TD 8-Couples de variables aléatoires discrètes

Lois associées à un couple

Exercice 1 (Objectifs 1,2,3)

On lance deux dès à quatre faces numérotées de 1 à 4, l'un bleu, l'autre rouge. On suppose les dés équilibrés et les lancers indépendants. On suppose que l'expérience peut être modélisée par un espace probabilisé (Ω, \mathcal{A}, P) et on note X la variable aléatoire donnant la valeur du dé bleu et Y celle donnant la somme des valeurs des deux dés.

- 1. Déterminer la loi du couple (X, Y).
- 2. Déterminer la loi de Y.
- 3. Déterminer la loi de X sachant [Y = 5].

Exercice 2 (Objectifs 1,3,4)

Soient X, Y deux variables aléatoires discrètes définies sur un même espace probabilisé (Ω, \mathcal{A}, P) et 0 . On suppose que

- X suit une loi de Poisson de paramètre $\lambda > 0$
- $Y(\Omega) = \mathbb{N}$
- pour tout $n \in \mathbb{N}$, la loi conditionnelle de Y sachant [X = n] est une loi binomiale de paramètre (n, p).
- 1. Déterminer la loi du couple (X, Y).
- 2. Montrer que Y suit une loi de Poisson de paramètre λp .

Exercice 3 (Objectif 2)

Deux joueurs A et B procèdent chacun à une succession de lancers d'une même pièce ayant la probabilité $p \in]0,1[$ d'obtenir Pile et la probabilité 1-p d'obtenir Face. Le joueur A commence et s'arrête dès il obtient un Pile. On note X la variable aléatoire égale au nombre de lancers effectués. Le joueur B effectue alors le même nombre de lancers que le joueur A et on note A la variable aléatoire égale au nombre de Piles obtenus par le joueur A.

- 1. Rappeler la loi de X et, pour tout $k \ge 1$, donner la loi conditionnelle de Y sachant [X = k].
- 2. Quelles sont les valeurs prises par Y?

3. Montrer que
$$P([Y=0]) = \sum_{k=1}^{+\infty} p(1-p)^{2k-1} = \frac{1-p}{2-p}$$
.

4. Soit $n \in \mathbb{N}^*$. Montrer que $P([Y = n]) = \sum_{k=n}^{+\infty} {k \choose n} p^{n+1} (1-p)^{2k-n-1}$.

2 Indépendance

Exercice 4 (Objectif 6)

- 1. Soit $p \in]0,1[$. Sur un même espace probabilisé (Ω, \mathcal{A}, P) , on considère deux variables aléatoires réelles indépendantes G_1 et G_2 suivant la même loi géométrique de paramètre p. Les variables $G_1 + G_2$ et $G_1 G_2$ sont-elles indépendantes?
- 2. Soit $n \in \mathbb{N}^*$, soit $p \in]0,1[$. On considère une équipe de n tireurs à la carabine qui cherchent à atteindre une cible éloignée. Chaque tireur tire deux fois. Pour un tireur donné, la probabilité de toucher la cible au premier tir est p et celle de toucher la cible au second tir est aussi égale à p. On suppose qu'il existe un espace probabilisé (Ω, \mathcal{A}, P) qui modélise cette expérience de sorte que les tireurs et les lancers sont indépendants. On note A la variable aléatoire qui donne le nombre de joueurs qui touchent la cible au premier et au deuxième coup et B la variable aléatoire qui donne le nombre de joueurs qui touchent la cible lors d'un seul des deux tirs. Les variables A et B sont-elles indépendantes?

Exercice 5 (Objectifs 1,5)

Soit $n \in \mathbb{N}^*$. Soient $X \hookrightarrow \mathcal{U}(\llbracket 1, n \rrbracket)$ et $Y \hookrightarrow \mathcal{G}\left(\frac{1}{n}\right)$ que l'on suppose indépendantes. Déterminer la loi de (X, Y).

