N-M unballed

-		11 0 L	1 +		
	1.1 Difference between deterministic and stochastic work				
		letermenestics world	Stochastie		
	Single variable:	R	random variable		
	Temp of a sick men	T=39°C	E, Vay		
	Variables	$R_+ \rightarrow R$	Stochastic process		
	over time	T(2) = 38.5			
	3 days	T(3) = 38			

Defference between varous fields of stochastics

- Stochostics probability theory
 - mathematical statistics
 - stochastic processes

Consider a pond that contains fish

Prob theory: # of fish at some given time (N) E, Van, a limit laces

Mathematical State

Repeat m, mz, ..., mg

& PEH marked - MRS - max

V				1.			
	1.3 Probability space (I, J, P)						
	General theory	Bernoulle Scheme (1, success) (0, failure)	[0,1]				
		(a_1, \ldots, a_n) , $a_i \in \{0, 1\}$	Select point from				
	Il-sample space	#SZ=2", set of all vectors with components & \$0,13	N=[0,1]				
	F- o-algebra	J= power set	P{xe[a,p]}				
	1) Sef 2) AeJ ⇒SL\AeJ	# 7 = 2 = 2	=) [d, p), (a, p),				
	3) A,, An, E F		$(\alpha,\beta), [\alpha,\beta), \{\beta\}$	93			
	U Ace F		Porel σ-algebra				
		0.5.7	(5 3)				
	P-probability	P \(\gamma \) P \(\gamma \) \	$\mathbb{Z}[\alpha,\beta] = \beta - \alpha$				
	1) P(sc) = 1 2) A,, Az, 67 (disjoint	sal .					
	>> P{U A; 3= ≤ P(A)						
	P. 77[0,1]						

1.4 Definition of a stochastic function, Types of stochastic functions. $(\Omega, \mathcal{F}, \mathcal{P})$

Random voriable - measurable function & I -> R.

YB€ B(R): E-1(B) c J

T-time

X: TXI > R - random function, if $\forall t \in T: X(t, \cdot)$ is a random variable on $(I, \overline{\tau}, P)$, denoted X_t

If T=1R+, this is called a random process or stochestic process
If T=1R+, this is called a random process or stochestic process T=R+, random field or stochestic field
T=N, discrete time stochestic process or 7
T=R, orR, continuous time stochastic process
15 Trajectories and finite-dimensional distributions
$X: T \times \Omega \rightarrow \mathbb{R}$, $T = \mathbb{R}_{+}$ $\forall t \in T: X_{t} = X(t, \cdot) \text{ is a r.v. on } (\Omega, \overline{f}, P)$
Trajectory (= path)
Xt fix w and get napping T>1R
St MM.
Finite-dimensional distribution (Xt., Xt.,, Xtn), t,, ty ER
Finite-dimensional distribution (Xt., Xt.,, Xtn), t,, ty ER
In mollematic slats, Xt, Xt, Xt, are independent
In stochastic process, (Xt, Xt,, Xtm are dependent
Ex: X = Et & = 51, wp. 1/2
Xt 1 == 1 X= t OS V e N X 6 x 3 ==
(2, t, -1) tr (1/2, 1/2) < 1
$ \begin{array}{c} $
22

Renewal process. Counting process.

Kenewal processes (discrete time)

So=0, Sn=Sn-1+En, where E, Ez,...- iid>0 a.s. PS & 703=1 (=) F(0)=0

Nt = argmax { Sh = t} (Counting process)

E, S, E, S, E, S,

35,>+3= {N+<n}

F>EN,

Sn = E, + ... + En

1.7. Convolution

Convolution XILY

X~F, Y~F

cono in terms of functions

Fx+(x) = \(\int \(\text{(x-y)} \) dF(y) =: \(\int \text{x} \) Fx

X~px, Y~py (If Y, X have densities)

Px+y (x) = Spx(x-y) py(y) dey =: px * py { of densities

Sn = & + ... + &n let Fnx:= Fx *F

2)
$$F^{n*}(x) \ge F^{(n+1)*}(x)$$

 $\underbrace{2}_{+} + \dots + \underbrace{2}_{n} \le x_{3} \longrightarrow \underbrace{2}_{+} + \dots + \underbrace{2}_{n+1} \le x_{3}$

Theorem:
$$S_n = S_{n-1} + \xi_n$$
 where $\xi_1, \xi_2, ... \in F$, $F(0) = 0$
(i) $U(t) = \sum_{n=1}^{\infty} F^{n*}(t) < \infty$

$$EN_{t} = E[\#\{n: S_{n} \le t\}]$$

$$= E[\sum_{n=1}^{\infty} 1 \{S_{n} \le t\}] = \sum_{n=1}^{\infty} P\{S_{n} \le t\}$$

$$= \sum_{n=1}^{\infty} F^{nk}(t)$$

1,8 Laplace transform, Calculation of an expectation of a counting process (1)

Japlace transferm
$$f: R_+ \ni R : Z_f(s) = \int_0^\infty e^{-sx} f(x) dx$$

2)
$$f_1, f_2 : Z_{f_1 + f_2}(s) = Z_{f_1}(s) \cdot Z_{f_2}(s)$$

3) F-distribution function,
$$F(0)=0$$
, $p=F'$

$$\mathcal{L}_{F}(s) = \mathcal{L}_{P}(s)$$

1.h.s. =
$$\int_{R_{+}}^{\infty} F(x) \frac{d(e^{-5x})}{s} = -\frac{F(x)e^{-5x}}{s} \Big|_{0}^{\infty} + \frac{1}{5} \int_{R_{+}}^{\infty} \rho(x) e^{-5x} dx$$

