In [20]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [21]:

```
sales_df = pd.read_csv(r"C:\Users\Maj Mortuza\Downloads\IceCreamData.csv")
sales_df
```

Out[21]:

	Temperature	Revenue
0	24.566884	534.799028
1	26.005191	625.190122
2	27.790554	660.632289
3	20.595335	487.706960
4	11.503498	316.240194
495	22.274899	524.746364
496	32.893092	755.818399
497	12.588157	306.090719
498	22.362402	566.217304
499	28.957736	655.660388

500 rows × 2 columns

In [22]:

```
sales_df.head(10)
```

Out[22]:

	Temperature	Revenue
0	24.566884	534.799028
1	26.005191	625.190122
2	27.790554	660.632289
3	20.595335	487.706960
4	11.503498	316.240194
5	14.352514	367.940744
6	13.707780	308.894518
7	30.833985	696.716640
8	0.976870	55.390338
9	31.669465	737.800824

In [23]:

sales_df.tail(10)

Out[23]:

	Temperature	Revenue
490	23.824922	584.399945
491	34.472169	809.352519
492	23.056214	552.819351
493	14.931506	377.430928
494	25.112066	571.434257
495	22.274899	524.746364
496	32.893092	755.818399
497	12.588157	306.090719
498	22.362402	566.217304
499	28.957736	655.660388

In [24]:

```
sales_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 2 columns):

Column Non-Null Count Dtype
--- ----0 Temperature 500 non-null float64
1 Revenue 500 non-null float64

dtypes: float64(2)
memory usage: 7.9 KB

In [25]:

```
sales_df.describe()
```

Out[25]:

	Temperature	Revenue
count	500.000000	500.000000
mean	22.232225	521.570777
std	8.096388	175.404751
min	0.000000	10.000000
25%	17.122258	405.558681
50%	22.392791	529.368565
75%	27.740674	642.257922
max	45.000000	1000.000000

In [26]:

```
sales_df.mean()
```

Out[26]:

Temperature 22.232225 Revenue 521.570777

dtype: float64

In [27]:

```
sales_df.max()
```

Out[27]:

Temperature 45.0 Revenue 1000.0

dtype: float64

In [30]:

```
sns.scatterplot(x = 'Temperature', y = 'Revenue', data = sales_df)
```

Out[30]:

<Axes: xlabel='Temperature', ylabel='Revenue'>

In [18]:

```
plt.figure(figsize = (15, 10))
sns.regplot(x = 'Temperature', y = 'Revenue', data = sales_df)
```

Out[18]:

<Axes: xlabel='Temperature', ylabel='Revenue'>

In [31]:

```
#To eveluate the model, test & train the dataset
X = sales_df['Temperature']
y = sales_df['Revenue']
```

In [32]:

```
#Convert x & y into numpy array
X = np.array(X)
y = np.array(y)
```

In [35]:

```
#Reshape the subsets
X = X.reshape(-1, 1)
print(X.shape)

y = y.reshape(-1, 1)
print(y.shape)
```

```
(500, 1)
(500, 1)
```

```
In [36]:
#Split data into train and test for 80% and 20% respectively
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.2)
In [37]:
X_train.shape
Out[37]:
(400, 1)
In [38]:
y_train.shape
Out[38]:
(400, 1)
In [39]:
X_test.shape
Out[39]:
(100, 1)
In [40]:
y_test.shape
Out[40]:
(100, 1)
In [41]:
#Train the dataset
from sklearn.linear_model import LinearRegression
SimpleLinearRegression = LinearRegression(fit_intercept = True)
SimpleLinearRegression.fit(X_train, y_train)
Out[41]:
```

LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [45]:

```
print('Linear Model Coeff(m)', SimpleLinearRegression.coef_)
print('Linear Model Coeff(b)', SimpleLinearRegression.intercept_)
```

Linear Model Coeff(m) [[21.43896001]]
Linear Model Coeff(b) [44.7200979]

In [55]:

```
#Evaluate the model

plt.scatter(X_train, y_train, color = 'gray')
plt.plot(X_train, SimpleLinearRegression.predict(X_train), color = 'red')
plt.ylabel('Revenue [$]')
plt.xlabel('Temperature [degC]')
plt.title('Revenue vs Temperature')
```

Out[55]:

Text(0.5, 1.0, 'Revenue vs Temperature')

In [57]:

```
accuracy_LinearRegression = SimpleLinearRegression.score(X_test, y_test)
accuracy_LinearRegression
```

Out[57]:

0.9839719651993599

In [59]:

```
#Now apply it to test data

plt.scatter(X_test, y_test, color = 'gray')
plt.plot(X_test, SimpleLinearRegression.predict(X_test), color = 'red')
plt.ylabel('Revenue [$]')
plt.xlabel('Temperature [degC]')
plt.title('Revenue vs Temperature')
```

Out[59]:

Text(0.5, 1.0, 'Revenue vs Temperature')

In [63]:

```
#Using the trained model to generate predictions

Temp = np.array([20])
Temp = Temp.reshape(-1, 1)

Revenue = SimpleLinearRegression.predict(Temp)
print('Revenue Predictions =', Revenue)
```

Revenue Predictions = [[473.49929806]]