

#5

Sequence Listing

<110> Baker, Kevin P.
Botstein, David
Desnoyers, Luc
Eaton, Dan L.
Ferrara, Napoleone
Fong, Sherman
Gao, Wei-Qiang
Goddard, Audrey
Godowski, Paul J.
Grimaldi, Christopher J.
Gurney, Austin L.
Hillan, Kenneth J.
Pan, James
Paoni, Nicholas F.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> P2830P1C11

<140> 10/006,172
<141> 2001-12-06

<150> 60/098716
<151> 1998-09-01

<150> 60/098723
<151> 1998-09-01

<150> 60/098749
<151> 1998-09-01

<150> 60/098750
<151> 1998-09-01

<150> 60/098803
<151> 1998-09-02

<150> 60/098821
<151> 1998-09-02

<150> 60/098843
<151> 1998-09-02

<150> 60/099536
<151> 1998-09-09

<150> 60/099596
<151> 1998-09-09

<150> 60/099598
<151> 1998-09-09

<150> 60/099602
<151> 1998-09-09

<150> 60/099642
<151> 1998-09-09

<150> 60/099741
<151> 1998-09-10

<150> 60/099754
<151> 1998-09-10

<150> 60/099763
<151> 1998-09-10

<150> 60/099792
<151> 1998-09-10

<150> 60/099808
<151> 1998-09-10

<150> 60/099812
<151> 1998-09-10

<150> 60/099815
<151> 1998-09-10

<150> 60/099816
<151> 1998-09-10

<150> 60/100385
<151> 1998-09-15

<150> 60/100388
<151> 1998-09-15

<150> 60/100390
<151> 1998-09-15

<150> 60/100584
<151> 1998-09-16

<150> 60/100627
<151> 1998-09-16

<150> 60/100661
<151> 1998-09-16

<150> 60/100662
<151> 1998-09-16

<150> 60/100664
<151> 1998-09-16

<150> 60/100683
<151> 1998-09-17

<150> 60/100684
<151> 1998-09-17

<150> 60/100710
<151> 1998-09-17

<150> 60/100711
<151> 1998-09-17

<150> 60/100848
<151> 1998-09-18

<150> 60/100849
<151> 1998-09-18

<150> 60/100919
<151> 1998-09-17

<150> 60/100930
<151> 1998-09-17

<150> 60/101014
<151> 1998-09-18

<150> 60/101068
<151> 1998-09-18

<150> 60/101071
<151> 1998-09-18

<150> 60/101279
<151> 1998-09-22

<150> 60/101471
<151> 1998-09-23

<150> 60/101472
<151> 1998-09-23

<150> 60/101474
<151> 1998-09-23

<150> 60/101475
<151> 1998-09-23

<150> 60/101476
<151> 1998-09-23

<150> 60/101477
<151> 1998-09-23

<150> 60/101479
<151> 1998-09-23

<150> 60/101738
<151> 1998-09-24

<150> 60/101741
<151> 1998-09-24

<150> 60/101743
<151> 1998-09-24

<150> 60/101915
<151> 1998-09-24

<150> 60/101916
<151> 1998-09-24

<150> 60/102207
<151> 1998-09-29

<150> 60/102240
<151> 1998-09-29

<150> 60/102307
<151> 1998-09-29

<150> 60/102330
<151> 1998-09-29

<150> 60/102331
<151> 1998-09-29

<150> 60/102484
<151> 1998-09-30

<150> 60/102487
<151> 1998-09-30

<150> 60/102570
<151> 1998-09-30

<150> 60/102571
<151> 1998-09-30

<150> 60/102684
<151> 1998-10-01

<150> 60/102687
<151> 1998-10-01

<150> 60/102965
<151> 1998-10-02

<150> 60/103258
<151> 1998-10-06

<150> 60/103314
<151> 1998-10-07

<150> 60/103315
<151> 1998-10-07

<150> 60/103328
<151> 1998-10-07

<150> 60/103395
<151> 1998-10-07

<150> 60/103396
<151> 1998-10-07

<150> 60/103401
<151> 1998-10-07

<150> 60/103449
<151> 1998-10-06

<150> 60/103633
<151> 1998-10-08

<150> 60/103678
<151> 1998-10-08

<150> 60/103679
<151> 1998-10-08

<150> 60/103711
<151> 1998-10-08

<150> 60/104257
<151> 1998-10-14

<150> 60/104987
<151> 1998-10-20

<150> 60/105000
<151> 1998-10-20

<150> 60/105002
<151> 1998-10-20

<150> 60/105104
<151> 1998-10-21

<150> 60/105169
<151> 1998-10-22