= $\int_{0}^{\infty} \frac{d(e^{-5x})}{s} = -\frac{F(x)e^{-5x}}{s} \Big|_{0}^{\infty} + \frac{1}{5} \int_{R_{+}}^{\infty} \rho(x) e^{-5x} dx$

$$\frac{Ex}{1} = \frac{\pi}{5} \cdot \frac{\pi^{n}}{5} = \frac{\pi}{5} \cdot \frac{\pi^{n-1}}{5} = \frac{\pi}{5} \cdot \frac{\pi^{n-1}}{5} = \frac{\pi}{5} \cdot \frac{\pi^{n-1}}{5} = \frac{\pi}{5} \cdot \frac{\pi}{5} = \frac$$

1.9 Laplace transform. Calculation of an expectation of a counting process (2)

$$EN_{t} = U(t) = \sum_{n=1}^{\infty} F^{n*}(t) = F(t) + \left(\sum_{n=1}^{\infty} F^{n*}(t)\right) * F(t)$$

$$() U = F + U *F = F + U *p & F' = p exists$$

$$\int_{R} U(x-y) dF(y) = \int_{R} U(x-y) p(y) dy$$

$$\mathcal{L}_{u}(s) = \mathcal{L}_{F}(s) + \mathcal{L}_{u}(s) \mathcal{L}_{p}(s)$$

$$\mathcal{L}_{p}(s)$$

$$\mathcal{L}_{u}(s) = \frac{\mathcal{L}_{p}(s)}{s(1-\mathcal{L}_{p}(s))}$$

1.10 Laplace transferm. Calculation of an expectation of a counting process (3)

Example: $S_n = S_{n-1} + \varepsilon_n$, $\varepsilon_1, \varepsilon_2, \ldots$ have density p(x) $p(x) = \frac{e^{-x}}{2} + e^{-2x}, x > 0$

 $EN_{t}=^{2}$

(1) $p \rightarrow Zp$: $Z_p(s) = \frac{1}{2} Z_{e^{-x}}(s) + Z_{e^{-2x}}(s)$ = $\frac{1}{2(s+1)} + \frac{1}{s+2} = \frac{3s+4}{2(s+1)(s+2)}$

(2) $\mathcal{L}_{p} \rightarrow \mathcal{L}_{u} : \mathcal{L}_{u}(s) = \frac{\mathcal{L}_{p}(s)}{5(1-\mathcal{L}_{p}(s))} = \frac{3s+y}{5^{2}(2s+3)}$

 $(3) \mathcal{L}_{u}(s) = \frac{A}{s^{2}} + \frac{B}{s} + \frac{C}{2s+3}$ $= \frac{A(2s+3) + B(2s^{2}+3s) + Cs^{2}}{s^{2}(2s+3)}$

35+4 = (2B+C)52+ (2A+3B)5+3A

 $A = \frac{4}{3}, 2A + 3B = 3 \Leftrightarrow B = \frac{1}{9}, 2B + C = 0 \Leftrightarrow C = \frac{2}{9}$ $U(t) = \frac{4}{3}t + \frac{1}{9}(1) - \frac{1}{9}e^{-3/2}t$

1.11 Limit theorems for renewal processes

 $S_n = S_{n-1} + \xi_n$; ξ_1, ξ_2, \dots iid >0 a.s.

Thm I $\mu = EE, < \infty \Rightarrow \frac{N_t}{t} \xrightarrow{t\to\infty} \frac{1}{t}$ a.s.

(analog to SLLN)

SUN: E, +...4 En Ju a.s.

Thum 2: (Analog of CLT) $t^2 = \text{Var } \mathcal{E}_1 < \infty$ Then, $\mathcal{E}_1 = \frac{N_1 - t/\mu}{\sigma \sqrt{t}} \frac{d}{t \rightarrow \infty} N(0,1)$ $P \le \mathcal{E}_1 \le \mu^3 \rightarrow \int_{-\infty}^{\infty} \sqrt{21} t^{-u^2/2} du$

CLT: \(\frac{\xi_1 + \dots + \xi_n - \mu_1}{\sigma_1 m}\) \(\lorendown(0,1)\)

$$S_{N_{t}} \leq t \leq S_{N_{t}+1}$$

$$N_{t} = 1$$

$$S_{N_{t}} = 1$$

$$P\left\{\frac{S_{n}-n\mu}{\sigma \sqrt{n}}\leq \mu\right\} \rightarrow \phi(\chi)$$
, $\chi \in \mathbb{R}$

$$P \left\{ S_n \leq nu + \sigma \sqrt{n} \times \right\} \rightarrow \phi(x)$$

(Set complements)

$$\frac{1}{4}$$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$

(for n large enough)

(Set complements)

$$n = \frac{t}{\mu} - \frac{\sigma \sqrt{n}}{\mu} \times \approx \frac{t}{n} - \frac{\sigma \sqrt{t}}{\mu^{3/2}} \times$$

Poisson Processes

Definition of a Poisson process as a special example of a renewal process. Exact forms of the distributions of the renewal process and the counting process (1)

Renewal process

S=0, Sn=Sn-1+ En, E, E, =- - i.i.d >0 a.s., E,~F (Counting process)

Nt = argmax { Sk = t}

U(t) = EN = = = Fn+(t)

 $\mathcal{L}_{u}(s) = \frac{\mathcal{L}_{\rho}(s)}{s(1-\mathcal{L}_{\rho}(s))}$ $p \rightarrow J_p \rightarrow J_u \rightarrow u$ (p=F')

 $Z_{\mathcal{U}}(s) = \int_{\mathbb{R}^2} e^{-sx} \mathcal{U}(x) dx$

Porsson process

Def!: A Process process is a revewal process 5.t.

