Improving BiqMac

Angelika Wiegele

Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Austria

July 2016

• solver for Binary quadratic and Max-cut problems

- solver for Binary quadratic and Max-cut problems
- C implementation of a branch-and-bound method

- solver for Binary quadratic and Max-cut problems
- C implementation of a branch-and-bound method
- using a relaxation based on semidefinite optimization (SDO)

- solver for Binary quadratic and Max-cut problems
- C implementation of a branch-and-bound method
- using a relaxation based on semidefinite optimization (SDO)
- solved by combination of bundle and interior point methods

- solver for Binary quadratic and Max-cut problems
- C implementation of a branch-and-bound method
- using a relaxation based on semidefinite optimization (SDO)
- solved by combination of bundle and interior point methods
- for several problem classes best performing solver

- solver for Binary quadratic and Max-cut problems
- C implementation of a branch-and-bound method
- using a relaxation based on semidefinite optimization (SDO)
- solved by combination of bundle and interior point methods
- for several problem classes best performing solver
- available via bigmac.aau.at or NEOS-server

Overview

- Introduction
 - BiqMac
 - Semidefinite Optimization
 - Max Cut and Unconstrained Binary Quadratic Problems
- SDO Relaxation
 - Solving the SDO Relaxation
 - Strengthening the SDO Relaxation
- Improving BiqMac

$$\begin{aligned} \text{(LO)} \quad & \min \quad c^\top x \\ \quad & \text{s.t.} \quad & Ax = b \\ \quad & x \geq 0, x \in \mathbb{R}^n \end{aligned}$$

(LO) min
$$c^{\top}x$$

s.t. $Ax = b$
 $x \ge 0, x \in \mathbb{R}^n$

(SDO) min
$$\langle C, X \rangle$$

s.t. $\mathcal{A}(X) = b$
 $X \succeq 0, X \in \mathcal{S}_n$

(LO) min
$$c^{\top}x$$

s.t. $Ax = b$
 $x \ge 0, x \in \mathbb{R}^n$

$$\begin{array}{ccc} \textbf{(SDO)} & \min & \langle \, \mathcal{C}, X \rangle \\ & \text{s.t.} & \mathcal{A}(X) = b \\ & X \succeq 0, X \in \mathcal{S}_n \end{array}$$

$$\langle C, X \rangle = \operatorname{trace}(CX) = (\operatorname{vec}(C))^{\top} \operatorname{vec}(X)$$

(LO) min
$$c^{\top}x$$

s.t. $Ax = b$
 $x \ge 0, x \in \mathbb{R}^n$

(SDO) min
$$\langle C, X \rangle$$

s.t. $\mathcal{A}(X) = b$
 $X \succeq 0, X \in \mathcal{S}_n$

$$\mathcal{A}(X) = \left(egin{array}{c} \langle A_1, X
angle \\ \langle A_2, X
angle \\ dots \\ \langle A_m, X
angle \end{array}
ight)$$
, thus $\left(egin{array}{c} \operatorname{vec}(A_1)^{ op} \\ \operatorname{vec}(A_2)^{ op} \\ dots \\ \operatorname{vec}(A_m)^{ op} \end{array}
ight)$ $\operatorname{vec}(X) = b$

(LO) min
$$c^{\top}x$$

s.t. $Ax = b$
 $x \ge 0, x \in \mathbb{R}^n$

$$\begin{array}{ccc} \textbf{(SDO)} & \min & \langle \mathcal{C}, X \rangle \\ & \text{s.t.} & \mathcal{A}(X) = b \\ & X \succeq 0, X \in \mathcal{S}_n \end{array}$$

SDO as LO, except "
$$\succeq$$
"
$$(X\succeq 0\Leftrightarrow y^\top Xy\geq 0\quad \forall y\in\mathbb{R}^n)$$

Semidefinite Optimization - Duality

- $S_n^+ = \{X \in S_n : X \succeq 0\}$ is a closed convex cone in $\mathbb{R}^{\binom{n+1}{2}}$.
- Lemma: $S_n^{+*} = S_n^+$, i.e., the cone of semidefinite matrices is self-dual.

