ПНД Ф 14.1:2:3.95-97

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИ КАЛЬЦИЯ В ПРОБАХ ПРИРОДНЫХ И СТОЧНЫХ ВОД ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ

УТВЕРЖДАЮ

Директор ФГБУ "Федеральный центр анализа и оценки техногенного воздействия" В.В.Новиков 08 июля 2016 г.

Методика допущена для целей государственного экологического контроля

Методика измерений аттестована Центром метрологии и сертификации "СЕРТИМЕТ" Уральского отделения РАН (<u>Аттестат аккредитации N RA.RU.310657</u> от 12.05.2015), рассмотрена и одобрена федеральным государственным бюджетным учреждением "Федеральный центр анализа и оценки техногенного воздействия" (ФГБУ "ФЦАО").

Настоящее издание методики введено в действие взамен предыдущего издания <u>ПНД Ф</u> <u>14.1:2.95-97</u> и действует до выхода нового издания.

Сведения об аттестованной методике измерений переданы в Федеральный информационный фонд по обеспечению единства измерений.

Заместитель директора ФГБУ "ФЦАО" А.Б.Сучков

Разработчик: © ООО НПП "Акватест"

Адрес: 344022, г.Ростов-на-Дону, ул.Журавлева, 44 тел./факс: (863) 292 30 18; (863) 263 80 33 e-mail:atest@bk.ru; aquatest@donpac.ru http://www.atest-rostov.ru

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий нормативный документ устанавливает методику измерений массовой концентрации кальция в пробах природных (поверхностных и подземных) и сточных (производственных, хозяйственно-бытовых, ливневых, очищенных) вод в диапазоне от 1,0 до 2000 мг/дм 3 титриметрическим методом.

Измерению мешают мутность, цветность, а также ионы металлов: алюминия (>10 мг/дм 3), железа (>10 мг/дм 3), меди (>0,05 мг/дм 3), кобальта и никеля (>0,1 мг/дм 3), вызывая нечеткое изменение окраски в точке эквивалентности.

Другие катионы (свинец, кадмий, марганец (II), цинк, стронций, барий) могут частично титроваться вместе с кальцием и повышать расход трилона Б. Магний в условиях анализа осаждается в виде гидроксида и не мешает определению.

Устранение мешающих влияний осуществляют в соответствии с п.11.

2 НОРМАТИВНЫЕ ССЫЛКИ

<u>ГОСТ 12.0.004-90</u> ССБТ. Организация обучения безопасности труда. Общие положения.

- <u>ГОСТ 12.1.004-91</u> ССБТ. Пожарная безопасность. Общие требования.
- ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.
- <u>ГОСТ 12.1.007-76</u> ССБТ. Вредные вещества. Классификация и общие требования безопасности.
- <u>ГОСТ 12.4.009-83</u> ССБТ. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание.
- <u>ГОСТ 17.1.5.04-81</u> Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия.
- <u>ГОСТ 17.1.5.05-85</u> Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков.
- <u>ГОСТ 1770-74</u> Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия.
 - ГОСТ 2053-77 Реактивы. Натрий сернистый 9 водный. Технические условия.
 - ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия.
 - ГОСТ 3760-79 Реактивы. Аммиак водный. Технические условия.
 - ГОСТ 3773-72 Реактивы. Аммоний хлористый. Технические условия.
 - ГОСТ 4108-72 Реактивы. Барий хлорид 2-водный. Технические условия.
 - ГОСТ 4233-77 Реактивы. Натрий хлористый. Технические условия.
 - ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия.
 - ГОСТ 4329-77 Реактивы. Квасцы алюмокалиевые. Технические условия.
 - ГОСТ 5456-79 Реактивы. Гидроксиламина гидрохлорид. Технические условия.
 - ГОСТ 6217-74 Уголь активный древесный дробленый. Технические условия.
 - ГОСТ 6709-72 Вода дистиллированная. Технические условия.
 - <u>ГОСТ 8864-71</u> Реактивы. Натрия N, N-диэтилдитиокарбамат 3-водный. Технические условия.
 - ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия.
- <u>ГОСТ 10652-73</u> Реактивы. Соль динатриевая этилендиамин-N,N,N',N'-тетрауксусной кислоты, 2-водная (трилон Б). Технические условия.
- <u>ГОСТ 14919-83</u> Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия.
 - ГОСТ 16317-87 Приборы холодильные электрические бытовые. Общие технические условия.
- <u>ГОСТ 25336-82</u> Посуда и оборудование лабораторные стеклянные. Типы. Основные параметры и размеры.
 - ГОСТ 27384-2002 Вода. Нормы погрешности измерений показателей состава и свойств.
 - ГОСТ 29169-91 Посуда лабораторная стеклянная. Пипетки с одной отметкой.
- <u>ГОСТ 29227-91</u> Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования.

ГОСТ 29251-91 Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования.

ГОСТ 31861-2012 Вода. Общие требования к отбору проб.

<u>ГОСТ Р 12.1.019-2009</u> ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.

<u>ГОСТ Р 53228-2008</u> Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

<u>ГОСТ OIML R 76-1-2011</u> ГСИ Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

<u>ГОСТ Р ИСО 5725-6-2002</u> Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике.

ТУ 6-09-1181-89 Бумага индикаторная универсальная для определения РН 1-10 и 7-14.

ТУ 6-09-1678-95 Фильтры обеззоленные (белая, красная, синяя ленты).

ТУ 64-1-909-80 Шкафы сушильно-стерилизационные ШСС-80П.

ТУ 2642-581-00205087-2007 Стандарт-титры для титриметрии.

<u>ТУ 3616-001-32953279-97</u> Приборы вакуумного фильтрования ПВФ-35 и ПВФ-47.

