Question Number 1

Design a sequential circuit by using D Flip Flop to detect the sequence of three or more 0's in an input sequence of bits. The output of the circuit should be 1 when three or more 0's appears at the input, otherwise the output should be 0. You can complete your design by constructing

- State Diagram
- State Table
- Flip Flop Input Equations
- Circuit Diagram

$$A(t+1) = Bx' + Ax'$$

$$= x'(A+B)$$

Ġ.

· Circuit Diagram:

Question Number 2

[3+2+3+2=10 Marks]

Design a sequential circuit with two D flip-flops A and B, and one input x. When x = 0, the state of the circuit remains the same. When x = 1, the circuit goes through the state transitions from 00 to 01, to 11, to 10, back to 00, and repeats. Complete your design by constructing

- State Diagram
- State Table
- Flip Flop Input Equations
- Circuit Diagram

Question Number 3

[3+2+2+3+2=12 Marks]

Design a sequential circuit with two JK flip-flops A and B, and one input x. When x = 0, the state of the circuit remains the same. When x = 1, the circuit goes through the state transitions from 00 to 11, to 01, to 10, back to 00, and repeats. Complete your design by finding:

- State Diagram
- State Table
- Flip Flop Inputs
- Flip Flop Input Equation
- Circuit Diagram

Question no. 3:

Present State Input A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Next State FF inputs A B . JA KA JBKE O I X X X X X X X X X X X X X X X X X X	- 1
--	---	-----

Flip flop input equations.

T	AB	X 00	01.	11	10
(Ab)	0	0	I	7	0
	١	X	X	×1	1

lagic Diagram

Question Number 4

[10 + 12 + 12 = 34 Marks]

A sequential circuit has three flip-flops A, B, C; one input x; and one output y. The state diagram is shown in figure below. The circuit is to be designed by treating the unused states as don't-care conditions.

- i. Use D Flip Flops for design
- ii. Use JK Flip Flops for desing
- iii. Use T Flip Flops for design

i. With D Flip Flop

	Present State		Input	put Next State			Output
A	В	C	x	A	В	C	y
0	0	0	0	0	1	1	0
0	0	0	1	1	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	1	0	0	1
0	1	0	0	0	1	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	1	0	1
1	0	0	0	0	1	0	0
1	0	0	1	0	1	1	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

ii. With JK Flip Flop

Pre	sent S	tate	Input	Next State			Output	Flip Flop Inputs					
A	В	C	x	A	В	C	y	J_A	KA	J_{B}	K _B	$J_{\rm C}$	$\mathbf{K}_{\mathbf{C}}$
0	0	0	0	0	1	1	0	0	X	1	X	1	X
0	0	0	1	1	0	0	1	1	X	0	X	0	X
0	0	1	0	0	0	1	0	0	X	0	X	X	0
0	0	1	1	1	0	0	1	1	X	0	X	X	1
0	1	0	0	0	1	0	0	0	X	X	0	0	X
0	1	0	1	0	0	0	1	0	X	X	1	0	X
0	1	1	0	0	0	1	0	0	X	X	1	X	0
0	1	1	1	0	1	0	1	0	X	X	0	X	1
1	0	0	0	0	1	0	0	X	1	1	X	0	X
1	0	0	1	0	1	1	0	X	1	1	X	1	X
1	0	1	0	X	X	X	X	X	X	X	X	X	X
1	0	1	1	X	X	X	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X	X	X	X

By using k-maps the equations for J_A, K_A, J_B, K_B, J_C, K_C and y can be found.

$$\begin{array}{ll} J_A=B'x & K_A=1\\ J_B=A+C'x' & K_B=C'x+Cx'\\ J_C=Ax+A'B'x' & K_C=x\\ y=A'x & \end{array}$$

The above equations can be used to draw the circuit diagram

iii. With T Flip Flops

Pres	sent S	tate	Input	Next State Output		Output Flip Flop Input		nputs		
A	В	C	x	A	В	C	y	T_{A}	T_{B}	$T_{\rm C}$
0	0	0	0	0	1	1	0	0	1	1
0	0	0	1	1	0	0	1	1	0	0
0	0	1	0	0	0	1	0	0	0	0
0	0	1	1	1	0	0	1	1	0	1
0	1	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	1	0	1	0
0	1	1	0	0	0	1	0	0	1	0
0	1	1	1	0	1	0	1	0	0	1
1	0	0	0	0	1	0	0	1	1	0
1	0	0	1	0	1	1	0	1	1	1
1	0	1	0	X	X	X	X	X	X	X
1	0	1	1	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X

The above equations can be used to draw circuit diagram.

	Next	State	Output		
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
а	f	b	0	0	
b	d	c	0	0	
c	f	e	0	0	
d	g	a	1	0	
e	d	c	0	0	
f	f	\boldsymbol{b}	1	1	
g	g	h	0	1	
h	g	a	1	0	

- i. Draw the corresponding state diagram.
- ii. Tabulate the reduced state table.
- iii. Draw the state diagram corresponding to the reduced state table

Present State	Next	State	Out	tput
Fresent State	x = 0	x = 1	x = 0	x = 1
a	f	b	0	0
b	d	С	0	0
c	f	e	0	0
d	g	a	1	0
e	d	С	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0

States b and e are equivalent, and d and h are also equivalent. So, removing e and h, and then replacing e and h with b and d respectively in remaining table we get.

Present State	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
a	f	b	0	0	
b	d	С	0	0	
С	f	b	0	0	
d	g	a	1	0	
f	f	b	1	1	
g	g	d	0	1	

States a and c are equivalent, removing c and replacing c with a in remaining table, we get.

Present State	Next	State	Output		
rresent State	x = 0	x = 1	x = 0	x = 1	
a	f	b	0	0	
b	d	a	0	0	
d	g	a	1	0	
f	f	b	1	1	
g	g	d	0	1	

There are no more equivalent states, so this is the reduced state table.

State diagrams can be drawn from the given and reduced state tables easily.