Introduction to Machine Learning

Support Vector Machines & Kernels

Ashley Gao

William & Mary

October 2, 2023

William & Mary CSCI 416 & 516 October 2, 2023

Overview

- Prediction
 - Why might predictions be wrong?
- Support vector machines
 - Do really well with linear models
- Kernels
 - Making the non-linear linear

Why Might Predictions be Wrong?

- True non-determinism
 - Flip a biased coin
 - $p(\text{heads}) = \theta$
 - Estimate θ
 - If $\theta > 0.5$, predict "heads", else "tails"
- Lots of ML research on problems like this:
 - Learn a model
 - Do the best you can in expectation

William & Mary CSCI 416 & 516 October 2, 2023 3/52

Why Might Predictions be Wrong?

- Partial observability
 - Something needed to predict y is missing from observation x
 - *N*-bit parity problem
 - Determine the parity (even or odd) of a sequence of N binary bits.
 - The goal is to build a model that can correctly predict the parity of any given N-bit sequence.
- Noise in the observation x
 - Measurement error
 - Instrument limitations
- Representational bias
- Algorithmic bias
- Bounded resources

William & Mary CSCI 416 & 516 October 2, 2023 4

Representational Bias

• Having the right features for x is crucial

William & Mary CSCI 416 & 516 October 2, 2023 5/52

Support Vector Machines

William & Mary CSCI 416 & 516 October 2, 2023 6

Strengths of SVMs

- Good generalization
 - in theory
 - in practice
- Works well with frew training instances
- Find globally best model
- Efficient algorithms
- Amenable to the kernel trick

William & Mary CSCI 416 & 516 October 2, 2023 7

Minor Notation Change

- To better match notations used in SVMs and to make matrix formulas simpler
- We will drop using superscripts for the i^{th} instance

Minor Notation Change

- Training instances: $\mathbf{x} \in \mathbb{R}^{d+1}, x_0 = 1, y \in -1, 1$
- Model parameters: $\theta \in \mathbb{R}^{d+1}$
- Hyperplane: $\theta^{\mathsf{T}} x = \langle \theta, x \rangle = 0$
 - the vectors are orthogonal to each other
- Recall the inner (dot) product:

$$\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle = \boldsymbol{\theta} \cdot \boldsymbol{x} = \boldsymbol{\theta}^{\top} \boldsymbol{x} = \sum_{i} \theta_{i} x_{i}$$
 (1)

• Decision function: $h(x) = \operatorname{sign}(\theta^{\top}) = \operatorname{sign}(\langle \theta, x \rangle)$

William & Mary CSCI 416 & 516 October 2, 2023 9/52

Intuition

• Which line or classifier is better?

Noise in the observations

- Each circle denotes the "noise" that can happen when the sample is observed (e.g. faulty measuring equipment)
- A sample's actual reading, in terms of features, can fall anywhere in the circle around the "true" values

More Noise; Ruling Out Some Seperators

• When the readings (the values of features) become noisier, we can rule out some separators or classifiers

William & Mary CSCI 416 & 516 October 2, 2023 12/

Only One Separator Remains

 Assuming that the values of the features are as noisy as they can get, provided that the samples are still linearly separable in the feature space.

October 2, 2023

Maximizing the Margin

"Fat" Separators

• We want the separators as "fat" as possible, to allow for more noise in the features of the samples.

Why Maximize Margin

- Increasing margin reduces capacity
 - i.e. fewer possible models
- Lesson from Learning Theory:
 - If the following holds:
 - H is sufficiently constrained in size
 - and/or the size of the training dataset *N* is large
 - Then low training error is likely to be evidence of low generalization error

Alternative View of Logistic Regression

- if y = 1 we want $h_{\theta} \approx 1, \theta^{\top} x \gg 0$
- if y = 0 we want $h_{\theta} \approx 0, \theta^{\top} x \ll 0$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\top} x}} \tag{2}$$

• We want to minimize the cross-entropy cost, by finding the θ summing the losses across the classifications on all the samples

$$\mathcal{J}(\boldsymbol{\theta}) = -\sum_{i=1}^{N} \left[y_i \log h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) + (1 - y_i) \log(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}_i)) \right]$$
(3)

- $cost_1(\theta^\top x_i) \iff log h_\theta(x_i)$
- $cost_0(\theta^{\top} x_i) \iff log(1 h_{\theta}(x_i))$

