

NADER F. MIR

FREE SAMPLE CHAPTER

Computer and Communication Networks

Second Edition

Note: Under Contents Only Yellow Highlighted portions are in Module 3 syllabus

Computer and Communication Networks

Second Edition

Nader F. Mir

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto • Montreal • London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned. com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@ pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Catalog-in-Publication Data

Mir, Nader F.

Computer and communication networks / Nader F. Mir.—Second edition. pages cm

Includes bibliographical references and index. ISBN 978-0-13-381474-3 (hardcover : alk. paper)—ISBN 0-13-381474-2

(hardcover : alk. paper) 1. Computer networks. 2. Data transmission systems. I. Title.

TK5105.5.M567 2015

004.6-dc23

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-381474-3 ISBN-10: 0-13-381474-2

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

First printing, December 2014

Editor-in-Chief Mark L. Taub

Senior Acquisitions Editor

Trina MacDonald **Development Editor**

Songlin Qiu Managing Editor John Fuller

Full-Service Production Manager

Project Manager Vicki Rowland

Ted Laux Proofreader

Julie B. Nahil

Indexer

Andrea Fox Publishing Coordinator Olivia Basegio

Cover Designer Chuti Prasertsith

Compositor diacriTech, Inc.

2014037209

Contents

Preface xxiii
About the Author xxxvii

1

PART I: Fundamental Concepts 1

Packet-Switched Networks 3		
1.1	Basic l	Definitions in Networks 4
	1.1.1	Packet Switching Versus Circuit Switching 5
	1.1.2	Data, Packets, and Frames 6
	1.1.3	The Internet and ISPs 7
	1.1.4	Classification of ISPs 9
1.2	Types	of Packet-Switched Networks 11
	1.2.1	Connectionless Networks 11
	1.2.2	Connection-Oriented Networks 13
1.3	Packet	Size and Optimizations 15
1.4	Found	ation of Networking Protocols 17
	1.4.1	Five-Layer TCP/IP Protocol Model 18
	1.4.2	Seven-Layer OSI Model 20
1.5	Addre	ssing Scheme in the Internet 21
	1.5.1	IP Addressing Scheme 22
	1.5.2	Subnet Addressing and Masking 24
	1.5.3	Classless Interdomain Routing (CIDR) 26

viii Contents

	1.6	Equal-Sized Packets Model 28
	1.7	Summary 28
	1.8	Exercises 29
	1.9	Computer Simulation Project 34
2	Over	rview of Networking Devices 37
	2.1	Network Interface Cards (NICs) 39
	2.2	Switching and Routing Devices 40
		2.2.1 Layer 1 Devices 41
		2.2.2 Layer 2 Devices 42
		2.2.3 Layer 3 Devices 44
	2.3	Wireless Switching and Routing Devices 47
		2.3.1 Wireless Access Points and Base Stations 47
		2.3.2 Wireless Routers and Switches 48
		2.3.3 Antennas in Wireless Devices 49
	2.4	Modems 50
		2.4.1 Basic Modulation: ASK, FSK, and PSK 51
		2.4.2 Practical Modulation: 4-QAM and QPSK 53
		2.4.3 Digital Subscriber Line (DSL) Modems 55
		2.4.4 Cable Modems 57
	2.5	Multiplexers 58
		2.5.1 Frequency-Division Multiplexing (FDM) 59
		2.5.2 Time-Division Multiplexing 61
	2.6	Summary 66
	2.7	Exercises 67
	2.8	Computer Simulation Project 69
3	Data	Links and Link Interfaces 71
	3.1	Data Links 72
		3.1.1 Data Link Types 73
	3.2	Link Encoder 75
	3.3	Error Detection and Correction on Links 77
		3.3.1 Error Detection Methods 78
		3.3.2 Cyclic Redundancy Check (CRC) Algorithm 79
	3.4	Flow Control on Links 85
		3.4.1 Stop-and-Wait Flow Control 85
		3.4.2 Sliding-Window Flow Control 88

Contents ix

3.5	Link A	ccess by Multiple Users 92
	3.5.1	Carrier Sense Multiple Access (CSMA) 93
3.6	Wirele	ss Channel Access by Multiple Users 97
	3.6.1	Frequency-Division Multiple Access 99
	3.6.2	Time-Division Multiple Access 99
	3.6.3	Orthogonal Frequency-Division Multiple Access 99
	3.6.4	Single-Carrier Frequency-Division Multiple Access 100
	3.6.5	Code-Division Multiple Access 100
	3.6.6	Other Multiple-Access Methods 104
3.7	Link A	ggregation 107
	3.7.1	Link Aggregation Applications 107
	3.7.2	Link Aggregation Control Protocol (LACP) 108
3.8	Summ	ary 109
3.9	Exercis	ses 110
3.10	Comp	uter Simulation Project 114
т .	1 4	NI. 1 INI. 1 CIANI 115
		Networks and Networks of LANs 115
4.1		and Basic Topologies 116
4.2		Protocols 117
	4.2.1	Logical-Link Control (LLC) 118
4.2	4.2.2	Media Access Control (MAC) 118
4.3		rks of LANs 121
		LAN Networking with Layer 1 Devices 121
		LAN Networking with Layer 2 Devices 123
4.4		Networking with Layer 2 and 3 Devices 128 IP Address Conversion Protocols 130
4.4		
	4.4.1	Address Resolution Protocol (ARP) 130
4.5		Reverse Address Resolution Protocol (RARP) 132
4.6	-	ing-Tree Protocol (STP) 133 l LANs (VLANs) 136
4.0		l LANs (VLANs) 136 VLAN Switches 137
		VLAN Trunking Protocol (VTP) and IEEE 802.1Q 138
4.7		ss LANs 139
1./	VV II CIC	55 L711 15
	471	Infrared LANs 140
	4.7.1 4.7.2	Infrared LANs 140 Spread-Spectrum LANs 141
	4.7.1 4.7.2 4.7.3	Infrared LANs 140 Spread-Spectrum LANs 141 Narrowband RF LANs 141

4

x Contents

4.8	IEEE	802.11 Wireless LAN Standard 142
	4.8.1	IEEE 802.11 Physical Layer 144
	4.8.2	802.11 MAC Layer 145
		WiFi Networks 149
4.9	Case S	Study: DOCSIS, a Cable TV Protocol 151
4.10	Summ	-
4.11	Exerci	•
4.12		uter Simulation Project 157
Wide	e-Area	Routing and Internetworking 159
5.1		kets and Basic Routing Policies 160
J.1	5.1.1	Packet Fragmentation and Reassembly 163
	5.1.2	
		Obtaining and Assigning IP Addresses 165
		Dynamic Host Configuration Protocol (DHCP) 167
		Network Address Translation (NAT) 169
		Universal Plug and Play (UPnP) 172
5.2		election Algorithms 173
	5.2.1	_
		Bellman-Ford Algorithm 176
		Packet Flooding Algorithm 177
		Deflection Routing Algorithm 178
5.3		omain Routing Protocols 178
	5.3.1	Open Shortest Path First (OSPF) Protocol 180
	5.3.2	Routing Information Protocol (RIP) 183
5.4	Interd	omain Routing Protocols 188
	5.4.1	Autonomous System (AS) 189
	5.4.2	Border Gateway Protocol (BGP) 189
5.5	Intern	et Protocol Version 6 (IPv6) 196
	5.5.1	IPv6 Addressing Format 197
	5.5.2	Extension Header 198
	5.5.3	Packet Fragmentation 198
	5.5.4	Other Features of IPv6 199
5.6	Conge	estion Control at the Network Layer 199
	5.6.1	Unidirectional Congestion Control 201
	5.6.2	Bidirectional Congestion Control 202
	5.6.3	Random Early Detection (RED) 203
	5.6.4	A Quick Estimation of Link Blocking 205
	5.6.5	Lee's Serial and Parallel Connection Rules 206

5

Contents xi

	5.7	Summary 207		
	5.8	Exercises 209		
	5.9	Computer Simulation Project 213		
6	Mul	lticast Routing and Protocols 215		
	6.1	Basic Definitions and Techniques 216		
		6.1.1 IP Multicast Addresses 217		
		6.1.2 Basic Multicast Tree Algorithms 218		
		6.1.3 Classification of Multicast Protocols 220		
	6.2	Local and Membership Multicast Protocols 221		
		6.2.1 Internet Group Management Protocol (IGMP) 221		
	6.3	Intradomain Multicast Protocols 223		
		6.3.1 Multicast Backbone (MBone) 224		
		6.3.2 Distance Vector Multicast Routing Protocol (DVMRP) 224		
		6.3.3 Multicast OSPF (MOSPF) Protocol 225		
		6.3.4 Protocol-Independent Multicast (PIM) 227		
		6.3.5 Core-Based Trees (CBT) Protocol 230		
	6.4	Interdomain Multicast Protocols 231		
		6.4.1 Multiprotocol BGP (MBGP) 231		
		6.4.2 Multicast Source Discovery Protocol (MSDP) 234		
		6.4.3 Border Gateway Multicast Protocol (BGMP) 236		
	6.5	Summary 237		
	6.6	Exercises 238		
	6.7	Computer Simulation Project 241		
7	Wire	eless Wide Area Networks and LTE Technology 243		
	7.1	Infrastructure of Wireless Networks 244		
	7.2	Cellular Networks 246		
		7.2.1 Cellular Network Devices and Operation 247		
		7.2.2 Handoff 253		
	7.3	Mobile IP Management in Cellular Networks 259		
		7.3.1 Home Agents and Foreign Agents 260		
		7.3.2 Agent Discovery Phase 261		
		7.3.3 Registration 262		
		7.3.4 Mobile IP Routing 263		
		7.3.5 Generations of Cellular Networks 267		
	7.4	Long-Term Evolution (LTE) Technology 268		
		7.4.1 LTE Networking Devices 269		
		7.4.2 Call Establishment in LTE Cells 271		

xii Contents

	7.4.3 Handoff in LTE 271
	7.4.4 Downlink and Uplink Schemes in LTE 273
	7.4.5 Frequency Reuse 273
7.5	Wireless Mesh Networks (WMNs) with LTE 277
	7.5.1 Applications of Mesh Networks 277
	7.5.2 Physical and MAC Layers of WMNs 279
7.6	Characterization of Wireless Channels 280
	7.6.1 Capacity Limits of Wireless Channels 283
	7.6.2 Channel Coding 283
	7.6.3 Flat-Fading Countermeasures 284
	7.6.4 Intersymbol Interference Countermeasures 284
7.7	Summary 285
7.8	Exercises 286
7.9	Computer Simulation Project 288
Trar	asport and End-to-End Protocols 289
8.1	Overview of the Transport Layer 290
	8.1.1 Interaction of Transport Layer and Adjacent Layers 291
	8.1.2 Transport Layer Protocols 294
8.2	User Datagram Protocol (UDP) 295
	8.2.1 UDP Segments 295
	8.2.2 Applications of UDP 297
8.3	Transmission Control Protocol (TCP) 298
	8.3.1 TCP Segment 299
	8.3.2 A TCP Connection 301
	8.3.3 Window-Based Transmission and Sliding Window in TCP 305
	8.3.4 Applications of TCP 306
8.4	Mobile Transport Protocols 307
	8.4.1 UDP for Mobility 307
	8.4.2 TCP for Mobility 307
8.5	TCP Congestion Control 309
	8.5.1 Additive Increase, Multiplicative Decrease Control 309
	8.5.2 Slow-Start Method 311
	8.5.3 Fast Retransmit and Fast Recovery Methods 312
8.6	Summary 315
8.7	Exercises 316
8.8	Computer Simulation Project 319

8

Contents xiii

9	Basic	Network Applications and Management 321
	9.1	Overview of the Application Layer 322
		9.1.1 Client/Server Model 323
		9.1.2 Graphical User Interface (GUI) 324
	9.2	Domain Name System (DNS) 325
		9.2.1 Domain Name Space 325
		9.2.2 Name/Address Mapping 327
		9.2.3 DNS Message Format 329
	9.3	Electronic Mail (E-Mail) 330
		9.3.1 Basic E-Mail Structure and Definitions 330
		9.3.2 Simple Mail Transfer Protocol (SMTP) 333
		9.3.3 Post Office Protocol, Version 3 (POP3) 334
		9.3.4 Internet Mail Access Protocol (IMAP) 335
	9.4	World Wide Web (WWW) 335
		9.4.1 Hypertext Transfer Protocol (HTTP) 336
		9.4.2 Web Caching (Proxy Server) 341
		9.4.3 Webmail 342
	9.5	Remote Login Protocols 342
		9.5.1 TELNET Protocol 343
		9.5.2 Secure Shell (SSH) Protocol 344
	9.6	File Transfer and FTP 346
		9.6.1 File Transfer Protocol (FTP) 346
		9.6.2 Secure Copy Protocol (SCP) 346
	9.7	Peer-to-Peer (P2P) Networking 347
		9.7.1 P2P File Sharing Protocols 348
		9.7.2 P2P Database Sharing Protocols 353
		9.7.3 Estimation of Peer Connection Efficiency 355
	9.8	Network Management 356
		9.8.1 Elements of Network Management 358
		9.8.2 Structure of Management Information (SMI) 359
		9.8.3 Management Information Base (MIB) 359
	0.0	9.8.4 Simple Network Management Protocol (SNMP) 360
	9.9	Summary 362
	9.10	Exercises 363
	9 11	Computer Simulation Projects 366

xiv Contents

10 Net	10 Network Security 369	
10.1	Overview of Network Security 370	
	10.1.1 Elements of Network Security 370	
	10.1.2 Classification of Network Attacks 371	
10.2	Security Methods 375	
10.3	Symmetric-Key Cryptography 377	
	10.3.1 Data Encryption Standard (DES) 377	
	10.3.2 Advanced Encryption Standard (AES) 379	
10.4	7 71 8 1 7 -	
	10.4.1 RSA Algorithm 381	
	10.4.2 Diffie-Hellman Key-Exchange Protocol 382	
10.5	Authentication 383	
	10.5.1 Hash Function 383	
	10.5.2 Secure Hash Algorithm (SHA) 385	
10.6	Digital Signatures 387	
10.7	•	
	10.7.1 IP Security and IPsec 387	
	10.7.2 Security of Wireless Networks and IEEE 802.11 389	
10.8	3	
	10.8.1 Packet Filtering 393	
	10.8.2 Proxy Server 395	
10.9	Summary 396	
	Exercises 397	
10.1	Computer Simulation Project 399	
DADT	II. A.I	
PAKI	II: Advanced Concepts 401	
11 Net	work Queues and Delay Analysis 403	
11.1	Little's Theorem 404	
11.2	Birth-and-Death Process 406	
11.3		
11.4		
	11.4.1 <i>M/M/</i> 1 Queueing Systems 409	
	11.4.2 Systems with Limited Queueing Space: <i>M/M/1/b</i> 414	
	11.4.3 M/M/a Queueing Systems 415	
	11.4.4 Models for Delay-Sensitive Traffic: M/M/a/a 420	
	11.4.5 M/M/∞ Queueing Systems 422	

Contents xv

11.5	Non-Markovian and Self-Similar Models 424
	11.5.1 Pollaczek-Khinchin Formula and <i>M/G/</i> 1 424
	11.5.2 <i>M/D/</i> 1 Models 427
	11.5.3 Self-Similarity and Batch-Arrival Models 427
11.6	Networks of Queues 428
	11.6.1 Burke's Theorem 428
	11.6.2 Jackson's Theorem 433
11.7	Summary 437
11.8	Exercises 438
11.9	Computer Simulation Project 444
12 Adva	nnced Router and Switch Architectures 445
12.1	Overview of Router Architecture 446
12.2	Input Port Processor (IPP) 447
	12.2.1 Packet Parser 448
	12.2.2 Packet Partitioner 449
	12.2.3 Input Buffer 450
	12.2.4 Routing Table (IPv4 and IPv6) 450
	12.2.5 Multicast Scheduler 452
	12.2.6 Forwarding Table and Packet Encapsulator 452
12.3	Output Port Processor (OPP) 453
	12.3.1 Output Buffer 453
	12.3.2 Reassembler and Resequencer 454
	12.3.3 Error Control 454
12.4	Central Controller 454
	12.4.1 Contention Resolution Unit 455
	12.4.2 Congestion Controller 457
12.5	Switch Fabric 457
	12.5.1 Complexity of Switch Fabrics 458
	12.5.2 Crossbar Switch Fabrics 459
	12.5.3 Clos Switch Fabrics 460
	12.5.4 Concentration and Expansion Switch Fabrics 465
	12.5.5 Shared-Memory Switch Fabrics 468
	12.5.6 Performance Improvement in Switch Fabrics 469
12.6	Multicasting Packets in Routers 475
	12.6.1 Tree-Based Multicast Algorithm 476
	12.6.2 Packet Recirculation Multicast Algorithm 479

xvi Contents

	12.7	Summary 480
	12.8	Exercises 481
	12.9	Computer Simulation Project 484
13	Qual	ity of Service and Scheduling in Routers 485
	13.1	Overview of Quality of Service (QoS) 486
	13.2	Integrated Services QoS 486
		13.2.1 Traffic Shaping 488
		13.2.2 Admission Control 494
		13.2.3 Resource Reservation Protocol (RSVP) 495
	13.3	Differentiated Services QoS 495
		13.3.1 Per-Hop Behavior (PHB) 497
	13.4	Resource Allocation 497
		13.4.1 Management of Resources 498
		13.4.2 Classification of Resource-Allocation Schemes 499
		13.4.3 Fairness in Resource Allocation 500
	13.5	Packet Scheduling 501
		13.5.1 First-In, First-Out Scheduler 502
		13.5.2 Priority Queueing Scheduler 503
		13.5.3 Fair Queueing Scheduler 507
		13.5.4 Weighted Fair Queueing Scheduler 508
		13.5.5 Deficit Round-Robin Scheduler 511
		13.5.6 Earliest Deadline First Scheduler 512
	13.6	,
		Exercises 513
	13.8	Computer Simulation Project 517
		eling, VPNs, and MPLS Networks 519
	14.1	Tunneling 520
		14.1.1 Point-to-Point Protocol (PPP) 521
		14.1.2 IPv6 Tunneling and Dual-Stack Lite 522
	14.2	Virtual Private Networks (VPNs) 524
		14.2.1 Remote-Access VPN 526
		14.2.2 Site-to-Site VPN 526
		14.2.3 Security in VPNs 528
	14.3	Multiprotocol Label Switching (MPLS) 528
		14.3.1 Labels and Label Switch Routers (LSRs) 529
		14.3.2 Label Binding and Switching 531

Contents xvii

	14.3.3 Routing in MPLS Domains 534
	14.3.4 MPLS Packet Format 536
	14.3.5 Multi-Tunnel Routing 537
	14.3.6 Traffic Engineering 538
	14.3.7 MPLS-Based VPNs 539
14.4	Summary 540
14.5	Exercises 540
14.6	Computer Simulation Project 543
15 All-	Optical Networks, WDM, and GMPLS 545
15.1	Overview of Optical Networks 546
	15.1.1 Fiber Optic Links 547
	15.1.2 SONET/SDH Standards 547
	15.1.3 Generalized MPLS (GMPLS) Protocol 548
	15.1.4 Passive Optical Networks (PONs) 551
15.2	Basic Optical Networking Devices 553
	15.2.1 Tunable Lasers 553
	15.2.2 Optical Buffers or Delay Elements 553
	15.2.3 Optical Amplifiers 553
	15.2.4 Optical Filters 554
	15.2.5 Wavelength-Division Multiplexer (WDM) 555
	15.2.6 Optical Switches 556
15.3	Large-Scale Optical Switches 558
	15.3.1 Crossbar Optical Switches 559
	15.3.2 Spanke-Beneš Optical Switch 560
15.4	Structure of Optical Cross Connects (OXCs) 560
	15.4.1 Structure of Wavelength Routing Nodes 561
15.5	Routing in All-Optical Networks 563
	15.5.1 Wavelength Routing Versus Broadcasting 564
	15.5.2 Blocking Estimation over Lightpaths 565
15.6	Wavelength Allocation in Networks 567
	15.6.1 Wavelength Allocation without Dependency 568
	15.6.2 Wavelength Allocation with Dependency 569
15.7	Case Study: An All-Optical Switch 569
	15.7.1 Self-Routing in SSN 571
	15.7.2 Wavelength Assignment in SSN 571
15.8	•
15.9	
15.1	O Computer Simulation Project 575

xviii Contents

16	16 Cloud Computing and Network Virtualization 577		
	16.1	Cloud Computing and Data Centers 578	
		16.1.1 Platforms and APIs 581	
		16.1.2 Cloud Computing Service Models 581	
		16.1.3 Data Centers 583	
		16.1.4 Virtualization in Data Centers 584	
	16.2	Data Center Networks (DCNs) 588	
		16.2.1 Load Balancer 589	
		16.2.2 Traffic Engineering 591	
		16.2.3 DCN Architectures 591	
		16.2.4 Multicast Methods 594	
	16.3	Network Virtualization 595	
		16.3.1 Network Virtualization Components 596	
	16.4	Overlay Networks 600	
	16.5	Summary 601	
	16.6	Exercises 602	
	16.7	Computer Simulation Projects 605	
17	Soft	vare-Defined Networking (SDN) and Beyond 607	
1/	17.1	vare-Defined Networking (SDN) and Beyond 607 Software-Defined Networking (SDN) 608	
	1/.1	17.1.1 Separation of Control and Data Planes 609	
		17.1.2 Programmability of the Control Plane 612	
		17.1.2 Programmability of the Control Plane 012 17.1.3 Standardization of Application Programming Interfaces	
		(APIs) 613	
	17.2	SDN-Based Network Model 613	
		17.2.1 Control Plane 614	
		17.2.2 Data Plane Interface (OpenFlow Protocol) 615	
	17.3	Small-Size SDN Architectures 620	
		17.3.1 Scalability of SDN 620	
		17.3.2 Multicasting in SDN-Based Networks 621	
	17.4	SDN Architectures for Clouds 621	
		17.4.1 Software-Defined Compute and Storage 621	
		17.4.2 Application Delivery in Data Centers by SDN 622	
	17.5	Network Functions Virtualization (NFV) 623	
		17.5.1 Abstract Model of NFV 624	
		17.5.2 Distributed NFV-Based Networks 626	
		17.5.3 Virtualized Services 627	

Contents xix

	17.6	Information-Centric Networking (ICN) 627
		17.6.1 Named Objects 628
		17.6.2 ICN Routing and Network Management 628
		17.6.3 ICN Security 631
	17.7	Network Emulators for Advanced Networks 632
		17.7.1 Mininet 632
	17.8	Summary 635
	17.9	Exercises 636
	17.10	Computer Simulation Projects 638
		· · ·
18	Voice	over IP (VoIP) Signaling 641
	18.1	Public Switched Telephone Networks (PSTN) 642
		18.1.1 SS7 Network 644
		18.1.2 Circuit-Switched Networks 647
	18.2	Overview of Voice over IP (VoIP) 649
	18.3	H.323 Protocol 652
		18.3.1 Main Components of H.323 Protocol 652
		18.3.2 H.323 Protocol Organization 653
		18.3.3 RAS Signaling 655
		18.3.4 Call Signaling 659
		18.3.5 Control Signaling 662
		18.3.6 Conference Calling with H.323 Protocol 665
	18.4	Session Initiation Protocol (SIP) 666
		18.4.1 Main Components of SIP 667
		18.4.2 SIP Messages 669
		18.4.3 SIP Protocol Organization 671
		18.4.4 Registration Process 672
		18.4.5 Call Establishment 673
		18.4.6 Features and Extensions 674
	18.5	Softswitch Methods and MGCP 678
	18.6	VoIP and Multimedia Internetworking 679
		18.6.1 SIP to H.323 Internetworking 679
		18.6.2 SIP to PSTN Internetworking 681
		18.6.3 Wireless Cellular Multimedia Internetworking 682
	18.7	9
	18.8	Exercises 685
	18.9	Computer Simulation Projects 689

xx Contents

19	Medi	a Exchange and Voice/Video Compression 693
	19.1	Overview of Data Compression 694
	19.2	Digital Voice and Compression 695
		19.2.1 Sampling 695
		19.2.2 Quantization and Encoding 696
	19.3	Still Images and JPEG Compression 701
		19.3.1 Raw-Image Sampling and DCT 702
		19.3.2 Quantization 705
		19.3.3 Encoding 706
	19.4	Moving Images and MPEG Compression 707
		19.4.1 MP3 and Streaming Audio 708
	19.5	Compression Methods with Loss 709
		19.5.1 Basics of Information Theory 710
		19.5.2 Entropy of Information 710
		19.5.3 Shannon's Coding Theorem 711
	10.6	19.5.4 Compression Ratio and Code Efficiency 713
	19.6	Compression Methods without Loss 713
		19.6.1 Run-Length Encoding 714
		19.6.2 Huffman Encoding 715
	10.7	19.6.3 Lempel-Ziv Encoding 716
	19.7	Scanned Document Compression 717
	19.8	Summary 718 Exercises 719
	19.9	, .,
	19.10	Computer Simulation Project 724
20	Distr	ibuted and Cloud-Based Multimedia Networking 725
	20.1	Real-Time Media Exchange Protocols 726
		20.1.1 Real-Time Transport Protocol (RTP) 727
		20.1.2 Analysis of Jitter in RTP Traffic 731
		20.1.3 Real-Time Transport Control Protocol (RTCP) 732
		20.1.4 Real Time Streaming Protocol (RTSP) 735
		20.1.5 Stream Control Transmission Protocol (SCTP) 735
		20.1.6 HTTP-Based Streaming 740
	20.2	Distributed Multimedia Networking 741
		20.2.1 Content Distribution (Delivery) Networks (CDNs) 741
		20.2.2 IP Television (IPTV) and VoD 745
		20.2.3 Online Gaming 751

Contents xxi

	20.3	Cloud-Based Multimedia Networking 751
		20.3.1 Distributed Media Mini-Clouds 752
		20.3.2 Cloud-Based Interactive Voice Response (IVR) 754
	20.4	Self-Similarity and Non-Markovian Streaming 756
		20.4.1 Self-Similarity with Batch Arrival Models 757
	20.5	Summary 759
	20.6	Exercises 761
	20.7	Computer Simulation Project 764
21	Mob	ile Ad-Hoc Networks 765
	21.1	Overview of Wireless Ad-Hoc Networks 766
	21.2	Routing in Ad-Hoc Networks 767
		21.2.1 Classification of Routing Protocols 768
	21.3	Routing Protocols for Ad-Hoc Networks 769
		21.3.1 Destination-Sequenced Distance-Vector (DSDV) Protocol 769
		21.3.2 Cluster-Head Gateway Switch Routing (CGSR) Protocol 771
		21.3.3 Wireless Routing Protocol (WRP) 772
		21.3.4 Dynamic Source Routing (DSR) Protocol 773
		21.3.5 Temporally Ordered Routing Algorithm (TORA) 774
		21.3.6 Associativity-Based Routing (ABR) Protocol 775
		21.3.7 Ad-Hoc On-Demand Distance Vector (AODV) Protocol 776
	21.4	Security of Ad-Hoc Networks 783
		21.4.1 Types of Attacks 783
		21.4.2 Criteria for a Secure Routing Protocol 784
	21.5	Summary 785
	21.6	Exercises 786
	21.7	Computer Simulation Projects 787
22	Wire	less Sensor Networks 789
	22.1	Sensor Networks and Protocol Structures 790
		22.1.1 Clustering in Sensor Networks 790
		22.1.2 Protocol Stack 791
		22.1.3 Sensor Node Structure 793
	22.2	Communication Energy Model 794
	22.3	
		22.3.1 Classification of Clustering Protocols 800
		22.3.2 LEACH Clustering Protocol 800

Contents xxii

		22.3.3 DEEP Clustering Protocol 801 22.3.4 Reclustering 805
	22.4	22.3.4 Reclustering 805 Routing Protocols 805
	22.7	22.4.1 Intracluster Routing Protocols 806
		22.4.2 Intercluster Routing Protocols 808
	22.5	Other Related Technologies 811
	,	22.5.1 ZigBee Technology and IEEE 802.15.4 811
	22.6	Case Study: Simulation of a Sensor Network 812
		22.6.1 Cluster-Head Constellation and Distribution of Load 812
		22.6.2 Optimum Percentage of Cluster Heads 814
	22.7	Summary 814
	22.8	Exercises 815
	22.9	Computer Simulation Projects 815
A	Gloss	eary of Acronyms 817
В	RFC	823
C	Proba	abilities and Stochastic Processes 827
	C.1	Probability Theory 827
		C.1.1 Bernoulli and Binomial Sequential Laws 828
		C.1.2 Counting and Sampling Methods 828
	C.2	Random Variables 828
		C.2.1 Basic Functions 829
		C.2.2 Conditional Functions 829
		C.2.3 Popular Random Variables 830
		C.2.4 Expected Value and Variance 831
		C.2.5 A Function of a Random Variable 832
	C.3	Multiple Random Variables 832
		C.3.1 Basic Functions of Two Random Variables 833
		C.3.2 Two Independent Random Variables 833
	C.4	Stochastic (Random) Processes 834
		C.4.1 IID Random Process 834
	o -	C.4.2 Brownian Motion Random Process 834
	C.5	Theory of Markov Chains 835
		C.5.1 Continuous-Time Markov Chains 835
D	Erlan	g-B Blocking Probability Table 837

Index 841

A

Preface

This textbook represents more than a decade of work. During this time, some material became obsolete and had to be deleted. In my days as a telecommunication engineer and then a university professor, much has changed in the fields of data communications and computer networks. Nonetheless, this text covers both the foundations and the latest advanced topics of computer communications and networking.

The Internet is a revolutionary communication vehicle by which we all conveniently communicate every day and do business with one another. Because of its complexities at both hardware and software levels, the Internet is a challenge to those who want to study this field. The growing number and variety of communication services introduces other challenges to experts of computer networks. Such experts are in need of effective references having in-depth balanced analysis, architecture, and description, and enabling them to better design emerging communication networks. This book fills the gaps in current available texts.

Objectives

This textbook offers a mix of theory, architecture, and applications in computer networking. The lack of computer communications books presenting moderate analysis with detailed figures covering both wireline and wireless communication technologies led me to write this book. The main objective of this book is to help readers learn the fundamentals and certain advanced concepts of computer and communication networks, using a unified set of symbols throughout a single textbook. The preparation of this book responds to the explosive demand for learning computer communication science and engineering.

xxiv Preface

This book targets two groups of people. For people in academia, at both the undergraduate and graduate levels, the book provides a thorough design and performance evaluation of communication networks. The book can also give researchers the ability to analyze and simulate complex communication networks. For engineers who want to work in the communication and networking industry and need a reference covering various angles of computer networks, this book provides a variety of learning techniques: exercises, case studies, and computer simulation projects. The book makes it easy and fun for an engineer to review and learn from a reliable networking reference covering all the necessary concepts and performance models.

Organization of This Book

The range of topics presented in this text allows instructors to choose the topics best suited for their classes. Besides the explanations provided in each chapter, readers will learn how to model a communication network and how to mathematically analyze it. Readers of this text will benefit from the combination of theory and applications presented in each chapter, with the more theoretical portions of each chapter challenging those readers who are more ambitious.

This book is organized into 22 chapters in two main parts, as follows. The ten chapters of Part I cover the fundamental topics in computer networking, with each chapter serving as a base for the following chapter. Part I of the book begins with an overview of networking, focusing on TCP/IP schemes, describing routing and multicasting in regular networks and wireless networks, and ending with a discussion of network applications, P2P networking, network management, and security. Part I is most appropriate for readers with no experience in computer communications. The 12 chapters in Part II cover detailed analytical aspects and offer a closer perspective of advanced networking protocols: architectures of switches and routers, delay and congestion analysis, label switching, virtual private networks, optical networks, cloud computing, SDN, data compression, voice over IP (VoIP), multimedia networking, ad-hoc networking, and sensor networks. An overview of the 22 chapters is as follows:

• Chapter 1, Packet-Switched Networks, introduces computer networks, touching on the need for networks, explaining relevant packet-switched networks, and giving an overview of today's Internet. Fundamental concepts, such as messages, packets, and frames and packet switching versus circuit switching, are defined. Various types of packet-switched networks are defined, and how a

Preface xxv

message can be handled by either *connection-oriented networks* or *connectionless networks* is explained. The second part of the chapter presents basics of the five- and seven-layer Internet Protocol reference models, as well as Internet and addressing scheme. Finally, this chapter presents a detailed analysis of packet size and optimization.

