

Recursividad

Fundamentos de programación

rev2.0

¿Qué es la recursividad?

Las funciones recursivas son funciones en las que, dentro de la definición, tienen por lo menos **un llamado a sí mismas.**

Iterativo vs recursivo

Todo problema que se pueda resolver recursivamente, también se puede resolver iterativamente.

Se prefiere el **enfoque recursivo** frente al iterativo, cuando la solución recursiva resulta más natural al problema y produce un programa más fácil de comprender y depurar.

Otra razón para elegir una solución recursiva es que una solución iterativa puede no ser clara ni evidente.

Partes de una función recursiva

Nombre de la función

Condición de corte

Bloques de acciones

Llamada recursiva

La condición de corte o finalización, debe evaluar si nos encontramos en presencia de un caso base, donde la recursividad debe terminar, o bien nos encontramos en un caso recursivo donde se debe realizar una llamada recursiva.

Clasificación: Por la forma de invocación

Clasificación: Por la cantidad de llamadas

Desventajas de la recursividad

La recursividad tiene muchas desventajas. Se invoca repetidamente el mecanismo de recursividad y en consecuencia se necesita tiempo suplementario para realizar las mencionadas llamadas.

Esta característica puede resultar cara en tiempo de procesador y espacio de memoria.

Error de recursividad infinita

Si el algoritmo está planteado incorrectamente de forma tal que la condición del caso base nunca es verdadera, o bien el caso recursivo no reduce el problema, pueden darse llamadas recursivas indeterminadamente.

En la práctica el código se ejecutará hasta que la computadora agote la memoria disponible y se produzca una terminación anormal del programa por desbordamiento de pila (stack overflow).

El flujo de control de un algoritmo recursivo requiere de tres elementos para funcionar correctamente:

- Una evaluación para detener o continuar la recursión.
- Una llamada recursiva para continuar la recursión.
- Un caso final para terminar la recursión (caso base).

Ejemplo: Potencia

Para todo exponente entero positivo.

Definición

potencia(x, n) =
$$\begin{cases} 1 & \text{si n} = 0 \text{ (caso base)} \\ x * \text{potencia}(x, n-1) & \text{si n} > 0 \text{ (caso recursivo)} \end{cases}$$

Ejemplo: Potencia (Pseudocódigo)

```
funcion potencia(base, exponente)
  si exponente igual a 0
  retornar 1
retornar base * potencia(base, exponente-1)
```

Ejemplo: Potencia

Ejemplo: Fibonacci

valor	0	1	1	2	3	5	8	13	21	34	55	89	
orde n	0	1	2	3	4	5	6	7	8	9	10	11	

Definición

```
fibonacci(orden) = \begin{cases} 0 & si orden = 0 \text{ (caso base)} \\ 1 & si orden = 1 \text{ (caso base)} \\ fibonacci(orden-1) + fibonacci(orden-2) & si orden > 1 \text{ (caso recursivo)} \end{cases}
```

Ejemplo: Fibonacci (Pseudocódigo)

```
funcion fibonacci(orden)
  si orden igual a 0
    return 0
  si orden igual a 1
    retornar 1
  retornar fibonacci(orden-1) + fibonacci(orden-2)
```

Ejemplo: Fibonacci

Práctica: Factorial

Plantear la solución del cálculo del factorial considerando su definición recursiva.

Definición

$$factorial(n) = \begin{cases} 1 & si \ n = 0 \ (caso \ base) \\ n * factorial(n-1) & si \ n > 0 \ (caso \ recursivo) \end{cases}$$

Bibliografía

 Capítulo 14 - Recursividad - Fundamentos de programación -Algoritmos, estructuras de datos y objetos - [Joyanes Aguilar][Mc Graw Hill][5ta ed]