

NOSSOS DIFERENCIAIS | QUEM SOMOS

Graduação, pós-graduação, MBA, Pós- MBA, Mestrado Profissional, Curso In Company e EAD

CONSULTING

Consultoria personalizada que oferece soluções baseada em seu problema de negócio

RESEARCH

Atualização dos conhecimentos e do material didático oferecidos nas atividades de ensino

Líder em Educação Executiva, referência de ensino nos cursos de graduação, pós-graduação e MBA, tendo excelência nos programas de educação. Uma das principais escolas de negócio do mundo, possuindo convênios internacionais com Universidades nos EUA, Europa e Ásia. +8.000 projetos de consultorias em organizações públicas e privadas.

Único curso de graduação em administração a receber as notas máximas

A primeira escola brasileira a ser finalista da maior competição de MBA do mundo

Única Business School brasileira a figurar no ranking LATAM

Signatária do Pacto Global da ONU

Membro fundador da ANAMBA -Associação Nacional MBAs

Credenciada pela AMBA -Association of MBAs

Credenciada ao Executive MBA Council

Filiada a AACSB
- Association to
 Advance
 Collegiate
 Schools of
 Business

Filiada a EFMD
- European
Foundation for
Management
Development

Referência em cursos de MBA nas principais mídias de circulação

O **Laboratório de Análise de Dados** – LABDATA é um Centro de Excelência que atua nas áreas de ensino, pesquisa e consultoria em análise de informação utilizando técnicas de **Big Data**, **Analytics** e **Inteligência Artificial**.

O LABDATA é um dos pioneiros no lançamento dos cursos de *Big Data* e

Analytics no Brasil

Os diretores foram professores de grandes especialistas do mercado

- +10 anos de atuação
- +1000 alunos formados

Docentes

- Sólida formação acadêmica: doutores e mestres em sua maioria
- Larga experiência de mercado na resolução de *cases*
- Participação em Congressos Nacionais e Internacionais
- Professor assistente que acompanha o aluno durante todo o curso

Estrutura

- > 100% das aulas realizadas em laboratórios
- Computadores para uso individual durante as aulas
- ➤ 5 laboratórios de alta qualidade (investimento +R\$2MM)
- 2 Unidades próximas a estação de metrô (com estacionamento)

CONTEÚDO PROGRAMÁTICO

Conteúdo da Aula

- 1. Estimação Intervalar
 - i. Margem de erro
 - ii. Intervalo de confiança
- 2. Teste de Hipóteses
 - i. Introdução
 - ii. Formulação das hipóteses
 - iii. Nível de significância e confiança do teste
 - iv. Regra de decisão
- 3. Teste de Hipóteses para Proporções
 - i. Formulação das hipóteses
 - ii. Regra de decisão
 - iii. Intervalo de confiança

1. Estimação Intervalar

Motivação 1. INTRODUÇÃO | ESTIMAÇÃO INTERVALAR

Podemos estimar o **peso de mulheres brasileiras entre 18 a 70 anos**, por exemplo, por meio de uma pesquisa amostral.

• Estima-se o parâmetro populacional por meio de um estimador pontual \bar{x} . Ex.: Para inferir o peso da população, foi realizada uma pesquisa com 50 mulheres brasileiras na faixa etária de interesse e foi obtido um valor

médio de 63 kg.

Por se tratar de dados amostrais, existe uma incerteza atrelada na estimativa pontual. O propósito da **estimativa intervalar** é fornecer a informação sobre quão próximo a estimativa pontual está em relação ao parâmetro populacional, fornecendo um **intervalo de confiança**.

• Estimativa intervalar = $\bar{x} \pm \text{margem de erro} = 63 \text{ kg} \pm 15,7 \text{ kg}$.

1. INTRODUÇÃO | ESTIMAÇÃO INTERVALAR

Uma fábrica de doces artesanais comercializa vários tipos de doces, incluindo *cupcakes*. O diretor da fábrica recebeu reclamações de alguns pontos de venda alegando que os *cupcakes* estão com tamanhos inferiores ao esperado, de forma a impactar as vendas deste item.

O processo implementado pela fábrica visava produzir *cupcakes* com tamanho com peso de 100 gramas cada. Depois da produção de centenas de *cupcakes* em 1 dia, o diretor da fábrica retirou uma amostra de 50 itens, e pesou cada um em uma balança de precisão.

Podemos inferir para todos os *cupcakes* produzidos naquele dia que realmente o peso médio foi de 100 gramas?

Estimativa intervalar:

 $95g \pm 10g = [85g; 105g]$

Apesar da estimativa pontual apresentar um valor médio de 95 gramas, pela estimativa intervalar, podemos concluir que os <u>cupcakes têm em média 100g</u>, uma vez que os valores variam entre 85g a 105g.

Como obter a margem de erro?

1.i. MARGEM DE ERRO | ESTIMAÇÃO INTERVALAR

A margem de erro é obtida utilizando as seguintes informações:

- 1. Tamanho amostral n
- 2. Desvio padrão
- 3. Estatística do teste, com base em um modelo probabilístico teórico

As informações 2 e 3 são utilizadas de **formas diferentes**, caso o **desvio padrão** deva ser estimado por meio de uma amostra ou não.

