

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2016-2017

Course Handout (Part II)

Date: 02/08/16

In addition to part -I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. BIO F417

Course Title: Biomolecular Modeling

Instructor in Charge: SHIBASISH CHOWDHURY

1. Course description:

Biomolecular Conformations, Structural genomics and proteomics, protein folding, Forcefield, Simulation, Conformational analysis, ab initio structure prediction, comparative modeling, lattice models, usage of modeling packages.

2. Scope and objective of the course:

The course is designed to provide students the first hand experience of potential utility of biomolecular modeling especially in concurrent pharmaceutical research, and in cell and structural biology. It describes the functionality, advantages, and limitations of standard computing strategies for the simulation of biomolecules. Provide a working knowledge of freely available software to carry out independent research projects in biomolecular modeling and explore the possibilities for modeling to assist in the process of determination, analyzing, evaluating, displaying, and retrieving of 3D structure data in a research or industry laboratory environment.

- **3. Text Book:** "Molecular modeling: Principles and Applications" By Andrew R Leach, 2nd Edition, 2001, Pearson Education Lim.
- **4. Reference Book:** (1) "Molecular Modeling and Simulation An Interdisciplinary Guide" By Tamar Schlick, Springer, New York, 2002
- (2) "Principles of protein structure" By Schulz, G.E. and Schirmer, R.H., New York, Springer-Verlag, 1979
- (3) "An Introduction to Computational Biochemistry" By C. Stan Tsai, Wiley-Liss, Inc, 2002.
- (4) "Bioinformatics: genes, proteins and computers" Edited by C. Orengo, D. Jones, J. Thronton, BIOS Scientific Publishers Ltd., UK, 2003.

5. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Reference Chap/Sec.	
			(Book)	
1-2	Introduction	What is modeling? Scope and	R-1 (1-2)	
		application of modeling in modern		
		biology		
3-8	Protein structure and	Amino Acid Building Blocks,	R-1 (3-4)	
	conformation	Rotameric Structures Protein		
		Conformation Framework,		
		Ramachandran Plots, Conformational		
		Hierarchy, Structural motifs		

E STORIGO CONTRACTOR OF THE PROPERTY OF THE PR

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2016-2017

Course Handout (Part II)

^{परित} परम न			
9-12	Conformation and	Basic Building Blocks,	R-1 (5-6)
	Variability in DNA	Conformational Flexibility, Canonical	
	structures	DNA Forms, DNA Sequence Effects,	
13-14	Molecular graphics	Introduction to graphic representation,	R-3 (4)
		Representation of molecular structure:	
		both small molecules and	
		macromolecules Database of	
		macromolecular structures	
15-17	Visualization and	Usages of freely available	Class-
	modeling packages	visualization packages like VMD,	notes/websites
		Rasmol, Pymol, SpdbViewer, Chime,	
		Cn3D	
18-22	Protein structure	First principle methods for predicting	R-4(8-9)
	prediction and	protein structure, comparative	
	protein folding	modeling, threading, CASP, Protein	
	problem	folding theories	
23-25	Energetics and	Different types of interactions and	T (4)
	Forcefield	formulation of forcefield	
26-30	Molecular mechanics	Basic algorithm of MM and their	T(5)
		utilities, Hand on sessions	
31-32	Monte Carlo	Basics of Monte Carlo Sampling	T(8)
	Simulation		
33-35	Molecular dynamics	Basic MD algorithm, Its limitation,	T (6-7)
		treatment of long range forces	
36-38	Conformational	Analysis of molecular dynamics	T (9)
	analysis	trajectories	
39-40	Lab on MD	Hand on session on molecular	Amber
		Dynamics	package

6. Evaluation scheme:

Components	Duration	Date &Time	Weightag e (%)	Nature of Component
Mid-semester test	90 min	<test_1></test_1>	25%	Closed Book
Assignment/seminar (several)			15%	
Surprise Quiz (several)	15 min		10%	Closed/open Book
Project			15%	Open Book
Comprehensive examination	3 Hours	<test_c></test_c>	35%	Partially closed Book

7. Chamber Consultation Hour: To be announced in the class.

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2016-2017 Course Handout (Part II)

- **8.** Notices: Notices, if any concerning the course will be displayed on the notice Board of Biology Group.
- **9.** Make up Policy: Make up will be given on genuine grounds as determined by the Instructor-incharge

Instructor-in-charge BIO F417

