Листок 3

Сводимость, трудность и полнота.

Сперва определим понятие сводимости: язык L в общем смысле сводится к языку L', если существует функция $f: \Sigma^* \to \Sigma^*$ такая, что $x \in L$ тогда и только тогда, когда $f(x) \in L'$.

Такая общая сводимость совершенно неинтересна, для получения каких-то результатов на функцию f накладывают ограничения. В курсе ТФСиА функция f должна была быть вычислимой. Самая важная для нашего курса сводимость — полиномиальная m-сводимость или сводимость по Карпу.

Сводимость по Карпу

Говорят, что язык L_1 сводится к языку L_2 по Карпу (символ \leq_m^p или \leq_p), если функция сводимости полиномиально вычислима. Точнее $L_1 \leq_p L_2$ тогда и только тогда, когда существует $f: \Sigma^* \to \Sigma^*$, полиномиально вычислимая некоторым алгоритмом, что $x \in L_1$ эквивалентно $f(x) \in L_2$.

Формально $L_1 \leqslant_p L_2$:

- существует функция f, вычислимая некоторой MT за полиномиальное время: т.е. на входе $y \in \{0,1\}^*$ MT останавливается за p(|y|) в состоянии q_{halt} , на ленте после останова написано f(y);
 - если $x \in L_1$, то $f(x) \in L_2$;
 - если $x \notin L_1$, то $f(x) \notin L_2$;

Символ m в сводимости отсылает к названию: «many-to-one» reduction, сводимость нескольких к одному. Название подчеркивает: функция сводимости вполне может не быть взаимно однозначной.

Трудность и полнота

Рассмотрим произвольный класс сложности \mathcal{C} , некоторую сводимость и некоторый язык L.

Если любой язык $L' \in \mathcal{C}$ сводится к L, то, умея разрешать L, мы умеем разрешать любой язык из \mathcal{C} : сперва преобразуем вход с помощью функции f, затем проверим принадлежность f(x) языку L.

В некотором смысле задача распознавания L не проще, чем любая задача распознавания из \mathcal{C} : научившись решать L, мы можем разрешить и класс \mathcal{C} . В этом случае сводимость становится отношением порядка, а язык L становится «трудным» языком для класса \mathcal{C} (по-русски ближе по смыслу было бы сказать «не лёгким»).

Если любой язык $L' \in \mathcal{C}$ сводится к L, то L называют \mathcal{C} -трудным или \mathcal{C} -hard относительно заданной сводимости.

Если любой язык $L' \in \mathcal{C}$ сводится к L и $L \in \mathcal{C}$, то L называют \mathcal{C} -полным или \mathcal{C} -соmplete относительно заданной сводимости.

_

 $(co-)\mathcal{NP}$ -полнота.

Класс \mathcal{NPC} он же класс \mathcal{NP} -complete – это класс языков, полных для \mathcal{NP} относительно полиномиальной сводимости.

 $L \in \mathcal{NP}$ -hard если:

 $\forall L' (L' \in \mathcal{NP} \Rightarrow L' \leqslant_p L)$

 $L \in \mathcal{NPC}$ если:

- 1) $L \in \mathcal{NP}$,
- 2) $\forall L' (L' \in \mathcal{NP} \Rightarrow L' \leqslant_p L)$

 $L \in \text{co} \mathcal{NPC}$ если:

- 1) $L \in \operatorname{co} \mathcal{NP}$,
- 2) $\forall L' (L' \in \operatorname{co} \mathcal{NP} \Rightarrow L' \leq_p L)$

Существование хотя бы одного \mathcal{NP} -полного языка неочевидно из определения, тем не менее, они существуют. Теорема Кука-Левина утверждает, что задача о выполнимости булевой функции SAT является \mathcal{NP} -полной.

Описание некоторых \mathcal{NP} -полных задач.

CNF-SAT, она же КНФ-выполнимость: дана КНФ, есть ли набор переменных, выполняющих формулу? Соответствующий язык – язык все выполнимых КНФ.

N-CNF-SAT: дана $KH\Phi$, в которой в каждый дизъюнкт входит ("не более" либо "ровно" в зависимости от источника, будем считать, что ровно) n переменных — есть ли набор переменных, выполняющий $KH\Phi$? $n\geqslant 3$. Соответствующий язык — язык все выполнимых $KH\Phi$ с указанным ограничением на размер дизъюнкта.

СLIQUE, она же Клика: дан неориентированный граф G и натуральное число k, есть ли в G клика (полный подграф) на k вершинах? Соответствующий язык: язык пар (G,k) таких, что в графе G есть клика размера k.

INDSET, она же НЕЗАВИСИМОЕ МНОЖЕСТВО: дан неориентированный граф G и натуральное число k, есть ли в G независимое множество вершин (никакие две не соединены ребром – ещё его называют антикликой) размера k? Соответствующий язык: язык пар (G,k) таких, что в графе G есть антиклика размера k.

