DCASE2022 Challenge task 6

Subtask A: Automated Audio Captioning

Félix Gontier, Huang Xie, Konstantinos Drossos Samuel Lipping, Tuomas Virtanen, Romain Serizel

November 2, 2022

DCASE2022 Workshop November 3-4, 2022

Task presentation

A motorcycle drives past, momentarily drowning the voices of the group of people talking in a crowded space.

- Describe acoustic scenes with natural language
- Clotho dataset
 - Total of 6972 acoustic scenes from 15s to 30s
 - Five reference captions for each scene, 8-20 words

Subset	Split	# Files	Duration (h)
Development	Training	3839	24.0
	Validation	1045	6.6
	Evaluation	1045	6.5
Testing	-	1043	6.6

 New analysis subset based on the Development-Evaluation split for robustness assessment (microphone, scene mixing, environmental noise)

Task presentation

Baseline system

- Transformer encoder-decoder
- Conditioned on frozen VGGish embeddings
- Pre-trained BART text embeddings
- Cross-entropy loss with teacher forcing

Evaluation

- Ranking metric: SPIDEr (combination of CIDEr and SPICE)
- Contrastive metrics: Sentence-BERT and FENSE

DCASE2022 Workshop November 3-4, 2022 3 / 5

Task results

- Participation: 9 teams, 36 systems, 37 authors
- All teams managed to outperform the baseline
- Top 3 submissions used reinforcement learning to optimize CIDEr

Author	Audio encoder	Decoder	SPIDEr	Sentence-BERT	FENSE
Xu	PANNs (CNN14) + BiGRU	Transformer, GRU	31.9	50.8	22.7
Zou	PANNs (ResNet38)	LSTM	31.8	49.4	22.5
Mei	PANNs (CNN14)	Transformer	30.9	49.6	34.8
Primus	PANNs (CNN10) +Transformer	Transformer	29.6	47.6	44.0
Kouzelis	PaSST	Transformer	29.3	51.7	51.1
Guan	PANNs (CNN10)	Transformer (GraphAC, LocalAFT)	29.1	49.2	48.4
Kiciński	PANNs (CNN14)	Transformer	27.0	48.1	47.3
Pan	PANNs (CNN10)	Transformer	25.5	47.4	45.6
Labbé	PANNs (CNN10)	Transformer	24.1	47.5	45.2
Baseline	VGGish + Transformer	Transformer	22.4	45.4	44.6

System characteristics

General trends

- Log-mel spectrogram and pre-trained AudioSet model: PANNs
- Transformer architecture for language modeling
- Use of external data: AudioCaps, MACS
- Data augmentation: SpecAugment, MixUp
- Fitting evaluation metrics:
 - Validation monitoring
 - Reinforcement learning on CIDEr

Specific approaches

- Recent or novel architectures: GraphAC, LocalAFT
- Text conditioning with keyword retrieval or estimation
- Transfer learning from audio retrieval

