SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 2

Mattias Villani

Avdelningen för Statistik och Maskininlärning Institutionen för datavetenskap Linköpings universitet

ÖVERSIKT

- ► Deskriptiv statistik
- **▶** Slumpvariabler
- Sannolikhetsfördelning
- ▶ Väntevärde och varians
- Kovarians och korrelation
- Chebyshevs olikhet

DESKRIPTIV STATISTIK

► Mätningar: $x_1, x_2, ..., x_n$.

 \triangleright Exempel: Prestanda för n=209 datorer.

▶ Medelvärde: $\bar{x} = 4.037$.

▶ Histogram

► 10 mätningar > 6 , dvs ca 2.8% (10/209) av mätningarna hade hög prestanda (>6).

DESKRIPTIV STATISTIK, FORTS

DESKRIPTIV STATISTIK, FORTS

SLUMPVARIABLER

Definition. En slumpvariabel X är en funktion från utfallsrummet Ω till $\mathbb R$

$$X = f(\omega)$$

 $dar \omega \in \Omega ar ett utfall.$

- Slumpvariabler är **praktiska**: vi bryr oss ofta bara om enklare variabler (X) vars utfall är en funktion av den underliggande slumpen ω .
- ► Två typer av slumpvariabler:
 - **Kontinuerlig**: X antar värden i \mathbb{R} (eller (0,1)). Längdhopp.
 - ▶ **Diskret:** X antar ett ändligt (t ex $\{0, 1, 2, ..., n\}$) eller uppräkneligt ($\{0, 1, 2, ...\}$) antal värden. Höjdhopp.
- ► Ett annat ord för slumpvariabel (eng. random variable) är **stokastisk variabel** (eng. stochastic variable).
- ► Funktionen f() måste vara **mätbar**. Teknikalitet. Hänger ihop med **sigma-algebra** (se sid 14-15 i Baron). **Måtteori**.

SLUMPVARIABLER - NÅGRA EXEMPEL

Ex Kasta två tärningar.

- $\rightarrow X$ = antalet prickar på två kast.

Ex Singla två mynt.

- $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}.$
- ► X =antalet H (krona). X kan anta värdena 0, 1, 2.
 - P(X=0)=1/4
 - P(X=1)=1/2
 - P(X=2)=1/4.

Ex Flyga quadcopter.

- Ω = Abstrakt utfallsrum med alla möjliga utfall på faktorer som bestämmer quadcopterns resväg.
- X = Tre-dimensionella koordinater (x,y,z) över quadcopterns position vid tidpunkt t.

SANNOLIKHETSFÖRDELNING

Definition. (sannolikhets) fördelningen för en slumpvariabel X är sannolikheterna för alla dess utfall, dvs

$$P(x) = \mathbf{P}\{X = x\}$$

för alla möjliga utfall x.

- Stora och små bokstäver spelar roll:
 - X är slumpvariabeln. Ex. summan av två tärningarna
 - ▶ x är ett **givet utfall**. Ex. 7 prickar.
- ► Fet stil eller ej spelar roll:
 - **P** är sannolikheten för ett givet utfall. $P\{X = x\}$ betyder egentligen 'Sannolikheten för alla de utfall [(1,6),(2,5)] etc] som ger summan 7'.
 - \triangleright P(x) är en enkel reellvärd funktion, precis som i vanlig analys.
- För diskreta slumpvariabler kallas P(x) ofta för **pmf**:en (probability mass function).
- ▶ Slumpvariabelns **support**: $\{x : P(x) > 0\}$.

FÖRDELNINGSFUNKTION

Definition. Fördelningsfunktionen för en slumpvariabel X defineras som

$$F(x) = \mathbf{P}\{X \le x\} = \sum_{y \le x} P(y).$$

► En sannolikhetsfördelning summerar till 1:

$$\sum_{\text{alla } x} P(x) = \sum_{\text{alla } x} P\{X = x\} = 1.$$

► Fördelningsfunktionen är icke-avtagande mellan 0 och 1:

$$\lim_{x \downarrow -\infty} F(x) = 0 \qquad \lim_{x \uparrow +\infty} F(x) = 1.$$

 Fördelningsfunktionen kallas också för den kumulativa täthetsfunktionen (cumulative density function), eller cdf.

