

FCC PART 27 MEASUREMENT AND TEST REPORT

For

Portal 724, LLC

275 Hartz Way::105, Secaucus, New Jersey, United States, 07094

FCC ID: 2ABGJ-CN-MN724

Report Type: Product Name: Revised Report Tablet PC Tom Tong **Test Engineer:** Tom Tang Report Number: RDG161110006D-M1 **Report Date: 2017-02-07** Henry Ding **EMC Leader** Reviewed By: Bay Area Compliance Laboratories Corp. (Chengdu) 5040, HuiLongWan Plaza, No. 1, ShaWan Road, **Test Laboratory:** JinNiu District, ChengDu, China Tel: 028-65523123, Fax: 028-65525125 www.baclcorp.com

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
RELATED SUBMITTAL(S)/GRANT(S)	4
TEST METHODOLOGYTEST FACILITY	
SYSTEM TEST CONFIGURATION	6
JUSTIFICATION	6
EQUIPMENT MODIFICATIONS	
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
FCC §1.1310 & §2.1093- RF EXPOSURE	9
APPLICABLE STANDARD	
Test Result	9
FCC §2.1047 - MODULATION CHARACTERISTIC	10
FCC § 2.1046& § 27.50 - RF OUTPUT POWER	11
APPLICABLE STANDARD	11
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILSTEST DATA	
FCC §2.1053, §22.917 & §24.238 & §27.53- SPURIOUS RADIATED EMISSIONS	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	_
TEST EQUIPMENT LIST AND DETAILS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	RDG161110006D	Original Report	2017-01-10	
1	RDG161110006D-M1	Revised Report	2017-02-07	

Note: This report is to supersede the original report: RDG161110006D.

Report No.: RDG161110006D-M1 Page 3 of 17

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Portal 724, LLC* 's product, model number: *MN-724 (FCC ID: 2ABGJ-CN-MN724)* (the "EUT") in this report was a *Tablet PC*, which was measured approximately: 20.06 cm (L) × 12.46 cm (W) × 1.41 cm (H), rated input voltage: DC3.7V battery or DC5V charging from adapter. The device build in a certified module, module model number: ME206v-561, FCC ID: QISME206V-561, cetified on 2014-06-06, only LTE band 4 and band 13 were enabled in this device.

Adapter Information:

MODEL: KA1517-0502000USU

INPUT: 100-240V~ 50/60Hz 0.35A Max

OUTPUT: DC5V 2000mA

*All measurement and test data in this report was gathered from final production sample, serial number: 161110006 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2016-11-14, and EUT conformed to test requirement.

Objective

This report is prepared on behalf of *Portal 724, LLC* in accordance with: Part 2-Subpart J, part 27 of the Federal Communications Commission's rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: 2ABGJ-CN-MN724. FCC Part 15C DTS submissions with FCC ID: 2ABGJ-CN-MN724. FCC Part 15C DSS submissions with FCC ID: 2ABGJ-CN-MN724.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J, Part 27.

Applicable Standards: TIA/EIA 603-D-2010.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Chengdu).

Report No.: RDG161110006D-M1 Page 4 of 17

Bay Area Compliance Laboratories Corp. (Chengdu)

Test Facility

The test site used by BACL to collect test data is located in the 5040, HuiLongWan Plaza, No. 1, ShaWan Road, JinNiu District, ChengDu, China.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on April 24, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Report No.: RDG161110006D-M1 Page 5 of 17

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D-2010.

The test items were performed with the EUT operating at testing mode.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	
R&S	Universal Radio Communication Tester	CMW500	106891	
N/A	ANTENNA	N/A	N/A	

Configuration of Test Setup

Report No.: RDG161110006D-M1 Page 6 of 17

Block Diagram of Test Setup

Report No.: RDG161110006D-M1 Page 7 of 17

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310, §2.1093	RF Exposure	Compliance
§2.1046; §27.50	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Compliance*
§ 2.1049; §27.53	Occupied Bandwidth	Compliance*
§ 2.1051, §27.53	Spurious Emissions at Antenna Terminal	Compliance*
§ 2.1053 §27.53	Spurious Radiation Emissions	Compliance
§27.53	Out of band emission, Band Edge	Compliance*
§ 2.1055 §27.54	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance*

Note:

Compliance*: the device build in a certified module, module model number: ME206v-561, FCC ID: QISME206V-561, cetified on 2014-06-06, please refer to the module report SYBH(Z-RF)038052014-2001 which was issued on 2014-05-30 by Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Report No.: RDG161110006D-M1 Page 8 of 17

Bay Area Compliance Laboratories Corp. (Chengdu)

FCC §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliant, please refer to the SAR report: RDG161110006-20M1.

