Suma de vectores y multiplicación por un escalar en \mathbb{R}^3

у

$$\mathbf{u} + \mathbf{v} = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

 $\alpha \mathbf{u} = (\alpha x_1, \alpha y_1, \alpha z_1)$

Ésta es la misma definición de suma de vectores y multiplicación por un escalar que se tenía; se ilustra en la figura 4.20.

Figura 4.20

llustración de la suma de vectores y la multiplicación por un escalar en \mathbb{R}^3 .

Un **vector unitario u** es un vector con magnitud 1. Si **v** es un vector diferente de cero, entonces $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$ es un vector unitario que tiene la misma dirección que **v**.

Vector unitario

EJEMPLO 4.3.3 Cálculo de un vector unitario en \mathbb{R}^3

Encuentre un vector unitario que tenga la misma dirección que $\mathbf{v} = (2, 4, -3)$.

SOLUCIÓN
$$ightharpoonup$$
 Como $m {\bf v} = \sqrt{2^2 + 4^2 + (-3)^2} = \sqrt{29}$ se tiene

$$\mathbf{u} = \left(\frac{2}{\sqrt{29}}, \frac{4}{\sqrt{29}}, -\frac{3}{\sqrt{29}}\right)$$

Ahora se puede definir formalmente la dirección de un vector en \mathbb{R}^3 . No se puede definir como el ángulo θ que forma el vector con el eje x positivo ya que, por ejemplo, si $0 < \theta < \frac{\pi}{2}$, por lo que existe un número infinito de vectores que forman un ángulo θ con el lado positivo del eje x, y estos vectores juntos forman un cono (vea la figura 4.21).

Figura 4.21

Todos los vectores que están en este cono forman un ángulo θ con la parte positiva del eje x.

Definición 4.3.2

Dirección en \mathbb{R}^3

La dirección de un vector \mathbf{v} en \mathbb{R}^3 se define como el vector unitario $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$.