Méthodes de Monte Carlo en finance (G. Pagès, V. Lemaire) M2 Probabilités & Finance, UPMC-École Polytechnique 2 avril 2012

3 h, polycopié, notes de cours et téléphones mobiles non autorisés

Exercice 1.a. Rappeler la définition d'une suite $(\xi_n)_{n\geq 1}$ équirépartie sur un hypercube $[0,1]^d$ et les diverses caractérisations.

- 1.b. Quand dit-on d'une telle suite qu'elle est "à discrépance faible"?
- **2.** Soit p un entier, $p \ge 2$. Pour tout entier $n \ge 1$ on considère sa décompostion p-adique $n = \sum_{k>0} a_k p^k$ où $a_k \in \{0, \dots, p-1\}$. On pose

$$\xi_n = \sum_{k \ge 0} \frac{a_k}{p^{k+1}}.$$

On admettra que cette suite $(\xi_n)_{n\geq 1}$ est équiré partie sur [0,1].

2.a. Montrer que pour tout entier $n \ge 1$ et pour $r \in \{0, \dots, p-1\}$, $\xi_{np+r} = \frac{\xi_n + r}{p}$. En déduire la valeur de

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} \xi_{kp+r}.$$

2.b. Calculer pour tout $r, r' \in \{0, \dots, p-1\}$, les limites lorsque $n \to \infty$ des quantités

$$\frac{1}{n} \sum_{k=1}^{n} \xi_{kp+r} \xi_{kp+r'} \quad \text{puis} \quad \left(\frac{1}{n} \sum_{k=1}^{n} \xi_{kp+r} \xi_{kp+r'}\right) - \left(\frac{1}{n} \sum_{k=1}^{n} \xi_{kp+r}\right) \left(\frac{1}{n} \sum_{k=1}^{n} \xi_{kp+r'}\right).$$

- 3. Que vous inspire le résultat établi à la question précédente?
- **3.a.** Proposer une méthode de quasi-Monte Carlo pour calculer $\mathbb{E}f(Z)$, $Z \sim \mathcal{N}(0; I_2)$ (loi normale bi-variée)?
- **3.b**Étendre la méthode au cas d'une matrice de covariance $\Sigma \in \mathcal{S}(2,\mathbb{R})$.

Exercice 2 (Co-monotonie) Soit $Z:(\Omega,\mathcal{A},\mathbb{P})\to\mathbb{R}$ une variable aléatoire réelle et deux fonctions $f,g:\mathbb{R}\to\mathbb{R}$ de la variable réelle à valeurs réelles, monotones de même monotonie.

2.a. Montrer que si f(Z) et $g(Z) \in L^2(\mathbb{P})$, alors

$$\mathbb{E} f(Z)g(Z) \ge \mathbb{E} f(Z)\mathbb{E} g(Z).$$

- **2.b.** Montrer qu'il y a égalité dans l'inégalité ci-dessus si et seulement si f(Z) ou g(Z) est \mathbb{P} -p.s. constante.
- **2.c.** On suppose que f et g sont positives. Montrer que l'inégalité établie en **2.a** a un sens et reste valide.

- **3.** On considère un actif risqué de type Black-Scholes $X_t = x_0 e^{(r \frac{\sigma^2}{2})t + \sigma W_t}$, x_0 , $\sigma > 0$, $r \in \mathbb{R}$, et une fonction payoff $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ convexe et dérivable que l'on supposera en outre à croissance polynomiale $(\varphi(x) \leq C(1 + x^r)$, pour tout $x \in \mathbb{R}_+$).
- **3.a.** Montrer que pour tout $x \in \mathbb{R}_+$,

$$\varphi(x) - \varphi(x-1) \le \varphi'(x) \le \varphi(x+1) - \varphi(x)$$

(où φ est prolongé sur \mathbb{R}_{-} de façon \mathcal{C}^1 et affine) et en déduire que φ' est aussi à croissance polynomiale.

