Logistic regression

Ngô Minh Nhựt

2025

Binary classification

- Answer a question with yes or no
 - Check if an email is spam
 - Check if a transaction is anormal
 - Check if a person exposes to health risk
 - Check if an area of an image contains a digit 0

Source: Internet MNIST dataset

Binary classification

Size	Price	Sell?
80	600	No
30	1200	Yes
70	850	No
26	1200	No

Why logistic regression?

- Linear regression struggles with binary classification because it does not output probabilities.
 - Linear regression is widely used for predicting continuous outcomes.
 - In binary classification, we want outputs between 0 and 1, representing probabilities.

Output in number

■ We need numbers for output instead of {yes, no} for calculation

 \Box We use y = {1, 0}

1: positive/yes

0: negative/no

- □ Boundary: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
 - Samples on the boundary have $h_{\theta}(x) = 0$
 - Samples on one side have $h_{\theta}(x) > 0$
 - Samples on the other side have $h_{\theta}(x) < 0$ Sell Not sell

- □ Boundary: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
 - Samples on the boundary have $h_{\theta}(x) = 0$
 - Samples on one side have $h_{\theta}(x) > 0$
 - Samples on the other side have $h_{\theta}(x) < 0$
- $h_{\theta}(x) = 200 20x_1 + x_2 = 0$
 - x1 = 20, x2 = 200
 - x1 = 60, x2 = 1000

- □ Boundary: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
 - Samples on the boundary have $h_{\theta}(x) = 0$
 - Samples on one side have $h_{\theta}(x) > 0$
 - Samples on the other side have $h_{\theta}(x) < 0$

- x1 = 35, x2 = 1200
- x1 = 20, x2 = 500

Class positive

- □ Boundary: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
 - Samples on the boundary have $h_{\theta}(x) = 0$
 - Samples on one side have $h_{\theta}(x) > 0$
 - **Samples on the other side have h_{\theta}(x) < 0**

$$h_{\theta}(x) = 200 - 20x_1 + x_2 < 0$$

- x1 = 56, x2 = 250
- x1 = 80, x2 = 720

Class negative

- □ Boundary: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
- Classification rule
 - If $h_{\theta}(x) \ge 0$, $\hat{y} = 1$ (positive)
 - If $h_{\theta}(x) < 0$, $\hat{y} = 0$ (negative)

Samples are further from the boundary have more chances belonging a class

Samples with high confidence

Hypothesis

- □ Boundary: $h_{\theta}(x) = \theta^T x = \theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
- Classification rule
 - If $h_{\theta}(x) \geq 0$, then $\hat{y} = 1$, sample classified as positive
 - If $h_{\theta}(x) < 0$, then $\hat{y} = 0$, sample classified as negative
- Output of 0 or 1 does not represent well.
- □ A probability tells us more

Model output should be how likely a sample is positive

Hypothesis

New rule:
$$\begin{cases} y = 1, h_{\theta}(x) \to 1 \\ y = 0, h_{\theta}(x) \to 0 \end{cases}$$

The closer the predicted is to the actual, the better the model is

y (Actual)	$h_{ heta}(x)$ (Predicted)
1	→ 1
0	\rightarrow 0

- Model outputs probability a sample is positive
- □ New model: $h_{\theta}(x) = g(\theta^T x)$ with properties
 - Model output $g(\theta^T x)$ is in range (0, 1)
 - When $\theta^T x$ is much bigger than 0, $g(\theta^T x)$ approaches to 1
 - When $\theta^T x$ is much smaller than 0, $g(\theta^T x)$ approaches to 0

Hypothesis: sigmoid function

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

Source: ChatGPT

Sigmoid outputs values between 0 and 1, making it ideal for classification.

