Super-Teichmüller Theory

Anton M. Zeitlin

Columbia University, Department of Mathematics

Aarhus University

Aarhus

June 28, 2016

Anton Zeitlin

Outline

ntroduction

Coordinates on

Super-Teichmüller pace

N = 2
Super-Teichmülle

pen problems

Outline

space

Introduction

. .

pordinates on

I = 2 uper-Teichmülle

nen problems

Introduction

Cast of characters

Coordinates on Super-Teichmüller space

N = 2 Super-Teichmüller theory

Open problems

Let $F_s^g \equiv F$ be the Riemann surface of genus g and s punctures. We assume s > 0 and 2 - 2g - s < 0.

$$T(F) = \operatorname{Hom}'(\pi_1(F), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R}),$$

heory

pen problems

Let $F_s^g \equiv F$ be the Riemann surface of genus g and s punctures. We assume s>0 and 2-2g-s<0.

Teichmüller space T(F) has many incarnations:

- {complex structures on F}/isotopy
- {conformal structures on F}/isotopy
- ► {hyperbolic structures on F}/isotopy

Representation-theoretic definition:

$$T(F) = \operatorname{Hom}'(\pi_1(F), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R}),$$

where Hom' stands for Homs such that the group elements corresponding to loops around punctures are parabolic ($|{
m tr}|=2$).

Let $F_s^g \equiv F$ be the Riemann surface of genus g and s punctures. We assume s > 0 and 2 - 2g - s < 0.

Teichmüller space T(F) has many incarnations:

- {complex structures on F}/isotopy
- {conformal structures on F}/isotopy
- {hyperbolic structures on F}/isotopy

$$T(F) = \operatorname{Hom}'(\pi_1(F), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R}),$$

Open problems

Anton Zeitlin

Let $F_s^g \equiv F$ be the Riemann surface of genus g and s punctures. We assume s>0 and 2-2g-s<0.

Teichmüller space T(F) has many incarnations:

- ► {complex structures on F}/isotopy
- {conformal structures on F}/isotopy
- {hyperbolic structures on F}/isotopy

Representation-theoretic definition:

$$T(F) = \operatorname{Hom}'(\pi_1(F), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R}),$$

where Hom' stands for Homs such that the group elements corresponding to loops around punctures are parabolic ($|{\rm tr}|=2$).

The image $\Gamma \in PSL(2,\mathbb{R})$ is a Fuchsian group.

By Poincaré uniformization we have $F=H^+/\Gamma$, where $PSL(2,\mathbb{R})$ acts on the hyperbolic upper-half plane H^+ as oriented isometries, given by fractional-linear transformations.

The punctures of $\tilde{F} = H^+$ belong to the absolute ∂H^+ .

The primary object of interest is the *moduli space*:

$$M(F) = T(F)/MC(F).$$

The mapping class group MC(F): group of homotopy classes of orientation preserving homeomorphisms: it acts on T(F) by oute automorphisms of $\pi_1(F)$.

The goal is to find a system of coordinates on T(F), so that the action of MC(F) is realized in the simplest possible way.

The image $\Gamma \in PSL(2,\mathbb{R})$ is a Fuchsian group.

By Poincaré uniformization we have $F=H^+/\Gamma$, where $PSL(2,\mathbb{R})$ acts on the hyperbolic upper-half plane H^+ as oriented isometries, given by fractional-linear transformations.

The punctures of $\tilde{F} = H^+$ belong to the absolute ∂H^+ .

The primary object of interest is the moduli space:

$$M(F) = T(F)/MC(F)$$
.

The mapping class group MC(F): group of homotopy classes of orientation preserving homeomorphisms: it acts on T(F) by outer automorphisms of $\pi_1(F)$.

The goal is to find a system of coordinates on T(F), so that the action of MC(F) is realized in the simplest possible way.

r = 2 uper-Teichmülle heory

pen problems

The image $\Gamma \in PSL(2,\mathbb{R})$ is a Fuchsian group.

By Poincaré uniformization we have $F=H^+/\Gamma$, where $PSL(2,\mathbb{R})$ acts on the hyperbolic upper-half plane H^+ as oriented isometries, given by fractional-linear transformations.

The punctures of $\tilde{F} = H^+$ belong to the absolute ∂H^+ .

The primary object of interest is the *moduli space*:

$$M(F) = T(F)/MC(F)$$
.

The mapping class group MC(F): group of homotopy classes of orientation preserving homeomorphisms: it acts on T(F) by outer automorphisms of $\pi_1(F)$.

The goal is to find a system of coordinates on T(F), so that the action of MC(F) is realized in the simplest possible way.

Anton Zeitlin

Outline

Introduction

_ _ _

Cast of characters

space N=2

Super-Teichmülle theory

Open problems

Penner's work in the 1980s: a construction of coordinates associated to the ideal triangulation of F:

so that one assigns one positive number for every edge.

This provides coordinates for the decorated Teichmüller space:

$$\tilde{T}(F) = \mathbb{R}^s_+ \times T(F)$$

- Positive parameters correspond to the "renormalized" geodesic lengths
- \mathbb{R}_+^s -fiber provides cut-off parameter (determining the size of the horocycle) for every puncture.

Anton Zeitlin

Outline

Introduction

Cook of about

Case or characters

space N = 2

Super-Teichmüller theory

pen problems

Penner's work in the 1980s: a construction of coordinates associated to the ideal triangulation of F:

so that one assigns one positive number for every edge.

This provides coordinates for the decorated Teichmüller space

$$\tilde{T}(F) = \mathbb{R}^s_+ \times T(F)$$

- Positive parameters correspond to the "renormalized" geodesic lengths
- \mathbb{R}_+^s -fiber provides cut-off parameter (determining the size of the horocycle) for every puncture.

Coordinates on Super-Teichmüller space

N = 2 Super-Teichmülle theory

pen problems

Penner's work in the 1980s: a construction of coordinates associated to the ideal triangulation of F:

so that one assigns one positive number for every edge.

This provides coordinates for the decorated Teichmüller space:

$$\tilde{T}(F) = \mathbb{R}^s_+ \times T(F)$$

- Positive parameters correspond to the "renormalized" geodesic lengths
- \mathbb{R}_+^s -fiber provides cut-off parameter (determining the size of the horocycle) for every puncture.

space N = 2

theory

pen problems

Penner's work in the 1980s: a construction of coordinates associated to the ideal triangulation of F:

so that one assigns one positive number for every edge.

This provides coordinates for the decorated Teichmüller space:

$$\tilde{T}(F) = \mathbb{R}^s_+ \times T(F)$$

- Positive parameters correspond to the "renormalized" geodesic lengths
- R^s₋-fiber provides cut-off parameter (determining the size of the horocycle) for every puncture.

Anton Zeitlin

Outline

Introduction

Cast of characters

Super-Teichmüller space

rv = 2 Super-Teichmülle theory

Open problems

The action of MC(F) can be described combinatorially using elementary transformations called flips:

Ptolemy relation: ef = ac + bc

In order to obtain coordinates on T(F), one has to consider *shear* coordinates $z_e = \log(\frac{ac}{bd})$, which are subjects to certain linear constraints

Super-Teichmülle space

V = 2 Super-Teichmülle :heorv

Open problems

The action of MC(F) can be described combinatorially using elementary transformations called flips:

Ptolemy relation: ef = ac + bd

In order to obtain coordinates on T(F), one has to consider *shear coordinates* $z_e = \log(\frac{ac}{bd})$, which are subjects to certain linear constraints

Coordinates on Super-Teichmüller space

v = 2 Super-Teichmülle heory

Open problems

The action of MC(F) can be described combinatorially using elementary transformations called flips:

Ptolemy relation: ef = ac + bd

In order to obtain coordinates on T(F), one has to consider *shear* coordinates $z_e = \log(\frac{ac}{bd})$, which are subjects to certain linear constraints

nen problems

Transformation of coordinates via the triangulation change is therefore governed by Ptolemy relations. This leads to the prominent geometric example of *cluster algebra*, introduced by S. Fomin and A. Zelevinsky in the early 2000s.

Penner's coordinates can be used for the quantization of T(F) (L. Chekhov, V. Fock, R. Kashaev, late 90s, early 2000s).

Higher (super)Teichmüller spaces: $PSL(2,\mathbb{R})$ is replaced by some reductive (super)group G. In the case of reductive groups G the construction of coordinates was given by V.Fock and A. Goncharov (2003).

space N = 2

ouper-Teichmüller heory

pen problems

Transformation of coordinates via the triangulation change is therefore governed by Ptolemy relations. This leads to the prominent geometric example of *cluster algebra*, introduced by S. Fomin and A. Zelevinsky in the early 2000s.

Penner's coordinates can be used for the quantization of T(F) (L. Chekhov, V. Fock, R. Kashaev, late 90s, early 2000s).

Higher (super)Teichmüller spaces: $PSL(2,\mathbb{R})$ is replaced by some reductive (super)group G. In the case of reductive groups G the construction of coordinates was given by V.Fock and A. Goncharov (2003).

Coordinates on

V = 2 Super-Teichmüller

nen problems

Transformation of coordinates via the triangulation change is therefore governed by Ptolemy relations. This leads to the prominent geometric example of *cluster algebra*, introduced by S. Fomin and A. Zelevinsky in the early 2000s.

Penner's coordinates can be used for the quantization of T(F) (L. Chekhov, V. Fock, R. Kashaev, late 90s, early 2000s).

Higher (super)Teichmüller spaces: $PSL(2,\mathbb{R})$ is replaced by some reductive (super)group G. In the case of reductive groups G the construction of coordinates was given by V.Fock and A. Goncharov (2003).

 $\mathcal{N}=2$ Super-Teichmülle theory

Open problems

N=1 and N=2 super-Teichmüller spaces ST(F), related to supergroups OSP(1|2), OSp(2|2) correspondingly. In the late 80s the problem of construction of Penner's coordinates on ST(F) was introduced on Yu.I. Manin's Moscow seminar.

The N=1 case was solved nearly 30 years later in:

R Penner A Zeitlin arXiv:1509.06302

The N=2 case is solved in collaboration with I. Ip. R. Penner. A. Zeitlin, arXiv:1605.08094

Further directions of study:

- Cluster algebras with anticommuting variables
- ▶ Quantization of super-Teichmüller spaces (first attempt by J.Teschner et al. arXiv:1512.02617)
- Application to supermoduli theory and calculation of superstring amplitudes, which are highly nontrivial due to recent results of R.
 Donagi and E. Witten
- ► Higher super-Teichmüller theory for supergroups of higher rank

Coordinates on Super-Teichmüller space

N = 2 Super-Teichmülle theory

Open problems

N=1 and N=2 super-Teichmüller spaces ST(F), related to supergroups OSP(1|2), OSp(2|2) correspondingly. In the late 80s the problem of construction of Penner's coordinates on ST(F) was introduced on Yu.l. Manin's Moscow seminar.

The N=1 case was solved nearly 30 years later in: R. Penner, A. Zeitlin, arXiv:1509.06302.

The N=2 case is solved in collaboration with I. Ip, R. Penner, A. Zeitlin, arXiv:1605.08094.

Further directions of study

- Cluster algebras with anticommuting variables
- ▶ Quantization of super-Teichmüller spaces (first attempt by J.Teschner et al. arXiv:1512.02617)
- Application to supermoduli theory and calculation of superstring amplitudes, which are highly nontrivial due to recent results of R. Donagi and E. Witten
- ► Higher super-Teichmüller theory for supergroups of higher rank

oordinates on uper-Teichmüller oace

I = 2 uper-Teichmülle heory

pen problems

N=1 and N=2 super-Teichmüller spaces ST(F), related to supergroups OSP(1|2), OSp(2|2) correspondingly. In the late 80s the problem of construction of Penner's coordinates on ST(F) was introduced on Yu.I. Manin's Moscow seminar.

The N=1 case was solved nearly 30 years later in:

R. Penner, A. Zeitlin, arXiv:1509.06302.

The N=2 case is solved in collaboration with

I. Ip, R. Penner, A. Zeitlin, arXiv:1605.08094 .

Further directions of study:

- Cluster algebras with anticommuting variables
- Quantization of super-Teichmüller spaces (first attempt by J.Teschner et al. arXiv:1512.02617)
- Application to supermoduli theory and calculation of superstring amplitudes, which are highly nontrivial due to recent results of R. Donagi and E. Witten
- ► Higher super-Teichmüller theory for supergroups of higher rank

Let $\Lambda(\mathbb{K})=\Lambda^0(\mathbb{K})\oplus\Lambda^1(\mathbb{K})$ be an exterior algebra over field $\mathbb{K}=\mathbb{R},\mathbb{C}$ with (in)finitely many generators 1, e_1 , e_2 ,..., so that

$$a = a^{\#} + \sum_{i} a_{i}e_{i} + \sum_{ij} a_{ij}e_{i} \wedge e_{j} + \dots, \quad \# : \Lambda(\mathbb{K}) \to \mathbb{K}$$

Then superspace $\mathbb{K}^{(n|m)}$ is:

$$\mathbb{K}^{(n|m)} = \{(z_1, z_2, \dots, z_n | \theta_1, \theta_2, \dots, \theta_m) : z_i \in \Lambda^0(\mathbb{K}), \ \theta_j \in \Lambda^1(\mathbb{K})$$

One can define (n|m) supermanifolds over $\Lambda(\mathbb{K})$ based on superspaces $\mathbb{K}^{(n|m)}$, where $\{z_i\}$ and $\{\theta_i\}$ serve as *even and odd coordinates*.