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ か へ ()・

Alternative View of Logistic Regression

• Cost of one sample:

$$\mathcal{L}(\theta) = -y_i \log h_{\theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\theta}(\mathbf{x}_i)) \tag{4}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\mathsf{T}}x}} \tag{5}$$

$$z = \boldsymbol{\theta}^{\top} \boldsymbol{x} \tag{6}$$

If y = 1 (want $\boldsymbol{\theta}^\mathsf{T} \mathbf{x} \gg 0$):

 $-\log \frac{1}{1 + e^{-z}}$

If y=0 (want ${\boldsymbol{\theta}}^{\mathsf{T}}\mathbf{x}\ll 0$):

Logistic Regression to SVMs

Logistic Regression:

$$\min_{\theta} - \sum_{i=1}^{N} [y_i \log h_{\theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\theta}(\mathbf{x}_i))] + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$
 (7)

• Support Vector Machines:

$$\min_{\boldsymbol{\theta}} C \sum_{i=1}^{N} [y_i \text{cost}_1(\boldsymbol{\theta})^{\top} \boldsymbol{x}_i + (1 - y_i) \text{cost}_0(\boldsymbol{\theta})^{\top} \boldsymbol{x}_i] + \frac{1}{2} \sum_{j=1}^{d} \theta_j^2$$
 (8)

• C is a constant, a tunable hyperparameter. You can imagine it as similar to $\frac{1}{4}$

→□▶
→□▶
→□▶
→□▶
→□▶
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□

19/52

William & Mary CSCI 416 & 516 October 2, 2023

The Hinge Loss

• Support Vector Machines:

$$\min_{\boldsymbol{\theta}} C \sum_{i=1}^{N} [y_i \text{cost}_1(\boldsymbol{\theta})^{\top} \boldsymbol{x}_i + (1 - y_i) \text{cost}_0(\boldsymbol{\theta})^{\top} \boldsymbol{x}_i] + \frac{1}{2} \sum_{j=1}^{d} \theta_j^2$$
 (9)

If
$$y=1$$
 (want $oldsymbol{ heta}^\intercal \mathbf{x} \geq 1$):

If
$$y = 1$$
 (want $\theta^{\mathsf{T}} \mathbf{x} \ge 1$): If $y = 0$ (want $\theta^{\mathsf{T}} \mathbf{x} \le -1$):

$$\ell_{\text{hinge}} = \max(0, 1 - y \cdot h(x)) \tag{10}$$

Maximum Margin Hyperplane

Large Margin Classifier in Presence of Outliers

October 2, 2023

Vector Inner Product

• Some quick review on the vector inner product:

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$\|\mathbf{u}\|_2 = \operatorname{length}(\mathbf{u}) \in \mathbb{R}$$

= $\sqrt{u_1^2 + u_2^2}$

Vector Inner Product

• Continued from the previous slide:

$$\boldsymbol{u}^{\top}\boldsymbol{v} = \boldsymbol{v}^{\top}\boldsymbol{u} \tag{11}$$

$$\boldsymbol{u}^{\top}\boldsymbol{v} = u_1v_1 + u_2v_2 \tag{12}$$

$$\boldsymbol{u}^{\top}\boldsymbol{v} = ||\boldsymbol{u}||_2||\boldsymbol{v}||_2\cos\theta \tag{13}$$

$$\boldsymbol{u}^{\top} \boldsymbol{v} = p||\boldsymbol{u}||_2$$
, where $p = ||\boldsymbol{v}||_2 \cos\theta$ (14)

Understanding the Hyperplane

• The hyperplane is orthogonal to the vector θ :

$$\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x} = \|\boldsymbol{\theta}\|_2 \underbrace{\|\mathbf{x}\|_2 \cos \theta}_p$$

$$= p\|\boldsymbol{\theta}\|_2$$

• Assume $\theta_0 = 0$ so that the hyperplane is centered at the origin, and that d = 2 for it to be visually rendered in 2D. All for the purpose of simplicity of the demo.

