Statistical Machine Learning

Lecture 2: More Advanced Model Selection

2022-23

Introduction

- ► The solution to the regression problem is the estimation of the underlying generator of data.
- ▶ The most general description of the data generator is given in terms of the probability density $\mathcal{P}(t,x)$, where t is the dependent variable (the output of the network) and x is the independent variable (input or feature).
- By definition we have:

$$\mathcal{P}(t, \mathbf{x}) = \mathcal{P}(t|\mathbf{x})\mathcal{P}(\mathbf{x})$$

 $\mathcal{P}(\mathbf{x}) = \int dt \mathcal{P}(t, \mathbf{x}).$

In order to make a prediction (on an output given an input) we need to model $\mathcal{P}(t|x)$.

Likelihood

Several error measures are based on the *likelihood* $\mathcal{L}(\mathcal{D})$ of the data set $\mathcal{D} = \{(t_n, \mathbf{x}_n)\}_{n=1}^N$:

$$\mathcal{L}(\mathcal{D}) = \prod_{n} \mathcal{P}(t_n, x_n)$$

where we have assumed that the data points are drawn independently from the same distribution.

Maximizing the likelihood is equivalent to minimizing the error (or energy) defined as:

$$E = - \ln \mathcal{L} = - \sum_{n} \ln \mathcal{P}(t_n | x_n) - \sum_{n} \ln \mathcal{P}(x_n).$$

► The second term to the right hand side does not depend on the machine learning model being used, thus

$$E' = -\sum \ln \mathcal{P}(t_n|x_n), \tag{1}$$

Gaussian Noise

Suppose the variable t is given by a combination of a deterministic process h(x) plus a random variable ϵ drawn from a Gaussian distribution with zero mean and variance σ^2 :

$$t = h(x) + \epsilon$$
 $\mathcal{P}(\epsilon) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{\epsilon^2}{2\sigma^2}
ight)$

Gaussian Noise

The deterministic function h(x) is unknown, but is the only contribution to t that can be inferred from the data. Let as assume that there is an estimate f(x; w) that implements a model for h(x) (one estimate we have explored is the least-square polynomial, the vector w represents the parameter of the polynomial). Such a model is associated with the following conditional probability of t:

$$\mathcal{P}(t|\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{[t - f(\mathbf{x}; \mathbf{w})]^2}{2\sigma^2}\right\}.$$
 (2)

Gaussian Noise and Maximum Likelihood

▶ By applying (1) with (2) we have that the log likelihood for a model with Gaussian Noise gives:

$$E' = \frac{1}{2\sigma^2} \sum_{n} \left[t_n - f(\boldsymbol{x}_n; \boldsymbol{w}) \right]^2 + \frac{N}{2} \ln(2\pi\sigma^2)$$

- ► The first term of the right hand side is the usual sum-of-squares error.
- ▶ Once optimized the model, by solving $\nabla_{w} E = 0$, we can demonstrate that the variance satisfies:

$$\sigma^2 = \frac{1}{N} \sum_{n} \left[t_n - f(\boldsymbol{x}_n; \boldsymbol{w}^*) \right]^2$$

where \mathbf{w}^{\star} is the solution of $\nabla_{\mathbf{w}} E = \mathbf{0}$.

Noisy data

We consider the cost function to be the sum of squares and that the size of the data set is large:

$$E(\mathbf{w}) = \lim_{N \to \infty} \frac{1}{2N} \sum_{n=1}^{N} \left[f(\mathbf{x}_n; \mathbf{w}) - t_n \right]^2,$$

where $f(\bullet; \mathbf{w}) : \mathbb{R}^d \to \mathbb{R}$ is the function implemented by the network with parameters $\mathbf{w} \in \mathbb{R}^d$.

