

(11) EP 0 669 317 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 04.09.2002 Bulletin 2002/36
- (21) Application number: 95101059.4
- (22) Date of filing: 26.01.1995

(51) Int CI.7: **C07D 207/16**, C07D 211/60, C07D 403/06, C07D 403/12, C07D 401/12, C07D 403/08, C07D 403/10, C07K 5/06, A61K 31/40

(54) Prolineamide derivatives

Prolineamid-Derivate
Dérivés de la prolinamide

- (84) Designated Contracting States:

 AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
 PT SE
 - Designated Extension States: LT SI
- (30) Priority: 27.01.1994 JP 773394
- (43) Date of publication of application: 30.08.1995 Bulletin 1995/35
- (73) Proprietor: Mitsubishi Chemical Corporation Chiyoda-ku, Tokyo (JP)
- (72) Inventors:
 - Ohshima, Masahiro, Mitsubishi Chemical Corp.
 Aoba-ku, Yokohama-shi, Kanagawa-ken (JP)
 - Iwase, Norimichi, Mitsubishi Chemical Corp.
 Aoba-ku, Yokohama-shi, Kanagawa-ken (JP)
 - Sugiyama, Shigeo, Mitsubishi Chemical Corp. Aoba-ku, Yokohama-shi, Kanagawa-ken (JP)
 - Sugawara, Koichi, Mitsubishi Chemical Corp. Aoba-ku, Yokohama-shi, Kanagawa-ken (JP)
 - Okitsu, Misao, Mitsubishi Chemical Corp.
 Aoba-ku, Yokohama-shi, Kanagawa-ken (JP)
 - Tamao, Yoshikuni, Mitsubishi Chemical Corp. Aoba-ku, Yokohama-shi, Kanagawa-ken (JP)
 - Morinaka, Yasuhiro, Mitsubishi Chemical Corp.
 Aoba-ku, Yokohama-shi, Kanagawa-ken (JP)

(74) Representative:

Hansen, Bernd, Dr. Dipl.-Chem. et al Hoffmann Eitle, Patent- und Rechtsanwälte, Arabellastrasse 4 81925 München (DE)

(56) References cited:

EP-A- 0 601 459 US-A- 5 153 176 WO-A-93/15756

- CHEMICAL ABSTRACTS, vol. 104, no. 7, 17
 February 1986, Columbus, Ohio, US; abstract no. 47665b, & SYMP. BIOL. HUNG.
 (PROTEINASE ACTION), vol.25, 1984, BUDAPEST pages 277 298 S. BAJUSZ & CAS REGISTRY HANDBOOK 1986 SUPPL. (STN DATABASE)
- CHEMICAL ABSTRACTS, vol. 103, no. 3, 22 July 1985, Columbus, Ohio, US; abstract no. 18900y, & BIOCHEMISTRY, vol.24, no.13, 1985, EASTON, PA US pages 3149 - 3157 C.F. VENCILL ET AL.
- CHEMICAL ABSTRACTS, vol. 92, no. 3, 21
 January 1980, Columbus, Ohio, US; abstract no.
 17850z, & BIOORG. CHEM., vol.8, no.3, 1979
 pages 299 309 C.H. HASSALL ET AL.

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

P 0 669 317 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

20

25

30

45

50

FIELD OF THE INVENTION

5 [0001] The present invention relates to novel proline derivatives. More particularly, it relates to proline derivatives having a protease inhibition activity or pharmaceutically acceptable salts thereof and protease inhibitors containing the same as an active ingredient.

BACKGROUND OF THE INVENTION

[0002] It has been known that various proteases are present in the living body, for example, a group of serine proteases such as thrombin, factor Xa, factor IXa, factor VIIa, trypsin, plasmin, tissue plasminogen activator, kallikrein, C3/C5 convertase in the complement system, tryptase, etc. is known. Further, it is also known that these proteases cause various diseases when they are activated abnormally by some reason. Accordingly, substances which inhibit the activity of these proteases are useful as a clinical remedy. For example, antithrombin agents, anti-factor Xa agents and anti-factor VIIa agents are useful for treating thrombosis, antitrypsin agents are useful for treating pancreatitis, antiplasmin agents are useful as hemostatics, antiallergic agents and antiinflammatory agents, antikallikrein agents are useful as a remedy for inflammation and ulcer, and anticomplementary agents are useful as a remedy for nephritis and rheumatoid arthritis. Protease inhibitors having these actions have hitherto been developed, but they are not necessarily sufficient for practical use in view of protease inhibition activity, stability in the living body and the like. For example, tripeptide derivatives consist of arginine derivatives are known as protease inhibitors. That is, D-phenylalanyl-L-prolyl-L-arginal is known as a thrombin inhibitor (e.g. Folia Haematol., 109, 22 (1982)) but is fairly unstable in the living body (J. Med. Chem., 33, 1729 (1990)). Further, arginal derivatives (Japanese Laid-open Patent Publication No. 4-89498) or amidinophenylalanine derivatives (Thromb. Res., 17, 425 (1980)) are reported as protease inhibitors but their inhibition activity is low.

[0003] Under these circumstances, the present inventors have studied to develop structurally novel drugs having enzyme inhibition activity and stability in vivo, which are sufficient for practical use. As a result, it has been found that certain prolineamide derivatives can attain the desired object, thus the present invention has been established.

SUMMARY OF THE INVENTION

[0004] That is, the present invention provides a prolineamide derivative represented by the formula (I):

$$(CH_2)_{rr} O | I CNCH_2 - A-R^3$$

$$C=O R^1$$
(I)

wherein A is a carbon atom or a nitrogen atom; n is an integer of 0 to 2; a broken line is absent or a single bond; R1 is

55 {wherein D and E independently indicate a single bond or an optionally branched C₁-C₆ alkylene group;

 R^4 is a C_1 - C_6 alkyl group, -OR 6 (R^6 is a hydrogen atom, a C_1 - C_6 alkyl group, an optionally substituted C_6 - C_{10} aryl group, an optionally substituted C_3 - C_8 cycloalkyl group or an optionally substituted C_7 - C_{12} aralkyl group), -SR 7 (R^7 is a C_1 - C_6 alkyl group, an optionally substituted C_6 - C_{10} aryl group, an optionally substituted C_3 - C_8 cycloalkyl group

or an optionally substituted C_7 - C_{12} aralkyl group), -SOR 8 (R 8 is an optionally substituted C_6 - C_{10} aryl group or an optionally substituted C_3 - C_8 cycloalkyl group), -SO $_2$ R 9 (R 9 is an optionally substituted C_6 - C_{10} aryl group or an optionally substituted C_3 - C_8 cycloalkyl group), -COR 10 (R 10 is a hydroxyl group, a C_1 - C_6 alkoxy group, an optionally substituted C_6 - C_{10} aryl group or an optionally substituted C_3 - C_8 cycloalkyl group), -NHR 11 (R 11 is a C_1 - C_6 alkyl group, an optionally substituted C_6 - C_{10} aryl group, an optionally substituted C_3 - C_8 cycloalkyl group or an optionally substituted C_6 - C_{10} aryl group, an optionally substituted C_7 - C_{12} aralkyl group), -NHSO $_2$ R 13 (R 13 is a C_1 - C_6 alkyl group, an optionally substituted C_7 - C_{12} aralkyl group, an optionally substituted C_7 - C_8 cycloalkyl group, an optionally substituted C_7 - C_8 cycloalkyl group, an optionally substituted C_8 - C_{10} aryl group, an optionally substituted C_8 - C_8 cycloalkyl group, an optionally substituted C_8 -

 $\rm R^5$ is a -OR 17 (R 17 is a hydrogen atom, -SiR 22 R 23 R 24 (R 22 , R 23 , and R 24 independently indicate a C $_1$ -C $_6$ alkyl group or an optionally substituted 5- to 10-membered heterocyclic group)), -OCOR 18 (R 18 is a hydrogen atom, a C $_1$ -C $_6$ alkyl group, a C $_2$ -C $_1$ dialkylamino group or a C $_2$ -C $_7$ alkenylamino group), -NHR 19 (R 19 is a hydrogen atom, a C $_1$ -C $_6$ alkyl group or an optionally substituted C $_7$ -C $_1$ aralkyl group), -NHCOR 20 (R 20 is a hydrogen atom, a C $_1$ -C $_6$ alkyl group, a C $_1$ -C $_6$ haloalkyl group, a C $_1$ -C $_6$ alkoxy group, an optionally substituted C $_3$ -C $_8$ cycloalkyl group, a C $_2$ -C $_7$ carboxyalkyloxy group, a C $_2$ -C $_7$ alkenyloxy group, an optionally substituted C $_6$ -C $_1$ aryloxy group, a C $_3$ -C $_9$ alkoxycarbonylalkoxy group, a C $_1$ -C $_6$ haloalkyl group, a C $_2$ -C $_7$ carboxyalkyl group, an optionally substituted C $_6$ -C $_1$ aralkyloxy group) or -NHSO $_2$ R 21 (R 21 is a C $_1$ -C $_6$ alkyl group, a C $_1$ -C $_6$ haloalkyl group, a C $_2$ -C $_7$ carboxyalkyl group, an optionally substituted C $_6$ -C $_1$ aralkyloxy group); and m is 0 or 1);

each of said 5- to 10-membered heterocyclic groups is independently selected from a furan ring, a tetrahydrofuran ring, a pyran ring, a benzofuran ring, a chroman ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, an imidazole ring, a pyrazole ring, a triazole ring, a pyridine ring, a piperidine ring, a pyrazine ring, a piperazine ring, a pyrimidine ring, an indole ring, a benzimidazole ring, a purine ring, a quinoline ring, a phthalazine ring, a quinazoline ring, a cinnoline ring, an oxazole ring, a thiazole ring and a morpholine ring;

each of said optional substituents being independently selected from C_1 - C_6 alkyl group, a C_1 - C_6 haloalkyl group, a C_1 - C_6 alkoxy group, a hydroxyl group, a carboxyl group, a C_2 - C_7 carboxyalkyl group, a C_2 - C_7 carboxyalkyloxy group, a C_2 - C_7 acyloxy group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkoxycarbonyl group, a C_3 - C_9 alkoxycarboxyalkoxy group and a halogen atom};

 R^2 is a hydrogen atom or a C_1 - C_6 alkyl group; and R^3 is -C(=NR²⁵)NH₂ (R²⁵ is a hydrogen atom or a hydroxyl group) or -NH₂; provided that R^3 is -C(=NR²⁵)NH₂ (R²⁵ is as defined above) when A is a nitrogen atom, or a salt or hydrate thereof;

with the proviso that if the substituent R² represents a hydrogen atom, the group "D" represents a single bond, and the index n is 1 or 2, then neither of the substituents R⁴ or R⁵ represents a group including an aminosulfonyl moiety; and pharmaceutical use thereof.

DETAILED DESCRIPTION OF THE INVENTION

35

[0005] The prolineamide derivative of the present invention is represented by the above formula (I). Examples of the optionally branched C₁-C₆ alkylene group in the above definition include -CH₂-, -(CH₂)₂-, -(CH₂)₃-, -(CH₂)₄-, -(CH₂)₅-, -(CH₂)₆-, -CH(CH₃)-, -C(CH₃)₂-, -CH(CH₃)CH₂-, -CH₂CH(CH₃)-, -C(CH₃)₂CH₂-, -CH₂C(CH₃)₂-, -CH(CH₃)CH(CH₃)and the like. Examples of the C₁-C₆ alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, nbutyl group, s-butyl group, i-butyl group, t-butyl group, n-pentyl group, n-hexyl group and the like. Examples of the C1-C3 alkyl group include those having three carbon atoms or less among those illustrated above. Examples of the $\textbf{C}_{1}\textbf{-}\textbf{C}_{6} \text{ alkoxy group, i-propoxy group, i-propoxy group, n-butyloxy group, s-butyloxy group, s-butyloxy$ butyloxy group, i-butyloxy group, t-butyloxy group, n-pentyloxy group, n-hexyloxy group and the like. Examples of the C2-C7 alkoxycarbonyl group include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, i-propoxycarbonyl group, n-butyloxycarbonyl group, t-butyloxycarbonyl group, n-pentyloxycarbonyl group, n-hexyloxycarbonyl group and the like. Examples of the C3-C8 cycloalkyl group include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclohetyl group, cyclooctyl group and the like. Examples of the C_6 - C_{10} aryl group include phenyl group, tolyl group, naphthyl group and the like. Examples of the C7-C12 aralkyl group include benzyl group, phenylethyl group, phenylpropyl group, naphthylmethyl group and the like. Examples of the C6-C10 aryloxy group include phenyloxy group, naphthyloxy group and the like. Examples of the C7-C12 aralkyloxy group include benzyloxy group, phenylethyloxy group, phenylpropyloxy group, naphthylmethyloxy group and the like. Examples of the C₁-C₆ haloalkyl group include chloromethyl group, bromomethyl group, dichloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 3-chloropropyl group, 4-chlorobutyl group, 5-chloropentyl group, 6-chlorohexyl group, difluoromethyl group, trifluoromethyl group and the like. Examples of the C2-C7 carboxyalkyl group include carboxymethyl group,

2-carboxyethyl group, 3-carboxypropyl group, 4-carboxybutyl group, 5-carboxypentyl group, 6-carboxyhexyl group and the like. Examples of the C2-C7 carboxyalkyloxy group include carboxymethoxy group, 2-carboxyethoxy group, 3-carboxypropoxy group, 4-carboxybutyloxy group, 5-carboxypentyloxy group, 6-carboxyhexyloxy group and the like. Examples of the C2-C7 alkenyloxy group include vinyloxy group, aryloxy group, 2-propenyloxy group, isopropenyloxy group, 3-butenyloxy group, 4-pentenyloxy group, 5-hexenyloxy group and the like. Examples of the C_2 - C_7 alkenylamino group include vinylamino group, arylamino group, 2-propenylamino group, Isopropenylamino group, 3-butenylamino group, 4-pentenylamino group, 5-hexenylamino group and the like. Examples of the C₁-C₆ alkylamino group include methylamino group, ethylamino group, n-propylamino group, n-butylamino group and the like. Examples of the C2-C12 dialkylamino group include dimethylamino group, methylethylamino group, diethylamino group, di-n-propylamino group and the like. Examples of the C2-C7 acyl group include acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaroyl group, hexanoyl group, heptanoyl group and the like. Examples of the C₂-C₇ acyloxy group include acetyloxy group, propionyloxy group, butyryloxy group, isobutyryloxy group, valeryloxy group, isovaleryloxy group, pivaroyloxy group, hexanoyloxy group, heptanoyloxy group and the like. Examples of the C₂-C₇ alkokycarbonyloxy group include methoxycarbonyloxy group, ethoxycarbonyloxy group, n-propoxycarbonyloxy group, n-butyloxycarbonyloxy group, n-pentyloxycarbonyloxy group, n-hexyloxycarbonyloxy group and the like. Examples of the C₂-C₇ hydroxyalkylcarbonyloxy group include hydroxymethylcarbonyloxy group, 2-hydroxyethylcarbonyloxy group, 3-hydroxypropylcarbonyloxy group, 4-hydroxybutylcarbonyloxy group, 5-hydroxypentylcarbonyloxy group, 6-hydroxyhexylcarbonyloxy group and the like. Examples of the C₃-C₉ alkoxycarbonylalkoxy group include methoxycarbonylmethoxy group, ethoxycarbonylmethoxy group, propoxycarbonylmethoxy group, methoxycarbonylethoxy group, ethoxycarbonylethoxy group, propoxycarbonylethoxy group and the like. Examples of the C3-C9 alkoxycarbonylalkyl group include methoxycarbonylmethyl group, ethoxycarbonylmethyl group, propoxycarbonylmethyl group, methoxycarbonylethyl group, methoxycarbonylmethyl group, propoxycarbonylethyl group and the like. Examples of the above "optional substituents" include those given above for the respective group of compounds. Examples of the C8-C13 aralkyloxycarbonyl group include benzyloxycarbonyl group, phenylethyloxycarbonyl group, phenylproplyloxycarbonyl group, naphthylmethyloxycarbonyl group, etc. Examples of the halogen atom include fluorine atom, chlorine atom, bromine atom and the like.

[0006] In the compound represented by the above formula (I) of the present invention, a carbon atom is preferred as A.

[0007] Examples of preferred compounds of the present invention include those of the formula (I), wherein A is a carbon atom; n is 1 or 2; R¹ is

-D-(CH)_m-E-R⁴ | | | R⁵

(wherein D and E independently indicate a single bond or an optionally branched C_1 - C_6 alkylene group;

30

35

R4 is a C1-C6 alkyl group: -OR6 (R6 is a C1-C6 alkyl group; a C6-C10 aryl group which may be substituted with at least one substituent selected from the group consisting of a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halogen atom, a hydroxyl group, a carboxyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 carboxyalkyl group, a C_2 - C_7 acyl group, a $C_2\text{-}C_7 \text{ acyloxy group, a } C_2\text{-}C_7 \text{ alkoxycarbonyloxy group, a } C_3\text{-}C_9 \text{ alkoxycarbonylalkoxy group and a benzyloxycarbonylalkoxy} \\$ group; or a C7-C12 aralkyl group which may be substituted with at least one substituent selected from the group consisting of a C₁-C₆ alkyl group, a C₁-C₆ alkoxy group, a halogen atom, a hydroxyl group, a carboxyl group, a C₂-C₇ alkoxycarbonyl group, a C_2 - C_7 carboxyalkyl group, a C_2 - C_7 acyl group, a C_2 - C_7 acyloxy group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 nyloxy group, a C₃-C₉ alkoxycarbonylalkoxy group and a benzyloxycarbonyl group): -SR⁷ (R⁷ is a C₁-C₆ alkyl group, a C6-C10 aryl group which may be substituted with at least one substituent selected from the group consisting of a C1-C6 alkyl group, a C1-C6 alkoxy group, a halogen atom, a hydroxyl group, a carboxyl group, a C2-C7 alkoxycarbonyl group, a C_2 - C_7 carboxyalkyl group, a C_2 - C_7 acyl group, a C_2 - C_7 acyloxy group, a C_2 - C_7 alkoxycarbonyloxy group, a C₃-C₉ alkoxycarbonylalkoxy group and a benzyloxycarbonyl group; or a C₇-C₁₂ aralkyl group which may be substituted with at least one substituent selected from the group consisting of a C1-C6 alkyl group, a C1-C6 alkoxy group, a halogen atom, a hydroxyl group, a carboxyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 carboxyalkyl group, a C_2 - C_7 acyl group, a C_2 - C_7 acyloxy group, a C_2 - C_7 alkoxycarbonyloxy group, a C_3 - C_9 alkoxycarbonylalkoxy group and a benzyloxycarbonyl group): -COOH: a C_6 - C_{10} aryl group which may be substituted with at least one substituent selected from the group consisting of a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a halogen atom, a hydroxyl group, a carboxyl group, $a\ C_2\text{-}C_7\ alkoxycarbonyl\ group,\ a\ C_2\text{-}C_7\ carboxyalkyl\ group,\ a\ C_2\text{-}C_7\ acyl\ group,\ a\ C_2\text{-}C_7\ alkoxycarbonyl\ group,\ a\ C_2\text{-}C_7\ alkoxycarbony$ ycarbonyloxy group, a C₃-C₉ alkoxycarbonylalkoxy group and a benzyloxycarbonyl group: a C₃-C₈ cycloalkyl group:

or -SiR14R15R16 (R14, R15, and R16 independently indicate a C1-C6 alkyl group);

 R^5 is -OH, -OCOR¹⁸ (R¹⁸ is a C_1 - C_6 alkoxy group or a C_2 - C_7 alkenylamino group), -NH $_2$, -NHCOR²⁰ (R²⁰ is a C_1 - C_6 alkoxy group, a C_6 - C_{10} aryloxy group, a C_3 - C_9 alkoxycarbonylalkoxy group, a C_2 - C_{12} dialkylamino group or a C_7 - C_{12} aralkyloxy group) or -NHSO $_2$ R²¹ (R²¹ is a C_1 - C_6 alkyl group, a C_2 - C_7 carboxyalkyl group, a C_6 - C_{10} aryl group, a C_3 - C_9 alkoxycarbonylalkyl group or a C_7 - C_{12} aralkyl group); and m is 0 or 1}; and

R² is a hydrogen atom.

[0008] As the more preferred compound of the present invention, there is a compound of the formula (I), wherein A is a carbon atom; n is 1; R¹ is

10

15

20

{wherein D arid E independently indicate a single bond or an optionally branched C1-C6 alkylene group;

 $\rm R^4$ is a $\rm C_1\text{-}C_6$ alkyl group; -OR 6 (R 6 is a $\rm C_6\text{-}C_{10}$ aryl or $\rm C_7\text{-}C_{12}$ aralkyl group which may be substituted with at least one substituent selected from the group consisting of a $\rm C_1\text{-}C_6$ alkyl group, a halogen atom, a carboxyl group, a $\rm C_2\text{-}C_7$ carboxyalkyl group and a benzyloxycarbonyl group); -SR 7 (R 7 is a $\rm C_1\text{-}C_6$ alkyl group); a $\rm C_6\text{-}C_{10}$ aryl group which may be substituted with at least one substituent selected from the group consisting of a $\rm C_1\text{-}C_6$ alkyl group, a halogen atom, a carboxyl group, a $\rm C_2\text{-}C_7$ carboxyalkyl group and a benzyloxycarbonyl group; or a $\rm C_3\text{-}C_6$ cycloalkyl group;

 R^5 is -OH, -NH₂, -NHCOR²⁰ (R^{20} is a C_1 - C_6 alkoxy group or a C_7 - C_{12} aralkyloxy group) or -NHSO₂ R^{21} (R^{21} is a C_1 - C_6 alkyl group or a C_6 - C_{10} aryl group);

and m is 1); and

R² is a hydrogen atom.

[0009] As the more preferred compound of the present invention, there is a compound of the formula (I), wherein A is a carbon atom; n is 1; R1 is

30

35

40

{wherein D is a single bond and E is a single bond or a C₁-C₆ alkylene group;

 $\rm R^4$ is a $\rm C_1\text{-}C_6$ alkyl group; -OR6 (R6 is a $\rm C_6\text{-}C_{10}$ aryl or $\rm C_7\text{-}C_{12}$ aralkyl group which may be substituted with at least one substituent selected from the group consisting of a $\rm C_1\text{-}C_6$ alkyl group, a halogen atom, a carboxyl group, a $\rm C_2\text{-}C_7$ carboxyalkyl group and a benzyloxycarbonyl group); -SR7 (R7 is a $\rm C_1\text{-}C_6$ alkyl group); a $\rm C_6\text{-}C_{10}$ aryl group which may be substituted with at least one substituent selected from the group consisting of a $\rm C_1\text{-}C_6$ alkyl group, a halogen atom, a carboxyl group, a $\rm C_2\text{-}C_7$ carboxyalkyl group and a benzyloxycarbonyl group; or a $\rm C_3\text{-}C_6$ cycloalkyl group;

 R^5 is -NH₂, -NHCOR²⁰ (R²⁰ is a C₁-C₆ alkoxy group or a C₇-C₁₂ aralkyloxy group) or -NHSO₂R²¹ (R²¹ is a C₁-C₆ alkyl group or a C₆-C₁₀ aryl group);

and m is 1); and

R² is a hydrogen atom.

[0010] As the still more preferred compound of the present invention, there is a compound of the formula (I), wherein A is a carbon atom; n is 1; R¹ is

50

55

(wherein D is a single bond; E is a single bond or a C_1 - C_3 alkylene group; R^4 is a C_3 - C_6 alkyl group, -OR 6 (R^6 is a C_1 - C_6 alkyl group), a phenyl group or a C_3 - C_6 cycloalkyl group; R^5 is -OH, -NHR 19 (R^{19} is a hydrogen atom), -NHCOR 20

($\rm R^{20}$ is a $\rm C_1$ - $\rm C_6$ alkoxy group) or -NHSO $_2\rm R^{21}$ ($\rm R^{21}$ is a $\rm C_1$ - $\rm C_3$ alkyl group); and m is 1}; and $\rm R^2$ is a hydrogen atom.

[0011] As the particularly preferred compound of the present invention, there is a compound of the formula (I), wherein A is a carbon atom; n is 1; R¹ is

-D-(CH)_m-E-R⁴

{wherein D is a single bond; E is a single bond or a C_1 - C_6 alkylene group; R^4 is a C_1 - C_6 alkyl group; R^5 is -NHCOR²⁰ (R^{20} is a C_1 - C_6 alkoxy group); and mis 1};

R2 is a hydrogen atom; and

5

10

15

20

30

35

40

45

50

55

R³ is -C(=NR²⁵)NH₂ (R²⁵ is a hydrogen atom or a hydroxyl group)).

[0012] As the most preferred compound of the present invention, there is trans-4-[(S)-N-((R)-2-ethoxycarbonylamino-4,4-dimethylpentanoyl) prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 461 in Table 1 in Example 33).

[0013] The prolineamide derivatives represented by the above formula (I) can afford various stereoisomers. For example, concerning asymmetric carbon atoms, the absolute configuration may be D-configuration, L-configuration or DL configuration and all types thereof are included in the compounds of the present invention.

[0014] Examples of the salt which can be formed with the compounds of the above formula (I) of the present invention include inorganic acid salts such as hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, etc.; organic acid salts such as succinate, oxalate, fumarate, maleate, lactate, tartrate, citrate, acetate, glycolate, methanesulfonate, toluenesulfonate, etc. Further, the proline derivatives of the above formula (I) containing a free carboxyl group can also form a salt with a pharmaceutically acceptable base.

[0015] Examples of the salt include alkaline metal salt, alkaline earth metal salt, ammonium salt, alkyl ammonium salt and the like.

[0016] Further, the prolineamide derivatives of the above formula (I) and the salts thereof can also form a hydrate.

[0017] Hereinafter, examples of the compounds of the present invention will be described.

[0018] The following compounds were deleted during prosecution;

77-81, 104, 106-110, 112-163, 165-172, 230-233, 237, 239, 241, 243, 245-246, 250-253, 269-270, 274, 276, 283-284, 291-293, 295, 302-305, 317, 319, 321, 324, 326, 328, 382, 398-399, 437-442, 452, 501-504, 510, 515-746, 751, 759-760, 772-775, 788-792, 805-815, 820, 828-829, 834, 898-971, 973-976, 996-1002, 1004-1006. Compounds No. 105 and 776 were designated as Reference compounds.