- Chapter 2, Overview of Networking Devices, introduces the overall architectures of regular and wireless networking devices. The chapter starts with introducing *network interface cards* (NICs), followed by switching and routing devices, such as hubs, bridges, switches, and routers. These devices are used to switch packets from one path to another. The devices include both wireline and wireless devices used as user, server, or network equipment. Networking modems are used for access to the Internet from remote and residential areas. Finally, multiplexers are used in all layers of a network and are utilized to combine data from multiple lines into one line.
- Chapter 3, Data Links and Link Interfaces, focuses on the links and transmission interfaces, the two basic components that networking starts with. This chapter presents both wired and wireless links and describes their characteristics, advantages, and channel access methods. This chapter also presents various error-detection and correction techniques at the link level and discusses the integrity of transmitted data. The chapter further presents link-layer stop-andwait and sliding-window flow controls. We then proceed to presenting methods of link and then channel access by multiple users, both in regular and wireless environments. Finally, at the end of the chapter, the link aggregation method is described. The method combines multiple network links to increase throughput beyond what a single link can sustain. Link aggregation also has a second benefit of providing redundancy in case one of the links fails. We then introduce the well-known Link Aggregation Control Protocol (LACP).
- Chapter 4, Local Area Networks and Networks of LANs, explores the implementation of small networks, using the functional aspects of the fundamental knowledge gained in Chapters 1, 2, and 3 on basic protocols, devices, and links, respectively. The chapter provides some pointers for constructing a network with those devices and making connections, gives several examples of local area networks (LANs), and explains how such LANs are internetworked. Next, the chapter explores address conversion protocols by which addresses at layers 2 and 3 are converted to one another. The chapter at this point proceeds to the very important topic of the Spanning-Tree Protocol (STP). STP prevents frames or

xxvi Preface

packets from the looping that causes infinite circulation of frames in a network. *Virtual LANs* (VLANs) are the next topic. A VLAN methodology allows a single LAN to be partitioned into several seemingly and virtually separate LANs. At the end of the chapter, a reader can see an overview of wireless local area networks including WiFi, and wireless LANs and associated standards such as IEEE 802.11.

- Chapter 5, Wide-Area Routing and Internetworking, focuses on routing in wide area networks (WANs) and introduces related routing algorithms and protocols. We begin the chapter with some IP packet format and basic routing policies such as the *Internet Control Message Protocol* (ICMP), *Dynamic Host Configuration Protocol* (DHCP), and *Network Address Translation* (NAT). We then proceed to explain path selection algorithms such as the *Open Shortest Path First* (OSPF) protocol, and the *Routing Information Protocol* (RIP) followed by the interdomain routing protocols with a focus on the *Border Gateway Protocol* (BGP) covering both internal BGP (iBGP) and external BGP (eBGP). The chapter then presents IPv6 and its packet format. The chapter finally covers congestion-control algorithms at the network layer: *network-congestion control* and *link-flow control*, and especially looks at *random early detection* for congestion control and describes a useful technique to estimate the link-blocking probability.
- Chapter 6, Multicast Routing and Protocols, covers the multicast extension of routing protocols in the Internet. First, the chapter defines basic terms and algorithms: multicast group, multicast addresses, and multicast tree algorithms, which form the next set of foundations for understanding packet multicast in the Internet. Two main classes of protocols are discussed: intradomain multicast routing protocols, by which packets are multicast within a domain; and interdomain routing protocol, by which packet multicast among domains is managed.
- Chapter 7, Wireless Wide Area Networks and LTE Technology, presents the basics of wireless wide area networking. The chapter discusses challenges in designing a wireless network: management of mobility, network reliability, and frequency reuse. The chapter then shifts to cellular networks, one of the main backbones of our wireless wide area networking infrastructure. The mobile IP in cellular networks is then presented, in which a mobile user can make a data connection while changing its location. The chapter then focuses on wireless mesh networks (WMNs). Finally, the chapter proceeds to the presentation of the fourth-generation wireless wide area networks called Long-Term Evolution (LTE).

Preface xxvii

• Chapter 8, Transport and End-to-End Protocols, first looks at the basics of the *transport layer* and demonstrates how a simple file is transferred. This layer handles the details of data transmission. Several techniques for Transmission Control Protocol (TCP) congestion control are discussed. Next, *congestion-avoidance* methods, which are methods of using precautionary algorithms to avoid a possible congestion in a TCP session, are presented. The chapter ends with a discussion of methods of congestion control.

- Chapter 9, Basic Network Applications and Management, presents the fundamentals of the *application layer*, which determines how a specific user application should use a network. Among the applications are the *Domain Name System* (DNS); *e-mail protocols*, such as SMTP and Webmail, the *World Wide Web* (WWW), remote login, File Transfer Protocol (FTP), and *peer-to-peer* (P2P) networking. Finally, the chapter proceeds to the presentation of network management techniques and protocol.
- Chapter 10, Network Security, focuses on security aspects of networks. After introducing network threats, hackers, and attacks, this chapter discusses cryptography techniques: public- and symmetric-key protocols, encryption standards, key-exchange algorithms, authentication methods, digital signature and secure connections, firewalls, IPsec, and security methods for virtual private networks. This chapter also covers some security aspects of wireless networks.
- Chapter 11, Network Queues and Delay Analysis, begins Part II of the book by discussing how packets are queued in buffers. Basic modeling theorems are presented such as Little's theorem, the Markov chain theorem, and birth and death processes. Queueing-node models are presented with several scenarios: finite versus infinite queueing capacity, one server versus several servers, and Markovian versus non-Markovian systems. Non-Markovian models are essential for many network applications, as multimedia traffic cannot be modeled by Markovian patterns. In addition, delay analysis, based on networks of queues, is discussed. Burke's theorem is applied in both serial and parallel queueing nodes. Jackson's theorem is presented for situations in which a packet visits a particular queue more than once, resulting in loops or feedback.
- Chapter 12, Advanced Router and Switch Architectures, looks inside structures of advanced Internet devices such as switches and routers. The chapter begins with general characteristics and block diagrams of switches and routers followed by basic features of *input port processors* (IPPs) and *output port processors* (OPPs) as the interfacing processors to central controllers and switch fabrics.

xxviii Preface

The details of IPPs and OPPs with several regular IP and IPv6 examples for building blocks such as routing tables, packet parsers, and packet partitioners are presented. A number of switch fabric structures are introduced starting with the building block of *crossbar* switch fabric. In particular, a case study at the end of chapter combines a number of buffered crosspoints to form a buffered crossbar. A number of other switch architectures—both blocking and nonblocking, as well as shared-memory, *concentration-based*, and *expansion-based* switching networks—are presented. The chapter also introduces packet multicast techniques and algorithms used within the hardware of switches and routers.

- Chapter 13, Quality of Service and Scheduling in Routers, covers quality-of-service issues in networking. The two broad categories of QoS discussed are the *integrated services approach*, for providing service quality to networks that require maintaining certain features in switching nodes; and the *differentiated services approach* (DiffServ), which is based on providing quality-of-service support to a broad class of applications. These two categories include a number of QoS protocols and architectures, such as *traffic shaping, admission control, packet scheduling, reservation methods*, the *Resource Reservation Protocol* (RSVP), and traffic conditioner and bandwidth broker methods. This chapter also explains fundamentals of resource allocation in data networks.
- Chapter 14, Tunneling, VPNs, and MPLS Networks, starts by introducing a useful Internet technique called *tunneling*, used in advanced, secured, and high-speed networking. The chapter explains how networks can be *tunneled* to result in *virtual private networks* (VPNs) by which a private-sector entity tunnels over the public networking infrastructure, maintaining private connections. Another related topic in this chapter is *multiprotocol label switching* (MPLS) networks, in which networks use labels and tunnels to expedite routing.
- Chapter 15, All-Optical Networks, WDM, and GMPLS, presents principles of fiber-optic communications and all-optical switching and networking. The optical communication technology uses principles of light emission in a glass medium, which can carry more information over longer distances than electrical signals can carry in a copper or coaxial medium. The discussion on optical networks starts with basic optical devices, such as optical filters, wavelength-division multiplexers (WDMs), optical switches, and optical buffers and optical delay lines. After detailing optical networks using routing devices, the chapter discusses wavelength reuse and allocation as a link in all-optical networks.

Preface xxix

Generalized multiprotocol label switching (GMPLS) technology, which is similar to MPLS studied in the previous chapter, is applied to optical networks and is also studied in this chapter. The chapter ends with a case study on an optical switching network, presenting a new topology: the *spherical switching network* (SSN).

- Chapter 16, Cloud Computing and Network Virtualization, covers basics of cloud computing, large data centers, networking segments of data centers, and virtualization in networking. Data center and cloud computing architectures continue to target support for tens of thousands of servers, massive data storage, terabits per second of traffic, and tens of thousands of tenants. First, the chapter defines basic terms such as *virtualization*, *virtual machines*, and the structure of large data centers constructed from server racks and large data bases. The chapter also presents *data center networks* (DCNs). In a data center, server and storage resources are interconnected with packet switches and routers to construct the DCN.
- Chapter 17, Software-Defined Networking (SDN) and Beyond, covers primarily advanced paradigms in control and management of networks. Growth at the infrastructure and applications of the Internet causes profound changes in the technology ecosystems of Internet-related industries. Software-Defined Networking (SDN) is a networking paradigm by which a central software program known as "controller" (or SDN controller) determines and controls the overall network behavior resulting in potential improvement in the network performance. This chapter focuses on the fundamentals of SDN and a couple of other alternative innovative networking features, and describes the details of related topics such as OpenFlow switches and flow tables in switches. Protocols such as network functions virtualization (NFV) and Information-Centric Networking (ICN) are other advanced network control and management topics covered in this chapter. Finally, the chapter concludes with a section that presents network emulators such as the Mininet emulator.
- Chapter 18, Voice over IP (VoIP) Signaling, presents the signaling protocols used in voice over IP (VoIP) telephony and multimedia networking. The chapter starts with reviewing the basics of call control and signaling in the traditional Public Switched Telephone Network (PSTN). The chapter then presents two important voice over IP (VoIP) protocols designed to provide real-time service to the Internet, the Session Initiation Protocol (SIP) and the H.323 series

xxx Preface

of protocols. At the end of the chapter, a reader can find presentations on a series of internetworking examples between a set of callers, each supplied through a different Internet service provider and a different protocol.

- Chapter 19, Media Exchange and Voice/Video Compression, focuses on data-compression techniques for voice and video to prepare digital voice and video for multimedia networking. The chapter starts with the analysis of information-source fundamentals, source coding, and limits of data compression, and explains all the steps of the conversion from raw voice to compressed binary form, such as sampling, quantization, and encoding. The chapter also summarizes the limits of compression and explains typical processes of still-image and video-compression techniques, such as JPEG, MPEG, and MP3.
- Chapter 20, Distributed and Cloud-Based Multimedia Networking, presents the transport of real-time voice, video, and data in multimedia networking. The chapter first presents protocols designed to provide real-time transport, such as the Real-time Transport Protocol (RTP). Also discussed are the HTTP-based streaming which is a reliable TCP-based streaming, and the Stream Control Transmission Protocol (SCTP), which provides a general-purpose transport protocol for transporting stream traffic. The next topic is streaming video using content distribution (delivery) networks (CDNs). We then present Internet Protocol television (IPTV). IPTV is a system through which television services are delivered using the Internet. Video on demand (VoD) as a unique feature of IPTV is also described in this chapter. Next, cloud-based multimedia networking is introduced. This type of networking consists of distributed and networked services of voice, video, and data. For example, voice over IP (VoIP), video streaming, or *interactive voice response* (IVR) for recognizing human voice, can be distributed in various clouds of services. The chapter ends with detailed streaming source modeling using self-similarity analysis.
- Chapter 21, Mobile Ad-Hoc Networks, presents a special type of wireless network, known as a *mobile ad-hoc network* (MANET). Ad-hoc networks do not need any fixed infrastructure to operate and they support dynamic topology scenarios where no wired infrastructure exists. The chapter explains how a mobile user can act as a routing node and how a packet is routed from a source to its destination without having any static router in the network. The chapter also discusses *table-driven routing protocols* such as DSDV, CGSR, and WRP, and also *source-initiated routing protocols*, as well as DSR, ABR, TORA, and AODV. At the end of the chapter, we discuss the security of ad-hoc networks.

Preface xxxi

• Chapter 22, Wireless Sensor Networks, presents an overview of such sensor networks and describes intelligent sensor nodes, as well as an overview of a protocol stack for sensor networks. The chapter explains how the "power" factor distinguishes the routing protocols of sensor networks from those of computer networks and describes *clustering protocols* in sensor networks. These protocols specify the topology of the hierarchical network partitioned into nonoverlapping *clusters* of sensor nodes. The chapter also presents a typical routing protocol for sensor networks, leading to a detailed numerical case study on the implementation of a clustering protocol. This chapter ends with *ZigBee technology*, based on IEEE standard 802.15.4. This technology uses low-power nodes and is a well-known low-power standard.

Exercises and Computer Simulation Projects

A number of exercises are given at the end of each chapter. The exercises normally challenge readers to find the directions to solutions in that chapter. The answers to the exercises may be more elusive, but this is typical of real and applied problems in networking. These problems encourage the reader to go back through the text and pick out what the instructor believes is significant.

Besides typical exercises, there are numerous occasions for those who wish to incorporate projects into their courses. The computer simulation projects are normally meant to be a programming project but the reader can use a simulation tool of choice to complete a project. Projects listed at the end of a chapter range from computer simulations to partial incorporation of hardware design in a simulation.

Appendixes

The book's appendixes make it essentially self-sufficient. Appendix A, Glossary of Acronyms, defines acronyms. Appendix B, RFCs, encourages readers to delve more deeply into each protocol presented in the book by consulting the many requests for comments (RFCs) references. Appendix C, Probabilities and Stochastic Processes, reviews probabilities, random variables, and random processes. Appendix D, Erlang-B Blocking Probability Table, provides a numerically expanded version of the Erlang-B formula presented in Chapter 11. This table can be used in various chapters to estimate traffic blocking, which is one of the main factors in designing a computer network.

xxxii Preface

Instructions and Instructor Supplements

This textbook can be used in a variety of ways. An instructor can use Part I of the book for the first graduate or a senior undergraduate course in networking. Part II of the text is aimed at advanced graduate courses in computer networks. An instructor can choose the desired chapters, depending on the need and the content of the course. The following guidelines suggest the adoption of chapters for five different courses:

- First undergraduate course in Computer Networking: Chapters 1, 2, 3, 4, and 5 and another chapter such as part of Chapter 6, 7, 8, or 9.
- First graduate course in Computer Networking: Chapters 1 through 10 with less emphasis on Chapters 1 and 2.
- Second graduate course in Advanced Computer Networking: Chapters 11 through 17.
- Graduate course in Convergent Data, Voice and Video over IP: Chapters 7, 9, 16, 18, 19, and 20.
- *Graduate course in Wireless Networking:* Chapters 2, 3, 4, 7, 9, 16, 21, and 22, and other wireless network examples presented in various chapters such the wireless VoIP signaling covered in Chapter 18.

An instructor's solutions manual and other instructional material, such as PowerPoint presentations, will be available to instructors. Instructors should go to Pearson's Instructor Resource Center (http://www.pearsonhighered.com/educator/profile/ircHomeTab.page) for access to ancillary instructional materials.

Acknowledgments

Writing a text is rarely an individual effort. Many experts from industry and academia graciously provided help. I would like to thank them all very warmly for their support. Many of them have given me invaluable ideas and support during this project. I should acknowledge all those scientists, mathematicians, professors, engineers, authors, and publishers who helped me in this project.

I am honored to publish this book with the world's greatest publishing company, Prentice Hall. I wish to express my deep gratitude to everyone there who made an effort to make this project succeed. In particular, I would like to thank editor-in-chief Mark L. Taub and senior acquisitions editor Trina MacDonald for all their advice. Trina, with her outstanding professional talent, provided me with invaluable information and directed me toward the end of this great and challenging project. I would also like to

Preface xxxiii

thank managing editor John Fuller, full-service production manager Julie Nahil, development editor Songlin Qiu, freelance project manager Vicki Rowland, freelance copy editor/proofreader Andrea Fox, and all the other experts for their outstanding work but whom I did not get a chance to acknowledge by name in this section, including the marketing manager, the compositors, the indexer, and the cover designer; many thanks to all. Last but not least, I would like to thank Pearson sales representative Ellen Wynn, who enthusiastically introduced the first edition of my manuscript to the publisher.

I am deeply grateful to the technical editors, and all advisory board members of this book. In particular, I thank Professor George Scheets, Professor Zongming Fei, and Dr. Parviz Yegani for making constructive suggestions that helped me reshape the book to its present form. In addition, I would like to especially recognize the following people, who provided invaluable feedback from time to time during the writing phases of the first and second editions of the book. I took all their comments seriously and incorporated them into the manuscript. I greatly appreciate their time spent on this project.

Professor Nirwan Ansari (New Jersey Institute of Technology)

Professor Mohammed Atiquzzaman (University of Oklahoma)

Dr. Radu Balan (Siemens Corporate Research)

Dr. Greg Bernstein (Grotto Networking)

R. Bradley (About.com)

Deepak Biala (OnFiber Communications)

Dr. Robert Cane (VPP, United Kingdom)

Kevin Choy (Atmel, Colorado)

Dr. Kamran Eftekhari (University of California, San Diego)

Professor Zongming Fei (University of Kentucky)

Dr. Carlos Ferari (JTN-Network Solutions)

Dr. Jac Grolan (Alcatel)

Professor Jim Griffioen (University of Kentucky)

Ajay Kalambor (Cisco Systems)

Parviz Karandish (Softek, Inc.)

Aurna Ketaraju (Intel)

Dr. Hardeep Maldia (Sermons Communications)

Will Morse (Texas Safe-Computing)

xxxiv Preface

Professor Sarhan Musa (P. V. Texas A&M University)

Professor Achille Pattavina (Politecnico di Milano TNG)

Dr. Robert J. Paul (NsIM Communications)

Bala Peddireddi (Intel)

Christopher H. Pham (Cisco Systems)

Jasmin Sahara (University of Southern California)

Dipti Sathe (Altera Corporation)

Dr. Simon Sazeman (Sierra Communications and Networks)

Professor George Scheets (Oklahoma State University)

Professor Mukesh Singhal (University of Kentucky)

Professor Kazem Sohraby (University of Arkansas)

Dr. Richard Stevensson (BoRo Comm)

Professor Jonathan Turner (Washington University)

Kavitha Venkatesan (Cisco Systems)

Dr. Belle Wei (California State University, Chico)

Dr. Steve Willmard (SIM Technology)

Dr. Parviz Yegani (Juniper Networks)

Dr. Hemeret Zokhil (JPLab)

I am thankful to my graduate students who helped me throughout the long phase of preparing the manuscript of this textbook. Over the past several years, more than 112 of my graduate students read various portions of this book and made constructive comments. I wish them all the best for their honest support and verbal comments on early versions of this book used in my class lectures. I am especially thankful to the following graduate students who voluntarily reviewed some sections of the book while taking my networking courses: Howard Chan, Robert Bergman, Eshetie Liku, Andrew Cole, Jonathan Hui, Lisa Wellington, and Sitthapon Pumpichet. Special thanks to Marzieh Veyseh for making all the information about sensor networks available for Chapter 22.

Last but not least, I am indebted to my parents who opened the door to the best education for me and supported me all my life; and above all, I want to thank my family who supported and encouraged me in spite of all the time it took me away from them to work on this book. It was a long and difficult journey for them.

Preface xxxv

How to Contact the Author

Please feel free to send me any feedback at the Department of Electrical Engineering, Charles W. Davidson College of Engineering, San Jose State University, San Jose, California 95192, U.S.A., or via e-mail at nader.mir@sjsu.edu. I would love to hear from you, especially if you have suggestions for improving this book. I will carefully read all review comments. You can find out more about me at www.engr.sjsu.edu/nmir. I hope that you enjoy the text and that you receive from it a little of my enthusiasm for computer communications and networks.

—Nader F. Mir San Jose, California

About the Author

Nader F. Mir received the B.Sc. degree (with honors) in electrical engineering in 1985, and the M.Sc. and Ph.D. degrees, both in electrical engineering, from Washington University in St. Louis, Missouri, in 1990 and 1995, respectively.

He is currently a professor, and served as the associate chair, at the Department of Electrical Engineering, Charles W. Davidson College of Engineering, San Jose State University, California. He also serves as the academic coordinator of the university's special graduate programs offered at several Silicon Valley companies such as Lockheed-Martin Space Systems Company.

Dr. Mir is a well-known expert in patent and technology litigation cases in the areas of communications, telecommunications, and computer networks, and has worked as a patent consultant for leading companies in the field such as Google, Cisco, Netflix, Sony, Tekelec, and YouTube (Google).

Dr. Mir is internationally known through his research and scholarly work, and has been invited to speak at a number of major international conferences. He has published more than 100 refereed technical journal and conference articles, all in the field of communications and computer networking. This textbook is now a worldwide adopted university textbook and has been translated into several languages, such as Chinese.

He was granted a successful U.S. Patent (Patent 7,012,895 B1), claiming an invention related to hardware/protocol for use in high-speed computer communication networks.

Dr. Mir has received a number of prestigious national and university awards and research grants. He is the recipient of a university teaching award and also a university

xxxviii About the Author

research excellence award. He is also the recipient of a number of outstanding presentation awards from leading international conferences.

He is currently the technical editor of *IEEE Communications Magazine*. He has held several other editorial positions such as editor of *Journal of Computing and Information Technology*, guest editor for computer networking at *CIT Journal*, and editorial board member of the *International Journal of Internet Technology and Secured Transactions*. He is a senior member of the IEEE and has also served as a member of the technical program committee and steering committee for a number of major IEEE communications and networking conferences such as WCNC, GLOBECOM, and ICC and ICCCN conferences.

The areas of his research are: Computer and Communication Networks, TCP/IP Internet, Client/Server, SDN, Cloud Computing, Web, Load Balancing, VoIP, Video and Streaming over IP, Multimedia Networks, Design of Networking Equipment, Modems, Switches and Routers, PSTN, SS7, Wireless and Mobile Networks, and Wireless Sensor Networks.

Prior to his current position, he was an associate professor at his current school, and assistant professor at University of Kentucky in Lexington. From 1994 to 1996, he was a research scientist at the Advanced Telecommunications Institute, Stevens Institute of Technology in New Jersey, working on the design of advanced communication systems and high-speed computer networks. From 1990 to 1994, he was with the Computer and Communications Research Center at Washington University in St. Louis and worked as a research assistant on the design and analysis of a high-speed switching systems project. From 1985 to 1988, he was with Telecommunication Research & Development Center (TRDC), Surrey, and as a telecommunications system research and development engineer, participated in the design of a high-speed digital telephone Private Branch Exchange (PBX), and received the best "design/idea" award.

CHAPTER 1

Packet-Switched Networks

Computer and communication networks provide a wide range of services, from simple networks of computers to remote-file access to digital libraries, voice over IP (VoIP), Internet gaming, cloud computing, video streaming and conferencing, television over Internet, wireless data communication, and networking billions of users and devices. Before exploring the world of computer and communication networks, we need to study the fundamentals of packet-switched networks as the first step. Packet-switched networks are the backbone of the data communication infrastructure. Therefore, our focus in this chapter is on the big picture and the conceptual aspects of this backbone highlighted as:

- Basic definitions in networks
- Types of packet-switched networks
- Packet size and optimizations
- Foundation of networking protocols
- Addressing scheme in the Internet
- Equal-sized packet model

We start with the basic definitions and fundamental concepts, such as *messages*, *packets*, and *frames*, and *packet switching* versus *circuit switching*. We learn what the Internet is and how Internet service providers (ISPs) are formed. We then proceed to types of packet-switched networks and how a message can be handled by either *connection-oriented networks* or *connectionless networks*. Because readers must get a good understanding of *packets* as data units, packet size and optimizations are also discussed.

We next briefly describe specific type of networks used in the Internet. Users and networks are connected together by certain rules called *protocols*. The Internet Protocol (IP), for example, is responsible for using prevailing rules to establish paths for packets. Protocols are represented by either the TCP/IP model or the OSI model. The *five-layer TCP/IP model* is a widely accepted Internet backbone protocol structure. In this chapter, we give an overview of these five layers and leave any further details to be discussed in the remaining chapters. Among these five layers, the basics of IP *packets and network addressing* are designated a separate section in this chapter, entitled IP Packets and Addressing. We make this arrangement because basic definitions related to this layer are required in the following few chapters.

As numerous protocols can be combined to enable the movement of packets, the explanation of all other protocols will be spread over almost all upcoming chapters. In the meantime, the reader is cautiously reminded that getting a good grasp of the fundamental material discussed in this chapter is essential for following the details or extensions described in the remainder of the book. At the end of this chapter, the *equal-sized packet protocol model* is briefly introduced.

1.1 Basic Definitions in Networks

Communication networks have become essential media for homes and businesses. The design of modern computer and communication networks must meet all the requirements for new communication applications. A ubiquitous *broadband network* is the goal of the networking industry. Communication services need to be available anywhere and anytime. The broadband network is required to support the exchange of multiple types of information, such as voice, video, and data, among multiple types of users, while satisfying the performance requirement of each individual application. Consequently, the expanding diversity of high-bandwidth communication applications calls for a unified, flexible, and efficient network. The design goal of modern communication networks is to meet all the networking demands and to integrate capabilities of networks in a broadband network.

Packet-switched networks are the building blocks of computer communication systems in which data units known as packets flow across networks. The goal of a broadband packet-switched network is to provide flexible communication in handling all kinds of connections for a wide range of applications, such as telephone calls, data transfer, teleconferencing, video broadcasting, and distributed data processing. One obvious example for the form of traffic is multi-rate connections, whereby traffic containing several different bit rates flows to a communication node. The form of information in packet-switched networks is always digital bits. This kind of communication infrastructure is a significant improvement over the traditional telephone networks known as circuit-switched networks.

1.1.1 Packet Switching Versus Circuit Switching

Circuit-switched networks, as the basis of conventional telephone systems, were the only existing personal communication infrastructures prior to the invention of packet-switched networks. In the new communication structure, voice and computer data are treated the same, and both are handled in a unified network known as a packet-switched network, or simply an integrated data network. In conventional telephone networks, a circuit between two users must be established for communication to occur. Circuit-switched networks require resources to be reserved for each pair of end users. This implies that no other users can use the already dedicated resources for the duration of network use and thus the reservation of network resources for each user may result in inefficient use of available bandwidth.

Packet-switched networks with a unified, integrated data network infrastructure collectively known as the *Internet* can provide a variety of communication services requiring different bandwidths. The advantage of having a unified, integrated data network is the flexibility to handle existing and future services with remarkably better performance and higher economical resource utilizations. An integrated data network can also derive the benefits of central network management, operation, and maintenance. Numerous requirements for integrated packet-switched networks are explored in later chapters:

- Having robust routing protocols capable of adapting to dynamic changes in network topology
- Maximizing the utilization of network resources for the integration of all types of services

- Providing quality of service to users by means of priority and scheduling
- Enforcing effective congestion-control mechanisms that can minimize dropping packets

Circuit-switched networking is preferred for real-time applications. However, the use of packet-switched networks, especially for the integration and transmission of voice and data, results in the far more efficient utilization of available bandwidth. Network resources can be shared among other eligible users. Packet-switched networks can span a large geographical area and comprise a web of switching *nodes* interconnected through transmission links. A network provides links among multiple users facilitating the transfer of information. To make efficient use of available resources, packet-switched networks dynamically allocate resources only when required.

1.1.2 Data, Packets, and Frames

A packet-switched network is organized as a multilevel hierarchy. In such a network, digital data are fragmented into one or more smaller units of data, each appended with a *header* to specify control information, such as the source and the destination addresses, while the remaining portion carries the actual data, called the *payload*. This new unit of formatted message is called a *packet*, as shown in Figure 1.1. Packets are forwarded to a data network to be delivered to their destinations. In some circumstances, packets may also be required to be attached together or further partitioned, forming a new packet having a new header. One example of such a packet is referred to as *frame*. Sometimes, a frame may be required to have more than one header to carry out additional tasks in multiple layers of a network.

As shown in Figure 1.2, two packets, A and B, are being forwarded from one side of a network to the other side. Packet-switched networks can be viewed from

Figure 1.1 Creating packets and frames out of a raw digital data

Figure 1.2 A packet-switched network receiving various-sized packets to route out

either an external or an internal perspective. The external perspective focuses on the network services provided to the upper layers; the internal perspective focuses on the fundamentals of *network topology*, the structure of communication protocols, and addressing schemes.

A single packet may even be split into multiple smaller packets before transmission. This well-known technique is called *packet fragmentation*. Apart from measuring the delay and ensuring that a packet is correctly sent to its destination, we also focus on delivering and receiving packets in a correct sequence when the data is fragmented. The primary function of a network is directing the flow of data among the users.

1.1.3 The Internet and ISPs

The *Internet* is the collection of hardware and software components that make up our global communication network. The Internet is indeed a collaboration of interconnected communication vehicles that can network all connected communicating devices and equipment and provide services to all distributed applications. It is almost impossible to plot an exact representation of the Internet, since it is continuously being expanded or altered. One way of imagining the Internet is shown in Figure 1.3, which illustrates a big-picture view of the worldwide computer network.

To connect to the Internet, users need the services of an *Internet service provider* (ISP). ISPs consist of various networking devices. One of the most essential networking devices is a *router*. Routers are network "nodes" that can operate to collectively form a network and to also connect ISPs together. Routers contain information about the network routes, and their tasks are to route packets to requested destinations.

Users, networking devices, and servers are connected together by communication *links*. Routers operate on the basis of one or more common *routing protocols*. In

Figure 1.3 The Internet, a global interconnected network

computer networks, the entities must agree on a protocol, a set of rules governing data communications and defining when and how two users can communicate with each other. Each country has three types of ISPs:

- National ISPs
- Regional ISPs
- Local ISPs

At the top of the Internet hierarchy, national ISPs connect nations or provinces together. The traffic between each two national ISPs is very heavy. Two ISPs are connected together through complex switching nodes called *border routers* (or gateway routers). Each border router has its own system administrator. In contrast, *regional* ISPs are smaller ISPs connected to a national ISP in a hierarchical chart. Each regional ISP can give services to part of a province or a city. The lowest networking entity of the Internet is a local ISP. A local ISP is connected to a regional ISP or directly to a national service provider and provides a direct service to end users called *hosts*. An organization that supplies services to its own employees can also be a local ISP.

Figure 1.4 Hierarchy of networks from a different angle

Figure 1.4 illustrates a different perspective of the global interconnected network. Imagine the global network in a hierarchical structure. Each ISP of a certain hierarchy or tier manages a number of other network domains at its lower hierarchy. The structure of such networks resembles the hierarchy of nature from the universe to atoms and molecules. Here, Tier 1, Tier 2, and Tier 3 represent, respectively, a national ISP, a regional ISP, and a local ISP.

1.1.4 Classification of ISPs

In most cases, a separate network managed by a network administrator is known as a *domain*, or an *autonomous system*. A domain is shown by a cloud in this book. Figure 1.5 shows several domains. An autonomous system can be administered by an *Internet service provider* (ISP). An ISP provides Internet access to its users. Networks under management of ISPs can be classified into two main categories: *wide area networks* (WANs) and *local area networks* (LANs). A wide area network can be as large as the entire infrastructure of the data network access system known as the Internet.

Figure 1.5 Overview of various types of Internet service providers (ISPs)

A communication network can also be of wireless type both at LAN or WAN scales. We refer to such networks as *wireless networks*.

Figure 1.5 shows several major WANs each connected to several smaller networks such as a university campus network. Depending on the size of the network, a smaller network can be classified as a LAN or as a WAN. The major WANs are somehow connected together to provide the best and fastest communication for customers. One of the WANs is a wide area wireless network that connects wireless or mobile users to destination users. We notice that aggregated traffic coming from wireless equipment such as smartphone and a mobile laptop in the wide area wireless network is forwarded to a link directed from a major node. The other WAN is the telephone network known as *public-switched telephone network* (PSTN) that provides telephone services.

As an example of the local area network, a university campus network is connected to the Internet via a router that connects the campus to an Internet service provider. ISP users from a residential area are also connected to an access point router of the wide area ISP, as seen in the figure. Service providers have varying policies to overcome the problem of bandwidth allocations on routers. An ISP's *routing server* is conversant with

the policies of all other service providers. Therefore, the "ISP server" can direct the received routing information to an appropriate part of the ISP. Finally, on the left side of Figure 1.5, we see the *data center network* connected to the wide area packet-switched network. Cloud computing data centers contain databases and racks of servers that provide brilliant data processing services; these are discussed in detail in Chapter 16.

Network nodes (devices) such as *routers* are key components that allow the flow of information to be switched over other links. When a link failure occurs in a packet-switched network, the neighboring routers share the fault information with other nodes, resulting in updating of the routing tables. Thus, packets may get routed through alternative paths bypassing the fault. Building the *routing table* in a router is one of the principal challenges of packet-switched networks. Designing the routing table for large networks requires maintaining data pertaining to traffic patterns and network topology information.

