Formulario di fisica 2 v0.1			Le cariche si distribuiscono sempre su	· Lavoro per ruotarlo	· Leggi di Kirchhoff		■ INDUZIONE	· Disco di Barlow	Dens. SUPERFICIALE corrente	corrente
NOME:	$V(\mathbf{r}) = \frac{U(\mathbf{r})}{q_0}$	(28)	· Pressione elettrostatica	$W = \int_{\theta_i}^{\theta_f} M d\theta \tag{7.}$	$\frac{N}{N}$	(· Coefficienti mutua induzione	í	i, ± 110i	(162)
COGNOME: MATRICOLA:	TO TO TAKE THE THE TAKE THE TAKE THE TAKE THE TAKE THE TA	ŝ		Se E uniforme	$\sum_{k=0}^{N} I_k = 0$	(66)	$\Phi_{1,2} = MI_1 \qquad \Phi_{2,1} = MI_2 $ (123)	$\mathbf{E} = \overline{Q} = \mathbf{v} \times \mathbf{B} = \omega x B \mathbf{u}_x \tag{141}$	$\mathbf{j}_1 = \mathbf{n} \vee \mathbf{H}$	(163)
■ FONDAMENTALI	$(A) = -\int_{\mathcal{F}}$	(29)	$\mathbf{p} = \frac{1}{d\Sigma} = \frac{1}{2\varepsilon_0} \mathbf{u}_n = \frac{1}{2}\varepsilon_0 \mathbf{E}^2 $ (54)	$W = pE(\cos \theta_i - \cos(\theta_f)) \tag{7}$	(75) Legge delle maglie		· Flusso generato da 1 attraverso 2	F.e.m. indotta	$\iint_{\mathbb{R}^{n}} \mathbf{H} \cdot d\mathbf{l} = I.$	(164)
· Teorema (divergenza)	$\mathbf{E} = -\nabla V$	(30)	· Capacità	· Frequenza dipolo oscillante	$\sum_{k=0}^{N} \Delta V_k = 0$	(100)	$\Phi_{1,2} = NB_1\Sigma_2 \tag{124}$	$\varepsilon = \frac{1}{2}\omega Br^2 \tag{142}$	Firm 1. C. T. C. T. C. T. C. T. C. T. C. C. T. C.	(+0+)
$\int \mathbf{R} \cdot d\mathbf{N} = \int \nabla \cdot \mathbf{R} d\tau$	(1) 1 Control of the		$C = \frac{Q}{\sqrt{\Lambda V V}} \tag{55}$	amnorme				Corrente in un circuito chiuso	Lines grade in D	
JE - J.	$U = \frac{1}{2} \int_{\mathbb{R}^3} \rho(\mathbf{r}) V(\mathbf{r}) d\tau$	(31)	ΔV Il niù delle volte c'è induzione com-	$\nu = \frac{1}{2\pi} \sqrt{\frac{PL}{I}} \tag{7}$	(76) INAGNETOSIATICA . Forza di Lorentz	_	· Inductanza	$I = \frac{\omega B r^2}{2\pi} \tag{143}$	$U_B = \frac{1}{2\mu_0} \int_{\mathbb{R}^3} \mathbf{B}^2 d\tau$	(165)
· Teorema (Stokes)	$U = \frac{1}{2} \varepsilon_0 \int_{\mathbb{R}^3} \mathbf{E}^2 \mathrm{d}\tau$	(32)	pleta e C dipende dalla configurazione geometrica.	lipolo		(101)	$\Phi(\mathbf{B}) = IL \tag{125}$	i sono forze esterne il m	$U_B = \frac{1}{2} \int_{\mathbb{P}^3} \mathbf{j} \cdot \mathbf{A} d\tau$	(166)
$\oint_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{\Sigma} \nabla \times \mathbf{F} d\Sigma$	(2) Equazione di Poisson		· Condensatori		(77) · Prima legge di Laplace		Solenoide ideale	smorzato Momento torcente frenante	con N circuiti filiformi	
· Teorema (Gradiente)	$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$	(33)		• Forza agente sul dipolo $F = \nabla(x_1, F)$	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \oint \frac{\mathrm{d}\mathbf{s} \times \mathbf{u}_r}{r^2}$	(102)	$L = \mu_0 \frac{N^2}{L} \Sigma = \mu_0 n^2 L \Sigma \tag{126}$	$\mathbf{M} = -\frac{\omega B r^4}{-1} \mathbf{u}_z \tag{144}$	$U_B = \frac{1}{2} \sum_{i=1}^{N} I_i \Phi_i$	(167)
$\phi_2 - \phi_1 = \int_{\infty} \nabla \phi \cdot d\mathbf{s}$	(3) · E e V di particolari distri	ibuzioni	$C = \frac{c_0 Z}{d} \tag{56}$	tra due dinoli		(103)	Toroide	9	- 2 - CITO CITTERN D. C.	