1.i. MARGEM DE ERRO | ESTIMAÇÃO INTERVALAR

1.i. MARGEM DE ERRO | ESTIMAÇÃO INTERVALAR

- $z_{\alpha/2}$ fornece a área de $\alpha/2$ na cauda superior da **distribuição normal.**
- $\cdot \sigma$ é o desvio padrão populacional.

- \bar{x} é a média amostral.
- γ é o coeficiente de confiança.
- *n* é o tamanho da amostra.

- $t_{\alpha/2}$ fornece a área de $\alpha/2$ na cauda superior da **distribuição T-student.**
- s é o desvio padrão amostral:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Se o intervalo fosse calculado uma infinidade de vezes, exatamente γ % dos intervalos gerados conteriam a média populacional.

No exemplo do *cupcake*, concluímos que os cupcakes têm em média 100g, IC = [95 grs \pm 10grs], com γ **de** confiança.

Uma construtora está avaliando determinada localização para um novo empreendimento imobiliário de alto padrão, com base na renda média mensal dos moradores da região.

Uma amostra de tamanho n = 36 foi retirada, e a renda média da amostra foi de R\$ 31.100. Considere que o desvio padrão populacional da renda é de R\$ 4.500.

Calcule o intervalo de confiança da renda média para esta região utilizando confiança de 95%.

1.ii. INTERVALO DE CONFIANÇA | DESVIO PADRÃO CONHECIDO

A margem de erro é calculada por:

$$z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 1,96 \left(\frac{4.500}{\sqrt{36}} \right) = 1.470$$
margem de erro

A estimativa intervalar de μ é:

R\$ 29.630 a R\$ 32.570

Distribuição Normal Padrão

No Excel: INV.NORMP.N $(1 - \alpha/2) = INV.NORMP.N (0,975) = 1,96$.

Com 95% de confiança, o intervalo (R\$ 29.630; R\$ 32.570) contém a renda média mensal populacional dos moradores da região analisada.

Exercício: Pacote de arroz

1.ii. INTERVALO DE CONFIANÇA | DESVIO PADRÃO CONHECIDO

Uma máquina de ensacar arroz integral enche-os segundo uma distribuição normal, com **média** μ = **750** gramas e **desvio padrão** σ = **30** gramas.

Periodicamente, é selecionada uma amostra aleatória de **50 sacos** e verifica-se se a produção está sob controle, ou seja, se μ = 750 ou não.

Considere que na amostra de 50 pacotes obteve-se uma média amostral de 785,8 gramas. A máquina está descalibrada? Considere 95% de confiança em sua decisão e desvio padrão populacional estável e conhecido.

Exercício: Compra de veículos

1.ii. INTERVALO DE CONFIANÇA | DESVIO PADRÃO CONHECIDO

17)

Foi realizada uma pesquisa para avaliar qual valor os consumidores de determinada região do Brasil estariam dispostos a pagar na compra de um veículo 0km. Em uma amostra de 500 entrevistados, 200 eram mulheres que diziam estar dispostas a desembolsar, em média, R\$ 48.600,00; e 300 eram homens que diziam estar dispostos a desembolsar, em média, R\$ 53.933,33. Para ambos os sexos, o desvio padrão populacional dos valores é de R\$ 500,00.

Obtenha intervalos, com 95% de confiança, para o valor em dinheiro que homens e mulheres estariam dispostos a gastar na compra de um veículo 0km.

Pode-se afirmar que há diferença nos valores que homens e mulheres estão dispostos a pagar?

Exercício: Compra de veículos

1.ii. INTERVALO DE CONFIANÇA | DESVIO PADRÃO CONHECIDO

Intervalo com 95% de confiança para a média µ do grupo de **mulheres**:

$$\left(\bar{x} - 1,96\frac{\sigma}{\sqrt{n}}; \bar{x} + 1,96\frac{\sigma}{\sqrt{n}}\right)$$

$$\left(48.600 - 1,96 \frac{500}{\sqrt{200}}; 48.600 + 1,96 \frac{500}{\sqrt{200}}\right)$$

$$IC_m = (R\$ 48.600 - R\$69,30; R\$ 48.600 + R\$ 69,30)$$

(R\$ 48.530,70; R\$ 48.669,30)

De forma equivalente, o intervalo com 95% de confiança para a média μ do grupo de **homens** é igual a: IC_h = (R\$ 53.876,75; R\$ 53.989,91)

Com 95% de confiança, há evidência de que o valor que os homens estão dispostos a pagar em um veículo 0km é superior ao das mulheres, uma vez que os intervalos não apresentaram sobreposição de valores.

Foi realizada uma reportagem sobre o custo em aluguel para morar fora do campus universitário, em uma pequena cidade do interior de São Paulo.

16 apartamentos próximos ao campus foram entrevistados e verificou-se que o gasto médio individual era de R\$ 650/mês, com desvio padrão amostral de R\$ 55.

Calcule um intervalo, com 95% de confiança, para o custo médio populacional do aluguel de apartamentos.

1.ii. INTERVALO DE CONFIANÇA | DESVIO PADRÃO DESCONHECIDO

Com 95% de confiança, α = 0,05 e α /2 = 0,025.

 $t_{0,025}$ é baseado em n - 1 graus de liberdade => 16 - 1 = 15 g.l.

Na tabela da distribuição t de Student, temos que $t_{0,025} \approx 2,131$.

