Eigen Value Analysis in Lower Bounding Uncertainty of Kalman Filter Estimates

Niladri Das & Dr. Raktim Bhattacharya

Dept. of Aerospace Engineering, Intelligent System Research Laboratory, Texas A&M University, College Station, TX

June 14, 2020

Table of Contents

- 1. Introduction
- 2. Contributions
- 3. System model
- 4. Preliminary Concepts
- 5. Theorems
- 6. Numerical Experiment
- 7. Results
- 8. Conclusion

1. Introduction

- 2. Contributions
- 3. System model
- 4. Preliminary Concepts
- 5. Theorems
- 6. Numerical Experiment
- 7. Results
- 8. Conclusion

Introduction

If the system dynamics is: $\boldsymbol{x}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k + \boldsymbol{B}\boldsymbol{w}_k, \ \forall k \in \mathbb{N}$, and the measurement equation is: $\boldsymbol{y}_k = \boldsymbol{C}\boldsymbol{x}_k + \boldsymbol{n}_k, \ \forall k \in \mathbb{N}$, the Kalman filtering based covariance update equation is:

$$P_{k|k} = P_{k|k-1} - P_{k|k-1}C^T(CP_{k|k-1}C^T + R)^{-1}CP_{k|k-1}$$

where $P_{k|k-1}$ and $P_{k|k}$ denotes the prior and posterior covariance.

The question that we are interested in answering is:

How can we calculate R so that steady-state prior covariance $P_{\infty} \succeq P_l^f$ (lower-bounded)?

- 1. Introduction
- 2. Contributions
- 3. System model
- 4. Preliminary Concepts
- 5. Theorems
- 6. Numerical Experiment
- 7. Results
- 8. Conclusion

Contributions

- ightharpoonup We propose a measurement noise (R) manipulation scheme to ensure lower-bound on the estimation accuracy of states.
- ▶ We have used mathematical tools from eigen value analysis to calculate *R* that ensures lower-bound on the steady state estimation error of Kalman filter

- 1. Introduction
- 2. Contributions
- 3. System model
- 4. Preliminary Concepts
- 5. Theorems
- 6. Numerical Experiment
- 7. Results
- 8. Conclusion

System model

$$egin{align} oldsymbol{x}_{k+1} &= oldsymbol{A} oldsymbol{x}_k + oldsymbol{B} oldsymbol{w}_k, \ oldsymbol{y}_k &= oldsymbol{C} oldsymbol{x}_k + oldsymbol{n}_k, \ oldsymbol{y}_k \in \mathbb{N}, \end{aligned}$$

- $lacksquare x_k \in \mathbb{R}^{n_x}$, $m{y}_k \in \mathbb{R}^{n_y}$, $m{A} \in \mathbb{R}^{n_x imes n_x}$, $m{B} \in \mathbb{R}^{n_x imes n_w}$, $m{C} \in \mathbb{R}^{n_y imes n_x}$.
- ▶ The process noise $w_k \in \mathbb{R}^{n_w}$ and measurement noise $n_k \in \mathbb{R}^{n_n}$, is zero-mean Gaussian additive noise with $\mathbb{E}[w_k w_l^T] = Q \delta_{kl}$ and $\mathbb{E}[n_k n_l^T] = R \delta_{kl}$

- 1. Introduction
- 2. Contributions
- 3. System model
- 4. Preliminary Concepts
- 5. Theorems
- 6. Numerical Experiment
- 7. Results
- 8. Conclusion

Unified Algebraic Riccati equation¹:

$$PA + A^{T}P + \Delta A^{T}PA - (\Delta A^{T} + I)PB$$

$$\times (I + \Delta B^{T}PB)^{-1}B^{T}P(\Delta A + I) + Q = 0,$$
(2)

We introduce an extra parameter $m{R} \in \mathbb{R}^{n_y imes n_y}$ in UARE and call it UARE-R. This UARE-R:

$$PA + A^{T}P + \Delta A^{T}PA - (\Delta A^{T} + I)PB$$

$$\times (R + \Delta B^{T}PB)^{-1}B^{T}P(\Delta A + I) + Q = 0,$$
(3)

is often encountered in optimal control² and estimation problems³.

¹Richard H Middleton and Graham C Goodwin. *Digital Control and Estimation: A Unified Approach (Prentice Hall Information and System Sciences Series)*. Prentice Hall Englewood Cliffs, NJ, 1990.

²Arthur Earl Bryson. *Applied optimal control: optimization, estimation and control.* Routledge, 2018.

³Brian DO Anderson and John B Moore. "Optimal filtering". In: Englewood Cliffs 21 (1979), pp. 22–95.