ТУ 6-09-5294-86 Цинк гранулированный.

ТУ 6-09-1657-72 Мурексид.

ТУ 6-09-1760-87 Эриохром черный Т.

ТУ 6-09-3542-84 Нафтоловый зеленый Б(В), /1-НИТРОЗО-2-НАФТОЛ-6-сульфокислоты натрий-феррат(III)/.

ТУ 2265-011-43153636-2015 Мембрана ацетатцеллюлозная Владипор МФАС-ОС-2-37мм* (0,45 мкм).

3 МЕТОД ИЗМЕРЕНИЙ

Титриметрический метод измерения массовой концентрации кальция основан на его способности образовывать с трилоном Б малодиссоциированное, устойчивое в щелочной среде соединение. Конечная точка титрования определяется по изменению окраски индикатора (мурексида) из розовой в красно-фиолетовую. Для увеличения четкости перехода окраски предпочтительнее использовать смешанный индикатор (мурексид + нафтоловый зелёный Б). При этом в конечной точке титрования окраска изменяется от грязно-зеленой до синей.

4 ТРЕБОВАНИЯ К ПОКАЗАТЕЛЯМ ТОЧНОСТИ ИЗМЕРЕНИЙ

- 4.1 Методика измерений должна обеспечивать выполнение измерений с погрешностью (неопределенностью), не превышающей норм точности измерений показателей состава и свойств вод, установленных <u>ГОСТ 27384-2002</u>.
- 4.2 Настоящая методика обеспечивает получение результатов измерений с погрешностями, не превышающими значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

- оформлении результатов анализа, выдаваемых лабораторией;

^{*} Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

- оценке деятельности лабораторий на качество проведения испытаний;
- оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Таблица 1 - Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости, правильности измерений

Диапазон измерений массовой концентрации кальция, мг/дм ³	Показатель точности (границы относительной погрешности при вероятности Р=0,95), ± δ, %	Показатель повторяемости (относительное средне-квадратическое отклонение повторяемости),	Показатель воспроизводимости (относительное средне-квадратическое отклонение воспроизводимости),	Показатель правильности (границы относительной систематической погрешности при вероятности $P=0,95$), $\pm \delta_c$, %
От 1,0 до 2,0 включ.	25	8	12	5
Св. 2,0 до 10,0 включ.	15	5	7	5
Св. 10,0 до 2000 включ.	11	3	5	5

5 ТРЕБОВАНИЯ К СРЕДСТВАМ ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫМ УСТРОЙСТВАМ, РЕАКТИВАМ И МАТЕРИАЛАМ

5.1 Средства измерений, лабораторная посуда, вспомогательные устройства

Весы лабораторные общего назначения специального или высокого класса <u>ГОСТ Р 53228-2008</u> или точности с наибольшим пределом взвешивания 210 г <u>ГОСТ ОІМL R 76-1</u>

Стандартные образцы состава водного раствора кальция с аттестованным ГСО 8065-94 содержанием кальция 1 г/дм 3 с погрешностью не более 1% при P=0,95

Колбы мерные 2-го класса точности исполнения 2, 2а вместимостью 250 и $\frac{\Gamma \text{OCT } 1770}{500 \text{ cm}^3}$

Пипетки градуированные 2 класса точности исполнения 1 вместимостью 1, $\frac{\Gamma OCT\ 29227}{2,5\ u\ 10\ cm}$

Пипетки с одной отметкой 2 класса точности исполнения 2 вместимостью $\frac{\Gamma OCT\ 29169}{10,\ 25,\ 50\ u\ 100\ cm^3}$

Бюретки 2 класса точности исполнения 1, 3 вместимостью 5, 10, 25 см³

Цилиндры мерные исполнения 1, 3 вместимостью 25, 50, 100, 500, 1000 $\frac{\text{ГОСТ 1770}}{\text{см}^3}$

	Страница 5
Пробирки конические исполнения 1 вместимостью 10 см ³	<u>ΓΟCT 1770</u>
Колбы конические Кн исполнения 2 ТХС вместимостью 250 и 500 см 3	<u>FOCT 25336</u>
Стаканы B-1, ТХС вместимостью 100, 250, 400, 600 и 1000 см ³	<u>FOCT 25336</u>
Стаканчики для взвешивания (бюксы) СВ-19/9, СВ-24/10 и СВ-34/12	<u>FOCT 25336</u>
Стакан полипропиленовый вместимостью 250 см ³	
Воронки лабораторные типа В диаметром 56 и 75 мм	<u>FOCT 25336</u>
Ступка N 3 или 4 с пестиком	<u>FOCT 9147</u>
Шпатель	<u>FOCT 9147</u>
Колонка хроматографическая диаметром 1,5-2,0 см и длиной 25-30 см	
Стекло часовое диаметром 5-7 см	
Палочки стеклянные	
Капельница 2-50 XC	<u>FOCT 25336</u>
Склянки для хранения проб и растворов из светлого и темного стекла с завинчивающимися или притертыми пробками вместимостью 100, 250, 500, 1000 см ³	
Посуда полиэтиленовая (полипропиленовая) для хранения проб и	
растворов вместимостью 100, 250, 500, 1000 см ³	
Электроплитка с закрытой спиралью и регулируемой мощностью нагрева	<u>FOCT 14919</u>
Шкаф сушильный общелабораторного назначения с температурой нагрева до 130°C	ТУ 64-1-909-80
Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47	TY 3616-001-32953279-97
Холодильник для хранения реактивов и проб, обеспечивающий температуру +2 ÷ +5°C	<u>ΓΟCT 16317</u>

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений, лабораторной посуды и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.5.1.