• Upper $\mathbb{N}=N$ super-half-plane (we will need $\mathbb{N}=1,2$):

$$H^+ = \{(z|\theta_1, \theta_2, \dots, \theta_N) \in \mathbb{C}^{(1|N)} | \text{ Im } z^\# > 0\}$$

$$\mathbb{R}_{+}^{(n|m)} = \{(z_1, z_2, \dots, z_n | \theta_1, \theta_2, \dots, \theta_m) \in \mathbb{R}^{(m|n)} | z_i^\# > 0, i = 1, \dots, n\}$$

Let $\Lambda(\mathbb{K}) = \Lambda^0(\mathbb{K}) \oplus \Lambda^1(\mathbb{K})$ be an exterior algebra over field $\mathbb{K} = \mathbb{R}, \mathbb{C}$ with (in)finitely many generators 1, e_1 , e_2 ,..., so that

$$a = a^{\#} + \sum_{i} a_{i}e_{i} + \sum_{ij} a_{ij}e_{i} \wedge e_{j} + \dots, \quad \# : \Lambda(\mathbb{K}) \to \mathbb{K}$$

Then superspace $\mathbb{K}^{(n|m)}$ is:

$$\mathbb{K}^{(n|m)} = \{(z_1, z_2, \dots, z_n | \theta_1, \theta_2, \dots, \theta_m) : z_i \in \Lambda^0(\mathbb{K}), \ \theta_j \in \Lambda^1(\mathbb{K})\}$$

• Upper $\mathcal{N} = N$ super-half-plane (we will need $\mathcal{N} = 1, 2$):

$$H^+ = \{(z|\theta_1, \theta_2, \dots, \theta_N) \in \mathbb{C}^{(1|N)}| \text{ Im } z^\# > 0\}$$

$$\mathbb{R}_{+}^{(n|m)} = \{(z_1, z_2, \dots, z_n | \theta_1, \theta_2, \dots, \theta_m) \in \mathbb{R}_{+}^{(m|n)} | z_i^\# > 0, i = 1, \dots, n\}$$

Let $\Lambda(\mathbb{K})=\Lambda^0(\mathbb{K})\oplus\Lambda^1(\mathbb{K})$ be an exterior algebra over field $\mathbb{K}=\mathbb{R},\mathbb{C}$ with (in)finitely many generators 1, e_1 , e_2 ,..., so that

$$a = a^{\#} + \sum_{i} a_{i}e_{i} + \sum_{ij} a_{ij}e_{i} \wedge e_{j} + \ldots, \quad \# : \Lambda(\mathbb{K}) \to \mathbb{K}$$

Then superspace $\mathbb{K}^{(n|m)}$ is:

$$\mathbb{K}^{(n|m)} = \{(z_1, z_2, \ldots, z_n | \theta_1, \theta_2, \ldots, \theta_m) : z_i \in \Lambda^0(\mathbb{K}), \ \theta_j \in \Lambda^1(\mathbb{K})\}$$

One can define (n|m) supermanifolds over $\Lambda(\mathbb{K})$ based on superspaces $\mathbb{K}^{(n|m)}$, where $\{z_i\}$ and $\{\theta_i\}$ serve as *even and odd coordinates*.

ullet Upper $\mathcal{N}=\mathit{N}$ super-half-plane (we will need $\mathcal{N}=1,2$):

$$H^{+} = \{(z|\theta_{1}, \theta_{2}, \dots, \theta_{N}) \in \mathbb{C}^{(1|N)} | \text{ Im } z^{\#} > 0\}$$

$$\mathbb{R}_+^{(n|m)} = \{(z_1, z_2, \dots, z_n | \theta_1, \theta_2, \dots, \theta_m) \in \mathbb{R}_+^{(m|n)} | z_i^\# > 0, i = 1, \dots, n\}$$

Let $\Lambda(\mathbb{K}) = \Lambda^0(\mathbb{K}) \oplus \Lambda^1(\mathbb{K})$ be an exterior algebra over field $\mathbb{K} = \mathbb{R}, \mathbb{C}$ with (in)finitely many generators 1, e_1 , e_2 ,..., so that

$$a = a^{\#} + \sum_{i} a_{i}e_{i} + \sum_{ij} a_{ij}e_{i} \wedge e_{j} + \dots, \quad \# : \Lambda(\mathbb{K}) \to \mathbb{K}$$

Then superspace $\mathbb{K}^{(n|m)}$ is:

$$\mathbb{K}^{(n|m)} = \{(z_1, z_2, \ldots, z_n | \theta_1, \theta_2, \ldots, \theta_m) : z_i \in \Lambda^0(\mathbb{K}), \ \theta_j \in \Lambda^1(\mathbb{K})\}$$

One can define (n|m) supermanifolds over $\Lambda(\mathbb{K})$ based on superspaces $\mathbb{K}^{(n|m)}$, where $\{z_i\}$ and $\{\theta_i\}$ serve as *even and odd coordinates*.

 \bullet Upper ${\mathfrak N}=\emph{N}$ super-half-plane (we will need ${\mathfrak N}=1,2$):

$$H^+ = \{(z|\theta_1, \theta_2, \dots, \theta_N) \in \mathbb{C}^{(1|N)}| \text{ Im } z^\# > 0\}$$

$$\mathbb{R}_+^{(n|m)} = \{(z_1, z_2, \dots, z_n | \theta_1, \theta_2, \dots, \theta_m) \in \mathbb{R}^{(m|n)} | z_i^\# > 0, i = 1, \dots, n\}$$

Let $\Lambda(\mathbb{K})=\Lambda^0(\mathbb{K})\oplus\Lambda^1(\mathbb{K})$ be an exterior algebra over field $\mathbb{K}=\mathbb{R},\mathbb{C}$ with (in)finitely many generators 1, e_1 , e_2 ,..., so that

$$a = a^{\#} + \sum_{i} a_{i}e_{i} + \sum_{ij} a_{ij}e_{i} \wedge e_{j} + \ldots, \quad \# : \Lambda(\mathbb{K}) \to \mathbb{K}$$

Then superspace $\mathbb{K}^{(n|m)}$ is:

$$\mathbb{K}^{(n|m)} = \{(z_1, z_2, \dots, z_n | \theta_1, \theta_2, \dots, \theta_m) : z_i \in \Lambda^0(\mathbb{K}), \ \theta_j \in \Lambda^1(\mathbb{K})\}$$

One can define (n|m) supermanifolds over $\Lambda(\mathbb{K})$ based on superspaces $\mathbb{K}^{(n|m)}$, where $\{z_i\}$ and $\{\theta_i\}$ serve as *even and odd coordinates*.

ullet Upper $\mathcal{N}=\mathit{N}$ super-half-plane (we will need $\mathcal{N}=1,2$):

$$H^+ = \{(z|\theta_1, \theta_2, \dots, \theta_N) \in \mathbb{C}^{(1|N)}| \text{ Im } z^\# > 0\}$$

$$\mathbb{R}_{+}^{(n|m)} = \{(z_1, z_2, \dots, z_n | \theta_1, \theta_2, \dots, \theta_m) \in \mathbb{R}^{(m|n)} | z_i^{\#} > 0, i = 1, \dots, n\}$$

√ = 2 luper-Teichmülle heory

Open problems

 $(2|1) \times (2|1)$ supermatrices g, obeying the relation

$$g^{st}Jg=J,$$

where

$$J = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

and where the supertranspose g^{st} of g is given by

$$g = \begin{pmatrix} a & b & \alpha \\ c & d & \beta \\ \gamma & \delta & f \end{pmatrix} \quad \text{implies} \quad g^{st} = \begin{pmatrix} a & c & \gamma \\ b & d & \delta \\ -\alpha & -\beta & f \end{pmatrix}.$$

We want connected component of identity, so we assume that Berezinian (super-analogue of determinant) = 1.

Lie superalgebra: three even h, X_{\pm} and two odd generators v_{\pm} satisfying the commutation relations

$$[h, v_{\pm}] = \pm v_{\pm}, \quad [v_{\pm}, v_{\pm}] = \mp 2X_{\pm}, \quad [v_{+}, v_{-}] = h.$$

uper-Teichmülle heory

pen problems

 $(2|1) \times (2|1)$ supermatrices g, obeying the relation

$$g^{st}Jg=J,$$

where

$$J=\left(egin{array}{cccc} 0 & 1 & 0 \ -1 & 0 & 0 \ 0 & 0 & -1 \end{array}
ight)$$

and where the supertranspose g^{st} of g is given by

$$g = \begin{pmatrix} a & b & \alpha \\ c & d & \beta \\ \gamma & \delta & f \end{pmatrix} \quad \text{implies} \quad g^{st} = \begin{pmatrix} a & c & \gamma \\ b & d & \delta \\ -\alpha & -\beta & f \end{pmatrix}.$$

We want connected component of identity, so we assume that Berezinian (super-analogue of determinant) = 1.

Lie superalgebra: three even h, X_{\pm} and two odd generators v_{\pm} satisfying the commutation relations

$$[h,v_{\pm}]=\pm v_{\pm},\quad [v_{\pm},v_{\pm}]=\mp 2X_{\pm},\quad [v_{+},v_{-}]=h.$$

r = 2 uper-Teichmülle heory

Open problems

 $(2|1) \times (2|1)$ supermatrices g, obeying the relation

$$g^{st}Jg=J,$$

where

$$J=\left(egin{array}{cccc} 0 & 1 & 0 \ -1 & 0 & 0 \ 0 & 0 & -1 \end{array}
ight)$$

and where the supertranspose g^{st} of g is given by

$$g = \begin{pmatrix} a & b & \alpha \\ c & d & \beta \\ \gamma & \delta & f \end{pmatrix} \quad \text{implies} \quad g^{st} = \begin{pmatrix} a & c & \gamma \\ b & d & \delta \\ -\alpha & -\beta & f \end{pmatrix}.$$

We want connected component of identity, so we assume that Berezinian (super-analogue of determinant) = 1.

Lie superalgebra: three even h, X_{\pm} and two odd generators v_{\pm} satisfying the commutation relations

$$[h, v_{\pm}] = \pm v_{\pm}, \quad [v_{\pm}, v_{\pm}] = \mp 2X_{\pm}, \quad [v_{+}, v_{-}] = h.$$

Coordinates on Super-Teichmüller space

> Super-Teichmüll heory

pen problems

OSp(1|2) acts on H^+ , $\partial H^+ = \mathbb{R}^{1|1}$ by superconformal fractional-linear transformations:

$$\begin{split} z &\to \frac{az+b}{cz+d} + \eta \frac{\gamma z + \delta}{(cz+d)^2}, \\ \eta &\to \frac{\gamma z + \delta}{cz+d} + \eta \frac{1 + \frac{1}{2}\delta\gamma}{cz+d}. \end{split}$$

Factor H^+/Γ , where Γ is a super-Fuchsian group and H^+ is the $\mathcal{N}=1$ super-half-plane are called super-Riemann surfaces.

We note that there are more general fractional-linear transformations acting on H^+ . They correspond to SL(1|2) supergroup, and factors H^+/Γ give (1|1)-supermanifolds which have relation to $\mathcal{N}=2$ super-Teichmüller theory.

Super-Teichmülle heory

pen problems

OSp(1|2) acts on H^+ , $\partial H^+ = \mathbb{R}^{1|1}$ by superconformal fractional-linear transformations:

$$z \to \frac{az+b}{cz+d} + \eta \frac{\gamma z + \delta}{(cz+d)^2},$$
$$\eta \to \frac{\gamma z + \delta}{cz+d} + \eta \frac{1 + \frac{1}{2}\delta\gamma}{cz+d}.$$

Factor H^+/Γ , where Γ is a super-Fuchsian group and H^+ is the $\mathfrak{N}=1$ super-half-plane are called super-Riemann surfaces.

We note that there are more general fractional-linear transformations acting on H^+ . They correspond to SL(1|2) supergroup, and factors H^+/Γ give (1|1)-supermanifolds which have relation to $\mathbb{N}=2$ super-Teichmüller theory.

Coordinates on Super-Teichmüller space

> r – 2 uper-Teichmülle heory

pen problems

OSp(1|2) acts on H^+ , $\partial H^+ = \mathbb{R}^{1|1}$ by superconformal fractional-linear transformations:

$$\begin{split} z &\to \frac{az+b}{cz+d} + \eta \frac{\gamma z + \delta}{(cz+d)^2}, \\ \eta &\to \frac{\gamma z + \delta}{cz+d} + \eta \frac{1 + \frac{1}{2}\delta\gamma}{cz+d}. \end{split}$$

Factor H^+/Γ , where Γ is a super-Fuchsian group and H^+ is the $\mathfrak{N}=1$ super-half-plane are called super-Riemann surfaces.