Table 1

Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-H3	n	A	Broken line
1	-CH ₂ -	-Н	-C NH ₂	1	С	Single bond
2	-(CH ₂) ₂ -	-н	-C NH ₂	1	С	Single bond
3	-(CH ₂) ₃ -	-H	-C NH ₂	1	С	Single bond
4	-(CH ₂) ₅ —	-H	-C NH ₂	1	С	Single bond
5	-(CH ₂) ₈ -∕	-H	-C NH2	1	С	Single bond
6	-(CH ₂) ₂ -	-н	NH -C NH ₂	1	С	Single bond
7	-(CH ₂) ₂ -	-H	-C NH ₂	1	С	Single bond
8	CH ₃	-н	NH // · -C \NH ₂	1	С	Single bond

Table 1 (continued)

	10016 1 (00						
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-R3	n	A	Broken line
10	9	-(CH ₂) ₂ CH ₃	+1	-C NH ₂	1	С	Single bond
15	10	OCH ₃ -(CH ₂) ₂	-Н	-C NH ₂	1	С	Single bond
20	11	-(CH ₂) ₂ -	+	-C NH ₂	1	С	Single bond
25	12	-(CH ₂) ₂	+1	-C NH ₂	1	С	·Single bond
30	13	-(CH ₂) ₂ -	-Н	NH · -C NH ₂	1	С	Single bond
35	14	-(CH ₂) ₂ CI	ън	-C NH ₂	1	С	Single bond
40	15	-(CH ₂) ₂ -CI	-Н	-C NH ₂	1	С	Single bond
	16	-(CH ₂) ₂ -	-н	NH -C NH ₂	1	С	Single bond
45	17	-(CH ₂) ₂ —	-н	NH -C NH ₂	1	С	Single bond
50					·		

Table 1 (continued)

5	Compound	(5,61) 5,54)	1	1	1	-	1
_	No.	-R ¹ (-D-(СН) _m -E-R ⁴) R ⁵	-R2	-R3	n	A	Broken line
10	18	-(CH ₂) ₂ - F	-Н	NH -C NH ₂	1	С	Single bond
15	19	-(CH ₂) ₂ -	-H	-C NH ₂	1	С	Single bond
20	20	-(CH ₂) ₂ -	-H	-C NH ₂	1	С	Single bond
25	21	-(CH ₂) ₂ CF ₃	-н	-C NH ₂	1	С	Single bond
30	22	OH -(CH ₂) ₂	-H	-C NH ₂	1	С	Single bond
35	23	-(CH ₂) ₂ — OH	-1-1	-C NH ₂	1	С	Single bond
40	24	-(CH ₂) ₂ OH	+	-C NH2	1	С	Single bond
45	25	COOH -(CH ₂) ₂	-н	·C NH ₂	1	С	Single bond
50	26	-(CH ₂) ₂ —СООН	-H	NH NH2	1	С	Single bond

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	.H3	n	A	Broken line
10	27	-(CH ₂) ₂ -COOH	-н	NH -C NH ₂	1	С	Single bond
15	28	-(CH ₂) ₂ - CH ₂ COOH	和	-C ^{NH} 2	1	С	Single bond
20	29	-(CH ₂) ₂ -ОСH ₂ СООН	-н	NH -C NH ₂	1	С	Single bond
25	30	-(CH ₂) ₂ - COOCH ₃	-H	-C NH ₂	1	С	Single bond
30	31	-(CH ₂) ₂ -COOCH ₂ -C	-H	NH -C NH ₂	1	С	Single bond
35	32	-(CH ₂) ₂	-H	-C \NH ₂	1	С	Single bond
40	33	-CH ₂ -(H)	-H	-C NH ₂	1	С	Single bond
	34	-(CH ₂) ₂ (H)	-н	-c ^{NH}	1	С	Single bond
45	35	-(CH ₂) ₂ - H CH ₃	-H	NH // -C \NH ₂	1	С	Single bond
50	36	-(CH ₂) ₂ —	-Н	-C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	С	Single bond
55	H			· · · · · · · · ·		<u>-</u>	

Table 1 (continued)

55

	Table I (C	oninaea)					
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2		ſ	A	Broken line
10	37	-(CH ₂) ₂ {_0}	-H	-C NH	1	С	Single bond
15	38	-(CH ₂) ₂ - N	和	-C NH ₂	1	С	Single bond
20	39	-(CH ₂) ₂ −N N-CH ₃	H	-C NH ₂	1	С	Single bond
. 25	40	-(CH ₂) ₂ -NH	-H	-C NH ₂	1	С	Single bond
30	41	-CH₃	-н	-C NH ₂	1	С	Single bond
35	42	-CH ₂ CH ₃	-H	NH -C \NH ₂	1	С	Single bond
	43 .	-(CH ₂) ₂ CH ₃	÷Η	-C NH ₂	1	С	Single bond
40	44	-CH(CH ₃) ₂	÷Н	-C ^{NH2}	1	С	Single bond
45	45	-(CH ₂) ₃ CH ₃	·H	NH -C NH ₂	1	С	Single bond
50	46	-C(CH₃)₃	-н	NH C NH ₂	1	С	Single bond

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-R3	0	A	Broken line
10	47	-(CH ₂)₄CH ₃	-н	NH -C NH ₂	1	С	Single bond
15	48	-CH₂CH₂C (CH₃)₃	-H	NH -C NH₂	1	С	Single bond
20	49	-(CH ₂) ₉ CH ₃	-H	NH -C NH₂	1	С	Single bond
	50	-CH₂SI(CH₃)₃	H	-C NH ₂	1	С	Single bond
25 .	51	-CH ₂ CH ₂ Si(CH ₃) ₃	Н	-C NH ₂	1	С	Single bond
30	52	-CH₂OCH₃	-H	-C NH₂	1	С	Single bond
35	53	-CH ₂ O-	-н	-C NH ₂	1	С	Single bond
40	54	-CH ₂ O-⟨H⟩	-н	NH -C NH ₂	1	С	Single bond
45	55	-CH ₂ OCH ₂ -	н	-C NH ₂	1	С	Single bond
50	56	-CH ₂ OH	н	-C NH2	1	С	Single bond
55	57	-CH₂SCH₃	-H	-C NH2	1	С	Single bond

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-F2	-R3	n	A	Broken line
10	58	-CH ₂ S-	-H	-C NH ₂	1	С	Single bond
15	59	-CH₂S-⟨H⟩	-н	NH -C NH₂	1	С	Single bond
. 20	60	-CH ₂ SCH ₂ —	-H	NH -C NH ₂	1	С	Single bond
	61	-CH ₂ SO-	Н	· NH // -C \NH ₂	1	С	Single bond
	62	-CH ₂ SO-√H	-H	NH -C NH ₂	1	С	Single bond
30	63	-CH ₂ SO ₂ -	-н	-C NH ₂	1	С	Single bond
35	64	CH ₂ SO ₂ (H)	-H	-c ^{//} NH ₂	1	С	Single bond
40	65	-CH ₂ CO-	-н	-C NH ₂	1	С	Single bond
45	66	-CH₂CO-⟨H⟩	+1	NH // NH ₂	1	С	Single bond
50	67	-сн₂соон	-н	NH -C \NH₂	1	С	Single bond
	68	-CH₂COOCH₃	н	NH -C NH ₂	1	С	Single bond
55				<u> </u>	<u> </u>	. _	

T-61-	4 /	'contine	d'
Table		conun	uea

Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-R3	n	А	Broken line
69	-CH ₂ NHCH ₃	H	NH -C NH ₂	1	С	Single bond
70	-CH ₂ NH-	Н	NH -C NH ₂	1	С	Single bond
71	·CH ₂ NH-(H)	H	-C NH ₂	1	С	Single bond
72	-CH2NHCH2 -	-н	NH -C NH ₂	1	С	Single bond
73	-CH₂NHCOOCH₃	н	NH -C NH₂	1	С	Single bond
74 ·	-CH₂NHCO-	-H	NH -C NH ₂	1	С	Single bond
75	-CH2NHCO-⟨H⟩	-н	NH -C NH ₂	1	С	Single bond
76	-CH2NHCOOCH2-	+1	-C NH ₂	1	С	Single bond

Table	1 /	(continued)
1000		COMMIGGO

		7.10.1000					
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-H3	n	A	Broken line
10	82	-сн- (н)	-H	-C NH ₂	1	С	Single bond
15	83	-СНСН ₂ С(СН ₃) ₃ I ОН	-H	-C NH ₂	1	С	Single bond
20	84	-CH-() OSI(CH ₃) ₃	+1	-C NH ₂	1	С	Single bond
25	85	-CHCH₂C(CH₃)₃ I O-CH₃	-Н	-C NH ₂	1	С	Single bond
30	86	-CHCH ₂ C(CH ₃) ₃ . O-∕ O-∕	-Н	-C NH2	1	С	Single bond
35	87	-ch-(H)	-Н	-C NH ₂	1	С	Single bond
40	88	-сн- ососн ₃	-н	NH -C NH ₂	1	С	Single bond
40							

Table 1 (continued)

50

55

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-H3	n	A	Broken line
10	89	-СНСН₂С(СН₃)₃ I ОСООСН₃	-н	-C NH ₂	1	С	Single bond
15	90	-CH-←H OCONH2	-Н	NH -C NH ₂	1	С	Single bond
20	91	-CH-CONHCH3	-H	-C NH2	1	С	Single bond
25	· 92	-CHCH ₂ C(CH ₃) ₃ I OCON(CH ₃) ₂	-н	-C NH2	1	С	Single bond
30	93	-CH ₂ CH-(H) I OCONHCH ₂ CH=CH ₂	-Н	-C NH ₂	1	С	Single bond
	94	-CHCH2- I NHCHO	-н	NH -C NH ₂	1	С	Single bond
35	95	-CHCH ₂ C(CH ₃) ₃ I NHCOCH ₃	-11	NH -C NH ₂	1	С	Single bond
40	96	-CHCH ₂ —(H) I NHCOCF ₃	-Н	-C NH ₂	1	С	Single bond
45	97	-CHCH ₂	н	·C NH ₂	1	С	Single bond

	Table 1 (co	ntinued)					
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴) I _R 5	-R2	-R3	n	A	.Broken line
10	98	-CHC(SCH ₃)(CH ₃) ₂ I NHCOOC ₂ H ₅	-Н	NH -C NH ₂	1	С	Single bond
15	99	-CH-(H) NHCO-(-H	-C NH ₂	1	С	Single bond
20	100	-CH ₂ CH- NHCO-H	+H	-C NH ₂	1	C	Single bond
25	101	-СНСН ₂ С(СН ₃) ₃ I NHCOOCH ₂ —	-Н	-C NH ₂	1	С	Single bond
30	102	-CHCH ₂ (H) NHCOOCH ₂ CH=CH ₂	#	NH -C NH ₂	1	С	Single bond
25	103	-CHCH ₂ - COOH NHCOOCH ₂ COOH	-Н	NH C NH ₂	1	С	Single bond
35						•	. 1
40	105 Reference	-CH-(H) I NHSO ₂ CH ₃	-н	-C NH₂	1	С	Single bond
45							
50	111	-CH ₂ CH- I NHSO ₂ CH ₃	-н	-C NH ₂	1	С	Single bond

Table 1	(continued)
---------	-------------

Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-R3	n	A	Broken line
164	-CH ₂ CH(CH ₂) ₃ CH ₃ I NHSO ₂ CF ₃	н	NH -C NH ₂	1	С	Single bond

15		n:		•		,	
20	173	-CHCH ₂ (H) NH ₂	-H	NH .	1	С	Single bond
20	174	-CHCH ₂ - I NH ₂	-н	-C \\NH ₂	1	С	Single bond
25	175	COOCH ₃ -CHCH ₂ -NH ₂	++	-C NH ₂	1	С	Single bond
30	176	-СНСН ₂ -СН ₂ СООН NH ₂	+1	NH -C NH ₂	1	С	Single bond
35	177	COCH ₃ -CHCH ₂ -NH ₂	-H	C NH ₂	1	С	Single bond
40	178	-CHCH ₂	-H	-C NH ₂	1	С	Single bond

Table 4	(continued)
lable i	(conunuea)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	.R3	n	A	Broken line
10	179	-CH(CH ₂) ₄ CH ₃ 1 NH ₂	-H	NH -C NH ₂	1	С	Single bond
15	180	-CHCH ₂ C(CH ₃) ₃ I NH ₂	-Н	NH -C NH₂	1	С	Single bond
20	181	-CHCH ₂ O-	-н	-C NH ₂	1	С	Single bond
	182	-СНСН ₂ О⟨}-ОН I NH ₂	-н	-C NH ₂	1	С	Single bond
25	183	-CHCH ₂ O-(H) NH ₂	∙н	NH -C NH ₂	1	С	Single bond
30	184	-CHCH ₂ S-	-H	-C NH ₂	1	С	Single bond
35	185	-CHCH₂S-CI -CHCH₂S- NH₂	-Н	-C NH ₂	1	С	Single bond
40	186	-CHCH ₂ S-{H} I NH ₂	÷H	NH -C NH ₂	1	С	Single bond
45	187	-CH-(H) NHCH3	-H	NH -C NH ₂	1	С	Single bond

Table 1 (continued)

	Table 1 (co	ontinueo)					
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-F 2	-H3	n	A	Broken line
10	188	-CHCH ₂ -(H) I NHC ₂ H ₅	-н	NH -C NH₂	1	С	Single bond
15	189	-CHCH ₂ - I NHCH ₃	-н	NH -C NH ₂	1	С	Single bond
20	190	OCH ₂ COOH -CHCH ₂ NHCH ₃	#	-C NH ₂	1	С	Single bond
	191	-СНСН ₂ —СООН I NНСН ₃	-H	-C NH ₂	1	С	Single bond
25	192	-CHCH₂C(CH₃)₃ I NHCH₃	-н	-C NH ₂	1	С	Single bond
30	193	-CHCH2O- I NHCH3	-H	NH -C NH ₂	1	С	Single bond
35	194	-CHCH2S−(H) I NHCH3	-H	NH // -C NH ₂	1	С	Single bond
40	195	-CHCH ₂ —(H) I NHCH ₂ —(-н	NH -C NH ₂	,	С	Single bond

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-R3	n	A	Broken line
10	196	-CHCH ₂	#	-C NH ₂	1	С	Single bond
15	197	-CH ₂ CH(CH ₂) ₃ CH ₃ I NHCH ₂ —	н	-C NH ₂	1	С	Single bond
20	198	-CHCH ₂ C(CH ₃) ₃ I NHCH ₂ -	-H	-C NH ₂	1	С	Single bond
25	199	-CHCH2OC2H5 I NHCH2-	-H	-C NH ₂	1	С	Single bond
25	200	-CHCH₂SCH₃ I NHCH₂—	-Н	PH -C NH ₂	1	С	Single bond
30	201		-H	-C NH ₂	1	С	
35	202	-CH ₂ -	-H	·C NH ₂	1	С	
40	203	-CH ₂ (H)	н	-C NH -C NH ₂	1	С	
45	204	-(CH ₂) ₂ CH ₃	-H	NH -C NH ₂	1	С	

21

50

Table 1 (continued)

	140.0 1 10	J. J					
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-R3	n	A	Broken line
10	205	-CH ₂ O-	-Н	NH -C NH ₂	1	С	
15	206	-CH ₂ O-	-Н	-C NH2	1	С	
20	207	-CH ₂ O-CH ₃	-н	-C NH ₂	1	С	
25	208	-CH ₂ O- ()-CI	-Н	-C NH ₂	1	С	
	209	-CH ₂ O-	-H	-C NH ₂	1	С	
30	210	-CH ₂ O-	-H	-C NH ₂	1	С	
35	211	-сн₂о-{_>-сн₂соон	-H	-C NH2	1	С	
40	212	осн₂соон -сн₂о- ⟨	-H	-c NH ₂	1	С	
45	213	-СН2О-СООН	-н	NH -C \NH ₂	1	С	

22

50

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	R2	-R3	n	A	Broken line
10	214	-сн₂о-Соосн₃	Н	NH -C NH ₂	1	С	
15	215	COOCH ₂ —	-Н	-C NH ₂	1	С	
20 .	216	-CH ₂ O-	÷H	NH // -C \NH ₂	1	С	<u> </u>
	217	-CH ₂ S-	-H	NH -C NH ₂	1	С	
25 · .	218	-CH ₂ S- ∕ OH	н	-C NH ₂	1	С	
30	219	-сн₂ѕ-{_>-соон	-H	-C NH₂	1	С	
35	220	-CH₂S-COCH₃	-Н	-C NH ₂	1	С	
40	221	-CH-(H) OH	-н	·C NH ₂	1	С	
45	222	-CHCH ₂ —(H) OCOCH ₃	-Н	NH -C NH ₂	1	С	

55

Table 1	(continued)

5	Compound No.		-R2	. _R 3	n	A	Broken line
10	223	-CHCH ₂ ⟨H⟩ I OCOC ₂ H ₅	-н	NH -C \ NH₂	1	С	
15	224	-СНСН ₂ —(Н) I ОСООСН ₃	-H ,	-C NH -C NH ₂	1	С	
20	225	-CHCH ₂ —(H) I NHCHO	-н	NH -C \NH₂	1	С	
25	226	-CHCH2-(H) I NHCOOCH3	ъН	NH -C NH ₂	1	С	
30	227	-CHCH ₂ -(H) NHCOOC ₂ H ₅	-Н	NH -C NH₂	1	С	
	228	-СН-(Н) 1 NHCOOCH(СН3)2	-Н	-C NH ₂	1	С	
35	229	-CHCH ₂ -(H) NHCOOCH ₂ -()	-н	-C NH ₂	1	С	

Table 1 (continued)

234

235

236

Compound No. $-R^1 \begin{pmatrix} -D - (CH)_m - E - R^4 \\ I \\ R^5 \end{pmatrix}$	-F12	-R3	n	A	Broken line
---	------	-----	---	---	-------------

NH

NH₂

//NH

NH₂

H-

-H

-H

1

i

1 | 0

С

С

15

5

10

20

25

30

		L
		L_

35

40

45

L		1	<u> </u>	<u>. </u>		1
238	-CH- NHCOOC2H5	-H	-C NH ₂	1	С	· .

-CHCH₂-(H) NH₂

> -CH-I OH

-CHCH₂-I OH

50

	Table 1 (co						
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R ²	-R ³	n	A	Broken line .
10 . ,			•				
15	240	-CHCH2OC(CH3)3 NHCOOC2H5	- H	NH -C NH ₂	1	С	
20	,						
	242	-CHCH(CH3)2 I NHCOOC2H5	#	-C NH ₂	1	C	
25	:	-					
30	244	-CHC(CH ₃) ₃ I NHCOOC₂H ₅	-н	-C NH ₂	1	С	

-R2

-H

-H

-H

-R3

-C NH

-c NH

-c, NH

NH₂

\NH₂

NH₂

Α

С

n

1

1 С

1 С Broken line

/-D-(CH)_m-E-R⁴) | | R⁵ /

-CHCH₂-

-CHCH₂~

-CHCH₂-

OCOOC₂H₅

OCOOC₂H₅

-соон

OCOCH₃

Table 1 (continued)

Compound

No.

247

248

249

5

10

15

20

25

30

*3*5

40

254	-CH2CH-⟨	-Н	NH C NH ₂	1	С	
-----	----------	----	----------------------------	---	---	--

50

45

Table 1 (continued)

50

55

	Table I (C	Official Contract of the Contr					
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-R3	n	A	Broken line
10	255	-CHCH₂- NHCOOC2H5	-Н	-C NH2	1	С	
15	256	CH ₃ -CHCH ₂ -CHCH	-H	NH -C NH ₂	1	С	
20	257	-CHCH ₂	ън	NH -C \NH ₂	1	С	
25	258	-CHCH ₂ C(CH ₃) ₃ I OH	-Н	-C NH ₂	1	С	
30	259	-CH(CH ₂) ₄ CH ₃ I OCOCH ₃	-H	-C NH ₂	1	С	
	260	-CHC(SCH ₃)(CH ₃) ₂ I OCOOC ₂ H ₅	-н	-C NH ₂	1	С	
35	261	-CHCH ₂ C(CH ₃) ₃ I OCONHCH ₂ CH=CH ₂	-H	NH -C NH ₂	1	С	
40	262	-CH(CH ₂) ₃ CH ₃ I NHCOOCH ₃	-н	·C NH ₂	1	С	
45	263	-CHCH ₂ C(CH ₃) ₃ I NHCOOC ₂ H ₅	-H	NH -C NH ₂	1	С	
				<i></i>			

Table	1	(continued

Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-R3	n	A	Broken line
264	-CHCH2CH(C2H5)2 I NHCOOC2H5	ਮ	-C NH ₂	1	С	
265	-CHCH2C(CH3)3 I NHCOOCH(CH3)2	#	-C NH ₂	1	С	
266	-CHCH2C(CH3)3 I NHCOOC(CH3)3	-H	NH -C \NH2	1	С	
267	-ÇH(CH ₂) ₄ CH ₃ NHCOOCH ₂ —	Ή.	-C \\NH2	1	С	
268	· -CH ₂ CH(CH ₂) ₂ CH ₃ · I I NHSO ₂ CH ₃	-H	-C NH ₂	1	С	

	11			•	•	•
271	-CH ₂ CH(CH ₂) ₂ CH ₃ I NH ₂	-H	NH -C NH ₂	1	С	
272	· -(CH ₂) ₂ —	-H	NH -C NH ₂	1	. 2	
273	-СH ₂ ОСН ₂ —	-H	NH NH ₂	1	Z	

	Table 1 (co						
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-H3	n	A	Broken line
10			•	,	1.		
15	275	-CHCH ₂ -C	-н	-C NH ₂	1	N	
	<u> </u>						
20 :	277	-CHCH ₂ -	H	-C NH ₂	1	N	
25	278	-CHCH ₂ -	-H	NH -C NH ₂	1	N	
30	, 279	-CH ₂ CH- I NHSO ₂ CH ₃	Н	NH // -C · NH₂	1	N	
35	280	-CHCH2	-Н	NH -C NH ₂	1	2	
40	281	-CHCH ₂ — I OCONHCH ₂ CH=CH ₂	-H	NH -C NH ₂	1	2	
				•		, <u> </u>	

Table 1 (continued)

285

286

287

288

289

Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-R3	n	A	Broken line
282	сн- С	-н	NH -C NH ₂	1	N	

-CHCH2-(H)

NHCOOC₂H₅

NHCOOCH(CH₃)₂

NHCOOC(CH₃)₃

-CHCH2-(H)

NHCOOC(CH₃)₃

NHCOOCH(CH3)2

-ch-(h)

-сн-(н)

-C. NH

-C. NH

NH₂

/NH2

//NH

\NH₂

NH₂

//NH

NH₂

-C. NH

1

1 N

1 N

1 Ν

1 Ν

N

+H

·H

-H

-H

-H

15

5

10

20

25

30

35

40

45

50

55

Table 1 (continued)

Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-F2	:-R3	n	A	Broken line
290	-CH-(H)	. #	NH ₂	1	. 2	·

	·	·		•	•	
294	-CHC(SCH3)(CH3)2 I NHCOOC2H5	-H	NH -C NH ₂	1	Z	

296	-CHCH ₂ C(CH ₃) ₃ I NHCOOC ₂ H ₅	-н	NH -C \NH ₂	1	. 2	
297	-CHCH ₂ C(CH ₃) ₃ I NHCOOCH(CH ₃) ₂	н	-C NH ₂	1	2	
298	-CHCH ₂ CH(C ₂ H ₅) ₂ I NHCOOC ₂ H ₅	-Н	NH -C NH ₂	1	N	
299	-CHCH2C(CH3)3 I NHCOOC(CH3)3	ъH	-C NH ₂	1	Z	

-R2

-H

-R3

-C. NH

NH₂

Α

n

1 Ν Broken line

[∕]-D-(ÇH)_m-E-R⁴\

-ÇHCH2C(CH3)3

NHCOOCH2-

Table 1 (continued)

Compound

No.

300

5	,		

10

15

20

25

30

35

40

45

50

301	-CHCH₂C(CH₃)₃ I OH	升	NH -C \NH ₂	1	7	
	·			•	•	

ž_	<u> </u>		1	•		t
306	-CHCH2−⟨H⟩ NHCOOC2H5	-Н	NH -C NH ₂	2	С	Single bond
.307	-CHCH2C(CH3)3 I NHCOOC2H5	-н	NH -C NH ₂	2	С	Single bond
308	-CHCH2- I NHCOOC2H5	4	NH -C NH ₂	2	С	Single bond

Table 1 (continued)

	Table 1 (c	ontinued)					
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-F/2	-H3	n	A	Broken line
10	309	-(CH ₂) ₃ -	Н	-C NH₂	2	С	Single bond
15	310	-CHCH ₂ -	-H	NH -C NH ₂	2	С	Single bond
20	311	-CH-←H NHCOOCH(CH3)2	4	NH C NH ₂	2	С	Single bond
20	312	-CHCH ₂ C(C ₂ H ₅) ₂ NHCOOC(CH ₃) ₃	-H	-C NH ₂	2	С	Single bond
25	313	-CHCH₂C(CH₃)₃ I OH	+1	NH ·C NH ₂	2	С	Single bond
30	314	· - CH ₂ CH- I NHSO ₂ CH ₃	Ŧ	-C NH ₂	2	С	Single bond
35	315	-CHCH2- OCOOC2H5	-H	.c NH .c NH ₂	2	С	Single bond
40	316	-сн-{н он	Ή	NH -C NH ₂	2	С	Single bond

	Table 1 (co			·			
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-R3	n	A	Broken line
10	318	-CH-(H) NHCOOCH(CH3)2	H	-C NH ₂	2	С	<u> </u>
15				: 			
20 .	320	-CHCH2- I NHCOOC2H5	-н	-C NH2	2	С	<u> </u>
-				- 		····	
25	322	-CHCH ₂ CH(C ₂ H ₅) ₂ I NHCOOC(CH ₃) ₃	-н	-C NH ₂	2	С	
30	323	-CHCH₂C(CH₃)₃ I OH	-н	-C NH ₂	2	С	
35				····	•		
40	325	-CHCH2-(H) I NHCOOC(CH3)3	-Н	-C NH ₂	2	N	

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-F ₁ 2	-R3	n	A	Broken line
10	327	-CHCH2⟨⟩ I OCOOC2H5	-н	-C NH ₂	2	N	

15 .				, <u>-</u>			
	329	-CH(CH ₂) ₂ SCH ₃ I NHCOOCH(CH ₃) ₂	-Н	NH -C NH ₂	2	N	
20 .	330	-CHCH₂C(CH₃)₃ I OH	-11	-c NH ₂	2	N	
	331	-CHCH ₂ (H) I NHSO ₂ CH ₃	-CH ₃	-C NH ₂	1	С	Single bond
30	332	-CH-(H) NHCOOCH(CH3)2	-CH ₃	NH -C NH ₂	1	С	Single bond
35	333	·-CHCH₂- I NHSO2CH3	-CH₃	.c NH2	1	С	Single bond
40	334	-CHCH ₂ — I OCOOC ₂ H ₅	-CH ₃	NH ₂	1	С	Single bond
45	335	-CHCH₂C(CH₃) I OH	-CH ₃	NH -C NH₂	1	С	Single bond
4.7							

	Table 1 (co	ontinued)					·
5	Compound No.	-R1 (-D-(CH) _m -E-R4)	-R2	-R3	n	A	Broken line
10	336	-CHCH ₂ CH(C ₂ H ₅) ₂ I NHCOOC(CH ₃) ₃	-СН ₃	-C NH ₂	1	С	Single bond
15	337	-CHCH2C(CH3)3 I NHSO2CH3	-CH ₃	NH -C NH ₂	1	С	Single bond
. 20	338	-CHCH₂(H) I NHSO₂CH₃	-CH₃	-C NH2	1	С	
25	339	-CH-(H) NHCOOCH(CH3)2	-CH ₃	-C NH ₂	1	С	
25	340	-CHCH ₂ - I NHSO ₂ CH ₃	-CH₃	-C\\NH ₂	1	С	
30	341	-CH ₂ CH- I OCOOC ₂ H ₅	-CH ₃	NH -C NH ₂	1	С	
35	342	-CHCH2CH(C2H5)2 I NHCOOC(CH3)3	-CH ₃	NH -C NH ₂	1	С	
40	343	-CHCH ₂ C(CH ₃) ₃ I NHSO ₂ CH ₃	-CH ₃	NH -C NH ₂	1	С	
45	344	-CHCH ₂ C(CH ₃) ₃ I OH	-СН3	-C NH ₂	1	С	

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R2	-R3	· n	A	Broken line
10 .	345	-CHCH2—(H) I NHSO2CH3	-CH ₃	-C NH ₂	1	N	
15	346	-CH2CH- 1 NHCOOCH(CH3)2	-CH ₃	NH -C NH ₂	1	N	
. 20	347	-CHCH ₂	-CH ₃	-C NH ₂	1	N	
25	348	-CH - I OCOOC2H5	-CH ₃	-C NH₂	1	N	
30	349	-CHCH ₂ C(CH ₃) ₃ I NHSO ₂ CH ₃	-СН3	-C NH ₂	1	7	
	350	-CHCH ₂ CH(C ₂ H ₅) ₂ NHCOOC(CH ₃) ₃	-CH ₃	-C NH ₂	1	N	
35	351	-СНСН ₂ С(СН ₃) ₃ I ОН	-CH ₃	NH -C NH ₂	·1	N	
40 	352	-CH-(H) I NHSO₂CH3	-CH ₃	-C NH ₂	2	С	Single bond
45	353	-СНСН ₂ (Н) ИНСООСН(СН ₃) ₂	-CH ₃	-C NH2	2	С	Single bond

38

50

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴)	-R ²	-R ³	n	A	Broken line
. 10	354	-CHCH ₂ — I NHSO ₂ CH ₃	-CH ₃	NH -C NH₂	2	С	Single bond
15	355	-CH ₂ CH−⟨⟩ I OCOOC ₂ H ₅	-CH ₃	NH -C NH₂	2	С	Single bond
20	356	-CHCH ₂ C(CH ₃) ₃ I NHSO ₂ CH ₃	-CH ₃	NH -C NH ₂	2	С	Single bond
	357	-CH(CH ₂) ₄ CH ₃ I NHCOOC(CH ₃) ₃	-CH ₃	-C NH ₂	2	С	Single bond
25	358	-СНСН ₂ СН(СН ₃)₂ I ОН	-CH ₃	NH -C NH ₂	2	С	Single bond
30	359	-CH-(H) I NHSO ₂ CH ₃	-CH ₃	NH -C NH ₂	2	С	
35	360	-CHCH ₂ —(H) I NHCOOC ₂ H ₅	-CH ₃	NH -C NH ₂	2	С	
40	361	-CHCH ₂	-CH ₃	NH -C NH ₂	2	С	
45 .	362	-CH₂CH- I OCOOCH(CH₃)2	-CH ₃	NH -C NH ₂	2	С	<u> </u>

39

50

Table 1 (continued)

				~~~~~~	_		<del>,</del>
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ ) I R ⁵	-R ²	-R ³	n	A	Broken line
10	363	-CHCH2C(CH3)3 I NHSO2CH3	-СН ₃	-C NH ₂	2	С	
. 15	364	-CHC(SCH ₃ )(CH ₃ ) ₂ I NHCOOC(CH ₃ ) ₃	-CH ₃	-C NH₂	2	С	
20	365	-CHCH ₂ CH(CH ₃ ) ₃ I NH ₂	-CH ₃	-C NH ₂	2	С	<u>.</u>
25	366	-CHCH ₂ -(H)   NHCOOC ₂ H ₅	-CH ₃	-C NH ₂	2	Z	
25 ;	367	-CHCH2-(H) 1 NHSO2CH3	-CH ₃	NH -C NH ₂	2	7	
30	368	-CH-⟨ I NHSO₂CH₃	-CH ₃	-C NH ₂	2	N	
35	369	-CHCH ₂ ————————————————————————————————————	-CH ₃	-C NH ₂	2	N	
40	370	-CHCH ₂ C(CH ₃ ) ₃ I NHSO ₂ CH ₂ COOH	-CH ₃	NH -C NH ₂	2	N	·
45	371	-CH(CH ₂ ) ₂ SCH ₃ I NHCOOC(CH ₃ ) ₃	-CH ₃	-C NH ₂	2	N	
50	372	-CH ₂ CH(CH ₂ ) ₃ CH ₃ I ОН	-CH ₃	-C NH ₂	2	N	

Table 1 (continued)

	Table I (C	71111111111111111111111111111111111111	· · · · · · · · · · · · · · · · · · ·	<del></del>			
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R ²		n	A	Broken line
10	373	~	. H	NOH -C NH ₂	1	С	Single bond
15	374	-CH ₂ -	-н	-C NH2	1	С	Single bond
20	375	-CH ₂ -	-H	-C NH ₂	1	С	Single bond
25	376	-CH ₂ (H)	-н	NOH -C NH ₂	1	С	Single bond
30	377	-CH ₂ -(S)	-H	NOH -C NH ₂	1	С	Single bond
35	378	OCH ₃ -CH ₂ O-	-н	NOH -C NH2	1	С	Single bond
33	379	-CH ₂ OCH ₂ СООН	-H	NOH -C NH ₂	1	С	Single bond
40	380	-CH ₂ SC ₂ H ₅	-H	NOH -C NH ₂	1	С	Single bond
45	381	-{CH ₂ }₄COOH	н	NOH -C NH ₂	1	С	Single bond

55

Table 1 (continued)

	1 4010 1 (0	onunaedy					
5	Compound Ņo.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R ²	-R ³	n	A	Broken line
10	383	-CHCH₂-⟨ I OH	-H	NOH .c" NH ₂	1	С	Single bond
15	384	-CHCH ₂ I OCOOC ₂ H ₅	+1	NOH -C NH ₂	1	С	Single bond
20	385	-снсн ₂ I осоосн(сн ₃ ) ₂	-н	NOH -C NH ₂	1	С	Single bond
25	386	-CH2CH- NHCHO	-H	NOH -C NH ₂	1	С	Single bond
	387	-CHCH ₂	41	NOH C NH2	1	С	Single bond
30	388	CHCH ₂ — NHCOOCH(CH ₃ ) ₂	-н	NOH -C NH ₂	1	С	Single bond
35	389	-CHCH ₂	-H	NOH -C NH ₂	1	С	Single bond
40	390	-CHCH ₂ -	-Н	NOH -C NH ₂	1	С	Single bond

Table 1 (continued)

