Palabras introductorias

Cálculo Avanzado Universidad de Buenos Aires

Teoría Cardinalidad

Javier Vera LATEX Cardinalidad es un tema que para el lectór en este momento de su vida puede parecer ajeno y anti intuitivo, pero en un análisis más profundo y con suerte habiendo entendido los conceptos mas adelante expuestos, él podrá confirmar que en realidad parecería ser una manera mas orgánica de definir a los 'numeros' y algunas de sus operaciones

Definición 0.1. Sean X e Y dos conjuntos. Decimos que son coordinables (o equipotentes, o que tienen el mismo cardinal) si existe $f: X \to Y$ biyectiva. [Notacion: $X \sim Y$

Observación. Esta relacion \sim es de equivalencia, la demostración es trivial y queda como ejercicio de repaso para el lector

Ejemplos para arrancar:

$$\mathbb{N} \sim \{ \text{ numeros pares } \}$$

 $\mathbb{Q} \sim \mathbb{N}$ (se ve usando un argumento de diagonales)

Observación. Definimos el cardinal de un conjunto X como la clase de equivalencia de los conjuntos coordinables con X:

$$\#X = Card(X) = \{Y : X \sim Y\}$$

Algunos cardinales importantes tiene su símbolo unico

$$\#(\mathbb{N}) = \aleph_0$$

 $\#(\mathbb{R}) = \mathfrak{c}$
 $\#\{1, 2, 3 \dots, n\} = n$
 $\#\{a, b\} = 2$

Atención no confundir este último ejemplo y otros parecidos con 'numeros' per se, son clases de equivalencia. Más adelante se verá que en algunos casos se comportan parecidos a los 'numeros' que conocemos y que muchas veces directamente se comportan igual que ellos

Observación. Llamemos $\mathbb{I}_n = \{1, 2, 3, ..., n\}$ el intervalo inicial del conjunto \mathbb{N} de los números naturales

Atención para poder llamar n a $\#\mathbb{I}_n$ necesitamos que para $n \neq m$, \mathbb{I}_n y \mathbb{I}_m esten en distintas clases de equivalencia según \sim . Demostrémoslo..

Pero antes un lema para facilitar el asunto

Lema 1. Sea $A \subseteq \mathbb{I}_n$. Si existe $f: \mathbb{I}_n \to A$ invectiva, entonces $A = \mathbb{I}_n$

Proof. Induccion

(n=1) para el lector

 $(n \to n+1)$. Sea $A \subseteq \mathbb{I}_{n+1}$, luego tomemos $f: \mathbb{I}_{n+1} \to A$ invectiva

Supongamos $A \neq \mathbb{I}_{n+1}$ (algo tiene que estar en \mathbb{I}_n y no en A):

Caso I:

$$n+1 \notin A \Rightarrow A \subset \mathbb{I}_n \quad b = f(n+1)$$

 $f \upharpoonright_{\mathbb{I}_n} : \mathbb{I}_n \to A - b \subset A$ inyectiva, o lo que es lo mismo $f \upharpoonright_{\mathbb{I}_n} : \mathbb{I}_n \to A$ inyectiva

Por hipotesis inductiva $\mathbb{I}_n = A - b \subset A \subset \mathbb{I}_n$ absurdo Caso II:

$$n+1 \in A$$
. Sea $p \in \mathbb{I}_{n+1} \setminus A$ Luego $p \notin A$

Sea $g: \mathbb{I}_{n+1} \to \mathbb{I}_{n+1}$

$$n+1\mapsto p$$

$$p\mapsto n+1$$

$$x\mapsto x\quad x\neq p\quad x\neq n+1$$

g es biyectiva y $g(A) \subset \mathbb{I}_n$

Miremos

$$g \circ f : \mathbb{I}_{n+1} \to g(f(\mathbb{I}_{n+1})) = g(A)$$

 $g\circ f$ es inyectivas por composición de inyectivas

Pero ademas como $p \notin A$ luego $n + 1 \notin g(A)$

Luego tenemos una función que va desde I_{n+1} hacia un conjunto que no tiene al n+1 y está metido en I_{n+1}

