Berechenbare Analysis SoSe 19

Benedikt Lüken-Winkels

May 6, 2019

Contents

1	1. Vorlesung	2
2	2. Vorlesung2.1 Berechenbarkeit2.2 Entscheidbarkeit2.3 Berechenbare Reelle Zahlen	2
3	3. Vorlesung 3.1 Binary Sequence	3
4	4. Vorlesung	4
5	5. Vorlesung	
6	6 Vorlesung	

1 1. Vorlesung

2 2. Vorlesung

2.1 Berechenbarkeit

Es gibt einen Algorithmus, der die Zahl angeben kann (es gibt nur eine abzählbar unendliche Anzahl an Algorithmen, aber überabzählbar viele reelle Zahlen)

Figure 1: g ist (ν_x, ν_y) berechenbar, wenn g von einer berchenbaren Funktion f realisiert wird

2.2 Entscheidbarkeit

Diagonalisierung Wären die Reellen Zahlen abzählbar, wäre die Diagonalzahl darin enthalten (!Widerspruch).

Table 1: Diagonialisierungsbeispiel: x_{∞} kann nicht in der Liste enthalten sein

x_0	0.500000
x_1	0.411110
x_2	0.312110
x_3	0.222220
x_4	0.233330
	•••

 $x_{\infty} = 0.067785....$

Definition Menge A Entscheidbar, wenn eine Funktion $f_A(x)$, die entscheidet, ob $x \in A$ berechenbar ist.

2.3 Berechenbare Reelle Zahlen

Konstruktive Mathematik Formulierung algorithmischen Rechnens: $zB \exists$ neu definiert als "es existiert ein Algorithmus". Nicht mehr für "klassische Mathematiker" lesbar

Definition Für $x \in \mathbb{R}$ sind die Bedingungen äquivalent (wenn eine Bedingung erfüllt ist, sind alle Erfüllt):

- 1. Eine TM erzeugt eine unendlich lange binäre Representation von x auf dem Ausgabeband
- 2. **Fehlerabschätzung** Es gibt eine TM, die Approximationen liefert. Formal: $q: \mathbb{N} \to \mathbb{Q}$ $(q_i)_{i \in \mathbb{N}}$ ist Folge rationaler Zahlen, die gegen x konvergiert. Bedeutet, dass alle q_i innerhalb eines bestimmten beliebig kleinen Bereichs um x liegen. Größter möglicher Fehler $2^0 = 1$
- 3. Intervalschachtelung Es gibt eine berechenbare Intervallschachtelung: Angabe zweier Folgen rationaler Zahlen mit der Aussage, dass x dazwischen liegt. Ziel: Abstände von linker und rechter Schranke soll gegen null gehen.
- 4. **Dedekindscher Schnitt**Menge $\{q \in \mathbb{Q} | q < x\}$ ist entscheidbar. Beispiel $\sqrt{2}$ ist berechenbar. $\{q|q < \sqrt{2}\} = \{q|q^2 < 2\}$. \Rightarrow Es gibt einen Test, ob die Zahl kleiner ist.
- 5. $z \in \mathbb{Z}$ $A \subseteq \mathbb{N}$, $x_A = \sum i \in A2^{-1} i$, $x = z + x_A$
- 6. Es exisitert eine Kettenbruchentwicklung

Folgerungen / Beispiele

- \bullet \Rightarrow Für Berechenbarkeit muss nur eine der Bedingungen bewiesen werden. Menge der berechenbaren reelen Zahlen $= \mathbb{R}_c$
- Nicht berechenbare reele Zahlen durch Diagonalisierung konstruierbar
- e berechenbar, weil die Fehlerabschätzung (2) existiert
- \bullet π (Notiert als alternierede Reihe) berechenbar, weil Intervalschachtelung existiert
- $\sqrt{2}$ berechenbar, weil Dedekindscher Schnitt existiert.

Implementierung Ziel: zB Berechnung von Differentialgleichungen

3 3. Vorlesung

Implementierung in C++ Ziel: shared pointer für temporäre Variablen verstecken (durch wrapper)

- (binary sequence) bs: ein Bit nach dem anderen wird ausgegeben. binseq gibt zur natürlichen Zahl n und liefert das n-te Bit der reellen Zahl (Vorzeichen, 0 oder 1).
- (rational approximations) ra: Fehler beliebiger Größe (Gnaze Zahlen). approx rationale Approximation mit einem beliebig großem Fehler. (Abänderung der Definition, weil ganze Zahlen zulässig)

- ni: Untere und obere Schranke. lower/upperbound gibt n-te Schranke
- (Dedekind cut) dc: Ist eine Zahl kleiner. smaller entscheidet, ob die angegebene Rationale Zahl kleiner ist.
- ds: decide ist das n-te Bit gesetzt oder nicht
- cf: cont-fraction n-tes Folgenglied

3.1 Binary Sequence

- make-node erzeugt den shared pointer auf das node Objekt
- DAG (directed acyclic graph) als Stuktur für Operatoren

4 4. Vorlesung

Programmierung

5 5. Vorlesung

$$(2) \Rightarrow (1)$$

Umsetung von Approximation zur Binärfolge für die gesuchte Zahl x:

- Bereich zwischen 2 ganzen Zahlen aproximieren (ist x eine 2er-Potenz, schlägt dieser Schritt fehl)
- Binärsequenzen eignen sich nicht zum Rechnen

\mathbb{R}_c ist ein Körper

- \bullet Sind 2 Zahlen berechenbar, so auch das Ergebnis aus + * / \Rightarrow gilt für Intervallschachtelungen (Lemma 3.8)
 - + : untere/obere Grenze addieren
 - - : untere/obere Grenze subtrahieren
 - -*, / : min und max des Kreuzproduktes
- Ein Polynom mit berechenbaren Koeffizienten hat berechenbare Nullstellen

6 6. Vorlesung