SEGMENTACIÓN DE CLIENTES

MALL

Sebastián Navarro

INTRODUCCIÓN

- Se desea segmentar a los clientes de un centro comercial en grupos basados en sus características demográficas (edad, género) y de gasto (ingreso anual y puntuación de gasto)
- Una estrategia de marketing única no es efectiva para abordar las necesidades específicas de todos los clientes.
 De esta forma se puede mejorar la experiencia del cliente al ofrecer servicios o promociones específicas para cada grupo
- Se utilizó ténicas de clusterización como k-means,
 Agglomerative, GMM, DBSCAN, Affinity Propagation
- Para mejorar la clusterización, se utilizó Autoencoder
 Overcomplete

DATASET

• Filas: 200

Columnas: 5

- CustomerID: ID único asignado al cliente.
- Oénero: El género del cliente.
- o Edad: La edad del cliente.
- Ingreso Anual (k\$): El ingreso anual del cliente en miles de dólares.
- Puntuación de Gasto (1–100): La puntuación de gasto del cliente basada en su comportamiento y datos de compra.

Mall Customers Segmentation

Mall customers data for customer segmentation

k kaggle.com

BOXPLOTS

En la variable de ingresos anuales, la mayor parte de los ingresos se encuentran en el rango de 20-80k, con algunos valores atípicos de altos ingresos por encima de los 100k

Boxplot para 'Spending Score (1-100)'				
100 -				
80 -				
Valores - 09				
9E/ 40 -				
20 -				
0 -				

Genre	Age	Annual Income (k\$)	Spending Score (1-100)
Male	32	137	18
Male	30	137	83
Female	45	126	28
Male	32	126	74
Female	47	120	16

DISPERSIÓN Y CORRELACIÓN

TÉCNICAS Y METODOLOGÍA:

k-means

- Basada en la partición de datos en "k" grupos utilizando distancias euclidianas.
- Métricas: Silhouette, Calinski-Harabasz, Davies-Bouldin, Inercia y método del codo.
- Parámetros: k = 2, 3, 4, 5, 6, 7, 8

Agglomerative

- Método jerárquico que agrupa datos basándose en las similitudes entre puntos.
- Métricas: Silhouette, Calinski-Harabasz, Davies-Bouldin y dendograma.
- Parámetros: k = 2, 3, 4, 5, 6, 7, 8

GMM

- Un enfoque probabilístico que asume que los datos se distribuyen en varias distribuciones gaussianas.
- Métricas: Silhouette, Calinski-Harabasz, Davies-Bouldin.
- Parámetros: k = 2, 3, 4, 5, 6, 7, 8

TÉCNICAS Y METODOLOGÍA

DBSCAN

- Técnica basada en densidades que identifica clusters de cualquier forma y detecta ruido en los datos.
- Métricas: Silhouette, Calinski-Harabasz, Davies-Bouldin y método de k-distancias
- Parámetros:
 - o eps = 0.2, 0.5, 0.6, 0.7, 0.8,
 1.0
 - \circ min_samples = 3, 5, 10

Affinity Propagation

- Un método que determina automáticamente el número de clusters basándose en similitudes entre puntos de datos.
- Métricas: Silhouette, Calinski-Harabasz, Davies-Bouldin y método de k-distancias
- Parámetros:
 - \circ damping = 0.5, 0.7, 0.9
 - o preference = -100, -50, None
 - o affinity = euclidean

Autoencoder Overcomplete

- Un método que aumenta la dimensionalidad del dataset, logrando una mejor representación de las características subyacentes.
- Métricas: MSE
- Parámetros:
 - o Input: input_dim -> Dense(5, ReLU)

