Problem C Covid-19

Time limit: 3 seconds

In December 2019, Covid-19 spread worldwide on the earth. An important parameter to the Covid-19 is R_0 (R naught). R_0 is the basic reproduction number that is used to measure the transmissibility of infectious agents. R_0 is relative to the duration of infectivity and the likelihood of transmission of infection per contact between a susceptible person and an infectious individual.

Assume the duration of infectivity to Covid-19 is two weeks. Once a person is infected, there will be R_0 persons infected after two weeks. Doctor Alice wants to calculate how many persons will be infected after 2N weeks. For simplification, we assume that there will be $1 + R_0 + R_0^2 + R_0^3 + \cdots + R_0^N$ after 2N weeks. Now, give you the value of R_0 and N, can you calculate the number? In order to check your answer easily, please modulo this number by a given prime number D.

For example, let D = 5, $R_0 = 2$, and N = 5. We calculate the infected number as $1 + R_0 + R_0^2 + R_0^3 + \cdots + R_0^N = 1 + 2 + 4 + 8 + 16 + 32 = 63$. So we have to output 3 because 63 mod 5 = 3.

Technical Specification

- 1. $1 \le D \le 2 \times 10^9$ is a prime number.
- 2. $1 \le R_0 \le 10^{1024}$
- 3. $1 \le N \le 10^{1024}$

Input Format

The first line contains an integer $T \leq 60$ representing the number of test cases. For each test case, there are 3 integers D, R_0 , and N.

Output Format

For each test case, please output the infected number modulo D.

Sample Input

Sample Output for the Sample Input