· Flusso di un campo	Carica puntiforme		Sferico P	II - 1 [- 3/2 1/2 1]			$L = \frac{\mu_0 N^2 \pi a}{2\pi a} \ln \left(\frac{R+b}{2\pi} \right) \tag{127}$	$\tau = \frac{2mR}{r}$ (145)	• Impedenza	
Φ	$\mathbf{E} = \frac{q}{4\pi\varepsilon_0 r^2} \mathbf{u}_r$	(34)	$C = 4\pi\varepsilon_0 \frac{Kr}{R - r} \tag{57}$	$U = \frac{1}{4\pi\varepsilon_0 r^2} [\mathbf{p_1} \cdot \mathbf{p_2} - 3(\mathbf{p_1}\mathbf{u_r})(\mathbf{p_2} \cdot \mathbf{u_r})]$ (70)		(104)	- 3		La somma delle impedenze in serie e	in serie e
$\Phi_{\Sigma}(\mathbf{E}) = \int_{\Sigma} \mathbf{E} \cdot d\Sigma$	$V = \frac{q}{\sqrt{q}}$	(35)	Cilindrico				· Fem autoindotta	■ DIPOLO MAGNETICO	parallelo segue le regole del re	Sistori
· Equazioni di Maxwell Nel vuoto:	$4\pi\epsilon_0 r$ Sfera carica uniformemente		$C = \frac{2\pi\varepsilon_0 h}{\ln R} \tag{58}$	Forza tra dipon Dipoli concordi = F repulsiva	$\mathbf{F} = \int I(d\mathbf{s} \times d\mathbf{B})$	(105)	$\Phi = -L \frac{\mathrm{d}I}{\mathrm{d}t} \tag{128}$	· Momento di dipolo	$Z = R + i \left(\omega L + \frac{1}{\omega C} \right)$	(168)
$\nabla \cdot \mathbf{E} = \frac{\rho}{}$	(5) $\mathbf{E}(r) = \begin{cases} \frac{Qr}{4\pi\varepsilon_0 R^3} = \frac{3\rho r}{\varepsilon_0} & \text{se r} < \mathbf{R} \end{cases}$	(36)	In serie	$\mathbf{F} = \frac{3p_1p_2}{4\pi\varepsilon_0 r^4} \mathbf{u}_r \tag{8}$	(80) • B di corpi notevoli (ATTENZIONE: viene indicata la direzione, il verso dipen-	ATTENZIONE:	· Fem indotta	$d\mathbf{m} = I d\Sigma \mathbf{u}_n \tag{146}$	$ z = \sqrt{\frac{n^2}{n^2} \cdot \left(\frac{1}{n^2} \cdot \frac{1}{n^2}\right)^2}$	(160)
ε_0	$\left(\frac{Q}{4\pi\varepsilon_0R^2}\right)$			■ DIELETTRICI	— de dalla corrente I) Asse di una snira		$\varepsilon = -\frac{\mathrm{d}\Phi(\mathbf{B})}{\mathrm{d}} = -L\frac{\mathrm{d}I}{\mathrm{d}I} \tag{129}$	· Potenziale del dipolo	$ Z = \sqrt{M^2 + \frac{M^2 + M^2}{M^2}}$	(601)
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{E}}{\partial t}$	$V(r) = \begin{cases} \frac{\rho(3R^2 - r^2)}{6\varepsilon_0} & \text{se } \Gamma \end{cases}$	(37)	$C_{eq} = \left(\sum_{i=1} \frac{C_i}{C_i} \right) \tag{59}$	· Campo elettrico in un dielettrico		(106)		$\mathbf{A} = \frac{\mu_0}{4\pi\tau^2} (\mathbf{m} \times \mathbf{u}_r) \tag{147}$	· RLC serie in DC smorzato Equazione differenziale	
$\nabla \cdot \mathbf{B} = 0$		n tente	In parallelo	$\mathbf{E}_k = \frac{\mathbf{E}_0}{l} \tag{8}$	(81) $\mathbf{D}(z) = 2(z^2 + r^2)(3/2)^{\mathbf{d}z}$	(100)	· Corrente indotta	· Campo magnetico B generato	$I''(t) + 2\gamma I'(t) + \omega_0 I(t) = 0$	(170)
$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{B}}{\partial t}$	$(8) \qquad \qquad (8) \qquad \qquad \text{se r} < \mathbf{R}$		$C_{eq} = \sum_{i=1}^{n} C_i \tag{60}$	$^{\kappa}$ · Vettore P polarizzazione	Filo indefinito $\mathbf{p}_{\ell-1} = \mu_0 I$	(104)	$I = \frac{\varepsilon_i}{R} = -\frac{\mathrm{d}\Phi(\mathbf{B})}{R\mathrm{d}t} \tag{130}$	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4 - m^2} \left[3\mathbf{u}_r (\mathbf{m} \cdot \mathbf{u}_r) - \mathbf{m} \right] \tag{148}$	$\frac{\partial u}{\partial x} = \frac{1}{1 - \frac{R}{2}}$	
$\oint_{\Sigma} \mathbf{E} \cdot d\mathbf{\Sigma} = \frac{Q_{int}}{\varepsilon_0}$	(9) $\mathbf{E}(r) = \begin{cases} \frac{Q}{4\pi\varepsilon_0 R^2} & \text{se } r \ge R \end{cases}$	(38)	r=1 Con dielettrico		$\mathbf{b}(r) = \frac{\mathbf{a}}{2\pi r} \mathbf{u}_{\phi}$ (82) $\Lambda_{\alpha\beta\beta} = \frac{1}{2\pi r} \mathbf{u}_{\phi}$	(101)	uttanza	Momento tonconto	$\int_{0.3}^{\infty} \sqrt{LC} \qquad 2L$	