5.2 Реактивы и материалы

Динатриевая соль этилендиамин-N,N, N',N'-тетрауксусной кислоты, дигидрат (трилон Б, комплексон III)	<u>FOCT 10652</u>
или	
Динатриевая соль этилендиамин-N,N, N',N' тетрауксусной кислоты (трилон Б), стандарт-титр	ТУ 2642-581-00205087
Магний сернокислый (сульфат магния), стандарт-титр	ТУ 2642-581-00205087
или	

Ст	раница	6

	Страница 6
Цинк гранулированный	ТУ 6-09-5294-86
Аммоний хлористый (хлорид аммония)	<u>FOCT 3773</u>
Аммиак водный	<u>FOCT 3760</u>
Натрий хлористый (хлорид натрия)	<u>FOCT 4233</u>
Натрия гидроокись (гидроксид натрия)	<u>FOCT 4328</u>
Натрий сернистый 9-водный (сульфид натрия)	<u>FOCT 2053</u>
или	
Натрия N,N-диэтилдитиокарбамат 3-водный (диэтилдитиокарбамат натрия)	<u>FOCT 8864</u>
Кислота соляная	<u>FOCT 3118</u>
Гидроксиламина гидрохлорид	<u>FOCT 5456</u>
Пурпурат аммония (мурексид)	ТУ 6-09-1657
Нафтоловый зеленый Б	ТУ 6-09-3542-84
Эриохром черный Т (хромоген черный ЕТ)	ТУ 6-09-1760-87
Уголь активный	<u>FOCT 6217</u>
Квасцы алюмокалиевые	<u>FOCT 4329</u>
Барий хлорид 2-водный (хлорид бария)	<u>FOCT 4108</u>
Универсальная индикаторная бумага (pH 1-10)	ТУ 6-09-1181-76
Фильтры мембранные Владипор типа МФАС-ОС-2 (0,45 мкм)	ТУ 2265-011-43153636-2015
или	
Фильтры бумажные обеззоленные "синяя лента"	TY 6-09-1678
Вода дистиллированная	<u>FOCT 6709</u>

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по <u>ГОСТ 12.1.007</u>.
 - 6.2 Электробезопасность при работе с электроустановками обеспечивается по ГОСТ Р 12.1.019
 - 6.3 Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.
 - 6.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по <u>ГОСТ 12.1.004</u> и иметь средства пожаротушения по <u>ГОСТ 12.4.009</u>.

7 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ

К выполнению измерений и обработке их результатов допускаются лица, имеющие квалификацию техника-химика или лаборанта-химика и владеющие техникой титриметрического анализа.

8 УСЛОВИЯ ИЗМЕРЕНИЙ

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

- температура окружающего воздуха (22±6)°С;

- атмосферное давление (84-106) кПа;

- относительная влажность не более 80% при температуре 25°C;

- частота переменного тока (50±1) Гц;

- напряжение в сети (220±22) В.

9 ОТБОР И ХРАНЕНИЕ ПРОБ

- 9.1 Отбор проб для выполнения измерений массовой концентрации кальция производится в соответствии с ГОСТ 31861 и ГОСТ 17.1.5.05.
 - 9.2 Оборудование для отбора проб должно соответствовать $\underline{\Gamma OCT~31861}$, $\underline{\Gamma OCT~17.1.5.04}$ и $\underline{\Gamma OCT~17.1.5.05}$.
- 9.3 Пробы отбирают в стеклянную или пластиковую посуду, предварительно промытую раствором соляной кислоты 1:1, а затем дистиллированной водой. При отборе посуду ополаскивают отбираемой водой. Объем отобранной пробы должен быть не менее 300 см³.
- 9.4 Мутные пробы в возможно короткий срок фильтруют через мембранный фильтр 0,45 мкм. При невозможности использования мембранного фильтра допускается фильтрование через бумажный фильтр "синяя лента". Первую порцию фильтрата (20-30 см³) отбрасывают.
- 9.5 Пробы анализируют не позднее 24 ч после отбора или консервируют добавлением 0,5-1 см 3 соляной кислоты. При консервации допускается хранение проб до 1 месяца.
- 9.6 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:
 - цель анализа;
 - место, дата и время отбора;
 - номер (шифр) пробы;
 - должность, фамилия сотрудника, отбирающего пробу.

10 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

10.1 Приготовление растворов и реактивов

10.1.1 Раствор трилона Б с концентрацией 0,010 моль/дм³

Раствор трилона Б с концентрацией 0,100 моль-эквивалент/дм 3 (0,050 моль/дм 3) готовят из стандарт-титра в соответствии с документом на стандарт-титр. Пипеткой с одной меткой отбирают 100 см 3 полученного раствора, переносят в мерную колбу вместимостью 500 см 3 , доводят до метки дистиллированной водой и перемешивают.

При приготовлении раствора трилона Б из реактива 3,72 г трилона Б растворяют в 1 дм 3 дистиллированной воды.

Точную концентрацию раствора трилона Б устанавливают по стандартному раствору сульфата магния или хлорида цинка в соответствии с п.10.2.

Раствор хранят в полиэтиленовой посуде не более 6 месяцев, проверяют его концентрацию не реже 1 раза в месяц.

10.1.2 Раствор сульфата магния с концентрацией 0,010 моль/дм³

Раствор сульфата магния с концентрацией 0,100 моль-эквивалент/дм 3 (0,050 моль/дм 3) готовят из стандарт-титра в соответствии с документом на стандарт-титр. Пипеткой с одной меткой отбирают 100 см 3 полученного раствора, переносят в мерную колбу вместимостью 500 см 3 , доводят до метки дистиллированной водой и перемешивают.