► In such a limit we have that:

$$E(\mathbf{w}) = \frac{1}{2} \int dt d\mathbf{x} \, \mathcal{P}(t|\mathbf{x}) \mathcal{P}(\mathbf{x}) \left[f(\mathbf{x}; \mathbf{w}) - t \right]^{2}$$

Let us define the conditional averages:

$$\mathbb{E}[t|\mathbf{x}] \equiv \int \mathrm{d}t \, \mathcal{P}(t|\mathbf{x}) y, \qquad \mathbb{E}[t^2|\mathbf{x}] \equiv \int \mathrm{d}t \, \mathcal{P}(t|\mathbf{x}) t^2$$

Noisy data

► Then

$$E(\mathbf{w}) = \frac{1}{2} \int dt \, d\mathbf{x} \, \mathcal{P}(t|\mathbf{x}) \mathcal{P}(\mathbf{x}) \left\{ [f(\mathbf{x}; \mathbf{w}) - \mathbb{E}[t|\mathbf{x}]]^2 + 2 \left[f(\mathbf{x}; \mathbf{w}) - \mathbb{E}[t|\mathbf{x}] \right] \left[\mathbb{E}[t|\mathbf{x}] - t \right] + \left[\mathbb{E}[t|\mathbf{x}] - t \right]^2 \right\}$$

$$= \frac{1}{2} \int d\mathbf{x} \, \mathcal{P}(\mathbf{x}) \left[f(\mathbf{x}; \mathbf{w}) - \mathbb{E}[t|\mathbf{x}] \right]^2 +$$

$$+ \frac{1}{2} \int d\mathbf{x} \, \mathcal{P}(\mathbf{x}) \left[\mathbb{E}[t^2|\mathbf{x}] - \mathbb{E}[t|\mathbf{x}]^2 \right].$$
(4)

- ▶ Observe that the second contribution (4) is positive and does not depend on the parameters w.
- ▶ The minimization of E is achieved for $\mathbf{w}^* \in \mathbb{R}^d$ such that $f(\mathbf{x}; \mathbf{w}^*) = \mathbb{E}[t|\mathbf{x}]$.

Finite data set

- ▶ Suppose that $|\mathcal{D}| = \mathcal{N} < \infty$. In such a case, the quantity $[f(x; \boldsymbol{w}) \mathbb{E}[t|x]]^2$ depends on the particular data set \mathcal{D} used to train the model.
- ▶ We can eliminate this dependency by averaging over all possible data sets \mathcal{D} with cardinality N. We denote such an average by $\mathbb{E}_{\mathcal{D}}[\cdot]$.
- ► Then:

$$(f(\mathbf{x}; \mathbf{w}) - \mathbb{E}[t|\mathbf{x}])^{2} = (f(\mathbf{x}; \mathbf{w}) - \mathbb{E}_{\mathcal{D}}[f(\mathbf{x}; \mathbf{w})] + \\ + \mathbb{E}_{\mathcal{D}}[f(\mathbf{x}; \mathbf{w})] - \mathbb{E}[t|\mathbf{x}])^{2} \\ = (f(\mathbf{x}; \mathbf{w}) - \mathbb{E}_{\mathcal{D}}[f(\mathbf{x}; \mathbf{w})])^{2} + \\ + (\mathbb{E}_{\mathcal{D}}[f(\mathbf{x}; \mathbf{w})] - \mathbb{E}[t|\mathbf{x}])^{2} \\ + 2(f(\mathbf{x}; \mathbf{w}) - \mathbb{E}_{\mathcal{D}}[f(\mathbf{x}; \mathbf{w})]) \times \\ \times (\mathbb{E}_{\mathcal{D}}[f(\mathbf{x}; \mathbf{w})] - \mathbb{E}[t|\mathbf{x}])$$

Finite data set

lacktriangle By averaging both member over ${\cal D}$:

$$\mathbb{E}_{\mathcal{D}}\left[\left[f(\boldsymbol{x};\boldsymbol{w}) - \mathbb{E}[t|\boldsymbol{x}]\right]^{2}\right] = \left(\mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x};\boldsymbol{w})] - \mathbb{E}[t|\boldsymbol{x}]\right)^{2} + \left(5\right) + \mathbb{E}_{\mathcal{D}}\left[\left(f(\boldsymbol{x};\boldsymbol{w}) - \mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x};\boldsymbol{w})]\right)^{2}\right],$$
(6)

where (5) is the squared bias term and (6) the variance term.

