

FORMA A

EVALUACIÓN PARCIAL N° 1

INFORMACIÓN GENERAL:

Sigla	Nombre Asignatura	Tiempo Asignado	% Ponderación
PGY1121	Programación de Algoritmos	120 minutos	30%

NOMBRE	SECCIÓN	
RUT	FECHA	

PUNTAJES Y NOTA / ESCALA DE EXIGENCIA (60%)							
PUNTAJE MÁXIMO APROBACIÓN: 32	NOTA: 7.0	PUNTAJE OBTENIDO					
PUNTAJE MÍNIMO APROBACIÓN: 19	NOTA: 4.0	NOTA					

AGENTE EVALUATIVO:

Heteroevaluación (docente)

TABLA DE ESPECIFICACIONES

COMPETENCIA	UNIDADES DE COMPETENCIA	RESULTADOS DE APRENDIZAJE	INDICADORES DE LOGRO	% PONDERACIÓN IL	
Construir programas y rutinas de variada complejidad para dar solución a	Desarrolla pensamiento lógico-analítico para la construcción de algoritmos para	Construir algoritmos de programación con los procesos necesarios para	Construye un algoritmo identificando las entradas, procesos y salidas para dar solución al problema planteado.	20%	
requerimientos de la organización, acordes a tecnologías de	algoritmos para soportar los requerimientos	dar solución al problema planteado por los requerimientos del usuario.	Asigna resultados de expresiones a variables que permitan el almacenamiento de datos según la funcionalidad requerida.	5%	
mercado y utilizando	usuario.	Utiliza las expresiones aritméticas, relacionales y lógicas para desarrollar un algoritmo.	10%		
codificación.	enas prácticas de dificación.			Utiliza las estructuras de control según la funcionalidad requerida.	15%
			Utiliza las estructuras de repetición según la funcionalidad requerida	15%	
			Utiliza variables de control (contadores, acumuladores, flags) para controlar el flujo del algoritmo según la funcionalidad requerida.	15%	
			Construye el diagrama de flujo que represente al algoritmo propuesto.	5%	
			Total ¹	85%	

COMPETENCIAS DE EMPLEABILIDAD

COMPETENCIA DE EMPLEABILIDAD	INDICADORES DE LOGRO	% Ponderación Il
Resolución de Problemas: Identificar y analizar un problema para generar alternativas de solución, aplicando los métodos aprendidos.	Aplica un método lógico en la resolución del problema, considerando pasos definidos y relacionados entre sí.	15%
	Total	15%

1

INSTRUCCIONES GENERALES

La Entrega de Encargo o Ejecución Práctica tiene un 30% de ponderación sobre la nota final de la asignatura.

El **tiempo** para desarrollar la **Ejecución Práctica** es de 120 minutos.

La Ejecución Práctica consiste en:

El estudiante deberá construir soluciones de algoritmos de acuerdo con las instrucciones necesarias que den solución al requerimiento del cliente, integrando la competencia de empleabilidad de **Resolución de Problemas N1**, lo cual considera:

- 1. Ser capaz de identificar lo que es un problema y la toma de decisión de abordarlo.
- 2. Leer activamente para definir el problema planteado en el caso propuesto.
- 3. Recoger información significativa para la resolución del problema en base a datos, siguiendo un método lógico de análisis de información.
- 4. Seguir el método lógico para identificar las causas de un problema y no quedarse en niveles básicos de resolución de este.
- 5. Presentar distintas opciones de solución ante un mismo problema, evaluando los riesgos y ventajas de cada solución, optando por la más acertada.
- 6. Diseñar/Programar un plan de acción para la aplicación de la solución escogida

ENUNCIADO

La empresa distribuidora de combustible Ezzo, ha decidido automatizar las transacciones y desea implementar un sistema para la venta de sus combustibles y dar alguna promoción a sus clientes del Club Ezzo.

