习题课材料(十一)

注: 带 ♡ 号的习题有一定的难度、比较耗时, 请量力为之.

习题 1. 记实数域 \mathbb{R} 上的全体一元可导函数组成的集合为 $\mathscr{C}^1(\mathbb{R})$,定义 $\mathscr{C}^1(\mathbb{R})$ 上的变换: $A(f(x)) = xf(x) \quad \forall f(x) \in \mathscr{C}^1(\mathbb{R})$.

- (1) 证明 $A \in \mathcal{C}^1(\mathbb{R})$ 上的一个线性变换。
- (2) 设 D 是求导算子, 证明 DA AD = I.

习题 2. 考虑 xy 平面,设 T 为关于 x 轴的反射变换,S 为关于 y 轴的反射变换。对于任意向量 $\mathbf{v} = (x,y)$,写出 $S(T(\mathbf{v}))$,并给出线性变换 ST 的更简单的描述。

习题 3. 设 $\mathscr V$ 是所有 2 阶对称矩阵构成的线性空间,f 是其上的线性变换: $f(X) = A^T X A$,其中 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. 求 f 在基 $E_{11}, E_{22}, E_{12} + E_{21}$ 下的矩阵。其中 E_{ij} 为 (i,j) 处元素为 1,其余元素都是 0 的矩阵。

习题 4. 设 3 维线性空间 \mathcal{V} 有一组基 e_1, e_2, e_3 , 其上的线性变换 f 在该组基下的矩阵是

$$A = \left[\begin{array}{rrr} 2 & 3 & 2 \\ 1 & 8 & 2 \\ -2 & -14 & -3 \end{array} \right].$$

- (1) 求 f 的全部特征值和特征向量。
- (2) 判断是否存在一组基,使得 f 在该组基下的表示矩阵是对角矩阵。如果存在,写出这组基及对应的对角矩阵。

习题 5. 考虑二阶矩阵空间 $M_2(\mathbb{R})$ 上的线性变换 T(M)=AMB,其中 $A=\begin{bmatrix}1&0\\0&0\end{bmatrix}$, $B=\begin{bmatrix}0&0\\0&1\end{bmatrix}$ 。描述 $\ker(T)$ 及 ImT。