Project 2

Truman Fogler BF550

Scope and Goals

The goal of the project is to practice data analysis in Python. To that end, each student should choose a paper and reproduce at least two of its figures. It is important to make sure that you have access to the data. The data could have been deposited in a public repository or available from the authors upon request. Unless you have interest in processing raw data, it is often better to start with processed data. This is not mandatory, only recommended. Processing data could be the main aspect of the project especially if it is done using your own code.

Selected Paper

Orthogonality in Principal Component Analysis Allows the Discovery of Lipids in the Jejunum That Are Independent of Ad Libitum Feeding

https://www.mdpi.com/2218-1989/12/9/866 (https://www.mdpi.com/2218-1989/12/9/866)

Figure 1

Based on Figure S1 in the article. Scatterplot of scores of PCAs in Figure 2.

Original

Reproduced

Scatterplot of the scores of the principal component analyses in Figure 2. Left: Scores of the first two principal components of the lipids identified in the jejunum (the loadings are in Figure 2, Left) Principal Component 1 represents 30% of the variance and Principal Component 2 represents 20% of the variation. Right: Scores of the first two principal component analysis of the lipids indentified in the jejunum and the liver (the loadings are in Figure 2, Right). Principal Component 1 represents 19% of the variance and Principal Component 2 represents 15% of the variation. i.V., intra venous treatment; i.P., intra peritoneal treatment.

Figure 2

Figure 2 in the article. Scatterplot of PCA of variables in the lipidome.

Original

Reproduced

Figure 2. Loadings of the PCA of the jejunal and hepatic lipidomes. Left: Loadings plot of 1st and 2nd PCs of lipidome in jejunum. Triacylglycerols TGs in red; free fatty acids FAs in blue; phosphatidylcholines PCs in lime green; and ether phospholipids of ethanolamine in gold. Right: Loadings of the 1st and 2nd PCs of joint lipidome in jejunum (circles) and liver (triangles). Jenunal TGs in red, jej FAs in blue, everything else in light gray. Scores are in Figure 1.

Figure 3

Figure 3 in the article. Categorical plot of PCA Scores of the lipidome in the jejunum.

Original

Reproduced

Figure 3. Scores of the PCA of lipidome in the jejunum. Left facet: Boxplots of scores of 1st PC in jejunal lipidome. Manipulation is according to treatment of animals. Right facet: Boxplots of scores of 2nd PC in jejunal lipidome; manipulation is according to treatment of animals. dd, double dose; i.V. intravenous treatment; i.P. intra-peritoneal treatment.

Results shows that PC2 better explains variation from treatment.

Data Processing and Plots

```
In [103]:
               1 import matplotlib.pyplot as plt
               2 import matplotlib.ticker as ticks
               3 import numpy as np
               4 import pandas as pd
               5 import seaborn as sns
               6 sns.set(context = "paper", style = "ticks")
               7
               8 from sklearn.decomposition import PCA
               9 from sklearn.preprocessing import StandardScaler
              10
              11 ## code goes here
              12 | def load_data(filepath):
              13
                      "Loads in data from filepath as Dataframe"
                      return pd.read_csv(filepath, index_col = 0)
              14
              15
              16 # load signals as df
              17 signals = load_data("Signal.csv")
              18 print(signals.head())
              19 # load in variables df
              20 variables = load_data("Supplementary Material_1.csv")
              21 variables = variables.loc[variables.index.dropna()] # now removing NA-
              22 # validate
              23 variables
```

