Inlämningsuppgifter R programmering och statistik

Eva Hegnar

November 2021

Generall information

Inlämning sker i form utav zippade R-filer, en R-fil för varje deluppgift, på PingPong. Deadline 2021-12-10 kl 23:55. Den zippade mappen namnger ni med namn på båda i gruppen och R. Ni jobbar i grupp om två och två efter indelning från Eva.

Färdigställ koden så att Eva kan testköra filerna och få ut rätt svar. Misslyckas ni med detta får ni **omedelbar retur** (inte synonymt med underkänt, men tidsödslande för alla), så var säkra på att ni ger riktiga svar.

Stort lycka till och kämpa på!

1 Tidy data

Inkluderar given data music.csv

I den här uppgiften befinner vi oss i ett parallellt universum där olika typer utav metal-musik faktiskt uppskattas. Givet är data för ett par schyssta band - tyvärr är datan lite rörig.

Figur 1: Givet dataset med ranks och ranking för respektive genre. Trots att Kind av Plini är den bästa låten i världen finns den inte i datasetet.

Uppgift:

- Flytta så att ranks blir den första kolonnen följt av allt annat.
- För att få en kolumn utan NA-värden slå samman post_metal_rank, black_metal_rank och de-ath_metal_rank till en ny kolumn, genre_rankings. Ta alltså inte bort kolonnerna, bara skapa en ny kolonn.
- Dela upp kolonnen length till minutes och seconds.

- Gruppera sedan på *artist* och svara på vilken artist som har högst genomsnittsrank från kolonnen ranks för sina låtar.
- Döp om genre_rankings till genres. Byt sen namn på varje kolumn från x_y_rank till x y rank (t.ex. så att black_metal_rank blir till black metal rank.
- Ni ska få ut artist, mean och diff i en artistgruppering genom att använda group_by och summary.
 Diff är en funktion ni får skapa själv som tar in ranks för en artist och ger tillbaks skillnaden mellan högsta och minsta rank ifrån ranks.

2 Approximera pi med sampling

Inkluderar inga filer

Genom att sampla värden för en x- och y-koordinat mellan 0 och 1 kommer vi att göra en approximation av $\pi!$

Uppgift:

Ta reda på hur ni samplar från en uniform distribution mellan 0 och 1 (dvs vilket decimaltal som helst mellan 0 och 1 kan dras med samma sannolikhet).

Ni kan behöva två variabler:

- points_within_circle
- $\bullet \hspace{0.15cm} points_outside_circle$

Slumpa punkter med en x- och en y-koordinat. För varje punkt, avgör ifall dess avstånd till origo, [0,0], är mindre än 1. Om det är mindre än ett ökar ni på $points_within_circle$, är det utanför ökar ni på $points_outside_circle$. Kriteriet ni letar efter är alltså:

$$\sqrt{x^2 + y^2} \le 1\tag{1}$$

Gör detta för $nr_of_iterations = 10, 100, 1000$ och 10000 samplade punkter. Utred uttrycket

$$\pi - 4 * \frac{points_within_circle}{nr_of_iterations}$$
 (2)

för samtliga antal mätpunkter. Säger det dig något?

Gör efter detta en scatter plot av era samplade värden.

Rita även upp cirkelbågar för avstånden 0.4, 0.8 och 1.0 ifrån origo, [0,0].

Figur 2: Visuellt exempel. Vill ni experimentera med themes och färger får ni förstås göra det också!

3 Hitta mördaren

Inkluderar given data telemastdata.csv

Ett hemskt mord har begåtts! Data scientisten Batman Batmansson har hittats brutalt mördad och polisen står handfallen. Som tur är finns följande information att tillgå:

- Vi vet inom vilket tidsspann mordet inträffade. Det finns i kolumnen $time\theta$ och ägde rum vid tidspunkt $time\theta = 416 \pm 9$ minuter.
- Vi känner till platsen för mordet.
- Ett vittne såg att mördaren talade i en iPhone.
- Vi har data från telemaster som loggar typ av telefon och tidpunkt för sändning och mottagning av telefonsignaler.

Uppgift:

Ge polisen max 6 huvudmisstänkta som de behöver utreda givet informationen.

4 Regression i R

Inkluderar given data LungCap.csv

Studien om lungkapacitet fortsätter! Det har tillkommit nya mått och mätningar. Använd den linjära regression vi gått igenom och lyft fram de 3 viktigaste parametrarna för att avgöra lungkapacitet. Glöm inte att inspektera datan - en förklaringsgrad R^2 under 0.75 är **inte** godtagbart!

Hint: Ni kan mycket väl tvingas att fatta ett beslut angående vissa mätvärden i datasetet. Motivera kort hur ni hanterar det och varför det är godtagbart.

Uppgift:

Använd den linjära regression vi gått igenom för att lyfta fram de 3 parametrar som har bäst signifikans för modellen och nå en förklaringsgrad R^2 över 0.75.