A 4-Level Analysis of E-Commerce Consumer Behavior

- 1. Descriptive Analysis: KMeans Clustering for Customer Segmentation
- 2. Diagnostic Analysis: Explaining Customer Satisfaction
- 3. Predictive Analysis: Predicting Purchase Level of a Customer
- 4. Prescriptive Analysis: Recommending action based on Customer Satisfaction

```
from google.colab import files

file = files.upload()

Choose Files ecommerce dataset.csv

ecommerce dataset.csv(text/csv) - 194153 bytes, last modified: 5/21/2025 - 100% done

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, ConfusionMatrixDisplay
from sklearn.preprocessing import LabelEncoder

df = pd.read_csv('ecommerce dataset.csv')
df.head()
```

_ →		Customer_ID	Age	Gender	<pre>Income_Level</pre>	Marital_Status	Education_Level	Occupation	Location	Purcha
	0	37-611-6911	22	Female	Middle	Married	Bachelor's	Middle	Évry	
	1	29-392-9296	49	Male	High	Married	High School	High	Huocheng	Food
	2	84-649-5117	24	Female	Middle	Single	Master's	High	Huzhen	(
	3	48-980-6078	29	Female	Middle	Single	Master's	Middle	Wiwilí	Hor
	4	91-170-9072	33	Female	Middle	Widowed	High School	Middle	Nara	

5 rows × 28 columns

Data Cleaning

```
df['Purchase_Amount'] = df['Purchase_Amount'].replace('[\$,]', '', regex=True).astype(float)
```

1. Descriptive Analysis: KMeans Clustering for Customer Segmentation

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
```

```
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
```

Features Selection

```
features = [
    'Age', 'Purchase_Amount', 'Frequency_of_Purchase',
    'Brand_Loyalty', 'Product_Rating', 'Time_Spent_on_Product_Research(hours)',
    'Return_Rate', 'Customer_Satisfaction', 'Time_to_Decision'
]
X = df[features]
```

```
print("Missing values:\n", X.isnull().sum())
```

```
→ Missing values:
                                               0
     Age
    Purchase_Amount
                                              0
    Frequency_of_Purchase
                                              0
    Brand Loyalty
                                              0
    Product_Rating
                                              0
    Time_Spent_on_Product_Research(hours)
                                              0
    Return_Rate
                                              0
    Customer_Satisfaction
                                              0
    Time_to_Decision
    dtype: int64
```

Feature Standardization

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

Elbow Curve

```
inertia = []
k_range = range(1, 11)

for k in k_range:
    km = KMeans(n_clusters=k, random_state=42)
    km.fit(X_scaled)
    inertia.append(km.inertia_)
```

```
plt.figure(figsize=(8, 5))
plt.plot(k_range, inertia, marker='o')
plt.title("Elbow Method: Optimal Number of Clusters")
plt.xlabel("Number of Clusters (k)")
plt.ylabel("Inertia")
plt.grid(True)
plt.show()
```



```
kmeans = KMeans(n_clusters=4, random_state=42)
df['Customer_Segment'] = kmeans.fit_predict(X_scaled)
```

Cluster Characteristics

