Numerische Mathematik 1. Übungsserie

Name: Maurice Wenig

Aufgabe 1.1:

1 00 00	entspricht: $(-1)^0 \cdot \frac{0}{2^2} \cdot 2^{1-1}$	=0
0 00 00	entspricht: $(-1)^0 \cdot \frac{0}{2^2} \cdot 2^{1-1}$	=0
0 00 01	entspricht: $(-1)^0 \cdot \frac{1}{2^2} \cdot 2^{1-1}$	= 0.25
0 00 10	entspricht: $(-1)^0 \cdot \frac{2}{2^2} \cdot 2^{1-1}$	= 0.5
0 00 11	entspricht: $(-1)^0 \cdot \frac{3}{2^2} \cdot 2^{1-1}$	= 0.75
0 01 00	entspricht: $(-1)^0 \cdot (1 + \frac{0}{2^2}) \cdot 2^{1-1}$	= 1
0 01 01	entspricht: $(-1)^0 \cdot (1 + \frac{1}{2^2}) \cdot 2^{1-1}$	= 1.25
	entspricht: $(-1)^0 \cdot (1 + \frac{2}{2^2}) \cdot 2^{1-1}$	= 1.5
0 01 11	entspricht: $(-1)^0 \cdot (1 + \frac{3}{2^2}) \cdot 2^{1-1}$	= 1.75
0 10 00	entspricht: $(-1)^0 \cdot (1 + \frac{0}{2^2}) \cdot 2^{2-1}$	=2
0 10 01	entspricht: $(-1)^0 \cdot (1 + \frac{1}{2^2}) \cdot 2^{2-1}$	= 2.5
0 10 10	entspricht: $(-1)^0 \cdot (1 + \frac{2}{2^2}) \cdot 2^{2-1}$	=3
0 10 11	entspricht: $(-1)^0 \cdot (1 + \frac{3}{2^2}) \cdot 2^{2-1}$	= 3.5

Aufgabe 1.2:

```
package skripte;
    2 import java.lang.Math;
   4 class Main {
                                           static int getSingleP() {
   5
                                                                     float x=0.5f;
   6
                                                                     int p=0;
                                                                     while (1f + x != 1f) {
                                                                                             x/=2;
   9
                                                                                             ++p;
10
12
                                                                    return p;
13
                                           static int getDoubleP() {
14
                                                                    double x=0.5;
                                                                    int p=0;
16
                                                                     while (1d + x != 1d) {
17
                                                                                            x/=2;
18
                                                                                            +\!\!+\!\!p;
19
20
                                                                     return p;
                                           static int getSingleR() {
                                                                   int e=1;
24
                                                                    int r=1;
25
                                                                     while (1 f/(float) Math.pow(2, e) != 0) {
26
                                                                                             e = 2 * e + 1;
                                                                                             ++r;
28
                                                                    }
29
                                                                    return r;
30
                                          }
31
                                           static int getDoubleR() {
33
                                                                   int e=1;
                                                                     int r=1;
                                                                     while (1d/Math.pow(2, e) != 0) {
35
36
                                                                                             e = 2 * e + 1;
                                                                                             +\!\!+\!\!r;
37
                                                                     }
38
                                                                    return r;
39
40
                                          public static void main(String[] args) {
41
                                                                     System.out.printf("Single: p=\%d, r=\%d \setminus nDouble: p=\%d, r=\%d \setminus n", getSingleP(), getSingleR(), r=\%d \setminus n", r=\%
                                              getDoubleP(), getDoubleR());
43
44 }
```

Name: Maurice Wenig

Aufgabe 1.3:

(a) Sei $S \in \mathbb{R}^n$ eine Orthonormalbasis aus Eigenvektoren von A^TA , sodass $S^TA^TAS = D$ eine Diagonalmatrix aus Eigenwerten $\lambda_1, \ldots, \lambda_n$ von A^TA ist (Spektralsatz). Weiterhin sei x = Sy, $x, y \in \mathbb{R}^n$.

$$||A||_{2}^{2} = (\max_{||x||_{2}=1} ||Ax||_{2})^{2} = \max_{||Sy||_{2}=1} \langle ASy|ASy \rangle = \max_{||y||_{2}=1} \langle S^{T}A^{T}ASy|y \rangle = \max_{||y||_{2}=1} \sum_{i=1}^{n} \lambda_{i}y_{i}^{2}$$

Diese Summe ist maximal mit $y = e_i =: e_{max}$, mit $i \in \{1, ..., n\}$, sodass $\lambda_i = \lambda_{max} := \max_{i \in \{1, ..., n\}} \lambda_i$:

$$\sum_{i=1}^{n} \lambda_i y_i^2 \le \sum_{i=1}^{n} \lambda_{max} y_i^2 = \lambda_{max} \|y\|_2^2 = \lambda_{max}$$

$$\sum_{i=1}^{n} \lambda_i e_{max_i}^2 = \lambda_{max}$$

$$\implies \|A\|_2 = \sqrt{\lambda_{max}}$$

(b)

$$\begin{split} \|A\|_{\infty} &= \max_{x \in \mathbb{R}^n, \|x\|_{\infty} = 1} \|Ax\|_{\infty} \\ &= \max_{x \in \mathbb{R}^n, \|x\|_{\infty} = 1} \left\| \sum_{i=1}^n \begin{pmatrix} A_{1,j} x_j \\ A_{2,j} x_j \\ \vdots \\ A_{m,j} x_j \end{pmatrix} \right\|_{\infty} \\ &= \max_{x \in \mathbb{R}^n, \|x\|_{\infty} = 1} \left(\max_{i \in \{1, \dots, m\}} \left| \sum_{j=1}^n A_{i,j} x_j \right| \right) \\ &= \max_{i \in \{1, \dots, m\}} \left(\max_{x \in \mathbb{R}^n, \|x\|_{\infty} = 1} \left| \sum_{j=1}^n A_{i,j} x_j \right| \right) \\ &\stackrel{\text{(1)}}{=} \max_{i \in \{1, \dots, m\}} \sum_{j=1}^n |A_{i,j}| \\ &\stackrel{\text{(1)}}{=} \max_{i \in \{1, \dots, m\}} \sum_{j=1}^n |A_{i,j}| \end{aligned}$$

(1)
$$\sum_{i=1}^{n} A_{i,j} x_j$$
 ist maximal mit $x_j = \frac{|A_{i,j}|}{A_{i,j}}$, da $\forall j \in \{1, \dots, n\} : |x_j| \le 1$

Aufgabe 1.4:

(a) Sei L > 0 die Lipschitz-Konstante.

$$\forall x \in [a,b] \ \forall \epsilon > 0 \ \exists \delta(\epsilon,x) = \frac{\epsilon}{L} \ \forall y \in [a,b] : \|f(x) - f(y)\| \ge \epsilon \implies \|x - y\| \cdot L \ge \epsilon \implies \|x - y\| \ge \delta(\epsilon,x)$$

$$\implies f \text{ ist stetig in } [a,b].$$

Falls L = 0, dann $\forall x, y \in [a, b] : ||f(x) - f(y)|| = 0$ $\implies f$ ist stetig in [a, b].