VV186 RC7

Zhu Jing

UM-SJTU Joint Institute

2018

Vector Space

- 3.3.1. Definition. A triple $(V, +, \cdot)$ is called a *real vector space* (or *real linear space*) if
 - 1. V is any set;
 - 2. $+: V \times V \to V$ is a map (called addition) with the following properties:
 - ▶ (u+v)+w=u+(v+w) for all $u,v,w\in V$ (associativity),
 - ▶ u + v = v + u for all $u, v \in V$ (commutativity),
 - there exists an element e ∈ V such that v + e = v for all v ∈ V (existence of a unit element),
 - ▶ for every $v \in V$ there exists an element $-v \in V$ such that v + (-v) = e;
 - 3. $: \mathbb{R} \times V \to V$ is a map (called scalar multiplication) with the following properties:
 - $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$ for all $\lambda \in \mathbb{R}$, $u, v \in V$,
 - $(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$ for all $\lambda, \mu \in \mathbb{R}, u \in V$,
 - $(\lambda \mu) \cdot u = \lambda \cdot (\mu \cdot u)$ for all $\lambda, \mu \in \mathbb{R}$, $u \in V$.

If we replace \mathbb{R} with \mathbb{C} , we say that $(V, +, \cdot)$ is a *complex vector (or linear) space*.

Subspace

3.3.4. Definition. Let $(V, +, \cdot)$ be a real or complex vector space. If $U \subset V$ and $(U, +, \cdot)$ is also a vector space, then we say that $(U, +, \cdot)$ is a **subspace** of $(V, +, \cdot)$.

3.3.6. Lemma. Let $(V,+,\cdot)$ be a real (complex) vector space and $U \subset V$. If $u_1+u_2 \in U$ for $u_1,u_2 \in U$ and $\lambda u \in U$ for all $u \in U$ and $\lambda \in \mathbb{R}$ (\mathbb{C}), then $(U,+,\cdot)$ is a subspace of $(V,+,\cdot)$.

Normed Vector Space

- 3.3.8. Definition. Let V be a real (complex) vector space. Then a map $\|\cdot\| \colon V \to \mathbb{R}$ is called a norm if for all $u, v \in V$ and all $\lambda \in \mathbb{R}$ (\mathbb{C}),
 - 1. $||v|| \ge 0$ for all $v \in V$ and ||v|| = 0 if and only if v = 0,
 - $2. \|\lambda \cdot \mathbf{v}\| = |\lambda| \cdot \|\mathbf{v}\|,$
 - 3. $||u+v|| \le ||u|| + ||v||$.

The pair $(V, \|\cdot\|)$ is called a normed vector space or a normed linear space.

Normed Vector Space: Example

1.
$$\mathbb{R}^n$$
 with $\|x\|_2 = \left(\sum_{j=1}^n x_i^2\right)^{1/2}$,

2.
$$\mathbb{R}^n$$
 with $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ for any $p \in \mathbb{N} \setminus \{0\}$,

3.
$$\mathbb{R}^n$$
 with $||x||_{\infty} = \max_{1 \le k \le n} |x_k|$,

4.
$$I^{\infty}$$
 with $\|(a_n)\|_{\infty} = \sup_{n \in \mathbb{N}} |a_n|$,

5.
$$c_0$$
 with $||(a_n)||_{\infty} = \sup_{n \in \mathbb{N}} |a_n|$,

6.
$$C([a, b])$$
, $[a, b] \subset \mathbb{R}$, with $||f||_{\infty} = \sup_{x \in [a, b]} |f(x)|$

1. *pointwise convergence*: For every $x \in [-1, 1]$,

$$f_n(x) \xrightarrow{n \to \infty} f(x)$$
 : \Leftrightarrow $|f_n(x) - f(x)| \xrightarrow{n \to \infty} 0$

2. **uniform convergence**: Each f_n is an element of the normed vector space C([-1,1]), and so is f. Then

$$f_n \xrightarrow{n \to \infty} f$$
 :\iff \tag{\iff}

$$:\Leftrightarrow \qquad ||f_n-f||_{\infty} \xrightarrow{n\to\infty} 0.$$

Remark:

Pointwise convergence describes the property of single points respectively while uniform convergence describes the property of the entire function.

3.4.1. Definition. Let $\Omega \subset \mathbb{R}$ and (f_n) be a sequence of functions $f_n \colon \Omega \to \mathbb{C}$. We say that the sequence (f_n) converges pointwise to the function $f \colon \Omega \to \mathbb{C}$ if

$$\bigvee_{x\in\Omega}|f_n(x)-f(x)|\xrightarrow{n\to\infty}0.$$

If f is the pointwise limit of (f_n) , we say that (f_n) converges *uniformly* to f on Ω if

$$\sup_{x \in \Omega} |f_n(x) - f(x)| \xrightarrow{n \to \infty} 0.$$

Pointwise convergence is the basis of uniform convergence.

