PSY 501: Review of statistics (part 1 – descriptives)

Week 11

Statistics: Why do we use them?

- Descriptive statistics (this week)
 - Used to describe, simplify, and organize data sets
 - Describing distributions of scores
- Inferential statistics (next week)
 - Used to test claims about the population, based on data gathered from samples
 - ▶ Takes sampling error into account
 - "Are the results above and beyond what you would expect from chance?"

Correlation

Correlation

- Properties of a correlation
 - Form (linear vs. nonlinear)
 - Direction (positive vs. negative)
 - Strength (none, weak, strong, perfect)
- ► To examine this relationship, you should:
 - ► Make a scatterplot
 - Compute the correlation coefficient

Correlation

- ► Correlation coefficient
 - ► a numerical description of the relationship between two variables, ranges between -1 and 1, with 0 = no relationship
 - Pearson's r: describes relationship between two continuous variables
 - ► "As X goes up, what happens to Y?"

Explanatory (predictor) variable

Explanatory (predictor) variable

Cautions with correlation and regression

- Don't extrapolate
- ► Extreme scores (outliers) can strongly influence the calculated relationship
- ► Don't make causal claims
 - Be careful of misinterpretation

Example: Misunderstood correlational design

Suppose you notice that kids who sit in the front of the class typically get higher grades

► This suggests there is a relationship between where you sit in class and grades.

Daily News!

Children who sit in the back of the classroom receive lower grades than those who sit in the front.

- Possibly implied: "[All] Children who sit in the back of the classroom [always] receive worse grades than [each and every child] who sits in the front."
- ▶ Better: "Researchers found that children who sat in the back of the classroom were more likely to receive lower grades than those who sat in the front."

Statistics: Why do we use them?

- Descriptive statistics
 - Used to describe, simplify, and organize data sets
 - Describing distributions of scores
 - ► Graphic and tabular descriptions
 - Numeric descriptions

- Recall that a variable is a characteristic that can take different values
- ► The distribution of a variable is a summary of all the different (observed) values of a variable
 - ▶ Both *type* (each value) and *token* (counts of each instance)

Many important distributions

- ► Population
 - ▶ All the scores of interest

Many important distributions

- Population
 - All the scores of interest
- Sample
 - All of the scores observed (your data)
 - Used to estimate population characteristics

Many important distributions

- ► Population
 - ▶ All the scores of interest
- ▶ Sample
 - All of the scores observed (your data)
 - Used to estimate population characteristics
- Distribution of sample distributions
 - Used to estimate sampling error

How do we describe these distributions?

Describing distributions

Focus on 3 properties of distributions

- Shape
 - Symmetric vs. asymmetric (skew)
 - ▶ Unimodal vs. multimodal
- Center
 - Where most of the data in the distribution are located
 - Mean, median, mode
- Spread (variability)
 - ▶ How similar/dissimilar are the scores in the distribution?
 - Standard deviation (variance), range

Graphs for continuous variables

Frequency histogram

► Example: distribution of scores on an exam

Graphs for continuous variables

Line graph

Example: distribution of scores on an exam

Graphs for categorical variables

Bar chart

Graphs for categorical variables

Pie chart

Properties of distributions: Shape

Properties of distributions: Shape

Properties of distributions: Shape

Unimodal (one mode)

Multimodal Bimodal examples

Properties of distributions: Center

There are three main measures of center

- Mean: the average
 - add up all the scores and divide by the total number
 - Most used measure of center
- ▶ Median: the middle score
 - ▶ the score that separates the top 50% from the bottom 50%
 - good for skewed distributions (e.g., home prices, reaction times)
- Mode: the most frequent score
 - ► Good for nominal scales (e.g., eye color)
 - ▶ A must for multi-modal distributions

Properties of distributions: Spread

How similar are the scores?

- Range: max min
 - Only takes two scores from distribution into account
 - Influenced by outliers
- ► Standard deviation: the average amount that the scores in the distribution deviate from the mean
 - ► Takes all of the scores into account
 - Also influenced by outliers, but not as much as range
- Variance: standard deviation squared

Visualizing variability

Low variability
The scores are fairly similar

High variability
The scores are fairly dissimilar