We note that there are more general fractional-linear transformations acting on H^+ . They correspond to SL(1|2) supergroup, and factors H^+/Γ give (1|1)-supermanifolds which have relation to $\mathcal{N}=2$ super-Teichmüller theory.

N = 2 Super-Teichmülle

pen problems

- iii) Ideal triangulations and trivalent fatgraphs
- ullet Ideal triangulation of F: triangulation Δ of F with punctures at the vertices, so that each arc connecting punctures is not homotopic to a point rel punctures.
- \bullet Trivalent fatgraph: trivalent graph τ with cyclic orderings on half-edges about each vertex.

 $\tau = \tau(\Delta)$, if the following is true:

- 1) one fatgraph vertex per triangle
- 2) one edge of fatgraph intersects one shared edge of triangulation

Super-Teichmüller space

v = 2 Super-Teichmülle Theory

Open problems

iii) Ideal triangulations and trivalent fatgraphs

ullet Ideal triangulation of F: triangulation Δ of F with punctures at the vertices, so that each arc connecting punctures is not homotopic to a point rel punctures.

 \bullet Trivalent fatgraph: trivalent graph τ with cyclic orderings on half-edges about each vertex.

 $\tau = \tau(\Delta)$, if the following is true:

- 1) one fatgraph vertex per triangle
- 2) one edge of fatgraph intersects one shared edge of triangulation

Super-Teichmüller space

N = 2 Super-Teichmülle theory

pen problems

- iii) Ideal triangulations and trivalent fatgraphs
- ullet Ideal triangulation of F: triangulation Δ of F with punctures at the vertices, so that each arc connecting punctures is not homotopic to a point rel punctures.
- \bullet Trivalent fatgraph: trivalent graph τ with cyclic orderings on half-edges about each vertex.

 $\tau = \tau(\Delta)$, if the following is true:

- 1) one fatgraph vertex per triangle
- 2) one edge of fatgraph intersects one shared edge of triangulation.

Coordinates on Super-Teichmüller space

I = 2 uper-Teichmülle heorv

Open problems

- Ideal triangulation of F: triangulation Δ of F with punctures at the vertices, so that each arc connecting punctures is not homotopic to a point rel punctures.
- \bullet Trivalent fatgraph: trivalent graph τ with cyclic orderings on half-edges about each vertex.

 $\tau = \tau(\Delta)$, if the following is true:

- 1) one fatgraph vertex per triangle
- 2) one edge of fatgraph intersects one shared edge of triangulation.

V = 2 Super-Teichmüll

pen problems

iv) (N = 1) Super-Teichmüller space

From now on let

$$ST(F) = \operatorname{Hom}'(\pi_1(F), OSp(1|2))/OSp(1|2)$$

Super-Fuchsian representations comprising $\operatorname{Hom}^\prime$ are defined to be those whose projections

$$\pi_1 \to \mathit{OSp}(1|2) \to \mathit{SL}(2,\mathbb{R}) \to \mathit{PSL}(2,\mathbb{R})$$

are Fuchsian group, corresponding to F

Trivial bundle $S\tilde{T}(F) = \mathbb{R}^s_+ \times ST(F)$ is called decorated super-Teichmüller space.

V = 2 Super-Teichmülle heorv

en problems

iv) (N = 1) Super-Teichmüller space

From now on let

$$ST(F) = \text{Hom}'(\pi_1(F), OSp(1|2))/OSp(1|2).$$

Super-Fuchsian representations comprising $\operatorname{Hom}^\prime$ are defined to be those whose projections

$$\pi_1 o \mathit{OSp}(1|2) o \mathit{SL}(2,\mathbb{R}) o \mathit{PSL}(2,\mathbb{R})$$

are Fuchsian group, corresponding to F.

Trivial bundle $S\tilde{T}(F) = \mathbb{R}^s_+ \times ST(F)$ is called decorated super-Teichmüller space.

Coordinates on Super-Teichmüller

> V = 2 Super-Teichmülle boom

pen problems

iv) (N = 1) Super-Teichmüller space

From now on let

$$ST(F) \ = \ \operatorname{Hom}'(\pi_1(F), OSp(1|2))/OSp(1|2).$$

Super-Fuchsian representations comprising $\operatorname{Hom}^\prime$ are defined to be those whose projections

$$\pi_1 o \mathit{OSp}(1|2) o \mathit{SL}(2,\mathbb{R}) o \mathit{PSL}(2,\mathbb{R})$$

are Fuchsian group, corresponding to F.

Trivial bundle $S\tilde{T}(F) = \mathbb{R}^{s}_{+} \times ST(F)$ is called decorated super-Teichmüller space.

Cast of characters

Super-Teichmüller space

V = 2 Super-Teichmülle heory

pen problems

iv) (N = 1) Super-Teichmüller space

From now on let

$$ST(F) = \text{Hom}'(\pi_1(F), OSp(1|2))/OSp(1|2).$$

Super-Fuchsian representations comprising $\operatorname{Hom}^\prime$ are defined to be those whose projections

$$\pi_1 \to OSp(1|2) \to SL(2,\mathbb{R}) \to PSL(2,\mathbb{R})$$

are Fuchsian group, corresponding to F.

Trivial bundle $S\tilde{T}(F) = \mathbb{R}^{s}_{+} \times ST(F)$ is called decorated super-Teichmüller space.

Let M be an oriented n-dimensional Riemannian manifold, P_{SO} is an orthonormal frame bundle, associated with TM. A spin structure is a 2-fold covering map $P \to P_{SO}$, which restricts to $Spin(n) \to SO(n)$ on each fiber.

There are several ways to describe spin structures on F:

• D. Johnson:

Quadratic forms $q: H_1(F, \mathbb{Z}_2) \to \mathbb{Z}_2$, which are quadratic for the intersection pairing $\cdot: H_1 \otimes H_1 \to \mathbb{Z}_2$, i.e. $q(a+b) = q(a) + q(b) + a \cdot b$ if $a, b \in H_1$.

• D. Cimasoni and N. Reshetikhin:

Combinatorial description of spin structures in terms of the so-called Kasteleyn orientations and dimer configurations on the one-skeleton of a suitable CW decomposition of F. They derive formula for the quadratic form in terms of that combinatorial data.

Let M be an oriented n-dimensional Riemannian manifold, P_{SO} is an orthonormal frame bundle, associated with TM. A spin structure is a 2-fold covering map $P \to P_{SO}$, which restricts to $Spin(n) \to SO(n)$ on each fiber.

D. Johnson:

D. Cimasoni and N. Reshetikhin:

Cast of characters

Let M be an oriented n-dimensional Riemannian manifold, P_{SO} is an orthonormal frame bundle, associated with TM. A spin structure is a 2-fold covering map $P \to P_{SO}$, which restricts to $Spin(n) \to SO(n)$ on each fiber.

There are several ways to describe spin structures on F:

• D. Johnson:

Quadratic forms $q: H_1(F, \mathbb{Z}_2) \to \mathbb{Z}_2$, which are quadratic for the intersection pairing $\cdot: H_1 \otimes H_1 \to \mathbb{Z}_2$, i.e. $q(a+b) = q(a) + q(b) + a \cdot b$ if $a, b \in H_1$.

• D. Cimasoni and N. Reshetikhin:

Combinatorial description of spin structures in terms of the so-called Kasteleyn orientations and dimer configurations on the one-skeleton of a suitable CW decomposition of F. They derive formula for the quadratic form in terms of that combinatorial data.

Outline

ntroduction

Cast of characters

Super-Teichmüller space

uper-Teichmülle leory

Let M be an oriented n-dimensional Riemannian manifold, P_{SO} is an orthonormal frame bundle, associated with TM. A spin structure is a 2-fold covering map $P \to P_{SO}$, which restricts to $Spin(n) \to SO(n)$ on each fiber.

There are several ways to describe spin structures on F:

• D. Johnson:

Quadratic forms $q: H_1(F, \mathbb{Z}_2) \to \mathbb{Z}_2$, which are quadratic for the intersection pairing $\cdot: H_1 \otimes H_1 \to \mathbb{Z}_2$, i.e. $q(a+b) = q(a) + q(b) + a \cdot b$ if $a, b \in H_1$.

• D. Cimasoni and N. Reshetikhin:

Combinatorial description of spin structures in terms of the so-called Kasteleyn orientations and dimer configurations on the one-skeleton of a suitable CW decomposition of F. They derive formula for the quadratic form in terms of that combinatorial data.

Outline

Introduction

Cast of characters

oordinates on Juper-Teichmülle pace

– ∠ per-Teichmülle eory

Super-Teichmüller space

v = 2 Juper-Teichmülle heory

non problems

A spin structure on a uniformized surface $F = \mathcal{U}/\Gamma$ is determined by a lift $\tilde{\rho}: \pi_1 \to SL(2,\mathbb{R})$ of $\rho: \pi_1 \to PSL_2(\mathbb{R})$. Quadratic form q is computed using the following rules: trace $\tilde{\rho}(\gamma) > 0$ if and only if $q([\gamma]) \neq 0$, where $[\gamma] \in H_1$ is the image of $\gamma \in \pi_1$ under the mod two Hurewicz map.

We gave another combinatorial formulation of spin structures on F (one of the main results of arXiv:1509.06302):

• Equivalence classes $\mathfrak{O}(\tau)$ of all orientations on a trivalent fatgraph spine $\tau \subset F$, where the equivalence relation is generated by reversing the orientation of each edge incident on some fixed vertex, with the added bonus of a computable evolution under flips:

Super-Teichmüller pace

V = 2 Super-Teichmülle⊦ heory

pen problems

A spin structure on a uniformized surface $F=\mathcal{U}/\Gamma$ is determined by a lift $\tilde{\rho}:\pi_1\to SL(2,\mathbb{R})$ of $\rho:\pi_1\to PSL_2(\mathbb{R})$. Quadratic form q is computed using the following rules: trace $\tilde{\rho}(\gamma)>0$ if and only if $q([\gamma])\neq 0$, where $[\gamma]\in H_1$ is the image of $\gamma\in\pi_1$ under the mod two Hurewicz map.

We gave another combinatorial formulation of spin structures on F (one of the main results of arXiv:1509.06302):

• Equivalence classes $\mathfrak{O}(\tau)$ of all orientations on a trivalent fatgraph spine $\tau \subset F$, where the equivalence relation is generated by reversing the orientation of each edge incident on some fixed vertex, with the added bonus of a computable evolution under flips:

- $\tau \subset F$ is some trivalent fatgraph spine
- ω is an orientation on the edges of τ whose class in $\mathfrak{O}(\tau)$ determines the component C of $S\tilde{T}(F)$

- \blacktriangleright one even coordinate called a λ -length for each edge
- \blacktriangleright one odd coordinate called a μ -invariant for each vertex of τ ,

Alternating the sign in one of the fermions corresponds to the reflection on the spin graph.

The above $\lambda\text{-lengths}$ and $\mu\text{-invariants}$ establish a real-analytic homeomorphism

$$C \to \mathbb{R}^{6g-6+3s|4g-4+2s}_+/\mathbb{Z}_2.$$

Outline

Introduction

Cast of characters

Coordinates on Super-Teichmüller space

- ▶ $\tau \subset F$ is some trivalent fatgraph spine
- ω is an orientation on the edges of τ whose class in $\mathfrak{O}(\tau)$ determines the component C of $S\tilde{T}(F)$

- one even coordinate called a λ -length for each edge
- \blacktriangleright one odd coordinate called a μ -invariant for each vertex of τ , the latter of which are taken modulo an overall change of sign.

Alternating the sign in one of the fermions corresponds to the reflection on the spin graph.

The above $\lambda\text{-lengths}$ and $\mu\text{-invariants}$ establish a real-analytic homeomorphism

$$C \to \mathbb{R}^{6g-6+3s|4g-4+2s}_+/\mathbb{Z}_2.$$

Outline

Introduction

Cast of characters

Coordinates on Super-Teichmüller space

I = 2uper-Teichmülle

- ▶ $\tau \subset F$ is some trivalent fatgraph spine
- ω is an orientation on the edges of τ whose class in $\mathfrak{O}(\tau)$ determines the component C of $S\tilde{T}(F)$

- one even coordinate called a λ -length for each edge
- ightharpoonup one odd coordinate called a μ -invariant for each vertex of τ , the latter of which are taken modulo an overall change of sign.

Alternating the sign in one of the fermions corresponds to the reflection on the spin graph.

The above $\lambda\text{-lengths}$ and $\mu\text{-invariants}$ establish a real-analytic homeomorphism

$$C \to \mathbb{R}^{6g-6+3s|4g-4+2s}_+/\mathbb{Z}_2$$

Introduction

Cast of character

Coordinates on Super-Teichmüller space

_

- $\tau \subset F$ is some trivalent fatgraph spine
- ω is an orientation on the edges of τ whose class in $\mathcal{O}(\tau)$ determines the component C of $S\tilde{T}(F)$

- one even coordinate called a λ -length for each edge
- ightharpoonup one odd coordinate called a μ -invariant for each vertex of τ , the latter of which are taken modulo an overall change of sign.

