PRÁCTICO Nº 1 **NÚMEROS COMPLEJOS**

- 1) Escribir los siguientes números complejos en forma binómica o de par ordenado, según corresponda:
- a) $\left(\frac{3}{4};2\right)$ b) $\left(0;-1\right)$ c) $\left(\sqrt[3]{2};-3\right)$ d) $4+\frac{1}{2}i$ e) -8i f) -1-i

- 2) Verificar que:

 - a) $(\sqrt{2}-i)-i(1-\sqrt{2}i) = -2i$ b) $(3,1).(3,-1).\left(\frac{1}{5},\frac{1}{10}\right) = (2,1)$
- 3) Comprobar que los números $z = 1 \pm i$, satisfacen la ecuación $z^2 2z + 2 = 0$
- Resolver y expresar el resultado de las siguientes operaciones en forma binómica:
 - a) (2+3i)+(-1-2i)

- b) $(1-2i)+(\frac{1}{2}+7i)+(-2i)$
- c) $\left(-1-2i\right)-\left(-3+\frac{1}{4}i\right)+5i-\left(-\frac{1}{3}-i\right)$ d) $2i \cdot (-1+2i)$

- e) (1-i)(2+i) f) $(-2+i)^2$ g) $\left(1+\frac{1}{2}i\right)(-2+i)$
- h) $\frac{1+i}{3-i}$ i) $\frac{1}{i} + \frac{3}{1+i} \frac{(1-i)(2+i)}{3-i} + (\frac{1}{3}-2i)$
- j) $\frac{3+3i}{(1+2i)(1-3i)}$ k) $i^{13}-i^9+1$ l) $i^{14}-i^9+3i^5-i^3+1$
- m) $(3i-2)^2 \frac{1}{3} + \frac{1}{4}i(-\sqrt{2}+5i)-1$
- 5) Hallar los números reales a y b tal que:
 - a) 3+4i=2a+5-bi
 - b) (1+2i)a+(3-5i)b=1-3i
- 6) Hallar los conjugados de:
 - a) $\frac{1}{i} + i$
- b) (1-2i)(2-i)(i+1) c) $1+i+i^2+....+i^{2i}$

- 7) Dados los números complejos:
 - $z_1 = \sqrt{3} + i$ $z_2 = -\sqrt{3} + 3i$ $z_3 = 2 2\sqrt{3} i$
 - efectuar: $2z_1 (z_2^2 z_3) \frac{z_2}{z_1}$
- 8) Sean: $z_1 = 1 i$ $z_2 = -2 + 4i$ $z_3 = \sqrt{3} 2i$, hallar: a) $\overline{z_2} \overline{z_3}$ b) $Im((z_1 z_2): z_3)$

ÁLGEBRA

c)
$$(z_1 + z_3) \cdot (z_1 - z_3) \cdot \frac{1}{2}$$
 d) $(z_3 - z_2) \cdot z_1 + z_3^2$

d)
$$(z_3 - z_2) \cdot z_1 + z_3^2$$

- 9) Expresar los siguientes números en forma polar. Representar en el plano complejo.
 - a) $\sqrt{3} + i$
- b) $\sqrt{3}-i$ c) -i d) -1-2i e) -3+3i

- 10) Expresar en forma binómica:
- a) 2 cis 180° b) 3 cis $\left(-\frac{\pi}{6}\right)$ c) 3 cis $\left(-120^{\circ}\right)$ d) 2 cis 150°
- 11) Dados: $z_1 = \sqrt{2} cis \frac{\pi}{2}$ $z_2 = 1 cis \frac{7\pi}{4}$ $z_3 = \sqrt{3} cis \frac{5\pi}{3}$
 - Obtener en forma polar: a) $z_1.z_2$ b) $z_3:z_2$ c) $\left(z_1\right)^4$
- 12) Dados los siguientes números complejos:

$$z_1 = \sqrt{3} + i$$

$$z_1 = \sqrt{3} + i$$
 $z_2 = -2 - 2\sqrt{3}i$

$$z_3 = -1 - i \qquad z_4 = -3i$$

$$z_{4} = -3i$$

Efectuar en forma polar las operaciones que se indican, expresando el resultado en forma binómica:

a)
$$(z_1)^6$$
 b) $z_2 \cdot z_3$ c) $\frac{z_3}{z_4}$

b)
$$z_2 \cdot z_3$$

c)
$$\frac{z_3}{z_4}$$

d)
$$(z_3)^{10}$$

13) Determinar y representar en el plano complejo todos los $z \in C$ tales que:

a)
$$|z-i| = 5$$

e)
$$z = \bar{z}$$

a)
$$|z-i|=5$$
 e) $z=\bar{z}$ i) $-\frac{1}{2} < Re(z) < \frac{1}{2}$ $\land |z|=2$

b)
$$4 < |z-1|$$

f)
$$z.\bar{z} = 1$$

b)
$$4 < |z-1|$$
 f) $z.\overline{z} = 1$ j) $\frac{\pi}{4} \le arg(z) \le \frac{3}{4}\pi$ $\land |z| < 2$

$$\wedge |z| < 2$$

c)
$$2 \le |z| < 4$$
 g) $|z - 1 + i| = 2$

g)
$$|z-1+i|=2$$

d)
$$|z+i| > 2$$
 h) $|z-2|^2 = 3$

h)
$$|z-2|^2=3$$

14) i) Expresar en forma exponencial, los siguientes números complejos:

a)
$$z_1 = -1 - i$$

b)
$$z_2 = -1$$

c)
$$z_3 = -i$$

ii) Hallar las siguientes operaciones, utilizando la forma exponencial:

a)
$$z_1.z_2$$

b)
$$\frac{z_1}{z_3}$$