UNIVERSIDADE FEDERAL DE SÃO CARLOS DEPARTAMENTO DE COMPUTAÇÃO

Laboratório de Arquitetura de Computadores 2

Docente: Prof. Dr. Luciano Neris

Relatório 3

Implementação e finalização do jogo

Felipe Alves Cordeiro 744335

Karolayne Fernandes Arrais 726460

São Carlos, 28 de junho de 2019

SUMÁRIO

1.	INTRODUÇÃO	3
	1.1. Objetivo do relatório	3
	1.2. Características gerais	3
	1.3. Objetivo do jogo	3
	1.4. Forma de uso	3
	1.5. Formas de representação gráfica	4
	1.6. Estratégias de implementação	4
	1.7. Divisão de Tarefas	5
2.	TELAS PRINCIPAIS	5
	2.1. Tela inicial (Menu)	5
	2.2. Tela de instruções	6
	2.3. Tela de velocidade	6
	2.4. Tela principal (jogo)	7
	2.5. Tela de game over	8
3.	INFORMAÇÕES DO FUNCIONAMENTO DO JOGO	9
	3.1. Mapeamento da tela	9
	3.2. Funcionamento da movimentação	9
4.	ELEMENTOS ESPECÍFICOS	10
	4.1. Caracteres da tela	10
	4.2. Atributos dos jogadores	10
	4.3. Variáveis principais	11
	4.4. Rotinas	11
	4.5. Configurações disponíveis ao usuário	12
5.	DIAGRAMA DE ESTADOS	12
6.	ANÁLISE CRÍTICA E DISCUSSÃO	13

1. INTRODUÇÃO

1.1. Objetivo do relatório

Este relatório possui como objetivo o esclarecimento de todas as informações relevantes sobre o jogo "Snake Versus", jogo desenvolvido na disciplina de Laboratório de Arquitetura de Computadores 2 ministrada pelo professor Dr. Luciano Neris utilizando a linguagem Assembly e a biblioteca *Irvine 32*; apresentando juntamente o resultado final de sua implementação.

1.2. Características gerais

O jogo "Snake Versus" deverá ser jogado por duas pessoas, no qual cada uma será responsável por controlar um objeto que irá iniciar em um lado da tela (um na esquerda e outro na direita). Assim que o game começar, os objetos começarão a se movimentar para frente e serão guiados pelos seus respectivos jogadores produzindo uma linha que será "permanente" para aquela partida.

1.3. Objetivo do jogo

O objetivo será fazer com que o adversário (o outro jogador) se choque em uma parede da tela ou na própria linha traçada por qualquer um dos dois jogadores. Perde quem colidir primeiro.

1.4. Forma de uso

Ao abrir o jogo, o usuário deverá selecionar na tela do menu principal a opção de iniciar (apertando a tecla espaço) ou ir para a tela de instruções (pressionando a tecla P), onde aparecerá informações sobre o jogo e a opção de pressionar "espaço" para dar início. Assim que escolhida a opção de iniciar o jogo, uma tela para escolha da velocidade será exibida, onde o usuário poderá selecionar uma das três velocidades disponibilizadas, pressionando as teclas "1", "2" ou "3" (que respectivamente, aumentam a rapidez de movimentação para os dois jogadores).

Ao iniciar o game propriamente dito, teremos ambos os objetos de cada jogador dispostos em lados opostos da tela já iniciando a movimentação para frente (o da direita para a esquerda e o da esquerda para a direita). O jogo deverá ser jogado por duas pessoas, no qual cada uma irá controlar um "personagem". As teclas de controle para o jogador 1, que irá iniciar ao lado esquerdo da tela serão: "A" (ir para esquerda), "S" (ir para baixo), "W" (ir para cima) e "D" (ir para direita). Para o jogador 2, no qual irá iniciar ao lado direito da tela, as teclas de controle serão: "J" (ir para esquerda), "K" (ir para baixo), "I" (ir para cima) e "L" (ir para direita). Os jogadores somente irão controlar a direção a ser seguida por seu objeto, e não a velocidade, uma vez que sempre estarão em uma velocidade constante.

1.5. Formas de representação gráfica

Toda a representação gráfica do jogo e demais telas serão feitas com o auxílio da biblioteca Irvine.inc por meio de movimentações de caracteres da tabela ASCII. Tanto a linha traçada pelos jogadores no decorrer do jogo quanto a "moldura" da tela serão produzidos por junções de caracteres do mesmo tipo, e por fim, as linhas tracejadas por cada um dos objetos irão possuir cada um uma cor, assim como a moldura possuirá uma outra.

1.6. Estratégias de implementação

Inicialmente foi realizada a impressão da tela principal do jogo, onde foi impressa a borda que limita o cenário onde os jogadores podem se movimentar, e suas posições iniciais (que correspondem às suas cabeças nesse primeiro instante).