```
cluster_summary = df.groupby('Customer_Segment')[features].mean().round(2)
print("Cluster Summary:\n")
print(cluster_summary)
```

Cluster Summary:

	Age	Purchase	_Amount	Freque	ncy_of_P	urchase	\	
Customer_Segment	32.76		338.72			5.05		
0 1	33.73		233.87			9.80		
2	35.22		213.40			5.30		
3	35.51		315.35			8.19		
	Brand_l	oyalty	Product_	Rating	\			
Customer_Segment								
0		3.10		3.13				
1		3.52		2.97				
2		3.26		3.72				
3		2.20		2.20				
3								
	Time_Sp	pent_on_P	roduct_R	Research	(hours)	Return_	Rate	\
Customer_Segment	Time_Sp		Product_R	lesearch			_	\
Customer_Segment	Time_Sp		Product_R	Research	1.12		0.53	١
Customer_Segment 0	Time_Sp		roduct_R	Research	1.12 1.63		0.53 1.15	\
Customer_Segment 0 1 2	Time_Sp		Product_R	Research	1.12 1.63 0.65		0.53 1.15 1.50	\
Customer_Segment 0	Time_Sp		Product_R	Research	1.12 1.63		0.53 1.15	\
Customer_Segment 0 1 2 3					1.12 1.63 0.65 0.73		0.53 1.15 1.50	\
Customer_Segment 0 1 2 3 Customer_Segment		pent_on_P	- Faction		1.12 1.63 0.65 0.73 _Decisio	'n	0.53 1.15 1.50	\
Customer_Segment 0 1 2 3 Customer_Segment 0		pent_on_P	Faction 3.77		1.12 1.63 0.65 0.73 _Decisio	n 9	0.53 1.15 1.50	\
Customer_Segment 0 1 2 3 Customer_Segment 0 1		pent_on_P	Faction 3.77 5.17		1.12 1.63 0.65 0.73 _Decisio	n 9 4	0.53 1.15 1.50	\
Customer_Segment 0 1 2 3 Customer_Segment 0		pent_on_P	Faction 3.77		1.12 1.63 0.65 0.73 _Decisio	n 9 4 9	0.53 1.15 1.50	\

PCA for 2D Visualization

```
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
df['PCA1'] = X_pca[:, 0]
df['PCA2'] = X_pca[:, 1]
plt.figure(figsize=(8, 6))
sns.scatterplot(
    x='PCA1', y='PCA2',
   hue='Customer_Segment',
   data=df,
    palette='Set2',
    s=60, alpha=0.7
plt.title("Customer Segments Visualized via PCA")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.legend(title='Segment')
plt.grid(True)
plt.tight_layout()
plt.show()
```


Customer Segments Visualized via PCA

2. Diagnostic Analysis: Explaining Customer Satisfaction

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.tree import DecisionTreeRegressor, plot tree
```

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score

df = df.dropna(subset=['Customer_Satisfaction'])
```

Features and Target

```
features = [
    'Age', 'Purchase_Amount', 'Frequency_of_Purchase',
    'Brand_Loyalty', 'Product_Rating', 'Time_Spent_on_Product_Research(hours)',
    'Return_Rate', 'Time_to_Decision'
]
target = 'Customer_Satisfaction'

X = df[features]
y = df[target]
```

Train-Test Split

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=25)

tree_model = DecisionTreeRegressor(max_depth=4, random_state=19)
tree_model.fit(X_train, y_train)

PecisionTreeRegressor (max_depth=4, random_state=19)
```

Model Score

```
X_test_for_prediction = X_test[features]

y_pred = tree_model.predict(X_test_for_prediction)

mse = mean_squared_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

print(f"Mean Squared Error: {mse:.2f}")

print(f"R² Score: {r2:.2f}")

Mean Squared Error: 8.56
```

Plot the Decision Tree

R² Score: -0.14

```
plt.figure(figsize=(15, 9))

plot_tree(
    tree_model,
    feature_names=features,
    filled=True,
    rounded=True,
    fontsize=12
)

plt.title("Decision Tree Explaining Customer Satisfaction", fontsize=16)
plt.show()
```


Decision Tree Explaining Customer Satisfaction

Feature Importance Plot

```
importances = tree_model.feature_importances_
importance_df = pd.DataFrame({
    'Feature': features,
    'Importance': importances
}).sort_values(by='Importance', ascending=False)

plt.figure(figsize=(9, 5))
sns.barplot(data=importance_df, x='Importance', y='Feature', palette='viridis')
plt.title("Feature Importance: What Drives Customer Satisfaction?")
plt.grid(True)
plt.tight_layout()
plt.show()
```

/tmp/ipython-input-135-443601718.py:8: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` v sns.barplot(data=importance_df, x='Importance', y='Feature', palette='viridis')

3. Predictive Analysis: Predicting Purchase Level of a Customer

Creating Purchase Level

```
def classify_purchase_level(amount):
    if amount < 200:
        return "Low"
    elif amount <= 400:
        return "Medium"
    else:
        return "High"

df['Purchase_Level'] = df['Purchase_Amount'].apply(classify_purchase_level)</pre>
```