1.2 Types of Packet-Switched Networks

Packet-switched networks are classified as *connectionless networks* and *connection-oriented networks*, depending on the technique used for transferring information. The simplest form of a network service is based on the connectionless protocol that does not require a call setup prior to transmission of packets. A related, though more complex, service is the connection-oriented protocol in which packets are transferred through an established virtual circuit between a source and a destination.

1.2.1 Connectionless Networks

Connectionless networks, or datagram networks, achieve high throughput at the cost of additional queuing delay. In this networking approach, a large piece of data is normally fragmented into smaller pieces, and then each piece of data is encapsulated into a certain "formatted" header, resulting in the basic Internet transmission packet, or datagram. We interchangeably use packets and datagrams for connectionless networks. Packets from a source are routed independently of one another. In this type of network, a user can transmit a packet anytime, without notifying the network layer. A packet is then sent over the network, with each router receiving the packet forwarding it to the best router it knows, until the packet reaches the destination.

The connectionless networking approach does not require a call setup to transfer packets, but it has error-detection capability. The main advantage of this scheme is its capability to route packets through an alternative path in case a fault is present on the

desired transmission link. On the flip side, since packets belonging to the same source may be routed independently over different paths, the packets may arrive out of sequence; in such a case, the misordered packets are resequenced and delivered to the destination.

Figure 1.6 (a) shows the routing of three packets, packets 1, 2, and 3, in a connectionless network from point A to point B. The packets traverse the intermediate nodes in a *store-and-forward* fashion, whereby packets are received and stored at a node on a route; when the desired output port of the node is free for that packet, the output is forwarded to its next node. In other words, on receipt of a packet at a node, the packet must wait in a queue for its turn to be transmitted. Nevertheless, packet loss may still occur if a node's buffer becomes full. The node determines the next hop read from the packet header. In this figure, the first two packets are moving along the path A, D, C, and B, whereas the third packet moves on a separate path, owing to congestion on path A–D.

The delay model of the first three packets discussed earlier is shown in Figure 1.7. The total transmission delay for a message three packets long traversing from the source node A to the destination node B can be approximately determined. Let t_p be the propagation delay between each of the two nodes, t_f be the time it takes to inject a packet onto a link, and t_r be the total processing delay for all packets at each node. A packet is processed once it is received at a node. The total transmission delay, D_p for n_b nodes and n_p packets, in general is

$$D_{p} = [n_{p} + (n_{h} - 2)]t_{f} + (n_{h} - 1)t_{p} + n_{h}t_{r}.$$
(1.1)

In this equation, t_r includes a certain crucial delay component, primarily known as the *packet-queueing delay* plus some delay due to route finding for it. At this point,

Figure 1.6 Two models of packet-switched networks: (a) a connectionless network and (b) a connection-oriented network

Figure 1.7 Signaling delay in a connectionless network

we focus only on t_p and t_f , assume t_r is known or given, and will discuss the queueing delay and all components of t_r in later chapters, especially in Chapter 11.

Example. Figure 1.7 shows a timing diagram for the transmission of three (instead of two) packets on path A, D, C, B in Figure 1.6(a). Determine the total delay for transferring these three packets from node A to node B.

Solution. Assume that the first packet is transmitted from the source, node A, to the next hop, node D. The total delay for this transfer is $t_p + t_f + t_r$. Next, the packet is similarly transferred from node D to the next node to ultimately reach node B. The delay for each of these jumps is also $t_p + t_f + t_r$. However, when all three packets are released from node A, multiple and simultaneous transmissions of packets become possible. This means, for example, while packet 2 is being processed at node A, packet 3 is processed at node D. Figure 1.7 clearly shows this parallel processing of packets. Thus, the total delay for all three packets to traverse the source and destination via two intermediate nodes is $D_p = 3t_p + 5t_f + 4t_r$.

Connectionless networks demonstrate the efficiency of transmitting a large message as a whole, especially in noisy environments, where the error rate is high. It is obvious that the large message should be split into packets. Doing so also helps reduce the maximum delay imposed by a single packet on other packets. In fact, this realization resulted in the advent of connectionless packet switching.

1.2.2 Connection-Oriented Networks

In *connection-oriented networks*, or *virtual-circuit networks*, a route setup between a source and a destination is required prior to data transfer, as in the case of conventional telephone networks. In this networking scheme, once a connection or a path

is initially set up, network resources are reserved for the communication duration, and all packets belonging to the same source are routed over the established connection. After the communication between a source and a destination is finished, the connection is terminated using a connection-termination procedure. During the call setup, the network can offer a selection of options, such as best-effort service, reliable service, guaranteed delay service, and guaranteed bandwidth service, as explained in various sections of upcoming chapters.

Figure 1.6 (b) shows a connection-oriented - network. The connection set-up procedure shown in this figure requires three packets to move along path A, D, C, and B with a prior connection establishment. During the connection set-up process, a virtual path is dedicated, and the forwarding routing tables are updated at each node in the route. Figure 1.6 (b) also shows acknowledgement packets in connection-oriented networks initiated from destination node B to source node A to acknowledge the receipt of previously sent packets to source node. The acknowledgement mechanism is not typically used in connectionless networks. Connection-oriented packet switching typically reserves the network resources, such as the buffer capacity and the link bandwidth, to provide guaranteed quality of service and delay. The main disadvantage in connection-oriented packet-switched networks is that in case of a link or switch failure, the call set-up process has to be repeated for all the affected routes. Also, each switch needs to store information about all the flows routed through the switch.

The total delay in transmitting a packet in connection-oriented packet switching is the sum of the connection set-up time and the data-transfer time. The data-transfer time is the same as the delay obtained in connectionless packet switching. Figure 1.8 shows the overall delay for the three packets presented in the previous example. The transmission of the three packets starts with *connection request packets* and then

Figure 1.8 Signaling delay in a connection-oriented packet-switched network

connection accept packets. At this point, a circuit is established, and a partial path bandwidth is reserved for this connection. Then, the three packets are transmitted. At the end, a connection release packet clears and removes the established path.

The estimation of total delay time, D_t , to transmit n_p packets is similar to the one presented for connectionless networks. For connection-oriented networks, the total time consists of two components: D_p , which represents the time to transmit packets, and D_c , which represents the time for the control packets. The control packets' time includes the transmission delay for the connection request packet, the connection accept packet, and the connection release packet:

$$D_t = D_p + D_c. (1.2)$$

Another feature, called *cut-through switching*, can significantly reduce the delay. In this scheme, the packet is forwarded to the next hop as soon as the header is received and the destination is parsed. We see that the delay is reduced to the aggregate of the propagation times for each hop and the transfer time of one hop. This scheme is used in applications in which retransmissions are not necessary. Optical fiber transmission has a very low loss rate and hence uses cut-through switching to reduce the delay in transmitting a packet. We will further explain the concept of cut-through switching and its associated devices in Chapters 2 and 12.

1.3 Packet Size and Optimizations

Packet size has a substantial impact on the performance of data transmission. Consider Figure 1.9, which compares the transmission of a 16-byte message from node A to node B through nodes D and C. Assume that for this transmission we would like to compare the transmission of the message with two different packet

Figure 1.9 Comparison of two cases of transmitting data: (a) using three packets and (b) using six packets

sizes but each requiring the same-size packet header of 3 bytes. In the first scheme shown in part (a) of the figure, the message is converted to a packet, P1, with 16-byte payload and 3-byte header. When the packet is received by node B, a total of 57-byte units have elapsed. If the message is fragmented into two packets, P1 and P2, of 8 bytes each as shown in part (b) of the figure, the total elapsed time becomes 44-byte units of delay.

The reason for the time reduction in the second case is the parallel transmission of two packets at nodes D and C. The parallel transmission of multiple packets can be understood better by referring again to Figure 1.7 or 1.8 in which the times of packets 2 and 1 are coinciding on the times of packets 3 and 2 in nodes D or C. The trend of delay reduction using smaller packets, however, is reversed at a certain point, owing to the dominance of packet overhead when a packet becomes very small.

To analyze packet size optimization, consider a link with a speed of s b/s or a rate of μ packets per second. Assume that packets of size d+h are sent over this link at the rate λ packets per second, where d and h are the sizes of the packet data and the packet header, respectively, in bits. Clearly,

$$\mu = \frac{s}{d+h}.\tag{1.3}$$

We define *link utilization* to be $\rho = \lambda/\mu$. Then the percentage of link utilization used by data, ρ_d , is obtained by

$$\rho_d = \rho \left(\frac{d}{d+h} \right). \tag{1.4}$$

The average delay per packet, D, can be calculated by using $\mu - \lambda$, where this term exhibits how close the offered load is to the link capacity:

$$D = \frac{1}{\mu - \lambda}.\tag{1.5}$$

Using Equations (1.3) and (1.4), we can rewrite the average delay per packet as

$$D = \frac{1}{\mu(1-\rho)} = \frac{d+h}{s(1-\rho)} = \frac{d+h}{s\left[1 - \frac{\rho_d}{d}(d+h)\right]}.$$
 (1.6)

Apparently, the optimum size of a packet depends on several contributing factors. Here, we examine one of the factors by which the delay and the packet size become optimum. For optimality, consider d as one possible variable, where we want

$$\frac{\partial D}{\partial d} = 0. ag{1.7}$$

This releases the two optimum values (we skip from the detail of derivation):

$$d_{opt} = h \left(\frac{\sqrt{\rho_d}}{1 - \sqrt{\rho_d}} \right) \tag{1.8}$$

and

$$D_{opt} = \frac{h}{s} \left(\frac{\sqrt{\rho_d}}{1 - \sqrt{\rho_d}} \right)^2. \tag{1.9}$$

Note that here, d_{opt} and D_{opt} are optimized values of d and D, respectively, given only the mentioned variables. The optimality of d and D can also be derived by using a number of other factors that will result in a more accurate approach.

1.4 Foundation of Networking Protocols

As discussed earlier in this chapter, users and networks are connected together by certain rules and regulations called *network communication protocols*. The Internet Protocol (IP), for example, is responsible for using prevailing rules to establish paths for packets. Communication protocols are the intelligence behind the driving force of packets and are tools by which a network designer can easily expand the capability of networks. One growth aspect of computer networking is clearly attributed to the ability to conveniently add new features to networks. New features can be added by connecting more hardware devices, thereby expanding networks. New features can also be added on top of existing hardware, allowing the network features to expand.

Protocols of communication networks are represented by either the TCP/IP model or its older version, the OSI model. The *five-layer TCP/IP model* is a widely accepted Internet backbone protocol structure. In this section, we describe the basics of these five layers and leave further details to be discussed in the remaining chapters.

However, among these five layers, the basics of IP *packets and network addressing* are designated a separate section, 1.5 IP Packets and Addressing. As stated before, we make this arrangement because basic definitions related to this layer are required in the following chapters, mostly in Part I of this book.

1.4.1 Five-Layer TCP/IP Protocol Model

The basic structure of communication networks is represented by the *Transmission Control Protocol/Internet Protocol* (TCP/IP) model. This model is structured in five layers. An end system, an intermediate network node, or each communicating user or program is equipped with devices to run all or some portions of these layers, depending on where the system operates. These five layers, shown in Figure 1.10, are as follows:

- 1. Physical layer
- 2. Link layer
- 3. Network layer
- 4. Transport layer
- 5. Application layer

Figure 1.10 Hierarchy of the five-layer communication protocol model

Layer 1, known as the *physical layer*, defines electrical aspects of activating and maintaining physical links in networks. The physical layer represents the basic network hardware. The physical layer also specifies the type of medium used for transmission and the network topology. The details of this layer are explained in later chapters, especially in Chapters 3, 4, 6, 13, 15, 17, and 20.

Layer 2, the link layer, provides a reliable synchronization and transfer of information across the physical layer for accessing the transmission medium. Layer 2 specifies how packets access links and are attached to additional headers to form frames when entering a new networking environment, such as a LAN. Layer 2 also provides error detection and flow control. This layer is discussed further in Chapters 3 and 4 and the discussion is extended in almost all other chapters.

Layer 3, the network layer (IP) specifies the networking aspects. This layer handles the way that addresses are assigned to packets and the way that packets are supposed to be forwarded from one end point to another. Some related parts of this layer are described in Chapters 5, 6, and 7, and the discussion is extended in other chapters such as Chapters 10, 12, 13, 14, 15, 16, 21, and 22.

Layer 4, the transport layer, lies just above the network layer and handles the details of data transmission. Layer 4 is implemented in the end points but not in network routers and acts as an interface protocol between a communicating device and a network. Consequently, this layer provides logical communication between processes running on different hosts. The concept of the transport layer is discussed in Chapter 8, and the discussion is extended in other chapters such as Chapters 9, 14, 17, 18, 20, 21, and 22.

Layer 5, the application layer, determines how a specific user application should use a network. Among such applications are the Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), and the World Wide Web (WWW). The details of layer 5 are described in Chapter 9, and descriptions of other advanced applications such as voice over IP (VoIP) are extended in other chapters such as Chapters 18, 19, and 20.

The transmission of a given message between two users is carried out by (1) flowing the data down through each and all layers of the transmitting end, (2) sending it to certain layers of protocols in the devices between two end points, and (3) when the message arrives at the other end, letting the data flow up through the layers of the receiving end until it reaches its destination.

Hosts

A network *host* is a computing device connected to a computer network and is assigned a network layer address. A host can offer information resources, services, and applications to users or other nodes on the network. Figure 1.10 illustrates a

scenario in which different layers of protocols are used to establish a connection between two hosts. A message is transmitted from host 1 to host 2, and, as shown, all five layers of the protocol model participate in making this connection. The data being transmitted from host 1 is passed down through all five layers to reach router R1. Router R1 is located as a gateway to the operating regions of host 1 and therefore does not involve any tasks in layers 4 and 5. The same scenario is applied at the other end: router R2. Similarly, router R2, acting as a gateway to the operating regions of host 2, does not involve any tasks in layers 4 and 5. Finally at host 2, the data is transmitted upward from the physical layer to the application layer.

The main idea of the communication protocol stack is that the process of communication between two end points in a network can be partitioned into layers, with each layer adding its own set of special related functions. Figure 1.11 shows a different way of realizing protocol layers used for two hosts communicating through two routers. This figure illustrates a structural perspective of a communication setup and identifies the order of fundamental protocol layers involved.

1.4.2 Seven-Layer OSI Model

The *open systems interconnection* (OSI) model was the original standard description for how messages should be transmitted between any two points. To the five TCP/IP layers, OSI adds the following two layers below the application layer:

- 1. Layer 5, the session layer, which sets up and coordinates the applications at each end
- 2. *Layer 6* the *presentation layer*, which is the operating system part that converts incoming and outgoing data from one presentation format to another

The tasks of these two additional layers are dissolved into the application and transport layers in the newer five-layer TCP/IP model. The OSI model is becoming less popular. TCP/IP is gaining more attention, owing to its stability and its ability to offer better communication performance. Therefore, this book focuses on the five-layer model.

Figure 1.11 Structural view of protocol layers for two hosts communicating through two routers

1.5 Addressing Scheme in the Internet

An addressing scheme is clearly a requirement for communications in a computer network. With an addressing scheme, packets are forwarded from one location to another. Each of the three layers, 2, 3, and 4, of the TCP/IP protocol stack model produces a header, as indicated in Figure 1.12. In this figure, host 1 communicates with host 2 through a network of seven nodes, R1 through R7, and a payload of data encapsulated in a frame by the link layer header, the network layer header, and the transport layer header is carried over a link. Within any of these three headers, each source or destination is assigned an address as identification for the corresponding protocol layer. The three types of addresses are summarized as follows.

- Link layer (layer 2) address. A 6-byte (48-bit) field called Media Access Control (MAC) address that is represented by a 6-field hexadecimal number, such as 89-A1-33-2B-C3-84, in which each field is two bytes long. Every input or output of a networking device has an interface to its connected link, and every interface has a unique MAC address. A MAC address is known only locally at the link level. Normally, it is safe to assume that no two interfaces share the same MAC address. A link layer header contains both MAC addresses of a source interface and a destination interface, as seen in the figure.
- Network layer (layer 3) address. A 4-byte (32-bit) field called Internet Protocol (IP) address that is represented by a 4-field dot-separated number, such as 192.2.32.83, in which each field is one byte long. Every entity in a network must have an IP address in order to be identified in a communication. An IP address can be known globally at the network level. A network layer header contains both IP addresses of a source node and a destination node, as seen in the figure.
- Transport layer (layer 4) address. A 2-byte (16-bit) field called port number that is represented by a 16-bit number, such as 4,892. The port numbers identify the two end hosts' ports in a communication. Any host can be running several network applications at a time and thus each application needs to be identified by another host communicating to a targeted application. For example, source host 1 in Figure 1.12 requires a port number for communication to uniquely identify an application process running on the destination host 2. A transport layer header contains the port numbers of a source host and a destination host, as seen in the figure. Note that a transport-layer "port" is a logical port and not an actual or a physical one, and it serves as the end-point application identification in a host.

Figure 1.12 A typical frame structure that is forwarded over a link

The details of the link layer header, including the MAC addresses and all other of the header's fields are described in Chapter 4. The details of the network layer header fields, including the IP addresses and all other of the header's fields are presented in Chapter 5. Finally, the details of the transport layer header, including the port numbers and all other of the header's fields are explained in Chapter 8. In the meanwhile, some of the basic IP addressing schemes are presented in the next section, as understanding IP addressing will help us better understand the upcoming networking concepts.

1.5.1 IP Addressing Scheme

The IP header has 32 bits assigned for addressing a desired device on the network. An IP address is a unique identifier used to locate a device on the IP network. To make the system scalable, the address structure is subdivided into the *network* ID and the *host* ID. The network ID identifies the network the device belongs to; the host ID identifies the device. This implies that all devices belonging to the same network have a single network ID. Based on the bit positioning assigned to the network ID and the host ID, the IP address is further subdivided into classes A, B, C, D (multicast), and E (reserved), as shown in Figure 1.13.

Figure 1.13 Classes of IP addresses

Consider the lengths of corresponding fields for each class shown in this figure:

- Class A starts with 0 followed by 7 bits of network ID and 24 bits of host ID.
- Class B starts with 10 followed by 14 bits of network ID and 16 bits of host ID.
- Class C starts with 110 followed by 21 bits of network ID and 8 bits of host ID.
- Class D starts with 1110 followed by 28 bits. Class D is used only for multicast
 addressing by which a group of hosts form a multicast group and each group
 requires a multicast address. Chapter 6 is entirely dedicated to multicast techniques and routing.
- Class E starts with 1111 followed by 28 bits. Class E is reserved for network experiments only.

For ease of use, the IP address is represented in *dot-decimal* notation. The address is grouped into four dot-separated bytes. For example, an IP address with 32 bits of all 0s can be shown by a dot-decimal form of 0.0.0.0 where each 0 is the representation of 00000000 in a logic bit format.

A detailed comparison of IP addressing is shown in the Table 1.1. Note that in this table, each of the "number of available network addresses" and the "number of available

Class	Bits to Start		Size of Host ID Field	Number of Available Network Addresses	Number of Available Host Addresses per Network	Start Address	End Address
A	0	7	24	126	16,777,214	0.0.0.0	127.255.255.255
В	10	14	16	16,382	65,534	128.0.0.0	191.255.255.255
C	110	21	8	2,097,150	254	192.0.0.0	223.255.255.255
D	1110	N/A	N/A	N/A	N/A	224.0.0.0	239.255.255.255
E	1111	N/A	N/A	N/A	N/A	240.0.0.0	255.255.255.255

Table 1.1 Comparison of IP addressing schemes

host addresses per network" has already been decreased by 2. For example, in class A, the size of the network ID field is indicated in the table to be N=7; however, the number of available network addresses is presented as $2^N-2=128-2=126$. The subtraction of 2 adjusts for the use of the all-bits-zero network ID (0 in decimal) and the all-bits-one network ID (127 in decimal). These two network IDs, 0 and 127, are reserved for management and cannot be available for any other use. The same argument is true for the number of available host addresses, where with the size of the host ID field indicated as N=24, we can have $2^N-2=16,777,216-2=16,777,214$ host addresses per network available for use. The last two columns of the table show the start address and the end address of each class, including the reserved addresses explained earlier.

Example. A host has an IP address of 10001000 11100101 11001001 00010000. Find the class and decimal equivalence of the IP address.

Solution. The host's IP address belongs to class B, since it starts with 10. Its decimal equivalent is 136.229.201.16.

1.5.2 Subnet Addressing and Masking

The concept of subnetting was introduced to overcome the shortcomings of IP addressing. Managing a large number of hosts is an enormous task. For example, a company that uses a class B addressing scheme can support up to 65,535 hosts on one network. If the company has more than one network, a multiple-network address scheme, or *subnet scheme*, is used. In this scheme, the host ID of the original IP address is subdivided into *subnet ID* and *host ID*, as shown in Figure 1.14.

Figure 1.14 A subnet ID and host ID in class B addressing

Figure 1.15 An example of subnet and masking

Depending on the network size, different values of subnet ID and host ID can be chosen. Doing so would prevent the outside world from being burdened by a shortage of new network addresses. To determine the subnetting number, a subnet *mask*—logic AND function—is used. The subnet mask has a field of all 0s for the host ID and a field of all 1s for the remaining field.

Example. Given an IP address of 150.100.14.163 and a subnet mask of 255.255.255.128, determine the maximum number of hosts per subnet.

Solution. Figure 1.15 shows the details of the solution. Masking 255.255.255.128 on the IP address results in 150.100.14.128. Clearly, the IP address 150.100.14.163 is a class B address. In a class B address, the lower 16 bits are assigned to the subnet and host fields. Applying the mask, we see that the maximum number of hosts is $2^7 = 128$.

Example. A router attached to a network receives a packet with the destination IP address 190.155.16.16. The network is assigned an address of 190.155.0.0. Assume that the network has two subnets with addresses 190.155.16.0 and 190.155.15.0 and that both subnet ID fields have 8 bits. Demonstrate the details of routing the packet.

Solution. When it receives the packet, the router determines to which subnet the packet needs to be routed, as follows: The destination IP address is 190.155.16.16, the subnet mask used in the router is 255.255.255.0, and the result is 190.155.16.0. The router looks up its routing table for the next subnet corresponding to the subnet 190.155.16.0, which is subnet 2. When the packet arrives at subnet 2, the router determines that the destination is on its own subnet and routes the packet to its destination.

1.5.3 Classless Interdomain Routing (CIDR)

The preceding section described an addressing scheme requiring that the address space be subdivided into five classes. However, giving a certain class C address space to a certain university campus does not guarantee that all addresses within the space can be used and therefore might waste some addresses. This kind of situation is inflexible and would exhaust the IP address space. Thus, the classful addressing scheme consisting of classes A, B, C, D, and E results in an inefficient use of the address space.

A new scheme, with no restriction on the classes, emerged. *Classless interdomain routing* (CIDR) is extremely flexible, allowing a variable-length *prefix* to represent the network ID and the remaining bits of the 32-field address to represent the hosts within the network. For example, one organization may choose a 20-bit network ID, whereas another organization may choose a 21-bit network ID, with the first 20 bits of these two network IDs being identical. This means that the address space of one organization contains that of another one.

CIDR results in a significant increase in the speed of routers and has greatly reduced the size of routing tables. A routing table of a router using the CIDR address space has entries that include a pair of network IP addresses and the mask. Supernetting is a CIDR technique whereby a single routing entry is sufficient to represent a group of adjacent addresses. Because of the use of a variable-length prefix, the routing table may have two entries with the same prefix. To route a packet that

matches both of these entries, the router chooses between the two entries, using the longest-prefix-match technique.

Example. Assume that a packet with destination IP address 205.101.0.1 is received by router R1, as shown in Figure 1.16. Find the final destination of the packet.

Solution. In the table entries of router R1, two routes, L1 and L2, belonging to 205.101.8.0/20 and 205.101.0.0/21, respectively, are initially matched with the packet's IP address. CIDR protocol then dictates that the longer prefix must be the eligible match. As indicated at the bottom of this figure, link L1, with its 21-bit prefix, is selected, owing to a longer match. This link eventually routes the packet to the destination network, N3.

CIDR allows us to reduce the number of entries in a router's table by using an *aggregate technique*, whereby all entries that have some common partial prefix can be combined into one entry. For example, in Figure 1.16, the two entries 205.101.8.0/20 and 205.101.0.0/21 can be combined into 205.101.0.0/20, saving one entry in the table. Combining entries in routing tables not only saves space but also enhances the speed of the routers, as each time, routers need to search among fewer addresses.

 Packet Dest:
 205.101.0.1
 1100 1101.0110 0101.0000 0000.0000 0001

 L1:
 205.101.8.0/20
 1100 1101.0110 0101.0000 0000.0000 0000

 L1:
 205.101.0.0/21
 1100 1101.0110 0101.0000 0000.0000 0000

Figure 1.16 CIDR routing

1.6 Equal-Sized Packets Model

A networking model in which packets are of equal size can also be constructed. Equal-sized packets, or *cells*, bring a tremendous amount of simplicity to the networking hardware, since buffering, multiplexing, and switching of cells become extremely simple. However, a disadvantage of this kind of networking is the typically high overall ratio of header to data. This issue normally arises when the message size is large and the standard size of packets is small. As discussed in Section 1.3, the dominance of headers in a network can cause delay and congestion.

One of the networking technologies established using the equal-sized packets model is asynchronous transfer mode (ATM). The objective of ATM technology is to provide a homogeneous backbone network in which all types of traffic are transported with the same small fixed-sized *cells*. One of the key advantages of ATM systems is flexible processing of packets (cells) at each node. Regardless of traffic types and the speed of sources, the traffic is converted into 53-byte ATM cells. Each cell has a 48-byte data payload and a 5-byte header. The header identifies the virtual channel to which the cell belongs. However, because the high overall ratio of header to data in packets results in huge delays in wide area networks, ATM is rarely deployed in networking infrastructure and therefore we do not expand our discussion on ATM beyond this section.

1.7 Summary

This chapter established a conceptual foundation for realizing all upcoming chapters. First, we clearly identified and defined all basic key terms in networking. We showed a big-picture view of computer networks in which from one side, mainframe servers can be connected to a network backbone, and from the other side, home communication devices are connected to a backbone network over long-distance telephone lines. We illustrated how an Internet service provider (ISP) controls the functionality of networks. ISPs have become increasingly involved in supporting packet-switched networking services for carrying all sorts of data, not just voice, and the cable TV industry.

The transfer of data in packet-switched networks is organized as a multilevel hierarchy, with digital messages fragmented into units of formatted messages, or packets. In some circumstances, such as local area networks, packets must be modified further, forming a smaller or larger packet known as a frame. Two types of packet-switched networks are networks using connectionless protocol, in which no particular advanced connection is required, and networks using connection-oriented protocol, in which an advance dedication of a path is required.

1.8 Exercises 29

A packet's size can be optimized. Using the percentage of link utilization by data, ρ_d , as a main variable, we showed that the optimized packet size and the optimized packet delay depend on ρ_d . The total delay of packet transfer in a connectionless network may be significantly smaller than the one for a connection-oriented network since if you have a huge file to transfer, the set-up and tear-down times may be small compared to the file transfer time.

This chapter also covered a tremendous amount of fundamental networking protocol material. We presented the basic structure of the Internet network protocols and an overview of the TCP/IP layered architecture. This architectural model provides a communication service for peers running on different machines and exchanging messages.

We also covered the basics of protocol layers: the *network layer* and the structure of IPv4 and IPv6. IP addressing is further subdivided as either *classful* or *classless*. Classless addressing is more practical for managing routing tables. Finally, we compared the equal-sized packet networking environment to IP networks. Although packet multiplexing is easy, the traffic management is quite challenging.

The next chapter focuses on the fundamental operations of networking devices and presents an overview of the hardware foundations of our networking infrastructure. Networking devices are used to construct a computer network.

1.8 Exercises

- 1. We transmit data directly between two servers 6,000 km apart through a geostationary satellite situated 10,000 km from Earth exactly between the two servers. The data enters this network at 100Mb/s.
 - (a) Find the propagation delay if data travels at the speed of light $(2.3 \times 10^8 \text{ m/s})$.
 - (b) Find the number of bits in transit during the propagation delay.
 - (c) Determine how long it takes to send 10 bytes of data and to receive 2.5 bytes of acknowledgment back.
- 2. We would like to analyze a variation of Exercise 1 where servers are placed in substantially closer proximity to each other still using satellite for communication. We transmit data directly between two servers 60 m apart through a geostationary satellite situated 10,000 km from Earth exactly between the two servers. The data enters this network at 100Mb/s.
 - (a) Find the propagation delay if data travels at the speed of light $(2.3 \times 10^8 \text{ m/s})$.
 - (b) Find the number of bits in transit during the propagation delay.
 - (c) Determine how long it takes to send 10 bytes of data and to receive 2.5 bytes of acknowledgment back.

- 3. Stored on a flash memory device is a 200 megabyte (MB) message to be transmitted by an e-mail from one server to another, passing three nodes of a *connectionless network*. This network forces packets to be of size 10KB, excluding a packet header of 40 bytes. Nodes are 400 miles apart, and servers are 50 miles away from their corresponding nodes. All transmission links are of type 100Mb/s. The processing time at each node is 0.2 seconds.
 - (a) Find the propagation delays per packet between a server and a node and between nodes.
 - (b) Find the total time required to send this message.
- 4. Equation (1.2) gives the total delay time for connection-oriented networks. Let t_p be the packet propagation delay between each two nodes, t_{f1} be the data packet transfer time to the next node, and t_{r1} be the data packet processing time. Also, let t_{f2} be the control-packet transfer time to the next node, and t_{r2} be the control-packet processing time. Give an expression for D in terms of all these variables.
- 5. Suppose that a 200MB message stored on a flash memory device attached to a server is to be uploaded to a destination server through a connection-oriented packet-switched network with three serially connected nodes. This network forces packets to be of size 10KB, including a packet header of 40 bytes. Nodes are 400 miles apart from each other and each server is 50 miles away from its corresponding node. All transmission links are of type 100Mb/s. The processing time at each node is 0.2 seconds. For this purpose, the signaling packet is 500 bits long.
 - (a) Find the total connection request/accept process time.
 - (b) Find the total connection release process time.
 - (c) Find the total time required to send this message.
- 6. We want to deliver a 12KB message by uploading it to the destination's Web site through a 10-node path of a *virtual-circuit packet-switched network*. For this purpose, the signaling packet is 500 bits long. The network forces packets to be of size 10KB including a packet header of 40 bytes. Nodes are 500 miles apart. All transmission links are of type 1Gb/s. The processing time at each node is 100 ms per packet and the propagation speed is 2.3×10^8 m/s.
 - (a) Find the total connection request/accept process time.
 - (b) Find the total connection release process time.
 - (c) Find the total time required to send this message.

1.8 Exercises 31

7. Consider five serial connected nodes A, B, C, D, E and that 100 bytes of data are supposed to be transmitted from node A to E using a protocol that requires packet headers to be 20 bytes long.