Uniform convergence implies pointwise convergence.

3.4.3. Theorem. Let $[a,b] \subset \mathbb{R}$ be a closed interval. Let (f_n) be a sequence of continuous functions defined on [a,b] such that $f_n(x)$ converges to some $f(x) \in \mathbb{R}$ as $n \to \infty$ for every $x \in [a,b]$. If the sequence (f_n) converges uniformly to the thereby defined function $f:[a,b] \to \mathbb{R}$, then f is continuous.

3.4.4. Theorem. Let $[a, b] \subset \mathbb{R}$ be a closed interval and C([a, b]) the vector space of continuous functions on [a, b], endowed with the metric

$$\varrho(f,g) = \|f-g\|_{\infty} = \sup_{x \in [a,b]} |f(x)-g(x)|.$$

Then the metric space $(C([a, b]), \varrho)$ is complete, i.e., every Cauchy sequence in the space converges.

Series: Convergence

3.5.1. Definition. Let (a_n) be a sequence in a normed vector space $(V, \|\cdot\|)$. Then we say that (a_n) is *summable* with sum $s \in V$ if

$$\lim_{n\to\infty} s_n = s, s_n := \sum_{k=0}^n a_k.$$

We call s_n the *nth partial sum* of (a_n) . We use the notation

$$\sum_{k=0}^{\infty} a_k \qquad \text{or simply} \qquad \sum a_k \qquad (3.5.1)$$

to denote not only s, but also the "procedure of summing the sequence (a_n) ." We call (3.5.1) an *infinite series* and we say that the series converges if (a_n) is summable. If (s_n) does not converge, we say that $\sum a_k$ diverges.

Cauchy Criterion

3.5.4. Cauchy Criterion. Let $\sum a_k$ be a series in a **complete** vector space $(V, ||\cdot||)$. Then

$$\sum a_k \text{ converges} \qquad \Leftrightarrow \qquad (s_n)_{n \in \mathbb{N}} \text{ converges, } s_n = \sum_{k=0}^n a_k$$

$$\Leftrightarrow \qquad (s_n) \text{ is Cauchy}$$

$$\Leftrightarrow \qquad \forall \exists \forall \|s_m - s_n\| < \varepsilon$$

$$\Leftrightarrow \qquad \forall \exists \forall \|s_m - s_n\| < \varepsilon$$

$$\Leftrightarrow \qquad \forall \exists \forall \|s_m - s_n\| < \varepsilon$$

$$\Leftrightarrow \qquad \forall \exists \forall \|s_m - s_n\| < \varepsilon$$

Corollary given by Cauchy Criterion

3.5.5. Corollary. If the series $\sum_{k=0}^{\infty} a_k$ converges, then the sequence $a_k \to 0$ as $k \to \infty$. (Take m = n + 1 in the Cauchy Criterion.)

3.5.6. Corollary. If the series $\sum_{k=0}^{\infty} a_k$ converges, then the sequence (A_n) given by

$$A_n := \sum_{k=n}^{\infty} a_k$$

converges to 0 as $n \to \infty$. (Let $m \to \infty$ in the Cauchy Criterion.)

Absolute Convergence

3.5.9. Definition. A series $\sum a_k$ in a normed vector space $(V, \|\cdot\|)$ is called **absolutely convergent** if $\sum \|a_k\|$ converges.

A sequence (a_k) in a normed vector space $(V, \|\cdot\|)$ is called *absolutely summable* if $\sum a_k$ converges absolutely.

3.5.10. Theorem. An absolutely convergent series $\sum a_k$ in a **complete** vector space $(V, \|\cdot\|)$ is convergent.

Comparison Test

The following criteria are used to establish the absolute convergence of a series.

3.5.13. Comparison Test. Let
$$(a_k)$$
 and (b_k) be real-valued sequences with $0 \le a_k \le b_k$ for sufficiently large k . Then

$$\sum b_k$$
 converges \Rightarrow $\sum a_k$ converges.

Remark: It is the most general test. You are recommended to try this method with the help of basic inequalities to judge convergence of series first.

the Weierstrass M-Test

3.5.17. Weierstraß M-test. Let $\Omega \subset \mathbb{R}$ and (f_k) be a sequence of functions defined on Ω , $f_k \colon \Omega \to \mathbb{C}$, satisfying

$$\sup_{x \in \Omega} |f_k(x)| \le M_k, \qquad k \in \mathbb{N}$$
 (3.5.9)

for a sequence of real numbers (M_k) . Suppose that $\sum M_k$ converges. Then the limit

$$f(x) := \sum_{k=0}^{\infty} f_k(x)$$
 exists for every $x \in \Omega$.

Furthermore, the sequence (F_n) of partial sums

$$F_n(x) = \sum_{k=0}^n f_k(x)$$

converges uniformly to f.

the Root Test

- 3.5.20. Root Test. Let $\sum a_k$ be a series of positive real numbers $a_k \ge 0$.
 - (i) Suppose that there exists a q < 1 such that

$$\sqrt[k]{a_k} \leq q$$

for all sufficiently large k.

