

Winning Space Race with Data Science

Christoph Promberger July 4, 2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Methodology (see methodology section for more details)
 - Data collection methodology:
 - Perform data wrangling
 - Perform exploratory data analysis (EDA) using visualization and SQL
 - Perform interactive visual analytics using Folium and Plotly Dash
 - Perform predictive analysis using classification models
- Key results (see results section for more details):
 - The average success rate for a SpaceX launch is 66%, but it increased significantly over the years (from 33% in 2014/2015 to 90% in 2019)
 - Our best model (Decision Tree classifier) can correctly predict the outcome in 17 out of 18 launches contained in the test set, yielding an accuracy of 94.4%.

Introduction

- Project background and context
 - In order to compete against Space X, we have to understand better their cost of each launch.
 - The key determinant of the launch price is whether the first stage does land (and can be reused) or not.
 - Instead of using rocket science, we want to approach this question the "data science way", by using publicly available information to train a machine learning model to predict the launch success.
- Problems you want to find answers
 - For a given launch (with given parameters), will the first stage land or not?

Methodology

Executive Summary

- Data collection methodology:
 - Webscraping
 - SpaceX's public API
- Perform data wrangling
 - Calculate number of launches from each site, occurrence of each orbit and mission outcomes
 - Create landing outcome label, save it to dataframe and calculate average success rate
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Evaluate 4 different models (Logistic Regression, SVM, Decision Tree and KNN)
 - Optimize parameters for each of these models with the help of GridSearchCV

Data Collection

Data was collected in 2 ways:

1. Accessing SpaceX's public API [https://api.spacexdata.com/v4/launches/past, https://api.spacexdata.com/v4/rockets/, https://api.spacexdata.com/v4/launchpads/, https://api.spacexdata.com/v4/payloads/, https://api.spacexdata.com/v4/cores/]

2. Web Scraping from Wikipedia Article on List of Falcon 9 and Falcon Heavy launches [https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches]

Data Collection – SpaceX API

Data Collection - Scraping

Find me on github:

https://github.com/prombi/IBM-Capstone-Project/blob/f0b3313e1e06b2a0c6ace4088414 642cf7a5be99/02%20-

%20Data%20Collection%20webscraping.ipynb

df.to_csv('spacex_w eb scraped.csv', index=False)

Export to .csv

9

Data Wrangling

each site

occurrence of

each orbit

mission

outcomes

and save it to

df

EDA with Data Visualization

Find me on github:

Project/blob/f0b3313e1e06b2a0c6ace4088414
642cf7a5be99/05%20%20EDA%20with%20Visualization.ipvnb

Plotted Charts:

- 1. Relationship between Flight Number and Launch Site (Catplot FlightNumber vs LaunchSite): Check whether the usage of different launch sites over time has an impact on the success rate of these sites
- 2. Relationship between Payload and Launch Site (Catplot Payload vs. LaunchSite): Check whether certain payload mass ranges are (not) launched from certain sites.
- 3. Relationship between Orbit type and success rate (Bar plot Payload vs. LaunchSite): See how the orbit type impacts success rate.
- 4. Relationship between Flight Number and Orbit Type (Catplot FlightNumber vs LaunchSite): Check whether the for different orbits the success depends on flight number. This is the case for LEO orbit, whereas for GTO orbit there is no such relationship.
- 5. Relationship between Payload and Orbit Type (Catplot Payload vs. Orbit Type): Check dependence of success rate on payload & orbit.
- 6. Launch Success yearly trend (Line Plot Years vs. Success Rate): See how success rate develops over time. Clear upward trend from 2010 to 2020!