$\oint_{\mathbf{E}} \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi(\mathbf{B})}{d\Phi(\mathbf{B})}$	(10) $V(r) = \begin{cases} \frac{Q}{4\pi\varepsilon_0 R} & \text{se r < R} \end{cases}$	(39)	$C_{diol} = k_o C_0 \tag{61}$		Asse no nungo $\mu_0 I_0$	1	Mutua (solo una volta ogni coppia):	· Momento torcente M - m · B	144	
$\int_{\Gamma} - dt$			rna del condensatore	• Delettrici lineari $\mathbf{P} = \varepsilon_0 \nabla_{\mathbf{E}} \mathbf{E}_{i} = \varepsilon_0 (k-1) \mathbf{E}_{i} $ (8)	(83) $\mathbf{B}(r) = \frac{r}{2\pi r \sqrt{r^2 + a^2}} \mathbf{u}_{\phi}$	(108)	$U_{1,2} = \frac{1}{2}MI_1I_2 + \frac{1}{2}MI_2I_1 \tag{131}$		$I(t) = I_0 e^{-\gamma t} \sin(\omega t + \varphi)$	(171)
$ \oint_{\Sigma} \mathbf{B} \cdot d\Sigma = 0 $	(11) Filo infinito con carica uniforme λ			$\mathbf{r} = c_0 \lambda E \mathbf{L} \kappa = c_0 (\kappa - \tau) \mathbf{L} \kappa$			Interna	olodip lns e	Smorz. FORTE $\gamma^2 > \omega_0^2$,
$\oint_{\Gamma} \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{conc} + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$	(12) $\mathbf{E}(r) = \frac{\Lambda}{2\pi\varepsilon_0 r} \mathbf{u}_r$	(40)	$U = \frac{Q}{2C} = \frac{1}{2}CV = \frac{1}{2}QV \tag{62}$	aı q polarızza	$\mathbf{B} = \mu_0 \frac{IV}{L} I$	(109)	$II_{r} = \frac{1}{2}LI^{2} \tag{132}$	$\mathbf{F} = \nabla(\mathbf{m} \cdot \mathbf{B}) \tag{150}$	$I(t) = e^{-\gamma t} (Ae^{\omega} + Be^{-\omega})$	(172)
Nei mezzi:	$V(r) = \frac{\lambda}{2} \ln \left(\frac{r_0}{r_0} \right)$	(41)	Differenziale circuito RC	$\sigma_p = \mathbf{F} \cdot \mathbf{u}_n = $				· Energia del dipolo	Smorz. CRITICO $\gamma^2 = \omega_0^2$	
$\nabla \cdot \mathbf{D} = \rho_{tibere}$	(13) $2\pi\varepsilon - \langle r \rangle$ Piano Σ infinite con carica uniforme	orme	$RQ'(t) + \frac{Q(t)}{C} = V \tag{63}$	ımetrica di q polarizza		(110)	In un circuito (conta una volta ogni induttanza ed una ogni coppia)	$U = -\mathbf{m} \cdot \mathbf{B} \tag{151}$	$I(t) = e^{-\gamma t} (A + Bt)$	(173)
$\nabla \times \mathbf{H} = \mathbf{J}_{C,tib} + \frac{\partial \mathbf{D}}{\partial t}$	(14) $\mathbf{E} \equiv \frac{\sigma}{-1} \mathbf{n}$.	(42)	Carica		(85) Piano infinito su xy, con lineare di corrente	n K \mathbf{u}_x densità	N N	· Energia pot. tra due dipoli	A, B e φ si ricavano imp) stando le
$ \oint \mathbf{D} \cdot d\mathbf{\Sigma} = Q_{intlih} $	$(15) \qquad \qquad = 2\varepsilon_0 \qquad $		$Q(t) = Q_0(1 - e^{-\frac{t}{RC}})$ (64)			(111)	$U = \frac{1}{2} \sum_{i=1}^{\infty} \left(L_i I_i^2 + \sum_{j=1}^2 M_{i,j} I_i I_j \right) i \neq j$	$U = -\mathbf{m_1} \cdot \mathbf{B_2} = -\mathbf{m_2} \cdot \mathbf{B_1} \tag{152}$	condizioni iniziali	
f_{Σ}^{-} - vinetary $d\Phi_D$		(43)		$\varepsilon_0 k \mathbf{E}_k = \varepsilon_0 \mathbf{E}_0$	$ \begin{array}{cccc} (86) & \mathbf{D} = 2 & \mathbf{u}_y \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array} $	(111)	(133)	B è il campo magnetico generato dall'al-	· RLC serie in AC forzato Forzante	
$\oint_{\Gamma} \mathbf{H} \cdot d\mathbf{S} = \iota_{conc, lib} + \frac{d}{dt}$	(10) Anello con carica uniforme (sull'asse)	l'asse)	$Q(t) = Q_0 e^{-\frac{t}{RC}} \tag{65}$	■ CORRENTI	 Enecto frau b spessore sonda, b // B, b ⊥ I, n car/vol 	b \perp I, n car/vol	· Legge di Felici	uo alpoio · Forza tra dinoli	$\varepsilon(t) = \varepsilon_0 \cos(\Omega t + \Phi)$	(174)
