This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- CÓLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

华人民共和国专利局

[51]Int.Cl6

B01D 61/42

[12] 实用新型专利说明书

[21] ZL 专利号 97212126.9

医权公告日 1998年7月22日

[11] 授权公告号 CN 2286429Y

通清日 97.3.4 [24]预证日 98.6.27 走利权人 中国科学技术大学 地址 230026安徽省合肥市金寨路96号 设计人 何友昭 淦五二 [21]申请号 97212126.9 [74]专利代理机构 中国科学技术大学专利事务所 代理人 汪祥虬

权利要求书 1 页 说明书 3 页 附图页数 1 页

[54]实用新型名称 多孔芯柱电渗泵 [57]摘要

本实用新型多孔芯柱电渗泵是一种流动注射系统的载流泵,由包括置于泵体中部的侧面封闭的多孔芯柱、芯柱两端的电极腔、腔内的电极、电极腔内外载流间的微孔隔离器件和腔上部的气体储存室组成;多孔芯柱由在载流中表面带电荷的材料制造;界面载流中的反离子在外电场作用下,与载流一起产生电渗;它结构简单、驱动电压低、能耗低,在流量的稳定性、变化均匀性、调节范围方面优于蠕动泵;在输出压强和流量调节范围方面优于毛细管电渗泵。

多孔芯柱电渗泵

本实用新型涉及广泛应用于化学化工、生物医学和环境监测等领域的流动注射

系统载流泵。

荷兰《分析化学学报》(Anal. Chim. Acta) 92年268卷第1至6页、美国《分析 化学》(Anal. Chem.) 94年66卷第1792至1798页以及《塔兰塔》(Talanta) 94年 41. 卷第1903至1910页报导了电渗泵在流动注射中的应用,上述文献涉及的电渗泵皆为 毛细管电渗泵。由于单根毛细管的内径为几十微米,所以毛细管电渗泵只适用于极 小流量(ul/min)的微流动注射系统。但对电渗作用而言, 几十微米内径毛细管还 是偏大,所以这类毛细管电渗泵的工作压强小(小于100cm水柱高),流动稳定性差。 即使这样的低压强,还是在使用较长毛细管条件下实现的,这就要求使用很高的驱 动电压(5-30KV),不仅电源价格高,而且使用不安全。由于毛细管电渗泵的性能差、 价格高、使用不安全,它在流动注射应用中存在很大的局限性。目前流动注射系统 常用的载流泵是蠕动泵,它是一种机械式载流泵,其缺点是结构复杂、价格高、流 量调节范围小和低转速时流动稳定性差。

本实用新型的目的是提供一种多孔芯柱电渗泵,用以克服毛细管电渗泵和机械

式载流泵的上述缺陷。

这种多孔芯柱电渗泵,其特征在于由包括侧面封闭的多孔芯柱、电极、电极腔、 做孔隔离器件、气体储存室和泵体组成,所述多孔芯柱采用在载流中表面带电荷的 材料制造, 置于泵体中央; 电极腔位于多孔芯柱两端, 电极置于电极腔内, 电极腔 的内外载流之间用亲和载流的微孔隔离器件隔离;气体储存室位于电极腔上部并与 也板腔连通, 共顶部设可密封的盖或阀门; 泵体两端分别设有输入、输出载流管, 我流管上设有闪门。

所述在载流中表面带电荷的材料包括玻璃、石英或陶瓷;载流一般是水或水溶 液; 电极使用化学性质稳定的导电材料制造, 一般是铂丝; 所述做孔隔离器件包括 微孔滤膜或环状玻璃砂芯片; 泵体、电极腔、气体储存室、载流管和连接部件使用 不透载流和气体的非导电材料,例如玻璃或塑料;气体储存室采用透明材料为佳,