William & Mary CSCI 416 & 516 October 2, 2023 25/52

Understanding the Hyperplane

• Support Vector Machines objective to minimize:

$$\min_{\boldsymbol{\theta}} C \sum_{i=1}^{N} [y_i \text{cost}_1(\boldsymbol{\theta})^{\top} \boldsymbol{x}_i + (1 - y_i) \text{cost}_0(\boldsymbol{\theta})^{\top} \boldsymbol{x}_i] + \frac{1}{2} \sum_{j=1}^{d} \theta_j^2$$
 (15)

- Suppose that C is set to an arbitrarily large value \iff the first term becomes 0, for simplicity
- Now we are just minimizing the second term $\frac{1}{2} \sum_{j=1}^{d} \theta_{j}^{2}$
- Recall that $\theta^{\top} x_i \ge 1$ when $y_i = 1$ and $\theta^{\top} x_i \le -1$ when $y_i = -1$

William & Mary CSCI 416 & 516 October 2, 2023 26/52

Maximizing the Margin

• Let p_i be the projection of x_i onto the vector θ

Since p is small, therefore $\|\theta\|_2$ must be large to have $p\|\theta\|_2 \ge 1$ (or \le -1)

Since p is larger, $\| \boldsymbol{\theta} \|_2$ can be smaller in order to have $p \| \boldsymbol{\theta} \|_2 \geq 1$ (or \leq -1)

William & Mary CSCI 416 & 516 October 2, 2023 27/52

The SVN Dual Problem

• The primal SVM problem was given as

$$\frac{1}{2} \sum_{j=1}^{d} \theta_j^2, \text{ s.t. } y_i(\boldsymbol{\theta}^{\top} \boldsymbol{x}_i) \ge 1, \forall i$$
 (16)

- Can be solved more efficiently by taking the Lagrangian dual
 - Duality is a common idea in optimization
 - It transforms a difficult optimization problem into a simpler one
 - ullet Key idea: introduce slack variables α_i for each constraint
 - α_i indicates how important a particular constraint is to the solution

The Lagragian

- The Lagrangian dual refers to the dual formulation of an optimization problem using the Lagrange duality theory.
- It transforms a primal optimization problem into its dual problem
 - which can sometimes provide useful insights or computational advantages.
- The Lagrange duality theory is based on the concept of Lagrange multipliers
 - which are introduced to incorporate constraints into an optimization problem.
- By introducing these multipliers, the problem is transformed into a new formulation that involves maximizing or minimizing a function called the Lagrangian
 - which incorporates both the objective function and the constraints.

William & Mary CSCI 416 & 516 October 2, 2023 29/52

The SVM Dual Problem

• The Lagrangian is given as, s.t. $\alpha_i \ge 0 \forall i$:

$$\frac{1}{2} \sum_{j=1}^{d} \theta_j^2 - \sum_{i=1}^{n} \alpha_i (y_i \boldsymbol{\theta}^{\top} x_i - 1)$$
 (17)

- We must minimize over θ and maximize over α
- At optimal solution, partials w.r.t. θ 's are 0

William & Mary CSCI 416 & 516 October 2, 2023 30/52

The SVM Dual Representation

• After solving a bunch of linear algebra and calculus, want to maximize:

$$\mathcal{J}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
 (18)

Such that $\sum_i a_j y_j = 0$, s.t. $\alpha_i \ge 0$, $\forall i$

• The decision function is given by:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i \langle \mathbf{x}, \mathbf{x}_i \rangle + b\right)$$
 (19)

$$b = \frac{1}{|SV|} \sum_{i \in SV} \left(y_i - \sum_{j \in SV} \alpha_j y_j \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle \right)$$
 (20)

William & Mary CSCI 416 & 516 October 2, 2023 31/52

Understanding the Dual

- We have $\alpha_i \geq 0, \forall i$
 - Constaint weights (α_i 's cannot be negative)
- We have $\sum_i \alpha_i y_i = 0$
 - Balances between the weight of constraints for different classes

William & Mary CSCI 416 & 516 October 2, 2023 32/52

Understanding the Dual

After solving a bunch of linear algebra and calculus, want to maximize:

$$\mathcal{J}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
 (21)

Such that $\sum_i a_j y_j = 0$, s.t. $\alpha_i \ge 0$, $\forall i$

- $\langle x_i, x_j \rangle$ measures the similarity between the points
- Points with different labels increase the sum $\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}\langle x_{i},x_{j}\rangle$, while points with the same label decrease the sum

4 D > 4 B > 4 E > 4 E > 9 Q C

Understanding the Dual

• After solving a bunch of linear algebra and calculus, want to maximize:

$$\mathcal{J}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
 (22)

Such that $\sum_i a_j y_j = 0$, s.t. $\alpha_i \ge 0$, $\forall i$

- $a_i \ge 0$ and the constraint is tight $y_i(\theta^\top x_i) = 1$
 - Point is a support vector
- $a_i = 0$
 - Point is not a support vector

William & Mary CSCI 416 & 516 October 2, 2023 34/52

What if Data Are Not Linearly Separable?