- ▶ The bias measures the extent to which the average over all data sets $\mathbb{E}_{\mathcal{D}}[f(x; w)]$ differs from the desired function $\mathbb{E}[t|x]$.
- ▶ The variance measures the extent to which the network function f(x; w) is sensitive to the particular choice of data set.
- Both contributions depend on x.

Bias vs Variance

 \triangleright We can eliminate the dependency over x by integrating:

$$(\text{bias})^2 = \frac{1}{2} \int d\mathbf{x} \mathcal{P}(\mathbf{x}) \left(\mathbb{E}_{\mathcal{D}}[f(\mathbf{x}; \mathbf{w})] - \mathbb{E}[t|\mathbf{x}] \right)^2$$

$$\text{variance} = \frac{1}{2} \int d\mathbf{x} \mathcal{P}(\mathbf{x}) \mathbb{E}_{\mathcal{D}} \left[\left(f(\mathbf{x}; \mathbf{w}) - \mathbb{E}_{\mathcal{D}}[f(\mathbf{x}; \mathbf{w})] \right)^2 \right].$$

Increasing the complexity of the model (number of parameters) reduces the bias but increase the sensibility of the model (variance) to the data set used (over fitting).

Information Criteria

Let us define the Kullback-Liebler (KL) divergence as the functional $I: \mathbb{D} \times \mathbb{D} \to \mathbb{R}^+ \cup \{0\}$, where \mathbb{D} is the space of functions that are positive and integrable (i.e. suitable probability distributions), as:

$$I[f,g] = \int dx \, f(x) \ln \left(\frac{f(x)}{g(x)} \right).$$

▶ The KL divergency is positive: By using that $\ln a \leq a-1$ for all a>0

$$\int dx \, f(x) \ln \left(\frac{f(x)}{g(x)} \right) \ge \int dx \, f(x) \left(1 - \frac{g(x)}{f(x)} \right) = 0.$$

▶ Suppose f is the distribution of the data (inaccessible) and g is the model you are using to estimate f. $I[f, \cdot]$ can be used to compare different models g_i and choose which one is the closest to f.

AIC and BIC Scores

 The Akaike Information Criterion is an estimate of the KL divergency

$$AIC = 2K - 2 \ln[\mathcal{L}(\mathbf{w}^*; \mathcal{D}_n)]$$

where K is the number of parameters used in the model and w^* is the estimate of the parameter w that maximizes the likelihood.

► The Bayesian Information Criterion is an improved (more sensitive) version of the AIC:

$$BIC = \ln(n)K - 2\ln[\mathcal{L}(\mathbf{w}^*; \mathcal{D}_n)]$$

where n is the number of data points.

In both cases we have a score based on the balance between the model complexity (the first term) and the model performance.

Maximum Likelihood Revisited

By the Bayes Theorem we have that

$$p(\mathcal{M}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathcal{M})p(\mathcal{M})}{p(\mathcal{D})}$$

where \mathcal{M} represents a given model or process, \mathcal{D} is the data set, or observations, $p(\mathcal{M})$ is the density of probability of the model, before we have access to the data (known as prior), $p(\mathcal{D}|\mathcal{M})$ is the conditional probability of the data given the model. But for a fixed set of data, this is the likelihood of the model given the data. $p(\mathcal{D})$ is the marginal probability of the data that in this scheme plays the role of a normalization constant. $p(\mathcal{M}|\mathcal{D})$ is the probability of the model given the data. This is known as the posterior and represents an update of the prior $p(\mathcal{M})$ after the data \mathcal{M} is aquired.

▶ If the model \mathcal{M} depends itself on parameters \boldsymbol{w} that are also distributed variables (drawn from a distribution $g(\cdot)$) we can write:

$$p(\mathcal{M}|\mathcal{D}) = \frac{p(\mathcal{M}) \int \mathrm{d}\mathbf{w} g(\mathbf{w}) p(\mathcal{D}|\mathcal{M}, \mathbf{w})}{p(\mathcal{D})}.$$

For Given the data set $\mathcal{D}_n = \{x_j\}_{j=1}^n$ composed by n (large) independent and identically-distributed (iid) observations $x_j \in \mathbb{R}^d$, and a model characterized by a density distribution p(x|w), where $w \in \mathbb{R}^K$ is the set of parameters used by the model, the -log-likelihood is given by

$$-\ln p(\mathcal{D}_n|\mathcal{M}, \mathbf{w}) = -\sum_{j=1}^n \ln p(\mathbf{x}_j|\mathbf{w}). \tag{7}$$

