The "See"-Value App: Visual Decision Making for Drug Development

H. Diehl ¹, A. M. Stein ², N. Roy Chowdhury ², T. Broderick ¹

¹ MIT, ² Novartis Pharmaceuticals

Scenario: Biomarker Exploration

Looking for "proof of action" you look at how over 5000 biomarkers respond to a drug at different concentrations. You pick the top 5 biomarkers with the strongest response, and think it looks pretty good:

Scenario: Biomarker Exploration

Further exploration would reveal no real effect - in fact this is synthetic data with exposure and concentration independently generated.

Problem

Signals seen in exploratory data analysis inform trial design.

But humans are great at seeing signals even when they aren't there.

Solution

A visual check for significance that is...

- Fast, easy, and intuitive
- Convincing even when users are incentivized to see a signal

Contribution: "See"-Value App

www.see-value.org

We provide a Shiny app that...

- Facilitates visual permutation tests as described by Buja, Majumder, Roy Chowdhury and others.
- Supports common inference tasks used in drug development.
- Enables team-based voting and significance calculations.

A Lineup Protocol

Protocol described by Buja et al (2009), Majumder et al (2015), Roy Chowdhury, et al (2015), and others.

Which plot looks most different from the others?

A Lineup Protocol

Hypothesis:

Strata influences survival

Permutation:

If strata has no influence, then scrambling the label won't change plot appearance.

Lineup Test:

- 1. Plot the real data along with the scrambled data.
- 2. Pick the "most unusual" plot.
- 3. If it is your real data, it may be significant.

App workflow: Team Based Voting

Step 1: Select a supported analysis.

With options growing

Step 2: Explore pre-loaded vignette

Learn and practice with lineups

Step 3: Upload and configure your data

Download sharable configuration

App workflow: Team Based Voting

Step 4: Teammates vote and report

You selected plot 1, but the true data was in plot 14.

Step 5: 'See'-Value calculated in-app

20	(A)
of Participants Correctly Identifying Data	
# of Participants Corre	ectly Identifying Data

'See'-Value: 2e-11

Analysis leader tallies correct/incorrect votes

Interpretation similar to traditional p-value

Conclusion

Avoid tricking yourself into thinking you have significant results!

Try out the app at: www.see-value.org

Feedback to: hdiehl <at> mit.edu

H. Diehl ¹, A. M. Stein ², N. Roy Chowdhury ², T. Broderick ¹

¹ MIT, ² Novartis Pharmaceuticals

References

Buja, Cook, Hofmann, Lawrence, Lee, Swayne, and Wickham. 2009 Statistical inference for exploratory data analysis and model diagnostics

Majumder, Hofmann and Cook. 2013 <u>Validation of Visual Statistical Inference</u>, <u>Applied to Linear Models</u>

Roy Chowdhury, Cook, Hofmann, Majumder, Lee, and Toth. 2015 <u>Using visual statistical inference to better understand random class separations in high dimension, low sample size data</u>

DSAIRM by <u>Handel Group at UGA</u> for app template

nullabor package by Cook et al. for lineup generation