3.b. Montrer que la sensibilité de la prime $\Phi(x_0, \sigma, r, T)$ de l'option européenne de maturité T > 0 est donnée par

$$\frac{\partial \Phi}{\partial \sigma}(x_0, \sigma, r, T) = e^{-rT} \mathbb{E}\Big(\varphi'(X_T) X_T(W_T - \sigma T)\Big)$$

3.c. Montrer à l'aide d'un changement de variable approprié de votre choix que

$$\frac{\partial \Phi}{\partial \sigma}(x_0, \sigma, r, T) = x_0 \sqrt{T} \, \mathbb{E}\left(\varphi'\left(x_0 e^{\sigma\sqrt{T}Z + (r + \frac{\sigma^2}{2})T}\right)Z\right)$$

où Z suit une loi normale centrée réduite.

3.d. En déduire sans autres calculs que $\frac{\partial \Phi}{\partial \sigma}(x_0, \sigma, r, T) \geq 0$.

Exercice 3 (Convergence p.s. du schéma d'Euler) On considère une diffusion ddimensionnelle

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t, X_0 = x \in \mathbb{R}^d,$$

où $b:[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$ et $\sigma:[0,T]\times\mathbb{R}^d\to\mathcal{M}_{d,q}(\mathbb{R})$ sont des fonctions a priori boréliennes et $W=(W_t)_{t\in[0,T]}$ un mouvement brownien q-dimensionnel.

- **1.a.** Définir formellement le schéma d'Euler à temps discret de pas $\frac{T}{n}$ $(n \ge 1)$ associé à cette équation de diffusion brownienne (on notera t_k^n , $k = 0, \ldots, n$ les instants de discrétisation et $(\bar{X}_{t_k^n})_{0 \le k \le n}$ le dit schéma d'Euler à ces instants).
- **1.b.** Définir les schémas d'Euler dits "constant par morceaux" et "continu", notés respectivement $(\widetilde{X}_t^n)_{t\in[0,T]}$ et $(\bar{X}_t^n)_{t\in[0,T]}$.
- **2.** Donner des conditions classiques sur b et σ qui assurent à la fois l'existence d'une unique solution forte à l'équation et la convergence dans tous les espaces L^p , $p \in [1, +\infty[$, des deux schémas d'Euler mentionnés dans la question **1.b.**, ainsi que la vitesse de convergence de ces schémas dans tous les L^p .
- 3. On suppose dans cette question que b et σ sont Lipschitz en (t, x).
- **3.a.** Montrer que, pour tout réel $\alpha \in]0, \frac{1}{2}[$, il existe $p \geq 1$ tel que

$$\sum_{n\geq 1} n^{p\alpha} \mathbb{E} \sup_{t\in[0,T]} |X_t - \bar{X}_t^n|^p < +\infty.$$

3.b. En déduire que, pour tout $\alpha \in]0, \frac{1}{2}[$,

$$n^{\alpha} \sup_{t \in [0,T]} |X_t - \bar{X}_t^n| \xrightarrow{p.s.} 0.$$

3.c. Ce résultat s'étend-il au schéma d'Euler constant par morceaux?

Problème (Volatilité locale). On considère un marché constitué d'un unique actif risqué dont le prix (actualisé) est régi entre l'instant 0 et une maturité T > 0 par l'EDS

$$dX_t^x = X_t^x \sigma(X_t^x) dW_t, \quad X_0^x = x > 0.$$

où $\sigma: \mathbb{R}_+ \to \mathbb{R}_+$ est bornée, dérivable de dérivée vérifiant $\sup_{\xi \in \mathbb{R}_+} |\xi \sigma'(\xi)| \leq C$ pour une constante réelle C > 0. En outre on prolonge canoniquement σ à tout \mathbb{R} en posant $\sigma(x) = \sigma(x_+)$ (soit encore $\sigma(x) = \sigma(0)$, $x \leq 0$). Le processus $(W_t)_{t\geq 0}$ est un mouvement brownien standard défini sur un espace de probabilités $(\Omega, \mathcal{A}, \mathbb{P})$.

