

Оглавление

Описание	1
Параметры Конфигурации	1
Описание верхнего уровня	1
Программная модель2	2
Регистр управления	2
Работа с программной моделью	3
Работа с прерываниями4	4
Выключение модуля	4
Принцип работы4	4
Алогоритм Работы	4

Описание

Модуль используется в проекте приемопередатчика SL канала для обработки APB транзакций, управления приемнкиами и передатиками, соединением выходных портов с приемниками и передатчиками и комутацией прерываний.

Параметры Конфигурации

Название	Значение по умолчанию	Описание
CC		Channel count — количество каналов в устройстве. Допустимые значения: значения от 1 до 4

Описание верхнего уровня

Таблица 1. Порты цифрового модуля SlReciever

Название	Тип	Разрядност ь	Значение после сброса	Описание
rst_n	In	1	-	Асинхронный общий сигнал сброса
clk	In	1	-	Сигнал тактовой частоты
			АРВ-связанные сигналы	
prst_n	In	1	1	Асинхронный сигнал сброса
pclk	In	1	-	Сигнал тактовой частоты
psel	In	1	-	Сигнал выбора устройства
penable	In	1	-	Сигнал разрешения работы
pwrite	In	1	1	Сигнал выбора чтения или записи
paddr	In	16	-	Шина адреса
pwdata	In	32	1	Шина записи данных
prdata	Out	32	h0000_0000	Шина чтения данных
pready	Out	1	b0	Сигнал готовности к чтению или записи данных
•		Сигнал	ы приемников и переда [.]	тчиков
from_irq	in	CC*2	-	Сигналы прерываний приемников и передатчиков
from_D_out	in	CC*2*32	-	Шина для записи данных в приемники и передатчики
to_D_in	out	32	h0000_0000	Шина чтения данных из приемников и передатчиков
to_addr	out	CC*2	b0	Адресные входы приемников и передатчиков

Описание стр. 1 из 5

to_wr_en	out	CC*2	b0	Сигналы разрешения записи приемников и передатчиков			
	Сигналы мультиплексоров						
channel_mo de	out	CC	b0	Сигналы управления мультиплексорами			
loop	out	CC/2	b0	Сигналы управления мультиплексорами			
		Сигналы	прерываний и програмн	того сброса			
irq_in	in	CC*2	-	Сигналы прерываний устройств			
irq_out	out	1	b0	Общий сигнал запроса на прерывание блока			
soft_reset	out	1	b0	Общий сигнал программного сброса для подключенных устройств			

Программная модель

Пользователю для работы доступно несколько регистров:

Пользователю для работы доступны:

• Регистр управления (control_r)

Регистр управления

Таблица 2. Назначение разрядов регистра управления (control_r)

Bit	15-13	12	11	10	9	8	7	6	5	4	3	2	1	
-----	-------	----	----	----	---	---	---	---	---	---	---	---	---	--

Oписание разрядов регистра управления(control_r)

- 1. SR Общий сброс всех модулей
- 2. МОДЕ Выбор режима работы каналов.
- 3. LOOP Включение и отключение петель.
- 4. IRQC Номер устройства требующего обработки прерывания

Номер разряда поля MODE соотвествую При СС = 1, используется только разряд **MODE0**, при СС = 2, используются разряды **MODE0** и **MODE1** и так далее. Неиспользуемы поля зарезервированы. .Соответствие разрядов поля **MODE** и режимов работы каналов

Разряд поля МОDE	Значение	Режим работы канала
MODE0	0	Передатчик
	1	Приемник
MODE1	0	Передатчик
	1	Приемник

Программная модель стр. 2 из 5

MODE2	0	Передатчик
	1	Приемник
MODE3	0	Передатчик
	1	Приемник

При СС = 1, используется только разряд **MODE0**, при СС = 2, используются разряды **MODE0** и **MODE1** и так далее. Неиспользуемы поля зарезервированы.