_	$\bar{x} \pm t_{0,025} \frac{s}{\sqrt{n}}$	$= 650 \pm 2,131 \frac{55}{\sqrt{16}} = 650 \pm 29,3$
		= (620,6926; 679,3074)

Graus de	Área abaixo da cauda superior					
Liberdade	,20	,100	,050	,025	,010	,005
15	,866	1,341	1,753 (2,131	2,602	2,947
16	,865	1,337	1,746	2,120	2,583	2,921
17	,863	1,333	1,740	2,110	2,567	2,898
18	,862	1,330	1,734	2,101	2,520	2,878
19	,861	1,328	1,729	2,093	2,539	2,861

No Excel: INV.T (probabilidade; g.l.) = 1 - INV.T (0,975;15) = 2,131.

Com 95% de confiança, o custo médio do aluguel para a população de apartamentos próximos ao campus é de R\$ 620,69 a R\$ 679,31 reais.

Quando o tamanho amostral aumenta: T-student converge para Normal

1.ii. INTERVALO DE CONFIANÇA | DISTRIBUIÇÕES NORMAL E T-STUDENT

Quando o número de graus de liberdade aumenta, a diferença entre a distribuição t de Student e a distribuição normal padrão torna-se cada vez menor.

Para g.l. > 100, a distribuição normal padrão fornece boa aproximação para os valores da distribuição t de Student.

Exercício: Salário de diretores de empresa de grande porte

1.ii. INTERVALO DE CONFIANÇA | DESVIO PADRÃO DESCONHECIDO

Uma empresa de consultoria em RH abriu uma nova posição para o cargo de diretor em uma grande multinacional e precisa estipular o valor a ser remunerado para esta posição. Realizou uma pesquisa com 30 empresas e identificou que, em média, os diretores com funções similares ganham R\$ 52.300,00 com desvio padrão amostral de R\$ 4.000,00.

Com 95% de confiança, qual o salário dos diretores desta área de atuação?

Exercício: Salário de diretores de empresa de grande porte

1.ii. INTERVALO DE CONFIANÇA | DESVIO PADRÃO DESCONHECIDO

Uma empresa de consultoria em RH abriu uma nova posição para o cargo de diretor em uma grande multinacional e precisa estipular o valor a ser remunerado para esta posição. Realizou uma pesquisa com 30 empresas e identificou que, em média, os diretores com funções similares ganham R\$ 52.300,00 com desvio padrão amostral de R\$ 4.000,00.

$$\left(\bar{X} - t_{\alpha/2} \frac{s}{\sqrt{n}}; \bar{X} + t_{\alpha/2} \frac{s}{\sqrt{n}}\right) =$$

$$\left(52.300 - 2,045 \frac{4.000}{\sqrt{30}}; 52.300 + 2,045 \frac{4.000}{\sqrt{30}}\right) = (50.806,38; 53.793,62)$$

Com 95% de confiança, o salário médio populacional dos diretores desta área de atuação está entre R\$ 50.806,38 e R\$ 53.793,62.

Um gerente de investimentos deseja saber se os valores de investimento para pessoa física (PF) do segmento *Top Tier* é, em média, igual a R\$ 50.000.

Para testar a hipótese de interesse, retirou-se uma amostra de 100 clientes e obtevese uma média de investimentos de R\$ 50.800, com desvio padrão amostral de R\$ 8.500.

Com 98% de confiança, qual o valor médio investido pelos clientes Top Tier? Em média, pode-se afirmar que os clientes investem R\$ 50.000?

2. Teste de Hipóteses

Os conceitos de **teste de hipóteses** fazem parte de nosso cotidiano na **tomada de decisão**. Certamente, você já testou muitas hipóteses em sua vida, muitas vezes sem perceber.

O objetivo é apresentar os conceitos de teste de hipóteses, tomando a decisão com um determinado grau de confiança. Desta forma, vamos aprender:

- ✓ Como formalizar as hipóteses de interesse;
- ✓ Como utilizar o modelo probabilístico teórico;
- ✓ Como tomar a decisão final.

Exemplo: Indústria 2.i. INTRODUÇÃO | TESTE DE HIPÓTESES

Uma determinada rede de varejo reportou que seus consumidores reclamaram que os sacos de açúcar estavam pesando menos do que informava a embalagem.

TESTE DE HIPÓTESE:

- Saco de açúcar pesa 1kg.
- Saco de açúcar pesa menos que 1kg.

Uma empresa de cosméticos propõe ao mercado um novo shampoo contra a queda de cabelo, e precisa comprovar cientificamente que seu produto é realmente eficaz. Seu indicador de sucesso consiste em uma queda inferior a 100 fios/dia após a lavagem. Para isso, selecionou-se uma amostra de 70 indivíduos que testaram o novo produto e mais 70 que utilizaram o placebo (produto sem o composto ativo).

TESTE DE HIPÓTESE PARA CADA GRUPO DE ESTUDO:

- Quantidade de fios que caem é igual a 100.
- Quantidade de fios que caem é menor do que 100.

Um grupo de pesquisas clínicas está propondo um medicamento inovador para controlar o LDL (colesterol ruim) do sangue. Foi realizada uma coleta de sangue antes do tratamento e após o tratamento.

TESTE DE HIPÓTESE:

- Os níveis de colesterol LDL se mantiveram.
- Os níveis de colesterol LDL diminuíram.

