Índice

	1. Presentación	1
	1.1. Obxectivos	1
	1.2. Motivación	1
	2. Principios físicos	2
	2.1. Un detector gasoso	2
Guión das prácticas no IGFAE	2.2. Perdas de enerxía na materia	2
	2.3. Resolución en enerxía	3
	2.4. Cinemática	3
Prácticas optativas de Grao · Curso 23-24		
Universidade de Santiago de Compostela	3. Para comezar	4
	3.1. Introdución a ROOT	4
	3.2. Github	4
	4. Programa	5
	4.1. Primeira semana	5
	4.2. Segunda semana	6
	4.3. Terceira semana	7

1. Presentación

1.1. Obxectivos

O obxectivo destas prácticas vai ser reproducir a resposta real do detector *ACtive TARget and Time Projection Chamber* (ACTAR TPC) nun computador de cara a preparar a campaña experimental de 2025. Simularase unha reacción nuclear de cuxos resultados avaliaremos a resolución na reconstrucción de ángulos.

Abarcaremos varias áreas:

- **Programación**: Aprenderemos a programar en C++ con ROOT. Utilizaremos progamas sinxelos para que a adaptación sexa o máis liviana posíbel e fomentaremos o recurso á documentación na web.
- **Detectores**: ACTAR TPC é un detector gasoso moi recente que abre todo unha nova ventá de posibilidades no eido das reaccións nucleares. Introduciremos os conceptos básicos dun detector gasoso e complementarémolos cos de detectores de Silicio.
- **Teoría**: Expoñeremos as leis básicas da cinemática que rixen calquera reacción entre partículas e introduciremos os fundamentos da interacción radiación-materia, básicos para a detección experimental.

Iremos adaptando o guión das prácticas en función das necesidades e do tempo dispoñíbel. Gran parte do código computacional está xa listo, e o que se requerirá será facer uso del en programas máis simples.

1.2. Motivación

En 2025 levarase a cabo un experimento coa reacción 11 Li $(d,t)^{10}$ Li para estudar a estrutura nuclear do 10 Li. En particular, este tipo de reaccións de transferencia dun nucleón permiten acceder de forma pormenorizada á información espectroscópica do núcleo resultante; neste caso, co obxectivo principal de estudar o estado fundamental do 10 Li.

Para lograr este obxectivo, necesitamos varias compoñentes:

■ **Detector**: O gas que encherá ACTAR TPC será unha mestura de D_2 e i C_4H_{10} (95 % e 5 %, respectivamente) a unha presión de 900 mbar. Será o D_2 o que provea os d da reacción.

• Reacción: A xa mencionada:

$$^{11}\text{Li} + ^{2}\text{H} \longrightarrow ^{3}\text{H} + ^{10}\text{Li}$$

■ **Feixe**: O ¹¹Li terá unha enerxía de 7,5 AMeV (é dicir, 82,5 MeV).

2. Principios físicos

2.1. Un detector gasoso

ACTAR TPC segue os principios de funcionamento dunha *time projection chamber*: as partículas ao pasaren polo gas ionizan os átomos, liberando electróns que **derivan** baixo aplicación dun campo eléctrico. Esta carga é recollida nun sensor amplamente fragmentado (), permitindo *seguir* as partículas no seu traspaso dentro do medio en 2D.

Pero é máis: pódese engadir a terceira coordenada coñecendo o tempo que lle leva aos electróns chegar ao pad plane, pois a **velocidade de deriva** é constante. Deste xeito, o seguimento das partículas faise en **3D**.

Finalmente, o principio de *active target* engade a vantaxe de ser o gas o propio albo da reacción: este actúa como medio de reacción e de detección. O seguinte esquema ilustra este modo de funcionamento.

Figura 1: Esquema de funcionamento dunha TPC.

Figura 2: Deseño do detector ACTAR TPC. A rexión de detección é a parte negra interna.

