

Magma density and viscosity

Paul A. Jarvis

paul.jarvis@unige.ch

15th November 2019

Magma density

Bulk density depends on volume fraction of crystals and bubbles

$$\rho = \rho_{\rm m} \left(1 - \sum_{i} \phi_{i} \right) + \sum_{i} \rho_{i} \phi_{i}$$

 $\rho_{\mathsf{m}} = \mathsf{Melt} \; \mathsf{density}$

• Depends on T, P, X

i = quartz, hornblende, plagioclase etc. and H_2O , CO_2 bubbles etc.

 $\rho_i = \text{Density of phase } i$

- Depends on *T*, *P* for bubbles
- Depends on composition for crystals

 ϕ_i = Volume fraction of phase i

Melt density

$$\rho_m = \sum_i X_i M_i \left(\sum_i X_i \bar{V}_i(T, P) \right)^{-1}$$

 $M_i = \text{Molar mass of component } i$

- Mass of 1 mol of i
- $M_{SiO_2} = 28 \text{ g mol}^{-1} + 2 \times 16 \text{ g mol}^{-1} = 60 \text{ g mol}^{-1}$
- $M_{\text{H}_2\text{O}} = 2 \times 1 \text{ g mol}^{-1} + 16 \text{ g mol}^{-1} = 18 \text{ g mol}^{-1}$

 \bar{V}_i = Partial molar volume of component i

• Change in mixture volume when 1 mol of *i* is added

Need to determine $\bar{V}_i(T, P)$ empirically

Melt density - Equation of state (EoS)

Relationship between **pressure**, **volume** (density) and **temperature** Experiments - measure volume of a sample of \mathbf{X} at a different P and T. Find **empirical** EoS

$$V_m(T,P,\mathbf{X}) = \sum_i X_i \left[\left. \bar{V}_i(T=T_{\mathsf{R}},P=P_{\mathsf{R}}) + \left. \frac{\partial \bar{V}_i(T,P=P_{\mathsf{R}})}{\partial T} \right|_{T=T_{\mathsf{R}}} (T-T_{\mathsf{R}}) + \left. \frac{\partial \bar{V}_i(T=T_{\mathsf{R}},P)}{\partial P} \right|_{P=P_{\mathsf{R}}} (P-P_{\mathsf{R}}) \right] \right]$$

 $T_{\rm R}=$ Reference temperature = 1673 K $P_{\rm R}=$ Reference pressure = 10^{-4} GPa

Lange & Carmichael (1990) Lange (1997) Ochs & Lange (1997)

K		$\bar{V}_i(T=T_{R},P=P_{R})$	$\frac{\partial \bar{V}_i(T,P=P_R)}{\partial T}\Big _{T=T_R}$	$\frac{\partial \bar{V}_i(T=T_R,P)}{\partial P}\Big _{P=P_R}$
		$/10^{-6}~{\rm m}^3~{\rm mol}^{-1}$	$/10^{-9} \text{ m}^3 \text{ mol}^{-1} \text{ K}$	$/10^{-6} \text{ m}^3 \text{ mol}^{-1} \text{ GPa}$
	SiO ₂	26.86	0.0	-1.89
	TiO ₂	23.16	7.24	-2.31
	Al_2O_3	37.42	0.0	-2.31
	Fe_2O_3	42.13	9.09	-2.53
	FeO	13.65	2.92	-0.45
	MgO	11.69	3.27	0.27
	CaO	16.53	3.74	0.34
	Na_2O	28.88	7.68	-2.40
	K_2O	45.07	12.08	-6.75
	Li ₂ O	16.85	5.25	-1.02
	H_2O	26.27	9.46	-3.15
	$\overline{\text{CO}}_2$	33.0	0.0	0.0

Melt density - Effect of T and X_{H_2O}

Temperature has small effect on density, particularly for high-silica melts

Water content has much stronger effect

Magma viscosity - Viscosity definition

Viscosity - A measure of a substance's resistance to flow (deformation). It relates an applied shear stress to the velocity gradient.