Case: People Analytics 2.i. INTRODUÇÃO | TESTE DE HIPÓTESES

Uma determinada empresa apresenta alto índice de rotatividade de seus funcionários, conhecido no mercado como *turn over*. O RH desta empresa realizou uma pesquisa e identificou que os funcionários não estavam satisfeitos com a forma de gestão de seus líderes, e propôs uma série de treinamentos de gestão e liderança com metade dos gerentes e coordenadores da empresa, e a outra metade não recebeu o treinamento (grupo de controle). O CEO da empresa gostaria de saber se realmente o treinamento foi eficaz para diminuição do índice de *turn over*.

TESTE DE HIPÓTESE PARA CADA GRUPO DE ESTUDO:

- O percentual de *turn over* manteve-se após 6 meses do término do treinamento.
- O percentual de turn over diminuiu após 6 meses do término do treinamento.

Definição das hipóteses nula e alternativa

2.ii. FORMULAÇÃO DAS HIPÓTESES | TESTE DE HIPÓTESES

O teste de hipóteses pode ser utilizado para determinar uma se afirmação sobre o valor de um **parâmetro populacional** é **válida** (pode ser aceita) **ou não** (deve ser rejeitada):

- A hipótese *nula*, denotada por H₀, é uma afirmação acerca de um parâmetro da população.
- A hipótese alternativa, denotada por H_a ou H₁, é contrária à afirmação da hipótese H₀.

Exemplo: Case People Analytics

- H_0 : O percentual de *turn over* manteve-se após 6 meses do término do treinamento.
- H₁: O percentual de *turn over* diminuiu após 6 meses do término do treinamento.

Exercício: Vamos definir as hipóteses do teste?

2.ii. FORMULAÇÃO DAS HIPÓTESES | TESTE DE HIPÓTESES

Defina as hipóteses **nula** e **alternativa** dos problemas a seguir:

Uma fábrica de parafusos recebeu reclamações de clientes sobre um grande número de parafusos defeituosos. Caso identifique um número de parafusos defeituosos maior do que o esperado, precisará realizar um ajuste na máquina que produz os parafusos. A quantidade aceitável de parafusos defeituosos é inferior a 100 unidades.

Um administrador precisa comprovar estatisticamente para seus superiores que o porto está bem administrado e as chegadas de mercadorias estão ocorrendo antes do prazo, conforme sua experiência cotidiana. Considere o tempo dentro do prazo como até 24 horas.

Como formalizamos as hipóteses matematicamente? 2.ii. FORMULAÇÃO DAS HIPÓTESES | TESTE DE HIPÓTESES

A **igualdade** aparece sempre na **hipótese nula**.

Em geral, os testes de hipóteses sobre os valores da média populacional μ devem ser realizados de uma das seguintes **3 formas**, em que μ_0 é um valor constante envolvido na hipótese que se deseja validar.

Teste Unilateral

$$H_0$$
: $\mu = \mu_0$

$$H_a$$
: $\mu < \mu_0$

$$H_0$$
: $\mu = \mu_0$
 H_a : $\mu > \mu_0$

$$H_a$$
: $\mu > \mu_0$

Teste Bilateral

$$H_0$$
: $\mu = \mu_0$
 H_a : $\mu \neq \mu_0$

$$H_a: \mu \neq \mu_0$$

Erros na tomada de decisão: Tipo I e Tipo II

2.iii. NÍVEL DE SIGNIFICÂNCIA E CONFIANÇA DO TESTE | TESTE DE HIPÓTESES

Um hospital conta com um time de 40 médicos, que devem atender chamados de emergência nas casas de seus pacientes com tempo médio de 12 minutos. O SAC do hospital tem recebido algumas reclamações de demora até a chegada da unidade móvel de atendimento, e o diretor do hospital gostaria de investigar se realmente vem ocorrendo tal atraso. Em 1 dia, foi contabilizado que os chamado demoraram em média 13,25 minutos, com 3,2 minutos de desvio padrão (populacional).

 H_0 : $\mu = 12$

O serviço de emergência está atendendo a meta do tempo de atendimento.

 H_a : $\mu > 12$

O serviço de emergência não está atendendo a meta do tempo de atendimento, e **ações administrativas serão necessárias para atingir a meta desejada.**

Valor real do parâmetro

	valor real do parametro		
Decisão	H_0 Verdadeira $(\mu = 12)$	H_0 Falsa $(\mu \ge 12)$	
Aceito H_0 (μ =12)		Erro Tipo II	
Rejeito H_0 ($\mu > 12$)	Erro Tipo I ←		

Probabilidade de rejeitar H_0 quando esta — hipótese é verdadeira. Chamamos de **nível de significância** (α) do teste.

2.iv. REGRA DE DECISÃO | TESTE DE HIPÓTESES

2.iv. REGRA DE DECISÃO | TESTE DE HIPÓTESES

Podemos usar a probabilidade da distribuição teórica para encontrar o valor z ou t com uma área de α na cauda inferior (ou superior) da distribuição nos testes unilaterais e $\alpha/2$ nos testes bilaterais. Valores de α usualmente adotados:

Normal Padrão: σ conhecido.

T-Student: σ estimado por s.

