

# COMSATS University Islamabad Department of Computer Science Lecture Wise Plan

| <b>Course Information</b>   |                                                 |
|-----------------------------|-------------------------------------------------|
| Teacher: Tahreem Saeed      | Email: tahreem@cuisahiwal.edu.pk                |
| Program: <b>BSCS</b>        | Semester: Fall-23                               |
| Course Code: CSC211         | Course Title: Data Structures and Algorithms    |
| Credit Hours: <b>4(3,1)</b> | Lecture Hours/Week: 3                           |
| Lab Hours/Week: 3           | Pre-Requisites: <b>Programming Fundamentals</b> |

## **Catalogue Description**

This course provides fundamental knowledge of data organization. The topics include: Overview of Data Structures; Static & Dynamic List; Stack; Queue; Tree & its Algorithms; Graph & its Algorithms; Sorting; Searching; Hashing; and Time Complexity of an Algorithm.

#### **Text & Reference Books**

#### **Textbook:**

- 1. A Common-Sense Guide to Data Structures and Algorithms, Jay Wengrow, Pragmatic Bookshelf, 2020.
- 2. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 4th Ed., Addison Wesley, 2012.
- 3. Schaum's Outlines Data Structure by Seymore Lipschutz

#### **Reference Book:**

1. Data Structures and Algorithm Analysis in C++, Mark Allen Weiss, Addison-Wesley, 2014.

| Unit wise major Topics: |                                                                                            |                                 |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|--|
| Unit                    | Topic                                                                                      | No. of teaching hours of Theory |  |  |  |  |  |  |
| 1                       | Data Structure: Overview, Importance, Classification, Operations, and Abstract Data Types. | 3                               |  |  |  |  |  |  |
| 2                       | Static List: Dynamic List: Single Linked List, Doubly Linked List, and Applications        | 10.5                            |  |  |  |  |  |  |
| 3                       | Stack: Concept and Applications                                                            | 6                               |  |  |  |  |  |  |
| 4                       | Queue: Concept and Applications                                                            | 3                               |  |  |  |  |  |  |
| 5                       | Tree: Concept and Applications                                                             | 12                              |  |  |  |  |  |  |
| 6                       | Graph: Concept and Applications                                                            | 4.5                             |  |  |  |  |  |  |
| 7                       | Sorting Algorithms                                                                         | 3                               |  |  |  |  |  |  |
| 8                       | Complexity Analysis                                                                        | 3                               |  |  |  |  |  |  |
| <b>Total Contact</b>    | Hours                                                                                      | 45                              |  |  |  |  |  |  |

# Week wise plan Lecture # | CDF Unit | Topics Covered | Reading Material | Assessment |

|    | 1 | T . 1                                                                                                                                                                                                   |                     |                       |
|----|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|
| 1. | 1 | Introduction to Data Structures- Need and Significance, Review of the Pre-requisite Knowledge, OO Design and Implementation, Algorithms-                                                                |                     |                       |
|    |   | Implementation and Testing                                                                                                                                                                              |                     |                       |
| 2. | 1 | Abstraction, Concrete and<br>Abstract Data Types,<br>Class invariants and pre-<br>and post-conditions,<br>Structures                                                                                    | Any Internet Source |                       |
| 3. | 2 | Introduction to Data<br>structures, their<br>importance, and types of<br>Abstract Data Types,<br>Static vs dynamic data<br>structures, review of<br>pointers, arrays,<br>structures                     |                     |                       |
| 4. | 2 | Why we need list Data<br>Structure? Implementing<br>sequential lists using<br>arrays, List Operations:<br>insertion, searching,<br>traversal,<br>deletion                                               | Seymore-Chapter 1   |                       |
| 5. | 2 | Applications of Linear and Non-linear Data Structures, Mathematical Functions, Control Flow Structures, Complete Problem-Solving Procedure including Algorithms, Flowcharts, Programs, Process, Threads |                     |                       |
| 6. | 8 | Complexity Analysis, Algorithm time and space complexity trade offs                                                                                                                                     | Seymore-Chapter 2   | Quiz 1<br>Assignment1 |
| 7. | 8 | Asymptotic Notations<br>and their practice, Arrays<br>(basic and Object types)<br>Array as ADT, Algorithms<br>on arrays                                                                                 | Shaffer-Chapter 3   |                       |
| 8. | 2 | Operations on Arrays-<br>Linear and Binary Search<br>Algorithms and their<br>Complexity                                                                                                                 |                     |                       |