Entonces tenemos las hipótesis del caso I , por lo tanto esto es absurdo

Teorema 2. Sean $n, m \in \mathbb{N}$ Entonces,

$$\mathbb{I}_n \sim \mathbb{I}_m \iff n = m$$

 $Proof. \Rightarrow$) Sabemos que $\mathbb{I}_n \subseteq \mathbb{I}_m$ o $\mathbb{I}_n \supseteq \mathbb{I}_m$ y sabemos que hay una inyección entre ellos por que $\mathbb{I}_n \sim \mathbb{I}_m$ luego por lema $\mathbb{I}_n = \mathbb{I}_m \Rightarrow m = n$

 \Leftarrow) Por absurdo supongamos $n \neq m$ y sin perdida de generalidades $n < m \Rightarrow \mathbb{I}_n \subset \mathbb{I}_m$ Entonces por hipótesis $\mathbb{I}_n \sim \mathbb{I}_m$ sabemos $\exists f : \mathbb{I}_n \to \mathbb{I}_m$ biyectiva

Pero entonces por lema $\mathbb{I}_m = \mathbb{I}_n$ absurdo

$$\Rightarrow n = m$$

Definición 0.2. Un conjunto A es finito si existe $n \in \mathbb{N}$ tal que $A \sim \mathbb{I}_n$

Definición 0.3. Un conjunto A es infinito si no es finito

Observación. Si uno puede definir conjuntos finitos sin usar los numeros naturales puede luego definir los numeros naturales a partir de los cardinales

Definición 0.4. Un conjunto A es numerable si $A \sim \mathbb{N}$. Equivalentemente si $\#A = \aleph_0$

Observación. Decimos que $\#X \leq \#Y$ si existe $f: X \to Y$ inyectiva

Observación. Decimos que #X < #Y si $\#X \le \#Y$ pero $X \nsim Y$

Observación. Dado un conjunto X el conjunto de partes de X es $\mathcal{P}(X) = \{A : A \subset X\}$

Teorema 3 (Teorema de Cantor). Sea X un conjunto. Entonces $\#X < \#\mathcal{P}(X)$

Proof. $f: X \to \mathcal{P}(X)$ definida como $x \mapsto x$ esta es inyectiva luego $\#X \leq \#\mathcal{P}(X)$

Sea $g: X \to \mathcal{P}(X)$ (si $x \in X \Rightarrow g(x) \subseteq X$)

Ahora $x \in g(x)$ o $x \notin g(x)$. Definamos $B = \{x \in X : x \notin g(x)\}$

Supongamos que $B \in im(g)$ luego $\exists y / B = g(y)$

- Ahora si $y \in B \Rightarrow y \notin g(y)$ por como esta definido B esto es absurdo
- Si $y \notin B \Rightarrow y \notin g(y)$ pero entonces $y \in B$ absurdo

Luego $\nexists y \in X / g(y) = B \Rightarrow B \notin im(g)$

Entonces $B \notin \mathcal{P}(X)$

 $\Rightarrow g$ no puede ser survectiva

Observación Si $B = \emptyset$ luego si definimos $f(\emptyset) = \emptyset$ sabemos que $\emptyset \notin \emptyset$ dado que este no es nisiquiera un conjunto pero entonces $B = \{\emptyset\}$ pero entonces B no era vacío, lo que es absurdo

Luego tenemos que $\nexists x/g(x) = B$ pero $B \subset P(X)$ luego g no puede ser survectiva \square

Observación. X es numerable si y solo si X se puede escribir como una sucesión de elementos distintos: $X = \{x_n\}_{n \in \mathbb{N}}$ con $x_n \neq x_m$ si $n \neq m$

Proof. \Rightarrow) X numerable, luego $\exists f : \mathbb{N} \to X$ biyectiva

Definimos $x_n = f(n)$ entonces $X = \{x_n\}_{n \in \mathbb{N}}$

La vuelta es trivial

Teorema 4. Sea X infinito. Entonces existe $Y \subset X$ numerable

Proof. X infinito \Rightarrow X no vacio \Rightarrow $x_1 \in X$

$$X \setminus x_1 \neq \emptyset \Rightarrow \exists x_2 \in X \setminus x_1 \text{ con } x_2 \neq x_1$$