· Discontinuità dei campi Generali	$\mathbf{E}(x) = \frac{\lambda Rx}{2\varepsilon_0(x^2 + R^2)^{3/2}} \mathbf{u}_x$	(44)	· Condensatore pieno		$V_H = \frac{IB}{n a b}$	(112)	$Q(t) = \frac{\Phi(0) - \Phi(t)}{R} \tag{134}$	$\mathbf{F}(\mathbf{r}) = \frac{3\mu_0}{4\pi r^4} [(\mathbf{m}_1 \cdot \mathbf{u}_r) \mathbf{m}_2 + (\mathbf{m}_2 \cdot \mathbf{u}_r) \mathbf{m}_1 +$	Equazione differenziale	
$\Delta B_{\perp} = 0$	$(17) V(x) = \frac{\lambda R}{R}$	(45)	Condensatore riempito di materiale di resistività ρ				. Circuito BI. in DC	$+(\mathbf{m_1}\cdot\mathbf{m_2})\mathbf{u_r} - 5(\mathbf{m_1}\cdot\mathbf{u_r})(\mathbf{m_2}\cdot\mathbf{u_r})\mathbf{u_r}]$	$I''(t) + 2\gamma I'(t) + \omega_0 I(t) = -\frac{\Omega \varepsilon_0}{-} \sin(\Omega t + \Phi)$	$\sin(\Omega t + \Phi)$
$\Delta E_{\parallel} = 0$	(18) $2\varepsilon_0\sqrt{x^2 + R^2}$ Disco carico uniformemente	,	$RC = \varepsilon_0 \rho \tag{66}$	• Densita di corrente $J = n\alpha \mathbf{v} = \frac{Nq\mathbf{v}}{(8)}$	Corr. equiversa = for. attrattiva		L si oppone alle variazioni di I smorzan-	(153)		(175)
$\Delta D_{\perp} = \sigma_L$		(46)	· Forza fra le armature	1		(113)	Appena inizia a circolare corrente	■ MAGNETISMO	Soluzione	
$\Delta E_{\perp} = \frac{\epsilon}{\epsilon_0}$,	$F = \frac{Q^2}{\partial_x} \left(\frac{1}{z} \right) \tag{67}$		Potenziale vettore A		$I(t) = \frac{\varepsilon_0}{R} (1 - e^{-\frac{R}{L}t})$ (135)	stico nella materi	$I(t) = I_0(\Omega)\cos(\Omega t)$	(176)
$\Delta H_{\parallel} = \mathbf{K}_{\mathrm{c}} \times \mathbf{u}_{n} $ In inotesi di linearità	$(21) V(x) = \frac{\sigma}{2\varepsilon_0} (x - \sqrt{x^2 + R^2})$	(47)			$\nabla \times \mathbf{A} = \mathbf{B}$		Quando il circuito viene aperto		ma	
$D_{1,\parallel}$ $D_{2,\parallel}$	rmemente	(x >> R)	Condensatore piano $\int_{-\infty}^{\infty} \int_{-\infty}^{2}$	· Leggi di Ohm $V = BI$ (9)	$\mathbf{A}(\mathbf{r}_1) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}^{(12)}}{r_{2,1}} d\tau_2$ (90)	(115)	$I(t) = I_0 e^{-\frac{R}{L}t} $ (136)	$\mathbf{B} = k_m \mathbf{B}_0 = (1 + \chi_m) \mathbf{B}_0 \tag{155}$	$I_0(\Omega) = \frac{\varepsilon_0}{ Z } = \frac{\varepsilon_0}{\sqrt{R^2 + (\omega L + \frac{1}{\omega C})^2}}$	== (177)
$k_1 = k_2$	$\mathbf{E}(x) = \frac{\sigma}{2\varepsilon_0} \frac{R^2}{x^2} \mathbf{u}_x$	(48)	$F = \frac{\sqrt[4]{C}}{2\epsilon_0} = \frac{\sqrt[4]{C}}{2\epsilon_0 \Sigma} \tag{68}$	$l P \frac{\overline{\overline{d}}}{d}$	(91) A' – A + ΩΨ	(116)	· Circuiti con barra mobile (b lunghez-	tizzazione M	Sfasamento	
Se $\sigma_L = 0$		1	■ DIPOLO ELETTRICO			(011)	za balta) F.e.m. indotta	$\mathbf{M} = n\mathbf{m} = \frac{1}{d\tau} \tag{156}$	$ \tan \Phi(\Omega) = \frac{L\Omega - \frac{1}{\Omega C}}{2} $	(178)
$\kappa_1 E_{1,1} = \kappa_2 E_{2,1}$ Rifrazione linee di R	(23) $V(x) = \frac{4\epsilon_0}{4}$ (48)	(49)	· Momento di dipolo	$\rho = \frac{1}{\sigma} \tag{9}$	$(93) \qquad \nabla \cdot \mathbf{A} = 0$	(117)	$\varepsilon(t) = -Bbv(t) \tag{137}$	$\mathbf{M} = \frac{\chi_m \mathbf{B}}{(\chi_m + 1)\mu_0} \tag{157}$	R NOTA: Lo sfasamento di I rispetto a $arepsilon$ è	petto a ε è
$\tan(\theta_2) \mu_2$			$\mathbf{p} = q\mathbf{a} \tag{69}$	· Potenza conduttore ohmico	$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{j}$	(118)	Corrente in un circuito chiuso	. Campo magnetizzante H	−Φ Risonanza	
$ \frac{\tan(\theta_1)}{\tan(\theta_1)} = \frac{\pi}{\mu_1} $	$Q = \varepsilon_0 hr$	(20)	· Potenziale del dipolo	$P = VI = RI^2 = \frac{V^2}{R} \tag{9}$	(94) · Moto ciclotrone Raggio		$I(t) = \frac{Bbv(t)}{R} \tag{138}$	$\mathbf{H} = \frac{\mathbf{B}}{} - \mathbf{M} = \frac{\mathbf{B}}{} = \frac{\mathbf{B}}{b} = \frac{\mathbf{M}}{} $ (158)	$Im(Z) = 0 \rightarrow \omega_0 = \frac{1}{\sqrt{1-\omega_0}}$	(179)
