

Протопопов Антон

Data Scientist, Aarki

(@aprotopopov

План доклада

- О конкурсе
- Решение
 - Подготовка данных
 - Отбор кандидатов
 - Ранжирование
- Решения других участников
- Заключение

Постановка задачи

- Предсказать покупки пользователя на основании его транзакций
- Клиенты в тесте не пересекаются с трейном
- Контейнерное соревнование, решение код алгоритма в zip архиве

Данные

clients.csv - 400k
 products.csv - 43k
 purchases.csv - 46M

Валидация/тест, известно что даты запроса > 2019-03-01

- o check 100 пользователей
- o public ~ 1k
- o private ~ 10k

Технические требования

- 8 Гб оперативной памяти, 4 vCPU
- время на подготовку к работе: 5 секунд
- 20 RPS (запросов в секунду)
- ограничение по времени запроса:
 - максимальное 1 сек
 - 95% запросов должны укладываться в 0.3 сек
- максимальный размер упакованного и распакованного архива с решением: 1 Гб

Метрика, MNAP@30

$$MNAP = \frac{1}{|Q|} \sum_{q \in Q} \frac{AP(q)}{IdealAP(q)}$$

$$AP(q) = \frac{1}{30} \sum_{k=1}^{30} \text{Precision@}k(q)$$

- Q множество запросов
- o Precision@k(q) доля релевантных товаров в первых k позициях списка рекомендаций
- IdealAP(q) максимальное значение AP(q)

Подготовка данных


```
"query time": "2019-03-01T05:59:27",
"client id": "001e840150",
"age": 71,
"gender": "U",
"transaction history": [
        "datetime": "2019-01-15T11:53:01",
        "store id": "bc09d51b34",
        "purchase sum": 308.0,
        "products": [
                "product id": "dc2001d036",
                "quantity": 1
            },
```

https://github.com/datagym-ru/retailhero-recomender-baseline

Коллаборативная фильтрация, k-Nearest Neighbors

https://takuti.github.io/Recommendation.jl/latest/collaborative_filtering/

Матричная факторизация

https://takuti.github.io/Recommendation.jl/latest/collaborative_filtering/

Модели и эвристики для подбора кандидатов

- o item2item модели
 - o implicit.nearest neighbours.CosineRecommender M TFIDFRecommender
- Факторизационная машина
 - o implicit.als.AlternatingLeastSquares
- о топ покупаемые товары
- история покупок пользователя
- user2user модель
 - **Сжатие** TruncatedSVD **для получения** dense **матрицы из матрицы покупок** пользователей
 - построение индекса FAISS
 - поиск ближайших соседей с FAISS

Итоговый вариант отбора кандидатов

- √ i2i tf-idf100
- ✓ i2i cosine50
- / i2i cosine2
- √ global_top@N
- √ user history@0.5N

- X ALS
- x u2u FAISS

N_pool	mean_N	min_N	max_N	recall
30	70.760409	30	110	0.399408
50	101.300616	50	153	0.432926
75	144.910696	75	230	0.467893
100	191.008328	100	271	0.497270
125	236.923014	125	331	0.517472
200	375.113246	200	520	0.561788
500	962.501518	500	1175	0.655344

Градиентный бустинг

Microsoft LightGBM

Градиентный бустинг

Microsoft LightGBM

- 1. binary
- 2. lambdarank
- 3. rank xendcg

- 1. binary:logistic
- 2. rank:pairwise
- 3. rank:ndcg
- 4. rank:map

- 1. RMSE
- 2. QueryRMSE
- 3. PairLogit
- 4. PairLogitPairwise
- 5. YetiRank
- 6. YetiRankPairwise

Градиентный бустинг

Microsoft LightGBM

- / binary
- ✓ lambdarank
- x rank xendcg

- 1. binary:logistic
- 2. rank:pairwise
- 3. rank:ndcg
- 4. rank:map

- ✓ RMSE
- X QueryRMSE
- X PairLogit
- X PairLogitPairwise
- ★ YetiRank
- YetiRankPairwise

Признаки, основанные на со-встречаемости товаров

Идея из <u>описания решения RecSys 2018</u> командой из Авито

 $n_{i,j}$ - количество транзакций, содержащих товары i и j вместе

 n_i - количество транзакций, содержащих товары i

```
w_i - нормализованный вес товара i из транзакций пользователя Транзакция t состоит из товаров p_1, p_2, ... p_n Для каждого товара считаем скоры n_{p,p_1}, ... n_{p,p_n} Как фичи используются нормализованные значения \frac{n_{p,p_n}}{n_{p_n}} и статистики: минимум, максимум, сумма. Также эти скоры дополнительно взвешивались на w_i: w_i \, \frac{n_{p,p_n}}{n_p}
```

Другие признаки

- Релевантность и позиция товара от каждой модели
- Среднее количество товаров в транзакции, истории и их производные
- Временные признаки, был выбранный товар в последней транзакции, количество дней после последней транзакции
- UMAP ембеддинги пользователей на транзакционной активности
- Признаки пользователя из clients.csv возраст, пол
- Признаки товаров из products.csv категориальные признаки

Важность признаков

- Всего ~80 признаков
- Наибольший вклад вносит признаки из истории транзакций пользователей
- Важность топ 15 признаков

