

Аксентьев Александр Евгеньевич

Метод замороженного спина для поиска электрического дипольного момента дейтрона в накопительном кольце

Специальность 01.04.20— «Физика пучков заряженных частиц и ускорительная техника»

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук Работа выполнена в Forschungszentrum Jülich GmbH.

Научный руководитель: доктор физ.-мат. наук, профессор

Сеничев Юрий Валерьевич кандидат физ.-.мат. наук, доцент Полозов Сергей Маркович

Официальные оппоненты: Фамилия Имя Отчество,

доктор физико-математических наук, профес-

cop,

Не очень длинное название для места работы,

старший научный сотрудник

Фамилия Имя Отчество,

кандидат физико-математических наук,

Основное место работы с длинным длинным

длинным длинным названием, старший научный сотрудник

Ведущая организация: Федеральное государственное бюджетное об-

разовательное учреждение высшего профессионального образования с длинным длинным

длинным длинным названием

Защита состоится DD mmmmmmm YYYY г. в XX часов на заседании диссертационного совета Д123.456.78 при Название учреждения по адресу: Адрес.

С диссертацией можно ознакомиться в библиотеке Название библиотеки.

Отзывы на автореферат в двух экземплярах, заверенные печатью учреждения, просьба направлять по адресу: Адрес, ученому секретарю диссертационного совета Д123.456.78.

Автореферат разослан DD mmmmmmmm YYYY года. Телефон для справок: +7 (0000) 00-00-00.

Ученый секретарь диссертационного совета Д 123.456.78, д-р физ.-мат. наук

Общая характеристика работы

Актуальность темы. Данное диссертационное исследование является частью проекта, посвящённого поиску ЭДМ элементарных частиц.

Одной из основных проблем современной физики является барионная асимметрия вселенной, т.е. преобладание числа частиц над числом античастиц в наблюдаемой вселенной. На текущий момент нет никаких свидетельств существования первичной антиматерии в нашей галактике; количество наблюдаемой антиматерии согласуется с её производством во вторичных процессах. Также не наблюдается фонового гамма-излучения от нуклон-антинуклонных взаимодействий, которое можно было бы ожидать, если бы вещество и антивещество во вселенной были бы разделены на кластеры галактик. [1]

В своей статье 1967 года, академик АН СССР А.Д. Сахаров сформулировал три необходимых условия, которым должен был удовлетворять процесс бариогенеза, чтобы материя и антиматерия в первичной вселенной производились с разными скоростями. Побудительным мотивом формулировки стало открытие космического фонового излучения и нарушение СР четности в системе нейтральных К-мезонов. [2] Три необходимых условия Сахарова таковы:

- несохранение барионного числа;
- нарушение зарядовой симметрии С- и СР-симметрии;
- взаимодействие вне теплового равновесия.

Если они существуют, перманентные ЭДМ частиц нарушают P- и T-симметрии, а значит, по теореме CPT — их существование можно связать с нарушением CP-симметрии. Стандартная Модель (CM) элементарных частиц позволяет учесть CP-нарушение посредством матрицы Кабиббо-Кабаяши-Масакавы, однако значения ЭДМ, предсказываемые ей для, например, нейтрона, лежат в диапазоне от 10^{-33} до 10^{-30} $e\cdot$ см. [3] К примеру, теория SUSY (суперсимметрия) предсказывает наличие ЭДМ гораздо большей величины (на уровне $10^{-29}-10^{-24}$ $e\cdot$ см). Таким образом, ЭДМ элементарных частиц являются чувствительным индикатором физики за гранью CM.

Поиск ЭДМ частиц был начат более 50-ти лет назад. Первый эксперимент по измерению ЭДМ нейтрона был проведён др. Н.Ф. Рэмзи (dr. N.F. Ramsey) в конце 1950-х годов. По результатам эксперимента, верхняя граница ЭДМ нейтрона была ограничена величиной $5 \cdot 10^{-20}~e \cdot cm$. [4] С тех пор было проведено множество более точных экспериментов, и на данный момент, верхняя граница на ЭДМ нейтрона находится на уровне $2.9 \cdot 10^{-26}~e \cdot cm$. [5; 6]

Большинство экспериментов проводятся на зарядово-неитральных частицах, таких как нейтрон или атомы. ЭДМ заряженных частиц, таких как протон или дейтрон, можно измерить в накопительном кольце,

на основе прецессии поляризации пучка в электрическом поле в системе центра масс пучка.