- **1.a.** Justifier sans calculs l'existence et l'unicité de $(X_t^x)_{t\in[0,T]}$ comme solution forte de cette EDS.
- 1.b. Montrer que le processus

$$\left(x \exp\left(-\int_0^t \frac{\sigma^2(X_s^x)}{2} ds + \int_0^t \sigma(X_s^x) dW_s\right)\right)_{t \in [0,T]}$$

est bien défini sur [0, T], puis, en appliquant la formule d'Itô à une fonction adéquate, montrer que ce processus n'est autre que $(X_t^x)_{t \in [0,T]}$ lui-même.

1.c. En déduire que X^x est en fait strictement positif (ce qui justifie sa qualité de modèle de prix) et que $\xi_t^{(x)} = \ln(X_t^x)$ est solution de l'équation

$$d\xi_t^{(x)} = -\frac{1}{2}\sigma^2(e^{\xi_t^{(x)}}) dt + \sigma(e^{\xi_t^{(x)}}) dW_t, \quad \xi_0^{(x)} = \ln x.$$

On admettra dans la suite le résultat classique suivant : une fonction convexe g sur \mathbb{R} est dérivable à droite et à gauche en tout point et ses dérivées g'_g et g'_d sont toutes deux croissantes et classées $(g'_g \leq g'_d)$; à ce titre, elle sont simultanément continues sauf sur un ensemble dénombrable D_g de points de \mathbb{R} . En dehors de D_g , g est dérivable et $g' = g'_g = g'_d$.

- **2.a.** Soit $f: \mathbb{R}_+ \to \mathbb{R}$ croissante (resp. lipschitzienne). Montrer que son prolongement à tout \mathbb{R} défini par $f(x) = f(x_+)$ reste croissant (resp. lipschitzien). Même question si f est convexe croissante.
- **2.b.** Soit $g: \mathbb{R} \to \mathbb{R}$ convexe et lipschitzienne. Montrer que que g'_d et g'_q sont bornées sur \mathbb{R} .
- **2.c.** Soit $Z:(\Omega,\mathcal{A},\mathbb{P})\to\mathbb{R}$ une variable aléatoire *intégrable*, centrée et sans atome et g croissante, convexe et lipschitzienne sur \mathbb{R} . Montrer que la fonction $Q(g):\mathbb{R}\times\mathbb{R}_+\to\mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, \ \forall u \in \mathbb{R}_+, \quad Q(g)(x, u) = \mathbb{E}g(x + uZ)$$

est dérivable en u sur \mathbb{R}_+^* de dérivée

$$\forall u > 0, x \in \mathbb{R}, \quad \frac{\partial Q(g)}{\partial u}(x, u) = \mathbb{E}(g'_d(x + uZ)Z).$$

2.d. En déduire que pour toute fonction $f: \mathbb{R}_+ \to \mathbb{R}$ convexe et lipschitzienne, la fonction $Q_+(f)$ définie par

$$Q_+(f)(x,u) = \mathbb{E} f((x+uZ)_+), u \ge 0, x \in \mathbb{R}$$

est croissante en u, convexe et lipschitzienne en (x, u).

On rappelle que dans toute la suite la fonction σ est prolongée à \mathbb{R} tout entier par $\sigma(x) = \sigma(x_+)$.

3.a. On considère le schéma d'Euler (à temps discret) $(\bar{X}^n_{t^n_k})_{0 \le k \le n}$ de l'EDS ci-dessus de pas $\frac{T}{n}, n \ge 1$. Montrer que, si l'on pose $t^n_k = \frac{kT}{n}, k = 0, \dots, n$, alors $\bar{X}^n_0 = x$ et

$$\bar{X}_{t_k^n}^n = \bar{X}_{t_{k-1}^n}^n \left(1 + \sigma(\bar{X}_{t_{k-1}^n}^n) \sqrt{\frac{T}{n}} Z_k \right) \text{ où } Z_k = \sqrt{\frac{n}{T}} (W_{t_k} - W_{t_{k-1}}), \ k = 1, \dots, n \text{ est i.i.d. de loi } \mathcal{N}(0; 1).$$

En déduire que la suite $((\bar{X}_{t_n^n}^n)_+)_{0 \le k \le n}$ est une chîne de Markov.