Alternating the sign in one of the fermions corresponds to the reflection on the spin graph.

The above $\lambda\text{-lengths}$ and $\mu\text{-invariants}$ establish a real-analytic homeomorphism

$$C \to \mathbb{R}^{6g-6+3s|4g-4+2s}_+/\mathbb{Z}_2.$$

Outline

Introduction

Cast of characters

Coordinates on Super-Teichmüller space

> / = 2 uper-Teichmülle neory

Coordinates on Super-Teichmüller space

v = 2 Super-Teichmüll heory

open problems

When all a, b, c, d are different edges of the triangulations of F,

Ptolemy transformations are as follows:

$$\begin{split} & \textit{ef} = (\textit{ac} + \textit{bd}) \Big(1 + \frac{\sigma \theta \sqrt{\chi}}{1 + \chi} \Big), \\ & \nu = \frac{\sigma + \theta \sqrt{\chi}}{\sqrt{1 + \chi}}, \quad \mu = \frac{\sigma \sqrt{\chi} - \theta}{\sqrt{1 + \chi}}. \end{split}$$

 $\chi=\frac{ac}{bd}$ denotes the cross-ratio, and the evolution of spin graph follows from the construction associated to the spin graph evolution rule.

N = 2 Super-Teichmülle

pen problems

These coordinates are natural in the sense that if $\varphi \in MC(F)$ has induced action $\tilde{\varphi}$ on $\tilde{\Gamma} \in S\tilde{T}(F)$, then $\tilde{\varphi}(\tilde{\Gamma})$ is determined by the orientation and coordinates on edges and vertices of $\varphi(\tau)$ induced by φ from the orientation ω , the λ -lengths and μ -invariants on τ .

There is an even 2-form on $S\tilde{T}(F)$ which is invariant under super Ptolemy transformations, namely,

$$\omega = \sum_{v} d \log a \wedge d \log b + d \log b \wedge d \log c + d \log c \wedge d \log a - (d\theta)^{2}$$

where the sum is over all vertices v of τ where the consecutive half edges incident on v in clockwise order have induced λ -lengths a,b,c and θ is the μ -invariant of v.

Coordinates on ST(F)

Take instead of λ -lengths shear coordinates $z_e = \log\left(\frac{ac}{bd}\right)$ for every edge e, which are subject to linear relation: the sum of all z_e adjacent to a given vertex = 0.

pen problems

These coordinates are natural in the sense that if $\varphi \in MC(F)$ has induced action $\tilde{\varphi}$ on $\tilde{\Gamma} \in S\tilde{T}(F)$, then $\tilde{\varphi}(\tilde{\Gamma})$ is determined by the orientation and coordinates on edges and vertices of $\varphi(\tau)$ induced by φ from the orientation ω , the λ -lengths and μ -invariants on τ .

There is an even 2-form on $S\tilde{T}(F)$ which is invariant under super Ptolemy transformations, namely,

$$\omega = \sum_{v} d \log a \wedge d \log b + d \log b \wedge d \log c + d \log c \wedge d \log a - (d\theta)^{2},$$

where the sum is over all vertices v of τ where the consecutive half edges incident on v in clockwise order have induced λ -lengths a,b,c and θ is the μ -invariant of v.

Coordinates on ST(F)

Take instead of λ -lengths shear coordinates $z_e = \log\left(\frac{ac}{bd}\right)$ for every edge e, which are subject to linear relation: the sum of all z_e adjacen to a given vertex = 0.

space

N = 2 Super-Teichmüller

en problems

These coordinates are natural in the sense that if $\varphi \in MC(F)$ has induced action $\tilde{\varphi}$ on $\tilde{\Gamma} \in S\tilde{T}(F)$, then $\tilde{\varphi}(\tilde{\Gamma})$ is determined by the orientation and coordinates on edges and vertices of $\varphi(\tau)$ induced by φ from the orientation ω , the λ -lengths and μ -invariants on τ .

There is an even 2-form on $S\tilde{T}(F)$ which is invariant under super Ptolemy transformations, namely,

$$\omega = \sum_{v} d \log a \wedge d \log b + d \log b \wedge d \log c + d \log c \wedge d \log a - (d\theta)^{2},$$

where the sum is over all vertices v of τ where the consecutive half edges incident on v in clockwise order have induced λ -lengths a,b,c and θ is the μ -invariant of v.

Coordinates on ST(F):

Take instead of λ -lengths shear coordinates $z_e = \log\left(\frac{ac}{bd}\right)$ for every edge e, which are subject to linear relation: the sum of all z_e adjacent to a given vertex = 0.

N = 2

Super-Teichmüller theory

pen problems

OSp(1|2) acts in super-Minkowski space $\mathbb{R}^{2,1|2}$.

If $A=(x_1,x_2,y,\phi,\theta)$ and $A'=(x_1',x_2',y',\phi',\theta')$ in $\mathbb{R}^{2,1|2}$, the pairing is:

$$\langle A, A' \rangle = \frac{1}{2} (x_1 x_2' + x_1' x_2) - yy' + \phi \theta' + \phi' \theta.$$

Two surfaces of special importance for us are

- Superhyperboloid $\mathbb H$ consisting of points $A \in \mathbb R^{2,1|2}$ satisfying the condition $\langle A,A \rangle = 1$
- Positive super light cone L^+ consisting of points $B \in \mathbb{R}^{2,1|2}$ satisfying $\langle B, B \rangle = 0$,

where $x_1^{\#}, x_2^{\#} \ge 0$

Equivariant projection from \mathbb{H} on the upper half plane H^+ is given by the formulas:

$$\eta = \frac{\theta}{x_2}(1+iy) - i\phi, \quad z = \frac{i-y-i\phi\theta}{x_2}$$

OSp(1|2) acts in super-Minkowski space $\mathbb{R}^{2,1|2}$.

If $A = (x_1, x_2, y, \phi, \theta)$ and $A' = (x'_1, x'_2, y', \phi', \theta')$ in $\mathbb{R}^{2,1|2}$, the pairing is:

$$\langle A,A' \rangle = \frac{1}{2} (x_1 x_2' + x_1' x_2) - yy' + \phi \theta' + \phi' \theta.$$

Two surfaces of special importance for us are

- ▶ Superhyperboloid \mathbb{H} consisting of points $A \in \mathbb{R}^{2,1|2}$ satisfying the condition $\langle A, A \rangle = 1$
- ▶ Positive super light cone L^+ consisting of points $B \in \mathbb{R}^{2,1|2}$ satisfying $\langle B, B \rangle = 0$,

where $x_1^{\#}, x_2^{\#} > 0$.

$$\eta = \frac{\theta}{x_2}(1+iy) - i\phi, \quad z = \frac{i-y-i\phi\theta}{x_2}$$

OSp(1|2) acts in super-Minkowski space $\mathbb{R}^{2,1|2}$.

If
$$A=(x_1,x_2,y,\phi,\theta)$$
 and $A'=(x_1',x_2',y',\phi',\theta')$ in $\mathbb{R}^{2,1|2}$, the pairing is:

$$\langle A,A'\rangle = \frac{1}{2}(x_1x_2'+x_1'x_2)-yy'+\phi\theta'+\phi'\theta.$$

Two surfaces of special importance for us are

- ▶ Superhyperboloid $\mathbb H$ consisting of points $A \in \mathbb R^{2,1|2}$ satisfying the condition $\langle A,A \rangle = 1$
- Positive super light cone L^+ consisting of points $B \in \mathbb{R}^{2,1|2}$ satisfying $\langle B, B \rangle = 0$,

where $x_1^{\#}, x_2^{\#} \geq 0$.

Equivariant projection from $\mathbb H$ on the upper half plane H^+ is given by the formulas:

$$\eta = \frac{\theta}{x_2}(1+iy) - i\phi, \quad z = \frac{i-y-i\phi\theta}{x_2}$$

N = 2Super-Teichmülle

theory

Open problems

OSp(1|2) does not act transitively on L^+ :

The space of orbits is labelled by odd variable up to a sign.

We pick an orbit of the vector (1,0,0,0,0) and denote it L_0^+ .

The equivariant projection from L_0^+ to $\mathbb{R}^{1|1}=\partial H^+$ is given by

$$(x_1, x_2, y, \phi, \psi) \to (z, \eta), \quad z = \frac{-y}{x_2}, \quad \eta = \frac{\psi}{x_2}, \text{ if } x_2^\# \neq 0$$

<u>Goal</u>: Construction of the π_1 -equivariant lift for all the data from the universal cover \tilde{F} , associated to its triangulation to L_0^+ .

Such equivariant lift gives the representation of π_1 in OSp(1|2).

N = 2 Super-Teichmülle

nen problems

OSp(1|2) does not act transitively on L^+ :

The space of orbits is labelled by odd variable up to a sign.

We pick an orbit of the vector (1,0,0,0,0) and denote it L_0^+ .

The equivariant projection from L_0^+ to $\mathbb{R}^{1|1} = \partial H^+$ is given by:

$$(x_1, x_2, y, \phi, \psi) \to (z, \eta), \quad z = \frac{-y}{x_2}, \quad \eta = \frac{\psi}{x_2}, \text{ if } x_2^\# \neq 0.$$

<u>Goal</u>: Construction of the π_1 -equivariant lift for all the data from the universal cover \tilde{F} , associated to its triangulation to L_0^+ .

Such equivariant lift gives the representation of π_1 in OSp(1|2).

l = 2 uper-Teichmülle heory

pen problems

OSp(1|2) does not act transitively on L^+ :

The space of orbits is labelled by odd variable up to a sign.

We pick an orbit of the vector (1,0,0,0,0) and denote it L_0^+ .

The equivariant projection from L_0^+ to $\mathbb{R}^{1|1} = \partial H^+$ is given by:

$$(x_1, x_2, y, \phi, \psi) \to (z, \eta), \quad z = \frac{-y}{x_2}, \quad \eta = \frac{\psi}{x_2}, \text{ if } x_2^\# \neq 0.$$

<u>Goal</u>: Construction of the π_1 -equivariant lift for all the data from the universal cover \tilde{F} , associated to its triangulation to L_0^+ .

Such equivariant lift gives the representation of π_1 in OSp(1|2).

• There is a unique OSp(1|2)-invariant of two linearly independent vectors $A, B \in L_0^+$, and it is given by the pairing $\langle A, B \rangle$, the square root of which we will call λ -length.

Let $\zeta^b \zeta^e \zeta^a$ be a positive triple in L_0^+ . Then there is $g \in OSp(1|2)$, which is unique up to composition with the fermionic reflection, and unique even r, s, t, which have positive bodies, and odd θ so that

$$g \cdot \zeta^e = t(1, 1, 1, \theta, \theta), \ g \cdot \zeta^b = r(0, 1, 0, 0, 0), \ g \cdot \zeta^a = s(1, 0, 0, 0, 0).$$

• The moduli space of OSp(1|2)-orbits of positive triples in the light cone is given by $(a,b,e,\theta) \in \mathbb{R}^{3|1}_+/\mathbb{Z}_2$, where \mathbb{Z}_2 acts by fermionic reflection.

Here λ -lengths

$$a^2 = \langle \zeta^b, \zeta^e \rangle, \quad b^2 = \langle \zeta^a, \zeta^e \rangle, \quad e^2 = \langle \zeta^a, \zeta^b \rangle.$$

are given by: $r=\sqrt{2}~\frac{ea}{b},~~s=\sqrt{2}~\frac{be}{a},~~t=\sqrt{2}~\frac{ab}{e}.$

On the superline $\mathbb{R}^{1|1}$ parameter heta is known as $extit{Manin invariant}$.

• There is a unique OSp(1|2)-invariant of two linearly independent vectors $A, B \in L_0^+$, and it is given by the pairing $\langle A, B \rangle$, the square root of which we will call λ -length.

Let $\zeta^b\zeta^e\zeta^a$ be a positive triple in L_0^+ . Then there is $g\in OSp(1|2)$, which is unique up to composition with the fermionic reflection, and unique even r,s,t, which have positive bodies, and odd θ so that

$$g \cdot \zeta^e = t(1, 1, 1, \theta, \theta), \ g \cdot \zeta^b = r(0, 1, 0, 0, 0), \ g \cdot \zeta^a = s(1, 0, 0, 0, 0).$$

• The moduli space of OSp(1|2)-orbits of positive triples in the light cone is given by $(a,b,e,\theta) \in \mathbb{R}^{3|1}_+/\mathbb{Z}_2$, where \mathbb{Z}_2 acts by fermionic reflection.