<150> 60/105266
<151> 1998-10-22

<150> 60/105693
<151> 1998-10-26

<150> 60/105694
<151> 1998-10-26

<150> 60/105807
<151> 1998-10-27

<150> 60/105881
<151> 1998-10-27

<150> 60/105882
<151> 1998-10-27

<150> 60/106023
<151> 1998-10-28

<150> 60/106029
<151> 1998-10-28

<150> 60/106030
<151> 1998-10-28

<150> 60/106032
<151> 1998-10-28

<150> 60/106033
<151> 1998-10-28

<150> 60/106062
<151> 1998-10-27

<150> 60/106178
<151> 1998-10-28

<150> 60/106248
<151> 1998-10-29

<150> 60/106384
<151> 1998-10-29

<150> 60/108500
<151> 1998-10-29

<150> 60/106464
<151> 1998-10-30

<150> 60/106856
<151> 1998-11-03

<150> 60/106902
<151> 1998-11-03

<150> 60/106905
<151> 1998-11-03

<150> 60/106919
<151> 1998-11-03

<150> 60/106932
<151> 1998-11-03

<150> 60/106934
<151> 1998-11-03

<150> 60/107783
<151> 1998-11-10

<150> 60/108775
<151> 1998-11-17

<150> 60/108779
<151> 1998-11-17

<150> 60/108787
<151> 1998-11-17

<150> 60/108788
<151> 1998-11-17

<150> 60/108801
<151> 1998-11-17

<150> 60/108802
<151> 1998-11-17

<150> 60/108806
<151> 1998-11-17

<150> 60/108807
<151> 1998-11-17

<150> 60/108848
<151> 1998-11-18

<150> 60/108849
<151> 1998-11-18

<150> 60/108850
<151> 1998-11-18

<150> 60/108851
<151> 1998-11-18

<150> 60/108852
<151> 1998-11-18

<150> 60/108858
<151> 1998-11-18

<150> 60/108867
<151> 1998-11-17

<150> 60/108904
<151> 1998-11-18

<150> 60/108925
<151> 1998-11-17

<150> 60/113296
<151> 1998-12-22

<150> 60/114223
<151> 1998-12-30

<150> 60/129674
<151> 1999-04-16

<150> 60/141037
<151> 1999-06-23

<150> 60/144758
<151> 1999-07-20

<150> 60/145698
<151> 1999-07-26

<150> 60/162506
<151> 1999-10-29

<150> 09/218517
<151> 1998-12-22

<150> 09/284291
<151> 1999-04-12

<150> 09/403297
<151> 1999-10-18

<150> 09/872035
<151> 2001-06-01

<150> 09/882636
<151> 2001-06-14

<150> 09/946374
<151> 2001-09-04

<150> PCT/US99/00106
<151> 1999-01-05

<150> PCT/US99/20111
<151> 1999-09-01

<150> PCT/US99/21194
<151> 1999-09-15

<150> PCT/US99/28313
<151> 1999-11-30

<150> PCT/US99/28551
<151> 1999-12-02

<150> PCT/US99/30095
<151> 1999-12-16

<150> PCT/US00/00219
<151> 2000-01-05

<150> PCT/US00/00376
<151> 2000-01-06

<150> PCT/US00/03565
<151> 2000-02-11

<150> PCT/US00/04342
<151> 2000-02-18

<150> PCT/US00/05004
<151> 2000-02-24

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/06884
<151> 2000-03-15

<150> PCT/US00/13705
<151> 2000-05-17

<150> PCT/US00/14042
<151> 2000-05-22

<150> PCT/US00/14941
<151> 2000-05-30

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/23328
<151> 2000-08-24

<150> PCT/US00/23522
<151> 2000-08-23

<150> PCT/US00/30873
<151> 2000-11-10

<150> PCT/US00/30952
<151> 2000-11-08

<150> PCT/US00/32678
<151> 2000-12-01

<150> PCT/US01/06520
<151> 2001-02-28

<150> PCT/US01/06666
<151> 2001-03-01

<150> PCT/US01/17800
<151> 2001-06-01

<150> PCT/US01/19692
<151> 2001-06-20

<150> PCT/US01/21066
<151> 2001-06-29

<150> PCT/US01/21735
<151> 2001-07-09

<160> 477

<210> 1
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 1
tgtaaaacga cggccagttt aatagacctg caattattaa tct 43

<210> 2
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 2
caggaaacag ctatgaccac ctgcacacct gcaaattccat t 41

