

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2021

MATHEMATICAL LITERACY P2 MARKING GUIDELINE

MARKS: 150

Symbol	Explanation
M	Method
MA	Method with accuracy
CA	Consistent accuracy
RCA	Rounding consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
SF	Correct substitution in a formula
J	Justification
O	Opinion/Example/Definition/Explanation/Justification/Verification
RT/RG/RM	Reading from a table/graph/map
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off
NPR	No penalty rounding or omitting units
AO	Answer only, full marks

This marking guideline consists of 10 pages.

MARKING GUIDELINES

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out (cancelled) an attempt to a question and NOT redone the solution, mark the crossed out (cancelled version)
- Consistent Accuracy (CA) applies in ALL aspects of the marking guidelines; however, it stops at the second calculation error.
- If the candidate presents any extra solution when reading from a graph, table, layout plan and map, then penalise for every extra incorrect item presented.

LET WEL:

- As 'n kandidaat 'n vraag TWEE keer beantwoord merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek (kanselleer) en nie oordoen nie, merk die doodgetrekte (gekanselleerde) poging.
- Volgehoue akkuraatheid (CA) word in ALLE aspekte van die nasienriglyn toegepas, maar dit hou by die tweede berekeningsfout op.
- Wanneer 'n kandidaat aflees van 'n grafiek, tabel, uitlegplan en kaart en ekstra antwoorde gee, penaliseer vir elke ekstra item.

KEY TO TOPIC SYMBOL:

F = Finance; M = Measurement; MP = Maps, plans and other representations; P= Probability

QUESTION 1 [2	6 MARKS]
---------------	----------

Quest	Solution	Explanation	Level
1.1.1	25 mg : 1 000 mg ✓ M (divide by 25)	1M ratio concept	M
	$= 1: 40 \checkmark MA$	1MA Simplification	L1
		(2)	
1.1.2	Tablets per day:		M
	25 × 2 ✓ MA	1MA multiplying by 2	L1
	= 50		
	Tablets per week:	1MA multiplying by 7	
	50 × 7 ✓ MA	1A answer	
	= 350 mg ✓A	(3)	
1.1.3	Number of days to use tablets:	1M finding the number of	M
	$60 \text{ tablets} \div 2 = 30 \text{ days } \checkmark M$	days	L1
	Last day: 30 March 2021 ✓M	1M Referring to last date	
	Therefore, from the 31st March 2021 a refill is	10 Conclusion	
	needed. ✓O	(3)	
1.1.4	25 mg × 120 ✓ RT	1RT multiply correct values	M
	$= 3\ 000\ \text{mg} \div 1\ 000\ \checkmark\text{C}$	1C divide by 1 000	L1
	$=3 \text{ g } \checkmark \text{A}$	1A answer	
		(3)	
1.2.1	The "North Elevation" shows the side view of the	2A correct explanation.	MP
	building from the northern direction. ✓ ✓ A		L1
		(2)	
1.2.2	(a) A floor plan shows a top view of the inside of a	2A correct explanation	MP
	building. ✓ ✓ A	(2)	L1
	(b) An elevation plan shows the side view of the	2A correct explanation	MP
	outside of the building. ✓✓A	(2)	L1
1.2.3	Scale = 1:100		MP
	Measured length: 5 cm		L1
	Actual length: $5 \times 100 \text{ cm} \checkmark M$	1M multiply by scale	
	= 500 cm ✓MA	1MA answer	
101		(2)	2.5
1.3.1	$90 \text{ km} \times 1000 \times 100 \times 10 \checkmark \text{C}$	40 11 1 4000 000	M
	= 90 000 000 mm ✓A	1C multiply by 1000 000	L1
	OR	1.4	
	✓C	1A correct answer	
1.2.2	$90 \text{ km} \times 1\ 000\ 000 = 90\ 000\ 000\ \text{mm} \checkmark \text{A}$	(2)	3.6
1.3.2	No of tiles per box = $\frac{1,44 \text{ m}^2}{0.36 \text{ m}^2} \checkmark \text{M}$	1M dividing by $0.36 m^2$	M
	$= 4 \text{ tiles per box } \checkmark A$	1A number of tiles	L1
1 2 2	-	(2)	M
1.3.3	1,125 hours	1C finding minute	M
	1 hour	1C finding minutes	L1
	$0.125 \text{ hr.} \times 60 = 7.5 \text{ min } \checkmark \text{C}$	1C finding seconds	
	$0.5 \text{ min} \times 60 = 30 \text{ seconds } \checkmark C$	1A correct answer	
	1,125 hours = 1 hr. 7 min 30 seconds ✓A	(3)	
		[26]	