	Table 1 (co	ontinued)					
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-R3	n	A	Broken line
10	391	-сн-(н) I он	-Н	NOH -C NH ₂	1	С	Single bond
15	392	-СНСН2—(Н) I ОСОСН3	41	NOH -C NH ₂	1	С	Single bond
20	393	-CHCH ₂	-H	-c NH2	1	С	Single bond
	394	-CH-←H I NHCOOC ₂ H ₅	+	NOH -C NH ₂	1	С	Single bond
25	395	-CHCH ₂ —   NHCOOCH(CH ₃ ) ₂	-н	NOH ·	1	С	Single bond
30	396	-CH-(H) I NHCOOC(CH3)3	н	NOH // -C \NH ₂	1	С	Single bond
35	397	-CHCH ₂ (H) -I NHCOOC(CH ₃ ) ₃	н	NOH -C NH ₂	1	С	Single bond

EP 0 669 317 B1

Table 1 (continued)

5

50

55

Compound $-R^1\begin{pmatrix} -D-(CH)_m-E-R^4\\ I\\ R^5 \end{pmatrix}$	.p2	-R3	n	A	Broken line
------------------------------------------------------------------------	-----	-----	---	---	-------------

10 //NOH -CHCH₂-400 H1 C Single bond NH₂ NH₂ 15 NOH С 401 H1 Single bond ОН NH₂ 20 NOH С 402 H-1 Single bond NH₂ NH₂ 25 NOH -CH-1 С 403 ·H Single bond NHCOOC₂H₅ NH₂ NOH 30 -сн-√ 404 -H Single bond NH₂ NHCOOC(CH3)3 NOH 35 -CHCH2CH(CH3)2 С 405 -H 1 Single bond NHCOOC₂H₅ \NH2 NOH // -CHCH₂CH(CH₃)₂ 40 406 1 Single bond -H NHCOOC(CH₃)₃ NH₂ NOH -C. -CHCH(CH₃)₂ 407 -H 1 C Single bond 45 NHCOOC₂H₅ NH₂

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-F ₂ 2	-R³	n	A	Broken line
10	408	-CHCH(CH ₃ ) ₂ I NHCOOC(CH ₃ ) ₃	÷	NOH C NH₂	1	С	Single bond
15	409	-CHC(CH ₃ ) ₃ I NHCOOC ₂ H ₅	-н	NOH -C NH2	1	С	Single bond
	410	-CHC(CH ₃ ) ₃ I NHCOOC(CH ₃ ) ₃	ન	NOH -C NH ₂	1	С	Single bond
20	411	-CH(CH ₂ )₄CH ₃ I NHCOOC ₂ H ₅	-H	NOH -C NH ₂	1	С	Single bond
25	412	-CH(CH ₂ ) ₄ CH ₃ I NHCOOC(CH ₃ ) ₃	-н	NOH -C NH ₂	1	С	Single bond
30	413	-CHCH ₂ CH ₂ SCH ₃ I NHCOOC ₂ H ₅	41	-c NH2	1	С	Single bond
35	414	-CHCH2CH2SCH3 I NHCOOC(CH3)3	+	-C NH ₂	1	С	Single bond
40	415	-CH(CH ₂ )₄CH ₃ I OCOOC ₂ H ₅	-H	-c NOH	1	С	Single bond
45	416	-CHCH₂C(CH₃)₃ I OCOOC₂H₅	-н	NOH -C NH ₂	1	С	Single bond
	417	-CHCH ₂ CH(C ₂ H ₅ ) ₂ l NHCOOC ₂ H ₅	-Н	NOH -C NH ₂	1	С	Single bond
50	418	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOC ₂ H ₅	н	NOH -C NH ₂	1	С	Single bond
55	<u></u>	<del></del>					

Table 1 (continued)

55

	Table I (G						
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-R3	n	A	Broken line
10	419	-CHC(SCH ₃ )(CH ₃ ) ₂ I NHCOOC ₂ H ₅	-Н	NOH // -C \NH ₂	1	С	Single bond
15	420	-CHCH ₂ C(CH ₃ ) ₃   NHCOOCH(CH ₃ ) ₂	-H	NOH -C NH₂	1	С	Single bond
20	421	-CHCH½C(CH3)3 I NH2	-H	NOH -C NH2	1	С	Single bond
25	422	-сн- <u>(</u> н)	-H	-C NH2	1	С	
<i>30</i>	423	-CHCH2-(H) I OCOCH3	Н	-c NOH	1	С	
30	424	-CHCH2-(H) OCOOC2H5	-H	NOH // -C NH ₂	1	С	
35	425	-CH-(H) NH ₂	ኯ	NH2 NOH	1	С	
40	426	-CHCH ₂ —(H) NH ₂	-н	NOH -C NH ₂	1	С	
45	427	-CH-(H) I NHCHO	-н	NOH -C NH ₂	1	С	

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	·H2	-R3	n	A	Broken line
10	428	-CHCH2-(H) I NHCOOC2H5	Н	-C NH ₂	1	С	
15	429	-CH-(H) NHCOOCH(CH3)2	-H	NOH -C NH ₂	1	С	
20	430	-CH-(H) NHCOOCH(CH3)2	-H	-c NH2 NOH	1	С	
25	431	-СНСН ₂ (Н) I NHCOOCH(СН ₃ ) ₂	-H	NOH -C NH ₂	1	С	
30	432	-CH-(H) NHCOOC(CH3)3	-Н	NOH -C ^{//} NH ₂	1	C	
	433	-CH-(H) NHCOOC(CH3)3	-H	NOH -C NH ₂	1	С	
35	434	-CHCH ₂ —(H)     NHCOOC(CH ₃ ) ₃	-н	NH ₂	1	С	
40	435	-CHCH ₂ —(H) NHCOOC(CH ₃ ) ₃	-H	NOH C NH ₂	1	С	

Table 1 (continued)

No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-R3	n	А	Broken line
436	-CH-(H) NHCOOCH2-()	-Н	NOH -C \NH ₂	1.	С	

443	-сн-	-H	NOH	1	С	
443	OH OH	-1.	-C NH ₂	İ		

Table 1 (continued)

	Table I (CC	initiaco)					
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-R3	n	A	Broken line
10	444	-CHCH ₂ - I NH ₂	-H	NOH -C ¹ / _{NH2}	1	С	
15	445	-CH ₂ CH- I OCOCH ₃	41	-C NH2	1	С	
20	446	-CHCH2 OCOOC2H5	4	-C NH2	1	С	
<i>2</i> 5	447	-CHCH ₂	<del>-11</del>	NOH -C NH₂	1	С	
30	448	-CHCH ₂ - \( \) NHCOOCH(CH ₃ ) ₂	-Н	NOH -C NH ₂	1	С	
35	449	-CHCH2- I NHCOOC(CH3)3	-н	NOH -C NH2	1	С	
40	450	-CHCH ₂ -	-н	NOH -C NH ₂	1	С	
45	451	-CH ₂ CH- I NHSO ₂ CH ₃	н	NOH NOH	1	С	

49

50

Table 1 (continued)

5

No. $-R^1 \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $	Compound No.	-R¹( `iຼ''' )	-R2	-R3 ·	n	A	Broken line
-----------------------------------------------------------------	-----------------	---------------	-----	-------	---	---	-------------

10 NOH -CH(CH₂)₄CH₃ 453 -H 1 С ÓΗ 15 NH₂ -C NOH -CHCH₂C(CH₃)₃ 454 Н 1 С ÓН 20 NH₂ NOH -CHCH2CH(C2H5)2 455 -H 1 C OCOCH3 NH₂ 25 NOH -CHCH₂C(CH₃)₃ 456 H-1 C OCOOC2H5 NH₂ 30 NOH -CH₂CH(CH₂)₂CH₃ 457 Н 1 С инсно NH₂ 35 NOH -c -CHCH₂C(CH₃)₃ С 458 -H NHCOOCH₃ \NH₂ 40 HOM -CH(CH₂)₄CH₃ 459 -H 1 С NHCOOC₂H₅ NH₂ 45 NOH -C -CHCH $_2$ CH(C $_2$ H $_5$ ) $_2$ 460 1 С -H NHCOOC₂H₅ \NH2 50 NOH // -CHCH₂C(CH₃)₃ 461 -H 1 С NHCOOC₂H₅ \NH₂ 55

Table 1 (continued)

	12010 1 701						
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-H2	-R3	n	. A	Broken line
10	462	-CH(CH ₂ ) ₄ CH ₃ I NHCOOCH(CH ₃ ) ₂	₊H	NOH -C NH ₂	1	С	
15	463	-CHCH ₂ CH(C ₂ H ₅ ) ₂ I NHCOOCH(CH ₃ ) ₂	-H	-C NH ₂	1	С	
20	464	-CHCH2C(CH3)3 I NHCOOCH(CH3)2	-Н	NOH -C NH2	1	С	
25	465	-CH(CH ₂ ) ₄ CH ₃     NHCOOC(CH ₃ ) ₃	-н	-C NOH	1	C	1
	466	-CHCH ₂ CH(C ₂ H ₅ ) ₂ I NHCOOC(CH ₃ ) ₃	-Н	NOH -C NH ₂	1	С	
30	467	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOC(CH ₃ ) ₃	-н	NOH -C NH ₂	1	С	. —
35	468	-CH(CH ₂ ) ₂ SCH ₃ I NHCOOC(CH ₃ ) ₃	-H	NOH -C ^N NH ₂	1	С	
40	469	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOCH ₂ —	-H	NOH -C NH ₂	1	С	
45	470	-CHCH ₂ C(CH ₃ ) ₃ I NH ₂	-н	NOH -C ^N NH ₂	1	С	
50	471	-CH- I NHCOOC2H5	-Н	NOH // -C NH ₂	1	С	

Table 1 (continued)

			_				
5 .	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-F2	-R3	n	А	Broken line
10	472	-СН- NHCOOC(СН ₃ ) ₃	-н	NOH -C NH2	1	С	
15	473	-CHCH ₂ CH(CH ₃ ) ₂ I NHCOOC ₂ H ₅	-H	NOH -C NH ₂	1	С	
20	474	-CHCH ₂ CH(CH ₃ ) ₂ I NHCOOC(CH ₃ ) ₃	-H	NOH -C NH ₂	1	С	
95	475	-CH(CH ₂ ) ₂ CH ₃ I NHCOOCH(CH ₃ ) ₂	Н	NOH -C NH₂	1	С	
25	476	-CH(CH ₂ ) ₂ CH ₃ ) NHCOOC(CH ₃ ) ₃	-Н	NOH -C NH ₂	1	С	
30	477	-CHCH(CH ₃ ) ₂ I NHCOOCH(CH ₃ ) ₂	н	NOH -C NH ₂	1	С	
35	478	-CHCH(CH ₃ ) ₂ I NHCOOC(CH ₃ ) ₃	-н	NOH -C ^{NH2}	1	С	
40	479	-CHC(CH ₃ ) ₃ I NHCOOCH(CH ₃ ) ₂	41	-C NH2	1	С	
45	480	-CHC(CH ₃ ) ₃ I NHCOOC(CH ₃ ) ₃	-н	-C ^{NH2}	1	С	
50	481	-CHCH2Si(CH3)3 I NHCOOC2H5	-н	-c NH2	1	С	

Table 1	(continued)
lable	(conunuea

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-R3	n	A	Broken line
10	482	-CHCH2Si(CH3)3 I NHCOOCH(CH3)2	-н	NOH -C NH ₂	1	С	
15	483	-CHCH2CH2SCH3 I NHCOOC2H5	Н	NOH -C NH ₂	1	С	
22	484	-CHCH ₂ CH ₂ SCH ₃ I NHCOOCH(CH ₃ ) ₂	-н	NOH -C NH ₂	1	С	
20	485	-CHCH ₂ OC(CH ₃ ) ₃ I NHCOOC ₂ H ₅	-H	NOH -C NH ₂	1	C	
25	486	-СНСН ₂ ОС(СН ₃ ) ₃ 1 NHCOOCH(СН ₃ ) ₂	-н	NOH -C NH ₂	1	С	
30	487	-CHCH ₂ OC(CH ₃ ) ₂ C ₂ H ₅ I NHCOOC ₂ H ₅	-н	NOH -C NH ₂	1	С	
35	488	-CHCH2OC(CH3)2C2H5   NHCOOCH(CH3)2	-H	·C NH₂ NOH	1	С	
40	489	-CHCH2OC(C2H5)2CH3     NHCOOC2H5	-H	NOH -C NH ₂	1	С	
45	490	-CHCH2OC(C2H5)2CH3     NHCOOCH(CH3)2	-Н	NOH -C NH ₂	1	С	
50	491	-CHCH ₂ OC(CH ₃ ) ₂ CH(CH ₃ ) ₂ I NHCOOCH(CH ₃ ) ₂	-Н	NOH // -C \NH ₂	1	С	
55	492	-CHCH2SC(CH3)3 I NHCOOC2H5	-н	NOH // -C NH ₂	1	С	. ——

		• • • • • • • • • • • • • • • • • • • •
Table 1	(continu	ᇚ
I auto i	1 William	601

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	H3	n	A	Broken line
10	. 493	-CHCH ₂ SC(CH ₃ ) ₂ C ₂ H ₅       NHCOOC ₂ H ₅	-Н	NOH -C NH ₂	1	С	
15	494	-CHCH2SC(CH3)2C2H5 I NHCOOCH(CH3)2	-H	-C NH2	1	С	
20	495 ·	-CHC(CH ₃ ) ₂ SC ₂ H ₅ I NHCOOC ₂ H ₅	-H	NOH -C NH ₂	1	С	
25	496	-CHC(CH ₃ ) ₂ SC ₂ H ₅ I NHCOOCH(CH ₃ ) ₂	-H	-C NH ₂	1	С	
30	497	-CHC(CH3)2SCH(CH3)2 I NHCOOC2H5	-Н	-C NH2	1	С	
	498	-CHC(CH ₃ ) ₂ SCH(CH ₃ ) ₂     NHCOOCH(CH ₃ ) ₂	н	NOH -C ^{NH2}	1	С	
35	499	-CHC(CH ₃ ) ₂ SCH(C ₂ H ₅ ) ₂     NHCOOC ₂ H ₅	-H	·c [/] _{NH2}	1	С	
40	500	-CHC(CH ₃ ) ₂ SCH(C ₂ H ₅ ) ₂ I NHCOOCH(CH ₃ ) ₂	-н	NOH // -C \NH ₂	1	С	
£. 1		<del></del>					

Table 1 (continued)

Compound NoR ¹ (-D-(CH) _m -E-R ⁴ ) R ⁵	-R²	-R3	n	А	Broken line	
------------------------------------------------------------------------------------	-----	-----	---	---	-------------	--

15			•	•			
20	505	-CH-(H) NHCOOCH(CH3)2	-н	-C NH ₂	1	N	
<i>25</i>	506	-CHCH ₂ -(H) I NHCOOC ₂ H ₅	н	NOH -C NH₂	1	И	
<i>30</i>	507	-CH ₂ CH-C	+1	-C NH2	1	N	
30	508	-снсн ₂ - Ч ннсоос(сн ₃ ) ₃	-H	-C NH₂ NOH	1	Z	
35	509	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOC ₂ H ₅	-Н	NOH NOH	1	N	

511 -CHCH₂-(H) -CH₃ -CH₃ 2 C Single bond NHCOOCH(CH₃)₂

Table 1 (continued)

Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-R3	n	A	Broken line
512	-CHCH2- I NHCOOC(CH3)3	-СН₃	NOH -C NH ₂	2	С	Single bond
513	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOCH(CH ₃ ) ₂	-CH ₃	-c NH2	2	C.	Single bond
514	-CHCH ₂ C(CH ₃ ) ₃ 1 NHCOOC(CH ₃ ) ₃	-CH ₃	NOH -C NH ₂	2	С	Single bond

Table 1 (continued)

750

ОН

5

30

35

40

45

50

55

Compound $-R^1\begin{pmatrix} -D-(CH)_m-E-R^4\\ I_{5} \end{pmatrix}$	-R2	-R3	n	A	Broken line
----------------------------------------------------------------------	-----	-----	---	---	-------------

10 -CHCH₂- $-NH_2$ 747 H 1 С Single bond 15 NHCOOC₂H₅ -CHCH2-(H) -H  $-NH_2$ C Single bond 748 1 NHCOOCH(CH₃)₂ 20 -CHCH₂-749 -NH₂1 С Single bond -H NHCOOC(CH₃)₃ 25

		•				
752	-CHCH ₂	ъH	-NH ₂	1	С	Single bond
753	-CHCH ₂	H	-NH ₂	1	С	Single bond

-H

-NH₂

1 C

Single bond

-R2

-H

-H

-H

-H

-H

-R3

 $-NH_2$ 

-NH₂

-NH₂

-NH₂

-NH₂

Α

С

C

n

1

1

1

1 | C

1 C

Broken line

Single bond

Single bond

Single bond

Single bond

Single bond

[/]-D-(CH)_m-E-R^{4\}

NHCOOC(CH₃)₃

-CHCH₂-

-CH-

ÓН

-CHCH₂C(CH₃)₃

NHCOOC₂H₅

-CHCH2C(CH3)3

NHCOOCH(CH₃)₂

OCOOC₂H₅

Table 1 (continued)

Compound

No.

754

755

756

757

758

5	

10

15

20

25

30

35

40

761	-CHCH ₂ (H) NHCOOC ₂ H ₅	-Н	-NH ₂	1	С	
762	-СН-(Н) I NHCOOCH(СН3)2	H	-NH ₂	1	С	

50

45

Table 1 (continued)

	Table I (C	munucoj					
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-F3	n	A	Broken line
10	763	CHCH2 — H I NHCOOCH(CH3)2	-н	-NH ₂	1	С	
15	764	-CH-(H) NHCOOC(CH ₃ ) ₃	-н	-NH ₂	1	С	<del></del>
20	765	-CHCH ₂ -(H) I NHCOOC(CH ₃ ) ₃	-Н	-NH ₂	1	С	
	766	-СН-(Н) NHCOOCH(СН3)2	-н	-NH ₂	1	С	
25	767	-сн-(н) NHCOOC(СН3)3	-н	-NH2	1	С	
<i>30</i>	768	-CH-(H)	-H	-NH ₂	1	С	
	769	-CH ₂ -	-H	-NH ₂	1	С	
35	770	(CH ₂ ) ₃ -	-н	-NH ₂	1	С	
40	771	-CH2OCH2-	-Н	-NH ₂	1	С	

Table 1 (continued)

Compound No.  -R ¹ (-D-(CH) _m -E-R ⁴ ) -R ⁵	-R2	- <del>R</del> 3	n	A	Broken line
-----------------------------------------------------------------------------------------	-----	------------------	---	---	-------------

	••			:	_	_	
30	776 (Reference)	-CHCH₂-⟨ I NHSO₂CH3	-H ·	-NH ₂	. 1	С	
	777	·CH ₂ CH- I NHSO ₂ CH ₃	н.	-NH ₂	1	С	
35	778	-CHCH2 — I NHCHO	#	-NH ₂	1	С	
40	77 <b>9</b>	-CHCH ₂ C I NH ₂	-н	-NH ₂	1	C ·	<del>-</del>

Table 1 (continued)

	Table I (C						
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-Fl2	-F3	n	A	Broken line
10	780	-CHCH ₂	-н	NH ₂	1	C	
15	781	-CHCH ₂ - I NHCOOCH(CH ₃ ) ₂	-H	-NH ₂	1	С	
20	782 [·]	-CHCH ₂	-H	-NH ₂	1	С	
	783	-CH- I OH	-H	-NH ₂	1	С	
<b>25</b>	784	-CHCH ₂	-H	-NH ₂	1	С	
30 :	785	-CHCH ₂ —() I OCOOC ₂ H ₅	-н	-NH ₂	1	С	
35	786	-CHCH ₂ — I OCONHCH ₃	-н	-NH ₂	1	С	
40	787	-CHCH ₂ - -CONHCH ₂ CH=CH ₂	-н	-NH ₂	1	С	

Table 1 (continued)

14010 1 (40	11	}			_	
Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-H3	n	А	Broken line

- 1		n				•	
-	793	-CHC(SCH3)(CH3)2 I NHCOOC2H5	-н	-NH ₂	1	С	
	794	-CHCH ₂ C(CH ₃ ) ₃ { NHCOOC ₂ H ₅	-H	-NH ₂	1	С	
	795	-CHCH ₂ CH(C ₂ H ₅ ) ₂ I NHCOOC ₂ H ₅	-H	-NH ₂	1	С	
	796	-CH(CH ₂ ) ₄ CH ₃ I NHCOOC ₂ H ₅	-H	-NH ₂	1	С	
	797	-CHCH2C(CH3)3 I NHCOOCH(CH3)2	-н	-NH ₂	1	С	
Γ							

798 -CHCH₂CH(C₂H₅)₂ -H -NH₂ 1 C ---

Table 1 (continued)

_	

ΔN	

Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-F 2	-R3	n	A	Broken ilne
799	-CHCH2C(CH3)3 NHCOOC(CH3)3	-H-	-NH ₂	1	С	
800	-CHCH $_2$ CH(C $_2$ H $_5$ ) $_2$ I NHCOOC(CH $_3$ ) $_3$	+H	-NH ₂	1	С	
801	-CH(CH ₂ ) ₂ SCH ₃ I NHCOOC(CH ₃ ) ₃	-H	-NH ₂	1	С	
802	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOCH ₂ —	-H	-NH ₂	1	С	·
803	-СНСН ₂ С(СН ₃ )3 I ОН	-H	-NH ₂	1	Ċ	
804	-CHCH₂C(CH₃)₃ I OCOOC₂H₅	升	-NH ₂	1	С	

816	-CHCH2-(H) I NHCOOC2H5	-Н	-NH ₂	2	С	Single bond
817	-CHCH ₂ -(H) NHCOOCH(CH ₃ ) ₂	-H	-NH ₂	2	С	Single bond

Table 1 (continued)

2	0	

NHCOOC(CH ₃ ) ₃	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-R3	n	A	Broken line
819 -CH-(H) -H -NH2 2 C Single ho	818		Н	-NH ₂	2	С	Single bond
OH OH OH	819	-CH-(H)	-Н	-NH ₂	2	С	Single bond

821	-CHCH ₂ () I NHCOOC ₂ H ₅	-Н	-NH ₂	2	С	Single bond
822	-CHCH ₂	-н	-NH ₂	2	С	Single bond
823	-CHCH ₂	-#	-NH ₂	2	С	Single bond
824	-CHCH2	<b>-</b> H	-NH ₂	2	С	Single bond
825	-сн- <b>С</b>	-H	-NH ₂	2	С	Single bond
826	-CHCH ₂ C(CH ₃ ) ₃   NHCOOC ₂ H ₅	-Н	-NH ₂	2	С	Single bond

Table 1 (continued)

Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-F(2	-H3	п	A	Broken line
827	-CHCH2C(CH3)3 I NHCOOCH(CH3)2	-Н	-NH ₂	2	С	Single bond

	·	( <del> </del>	·
20			

830 .	-CHCH ₂ - H NHCOOC ₂ H ₅	-H	-NH ₂	2	С	
831	-CHCH2-(H) 1 NHCOOCH(CH3)2	ъН	-NH ₂	2	С	
832	-СНСН ₂ (Н) NHCOOC(СН ₃ ) ₃	-н	-NH ₂	2	С	
		1	T			

833 - CH-(H) -H -NH₂ 2 C ----

	 	II	1	<del></del>	1		<u> </u>	
40	835	-CHCH ₂ —	-н	· -NH ₂	2	С		
	1	NHCOOC+H+	1	į	1 1			İ

Table 1 (continued)

		······································					
5	Compound No.	-R1 (-D-(CH) _m -E-R4)	-R2	-R3	n	A	Broken line
10	836	-CHCH ₂ - I NHCOOCH(CH ₃ ) ₂		-NH ₂	2	C	
15	837	-CHCH ₂	-H	-NH ₂	2	С	
20	838	-СНСН ₂ ⟨ ОСООС2Н ₅	+1	-NH ₂	2	С	
	839	-CH-C	-H	-NH ₂	2	С	
25	840	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOC ₂ H ₅	`-Н	-NH ₂	2	С	
<i>30</i>	841	-CHCH ₂ C(CH ₃ ) ₃   NHCOOCH(CH ₃ ) ₂	-#	-NH ₂	2	С	
35 ·	842	-CH-⟨H⟩ I NHSO₂CH3	-CH₃	-NH ₂	1	С	Single bond
	843	-CHCH₂(H) I NHSO₂CH3	-CH ₃	-NH ₂	1	С	Single bond
40	844	-CHCH2-(H) I NHCOOC2H5	-CH₃	-NH ₂	1	С	Single bond

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-R3	n	A	Broken line
10	845	-СНСН ₂ (Н)     NHCOOCH(СН ₃ ) ₂	-CH₃	-NH ₂	1	С	Single bond
15	846	-CHCH2—(H) I NHCOOC(CH3)3	-CH ₃	-NH ₂	1	С	Single bond
20	847	-cH-(H)	-CH ₃	-NH ₂	1	С	Single bond
	848	-CHCH ₂ — NHSO ₂ CH ₃	-СН3	-NH ₂	1	С	Single bond
25	849	-CHCH ₂ -C NHCOOC ₂ H ₅	-CH ₃	-NH ₂	1	С	Single bond
30	850	-CHCH2- I NHCOOCH(CH3)2	-CH ₃	-NH ₂	1	С	Single bond
35	851	-CHCH2- I NHCOOC(CH3)3	-СН3	-NH ₂	1	С	Single bond
40	852	-CHCH ₂	-СН3	-NH ₂	1	С	Single bond

Table 1 (continued)

45

55

	Table I (G						
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-R3	n	A	Broken line
10	853	-CH-C	-CH ₃	-NH ₂	1	С	Single bond
· 15	854	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOC ₂ H ₅	-CH ₃	-NH ₂	1	С	Single bond
73	855	-CHCH2C(CH3)3 I NHCOOCH(CH3)2	-CH ₃	-NH ₂	1	С	Single bond
20	856	-CH-(H) NHSO2CH3 .	-CH ₃	-NH ₂	1	С	
25	857	-CHCH ₂ (H) I. ' NHSO ₂ CH ₃	-CH ₃	-NH ₂	1	С	<del>,</del>
30	858	-CHCH ₂ —(H) I NHCOOC ₂ H ₅	-CH₃	-NH ₂	1	С	
	859	-CHCH ₂ (H) I NHCOOCH(CH ₃ ) ₂	-СН3	-NH ₂	1	С	
35	860	-CHCH ₂ - H H NHCOOC(CH ₃ ) ₃	-CH ₃	-NH ₂	1	С	
40	861	-сн- <del>(</del> н)	-CH ₃	-NH ₂	1	С	

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-Fl2	-R3	n	A	Broken line
10	862	-CHCH ₂	-CH ₃	-NH ₂	1	С	
15	863	-CHCH ₂	-CH ₃	-NH ₂	1	С	
20	864	-CHCH2 - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-CH ₃	-NH ₂	1	С	
	865	-CHCH ₂	-CH ₃	-NH ₂	1	С	<u></u>
25	866	-CHCH ₂	-CH₃	-NH ₂	1	С	
30	867	-CH-	-CH ₃	-NH ₂	1	С	·
35	868	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOC ₂ H ₅	-CH ₃	-NH ₂	1	С	
	869	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOCH(CH ₃ ) ₂	-CH ₃	-NH ₂	1	С	
40 .	870	-CH-(H) NHSO ₂ CH ₃	-CH ₃	-NH ₂	2	С	Single bond

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-F3	n	A	Broken line
10	871	-CHCH2-(H) I NHSO2CH3	-CH ₃	-NH ₂	2	С	Single bond
15	872 ·	-CHCH2-(H) I NHCOOC2H5	-CH ₃	-NH ₂	2	С	Single bond
20	873	-СНСН ₂ ————————————————————————————————————	-CH ₃	-NH ₂	2	С	Single bond
	874	-CHCH ₂ -(H)   NHCOOC(CH ₃ ) ₃	-CH ₃	-NH ₂	2	С	Single bond
25	875	-CH-(H) OH	-CH₃	-NH ₂	2	С	Single bond
<i>30</i>	· 876	-CHCH ₂	-CH ₃	-NH ₂	2	С	Single bond
35	877	-CHCH ₂ — I NHCOOC ₂ H ₅	-CH ₃	-NH ₂	2	С	Single bond
	878	-CHCH ₂ - I NHCOOCH(CH ₃ ) ₂	-CH ₃	-NH ₂	2	С	Single bond
40							

Table 1 (continued)

45

55

	Table I (C	ontinueoj					<u>.</u>
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-F/2	-R3	n	À	Broken line
10	879	-CHCH ₂	-CH ₃	-NH ₂	2	С	Single bond
15	880	-CHCH2- I OCOOC2H5	-CH ₃	-NH ₂	2	С	Single bond
	881	-CH-	-CH ₃	-NH ₂	2	С	Single bond
20	882	-CHCH2C(CH3)3 I NHCOOC2H5	-CH ₃	-NH ₂	2	С	Single bond
25	883	-CHCH2C(CH3)3   NHCOOCH(CH3)2	-CH ₃	-NH ₂	2	С	Single bond
30	884	-CH-⟨H⟩   NHSO2CH3	-СН₃	-NH ₂	2	С	
	885	-CHCH ₂ — H I NHSO ₂ CH ₃	-CH ₃	-NH ₂	2	С	
35	886	-CHCH2-(H) I NHCOOC2H5	-CH ₃	-NH ₂	2	С	
40	887	-СНСН2—(Н) 1 NHCOOCH(СН3)2	-CH ₃	-NH ₂	2	С	

Table 1 (continued)

5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-R ³	n	A	Broken line
10	888	-СНСН ₂ —(Н) NHCOOC(СН ₃ ) ₃	-СН ₃	-NH ₂	2	С	<del></del>
15	889	-ch-(H)	-CH ₃	-NH ₂	2	С	
20	890	-CHCH2- NHSO2CH3	-CH ₃	-NH ₂ .	2	С	
20 .	891	-CHCH ₂	-CH ₃	-NH ₂	2	С	
25	892	-CHCH ₂	-CH ₃	-NH ₂	2	С	
30	893	-CHCH2	-CH ₃	-NH ₂	2	Ċ	
. 35	894	-CHCH ₂ -C I OCOOC ₂ H ₅	-CH ₃	-NH ₂	2	С	
	895	-CH-C	-CH ₃	-NH ₂	2	С	
40	896	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOC ₂ H ₅	-CH ₃	-NH ₂	2	С	<u></u>
45 .	897	-СНСН ₂ С(СН ₃ ) ₃ I NHCOOCH(СН ₃ ) ₂	-CH ₃	-NH ₂	2	С	

72

50

Table 1 (continued)

	Table I (CO						
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-H3	n	A	Broken line
10	972	-CHCH ₂	H	-C NH ₂	1	С	Single bond
			· }				
15	<b>977</b>	-CHCH2OC(CH3)2C2H5 I NHCOOCH(CH3)2	-H	-C NH ₂	1	С	- <del></del>
20	978	-CHCH ₂ OC(CH ₃ ) ₂ C ₂ H ₅ I NHCOOC ₂ H ₅	Ή-	-C NH2	1	С	
25	979	-CHCH ₂ OC(C ₂ H ₅ ) ₂ CH ₃ I NHCOOCH(CH ₃ ) ₂	-H	-C NH2	1	С	

Table 1 (continued)

		nitino coj					
5	Compound No.	-R ¹ (-D-(CH) _m -E-R ⁴ )	-R2	-R3	n	A	Broken line
10	980	-CHCH ₂ SC(CH ₃ ) ₃ I NHCOOC ₂ H ₅	, H	-C NH ₂	1	С	
15	981	CH ₃ -CHCH ₂ O- I NHCOOCH(CH ₃ ) ₂	-H	-C NH ₂	1	С	
20	982	-СНСН(СН ₃ )ОС(СН ₃ ) ₃ I NHCOOCH(СН ₃ ) ₂	-11	NH -C NH ₂	1	С	
25 .	983	-CHC(CH ₃ ) ₂ SCH(CH ₃ ) ₂ I NHCOOC ₂ H ₅	-H	-C NH	1	С	
25	984	-CHCH ₂ - NHCOOCH ₂ COOC ₂ H ₅	-H	-c NH2	1	С	Single bond
30	985	-CH- I NHCOOC₂H5	-H	-C NH ₂	1	С	Single bond
35	986	-CH- 1 NHCOOC₂H5	-H	NOH -C NH ₂	1	С	Single bond
40	987	-CH- NHCOOC₂H₅	-н	NOH // -C \NH ₂	1	С	Single bond
45	988	-CHCH ₂ - I NHCOOCH ₂ -	-H	NOH -C NH₂	1	С	Single bond
50	989	-CHCH ₂ C(CH ₃ ) ₃ I NHCOOC(CH ₃ ) ₃	+1	-C NH2	1	С	Single bond

-R2

Ĥ.