<210> 3
<211> 1110
<212> DNA
<213> Homo sapiens

<400> 3
ccaatcgccc ggtgcgggtgg tgcagggtct cgggctagtc atggcgtccc 50
cgtctcgag actgcagact aaaccagtca ttacttgttt caagagcggtt 100
ctgctaattct acacttttat tttctggatc actggcgtta tccttcttgc 150
atgtggcatt tggggcaagg tgagcctgga gaattacttt tctcttttaa 200
atgagaaggc caccaatgtc cccttcgtgc tcattgctac tggtaaccgtc 250
attattcttt tgggcacctt tggttgtttt gctacctgcc gagcttctgc 300
atggatgcta aaactgtatg caatgtttct gactctcggtt tttttggatc 350
aactggtcgc tgccatcgta ggatttgttt tcagacatga gattaagaac 400
agctttaaga ataattatga gaaggctttg aagcagtata actctacagg 450
agattataga agccatgcag tagacaagat ccaaaaatacg ttgcattgtt 500
gtgggtgtcac cgattataga gattggacag atactaatta ttactcagaa 550
aaaggatttc ctaagagttg ctgtaaactt gaagattgtt ctccacagag 600

agatgcagac aaagtaaaca atgaagggtg ttttataaag gtgatgacca 650
ttatagagtc agaaatggga gtcgttgcag gaatttcctt tggagttgct 700
tgcttccaac tgattggaat ctttctcgcc tactgccwct ctcgtgccat 750
aacaaataac cagtagtggaa tagtgtaacc caatgtatct gtgggcctat 800
tcctctctac cttaaggac atttagggc ccccctgtga attagaaagt 850
tgcttggctg gagaactgac aacactactt actgatagac caaaaaacta 900
caccagtagg ttgattcaat caagatgtat gtagacctaa aactacacca 950
ataggctgat tcaatcaaga tccgtgctcg cagtggctg attcaatcaa 1000
gatgtatgtt tgctatgttc taagtccacc ttctatccca ttcatgttag 1050
atcggtgaaa ccctgttatcc ctctgaaaca ctgaaagagc tagtaaattg 1100
taaatgaagt 1110

<210> 4
<211> 245
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-42
<223> Signal Peptide

<220>
<221> TRANSMEM
<222> 19-42, 61-83, 92-114, 209-230
<223> Transmembrane Domains

<220>
<221> misc_feature
<222> 69-80, 211-222
<223> Prokaryotic Membrane Lipoprotein Lipid Attachment Site.

<220>
<221> misc_feature
<222> 75-81, 78-84, 210-216, 214-220, 226-232
<223> N-Myristoylation Site.

<220>
<221> misc_feature
<222> 134-138
<223> N-Glycosylation Site.

<220>
<221> misc_feature
<222> 160-168, 160-169
<223> Tyrosine Kinase Phosphorylation Site.

