Chapitre 18: L'espace vectoriel \mathbb{K}^n et ses sous-espaces vectoriels

Dans tout ce chapitre $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

I - L'espace vectoriel \mathbb{K}^n

- 1) Définition de l'espace vectoriel \mathbb{K}^n
- 2) Règles de calculs
- 3) Exemples

II - Sous-espaces vectoriels de \mathbb{K}^n

- 1) Définition et exemples
- 2) Combinaisons linéaires

III - Indépendance linéaire, base

- 1) Familles libres, familles liées
- 2) Base d'un sous-espace vectoriel

IV - Théorie de la dimension

- 1) Dimension d'un sous-espace vectoriel
- 2) Familles libres, familles génératrices et dimension
- 3) Dimension et inclusion
- 4) Rang d'une famille de vecteurs

Exemples de compétences attendues

- Savoir justifier qu'une partie de \mathbb{K}^n est un sous-espace vectoriel de \mathbb{K}^n . (en utilisant la définition, ou en mettant en évidence une famille génératrice)
- **2** Savoir déterminer un système d'équations cartésiennes décrivant un sous-ev de \mathbb{K}^n à partir d'une famille génératrice du sous-ev.
- $oldsymbol{3}$ Savoir effectuer le procédé inverse : déterminer une famille génératrice d'un sous-ev de \mathbb{K}^n à partir d'un système d'équations cartésiennes décrivant celui-ci.
- 4 Savoir déterminer si une famille est libre ou liée.
- Pour n = 2, 3, 4, savoir montrer qu'une famille de vecteurs est une base de \mathbb{K}^n en déterminant dans le même temps l'expression des coordonnées d'un vecteur quelconque de \mathbb{K}^n dans cette base. Savoir déterminer la matrice d'une famille de vecteurs dans une base donnée.
- **6** Si E est un sous-ev de \mathbb{K}^n , savoir trouver une base de E en trouvant d'abord une famille génératrice de E puis en montrant qu'elle est libre.
- \bullet Si $m = \dim E$ est connu, savoir montrer qu'une famille de vecteurs \mathcal{F} de E est une base de E en vérifiant :
 - que \mathcal{F} est génératrice de E et $Card\mathcal{F} = m$, ou
 - que \mathcal{F} est libre et $Card\mathcal{F} = m$.
- 3 Savoir montrer l'égalité de deux sous-ev de \mathbb{K}^n : Si E et F sont deux sous-ev de \mathbb{K}^n tels que $E \subset F$ et dim $E = \dim F$, alors E = F.
- **9** Savoir utiliser les techniques matricielles pour calculer le rang d'une famille \mathcal{F} de vecteurs d'un sous-ev E de \mathbb{K}^n et détérminer
 - si la famille \mathcal{F} est libre $(Card\mathcal{F} = rg\mathcal{F})$ ou liée,
 - si \mathcal{F} est une base de $Vect\mathcal{F}$ ($Card\mathcal{F} = rg\mathcal{F}$),
 - si \mathcal{F} est génératrice de E $(rg\mathcal{F} = dimE)$ et, le cas échéant, si \mathcal{F} est une base de E $(Card\mathcal{F} = rg\mathcal{F} = dimE)$.
- \bullet Parallèlement au calcul du rang de \mathcal{F} ,
 - savoir extraire de \mathcal{F} une base de $Vect\mathcal{F}$,
 - savoir déterminer une relation de dépendance linéaire sur \mathcal{F} si \mathcal{F} est une famille liée.

Chapitre 19: Applications linéaires (début)

- I Applications linéaires de \mathbb{K}^p dans \mathbb{K}^n
- 1) Définitions et exemples
- 2) Noyau et image d'une application linéaire
- 3) Opérations sur les applications linéaires
- 4) Applications linéaires et bases
- 5) Applications linéaires et dimension

1

Remarques

On ne traite dans ce chapitre **que** des applications linéaires de \mathbb{K}^p dans \mathbb{K}^n .

Les représentations matricielles des applications linéaires ne sont pas encore au programme de cette semaine.

Exemples de compétences attendues

- Maîtriser les définitions du noyau, de l'image, du rang d'une application linéaire.
- 2 Savoir montrer qu'une application est linéaire.
- 3 Savoir calculer le rang d'une application linéaire.
- 4 Savoir trouver une base du noyau et de l'image d'une application linéaire.
- Savoir déterminer si une application linéaire est injective, surjective ou bijective (dont le cas particulier des endomorphismes).

Questions de cours possibles :

• Énoncer et démontrer :

Soit $n \in \mathbb{N}^*$. Les bases d'un sous-espace vectoriel E de \mathbb{K}^n sont les familles libres et génératrices de E.

• Énoncer et démontrer :

Soit $(n,p) \in (\mathbb{N}^*)^2$ et f une application linéaire de \mathbb{K}^p dans \mathbb{K}^n . Alors :

 $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont des sous-espaces vectoriels respectivement de \mathbb{K}^p et \mathbb{K}^n .

• Énoncer et démontrer les résultats suivants :

Soit $(n,p) \in (\mathbb{N}^*)^2$ et f une application linéaire de \mathbb{K}^p dans \mathbb{K}^n . Alors :

f est surjective si et seulement si $\mathrm{Im} f = \mathbb{K}^n$.

f est injective si et seulement si $\operatorname{Ker} f = \{\overrightarrow{0}\}.$