■ ELETTROSTATICA	$V(r) = \begin{cases} 0 & \text{se r} < \mathbf{R} \\ 0 & \text{se r} < \mathbf{R} \end{cases}$	(51)	$V(r) = \frac{qa\cos\theta}{4\pi\pi^{-\frac{n^2}{2}}} = \frac{\mathbf{p} \cdot \mathbf{u_r}}{4\pi\pi^{-\frac{n^2}{2}}} \tag{70}$	$\mathbf{E}(\mathbf{r})\mathrm{d} au$	$(95) R = \frac{mv}{aB}$	(119)	Lavoro fornito per muovere la barra	μ_0 μ $\kappa_m\mu_0$ χ_m . Done LINEABE di comonto cullo		,
· Forza di Coulomb	$\left(\frac{\sqrt{\pi}}{2\pi\varepsilon_0 h}\ln\left(\frac{r}{R}\right)\right)$		40201 40201	· Resistori In serie	Periodo		$W = \frac{(Bbv(t))^2}{2} \tag{139}$	SUPERFICIE	\cdot Effetto Joule V_0	į
$\mathbf{F} = \frac{q_1 q_2}{4\pi\varepsilon_0 r^2} \mathbf{u}_{1,2}$	(25) CONDUTTORI		_	R_i	$(96) T = \frac{2\pi m}{aB}$	(120)	sulla harra	$\mathbf{K_m} = \mathbf{M} \times \mathbf{u}_r \tag{159}$	$\langle P_R \rangle = \frac{1}{2R}$	(180)
· Definizione campo elettrico	· Conduttori in equilibrio All'interno		$\mathbf{E} = \frac{q^{\alpha}(2\cos(\theta))\mathbf{u}_r + \sin(\theta)\mathbf{u}_{\theta}}{4\pi\varepsilon r^3} \tag{71}$			v 2 dimensioni)	alla	$\mathbf{M} = M\mathbf{u}_z \qquad \mathbf{K}_{\mathbf{m}} = K_m \mathbf{u}_{\phi}$	\cdot Potenza media totale	
$\mathbf{E} = \frac{\mathbf{F}(\mathbf{r}_0)}{2\pi}$	- il campo è nullo		· Momento torcente		$\sin(\theta) = \frac{qBR}{mn}$	(121)	$F = m\frac{dx}{dt} = -\frac{(2D) \cdot V(t)}{R} \tag{140}$	· Dens. SUPERFICIALE corrente	$\langle P \rangle = \frac{V_0 I_0}{2} \cos(\phi)$	(181)
40 Fn. notenziale due cariche	$\mathbf{E} = 0$	(52)	$\mathbf{M} = \mathbf{a} \times q \mathbf{E}(x, y, z) \tag{72}$				ATTENZIONE: per tenere v costante è necessaria una F esterna; altrimenti		· V e I efficace	
$U = \frac{q_1 q_2}{-q_2 q_2} + c$	- il potenziale è costante (27)	0	me	reale	$d = \frac{2\pi R}{\tan(\theta)}$	(122)	essa è opposta a v e il moto è smorzato esponenzialmente	$\int_{\mathbf{M}} \mathbf{M} \cdot \mathbf{M} = \mathbf{V} \times \mathbf{M}$ (100)	$V_{eff} = \frac{\sqrt{2}}{2} V_0$ $I_{eff} = \frac{\sqrt{2}}{2} I_0$	(182)
$4\piarepsilon_0 r_{1,2}$	$\Delta V = 0$	(56)	$\mathbf{M} = \mathbf{p} \times \mathbf{E} \tag{13}$	$\Delta V = V_0 - r_i I \tag{9}$	(98)			$\int_{\Gamma} d\mathbf{r} \cdot d\mathbf{r} = I m_{\tau} c \tag{101}$		

(237)		(238)	(000)	(239)		(240)	(241)	angolare	ngorar.	(242)		(949)	(c47)		(244)		(245)		(246)	(247)		(248)	(249)	interfe-	lei due	$\frac{1}{2}$	(250)		(251)		(252)		(253)		(254)	(271)	(272)	,	(273)	(274)		$\frac{x}{-}$ (275)
$I_{MAX} = N^2 I_0$ Massimi secondari	$m \in \mathbb{Z} - \{kN, kN - 1 \text{ con } k \in \mathbb{Z}\}$	$\delta = \frac{2m+1}{2N} \pi \to \sin \theta = \frac{2m+1}{2N} \frac{\lambda}{d}$	In I	$I_{SEC} = \frac{1}{\left(\sin\frac{\pi d\sin\theta}{\lambda}\right)^2}$	Minimi $m \in \mathbb{Z} - \{kN\}$	$\delta = \frac{2m}{N}\pi \to \sin\theta = \frac{m\lambda}{Nd}$	$I_{MTN} = 0$	e angolare (distanza	tra min. e max. adiacente)	$\Delta\theta \approx \frac{1}{1-\lambda}$	$N d \cos \theta$ Potere risolutore	$\delta\lambda_{-1}$	$\frac{\lambda}{\lambda} = \frac{Nn}{Nn}$	· Diffrazione Intensità	$I(\theta) = I_0 \left(\frac{\sin\left(\frac{\pi a \sin \theta}{\lambda}\right)}{\frac{\pi a \sin \theta}{\pi a \sin \theta}} \right)^2$	Massimo pincipale in $\theta = 0$	$I_{MAX} = I_0$	Massimi secondari $m \in \mathbb{Z} - \{-1, 0\}$. $2m + 1 \lambda$	$\sin \theta = \frac{2}{a} - \frac{1}{a}$	$I_{SEC} = \frac{I_0}{\left(\frac{\pi(2m+1)}{2}\right)^2}$	Minimi $m \in \mathbb{Z} - \{0\}$	$\sin \theta = \frac{m\lambda}{a}$	$I_{MIN} = 