48-5043号、同47-51905号、特開昭47-28 067号、同49-83767号、同51-41770 号、同51-131576号等に開示された方法により 達成することができる。放電周波数は50Hz~500 0kHz、好ましくは5kHz~数100kHzが適当 である。被処理物の処理強度に関しては、0.001K $V \cdot A \cdot 分/m^2 \sim 5 K V \cdot A \cdot 分/m^2$ 、好ましくは0.

01KV・A・分/㎡~1KV・A・分/㎡が適当である。電極と誘電体ロールのギャップクリアランスは0. 5~2.5mm、好ましくは1.0~2.0mmが適当である

【0024】紫外線処理は、特公昭43-2603号、特公昭43-2604号、特公昭45-3828号記載の処理方法によって行われるのが好ましい。水銀灯は石英管からなる高圧水銀灯、低圧水銀灯で、紫外線の波長が180~380nmの間であるものが好ましい。紫外線照射の方法については、365nmを主波長とする高圧水銀ランプであれば、照射光量20~10000 (m J/cm²)がよく、より好ましくは50~2000 (m J/cm²)である。254nmを主波長とする低圧水銀ランプの場合には、照射光量100~10000 (m J/cm²)がよく、より好ましくは200~1500 (m J/cm²)がよく、より好ましくは200~1500 (m J/cm²)がよく、より好ましくは200~1500 (m J/cm²)である。

【0025】火焔処理の方法は天然ガスでも液化プロパンガスでもかまわないが、空気との混合比が重要である。プロパンガスの場合は、プロパンガス/空気の好ましい混合比は、容積比で $1/14\sim1/22$ 、好ましくは $1/16\sim1/19$ である。また、天然ガスの場合は、 $1/6\sim1/19$ である。また、天然ガスの場合は、 $1/6\sim1/10$ 、好ましくは $1/7\sim1/9$ である。火焔処理は $1\sim50$ Kcal/㎡、より好ましくは $3\sim30$ Kcal/㎡の範囲で行うとよい。またバーナーの内炎の先端と支持体の距離を4cm未満にするとより効果的である。処理装置は春日電気(株)製フレーム処理装置を用いることができる。また、火焔処理時に支持体を支えるバックアップロールは中空型ロールで、冷却水を通して水冷し、常に一定温度で処理するのがよい。

【0026】次に表面処理した支持体と配向膜層および /またはバック層の間に設ける下塗り層について述べ る。これらの下塗りは、上記表面処理した支持体に実施 してもよく、表面処理を施していない支持体に実施して もよい。前者はより強固な接着を得易い反面工程が増え るという問題を有する。一方後者は前者に比べて接着力 が若干弱くなりやすい。このため、後者の場合、支持体 を膨潤させるための溶剤を下塗り液中に添加するのが好 ましい。以下に下塗り方法の詳細を説明する。下塗り層 としては、第1層として支持体によく接着する層(以 下、下塗り第1層と略す)を設け、その上に第2層とし て下塗り第1層と配向膜層をよく接着する層(以下、下 塗り第2層と略す)を塗布するいわゆる重層法と、支持 体と配向膜層をよく接着する層を一層のみ塗布する単層 法とがある。重層法における下塗り第1層では、例え ば、塩化ビニル、塩化ビニリデン、ブタジエン、酢酸ビ ニル、スチレン、アクリロニトリル、メタクリル酸エス テル、メタクリル酸、アクリル酸、イタコン酸、無水マ レイン酸等の中から選ばれた単量体を出発原料とする共 重合体、エポキシ樹脂、ゼラチン、ニトロセルロース、 ポリ酢酸ビニルなどが用いられる。また必要に応じて、

トリアジン系、エポキシ系、メラミン系、ブロックイソシアネートを含むイソシアネート系、アジリジン系、オキサザリン系等の架橋剤、コロイダルシリカ等の無機粒子、界面活性剤、増粘剤、染料、防腐剤などを添加してもよい。(これらについては、E.H. Immergut "Polymer Handbook" VI187~231、Intersciense Pub. New York 1966や特開昭50-39528、同50-47196、同50-63881、同51-133526、同64-538、同63-174698、特願平1-240965、特別平1-240965、同2-184844、特別昭48-89870、同48-93672などに詳しい)。また、下塗り第2層では、主としてゼラチンが用いられる。

【0.027】単層法においては、多くは支持体を膨潤さ せ、下塗りポリマーと界面混合させる事によって良好な 接着性を得る方法が多く用いられる。この下塗りポリマ ーとしては、ゼラチン、ゼラチン誘導体、ガゼイン、寒 天、アルギン酸ソーダ、でんぷん、ポリビニルアルコー ル、ポリアクリル酸共重合体、無水マレイン酸共重合体 などの水溶性ポリマー、カルボキシメチルセルロース、 ヒドロキシエチルセルロース等のセルロースエステル、 塩化ビニル含有共重合体、塩化ビニリデン含有共重合 体、アクリル酸エステル含有共重合体、酢酸ビニル含有 共重合体、酢酸ビニル含有共重合体等のラテックスポリ マー、などが用いられる。これらのうち好ましいのはゼ ラチンである。ゼラチンとしては、いわゆる石灰処理ゼ ラチン、酸処理ゼラチン、酵素処理ゼラチン、ゼラチン 誘導体及び変性ゼラチン等当業界で一般に用いられてい るものはいずれも用いることができる。これらのゼラチ ンのうち、最も好ましく用いられるのは石灰処理ゼラチ ン、酸処理ゼラチンである。

【0028】これらの塗布は、一般によく知られた方 法、例えばディップコート法、エアーナイフコート法、 カーテンコート法、ローラーコート法、ワイヤーバーコ ート法、グラビアコート法、或いは米国特許第2,68 1.294号明細書に記載のホッパーを使用するエクス トルージョンコート法等により塗布することができる。 また必要に応じて、米国特許第2,761,791号、 3,508,947号、2,941,898号、及び 3,526,528号明細書、原崎勇次著「コーティン グエ学」253頁(1973年朝倉書店発行)等に記載 された方法により2層以上の層を同時に塗布することが できる。これらの重層法、単層法の下塗り層の乾燥後の 厚みが、0.01μm以上、5μm以下になるように塗布 するのが好ましく、Ο. Ο3μm以上、3μm以下がより 好ましく、 0.05μ m以上、 1μ m以下がさらに好まし い。この範囲を下回ると、接着力を十分に得ることがで きない。一方この範囲を上回ると、乾燥負荷が増大し好 ましくない。

