2.1 2진법 (Binary Notation)

- 1. 컴퓨터는 0과 1의 수를 사용하여 수를 표현함
- 2. 10진법: 숫자 369 3자리 수
 - A. 10의 0승, 10의 1승, 10의 2승에 해당하는 값을 각 자리의 수에 곱하여 합산한 값을 의미
- 3. 2진법: 숫자 1001 4자리 수
 - A. 2의 0승, 2의 1승, 2의 2승, 2의 3승에 해당하는 값을 각 자리의 수에 곱하여 합산한 값을 의미

10진법	2진법
369 = 3×100+6×10+9×1 = 3×10 ² +6×10 ¹ +9×10 ⁰	1001 = $1 \times 8 + 1 \times 4 + 1 \times 2 + 1 \times 1$ = $1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ = 9 = 0×9 (16진수) = 011 (8진수)

2.2 10진수와 2진수의 변환

- 1. 10진법 수(10진수)를 2진법 수(2진수)로 변환하는 방법
- 2. 10진수 13을 2진수로 변환
 - 단계1 : 주어진 값을 2로 나누고 나머지를 기록
 - 단계2 : 단계1의 몫이 0이 아니면 단계1로 이동
 - 단계3 : 몫이 0이므로, 나머지에 해당하는 값들을 오른쪽에서 왼쪽으로 나열

13	13/2		6/2		3/2		1/2
몫	6	\rightarrow	3	\rightarrow	1	\rightarrow	0
나머지	1		0		1		1
<u>←</u>							

2.2 10진수와 2진수의 변환

1. 10진수 27을 2진수로 변환

11011

			나머지	
1회	27 / 2	\rightarrow	1	
2회	13 / 2	\rightarrow	1	
3회	6 / 2	\rightarrow	0	
4회	3 / 2	\rightarrow	1	
5회	1 / 2	\rightarrow	1	
	0			

나머지:1101

간단하게 변환의 결과값이 맞는지 테스트 하기 위해서는 윈도우의 계산기를 활용하 면 된다. 10진수Decimal digit를 입력한 후에 2진수Binary digit를 선택하면 해당 10진수에 대한 2진수 표현을 나타내준다.

2.3 2진수의 덧셈

 1. 10진수 덧셈과 동일하게 가장 오른쪽 자리 숫자를 더하고 그 합에서 작은 자리 숫자를 가장 오른 자리에 적고 합의 큰 자리에 올림수가 있으면,
 왼쪽으로 넘긴 다음 덧셈을 계속

2.4 16진법(Hexadecimal Notation)

- 1. 16진법: 긴 비트 패턴을 위한 간이 표기법
 - A. 비트 패턴을 4 비트 그룹들로 분할
 - B. 각 그룹을 한 개의 기호로 표현

예) 8비트: 10100011 > 1010 0011 > A3

- 16진법은 4비트 패턴에 대하여 1개의 기호를 사용
 예) 1000101011010001 : 8AD1
- 16진법을 10진법과 구분하기 위하여 앞에 0x를 표시함 예) 1001 (10진법), 0x1001 (16진법)

참고) 10진법, 16진법, 8진법, 2진법

2.5 16진 인코딩 체계

비트패턴	16진법 표현	비트패턴	16진법 표현
0000	0	1000	8
0001	1	1001	9
0010	2	1010	А
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	Е
0111	7	1111	F

2.6 16진법

1. 16진수 연산

•
$$0x09 + 0x01 = 0x0A$$

•
$$0x0F + 0x01 = 0x10$$

2. 16진수의 10진수 변환

•
$$0xFF = F(15) \times 16 + 15 = 255$$

•
$$0x11 = 1(1) \times 16 + 1 = 17$$

2.7 8진법

- 1. 8개의 문자를 이용하여 수를 표현
- 2. 잘 사용되지는 않음
- 8진법은 3비트 패턴에 대하여 1개의 기호를 사용 예) 100010101101000 : 42550
- 8진법을 10진법과 구분하기 위하여 앞에 0을 표시함 예) 1001 (10진법), 01001 (8진법)

비트패턴	8진법 표현
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

2.8 진법 사이의 관계

2진법 표현	8진법 표현	10진법 표현	16진법 표현
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	Α
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	Е
1111	17	15	F