0$	• Reticolo di diffrazione Sovrapposizione di diffrazione e interfe-	renza, l'intensità è il prodotto d effetti	$I(\theta) = I_0 \left(\frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\sin(\frac{\lambda \pi d \sin \theta}{\lambda})} \right)^2$	$\frac{\lambda}{\lambda}$ Sin($\frac{\lambda}{\lambda}$)	Dispersione	$D = \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} = \frac{m}{d\cos\theta_m}$	Fattore molt. di inclinazione	$f(\theta) = \frac{1 + \cos \theta}{2}$	· Filtro polarizzatore Luce NON polarizzata	$I = \frac{I_0}{2}$	Luce polarizzata (Legge di Malus)	$I = I_0 \cos^2(\theta)$	$\int \frac{1}{(x^2 + r^2)^{3/2}} \mathrm{d}x = \frac{x}{r^2 \sqrt{r^2 + x^2}}$	$\int \frac{x}{-x} dx = \sqrt{r^2 + x^2}$	$\int \sqrt{x^2 + r^2}$	$\int \frac{x}{(x^2 + r^2)^{3/2}} \mathrm{d}x = -\frac{1}{\sqrt{r^2 + x^2}}$	$\int \frac{1}{\cos x} dx = \log \left(\frac{1 + \sin x}{\cos x} \right)$		$\int \sin^3 ax dx = -\frac{3a\cos ax}{4a} + \frac{\cos 3ax}{12}$
ZIO-			(220)		(221)		(222)		(223)		(224)		(225)		(226)	(227)	,		(228)		(229)		$n \in \mathbb{Z}$	(250) tile		(231)	(232)		(233)		(234)		(235)		(236)		(267)		(268)		(269)	(270)
■ INTERFERENZA e DIFFRAZIO-	NE · Interferenza generica	onda risultante	$f(\mathbf{r},t) = Ae^{i(kr_1-\omega t + \alpha)}$	Ampiezza	$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos \delta}$	Diff. cammino ottico	$\delta = \alpha_2 - \alpha_1 = \left(\Phi_2 - \Phi_1 + k(r_2 - r_1)\right)$	Intensità	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$	Fase risultante α	$\tan \alpha = \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_2 \cos \alpha_2 + A_2 \cos \alpha_2}$	$A_1 \cos \alpha_1 + A_2 \cos \alpha_2$ Massimi	$\delta = 2n\pi$	Minimi	$\delta = (2n+1)\pi$. Condizione di Fraunhofer $\theta = \frac{\Delta y}{2}$	L L grande tale che tan $\theta \approx \theta$	· Interferenza in fase Diff. cammino ottico	$\delta = k(r_2 - r_1) = \frac{2\pi}{\lambda} d\sin\theta$	Costruttiva	$r_2 - r_1 = n\lambda \to \sin\theta = n\frac{\lambda}{d} n \in \mathbb{Z}$	Distruttiva	$r_2 - r_1 = \frac{2n+1}{2}\lambda \to \sin\theta = \frac{2n+1}{2}\frac{\lambda}{d}$	· Interf. riflessione su lastra sott	(n indice rifr., t spessore lastra) Diff. cammino ottico	$\delta = \frac{2\pi}{\lambda} \frac{2nt}{\cos \theta_t}$	Massimi $m \in \mathbb{N}$ $t = \frac{2m+1}{\lambda} \lambda \cos \theta,$	$4n$ Minimi $m \in \mathbb{N}$	$t = \frac{m}{2n}\lambda\cos\theta_t$	· Interferenza N fenditure Diff. cammino ottico	$\delta = \frac{2\pi}{\lambda} d\sin\theta$	Intensità	$I(\theta) = I_0 \left(\frac{\sin(N\frac{\delta}{2})}{\sin\frac{\delta}{2}} \right)^{\omega}$	Massimi principali $m \in \mathbb{Z}$	$\delta = 2m\pi \to \sin\theta = \frac{m\lambda}{d}$	· Attrito viscoso Equazione differenziale	$v' + \frac{v}{\tau} = K$	Soluzione	$v(t) = k\tau(1 - e^{-\frac{t}{\tau}})$	■ ANALISI MATEMATICA · Integrali ricorrenti	$\int \frac{1}{x^2 + r^2} dx = \frac{1}{r} \arctan \frac{x}{r}$	$\int \frac{1}{\sqrt{x^2 + r^2}} dx = \ln \sqrt{x^2 + r^2} + x$
l	(200)		(201)		(202)		(203)	,	(204)		(205)		(206)	(207)		(208)	= 1)	(209)		(210)	(211)	(919)	(212)	non oss	(213)	(214)	(215)		(216)		(217)		(218)		(219)	(961)	(707)	(262)	(263)	(264)	(265)	(266)