In UARE-R

- ▶ Using $\Delta = 0$, replacing A by A^T , and B by C^T , we recover the Continuous Time Algebraic Riccati equation (CARE), solution to which gives us the steady state covariance for a Kalman-Bucy filter.
- ▶ Using $\Delta=1$, replacing $\boldsymbol{A}+\boldsymbol{I}$ by \boldsymbol{A}^T , and \boldsymbol{B} by \boldsymbol{C}^T we recover the Discrete Algebraic Riccati equation (DARE) associated with steady state covariance of the Kalman Filter, where \boldsymbol{P} denotes the steady-state error covariance matrix.

$$\boldsymbol{A}\boldsymbol{P}\boldsymbol{A}^T - \boldsymbol{P} - \boldsymbol{A}\boldsymbol{P}\boldsymbol{C}^T(\boldsymbol{R} + \boldsymbol{C}\boldsymbol{P}\boldsymbol{C}^T)^{-1}\boldsymbol{C}\boldsymbol{P}\boldsymbol{A}^T + \boldsymbol{Q} = 0,$$

Section 5

- 1. Introduction
- 2. Contributions
- 3. System model
- 4. Preliminary Concepts
- 5. Theorems
- 6. Numerical Experiment
- 7. Results
- 8. Conclusion

Theorem

Let P be the positive solution of the UARE-R (3), then

$$P \succeq (\Delta A + I)^T (P_{l0}^{-1} + \Delta B R^{-1} B^T)^{-1} (\Delta A + I) + \Delta Q \equiv P_{l1} \quad (4)$$

where the matrix P_{l0} is defined as,

$$P_{l0} \equiv (\Delta \mathbf{A} + \mathbf{I})^T (\varphi^{-1} \mathbf{I} + \Delta \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^T)^{-1} (\Delta \mathbf{A} + \mathbf{I}) + \Delta \mathbf{Q}$$
 (5)

and the positive constant φ is defined as,

$$\varphi \equiv f(-[\lambda_{n_x}(\mathbf{A} + \mathbf{A}^T + \Delta \mathbf{A}^T \mathbf{A}) + \Delta \lambda_{n_x}(\mathbf{Q})\lambda_1(\mathbf{R}^{-1}) \times \sigma_1^2(\mathbf{B})], 2\lambda_1(\mathbf{R}^{-1})\sigma_1^2(\mathbf{B}), 2\lambda_{n_x}(\mathbf{Q})),$$
(6)

where f(a, b, c) is defined as,

$$f(a,b,c) \equiv \frac{-a + \sqrt{a^2 + bc}}{b}.$$
 (7)

Theorem

For a given scalar cost function $c(\mathbf{R})$ and an lower bound $(1/\lambda_u^f)$ on the spectrum of \mathbf{R} , the solution \mathbf{R}^* , whose spectrum is $\lambda(\mathbf{R}^*) := \{\lambda_1 \geq \cdots \geq \lambda_{ny}\}$, where $\lambda_{ny} \geq (1/\lambda_u^f)$, that satisfies a given lower bound \mathbf{P}_l^f on the steady state prior covariance matrix \mathbf{P} of Kalman filter, is given by the following optimization problem.

$$R^* := \underset{R}{\operatorname{argmin}} c(R)$$

Such that,

$$\boldsymbol{R} \succeq (1/\lambda_u^f)\boldsymbol{I}, \ \begin{bmatrix} \boldsymbol{T}_1 & \boldsymbol{C}^T \\ \boldsymbol{C} & \boldsymbol{R} \end{bmatrix} \succeq 0,$$

where.

$$T_1 \equiv A^T (\boldsymbol{P}_l^f - \boldsymbol{Q})^{-1} A - \boldsymbol{P}_{l0}^{'}^{-1}, \boldsymbol{P}_{l0}^{'} \equiv A(\varphi^{\prime - 1} \boldsymbol{I} + \lambda_u^f \boldsymbol{C}^T \boldsymbol{C})^{-1} A^T + \boldsymbol{Q}.$$

$$\varphi^{\prime} \equiv f(-[\lambda_{n_x} (\boldsymbol{A} \boldsymbol{A}^T - \boldsymbol{I}) + \lambda_{n_x} (\boldsymbol{Q}) \lambda_u^f \sigma_1^2 (\boldsymbol{C}^T)], 2\lambda_u^f \sigma_1^2 (\boldsymbol{C}^T), 2\lambda_{n_x} (\boldsymbol{Q})),$$

The prescribed \mathbf{P}_l^f should lie between \mathbf{P}^{lb} and \mathbf{P}^{ub} satisfying the following:

$$\mathbf{P}^{lb} := oldsymbol{A} (\mathbf{P}^{lb} - \mathbf{P}^{lb} oldsymbol{C}^T \Big[oldsymbol{C} \mathbf{P}^{lb} oldsymbol{C}^T \Big]^{-1} oldsymbol{C} \mathbf{P}^{lb}) oldsymbol{A}^T + oldsymbol{B} oldsymbol{Q} oldsymbol{B}^T$$