Идея использования накопительного кольца для детектирования ЭДМ заряженный частиц появилась в процессе разработки g-2 эксперимента [7] в Брукхейвенской Национальной Лаборатории (BNL, США). По результатам экспериментов в BNL, верхняя граница на мюонный ЭДМ была установлена на уровне $10^{-19}~e\cdot$ см. [8] В 1990-х годах, дискуссия преимущественно велась вокруг мюонного эксперимента [9], однако также рассматривался и дейтрон, у которого похожее отношение аномального магнитного момента к массе.

В 2004 году, коллаборацией srEDM (Storage Ring EDM Collaboration) [10] в BNL был предложен эксперимент 970 по детектированию ЭДМ дейтрона на уровне $10^{-27}~e\cdot$ см в накопительном кольце. Начиная с 2005 года, на циклотроне AGOR KVI-центра передовых радиационных технологий (KVI-Center for Advanced Radiation Technology) в университете Гронингена была проведена серия тестов по технико-экономическому обоснованию эксперимента.

В 2008 году начались тесты на накопительном кольце COSY в Исследовательском центре "Юлих" (FZJ, Германия). Впоследствии, эти тесты развились в программу по изучению динамики пучка для разработки технологий, требуемых для эксперимента по поиску ЭДМ. В этом же году было сделано второе предложение [11] эксперимента по поиску ЭДМ дейтрона, в этот раз, на уровне 10^{-29} $e\cdot$ см через один год сбора статистики.

В то же время было решено, что эксперимент по детектированию ЭДМ протона обладает некоторыми достоинствами, в техническом отношении. Среди таковых возможность одновременной инжекции противоположно-циркулирующих пучков, что позволяет оптимизировать сокращение систематических эффектов, в которых не нарушается временная симметрия. Тем не менее, на СОЅУ была продолжена работа над экспериментом с дейтроном, ввиду того, что результаты, полученные для дейтрона, распространяются и на протон.

В 2011 году была сформирована коллаборация JEDI (Jülich Elecric Dipoe moment Investigations). [12] Целью коллаборации является не только разработка ключевых технологий для srEDM, но также и проведение предварительного эксперимента прямого наблюдения ЭДМ дейтрона.

В 2018 году, JEDI-коллаборация выполнила первое измерение дейтронного ЭДМ на COSY. Поскольку в кольце с незамороженным спином ЭДМ генерирует мало-амплитудные осцилляции вертикакльной компоненты поляризации пучка (при импульсе дейтронов 970 MэB/с, как на COSY, амплитуда колебаний ожидается на уровне $3 \cdot 10^{-10}$ при величине ЭДМ $d = 10^{-24}~e\cdot$ см), используется резонансный способ измерения [13; 14], с использованием специально-созданного для COSY ВЧ Вин-фильтра. [15; 16]

<u>Целью</u> данной работы является численное моделирование метода поиска электрического дипольного момента дейтрона в накопительном кольце с замороженным спином.

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Исследовать явление декогеренции спина пучка в окрестности нулевой спиновой частоты, а также секступольный метод её подавления.
- 2. Исследовать влияние возмущений спиновой динамики на ЭДМ-статистику.
- 3. Исследовать влияние неточности установки E+B спин-ротаторов на систематическую ошибку ЭДМ-статистики.
- 4. Промоделировать процесс калибровки спин-тюна пучка при смене полярности ведущего поля.

Научная новизна:

- 1. Промоделирована процедура калибровки спин-тюна пучка при смене направления его движения.
- 2. Исследована систематическая ошибка эксперимента по поиску ЭДМ в накопительном кольце, связанная с бетатронными колебаниями.
- 3. Систематизированы общие проблемы методов поиска ЭДМ в накопительном кольце.
- 4. Классифицированы методы типа замороженного спина детектирования ЭДМ частицы в накопительном кольце.