10.1.3 Аммонийно-аммиачный буферный раствор с pH (10±0,1) ед. pH

10,0 г хлорида аммония растворяют в мерной колбе вместимостью 500 см 3 в 100 см 3 дистиллированной воды и добавляют 50 см 3 25% водного аммиака. Объем раствора доводят до метки на колбе дистиллированной водой и тщательно перемешивают.

Хранят в полиэтиленовой посуде не более 2 мес.

10.1.4 Индикатор эриохром черный Т

В ступке с 50 г хлорида натрия тщательно растирают 0,5 г эриохрома черного Т. Хранят в склянке из темного стекла не более 6 мес.

10.1.5 Индикатор мурексид

В ступке со 100 г хлорида натрия тщательно растирают 0,2 г мурексида. Хранят в склянке из темного стекла не более 6 мес.

10.1.6 Смешанный индикатор

В ступке <u>со 100</u> г хлорида натрия тщательно растирают 0,2 г мурексида и 0,4 г нафтолового зеленого Б. Хранят в склянке из темного стекла не более 6 мес.

10.1.7 Раствор нафтолового зеленого Б, 0,8%

В 50 см³ дистиллированной воды растворяют 0,4 г нафтолового зелёного Б. Раствор хранят в темной склянке в течение 3 мес.

10.1.8 Раствор нафтолового зеленого Б, 0,08%

 ${\rm K}~5~{\rm cm}^3~0,8\%$ раствора нафтолового зеленого Б добавляют 45 ${\rm cm}^3~$ дистиллированной воды и перемешивают. Раствор хранят не более 3 дней.

10.1.9 Раствор гидроксида натрия, 20%

20 г NaOH растворяют в 80 cm^3 дистиллированной воды.

10.1.10 Раствор гидроксида натрия, 8%

40 г NaOH растворяют в 460 см 3 дистиллированной воды.

10.1.11 Раствор гидроксида натрия, 0,4%

2 г гидроксида натрия (NaOH) растворяют в 500 см³ дистиллированной воды.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 месяцев.

10.1.12 Раствор сульфида натрия

2 г сульфида натрия растворяют в 50 см³ дистиллированной воды. Хранят в холодильнике в плотно закрытой полиэтиленовой посуде не более 7 дней.

10.1.13 Раствор диэтилдитокарбамата натрия

5 г диэтилдитиокарбамата натрия растворяют в 50 см ³ дистиллированной воды. Хранят в холодильнике не более 14 дней.

10.1.14 Раствор гидрохлорида гидроксиламина

5 г гидрохлорида гидроксиламина растворяют в 100 см³ дистиллированной воды. Хранят в холодильнике в плотно закрытой темной склянке не более 1 мес.

10.1.15 Раствор соляной кислоты, 4 моль/дм³

 $170~{\rm cm}^3~{\rm концентрированной соляной кислоты смешивают с 330 <math>{\rm cm}^3~{\rm дистиллированной воды}.$ Хранят в плотно закрытой посуде не более 1 года.

10.1.16 Раствор хлорида цинка с концентрацией 0,01 моль/дм³

Приготовление раствора хлорида цинка 0,01 моль/дм 3 осуществляют в соответствии с Приложением **A**.

10.1.17 Активный уголь

Подготовку активного угля осуществляют в соответствии с приложением Б.

10.1.18 Суспензия гидроксида алюминия

Приготовление суспензии гидроксида алюминия осуществляют в соответствии с приложением **Б**.

10.2 Установление точной концентрации раствора трилона Б

Точную концентрацию раствора трилона Б устанавливают по раствору сульфата магния (п.10.1.2) или хлорида цинка (приложение **A**).

При использовании раствора сульфата магния 10 см^3 раствора с помощью пипетки с одной меткой помещают в коническую колбу вместимостью 250 см^3 , добавляют 90 см^3 дистиллированной воды, 5 см^3 аммонийно-аммиачного буферного раствора и 70-100 мг индикатора эриохрома черного Т. Содержимое конической колбы тщательно перемешивают и титруют из бюретки вместимостью 25

см 3 раствором трилона Б до перехода окраски из красно-фиолетовой в голубую.

Повторяют титрование и при расхождении в объемах раствора трилона Б не более 0,1 см 3 за результат титрования принимают среднее арифметическое. В противном случае повторяют титрование до получения расхождения не более 0,1 см 3 .

Концентрацию раствора трилона Б рассчитывают по формуле:

$$C_{\text{TP}} = C_{Mg} \frac{V_{Mg}}{V_{\text{TD}}},$$

где $\,^{\rm C}_{{
m T}{
m p}}$ - концентрация раствора трилона Б, моль/дм 3 ;

 C_{Mg} - концентрация раствора сульфата магния, моль/дм 3 ;

 $V_{\tt TP}$ - объем раствора трилона Б, пошедшего на титрование, см 3 ;

 V_{Mg} - объем раствора сульфата магния, см 3 .

11 УСТРАНЕНИЕ МЕШАЮЩИХ ВЛИЯНИЙ

Для устранения или уменьшения мешающего влияния катионов металлов к пробе перед титрованием прибавляют $0.5~{\rm cm}^3$ раствора сульфида или диэтилдитиокарбамата натрия и $0.5~{\rm cm}^3$ раствора гидрохлорида гидроксиламина.

Результаты титрования могут также искажаться в присутствии значительных количеств анионов $(HCO_3^-, CO_3^{2-}, PO_4^{3-}, SiO_3^{2-})$. Для уменьшения их влияния пробу следует титровать сразу после добавления гидроксида натрия и индикатора.

Мешающее влияние взвешенных веществ устраняется фильтрованием пробы.

