ARTIFICIAL INTELLIGENCE

Evaluation of the Artificial Intelligence Agents in the Mancala Game

Master's in Data Science and Engineering (MDSE) 2022/2023

Group 12, composed by: Carlos Veloso, up202202463 Paulo Portela, up202200871

Mancala Game

Is a traditional two-player strategy board game that could be used as an example to illustrate adversarial search methods in action

Mancala Rules

Topics of Discussion

Problem Formulation

Before we jump on to finding the solution for the problem, we first need to define and formulate the problem

Approach

Evaluation functions are used to estimate the value of a position in a game tree and difficulty levels are set to determine the maximum depth of the game tree

Implementation Details

Describes the requirements that the software should meet to better understand its strengths and weaknesses

Algoritmhs Implemented

The fields of decision-making and game theory have been revolutionized by two algorithms - Minimax and Alpha-Beta Pruning

State Representation

 Specifies the positions of the seeds in the slots

Initial State

[4,4,4,4,4,4,0,4,4,4,4,4,4,0]

Objective test

Determine when the game has ended

Actions

 Moving the stones in a counter-clockwise direction

Solution Cost

 Number of moves required to reach the goal state

Problem Formulation

Implementation Details

Requirements for a strong Al

- Minimax
- Alpha-Beta Pruning
- Depth of the search tree and the number of moves

Game modes

- Human vs Human
- Human vs Al
- Al vs Al
- Random vs Al

Approach

4 Difficulty levels

Difficulty levels determines the maximum depth of the game tree that can be explored by the Al algorithm in each move (chosen by the players)

- Easy
- Medium
- Hard
- World Champion

3 Evaluation functions

Evaluation functions allow the player to choose to face different type of opponents. In this case the evaluation functions can have a more agressive game or a more defensive one.

- Evaluation Extra-Turn and Capture
- Evaluation Moves
- Evaluation Board

Algoritmhs

Algorithms Implemented

• Minimax

A backtracking algorithm that helps in decision-making and is widely used in game-playing Artificial Intelligence. It determines the optimal move for a player while assuming that the opponent is also playing optimally

Alpha-Beta Pruning

An optimization technique for the Minimax algorithm, that reduces the number of game states that need to be examined, making the algorithm faster and more practical for real-time games

Experimental Results

Do you know how hard is to compute the depth of 9 for the Mancala Game?

Values to consider:

- **Depth 1** 2 Possible Game States
- **Depth 5** 2 848 Possible Game States
- **Depth 9** 67 386 240 Possible Game States

Measure the performance of the Random Agent vs Al

Random Agent vs Minimax (Easy)	
Wins by Minimax	45
Wins by Random Agent	1
Number of Ties	4
Random Agent vs Alpha-Beta Pruning (Easy)	
Wins by Alpha-Beta Pruning	47
Wins by Random Agent	0
Number of Ties	3
Random Agent vs Minimax (Medium)	
Wins by Minimax	48
Wins by Random Agent	0
Number of Ties	2
Random Agent vs Alpha-Beta Pruning (Medium)	
Wins by Alpha-Beta Pruning	50
Wins by Random Agent	0
Number of Ties	0

Average number of moves and time per player between the Random Agent and Search Algorithms

Random Agent vs Minimax (Easy)		
Avg. number of moves per Player	15	
Avg. time per move of Minimax	0.061 seconds	
Random Agent vs Alpha-Beta Pruning (Easy)		
Avg. number of moves per Player	13	
Avg. time per move of Alpha-Beta Pruning	0.032 seconds	
Random Agent vs Minimax (Medium)		
Avg. number of moves per Player	22	
Avg. time per move of Minimax	1.02 seconds	
Random Agent vs Alpha-Beta Pruning (Medium)		
Avg. number of moves per Player	19	
Avg. time per move of Alpha-Beta Pruning	0.09 seconds	
Random Agent vs Minimax (Hard)		
Avg. number of moves per Player	25	
Avg. time per move of Minimax	15 seconds	
Random Agent vs Alpha-Beta Pruning (Hard)		
Avg. number of moves per Player	21	
Avg. time per move of Alpha-Beta Pruning	1.12 seconds	

Evaluate and compare the performance of the 3 Evaluation Functions

Evaluation Functions Performance

Values to consider:

- **Best** Extra-Turn and Capture
- Worst Moves

Conclusions & Discussion

User experience

A game will be attractive to a user if it is fast, competitive (but not impossible) and its Al inteligent.

Combination of methods

The combination of a good depth tree, different evaluation functions and a optimized algorithm can lead to fast game with different levels of difficulty and an Al with different strategies.

New tests & Powerful computers

With better computers, a stronger AI can be implemented and new tests could be conducted.