(SDO) min
$$\langle C, X \rangle$$
 (DSDO) max $b^{\top}y$ s.t. $\mathcal{A}(X) = b$ s.t. $\mathcal{A}^t(y) + Z = C$ $y \in \mathbb{R}^m, Z \succeq 0$

b

Semidefinite Optimization - Duality

- $S_n^+ = \{X \in S_n : X \succeq 0\}$ is a closed convex cone in $\mathbb{R}^{\binom{n+1}{2}}$.
- Lemma: $S_n^{+*} = S_n^+$, i.e., the cone of semidefinite matrices is self-dual.

(SDO) min
$$\langle C, X \rangle$$
 (DSDO) max $b^{\top}y$
s.t. $\mathcal{A}(X) = b$ s.t. $\mathcal{A}^t(y) + Z = C$
 $X \succeq 0$ $y \in \mathbb{R}^m, Z \succeq 0$

- Slater-constraint qualification guarantees strong duality,
- solvable in polynomial time.

)

given: graph
$$G=(V,E),\ V(G)=\{1,\ldots,n\},\ |E(G)|=m,\ w_{ij}$$

given: graph $G=(V,E),\ V(G)=\{1,\ldots,n\},\ |E(G)|=m,\ w_{ij}$

find: a partition of the vertex set into two parts such that the sum of the weights on the edges having one endpoint in each set is maximized.

given: graph $G=(V,E),\ V(G)=\{1,\ldots,n\},\ |E(G)|=m,\ w_{ij}$

find: a partition of the vertex set into two parts such that the sum of the weights on the edges having one endpoint in each set is maximized.

i.e., find $x \in \{\pm 1\}^n$ such that $\sum w_{ij}(1 - x_i x_j) = x^t L x$ is maximized.

given: graph $G = (V, E), \ V(G) = \{1, \dots, n\}, \ |E(G)| = m, \ w_{ij}$

find: a partition of the vertex set into two parts such that the sum of the weights on the edges having one endpoint in each set is maximized.

i.e., find $x \in \{\pm 1\}^n$ such that $\sum w_{ij}(1 - x_i x_j) = x^t L x$ is maximized.

$$\begin{aligned} &\max & x^t L x \\ &\text{s.t.} & x \in \{\pm 1\}^n \end{aligned}$$

where $L \in \mathcal{S}_n$ is the Laplacian of the graph.

$$\max \quad x^t L x$$

s.t. $x \in \{\pm 1\}^n$

where $L \in \mathcal{S}_n$ is the Laplacian of the graph.

Unconstrained Binary Quadratic Problem

given: symmetric matrix Q, vector c

min
$$x^t Qx + c^t x$$

s.t. $x \in \{0, 1\}^n$

/

$$\max \quad x^t L x$$

s.t. $x \in \{\pm 1\}^n$

where $L \in S_n$ is the Laplacian of the graph.

Unconstrained Binary Quadratic Problem

given: symmetric matrix Q, vector c

min
$$x^t Qx + c^t x$$

s.t. $x \in \{0, 1\}^n$

Solving MC and solving UBQP is essentially the same.

Max-Cut Problem

$$\max x^t L x$$
s.t. $x \in \{\pm 1\}^n$

where $L \in \mathcal{S}_n$ is the Laplacian of the graph.

Max-Cut Problem

$$\max x^t L x$$
s.t. $x \in \{\pm 1\}^n$

where $L \in \mathcal{S}_n$ is the Laplacian of the graph.

linearize and simplify:

$$x^{\top}Lx = \langle L, xx^{\top} \rangle = \langle L, X \rangle$$
 where $X = xx^{\top}$

Max-Cut Problem

$$\max x^t L x$$
s.t. $x \in \{\pm 1\}^n$

where $L \in \mathcal{S}_n$ is the Laplacian of the graph.

linearize and simplify:

$$x^{\top}Lx = \langle L, xx^{\top} \rangle = \langle L, X \rangle$$
 where $X = xx^{\top} \rightsquigarrow$

$$\begin{array}{ll} \max & \langle L,X \rangle \\ \text{s.t.} & \operatorname{diag}(X) = e \\ & \operatorname{rank}(X) = 1 \\ & X \succ 0 \end{array}$$

Max-Cut Problem

$$\max x^t L x$$
s.t. $x \in \{\pm 1\}^n$

where $L \in \mathcal{S}_n$ is the Laplacian of the graph.