Here λ -lengths

$$\mathbf{a}^2 = \ <\zeta^b, \zeta^e>, \ \ \mathbf{b}^2 = \ <\zeta^a, \zeta^e>, \ \ \mathbf{e}^2 = \ <\zeta^a, \zeta^b>.$$

are given by: $r = \sqrt{2} \, \frac{ea}{b}, \quad s = \sqrt{2} \, \frac{be}{a}, \quad t = \sqrt{2} \, \frac{ab}{e}.$

On the superline $\mathbb{R}^{1|1}$ parameter heta is known as $extit{Manin invariant}$.

• There is a unique OSp(1|2)-invariant of two linearly independent vectors $A, B \in L_0^+$, and it is given by the pairing $\langle A, B \rangle$, the square root of which we will call λ -length.

Let $\zeta^b\zeta^e\zeta^a$ be a positive triple in L_0^+ . Then there is $g\in OSp(1|2)$, which is unique up to composition with the fermionic reflection, and unique even r,s,t, which have positive bodies, and odd θ so that

$$g \cdot \zeta^e = t(1, 1, 1, \theta, \theta), \ g \cdot \zeta^b = r(0, 1, 0, 0, 0), \ g \cdot \zeta^a = s(1, 0, 0, 0, 0).$$

• The moduli space of OSp(1|2)-orbits of positive triples in the light cone is given by $(a, b, e, \theta) \in \mathbb{R}^{3|1}_+/\mathbb{Z}_2$, where \mathbb{Z}_2 acts by fermionic reflection.

Here λ -lengths

$$a^2 = \langle \zeta^b, \zeta^e \rangle, \quad b^2 = \langle \zeta^a, \zeta^e \rangle, \quad e^2 = \langle \zeta^a, \zeta^b \rangle.$$

are given by: $r=\sqrt{2}~\frac{ea}{b},~~s=\sqrt{2}~\frac{be}{a},~~t=\sqrt{2}~\frac{ab}{e}.$

On the superline $\mathbb{R}^{1|1}$ parameter heta is known as Manin invariant

• There is a unique OSp(1|2)-invariant of two

• There is a unique OSp(1|2)-invariant of two linearly independent vectors $A, B \in L_0^+$, and it is given by the pairing $\langle A, B \rangle$, the square root of which we will call λ -length.

Let $\zeta^b\zeta^e\zeta^a$ be a positive triple in L_0^+ . Then there is $g\in OSp(1|2)$, which is unique up to composition with the fermionic reflection, and unique even r,s,t, which have positive bodies, and odd θ so that

$$g \cdot \zeta^e = t(1, 1, 1, \theta, \theta), \ g \cdot \zeta^b = r(0, 1, 0, 0, 0), \ g \cdot \zeta^a = s(1, 0, 0, 0, 0).$$

• The moduli space of OSp(1|2)-orbits of positive triples in the light cone is given by $(a,b,e,\theta) \in \mathbb{R}^{3|1}_+/\mathbb{Z}_2$, where \mathbb{Z}_2 acts by fermionic reflection.

Here λ -lengths

$$\mathbf{a}^2 = \ <\zeta^b, \zeta^e>, \ \mathbf{b}^2 = \ <\zeta^a, \zeta^e>, \ \mathbf{e}^2 = \ <\zeta^a, \zeta^b>.$$

are given by: $r=\sqrt{2}~\frac{ea}{b},~~s=\sqrt{2}~\frac{be}{a},~~t=\sqrt{2}~\frac{ab}{e}.$

On the superline $\mathbb{R}^{1|1}$ parameter θ is known as *Manin invariant*.

Anton Zeitlin

Coordinates on Super-Teichmüller space

Suppose points A, B, C are put in the standard position.

The 4th point D: $(x_1, x_2, -y, \rho, \xi)$, so that two new λ - lengths are c, d.

$$x_1 = \sqrt{2} \frac{cd}{e} \chi^{-1}, \quad x_2 = \sqrt{2} \frac{cd}{e} \chi, \quad \lambda = -\sqrt{2} \frac{cd}{e} \sqrt{\chi} \sigma, \quad \rho = \sqrt{2} \frac{cd}{e} \sqrt{\chi}^{-1} \sigma$$

$$(\theta,\sigma) \to (\sigma,-\theta)$$

space

Suppose points A, B, C are put in the standard position.

The 4th point D: $(x_1, x_2, -y, \rho, \xi)$, so that two new λ - lengths are c, d.

Fixing the sign of θ , we fix the sign of Manin invariant σ as follows:

$$x_1 = \sqrt{2} \frac{cd}{e} \chi^{-1}, \quad x_2 = \sqrt{2} \frac{cd}{e} \chi, \quad \lambda = -\sqrt{2} \frac{cd}{e} \sqrt{\chi} \ \sigma, \quad \rho = \sqrt{2} \frac{cd}{e} \sqrt{\chi}^{-1} \sigma$$

$$(heta,\sigma) o (\sigma,- heta)$$

Anton Zeitlin

Outline

Introduction

Cast of characters

Coordinates on Super-Teichmüller space

v = 2 Super-Teichmüller heory

pen problems

Suppose points A, B, C are put in the standard position.

The 4th point D: $(x_1, x_2, -y, \rho, \xi)$, so that two new λ - lengths are c, d.

Fixing the sign of θ , we fix the sign of Manin invariant σ as follows:

$$x_1 = \sqrt{2} \frac{cd}{e} \chi^{-1}, \quad x_2 = \sqrt{2} \frac{cd}{e} \chi, \quad \lambda = -\sqrt{2} \frac{cd}{e} \sqrt{\chi} \sigma, \quad \rho = \sqrt{2} \frac{cd}{e} \sqrt{\chi}^{-1} \sigma$$

Important observation: if we turn the picture upside down, then

$$(heta,\sigma) o (\sigma,- heta)$$

- lacktriangle Δ is ideal triangulation of the universal cover $ilde{F}$
- Δ_{∞} $(\tilde{\Delta}_{\infty})$ -collection of ideal points of F (\tilde{F}) .

Consider Δ together with:

• the orientation on the fatgraph $\tau(\Delta)$,

coordinate system $\tilde{C}(F, \Delta)$, i.e

- positive even coordinate for every edge
- odd coordinate for every triangle

We call coordinate vectors \vec{c} , $\vec{c'}$ equivalent if they are identical up to overall reflection of sign of odd coordinates.

Let
$$C(F,\Delta) \equiv \tilde{C}(F,\Delta)/\sim$$
. This implies that

$$C(F,\Delta)\simeq \mathbb{R}_+^{6g+3s-6|4g+2s-4}/\mathbb{Z}_2$$

Outline

ntroduction

Cast of character

Coordinates on Super-Teichmüller space

> 1 = 2 u<mark>per-Teich</mark>mi

---,

- Δ is ideal trangulation of F, $\tilde{\Delta}$ is ideal triangulation of the universal cover \tilde{F}
- Δ_{∞} $(\tilde{\Delta}_{\infty})$ -collection of ideal points of F (\tilde{F}) .

Consider Δ together with:

• the orientation on the fatgraph $\tau(\Delta)$,

coordinate system $\tilde{C}(F, \Delta)$, i.e

- positive even coordinate for every edge
- odd coordinate for every triangle

We call coordinate vectors \vec{c} , $\vec{c'}$ equivalent if they are identical up to overall reflection of sign of odd coordinates.

Let
$$C(F,\Delta) \equiv ilde{C}(F,\Delta)/\sim$$
. This implies that

$$\mathcal{C}(F,\Delta)\simeq \mathbb{R}_+^{6g+3s-6|4g+2s-4}/\mathbb{Z}_2$$

Outline

ntroduction

Cast of characters

Coordinates on Super-Teichmüller space

V = 2 Super-Teichm

non problems

- $ightharpoonup \Delta$ is ideal triangulation of the universal cover \tilde{F}
- Δ_{∞} $(\tilde{\Delta}_{\infty})$ -collection of ideal points of F (\tilde{F}) .

Consider Δ together with:

- ullet the orientation on the fatgraph $au(\Delta)$,
- coordinate system $\tilde{C}(F, \Delta)$, i.e.
- positive even coordinate for every edge
- odd coordinate for every triangle

We call coordinate vectors \vec{c} , $\vec{c'}$ equivalent if they are identical up to overall reflection of sign of odd coordinates.

Let
$$C(F, \Delta) \equiv \tilde{C}(F, \Delta) / \sim$$
. This implies that

$$C(F,\Delta)\simeq \mathbb{R}^{6g+3s-6|4g+2s-4|_{\mathbb{Z}_2}$$

Jutline

Introduction

Cast of characters

Coordinates on Super-Teichmüller space

V = 2 Super-Teichmüll

Denote:

- $ightharpoonup \Delta$ is ideal triangulation of the universal cover \tilde{F}
- $lackbox{}\Delta_{\infty}$ $(\tilde{\Delta}_{\infty})$ -collection of ideal points of F (\tilde{F}) .

Consider Δ together with:

- ullet the orientation on the fatgraph $au(\Delta)$,
- coordinate system $\tilde{C}(F, \Delta)$, i.e.
- positive even coordinate for every edge
- odd coordinate for every triangle

We call coordinate vectors \vec{c} , $\vec{c'}$ equivalent if they are identical up to overall reflection of sign of odd coordinates.

Let
$$C(F, \Delta) \equiv \tilde{C}(F, \Delta) / \sim$$
. This implies that

$$C(F,\Delta)\simeq \mathbb{R}_+^{6g+3s-6|4g+2s-4}/\mathbb{Z}_2$$

hutling

ntroduction

Cast of character

Coordinates on Super-Teichmüller space

v = 2 luper-Teichmülle heory

Coordinates on Super-Teichmüller space

Open problems

Then there exist a lift for each $\vec{c} \in \ell : \tilde{\Delta}_{\infty} \to L_0^+$, with the property:

for every quadrilateral ABCD, if the arrow is pointing from σ to θ then the lift is given by the picture from the previous slide up to post-composition with the element of OSp(1|2).

The construction of ℓ can be done in a recursive way:

Such lift is unique up to post-composition with OSp(1|2) group element and it is π_1 -equivariant. This allows us to construct representation of π_1 in OSP(1|2), based on the provided data.

space *N* = 2

theory

Open problems

Then there exist a lift for each $\vec{c} \in \ell : \tilde{\Delta}_{\infty} \to L_0^+$, with the property:

for every quadrilateral ABCD, if the arrow is pointing from σ to θ then the lift is given by the picture from the previous slide up to post-composition with the element of OSp(1|2).

The construction of ℓ can be done in a recursive way:

Such lift is unique up to post-composition with OSp(1|2) group element and it is π_1 -equivariant. This allows us to construct representation of π_1 in OSP(1|2), based on the provided data.

space

N = 2Super-Teichmüller

Open problems

Then there exist a lift for each $\vec{c} \in \ell : \tilde{\Delta}_{\infty} \to L_0^+$, with the property:

for every quadrilateral *ABCD*, if the arrow is pointing from σ to θ then the lift is given by the picture from the previous slide up to post-composition with the element of OSp(1|2).

The construction of ℓ can be done in a recursive way:

Such lift is unique up to post-composition with OSp(1|2) group element and it is π_1 -equivariant. This allows us to construct representation of π_1 in OSP(1|2), based on the provided data.

Fix $F, \Delta, \tau(\Delta)$ as before. Let ω be an orientation, corresponding to a specified spin structure s of F. Given a coordinate vector $\vec{c} \in \tilde{C}(F, \Delta)$, there exists a map called the lift.

$$\ell_\omega: ilde{\Delta}_\infty o L_0^+$$

which is uniquely determined up to post-composition by OSp(1|2) under admissibility conditions discussed above, and only depends on the equivalent classes $C(F, \Delta)$ of the coordinates.

There is a representation $\hat{\rho}: \pi_1 := \pi_1(F) \to OSp(1|2)$, uniquely determined up to conjugacy by an element of OSp(1|2) such that

- (1) ℓ is π_1 -equivariant, i.e. $\hat{\rho}(\gamma)(\ell(a)) = \ell(\gamma(a))$ for each $\gamma \in \pi_1$ and $a \in \tilde{\Delta}_{\infty}$;
- (2) $\hat{\rho}$ is a super-Fuchsian representation, i.e. the natural projection

$$\rho: \pi_1 \xrightarrow{\hat{
ho}} OSp(1|2) o SL(2,\mathbb{R}) o PSL(2,\mathbb{R})$$

is a Fuchsian representation for F;

(3) the space of all lifts $\tilde{\rho}: \pi_1 \xrightarrow{\hat{\rho}} OSp(1|2) \to SL(2,\mathbb{R})$ is in one-to-one correspondence with the spin structures s on F.

Fix $F, \Delta, \tau(\Delta)$ as before. Let ω be an orientation, corresponding to a specified spin structure s of F. Given a coordinate vector $\vec{c} \in \tilde{C}(F, \Delta)$, there exists a map called the lift,

 $\ell_\omega: ilde{\Delta}_\infty o L_0^+$

which is uniquely determined up to post-composition by OSp(1|2) under admissibility conditions discussed above, and only depends on the equivalent classes $C(F, \Delta)$ of the coordinates.