3 Variables aléatoires de la forme Z = g(X, Y)

Exercice 6 (Objectifs 1, 3, 7)

On lance indéfiniment une pièce donnant Pile avec probabilité p et Face avec probabilité

1-p (0). Pour tout entier <math>k > 0, on note P_k l'événement « la pièce donne Pile au k-ième lancer » et F_k l'événement « la pièce donne Face au k-ième lancer ». On note X le rang du premier Pile et Y le rang du deuxième Pile.

- 1. Reconnaître, sans calcul, la loi de X.
- 2. Déterminer la loi de (X,Y).
- 3. En déduire la loi de Y.
- 4. Déterminer la loi de Y X. Ce résultat était-il prévisible?

Exercice 7 (Objectif 9)

Soient X_1, \ldots, X_n des variables aléatoires mutuellement indépendantes.

1. On suppose que pour tout $i \in [1, n]$, $X_i \hookrightarrow \mathcal{B}(k_i, p)$. Montrer que

$$X_1 + \cdots + X_n \hookrightarrow \mathcal{B}(k_1 + \cdots + k_n, p).$$

2. On suppose que pour tout $i \in [1, n]$, $X_i \hookrightarrow \mathcal{P}(\lambda_i)$. Montrer que

$$X_1 + \cdots + X_n \hookrightarrow \mathcal{P}(\lambda_1 + \cdots + \lambda_n).$$

Exercice 8 (*Objectifs 7, 8*)

Soient X et Y deux variables aléatoires discrètes indépendantes suivant une loi géométrique de paramètre $p \in]0,1[$.

- 1. Déterminer la loi de X + Y.
- 2. Déterminer la loi de min(X, Y) et de max(X, Y).
- 3. Déterminer, lorsqu'elle existe, l'espérance des variables aléatoires des questions précédentes.

Exercice 9 (Objectif 8)

Soient X et Y deux variables aléatoires discrètes indépendantes suivant une loi géométrique de paramètre $p \in]0,1[$. On pose $m=\min(X,Y)$ et $\Delta=|X-Y|$. Déterminer l'espérance de Δ si elle existe.

Exercice 10

Soient X et Y deux variables aléatoires discrètes indépendantes telles que $X \hookrightarrow \mathcal{G}(p_1)$ et $Y \hookrightarrow \mathcal{G}(p_2)$ où p_1 et p_2 sont dans]0,1[. On note $U = \min(X,Y)$ et $V = \max(X,Y)$.

- 1. (a) Pour tout $n \in \mathbb{N}$, déterminer P(X > n).
 - (b) En déduire, pour tout $n \in \mathbb{N}$, P(U > n).
 - (c) En déduire la loi de U.
- 2. (a) Pour tout $n \in \mathbb{N}$, déterminer $P(V \le n)$ puis P(V > n).

- (b) Soit $m \in \mathbb{N}^*$. Montrer que $\sum_{n=1}^m nP(V=n) = \sum_{n=0}^{m-1} P(V>n) mP(V>m)$.
- (c) En déduire que V possède une espérance et la calculer.

Exercice 11 (EML 2007)

Soit Y une variable aléatoire dont la loi est donnée par $Y(\Omega) = \mathbb{N}$ et

$$\forall n \in \mathbb{N}, \ P(Y = n) = \left(1 - \frac{1}{e}\right)e^{-n}.$$

- 1. Montrer que la variable aléatoire Y + 1 suit une loi géométrique dont on précisera le paramètre. En déduire l'espérance et la variance de Y.
- 2. Soit U une variable de Bernoulli telle que $P(U = 1) = P(U = 0) = \frac{1}{2}$. On suppose que les variables aléatoires U et Y sont indépendantes et on note T = (2U 1)Y.
 - (a) Justifier T est une variable aléatoire discrète et déterminer sa loi.
 - (b) Montrer que la variable aléatoire T admet une espérance $E\left(T\right)$ et calculer $E\left(T\right)$.
 - (c) Vérifier que $T^2 = Y^2$. En déduire que la variable aléatoire T admet une variance V(T) et calculer V(T).