Para a simulación vamos necesitar poñerlle números ao detector:

- O tamaño da zona de detección (Figura 2) é de 256 × 256 × 255 mm³.
- O criterio de dimensións é que o beam vai no eixo X, e a dimensión vertical é Z.
- Os detectores auxiliares poden poñerse arredor desta zona nos diferentes lados. Nós usaremos algo parecido ao da figura, cun detector de Si (como os azuis) cara adiante.
- Situaremos un só detector de Si, cun tamaño de $80 \times 50 \times 1,5 \,\mathrm{mm}^3$ a unha distancia de $10 \,\mathrm{cm}$ do pad plane.

2.2. Perdas de enerxía na materia

As partículas ao propagarse a través do gas interaccionarán co campo de Coulomb dos átomos deste, perdendo enerxía e liberando electróns. Esta perda de enerxía en cada interacción é moi pequena, pero como é moi elevado o número de colisións no gas (é, polo tanto, un proceso estocástico), chega a ser moi importante. Nunha aproximación continua, está dada pola **ecuación de Bethe-Bloch**:

$$-\frac{dE}{dx} \cong \frac{4\pi e^4}{m_e} \left(\rho \frac{N_A}{M}\right) \frac{z^2 Z}{v^2} \ln \frac{2m_e v^2}{I}$$

Depende esencialmente da partícula a considerar (Z e A) e do gas (a través de ρ). É interesante definir:

- Rango (R): É o camiño percorrido por unha partícula ata que case se detén. É función da enerxía inicial e do material a atravesar. Existe unha relación unívoca E ← R que imos utilizar para estimar a perda da enerxía en función da distancia percorrida pola partícula.
- Straggling: Como a perda de enerxía é un proceso estatístico, dúas partículas coa mesma enerxía inicial non van depositar a mesma ΔE. O straggling mide, dalgunha forma, a σ desta distribución.

Esta información está tabulada nun programa que se coñece como *SRIM* e que utilizaremos sistematicamente nas prácticas. Basicamente, contén táboas cos parámetros que vamos necesitar para os cálculos: enerxías, rangos e stragglings.

Unha pequena apreciación: SRIM vainos dar o *straggling* en posición, mais nós deberémolo converter a en enerxía. Aquí o algoritmo que imos usar:

- **1.** Calculamos R_{ini} coa enerxía inicial, xunto co seu *straggling*.
- **2.** Sabendo que a partícula percorre unha distancia d o rango nese punto será $R_L = R_{Ini} d$. Avaliamos o *stragg*. para este valor.
- 3. O straggling na distancia estará correlacionado con ambos, e sabendo que $u^2(R_{Ini}) = u^2(R_{Left}) + u^2(d)$, despexamos u(d).
- **4.** Aleatorizamos o valor de d cunha gaussiana centrada no seu valor e de $\sigma = u(d)$. Recalculamos o valor de $R_{Left} \longrightarrow R'_{Left}$ coa nova $d \longrightarrow d'$.
- **5.** Con este novo rango calculamos a enerxía final, efectivamente implementando o *straggling*!

2.3. Resolución en enerxía

Complementariamente acostuman situarse detectores de Si que nos van permitir medir a enerxía das partículas á súa saída do pad plane (seguindo os mesmos principios que na anterior Sección). Un parámetro importante destes é a **resolución en enerxía**, definida como a capacidade para resolver enerxías depositadas distintas: R = FWHM/E.

Para o noso experimento, esta resolución está tabulada en 50 keV a 5,5 MeV e podemos extrapolala ao resto de enerxías coa función:

$$R = \frac{2,35\sigma}{E} = \frac{K}{\sqrt{E}} \implies \sigma = \frac{K}{2,35}\sqrt{E} = \frac{0,0213 \,\text{MeV}}{2,35}\sqrt{E}$$

Isto vai significar que a perda de enerxía ΔE que calcules nos Si deberala aleatorizar cunha gaussiana de σ obtida coa anterior fórmula.

