CEM1002

Neil Montgomery

2015-09-28

Today

▶ Let's say that 10am means 10:00 and not 10:10.

Graphical/numerical summary wrap-up

- ► (Side-by-side) boxplots
 - Plots five numbers e.g.
 - min, 1st quartile, median, 3rd quartile, max
 - no standard definition
 - some implementations will try to suggest "outliers"
- ► (Observed) (sample) correlation (coefficient)

Bare essentials of probability

- Random variable, distribution, etc.
- The Normal distributions
- ► Normal quantile plot

Correlation coefficient

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$
$$r_{xy} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

Random variables and distributions

Some analogies/correspondences:

Theoretical Model	Observed Data
Random variable X	Observation
Distribution	???
Sample X_1, X_2, \ldots, X_n	Dataset x_1, x_2, \ldots, x_n
Probability Density Function	Histogram/density plot
Expected value $E(X) = \int x f_X(x) dx$???
Sample average $\overline{X} = \frac{\sum X_i}{n}$ Variance $E((X - E(X))^2)$	Obs. sample average $\overline{x} = \frac{\sum x_i}{n}$
Sample Variance $\frac{\sum (X_i - \overline{X})^2}{n-1}$	Obs. sample variance $\frac{\sum (x_i - \overline{x})^2}{n-1}$