Hypothesis

- $g(z) = \frac{1}{1 + e^{-z}}$
- New classification rule

- Sample is classified as positive
- y = 0 if $h_{\theta}(x) < 0.5$
 - Sample is classified as negative

Model output shows how likely a sample is positive

Hypothesis

 $h_{\theta}(x)$ is probability y = 1

$$h_{\theta}(x) = P(y = 1 | x; \theta)$$

Samples with high confidence

 $h_{\theta}(x) = 0.5$ is decision boundary

- - $0 \le h_{\theta}(x) \le 1$
- Logarithmic loss

$$Cost(h(x), y) = \begin{cases} -\log h_{\theta}(x) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

- Positive sample y = 1
 - If $h_{\theta}(x) \rightarrow 1$, cost $\rightarrow 0$
 - If $h_{\theta}(x) \rightarrow 0$, cost \rightarrow infinity
- Negative sample y = 0
 - If $h_{\theta}(x) \rightarrow 0$, cost $\rightarrow 0$
 - If $h_{\theta}(x) \rightarrow 1$, cost \rightarrow infinity

- y: actual output
- $h_{\theta}(x)$: predicted output

$$Cost(h(x), y) = \begin{cases} -\log h_{\theta}(x) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

- y: actual output
- $h_{\theta}(x)$: predicted output

□ Hypothesis: $h_{\theta}(x) = \frac{1}{1 + e^{-\theta T_x}}$

$$\Box \operatorname{Cost}(h(x), y) = \begin{cases} -\log h_{\theta}(x) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

In a new form

$$Cost(h(x), y) = -y^{(i)} \log h(x^{(i)}) - (1 - y^{(i)}) \log (1 - h(x^{(i)}))$$

- $y = 1, 1 y = 0 \rightarrow Cost(h(x), y) = ?$
- $y = 0, 1 y = 1 \rightarrow Cost(h(x), y) = ?$

- Const function on one sample

$$Cost(h(x), y) = -y^{(i)} \log h(x^{(i)}) - (1 - y^{(i)}) \log (1 - h(x^{(i)}))$$

Cost function

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log (1 - h(x^{(i)}))$$

Model is learnt by minimizing cost function with respect to parameters

■ Logarithmic loss is convex, thus can be optimized with gradient descent

Convex Vs Non-Convex

■ Logarithmic loss is convex, thus can be optimized with gradient descent

Convex Vs Non-Convex

Partial derivative

- $\Box \quad \text{Cost: } J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta} \left(x^{(i)} \right) + \left(1 y^{(i)} \right) \log \left(1 h_{\theta} \left(x^{(i)} \right) \right)$
- □ Partial derivative: $\frac{dJ}{d\theta_i} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)}) x_j^{(i)}$
- To calculate the derivatives
 - g'(z) = (1 g(z))g(z)z'
 - $\log(z') = \frac{z'}{z}$

See calculations at: https://ml-explained.com/blog/logistic-regression-explained

Cost function:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta} (x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))$$

 \Box Find θ so that $J(\theta)$ reaches minimal

Vector gradient:

$$\frac{dJ}{d\theta_{i}} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

- j = 0, 1, 2, ..., n
- Repeat until convergence

```
\theta_{j} = \theta_{j} - \alpha \frac{dJ}{d\theta_{j}}
```

■ Minimizing cost function is a maximum likelihood estimation, finding the most likely model that could have produced the observed data.

Predict for a new input

 $lue{}$ With learnt parameters heta, we can predict how likely a sample is positive

Output:
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

- Weather: sunny, cloudy, rain, and heavy rain
- Digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Species of Iris flower: Versicolor, Setosa, and Virginica
- Object: human, cat, house, and landscape

$$\rightarrow$$
 y = {1, 2, 3, ...}

Iris dataset

Classification of three species of Iris flower based on size of petal and sepal

Binary vs Multi-class

Binary classification:

x_2

Multi-class classification:

Source: Andrew Ng

■ Logistic regression solves multi-classes problem by dividing it into n subproblems

 \Box Train classifier for each class $h_{\theta}^{c}(x)$

Source: Andrew Ng

 \square Train classifier for each class $h_{\theta}^{c}(x)$

$$h_{\theta}^{c}(x) = P(y = c|x;\theta)$$

- Predict for a new input
 - $y = \max_{c} h_{\theta}^{c}(x)$
 - Select model giving maximum output

Select model giving maximum output

Multi-Class Logistic Regression on Iris Dataset

