Homework 1

1. Suppose that X_1, \ldots, X_n are i.i.d. copies of a random variable X with probability density function for $\theta > 0$

$$p_{\theta}(x) = \begin{cases} \theta e^{-\theta x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

- (a) Compute the MLE for θ .
- (b) Compute the method of moments estimator for θ with the same model as in the previous subexercise.
- 2. Suppose that X_1, \ldots, X_n are i.i.d. copies of a random variable X with probability density function with $\theta > 0$ given by

$$p_{\theta}(x) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Compute the MLE for θ .
- (b) Compute the method of moments estimator for θ .
- 3. Consider the Gaussian mixture density

$$p_{\vartheta}(x) = \frac{1}{2\sigma}\phi\left(\frac{x-\mu}{\sigma^2}\right) + \frac{1}{2}\phi\left(x-\mu\right)$$

where $\phi(\cdot)$ is the density function of the standard normal distribution. Here, the unknown parameters are given by $\theta = (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_{>0} = \Theta$.

- (a) Let $Z \sim \mathcal{N}(0,1), Y_p \sim Ber(p)$. Write a random variable Z' with density p_{θ} as a function of independent copies of Z, Y_p for a value of p > 0 and $\theta = (\mu, \sigma^2)$.
- (b) For an observation $\mathbf{X} = \{x_1, \dots, x_n\}$ compute the log-likelihood function $L_{\mathbf{X}}(\theta)$.
- (c) Prove that $L_{\mathbf{X}}(\theta)$ is unbounded on the set $\{(x_1, \sigma^2) : \sigma^2 > 0\}$.
- 4. Let $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ be i.i.d. random variables, where σ^2 is **known** and $\mu \in \mathbb{R}$ is **unknown**. Estimate μ using the **Blackwell-Rao** theorem.

Hint: Start using the estimator $U = X_1$.

- 5. Suppose that X, Y and Z are random variables whose joint distribution is continuous with density f_{XYZ} .
 - (a) Write down appropriate definitions of
 - (i) $f_{XY|Z}$, density of the joint distribution of X and Y given Z, and
 - (ii) $f_{X|YZ}$, density of the distribution of X given both Y and Z.
 - (b) Assuming the expectations exist, and defining $\mathbb{E}[X|Y,Z]=h(Y,Z)$ where

$$h(y,z) = \int_{-\infty}^{\infty} x f_{X|YZ}(x|y,z) \, dx,$$

prove that

$$\mathbb{E}[\mathbb{E}[X|Y,Z]|Z] = \mathbb{E}[X|Z],$$