

Fachpraktikum (Bachelor)

6G Hardwarelabor - Design und Implementierung eines HF Transceivers

Versuch 1: Drahtlose Übertragungen und Link-Budget

Protokollführer

Lukas Müller

Erik Zimmermann

Farhad Valizada

Betreuer

Simon Haussmann

Eingereicht

May 13, 2025

Inhaltsverzeichnis

1	Einleitung 2		
	1.1 Ei	nführung in drahtlose Übertragung und Link-Budget	
	1.2 Zi	el des Versuchs	
2	Theoretische Grundlagen		
	2.1 Da	m Simpfung	
	2.2 Sp	pektrumanalyse	
	2.3 Fu	ındamentaler Ton	
	2.4 Li	nk Budget und Pathloss	
3	Versuchsaufbau 4		
	3.1 Ve	erwendete Geräte	
	3.2 M	essaufbau	
4			
	4.1 Ta	ask 1: Kabel charakterisieren	
	4.2 Ta	ask 2: Ausgangsleistung messen	
	4.3 Ta	ask 3: Fundamentalen Ton vermessen	
	4.4 Ta	ask 4: Funkübertragungsexperiment	
	4.5 Ta	ask 5: Link Budget berechnen	
5	Ergebnisse 6		
	5.1 Ta	abellen und Diagramme	
6	Diskussion		
		ergleich von Theorie und Praxis	
	6.2 Er	klärung von Abweichungen	
7	Fazit	8	
		sammenfassung der wichtigsten Erkenntnisse	
	7.2 Re	eflexion und mögliche Verbesserungen	
8	Literaturverzeichnis		
	8.1 Q	uellen	
9	tasks 10		
	9.1 ta	sk2:	
	9.2 ta	sk3:	
	9.5	2.1 a	

Einleitung

1.1 Einführung in drahtlose Übertragung und Link-Budget

blabla test

1.2 Ziel des Versuchs

Theoretische Grundlagen

- 2.1 Dämpfung
- 2.2 Spektrumanalyse
- 2.3 Fundamentaler Ton
- 2.4 Link Budget und Pathloss

Versuchsaufbau

- 3.1 Verwendete Geräte
- 3.2 Messaufbau

Durchführung

- 4.1 Task 1: Kabel charakterisieren
- 4.2 Task 2: Ausgangsleistung messen
- 4.3 Task 3: Fundamentalen Ton vermessen
- 4.4 Task 4: Funkübertragungsexperiment
- 4.5 Task 5: Link Budget berechnen

Ergebnisse

5.1 Tabellen und Diagramme

Diskussion

- 6.1 Vergleich von Theorie und Praxis
- 6.2 Erklärung von Abweichungen

Fazit

- 7.1 Zusammenfassung der wichtigsten Erkenntnisse
- 7.2 Reflexion und mögliche Verbesserungen

Literaturverzeichnis

8.1 Quellen

tasks

advanced Design System 2024

9.1 task2:

kollektor strom maximal IC = 1.5mA

$$I_C Max = 1.5mA$$

9.2 task3:

um die BE F Luss spannung zu erreichef
n muss R3 auf exax $R3=1950\Omega$ Nach der E12 Reihe entsprich
t $R3=2.2k\Omega$

9.2.1 a

berrechnen des kollektorwiderstanddes

$$R_5 = \frac{U_{CC}}{I_C Max * 0.75} = \frac{4.8V}{20mA * 0.75} \Omega = 320\Omega we gen E12 ReiheR_5 = 330\Omega$$
 (9.1)