- (a) Ignore t_p , t_r , and all control signals; and sketch and calculate total t_f in terms of byte-time to transmit the data for cases in which the data is converted into 1 packet, 2 packets, 5 packets, and 10 packets.
- (b) Put all the results obtained from part (a) together in one plot and estimate where the plot approximately shows the minimum delay (no mathematical work is needed, just indicate the location of the lowest delay transmission on the plot).
- **8.** To analyze the transmission of a 10,000-bit-long packet, we want the percentage of link utilization used by the data portion of a packet to be 72 percent. We also want the ratio of the packet header, h, to packet data, d, to be 0.04. The transmission link speed is s = 100 Mb/s.
 - (a) Find the link utilization, ρ .
 - (b) Find the link capacity rate, μ , in terms of packets per second.
 - (c) Find the average delay per packet.
 - (d) Find the optimum average delay per packet.
- Consider a digital link with a maximum capacity of s = 100 Mb/s facing a situation resulting in 80 percent utilization. Equal-sized packets arrive at 8,000 packets per second. The link utilization dedicated to headers of packets is 0.8 percent.
 - (a) Find the total size of each packet.
 - (b) Find the header and data sizes for each packet.
 - (c) If the header size is not negotiable, what would the optimum size of packets be?
 - (d) Find the delay for each optimally sized packet.
- 10. Develop a signaling delay chart, similar to Figures 1.7 and 1.8, for circuit-switched networks. From the mentioned steps, get an idea that would result in the establishment of a telephone call over circuit-switched networks.
- 11. In practice, the optimum size of a packet estimated in Equation (1.7) depends on several other contributing factors.
 - (a) Derive the optimization analysis, this time also including the header size, *h*. In this case, you have two variables: *d* and *h*.
 - (b) What other factors might also contribute to the optimization of the packet size?
- 12. Specify the class of address and the subnet ID for the following cases:
 - (a) A packet with IP address 127.156.28.31 using mask pattern 255.255.255.0
 - (b) A packet with IP address 150.156.23.14 using mask pattern 255.255.255.128
 - (c) A packet with IP address 150.18.23.101 using mask pattern 255.255.255.128

- 13. Specify the class of address and the subnet ID for the following cases:
 - (a) A packet with IP address 173.168.28.45 using mask pattern 255.255.255.0
 - (b) A packet with IP address 188.145.23.1 using mask pattern 255.255.255.128
 - (c) A packet with IP address 139.189.91.190 using mask pattern 255.255.255.128
- 14. Apply CIDR aggregation on the following IP addresses: 150.97.28.0/24, 150.97.29.0/24, and 150.97.30.0/24.
- **15.** Apply CIDR aggregation on the following IP addresses: 141.33.11.0/22, 141.33.12.0/22, and 141.33.13.0/22.
- **16.** Use the subnet mask 255.255.254.0 on the following IP addresses, and then convert them to CIDR forms:
 - (a) 191.168.6.0
 - (b) 173.168.28.45
 - (c) 139.189.91.190
- 17. A certain organization owns a subnet with prefix 143.117.30.128/26.
 - (a) Give an example of one of the organization's IP addresses.
 - (b) Assume the organization needs to be downsized, and it wants to partition its block of addresses and create three new subnets, with each new block having the same number of IP addresses. Give the CIDR form of addresses for each of the three new subnets.
- 18. A packet with the destination IP address 180.19.18.3 arrives at a router. The router uses CIDR protocols, and its table contains three entries referring to the following connected networks: 180.19.0.0/18, 180.19.3.0/22, and 180.19.16.0/20, respectively.
 - (a) From the information in the table, identify the exact network ID of each network in binary form.
 - (b) Find the right entry that is a match with the packet.
- 19. Part of a networking infrastructure consists of three routers R1, R2, and R3 and six networks N1 through N6, as shown in Figure 1.17. All address entries of each router are also given as seen in the figure. A packet with the destination IP address 195.25.17.3 arrives at router R1.
 - (a) Find the exact network ID field of each network in binary form.
 - (b) Find the destination network for the packet (proof needed).
 - (c) Specify how many hosts can be addressed in network N1.

1.8 Exercises 33

R1 Table Entry	Link	R2 Table Entry	Link	R3 Table Entry	Link
195.25.0.0/21	L11	195.25.24.0/19	L21	111.5.0.0/21	L31
195.25.0.0/21 195.25.16.0/20	L12	195.25.16.0/20	L22	Else	L32
195.25.8.0/22 135.11.2.0/22	L13	195.25.8.0/22	L23	195.25.16.0/20	L33
135 11 2 0/22	T 1/i				

Figure 1.17 Exercise 19 network example

- 20. Consider an estimated population of 620 million people.
 - (a) What is the maximum number of IP addresses that can be assigned per person using IPv4?
 - (b) Design an appropriate CIDR to deliver the addressing in part (a).
- 21. A router with four output links L1, L2, L3, and L4 is set up based on the following routing table:

Mask Result	Link
192.5.150.16	L3
192.5.150.18	L2
129.95.38.0	L1
129.95.38.15	L3
129.95.39.0	L2
Unidentified	L4

The router has a masking pattern of 255.255.255.240 and examines each packet using the mask in order to find the right output link. For a packet addressed to each of the following destinations, specify which output link is found:

- (a) 192.5.150.18
- (b) 129.95.39.10
- (c) 129.95.38.15
- (d) 129.95.38.149

22.	A router with four output links L1, L2, L3, and L4 is set up based on the following
	routing table:

Mask Result	Link
192.5.150.0	L1
129.95.39.0	L2
129.95.38.128	L3
Unidentified	L4

The router has two masking patterns of 255.255.255.128 and 255.255.255.1 and examines each packet using these masks in the preceding order to find a right output link among L1, L2, and L3. If a mask finds one of the three outputs, the second mask is not used. Link L4 is used for those packets for which none of the masks can determine an output link. For a packet addressed to a destination having each of the following IP addresses, specify which mask pattern finds a link for the packet and then which output port (link) is found:

- (a) 129.95.39.10
- (b) 129.95.38.16
- (c) 129.95.38.149

1.9 Computer Simulation Project

- 1. **Simulation of Networking Packets.** Write a computer program in C or C++ to simulate a "packet." Each packet must have two distinct parts: header and data. The data is fixed on 10 bytes consisting of all logic 1s. The header is 9 bytes long and consists of three fields only: priority (1 byte), source address (4 bytes), and destination address (4 bytes).
 - (a) For a Packet A, initialize the priority field to be 0, and source and destination addresses to be 10.0.0.1 and 192.0.1.0, respectively.
 - (b) For a Packet B, initialize the priority field to be 1, and source and destination addresses to be 11.1.0.1 and 192.0.1.0, respectively.
 - (c) For a Packet C, initialize the priority field to be 0, and source and destination addresses to be 11.1.0.1 and 192.0.1.0, respectively.
 - (d) Demonstrate that your program can create the packets defined in parts (a), (b), and (c).

(e) Extend your program such that a comparator looks at the priority fields and destination addresses of any combination of two packets. If the destination addresses are the same, it chooses the packet with the highest priority and leaves the packet with lower priority in a register with incremented priority. Otherwise, it chooses randomly one of the packets and leaves the other one in the register with incremented priority. Show that your program is capable of choosing Packet B.

4G, 258, 581	Additional information field, 329-330
A	Additive increase, multiplicative decrease (AIMD)
	congestion control, 309–311
Abort chunks, 737	Address autoconfiguration procedure, 266–267
ABR (Associative-Based Routing) Protocol, 775–776	Address field, 147
Abstract syntax notation one (ASN.1) language, 359	Address family identifier field, 186
Access networks in IPTV, 747	Address mapping in DNS, 327-329
Access points, 139-140	Address release messages (ACMs), 646
Accounting, network management for, 358	Address Resolution Protocol (ARP), 39, 130-132
Accuracy of routing algorithms, 162	Addresses
ACK frames, 148	distributed hash table objects, 353
ACK/NAK process in DHCP, 169	Internet, 21-22
Acknowledgment (ACK) field, 299, 301, 304, 338	IP. See IP addresses
Acknowledgment number field, 299	MAC, 21-22, 130-133, 153
ACMs (address release messages), 646	in mobile IP, 260-261
Acronyms, 817–822	routing tables. See Routing tables
Active attacks, 783	Admission control, 494-495
Ad-hoc networks, 245	Admission in RAS signaling, 657
MANETs. See Mobile ad-hoc networks	ADSL (asymmetric DSL), 56
(MANETs)	ADUs (application data units), 728
WMN support for, 279	Advanced Encryption Standard (AES) protocol,
Ad Hoc On-Demand Distance Vector (AODV)	379–380
protocol	Agent address field, 361
new nodes for, 782–783	Agents
route discovery and establishment in, 778-781	mobile IP, 260–261
route maintenance in, 781–782	network management, 358
routing process in, 778–779	SIP, 671-683
Adaptability of routing algorithms, 162	Aggregate switches, 130, 589
Adapters for ARP, 132	Aggregate technique in CIDR, 27
Adaptive modulation, 284	Aggregation, link, 107–109
Adaptive protocols, 768	AIMD (Additive increase, multiplicative decrease)
Adaptive reservation schemes, 500	congestion control, 309–311
	0 /

Alerting call-signaling messages, 659	ASCII (American Standard Code for Information
All-optical networks, 563-566	Interchange), 331
All-optical switches, 563, 569-572	ASK (amplitude shift keying), 52-53
Aloha-based protocols, 105-106	ASN.1 (abstract syntax notation one) language, 359
American Standard Code for Information	ASNs (autonomous system numbers), 189
Interchange (ASCII), 331	ASPs (application service providers), 622-623
Amplifiers in optical networks, 553–554	Associative-Based Routing (ABR) Protocol,
Amplitude shift keying (ASK), 52-53	775-776
Answer field, 329	Associativity in ABR, 775–776
Answer messages (ANMs), 646-647	Associativity ticks, 775–776
Antennas, 48–49, 75	Asymmetric cryptography, 380
Anycast addresses, 198	Asymmetric DSL (ADSL), 56
AODV. See Ad Hoc On-Demand Distance Vector	Asynchronous MAC protocols, 118
(AODV) protocol	Asynchronous Transfer Mode (ATM) technol-
APIs (application programming interfaces),	ogy, 28
324–325	Attacks
cloud computing, 579, 581	on ad-hoc networks, 783–784
ICN, 628	categories, 371–375
software-defined networking, 613	Attenuation, bit, 78 Audio
Application data units (ADUs), 728	_
Application delivery in software-defined network-	conferencing, 582, 751
ing, 622–623	IVR databases, 754–755
Application layer, 321–322	streaming, 708–709
DNS, 325–330	Authentication, 383
e-mail, 330–335	categories, 377
FTP, 346–347	cellular networks, 254
network management, 356–362	digital signatures for, 387
overview, 323–325	hash functions, 383–384
packet filtering, 394–395	SHA, 385–387
peer-to-peer networks, 347–356	Authentication field, 182
remote login protocols, 342–346	Authentication data field, 388
in TCP/IP protocol model, 19	Authentication type field, 182
WWW, 335-342	Authentication Web portals (AWPs), 620
Application programming interfaces (APIs),	Authenticity
324–325	in ad-hoc networks, 784
cloud computing, 579, 581	in security, 370
ICN, 628	Authoritative servers, 328
software-defined networking, 613	Authority field, 329–330
Application service providers (ASPs), 622–623	Authorization in ad-hoc networks, 785
Application-specific type RTCP packets, 732	Automatic discovery of services, 767
Arbitration units, 456	Automatic repeat request (ARQ)
Area ID field, 182	in channel coding, 283-284
ARP (Address Resolution Protocol), 39, 130-132	in sliding window flow control, 92
ARQ (automatic repeat request)	in stop-and-wait flow control, 87-88
in channel coding, 283-284	in TCP, 298
in sliding window flow control, 92	Automatic updates for layer 2 devices, 125
in stop-and-wait flow control, 87-88	Autonomous system (AS), 189
in TCP, 298	Autonomous system numbers (ASNs), 189
AS (autonomous system), 189	Availability in cloud computing, 579

Average queue length in RED, 204	Binomial trials, 828
Await-reply packets, 776	Bipoint connections, 474
AWPs (authentication Web portals), 620	Birth-and-death process
В	in <i>M/M/1/a</i> queueing systems, 417–418 overview, 406–408
B (bidirectional) frames, 708	Bit attenuation, 78
Back-off mode, 94	Bit-sliced organization, 471
Back-off time, 143	BitTorrent file sharing protocol, 349-352
Back-pressure signaling, 201	Black-and-white images, 702
Backbones, 224	Black-hole attacks, 784
Balance equations in queueing, 416-420	Blades, 578
Bandwidth	Blocking
ADSL, 56	Clos network estimates, 462-463
link aggregation, 107	over lightpaths, 565-566
RAS signaling, 657-658	link, 205-207
TCP, 309	TDM, 62
Bandwidth brokers, 496	Blocking switches, 458, 559
Base station controllers (BSCs), 247, 250, 253	Blue-tooth communications, 72
Base stations	Bluetooth LANs, 141
cellular networks, 246-247	Bodies
ICR, 808	e-mail, 331
LTE (eNodeB), 267-272, 752, 753, 756	HTTP, 339-340
media mini-clouds, 752-753, 756	Boolean splitting multicast algorithm, 475
mobile IP in, 307	Border Gateway Multicast Protocol (BGMP),
sensor networks, 791	236-237
wireless, 48	Border gateway protocol (BGP), 188-189
Batch arrival models	details, 192-195
queuing, 427-428	MBGP, 231–234
self-similarity with, 757-759	in MPLS, 529
Batches of traffic units, 757	packets, 190-192
Bellman-Ford algorithm, 176–177, 185	Border routers, 7
Bernoulli random variables, 830	Bridge port extensions (BPEs), 599
Bernoulli trials, 828	Bridge protocol data units (BPDUs), 134-135
Best-effort models, 486, 498	Bridges
BGMP (Border Gateway Multicast Protocol),	in LANs, 42-43, 121, 123, 128
236–237	in wireless networks, 142
BGP (border gateway protocol), 188-189	Broadband networks, 4
details, 192-195	Broadcast-and-prune algorithm, 220
MBGP, 231–234	Broadcast translated circuits (BTCs), 475
in MPLS, 529	Broadcasts
packets, 190-192	in optical networks, 560
BGP Identifier field, 190	in star topologies, 117
Bidirectional (B) frames, 708	in switching networks, 458
Bidirectional congestion control, 200-201	vs. wavelength routing, 564
Big Data in data centers, 584	Brownian random process, 758, 834-835
Billing, network management for, 358	Browsers, 336
Binary exponential backoff, 119	BSCs (base station controllers), 247, 250, 253
Binomial coefficients, 474	BTCs (broadcast translated circuits), 475
Binomial random variables, 830	Bucket depth in traffic shaping, 493

Buffered switching networks 458 471 475	Call splitting 276
Buffered switching networks, 458, 471–475 Buffers	Cell splitting, 276 Cells, ATM, 28
ARP, 39–40	Cellular networks, 72, 246
input port processors, 450	call establishment and termination, 250–251
optical networks, 553, 557	devices and operation, 247–249 generations, 267–268
output port processors, 453–454 Burk's theorem, 428–432	handoffs, 253–259
Bursts in multimedia networking, 757–759	mobile IP management, 259–268
Busy states in quanting 408	multimedia networking, 682-684
Busy states in queuing, 408	paging, 253
BYE packets, 732 Bytestreams in TCP, 298	registration and IMSI assignment, 250–251
bytestreams in 1C1, 276	roaming, 252–253 Central controllers, 44–45, 454–455
C	congestion controllers, 457
Cable modem termination system (CMTS), 151-152	contention resolution units, 455–457
Cable moderns, 51, 57–58	Central media coordinators, 756
Cable TV (CATV) systems, 151–152	Central media coordinators, 750 Central schedulers for input buffers, 450
Carling, Web, 341–342	Centralized access, 146
Call agents, 678 Call establishment	Centralized clustering, 800
cellular networks, 250–251	Centralized protocols ad-hoc networks, 768
LTE, 270	MAC, 118
SIP, 673-674	
Call-on-hold feature, 675	Centralized routing intradomain routing protocols, 179
	in sensor networks, 806
Call Proceeding messages, 659–661	Certificates in SHA, 386
Call progress messages (CPMs), 646–647	
Call signaling, 654, 659–662 Calls in cellular networks. <i>See</i> Cellular networks	CFE (contention-free end) frames, 148
Cantor switch fabrics, 470–471	CGSR (Cluster-Head Gateway Switch Routing) protocol, 771–772
	Channels
Capability Option Negotiation field 233	ADSL, 56
Capacity in wireless channels 283	cable modem, 57
Capacity in wireless channels, 283 Carrier protocols, 521	cellular networks, 248
Carrier Protocols, 921 Carrier Sense Multiple Access (CSMA) protocol,	coding, 283–284
93–97	FDM, 59
Cascaded nodes, Burk's theorem for, 428-431	handoffs, 253–254
Case studies	TDM, 61-64
all-optical switches, 569–572	wireless access, 97–107
sensor network simulation, 812–814	for wireless links, 280–285
CATV (Cable TV) systems, 151–152	Chapman-Kolmogorov theory, 256, 836
CBT (core-based trees) protocol, 230–231	Checksum bits, 454
CC (complete call) messages, 253	Checksum field, 182
CCK (complementary code keying), 145	Checksums, 454
CCN (Content-Centric Networking), 628, 630	Internet, 79
CDF (cumulative distribution function), 829, 833	in IP packets, 161
CDMA (code-division multiple access), 100–104	in TCP segments, 300
CDNs (content distribution [delivery] networks),	in UDP segments, 296–297
741–745	Chipping rate in CDMA, 101
Cell sectoring, 277	Choke packets, 201–202
0,	r

Chords in distributed hash tables, 354-355	Code efficiency in compression, 713
Chunks	Code field in ICMP, 164
BitTorrent, 350-351	Coding for flat fading, 284
SCTP, 736-737	Cognitive radios, 279
CIC (circuit identification code), 645	Cohen, Bram, 349
CIDR (Classless Interdomain Routing), 26-27, 194	Collisions
Ciphersuites, 386	Carrier Sense Multiple Access protocol, 93-97
Ciphertext, 377	wireless environments, 106
Circuit identification code (CIC), 645	Collocated foreign addresses, 262
Circuit-switched networks, 5-6, 642, 647-649	Combined switching networks, 469
Cladding for optical cable, 74	Command field, 186–187
Classes of IP address, 23	Commodification in cloud computing, 579
Classifiers, packet, 501	Common SCTP headers, 736
Classless Interdomain Routing (CIDR), 26–27, 194	Communication energy model, 794–799
Clear packets, 775	Community clouds, 580
Clear to Send (CTS) frames, 148	Complementary code keying (CCK), 145
Client/server model, 323–325	Complements of events, 827
Clients	Complete call (CC) messages, 253
application buffers, 740	Complexity of switching networks, 458
BitTorrent, 350	Compression, 693–694
TCP buffers, 740	digital voice, 695–701
VTP modes, 139	lossless, 713–717
Clas activable	lossy, 709–713
Clos networks	moving images, 707–709
blocking estimates for, 462-463	overview, 694–695
five-stage, 464-465	scanned documents, 717–718
Clos switch fabric, 460–462	still images, 701–707
Cloud-based multimedia networking, 751–752	Compression ratio, 713
IVR, 754-756	Concentration switches, 465–468
mini-clouds, 752–753	Conditional functions in probability, 829
Cloud computing, 577–578, 725–726	Conferencing
content servers, 746	ad-hoc networks, 767
data center networks, 588–595	H.323 protocol, 665–666
data centers, 578–588	Confidentiality in security, 370
service models, 581–583	Configuration, network management for, 358
software-defined networking, 621-623	Congestion, 199–201
Cluster-Head Gateway Switch Routing (CGSR)	bidirectional, 202–203
protocol, 771–772	link blocking, 205–207
Cluster heads, 771, 812–814	RED, 203–205
Cluster-member tables, 771	TCP. See Transmission Control Protocol (TCP)
Clustering, 799–800	unidirectional, 201–202
classification of, 800	Congestion controllers, 457
DEEP, 801–805	Congestion threshold, 312
LEACH, 800-801	Congestion window, 309–310
in sensor networks, 790–791	Connect call-signaling messages, 659, 662
CMTS (cable modem termination system), 151-152	Connection accept packets, 15
Coaxial cable, 74	Connection-oriented networks, 11-15
Cochannel cells, 273-275	Connection-oriented services, 294
Code-division multiple access (CDMA), 100-104	Connection release packet, 15

Connection request packets, 14	Costs, routing, 173, 179
Connection rules in link blocking, 205–207	Count field, 733
Connectionless networks, 11-13	Count-to-infinity restrictions, 187
Connectionless routing, 776	Counters in OpenFlow, 617
Connectionless services, 294	Counting in probability, 828
Connections	Couplers in optical networks, 556, 560
HTTP, 338	CPMs (call progress messages), 646-647
P2P networks, 355-356	CRC field
reliability, 259	IEEE 802.11, 148
TCP, 301-305	SSH Packets, 345
Constellation diagrams, 54	CRCs. See Cyclic redundancy checks (CRCs)
Content centers in cloud-based multimedia, 752	Cross connect tables, 550
Content-Centric Networking (CCN), 628, 630	Crossbar switching, 459–460
Content control servers, 741–742	buffers, 471–475
Content distribution (delivery) networks (CDNs),	in optical networks, 559-560
741–745	Crossovers in optical networks, 558
Content providers, 741	Crosspoints
Contention-access MAC protocols, 119–121	crossbar switch fabrics, 459-460
Contention access method for links, 92–93	multipath buffered crossbars, 471-472
Contention-free end (CFE) frames, 148	Crosstalk, 77, 558
Contention resolution	Cryptography. See also Encryption
central controllers, 455–457	overview, 375–377
optical networks, 557–558	public-key, 380–383
Continuous probability functions, 829–830	symmetric-key, 377–380
Continuous-time Markov chains, 835–836	CSMA (Carrier Sense Multiple Access) protocol,
Continuous time stochastic processes, 834	93–97
Contributing source count (CC) field, 729	CSMA/CA method, 143
Contributing source identifier (CSRC) field, 730	CTS (Clear to Send) frames, 148
Control channels in cellular networks, 248	Cumulative distribution function (CDF), 829, 833
Control chunks, 737	Cumulative number of packets lost field, 734
Control frames, 148	Customer edge routers, 539
Control planes in software-defined networking,	Cut-through switching, 15, 43–44
609-615	Cyclic redundancy checks (CRCs), 79–80
Control segments, 653	effectiveness, 83
Control signals, 654, 662–665, 802	implementing, 84
Controlled-load service classes, 487	at receivers, 81–82
Controllers in routers, 454–457	in routers, 454
Convergence	at transmitters, 80
RIP, 187	at transmitters, 60
routing algorithms, 163	D
	Data acquisition phase in ICP 910
Cookie acknowledgment chunks, 738	Data-acquisition phase in ICR, 810
Copy switch fabric, 475–476	Data-carrying frames, 148
Core-based trees (CBT) protocol, 230–231	Data center networks (DCNs), 10, 580, 588–589
Core networks in IPTV, 746–747	architectures, 591–594
Core of optical cable, 74	load balancers, 589-591
Core points	multicast methods, 594–595
CBT, 230–231	traffic engineering, 591
sparse-mode algorithm, 220	Data centers (DCs)
Core switches, 130, 589	overview, 578-581, 583-584

platforms and APIs, 581	packet size in, 15-17
service models, 581-583	priority queues, 506
virtualization, 584-588	queueing systems for, 419-420
Data/CFE-ACK frames, 149	software-defined networking, 610
Data/CFE ACK/CFE-Poll frames, 149	Delay since last SR field, 734
Data/CFE-Poll frames, 149	DELETE method in HTTP, 339
Data Encryption Standard (DES) protocol,	Delta routing, 263-264
377-379	Demultiplexers in OFDM, 60
Data field, 120	Denial-of-service attacks, 374-375
Data finders in ICN, 630	Dense-mode algorithm, 220
Data frames, 148	Dense-mode PIM, 227
Data links, 71-73	Dependency
encoders, 75-77	wavelength allocation with, 569
error detection and correction in, 77-85	wavelength allocation without, 568-569
flow control, 85-92	DES (Data Encryption Standard) protocol, 377-379
link aggregation, 107-109	Designated routers (DRs)
multiple user access, 92-97	IGMP, 221–222
types, 73–75	PIM, 228-229
wireless. See Wireless links	Designated switches, 134-135
Data over Cable Service Interface Specification	Destination address field
(DOCSIS), 151–152, 552	Ethernet LAN frames, 120
Data planes, 609-611, 615-619	IP packets, 162
Data transfer phase for TCP, 303-304	IPv6 packets, 196
Database description packets, 182	Destination host unreachable message, 165
Database sharing in P2P networks, 347, 353-355	Destination point codes (DPCs), 645
Datagram networks, 11-13	Destination port field
Datagrams, 11, 325	TCP segments, 299
DCF (distributed coordination function) algo-	UDP segments, 296
rithm, 146–147	Destination port number field, 736
DCNs. See Data center networks (DCNs)	Destination ports
DCs. See Data centers (DCs)	transport layer, 292
DCT (discrete cosine transform) process, 701-705	UDP, 296
Decentralized clustering, 800	Destination-Sequenced Distance Vector (DSDV)
Decentralized Energy-Efficient Cluster	protocol, 769-771
Propagation (DEEP) protocol, 801-805	DFEs (decision-feedback equalizers), 285
Decision-feedback equalizers (DFEs), 285	DFT (discrete Fourier transform), 60
Decryption	DHCP (Dynamic Host Configuration Protocol),
AES, 380	167-169
RSA, 382	DHTs (distributed hash tables), 353-355
DEEP (Decentralized Energy-Efficient Cluster	Differentiated services code points (DSCPs), 497
Propagation) protocol, 801-805	Differentiated services (DS) QoS, 495-497
Deep fading, 282	Diffie-Hellman key-exchange protocol, 382-383
Deficit round-robin (DRR) scheduler, 511	DiffServ field, 497
Deflected packets, 458	Diffused configuration, 140
Deflection routing, 178, 557-558	DIFS (distributed IFS coordination function), 147
Delay	Digital certificates, 386
connectionless networks, 12-13	Digital modulation techniques, 50-51
CSMA, 95-96	Digital signatures, 377, 387
optical networks, 553	Digital subscriber line (DSL) modems, 51, 55-57

Digital video broadcasting (DVB), 746	real-time exchange protocols, 726-731
Digital voice compression	VoD, 750
quantization and encoding in, 696–701	Distributed NFB-based networks, 626-627
signal sampling in, 695–696	Distributed protocols, 768
Dijkstra's algorithm, 174-176, 180, 226	Distributed routing
Direct paths for wireless links, 280	intradomain routing protocols, 179
Direct routing	sensor networks, 806
mobile IP, 263-264	Distribution networks, 467–468
sensor networks, 806-807	Distribution of sensor network loads, 812-814
Direct-sequence spread spectrum (DSSS)	Diversity
CDMA, 103-104	in CDMA frequency, 104
physical layer, 144	for flat fading, 284
Direct sequences in CDMA, 103	DNS. See Domain Name System (DNS) and
Directed beam configuration, 140	servers
Directed diffusion, 806	DOCSIS (Data over Cable Service Interface
Directional antennas, 49	Specification), 151-152, 552
Directional couplers, 556	DOCSIS provisioning of EPON (DPoE), 552–553
Directional transmission links, 73	Domain name space, 325-327
Discarded packets, 458	Domain Name System (DNS) and servers,
Discovery	168, 325
DHCP, 168-169	CDN interactions with, 743-744
Gatekeeper, 655-656	domain name space in, 325-327
mobile IP agents, 261	H.323 protocol, 654-655
route. See Route discovery	hacking attacks on, 371-372
Discrete cosine transform (DCT) process, 701–705	message format, 329-330
Discrete Fourier transform (DFT), 60	name/address mapping in, 327-329
Discrete probability functions, 829	VoIP, 651
Discrete-time Markov chains, 835	Domains
Discrete time stochastic processes, 834	AS, 189
Disengage messages in RAS signaling, 658	highjacking attacks on, 372
Distance tables, 772	Doppler frequency shift, 282
Distance vector algorithm, 776	Dot-decimal notation, 23
Distance Vector Multicast Routing Protocol	Downlinks in LTE, 273
(DVMRP), 224–225	Downstream bandwidth, ADSL, 56
Distance vector routing, 184–185	Downstream on demand, 534
Distortion in voice compression, 696–701	DPCs (destination point codes), 645
Distributed access, 146	DPoE (DOCSIS provisioning of EPON), 552–553
Distributed coordination function (DCF) algo-	Droppers in DiffServ, 496
rithm, 146–147	DRR (deficit round-robin) scheduler, 511
Distributed denial-of-service attacks, 375	DRs (designated routers)
Distributed hash tables (DHTs), 353-355	IGMP, 221–222
Distributed IFS coordination function (DIFS), 147	PIM, 228–229
Distributed MAC protocols, 118	DS (differentiated services) QoS, 495–497
Distributed media mini-clouds, 582, 751	DSCPs (differentiated services code points), 497
Distributed multimedia, 725-726	DSDV (Destination-Sequenced Distance Vector)
CDNs, 741-745	protocol, 769-771
IPTV, 745-750	DSL (digital subscriber line) modems, 51, 55-57
mini-clouds, 752-753	DSR (Dynamic Source Routing) protocol, 773-774
online gaming, 751	DSSS (direct-sequence spread spectrum)