·H

-H

H

-H

H

-R3

NOH

NH₂

NOH

NH₂

NOH

NH2

HOM

NH₂

NOH

NH₂

NOH

NH₂

-C

Α

С

C

1 | 0

n

1

1

1

1 | 0

1 | C

Broken line

Single bond

Single bond

-D-(CH)_m-E-R⁴

NHCON(CH₃)₂

-CHCH2COOC(CH3)3

NHCOOC(CH₃)₃

-CHCH(CH₃)OC(CH₃)₃

NHCOOCH(CH₃)₂

ÒCOCH₃

инсоосн(сн₃)₃

NHCOOCH₂

-CHCH2OH

Table 1 (continued)

Compound

No.

990

991

992

993

994

995

10

15

20

25

30

35

40

1003	-CHCH2OC(CH3)3 I NHCOOC2H5	-Н	-NH ₂ ,	1	С	<u></u>
					, ,	,

[0019] Hereinafter, the production process for the compounds of the present invention will be explained.
[0020] The compounds of the present invention can be produced through any combination of reactions suitable for the objective compounds. Typical reaction schemes will be shown below, but they should not be construed to be limiting the scope of the present invention.

55

(Reaction scheme I)

35

50

55

5 
$$(CH_2)_{n}$$
  $(CH_2)_{n}$   $($ 

(VII)

NH₂

30

(VI) 
$$(CH_2)_{n} O$$

$$N$$

$$R^2$$

$$NOH$$

$$R_1$$

$$NH_2$$

# (Reaction scheme II)

$$\begin{array}{c|c} (CH_2)_{rr} & O \\ N & R^2 \\ H & (XIII) \end{array}$$

$$\begin{array}{c|c}
(CH_2)_{\text{rr}} & O \\
N & R^2 \\
C=O \\
R^1 & (XV)
\end{array}$$

## (Reaction scheme III)

$$(II) + HN \longrightarrow NR^{25}$$

$$(XVIII) \qquad NH_2$$

$$(CH_2)_{\Pi} \longrightarrow Q$$

$$R^2 \longrightarrow NR^{25}$$

$$(XIX) \qquad NH_2$$

wherein  $R^1$ ,  $R^2$ ,  $R^{25}$ , n and broken line are as defined above; Q is an aminoprotecting group, such as benzyloxycarbonyl group, tertiary butyloxycarbonyl group, etc.; Z is a leaving group such as halogen atom, methanesulfonyloxy group, toluenesulfonyloxy group, trifluoromethylsulfonyloxy group, acetoxy (acetyloxy) group, etc.

[0021] In the above reaction schemes, a known method for synthesizing amide can be used for synthesizing the compounds (IV), (VI), (XIV), (XIV), (XIX) and (XXI). There are various conventional methods, for example, a method using dehydrating agents such as dicyclohexylcarbodiimide, 1-ethyl-3-(dimethylaminopropyl)carbodiimide, carbonyl-diimidazole, etc., azido method, acid halide method, acid anhydride method, active ester method and the like.(e.q., see, "JIKKEN KAGAKU KOZA, 22, YUKI-GOSEI IV", pp. 259 - (1992), ed. "JAPAN Chemical Society", 4th. edition,

published by Maruzen). The reaction is conducted under cooling or heating (or at room temperature) using an inert solvent such as tetrahydrofuran, diethyl ether, dichloromethane, etc. in a conventional manner. In the above schemes, the compounds (V), (XIII), (XV) and (XX) can be synthesized by deprotection according to a method known in the peptide chemistry (e.g. see "The Principle and Experimental Procedures of Peptide Synthesis" written by Nobuo IZU-MIYA et al., published by Maruzen).

[0022] Further, the compound (VII) is synthesized by reacting imidate, which is obtained by reacting the compound (VI) with alcohol and an inorganic acid such as hydrochloric acid, with ammonia or an ammonium salt; or by reacting a thioamide compound, which is obtained by reacting the compound (VI) with hydrogen sulfide in the presence of an organic base such as triethylamine, pyridine, etc., with a lower alkylhalogen compound such as methyl iodide, etc., followed by reacting the resulting thioimidate compound with ammonia or an ammonium salt. Further, the compound (IX) is synthesized by reacting the compound (VI) with hydroxylamine or acid adduct thereof in a suitable solvent such as water, alcohol, tetrahydrofuran, etc. at room temperature or under heating.

[0023] The respective compounds thus obtained can be isolated and purified by conventional chemical procedures such as extraction, crystallization, recrystallization, various chromatography and the like.

[0024] When the compounds of the present invention are used for clinical application, a proportion of a therapeutically active ingredient to a carrier component varies within a range of 1 to 90% by weight. For example, the compounds of the present invention may be orally administered in the dosage form such as granules, fine granules, powders, tablets, hard capsules, soft capsules, syrups, emulsions, suspensions, solutions and the like, or intravenously, intramuscularly or subcutaneously administered in the form of injections. Further, they may also be used in the form of suppositories. They may also be formed into powders which can be converted into solutions or the like for injection before use. There can be used pharmaceutical organic or inorganic solid or liquid carriers or diluents which are suitable for oral, intestinal or parenteral administration for preparing the drugs of the present invention. As the excipient used for preparing solid preparations, for example, there can be used lactose, sucrose, starch, talc, cellulose, dextrin, kaoline, calcium carbonate and the like. Liquid preparations for oral administration, i.e. emulsions, syrups, suspensions, solutions, etc. contain inert diluents which are normally used, e.g. water, vegetable oil, etc. This preparation can contain adjuvants such as humectants, suspension auxiliary agents, sweeteners, aromatics, colorants, preservatives, etc., in addition to inert diluents. The resulting liquid preparations may be contained in a capsule of an absorbable substance such as gelatin. As the solvent or suspending agent used for preparing preparations for parenteral administration, i.e. injections, suppositories, etc., for example, there can be used water, propylene glycol, polyethylene glycol, benzyl alcohol, ethyl oleate, lecithin and the like. As the base used for preparing suppositories, for example, there can be used cacao butter, emulsified cacao butter, laurin tallow, witepsol and the like. Preparations may be prepared by a conventional method. [0025] The clinical dose varies depending upon age, pathology, condition of diseases and the like. For example, in the case of administering orally to an adult patient, the compounds of the present invention are normally administered with a dairy dose of about 0.01 to 1000 mg, preferably 10 to 1000 mg. The pharmaceutical composition of the present invention may be administered 1 to 3 times per day or administered intermittently with the above dairy dose.

[0026] When using as injections, it is advantageous that the compounds of the present invention are administered continuously or intermittently to an adult patient with a single dose of 0.001 to 100 mg.

[0027] The prolineamide derivatives of the present invention or the salts thereof have a strong inhibition activity to proteases such as thrombin, trypsin and the like. The compounds of the present invention are also superior in oral absorptive action so that they are useful as oral antithrombin agents, i.e. oral anticoagulants, or oral antitrypsin agents, i.e. remedy for pancreas diseases such as pancreatitis.

[0028] The following Examples and Experimental Examples further illustrate the present invention in detail but are not to be construed to limit the scope thereof.

[0029] The conventional abbreviations used in Examples are as follows: THF:tetrahydrofuran, DMF: N,N-dimethyl-formamide, DMSO: dimethyl sulfoxide, CDI: carbonyldiimidazole, DPPA: diphenylphosphorylazide, Z: benzyloxycarbonyl, Boc: tertiary butyloxycarbonyl.

[0030] Further, NMR in physical properties stands for a nuclear magnetic resonance spectrum and the numeral is  $\delta$  value in ppm, which is conventionally used for indicating the chemical shift. TMS (tetramethylsilane) was used as the internal standard. Further, the numeral shown in parenthesis following  $\delta$  value is the number of hydrogen atoms, and the indications following the number of hydrogen atoms mean that s is singlet, d is doublet, t is triplet, q is quartet, m is multiplet, br is broad absorption peak, respectively.

[0031] IR stands for an infrared spectrum and measured as potassium bromide tablets unless otherwise stated. The numerical means the wave number in cm⁻¹.

[0032] Only main absorption peak was shown. Further, mp means the non-corrected melting point in °C.

Reference Example 1

35

55

[0033] Synthesis of 4-amidino-[(S)-N-((R)-2-methylsulfonylaminocyclohexylacetyl) prolyl]aminomethylbenzene

(Reference compound No. 105 of Table 1) hydrochloride.

- (a) N-4-cyanobenzylphthalimide
- 5 [0034] To a solution of potassium phthalimide (76 g, 410 mmol) in DMF (250 ml), a solution of 4-cyanobenzyl bromide (73 g, 373 mmol) in THF (250 ml) is added and stirred at 50°C for 3 hours.
  - [0035] Water (500 ml) is added to the mixture and a precipitated crystal was collected. Then, the crystal is washed with water and dried to give 96 g of the titled compound (99%). mp: 189-191°C.
- 10 (b) 4-Cyano-[(S)-prolyl]aminomethylbenzene hydrochloride
  - [0036] To a solution of the compound (39 g, 150 mmol) obtained in the item (a) in methanol (250 ml), hydrazine hydrate (9 ml) is added and refluxed for 6 hours. After the solvent is evaporated, an aqueous 40% sodium hydroxide solution (300 ml) is added to the residue and stirred.
  - [0037] The reaction mixture is extracted with toluene and the organic layer is washed once with water and saturated brine, successively, and then dried over sodium sulfate. The solvent is evaporated and the resulting crude product (15 g, 73%) is used for the next step.
  - [0038] To a solution of (S)-N-Boc-proline (23.7 g, 110 mmol) in THF (250 ml), CDI (17.8 g, 110 mmol) is added at 0°C. [0039] After the reaction solution is stirred for 2 hours, a solution of the crude product obtained in the above reaction in THF (150 ml) is added. After stirring for 6 hours, the solvent is evaporated and water (300 ml) is added to the residue. The mixture is extracted with chloroform and the organic layer is washed three times with water and once with saturated brine, successively. After drying over sodium sulfate, the solvent is evaporated and the residue is purified with silica gel chromatography (hexane-ethyl acetate).
  - [0040] The resulting oily product is dissolved in ethyl acetate (100 ml) and a 4N-hydrochloride in ethyl acetate (69 ml) is added and the mixture is stirred at 0°C for 3 hours. The precipitated white solid is collected, washed with ethyl acetate and dried under reduced pressure to give 25.9 g of the titled compound (89%).

    NMR (DMSO-d⁶)
  - 1.80-1.96 (m, 3H), 2.30-2.40 (m, 1H), 3.21 (br, 2H), 4.26 (br, 1H), 4.44 (d, 2H), 7.49 (d, 2H), 7.82 (d, 2H), 8.59 (br, 1H), 9.39 (t, 1H), 10.07 (br, 1H)
  - (c) 4-Cyano-[(S)-N-((R)-2-t-butyloxycarbonylamino-cyclohexylacetyl) prolyl]aminomethylbenzene
  - [0041] To a solution of the product (21 g, 79 mmol) obtained in the item (b) and (R)-N-t-butyloxycarbonylcyclohexylglycine (20.4 g, 79 mmol) in DMF (200 ml), a solution of triethylamine (22 ml, 159 mmol) and DPPA (22 g, 79 mmol) in DMF (50 ml) is added at 0°C. The mixture is allowed to stand at room temperature and then stirred for 12 hours. Water (400 ml) is added to the reaction mixture which is extracted with toluene-ethyl acetate (1:2). The organic layer is washed three times with water and once with saturated brine, successively, and then dried over sodium sulfate. After the solvent is evaporated, the residue is purified with silica gel chromatography (chloroform-methanol) to give 26.7 g of the titled compound (72%).
- 40 NMR (CDCl₃)

30

- 1.01-1.43 (m, 15H), 1.65-2.38 (m, 9H), 3.57 (q, 1H), 3.96-4.06 (m, 2H), 4.47 (dq, 2H), 4.69 (d, 1H), 5.12 (d, 1H), 7.35 (d, 2H), 7.59 (d, 2H), 7.73 (t, 1H)
- (d) 4-Cyano-[(S)-N-((R)-2-methylsulfonylamino-cyclohexylacetyl)prolyl] aminomethylbenzene
- [0042] To a solution of the compound (26.7 g, 57 mmol) obtained in the item (c) in chloroform (50 ml), a 4-N hydrochloride in ethyl acetate (30 ml) is added at 0 °C. The mixture is stirred for 3 hours and then the solvent is evaporated. The resulting residue was dissolved in dichloromethane (250 ml) and triethylamine (19 ml) is added. Then, a solution of methanesulfonyl chloride (7.9 g, 68 mmol) in dichloromethane (50 ml) is added at 0°C and the mixture is stirred for 3 hours. The organic layer is washed once with a saturated sodium bicarbonate solution, water and saturated brine, successively, and then dried over sodium sulfate. The resulting residue is purified with silica gel chromatography (hexane-ethyl acetate) to give 18.6 g of the titled compound (73%).
- 0.9-1.29 (m, 5H), 1.60-1.85 (m, 5H), 2.0-2.4 (m, 5H), 2.89 (s, 3H), 3.55 (q, 1H), 3.80-3.88 (m, 2H), 4.43 (d, 2H), 4.61 (d, 2H), 5.60 (d, 2H), 7.31 (t, 1H), 7.37 (d, 2H), 7.60 (d, 2H)

(e) 4-Amidino-[(S)-N-((R)-2-methylsulfonylamino-cyclohexylacetyl) prolyl]aminomethylbenzene chloride

[0043] To a solution of the compound (18.6 g, 42 mmol) obtained in the item (d) in chloroform (100 ml), a 37% hydrochloride in ethanol (100 ml) is added at 0°C. The mixture is allowed to stand at 0°C for 48 hours and then the solvent is evaporated. The resulting residue is dissolved in methanol (100 ml) and ammonium carbonate (16 g, 166 mmol) is added at 0°C. After stirring for 6 hours, the solvent is evaporated and the resulting residue is purified with silica gel chromatography (chloroform-methanol) to give 5.2 g of the titled compound (73%).

NMR (DMSO-d⁶)

9.39 (br, 4H), 8.66 (t, 1H), 7.81 (d, 2H), 7.48 (d, 2H), 7.40 (m, 1H), 4.47-4.14 (m, 3H), 3.90 (m, 1H), 3.71 (m, 1H), 3.59 (m, 1H), 2.79 (s, 3H), 2.13 (m, 1H), 1.88 (m, 3H), 1.69-1.53 (m, 5H), 1.14 (m, 6H)
IR: 3366, 2930, 2855, 1636, 1541, 1489, 1451, 1152

[0044] According to the same procedures described above, the compounds shown in the following Examples were synthesized.

## 15 Example 1

[0045] 4-Amidino-[(S)-N-((R)-N'-formylphenylalanyl) prolyl] aminomethylbenzene (compound No. 94 of Table 1) hydrochloride NMR (DMSO-d⁶)

9.56 (br, 2H), 9.36 (br, 2H), 8.97 (t, 1H), 8.70 - 8.60 (m, 1H), 7.86 (d, 1H), 7.83 (d, 2H), 7.46 (d, 2H), 7.37-7.17 (m, 5H), 4.36-4.16 (m, 4H), 3.60 - 2.70 (m, 4H), 2.40-1.20 (m, 4H)
IR: 3370, 1647, 1541, 1489, 1454, 1404, 704

### Example 2

[0046] 4-Amidino-[(S)-N-[(R)-2-ethoxycarbonylamino-3-methyl-3-methylthiobutanoyl] prolyl]aminomethylbenzene (compound No. 98 of Table 1) hydrochloride NMR (DMSO-d⁶)

8.89 (br, 2H), 8.66 (br, 2H), 7.77 (d, 2H), 7.33 (d, 2H), 6.27 (d, 1H), 4.65 (m, 1H), 4.46 (d, 1H), 4.37 (m, 2H), 3.97-3.72 (m, 4H), 2.62 (m, 1H), 2.15 (br, 3H), 2.04 (s, 3H), 1.40 (s, 3H), 1.36 (s, 3H), 1.05 (t, 3H) IR: 3323, 2926, 1635, 1535, 1439, 1242, 1055

## Example 3

[0047] 4-Amidino-[(S)-N-(4-phenylbutanoyl)prolyl] aminomethylbenzene (compound No. 3 of Table 1) hydrochloride NMR (DMSO-d⁶)

9.39 (br, 2H), 9.22 (br, 2H), 8.55 (t, 1H), 7.80 (d, 2H), 7.48 (d, 2H), 7.31-7.13 (m, 5H), 4.37-4.30 (m, 3H), 3.60-3.30 (m, 2H), 2.60 (t, 2H), 2.34-1.75 (m, 8H)
IR: 3264, 1618, 1541, 1491, 1451, 702

## 40 Example 4

[0048] 4-Amidino-[(S)-N-(2-benzyloxyacetyl)prolyl] aminomethylbenzene (compound No. 55 of Table 1) hydrochloride

NMR (DMSO-d6)

9.41 (br, 2H), 9.23 (br, 2H), 8.66 (t, 1H), 7.80 (d, 2H), 7.49 (d, 2H), 7.42-7.27 (m, 5H), 4.61-4.08 (m, 7H), 3.56-3.40 (m, 2H), 2.20-1.78 (m, 4H)
IR: 3262, 1645, 1539, 1489, 1454, 740

## Example 5

50

45

55

[0049] Trans-4-amidino-[(S)-N-[(R)-2-ethoxycarbonylamino-4,4-dimethylpentanoyl]prolyl] aminomethylcyclohexane (compound No. 263 of Table 1) hydrochloride

(a) Trans-4-N-benzyloxycarbonylaminomethyl-cyclohexylnitrile

[0050] To a solution of trans-4-aminomethylcyclohexanecarboxylic acid (25 g, 159 mmol) and sodium carbonate (20 g, 191 mmol) in water (300 ml), benzyloxycarbonyl chloride (27 ml, 190 mmol) is added at 0°C. After stirring for 6 hours, 1N-hydrochloric acid is added until the pH of the reaction mixture indicates 2, and the precipitated white solid is col-

lected, washed with water and dried. The resulting white solid is dissolved in THF (300 ml) and CDI (21 g, 130 mmol) is added at 0°C. After stirring for 3 hours, the reaction mixture is added dropwise to a mixed solution of 33% ammonia in water (50 ml) and THF (150 ml) at 0°C. After stirring for 5 hours, the solvent is evaporated and water (500 ml) is added, and the precipitated white solid is collected, washed with water and dried.

[0051] To a solution of the resulting compound in 1,2-dichloroethane (500 ml), thionyl chloride (19 ml, 260 mmol) is added and heated to an inner temperature of 70°C. After stirring for 5 hours, the reaction mixture is poured into ice water and neutralized with an aqueous 1N-sodium hydroxide solution. After extracting with chloroform, the organic layer is washed twice with water and once with saturated brine, successively, and then dried over sodium sulfate. The solvent is evaporated and the resulting crude product is recrystallized (hexane-ethyl acetate) to give 22.8 g of the titled compound (53%). mp: 90-92°C

(b) Trans-4-(S)-prolylaminomethyl-cyclohexylnitrile

[0052] The compound obtained in the item (a) is dissolved in ethanol (250 ml) and the catalytic hydrogenation is conducted at room temperature and atomospheric pressure in the presence of palladium black (1 g). After the completion of the reaction, the catalyst is filtered off and the solvent is evaporated.

[0053] To a solution of (S)-N-benzyloxycarbonylproline (20.7 g, 83 mmol) in THF (150 ml), CDI (13.5 g, 83 mmol) is added at 0°C. After stirring for 3 hours, a solution of the compound obtained in the above reaction in THF (200 ml) is added at 0°C. After stirring for 12 hours, the solvent is evaporated, and chloroform (400 ml) is added to the resulting residue. The organic layer is washed three times with water and once with saturated brine, successively, and then dried over sodium sulfate. The solvent is evaporated and the resulting residue is purified with silica gel chromatography (chloroform-methanol).

[0054] The resulting compound is dissolved in ethanol (250 ml) and the catalytic hydrogenation is conducted at room temperature and atomospheric pressure in the presence of palladium black (1 g). After the completion of the reaction, the catalyst is filtered off and the solvent is evaporated to give 18.8 g of the titled compound (95%). NMR (DMSO-d⁶)

0.88-1.06 (m, 2H), 1.38-1.52 (m, 3H), 1.68-2.03 (m, 7H), 2.20-2.40 (m, 1H), 2.52-2.67 (m, 1H), 2.80-3.20 (m, 4H), 4.03-4.10 (m, 1H), 7.53 (br, 1H), 8.65-8.70 (m, 1H)

 (c) Trans-4-amidino-[(S)-N-[(R)-2-ethoxycarbonylamino-4,4-dimethylpentanoyl] prolyl]aminomethylcyclohexane hydrochloride

[0055] According to the same manner as that described in the items (c) to (e) of Example 1, the titled compound can be synthesized from the compound obtained in the item (b) and (R)-2-t-butyloxycarbonylamino-4,4-dimethylpentanoic acid.

NMR (DMSO-d6)

35

40

45

50

55

10

8.95 (br, 2H), 8.69 (br, 2H), 7.60 (br, 1H), 6.32 (br, 1H), 4.56 (m, 1H), 4.39 (m, 1H), 4.18 (q, 2H), 4.10 (m, 1H), 3.52 (m, 1H), 3.19 (m, 1H), 2.89 (m, 1H), 2.69 (m, 1H), 2.14-1.59 (m, 12H), 1.26 (t, 3H), 0.98 (s, 9H), 0.98-0.89 (m, 2H) IR: 3314, 2954, 1686, 1639, 1543, 1449, 1250, 1059

[0056] According to the same procedures, the compounds shown in the following Examples were synthesized.

Example 6

[0057] Trans-4-amidino-[(S)-N-[(R)-2-ethoxycarbonylamino-3-cyclohexylpropanoyl] prolyl]aminoethylcyclohexane (compound No. 227 of Table 1) hydrochloride NMR (DMSO-d⁶)

8.93 (br, 2H), 8.81 (br, 2H), 7.53 (br, 1H), 7.38 (t, 1H), 4.50-4.15 (m, 1H), 4.10-3.90 (m, 2H), 3.73-3.17 (m, 2H), 3.05-2.80 (m, 3H), 2.39 (br, 1H), 2.00-0.68 (m, 29H) IR: 3297, 2926, 2853, 1684, 1543, 1449, 1262, 1053

Example 7

[0058] Trans-4-amidino-[(S)-N-[(R)-2-isopropoxycarbonylamino-4,4-dimethylpentanoyl] prolyl]aminomethylcy-clohexane (compound No. 265 of Table 1) hydrochloride NMR (DMSO-d⁶)

8.91 (br, 2H), 8.78 (br, 2H), 7.55 (br, 1H), 7.28 (t, 1H), 4.78-4.70 (m, 1H), 4.30-3.92 (m, 1H), 3.80-3.20 (m, 3H), 3.0-2.75 (m, 2H), 2.50-1.37 (m, 14H), 1.18-1.00 (m, 6H), 1.0-0.81 (m, 1H)
IR: 3285, 2953, 2870, 1684, 1541, 1449, 1250, 1111

#### Example 8

[0059] Trans-4-amidino-[(S)-N-((R)-2-isopropoxycarbonylamino-2-cyclohexylacetyl) prolyl]aminomethylcyclohexane (compound No. 228 of Table 1) hydrochloride

5 NMR (DMSO-d⁶)

8.91 (br, 2H), 8.69 (br, 2H), 7.36 (br, 1H), 5.99 (d, 1H), 4.84-4.79 (m, 1H), 4.58 (br, 2H), 4.53-4.50 (m, 2H), 4.10-3.90 (m, 2H), 3.60-3.40 (m, 1H), 2.50-0.97 (m, 30H) IR: 3297, 2980, 2930, 2855, 1684, 1539, 1451, 1258

10 Example 9

[0060] Trans-4-amidino-[(S)-N-((R)-2-ethoxycarbonylamino-4-ethyl-hexanoyl) prolyl]aminomethylcyclohexane (compound No. 264 of Table 1) hydrochloride NMR (DMSO-d⁶)

8.91 (br, 2H), 8.70 (br, 2H), 7.54 (m, 1H), 6.34 (m, 1H), 4.56 (m, 1H), 4.38 (m, 1H), 4.11 (m, 3H), 3.48 (m, 1H), 3.21 (m, 1H), 2.88 (m, 1H), 2.68 (m, 1H), 2.30-1.19 (m, 18H), 1.26 (t, 3H), 0.96 (m, 2H), 0.86 (t, 6H) IR: 3279, 2962, 1685, 1639, 1541, 1448, 1257, 1059, 752

Example 10

20

[0061] Trans-4-amidino-{(S)-N-[(R)-2-t-butoxycarbonylamino-4,4-dimethylpentanoyl] prolyl]aminomethylcyclohexane (compound No. 266 of Table 1) glycolate

NMR (DMSO-d⁶)

9.54 (br, 2H), 8.72 (br, 2H), 7.54 (br, 1H), 7.01 (t, 1H), 4.60-4.00 (m, 4H), 3.40 (m, 2H), 3.10-2.75 (m, 3H), 2.35 (br, 1H), 2.00-1.20 (m, 24H), 0.91 (s, 9H) IR: 3316, 2953, 1686, 1543, 1449, 1368, 1167

Example 11

[0062] 4-[(S)-N-[(R)-2-t-butyloxycarbonylamino-cyclohexylacetyl] prolyl] aminomethyl-benzamidoxime (compound No. 396 of Table 1)

[0063] To a solution of the compound (0.94 g, 2 mmol) obtained in the item (c) of Example 1 in ethanol (15 ml), a solution of sodium carbonate (0.17 g, 1.6 mmol) in water (3 ml) and hydroxyamine hydrochloride (0.22 g, 3.2 mmol) are added. After the reaction mixture is heated at reflux for 8 hours, the solvent is evaporated and the resulting residue is purified with silica gel column chromatography (chloroform-methanol) to give 0.84 g of the titled compound (84%). NMR (CDCl₂)

1.0-1.49 (m, 14H), 1.5-2.4 (m, 10H), 3.56 (br, 1H), 3.97 (br, 1H), 4.09 (t, 1H), 4.41 (dq, 2H), 4.67 (d, 1H), 4.94 (br, 2H), 5.41 (d, 1H), 7.20 (d, 2H), 7.23-7.27 (m, 1H), 7.50 (d, 2H), 7.75 (br, 1H)
IR: 3345, 2978, 2930, 2855, 1640, 1528, 1449, 1167

[0064] According to the same procedures, the compounds shown in the following Examples were synthesized.