SANNOLIKHETS- OCH FÖRDELNINGSFUNKTION

X	0	1	2	3	4
P(x)	0.15	0.20	0.40	0.20	0.05
F(x)	0.15	0.35	0.75	0.95	1.00

SIMULTANFÖRDELNING

- ► Låt X och Y vara slumpvariabler.
- \triangleright (X, Y) är en slumpvektor med typiskt utfall (x, y).
- ► Fördelningen för (X, Y) kallas simultanfördelning.

$$P(x, y) = P\{(X, Y) = (x, y)\} = P\{X = x \cap Y = y\}.$$

Simultanfördelningen är en sannolikhetsfördelning:

$$\sum_{x} \sum_{y} P(x, y) = 1.$$

Ex X = Spam/Ham och Y = Inbox/Spambox.

	Spam	Ham
Inbox	0.02	0.88
Spambox	0.09	0.01

Simultanfördelningen: 'Vad är sannolikheten att få ett ham-mejl och att det hamnar i spamboxen?'

SIMULTANFÖRDELNING

Ex X = avkastning aktie X och Y = avkastning aktie Y.

		Aktie Y		
		Låg	Medel	Hög
	Låg	0.05	0.05	0.15
Aktie X	Medel	0.10	0.30	0.20
	Hög	0.05	0.05	0.05

- ► Aktieportfölj: 50% i aktie X och 50% i aktie Y.
- Simultanfördelningen: 'Vad är sannolikheten att min aktieportfölj får medelavkastning?'

MARGINALFÖRDELNING

- ► Fördelningen för bara X kallas marginalfördelningen (för X).
- Fördelningen för bara Y kallas marginalfördelningen (för Y).
- Marginalfördelningen: 'Vad är sannolikheten att få ett spam-mejl (oavsett var det hamnar)?'
- ▶ Marginalfördelningen fås genom att summera ut den andra variabeln:

$$P_X(x) = \sum_{y} P(x, y)$$
$$P_Y(y) = \sum_{x} P(x, y)$$

▶ Jämför med Lagen om total sannolikhet (F1).

Ex X = Spam/Ham och Y = Inbox/Spambox.

	Spam	Ham	
Inbox	0.02	0.88	0.9
Spambox	0.09	0.01	0.1
	0.11	0.89	

MARGINALFÖRDELNING

Ex X = avkastning aktie X och Y = avkastning aktie Y.

	Aktie Y				
		Låg	Medel	Hög	
	Låg	0.05	0.05	0.15	0.25
Aktie X	Medel	0.10	0.30	0.20	0.6
	Hög	0.05	0.05	0.05	0.15
		0.20	0.40	0.40	

▶ Vilka portföljandelar är optimala? Beslut under osäkerhet.

OBEROENDE

Definition. Slumpvariablerna X och Y är oberoende om

$$P(x, y) = P_X(x) \cdot P_Y(y)$$

för alla värden på x och y.

Ex X = Spam/Ham och Y = Inbox/Spambox.

	Spam	Ham	
Inbox	0.02	0.88	0.9
Spambox	0.09	0.01	0.1
	0.11	0.89	

▶ Valet av box är inte oberoende av om mejlet är ham eller spam:

$$P(\mathsf{inbox}) \cdot P(\mathsf{ham}) = 0.9 \cdot 0.89 = 0.801 \neq 0.88 = P(\mathsf{inbox}, \mathsf{ham})$$

- $P(\text{inbox}|\text{ham}) = \frac{P(\text{inbox},\text{ham})}{P(\text{ham})} = \frac{0.88}{0.89} = 0.988 > 0.9 = P(\text{inbox}).$
- ▶ Lättare att gissa box om man vet att mejlet är ham.

LÄGESMÅTT

- ▶ En sannolikhetsfördelning P(x) beskriver all osäkerhet om X.
- ▶ Kan vara komplicerat att förmedla hela P(x), speciellt om X är en fler-dimensionell slumpvektor.
- ► Naturliga lägesmått:
 - ▶ Median, m. $P(X \le m) = 0.5$. Hälften av sannolikhetsmassan ligger till vänster om m.
 - ▶ **Väntevärdet** (eng. expected value), μ eller $\mathbb{E}(X)$, är det genomsnittliga värdet för X:

$$\mu = \mathbb{E}(X) = \sum_{x} x \cdot P(x).$$

► **Typvärdet** (eng. mode) är det mest sannolika värdet, dvs $\operatorname{argmax}_{x} P(x)$.

