Subsecuencia Común Más Larga Programación Dinámica

Sergio García Prado

10 de Noviembre de 2015

- Introducción
 - Formulación del Problema
 - Definiciones
- Aplicaciones
- O Programación Dinámica
- Subsecuencia Común más larga
 - Enfoques Disponibles
 - Enfoque dinámico
- 5 Fin

Section 1

Introducción

Subsection 1

Formulación del Problema

Formulación del Problema

Dadas dos secuencias de longitud arbitraria, nuestro objetivo es encontrar la subsecuencia común de mayor longitud entre ambas.

Subsection 2

Definiciones

Secuencia

- Es una colección ordenada de elementos en la cual la repetición está permitida.
- Ejemplo: A, B, C, A, E, F

Subsecuencia

- Es una secuencia que se obtiene a partir de otra de igual o mayor longitud mediante la supresión de algunos elementos manteniendo el orden de los restantes.
- Ejemplo: A, C, A es una subsecuencia de A, B, C, A, E, F.

Section 2

Aplicaciones

Aplicaciones

- Secuenciación del ADN.
- Software de control de versiones (git).
- Comando diff.

Section 3

Programación Dinámica

Programación Dinámica

- Patrón de diseño de algoritmos basado en la división del problema base en subproblemas de menor tamaño y complejidad que solo se resolverán una única vez.
- Solapamiento de Problemas.
- Subestructura Óptima.

Solapamiento de Problemas

- Un problema tiene esta propiedad si se puede dividir en subproblemas de menor tamaño cuyos resultados se reutilizarán para resolver sucesivos subproblemas de nivel superior.
- Ejemplo: Sucesión de Fibonacci.

Subestructura Óptima

• La solución óptima del problema contiene (o depende) de las soluciones óptimas a sus subproblemas..

Section 4

Subsecuencia Común más larga

Subsection 1

Enfoques Disponibles

Enfoques Disponibles

- N = Cantidad de secuencias.
- n_i = Secuencia i-ésima.
- Boráz: $O(2^{n_1} \sum_{i=2}^{N} n_i)$.
- Programación Dinámica: $O(N \prod_{i=1}^{N} n_i)$.

Subsection 2

Enfoque dinámico

Notación Utilizada

- Se expone el caso de dos secuencias.
- X[0...m-1] e Y[0...n-1] secuencias de longitud m y n respectivamente.
- L[0...m][0...n] matriz de tamaño m x n, para almacenar los resultados de cada subproblema.
- Sea S una secuencia de longitud I e $i \in (1, I)$, entonces S_i es la correspondiente a los i primeros elementos.

Ejemplo: X = abcde

$$X_1 = a$$
, $X_3 = abc$ y $X_5 = abcde = X$

Fórmula

$$LCS(X_{i}, Y_{j}) = \begin{cases} 0 & \text{if } i = 0 \lor j = 0 \\ LCS(X_{i-1}, Y_{j-1}) + 1 & \text{if } x_{i} = y_{j} \\ max(LCS(X_{i}, Y_{j-1}), LCS(X_{i-1}, Y_{j})) & \text{if } x_{i} \neq y_{j} \end{cases}$$

Funcionamiento

- Rellenar matriz L a partir de función LCS.
- Recorrer L desde $L_{m-1,n-1}$ hasta L_{00} guardando los elementos iguales.

- \bullet X = abcde, m = 5
- Y = aert, n = 4

	Ø	а	b	С	d	е
Ø						
а						
е						
r						
t						
	Ø	_	b		d	
	V)	a	וט	С	u	е
Ø	0	0	0	0	0	0
Ø	0					
	0	0				
а	0	0				

	Ø	а	b	С	d	е
Ø	0	0	0	0	0	0
а	0					
е	0					
r	0					
t	0					
	Ø		b		d	
	W	a	ו	С	u	e
Ø	0	0	0	0	0	0
Ø						
_	0	0	0			
а	0	0	0			

	Ø	а	b	С	d	е
Ø	0	0	0	0	0	0
а	0	1	1	1	1	1
е	0	1				
r	0					
t	0					
	Ø	а	b	С	d	е
Ø	0	0	0	0	0	0
а	0	1	1	1	1	1
е	0	1	1	1	1	2
r	0	1	1	1	1	2
t	0					

