

Data types

Prepare and clean data

	name	sex	treatment a	treatment b
0	Daniel	male	•	42
1	John	male	12	31
2	Jane	female	24	27

Data types

```
In [1]: print(df.dtypes)
               object
name
               object
sex
               object
treatment a
                int64
treatment b
dtype: object
```

- There may be times we want to convert from one type to another
 - Numeric columns can be strings, or vice versa

Converting data types

Categorical data

- Converting categorical data to 'category' dtype:
 - Can make the DataFrame smaller in memory
 - Can make them be utilized by other Python libraries for analysis

Cleaning data

Numeric data loaded as a string

	name	sex	treatment a	treatment b
0	Daniel	male	•	42
1	John	male	12	31
2	Jane	female	24	27

Cleaning bad data

Let's practice!

Using regular expressions to clean strings

String manipulation

- Much of data cleaning involves string manipulation
 - Most of the world's data is unstructured text
- Also have to do string manipulation to make datasets consistent with one another

Validate values

- 17
- **\$17**
- **\$17.89**
- \$17.895

String manipulation

- Many built-in and external libraries
- 're' library for regular expressions
 - A formal way of specifying a pattern
 - Sequence of characters
- Pattern matching
 - Similar to globbing

Example match

17 12345678901 \d*

• \$17 \$12345678901 \\$\d*

• \$17.00 \$12345678901.42 \\$\d*\.\d*

• \$17.89 \$12345678901.24 \\$\d*\.\d{2}

• \$17.895 \$12345678901.999 ^\\$\d*\.\d{2}\$

"I have 17.89 USD"

Using regular expressions

- Compile the pattern
- Use the compiled pattern to match values
- This lets us use the pattern over and over again
- Useful since we want to match values down a column of values

Using regular expressions

```
In [1]: import re
In [2]: pattern = re.compile('\$\d*\.\d{2}')
In [3]: result = pattern.match('$17.89')
In [4]: bool(result)
True
```


Let's practice!

Using functions to clean data

Complex cleaning

- Cleaning step requires multiple steps
 - Extract number from string
 - Perform transformation on extracted number
- Python function

Apply

```
In [1]: print(df)
       treatment a treatment b
Daniel
                             42
                18
John
                             31
             12
                24
                             27
Jane
In [2]: df.apply(np.mean, axis=0)
Out[2]:
treatment a 18.000000
treatment b 33.333333
dtype: float64
```


Apply

```
In [3]: print(df)
       treatment a treatment b
Daniel
                18
                            42
John
                            31
                12
                24
                            27
Jane
In [4]: df.apply(np.mean, axis=1)
Out[4]:
Daniel 30.0
John
     21.5
     25.5
Jane
dtype: float64
```


Applying functions

	Job #	Doc #	Borough	Initial Cost	Total Est. Fee
0	121577873	2	MANHATTAN	\$75000.00	\$986.00
1	520129502	1	STATEN ISLAND	\$0.00	\$1144.00
2	121601560	1	MANHATTAN	\$30000.00	\$522.50
3	121601203	1	MANHATTAN	\$1500.00	\$225.00
4	121601338	1	MANHATTAN	\$19500.00	\$389.50

Write the regular expression

```
In [5]: import re
In [6]: from numpy import NaN
In [7]: pattern = re.compile('^\$\d*\.\d{2}$')
```


Writing a function

```
example.py

def my_function(input1, input2):

    # Function Body

    return value
```


Write the function

```
diff_money.py
def diff_money(row, pattern):
    icost = row['Initial Cost']
    tef = row['Total Est. Fee']
    if bool(pattern.match(icost)) and bool(pattern.match(tef)):
        icost = icost.replace("$", "")
        tef = tef.replace("$", "")
        icost = float(icost)
        tef = float(tef)
        return icost - tef
    else:
       return(NaN)
```


Write the function

```
In [8]: df_subset['diff'] = df_subset.apply(diff_money,
                                            axis=1,
   • • • •
                                            pattern=pattern)
   • • • •
In [9]: print(df_subset.head())
                                                                   diff
                           Borough Initial Cost Total Est. Fee
       Job #
            Doc #
                         MANHATTAN
                                      $75000.00
                                                       $986.00
   121577873
                                                               74014.0
   520129502
                  1 STATEN ISLAND
                                          $0.00
                                                      $1144.00
                                                                -1144.0
                                     $30000.00
                                                       $522.50
   121601560
                         MANHATTAN
                                                                29477.5
                                     $1500.00
                                                       $225.00
                                                                1275.0
   121601203
                         MANHATTAN
   121601338
                                      $19500.00
                                                       $389.50
                                                                19110.5
                         MANHATTAN
```


Let's practice!