 $\xi \sim p(x) = \lambda e^{-\lambda x} I \{ \chi > 0 \}$, λ -interesty or rate

 $\frac{\text{Ihm}(i): A distribution function of Sn}{F(x) = \begin{cases} 1 - e^{-\lambda x} \sum_{k=0}^{n-1} \frac{(\lambda x)}{k!}, x>0 \\ 0, x<0 \end{cases}$

 $P_{S_n}(x) = \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \frac{1}{2} x > 0$

(ii) P{Nt=n}=e-rt (rt), Nt ~ Poisson (rt)

Proof (i)
$$n=1: S_i=\xi_i$$

$$p_{S_i}(x)=\lambda e^{-\lambda x}, x>0$$

$$N \to n+1$$

$$P_{S_{n+1}}(x) = \int_{0}^{x} P_{S_{n}}(x-y) P_{E_{n+1}}(y) dy$$

$$= \int_{0}^{x} \frac{\lambda^{n}(x-y)^{n-1}}{(n-1)!} e^{-\lambda(x-y)} \lambda e^{-\lambda y} dy$$

$$= \frac{\lambda^{n+1}}{(n-1)!} e^{-\lambda x} \int_{0}^{x} (x-y)^{n-1} dy = \frac{\lambda^{n+1}}{(n-1)!} e^{-\lambda x} \frac{x^{n}}{n}$$

$$= \lambda \frac{(\lambda_{x})^{n}}{n!} e^{-\lambda x}$$

$$\frac{2.4...(4)}{proof(ii)}$$

$$P\{N_{t}=n\} = P\{S_{n} \leq t\} - P\{S_{n+1} \leq t\}$$

$$\{N_{t}=n\} = \{S_{n} \leq t\} \cap \{S_{n+1} > t\}$$

$$= e^{-\lambda t} \underbrace{\sum_{k=0}^{n-1} \left(\frac{\lambda t}{k!} \right)}_{n} - \left(1 - e^{-\lambda t} \underbrace{\sum_{k=0}^{n} \left(\frac{\lambda t}{k!} \right)}_{k!} \right)$$

2.5 Memoryless property

A C.V. X possesses the memoryless property iff

P \{ X > u+n \} = P \{ X > u \} P \{ X > v \} > 0; then

P \{ X > u+n \} X > n \} = P \{ X > u \}

Thm 2: Lat X be a r.v. with density p(x), then X-memoryless \iff $p(x) = \lambda e^{-\lambda x}$

Ex busses arrive every 20 ± 2 minutes N= 19 min, U= 10 min l.hs.) P { X 7 29 | X > 19 } = 0 given the data (r.h.s) P}X>103=1 Thus, Poisson process in not appropriate 26. Other definitions of Poisson processes (1) Def 2 N_t-an integer value process s.t. 0) N_o=0 a.s. 1) Not has independent increments: HtoCt, C. Ctn, Nt, -Nto, ..., Ntn-Ntn-1 are independent 2) Ne has stationary increments N_t-N_s = N_{t-s} 3) Nt-Ns ~ Poisson ()(t-s)), +75 $3) \Rightarrow 2)$ 2.7 Other definitions of Poisson processes (2) P { Ntrh - Nt = 03 = 1 - 7h + o(h), h→0 $P \{ N_{th} - N_t = 1 \} = \lambda h + o(h), h \rightarrow 0$ P { N++ - N+ = 2} = o(h), h > 0 $\lim_{h \to 0} \frac{1 - P\{N_{t+h} - N_t = 0\}}{h} = \lim_{h \to 0} \frac{1 - e^{-\lambda h}}{h} = \lambda$ Def 3 Not is a Poisson process, if 0) N = 0 1) No has independent increments 2) Ne has otationary increments 3') lim PENth -Nt 223 = 0 h>0 PENth -Nt = 13

Sk = argmin { Nt=k} En= Sh-Sk-1 1) $P_{\epsilon}(t) = \lambda(t)e^{-\lambda(t)}$ 2) PEZIE, (tls) = $\lambda(t+s)e^{-\Lambda(t+s)}+\Lambda(s)$ $F_{(\xi_1,\xi_2)}(s,t) = P\{\xi_1 \leq s, \xi_2 \leq t\} = \int_0^s P\{\xi_1 \neq s, \xi_2 \leq t \mid \xi_1 = y\} P_{\xi_1}(y) dy$ = 5° P { N + 1 - N = 1 | E = 9} PE (4) dy = \((1-e^-\lambda(t+y)+\lambda(y)) \) \(\gamma(y)e^{-\lambda(y)} dy $P_{(\xi_1,\xi_2)}(s,t) = \frac{\partial}{\partial t} \left(\frac{\partial}{\partial s} F_{(\xi_1,\xi_2)}(s,t) \right)$ $= \frac{\partial}{\partial t} \left(1 - e^{-\Lambda(t+s) + \Lambda(s)} \right) \lambda(s) e^{-\Lambda(s)}$ = $\lambda(t+s)e^{-\lambda(t+s)+\lambda(s)}$ $\lambda(s)e^{-\lambda(s)}$ Then $P_{E_2|E_1}(t|s) = \frac{P(E_1, E_2)(s, t)}{P_{E_1}(s)}$ finishes the proof $P_{\epsilon_1}(t) = P_{\epsilon_2|\epsilon_2}(t|s), \forall t, s>0$

E, Ez, ... -i.i.d.? (NHPP can be obtained from renewal process PP) $\lambda(t) e^{-\Lambda(t)} = \lambda(t+s) e^{-\Lambda(t+s) + \Lambda(s)}$ $(\int_{-\infty}^{\infty} dt) : e^{-A(0)} - e^{-A(T)} = e^{-A(T+S) + A(S)}$ $\Lambda(T) = \Lambda(T+S) - \Lambda(S)$, $\forall S, T > 0$ $\Rightarrow \Lambda(t) = \lambda t$

