Astrostatistics: Thu 01 Mar 2017

https://github.com/CambridgeAstroStat/PartIII-Astrostatistics

- Lecture Demo Codes are online in directory lecture_codes/
- Example Class 2: **Tomorrow**: Friday, Mar 2. **2:00pm**. MR5
- Last time: MCMC (Metropolis-w/in-Gibbs, MC Theory)
- Today: Finish MCMC theory
- Saturday: Begin Gaussian Processes in Astrophysics

Finish up MCMC theory (on chalkboard)

- Irreducible, aperiodic, not transient —> unique stationary distribution
- The target (posterior) distribution is invariant under the Markov transition probabilities and is its stationary distribution
 - Detailed Balance

Human Learning of Gaussian Processes

- Classic Text: Rasmussen & Williams (2006)
 - "Gaussian Processes for Machine Learning", Ch 1-2,4-5
 - Free Online: http://www.gaussianprocess.org/gpml/
- Gelman, Bayesian Data Analysis 3rd Ed., Chapter 21
- Ivezic, Sec 8.10 GP Regression, (Ch 8 is Regression)
- Bishop: Pattern Recognition & Machine Learning, Ch 6
- "Practical Introduction to GPs for Astronomy" D. Foreman-Mackey
 - http://hea-www.harvard.edu/AstroStat/aas231_2018/DForeman-Mackey_20180110_aas231.pdf