Welcome

Topics

- One-Way ANOVA without repeated measures
 - One-way ANOVA

- One-Way ANOVA with repeated measures
 - Randomized complete block ANOVA

Batting average

Batting average

Team Batting Average- 2016

If you want to infer that the population means differ

What if

We want to compare more than two populations

And, a mix of interval and nominal variables

Batting average problem- Eyeball test?

Team Batting Average-2016

One-way ANOVA

- A mix of interval and nominal variables
- To test hypotheses about the mean on one variable for three or more groups
- The hypotheses:
 - Null hypothesis (H0): all teams have the same mean
 - Research hypothesis (HI): at least one team has a different mean

Batting average

Team Batting Average- 2016 May

If you want to infer that the population mean differ at 5 % significance level

H0: $\mu I = \mu 2 = \mu 3 = \mu 4$

HI: At least two means differ

The real data looks like

 x_{ij} refers to the ith observation in the jth sample Ex: $X_{11} = 0.284$; $X_{12} = 0.221$

These populations are referred to as treatments

	Boston	Minnesota	<u>Colorado</u>	NY Yankees
Player I	0.284	0.221	0.287	0.221
Player 2	0.331	0.234	0.277	0.256
Player 3	0.276	0.256	0.276	0.225
ВА	0.297	0.237	0.280	0.234

x is the response variable

Analysis of variance

 Analysis of variance (ANOVA) is a technique that allows us to compare more than two populations (4 baseball teams) of interval data (batting average).

ANOVA – Between treatments variation

	<u>Boston</u>	<u>Minnesota</u>	<u>Colorado</u>	NY Yankees
Player I	0.284	0.221	0.287	0.221
Player 2	0.331	0.234	0.277	0.256
Player 3	0.276	0.256	0.276	0.225
ВА	0.297	0.237	0.280	0.234

The grand mean, $\frac{1}{x}$, is the mean of all the observations, i.e.:

$$\bar{x} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{n_j} x_{ij}}{n}$$
(n = n₁ + n₂ + ... + n_k)

0.262

What do you think if $\mu 1 = \mu 2 = \mu 3 = \mu 4$

Batting average problem- Eyeball test?

Team Batting Average- 2016

ANOVA – Between treatments

 Between-treatments variation (Sum of squares for treatments)

$$SST = \sum_{j=1}^{k} n_j (\overline{x}_j - \overline{\overline{x}})^2$$

	<u>Boston</u>	<u>Minnesota</u>	<u>Colorado</u>	NY Yankees
Player I	0.284	0.221	0.287	0.221
Player 2	0.331	0.234	0.277	0.256
Player 3	0.276	0.256	0.276	0.225
BA	0.297	0.237	0.280	0.234

ANOVA – Between treatments variation

 Between-treatments variation (Sum of squares for treatments)

$$SST = \sum_{j=1}^{k} n_j (\bar{x}_j - \bar{\bar{x}})^2$$

SST
=
$$3(0.297 - 0.262)^2 + 3(0.237 - 0.262)^2 + 3(0.280 - 0262)^2 + 3(0.234 - 0.262)^2 = 0.0089$$

The mean square for treatments (MST)

$$MST = \frac{SST}{k - 1}$$

$$MST = \frac{0.0089}{3} = 0.00297$$

What do you think if $\mu 1 = \mu 2 = \mu 3 = \mu 4$

ANOVA – Between treatments

What do you think if $\mu 1 = \mu 2 = \mu 3 = \mu 4$

	<u>Boston</u>	Minnesota	<u>Colorado</u>	NY Yankees
Player I	0.281	0.280	0.287	0.289
Player 2	0.280	0.278	0.277	0.280
Player 3	0.279	0.282	0.282 0.276	
BA	0.280	0.280	0.280	0.280

The **grand mean**, $\overline{\overline{\chi}}$ is the mean of all the observations, i.e.:

$$\overline{\overline{x}} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{n_j} x_{ij}}{n}$$

$$(n = n_1 + n_2 + ... + n_k)$$

Larger or small?

