Visualización de Información

Daniela Opitz

dopitz@udd.cl

Instituto Data Science, Universidad del Desarrollo Edición 2024

Outline

- Introducción a la Visualización
 - o ¿Qué es?
 - o ¿Por qué la necesitamos?
- Herramientas
 - Anaconda
 - Entorno de trabajo
- Evaluaciones del Curso
- Bibliografía

Introducción a la Visualización

Motivación

Un video de Hans Rosling titulado The Joy of Stats

https://www.youtube.com/watch?v=V8lbiiTF2P0

¿Opiniones?

Definición

Los sistemas computacionales de visualización proveen representaciones visuales de conjuntos de datos diseñadas para ayudar a las personas a efectuar tareas de manera más efectiva.

¿Cuándo necesitamos una visualización?

- Necesitamos aumentar la capacidad humana para obtener insights (no reemplazarla)
- Para muchos problemas de análisis las preguntas no están claras desde el inicio
- Algunas tareas no pueden ser pueden ser automatizadas.

¿Cuándo es posible usar visualización?

Tamara Munzner. https://www.cs.ubc.ca/labs/imager/tr/2012/dsm/

¿Por qué hay computadores involucrados?

- Capacidad de procesamiento de datos.
 - Más rápido, más cantidad.
 - Análisis de variabilidad.
- Escalabilidad.
 - Las personas pueden realizar ciertas tareas para un dataset pequeño. ¿Son capaces de hacerlas para un dataset mucho más grande?
- Colaboración.
 - Tanto en el desarrollo como en el uso de un sistema de visualización.

La visualización como representación externa

- Reemplaza cognición por percepción.
- Un diagrama puede organizar la información de manera que podamos realizar consultas de manera eficiente.

2009 Sales (thousands of U.S. \$)

Region	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Domestic	1,983	2,343	2,593	2,283	2,574	2,838	2,382	2,634	2,938	2,739	2,983	3,493	31,783
International	574	636	673	593	644	679	593	139	599	583	602	690	7,005
Total	2,557	2,979	3,266	2,876	3,218	3,517	2,975	2,773	3,537	3,322	3,585	4,183	38,788

Stephen Few Why do we visualize Quantitative Data? https://www.perceptualedge.com/blog/?p=1897

Stephen Few. Why do we visualize quantitative data? https://www.perceptualedge.com/blog/?p=1897

¿Por qué depender de la visión?

- Es un sentido perceptualmente eficiente.
 - La comunicación con el cerebro es rápida.
 - Una gran proporción del procesamiento de información visual ocurre simultáneamente
 - En contraste, otros sentidos son secuenciales (por ej., sonido).
- Todavía no hemos desarrollado el entendimiento ni la tecnología para construir sistemas basados en el tacto o el olor tan efectivos como los visuales. Todavía no tenemos interfaces hápticas (tacto) mainstream.

¿Dónde está el punto rojo?

Fuente:
Perception in Visualization
Christopher G. Healy
https://www.csc2.ncsu.edu/faculty/healey/PP/

¿Por qué mostrar los datos en detalle?

- Las estadísticas descriptivas ocultan variabilidad que puede ser importante.
 - Puede inducir a errores de interpretación.
- Los datos agregados pueden ocultar patrones en los datos.
 - Limita la capacidad de encontrar algo que no esperábamos, porque la agregación usualmente se hace pensando en un fin específico.

¿Por qué mostrar los datos en detalle?

Anscombe's Quartet: Raw Data

		1	2	2	:	3	4		
	X	Υ	X	Υ	Χ	Υ	Χ	Υ	
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58	
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76	
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71	
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84	
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47	
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04	
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25	
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50	
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56	
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91	
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89	
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5	
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75	
Correlation	0.816		0.816		0.816		0.816		

Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing.

Justin Matejka, George Fitzmaurice. ACM SIGCHI Conference on <u>Human Factors in Computing Systems</u>, 2017.

¿Por qué usar interactividad?

