RuleSet for Distributed Quantum Error Correction

[time=Wed, Jan 19, 2022 22:23 PM] [name=Bernard Ousmane Sane (BOS)]

tags: 'quantum-error-correction Encoding Decoding 'Stablizers'

Research Objectives:

In this work, we propose a solution-based quantum error correction for reducing nodes' memories requirement. Hence, we define a distributed erasure code that can do fast recovery while using a few nodes, unlike existing proposals. This allows:

- · To reduce the computational complexity
- To reduce the number of nodes to contact during the recovery process

Construction of [n,k,r] LRC code

Process 1: the parameters

- 1. Prepare n, q, r, and k such that r + 1/n and r/k.
- 2. Prepare a polynomial $g(x) \in \mathcal{F}_q$ such as:
 - $\deg(g)$ is r+1
 - $^{\bullet}\quad \mathcal{A}=\cup_{i=1}^{\frac{n}{r+1}}\mathcal{A}_{i}\text{ is a partition of }\mathcal{A}\subseteq\mathcal{F}_{q}\text{ with }n=|\mathcal{A}|\text{, }r+1=|\mathcal{A}_{i}|$
 - g is constant on each set \mathcal{A}_i in the partition.
- 3. Send the result to each node

Process2: [n, k, r] **LRC code** codeword

- 1. Wait for a message $m=m_1...m_k$ from the system
- 2. Wait for the code's parameters
- 3. form the codeword $c=c_1...c_n$ such as c_i is a function of a small number (at most r) of other symbols
- Distribute c_i over the nodes

Process3: recover an erasure symbol $\ c_t^d$ of the codeword $\ c^d = c_1^d...c_n^d$

- 1. Determine the nodes which contain the symbols $\,c_{i}^{d}$, $i \neq t$
- 2. Wait for symbols $c_1, ..., c_r$ from r Nodes
- 3. recover c_i by using at most r symbols

Process3: Blocks of qubits

- 1. Wait for N qubits from the system
- 2. Split the N qubits into \mathbf{m} blocks of \mathbf{k} qubits
- 3. Build a km matrix where the j^{th} column describes the j^{th} block.

Process4: Quantum local Recovery ceode $\; [[n,k,r]] \;$

- 1. Wait for $\mathcal{C} = [n, k, r]$ LRC code
- 2. Generates the parity-check and generator matrices
- 3. Build the quantum code using the theorem given by A. R. Calderbank et al.
- 4. Send the result to every node

Process5: Encoding a block \mathcal{B}^i from a node $\,\mathcal{N}^j$

- 1. Wait for the block $\,\mathcal{B}^i = \{q_1^i,...,q_k^i\}\,$
- 2. Produce a logical state $|\psi^i\rangle$ which is a combination of states $|\psi^i\rangle$ where $1 < j \le n$.
- 3. Removes \mathcal{B}^i and distribute $|\psi^i_j\rangle$ where $1 < j \le n$ over the \mathcal{N} nodes

Process 6: Quantum Local recovery code

- 1. Check the availability of the nodes
- 2. Determine the state $|\psi^i\rangle$ which contains the encoding value of \mathcal{B}^i
- 3. Launch a broadcast request for $\{|\psi^i_1\rangle,...,|\psi^i_n\rangle\}$ from nodes $\{\mathcal{N}^1,...,\mathcal{N}^n\}$ (remote gate)
- 4. Recover the block \mathcal{B}^i using $\{|\psi_1^i\rangle,...,|\psi_n^i\rangle\}$