We assume that there exists a vector \mathbf{w}^* such that expression (7) is minimized:

$$\mathbf{w}^{\star} = \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^{K}} \left(- \ln p(\mathcal{D}_{n} | \mathcal{M}, \mathbf{w}) \right).$$

We also assume that for sufficiently large number of observations n the meaningful parameters will be concentrated close to \mathbf{w}^* , which justifies athe Taylor expansion:

$$-\ln p(\mathcal{D}_n|\mathcal{M}, \mathbf{w}) = -\ln p(\mathcal{D}_n|\mathcal{M}, \mathbf{w}^*) + \frac{1}{2}\delta \mathbf{w}^T \mathbf{I}_n \delta \mathbf{w},$$

where $\delta \mathbf{w} = \mathbf{w} - \mathbf{w}^{\star}$ and

$$[I_n]_{\ell,k} = \frac{\partial^2}{\partial w_\ell \partial w_k} \left[-\sum_{j=1}^n \ln p(x_j|w) \right]_{w=w^*}$$

is the matrix of second derivatives (Hessian). This matrix is positive definite therefore its eigenvalues are positive.

By the law of large numbers, for sufficiently large n, we have that

$$[I_n]_{\ell,k} \to -n \frac{\partial^2}{\partial w_\ell \partial w_k} \ln p(\mathbf{x}|\mathbf{w}^*) = n[I]_{\ell,k}$$

By Bayes we have that, for sufficiently large n,

$$\begin{split} -\ln \rho(\mathcal{M}|\mathcal{D}_{\boldsymbol{n}}) &= \ln \rho(\mathcal{D}_{\boldsymbol{n}}) - \ln \rho(\mathcal{M}) - \ln \int \mathrm{d}\boldsymbol{w} g(\boldsymbol{w}) \rho(\mathcal{D}_{\boldsymbol{n}}|\mathcal{M},\boldsymbol{w}^{\star}) \exp \left(-\frac{n}{2}\delta\boldsymbol{w}^{T}I\delta\boldsymbol{w}\right) \\ &= \ln \rho(\mathcal{D}_{\boldsymbol{n}}) - \ln \rho(\mathcal{M}) - \ln \left\{\rho(\mathcal{D}_{\boldsymbol{n}}|\mathcal{M},\boldsymbol{w}^{\star}) \sqrt{\frac{(2\pi)^{K}}{n^{K}\det(I)}} \int \mathrm{d}\boldsymbol{w} g(\boldsymbol{w}) \mathcal{N}(\boldsymbol{w}|\boldsymbol{w}^{\star},I^{-1}/n)\right\} \\ &= \ln \rho(\mathcal{D}_{\boldsymbol{n}}) - \ln \rho(\mathcal{M}) - \ln \left\{\frac{\rho(\mathcal{D}_{\boldsymbol{n}}|\mathcal{M},\boldsymbol{w}^{\star})}{n^{K}/2} g(\boldsymbol{w}^{\star}) \sqrt{\frac{(2\pi)^{K}}{\det(I)}}\right\} \\ &= -\ln \rho(\mathcal{D}_{\boldsymbol{n}}|\mathcal{M},\boldsymbol{w}^{\star}) + \frac{K}{2}\ln(n) - \ln \left\{g(\boldsymbol{w}^{\star}) \sqrt{\frac{(2\pi)^{K}}{\det(I)}} \frac{\rho(\mathcal{M})}{\rho(\mathcal{D}_{\boldsymbol{n}})}\right\} \end{split}$$

► Then

$$-\ln p(\mathcal{M}|\mathcal{D}_n) = -\ln p(\mathcal{D}_n|\mathcal{M}, \mathbf{w}^*) + \frac{K}{2}\ln(n) + \mathrm{OT}$$

▶ Observe that the larger the number of parameters (K) the smaller the error $(-\ln p(\mathcal{D}_n|\mathcal{M}, \mathbf{w}^*))$ but the larger the second term.