COGS 118A, Winter 2020

Supervised Machine Learning Algorithms

Lecture 16: Ensemble Methods

Zhuowen Tu

Ensemble Learning

Empirical Comparisons of Different Algorithms

Caruana and Niculesu-Mizil, ICML 2006

MODEL	1st	2ND	3RD	4TH	5тн	6тн	$7\mathrm{TH}$	8тн	9тн	10тн
BST-DT RF BAG-DT SVM ANN KNN BST-STMP DT LOGREG NB	0.580 0.390 0.030 0.000 0.000 0.000 0.000 0.000 0.000	0.228 0.525 0.232 0.008 0.007 0.000 0.000 0.000 0.000	0.160 0.084 0.571 0.148 0.035 0.000 0.002 0.000 0.000 0.000	0.023 0.001 0.150 0.574 0.230 0.009 0.013 0.000 0.000	0.009 0.000 0.017 0.240 0.606 0.114 0.014 0.000 0.000	0.000 0.000 0.000 0.029 0.122 0.592 0.257 0.000 0.000	0.000 0.000 0.000 0.001 0.000 0.245 0.710 0.004 0.040 0.040	0.000 0.000 0.000 0.000 0.000 0.038 0.004 0.616 0.312 0.030	0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.291 0.423 0.284	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.225 0.686

Overall rank by mean performance across problems and metrics (based on bootstrap analysis).

BST-DT: boosting with decision tree weak classifier RF: random forest

BAG-DT: bagging with decision tree weak classifier SVM: support vector machine

ANN: neural nets KNN: k nearest neighboorhood

BST-STMP: boosting with decision stump weak classifier DT: decision tree

LOGREG: logistic regression NB: naïve Bayesian

It is informative, but by no means final.

Trends of classification methods

Ensemble Methods

Bagging (Breiman 1994,...)

Random forests (Breiman 2001,...)

Boosting (Freund and Schapire 1995, Friedman et al. 1998,...)

Predict class label for unseen data by aggregating a set of predictions (classifiers learned from the training data).

General Idea

7

$S_{training} = \{(\mathbf{x}_i, y_i), i = 1..n\}$

y = +1

$$\bullet \ y = -$$

Sampling with replacement

$S_{training} = \{(\mathbf{x}_i, y_i), i = 1..n\}$

y = +1

y = −

Sampling without replacement

Why do they work?

- 1. Suppose there are 25 base classifiers.
- 2. Each classifier has error rate, $\epsilon = 0.35$.
- 3. Assume independence among classifiers.
- 4. Probability that the ensemble classifier makes a wrong prediction:

Ensemble classifier:
$$sign(\sum_{t=1}^{25} h_t)$$

$$h_t \in \{-1, +1\}$$

Possible final error?

- A. 0.5?
- B. 0.35?
- C. 0.2?
- D. 0.06?

Why do they work?

- 1. Suppose there are 25 base classifiers.
- 2. Each classifier has error rate, $\epsilon = 0.35$.
- 3. Assume independence among classifiers.
- 4. Probability that the ensemble classifier makes a wrong prediction:

Ensemble classifier:
$$sign(\sum_{t=1}^{25} h_t)$$

$$h_t \in \{-1, +1\}$$

Possible final error?

- A. 0.5?
- B. 0.35?
- C. 0.2?

D. 0.06?

- 1. Suppose there are 25 base classifiers.
- 2. Each classifier has error rate $\epsilon = 0.35$.
- 3. Assume independence among classifiers.
- 4. Probability that the ensemble classifier makes a wrong prediction:

Bagging (Breiman 1994)

Training:

- 1. Given a dataset S, at each iteration t, a training set S_t is sampled with replacement from S (i.e. bootstraping).
- 2. A classifier h_t is learned for each S_t

Classification: given an unseen sample \mathbf{x} ,

- 1. Each classifier h_t returns its class prediction
- 2. The bagged classifier H counts the votes and assigns the class with the most votes to \mathbf{x} .

Regression: can be applied to the prediction of continuous values by taking the average value of each prediction.

Bagging

- Bagging works because it reduces variance by voting/averaging
 - In some pathological hypothetical situations the overall error might increase.
 - o Usually, the more classifiers the better.
- Problem: we only have one dataset.
- Solution: generate new ones of size n by bootstrapping, i.e. sampling it with replacement
- Can help a lot if data is noisy.

Build Ensemble Classifiers

• Basic idea:

Build different "experts", and let them vote

Advantages:

Improve predictive performance

Other types of classifiers can be directly included

Easy to implement

No too much parameter tuning

• Disadvantages:

The combined classifier is not so transparent (black box)

Not a compact representation

Why do they work?

- 1. Suppose there are 25 base classifiers.
- 2. Each classifier has error rate, $\epsilon = 0.35$.
- 3. Assume independence among classifiers.
- 4. Probability that the ensemble classifier makes a wrong prediction:

Ensemble classifier:
$$sign(\sum_{t=1}^{25} h_t)$$
 $h_t \in \{-1, +1\}$

$$error = \sum_{t=13}^{25} {25 \choose t} \epsilon^t (1-\epsilon)^{25-t} = 0.06$$

Why Bagging works?

