

Надо держать руку на пульсе. В.В. Путин

Проблематика

Большой объем данных для анализа при диагностике ССЗ: непроранжированные признаки.

Важнейшие признаки модели

Методы машинного обучения отобрали важнейшие факторы:

Традиционные

- Возраст
- Пиво регулярно
- Пол
- Алкоголь

Хозяйство

- Источник воды
- Ежем. доход

Продукты

- Курица с кожей
- Пиво
- Питание в ресторанах

Территориальные

Время до работы

- Освещение улиц
- Оживленность улицы
- Оживленность улиц (окрестности)

Элементы

- Моно-дисахариды
- Углеводы
- Са (кальций)
- Ретиноловый эквивалент

Физ. активность

- Пешком на работе
- Работа
- Тяжелый труд на работе
- Авто

Визуализация решения

Web Application

Создали веб-интерфейс с интерактивной оценкой влияния факторов на развитие болезни.

Уникальность

- Решение на стыке медицинской и технической наук
- Интерактивная система оценки рисков
- 30 одновременно работающих моделей машинного обучения

Экономический эффект по Коббу-Дугласу

Смертность от болезней ССЗ - 47 % от кол-ва всех смертей.

Процент снижения 1% 4% 7% 10% смертности

Увеличение ВВП (млн руб) 26,8 107,1 187,4 267,7

Снижение смертности на 1% дает прирост в 26,8 млн. ВВП.

Информация о реализации

- 6 месяцев на разработку,
 внедрение и тестирование
- 3 млн рублей

Масштабируемость и планы на будущее

- Расширение применения для других регионов. И на международном рынке.

Перевод решения
 на смежные сферы
 (онкологии, неврологии).

- Обогащение данных.

Стек задействованных технологий

Дизайн, прототипирование интерфейса

- Figma

Программные Инструменты

- Jupyter notebook, Python

Машинное обучение

- Shap (отбор значимых признаков)

- CatBoost, LightGBM (построение моделей)

- Optuna (оптимизация гиперпараметров моделей)

Бэкенд

- Flask (API)

Фронтенд:

- Streamlit

Достижения команды

- 10 лет промышленной разработки масштабных систем используемых в 22 странах мира
- Победители международного хакатона McKinsey Prohack 2020
- Призёры онлайн-чемпионата ЦП 2020
- Победители полуфинала ЦП 2020
- Ведение проектов внедрения ERP-систем на промышленных предприятиях в Европе
- Маркетинг инновационной наукоемкой отечественной продукции на международном рынке
- Построением ML моделей в Сбербанке и Газпромбанке

Наша команда

С благодарностью за Ваше внимание!

Пермь **Data Science** Олег Черемисин

Москва

Альбина Ахметгареева

@Colindonolwe

Data Science

Data Science

Design

Economics Data Science

Дима Васькин

Мила Солодовник Олег Бартов

@mktoid

cheremisin@gmail.com albina.akhmetgareeva@gmail.com @vaskind

vaskind@yandex.ru

@BelkaNaHalka

belkanalotose@gmail.com

@BartovOleg

bartov@inbox.ru