0 【0029】このようにして下塗り層を塗布した支持体

は乾燥ゾーンに導かれる。この時の温度は、80℃以 上、170℃以下が好ましく、90℃以上、165℃以 下がより好ましく、100℃以上、160℃以下がより 好ましい。この温度範囲を下回ると十分に乾燥させるこ とができず、乾燥巻取り後に自着しやすい。また、これ らの下塗り素材と支持体表面の界面混合や、化学反応を 十分に起こすことができず、十分な接着力を得にくい。 一方この温度範囲を上回ると、乾燥中に支持体が延伸さ れ、即ち複屈折の大きな、分子の配向した支持体となる ため、膨潤性素材を含む下塗り液と出会うと分子配向に 沿って表面構造が破壊される。このため脆い表面となり 易く、この上に感光層を塗設しても、ここでの破壊に起 因する接着不良を発生しやすい。この傾向は上記表面処 理を施した表面で特に顕著である。。また、これらの複屈 折の大きな支持体は熱収縮も大きくなり易く、好ましく ない。さらに塗布、乾燥ゾーン中の搬送ロールの平均直 径を3cm以上、50cm以下にするのが好ましく、4 cm以上、30cm以下がより好ましく、5cm以上、 25 c m以下がさらに好ましい。ここで言う平均直径と* *は、塗布ゾーンおよび乾燥ゾーンに存在する全搬送ロー ルの平均値を指す。この値が上記範囲を下回ると、支持 体は小さな曲率半径を通過することになる。このような 時、支持体の外側 (ロールに接していない方) は伸ばさ れ、上と同様に複屈折が大きくなり易く、その結果接着 力が弱くなり易い。一方ロール直径がこの範囲を上回る と、大きな塗布、乾燥ゾーンを必要とし効率が悪い。ま た、この塗布、乾燥ゾーン内の支持体の張力は1 kg/ m以上、30kg/m以下が好ましく、2kg/m以 上、20kg/m以下がより好ましく、3kg/m以 上、15kg/m以下がさらに好ましい。この範囲を上 回ると、上と同様に支持体が延伸されやすく、複屈折が 大きくなり、その結果接着力が弱くなり易い。また、巻 取り後の自着も発生しやすい。一方この範囲を下回る と、搬送下ラブルを引き起こし易く、好ましくない。 【0030】本発明の下塗り層に用いられる化合物の具 体例を下記に挙げる。

【0031】

P-1

(CH₂-CH)_x (CH₂-CH)_y (CH₂-CH)_z

COOCH₃

$$x: y: z = 2 5: 6 0: 2 5$$

$$P = 2$$

$$-(CH - CH) \times (CH_2 -$$

三70:30 子量:45000

$$P-3$$
 — $(CH_2-CH)_{\overline{X}}$ — $(CH_2-CH)_{\overline{Y}}$ —

x: y=50:50 平均分子量: | 2000

P-4
$$-(CH_2-CH)_{\overline{X}} - (CH_2-CH)_{\overline{Y}}$$

$$CH_2N(C_2H_5)_2 \cdot HC1$$

$$P-5$$

$$- CH_2 + N N + CH_2$$

【0032】その他、下塗り層形成用塗布液は、必要に 応じて各種の添加剤を含有させることができる。例えば 界面活性剤、帯電防止剤、顔料、塗布助剤などを挙げる ことができる。また、本発明の下塗層には、公知の種々 のゼラチン硬化剤を用いることができる。ゼラチン硬化 剤としては、クロム塩 (クロム明ばんなど)、アルデヒ ド類(ホルムアルデヒド、グルタールアルデヒドな ど)、イソシアネート類、エピクロルヒドリン樹脂及び ポリアマイドーエピクロルヒドリン樹脂、シアヌルクロ リド系化合物、ビニルスルホンあるいはスルホニル系化 合物、カルバモイルアンモニウム塩系化合物、アミジニ ウム塩系化合物、カルボジイミド化合物及びピリジニウ ム塩系化合物などを挙げることができる。

【0033】本発明の下塗り層には、透明性を実質的に 損なわない程度に無機または有機の微粒子をマット剤と

平均分子量:10000

して含有させることができる。無機微粒子のマット剤と しては、シリカ(SiOz)、二酸化チタン(Ti O₂)、炭酸カルシウム及び炭酸マグネシウムなどを使 用することができる。有機の微粒子マット剤としては、 ポリメチルメタクリレート、セルロースアセテートプロ ピオネート、ポリスチレン及び米国特許第414289 4号に記載されているポリマーなどを用いることができ る。これらの微粒子マット剤の平均粒径は0.01~1 0μmのものが好ましい。より好ましくは、0.05~ $5 \mu \text{ m}$ である。また、その含有量は、 $0.5 \sim 600 \text{ m}$ g/m^2 が好ましく、更に $1\sim 400$ m g/m^2 が好ま しい。

【0034】配向膜は、一般に透明支持体上または上記 下塗り層上に設けられる。配向膜は、その上に設けられ る円盤状化合物の配向方向を規定するように機能する。

配向膜は、光学異方性層に配向性を付与できるものであれば、どのような層でも良い。配向膜の好ましい例としては、有機化合物(好ましくはポリマー)のラビング処理された層、無機化合物の斜方蒸着層、及びマイクログループを有する層、さらにωートリコサン酸、ジオクタデシルメチルアンモニウムクロライド及びステアリル酸メチルなどのラングミュア・プロジェット法(LB膜)により形成される累積膜、あるいは電場あるいは磁場の付与により誘導体を配向させた層を挙げることができる

【0035】配向膜用の有機化合物の例としては、ポリメチルメタクリレート、アクリル酸/メタクリル酸共重合体、スチレン/マレインイミド共重合体、ポリビニルアルコール、ポリ (nーメチロールアクリルアミド)、スチレン/ビニルトルエン共重合体、クロロスルホン化ーポリエチレン、ニトロセルロース、ポリ塩化ビニル、塩素化ポリオレフィン、ポリエステル、ポリイミド、酢酸ビニル/塩化ビニル共重合体、エチレン/酢酸ビニル共重合体、カルボキシメチルセルロース、ポリエチレン、ポリプロピレン及びポリカーボネートなどのポリマー及びシランカップリング剤などの化合物を挙げることができる。好ましいポリマーの例としては、ポリイミド、ポリスチレン、スチレン誘導体のポリマー、ゼラチン、ポ

14

* リビニルアルコール及びアルキル基(炭素原子数 6 以上が好ましい)を有するアルキル変性ポリビニルアルコールを挙げることができる。これらのポリマーの層を配向処理することにより得られる配向膜は、円盤状化合物を斜めに配向させることができる。