The matrices ${\bf P}^{lb}$ is calculated using ${\bf R}={\bf 0}$ in the DARE. When ${\bf R}={\bf 0}$, the DARE is solved using generalized Shur method as in⁴ on an extended matrix pencil. The covariance ${\bf P}^{ub}$ satisfies the following:

$$\mathbf{P}^{ub} := (\mathbf{A}\mathbf{P}^{ub}\mathbf{A}^T + \mathbf{B}\mathbf{Q}\mathbf{B}^T)$$

The matrix ${f P}^{ub}$ is calculated by using ${f R}=\infty$ in the DARE. An unique ${f P}^{ub}$ exists if ${f A}$ is stable.

⁴Vasile Sima and Peter Benner. "Solving linear matrix equations with SLICOT".

- 1. Introduction
- 2. Contributions
- 3. System model
- 4. Preliminary Concepts
- 5. Theorems
- 6. Numerical Experiment
- 7. Results
- 8. Conclusion

$$egin{aligned} oldsymbol{x}_{k+1} &= oldsymbol{A} oldsymbol{x}_k + oldsymbol{B} oldsymbol{w}_k, \ oldsymbol{y}_k &= oldsymbol{C} oldsymbol{x}_k + oldsymbol{n}_k. \end{aligned}$$

- ightharpoonup Dimension of x_k and y_k is both 10.
- ightharpoonup The B and Q matrices are chosen to be I.
- ► The C matrices are chosen to be 2I.
- ▶ The A and C matrices are chosen such that [A, C] pair is detectable and $[A, BQ^{1/2}]$ pair is stabilizable.
- ightharpoonup R is a diagonal matrix.

Numerical Experiment II

- ▶ The matrices \mathbf{P}^{lb} and \mathbf{P}^{ub} are first calculated. The eigen values of $\operatorname{eig}(\mathbf{P}^{ub}) = [1.000 \ 1.001 \ 1.012 \ 1.123 \ 1.186 \ 2.139 \ 3.172 \ 4.705 \ 9.096 \ 279.143],$ while the eigenvalues of \mathbf{P}^{lb} all are equal to 1.
- ▶ Prescribed lower bound is P_l^f to be $(1/16)(\mathbf{P}^{ub} + 15\mathbf{P}^{lb})$.
- ▶ We calculate $\varphi'=1.0000193$ and P'_{u0} . We select the upper bound λ_u^f to be 0.03.
- lacktriangle The eigen values of $oldsymbol{P}'_{l0}$:

$$\operatorname{eig}(\boldsymbol{P}_{l0}') = [28.689\ 2.601\ 2.028\ 1.599\ 1.480\ 1.103\ 1.078\ 1.006\ 1.000\ 1.000].$$

- 1. Introduction
- 2. Contributions
- 3. System model
- 4. Preliminary Concepts
- 5. Theorems
- 6. Numerical Experiment
- 7. Results
- 8. Conclusion

Figure 1: Plot of sensor covariance values for 10 sensors for prescribed lower bound on P. Circle denotes covariance values calculated from minimization of l_1 norm of the vector λ

We solve the optimization problems using CVX in Matlab. The minimum l_1 norm cost is 18336.433 . On a 2GHz Intel Core i5 machine, the l_1 problem takes 1.20 seconds.

- ▶ The solution is verified by calculating the eigen values of the $P P_l^f$ matrix, which turns out to be all positive, where P is the DARE solution for the optimal R
- ▶ We notice that there is a large gap between the lower bound and the final steady state value of *P*. This is due to the fact that we used eigen value approximations in deriving the result.
- ▶ An ad-hoc method to reduce this gap is to iteratively reduce the magnitude of the λ till the eigenvalues of $P P_l^f$ remain all positive. We found out that we can reduce the λ by a factor of 0.08 and still ensure $P \succeq P_l^f$.

- 1. Introduction
- 2. Contributions
- 3. System model
- 4. Preliminary Concepts
- 5. Theorems
- 6. Numerical Experiment
- 7. Results
- 8. Conclusion

Conclusion

- ► We formulate an methodology to calculate the measurement noise covariance which ensures that the steady state error covariance of the state estimates are lower-bounded by a prescribed bound.
- ► We introduce a modified Unified Algebraic Riccati Equation (UARE-R) and exploit eigen value analysis to construct a feasible set of measurement noise covariance.

Acknowledgment

Research sponsored by Air Force Office of Scientific Research, Dynamic Data Driven Applications Systems grant FA9550-15-1-0071

Thank You