编译原理第二次作业

3.8.4

题目:

设计一个算法来识别形如 r1/r2 的 Lex 向前看模式, 其中 r1 和 r2 都是正则表达式。说明该算法如何处理如下输入:

- 1) (abcd|abc)/d
- 2) (a|ab)/ba
- 3) aa*/a*

解答:

算法步骤

- ① 从输入字符串开头开始扫描,直到找到第一个"/"字符;
- ② 将"/"前面部分作为 r1,后面部分作为 r2;
- ③ 分别对 r1 和 r2 进行正则表达式解析,得到对应的 NFA;
- ④ 对于 r1 的 NFA 在每个终止状态添加一条 ε 的转移边到 r2 的起始状态;
- ⑤ 将新 NFA 转换成 DFA (可以通过子集构造法),并且进行最小化处理;
- ⑥ 输出最小化 DFA。
- ⑦ 对最小化的 DFA 进行词法分析
 - a) 初始化当前的状态为起始状态
 - b) 逐个读取输入字符,并根据当前状态和输入字符进行状态转移
 - c) 如果在某个状态下无法进行状态转移,则识别失败,表示输入字符不符合正则 表达式定义;
 - d) 如果读取完所有输入字符后,当前的状态为接受状态,则识别成功,表示符合 该模式下正则表达式的定义

1) (abcd|abc)/d

- ① 对于表达式按照"/"进行分割,得到子表达式 r1 = "abcd|abc" 和 r2 = "d"
- ② 按照上述的算法步骤,最后会得到一个最小化的 DFA 即

③ 读取输入字符串,并按照上述最小 DFA 进行状态转移,如果在某个状态下无法转移匹配失败;

如果在读取完所有输入字符串为接受状态则匹配成功。

2) (a|ab)/ba

- ① 对于表达式按照 "/" 进行分割,得到子表达式 r1 = "alab" 和 r2 = "ba"
- ② 按照上述的算法步骤,最后会得到一个最小化的 DFA 即

③ 读取输入字符串,并按照上述最小 DFA 进行状态转移,如果在某个状态下无法转移匹配失败;

如果在读取完所有输入字符串为接受状态则匹配成功。

3) aa*/a*

- ① 对于表达式按照"/"进行分割,得到子表达式 r1 = "aa*" 和 r2 = "a*"
- ② 按照上述的算法步骤,最后会得到一个最小化的 DFA 即

③ 读取输入字符串,并按照上述最小 DFA 进行状态转移,如果在某个状态下无法转移匹配失败;

如果在读取完所有输入字符串为接受状态则匹配成功。

3.9.4

题目:

- ! 练习 3. 9. 4: 为下列的正则表达式构造最少状态 DFA:
- -1) (a|b) *a(a|b)
- (a|b) * a(a|b)(a|b)
- 3) (a|b) * a(a|b) (a|b) (a|b)

解答:

3) (a b) *a(a b)(a b)	(a b)				< 5/
NFA: a		a a		a .	
start (0) 2 1 2	>@ a>	3307	(E)		
		Ь			
Jeh Th					
NFA->DFA	<u> </u>	1		Ia	I _b
(2_dosuve 10)={0,1,2}	0	80,1,2]	1	{1,2,9}	2 91,2]
2_closure (1)={1,2}	+++	91,2,5]	3	{1,2,5,4}	4 912,43
- closure (2) = 923	2	{1,2]	,	91,2,3]	2 31,2]
E-closure (3) = 53)	3	31,2,3,4]	5	{1,2,3,4x}	6 {1,2,4,5}
E-doswe (4)={4}	4	{1,2,4}	7	{1,2,3,5}	8 {1,2,5}
&-closure (3) = \$3} &-closure (6)= {6}	S	[1,2,3,4,5]	9	31,2,3,4,5,63	10 {1,2,4,5,6}
2- Closule (6)=10)	6	31,2,4,53	ıı	\$1,2,3,5,6}	12 \$ 1,2,5,63
		\$1,2,3,5)	13	\$1,213,4,6]	
	8	31,2,5]	IS	{1,2,3,6}	16 \$1,2,63
	9	{1,2,3,4,5,6}	9	{1,2,3,4,5,6}	10 \$ 1,2,4,5,63
	10	31,2,4,5,63	1/1	{1,2,3,5,6}	12 \$ 1,25,63
	1	312,3,5,6]	13	31,2,3,4,6]	14 {1,2,4,6}
	12	ξ1,2,5,b]	ľ	{1,2,3,6]	16 91,2,63
	13	31,2,3,4,6)	5		b {124,5}
	14	\$1,2,4,6}	1	§1,2,3,5}	8 {1,2,5}
	ß	31,2,3,65	3	₹1,2,3,4}	4 81,2,43
	16	₹1,2,6°}	1	1123)	2 7627
	-10_		1		
所最N化					