| 9.  | 7 | Bubble Sort and its variants, Complexity of Bubble Sort, Insertion and Deletion in Arrays and its complexity                                                                            |                     |                        |
|-----|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|
| 10. | 2 | Dynamic Arrays, Multi-<br>dimensional Arrays,<br>Dynamic Memory<br>Management-Garbage<br>Collection                                                                                     | Seymore-Chapter 3,4 | Quiz 2<br>Assignment2  |
| 11. | 2 | Introduction of Link List,<br>Creating different types of<br>Link List, Linked List –<br>Operations and<br>Representations,<br>Variations of Linked Lists<br>(doubly, circularly)       |                     |                        |
| 12. | 2 | Comparison of different operations on Link List & Arrays                                                                                                                                | Seymore-Chapter 5   |                        |
| 13. | 3 | Applications – Polynomials, Sparse Matrices, Dynamic Memory Allocation, Stacks: Basic functions Static and Dynamic Representations                                                      |                     |                        |
| 14. | 3 | Stack Applications — Arithmetic Expression, Infix, post-fix and pre-fix notations, in-to post transformation and post- fix evaluation, backtracking, memory management, function calls. | Seymore-Chapter 6   | Quiz 3<br>Assignment 3 |
| 15. | 3 | Recursion, Complexity of<br>Recursive Algorithms,<br>Applications of Recursion<br>– Fibonacci Numbers and<br>the Moivre Formula                                                         |                     |                        |
| 16. | 3 | Tower of Hanoi,<br>Permutations, Recursive<br>Binary Search                                                                                                                             |                     |                        |
|     |   | Mid Term 1                                                                                                                                                                              | Exam                |                        |
| 19. | 7 | Sorting Algorithms<br>(Merge Sort) and<br>complexity Analysis,                                                                                                                          | Lafore: Chapter 7   |                        |
| 20. | 4 | Quick Sort, Queues: Basic Functions                                                                                                                                                     |                     |                        |
| 21. | 4 | Static and Dynamic                                                                                                                                                                      | Seymore-Chapter 6   |                        |