Report No.: RDG161110006D-M1 Page 9 of 17

According to FC0 therefore modula	C § 2.1047(d), Part 27 there is no specific requition characteristic is not presented.	uirement for digital modulation,

FCC § 2.1046& § 27.50 - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §27.50 (d), (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

Test Procedure

LTE (FDD):

The following tests were conducted according to the test requirements in 3GPP TS36.101

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth (RB)								
	1.4 MHz									
QPSK	>5	>4	>8	> 12	> 16	> 18	≤ 1			
16 QAM	≤ 5	≤4	≤8	≤ 12	≤ 16	≤ 18	≤ 1			
16 QAM	>5	>4	>8	> 12	> 16	> 18	≤ 2			

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RS})	A-MPR (dB)	
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA	
			3	>5	≤ 1	
	6.6.2.2.1		5	>6	≤1	
NS_03		2, 4,10, 23, 25, 35, 36	10	>6	≤1	
		00,00	15	>8	≤ 1	
			20	>10	s 1	
			5	>6	≤ 1	
NS_04	6.6.2.2.2	41	10, 15, 20	See Tab	le 6.2.4-4	
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤1	
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a	
	6.6.2.2.3		40	T	T	
NS_07	6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2	
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3	
NS 09	6.6.3.3.4	21	10, 15	> 40	s 1	
	0.0.0.0.4			> 55	≤ 2	
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3	
NS_11	6.6.2.2.1	23'	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5	
NS_32			-			

Report No.: RDG161110006D-M1 Page 11 of 17

Radiated method:

ANSI/TIA 603-D section 2.2.17

Test Equipment List and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Sunol Sciences	Broadband Antenna	JB3	A101808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
ETS	Horn Antenna	3115	003-6076	2016-12-02	2017-12-01
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726- 0113024	2014-06-16	2017-06-15
EMCO	Adjustable Dipole Antenna	3121C	9109-258	N/A	N/A
HP	Signal Generator	8648C	3623A04150	2016-05-23	2017-05-22
WILTRON	SWEPT FREQUENCY SYNTHESIZER	6737	213001	2016-05-23	2017-05-22
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23
N/A	RF Cable (below 1GHz)	NO.1	N/A	2016-11-10	2017-11-09
N/A	RF Cable (below 1GHz)	NO.4	N/A	2016-11-10	2017-11-09
N/A	RF Cable (above 1GHz)	NO.2	N/A	2016-11-10	2017-11-09
R&S	Wideband Radio Communication Tester	CMW500	106891	2016-11-23	2017-11-23

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.3 °C	
Relative Humidity:	41 %	
ATM Pressure:	100.8 kPa	

The testing was performed by Tom Tang on 2016-12-12.

Note: Conducted output power please refer to the module report SYBH(Z-RF)038052014-2001, which was issued on 2014-05-30 by Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Report No.: RDG161110006D-M1 Page 12 of 17

ERP & EIRP

LTE Band 13

		D i	Su	bstituted Mo	ethod	Absolute		
Frequency (MHz)	Frequency Polar ;	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			QPSK 5N	A BW Middle	Channel			
782	Н	93.23	16.5	0.0	0.6	15.9	34.8	18.9
782	V	94.58	18	0.0	0.6	17.4	34.8	17.4
			16-QAM 5	M BW Middl	e Channel			
782	Н	93.01	16.3	0.0	0.6	15.7	34.8	19.1
782	V	94.23	17.7	0.0	0.6	17.1	34.8	17.7
			QPSK 10	M BW Middle	e Channel			,
782	Н	92.98	16.3	0.0	0.6	15.7	34.8	19.1
782	V	94.12	17.6	0.0	0.6	17.0	34.8	17.8
	16-QAM 10M BW Middle Channel							
782	Н	92.23	15.5	0.0	0.6	14.9	34.8	19.9
782	V	93.73	17.2	0.0	0.6	16.6	34.8	18.2

