CSC165H1: Problem Set 2 Due October 25 2017 before 10pm

- 1.(a) WTS: $\forall n \in \mathbb{N}^+$, $(n^2 + 3n + 2) > 1 \land \neg prime(n^2 + 3n + 2)$ Let $n \in \mathbb{N}^+$
 - since $n \in \mathbb{N}^+$, $n^2 + 3n + 2 > 2$ so $n^2 + 3n + 2 > 1$
 - To show ¬ $prime(n^2 + 3n + 2)$ is same to show $n^2 + 3n + 2 \le 1$ or $\exists d \in \mathbb{N}$, $d \mid (n^2 + 3n + 2) \land d \ne 1 \land d \ne (n^2 + 3n + 2)$. Since $n^2 + 3n + 2 > 1$ we want to show $\exists d \in \mathbb{N}$, $d \mid (n^2 + 3n + 2) \land d \ne 1 \land d \ne (n^2 + 3n + 2)$.

 Take d = n + 1 since $n \in \mathbb{N}^+$, so $d \in \mathbb{N}$ and $d \ne 1$ and $d \ne (n^2 + 3n + 2)$. Since $(n + 1)(n + 2) = n^2 + 3n + 2$, so $d \mid (n^2 + 3n + 2)$ ($n + 2 \in \mathbb{Z}$ since $n \in \mathbb{N}^+$). Hence we have proven ¬ $prime(n^2 + 3n + 2)$

We have proven $(n^2 + 3n + 2) > 1 \land \neg prime(n^2 + 3n + 2)$ as needed.

- (b) WTS: $\forall n \in \mathbb{N}^+$, $(n^2 + 6n + 5) > 1 \land \neg prime(n^2 + 6n + 5)$ Let $n \in \mathbb{N}^+$
 - since $n \in \mathbb{N}^+$, $n^2 + 6n + 5 > 5$ so $n^2 + 6n + 5 > 1$
 - To show ¬ $prime(n^2 + 6n + 5)$ is same to show $n^2 + 6n + 5 \le 1$ or $\exists d \in \mathbb{N}$, $d \mid (n^2 + 6n + 5)$ $\land d \ne 1 \land d \ne (n^2 + 6n + 5)$. Since $n^2 + 6n + 5 > 1$ we want to show $\exists d \in \mathbb{N}$, $d \mid (n^2 + 6n + 5)$ $\land d \ne 1 \land d \ne (n^2 + 6n + 5)$.

 Take d = n + 1 since $n \in \mathbb{N}^+$, so $d \in \mathbb{N}$ and $d \ne 1$ and $d \ne (n^2 + 6n + 5)$. Since $(n + 1)(n + 5) = n^2 + 6n + 5$, so $d \mid (n^2 + 6n + 5)$ $(n + 5 \in \mathbb{Z} \text{ since } n \in \mathbb{N}^+)$. Hence we have proven ¬ $prime(n^2 + 6n + 5)$

We have proven $(n^2 + 6n + 5) > 1 \land \neg prime(n^2 + 6n + 5)$ as needed.

$2.(a)WTS:\exists m \in l, \forall n \in l, n \geq m$

Construct a set $A = \{n \in \mathbb{N}^+ : n \in l \land n \leq a + b\}$

- Since $\exists x, y \in \mathbb{Z}$, a + b = ax + by, (x = 1, y = 1) and $a + b \in \mathbb{N}^+$ ($a, b \in \mathbb{N}$ and they are not both 0) , so $a + b \in l$, and A is not empty since it has element $a + b \cdot (a + b \le a + b)$
- Since $A = \{n \in \mathbb{N}^+ : n \in l \land n \le a + b\}$ A is a finite set of real numbers since there are finite positive natural numbers which is smaller than a + b

In all A is a non-empty, finite set of real numbers.

Since the fact that any non-empty, finite set of real numbers has a minimum element, A has a minimum element.

Take m be this minimum element. Since $m \in A$, so $m \in I$ Let $n \in I$. I am going to prove $n \ge m$ in two cases:

- $n \le a + b$, then $n \in A$ (since $n \in l \land n \le a + b$), thus $n \ge m$ since m is the minimum element of A.
- n > a + b, since $a + b \in A$, $so a + b \ge m$ (since m is the minimum element of A) we know n > a + b and $a + b \ge m$

We have proven $n \ge m$ as needed.