A segunda etapa consistiu em implementar inicialmente a movimentação de apenas um jogador com a atualização da tela, e assim que o sucesso foi obtido, expandiuse para a movimentação completa dos dois jogadores.

Na terceira etapa, houve implementação da verificação de colisão das cabeças de cada cobra com seu próprio corpo ou de seu oponente, e também com a borda que delimita o campo de movimentação.

Como quarta e última etapa, foram impressas: tela de game over, tela do menu inicial, tela de instruções e tela de velocidade.

1.7. Divisão de Tarefas

A divisão de tarefas entre o grupo tem a seguinte distribuição:

- Felipe responsável pela criação da tela principal do jogo, movimentação dos jogadores e criação da tela de game over.
- Karolayne responsável pela verificação de colisão, alteração da velocidades de movimentação e criação da tela inicial, de instruções e de escolha de velocidade.

2. TELAS PRINCIPAIS

A seguir são apresentadas as telas do jogo e suas funcionalidades.

2.1. Tela inicial (Menu)

Segue a tela inicial Figura 2.1.1 contendo as opções de iniciar o jogo (detalhada na seção 2.4) ou partir para a tela de instruções (detalhada na seção 2.2).

Figura 2.1.1: tela inicial.

2.2. Tela de instruções

A Figura 2.2.1 representa a tela de instruções, contendo as informações sobre o objetivo do jogo e as teclas utilizadas para movimentação.

Figura 2.2.1: tela com as instruções sobre o jogo

2.3. Tela de velocidade

Segue a tela que antecipa o início do jogo, onde é possível escolher umas das três velocidades disponíveis.

Figura 2.3.1: tela de velocidades que antecipa início do jogo.

2.4. Tela principal (jogo)

A seguir é apresentada a tela de jogo, onde inicia-se com a movimentação para frente de cada um dos jogadores (jogador da esquerda se movimenta para a direita, e vice versa), como mostra a Figura 2.4.1. Então com o decorrer do jogo, as snakes (caracteres) se movimentam de acordo com os comandos de movimentação pressionados pelos jogadores, traçando assim as linhas que representam seus corpos pela imagem, como demonstra a Figura 2.4.2.

Figura 2.4.1: movimentação inicial dos jogadores

Figura 2.4.2: jogadores ao decorrer do jogo

2.5. Tela de game over

A seguir temos a tela de game over na Figura 2.5.1 que é visualizada quando um dos jogadores perde o jogo, ou seja, quando há a colisão com a borda de delimitação da tela de movimentação ou com o próprio corpo ou do oponente (que é o que ocorre segundos após o que é visto na Figura 2.4.2).

P ESSIONE "S" PAR SAIR OU QUALQU R
O TRA TECLA PARA ETORNAR AO MENU INICIAL

Figura 2.5.1: tela de game over com jogador 1 como campeão.

3. INFORMAÇÕES DO FUNCIONAMENTO DO JOGO

3.1. Mapeamento da tela

A tela foi mapeada por meio de um vetor, o qual possui o tamanho do número de linhas (30) multiplicado pelo número de colunas (100), onde cada elemento deste vetor possui um tamanho de 4 bytes. Portanto para o caso de ser necessário efetuar alguma alteração ou verificação na posição $X=4,\,Y=5$, será necessário se locomover para a posição 504 do vetor.

3.2. Funcionamento da movimentação

A movimentação dos jogadores é administrada da seguinte forma:

Supondo que na iteração k (frame k) o jogo esteja na forma conforme a figura abaixo (figura 2.6.2.1).

Figura 3.2.1: Jogo na iteração k

Nas seguintes iterações, caso não seja pressionada nenhuma tecla referente a movimentação de ambos jogadores, os dois permanecerão se movimentando para frente (na mesma direção em que estão).

A cada vez que a aplicação for imprimir um novo caractere a mesma irá efetuar a soma de um valor na componente X e outro valor na componente Y. Por exemplo, uma vez que um dos jogadores tiver pressionado o botão de movimentação para ir para direita o valor somador de X (para aquele jogador) será equivalente a 1 e o valor somador de Y será equivalente a 0, caso na próxima iteração (frame) não seja pressionado nada os valores somadores permanecerão os mesmos, pois estarão salvos na memória, e isso fará com que o jogador em questão permaneça indo na mesma direção.

4. ELEMENTOS ESPECÍFICOS

4.1. Caracteres da tela

O jogo possui uma estrutura responsável por "armazenar" as informações vinculadas a cada caractere da tela , como seu valor hexadecimal e cor, chamada "AtributosCaracteres". A partir desta estrutura é construído um vetor do tamanho do número de caracteres da tela do jogo (número de linhas * número de colunas), onde tal vetor representa a matriz da tela.