Por esto, se debe tener presente los ítems de combustibles y sus valores por litro:

ítem	Valor por litro
Gasolina 93	\$1600
Gasolina 95	\$1700
Gasolina 97	\$1800
Diesel	\$1400
Kerosene	\$1000

OBS: Por otra parte, la empresa como promoción para fidelizar a sus clientes, a dispuesto el Club Ezzo, en el cual el cliente por el solo hecho de pertenecer a este disponible de un descuento de un 20% en su compra de combustible

Se pide crear un algoritmo que permite realizar la transacción de venta de combustible, tenga presente:

- El cliente puede seleccionar solo UN ítem (tipo de bencina)
- Debe indicar la cantidad de litros requeridos
- Indicar si es socio al Club Ezzo, para obtener descuentos, solo si corresponde (ver observación).
- Imprimir el ticket de compra indicando:
 - Combustible: XXXXXXXX
 - Litros: XXX Valor Litro: \$ XXX
 - Total \$ XXXXX
 - o Descuento (SOLO SI CORRESPONDE) \$XXXXX
 - Total a pagar \$ XXXXXX

Se pide:

- Crear un algoritmo y representarlo en un pseudocódigo para la solución de este problema, para ello utilizará el software Pseint.
- Crear un diagrama de flujo, el cual solicite los datos anteriormente mencionados y muestre la información de resultado por pantalla.
- Para la entrega el nombre del archivo PSeInt debe ser su **Nombre_Apellido.psc**. Una vez terminado su desarrollo deje el archivo en el escritorio y avise al docente para extraiga por intranet el archivo.

ESCALA DE VALORACIÓN

Categoría	Clave	% logro	Descripción
Excelente	(a)	100%	Dominio esperado para el indicador, se considera como el punto óptimo para cualificar como competente.
Bueno	(b)	80%	Se observan pequeñas dificultades o errores para el completo dominio del indicador.
Suficiente	(c)	60%	Suficiencia de logro en el dominio del indicador, se considera como el mínimo aceptable para cualificar como competente.
En proceso	(d)	30%	Se observan varias dificultades o errores para el dominio del indicador.
Insuficiente	(e)	0%	Se observan un escaso, nulo o incorrecto dominio del indicador.

Indicador de logro	a	b	С	d	e
	100%	80%	60%	30%	0%
	4	3.2	2.4	1.2	0
Pseudocódigo					
1. Construye un algoritmo					
identificando las					

entradas, procesos y			
salidas para dar solución			
al problema planteado.			
2. Asigna resultados de			
expresiones a variables			
que permitan el			
almacenamiento de			
datos según la			
funcionalidad requerida.			
3. Utiliza las expresiones			
aritméticas, relacionales			
y lógicas para desarrollar			
un algoritmo.			
4. Utiliza las estructuras de			
control según la			
funcionalidad requerida.			
5. Utiliza las estructuras de			
repetición según la			
funcionalidad requerida			
6. Utiliza variables de			
control (contadores,			
acumuladores, flags)			
para controlar el flujo del			
algoritmo según la			
funcionalidad requerida.			
Diagrama de Flujo:			
7. Construye el diagrama de			
flujo que represente el			
algoritmo propuesto.			
Resolución de problemas N1			

8. Aplica un método lógico en la	Aplica un método	Aplica algunos pasos	Aplica algunos pasos	Aplica algunos pasos	No aplica un
resolución del problema,	lógico en la resolución	definidos en la resolución	del método	de un método lógico	método lógico
considerando pasos definidos y	del problema,	del problema, que son	estableciendo	en la resolución del	en la resolución
relacionados entre sí.	aplicando una serie de	progresivos y se	relaciones entre	problema, pero no	del problema.
	pasos claramente	relacionan entre sí, sin	algunos de ellos.	relacionados entre	
	definidos y	abarcar el problema		sí.	
	relacionados entre sí	completo.			
	que cubren todos los				
	aspectos del				
	problema.				

Puntaje	Nota	Puntaje	Nota	Puntaje	Nota	Puntaje	Nota
0.0	1.0	10.0	2.6	20.0	4.2	30.0	6.5
1.0	1.2	11.0	2.7	21.0	4.4	31.0	6.8
2.0	1.3	12.0	2.9	22.0	4.7	32.0	7.0
3.0	1.5	13.0	3.0	23.0	4.9		
4.0	1.6	14.0	3.2	24.0	5.1		
5.0	1.8	15.0	3.3	25.0	5.4		
6.0	1.9	16.0	3.5	26.0	5.6		
7.0	2.1	17.0	3.7	27.0	5.8		
8.0	2.3	18.0	3.8	28.0	6.1		
9.0	2.4	19.0	4.0	29.0	6.3		