linearize and simplify:

$$x^{\top}Lx = \langle L, xx^{\top} \rangle = \langle L, X \rangle$$
 where $X = xx^{\top} \rightsquigarrow$

$$\begin{aligned} \max & \langle L, X \rangle \\ \text{s.t.} & \operatorname{diag}(X) = e \\ & \operatorname{rank}(X) = 1 \\ & X \succ 0 \end{aligned}$$

Max-Cut Problem

$$\max x^t L x$$
s.t. $x \in \{\pm 1\}^n$

where $L \in \mathcal{S}_n$ is the Laplacian of the graph.

linearize and simplify:

$$x^{\top}Lx = \langle L, xx^{\top} \rangle = \langle L, X \rangle$$
 where $X = xx^{\top} \rightsquigarrow$

max
$$\langle L, X \rangle$$

s.t. diag $(X) = e$
$$\frac{\operatorname{rank}(X) = 1}{X \succ 0}$$

max
$$\langle L, X \rangle$$
 min $e^t y$
s.t. diag $(X) = e$ s.t. Diag $(y) - Z = L$
 $X \succeq 0$ $Z \succeq 0$

$$\max \langle L, X \rangle \qquad \qquad \min \ e^t y$$
s.t. $\operatorname{diag}(X) = e$

$$X \succeq 0$$
s.t. $\operatorname{Diag}(y) - Z = L$

$$Z \succeq 0$$

solving the SDO relaxation: primal-dual interior-point method

J

$$\max \langle L, X \rangle \qquad \qquad \min \quad e^t y$$
s.t. $\operatorname{diag}(X) = e$

$$X \succeq 0$$
s.t. $\operatorname{Diag}(y) - Z = L$

$$Z \succeq 0$$

solving the SDO relaxation: primal-dual interior-point method

based on Newton's method

$$\max \langle L, X \rangle \qquad \min e^{t} y$$
s.t. $\operatorname{diag}(X) = e$

$$X \succeq 0$$

$$\operatorname{s.t.} \operatorname{Diag}(y) - Z = L$$

$$Z \succeq 0$$

solving the SDO relaxation: primal-dual interior-point method

- based on Newton's method
- let the constraints be given as A(X) = (:) with

$$\mathcal{A}(X) = \begin{pmatrix} \langle A_1, X \rangle \\ \langle A_2, X \rangle \\ \vdots \\ \langle A_m, X \rangle \end{pmatrix}, \text{ in each iteration solve } \boxed{M\Delta y = rhs}$$

where

$$m_{ij} = \operatorname{trace}(XA_iZ^{-1}A_j)$$

$$\max \langle L, X \rangle \qquad \min e^{t} y$$
s.t. $\operatorname{diag}(X) = e$

$$X \succeq 0$$

$$\operatorname{s.t.} \operatorname{Diag}(y) - Z = L$$

$$Z \succeq 0$$

solving the SDO relaxation: primal-dual interior-point method

- based on Newton's method
- let the constraints be given as A(X) = (:) with

$$\mathcal{A}(X) = \begin{pmatrix} \langle A_1, X \rangle \\ \langle A_2, X \rangle \\ \vdots \\ \langle A_m, X \rangle \end{pmatrix}$$
, in each iteration solve $\boxed{M\Delta y = rhs}$

where

$$m_{ij} = \operatorname{trace}(XA_iZ^{-1}A_j)$$

• forming the final system matrix: $O(mn^3 + m^2n^2)$

J

for max-cut we have the constraints

$$\operatorname{diag}(X) = \begin{pmatrix} \left\langle \begin{pmatrix} \frac{1}{0} & 0 & \cdots \\ 0 & 0 & \cdots \\ \vdots & \vdots & \ddots \\ 0 & 0 & \cdots \\ 0 & 1 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}, X \right\rangle \\ & & \vdots \\ \left\langle \begin{pmatrix} \frac{1}{0} & \frac{1}{0} & \cdots \\ 0 & 1 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}, X \right\rangle \\ & & \left\langle \begin{pmatrix} \frac{1}{0} & \frac{1}{0} & \cdots \\ \frac{1}{0} & \frac{1}{0} & \cdots \\ 0 & 1 & \cdots \\ 0 & 1 & \cdots \end{pmatrix}, X \right\rangle \end{pmatrix}$$