2.4. Cinemática

Todo proceso de interacción entre partículas podes escribirse en termos de variables cinemáticas (enerxías e ángulos) usando as **leis de conservación** de enerxía e de momento. Esta pode ser descrita no sistema LAB ou no CM (mediante unha transformación Lorentz a un sistema con 3-momento nulo en ambas canles de entrada e saída) do seguinte xeito:

No LAB:
$$p_1 = (E_1, \boldsymbol{p_1})$$
; $p_2 = (m_2, \boldsymbol{0})$; $p_3 = (E_3, \boldsymbol{p_3})$; $p_4 = (E_4, \boldsymbol{p_4})$
No CM: $p_1' = (E_1', \boldsymbol{p_1'})$; $p_2' = (E_2', -\boldsymbol{p_1'})$; $p_3' = (E_3', \boldsymbol{p_3'})$; $p_4' = (E_4', -\boldsymbol{p_3'})$

É estándar asumir unha partícula target (a 2) en repouso. O que vamos necesitar para a simulación é:

■ Partiremos da enerxía cinética *T*₁ do feixe (1) no LAB.

- Calculares a transformación Lorentz da canle de entrada ao CM.
- Repartiremos a E_{CM} (enerxía total no centro de masas) entre as partículas de saída cun θ_{CM} e ϕ_{CM} aleatorios.
- Finalmente, recuperaremos as enerxías de saída de ambas partículas no LAB coa transformación inversa.
- Tamén necesitaremos os ángulos no laboratorio, θ_{Lab} e $\phi_{Lab} = \phi_{CM}$.

Algunhas fórmulas que che poden ser interesantes para unha transformación Lorentz en X (o feixe móvese nesa dirección; é un convenio):

$$E' = \gamma (E - \beta p_x),$$
 $p'_x = \gamma (p_x - \beta E)$
 $E = \gamma (E' + \beta p'_x),$ $p_x = \gamma (p'_x + \beta E')$

Onde as variables primadas indican que son no CM. Cando transformes ao final do CM ao LAB terás en conta θ_{CM} : $p'_{4,x} = |p'_4| \cdot \cos(\theta_{CM})$. O ángulo ϕ_{CM} non aparece de momento posto que é transversal á transformación.

3. Para comezar

3.1. Introdución a ROOT

O primeiro de todo é aprender a programar en C++ con ROOT. No repositorio de Github, dentro da carpeta *Macros*, tes algúns exemplos de como traballar con el. Comeza polo básico e despois vas ver como podes crear histogramas, gráficos e números aleatorios: o básico que necesitamos para estar prácticas.

Velaquí algunha información básica que necesitas para comezar:

■ ROOT é un código desenvolto polo CERN que permite executar código de C++ sen compilar, mediante o que se coñece como **macros**:

```
$ root -1 NomeDoMacro.cxx
```

Vai executar a función chamada *NomeDoMacro* dentro dese ficheiro. Polo tanto, debes nomear o ficheiro igual que a función principal que conteña dentro. Isto non impide que definas outras funcións dentro do mesmo.

- Debes saír sempre da sesión unha vez o programa termina, escribindo . q
- ROOT provee de numerosas **clases** que realizan múltiples funcións: TH1D (histogramas), TGraph (gráficos), ... Sempre podes consular a documentación na web cando non saibas como se constrúe ou que funcións ten unha clase. Escribe no teu buscador favorito: *NomeDaClase root cern* e deberías ter a documentación no primeiro resultado.

3.2. Github

Git é unha ferramenta de control de versións que che permitirá manter un historial do teu código, podendo volver atrás cando sexa necesario. Github é unha web para almacenar repositorios Git. Vamos utilizala para poder revisar o código a distancia.