Duplicate and missing data

Duplicate data

- Can skew results
- '.drop_duplicates()' method

	name	sex	treatment a	treatment b
0	Daniel	male		42
1	John	male	12	31
2	Jane	female	24	27
3	Daniel	male	-	42

Drop duplicates

Missing data

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2.0
1	NaN	1.66	Male	No	Sun	Dinner	3.0
2	21.01	3.50	Male	No	Sun	Dinner	3.0
3	23.68	NaN	Male	No	Sun	Dinner	2.0
4	24.59	3.61	NaN	NaN	Sun	NaN	4.0

- Leave as-is
- Drop them
- Fill missing value

Count missing values

```
In [3]: tips_nan.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
total_bill 202 non-null float64
   220 non-null float64
tip
   234 non-null object
sex
smoker 229 non-null object
day 243 non-null object
           227 non-null object
time
    231 non-null float64
size
dtypes: float64(3), object(4)
memory usage: 13.4+ KB
None
```


Drop missing values

```
In [4]: tips_dropped = tips_nan.dropna()
In [5]: tips_dropped.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 147 entries, 0 to 243
Data columns (total 7 columns):
total_bill 147 non-null float64
   147 non-null float64
tip
   147 non-null object
sex
smoker 147 non-null object
day 147 non-null object
time
           147 non-null object
           147 non-null float64
size
dtypes: float64(3), object(4)
memory usage: 9.2+ KB
```

Fill missing values with .fillna()

- Fill with provided value
- Use a summary statistic

Fill missing values

```
In [6]: tips_nan['sex'] = tips_nan['sex'].fillna('missing')
In [7]: tips_nan[['total_bill', 'size']] = tips_nan[['total_bill',
                                                     'size']].fillna(0)
   • • • •
In [8]: tips_nan.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
total_bill 244 non-null float64
             220 non-null float64
tip
             244 non-null object
sex
             229 non-null object
smoker
             243 non-null object
day
              227 non-null object
time
              244 non-null float64
size
dtypes: float64(3), object(4)
memory usage: 13.4+ KB
```

Fill missing values with a test statistic

- Careful when using test statistics to fill
- Have to make sure the value you are filling in makes sense
- Median is a better statistic in the presence of outliers

Fill missing values with a test statistic

```
In [9]: mean_value = tips_nan['tip'].mean()
In [10]: print(mean_value)
2.964681818181819
In [11]: tips_nan['tip'] = tips_nan['tip'].fillna(mean_value)
In [12]: tips_nan.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
total_bill 244 non-null float64
             244 non-null float64
tip
             244 non-null object
sex
             229 non-null object
smoker
              243 non-null object
day
              227 non-null object
time
              244 non-null float64
size
dtypes: float64(3), object(4)
memory usage: 13.4+ KB
```


Let's practice!

Testing your data

Assert statements

- Programmatically vs visually checking
- If we drop or fill NaNs, we expect o missing values
- We can write an assert statement to verify this
- We can detect early warnings and errors
- This gives us confidence that our code is running correctly

Asserts

Google stock data

	Date	Open	High	Low	Close	Volume	Adj Close
0	2017-02-09	831.729980	NaN	826.500000	830.059998	1192000.0	NaN
1	2017-02-08	830.530029	834.250000	825.109985	829.880005	1300600.0	829.880005
2	2017-02-07	NaN	NaN	823.289978	NaN	1664800.0	NaN
3	2017-02-06	820.919983	822.390015	NaN	821.619995	NaN	821.619995
4	2017-02-03	NaN	826.130005	819.349976	820.130005	1524400.0	820.130005

Test column

Test column

```
In [1]: google_0 = google.fillna(value=0)
In [2]: assert google.Close.notnull().all()
```


Let's practice!