	Ø	а	b	С	d	е
Ø	0	0	0	0	0	0
а	0	1	1	1	1	1
е	0	1	1	1	1	2
r	0					
t	0					
	Ø	а	b	С	d	е
CA.	_					
Ø	0	0	0	0	0	0
a	0	1	0	0	0	0
						1 2
а	0	1	1	1	1	1

	Ø	а	b	С	d	е
Ø	0	0	0	0	0	0
а	0	1	1	1	1	1
е	0	1	1	1	1	2
r	0	1	1	1	1	2
t	0	1	1	1	1	2
	Ø	а	b	С	d	е
Ø	0	0	0	0	0	0
а	0	1	1	1	1	1
е	0	1	1	1	1	2
r	0	1	1	1	1	2
t	0	1	1	1	1	2

Ø	а	b	С	d	е
0	0	0	0	0	0
0	1	1	1	1	1
0	1	1	1	1	2
0	1	1	1	1	2
0	1	1	1	1	2
0 Ø	1 a	1 b	1 c	1 d	2 e
Ø	а	b	С	d	е
0	a 0	b 0	с 0	d 0	e 0
Ø 0 0	a 0 1	b 0 1	c 0 1	d 0 1	e 0 1
	0 0	0 0 0 1 0 1	0 0 0 0 1 1 0 1 1	0 0 0 0 0 1 1 1 0 1 1 1	0 0 0 0 0 0 1 1 1 1 0 1 1 1 1

	Ø	а	b	С	d	е
Ø	0	0	0	0	0	0
а	0	1	1	1	1	1
е	0	1	1	1	1	2
r	0	1	1	1	1	2
t	0	1	1	1	1	2

	Ø	а	b	С	d	е
Ø	0	0	0	0	0	0
а	0	1	1	1	1	1
е	0	1	1	1	1	2
r	0	1	1	1	1	2
t	0	1	1	1	1	2

- Para las secuencias X = abcde, Y = aert el resultado es:
- LCS = ae de longitud 2

Pseudocódigo

```
Algorithm 1 lcs
 1: function LCS(X, Y, m, n))
        X : secuencia de m elementos [0...m-1]
        Y : secuencia de n elementos [0...n-1]
        m: longitud de X
        n : longitud de Y
        L \leftarrow array[0...m][0...n]
                                                                                                         > O(1)
 8:
 9:
        for i \leftarrow 0, i < m + 1, i + + do
                                                                                                    > O(m * n)
            for i \leftarrow 0, i < n + 1, i + + do
10:
                                                                                                         > O(n)
                if i = 0 \lor i = 0 then
                                                                                                         > O(1)
11:
12:
                    L[i][j] \leftarrow 0
                                                                                                         D O(1)
                else if X[i-1] = Y[j-1] then
13:
                                                                                                         > O(1)
                    L[i][j] \leftarrow L[i-1][j-1] + 1
14:
                                                                                                         > O(1)
15:
                else
16-
                    L[i][j] \leftarrow max(L[i-1][j], L[i][j-1])
                                                                                                         > O(1)
17:
                end if
            end for
18:
        end for
19:
20:
21:
        index \leftarrow L[m][n]
                                                                                                         > O(1)
22:
        LCS \leftarrow array[0...index - 1]
                                                                                                         > O(1)
23:
        i \leftarrow m
                                                                                                         > O(1)
24:
        i \leftarrow n
                                                                                                         > O(1)
25:
26:
        while i > 0 \land j > 0 do
                                                                                                     \triangleright O(\frac{n+m}{2})
            if X[i-1] = Y[j-1] then
27:
                                                                                                         > O(1)
28:
                LCS[index - 1] \leftarrow X[i - 1]
                                                                                                         > O(1)
                index \leftarrow index - 1
                                                                                                         > O(1)
29:
30:
               i \leftarrow i - 1
                                                                                                         > O(1)
31:
                j \leftarrow j - 1
                                                                                                         > O(1)
            else if L[i-1][j] > L[i][j-1] then
32:
                                                                                                         > O(1)
                i \leftarrow i - 1
                                                                                                         > O(1)
33:
34:
            else
                j \leftarrow j - 1
35:
                                                                                                         > O(1)
36:
            end if
37:
        end while
38
        return LCS
                                                                                                         > O(1)
40: end function
```

Error encontrado

Figura 2:

Error encontrado

Figura 3:

Section 5

Fin