A regra de decisão pela **região crítica** será:

- Teste unilateral (inferior): Rejeito H_0 se $z \le -z_\alpha$
- Teste unilateral (superior): Rejeito H_0 se $z \ge z_\alpha$
- Teste bilateral: Rejeito H_0 se $z \le -z_{\alpha/2}$ ou $z \ge z_{\alpha/2}$

No Excel, =INV.NORMP.N(α)

γ	α	Teste unilateral	Teste bilateral
0,90	0,10	1,282	1,645
0,95	0,05	1,645	1,960
0,99	0,01	2,326	2,576

A regra de decisão pela **região crítica** com n-1 g.l., será:

- Teste unilateral (inferior): Rejeito H_0 se $t \le -t_\alpha$
- Teste unilateral (superior): Rejeito H_0 se $t \ge t_\alpha$
- Teste bilateral: Rejeito H_0 se $t \le -t_{\alpha/2}$ ou $t \ge t_{\alpha/2}$

No Excel, =INV.T(α ; n-1 graus de liberdade)

Use o nível de significância α para determinar o valor crítico (z_{α}) e a regra de rejeição.

Decisão pela região crítica

Use o valor da estatística de teste (z) para determinar se deve rejeitar H_0 . Rejeite H_0 se $z \ge z_\alpha$.

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

Encontre a estatística do teste.

Use o nível de significância α para determinar o valor crítico (z_{α}) e a regra de rejeição.

Decisão pela região crítica

Use o valor da estatística de teste (z) para determinar se deve rejeitar H_0 . Rejeite H_0 se $z \ge z_\alpha$.

Estatística do Teste

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{13,25 - 12}{3,2 / \sqrt{40}} = 2,47$$

 $H_0 e H_{a.}$

Especifique lpha.

Encontre a estatística do teste.

Use o nível de significância α para determinar o valor crítico (z_{α}) e a regra de rejeição.

Decisão pela região crítica

Use o valor da estatística de teste (z) para determinar se deve rejeitar H_0 . Rejeite H_0 se $z \ge z_\alpha$.

Teste Unilateral (cauda superior)

Regra de decisão: Rejeite H_0 se $z \ge z_\alpha$

Encontre a estatística

do teste.

2.iv. REGRA DE DECISÃO | UNILATERAL

Considerando o nível de significância de 5%, podemos afirmar que o hospital não está cumprindo a meta de tempo de atendimento; ou seja, medidas administrativas devem ser tomadas para melhorar o tempo de atendimento.

No Excel:

Defina

 $H_0 e H_a$

• **INV.NORMP.N(0,95)** = 1,645

Rejeite H_0 se $z \ge z_\alpha$.

Especifique

α.

- O **p-valor** é a probabilidade (área abaixo da curva do modelo probabilístico) proveniente dos dados (experimento), conhecido também como **nível descritivo** do teste.
- Regra de decisão pelo p-valor: rejeito H_0 se p-valor $\leq \alpha$, em que α deve ser definido a priori (por exemplo, 0,05).
- A confiança do teste é igual a $\gamma = 1 \alpha$, ou seja, se for adotado um teste com significância de 0,05, temos a confiança de 0,95 (ou 95%) na decisão.

$$H_0$$
: $\mu = \mu_0$ Teste unilateral (Cauda inferior)

$$H_0$$
: $\mu = \mu_0$ Teste unilateral (Cauda superior)

2.iv. REGRA DE DECISÃO | UNILATERAL

Teste Unilateral (cauda superior)

Regra de decisão: Rejeite H_0 se p-valor $\leq \alpha$.

Case: Atendimento de pacientes na Emergência

2.iv. REGRA DE DECISÃO | UNILATERAL

Considerando o nível de significância de 5%, podemos afirmar que o hospital não está cumprindo a meta de tempo de atendimento; ou seja, medidas administrativas devem ser tomadas para melhorar o tempo de atendimento.

Passos para realização do teste de hipóteses

2.iv. REGRA DE DECISÃO | TESTE DE HIPÓTESES

Case: Fábrica de balas

2. TESTE DE HIPÓTESES | BILATERAL

O processo de controle de qualidade de uma fábrica requer que o peso o dos pacotes de bala seja igual 6 kg, com desvio padrão populacional de 0,2 kg. Caso contrário, se um lote de amostras apresentar um valor diferente de 6 kg, a máquina de empacotar as balas deve ser recalibrada.

De uma amostra de 30 sacos, o peso médio encontrado foi de 6,1 kg. Ao nível de 97% de confiança, ajude o diretor da fábrica a determinar se a máquina de empacotamento está corretamente configurada ou precisaria de ajustes.

Com 97% de confiança, o diretor da fábrica deve fazer ajustes na máquina de empacotamento das balas; ou seja, rejeitamos a hipótese de que os sacos estão sendo empacotados com 6 kg.

No Excel:

Defina

 $H_0 e H_a$

INV.NORMP.N(0,985) = 2,17

Especifique

α.

Encontre a estatística

do teste.

Rejeite H_0 se $z \ge z_\alpha$.

Com 97% de confiança, o diretor da fábrica deve fazer ajustes na máquina de empacotamento das balas; ou seja, rejeitamos a hipótese de que os sacos estão sendo empacotados com 6 kg.

LABDATA I FUNDAÇÃO INSTITUTO DE ADMINISTRAÇÃO

O **intervalo de confiança** de 97% para a média μ é de:

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} =$$

$$6,1 \pm 2, 17 \frac{0,2}{\sqrt{30}} = 6,1 \pm 0,07924 = [6,0208; 6,1792]$$

Como o valor hipotético para a média da população μ_0 = 6 não está contido neste intervalo, a conclusão a partir do intervalo de confiança é que a hipótese nula, H_0 : μ = 6, pode ser rejeitada com 97% de confiança.

