CMPT 155: Computer Applications for Life Sciences

Lecture 9: Regression

Ivan E. Perez

March 4, 2022

Presentation Outline

- Administrative
- 2 Analyzing Trendlines
- Prediction
- 4 Exercises
- Further Reading

Homework And Administrative

- Midterm 2 is on April 13th.
- You may bring a 1 page cheat sheet print or handwritten.
- Homework 5 is due ???

Trendline (Regression Line)

- Data analysis is about revealing patterns and facts about data sets.
- Linear regression is a technique describes outputs *y* as linearly dependent on inputs *x*.

Trendline Example

Figure: Example Linear Regression of Age against Reflex Time

Adding a Trendline

A Trendline can be added to XY (Scatter) graphs.

Lets try plotting *CancerStudy.xlsx* and adding a Trendline:

- ① Download *CancerStudy.xlsx* from moodle.
- Select cells B2:C18
- Navigate to the XY Scatter Plot, and create scatter plot.
- be sure to include a chart title and axis titles.
- To add a trendline we can:
 - 'Chart Tools' \rightarrow 'Add Chart Element' \rightarrow 'Linear'.
 - Select the Datapoints → right(Ctrl)-click → 'Add Trendline'

Types of Trendlines

Туре	Excel Option	General Form
Linear	Linear	y = mx + b
Exponential	Exponential	$y = ae^{bx}$
Quadratic	Polynomial deg=2	$y = ax^2 + bx + c$
Cubic	Polynomial deg=3	$y = ax^3 + bx^2 + cx + d$

When computing predictions in excel, we can write trendline equations in the following fashion.

Type	Excel Form			
Linear	m * X + b			
Exponential	(a)*EXP((b)*x)			
Quadratic	$(a)*(X \land 2) + (b)*X + c$			
Cubic	(a) *($X \land 3$) +(b) *($X \land 2$) + (c) * $X + d$			

Where X is a *cell reference* to an x-value in the dataset and a,b,c,d, m are real numbers that can be written as a decimal or in scientific notation $1.234 * 10^{-4}$, (i.e., $1.234 * (10 \land -4)$)

Formatting Trendlines

Trendlines can be formatted through the 'Format Trendline' pane, which can be accessed by:

- Selecting Data by left clicking a point on the XY scatter graph.
- Right(Ctrl) clicking the points
- Selecting the 'Format Trendline' menu option.

Trendlines modifications include:

- Equation and Displayed Statistics.
 - The equation of the trendline
 - whether to display the equation
 - whether to display correlation squared, R².
- Thickness and color
 - ► Thickness, color, effects, labelling
- Extrapolation
 - The range of the trendline is within the dataset by default
 - ▶ can be extraoplated by increasing the Forward/Backward periods option

Analyzing Trendlines

After specifying a model we must be able to specify, analyze and measure models. Common functions for Analyzing a *linear* trendline include:

- slope using SLOPE()
- y- intercept using INTERCEPT()
- Correlation, R,using CORRELL()

Non Linear Trendlines can be analyzed using *Sum of Squared Residuals*, SSR.

SLOPE()

SLOPE() - computes the slope of a linear regression line for a collection of x and y values.

- inputs
 - known_ys : selection array/selection of known y values
 - known_xs : selection
 array/selection of known x values
- outputs
 - computed slope : numeric estimated slope for a linear regression line for the given data.

INTERCEPT()

Compute the y intercept of a linear regression line for a collection of x and y values.

- inputs
 - known_ys : selection array/selection of known y values
 - known_xs : selection
 array/selection of known x values
- outputs
 - computed intercept: numeric estimated intercept for a linear regression line for the given data.

Correlation Coefficeint (R)

Measures the correlations between x's and y's.

- inputs :
 - known_x : selection array/selection of known x's.
 - known_y : selection array/selection of known y's.
- outputs:
 - correlation : numeric correlation coeffecient; between -1 and 1.