QUEST	TION 2 [28 MARKS]		
Quest	Solution	Explanation	Level
2.1.1	George; Knysna; Mossel Bay ✓✓RT	2RT names of towns	MP
	(Any two of the three)	(2)	L1
2.1.2	South East ✓ ✓ A (accept East)	2A Direction	MP
	North East ✓✓A	2A Direction	L1
		(4)	
2.1.3	National roads connect major cities. ✓✓O	20 Reason 1	MP
	Save on fuel consumption. ✓✓O	2O Reason 2	L4
	Fewer traffic lights \checkmark O		
	Travel faster ✓✓O		
	[Any two or any acceptable explanation.]	(4)	
2.1.4	2,3 cm = 300 km ✓A	1A measured bar scale	MP
	Measured distance = $7 \text{ cm} \checkmark A$	1A measured distance	L2
	7 cm	range for bar 2.2cm to 2,4cm	
	Actual distance = $\frac{7 \text{ cm}}{2.3 \text{ cm}} \times 300 \text{ km}$ \checkmark M	measured map range distance	
	2,0 0.11	from 6,9 to 7,1	
	≈ 913 km ✓ CA	1M concept for ratio 1CA rounded answer	
		(4)	
2.1.5	Distance = Speed × Time	Accept CA from Q 2.1.4	MP
2.1.3	913 = 100 × Time ✓ SF	1SF substitute correct values	L4
	713 = 100 × 11me · 51	1M changing the subject of the	
	913 km	formula	
	$=\frac{913 \ km}{100 \ km/h} \checkmark M$	1CA time in hours	
		1 C hours to minutes	
	= 9,13 hrs. ✓CA	1M adding time	
	0.40	1CA arrival time	
	$=0.13\times60$	1J justification	
	= 7,8 minutes \approx 8 minutes \checkmark C		
	Time of arrival = $9 \text{hrs } 08 \text{ min } + 1 \text{hr } + 08:00 \checkmark \text{M}$		
	$= 18:08 \qquad \checkmark CA$		
	They will arrive later than the planned time. ✓J		
	They will arrive facer than the planned time.	(7)	

Quest	Solution	Explanation	Level
2.2.1	7,6 litres = 100 km	Accept CA from	MP
	Petrol Consumption = $\frac{913km}{100 \ km} \times 7.6 \ litres \ \checkmark M$	Q 2.1.4	L2
	1 100 km	1M concept of ratio	
	= 9,13 × 7,6 litres		
	= 69,388 litres ✓S	1S simplification	
	Return trip Consumption = 69,388 × 2 ✓ M	1M multiply by 2	
	= 138,776 litres ✓CA	1CA Answer	
2.2.2	1.642 100 P1642 (N.	(4)	MD
2.2.2	$1 642 \text{ cents} \div 100 = R16,42 \checkmark M$	Accept CA from	MP
		Q 2.2.1	L2
	Petrol cost = $R16,42 \times 138,776$ litres \checkmark CA	1M Conversion	
	= R 2 278,701	1CA multiply by	
	1 2 2 7 6,7 6 1	138,78 litres	
	$= R 2 278,70 \checkmark CA$		
		1CA Answer	
		(3)	
		[28]	