【0036】中でもアルキル変性のポリビニルアルコールは特に好ましく、円盤状化合物化合物を均一に配向させる能力に優れている。これは配向膜表面のアルキル鎖とディスコティック液晶のアルキル側鎖との強い相互作用のためだと推察される。また、アルキル基は、炭素原子数6~14が好ましく、更に、一S一、一(CH₅)C(CN)一、または、一(C₂H₅)NーCSーSーを介してポリビニルアルコールに結合していることが好ましい。上記アルキル変性ポリビニルアルコールは、末一端にアルキル基を有するものであり、けん化度8-0%以上、重合度200以上が好ましい。また、上記側鎖にアルキル基を有するポリビニルアルコールは、クラレ(株)製のMP103、MP203、R1130などの市販品を利用することができる。更にこれらポリビニル

市販品を利用することができる。更にこれらポリビニル アルコール誘導体の好ましい具体例としては、下記化合 物が挙げられるが、これらに限定されるものではない。

[0037]

【化2】

$$\begin{array}{ccccc} & \leftarrow \text{CH}_2\text{CH} \xrightarrow{\searrow}_{\pi} & \leftarrow \text{CH}_2\text{CH} \xrightarrow{\searrow}_{\pi} & \leftarrow \text{CH}_2\text{CH} \xrightarrow{\searrow}_{\pi} \\ & \text{OH} & & \text{O} & & \text{O} \\ & & & \text{C}=\text{O} & & \text{C}=\text{O} \\ & & & & \text{CH}_3 \\ & & & & & \text{O(CH}_2)}_4 \text{OCOCH=CH}_2 \end{array}$$

	х		У	z (そり%)
ポリマーA	8 7.	8	02-	1 2
ポリマーB	87.	9 9 7	0.003	1 2
ポリマーC	87.	8 6	0.14	1 2
ポリマーD	87.	9 4	0.06	1 2
ポリマーE	8-6.	9	11	1-2-
ポリマーF	98.	5 .	0. 5	1
ポリマーG	97.	8	0. 2	2
ポリマーH	96.	5	2. 5	1
ポリマーI	94.	9	4. 1	1

•	'n	x	У	z (+1%)
ポリマーJ	3	87.8	0.2	1 2
ポリマーK	. 5	87.85	0.15	1 2
ポリマーL	6	87.7	0.3	1 2
ポリマーM	8	87.7	0.3	1 2

[0038]

【化3】

【0039】また、LCDの配向膜として広く用いられているポリイミド膜(好ましくはフッ素原子含有ポリイミド)も有機配向膜として好ましい。これはポリアミック酸(例えば、日立化成(株)製のLQ/LXシリーズ、日産化学(株)製のSEシリーズ等)を支持体面に塗布し、100~300℃で0.5~1時間焼成した後、ラビングすることにより得られる。更に、本発明の配向膜は、上記ポリマーに反応性基を導入することにより、あるいは上記ポリマーをイソシアネート化合物及びエポキシ化合物などの架橋剤とともに使用して、これらのポリマーを硬化させることにより得られる硬化膜であ

ることが好ましい。

【0040】また、前記ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を利用することができる。すなわち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより配向を得る方法を用いることができる。一般的には、長さ及び太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。

【0041】また、無機斜方蒸着膜の蒸着物質としては、SiOを代表とし、TiO₂、ZnO₂等の金属酸

化物、あるいはMgF2等のフッ化物、さらにAu、Al等の金属が挙げられる。なお、金属酸化物は、高誘電率のものであれば斜方蒸着物質として用いることができ、上記に限定されるものではない。無機斜方蒸着膜は、蒸着装置を用いて形成することができる。フィルム(支持体)を固定して蒸着するか、あるいは長尺フィルムを移動させて連続的に蒸着することにより無機斜方蒸着膜を形成することができる。

【0-0-4 2】本発明の光学異方性層は、透明支持体または下塗り層上または配向膜上に形成される。本発明の光学異方性層は、円盤状化合物を含む層である。すなわち、光学異方性層は、モノマー等の低分子量のディスコティック構造単位を有する化合物の層または重合性のディスコティック構造単位を有する化合物の重合(硬化)により得られるポリマーの層である。

【0043】本発明の円盤状化合物の例としては、C. Destradeらの研究報告、Mol. Cryst. 71巻、111頁(1981年)に記載されているベンゼン誘導体、C. Destradeらの研究報告、Mol. Cryst. 122巻、141頁(1985年)、Physics lett、A、78巻、82頁(1990年)に記載されているトルキセン誘導体、B. Kohneらの研究報告、Angew. Chem. 96巻、70頁(1984年)に記載されたシクロへキサン誘導*

*体及びJ. M. Lehnらの研究報告、J. Chem. Commun.、1794頁(1985年)、J. Zhangらの研究報告、J. Am. Chem. Soc. 116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルなどを挙げることができる。

【0044】上記円盤状化合物は、一般的にこれらを分子中心の母核とし、直鎖のアルキル基やアルコキシ基、置換ベンゾイルオキシ基等がその直鎖として放射状に置換された構造であり、液晶性を示し、一般的にディスコティック液晶と呼ばれるものが含まれる。但し、分子自身が負の一軸性を示し、一定の配向を付与できるものであれば、上記記載に限定されるものではない。また、本一発明において、円盤状化合物から形成したときは、最終的にできたものが前記化合物である必要はなく、例えば、前記低分子ディスコティック液晶が熱、光等で反応する基を有しており、結果的に熱、光等で反応により重合または架橋し、高分子量化し液晶性を失ったものも含まれる。

【0045】上記円盤状化合物の好ましい例を下記に示す。

【0046】 【化4】

22 .

TE-1

$$R \xrightarrow{R} R$$

R は、

①
$$n-C_{11}H_{28}-C-O-$$

②
$$n-C_{12}H_{25}O C-O-$$

TE-2

R は、n-C12H25-

TE-3

R は、C12H25OCH2-

[0047]

【化5】

R は、

①
$$n-C_{12}H_{25}O-$$

または、

②
$$n-C_{18}H_{27}-C_{1}$$

TE-5

R は、 n-C10H21-

$$TE-6$$

R は、 n-CeH17-

TE-7

R は、 n-C₁₆H₃₃O-

[0048]

【化6】

R は、

② n-C₈ H₁₇

TE-8

①
$$n - C_m H_{2m+1}0 - (m=2, 3, \cdot \cdot \cdot 15)$$

$$R$$
 R
 R
 R
 R

または、

(8)
$$CH_2 = CH - COC_m H_{2m} - 0 - (m=4.5, \cdot \cdot .10)$$

TE-9

$$R$$
 R
 R
 R

または、

$$\begin{array}{c} 0 & 0 \\ \parallel & \parallel \\ \end{array}$$
 \(\text{CH}_2 \)\(\text{T}_2 \)\(\text{CO} - \text{CH}_2 \)\(\text{T}_2 \)\(\text{CO} - \text{CO} - \text{CO} \)