2.13 Elements of queuing theory.
$$M/G/k$$
 systems (1)

 $P \leq N_{t+n} - N_t = 0 \leq -1 + N_t + \sigma(h)$
 $P \leq N_{t+n} - N_t = 1 \leq -1 + N_t + \sigma(h)$
 $P \leq N_{t+n} - N_t = 1 \leq -1 + N_t + \sigma(h)$
 $P \leq N_{t+n} - N_t = 1 \leq -1 + N_t + \sigma(h)$
 $P \leq N_{t+n} - N_t = 1 \leq -1 + N_t + \sigma(h)$
 $P \leq N_{t+n} - N_t = 1 \leq -1 + N_t + \sigma(h)$
 $P \leq N_t + N_t +$

2,15 Compound Poisson Parcesses (1)

 $X_t = \sum_{k=1}^{\infty} \xi_k$, $\xi_1, \xi_2, \dots - i.i.d.$, $N_t - P.P.$ with intensity λ and ξ_1, ξ_2, \dots and N_t are independent

E, Ez, ... claim sizes

N_t - amount of claims until timet (Insurance interpretation)

X_t - aggregated claim amount

1) Probability generating function (BGF)

\(\xi - integer, \ge 0 values
\]

\(\phi_{\xi}(u) = \mathbb{E}[u^{\xi}], |u| \leq 1
\)
\(\xi_{\xi}(u) = \phi_{\xi}(u) = \phi_{\xi}(u) \phi_{\xi}(u)
\)

2) Moment-generating function (MGF) Le(u) = E[e-u], \$20, u>0

2,16 ... (2)

3) Characteristic function $\phi_{\mathbf{g}}(u) = \mathbb{E}\left[e^{iu\mathbf{g}}\right], u \in \mathbb{R}, \forall \mathbf{g}, \phi_{\mathbf{g}} : \mathbb{R} \to \mathbb{C}, \quad \mathbf{g}, \coprod \mathbf{g} \to \phi_{\mathbf{g}}(u)$ Thu $\phi_{\mathbf{g}}(u) = e^{\lambda(t-s)}(\phi_{\mathbf{g}}(u)-1)$ Proof: $u \in \mathbb{E}\left[e^{iu(X_t-X_s)}\right] = \sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t-X_s)}|N_t-N_s-k\right]$ $= \sum_{k=0}^{\infty} (\phi_{\mathbf{g}}(u))^k e^{-\lambda(t-s)} \left[\lambda(t-s)^k\right] e^{-\lambda(t-s)} e^{-\lambda(t-s)} \left[\lambda(t-s)^k\right] e^{-\lambda(t-s)} e^{-\lambda(t-s)} \left[\lambda(t-s)^k\right] e^{-\lambda(t-s)} e^{-\lambda(t$

 $X_t = \sum_{k=1}^{N_t} \xi_k$ & can be any random variable

$$\xi', \phi_{\xi}(u) = E[e^{iu\xi}]$$

$$\xi_1 \perp \xi_2 \Rightarrow \phi_{\xi_1 + \xi_2}(u) = \phi_{\xi_1}(u) \phi_{\xi_2}(u)$$

Then
$$\phi_{x_t-x_s}(u) = e^{\lambda(t-s)}(\phi_{s_t}(u)-1)$$
, $t>s\geq 0$

Proof $\begin{aligned}
&\text{lhs} = \mathbb{E}\left[e^{iu(X_t - X_s)}\right] \\
&= \sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - N_s = k\right] \cdot P \underbrace{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - N_s = k}_{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - N_s = k\right]}_{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - N_s = k\right]} \\
&= \sum_{k=0}^{\infty} \left[e^{iu(X_t - X_s)}\right] N_t - N_s = k\right] \cdot P \underbrace{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - N_s = k}_{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - N_s = k\right]}_{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - N_s = k\right]} \\
&= \sum_{k=0}^{\infty} \left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)} \underbrace{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)}}_{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)} \underbrace{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)}}_{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)} \underbrace{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)}}_{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)} \underbrace{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)}}_{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)} \underbrace{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)}}_{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)} \underbrace{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)}}_{\sum_{k=0}^{\infty} \mathbb{E}\left[e^{iu(X_t - X_s)}\right] N_t - e^{-iu(X_t - X_s)}$

2.18 · · · (4)

Corollary
$$EX_t = \lambda + EE$$
, $Van X_t = \lambda + EE$,

proof $E[E'] \subset \mathcal{S} \Rightarrow \phi(u)$ is r-times differentiable at 0 and $\phi(r)(0) = i^r E E^r$ $EX_t = \frac{f_{X_t}'(0)}{i} = \lambda t \frac{f_{X_t}'(0)}{i} \cdot f_{X_t}(0) = \lambda t E_{E_t}'$ $i \subseteq E_{E_t}''$

3.1 Definition of a Markov chain. Some examples
Def: a Markov chain - Sn, n = 0,1,2,....

S - state apace (countable)

$$P\{S_n = j \mid S_{n-1} = i_{n-1}, \dots, S_o = i_o \} = P\{S_n = j \mid S_{n-1} = i_{n-1} \}$$

 $c_0, \dots, c_{n-1}, j \in S'$ and $P \{ S_{n-1} = i_{n-1}, \dots, S_0 = i_0 \} \neq 0$ $P \{ S_n = i_n, S_{n-1} = i_{n-1}, \dots, S_0 = i_0 \} = P \{ S_n = i_n | S_{n-1} = i_{n-1}, \dots, S_0 = i_0 \}$ $P \{ S_{n-1} = i_{n-1}, \dots, S_0 = i_0 \}$

=
$$P \{ S_n = i_n | S_{n-1} = i_{n-1} \}$$
 $P \{ S_{n-1} = i_{n-1} | S_{n-2} = i_{n-2} \}$
 $P \{ S_n = i_n | S_n = i_n \}$ $P \{ S_n = i_n \}$

ExO Random walk (nota renewal process) S=0, $S_n=S_{n-1}+E_n$, $E_1,E_2,...-ild$, $S_n=S_n$, w.p. $P_n=P_n$

 $P \{S_n = j \mid S_{n-1} = i_{n-1} \} = \{ f, j = i_{n-1} + 1 \}$

2 Takes in the airport

I take at any 1 moment, n=1,2,3,...