Repitiendo esto inductivamente tenemos un conjunto numerable Y subconjunto de X

Teorema 5. Sea X un conjunto. Entonces, X es infinito si y solo si es coordinable con un subconjunto propio

 $Proof. \Rightarrow X$ infinito luego por Teorema 4

X contiene algún Y numerable $Y = \{y_n\}_{n \in \mathbb{N}}$

Sea $Y_2 = \{y_2, y_4, y_6 \dots\}$ luego $Y \sim Y_2$

 $g: Y \to Y_2$ dada por $g(y_n) = y_{2n}$

Luego $f: X \to (X \setminus Y) \cup Y_2$ dada por

$$f(a,b) = \begin{cases} x & x \notin Y \\ g(x) & x \in Y \end{cases}$$

es biyectiva

 \Leftarrow) Supongamos que X es finito ahora sabemos por hipótesis $\exists Y \subset X$ tal que $X \sim Y$ Entonces $\exists f: X \to Y$ biyectiva (en particular inyectiva)

Pero por lema 3 tenemos X = Y absurdo

Observación: El lema 3 sirve para $A\subseteq \mathbb{I}_n$ osea para conjuntos finitos

Luego no existe dicha función, lo cual es absurdo tambien que provino de suponer X finito

Teorema 6. Sea X un conjunto. Las siguientes afirmaciones son equivalentes.

- \bullet X es infinito
- Existe una función inyectiva de \mathbb{N} a X (o X tiene un subconjunto numerable)
- \bullet X es coordinable a un subconjunto propio
- X es coordinable a $X \setminus x_0$ para cualquier $x_0 \in X$

Teorema 7 (Teorema de Cantor-Schroeder-Bernstein). Si existen $f: X \to Y, g: Y \to X$ inyectivas, entonces existe $h: X \to Y$ biyectiva

Proof. Definamos $\Phi: \mathcal{P}(X) \to \mathcal{P}(X)$,

$$\Phi(A) = X \setminus g(Y \setminus f(A))$$

Esta función es creciente, probemoslo.

$$A \subset B$$

$$f(A) \subset f(B)$$

$$Y \setminus f(A) \supset Y \setminus f(B)$$

$$g(Y \setminus f(A)) \supset g(Y \setminus f(B))$$

$$X \setminus g(Y \setminus f(A)) \subset X \setminus g(Y \setminus f(B))$$

$$\Phi(A) \subset \Phi(B)$$

Luego Φ es creciente

Sea $\Omega = \{C \subset X : \Phi(C) \subset C\}$ se puede verificar que Ω no es vacío, $X \in \Omega$. Lugo tiene sentido definirse

$$A = \bigcap_{C \in \Omega} C$$

Por como esta definido A sabemos $A \in C \quad \forall C \in \Omega$ y ademas sabemos que Φ es creciente y que para $\forall C \in \Omega$ se da $\Phi(C) \subset C$. Luego juntando todo tenemos

$$\Phi(A) \subset \Phi(C) \subset C \quad \forall C \in \Omega$$

Luego

$$\Phi(A) \subset \bigcap_{C \in \Omega} C = A \Rightarrow \Phi(A) \subset A$$

Usando Φ creciente

$$\Phi(\Phi(A)) \subset \Phi(A) \Rightarrow \Phi(A) \in \Omega$$

Pero devuelta como

$$A\subset C\quad \forall C\in\Omega\quad \text{ y }\quad \Phi(A)\in\Omega\Rightarrow A\subset\Phi(A)$$

П

Finalmente $A = \Phi(A) \Rightarrow A = X \setminus (g(Y \setminus f(A)))$

Ahora si definimos a partir de las f y g inyectivas que tenemos por hipótesis $X_1 = A$, $Y_1 = f(X_1), Y_2 = Y \setminus Y_1, X \setminus X_1 = X_2$ podemos ver que

$$X_1 = X \setminus g(Y \setminus f(X_1)) \iff g(Y \setminus f(X_1)) = X \setminus X_1 \iff g(Y_2) = X \setminus X_1 = X_2$$

Estas nuevas f, g son inyectivas, por que vienen de la f y g que por hipótesis eran inyectivas y son suryectivas por como estan construidas (ejemplo $f(X_1)$ es exactamente igual a Y_2 osea que todo elemento de Y_2 tiene preimagen , si no $f(X_1) \neq Y_2$