- Una visualización estática solamente permite una única vista de los datos.
 - A medida que nos acercamos a los límites de personas y computadoras, la interactividad permite que lo que se muestra cambie: potencialmente infinitas vistas, cada una adaptada a los límites.
 - "InfoVis Mantra": Overview first, zoom & filter, details on demand (Ben Shneiderman)
- "Una imagen vale mil palabras. Una interfaz de usuario vale mil imágenes" (B. Shneiderman también)

¿Por qué enfocarse en las tareas a realizar?

- La visualización **no es arte** (puede llegar a serlo). Nuestro propósito es crear **herramientas efectivas**.
 - La efectividad depende del contexto. Así, las tareas permiten restringir y enfocar el diseño.
 - Podemos descubrir algo que de otro modo no hubiésemos descubierto
- No todas las tareas están relacionadas a necesidades de negocio.
 - A veces la tarea es única y personal

Ejemplos de Visualizaciones

Tarea: encontrar relación entre incidencia de cólera y fuentes de contagio. Por John Snow en 1855.

https://en.wikipedia.org/wiki/1854 Broad Street cholera outbreak

Diagrama de la Rosa

Tarea: visualizar el impacto en la reducción de muertes en los hospitales en las colonias inglesas tras una intervención de higiene. Por Florence Nightingale en 1857. https://es.wikipedia.org/wiki/Florence Nightingale

Dos rediseños de la visualización anterior.

GIORGIA Stefanie

Tarea: Compartir información cotidiana a través de tarjetas postales para conocerse mejor. Dear Data. Por Giorgia Lupi and Stefanie Posavec

COVER BY STEFANIE

Dear Data

¿Por qué hay recursos limitados?

- Estamos sujetos a los límites humanos
 - Change Blindness: no vemos cambios grandes si estamos atentos a otra cosa.
 - Limitada memoria de corto plazo.
- Estamos sujetos a límites del medio como los límites del papel o del computador
- Y los límites de los datos
 - Suciedad, completitud, sesgos, etc.

Resumen

Los **sistemas computacionales** de visualización proveen **representaciones visuales** de conjuntos de **datos** diseñadas para **ayudar a las personas** a **efectuar tareas** de manera más **efectiva**.

¿Preguntas?

Herramientas

Herramientas

Herramientas (Anaconda)

Mac:

https://www.anaconda.com/products/distribution#Downloads:~:text=64%2DBit%20Graphical%20Installer%20(688%20MB)

• Windows: https://repo.anaconda.com/archive/Anaconda3-2022.10-Windows-x86 64.exe

Linux:

https://www.anaconda.com/products/distribution#Downloads:~:text=64%2DBit%20(x86)% 20Installer%20(737%20MB)

Evaluaciones

Evaluaciones

- 1- Certamen 1 (teorico)
- 2- **Certamen 2 (practico)**: **proyecto 2 de visualización** grupal de un tema cotidiano o de relevancia personal, científica, industrial o pública usando un dataset público y **Python**
- 3- **Examen**: presentación presencial del proyecto 2 extendido y mejorado.

Evaluaciones

examen (superior a 3.0) 30%

Certamen 2

Compuesto de dos partes:

- parte 1: avance semanal. Cada entrega tiene un 7 por defecto. Se promedian todas las entregas con la posibilidad de borrar sólo 1 nota. Algunas entregas serán presentaciones de lecturas.
- parte 2: evaluación del proyecto.

Bibliografía

Bibliografía

Visualization & Analysis Design (<u>Tamara Munzer</u>)

How Charts Lie (Alberto Cairo)

Tareas Próxima Clase

- Pensar en alguna actividad cotidiana que les gustaría visualizar
- Pensar en un tema en el cual ustedes crean que pueda ser de utilidad tener una visualización. ¿Qué pregunta les gustaría responder?
- Instalar anaconda y abrir Jupyter
- Instalar numpy, pandas, matplotlib y seaborn