- Cannot find θ that satisfies $y_i(\theta^T x_i) \ge 1, \forall i$
- Introduce the slack variable ξ_i

$$y_i(\boldsymbol{\theta}^{\top} \boldsymbol{x}_i) \ge 1 - \xi_i, \forall i$$
 (23)

• New problem, s. t. $y_i(\theta^\top x_i) \ge 1 - \xi_i, \forall i$:

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{d} \theta_j^2 + C \sum_{i} \xi_i$$
 (24)

William & Mary CSCI 416 & 516 October 2, 2023

Strengths of SVMs

- Good generalization in theory
- Good generalization in practice
- Work well with few training instances
- Find the globally best model
- Efficient algorithms
- Amenable to the kernel trick ...

What is the Decision Boundary Is Not Linear?

Kernel Methods: Making the Non-Linear Linear

When Linear Separators Fail

William & Mary CSCI 416 & 516 October 2, 2023 39 / 5.

Mapping into a New Feature Space

• For example, with $x_i \in \mathbb{R}^2$:

$$\Phi([x_{i1}, x_{i2}]) = [x_{i1}, x_{i2}, x_{i1}x_{i2}, x_{i1}^2, x_{i2}^2]$$
 (25)

- Rather than running SVM on x_i , run it on $\Phi(x_i)$
 - Find non-linear separator in input space
- What if $\Phi(x_i)$ is really big?
- Use kernels to compute it implicitly!

$$\Phi: \mathcal{X} \to \hat{\mathcal{X}} = \Phi(\mathbf{x}) \tag{26}$$

Kernels

• Find kernels K such that:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle \tag{27}$$

- Compute $K(x_i, x_j)$ should be efficient, much more so than computing $\Phi(x_i)$ and $\Phi(x_j)$
- Use $K(x_i, x_j)$ in the SVM algorithm rather than $\langle x_i, x_j \rangle$

William & Mary CSCI 416 & 516 October 2, 2023 4

The Polynomial Kernel

- Let $x_i = [x_{i1}, x_{i2}]$ and $x_j = [x_{j1}, x_{j2}]$
- Consider the following function:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2 \tag{28}$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (x_{i1}x_{j1} + x_{i2}x_{j2})^2$$
 (29)

$$K(\mathbf{x}_i, \mathbf{x}_j) = (x_{i1}^2 x_{j1}^2 + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{i2} x_{j1} x_{j2})$$
(30)

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle \tag{31}$$

where

$$\Phi(\mathbf{x}_i) = [x_{i1}^2, x_{i2}^2, \sqrt{2}x_{i1}x_{i2}]$$
 (32)

$$\Phi(\mathbf{x}_j) = [x_{j1}^2, x_{j2}^2, \sqrt{2}x_{j1}x_{j2}]$$
(33)

William & Mary CSCI 416 & 516 October 2, 2023 42/

The Kernel Trick

- Given an algorithm that is formulated in terms of a positive definite kernel K_1 , one can construct an alternative algorithm by replacing K_1 with another positive definite kernel K_2
- SVMs can use the kernel trick

William & Mary CSCI 416 & 516 October 2, 2023

Incorporating Kernels into SVMs

• Originally we have:

$$\mathcal{J}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
 (34)

Such that $\sum_i a_i y_i = 0$, s.t. $\alpha_i \ge 0$, $\forall i$

• After we incorporate the kernel, it becomes:

$$\mathcal{J}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(\boldsymbol{x}_i, \boldsymbol{x}_j)$$
(35)

Such that $\sum_i a_j y_j = 0$, s.t. $\alpha_i \ge 0$, $\forall i$

- 4 ロ b 4 団 b 4 恵 b 4 恵 b 9 Q C・

44/52

William & Mary CSCI 416 & 516 October 2, 2023

The Gaussian Kernel

Also called Radial Basis Function (RBF) kernel

$$K(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||_2^2}{2\sigma^2}\right)$$
 (36)