4 Variance et covariance

Exercice 12 (Objectif 10)

- 1. Soit $p \in]0,1[$. Sur un même espace probabilisé (Ω, \mathcal{A}, P) , on considère deux variables aléatoires indépendantes G_1 et G_2 suivant la même loi géométrique de paramètre p. On définit les variables aléatoires $I = \min(G_1, G_2)$ et $S = \max(G_1, G_2)$.
 - (a) Déterminer la variance de I.
 - (b) Déterminer la covariance du couple (*I*, *S*).
 - (c) En déduire la variance de S.
- 2. Soit n ∈ N*, soit p ∈]0,1[. On considère une équipe de n tireurs à la carabine qui cherchent à atteindre une cible éloignée. Chaque tireur tire deux fois. Pour un tireur donné, la probabilité de toucher la cible au premier tir est p et celle de toucher la cible au second tir est aussi égale à p. On suppose qu'il existe un un espace probabilisé (Ω, A, P) qui modélise cette expérience de sorte que les tireurs et les lancers sont indépendants.
 - (a) On note A la variable aléatoire qui donne le nombre de joueurs qui touchent la cible au premier et au deuxième coup et B la variable qui donne le nombre de joueurs qui touchent la cible lors d'un seul des deux tirs. Déterminer la variance de A et B.

- (b) On note X_1 la variable aléatoire qui donne le nombre de tireurs qui touchent la cible au premier coup et X_2 la variable qui donne le nombre de tireurs qui touchent la cible au deuxième coup. Déterminer la variance de $X_1 + X_2$.
- 3. Soit $p \in]0,1[$. Sur un même espace probabilisé (Ω, \mathcal{A}, P) , on considère deux variables aléatoires indépendantes G_1 et G_2 suivant la même loi géométrique de paramètre p. Déterminer la covariance de $(G_1 G_2, G_1 + G_2)$.

Exercice 13 (EML 2013)

Soit n un entier supérieur ou égal à 2. On considère une urne \mathcal{U} contenant n boules numérotées de 1 à n et indiscernables au toucher.

On effectue une suite de tirages d'une boule avec remise de la boule dans l'urne \mathcal{U} . Soit k un entier supérieur ou égal à 1. Pour tout $i \in [1; n]$, on note X_i la variable aléatoire égale au nombre d'obtentions de la boule numéro i au cours des k premiers tirages.

- 1. Soit $i \in [1; n]$. Donner la loi de X_i . Rappeler l'espérance et la variance de X_i .
- 2. Les variables aléatoires X_1, X_2, \dots, X_n sont-elles indépendantes?
- 3. Soit $(i, j) \in [1; n]^2$ tel que $i \neq j$.
 - (a) Déterminer la loi de la variable $X_i + X_j$. Rappeler la variance de $X_i + X_j$.
 - (b) En déduire la covariance du couple (X_i, X_j) .

Objectifs

- 1. Savoir déterminer la loi d'un couple.
- 2. Savoir trouver les lois conditionnelles.
- 3. Savoir trouver les lois marginales grâce à la loi du couple.
- 4. Savoir trouver les lois marginales grâce aux lois conditionnelles.
- 5. Connaître la définition d'indépendance, d'indépendance mutuelle.
- 6. Savoir montrer que des variables aléatoires discrètes sont/ne sont pas (mutuellement) indépendantes.
- 7. Savoir trouver la loi de XY, X + Y, max(X, Y), min(X, Y).
- 8. Plus généralement ,savoir trouver la loi, justifier l'existence et déterminer l'espérance (si elle existe) d'une variable de la forme g(X, Y).
- 9. Connaître les résultats de stabilité par somme des variables indépendantes Binomiales et de Poisson.
- 10. Savoir justifier l'existence et déterminer Cov(X, Y), V(X + Y), $\rho(X, Y)$.