【化7】

[0049]

$$TE-10$$

 $\begin{array}{c|c}
R \\
R \\
R
\end{array}$

R_12._C7.H1-5.O=

R は、

$$TE - 11$$

① $n - C_{12}H_{25}O - \bigcirc N = CH - \bigcirc O - \bigcirc O$

【0050】本発明の光学補償フィルムは、前述のように、透明支持体上に下塗り層と配向膜層を設け、次いで配向膜上に光学異方性層を形成することにより作製される。

【0051】本発明の光学異方性層は、円盤状化合物を含む層であって、そして円盤面が、透明支持体面に対して傾き、かつ該円盤面と透明支持体面とのなす角度が、光学異方層の深さ方向に変化している。

【0052】上記該円盤面の角度(傾斜角)は、一般に、光学異方層性の深さ方向でかつ光学異方性層の底面からの距離の増加とともに増加または減少している。上記傾斜角は、距離の増加とともに増加することが好ましい。更に、傾斜角の変化としては、連続的増加、連続的減少、間欠的増加、間欠的減少、連続的増加と連続的減少を含む変化、及び増加及び減少を含む間欠的変化等を挙げることができる。間欠的変化は、厚さ方向の途中で傾斜角が変化しない領域を含んでいる。傾斜角は、変化しない領域を含んでいる。傾斜角は、変化しない領域を含んでいる。便斜角は全体として増加していることが好ましい。更に、傾斜角は全体として増加していることが好ましく、特に連続的に変化することが好ましい。

【0053】本発明の光学異方性層の断面の代表的な例を、模式的に図7に示す。光学異方性層73は、透明支持体71上に形成された配向膜72上に設けられてい

る。光学異方層 7 3 を構成する円盤状化合物 7 3 a 、 7 3 b 、 7 3 c は、ディスコティック構造単位 P a 、 P b 、 P c が透明支持体 7 1 の面に平行な面 7 1 a 、 7 1 b 、 7 1 c から傾斜し、そしてそれらの傾斜角 θ a 、 θ b 、 θ c (ディスコティック構造単位の面と透明支持体の面とのなす角)が、光学異方層の底面からの深さ(厚さ)方向の距離の増加とともに、順に増加している。 7 4 は透明支持体の法線を表す。上記円盤状化合物は平面分子であり、それ故分子中にはただ一個の平面、すなわち円盤面(例、 7 1 a 、 7 1 b 、 7 1 c)を持つ。矢印75は、光学異方性層のレターデーションの絶対値の最小の方向を透明支持体上に正射影した方向を表す。

【0054】上記傾斜角(角度)は、5~85度の範囲 (特に10~80度の範囲)で変化していることが好ま しい。上記傾斜角の最小値は、0~85度の範囲(特に 5~40度)にあり、またその最大値が5~90度の範 囲(特に30~85度)にあることが好ましい。図7に おいて、支持体側の円盤状化合物の傾斜角(例、θα) が、ほぼ最小値に対応し、そして円盤面の傾斜角(例、 θc)が、ほぼ最大値に対応している。更に、傾斜角の 最小値と最大値との差が、5~70度の範囲(特に10 ~60度)にあることが好ましい。

【0055】上記光学異方性層は、一般に円盤状化合物 及び他の化合物を溶剤に溶解した溶液を配向膜上に塗布

28

し、乾燥し、次いでディスコティックネマチック相形成温度まで加熱し、その後配向状態(ディスコティックネマチック相)を維持して冷却することにより得られる。あるいは、上記光学異方層は、ディスコティック構造単位を有する化合物及び他の化合物(更に、例えば重合性モノマー、光重合開始剤)を溶剤に溶解した溶液を配向膜上に塗布し、乾燥し、次いでディスコティックネマチック相形成温度まで加熱した後重合させ(UV光の照射等により)、更に冷却することにより得られる。本発明に用いるディスコティック構造単位を有する化合物のディスコティックネマティック液晶相一固相転移温度としては、70~300℃が好ましく、特に、支持体の熱変形温度以下の70~170℃が好ましい。

【0056】例えば、支持体近傍の円盤状化合物の傾斜 角は、一般に円盤状化合物化合物あるいは配向膜の材料 を選択することにより、またはラビング処理方法を選択 することにより、調整することができる。また、表面側 (空気側)の円盤状化合物の傾斜角は、一般に円盤状化 合物あるいはそれとともに使用する他の化合物(例、可 塑剤、界面活性剤、重合成モノマー及びポリマー)を選 択することにより調整することができる。更に、傾斜角 の変化の程度も上記選択により調整することができる。

【0057】上記可塑剤、界面活性剤及び重合性モノマーとしては、円盤状化合物と相溶性を有し、円盤面の傾斜角の変化を与えられるか、あるいは配向を阻害しない限り、どのような化合物も使用することができる。これらの中で、重合成モノマー(例、ビニル基、ビニルオキシ基、アクリロイル基及びメタクリロイル基を有する化合物)が好ましい。上記化合物は、円盤状化合物に対して一般に1~50重量%(好ましくは5~30重量%)の量にて使用される。

【0058】上記ポリマーとしては、円盤状化合物と相溶性を有し、円盤状化合物に傾斜角の変化を与えられる限り、どのようなポリマーでも使用することができる。ポリマー例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、セルロースアセテート、アルロースアセテートプロピオネート、ヒドロキシプロピルセルロース及びセルロースアセテートブチレートを挙げることができる。上記ポリマーは、ディスコティック構造単位を有する化合物の配向を阻害しないように、ディスコティック構造単位を有する化合物に対して一般に0.1~10重量%(好ましくは0.1~8重量%、特に0.1~5重量%)の量にて使用される。

【0059】セルロースアセテートブチレート(酢酸酪酸セルロース)のブチリル化度は、30%以上、特に30%の心の範囲が好ましい。セルロースアセテートブチレートの粘度(ASTM D-817-72に従う測定により得られる値)は、0.01~20秒の範囲が好ましい。

30

【0060】上記図7に示される変化する傾斜角を有する光学異方性層を有する光学補償フィルムを備えた液晶表示素子は、極めて拡大された視野角を有し、そして画像の反転、あるいは表示画像の諧調あるいは着色の発生がほとんどないものである。