for max-cut we have the constraints

$$\mathsf{diag}(X) = \left(\begin{array}{c} \left\langle \left(\begin{array}{ccc} \frac{1}{0} & 0 & \cdots \\ 0 & 0 & \cdots \\ \vdots & \vdots & \ddots \\ 0 & 0 & \cdots \\ 0 & 1 & \cdots \\ \vdots & \vdots & \ddots \end{array} \right), X \right\rangle \\ \left\langle \left(\begin{array}{ccc} 0 & 0 & \cdots \\ 0 & 1 & \cdots \\ \vdots & \vdots & \ddots \end{array} \right), X \right\rangle \\ \left\langle \left(\begin{array}{ccc} \vdots & \vdots & \vdots \\ \cdots & 0 & 0 \\ \cdots & 0 & 1 \end{array} \right), X \right\rangle \end{array} \right) = e$$

this yields the system

$$(Z^{-1} \circ X) \Delta y = rhs$$

for max-cut we have the constraints

$$\mathsf{diag}(X) = \left(\begin{array}{c} \left\langle \left(\begin{array}{ccc} \frac{1}{0} & 0 & \cdots \\ 0 & 0 & \cdots \\ \vdots & \vdots & \ddots \\ 0 & 0 & \cdots \\ 0 & 1 & \cdots \\ \vdots & \vdots & \ddots \end{array} \right), X \right\rangle \\ \left\langle \left(\begin{array}{ccc} 0 & 0 & \cdots \\ 0 & 1 & \cdots \\ \vdots & \vdots & \ddots \end{array} \right), X \right\rangle \\ \left\langle \left(\begin{array}{ccc} \vdots & \vdots & \vdots \\ \cdots & 0 & 0 \\ \cdots & 0 & 1 \end{array} \right), X \right\rangle \end{array} \right) = e$$

this yields the system

$$(Z^{-1} \circ X)\Delta y = rhs$$

⇒ cheap construction of system matrix.

Hence,

max
$$\langle L, X \rangle$$

s.t. diag $(X) = e$
 $X \succeq 0$

can be solved efficiently by interior-point methods.

Hence,

$$\max \langle L, X \rangle$$
s.t.
$$\operatorname{diag}(X) = e$$

$$X \succeq 0$$

can be solved efficiently by interior-point methods.

SDO relaxation + primal heuristic Goemans-Williamson rounding

Hence,

$$\max_{X} \langle L, X \rangle$$
s.t.
$$diag(X) = e$$

$$X \succeq 0$$

can be solved efficiently by interior-point methods.

SDO relaxation + primal heuristic Goemans-Williamson rounding

Hence,

$$\max \langle L, X \rangle$$
s.t.
$$\operatorname{diag}(X) = e$$

$$X \succeq 0$$

can be solved efficiently by interior-point methods.

SDO relaxation + primal heuristic Goemans-Williamson rounding \sim branch-and-bound algorithm

Hence,

$$\max_{\mathbf{X}} \langle L, \mathbf{X} \rangle$$
s.t.
$$\operatorname{diag}(\mathbf{X}) = e$$

$$\mathbf{X} \succeq 0$$

can be solved efficiently by interior-point methods.

SDO relaxation + primal heuristic Goemans-Williamson rounding \leadsto branch-and-bound algorithm

next step: stronger bounds by including triangle inequalities

strengthen SDO relaxation

observation: $x_i, x_j, x_k \in \{\pm 1\}$ and $X = xx^t$ then the triangle inequalities hold, i.e.,

$$-x_{ij} - x_{ik} - x_{jk} \le 1$$

 $-x_{ij} + x_{ik} + x_{jk} \le 1$
 $x_{ij} - x_{ik} + x_{jk} \le 1$
 $x_{ij} + x_{ik} - x_{jk} \le 1$
 $1 \le i < j < k \le n$

 $\dots X \in MET$

- matrix X dimension n
- 4(n) additional constraints

Strengthen SDO Relaxation

```
egin{array}{ll} \mathsf{max} & \langle L, oldsymbol{X} 
angle \ \mathsf{s.t.} & \mathsf{diag}(oldsymbol{X}) = e \ & oldsymbol{X} \in \mathsf{MET} \ & oldsymbol{X} \succeq 0 \end{array}
```