Features Selection

```
features = [
    'Age', 'Purchase_Amount', 'Frequency_of_Purchase',
    'Brand_Loyalty', 'Product_Rating', 'Time_Spent_on_Product_Research(hours)',
    'Return_Rate', 'Time_to_Decision'
]

X = df[features]
y = df['Purchase_Level']

le = LabelEncoder()
y_encoded = le.fit_transform(y)
```

Train-Test Split and Model Training

→ Classification Report:

	precision	recall	f1-score	support
High Low	1.00 1.00	1.00	1.00	70 102
Medium	1.00	1.00	1.00	128
accuracy			1.00	300
macro avg	1.00	1.00	1.00	300
weighted avg	1.00	1.00	1.00	300

Confusion Matrix

ConfusionMatrixDisplay.from_estimator(clf, X_test, y_test, display_labels=le.classes_, cmap="Blues")
plt.title("Confusion Matrix - Purchase Level")
plt.show()

importances = clf.feature_importances_
plt.figure(figsize=(7, 4))

```
sns.barplot(x=importances, y=features, palette='magma')
plt.title('Feature Importance')
plt.xlabel('Importance Score')
plt.ylabel('Feature')
plt.tight_layout()
plt.show()
```

/tmp/ipython-input-86-1550391081.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` v sns.barplot(x=importances, y=features, palette='magma')


```
def recommend_action(purchase_level):
    if purchase_level == "Low":
        return "Offer first-time discount or retarget via ads."
    elif purchase_level == "Medium":
        return "Send loyalty rewards or cross-sell with bundles."
    else: # High
        return "Promote premium products or VIP membership."
```

```
new_customers = df[features].sample(5, random_state=25)
new_preds_encoded = clf.predict(new_customers)
new_preds = le.inverse_transform(new_preds_encoded)
```

```
results = new_customers.copy()
results['Predicted_Level'] = new_preds
results['Recommended_Action'] = results['Predicted_Level'].apply(recommend_action)
```

```
print("Prescriptive Recommendations:\n")
print(results[['Age', 'Brand_Loyalty', 'Predicted_Level', 'Recommended_Action']])
```

Prescriptive Recommendations:

	Age	Brand_Loyalty	Predicted_Level	\
688	50	5	Low	
49	46	1	Medium	
288	29	5	High	
698	23	4	Medium	
775	33	5	Low	

Recommended_Action

Offer first-time discount or retarget via ads.

 $\,$ 49 $\,$ Send loyalty rewards or cross-sell with bundles.

```
Promote premium products or VIP membership.
Send loyalty rewards or cross-sell with bundles.
Offer first-time discount or retarget via ads.
```

4. Prescriptive Analysis

```
X_test_for_prediction = X_test[features]
predicted_satisfaction = tree_model.predict(X_test_for_prediction)

X_test['Predicted_Satisfaction'] = predicted_satisfaction

#Customers with low satisfaction (<5)
low_satisfaction = X_test[X_test['Predicted_Satisfaction'] < 5].copy()</pre>
```

Logic: if Brand_Loyalty < 3, suggest boosting loyalty

```
low_satisfaction['Recommended_Action'] = low_satisfaction['Brand_Loyalty'].apply(
    lambda x: 'Increase Brand Loyalty' if x < 3 else 'Improve Product Info')</pre>
```

Results

```
result = low_satisfaction[['Predicted_Satisfaction', 'Brand_Loyalty', 'Recommended_Action']].head(15)
print(result)
```

		Predicted_Satisfaction	Brand_Loyalty	Recommended_Action
	544	2.0	2	Increase Brand Loyalty
	515	2.0	3	Improve Product Info
	193	0.0	2	Increase Brand Loyalty
	11	2.0	4	Improve Product Info
	279	0.0	4	Improve Product Info
	653	1.0	5	Improve Product Info
	643	2.0	5	Improve Product Info
	760	2 0	2	Improve Draduct Info