· Coefficienti di Fresnel Definizione	$r = \frac{E_r}{E_s} \qquad R = \frac{P_r}{P_s} = \frac{I_r}{I_s}$		$t = \frac{E_t}{E_i} \qquad T = \frac{P_t}{P_i} = \frac{I_t}{I_i}$	E.	$r_{-} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t - \theta_i)}$	$\sin(\theta_t + \theta_i)$	$r_{\pi} = \frac{\tan(\theta_t - \theta_i)}{2}$	$\tan(\theta_t + \theta_i)$	$R_{\sigma} = r_{\sigma}^2 \qquad R_{\pi} = r_{\pi}^2$	Raggio TRASMESSO polarizzato	$t_{\sigma} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_i \cos \theta_i}$	$n_i \cos \theta_i + n_t \cos \theta_t$	$t_p i = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$	$T_{\sigma} = 1 - R_{\sigma} \qquad T_{\pi} = 1 - R_{\pi}$	izza	$R = \frac{1}{2}(R_{\sigma} + R_{\pi}) \qquad T = \frac{1}{2}(T_{\sigma} + T_{\pi})$	Incidenza normale ($\cos \theta_i ? \cos \theta_t =$	$r = \frac{n_i - n_t}{n_1 + n_2}$	2 \	$R = \left(\frac{n_i - n_t}{n_i + n_t}\right)$	$t = \frac{2n_i}{n_i + n_t}$	$T - \frac{4n_in_t}{}$	$a = (n_i + n_t)^2$ A result of B December (i) morning with	Angolo di Drewster (u raggio rinesso non ha polar. parallela)	$\theta_i + \theta_t = \frac{\pi}{2} \to \theta_B = \theta_i = \arctan \frac{n_t}{n_i}$	$R = \frac{1}{2}\cos^2(2\theta_i)$	T = 1 - R	· Pressione di radiazione Superficie ASSORBENTE	$p = rac{I_i}{v}$	Superficie RIFLETTENTE	$p = \frac{I_i + I_t + I_r}{v}$	· Rapporto di polarizzazione	$\beta_R = \frac{P_R^{\sigma} - P_R^{\pi}}{P_{\sigma}^{\sigma} + P_{\pi}^{\pi}}$	$P_{\mu}^{\sigma} - P_{\pi}$	$\beta_T = \frac{T - T_T}{P_T^{\sigma} + P_T^{\pi}}$	· Lavoro	Moto circolare unif. accelerato	$v = \omega r$	$a = \frac{v^2}{r} = \omega^2 r$	$\theta(t) = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^2$. Moto armonico	Equazione differenziale $x'' + \omega^2 x = 0$	Soluzione $x(t) = A\sin(\omega t + \varphi)$
			(183)	(184)				(185)			(186)		(187)	di Σ		(188)		(189)		(190)	(191)		(192)		(193)		(194)	(195)		(196)	(197)		(198)		(199)		(255)	(256)	(257)	(258)		(260)
■ CAMPO EM e OTTICA	Campi in un'onda EM	(Nel vuoto $v = c$)	$E(x,t) = E_0 \cos(kx - \omega t)$	$B(x,t) = \frac{E_0}{v}\cos(kx - \omega t)$	$\omega = kv k = \frac{2\pi}{r} \lambda = \frac{v}{r}$	ν	· Vettore di Poynting	$\mathbf{S} = \frac{1}{\mathbf{E} \times \mathbf{B}}$	μ_0	· Intensità media onda	$I = \langle S \rangle = \langle E^2 \varepsilon v \rangle$	· Potenza	$P = I\Sigma$	L'intensità varia in base alla scelta di	· Equazioni di continuità Teorema di Poynting	$\nabla \cdot \mathbf{S} + \mathbf{E} \cdot \mathbf{j} + \frac{\partial u}{\partial t} = 0$	Conservazione della carica	$\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0$	· Densità di en. campo EM	$u_{EM} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$	$U_{EM} = \int_{\mathbb{R}^3} u_{EM} \mathrm{d} au$	· Densità di quantità di moto	∞ ∞ ⊴	. Effetto Doppler	$\nu' = \nu \frac{v - v_{oss}}{v - v_{sorg}}$	Oscillazione del dipolo	$I(r,\theta) = \frac{I_0}{r^2} \sin^2(\theta)$	$P = \int \int I(r,\theta) dr d\theta = \frac{8}{3}\pi I_0$	Velocità dell'onda	$v^2 = \frac{1}{k_e \varepsilon_0 k_m \mu_0}$	$c^2 = \frac{1}{\varepsilon_{o.0.0}}$	oreo · Indice di rifrazione	$n = \frac{c}{v} = \sqrt{k_e k_m}$	· Legge di Snell-Cartesio	$n_1\sin\theta_1=n_2\sin\theta_2$	■ UNITÀ DI MISURA Wh c m²ka	$H = \frac{1}{A} = Tm^2 = \frac{10^{-13}}{A^2 s^2}$ $V = V^2 = \frac{10^{-13}}{10^{-13}}$	$\Omega = \frac{V}{A} = \frac{V}{W} = \frac{m \log y}{A^2 s^3}$	$T = \frac{N}{Am} = \frac{kg}{As^2}$	$V = \frac{J}{C} = \frac{W}{A} = \frac{m \log 3}{8^3 A}$ $F = \frac{C}{V} = \frac{C^2}{V} = \frac{A^2 s^4}{m \log 4 s}$	FISICA 1	. Momento torcente $M = \mathbf{r} \times \mathbf{F} = I \alpha$

· Differenziale di primo ordine	ne Soluzioni	oni	-	Identità vettoriali		· Identità geometriche	
Colma generale		0		$\nabla \cdot (\nabla \times \mathbf{A}) = 0$	(282)	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ (288)	3 (288)
