COMP0147 Discrete Mathematics for Computer Scientists Notes

Joe

March 27, 2019

Notes adapted from lecture notes by Max Kanovich and Robin Hirsch $\[1\]$.

Contents

1	Foundations				
	1.1	Set Th	eory and Functions	5	
		1.1.1	Set Notations	5	
		1.1.2	Properties	5	
		1.1.3	Set Equality	5	
			Set Operations		

4 CONTENTS

Chapter 1

Foundations

Contents

1.1	Set Th	neory and Functions 5
	1.1.1	Set Notations
	1.1.2	Properties
	1.1.3	Set Equality
	1.1.4	Set Operations 6

1.1 Set Theory and Functions

1.1.1 Set Notations

- Set definition: $A = \{a, b, c\}$
- Set membership (element-of): $a \in A$
- Set builder notation: $\{x \mid x \in \mathbb{R} \land x^2 = x\}$
- Empty set: ∅

1.1.2 Properties

- No structure
- No order
- No copies

For example, a, b, c are references to actual objects in

$$\{a,b,c\} \Leftrightarrow \{c,a,b\} \Leftrightarrow \{a,b,c,b\}$$

1.1.3 Set Equality

Definition 1.1.1 (Set Equality). Set A = B iff:

- 1. $A \subseteq B \implies \forall x(x \in A \rightarrow x \in B)$
- 2. $B \subseteq A \implies \forall y(y \in B \rightarrow y \in A)$

Remark. $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$

1.1.4 Set Operations

- Union: $A \cup B \equiv \{x \mid x \in A \lor xinB\}$
- Intersection: $A \cap B \equiv \{x \mid x \in A \land x \in B\}$
- Relative Complement: $A \setminus B \equiv \{x \mid x \in A \land x \notin B\}$ Absolute Complement: $A^c \equiv U \setminus A \equiv \{x \mid x \in U \land x \notin A\}$
- Symmetric Difference: $A\Delta B \equiv (A \setminus B) \cup (B \setminus A) \equiv (A \cup B) \setminus (A \cap B)$
- Cartesian Product: $A \times B \equiv \{(x,y) \mid x \in A \land y \in B\}$

Bibliography

[1] Max Kanovich and Robin Hirsch.

"Lecture Notes on Discrete Mathematics for Computer Scientists".

URL: http://www.cs.ucl.ac.uk/1819/a4u/t2/comp0147_discrete_
mathematics_for_computer_scientists/.