Xn = # people waiting for a take at time k

 $Y_{k} = \# \text{ people arriving at } k$ $X_{k} = Y_{k} + (X_{k-1} - 1)_{+} = \begin{cases} Y_{k}, & \text{if } X_{k-1} = 0 \\ Y_{k} + X_{k-1} - 1, & \text{if } X_{k-1} - 1 > 0 \end{cases}$

(3) $X_n : P\{X_n = j \mid X_{n-1} = i_{n-1}, ..., X_0 = i_0 \} = P\{X_n = j \mid X_{n-1} = i_{n-1}, ..., X_{n-m} = i_{n-m}\}$ $M \in \mathbb{N}$, fixed $(X_n : snot a Markov chain)$ $S_n = (X_{n_1}, ..., X_{n-m-1})$, $n = (m-1), m_1, ...$ $S_m : a Markov chain$

3.2 Matrix representation of a Markov chain. Transition matrix. Chapman-Kolmogorov equation.

Matrix representation

$$S = (1, 2, ..., M)$$

$$P\{X_n=j|X_{n-1}=i\}=p_{ij}-homogeneous\ (no dependence\ on\ n)$$

$$\frac{\text{proof}}{P_{ij}} = \sum_{k=1}^{N} P \{X_{n+m-1} = k, X_n = i\}$$

$$\frac{1}{N} = \sum_{k=1}^{N} P \{X_{n+m-1} = k \mid X_n = i\}$$

$$= \sum_{k=1}^{N_d} P_{kj} P_{ik}^{(m-1)} = P^{(m)} = P \cdot P^{(m-1)} = P^{m}$$

$$P\left\{X_{k}=j\right\} := \Pi_{j}^{(k)}, \left(\Pi_{j}^{(k)}, \Pi_{m}^{(k)}\right) := \overrightarrow{\Pi}^{(k)}$$

$$T_{ij}^{(k)} = \sum_{i=1}^{M} P_{\xi} X_{k-i} = i \frac{3}{2} P_{\xi} X_{k-i} = i \frac{3}{2}$$

$$= \sum_{i=1}^{M} p_{i,i} \pi_{i}^{(k-1)} \Rightarrow \overline{\pi}^{(k)} = \overline{\pi}^{(k-1)} \cdot P = \overline{\pi}^{(0)} P^{n}$$

$$\frac{1}{i,j-aic} = 1 \text{ state}$$

$$\frac{1}{i,j-aic} \Rightarrow f_{ij} \neq 0$$

$$\frac{1}{0} \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$$

$$0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$$

$$0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$$

Def (1) j is accessible from i \exists walk (path) from i to j (i \rightarrow j) 1 \rightarrow 3; 1 \rightarrow 4 (2) i and j communicate if $i \rightarrow$ j and $j \rightarrow$ i ($i \leftrightarrow$ j)

(3) Y-Set, and relation ~ called an equivalence relation a~a, a∈Y - reflexivity

a~b ⇒ b~a, a,b∈Y - symmetry

a~b, b~a ⇒ a~c, a,b,c∈Y - transitivity

Y= ∐B; (∐-disjoint union), B;-equivalence classes

 $\Leftrightarrow \bigwedge \ominus P(...)$

B, Br, ... - equivalence classes

\(\forall j \in \text{Bi}, \text{ keBi}, \text{ keBi} \)

\(\forall k \pm \text{Bi}, \text{ keBi} \)

2(-) 3, 5(-)6, 1, 4 are the four equivalence classes

3.4 ... (2)

Lef: i is recurrent, $\forall j: i \rightarrow j \Rightarrow j \rightarrow i$ i is transvent if it's not recurrent $(\Rightarrow) \exists j: i \rightarrow j, j \leftrightarrow i$ $e_{\kappa}: (2), (9, 6), (6)$ —transvent

23 - recurrent

Them: In I class of equivalence, all states are either recurrent or

proof k-transvert: $\exists j: k \rightarrow j, j \not\rightarrow k$ $i,k \in 1 \text{ class} \Rightarrow i \rightarrow k \rightarrow j, \text{ but } j \not\rightarrow i: j \rightarrow i \rightarrow k \text{ is a centradiction}$

3.5 ... (3)

Of: Period of a state i is $GCD\{n: p_{ii}(n) \neq 0\} = :d(i)$ $d(i) = 1 \Rightarrow i$ -aperiodic

d(1)=1=d(4)=d(5)=d(6)d(2)=2=d(3)

4 has no return, so d(4) = 1 by convention

Thm: all elements in I class of equivalence have the same period proof: proof proof

 $\Rightarrow k|d(i) \Rightarrow d(i)|d(j)$ $\Rightarrow d(i)=d(j)$

3.6 Ergodie Chains. Ergodie Theorem (1)

Matrix representations

P (n) = P m

Ergodic Markov Chains:

- 1 class of equivalence

- recurrent

- d(i) = | (apenodic)

Craphical representation

classes of equivalence
recurrent / transcent

d(i) - period

return in 5016 steps

Prop: Markov chain is ergodic = ImEN: Pij(m) +0, VijE, S(*) If chain is ergodic, then (t) hold $\forall m \ge (M-1)^2 + 1$