(b)WTS: $\forall k \in \mathbb{N}^+, km \in \mathbb{I}$, where m is introduced in 2(a). Let $k \in \mathbb{N}^+$

to show $km \in \mathbb{I}$ is to show $km \in \mathbb{N}^+$ and $\exists x, y \in \mathbb{Z}$, km = ax + by

- Since $k \in \mathbb{N}^+$ and $m \in \mathbb{N}^+$ so $km \in \mathbb{N}^+$
- Since $m \in I$, $\exists x_1, y_1 \in \mathbb{Z}$, $m = ax_1 + by_1$ let x_1, y_1 be that value.

Take $x=kx_1,y=ky_1$, since $k\in\mathbb{N}^+$, $x_1,y_1\in\mathbb{Z}$ so kx_1 , $ky_1\in\mathbb{Z}$ ax+by=a×k x_1 +b×k y_1 =k(a x_1 +b y_1)=km

we have proven $km \in \mathbb{N}^+$ and $\exists x, y \in \mathbb{Z}$, km = ax + by as needed.

(c)WTS: $\forall c \in l, \exists k \in \mathbb{Z}, c = km$, where m is introduced in 2(a).

We will prove this by contradiction.

Assume $\exists c \in l, \forall k \in \mathbb{Z}, c \neq km$

Since $c, m \in l$, so $c, m \in \mathbb{Z}^+$, thus according to the Quotient-Remainder Theorem, there exist $q, r \in \mathbb{Z}$ such that c=qm+r and $0 \le r < m$ also since $\forall k \in \mathbb{Z}, c \ne km$, so $r\ne 0$, so 0 < r < m.

Since $c, m \in l$, $\exists x_1, y_1 \in \mathbb{Z}, c = ax_1 + by_1, \exists x_2, y_2 \in \mathbb{Z}, m = ax_2 + by_2$, let x_1, x_2, y_1, y_2 be that value.

Since c=qm+r so $ax_1 + by_1 = q(ax_2 + by_2) + r$, hence $r = (x_1 - qx_2)a + (y_1 - qy_2)b$, since $x_1, y_1, x_2, y_2, q \in \mathbb{Z}$ so $(x_1 - qx_2), (y_1 - qy_2) \in \mathbb{Z}$ also since 0<r and $r \in \mathbb{Z}$ so $r \in \mathbb{N}^+$. Hence $r \in l$, therefore $r \ge m$ (since m is the minimum element of l). So we get a contradiction with 0<r<m

Hence we have proven $\forall c \in l, \exists k \in \mathbb{Z}, c = km$ as needed.

(d)WTS: $m|a \wedge m|b$,where a,b is introduced in the question and m is introduced in 2(a).

To show $m|a \land m|b$ is same to show $\exists k \in \mathbb{Z}, a = km \land \exists k \in \mathbb{Z}, b = km$ Since $a, b \in \mathbb{N}$, and they are not both 0. We can prove the statement in two cases: For a:

- a=0: take k=0,km=0=a, so m|a
- $a \neq 0$ so $a \in \mathbb{N}^+$. Take x=1,y=0,(they are both integers) so ax+by=a, hence $a \in I$ according to 2(c), we know that since $a \in I$, $\exists k \in \mathbb{Z}$, a = km, hence m|a.

For b:

- b=0: take k=0,km=0=b, so m|b
- b≠ 0 so b ∈ N⁺. Take x=0,y=1,(they are both integers) so ax+by=b, hence b ∈ l according to 2(c), we know that since b ∈ l, \exists k ∈ \mathbb{Z} , b = km, hence m|b.

Hence we have proven $m|a \wedge m|b$ as needed.

(e)WTS: $\forall n \in \mathbb{N}$, $n|a \land n|b \Rightarrow n|m$,where a,b is introduced in the question and m is introduced in 2(a).

Let $n \in \mathbb{N}$,

For n=0 :since $n|a \wedge n|b$ is false, $n|a \wedge n|b \Rightarrow n|m$ is true.

For $n \neq 0$:we assume $n \mid a \land n \mid b$, that is $\exists k_1 \in \mathbb{Z}$, $a = k_1 n$ and $\exists k_2 \in \mathbb{Z}$, $b = k_2 n$,

let k_1, k_2 be that value.

We want to show $\exists k \in \mathbb{Z}, m = kn$

Since $m \in I$, $\exists x, y \in \mathbb{Z}$, m = ax + by, let x,y be that value.

Take $k=k_1x+k_2y$, since $k_1,k_2,x,y\in\mathbb{Z}$ so $k\in\mathbb{Z}$

 $kn=(k_1x + k_2y)n = k_1x \times n + k_2y \times n=ax+by=m.$

Hence we have proven n|m as needed.

(f)WTS: $m|a \land m|b \land (\forall e \in \mathbb{N}, e|a \land e|b \Rightarrow e \leq m)$, where a,b is introduced in the question and m is introduced in 2(a).