There is a representation $\hat{\rho}: \pi_1 := \pi_1(F) \to OSp(1|2)$, uniquely determined up to conjugacy by an element of OSp(1|2) such that

- (1) ℓ is π_1 -equivariant, i.e. $\hat{\rho}(\gamma)(\ell(a)) = \ell(\gamma(a))$ for each $\gamma \in \pi_1$ and $a \in \check{\Delta}_{\infty}$;
- (2) $\hat{\rho}$ is a super-Fuchsian representation, i.e. the natural projection

$$\rho: \pi_1 \xrightarrow{\hat{\rho}} OSp(1|2) \to SL(2,\mathbb{R}) \to PSL(2,\mathbb{R})$$

is a Fuchsian representation for F;

(3) the space of all lifts $\tilde{\rho}: \pi_1 \stackrel{\rho}{\to} OSp(1|2) \to SL(2,\mathbb{R})$ is in one-to-one correspondence with the spin structures s on F.

4D + 4 P + 4 B + B + 9 Q P

Outline

Introduction

Cast of characters

Coordinates on Super-Teichmüller space

> uper-Teichmüller neory

pen problems

space

Fix $F, \Delta, \tau(\Delta)$ as before. Let ω be an orientation, corresponding to a specified spin structure s of F. Given a coordinate vector $\vec{c} \in \tilde{C}(F, \Delta)$, there exists a map called the lift,

$$\ell_\omega: \tilde{\Delta}_\infty \to L_0^+$$

which is uniquely determined up to post-composition by OSp(1|2)under admissibility conditions discussed above, and only depends on the equivalent classes $C(F, \Delta)$ of the coordinates.

There is a representation $\hat{\rho}: \pi_1 := \pi_1(F) \to OSp(1|2)$, uniquely determined up to conjugacy by an element of OSp(1|2) such that

- (1) ℓ is π_1 -equivariant, i.e. $\hat{\rho}(\gamma)(\ell(a)) = \ell(\gamma(a))$ for each $\gamma \in \pi_1$ and $a \in \Delta_{\infty}$:

$$\rho: \pi_1 \stackrel{\hat{
ho}}{ o} \mathit{OSp}(1|2) o \mathit{SL}(2,\mathbb{R}) o \mathit{PSL}(2,\mathbb{R})$$

Fix $F, \Delta, \tau(\Delta)$ as before. Let ω be an orientation, corresponding to a specified spin structure s of F. Given a coordinate vector $\vec{c} \in \tilde{C}(F, \Delta)$, there exists a map called the lift.

$$\ell_\omega: ilde{\Delta}_\infty o L_0^+$$

which is uniquely determined up to post-composition by OSp(1|2) under admissibility conditions discussed above, and only depends on the equivalent classes $C(F, \Delta)$ of the coordinates.

There is a representation $\hat{\rho}: \pi_1 := \pi_1(F) \to OSp(1|2)$, uniquely determined up to conjugacy by an element of OSp(1|2) such that

- (1) ℓ is π_1 -equivariant, i.e. $\hat{\rho}(\gamma)(\ell(a)) = \ell(\gamma(a))$ for each $\gamma \in \pi_1$ and $a \in \tilde{\Delta}_{\infty}$;
- (2) $\hat{\rho}$ is a super-Fuchsian representation, i.e. the natural projection

$$ho:\pi_1\stackrel{\hat
ho}{ o} \mathit{OSp}(1|2) o \mathit{SL}(2,\mathbb{R}) o \mathit{PSL}(2,\mathbb{R})$$

is a Fuchsian representation for F;

(3) the space of all lifts $\tilde{\rho}: \pi_1 \xrightarrow{\rho} OSp(1|2) \to SL(2,\mathbb{R})$ is in one-to-one correspondence with the spin structures s on F.

space

Open problems

Fix $F, \Delta, \tau(\Delta)$ as before. Let ω be an orientation, corresponding to a specified spin structure s of F. Given a coordinate vector $\vec{c} \in \tilde{C}(F, \Delta)$, there exists a map called the lift,

$$\ell_\omega: \tilde{\Delta}_\infty o L_0^+$$

which is uniquely determined up to post-composition by OSp(1|2) under admissibility conditions discussed above, and only depends on the equivalent classes $C(F, \Delta)$ of the coordinates.

There is a representation $\hat{\rho}: \pi_1 := \pi_1(F) \to OSp(1|2)$, uniquely determined up to conjugacy by an element of OSp(1|2) such that

- (1) ℓ is π_1 -equivariant, i.e. $\hat{\rho}(\gamma)(\ell(a)) = \ell(\gamma(a))$ for each $\gamma \in \pi_1$ and $a \in \tilde{\Delta}_{\infty}$;
- (2) $\hat{\rho}$ is a super-Fuchsian representation, i.e. the natural projection

$$ho:\pi_1\stackrel{\hat{
ho}}{
ightarrow} \mathit{OSp}(1|2)
ightarrow\mathit{SL}(2,\mathbb{R})
ightarrow\mathit{PSL}(2,\mathbb{R})$$

is a Fuchsian representation for F;

(3) the space of all lifts $\tilde{\rho}: \pi_1 \xrightarrow{\hat{\rho}} OSp(1|2) \to SL(2,\mathbb{R})$ is in one-to-one correspondence with the spin structures s on F.

$$ef = (ac + bd)\Big(1 + rac{\sigma heta \sqrt{\chi}}{1 + \chi}\Big), \
u = rac{\sigma + heta \sqrt{\chi}}{\sqrt{1 + \chi}}, \quad \mu = rac{\sigma \sqrt{\chi} - heta}{\sqrt{1 + \chi}}$$

are the consequence of light cone geometry.

Introduction

Cast of characters

Coordinates on Super-Teichmüller space

Super-Teichmülle

Open problems

The space of all such lifts ℓ_{ω} coincides with the decorated super-Teichmüller space $S\tilde{T}(F) = \mathbb{R}^s_+ \times ST(F)$.

In order to remove the decoration, one can pass to shear coordinates $z_e = \log\left(\frac{ac}{bd}\right)$.

It is easy to check that the 2-form

$$\omega = \sum_{\Delta} d \log a \wedge d \log b + d \log b \wedge d \log c + d \log c \wedge d \log a - (d\theta)^2$$

v = 2 Super-Teichmülle heory

pen problems

The space of all such lifts ℓ_{ω} coincides with the decorated super-Teichmüller space $S\tilde{T}(F) = \mathbb{R}_{+}^{s} \times ST(F)$.

In order to remove the decoration, one can pass to shear coordinates $z_e = \log\left(\frac{ac}{bd}\right)$.

It is easy to check that the 2-form

$$\omega = \sum_{\Delta} d \log a \wedge d \log b + d \log b \wedge d \log c + d \log c \wedge d \log a - (d\theta)^{2}$$

The space of all such lifts ℓ_{ω} coincides with the decorated super-Teichmüller space $S\tilde{T}(F) = \mathbb{R}_{+}^{s} \times ST(F)$.

In order to remove the decoration, one can pass to shear coordinates $z_e = \log\left(\frac{ac}{bd}\right)$.

It is easy to check that the 2-form

$$\omega = \sum_{\Delta} d \log a \wedge d \log b + d \log b \wedge d \log c + d \log c \wedge d \log a - (d\theta)^{2}$$

Super-Teichmülle

pen problems

The space of all such lifts ℓ_{ω} coincides with the decorated super-Teichmüller space $S\tilde{T}(F) = \mathbb{R}_{+}^{s} \times ST(F)$.

In order to remove the decoration, one can pass to shear coordinates $z_e = \log\left(\frac{ac}{bd}\right)$.

It is easy to check that the 2-form

$$\omega = \sum_{\Lambda} d \log a \wedge d \log b + d \log b \wedge d \log c + d \log c \wedge d \log a - (d\theta)^2,$$

Super-Teichmüller theory

Open problems

 $\mathbb{N}=2$ super-Teichmüller space is related to OSP(2|2) supergroup of rank 2.

It is more useful to work with its 3×3 incarnation, which is isomorphic to $\Psi \ltimes SL(1|2)_0$, where Ψ is a certain automorphism of the Lie algebra $\mathfrak{sl}(1|2)\simeq \mathfrak{osp}(2|2)$.

 $SL(1|2)_0$ is a supergroup, consisting of supermatrices

$$g = \left(\begin{array}{ccc} a & b & \alpha \\ c & d & \beta \\ \gamma & \delta & f \end{array}\right)$$

such that f > 0 and their Berezinian = 1

This group acts on the space $\mathbb{C}^{1|2}$ as superconformal franctional-linear transformations.

As before, N=2 super-Fuchsian groups are the ones whose projections

$$\pi_1 o \mathit{OSP}(2|2) o \mathit{SL}(2,\mathbb{R}) o \mathit{PSL}(2,\mathbb{R})$$

are Fuchsian.

Open problems

 $\mathbb{N}=2$ super-Teichmüller space is related to OSP(2|2) supergroup of rank 2.

It is more useful to work with its 3×3 incarnation, which is isomorphic to $\Psi \ltimes SL(1|2)_0$, where Ψ is a certain automorphism of the Lie algebra $\mathfrak{sl}(1|2)\simeq \mathfrak{osp}(2|2)$.

 $SL(1|2)_0$ is a supergroup, consisting of supermatrices

$$g = \left(\begin{array}{ccc} a & b & \alpha \\ c & d & \beta \\ \gamma & \delta & f \end{array}\right)$$

such that f > 0 and their Berezinian = 1

This group acts on the space $\mathbb{C}^{1|2}$ as superconformal franctional-linear transformations.

As before, N=2 super-Fuchsian groups are the ones whose projections

$$\pi_1 o \mathit{OSP}(2|2) o \mathit{SL}(2,\mathbb{R}) o \mathit{PSL}(2,\mathbb{R})$$

are Fuchsian

Open problems

 $\mathbb{N}=2$ super-Teichmüller space is related to OSP(2|2) supergroup of rank 2.

It is more useful to work with its 3×3 incarnation, which is isomorphic to $\Psi \ltimes SL(1|2)_0$, where Ψ is a certain automorphism of the Lie algebra $\mathfrak{sl}(1|2)\simeq \mathfrak{osp}(2|2)$.

 $SL(1|2)_0$ is a supergroup, consisting of supermatrices

$$g = \left(\begin{array}{ccc} a & b & \alpha \\ c & d & \beta \\ \gamma & \delta & f \end{array}\right)$$

such that f > 0 and their Berezinian = 1.

This group acts on the space $\mathbb{C}^{1|2}$ as superconformal franctional-linear transformations.

As before, N=2 super-Fuchsian groups are the ones whose projections

$$\pi_1 o \mathit{OSP}(2|2) o \mathit{SL}(2,\mathbb{R}) o \mathit{PSL}(2,\mathbb{R})$$

are Fuchsian.

N = 2 Super-Teichmüller theory

Open problems

 $\mathbb{N}=2$ super-Teichmüller space is related to OSP(2|2) supergroup of rank 2.

It is more useful to work with its 3×3 incarnation, which is isomorphic to $\Psi \ltimes SL(1|2)_0$, where Ψ is a certain automorphism of the Lie algebra $\mathfrak{sl}(1|2)\simeq \mathfrak{osp}(2|2)$.

 $SL(1|2)_0$ is a supergroup, consisting of supermatrices

$$g = \left(\begin{array}{ccc} a & b & \alpha \\ c & d & \beta \\ \gamma & \delta & f \end{array}\right)$$

such that f > 0 and their Berezinian = 1.

This group acts on the space $\mathbb{C}^{1|2}$ as superconformal franctional-linear transformations.

As before, N = 2 super-Fuchsian groups are the ones whose projections

$$\pi_1 o \mathit{OSP}(2|2) o \mathit{SL}(2,\mathbb{R}) o \mathit{PSL}(2,\mathbb{R})$$

are Fuchsian

 $\mathbb{N}=2$ super-Teichmüller space is related to OSP(2|2) supergroup of rank 2.

It is more useful to work with its 3×3 incarnation, which is isomorphic to $\Psi \ltimes SL(1|2)_0$, where Ψ is a certain automorphism of the Lie algebra $\mathfrak{sl}(1|2)\simeq \mathfrak{osp}(2|2)$.

 $SL(1|2)_0$ is a supergroup, consisting of supermatrices

$$g = \left(\begin{array}{ccc} a & b & \alpha \\ c & d & \beta \\ \gamma & \delta & f \end{array}\right)$$

such that f > 0 and their Berezinian = 1.

This group acts on the space $\mathbb{C}^{1|2}$ as superconformal franctional-linear transformations.

As before, $\mathcal{N}=2$ super-Fuchsian groups are the ones whose projections

$$\pi_1 o \mathit{OSP}(2|2) o \mathit{SL}(2,\mathbb{R}) o \mathit{PSL}(2,\mathbb{R})$$

are Fuchsian.

Open problems

Note, that the pure bosonic part of $SL(1|2)_0$ is $GL^+(2,\mathbb{R})$.

Therefore, the construction of coordinates requires a new notion \mathbb{R}_+ -graph connection.