Engodie theorem: Let X_t-ergodie Markov chain , i.e. X_t has I class of equivalence, recurrent and aperiodic. Then, I lim Pij(n) =Tj *50 (doesn't depend on i) Σπ*=1 π*=(π*, π*)

Corn(i) TT*- stationary distribution: TT*P= TT*

(ii) lim P{Xn=j3=TT; [TT; (i) is arbitrary)

proof (i) i=1,..., M $(\Pi^*P)_i = \sum_{j=1}^* \Pi_j^* p_{ji} = \sum_{j=1}^* \lim_{n \to \infty} p_{kj}(n) p_{ji}$ (ke1,...,M) = $\lim_{n \to \infty} \sum_{j=1}^{m} P_{kj}(n) p_{ji}$ $p^{(n)} P = P^{m+1} = P^{(n+1)}$ = lim Pri(n+1) = Ti*

proof(ii) lim T; (n) = lim \(\sum_{k=1}^{(0)} P_{kj}(n) \) T; (0) is arbitrary $= \underbrace{\prod_{k=1}^{(n)} \prod_{k=1}^{(n)} p(n)}_{\text{N-oo}} = \underbrace{\prod_{k=1}^{*} \prod_{k=1}^{(n)} \prod_{k=1}^{*} \prod_{k=1}^{*$

$$P = \begin{pmatrix} 0.2 & 0.8 \\ 0.6 & 0.4 \end{pmatrix}$$

$$\vec{\pi}^* = (a, b), \vec{\pi}^* = \vec{\pi}^*$$

$$(a b)(0.2, 0.8) = (a b)$$

$$(a b)(0.6, 0.4) = (a b)$$

$$0.2a + 0.6b = a$$
 $3 \Rightarrow a = \frac{3}{7}, b = \frac{4}{7}$ $0.8a + 0.4b = b$

Gaussian Processes

4.1 Random vector. Definition and main properties $\xi \sim N(\mu, \sigma^2)$, $\rho(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2}$, $\sigma > 0$, $\mu \in \mathbb{R}$ $\phi(u) = e^{iu\mu - \frac{1}{2}u^2\sigma^2}$

 $X_1, X_2 \sim N(0,1)$ $X_1 \perp X_2$ $Cor(X_1, X_2) = 0$ P{X=13=1 > 0=0

Def: A random vector $X = (X_1, ..., X_n)$ is Caussian iff $Y(\lambda_1, ..., \lambda_n) \in \mathbb{R}^n$, $\sum_{k=1}^n \lambda_k X_k \sim N$

4.2 Goussian vector. Definition and main properties

This \vec{X} - Gaussian iff any of the following holds: (i) $\phi_{\vec{X}}(\vec{u}) = \mathbb{E}[e^{i\langle \vec{u}, \vec{X} \rangle}] = \exp\{i\langle \vec{u}, \vec{\mu} \rangle - \frac{1}{2}\vec{u}^{T}C\vec{u}\}$ M∈R"; C- symmetrie, positive semidefinite (size nxn)

(ii) X= AX°+ ii , A ∈ Mat(uxn), X°- standard remail vector

C = (Cjk)jh=(, Cjk = cor(Xj, Xk) EukCky y: ≥0, Yuer (=) uTCu ≥0, Yuer

 $\sum_{k,j=1}^{n} U_{k} cov(X_{j}, X_{k}) u_{j} = cov(\sum_{j=1}^{n} u_{j} X_{j}) \sum_{k=1}^{n} u_{k} X_{k})$

= von (& U, X) 20

 $A = C^{1/2} : AA = C \Rightarrow \exists \mathcal{U} : \mathcal{U}^{-1} = \mathcal{U}^{-1} : C = \mathcal{U}^{-1} \begin{pmatrix} d & 0 \\ c & d_n \end{pmatrix} \mathcal{U}$ A = UT (Val, o) U =) C=AAT

Proof: Def (i) (i) (ii)

 $\frac{\Omega_{f} = \chi(i)}{\varphi_{\chi}(i)} = \chi(i,\chi) \sim N$ $\frac{\varphi_{\chi}(i)}{\varphi_{\chi}(i)} = \chi(i,\chi) \sim 1 = \varphi_{\xi}(1) = e^{i\mu_{\xi} - \frac{1}{2}\sigma_{\xi}^{2}}$ $\mu_{\xi} = \left[\sum_{k=1}^{\infty} u_{k} \chi_{k}\right] = \sum_{k=1}^{\infty} u_{k} \chi_{k} = \sum_{k=1}^{\infty} u_{k} \mu_{k} = \chi_{i} \chi_{i} \chi_{i}$

 $\frac{\sigma^{2}}{\varepsilon} = cor\left(\sum_{k=1}^{n} u_{k} X_{k}, \sum_{j=1}^{n} u_{j} X_{j}\right)$ $= \sum_{k=1}^{n} \sum_{k=1}^{n} u_{k} cos\left(X_{k}, X_{j}\right) u_{j} = \vec{u}^{T} C \vec{u}$

(i) → Def By definition of \$ for Gaussian

(ii) ⇒(i)

 $\vec{X}^{\circ} - Goussian \Rightarrow \phi_{\vec{X}^{\circ}}(\vec{u}) = \exp \left\{ -\frac{1}{2} \vec{u}^{\top} \vec{u} \right\}$ $\phi_{\vec{X}}(\vec{u}) = \mathbb{E} \left[e^{i \langle \vec{u}, A \vec{X}^{\circ} + \vec{\mu} \rangle} \right] = \mathbb{E} \left[e^{i \left[\vec{u}, \vec{\mu} \right] + \left(\vec{u}, A \vec{X}^{\circ} \right)} \right]$ $= e^{i \langle \vec{u}, \vec{\mu} \rangle} \phi_{\vec{X}^{\circ}} (A^{\top} \vec{u}) = e^{i \langle \vec{u}, \vec{\mu} \rangle} e^{-\frac{1}{2} \vec{u}^{\top}} A^{\top} \vec{u}$ $= e^{i \langle \vec{u}, \vec{\mu} \rangle} e^{-\frac{1}{2} \vec{u}^{\top}} C \vec{u}$ $= e^{i \langle \vec{u}, \vec{\mu} \rangle} e^{-\frac{1}{2} \vec{u}^{\top}} C \vec{u}$