We have proven $m|a \wedge m|b$ in 2(d)

We have proven $\forall e \in \mathbb{N}, e | a \land e | b \implies e | m \text{ in } 2(e)$

Since $e, m \in \mathbb{N}$ and e|m so $e \le m$

Hence $\forall e \in \mathbb{N}, e | a \land e | b \implies e \le m$

We have proven $m|a \land m|b \land (\forall e \in \mathbb{N}, e|a \land e|b \Rightarrow e \leq m)$ as needed, so m is the greatest common divisor of a and b. \blacksquare

(g)WTS: $\forall c \in \mathbb{Z}$, $(m = 1 \land a|bc) \Rightarrow (a|c)$,where a,b is introduced in the question and m is introduced in 2(a).

Let $c \in \mathbb{Z}$, we assume $m = 1 \land a | bc$

Since m=1 and $m \in I$, so $\exists x,y \in \mathbb{Z}$, ax + by = m = 1, let x,y be that value.

Since albc, so $\exists k_1 \in \mathbb{Z}$, $bc = k_1a$, let k_1 be that value.

We want to prove a|c, that is $\exists k \in \mathbb{Z}$, c = ka

Take
$$k = \frac{k_1}{h}$$
, since $\frac{k_1}{h} = k_1 \times \frac{1}{h} = k_1 \times \frac{ax + by}{h} = \frac{k_1 ax + k_1 by}{h} = \frac{bcx + k_1 by}{h} = cx + k_1 y$

Since c,x,y, $k_1 \in \mathbb{Z}$, so $cx + k_1y \in \mathbb{Z}$, hence $k \in \mathbb{Z}$

$$ka = \frac{k_1}{b}a = \frac{k_1a}{b} = \frac{bc}{b} = c$$

Hence we have proven a|c as needed■

3.WTS: $\forall n \in \mathbb{N}, \exists p \in P, p > n$

I will prove this by contradiction.

Assume that this statement is false, i.e., that there are finite numbers of P. Let $k \in \mathbb{N}$ be the number of elements of P, and let $p_1, p_2, p_3, \ldots, p_k$ be the elements.($p_1 < p_2 < p_3, \ldots < p_k$)

$$p_k$$
), so $p_1 = 3$

Our statement Q will be "for all $n \in \mathbb{N}$, n is prime and $n \equiv 3 \pmod{4}$ if and only if n is one of $\{p_1, p_2, p_3, \dots, p_k\}$

Define the number $p=4(\prod_{i=2}^k p_i)+3$, hence $p\equiv 3 \pmod 4$ (since $p_2\times p_3....\times p_k$ is an integer). Also $p\notin P$ since p is even bigger than p_k . Therefore p must not be a prime. So p is a composite number since p is not a prime and p is bigger than 1.

• I am going to prove: $\forall n \in \mathbb{N}$, $4 \mid n \Rightarrow n \nmid p$ by contradiction Let $n \in \mathbb{N}$, we assume $4 \mid n$ that is $\exists k \in \mathbb{Z}$, 4k = n, let k be that value. If $n \mid p$ that is $\exists a \in \mathbb{Z}$, na = p, let a be that value, so p = na = 4ak So $4(p_2 \times p_3 \dots \times p_k) + 3 = 4ak$ Hence $4(p_2 \times p_3 \dots \times p_k - ak) = -3$ Hence $p_2 \times p_3 \dots \times p_k - ak = -\frac{3}{4}$ and that is impossible since $p_2 \times p_3 \dots \times p_k - ak$ must be an integer, so we get a contradiction.

Hence we have proven $\forall n \in \mathbb{N}, 4 | n \Rightarrow n \nmid p$ as needed.

- I am going to prove: $\forall n \in \mathbb{N}, n \equiv 2 \pmod{4} \Rightarrow n \nmid p$ by contradiction Let $n \in \mathbb{N}$, we assume $n \equiv 2 \pmod{4}$ that is $\exists k \in \mathbb{Z}, 4k+2=n$, let k be that value. If $n \mid p$ that is $\exists a \in \mathbb{Z}, na = p$, let a be that value, so p = na = 4ka + 2a So $4(p_2 \times p_3 \dots \times p_k) + 3 = 4ak + 2a$ Hence $2(2 \times p_2 \times p_3 \dots \times p_k 2ak a) = -3$ Hence $2 \times p_2 \times p_3 \dots \times p_k 2ak a = -\frac{3}{2}$ and that is impossible since $2 \times p_2 \times p_3 \dots \times p_k 2ak a$ must be an integer, so we get a contradiction. Hence we have proven $\forall n \in \mathbb{N}, n \equiv 2 \pmod{4} \Rightarrow n \nmid p$ as needed.
- I am going to prove: \forall n ∈ \mathbb{N} , prime(n) \wedge n \equiv 3(mod 4) \Longrightarrow n ∤ p

 That is to prove p is divisable by one of $p_1, p_2, p_3, \ldots, p_k$ since for all n∈ \mathbb{N} , n is prime and n \equiv 3(mod 4) if and only if n is one of { $p_1, p_2, p_3, \ldots, p_k$ }.