Para iso, o primeiro é ter unha conta en www.github.com. Tras unha configuración inicial un pouco tediosa, o plan de traballo é o seguinte, que se debe executar cando fagas cambios importantes ou cando remates a túa sesión de traballo:

- 1. git add . vai engadir todos os cambios dende o anterior commit
- 2. git commit abrirá un editor de texto no que crear unha mensaxe para informar dos cambios. Péchase con Ctrl+S, Ctrl+X
- 3. git push envía os cambios á nube

4. Programa

Desenvolveremos a simulación de forma modular, separando as distintas partes en diferentes macros e xuntando todo ao final.

A proposta é a seguinte:

- **Primeira semana**: Configuración do entorno e familiarización con ROOT. Macros para constuír gráficos e samplear en histogramas.
- **Segunda semana**: Resolución da cinemática e implementación da xeometría.
- Terceira semana: Introdución das perdas de enerxía e das distintas resolucións.
- Cuarta semana: Estudo sistemático da resolución en θ_{Lab} para distintas configuracións da xeometría, gases, etc.
- Quinta semana: Posibilidade de engardir máis cousas á simulación (en función da evolución) ou comezo da memoria.

4.1. Primeira semana

Os obxectivos son os seguintes:

Cinemática

Resolverás as ecuacións de cinemática para obter as enerxías cinéticas e ángulos no LAB das dúas partículas finais, aínda que presentando máis atención á pesada. Faino de forma xeral, tal e como está escrito na Sección correspondente. O criterio de números é o seguinte: $1 + 2 \longrightarrow 3 + 4$.

Na simulación, as variables que teremos que introducir nas fórmulas serán as masas, a enerxía do feixe e o ángulo θ_{CM} (que será aleatorio, como veremos).

Macros iniciais

Quero que fagas dous macros onde me representes as seguintes cousas, usando a axuda do repositorio de Github:

1. Representacións **cinemáticas**: Creas un TCanvas con 3 *pads* e representas a cinemática para estas tres reaccións distintas: 11 Li(d, p) 12 Li, 11 Li(d, d) 11 Li e 11 Li(d, t) 10 Li. Usa a mesma enerxía do feixe para todas de 7.5 AMeV.

A clase que vai facer iso é ActPhysics::Kinematics. O criterio que debes usar para chamar ao constructor é o seguinte: ("feixe", "target", "lixeira", "pesada", Tbeam), que configura a equivalencia coas fórmulas matemáticas do seguinte xeito:

$$1(feixe) + 2(target) \longrightarrow 3(lixeira) + 4(pesada)$$

Ademais, GetKinematicLine3() darache a representación T_3 vs $\theta_{Lab,3}$ (polo tanto, da partícula marcada como *lixeira*) e GetKinematicLine4() o mesmo pero da 4, a pesada. Representa ambas no mesmo *pad*.

Vas ver como as formas son moi diferentes, o que forza a deseñar experimentos moi distintos en función da reacción a medir (ou un que sexa capaz de medir todas as canles de reacción).

- **2. Sampleado** de variables: Para a simulación vamos necesitar samplear variables gaussianas e uniformes. Crea un macro con 3 histogramas (que vas representar en 3 *pads*) distintos nos que samplees as seguintes distribucións (podes xogar cos parámetros como queiras);
 - Gaussiana: gRandom->Gaus(mean, sigma)

- Uniforme: gRandom->Uniform(x0, x1)
- O ángulo polar θ é especial se queres obter unha distribución uniforme:

```
\theta = \arccos(gRandom->Uniform(-1, 1))
```

Nota que este ángulo vai estar en radiáns. Para converter a graos, debes multiplicar polo factor de conversión correspondente. Se non o queres escribir, podes usar TMath::RadToDeg() (a inversa é TMath::DegToRad()) de ROOT.

4.2. Segunda semana

Representación gráfica da perda de enerxía

Na carpeta SRIM do repositorio tes táboas de perda de enerxía calculadas con SRIM. Se abres unha vas ver toda a información que conteñen:

- Información do material no que se calculou a perda.
- O mesmo sobre a partícula que o vai atraversar.
- Múltiples columnas coa E, o rango, o straggling en rango e o dE/dx.