Case: Departamento de Trânsito

2. TESTE DE HIPÓTESES | UNILATERAL

51

Em um determinado trecho de uma rodovia, o limite de velocidade é de 65 km/h. A fim de verificar se o limite de velocidade estava sendo respeitado, o departamento de trânsito mediu a velocidade de 64 veículos que passavam pela rodovia. A média amostral foi de 66,2 km/h com variância amostral de 17,64 (km/h)². Caso o limite de velocidade não esteja sendo respeitado neste trecho, será instalado um radar neste ponto da rodovia. Qual sugestão você daria, utilizando uma confiança de 95%?

2. TESTE DE HIPÓTESES | UNILATERAL

Com 95% de confiança, o departamento de trânsito deveria instalar radares neste trecho da rodovia, uma vez que, em média, foi identificado que os veículos ultrapassam o limite de velocidade permitido.

No Excel:

Defina

 $H_0 e H_a$

INV.T(0,95; 63) = 1,669

Especifique

α.

Encontre a estatística

do teste.

Rejeite H_0 se $t \ge t_\alpha$.

Com 95% de confiança, o departamento de trânsito deveria instalar radares neste trecho da rodovia, uma vez que, em média, foi identificado que os veículos ultrapassam o limite de velocidade permitido.

Exercício: Máquina de empacotar café

2. TESTE DE HIPÓTESES | UNILATERAL OU BILATERAL

54)

Uma empresa que vende pacotes de café deseja saber se a máquina de encher café coloca, em média, 500 gramas em cada pacote, ou se a máquina está descalibrada.

Para resolver o problema, é retirada uma amostra de 50 pacotes de café, obtendo-se peso médio de 530 gramas e desvio padrão amostral de 25,6 gramas.

Com confiança de 99%, há evidências de a máquina estar descalibrada?

- (a) Construa as hipóteses do teste.
- (b) Identifique o nível de significância do teste.
- (c) Calcule o valor da estatística do teste.
- (d) Realize a tomada de decisão do teste pela regra do p-valor.
- (e) Realize a tomada de decisão pela regra da região crítica.
- (f) Realize a tomada de decisão pelo intervalo de confiança.
- (g) Com confiança de 99%, há evidências de a máquina estar descalibrada?

Exercício: Fila de Banco

2. TESTE DE HIPÓTESES | UNILATERAL OU BILATERAL

Uma instituição financeira deseja saber se o tempo médio de stendimento aos clientes em um caixa de uma agência bancária é de 8 minutos ou diferente de 8 minutos. Considere uma amostra de 50 clientes. Sabe-se que o desvio padrão populacional é de 3 minutos. Na amostra, obteve-se um tempo médio de 9 minutos.

Com confiança de 95%, há evidências de que o tempo de atendimento médio é diferente de 8 minutos?

- (a) Construa as hipóteses do teste.
- (b) Identifique o nível de significância do teste.
- (c) Calcule o valor da estatística do teste.
- (d) Realize a tomada de decisão do teste pela regra do p-valor.
- (e) Realize a tomada de decisão pela regra da região crítica.
- (f) Realize a tomada de decisão pelo intervalo de confiança.
- (g) Com confiança de 95%, há evidências de que se demora mais de 8 minutos para o atendimento, em média?

2. TESTE DE HIPÓTESES | UNILATERAL OU BILATERAL

Uma instituição deseja saber se o tempo médio que os clientes levam para o atendimento no SAC é de 15 minutos ou superior a 15 minutos. Considere uma amostra de 30 clientes. Sabe-se que o desvio padrão populacional é de 5 minutos. Na amostra, obteve-se um tempo médio de 17 minutos.

Com confiança de 90%, há evidências de que se demora mais de 15 minutos para o atendimento, em média?

- (a) Construa as hipóteses do teste.
- (b) Identifique o nível de significância do teste.
- (c) Calcule o valor da estatística do teste.
- (d) Realize a tomada de decisão do teste pela regra do p-valor.
- (e) Com confiança de 90%, há evidências de que se demora mais de 15 minutos para o atendimento, em média?

Exercício: Reclamações

2. TESTE DE HIPÓTESES | UNILATERAL OU BILATERAL

Uma empresa deseja saber se o número médio mensal de reclamações é de 8.500 ou inferior a 8.500. Sabe-se que o desvio padrão populacional é de 600 reclamações. Considere uma amostra de 350 clientes. Na amostra, obteve-se um número médio mensal de reclamações de 8.400.

Com confiança de 95%, há evidências de que o número médio de reclamações é inferior a 8.500?

- (a) Construa as hipóteses do teste.
- (b) Identifique o nível de significância do teste.
- (c) Calcule o valor da estatística do teste.
- (d) Realize a tomada de decisão do teste pela regra do p-valor.
- (e) Com confiança de 95%, há evidências de que o número médio de reclamações é inferior a 8.500?

Exercício: Produção na Indústria

2. TESTE DE HIPÓTESES | UNILATERAL OU BILATERAL

58)

Uma empresa têxtil gostaria de decidir quantos lotes de tecido precisa fabricar para a próxima estação do ano. O diretor da área de vendas acredita que a demanda não irá ultrapassar 40 lotes por ponto de revenda. Antes de tomar a decisão final de produção baseada nesta estimativa, o CEO da empresa solicitou uma pesquisa com 25 varejistas para entender se a demanda, de fato, não ultrapassará 40 unidades.