Отметим, что целью экспериментов по поиску ЭДМ является проверка СР-инвариантности. При этом, ЭДМ элементарных частиц нарушают одновременно и Р-, и Т-симметрию, а следовательно требуют дополнительных модельных предположений, для того, чтобы связать их существование с СР-нарушением. [17, стр. 1926]

Альтернативой является эксперимент TRIC (Time Reversal Invariance at Cosy), [17] в котором используется Т-нечётное, Р-чётное взаимодействие, и следовательно нарушается только Т-симметрия. В связи с этим, никаких дополнительных предположений не требуется.

TRIC входит в физическую программу PAX (Polarised Antiproton eXperiments) [18], для которой требуются высокоинтенсивные поляризованные пучки. Существует два подхода к получению поляризованных пучков: спин-флиппинг, и спин-филтеринг. Спин-флиппинг позволяет получать более интенсивные пучки, однако на данный момент не существует стабильно-работающих методов спин-флиппинга.

Рассмотренные в настоящей работе особенности спиновой динамики вблизи нулевого резонанса (в частности — подавление спин-декогеренции секступольными полями) представляют некоторый интерес с точки зрения получения высокоинтенсивных пучков заряженных частиц.

<u>Методология и методы исследования.</u> Основными методами исследования являются математическое и компьютерное моделирование, и численный эксперимент.

Основные положения, выносимые на защиту:

- 1. Подтверждена теория механизма секступольного подавления декогеренции.
- 2. Подтверждено утверждение о равенстве спин-тюнов частиц с одинаковыми эффективными Лоренц-факторами; найдена интерпретация эффективного Лоренц-фактора как меры продольного эмиттанса частипы.
- 3. Показано, что калибровка ведущего магнитного поля ускорителя посредством наблюдения частоты прецессии поляризации пучка в горизонтальной плоскости потенциально работающая методика.
- Доказано, что возмущения спиновой динамики пучка, вызванные бетатронными колебаниями — пренебрежимо малый систематический эффект, поддающийся контролю в методологии частотной области.
- 5. Доказано, что эффективная длительность цикла измерения поляризации находится в диапазоне от двух до трёх постоянных времени жизни поляризации.
- 6. Показана принципиальная возможность получения верхнего предела оценки ЭДМ на уровне $10^{-29}~e\cdot$ см за полное время измерений длительностью один год.
- 7. Доказано, что угловая скорость паразитного МДМ вращения линейно зависит от среднего угла наклона спин-ротаторов, и не зависит от конкретной реализации распределения наклонов.
- Доказано, что точность установки оптических элементов ускорителя не позволяет измерять ЭДМ частицы методами пространственной области.

<u>Достоверность</u> полученных результатов обеспечивается согласованием аналитических вычислений с результатами численных экспериментов. Результаты компьютерных симуляций находятся в соответствии с результатами, полученными другими авторами.

<u>Апробация работы.</u> Основные результаты работы докладывались на:

- IIX международной концеренции по ускорителям заряженных частиц IPAC'17, Копенгаген, Дания.
- X международной конференции по ускорителям заряженных частиц IPAC'19, Мельбурн, Австралия.

- конференциях коллаборации JEDI, Юлих, Германия, 2017–2019.
- III международной конференции "Лазерные, плазменные исследования и технологии," (LaPlas) Москва, Россия.
- IV междунарожной конференции LaPlas, Москва, Россия.
- V международной конференции LaPlas, Москва, Россия.
- студенческих семинарах Института Ядерных Исследований, Исследовательский Центр "Юлих," Германия.

<u>Личный вклад.</u> Автор принимал активное участие в коллаборации JEDI, а также подготовке Yellow Report для CERN.

<u>Публикации.</u> Основные результаты по теме диссертации изложены в 10 печатных изданиях: 3 изданы в журналах, индексируемых в международных базах цитирования Scopus и Web of Science, а 7—в тезисах докладов. Из последних, 4 работы входят в базу Scopus, 3 в РИНЦ.

Содержание работы

Во <u>введении</u> обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, приводится обзор научной литературы по изучаемой проблеме, формулируется цель, ставятся задачи работы, излагается научная новизна и практическая значимость представляемой работы. Содержание следующих глав такого:

Первая глава

- 1. Вводит понятие замороженного спина.
- 2. Проводит классификацию метдов поиска ЭДМ в накопительном кольце с замороженным спином.
- 3. Проводит классификацию проблем, общих для всех методов поиска ЭДМ в накопительном кольце.
- 4. Описывает метод измерения ЭДМ в накопительном кольце с замороженным спином, разрешающий описанные проблемы.
- 5. Описывает магнитооптические структуры накопительных колец, которые можно использовать для детектирования ЭДМ предлагаемым методом.