Para ler e traballar con esta clase vas utilizar a clase ActPhysics::SRIM, tal e como tes no macro de exemplo (Macros/srim.cxx). As funcións básicas que necesitas son estas:

- EvalDirect(): obtén o rango para unha enerxía dada.
- EvalInverse(): enerxía para un rango dado.
- Slow(): para unha enerxía inicial, calcula a enerxía final tras atravesar un espesor de material a especificar. Tamén lle podes dar un ángulo, de xeito que a lonxitude efectiva é: $l_{\text{eff}=l/\cos\theta}$. O ángulo debe especificarse en radiáns.
- EvalInitialEnergy(): cos mesmos argumentos que a anterior función, fai o proceso inverso: calcula a enerxía inicial dada unha enerxía final, lonxitude e opcionalmente ángulo.

En todas as funcións o primeiro argumento é unha *string* que especifica a táboa a usar, anteriormente lida con ReadTable().

O que quero que fagas é que plotees a perda de enerxía no gas en función da distancia. Para iso, escolle unha táboa (por exemplo, ¹¹Li no gas) e asume unha enerxía inicial. Calcula o rango da partícula a esa enerxía.

Despois, discretiza esa distancia nun intervalo suficientemente pequeno e nun bucle *for*, utilizando a función slow, calculas a perda de enerxía (como a diferenza entre as iteracións). Representa iso en dous TGraphs: un de perda de enerxía vs distancia e outro de perda de enerxía vs enerxía.

Vas ver unha característica moi importante no gráfico: a medida que a partícula se para, a perda de enerxía aumenta: é o que se coñece como **pico de Bragg**. Estas dúas características (o perfil de perda de carga e o pico de Bragg) permiten identificar as partículas nun detector, xa que son unha pegada única de cada partícula!

Valicación da cinemática

Crea un macro sinxelo no que definas as funcións necesarias para calcular a cinemática. Mira o exemplo Macros/funcs.cxx para ver como podes devolver varios parámetros nunha función e escolle a forma que máis che guste.

Unha vez fagas isto, no propio macro vas validar que todo funcione ben. Escolle a reacción 11 Li $(d,t)^{10}$ Li a 7,5 AMeV e segue os seguintes pasos:

- Crea un TGraph.
- Nun bucle for, vas percorrer unha variable $\theta_{CM} \in [0, 180]^{\circ}$.
- Utiliza as túas funcións para calcular T_4 , $\theta_{Lab,4}$.
- Enche o gráfico.

Representa isto nun TCanvas e **superimpón** a cinemática de ActPhysis::Kinematics::GetKinematicLine4(), tal e como aprendiches a facer na anterior semana. Debería quedar exactamente igual!

4.3. Terceira semana

Comezo da simulación

Unha vez aprendido o básico, vamos comezar co macro de simulación. O primeiro é adaptar o que acabas de aprender de sampleado:

- **1.** Define o tamaño de ACTAR ao comezo do macro en mm. Tes os tamaños ao principio deste guión. En cada iteración, nunha variable tipo XYZPoint garda:
 - X: uniforme na dirección do feixe.
 - Y e Z: gaussianas de media o centro do detector e de σ uns 5 mm. Os feixes de partículas creados nos aceleradores non son perfectos e teñen unha determinada anchura espacial. De momento, asumimos un caso sinxelo de dispersión gaussiana dun feixe ben centrado no detector.

Podes crear puntos e vectores no espazo coas clases definidas en #include "Math/Point3D.h e #include "Math/Vector3D.h". Podes acceder a elas como ROOT::Math::XYZPoint ou ROOT::Math::XYZVector.

Valida que todo vai ben: crea dous histogramas 2D para representar isto:

- Un onde representes Y vs X.
- Outro no que representes Z vs Y.
- 2. Fai o mesmo para os ángulos no CM: samplea e crea histogramas para representalos.
- 3. O seguinte será usar a clase de **cinemática** que creaches para obter as variables da partícula pesada. Cos ángulos sampleados e coa enerxía do feixe, calcula T_4 e θ_4 .