0.280

ANOVA – Between treatments

 Between-treatments variation (Sum of squares for treatments)

$$SST = \sum_{j=1}^{k} n_j (\overline{x}_j - \overline{\overline{x}})^2$$

	<u>Boston</u>	Minnesota	<u>Colorado</u>	NY Yankees
Player I	0.281	0.280	0.287	0.289
Player 2	0.280	0.278	0.277	0.280
Player 3	0.279	0.282	0.276	0.271
ВА	0.280	0.280	0.280	0.280

0.280

ANOVA – Within treatments variation

<u>Boston</u>	Minnesota	<u>Colorado</u>	NY Yankees
0.284	0.221	0.287	0.221
0.331	0.234	0.277	0.256
0.276	0.256	0.276	0.225
0.297	0.237	0.280	0.234
	0.284 0.331 0.276	0.284 0.221 0.331 0.234 0.276 0.256	0.284 0.221 0.287 0.331 0.234 0.277 0.276 0.256 0.276

SST tells us the between-treatments variation

We need to know the within-treatments variation that is not caused by the treatments

ANOVA – Within treatments

	Boston	Minnesota	Colorado	NY Yankees
Player I	0.284	0.221	0.287	0.221
Player 2	0.331	0.234	0.277	0.256
Player 3	0.276	0.256	0.276	0.225
ВА	0.297	0.237	0.280	0.234

	<u>Boston</u>	Minnesota	Colorado	NY Yankees
Player I	0.335	0.221	0.287	0.112
Player 2	0.189	0.159	0.199	0.288
Player 3	0.367	0.331	0.354	0.302
ВА	0.297	0.237	0.280	0.234
		1	1	

In which case, you will have more confidence to conclude at least two means differ?

ANOVA – Within treatments

 Within-treatments variation (Sum of Squares for Error)

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2$$

	<u>Boston</u>	Minnesota	<u>Colorado</u>	NY Yankees
Player I	0.284	0.221	0.287	0.221
Player 2	0.331	0.234	0.277	0.256
Player 3	0.276	0.256	0.276	0.225
BA	0.297	0.237	0.280	0.234

ANOVA – Within treatments variation

Within-treatments variation (Sum of Squares for Error)

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2$$

SSE = $(0.284 - 0.297)^2 + (0.331 - 0.297)^2 + 3(0.276 - 0.297)^2 + (0.221 - 0.237)^2 + (0.234 - 0.237)^2 + (0.256 - 0.237)^2 + (0.287 - 0.280)^2 + (0.277 - 0.280)^2 + (0.276 - 0.280)^2 + (0.221 - 0.234)^2 + (0.256 - 0.234)^2 + (0.225 - 0.234)^2 = 0.0032$

The mean square for errors (MSE)

$$MSE = \frac{SSE}{n-k}$$

•
$$MSE = \frac{0.0032}{12-4} = 0.0004$$

ANOVA

 We compare MST and MSE using an F-test and conclusions are drawn using the value of F.

$$F = \frac{MST}{MSE}$$
 F-distributed with k-I and n-k degrees of freedom.

Remember?

When SST will equal to 0?

$$SST = \sum_{j=1}^{k} n_j (\overline{x}_j - \overline{\overline{x}})^2$$

- If SST = 0
- Our decision : non-reject H0

• H0: $\mu I = \mu 2 = \mu 3 = \mu 4$

HI: At least two means differ

	<u>Boston</u>	<u>Minnesota</u>	<u>Colorado</u>	NY Yankees
Player I	0.281	0.280	0.287	0.289
Player 2	0.280	0.278	0.277	0.280
Player 3	0.279	0.282	0.276	0.271
ВА	0.280	0.280	0.280	0.280

Hypothesis testing

• Since:

$$SST = \sum_{j=1}^{k} n_j (\bar{x}_j - \bar{\bar{x}})^2$$

- If SST > 0
- Our decision : may or may not reject H0
 - H0: $\mu I = \mu 2 = \mu 3 = \mu 4$
 - HI: At least two means differ
- A large value of SST rejects the H0.
 - But, how large is "large enough" to reject the H0?