Во второй главе содержится подробное рассмотрение проблем, обозначенных в первой главе, и методов из решения; описаны результаты моделирования.

Рассматриваемые проблемы:

- 1. возмущения спиновой динамики частицы, вызванные её бетатронными колебаниями, и их эффект на ЭДМ-статистику частотного метода измерения;
- 2. декогеренция спинов частиц продольно-поляризованного пучка при работе в режиме нулевого спинового резонанса;

- 3. величина и свойства систематической ошибки эксперимента, связанной с МДМ-прецессией спинов частиц пучка, и вызванной неидеальностями оптической структуры ускорителя;
- 4. процедура смены полярности ведущего поля накопительного кольца, необходимая для исключения обозначенной выше ошибки из ЭЛМ-статистики.

Отдельно рассматривается вопрос интерпретации введённого в первой главе понятия эффективного Лорени-фактора (γ_{eff}) .

Большая часть методологии, исследованию которой посвящена настоящая работа, основана на этом понятии. Его можно определять таким образом: если две частицы имеют одно и то же значение γ_{eff} , то они эквивалентны с точки зрения спиновой динамики (а именно, направления и величины вектора угловой скорости спин-прецессии), независимо от частностей их орбитального движения.

Именно фиксация значения γ_{eff} позволяет нам исключить МДМ-прецессию, связанную с неидеальностями машины, из конечной ЭДМ-статистики частотного метода.

В **третьей главе** приведены наиболее значимые (для данной работы) технологии, разработанные в рамках исследований, проводимых на синхротроне ${\rm COSY},^1$ описаны результаты процедуры оптимизации времени когерентности спина (SCT) при помощи семейств секступолей, установленных на ${\rm COSY}.$

Отдельно стоит отметить наблюдение явления изменения SCT при длительном измерении поляризации деструктивными методами, связаного с переходом от внешней (оболочки) к внутренней (ядру) частям пучка. Наблюдение этого явления косвенно подтверждает теорию спин-декогеренции, изложенную в данной работе.

В <u>заключении</u> приведены основные результаты работы, которые заключаются в следующем:

- 1. Были изучены эффекты спиновой динамики, составляющие систематические ошибки эксперимента по поиску электрического дипольного момента частицы методом замороженного спина в накопительном кольце, как то:
 - возмущения спиновой динамики вызванные бетатронным движением частицы;
 - декогеренция спинов частиц пучка;
 - МДМ прецессия спина, вызванная неидеальностями ускорителя.
- 2. Для каждого из эффектов, было описано средство борьбы, и проведено численное моделирование, подтверждающее его эффективность.

 $^{^1\}Pi$ ринадлежащем институту ядерных исследований Исследовательского центра "Юлих", Германия

- 3. Были сформулированы:
 - понятия методов пространственной и временной областей;
 - понятие двумерно-замороженного спина;
 - необходимые условия успешного измерения ЭДМ в накопительном кольце;
 - метод Frequency Domain, удовлетворяющий всем сформулированным условиям.
- 4. Описаны структуры накопительных колец с непрерывно- и квазизамороженным спином.

В основное тело работы не вошло статистическое моделирование эксперимента; для него отведено приложение А. Два момента, заслуживающие упоминания: исследование возможности оптимизации точности оценки частоты прецессии поляризации путём применения неоднородной схемы выборки; определение максимальной продуктивной длительности измерительного цикла.

По результатам исследований, мы пришли к выводу, что неоднородная схема выборки не имеет практического применения, в связи с особенностями измерений поляризации. Касательно максимальной длительности измерительного цикла — она не может превосходить трёх постоянных времени жизни поляризации.