Report No.: RDG161110006D-M1 Page 13 of 17

LTE Band IV

		Receiver	Su	bstituted Mo	ethod	Absolute			
Frequency (MHz)	Polar (H/V)	Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	
QPSK 1.4 MHz Middle Channel									
1732.5	Н	86.11	10.7	7.9	0.9	17.7	30.0	12.3	
1732.5	V	87.02	12.7	7.9	0.9	19.7	30.0	10.3	
			QPSK 3	MHz Middl	e Channel				
1732.5	Н	84.17	8.7	7.9	0.9	15.7	30.0	14.3	
1732.5	V	86.57	12.2	7.9	0.9	19.2	30.0	10.8	
			QPSK 5 I	MHz Middl	e Channel				
1732.5	Н	82.95	7.5	7.9	0.9	14.5	30.0	15.5	
1732.5	V	86.24	11.9	7.9	0.9	18.9	30.0	11.1	
					le Channel				
1732.5	Н	81.78	6.3	7.9	0.9	13.3	30.0	16.7	
1732.5	V	85.45	11.1	7.9	0.9	18.1	30.0	11.9	
			QPSK 15	MHz Midd	lle Channel				
1732.5	Н	81.05	5.6	7.9	0.9	12.6	30.0	17.4	
1732.5	V	84.87	10.5	7.9	0.9	17.5	30.0	12.5	
			QPSK 20	MHz Midd	le Channel				
1732.5	Н	81.05	5.6	7.9	0.9	12.6	30.0	17.4	
1732.5	V	84.87	10.5	7.9	0.9	17.5	30.0	12.5	
			16QAM 1.4	4 MHz Mid	dle Channel				
1732.5	Н	86.1	10.7	7.9	0.9	17.7	30.0	12.3	
1732.5	V	87.01	12.7	7.9	0.9	19.7	30.0	10.3	
			16QAM 3	MHz Midd	lle Channel				
1732.5	Н	85.59	10.1	7.9	0.9	17.1	30.0	12.9	
1732.5	V	86.12	11.8	7.9	0.9	18.8	30.0	11.2	
	-		16QAM 5	MHz Midd	le Channel		-	-	
1732.5	Н	85.31	9.9	7.9	0.9	16.9	30.0	13.1	
1732.5	V	86.16	11.8	7.9	0.9	18.8	30.0	11.2	
			16QAM 10	MHz Mide	dle Channel				
1732.5	Н	84.85	9.4	7.9	0.9	16.4	30.0	13.6	
1732.5	V	85.03	10.7	7.9	0.9	17.7	30.0	12.3	
			16QAM 15	MHz Mide	dle Channel				
1732.5	Н	83.79	8.3	7.9	0.9	15.3	30.0	14.7	
1732.5	V	85.52	11.2	7.9	0.9	18.2	30.0	11.8	
			16QAM 20	MHz Mide	dle Channel				
1732.5	Н	82.13	6.7	7.9	0.9	13.7	30.0	16.3	
1732.5	V	84.59	10.3	7.9	0.9	17.3	30.0	12.7	

Report No.: RDG161110006D-M1 Page 14 of 17

FCC §2.1053, §22.917 & §24.238 & §27.53- SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053, §22.917, § 24.238 and § 27.53.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = 10 lg (TXpwr in Watts/0.001) – the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Report No.: RDG161110006D-M1 Page 15 of 17

Test Equipment List and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2016-12-02	2017-12-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Sunol Sciences	Broadband Antenna	JB3	A101808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
ETS	Horn Antenna	3115	003-6076	2016-12-02	2017-12-01
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726- 0113024	2014-06-16	2017-06-15
EMCO	Adjustable Dipole Antenna	3121C	9109-258	N/A	N/A
HP	Signal Generator	8648C	3623A04150	2016-05-23	2017-05-22
WILTRON	SWEPT FREQUENCY SYNTHESIZER	6737	213001	2016-05-23	2017-05-22
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2016-05-20	2017-05-19
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23
N/A	RF Cable (below 1GHz)	NO.1	N/A	2016-11-10	2017-11-09
N/A	RF Cable (below 1GHz)	NO.4	N/A	2016-11-10	2017-11-09
N/A	RF Cable (above 1GHz)	NO.2	N/A	2016-11-10	2017-11-09

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.5 °C
Relative Humidity:	41 %
ATM Pressure:	101 kPa

The testing was performed by Tom Tang on 2017-01-06.

EUT Operation Mode: Transmitting

Report No.: RDG161110006D-M1 Page 16 of 17

LTE Band IV (30MHz-18GHz):

Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Method			Absolute			
			S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	
QPSK, Frequency:1732.500 MHz									
244.32	Н	37.06	-77.1	0.0	0.3	-77.4	-13.0	64.4	
218.17	V	38.58	-73.7	0.0	0.2	-73.9	-13.0	60.9	
3465	Н	32.72	-63.8	8.8	1.3	-56.3	-13.0	43.3	
3465	V	33.64	-63	8.8	1.3	-55.5	-13.0	42.5	
5197.5	Н	31.93	-61.3	10.0	1.7	-53.0	-13.0	40.0	
5197.5	V	32.58	-60.5	10.0	1.7	-52.2	-13.0	39.2	

LTE Band 13 (30MHz-10GHz)

Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Method			Absolute			
			S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	
QPSK, Frequency: 782.000 MHz									
244.32	Н	37.69	-76.5	0.0	0.3	-76.8	-13.0	63.8	
218.17	V	39.45	-72.9	0.0	0.2	-73.1	-13.0	60.1	
1564	Н	34.72	-68.5	7.8	0.8	-61.5	-13.0	48.5	
1564	V	35.17	-67.2	7.8	0.8	-60.2	-13.0	47.2	
2346	Н	33.56	-66.1	8.7	1.3	-58.7	-13.0	45.7	
2346	V	34.32	-62.6	8.7	1.3	-55.2	-13.0	42.2	

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = SG Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

***** END OF REPORT *****

Report No.: RDG161110006D-M1 Page 17 of 17