Подготовка к контрольной работе

Темы потоковой в четверг, 20 октября, 14.30-16.05:

Прямые, плоскости, расстояния, их взаимное расположение, векторное, скалярное, смешанное произведения векторов.

Смена системы координат, формулы замены координат.

Комплексные числа: различные формы записи, сопряжение, возведение в степень (формула Муавра), извлечение корня.

KP 2021

5. Модули комплексных чисел z_1, z_2, z_3, z_4 образуют геометрическую прогрессию, а их аргументы образуют арифметическую прогрессию, причём известно, что $z_1 = \sqrt{2}, z_4 = 4i$. Найти числа z_2, z_3 .

$$z = x + iy$$

$$z = r(\cos \varphi + i \sin \varphi)$$

$$r - \text{модуль } z$$

$$\varphi - \text{аргумент } z$$

KP 2020

5. Пусть $n \ge 1$ — целое. Найти произведение всех корней n-й степени из комплексного числа 2i.

Формулы Виета

```
Если c_1,c_2,\ldots,c_n — корни многочлена x^n+a_1x^{n-1}+a_2x^{n-2}+\ldots+a_n , то a_1=-(c_1+c_2+\ldots+c_n), a_2=c_1c_2+c_1c_3+\ldots+c_1c_n+c_2c_3+\ldots+c_{n-1}c_n, a_3=-(c_1c_2c_3+c_1c_2c_4+\ldots+c_{n-2}c_{n-1}c_n), \vdots a_{n-1}=(-1)^{n-1}(c_1c_2\ldots c_{n-1}+c_1c_2\ldots c_{n-2}c_n+\ldots+c_2c_3\ldots c_n), a_n=(-1)^nc_1c_2\ldots c_n.
```

KP 2012

Решить уравнение

$$(z+1)^n + (z-1)^n = 0$$

Формула Муавра для комплексных чисел $z=r(\cos\varphi+i\sin\varphi)$ утверждает, что $z^n=r^n(\cos\varphi+i\sin\varphi)^n=r^n(\cos n\varphi+i\sin n\varphi)^{[1]}$ для любого $n\in\mathbb{N}.$

Аналогичная формула применима также и при вычислении корней *п*-й степени из ненулевого комплексного числа:

$$z^{1/n}=\left[rig(\cos(arphi+2\pi k)+i\sin(arphi+2\pi k)ig)
ight]^{1/n}=r^{1/n}\left(\cosrac{arphi+2\pi k}{n}+i\sinrac{arphi+2\pi k}{n}
ight),$$
где $k=0,1,\ldots,n-1.$

KP 2012

Решить уравнение

$$(z+1)^n + (z-1)^n = 0$$

$$z = re^{i\varphi}$$

 $z^n = re^{in\varphi}$ — возведение в степень

$$\sqrt[n]{z} = \sqrt[n]{r}e^{i\frac{\varphi + 2\pi k}{n}}, k = 0, 1, ..., n - 1$$
 – извлечение корня

KP 2011

Доказать тождество, если $z, w \in \mathbb{C}$:

$$|z + w|^2 + |z - w|^2 = 2|z|^2 + 2|w|^2$$

 Тождество параллелограмма: сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон: пусть

a — длина стороны AB,

b — длина стороны BC,

 d_1 и d_2 — длины диагоналей; тогда

$$d_1^2+d_2^2=2(a^2+b^2).$$

Темы потоковой в четверг, 20 октября, 14.30-16.05:

Прямые, плоскости, расстояния, их взаимное расположение, векторное, скалярное, смешанное произведения векторов.

Смена системы координат, формулы замены координат.

Комплексные числа: различные формы записи, сопряжение, возведение в степень (формула Муавра), извлечение корня.

Z x + iyx - iy $r(\cos \varphi + i \sin \varphi)$ $r(\cos(-\varphi) + i\sin(-\varphi))$ $re^{-i\varphi}$ $re^{i\varphi}$

Темы потоковой в четверг, 20 октября, 14.30-16.05:

Прямые, плоскости, расстояния, их взаимное расположение, векторное, скалярное, смешанное произведения векторов.

Смена системы координат, формулы замены координат.

Комплексные числа: различные формы записи, сопряжение, возведение в степень (формула Муавра), извлечение корня.

Смена системы координат

KP 2021

4. Пусть $K_1=(O;\vec{e}_1,\vec{e}_2,\vec{e}_3)$ – система координат с правым о. н. б. $\vec{e}_1,\vec{e}_2,\vec{e}_3$. Записать матрицу перехода от K_1 к системе координат $K_2=(O;\vec{v}_1,\vec{v}_2,\vec{v}_3)$, где \vec{v}_1 получен из \vec{e}_1 поворотом на угол $\frac{\pi}{3}$ вокруг оси \vec{e}_2 в кратчайшем направлении к вектору $\vec{e}_3,\,\vec{v}_2=\vec{e}_2$ и $\vec{v}_3=\vec{v}_1\times\vec{v}_2$. Записать в системе координат K_2 уравнение плоскости, заданной в K_1

уравнением x = 0.

Смена системы координат

KP 2020

4. Дана точка A и векторы $\vec{v}_1, \vec{v}_2, \vec{v}_3,$

$$A = (-1, 0, 2), \ \vec{v}_1 = (3, 1, -1), \ \vec{v}_2 = (2, 2, 1), \ \vec{v}_3 = (1, 3, -1).$$

Записать уравнение плоскости 2x - y - z + 5 = 0 в системе координат

 $(A, \vec{v}_1, \vec{v}_2, \vec{v}_2 \times (\vec{v}_2 \times \vec{v}_3)).$

Смена системы координат

«старая» с.к.
$$K_1 = (O; \overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3) \longrightarrow K_2 = (O'; \overrightarrow{e}_1', \overrightarrow{e}_2', \overrightarrow{e}_3')$$
«новая» с.к.

Формула перехода:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

Темы потоковой в четверг, 20 октября, 14.30-16.05:

Прямые, плоскости, расстояния, их взаимное расположение, векторное, скалярное, смешанное произведения векторов.

Смена системы координат, формулы замены координат.

Комплексные числа: различные формы записи, сопряжение, возведение в степень (формула Муавра), извлечение корня.

KP 2021

3. Даны две точки A, B и плоскость Π ,

$$A = (1, 1, 1), B = (2, -1, 1),$$

 $\Pi: x + 3y + 2z - 5 = 0.$

Установить, пересекает ли данная плоскость отрезок \overline{AB} , его продолжение за точку A или за точку B.

KP 2021

2. Найти значение параметра m, при котором плоскость, содержащая прямую

$$\frac{x-1}{m} = \frac{y+2}{2} = \frac{z-3}{-3},$$

и точку A(3,4,4), параллельна прямой $\vec{r}(t)=(t+2,4t+3,4t+1)$.

KP 2021

1. Луч света распространяется по прямой, по закону $\vec{r}(t) = (2t-2, 3t-4, 2t-5)$ при $t \geqslant 0$, и отражается от зеркала, заданного уравнением x+y-z-2=0. Найдите параметрическое задание прямой, по которой движется отражённый луч.

KP 2018

3. (10 баллов) Составить уравнение плоскости, проходящей через прямую пересечения плоскостей 2x - y + 3z - 5 = 0, x + 2y - z + 2 = 0, параллельно вектору $\overrightarrow{a} = (2, -1, -2)$. Найти расстояние от точки D(1, 2, 3) до этой плоскости.