以便于观察气液界面;可以在泵体上设支架。

本实用新型电渗泵采用能在载流中表面带电荷的材料制造多孔芯柱,以在孔芯 界面的载流中形成反离子,当接通直流稳压电源时,电极施加的外加直流电场使含 反离子的载流产生电渗,在侧面封闭的多孔芯柱中发生的电渗作用使载流经多孔芯 柱端面,由输入载流管吸入,推向输出载流管;若关闭输出载流阀,切断电源,多 孔芯柱电渗泵停止工作;因电渗作用对溶液电解质的选择和离子强度有一定要求, 为保证测定中流量的一致性和重现性,减少电解和电能耗,可采用蒸馏水或去离子 水作载流;由于采用微孔隔离器件,减小了电极腔内电解产生的微气泡和电解引起 的腔内载流化学性质变化对芯柱和腔外载流的影响;气体储存室用于收集电渗泵在 长时间工作中电解产生的气体,使电极工作部分一直处于载流中,延长泵的单次连 续使用时间;所述气体储存室若采用透明材料,可方便地观察气液界面;当气储室 内气体体积达到一定量时,可通过设在顶部的上盖或阀门进行排气操作;若气储室 设置上盖,可打开上盖进行补水排气,还可开盖更换滤膜;对于气储室设有排气阀 的装置,则采用电渗排气法,具体操作在实施例2中介绍; 一般开始工作前先进行 一次排气操作。

与现有毛细管电渗泵相比,由于本实用新型电渗泵采用多孔芯柱,比毛细管电 渗泵扩大了工作流量范围;由于多孔芯柱的孔径远小于毛细管内径,所以电渗作用. 更有效,输出压强增大,流动稳定性大大改善;由于芯柱长度远小于毛细管长度, 所以驱动电压大为降低。与现有蠕动泵和柱塞泵相比,由于本实用新型是电渗式载

流泵,免除了步进马达和机械驱动,不仅结构简单、价格低,具能耗小;一般; 电泳仪作其驱动电源,一台电源可驱动近十台多孔芯柱电涂泵以本实用新型电池 的流量调节范围可达数百倍,而机械式载流泵仅数十倍;由于蠕动泵由数个滚辊 压泵管工作,所以在低转选时,滚轮位置变化引起的载流脉动较大,柱塞泵在高 压工作时,载流较稳定,而在低反压工作时,载流脉动也较大,本实用新型电影 由稳定的直流电场产生电渗,所以载流无脉动;蠕动泵调节流量的最小步长是1. 1分,本实用新型电渗泵是以直流稳压的均匀升降调节流量,所以流量可无级变 柱塞泵只可单向推动载流、蠕动泵也难以双向工作、本实用新型电渗泵只要改变。 压极性即可改变电渗方向;由于稳压直流电场的使用,使电渗泵驱动的流动注射系 统易于采用场放大效应高集待测成分, 易于分离样品基体。 以下结合附图说明本实用新型的实施例。

实施例1为本实用新型的一种电极腔设在泵体内的多孔芯柱电渗泵。

附图1为其结构示意图。多孔芯柱1以上海玻璃仪器一厂生产的直径34mm、 3000的5号玻璃飞芯片,取三片迭合在一起侧面封闭粘接制成。电极腔2 采用表面有 经原12的尼龙注型制件,内壁置孔径0.45um的微孔滤膜作为微孔隔离器件4, 脸2内放置电极5。气体储存室3与其上盖10之间采用螺纹结构可密封地活动联接。 电极5采用直径0.3mm的铂丝、粘接于上盖10中心。泵体7分为两部份、 盘11联接,多孔芯柱1和泵保7之间采用压紧密封式活动连接,以便干多孔芯柱的洗 涤、再生和更换。气储室3采用聚苯乙烯材料,其上盖10、泵休7、支架8和电极腔2 采用尼龙材料。泵体7两端设有输入载流管9-1和输出载流管9-2, 输出载流管9-2上 设一个两位单通阀6。泵体7、电极腔2、气储室3和设流管9之间采用环氧树脂粘结 固定。载流采用经0.2um滤膜过滤的去离子水。