【0061】光学異方性層の形成条件は、円盤状化合物を含む組成(円盤状化合物の組合せや、併用する他の化合物の種類や量)により適宜選択される。その条件としては、ディスコティックネマチック層を形成するための加熱温度あるいは加熱時間、加熱後の冷却速度、層厚そして塗布方法等を挙げることができる。

【0062】円盤状化合物は、該化合物の性質、熟成条件等により、複数の異なるドメインを形成する場合があり、これが層内部の不均一性に起因するヘイズとなる。ヘイズは液晶素子のコントラストの低下をもたらし、表示に悪影響を及ぼす。このようなヘイズの低減には、円盤状化合物をモノドメインとすること、あるいは複数のドメインを形成しても、その1つ1つのドメインサイズを0.1μm以下、好ましくは、0.08μm以下とすることにより、可視光に影響を及ぼさなくすることができる。

【0063】本発明における光学補償フィルムは、法線方向から傾いた方向に、0以外のレターデーションの絶対値の最小値を有し、光学軸を持たない。光学異方性層の主屈折率をn1, n2, 及びn3とし、厚みをd2とする。式3の { (n1+n2) / 2-n3} × d2で表わされる厚み方向のレターデーションが50 n m \sim 1000 n mであることが好ましい。 $50\sim800$ n mであることが好ましく、更に、 $100\sim500$ n mであることが好ましい。また,式4の | (n1-n2) × d2 | で表わされる正面のレターデーションの絶対値が200 n m以下が好ましく、更に、100 n m以下であることが好ましい。

【0064】光学異方性層のレターデーションの絶対値の最小値を示す方向が、光学異方性層の法線から5~80度傾斜していることが好ましく、更に10~70度が好ましく、特に20~60度が好ましい。

【0065】光学異方性層を形成するための溶液は、円盤状化合物及び前述の他の化合物を溶剤に溶解することにより作製することができる。上記溶剤の例としては、N,Nージメチルホルムアミド(DMF)、ジメチルスルフォキシド(DMSO)及びピリジン等の極性溶剤、ベンゼン及びヘキサン等の無極性溶剤、クロロホルム及びジクロロメタン等のアルキルハライド類、酢酸メチル及び酢酸ブチル等のエステル類、アセトン及びメチルエチルケトン等のケトン類、及びテトラヒドロフラン及び1,2ージメトキシエタン等のエーテル類、エチレングリコールモノアセテート、プロピレングリコールモノメチルエーテル等のアルコール類を挙げることができる。アルキルハライド類及びケトン類が好ましい。溶剤は単

独でも、組み合わせて使用しても良い。

【0066】上記溶液の塗布方法としては、カーテンコーティング、押し出しコーティング、ロールコーティング、印刷コーティング、ワイヤーバーコーティング及びスライドコーティングを挙げることができる。本発明では、円盤状化合物のみの混合物の場合は、蒸着法も使用することができる。本発明では、連続塗布が好ましい。したがって、カーテンコーティング、押し出しコーティング、ワイヤーバーコーティング及びスライドコーティングが好ましい。上記光学異方性層は、前述したように、上記塗布溶液を配向膜上に塗布し、乾燥し、次いで液晶形成温度以上に加熱し(その後所望により硬化させ)、冷却することにより得られる。

【0067】本発明における光学補償フィルムは、液晶素子において、液晶セルによる複屈折を補償するものであるから、光学異方性層の波長分散は、液晶セルと等しいことが好ましい。光学異方性層の450nm、600nmの光によるレターデーションをそれぞれR(450nm)、R(600nm)とすれば、波長分散を表すR(450nm)/R(600nm)値は、1.0以上であることが好ましく、更に、1.0~1.3であることが好ましい。

【0068】本発明の光学補償フィルムの代表的使用例 を図8に示す。図8において、透明電極を備えた一対の 基板とその基板間に封入されたベンド配向液晶セルとか らなる液晶セルPIC、液晶セルの両側に設けられた一 対の偏光板A、B、液晶セルと偏光板との間に配置され た光学補償フィルムOC1、OC2及びバックライトB しが組み合わされて液晶素子を構成している。光学異方 素子は一方のみ配置しても良い(すなわち、〇〇1また はOC2)。R1、R2の矢印は図7における矢印75 に相当する方向である。図8の場合、光学補償フィルム OC1、OC2の光学異方層性側が液晶セル側となって いる。光学補償フィルムOC1、OC2の光学異方層性 側を偏光板側に向けても構わない。但し、この場合は、 R1、R2の矢印の方向は図8とは逆の方向となる。液 晶セルPICの矢印RP1、RP2は、液晶セル基板の ラビング方向を表す。PA及びPBは、それぞれ偏光板 A、Bの偏光の透過軸を表す。

【0069】本発明においては、光学補償フィルムの光学異方層側が液晶セル側となるように配置することが好ましい。この場合、図8において、R1とRP1、R2とRP2のなす角は、-45° \sim 45° の範囲が好ましい。-20° \sim 20° の範囲がより好ましく、-10° \sim 10° が特に好ましい。また、2枚の光学補償フィルムを液晶を挟むように配置することが好ましい。PAとPBは直交または平行であることが好ましい。ここでは、実質的に、直交または平行であればよく、10° 以下であれば、ずれていても構わない。RP1とPAのな 50

す角は、 $10^{\circ} \sim 80^{\circ}$ が好ましく、 $20^{\circ} \sim 70^{\circ}$ が 更に好ましく、 $35^{\circ} \sim 55^{\circ}$ が特に好ましい。

【0070】本発明の光学補償フィルムの他の使用例を図9に示す。図9において、91は偏光板、92は本発明における光学補償フィルム、93は透明電極を備えた一対の基板とその基板間に封入されたHAN型液晶セル、94は反射板である。また、拡散板を備えていても構わない。95は偏光板の光の透過軸、96の矢印は図7における矢印75に相当する方向、97は液晶セル93の上基板のラビング方向、98は垂直配向膜を示す。【0071】図9においても、光学異方素子の光学異方

性層側が液晶セル側となるように配置することが好ましい。この場合、96と97のなす角は、-45°~45°の範囲が好ましい。-20°~20°の範囲がより好ましく、-10°~が特に好ましい。95と-9-7-のなす角は、10°~80°が好ましく、20°~70

°が更に好ましく、35°~55°が特に好ましい。

【0072】本発明においては、セル中央部にねじれ配向が存在する液晶セルを含むベンド配向液晶セル、または、HAN型液晶セルを用いる。液晶の屈折率異方性△nと、液晶セルにおける液晶層の厚みdとの積△n・dは、輝度と視野角を両立させるために、300nm~3000nmであることが好ましい。ベンド配向液晶セルにおいては、700nm~2000nmであることが特に好ましい。HAN型液晶セルにおいては、350nm~1000nmであることが更に好ましく、400nm~900nmであることが特に好ましい。