Interpretting Correlation Coeffecients

R value	Qualitative description
$-1 \le R \le -0.7$	Very Strong Negative Correlation
$-0.7 < R \le -0.4$	Strong Negative Correlation
$-0.40 < R \le -0.3$	Moderate Negative Correlation
$-0.30 < R \le -0.2$	Weak Negative Correlation
-0.2 < R < 0	No or Negligible Negative Correlation
R = 0	No Relationship, Uncorrelated
$0 < R \le 0.2$	No or Negelible Positive Correlation
$0.2 < R \le 0.3$	Weak Positive Correlation
$0.3 < R \le 0.4$	Moderate Positive Correlation
$0.4 < R \le 0.7$	Strong Positive Correlation
$0.7 < R \le 1$	Very Strong Positive Correlation.

Want to learn more for a correlation coeffecients? Check out CorrelationCoefficient - StatisticsHowTo

Which Trendline to choose?

Things to Consider:

- What kind of relationship do you expect between your datapoints?
- What are the limitations of this dataset?
 - Do you expect to collect data outside this range?
 - Is this survey of physical data?
- How will this trendline be used in your later analysis?
- How do you measure best fit and trendline performance?

Which Trendline to choose?

Common measures of trendline fit are

- Pearsons R².
 - is equal to squared correlation
 - can only be used with *Linear* regression lines
- Sum of Squared Residuals SSR.
 - ► Takes a sum of the *square* of the <u>residuals</u> (i.e., difference between the actual data and estimated function value).
 - the smaller the better the trendline fit.

Prediction

- Trendlines can be used to to predict values you don't have.
 - ▶ In Sample Predicition (interpolation): Using the *trendline* to predict values that fall within the range of sample data that was used to create the trendline.
 - Out of Sample Predition(extrapolation): Using the trendline to predict values that fall out of the range of sample data that was used to create the trendline.
- for Extrapolation, you can visualize these predictions by adding forward and backward periods to the trendline in the Format Trendline panel.

Prediciton

- Lets try predicting the mortality in regions by:
 - ▶ Interpolation : average annual temperatures between 30 and 50 degrees, in 1 degree increments.
 - Extrapolating: average annual temperatures between 55 and 65 degrees, in 1 degree increments.
- Save the spreadsheet for future reference.
- Follow the same format when working through the homework.
- See 'CancerStudyStolution(Complete).xlsx'

Exercise 1: Lung Cancer Prevelance

- Download Cigarettes.xlsx
- Find
 - m: the slope of the linear regression line
 - b : the intercept of the linear regression line
 - r: the correlation coefficient.
- Oreate a Scatter plot of the data and:
 - Add the linear regression line to the chart
 - Add exponential, qudratic, and cubic regression curves.
- In the excel document answer the following questions in a text box.
 - ▶ Which is the best model?
 - ▶ What is your prediction if a region's average number of cigarettes per person is 3500? How about 4000?

Exercise: Solution

- Oreate a scatter plot of Ciggarettes vs Lung Cancer deaths by:
 - selecting Cells A2:B16.
 - **②** Going to "Insert" \rightarrow "X Y (Scatter)".
- Add a linear regression line by selecting the data, right-(Crtl) clicking the data points and selecting "Add Trendline"
- In Cell B18 compute the slope of linear regression line, by writing:
 - ► =SLOPE(B3:B16, A3:A16)
- In Cell B19 compute the y-intercept of linear regression line, by writing:
 - ► =INTERCEPT(B3:B16, A3:A16)
- In Cell B20 compute the correlation between the x and y values by writing:
 - ► =CORRELL(B3:B16, A3:A16)

Exercise: Solution (continued)

- Compute the linear estimates for all x's using the m and b computed earlier.
 - ▶ In Cell D3 write: =\$B\$18*A3 + \$B\$19
 - Use autofill to apply the formula for all x's.
- Find the equations for the non-linear regression curves by modifying the trendline:
 - Select the trendline and right-(Ctrl) click the trendline.and click "Format Trendline"
 - In the "Format Trendline" menu check the box for "Display Equation on chart" and change the selection for trendline to be:
 - ★ Linear for Linear
 - ★ Exponential for Expon
 - ⋆ Polynomial with deg=2 for Quad
 - ★ Polynomial with deg=3 for Cubic

