

深圳市海凌科电子有限公司

HLK-M30 AT 指令手册

串口 WIFI 透传模块

目 录

at 指令使用	l说明	3
1.1	模式转换	3
1.2	特殊功能	4
1.3	at 指令使用说明	4
1.3.1	WA	6
1.3.2	WM	6
1.3.3	Sbssid	6
1.3.4	Sssid	7
1.3.5	Sssid1	7
1.3.6	Sam	7
1.3.7	Spw	8
1.3.8	Spwl	8
1.3.9	WC	8
1.3.10	dhcp	8
1.3.11	ip	9
1.3.12	mask	9
1.3.13	dns	9
1.3.14	gw	9
1.3.15	Ub	10
1.3.16	Ud	10
1.3.17	Up	10
1.3.18	Us	10
1.3.19	UType	11
1.3.20	UIp	11
1.3.21	URPort	11
1.3.22	ULPort	11
1.3.23	UPL	12
1.3.24	UPT	12
1.3.25	UPT2	12
1.3.26	DP	12
1.3.27	DE	13
1.3.28	Rb	13
1.3.29	ver	13
1.3.30	Df	13
1.3.31	S0	14

1.3.32	SC	14
1.3.33	SL	14
1.3.34	SW	14
1.3.35	SR	15
1.3.36	DR	15
1.3.37	GW	15
1.3.38	GR	16
1.3.39	TS	16
1.3.40	mac	16
1.3.41	Assid	16
1.3.42	Assidl	17
1.3.43	Achan	17
1.3.44	Aam	17
1.3.45	Apw	17
1.3.46	Apwl	18
1.3.47	Aip	18
文档修订记录	录	18

1 at 指令使用说明

1.1 模式转换

HLK-M35 上电后,进入默认的模式即透传模式,用户可以通过串口命令把模块切换到 at 命令模式进行配置。透传模式和 at 命令模式的相互转换方式如下:

串口工作状态转换

正常上电后,模块会检查当前的网络串口配置是否正常,如果网络连接正常,则模块自动进入

透传模式,否则模块进入 at 指令模式。

透传模式进入 at 指令模式的方法: 在任意状态下, 拉低 ES/RST 脚(模块第 33 脚)的时间大于 0.5 秒且小于 5 秒, 模块立即进入 at 指令模式。若拉低 ES/RST 脚时间大于 6 秒,则模块恢复出厂默认设定。

at 指令模式进入透传模式的方法: 发送 at+TS=1

1.2 特殊功能

本模块提供通过 at 指令实现收发网络数据的功能。本功能通过 socket 相关指令实现。 基本流程如下:

- 1) Socket open
- 2) Socket write
- 3) Socket read
- 4) Socket list
- 5) Socket close

1.3 at 指令使用说明

在 at 模式下,可以通过串口的 at 指令对系统参数做配置。指令格式如下: at+[command]=[value]\r。需要有\r,不然会认为是错误的 at 指令。根据不同命令模块将返回不同的返回值。

例: "at+UIp=192.168.11.133\r"设置远端 ip 地址为192.168.11.133。

例: "at+UIp=?\r"查询远端 ip 地址。

指令列表如下:(指令区分大小写)

关键字	功能
WA	wifi 网络模式 ap/sta
WM	Wifista 配置方式
Sbssid	STA 目标 AP bssid
Sssid	STA 目标 AP ssid
Sssidl	STA 目标 AP ssid 长度
Sam	STA 目标 AP 认证加密方式
Spw	STA 目标 AP 秘钥
Spw1	STA 目标 AP 秘钥长度
WC	STA 目标 AP 计算 PMK

