EECS 336 Problem 1.3

(Proof by induction on k)

Claim: Given an arbitrary outcome graph G_k with k > 0 vertices, there always exists a path that traverse all the vertices along the direction of the edges. (Which is equivalent to the definition of total ordering in the problem statement.)

Base case: k = 1, there is only one vertex in the outcome graph G. The vertex itself forms a total ordering.

Inductive hypothesis: if there is a total ordering $(i_1, i_2, ..., i_k)$ in G_k such that i_1 beats i_2 , i_2 beats i_3 , etc. (Note: $(i_1, i_2, ..., i_k)$ is a sorted ordering)

Inductive steps: There always exists a total ordering when G_k is expanded by adding i_{k+1} to form G_{k+1} .

Let a binary variable d_j denote if i_{k+1} could beat i_j , where $d_j = 1$ if i_{k+1} could beat i_j , and $d_j = 0$ if i_{k+1} could not beat i_j . Then $\mathbf{d} = (d_1, d_2, ..., d_k)$.

- 1) if $d_1 = 1$, then i_{k+1} could beat i_1 . So i_{k+1} could be inserted in front of the first element to form a total ordering regardless of the other components in **d**. The total ordering would be $(i_{k+1}, i_1, i_2, ..., i_k)$.
 - 2) if $d_1 = 0$,
- (a) if there exists at least one component of **d** equals to one, let $d_m (m \geq 2)$ be the first component of **d** that equals to one from the very left. Then d_{m-1} is always 0. In this case, i_{k+1} could be inserted between i_{m-1} and i_m to form a total ordering as $(i_1, i_2, ..., i_{m-1}, i_{k+1}, i_m, ..., i_k)$
- (b) if there is no component of **d** equals to one. $\Rightarrow i_{k+1}$ cannot beat anyone in the total ordering of G_k . Then i_{k+1} could be placed at the end of the previous total ordering in G_k to form a new total ordering in G_{k+1} as $(i_1, i_2, ..., i_k, i_{k+1})$

Proved.