A G-graph connection on τ is the assignment $h_e \in G$ to each oriented edge e of τ so that $h_{\bar{e}} = h_e^{-1}$ if \bar{e} is the opposite orientation to e. Two assignments $\{h_e\}, \{h'_e\}$ are equivalent iff there are $t_v \in G$ for each vertex v of τ such that $h'_e = t_v h_e t_w^{-1}$ for each oriented edge $e \in \tau$ with initial point v and terminal point w. The moduli space of flat

G-connections on F is isomorphic to the space of equivalent G-graph connections on τ .

N = 2

.oordinates on uper-Teichmülle pace

Super-Teichmüller theory

Open problems

Note, that the pure bosonic part of $SL(1|2)_0$ is $GL^+(2,\mathbb{R})$.

Therefore, the construction of coordinates requires a new notion: $\mathbb{R}_{+}\text{-}\mathsf{graph}$ connection.

A G-graph connection on τ is the assignment $h_e \in G$ to each oriented edge e of τ so that $h_{\bar{e}} = h_e^{-1}$ if \bar{e} is the opposite orientation to e. Two assignments $\{h_e\}, \{h_e'\}$ are equivalent iff there are $t_v \in G$ for each vertex v of τ such that $h_e' = t_v h_e t_w^{-1}$ for each oriented edge $e \in \tau$ with initial point v and terminal point w. The moduli space of flat

G-connections on F is isomorphic to the space of equivalent G-graph connections on τ .

oordinates on uper-Teichmülle pace

 ${\cal N}=2$ Super-Teichmüller theory

Open problems

Note, that the pure bosonic part of $SL(1|2)_0$ is $GL^+(2,\mathbb{R})$.

Therefore, the construction of coordinates requires a new notion: $\mathbb{R}_+\text{-}\mathsf{graph}$ connection.

A G-graph connection on τ is the assignment $h_e \in G$ to each oriented edge e of τ so that $h_{\bar{e}} = h_e^{-1}$ if \bar{e} is the opposite orientation to e. Two assignments $\{h_e\}, \{h'_e\}$ are equivalent iff there are $t_v \in G$ for each vertex v of τ such that $h'_e = t_v h_e t_w^{-1}$ for each oriented edge $e \in \tau$ with initial point v and terminal point w. The moduli space of flat

G-connections on F is isomorphic to the space of equivalent G-graph connections on τ .

Note, that the pure bosonic part of $SL(1|2)_0$ is $GL^+(2,\mathbb{R})$.

Therefore, the construction of coordinates requires a new notion: $\mathbb{R}_+\text{-}\mathsf{graph}$ connection.

A G-graph connection on τ is the assignment $h_e \in G$ to each oriented edge e of τ so that $h_{\bar{e}} = h_e^{-1}$ if \bar{e} is the opposite orientation to e. Two assignments $\{h_e\}, \{h_e'\}$ are equivalent iff there are $t_v \in G$ for each vertex v of τ such that $h_e' = t_v h_e t_w^{-1}$ for each oriented edge $e \in \tau$ with initial point v and terminal point w. The moduli space of flat

G-connections on F is isomorphic to the space of equivalent G-graph connections on τ .

- lacktriangle we assign to each edge of Δ a positive even coordinate ϵ
- \blacktriangleright we assign to each triangle of Δ two odd coordinates (θ_1, θ_2)
- we assign to each edge e of a triangle of Δ a positive even coordinate h_e , called the *ratio*, such that if h_e and h'_e are assigned to two triangles sharing the same edge e, they satisfy $h_e h'_e = 1$.

The odd coordinates are defined up to overall sign changes $\theta_i \to -\theta_i$, as well as an overall involution $(\theta_1, \theta_2) \to (\theta_2, \theta_1)$.

Assignment implies that the ratios $\{h_e\}$ uniquely define an \mathbb{R}_+ -graph connection on $\tau(\Delta)$.

Gauge transformations: if h_a , h_b , h_e are ratios assigned to a triangle T with odd coordinate (θ_1, θ_2) , then a *vertex rescaling at* T is the following transformation:

$$(h_a, h_b, h_e, \theta_1, \theta_2) \rightarrow (uh_a, uh_b, uh_e, u^{-1}\theta_1, u\theta_2)$$

- we assign to each edge of Δ a positive even coordinate e;
- \blacktriangleright we assign to each triangle of Δ two odd coordinates (θ_1, θ_2)
- we assign to each edge e of a triangle of Δ a positive even coordinate h_e , called the *ratio*, such that if h_e and h'_e are assigned to two triangles sharing the same edge e, they satisfy $h_e h'_e = 1$.

The odd coordinates are defined up to overall sign changes $\theta_i \to -\theta_i$, as well as an overall involution $(\theta_1, \theta_2) \to (\theta_2, \theta_1)$.

Assignment implies that the ratios $\{h_e\}$ uniquely define an \mathbb{R}_+ -graph connection on $\tau(\Delta)$.

Gauge transformations: if h_a , h_b , h_e are ratios assigned to a triangle T with odd coordinate (θ_1, θ_2) , then a *vertex rescaling at* T is the following transformation:

$$(h_a, h_b, h_e, \theta_1, \theta_2) \rightarrow (uh_a, uh_b, uh_e, u^{-1}\theta_1, u\theta_2)$$

- we assign to each edge of Δ a positive even coordinate e;
- we assign to each triangle of Δ two odd coordinates (θ_1, θ_2) ;
- we assign to each edge e of a triangle of Δ a positive even coordinate h_e , called the *ratio*, such that if h_e and h'_e are assigned to two triangles sharing the same edge e, they satisfy $h_e h'_e = 1$.

The odd coordinates are defined up to overall sign changes $\theta_i \to -\theta_i$, as well as an overall involution $(\theta_1, \theta_2) \to (\theta_2, \theta_1)$.

Assignment implies that the ratios $\{h_e\}$ uniquely define an \mathbb{R}_+ -graph connection on $\tau(\Delta)$.

Gauge transformations: if h_a , h_b , h_e are ratios assigned to a triangle T with odd coordinate (θ_1, θ_2) , then a *vertex rescaling at* T is the following transformation:

$$(h_a, h_b, h_e, \theta_1, \theta_2) \rightarrow (uh_a, uh_b, uh_e, u^{-1}\theta_1, u\theta_2)$$

Open problems

The data giving the coordinate system $\tilde{C}(F, \Delta)$ is as follows:

- we assign to each edge of Δ a positive even coordinate e;
- we assign to each triangle of Δ two odd coordinates (θ_1, θ_2) ;
- we assign to each edge e of a triangle of Δ a positive even coordinate h_e , called the *ratio*, such that if h_e and h'_e are assigned to two triangles sharing the same edge e, they satisfy $h_e h'_e = 1$.

The odd coordinates are defined up to overall sign changes $\theta_i \to -\theta_i$, as well as an overall involution $(\theta_1, \theta_2) \to (\theta_2, \theta_1)$.

Assignment implies that the ratios $\{h_e\}$ uniquely define an \mathbb{R}_+ -graph connection on $\tau(\Delta)$.

Gauge transformations: if h_a , h_b , h_e are ratios assigned to a triangle T with odd coordinate (θ_1, θ_2) , then a *vertex rescaling at* T is the following transformation:

$$(h_a, h_b, h_e, \theta_1, \theta_2) \rightarrow (uh_a, uh_b, uh_e, u^{-1}\theta_1, u\theta_2)$$

Open problems

The data giving the coordinate system $\tilde{C}(F, \Delta)$ is as follows:

- we assign to each edge of Δ a positive even coordinate e;
- we assign to each triangle of Δ two odd coordinates (θ_1, θ_2) ;
- we assign to each edge e of a triangle of Δ a positive even coordinate h_e , called the *ratio*, such that if h_e and h'_e are assigned to two triangles sharing the same edge e, they satisfy $h_e h'_e = 1$.

The odd coordinates are defined up to overall sign changes $\theta_i \to -\theta_i$, as well as an overall involution $(\theta_1, \theta_2) \to (\theta_2, \theta_1)$.

Assignment implies that the ratios $\{h_e\}$ uniquely define an \mathbb{R}_+ -graph connection on $\tau(\Delta)$.

Gauge transformations: if h_a , h_b , h_e are ratios assigned to a triangle T with odd coordinate (θ_1, θ_2) , then a *vertex rescaling at* T is the following transformation:

$$(h_a, h_b, h_e, \theta_1, \theta_2) \rightarrow (uh_a, uh_b, uh_e, u^{-1}\theta_1, u\theta_2)$$

- we assign to each edge of Δ a positive even coordinate e;
- we assign to each triangle of Δ two odd coordinates (θ_1, θ_2) ;
- we assign to each edge e of a triangle of Δ a positive even coordinate h_e , called the *ratio*, such that if h_e and h'_e are assigned to two triangles sharing the same edge e, they satisfy $h_e h'_e = 1$.

The odd coordinates are defined up to overall sign changes $\theta_i \to -\theta_i$, as well as an overall involution $(\theta_1, \theta_2) \rightarrow (\theta_2, \theta_1)$.

$$(h_a, h_b, h_e, \theta_1, \theta_2) \rightarrow (uh_a, uh_b, uh_e, u^{-1}\theta_1, u\theta_2)$$

 ${\cal N}=2$ Super-Teichmüller theory

nen problems

The data giving the coordinate system $\tilde{C}(F, \Delta)$ is as follows:

- we assign to each edge of Δ a positive even coordinate e;
- we assign to each triangle of Δ two odd coordinates (θ_1, θ_2) ;
- we assign to each edge e of a triangle of Δ a positive even coordinate h_e , called the *ratio*, such that if h_e and h'_e are assigned to two triangles sharing the same edge e, they satisfy $h_e h'_e = 1$.

The odd coordinates are defined up to overall sign changes $\theta_i \to -\theta_i$, as well as an overall involution $(\theta_1, \theta_2) \to (\theta_2, \theta_1)$.

Assignment implies that the ratios $\{h_e\}$ uniquely define an \mathbb{R}_+ -graph connection on $\tau(\Delta)$.

Gauge transformations: if h_a , h_b , h_e are ratios assigned to a triangle T with odd coordinate (θ_1, θ_2) , then a *vertex rescaling at* T is the following transformation:

$$(h_a, h_b, h_e, \theta_1, \theta_2) \rightarrow (uh_a, uh_b, uh_e, u^{-1}\theta_1, u\theta_2)$$

- we assign to each edge of Δ a positive even coordinate e;
- we assign to each triangle of Δ two odd coordinates (θ_1, θ_2) ;
- we assign to each edge e of a triangle of Δ a positive even coordinate h_e , called the *ratio*, such that if h_e and h'_e are assigned to two triangles sharing the same edge e, they satisfy $h_e h'_e = 1$.

The odd coordinates are defined up to overall sign changes $\theta_i \to -\theta_i$, as well as an overall involution $(\theta_1, \theta_2) \to (\theta_2, \theta_1)$.

Assignment implies that the ratios $\{h_e\}$ uniquely define an \mathbb{R}_+ -graph connection on $\tau(\Delta)$.

Gauge transformations: if h_a , h_b , h_e are ratios assigned to a triangle T with odd coordinate (θ_1, θ_2) , then a *vertex rescaling at* T is the following transformation:

$$(h_a, h_b, h_e, \theta_1, \theta_2) \rightarrow (uh_a, uh_b, uh_e, u^{-1}\theta_1, u\theta_2)$$

space N = 2

Super-Teichmüller theory

Open problems

We say that two coordinate vectors of $\tilde{C}(F,\Delta)$ are equivalent if they are related by a finite number of such vertex rescalings (i.e. gauge transformations). In particular the underlying \mathbb{R}_+ -graph connections on τ are equivalent.

Let $C(F,\Delta):=\tilde{C}(F,\Delta)/\sim$ be the equivalent classes of coordinate vectors. Then it can be represented by coordinates with $h_ah_bh_e=1$ for the ratios of the same triangle. This implies that

$$C(F,\Delta)\simeq \mathbb{R}_+^{8g+4s-7|8g+4s-8}/\mathbb{Z}_2 imes \mathbb{Z}_2$$

Note, that two involutions we have, one corresponding to the fermion reflection and another one corresponding to Ψ give rise to two spin structures, which enumerate components of the $\mathbb{N}=2$ super-Teichmüller space.

The light cone L_0^+ and upper sheet hyperboloid \mathbb{H}_0^+ in this case are certain orbits in a pseudo-euclidean superspace $\mathbb{R}^{2,2|4}$.

N = 2

Super-Teichmüller theory

Open problems

We say that two coordinate vectors of $\tilde{C}(F,\Delta)$ are equivalent if they are related by a finite number of such vertex rescalings (i.e. gauge transformations). In particular the underlying \mathbb{R}_+ -graph connections on τ are equivalent.

Let $C(F,\Delta):=\tilde{C}(F,\Delta)/\sim$ be the equivalent classes of coordinate vectors. Then it can be represented by coordinates with $h_ah_bh_e=1$ for the ratios of the same triangle. This implies that

$$C(F,\Delta) \simeq \mathbb{R}_+^{8g+4s-7|8g+4s-8}/\mathbb{Z}_2 \times \mathbb{Z}_2$$

Note, that two involutions we have, one corresponding to the fermior reflection and another one corresponding to Ψ give rise to two spin structures, which enumerate components of the $\mathfrak{N}=2$ super-Teichmüller space.