开泵第一步为排气步骤。多孔芯柱电渗泵工作前,先在泵体7、电极腔2和气体 储存室3内充满去离子水、排出气体、旋紧气储室上盖10;接通直流稳压电源、 渗浆即开始工作; 调节电源电压可改变载流流量; 变换稳压电源极性, 可改变裁流 流向;关闭阀门6,断开电源,多孔芯柱电渗泵停止工作。 当多孔芯柱电渗泵长时 间工作,气储室3的气体体积达一定量时,此时应进行排气操作: 先切断电源, 打开上盖10、补充载流、排出气体、然后旋紧上盖10、完成排气操作。需要更换微 孔滤膜4时,可打开上盖进行更换。

Ng/ W &

本实施例多孔芯柱电渗泵的主要参数为:

工作电压 稳压直流 10-500 V 最大电能耗 .3 1 最大输出压强 不小千 1.0 bar 流量调节范围 20ul / min-3. Oml / min 流量变易系数

小干 0.5 % 不间断工作时间 不小于 4 hr

实施例2为本实用新型的一种电极腔没在泵体外的多孔芯柱电渗泵。

附图2为其结构示意图。它与实施例1的主要区别是将气馀室3的上盖10 改为阀 门, 输入载流管9-1和输出载流管9-2上分别设阀门6-1和6-2, 多孔芯柱1与泵体7采 用固定连接。本实施例中多孔芯柱1,采用5号玻璃粉、石英粉或陶瓷粉压制成型, 经高温炉烧结成直径35mm、厚度15mm、平均孔径2-4um的芯柱,侧面用环氧树脂封 闭, 再粘接于泵体7内。两个电极腔2连同气体储存室3分别粘接于泵体7两边, 两个 气体储存室3的顶部分别没有输入端气储室排气阀10-1和输出端气储室排气阀10-2。 电极腔2-气储室3及其阀门10、泵体7和载流管9及其阀门6均采用玻璃材料。 微孔 隔离器件4为环状玻璃砂芯片,采用实施例1中的5号玻璃砂芯片加工制成, 其一面 粘接在泵体7上与载流管9连通处的载流通道周围,另一面与载流管9粘接。电极5采 用直径0.3㎜铂丝,绕在载流管9外。输入、输出载流管9-1、9-2上分别设有阀门6 -1和6-2。粘接剂采用环氧树脂。载流为经0.2um滤膜过滤的主离子水。

实施例2的操作步骤与实施例1相同。开始工作前,先进行一次排气操作。本实 施例为气储室设有排气阀的电渗泵,采用电渗排气法,共操作为:在电源断开的状

经免流对丟流

态下,将输入、输出载流管9-1、9-2接载流;将闪门6-2关闭,闪门10-2打开,闪门6-1打开,闪门10-1关闭;接通电源使正向供电,可排出输出端气储室的气体;将上述闪门的通断位置反置,电源反向供电,可排出输入端气储室的气体。

本实施例多孔芯柱电渗泵的主要参数为: 工作电压 稳压直流 10--500 V 最大电能耗 不小于 1.5 bar 最大输出压强 不小于 1.5 bar 流量调节范围 20ul/min--10ml/min 流量变易系数 小于 0.5 %

流重艾勿亦效 不间断工作时间 不小于 8 hr 1、一种多孔芯柱电渗泵,其特征在于由包括侧面封闭的多孔芯柱、电极极 极腔、微孔隔离器件、气体储存室和泵体组成,所述多孔芯柱采用在载流中表面 电荷的材料制造,置于泵体中央;电极腔位于多孔芯柱两端,电极置于电极腔内 电极腔的内外载流之间用亲和载流的微孔隔离器件隔离;气体储存室位于电极 附并与电极腔连通,其顶部设可密封的盖或阀门;泵体两端分别设有输入、输出流管,载流管上设有阀门。

西授权公告日

20申请日 9° 20专利权人 地址 20设计人 1°

[54]实用新 [57]摘要

吸成一错心特轴改挤等盘的列两在与传