Exercise : Solution (continued)

- In cells E3, F3, and G3 compute the estimates given regression curve equations found previously. In cells:
 - ► E3 write: =9.1389*EXP(0.0003*A3)
 - ► F3 write: $=-3*(10 \land -6)*(A3 \land 2) + 0.0205*A3 -14.218$
 - ► G3 write: $=-3*(10\land -9)*(A3\land 3) + 2*(10\land -5)*(A3\land 2)$ -0.0507*A3 + 43.723
- Use autofill to fill in estimates for the three non-linear models.
- Ompute the residuals between the estimates and observed values by taking their difference. In cells:
 - ▶ 13 write : =B3-D3
 - ▶ J3 write : =B3-E3
 - K3 write : =B3-F3
 - ▶ L3 write : =B3-G3
- Use autofill to compute residuals for all pairs of y observations and estimates for each model.

CMPT 155: Computer Applications for Life S

Exercise : Solution (continued)

- Compute the Sum of Sqaured Squared Residuals by using SUMSQ().
 - ▶ In Cell I17 write : =SUMSQ(I3:I16)
 - Autofill from I17 to L17.
- Compare the computed sum of squared residuals
 - ► The model with the best fit is the one with the *smallest* Sum of Squared Residuals
- Compute out of sample Estimates using the cubic model by
 - writing down the x values, 3500, 4000 in cells A24, and A25 respectively.
 - Oppy over the equation text from cell L3 and paste into Cell B24.
 - Edit the equation in B24 such that it is passing in the x values from A24.
 - Once you have an estimate in B24, use autofill to get the estimate in B25.

Exercise: Solution (continued)

	Α	В	С	D	E	F	G	Н	1	J	K	L	М
1	Row data			Estimate	S				Residual	S			
2		Lung Cancer		Linear	Expon	Quad	Cubic		Linear	Expon	Quad	Cubic	
3	2860	22.07		21.08	21.55	19.87	23.65		-0.99	-0.52	-2.20	1.58	
4	2010	13.58		16.65	16.70	14.87	14.62		3.07	3.12	1.29	1.04	
5	2791	22.8		20.72	21.11	19.63	22.93		-2.08	-1.69	-3.17	0.13	
6	2618	20.3		19.82	20.04	18.89	21.03		-0.48	-0.26	-1.41	0.73	
7	2212	16.59		17.71	17.75	16.45	16.55		1.12	1.16	-0.14	-0.04	
8	2184	16.84		17.56	17.60	16.24	16.26		0.72	0.76	-0.60	-0.58	
9	2344	17.71		18.39	18.46	17.35	17.96		0.68	0.75	-0.36	0.25	
10	2692	22.04		20.20	20.49	19.23	21.85		-1.84	-1.55	-2.81	-0.19	
11	2206	14.2		17.67	17.71	16.41	16.49		3.47	3.51	2.21	2.29	
12	2914	25.02		21.36	21.91	20.04	24.19		-3.66	-3.11	-4.98	-0.83	
13	3034	25.88		21.98	22.71	20.36	25.31		-3.90	-3.17	-5.52	-0.57	
14	4240	23.03		28.26	32.61	18.77	23.04		5.23	9.58	-4.26	0.01	
15	1400	12.01		13.48	13.91	8.60	11.92		1.47	1.90	-3.41	-0.09	
16	2257	20.74		17.94	17.99	16.77	17.02		-2.80	-2.75	-3.97	-3.72	
17								SUMSQ	98.609	152.812	132.536	24.6352	
18													
19	m=	0.00520226											
20	b=	6.19762832									Cubic is	he best m	odel.
21	r=	0.7758662	Strong L	inear Rel	ationship								
22			_										
23	Prediction (u	sing the cubic	model)										
24	3500												
25	4000	26.27											

Further Reading

Computer Applications for Life Sciences Chapter 2, p. 15-20