Если проба воды заметно окрашена за счёт присутствия веществ природного или антропогенного происхождения, затрудняется фиксация конечной точки титрования. В этом случае пробу перед выполнением измерений следует пропустить со скоростью 3-5 см 3 /мин через хроматографическую колонку, заполненную активированным углем (высота слоя 15-20 см). Первые 25-30 см 3 пробы, прошедшей через колонку, отбрасывают.

Как правило, окрашенные соединения антропогенного происхождения сорбируются активированным углем практически полностью, в то время как природного (гумусовые вещества) - лишь частично. При не устраняемой активированным углем цветности пробы, обусловленной гумусовыми веществами, определение конечной точки титрования значительно облегчается использованием для сравнения слегка перетитрованной пробы этой же воды (пробы-свидетеля).

Если высокая цветность не позволяет установить конечную точку титрования, для устранения цветности используют суспензию гидроксида алюминия. Для этого в стакан вместимостью 400-600 см 3 с помощью пипетки вместимостью 100 см 3 помещают 200 см 3 пробы, приливают к ней градуированной пробиркой 6 см 3 суспензии гидроксида алюминия, перемешивают до обесцвечивания пробы и дают отстояться. Фильтруют пробу через бумажный фильтр "белая лента", промытый дистиллированной водой, в мерную колбу вместимостью 250 см 3 . Осадок в стакане и фильтр промывают 2-3 раза небольшими порциями дистиллированной воды, собирая промывные воды в ту же колбу. После этого доводят раствор в колбе до метки, перемешивают, отбирают из колбы необходимую аликвоту и титруют ее в соответствии с 12.2.

Если в период хранения в пробе выпал осадок карбоната кальция, непосредственно перед анализом его растворяют прибавлением по каплям концентрированной соляной кислоты,

предварительно перелив с помощью сифона прозрачный слой над осадком в чистую сухую склянку. Затем перелитый раствор и жидкость с растворенным осадком соединяют вместе и нейтрализуют 20% раствором гидроксида натрия, добавляя его по каплям и контролируя рН по индикаторной бумаге.

12 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

12.1 Выбор условий титрования

Объём аликвоты пробы воды для измерения массовой концентрации кальция выбирают, исходя из предполагаемой концентрации или по результатам оценочного титрования (таблица 2).

Для оценочного титрования берут 10 см³ воды, добавляют 0,2 см³ 8% раствора гидроксида натрия, 20-30 мг индикатора мурексида и титруют раствором трилона Б до перехода окраски из розовой в красно-фиолетовую. По величине израсходованного на титрование объема раствора трилона Б выбирают из таблицы 2 соответствующий объем аликвоты пробы воды для измерений массовой концентрации кальция.

Таблица 2 - Объём аликвоты пробы воды, рекомендуемый для измерения массовой концентрации кальция

Предполагаемая концентрация кальция, мг/дм ³	Объем раствора трилона Б, израсходованный при оценочном титровании, см ³	Рекомендуемый объем аликвоты пробы воды, см ³	
Менее 90	Менее 2,3	100	
От 90 до 180	От 2,3 до 4,6	50	
Св. 180 до 380	От 4,6 до 9,5	25	
Св. 380 до 900	От 9,5 до 23	10	
Св. 900 до 1900	Более 23	5	

В зависимости от предполагаемой концентрации кальция или по результатам оценочного титрования выбирают и бюретку подходящей вместимости для титрования анализируемой пробы. Если при оценочном титровании объем израсходованного раствора трилона Б менее 0,4 см 3 , используют бюретку вместимостью 5 см 3 ; при объеме трилона менее 0,8 см 3 - бюретку вместимостью 10 см 3 ; при более высокой концентрации кальция - бюретку вместимостью 25 см 3 . При отсутствии бюретки вместимостью 10 см 3 можно использовать бюретку вместимостью 25 см 3 ; допускается замена бюретки вместимостью 5 см 3 бюреткой вместимостью 10 см 3 , однако замена бюретки вместимостью 5 см 3 бюреткой вместимостью 25 см 3 недопустима.

12.2 Титрование

В коническую колбу вместимостью 250 см³ отмеривают пипеткой с одной меткой выбранный в соответствии с таблицей 2 объем аликвоты пробы, доводят, если необходимо, до 100 см³ дистиллированной водой, добавляют 2 см³ 8%-ного раствора гидроксида натрия, 0,2-0,3 г индикатора мурексида (п.10.1.5) или смешанного индикатора (п.10.1.6) и титруют раствором трилона Б до перехода окраски из розовой в красно-фиолетовую при использовании мурексида или из грязно-зелёной в синюю при титровании со смешанным индикатором. Повторяют титрование и для предварительной оценки результатов измерений сравнивают расхождение объемов трилона Б между параллельными титрованиями с приведенными в таблице 3. Если это расхождение не превышает приведенных значений, за результат принимают среднее значение объёма трилона Б.

Таблица 3 - Допустимые расхождения между параллельными титрованиями в зависимости от объема раствора трилона Б

Объем израсходованного раствора трилона Б, см ³	до 3 включ.	св. 3 до 8 включ.	св. 8 до 12 включ.	св. 12
Допустимое расхождение объемов трилона Б, см ³	0,05	0,10	0,15	0,20

Если расхождение объемов титранта между параллельными титрованиями больше, чем в таблице 3, рассчитывают массовую концентрацию кальция (п.13.1) для каждого параллельного титрования и оценивают приемлемость результатов измерений (п.13.2), сравнивая расхождение с пределом повторяемости г (таблица 4). В случае неприемлемости результатов измерений устанавливают и устраняют причины недопустимого расхождения.