Com esse vetor é possível ter controle da impressão das telas, assim como a movimentação dos jogadores que depende da modificação deste para a atualização da tela. Por meio de uma, foi possível verificar a colisão das cabeças de cada jogador, já que para que haja tal colisão, é necessário que a próxima posição da tela que o jogador vá se movimentar, já tenha sido preenchida com a impressão de um caractere (que representa o corpo da Snake ou a borda que delimita a tela).

4.2. Atributos dos jogadores

O Snake Versus possui uma estrutura que armazena os dados referentes a cada jogador: tipo de caractere, cor, última posição inserida na tela (X e Y da matriz), e a direção na qual o mesmo está seguindo (somadores), pois uma vez que for selecionada uma tecla de movimentação o jogador permanecerá "andando" naquela direção em todos os demais frames até que outro comando seja dado para que o percurso seja alterado.

4.3. Variáveis principais

As variáveis principais do jogo são a borda que delimita a tela de movimentação, a direção de cada um do jogadores e as cabeças e corpos das cobras (linhas traçadas pelos jogadores).

4.4. Rotinas

O jogo tem as seguintes funções como rotinas:

- Iniciar jogo: responsável pela impressão da tela inicial (com opção de iniciar jogo e de ver instruções).
- Instruções: impressão das instruções sobre como o jogo funciona e seu objetivo.
- Velocidade: impressão da tela para escolha da velocidade antes de iniciar o jogo.
- Imprime tela principal: tem como objetivo imprimir a tela principal do jogo, ou seja, as bordas que delimitam o espaço de movimentação dos jogadores e as cabeças na posição inicial de cada cobra (linha traçada pelo jogador). Receber como parâmetro a posição de início da tela, tipo de caractere a ser impresso, e tamanho da tela.
- Colisão: examina se houve colisão na movimentação dos jogadores. A
 função verifica se a nova posição corrente do jogador já foi preenchida
 com um caractere diferente de ' ', que implica que nessa posição já existe
 um caractere que representa um dos jogadores ou a borda da tela de
 movimentação.
- Altera direção: responsável por atualizar a direção da movimentação do jogador. Receber como parâmetro o botão de movimentação que foi pressionado por um dos jogadores e retornará a direção a seguir.
- Imprimir próximo caractere: essa função é responsável pela movimentação dos jogadores (atualização dos caracteres na tela). A cada

frame do jogo um novo caractere será adicionada na frente de ambos jogadores (na direção em que estão seguindo). A função recebe como parâmetro a posição atual do jogador, a direção na qual o mesmo está seguindo e o tipo do caractere a ser impresso.

Leitura do teclado: responsável por efetuar leitura do teclado a cada frame.
 A função retornará o valor da tabela ASCII da tecla pressionada.

Além destas rotinas, o jogo também possui outras subrotinas que são acionadas em sua maioria junto das mencionadas acima, como por exemplo: As rotinas de limpar a tela e o vetor de caracteres da tela; Função de altear as cores dos caracteres da tela; Função de transformação de um desenho para o vetor de caracteres; Função de reinicializar os jogadores (para uma nova partida).

4.5. Configurações disponíveis ao usuário

A configuração do jogo disponibilizada ao usuário é a de velocidade do jogo na qual é possível escolher entre 3 velocidades disponibilizadas para os jogadores (1 - baixa, 2 - média, 3 - alta).

5. DIAGRAMA DE ESTADOS

Segue abaixo (figura 5.1) o diagrama de estados do jogo, onde estão sendo representados os estados que são equivalentes às rotinas que o Snake Versus possui, funções essas que foram descritas na seção 4.4. deste mesmo relatório.

Figura 5.1 : Diagrama de estados

Ao todo foram 9 estados no jogo, sendo eles: Apresentar menu inicial, tela de instruções, selecionar velocidade, iniciar tela do jogo, imprimir novo caractere, verificar colisão, leitura do teclado, alteração da direção da movimentação e exibição do vendedor.

6. ANÁLISE CRÍTICA E DISCUSSÃO

Esse relatório diz respeito a terceira e última parte do projeto de desenvolvimento do jogo Snake Versus. Nele foi apresentada todas as informações geradas, desde o

objetivo e funcionamento do jogo, até as descrições de planejamento de implementação que auxiliaram para obtenção do resultado final, ou seja, do jogo funcional.

Chegou-se à conclusão com bons resultados, sendo possível realizar todos os objetivos programados e um bom funcionamento do jogo. Ao longo do desenvolvimento, houveram dúvidas com relação à linguagem pela falta de experiência, que puderam ser sanadas pelos materiais disponibilizados e o professor ministrante. Por fim, o projeto todo foi uma forma de colocar em prática vários dos conteúdos apresentados em aula (formulação de procedimentos, controles de loops, códigos condicionais, estruturas), além da visualização e melhor conhecimento das disponibilizações da biblioteca Irvine.