LAMBDA: Lightweight Assessment of Malware for emBeddeD Architectures

Research Objective

To propose a framework for runtime anomaly detection on embedded systems - The framework is capable of performing anomaly detection in a hierarchical manner (i.e. application level, operating system level and processor micro-architecture level) by harnessing the information available at various levels to detect malicious exploits.

Motivation

Measure the distance of a program under test from the characteristics of a given set of benign programs.

If the distance is less than a previously defined threshold value, the target program can be treated as a benign program otherwise the program is a malware.

Detection Approach

Data Collection

read,

Hardware Performance Counters

Determine weights during training

statistical T-test.

- Normalised weights help at runtime to determine distance of malware using

 More efficient to detect Kernel modifying rootkits. Easily accessible in most of the Linux based systems.

Normalized Weights

135209,

122298,

PMU Events Count

42439,

4104,

■ Branches

Cycles

Instructions

Caches-reference

Use (HPC, Indicator) for monitoring.

Control Flow

RM Cortex-A9 MPCore CPU0		CPU1 (Dual-Core HPS On	ly)
Sanitized Core		Watchdog Core	
NEON Media SIMD Processing Engine with EPU		NEON Media SIMD Processing Engine with FPU	
MO	WU III	MMU	
32 KB Instruction Cache	32 KB Data Cache	32 KB Instruction Cache	32 KB Data Cache
CPU0 Private Interval Timer	CPU0 Private Watchdog Timer	CPU1 Private Interval Timer	CPU1 Private Watchdog Time
		errupt Controller)	
Accelerator Coherency Port Snoop Control Unit			
ACP ID Mapper		512 KB 12 Cache	
bugging Modules			
		t Trace	
	Cross Even		
CPU0 Performance Monitor CPU0 Program trace		CPU1 Performance Monitor	

Dual core setup Watchdog Core: to monitor all the processes

- Sanitized Core: to run non-malicious processes
- **Creating Bins**

Emphasize on critical HPC-Indicator pair

- Performed to give more weightage on important performance counters and indicator programs.
- **Scoring at Runtime**
- Calculate the amount of maliciousness of a program under test
- Create bins for program under test at runtime.
- Multiplication of the trained weights with these bins produces score for the program under test. - Score greater than a pre-defined threshold value signifies the malicious behaviour of the program.

HPC provides more sensitivity & Increased Protection

Run time Statistical T-test

The null hypothesis of two equal means is rejected when the test statistic |z| exceeds a threshold of 4.5, which ensures a confidence

Advantages for HPC observation:

Difficult to manipulate HPC values by the malware. More sensitive when observed in conjunction with system calls. Results in better false positives and negatives

Advantages of the approach

- Monitoring only system calls doesn't provide any significant information but monitoring HPCs does. Significant changes can be observed in presence of malware.
- Enables semantic based malware detection.
- Supports multi-core environment.

T-test vs. Machine Learning based Detection

Various	machine	learning	based	approaches	can	also	detect
malware	with signi	ficantly hi	gher acc	curacy. Howev	er, co	ost of	training
and imp	lementatio	on overhe	ad for e	mbedded pla	tform	s is re	elatively
high.							

Models	Average Accuracy
Statistical T-test approach	100%
Multilayer Perceptron	99.73%
Gaussian Naïve Bayes	99.89%
Logistic Regression	99.69%
Support Vector Machine	99.98%
Random Forest	100%

Advantage over Training and Detection Time

	Model Building Time	Detection Time
	(in milliseconds)	(in milliseconds)
Statistical T-test approach	43.7231	15.3789
Multilayer Perceptron	2036.9895	10.2458
Gaussian Naïve Bayes	7.1782	10.4336
Logistic Regression	200.8651	4.0281
Support Vector Machine	14.3887	5.1743
Random Forest	85.9585	91.2992

Random Forest algorithm achieves 100% accuracy, but both of its model building time and detection time is higher than statistical T-test due to its complex architecture.