Big Data Analytics with Deep Learning

Dr. Tapan Kumar Jain,

Assistant Professor (ECE), IIIT Nagpur

Senior Member, IEEE

IIIT Nagpur

- 1. IIIT NagpurEstablish: 2016
- 2. Director: Prof. O. G. Kakde
- 3. Dean: Dr. Ashwin Kothari
- 4. Registrar: Er. K. N. Dakhale
- 5. Departments: BSE, CSE, & ECE
- 6. BTech, PhD [Certification Course]

A picture is worth a thousand words, Now Imagine the volume of Data

CORONA / CORONAVIRUS / COVID 19

Role of

- Data Engineer
- Data Scientist
- Data Analyst

Estimations (Location)

- I. Mean: The sum of all values divided by the number of values. (Average)
- 2. Weighted Mean: The sum of all values times a weight divided by the sum of the weights. (weighted average)
- 3. **Median**: The value such that one-half of the data lies above and below. (50th percentile)
- **4. Weighted Median :** The value such that one-half of the sum of the weights lies above and below the sorted data.
- **5. Trimmed Mean :** The average of all values after dropping a fixed number of extreme values. (truncated mean)
- **6. Robust**: Not sensitive to extreme values. (Resistant)
- 7. Outlier: A data value that is very different from most of the data. (extreme value)

Estimations (Variability)

- 1. **Deviations**: The difference between the observed values and the estimate of location. (errors, residuals)
- **2. Variance :** The sum of squared deviations from the mean divided by n-1 where n is the number of data values. (mean-squared-error)
- 3. Standard deviation: The square root of the variance. (I2-norm, Euclidean norm)
- **4. Mean absolute deviation:** The mean of the absolute value of the deviations from the mean. (I1-norm, Manhattan norm)
- **5. Median absolute deviation from the median :** The median of the absolute value of the deviations from the median.
- 6. Range: The difference between the largest and the smallest value in a data set.
- 7. Order statistics: Metrics based on the data values sorted from smallest to biggest. (ranks)
- **8. Percentile:** The value such that *P* percent of the values take on this value or less and (100–P) percent take on this value or more. (quantile)
- 9. Interquartile range: The difference between the 75th percentile and the 25th percentile.(IQR)

Supervised Learning Algorithm: kNN

k – Nearest Neighbours

- I.kNN
- 2. Factor k
- 3. Examples

KNN – Different Nomenclature

- I.K-Nearest Neighbors
- 2. Memory-Based Reasoning
- 3. Example-Based Reasoning
- 4. Instance-Based Learning
- 5. Lazy Learning

What is kNN

- •kNN k Nearest Neighbors, is one of the simplest Supervised Machine Learning algorithm mostly used for Classification It classifies a data point based on how its neighbors are classified.
- •A powerful classification algorithm used in pattern recognition.
- •k nearest neighbors stores all available cases and classifies new cases based on a similarity measure(e.g. distance function)
- •One of the top data mining algorithms used today.
- •A non-parametric lazy learning algorithm (An Instance- based Learning method).

Problem: Find the green data point class?

Figure A Figure B

kNN: **k** Factor

- 1. k in kNN is a parameter that refers to the number of nearest neighbors to include in the majority voting process.
- 2. kNN Algorithm is based on feature similarity: Choosing the right value of k is a process called parameter tuning, and is important for better accuracy.
- 3. If K is too small it is sensitive to noise points. (k=3)
- 4. Larger K works well. But too large K may include majority points from other classes.
- 5. Odd value of k is selected to avoid confusion.
- 6. Maximum value of k = sqrt(n), where n is the data points

When do we use kNN

- I. We can use when data is labeled.
- 2. Data is noise free
- 3. Data is small (computational time)

kNN: Example - I

Customer	Age	Income	No. credit cards	Class	Distance from Tapan
Anne	35	35K	3	No	sqrt $[(35-37)^2+(35-50)^2+(3-2)^2]=15.16$
John	22	50K	2	Yes	sqrt $[(22-37)^2+(50-50)^2+(2-2)^2]=15$
George	63	200K	1	No	sqrt $[(63-37)^2+(200-50)^2+(1-2)^2]=152.23$
Kevin	59	170K	1	No	sqrt [(59-37) ² +(170-50) ² +(1-2) ²]=122
Tom	25	40K	4	Yes	sqrt $[(25-37)^2+(40-50)^2+(4-2)^2]=15.74$
Tapan	37	50K	2	?	

$$D_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

kNN: Example - II

Age	Loan	Default	Distance
25	\$40,000	N	102000
35	\$60,000	N	82000
45	\$80,000	N	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	N	124000
23	\$95,000	Y	47000
40	\$62,000	Y	80000
60	\$100,000	Y	42000
48	\$220,000	Y	78000
33	\$150,000	Y	8000
40	£4.42.000	V	
48	\$142,000	Υ	

$$D_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

 $sqrt [(48-25)^2+(142000-40000)^2]=102000.0025$

$$a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i}$$

kNN: Example - II

Age	Loan	Default	Distance
0.125	0.11	N	0.7652
0.375	0.21	N	0.5200
0.625	0.31	N	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Υ	0.6669
0.5	0.22	Y	0.4437
1	0.41	Y	0.3650
0.7	1.00	Y	0.3861
0.325	0.65	Υ	0.3771
0.7	0.61	N	

$$a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i}$$
 $D_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

Strengths of kNN

- 1. We select the k entries in our database which are closest to the Very simple and intuitive.
- 2. Can be applied to the data from any distribution.
- 3. Good classification if the number of samples is large enough.

Weaknesses of kNN

- 1. Takes more time to classify a new example.
- 2. Need to calculate and compare distance from new example to all other examples.
- 3. Choosing k may be tricky.
- 4. Need large number of samples for accuracy.

Summary

- 1. A positive integer k is specified, along with a new sample
- 2. We select the k entries in our database which are closest to the new sample
- 3. We find the most common classification of these entries
- 4. This is the classification we give to the new sample

Supervised Learning Algorithm: Decision Tree

- I. What is Decision Tree
- 2. Terminologies
- 3. Different Criterion
- 4. Pros / Cons of Decision Tree

Thank you

tapankumarjain@gmail.com