A amostra forneceu uma média estimada de 36,74 lotes, com desvio padrão de 2,5 lotes. Considere 95% de confiança.

- (a) Construa as hipóteses do teste.
- (b) Identifique o nível de significância do teste.
- (c) Calcule o valor da estatística do teste.
- (d) Realize a tomada de decisão do teste pela regra do p-valor.
- (e) Realize a tomada de decisão pela regra da região crítica.
- (f) Qual o direcionamento que o CEO daria para time de produção? Ele deve manter ou não a orientação dada pelo diretor da área de vendas?

2. TESTE DE HIPÓTESES | UNILATERAL OU BILATERAL

Um banco gostaria de identificar quais agências realizam melhores atendimentos a seus clientes. Agências cujas notas de atendimento forem iguais ou superiores a 7 serão classificadas com tendo atendimento de alto nível.

Realizou-se uma pesquisa com uma amostra de 60 atendimentos de uma determinada agência. O resultado obtido da pesquisa foi uma nota média de 7,25 com desvio padrão igual a 1,5. Considere 95% de confiança.

- (a) Construa as hipóteses do teste.
- (b) Identifique o nível de significância do teste.
- (c) Calcule o valor da estatística do teste.
- (d) Realize a tomada de decisão do teste pela regra do p-valor.
- (e) Realize a tomada de decisão pela regra da região crítica.
- (f) Esta agência pode ser classificada como de alto padrão?

3. Teste de Hipóteses para Proporção

Como formalizamos as hipóteses de um teste para proporção?

3.i. FORMULAÇÃO DAS HIPÓTESES | TESTE DE HIPÓTESES PARA PROPORÇÃO

O teste de hipótese para uma proporção populacional é realizado de forma muito similar ao teste de hipótese para uma média populacional.

Teste unilateral

$$H_0$$
: $p = p_0$

$$H_a: p < p_0$$

$$H_0: p = p_0$$

$$H_a: p > p_0$$

Teste bilateral

$$H_0: p = p_0$$

$$H_a$$
: $p \neq p_0$

Tem-se que \bar{p} segue uma Distribuição Normal:

$$\bar{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$$

- $ar{p}$ é a proporção amostral
- p é a proporção populacional
- n é o tamanho da amostra

Teste bilateral

$$H_0$$
: $p = p_0$
 H_a : $p \neq p_0$

Confiança $\gamma=1-\alpha$ Nível de significância $\alpha/2$ Nível de significância $\alpha/2$

$$Z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_{0(1} - p_0)}{n}}}$$

Regra de decisão: Se $z \le -z_{\alpha/2}$ ou $z \ge z_{\alpha/2}$, rejeitamos H_{0} .

Tem-se que \bar{p} segue uma Distribuição Normal:

$$\bar{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$$

- $ar{p}$ é a proporção amostral
- p é a proporção populacional
- n é o tamanho da amostra

Teste unilateral (superior)

$$H_0: p = p_0$$

 $H_a: p > p_0$

$$Z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_{0(1} - p_0)}{n}}}$$

Regra de decisão: Se $z \ge z_{\alpha}$, rejeitamos H_{0} .

Estatística de teste

3.ii. REGRA DE DECISÃO | TESTE DE HIPÓTESES PARA PROPORÇÃO

Tem-se que \bar{p} segue uma Distribuição Normal:

$$\bar{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$$

- $ar{p}$ é a proporção amostral
- p é a proporção populacional
- n é o tamanho da amostra

Teste unilateral (inferior)

Nível de significância α

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_{0(1} - p_0)}{n}}}$$

Regra de decisão: Se $z \le -z_{\alpha}$, rejeitamos H_0 .

Exemplo: Indústria de cosméticos 3. TESTE DE HIPÓTESES PARA PROPORÇÃO | UNILATERAL

Uma determinada empresa de cosméticos gostaria de testar se a proporção de clientes satisfeitos após a compra de seus produtos é superior a 90%. Para isso, retirou-se uma amostra de 1.000 clientes e obteve-se a proporção amostral de 93%. Considerando uma confiança de 95%, temos o seguinte teste de interesse:

TESTE DE HIPÓTESE:

H₀: 90% dos clientes estão satisfeitos;

H_a: Mais de 90% dos clientes estão satisfeitos.

- (a) Construa as hipóteses do teste matematicamente.
- (b) Calcule o valor da estatística do teste.
- (c) Realize a tomada de decisão pela regra da região crítica.
- (d) Realize a tomada de decisão do teste pela regra do p-valor.

Estatística do teste

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_{0(1-p_0)}}{n}}}$$

do teste.

 H_0 : p = 90% H_a : p > 90% α = 0.05

Use o nível de significância α para determinar o valor crítico (t_{α}) e a regra de rejeição.

Decisão pela região crítica

Use o valor da estatística de teste (t) para determinar se deve rejeitar H_0 . Rejeite H_0 se $z \ge z_\alpha$.

Exemplo: Indústria de cosméticos

3. TESTE DE HIPÓTESES PARA PROPORÇÃO | UNILATERAL

Com 95% de confiança, podemos dizer que mais de 90% dos clientes estão satisfeitos após comprar dessa indústria de cosméticos.

estatística

do teste.