y(t) + a(t)y(t) = b(t)	(2/0) $y(t) =$	$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$	(279)	$\nabla \times (\nabla f) = 0$	(283)		
Soluzione $a(t) = c^{-A(t)}(c+\int b(t)e^{A(t)}dt)$	Se $\Delta = 0$	0 =		$\nabla \cdot (f\mathbf{A} = f\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$		$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta (289)$	β (289)
g(t) = c Differentiale di secondo ordine omo-		$y(t) = c_1 e^{\lambda_1 t} + t c_2 e^{\lambda_2 t}$	(280)	$\nabla(\mathbf{A}\cdot\mathbf{B}) = \mathbf{B}\cdot(\nabla\times\mathbf{A}) - \mathbf{A}\cdot(\nabla\times\mathbf{B})$	$\mathbf{A} \cdot (\nabla \times \mathbf{B})$	$\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{2}}$	(290)
geneo	Se $\Delta < 0$	0 >			(285)		
Forma generale $y'' + ay' + by = 0$ $a, b \in \mathbb{R}$	(278) $y(t) =$	$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) (281)$		$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$	(286)	$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	(291)
$\lambda_{1,2} \in \mathbb{C}$ sono le soluzioni dell'equazione associata		$con \alpha = Re(\lambda) e \beta = Im(\lambda)$		$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$	(287)	$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$	(292)
		Cartesiane	S	Sferiche	Cilindriche		
	Gradiente $(\nabla f =)$	$\frac{\partial f}{\partial x} \mathbf{x} + \frac{\partial f}{\partial y} \mathbf{y} + \frac{\partial f}{\partial z} \mathbf{z}$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial}{\partial r}$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \phi$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{\partial f}{\partial z} \mathbf{z}$	s	
	Divergenza $(\nabla \cdot \mathbf{F} =)$	$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$\frac{1}{r^2} \frac{\partial r^2 F_r}{\partial r} + \frac{1}{r \sin \theta}$	$\frac{1}{r^2}\frac{\partial r^2F_r}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial F_\theta \sin\theta}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial F_\phi}{\partial \phi}$	$\frac{1}{r}\frac{\partial F_r}{\partial r} + \frac{1}{r}\frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$	$\frac{F_z}{\partial z}$	
		$\left(\begin{array}{c} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \end{array}\right)$	$\left(\frac{1}{r\sin\theta}\left(\frac{\partial}{\partial x}\right)\right)$	$\frac{1}{r\sin\theta} \left(\frac{\partial F_{\phi} \sin\theta}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \right)$	$\left(\begin{array}{c} \left(\frac{1}{r}\frac{\partial F_z}{\partial \phi} - \frac{\partial F_\phi}{\partial z}\right) \end{array}\right)$		
	Rotore $(\nabla \times \mathbf{F} =)$	$\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}$	$\frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\delta}{\theta} \right)$	$\frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial (r F_{\phi})}{\partial r} \right)$	$\left(\frac{\partial F_r}{\partial z} - \frac{\partial (rF_z)}{\partial r}\right)$		
		$\left(\begin{array}{c} \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{array}\right)$	$\left(\frac{1}{r} \left(\frac{\partial (r)}{\delta} \right) \right)$	$\frac{1}{r} \left(\frac{\partial (r F_{\theta})}{\partial r} - \frac{\partial F_r}{\partial \theta} \right)$	$\left(\frac{1}{r} \left(\frac{\partial (rF_{\phi})}{\partial r} - \frac{\partial F_r}{\partial \phi} \right) \right)$		
		Il laplaciano di un cam	po scalare Φ , in qu	ll laplaciano di un campo scalare Φ , in qualunque coordinata, è $\nabla \cdot \nabla \Phi$	$\Phi \Delta$.		