The light cone L_0^+ and upper sheet hyperboloid \mathbb{H}_0^+ in this case are certain orbits in a pseudo-euclidean superspace $\mathbb{R}^{2,2|4}$

Open problems

We say that two coordinate vectors of $\tilde{C}(F,\Delta)$ are equivalent if they are related by a finite number of such vertex rescalings (i.e. gauge transformations). In particular the underlying \mathbb{R}_+ -graph connections on τ are equivalent.

Let $C(F,\Delta):=\tilde{C}(F,\Delta)/\sim$ be the equivalent classes of coordinate vectors. Then it can be represented by coordinates with $h_ah_bh_e=1$ for the ratios of the same triangle. This implies that

$$C(F,\Delta) \simeq \mathbb{R}_+^{8g+4s-7|8g+4s-8}/\mathbb{Z}_2 \times \mathbb{Z}_2$$

Note, that two involutions we have, one corresponding to the fermion reflection and another one corresponding to Ψ give rise to two spin structures, which enumerate components of the $\mathbb{N}=2$ super-Teichmüller space.

The light cone L_0^+ and upper sheet hyperboloid \mathbb{H}_0^+ in this case are certain orbits in a pseudo-euclidean superspace $\mathbb{R}^{2,2|4}$.

Open problems

We say that two coordinate vectors of $\tilde{C}(F,\Delta)$ are equivalent if they are related by a finite number of such vertex rescalings (i.e. gauge transformations). In particular the underlying \mathbb{R}_+ -graph connections on τ are equivalent.

Let $C(F,\Delta):=\tilde{C}(F,\Delta)/\sim$ be the equivalent classes of coordinate vectors. Then it can be represented by coordinates with $h_ah_bh_e=1$ for the ratios of the same triangle. This implies that

$$C(F,\Delta) \simeq \mathbb{R}_+^{8g+4s-7|8g+4s-8}/\mathbb{Z}_2 \times \mathbb{Z}_2$$

Note, that two involutions we have, one corresponding to the fermion reflection and another one corresponding to Ψ give rise to two spin structures, which enumerate components of the $\mathbb{N}=2$ super-Teichmüller space.

The light cone L_0^+ and upper sheet hyperboloid \mathbb{H}_0^+ in this case are certain orbits in a pseudo-euclidean superspace $\mathbb{R}^{2,2|4}$.

Fix F, Δ, τ as before. Let $\omega_{sign} := \omega_{s_{sign}, \tau}$ be a representative, corresponding to a specified spin structure s_{sign} of F, and let $\omega_{inv} := \omega_{s_{inv},\tau}$ be the representative of another spin structure s_{inv} .

$$\ell_{\omega_{sign},\omega_{inv}}: ilde{\Delta}_{\infty} o L_0^+,$$

$$ho:\pi_1\stackrel{\hat{
ho}}{
ightarrow} \mathit{OSp}(2|2)
ightarrow \mathit{SL}(2,\mathbb{R})
ightarrow \mathit{PSL}(2,\mathbb{R})$$

Fix F, Δ, τ as before. Let $\omega_{sign} := \omega_{s_{sign}, \tau}$ be a representative, corresponding to a specified spin structure s_{sign} of F, and let $\omega_{inv} := \omega_{s_{inv}, \tau}$ be the representative of another spin structure s_{inv} .

Given a coordinate vector $\vec{c} \in \tilde{C}(F,\Delta)$ there exists a map called the lift,

$$\ell_{\omega_{\text{sign}},\omega_{\text{inv}}}:\tilde{\Delta}_{\infty}\to L_0^+,$$

which is uniquely determined up to post-composition by OSp(2|2) under some admissibility conditions, and only depends on the equivalent classes $C(F,\Delta)$ of the coordinates. Then there is a representation $\hat{\rho}:\pi_1:=\pi_1(F)\to OSp(2|2)$, uniquely determined up to conjugacy by an element of OSp(2|2) such that

- (1) ℓ is π_1 -equivariant, i.e. $\hat{\rho}(\gamma)(\ell(a)) = \ell(\gamma(a))$ for each $\gamma \in \pi_1$ and $a \in \breve{\Delta}_{\infty}$;
- (2) $\hat{\rho}$ is a super-Fuchsian representation, i.e. the natural projection

$$ho:\pi_1\stackrel{\hat{
ho}}{
ightarrow} OSp(2|2)
ightarrow SL(2,\mathbb{R})
ightarrow PSL(2,\mathbb{R})$$

is a Fuchsian representation;

(3) the lift $\tilde{\rho}: \pi_1 \stackrel{\hat{\rho}}{\to} OSp(2|2) \to SL(2,\mathbb{R})$ of ρ does not depend on ω_{inv} , and the space of all such lifts is in one-to-one correspondence with the spin structures ω_{sign} .

Fix F, Δ, τ as before. Let $\omega_{sign} := \omega_{s_{sign}, \tau}$ be a representative, corresponding to a specified spin structure s_{sign} of F, and let $\omega_{inv} := \omega_{s_{inv}, \tau}$ be the representative of another spin structure s_{inv} .

Given a coordinate vector $\vec{c} \in \tilde{C}(F,\Delta)$ there exists a map called the lift,

$$\ell_{\omega_{\mathit{sign}},\omega_{\mathit{inv}}}: \tilde{\Delta}_{\infty}
ightarrow \mathit{L}_{0}^{+},$$

which is uniquely determined up to post-composition by OSp(2|2) under some admissibility conditions, and only depends on the equivalent classes $C(F,\Delta)$ of the coordinates. Then there is a representation $\hat{\rho}:\pi_1:=\pi_1(F)\to OSp(2|2)$, uniquely determined up to conjugacy by an element of OSp(2|2) such that

- (1) ℓ is π_1 -equivariant, i.e. $\tilde{\rho}(\gamma)(\ell(a)) = \ell(\gamma(a))$ for each $\gamma \in \pi_1$ and $a \in \tilde{\Delta}_{\infty}$;
- (2) $\hat{\rho}$ is a super-Fuchsian representation, i.e. the natural projection

$$\rho: \pi_1 \xrightarrow{\hat{\rho}} OSp(2|2) \to SL(2,\mathbb{R}) \to PSL(2,\mathbb{R})$$

is a Fuchsian representation

(3) the lift $\tilde{\rho}: \pi_1 \stackrel{\hat{\rho}}{\to} OSp(2|2) \to SL(2,\mathbb{R})$ of ρ does not depend on ω_{inv} , and the space of all such lifts is in one-to-one correspondence with the spin structures ω_{sign} .

theory

Fix F, Δ, τ as before. Let $\omega_{sign} := \omega_{s_{sign}, \tau}$ be a representative, corresponding to a specified spin structure s_{sign} of F, and let $\omega_{inv} := \omega_{s_{inv}, \tau}$ be the representative of another spin structure s_{inv} .

Given a coordinate vector $ec{c} \in ilde{C}(F,\Delta)$ there exists a map called the lift,

$$\ell_{\omega_{\mathit{sign}},\omega_{\mathit{inv}}}: \tilde{\Delta}_{\infty}
ightarrow \mathit{L}_{0}^{+},$$

which is uniquely determined up to post-composition by OSp(2|2) under some admissibility conditions, and only depends on the equivalent classes $C(F,\Delta)$ of the coordinates. Then there is a representation $\hat{\rho}:\pi_1:=\pi_1(F)\to OSp(2|2)$, uniquely determined up to conjugacy by an element of OSp(2|2) such that

- (1) ℓ is π_1 -equivariant, i.e. $\hat{\rho}(\gamma)(\ell(a)) = \ell(\gamma(a))$ for each $\gamma \in \pi_1$ and $a \in \tilde{\Delta}_{\infty}$;
- (2) $\hat{\rho}$ is a super-Fuchsian representation, i.e. the natural projection

$$ho:\pi_1\stackrel{\hat
ho}{ o} \mathit{OSp}(2|2) o \mathit{SL}(2,\mathbb{R}) o \mathit{PSL}(2,\mathbb{R})$$

is a Fuchsian representation;

(3) the lift $\tilde{\rho}: \pi_1 \xrightarrow{\hat{\rho}} OSp(2|2) \to SL(2,\mathbb{R})$ of ρ does not depend on ω_{inv} , and the space of all such lifts is in one-to-one correspondence with the spin structures ω_{sign} .

Generic Ptolemy transformations are:

Super-Teichmüller Theory

Anton Zeitlin

Outline

......

C - - 1 - - C - 1 - - -

oordinates on uper-Teichmüller

 $\mathcal{N}=2$ Super-Teichmüller theory

pen problems

Cast of characters

Coordinates on Super-Teichmüller

N = 2Super-Teichmüller theory

Open problems

and the transformation formulas are as follows:

$$\begin{split} \textit{ef} &= (\textit{ac} + \textit{bd}) \left(1 + \frac{h_e^{-1} \sigma_1 \theta_2}{2(\sqrt{\chi} + \sqrt{\chi}^{-1})} + \frac{h_e \sigma_2 \theta_1}{2(\sqrt{\chi} + \sqrt{\chi}^{-1})} \right), \\ \mu_1 &= \frac{h_e \theta_1 + \sqrt{\chi} \sigma_1}{\mathcal{D}}, \quad \mu_2 = \frac{h_e^{-1} \theta_2 + \sqrt{\chi} \sigma_2}{\mathcal{D}}, \\ \nu_1 &= \frac{\sigma_1 - \sqrt{\chi} h_e \theta_1}{\mathcal{D}}, \quad \nu_2 = \frac{\sigma_2 - \sqrt{\chi} h_e^{-1} \theta_2}{\mathcal{D}}, \\ h_a' &= \frac{h_a}{h_a c_e}, \quad h_b' = \frac{h_b c_\theta}{h_a}, \quad h_c' = h_c \frac{c_\theta}{c_e}, \quad h_d' = h_d \frac{c_\nu}{c_e}, \quad h_f = \frac{c_\sigma}{c_c^2}, \end{split}$$

where

$$egin{aligned} \mathfrak{D} := \sqrt{1 + \chi + rac{\sqrt{\chi}}{2} ig(extit{h}_e^{-1} \sigma_1 heta_2 + extit{h}_e \sigma_2 heta_1 ig)}, \ c_ heta := 1 + rac{ heta_1 heta_2}{6}. \end{aligned}$$

Outline

Introduction

Cast of characters

Super-Teichmüller space

N=2 Super-Teichmüller theory

pen problems

The space of all lifts $\ell_{\omega_{sign},\omega_{inv}}$ is called decorated $\mathcal{N}=2$ super-Teichmüller space, which is again \mathbb{R}^s_+ -bundle over $\mathcal{N}=2$ super-Teichmüller space.

Removal of the decoration is done using a similar procedure, using shear coordinates.

The search for the formula of the analogue of Weil-Petersson form is under way. Complication: \mathbb{R}_{+^-} graph connection provides boson-fermion mixing.

space N = 2

Super-Teichmüller theory

pen problems

The space of all lifts $\ell_{\omega_{sign},\omega_{inv}}$ is called decorated $\mathcal{N}=2$ super-Teichmüller space, which is again \mathbb{R}^s_+ -bundle over $\mathcal{N}=2$ super-Teichmüller space.

Removal of the decoration is done using a similar procedure, using shear coordinates

The search for the formula of the analogue of Weil-Petersson form is under way. Complication: \mathbb{R}_{+^-} graph connection provides boson-fermion mixing.

Outline

Introduction

Cast of characters

Loordinates on Super-Teichmüller space

N = 2Super-Teichmüller theory

oen problems

The space of all lifts $\ell_{\omega_{sign},\omega_{inv}}$ is called decorated $\mathcal{N}=2$ super-Teichmüller space, which is again \mathbb{R}^s_+ -bundle over $\mathcal{N}=2$ super-Teichmüller space.

Removal of the decoration is done using a similar procedure, using shear coordinates

The search for the formula of the analogue of Weil-Petersson form is under way. Complication: \mathbb{R}_{+^-} graph connection provides boson-fermion mixing.

oordinates on uper-Teichmüller

N = 2 Super-Teichmülle

Open problems

- 1) Cluster superalgebras
- 2) Weil-Petersson-form in $\mathcal{N}=2$ case
- 3) Duality between $\ensuremath{\mathfrak{N}}=2$ super Riemann surfaces and
- (1|1)-supermanifolds
- 4) Quantization of super-Teichmüller spaces
- 5) Weil-Petersson volumes
- 6) Application to supermoduli theory and calculation of superstring amplitudes
- 7) Higher super-Teichmüller theory for supergroups of higher rank

Thank you!

Super-Teichmüller Theory

Anton Zeitlin

Outline

space

ntroduction

Cast of characters

Coordinates on Super-Teichmüller

N = 2 Super-Teichmüller

Open problems