Оптимизация скорости

- Кеширование и сохранение в pickle/feather признаков по товарам
- Оценка релевантности товаров і2і путем ручного перемножения матриц
- Caбсет sparse матрицы для каждого пула/истории пользователя, конвертация в numpy для быстрого доступа и подсчета фичей

Используемые ресурсы

- Mac Pro, i7
- o 32 Gb RAM
- 80 Gb SSD swap
- ~100 Gb disk space

Не сработало

- o word2vec, обученный на транзакциях пользователей
- o user2user cosine similarity + FAISS , замедляло работы и не давало сильного буста
- o CatBoost ранжирующие алгоритмы
- Добавление ground_truth товаров и исключение пользователей с отсутствием таргета в пуле товаров
- o Получение ембеддингов категорий (store id, age) из обученной lightfm модели

Фейлы

• Использование фичей основанных на порядке (количество дней до последней транзакции), хотя в check и public история транзакция не отсортирована.

• Не хватило 1 часа на тренировку лучшего решения, на локальной валидации скор

0.1558, против финального 0.1550.

• Модель cosine50 не получилось воспроизвести offline

Результаты соревнования

Public

#	Команда		Точность	Последнее решение	Попыток
1	vadimfb	&	0,1358	23 февраля 2020, 13:19	131
2	aprotopopov	*	0,1350	23 февраля 2020, 23:51	119
3	ssh1	8	0,1336	23 февраля 2020, 23:50	164
4	avolchek	_	0,1335	23 февраля 2020, 15:31	162
5	вжух-вжух и в продакшн		0,1330	23 февраля 2020, 16:50	33
6	Make me apologize if you can		0,1324	23 февраля 2020, 22:58	60
7	greenwolf	©	0,1295	23 февраля 2020, 22:24	59
8	anatoly	•	0,1294	23 февраля 2020, 23:06	127
9	Рекомендации Красная Цена	(4)	0,1286	22 февраля 2020, 22:48	96
10	antitak	4	0,1283	23 февраля 2020, 21:56	128

Private

#	Команда		Финальная точность	Response Time (avg / 95p, ms)	Последнее решение	Попыток
1	aprotopopov		0,148325	26,9 / 36,0	23 февраля 2020, 23:51	119
2	ssh1	8	0,147026	75,0 / 88,1	23 февраля 2020, 23:50	164
3	вжух-вжух и в продакшн		0,145728	51,2 / 68,2	23 февраля 2020, 16:50	33
4	avolchek	(-)	0,145644	9,6 / 14,0	23 февраля 2020, 15:31	162
5	vadimfb	&	0,145443	20,9 / 23,6	23 февраля 2020, 13:19	131
6	anatoly		0,144031	71,1 / 122,6	23 февраля 2020, 23:06	127
7	antitak	4	0,143769	17,1 / 31,0	23 февраля 2020, 21:56	128
8	greenwolf	©	0,143422	20,0 / 28,4	23 февраля 2020, 22:24	59
9	Рекомендации Красная Цена	(1)	0,143019	30,0 / 43,2	22 февраля 2020, 22:48	96
10	Пропустите наверх, пожалуйста	•	0,141580	67,0 / 122,0	23 февраля 2020, 23:03	31

Решение второго места, @ssh1

- В качестве кандидатов вся история клиентов, если меньше 100 продуктов из глобального топа
- o **3 типа фич,** Client, Product, Client-Product
- Из эмбеддингов prod2vec, 2 фичи, расстояние от продукта до среднего от продуктов клиента и до max
- Заказ товара в последних пяти транзакциях в виде последовательности бит (категориальная). Например 10011 - купил этот товар в последней, предпоследней и 5 транзакций назад
- O CatBoost C YetiRank, lr=1, валидация по MAP@30
- Скор на локальном тесте 0.154, на паблике 0.133

Решение шестого места, @anatoly_i

- 1) берём товары, которые клиент уже покупал (до предсказываемой транзакции)
- 2) добавляем 50 самых популярных товаров
- 3) строим на них классификатор lightgbm (будет в следующей покупке или нет)
- 4) перебором остались такие фичи:
 - категориальные segment_id, level_2, level_3, vendor_id
 - нормированная частота товара для каждого клиента за всё время
- время, прошедшее с момента последней покупки товара до момента последней известной транзакции клиента + ранги по этой фиче
 - частота товара среди всех клиентов
 - количество магазинов, в которых встречался этот товар
 - количество транзакций клиента
 - стандартное отклонение количества продуктов в транзакциях клиента
- количество продуктов в последней транзакции клиента / среднее кол-во продуктов в транзакции клиента
- 5) обучался на 2-3 последних транзакциях всех клиентов и складывал вероятности из 6 немного отличающихся моделей

Заключение

- Контейнерные соревнования стимулируют писать основной код в скриптах, а не ноутбуках
- Контейнер позволяет полностью воспроизвести решение, даже если локальный код/файлы уже безвозвратно изменены
- В условиях ограничения на ресурсы приходится взвешивать стоить ли включать в решение дорогие для расчета признаки/подходы
- Градиентный бустинг быстро работает и может использоваться для real-time рекомендаций. Даже на 6000 итераций с общим пулом ~200 кандидатов и ~80 фичей отрабатывает в заданные рамки.

Спасибо за внимание!

Решение: https://github.com/aprotopopov/retailhero recommender

□ : anton@aarki.com

: @aprotopopov