Schema for Biomarker Discovery from Clinical Cancer Data

Feature Selection

using Random Forest

Randomly select
equal numbers of normal and cancer

Apply Random
Forest to identify important biomarkers.

Input Layer

samples,

multiple

iterations

to avoid

sampling

bias.

with

Aggregation of Important Biomarkers

Aggregate feature importance across iterations.

Intermediate Processes

Filtering Selected Features through Descriptive Statistics

1. Uniquely High Levels:

The biomarker level must be uniquely high in the particular cancer type. We establish uniqueness using a Coefficient of Variation check and Median Absolute Deviation based outlier detection.

2. Higher Side Filtering: If not unique, the biomarker's level should still be relatively high, with its *Q3* value in the top 2 among cancer types.

Shared Nature of the Biomarkers through Yuen-Welch's test

Perform Yuen-Welch's test (a refinement of t-test) to verify that the biomarker shows a statistically significant difference between the particular cancer type and other cancer types or normal samples. If that is not the case, we take note of the shared nature.

Output Layer

- 1. Finalize the set of cancer-specific biomarkers that meet all the filtering criteria, while considering their shared nature.
- 2. Perform Random Forest for the cancer types with biomarkers that show uniquely high levels. Note the accuracy scores.

3. Consider
biological
mechanisms of the
biomarkers to
further
understanding.