Multinomial Regression

Adam J Sullivan, PhD 04/02/2018

3/31/2018 Multinomial Regression

Multinomial Regression

Multinomial

Many times our data is not just in a success or failure format. For example in the Physicians' Health Study the primary cardiovascular endpoint was:

· : No Cardiovascular Disease

· : Myocardial Infarction

· : Stroke

· : Other CV Death

What Is Different than Logistic?

- We may not want to just focus on successes and failures but all of the categories.
- Instead of a binomial distribution like in logistic regression we have a multinomial distribution.

The Multinomial Distribution

- The is a generalization of the binomial distribution.
 - The binomial distribution had n independent trials and each trial had 2 outcomes, Success and Failure.
 - In the Multinomial there are r outcomes for each of the n trials. and each outcome has probability p_1, \ldots, p_r of occurring $(p_1 + \cdots p_r = 1)$.

The Multinomial Distribution

- Let N_i denote a count of the number of type i outcomes in the n trials, $i=1,2,\ldots,r$.
- · For the joint function we are concerned with a sequence of trials that gives us $N_1=n_1,\ldots,n_r=n_r$ which occurs with probability $p_1^{n_1}\cdots p_r^{n_r}$.
- The number of ways to order n outcomes is

$$\binom{n}{n_1\cdots n_r}=rac{n!}{n_1!\cdots n_r!}$$

thus the joint PMF is

$$p(n_1,\ldots,n_r)=inom{n}{n_1\cdots n_r}p_1^{n_1}\cdots p_r^{n_r}$$

Further About the Categories

- This looks very much like the binomial distribution with the exception that there are more categories a subject can be in.
- We have two situations that can come from this data and that informs how we analyze it. We can have
 - Nominal Categories
 - Ordinal Categories

Types of Regressions

- With these types of categories we will proceed with 2 types of multinomial regressions:
 - Baseline Category Logit
 - Adjacent Category Logit
 - Proportional-Odds Cumulative Logit

Baseline Category Logit

- If you recall in logistic regression we have 2 probabilities:
 - π_1 : Probability of having a success.
 - π_0 : Probability of having a failure.

Baseline Category Logit

· We then run our logistic regression as

$$\logigg(rac{\pi_1}{\pi_0}igg) = logit(\pi_1) = eta_0 + eta_1 x_1 + \dots + eta_k x_k$$

- · With baseline category logit we have multiple probabilities:
 - π_1 : Probability of being in category 1.
 - π_2 : Probability of being in category 2.
 - -
 - π_J : probability of being in category J.

How Do we Do It?

We first pick category J to be our baseline, we then proceed to fit J-1 logistic regressions simultaneously:

$$\log\left(\frac{\pi_1}{\pi_J}\right) = \alpha_1 + \beta_{1,1}x_1 + \dots + \beta_{k,1}x_k$$

$$\log\left(\frac{\pi_2}{\pi_J}\right) = \alpha_2 + \beta_{1,2}x_1 + \dots + \beta_{k,2}x_k$$

$$\vdots$$

$$\log\left(\frac{\pi_{J-1}}{\pi_J}\right) = \alpha_{J-1} + \beta_{1,J-1}x_1 + \dots + \beta_{k,J-1}x_k$$

Interpreting?

- · We then can interpret the odds ratios exactly as we have before.
- The only difference is that this time it is not odds of having outcome vs not having the outcome but being in a particular category vs category J.

Comparisons of Any Pair of Categories

• We can then take any 2 categories, say a and b and find a logit function to compare them:

$$egin{align} \log\left(rac{\pi_a}{\pi_b}
ight) &= \log\left(rac{rac{\pi_a}{\pi_J}}{rac{\pi_b}{\pi_J}}
ight) \ &= \log\left(rac{\pi_a}{\pi_J}
ight) - \log\left(rac{\pi_b}{\pi_J}
ight) \ &= (lpha_a - lpha_b) + (eta_{1,a} - eta_{1,b})\,x_1 + \dots + (eta_{k,a} - eta_{k,b})\,x_k \ \end{pmatrix}$$

