CM1604 Computer Systems Fundamentals

Signed Integers, Bicimal & IEEE754

Week No:02 | Rathesan

CONTENT

- Two's complement (representing negative numbers)
- Floating Point Numbers
 - Bicimal
 - IEEE 754

Signed Integers

• Sometimes sign as well as value is required, for example

Two's complement

Two's Complement

- To store positive number
 - Just store binary equivalent
 - So 37 in 8-bits would be stored as 00100101
- To store negative number
 - Get positive binary number
 - Flip or complement each bit (i.e. change 1 to 0 and 0 to 1 from the previous step)
 - Add 1 to the resultant binary

- Decimal Number -83
- Step 01: Write original number as positive number 01010011
- Step 02: Flip the Bits 10101100
- Step 03: Add 1

Binary representation of -83 is 10101101

Two's Complement -113

- Decimal Number -113
- Step 01: Write original number as positive number 01110001
- Step 02: Flip the Bits 10001110
- Step 03: Add 1

Binary representation of -113 is 10001111

Range of Values Two's Complement

- 8 bit -128 to +127
- 16 bit -32,768 to +32,767
- 32 bit -2,147,483,648 to +2,147,483,647

- n Bits
- 2^n values
- Values: $-(2^{n-1}) \rightarrow 0 \rightarrow ((2^{n-1}) 1)$

Floating Point Numbers & IEEE 754

- Real numbers
- Includes fractions and integers

eg: 3.14159, 0.1235, -128.3

- Decimal fractions
- Value in a column = 10 times value in column to its right

Floating Point Numbers

	10^3	10^2	10^1	10^{0}		10 ⁻¹	10-2
Positional Value	1000	100	10	10		0.1	0.01
Multiplier	4	2	7	8		6	5
Value	(4x1000)+(2x100)	+(7x10)-	+(8x1)+(6	6x0.1)+(5x0.01) :	=4278.65

Bicimal

- Binary format for representing fractional values
- Fixed Point

2 ⁻¹	2-2	2^{-3}	2^{-4}
$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$
0.5	0.25	0.125	0.0625

Decimal to Bicimal 0.75

		2^{-1}	2^{-2}	2^{-3}	2^{-4}
		$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$
		0.5	0.25	0.125	0.0625
Decimal 0.75		0.75= 0.5+0.25			
	•	1	1	0	0

Decimal to Bicimal 0.625

		2^{-1}	2^{-2}	2^{-3}	2^{-4}
		$\frac{1}{2}$	$\frac{1}{4}$	1 8	1 16
		0.5	0.25	0.125	0.0625
Decimal 0.625		0.625=0.5+0.125			
	•	1	0	1	0

Fixed Point Format

- Not suitable for storing very small or very large real numbers
- Avogadro's number $6.0221367 \times 10^{+23}$ would require about 80 bits for the integer part
- Mass of a hydrogen atom 1.6733×10^{-24} would have required well over 80 bits for the fractional part
- Hence fixed point format is not suitable for use in computer representation of very small or very large numbers

Floating Point Format

- Can be used to represent very small or very large numbers fairly easily
- Before IEEE 754 standard, different manufacturers use different methods
- IEEE 754 standardised the method and this is now adopted by all computer manufacturers
- IEEE 754 is a simple and efficient way to represent floating point format

Normalised Format

- 3 parts to a normalised representation
 - The integer part (single digit)
 - The part after the decimal point
 - The power part
- Examples
- 15 in normalized form 1.5x10⁺¹
- 415 in normalized form 4.15x10⁺²
- 0.0017 in normalized form $1.7x10^{-3}$
- -645 in normalized form -6.45x10²

Mantissa and Exponent Examples

Mantissa and Exponent Examples

- 6244
- -735
- -0.0045
- -2
- -0.0025

Floating Point in Binary

Format is similar to floating point in decimal numbers

Examples

 $11011101 = 1.1011101 \times 2^{+7}$

Mantisa = 1.1011101

Exponent = +7

Decimal point is referred in this case as the bicimal point

Floating Point in Binary

- 0.00101
- = 1.01×2^{-3}
- Mantissa = 1.01 Exponent = -3

- -101101.01
- \bullet = -1.0110101 x 2⁺⁵
- Mantissa = -1.0110101 Exponent = +5

Decimal to Normalised Bicimal Form

- 43.625
- Step 1 Integer part to binary format = 101011
- Step 2 Fractional Part to Bicimal = .101
- **Step 3** Combine Step 1 and Step 2 = 101011.101
- **Step 4** Normalise = $1.01011101 \times 2^{+5}$
- Mantissa = 1.01011101
- Exponent = +5

IEEE 754

• There are 32 bits in Standard (single precession) IEEE754 representation of floating point numbers in binary and is divided into three parts namely:

- Sign bit First Bit
- Exponent in excess form Next 8bits
- Mantissa Last 23 bits

S	Exponent in Excess	Mantissa

IEEE 754 Format Example

Example: 12.5

- **Step 1** Integer part to binary format 1100
- **Step 2** Fractional Part to Bicimal = .1
- **Step 3** Combine Step 1&2 = 1100.1
- Step 4 Normalise the result = $1.1001 \times 2^{+3}$
- **Step 5** Mantissa = 1.1001
- **Step 6** Exponent in excess form (8bits) = 127+3=130 = 10000010

IEEE 754 Format Example

Example -112.625

- **Step 1** Integer part to binary format 1110000
- **Step 2** Fractional Part to Bicimal = .101
- **Step 3** Combine Step 1&2 = 1110000.101
- **Step 4** Normalise the result =1.110000101 x 2⁺⁶
- **Step 5** Mantissa = 1.110000101
- **Step 6** Exponent in excess form (8bits) = 127+6=133 = 10000101

IEEE754 Format to Decimal

Example: C2E14000

- **Step 2:** Sign Bit= 1 = Negative Number
- **Step 3:** Exponent in Excess form= $10000101_2 = 133$
- **Step 4:** Exponent = 133-127 = 6
- Step 5: Mantissa(adding the leading 1. and removing the trailing zeros) = 1.110000101
- Step 6: Number in Binary Form = $-1.110000101 \times 2^{+6} = -1110000.101$
- **Step 7:** Decimal Number = **-112.625**

READING

Chapter # 3

Computer science illuminated. Jones & Bartlett Learning.