Lista 02 - AOC 2018.2 Bruno Cesar da Silva Claudino - 1201424425

Respostas

- 1) As vantagens de um processador multiciclo com a relação ao processador uniciclo ,são que diferentemente do uniciclo que nem todos os componentes são executados em uma execução de instrução, visto que a execução da instrução é feita em um único ciclo de clock . Na execução do multiciclo as instruções são divididas em 5 etapas: Busca de instrução, decodificação, busca de operandos, execução e armazenamento do resultado. Em um ciclo de clock é executado um componente para a estapa que esta sendo solicitada, logo cada ciclo faz menos coisas, isso quer dizer que os ciclos podem ser mais curtos. Então como o multiciclo é dividido em 5 etapas e cada etapa é realizada em um ciclo de clock, assim, o ciclo de clock do multicilo é 6 vezes mais curto que o do uniciclo, sua implementação é semelhante ao uniciclo, porem com uma quantidade menor de componentes no caminho de dados, mas sua implementação possui uma lógica de complexidade maior. O multiciclo ainda pode implementar pipeline que é uma técnica que permite a execução de instruções em paralelismo.
- 2) Para a implementação do pipeline no multiciclo são necessárias as seguintes modificações no multiciclo:
 - Registradores que funcionarão como buffers temporários, onde serão armazenados os resultados dos componentes e o estado em que a instrução se encontra.
 - Flags para a UC(Unidade de Controle) ter o controle dos registradores adicionais.
 - Tratamento de stalls evitando a parada do pipeline e das instruções, garantindo um funcionamento eficiente do pipeline.
- 3) Para um processador sem o pipeline funcionará da seguinte maneira: Serão um ciclo de clock para cada uma das etapas de uma instrução, então:

Linhas	Instrução	Ciclos
1	subi \$t2,\$t2,4	4
2	lw \$t1,0(\$t2)	5
3	add \$t3,\$t1,\$t4	4
4	add \$t4,\$t3,\$t3	4
5	sw \$t4,0(\$t2)	4
6	beq \$t2,\$0,loop	3
-	Total	24

Para um processador com o pipeline funcionará da seguinte maneira:

Ciclos	Etapa(Linha)	Consequente
1	IF(1)	
2	ID(1), IF(2)	
3	EX(1), STALL(2)	Conflito de dados.Depende do resultado da linha 1
4	WB(1), $STALL(2)$	
5	ID(2), IF(3)	
6	EX(2), STALL(3)	Conflito de dados.Depende do resultado da linha 2.
7	MEM(2), STALL(2)	
8	WB(2), STALL(3)	
9	ID(3), IF(4)	
10	EX(3), STALL(4)	Conflito de dados.Depende do resultado da linha 3
11	WB(3), $STALL(4)$	
12	ID(4), IF(5)	
13	$\mathrm{EX}(4),\mathrm{ID}(5)$	
14	WB(4), EX(5)	
15	MEM(5),STALL(6)	Conflito estrutural.2 instruções acessando a memória juntamente.
16	IF(6)	
17	ID(6)	
18	EX(6)	

Logo o speedup é de $\frac{24}{18} \cong 1,33$.

4) • **RAW**:

(sub.d e div.d): para a sub.d ser calculada é necessário que a div.d calcule o valor para F1.

• WAW.

(s.d e sub.d): para s.d é necessário que o valor de F4 seja calculado na linha 2.

• WAR:

(add.d e sub.d): O valor de F5 é sobrescrito no linha 4. Na linha 5 possui WAW onde F4 é sobrescrito na linha 3, RAW, onde F5 precisa ser calculado na linha 4.

Na linha 5 possui WAW onde F4 é sobrescrito na linha 3, RAW, onde F5 precisa ser calculado na linha 4.

5)
$$CPUexecutiontime = (CPUclockcycles + Memorystallcycles * Clockcycle) \\ CPUexecutiontime = (IC * CPI) * Clockcycle \\ CPUexecutiontime = IC * 1 * Clockcycle$$

$$\label{eq:memorystallcycles} Memorystallcycles = IC*(Memocyaccesses/Instruction)*Missrate*misspenalty\\ Memorystallcycles = IC*(1+0.5)*0.02*25\\ Memorystallcycles = IC*0.75$$

$$CPU execution time (cache) = (IC*1.0 + IC*0.75)*Clock cycle \\ CPU execution time (cache) = 1.75*IC*Clock cycle$$

$$\frac{CPUexecutiontime(cache)}{CPUexecutiontime} = \frac{1.75*IC*Clockcycle}{1*IC*Clockcycle} = 1.75$$

- Write through: escrita ao mesmo tempo no cache e na memória.
 - Vantagens:
 - * Fácil de implementar.
 - * Um "cache-miss"nunca resulta em escritas na memória.
 - * A memória tem sempre a informação mais recente.
 - Desvantagens:
 - * A escrita é lenta;
 - * Cada escrita necessita de um acesso à memória.
 - * Consequentemente usa mais largura de banda da memória.
 - Write back: escrita somente no cache e atualização na memória somente na substituição do bloco.
 - Vantagens:
 - * A escrita ocorre à velocidade do cache;
 - * Escritas múltiplas de um endereço requerem apenas uma escrita na memória;
 - * Consome menos largura de banda.
 - Desvantagens:
 - * Difícil de implementar;
 - * Nem sempre existe consistência entre os dados existentes no cache e na memória;
 - * Leituras de blocos de endereços no cache podem resultar em escritas de blocos de endereços "dirty"na memória.
 - Localidade Temporal: Se um item é referenciado, ele tende a ser referenciado novamente dentro de um espaço de tempo curto. Se o estudante tiver trazido o livro recentemente para sua mesa, é provável que o faça em breve novamente.
 - Localidade Espacial: Se um item é referenciado, itens cujos endereços sejam próximos dele tendem a ser logo referenciados.