Consider fluid between two sheared parallel plates

 $au = \mbox{Applied shear stress}$ $d = \mbox{Separation between plates}$ $u(z) = \mbox{Fluid velocity in gap}$

Viscosity η is defined as:

$$\tau = \eta \frac{\mathrm{d}U}{\mathrm{d}z} = \eta \dot{\epsilon}$$

where $\dot{\epsilon} = dU/dz =$ strain rate

Magma viscosity - Newtonian fluids

Generally, viscosity is a function of strain rate: $\eta = \eta(\dot{\epsilon})$

Therefore, impossible to assign a single value of η to a material

Newtonian fluids - Special case where η is independent of $\dot{\epsilon}$

Flow curve - Relationship between τ and $\dot{\epsilon}$

$$\tau = \eta(\dot{\epsilon})\dot{\epsilon}$$

For Newtonian fluid, $\eta = \text{constant}$

⇒ flow curve is straight line

$$\implies$$
 gradient = η

Magma viscosity - Rheological materials

Newtonian

- Constant η
- e.g. water, magmatic melt

Shear thickening

- η increases with $\dot{\epsilon}$
- e.g. cornstarch

Shear thinning

- η decreases with $\dot{\epsilon}$
- e.g. butter

Bingham

- Fluid has **yield stress** τ_0
- For $au < au_0$ fluid does not flow $(\dot{\epsilon} = 0)$
- e.g. Mayonaise

Measuring rheological properties

Parallel plate

Cone and plate

Concentric cylinder

Apply torque $M\Longrightarrow$ stress auMeasure angular velocity $\Omega\Longrightarrow$ strain rate $\dot{\gamma}$ Determine flow curve $au=\eta(\dot{\gamma})\dot{\gamma}$

Magma viscosity - Melt as a Newtonian fluid

Silica melt is almost perfectly Newtonian.

However, at extremely high shear rates, all materials start to undergo shear-thinning

Critical shear rate is given by

$$\dot{\epsilon_c} pprox rac{10^{-3}G}{\eta_m}$$

 $G = {\sf Shear \ modulus} \approx 10^{10} {\sf \ Pa}$

At even higher shear rates, the melt cannot deform as a fluid and snaps in a brittle manner.

Magma viscosity - Melt viscosity

Melt is modelled according to the Vogel-Fulchner-Tammann (VFT) equation (Giordano et al., 2008)

torque, $M \to \text{stress}$, τ angular velocity, $\Omega \to \text{strain rate}$, $\dot{\gamma}$

$$\log \eta_{\mathsf{m}} = A + \frac{B(\mathbf{X})}{T - C(\mathbf{X})}$$

$$\eta_{\mathsf{m}} = 10^{A+B(\mathbf{X})/[T-C(\mathbf{X})]}$$

Measurements of the viscosity of samples of different \mathbf{X} at different T are used to determine $A, B(\mathbf{X}), C(\mathbf{X})$

N.B: This is a fitted, purely empirical equation - it is not dimensionally consistent!

Magma viscosity - Fitted parameters

$$A = {\sf constant} = -4.55$$
 $B = \sum_{i=1}^7 b_i M_i + \sum_{j=1}^3 b_{1j} M_{1j}$ $C = \sum_{i=1}^6 c_i N_i + c_{11} N_{11}$

$$\log \eta_{\rm m} = A + \frac{B(\mathbf{X})}{T - C(\mathbf{X})}$$

$$\eta_{\mathsf{m}} = 10^{A+B(\mathbf{X})/[T-C(\mathbf{X})]}$$

$b_1 = 159.6$	$M_1 = X_{SiO_2} + X_{TiO_2}$	$c_1 = 2.75$	$N_1 = X_{SiO_2}$
$b_2 = -173.3$	$M_2 = \bar{X}_{Al_2O_3}$	$c_2 = 15.7$	$N_2 = X_{\text{TiO}_2} + \tilde{X}_{\text{Al}_2\text{O}_3}$
$b_3 = -72.1$	$M_3 = X_{\text{FeO}} + X_{\text{MnO}} + X_{\text{P}_2\text{O}_5}$	$c_3 = 8.3$	$N_3 = X_{\text{FeO}} + X_{\text{MnO}} + X_{\text{MgO}}$
$b_4 = -75.7$	$M_4 = X_{\text{MgO}}$	$c_4 = 10.2$	$N_4 = X_{CaO}$
$b_5 = -39.9$	$M_5 = X_{CaO}$	$c_5 = -12.3$	$N_5 = X_{\text{Na}_2\text{O}} + X_{\text{K}_2\text{O}}$
$b_6 = -84.1$	$M_6 = X_{\text{Na}_2\text{O}} + X_{\text{H}_2\text{O}} + X_{\text{F}_2\text{O}}$	$c_6 = -99.1$	$N_6 = \ln(1 + \tilde{X}_{H_2O} + \tilde{X}_{F_2O})$
$b_7 = -141.5$	$M_7 = X_{\text{H}_2\text{O}} + X_{\text{F}_2\text{O}} + \ln(1 + \bar{X}_{\text{H}_2\text{O}})$		
$b_{11} = -2.43$	$M_{11} = M_1 N_3$	$c_{11} = 0.3$	$N_{11} = (M_2 + N_3 + N_4 -$
$b_{12} = -0.91$	$M_{12} = (N_1 + N_2 + X_{P_2O_5})(N_5 + X_{H_2O})$		$X_{P_2O_5}$)($N_5 + X_{H_2O} + X_{F_2O_{-1}}$)
$b_{13} = 17.6$	$M_{13}=M_2N_5$		

