M, Morimoto et al. U.S. Serial No. 10/517,242 Page 2 of 6 RECEIVED
CENTRAL FAX CENTER

FEB 2 0 2007

Amendments to the claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of claims:

Claim 1 (currently amended): A printing plate comprising a raised part for transferring printing substrate, wherein

said raised part is formed to extend linearly in plan view,
said raised part is shaped as a rectangular frame in plan view,
said raised part has at least one groove formed on its printing surface,
said at least one groove is formed to pass through from one side to another side of said
raised part, wherein said groove has a triangular cross section.

Claim 2 (canceled)

Claim 3 (previously presented): The printing plate according to claim 1, wherein a plurality of said grooves extend in one direction and parallel to each other and are equally spaced apart.

Claim 4 (previously presented): The printing plate according to claim 3, being a printing plate for a flexographic press, wherein

said groove has a width along the printing surface of said raised part of not less than 20 μm and not more than 60 μm , a depth of not less than 25 μm and not more than 75 μm , and a distance between the grooves of not less than 20 μm and not more than 60 μm .

Claim 5 (previously presented): The printing plate according to claim 4, said printing plate including said raised part shaped as the rectangular frame, wherein

a side of said frame is parallel to a longitudinal direction of said groove, and said raised part is provided such that said side of said frame is in a slanting direction relative to a moving direction of said printing plate.

M. Morimoto et al. U.S. Serial No. 10/517,242 Page 3 of 6

Claim 6 (previously presented): The printing plate according to claim 4, said printing plate including said raised part shaped as the rectangular frame, wherein

a side of said frame and a longitudinal direction of said groove form an angle of approximately 45°.

Claim 7 (previously presented): The printing plate according to claim 6, wherein a moving direction of said printing plate is substantially perpendicular to the longitudinal direction of said groove.

Claim 8 (previously presented): The printing plate according to claim 6, wherein the moving direction of said printing plate is substantially parallel to the longitudinal direction of said groove.

Claim 9 (previously presented): A press comprising said printing plate according to claim 1.

Claim 10 (previously presented): An apparatus for manufacturing a liquid crystal device comprising said printing plate according to claim 1.

Claim 11 (currently amended): A method of relief printing comprising:

the step of printing by pressing, on a printing substrate, a printing plate including a raised part,

said raised part is formed to extend linearly in plan view,
said raised part is shaped as a rectangular frame in plan view,
said raised part having a plurality of grooves on a surface for transferring printing
substance,

wherein said raised part is shaped as the rectangular frame, said grooves are linear grooves parallel to each other and equally spaced apart, and the printing substance to be printed onto said printing substrate is a sealing material,

M. Morimoto et al. U.S. Serial No. 10/517,242 Page 4 of 6

said plurality of grooves passing through from one side to another side of said raised part; and

the step of transferring printing substance to the printing substrate by disposing said printing plate on a perimeter surface of a cylindrical plate cylinder and rotating said plate cylinder.

wherein the method of relief printing is performed by using a flexographic press.

Claims 12-13 (canceled)

Claim 14 (currently amended): The printing method according to claim [[13]]11, wherein said scaling material is a sealing material for a flat panel display, said grooves have a width along a surface of said raised parts of not less than 20 μ m and not more than 60 μ m, a depth of not less than 25 μ m and not more than 75 μ m, and a distance between the grooves of not less than 20 μ m and not more than 60 μ m.

Claim 15 (previously presented): The printing method according to claim 14, wherein said step of transferring includes the step of rotating said plate cylinder while using said printing plate with said grooves being parallel with a side of said frame, a moving direction of said printing plate forming an angle of approximately 45° with a longitudinal direction of said grooves.

Claim 16 (previously presented): The printing method according to claim 14, wherein said step of transferring includes the step of rotating said plate cylinder while using said printing plate with said grooves forming an angle of approximately 45° with a side of said frame, a moving direction of said printing plate being substantially perpendicular to a longitudinal direction of said grooves.

Claim 17 (previously presented): The printing method according to claim 14, wherein said step of transferring includes the step of rotating said plate cylinder while using said printing plate with said grooves forming an angle of approximately 45° with a side of said frame, a moving direction of said printing plate being parallel to a longitudinal direction of said grooves.

M. Morimoto et al. U.S. Serial No. 10/517,242 Page 5 of 6

Claim 18 (previously presented): A method of manufacturing a liquid crystal device employing the printing method according to claim 11.