Implementing quantum Galton boards

1. Purpose and scope

This summary explains how to design and implement quantum Galton boards (QGBs) that emulate a Galton box and its Monte Carlo sampling behavior. A QGB produces samples distributed as Bin(n, p) with n rows and left-right bias p, and supports per-row biases for shaped distributions. Circuits are modular and hardware-aware, and their output matches binomial predictions, approaching a Gaussian for large n.

2. Core idea

A QGB routes a single logical ball through n rows of pegs. Each peg performs a coin toss on a reusable coin qubit and conditionally moves a one-hot token along a channel register. After n pegs, exactly one of the n+1 channel wires is 1 (one-hot), encoding the final column index $k \in 0, \ldots, n$. Measuring the channel register yields one Monte Carlo sample.

2.1. Classical reference

For a classical n-row Galton box with per-row success probability p,

$$P(K = k) = \binom{n}{k} p^k (1 - p)^{n-k},$$

so for p = 0.5 one has $P(K = k) = 2^{-n} \binom{n}{k}$ and the histogram approaches a normal curve as n grows.

3. Circuit primitives

3.1. Qubits and registers

- Coin qubit: q[0], reused every layer.
- Data rails: $q[1] \dots q[2L+1]$ for a total of 2(L+1) qubits including the coin. Odd indices $q[1], q[3], \dots, q[2L+1]$ are the bin qubits that are finally measured. Even indices are auxiliary routing rails.
- Mid-circuit reset: the coin is reset after each layer except the last.

3.2. Required operations

- Coin toss per layer: apply H to q[0].
- Routing sweep per layer $l = 1 \dots L$: define start = (L+1) l and end = (L+1) + (l-1). For each integer k from start to end do, in order:
 - 1. CSWAP(q[0]; q[k], q[k+1]).
 - 2. $CX(q[k+1] \rightarrow q[0])$, except skip this CX only in the special case L=1 and k= end.
- Coin recycle: if l < L, reset q[0] to 0.

4. A single layer l

Assume exactly one of $q[1] \dots q[2L+1]$ holds 1 at layer entry (at l=1 it is initialized at q[L+1]).

- 1. Apply H on q[0].
- 2. For $k = \text{start}, \dots, \text{end}$, apply CSWAP(q[0]; q[k], q[k+1]) then $CX(q[k+1] \rightarrow q[0])$ (with the single skip noted above).
- 3. If l < L, reset q[0].

5. Building an *n*-row QGB

5.1. Initialization

Set q[0] = 0. Prepare the walker at the center by setting q[L+1] = 1 and all other q[i] = 0.

5.2. Row loop

For l = 1, ..., L execute the layer steps exactly as listed above. Insert a barrier after each layer if desired for readability.

After the loop, measure only the bin qubits $q[1], q[3], \ldots, q[2L+1]$ into L+1 classical bits. Decode the one-hot position to a bin index $k \in 0, \ldots, L$. If the backend returns little-endian bitstrings, interpret the rightmost measured bit as k = 0.