Example 12

[0065] 4-[(S)-N-phenylacetylprolyl] aminomethyl-benzamidoxime (compound No. 374 of Table 1) NMR (CDCl₃)

8.11 (t, 1H), 7.37 (d, 2H), 7.28-7.23 (m, 5H), 7.08 (d, 2H), 4.88 (s, 2H), 4.68 (d, 1H), 4.51 (m, 1H), 4.21 (m, 1H), 3.71 (s, 2H), 3.63-3.51 (m, 2H), 2.40-2.01 (m, 4H) IR: 3315, 2968, 1637, 1543, 1244, 1155, 927, 709

50 Example 13

45

[0066] 4-[(S)-N-[(R)-N'-ethoxycarbonylphenylalanyl] prolyl]aminomethylbenzamidoxime (compound No. 387 of Table 1)

7.54 (d, 2H), 7.27-7.19 (m, 7H), 6.31 (d, 1H), 5.05 (br, 2H), 4.65-4.42 (m, 3H), 4.24-4.10 (m, 1H), 3.80-3.40 (m, 3H), 3.10-2.95 (m, 2H), 2.60-2.50 (m, 1H), 2.14 (br, 1H), 1.95-1.50 (m, 3H), 0.99 (t, 3H)
IR: 3339, 1641, 1539, 1451, 1260, 752, 702

## Example 14

[0067] 4-[(S)-N-[(R)-2-t-butyloxycarbonylamino-3-cyclohexylpropanoyl] prolyl]aminomethyl-benzamidoxime (compound No. 397 of Table 1)

5 NMR (CDCl₃)

7.75 (br, 1H), 7.50 (d, 2H), 7.21 (d, 2H), 5.40 (d, 1H), 4.94 (br, 2H), 4.64 (br, 1H), 4.40-4.25 (m, 3H), 3.95 (br, 1H), 3.50-3.40 (m, 1H), 2.0-0.80 (m, 26H) IR: 3337, 2978, 2924, 2851, 1642, 1536, 1449, 1167

10 Example 15

[0068] 4-[(S)-N-[(R)-2-ethoxycarbonylamino-3-methyl-3-methylthlobutanoyl] prolyl]aminomethyl-benzamidoxime (compound No. 419 of Table 1)

NMR (CDCI₃)

7.66 (t, 1H), 7.53 (d, 2H), 7.23 (d, 2H), 5.64 (d, 1H), 4.91 (s, 2H), 4.68 (d, 1H), 4.58-4.30 (m, 3H), 3.90 (m, 1H), 3.87-3.76 (m, 2H), 3.62 (m, 1H), 2.37 (m, 1 H), 2.09-2.00 (m, 3H), 2.06 (s, 3H), 1.41 (s, 3H), 1.39 (s, 3H), 1.09 (t, 3H) IR: 3339, 2978, 1641, 1535, 1439, 1249, 1057, 929, 754

Example 16

20

15

[0069] 4-[(S)-N-[(R)-phenylalanyl] prolyl]aminomethyl-benzamidoxime (compound No. 390 of Table 1) dihydrochloride

NMR (DMSO-d6)

11.24 (br, 1H), 9.02 (br, 2H), 8.91 (t, 1H), 8.80 (br, 3H), 7.66 (d, 2H), 7.44 (d, 2H), 7.35-7.22 (m, 5H), 4.30-4.16 (m, 4H), 3.57-2.95 (m, 3H), 2.45-2.30 (m, 1H), 1.90-1.20 (m, 4H) IR: 3059, 1649, 1539, 1491, 1454

Example 17

30 [0070] Trans-4-[(S)-N-((R)-2-isopropoxycarbonylamino-2-cyclohexylacetyl) prolyl]aminomethylcyclohexanecarbox-amidoxime (compound No. 430 of Table 1)
NMR (CDCl₂)

7.14 (br, 1H), 5.70 (d, 1H), 4.85-4.80 (m, 1H), 4.70-4.50 (m, 3H), 4.17-4.08 (m, 2H), 3.96 (br, 1H), 3.54 (q, 1H), 3.05 (t, 2H), 2.40-2.20 (m, 1H), 2.09-0.88 (m, 30H)

35 IR: 3342, 2978, 2928, 2855, 1653, 1449, 1256, 1111

Example 18

[0071] Trans-4-[(S)-N-((R)-2-t-butoxycarbonylamino-3-cyclohexylpropanoyl) prolyl]aminomethylcyclohexanecar-boxamidoxime (compound No. 435 of Table 1)

NMR (CDCl₃)

7.14 (br, 1H), 5.40 (d, 1H), 4.60-4.33 (m, 5H), 3.88 (br, 1H), 3.43 (q, 1H), 3.20-3.11 (m, 1H), 3.0-2.96 (m, 1H), 2.40-2.30 (m, 1H), 2.0-0.84 (m, 35H)

IR: 3356, 2926, 2853, 1649, 1537, 1448, 1167

45

Example 19

[0072] Trans-4-[(S)-N-((R)-2-t-butoxycarbonylamino-2-cyclohexylacetyl) prolyl]aminomethylcyclohexanecarboxamidoxime (compound No. 433 of Table 1)

50 NMR (CDCl₃)

7.15 (br, 1H), 5.28 (d, 1H), 4.58 (br, 4H), 4.09 (t, 1H), 3.92 (br, 1H), 3.53 (q, 1H), 3.20-2.90 (m, 2H), 2.40 (br, 1H), 2.10-0.91 (m, 33H) IR: 3347, 2930, 2855, 1649, 1541, 1451, 1169

55 Example 20

[0073] Trans-4-[(S)-N-[(R)-2-t-ethoxycarbonylamino-4,4-dimethylpentanoyl] prolyl]aminomethylcyclohexanecar-boxamidoxime (compound No. 461 of Table 1)

NMR (CDCI₃)

7.06 (t, 1H), 5.56 (d, 1H), 4.57-4.39 (m, 4H), 4.11 (q, 2H), 3.98 (m, 1H), 3.47 (m, 1H), 3.05 (m, 2H), 2.39 (m, 1H), 2.04-1.78 (m, 10H), 1.57 (d, 2H), 1.56-1.12 (m, 2H), 1.24 (t, 3H), 0.99 (s, 9H), 0.99-0.89 (m, 2H) IR: 3356, 2934, 1649, 1541, 1446, 1249, 1059, 927

Example 21

5

[0074] Trans-4-[(S)-N-[(R)-2-methoxycarbonylamino-4,4-dimethylpentanoyl] prolyl]aminomethylcyclohexanecarboxamidoxime (compound No. 458 of Table 1)

10 NMR (CDCI₃)

7.04 (t, 1H), 5.53 (d, 1H), 4.68 (s, 2H), 4.56 (d, 1H), 4.43 (m, 1H), 3.98 (m, 1H), 3.66 (s, 3H), 3.47 (m, 1H), 3.07 (m, 2H), 2.39 (m, 1H), 2.19-1.77 (m, 8H), 1.57 (d, 2H), 1.55-1.25 (m, 4H), 0.99 (s, 9H), 0.93 (m, 2H) IR: 3344, 2949, 1712, 1649, 1548, 1448, 1249, 1059

15 Example 22

[0075] Trans-4-[(S)-N-[(R)-2-t-butoxycarbonylamino-4,4-dimethylpentanoyl] prolyl]aminomethylcyclohexanecar-boxamidoxime (compound No. 467 of Table 1)

NMR (CDCI₂)

7.12 (t, 1H), 5.14 (d, 1H), 4.58 (d, 1H), 4.53 (s, 2H), 4.37 (m, 1H), 3.92 (m, 1H), 3.45 (m, 1H), 3.19 (m, 1H), 2.95 (m, 1H), 2.42 (m, 1H), 2.06-1.79 (m, 8H), 1.53 (d, 2H), 1.52-1.34 (m, 4H), 1.43 (s, 9H), 0.99 (s, 9H), 1.00-0.89 (m, 2H) IR: 3358, 2930, 1649, 1535, 1448, 1367, 1249, 1168

Example 23

25

40

45

50

55

[0076] Trans-4-[(S)-N-[(R)-2-benzyloxycarbonylamino-4,4-dimethylpentanoyl] prolyl]aminomethylcyclohexanecar-boxamidoxime (compound No. 469 of Table 1)
NMR (CDCl₃)

7.36-7.27 (m, 5H), 7.04 (t, 1H), 5.63 (d, 1H), 5.16-5.00 (m, 2H), 4.58-4.46 (m, 4H), 3.97 (m, 1H), 3.47 (m, 1H), 3.06-2.92 (m, 2H), 2.43-2.38 (m, 1H), 2.01-1.72 (m, 8H), 1.58 (d, 2H), 1.50-1.23 (m, 4H), 0.98 (s, 9H), 0.98-0.88 (m, 2H) IR: 3356, 2928, 1649, 1541, 1448, 1249, 1053 929

Example 24

35 [0077] Trans-4-[(S)-N-[(R)-2-isopropoxycarbonylamino-4,4-dimethylpentanoyl] prolyl] aminomethylcyclohexanecar-boxamidoxime (compound No. 464 of Table 1)
NMR (CDCI₂)

7.11 (f, 1H), 5.49 (d, 1H), 4.83 (m, 1H), 4.56 (m, 3H), 4.42 (dd, 1H), 3.98 (m, 1H), 3.47 (dd, 1H), 3.04 (m, 2H), 2.40 (m, 1H), 2.01 (m, 2H), 1.92 (m, 3H), 1.80 (m, 3H), 1.57 (d, 2H), 1.39 (m, 4H), 1.21 (m, 6H), 0.99 (s, 9H), 0.94 (m, 2H) IR: 3343, 1649, 1541, 1449, 1275

Example 25

[0078] Trans-4-[(S)-N-[(R)-2-isopropoxycarbonylamino-2-cyclopentylacetyl] prolyl]aminomethylcyclohexanecar-boxamidoxime (compound No. 429 of Table 1)

NMR (CDCI₂)

7.14 (i, 1H), 5.42 (d, 1K), 4.83 (m, 1H), 4.60 (d, 1H), 4.52 (s, 2H), 4.13 (m, 1H), 3.98 (m, 1H), 3.56 (m, 1H), 3.04 (m, 2H), 2.35 (m, 1H), 2.24 (m, 1H), 2.10-1.30 (m, 20H), 1.23 (dd, 6H), 1.01-0.93 (m, 2H) IR: 3344, 2934, 1649, 1541, 1448, 1275, 1111, 754

Example 26

[0079] Trans-4-[(S)-N-((R)-2-t-butoxycarbonylamino-2-cyclopentylacetyl) prolyl]aminomethylcyclohexanecarboxamidoxime (compound No. 432 of Table 1)

NMR (CDCI₂)

7.16 (t, 1H), 5.16 (d, 1H), 4.60 (d, 1H), 4.51 (s, 2H), 4.14 (t, 1H), 3.94 (m, 1H), 3.52 (m, 1H), 3.01 (m, 2H), 2.38 (m, 1H), 2.23-1.39 (m, 21H), 1.43 (s, 9H), 1.17-0.90 (m, 2H)
IR: 3350, 2932, 1649, 1541, 1448, 1367, 1251, 1167, 929

## Example 27.

[0080] Trans-4-[(S)-N-((R)-2-ethoxycarbonylamino-3-cyclohexylpropanoyl) prolyl]aminomethylcyclohexanecarbox-amidoxime (compound No. 428 of Table 1)

5 NMR (CDCl₃)

7.08 (br, 1H), 5.53 (d, 1H), 4.80-4.40 (m, 4H), 4.10-3.85 (m, 4H), 3.44 (q, 1H), 3.06 (t, 3H), 2.15-0.90 (m, 29H) IR: 3343, 2926, 2853, 1649, 1541, 1449, 1260, 1053

Example 28

10

15

[0081] Trans-4-[(S)-N-((R)-2-isopropoxycarbonylamino-3-cyclohexylpropanoyl) prolyl] aminomethylcyclohexane-carboxamidoxime

(compound No. 431 of Table 1)

NMR (CDCI₃)

7.12 (br, 1H), 5.51 (d, 1H), 4.85-4.70 (m, 1H), 4.60-4.30 (m, 4H), 4.0-3.85 (m, 1H), 3.44 (q, 1H), 3.10-2.95 (m, 3H), 2.45-2.35 (m, 1H), 2.05-0.80 (m, 32H) IR: 3347, 2978, 2926, 2853, 1649, 1539, 1449, 1261, 1111

Example 29

[0082] Trans-4-[(S)-N-((R)-2-isopropoxycarbonylamino-4-ethyl-hexanoyl) prolyl]aminomethylcyclohexanecarboxa-midoxime (compound No. 463 of Table 1)

NMR (CDCI₃)

7.11 (t, 1H), 5.41 (d, 1H), 4.83 (m, 1H), 4.56 (m, 3H), 4.39 (m, 1H), 3.94 (m, 1H), 3.46 (m, 1H), 3.02 (m, 2H), 2.39 (m, 1H), 2.10-1.20 (m, 20H), 1.22 (dd, 6H), 1.02-0.84 (m, 2H), 0.86 (t, 6H)

IR: 33346, 2962, 2930, 1653, 1541, 1448, 1271, 1113

Example 30

[0083] Trans-4-[(S)-N-((R)-2-t-butoxycarbonylamino-4-ethyl-hexanoyl) prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 466 of Table 1)

NMR (CDCI₃)

7.19 (t, 1H), 5.14 (d, 1H), 4.60 (d, 1H), 4.50 (s, 2H), 4.33 (m, 1H), 3.89 (m, 1H), 3.43 (m, 1H), 3.15 (m, 1H), 2.95 (m, 1H), 2.40 (m, 1H), 2.10-1.19 (m, 20H), 1.43 (s, 9H), 1.04-0.89 (m, 2H), 0.86 (t, 6H) IR: 3346, 2964, 2930, 1649, 1541, 1448, 1367, 1280, 1251, 1168, 929

35

Example 31

[0084] Trans-4-[(S)-N-((R)-2-ethoxycarbonylamino-heptanoyl) prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 459 of Table 1)

NMR (CDCI₃)

7.08 (t, 1H), 5.60 (d, 1H), 4.58 (m, 3H), 4.35 (m, 1H), 4.07 (m, 2H), 3.92 (m, 1H), 3.48 (m, 1H), 3.06 (m, 2H), 2.40 (m, 1H), 2.04-1.32 (m, 20H), 1.24 (t, 3H), 0.89 (t, 3H), 0.98 (m, 2H) IR: 3346, 2928, 1649, 1541, 1448, 1255, 1055, 927

45 Example 32

[0085] Trans-4-{(S)-N-((R)-N'-t-butoxycarbonylamino-methionyl) prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 468 of Table 1) NMR (CDCl₃)

7.07 (m, 1H), 5.31 (d, 1H), 4.55 (m, 4H), 3.56 (m, 1H), 3.10 (m, 2H), 2.57 (t, 2H), 2.37 (m, 1H), 2.11 (s, 3H), 2.06-1.29 (m; 14H), 1.43 (s, 9H), 1.00 (m, 2H) IR: 3354, 2928, 1647, 1541, 1448, 1367, 1251, 1167

Example 33

[0086] Trans-4-[(S)-N-((R)-2-hydroxy-4,4-dimethyl-pentanoyl) prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 454 of Table 1) NMR (CDCI₂)

7.19 (t, 1H), 4.68 (s, 2H), 4.50 (d, 1H), 4.36 (1, 1H), 3.64 (t, 1H), 3.39 (m, 1H), 3.06 (m, 2H), 2.35 (m, 2H),

2.16-1.79 (m, 9H), 1.44 (d, 2H), 1.43-1.25 (m, 3H), 1.00-0.95 (m, 2H), 1.02 (s, 9H) IR: 3337, 2944, 1653, 1620, 1566, 1448, 1386, 1248, 1087

Example 34

LAdinpic

5

10

15

30

45

50

[0087] Trans-4-[(S)-N-((R)-2-ethoxycarbonylamino-4-ethyl-hexanoyl) prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 460 of Table 1) NMR (CDCI₂)

7.07 (t, 1H), 5.53 (d, 1H), 4.56 (m, 3H), 4.40 (m, 1H), 4.11 (q, 2H), 3.96 (m, 1H), 3.45 (m, 1H), 3.05 (m, 2H), 2.36 (m, 1H), 2.09-1.77 (m, 10H), 1.61-1.21 (m, 8H), 1.24 (t, 3H), 1.02-0.83 (m, 2H), 0.86 (t, 6H) IR: 3342, 2962, 2930, 1649, 1541, 1448, 1379, 1269, 1059, 929

Reference Example 2

- [0088] Trans-4-amino-[(S)-N-[(R)-N'-methanesulfonylphenyalanyl] prolyl] aminomethylcyclohexane (Reference compound No. 776 of Table 1) L-tartrate.
  - (a) Trans-4-t-butyloxycarbonylamino-benzyloxycarbonylaminomethylcyclohexane
- [0089] To a solution of trans-4-aminomethylcyclohexanecarboxylic acid (15.7 g, 100 mmol) and sodium hydroxide (4.0 g, 100 mmol) in water (30 ml), benzyloxycarbonyl chloride (15.6 ml, 110 mmol) and sodium hydroxide (4.4 g, 110 mmol) in water (30 ml) are added dropwise at 0°C, simultaneously. After stirring for 4 hours, the mixture is extracted once with ether and 1 N-hydrochloric acid is added to the aqueous layer until the pH of the mixture indicates 2. Then, the precipitated white solid is collected and dried.
  - [0090] To a solution of the resulting compound (12.8 g, 50 mmol) in t-butanol (150 ml), triethylamine (8.3 ml, 60 mmol) and DPPA (13.7 g, 50 mmol) are added and heated at reflux for 8 hours. After the solvent is evaporated, water is added to the residue and the mixture is extracted with chloroform. The organic layer is washed once with an aqueous sodium carbonate (5%), once with an aqueous potassium hydrogensulfate (5%), twice with water and once with saturated brine, successively, and then dried over sodium sulfate. The solvent is evaporated and the residue is purified with silica gel column chromatography (hexane-ethyl acetate) to give 8.6 g of the titled compound (47%). NMR (CDCl₂)

0.85-1.37 (m, 14H), 1.60-1.85 (m, 4H), 2.84 (t, 1H), 3.12 (br, 1H), 5.00 (s, 2H), 6.62 (d, 1H), 7.23-7.39 (m, 6H)

(b) Trans-4-t-butyloxycarbonylamino-[(S)-N-benzyloxycarbonylprolyl] aminomethylcyclohexane

35

[0091] The compound (4.4 g, 12 mmol) obtained in the item (a) is dissolved in methanol (200 ml) and the catalytic hydrogenation is conducted at room temperature and under atomospheric pressure in the presence of palladium black (0.4 g). After the completion of the reaction, the catalyst is filtered off and the solvent is evaporated.

[0092] To a solution of (S)-Z-proline (3.0 g, 12 mmol) in THF (30 ml), CDI (2.0 g, 12 mmol) is added at 0°C. After stirring for 3 hours, a solution of the compound obtained in the above reaction in THF (150 ml) is added at 0°C. After stirring for 6 hours, the solvent is evaporated and water (50 ml) is added to the residue. The mixture is extracted with chloroform and the organic layer is washed three times with water and once with saturated brine, successively. After drying over sodium sulfate, the solvent is evaporated and the residue is purified with silica gel chromatography (chloroform-methanol) to give 4.2 g of the titled compound (77%).

NMR (CDCl₃)

0.85-1.06 (m, 4H), 1.44 (s, 9H), 1.60-2.35 (m, 9H), 2.94-3.20 (m, 2H), 3.20-3.55 (m, 3H), 4.31 (br, 1H), 4.47 (br, 1H), 5.14 (s, 2H), 6.90 (br, 1H), 7.15-7.40 (m, 5H)

(c) Trans-4-t-butyloxycarbonylamino-[(S)-N-[(R)-N'-benzyloxycarbonylphenylalanyl] prolyl] aminomethylcyclohexane

[0093] The compound (3.6 g, 7.9 mmol) obtained in the item (b) is dissolved in methanol (50 ml) and the catalytichy-drogenation is conducted at room temperature and under atomospheric pressure in the presence of palladium black (0.3 g). After the completion of the reaction, the catalyst is filtered off and the solvent is evaporated.

[0094] To a solution of (R)-Z-phenylalanine (2.4 g, 7.9 mmol) in THF (30 ml), CDI (1.3 g, 7.9 mmol) is added at 0°C. After stirring for 4 hours, a solution of the compound obtained in the above reaction in THF (60 ml) is added. After stirring for 8 hours, the solvent is evaporated and water is added to the reaction mixture. The mexture is extracted with chloroform and the organic layer is washed three times with water and once with saturated brine, successively, and then dried over sodium sulfate. The solvent is evaporated and the residue is purified with silica gel column chroma-

tography (chloroform-methanol) to give 4.2 g of the titled compound (89%). NMR (CDCl₃)

0.85-1.06 (m, 5H), 1.33-2.0 (m, 15H), 2.10-2.22 (m, 1H), 2.50-2.60 (m, 1H), 2.94-3.01 (m, 5H), 3.30 (br, 1H), 3.57 (t, 1H), 4.32-4.59 (m, 3H), 5.08 (d, 2H), 5.69 (d, 1H), 7.02 (br, 1H), 7.18-7.37 (m, 10H)

(d) Trans-4-amino-[(S)-N-[(R)-N'-methanesulfonylphenylalanyl]prolyl] aminomethylcyclohexane L-tartrate.

[0095] The compound (2.4 g, 3.9 mmol) obtained in the item (c) is dissolved in methanol (40 ml) and the catalytic hydrogenation is conducted at room temperature and under atomospheric pressure in the presence of palladium black (0.2 g). After the completion of the reaction, the catalyst is filtered off and the solvent is evaporated. To a solution of the resulting compound in dichloromethane (40 ml), triethylamine (0.65 ml, 4.7 mmol) is added and a solution of methanesulfonyl chloride (0.47 g, 4.1 mmol) in dichloromethane (100 ml) is further added at 0°C. After stirring for 3 hours, an aqueous saturated sodium bicarbonate solution is added and the organic layer is washed once with water and saturated brine, successively. After drying over sodium sulfate, the solvent is evaporated and the residue is purified with silica gel chromatography (chloroform-methanol),

[0096] The resulting compound is dissolved in chloroform (10 ml) and a 4N-dioxane hydrochloride in dioxane (10 ml) is added at 0°C. After stirring for 2 hours, the solvent is evaporated and chloroform (10 ml) and a 1N-sodium hydroxide solution (10 ml) are added to the residue and, further, the mixture is stirred for 10 minutes. The organic layer is dried over sodium sulfate and a solution of L-tartaric acid (0.34 g, 2.26 nm) in methanol (5 ml) is added.

[0097] The solvent is evaporated and ether (20 ml) is added, and then the precipitated white solid is collected and dried to give 1.36 g of the titled compound (58%).

NMR (DMSO-d6)

7.77 (m, 4H), 7.28 (m, 5H), 4.28 (m, 1H), 4.16 (m, 1H), 3.57-3.45 (m, 8H), 2.73 (s, 3H), 1.91-1.75 (m, 9H), 1.54 (m, 1H), 1.25 (m, 4H), 0.93 (m, 2H)

IR: 3324, 2934, 1734, 1638, 1545, 1453, 1308, 1148

[0098] According to the same procedures, the compounds shown in the following Examples were synthesized.

Example 35

30

35

50

55

[0099] Trans-4-amino-[(S)-N-((RS)-3-methylsulfonylamino-3-phenylpropanoyl) prolyl]aminomethylcyclohexane (compound No. 777 of Table 1) hydrochloride

NMR (DMSO-d6)

8.08 (m, 3H), 7.34 (m, 5H), 4.78 (m, 1H), 4.15 (m, 2H), 3.51 (m, 1H), 3.36 (m, 2H), 2.86 (m, 4H), 2.68 (s, 3H), 2.51 (m, 2H), 2.00-1.69 (m, 6H), 1.27 (m, 4H), 0.92 (m, 2H) IR: 3409, 2936, 1638, 1453, 1314, 1148

Example 36

[0100] Trans-4-amino-[(S)-N-((R)-2-isopropoxycarbonylamino-4,4-dimethylpentanoyl) prolyl]aminomethylcyclohexane (compound No. 797 of Table 1)

40 NMR (CDCI₃)

7.19 (m, 1H), 5.32 (d, 1H), 4.82 (m, 1H), 4.53 (m, 2H), 4.00 (m, 1H), 3.48 (m, 1H), 3.03-2.16 (m, 6H), 2.00-1.81 (m, 6H), 1.57 (d, 2H), 1.49 (m, 4H), 1.24 (m, 6H), 1.00 (s, 9H), 0.95 (m, 2H) IR: 3326, 2949, 1640, 1541, 1449, 1248

45 Example 37

[0101] Trans-4-amino-[(S)-N-((R)-N'-ethoxycarbonyl-phenylalanyl) prolyl] aminomethylcyclohexane (compound No. 780 of Table 1) hydrochloride NMR (DMSO-d⁶)

7.98 (m, 3H), 7.37 (t, 1H), 7.26 (m, 5H), 4.37 (dd, 1H), 4.16 (m, 1H), 4.02 (m, 2H), 3.88 (m, 1H), 3.59 (m, 1H), 3.43 (m, 1H), 2.86 (m, 5H), 1.93-1.75 (m, 7H), 1.28 (m, 4H), 1.15 (t, 3H), 0.92 (m, 2H)
IR: 3349, 2936, 1642, 1537, 1451, 1258

Example 38

[0102] Trans-4-amino-[(S)-((R)-phenylalanyl) prolyl]aminomethylcyclohexane (compound No. 779 of Table 1) hydro-chloride NMR (DMSO-d⁶)

8.69 (br, 3H), 8.09 (br, 4H), 7.37-7.20 (m, 5H), 4.19 (br, 1H), 4.09-4.06 (m, 1H), 3.20-2.82 (m, 5H), 2.0-0.85 (m, 15H)
IR: 3426, 2936, 1649, 1539, 1497, 1454

5 Example 39

[0103] Trans-4-amino-[(S)-N-((R)-2-ethoxycarbonyloxy-3-phenylpropanoyl) prolyl]aminomethylcyclohexane (compound No. 785 of Table 1) hydrochloride NMR (DMSO-d⁶)

7.78 (m, 3H), 7.30 (m, 5H), 7.15 (d, 1H), 5.22 (t, 1H), 4.20 (m, 1H), 4.08 (m, 3H), 3.64 (m, 1H), 3.02-2.88 (m, 5H), 1.92-1.72 (m, 7H), 1.20-0.94 (m, 9H) IR: 3397, 2938, 1740, 1655, 1453, 1269

Example 40

15

10

[0104] Trans-4-amino-[(S)-N-((R)-2-allylcarbamoyloxy-3-phenylpropanoyl) prolyl]aminomethylcyclohexane (compound No. 787 of Table 1) hydrobromide

NMR (DMSO-d6)

7.90 (m, 3H), 7.30 (m, 5H), 7.14 (m, 1H), 5.72 (m, 2H), 5.06 (m, 2H), 4.76 (m, 1H), 4.17 (m, 1H), 3.60 (m, 1H), 2.98-2.85 (m, 5H), 1.87-1.70 (m, 7H), 1.23 (m, 7H), 0.90 (m, 2H) IR: 3364, 2936, 1707, 1645, 1543, 1454, 1256

Example 41

5 [0105] Trans-4-amino-[(S)-N-((R)-2-hydroxy-2-cyclohexylacetyl) prolyl] aminomethylcyclohexane (compound No. 768 of Table 1) hydrochloride

NMR (DMSO-d6)

8.21 (br, 3H), 7.95 (m, 1H), 4.53 (m, 1H), 4.18 (d, 1H), 3.95 (m, 1H), 3.07 (m, 3H), 2.18-1.55 (m, 22H), 1.30-1.03 (m, 2H)

30 IR: 3422, 2928, 2854, 1637, 1450, 1388, 1240, 1114, 1045

Example 42

[0106] Trans-4-amino-[(S)-N-((R)-2-hydroxy-2-phenylacetyl) prolyl] aminomethylcyclohexane (compound No. 783 of Table 1) hydrochloride

NMR (DMSO-d6)

7.98 (br, 3H), 7.37-7.28 (m, 5H), 5.48 (br, 1H), 5.23 (d, 1H), 4.23 (d, 1H), 3.70-3.35 (m, 2H), 3.0-2.80 (m, 4H), 2.0-1.60 (m, 8H), 1.40-0.90 (m, 5H)
IR: 3329, 2935, 1667, 1626, 1552, 1448

Example 43

40

[0107] Trans-4-amino-[(S)-N-[(R)-2-ethoxycarbonylamino-4,4-dimethylpentanoyl] prolyl]aminomethylcyclohexane (compound No. 794 of Table 1)

45 NMR (CDCI₃)

7.16 (m, 1H), 5.68 (d, 1H), 4.53 (d, 1H), 4.38 (m, 1H), 4.10 (q, 2H), 4.01 (m, 1H), 3.46-3.07 (m, 4H), 2.30-1.81 (m, 8H), 1.58 (m, 5H), 1.26 (t, 3H), 1.00 (s, 9H), 0.95 (m, 2H) IR: 3329, 2949, 1642, 1541, 1447, 1248, 1059

[0108] According to the same procedure as that described in Reference Example 1, the following compounds of Examples 44 and 45 were synthesized.

Example 44

[0109] 4-Amidino-[(S)-N-[(R)-2-hydroxy-cyclohexylacetyl] prolyl] aminomethylbenzene (compound No. 82 of Table 1) hydrochloride

NMR (DMSO-d6)

9.29 (br, 2H), 8.93 (br, 2H), 8.51 (t, 1H), 7.75 (d, 2H), 7.49 (d, 2H), 4.37 (m, 3H), 3.96 (d, 1H), 3.70 (m, 1H), 3.60-3.40 (m, 2H) 2.20-1.0 (m, 14H)

IR: 3227, 2922, 1657, 1607, 1539, 1485, 1458, 1323, 1246, 1032

## Example 45

5 [0110] 4-Amidino-[(S)-N-[(R)-N'-ethoxycarbonylphenylalanyl] prolyl] aminomethylbenzene (compound No.972 of Table 1) hydrochloride NMR (DMSO-d⁶)

9.40 (br, 2H), 9.24 (br, 2H), 8.14 (t, 1H), 7.80 (d, 2H), 7.59 (t, 1H), 7.45 (d, 2H), 7.31-7.15 (m, 5H), 4.50-4.26 (m, 4H), 3.90-3.57 (m, 3H), 3.0-2.7 (m, 3H), 1.9-1.6 (m, 4H), 1.10-1.0 (m, 3H)

IR: 3279, 2364, 1637, 1539, 1491, 1450, 1255, 704

[0111] According to the same procedures as that described in Example 5 the following compounds of Examples 46 to 53 were synthesized.