LÄGESMÅTT - EXEMPEL

X	0	1	2	3	4
P(x)	0.15	0.20	0.40	0.20	0.05

Väntevärdet.

$$\mathbb{E}(X) = 0 \cdot 0.15 + 1 \cdot 0.20 + 2 \cdot 0.40 + 3 \cdot 0.20 + 4 \cdot 0.05 = 1.8$$

LÄGESMÅTT SÄGER INGET OM SPRIDNINGEN

▶ Väntevärdet är ett lägesmått. Ingen info om fördelningens spridning.

VARIANS

- ▶ Storleken på avvikelserna $x \mathbb{E}(X)$ säger något om spridningen.
- Idé till spridningsmått: den förväntade avvikelsen:

$$\mathbb{E}(X-\mu) = \sum_{x} P(x) \cdot (X-\mu)$$

- ▶ Problem: $\mathbb{E}(X \mu)$ är alltid exakt noll ... Positiva och negativa avvikelser tar ut varandra.
- ► Varians: förväntade kvadrerade avvikelsen:

$$\sigma^2 = Var(X) = \mathbb{E}(X - \mu)^2 = \sum_{x} (x - \mu)^2 \cdot P(x).$$

Alternativ formel

$$Var(X) = \mathbb{E}X^2 - \mu^2$$
.

▶ Standardavvikelse: $\sigma = Std(X) = \sqrt{Var(X)}$. Samma skala som X.

EGENSKAPER HOS VÄNTEVÄRDE OCH VARIANS

- $ightharpoonup \mathbb{E}(c) = c$, där c är en konstant.
- $ightharpoonup \mathbb{E}(aX+b)=a\mathbb{E}(X)+b$, a, b konstanter.
- $\triangleright \mathbb{E}(X+Y) = \mathbb{E}X + \mathbb{E}Y$
- $ightharpoonup \mathbb{E}(aX+bY+c)=a\mathbb{E}(X)+b\mathbb{E}(Y)+c$, a, b, c konstanter.
- $ightharpoonup Var(aX+b)=a^2\cdot Var(X)$
- ▶ Om X och Y oberoende: $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$
- ▶ Om X och Y oberoende: Var(X + Y) = Var(X) + Var(Y).

DESKRIPTIV STATISTIK - BEROENDE

KOVARIANS OCH KORRELATION

- ▶ Mått på samvariation. Sammanfattning av simultanfördelning.
- ► Kovarians mellan X och Y:

$$\sigma_{XY} = Cov(X, Y) = \mathbb{E}\left\{ (X - \mathbb{E}X) (Y - \mathbb{E}Y) \right\}$$

- Positiv kovarians:
 - ightharpoonup X tenderar att vara större än $\mathbb{E} X$ samtidigt som Y tenderar att vara större än $\mathbb{E} Y$.
 - X tenderar att vara mindre än EX samtidigt som Y tenderar att vara mindre än EY.
- ► Korrelationskoefficienten mellan X och Y

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{Std(X) \cdot Std(Y)}.$$

▶ $-1 \le \rho \le 1$.

EGENSKAPER HOS KOVARIANS

- ightharpoonup Cov(X, Y) = Cov(Y, X)
- ► $Var(aX + bY + c) = a^2 \cdot Var(X) + b^2 \cdot Var(Y) + 2a \cdot b \cdot Cov(X, Y)$, a, b, c konstanter.
- $Cov(a \cdot X + b, c \cdot Y + d) = a \cdot c \cdot Cov(X, Y)$
- ▶ Om X och Y oberoende: Cov(X, Y) = 0.
- ▶ Om X och Y oberoende: $\rho(X, Y) = 0$.

CHEBYSHEVS OLIKHET

- ▶ Väntevärdet μ och Variansen σ^2 innehåller information om sannolikhetsfördelningen.
- ► Chebyshevs olikhet: givet μ och σ^2 så kommer X ligga i intervallet $[\mu \varepsilon, \mu + \varepsilon]$ med en sannolikhet som är åtminstone $1 (\sigma/\varepsilon)^2$.
- ► Chebyshevs olikhet

$$P\{|X-\mu|>\varepsilon\} \leq \left(\frac{\sigma}{\varepsilon}\right)^2.$$

- Notera att Chebyshevs olikhet endast kräver vetskap om μ och σ^2 . Inget andra egenskaper behövs (symmetri, skevhet).
- ▶ Men den lilla information har sitt pris: $\left(\frac{\sigma}{\varepsilon}\right)^2$ är ofta bra mycket större än den sanna sannolikheten $P\{|X \mu| > \varepsilon\}$.
- ► Chebyshevs olikhet är ofta nyttig i teoretiska sammanhang.