	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\sharp 1}{}_{lpha}$	$\sigma_{1-\alpha}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha}$	τ ₁ -2 α
$\sigma_{1}^{\#1} \dagger^{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_3 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0
$\sigma_{1}^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\sigma_1^{\#2}\dagger^{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6 k^2 (2r_3+r_5)+t_1}{2 (k+2 k^3)^2 (2r_3+r_5)t_1}$	0	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_1^{\#1} + \alpha$	0	0	0	0	0	0	0
$\tau_1^{\#2} + ^{\alpha}$	0	0	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$-\frac{i\left(6k^{2}(2r_{3}+r_{5})+t_{1}\right)}{\sqrt{2}k\left(1+2k^{2}\right)^{2}\left(2r_{3}+r_{5}\right)t_{1}}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$

Source constraints	
SO(3) irreps	#
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 \bar{\imath} k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5
Total #:	16

Unitarity conditions $r_5 < -2 r_3 \&\& t_1 < 0 || t_1 > 0$

(No massive particles)

Added source term: $\int f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$	$r_5 \partial_{lpha} \omega_{\lambda}^{\ \ lpha} \partial^{\lambda} \omega^{eta \kappa}_{\ \ \kappa} + 2 r_3 \partial_{eta} \omega_{\lambda}^{\ \ lpha} \partial^{\lambda} \omega^{eta \kappa}_{\ \ \kappa} - r_5 \partial_{eta} \omega_{\lambda}^{\ \ lpha} \partial^{\lambda} \omega^{eta \kappa}_{\ \ \kappa}$	$\frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa}-4r_3\partial^{\beta}\omega_{,}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}-2r_3\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}+$	$\frac{1}{3}t_1 \omega_{,\lambda}^{\ \ \lambda} \partial^\kappa f'_{\ \kappa} + \frac{1}{2}t_1 \partial^\alpha f^\lambda_{\ \kappa} \partial^\kappa f_{\lambda\alpha} + \frac{1}{2}t_1 \partial_\kappa f^\lambda_{\ \theta} \partial^\kappa f^{\ \lambda}_{\lambda} + \frac{1}{2}t_1 \partial_\kappa f^\lambda_{\ \theta} \partial^\kappa f^{\ \theta}_{\lambda} -$	$\frac{2}{3}t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{,-}\frac{1}{3}t_1\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f'_{\prime}+2t_1\;\omega_{\prime\kappa\theta}\;\partial^{\kappa}f^{\prime\theta}-\frac{1}{3}t_1\;\omega_{\prime\alpha}^{\alpha}\;\partial^{\kappa}f'_{\kappa}-$	$\tfrac{1}{2} t_1 \partial^\alpha f_{\kappa \theta} \partial^\kappa f_\alpha^{\ \theta} - \tfrac{1}{2} t_1 \partial^\alpha f^\lambda_{\ \kappa} \partial^\kappa f_{\alpha \lambda} + \tfrac{1}{3} t_1 \omega_{\kappa \alpha}^{\ \alpha} \partial^\kappa f'_{\ \prime} + \tfrac{1}{3} t_1 \omega_{\kappa \lambda}^{\ \lambda} \partial^\kappa f'_{\ \prime} +$	$4 r_3 \partial_\theta \omega_{\lambda \ \alpha}^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + 2 r_5 \partial_\theta \omega_{\lambda \ \alpha}^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - \tfrac{1}{2} t_1 \partial^\alpha f_{\theta \kappa} \partial^\kappa f_{\alpha}^{\ \theta} -$	$r_5\partial_ heta\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{ heta\kappa\lambda}-2r_3\partial_lpha\omega_{\lambda\theta}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-r_5\partial_lpha\omega_{\lambda\theta}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}+$	$2r_3\partial_{lpha}\omega_{\lambda\theta}^{a}\partial_{\kappa}\omega^{\theta\kappa\lambda}$ - $r_5\partial_{lpha}\omega_{\lambda\theta}^{a}\partial_{\kappa}\omega^{\theta\kappa\lambda}$ - $2r_3\partial_{ heta}\omega_{\lambda\alpha}^{a}\partial_{\kappa}\omega^{\theta\kappa\lambda}$ +	$-\frac{1}{3}t_1\;\omega_{,}^{\;\alpha_{l}}\;\omega_{\kappa\alpha}^{\;\;\kappa}-t_1\;\omega_{,}^{\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;l}-2r_3\partial_{l}\omega_{\kappa}^{\kappa\lambda}\;\partial^{l}\omega_{\lambda}^{\;\;\alpha}-r_5\partial_{l}\omega_{\kappa}^{\kappa\lambda}\;\partial^{l}\omega_{\lambda}^{\;\;\alpha}+$	Lagrangian density	
--	--	--	---	--	---	---	--	--	--	--------------------	--

$f_{1}^{#2} + \alpha$	$f_{1}^{#1} + \alpha$	$\omega_{1}^{#2} \dagger^{\alpha}$	$\omega_{1^{-}}^{\sharp 1} \dagger^{lpha}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1}^{#2} + \alpha^{\beta}$	$\omega_{1}^{*1} \dagger^{lphaeta}$	
0	0	0	0	$\frac{i k t_1}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1+}^{*1} + \alpha^{\beta} k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$\omega_{1}^{\#1}{}_{lphaeta}$
0	0	0	0	0	0	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1+\alpha\beta}^{\#2} \ f_{1+\alpha\beta}^{\#1}$
0	0	0	0	0	0	$-\frac{ikt_1}{\sqrt{2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$
$-\frac{1}{3}ikt_1$	0	$\frac{t_1}{3\sqrt{2}}$	$k^2 (2r_3 + r_5) + \frac{t_1}{6}$	0	0	0	$\omega_{1^-\alpha}^{\#1}$
$-\frac{1}{3}i\sqrt{2}kt_1$	0	<u>£1</u> 3	$\frac{t_1}{3\sqrt{2}}$	0	0	0	$\omega_{1^-\alpha}^{\#2}$
0	0	0	0	0	0	0	$f_{1^{-}\alpha}^{\#1}$
$\frac{2k^{2}t_{1}}{3}$	0	$\frac{1}{3}i\sqrt{2}kt_1$	$0 \qquad \frac{ikt_1}{3}$	0	0	0	$f_{1^-\alpha}^{\#2}$