Таблица 3. Соответствие разряда **LOOP0** и наличия петли между 0 и 1 каналом

Значение разряда LOOP0	Значение выражения (MODE0 == MODE1)	Наличие петли между каналами 0 и 1
0	0	нет
0	1	нет
1	0	нет
1	1	да

Возможность создания петли между каналами 0 и 1 предусмотрена только при значениях CC > 2. Если CC = 1, поля **LOOP0** и **LOOP1** зарезервированы.

Таблица 4. Соответствие разряда LOOP1 и наличия петли между 2 и 3 каналом

Значение разряда LOOP1	Значение выражения (MODE2 == MODE3)	Наличие петли между каналами 2 и 3
0	0	нет
0	1	нет
1	0	нет
1	1	да

Возможность создания петли между каналами 2 и 3 предусмотрена только при значениии СС = 4. Если СС < 4, поле **LOOP1** зарезервировано.

Работа с программной моделью

Запись и чтение регистра управления происходит по шине Apb. Также модуль обеспечивает чтение и запись регистров всех подключенных к нему приемников и передатчиков.

Таблица 5. Адресное простанство модуля ApbCommunicator

Смещение	Устройство	Регистр	Номер канала
относительно			
BASE_ADDRESS			
0	ApbCommunicator	Управления	-

1	Передатчик	Служебный	0
2	Передатчик	Данных	
3	Приемник	Служебный	
4	Приемник	Данных	
5	Передатчик	Служебный	1
6	Передатчик	Данных	
7	Приемник	Служебный	
8	Приемник	Данных	
9	Передатчик	Служебный	2
10	Передатчик	Данных	
11	Приемник	Служебный	
12	Приемник	Данных	
13	Передатчик	Служебный	3
14	Передатчик	Данных	
15	Приемник	Служебный	
16	Приемник	Данных	

Если параметр СС не равен 4, адреса отсутсвующих каналов остаются не занятыми.

Работа с прерываниями

Через один такт, после того, как на одной из линий *irq_in*

В поле IRQC содержится номер устройства первым запросившего обработку прерывания.

Выключение модуля

Чтобы выключить модуль необходимо записать 1 в разряд **SR** регистра управления.

Отправка и прием всех сообщений устройствами прекращается. Сбрасываются все поля регистров устройств отвечающие за состояние.

Принцип работы

В ходе работы, обрабатывает транзакции АРВ шины и на основе транзакций управляет приемниками и передатчиками.

Алогоритм Работы

В устройстве используются следующие вспомогательные сигналы и регистры:

Название	Тип	Разрядност	Значение после сброса	Описание
		Ь		

loc_addr	сигнал	16	h0000 - BASE_ADDRESS	Сигнал внутреннего адреса устройства
loc_addr_is_	сигнал	1	b0	Сигнал проверки <i>loc_addr</i> на
corr				соотвествие содержимому таблицы
				адресного простанства.

Если значение loc_addr соответствует одному из описанных в таблице адресного простанства, а также вход psel выставлен в единицу, модуль начинает транзакцию, и в зависимости от значения pwrite конечный автомат переходит из состояния IDLE в состояние READ или WRITE.

В сотоянии READ на порт prdata в зависимости от значения loc_addr выставляется либо содержимое регистра управления, либо содержимое части шины $from_D_out[32*(loc_addr):(32*(loc_addr-1)+1)]$. На выход pready выставляется 1. Из состояния READ модуль переходит в состояние READEND.

В состоянии READEND на выход выход *pready* выставляется 0. Модуль переходит в состояние IDLE.

В сотоянии WRITE на уа выход *pready* выставляется 1. Из состояния WRITE модуль переходит в состояние WRITEEND.

В состоянии WRITEEND на выход выход pready выставляется 0. Если penable установлен в 1 и если loc_addr соответствует одному из регистров, на выход to_D_in устанавливается содержжимое шины pwdata а на выход to_wr_en соотвествующий адресу устанавливается 1.

В состоянии IDLE все выходы *to_wr_en* устанавливаются в 0.

Рисунок 1. Конечный автомат модуля ApbCommunicator

Из значения адресной шины вычитается BASE_ADDRESS. Если сигнал penable = 1,

Содержимое *to_D_in* устанавливается

Алогоритм Работы стр. 5 из 5