3.b. Justifier soigneusement le fait que $\max_{0 \le k \le n} |X_{t_k^n} - \bar{X}_{t_k^n}^n| \to 0$ dans tous les espaces L^p , $p \in (0, \infty)$. En déduire que pour toute fonction $\varphi : \mathbb{R}_+ \to \mathbb{R}$ continue à croissance polynomiale

$$\lim_n \mathbb{E}\,\varphi\big((\bar{X}^n_{\scriptscriptstyle T})_+\big) = \mathbb{E}\,\varphi\big(X_{\scriptscriptstyle T}).$$

4.a. Pour tout entier $n \geq 1$ fixé, on définit la martingale $(\bar{M}_k^n)_{k=0,\dots,n}$ de valeur terminale $\varphi((\bar{X}_T^n)_+)$ en posant

$$\bar{M}_k^n = \mathbb{E}\Big(\varphi\big((\bar{X}_T^n)_+\big)\,|\,\mathcal{F}_k^Z\Big) \quad \text{ où } \mathcal{F}_k^Z = \sigma(Z_1,\ldots,Z_k).$$

Montrer par récurrence, l'existence de fonctions $\varphi_k : \mathbb{R}_+ \to \mathbb{R}, k = 0, \dots, n$, telles que

$$\bar{M}_k^n = \varphi_k \big((\bar{X}_{t_k^n}^n)_+ \big)$$

où les fonctions φ_k s'obtiennent par récurrence rétrograde comme suit:

$$\varphi_n = \varphi, \quad \varphi_k(x) = Q_+(\varphi_{k+1}) \left(x, \sqrt{\frac{T}{n}} x \sigma(x) \right), \ x \in \mathbb{R}_+, \ k = 0, \dots, n-1,$$

où l'opérateur Q_+ est associé à la loi normale centrée réduite des Z_k .

- **4.b.** Montrer que si les fonctions φ et $\xi \mapsto \xi \sigma(\xi)$ sont toutes deux convexes (et lipschitziennes) sur \mathbb{R}_+ , alors ces propriétés se propagent aux fonctions φ_k , $k = n, \ldots, 0$.
- 5. On considère un second modèle à volatilité locale

$$dY_t^x = Y_t^x \vartheta(Y_t^x) dW_t, \ Y_0^x = x > 0$$

où la fonction ϑ vérifie $\xi \mapsto \xi \vartheta(\xi)$ est lipschitzienne sur \mathbb{R}_+ et une fonction payoff $\psi : \mathbb{R}_+ \to \mathbb{R}$ continue à croissance polynomiale. On associe à ψ les fonctions ψ_k selon la même récurrence que celle décrite en **4.a.** On suppose en outre que

(*)
$$0 \le \varphi \le \psi$$
 et $\sigma \le \vartheta$ sur \mathbb{R}_+ .

- **5.a.** Montrer par récurrence que pour tout $k = 0, ..., n, \varphi_k \leq \psi_k$.
- **5.b.** En déduire que $\mathbb{E}(\varphi((\bar{X}_T^n)_+)) \leq \mathbb{E}(\psi((\bar{Y}_T^n)_+))$ pour tout $n \geq 1$ puis que $\mathbb{E}(\varphi(X_T^x)) \leq \mathbb{E}(\psi(Y_T^x))$.

- **5.c.** On suppose maintenant que ψ et $\xi \mapsto \xi \vartheta(\xi)$ sont convexes croissantes et lipschitziennes et que φ est simplement continue et que ces fonctions vérifient en outre (*). Qu'en est-il de la conclusion de la question **5.b.** dans ce cadre "dual" ?
- **5.d.** Quelles conclusions peut-on tirer sur le prix d'un call de maturité T>0 et de prix d'exercice K lorsque la fonction de volatilité locale positive σ vérifie $\xi\mapsto \xi\sigma(\xi)$ est lipschitzienne bornée et σ est encadrée par deux réels strictement positifs $\underline{\sigma}$ et $\overline{\sigma}$ i.e. $0<\underline{\sigma}\leq \sigma(x)\leq \overline{\sigma}$ pour tout $x\in\mathbb{R}_+$?