VCOVER, она же ВЕРШИННОЕ ПОКРЫТИЕ: дан неориентированный граф G и натуральное число k, если ли в G вершинное покрытие (подмножество вершин таких, что каждое ребро графа инцидентно по крайней мере одной вершине множества) из k вершин? Соответствующий язык: язык пар (G,k) таких, что в графе G есть вершинное покрытие размера k.

НАМСУСЬЕ, она же ГАМИЛЬТОНОВ ГРАФ: дан неориентированный граф G, есть ли в нём гамильтонов цикл? Соответствующий язык: язык графов, содержащих граф с гамильтоновым циклом.

НАМРАТН, она же ГАМИЛЬТОНОВ ПУТЬ: дан неориентированный граф G, есть ли в нём гамильтонов путь? Соответствующий язык: язык графов, содержащих граф с гамильтоновым путём.

Соlor, она же Хроматическое число: даны неориентированный граф G и натуральное число k, можно ли раскрасить вершины G в k цветов так, чтобы смежные вершины были окрашены в разные цвета? Соответствующий язык: язык пар (G,k) таких, что граф G можно правильно

раскрасить в k цветов.

N-Color: дан неориентированный граф G, можно ли раскрасить вершины G в n цветов так, чтобы смежные вершины были окрашены в разные цвета? $n \geqslant 3$. Соответствующий язык: язык графов, которые можно правильно раскрасить в n цветов.

РАRTITION, она же РАЗБИЕНИЕ: дано множество S, состоящее из n натуральных чисел, существуют ли подмножества A и B такие, что $A \cap B = \emptyset$, $A \cup B = S$ и

$$\sum_{a \in A} a = \sum_{b \in B} b?$$

Соответствующий язык: язык всех множеств S, удовлетворяющих указанным требованиям.

N–PARTITION: дано натуральное число m и множество S, состоящее из mn натуральных чисел, существует ли разбиение S на m непересекающихся множеств, в каждом из которых будет по n чисел, таких, что суммы чисел в каждом множестве равны? $n \geqslant 3$

Subset sum, она же Рюкзак: дано множество натуральных чисел S и натуральное число t, есть ли в S подмножество, сумма элементов которого равна t? Соответствующий язык: язык всех пар (S,t) таких, что в S существует подмножество, сумма элементов которого равна t

НІТТІNG SET, она же ПРОТЫКАЮЩЕЕ МНОЖЕСТВО: дано семейство конечных множеств $\{A_1,\ldots,A_m\}$ и натуральное число k, существует ли множество мощности k, пересекающее каждое A_i ?

и много, много других ...

Поиск и распознавание.

Большому количеству \mathcal{NPC} задач и, соответственно, \mathcal{NPC} языков соответствуют задачи поиска. Приведём пример:

 $CLIQUE = \{(G, k) \mid G \text{ содержит клику размера } k\}$ — задача распознавания и одновременно язык. Дана пара (G, k), выясним «да, принадлежит» или «нет, не принадлежит».

EXACTCLIQUE = $\{(G, k) \mid G \text{ содержит клику размера } k$ и не содержит клику размера $k+1\}$ – тоже задача распознавания и одновременно язык. Дана пара (G, k), выясним «да, принадлежит» или «нет, не принадлежит».

MaxSizeOfClique(G) = k — задача поиска, на вход подаётся граф G, на выходе нужно получить размер макисмальной клики в графе G — число k.

MAXCLIQUE(G) = G' — задача поиска, на вход подаётся граф G, на выходе нужно получить клику максимального размера, являющуюся подграфом G — назовём её G'.

Заметим, CLIQUE – это язык (либо предикат), MAXCLIQUE – это не язык, это функция, которая может быть вычислена некоторым алгоритмом.

Задачи

Задача 3.0: Снова не задача:

Пусть $L_1 \leqslant_p L_2$

- 1) доказать, что если $L_2 \in \mathcal{P}$, то $L_1 \in \mathcal{P}$,
- 2) доказать, что если $L_2 \in \mathcal{NP}$, то $L_1 \in \mathcal{NP}$,

Задача 3.1:

- 1) Верно ли, что если $L \in \mathcal{NPC}$ и $L \in \text{co}\mathcal{NP}$, то $\mathcal{NP} = \text{co}\mathcal{NP}$?
- 2) Верно ли, что если $L \in \mathcal{NP}$ и $L \in \text{co} \mathcal{NPC}$, то $\mathcal{NP} = \text{co} \mathcal{NP}$?
- 3) Верно ли, что язык $L \in \mathcal{NPC}$ тогда и только тогда, когда $\overline{L} \in \text{co} \mathcal{NPC}$?
- 4) Доказать, что если $\mathcal{P} = \mathcal{NP}$, то любой нетривиальный язык \mathcal{NP} -трудный. (Что насчет тривиальных языков?)
 - 5) Верно ли, что если $L_1 \leqslant_p L_2$, то $\overline{L}_1 \leqslant_p \overline{L}_2$?

