Logika dla informatyków

Sprawdzian nr 2, 24 listopada 2010

Zadanie 1 (1 punkt). Jeśli dla wszystkich zbiorów A, B, C i D zachodzi równość

$$(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cap D)$$

to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$A = B = C = \{1\}, \qquad D = \emptyset$$

Zadanie 2 (1 punkt). Dla $m, n \in \mathbb{N}$ niech $A_{m,n} = \{i \in \mathbb{N} \mid m \leq i \land i \leq n\}$. W prostokąt poniżej wpisz wyliczoną wartość zbioru $\bigcup_{m=0}^{100} \bigcap_{n=m}^{\infty} A_{m,n}$, tzn. wpisz wyrażenie oznaczające ten sam zbiór i nie zawierające symboli $\cap, \cup, \exists, \forall$.

$$\{i \in \mathbb{N} \mid 0 \le i \ \land i \le 100\}$$

Zadanie 3 (1 punkt). Niech $R = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid m - n = 2\}$. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle m, n \rangle \mid \varphi\}$ jest najmniejszą relacją równoważności zawierającą R.

$$2|m-n$$

Zadanie 4 (1 punkt). Jeśli dla wszystkich formuł φ , w których zmienna x nie ma wolnych wystąpień i wszystkich formuł ψ logiki pierwszego rzędu formuły $\exists x \, (\varphi \Leftrightarrow \psi)$ oraz $\varphi \Leftrightarrow (\exists x \, \psi)$ są równoważne, to w prostokąt poniżej wpisz słowo "RÓWNOWAŻNE". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Uniwersum:
$$\mathbb{R}$$
; $\varphi = \bot$; $\psi = (x > 7)$

Zadanie 5 (1 punkt). Jeśli istnieje taka funkcja $f : \mathbb{R} \to \mathbb{R}$, że $f([0,2]) = [0,1] \cup [2,3]$ to w prostokąt poniżej wpisz dowolną taką funkcję. W przeciwnym przypadku wpisz słowo "NIE".

$$f(x) = \begin{cases} |2(x - \frac{1}{2})|, & \text{dla} \quad x \in [0, 1) \\ x + 1, & \text{dla} \quad x \in [1, 2] \\ 8 & \text{w przeciwnym przypadku} \end{cases}$$

Zadanie 6 (5 punktów). Niech R_1 i R_2 będą takimi relacjami równoważności na A, że $R_2R_1 = A \times A$. Dla $i \in \{1,2\}$ niech A/R_i będzie rodziną klas abstrakcji relacji R_i , tzn. $A/R_i = \{[a]_{R_i} \mid a \in A\}$. Udowodnij, że funkcja $f: A \to A/R_1 \times A/R_2$ zdefiniowana wzorem $f(x) = \langle [x]_{R_1}, [x]_{R_2} \rangle$ jest "na".

Rozwiązanie. Weźmy dowolny element zbioru $A/R_1 \times A/R_2$. Jest on postaci $\langle [a_1]_{R_1}, [a_2]_{R_2} \rangle$ dla pewnych $a_1, a_2 \in A$. Pokażemy, że istnieje taki element $a \in A$, że $f(a) = \langle [a_1]_{R_1}, [a_2]_{R_2} \rangle$. Ponieważ $R_2R_1 = A \times A$, więc $\langle a_1, a_2 \rangle \in R_2R_1$. Z definicji złożenia relacji otrzymujemy, że istnieje taki element a, że $\langle a_1, a \rangle \in R_1$ oraz $\langle a, a_2 \rangle \in R_2$. Niech a będzie takim elementem. Wtedy $[a]_{R_1} = [a_1]_{R_1}$ oraz $[a]_{R_2} = [a_2]_{R_2}$, a stąd $f(a) = \langle [a_1]_{R_1}, [a_2]_{R_2} \rangle$, co kończy dowód.

Logika dla informatyków

Sprawdzian nr 2, 24 listopada 2010

Zadanie 1 (1 punkt). Jeśli dla wszystkich zbiorów A, B, C i D zachodzi równość

$$(A \setminus B) \cap (C \setminus D) = (A \setminus C) \cap (B \setminus D)$$

to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$A = B = \{1\}, \qquad C = D = \emptyset$$

Zadanie 2 (1 punkt). Dla $m, n \in \mathbb{N}$ niech $A_{m,n} = \{i \in \mathbb{N} \mid m \leq i \land i \leq n\}$. W prostokąt poniżej wpisz wyliczoną wartość zbioru $\bigcap_{n=2010}^{\infty} \bigcup_{m=0}^{n} A_{m,n}$, tzn. wpisz wyrażenie oznaczające ten sam zbiór i nie zawierające symboli $\cap, \cup, \exists, \forall$.

$$\{i\in\mathbb{N}\mid 0\leq i\ \wedge i\leq 2010\}$$

Zadanie 3 (1 punkt). Niech $R = \{\langle x, x+3 \rangle \mid x \in \mathbb{N} \}$. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle m, n \rangle \mid \varphi \}$ jest najmniejszą relacją równoważności zawierającą R.

$$3|m-n$$

Zadanie 4 (1 punkt). Jeśli dla wszystkich formuł φ , w których zmienna x nie ma wolnych wystąpień i wszystkich formuł ψ logiki pierwszego rzędu formuły $\forall x \, (\varphi \Leftrightarrow \psi)$ oraz $\varphi \Leftrightarrow (\forall x \, \psi)$ są równoważne, to w prostokąt poniżej wpisz słowo "RÓWNOWAŻNE". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Uniwersum:
$$\mathbb{R}$$
; $\varphi = \bot$; $\psi = (x > 7)$

Zadanie 5 (1 punkt). Jeśli istnieje taka funkcja $f : \mathbb{R} \to \mathbb{R}$, że $f^{-1}([1,2]) = [0,1] \cup [2,3]$ to w prostokąt poniżej wpisz dowolną taką funkcję. W przeciwnym przypadku wpisz słowo "NIE".

$$f(x) = \begin{cases} x+1, & \text{dla} \quad x \in [0,1] \\ x-1, & \text{dla} \quad x \in [2,3] \\ 7 & \text{w przeciwnym przypadku} \end{cases}$$

Zadanie 6 (5 punktów). Niech R_1 i R_2 będą takimi relacjami równoważności na A, że $R_1 \cap R_2 = I_A$ (gdzie I_A jest relacją identyczności na zbiorze A). Dla $i \in \{1,2\}$ niech A/R_i będzie rodziną klas abstrakcji relacji R_i , tzn. $A/R_i = \{[a]_{R_i} \mid a \in A\}$. Udowodnij, że funkcja $f: A \to A/R_1 \times A/R_2$ zdefiniowana wzorem $f(x) = \langle [x]_{R_1}, [x]_{R_2} \rangle$ jest różnowartościowa.

Rozwiązanie. Weźmy dowolne $a_1,a_2\in A$ i załóżmy, że $f(a_1)=f(a_2)$. Pokażemy, że $a_1=a_2$. Z definicji funkcji f mamy $\langle [a_1]_{R_1}, [a_1]_{R_2} \rangle = \langle [a_2]_{R_1}, [a_2]_{R_2} \rangle$, czyli $[a_1]_{R_1}=[a_2]_{R_1}$ oraz $[a_1]_{R_2}=[a_2]_{R_2}$. Zatem $\langle a_1,a_2 \rangle \in R_1$ oraz $\langle a_1,a_2 \rangle \in R_2$, a ponieważ $R_1 \cap R_2=I_A$, więc $\langle a_1,a_2 \rangle \in I_A$, czyli $a_1=a_2$.