Geometría Diferencial 2023

Práctico 3

- 1. Sea $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ una función como a continuación.
 - (a) $\varphi(u,v) = (u,uv,v)$.
 - (b) $\varphi(u, v) = (u^2, u^3, v)$.
 - (c) $\varphi(u, v) = (\cos 2\pi u, \sin 2\pi u, v)$.

En cada uno de los casos encontrar una superficie regular S y un abierto U maximal tales que $\varphi(U) = S$ y $\varphi|_U : U \to S$ resulte una parametrización.

- 2. Mostrar que el conjunto $S = \{(x, y, z) : z = x^2 y^2\}$ es una superficie regular y que los dos mapas que siguen son parametrizaciones de S.
 - (a) $\varphi(u, v) = (u + v, u v, 4uv), \text{ con } (u, v) \in \mathbb{R}^2.$
 - (b) $\psi(u, v) = (u \cosh v, u \sinh v, u^2)$, con $(u, v) \in \mathbb{R}^2$ y u > 0.
- 3. Encontrar una parametrización del paraboloide $\{(x,y,z) \in \mathbf{R}^3 \mid z=1+x^2+y^2\}$.
- 4. Mostrar que el cilindro $\{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 = 1\}$ es una superficie regular y encontrar parametrizaciones cuyos entornos coordenados lo cubran.
- 5. Mostrar que las coordenadas esféricas constituyen un sistema coordenado de la esfera unitaria S^2 y encontrar sistemas coordenados similares para cubrirla toda. Entender cómo se escriben en coordenadas los paralelos, los meridianos y los círculos máximos.
- 6. Para cada una de las siguientes funciones hallar el dominio, encontrar sus puntos críticos y decidir para qué valores de c el conjunto $f^{-1}(c)$ es una superficie regular

a)
$$f(x, y, z) = (x + y + z)^{-1}$$

b)
$$f(x, y, z) = xyz^{2}$$
.

EJERCICIOS EXTRAS

- 7. Decir en qué región el mapa $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, \, \varphi(u,v) = (u,u^2,v+v^3)$ es una parametrización.
- 8. Una manera de definir un sistema de coordenadas en la esfera $x^2 + y^2 + (z 1)^2 = 1$ es mediante la proyección estereográfica, que lleva el punto $(x, y, z) \neq (0, 0, 2)$ de la esfera al punto del plano xy donde corta la recta que pasa por (x, y, z) y el punto (0, 0, 2). Llamamos π a esta proyección.
 - (a) Mostrar que $\varphi = \pi^{-1}$ está dado por la fórmula

$$\varphi(u,v) = \frac{2}{u^2 + v^2 + 4}(2u, 2v, u^2 + v^2).$$

(b) Mostrar que con esta carta y otra similar se puede cubrir la esfera con dos entornos coordenados.

- (c) Entender como se escriben en coordenadas los paralelos, los meridianos y los círculos máximos.
- (d) Desarrollar todo lo anterior de manera análoga para la esfera unitaria centrada en el 0.
- 9. ¿Existe una función diferenciable $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ para la cual 0 no es un valor regular de f, pero sin embargo $f^{-1}(0)$ es una superficie regular?.