Задача 3.2 (видимо, $\mathcal{P} = \mathcal{N}\mathcal{P}$?):

По аналогии с обычной SAT определим задачу DNF–SAT: дана ДНФ, нужно проверить, выполнима ли она (т.е. дан язык всех выполнимых ДНФ, нужно построить распознаватель для него)

- 1) Придумать полиномиальный алгоритм решения DNF-SAT (это очень просто).
- 2) Построим сводимость CNF-SAT к DNF-SAT: в формуле КНФ раскрываем скобки в силу дистрибутивности операций конъюнкции и дизъюнкции. Доказать корректность сводимости.
- 3) Поскольку мы свели \mathcal{NP} -полную задачу к полиномиально разрешимой, то $\mathcal{P} = \mathcal{NP}$. Есть ли ошибка в рассуждениях?

Задача 3.3 (ну теперь-то $\mathcal{P} = \mathcal{NP}$?):

Построим алгоритм для Subset sum:

Возьмём массив $S[1\dots n]$ и число T, для каждого значения $1\leqslant i\leqslant n$ и каждого значения $0\leqslant t\leqslant T$ определим функцию

$$Subsum(i,t) = \begin{cases} \text{True}, & \text{если некоторое подножество массива } S[i\dots n] \text{ имеет сумму } t, \\ \text{False}, & \text{иначе}. \end{cases}$$

Нам нужно вычислить Subsum(1,T), воспользуемся стандартным трюком динамического программирования:

$$Subsum(i,t) = \begin{cases} \text{True}, & \text{если } t = 0 \text{ или } i = n, t = S[n], \\ \text{False}, & \text{если } t < 0 \text{ или } i > n, \\ Subsum(i+1,t) \vee Subsum(i+1,t-S[i]), & \text{иначе}. \end{cases}$$

Нам нужно вычислить Subsum(1,T).

- 1) Корректен ли алгоритм, решающий SUBSET SUM? Всего возможны nT значений для нетривиального вычисления функции, так что мы можем вычислять функцию рекурсивно и записывать результаты в таблицу размера $n \times T$. Каждое следующее значение элементарно выражается через предыдущие.
 - 2) Оценить сложность алгоритма. Верно ли, что общая сложность алгоритма есть O(nT)?
- 3) Поскольку алгоритм полиномиален, а задача Subset sum \mathcal{NP} -полна, то \mathcal{P} = \mathcal{NP} . Есть ли ошибка в рассуждениях?

Задача 3.4 (есть что-то особое в цифре 2):

Описать полиномиальные алгоритмы для решения задач:

- a) 2-Partition
- б) 2-Color
- в) 2–SAT

Задача 3.5:

Построить полиномиальную сводимость:

- а) НАМРАТН к НАМСУСЬЕ
- б) НАМСУСЬЕ К НАМРАТН

Задача 3.6:

Мы рассматривали неориентированные графы на гамильтоновость. Рассмотрим теперь гамильтоновы ориентированные графы. Всюду приставка DIR означает ориентированность графа.

Построить полиномиальную сводимость:

- а) Намратн к DirHampath
- б) DIRHAMPATH к НАМРАТН

Можете повторить то же самое для циклов.

Задача 3.7: где начинается сложность?:

Для каждого натурального k определим язык K–CLIQUE всех графов, в которых есть клика размера k.

- 1) Язык 1-CLIQUE полиномиален?
- 2) Язык 2-CLIQUE полиномиален?
- 3) Язык 3-CLIQUE полиномиален?
- 4?) Для каких k язык K-CLIQUE \mathcal{NP} -полон?
- ???) Известно, что CLIQUE $\in \mathcal{NPC}$, но из входа (G,k) можно сперва выделить k, а затем запустить алгоритм решения соответствующего K-CLIQUE. Как тогда может быть, что CLIQUE $\in \mathcal{NPC}$?

Задача 3.8: Простые сводимости

Доказать, что следующие языки/задачи принадлежат \mathcal{NPC} .

- 1) Графы, имеющие клику ровно на половине вершин.
- 2) Графы, имеющие вершинное покрытие ровно на половине вершин.
- 3) Дан граф G и число k, существует ли простой путь в графе G длины как минимум k?
- 4) Дан граф G, есть ли в нём простой путь, проходящий ровно по разу через все, кроме 2023 вершин?
 - 5) Дан граф G, есть ли в нём остовное дерево со степенью всех вершин не более 42?

Задача 3.9:

Напомним, задача останова НАІТ неразрешима.

- 1) Верно ли, что НАLT $\in \mathcal{NPC}$?
- 2) Верно ли, что HALT $\in \mathcal{NP}$ -hard?

Задача 3.10:

Замкнут ли \mathcal{NPC} относительно:

- а) объединения,
- б) пересечения,
- в) конкатенации,
- г) итерации (звёздочки Клини)?
- д) Если $L_1 \in \mathcal{NPC}$ и $L_2 \in \mathcal{NPC}$, то верно ли, что $L_1 \times L_2 \in \mathcal{NPC}$?