Spooky Authors Identification

Edgar Allan Poe

HP Lovecraft

Mary Shelley

Introduction

- Kaggle Data Science Competition
- Small extracts from horror stories written by three authors: Edgar Allan Poe (EAP), Mary Shelley (MWS), and HP Lovecraft (HPL)
- Data:
 - One Training set (TR0): 19,579 extracts whose authors are known
 - One Test set (TS0): 8,392 extracts whose author must be identified

<u>Goal:</u> For each extract, give probability to the potential authors (among the three mentioned above) to determine which one is the most likely to be its author

Outline

- I. About the dataset
- II. Our strategy
- **III.** Features and highlights
- IV. Results

About the dataset

- ID a unique identifier for each sentence
- Text some text written by one of the authors
- Author author of the sentence (EAP/HPL/MWS)

Sample extract:

ID	Text	Author
id02499	"Verney," said he, "my first act when I become King of England, will be to unite with the Greeks, take Constantinople, and subdue all Asia.	MWS
id04092	"Upon honor," said I. "Nose and all?" she asked.	EAP

Our Strategy - Structure

⁵

Our Strategy - Computation on the Cloud

Use of a Google Cloud instance (with 10 vCPU)

- Quicker: Parallelisation using up to 7 processors
- Less risk of system error: Use of GNU Screen (safely kill the SSH connection)
- Doesn't burn down our laptops

Features and Highlights - (1/4)

Meta Features			Text Features			
1.	Sentence length (characters & words)	1.	POS tag of first/last word of a sentence			
2.	Word length	2.	Emotions (NRC data), positive/negative			
3.	Punctuation density	3.	TF-IDF (words n-grams): degree to which			
4.	Percentage of unique words		an author uses a word more than the two			
5.	Stopword count		other authors			
6.	Noun/adjective/verb density	4.	TF-IDF (characters n-grams)			
7.	Adjective to noun ratio	5.	TF-IDF (POS tags n-grams)			
8.	Emphases on words or phrases		·			
9.	Dialogue density					
10.	Feminine to masculine words ratio					
11.	Use of foreign languages					

Features and Highlights - (2/4)

Vocabulary Variation

Features and Highlights - (3/4)

Feminine to Masculine Word Ratio

Use of Dialogue Breaks

Features and Highlights - (4/4)

Pipeline Combinations

_	Feature Count	X	Feature Selector	X _	Predic	tive	Model
•	Exactly 10 Exactly 20 One-fourth Half	•	Univariate Feature Selection Recursive Feature Elimination Principal Components Analysis	•	K-Neighbors Classifier	•	Ada Boost Classifier Extra Trees Classifier Random Forest Classifier Calibrated Bernoulli NB Calibrated Huber

Results: Pipe Selection

Results: On TS1

Logloss = 0.64for Half (892) - PCA - Logistic Regression

	EAP	HPL	MWS	Formula
Sensitivity	0.77	0.73	0.70	tp/(tp +fn)
Specificity	0.81	0.88	0.91	tn/(tn+fp)
Precision	0.73	0.71	0.77	tp/(tp+fp)
f-score	0.75	0.72	0.73	2*prec*sens / (prec+sens)
Accuracy	0.79	0.84	0.84	(tp+tn)/total

Conclusion / Improvements

Gradient descent for coefficients of the selected pipeline

Adding features

Ensembling

Voting system

Deep Learning / Neural Networks

Questions?