No Excel:

 $H_0 e H_a$

• **INV.NORMP(0,95)** = 1,645

α.

Exemplo: Indústria de cosméticos

3. TESTE DE HIPÓTESES PARA PROPORÇÃO | UNILATERAL

Com 95% de confiança, podemos dizer que mais de 90% dos clientes estão satisfeitos após comprar dessa indústria de cosméticos.

Uma empresa de vendas *on line* gostaria de testar a satisfação dos clientes com o serviço de troca oferecido. A empresa tem como meta garantir a satisfação de 70% dos seus clientes.

Para testar a hipótese de interesse, a empresa fez uma pesquisa com 200 consumidores e obteve uma proporção amostral de 73% de satisfação.

- (a) Construa as hipóteses do teste.
- (b) Calcule o valor da estatística do teste.
- (c) Realize a tomada de decisão do teste pela regra do p-valor.
- (d) Realize a tomada de decisão pela regra da região crítica.

Uma rede bancária deseja avaliar se a proporção de clientes satisfeitos com seus gerentes de contas é igual a 80% ou diferente de 80%.

Para se testar a hipótese de interesse, retirou-se uma amostra aleatória de 400 clientes e obteve-se uma proporção amostral de 82% de satisfação. Considere 95% de confiança.

- (a) Construa as hipóteses do teste.
- (b) Calcule o valor da estatística do teste.
- (c) Realize a tomada de decisão do teste pela regra do p-valor.
- (d) Realize a tomada de decisão pela regra da região crítica.

3. TESTE DE HIPÓTESES PARA PROPORÇÃO | UNILATERAL OU BILATERAL

O diretor de uma escola deseja avaliar se a proporção de alunos satisfeitos com o ensino oferecido é igual a 70% ou superior a 70%.

Para se testar a hipótese de interesse, retirou-se uma amostra aleatória de 200 alunos e obteve-se uma proporção amostral de 76% de satisfação. Considere 90% de confiança.

- (a) Construa as hipóteses do teste.
- (b) Calcule o valor da estatística do teste.
- (c) Realize a tomada de decisão do teste pela regra do p-valor.
- (d) Realize a tomada de decisão pela regra da região crítica.

Um gerente de RH que deseja testar se a proporção de funcionários insatisfeitos na empresa é de 12% ou inferior a 12%.

Para se testar a hipótese de interesse, entrevistou-se 50 funcionários e obteve-se uma proporção amostral de 9%. Considerar 99% de confiança.

- (a) Construa as hipóteses do teste.
- (b) Calcule o valor da estatística do teste.
- (c) Realize a tomada de decisão do teste pela regra do p-valor.
- (d) Realize a tomada de decisão pela regra da região crítica.

O intervalo com γ de confiança para a proporção populacional é dado a seguir.

Sendo $Z \sim N(0,1)$:

$$IC = \bar{p} \pm Z_{\alpha/2} \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} \longrightarrow$$

Margem de Erro

$$Z_{\alpha/2}\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$$

Onde:

- $ar{p}$ é a proporção amostral
- n é o tamanho da amostra

Exemplo: Recomendações de filmes 3.iii. INTERVALO DE CONFIANÇA | PROPORÇÃO

Uma empresa de streaming gostaria de averiguar a proporção de clientes satisfeitos com as recomendações de filmes oferecidas. Para isso, retirou-se uma amostra de 1.200 clientes e obteve-se uma proporção amostral de 80% de satisfação. Considere uma confiança de 95%.

- (a) Obtenha a margem de erro.
- (b) Calcule o intervalo de confiança para a proporção populacional de clientes satisfeitos. Interprete na visão de negócios.

Exemplo: Recomendações de filmes

3.iii. INTERVALO DE CONFIANÇA | PROPORÇÃO

A margem de erro é dada por:

$$Z_{\alpha/2} = \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = 1,96\sqrt{\frac{0,16}{1.200}} = 2,26\%$$

A estimativa intervalar de \bar{p} é:

Com 95% de confiança, o intervalo (77,74%; 82,26%) contém a proporção populacional de clientes satisfeitos com as sugestões de filmes recebidas.

Uma montadora de veículos deseja obter a proporção de clientes satisfeitos com seu serviços de pós-vendas em suas concessionárias. Para isso, realizou-se uma pesquisa com 1.200 clientes e obteve-se uma proporção amostral de 82%. Considere 95% de confiança.

- (a) Obtenha a margem de erro.
- (b) Calcule o intervalo de confiança para a proporção populacional de clientes satisfeitos. Interprete na visão de negócios.

Exercício: Indústria de laticínios

3.iii. INTERVALO DE CONFIANÇA | PROPORÇÃO

77)

Uma indústria de alimentos gostaria de fazer o lançamento de um novo sabor de iogurte e gostaria de testar a preferência entre dois sabores. Para isso, a empresa contou com o apoio de 2.400 voluntários e chegou-se ao seguinte resultado: 51,8% dos voluntários preferem o sabor A, enquanto 48,2% preferem o sabor B. Considere 95% de confiança.

Baseado nos valores obtidos, podemos considerar que realmente existe uma preferência pelo sabor A em relação ao sabor B?

1. Anderson, R. A., Sweeney, J. D. e Williams, T. A. *Estatística Aplicada à Administração e Economia*. Editora Cengage. 4ª edição, 2019.

