

LDCformer: Incorporating Learnable Descriptive Convolution to Vision Transformer for Face Anti-Spoofing

Pei-Kai Huang, Cheng-Hsuan Chiang, Jun-Xiong Chong, Tzu-Hsien Chen, Hui-Yu Ni, Chiou-Ting Hsu National Tsing Hua University, Taiwan

Face Anti-Spoofing (FAS)

■ Pros and cons of models on FAS

CNN-based methods

- Pros
- → Rich of local descriptors to extract local intrinsic features
- Cons
 - → Limited receptive field of convolution operation
 - → Vanilla convolution smooth intrinsic details

ViT-based methods

- Pros
- → Ability to model long-range dependency between pixels
- Cons
 - → Lack of local descriptor

■ Goal

- Integrate the pros of both models to mitigate the cons
 - → Incorporate local descriptors into ViT
- Select and enhance suitable convolutional operation for FAS
- → Introduce decoupling technique onto convolutional operation

LDC: Learnable Descriptive Convolution & Decoupled-LDC: Decoupled Learnable Descriptive Convolution

■ Learnable Descriptive Convolution (LDC)

Extract detailed intrinsic features

$$g(p) = \underbrace{\sum_{p_n \in \mathcal{R}} w(p_n) \cdot f(p + p_n)}_{\text{vanilla convolution}} + \epsilon \underbrace{\sum_{p_n \in \mathcal{R}} w(p_n) \cdot (f(p + p_n) \cdot m(p_n))}_{\text{learnable descriptive convolution}}$$

LDCformer: Learnable Descriptive Convolutional Vision Transformer

■ Decoupled Learnable Descriptive Convolution (Decoupled-LDC)

Sampling sparse local regions to reduce the computational complexity

L2 X

Prediction Head

■ LDCformer

- Incorporating LDC into ViT
- E_{LDCformer} extract low-level spoofing cues & textural features

■ Decoupled-LDCformer

Loss term

■ Binary cross entropy loss

$$\mathcal{L}_{ce} = -\sum_{\forall \mathbf{x}} ylog(\bar{y})$$

Experiments

- Datasets
- OULU(O), MSU(M), CASIA(C), Replay(I)
- Evaluation metrics
- Half Total Error Rate (HTER) |
- Area Under Curve (AUC)
- Ablation studies

ViT with Different CNNs

Method	[1,C,M]→O		
Wiethou	HTER(%)↓	AUC(%)↑	
ViT [19]	15.67	88.71	
ViT + CNN	14.12	89.59	
ViT + CDC [9]	13.30	90.93	
ViT + C-CDC [7]	12.99	90.92	
ViT + LDC [6] (LDCformer)	12.21	94.36	
ViT + Decoupled-LDC (LDCformer ^D)	11.17	95.85	

■ Experimental comparisons

Cross-domain testing

Method	$[O,C,I] \rightarrow M$		[O,M,I]→ C	
	HTER (%) ↓	AUC (%)↑	HTER (%) ↓	AUC (%) ↑
RAEDFL [4] (ACPR 21)	16.67	87.93	17.78	86.11
SSAN-R [8] (CVPR 22)	6.67	98.75	10.00	96.67
PatchNet [5] (CVPR 22)	7.10	98.46	11.33	94.58
LDCN [6] (BMVC 22)	9.29	96.86	12.00	95.67
TransFAS * [16] (BBIS 22)	7.08	96.69	9.81	96.13
TTN-S * [17] (TIFS 22)	9.58	95.79	9.81	95.07
ViT * [20] (IJCB 21)	10.95	95.05	14.33	92.10
LDCformer ^D *	6.43	98.39	8.11	96.67

Method	$[O,C,M] \rightarrow I$		$[I,C,M] \rightarrow O$	
	HTER (%)↓	AUC (%) ↑	HTER (%) ↓	AUC (%) ↑
RAEDFL [4] (ACPR 21)	14.64	85.64	18.06	90.04
SSAN-R [8] (CVPR 22)	8.88	96.79	13.72	93.63
PatchNet [5] (CVPR 22)	14.6	92.51	11.82	95.07
LDCN [6] (BMVC 22)	9.43	95.02	13.51	93.68
TransFAS * [16] (BBIS 22)	10.12	95.53	15.52	91.10
TTN-S * [17] (TIFS 22)	14.15	94.06	12.64	94.20
ViT * [20] (IJCB 21)	16.64	85.07	15.67	89.59
LDCformer ^D *	8.57	97.09	11.17	95.85