- Has value 1 when $x_i = x_i$
- Value falls off to 0 with increasing distance
- Note: Need to do feature scaling before using the Gaussian kernel

• Assume that we want to predict +1 or positive if:

$$\theta_0 + \theta_1 K(\boldsymbol{x}, \boldsymbol{\ell}_1) + \theta_2 K(\boldsymbol{x}, \boldsymbol{\ell}_2) + \theta_3 K(\boldsymbol{x}, \boldsymbol{\ell}_3) \ge 0 \tag{37}$$

William & Mary CSCI 416 & 516 October 2, 2023 46/52

• Assume that we want to predict +1 or positive if:

$$\theta_0 + \theta_1 K(\boldsymbol{x}, \boldsymbol{\ell}_1) + \theta_2 K(\boldsymbol{x}, \boldsymbol{\ell}_2) + \theta_3 K(\boldsymbol{x}, \boldsymbol{\ell}_3) \ge 0 \tag{38}$$

• for x_1 , we have $K(x_1, \ell_1) \approx 1$, other similarities ≈ 0

$$\theta_0 + \theta_1(1) + \theta_2(0) + \theta_3(0) = 0.5 \ge 0$$
 (39)

• so, predict +1 or positive

William & Mary CSCI 416 & 516 October 2, 2023 47/52

• Assume that we want to predict +1 or positive if:

$$\theta_0 + \theta_1 K(\boldsymbol{x}, \boldsymbol{\ell}_1) + \theta_2 K(\boldsymbol{x}, \boldsymbol{\ell}_2) + \theta_3 K(\boldsymbol{x}, \boldsymbol{\ell}_3) \ge 0 \tag{40}$$

CSCI 416 & 516

• for x_2 , we have $K(x_2, \ell_3) \approx 1$, other similarities ≈ 0

$$\theta_0 + \theta_1(0) + \theta_2(0) + \theta_3(1) = -0.5 \le 0$$
 (41)

• so, predict -1 or negative

William & Mary

10) 10) 1 E) 1 E) 1 C

October 2, 2023

48/52

• Assume that we want to predict +1 or positive if:

$$\theta_0 + \theta_1 K(\boldsymbol{x}, \boldsymbol{\ell}_1) + \theta_2 K(\boldsymbol{x}, \boldsymbol{\ell}_2) + \theta_3 K(\boldsymbol{x}, \boldsymbol{\ell}_3) \geq 0$$

$$\vdots$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{2\sigma^2}\right)$$

$$\vdots$$

$$\theta = [-0.5, 1, 1, 0]$$

$$\theta = [-0.5, 1, 1, 0]$$

(42)

October 2, 2023

49/52

Here's the graph sketch of the decision boundary when projected into the 2D space

William & Mary CSCI 416 & 516

Other Kernels

Sigmoid Kernel

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\alpha \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j + c) \tag{43}$$

- Neural networks use sigmoid as an activation function
- SVM with a sigmoid kernel is equivalent to a 2-layer perceptron
- Cosine Similarity Kernel

$$K(x_i, x_j) = \frac{x_i^{\top} x_j}{||x_i|| ||x_j||}$$
(44)

- Popular choice for measuring the similarity of text documents
- L^2 norm projects vectors onto the unit sphere; their dot product is the cosine of the angle between the vectors

Other Kernels

Chi-squared Kernel

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\gamma \sum_k \frac{(x_{ik} - x_{jk})^2}{x_{ik} + x_{jk}}\right)$$
(45)

- Widely used in computer vision applications
- Chi-squared measures the distance between probability distributions
- Data is issued to be non-negative, often with L^1 norm
- String kernels
- Tree kernels
- Graph kernels

William & Mary CSCI 416 & 516 October 2, 2023

Conclusion

- The SVM finds the optimal linear separator
- The kernel trick makes SVMs learn non-linear decision surfaces
- Strengths of SVMs:
 - Good theoretical and empirical performance
 - Supports many types of kernels
- Weaknesses of SVMs:
 - "Slow" to train and predict for huge datasets (although relatively fast...)
 - The kernel needs to be wisely chosen and its parameters need to be tuned