dhcp	STA ip 地址方式:静态/动态
ip	静态 ip
mask	静态子网掩码
dns	静态 DNS
gw	静态网关
Ub	串口波特率
Ud	串口数据位长度
Up	串口校验位
Us	串口停止位长度
UType	透传功能网络模式
UIp	透传功能目标 ip
URPort	透传功能远端端口
ULPort	透传功能本地端口
UPL	透传功能组帧长度
UPT	透传功能组帧时间
UPT2	透传功能组帧间隔时间
DP	UDP 执行 at 指令数据前缀
DE	UDP 执行 at 指令使能
Rb	重启模块
ver	模块版本
Df	恢复出厂设置
S0	Socket 打开
SC	Socket 关闭
SL	Socket 查询
SW	Socket 写
SR	Socket 读
DR	解析域名
GW	GPIO 写
GR	GPIO 读
TS	透传状态切换
mac	获取 MAC 地址
Assid	softap 模式下的网络名称
Assidl	softap 模式下的网络名称长度
Achan	softap 模式下的无线信道
Aam	softap 模式下的加密方式
Apw	softap 模式下的秘钥

Apwl	softap 模式下的秘钥长度
Aip	softap 模式下的 IP。

注: at 指令需区分大小写。"at"这两个字符是小写。

1.3.1 WA

功能:

wifi 网络模式。

格式:

at+WA=<WA> \r

参数:

网络模式

值	含义
1	SoftAP
OTHERS	STA

1.3.2 WM

功能:

Wifi sta 配置方式。

格式:

at+WM=<WM> \r

参数:

sta 配置方式

值	含义
0	自动。先手动等待 3 次,然后 Smart connect
1	Smart connect
2	手动

1.3.3 Sbssid

功能:

STA 目标 AP bssid。

格式:

at+Sbssid=\sbssid>\r

参数:

sbssid: bssid。通常bssid指无线路由器的广播的MAC地址。 例子:at+Sbssid=?\r返回当前设置的bssid,未设置过为全零。 at+Sbssid=11,15,13,0,37,67\r(MAC 地址为十进制的)

1.3.4 Sssid

功能:

STA 目标 AP ssid。

格式:

at+Sssid=<Sssid>\r

参数:

Sssid:ssid。通常ssid就是要连接的无线路由器的无线名字。例子:at+Sssid=?返回当前设置的ssid名称。

1.3.5 Sssidl

功能:

STA 目标 AP ssid 长度。

格式:

at+Sssidl=<Sssidl>\r

参数:

Sssidl:ssid长度。最后一个字母是1,不是数字一。Sssidl:指ssid名称的长度。十进制数字。用at指令配置模块的SSID的时候必须配置这个参数。

例子: at+Sssidl=7\r。对应的ssid名称为:HLK-M35. Sssidl与ssid的长度不匹配会导致联网不成功。

1.3.6 Sam

功能:

STA 目标 AP 认证加密方式。

格式:

 $at+Sam=\langle Sam \rangle \ r$

参数:

Sam: 认证加密方式

认证加密方式

值	含义
0	不加密. None

1	Wep_share
2	Wep_open
4	Wpa_aes/wpa_tkip
7	Wpa2_aes/wpa2_tkip
9	Wpa/wpa2_aes

1.3.7 Spw

功能:

STA 目标 AP 秘钥。

格式:

 $at+Spw=\langle Spw \rangle \ r$

参数:

Spw: 秘钥。目前最常用的加密方式是 wpa2-aes, 也是最安全的加密方式,这种加密方式下最少的字符是 8 位,最大的秘钥是 63 位。

1.3.8 Spwl

功能:

STA 目标 AP 秘钥长度。

格式:

 $at+Spw1=\langle Spw1 \rangle \ r$

参数:

Spwl: spwl, 最后一个字母是 1, 不是数字一。此参数需跟秘钥的实际长度一样。不然会导致联网不成功。

1.3.9 WC

功能:

STA 目标 AP 计算 PMK。在手动设置 sta wifi 参数的情况下,需执行本指令以计算 PMK。耗时约 6 秒。

格式:

 $at+WC=1\r$

1.3.10 dhcp

功能:

STA ip 地址方式:静态/动态。

格式:

 $at+dhcp=\langle dhcp \rangle \ r$

参数:

Ip 地址方式

值	含义
0	静态
1	动态

1.3.11 ip

功能:

静态 ip。

格式:

 $at+ip=\langle ip \rangle \ r$

参数:

ip: ip 地址,格式 192,168,1,22.注意:中间间隔为逗号","而不是点"." 此指令只有在 at+dhcp=0 的时候有用。在 at+dhcp=1 的情况下,此指令无效。

1.3.12 mask

功能:

静态 mask。

格式:

 $at+mask=\langle maks \rangle \ r$

参数:

maks: 子网掩码,格式 255, 255, 255, 0. 中间间隔为逗号","而不是点"." 此指令只有在 at+dhcp=0 的时候有用。在 at+dhcp=1 的情况下,此指令无效

1.3.13 dns

功能:

静态 dns。

格式:

 $at+dns=\langle dns \rangle \ r$

参数:

dns: dns 地址,格式 192,168,1,1.中间间隔为逗号","而不是点"." 此指令只有在 at+dhcp=0 的时候有用。在 at+dhcp=1 的情况下,此指令无效

1.3.14 gw

功能:

静态 gw。

格式:

 $at+gw=\langle gw \rangle \ r$

参数:

gw: gw 地址, 格式 192, 168, 1, 1. 中间间隔为逗号","而不是点"." 此指令只有在 at+dhcp=0 的时候有用。在 at+dhcp=1 的情况下, 此指令无效

1.3.15 Ub

功能:

串口波特率。

格式:

at+Ub=<Ub>\r

参数:

Ub: 波特率。设置串口波特率。波特率从 1200-230400 都支持。例如:at+Ub=115200\r. 返回 ok.

1.3.16 Ud

功能:

串口数据位长度。

格式:

 $at+Ud=\langle Ud \rangle \r$

参数:

Ud: 数据位长度。支持7位和8位。

1.3.17 Up

功能:

串口校验位。

格式:

 $at + Up = \langle Up \rangle \backslash r$

参数:

Up:校验位。

1.3.18 Us

功能:

串口停止位长度。

格式:

at+Us=<Us>\r

参数:

Us: 停止位长度。

1.3.19 UType

功能:

透传功能网络模式。

格式:

at+UType=<UType>\r

参数:

UType: 网络模式。

网络模式

值	含 义
0	无
1	Tcp Server
2	Tcp Client
3	Udp Server
4	Udp Client

1.3.20 UIp

功能:

透传功能目标 ip 或域名。

格式:

 $at + UIp = \langle UIp \rangle \backslash r$

参数:

Uip: ip 地址或域名,格式 192.168.1.22 或 www.google.com.

注意:中间间隔为逗号"."而不是点","

1.3.21 URPort

功能:

透传功能远端端口。

格式:

at+URPort=<URPort>\r

参数:

URPort: 端口。此 at 指令只有在模组被设置成 tcp client 或者 udp client 模式才有效

1.3.22 ULPort

功能:

透传功能本地端口。

格式:

at+ULPort=<ULPort>\r

参数:

ULPort: 本地端口。此 at 指令只有在模组被设置成 tcp server 或者 udp server 模式才有效

1.3.23 UPL

功能:

透传功能组帧长度。

格式:

 $at+UPL=\langle UPL \rangle \ r$

参数:

UPL: 组帧长度。从收到第一个字符开始计算,到了 UPL 设定值就组成一包发送到网络上去。

1.3.24 UPT

功能:

透传功能组帧时间。

格式:

 $at+UPT=\langle UPT \rangle \backslash r$

参数:

UPT: 组帧时间。从收到第一个字符开始计算,到了 UPT 设定值就组成一包发送到网络上去

1.3.25 UPT2

功能:

透传功能组帧间隔时间。

格式:

 $at+UPT2=\langle UPT2 \rangle \ r$

参数:

UPT2: 组帧间隔时间。两个组帧包之间的间隔时间。这个命令适合包长不固定但是间隔固定的场合使用。

1.3.26 DP

功能:

UDP 执行 at 指令数据前缀。

格式:

 $at+DP=\langle DP \rangle \ r$

参数:

DP: 前缀。模块联网后用 udp 的 988 端口执行网络 at 指令的前缀。出厂默认值是 h1kAT. 例如 当模块联网后,需要修改模块的波特率方式如下:

建立 988 端口的 udp client, 发送: hlkAT at+Ub=115200\r 就可以修改模块的波特率为 115200

1.3.27 DE

功能:

UDP 执行 at 指令使能。

格式:

at+DE= \langle DE \rangle \backslash r

参数:

DE: UDP 执行 at 指令使能。默认出厂开启状态。

UDP 执行 at 指令使能

值	含义
0	关闭
1	开启

1.3.28 Rb

功能:

重启模块。

格式:

 $at+Rb=1\r$

1.3.29 ver

功能:

模块版本。

格式:

 $at+ver=?\r$

参数:

返回模块的版本号:at+ver=?\r.返回值:HLK-M35(V2.10(Aug 7 2014))

1.3.30 Df

功能:

恢复出厂设置。

格式:

 $at+Df=1\r$

参数:

1.3.31 S0

功能:

Socket 打开。

格式:

at+S0= $\langle Type \rangle$, $\langle Remote Ip \rangle$, $\langle Remote Port \rangle$, $\langle Local Port \rangle \backslash r$

参数:

Type:类型

网络模式

值	含义
0	无
1	Tcp Server
2	Tcp Client
3	Udp Server
4	Udp Client

Remote Ip:远端 ip 或域名

Remote Port:远端端口 Local Port:本地端口

返回 index 为 socket 序号。

例子: at+S0=2, 192. 168. 1. 10, 8080, 8000\r(设置 TCP 客户端, 远端 ip, 远端端口, 本地端口)返回值: ok: 1(序列号)此处返回 0K 后的数字 "1"代表为, 此 socket 序号为 1.

1.3.32 SC

功能:

Socket 关闭。

格式:

at+SC= $\langle index \rangle \backslash r$

参数:

index:socket 序号。

例子: at+SC=1\r(关闭 socket 1)返回值: ok

1.3.33 SL

功能:

Socket 查询。

格式:

at+ $SL=?\r$

参数:


```
例如: at+SL=?\r
```

返回值:

0:1,6

1:2,3

2:1,6

3:1,6

第一列:代表 socket 序号

第二列: 1为TCP服务器, 2为TCP客户端, 3为UDP服务器, 4为UDP客户端

第三列: 数字为三则表示成功建立了连接, 其余都表示没有建立连接

1.3.34 SW

功能:

Socket 写。

格式:

at+SW=<index>,,<data1>\r或者 at+SW=<index>,b,<len>\r<data2>

参数:

Index:SO 返回值。

Len: data2 长度。

例如: at+SW=1,,12345678\r(串口(客户端)写的数据:12345678到服务器)返回值: ok

发送 at+SW=1, b, 2

01

返回 at+SW=1, b, 2

2:ok

ok

1.3.35 SR

功能:

Socket 读。

格式:

at+SR= $\langle index \rangle$, $\langle len \rangle \backslash r$

参数:

例如: at+SR=1, 100 \r (设置查询数据的长度) 返回值: 9:123456789ok (12345678 发送出去的数据)

1.3.36 DR

功能:

解析域名。

格式:

 $at+DR=\langle Doname \rangle \ r$

参数:

Doname:域名。此指令需发送两次。第二次返回域名的 Ip 地址。

例子:at+DR=www.google.com 返回 error:-2

再发一次:at+DR=www.google.com 返回:ok:173.194.127.84

1.3.37 GW

功能:

GPIO写。

格式:

 $at+GW=\langle index \rangle, \langle value \rangle \backslash r$

参数:

index	value	含义	
0	1 or 0	GPI00 输出高电平或者低电平	
1	1 or 0	GPI01 输出高电平或者低电平	
2	1 or 0	GPI02 输出高电平或者低电平	

例如:将 GPI01 设置成输出并且输出高电平的命令式 at+GW=1, 1\r, 返回 ok。GPI01 则输出高电平

1.3.38 GR

功能:

GPIO 读。

格式:

 $at+GR=\langle index \rangle \backslash r$

参数:

Index 参数为 0, 1, 2 分别对应 GPI00, GPI01, GPI02.

例如将 GPI01 设置成输入,并读取 GPI01 的电平发送命令:

at+GR=1\r, 返回: 0:ok. 返回值为 0表示是低电平;返回值是 1表示是高电平

1.3.39 TS

功能:

进入/退出透传模式。

格式:

 $at+TS=\langle TS \rangle \backslash r$

参数:

TS

值	含义
0	退出透传模式。此参数只在 UDP 网络 AT 指令有效
1	进入透传模式

1.3.40 mac

功能:

获取 mac 地址信息。

格式:

 $at+mac=?\r$

例如: 发送 at+mac=?\r, 返回 72, 2, 42, 246, 50, 46, 此为十进制格式, 转换为十六进制的格式则为: 48:02:2A:F6:32:2E

1.3.41 Assid

功能:

SoftAP 模式下的 ssid。

格式:

at+Assid=<Sssid>\r

参数:

Assid:ssid。模块发起的softap的无线名字。 例子:at+Assid=?返回当前设置的ssid名称。

1.3.42 Assid1

功能:

SoftAP ssid 的长度。

格式:

at+Assidl= $\langle Sssid \rangle \backslash r$

参数:

Assidl:ssid长度。最后一个字母是1,不是数字一。Sssidl:指ssid名称的长度。十进制数字。 用at指令配置模块的SSID的时候必须配置这个参数。

例子: at+Assidl=7\r。对应的ssid名称为:HLK-M35. Sssidl与ssid的长度不匹配会导致联网不成功。

1.3.43 Achan

功能:

SoftAp 下模块无线工作的信道。

格式:

 $at+Achan=1\r$

参数:

1-13. 总共 13 个信道

1.3.44 Aam

功能:

SoftAp 模式下的加密方式. 默认模式下是 7.

格式:

 $at+Aam=\langle Aam \rangle r$

参数:

Aam:认证加密方式

认证加密方式

值	含义
4	Wpa_aes/wpa_tkip
7	Wpa2_aes/wpa2_tkip
9	Wpa/wpa2_aes

1.3.45 Apw

功能:

SoftAp 模式下的秘钥。

格式:

 $at+Apw=\langle Apw \rangle \ r$

参数:

Apw: 秘钥。目前最常用的加密方式是 wpa2-aes, 也是最安全的加密方式,这种加密方式下最少的字符是 8 位,最大的秘钥是 63 位。默认也是这种加密方式。不支持 wep 等简单的加密方式。

1.3.46 Apwl

功能:

SoftAp 模式下的秘钥长度。

格式:

 $at+Apw1=\langle Apw1 \rangle \ r$

参数:

Apwl: apwl, 最后一个字母是 1, 不是数字一。此参数需跟秘钥的实际长度一样。不然会导致秘钥修改不成功。

1.3.47 Aip

功能:

SoftAp 模式下模块的 IP 地址

格式:

 $at+Aip=\langle Aip \rangle \ r$

参数:

Aip: 模块的 IP 地址。

例如:

at+Aip=192, 168, 0, 99\r 中间间隔为逗号","而不是点"."

文档修订记录

版本号	修订范围	日 期
V1. 0	Draft 版本	2014-8-10
V1. 1	修订部分错误,将 At 改为 at	2014-9-10
V1. 2	增加大部分 at 指令的解释和增加 at 指令使用例子	2014-9-20
V1. 3	增加 softap 功能的 at 指令	2014-10-15
V1. 4	修订错误	2015-6-10