Теорема Фундаментальная группа окружности S^{l} является бесконечной циклической группой с образующей α_{l} , где α_{l} - гомотопический класс петли $l_{1}:I \to S^{1}$, где $l_{1}(t) = (\cos 2\pi t, \sin 2\pi t)$, $t \in [0;1]$

§ 15 Степень отображения

Определение *Многообразие* M^n называется <u>замкнутым</u>, если оно компактно и не имеет границы.

Например сфера S^n , тор T^n , поверхности с k-ручками.

Определение Γ оворят, что на многообразии M^n задана ориентация, если оно разбито на области действия локальных координат

$$M^n = \bigcup_{\alpha} U_{\alpha}; \quad x_{\alpha}^1, x_{\alpha}^2, x_{\alpha}^3, \dots, x_{\alpha}^n,$$

где в пересечениях областей $U_\alpha \cap U_\beta$ функции $x_\beta^q \left(x_\alpha^1, x_\alpha^2, ..., x_\alpha^n \right), \ q=1,2,...,n$ таковы, что якобиан I>0, где

$$I = \det\left(\frac{dx_{\beta}^{q}}{dx_{\alpha}^{p}}\right).$$

Имеем два многообразия M_1^m и M_2^n . Пусть задано гладкое отображение:

$$f: M_1^m \to M_2^n$$

Определение: Точка $P \in M_1^m$ называется <u>правильной точкой</u> для отображения f, если матрица Якоби I этого отображения в точке P имеет ранг m.

Определение: Точка $P' \in M_2^n$ называется регулярной точкой, если все точки $P \in f^{-1}(P')$ полного прообраза правильные.

Имеет место важная (лемма Сарда)

Лемма Eсли отображение f является гладким, то почти все точки $Q \in M_2^n$ регулярны.

Слова «почти все» понимаются в смысле меры: они означают, что в любой близости каждой точки $Q \in M_2^n$ есть регулярные точки.

Примеры

- 1. Если m < n, то регулярны только те точки $Q \in M_2^n$, где полный прообраз $f^{-1}(Q)$ пуст (нет ни одной точки P, такой что f(P) = Q).
- 2. Если m=n, то полный прообраз $f^{-1}(Q)=P_1\cup P_2\cup...\cup P_N$ состоит из некоторого числа точек P_α . В каждой точке P_α можно определить знак

$$\operatorname{sgn} P_{\alpha} = \operatorname{sgn} \left(\det \frac{\partial x^{p}}{\partial y^{q}} \right),$$
 где x^{p} -

локальные координаты в точке, а y^q - локальные координаты в точке P.

Имеет место следующая

Теорема Если $f: M^m \to M^n$ гладкое отображение и $Q \in M^n$ - регулярная точка, то полный прообраз $f^{-1}(Q) \in M^m$ является гладким многообразием размерности m-n. Более того, в любой точке $P \in f^{-1}(Q)$ дифференциал отображения f (линейное отображение касательных пространств $\hat{I}: R^q \to R^n$, задаваемое матрицей Якоби отображения f) имеет ранг n.

Следствие 1 Если m=n и многообразие M_1^n компактно (где $f: M_1^n \to M_2^n$), то полный прообраз регулярной точки $Q \in M_2^n$ состоит конечного числа точек P_j (j=1,2,...,N); при малом движении точки $Q \to Q'$ новая точка $Q' \in M_2^n$ тоже регулярна, причем ее прообраз тоже сдвигается мало в многообразии M_1^n .

Следствие 1 Если m = n и оба многообразия M_1^n и M_2^n ориентированы, причем M_1^n компактно, то в каждой точке полного прообраза $P \in f^{-1}(Q)$ корректно определен знак

$$\operatorname{sgn}(P) = \operatorname{sgn} \det \left(\frac{\partial x^{\alpha}}{\partial y^{\beta}} \right)_{P}$$

Определение <u>Степенью</u> <u>отображения</u> ориентированных многообразий $f: M_1^n \to M_2^n$ в регулярной точке $Q \in M_2^n$, где полный прообраз $f^{-1}(Q)$ состоит из конечного числа точек $P\alpha$ называется сумма

$$\deg_{Q}(f) = \sum_{P_{\alpha} \in f^{-1}(Q)} \operatorname{sgn}(P_{\alpha})$$

Пример Пусть задано отображение окружности в окружность $f: S^{1}(x) \to S^{1}(y)$.

Это отображение задаётся функцией y = f(x), где числа x, $x + 2\pi n$ и $y = 2\pi m$, при целых числах m и n определяют одинаковые точки обеих окружностей.