【0073】本発明における液晶素子は、ノーマリーホワイトモード(以下、NWモード)とノーマリーブラックモード(以下、NBモード)で用いることができる。NBモードにおいては、視角が大きくなるにしたがって、色味変化が大きくなることから、NWモードで用いることが好ましい。

[0074]

【実施例】

【0075】(HAN型液晶セルの作製)ITO電極付きのガラス基板にポリイミド膜を配向膜として設け、ラビング処理を行う。ITO電極付きのガラス基板をもう一枚用意し、SiO蒸着膜を配向膜として設けた。この2枚のガラス基板を向き合わせ、セルギャップ d を 4μ mに設定し、メルク社製液晶 Z L I 1 1 3 2 (Δ n = 0.1396)を注入し、HAN型液晶セルを作製す

. る。Δnとdとの積が558nmである。

【0076】 (光学補償フィルム1の作製)

(1) 支持体

粘度平均分子量28000の2, 2'ービス (4ーヒド - ロキシフェニル) プロパンポリカーボネイト樹脂を常法 に従い重合し、このポリマーを18重量%でジクロロメ タンに溶解後、真空脱泡しドープを作成した。これをバ ンド上で50℃10分間乾燥後にはぎ取り、100℃で 10分間乾燥を行った後、170℃で縦に15%延伸 し、その後175℃で横に10%延伸して厚さ100µ 10 mの2軸延伸ロールフィルムを得た。縦延伸は2本のチ ヤッキングロールの速度差で制御し、横延伸はテンター の幅で制御した。このフィルムをエリプソメーターAE P-100によってレターデーション値を測定し、屈折 率に換算したところ、nx=1.540、ny=1.5 40、nz=1.536であった。nx、nyは面内に あり、n z は法線方向であった。 { (n x + n y) / 2 -nz} × d1 = 240 nmであり、式1 の条件を満 たしていた。 $\mid (nx-ny) \times d1 \mid = 0$ であり、式 2 の条件を満たしていた。

【0077】(2)表面処理

上記支持体にグロー放電処理を実施した。処理条件を下*

下塗り液

ゼラチン

水

酢酸

メタノール

エチレンジクロライド

pークロロフェノール

【0079】(4)配向膜層の塗設及びラビング処理 次に塗設したゼラチン層の上に下記配向膜塗布液をスラ※

配向膜塗布液 ポリマーA

-H-

メタノール

架橋剤 (グルタルアルデヒド)

【0080】本塗膜をラビングロール径150mm、フィルム搬送速度10m/min、ラッピング角度6度、ラビングロール回転数1200rpm、フィルム基板搬送張力4kgf/cm-基板巾のラビング条件にてラビング処理を行なった。

【0081】(5)光学異方性層の塗設

上記配向膜上に下記ディスコティック液晶 1.8g(TE-8(8、m=4))、トリメチロールプロバンEO変成トリアクリレート(V#360、大阪有機化学)0.2g、セルロースアセテートブチレート(CAB551-0.2、イーストマンケミカル)0.04g、光重合開始剤(イルガキュアー907、チバガイギー)0.06g、増感剤(カヤキュアーDETX、日本化薬)0.02gを3.43gのメチルエチルケトンに溶50

* 記に示す。

(3-1)グロー放電処理

断面が直径2cm、長さ150cmの円柱状で冷媒流路 となる中空部を持つ棒状電極を10cm間隔に4本絶縁 状に固定した。この電極を真空タンク内に固定し、この 電極から15cm離れ、電極面に正対するように支持体 を走行させ、2秒間表面処理が行われるように搬送速度 を制御した。この支持体が電極を通過する前に直径50 c mの温度コントロラー付き加熱ロールに3/4周接触 するように加熱ロールを配置し、支持体の温度を115 ℃にした後グロー放電処理されるようにした。槽内の真 空度は0.12Torr、雰囲気気体の水分を75%に し、放電周波数を27kHz、出力2500W、処理強 度は0.5 k V・A・分/m²で行った。放電処理後の 支持体は直径30 cmの温度制御機付き冷却ロールに接 触させ、25℃にしたあと巻き取った。なお、加熱ロー ルから冷却ロールの間の張力は、5kg/mで支持体を 搬送した。

34

【0078】(3)下塗り層の塗設 このようにして表面処理した支持体に、下記組成の下塗 り液をワイヤーバーを用いて10ml/m²塗布した 後、115℃で2分間乾燥した。

1 重量部

1 重量部.

1重量部

50重量部

.50重量部

4 重量部

※イドコーターで25cc/m²塗布し、60℃の温風で 60秒、さらに90℃の温風で150秒間乾燥させた。

10 重量部

371 重量部

119 重量部

0.5重量部

解した塗布液をを#10のワイヤーバーで塗布し、金属の枠に貼り付けて140℃の高温槽中で3分間加熱し、ディスコティック液晶を配向させた後、140℃のまま120W/cm高圧水銀灯を用いて1分間UV照射し架橋した。その後、室温まで放冷した。このようにして本発明における光学補償フィルム1を作製した。

【0082】(6)評価

ディスコティック液晶層の厚みは、およそ5. 0 μ mであった。光学異方性層のみのレターデーション値をラビング軸に沿って測定したところ、レターデーションが 0 となる方向は存在しなかった。この値をシミュレーションによってフィッティングしたところ、負の一軸性が厚み方向に4°から68°連続的に変化したハイブリッド配向を示していることがわかった。光学軸の平均傾斜角

は36°、式3の光学異方性層の厚み方向レターデーション値 $\{(n1+n2)/2-n3\} \times d2$ は225 nmであり、正面レターデーションの絶対値 $|(n1-n2) \times d2|$ は160 nmであった。

【0083】また、得られた本発明の光学補償フィルムをミクロトームを用いてラビング方向で深さに沿って切断し、極めて薄いフィルム(サンプル)を作製した。このサンプルをOsO、の雰囲気中に48時間放置して、染色した。得られた染色フィルムを、透過型電子顕微鏡(TEM)によって観察し、その顕微鏡写真を得た。染色フィルムでは、ディスコティック構造単位を有する化合物TE-8(8、m=4)のアクリロイル基が染色され、写真の像として認められた。この写真から、光学異方層のディスコティック構造単位を有する化合物は透明支持体の表面から傾いており、かつその傾斜角が、光学異方層の底部から深さ方向の距離の増加とともに、連続的に増加していることが認められた。

