# ANOVA One way & Two way classified data

Monica Goud

#### **ANOVA**

The total variation present in a set of observable quantities may, **under certain circumstances**, be partitioned into a number of components associated with the nature of classification of the data

The systematic procedure of achieving

this is called analysis of variance (ANOVA)

#### **ANOVA**

ANOVA was developed by statistician and evolutionary biologist Ronald Fisher.

The purpose of ANOVA is to test for significant difference between means.

If we comparing two means ANOVA will

## produce the same results as t- test for independent (dependent) samples ANOVA

The name is derived from the fact that in order to test for statistical significance between means, we are actually comparing (analyzing) variances.

**Basic ANOVA Concepts:** 

A response variable related to **one or more explanatory variables**, usually categorical.

#### One way & Two way Classified data

- One way or two way refers to the no. of independent variables
- One way- one independent variable(2 level)
   Ex. Brand of cereal

Two way- two independent variables(can have multiple levels)

Ex. Brand of cereal and calories

One way- ANOVA

- Which science departments gives out lowest average grade?-

**Explanatory variable-** Department **Response variable-** student's GPA for individual course

-Which kind of promotional campaign leads to greatest store income at Christmas time

**Explanatory variable**-Promotion type **Response variable**- daily store income

TWO way- ANOVA

- How do the **type of career and martial**
- status of a person relate to the total cost of
- annual claims she/he likely to make on her/his **health insurance**
- Explanatory variables- Career and
- martial status
- Response variable- health insurance payouts

Examples

- Students from different colleges take the same examination. – one can see if one college outperform other.
- A group of psychiatric patients are trying three different therapies- counseling, medication and biofeedback.- one can check if one therapy is better than the others.

Students from different colleges take the same examination. – one can see if one college outperform other.

A group of psychiatric patients are trying three different therapies- counseling, medication and biofeedback.- one can check if one therapy is better than the others.

#### **ANOVA**

#### Summary

- Analysis of variance is a statistical method used to test two or more means
- Provide statistical test whether population means of several group are equal
- Generalizes the t-test to more than one group
- Inferences about means are drawn by analyzing the variance

#### **ANOVA** Summary

- Analysis of variance is a statistical method used to test two or more means
- Provide statistical test whether population means of several group are equal
- Generalizes the t-test to more than one group
- Inferences about means are drawn by analyzing the variance

#### Assumptions

The experimental error are normally distributed

 Equal variances between treatments(Homoscedasticity)

Independence of Samples

### **Assumptions** • The experimental error are normally distributed

- Equal variances between treatments(Homoscedasticity)
- Independence of Samples
  Assumptions

- Independent Observations
- -Normality

Homogeneity :variance within all subpopulation must be equal

 -Independence of errors —errors are independently distributed

#### Assumptions

- **S**< -
- Absence of outliers- Outlying score have been removed from data

If the assumptions hold then under null

### hypothesis F follows F distribution with DF between & DF within SS

#### Logic of ANOVA

- ANOVA focuses on variability, it involve calculation of several measures of variability
- -Partitioning total variation into two components
- -components due to difference between means & component due to within SS (true random error)

#### **ANOVA Test**

 To find out survey or experiment results are significant(reject null hypothesis or accept alternative hypothesis)

Testing groups to check if there is a difference between them

**ANOVA Test** To find out survey or experiment results are significant(reject null hypothesis or accept alternative hypothesis)

Testing groups to check if there is a difference between them





#### **Hypotheses**

- Null hypothesis
- H0:  $\mu_1 = \mu_2 = \mu_3 = \mu$
- Alternative hypothesis
- H1: at least one population mean is different from one another

## Partitioning the total variation • Total variation

■ Between Gr variation Within Gr variation ■ variances are compared in F ratio to determine mean differences (MS between) are significantly bigger than chance (MS within)

- F= (MS bet gr)/(MS within gr)
- MS bet gr= SS bet gr/DF bet gr
- MS within gr= SS within gr/DF within
- gr Total SS= bet SS + within SS
- Total DF= bet DF+ within DF
- F ratio is always positive as F ratio computed from two variance

  Numerical Example

- Suppose the National Transportation Safety Board wants to examine the safety of cars Type A, cars Type B and cars Type C. It collects a sample of three for each of the treatments (cars types).
- Using the hypothetical data provided below, test whether mean pressure applied to the driver's head during crash test is equal for each types of car.

