Lecture 7. Midterm Review

The Midterm Exam

- In-class. April 1 (Wed). 1:30 pm sharp. Do not be late.
- Open-book.
- Please bring your student ID.
- Joint a Zoom meeting via Canvas.
 - Turn on your camera and mic.
 - There are two sessions. Choose one based on your family name.
 - Change your Zoom account name to your **Official Name + Student ID**, e.g., "LEE, Byoungchan 1234567(8)."

• Office hours: March 31 (Tue), 2-4 pm.

What we have studied so far...

- Blanchard, Chapter 1: Introduction
- Blanchard, Chapter 2: Measurement (Y, u, π)

- Blanchard, Chapter 3: The Goods (and Services) Market (Y)
- Blanchard, Chapter 4: The Financial Markets (i)
- Blanchard, Chapter 5: The IS-LM Model (Y and i in the Short Run)
- Blanchard, Chapter 6: The Extended IS-LM Model (Y and r in the Short Run)

The Goods (and Services) Market

- Demand: Z = C + I + G + NX = C(Y T) + I(Y, i) + G
 - People want to purchase Z amount of goods and services given income Y, i, G, T, c_0 , etc.

• Supply: production *Y*

• Equilibrium condition for the goods and services market supply (production) = demand (expenditure) $\Rightarrow Y = Z$

Output, Y

• Demand : Z = C(Y - T) + I(Y, i) + G

• Supply : Y (production) = Y (income)

• ZZ shifts upward when $T\downarrow$, $G\uparrow$, $c_0\uparrow$, $i\downarrow$, etc. How about $\frac{M^s}{P}$?

A simple case

- Demand: $Z=C+\bar{I}+G=c_0+c_1(Y-T)+\bar{I}+G$ $=(c_0+\bar{I}+G-c_1T)+c_1Y$ Autonomous Spending + MPC * Y
- Equilibrium output: $Y = \frac{1}{1 c_1} (c_0 + \bar{I} + G c_1 T)$
- Multipliers in this simple case
 - Govt spending multiplier: $\frac{\Delta Y}{\Delta G} = \frac{1}{1 c_1}$
 - Tax multiplier: $\frac{\Delta Y}{\Delta T} = -\frac{c_1}{1-c_1}$
 - Balanced budget multiplier: $\frac{\Delta Y}{\Delta G}|_{\Delta T = \Delta G} = 1$

• Demand : $Z = (c_0 + \bar{I} + G - c_1 T) + c_1 Y$

• Supply : Y (production) = Y (income)

The Financial Markets

- Money Market + One-year Zero-coupon Risk-free Bond Market
- Tradeoff between liquidity and $i \geq 0$

Supply and Demand for Money

- M^s : Determined by the central bank. Adjusted via OMO.
- M^d : Liquidity for transactions (money) vs. interest rate (bond) $M^d = \$Y L(i)$

• Equilibrium condition in terms of nominal money:

$$M^S = M^d = \$Y L(i)$$

• Equilibrium condition in terms of real money:

$$\frac{M^S}{P} = \frac{M^d}{P} = Y L(i)$$

The equilibrium interest rate (real money version)

- Real money supply curve M^S shifts to the right when $M^S/P \uparrow$
- Real money demand curve M^d shifts to the right when $Y \uparrow$

The IS-LM model

- Each point on the IS curve represents an equilibrium in the goods market.
- Each point on the LM curve represents an equilibrium in the money market.

The General Equilibrium (in the short run)

- IS Relation: Y = C(Y T) + I(Y, i) + G
- \Rightarrow IS Curve: Given T, G, c_0 and i, what is the equilibrium output Y in the goods market?
- LM Relation: $i = \bar{\iota}$
- \Rightarrow LM Curve: i selected by the CB. It is achieved by adjusting M^S to satisfy $\frac{M}{P} = YL(\bar{\imath})$, given P, Y, and the target interest rate, $\bar{\imath}$.

• Where the two curves intersect (point A), both goods and money markets are cleared (i.e., in equilibrium): "General Equilibrium"

- The IS curve shifts to the left when $T \uparrow$, $G \downarrow$, $c_0 \downarrow$, etc.
- Contractionary FP, consumer confidence ↓, ...
- $Y \downarrow$, i -

- The LM curve shifts downward when $\bar{\iota} \downarrow$.
- Expansionary MP.
- $Y \uparrow$, $i \downarrow$

Policy mix (an example)

• How can we achieve a higher interest rate without changing output?

How about C, I, G, T, T - G, S, M?

Only the demand side?

- The IS-LM model: General equilibrium in the short run.
- The goods market (IS) + The money market (LM)
- In the short run, P does not change.
- Output is largely determined by the demand Z.

- So far, we have studied the demand side of the economy.
- After the midterm, we will start to think about the supply (production) side of the economy. That is, firms hire workers to produce goods and services.

The Fisher Equation

- $1 + r_t = (1 + i_t)/(1 + \pi_{t+1}^e)$
- $r_t \approx \ln(1 + r_t) = \ln(1 + i_t) \ln(1 + \pi_{t+1}^e) \approx i_t \pi_{t+1}^e$
- $r_t \approx i_t \pi_{t+1}^e$: ex-ante real interest rate
- $i_t \pi_{t+1}$: ex-post real interest rate

ullet What will be the value of r when the zero-lower bound is binding?

The interest rate that matters for firms

• Previously, we assumed that I = I(Y, i).

- However, when firms make an investment decision, what is important for them is the *real* interest rate at which *they* borrow, not the nominal risk-free rate at which the US government borrow.
- Firms cannot borrow at the risk-free rate. When a firm issues a bond, investors (lenders) worry that this firm may default.
- To compensate for the risk, bond holders require a **risk premium**, x.

• A new assumption: $I = I(Y, r + x) = I(Y, i - \pi^e + x)$.

The Extended IS-LM Model

- IS: Y = C(Y T) + I(Y, r + x) + G
- LM: $r = \bar{r}$
- At the onset of the global financial crisis, housing prices \downarrow , stock price \downarrow , and consumer confidence \downarrow : $c_0 \downarrow$ $IS \leftarrow$
- The risk premium $x \uparrow \rightarrow I \downarrow \text{given } Y, r, T, \text{ and } G \rightarrow IS \leftarrow$

- Policy responses
 - Fiscal Policy: $G \uparrow, T \downarrow$
 - Monetary Policy: $i \downarrow$ to 0.

The CB could not lower r below $0 - \pi^e$

The financial crisis in 2007-08 and policy responses

w/o policy responses

- w/ policy responses
- $\bar{r} \downarrow$ was not sufficient due to the ZLB.