	CION 3 [34 MARKS]	T I I	T
Quest	Solution	Explanation	Level
3.1.1	Radius: $18 \text{ cm} \div 2 = 9 \text{ cm} \checkmark M$	1M radius	M
	Conversion to mm = 9 cm \times 10 = 90 mm \checkmark C	1C conversion	L3
	Area = πr^2	1SF correct substitution	
	$= 3,142 \times 90 \text{ mm} \times 90 \text{ mm} \checkmark \text{SF}$	1S simplification	
	$= 25 450,2 \checkmark S$	1R rounding	
	$= 25 450 \text{ mm}^2 \checkmark \text{R}$	(5)	
3.1.2	Radius: 250 mm ÷ 2 = 125 mm ✓ MA	1MA finding radius	M
	Circumference = $2 \times \pi \times r$		L2
	$= 2 \times 3{,}142 \times 125 \text{ mm } \checkmark \text{SF}$	1SF correct values	
	$= 785.5 + 50 \text{ mm } \checkmark \text{M}$	1M adding 50 mm	
	= 835,5 mm ✓ CA	1CA answer	
	OR	OR	
	Radius: $250 \text{ mm} \div 2 = 125 \text{ mm} \checkmark \text{MA}$	1MA finding radius	
	Circumference = $\pi \times D$	11vii i iiidiiig iudius	
	$= 3,142 \times 250 \checkmark SF$	1SF correct values	
	$= 785.5 + 50 \checkmark M$	1M adding 50 mm	
	= 783,5 + 30 V M = 835,5 mm \checkmark CA	1CA answer	
	_ 655,5 IIIII V CA		
2 1 2		(4)	NA
3.1.3	Conversion: length = $400 \text{ mm} \div 10 = 40 \text{ cm } \checkmark \text{C}$	1C conversion	M
	Volume $= 1 \times b \times h$	1SF in formula	L3
	$42\ 000\ \text{cm}^3 = 40\ \text{cm} \times 30\ \text{cm} \times \text{h} \checkmark \text{SF}$	1S changing the subject	
	Height = $42\ 000\ \text{cm}^3 \div 1200\ \text{cm}^2\ \checkmark \text{S}$	of the formula	
	= 35 cm ✓ CA	1CA answer	
		(4)	
3.1.4	25,4 mm = 1 inches		M
	Diameter in mm = 250 mm ✓RT	1RT using correct	L4
	Diameter in inches = $250 \div 25,4$	values 250 mm and 25,4	
	= 9,84 inches ✓MA	1MA convert to inches	
	Statement is not valid ✓O	10	
		(3)	
3.1.5	Radius value = $250 \text{ mm} \div 2$	1MA finding the radius	M
	= 125 mm ✓MA	1M percentage	L2
	Height = $0.64 \times 125 \text{ mm} \checkmark \text{M}$	calculation	
	= 80 mm ✓ CA	1A answer	
		(3)	
216	Flour Cugar (2 guns)		Nπ
3.1.6	Flour: Sugar (3 cups)		M
	7 cups : 3 cups (× 2)		L2
	14 cups : 6 cups	13.64 12 12 1 2	
	$=\frac{6}{3}$ \checkmark MA	1MA dividing by 3	
	3	13.64	
	= 2	1MA multiplying by 7	
	$= 2 \times 7 \checkmark MA = 14 \text{ cups of flour } \checkmark A$	1A answer	
	OR		
		1MA dividing by 3	
	$\frac{7}{2}$ \checkmark MA \times 6 \checkmark MA = 14 cups of flour \checkmark A	1MA multiplying by 6	
	3	1A answer	
		(3)	

Quest	Solution	Explanation	Level
3.1.7	$^{\circ}$ C = $(^{\circ}$ F $-32^{\circ}) \div 1,8$		M
	✓ SF	1SF correct value	L2
	$= (365 ^{\circ}\text{F} - 32^{\circ}) \div 1.8$		
	= 333 °F ÷ 1,8 ✓ S	1S simplify	
	= 185°C	1R rounding to 10	
	≈ 190 °C ✓ R	degrees	
		(3)	
3.2.1	Tree diagram ✓✓ A	2A correct answer	P
		(2)	L1
3.2.2	Missing value P: Boy ✓RT	1RT correct answer	P
	Missing value Z: GBB ✓RT	1RT correct answer	L1
		(2)	
3.2.3	(a) Probability (2 girls at least) = $\frac{4}{8} \checkmark RT \checkmark RT$	1RT Numerator	P
		1RT Denominator	L2
	$=\frac{1}{2}$ \checkmark CA	1CA simplification	
	Z	(3)	
3.2.3	(b) Probability (BGB) = $0 \% \checkmark \land A$	2A correct percentage	P
		(2)	L2
		[34]	