#### Example 46

15

[0112] Trans-4-amidino-[(S)-N-[(R)-N'-ethoxycarbonyl-O-t-butyloxy-seryl]prolyl] aminomethylcyclohexane (compound No. 240 of Table 1) hydrochloride NMR (DMSO-d⁶)

8.88 (br, 2H), 8.71 (br, 2H), 7.72 (m, 1H), 6.39 (m, 1H), 4.59 (m, 1H), 4.52 (m, 1H), 4.11 (m, 2H), 3.86-3.71 (m, 2H), 3.58 (m, 2H), 3.22 (m, 2H), 2.79-0.88 (m, 15H), 1.24 (t, 3H), 1.15 (s, 9H)
IR: 3271, 2976, 1685, 1647, 1541, 1448, 1257, 1192, 1095, 1055

## Example 47

[0113] Trans-4-amidino-[(S)-N-[(R)-N'-isopropoxycarbonyl-O-(1',1'-dimethylpropyl)-seryl] prolyl]aminomethylcy-clohexane (compound No. 977 of Table 1) hydrochloride NMR (DMSO-d⁶)

8.74 (br, 4H), 7.68 (m, 1H), 6.01 (m, 1H), 4.83 (m, 1H), 4.57 (m, 2H), 3.74 (m, 2H), 3.50 (m, 2H), 3.14 (m, 1H), 2.97 (m, 1H), 2.5-0.9 (m, 16H), 1.24 (dd, 6H), 1.09 (s, 6H), 0.81 (t, 3H)

30 IR: 3314, 2978, 1693, 1641, 1543, 1450, 1375, 1261, 1111, 1059

# Example 48

35

40

[0114] Trans-4-amidino-[(S)-N-[(R)-N'-ethoxycarbonyl-O-(1',1'-dimethylpropyl)-seryl] prolyl]aminomethylcyclohexane (compound No. 978 of Table 1) hydrochloride NMR (DMSO-d⁶)

8.75 (br, 4H), 7.55 (m, 1H), 6.40 (m, 1H), 4.52 (m, 2H), 4.13 (m, 2H), 3.88-3.70 (m, 2H), 3.55 (m, 2H), 3.28 (m, 1H), 2.87-2.70 (m, 1H), 2.20-1.20 (m, 14H), 1.27 (t, 3H), 1.09 (s, 6H), 0.81 (t, 3H), 1.10-0.90 (m, 2H) IR: 3292, 2974, 1689, 1645, 1543, 1448, 1259, 1095, 1055

## Example 49

[0115] Trans-4-amidino-[(S)-N-[(R)-N'-isopropoxycarbonyl-O-(1'-ethyl-1'-methyl-propyl)-seryl] prolyl]aminomethyl-cyclohexane (compound No. 979 of Table 1) hydrochloride

NMR (DMSO-d6)

8.78 (s, 2H), 8.69 (s, 2H), 7.55 (br, 1H), 5.99 (br, 1H), 4.84 (m, 1H), 4.54 (m, 2H), 3.71 (m, 2H), 3.49 (m, 2H), 3.20-0.90 (m, 16H), 1.64 (q, 4H), 1.23 (t, 6H), 1.03 (s, 3H), 0.78 (t, 6H)
IR: 3315, 2976, 2934, 1685, 1641, 1543, 1450, 1375, 1261, 1111

## 50 Example 50

[0116] Trans-4-amidino-[(S)-N-[(R)-N'-ethoxycarbonyl-S-t-butyl-cystinyl]prolyl] aminomethylcyclohexane (compound No. 980 of Table 1) hydrochloride NMR (DMSO-d⁶)

55 8.82 (br, 2H), 8.74 (br, 2H), 7.47 (m, 1H), 6.63 (m, 1H), 4.60-4.40 (m, 2H), 4.20-4.21 (m, 2H), 4.00 (m, 1H), 3.72 (m, 1H), 3.24 (m, 1H), 2.87 (m, 2H), 2.65 (m, 1H), 2.18-1.31 (m, 12H), 1.31 (s, 9H), 1.27 (t, 3H), 1.10-0.90 (m, 2H) IR: 3298, 2932, 1693, 1641, 1541, 1448, 1304, 1257, 1161, 1047

## Example 51

[0117] Trans-4-amidino-[(S)-N-[(R)-N'-isopropoxycarbonyl-0-(1'-methylcyclopentyl)-seryl] prolyl]aminomethylcyclohexane (compound No. 981 of Table 1) hydrochloride

5 NMR (DMSO-d⁶)

8.79 (br, 4H), 7.64 (m, 1H), 5.97 (m, 1H), 4.83 (m, 1H), 4.55 (m, 2H), 3.76 (m, 2H), 3.52 (m, 2H), 3.15-1.20 (m, 2H), 1.27-1.13 (m, 9H), 1.13-0.95 (m, 2H)
IR: 3329, 2934, 1684, 1639, 1541, 1450, 1261, 1182, 1111, 1060, 918

10 Example 52

[0118] Trans-4-amidino-[(S)-N-[(R)-N'-isopropoxycarbonyl-0-t-butyl-threonyl] prolyl]aminomethylcyclohexane (compound No. 982 of Table 1) hydrochloride NMR (DMSO-d⁶)

8.74 (m, 4H), 7.80 (m, 1H), 5.66 (m, 1H), 4.85 (m, 1H), 4.57 (m, 1H), 4.29 (m, 1H), 3.80-3.60 (m, 3H), 3.05 (m, 2H), 2.60 (m, 1H), 2.50-1.20 (m, 1H), 1.27-1.22 (m, 15H), 1.15 (d, 3H), 1.10-0.90 (m, 2H)
IR: 3331, 2978, 1697, 1639, 1543, 1450, 1375, 1265, 1182, 1111

Example 53

20

[0119] Trans-4-amidino-[(S)-N-[(R)-2-ethoxycarbonylamino-3-isopropylthio-3-methyl-butanoyl] prolyl]aminomethyl-cyclohexane (compound No. 983 of Table 1) hydrochloride NMR (DMSO-d⁶)

9.13 (br, 2H), 8.46 (br, 2H), 7.30 (m, 1H), 5.85 (m, 1H), 4.55 (m, 1H), 4.36 (m, 1H), 4.15-3.85 (m, 3H), 3.69 (m, 1H), 3.02 (m, 2H), 2.30 (m, 1H), 2.00-1.20 (m, 13H), 1.48 (s, 3H), 1.33 (s, 3H), 1.30-1.20 (m, 9H), 1.05-0.85 (m, 2H) IR: 3420, 2974, 1635, 1556, 1521, 1448, 1385, 1298, 1259, 1060

[0120] According to the same procedures as that described in Example 11, the following compounds of Examples 54 to 80 were synthesized.

30 Example 54

[0121] 4-[(S)-N-[(R)-2-hydroxy-cyclohexylacetyl] prolyl] aminomethylbenzamidoxime (compound No. 391 of Table 1) NMR (DMSO-d⁶)

9.55 (br, 1H), 8.31 (t, 1H), 7.59 (d, 2H), 7.24 (d, 2H), 5.73 (br, 2H), 4.57 (m, 1H), 4.26-4.32 (m, 3H), 3.91 (br, 1H), 3.40-3.60 (m, 2H), 2.05-0.80 (m, 15H)

IR: 3375, 2926, 2853, 1638, 1561, 1451, 1385, 1244

Example 55

40 [0122] 4-[(S)-N-[(R)-N'-isopropoxycarbonyl-phenylalanyl] prolyl] aminomethylbenzamidoxime (compound No. 395 of Table 1)
NMR (CDCI₂)

7.65 (br, 1H), 7.53 (d, 2H), 7.29-7.19 (m, 8H), 5.89 (d, 2H), 5.01 (br, 2H), 4.58-4.45 (m, 4H), 4.27 (dd, 1H), 3.65 (br, 1H), 3.10-2.93 (m, 2H), 2.58 (q, 1H), 2.17 (br, 1H), 1.90-1.50 (m, 2H), 1.11 (d, 4H), 0.96 (d, 2H) IR: 3331, 2980, 2880, 2365, 1639, 1539, 1452, 126

Example 56

[0123] 4-[(S)-N-[(R)-2-ethoxycarbonylamino-phenylacetyl] prolyl] aminomethylbenzamidoxime (compound No. 403 of Table 1)
NMR (CDCl₃)

7.80 (br, 1H), 7.47 (d, 2H), 7.40-7.14 (m, 8H), 6.11 (dd, 1H), 5.43 (dd, 1H), 4.98 (br, 2H), 4.70-4.54 (m, 2H), 4.50-4.20 (m, 1H), 4.15-4.00 (m, 1H), 4.00-3.80 (m, 2H), 3.25-3.19 (m, 1H), 2.30-1.80 (m, 4H), 1.16 (dt, 3H) IR: 3339, 2980, 2365, 1641, 1524, 1437, 1385, 1057

Example 57

55

[0124] 4-[(S)-N-[(R)-N'-ethoxycarbonyl-valyl]prolyl] aminomethylbenzamidoxime (compound No. 407 of Table 1)

NMR (CDCI₃)

7.57 (br, 1H), 7.54 (d, 2H), 7.20 (d, 2H), 5.98 (d, 1H), 4.97 (br, 2H), 4.68-4.59 (m, 2H), 4.24 (dd, 1H), 4.07 (t, 1H), 4.10-4.00 (m, 1H), 3.90-3.80 (m, 1H), 3.60-3.45 (m, 2H), 2.31 (br, 1H), 2.20-1.95 (m, 4H) 1.88 (d, 1H), 1.01 (t, 3H), 0.97 (d, 6H)

Fig. 18: 3337, 2971, 2878, 2363, 1640, 1539, 1445, 1277, 1238

Example 58

[0125] 4-[(S)-N-[(R)-2-ethoxycarbonylamino-3,3-dimethylbutanoyl] prolyl] aminomethylbenzamidoxime (compound No. 409 of Table 1)

NMR (DMSO-d6)

8.01 (br, 1H), 7.59 (d, 2H), 7.21 (d, 2H), 7.19-7.15 (m, 1H), 5.73 (br, 2H), 4.36-4.24 (m, 4H), 4.0-3.60 (m, 4H), 2.10-1.80 (m, 5H), 1.06 (t, 3H), 0.96 (s, 9H)

IR: 3345, 2966, 2364, 1647, 1535, 1443, 1240

Example 59

15

20

35

45

55

[0126] 4-[(S)-N-[(R)-2-ethoxycarbonylamino-heptanoyl) prolyl] aminomethylbenzamidoxime (compound No. 411 of Table 1)

NMR (CDCI₃)

7.63 (m, 1H), 7.51 (d, 2H), 7.20 (d, 2H), 5.85 (d, 2H), 4.99 (br, 1H), 4.67-4.58 (m, 2H), 4.35-4.28 (m, 2H), 3.99 (br, 1H), 3.86-3.80 (m, 1H), 3.58-3.50 (m, 2H), 2.31 (br, 1H), 2.07-1.90 (m, 3H), 1.80-1.50 (m, 2H), 1.40-1.10 (m, 5H), 1.03 (t, 3H), 1.01-0.84 (m, 3H)

IR: 3347, 2961, 2363, 2342, 1641, 1541, 1447, 1263, 1049

Example 60

[0127] 4-[(S)-N-[(R)-2-t-butyloxycarbonylamino-heptanoyl] prolyl] aminomethylbenzamidoxime (compound No. 412 of Table 1)

30 NMR (CDCl₃)

7.74-7.70 (m, 1H), 7.49 (d, 2H), 7.27 (t, 1H), 7.20 (d, 2H), 5.43 (d, 1H), 4.93 (br, 2H), 4.65 (d, 1H), 4.48-4.25 (m, 3H), 3.93 (br, 1H), 3.50 (q, 1H), 2.40-2.30 (m, 1H), 2.10-1.90 (m, 3H), 1.70-1.50 (m, 2H), 1.42-1.21 (m, 13H), 0.92-0.80 (m, 3H)

IR: 3337, 2961, 2934, 2363, 1641, 1535, 1449, 1368, 1165

Example 61

[0128] 4-[(S)-N-[(R)-2-ethoxycarbonylamino-4,4-dimethylpentanoyl] prolyl] aminomethylbenzamidoxime (compound No. 418 of Table 1)

NMR (CDCI₃)

7.58-7.51 (m, 1H), 7.53 (d, 2H), 7.20 (d, 2H), 5.87 (d, 1H), 5.01 (br, 2H), 4.64-4.56 (m, 2H), 4.40 (q, 1H), 4.26 (dd, 1H), 4.10-4.00 (m, 1H), 3.84-3.78 (m, 1H), 3.53-3.47 (m, 2H), 2.32 (br, 1H), 2.10-1.90 (m, 3H), 1.61 (d, 2H), 1.00 (t, 3H), 0.97 (s, 9H)

IR: 3324, 2957, 2263, 2342, 1642, 1541, 1445, 1248, 1059

Example 62

[0129] 4-[(S)-N-[(R)-N'-(ethoxycarbonylmethyl)oxycarbonyl-phenylalanyl] prolyl]aminomethylbenzamidoxime (compound No. 984 of Table 1)

50 NMR (CDCI₃)

7.54 (d, 2H), 7.41 (br, 1H), 7.28-7.20 (m, 8H), 6.70 (d, 1H), 5.09 (br, 2H), 4.66 (dd, 1H), 4.60-4.55 (m, 2H), 4.22-4.00 (m, 4H), 4.03 (q, 2H), 3.62 (br, 1H), 3.10-3.02 (m, 2H), 2.60-2.40 (m, 1H), 2.14 (br, 1H), 2.00-1.50 (m, 3H), 1.22 (t, 3H)

IR: 3356, 3063, 2980, 2364, 1717, 1641, 1539, 1451, 1213, 702

Example 63

[0130] 4-[(S)-N-[(R)-2-ethoxycarbonylamino-cyclohexylacetyl] prolyl] aminomethylbenzamidoxime (compound No.

985 of Table 1)

NMR (CDCI₂)

7.52 (d, 2H), 7.54-7.50 (m, 1H), 7.20 (d, 2H), 6.03 (br, 1H), 4.97 (br, 2H), 4.68 (q, 2H), 4.22 (dd, 1H), 4.12-4.03 (m, 2H), 3.64-3.47 (m, 1H), 3.20 (s, 3H), 2.32 (br, 1H), 2.05-1.60 (m, 9H), 1.28-0.97 (m, 6H)

5 IR: 3343, 2928, 2853, 2365, 1639, 1541, 1449, 1260

## Example 64

[0131] 4-[(S)-N-[(R)-2-ethoxycarbonylamino-2'-thienylacetyl] prolyl] aminomethylbenzamidoxime (compound No. 986 of Table 1)

NMR (CDCI₃)

7.80-7.60 (m, 1H), 7.46 (dd, 2H), 7.40-6.95 (m, 5H), 6.13 (dd, 1H), 5.71 (dd, 1H), 4.99 (br, 2H), 4.75-4.20 (m, 3H), 4.00-3.80 (m, 2H), 3.70-3.50 (m, 1H),3.40-3.30 (m, 1H), 2.40-1.80 (m, 4H), 1.16 (dt, 3H) IR: 3337, 2978, 2364, 1641, 1524, 1443, 1240, 1057, 710

Example 65

15

20

30

50

[0132] 4-[(S)-N-[(R)-2-ethoxycarbonylamino-4'-fluorophenylacetyl] prolyl] aminomethylbenzamidoxime (compound No. 987 of Table 1)

NMR (CDCI₃)

7.80 (t, 1H), 7.46-7.27 (m, 4H), 7.19-6.92 (m, 4H), 6.19-6.15 (m, 1H), 5.50 (dd, 1H), 5.02 (br, 2H), 4.70-4.20 (m, 3H), 4.10-3.70 (m, 4H), 3.22-3.15 (m, 1H), 2.25-1.80 (m, 4H), 1.16 (dt, 3H)
IR: 3345, 3073, 2980, 2363, 2344, 1641, 1510, 1143

25 Example 66

[0133] 4-[(S)-N-[(R)-N'-benzyloxycarbonyl-phenylalanyl] prolyl] aminomethylbenzamidoxime (compound No. 988 of Table 1)

NMR (CDCI₃)

7.50 (d, 2H), 7.49-7.30 (m, 1H), 7.26-7.12 (m, 12H), 6.40-6.10 (m, 1H), 4.85 (br, 2H), 4.90-4.70 (m, 1H), 4.55-4.40 (m, 4H), 4.30-4.20 (m, 1H), 3.70-3.60 (m, 1H), 3.03-2.95 (m, 1H), 2.20-2.15 (m, 1H), 2.00-1.45 (m, 3H)

Example 67

[0134] 4-[(S)-N-(R)-2-t-butyloxycarbonylamino-4,4-dimethylpentanoyl] prolyl] aminomethylbenzamidoxime (compound No. 989 of Table 1)

NMR (CDCI₃)

7.67 (t, 1H), 7.53 (d, 2H), 7.22 (d, 2H), 5.34 (d, 1H), 4.91 (br, 2H), 4.65 (d, 1H), 4.42-4.34 (m, 3H), 4.00-3.90 (m, 1H), 3.48 (q, 1H), 2.40-2.30 (m, 1H), 2.02-1.95 (m, 3H), 1.56-1.53 (m, 2H), 1.31 (s, 9H), 0.98 (s, 9H)

40 IR: 3345, 2959, 2367, 1641, 1535, 1446, 1367, 1167

Example 68

[0135] 4-[(S)-N-[(R)-N'-dimethylcarbamoyl-phenylalanyl] prolyl] aminomethylbenzamidoxime (compound No. 990 of Table 1)

NMR (DMSO-d6)

9.56 (s, 1H), 8.11 (t, 1H), 7.56 (d, 2H), 7.18 (d, 2H), 7.29-7.16 (m, 5H), 6.70 (d, 1H), 5.74 (br, 2H), 4.40-4.05 (m, 4H), 2.94 (d, 2H), 2.93-2.70 (m, 2H), 2.60 (s, 6H), 1.90-1.60 (m, 4H) IR: 3306, 2932, 2880, 2363, 2341, 1634, 1541, 1453

Example 69

[0136]  $4-[(S)-N-[(S)-N'-benzyloxycarbonyl-\beta-t-butylaspartyl]$  prolyl] aminomethylbenzamidoxime (compound No. 991 of Table 1)

NMR (CDCI₂)

7.63 (br, 1H), 7.51 (d, 2H), 7.33-7.26 (m, 5H), 7.18 (d, 2H), 6.07 (d, 1H), 5.08 (dd, 2H), 4.92 (br, 2H), 4.90-4.70 (m, 1H), 4.66 (d, 1H), 4.40 (d, 2H), 3.90-3.80 (m, 2H), 3.0-2.90 (m, 1H), 2.55 (dd, 1H), 2.35-2.20 (m, 1H), 2.08-1.90 (m, 3H), 1.25 (s, 9H)

IR: 3364, 3063, 2978, 2363, 2343, 2343, 1717, 1641, 1539, 1450, 1369, 1253 1157

Example 70

5 [0137] Trans-4-[(S)-N-[(R)-N'-ethoxycarbonyl-O-t-butoxy-seryl] prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 485 of Table 1) NMR (CDCl₂)

7.16 (m, 1H), 5.53 (m, 1H), 4.60-4.53 (m, 2H), 4.47 (s, 2H), 4.13-4.06 (m, 2H), 3.76 (br, 2H), 3.60-3.50 (m, 2H), 3.07 (br, 2H), 2.41 (m, 2H), 2.04-1.20 (m, 12H), 1.27 (t, 3H), 1.16 (s, 9H), 1.03-0.94 (m, 2H) IR: 3352, 2930, 1701, 1651, 1541, 1448, 1259, 1053, 754

Example 71

[0138] Trans-4-[(S)-N-[(R)-N'-isopropoxycarbonyl-O-t-butylseryl] prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 486 of Table 1)

NMR (CDCI₃)

7.19 (m, 1H), 5.40 (d, 1H), 4.87 (m, 1H), 4.61-4..53 (m, 2H), 4.47 (br, 2H), 3.75 (m, 2H), 3.60-3.40 (m, 2H), 3.08 (t, 2H), 2.40 (m, 1H), 2.20-1.20 (m, 12H), 1.21 (dd, 6H), 1.19 (s, 9H), 1.10-0.90 (m, 2H) IR: 3356, 2976, 1697, 1649, 1541, 1448, 1261, 1190, 1109, 1022

Example 72

[0139] Trans-4-[(S)-N-[(R)-N'-ethoxycarbonyl-O-t-(1',1'-dimethylpropyl]-seryl)prolyl]aminomethylcyclohexanecar-boxamidoxime (compound No. 487 of Table 1)

NMR (CDCI₃)

7.14 (m, 1H), 5.51 (d, 1H), 4.60-4.50 (m, 2H), 4.48 (br, 2H), 4.09 (m, 2H), 3.78 (m, 2H), 3.55-3.45 (m, 2H), 3.06 (m, 2H), 2.35 (m, 1H), 2.20-0.90 (m, 16H), 1.24 (t, 3H), 1.10 (s, 6H), 0.82 (t, 3H) IR: 3346, 2976, 2930, 1649, 1543, 1448, 1261, 1176, 1095, 1055

30 Example 73

[0140] Trans-4-[(S)-N-[(R)-N'-isopropoxycarbonyl-O-(1',1'-dimethylpropyl)-seryl] prolyl]aminomethylcyclohexane-carboxamidoxime (compound No. 488 of Table 1)
NMR (CDCI₂)

7.18 (m, 1H), 5.38 (d, 1H), 4.86 (m, 1H), 4.61-4.50 (m, 2H), 4.47 (br, 2H), 3.77 (m, 2H), 3.57-3.42 (m, 2H), 3.06 (t, 2H), 2.39 (m, 1H), 2.20-0.90 (m, 16H), 1.23 (dd, 6H), 1.10 (s, 6H), 0.82 (t, 3H) IR: 3346, 2976, 1703, 1651, 1541, 1448, 1263, 1178, 1109, 1030

Example 74

40

[0141] Trans-4-[(S)-N-[(R)-N'-isopropoxycarbonyl-O-(1'-ethyl-1'-methyl-propyl)-seryl] prolyl]aminomethylcyclohex-anecarboxamidoxime (compound No. 490 of Table 1) NMR (CDCl₃)

7.17 (br, 1H), 5.35 (br, 1H), 4.86 (m, 1H), 4.60-4.50 (m, 2H), 4.47 (br, 2H), 3.78 (m, 2H), 3.53-3.38 (m, 2H), 3.07 (t, 2H), 2.37-1.20 (m, 17H), 1.23 (t, 6H), 1.06 (s, 3H), 1.06-0.82 (m, 2H), 0.79 (t, 6H)
IR: 3350, 2976, 2932, 1651, 1541, 1450, 1375, 1263, 1109, 1026

Example 75

[0142] Trans-4-[(S)-N-[(R)-N'-ethoxycarbonyl-S-t-butyl-cystinyl] prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 492 of Table 1) NMR (CDCI₂)

7.27 (m, 1H), 5.81 (m, 1H), 4.60-4.40 (m, 2H), 4.88 (br, 2H), 4.11 (m, 2H), 3.87 (m, 1H), 3.68 (m, 1H), 3.06 (m, 2H), 2.90-2.70 (m, 2H), 2.37 (m, 1H), 2.10-1.20 (m, 12H), 1.32 (s, 9H), 1.25 (t, 3H), 1.10-0.90 (m, 2H) IR: 3346, 2930, 1699, 1649, 1541, 1448, 1257, 1163, 1051, 929

#### Example 76

[0143] Trans-4-[(S)-N-[(R)-2-ethoxycarbonylamino-3-isopropylthio-3-methylbutanoyl] prolyl]aminomethylcyclohex-anecarboxamidoxime (compound No. 497 of Table 1)

5 NMR (CDCl₂)

7.16 (m, 1H), 5.62 (m, 1H), 4.61 (d, 1H), 4.47 (br, 2H), 4.35 (d, 1H), 4.12 (m, 2H), 3.96 (m, 1H), 3.76 (m, 1H), 3.10 (m, 1H), 3.00 (m, 2H), 2.38 (m, 1H), 2.00-1.20 (m, 12H), 1.47 (s, 3H), 1.40 (s, 3H), 1.33-1.25 (m, 9H), 1.00-0.90 (m, 2H)

IR: 3354, 2928, 1653, 1541, 1446, 1367, 1302, 1251, 1155, 1055

Example 77

[0144] Trans-4-[(S)-N-[(S)-N'-t-butyloxycarbonyl-seryl] prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 992 of Table 1)

15 NMR (CDCl₂)

7.76 (br, 1H), 6.10 (br, 1H), 5.40 (br, 1H), 4.60 (br, 4H), 3.96 (br, 4H), 3.16-1.21 (m, 15H), 1.40 (s, 9H), 0.99 (br, 2H) IR: 3314, 2978, 1691, 1639, 1541, 1450, 1367, 1165, 1049

Example 78

20

10

[0145] Trans-4-[(S)-N-[(R)-N'-isopropoxycarbonyl-O-t-butyl-threonyl] prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 993 of Table 1)

NMR (CDCI₃)

7.24 (m, 1H), 5.43 (d, 1H), 4.85 (m, 1H), 4.57 (d, 1H), 4.47 (br, 2H), 4.23 (t, 1H), 3.92 (t, 1H), 3.80-3.70 (m, 2H), 3.06 (m, 2H), 2.36 (m, 1H), 2.00-1.20 (m, 12H), 1.23 (s, 9H) 1.23 (dd, 6H), 1.15 (d, 3H), 1.10-0.90 (m, 2H) IR: 3354, 2978, 1699, 1649, 1543, 1448, 1373, 1257, 1192, 1111, 1032

Example 79

30 [0146] Trans-4-[(S)-N-[(R)-2-acetoxy-cyclohexylacetyl] prolyl] aminomethylcyclohexanecarboxamidoxime (compound No. 994 of Table 1)
NMR (CDCI₂)

6.80 (br, 1H), 4.61 (t, 2H), 4.49 (br, 2H), 3.90-3.84 (m, 1H), 3.51-3.40 (m, 1H), 3.10-2.85 (m, 2H), 2.38 (br, 1H), 2.11 (s, 3H), 2.06-0.80 (m, 25H)

35 IR: 3484, 3389, 2928, 2855, 1725, 1649, 1451, 1250

Example 80

[0147] Trans-4-[(S)-N-[(R)-N'-isopropoxycarbonyl-O-(1'-methylcyclopentyl)-seryl] prolyl]aminomethylcyclohexane-carboxamidoxime (compound No. 995 of Table 1)
NMR (CDCl₃)

7.18 (m, 1H), 5.42 (m, 1H), 4.85 (m, 2H), 4.60-4.49 (m, 4H), 3.73 (m, 2H), 3.57-3.42 (m, 2H), 3.08 (m, 1H), 2.40 (m, 1H), 2.04-1.20 (m, 21H), 1.27-1.20 (m, 9H), 1.03-0.94 (m, 2H) IR: 3356, 2932, 1695, 1653, 1541, 1448, 1263, 1111, 1030, 918

45 [0148] According to the same procedures as that described in Reference Example 2, the following compound of Example 81 was synthesized.

Example 81

[0149] Trans-4-amino-[(S)-N-[(R)-N'-ethoxycarbonyl-O-t-butyloxy-seryl] prolyl] aminomethylcyclohexane (compound No. 1003 of Table 1) hydrochloride NMR (DMSO-d⁶)

8.29 (s, 3H), 7.20 (s, 1H), 5.69 (d, 1H), 4.58-4.47 (m, 2H), 4.12 (m, 2H), 3.82 (m, 1H), 3.61-3.48 (m, 2H), 3.09 (m, 2H), 2.32-0.86 (m, 15H), 1.27 (t, 3H), 1.16 (s, 9H)

IR: 3358, 2974, 1645, 1541, 1448, 1257, 1192, 1053

[0150] According to the same procedures as that described in Example 67, the following compounds 126 to 130 were synthesized.

Experimental Example 1: Determination of antithrombin activity

- (i) The measuring method for hydrolysis inhibition of synthetic substrate (S-2238)
- [0151] S-2238 (manufactured by Kabi Co.) is dissolved in a Tris hydrochloric acid buffer solution (pH: 8.3) to prepare a S-2238-0.4 M Tris hydrochloric acid solution having a concentration of 80 μm. To 175 μl of the solution, an aqueous solution of a compound of the present invention (515 μl) is added. After incubating at 37°C for one minute, 10 μl of a bovine thrombin solution (4.4 units/ml, manufactured by Mochida Co., Ltd.) is added. A hydrolysis reaction rate of the substrate is determined by measuring a change in absorbance of 405 nm at 37°C.
- [0152] The inhibitor concentration exhibiting an absorbance which is half as large as that obtained in case of adding no inhibitor (compound of the present invention) was determined as IC₅₀ (μm).
  - (ii) The measuring method for coagulation inhibition of rat plasma
- [0153] The compound of the present invention is dissolved in water or saline to form a solution of a total volume of 0.1 ml. To the solution, 0.1 ml of rat plasma is added and the mixture is incubated at 37°C for 30 seconds. Then, 0.1 ml of bovine thrombin (8 units/ml, Mochida Co., Ltd.) is added and the coagulation time is measured at 37°C. The concentration of the inhibitor (i.e., the compound of the present invention) which doubles the coagulation time that obtained in the absence of the inhibitor was determined as IC₅₀ (μm).
  - (iii) The measuring method for antithrombin activity of rat plasma on oral administration
  - [0154] To a rat abstained from bait overnight, an aqueous solution or suspension of the present compound (inhibitor) (30 mg/kg) is orally administered using an oral sound.
  - [0155] After one hour, 2 ml of blood is collected from cava abdominalis and the antithrombin activity in plasma is measured using a method of the above item (ii). As a control experiment, the coagulation time of blood collected from a rat which has not been administered the inhibitor was measured. The extension effect on the coagulation time is represented by the numerical value obtained by comparing the data with those obtained in control experiment, wherein the numerical value obtained in the control experiment was assumed to be 1.

Experimental Example 2: Determination of Antitrypsin activity

- (i) The measuring method for hydrolysis inhibition of synthetic substrate (S-2222)
- [0156] S-2222 (manufactured by Kabi Co.) is dissolved in a Tris hydrochloric acid (pH: 8.3) to prepare a S-2222-0.4M Tris hydrochloric acid solution having a concentration of 400 µm. To the solution (175 µl), 515 µl of a solution of a compound of the present invention is added. After incubating at 37°C for one minute, 10 µl of a bovine trypsin solution (1 to 2 mg/ml, manufactured by Sigma Co.) is added. A hydrolysis reaction rate of the substrate is determined by measuring a change in absorbance of 405 nm at 37°C.
- 40 [0157] The inhibitor concentration exhibiting an absorbance which is half as large as that obtained in case of adding no inhibitor (compound of the present invention) was determined as IC₅₀ (μm).

[0158] The results are shown in Table 2.