(i) ⇒(ii) A = C 12 D

4.3 Connection between independence of normal random variates and absence of correlation

The Let $X_1, X_2 \sim N(0, 1)$ and $cov(X_1, X_2) = 0$, then $X_1 \perp \!\!\! \perp \!\!\! \setminus X_2 \iff (X_1, X_2)$ - Crowssian vector

Proof (=) $\lambda_1 X_1 + \lambda_2 X_2 \sim N \Rightarrow (X_1 X_2)$ - Gaussian vector

 (\Leftarrow) $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow A = C^{1/2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = C$

 $(ui) \ni \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = A \stackrel{?}{\chi}^{\circ} + \vec{\mu} = \begin{pmatrix} 1 & \circ \\ \circ & 1 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} + \begin{pmatrix} \circ \\ \circ \end{pmatrix} \Rightarrow \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$

 $\begin{array}{l} (2) \quad X_{1} \sim N(0,1) \ , \ X_{2} := |X_{1}| \cdot \xi, \ \xi = \xi_{-1} \cup N_{1} \cdot \xi, \ \xi = \xi_{-1} \cup$

2) $cor(X_1X_2) = 0$ $E(X_1X_2) - EX_1 EX_2 = E[X_1|X_1|E]$ $= E[X_1|X_1|] EE - 0 \cdot EX_2$ = 0 - 0 = 0

3) X_1, X_2 are dependent Assume $X_1 \perp \mid X_2 \Rightarrow (X_1 \mid X_2)$ - Crausaian $x = |X_1 - X_2| = |X_1 - |X_1| \notin N$ $\{x > 0\}$ when $X_1 > 0$ and $\{x = -1\}$ $P\{x > 0\} \ge P\{x_1 > 0 \cap \{x = -1\}\} = P\{x_1 > 0\} P\{x = -1\}$ $= \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$ $P\{x = 0\} \ge \frac{1}{4}$ since $var(x) \ne 0$ Thus x = x = 1 4.4 Definition of a Gaussian process. Covariance function (1) Def: A Gaussian process X_t is a stochastic process s.t. $\forall t_1, t_2, ..., t_n$: $(X_{t_1}, ..., X_{t_n})$ - Caussian vector m(t) = EX, - mathematical expectation M: K+>R $K(t,s) = cor(X_t, X_s)$ $K: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ $K(t,t) = Var X_t$ and K(t,s) = K(s,t)K .- a positive semidefinite function (p.s.d.) $\forall (t_1,...,t_n) \in \mathbb{R}_+,$ $\forall (u_1, u_n) \in \mathbb{R}^n$ $\sum_{h=1}^{\infty} \sum_{j=1}^{\infty} u_h u_j K(t_{h_j}, t_j) \ge 0$ () $cov(\underbrace{\underbrace{\underbrace{\underbrace{X}}}_{k=1}u_{k}X_{t_{k}},\underbrace{\underbrace{X}}_{i=1}u_{i}X_{t_{i}}) = van(\underbrace{\underbrace{\underbrace{X}}_{k=1}u_{k}X_{t_{k}}) \geq 0$ 4.5 Definition of a Gaussian process. Covariance function (2) Thm: $m: \mathcal{R}_+ \to \mathcal{R}$, $K: \mathcal{R}_+ \times \mathcal{R}_+ \to \mathcal{R}$, K-symmetric and $\rho.s.d$. Then, \exists Gaussian process $X_t: EX_t = m(t)$, $cov(X_t, X_s) = K(t, s)$ Gaussian Nector: MER, CEMat(n,n) and symmetric and p.s.d. Gaussian process: M:R+>R, K:R+XR+>R (Seyn and p.s.d.) Ene: K(t,s) = /t-s/ is not p.s.d. let t=s, var $X_t=0 \Rightarrow X_t=f(t)$ - deterministic $cov(X_t, X_s) = \mathbb{E}[X_tX_s] - \mathbb{E}X_t\mathbb{E}X_s = f(t)f(s) - f(t)f(s) = 0 \neq |t|s|$ Contraduction D

FOPS. 35500

4.5.

Ex K(t,s) = min (t,s) is p.s.d. $\leq u_j u_k \min(t_j, t_k) \geq 0$ fe(x)=1{xe[0,t]} $\int_{\xi} f_{\xi}(x) f_{\xi}(x) dx = \min(t, s)$ 1 iff RE(0,t), re(0,5] (=) x ∈ (0, min(t,5)] $\sum_{j,k=1}^{\infty} u_j u_k \int_0^{\infty} f_{t_j}(x) f_{t_k}(x) dx = \int_0^{\infty} \sum_{j,k=1}^{\infty} u_j u_k f_{t_j}(x) f_{t_k}(x) dx$

 $=\int_{\mathbb{R}^{3}}\underbrace{\int_{\mathbb{R}^{3}}u_{1}f_{t_{1}}(x)}\underbrace{\int_{\mathbb{R}^{3}}u_{1}f_{t_{1}}(x)dx}=\int_{\mathbb{R}^{3}}\underbrace{\left(\underbrace{\int_{\mathbb{R}^{3}}u_{1}f_{t_{1}}(x)\right)^{2}dx}\geq0$

Then, K(t,s) = min(t,s) is p.s.d.