Then $\sum a_k$ converges.

(ii) Suppose that

$$\sqrt[k]{a_k} > 1$$

for all sufficiently large k.

Then $\sum a_k$ diverges.

3.5.21. Remark. Note that the existence of a q < 1 so that $\sqrt[k]{a_k} < q$ is crucial; this is not the same as requiring $\sqrt[k]{a_k} < 1$.

the Root Test Using Limits

3.5.24. Root Test. Let a_k be a sequence of positive real numbers $a_k \ge 0$. Then

$$\begin{array}{ll} \overline{\lim}_{k\to\infty}\,\sqrt[k]{a_k} < 1 & \qquad \Rightarrow & \qquad \sum_{k=0}^\infty a_k & \quad \text{converges,} \\ \\ \overline{\lim}_{k\to\infty}\,\sqrt[k]{a_k} > 1 & \qquad \Rightarrow & \qquad \sum_{k=0}^\infty a_k & \quad \text{diverges.} \end{array}$$

3.5.25. Remarks.

- (i) No statement is possible if $\varlimsup_{k\to\infty} \sqrt[k]{a_k}=1.$
- (ii) If $\lim_{k\to\infty} \sqrt[k]{a_k}$ exists, it equals $\overline{\lim_{k\to\infty}} \sqrt[k]{a_k}$. This will be the case in many applications.

the Ratio Test

3.5.26. Ratio Test. Let $\sum a_k$ be a series of strictly positive real numbers $a_k > 0$.

(i) Suppose that there exists a q < 1 such that

$$\frac{a_{k+1}}{a_k} \le q$$

for all sufficiently large k.

Then $\sum a_k$ converges.

(ii) Suppose that

$$\frac{a_{k+1}}{a_k} \ge 1$$

for all sufficiently large k.

Then $\sum a_k$ diverges.

the Ratio Test Using Limits

3.5.28. Ratio Test. Let (a_k) be a sequence of strictly positive real numbers $a_k > 0$. Then

$$\begin{array}{ccc} \overline{\lim}_{k \to \infty} \frac{a_{k+1}}{a_k} < 1 & \Rightarrow & \sum_{k=0}^{\infty} a_k & \text{converges} \\ \\ \underline{\lim}_{k \to \infty} \frac{a_{k+1}}{a_k} > 1 & \Rightarrow & \sum_{k=0}^{\infty} a_k & \text{diverges}. \end{array}$$

Remark: Any problem that can be solved by the ratio test can also be solved by the root test. The root test is a more powerful tool.

the Ratio Comparison Test

3.5.29. Ratio Comparison Test. Let (a_k) and (b_k) be sequences of strictly positive real numbers a_k , $b_k > 0$. Suppose that $\sum b_k$ converges. If

$$\frac{a_{k+1}}{a_k} \le \frac{b_{k+1}}{b_k} \qquad \qquad \text{for sufficiently large } k,$$

then $\sum a_k$ converges.

Remark: if the condition of the ration comparison test is satisfied, then the sequence cannot increase rapidly.

Raabe's test

3.5.32. Raabe's Test. Let $\sum a_k$ be a series of positive real numbers $a_k \ge 0$. Suppose that there exists a number p > 1 such that

$$\frac{a_{k+1}}{a_k} \le 1 - \frac{p}{k}$$
 for sufficiently large k .

Then the series $\sum a_k$ converges.

Remark: For some sequences, if we cannot find a suitable q for the ratio test, we can try to use Raabe's test.

Some comments about the five tests.

Pay attention to the p-Series.

the Leibniz Theorem

3.5.38. Leibniz Theorem. Let $\sum \alpha_k$ be a complex series whose partial sums are bounded but need not converge. Let (a_k) be a decreasing convergent sequence with limit zero, $a_k \searrow 0$. Then the series

$$\sum \alpha_k a_k$$

converges.

A typical application of the Leibniz Theorem 3.5.38 are alternating series, for which $\alpha_k = (-1)^k$. In particular, the Leibniz series

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$$

converges by the Leibniz Theorem.

Cauchy Product

3.5.40. Theorem. Let $\sum a_k$ and $\sum b_k$ be absolutely convergent series. Then the *Cauchy product* $\sum c_k$ given by

$$c_k := \sum_{i+j=k} a_i b_j$$

converges absolutely and $\sum c_k = \left(\sum a_k\right)\left(\sum b_k\right)$.

3.5.41. Remark. If $a = (a_k)$ and $b = (b_k)$ are two absolutely summable sequences, the sequence

$$a*b:=(c_k),$$
 $c_k:=\sum_{i+j=k}a_ib_j,$

is called the *convolution* of a and b.

Reference

1. VV186 Slide and previous RC Slide