AUTOENCODER

Tipo de Autoencoder	Arquitectura de la Capa de Codificación	Arquitectura de la Capa de Decodificación	MSE
Complete Autoencoder	<pre>Input: input_dim -> Dense(input_dim, ReLU)</pre>	Dense(input_dim , Linear)	MSE: 0.009170
Undercomplete Autoencoder	<pre>Input: input_dim -> Dense(2, ReLU)</pre>	Dense(input_dim , Linear)	MSE: 0.235338
Overcomplete Autoencoder	Input: input_dim -> Dense(5, ReLU)	Dense(input_dim , Linear)	MSE: 0.001973

Se probó reducir la dimensionalidad con 3 Autoencoders:

- Autoencoder Complete: Compacta los datos, el número de características de entrada es igual al número de nodos en el espacio latente.
- Autoencoder Undercomplete: Reduce la dimensionalidad de manera agresiva, el número de nodos en el espacio latente es menor que el número de características de entrada.
- Autoencoder Overcomplete: Aumenta la capacidad del espacio latente, el número de nodos es mayor que el número de características de entrada.

RESULTADOS

- **K-means** es el mejor método, alcanzando los mejores valores en las tres métricas principales (Silhouette con 0.445 y Calinski-Harabasz con 141.434)
- Agglomerative Clustering obtuvo resultados competitivos, especialmente en la métrica Davies-Bouldin, con un valor óptimo de 0.803 en el dataset original.
- Los métodos Gaussian Mixture Model (GMM), DBSCAN y Affinity Propagation tuvieron un desempeño inferior en comparación, con valores más bajos en las métricas de calidad.
- El dataset aplicado **autoencoder overcomplete** mejoró significativamente los resultados en algunos algoritmos como k-means, DBSCAN, Affinity propagation.

Técnica	Métrica	Valor	Configuración
K-means	Silhouette	0.445360	Dataset Autoencoder, k=5 clusters
	Calinski- Harabasz	141.434474	Dataset Autoencoder, k=5 clusters
	Davies-Bouldin	0.823786	Dataset Original, k=6 clusters
Agglomerative Clustering	Silhouette	0.428048	Dataset Original, k=8 clusters
	Calinski- Harabasz	133.092029	Dataset Autoencoder, k=6 clusters
	Davies-Bouldin	0.803267	Dataset Original, k=8 clusters
Gaussian Mixture Model	Silhouette	0.405600	Dataset Original, k=7 clusters
	Calinski- Harabasz	119.797616	Dataset Original, k=7 clusters
	Davies-Bouldin	0.871108	Dataset Original, k=7 clusters
DBSCAN	Silhouette	0.289699	Dataset Autoencoder, eps=0.5, min_samples=10, clusters=4
	Calinski- Harabasz	53.798595	Dataset Autoencoder, eps=0.5, min_samples=10, clusters=4
	Davies-Bouldin	1.234629	Dataset Autoencoder, eps=0.5, min_samples=10, clusters=4
Affinity Propagation	Silhouette	0.424915	Dataset Autoencoder, damping=0.7, preference=-50.0, clusters=5
	Calinski- Harabasz	136.562289	Dataset Autoencoder, damping=0.7, preference=-50.0, clusters=5
	Davies-Bouldin	0.863096	Dataset Autoencoder, damping=0.7, preference=-50.0, clusters=5

MEJORES RESULTADOS

Mejor k-means (AE overomplete)

Mejor DBSCAN (AE overcomplete)

Mejor Agglomerative (DF original)

Mejor AP (AE overcomplete)

Mejor GMM (DF original)

CONCLUSIONES

• K-means con 5 clusters es la configuración más robusta y recomendable para este análisis, especialmente con técnicas como Autoencoder Overcomplete

- 1. Clúster turquesa: Jóvenes con bajo ingreso, pero alto gasto.
- 2. Clúster amarillo: Jóvenes con alto ingreso y alto gasto.
- 3. Clúster morado: Adultos mayores con alto ingreso y bajo gasto.
- 4. Clúster verde: Adultos con ingreso medio a alto y bajo gasto.
- 5. Clúster azul: Jóvenes con alto ingreso y alto gasto.