Функция
$$y = f(x)$$
 удовлетворяет условию
$$f(x + 2\pi) = f(x) + 2k\pi,$$

где k- целое число, т.к. точки x и $x+2\pi$ совпадают, то должны совпадать и точки $y_1 = f(x)$ и $y_2 = f(x + 2\pi)$. Число k -постоянно т.к. отображение непрерывно. Отсюда следует, что

$$k = \deg(f)$$

(здесь степень отображения называется числом вращения).

Теорема Степень отображения $M_1^n \xrightarrow{f} S^n$ любого замкнутого ориентированного многообразия на сферу S^n не зависит от выбора регулярной точки $Q \in S^n$. Более того, степень не меняется при гладких гомотопиях.

§ 16 Интегрирование внешних дифференциальных форм

Интеграл от внешней формы по сингулярному кубу

Пусть R^k- декартово координатное представление k- мерного Евклидова пространства. Произвольную точку этого пространства будем обозначать t a её координаты $t=(t^1,t^2,...,t^k)\in \mathbb{R}^k$. Обозначим через h стандартный куб в R^k , т.е.

$$h=[0;1]^k$$
.

По определению

$$t \in [0;1]^k \iff 0 \le t^i \le 1 \quad (i = 1,2,3,...,k).$$

Рассмотрим произвольную область $U, U \in \mathbb{R}^k$, содержащую куб и допустим, что в области U задана внешняя дифференциальная форма о степени k

$$\sigma = g(t^1, t^2, ..., t^k)dt^1 \wedge dt^2 \wedge ... \wedge dt^k.$$

Предположим, что σ непрерывна, т.е. непрерывна $g(t^1, t^2, ..., t^k)$.

Определение Интеграл по кубу $h=[0;1]^k$ от формы σ определяется равенством:

$$\int_{h} \sigma = \int_{[0:1]^{k}} g(t^{1}, t^{2}, ..., t^{k}) dt^{1} dt^{2} ... dt^{k},$$

 $\int\limits_h \sigma = \int\limits_{[0;1]^k} g\!\!\left(t^1,t^2,...,t^k\right) \! dt^1 dt^2 ... dt^k \; ,$ где справа записан обычный k- кратный интеграл по $h=[0;1]^k$.

Пусть теперь ω - внешняя дифференциальная k-форма, заданная в некоторой области V пространства E

$$dimE = n \ge k$$
.

Рассмотрим непрерывно дифференцируемое отображение

$$C:U \to V \subset E$$
.

Вместе с ним определено сужение на h, которое также обозначим буквой \mathbf{C}

$$C:h \to V$$
 (1)

Отображение (1) называется k-мерным сингулярным кубом в пространстве E.

Можно считать, что сингулярный куб - это множество пар вида (x,t) где $t \in h; x = C(t) \in E$.

Вместе с сингулярным кубом определено линейное отображение:

$$C':T_t \to T_x$$
 (2)

т.е. производная C, здесь $T_t = T_t(R^k)$ касательное пространство к R^k в точке t, $T_x = T_x(E)$ касательное пространство к E в точке x = C(t).

Отображение (2) индуцирует линейное отображение С*

$$C^*: \Lambda^k(T_r) \to \Lambda^k(T_t)$$
 (3)

С каждой k- формой ω в области V \subset E сопоставляется k- форма С $^*\omega$ на стандартном кубе $h \in R^k$.

Определение Интегралом от внешней дифференциальной k- формы ω по сингулярному n-мерному кубу C в области V называется число, определяемому равенством

$$\int_{C} \omega = \int_{b} C^{*} \omega \tag{4}$$

Предположим, что в E введена декартова прямоугольная система координат $x=(x^1,x^2,...,x^n)$, тогда отображение C получает координатное представление:

Выведем формулы для вычисления $C^*\omega$ и интеграла от ω по C. Пусть

$$\omega = G(x^1, ..., x^n) dx^1 \wedge dx^2 \wedge ... \wedge dx^n$$
 (6)

тогда

$$c^*\omega = (G \circ c)c^*(dx^1 \wedge dx^2 \wedge ... \wedge dx^k) = (G \circ c)c^*dx^1 \wedge ... \wedge c^*dx^k, \qquad (7)$$

$$c^*dx^i = (D_1c^i)dt^1 + ... + (D_kc^i)dt^k,$$

следовательно

$$c^*\omega = (G \circ c) \det \left(\frac{x^1, \dots, x^k}{t^1, \dots, t^k}\right) dt^1 \wedge \dots \wedge dt^k$$
 (8)

