Shortest Path

Definitions

- Formal definition: Given a graph G=(V, E, W), where each edge has a weight, find a shortest path from s to v for some interesting vertices s and v.
- s—source
- v—destination

Basic Property

 Suppose that a shortest path p from a source s to a vertex v can be decomposed into

$$S \xrightarrow{p'} U \longrightarrow V$$

for some vertex u and path p'.

Then, the weight of a shortest path from s to v is

$$\delta(s, v) = \delta(s, u) + w(u, v)$$

It implies that the sub-path of optimal (shortest) path is also optimal (shortest). Consider it the other way round, we could find a longer optimal path (of length n) by extending a shorter optimal path (of length n-1) with one extra edge

Relaxation

- The process of relaxing an edge (u,v) consists of testing whether we can improve the shortest path to v found so far by going through u and, if so, updating d[v] and \(\pi\) [v].
- define RELAX(u,v,w) as.....

```
• if d[v]>d[u]+w(u,v) { // if a shorter optimal path (d[u]) + one extra // edge w(u,v) is shorter than current best...
```

```
\bullet \qquad \mathsf{d}[\mathsf{v}] \qquad = \qquad \mathsf{d}[\mathsf{u}] + \mathsf{w}(\mathsf{u},\mathsf{v})
```

```
• \pi[v] = u // record the "parent".. Needed for path tracing
```

•

Relaxation

Figure 2 Relaxation of an edge (u,v). The shortest-path estimate of each vertex is shown within the vertex. (a)Because d[v]>d[u]+w(u,v) prior to relaxation, the value of d[v] decreases. (b)Here, $d[v] \leq d[u]+w(u,v)$ before the relaxation step, so d[v] is unchanged by relaxation.

Single Source Shortest Path

Single Source Shortest Path

- Single Source Shortest Path
 - Only consider a fixed source s.
 - To find out all shortest path to all v in V
- Dijkstra's algorithm
 - Faster (for max speed, need data struct such as heap)
 - All edge must be positive
- Bellman-Ford algorithm
 - Simple design but slower
 - Can detect negative weight cycle

Dijkstra's algorithm

Initialization

- For each vertex v ∈ V, d[v] denotes an upper bound on the weight of a shortest path from source s to v
- d[v] will be the weight of shortest path after the execution of algorithm
- Set d[] = Infinity at the beginning
- Set d[s] = 0

Dijkstra's Pseudo code

```
Initialize
Q <- V[G]
                                   // Q = set of "unsolved" vertices
While (|Q| != 0) {
           u <- extract-min (Q) //remove u from set Q
           // Path to u is confirmed as shortest......but...why?
           for each v in adj[u] { // set if there's better path
                   Relax(u,v,w) // which goes through u
           // more precisely... for each v in adj[u] which is also in Q
```

Visual Demo

(s,x) is the shortest path using one edge. It is also the shortest path from s to x.

Consideration on Negative Weight

- Negative Weight
 - Edge weight may be negative!
- Negative-weight cycle
 - Total weight in a cycle (circuit) is negative
 - If no negative-weight cycles reachable from the source s, then all shortest path weights are well defined, even if it has a negative value.
 - If there is a negative-weight cycle on some path from s to v, we define it is -∞

Consideration on Negative Weight

Bellman-Ford algorithm

```
Algorithm: Initialize for i = 1 to |V[G]|-1 // run |V[G]|-1 times = length of longest possible path for each edge (u, v) in E[G] Relax(u, v, w) // checking stage...if relaxation is still possible after |V[G]|-1 times...negative cycle for each edge (u, v) in E[G] if d[v] > d[u] + w(u, v) then return false
```

return true

Simple proof for Bellman-Ford

- If there is a path p from some v to some u, p has at most |V[G]| - 1 edges
- Each iteration of the outer loop relax all edges in E[G]
- After the i iteration, d[v] stored the shortest distance from s to v for at most i edges
- Therefore, after the |V[G]| 1 pass of the loop, d[] stored the shortest from s to every v in V[G]

What happen if there is -ve cycle?

- If there is a negative cycle reachable from s, walking every round in the cycle will make the path shorter, so there is no shortest path
- Therefore after |V[G]|-1 pass of the loop, d[v] will still greater than d[u] + w(u, v), for v is any vertex in the cycle
- This will make last for loop in the algorithm returns false

All-pair Shortest Paths

All-pair Shortest Paths

Problem definition:

– Given a weighted, directed graph G=(V,E), for every pair of vertices $u, v \in V$, find a shortest (least weight) path from u to v, where the weight of a path is the sum of the weights of its constituent edges.

Solve the problem by Single-Source shortest paths algorithm:

- If all edge weights are nonnegative, we can use Dijkstra's algorithm repeatly.
- Since Dijkstra's algorithm can compute all shortest path from a single point, it solves allpairs shortest paths in

$$O(n^2) \times n = O(n^3)$$

- Any other method?
 - Method by Matrix

Method by Matrix

Notations:

- Let \(\lambda \) be the minimum weight from \(i \) to \(j \) at most contain \(m \) edge
- So for m = 0 then

$l_{ij}^{(0)} = \begin{cases} \frac{0}{\infty} & \text{if } i = j \\ \frac{1}{\infty} & \text{if } i \neq j \end{cases}$

• Premise:

 This is a recursive approach in solving this kind of problem.

$$l_{ij}^{(m)} = \min \left(l_{ij}^{(m-1)}, \min_{1 \le k \le n} \left(l_{ik}^{(m-1)} + w_{kj} \right) \right)$$

- where w = the weight of the edge.

Well...what do you think?

Method by Matrix

 Input Adjacency Matrix

0	3	8	∞	-4
∞	0	∞	1	7
∞	4	0	∞	∞
2	∞	-5	0	∞
∞	8	8	6	0

Pass 1: Input Adjacency Matrix

$$\mathbf{D}^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

We define:

dij(m) is the element in matrix D(m)

 $d_{ij}(m)$ --- minimum weight of any path from vertex i to vertex j that contains at most m edges

How to get this?

Pass 2 in matrix

0	3	8	8	-4
8	0	8	1	7
8	4	0	∞	∞
2	∞	-5	0	∞
∞	∞	8	6	0

0	3	8	∞	-4
∞	0	∞	1	7
∞	4	0	∞	∞
2	∞	-5	0	∞
∞	∞	∞	6	0

We try to work out this cell

1. Who can connect to this cell?

ANS: The corresponding column tell us

Remarks: we can ignore infinity (∞) and zero

2. Which path is the smallest?

ANS: The corresponding row tell us

Path
$$1->2->4 = 3+1 = 4$$
 units

Path
$$1->5->4 = -4+6 = 2$$
 units

0	3	8	2	-4
8	0	8	1	7
8	4	0	8	8
2	8	-5	0	8
∞	∞	∞	6	0

We can see:

Path 1->5->4 is the smallest

We update the cell now

The whole process

$$\mathbf{D}^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Consideration on All-Pair shortest path

- Matrix Method is easy to understand, but the performance is not very outstanding
- Optimization/shortcut may be needed to make it faster (e.g. stop if no improvement, reconsidering formula)
- Depending on situation, running Dijkstra n times is not necessary a bad choice
- There are other better methods, such as Floyd-Warshall algorithm, which make use of Dynamic Programming
 - (http://en.wikipedia.org/wiki/Floyd-Warshall_algorithm)

Exercises

Exercises

- 10171
 http://acm.uva.es/p/v101/10171.html
- 10356
 http://acm.uva.es/p/v103/10356.html
- 10285
 http://acm.uva.es/p/v102/10285.html
- 523
 http://acm.uva.es/p/v5/523.html