QUESTION 4 [32 MARKS]			
Quest	Solution	Explanation	Level
4.1.1	Basin / Wash basin ✓✓RT	2RT correct feature	MP
		(2)	L1
4.1.2	1 Window ✓✓RT	2RT correct number	MP
		(2)	L1
4.1.3	Width (bedroom 1 and bedroom 2) = $4680 + 5130 \checkmark MA$	1MA adding correct	M
	= 9 810 √ A	values	L2
		1A length	
	Length of bathroom = $13680 - 9810 \checkmark M$	1M finding length of	
	= 3870 ✓ CA	bathroom	
		1CA answer	
	Wall (minus door opening) = $(3.870 - 860) \text{ mm} \checkmark \text{ M}$	1M subtracting door	
	= 3 010 mm ✓ CA	width	
		1CA answer	
		(6)	

4.2.1	Bathroom Area =	Length × Width		M
		870 mm × 2 250 mm ✓SF	1SF correct values	L3
		✓A	1A finding area	
	= 8	$707\ 500\ \text{mm}^2 \div 1\ 000\ 000\ \checkmark\text{C}$	1C ÷ by 1 000 000	
	= 8	7,7075 m ² ✓ CA	1CA for the area	
	Kitchen Area = I	Length × Width ✓SF		
			1SF correct values	
		030 mm × 5 130 mm ✓ A	1A finding area	
		$0.933\ 900\ \text{mm}^2 \div 1\ 000\ 000\ \checkmark\ \text{C}$	1C ÷ by 1 000 000	
	= 3	$0.9339 \text{ m}^2 \checkmark \text{CA}$	1CA for the kitchen area	
			1CA total area	
		3,7075 + 30,9339	(9)	
	= 3	9,6414 m ² ✓CA	NPR	
4.2.2	Area of 1 tile: 500		CA from 4.2.1	M
	= 2	$50\ 000\ \text{mm}^2\ \checkmark \text{MA}\ (\div 1000\ 000)\ \checkmark \text{C}$	1M area of tile	L4
	= 0	$1,25 \text{ m}^2 \checkmark \text{A}$	1C divide by 1 000 000	
	No. of tiles needed	$d = 39,6414 \text{ m}^2 \div 0.25 \text{ m}^2 \checkmark MCA$	1MCA ÷ total area by	
		$=158,5656 \times 1,05\checkmark M$	0.25 m^2	
		=166,49388 tiles	1M increasing by 5%	
		= 167 tiles \checkmark CA	1CA rounded no. of tiles	
	Statement not vali	d. √ O	10 conclusion	
			(7)	
4.2.3	No of boxes $= 1$	67 ÷ 4 ✓ MCA	CA tiles from 4.2.2	M
	= 4	1,75	1MCA dividing tiles by 4	L4
	= 4	2 boxes ✓ CA	1 number of boxes	
			1M multiply by cost	
	Amount for tiles	$= 42 \times 249,90 \checkmark M$	1CA cost of tiles	
		$= R10 495,80 \checkmark CA$		
			1M adding labour cost	
	Total amount	= 10 495,80 + 8 186,09		
		$= R18 681,89 \checkmark M$	10 conclusion	
	Claim is valid. ✓ ()	(6)	
			[32]	