ANOVA table

Source of Variation	Sum of Squares	degrees of freedom	Mean Square	F
Between	SST	<i>k</i> −1	MST=SST/(<i>k</i> -1)	MST/MSE
Within	SSE	n–k	MSE=SSE/(<i>n-k</i>)	
Total	SS(Total)	<i>n</i> –1		

	Boston		Minneso	ta Co	<u>Colorado</u>		ankees
Player I	0.	284	0.221	(0.287	0.	.221
Player 2	0.	331	0.234	(0.277	0.	.256
Player 3	0.	276	0.256	(0.276	0.	.225
BA	0.297		0.237		0.280	0.234	
Anova: Single	Factor						
SUMMARY							
Groups		Count	Sum	Average	Variance		
Boston		3	0.891	0.297	0.000883		
Minnesota		3	0.711	0.237	0.000313		
Colorado		3	0.84	0.28	0.00004		
NY Yankees		3	0.702	0.234	0.000367		
ANOVA							
Source of Var	iation	SS	df	MS	F	P-value	F crit
Between Grou		0.008874		0.002958	7.395	0.010774	4.066181
Within Groups	5	0.0032	86	0.0004			
Total		0.012074	11				

R codes

	<u>Boston</u>	<u>Minnesota</u>	<u>Colorado</u>	NY Yankees
Player I	0.284	0.221	0.287	0.221
Player 2	0.331	0.234	0.277	0.256
Player 3	0.276	0.256	0.276	0.225
ВА	0.297	0.237	0.280	0.234

- b<-c(0.284,0.331,0.276)
- m<-c(0.221,0.234,0.256)
- c<-c(0.287,0.277,0.276)
- ny<-c(0.221,0.256,0.225)
- mydata<-data.frame(b,m,c,ny)
- mydata2 <- stack(mydata)
- mydata2
- aov I <- aov(values ~ ind, data=mydata2)
- summary(aov1)

R codes

> 1 2 3 4 5 6 7 8	mydata2 values 0.284 0.331 0.276 0.221 0.234 0.256 0.287 0.277	
		m
	0.256	m
7	0.287	C
8	0.277	C
9	0.276	C
10	0.221	ny
11	0.256	ny
12	0.225	ny

	<u>Boston</u>	Minnesota	<u>Colorado</u>	NY Yankees
Player I	0.284	0.221	0.287	0.221
Player 2	0.331	0.234	0.277	0.256
Player 3	0.276	0.256	0.276	0.225
BA	0.297	0.237	0.280	0.234

```
H0: \mu I = \mu 2 = \mu 3 = \mu 4
```

HI: At least two means differ

		Boston	Minnesota	Colorado	NY Yankees
Player	· T	0.284	0.221	0.287	0.221
Player	· 2	0.331	0.234	0.277	0.256
Player	. 3	0.276	0.256	0.276	0.225
BA		0.297	0.237	0.280	0.234

Anova: Single Factor							
	C	onsist	ent v	ariand	e gro	up	
SUMMARY							
Groups	Count	Sum	Average	Variance			
Boston	3	0.891	0.297	0.000883			
Minnesota	3	0.711	0.237	0.000313			
Colorado	3	0.84	0.28	0.00004			
NY Yankees	3	0.702	0.234	0.000367			
ANOVA							
Source of Variation	SS	df	MS	F	P-value	F crit	
Between Groups	0.008874	3	0.002958	7.395	0.010774	4.066181	
Within Groups	0.0032	8	0.0004)			
Total	0.012074	11					

Boston	Minnesota	Colorado	NY Yankees		Boston	Minnesota	Colorado	NY Yankees
0.284	0.221	0.287	0.221				0.287	
0.331	0.234	0.277	0.256	Player 2	0.189	0.159	0.199	0.288
0.276	0.256	0.276	0.225	Player 3	0.367	0.331	0.354	0.302
0.297	0.237	0.280	0.234	ВА	0.297	0.237	0.280	0.234

