QuaC Zusammenfassung

October 19, 2023

Contents

1	Grundlagen		2
	1.1	Definitionen	2
	1.2	Quantenschaltkreise	4

1 Grundlagen

1.1 Definitionen

Definition 1.1. $|\phi\rangle$ ist ein Spaltenvektor und $|\phi\rangle$ ein Spaltenvektor.

 $\langle \phi | \psi \rangle = \sum_{i=1}^{n} \phi_i^* \cdot \psi_i$ ist das innere Produkt.

 $|0\rangle = \binom{1}{0}$ und $|1\rangle = \binom{0}{1}$. Das sind die Basis Vektoren.

Ein Qubit ist ein normierter Vektor der Form $\alpha|0\rangle + \beta|1\rangle$. Auf diesem kann eine Messung durchgeführt werden, sodass das Qubit kollabiert zu 0 mit Wahrscheinlichkeit $|\alpha|^2$ und mit Wahrscheinlichkeit $|\beta|^2$ zu 1.

Ein n-Qubit ist ein Vektor der Dimension 2^n . Das heißt, obiges Beispiel ist ein 1-Qubit und ein 2-Qubit hat vier Einträge. Die Vektoren sind dabei immer normiert. In höher dimensionalen Vektoren kann eine Messung einzelner Bits ausreichen, um das System zum kollabieren zu bringen.

Ein 1-Qubit-Gatter ist eine unitäre 2×2 Matrix U. Das heißt, $U^tU=I$, wobei $U^t=(U^T)^*$. Ein Spezialfall ist dabei

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

Die Transformation eines Qubits ϕ mit H ist dabei einfach $H \cdot \phi$. So ist zum Beispiel

$$H(|0\rangle) = \frac{1}{\sqrt(2)}|0\rangle + \frac{1}{\sqrt(2)}|1\rangle$$

Im Falle eines 2-Qubit-Gatters würde eine unitäre 4×4 Matrix herangezogen werden. Ein Beispiel ist das C-NOT Gatter

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Lemma 1.2. Das innere Produkt hat folgende Eigenschaften:

1.
$$\langle \phi | \phi \rangle \geq 0$$

2.
$$\langle \phi | (a|\phi_1\rangle + b|\phi_2\rangle) = a\langle \phi | \phi_1\rangle + b\langle \phi | \phi_2\rangle$$

3.
$$\langle \psi | \phi \rangle^* = \langle \phi | \psi \rangle$$

Für eine $m \times n$ Matrix A ist weiter

$$(|A\psi\rangle, |A\phi\rangle) = \langle AA^t\psi|\phi\rangle$$

Definition 1.3. Wir definieren weiter eine Qubit-Norm $||\cdot||:\mathbb{C}^n\to\mathbb{C}$ durch

$$|||\phi\rangle|| = \sqrt{\langle \phi | \phi \rangle}$$

Dabei heißt ein Vektor ϕ unitär, wenn $|||\phi\rangle|| = 1$.

Definition 1.4. Wir definieren zu den Vektoren $|0\rangle$ und $|1\rangle$ eine Dualbasis durch

$$|\nearrow\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$

und

$$|\searrow\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

. Dies ist eine Orthonormalbasis.

Definition 1.5. (Tensorprodukt) Seien $x = \binom{x_1}{x_2}$ und $y = \binom{y_1}{y_2}$ zwei Vektoren. Das Tensorprodukt ist definiert als

$$x \otimes y = \begin{pmatrix} x_1 y_1 \\ x_1 y_2 \\ x_2 y_1 \\ x_2 y_2 \end{pmatrix}$$

Das ist leicht verallgemeinerbar für höher dimensionale Vektoren. Außerdem kann das Tensorprodukt auf Matrizen

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix}$$

und eine beliebig dimensionale Matrix B angewandt werden durch

$$A \otimes B = \begin{pmatrix} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & & \vdots \\ a_{m,1}B & \dots & a_{m,n}B \end{pmatrix}$$

Wenn mehrere Qubits $|\phi\rangle = {\alpha \choose \beta}$ und $|\psi\rangle = {\gamma \choose \delta}$ vorliegen, dann schreiben wir

$$|\phi\rangle|\psi\rangle = |\phi\psi\rangle = |\phi\rangle \otimes |\psi\rangle \in \mathbb{C}^4$$

Wird $|\phi^n\rangle$ geschrieben, so ist damit das *n*-fache Tensorprodukt von $|\phi\rangle$ gemeint.

Lemma 1.6. Das Tensorprodukt hat folgende Eigenschaften:

1.
$$|v\rangle \otimes |w\rangle + |v\rangle \otimes |u\rangle = |v\rangle (|w\rangle + |u\rangle)$$

2.
$$a(|v\rangle \otimes |w\rangle = a|v\rangle \otimes |w\rangle) = |v\rangle \otimes a|w\rangle$$

3.
$$(|u\rangle \otimes |v\rangle, |w\rangle \otimes |x\rangle) = (|u\rangle \otimes |w\rangle, |v\rangle \otimes |x\rangle)$$

1.2 Quantenschaltkreise

Diese unterscheiden sich von klassischen Schaltkreisen insofern, dass Operationen reversibel sind. In klassischen Schaltkreisen ist das nicht der Fall, da zum Beispiel bei einer \land Verknüpfung mit Ergebnis 0 nicht auf die Eingabewerte rückgeschlossen werden kann. Quantenschaltkreise können verwendet werden um sowohl klassische als auch probabilistische Schaltkreise zu modellieren.