Representa nun histograma 2D que todo vai ben: nun plot de enerxía fronte a ángulo deberías reproducir a cinemática teórica.

4. A continuación, vamos implementar a xeometría do silicio que vai medir esta partícula pesada. Na variable de tipo ActSim::Geometry está implementada a xeometría do detector, tal e como se ve na seguinte Figura 3.

Esta clase contén todos os tamaños necesarios para simular a xeometría, cos seguintes valores

- Os tamaños da TPC normal
- Os do Si, de $80 \times 50 \times 1.5 \text{ mm}^3$
- Unha distancia de 10,4 cm

A función que imos utilizar é PropagateTrackToSiliconArray(). Os argumentos que necesitas son uns cantos:

- O **vértice**, tal e como sampleaches.
- A **dirección** da partícula. Debes definila do seguinte xeito:

Figura 3: Esquema da xeometría: en azul, a TPC; en vermello, o silicio.

- O índice do muro de silicions, xa que pode haber varios. Como só hai un, pasa un 0.
- Os seguintes argumentos van devolver o resultado da operación, e deberás pasar as variables obrigatoriamente:
 - Un bool co lado. Ignoraremos isto de momento.
 - A distancia dende o vertice ao punto de impacto, en **cm**. Debes convertela a mm. É a variable máis importante.
 - O tipo de silicio. Só hai un, así que ignorarémolo.
 - O índice do silicio. Moi importante tamén: se a partícula non chega ao silicon, vale -1.
 - Un xyzpoint co punto de impacto. Ignorarémolo.

Deste xeito, só os eventos que cheguen xeometricamente ao silicio terán un valor de silIndex != -1, e o máis importante, terás a distancia que teñen que viaxar para chegar alí.

A primeira vez que necesites usar a xeometría debes creala. Hai un macro na carpeta *Geo/Build.cxx* que tes que executar só unha vez. Isto vai crear un ficheiro *.root* cos parámetros necesarios que despois lerás como: geo.ReadGeometry("./Geo/", "simple");

- 5. Finalmente, para os eventos que chegan, representa a enerxía T_4 na entrada do silicio: é dicir, usa a variable de tipo SRIM para reducir a perda de enerxía no gas. Represéntaa respecto do ángulo nun histograma 2D.
 - Para iso, terás que usar a táboa de enerxía correspondente. O que che recomendo é ler a táboa do 12 Li e que a chames *heavy*, para non evitar malentendidos despois, posto que usaremos as táboas de varias partículas.
- **6.** Remata calculando a Δ*E* da partícula nos silicios. Deberás ter en conta o ángulo coa normal ao chamar a función SRIM::Slow. Para iso, computa o θ entre o vector dirección anteriormente calculado e a normal ROOT::Math::XYZVector normal {1, 0, 0}.

Deberás usar unha táboa de enerxía distinta! A correspondente da partícula no silicio. Recoméndoche que a chames *heavySil* para diferenciala da *heavy* no gas.

Implementación dos defectos experimentais

Froito das incertezas estatísticas do proceso de perda de enerxía e das limitacións de contrución e electrónicas do detector, as liñas cinemáticas non son unha *liña* senón unha distribución de valores.

O obxetivo da simulación é ver como, en función da configuración do detector, se dispersas estas liñas e como iso nos afecta na extracción de resultados. Dúas son as que imos implementar:

- **1.** *Straggling* en enerxía: Segue o exposto na Subsección 2.2 para implementalo. Deberás crear unha función que substitúa á SRIM::Slow, de forma que pasándolle o obxecto SRIM, unha enerxía inicial T_{ini} e unha distacia d devolva o valor reducido e aleatorizado convenientemente.
- 2. Resolución dos Si: como viches na Subsección 2.3, os silicios teñen unha incerteza na determinación da enerxía. Dispersa o valor de ΔE obtido neles creando unha función que aplique a fórmula.