physical layer, 144 Dual-stack lite standard, 523 Dual-stack lite standard, 523 Duration/connection ID (D/I) field, 147 DVB (digital video broadcasting), 746 DVMRP (Distance Vector Multicast Routing Protocol), 224-225 Dynamic address allocation, 168 Dynamic host Configuration Protocol (DHCP), 167-169 Dynamic intradomain routing protocols, 179 Dynamic routes with routers, 45 Dynamic Fourtes with routers, 45 Dynamic Source Routing (DSR) protocol, 773-774 E E-mail (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810-811 Earliest deadline first (EDF) scheduler, 511-512 EGGP (external BGP), 194 Echo, 78 Echo acssages in OpenFlow, 616 EDF (arliest deadline first) scheduler, 511-512 Eggess LSRs, 532 Electro-optical switches, 159 Eggess LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 Erns described and the first scheduler, 511-512 Edge switches, 129-130, 588 Efficient scheduling in data center networks, 591 Eggess LSRs, 532 Electro-optical switches, 556 Electronoptical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 Erns deadline first (EDF) scheduler, 511-512 Edge switches, 129-130, 588 Efficient scheduling in data center networks, 591 Eggess LSRs, 532 Electro-optical switches, 556 Electronoptical switches, 556 Electronoptical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 SMTP, 333-334 SMTP, 335-35 POR, 336 Energy-exhaustion attacks, 784 Energy-exh	CDMA, 104	SSH, 344
Duration/connection ID (D/I) field, 147 DVB (digital video broadcasting), 746 DVMRP (Distance Vector Multicast Routing Protocol), 224-225 Dynamic address allocation, 168 Dynamic host Configuration Protocol (DHCP), 167-169 Dynamic intradomain routing protocols, 179 Dynamic IP address allocation, 167 Dynamic routes with routers, 45 Dynamic source Routing (DSR) protocol, 773-774 E E-mail (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAcho messages in OpenFlow, 616 EDF (carliest deadline first) scheduler, 511-512 EGPS (external BGP), 194 Edge switches, 129-130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 Emulators, 85 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 Emulators, network, 632-635 Encapsulation in VPNs, 521, 524 Emulators, network, 632-635 Encaption tregistration in RAS signaling, 656-657 Encoders, Multicast Routing Energy-exhaustion attacks, 784 Energy-exhaustion attacks, 78 Energy-exhaustion attacks, 784 Energy-exhaustion attacks, 78 Energy-exhaustion attacks, 78 Energy-exhaustion attacks, 78 Energr	physical layer, 144	End-to-end encryption, 376
DVB (digital video broadcasting), 746 DVMRP (Distance Vector Multicast Routing Protocol), 224–225 Dynamic address allocation, 168 Dynamic Host Configuration Protocol (DHCP), 167–169 Dynamic intradomain routing protocols, 179 Dynamic intradomain routing protocols, 179 Dynamic intradomain routing protocols, 179 Dynamic routes with routers, 45 Dynamic Source Routing (DSR) protocol, 773–774 E E-mail (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 EAP (Externail BGP), 194 Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Echo, 78 Echo and the scheduler, 511–512 eBGF (extrenal BGP), 194 Error index field, 361 Error status field, 361 Error status field, 361 Error status field, 361 Error status field, 3	Dual-stack lite standard, 523	End-to-end protocols. See Transport and end-to-
DVMRP (Distance Vector Multicast Routing Protocol), 224-225 Bynamic address allocation, 168 Dynamic Host Configuration Protocol (DHCP), 167-169 Dynamic intradomain routing protocols, 179 Dynamic Paddress allocation, 167 Bynamic Foutes with routers, 45 Dynamic Source Routing (DSR) protocol, 773-774 E E-mail (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 SMTP, 333-334 SMTP, 333-334 SMTP, 333-334 SMTP, 335-394 Eacho cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first (EDF) scheduler, 511-512 EBCP (external BGP), 194 Echo, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) Scheduler, 511-512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129-130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 SMTP, 333-334 SMTP, 333-334 SMTP, 333-334 SMTP, 333-334 SMTP, 335-350 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronoptical swi	Duration/connection ID (D/I) field, 147	end protocols
Protocol), 224-225 Dynamic address allocation, 168 Dynamic Host Configuration Protocol (DHCP), 167-169 Dynamic intradomain routing protocols, 179 Dynamic intradomain routing protocols, 179 Dynamic routes with routers, 45 Dynamic Source Routing (DSR) protocol, 773-774 E E-mail (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 SMTP, 333-334 SMTP, 333-334 SMTP, 335-34 EAR (energy-aware routing), 810-811 EAR (energy-aware routing), 810-811 EARle (energy-aware routing), 810-811 ECho cancelers, 78 Echo ancaclers, 78 Echo messages in OpenFlow, 616 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129-130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 SMTP, 333-334 STRUCTURE and definitions, 330-332 Webmail, 342 Error detection and correction, 77-78 ARP, 39-40 CRC, 79-85 IPv6 packets, 197 output port processors, 454 Error index field, 361 Error status field, 361 Error status field, 361 Entity bodies in HTTP, 339-340 Entropy in lossy compressors, 691 Erlang-B blocking routing tables, 451 EPC (Evolved Packet Core), 269, 271, 650 EPONs (Ethernet passive optical networks), 552 Erlang-B blocking probability, 421-422 Erlang-B blocking probability table, 837-840 Erlang-B blocking probability 421-422 Erlang-B blocking probability 421-422 Erlang-B blocking probability 421-422	DVB (digital video broadcasting), 746	Endpoint registration in RAS signaling, 656-657
Dynamic address allocation, 168 Dynamic Host Configuration Protocol (DHCP), 167–169 Dynamic intradomain routing protocols, 179 Dynamic IP address allocation, 167 Dynamic Source Routing (DSR) protocol, 773–774 E E E-mail (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810–811 Earliest deadline first (EDF) scheduler, 511–512 eBGP (external BGP), 194 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 EDFAs (erbium-doped fiber ampliffers), 554 Edge switches, 129–130, 588 Elficient scheduling in data center networks, 591 Eggress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 STURCTURE AND	DVMRP (Distance Vector Multicast Routing	Energy-aware routing (EAR), 810-811
Dynamic Host Configuration Protocol (DHCP), 167-169 Dynamic intradomain routing protocols, 179 Dynamic intradomain routing protocols, 179 Dynamic routes with routers, 45 Dynamic Source Routing (DSR) protocol, 773-774 E E E-mail (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810-811 Earliest deadline first (EDF) scheduler, 511-512 eBGGP (external BGP), 194 Echo, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511-512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129-130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 SMTP, 333-334 SMTR, 333-334 SMTR, 333-334 SMTR, 335-335 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511-512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129-130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 SMTR, 333-334 SMTR, 333-334 SMTR, 333-334 SMTR, 335-35 POP, 334 SMTR, 335-36 Encoders, link, 75-77 Encoding in compression, 695 Encoders, link, 75-77 Encoding in compression, 696-701, 706-707 Encryption ad-hoc networks, 785 Enget distributions, 30 eNodeB (evolved node B (halt), 401 Entrepry in lossy compression, 710-711 Entrepty in lossy compression, 700-707 Epcododies in HTTP, 339-340 Erlanged blocking probability, 421-422 Erlang-B blocking probability able, 837-840 Erlang-B blocking probability able, 837-840 Erlang-B blocking probability able, 837-8	Protocol), 224-225	Energy consumption control, 583
n 167-169 Dynamic intradomain routing protocols, 179 Dynamic IP address allocation, 167 Dynamic Source Routing (DSR) protocol, 773-774 E E E E E E E E E E E E E	Dynamic address allocation, 168	Energy-exhaustion attacks, 784
Dynamic intradomain routing protocols, 179 Dynamic IP address allocation, 167 Dynamic routes with routers, 45 Dynamic Source Routing (DSR) protocol, 773-774 E E E-mail (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810-811 Earliest deadline first (EDF) scheduler, 511-512 eBGP (external BGP), 194 Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (saliest deadling in data center networks, 591 Eggess LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 Erlang-B blocking probability, 421-422 Erlang-B blocking probability table, 837-840 Erlang-C formula, 418 Error detection and correction, 77-78 ARP, 39-40 CRC, 79-85 IPv6 packets, 197 output port processors, 454 Error index field, 361 Error status field, 36	Dynamic Host Configuration Protocol (DHCP),	Engset distributions, 63
Dynamic IP address allocation, 167 Dynamic routes with routers, 45 Dynamic Source Routing (DSR) protocol, 773–774 E Email (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810–811 Earliest deadline first (EDF) scheduler, 511–512 eBGP (external BGP), 194 Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 eBGPs witches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 structure and definitions, 330–332 Webmail, 342 Explained blocking probability table, 837–840 Erlang-B blocking probability table, 837–840 Erlang-C formula, 418 Error detection and correction, 77–78 ARP, 39–40 CRC, 79–85 IPv6 packets, 197 output port processors, 454 Error index field, 361 Erternet LANs, 119–121 Ethernet LANs, 119–121 Ethernet LaNs, 119–121 Ethernet switches, 436 Events in probability, 827–828 Events in probability, 827–828 Events in probability and correction, 77–78 Exclude mode in IGMP, 222 Events in probability, 827–828 Exclude mode in IGMP, 222 Expansion switch fabrics, 467–468 Expected value, 831–832 Expected value, 831–832 Expected value, 831–832 Expected value, 831–832 Expection moder on tyPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encoding in compression, 696–701, 706–707 Encoding in compression, 696–701, 706–707 Excended highest sequence number received	167–169	eNodeB (evolved node B) in LTE, 269
Dynamic routes with routers, 45 Dynamic Source Routing (DSR) protocol, 773-774 E E Email (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810-811 Earliest deadline first (EDF) scheduler, 511-512 eBGP (external BGP), 194 Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511-512 edges witches, 129-130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronotic mail (e-mail), 330 IMAP, 335 POP, 334 structure and definitions, 330-332 Webmail, 342 Emulators, network, 632-635 Encoders, 1ink, 75-77 Encoding in compression, 696-701, 706-707 Encryption ad-hoc networks, 785 Entity bodies in HTTP, 339-340 Entropy in lossy compression, 710-711 Entry numbers in routing tables, 451 Entropy in lossy compression, 710-711 Entry numbers in routing tables, 451 Entropy in lossy compression, 710-711 Entry numbers in routing tables, 451 Entropy in lossy compression, 710-711 Entry numbers in routing tables, 451 Entropy in lossy compression, 710-711 Entry numbers in routing tables, 451 Entropy in lossy compression, 710-765 EPONs (Ethernet passive optical networks), 552 EPONs (Ethernet passive optical networks), 552 Erlang-B blocking probability, 421-422 Erlang-B blocking probability, 421-422 Erlang-B blocking probability, 421-422 Erlang-B blocking probability, 421-422 Erlang-B blocking probability table, 837-840 Erlang-B blocking probability able, 837-840 Erlang-B blocking probability able, 837-840 Erlang-B blocking probability able, 87-840 Erlang-B blocking p	Dynamic intradomain routing protocols, 179	Ensured forwarding PHBs, 497
E-mail (electronic mail), 330 E-mail (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810–811 Earliest deadline first (EDF) scheduler, 511–512 eBGP (external BGP), 194 Echo, 78 Echo ancelers, 78 Echo ancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Efficient scheduling in data center networks, 591 Effectronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 Excuste action sets, 617 Exp field, 536 Excuste action sets, 617 Exp field, 536 Experimenter messages, 616 Express MIR, 475–77 Encoding in compression, 696–701, 706–707 Encoding in compression, 696–701, 706–707 Encryption Entropy in lossy compression, 710–711 Entry numbers in routing tables, 451 EPC (Evolved Packet Core), 269, 271, 650 EPONs (Ethernet passive passive model, 28 Erbium-doped fiber amplifiers (EDFAs), 554 Erlang-B blocking probability, 421–422 Erlang-B blocking probability able, 837–840 Erlang-B blocking probability able, 837–840 Erlang-B blocking probability able, 847 Erlang-B blocking probability, 421–422 Erlang-	Dynamic IP address allocation, 167	Enterprise field, 361
E-mail (electronic mail), 330 E-mail (electronic mail), 330 EPONs (Ethernet passive optical networks), 552 Equal-sized packet model, 28 Erbium-doped fiber amplifiers (EDFAs), 554 Erlang-B blocking estimation, 647-649 Erlang-B blocking probability, 421-422 Erlang-B blocking probability table, 837-840 Erlang-C formula, 418 Error detection and correction, 77-78 Erlang-B blocking probability table, 837-840 Erlang-C formula, 418 Error detection and correction, 77-78 ARP, 39-40 CRC, 79-85 IPv6 packets, 197 output port processors, 454 Error index field, 361 Error status field, 361 Error status field, 361 Error status field, 361 Ethernet LANs, 119-121 Ethernet passive optical networks (EPONs), 552 Ethernet switches, 43 Ethernet switches, 43 Ethernet switches, 43 Ethernet switches, 43 Events in probability, 827-828 Experimenter switches, 43 Exp field, 536 Experimenter messages, 616 Expers multicast, 237 Extended highest seque	Dynamic routes with routers, 45	Entity bodies in HTTP, 339-340
E-mail (electronic mail), 330 IMAP, 335 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810–811 Earliest deadline first (EDF) scheduler, 511–512 eBGP (external BGP), 194 Echo, 78 Echo ancelers, 78 Echo ancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 EPC (Evolved Packet Core), 269, 271, 650 EPONs (Ethernet passive optical networks), 552 Equal-sized packet model, 28 Erbium-doped fiber amplifiers (EDFs), 554 Erlang-B blocking probability, 421–422 Erlang-B blocking probability table, 837–840 Erlang-C formula, 418 Ertor detection and correction, 77–78 ARP, 39–40 CRC, 79–85 IPv6 packets, 197 output port processors, 454 Error index field, 361 Error status field, 361 Error status field, 361 Ethernet LANs, 119–121 Ethernet passive optical networks (EPONs), 552 Ethernet cannot correction, 77–78 Ethernet switches, 43 Evolved node B (eNodeB) in LTE, 269 Evolved Packet Core (EPC), 269, 271, 650 Exclude mode in IGMP, 222 Expansion switch fabrics, 467–468 Expected value, 831–832 Expected value, 831–832 Expected value, 831–832 Experimenter messages, 616 Explicit multi-unicast (Xcast) protocol, 595 Explicit routing, 537, 550 Exponential random variables, 831 Express multicast, 237 Extended highest sequence number received	Dynamic Source Routing (DSR) protocol, 773-774	Entropy in lossy compression, 710-711
Email (electronic mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810-811 Earliest deadline first (EDF) scheduler, 511-512 eBGP (external BGP), 194 Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (arliest deadline first) scheduler, 511-512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129-130, 588 Efficient scheduling in data center networks, 591 Egerss LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 Emulators, network, 632-635 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75-77 Encoding in compression, 696-701, 706-707 Encryption ad-hoc networks, 785 EPONs (Ethernet passive optical networks), 552 EPONs (Ethernet passive optical networks), 552 Epula-sized packet model, 28 Erbium-doped fiber amplifiers (EDFAs), 554 Erlang-B blocking probability, 421-422 Erlang-B blocking probability, 421-422 Erlang-B blocking probability table, 837-840 Erlang-C formula, 418 Error detection and correction, 77-78 ARP, 39-40 CRC, 79-85 IPv6 packets, 197 output port processors, 454 Error index field, 361 Error status field, 361 Error status field, 361 Error status field, 361 Erthernet LANs, 119-121 Ethernet passive optical networks (EPONs), 552 Ethernet switches, 43 Events in probability, 427-422 Events in probability, 427-428 Evolved node B (eNodeB) in LTE, 269 Evolved Packet Core (EPC), 269, 271, 650 Explicit multi-unicast (Xeast) protocol, 595 Explicit routing, 537, 550	T.	Entry numbers in routing tables, 451
IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810-811 Earliest deadline first (EDF) scheduler, 511-512 Echo, 78 Echo cancelers, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511-512 Edge switches, 129-130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333-334 structure and definitions, 330-332 Webmail, 342 Emulators, network, 632-635 Encapsulation in VPNs, 521, 524 Encoded source compression, 696-701, 706-707 Encoding in compression, 696-701, 706-707 Encryption ad-hoc networks, 785 Erlang-B blocking estimation, 647-649 Erlang-B blocking probability, 421-422 Erlang-B blocking probability, 421-422 Erlang-B blocking probability, 421-422 Erlang-B blocking probability table, 837-840 Erlang-B blocking probability, 421-422 Erlang-B blocking probability able, 837-840 Erlang-B	E	EPC (Evolved Packet Core), 269, 271, 650
POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810–811 Earliest deadline first (EDF) scheduler, 511–512 eBGP (external BGP), 194 Echo, 78 Echo cancelers, 78 Echo acancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 696–701, 706–707 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Erlang-B blocking probability, 421–422 Erlang-B blocking probability able, 37–84 ARP, 39–40 CRC, 79–85 I	E-mail (electronic mail), 330	EPONs (Ethernet passive optical networks), 552
POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810–811 Earliest deadline first (EDF) scheduler, 511–512 eBGP (external BGP), 194 Echo, 78 Echo cancelers, 78 Echo acancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 696–701, 706–707 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Erlang-B blocking probability, 421–422 Erlang-B blocking probability able, 37–84 ARP, 39–40 CRC, 79–85 I	IMAP, 335	Equal-sized packet model, 28
SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810–811 Earliest deadline first (EDF) scheduler, 511–512 eBGP (external BGP), 194 Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 696–701, 706–707 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Erlang-B blocking probability, 421–422 Erlang-B blocking probability table, 837–840 Erlang-B blocking probability, 421–422 Erlang-B blocking probability, 421–422 Erlang-B blocking probability table, 837–840 Erlang-B blocking probability table, 917 ARP, 39–40 CRC, 79–85 IPv6 packets, 197 output port procesors, 454 Error index field, 361 Ertrang-B beview and correct	POP, 334	
Webmail, 342 EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810–811 Earliest deadline first (EDF) scheduler, 511–512 eBGP (external BGP), 194 Echo, 78 Echo, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 Structure and definitions, 330–332 Webmail, 342 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Erlang-B blocking probability table, 837–840 Erlang-C formula, 418 Error detection and correction, 77–78 ARP, 39–40 CRC, 79–85 IPv6 packets, 197 output port processors, 454 Error index field, 361 Error status field, 361 Ethernet LANs, 119–121 Ethernet switches, 43 Events in probability, 827–828 Evolved node B (eNodeB) in LTE, 269 Exclude mode in IGMP, 222 Execute action sets, 617 Experimenter messages, 616 Experimenter messages, 616 Experimenter messages, 616 Experimenter messages, 616 Experimental, 418 Error detection and correction, 77–78 ARP, 39–40 CRC, 79–85 IPv6 packets, 197 output port processors, 454 Error index field, 361 Error status field, 361 Ethernet switches, 43 Events in probability, 827–828 Evolved node B (eNodeB) in LTE, 269 Exclude mode in IGMP, 222 Execute action sets, 617 Experimenter messages, 616	SMTP, 333-334	
EAP (Extensible Authentication Protocol), 391 EAR (energy-aware routing), 810–811 Earliest deadline first (EDF) scheduler, 511–512 eBGP (external BGP), 194 Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Erlang-C formula, 418 Error detection and correction, 77–78 ARP, 39–40 CRC, 79–85 Ireror detection and correction, 77–78 ARP, 39–40 CRC, 79–85 Ireror detection and correction, 77–78 ARP, 39–40 ARP, 39–40 CRC, 79–85 Ireror detection and correction, 77–78 ARP, 39–40 ARP, 39–40 CRC, 79–85 Ireror detection and correction, 77–78 ARP, 39–40 CRC, 79–85 IRAP, 39–40 CRC, 79–85 IRAP, 39–40 CRC, 79–85 IRAP, 39–40 CRC, 79–85 Ireror detection and correction, 77–78 ARP, 39–40 CRC, 79–85 IRAP, 30–40 CRC, 79–85 IRAP, 30–40 CRC, 79–85 IRAP, 30–40 CRC, 79–85 IRAP, 30–40 CRC, 30–85 IPV6 packets, 197 output port processors, 454 Error index field, 361 Ethernet LANs, 119–121 Ethernet	structure and definitions, 330-332	Erlang-B blocking probability, 421-422
EAR (energy-aware routing), 810–811 Earliest deadline first (EDF) scheduler, 511–512 eBGP (external BGP), 194 Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 Electronic mail (e-mail), 330 ENTP, 333–334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 Emulators, network, 632–635 Emulators, network, 635 Encapsulation in VPNs, 521, 524 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 ERPO CRC, 79–85 ARP, 39–40 CRC, 79–85 Ervor detection and correction, 77–78 Ervor index field, 361 Error index field, 361 Erternet switches, 19 Ethernet passive optical networks (EPONs), 552 Ethernet LANs, 119–121 Ethernet passive optical networks (EPONs), 522 Ethernet LANs, 119–121 Ethernet passive optical n	Webmail, 342	Erlang-B blocking probability table, 837-840
Earliest deadline first (EDF) scheduler, 511–512 eBGP (external BGP), 194 Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 Evolved node B (eNodeB) in LTE, 269 Electronic mail (e-mail), 330 Exclude mode in IGMP, 222 POP, 334 STRUCTURE and definitions, 330–332 Expension switch fabrics, 467–468 Expected value, 831–832 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 ARP, 39–40 CRC, 79–85 IPv6 packets, 197 output port processors, 454 Error index field, 361 Error status field, 361 Error status field, 361 Error status field, 361 Error status field, 361 Ethernet LANs, 119–121 Ethernet LANs, 119–121 Ethernet Long, 18 Ethernet passive optical networks (EPONs), 552 Ethernet passive optical networks (EPONs), 552 Ethernet passive optical networks (EPONs), 552 Ethernet switches, 43 Events in probability, 827–828 Ethernet passive optical networks (EPONs), 552 Ethernet cannot networks (EPONs), 552 Ethernet LANs, 119–121 Ethernet LANs, 11	EAP (Extensible Authentication Protocol), 391	Erlang-C formula, 418
eBGP (external BGP), 194 Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129–130, 588 Ethernet LANs, 119–121 Edge switches, 129–130, 588 Ethernet passive optical networks (EPONs), 552 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Events in probability, 827–828 Electro-optical switches, 556 Evolved node B (eNodeB) in LTE, 269 Electronic mail (e-mail), 330 Events on a in IGMP, 222 POP, 334 SMTP, 333–334 SMTP, 333–334 SMTP, 333–334 Expected value mode in IGMP, 222 Emulators, network, 632–635 Expendited forwarding PHBs, 497 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encoryption ad-hoc networks, 785 EXCRC, 79–85 IPv6 packets, 197 output port processors, 454 Error index field, 361 Error status field, 361 Ethernet LaNs, 119–121 Ethernet Salva Lan	EAR (energy-aware routing), 810-811	Error detection and correction, 77-78
Echo, 78 Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electroic mail (e-mail), 330 Electroic mail (e-mail), 330 Evolved Packet Core (EPC), 269, 271, 650 IMAP, 335 POP, 334 SMTP, 333–334 SMTP, 333–334 STRUCTURE and definitions, 330–332 Emulators, network, 632–635 Emulators, network, 632–635 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 IEVO to the field, 361 Error index field, 361 Error status field, 361 Ethernet LANs, 119–121 Ethernet Lan	Earliest deadline first (EDF) scheduler, 511-512	ARP, 39-40
Echo cancelers, 78 Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129–130, 588 Ethernet LANs, 119–121 Edge switches, 129–130, 588 Ethernet passive optical networks (EPONs), 552 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Events in probability, 827–828 Electro-optical switches, 556 Electronic mail (e-mail), 330 Evolved node B (eNodeB) in LTE, 269 Electronic mail (e-mail), 330 Exclude mode in IGMP, 222 POP, 334 SMTP, 333–334 Structure and definitions, 330–332 Experimenter and definitions, 330–332 Emulators, network, 632–635 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Experimenter message, 616 Experimenter processors, 454 Experimenter messages, 616 Experimental random variables, 831 Express multicast, 237 Extended highest sequence number received	eBGP (external BGP), 194	CRC, 79-85
Echo messages in OpenFlow, 616 EDF (earliest deadline first) scheduler, 511–512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 EVENTE SATE SATE SATE SATE SATE SATE SATE SA	Echo, 78	IPv6 packets, 197
EDF (earliest deadline first) scheduler, 511–512 EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Emulators, network, 632–635 Emulators, network, 632–635 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Ethernet LANs, 119–121 Ethernet LANs, 119–12 Ethernet LANs, 119 Ethernet switches, 43 Events in probability, 827–828 Events in probability, 827–828 Events in probability, 827–828 Events in probability, 827–828 Events in probability, 92–82 Events in probability, 92–82 Even	Echo cancelers, 78	output port processors, 454
EDFAs (erbium-doped fiber amplifiers), 554 Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 Evolved node B (eNodeB) in LTE, 269 Electronic mail (e-mail), 330 Exclude mode in IGMP, 222 POP, 334 SMTP, 333–334 Structure and definitions, 330–332 Emulators, network, 632–635 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Ethernet LANs, 119–121 Ethernet LANs, 119–12 Ethernet Expense witches, 43 Events in probability, 827–828 Evelts in pro	Echo messages in OpenFlow, 616	Error index field, 361
Edge switches, 129–130, 588 Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 IMAP, 335 POP, 334 SMTP, 333–334 structure and definitions, 330–332 Emulators, network, 632–635 Emulators, network, 632–635 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Ethernet passive optical networks (EPONs), 552 Ethernet switches, 43 Ethernet passive optical networks (EPONs), 552 Ethernet switches, 43 Ethernet switches, 43 Ethernet passive optical networks (EPONs), 552 Ethernet switches, 43 Events in probability, 827–828 Events in probability, 827–828 Evolved node B (eNodeB) in LTE, 269 Evolved Packet Core (EPC), 269, 271, 650 Exclude mode in IGMP, 222 Excute action sets, 617 Exp field, 536 Exp field, 536 Expansion switch fabrics, 467–468 Expected value, 831–832 Expected value, 831–832 Expected value, 831–832 Experimenter messages, 616 Experimenter messages, 616 Explicit multi-unicast (Xcast) protocol, 595 Explicit routing, 537, 550 Exponential random variables, 831 Express multicast, 237 Extended highest sequence number received	EDF (earliest deadline first) scheduler, 511-512	Error status field, 361
Efficient scheduling in data center networks, 591 Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 Evolved Packet Core (EPC), 269, 271, 650 Exclude mode in IGMP, 222 POP, 334 Execute action sets, 617 Exp field, 536 Structure and definitions, 330–332 Expansion switch fabrics, 467–468 Webmail, 342 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Events in probability, 827–828 Evolved node B (eNodeB) in LTE, 269 Evolved Packet Core (EPC), 269, 271, 650 Exclude mode in IGMP, 222 Expetied action sets, 617 Experied action sets, 617	EDFAs (erbium-doped fiber amplifiers), 554	Ethernet LANs, 119-121
Egress LSRs, 532 Electro-optical switches, 556 Electronic mail (e-mail), 330 Evolved node B (eNodeB) in LTE, 269 Electronic mail (e-mail), 330 Evolved Packet Core (EPC), 269, 271, 650 Exclude mode in IGMP, 222 POP, 334 Execute action sets, 617 Exp field, 536 Structure and definitions, 330–332 Expansion switch fabrics, 467–468 Webmail, 342 Expected value, 831–832 Emulators, network, 632–635 Expedited forwarding PHBs, 497 Encapsulation in VPNs, 521, 524 Experimenter messages, 616 Encoded source compression, 695 Explicit multi-unicast (Xcast) protocol, 595 Encoders, link, 75–77 Explicit routing, 537, 550 Exponential random variables, 831 Encryption ad-hoc networks, 785 Extended highest sequence number received	Edge switches, 129-130, 588	Ethernet passive optical networks (EPONs), 552
Electro-optical switches, 556 Electronic mail (e-mail), 330 Evolved Packet Core (EPC), 269, 271, 650 IMAP, 335 Exclude mode in IGMP, 222 POP, 334 Execute action sets, 617 Exp field, 536 Structure and definitions, 330–332 Expansion switch fabrics, 467–468 Webmail, 342 Emulators, network, 632–635 Expedited forwarding PHBs, 497 Encapsulation in VPNs, 521, 524 Experimenter messages, 616 Encoded source compression, 695 Expedited forwarding PHBs, 497 Experimenter messages, 616 Expedited forwarding PHBs, 497 Experimenter messages, 616 Explicit multi-unicast (Xcast) protocol, 595 Encoders, link, 75–77 Explicit routing, 537, 550 Exponential random variables, 831 Encryption Express multicast, 237 Extended highest sequence number received	Efficient scheduling in data center networks, 591	Ethernet switches, 43
Electronic mail (e-mail), 330 Evolved Packet Core (EPC), 269, 271, 650 Exclude mode in IGMP, 222 POP, 334 Execute action sets, 617 Exp field, 536 Structure and definitions, 330–332 Expansion switch fabrics, 467–468 Webmail, 342 Emulators, network, 632–635 Expedited forwarding PHBs, 497 Encapsulation in VPNs, 521, 524 Experimenter messages, 616 Encoded source compression, 695 Explicit multi-unicast (Xcast) protocol, 595 Encoders, link, 75–77 Explicit routing, 537, 550 Encoryption Express multicast, 237 Extended highest sequence number received	Egress LSRs, 532	Events in probability, 827-828
IMAP, 335 POP, 334 Execute action sets, 617 Exp field, 536 structure and definitions, 330-332 Expansion switch fabrics, 467-468 Webmail, 342 Emulators, network, 632-635 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75-77 Encoding in compression, 696-701, 706-707 Encryption ad-hoc networks, 785 Execute action sets, 617 Exp field, 536 Expansion switch fabrics, 467-468 Experiment abrics, 467-468 Expected value, 831-832 Expedited forwarding PHBs, 497 Experimenter messages, 616 Explicit multi-unicast (Xcast) protocol, 595 Explicit routing, 537, 550 Exponential random variables, 831 Express multicast, 237 Extended highest sequence number received		Evolved node B (eNodeB) in LTE, 269
POP, 334 SMTP, 333–334 structure and definitions, 330–332 Webmail, 342 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Execute action sets, 617 Exp field, 536 Expansion switch fabrics, 467–468 Experiment fabrics, 467–468 Expected value, 831–832 Expedited forwarding PHBs, 497 Experimenter messages, 616 Explicit multi-unicast (Xcast) protocol, 595 Explicit routing, 537, 550 Exponential random variables, 831 Express multicast, 237 Extended highest sequence number received	Electronic mail (e-mail), 330	Evolved Packet Core (EPC), 269, 271, 650
SMTP, 333–334 structure and definitions, 330–332 Expansion switch fabrics, 467–468 Webmail, 342 Emulators, network, 632–635 Expedited forwarding PHBs, 497 Encapsulation in VPNs, 521, 524 Experimenter messages, 616 Encoded source compression, 695 Explicit multi-unicast (Xcast) protocol, 595 Encoders, link, 75–77 Explicit routing, 537, 550 Encoding in compression, 696–701, 706–707 Experimenter messages, 616 Explicit routing, 537, 550 Explicit routing, 537, 550 Exponential random variables, 831 Express multicast, 237 ad-hoc networks, 785 Extended highest sequence number received	IMAP, 335	
structure and definitions, 330–332 Webmail, 342 Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Expansion switch fabrics, 467–468 Expected value, 831–832 Expedited forwarding PHBs, 497 Experimenter messages, 616 Explicit multi-unicast (Xcast) protocol, 595 Explicit routing, 537, 550 Exponential random variables, 831 Express multicast, 237 Extended highest sequence number received	POP, 334	Execute action sets, 617
Webmail, 342 Expected value, 831–832 Emulators, network, 632–635 Expedited forwarding PHBs, 497 Encapsulation in VPNs, 521, 524 Experimenter messages, 616 Encoded source compression, 695 Explicit multi-unicast (Xcast) protocol, 595 Encoders, link, 75–77 Explicit routing, 537, 550 Encoding in compression, 696–701, 706–707 Exponential random variables, 831 Encryption Express multicast, 237 ad-hoc networks, 785 Extended highest sequence number received		Exp field, 536
Emulators, network, 632–635 Encapsulation in VPNs, 521, 524 Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encoryption Encryption ad-hoc networks, 785 Expedited forwarding PHBs, 497 Experimenter messages, 616 Explicit multi-unicast (Xcast) protocol, 595 Explicit routing, 537, 550 Exponential random variables, 831 Express multicast, 237 Extended highest sequence number received	structure and definitions, 330-332	Expansion switch fabrics, 467-468
Encapsulation in VPNs, 521, 524 Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Experimenter messages, 616 Explicit multi-unicast (Xcast) protocol, 595 Explicit routing, 537, 550 Exponential random variables, 831 Express multicast, 237 Extended highest sequence number received	Webmail, 342	Expected value, 831-832
Encoded source compression, 695 Encoders, link, 75–77 Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Explicit multi-unicast (Xcast) protocol, 595 Explicit routing, 537, 550 Exponential random variables, 831 Express multicast, 237 Extended highest sequence number received	Emulators, network, 632-635	Expedited forwarding PHBs, 497
Encoders, link, 75–77 Explicit routing, 537, 550 Encoding in compression, 696–701, 706–707 Exponential random variables, 831 Encryption Express multicast, 237 ad-hoc networks, 785 Extended highest sequence number received	Encapsulation in VPNs, 521, 524	Experimenter messages, 616
Encoding in compression, 696–701, 706–707 Encryption ad-hoc networks, 785 Exponential random variables, 831 Express multicast, 237 Extended highest sequence number received	Encoded source compression, 695	Explicit multi-unicast (Xcast) protocol, 595
Encryption Express multicast, 237 ad-hoc networks, 785 Extended highest sequence number received	Encoders, link, 75-77	Explicit routing, 537, 550
Encryption Express multicast, 237 ad-hoc networks, 785 Extended highest sequence number received	Encoding in compression, 696-701, 706-707	Exponential random variables, 831
6 1	Encryption	
cryptographic techniques, 377–383 field, 734	ad-hoc networks, 785	Extended highest sequence number received
	cryptographic techniques, 377-383	field, 734

Extensible Authentication Protocol (EAP), 391	Five-stage Clos networks, 464–465
Extension (X) field, 729	Fixed reservation schemes, 500
Extension headers in IPv6, 198	Fixed-size switch elements, 570
Extensions in SIP, 674–678	Flag field, 736
External BGP (eBGP), 194	Flags field
Extra data in TCP, 314	DNS, 329
Extranet VPNs, 526	IP packets, 161
F	Flags/code field, 263
Г	Flat fading, 282
Facility call-signaling messages, 659	Flexibility in cloud computing, 579
Fading, 281-284	Flood attacks, 374-375
Failures, network management for, 357-358	Flood routing, 177-178
Fair-queueing (FQ) scheduler, 507-508	Flooding algorithm, 177-178
Fairness index, 500-501	Floodlight controllers, 615
Fast Fourier transform (FFT), 60, 100	Flow-based routers, 46
Fast recovery, congestion control, 313	Flow control, 85
Fast retransmit method, 308-309, 313-315	sliding-window, 88-92
FAX compression, 717–718	stop-and-wait, 85-88
FCFS (first come, first served) queuing systems, 408	in switching networks, 458
FDM (frequency-division multiplexing), 59-61	Flow label field, 196
FDMA (frequency-division multiple access), 99	Flow tables, 617-618
Feature messages in SIP, 669	FOLs (fiber optic links), 74, 547
Features in SIP, 674–678	Foreign addresses in mobile IP, 260, 263
FEC (forward equivalence class), 532, 537	Foreign agents
FEC (forward error correction), 283-284	cellular networks, 248
Feedback models, 433-434	mobile IP, 260-261
Femtocells, 269	Forward equivalence class (FEC), 532, 537
FFT (fast Fourier transform), 60, 100	Forward error correction (FEC), 283-284
FHSS (frequency-hopping spread spectrum), 144	Forwarding tables, 452-453
Fiber-optic communications, 73	Four-level QAM, 55
Fiber optic links (FOLs), 74, 547	FQ (fair-queueing) scheduler, 507-508
FIFO (first-in, first-out) queuing systems. See	Fraction lost field, 734
Markovian FIFO queueing systems	Fragment-free switches, 44
FIFO (first-in, first-out) schedulers, 502-503	Fragment offset field, 161
File sharing protocols, 348–352	Fragmentation, packet, 7, 163-164, 198-199
File Transfer Protocol (FTP), 346-347	Frame body field, 148
Filters	Frame check sequence field, 120
optical networks, 554, 561	Frame check sequences, 118, 454
packet, 391-396	Frame collisions with links, 92
Finished (FIN) field, 300, 304	Frame control (FC) field, 147
Firewalls	Frame delay analysis, 95-96
operation of, 391-396	Frame flow control, 39-40
with VPNs, 527–528	Frame process units, 39
Firmware in software-defined networking, 610	Frame-switch mode, 117
First come, first served (FCFS) queuing systems, 408	Frames
First-in, first-out (FIFO) queuing systems. See	LAN, 116
Markovian FIFO queueing systems	MAC, 147-149
First-in, first-out (FIFO) schedulers, 502-503	MPEG, 707-708
5-layer TCP/IP protocol model, 18-20	packet-switched networks, 6-7