Luego tenemos nuevas $f: X_1 \to Y_1$ y $g: Y_2 \to X_2$ biyectivas

Con estas definimos $h: X \to Y$

$$h(x) = \begin{cases} f(x) & x \in X_1 \\ g(x)^{-1} & x \in X_2 \end{cases}$$

que sabemos es biyectiva

Corolario 7.1. El conjunto $\mathbb{N} \times \mathbb{N}$ es numerable

Proof. Por un lado $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ dada por f(n) = (n, 1) es inyectiva

Por otro lado $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ dada por $f(n,m) = 2^n 3^m$ tambien inyectiva

Por Schroeder Bernstein tenemos que existe biyección, luego $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$

Corolario 7.2. Para $n \in \mathbb{N}$ sea X_n un conjunto numerable. Entonces, $X = \bigcup_n X_n$ es numerable (Unión numerable de numerables es numerable)

Proof. Cada X_n es numerable $\Rightarrow \exists f_n : \mathbb{N} \to X_n$ biyectiva

Luego $g: \mathbb{N} \times \mathbb{N} \to X = \bigcup_n X_n$ dada por $g(m,n) = f_n(m)$ survectiva (no necesariamente inyectiva por que no necesariamente los X_n son disjuntos)

Pero con survectividad sabemos que X tiene que ser contable $(\#X \leq \#\mathbb{N} \times \mathbb{N})$ pero como es infinito luego X es numerable

Notemos que de aqui es facil probar otro tipo de resultados por ejemplo que union de numerable de finitos (disjuntos) es numerable o que union numerable de finitos es contable

Corolario 7.3. La relación \leq entre cardinales es una relación de orden

Observación. Sea X numerable, $Y \subset X$. Entonces, Y es finito o numerable (o sea Y es contable)

Proof. Supongamos Y no es finito

Como X es numerable. $X = \{x_n : n \in \mathbb{N}\}\$ con x_n distintos

 $n_1 = \min\{n \in \mathbb{N}/x_n \in Y\}$

 $n_2 = \min\{n > n_1/x_n \in Y\}$

. . .

 $n_k = \min\{n > n_{k-1}/x_n \in Y\}$

Sabemos que hay infinitos n_k dado que Y es infinito.

Luego $Y = \{(x_{n_k})_{k \in \mathbb{N}}\}$ probémoslo

 \supset) es trivial

 \subseteq) Sea $y \in Y$ como $y \subset X$ sabemos $\exists m \in \mathbb{N}/y = x_m$

Ahora como n_k es una sucesión k puede ser tan grande como uno quiera, por ende existen $n_k \le m < n_{k+1} = \min\{n > n_k/x_n \in Y\}$

Luego $m = n_k$ si no llegariamos a un absurdo entonces $y = x_m = x_{m_k}$

Observación. Sea X numerable,

- Si existe $f: X \to Y$ invectiva, entonces Y es contable (a lo sumo numerable)
- Si existe $f: X \to Y$ survectiva, entonces Y es contable

Proposición 1. Si X es infinito, existe $Y \subseteq X$, Y numerable, tal que $X \sim X \setminus Y$

Proof. Como X es infinito $\exists A \subseteq X$ numerable, $A = \{a_n : n \in \mathbb{N}\}$ $Y = A_1 = \{a_{2n-1} : n \in \mathbb{N}\}$ $A_2 = \{a_{2n} : n \in \mathbb{N}\}$ $a_n \neq a_m$ $(n \neq m)$ $f : A \to A_2 = A \setminus A_1 = A \setminus Y$ dada por $f(a_n) = a_{2n}$ biyectiva Luego sea $h(x) : X \to X \setminus Y$

$$h(x) = \begin{cases} x & x \in X \setminus A \\ f(x) & x \in A \end{cases}$$

Observación. Si X es infinito no numerable ademas sirve cualquier Y numerable. Esto va a ser obvio un par de demostraciones mas adelante.