Публикации автора по теме диссертации

- 1. The Test of Time Reversal Invariance at COSY (TRIC) / A. Aksentyev [и др.] // Acta Physica Polonica B. 2017. Окт. Т. 48. С. 1925—1934. URL: http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=48&page=1925.
- 2. The physics program of PAX at COSY / Y. Valdau [и др.] // Journal of Physics: Conference Series. 2016. Т. 678. URL: https://iopscience.iop.org/article/10.1088/1742-6596/678/1/012027/meta.
- 3. Aksentev, A. E. Statistical precision in charged particle EDM search in storage rings / A. E. Aksentev, Y. V. Senichev // Journal of Physics: Conference Series. 2017. Дек. Т. 941. URL: http://stacks.iop.org/1742-6596/941/i=1/a=012083.
- 4. Aksentyev, A. Model of Statistical Errors in the Search for the Deuteron EDM in the Storage Ring / A. Aksentyev, Y. Senichev // Hadron Accelerators (8th Int. Particle Accelerator Conf. (IPAC'17), 14—19 мая 2017). Copenhagen, Denmark: JACOW, Geneva, Switzerland. C. 2258—2260. URL: http://accelconf.web.cern.ch/AccelConf/ipac2017/doi/JACOW-IPAC2017-TUPVA079.html.

- 5. *Аксентьев*, *А.* Статистическая точность при поиске ЭДМ заряженных частиц в накопительных кольцах / А. Аксентьев, Ю. Сеничев // Ускорители заряженных частиц (III Международная конференция "Лазерные, плазменные исследования и технологии", 24—27 янв. 2017). Москва, Россия.
- 6. *Аксентьев*, *А.* Моделирование спин-орбитальной динамики пучка в накопительном кольце / А. Аксентьев // Ускорители заряженных частиц (IV Международная конференция "Лазерные, плазменные исследования и технологии", 30 янв.—1 февр. 2018). Москва, Россия.
- 7. Аксентьев, А. Декогеренция спина в структуре с замороженным спином, её подавление и эффект на ЭДМ статистику в методе Frequency Domain / А. Аксентьев, Ю. Сеничев // Ускорители заряженных частиц (V Международная конференция "Лазерные, плазменные исследования и технологии", 12—15 февр. 2019). Москва, Россия.
- 8. Aksentyev, A. Simulation of the Guide Field Flipping Procedure for the Frequency Domain Method / A. Aksentyev, Y. Senichev // Hardon Accelerators (10th Int. Particle Accelerator Conf. (IPAC'19), 19—24 мая 2019). Melbourne, Australia.
- 9. Aksentyev, A. Spin Motion Perturbation Effect on the EDM Statistic in the Frequency Domain Method / A. Aksentyev, Y. Senichev // Hadron Accelerators (10th Int. Particle Accelerator Conf. (IPAC'19), 19—24 мая 2019). Melbourne, Australia.
- 10. Aksentyev, A. Spin decoherence in the Frequency Domain Method for the search of a particle EDM / A. Aksentyev, Y. Senichev // Hadron Accelerators (10th Int. Particle Accelerator Conf. (IPAC'19), 19—24 мая 2019). Melbourne, Australia.

Список литературы

- 1. Trodden, M. Electroweak baryogenesis / M. Trodden // Rev. Mod. Phys. -1999.- Okt. T. 71, BbIII. 5. C. 1463-1500.- URL: https://link.aps.org/doi/10.1103/RevModPhys.71.1463.
- 2. Evidence for the 2π Decay of the K_2^0 Meson / J. H. Christenson [и др.] // Phys. Rev. Lett. 1964. Июль. Т. 13, вып. 4. С. 138—140. URL: https://link.aps.org/doi/10.1103/PhysRevLett.13.138.
- 3. *Harris*, *P. G.* The Neutron EDM Experiment / P. G. Harris // arXiv:0709.3100 [hep-ex]. 2007. 19 сент. arXiv: 0709.3100. URL: http://arxiv.org/abs/0709.3100 (дата обр. 16.04.2019).