Let $S = \{(y_i, \mathbf{x}_i, i = 1..n)\}$ be the set of training dataset.

Let $\{S_t\}$ be a sequence of training sets containing a sub-set of S.

Let P be the underlying distribution of S.

Bagging replaces the prediction of the model with the majority of the predictions given by the classifiers

$$H_A(\mathbf{x}, P) = E_S(H(\mathbf{x}, S_t))$$

Why Bagging works?

$$H_A(\mathbf{x}, P) = E_S(H(\mathbf{x}, S_t))$$

Direct error: $e = E_S E_{y,\mathbf{x}}[y - H(\mathbf{x}, S)]^2$

Bagging error: $e_A = E_{y,\mathbf{x}}[y - H_A(\mathbf{x}, P)]^2$

Jensens inequality: $E[Z]^2 \le E[Z^2]$

$$e = E[y^2] - 2E[yH_A] + E_{y,\mathbf{x}}E_S[H^2(\mathbf{x}, S)]$$

$$\geq E[y - H_A]^2 = e_A$$

Why Bagging works?

Direct error:
$$e = E_S E_{y,x} [y - H(x, S)]^2$$

Bagging error: $e_A = E_{y,x} [y - H_A(x, P)]^2$

Jensens inequality: $E[Z] \leq E[Z^2]$
 $e = E[y^2] - 2E[yH_A] + E_{y,x}E_S[H^2(x, S)]$
 $e = E[y^2] - 2E[yH_A] + E_{y,x}E_S[H^2(x, S)]$

Bias-variance Decomposition

- Used to analyze how much selection of any specific training set affects performance
- Assume infinitely many classifiers, built from different training sets
- For any learning scheme,
 - Bias = expected error of the combined classifier on new data
 - Variance = expected error due to the particular training set used
- Total expected error ~ bias + variance

When does Bagging work?

- Learning algorithm is unstable: if small changes to the training set cause large changes in the learned classifier.
- If the learning algorithm is unstable, then Bagging almost always improves performance.
- Some candidates:

Decision tree, decision stump, regression tree, linear regression, SVMs

Randomization

- Can randomize learning algorithms instead of inputs.
- Some algorithms already have random component: e.g. random initialization.
- Most algorithms can be randomized.
 - Pick from the N best options at random instead of always picking the best one.
 - o The splitting rule in decision tree.
- Random projection in kNN (Freund and Dasgupta 08).

Which method cannot be used as the base weak classifier for the Bagging classifier?

- A. SVM
- B. Logistic regression classifier
- C. KNN classifier
- D. Decision tree
- E. None of the above

Which method cannot be used as the base weak classifier for the Bagging classifier?

- A. SVM
- B. Logistic regression classifier
- C. KNN classifier
- D. Decision tree
- E. None of the above

Recap: Bagging

Intuition: Bagging (ensemble) learning works almost all the time by combining a few weak classifiers.

- Any standard classifiers such as SVM, logistic regression, decision tree, can be combined in bagging.
- The more variant the base weak classifiers are, the more apparent the effect will be for bagging.
- Typically, combing 50-200 weak classifiers works the best in bagging.
- The training process can be highly efficient by having the weak classifiers trained in parallel.

Recap: Bagging

Implementation/ Math:

$$H(\mathbf{x}) = \sum_{t=1}^{T} h_t(\mathbf{x})$$

Implementation:

Given a training set S

For t = 1 to T do:

Build subset S_t by sampling with replacement from S

Learn classifier h_t from S_t

Make predictions according to majority vote of the set of T classifiers.

Ensemble Methods

Bagging (Breiman 1994,...)

Random forests (Breiman 2001,...)

Boosting (Freund and Schapire 1995, Friedman et al. 1998,...)

Random Forests

- Random forests (RF) are a combination of tree predictors
- Each tree depends on the values of a random vector sampled independently •
- The generalization error depends on the strength of the individual trees and the correlation between them.
- Using a random selection of features yields results favorable to AdaBoost, and are more robust w.r.t. noise.

The Random Forests Algorithm

```
Given a training set S

For t = 1 to T do:

Build subset S_t by sampling with replacement from S

Learn tree h_t from S_t

At each node:

Choose best split from random subset of F features

Each tree grows to the largest extend, and no pruning

Make predictions according to majority vote of the set of T trees.
```

Random Forests

The overall classifier:

$$H(\mathbf{x}) = sign(\sum_{t=1}^{T} h_t(\mathbf{x}))$$

where each $h_t(\mathbf{x})$ is a decision tree based classifier.

We often observe significantly improved classification performance using random forests over decision-tree.

Features of Random Forests

- It is unexcelled in accuracy among current algorithms.
- It runs efficiently on large data bases.
- It can handle thousands of input variables without variable deletion.
- It gives estimates of what featuress are important in the classification.
- It generates an internal unbiased estimate of the generalization error as the forest building progresses.
- It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing.
- It has methods for balancing error in class population unbalanced data sets.