Lema 8. Se
a $X \sim Y$ y $X' \sim Y'$ además $X \cap X' = \emptyset = Y \cap Y'$

$$X \cup X' \sim Y \cup Y'$$

Proof. Tenemos $f: X \to Y$ y $g: X' \to Y'$ ambas biyectivas. Luego tenemos $h: X \cup X' \to Y \cup Y'$ biyectiva dada por

$$h(x) = \begin{cases} f(x) & x \in X \\ g(x) & x \in X' \end{cases}$$

Proposición 2. Sea X infinito y X' numerable. Entonces $X \cup X' \sim X$

Aclaración Tomo disjunta la unión por comodidad, pero no es necesario, por que se puede reescribir a X' como $X'' = X' \setminus X$

Igualmente la gracia del ejercicio es cuando las cosas que estan en X' pero no en X son numerables, si no le estarías agregando finitas cosas a X y eso no es nada nuevo

Proof. Sea $Y \subseteq X$ numerable tal que $X \setminus Y \sim X$

Sabemos $X' \cap X = \emptyset$

$$X \cup X' = [(X \setminus Y) \cup Y] \cup X' = (X \setminus Y) \cup (Y \cup X') \sim X \setminus Y \cup Y = X$$

Esto vale por que $Y \cup X'$ es unión de numerables por ende vuelve a dar numerable y por ende es coordinable con Y numerable. Y la relacion \sim vale por el lema 8

Observación. Se puede probar con unión no disjunta , pero no es trivial , los que esten en ambos X,X^\prime no cambian nada

Aqui podemos ver un ejemplo $\#\mathbb{R} = \#\mathbb{I} \cup \mathbb{Q} = \#\mathbb{I}$

Observación. Sea $\{0,1\}^{\mathbb{N}} = \{(a_n)_{n \in \mathbb{N}} : a_n \in \{0,1\}\}$ luego existe una biyección entre $\mathcal{P}(\mathbb{N})$ y $\{0,1\}^{\mathbb{N}}$

Proof. Sea $f: \mathcal{P}(\mathbb{N}) \to \{0,1\}^{\mathbb{N}}$ dada por $f(A) = (a_n)_n$

$$a_n = \begin{cases} 1 & n \in A \\ 0 & n \notin A \end{cases}$$

Probar que esta función es biyectiva queda como ejercicio para el lector Dada esta demostración notemos que $\#\{0,1\}^{\mathbb{N}} = \#\mathcal{P}(\mathbb{N}) > \aleph_0$

Proposición 3. Sea $A_0 = \{(a_n)_{n\geq 1} \in \{0,1\}^{\mathbb{N}} : \text{ existe } m \text{ tal que } a_n = 0 \text{ si } n \geq m \}$ es numerable

Sea $B_m = \{(a_n)_{n \ge 1} \in \{0, 1\}^{\mathbb{N}} : a_n = 0 \text{ si } n \ge m \}$

$$A_0 = \bigcup_{m=1}^{\infty} B_m$$

Sabemos que cada B_m es finito luego union numerable de finitos es contable A_0 es contable, pero ademas sabemos que A_0 es infinito, por lo tanto es numerable

Proposición 4. Sea $X = \{(a_n)_{n \geq 1} : a_n \in \{0,1\} \text{ y } a_n = 1 \text{ para infinitos valores de } n \}$ Luego $X = \{0,1\}^{\mathbb{N}} \setminus A_0 \text{ y tenemos } X \cup A_0 = \{0,1\}^{\mathbb{N}}$ Pero recordemos X es infinito y A_0 es numerable luego $X \cup A_0 \sim X$

Luego $X \sim X \cup A_0 \sim \{0,1\}^{\mathbb{N}} \Rightarrow \#X = \#\{0,1\}^{\mathbb{N}} = \#\mathcal{P}(\mathbb{N})$

Teorema 9. Finalmente podemos probar $\#\mathbb{R} = \#\mathcal{P}(\mathbb{N}) > \#\mathbb{N}$

Proof. Sabemos que $\#\mathcal{P}(\mathbb{N}) = \#X$

Definimos $f: X \to [0, 1]$ como

$$f(a) = \sum_{n=1}^{\infty} \frac{a_n}{2^n}$$

que es biyectiva

Veamos que $\#[0,1] = \#\mathbb{R}$

Por un lado tenemos $\mathbb{R} \sim (-1,1)$ por medio de $f: \mathbb{R} \to (-1,1)$ dada por $x \mapsto \frac{x}{1+x^2}$ biyectiva