- matrix X dimension n
- number of linear constraints: $n + 4\binom{n}{3}$

Strengthen SDO Relaxation

```
 \begin{array}{ll} \mathsf{max} & \langle L, \textcolor{red}{\mathsf{X}} \rangle \\ \mathsf{s.t.} & \mathsf{diag}(\textcolor{red}{\mathsf{X}}) = e \\ & \textcolor{red}{\mathsf{X}} \in \mathit{MET} \\ & \textcolor{red}{\mathsf{X}} \succeq 0 \end{array}
```

- matrix X dimension n
- number of linear constraints: $n + 4\binom{n}{3}$
- serious computational effort
- use bundle method

We would like to compute

$$z^* = \max \{\langle L, X \rangle : \operatorname{diag}(X) = e, \ \mathcal{M}(X) \leq b, \ X \succeq 0\}$$

Optimizing over diag(X) = e, $X \succeq 0$ without $\mathcal{M}(X) \le b$ is "easy", but inclusion of $\mathcal{M}(X) \le b$ makes SDO difficult.

We would like to compute

$$z^* = \max \{\langle L, X \rangle : \operatorname{diag}(X) = e, \ \mathcal{M}(X) \leq b, \ X \succeq 0\}$$

Optimizing over $\operatorname{diag}(X) = e, X \succeq 0$ without $\mathcal{M}(X) \leq b$ is "easy", but inclusion of $\mathcal{M}(X) \leq b$ makes SDO difficult. partial Lagrangian dual $(\gamma \geq 0 \text{ dual to } \mathcal{M}(X) \leq b)$:

$$\mathcal{L}(\mathbf{X};\gamma) = \langle L, \mathbf{X} \rangle + \gamma^t (b - \mathcal{M}(\mathbf{X}))$$

dual functional:

$$f(\gamma) = \max_{\mathsf{diag}(\mathbf{X}) = e, \mathbf{X} \succeq 0} \mathcal{L}(\mathbf{X}; \gamma)$$

We would like to compute

$$z^* = \max \{\langle L, X \rangle : \operatorname{diag}(X) = e, \ \mathcal{M}(X) \leq b, \ X \succeq 0\}$$

Optimizing over $\operatorname{diag}(X) = e, X \succeq 0$ without $\mathcal{M}(X) \leq b$ is "easy", but inclusion of $\mathcal{M}(X) \leq b$ makes SDO difficult. partial Lagrangian dual $(\gamma \geq 0 \text{ dual to } \mathcal{M}(X) \leq b)$:

$$\mathcal{L}(\mathbf{X};\gamma) = \langle L, \mathbf{X} \rangle + \gamma^t (b - \mathcal{M}(\mathbf{X}))$$

dual functional:

$$f(\gamma) = \max_{\mathsf{diag}(\mathbf{X}) = e, \mathbf{X} \succeq 0} \mathcal{L}(\mathbf{X}; \gamma)$$

and thus

$$z^* = \min_{\gamma \in \mathbb{R}^m_{>0}} f(\gamma)$$

since

$$z^* = \min_{\gamma \in \mathbb{R}^m_{\geq 0}} f(\gamma)$$

since

$$z^* = \min_{\gamma \in \mathbb{R}^m_{>0}} f(\gamma) \le f(\tilde{\gamma}) \quad \forall \tilde{\gamma} \in \mathbb{R}^m_{\geq 0}$$

any $ilde{\gamma} \in \mathbb{R}^m_{\geq 0}$ provides upper bound on z^*

since

$$z^* = \min_{\gamma \in \mathbb{R}^m_{>0}} f(\gamma) \le f(\tilde{\gamma}) \quad \forall \tilde{\gamma} \in \mathbb{R}^m_{\geq 0}$$

any $ilde{\gamma} \in \mathbb{R}^m_{\geq 0}$ provides upper bound on z^*

 \longrightarrow try to find tight upper bound (i.e., approximate minimizer of $f(\gamma)$) by using bundle methods.

since

$$z^* = \min_{\gamma \in \mathbb{R}^m_{\geq 0}} f(\gamma) \leq f(\tilde{\gamma}) \quad \forall \tilde{\gamma} \in \mathbb{R}^m_{\geq 0}$$

any $ilde{\gamma} \in \mathbb{R}^m_{\geq 0}$ provides upper bound on z^*

 \longrightarrow try to find tight upper bound (i.e., approximate minimizer of $f(\gamma)$) by using bundle methods.