Omost	UESTION 5 [30 MARKS] uest Solution Explanation		
Quest	Solution	Explanation	Leve
5.1.1	Convert: $175 \div 100 = 1,75 \text{ m} \checkmark \text{C}$	1C conversion	M
			L3
	$BMI = \frac{\text{Mass in kg}}{\text{Height} \times \text{m}^2}$ Mass in kg		
	$25,1 = \frac{\text{Mass in kg}}{1,75\text{m} \times 1,75\text{m}} \checkmark \text{SF}$	1SF correct values	
	$25,1 - \frac{1}{1,75 \text{m}} \times 1,75 \text{m}$		
	$Mass = BMI \times (height)^{2}$	1S changing subject of	
	$= 25,1 \times (1,75)^2 \checkmark S$	formula	
	Mass in (kg) = $76,86875 \text{ kg}$	1CA answer	
	= 76,87 kg ✓CA	(4)	
5.1.2	Overweight $\checkmark\checkmark$ J	1J conclusion	M
		(2)	L1
5.1.3	The young promising rugby player can eat	2O Explanation	M
	healthier. ✓✓O		L4
	OR	(2)	
<i>5</i> 0 1	He should exercise more regularly \checkmark O	(2)	MD
5.2.1	3 laps = 5 000 m ÷ 1000 ✓ C 1 lap = 5 km ÷ 3 ✓ MA	1C divide by 1 000	MP L2
	1 lap = $5 \text{ km} \div 3 \checkmark \text{MA}$ = 1,67 km $\checkmark \text{CA}$	1MA divide by 3 1CA distance per lap	L2
	= 1,07 Kiii ▼ CA	TCA distance per lap	
	OR	1MA divide by 3	
	$1 \text{ lap} = 5000 \text{ m} \div 3 \checkmark \text{MA}$	1C divide by 1000	
	= 1 666,666667 ÷ 1 000 ✓ C	1CA distance per lap	
	≈ 1,67 km √ CA	(3)	
5.2.2	Incomplete runs: = $4 \text{ laps} \times 1,67 \text{ km} \checkmark \text{M}$	1M multiply by lap	MP
	= 6,68 km ✓A	distance	L4
		1A correct distance	
	Complete runs $= 3 \times 5 \text{ km}$	1MA finding complete run	
	$= 15 \text{ km} + 6.68 \text{ km} \checkmark \text{MA}$	distance	
	= 21,68 km ✓CA	1CA finding total distance	
	His statement is not valid. ✓O	10 correct conclusion	
	OR	1M multiply 4 by lap distance	
	\sqrt{M} \sqrt{M} $(4 \times 1,67) + (9 \times 1,67)$	1M multiply 9 by lap	
		distance	
	$A \checkmark A$ = 6,68 + 15,03	1A correct distance	
	$= 21,71 \text{ km } \checkmark \text{CA}$	1A correct distance	
	His statement is not valid. ✓O	1CA finding total distance	
	This statement is not varia.	10 correct conclusion	
		(5)	
5.2.3	Difference in Time = 19 min 30 sec − 15 min 45 sec ✓ M	1M subtract time	MP
	= 3 min 45 sec ✓ A	1A difference in time	L3
	Difference in Time per lap = $3 \min 45 \sec \div 3 \checkmark M$	1M divide by 3	
	= 1 min 15 sec ✓ A	1A total time	
	Statement is valid ✓	10 reason	
		(5)	

5.3.1	Number of candles	1MA ÷ by correct	MP
	Length: $24 \text{ cm} \div 8 \text{ cm} = 3 \checkmark \text{MA}$	values	L3
	Width: $16 \text{ cm} \div 8 \text{ cm} = 2 \checkmark \text{MA}$	1MA for 2 correct	
	Height: $24 \text{ cm} \div (1 + 11 \text{ cm}) = 2 \checkmark M$	values 3 and 2	
	✓ S	1M adding 1cm	
		1S simplify no of	
	Total number of candles: $3 \times 2 \times 2 = 12$ candles \checkmark CA	candles	
		1CA conclusion	
	OR	OR	
		$1MA \times by correct$	
	Length: $8 \text{ cm} \times 3 = 24 \text{ therefore 3 will fit } \checkmark \text{MA}$	values	
	Width: $8 \text{ cm} \times 2 = 16 \text{ therefore 2 will fit } \checkmark \text{MA}$	1MA for 2 correct	
	Height: $(11 \text{ cm} + 1 \text{ cm} + 11 \text{ cm}) = 23 \text{ cm}$, therefore 2 will	values 3 and 2	
	fit √MA	1M adding 1cm	
		1S simplify no of	
	✓S	candles	
	Total number of candles: $3 \times 2 \times 2 = 12$ candles \checkmark CA	1CA conclusion	
		(5)	
5.3.2	Total area = $2 (H \times L) + 2 (W \times H) \checkmark C$	1C converting to m	M
	$= 2 (0.24 \text{ m} \times 0.24 \text{ m}) + 2 (0.16 \text{ m} \times 0.24 \text{ m}) \checkmark \text{SF}$	1SF correct values	L2
	$= 0.1152 \text{ m}^2 + 0.0768 \text{ m}^2 \checkmark \text{S}$	1S simplification	
	$= 0.192 \text{ m}^2 \checkmark \text{CA}$	1CA answer	
		(4)	
		[30]	
		TOTAL: 150	