20

30

45

50

Table 2

		Table 2		
	Antithrombin activity IC	C ₅₀ (μm)		
Example No.	Synthetic substrate method	Rat plasma method	Antitrypsin activity IC ₅₀ (μm)	Thrombin coagulation time extension coagulation on oral administration
Ref 1				
1		0.056		3.16
3	0.72	0.59		
5	0.011	0.038	2.2	
6	0.021		1.7	

Table 2 (continued)

Fet 1     (μm)     time extension coagulation on oral administration       10     7     0.015     0.053     3.2       8     0.021     1.0     0.94       9     0.014     0.94     3.6       15     11     3.28     2.82       13     4.16     3.52       14     2.75     2.75       18     2.77     3.58       20     2.77     3.58       20     3.99     3.99       25     22     3.72       23     2.85     4.37       26     2.37     2.70       28     2.94     4.36       30     3.09     3.09       33     3.09     2.16       35     34     2.34	ĺ		Antithrombin activity IC	_{io} (μm)	,	
10	5	Example No.		Rat plasma method		coagulation on oral
8 0.021 9 0.014 0.94 3.6 3.28 12 2.82 13 4.16 3.52 4.16 3.52 15 17 2.75 18 20 2.92 2.3 2.2 2.3 2.2 2.3 2.2 2.85 2.4 2.94 2.9 2.94 2.94 2.9 3.0 3.3 3.3 3.3 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6		Ref 1				
9 0.014 0.017 0.058 3.6 3.6 3.28 12 3.00 2.82 13 4.16 14 3.52 15 18 2.77 19 3.58 20 3.99 25 22 3.72 2.3 24 2.85 24 2.94 2.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	10	7	0.015	0.053	3.2	
9 0.014 0.017 0.058 3.6 3.6 3.28 12 3.00 2.82 13 4.16 14 3.52 15 18 2.77 19 3.58 20 3.99 25 22 3.72 2.3 24 2.85 24 2.94 2.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		8	0.021		1.0	
15       11       3.28         12       300       2.82         13       4.16       3.52         4.16       3.52       4.35         20       15       2.75         18       2.77       3.58         20       3.99         25       22       2.85         24       4.37       2.6         27       2.70       2.94         29       3.09       3.09         33       3.09       2.16         35       34       2.34						
12		10	0.017	0.058	3.6	
13	15	11				3.28
20		12		> 300		2.82
20		13				4.16
17		14				3.52
17 18 2.75 18 2.77 19 3.58 20 3.99 25 22 23 2.85 24 4.37 26 2.37 27 27 2.70 28 29 3.09 33 30 3.09 33 35 Ref 2	20					4.35
19 3.58 3.99 3.72 22 23 2.85 24 4.37 26 2.37 2.70 28 2.94 29 3.30 3.09 33 3.09 33 3.09 33 3.09 2.16 35 34 Ref 2						
25						
25						,
23 24 4.37 26 2.37 2.70 28 2.94 4.36 30 3.09 33 3.09 2.16 2.34 Ref 2						
24	25					
30 26 2.37 2.70 2.8 2.94 2.94 3.36 3.09 3.3 3.09 2.16 2.34 Ref 2						
30 27 2.70 2.94 2.94 2.94 3.36 3.09 3.3 3.4 2.16 2.34 Ref 2						
30 28 2.94 4.36 3.09 3.3 3.09 2.16 2.34 Ref 2	Ī					
29 4.36 3.09 3.09 2.16 2.34 Ref 2	30					
30 33 33 34 Ref 2						
33 2.16 2.34 Ref 2		1				
35 34 2.34 Ref 2						
Ref 2						
	35	34				2.34
0.13   0.045   14   4.10		Ref 2				
40	40		0.13	0.045	14	4.10
36 0.13 0.080 14 2.10		36	0.13	0.080	14	2.10
37 0.082			55		,,	2.10
38 0.097 2.35						2.35
41 0.056		ľ				
45 42 0.088 2.18	45					2.18
43 0.13 1.25						

Experimental Example 3: Acute toxicity test

[0159] Acute toxicity was determined in rat. An approximate lethal dose was determined by conducting an oral acute toxicity test using rats. The results are shown in Table 3.

Table 3

	Approximate lethal dose mg/kg		
	Male	Female	
Example No.			
Ref 2	Not less than 2000	Not less than 2000	
20	Not less than 2000	Not less than 2000	
24	Not less than 2000	Not less than 2000	

#### Claims

5

10

20

25

30

35

40

45

50

55

1. A prolineamide derivative represented by the formula (I):

$$(CH_2)_{rr}$$
  $O$   $R^2$   $A-R^3$   $C=O$   $R^1$   $(I)$ 

wherein A is a carbon atom or a nitrogen atom;

n is an integer of 0 to 2;

a broken line is no bond or a single bond;

R1 is

{wherein D and E independently indicate a single bond or an optionally branched C₁-C₆ alkylene group;

 $\rm R^4$  is a  $\rm C_1-C_6$  alkyl group; -OR6 (R6 is a hydrogen atom, a  $\rm C_1-C_6$  alkyl group, an optionally substituted  $\rm C_6-C_{10}$  aryl group, an optionally substituted  $\rm C_3-C_8$  cycloalkyl group or an optionally substituted  $\rm C_7-C_{12}$  aralkyl group), -SR7 (R7 is a  $\rm C_1-C_6$  alkyl group, an optionally substituted  $\rm C_7-C_{12}$  aralkyl group), -SOR8 (R8 is an optionally substituted  $\rm C_6-C_{10}$  aryl group or an optionally substituted  $\rm C_7-C_{12}$  aralkyl group), -SOR8 (R8 is an optionally substituted  $\rm C_6-C_{10}$  aryl group or an optionally substituted  $\rm C_3-C_8$  cycloalkyl group), -SO_2R9 (R9 is an optionally substituted  $\rm C_6-C_{10}$  aryl group or an optionally substituted  $\rm C_3-C_8$  cycloalkyl group), -COR^{10} (R^{10} is a hydroxyl group, a  $\rm C_1-C_6$  alkoxy group, an optionally substituted  $\rm C_6-C_{10}$  aryl group or an optionally substituted  $\rm C_6-C_{10}$  aryl group or an optionally substituted  $\rm C_3-C_8$  cycloalkyl group), -NHR^{11} (R^{11} is a  $\rm C_1-C_6$  alkyl group, an optionally substituted  $\rm C_7-C_{12}$  aralkyl group), -NHCOR^{12} (R^{12} is a  $\rm C_1-C_6$  alkoxy group, an optionally substituted  $\rm C_6-C_{10}$  aryl group, an optionally substituted  $\rm C_7-C_{12}$  aralkyl group, an optionally substituted 5- to 10-membered heterocyclic group, an optionally substituted 5- to 10-membered heterocyclic group or -SiR^{14}R^{15}R^{16} (R^{14}, R^{15}, and R^{16} independently indicate a  $\rm C_1-C_6$  alkyl group);

 $R^5$  is a -OR¹⁷ (R¹⁷ is a hydrogen atom, -SiR²²R²³R²⁴ (R²², R²³, and R²⁴ independently indicate a  $C_1$ - $C_6$  alkyl group), a  $C_1$ - $C_6$  alkyl group, or an optionally substituted 5- to 10-membered heterocyclic group)), -OCOR¹⁸ (R¹⁸)

is a hydrogen atom, a  $C_1$ - $C_6$  alkyl group, a  $C_1$ - $C_6$  alkoxy group, an amino group, a  $C_1$ - $C_6$  alkylamino group, a  $C_2$ - $C_{12}$  dialkylamino group or a  $C_2$ - $C_7$  alkenylamino group), -NHR¹⁹ (R¹⁹ is a hydrogen atom, a  $C_1$ - $C_6$  alkyl group or an optionally substituted  $C_7$ - $C_{12}$  aralkyl group), -NHCOR²⁰ (R²⁰ is a hydrogen atom, a  $C_1$ - $C_6$  alkyl group, a  $C_1$ - $C_6$  haloalkyl group, a  $C_1$ - $C_6$  alkoxy group, an optionally substituted  $C_3$ - $C_8$  cycloalkyl group, a  $C_2$ - $C_7$  carboxy-alkyloxy group, a  $C_2$ - $C_7$  alkenyloxy group, an optionally substituted  $C_6$ - $C_{10}$  aryloxy group, a  $C_3$ - $C_9$  alkoxycarbonylalkoxy group, a  $C_2$ - $C_1$  dialkylamino group or an optionally substituted  $C_7$ - $C_1$  aralkyloxy group) or -NHSO $_2$ R²¹ (R²¹ is a  $C_1$ - $C_6$  alkyl group, a  $C_1$ - $C_6$  haloalkyl group, a  $C_2$ - $C_7$  carboxyalkyl group, an optionally substituted  $C_6$ - $C_{10}$  aryl group, a optionally substituted  $C_7$ - $C_1$  aralkyl group); and m is 0 or 1;

each of said 5- to 10-membered heterocyclic groups is independently selected from a furan ring, a tetrahydrofuran ring, a pyran ring, a benzofuran ring, a chroman ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, an imidazole ring, a pyrazole ring, a triazole ring, a pyridine ring, a piperidine ring, a pyrazine ring, a piperazine ring, a pyrimidine ring, an indole ring, a benzimidazole ring, a purine ring, a quinoline ring, a phthalazine ring, a quinazoline ring, a cinnoline ring, an oxazole ring, a thiazole ring and a morpholine ring;

each of said optional substituents being independently selected from  $C_1$ - $C_6$  alkyl group, a  $C_1$ - $C_6$  haloalkyl group, a  $C_1$ - $C_6$  alkoxy group, a hydroxyl group, a carboxyl group, a  $C_2$ - $C_7$  carboxyalkyl group, a  $C_2$ - $C_7$  acyl group, a  $C_2$ - $C_7$  acyl group, a  $C_2$ - $C_7$  alkoxycarbonyl group, a  $C_2$ - $C_7$  alkoxycarboxyalkoxy group and a halogen atom};

 $R^2$  is a hydrogen atom or a  $C_1$ - $C_6$  alkyl group; and  $R^3$  is -C(=NR²⁵)NH₂ (wherein R²⁵ is a hydrogen atom or a hydroxyl group) or -NH₂; provided that  $R^3$  is -C(=NR²⁵)NH₂ (R²⁵ is as defined above) when A is a nitrogen atom, or a salt or hydrate thereof;

with the proviso that if the substituent R² represents a hydrogen atom, the group "D" represents a single bond, and the index n is 1 or 2, then neither of the substituents R⁴ or R⁵ represents a group including an aminosulfonyl moiety.

2. A compound according to Claim 1, wherein A is a carbon atom.

10

20

25

30

35

40

45

55

3. A compound according to Claim 1 or Claim 2, wherein n is 1 or 2; R1 is

-D-(CH)_m-E-R⁴ | | |R⁵

{wherein D and E independently indicate a single bond or an optionally branched C₁-C₆ alkylene group;

R4 is a C₁-C₆ alkyl group; -OR6 (R6 is a C₁-C₆ alkyl group; a C₆-C₁₀ aryl group which may be substituted with at least one substituent selected from the group consisting of a C1-C6 alkyl group, a C1-C6 alkoxy group, a halogen atom, a hydroxyl group, a carboxyl group, a C2-C7 alkoxycarbonyl group, a C2-C7 carboxyalkyl group, a C2-C7 acyl group, a C2-C7 acyloxy group, a C2-C7 alkoxycarbonyloxy group, a C3-C9 alkoxycarbonylalkoxy group and a benzyloxycarbonyl group; or a C7-C12 aralkyl group which may be substituted with at least one substituent selected from the group consisting of a  $C_1$ - $C_6$  alkyl group, a  $C_1$ - $C_6$  alkoxy group, a halogen atom, a hydroxyl group, a carboxyl group, a  $C_2$ - $C_7$  alkoxycarbonyl group, a  $C_2$ - $C_7$  carboxyalkyl group, a  $C_2$ - $C_7$  acyl group, a  $C_2$ - $C_7$  acyloxy group, a  $C_2$ - $C_7$  alkoxycarbonyloxy group, a  $C_3$ - $C_9$  alkoxycarbonylalkoxy group and a benzyloxycarbonyl group);  $-SR^7$  (R⁷ is a  $C_1-C_6$  alkyl group; a  $C_6-C_{10}$  aryl group which may be substituted with at least one substituent selected from the group consisting of a  $C_1$ - $C_6$  alkyl group, a  $C_1$ - $C_6$  alkoxy group, a halogen atom, a hydroxyl group, a carboxyl group, a  $C_2$ - $C_7$  alkoxycarbonyl group, a  $C_2$ - $C_7$  carboxyalkyl group, a  $C_2$ - $C_7$  acyl group, a  $C_2$ - $C_7$  acyloxy group, a  $C_2$ - $C_7$  alkoxycarbonyloxy group, a  $C_3$ - $C_9$  alkoxycarbonylalkoxy group and a benzyloxycarbonyl group; or a C7-C12 aralkyl group which may be substituted with at least one substituent selected from the group consisting of a C₁-C₆ alkyl group, a C₁-C₆ alkoxy group, a halogen atom, a hydroxyl group, a carboxyl group, a C₂-C₇ alkoxycarbonyl group, a C2-C7 carboxyalkyl group, a C2-C7 acyl group, a C2-C7 acyloxy group, a C2-C7 alkoxycarbonyloxy group, a C₃-C₉ alkoxycarbonylalkoxy group and a benzyloxycarbonyl group); -COOH; a C₆-C₁₀ aryl group which may be substituted with at least one substituent selected from the group consisting of a C1-C6 alkyl group, a  $C_1$ - $C_6$  alkoxy group, a halogen atom, a hydroxyl group, a carboxyl group, a  $C_2$ - $C_7$  alkoxycarbonyl group, a  $C_2$ - $C_7$ carboxyalkyl group, a C2-C7 acyl group, a C2-C7 acyloxy group, a C2-C7 alkoxycarbonyloxy group, a C3-C9 alkoxycarbonylalkoxy group and a benzyloxycarbonyl group; a C₃-C₈ cycloalkyl group; or -SiR¹⁴R¹⁵R¹⁶ (R¹⁴, R¹⁵, and R¹⁶ independently indicate a C₁-C₆ alkyl group);

 $\mathsf{R}^5$  is -OH, -OCOR18 (R18 is a  $C_1\text{-}C_6$  alkoxy group or a  $C_2\text{-}C_7$  alkenylamino group), -NH2, -NHCOR20 (R20 is a  $C_1\text{-}C_6$  alkoxy group, a  $C_6\text{-}C_{10}$  aryloxy group, a  $C_3\text{-}C_9$  alkoxycarbonylalkoxy group, a  $C_2\text{-}C_{12}$  dialkylamino group or a  $C_7\text{-}C_{12}$  aralkyloxy group) or -NHSO $_2\mathsf{R}^{21}$  (R21 is a  $C_1\text{-}C_6$  alkyl group, a  $C_2\text{-}C_7$  carboxyalkyl group, a  $C_6\text{-}C_{10}$  aryl group, a  $C_3\text{-}C_9$  alkoxycarbonylalkyl group or a  $C_7\text{-}C_{12}$  aralkyl group); and m is 0 or 1}; and

R² is a hydrogen atom.

5

10

15

20

25

30

35

40

45

50

55

4. A compound according to Claim 1 or Claim 2, wherein n is 1; R1 is

(wherein D and E independently indicate a single bond or an optionally branched C1-C6 alkylene group;

 $R^4$  is a  $C_1$ - $C_6$  alkyl group; -OR⁶ (R⁶ is a  $C_6$ - $C_{10}$  aryl group which may be substituted with at least one substituent selected from the group consisting of a  $C_1$ - $C_6$  alkyl group, a halogen atom, a carboxyl group, a  $C_2$ - $C_7$  carboxyalkyl group and a benzyloxycarbonyl group or  $C_7$ - $C_{12}$  aralkyl group); -SR⁷ (R⁷ is a  $C_1$ - $C_6$  alkyl group); a  $C_6$ - $C_{10}$  aryl group which may be substituted with at least one substituent selected from the group consisting of a  $C_1$ - $C_6$  alkyl group, a halogen atom, a carboxyl group, a  $C_2$ - $C_7$  carboxyalkyl group and a benzyloxycarbonyl group; or a  $C_3$ - $C_6$  cycloalkyl group;

 ${
m R}^5$  is -OH, NH $_2$ , -NHCOR 20  (R 20  is a C $_1$ -C $_6$  alkoxy group or a C $_7$ -C $_{12}$  aralkyloxy group) or -NHSO $_2$ R 21  (R 21  is a C $_1$ -C $_6$  alkyl group or a C $_6$ -C $_{10}$  aryl group); and m is 1}; and R 2  is a hydrogen atom,

5. A compound according to Claim 1 or Claim 2, wherein n is 1; R1 is

{wherein D is a single bond; E is a single bond or a C₁-C₆ alkylene group;

 $R^4$  is a  $C_1$ - $C_6$  alkyl group; -OR 6  ( $R^6$  is a  $C_6$ - $C_{10}$  aryl group which may be substituted with at least one substituent selected from the group consisting of a  $C_1$ - $C_6$  alkyl group, a halogen atom, a carboxyl group, a  $C_2$ - $C_7$  carboxyalkyl group and a benzyloxycarbonyl group or  $C_7$ - $C_{12}$  aralkyl group); -SR 7  ( $R^7$  is a  $C_1$ - $C_6$  alkyl group); a  $C_6$ - $C_{10}$  aryl group which may be substituted with at least one or more substituents selected from the group consisting of a  $C_1$ - $C_6$  alkyl group, a halogen atom, a carboxyl group, a  $C_2$ - $C_7$  carboxyalkyl group and a benzyloxycarbonyl group; or a  $C_3$ - $C_6$  cycloalkyl group;

 $R^5$  is -NH₂, -NHCOR²⁰ (R²⁰ is a  $C_1$ - $C_6$  alkoxy group or a  $C_7$ - $C_{12}$  aralkyloxy group) or -NHSO₂R²¹ (R²¹ is a  $C_1$ - $C_6$  alkyl group or a  $C_6$ - $C_{10}$  aryl group); and m is 1}; and

R2 is a hydrogen atom.

6. A compound according to claim 1, wherein A is a carbon atom; n is 1; R1 is

(wherein D is a single bond; E is a single bond or a C₁-C₃ alkylene group; R⁴ is a C₃-C₆ alkyl group),-OR⁶ (R⁶ is

a  $C_1$ - $C_6$  alkyl group, a phenyl group, or a  $C_3$ - $C_6$  cycloalkyl group;  $R^5$  is -OH,-NHR¹⁹ ( $R^{19}$  is a hydrogen atom), -NHCOR²⁰ ( $R^{20}$  is a  $C_1$ - $C_6$  alkoxy group) or -NHSO₂ $R^{21}$  ( $R^{21}$  is a  $C_1$ - $C_3$  alkyl group); and m is 1); and  $R^2$  is a hydrogen atom.

7. A compound according to Claim 1 or Claim 2, wherein n is 1; R1 is

{D is a single bond; E is a single bond or a  $C_1$ - $C_6$  alkylene group;  $R^4$  is a  $C_1$ - $C_6$  alkyl group;  $R^5$  is -NHCOR²⁰ ( $R^{20}$  is a  $C_1$ - $C_6$  alkoxy group); and m is 1};

R2 is a hydrogen atom; and

R3 is -C(=NR25)NH2 (R25 is a hydrogen atom or a hydroxyl group).

- 8. Trans-4-[(S)-N-((R)-2-ethoxycarbonylamino-4,4-dimethylpentanoyl) prolyl]aminomethylcyclohexanecarboxamidoxime or a salt or hydrate thereof.
- 9. A pharmaceutical composition comprising a compound as claimed in any one of claims 1 to 8 and a pharmaceutically acceptable carrier therefor.
- 25 10. The use of a compound as claimed in any one of claims 1 to 8 in the manufacture of a medicament effective as a protease inhibitor.
  - 11. A compound according to any of claims 1-8 for use as a medicament.
- 12. Use of a compound according co any of claims 1-8 for the manufacture of an anti-coagulant medicament.
  - 13. Use of a compound according to any of claims 1-8 for the manufacture of a medicament for the treatment of pancreatitis.

## Patentansprüche

1. Prolinamidderivat, dargestellt durch die Formel (I):

wobei A ein Kohlenstoffatom oder ein Stickstoffatom ist; n eine ganze Zahl von 0 bis 2 ist; eine gestrichelte Linie keine Bindung oder eine Einfachbindung ist;
R¹

55

10

15

20

35

40

5

10

15

20

25

30

35

40

45

50

ist {wobei D und E unabhängig voneinander eine Einfachbindung oder eine gegebenenfalls verzweigte C₁-C₆-Alkylengruppe bedeuten;

R4 eine C₁-C₆-Alkylgruppe; -OR6 (R6 ist ein Wasserstoffatom, eine C₁-C₆-Alkylgruppe, eine gegebenenfalls substituierte C6-C10-Arylgruppe, eine gegebenenfalls substituierte C3-C8-Cycloalkylgruppe oder eine gegebenenfalls substituierte C7-C12-Aralkylgruppe), -SR7 (R7 ist eine C1-C6-Alkylgruppe, eine gegebenenfalls substituierte  $m C_6$ - $m C_{10}$ -Arylgruppe, eine gegebenenfalls substituierte  $m C_3$ - $m C_8$ -Cycloalkylgruppe oder eine gegebenenfalls substituierte C₇-C₁₂-Aralkylgruppe), -SOR8 (R8 ist eine gegebenenfalls substituierte C₆-C₁₀-Arylgruppe oder eine gegebenenfalls substituierte C3-C8-Cycloalkylgruppe), -SO2R9 (R9 ist eine gegebenenfalls substituierte C6-C10-Arylgruppe oder eine gegebenenfalls substituierte C₃-C₈-Cycloalkylgruppe), -COR¹⁰ (R¹⁰ ist eine Hydroxylgruppe, eine C1-C6-Alkoxygruppe, eine gegebenenfalls substituierte C6-C10-Arylgruppe oder eine gegebenenfalls substituierte C₃-C₈-Cycloalkylgruppe), -NHR¹¹ (R¹¹ ist eine C₁-C₆-Alkylgruppe, eine gegebenenfalls substituierte  $C_6$ - $C_{10}$ -Arylgruppe, eine gegebenenfalls substituierte  $C_3$ - $C_8$ -Cycloalkylgruppe oder eine gegebenenfalls substituierte ierte C₇-C₁₉-Aralkylgruppe), -NHCOR¹² (R¹² ist eine C₁-C₆-Alkoxygruppe, eine gegebenenfalls substituierte  $\mathrm{C_{6}\text{-}C_{10}\text{-}}$ Arylgruppe, eine gegebenenfalls substituierte  $\mathrm{C_{3}\text{-}C_{8}\text{-}}$ Cycloalkylgruppe oder eine gegebenenfalls substituierte  $\mathrm{C_{3}\text{-}C_{8}\text{-}}$ ierte C₇-C₁₂-Aralkyloxygruppe), -NHSO₂R¹³ (R¹³ ist eine C₁-C₆-Alkylgruppe, eine gegebenenfalls substituierte C6-C10-Arylgruppe, eine gegebenenfalls substituierte C3-C8-Cycloalkylgruppe, eine gegebenenfalls substituierte C7-C12-Aralkylgruppe oder eine gegebenenfalls substituierte 5- bis 10-gliedrige heterozyklische Gruppe), eine gegebenenfalls substituierte C6-C10-Arylgruppe, eine gegebenenfalls substituierte C3-C8-Cycloalkylgruppe, eine gegebenenfalls substituierte 5- bis 10-gliedrige heterozyklische Gruppe oder -SiR14R15R16 ist (R14, R15 und R16 bedeuten unabhängig voneinander eine C₁-C₆-Alkylgruppe);

 $m R^5$  -OR¹⁷(R¹⁷ ist ein Wasserstoffatom, -SiR²²R²³R²⁴ (R²², R²³ und R²⁴ bedeuten unabhängig voneinander eine C₁-C₆-Alkylgruppe), eine C₁-C₆-Alkylgruppe oder eine gegebenenfalls substituierte 5- bis 10-gliedrige heterozyklische Gruppe), -OCOR¹⁸(R¹⁸ ist ein Wasserstoffatom, eine C₁-C₆-Alkylgruppe, eine C₁-C₆-Alkylgruppe, eine C₁-C₆-Alkylgruppe, eine C₁-C₆-Alkylgruppe, eine C₂-C₁₂-Dialkylaminogruppe oder eine gegebenenfalls substituierte C₇-C₁₂-Aralkylgruppe), -NHCOR²⁰(R²⁰ ist ein Wasserstoffatom, eine C₁-C₆-Alkylgruppe, eine C₁-C₆-Halogenalkylgruppe, eine C₁-C₆-Alkoxygruppe, eine gegebenenfalls substituierte C₃-C₈-Cycloalkylgruppe, eine C₂-C₇-Carboxyalkyloxygruppe, eine C₂-C₇-Alkenyloxygruppe, eine gegebenenfalls substituierte C₆-C₁₀-Arylgruppe, eine gegebenenfalls substituierte C₆-C₁₀-Aryloxygruppe, eine C₂-C₁₂-Dialkylaminogruppe oder eine gegebenenfalls substituierte C₇-C₁₂-Aralkylgruppe, eine C₁-C₆-Halogenalkylgruppe, eine C₂-C₇-Carboxyalkylgruppe, eine gegebenenfalls substituierte C₆-C₁₀-Arylgruppe, eine C₁-C₆-Alkoxycarbonylalkylgruppe, eine gegebenenfalls substituierte C₆-C₁₀-Arylgruppe, eine C₁-C₆-Alkoxycarbonylalkylgruppe, eine gegebenenfalls substituierte C₆-C₁₀-Arylgruppe, eine C₃-C₉-Alkoxycarbonylalkylgruppe oder eine gegebenenfalls substituierte C₆-C₁₀-Arylgruppe, eine C₃-C₉-Alkoxycarbonylalkylgruppe oder eine gegebenenfalls substituierte C₇-C₁₂-Aralkylgruppe); und m 0 oder 1 ist;

jeder der 5- bis 10-gliedrigen heterozyklischen Gruppen unabhängig voneinander ausgewählt wird aus einem Furanring, einem Tetrahydrofuranring, einem Pyranring, einem Benzofuranring, einem Chromanring, einem Thiophenring, einem Benzothiophenring, einem Pyrrolring, einem Imidazolring, einem Pyrazolring, einem Triazolring, einem Pyridinring, einem Pyrazinring, einem Pyrazinring, einem Pyridinring, einem Chinazolinring, 
jeder der optionalen Substituenten unabhängig voneinander ausgewählt wird aus einer  $C_1$ - $C_6$ -Alkylgruppe, einer  $C_1$ - $C_6$ -Alkoxygruppe, einer Hydroxylgruppe, einer Carboxylgruppe, einer  $C_2$ - $C_7$ -Carboxyalkylgruppe, einer  $C_2$ - $C_7$ -Alkoxygruppe, einer  $C_3$ - $C_7$ -Alkoxygruppe

 $R^2$  ein Wasserstoffatom oder eine  $C_1$ - $C_6$ -Alkylgruppe ist; und  $R^3$ - $C(=NR^{25})NH_2$  (wobei  $R^{25}$  ein Wasserstoffatom oder eine Hydroxylgruppe ist) oder -NH₂ ist; vorausgesetzt, dass  $R^3$ - $C(=NR^{25})NH_2$  ( $R^{25}$  ist wie oben definiert) ist, wenn A ein Stickstoffatom ist, oder ein Salz oder Hydrat davon;

mit der Maßgabe, dass falls der Substituent R² ein Wasserstoffatom darstellt, die Gruppe "D" eine Einfachbindung darstellt und der Index n 1 oder 2 ist, keiner der Substituenten R⁴ oder R⁵ eine Gruppe darstellt, die einen Aminosulfonylrest einschließt.

- Verbindung gemäß Anspruch 1, wobei A ein Kohlenstoffatom ist.
- Verbindung gemäß Anspruch 1 oder 2, wobei n 1 oder 2 ist; R¹

5

10

15

20

25

30

35

40

45

50

55

-D-(CH)_m-E-R⁴ | R⁵

ist {wobei D und E unabhängig voneinander eine Einfachbindung oder eine gegebenenfalls verzweigte C₁-C₆-Alkylengruppe darstellen;

R4 eine C₁-C₆-Alkylgruppe; -OR6 (R6 ist eine C₁-C₆-Alkylgruppe; eine C₆-C₁₀-Arylgruppe, die mit mindestens einem Substituenten substituiert sein kann, der aus der Gruppe ausgewählt wird, die aus einer C₁-C₆-Alkylgruppe, einer C₁-C₆-Alkoxygruppe, einem Halogenatom, einer Hydroxylgruppe, einer Carboxylgruppe, einer C₂-C₇-Alkoxycarbonylgruppe, einer  $C_2$ - $C_7$ -Carboxyalkylgruppe, einer  $C_2$ - $C_7$ -Acylgruppe, einer  $C_2$ - $C_7$ -Acyloxygruppe, einer C2-C7-Alkoxycarbonyloxygruppe, einer C3-C9-Alkoxycarbonylalkoxygruppe und eine Benzyloxycarbonylgruppe besteht; oder einer C7-C12-Aralkylgruppe ist, die mit mindestens einem Substituenten substituiert sein kann, der aus der Gruppe ausgewählt wird, die aus einer  $C_1$ - $C_6$ -Alkylgruppe, einer  $C_1$ - $C_6$ -Alkoxygruppe, einem Halogenatom, einer Hydroxylgruppe, einer Carboxylgruppe, einer C2-C7-Alkoxycarbonylgruppe, einer C2-C7-Carboxyalkylgruppe, einer C2-C7-Acylgruppe, einer C2-C7-Acyloxygruppe, einer C2-C7-Alkoxycarbonyloxygruppe, einer C₃-C₉-Alkoxycarbonylalkoxygruppe und einer Benzyloxycarbonylgruppe besteht); -SR⁷ (R⁷ ist eine C₁-C₆-Alkylgruppe; eine C6-C10-Arylgruppe, die mit mindestens einem Substituenten substituiert sein kann, der aus der Gruppe ausgewählt wird, die aus einer C₁-C₆-Alkylgruppe, einer C₁-C₆-Alkoxygruppe, einem Halogenatom, einer Hydroxylgruppe, einer Carboxylgruppe, einer C₂-C₇-Alkoxycarbonylgruppe, einer C₂-C₇-Carboxyalkylgruppe, einer C₂-C₇-Acylgruppe, einer C₂-C₇-Acyloxygruppe, einer C₂-C₇-Alkoxycarbonyloxygruppe, einer C₃-C₆-Alkoxycarbonylalkoxygruppe und einer Benzyloxycarbonylgruppe besteht; oder eine C₇-C₁₂-Aralkylgruppe, die mit mindestens einem Substituenten substituiert sein kann, der aus der Gruppe ausgewählt wird, die aus einer C1-C6-Alkylgruppe, einer C₁-C₆-Alkoxygruppe, einem Halogenatom, einer Hydroxylgruppe, einer Carboxylgruppe, einer C2-C7-Alkoxycarbonylgruppe, einer C2-C7-Carboxyalkylgruppe, einer C2-C7-Acylgruppe, einer C2-C7-Acyloxygruppe, einer C2-C7-Alkoxycarbonyloxygruppe, einer C3-C9-Alkoxycarbonylalkoxygruppe und einer Benzyloxycarbonylgruppe besteht); -COOH; eine  $C_6$ - $C_{10}$ -Arylgruppe, die mit mindestens einem Substituenten substituiert sein kann, der aus der Gruppe ausgewählt wird, die aus einer C1-C6-Alkylgruppe, einer C1-C6-Alkoxygruppe, einem Halogenatom, einer Hydroxylgruppe, einer Carboxylgruppe, einer C2-C7-Alkoxycarbonylgruppe, einer C₂-C₇-Carboxyalkylgruppe, einer C₂-C₇-Acylgruppe, einer C₂-C₇-Acyloxygruppe, einer C₂-C₇-Alkoxycarbonyloxygruppe, einer C₃-C₉-Alkoxycarbonylalkoxygruppe und einer Benzyloxycarbonylgruppe besteht; eine C₃-C₈-Cycloalkylgruppe; oder -SiR¹⁴R¹⁵R¹⁶ ist (R¹⁴, R¹⁵ und R¹⁶ bedeuten unabhängig voneinander eine C₁-C₆-Alkylgruppe);

R5 -OH, -OCOR18 (R18 ist eine  $C_1$ - $C_6$ -Alkoxygruppe oder eine  $C_2$ - $C_7$ -Alkenylaminogruppe), -NH₂, -NHCOR²⁰ (R²⁰ ist eine  $C_1$ - $C_6$ -Alkoxygruppe, eine  $C_6$ - $C_{10}$ -Aryloxygruppe, eine  $C_3$ - $C_9$ -Alkoxycarbonylalkoxygruppe, eine  $C_2$ - $C_{12}$ -Dialkylaminogruppe oder eine  $C_7$ - $C_{12}$ -Aralkyloxygruppe) oder -NHSO $_2$ R²¹ ist (R²¹ ist eine  $C_1$ - $C_6$ -Alkylgruppe, eine  $C_2$ - $C_7$ -Carboxyalkylgruppe, eine  $C_6$ - $C_{10}$ -Arylgruppe, eine  $C_3$ - $C_9$ -Alkoxycarbonylalkylgruppe oder eine  $C_7$ - $C_{12}$ -Aralkylgruppe); und m 0 oder 1 ist }; und R² ein Wasserstoffatom ist.

