Code description for

Local neural operator for solving transient partial differential equations on varied domains

by Hongyu Li, Ximeng Ye, Peng Jiang, Guoliang Qin, Tiejun Wang

Program structure

- *Train Validation*: training and validation of LNO
 - main.py: main program to run the training or validation of LNO
 - *lib*: supportive functions and supportive data
 - chebyshevs: the discrete kernel $\varphi_{m,i}$ in Eq. (17) and $\psi_{m,i}$ in Eq. (19) for 5th~41st-order Chebyshev polynomials used in the spectral path, calculated according to Eqs. (S21-S22)
 - legendres: the discrete kernel $\varphi_{m,i}$ in Eq. (17) and $\psi_{m,i}$ in Eq. (19) for 5th~41st-order Legendre polynomials used in the spectral path, calculated according to Eqs. (S21-S22)
 - ♠ networks_LNO.py: the network of local neural operator, including the networks for Navier-Stokes equation (and 2D viscous Burgers equations), Wave equation, and 1D viscous Burgers equation
 - ◆ *train*.py: functions to train LNO
 - ♦ *test*.py: functions to test trained LNO
 - *utils.*py: supportive functions to generate the kernel of spectral path
 - Data: functions to generate and extract data for training
 - ◆ DatasetNS.py: generate dataset for Navier-Stokes equations
 - ◆ DatasetBurgers1D.py: generate dataset for 1D viscous Burgers equations
 - ◆ DatasetBurgers2D.py: generate dataset for 2D viscous Burgers equations
 - ◆ DatasetWave.py: generate dataset for wave equations
 - models: the trained LNO models
 - outputs: predicted results on validation samples by trained LNOs
 - *logs*: the output logs during the training process
- *Application*: apply pre-trained LNO to solve unseen problems
 - mainSquareCylinder.py: main program to solve the flow around a square cylinder
 - *mainCascade*.py: main program to solve the flow across a cascade
 - *IBMInterpolation*.py: function to implement immersed boundary method
 - *NACA0012 20.*mat: geometry file of the airfoil in the cascade
 - *lib*: supportive functions

- *networkNS*.py: the network of local neural operator for Navier-Stokes equation, almost the same as *networks_LNO*.py but padding operations are removed
- utils.py: supportive functions to generate the kernel of spectral path
- *models*: pre-trained LNO models for solving the unseen problems

How to use

• To train a new LNO and then test:

Enable train_test_save() in *main*.py and run command:

```
nohup python -u main.py -n run_name > logs/run_name.log 2>&1 &
```

The trained LNO will be in models named *run_name_model*.pp and the training log will be in *logs* named *run_name*.log.

• To test a trained LNO:

Enable load_test(args.out_name) in *main*.py and run command:

```
nohup python -u main.py -n run_name > logs/run_name.log 2>&1 &
```

The results of predicting the validation data samples will be in *outputs* named *run name*.mat.

• To solve the flow around a square cylinder:

Put a pre-trained LNO model file into *models* or select one from *models*, change model_file in *mainSquareCylinder*.py and run command:

```
python mainSquareCylinder.py
```

The predicted flow fields at different time levels will be named SC timelevel.mat.

• To solve the flow across a cascade:

Put a pre-trained LNO model file into *models* or select one from *models*, change model_file in *mainCascade*.py and run command:

```
python mainCascade.py
```

The predicted flow fields at different time levels will be named Cascade timelevel.mat.

Dataset description

Data samples for each PDE to be learned are stored in one independent folder.

PDE	Folder name	
Navier-Stokes	NS128Re{}t1000	
equation		
1D viscous Burgers	Burgers128Re100t1000	
2D viscous Burgers	Burgers2D128Re100t1000	
Wave equation	Wave128t1000	

In each folder, data samples are stored in pieces with name folder_name_order.mat, e.g., NS128Re500t1000_1.mat, which is the physical field calculated from one random initial condition. Each data file includes all the physical fields required for training, and each physical field is in the format [total_time_steps×field_value_in_a_time_level]. The example data samples can be found in https://pan.baidu.com/s/1QMH_1VvlODgivHOY-aTj1g

code: j3h7

Unzip the folder at /Train_Validation/Data/

Main adjustable parameters

Parameter	Description	Options
Train_Validation		
PROBLEM	The type of PDE to be learned	'NS' for Navier-Stokes equation 'Burgers1D' for 1D viscous Burgers equation 'Burgers2D' for 2D viscous Burgers equation 'Wave' for wave equation
data_dir	Path of dataset	1
data_name	Name of folder according to Table 1	/
Re	Viscosity of Navier-Stokes equation to be learned	/
t_interval	Controling the time step Δt of the learning task, $\Delta t = \Delta \tau \times t_interval$, where $\Delta \tau = 0.01$ is the time step of training data samples	Positive integer
learning_rate	Initial learning rate	0.001 (recommend)
reccurent	Round number for recurrent training,	10 (recommend)
epochs_overall	Epoch number of training	200 (recommend)
iterations	Iteration number in each epoch	500 (recommend)
orders_all	Orders of all used data samples, including both training and validation samples	/
orders_train	Orders of training data samples	/
n	Order of spectral transform N	5~41
m	Selected first m lowest modes M	≤ n
k	Number of repetitions K	2 (recommend)
Application		
model_file	File name for the pre-trained LNO model	/
NG_L,NG_D,NG_U,NG_R	The size of the computational domain from the original coordinate in the left, down, up, and right sides	/
u_lid	Velocity of the inflow	1 (recommend)
alpha	Angle of attack α for the cascade	/