EDA with SQL

Find me on github:

https://github.com/prombi/IBM-Capstone-Project/blob/f0b3313e1e06b2a0c6ace4088414 642cf7a5be99/04%20-%20EDA%20with%20SQL.ipynb

SQL queries performed:

- 1. Display the names of the unique launch sites in the space mission: %sql SELECT DISTINCT launch site FROM SPACEXDATASET
- Display 5 records where launch sites begin with the string 'CCA':
 %sql SELECT * FROM SPACEXDATASET WHERE launch_site LIKE 'CCA%' LIMIT 5
- Display the total payload mass carried by boosters launched by NASA (CRS):
 %sql SELECT COUNT(DATE), SUM(payload_mass_kg_) FROM SPACEXDATASET WHERE customer = 'NASA (CRS)'
- 4. Display average payload mass carried by booster version F9 v1.1: %sql SELECT COUNT(DATE) AS Count, AVG(payload_mass__kg_) AS Avg_Payload_Mass_FROM SPACEXDATASET WHERE booster_version = 'F9 v1.1'
- List the date when the first successful landing outcome in ground pad was achieved:
 %sql SELECT MIN(Date) FROM SPACEXDATASET WHERE landing outcome = 'Success (ground pad)'
- 6. List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000:

 ### SELECT DISTINCT(booster_version) FROM SPACEXDATASET WHERE landing_outcome = 'Success (drone ship)' AND payload_mass_kg_BETWEEN 4000

 AND 6000
- 7. List the total number of successful and failure mission outcomes:
 %sql SELECT mission_outcome, COUNT(Date) AS COUNT FROM SPACEXDATASET GROUP BY mission_outcome
- 9. List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015:

 ### Select Date, landing_outcome, booster_version, launch_site FROM SPACEXDATASET WHERE landing_outcome = 'Failure (drone ship)' AND YEAR(Date)

 = '2015'

Build an Interactive Map with Folium

Find me on github:

https://github.com/prombi/IBM-Capstone-Project/blob/f0b3313e1e06b2a0c6ace408841e 642cf7a5be99/06%20-%20lab jupyter launch site location.jpynb

Map objects created:

- Per each launch site (4 total)
 - Circle around launch site → to find the sites on the map: circle = folium.Circle(coordinate, radius=200, color='#d35400', fill=True).add_child(folium.Popup(name))
 - Marker with launch site name → to identify the site names:

 marker = folium.map.Marker(coordinate, icon=Divlcon(ion_size=(20,20), icon_anchor=(0,0), html='<div style="font-size: 12; color:#d35400;">%s</div>' % name,))
 - Marker cluster with success/failed launches → to see the number of and success of all launches from this site:
 marker = folium.Marker(location = [record['Lat'], record['Long']], icon = folium.lcon(color='white', icon_color=record['marker_color']))
- For CCAFS SLC 40:
 - · Marker and line to closest coast
 - · Marker and line to closest city
 - Marker and line to closest highway
 - Marker and line to closest railroad

Build a Dashboard with Plotly Dash

Find me on github:

https://github.com/prombi/IBM-Capstone-Project/blob/f0b3313e1e06b2a0c6ace4088414 42cf7a5be99/07%20-%20spacex dash app.py

Plots/graphs and interactions added to the dashboard:

- 1. Dropdown site selection
 - → to enable the user to drill down the following anylses into specific sites
- 2. Pie chart showing successful launches (if 'all sites' selected), respectively success vs. fail counts for the selected site
 - → giving an overview of success rates
- 3. Slider to select payload range
 - → allow user to drill down analysis by payload ranges
- 4. Scatter chart to show correlation btw. Payload and launch success
 - → overview of success for different payloads

Predictive Analysis (Classification)

training and

test data

Find me on github:

https://github.com/prombi/IBM-Capstone-Project/blob/f0b3313e1e06b2a0c6ace4088414642 cf7a5be99/08%20-

%20SpaceX Machine%20Learning%20Prediction P art 5.ipynb

saved csv

parameters = {...} Ir score = Ir=LogisticRegression() logreg cv.score(X logreg cv = GridSearchCV(Ir, parameters, cv=10) test, Y test) logreg cv.fit(X train, Y train) parameters = {...} svm = SVC()svm score = svm cv = GridSearchCV(svm, svm cv.score(X te parameters, cv=10) st, Y test) svm cv.fit(X train,Y train) parameters = {...} tree score = tree = DecisionTreeClassifier() tree cv.score(X te tree cv = GridSearchCV(tree, parameters, cv=10) st, Y test) tree cv.fit(X train, Y train) parameters = {...} knn score = KNN = KNeighborsClassifier() knn cv = GridSearchCV(KNN, knn cv.score(X tes parameters, cv=10) t, Y test) knn_cv.fit(X_train, Y_train) Task 4 / 6 / 8 / 10:

Task 4 / 6 / 8 / 10: Create Logistic Regression/ SVM / Tree / KNN object and find best parameters using GridSearchCV object

Task 5 / 7 / 9 / 11: Calculate accuracy on the test data pd.DataFrame({'Mo del': ['Logistic Regression', 'Support Vector Machine', 'Decision Tree', 'K Nearest Neighbors'], 'Score': [lr_score, svm_score, tree_score, knn_score]})

Task 12: Find model that performs best

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

→ See next slides

Flight Number vs. Launch Site

- 1. CCAFS SLC40 is the Launch site with the most starts (55) as compared to KSC (22) and VAFB (13)
- 2. Particularly in the beginning (first 25 starts) when the success rate was still quite low, CCAFS was used almost exclusively (only 2 starts from VAFB, 23 starts from CCAFS). Counting only starts from 26 onwards, success rate for CCAFS is also at 75%

Payload vs. Launch Site

Payload mass

- 1. Lighter payloads (<8000kg) are predominantly performed from CCAFS SLC 40
- 2. Heavy payloads (<10000kg) are only done from KSC and CCAFS, not VAFB

Success Rate vs. Orbit Type

Finding: Orbits with highest success rate (counting only orbits with 5 or more launches):

- 1. SSO: 100% @ 5 launches
- 2. VLEO: 86% @ 14 launches
- 3. LEO: 71% @ 7 launches
- 4. PO: 67% @ 9 launches
- 5. ISS: 62% @ 21 launches
- 6. GTO: 52% @ 27 launches

Flight Number vs. Orbit Type

- 1. For LEO orbit, the success increases with number of flights;
- 2. No such relationship for GTO orbit.

Payload vs. Orbit Type

- 1. Heavy payloads (>= 10000kg) are only launched to ISS, PO and VLEO, with a very high success rate (only 1 fail in VLEO)
- 2. For GTO, the payload is btw. ~3500 and ~7000 kg, with successful and failed landing outcomes evenly distributed

Launch Success Yearly Trend

- 1. There us a very clear upward trend (learning curve) btw. 2013 and 2017
- 2. After 2017, the learning curve seems to flatten, with drops in 2018 and 2020 (but still 2020 is on the level of 2017)
- 3. The highest success rate (90%) was achieved in 2019

All Launch Site Names

There are 4 distinct launch sites

Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'

1 %sql SELECT * FROM SPACEXDATASET WHERE launch_site LIKE 'CCA%' LIMIT 5

* ibm_db_sa://hdw01742:***@ea286ace-86c7-4d5b-8580-3fbfa46b1c66.bs2io90108kqb1od8lcg.databases.appdomain.cloud:31505/bludb Done.

DA	ATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landingoutcome
	010- 6-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
)10- 2-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
)12- 5-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
)12-)-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
)13- 3-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

... 5 examples of records where launch site name begins with "CCA"

Total Payload Mass

```
Display the total payload mass carried by boosters launched by NASA (CRS)

1  %sql SELECT COUNT(DATE), SUM(payload_mass__kg_) FROM SPACEXDATASET WHERE customer = 'NASA (CRS)'

* ibm_db_sa://hdw01742:***@ea286ace-86c7-4d5b-8580-3fbfa46b1c66.bs2io90108kqb1od8lcg.databases.appdor
Done.

1  2
20  45596
```

There are in total 20 launches by NASA (CRS), with a total payload mass of 45596 kg

Average Payload Mass by F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1 ¶

1  %sql SELECT COUNT(DATE) AS Count, AVG(payload_mass__kg_) AS Avg_Payload_Mass FROM SPACEXDATASET
2  WHERE booster_version = 'F9 v1.1'

* ibm_db_sa://hdw01742:***@ea286ace-86c7-4d5b-8580-3fbfa46b1c66.bs2io90l08kqb1od8lcg.databases.appdon
Done.

