Assignment -7:

Let consider a sample dataset have one input (xi) & one output (yi), and no. of samples 4. Develop a simple linear regression model using BGD.

Sample(i)	x;a	y,a
	0.2	3.4
2	0.4	3.8
3	0.6	4.2
4	0.8	4.6

Do manual calculations for 2 iterations with first 2 samples.

Step 1:
$$[x,y]$$
, $m=1$, $c=-1$, $\eta=0.1$, epochs = 2, $ns=2$

Step 3:
$$\frac{\partial E}{\partial n} = \frac{-1}{ns} \sum_{i=1}^{ns} (y_i - mx_i - c) x_i$$

$$= \frac{-1}{2} \left[(3,4 - (1)(0.2) + 1) 0.2 + (3.8 - (1)(0.4) + 1) 0.4 \right]$$

$$=\frac{1}{2}(0.84+1.76)$$

$$\frac{\partial E}{\partial c} = \frac{-1}{2} \left[(3.4 - 0.2f1) + (3.8 - 0.4 + 1) \right]$$

$$= \frac{-1}{2} (4.2 + 4.4)$$

$$\frac{\partial E}{\partial c} = -4.3$$

Step 4:
$$\Delta m = -\eta \frac{\partial E}{\partial m}$$

$$= -(0.1)(-1.24)$$

$$\Delta m = 0.134$$

$$\Delta c = -\eta \frac{\partial E}{\partial c} = -(0.1)(-4.3)$$

$$\Delta c = 0.43.$$
Step 5: $m = m + \Delta m = 1 + 0.134 = 1.134$

$$c = c + \Delta c = -1 + 0.43 = -0.57$$
Step 6: $\text{iten} = \text{iten} + 1 = 1 + 1 = 2$
Step 7: $\text{if (iten} > \text{epoche)}$

$$2 > 2 \Rightarrow \text{false}$$

$$goto step 3$$
Step 3: $\frac{\partial E}{\partial m} = -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) 0.2 + (3.8 - (6.1.134)(0.4) + 0.57) 0.4 \right]$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57 \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57 \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57 \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57 \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57 \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57 \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57 \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57 \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57 \right]$$

$$= -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57 \right]$$

$$= -\frac{1}{2} \left[(3.4$$

Step 5: $m = m + \Delta m = 1.134 + 0.1157 = 1.2497$ $c = c + \Delta c = -0.57 + 0.3829 = -0.1871$ Step 6: "ten = iten +1 = 2+1 = 3.

Step 7: "if (iten > epochs) $3 > 2 \rightarrow Toue$ goto next step.

Step 8:- print m, c values m = 1.2497 c = -0.1871

The state of the soul for

1 42 4 (2.0) [Neid = 4.8) [1 - 2.3]

The same of the same

A THE RESIDENCE OF THE PARTY OF

19.00 - 41 5 1 A (10) 5 1 10 A