An Example

- We begin with an example from The General Social Surveys (1991).
- · Among the questions asked to American citizens were questions regarding beliefs in an after life.
- The table below displays the data for this:

RACE	SEX	BELIEF I	N AFTERLIFE N AFTERNIBECIDED	NO
WHITE	Female	372 S	ANDECIDED	OK4
	Male	250	45	71
Black	Female	64	9	15
	Male	252	5	13

We can read this data into R:

```
after.life <- read.table("after_life.csv", header=TRUE, sep=",")

after.life$race <- factor(after.life$race, levels = c(0,1), labels=c("Black", "White"))

after.life$sex <- factor(after.life$sex, levels = c(0,1), labels=c("Male", "Female"))

after.life$belief <- factor(after.life$belief, levels = c(2,1,3),

labels=c("Undecided","Yes", "No"))
```

Our Model

Then we can fit a baseline category logit model:

	ESTIMATE	ODDS RATIO	95% CI OF OR	P-VALUE
(Intercept):1	-0.714	0.49	(0.24 , 0.999)	0.0498
(Intercept):2	0.926	2.524	(1.559, 4.087)	0.0002
raceWhite:1	0.234	1.263	(0.629 , 2.538)	0.5118
raceWhite:2	0.306	1.358	(0.849, 2.173)	0.2022
sexFemale:1	0.091	1.096	(0.675, 1.778)	0.7109
sexFemale:2	0.405	1.5	(1.071, 2.099)	0.0183

What Do We See?

- We can see that very little is significant here.
- However we will interpret one value that is significant: sexFemale:2, We can
 use the table for the odds ratio and find that for people of the same race
 females have 50% higher odds of "undecided" vs "no" on after life beliefs than
 males do.

Adjacent Category Logit

- · When we have ordinal data we can use different methods than before.
- · One of those methods is called adjacent category logits.
- In this case we can assume that our outcome has r levels which are ordered.

Adjacent Category Logit

Then we set out to compare the probabilities of

- outcome 1 vs outcome 2
- · outcome 2 vs outcome 3
- · outcome 3 vs outcome 4
- •
- outcome r-1 vs outcome r

Our Logits

This would then lead to the following logits:

$$L_1 = \log\left(rac{\pi_1}{\pi_2}
ight) = lpha_1 + eta_{1,1} x_1 + \dots + eta_{k,1} x_k$$
 $L_2 = \log\left(rac{\pi_2}{\pi_3}
ight) = lpha_2 + eta_{1,2} x_1 + \dots + eta_{k,2} x_k$
 $dots$
 \vdots
 $L_{r-1} = \log\left(rac{\pi_{r-1}}{\pi_r}
ight) = lpha_{r-1} + eta_{1,r-1} x_1 + \dots + eta_{k,r-1} x_k$

Out Models

We can also use these models to create the baseline category logit model with say reference as category 1:

$$\log\left(\frac{\pi_2}{\pi_1}\right) = -L_1$$

$$\log\left(\frac{\pi_3}{\pi_1}\right) = -L_2 - L_1$$

$$\log\left(\frac{\pi_4}{\pi_1}\right) = -L_3 - L_2 - L_1$$

$$\vdots$$

$$\log\left(\frac{\pi_r}{\pi_1}\right) = -L_{r-1} - \dots - L_3 - L_2 - L_1$$

22/44

Recall Self Assessed Health

VARIABLE	DESCRIPTION
id	Identification Number
age	Age (years)
male	Sex
	1 = Male
	0 = Female
pperf	Physical Performance Scale (0-12)
pefr	Peak Expiratory Flow Rate (average of 3)
cogerr	Number of cognitive errors on SPMSQ

VARIABLE	DESCRIPTION
sbp	Systolic Blood Pressure (mmHg)
mile	Ability to Walk 1 mile
	0 = No
	1 = Yes
digit	Use of digitalis
	0 = No
	1 = Yes

VARIABLE	DESCRIPTION
loop	Use of Loop Diuretics
	0 = No
	1 = Yes
untrt	Diagnosed but untreated diabetes
	0 = No
	1 = Yes
trtdb	Treated Diabetes
	0 = No
	1 = Yes

VARIABLE	DESCRIPTION
sah	Self Assessed Health
	1 = Excellent
	2 = Good
	3 = Fair
	4= Poor
dead	Dead by 1991
	0 = No
	1 = Yes
time	Follow up (years)

```
library(haven)
sah <- read_dta("sah.dta")
str(sah$sah)
#Reverse order for self assessed health
sah$sah2 <- factor(sah$sah, labels = names(attributes(sah$sah)$labels))
sah$sah <- factor(sah$sah2, levels = rev(levels(sah$sah2)))

## Class 'labelled' atomic [1:1600] 2 2 2 4 3 1 2 3 1 2 ...
## ..- attr(*, "label")= chr "Self assessed health"
## ..- attr(*, "format.stata")= chr "%8.0g"
## ..- attr(*, "labels")= Named num [1:4] 1 2 3 4
## ... - attr(*, "names")= chr [1:4] "excellent" "good" "fair" "poor"</pre>
```

27/44

Our Model

- Before we were interested in modeling death this time we will attempt to model sah.
- · We will attempt to build a model with the following covariates:
 - pperf
 - perf
 - cogerr
 - mile
 - loop
 - age

Running the Model

29/44

f

	ESTIMATE	ODDS RATIO	95% CI OF OR	P-VALUE
(Intercept):1	-1.441	0.237	(0.008 , 7.259)	0.4094
(Intercept):2	4.659	105.534	(12.025 , 926.218)	0
(Intercept):3	5.171	176.121	(8.224, 3771.667)	0.0009
pperf:1	-0.203	0.816	(0.748 , 0.891)	0
pperf:2	-0.117	0.89	(0.85 , 0.931)	0
pperf:3	-0.069	0.933	(0.872 , 0.998)	0.0436

More of the Table

	ESTIMATE	ODDS RATIO	95% CI OF OR	P-VALUE
perf:1	-0.001	0.999	(0.996 , 1.001)	0.2397
perf:2	0	1	(0.998 , 1.001)	0.4003
perf:3	-0.001	0.999	(0.998 , 1.001)	0.3527
cogerr:1	0.004	1.004	(0.89 , 1.134)	0.9424
cogerr:2	0.01	1.01	(0.935 , 1.09)	0.8062
cogerr:3	-0.05	0.952	(0.852 , 1.063)	0.3797
mile:1	-0.311	0.733	(0.418 , 1.283)	0.2766
mile:2	-0.863	0.422	(0.317 , 0.561)	0
mile:3	-0.579	0.56	(0.337 , 0.932)	0.0256

More of the Table

	ESTIMATE	ODDS RATIO	95% CI OF OR	P-VALUE
mile:3	-0.579	0.56	(0.337, 0.932)	0.0256
loop:1	0.187	1.206	(0.686 , 2.117)	0.5155
loop:2	0.333	1.395	(0.92 , 2.115)	0.1166
loop:3	-0.448	0.639	(0.337 , 1.21)	0.1693
age:1	0.015	1.015	(0.974 , 1.057)	0.4818
age:2	-0.046	0.955	(0.931 , 0.98)	0.0005
age:3	-0.031	0.969	(0.935 , 1.004)	0.0849

Interpreting

· We will not spend time interpreting this as the next method is more used than adjacent category logits.

Proportional-Odds Cumulative Logit

- Proportional-Odds Cumulative Logit is the most popular for ordinal categorical outcome analysis.
- It consists of probabilities
 - π_1 : Probability of being in category 1.
 - π_2 : Probability of being in category 2.
 - •
 - π_J : probability of being in category J.