For a given melt composition, can evaluate η

Melt viscosity - Effect of T and X_{H_2O}

Increase in T and X_{H_2O} can reduce melt viscosity by orders of magnitude

Magma viscosity - Effect of crystals

Particles suspended in a fluid increase the viscosity of the medium Suspension - A mixture of particles and fluid

 $\phi_c =$ Volume fraction of crystals

Define **relative viscosity** $\eta_{\rm r}(\phi_{\rm c})$ to contain effect of $\phi_{\rm c}$

$$\eta = \eta_{\mathsf{m}} \eta_{\mathsf{r}}(\phi_{\mathsf{c}})$$

$$\phi_{\rm c} \lesssim 0.01$$
 - **Dilute**

$$0.01 \lesssim \phi_{\rm c} \lesssim 0.25$$
 - Semi-dilute

$$\phi_c \ge 0.25$$
 - Concentrated

Magma viscosity - Dilute particle suspensions

Dilute suspension: $\phi_c \lesssim 0.01$

Interactions between particles are weak and effect on viscosity is small

Viscosity depends linearly on ϕ_c (Einstein, 1906; 1911)

$$\eta_{
m r}=1+B\phi_{
m c}$$

Experiments suggest that $B \approx 2.5$

Suspension rheology models are only strictly valid for suspensions on spherical particles.

Developing models for suspensions of differently shaped particles is difficult

- particularly for magmas where crystals have many different and irregular shapes

However, for dilute and semi-dilute suspensions, models work well.

Magma viscosity - Semi-dilute suspensions

Semi-dilute suspension: $0.01 \lesssim \phi_c \lesssim 0.25$

Particles interact with each other, affecting the viscosity

Viscosity depends non-linearly on $\phi_{\rm c}$ (Guth & Gold, 1938; Vand, 1948; Manley & Mason, 1955)

Can model the viscosity with a polynomial expression

$$\eta_{\rm r} = 1 + B\phi_{\rm c} + B_1\phi_{\rm c}^2 + ...$$

Experiments suggest that $7.35 \lesssim B_1 \lesssim 14.1$

Predictions from polynomial models get worse as ϕ_c increases.

- This is because as particles begin to touch the viscosity rises very fast

Magma viscosity - Maximum packings

Concentrated suspension: $\phi_c \gtrsim 0.25$

Random close packing - Maximum volume fraction of crystals that can be obtained in a disordered system

For spheres: $\phi_{\rm m} \approx 0.64$

Densest regular packing - Maximum possible packing if crystals are arranged orderly

For spheres: $\phi_r \approx 0.74$

Magma viscosity - Concentrated suspensions

Concentrated suspension: $\phi_c \gtrsim 0.25$

Once $\phi_{\rm c}=\phi_{\rm m}$, then further deformation is impossible

- the material is rheologically locked
- $\eta_{\rm r} o \infty$

For magmas, $\phi_{\rm m}$ depends on crystal shape and size distribution

- Very difficult to accurately predict
- Many experiments, find $\phi_{\rm m} pprox 0.4$

Multiple models describe rheology of concentrated suspensions, but commonly used model is Krieger & Dougherty (1959)

$$\eta_{\mathsf{r}} = \left(1 - rac{\phi_{\mathsf{c}}}{\phi_{\mathsf{m}}}
ight)^{-B\phi_{\mathsf{m}}}$$

Magma viscosity - Yield stress

Once a touching network of crystals exists, then the magma has a **yield** stress

Experiments show magmas with $\phi_{\rm c}$ as small as 0.2 can have a yield stress

 $\phi_{\mathrm{y}}=$ Minimum value of ϕ_{c} at which yield stress exists

$$au_0 = 6.9 \left(rac{\phi_{ extsf{c}}}{\phi_{ extsf{y}}} - 1
ight) \left(1 - rac{\phi_{ extsf{c}}}{\phi_{ extsf{m}}}
ight)^{-1}$$

(Saar et al., 2001; Andrews & Manga, 2014)

Magma viscosity - Non-Newtonian effects

Definition of $\eta_{\rm r}$ assumes Newtonian or Bingham rheology i.e. η is independent of $\dot{\epsilon}$

