IMPLEMENTATION OF FULL ADDER AND FULL SUBTRACTOR USING LOGIC GATES

Objective:

To realize the operation of adder and subtractor circuit using basic logic gates.

LIST OF MAJOR EQUIPMENTS:

SI No.	Name	Manufacturer	Model No	Specification
1.	Power Supply	ELNOVA/ Aplab	E-61	S1:0-30V, S2:0- 2V, S3:5V,5A
2.	Logic Probe	Made in Taiwan	Model- 625	50 MHz freq. range

Theory:

A combinational circuit that performs the addition of 2 bits is called the half adder. One that performs the addition of three bits is called a full adder.

A half adder has 2 inputs and 2 outputs. The output variables produce the sum and carry.

In full adder two input variables A and B represents the two significant bits to be added. The third input C represents the carry from the previous lower significant position. It has two outputs sum and carry.

A half sub tractor is a combinational circuit that subtracts two bits. It has two inputs and two outputs. The output variables produce difference and borrow. A full subtractor is a combinational circuit that performs subtraction between two bits taking into account one may have been borrowed by a lower significant stage. It has three inputs and two outputs.

TRUTH TABLE FOR HALF ADDER AND HALF SUBTRACTOR:

HALF ADDER SUBSTRACTOR

HALF

Α	В	SUM	CARRY
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Α	В	DIFF	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

TRUTH TABLE FOR FULL ADDER AND FULL SUBTRACTOR:

OBSERVATION TABLE FOR HALF ADDER AND HALF

Α	В	С	SUM	CARRY	DIFF	BORROW
0	0	0	0	0	0	0
0	0	1	1	0	1	1
0	1	0	1	0	1	1
0	1	1	0	1	0	1
1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	1	1	1	1

SUBTRACTOR:

HALF ADDER

Α	В	SUM	CARRY
L	L	L	L
L	Η	Н	L
Н	L	Н	L
Н	Η	L	Н

HALF SUBTRACTOR

Α	В	DIFF	Borrow
L	L	L	L
L	Н	Η	Η
Н	L	Η	L
Н	Н	L	L

OBSERVATION TABLE FOR FULL ADDER AND FULL SUBTRACTOR:

FULL ADDER

Α	В	С	SUM	CARRY
L	L	L	L	L
L	L	Н	Н	L
L	Н	L	Н	L
L	Н	Н	L	Н
Н	L	L	Н	L
Н	L	Н	L	Н
Н	Н	L	L	Н
Н	Н	Н	Н	Н

FULL SUBTRACTOR

А	В	Cin	DIFF	Borrow
L	L	L	L	L
L	L	Н	Н	Н
L	Н	L	Н	Н
L	Н	Н	L	Н
Н	L	L	Н	L
Н	L	Н	L	L
Н	Н	L	L	L
Н	Н	Н	Н	Н

CIRCUIT DIAGRAM

HALF ADDER

NOTE: give the Boolean expression for SUM and CARRY by yourself.

HALF SUBTRACTOR

NOTE: give the Boolean expression for DIFFERENCE and BORROW by yourself.

FULL ADDER

NOTE: give the Boolean expression for SUM and CARRY by yourself.

FULL SUBTRACTOR

NOTE: give the Boolean expression for DIFFERENCE and BORROW by yourself.

CIRCUIT DIAGRAM

full Sub hacror

For Half Adder K-Map for SUM:

K-Map for CARRY:

For Full Adder

K-Map for SUM:

SUM = A'B'C + A'BC' + ABC' + ABC

K-Map for CARRY:

CARRY = AB + BC + AC

For Half Subtractor

K-Map for DIFFERENCE:

DIFFERENCE = A'B + AB'

K-Map for BORROW:

BORROW = A'B

For full Subtractor

K-Map for Difference:

Difference = A'B'C + A'BC' + AB'C' + ABC

K-Map for Borrow:

Borrow = A'B + BC + A'C

CONCLUSSION:

NOTE: Here are some Questions. You need not write the questions , You only write the answers

- 1. Can we construct a full adder and full subtractor circuit using universal gates.
- 2. What are the uses of full adder and full subtractor circuit