Příklad (Teoretický příklad 5)

Nechť $\{a_n\}_{n=1}^{\infty}$ je omezená posloupnost splňující

$$a_{n+1} \ge a_n - \frac{1}{2^n}, \quad n \in \mathbb{N}.$$

Dokažte, že posloupnost $\{a_n\}_{n=1}^{\infty}$ je konvergentní.

 $\check{R}e\check{s}en\acute{\imath}$

Aplikujeme Bolzano-Cauchyovu podmínku pro konvergenci posloupnosti. Pro to musíme dokázat, co platí pro $a_m, n < m, n \in \mathbb{N}$. Jelikož posloupnost je omezená, pro každé $n \in \mathbb{N}$ a $\varepsilon > 0$ existuje $K = \frac{\varepsilon}{3} + \sup_{i > n} a_i$, tedy $a_m < K$ a $a_n < K$. Navíc

$$a_n \le a_{n+1} + \frac{1}{2^n} \le a_{n+2} + \frac{1}{2^n} + \frac{1}{2^{n+1}} \le \dots \le a_m + \sum_{i=n}^{m-1} \frac{1}{2^i} < a_m + \sum_{i=n}^{\infty} \frac{1}{2^i} = a_m + \frac{1}{2^n}$$

$$a_n - \frac{1}{2^n} < a_m,$$

takže^a
$$a_m \in (a_n - \frac{1}{2^n}, K) = (a_n - \frac{1}{2^n}, a_n + (K - a_n)).$$

Nechť máme $\varepsilon > 0$. Potom zvolme n_1 tak, aby $\frac{1}{2^{n_1}} < \frac{\varepsilon}{3}$, např. $n_1 = \max\left\{0, \left\lceil \log_2 \frac{3}{\varepsilon} \right\rceil\right\}$. Nyní mějme $K = \frac{\varepsilon}{3} + \sup_{i \geq n_1} a_i$ jako výše (pro toto n_1 a ε). Z definice suprema existuje $n_2 \geq n_1$ tak, že sup $i \geq n_1 a_i - \frac{\varepsilon}{3} < a_{n_2}$, tedy $K - a_{n_2} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$.

Tedy pro každé $i > n_2$ platí, že $a_i \in \left(a_{n_2} - \frac{1}{2^{n_2}}, a_{n_2} + (K - a_n)\right) \subseteq \left(a_n - \frac{\varepsilon}{3}, a_n + 2\frac{\varepsilon}{3}\right)$. Tedy $\forall j, k > n_2 : |a_j - a_k| < \left|a_n + 2\frac{\varepsilon}{3} - (a_n - \frac{\varepsilon}{3})\right| = \varepsilon$, což je přesně BC podmínka, tedy a_n konverguje.

 $^{{}^{}a}\mathrm{B}(x,y)$ je okolí bodu x s poloměrem y.