Окончательно получаем

$$\int_{c} \omega = \int_{[0;1]^h} G(x^1(t), \dots, x^n(t)) \det\left(\frac{x^1, \dots, x^k}{t^1, \dots, t^k}\right) dt^1 \wedge dt^2 \wedge \dots \wedge dt^k$$
(9)

Для простого случая

$$\omega = Pdx^1$$

 $P = P(x^1, x^2, x^3)$ (интеграл по 1 - мерному сингулярному кубу, т.е. ориентированной дуге

$$c:\begin{cases} x^{1} = c^{1}(t), \\ x^{2} = c^{2}(t), \\ x^{3} = c^{3}(t). \end{cases}$$

Обозначим $P(t) = P(c^1(t), c^2(t), c^3(t))$, тогда соотношение (9) примет вид:

$$\int_{c} \omega = \int_{[0;1]} P(t) \frac{dx^{1}}{dt} dt$$

Формуле (9) можно придать краткую запись, если обозначить

$$\det\left(\frac{x^{1},...,x^{k}}{t^{1},...,t^{k}}\right) = \det \hat{c}'$$

$$\int_{c} \omega = \int_{[0;1]^{k}} (G \circ c)(\det \hat{c}')$$

Понятие цепи. Интеграл от формы по цепи.

Наглядный источник, приводящий к понятию цепи это дуга A_0A_p , состоящая из ориентированных дуг A_0A_1 , A_1A_2 , ..., $A_{p-1}A_p$. Будем рассматривать дугу A_0A_p как набор одномерных сингулярных кубов c_0 , c_1 , ..., c_p .

Обозначим его как формальную сумму

$$c_0 + c_{1+} \dots + c_n$$

Одномерной цепью назовем любую формальную сумму $\lambda_1 c_1 + \lambda_2 c_2 + ... + \lambda_p c_p$

Теперь будем рассматривать цепи любой размерности. Пусть c_0 , c_1 , ..., c_p - некоторый набор k- мерных сингулярных кубов в E, $\lambda_1, \lambda_2, ..., \lambda p$ - набор действительных чисел.

Совокупность таких наборов мы назовем k- мерной цепью пространства E^n

$$C = \lambda_1 c_1 + \lambda_2 c_2 + ... + \lambda_p c_p$$

Интеграл по цепи определим равенством

$$\int_{c} \omega = \lambda_{1} \int_{c_{1}} \omega + \lambda_{2} \int_{c_{2}} \omega + ... + \lambda_{p} \int_{c_{p}} \omega$$

Можно показать, к-мерные цепи (точнее их классы эквивалентности) образуют линейное пространство. Обозначим его (это пространство бесконечномерное)

Обозначим W^k- линейное пространство всех внешних дифференциальных форм степени k, определенных и гладких (бесконечно дифференцируемых) в евклидовом пространстве Е. Можно показать, что пространство W^k также бесконечномерное.

Зафиксируем k $(0 \le k \le n)$, S^k и W^k . Пусть $C \in S^k$, $\omega \in W^k$, тогда введем обозначение "свертки элементов"

$$(\omega,c)=\int_{c}\omega$$

 $(\omega,c) = \int\limits_{c} \omega$ Пространства S^k и W^k назовем сопряженными относительно сверт-КИ.

Ранее был определен оператор внешнего дифференцирования d $d: W^k \rightarrow W^{k+1}$

Наряду с ним существует оператор ∂, который произвольной kмерной цепи S^k ставит в соответствие цепь S^{k-1} (границу цепи)

$$\partial: S^k \to S^{k-1}$$

или

$$\partial \colon S^{k+1} \to S^k$$

Операторы d и ∂ действуют в сопряженных пространствах. Эти операторы сами сопряжены $\forall \omega \in W^k$ и $\forall c \in S^{k+1}$ справедливо равенство

$$(d\omega,c)=(\omega,\partial c)$$

или

$$\int_{c} d\omega = \int_{\partial c} \omega$$

Последнее равенство представляет собой общую формулу Стокса. Стокс Джордж Габриэль (Stokes George Gabriel) 13.8.1819 - 1.2.1903. английский физик и математик. Окончил Кембриджский университет (1841), с 1849 г профессор этого университета. Основные труды по физике. В математике одновременно с Зейделем ввел (1848) понятие равномерной сходимости последовательности и функционального ряда. Вывел в 1854 году одну из важнейших формул векторного анализа