

Cálculo

Aula 3

Profa. Dra. Adriana Silveira Vieira

Propriedades de Funções

Em muitas situações práticas é necessário operar, no sentido algébrico do termo, com funções.

Duas funções f e g podem ser combinadas para formar novas funções f + g, f - g, fg, f/g, de uma maneira análoga ao modo como somamos, subtraímos, multiplicamos e dividimos números reais. A função f+g é definida pela equação:

$$\underline{(f+g)(x)}=f(x)+g(x)$$

Note ainda que o sinal + no lado esquerdo da igualdade indica uma adição de funções mas o mesmo sinal do lado direito, indica a adição dos números reais f(x) e g(x).

Analogamente, define-se a diferença f – g e o produto f.g. Seus respectivos domínios são, também, $A \cap B$.

Analogamente, define-se a diferença f - g e o produto f.g. Seus respectivos domínios são, também, $A \cap B$.

Para definir o quociente f/g de duas funções devemos lembrar que a divisão por zero não faz sentido e portanto, os pontos onde g(x)=0 devem ser excluídos do domínio desta nova função.

Sejam f e g duas funções com domínios A e B, respectivamente. Então as funções f + g, f - g, $f \cdot g$ são definidas como se segue:

Função	Domínio
f + g(x) = f(x) + g(x)	$A \cap B$
f - g(x) = f(x) - g(x)	$A \cap B$
f g(x) = f(x) g(x)	$A \cap B$
$\left(\frac{f}{g}\right)(x) = \frac{\mathbf{f}(x)}{\mathbf{g}(x)}$	$\{x \in A \cap B; \ \mathbf{g}(x) \neq 0 \}$

Assim, se f(x) = 2x - 5 e $g(x) = x^2 + 4x$, então temos que

(a)
$$(f + g)(x) = f(x) + g(x) = 2x - 5 + x^2 + 4x = x^2 + 6x - 5$$

(b)
$$(f - g)(x) = f(x) - g(x) = (2x - 5) - (x^2 + 4x) = -x^2 - 2x - 5$$

(c)
$$(f \cdot g)(x) = f(x) \cdot g(x) = (2x - 5) \cdot (x^2 + 4x) = 2x^3 + 3x^2 - 20x$$

(d)
$$\left(\frac{f}{g}\right)(x) = \frac{\mathbf{f}(x)}{\mathbf{g}(x)} = \frac{2x-5}{x^2+4}$$

Além disso, como o domínio de f e g é o conjunto de todos os números reais, os domínios de f + g, f - g e f.g também é Â. O domínio de f/g é o conjunto de todos os números reais excetuando-se aqueles onde

$$x^2 + 4x = 0$$

$$x^{2} + 4x = 0$$
 isto é, $\{x \in \Re; x \neq 0 \text{ e } x \neq -4 \}.$

Em cada um dos itens abaixo ache as funções f + g, f - g, $f g e = \frac{f}{2}$. Indique, em cada caso, os seus respectivos domínios:

(a)
$$f(x) = x^3 + 2x^2$$
 e $g(x) = 3x^2 - 1$ (b) $f(x) = \sqrt{1+x}$ e $g(x) = \sqrt{1-x}$

(b)
$$f(x) = \sqrt{1+x}$$
 e $g(x) = \sqrt{1-x}$

Funções Compostas

Considere as seguintes funções:

$$f(x) = x + 1$$
, $g(x) = 2x - 3e h(x) = x^2$.

A composição \mathbf{f} \mathbf{o} \mathbf{g} \mathbf{o} \mathbf{h} (lê-se: \mathbf{f} $\mathbf{composta}$ \mathbf{com} \mathbf{g} $\mathbf{composta}$ \mathbf{com} \mathbf{h}) pode ser mais facilmente interpretada ao ser expressa como $\mathbf{f}(\mathbf{g}(\mathbf{h}(\mathbf{x})))$.

Para resolver essa composição de funções, devemos começar pela função composta mais interna ou pela última composição, portanto, g(h(x)). Na função g(x) = 2x - 3, onde houver x, substituiremos por h(x):

$$g(x) = 2x - 3$$

$$g(h(x)) = 2.h(x) - 3$$

$$g(h(x)) = 2.(x^{2}) - 3$$

$$g(h(x)) = 2.x^{2} - 3$$

Agora faremos a última composição f(g(h(x))). Na função f(x) = x + 1, onde houver x, substituiremos por $g(h(x)) = 2 \cdot x^2 - 3$:

$$f(x) = x + 1$$

$$f(g(h(x))) = (2.x^2 - 3) + 1$$

$$f(g(h(x))) = 2.x^2 - 3 + 1$$

$$f(g(h(x))) = 2.x^2 - 2$$

Se x = 1, temos que h(1) é igual a:

$$\mathbf{h}(\mathbf{x}) = \mathbf{x}^2$$

$$\mathbf{h}(1) = 1^2$$

$$h(1) = 1$$

Sabendo que h(1) = 1, vamos agora encontrar o valor de g(h(1)):

$$g(x) = 2x - 3$$

$$g(h(1)) = 2.h(1) - 3$$

$$g(h(1)) = 2.1 - 3$$

$$g(h(1)) = -1$$

Por fim, vamos calcular o valor de f(g(h(1))), sabendo que g(h(1)) = -1:

$$f(x) = x + 1$$

$$f(g(h(1))) = g(h(1)) + 1$$

$$f(g(h(1))) = -1 + 1$$

$$f(g(h(1))) = 0$$

Sejam as funções: $f(x) = x^2 - 2x$, g(x) = -2 + 3x, $h(x) = 5x^3$ e i(x) = -x, determine a lei da função composta f(g(h(i(x)))).

Começaremos a resolver essa composição pela função composta mais interna, h(i(x)):

$$i(x) = -x e h(x) = 5x^3$$
 $h(x) = 5x^3$
 $h(i(x)) = 5 \cdot [i(x)]^3$
 $h(i(x)) = 5 \cdot [-x]^3$
 $h(i(x)) = -5x^3$

Vamos agora resolver a composição g(h(i(x))):

$$h(i(x)) = -5x^{3} e g(x) = -2 + 3x$$

$$g(x) = -2 + 3x$$

$$g(h(i(x))) = -2 + 3.[h(i(x))]$$

$$g(h(i(x))) = -2 + 3.[-5x^{3}]$$

$$g(h(i(x))) = -2 - 15x^{3}$$

Podemos agora determinar a lei da função composta f(g(h(i(x)))):

$$g(h(i(x))) = -2 - 15x^{3} e f(x) = x^{2} - 2x$$

$$f(x) = x^{2} - 2x$$

$$f(g(h(i(x)))) = [g(h(i(x)))]^{2} - 2x$$

$$f(g(h(i(x)))) = [-2 - 15x^{3}]^{2} - 2x$$

$$f(g(h(i(x)))) = 4 + 60x^{3} + 225x^{6} - 2x$$

$$f(g(h(i(x)))) = 225x^{6} + 60x^{3} - 2x + 4$$

Portanto, a lei da função composta $f(g(h(i(x)))) \in f(g(h(i(x)))) = 225x6 + 60x^3 - 2x + 4$.

Exemplos 1. Sejam $u = f(x) = \cos x$ e $y = g(u) = u^2$. Então, $g \circ f$ é dada pela equação $y = (\cos x)^2 = \cos^2 x$.

É importante observar que a ordem da composição é significante, isto é, de um modo geral temos $gof \neq fog$. De fato, se tivéssemos

$$\begin{cases} y = f(u) = \cos u \\ u = g(x) = x^2 \end{cases} \implies y = f \circ g = f(g(x)) = f(x^2) = \cos x^2.$$

2. Sejam
$$\begin{cases} y = f(x) = x^3 - 1 \\ y = g(x) = \sqrt{x+1} \end{cases}$$
 então,
$$gof \text{ \'e dada por } y = g(f(x)) = g(x^3 - 1) = \sqrt{(x^3 - 1) + 1} = \sqrt{x^3} \text{ .}$$

$$fog \text{ \'e dada por } y = f(g(x)) = f(\sqrt{x+1}) = \left(\sqrt{x+1}\right)^3 - 1.$$
 O domínio de $gof \text{ \'e } \mathbb{R}^+ = \{x \in \mathbb{R}; x \ge 0\}$ e o domínio de $fog \text{ \'e } \{x \in \mathbb{R}; x \ge -1\}$. Podemos também definir a composta de uma função com si mesma:
$$fof(x) = f^2(x) = f(f(x)) = f(x^3 - 1) = \left(x^3 - 1\right)^3 - 1;$$

$$gog(x) = g^2(x) = g(g(x)) = g(\sqrt{x+1}) = \sqrt{\sqrt{x+1} + 1}$$

Exercícios

1- Dadas as funções: f(x) = 2x-1, g(x) = (x-1)/4, $h(x) = x^2-x$ e i(x) = x+4

Determine:

- a) $P(x)=f\circ g$
- b) P(x) = goh
- (c) P(x) = gohof
- $d) P(x) = f \circ g \circ i$
- e) P(x)=hoi
- f) P(x) = iohogof
- 2- Nos casos acima determine nos casos de a) a f) o valor de P(x) para x=1.