Logistic Function

$$\sigma(t) = \frac{e^t}{e^t+1} = \frac{1}{1+e^{-t}}$$

$$t = eta_0 + eta_1 x$$
 t=A+Bx

$$p(x)=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

$$eta_0+eta_1x_1+eta_2x_2+\cdots+eta_mx_m=eta_0+\sum_{i=1}^meta_ix_i$$

veri setini eğitim ve test kümelerine bölerken train_test_split fonksiyonunu kullanırsanız ve random_state = 0 olarak ayarlarsanız, her zaman aynı şekilde bölecektir. Bu, çalışmanızın tekrarlanabilirliğini sağlar ve sonuçların diğerleriyle karşılaştırılmasını kolaylaştırır.

KARMAŞIKLIK MATRİSİ(confusion matrix)

from sklearn.metrics import confusion_matrix

Karmaşıklık Matrisi

	C ₁	C ₂
C ₁	True positive	False negative
C ₂	False positive	True negative

classes	buy_computer = yes	uy_computer = yes buy_computer = no		recognition(%)
buy_computer = yes	6954	46	7000	99.34
buy_computer = no	412	2588	3000	86.27
total	7366	2634	10000	95.52

- Accuracy M, acc(M): model M için yüzde kaç doğru sınıflandırma olduğudur
 - Error rate (misclassification rate) = 1 acc(M)
 - Alternatif ölçümler (e.g., for cancer diagnosis)
 sensitivity = t-pos/(t-pos+f-neg) /* true positive recognition rate */
 specificity = t-neg/(t-neg+f-pos) /* true negative recognition rate */
 precision = t-pos/(t-pos + f-pos)

accuracy = sensitivity * pos/(pos + neg) + specificity * neg/(pos + neg)

(sınıflandırma başarısını ölçmek)

```
log_reg = LogisticRegression(random_state=0)
log_reg.fit(x_train_sc, y_train)

y_pred = log_reg.predict(x_test_sc)

cm = confusion_matrix(y_test, y_pred)
print(cm)

wdir='c:/Users/t
basari orani= basari orani= basari orani= su suing ravel().
y = column_or_

in [30]: runfile
wdir='c:/Users/t
[9 5]
[6 14]
[c 1/Users/t
[9 5]
[6 14]
[c 1/Users/t
[9 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[7 5]
[c 0.41]
[c 1/Users/t
[c 0.41]
[c 1/Users/t
[c 0.41]
[c 1/Users/t
[
```

[[9 5] [0 14]]

- Model, 9 örneği doğru bir şekilde negatif olarak sınıflandırmıştır (True Negatives TN).
- Model, 5 örneği yanlış pozitif olarak sınıflandırmıştır (False Positives FP).
- Model, O örneği yanlış negatif olarak sınıflandırmıştır (False Negatives FN).
- Model, 14 örneği doğru bir şekilde pozitif olarak sınıflandırmıştır (True Positives TP).

KNN (K nearest neighborhood, en yakın k komşu)

Yeşil örneğin sınıflandırılması için K-NN algoritmasi kullanılırsa,

En yakın 3(k==3 ise) komsudan 2 komsu kirmizi olduğu için yeşil örnek kırmızı sınıfına dahil edilecektir

K == 4[cift] icin en yakın komsuların 2 kırmızı 2 mavi olduğu durumda hangilerinin mesafesi daha yakınsa o sınıfa dahil edilir

Yakın örneklerin bulunması için oklid bağlantısı kullanıyor

[
$$(x1, y1)$$
 ve $(x2, y2)$ -> $d = \sqrt{(x2-x1)^2 + (y2-y1)^2}$

K-NN'de kullanılan bazı öğrenme (learning) yöntemleri şunlardır:

- 1. Lazy Learning (Tembel Öğrenme): K-NN, tembel öğrenme olarak bilinen bir yaklaşımı kullanır. Bu modelin eğitim aşamasında hiçbir şey yapmaması ve sadece tahmin yapmak için gelen veriye dayanması anlamına gelir. Veri seti alındığında, K-NN tüm veriyi belleğe yükler ve tahmin yapmak için gelen yeni örneklerle karşılaştırır. Bu nedenle, K-NN gerçek anlamda öğrenme yapmaz, sadece veri setinin doğrudan öğrenilmesi ve saklanması şeklinde çalışır.
- 2. Instance-Based Learning (Örnek Temelli Öğrenme): K-NN, örnek temelli bir öğrenme yöntemidir Bu, modelin sınıflandırma yapmak için etiketli örneklerin bir koleksiyonunu kullanması anlamına gelir. Yeni bir örneği sınıflandırmak için, K-NN, bu örneği en yakın komşularına dayanarak sınıflandırır. Yani, öğrenme süreci, veri setinin örneklerine dayanır ve herhangi bir özniteliği çıkarmaz veya özetlemez.
- 3. **Distance-Based Learning (Uzaklık Temelli Öğrenme)**: K-NN, sınıflandırma yaparken örnekler arasındaki uzaklığı ölçerek karar verir. Bu nedenle, K-NN'nin bir tür uzaklık temelli öğrenme olduğu söylenebilir. Örneğin, en yakın komşularını seçerken, öklid mesafesi gibi bir uzaklık metriği kullanılır. Uzaklık temelli öğrenme, K-NN'nin temelinde yatan prensiplerden biridir.

NearestNeighbors(n_neighbors=3, algorithm='any_distance_function')

Metrics intended for real-valued vector spaces:

identifier	class name	args	distance function
"euclidean"	EuclideanDistance	•	$sqrt(sum((x - y)^2))$
"manhattan"	ManhattanDistance	•	sum(x - y)
"chebyshev"	ChebyshevDistance	•	max(x - y)
"minkowski"	MinkowskiDistance	p, w	$sum(w * x - y ^p)^(1/p)$
"seuclidean"	SEuclideanDistance	V	$sqrt(sum((x - y)^2 / V))$
"mahalanobis"	MahalanobisDistance	V or VI	sqrt((x - y)' V^-1 (x - y))

- Model, 14 örneği doğru bir şekilde negatif olarak sınıflandırmıştır (True Negatives TN).
- Model, 1 örneği yanlış pozitif olarak sınıflandırmıştır (False Positives FP).
- o Model, 2 örneği yanlış negatif olarak sınıflandırmıştır (False Negatives FN).
- o Model, 11 örneği doğru bir şekilde pozitif olarak sınıflandırmıştır (True Positives TP).