 For $p_1 = 3$: this is impossible for otherwise 4($p_2 \times p_3, \ldots \times p_k$) is divisible by 3 while 3 ∤ 4 and p_2, p_3, \ldots, p_k are primes that is not equal to 3.

 For p_2, p_3, \ldots, p_k , this is also impossible for otherwise one of p_2, p_3, \ldots, p_k would divide P-4($p_2 \times p_3, \ldots \times p_k$) = 3, while all of p_2, p_3, \ldots, p_k is bigger than 3. Hence we have proven \forall n ∈ \mathbb{N} , prime(n) \wedge n \equiv 3(mod 4) \Longrightarrow n ∤ p as needed.

Since $\forall n \in \mathbb{N}, n \equiv 2 \pmod{4} \Rightarrow n \nmid p \text{ so } \forall n \in \mathbb{N}, \text{prime}(n) \land n \equiv 2 \pmod{4} \Rightarrow n \nmid p$ And $\forall n \in \mathbb{N}, 4 \mid n \Rightarrow n \nmid p$ And $\forall n \in \mathbb{N}, \text{prime}(n) \land n \equiv 3 \pmod{4} \Rightarrow n \nmid p$ And p is not a prime And the fact that any integer greater than 1 is a product of prime So p must be a product of prime $n_1, n_2 \dots n_t$ while $n_1 \equiv 1 \pmod{4} \land n_2 \equiv 1 \pmod{4} \land \dots \land n_t \equiv 1 \pmod{4}$ (tendal) $(t \in \mathbb{N}^+)$ According to the [modular multiplication] that says that the product of 2 or more numbers

(mod m) is congruent to the product of numbers congruent to them so $p \equiv 1 \pmod{4}$

But p=4($p_2 \times p_3 \dots \times p_k$)+3 ,hence p $\equiv 3 \pmod 4$, so we get a contradiction So what we assumed at first is false Hence we have proven $\forall n \in R, |P| > n$ as needed

4.(a)WTS:
$$\exists n_0 \in \mathbb{R}^{\geq 0}$$
, $\forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq f(n)$
Take $n_0 = 1000$, since $1000 \in \mathbb{R}^{\geq 0}$ so $n_0 \in \mathbb{R}^{\geq 0}$
Let $n \in \mathbb{N}$, we assume $n \geq n_0 = 1000$, we want to show $g(n) \leq f(n)$, that is $2n + 1650 \leq 0.5n^2$
 $2n + 1650 < 250n + 250000 \quad (n \in \mathbb{N})$
≤ $0.25n^2 + 0.25n^2 \quad (n \geq n_0 = 1000 \text{ and } n \in \mathbb{N})$
= $0.5n^2$
Hence we have shown $g(n) \leq f(n)$ as needed ■

(b) WTS: $\forall a,b \in \mathbb{R}^{\geq 0}$, $\exists n_0 \in \mathbb{R}^{\geq 0}$, $\forall n \in \mathbb{N}, n \geq n_0 \Longrightarrow g(n) \leq f(n)$ Let $a,b \in \mathbb{R}^{\geq 0}$

Take $n_0=\max\{4a,2\sqrt{b}\}$, since $a,b\in\mathbb{R}^{\geq 0}$, so $4a,2\sqrt{b}\in\mathbb{R}^{\geq 0}$, so $n_0\in\mathbb{R}^{\geq 0}$ Let $n\in\mathbb{N}$, we assume $n\geq n_0$, we want to prove $g(n)\leq f(n)$ that is an+b $\leq 0.5n^2$ Since $n_0=\max\{4a,2\sqrt{b}\}$ and $n\geq n_0$ this implies:

- $n \ge 4a$, so $n^2 \ge 4a \times n$ since $n \ge n_0 \ge 0$ hence $0.25n^2 \ge an$
- $n \ge 2\sqrt{b}$, so $n^2 \ge 4b$ since $n \in \mathbb{N}$ and $2\sqrt{b} \ge 0$ hence $0.25n^2 \ge b$ In all $0.25n^2 + 0.25n^2 \ge an + b$, that is $an + b \le 0.5n^2$ Hence we have shown $g(n) \le f(n)$ as needed \blacksquare