COUNT avg_payload_mass
5  2928
```

There are in total 5 carried by booster version F9 v1.1, with an average payload mass of 2928 kg

First Successful Ground Landing Date

The first successful landing outcome in ground pad was on 12/22, 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

There were 4 boosters which had success in drone ship and payload btw. 4000 and 6000 kg

Total Number of Successful and Failure Mission Outcomes

Of 101 flights, 99 had successful missions (which does not mean that the landing was also successful)

Boosters Carried Maximum Payload

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery											
2 payload_mass_ 3 (SELECT MA	<pre>%%sql SELECT DISTINCT(booster_version), payload_masskg_ FROM SPACEXDATASET WHER payload_masskg_ = (SELECT MAX(payload_masskg_) FROM SPACEXDATASET) ster_version payload_masskg_</pre>										
F9 B5 B1048.4	15600										
F9 B5 B1048.5	15600										
F9 B5 B1049.4	15600										
F9 B5 B1049.5	15600										
F9 B5 B1049.7	15600										
F9 B5 B1051.3	15600										
F9 B5 B1051.4	15600										
F9 B5 B1051.6	15600										
F9 B5 B1056.4	15600										
F9 B5 B1058.3	15600										
F9 B5 B1060.2	15600										
F9 B5 B1060.3	15600										

2015 Launch Records

List the failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015

2 failed landings in 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

```
%%sql SELECT landing outcome, COUNT(landing outcome) AS Count FROM SPACEXDATASET
    WHERE Date BETWEEN '2010-06-04' AND '2017-03-20'
    GROUP BY landing outcome ORDER BY Count DESC
 * ibm db sa://hdw01742:***@ea286ace-86c7-4d5b-8580-3fbfa46b1c66.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:31505/bluc
Done.
   landing_outcome COUNT
         No attempt
                       10
   Failure (drone ship)
                        5
 Success (drone ship)
                        5
    Controlled (ocean)
                        3
 Success (ground pad)
                        3
   Failure (parachute)
                        2
```

Most frequent landing outcomes in given timeframe were ,No attempt' (10x), ,Failure (drone ship)' (5x) and ,Success (drone ship)' (5x)

Uncontrolled (ocean)

Precluded (drone ship)

Global map of all launch sites

total of 46 launches, and one site on the west coast with 10 launches

35

Launch sites deep-dive: Launch outcomes

KSC LC-39A

Deep dive: CCAFS SLC-40 proximities

Successful launches across all sites

Finding: Most successful launches from KSC LC-39A

Launch success for site with highest success ratio

Finding: Success rate at KSC LC-39A is 76.9%

Payload vs. Launch Outcome for all sites

Payload ranges with highest success rate: 1950-3700 kg, 4600-5300kg

Payload range with lowest success rate: 5600-6800 kg

Booster versions with highest success rate:

- B5 (1/1 = 100%)
- FT (16/24 = 66%)

Classification Accuracy

Decision tree has the highest classification accuracy on the test set (94.4%)*!

^{*}Note: From run to run, the best parameters for the decision tree model can change and its performance can also vary btw. ~66% and 94%. We chose one of the best performing configurations here

(parameters = {'criterion': 'gini', 'max_depth': 14, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 10, 'splitter': 'best'})

Confusion Matrix for best model (decision tree)*

^{*}Note: From run to run, the best parameters for the decision tree model can change and its performance can also vary btw. ~66% and 94%. We chose one of the best performing configurations here

(parameters = {'criterion': 'gini', 'max_depth': 14, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 10, 'splitter': 'best'})

Conclusions

- LogReg, SVM and KNN yield the same outcomes: Accuracy = 83.3%, Confusion Matrix see Appendix
- For Decision Tree model, the best parameters change from run to run:
 - In the best case, we find 94.4% accuracy and a confusion matrix as shown in the previous slides. This is the best model that we can find, with only one false positive and no false negatives.
 - In the worst case, we find 66.6% accuracy
 - There seems to be some randomness involved in the GridSearchCV optimization algorithm. Further analysis of this algorithm is in place (but goes beyond the scope of this assignment)

Appendix

Confusion Matrix for typical model

All models apart from decision tree, i.e. LogReg, SVM, KNN, have the same performance (83.3%), and the same confusion matrix shown here:

