Open MPI for Exascale (OMPI-X)

ECP Project ST-2.3.1.11-OMPIX

Project Team

Institution	PI	Additional Participants	
ORNL (Lead)	David Bernholdt (Lead)	Manju Gorentla, Terry Jones, Thomas Naughton, Geoffroy Vallee	
LANL	Howard Pritchard	Nathan Graham, Nathan Hjelm	
LLNL	Ignacio Laguna	Chris Chambreau, Murali Emani, Martin Schulz	
SNL	Ron Brightwell	Ryan Grant	
UTK	George Bosilca	Aurelian Bouteiller	
In collaboration with the Open MPI Community (http://open-mpi.org)			

Project Focus Areas

Focus Area	Topics	Technical Lead	
Runtime Interoperability for MPI+X and Beyond	APIs for better sharing of threads between MPI and other thread-based runtimes.	Geoffroy Vallee (ORNL)	
Extending the MPI Standard to Better Support Exascale Architectures	Endpoints, Finepoints, Sessions	Ryan Grant (SNL)	
Open MPI Scalability and Performance	Memory footprint, collectives, message matching, one- sided, PMIx	Manju Gorentla (ORNL)	
Supporting More Dynamic Execution Environments	Intelligent process placement and contention management	Terry Jones (ORNL)	
Resilience in MPI and Open MPI	ULFM, ReInit, resilience in PMIx	George Bosilca (UTK)	
MPI Tool Interfaces	MPI_T, PMPI replacement	Chris Chambreau (LLNL)	
Quality Assurance for Open MPI and New Developments	Test infrastructure deployed to ECP-relevant systems. Regular testing of Open MPI and OMPI-X developments	Howard Pritchard (LANL)	

Recent Progress

MPI Finepoints - Partitioned Multithreaded MPI Communication

Connections: Qthreads, Intertwine

- Finepoints
- -New MPI multi-threading interface -Better efficiency with minimal app changes
- Leverages hardware capabilities
- Allows new type of overlap in communication
- Early prototype demonstrated with ECP mini-app
- −~5% improvement in runtime

Performance comparison between ULFM Open MPI and Open MPI master; NERSC Cori Ping Pong (uGNI, 2 nodes

- -~25% improvement in communication Collaborations with ECP Qthreads project and EU Intertwine project

ECP miniapp running on a KNL with MPI procs x threads, with 4 MPI procs to 1 MPI proc. The miniapp is controlled for noise and artificial noise injected to demonstrate good performance in practice (real noise on systems is in the 3% range).

Topology and Congestion Awareness

- Developing module to gather the communication weights between processes -Capability to distinguish between pt2pt collective file IO or RMA)
- Developing module to reorder processes based on weights
- Initial implementation available in Open MPI GitHub master

User-Level Fault Mitigation (ULFM) in Open MPI

Interoperability for MPI-X and Beyond

Data exchange between the MPI and OpenMP runtimes via PMIx

Implement a placement policy based on the number of MPI ranks and

implementation of more advanced policies (collaboration with ECP

Connections: SOLLVE, UPC++/GASnet, PMIx

Modify the OpenMP LLVM compiler to interface with PMIx

Beginning to conduct joint experiments for evaluation and

- Resilience in varied application types
- -Malleable applications enjoy a **cheap**, **tailored recovery procedure** -Non-malleable applications can **restore complete MPI** capabilities without redeployment
- Integration of ULFM resilience shows no overhead on raw communication performance on ECP hardware
- Recently delivered

available cores/HT per node

SOLLVE project)

- -Stable resilience; tested deployments on ECP hardware with support for job schedulers and accelerated networks -Support for resilience with threads, non-blocking collective operations, RMA operations
- -State-of-the-art research in **resilient collective algorithms and** failure detection implementation
- Impacts
- Large application community using Open MPI ULFM to explore resilience in HPC -Industry users (databases, MapReduce) also use Open MPI ULFM to explore non-HPC workloads over MPI
- -User documentation and education helps ECP applications move forward on resilience

Connections: EXAALT, QMCPACK, PMIx

MPI Performance and Scalability Improvements §

- Remote Memory Access
- New RMA implementation allows scaling Application performance similar to highly tuned vendor impls.
- MPI Message Matching
- -Initial prototype perf. up to 2X
- Integration plan underway
- Multi-threading
- -Multiple improvements completed
- Non-blocking Collectives

Open MPI+PMIx+SCON for Scalability

- Initial evaluation of scalable startup performance showing 3x improvement in launch time for PMIx Open MPI vs Cray ALPS Open MPI (presented during PMIx BoF at SC'17)
- PMIx event notification API in the PMIx standard document
- Event notification API used in fault-tolerant Open MPI (ULFM)
- Generic failure detector API defined
- Transfer failure detector capability from Open MPI to PMIx (prototyping started) • Implement SCON, scalable overlay network library that provides
- communication capabilities for PMIx (API design in progress)

Connections: PMIx

Continuous Integration/Nightly Testing

- Resolved issues with next generation Nightly tester (MTT) reporting results to community database at AWS
- Added plugin to next generation MTT to test nightly tarball bills from https://open-mpi.org/downloads
- Deployed current MTT on ORNL summit-dev platform
- Participating in the ECP ST facilities WG evaluation of CI RFP responses

Connections: ECP CI Testing, Facilities