

Name, Matrike	elnummer	Campus Ess	lingen Flandernstraße
Prüfer:	Prof. DrIng. Rainer Keller	Anzahl der Seite	n : 10
Studiengänge:	Softwaretechnik und Medieninformatik	Semester:	SWB2
	Technische Informatik		TIB2
		Prüfungsnumme	ern: IT 105 2004
Klausur:	Betriebssysteme		2 SWB 3072
			2 TIB 3072
Hilfsmittel:	keine, außer 1 DIN A4 Blatt, beidseitig von Hand selbst beschrieben	Dauer der Klaus	ur: 90 Minuten

Aufgabe 1: Allgemeines

(9 Punkte)

a) Wie waren die ersten elektrischen Computer aufgebaut?

diesind mit 17468 Var Kuumröhren aufgeboeut 1500 Relais, 174 KW Leistung, 170 m² Graß 30t gewicht/Qems Additionszeit/2,8 ms Multiplitationszeit

4

b) Was kennzeichnet den Übergang zu modernen Rechner der 2. Generation?

Zuferlössig (Keine mechanischen Relais) günstiger (messenfeutigeng) schneller (Schultungsgeschwindigkeit Transisteren höhe)

3

c) Welche Linux-Distribution haben wir in der Virtuellem Maschine genutzt?

Ubuntu

Name.	Matrikelnummer	

Aufgabe 2: Bash Shell

(14 Punkte)

a) Was machen die folgenden Bash Befehle?

mkdir help	unterverzeichnis help extellen
strace ./program	zeigt den systemcall von program on
ps	Ausgabe alle Prozesse
rm -fr verzeichnis/	Verzeichnis mit alle Inhalte Jöschen
wc datei	zählt die wönter, Zeichnen und Zeilen in "datei"
bg	Prozess inder Hintergrund verschieben 9
grep datei text.txt	sucht zeilweise in text. txt nach string date
mount	bindet ein Dateisystem im Verzeichnis baum ein
mknod c 1 1 nod	make node Gerate dates erstellen c: charakter Davice 1: haupt - und Nebennummer
	des Gerats an

b) Welche Betriebssystem-Tools müssen Sie hier verwenden?

Alle offenen Netzwerkverbindungen zeigen:	netstat
Module Informationen anzeigen:	modinfo
Module laden:	ins mod
Einen Prozess "netter" machen:	nice
Header in einer Binärdatei (Module) zeigen:	objdump_h modul.to

Aufgabe 3: Hardware

(10 Punkte)

a) Wie nennt man die Software eines Betriebssystems, welche bestimmte Hardware, bspw. einen USB-Stick ansprechen?

2

b) Nennen Sie Ihnen bekannte systemnahe Programme (mindestens zwei) um Hardware des Rechners herauszufinden?

Ishw | hwinfo

2

c) Meine Hardware tut nicht, wo finde ich mehr Informationen raus?

Lspci, Is ush, dmese, Ls bash befolde

4

d) Was gehört zum Betriebssystem, was nicht?

Kernell Treibe speichervernaltung, Duteisystem was gehärt nicht BIOS, Editor, übersetzer

Name,	Matrikelnummer

Aufgabe 4: Systemaufrufe

(19 Punkte)

a) Welche Möglichkeiten gibt es auf x86-Prozessoren (32-Bit und 64-Bit), Funktionen im Linux-Betriebssystem aufzurufen?

open(), read(), write(), clone()
fork()

b) Beschreiben Sie den Ablauf eines Hardwareinterrupts anhand eines Tastendrucks auf dem Keyboard ihres PCs?

6

c) Zeichen Sie die Interrupt-Klassifikation auf:

d) Wie lange dauert ein Systemaufruf circa? Und wieso war getpid() so schnell?

9.12 Tatt zettlen Aufwigmit ogetpidl)
137 Toktzettlen mit sescall()
L1849 Taktzeklen mit int Ox80

4

getpid brauchtwenigzeit für die
Ausfühkung

Name	Matrikelnummer	

Aufgabe 5: Virtueller Speicher (18 Punkte)

a)	Welche	beiden	Eigenschaften	müssen	für	Speicherzugriffe	gelten,	damit
	Caches	optimal	funktionieren?	(bitte er	kläre	en)		

b) Wie viele Bits bietet der Intel Prozessor für Schutzebenen, wie viele Ebenen erlaubt dies und wie viele nutzt Linux?

1.	Wie viele Bits?	32
2.	Wie viele Ebenen?	4
3.	Linux nutzt?	Level 01 level 3

c) Welche Speicherseitengrößen unterstützen 64-Bit Intel & AMD CPUs?

|--|

4

3

Name.	Matrikelnummer	

- d) Der Buddy-Allokator erlaubt, sehr schnell freie Speicherbereiche zu identifizieren. Die untenstehende Ansicht entspricht der Darstellung von Wikipedia. Zuerst ist der Speicher komplett frei. Zeichnen Sie die folgenden Allokationen ein:
 - 1. Programm A alloziiert 17 kB Speicher
 - 2. Programm B alloziiert 3 kB Speicher
 - 3. Programm A alloziiert 13 kB Speicher

	4kB															
1.	24								\							
2.																
3.									\							
4.																
5.																
6.																
7.																
8.																
9.																
10																
11																

Aufgabe 6: Linux Kernel

(13 Punkte)

a) Wohin werden Linux Kernel Module Dateien installiert?

lib/modules/Version

2

8

b) Erklären Sie die Zeilen der Ausgabe von 1smod:

Name	Matrikelnumm	
mame.	Matrikemumim	eı

c) Circa wie groß ist der Linux Kernel in Lines-of-Code und in welcher Programmiersprache ist der geschrieben?

3

Aufgabe 7: IPC

(9 Punkte)

a) Welches ist die schnellste Art der Interprozesskommunikation zwischen Prozessen eines Rechners und warum?

Shared Memory, weif dateien werden direkt in den Speicher des Prozesses abgebildet

5

b) Warum sind Dateien keine gute Form der Interprozesskommunikation?

Wegen Race Condition

Name	Matrikelnummer	

Aufgabe 8: Dateisysteme

(8 Punkte)

a) Welche Dateisysteme haben wir in der Vorlesung behandelt?

NTFS FAT16 ReFS FAT32 VFS

2

b) Was zeichnet das Dateisystem vom alten MS-Dos aus und wieso wird es immer noch verwendet?