Exercícios de TBJ

Professor

Jorge Leonid Aching Samatelo jlasam001@gmail.com

Análise de Circuitos com TBJ em CC

Exercício 1

☐ Para o seguinte circuito determine o ponto de operação Q.

Análise de Circuitos com TBJ em CC

Exercício 2

 \square Para o seguinte circuito determine o ponto de operação Q.

Análise de Circuitos com TBJ em CC

- ☐ Para o seguinte circuito determine
 - a) I_E
 - b) V_C
 - c) V_{CE}

Análise de Circuitos com TBJ em CC

- ☐ Para o circuito da figura, determine
 - a) I_C
 - b) I_B
 - c) V_C
 - d) V_{CE}

Análise de Circuitos com TBJ em CC

Exercício 5

 \square Para o circuito da figura, determinar I_{CQ} e V_{CEQ} considerando $\beta = 100$.

Análise de Circuitos com TBJ em CC

- ☐ Para o circuito da figura, determine
 - $\gt V_{CE1}$ e V_{CE2}
 - $\triangleright I_{C1} e I_{C2}$

Análise de Circuitos com TBJ em CC

Exercício 7

 \square No circuito da figura, calcule as tensões de polarização CC: V_B , V_{B2} e V_{C2} .

Projetos de circuitos de Polarização

Exercício 8

Projete uma rede de polarização usando um divisor de tensão com uma fonte de 20V, um transistor com $50 < \beta < 150$. Considere uma tolerância de 5% para os resistores e $I_{CO} = 5$ mA, $R_C = 1$ K Ω .

Caracterização de amplificadores TBJ

Exercício 9

☐ Para os amplificadores da Figura, determinar a expressões exatas para:

Caracterização de amplificadores TBJ

- ☐ Para o circuito da figura,
 - a) Determine as correntes e as tensões $CC: I_C, I_B, I_E$ e V_{CE} .
 - b) Calcule os parâmetros g_m e r_π do modelo π -híbrido de pequenos sinais e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Assumindo uma carga $R_L = 10 \text{K}\Omega$ analise o circuito resultante do passo (b) e determine as expressões exatas para:

Caracterização de amplificadores TBJ

- ☐ Para o circuito da figura,
 - a) Determine as correntes e as tensões $CC: I_C, I_B, I_E$ e V_{CE} .
 - b) Calcule os parâmetros g_m e r_π do modelo T e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões exatas para: $V_{CC} = 15V$

Caracterização de amplificadores TBJ

Exercício 12

- ☐ Para o circuito da figura,
 - a) Determine as correntes e as tensões $CC: I_C, I_B, I_E$ e V_{CE} .
 - b) Calcule os parâmetros g_m e r_π do modelo π -híbrido e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões exatas para:

46

Caracterização de amplificadores TBJ

- ☐ Para o circuito da figura,
 - a) Determine as correntes e as tensões $CC: I_C, I_B, I_E$ e V_{CE} .
 - b) Calcule os parâmetros g_m e r_π do modelo π -híbrido e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões exatas para:

Caracterização de amplificadores TBJ

- ☐ Para o circuito da figura,
 - a) Determine as correntes e as tensões $CC: I_C, I_B, I_E$ e V_{CE} .
 - b) Calcule os parâmetros g_m e r_π do modelo π -híbrido e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões exatas para:

Caracterização de amplificadores TBJ

- ☐ Para o circuito da figura,
 - a) Determine as correntes e as tensões $CC: I_C, I_B, I_E$ e V_{CE} .
 - b) Calcule os parâmetros g_m e r_π do modelo π -híbrido e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões exatas para:

Caracterização de amplificadores TBJ

- ☐ Para o circuito da figura,
 - a) Determine as correntes e as tensões $CC: I_C, I_B, I_E$ e V_{CE} .
 - b) Calcule os parâmetros g_m e r_π do modelo π -híbrido de pequenos sinais e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões exatas para:

Caracterização de amplificadores TBJ

- ☐ Para o circuito da figura,
 - a) Determine as correntes e as tensões $CC: I_C, I_B, I_E$ e V_{CE} .
 - b) Calcule os parâmetros g_m e r_e do modelo T e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões exatas para:

Caracterização de amplificadores TBJ

- ☐ Para o circuito da figura,
 - a) Determine as correntes e as tensões $CC: I_C, I_B, I_E$ e V_{CE} .
 - b) Calcule os parâmetros g_m e r_{π} do modelo π -híbrido de pequenos sinais e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (c) é determine as expressões exatas para:

Caracterização de amplificadores TBJ

- ☐ Para o circuito da figura,
 - a) Determine as correntes CC de base, emissor e coletor.
 - b) Calcule os parâmetros g_m e r_π do modelo π -híbrido e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões exatas para:

Caracterização de amplificadores TBJ

- Complete o projeto do amplificador BJT mostrado na Figura, considerando que:
 - \triangleright Características em CC: $\beta R_E > 10R_2$ (Usar a regra 10:1).
 - \triangleright Características em CA: $r_e = 10\Omega$; $A_v = 4V/V$; $R_{in} = 3{,}37K\Omega$; $R_{out} = 3K\Omega$; $R_L || R_C = 2K\Omega$.
- Calcular:

Bom Trabalho!!!