【0084】 (光学補償フィルム2の作製) ポリカーボ ネート樹脂を18重量%でジクロロメタンに溶解後、真 空脱泡しドープを作成した。これをバンド上で50℃、 7分間乾燥後にはぎ取り、100℃で7分間乾燥を行っ た後、170℃で縦に15%延伸し、その後175℃で 横に10%延伸して厚さ70μmの2軸延伸ロールフィ ルムを得た。このフィルムをエリプソメーターAEP-100によってレターデーション値を測定し、屈折率に 換算したところ、nx=1.545、ny=1.54 5、nz=1. 542 であった。nx、ny は面内にあ り、n z は法線方向であった。 { (n x + n y) / 2 nz $\times d1 = 200 nm$ $var{b}$ $var{b}$ d1 = 0 nmであった。このようにして得られた支持 体に下記条件でコロナ放電処理を実施した事以外は光学 補償フィルム1と同様にして光学補償フィルム2を作成 した。

【0085】(3-2)コロナ放電処理

ピラー社製ソリッドステートコロナ処理機 6 K V A モデルを用い、3 0 c m幅支持体の両面を室温下において 2 0 m/分で処理する。この時の電流、電圧の読み取り値から、支持体には 0. 3 7 5 k V · A · 9 m^2 の処理がなされている。この時の処理周波数は 9. 6 k H z 、電極と誘電体ロールのギャップクリアランスは 1. 6 m mであった。

【0086】(光学補償フィルム3の作製)特開平6-22214の実施例1に記載されているスチレン系モノマーのグラフト共重合体(P-2)を20重量%でジクロロメタンに溶解後、真空脱泡しドープを作成した。これをバンド上で50℃10分間乾燥後にはぎ取り、100℃で7分間乾燥を行った後、120℃で縦に18%延伸して厚さ70μmの1軸延伸ロールフィルムを得た。このフィルムをエリプソメーターAEP-100によってレターデーション値を測定し、屈折率に換算した50

ところ、nx=1. 589、ny=1. 584、nz=1. 589であった。nx、nyは面内にあり、nzは 法線方向であった。 $\{(nx+ny)/2-nz\} \times d2=-90$ nmであり、 $|(nx-ny) \times d2|=1$ 80 nmであった。得られた支持体に以下の条件で紫外線処理を実施した。

【0087】(3-3)紫外線処理

1 k W 高圧水銀灯を用い、20 c m の距離から30秒間 照射した。この時、支持体の温度は110℃になるよう に制御した。

【0088】得られた支持体上に光学補償フィルム1と同様にして配向膜、光学異方性層を塗設して光学補償フィルム3を作成した。

【0089】(光学補償フィルム4の作製)支持体に何等表面処理を施さなかった事以外は光学補償フィルム1と同様にして光学補償フィルム4を作成した。

【0090】 (光学補償フィルム5の作製) 粘度平均分 子量28000の2, 2'ービス(4ーヒドロキシフェ ニル)プロパンポリカーボネイト樹脂をを18重量%で ジクロロメタンに溶解後、真空脱泡しドープを作成し た。これをバンド上で50℃10分間乾燥後にはぎ取 り、100℃で10分間乾燥を行った後、170℃で縦 に16%延伸し、その後175℃で横に10%延伸して 厚さ100μmの2軸延伸ロールフィルムを得た。縦延 伸は2本のチャッキングロールの速度差で制御し、横延 伸はテンターの幅で制御した。このフィルムをエリプソ メーターAEP-100によってレターデーション値を 測定し、屈折率に換算したところ、 n x = 1. 589、 ny = 1.584, nz = 1.580 rboto, nx, nyは面内にあり、nzは法線方向であった。 { (nx $+ n y) / 2 - n z \times d 1 = 460 n m c b y$ $(nx-ny) \times d1 = 280 nm$ cbo > cbo

【0091】実施例1

作製したベンド配向液晶セルに、光学補償フィルム1をセルを挟むように2枚、光学異方性層側がセルに近くなるように配置した。ベンド配向液晶セルのラビング方向と光学補償フィルムのラビング方向は反平行になるように配置した。その外側に全体を挟むように偏光板をクロスニコルに配置した。この液晶セルに対して、55Hz矩形波で電圧を印加した。白表示2V、黒表示6VのNWモードとし、透過率の比(白表示)/(黒表示)をコントラスト比として、上下、左右からのコントラスト比測定を大塚電子製LCD-5000にて行った。コントラスト比10の等コントラスト曲線を図10に示す。この曲線の内側がコントラスト比10以上となる。

【0092】実施例2

作製したベンド配向液晶セルに、光学補償フィルム2を 手前側に1枚、ベンド配向液晶セルのラビング方向と光 学補償フィルム2のnyの方向とが一致するように配置 した。その外側に全体を挟むように偏光板をクロスニコ ルに配置した。この液晶セルに対して、55Hz矩形波で電圧を印加した。白表示6V、黒表示2VのNBモードとし、透過率の比(白表示)/(黒表示)をコントラスト比として、上下、左右からのコントラスト比測定を大塚電子製LCD-5000にて行った。コントラスト比10の等コントラスト曲線を図11に示す。この曲線の内側がコントラスト比10以上となる。

【0093】実施例3

作製したHAN型液晶セルに、光学補償フィルム1を手 前側に1枚、光学異方性層側がセルに近くなるように配 置した。HAN型液晶セルのラビング方向と光学補償フ ィルム1のラビング方向は反平行になるように配置し た。手前側には偏光板を透過軸と液晶セルのラビング方 向とのなす角が4.5°となるように配置し、偏光板の更 に手前側には拡散板を配置した。その反対の面には、ガ ラス基板の外側にミラーを用い、反射型液晶素子とし た。この反射型液晶素子に法線方向から20°傾けた方 向に光源を置き、光を照射した。液晶セルには55Hz 矩形波で電圧を印加した。白表示2V、黒表示6VのN Wモードとし、透過率の比(白表示)/(黒表示)をコ ントラスト比として、上下、左右からのコントラスト比 測定をTOPCON製bm-7にて行った。コントラス ト比10の等コントラスト曲線を図12に示す。この曲 線の内側がコントラスト比10以上となる。

【0094】実施例4

作製したベンド配向液晶セルに、光学補償フィルム4をセルを挟むように2枚、光学異方性層側がセルに近くなるように配置した。ベンド配向液晶セルのラビング方向と光学補償フィルムのラビング方向は反平行になるように配置した。その外側に全体を挟むように偏光板をクロスニコルに配置した。この液晶セルに対して、55Hz矩形波で電圧を印加した。白表示2V、黒表示6VのNWモードとし、透過率の比(白表示)/(黒表示)をコントラスト比として、上下、左右からのコントラスト比別定を大塚電子製LCD-5000にて行った。コントラスト比10の等コントラスト曲線は実施例1と同様の結果になった。