Для получения достаточно четкого перехода окраски при титровании со смешанным индикатором важно соотношение мурексида и нафтолового зеленого в смеси. Для разных партий индикаторов это соотношение может быть разным. Если при использовании сухого смешанного индикатора не удается получить четкий переход окраски в конечной точке титрования, следует использовать нафтоловый зеленый в виде 0,08% раствора (п.10.1.8). Титрование проводят следующим образом. Отбирают аликвоту воды в коническую колбу, добавляют 2 см³ 8% раствора гидроксида натрия, 0,2-0,3 г индикатора мурексида (п.10.1.5), перемешивают и приливают раствор нафтолового зеленого Б до тех пор, пока раствор приобретет грязно-зеленую окраску (всего идет примерно 0,9-1,2 см³ раствора). После этого титруют пробу.

13 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

13.1 Массовую концентрацию кальция в анализируемой пробе воды находят по формуле:

$$X = \frac{40,08 \cdot C_{\text{Tp}} \cdot V_{\text{Tp}} \cdot 1000}{V},$$

где X - массовая концентрация кальция в воде, мг/дм³;

 $C_{\rm TD}$ - концентрация раствора трилона Б, моль/дм³ ;

 $m V_{rp}$ - объем раствора трилона Б, израсходованного на титрование пробы, см 3 ;

 ${
m V}$ - объем аликвоты пробы воды, взятый для определения, см 3 ;

40.08 - молярная масса иона Са ²⁺ . г/моль.

Результат измерений может быть также представлен как молярная или эквивалентная концентрация кальция в анализируемой пробе воды:

$$X_{\rm M} = \frac{X}{40,08},$$

где X_{M} - молярная концентрация кальция, ммоль/дм 3 ;

X - массовая концентрация кальция, мг/дм 3 ;

40,08 - молярная масса иона Са $^{2+}$, г/моль.

$$X_3 = \frac{X}{20.04}$$

где $X_{\mathfrak{F}}$ - эквивалентная концентрация кальция, ммоль/дм 3 эквивалента;

X - массовая концентрация кальция, мг/дм 3 ;

20,04 - молярная масса эквивалента иона Са $^{2+}$, г/моль.

Если устранение цветности пробы осуществлялось с помощью суспензии гидроксида алюминия (п.11), полученный результат (X) умножают на 1,25.

13.2 За результат X_{cp} принимают среднее арифметическое значение двух параллельных измерений X_1 и X_2 :

$$X_{cp} = \frac{X_1 + X_2}{2},$$

для которых выполняется следующее условие:

$$200 \cdot \frac{\left| X_1 - X_2 \right|}{X_1 + X_2} \le r,\tag{1}$$

где r - предел повторяемости, значения которого приведены в таблице 4.

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных измерений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата измерений, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости (относительное значение) приведены в таблице 4.

Таблица 4 - Значения пределов повторяемости и воспроизводимости при вероятности Р=0,95

Диапазон измерений массовой концентрации кальция, мг/дм ³	Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %	Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %
От 1,0 до 2,0 включ.	22	34
Св. 2,0 до 10,0 включ.	14	20
Св. 10,0 до 2000 включ.	8	14

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 <u>ГОСТ Р ИСО 5725-6</u>.

14 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результат измерения X_{cp} в документах, предусматривающих его использование, представляется в виде:

$$(X_{cp} \pm \Delta)$$
 мг/дм³, P=0,95,

где <u>∆</u> - границы характеристики погрешности результатов измерений для данной массовой концентрации кальция.

Значение ∆ рассчитывают по формуле:

$$\Delta = 0.01 \cdot \delta \cdot X_{cp}$$
.

Значение δ приведено в таблице 1.

Допустимо результат измерения в документах, выдаваемых лабораторией, представлять в виде:

$$(X_{cp} \pm \Delta_{A})$$
 мг/дм³, P=0,95,

при условии $\Delta_n < \Delta$,

где X_{cp} - результат измерения, полученный в соответствии с прописью методики;

 $\pm \Delta_{\pi}$ - значение характеристики погрешности результатов измерений, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов анализа.

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности (таблица 1).

Примечание - При представлении результата измерений в документах, выдаваемых лабораторией, указывают:

- количество результатов параллельных измерений, использованных для расчета результата анализа;
 - способ определения результата измерений (среднее арифметическое значение).

15 КОНТРОЛЬ ТОЧНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Оперативный контроль точности результатов измерений проводят с каждой партией проб природных и сточных вод, если измерения выполняются эпизодически, а также при необходимости подтверждения результатов анализа отдельных проб при получении нестандартного результата измерений. Периодичность оперативного контроля процедуры анализа, а также реализуемые алгоритмы контроля стабильности результатов анализа регламентируют во внутренних документах лаборатории.

Образцы для контроля готовят из стандартного образца состава раствора кальция и дистиллированной воды.

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

- оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

15.1 Оперативный контроль процедуры измерений с использованием метода разбавления

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.

Результат контрольной процедуры K_{κ} рассчитывают по формуле:

$$K_{\kappa} = \left| 2X_{cp}^{t} - X_{cp} \right|,$$

где X_{CP}^{r} - результат измерений массовой концентрации кальция в разбавленной в 2 раза пробе - среднее арифметическое двух результатов параллельных измерений, расхождение между которыми удовлетворяет условию (1) раздела 13.2.

 X_{cp} - результат измерений массовой концентрации кальция в исходной пробе - среднее арифметическое двух результатов параллельных измерений, расхождение между которыми удовлетворяет условию (1) раздела 13.2.