Our Probabilities

· We also consider 2 more probabilities

-
$$\Pr(Y \leq j) = \pi_1 + \cdots + \pi_j$$

-
$$\Pr(Y > j) = \pi_{j+1} + \cdots + \pi_J$$

· We define the cumulative logit as

$$\log \left(rac{\Pr(Y \leq j)}{\Pr(Y > j)}
ight) = \log \left(rac{\Pr(Y \leq j)}{1 - \Pr(Y \leq j)}
ight) = \log \left(rac{\pi_1 + \dots + \pi_j}{\pi_{j+1} + \dots + \pi_J}
ight)$$

Cumulative Logits

· We then have the following cumulative logits

$$L_1 = \log\left(rac{\pi_1}{\pi_2 + \pi_3 + \dots + \pi_J}
ight)$$
 $L_2 = \log\left(rac{\pi_1 + \pi_2}{\pi_3 + \pi_4 \dots + \pi_J}
ight)$
 \vdots
 $L_{J-1} = \log\left(rac{\pi_1 + \pi_2 + \dots + \pi_{J-1}}{\pi_J}
ight)$

36/44

An Example

We can continue on with out Self Assessed Health and run the following model:

	ESTIMATE	ODDS RATIO	95% CI OF OR	P-VALUE
(Intercept):1	-0.238	0.788	(0.034 , 18.471)	0.8822
(Intercept):2	4.74	114.488	(15.714 , 834.114)	0
(Intercept):3	7.628	2054.927	(109.59 , 38531.939)	0
pperf:1	-0.256	0.774	(0.712 , 0.841)	0
pperf:2	-0.154	0.857	(0.822 , 0.894)	0
pperf:3	-0.126	0.882	(0.827 , 0.941)	0.0001

More of the Table

	ESTIMATE	ODDS RATIO	95% CI OF OR	P-VALUE
perf:1	-0.002	0.998	(0.995,1)	0.0602
perf:2	-0.001	0.999	(0.998, 1)	0.2011
perf:3	-0.001	0.999	(0.998 , 1.001)	0.3289
cogerr:1	0.035	1.035	(0.926 , 1.157)	0.5403
cogerr:2	0.003	1.003	(0.935 , 1.077)	0.9235
cogerr:3	-0.05	0.951	(0.856 , 1.057)	0.3508
mile:1	-0.868	0.42	(0.245 , 0.72)	0.0016
mile:2	-0.994	0.37	(0.284 , 0.482)	0
mile:3	-1.051	0.35	(0.213 , 0.575)	0

More of the Table

	ESTIMATE	ODDS RATIO	95% CI OF OR	P-VALUE
mile:3	-1.051	0.35	(0.213 , 0.575)	0
loop:1	0.236	1.267	(0.74 , 2.17)	0.3891
loop:2	0.268	1.307	(0.899 , 1.901)	0.1612
loop:3	-0.237	0.789	(0.43 , 1.448)	0.4443
age:1	-0.003	0.997	(0.96 , 1.035)	0.8612
age:2	-0.042	0.959	(0.936 , 0.981)	0.0004
age:3	-0.046	0.955	(0.923 , 0.988)	0.0087

What Can We See?

- · Before we move on, we notice that our coefficients do not seem to be that different between logits.
- We can change this so that instead of having a coefficient of pperf for each cumulative logit we can have one coefficient that is the same for all of the models giving each of them different intercepts only:

The Model

42/44

	ESTIMATE	ODDS RATIO	95% CI OF OR	P-VALUE
(Intercept):1	1.837	6.279	(1.121, 35.188)	0.0367
(Intercept):2	4.399	81.391	(14.396 , 460.16)	0
(Intercept):3	7.097	1208.849	(209.132 , 6987.522)	0
pperf	-0.163	0.85	(0.818 , 0.882)	0
perf	-0.001	0.999	(0.998, 1)	0.115
cogerr	-0.005	0.995	(0.935 , 1.059)	0.8684
mile	-1.006	0.366	(0.286 , 0.468)	0
loop	0.189	1.208	(0.865 , 1.687)	0.2672
age	-0.036	0.964	(0.945 , 0.984)	0.0005

Interpretations

 \cdot Then we can interpret mile as:

_

• The same things can be done to our other two models by adding the parallel=TRUE option in the family statement.