	Var_001	Var_002	Var_003	Var_004	Var_00
5 \					
Sample.ID					
Control	3743702.719	124938.2934	34342.77148	3237221.918	2276153.52
4 Control	4545331.531	162651.0564	40449.35386	3890073.086	2257931.67
2 Control 7	3142453.278	103221.2317	29182.41142	2627075.939	1540910.81
Control 8	3773137.835	104932.8221	34026.15821	2841866.205	1662993.43
Control 6	3685081.420	174503.3075	29162.54888	2856276.477	2873556.31
O					
	Var_006	Var_007	Var_008	Var_009	Var_0
10 \					
Sample.ID					
Control 61	1839203.560	34907.60723	89996.94420	16844.08597	226153.19
Control 23	3007269.456	33246.50355	127398.01300	13204.65459	271822.45
Control 10	2041865.953	25659.92653	98065.68270	11812.44116	235509.96
Control 88	2293310.164	31054.23498	101527.72310	11785.19430	183577.12
Control 24	2286710.131	26944.36637	97810.56002	15314.62265	194008.13
	Var	_273 Var	_274 Var	_275 Var	_276 \
Sample.ID	• • •				
Control	39349.0				
Control	29369.1				
Control	33187.6				
Control	69340.0				
Control	48330.1	.3841 6126494	.691 7161421	.093 2801062	.139
4	Var_277	Var_278	Var_279	Var_280	Var_28
1 \ Sample.ID					
Control	2455682.233	468789.3121	949536.2033	3570645.673	4383111.64
5 Control 7	1785544.841	352497.8170	690960.0751	2488716.981	3200070.18
Control	1721910.928	306371.7150	717631.6318	2254738.609	2695616.74
Control 8	2313397.924	455964.3334	997880.8836	3242282.592	4038371.54
Control 1	2673249.837	466810.0367	991277.1944	3351846.491	4238467.08
6 1 75	1/ 200				
	Var_282				
Sample.ID	_				
Control	2158538.825				
•	_				

Control 2141077.111

1897258.803

Control

Out[103]:

	Tissue	family	lipid	Carbons	Unsaturations	RT/s	Adduct	mz	ad
Sample.ID									
Var_001	Liver	FA	FA(16:0)	16.0	0.0	248.0	[M-H]-	255.2311	
Var_002	Liver	FA	FA(16:1)	16.0	1.0	189.2	[M-H]-	253.2150	
Var_003	Liver	FA	FA(17:0)	17.0	0.0	291.6	[M-H]-	269.2463	
Var_004	Liver	FA	FA(18:0)	18.0	0.0	337.6	[M-H]-	283.2626	
Var_005	Liver	FA	FA(18:1)	18.0	1.0	264.0	[M-H]-	281.2468	
Var_278	Jejunum	SM	SM(d40:2)	40.0	2.0	670.0	[M+H]+	785.6508	
Var_279	Jejunum	SM	SM(d41:1)	41.0	1.0	731.8	[M+H]+	801.6826	
Var_280	Jejunum	SM	SM(d42:1)	42.0	1.0	751.9	[M+H]+	815.6988	
Var_281	Jejunum	SM	SM(d42:2)	42.0	2.0	704.3	[M+H]+	813.6840	
Var_282	Jejunum	SM	SM(d42:3)	42.0	3.0	665.8	[M+H]+	811.6664	
282 rows ×	12 colum	nns							

 \blacksquare

```
In [104]:
                  # Make jejunum-only values
                3 print(variables.dtypes)
                4
                5 tissue_mask = variables.loc[:, "Tissue"] == "Jejunum" # keep values w
                  print(tissue_mask.tail())
                7
                  "Making a copy of signals where the only non-zero variables are Jejunu
                8
                9
                  jejunum_signals_df = signals.T.where(tissue_mask, other = 0.0, axis =
               10
               11 jejunum_signals_df.T.head()
              Tissue
                                                          object
              family
                                                          object
              lipid
                                                          object
              Carbons
                                                         float64
                                                         float64
              Unsaturations
              RT/s
                                                         float64
              Adduct
                                                          object
                                                         float64
              ΜZ
                                                         float64
              ppm m/z adduct
```

MS/MS: m/z and fragment identification object Unnamed: 11 float64 Unnamed: 12 float64

dtype: object
Sample.ID
Var 278 Tru

Var_278 True Var_279 True Var_280 True Var_281 True Var_282 True

Name: Tissue, dtype: bool

Out[104]:

	_	_	_	_	_		_	_	_
Sample.ID									
Control	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Control	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Control	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Control	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Control	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0