3.1 2진 체계

- 1. 전통적인 10진 체계는 10의 멱승에 기초하고 있다.
- 2. 2진 체계는 2의 멱승에 기초하고 있다.
- 예) 10진수 체계와 2진수 체계 10진수 375 - 3x100 + 7x10 + 5x1 2진수 1011 - 1x8 + 0x4 + 1x2 + 1x1

거듭제곱(Exponentiation) - \mathbf{a} (Base, 기저)이 \mathbf{a} , 지수(Exponent)가 \mathbf{n} 인 거듭제곱을 \mathbf{a} 의 \mathbf{n} 제곱이라고 하고, 그 기호는 \mathbf{a}^n 이다.

3.2 정수의 저장 (양수 및 음수)

1. 인간이 0을 포함한 양의 정수만 사용하면, 컴퓨터도 2진법을 사용하여 표현하기 매우 편리함

 인간은 필연적으로 음수를 활용하고 있고, 컴퓨터에서도 음수를 포함한 정수를 표현

3. 컴퓨터에서 양수, 음수 등 표현은 어떻게?

3.3 정수의 저장 (양수 및 음수)

1. 아이디어? 제일 앞의 한 비트를 부호 비트로 활용

0011 -> 3

1011 -> -3

문제점은? 연산의 어려움

+ = 1110 -> -6?

비트패턴	표현값	비트패턴	표현값
0111	7	1111	-7
0110	6	1110	-6
0101	5	1101	-5
0100	4	1100	-4
0011	3	1011	-3
0010	2	1010	-2
0001	1	1001	-1
0000	0	1000	-0

실질적인 활용 불가

3.3 정수의 저장 (양수 및 음수)

2. 2의 보수(Two's complement) 표기법: 가장 널리 사용되는 정수 표현 체계

3. 초과(Excess) 표기법: 또 다른 정수 표현 체계로 실수 표현에 사용

→ 두 표기법(2, 3의 표기) 모두에서 오버플로우(Overflow) 문제가 발생할 수 있다.

3.4 2의 보수 표기 체계

1. 4비트로 정수를 표현하는 경우 2의 보수 표기 예

비트패턴	표현값
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

3.5 2의 보수 덧셈

1. 2의 보수를 사용할 경우 뺄셈 연산을 덧셈으로 표현 가능전자 회로의 단순화가 가능함

10진법 연산	3 + 2 5	$ \begin{array}{r} -3 \\ + -2 \\ \hline -5 \end{array} $	$\begin{array}{c} 7 \\ + -5 \\ \hline 2 \end{array}$
2의 보수 연산	0011	1101	0111
	+ 0010	+ 1110	+ 1011
	0101	1011	0010

3.6 2의 보수 표기법을 통한 정수의 표현 범위

1. 2진수의 표현 범위

A. 2의 보수를 사용한 3비트 이진수 표현의 예

$$+3 = (011)_{2}$$

$$+2 = (010)_{2}$$

$$+1 = (001)_{2}$$

$$+0 = (000)_{2}$$

$$-1 = (111)_{2}$$

$$-2 = (110)_{2}$$

$$-3 = (101)_{2}$$

$$-4 = (100)_{2}$$

- 표현할 수 있는 수의 **범위는 -4 ~ 3**이 된다. 이것은 -2^3-1 ~ 2^3-1-1로 표현된다.
- B. **n비트** 데이터 경우로 일반화할 경우 수의 범위

 $* -2^{n-1} \le N \le 2^{n-1}-1$

3.7 2의 보수 계산 방법

1. 4개 비트를 사용해 -6을 2의 보수 표기법으로 인코딩

2. 모든 비트를 1 ↔ 0 으로 변환 후에 +1 을 수행

3.8 오버플로우 및 언더플로우

- 1. 컴퓨터는 인간이 사용하는 모든 숫자 표현할 수 있을까?
- 2. 4비트를 사용하는 경우를 가정양의 정수로만 사용하면 0에서 15까지 ...2의 보수로 사용하면 -8에 서 7까지 표현이 가능 ...
- 3. **오버플로우(Overflow)** 숫자값이 표현할 수 있는 범위의 최대값을 넘어가는 경우
- 4. 언더플로우(Underflow) 숫자값이 표현할 수 있는 범위의 최소값을 넘어가는 경우