A Appendix

A.1 Proof for Thm. 1

Proof. We note that $\operatorname{int}(\mathcal{C}) = \operatorname{int}(\mathcal{K}) \times \mathbb{R}$. It is easy to show that \mathcal{C} is $\operatorname{hypo}_{\mathcal{B}}(f)$ -free, since $\operatorname{int}(\mathcal{C}) \cap \operatorname{hypo}_{\mathcal{B}}(f) = \varnothing$. Assume that there exists a $\operatorname{hypo}_{\mathcal{B}}(f)$ -free set \mathcal{C}' including \mathcal{C} . Then the recession cone of \mathcal{C}' must include that of \mathcal{C} , so $\mathcal{C}' = \mathcal{K}' \times \mathbb{R}$ for some closed convex set \mathcal{K}' including \mathcal{K} . Moreover, \mathcal{K}' must be a \mathcal{B} -free set, otherwise, there exists a point $x \in \mathcal{B} \cap \operatorname{int}(\mathcal{K}')$ such that $(x, f(x)) \in \operatorname{int}(\mathcal{K}') \times \mathbb{R} = \operatorname{int}(\mathcal{C}')$. However, since \mathcal{K} is maximally \mathcal{B} -free, this implies that $\mathcal{K} = \mathcal{K}'$. As a result, $\mathcal{C} = \mathcal{C}'$, so \mathcal{C} is maximal.

Proof for Prop. 1

Proof.

$$\sigma(\pi)v^{i}(\pi) = \sum_{j \in \mathcal{N}_{i}} \sigma(\pi)_{\pi(j)} = \sum_{j \in \mathcal{N}_{i}} \Big(f(v^{j}(\pi)) - f(v^{j}(\pi)) \Big) = f^{i}(v^{i}(\pi)) - f(0) = f(v^{i}(\pi)),$$

where the first equation follows from Defn. 2, the second equation follows from Lemma 2, and the last two equations follow from the expansion of the sum. \Box

A.2 Proof for Prop. 2

Proof. As $F(x) = \max_{s \in \text{ext}(EPM_f)} sx$, F is the maximum of a set of linear functions. This implies that it is positive-homogeneous of degree-1 and convex, and it is easy to show the other results.

A.3 Proof for Prop. 3

Proof. Let π^* be the permutation found by the sorting algorithm. By Lemma 2, $\sigma(\pi^*)$ is in $\text{ext}(EPM_f)$ and hence a feasible solution to (3). Next, we prove the optimality of $\sigma(\pi^*)$. Let $d = \min_{i \in \mathcal{N}} \tilde{x}_i$, then $\tilde{x} + d\mathbf{1} \geq 0$. The following inequalities hold:

$$\sigma(\pi^*)\tilde{x} \le \max_{s \in \text{ext}(EPM_f)} s(\tilde{x} + d\mathbf{1} - d\mathbf{1}) \le \max_{s \in \text{ext}(EPM_f)} s(\tilde{x} + d\mathbf{1}) + \max_{s \in \text{ext}(EPM_f)} s(-d\mathbf{1}).$$
(7)

It is easy to show that $(\tilde{x} + d\mathbf{1})_{\pi^*(1)} \geq \cdots \geq (\tilde{x} + d\mathbf{1})_{\pi^*(n)}$, as $\tilde{x} + d\mathbf{1} \geq 0$, by the sorting algorithm, $\sigma(\pi^*)(\tilde{x} + d\mathbf{1}) = \max_{s \in \text{ext}(EPM_f)} s(\tilde{x} + d\mathbf{1})$. As the entries of $-d\mathbf{1}$ are identical, it follows from Prop. 1 that for any $\pi \in \Pi$, $\sigma(\pi)(-d\mathbf{1}) = -df(\mathbf{1})$. Therefore, for any $s \in \text{ext}(EPM_f)$, $s(-d\mathbf{1}) = -df(\mathbf{1})$, so $\sigma(\pi^*)(-d\mathbf{1}) = \max_{s \in \text{ext}(EPM_f)} s(-d\mathbf{1})$. Looking at the inequalities (7), they become equations, because

$$\sigma(\pi^*)\tilde{x} \le \max_{s \in \text{ext}(EPM_f)} s\tilde{x} \le \sigma(\pi^*)(\tilde{x} + d\mathbf{1}) + \sigma(\pi^*)(-d\mathbf{1}) = \sigma(\pi^*)\tilde{x}.$$

Therefore, $\sigma(\pi^*)$ is an optimal solution to (3).