|     |   | Representations Queue                      |                 |              |
|-----|---|--------------------------------------------|-----------------|--------------|
|     |   | Variations Deque, priority                 |                 |              |
|     |   | Queue, Queue                               |                 |              |
|     |   | Applications                               |                 |              |
| 22. | 5 | Non-liner Data Structures,                 |                 |              |
| 22. | J | Introduction to Trees,                     |                 |              |
|     |   |                                            |                 |              |
|     |   | Graphs and Hash Tables                     |                 |              |
|     |   | and their generic                          |                 |              |
|     |   | implementation                             |                 |              |
| 23. | 5 | Basic concepts of rooted                   |                 |              |
|     |   | Tree, Binary tree and other                |                 |              |
|     |   | types of trees, Tree                       |                 |              |
|     |   | traversal algorithms (pre-                 |                 |              |
|     |   | order, in-order, post-                     |                 |              |
|     |   | order).                                    |                 |              |
| 24. | 5 | Binary Tree                                |                 |              |
|     |   | representation, basic                      |                 |              |
|     |   | operations                                 |                 |              |
| 25. | 5 | Binary Search trees,                       |                 |              |
|     |   | representation, and                        |                 |              |
|     |   | operations, Deletion in                    |                 |              |
|     |   | BST Heaps and                              |                 |              |
|     |   | Associated Algorithms.                     |                 |              |
| 26. | 5 | AVL Trees: Inserting in                    |                 |              |
| 20. | J | AVL tree, Left to Right                    |                 |              |
|     |   | rotation, right to left                    |                 |              |
|     |   | rotation, left to left                     |                 |              |
|     |   | rotation, and Right to right               |                 |              |
|     |   | rotation, Deletion of a                    |                 |              |
|     |   | node in a AVL tree.                        |                 |              |
| 27. | 5 |                                            |                 |              |
| 27. | 3 | Heap: Build heap<br>(max/min from a set of |                 |              |
|     |   | data items                                 |                 |              |
| 20  | 5 |                                            |                 | Ovia 4       |
| 28. | 3 | Delete (max/ min) in a                     |                 | Quiz 4       |
|     |   | heap, Heap sort and                        |                 | Assignment 4 |
|     |   | Analysis of heap sort, B-                  |                 |              |
| 20  |   | Tree, Splay Trees                          | D 1 Cl          |              |
| 29. | 5 | Huffman Algorithm and                      | Dale- Chapter 8 |              |
|     |   | its application                            |                 |              |
| 30. | 6 | Graphs: terminology,                       |                 |              |
|     |   | operations, and                            |                 |              |
|     |   | representation, Graph                      |                 |              |
|     |   | Implementation:                            |                 |              |
|     |   | Adjacency Matrix and                       |                 |              |
|     |   | Adjacency List                             |                 |              |
| 31. | 6 | Graphs: Traversal                          |                 |              |
|     |   | Algorithms, BFS and DFS                    |                 |              |
| 32. | 6 | Spanning Tree, Prims and                   | D 1 Cl + 0      |              |
|     |   | Kruskal's Algorithms for                   | Dale- Chapter 9 |              |
|     |   | Minimum Spanning Tree                      |                 |              |
|     |   | · · · · · · · · · · · · · · · · · · ·      | _               |              |
|     |   | Final Term                                 | Exam            |              |

| and m special problem  2 Identify substant science 3 Design system consider consider 4 Create, | select, adapt and apply app                                                                                                                                                                            | domain knowledge and conceptualization ature, and solve corfundamental principlines complex computing esses that meet and safety, cult | ge appropriate for of computing months computing proplems of mathem g problems, and despecified needs                                                             | or the computing odels from define problems reaching natics, computing esign and evaluat |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2 Identify substar science 3 Design system consider consider 4 Create,                         | y, formulate, research literatiated conclusions using s, and relevant domain disc and evaluate solutions for s, components, or proceed a ration for public health erations select, adapt and apply app | fundamental principlines complex computingesses that meet and safety, cult                                                             | problems, and despecified needs                                                                                                                                   | esign and evaluat                                                                        |  |  |  |  |  |
| system consider consider consider 4 Create,                                                    | s, components, or procest<br>ration for public health<br>erations<br>select, adapt and apply app                                                                                                       | esses that meet and safety, cult                                                                                                       | specified needs                                                                                                                                                   |                                                                                          |  |  |  |  |  |
| Crouic,                                                                                        |                                                                                                                                                                                                        | ropriate techniques                                                                                                                    |                                                                                                                                                                   |                                                                                          |  |  |  |  |  |
|                                                                                                | complex computing activit                                                                                                                                                                              |                                                                                                                                        | Create, select, adapt and apply appropriate techniques, resources, and modern comtools to complex computing activities, with an understanding of the limitations. |                                                                                          |  |  |  |  |  |
|                                                                                                | on effectively as an individu<br>ti- disciplinary setting.<br>omes (CLOs)                                                                                                                              | al and as a memb                                                                                                                       | er or leader in di                                                                                                                                                | verse teams and                                                                          |  |  |  |  |  |
| CLO Unit#                                                                                      | Course Learning Out                                                                                                                                                                                    | tcomes                                                                                                                                 | Bloom<br>Taxonomy<br>Learning<br>Levels                                                                                                                           | SO                                                                                       |  |  |  |  |  |
|                                                                                                |                                                                                                                                                                                                        | or Theory                                                                                                                              |                                                                                                                                                                   |                                                                                          |  |  |  |  |  |
| proble                                                                                         |                                                                                                                                                                                                        |                                                                                                                                        | Applying                                                                                                                                                          | 1,2                                                                                      |  |  |  |  |  |
| CLO-2 5-6 Use n                                                                                | on-linear data structures to ems.                                                                                                                                                                      | solve computing                                                                                                                        | Applying                                                                                                                                                          | 1,2                                                                                      |  |  |  |  |  |
| CLO-3 7-8 Analy                                                                                | ze the time complexity of v                                                                                                                                                                            | arious algorithms.                                                                                                                     | Applying                                                                                                                                                          | 2                                                                                        |  |  |  |  |  |
| <del>-</del>                                                                                   | CLO's fe                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                                                   |                                                                                          |  |  |  |  |  |
|                                                                                                | ment data structures and alg                                                                                                                                                                           |                                                                                                                                        | Applying                                                                                                                                                          | 2,3,4                                                                                    |  |  |  |  |  |
|                                                                                                | op a project using appropria                                                                                                                                                                           | Creating                                                                                                                               | 2-5                                                                                                                                                               |                                                                                          |  |  |  |  |  |

