1. Complete the objects part of each concept

From the table, the objects (rows) and the attributes (columns) are given. The attributes are \mathbf{c} , \mathbf{e} , \mathbf{o} , \mathbf{p} , \mathbf{s} , and the rows represent specific numbers (objects 0-9).

The first step is to determine which objects correspond to each attribute combination. Using the table:

Attributes	Objects
[c, e, f, o, p, s] {0}	
[c, e, s]	{0, 4, 6}
[c, o, s]	<i>{9}</i>
[c, e, f]	{0}
[f, o, s]	<i>{9}</i>
[e, f, p]	<i>{5}</i>
[c, s]	{4, 6, 9}
[c, e]	{2, 4, 6}
[o, s]	<i>{9}</i>
[e, f]	{0, 5}
[o, p]	<i>{7}</i>
[c]	{2, 4, 6, 8, 9}
[s]	{0, 4, 6, 9}
[e]	{0, 2, 4, 6, 8}
[0]	{1, 3, 7, 9}
[f]	{0, 1, 4, 9}
[p]	{2, 3, 5, 7}

Attributes Objects

This gives a clear mapping of objects (numbers) to each concept.

2. Compute $\alpha(\beta([f, p]))$

To find the concept containing [f, p]:

- 1. $\beta([f, p])$ gives us the set of objects containing attributes f and p.
 - From the table, objects with $\mathbf{f} = \{0, 1, 4, 9\}$ and objects with $\mathbf{p} = \{2, 3, 5, 7\}$.
 - o The intersection of these sets is empty; no object has both \mathbf{f} and \mathbf{p} .
- 2. Since $\beta([f, p])$ is empty, applying α (the closure operator) to the empty set yields the full attribute set [], corresponding to all objects.

Result: $\alpha(\beta([f, p])) = [].$

3. Compute $\alpha(\beta([e, f]))$

To find the concept containing [e, f]:

- 1. $\beta([e, f])$ gives us the set of objects containing attributes e and f.
 - o From the table, objects with $\mathbf{e} = \{0, 2, 4, 6, 8\}$ and objects with $\mathbf{f} = \{0, 1, 4, 9\}$.
 - \circ The intersection of these sets is $\{0, 4\}$.
- 2. Now, apply \mathbf{a} to the set $\{0, 4\}$. The closure operator \mathbf{a} expands this set to include all attributes shared by objects $\{0, 4\}$:
 - o Both objects share the attributes **e**, **f**.

Result: $\alpha(\beta([e, f])) = [e, f].$

4. Immediate successors of [e, f] using Bordat's theorem

Bordat's theorem states:

The immediate successors of a closed set FFF are the inclusion-minimal sets in the family:

 $\{\alpha(\beta(x+F)):x\notin F\}.\$ $\{\alpha(\beta(x+F)):x\in F\}.$

Here, F = [e, f]F = [e, f]F = [e, f]. To find the successors:

- 1. Identify all attributes xxx not in FFF (not in [e, f]). The attributes are $\mathbf{c}, \mathbf{o}, \mathbf{p}, \mathbf{s}$, so $x \in \{c, o, p, s\} \setminus \{c, o, p, s\} \setminus \{c, o, p, s\}$.
- 2. For each xxx, compute $\alpha(\beta(x+[e,f])) \cdot \alpha(\beta(x+[e,f]))$:
 - x=cx = cx=c: $Add\ ccc\ to\ [e,f][e,f][e,f] \to \beta([e,f,c]) \setminus beta([e,f,c])\beta([e,f,c]).\ Objects = intersection\ of\ \mathbf{e},\ \mathbf{f}\ (\{0,4\})\ and\ \mathbf{c}\ (\{0,2,4,6,8\}).$ $Result:\ \{0,4\} \to \alpha(\{0,4\}) = [\mathbf{e},\mathbf{f}]\ (no\ change).$
 - o x=ox=ox=o: $Add\ ooo \rightarrow \beta([e,f,o]) \setminus beta([e,f,o])\beta([e,f,o])$. Intersection of **e**, **f** ({0, 4}) and **o** ({1, 3, 7, 9}) is empty. $Result: Empty \rightarrow closure$ is [].
 - o x=px=px=p: $Add\ ppp \to \beta([e,f,p]) \setminus beta([e,f,p])\beta([e,f,p])$. Intersection of **e**, **f** ({0, 4}) and **p** ({2, 3, 5, 7}) is empty. $Result: Empty \to closure$ is [].
 - o x=sx=sx=s: $Add\ sss \rightarrow \beta([e,f,s]) \setminus beta([e,f,s])\beta([e,f,s])$. Intersection of \mathbf{e} , \mathbf{f} ({0, 4}) and \mathbf{s} ({0, 4, 6, 9}) = {0, 4}. $Result: \alpha(\{0,4\}) = [\mathbf{e},\mathbf{f}]$ (no change).
- 3. Inclusion-minimal sets: None of the additions expand beyond [e, f], so there are no immediate successors.

Result: [e, f] has no immediate successors.

 $[c] = \{0, 4, 6, 8, 9\}$ - compound numbers

 $[s] = \{0, 1, 4, 9\}$ - square numbers

 $[e] = \{0, 2, 4, 6, 8\}$ - even numbers

 $[o] = \{1, 3, 5, 7, 9\}$ - odd numbers

 $[f] = \{0, 1, 4\}$ - square numbers

 $[p] = \{2, 3, 5, 7\}$ - prime numbers

Computing $\alpha(\beta([f,p]))$: When looking for numbers that are both square (f) and prime (p), there are no numbers in our dataset that satisfy both conditions. Therefore: $\alpha(\beta([f,p])) = \{\emptyset\}$

Computing $\alpha(\beta([e,f]))$: For numbers that are both even (e) and square (f):

Even numbers: {0, 2, 4, 6, 8}

Square numbers: {0, 1, 4, 9}

Numbers that satisfy both conditions: $\{0, 4\}$ Therefore: $\alpha(\beta([e,f])) = \{0, 4\}$

Computing immediate successors of [e,f] using Bordat's theorem: Starting with concept $[e,f] = \{0, 4\}$, the immediate successors are:

$$[e] = \{0, 2, 4, 6, 8\}$$

 $[f] = \{0, 1, 4\}$ - These are the minimal concepts that properly contain [e,f] in the concept lattice.