Verbindung gemäß Anspruch 1 oder 2, wobei n 1 ist; R¹

ist {wobei D und E unabhängig voneinander eine Einfachbindung oder eine gegebenenfalls verzweigte  $C_1$ - $C_6$ -Alkylengruppe darstellen;

 $R^4$  eine  $C_1$ - $C_6$ -Alkylgruppe; -OR 6  ( $R^6$  ist eine  $C_6$ - $C_{10}$ -Arylgruppe, die mit mindestens einem Substituenten substituiert sein kann, der aus der Gruppe ausgewählt wird, die aus einer  $C_1$ - $C_6$ -Alkylgruppe, einem Halogenatom, einer Carboxylgruppe, einer  $C_2$ - $C_7$ -Carboxyalkylgruppe und einer Benzyloxycarbonylgruppe oder  $C_7$ - $C_{12}$ -Aralkylgruppe) besteht; -SR 7  ( $R^7$  ist eine  $C_1$ - $C_6$ -Alkylgruppe); eine  $C_6$ - $C_{10}$ -Arylgruppe, die mit mindestens einem Substituenten substituiert sein kann, der aus der Gruppe ausgewählt wird, die aus einer  $C_1$ - $C_6$ -Alkylgruppe, einem Halogenatom, einer Carboxylgruppe, einer  $C_2$ - $C_7$ -Carboxyalkylgruppe und einer Benzyloxycarbonylgruppe besteht; oder eine  $C_3$ - $C_6$ -Cycloalkylgruppe ist;

 $R^5$ -OH, NH₂, -NHCOR²⁰ (R²⁰ ist eine  $C_1$ - $C_6$ -Alkoxygruppe oder eine  $C_7$ - $C_{12}$ -Aralkyloxygruppe) oder -NHSO₂R²¹ ist (R²¹ ist eine  $C_1$ - $C_6$ -Alkylgruppe oder eine  $C_6$ - $C_{10}$ -Arylgruppe); und m 1 ist}; und

R² ein Wasserstoffatom ist.

5. Verbindung gemäß Anspruch 1 oder 2, wobei n 1 ist; R1

20

25

30

10

15

ist {wobei D eine Einfachbindung ist; E eine Einfachbindung oder eine C₁-C₆-Alkylengruppe ist;

 $R^4$  eine  $C_1$ - $C_6$ -Alkylgruppe; -OR 6  ( $R^6$  ist eine  $C_6$ - $C_{10}$ -Arylgruppe, die mit mindestens einem Substituenten substitueit sein kann, der aus der Gruppe ausgewählt wird, die aus einer  $C_1$ - $C_6$ -Alkylgruppe, einem Halogenatom, einer Carboxylgruppe, einer  $C_2$ - $C_7$ -Carboxyalkylgruppe und einer Benzyloxycarbonylgruppe oder einer  $C_7$ - $C_{12}$ -Aral-kylgruppe besteht); -SR 7  ( $R^7$  ist eine  $C_1$ - $C_6$ -Alkylgruppe); eine  $C_6$ - $C_{10}$ -Arylgruppe, die mit mindestens einem oder mehreren Substituenten substituiert sein kann, die aus der Gruppe ausgewählt werden, die aus einer  $C_1$ - $C_6$ -Alkylgruppe, einem Halogenatom, einer Carboxylgruppe, einer  $C_2$ - $C_7$ -Carboxyalkylgruppe und einer Benzyloxycarbonylgruppe besteht; oder eine  $C_3$ - $C_6$ -Cycloalkylgruppe ist;

 $R^5$  -NH₂, -NHCOR²⁰ (R²⁰ ist eine  $C_1$ - $C_6$ -Alkoxygruppe oder eine  $C_7$ - $C_{12}$ -Aralkyloxygruppe) oder -NHSO₂R²¹ ist (R²¹ ist eine  $C_1$ - $C_6$ -Alkylgruppe oder eine  $C_6$ - $C_{10}$ -Arylgruppe); und m 1 ist}; und R² ein Wasserstoffatom ist.

6. Verbindung gemäß Anspruch 1, wobei A ein Kohlenstoffatom ist; n 1 ist; R1

35

40

45

ist {wobei D eine Einfachbindung ist; E eine Einfachbindung oder eine  $C_1$ - $C_3$ -Alkylengruppe ist;  $R^4$  eine  $C_3$ - $C_6$ -Alkylgruppe), oder -OR 6  ist ( $R^6$  ist eine  $C_1$ - $C_6$ -Alkylgruppe, eine Phenylgruppe oder eine  $C_3$ - $C_6$ -Cycloalkylgruppe);  $R^5$ -OH,-NHR 19  ( $R^{19}$  ist ein Wasserstoffatom), -NHCOR 20  ( $R^{20}$  ist eine  $C_1$ - $C_6$ -Alkoxygruppe) oder -NHSO $_2$ R 21  ist ( $R^{21}$  ist eine  $C_1$ - $C_3$ -Alkylgruppe); und m 1 ist}; und  $R^2$  ein Wasserstoffatom ist.

7. Verbindung gemäß Anspruch 1 oder 2, wobei n 1 ist; R1

50



55

ist {D ist eine Einfachbindung; E ist eine Einfachbindung oder eine  $C_1$ - $C_6$ -Alkylengruppe;  $R^4$  ist eine  $C_1$ - $C_6$ -Alkoxygruppe); und m ist 1};

R2 ein Wasserstoffatom ist; und

R3 -C(=NR25)NH2 ist (R25 ist ein Wasserstoffatom oder eine Hydroxylgruppe).

- Trans-4-[(S)-N-((R)-2-ethoxycarbonylamino-4,4-dimethylpentanoyl)prolyl]aminomethylcyclohexancarboxamidoxim oder ein Salz oder Hydrat davon.
- 9. Pharmazeutische Zusammensetzung umfassend eine Verbindung wie in einem der Ansprüche 1 bis 8 beansprucht und einen pharmazeutisch akzeptablen Träger dafür.
- 10. Verwendung einer Verbindung wie in einem der Ansprüche 1 bis 8 beansprucht zur Herstellung eines Medikaments, das als Proteaseinhibitor wirksam ist.
  - 11. Verbindung gemäß einem der Ansprüche 1 bis 8 zur Verwendung als Medikament.
- 15 12. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 8 zur Herstellung eines gerinnungshemmenden Medikaments.
  - 13. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 8 zur Herstellung eines Medikaments zur Behandlung von Pankreatitis.

Revendications

5

20

25

30

35

40

45

50

55

1. Dérivé de la prolinamide représenté par la formule (I):

dans laquelle A est un atome de carbone ou un atome d'azote;

n est un entier de 0 à 2; une ligne pointillée représente une absence de liaison ou une simple liaison;  $R^1$  est

{dans laquelle D et E indiquent séparément une simple liaison ou un groupe alkylène en  $C_1$  à  $C_6$  qui peut être facultativement ramifié ;

 $\rm R^4$  représente un groupe alkyle en  $\rm C_1$  à  $\rm C_6$ ; -OR6 (R^6 est un atome d'hydrogène, un groupe alkyle en  $\rm C_1$  à  $\rm C_6$ , un groupe aryle en  $\rm C_6$  à  $\rm C_{10}$  que l'on peut facultativement substituer, un groupe cycloalkyle en  $\rm C_3$  à  $\rm C_8$  que l'on peut facultativement substituer ou un groupe aralkyle en  $\rm C_7$  à  $\rm C_{12}$  que l'on peut facultativement substituer), -SR^7 (R^7 représente un groupe alkyle en  $\rm C_1$  à  $\rm C_6$ , un groupe aryle en  $\rm C_6$  à  $\rm C_{10}$  que l'on peut facultativement substituer, un groupe cycloalkyle en  $\rm C_3$  à  $\rm C_8$  que l'on peut facultativement substituer ou un groupe aralkyle en  $\rm C_7$  à  $\rm C_{12}$  que l'on peut facultativement substituer ou un groupe cycloalkyle en  $\rm C_3$  à  $\rm C_8$  que l'on peut facultativement substituer), -SO $_2\rm R^9$  (R $_2\rm R^9$  est un groupe aryle en  $\rm C_6$  à  $\rm C_{10}$  que l'on peut facultativement substituer), -SO $_2\rm R^9$  (R $_2\rm R^9$  est un groupe aryle en  $\rm C_6$  à  $\rm C_{10}$  que l'on peut facultativement substituer), -SO $_2\rm R^9$  (R $_2\rm R^9$  est un groupe aryle en  $\rm C_6$  à  $\rm C_{10}$  que l'on peut facultativement substituer) un groupe cycloalkyle en  $\rm C_3$  à  $\rm C_8$  que l'on peut facultativement substituer) en C $_3$  à C $_8\rm R^9$  que l'on peut facultativement substituer)

peut facultativement substituer), -COR¹0 (R¹0 est un groupe hydroxyle, un groupe alcoxyle en  $C_1$  à  $C_6$ , un groupe aryle en  $C_6$  à  $C_{10}$  que l'on peut facultativement substituer ou un groupe cycloalkyle en  $C_3$  à  $C_8$  que l'on peut facultativement substituer), -NHR¹¹ (R¹¹ est un groupe alkyle en  $C_1$  à  $C_6$ , un groupe aryle en  $C_6$  à  $C_{10}$  que l'on peut facultativement substituer, un groupe cycloalkyle en  $C_3$  à  $C_8$  que l'on peut facultativement substituer ou groupe aralkyle en  $C_7$  à  $C_{12}$  que l'on peut facultativement substituer), -NHCOR¹² (R¹² est un groupe alcoxyle en  $C_1$  à  $C_6$ , un groupe aryle en  $C_6$  à  $C_{10}$  que l'on peut facultativement substituer, un groupe cycloalkyle en  $C_3$  à  $C_8$  que l'on peut facultativement substituer ou un groupe aralkyloxy en  $C_7$  à  $C_{12}$  que l'on peut facultativement substituer), -NHSO $_2$ R¹³ (R¹³ est un groupe alkyle en  $C_1$  à  $C_6$ , un groupe aryle en  $C_6$  à  $C_{10}$  que l'on peut facultativement substituer, un groupe cycloalkyle en  $C_7$  à  $C_{12}$  que l'on peut facultativement substituer, un groupe aralkyle en  $C_7$  à  $C_{12}$  que l'on peut facultativement substituer, un groupe aryle en  $C_6$  à  $C_{10}$  que l'on peut facultativement substituer, un groupe aryle en  $C_6$  à  $C_{10}$  que l'on peut facultativement substituer, un groupe excloalkyle en  $C_3$  à  $C_8$  que l'on peut facultativement substituer, un groupe de 5 à 10 chaînons que l'on peut facultativement substituer, un groupe alkyle en  $C_1$  à  $C_6$ );

 $\rm R^{5}$  est un -OR^{17}(R^{17} est un atome d'hydrogène, -SiR^{22}R^{23}R^{24} (R^{22}, R^{23}, et R^{24} représentent séparément un groupe alkyle en  $\rm C_{1}$  à  $\rm C_{6}$ ), un groupe alkyle en  $\rm C_{1}$  à  $\rm C_{6}$ , ou un groupe hétérocyclique de 5 à 10 chaînons que l'on peut facultativement substituer), -OCOR^{18} (R^{18} est un atome d'hydrogène, un groupe alkyle en  $\rm C_{1}$  à  $\rm C_{6}$ , un groupe alkyle en  $\rm C_{1}$  à  $\rm C_{6}$ , un groupe aminé, un groupe alkylamine en  $\rm C_{2}$  à  $\rm C_{12}$  ou un groupe alkénylamine en  $\rm C_{2}$  à  $\rm C_{7}$ ), -NHR^{19} (R^{19} est un atome d'hydrogène, un groupe alkyle en  $\rm C_{1}$  à  $\rm C_{6}$  ou un groupe aralkyle en  $\rm C_{7}$  à  $\rm C_{12}$  que l'on peut facultativement substituer), -NHCOR^{20} (R^{20} est un atome d'hydrogène, un groupe alkyle en  $\rm C_{7}$  à  $\rm C_{6}$ , un groupe alkyle halogéné en  $\rm C_{1}$  à  $\rm C_{6}$ , un groupe alcoxyle en  $\rm C_{1}$  à  $\rm C_{6}$ , un groupe alkyle en  $\rm C_{2}$  à  $\rm C_{3}$  un groupe alkyle en  $\rm C_{3}$  à  $\rm C_{8}$  que l'on peut facultativement substituer, un groupe carboxyalkyloxy en  $\rm C_{2}$  à  $\rm C_{7}$ , un groupe alkylamine en  $\rm C_{2}$  à  $\rm C_{10}$  que l'on peut facultativement substituer, un groupe alcoxycarbonylalcoxy en  $\rm C_{3}$  à  $\rm C_{9}$ , un groupe dialkylamine en  $\rm C_{2}$  à  $\rm C_{12}$  ou un groupe aralkyloxy en  $\rm C_{7}$  à  $\rm C_{12}$  que l'on peut facultativement substituer) ou -NHSO_2R^{21} (R^{21} est un groupe alkyle en  $\rm C_{1}$  à  $\rm C_{6}$ , un groupe alkyle en  $\rm C_{2}$  à  $\rm C_{10}$  que l'on peut facultativement substituer, un groupe alcoxycarbonylalkyle en  $\rm C_{2}$  à  $\rm C_{7}$ , un groupe aralkyle en  $\rm C_{6}$  à  $\rm C_{10}$  que l'on peut facultativement substituer, un groupe alcoxycarbonylalkyle en  $\rm C_{2}$  à  $\rm C_{7}$ , un groupe aralkyle en  $\rm C_{6}$  à  $\rm C_{10}$  que l'on peut facultativement substituer, un groupe alcoxycarbonylalkyle en  $\rm C_{3}$  à  $\rm C_{9}$  ou un groupe aralkyle en  $\rm C_{7}$  à  $\rm C_{12}$  que l'on peut facultativement substituer) ; et m a la valeur 0 ou 1 ;

chacun desdits groupes hétérocycliques de 5 à 10 chaînons est choisi indépendamment parmi un noyau furanne, un noyau tétrahydrofuranne, un noyau pyranne, un noyau benzofuranne, un noyau chromanne, un noyau thiophène, un noyau benzothiophène, un noyau pyrrole, un noyau imidazole, un noyau pyrazole, un noyau triazole, un noyau pyridine, un noyau pipéridine, un noyau pyrazine, un noyau pipérazine, un noyau pyrimidine, un noyau indole, un noyau benzimidazole, un noyau purine, un noyau quinoline, un noyau phtalazine, un noyau quinazoline, un noyau cinniline, un noyau oxazole, un noyau thiazole et un noyau morpholine;

on choisit chacun desdits substituants éventuels parmi un groupe alkyle en  $C_1$  à  $C_6$ , un groupe alkyle halogéné en  $C_1$  à  $C_6$ , un groupe alcoxyle en  $C_1$  à  $C_6$ , un groupe hydroxyle, un groupe carboxyle, un groupe carboxyalkyle en  $C_2$  à  $C_7$ , un groupe acyle en  $C_2$  à  $C_7$ , un groupe alcoxycarbonyle en  $C_2$  à  $C_7$ , un groupe alcoxycarbonyle en  $C_8$  à  $C_{13}$ , un groupe alcoxycarboxyle en  $C_3$  à  $C_9$  et un atome d'halogène};

 $R^2$  est un atome d'hydrogène ou un groupe alkyle en  $C_1$  à  $C_6$ ; et  $R^3$  est représenté par -C(=NR²⁵)NH₂ (dans lequel  $R^{25}$  est un atome d'hydrogène ou un groupe hydroxyle) ou -NH₂; à la condition que  $R^3$  soit représenté par -C(=NR²⁵)NH₂ ( $R^{25}$  est défini comme ci-dessus) lorsque A est un atome d'azote, ou un sel ou un hydrate qui en dérivent ;

à la condition que si le substituant R² représente un atome d'hydrogène, le groupe « D » représente une simple liaison, et l'index n a la valeur 1 ou 2, alors aucun des substituants R⁴ ou R⁵ ne représente un groupe comportant un groupe fonctionnel aminosulfonyle.

- Composé selon la revendication 1, dans lequel A est un atome de carbone.
- 3. Composé selon la revendication 1 ou la revendication 2, dans lequel n a la valeur 1 ou 2; R1 est représenté par

10

15

20

25

30

35

40

45

{dans laquelle D et E indiquent séparément une simple liaison ou ou un groupe alkylène ramifié en C1 à C6;

 $R^4$  est un groupe alkyle en  $C_1$  à  $C_6$ ; -OR 6 ( $R^6$  est un groupe alkyle en  $C_1$  à  $C_6$ ; un groupe aryle en  $C_6$  à  $C_{10}$ qui peuvent être substitués avec au moins un substituant choisi parmi le groupe composé d'un groupe alkyle en  $C_1$  à  $C_6$ , d'un groupe alcoxyle en  $C_1$  à  $C_6$ , d'un atome d'halogène, d'un groupe hydroxyle, d'un groupe carboxyle, d'un groupe alcoxycarbonyle en  $C_2$  à  $C_7$ , d'un groupe carboxyalkyle en  $C_2$  à  $C_7$ , d'un groupe acyle en  $C_2$  à  $C_7$ , d'un groupe acyloxy en  $C_2$  à  $C_7$ , d'un groupe alcoxycarbonyloxy en  $C_2$  à  $C_7$ , d'un groupe alcoxycarbonylalcoxyle en  $C_3$  à  $C_9$  et d'un groupe benzyloxycarbonyle ; ou un groupe aralkyle en  $C_7$  à  $C_{12}$  qui peut être substitué par au moins un substituant choisi parmi le groupe composé d'un groupe alkyle en C₁ à C₆, d'un groupe alcoxyle en C₁ à  $C_6$ , d'un atome d'halogène, d'un groupe hydroxyle, d'un groupe carboxyle, d'un groupe alcoxycarbonyle en  $C_2$ à  $C_7$ , d'un groupe carboxyalkyle en  $C_2$  à  $C_7$ , d'un groupe acyle en  $C_2$  à  $C_7$ , d'un groupe acyloxy en  $C_2$  à  $C_7$ , d'un groupe alcoxycarbonyloxy en  $C_2$  à  $C_7$ , d'un groupe alcoxycarbonylalcoxyle en  $C_3$  à  $C_9$ , et d'un groupe benzyloxycarbonyle) ; -SR 7  (R 7  est un groupe alkyle en  $C_1$  à  $C_6$  ; un groupe aryle en  $C_6$  à  $C_{10}$  qui peut être substitué par au moins un substituant choisi parmi le groupe composé d'un groupe alkyle en C₁ à C₆, d'un groupe alcoxyle en  $C_1$  à  $C_6$ , d'un atome d'halogène, d'un groupe hydroxyle, d'un groupe carboxyle, d'un groupe alcoxycarbonyle en  $C_2$  à  $C_7$ , d'un groupe carboxyalkyle en  $C_2$  à  $C_7$ , d'un groupe acyle en  $C_2$  à  $C_7$ , d'un groupe acyloxy en  $C_2$  à  $C_7$ , d'un groupe alcoxycarbonyloxy en  $C_2$  à  $C_7$ , d'un groupe alcoxycarbonylalcoxyle en  $C_3$  à  $C_9$ , et d'un groupe benzyloxycarbonyle; ou un groupe aralkyle en C7 à C12 qui peut être substitué par au moins un substituant choisi parmi le groupe composé d'un groupe alkyle en C₁ à C₆, d'un groupe alcoxyle en C₁ à C₆, d'un atome d'halogène, d'un groupe hydroxyle, d'un groupe carboxyle, d'un groupe alcoxycarbonyle en  $C_2$  à  $C_7$ , d'un groupe carboxyalkyle en  $C_2$  à  $C_7$ , d'un groupe acyle en  $C_2$  à  $C_7$ , d'un groupe acyloxy en  $C_2$  à  $C_7$ , d'un groupe alcoxycarbonyloxy en  $C_2$ à  $C_7$ , d'un groupe alcoxycarbonylalcoxyle en  $C_3$  à  $C_9$ , et d'un groupe benzyloxycarbonyle) ; -COOH ; un groupe aryle en C₆ à C₁₀ qui peut être substitué par au moins un substituant choisi parmi le groupe composé d'un groupe alkyle en C₁ à C₆, d'un groupe alcoxyle en C₁ à C₆, d'un atome d'halogène, d'un groupe hydroxyle, d'un groupe carboxyle, d'un groupe alcoxycarbonyle en  $C_2$  à  $C_7$ , d'un groupe carboxyalkyle en  $C_2$  à  $C_7$ , d'un groupe acyle en  $C_2$  à  $C_7$ , d'un groupe acyloxy en  $C_2$  à  $C_7$ , d'un groupe alcoxycarbonyloxy en  $C_2$  à  $C_7$ , d'un groupe alcoxycarbonylalcoxyle en  $C_3$  à  $C_9$  et d'un groupe benzyloxycarbonyle ; d'un groupe cycloalkyle en  $C_3$  à  $C_8$  ; ou -SiR¹⁴R¹⁵R¹⁶ (R14, R15, et R16 indiquent séparément un groupe alkyle en C1 à C6);

 $R^5$  est -OH, -OCOR¹⁸ (R¹⁸ est un groupe alcoxyle en  $C_1$  à  $C_6$  ou un groupe alkénylamine en  $C_2$  à  $C_7$ ), -NH₂, -NHCOR²⁰ (R²⁰ est un groupe alcoxyle en  $C_1$  à  $C_6$ , un groupe aryloxy en  $C_6$  à  $C_{10}$ , un groupe alcoxycarbonylat-coxyle en  $C_3$  à  $C_9$ , un groupe dialkylamine en  $C_2$  à  $C_{12}$  ou un groupe aralkyloxy en  $C_7$  à  $C_{12}$ ) ou -NHSO₂R²¹ (R²¹ est un groupe alkyle en  $C_1$  à  $C_6$ , un groupe carboxyalkyle en  $C_2$  à  $C_7$ , un groupe aryle en  $C_6$  à  $C_{10}$ , un groupe alcoxycarbonylalkyle en  $C_3$  à  $C_9$  ou un groupe aralkyle en  $C_7$  à  $C_{12}$ ); et m a la valeur 0 ou 1}; et

R² est un atome d'hydrogène.

10

15

20

25

35

40

45

55

4. Composé selon la revendication 1 ou la revendication 2, dans lequel n a la valeur 1; R¹ est



(dans laquelle D et E indiquent séparément une simple liaison ou un groupe alkylène en C₁ à C₆ éventuellement

 $\rm R_4$  est un groupe alkyle en  $\rm C_1$  à  $\rm C_6$ ; -OR⁶ (R⁶ est un groupe aryle en  $\rm C_6$  à  $\rm C_{10}$  qui peut être substitué par au moins un substituant choisi parmi le groupe composé d'un groupe alkyle en  $\rm C_1$  à  $\rm C_6$ , d'un atome d'halogène, d'un groupe carboxyle, d'un groupe carboxyalkyle en  $\rm C_2$  à  $\rm C_7$  et d'un groupe benzyloxycarbonyle ou d'un groupe aralkyle en  $\rm C_7$  à  $\rm C_{12}$ ); -SR⁷ (R⁷ est un groupe alkyle en  $\rm C_1$  à  $\rm C_6$ ); un groupe aryle en  $\rm C_6$  à  $\rm C_{10}$  qui peut être substitué par au moins un substituant choisi parmi le groupe composé d'un groupe alkyle en  $\rm C_1$  à  $\rm C_6$ , d'un atome d'halogène, d'un groupe carboxyle, d'un groupe carboxyalkyle en  $\rm C_2$  à  $\rm C_7$  et d'un groupe benzyloxycarbonyle ; ou un groupe cycloalkyle en  $\rm C_3$  à  $\rm C_6$ ;

 $R^5$  est représenté par -OH,  $NH_2$ , -NHCOR 20  ( $R^{20}$  est un groupe alkyle en  $C_1$  à  $C_6$  ou un groupe aralkyloxy en  $C_7$  à  $C_{12}$ ) ou -NHSO $_2$ R 21  ( $R^{21}$  est un groupe alkyle en  $C_1$  à  $C_6$  ou un groupe aryle en  $C_6$  à  $C_{10}$ ) et m a la valeur 13 : et

R² est un atome d'hydrogène.

5. Composé selon la revendication 1 ou la revendication 2, dans lequel n a la valeur 1; R1 est

5

10

15

20

25

30

35

40

45

50

55



{dans laquelle D est une simple liaison; E est une simple liaison ou un groupe alkylène en C₁ à C₆;

 $R_4$  est un groupe alkyle en  $C_1$  à  $C_6$ ; -OR⁶ ( $R_6$  est un groupe aryle en  $C_6$  à  $C_{10}$  qui peut être substitué par au moins un substituant choisi parmi le groupe composé d'un groupe alkyle en  $C_1$  à  $C_6$ , d'un atome d'halogène, d'un groupe carboxyle, d'un groupe carboxyalkyle en  $C_2$  à  $C_7$  et d'un groupe benzyloxycarbonyle ou d'un groupe aralkyle en  $C_7$  à  $C_{12}$ ); -SR⁷ ( $R^7$  est un groupe alkyle en  $C_1$  à  $C_6$ ); un groupe aryle en  $C_6$  à  $C_{10}$  qui peut être substitué par au moins un ou plusieurs substituants choisis parmi le groupe composé d'un groupe alkyle en  $C_1$  à  $C_6$ , d'un atome d'halogène, d'un groupe carboxyle, d'un groupe carboxyalkyle en  $C_2$  à  $C_7$  et d'un groupe benzyloxycarbonyle; ou d'un groupe cycloalkyle en  $C_3$  à  $C_6$ ;

 $R^5$  est représenté par -NH₂, -NHCOR²⁰ ( $R^{20}$  est un groupe alcoxyle en  $C_1$  à  $C_6$  ou un groupe aralkyloxy en  $C_7$  à  $C_{12}$ ) ou -NHSO₂ $R^{21}$  ( $R^{21}$  est un groupe alkyle en  $C_1$  à  $C_6$  ou un groupe aryle en  $C_6$  à  $C_{10}$ ); et m a la valeur 1}; et  $R^2$  est un atome d'hydrogène.

6. Composé selon la revendication 1, dans lequel A est un atome de carbone; n a la valeur 1; R1 est

-D-{CH)_m-E-R⁴

{dans laquelle D est une simple liaison ; E est une simple liaison ou un groupe alkylène en  $C_1$  à  $C_3$ ;  $R^4$  est un groupe alkyle en  $C_3$  à  $C_6$ ), -OR 6  (R 6  est un groupe alkyle en  $C_1$  à  $C_6$ , un groupe phényle, ou un groupe cycloalkyle en  $C_3$  à  $C_6$ ;  $R^5$  est représenté par -OH, -NHR 19  (R 19  est un atome d'hydrogène), -NHCOR 20  (R 20  est un groupe alcoxyle en  $C_1$  à  $C_6$ ) ou -NHSO $_2$ R 21  (R 21  est un groupe alkyle en  $C_1$  à  $C_3$ ); et m a la valeur 1}; et  $C_1$ 0 est un atome d'hydrogène.

7. Composé selon la revendication 1 ou la revendication 2, dans lequel n a la valeur 1;  $\mathsf{R}^1$  est

{D est une simple liaison ; E est une simple liaison ou un groupe alkylène en  $C_1$  à  $C_6$  ;  $R^4$  est un groupe alkyle en  $C_1$  à  $C_6$  ;  $R^5$  est -NHCOR²⁰ ( $R^{20}$  est un groupe alcoxyle en  $C_1$  à  $C_6$ ) ; et m a la valeur 1} ;

R² est un atome d'hydrogène ; et

R³ est représenté par -C(=NR²⁵)NH₂ (R²⁵ est un atome d'hydrogène ou un groupe hydroxyle).

- 8. Trans-4-[(S)-N-((R)-2-éthoxycarbonylamino-4,4-diméthylpentanoyl)prolyl] aminométhylcyclohexanecarboxamidoxime ou un sel ou un hydrate qui en dérivent.
- Composition pharmaceutique comportant un composé selon l'une quelconque des revendications 1 à 8 et de ce fait un support pharmaceutiquement acceptable.

5

10

15

20

25

30

35

40

45

50

55

10. Utilisation d'un composé selon l'une quelconque des revendications 1 à 8 pour la fabrication d'un médicament efficace comme inhibiteur de protéase. 11. Composé selon l'une quelconque des revendications 1 à 8 pour une utilisation comme médicament. 12. Utilisation d'un composé selon l'une quelconque des revendications 1 à 8 pour la fabrication d'un médicament anticoagulant. 13. Utilisation d'un composé selon l'une quelconque des revendications 1 à 8 pour la fabrication d'un médicament pour le traitement de la pancréatite.