- 4. Smith, J. H. Experimental Limit to the Electric Dipole Moment of the Neutron / J. H. Smith, E. M. Purcell, N. F. Ramsey // Phys. Rev. 1957. Окт. Т. 108, вып. 1. С. 120—122. URL: https://link.aps.org/doi/10.1103/PhysRev.108.120.
- 5. Improved Experimental Limit on the Electric Dipole Moment of the Neutron / C. A. Baker [и др.] // Phys. Rev. Lett. 2006. Сент. Т. 97, вып. 13. С. 131801. URL: https://link.aps.org/doi/10.1103/PhysRevLett.97.131801.
- 6. Baker et al. Reply: / C. A. Baker [и др.] // Phys. Rev. Lett. 2007. Aпр. Т. 98, вып. 14. С. 149102. URL: https://link.aps.org/doi/10.1103/PhysRevLett.98.149102.
- 7. Precise Measurement of the Positive Muon Anomalous Magnetic Moment / H. N. Brown, G. Bunce, R. M. Carey [и др.] // Phys. Rev. Lett. 2001. Март. Т. 86, вып. 11. С. 2227—2231. URL: https://link.aps.org/doi/10.1103/PhysRevLett.86.2227.
- 8. Improved limit on the muon electric dipole moment / G. W. Bennett, B. Bousquet, H. N. Brown [и др.] // Phys. Rev. D. 2009. Сент. Т. 80, вып. 5. С. 052008. URL: https://link.aps.org/doi/10.1103/PhysRevD.80.052008.
- 9. New Method of Measuring Electric Dipole Moments in Storage Rings / F. J. M. Farley, K. Jungmann, J. P. Miller [и др.] // Phys. Rev. Lett. 2004. Июль. Т. 93, вып. 5. С. 052001. URL: https://link.aps.org/doi/10.1103/PhysRevLett.93.052001.
- 10. srEDM Collaboration. URL: https://www.bnl.gov/edm/.
- 11. AGS Proposal: Search for a permanent electric dipole moment of the deuteron nucleus at the 10⁻²⁹ e· cm level.Tex. отч. / D. Anastassopoulos, V. Anastassopoulos, D. Babusci [и др.]; BNL. − 2008. URL: https://www.bnl.gov/edm/files/pdf/deuteron_proposal_080423_final.pdf (дата обр. 25.11.2016).
- 12. JEDI Collaboration. URL: http://collaborations.fz-juelich.de/ikp/jedi/about/introduction.shtml.
- 13. Morse, W. M. rf Wien filter in an electric dipole moment storage ring: The "partially frozen spin" effect / W. M. Morse, Y. F. Orlov, Y. K. Semertzidis // Phys. Rev. ST Accel. Beams. 2013. Нояб. Т. 16, вып. 11. С. 114001. URL: https://link.aps.org/doi/10.1103/PhysRevSTAB.16.114001.
- 14. Spin tune mapping as a novel tool to probe the spin dynamics in storage rings / A. Saleev, N. N. Nikolaev, F. Rathmann [и др.] // Phys. Rev. Accel. Beams. 2017. Июль. Т. 20, вып. 7. С. 072801. URL: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.072801.

- 15. Electromagnetic Simulation and Design of a 11el Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons / J. Slim [и др.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2016. 21 авг. Т. 828. С. 116—124. URL: http://www.sciencedirect.com/science/article/pii/S0168900216303710 (дата обр. 18.04.2019).
- 16. Slim, J. First commissioning results of the waveguide RF Wien filter / J. Slim, for the JEDI Collaboration // Hyperfine Interactions. 2019. Shib. T. 240, № 1. C. 7. URL: https://doi.org/10.1007/s10751-018-1547-6.
- 17. The Test of Time Reversal Invariance at COSY (TRIC) / A. Aksentyev [и др.] // Acta Physica Polonica B. 2017. Окт. Т. 48. С. 1925—1934. URL: http://www.actaphys.uj.edu.pl/fulltext? series=Reg&vol=48&page=1925.
- 18. The physics program of PAX at COSY / Y. Valdau [и др.] // Journal of Physics: Conference Series. 2016. Т. 678. URL: https://iopscience.iop.org/article/10.1088/1742-6596/678/1/012027/meta.

Associates of Associated Forest const
$\label{eq:Akcehmbes} Aксентьев \ A$ лександр Евгеньевич $\ \ \text{Метод замороженного спина для поиска электрического дипольного момента}$
дейтрона в накопительном кольце
Автореф. дис. на соискание ученой степени канд. физмат. наук
Подписано в печать Заказ № Формат 60×90/16. Усл. печ. л. 1. Тираж 100 экз. Типография