

UNIVERSITAS GADJAH MADA

Graph Introduction

Wahyono, Ph.D.
Department of Computer Science and Electronics
Faculty of Mathematics and Natural Sciences
Universitas Gadjah Mada, Yogyakarta, Indonesia
Email: wahyo@ugm.ac.id

Graphs

- Graphs are a data structure which represent relationships between entities
 - *Vertices* represent entities
 - *Edges* represent some kind of relationship

Example

• The graph on the previous page could be used to model San Jose freeway connections:

Adjacency

- Two vertices are *adjacent* to one another if they are connected by a single edge
- For example:
 - I and G are adjacent
 - A and C are adjacent
 - I and F are not adjacent
- Two adjacent nodes are considered *neighbors*

Path

• A *path* is a sequence of edges

- Paths in this graph include:
 - BAEJ, CAFG, HGFEJDCAB, HIJDCBAFE, etc.

Connected Graphs

• A graph is connected if there is at least one path from every vertex to every other vertex

Unconnected Graph

• An *unconnected graph* consists of several *connected components*:

- Connected components of this graph are:
 - AB, and CD
- We'll be working with connected graphs

Directed Graphs

- A graph where edges have directions
 - Usually designated by an arrow

Weighted Graphs

- A graph where edges have weights, which quantifies the relationship
 - For example, you may assign path distances between cities
 - Or airline costs
- These graphs can be directed or undirected

Vertices: Java Implementation

- We can represent a vertex as a Java class with:
 - Character data
 - A boolean data member to check if it has been visited
- Now we need to specify edges.
 - But in a graph, we don't know how many there will be!
- We can do this using either an adjacency matrix or an adjacency list. We'll look at both.

Adjacency Matrix

- An adjacency matrix for a graph with n nodes, is size n x n
 - Position (i, j) contains a 1 if there is an edge connecting node i with node j
 - Zero otherwise
- For example, here is a graph and its adjacency matrix:

	A	В	С	D
A	0	1	1	1
В	1	0	0	1
C	1	0	0	0
D	1	1	0	0

Redundant?

• This may seem a bit redundant:

	A	В	С	D
A	0	1	1	1
В	1	0	0	1
C	1	0	0	0
D	1	1	0	0

- Why store two pieces of information for the same edge?
 - i.e., (A, B) and (B, A)
- Unfortunately, there's no easy way around it
 - Because edges have no direction
 - No concept of 'parents' and 'children'

Adjacency List

- An array of linked lists
 - Index by vertex, and obtain a linked list of neighbors
- Here is the same graph, with its adjacency list:

Vertex	List Containing Adjacent Vertices	
A	B—>C—>D	
В	A>D	
С	A	
D	A>B	

Application: Searches

- A fundamental operation for a graph is:
 - Starting from a particular vertex
 - Find all other vertices which can be reached by following paths
- Example application
 - How many towns in the US can be reached by train from Tampa?
- Two approaches
 - Depth first search (DFS)
 - Breadth first search (BFS)

Depth First Search (DFS)

- Idea
 - Pick a starting point
 - Follow a path to unvisited vertices, as long as you can until you hit a dead end
 - When you hit a dead end, go back to a previous spot and hit unvisited vertices
 - Stop when every path is a dead end

Depth First Search (DFS)

- Algorithm
 - Pick a vertex (call it A) as your starting point
 - Visit this vertex, and:
 - Push it onto a stack of visited vertices
 - Mark it as visited (so we don't visit it again)
 - Visit any neighbor of A that hasn't yet been visited
 - Repeat the process
 - When there are no more unvisited neighbors
 - Pop the vertex off the stack
 - Finished when the stack is empty
- Note: We get as far away from the starting point until we reach a dead end, then pop (can be applied to mazes)

Example

- Start from A, and execute depth first search on this graph, showing the contents of the stack at each step
 - Every step, we'll either have a visit or pop

Depth First Search: Complexity

- Let |V| be the number of vertices in a graph
- And let |E| be the number of edges
- In the worst case, we visit every vertex and every edge:
 - \bullet O(|V| + |E|) time

At first glance, this doesn't look too bad

- But remember a graph can have lots of edges!
- Worst case, every vertex is connected to every other:

•
$$(n-1) + (n-2) + ... + 1 = O(n^2)$$

• So it can be expensive if the graph has many edges

Breadth First Search (BFS)

• Same application as DFS; we want to find all vertices which we can get to from a starting point, call it A

- However this time, instead of going as far as possible until we find a dead end, like DFS
 - We visit all the closest vertices first
 - Then once all the closest vertices are visited, branch further out

Breadth First Search (BFS)

- We're going to use a queue instead of a stack!
- Algorithm
 - Start at a vertex, call it current
 - If there is an unvisited neighbor, mark it, and insert it into the queue
 - If there is not:
 - If the queue is empty, we are done, otherwise:
 - Remove a vertex from the queue and set current to that vertex, and repeat the process

Example

- Start from A, and execute breadth first search on this graph, showing the contents of the queue at each step
 - Every step, we'll either have a visit or a removal

Breadth First Search: Complexity

- Let |V| be the number of vertices in a graph
- And let | E | be the number of edges
- In the worst case, we visit every vertex and every edge:
 - \bullet O(|V| + |E|) time
 - Same as DFS
- Again, if the graph has lots of edges, you approach quadratic run time which is the worst case

Minimum Spanning Trees (MSTs)

- On that note of large numbers of edges slowing down our precious search algorithms:
 - Let's look at MSTs, which can help ameliorate this problem
- It would be nice to take a graph and reduce the number of edges to the minimum number required to span all vertices:

What's the number of edges now?

We've done it already...

Actually, if you execute DFS you've already computed the MST!

- Think about it: you follow a path for as long as you can, then backtrack (visit every vertex at most once)
 - You just have to save edges as you go

Directed Graphs

• A directed graph is a graph where the edges have direction, signified by arrows:

• This will simplify the adjacency matrix a bit...

Adjacency Matrix

- The adjacency matrix for this graph does not contain redundant entries
 - Because now each edge has a source and a sink
 - So entry (i, j) is only set to 1 if there is an edge going from i to j
 - 0 otherwise

	A	В	С
A	0	1	0
В	0	0	1
C	0	0	0

- Only works with DAGs (Directed Acyclic Graphs)
 - That is if the graph has a cycle, this will not work

• Idea: Sort all vertices such that if a vertex's successor always appears after it in a list (application: course prerequisites)

Start from vertex that have in-degree 0

UNIVERSITAS GADJAH MADA

THANK YOU