4.6 Two definitions of a Brownian motion Brownian motion = Wiener process (B_t = W_t)

Def 1: By- a Gaussian process with m(t)=0, K(t,s)=min(t,s)

Def 2! (0) B=0 a.s.

(1) By independent increments [By ~ N(0,t)]

(2) B+-B5~N(0, t-s), +7520

Def 1 > Def 2

(0) $\mathbb{E} \mathcal{B}_0 = m(0) = 0$ $\Rightarrow \mathcal{B}_0 = 0$ a.s. $\forall a \mathcal{B}_0 = K(0,0) = 0$

(1) (1) (1)

Bn-Ba II Bd-Bc

cer (Bb-Ba, Bd-Be) = cor (Bb, Bd) - cor (Ba, Bd) - cor (Bb, Fe) + cor (Ba, Fe) = min (b,d) - min (a,d) - min (b,c) + min (a,c) b-a-b+a =0

$$\lambda_{1}(B_{b}-B_{a}) + \lambda_{2}(B_{d}-B_{c}) = \lambda_{1}B_{b} - \lambda_{1}B_{a} + \lambda_{2}B_{d} - \lambda_{2}B_{c} \sim N(\cdot,\cdot)$$

$$\Rightarrow \begin{bmatrix} E_{b}^{*} \cdot E_{b} \\ B_{d} \cdot B_{c} \end{bmatrix} = Grussian vector \Rightarrow B_{d} - B_{s} \sim N$$

$$E[B_{d} \cdot B_{s}] = EB_{c} - EB_{s} = M(t) - M(s) = 0 - 0 = 0$$

$$Vor[B_{d} \cdot B_{s}] = corr(B_{d} \cdot B_{s}, b_{d} - B_{s}) = corr(B_{d}, B_{d}) - 2corr(B_{e}, B_{s}) + corr(B_{s}, B_{s})$$

$$= min(t,t) - 2min(6,s) + min(6,s)$$

$$= t - 2s + s = t - s$$

$$Dif 2 \Rightarrow Dif 1 \qquad t, < t_{2} < \cdots < t_{m}$$

$$\sum_{k=1}^{m} \lambda_{k} B_{t_{k}} = \lambda_{m}(B_{t_{k}} - B_{t_{k-1}}) + (\lambda_{m} + \lambda_{m}) B_{t_{m-1}} + \sum_{k=1}^{m-2} \lambda_{k} B_{t_{k}}$$

$$= \sum_{k=1}^{m} d_{k} (B_{t_{k}} - B_{t_{k-1}}) \sim N \qquad (t_{0} - 0)$$

$$\Rightarrow (B_{t_{1}}, ano, B_{t_{1}}) - Gaussian vector \Rightarrow B_{t_{1}} - Gaussian$$

$$B_{t_{1}} \sim N(0, t) \Rightarrow m(t) = EB_{t_{1}} = 0$$

$$K(t_{1}s) = corr(B_{t_{1}}, B_{s}) = corr(B_{t_{1}}, B_{s}, B_{s})$$

$$= corr(B_{t_{1}} - B_{s}, B_{s}) + corr(B_{s}, B_{s})$$

$$= corr(B_{t_{1}} - B_{s}, B_{s}) + corr(B_{s}, B_{s})$$

$$= corr(B_{t_{1}} - B_{s}, B_{s}) + corr(B_{s}, B_{s})$$

$$= ror(B_{s}) = s$$

$$\text{If } s > t , K(t_{1}s) = t$$

$$\therefore K(t_{1}s) = min(t_{1}, s)$$

4.7 Modification of a process. Kolmogorov continuity theorem

Kolmogorov continuity theorem

Def Xt, Yt are stochastically equivalent if $P\{X_t = Y_t3 = 1, \forall t \geq 0\}$

Ex: X = 0, Yte [0,1]

Yt = 1 { 2= +3, 2~ Unif (0,1)

P{X=Y+3-P{Y=0}=P{++73=1

Then Of $\exists C, \alpha, \beta > 0$ s.t. $E[|X_t - X_s|^{\alpha}] \leq C|t-s|^{1+\beta}$ $\forall t, s \in [a,b]$, then $\exists Y_t$ that is stochastically liquivalent to X_t s.t. Y_t has continuous trajectories, i.e., X_t has a continuous modification.

 $E_{x}: E[B_{t}-B_{s}]^{4}] = (t-s)^{2}E_{x}^{2} = 3(t-s)^{2}$ N(0,t-s)

 $B_{t}-B_{s} = \sqrt{t-s} \, \xi, \, \xi \sim N(0,1)$ $\Rightarrow C = 3, \, \beta = 1, \, \alpha = 4$

4.8 Main properties of Brownian Motion

1 Quadratic variation

to= 0 t, te t=tn

lim $\sum_{n > \infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$ $\sum_{n > \infty} \sum_{k=1}^{\infty} (B_{tk} - B_{tk-1})^2 = t$

$$E(S_{n}-t)^{2} \xrightarrow{n \to \infty} 0 \iff \lim_{n \to \infty} \frac{S}{k-1} (B_{th} - B_{th-1})^{2} = t \text{ guadratic}$$

$$\lim_{n \to \infty} \frac{S}{k-1} |B_{th} - B_{th-1}| = \infty \qquad \text{variation}$$

- (2) B_t everywhere continuous, but nowhere differentiable

 B_{th} \xrightarrow{P} B_t, $\forall t \ge 0$
- 3 lim $\frac{\beta_t}{t} = 0$ a.s. lim $\frac{\beta_t}{t} = \infty$ a.s. Law of iterated logarithm

Low of iterated logarithm: lim Bt (2+log (logt) = 1