#### **Table**

| 643 | 469 | 484 |
|-----|-----|-----|
| 655 | 427 | 456 |
| 702 | 525 | 402 |

#### **STEPS**

- 1. State Null & Alternative hypotheses
- In ANOVA null hypothesis population means are equal
  - H0:  $\mu_1 = \mu_2 = \mu_3$  (Mean head pressure is

- statistically equal across the 3 types of cars)
- Since in null hypothesis assume all means are equal, we could reject the null hypothesis if one mean is different thus

- Alternative hypothesis –
- H1: at least one mean pressure is not statistically equal

■ To test – we calculate appropriate

#### test statistics

- under H0
- F= (MS bet gr)/(MS within gr) follows F distribution
- Total SS Total variation in data.
- It is the sum of between and within variation



$$\leq SST = \Sigma$$

$$= 96303.55$$

$$\Sigma(Yij-\Upsilon)^2\Upsilon=529.22$$

Between SS (or Treatment SS) –

- Variation in the data between different samples (or treatments)
- SSTr = 86049.55
- Within variation (or error SS)-Variation in the data from each individual treatment)
- ♣ Error SS (SSE)= 10254
  Mean squares
- **S**: -
- Next step in ANOVA to compute Mean

#### squares:

- Total mean square MST= SST/ N-1 , N= Total no of observations
- MST = 96303.55/(9-1) = 2037.94

- Mean square Treatment (MSTr) = SSTr/(k -1)
- , k= No of treatments (in Ex no of columns)
- MSTr = 86049.55/(3 1) =
- 43024.78
- Mean square error (MSE)= SSE/

$$(N-k)$$
  $MSE = 10254/(9-3) = 1709$ 

- NOTE :SST= SSTr + SSE but
- MST ≠ MSTr + MSE

#### **TEST Statistic**

Next step – Calculate TEST

Statistic F0= MSTr/MSE =25.17

Obtain the critical value: To find critical value from F distribution it is required to know DF of numerator(DF1) & DF denominator (DF2) along with significance level

- F (critical )has DF1=( k-1) & -
- DF2= (N-k), a = 5% or 1%
- In our example, DF1=3-1=2,  $\blacksquare$

DF2= 
$$(9-3) = 6$$
 a =  $5\%$ 

#### F (critical)

- Hence we need to find F (critical) with
- 2 and 6 DF at 5% level of significance

- Using F table , F (critical) with 2 and
   DF at 5% level of significance = 5.14
   Decision Rule
- We reject H0 at a level of significance
- F (observed) > F(critical)

- In our example 25.17 > 5.14
- We may reject the null hypothesis

#### a level of significance Interpretation

- We are 95% confident that the mean head pressure is statistically not equal for cars Type A, Cars Type B and cars Type C.
- However only one mean must be different to reject the null, we do not know which mean(s) is/are different.

- In ANOVA test provide us at least one mean is different ,additional test must be conducted to determine which mean(s) is/are different
- Most common test Least significant difference(LSD) test

#### **ANOVA Table**

| SV             | SS       | DF | MS            | VR (F) | F (Cr) |
|----------------|----------|----|---------------|--------|--------|
| Betwee<br>n Gr | 86049.55 | 2  | 43024.<br>7 8 | 25.17  | 5.14   |

| Within<br>Gr | 10254    | 6 | 1709 |  |
|--------------|----------|---|------|--|
| Total        | 96303.55 | 8 |      |  |