Frequency borrowing, 276	Global positioning systems (GPSs), 793, 805
Frequency-division multiple access (FDMA), 99	Global translation title (GTT), 644–645
Frequency-division multiplexing (FDM), 59-61	Glossary of acronyms, 817-822
Frequency hopping, 103	GMPLS (generalized multiprotocol label switch-
Frequency-hopping spread spectrum (FHSS), 144	ing) protocol, 548
Frequency ranges, 72–73	lightpaths, 550-551
Frequency reuse in LTE, 273–277	optical cross connects and generalized labels,
Frequency shift, 282	549-550
Frequency shift keying (FSK), 52–53	traffic grooming, 551
FTP (File Transfer Protocol), 346-347	Goodbye packets, 732
Full-duplex links, 73	Gopher protocol, 335
Fully connected optical networking schemes, 594	GPSs (global positioning systems), 793, 805
Functions	Grant flows, 473
probability, 829-830	Graphical user interfaces (GUIs)
random variable, 832–834	cloud computing, 581
	overview, 324–325
G	Graphics interchange format (GIF) file compres-
G-LSPs (generalized label switch paths), 550–551	sion, 703
Gaming, online, 751	GRE (generic routing encapsulation), 527
Gatekeeper discovery in RAS signaling, 655–656	GTT (global translation title), 644–645
Gatekeepers (GKs) in H.323 protocol, 652	Guaranteed service classes, 486-487
Gateways	Guard space, 205
sockets, 293	Guest machines, 587
wireless routers with, 149	Guided missiles, 73
Gaussian (normal) random variables, 831	Guided transmission links, 73
General distributions, 424–425	GUIs (graphical user interfaces)
Generalized label switch paths (G-LSPs), 550–551	cloud computing, 581
Generalized labels in GMPLS, 549–550	overview, 324–325
Generalized multiprotocol label switching	
(GMPLS) protocol, 548	Н
lightpaths, 550–551	H.323 protocols, 652
optical cross connects and generalized labels,	call signaling, 659-662
549–550	components, 652–653
traffic grooming, 551	conference calling, 665–666
Generating polynomials for CRC, 82	control signaling, 662–665
Generator values for CRC, 82–83	organization, 653–655
Generators, checking, 81–82	RAS signaling, 655-659
Generic routing encapsulation (GRE), 527	SIP to H.323 internetworking, 679–680
Geometric distributions, 413	Hacking attacks, 371–372
Geometric random variables, 830	Half-duplex links, 73
Geosynchronous orbit satellite systems, 245	Handoffs
GET method in HTTP, 339-340	cellular networks, 253-259
Get PDUs, 361	LTE, 271–273
GIF (graphics interchange format) file compres-	Handshakes, three-way, 337
sion, 703	Hardware firewalls, 392
GKs (gatekeepers) in H.323 protocol, 652	Hash functions, 383–384
Global number of copies in tree algorithms,	Hash tables, 353–355
476–477	HDSL (high-bit-rate digital subscriber line), 57
Global packet resequencers, 454	HDTV (high-definition television), 707
1	

HEAD method in HTTP, 339	Host machines, 587
Headends in IPTV, 746	Hosts
Header length (HL) field	intradomain routing protocols, 179
IP packets, 160	ISP, 8
TCP segments, 299	TCP/IP protocol model, 19-20
Header lines in HTTP, 339-340	WMNs, 277
Headers	Hot-potato routing, 178
BGP, 190-192	Hotspots in WiFi, 150
e-mail, 331	HSS (home Subscriber Server), 269
IPsec, 388	HTML (Hypertext Markup Language), 336, 755
IPv4, 160-162	HTTP (Hypertext Transfer Protocol), 172,
IPv6, 196-197	336–341
LAN, 116	HTTP-based streaming, 740-741
MAC, 118	HTTPS protocol, 341, 386
MPLS, 530-531, 536	Hubs, 40-41
OSPF, 181–182	LANs, 121, 123
packet, 449	overview, 42
packet-switched networks, 6-7	star topologies, 117
RIP, 186–187	Huffman encoding, 708, 715-716, 718
RTCP, 732-734	Hurst parameter, 758
RTP, 729-731	Hybrid clouds, 579-580
SCTP, 736-737	Hybrid fiber-coaxial (HFC) networks, 57
Heartbeat acknowledgment chunks, 737	Hybrid networks, 245
Heartbeat request chunks, 737	Hydrogen release, 614
Heavy-tailed distributions, 757, 759	Hyperlinks, 335
HELLO messages, 616, 782-783	Hypertext Markup Language (HTML), 336, 755
Hello packets, 181-183	Hypertext Transfer Protocol (HTTP), 172,
HFC (hybrid fiber-coaxial) networks, 57	336-341
Hidden-terminal problem, 106	Hypervisors, 587-588, 596
High-bit-rate digital subscriber line (HDSL), 57	I
High-capacity routers, 46	1
High-definition television (HDTV), 707	I components in modulation, 54
Highjacking attacks, 372	I (interactive) frames, 708
HLR (home location register), 248–250, 252	I-TCP (Indirect Transmission Control Protocol),
Hold state in RIP, 188	307–308
Hold Time field, 190	IaaS (infrastructure as a service), 582
Home address field, 263	IAMs (initial address messages), 253, 645-646
Home agents	iBGP (internal BGP), 194
cellular networks, 248	ICANN (Internet Corporation for Assigned
mobile IP, 260–261	Names and Numbers), 165
Home location register (HLR), 248–250, 252	ICMP (Internet Control Message Protocol), 164–165
Home networks	ICN (information-centric networking), 627–628
ad hoc, 767	named objects, 628
IPTV, 746, 748	routing and management, 628–631
Home RF LANs, 141	security, 631–632
Home Subscriber Server (HSS), 269	ICR (Intercluster Energy-Conscious Routing),
Hop limit field, 196	808-811
Host-based resource allocation, 499	Identification field
Host IDs in IP addresses, 22	DNS, 329

IP packets, 161	Initiation chunks, 737
mobile IP, 263	Initiation chunks, 737 Initiation acknowledgment chunks, 737
Idle states in queuing, 408	Input port buffers, 450, 472–473
IEEE 802.3 standard, 119–121	Input port processors (IPPs), 44–45, 447–448
IEEE 802.11 standard, 142–143	forwarding tables and packet encapsulators,
MAC layer, 145–149	452-453
physical layer, 144–145	input buffers, 450
security for, 389–391	multicast schedulers, 452
for WiFi technology, 150–151	OpenFlow, 617-618
IEEE 802.15.4 standard, 811–812	packet parsers, 448–449
IEEE 802.16 standard, 267–268	packet partitioners, 449–450
IETF (Internet Engineering Task Force), 387, 679	routing tables, 450–452
IFS (interframe space) technique, 146–147	Insertion loss, 554, 558
IGMP (Internet Group Management Protocol),	Integrated Services Digital Network (ISDN), 644
221-223, 749	Integrated services QoS
IGP (Interior Gateway Protocol) labels, 536	admission control in, 494–495
IID (independent and identically distributed)	overview, 486-488
processes, 408, 834	RSVP, 495
IKE (Internet Key Exchange) daemons, 389	traffic shaping in, 488-494
IMAP (Internet Mail Access Protocol), 335	Integrity
IMSI (international mobile subscriber identity),	ad-hoc networks, 785
249-250	security, 370
In-phase QAM components, 55	Interactive (I) frames, 708
Include mode in IGMP, 222	Interactive voice response (IVR), 582, 751,
Increased total link bandwidth in link	754–756
aggregation, 107	Interarrival jitter field, 731, 734
Independent and identically distributed (IID)	Interchanging phone numbers, 669-670
processes, 408, 834	Intercluster Energy-Conscious Routing (ICR),
Independent events, 828	808-811
Independent random variables, 833-834	Intercluster routing protocols, 805, 808-811
Indirect Transmission Control Protocol (I-TCP),	Interdomain routing protocols, 188-189
307–308	AS, 189
Info field, 351	BGMP, 236–237
Info messages in SIP, 677	BGP, 189–196
Information-centric networking (ICN), 627–628	MBGP, 231-234
named objects, 628	MSDP, 234–236
routing and management, 628–631	multicast, 231–237
security, 631–632	Interest signals, 808
Information-compression process, 696	Interference, 283
Information leakage attacks, 372	Interframe space (IFS) technique, 146–147
Information-level attacks, 372	Interior Gateway Protocol (IGP) labels, 537
Information-source process, 695	Interleaving, 284
Information theory for lossy compression, 709–713	Internal BGP (iBGP), 194
Infrared frequency spectrum, 73	International mobile subscriber identity (IMSI),
Infrared LANs, 140–141	249-250
Infrastructure as a service (IaaS), 582	Internet, 7-9
Ingress LSRs, 534–535	Internet addressing schemes, 21–22
Initial address messages (IAMs), 253, 645–646	Internet checksums, 79
Initial sequence numbers (ISNs), 299	Internet Control Message Protocol (ICMP), 164–165

Internet Corporation for Assigned Names and	multicast, 217-218
Numbers (ICANN), 165	NAT for, 169-172
Internet Engineering Task Force (IETF), 387, 679	Obtaining and assigning, 165-167
Internet Group Management Protocol (IGMP),	RIP, 186
221–223, 749	RTP, 728
Internet Key Exchange (IKE) daemons, 389	SIP, 669-670
Internet Mail Access Protocol (IMAP), 335	source address and destination address, 162
Internet Protocol (IP) layer	IP headers in MAC, 118
addressing in. See IP addresses	IP routing tables, 45
CIDR, 26–27	IP Security (IPsec) protocol, 387–389
IPv6, 196-199	IP version 4 (IPv4), 160–162
mobile. See Mobile IP	addressing format in, 22
security, 387-389	CIDR in, 26
subnet addressing and masking, 24-26	classes A, B, C, D, and E in, 23
telephony. See Voice over IP (VoIP)	header in, 160
Internet Protocol television (IPTV), 745–750	mobile IP routing with, 263
Internet routing policies	MSS, 301
algorithm characteristics, 162–163	packet fragmentation in, 163
DHCP, 167–169	IP version 6 (IPv6), 196–197
ICMP, 164–165	address interacting with MPLS, 535
IP addresses, obtaining and assigning, 165–167	addressing format in, 197–198
NAT, 169–172	extension headers in, 198
packet fragmentation and reassembly, 163–164	mobile IP routing with, 266–267
UPnP, 172–173	MSS, 301
Internet service providers (ISPs), 7–9, 189	packet fragmentation in, 198–199
Internet service providers (1613), 7 7, 167	routing table, 451
Interoperability in mobile IP, 259	tunneling, 522–523
Interpreters in IVR, 754	IPPs. See Input port processors (IPPs)
Interruption attacks, 374	IPsec (IP Security) protocol, 387–389
Interruption actacks, 57 T	IPTV (Internet Protocol television), 745–750
Intersymbol interference (ISI), 284–285	ISDN (Integrated Services Digital Network), 644
Intracluster communication, 805	ISDN user part (ISUP), 644–645
Intracluster routing protocols, 806–808	ISI (intersymbol interference), 284–285
Intradomain protocols, 178–181	ISNs (initial sequence numbers), 299
CBT, 230–231	Isotropic antennas, 48–49, 104
DVMRP, 224–225	ISPs (Internet service providers), 7–9, 189
Mbone, 224	ISUP (ISDN user part), 644–645
MOSPF, 225–227	
multicast, 223–224	Iterative mapping, 328–329 IVR (interactive voice response), 582, 751,
	754–756
OSPF, 180–183 DIM 227 230	/ /4-/ /0
PIM, 227–230 RIP, 183–188	J
	Jacksta for antical cable 74
Intranet VPNs, 526	Jackets for optical cable, 74
IP. See Internet Protocol (IP) layer	Jackson's theorem, 433–437
IP addresses, 21–27, 392	Jain, Raj, 501
DHCP for, 167–169	Jitter
IPv6 source address and destination	description, 78
address, 196 LAN, 130–133	RTCP, 731-732, 734
LAIN, 10U-100	Join messages, 228

1	IDC / 11) 000
Join packets, 235	LBSs (local base stations), 808
Joint cumulative density function, 833	LCFS (last come, first served) queuing
Joint Photographic Experts Group (JPEG) com-	systems, 408
pression, 701–707	LDP (Label Distribution Protocol), 520, 534–535
Joint probability functions, 711, 833	LEACH (Low-Energy Adaptive Clustering
K	Hierarchy) protocol, 800–801
_	Leaky-bucket traffic shaping, 489–493
Keep-alive connections, 338	Least-connect algorithms, 590–591
Keep-alive packets, 190, 196	Least-cost path, 173–174
Kendal's notations, 408–409	Least-cost-path algorithms
Keys	Bellman-Ford, 176–177
ad-hoc networks, 783	Dijkstra's, 174–176
PBX systems, 647	Leave group messages, 222
public-key cryptography, 380–383	Leechers in BitTorrent, 350
secret-key encryption, 376	Lee's method, 206-207
symmetric-key cryptography, 377–380	Lempel-Ziv encoding, 716–717
Knockout switching fabrics, 465-467	Length field
T	BGP, 190
L	RTCP packets, 733
L2F (Layer 2 Forwarding) protocol, 526	SCTP packets, 736
L2TP (Layer 2 Tunneling Protocol), 526–527	SSH packets, 345-346
Label-binding, 531-533	Length/Type field, 120
Label Distribution Protocol (LDP), 520, 534-535	Liability, data centers, 583
Label switch paths (LSPs), 532-534	Lifetime field, 263
Label switch routers (LSRs), 529-533	Light frequency spectrum, 73
Label value field, 536	Light networks. See Optical networks
Labels	Lightpaths (LPs)
domain names, 325-326	blocking over, 565–566
GMPLS, 549-550	GMPLS, 550–551
in MPLS, 529-533	Line cards, 447
LACP (Link Aggregation Control Protocol),	Line coding process, 75
108–109	Linear topologies in SDN emulators, 635
LANs. See Local area networks (LANs)	Lines in PSTNs, 643
Large-scale optical switches, 558–560	Link aggregation, 107–109
Lasers, 73, 553	Link Aggregation Control Protocol (LACP),
Last come, first served (LCFS) queuing	108-109
systems, 408	Link-cost tables, 772
Last-mile networks, 747	Link costs, 173
	Link encoders, 40
Last SR timestamp field, 734	
Latency. See Delay	Link-IDs, 108–109
Law enforcement, ad-hoc networks for, 767	Link layer, 19
Layer 1 devices, 41–42, 121–123	Link resiliency provisioning, 107–108
Layer 2 devices, 42–44	Link reversal, 775
LANs, 123–128	Link-state acknowledgment packets, 182
networking with, 128–130	Link-state multicast, 225
Layer 2 Forwarding (L2F) protocol, 526	Link-state request packets, 182
Layer 2 Tunneling Protocol (L2TP), 526–527	Link-state routing, 180–181
Layer 3 devices, 44–47, 128–130	Link-state update packets, 182
LBs (load balancers), 589-591	Link utilization, 16–17

Links	handoffs, 271-273
ARP, 40	MME, 683
attacks on, 373	networking devices, 269-270
blocking, 205-207	SC-FDMA, 100
data. See Data links	Lossless compression, 694, 713-714
encrypting, 376	Huffman encoding, 715-716, 718
ISP, 7	Lempel-Ziv encoding, 716-717
PSTNs, 643	run-length encoding, 714–715
virtual, 597	Lossy compression, 694
wireless. See Wireless links	compression ratio and code efficiency in, 713
Little's theorem, 404–406	entropy in, 710–711
Live media streaming, 726-727	information theory for, 709–713
LLC (logical-link layer), 118	Shannon's coding theorem in, 711-713
LLIDs (logical link identifiers), 553	Low-earth orbit satellite systems, 245
Load balancing, 163	Low-Energy Adaptive Clustering Hierarchy
cloud computing, 581	(LEACH) protocol, 800–801
data centers, 583, 589-591	Low-frequency spectrum, 72
virtual machines, 586	LPs (lightpaths)
Load distribution, 812-814	blocking over, 565–566
Local area networks (LANs), 9-10, 115-116	GMPLS, 550–551
DOCSIS, 151-152	LSPs (label switch paths), 532-534
IP addresses for, 130–133	LSRs (label switch routers), 529-533
layer 1 devices, 121-123	LTE. See Long Term Evolution (LTE) technology
layer 2 devices, 123-128	
networks of, 121-130	M
protocols, 117-121	M/D/I queueing systems, 427
STP, 133-136	M/G/1 queueing systems, 424–427
switches, 43	M/M/1 queueing systems, 409
topologies, 116-117	M/M/a, 415–420
VLANs, 136-139, 600, 620	mean delay and queue length in, 413-414
wireless, 139-141	number of packets in, 411-413
Local base stations (LBSs), 808	packet arrival and service model in, 410-413
Local header decoders, 455	M/M/1/b queueing systems, 414–415
Local Internet service providers, 8	M/M/a queueing systems, 415–420
Local multicasting protocols, 221-223, 749	M/M/a/a queueing systems, 420-422
Location-disclosure attacks, 784	<i>M/M/</i> ∞ queueing systems, 422–424
Location management in cellular networks, 254	M-P-Q field, 456
Location registers in cellular networks, 248-250, 252	MAC addresses, 21-22, 130-133, 153
Location servers in SIP, 668	MAC frames, 147-149
Logical congestion, 199-200	MAC layers
Logical link identifiers (LLIDs), 553	IEEE 802.11, 145-149
Logical-link layer (LLC), 118	in WMNs, 280
Logical links, 290	MAC (medium access control) protocols
Logins, remote, 342-346	contention-access, 119-121
Long Term Evolution (LTE) technology, 268-269	EPON frames, 552
call establishment, 270	for LANs, 118-121
downlinks and uplinks, 273	in sensor networks, 792
eNodeB, 269	MACs (message authentication codes), 385
frequency reuse, 273-277	Mail user agents (MUAs), 331

Man-in-the-middle attacks, 372 Manageability in multicastring, 216 Managed devices, 358 Management frames, 148 Management information base (MIB), 359–360 Management planes, 609 Managers in network management, 358 Manchester encoding method, 77 MANETs. See Mobile ad-hoc networks (MANETs) Mapping, name/address, 327–329 Marginal CDF, 833 Marginal PDF, 833 Marker (M) field, 730 Marker field in BGP, 190 Markers in DiffServ, 496 Markov chains, 256 in birth-and-death process, 406–407 for multipath buffered crossbars, 474–475 in probability, 835–836 Markovian FIFO queueing systems, 409 M/M/I/b, 412–415 M/MSQ (22–424 MASC (Multicast Address-Set Claim) protocol, 236 Masking, 24–26 Masquerading attacks, 372 Master/slave assignment in control signaling, 663 Matching fields in OpenFlow, 618–619 Maximum response time field, 223 Maximum segment size (MSS) option, 300–301, 304, 311 Memidia exchange establishment control, 663–665 Media exchange segments, 653 Media exchange sessions, 647 Media exchange sessions, 647 Media exchange sessions, 647 Media exchange sessions, 647 Media exchange segments, 653 Media exchange sessions, 647 Media exchange s
Managed devices, 358 Management frames, 148 Management information base (MIB), 359-360 Management planes, 609 Managers in network management, 358 Manchester encoding method, 77 MANETs. See Mobile ad-hoc networks (MANETs) Mapping, name/address, 327-329 Marginal CDF, 833 Marginal PDF, 833 Marginal PBF, 833 Marginal PBF, 833 Marker (M) field, 730 Marker field in BGP, 190 Markers in DiffServ, 496 Markov chains, 256 in birth-and-death process, 406-407 for multipath buffered crossbars, 474-475 in probability, 835-836 Markovian FIFO queueing systems, 409 M/M/1/b, 414-415 MASC (Multicast Address-Set Claim) protocol, 236 Masking, 24-26 Masking, 24-26 Masking, 24-26 Masking, 24-26 Maximum response time field, 223 Maximum response time field, 223 Maximum segment in control signaling, 663 Maximum segment in control signaling, 663 Maximum segment in control signaling, 663 Maximum response time field, 223 Maximum segment in control signaling, 663 Media exchange segments, 653 Media exchange segments, 653 Media exchange segments, 650 Media exchange segments, 653 Media exchange segments, 650 Media exchange segments, 627 Media exchange segments, 650 Media exchange segments, 650, 653, 668 Medium access control, protocols Medium access control ser Mcdium access Control) protocols Medium access control ser Mcdium access Medium access control ser Mcdium access Medium access control ser Mcdium access Medium access control ser Mcdium ac
Management frames, 148Media exchange segments, 653Management information base (MIB), 359–360Media exchange sessions, 647Management planes, 609Media Gateway Control Protocol (MGCP), 678Managers in network management, 358Media gateway controllers (MGCs), 653, 668, 678Manchester encoding method, 77Media gateway (MG) routers, 650, 653, 668, 678MaNETs. See Mobile ad-hoc networks (MANETs)Medium access controllers (MGCs), 653, 668, 678Mapping, name/address, 327–329Medium access control. See MAC (medium access control) protocolsMarginal PDF, 833Medium orbit satellite systems, 245Marginal PDF, 833Membership multicasting protocols, 221–223, 749Marker field in BGP, 190Membership queries and reports in IGMP, 222Markov chains, 256Memory control in switch fabrics, 469in birth-and-death process, 406–407Merging LSPs, 533for multipath buffered crossbars, 474–475Merging LSPs, 533in probability, 835–836Message in Markovian FIFO queueing systems, 409Message authentication, 383, 385Mi/MI/Ib, 414–415Message digests, 353, 383MASC (Multicast Address-Set Claim)Message digests, 353, 383Message digests, 353, 383Message igan units (MSUs), 645–646Masking, 24–26Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772–773Master/slave assignment in control signaling, 663HTTP, 339–340Matching fields in OpenFlow, 618–619HTTP, 339–340Maximum response time field, 223HTTP, 669–671Maximum response time
Management information base (MIB), 359-360Media exchange sessions, 647Management planes, 609Media Gateway Control Protocol (MGCP), 678Managers in network management, 358Media gateway (MG) routers, 650, 653, 668, 678Manchester encoding method, 77Media gateway (MG) routers, 650, 653, 668MaNETIS. See Mobile ad-hoc networks (MANETS)Medium access control. See MAC (medium access control) protocolsMapping, name/address, 327-329Medium orbit satellite systems, 245Marginal PDF, 833Medium orbit satellite systems, 245Marginal PMF, 833Membership multicasting protocols, 221-223, 749Marker (M) field, 730Membership queries and reports in IGMP, 222Markers in DiffServ, 496Memory control in switch fabrics, 469Markov chains, 256Memory units in sensor networks, 794in birth-and-death process, 406-407Merging LSPs, 533for multipath buffered crossbars, 474-475Merging LSPs, 533in probability, 835-836Message authentication, 383, 385Markovian FIFO queueing systems, 409Message digests, 353, 383M/M/I/b, 414-415Message digests, 353, 383MASC (Multicast Address-Set Claim)Message digests, 353, 383Message digests, 353, 383Message in units (MSUs), 645-646Masking, 24-26Message transfer part (MTP), 644Master/slave assignment in control signaling, 663Message transmission-list tables, 772-773Master/slave assignment in control signaling, 663HTTP, 339-340Maximum response time field, 223HTTP, 396-671Maximum segment size (MSS) option, 300-301,Fig
Management planes, 609 Managers in network management, 358 Manchester encoding method, 77 MANETs. See Mobile ad-hoc networks (MANETs) Mapping, name/address, 327–329 Marginal CDF, 833 Marginal PDF, 833 Marginal PDF, 833 Marginal PDF, 833 Marker (M) field, 730 Marker field in BGP, 190 Markers in DiffServ, 496 Markovian FIFO queueing systems, 409 MM/I/lb, 414–415 MASC (Multicast Address-Set Claim) protocol, 236 Masking, 24–26 Masking, 24–26 Maximum segment size (MSS) option, 300–301, 304, 311 Media gateway Control Protocol (MGCP), 678 Media gateway (ontrollers (MGCs), 653, 668, 68 Medium access control. See MAC (medium access control) protocols Medium access control lerates contr
Managers in network management, 358 Manchester encoding method, 77 MANETS. See Mobile ad-hoc networks (MANETs) Mapping, name/address, 327-329 Marginal CDF, 833 Marginal PDF, 833 Marginal PMF, 833 Marker (M) field, 730 Marker field in BGP, 190 Markers in DiffServ, 496 Markov chains, 256 in birth-and-death process, 406-407 for multipath buffered crossbars, 474-475 in probability, 835-836 Markovian FIFO queueing systems, 409 Mi/Mi/lb, 414-415 M/Mala, 420-422 M/M/∞, 422-424 MASC (Multicast Address-Set Claim) protocol, 236 Masking, 24-26 Masumum response time field, 223 Maximum segment size (MSS) option, 300-301, 304, 311 Media gateway controllers (MGCs), 653, 668, 678 Media gateway (MG) routers, 650, 653, 668 Media gateway controlls gender success control) see MAC (medium access control. See MAC (medium access control) secures, 46 Media gateway (MG) routers, 46 Media gateway control in switch fabrics, 469 Memory control in switch
Managers in network management, 358 Manchester encoding method, 77 MANETS. See Mobile ad-hoc networks (MANETs) Mapping, name/address, 327-329 Marginal CDF, 833 Marginal PDF, 833 Marginal PMF, 833 Marker (M) field, 730 Marker field in BGP, 190 Markers in DiffServ, 496 Markov chains, 256 in birth-and-death process, 406-407 for multipath buffered crossbars, 474-475 in probability, 835-836 Markovian FIFO queueing systems, 409 Mi/Mi/lb, 414-415 M/Mala, 420-422 M/M/∞, 422-424 MASC (Multicast Address-Set Claim) protocol, 236 Masking, 24-26 Masumum response time field, 223 Maximum segment size (MSS) option, 300-301, 304, 311 Media gateway controllers (MGCs), 653, 668, 678 Media gateway (MG) routers, 650, 653, 668 Media gateway controlls gender success control) see MAC (medium access control. See MAC (medium access control) secures, 46 Media gateway (MG) routers, 46 Media gateway control in switch fabrics, 469 Memory control in switch
Manchester encoding method, 77 MANETS. See Mobile ad-hoc networks (MANETs) Mapping, name/address, 327-329 Marginal CDF, 833 Marginal PDF, 833 Marginal PMF, 833 Marker (M) field, 730 Marker field in BGP, 190 Markers in DiffServ, 496 Markov chains, 256 in birth-and-death process, 406-407 for multipath buffered crossbars, 474-475 in probability, 835-836 Markovian FIFO queueing systems, 409 M/M/I/lb, 414-415 Markov (Multicast Address-Set Claim) protocol, 236 Masking, 24-26 Masaquerading attacks, 372 Maximum response time field, 223 Maximum segment size (MSS) option, 300-301, 304, 311 Media gateway (MG) routers, 650, 653, 668 Medium access control. See MAC (medium access control) protocols Medium access control. See MAC (medium access control) protocols Medium access control. See MAC (medium access control) protocols Medium access control. See MAC (medium access control) protocols Medium access control. See MAC (medium access control) protocols Medium orbit satellite systems, 245 Membership multicasting protocols, 221-223, 749 Membership and reports in IGMP, 222 Mespersh
MANETs. See Mobile ad-hoc networks (MANETs) Mapping, name/address, 327-329 Marginal CDF, 833 Marginal PDF, 833 Marginal PDF, 833 Marginal PMF, 833 Marker (M) field, 730 Marker field in BGP, 190 Marker sin DiffServ, 496 Markov chains, 256 in birth-and-death process, 406-407 for multipath buffered crossbars, 474-475 in probability, 835-836 Markovian FIFO queueing systems, 409 M/M/I/b, 414-415 M/Mala, 420-422 M/MSC (Multicast Address-Set Claim) protocol, 236 Masking, 24-26 Masking, 24-26 Masing, 24-26 Maximum response time field, 223 Maximum segment size (MSS) option, 300-301, 304, 311 Medium access control. See MAC (medium access control) protocols Medium orbit satellite systems, 245 Membership multicasting protocols, 221-223, 749 Memory control in switch fabrics, 469 Memory control in switch fabrics, 469 Memory control in switch fabrics, 469 Message authenti
Marginal CDF, 833Medium orbit satellite systems, 245Marginal PDF, 833Medium-size routers, 46Marginal PMF, 833Membership multicasting protocols, 221-223, 749Marker (M) field, 730Membership queries and reports in IGMP, 222Marker field in BGP, 190Membership-search signals, 802, 804Markers in DiffServ, 496Memory control in switch fabrics, 469Markov chains, 256Memory units in sensor networks, 794in birth-and-death process, 406-407Merging LSPs, 533for multipath buffered crossbars, 474-475Mesh networks, 277in probability, 835-836applications, 277-279Markovian FIFO queueing systems, 409physical and MAC layers in, 279-280M/M/I/lb, 414-415Message authentication codes (MACs), 385M/M/M/∞, 420-422Message authentication codes (MACs), 385MMSC (Multicast Address-Set Claim)Message-Id identifiers, 332protocol, 236Message ignal units (MSUs), 645-646Masking, 24-26Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772-773Master/slave assignment in control signaling, 663MessagesMatching fields in OpenFlow, 618-619HTTP, 339-340Maximum response time field, 223HTTP, 339-340Maximum segment size (MSS) option, 300-301, 304, 311Meters in DiffServ, 496
Marginal CDF, 833Medium orbit satellite systems, 245Marginal PDF, 833Medium-size routers, 46Marginal PMF, 833Membership multicasting protocols, 221-223, 749Marker (M) field, 730Membership queries and reports in IGMP, 222Marker field in BGP, 190Membership-search signals, 802, 804Markers in DiffServ, 496Memory control in switch fabrics, 469Markov chains, 256Memory units in sensor networks, 794in birth-and-death process, 406-407Merging LSPs, 533for multipath buffered crossbars, 474-475Mesh networks, 277in probability, 835-836applications, 277-279Markovian FIFO queueing systems, 409physical and MAC layers in, 279-280M/M/I/lb, 414-415Message authentication codes (MACs), 385M/M/M/∞, 420-422Message authentication codes (MACs), 385MMSC (Multicast Address-Set Claim)Message-Id identifiers, 332protocol, 236Message ignal units (MSUs), 645-646Masking, 24-26Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772-773Master/slave assignment in control signaling, 663MessagesMatching fields in OpenFlow, 618-619HTTP, 339-340Maximum response time field, 223HTTP, 339-340Maximum segment size (MSS) option, 300-301, 304, 311Meters in DiffServ, 496
Marginal PMF, 833Membership multicasting protocols, 221-223, 749Marker (M) field, 730Membership queries and reports in IGMP, 222Marker field in BGP, 190Membership-search signals, 802, 804Markers in DiffServ, 496Memory control in switch fabrics, 469Markov chains, 256Memory units in sensor networks, 794in birth-and-death process, 406-407Merging LSPs, 533for multipath buffered crossbars, 474-475Merging LSPs, 533in probability, 835-836Mesh networks, 277Markovian FIFO queueing systems, 409physical and MAC layers in, 279-280M/M/1/b, 414-415Message authentication, 383, 385M/M/a/a, 420-422Message digests, 353, 383MASC (Multicast Address-Set Claim)Message digests, 353, 383MASC (Multicast Address-Set Claim)Message signal units (MSUs), 645-646Masking, 24-26Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772-773Master/slave assignment in control signaling, 663MessagesMatching fields in OpenFlow, 618-619HTTP, 339-340Maximum response time field, 223packet-switched networks, 6-7Maximum segment size (MSS) option, 300-301, 304, 311Meters in DiffServ, 496
Marginal PMF, 833Membership multicasting protocols, 221-223, 749Marker (M) field, 730Membership queries and reports in IGMP, 222Marker field in BGP, 190Membership-search signals, 802, 804Markers in DiffServ, 496Memory control in switch fabrics, 469Markov chains, 256Memory units in sensor networks, 794in birth-and-death process, 406-407Merging LSPs, 533for multipath buffered crossbars, 474-475Merging LSPs, 533in probability, 835-836Mesh networks, 277Markovian FIFO queueing systems, 409physical and MAC layers in, 279-280M/M/1/b, 414-415Message authentication, 383, 385M/M/a/a, 420-422Message digests, 353, 383MASC (Multicast Address-Set Claim)Message digests, 353, 383MASC (Multicast Address-Set Claim)Message signal units (MSUs), 645-646Masking, 24-26Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772-773Master/slave assignment in control signaling, 663MessagesMatching fields in OpenFlow, 618-619HTTP, 339-340Maximum response time field, 223packet-switched networks, 6-7Maximum segment size (MSS) option, 300-301, 304, 311Meters in DiffServ, 496
Marker (M) field, 730Membership queries and reports in IGMP, 222Marker field in BGP, 190Membership-search signals, 802, 804Markers in DiffServ, 496Memory control in switch fabrics, 469Markov chains, 256Memory units in sensor networks, 794in birth-and-death process, 406–407Merging LSPs, 533for multipath buffered crossbars, 474–475Mesplications, 277–279in probability, 835–836Mesh networks, 277Markovian FIFO queueing systems, 409physical and MAC layers in, 279–280M/M/I/b, 414–415Message authentication, 383, 385M/M/Mala, 420–422Message authentication codes (MACs), 385MASC (Multicast Address-Set Claim)Message digests, 353, 383MASC (Multicast Address-Set Claim)Message ransfer part (MTP), 644Masquerading attacks, 372Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772–773Master/slave assignment in control signaling, 663MessagesMatching fields in OpenFlow, 618–619HTTP, 339–340Maximum response time field, 223packet-switched networks, 6–7Maximum segment size (MSS) option, 300–301, 304, 311Meters in DiffServ, 496
Marker field in BGP, 190Membership-search signals, 802, 804Markers in DiffServ, 496Memory control in switch fabrics, 469Markov chains, 256Memory units in sensor networks, 794in birth-and-death process, 406–407Merging LSPs, 533for multipath buffered crossbars, 474–475Mesh networks, 277in probability, 835–836applications, 277–279Markovian FIFO queueing systems, 409physical and MAC layers in, 279–280M/M/1/b, 414–415Message authentication, 383, 385M/M/∞, 420–422Message authentication codes (MACs), 385M/M/∞, 422–424Message digests, 353, 383MASC (Multicast Address-Set Claim)Message-Id identifiers, 332protocol, 236Message signal units (MSUs), 645–646Masking, 24–26Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772–773Master/slave assignment in control signaling, 663MessagesMatching fields in OpenFlow, 618–619HTTP, 339–340Maximum response time field, 223HTTP, 339–340Maximum segment size (MSS) option, 300–301, 304, 311Meters in DiffServ, 496
Markers in DiffServ, 496Memory control in switch fabrics, 469Markov chains, 256Memory units in sensor networks, 794in birth-and-death process, 406–407Merging LSPs, 533for multipath buffered crossbars, 474–475Mesh networks, 277in probability, 835–836applications, 277–279Markovian FIFO queueing systems, 409physical and MAC layers in, 279–280M/M/1/b, 414–415Message authentication, 383, 385M/M/∞, 420–422Message authentication codes (MACs), 385M/M/∞, 422–424Message digests, 353, 383MASC (Multicast Address-Set Claim)Message-Id identifiers, 332protocol, 236Message signal units (MSUs), 645–646Masking, 24–26Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772–773Master/slave assignment in control signaling, 663MessagesMatching fields in OpenFlow, 618–619HTTP, 339–340Maximum response time field, 223HTTP, 339–340Maximum segment size (MSS) option, 300–301, 304, 311Meters in DiffServ, 496
Markov chains, 256Memory units in sensor networks, 794in birth-and-death process, 406–407Merging LSPs, 533for multipath buffered crossbars, 474–475Mesh networks, 277in probability, 835–836applications, 277–279Markovian FIFO queueing systems, 409physical and MAC layers in, 279–280M/M/I/b, 414–415Message authentication, 383, 385M/M/∞, 420–422Message authentication codes (MACs), 385MASC (Multicast Address-Set Claim)Message digests, 353, 383MASC (Multicast Address-Set Claim)Message ransfer part (MTP), 644Masquerading attacks, 372Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772–773Master/slave assignment in control signaling, 663MessagesMatching fields in OpenFlow, 618–619HTTP, 339–340Maximum response time field, 223packet-switched networks, 6-7Maximum segment size (MSS) option, 300–301, 304, 311SIP, 669–671Meters in DiffServ, 496
in birth-and-death process, 406–407 for multipath buffered crossbars, 474–475 in probability, 835–836 Markovian FIFO queueing systems, 409 M/M/1/b, 414–415 Message authentication, 383, 385 M/M/a/a, 420–422 MASC (Multicast Address-Set Claim) protocol, 236 Masking, 24–26 Masquerading attacks, 372 Master/slave assignment in control signaling, 663 Maximum response time field, 223 Maximum segment size (MSS) option, 300–301, 304, 311 Message in LSPs, 533 Mesh networks, 277 applications, 277–279 physical and MAC layers in, 279–280 Message authentication, 383, 385 Message authentication codes (MACs), 385 Message digests, 353, 383 Message digests, 353, 383 Message ransferield, 324 Message signal units (MSUs), 645–646 Message transmission-list tables, 772–773 Messages HTTP, 339–340 packet-switched networks, 6–7 SIP, 669–671 Meters in DiffServ, 496
for multipath buffered crossbars, 474–475 in probability, 835–836 Markovian FIFO queueing systems, 409 M/M/1/b, 414–415 Message authentication, 383, 385 M/M/∞, 422–424 MASC (Multicast Address-Set Claim) protocol, 236 Masking, 24–26 Masquerading attacks, 372 Master/slave assignment in control signaling, 663 Matching fields in OpenFlow, 618–619 Maximum response time field, 223 Maximum segment size (MSS) option, 300–301, 304, 311 Mesh networks, 277 applications, 277–279 physical and MAC layers in, 279–280 Message authentication codes (MACs), 385 Message authentication codes (MACs), 385 Message digests, 353, 383 Message-Id identifiers, 332 Message signal units (MSUs), 645–646 Message transfer part (MTP), 644 Message transmission-list tables, 772–773 Messages HTTP, 339–340 packet-switched networks, 6–7 SIP, 669–671 Meters in DiffServ, 496
in probability, 835–836 Markovian FIFO queueing systems, 409 M/M/1/b, 414–415 Message authentication, 383, 385 M/M/a/a, 420–422 Masc (Multicast Address-Set Claim) protocol, 236 Masking, 24–26 Masquerading attacks, 372 Master/slave assignment in control signaling, 663 Matching fields in OpenFlow, 618–619 Maximum response time field, 223 Maximum segment size (MSS) option, 300–301, 304, 311 applications, 277–279 physical and MAC layers in, 279–280 Message authentication codes (MACs), 385 Message digests, 353, 383 Message signal units (MSUs), 645–646 Message transfer part (MTP), 644 Message transmission-list tables, 772–773 Messages HTTP, 339–340 packet-switched networks, 6–7 SIP, 669–671 Meters in DiffServ, 496
Markovian FIFO queueing systems, 409physical and MAC layers in, 279–280M/M/1/b, 414–415Message authentication, 383, 385M/M/ala, 420–422Message authentication codes (MACs), 385M/M/∞, 422–424Message digests, 353, 383MASC (Multicast Address-Set Claim)Message-Id identifiers, 332protocol, 236Message signal units (MSUs), 645–646Masking, 24–26Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772–773Master/slave assignment in control signaling, 663MessagesMatching fields in OpenFlow, 618–619HTTP, 339–340Maximum response time field, 223HTTP, 339–340Maximum segment size (MSS) option, 300–301, 304, 311SIP, 669–671Meters in DiffServ, 496
M/M/1/b, 414-415Message authentication, 383, 385M/M/a/a, 420-422Message authentication codes (MACs), 385M/M/∞, 422-424Message digests, 353, 383MASC (Multicast Address-Set Claim)Message-Id identifiers, 332protocol, 236Message signal units (MSUs), 645-646Masking, 24-26Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772-773Master/slave assignment in control signaling, 663MessagesMatching fields in OpenFlow, 618-619HTTP, 339-340Maximum response time field, 223HTTP, 339-340Maximum segment size (MSS) option, 300-301, 304, 311SIP, 669-671Meters in DiffServ, 496
M/M/a/a, 420-422Message authentication codes (MACs), 385M/M/∞, 422-424Message digests, 353, 383MASC (Multicast Address-Set Claim)Message-Id identifiers, 332protocol, 236Message signal units (MSUs), 645-646Masking, 24-26Message transfer part (MTP), 644Masquerading attacks, 372Message transmission-list tables, 772-773Master/slave assignment in control signaling, 663MessagesMatching fields in OpenFlow, 618-619HTTP, 339-340Maximum response time field, 223packet-switched networks, 6-7Maximum segment size (MSS) option, 300-301, 304, 311SIP, 669-671Meters in DiffServ, 496
M/M/∞, 422–424 MASC (Multicast Address-Set Claim) protocol, 236 Masking, 24–26 Masquerading attacks, 372 Master/slave assignment in control signaling, 663 Matching fields in OpenFlow, 618–619 Maximum response time field, 223 Maximum segment size (MSS) option, 300–301, 304, 311 Message digests, 353, 383 Message-Id identifiers, 332 Message transfer part (MTP), 644 Message transmission-list tables, 772–773 Messages HTTP, 339–340 packet-switched networks, 6–7 SIP, 669–671 Meters in DiffServ, 496
MASC (Multicast Address-Set Claim) protocol, 236 Masking, 24-26 Masquerading attacks, 372 Master/slave assignment in control signaling, 663 Maximum response time field, 223 Maximum segment size (MSS) option, 300-301, 304, 311 Message transfer part (MTP), 644 Message transmission-list tables, 772-773 Messages Messages HTTP, 339-340 packet-switched networks, 6-7 SIP, 669-671 Meters in DiffServ, 496
protocol, 236 Message signal units (MSUs), 645–646 Masking, 24–26 Message transfer part (MTP), 644 Masquerading attacks, 372 Message transmission-list tables, 772–773 Master/slave assignment in control signaling, 663 Matching fields in OpenFlow, 618–619 HTTP, 339–340 Maximum response time field, 223 packet-switched networks, 6–7 Maximum segment size (MSS) option, 300–301, 304, 311 Meters in DiffServ, 496
Masking, 24-26 Masquerading attacks, 372 Master/slave assignment in control signaling, 663 Matching fields in OpenFlow, 618-619 Maximum response time field, 223 Maximum segment size (MSS) option, 300-301, 304, 311 Message transfer part (MTP), 644 Message transmission-list tables, 772-773 Messages HTTP, 339-340 packet-switched networks, 6-7 SIP, 669-671 Meters in DiffServ, 496
Masquerading attacks, 372 Master/slave assignment in control signaling, 663 Matching fields in OpenFlow, 618–619 Maximum response time field, 223 Maximum segment size (MSS) option, 300–301, 304, 311 Messages HTTP, 339–340 packet-switched networks, 6–7 SIP, 669–671 Meters in DiffServ, 496
Matching fields in OpenFlow, 618–619 Maximum response time field, 223 Maximum segment size (MSS) option, 300–301, 304, 311 HTTP, 339–340 packet-switched networks, 6–7 SIP, 669–671 Meters in DiffServ, 496
Matching fields in OpenFlow, 618–619 Maximum response time field, 223 Maximum segment size (MSS) option, 300–301, 304, 311 HTTP, 339–340 packet-switched networks, 6–7 SIP, 669–671 Meters in DiffServ, 496
Maximum response time field, 223 packet-switched networks, 6-7 Maximum segment size (MSS) option, 300-301, SIP, 669-671 304, 311 Meters in DiffServ, 496
Maximum segment size (MSS) option, 300–301, SIP, 669–671 304, 311 Meters in DiffServ, 496
304, 311 Meters in DiffServ, 496
Within transmission units (WT 05)
IPv6, 198 Metric field, 186–187
routing protocols, 163-164 MG (media gateway) routers, 650, 653, 668
Maximum window size, 309-310 MGCP (Media Gateway Control Protocol), 678
MBCs (multipath buffered crossbars), 471–475 MGCs (media gateway controllers), 653, 668, 678
MBGP (multiprotocol BGP), 231–234 MIB (management information base), 359–360
MBone (multicast backbone), 224 Microcells, 277
MC-endpoint conference calling, 665 Microwave frequency spectrum, 72
MCU conference calling, 665 Microwave systems, 72
MCUs (multipoint control units), 652 Military, ad-hoc networks for, 767
MD5 hash algorithm, 385 MIMO (multiple-input multiple-output) systems,
Mean delay 49, 279
M/M/1 queueing systems, 413–414 Mini-clouds, 752–753
M/M/I queueing systems, 413–414 Mini-clouds, 752–753 M/M/I/a queueing systems, 419 Minimal topologies in SDN emulators, 634