iterative procedure,

since

$$z^* = \min_{\gamma \in \mathbb{R}^m_{>0}} f(\gamma) \le f(\tilde{\gamma}) \quad \forall \tilde{\gamma} \in \mathbb{R}^m_{\geq 0}$$

any $\tilde{\gamma} \in \mathbb{R}^m_{>0}$ provides upper bound on z^*

 \longrightarrow try to find tight upper bound (i.e., approximate minimizer of $f(\gamma)$) by using bundle methods.

iterative procedure, main computational effort in each iteration:

• evaluate $f(\hat{\gamma})$ to yield new \hat{X} and a subgradient \hat{g} ,

since

$$z^* = \min_{\gamma \in \mathbb{R}^m_{>0}} f(\gamma) \le f(\tilde{\gamma}) \quad \forall \tilde{\gamma} \in \mathbb{R}^m_{\geq 0}$$

any $ilde{\gamma} \in \mathbb{R}^m_{\geq 0}$ provides upper bound on z^*

 \longrightarrow try to find tight upper bound (i.e., approximate minimizer of $f(\gamma)$) by using bundle methods.

iterative procedure, main computational effort in each iteration:

• evaluate $f(\hat{\gamma})$ to yield new \hat{X} and a subgradient \hat{g} , i.e., solve

$$\max_{\mathsf{diag}(\boldsymbol{X})=e, \boldsymbol{X}\succeq 0} \langle L - \mathcal{M}^t(\hat{\gamma}), \boldsymbol{X} \rangle$$

Experience using bundle method

• in combination with interior point methods is a good tool to approximate SDOs with a huge number of constraints

Experience using bundle method

- in combination with interior point methods is a good tool to approximate SDOs with a huge number of constraints
- the number of function evaluations to reach good approximations is surprisingly small

Experience using bundle method

- in combination with interior point methods is a good tool to approximate SDOs with a huge number of constraints
- the number of function evaluations to reach good approximations is surprisingly small
- getting to the "real" optimum is hard

Overview

- Introduction
 - BiqMac
 - Semidefinite Optimization
 - Max Cut and Unconstrained Binary Quadratic Problems
- SDO Relaxation
 - Solving the SDO Relaxation
 - Strengthening the SDO Relaxation
- Improving BiqMac

Drawback of interior point methods: warm start not possible!

Drawback of interior point methods: warm start not possible!

How to improve Biq Mac?

 replace interior point by method that can make use of information from previous iteration and previously parent nodes in branch-and-bound tree

Drawback of interior point methods: warm start not possible!

How to improve Biq Mac?

- replace interior point by method that can make use of information from previous iteration and previously parent nodes in branch-and-bound tree
- use stronger SDO relaxation

Drawback of interior point methods: warm start not possible!

How to improve Biq Mac?

- replace interior point by method that can make use of information from previous iteration and previously parent nodes in branch-and-bound tree
- use stronger SDO relaxation

Drawback of interior point methods: warm start not possible!

How to improve Biq Mac?

- replace interior point by method that can make use of information from previous iteration and previously parent nodes in branch-and-bound tree
- use stronger SDO relaxation

stronger relaxation: "exact subgraphs" [Malwina Duda, PhD Thesis, forthcoming]

Drawback of interior point methods: warm start not possible!

How to improve Biq Mac?

- replace interior point by method that can make use of information from previous iteration and previously parent nodes in branch-and-bound tree
- use stronger SDO relaxation

stronger relaxation: "exact subgraphs" [Malwina Duda, PhD Thesis, forthcoming]

$$\begin{aligned} & \text{min} & b^t y \\ & \text{s.t.} & \mathcal{A}^t y - Z = C \\ & & Z \in S_n^+ \end{aligned}$$

min
$$b^t y$$

s.t. $A^t y - Z = C$
 $Z \in S_n^+$

$$Z \in S_n^+ \Rightarrow \exists V \in \mathbb{R}^{(m+1) \times r} \colon Z = VV^t$$

min
$$b^t y$$

s.t. $A^t y - Z = C$
 $Z \in S_n^+$

$$Z \in S_n^+ \Rightarrow \exists V \in \mathbb{R}^{(m+1) \times r} \colon Z = VV^t$$

