Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Blatt 9

Abgabe: 08.01.2019 14 Uhr Gruppennummer angeben!

Aufgabe 1 (6 Punkte).

Die Sprache $\mathcal{L}_{\mathbb{Q}-VR}$ der \mathbb{Q} -Vektorräume besteht aus einem Konstantenzeichen 0, einem binären Funktionszeichen + sowie aus einstelligen Funktionszeichen $(\lambda_q)_{q\in\mathbb{Q}}$ für die Skalarmultiplikation mit q. Jeder \mathbb{Q} -Vektorraum lässt sich als $\mathcal{L}_{\mathbb{Q}-VR}$ -Struktur betrachten.

- (a) Schreibe in der Sprache $\mathcal{L}_{\mathbb{Q}-VR}$ eine Theorie T, deren Modelle genau alle \mathbb{Q} -Vektorräume sind. Ist diese Theorie endlich axiomatisierbar?
- (b) Sei V ein \mathbb{Q} -Vektorraum. Falls $V \neq 0$, zeige, dass es eine elementare Erweiterung V' von V (als $\mathcal{L}_{\mathbb{Q}-VR}$ -Struktur) gibt, so dass $\dim_{\mathbb{Q}} V' \geq 2$.
- (c) Sei nun \mathcal{K} eine axiomatisierbare Klasse von \mathbb{Q} -Vektorräumen derart, dass jeder Vektorraum V aus \mathcal{K} endlichdimensional ist. Schließe daraus, daß \mathcal{K} nur aus dem trivialen \mathbb{Q} -Vektorraum besteht.

Aufgabe 2 (8 Punkte).

Sei $\mathcal{L} = \{P_i : i \in \mathbb{N}\}\$ die Sprache, welche aus einstelligen Relationszeichen P_i besteht.

- (a) Gib eine Theorie T an, in deren Modellen \mathcal{M} die Kollektion $\{P_i^{\mathcal{M}}: i \in \mathbb{N}\}$ aus unendlichen, paarweise disjunkten Mengen besteht.
- (b) Zeige mit Hilfe des Kompaktheitssatzes, dass jedes Modell \mathcal{M} von T eine elementare Erweiterung $\mathcal{M} \preceq \mathcal{N}$ derart besitzt, dass es unendlich viele Elementen in $N \setminus \bigcup_{i \in \mathbb{N}} P_i^{\mathcal{N}}$ gibt.
- (c) Mit Hilfe eines Back-and-Forth-Systems zeige, dass je zwei Modelle, in denen das Komplement von $\bigcup_{i\in\mathbb{N}} P_i^{\mathcal{N}}$ unendlich ist, elementar äquivalent sind.
- (d) Schließe daraus, dass T vollständig ist.

Aufgabe 3 (6 Punkte).

- (a) Zeige, dass die Abstandsfunktion $|\cdot|: \mathbb{N}^2 \to \mathbb{N}$ primitiv rekursiv ist. $(x,y) \mapsto |x-y|$
- (b) Zeige, dass die Funktion $\mathbb{N}^2 \to \mathbb{N}$ primitiv rekursiv ist. $(n,m) \mapsto n^{n} \stackrel{\cdot}{\nearrow}_{m \text{ Mal}}$

Hinweis: Zeige zuerst, dass die Funktion $(x,y) \mapsto x^y$ primitiv rekursiv ist.

DIE ÜBUNGSBLÄTTER MÜSSEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM EG DES GEBÄUDES 51.