【0095】比較例1

作製したベンド配向液晶セルに、光学補償フィルム3をセルを挟むように2枚、光学異方性層側がセルに近くなるように配置した。ベンド配向液晶セルのラビング方向と光学異方素子のラビング方向は反平行になるように配置した。その外側に全体を挟むように偏光板をクロスニコルに配置した。この液晶セルに対して、55Hz矩形波で電圧を印加した。白表示2V、黒表示6VのNWモードとし、透過率の比(白表示)/(黒表示)をコントラスト比として、上下、左右からのコントラスト比別定を大塚電子製LCD-5000にて行った。コントラスト比10の等コントラスト曲線を図13に示す。この曲線の内側がコントラスト比10以上となる。

【0096】比較例2

作製したベンド配向液晶セルに、光学補償フィルム5をセルを挟むように2枚、ディスコティック液晶層側がセルに近くなるように配置した。ベンド配向液晶セルのラビング方向と光学異方素子のラビング方向は反平行になるように配置した。その外側に全体を挟むように偏光板をクロスニコルに配置した。この液晶セルに対して、55Hz矩形波で電圧を印加した。白表示2V、黒表示6VのNBモードとし、透過率の比(白表示)/(黒表示)をコントラスト比として、上下、左右からのコントラスト比測定を大塚電子製LCD-5000にて行った。コントラスト比10の等コントラスト曲線を図14に示す。この曲線の内側がコントラスト比10以上となる。

38

【00-0-9-7-】上比較例3-

作製したHAN型液晶セルに、光学補償フィルム5を手前側に1枚、HAN型液晶セルのラビング方向と光学異方素子3のnyの方向とが一致するように配置した。手前側には偏光板を透過軸と液晶セルのラビング方向とのなす角が45°となるように配置し、奥側にはTiO2粉末を含む白色板を拡散板として用い、反射型液晶素子とした。この液晶セルに55Hz矩形波で電圧を印加し、白表示6V、黒表示2VのNBモードとし、実施例2と同様にコントラスト比測定を行った。コントラスト比10の等コントラスト出線を図15に示す。この曲線の内側がコントラスト比10以上となる。

【0098】本発明である実施例 $1\sim4$ は、比較例 $1\sim$ 3に比べて、大幅に視野角特性が改善されていることがわかる。また、耐熱試験(60%、95%、500時間)後の評価では実施例4の視角は悪化し、顕微鏡で観察すると、全面にレチキュレーションが発生していた。さらに周辺5mm程度の剥がれが観察され、剥離界面は支持体と下塗り層の間であった。実施例 $1\sim3$ の視角は装着直後と同等の良好な特性を示し、レチキュレーション、剥がれともに観察されなかった。

[0099]

【発明の効果】本発明によれば、視角特性が改善され、 視認性にすぐれ、高速表示が可能な高品位表示の液晶素 子を提供することができる。また、車載用途を想定した 耐久性も付与する事ができた。本発明をTFTやMIM などの3端子、2端子素子を用いたアクティブマトリク ス液晶素子に応用しても優れた効果が得られることは言 うまでもない。

【図面の簡単な説明】

【図1】従来のTN型液晶セルの配向状態を模式的に示した図である。

【図2】ベンド配向液晶セルの配向状態を模式的に示した図である。

【図3】HAN型液晶セルの配向状態を模式的に示した図である。

【図4】正の一軸枕	を仮定した場合の液晶セルが、負の		* 1 2	一負の一軸性の光学異方素子
	よって視角特性が改善される原理を			一正の一軸性の液晶セル
示した模式図である		•		一正の一軸性の液晶セルの屈折率楕
	。 ンド配向液晶セルの光学補償を模式		円体	近くの一種について出ているのがは、
的に示した図である				- 負の一軸性を積層した光学異方素
	。 AN型液晶セルの光学補償を模式的		子	
に示した図である。	TITLE IN THE STATE OF THE STATE			ーベンド配向液晶セル
	いられる光学異方素子の断面図であ			一負の一軸性を積層した光学異方素
る。			· · · · · · · · · · · · · · · · · · ·	
·	ンド配向液晶素子の構成を示した図	10	6 2	ーHAN型液晶セル
である。				一透明支持体
The second secon	射型HAN型液晶素子の構成を示し		7 2	
た図である。	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		7 3	the state of the s
	の等コントラスト曲線 (コントラス	,		3 c ――ディスコティック構造単位
· · · · · · · · · · · · · · · · · · ·	る図である。		を有する化合物	
	の等コントラスト曲線(コントラス			ディスコティック構造単位 ディスコティック構造単位
ト比10)を説明す			の面	
	の等コントラスト曲線(コントラス			1 c — 透明支持体 2 1 の面に平行
ト比10)を説明す			な面	
	の等コントラスト曲線(コントラス	20	θα, θb, θc-	·············傾斜角
ト比10)を説明す			7 4	
The state of the s	の等コントラスト曲線(コントラス		7 5	ーラビング方向
ト比10)を説明す	る図である。			―ベンド配向液晶セル
	の等コントラスト曲線 (コントラス		A, B	一偏光板
ト比10)を説明す	る図である。		OC1, OC2	一光学異方素子
【符号の説明】			B L	ーバックライト
11	- 液晶セルの上基板		R1, R2	一図7における矢印75の方向
1 2	- T N型液晶		RP1, RP2	- 液晶セル基板のラビング方向
1 3	- 液晶セルの下基板		P A	ー偏光板Aの偏光の透過軸
14, 15	- 光の進む方向	30	РВ	偏光板Bの偏光の透過軸
21	- 液晶セルの上基板		9 1	一偏光板
2 2	- ベンド配向液晶		9 2	一光学異方素子
23	- 液晶セルの下基板		9 3	-透明電極を備えた一対の基板とそ
24, 25	- 光の進む方向		の基板間に封入された	こHAN型液晶セル
3 1	- 液晶セルの上基板		9 4	一反射板
3 2	-HAN型液晶		9 5	-偏光板の光の透過軸
3 3	- 液晶セルの下基板	•	9 6	-図7における矢印75に相当する
3 4	-入射光		方向	
3 5	- 反射光		9 7	-液晶セル93の上基板のラビング
4 1	- 負の一軸性の光学異方素子の屈折	40	方向	•
率楕円体	k	<	9 8	-垂 直配向膜
· .				

【図3】

【図6】

6 1

6 2

