1.	The Transition matrix A defined in lecture allows you to:	1 / 1 point
	O Compute the probability of going from a part of speech tag to a word.	
	O Compute the probability of going from a word to another word.	
	O Compute the probability of going from a word to a part of speech tag.	
	Compute the probability of going from a part of speech tag to another part of speech tag.	

g.	
rd.	
ner part of speech tag.	
ner part of speech tag.	

1/1 point

3.	The column sum of the emission matrix has to be equal to 1.	1 / 1 point
	True.False.	
	Correct It is the row sum that has to be 1.	

į	The row sum of the transition matrix has to be 1.
	● True
	O False, it has to be the column sum.
	Correct.

1/1 point

Why is smoothing usually appl	lied? Select all that apply.	0.5 / 1 point
, 0	he majority of cases, allows us to decrease the probabilities in the transition and is allows us to have non zero probabilities.	
☐ Applying smoothing is a b	ad idea and we should not use it.	
	he majority of cases, allows us to increase the probabilities in the transition and is allows us to have non zero probabilities.	
	d u are decreasing every entry's number by a little bit so that the 0 probabilities will ming there are more non zero entries which is usually the case.	
	he minority of cases, allows us to increase the probabilities in the transition and is allows us to have non zero probabilities.	
Correct Correct.		

5.

		W ₁	W ₂	W ₃	W ₄	W ₅	
	t,	0	1	3	2	3	~
D =	t ₂	0	2	4	1	3	
	t ₃	0	2	4	1	4	
	t ₄	0	4	4	3	1	
		s = a	rgma	$\mathbf{x} c_{i,I}$	$\kappa = 1$		_

<s> w1 w2 w3 w4 w5

- $\bigcirc t_3, t_4, t_2, t_2, t_1$
- $\bigcirc t_1, t_3, t_1, t_2, t_1$
- \bullet t_2, t_3, t_1, t_3, t_1
- $\bigcirc t_3, t_4, t_2, t_3, t_1$

Ocrrect Correct

obabilities, but in reality we take the log of those probabilities.	0 / 1 pc
ause they introduce noise to our original computed scores.	
pers to be between 0 and 1 and hence, we want to take a	
bilities are bounded between 0 and 1 and as a result, the ards 0.	
nce as they bound the numbers between -1 and 1.	

8.	Which of the following are useful for applications for parts of speech tagging?
	✓ Named Entity Recognition
	Speech recognition
	Correct.
	☐ Sentiment Analysis
	✓ Coreference Resolution

viously, we have been multiplying the raw probabilities, but in reality we take the log of those probabilities. y might that be the case? Because the log probabilities force the numbers to be between 0 and 1 and hence, we want to take a	1/
probability.	
The log probabilities should not be used because they introduce noise to our original computed scores.	
The log probabilities help us with the inference as they bound the numbers between -1 and 1.	
We take the log probabilities because probabilities are bounded between 0 and 1 and as a result, the numbers could be too small and will go towards 0.	
Correct Correct.	
	The log probabilities help us with the inference as they bound the numbers between -1 and 1. We take the log probabilities because probabilities are bounded between 0 and 1 and as a result, the numbers could be too small and will go towards 0. Correct

Wh	y is smoothing usually applied? Select all that apply.
~	Applying smoothing, for the majority of cases, allows us to decrease the probabilities in the transition and emission matrices and this allows us to have non zero probabilities.
(Correct.
~	Applying smoothing, for the minority of cases, allows us to increase the probabilities in the transition and emission matrices and this allows us to have non zero probabilities.
(Correct.
	Applying smoothing is a bad idea and we should not use it.
	Applying smoothing, for the majority of cases, allows us to increase the probabilities in the transition and emission matrices and this allows us to have non zero probabilities.

5.

1 / 1 point