

WaveNet: A Generative Model for Raw Audio

Подготовила: Иванова Алеся Александровна, БПМИ202

План

- 1. Как звук хранится в компьютере, спектрограмма и мелспектрограмма
- 2. Text-To-Speech
- 3. WaveNet:
 - архитектура
 - эксперименты

Хранение звука в компьютере

 Фиксируется амплитуда звукового сигнала через равные промежутки времени, хранится последовательность 16битных чисел

1 Second

Спектрограмма

$$F(k,m) = \sum_{n=0}^{L-1} x[n+m]w[n]e^{-irac{2\pi}{L}kn}$$

• Показывает зависимость амплитуды от времени и частоты

Мел-спектрограмма

- Человеческое ухо более чувствительно к изменениям звука на низких частотах, чем на высоких
- Мел психофизическая единица высоты звука

$$m = 2595 \log_{10} \left(1 + rac{f}{700}
ight) = 1127 \ln \left(1 + rac{f}{700}
ight)$$

Higher School of Economics

Text-To-Speech

• Две компоненты: анализ текста и синтез речи

- Используются модели:
 - hidden Markov models (HMMs)
 - feed-forward neural networks
 - recurrent neural networks

WaveNet

- Работает напрямую с сырыми амплитудами
- Предсказывает вероятности, что амплитуда в момент времени t примет каждое из возможных значений, если известны значения амплитуд в предыдущие моменты времени:

$$p\left(x_{t}\mid x_{1},\ldots,x_{t-1}\right)$$

Dilated Causal Convolutions

- Causal Convolutions основная составляющая модели
- При их использовании можно гарантировать, что предсказания для момента времени t зависят только от значений в предыдущие моменты

- При обучении предсказания для всех моментов времени можно вычислять параллельно
- При генерации предсказания для нового семпла передаётся в модель для получения предсказаний для следующих семплов

 нigher School of Economic

Заголовок

- Проблема casual convolutions: нужно много слоёв или большая длина фильтра для достаточно большого рецептивного поля
- Решение: dilated convolution

• В WaveNet шаг фильтра удваивается для каждого слоя до предела, а затем повторяется. Например: 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

Softmax Distributions

- Проблема: для 16-битных значений амплитуд нужно генерировать 65,536 вероятностей в каждый момент времени
- Решение: используется сжатие значений амплитуд с помощью µ-law companding transformation (µ-закона), получается 256 различных значений:

$$f(x_t) = \text{sign}(x_t) \frac{\ln(1+\mu|x_t|)}{\ln(1+\mu)}$$
 where $-1 < x_t < 1$ and $\mu = 255$

Gated Activation Units

$$\mathbf{z} = \tanh (W_{f,k} * \mathbf{x}) \odot \sigma (W_{g,k} * \mathbf{x})$$

- * оператор свёртки
- - поэлементное умножение
- k номер слоя
- W обучаемый фильтр

Residual and Skip Connections

Conditional WaveNets

 Можно добавить дополнительный параметр для генерации аудио с определёнными характеристиками:

$$p\left(x_{t}\mid x_{1},\ldots,x_{t-1},\mathbf{h}\right)$$

- Пример: выбор спикера при генерации речи
- Типы параметризации:
 - глобальная: один параметр, который влияет на все предсказания
 - локальная: последовательность параметров, разные параметры для разных моментов времени
- Параметр добавляется на слое активации:

$$\mathbf{z} = \tanh\left(W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{h}\right) \odot \sigma\left(W_{g,k} * \mathbf{x} + V_{g,k}^T \mathbf{h}\right)$$

Context Stacks

- Ещё один способ увеличения рецептивного поля
- Context Stack обрабатывает длинный фрагмент аудио и подаёт выход как локальный параметр для WaveNet

Эксперименты

- Multi-speaker speech generation
- Text-to-speech
- Music
- Speech recognition

Multi-speaker speech generation

- Генерация речи без опоры на текст
- Параметр: номер спикера (задаётся one-hot вектором)

- Генерирует несуществующие, но похожие на человеческие звуки, воспроизводит характерные черты спикера
- Отсутствие связности речи из-за ограниченного рецептивного поля (~300 мс, 2-3 фонемы)

Text-to-speech

 Локальная параметризация лингвистическими и фонетическими признаками (текущий звук, слог, слово)

Сравнение с лучшими моделями от Google до WaveNet:

Parametric Concatenative WaveNet

Text-to-speech

Speech samples	Subjective 5-scale MOS in naturalness	
	North American English	Mandarin Chinese
LSTM-RNN parametric HMM-driven concatenative	3.67 ± 0.098	3.79 ± 0.084
WaveNet (L+F)	3.86 ± 0.137 4.21 ± 0.081	3.47 ± 0.108 4.08 ± 0.085
Natural (8-bit μ-law) Natural (16-bit linear PCM)	4.46 ± 0.067 4.55 ± 0.075	4.25 ± 0.082 4.21 ± 0.071

Text-to-speech

• Можно добавить номер спикера в качестве параметра

Music

Speech recognition

- Можно адаптировать модель для распознавания речи
- 2 компоненты функции потерь:
 - предсказание следующего семпла
 - классификация фрагмента

Материалы

- https://arxiv.org/pdf/1609.03499v2.pdf
- https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio

Вопросы?