CLO-2

Assignment 3

Quiz 3

CLO-3

Assignment 4

Quiz 4

CLO-5

CLO-4

Lab

Assignments

CLO-1

Quiz 1&2 Assignment 1&2

Mid Term Exam

**Tools** 

Quizzes

Assignments

Mid Term Final Term

Exam

|         | Final Exam |
|---------|------------|
| Project | Project    |

### Policy & Procedures

• Attendance Policy: Every student must attend 80% of the lectures delivered in this course and 80% of the practical/laboratory work prescribed for the respective courses. The students falling short of required percentage of attendance of lectures/seminars/practical/laboratory work, etc., shall not be allowed to appear in the terminal examination of this course and shall be treated as having failed this course.

• Course Assessment:

|            | Quizzes               | Assignments | Md Term | Terminal | Total |  |
|------------|-----------------------|-------------|---------|----------|-------|--|
|            |                       |             | Exam    | Exam     |       |  |
| Theory (T) | 15                    | 10          | 25      | 50       | 100   |  |
| Lab (L)    | -                     | 25          | 25      | 50       | 100   |  |
| T+L        | (T/100)*75+(L/100)*25 |             |         |          |       |  |

• **Grading Policy:** The minimum pass marks for each course shall be 50%. Students obtaining less than 50% marks in any course shall be deemed to have failed in that course. The correspondence between letter grades, credit points, and percentage marks at CUI shall be as follows:

| Grade | A     | A-    | B+        | В         | B-    | C+    | C     | C-    | D+    | D    | F    |
|-------|-------|-------|-----------|-----------|-------|-------|-------|-------|-------|------|------|
| Marks | >=    | 80 -  | 75 -      | 71 -      | 68 -  | 64-67 | 61-63 | 58-   | 54-   | <50- | < 50 |
|       | 85    | 84    | <b>79</b> | <b>74</b> | 70    |       |       | 60    | 57    | 53   |      |
| Cr.   | 3.67- | 3.34- | 3.01-     | 2.67-     | 2.34- | 2.01- | 1.67- | 1.31- | 1.01- | 0.1- | 0.0  |
| Point | 4.00  | 3.66  | 3.33      | 3.00      | 2.66  | 2.33  | 2.00  | 1.66  | 1.30  | 1.0  |      |

- **Missing Exam:** No makeup exam will be given for final exam under any circumstance. When a student misses the mid-term exam for a legitimate reason (such as medical emergencies), his grade for this exam will be determined based on the Department policy. Further, the student must provide an official excuse within one week of the missed exam.
- **Academic Integrity:** All CUI policies regarding ethics apply to this course. The students are advised to discuss their grievances/problems with their counsellors or course instructor in a respectful manner.
- **Plagiarism Policy:** Plagiarism, copying and any other dishonest behavior is prohibited by the rules and regulations of CUI. Violators will face serious consequences.

| Signature:         | Signature:      | Signature:          |
|--------------------|-----------------|---------------------|
| Course Instructor: | Area Head:      | Head of Department: |
| Tahreem Saeed      | Dr. Zafar Iqbal | Dr. Tariq Ali       |