Mininet SDN emulators, 632-635	MSCs (mobile switching centers)
Misrouting attacks, 374	cellular networks, 247, 250-252
Mixer relays, 729	mobile IP, 260-261
MLD (Multicast Listener Discovery), 221	MSDP (Multicast Source Discovery Protocol),
MME (mobile management entity), 269,	234–236
271–273, 683	MSS (maximum segment size) option, 300-301,
Mobile ad-hoc networks (MANETs), 245, 765	304, 311
ABR protocol, 775–776	MSUs (message signal units), 645-646
AODV protocol, 776-783	MTP (message transfer part), 644
CGSR protocol, 771-772	MTUs (maximum transmission units)
DSDV protocol, 769-771	IPv6, 198
DSR protocol, 773-774	routing protocols, 163-164
overview, 766-767	MUAs (Mail user agents), 331
protocol overview, 769	Multi-carrier modulation, 285
routing in, 767-769	Multi-hop communication efficiency, 797-799
security of, 783-785	Multi-rate connections, 5
TORA protocol, 774-775	Multi-tunnel routing, 536-538
WRP protocol, 772-773	Multicast Address-Set Claim (MASC) protocol, 236
Mobile agents, 248	Multicast addresses, 198
Mobile cloud computing, 751	Multicast backbone (MBone), 224
Mobile IP, 259-260	Multicast Listener Discovery (MLD), 221
agents, 260-261	Multicast OSPF (MOSPF) protocol, 225-227
registration in, 262–264	Multicast schedulers in input port processors, 452
routing for, 263-267	Multicast Source Discovery Protocol (MSDP),
Mobile IPv6, 266	234–236
Mobile management entity (MME), 269,	Multicast routing and protocols, 215-216, 475-477
271–273, 683	classification, 220
Mobile switching centers (MSCs)	data center networks, 594-595
cellular networks, 247, 250-252	definitions and techniques, 216-217
mobile IP, 260-261	interdomain, 231-237
Mobile transport protocols	intradomain, 223-231
TCP, 307-309	IP addresses, 217-218
UDP, 307	local and membership, 221-223
Modems, 37, 50-51	software-defined networking, 621
cable, 57-58	switching networks, 458
DSL, 55-57	tree algorithms, 218-220
modulation schemes, 51-55	tree-based, 476-478
Modification attacks, 374	Multichannel multitransceiver MAC, 280
Modulation schemes in modems, 51-55	Multichannel single-transceiver MAC, 280
Modulation symbols, 54	Multihop routing, 806–807
Modulo-2 arithmetic, 81-82	Multimedia networking, 641, 679
Monochrome images, 702	compression in. See Compression
MOSPF (multicast OSPF) protocol, 225-227	distributed. See Distributed multimedia
Moved Temporarily messages, 676-677	self-similarity and non-Markovian streaming
Moving images compression, 707-709	analysis in, 756-759
Moving Pictures Expert Group (MPEG) compres-	SIP to H.323 internetworking, 679–680
sion, 707–709	SIP to PSTN internetworking, 681-682
MP3 technology, 708-709	Voice over IP. See Voice over IP (VoIP)
MPLS. See Multiprotocol label switching (MPLS)	wireless cellular internetworking, 682-684

Multimedia terminals, 650	Network emulators, 632-635
Multipath buffered crossbars (MBCs), 471	Network function virtualization (NFV), 614
Multipath effects, 104	abstract model, 624-626
Multipath switching networks, 458	distributed networks, 626–627
Multiple access	overview, 623–624
FDMA, 99	virtualized services, 627
miscellaneous methods, 104-105	Network IDs, 22–23
OFDM, 99–100	Network interface cards (NICs), 37, 446
random-access techniques, 105–106	ARP, 131
SC-FDMA, 100	layer 3 devices, 44-45
TDMA, 99	overview, 39–40
Multiple-input multiple-output (MIMO) systems,	virtual, 597-598
49, 279	Network latency, 610
Multiple random variables, 833–834	Network layer
Multiple stage switching networks, 458	congestion control at, 199–207
Multiple users in data link access, 92–97	TCP/IP protocol model, 19
. *.	Network Layer addresses, 22
Multiplexers, 37, 58 FDM, 59–61	
TDM, 61-65	Network Layer Reachability Information (NLRI) field, 190, 192, 233
Multipoint control units (MCUs), 652 Multiprotocol BGP (MBGP), 231–234	Network management, 356–358 elements, 358
Multiprotocol label switching (MPLS), 519–520, 528–529	MIB, 359-360 SMI, 359
labels, 529–533	SNMP, 360–362
multi-tunnel routing, 536–538 packet format, 536	Network orchestration layer process, 626 Network queues and delay analysis, 403–404
•	
routing in, 534–536 traffic engineering in, 538–539	birth-and-death process, 406–408 Little's theorem, 404–406
for VPNs, 539–540	M/M/1/b, 414–415
My Autonomous System field, 190, 194	<i>M/M/a</i> , 415–420 <i>M/M/a/a</i> , 420–422
N	$M/M/\infty$, 422–424
N stage planer architecture 560	
N-stage planar architecture, 560 NAIs (network access interfaces), 747	Markovian FIFO queueing systems. See
	Markovian FIFO queueing systems networks of queues, 428–437
Name/address mapping, 327–329	<u>.</u>
Name resolution mode in ICN, 629	non-Markovian models, 424–427
Named objects in ICN, 628 Narrowband RF LANs, 141	queueing disciplines, 408–409
NAT (network address translation), 169–172, 590	self-similarity and batch-arrival models, 427–428
	Network-to-network interfaces (NNIs), 548
National Internet service providers, 8	Network/transport-layer packet filtering, 393–394
Natural nonreturn-to-zero (NRZ) line coding, 76	Network virtual terminals (NVTs), 343–344
Neighbors in BGP, 192 Network access interfaces (NAIs), 747	Networking devices. <i>See also</i> individual devices
Network-access servers, 526	multiplexers, 58–65 NICs, 39–40
Network address translation (NAT), 169–172, 590	Networks. <i>See also</i> individual network types
Network communication protocols, 17–18	cloud-based multimedia, 751-756
Internet. See Internet Protocol (IP) layer OSI, 20	of queues, 428–437
	switching. <i>See</i> Switch fabrics
TCP/IP, 18-20	topologies, 7, 116-117

Next header field	Number of questions field, 329
IPsec, 388	NVTs (network virtual terminals), 343-344
IPv6 packets, 196	Nyquist theorem, 696
Next-header fields in packet headers, 449	
Next hops in RIP packets, 186	0
NFV (network function virtualization), 614	Object names in distributed hash tables, 353
abstract model, 624-626	Observer-gatekeeper-routed signaling, 660
distributed networks, 626-627	OCs (optical carriers), 548
overview, 623-624	OFDM (orthogonal frequency division multiplex-
virtualized services, 627	ing), 59-61, 99-100, 144-145, 150, 285
NIC teaming, 107	OFDMA scheme in LTE downlinks, 273
NICs (network interface cards), 37, 446	Offer process in DHCP, 169
ARP, 131	OLs (optical links), 547
layer 3 devices, 44-45	OLSR (Optimized Link State Routing) protocol,
overview, 39–40	149–150
virtual, 597-598	OLTs (optical line terminals), 551-552
NNIs (network-to-network interfaces), 548	Omnidirectional configuration, 140
Nodes	On-demand cloud computing, 579
ad-hoc networks, 782-783	1-persistent CSMA, 94, 119
cascaded, 428–431	ONF (Open Networking Foundation), 613
optical networks, 560–561	Online gaming, 751
packet-switched networks, 6	ONUs (optical network units), 551–552, 748
sensor networks, 793–794	Opaque optical switches, 563
Noise, 77	OPCs (original point codes), 645
Non-electro-optical switches, 556	Open Networking Foundation (ONF), 613
Non-least-cost-path routing, 174	Open networks, Jackson's theorem on, 434–437
Non-Markovian models	Open packets in BGP, 190, 194, 233
arrival, 427	Open-routed networking, 630
queuing, 424–427	Open Shortest Path First (OSPF) protocol, 610
streaming analysis, 756-759	MOSPF, 226
Non-persistent connections, 338	operation, 180–183
Non-Poisson models	Open systems interconnection (OSI) model, 20
arrival, 427	OpenDaylight controllers, 614–615
queuing, 424	OpenFlow protocol, 615–616
Non-preemptive priority queues, 503–505	flow tables, 617–618
Non-real-time packets, 502	matching fields, 618–619
Nonblocking switch fabrics, 458	switches, 616–617
Nonpersistent CSMA, 94	Operation error chunks, 737
Nonreturn-to-zero (NRZ) line coding, 76	OPPs (output port processors), 44–45, 453–454
Normal (Gaussian) random variables, 831	Optical carriers (OCs), 548
Normalized method, 314-315	Optical cross-connects (OXCs)
Notification packets, 191	GMPLS, 549-550
Notifications in cloud-based multimedia, 752	structure, 560-563
NRZ-inverted line coding, 76	switches, 556
NRZ (natural nonreturn-to-zero) line coding, 76	Optical fiber, 74
NTP timestamp field, 733	Optical line terminals (OLTs), 551–552
Number of additional records field, 329	Optical links (OLs), 547
Number of answers field, 329	Optical network units (ONUs), 551–552, 748
Number of authoritative records field, 329	Optical networks, 545–546

all-optical, 563–566	P-CSCF (proxy call session control function),
amplifiers, 553-554	269, 683
contention resolution in, 557-558	P field in contention resolution units, 456
delay elements, 553	P-persistent CSMA, 94
fiber optic links, 547	P2P (peer-to-peer) networks, 548, 600
filters, 554, 561	connection efficiency, 355-356
GMPLS protocol, 548-551	database sharing protocols, 353-355
overview, 546–547	file sharing protocols, 348-352
OXCs, 560-563	WMNs for, 277
passive, 551-553	PaaS (platform as a service), 583
SONET/SDH standards, 547-548	Packet-by-packet routers, 46
switches, 556-560, 569-572	Packet Data Convergence Protocol (PDCP), 269
tunable lasers, 553	Packet data gateway (PGW), 269, 683
wavelength allocation, 567-569	Packet-drop probability, 204-205
WDMs, 555	Packet encapsulators, 452-453
Optimal quantizers, 699-700	Packet flooding algorithm, 177-178
Optimality	Packet-in messages, 617
packet size, 15-17	Packet length field, 182
routing algorithm, 162	Packet-mistreatment attacks, 373–374
Optimistic unchoking, 352	Packet-out messages, 617
Optimized Link State Routing (OLSR) protocol,	Packet queues and delay analysis, 12-13
149–150	Packet-reservation multiple-access (PRMA)
Optional Parameters field, 190	scheme, 106
Options field	Packet scheduling, 501-502
IP packets, 162	deficit round-robin, 511
TCP segments, 300-301	earliest deadline first, 511-512
Options messages in SIP, 677	fair queueing, 507-508
Original point codes (OPCs), 645	first in, first out, 502-503
Orthogonal frequency division multiplexing	priority queueing, 503-507
(OFDM), 59–61, 99–100, 144–145, 150, 285	weighted fair queueing, 508-511
OSI (Open systems interconnection) model, 20	Packet-switched networks, 3-4
OSPF (Open Shortest Path First) protocol, 610	CIDR, 26-27
MOSPF, 226	connection-oriented, 13-15
operation of, 180-183	connectionless, 11-13
Other Features messages, 676–678	equal-sized packet model, 28
Outbound notifications in cloud-based multi-	Internet, 7–9
media, 752	Internet addressing schemes, 21-22
Outcomes in probability, 827	IP addresses, 21–27, 162
Output port buffers, 453-454, 473	ISPs and internetwork nodes, 9-11
Output port processors (OPPs), 44-45, 453-454	messages, packets, and frames in, 6-7
Overlay models, 548	networking protocols, 17-21
Overlay networks, 600–601	packet size in, 15-17
OXCs (optical cross connects)	packet switching vs. circuit switching, 5-6
GMPLS, 549–550	packets, 21-22
structure, 560-563	subnets, 24-26
switches, 556	Packet type field, 733
_	Packetized elementary stream (PES), 749-750
P	Packets, 5
P (predictive) frames, 708	BGP, 190-192

Packets (continued)	Path attributes field, 190-192
filtering, 391–396	Path discovery, 781
fragmentation and reassembly, 7, 163–164,	Path loss
198–199	optical networks, 558
IGMP, 223-224	wireless links, 280–281
IP, 160-163	Path selection algorithms, 173–178
IPTV, 749-750	Path vector routing protocols, 192–193
LANs, 116	Payload data field, 388
MBGP, 232–233	Payload length field, 196
MPLS, 530-531, 536	Payload type field, 730
MSDP, 235	PBX (private branch exchange) applications, 647
multicasting, 475-480	PCF (point-coordination function), 147
OSPF, 181–183	PCM (pulse code modulation), 708–709
packet-switched networks, 6-7	PCs (point codes), 645
parsers, 448-449	PDCP (Packet Data Convergence Protocol), 269
partitioners, 449–450	PDF (probability density function), 829, 833
reassemblers, 454	PDUs (protocol data units), 360-362, 736
RIP, 186–187	Peak-to-average power ratio (PAPR), 100
RTCP, 732-735	Peer-to-peer (P2P) networks, 548, 600
RTP, 729-731	connection efficiency, 355–356
SCTP, 736-737	database sharing protocols, 353-355
size, 15-17	file sharing protocols, 348–352
SSH, 345	WMNs for, 277
TCP, 299-301	Peer-to-peer topology, 141
TORA, 775	Peers in BGP, 193
Pad field, 120	Pending interest tables (PITs), 630
Pad length field, 388	Per hop behaviors (PHBs), 496–497
Padding field	Performance
IP packets, 162	network management for, 357
IPsec headers, 388	switch fabrics, 469–475
RTCP packets, 732	Period data in ICR, 808-809
RTP packets, 729	Permanent addresses in mobile IP, 260
SSH Packets, 345	Permutations in AES, 380
Padding in SHA, 385	Persistent connections in HTTP, 338
Paging in cellular networks, 253	PES (packetized elementary stream), 749-750
PAM (pulse amplitude modulation), 696	PGW (packet data gateway), 269, 683
PAPR (peak-to-average power ratio), 100	Phase shift keying (PSK), 52-53
Parallel connections in link blocking, 206-207	PHBs (per hop behaviors), 496-497
Parallel nodes, Burk's theorem on, 431-432	Phone call process in SS7 networks, 645-646
Parallel-plane switching fabrics, 470-471	Phone numbers in SIP, 669-670
Parallel-to-serial multiplexing, 452	Phone units in IVR, 754
Pareto distributions, 759	Photographs, 702
Parity bits, 79	Photonics, 547
Parity check methods, 79	Physical congestion, 199-200
Parsers, packet, 448-449	Physical layer
Partial-gatekeeper-routed signaling, 660-661	IEEE 802.11, 144-145
Partitioners, packet, 449-450	TCP/IP protocol model, 19
Passive attacks, 783	WMNs, 279-280
Passive optical networks (PONs), 551-553	Picocells, 269

Pictures, 702	non-preemptive, 503–505
PIFS (point IFS coordination function), 147	preemptive, 505–507
PIM (protocol-independent multicast), 227-230,	schedulers, 503–507
236, 595, 747	Preamble field, 120
Pin attacks, 784	Predictive (P) frames, 708
Ping of death, 374	Preemption queuing systems, 409
PITs (pending interest tables), 630	Preemptive priority queues, 506–507
Pixels, 702, 717–718	Prefixes in CIDR, 26
Platform as a service (PaaS), 583	Prerecorded media streaming, 726-727
Platforms in cloud computing, 579, 581	Presentation layer, 20
Plug-and-play protocols, 167	Priority queueing (PQ), 409
LANs, 128	non-preemptive, 503–505
UPnP, 172-173	preemptive, 505–507
PMF (probability mass function), 829, 833	schedulers, 503–507
Point codes (PCs), 645	Privacy in CDMA, 104
Point-coordination function (PCF), 147	Private branch exchange (PBX) applications, 647
Point IFS coordination function (PIFS), 147	Private clouds, 579
Point-to-point connections, 474	PRMA (packet-reservation multiple-access)
Point-to-Point Protocol (PPP), 521–522, 526	scheme, 106
Point-to-Point Tunneling Protocol (PPTP), 521, 526	PRNs (provide roaming number) messages, 253
Pointer fields, 449	Proactive distributed routing, 806
Poisoned-reverse rule, 186	Probability, 827–828
Poisoning attacks, 372–373	blocking, 421–422, 462–463, 837–840
Poisson random variables, 831	expected value and variance in, 831–832
Polar NRZ line coding, 76	Markov chains in, 835–836
Policing traffic, 201–202, 488	random variables in, 828–831
Pollaczek-Khinchin formula, 424–427	stochastic processes, 834–835
Polling feature, 147	TDM blocking, 63–64
Polynomial CRC interpretation, 82	TDM clipping, 65
PONs (passive optical networks), 551–553	Probability density function (PDF), 829, 833
POP (Post Office Protocol), 334	
	Probability mass function (PMF), 829, 833
Port forwarding, 344–346 Port numbers	Processing units, 794
NAT, 171	Progress call-signaling messages, 659 Protocol, 2
RTP, 728	Protocol converters, 121
transport layer, 21, 292–293	Protocol data units (PDUs), 360-362, 736 Protocol field, 161
UDP, 296	
Port trunking, 107	Protocol immunization, 785
POST method in HTTP, 339	Protocol-independent multicast (PIM), 227–230,
Post Office Protocol (POP), 334	236, 595, 747
Power ratio, 500–501	Protocols
Power save-poll (PS-Poll) frames, 148	ad-hoc networks, 769–783
Power supplies	LANs, 117-121
ad-hoc networks, 783	network management, 358
sensor networks, 794	sensor networks, 791–792
PPM (pulse position modulation), 144, 696	transport layer, 294
PPP (Point-to-Point Protocol), 521–522, 526	Provide roaming number (PRNs) messages, 253
PPTP (Point-to-Point Tunneling Protocol), 521, 526	Providing routers, 539
PQ (priority queueing), 409	Provisioning in link aggregation, 107–108

Proxy call session control function (P-CSCF),	WMNs, 279
269, 683	Quantization in compression
Proxy servers	images, 705–706
SIP, 667-668	voice, 696-701
Web, 341-342, 395-396	Querier's robustness variable (QRV), 223
Prune messages, 228	Query messages, 329, 349
Pseudonoise signals, 103	Query packets
PSK (phase shift keying), 52-53	ABR, 776
Public clouds, 579	TORA, 775
Public-key encryption, 344, 376, 380–383	Questions field, 329-330
Public-switched telephone networks (PSTNs), 10	Queue sets, 473
circuit-switched networks, 647-649	Queues
overview, 642-644	delay-sensitive traffic, 420–422
SIP to PSTN internetworking, 681-682	multipath buffered crossbars, 472-475
SS7, 644-647	priority, 503–507
Pulse amplitude modulation (PAM), 696	RED, 204–205
Pulse code modulation (PCM), 708–709	
Pulse position modulation (PPM), 144, 696	R
Pulse-type plots, 312	Radar, 72
Pulse width modulation (PWM), 696	Radio frequency (RF) spectrum, 72
Push (PSH) field, 300, 303	Radio systems, 72
PUT method in HTTP, 339	Radio waves, 47
	RADIUS protocol, 391
Q	Rake receivers, 103
Q components in modulation, 54	RAMA (root-addressed multicast architec-
Q field in contention resolution units, 456	ture), 237
QAM (quadrature amplitude modulation),	Random-access techniques
53-55, 60	TDMA, 99
QoS. See Quality of service (QoS)	wireless access, 105-106
QPSK (quadrature phase shift keying), 53-55,	Random early detection (RED) technique,
57-58, 60	203-205
QRV (querier's robustness variable), 223	Random padding field, 345
Quadrature amplitude modulation (QAM),	Random processes
53-55, 60	lossy compression, 709
Quadrature carriers, 54	probability, 834–835
Quadrature-phase components, 55	Random service queuing systems, 409
Quadrature phase shift keying (QPSK), 53-55,	Random variables
57-58, 60	functions of, 832-834
Quality of service (QoS), 485-486	in probability, 828–831
differentiated services, 495-497	Randomizing traffic, 469
distributed multimedia mini-clouds, 752-753	RARP (Reverse Address Resolution Protocol),
input buffers, 450	132–133
integrated services, 486–495	RAS (registration, admission, and status) signal-
IPPs, 447	ing, 653–659
network management for, 357	Rate-based resource allocation, 500
overview, 486	Raw-image sampling, 702–705
packet scheduling in, 501-512	RCMs (release complete messages), 646–647
resource allocation, 497–501	Reactive distributed routing, 806
for streaming, 744–745	Reactive routing protocols, 769, 784