In reality:

Elongated particles align with the flow

Longest axis becomes parallel to flow lines

The greater the strain rate the larger the reduction in viscosity \implies shear thinning

More complicated models exist to describe suspensions of elongate particles e.g.

$$\eta_{
m r} = \left(1 - rac{\phi_{
m c}}{\phi_{
m m}}
ight)^{-2} \dot{\epsilon}^{0.2 r_{
m p} (\phi_{
m c}/\phi_{
m m})^4}$$

 $r_p = Crystal$ aspect ratio

Magma rheology - Suspension or granular media

Classically, model mixtures of particles and fluid as **suspensions**:

- No relative motion between fluid and particles
- \bullet ϕ is control variable
- System described by equations of fluid dynamics with effective viscosity

In reality, particularly for dense suspensions:

- Phase segregation can be important
- ϕ can depend on particle pressure $P_{\rm p}$
- System is described by Granular mechanics with interstitial fluid

Guazzelli and Pouliquen (2018)

How to describe these systems remains highly contentious Extremely difficult to model theoretically, numerically or experimentally

Magma viscosity - Effect of bubbles

Rheological behaviour is determined by the capillary number

$$\mathsf{Ca} = rac{\eta_\mathsf{m} \dot{\epsilon} \mathit{r}_\mathsf{b}}{\sigma}$$

 $\eta_{\rm m} = \text{Melt viscosity}$ $\dot{\epsilon} = \text{Shear rate}$

 $r_{\rm b} = {\sf Bubble radius}$

 $\sigma = Surface tension$

Ca is a balance between:

- Deforming viscous stress $\eta_{\rm m}\dot{\epsilon}$
- Restoring surface tension stress $\sigma/r_{\rm b}$

If Ca $\lesssim 1$, surface tension stress dominates and bubbles remain spherical

Bubbles behave like solid particles ⇒ increase in viscosity

If $Ca \gtrsim 1$, deforming stress dominates and bubbles can have irregular shapes

Bubbles streamline with shear

⇒ Decrease in viscosity and shear thinning

Magma viscosity - Modeling the effect of bubbles

Bubble deformation makes it difficult to model effect of bubbles on rheology

Relaxation time - Characteristic time for a deformed bubble to return to equilibrium state

$$\lambda = \frac{\eta_{\mathsf{m}} r_{\mathsf{b}}}{\sigma}$$

Compare with timescale for changing shear conditions $\dot{\gamma}/\ddot{\gamma}$

Define Dynamic capillary number:

$$\mathsf{Cd} = rac{\lambda \ddot{\gamma}}{\dot{\gamma}}$$

 $\begin{array}{cccc} \mathsf{Cd} < 1 \implies \mathsf{Steady} \; \mathsf{flow} & \implies \mathsf{Rheology} \; \mathsf{controlled} \; \mathsf{by} \; \mathsf{Ca} \\ \mathsf{Cd} > 1 \implies \mathsf{Unsteady} \; \mathsf{flow} \implies \mathsf{Bubbles} \; \mathsf{never} \; \mathsf{in} \; \mathsf{equilibrium} \\ & \mathsf{Viscosity} \; \mathsf{is} \; \mathsf{less_than_bubble_free} \; \mathsf{fluid}_{\mathsf{Ca},\mathsf{Ca}} \end{array}$

Magma viscosity - Modeling the effect of bubbles

Whether bubbles increase or decrease viscosity depends on $\dot{\gamma}$ and $\ddot{\gamma}$ Semi-empirical model of Mader et al. (2013):

$$\eta_{\rm r} = \eta_{\rm r,\infty} + \frac{\eta_{\rm r,0} - \eta_{\rm r,\infty}}{1 + {\sf Cx}^m}$$

where

$$\eta_{\mathsf{r},\infty} = 1 - rac{5\phi_\mathsf{b}}{3}$$

$$\eta_{\rm r,0} = 1 + \phi_{\rm b}$$

$$Cx = \sqrt{Ca^2 + Cd^2}$$

m depends on size distribution
= 2 for mono-disperse bubbles

Mader et al. (2013)

Experimentally tested for $\phi_b < 0.46$

For $\phi_{\rm b} \geq$ 0.74 a foam forms

Magma density and viscosity - conclusions

- Empirical and semi-empirical models parameterise magma density and viscosity
- Both depend on volume fraction of solid and gas phases
- Melt density is described by an empirical equation of state and depends strongly on water content
- Melt viscosity is described by an empirical VFT equation and depends on temperature and composition
- Magma viscosity strongly depends on crystal and bubble content