Норматив контроля К рассчитывают по формуле:

$$K = \sqrt{4\Delta_{A,X_{\rm op}}^2 + \Delta_{A,X_{\rm op}}^2} \ , \label{eq:K}$$

где $^{\Delta}$ л, X_{Φ} , $^{\Delta}$ л, X_{G} - значения характеристики погрешности результатов измерений, установленные в лаборатории при реализации методики, соответствующие массовой концентрации кальция в разбавленной пробе и в исходной пробе соответственно.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: $\Delta_{\pi} = 0.84 \cdot \Delta$, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

$$K_{\kappa} \leq K$$
 (2)

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

15.2 Оперативный контроль процедуры измерений с использованием метода добавок

Результат контрольной процедуры K_{κ} рассчитывают по формуле:

$$K_{\kappa} = \left| X_{cp}^{t} - X_{cp} - C_{\partial} \right|,$$

где X_{cp}^{r} - результат измерений массовой концентрации кальция в пробе с известной добавкой - среднее арифметическое двух результатов параллельных измерений, расхождение между которыми удовлетворяет условию (1) раздела 13.2;

 X_{cp} - результат измерений массовой концентрации кальция в исходной пробе - среднее арифметическое двух результатов параллельных измерений, расхождение между которыми удовлетворяет условию (1) раздела 13.2;

 C_{∂} - величина добавки.

Норматив контроля K рассчитывают по формуле:

$$K = \sqrt{\Delta_{A,X_{GP}}^2 + \Delta_{A,X_{GP}}^2} \ ,$$

где $^{\Delta}_{A}$, $^{X}_{G}$, $^{\Delta}_{A}$, $^{X}_{G}$ - значения характеристики погрешности результатов измерений, установленные в лаборатории при реализации методики, соответствующие массовой концентрации кальция в пробе с известной добавкой и в исходной пробе соответственно.

Примечание - Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: $\Delta_{\pi} = 0.84$ Δ , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов

анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

$$K_{\kappa} \leq K$$
 (2)

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

15.3 Оперативный контроль процедуры измерений с применением образцов для контроля

Оперативный контроль процедуры анализа с применением образцов для контроля проводят путем сравнения результата измерений отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.

Результат контрольной процедуры K_{κ} рассчитывают по формуле:

$$K_{\kappa} = \left| C_{cp} - C \right|_{\bullet}$$

где C_{cp} - результат измерений массовой концентрации кальция в образце для контроля - среднее арифметическое двух результатов параллельных измерений, расхождение между которыми удовлетворяет условию (1) раздела 13.2;

C - аттестованное значение образца для контроля.

Норматив контроля K рассчитывают по формуле:

$$K = \Delta_n$$
.

где $\pm \Delta_{\it A}$ - характеристика погрешности результатов измерений, соответствующая аттестованному значению образца для контроля.

Примечание - Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: $\Delta_{\pi}=0.84\cdot\Delta$, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

$$K_{\kappa} \leq K$$
. (3)

При невыполнении условия (3) контрольную процедуру повторяют. При повторном невыполнении условия (3) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Приложение А (обязательное)

Установление точной концентрации раствора трилона Б по стандартному раствору хлорида цинка

Для приготовления стандартного раствора хлорида цинка с приблизительной концентрацией $0.01\,$ моль/дм $^3\,$ $(0.34\pm0.01)\,$ г металлического цинка смачивают небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при $(105\pm3)^{\circ}$ С в течение 1 ч, затем охлаждают и взвешивают на лабораторных весах с точностью до $\pm0.5\,$ мг.

Навеску цинка помещают в мерную колбу вместимостью 500 см³, в которую предварительно вносят 10-15 см³ дистиллированной воды и 1,5 см³ концентрированной соляной кислоты. Цинк растворяют, после чего объем раствора доводят до метки на колбе дистиллированной водой.

Молярную концентрацию раствора хлорида цинка $\,{}^{\rm C}_{Z{
m n}}$, моль/дм $^{
m 3}$, рассчитывают по формуле:

$$C_{Zn} = \frac{a \cdot 1000}{65.38 \cdot V}$$

где а - навеска металлического цинка, г;

65,38 - молярная масса \mathbb{Z}_n^{2+} , г/моль;

V - объём мерной колбы, см 3 .

Раствор хлорида цинка хранят в плотно закрытой стеклянной или полиэтиленовой посуде не более 3 мес.

Точную концентрацию раствора трилона Б устанавливают следующим образом.

В коническую колбу вместимостью 250 см³ с помощью пипетки с одной меткой вносят 10 см³ раствора хлорида цинка, добавляют 90 см³ дистиллированной воды, 5 см³ аммонийно-аммиачного буферного раствора и 70-100 мг индикатора эриохрома черного Т. Содержимое конической колбы тщательно перемешивают и титруют из бюретки вместимостью 25 см³ раствором трилона Б до перехода окраски из красно-фиолетовой в голубую.

Повторяют титрование и при расхождении в объемах раствора трилона Б не более 0,1 см 3 за результат титрования принимают среднее арифметическое. В противном случае повторяют титрование до получения расхождения не более 0,1 см 3 .

Концентрацию раствора трилона Б рассчитывают по формуле:

$$\mathbf{C}_{\mathtt{TP}} = \mathbf{C}_{\mathtt{Zn}} \, \frac{\mathtt{V}_{\mathtt{Zn}}}{\mathtt{V}_{\mathtt{TP}}} \, ,$$

где $C_{\mathtt{TP}}$ - концентрация раствора трилона Б, моль/дм³;

 C_{Zn} - концентрация раствора хлорида цинка, моль/дм 3 ;

 ${
m V_{TP}}$ - объем раствора трилона Б, пошедшего на титрование, см 3 ;

 $V_{\mathbb{Z}n}$ - объем раствора хлорида цинка, см 3 .