min
$$b^t y$$

s.t. $A^t y - VV^t = C$

...non-convex problem

min
$$b^t y$$

s.t. $A^t y - Z = C$
 $Z \in S_n^+$

$$Z \in S_n^+ \Rightarrow \exists V \in \mathbb{R}^{(m+1) \times r} \colon Z = VV^t$$

min
$$b^t y$$

s.t. $A^t y - VV^t = C$

...non-convex problem

$$\mathcal{L}_{\sigma}(y, V; Y) = b^{t}y + \langle Y, C - \mathcal{A}^{t}y + VV^{t} \rangle + \frac{\sigma}{2} \|C - \mathcal{A}^{t}y + VV^{t}\|^{2}$$

SITA

KLAGENFURT I

$$\min_{y,V} \mathcal{L}_{\sigma}(y,V;Y)$$

$$\min_{y,V} \mathcal{L}_{\sigma}(y,V;Y)$$

First-order optimality conditions:

$$\nabla_{\mathbf{y}}\mathcal{L}_{\sigma}(\mathbf{y},\,\mathbf{V};\,\mathbf{Y})=0$$

$$\nabla_{\mathbf{V}} \mathcal{L}_{\sigma}(\mathbf{y}, \mathbf{V}; \mathbf{Y}) = 0$$

$$\min_{\mathbf{y},\mathbf{V}} \mathcal{L}_{\sigma}(\mathbf{y},\mathbf{V};Y)$$

First-order optimality conditions:

$$\nabla_{y} \mathcal{L}_{\sigma}(y, V; Y) = 0$$
$$\nabla_{V} \mathcal{L}_{\sigma}(y, V; Y) = 0$$

$$\nabla_{y}\mathcal{L}_{\sigma}(y, V; Y) = b - \mathcal{A}Y - \sigma(\mathcal{A}(C - \mathcal{A}^{t}y + VVt)) = 0$$

$$\implies y = (\mathcal{A}\mathcal{A}^t)^{-1} \left[\mathcal{A} \left(\frac{VV^t}{V^t} + C + \frac{1}{\sigma} Y \right) - \frac{1}{\sigma} b \right]$$

$$\min_{\mathbf{y},\mathbf{V}} \mathcal{L}_{\sigma}(\mathbf{y},\mathbf{V};Y)$$

First-order optimality conditions:

$$\nabla_{y} \mathcal{L}_{\sigma}(y, V; Y) = 0$$
$$\nabla_{V} \mathcal{L}_{\sigma}(y, V; Y) = 0$$

$$\nabla_{y}\mathcal{L}_{\sigma}(y, V; Y) = b - \mathcal{A}Y - \sigma(\mathcal{A}(C - \mathcal{A}^{t}y + VVt)) = 0$$

$$\implies y = (\mathcal{A}\mathcal{A}^t)^{-1} \left[\mathcal{A} \left(\frac{VV^t}{} + C + \frac{1}{\sigma} Y \right) - \frac{1}{\sigma} b \right]$$

 \longrightarrow express \mathcal{L}_{σ} as a function of V only.

min
$$f(V)$$

s.t. $h(V) = 0$

$$\mathcal{L}_{\sigma}(\textcolor{red}{V};\textcolor{blue}{Y}) := f(\textcolor{red}{V}) + \langle \textcolor{red}{Y}, \textcolor{blue}{h(\textcolor{red}{V})} \rangle + \frac{\sigma}{2} \|\textcolor{blue}{h(\textcolor{red}{V})}\|^2$$

f and h are sufficiently smooth functions

Data: f, h

Output: V, Y

Data: f, h

Output: V, Y

Initialization: k = 0, select $\sigma_k > 0$, $V_k \in \mathbb{R}^{(m+1)\times r}$

Data: f, h

Output: V, Y

Initialization: k = 0, select $\sigma_k > 0$, $V_k \in \mathbb{R}^{(m+1)\times r}$

Data: f, h

Output: V, Y

Initialization: k = 0, select $\sigma_k > 0$, $V_k \in \mathbb{R}^{(m+1)\times r}$

while $||h(V_k)|| > \varepsilon$

(a) Solve $\min_{V} \mathcal{L}_{\sigma_k}(V; Y_k)$ approximately, giving V_k

Data: f, h

Output: V, Y

Initialization: k = 0, select $\sigma_k > 0$, $V_k \in \mathbb{R}^{(m+1)\times r}$

