Divide and Congrer I

- · Matrix Unitiplication
- · Sorting
- . Median / Selection

$$T(n) = 8 + (\frac{1}{2}) + C + C + \frac{\delta}{2}$$

$$0 = 8, b = 2, d = 2, =) \frac{\delta}{2} > = 1 \quad T(n) = O(n^{6}/2\delta)$$

$$= O(n^{3}/2\delta)$$

Strassen '69

$$\frac{T(n) \in 7. T(\frac{n}{2}) + (-n^2)}{= 1 T(n) \in O(n^{\log_2 7}) = O(n^{2.87...})}$$

Sorting (Merge Sat)

Merge Sort (ACI n3)
BC NS (ACI =])
(G US (4 (11) - n])
return, Auge (13, 4)
$T(n) \leq 2.T(\frac{n}{2}) + Cn$
a=2, b=2, d= = = T(n)=D(n logn)
87b51
Non-Recursive Version
0=1181717138
Han '02: Sulting in O(nlylogn) (Deterninistic)
Han '02: Sulting in O(nlighyn) (Deterninistic) 1-(an-Thor. '02: - O(n Nlughyn) (Rand)
1 (201 = 1 110)
No conpare Sort:
- Cond Surt
· radix sort
(ompane Model: O(n/ya) is the best.
Co house words
In the: some unknown permutation 5 of 1,2,-n

From now on: A has distinct actives. · IXXA median. Select (AU) -- n], k) Break A into groups of size of S each.

Main: 13 & avvay of median aft in each group

If C select (13, 10) · LE 3 cpr, RE37 P · elif k ElE .. noturn seleck (6,14) else: return select (K, K-141-1) $T(n) \leq O(n) + \frac{1}{2} \cdot O(1) + T(\frac{1}{2}) + O(n) + T(\frac{1}{2}n)$ 57(1)+7(13m)+ (.1 Guess: T(n) 58.n Now try to place via induction: Base case: I (as long on 187/1

Inductive step: 13. 1 + 13. 7 n + Cn \leq B. N.				
		Bc - 3-1	5)76	2) 37/02