Var_001 Var_002 Var_003 Var_004 Var_005 Var_006 Var_007 Var_008 Var_00

5 rows × 282 columns

4

```
In [105]:
                  # Principal Component Analysis
               2
               3 # init std scaler
               4 # standardize features by recentering at zero and scaling to unit vari
                  signals standardized = StandardScaler().fit transform(signals)
               7
                  # Now apply PCA to selected features
                  num components = 2
               9 | signals PCA = PCA(n components = num components)
              10 #
              11 | signals PCA fit = signals PCA.fit transform(signals standardized)
              12
                  print(f"{signals_PCA.components_.shape = }")
              13
              14 | sample id = signals.index
              15
              signals_PCA_scores = pd.DataFrame(signals_PCA_fit[:, :2], columns = [
              17
                  print(f"signals_PCA_scores.head \n{signals_PCA_scores.head()}")
              18
              19
              20 # Do over all steps but for the jejunum signals only
              21
              22 # standardize features
              23 j_signals_standardized = StandardScaler().fit_transform(jejunum_signal
              24 #
              25 | jejunum_PCA = PCA(n_components = num_components)
              26  jejunum_PCA_fit = jejunum_PCA.fit_transform(j_signals_standardized)
              27
                  jejunum_PCA_fit[..., 0] = - jejunum_PCA_fit[..., 0] # reverse eigenved
              28 | jejunum_PCA_scores = pd.DataFrame(jejunum_PCA_fit, columns = ['PC_001'
                  print(f"jejunum_PCA_scores.head \n{jejunum_PCA_scores.head()}")
              signals_PCA.components_.shape = (2, 282)
              signals_PCA_scores.head
                           PC 001
                                     PC 002
              Sample.ID
              Control
                         9.413856 -1.022951
              Control
                        -0.028738 -9.427465
              Control
                         3.870471 -6.907008
              Control
                         6.982983 -1.638149
              Control
                       -0.087840 -6.539702
              jejunum_PCA_scores.head
                           PC_001
                                     PC_002
              Sample.ID
              Control
                         8.068391 -3.348617
              Control -3.282909 -8.059449
              Control -0.336738 -9.910995
              Control
                         5.803622 -7.912033
              Control
                        -4.138326 -0.571479
```

```
In [125]:
                  # Plotting PCA Scores
                  pc_one = signals_PCA_scores.loc[:, "PC_001"]
                2
                3
                  pc_two = signals_PCA_scores.loc[:, "PC_002"]
                  sample_id = signals.index.array
                5
                  # print(sample id)
                7
                  # init figure
                  fig, axs = plt.subplots(1, 2, figsize = (10, 4))
               8
               9
                  with sns.axes_style("ticks", rc = {'axis.grid': False}): # temporarily
              10
              11
                      with sns.color_palette(["#000000", "#DE5168", "#61CF4C", "#2197E7"
              12
                          sns.scatterplot(data = jejunum_PCA_scores, x = "PC_001", y =
              13
                          sns.scatterplot(data = signals_PCA_scores, x = "PC_001", y =
              14 sns.move_legend(axs[0], "lower right")
                  axs[0].set_title("Jejunum")
              15
              16
                  axs[0].set_xlabel("Scores PrinComp 1")
                  axs[0].set_ylabel("Scores PrinComp 2")
              17
                  axs[0].axhline(0, c = "#262626", linewidth = 1)
              18
              19
                  axs[0].axvline(0, c = "#262626", linewidth = 1)
              20 sns.move legend(axs[1], "lower right")
              21 axs[1].set_title("Jejunum + Liver")
              22
                  axs[1].set_xlabel("Scores PrinComp 1")
                  axs[1].set_ylabel("Scores PrinComp 2")
                  axs[1].axhline(0, c = "#262626", linewidth = 1)
              25
                  axs[1].axvline(0, c = "#262626", linewidth = 1)
              26
              27
                  j v explained = jejunum PCA.explained variance ratio
              28 | s_v_explained = signals_PCA.explained_variance_ratio_
              29 var_explnd = f"Explained Variance: Jejunum PC1 {j_v_explained[0]:.2f};
              30 Joint Liver + Jejunum PC1 {s v explained[0]:.2f}; Joint Liver + Jejunu
                  print(var explnd)
```