Real-Time Control Protocol (RTCP), 653, 671,	TELNET, 343-344
732–735	Rendezvous-based networking, 630-631
Real-time media exchange protocols, 726-731	Rendezvous points, 220, 228-229
Real-time media transport protocols	Repeaters, 40-41
HTTP-based streaming, 740-741	LANs, 121
RTCP, 732-735	overview, 42
RTSP, 735	Replication attacks, 374
SCTP, 735-740	Reply messages, 329
Real-time packets, 502	Reply packets, 776
Real-time sessions, 728–729	Representative routers, 234–236
Real-time Streaming Protocol (RTSP), 666,	Request-expiration timers, 778, 781
735, 749	Request ID field, 361
Real-time transport protocol (RTP), 653, 666, 671,	Request in progress (RIP) message, 659
727-731, 749	Request messages
Rearrangeably nonblocking, 559	HTTP, 339
Reassemblers in output port processors, 454	SIP, 669
Reassembly of packets, 163-164	Request process in DHCP, 169
Receiver report (RR) packets, 732-733	Request to Send (RTS) frames, 148
Receivers, CRC generation at, 81-82	Request-to-send/clear-to-send (RTS/CTS)
Recirculation in switching networks, 469	scheme, 145
Reclustering, 805	Requests for comments (RFCs), 823-826
Recursive mapping, 328	Requests in mobile IP registration, 262
RED (random early detection) technique, 203–205	RERR (route-error) messages, 774, 782
Redirect messages in ICMP, 165	Rescue operations, ad-hoc networks for, 767
Redirect servers in SIP, 668	Resequencers in output port processors, 454
Redundancy in data center networks, 589	Reservation access method for links, 92
Refer messages in SIP, 677–678	Reservation-based protocols, 105–106
Reflection paths, 280	Reservations in RSVP, 495
Regional handoffs, 255	Reset (RST) field, 300
Regional Internet service providers, 8	Resource allocation, 497–498
Register messages in PIM, 229	classification, 499–500
Register packets in MSDP, 235	fairness, 500–501
Registration	managing, 498–499
cellular networks, 249–250	Resource availability in RAS signaling, 658
mobile IP, 259, 262–264	Resource oriented traffic engineering, 539
SIP, 672-673	Resource Reservation Protocol (RSVP), 495
Registration, admission, and status (RAS) signal-	Resources in virtualization, 585
ing, 653–659	Response messages
Registration servers, 668	HTTP, 339–340
Relays in RTP, 728–729	SIP, 669
Release Complete call-signaling messages, 659	Responses in mobile IP registration, 262
Release complete messages (RCMs), 646–647	Reuse, frequency, 273–277
Release messages (RLMs), 646-647	Reverse Address Resolution Protocol (RARP),
Reliability of mobile IP, 259	132–133
Reliable data delivery, 145	Reverse topologies, 635
Remote-access VPNs, 526	RF (radio frequency) spectrum, 72
Remote controls, 73	RFCs (requests for comments), 823–826
Remote login protocols, 342–346	RIA (routing information acknowledgment) mes-
SSH, 344-346	sages, 253
001., 011 010	54ges, 275

RIP (request in progress) message, 659	overview, 45-47
RIP (routing information protocol), 183–188, 769	packet-switched networks, 10
Rivest, Shamir, and Adleman (RSA) algorithm,	RED, 203–205
381-382	wireless, 48-49, 149
RLMs (release messages), 646-647	WMNs, 277
Roaming in cellular networks, 252-253	Routing and internetworking, 7-8, 159-160
Root-addressed multicast architecture (RAMA), 237	ad-hoc networks, 767-769
Root points, 220	AODV, 778-779
Root servers, 327	congestion control. See Congestion
Root switches in STP, 134-135	ICN, 628-631
Round-robin access method, 92	interdomain routing protocols, 188-196
Round robin algorithms, 590	Internet. See Internet routing policies
Round robin queuing systems, 409	intradomain routing protocols, 178–188
Round-trip times (RTTs), 310, 313-314, 338	IP packets and basic policies, 160-163
Rounds in LEACH, 801	IPv6, 196-199
Route costs, 173, 179	mobile IP, 263-267
Route-creation process, 775	MPLS domains, 534-536
Route discovery	multi-tunnel, 536–538
ABR, 776	packet-switched networks, 11
ad-hoc networks, 785	path selection algorithms, 173–178
AODV, 778-781	sensor networks, 805–811
DSP, 773-774	Routing caching timeouts, 778, 781
ICR, 809	Routing information acknowledgment (RIA) mes-
source-initiated protocols, 769	sages, 253
Route-error (RERR) messages, 774, 782	Routing information protocol (RIP), 183–188, 769
Route maintenance, 781–782	Routing switch fabric, 475–476
Route reconstruction, 776	Routing tables
Route reply (RREP) packets, 774, 779-780	AODV, 777
Route request (RREQ) packets, 773-774, 778-780	CGSR, 771
Route selection policy, 195–196	DSDV, 769-770
Route tags in RIP packets, 187	input port processors, 450-452
Router-based resource allocation, 499	layer 2 devices, 125
Router ID field, 182	overflow attacks on, 784
Router line cards, 447	packet-switched networks, 11
Router servers, 10	poisoning attacks on, 372–373
Routers	RIP, 185–186
architecture, 446-447	routers, 447
attacks on, 373	WRP, 772
central controllers, 454-457	RR (receiver report) packets, 732-733
data center networks, 589	RREP (route reply) packets, 774, 779-780
description, 41	RREQ (route request) packets, 773-774, 778-780
input port processors for, 446-453	RSA (Rivest, Shamir, and Adleman) algorithm,
for ISPs, 7	381-382
MBGP, 231-232	RSVP (Resource Reservation Protocol), 495
Mbone, 224	RTCP (Real-Time Control Protocol), 653, 671,
MPLS, 539	732-735
MSDP, 234-236	RTP (real-time transport protocol), 653, 666, 671,
multicasting packets, 475-480	727–731, 749
output port processors for, 453–454	RTP timestamp field, 734

RTS/CTS (request-to-send/clear-to-send) scheme, 145	Security, 369–370 ad-hoc networks, 783–785
RTSP (Real-time Streaming Protocol), 666,	authentication techniques, 383-385
735, 749	cryptographic techniques, 377–383
RTTs (round-trip times), 310, 313–314, 338	elements, 370–371
Rules in packet filtering, 393	firewalls, 391–396
Run-length encoding, 714–715	ICN, 631-632
S	IP, 387–389
	mobile IP, 259
S field, 536	network management for, 358
SaaS (software as a service), 582	overview, 375–377
SAL (service abstraction layer), 614	public-key cryptography, 380–383
Sample space, 709, 827	symmetric-key cryptography, 377–380
Sampling	threats, 371–375
in compression, 695–696, 702–705	VPNs, 524, 527–528
in probability, 828	wireless networks, 389-391
SAP (Session Announcement Protocol), 666	Security Association (SA) tags, 388
Satellite systems, 72, 244–245	Security parameters index (SPI) field, 388
SC-FDMA (single-carrier frequency-division	Seeds in BitTorrent, 350-351
multiple access), 100, 273	Segments
Scalability	TCP, 299-301, 310-311
CDMA, 104	transport layer, 292
multicasting, 216	UDP, 295–297
software-defined networking, 620-621	Self-organized overlay networks, 601
VPNs, 527	Self-organizing sensor networks, 789–790
WMNs, 279	Self-routing, 571
Scanned document compression, 717-718	Self-similarity
Scattering paths, 280	in multimedia, 756–759
SCCP (signaling connection control part), 644	in queuing models, 427-428
Schedulers, multicast, 452	Self-similarity parameter, 758
Schedules	Self-stabilization, 767, 785
data center networks, 591	Semi-optical routers, 563
packet, 501–512	Send information (SI) messages, 253
Scheduling discipline, 408	Sender report (SR) packets, 732–734
SCP (Secure Copy Protocol), 346–347	Sender's byte count field, 734
SCPs (service control points), 642, 644	Sender's packet count field, 734
SCTP (Stream Control Transmission Protocol),	Sensing units, 793
735-740	Sensor networks, 789–790
SDES (source descriptor) packets, 732	clustering in, 790–791, 799–805
SDH (Synchronous Digital Hierarchy) standard,	communication energy model, 794-799
547–548	intercluster routing protocols, 808–811
SDMA (space-division multiple access), 104	intracluster routing protocols, 806–808
SDN. See Software-defined networking (SDN)	node structure for, 793–794
SDP (Session Description Protocol), 666–667	power supplies, 794
SDSL (symmetric digital subscriber line), 56-57	protocol stack for, 791-792
Secret-key encryption, 376	related technologies, 811-812
Secure Copy Protocol (SCP), 346-347	routing protocols overview, 805-807
Secure Hash Algorithm (SHA), 385-387	simulation of, 812-814
Secure Shell (SSH) Protocol, 344-346	Sequence control (SC) field, 148

Sequence number field	RTP, 728-729
IPsec, 388	Set and Trap PDUs, 361
RTP packets, 730	Set-top boxes, 746, 748
TCP segments, 299	Setup call-signaling messages, 659, 662
Sequences and sequence numbers	7-layer OSI model, 20
AODV, 778	SGSN (Serving General packet radio Support
Shannon's coding theorem, 711-713	Node), 247–248
TCP, 298	SGW (Serving Gateway), 269, 271, 683
Sequential experiments, 828	SHA-1 hash codes, 351
Serial connections, 206–207	Shadow fading, 281
Serial-to-parallel converters, 60	Shannon's coding theorem, 711-713
Serial-to-parallel multiplexing, 452	Shapers, 496
Server modes in VTP, 138	Shared data buses, 471-472
Server racks, 578	Shared-memory switch fabrics, 468-469
Server-routed networking schemes, 592	Shared trees, 220, 228-229
Servers	Sharing resources in virtualization, 585
authoritative, 328	SHF (super-high frequency) band ranges, 98
DNS. See Domain Name System (DNS) and	Short IFS (SIFS) interval, 147
servers	Shortest paths
web, 336, 341-342	SSN, 571
Service abstraction layer (SAL), 614	STP, 134-135
Service chaining, 627	Shutdown chunks, 738
Service control in RAS signaling, 658-659	Shutdown acknowledgment chunks, 738
Service control points (SCPs), 642, 644	Shutdown complete chunks, 738
Service-level agreements (SLAs), 496	SI (send information) messages, 253
Service models	SIFS (short IFS) interval, 147
cloud computing, 581–583	Signal regeneration, 42
queueing systems, 410–413	Signal sampling, 695-696
Service-set identification (SSIDs), 142	Signal System 7 (SS7) networks, 642–643
Service sharing queuing systems, 409	MSUs, 645–646
Service switching points (SSPs), 642–643, 647	overview, 644–645
Serving Gateway (SGW), 269, 271, 683	phone call process and signaling sessions, 645
Serving General packet radio Support Node	Signal-to-noise ratio (SNR), 280–281, 283
(SGSN), 247-248	Signal transfer points (STPs), 642–643
Session Announcement Protocol (SAP), 666	Signaling
Session Description Protocol (SDP), 666–667	SCTP, 738–740
Session Initiation Protocol (SIP)	SS7 networks, 645–646
call establishment, 673–674	Signaling connection control part (SCCP), 644
components, 667–668	Signaling link selection (SLS), 645
features and extensions, 674–678	Signaling protocols in VoIP, 649–650
messages, 669–671	Signaling servers, 650
organization, 671	Signaling Transport (sigtran) group, 679
overview, 666–667	Signatures, digital, 387 Simple Mail Transfer Protocol (SMTP),
registration process, 672–673	333–334
SIP to H.323 internetworking, 679–680 SIP to PSTN internetworking, 681–682	Simple multicast, 237
Session layer, 20	Simple Network Management Protocol (SNMP),
Sessions Sessions	360-362
RTCP, 733	Simplicity of routing algorithms, 162
111 01, 700	omprior, or routing argoritimis, 102

	0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Single-carrier frequency-division multiple access	Source-based congestion avoidance, 313–314
(SC-FDMA), 100, 273	Source coding systems, 695
Single-key encryption protocols, 377	Source descriptor (SDES) packets, 732
Single-path switching networks, 458	Source encoder units, 709
Single-source denial-of-service attacks, 375	Source identification in RTCP, 733
Single-stage switching networks, 458	Source-initiated protocols, 769
Single topologies in SDN emulators, 635	Source port field
SIP. See Session Initiation Protocol (SIP)	SCTP packets, 736
Site-to-site VPNs, 526-527	TCP segments, 299
Size, packet, 15-17	UDP segments, 296
SLAs (service-level agreements), 496	Source ports
Sliding-window flow control, 88-92, 305-306	transport layer, 292
Slow start congestion control method, 311-312	UDP, 296
SLS (signaling link selection), 645	Source routing, 179
Small-size routers, 46	Space-division multiple access (SDMA), 104
SMI (structure of management information), 359	Spanke-Benes switching networks, 559-560
SMTP (Simple Mail Transfer Protocol), 333-334	Spanning-Tree Protocol (STP), 133–136, 610
SNMP (Simple Network Management Protocol),	Sparse-mode algorithm, 220
360–362	Sparse-mode PIM, 227–230, 236
SNR (signal-to-noise ratio), 280-281, 283	Spatial frequencies, 704
Social networking protocols, 347	SPDY protocol, 338
Sockets in transport layer, 293–294	Speech recognition in IVR, 754
Softswitch methods, 678	Speed-up factor in switching networks, 469
Software as a service (SaaS), 582	Spherical switching networks (SSNs), 569–572
Software-defined networking (SDN), 607-608	Spike noise, 77
APIs, 613	Split-horizon rule, 186
application delivery, 622–623	Spread-spectrum techniques
cloud computing, 621–623	CDMA, 101, 103–104
compute and storage, 621-622	LANs, 141
control planes, 609–615	physical layer, 144
data planes, 609–611, 615–619	Squared-error distortion, 697
information-centric networking, 627–632	SR (sender report) packets, 732–734
multicasting, 621	SS7 (Signal System 7) networks, 642–643
network emulators, 632–635	MSUs, 645-646
network function virtualization, 623–627	overview, 644–645
network model, 613–619	
overview, 608–609	phone call process and signaling sessions, 645 SSH (Secure Shell) protocol, 344–346
scalability, 620–621	SSIDs (service-set identification), 142
small-size architectures, 620–621	
	SSNs (spherical switching networks), 569–572
Software firewall programs, 392	SSPs (service switching points), 642–643, 647
Solar cells, 791	SSRC field, 734
SONET (Synchronous Optical Networking)	Stability of routing algorithms, 162
standard, 547–548	Stages in switching networks, 458
Sorted deadline lists, 511–512	Star couplers, 556, 560
Source-active (SA) packets, 235	Star topology for LANs, 116–117
Source address field	Start of frame field, 120
Ethernet LAN frames, 120	Stateful packet filtering, 394
IP packets, 162	Stateless packet filtering, 394
IPv6 packets, 196	Static intradomain routing protocols, 179

Static protocols, 768	virtual, 599-600
Static routes with routers, 45	VLANs, 137-138
Statistical multiplexing, 64-65	Switching and routing devices, 40-41
Status codes in HTTP response messages, 340	layer 1, 41–42
Status lines in HTTP response messages, 340	layer 2, 42-44, 124-125
Status mode in RAS signaling, 658	layer 3, 44–47
Steady-state phase in LEACH, 801	wireless, 47–50
Still image compression, 701–707	Switching nodes, 6, 8
Stochastic processes, 834–835	Switching tiers structures, 129
Stop-and-go model, 255–259	Symmetric digital subscriber line (SDSL), 56-57
Stop-and-wait flow control, 85–88	Symmetric-key cryptography, 376–377
Store-and-forward operation, 12	AES, 379–380
STP (Spanning-Tree Protocol), 133-136, 610	DES, 377-379
STPs (signal transfer points), 642-643	Synchronization source (SSRC) identifier field
Stream batches, 756	RTCP packets, 733
Stream Control Transmission Protocol (SCTP),	RTP packets, 730
735-740	Synchronize (SYN) field, 300
Streaming	Synchronous Digital Hierarchy (SDH) standard,
audio, 708-709	547–548
non-Markovian, 756-759	Synchronous MAC protocols, 118
QoS for, 744-745	Synchronous Optical Networking (SONET)
Structure of management information (SMI), 359	standard, 547-548
Subcarriers in OFDM, 100	Synchronous TDM, 61-64
Subnet addressing, 24-26	System capacity in frequency reuse, 274
Subnet masks, 186, 188	T
Subscribe and Notify messages in SIP, 677	T
Super-high frequency (SHF) band ranges, 98	Table-driven routing protocols, 768
Superframe intervals, 147	Tail-drop policy, 203
Supernetting, 26-27	TCAP (transaction capabilities application
Superposition, 436	part), 645
Superposition, 436 Swarms in BitTorrent, 350–352	
	part), 645
Swarms in BitTorrent, 350-352	part), 645 TCAs (traffic-conditioning agreements), 496
Swarms in BitTorrent, 350–352 Switch fabrics	part), 645 TCAs (traffic-conditioning agreements), 496 TCP <i>See</i> Transmission Control Protocol (TCP)
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475	part), 645 TCAs (traffic-conditioning agreements), 496 TCP <i>See</i> Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17-20
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17–20 TCP normalized method, 314–315
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465 complexity, 458	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17–20 TCP normalized method, 314–315 TDM (time-division multiplexing), 61
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465 complexity, 458 concentration and expansion switches, 465–468 crossbar, 459–460	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17–20 TCP normalized method, 314–315 TDM (time-division multiplexing), 61 GMPLS, 551–552
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465 complexity, 458 concentration and expansion switches, 465–468	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17-20 TCP normalized method, 314-315 TDM (time-division multiplexing), 61 GMPLS, 551-552 statistical, 64-65 synchronous, 61-64 TDMA (time-division multiple access), 99
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465 complexity, 458 concentration and expansion switches, 465–468 crossbar, 459–460 multipath buffered crossbars, 471–475 performance, 469–475	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17-20 TCP normalized method, 314-315 TDM (time-division multiplexing), 61 GMPLS, 551-552 statistical, 64-65 synchronous, 61-64
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465 complexity, 458 concentration and expansion switches, 465–468 crossbar, 459–460 multipath buffered crossbars, 471–475	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17-20 TCP normalized method, 314-315 TDM (time-division multiplexing), 61 GMPLS, 551-552 statistical, 64-65 synchronous, 61-64 TDMA (time-division multiple access), 99
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465 complexity, 458 concentration and expansion switches, 465–468 crossbar, 459–460 multipath buffered crossbars, 471–475 performance, 469–475	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17-20 TCP normalized method, 314-315 TDM (time-division multiplexing), 61 GMPLS, 551-552 statistical, 64-65 synchronous, 61-64 TDMA (time-division multiple access), 99 TE (traffic engineering), data center networks, 591
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465 complexity, 458 concentration and expansion switches, 465–468 crossbar, 459–460 multipath buffered crossbars, 471–475 performance, 469–475 router, 44–45	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17-20 TCP normalized method, 314-315 TDM (time-division multiplexing), 61 GMPLS, 551-552 statistical, 64-65 synchronous, 61-64 TDMA (time-division multiple access), 99 TE (traffic engineering), data center networks, 591 Telephone systems, 72. See also Cellular networks;
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465 complexity, 458 concentration and expansion switches, 465–468 crossbar, 459–460 multipath buffered crossbars, 471–475 performance, 469–475 router, 44–45 shared-memory, 468–469 Switch IDs in STP, 134–135 Switch modes in VTP, 138–139	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17-20 TCP normalized method, 314-315 TDM (time-division multiplexing), 61 GMPLS, 551-552 statistical, 64-65 synchronous, 61-64 TDMA (time-division multiple access), 99 TE (traffic engineering), data center networks, 591 Telephone systems, 72. See also Cellular networks; Voice over IP (VoIP)
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465 complexity, 458 concentration and expansion switches, 465–468 crossbar, 459–460 multipath buffered crossbars, 471–475 performance, 469–475 router, 44–45 shared-memory, 468–469 Switch IDs in STP, 134–135 Switch modes in VTP, 138–139 Switch-routed networking schemes, 592–594	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17-20 TCP normalized method, 314-315 TDM (time-division multiplexing), 61 GMPLS, 551-552 statistical, 64-65 synchronous, 61-64 TDMA (time-division multiple access), 99 TE (traffic engineering), data center networks, 591 Telephone systems, 72. See also Cellular networks; Voice over IP (VoIP) Telephony over passive optical networks (TPONs), 553 Television systems, 72, 745-750
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465 complexity, 458 concentration and expansion switches, 465–468 crossbar, 459–460 multipath buffered crossbars, 471–475 performance, 469–475 router, 44–45 shared-memory, 468–469 Switch IDs in STP, 134–135 Switch modes in VTP, 138–139 Switch-routed networking schemes, 592–594 Switches	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17-20 TCP normalized method, 314-315 TDM (time-division multiplexing), 61 GMPLS, 551-552 statistical, 64-65 synchronous, 61-64 TDMA (time-division multiple access), 99 TE (traffic engineering), data center networks, 591 Telephone systems, 72. See also Cellular networks; Voice over IP (VoIP) Telephony over passive optical networks (TPONs), 553 Television systems, 72, 745-750 TELNET protocol, 343-344
Swarms in BitTorrent, 350–352 Switch fabrics buffers, 471–475 characteristics, 457–458 clos, 460–465 complexity, 458 concentration and expansion switches, 465–468 crossbar, 459–460 multipath buffered crossbars, 471–475 performance, 469–475 router, 44–45 shared-memory, 468–469 Switch IDs in STP, 134–135 Switch modes in VTP, 138–139 Switch-routed networking schemes, 592–594	part), 645 TCAs (traffic-conditioning agreements), 496 TCP See Transmission Control Protocol (TCP) TCP/IP (Transmission Control Protocol/Internet Protocol) model, 17-20 TCP normalized method, 314-315 TDM (time-division multiplexing), 61 GMPLS, 551-552 statistical, 64-65 synchronous, 61-64 TDMA (time-division multiple access), 99 TE (traffic engineering), data center networks, 591 Telephone systems, 72. See also Cellular networks; Voice over IP (VoIP) Telephony over passive optical networks (TPONs), 553 Television systems, 72, 745-750

T 11 C 11 262	T (C 1:: : /TCA) (0(
Temporary address field, 263	Traffic-conditioning agreements (TCAs), 496
Terminal-only-routed signaling, 660	Traffic-congestion case, 498
Terminals in H.323 protocol, 652	Traffic engineering (TE), 528, 538–539, 591
Text-to-speech units, 754	Traffic grooming, 551
Thermo-optic switches, 556	Traffic oriented traffic engineering, 539
Threats to security	Traffic policing, 201, 488
ad-hoc networks, 783–784	Traffic shaping, 488–494
categories, 371–375	leaky-bucket, 489–493
Three-dimensional switches, 475	token-bucket, 493–494
Three-way handshakes, 337	Transaction capabilities application part
Throughput in TCP, 309, 314	(TCAP), 645
Time-division multiple access (TDMA), 99	Translator relays, 729
Time-division multiplexing (TDM), 61	Transmission control blocks, 298
GMPLS, 551–552	Transmission Control Protocol (TCP), 298
statistical, 64-65	applications of, 306
synchronous, 61–64	congestion control, 309–315
Time-to-live (TTL) field	connection setup for, 301–303
eBGP, 195	connection termination, 304–305
ICMP, 165	data transfer phase, 303–304
IP packets, 161	MAC headers, 118
MPLS packets, 536	for mobility, 307–309
Timeouts in flow control, 87-88	vs. SCTP, 738-740
Timestamp field	segments in, 299–301
PDUs, 361	Transmission Control Protocol/Internet Protocol
RTP packets, 730-731	(TCP/IP) model, 17-20
Token arrival rate, 493	Transmissions, data link. See Data links
Token-bucket traffic shaping, 493-494	Transmitters, CRC generation at, 80
Tokens in token-bucket traffic shaping, 493	Transparent bridges in LANs, 128
Top-of-rack (ToR) in data center networks, 588	Transparent modes in VTP, 139
Topologies	Transport and end-to-end protocols, 289-290
LANs, 7, 116–117	congestion control, 309-315
SDN emulators, 634-635	mobile, 307–309
ToR (top-of-rack) in data center networks, 588	TCP, 298-306
TORA (Temporally Ordered Routing Algorithm),	transport layer for, 290-294
774–775	UDP, 295–298
Torus-shaped topology, 570	Transport layer, 22, 290-291
TOS (type of service) field	Port number, 21, 292
differentiated services QoS, 496	interaction with adjacent layers, 291-294
OSPF, 181	protocols, 294
Total length field, 161-162	Transport mode in IPsec, 389
Total Path Attribute Length field, 190, 192	Tree algorithms, 218-220, 476-478
Total system delay in queues, 506	Tree-based routing, 265–266
TPONs (telephony over passive optical net-	Tree topologies in SDN emulators, 635
works), 553	Trunks
Trackers in BitTorrent, 350	PBX, 647
Traffic channels, 248	PSTNs, 643
Traffic class field, 196	Tunable dispersion compensators, 553
Traffic classifiers, 496	Tunable lasers, 553
Traffic conditioners, 495–496	Tunable optical filters, 561, 564
1141110 CONGRESSION 1// 1/0	1 annuale optical filters, 701, 701

Tunneling	SIP, 666, 669
IPsec, 389	Union of events, 827
IPv6, 522-523	UNIs (user-to-network interfaces), 548
Mbone, 224	Universal Plug-and-Play (UPnP), 171-172
MPLS, 536-538	Update packets, 182
overview, 519-521	BGP, 190–192
PPP, 521-522	MBGP, 232-233
SSH, 345	TORA, 775
Turbo codes, 284	Updates
Twisted-pair links, 73	ad-hoc networks, 785
Two-key cryptography, 380	layer 2 devices, 125
Two random variable functions, 833-834	RIP routing tables, 185–186
Type data in ICR, 808-809	Uplinks in LTE, 273
Type field	UPnP (Universal Plug-and-Play), 172-173
BGP, 191	Upstream bandwidth in ADSL, 56
ICMP, 164	Upstream grant processors, 457
IGMP packets, 222	Urgent (URG) field, 300
mobile IP, 263	Urgent pointer field, 300
OSPF packets, 181	URIs (Uniform Resource Indicators), SIP,
SCTP packets, 736	669-670
SSH Packets, 345-346	URLs (uniform resource locators), 172, 336
Type of service (ToS) field	CDNs, 743
differentiated services QoS, 496	HTTP, 339-340
OSPF, 181	SIP, 666, 669
U	User Datagram Protocol (UDP), 295
U	applications, 297–298
UDP (User Datagram Protocol), 295	for mobility, 307
applications, 297–298	segments, 295–297
for mobility, 307	User equipment (UE) in LTE, 269
segments, 295–297	User information databases (UIDs), 651
UDP checksum field, 296–297	User mailboxes, 331, 334
UDP length field, 296	User-to-network interfaces (UNIs), 548
UE (user equipment) in LTE, 269	User tracking in cellular networks, 254
UHF (ultrahigh) band ranges, 98	Utilization
UIDs (user information databases), 651	in feedback models, 434
Ultrahigh (UHF) band ranges, 98	link, 16–17
Ultrapure fused silica, 74	in <i>M/M/1</i> queueing systems, 412
Unbuffered switching networks, 458	V
Unfeasible Routes Length field, 190	•
Unguided transmission links, 73	Variables in probability, 828–831
Unicast addresses, 198	Variance in probability, 831–832
Unicast IPTV systems, 750	VDSL (very high bit-rate digital subscriber line), 57
Unicast routers, 233	VEPAs (virtual Ethernet port aggregators), 598
Unidirectional congestion control, 201–202	Verification tag field, 737
Uniform random variables, 831	Version field
Uniform Resource Indicators (URIs), 669–670	IP packets, 22
Uniform resource locators (URLs), 172–173, 336 CDNs, 743	IPv6 packets, 196
HTTP, 339–340	RTCP packets, 732 RTP packets, 729
111 11, 337-340	icii packets, /2/

Version number field	Voice interpreters, 754
OSPF packets, 181	Voice over IP (VoIP), 641-642
RIP packets, 185-186	H.323 protocols. See H.323 protocols
Versions in HTTP, 339-340	multimedia networking, 679-684
Very high bit-rate digital subscriber line	overview, 649–652
(VDSL), 57	PSTNs. See Public-switched telephone networks
VFNs (virtualized network functions),	(PSTNs)
624-625, 627	SIP. See Session Initiation Protocol (SIP)
Video hub offices (VHOs), 747	softswitch methods and MGCP, 678
Video on demand (VoD), 745-750	Voice over LTE (VoLTE), 269
Videoconferencing, 582, 751	VPCs (virtual private clouds), 621
Virtual agents, 264	VPNs. See Virtual private networks (VPNs)
Virtual-circuit networks, 13-15	vSwitches, 599-600
Virtual Ethernet port aggregators (VEPAs), 598	VTP (VLAN Trunking Protocol), 138-139
Virtual local area networks (VLANs), 136-139	VXML (Voice Extensible Markup Language), 754
Virtual machines (VMs), 585-587	
Virtual private clouds (VPCs), 621	W
Virtual private networks (VPNs), 519-520	WANs (wide area networks), 9-10
Diffie-Hellman key-exchange protocol for,	routing and internetworking. See Internet rout-
382–383	ing policies
MPLS-based, 539-540	wireless. See Wireless networks
overview, 524–526	WAPs (wireless access points), 47-48, 98, 139-140
remote-access, 526	Wavelength-conversion, 561-562
security in, 527–528	Wavelength-conversion gain, 569
site-to-site, 526-527	Wavelength-division multiplexing (WDM), 555
Virtual registration, 264	Wavelength in optical networks, 547
Virtualization, 577-578, 595-596	allocation, 567-569
components, 596-597	conversion, 558, 560-563
data centers, 584-588	Wavelength routers, 560
LANs, 600, 620	Wavelength routing nodes, 560-563
links, 597	Wavelength routing vs. broadcasting, 564
NICs, 597-598	WDM (wavelength-division multiplexing), 555
overlay networks, 600-601	Web, 335-336
switches, 599-600	HTTP, 336-341
Virtualized network functions (VFNs),	Web caching, 341-342
624-625, 627	Web page, 742
Visiting location register (VLR), 248, 252	Web server, 755
VLAN Trunking Protocol (VTP), 138-139	Web site, 742
VLANs (virtual local area networks), 136-139,	Webmail, 342
600, 620	Weighted-fair queueing (WFQ), 502, 508-511
VLR (visiting location register), 248, 252	Weighted round-robin (WRR) scheduler, 509
VMs (virtual machines), 585-587	WEP (wired equivalent privacy) standard, 390-391
VNICs (virtual NICs), 597–598	WG (wireless routers with gateway), 49
VoD (video on demand), 745-750	Wide area networks (WANs), 9-10
Voice application servers, 754-755	routing and internetworking. See Internet rout-
Voice compression	ing policies
quantization and distortion in, 696-701	wireless. See Wireless networks
signal sampling in, 695-696	Wide-sense nonblocking networks, 559
Voice Extensible Markup Language (VXML), 754	Wiener random processes, 834

WiFi (wireless fidelity) technology, 149-151	infrastructure of, 244–245
in distributed media mini-clouds, 753	LANs, 139-141
network examples, 158, 278, 622-623	LTE, 268-277
in peer-to-peer (P2P) applications, 348	mobile IP. See Mobile IP
WiMAX (worldwide interoperability for micro-	security in, 390-391
wave access) technology, 267-268	sensor. See Sensor networks
Window-based resource allocation, 500	WiFi, 149-151
Window scale option, 301	WMNs, 245, 277-280
Window size field, 300, 305-306	Wireless routers with gateway (WG), 49
Window size in TCP, 300, 305-306, 310	Wireless Routing Protocol (WRP), 772-773
Wired equivalent privacy (WEP) standard,	Wireless switching and routing devices, 47
390–391	antennas, 48-49
Wireless access, 97-99	routers and switches, 48-49
CDMA, 100-104	WAPs and base stations, 47-48
FDMA, 99	Withdrawn Routes field, 190
miscellaneous methods, 104-105	WLANs (wireless LANs), 49
OFDM, 99-100	WMNs (wireless mesh networks), 245, 277-280
random-access techniques, 105-106	World Wide Web (WWW), 335-336
SC-FDMA, 100	HTTP, 336-341
TDMA, 99	Web caching, 341-342
Wireless access points (WAPs), 47-48, 98,	Web page, 742
139-140	Web server, 755
Wireless fidelity (WiFi) technology, 149-151	Web site, 742
in distributed media mini-clouds, 753	Webmail, 342
network examples, 158, 278, 622-623	Worldwide interoperability for microwave access
in peer-to-peer (P2P) applications, 348	(WiMAX) technology, 267-268
Wireless links, 47	WRP (Wireless Routing Protocol), 772-773
channels for, 280-285	WRR (weighted round-robin) scheduler, 509
flat fading in, 284	WWW (World Wide Web), 335-336
intersymbol interference in, 284-285	HTTP, 336-341
overview, 74-75	Web caching, 341–342
Wireless mesh networks (WMNs), 245, 277-280	Webmail, 342
Wireless networks, 10, 243-244	X-Z
ad-hoc. See Mobile ad-hoc networks (MANETs)	
cellular. See Cellular networks	Xcast (explicit multi-unicast) protocol, 595
IEEE 802.11, 142–151	ZigBee technology, 811-812