Por otro lado tenemos que $(-1,1) \sim (a,b)$ usando la recta que manada

$$-1 \mapsto a$$

$$1 \mapsto b$$

Ahora sabemos que $(0,1) \sim \mathbb{R}$ agregarle numerables puntos a algo infinito no cambia su cardinal , agregarle el 0 y el 1 tampoco

Luego
$$[0,1] \sim \mathbb{R}$$

Juntando todo
$$\#\mathcal{P}(\mathbb{N}) = \#\mathbb{R}$$

Definición 0.5. Dados dos cardinales, α, β y X e Y disjuntos tales que $\alpha = \#X, \beta = \#Y$ Podemos definir las siguientes operaciones:

Suma: $\alpha + \beta = \#(X \cup Y)$ Producto: $\alpha.\beta = \#(X \times Y)$ Potencia: $\alpha^{\beta} = \#\{F : Y \to X\} = \#(X^{Y})$

Es importante que sean disjuntos para que todo esté bien definido

Veamos que la suma está correctamente definida:

Si tenemos $X \sim X'$ e $Y \sim Y'$ disjuntos $\Rightarrow X \cup Y \sim X' \cup Y'$

Lo que acabamos de ver es que es lo mismo sumar X a Y que otros conjunto que sean coordinables (y por ende tengan el mismo cardinal) con alguno de ellos respectivamente

La multiplicación se ve de forma similar y el producto se ve aprovechando las funciones biyectivas que nos da la coordinabilidad y la F que nos da el producto

Observación. Teniendo está aritmética de cardinales, podemos obtener ciertos resultados.

- 1. $\aleph_0 + \aleph_0 = \aleph_0$
- 2. $\mathfrak{c} + \mathfrak{c} = \mathfrak{c}$
- 3. $\mathfrak{c} + \aleph_0 = \mathfrak{c}$

Proof. Aquí nos vamos a apoyar en el hecho de que podemos usar cualquier par de conjuntos que tengan el cardinal que necesitamos para probarlo para todo conjunto

- 1) $\{pares\} \cup \{impares\}$
- 2) $[0,1) \cup [1,2) = [0,2)$ cada uno de estos es coordinable con $\mathbb R$
- 3) Lo mas directo es usando $\mathfrak{c} \leq \mathfrak{c} + \aleph_0 \leq \mathfrak{c} + \mathfrak{c} = \mathfrak{c}$ esto usa Cantor-Bernstein por detras (tenemos dos funciones inyectivas entonces tenemos una biyectiva. Otra forma es notar que si a un conjunto infinito le agrego algo numerable no nos cambia el cardinal

Definición 0.6. ZZZZUsando la definicion del producto y sabiendo $\#\{0,1\}=2$ y $\#\mathbb{N}=\aleph_0$ $\#\mathbb{R}=\mathfrak{c}=2^{\mathbb{N}}$

Teniendo esto en cuenta veamos que:

- 1. $\aleph_0 . \aleph_0 = \aleph_0$
- 2. $\mathfrak{c}.\mathfrak{c} = \mathfrak{c}$
- 3. $\mathfrak{c}.\aleph_0 = \mathfrak{c}$

Proof. 1) sabemos que $\aleph_0 \times \aleph_0 \sim \aleph_0$ 2) $\mathfrak{c}.\mathfrak{c} = \mathfrak{c}^2 = (2^{\aleph_0})^2 = 2^{\aleph_0.2} = 2^{\aleph_0 + \aleph_0} = 2^{\aleph_0} = \mathfrak{c}$ Observación. Dado $\mathfrak{c}.\mathfrak{c}=\mathfrak{c}$ tenemos resultados interesantes. Primero

$$\mathbb{R} \sim \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$

De la misma manera pdoemos probar

$$\mathbb{R} \sim \mathbb{R}^n \quad \forall n \in \mathbb{N}$$

Como cualquier intervalo (no vacío) tiene cardinal \mathfrak{c} , concluimos que para cualquier $\epsilon>0$ y cualquier $n\in\mathbb{N}$, tenemos

$$(0,\epsilon) \sim \mathbb{R} \sim \mathbb{R}^n$$