<220>
<221> unsure
<222> 233
<223> unknown amino acid

<400> 4

Met Ala Ser Pro Ser Arg Arg Leu Gln Thr Lys Pro Val Ile Thr
1 5 10 15

Cys Phe Lys Ser Val Leu Leu Ile Tyr Thr Phe Ile Phe Trp Ile
20 25 30

Thr Gly Val Ile Leu Leu Ala Val Gly Ile Trp Gly Lys Val Ser
35 40 45

Leu Glu Asn Tyr Phe Ser Leu Leu Asn Glu Lys Ala Thr Asn Val
50 55 60

Pro Phe Val Leu Ile Ala Thr Gly Thr Val Ile Ile Leu Leu Gly
65 70 75

Thr Phe Gly Cys Phe Ala Thr Cys Arg Ala Ser Ala Trp Met Leu
80 85 90

Lys Leu Tyr Ala Met Phe Leu Thr Leu Val Phe Leu Val Glu Leu
95 100 105

Val Ala Ala Ile Val Gly Phe Val Phe Arg His Glu Ile Lys Asn
110 115 120

Ser Phe Lys Asn Asn Tyr Glu Lys Ala Leu Lys Gln Tyr Asn Ser
125 130 135

Thr Gly Asp Tyr Arg Ser His Ala Val Asp Lys Ile Gln Asn Thr
140 145 150

Leu His Cys Cys Gly Val Thr Asp Tyr Arg Asp Trp Thr Asp Thr
155 160 165

Asn Tyr Tyr Ser Glu Lys Gly Phe Pro Lys Ser Cys Cys Lys Leu
170 175 180

Glu Asp Cys Thr Pro Gln Arg Asp Ala Asp Lys Val Asn Asn Glu
 185 190 195

Gly Cys Phe Ile Lys Val Met Thr Ile Ile Glu Ser Glu Met Gly
200 205 210

Val Val Ala Gly Ile Ser Phe Gly Val Ala Cys Phe Gln Leu Ile
215 220 225

Gly Ile Phe Leu Ala Tyr Cys Xaa Ser Arg Ala Ile Thr Asn Asn
230 235 240

Gln Tyr Glu Ile Val
245

<210> 5
<211> 1218
<212> DNA
<213> Homo sapiens

<400> 5
cccacgcgtc cggcgccgtg gcctcggtc catcttgcc gttctctcg 50
acctgtcaca aaggagtcgc gccgcccgg ccgccccctc cctccgggtgg 100
gcccgggagg tagagaaagt cagtgccaca gcccgaccgc gctgctctga 150
gccctgggca cgccgaacgg gagggaggtct gaggggttggg gacgtctgtg 200
agggagggga acagccgctc gagcctgggg cggcgaccgg ggactggggc 250
cggggttaggc tctggaaagg gcccgggaga gaggtggcgt tggtcagaac 300
ctgagaaaca gccgagaggt ttccaccga ggcccgctc tgaggatct 350
gaagaggttc ctggaaagg gtgttccctc ttccgggggt cctcaccaga 400
agaggttctt ggggtcgcc ctctgagga ggctcggtc aacagggccc 450
agaactgcca ttggatgtcc agaatcccct gtagttgata atgttggaa 500
taagctctgc aactttctt ggcattcagt tgtaaaaac aaataggatg 550
caaattcctc aactccaggt tatgaaaaca gtacttggaa aactgaaaac 600
tacctaaatg atcgtcttg gttggccgt gttcttagcg agcagaagcc 650
ttggccaggg tctgttggc actctcgaag agcacatagc ccacttccta 700
gggactggag gtgccgtac taccatgggt aattcctgta tctgccgaga 750
tgacagtggc acagatgaca gtgttgacac ccaacagcaa caggccgaga 800
acagtgcagt acccactgct gacacaagga gccaaccacg ggaccctgtt 850
cgcccaccaa ggagggccg aggacctcat gagccaagga gaaagaaaca 900
aaatgtggat gggctagtgt tggacacact ggcagtaata cggtactttg 950
tagataagta agtatctgac tcacggtcac ctccagtgaa atgaaaagt 1000
ttctgcccgg aaccatgact ttaggactcc ttcagttcct ttaggacata 1050
ctcgccaagc cttgtgctca cagggcaaag gagaatattt taatgctccg 1100
ctgatggcag agtaaatgat aagatttgat gtttttgctt gctgtcatct 1150
actttgtctg gaaatgtcta aatgtttctg tagcagaaaa cacgataaag 1200
ctatgatctt tattagag 1218

<210> 6
<211> 117
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-16
<223> Signal Peptide

<220>
<221> misc_feature
<222> 18-24, 32-38, 34-40, 35-41, 51-57
<223> N-Myristoylation Site.

<220>
<221> misc_feature
<222> 22-26, 50-54, 113-117
<223> Casein Kinase II Phosphorylation Site.

<400> 6
Met Ile Val Phe Gly Trp Ala Val Phe Leu Ala Ser Arg Ser Leu
1 5 10 15

Gly Gln Gly Leu Leu Leu Thr Leu Glu Glu His Ile Ala His Phe
20 25 30

Leu Gly Thr Gly Gly Ala Ala Thr Thr Met Gly Asn Ser Cys Ile
35 40 45

Cys Arg Asp Asp Ser Gly Thr Asp Asp Ser Val Asp Thr Gln Gln
50 55 60

Gln Gln Ala Glu Asn Ser Ala Val Pro Thr Ala Asp Thr Arg Ser
65 70 75

Gln Pro Arg Asp Pro Val Arg Pro Pro Arg Arg Gly Arg Gly Pro
80 85 90

His Glu Pro Arg Arg Lys Lys Gln Asn Val Asp Gly Leu Val Leu
95 100 105

Asp Thr Leu Ala Val Ile Arg Thr Leu Val Asp Lys
110 115

<210> 7
<211> 756
<212> DNA
<213> Homo sapiens

<400> 7
ggcacgaggc gctgtccacc cggggcggt ggagttaggt accagattca 50
gcccatttgg ccccgacgcc tctgttctcg gaatccgggt gctgcggatt 100
gaggtccccgg ttccctaacgg actgcaagat ggaggaaggc gggAACCTAG 150

gaggcctgat taagatggc catctactgg tcttgcagg tgcctgggc 200
atgcaaatgt ggggacatt cgttcaggc ttccctgttt tccgaagcct 250
tccccacat accttcggac tagtgcagag caaactcttc cccttctact 300
tccacatctc catggctgt gccttcatac acctctgcat ctggcttca 350
cagcatgctt gggctcagct cacattctgg gaggccagcc agctttaccc 400
gctgttcctg agccttacgc tggccactgt caacgcccgc tggctgaaac 450
cccgccaccac agctgccatg tggccctgc aaaccgtgga gaaggagcga 500
ggcctgggtg gggaggtacc aggcagccac cagggtcccg atccctaccg 550
ccagctgcga gagaaggacc ccaagtacag tgctctccgc cagaatttct 600
tccgctacca tgggctgtcc tctcttgca atctggctg cgtcctgagc 650
aatgggctct gtctcgctgg cttgcctgc gaaataagga gcctcttagca 700
tggccctgc atgctaataa atgcttcttc agaaatgaaa aaaaaaaaaa 750