Explained Variance: Jejunum PC1 0.30; Jejunum PC2 0.20; Joint Liver + Jejunum PC1 0.19; Joint Liver + Jejunum PC2 0.15


```
In [107]:
               1 # More pca loadings stuff
               3 loadings = signals_PCA.components_.T # Transpose to have Loadings be 1
               4 # create df from Loadings
               5 loadings df = pd.DataFrame(data=loadings, columns=['PC1 loadings', 'PC
               6 loadings df.head()
               7
               8 # combining pca loadings with variables df
               9 | loadings_variables_merged = pd.concat((loadings_df, variables), axis =
                  print(loadings_variables_merged.dtypes)
              10
              11
              12 # mask out Lipid families not belonging to FAs or TGs
              13 lipid mask = loadings variables merged.family.isin(("TG", "FA"))
              14 tissue mask = loadings variables merged. Tissue.eq("Jejunum") # keep vd
              15
              16 loadings_variables_merged["family"] = np.where(lipid_mask, loadings_v
                  loadings_variables_merged["family"] = np.where(tissue_mask,
              17
              18
                                                                  loadings variables mer
              19
                                                                   "Lipid" + " in liver")
              20
              21 print((loadings variables merged["family"]).unique())
              22 loadings variables merged
```

```
PC1 loadings
                                            float64
                                            float64
PC2 loadings
Tissue
                                             object
family
                                             object
lipid
                                             object
Carbons
                                            float64
Unsaturations
                                            float64
RT/s
                                            float64
Adduct
                                             object
                                            float64
mz
                                            float64
ppm m/z adduct
MS/MS: m/z and fragment identification
                                             object
Unnamed: 11
                                            float64
Unnamed: 12
                                            float64
dtype: object
['Lipid in liver' 'FA in jejunum' 'Lipid in jejunum' 'TG in jejunum']
```

	PC1_loadings	PC2_loadings	Tissue	family	lipid	Carbons	Unsaturations
Var_001	-0.005098	-0.052275	Liver	Lipid in liver	FA(16:0)	16.0	0.0
Var_002	0.043666	-0.071817	Liver	Lipid in liver	FA(16:1)	16.0	1.0
Var_003	-0.009278	-0.073087	Liver	Lipid in liver	FA(17:0)	17.0	0.0
Var_004	-0.045011	-0.001792	Liver	Lipid in liver	FA(18:0)	18.0	0.0
Var_005	0.039243	-0.071956	Liver	Lipid in liver	FA(18:1)	18.0	1.0
Var_278	0.046389	0.108161	Jejunum	Lipid in jejunum	SM(d40:2)	40.0	2.0
Var_279	0.044894	0.103075	Jejunum	Lipid in jejunum	SM(d41:1)	41.0	1.0
Var_280	0.040907	0.120961	Jejunum	Lipid in jejunum	SM(d42:1)	42.0	1.0
Var_281	0.050726	0.118803	Jejunum	Lipid in jejunum	SM(d42:2)	42.0	2.0
Var_282	0.059375	0.117524	Jejunum	Lipid in jejunum	SM(d42:3)	42.0	3.0
282 rows	× 14 columns						
	··· IT COIGITIES			_			
4							

```
In [116]:
                  # Repeat Loadings of steps for jejunum
                3 # Transpose
               4
                  jejunum_loadings = jejunum_PCA.components_.T
               6 # create df from loadings
               7
                  jejunum_loadings_df = pd.DataFrame(data=jejunum_loadings, columns=['PC
               8
                  jejunum_loadings_df["PC1_loadings"] = - jejunum_loadings_df.PC1_loadir
               9
              10 # keep values w Tissue=="Jejunum"
              11 | tissue_mask = variables.Tissue == "Jejunum"
                  jejunum_variables = variables.where(tissue_mask, axis = 0)
              13
              14 # Generate merged jejunum loadings & variables
              15
                  jejunum_loadings_variables_merged = pd.concat((jejunum_loadings_df, je
              16
                  jejunum_loadings_variables_merged = jejunum_loadings_variables_merged[
              17
              18 # ~mask~ rename values in 'family'
              19
                  lipid_mask = jejunum_loadings_variables_merged.family.isin(["TG", "FA"
              20
                  jejunum_loadings_variables_merged.family = np.where(lipid_mask,
              21
                                                               jejunum_loadings_variables
              22
                  print(jejunum_loadings_variables_merged.family.unique())
              23
              24 | jejunum_loadings_variables_merged
```

['FA' 'Lipid' 'PC' 'etherPE' 'TG']

Out[116]:

	PC1_loadings	PC2_loadings	Tissue	family	lipid	Carbons	Unsaturations		
Var_125	0.082502	-0.078743	Jejunum	FA	FA(16:1)	16.0	1.0		
Var_126	0.067909	-0.081143	Jejunum	FA	FA(16:1)	16.0	1.0		
Var_127	0.089006	-0.069148	Jejunum	FA	FA(17:0)	17.0	0.0		
Var_128	0.119961	-0.053704	Jejunum	FA	FA(18:0)	18.0	0.0		
Var_129	0.087701	-0.050282	Jejunum	FA	FA(18:1)	18.0	1.0		
Var_278	0.083989	0.116764	Jejunum	Lipid	SM(d40:2)	40.0	2.0		
Var_279	0.083558	0.100558	Jejunum	Lipid	SM(d41:1)	41.0	1.0		
Var_280	0.085964	0.125693	Jejunum	Lipid	SM(d42:1)	42.0	1.0		
Var_281	0.093873	0.116447	Jejunum	Lipid	SM(d42:2)	42.0	2.0		
Var_282	0.103641	0.097914	Jejunum	Lipid	SM(d42:3)	42.0	3.0		
158 rows	158 rows × 14 columns								

```
In [117]:
                   from matplotlib.text import Text
                2
                3
                   # Plot Loadings of Principal Components
                4
                   labels = ["FA in jejunum", "TG in jejunum", "Lipid in jejunum", "Lipid
                   # init figure
                5
                   fig2, loadings axs = plt.subplots(1, 2, figsize = (15, 6))
                7
                8
                   with sns.axes style("ticks"):
                9
                       with sns.color_palette(["blue", "red", "lightgray", "lightgray"]):
               10
                           # plot jejunum lipidome
               11
                           sns.scatterplot(jejunum loadings variables merged, x = "PC1 ld
                                    hue = "family", hue_order = ("TG", "FA", "PC", "etherF
               12
                                    legend = 'auto', edgecolor = "black", palette = ["red"
               13
               14
                                    ax = loadings axs[0])
                           # plot lipidome in jejunum + liver
               15
               16
                           sns.scatterplot(loadings_variables_merged, x = "PC1_loadings",
                                    hue = "family", hue_order = labels, edgecolor = ["black
               17
                                    style = "family", markers = ["^", "o", "o", "o"], lege
               18
               19
                                    ax = loadings axs[1])
               20
                   sns.move_legend(loadings_axs[0], "lower left", bbox_to_anchor = (0.0,
               21
                   loadings_axs[0].axhline(0, color = "#262626", linewidth = 1)
               22
               23 loadings_axs[0].axvline(0, color = "#262626", linewidth = 1)
                   loadings_axs[0].set_xlabel("Loadings Principal Component 1")
               24
                   loadings axs[0].set ylabel("Loadings Principal Component 2")
               25
               26 sns.move_legend(loadings_axs[1], "lower left", bbox_to_anchor = (0.0,
                   loadings axs[1].xaxis.set major locator(ticks.MultipleLocator(0.050))
               27
               28 loadings_axs[1].axhline(0, color = "#262626", linestyle = '-', linewid
                   loadings_axs[1].axvline(0, color = "#262626", linestyle = '-', linewic
               30 loadings axs[1].set xlabel("Loadings Principal Component 1")
                   loadings axs[1].set ylabel("Loadings Principal Component 2")
               31
               32
                   # Text(x = -0.075, y = 0.15, text = 'B')
               33
                   plt.show()
                                                        0.10
                 0.10
                 0.05
                                                      Principal
                          :
                 0.00
                                                       -0.05
                                                             FA in jejunum
TG in jejunum
                -0.05
```

0.10

Loadings Principal Component 1

-0.10

Lipid in jejunur

-0.05

Loadings Principal Component

0.10

Out[110]:

PC Scores Principal Component Sample_Id

Sample.ID

Control	PC_001	8.068391	Control
Control	PC_001	-3.282909	Control
Control	PC_001	-0.336738	Control
Control	PC_001	5.803622	Control
Control	PC_001	-4.138326	Control

```
In [127]:
```

```
H
       # Plot box of Jejunum Scores
    2
    3
       with sns.color_palette(palette = ["#FFF", "#FFAAAA", "#FF6A6A", "#FF2A
    4
           box = sns.catplot(data = jejunum_long_PCA, kind = "box", col = "PC")
    5
                             aspect = 1, height = 4.5)
    6
           plt.ylabel("Scores Principal Component")
           plt.axvline(0.5, c = "#222", linestyle = "--")
    7
           plt.axvline(4.5, c = "#222", linestyle = "--")
    8
           plt.axvline(5.5, c = "#222", linestyle = "--")
    9
```

c:\Users\truma\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserW
arning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