A.4 Proof for Thm. 2

Proof. We consider a point $v \in \mathcal{B}$ and look at the line $\ell = \{(v,t) : t \in \mathbb{R}\}$. It can be separated into the restricted epigraph $\ell_+ := \{(v,t) : f(v) \leq t\}$ and the restricted hypograph $\ell_- := \{(v,t) : f(v) \geq t\}$, as $\ell_+ \cap \ell_- = (v,f(v))$ and $\ell = \ell_+ \cup \ell_-$. First, we know that, by definition of Q_f and Lemma 1, $\ell_+ \subseteq Q_f \subseteq EE_f$. Second, by Prop. 1, the point (v,f(v)) supports some facets of EE_f , so the point (v,t) with t < f(v) is separated by these facets from EE_f . Thereby, we know that $\ell_- \cap EE_f = \{(v,f(v))\}$. To summarize, we know that $EE_f \cap \ell = \ell_+$ and $(v,f(v)) \in \mathrm{bd}(EE_f)$. As $\mathrm{gra}_{\mathcal{B}}(f) = \cup_{v \in \mathcal{B}}\{(v,f(v))\}$, we have that $\mathrm{gra}_{\mathcal{B}}(f) \subseteq \mathrm{bd}(EE_f)$. As the hypograph $\mathrm{hypo}_{\mathcal{B}}(f) = \cup_{v \in \mathcal{B}}\{(v,t) : f(v) \geq t\}$ (union of restricted hypographs), we have that $EE_f \cap \mathrm{hypo}_{\mathcal{B}}(f) = \mathrm{gra}_{\mathcal{B}}(f)$. \square

A.5 Proof for Cor. 2

Proof. Since $\operatorname{gra}_{\mathcal{B}}(f) \subseteq \operatorname{bd}(EE_f)$, we conclude that $EE_f \cap \operatorname{hypo}_{\mathcal{B}}(f) \subseteq \operatorname{bd}(EE_f)$ and hence $\operatorname{int}(EE_f) \cap \operatorname{hypo}_{\mathcal{B}}(f) = \emptyset$. Additionally, EE_f is convex and hence $\operatorname{hypo}_{\mathcal{B}}(f)$ -free. As $Q_f \subseteq EE_f$, Q_f is $\operatorname{hypo}_{\mathcal{B}}(f)$ -free set.

A.6 Proof for Prop. 4

Proof. By Prop. 1, since $\emptyset = \pi(\mathcal{N}_0) \subsetneq \cdots \subsetneq \pi(\mathcal{N}_n) = \mathcal{N}$, by Defn. 2, $0 = v^0(\pi) < \cdots < v^n(\pi) = 1$, so $V(\pi)$ is a monotone chain. Conversely, given a monotone chain (x^0, \dots, x^n) , its inverse map π exists and satisfies that $\pi(0) = 0$; and for all $i \in \mathcal{N}$, $\pi(i)$ is the index of the non-zero entry of $x^i - x^{i-1}$.

A.7 Proof for Cor. 3

Proof. First, we note that $C(\Pi')$, as a relaxation of EE_f includes $\operatorname{gra}_{\mathcal{B}}(f)$. Next, we assume that Π' is a cover. Then points of $\operatorname{gra}_{\mathcal{B}}(f)$ support facets of $C(\Pi')$. By Thm. 3, $C(\Pi')$ is $\operatorname{hypo}_{\mathcal{B}}(f)$ -free. Finally, if Π' is a minimal cover, then each facet of $C(\Pi')$ has a point of $\operatorname{gra}_{\mathcal{B}}(f)$ in its interior. By Thm. 3, $C(\Pi')$ is maximally $\operatorname{hypo}_{\mathcal{B}}(f)$ -free.

A.8 Proof for Prop. 5

Proof. As \bar{f} is concave overestimator of f over X and F is convex underestimator of f over X, $\bar{f} \geq F$ over X. Suppose, to aim at a contradiction, that $\bar{f}(x^*) = F(x^*)$. Define a concave function $g := \bar{f} - F$, then for all $x \in X$, $g(x) \geq 0$, and $g(x^*) = 0$. By its concavity, there exists an affine overestimating function a of g, such that $g(x^*) = a(x^*) = 0$, and for all $x \in X$, $0 \leq g(x) \leq a(x)$. As $x^* \in \operatorname{relint}(X)$, the affinity of a implies that a = g = 0 over X, i.e., $\bar{f} = F$ over X. So f is both concave and convex over X and thus affine over X, which is a contradiction.

A.9 Proof for Prop. 8

Proof. Since the extended envelope G is the maximum of linear functions, it is convex and piece-wise linear, and so ζ^j is concave and piece-wise linear. Since $\zeta^j(0) = \ell \tilde{t} - \mathsf{G}(\tilde{x})$, it follows from the assumption $z^* \in \mathrm{int}(\mathcal{C})$ that $\tilde{t} > \mathsf{G}(\tilde{x})$ and thus $\zeta^j(0) > 0$. Since \mathcal{C} is closed and convex, $\eta'_j = \eta^*_j$ if and only if $z^* + \eta'_j r^j \in \mathrm{bd}(\mathcal{C})$. That is $\mathsf{G}(r^j_x \eta_j + \tilde{x}) = \mathsf{G}(\tilde{x}) + r^j_t \eta'_j$, i.e., $\zeta^j(\eta'_j) = 0$. Since $s^* \in \partial \mathsf{G}(\tilde{x} + r^j_x \eta_j)$, by the chain rule, $\ell r^j_t - s^* r^j_x$ is a subgradient of ζ^j . By the concavity of ζ^j , its subgradients are non-increasing.