Приложение Б (обязательное)

Приготовление реактивов для устранения влияния компонентов химического состава пробы воды, мешающих определению кальция

Б.1 Подготовка активного угля

Порцию активного угля, достаточную для заполнения колонки, помещают в коническую колбу, добавляют 100-150 см 3 раствора соляной кислоты 4 моль/дм 3 и кипятят 2-3 ч. Если раствор кислоты окрашивается, повторяют операцию до тех пор, пока он не останется бесцветным. Уголь отмывают дистиллированной водой до нейтральной реакции воды по универсальной индикаторной бумаге, добавляют 100-150 см 3 раствора гидроксида натрия 1 моль/дм 3 и выдерживают 8-10 ч. Если появляется окраска, операцию повторяют. Очищенный уголь отмывают дистиллированной водой до нейтральной реакции воды. Хранят в склянке с дистиллированной водой до 6 месяцев.

Для заполнения колонки склянку встряхивают и переносят уголь вместе с водой в колонку, избыток воды сливают через кран. Высота слоя угля должна быть 12-15 см. Перед пропусканием пробы воду из колонки удаляют.

После пропускания каждой пробы воды уголь в колонке регенерируют промыванием 0,4% раствором гидроксида натрия до исчезновения окраски последнего, затем дистиллированной водой до нейтральной реакции.

Б.2 Приготовление суспензии гидроксида алюминия

В стакан вместимостью 1 дм 3 помещают 500 см 3 дистиллированной воды и растворяют в ней 63 г алюмокалиевых квасцов (KAl(SO $_4$) $_2$ ·12H $_2$ O). Нагревают раствор примерно до 60°С и при постоянном перемешивании медленно прибавляют 28 см 3 аммиака водного. Дают смеси отстояться в течение 1 ч, а затем промывают несколько раз дистиллированной водой, декантируя жидкость над осадком. Последняя промывная вода не должна давать положительной реакции на сульфаты (проба с раствором хлорида бария). Для приготовления раствора хлорида бария в 80 см 3 дистиллированной воды растворяют 10 г хлорида бария, прибавляют 10 см 3 концентрированной соляной кислоты и перемешивают. Для проведения пробы на сульфаты к 5 см 3 промывной воды приливают 0,5 см 3 раствора хлорида бария. Помутнение свидетельствует о присутствии сульфатов в промывной воде.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО НАУЧНЫХ ОРГАНИЗАЦИЙ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ АДМИНИСТРАТИВНО-ХОЗЯЙСТВЕННОЕ УПРАВЛЕНИЕ УРАЛЬСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

Центр метрологии и сертификации «СЕРТИМЕТ» (Центр «СЕРТИМЕТ» АХУ УрО РАН)

СВИДЕТЕЛЬСТВО

ОБ АТТЕСТАЦИИ МЕТОДИКИ (МЕТОДА) ИЗМЕРЕНИЙ

№ 88-16207-053-RA.RU.310657-2016

Методика измерений массовой концентрации кальция в пробах природных и сточных вод титриметрическим методом,

разработанная ООО НПП «Акватест» (344022, Россия, г. Ростов-на-Дону, ул Журавлева, д. 44)

предназначенная для измерения показателей состава природных и сточных вод

и регламентированная в ПНД Ф 14.1:2:3.95-97 (издание 2016 г.) «Методика измерений зассовой концентрации кальция в пробах природных и сточных вод титриметрическим методом», утвержденная в 2016 г., на 22 л.

Методика измерений аттестована в соответствии с ФЗ № 102 от 26 июня 2008 г. «Об обеспечении единства измерений».

Аттестация осуществлена по результатам метрологической экспертизы материалов по разработке методики измерений.

В результате аттестации установлено, что методика измерений соответствует предъявленным к ней метрологическим требованиям и обладает показателями точности, приведенными в вриложении.

Приложение: показатели точности методики измерений на 1 листе.

Дата выдачи свидетельства

1 июля 2016 г.

Начальник АХУ УрО РАН

Р.В. Зиновьев

Руководитель Центра «СЕРТИМЕТ» АХУ УрО РАН

Л.А.Игнатенкова

Россия, 620990, г. Екатеринбург, ул. Первомайская, 91 Тел./факс (343) 362-33-97

Лист 1 из 1

приложение

к свидетельству № 88-16207-053-RA.RU.310657-2016

об аттестации методики (метода) измерений массовой концентрации кальция в пробах природных и сточных вод титриметрическим методом на 1 листе (обязательное)

Значения показателей точности измерений приведены в таблице 1.

Таблица 1 – Диапазон измерений массовой концентрации кальция, значения показателей точности, повторяемости, воспроизводимости, правильности измерений

Диапазон измерений, мг/дм ³	Показатель точности (границы относительной погрешности при вероятности Р=0,95), ±8, %	Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), $\sigma_{\rm f}, \%$	Показатель воспроизводимости (относительное средиеквадратическое отклонение воспроизводимости), σ_R , %	Показатель правильности (границы относительной систематической погрешности при вероятности Р=0,95), ±δ _c , %
От 1,0 до 2,0 включ.	25	8	12	5
Св. 2,0 до 10,0 включ.	15	5	7	5
Св. 10,0 до 2000 включ.	11	3	5	5

Руководитель Центра «СЕРТИМЕТ» АХУ УрО РАН

Л.А. Игнатенкова

Электронный текст документа подготовлен АО "Кодекс" и сверен по: / Федеральная служба по надзору в сфере природопользования. -

ПНД Ф 14.1:2:3.95-97 Количественный химический анализ вод. Методика измерений массовой концентрации кальция в пробах природных и сточных вод титриметрическим методом (Издание 2016 года)
Применяется взамен ПНД Ф 14.1:2.95-97

Страница 21

M., 2016

ПНД Ф 14.1:2:3.95-97 Количественный химический анализ вод. Методика измерений массовой концентрации кальция в пробах природных и сточных вод титриметрическим методом (Издание 2016 года) (Источник: ИСС "ТЕХЭКСПЕРТ")