- (a) Solve $\min_{V} \mathcal{L}_{\sigma_k}(V; Y_k)$ approximately, giving V_k
- (b) Update $Y: Y_{k+1} = Y_k + \sigma_k h(V_k)$

Data: f, h

Output: V, Y

Initialization: k = 0, select $\sigma_k > 0$, $V_k \in \mathbb{R}^{(m+1)\times r}$

- (a) Solve $\min_{V} \mathcal{L}_{\sigma_k}(V; Y_k)$ approximately, giving V_k
- (b) Update $Y: Y_{k+1} = Y_k + \sigma_k h(V_k)$
- (c) Select $\sigma_{k+1} \geq \sigma_k$

Data: f, hOutput: V, Y

Initialization: k = 0, select $\sigma_k > 0$, $V_k \in \mathbb{R}^{(m+1)\times r}$

- (a) Solve min $V \mathcal{L}_{\sigma_k}(V; Y_k)$ approximately, giving V_k
- (b) Update Y: $Y_{k+1} = Y_k + \sigma_k h(V_k)$
- (c) Select $\sigma_{k+1} \geq \sigma_k$
- (d) Check the stopping condition and increase k

Data: f, hOutput: V, Y

Initialization: k = 0, select $\sigma_k > 0$, $V_k \in \mathbb{R}^{(m+1)\times r}$ while $||h(V_k)|| > \varepsilon$

- (a) Solve $\min_{V} \mathcal{L}_{\sigma_k}(V; Y_k)$ approximately, giving V_k
- (b) Update $Y: Y_{k+1} = Y_k + \sigma_k h(V_k)$
- (c) Select $\sigma_{k+1} \geq \sigma_k$
- (d) Check the stopping condition and increase k

How to solve the inner minimization?

→ descent method (e.g., Fletcher-Reeves)

Computational effort: Depends on cost of function evaluation and computation of the gradient.

 \rightarrow relatively cheap in our case.

Optimality Conditions

Optimality conditions of the SDO:

$$\begin{array}{rcl}
\mathcal{A}Y & = & b \\
Y & \succeq & 0 \\
\mathcal{A}^t y - C & = & Z \\
Z & \succeq & 0 \\
ZY & = & 0
\end{array}$$

Optimality Conditions

Optimality conditions of the SDO:

$$AY = b$$
 by construction $Y \succeq 0$ $A^ty - C = Z$ $Z \succeq 0$ by construction $ZY = 0$ by construction

Optimality Conditions

Optimality conditions of the SDO:

$$\mathcal{A}Y = b$$
 by construction $Y \succeq 0$ to be maintained $\mathcal{A}^t y - C = Z$ stopping criterion $Z \succeq 0$ by construction $ZY = 0$ by construction

 Exact solution method for max cut and unconstrained binary quadratic problems

- Exact solution method for max cut and unconstrained binary quadratic problems
- Relaxation using SDO

- Exact solution method for max cut and unconstrained binary quadratic problems
- Relaxation using SDO
- High quality bounds

- Exact solution method for max cut and unconstrained binary quadratic problems
- Relaxation using SDO
- High quality bounds
- Improvement 1: stronger SDO relaxation (exact subgraph)

- Exact solution method for max cut and unconstrained binary quadratic problems
- Relaxation using SDO
- High quality bounds
- Improvement 1: stronger SDO relaxation (exact subgraph)
- Improvement 2: use method that allows warm start

- Exact solution method for max cut and unconstrained binary quadratic problems
- Relaxation using SDO
- High quality bounds
- Improvement 1: stronger SDO relaxation (exact subgraph)
- Improvement 2: use method that allows warm start
- Todo: efficient implementation

- Exact solution method for max cut and unconstrained binary quadratic problems
- Relaxation using SDO
- High quality bounds
- Improvement 1: stronger SDO relaxation (exact subgraph)
- Improvement 2: use method that allows warm start
- Todo: efficient implementation

- Exact solution method for max cut and unconstrained binary quadratic problems
- Relaxation using SDO
- High quality bounds
- Improvement 1: stronger SDO relaxation (exact subgraph)
- Improvement 2: use method that allows warm start
- Todo: efficient implementation

Thank you!