Anova: Single Factor						
	Incor	nsiste	nt var	riance	grou	Р
SUMMARY						
Groups	Count	Sum	Average	Variance		
Boston	3	0.891	0.297	0.009004		
Minnesota	3	0.711	0.237	0.007588		
Colorado	3	0.84	0.28	0.006043		
NY Yankees	3	0.702	0.234	0.011212		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.008874	3	0.002958	0.349573	0.790752	4.066181
Within Groups	0.067694	8	0.008462			
Total	0.076568	11				

Post hoc test - Multiple comparison

 ANOVA tells you whether you have an overall difference between your treatments (four teams), but it does not tell you which specific treatments differed.

We have multiple comparison method

Post hoc test - Multiple comparison

- b<-c(0.284,0.331,0.276)
- m<-c(0.221,0.234,0.256)
- c<-c(0.287,0.277,0.276)
- ny<-c(0.221,0.256,0.225)
- mydata<-data.frame(b,m,c,ny)
- mydata2 <- stack(mydata)
- mydata2
- aov l <- aov(values ~ ind, data=mydata2)
- summary(aovl)
- pairwise.t.test(mydata2\$values,mydata2\$ind)

Post hoc test – Multiple comparison

• We are looking for a critical number to compare the absolute differences of the sample means against.

	<u>Boston</u>	Minnesota	<u>Colorado</u>	NY Yankees
Player I	0.284	0.221	0.287	0.221
Player 2	0.331	0.234	0.277	0.256
Player 3	0.276	0.256	0.276	0.225
ВА	0.297	0.237	0.280	0.234

Post hoc test - Multiple comparison

	<u>Boston</u>	Minnesota	<u>Colorado</u>	NY Yankees
Player I	0.284	0.221	0.287	0.221
Player 2	0.331	0.234	0.277	0.256
Player 3	0.276	0.256	0.276	0.225
BA	0.297	0.237	0.280	0.234

Problem

- How does an MBA major affect the number of job offers received?
 An MBA student randomly sampled four recent graduates, one each in finance, marketing, and management, and asked them to report the number of job offers.
- Can we conclude at the 5% significance level that there are differences in the number of job offers between the three MBA majors

Finance	Marketing	Management
3	1	8
1	5	5
4	3	4
1	4	6

R codes

- fin < -c(3, 1, 4, 1)
- market<-c(1,5,3,4)
- manage<-c(8,5,4,6)
- mydata<-data.frame(fin,market,manage)
- mydata2 <- stack(mydata)
- mydata2
- aov I <- aov(values ~ ind, data=mydata2)
- summary(aovl)
- pairwise.t.test(mydata2\$values,mydata2\$ind)

Exercise I

- A research study was conducted to examine the clinical efficacy of a new antidepressant. Depressed patients were randomly assigned to one of three groups: a placebo group, a group that received a low dose of the drug, and a group that received a moderate dose of the drug.
- After four weeks of treatment, the patients completed the Depression Inventory Test. The higher the score, the **more** depressed the patient. The data are presented below. Compute the appropriate test by using 5% sig. level. What is your finding?

<u>Placebo</u>	Low Dose	<u>Moderate Dose</u>	
38	22	14	
47	19	26	
39	8	11	
25	23	18	
42	31	5	- OF TOP
		1 1	

Exercise 2

- A researcher is concerned about the level of knowledge possessed by university students regarding math.
- Students completed a high school senior level standardized math exam.
 Major for students was also recorded. Data in terms of percent correct is recorded below for 12 students.
- Compute the appropriate test by using 5% sig. level. What is your finding?

Education	<u>Business</u>	Social Science	Fine Arts
62	72	42	80
81	49	52	57
75	63	31	87

Exercise 3

- Neuroscience researchers examined the impact of environment on rat development. Rats were randomly assigned to be raised in one of the four following test conditions: loser (wire mesh cage - housed alone), standard (cage with other rats), enriched (cage with other rats and toys), super enriched (cage with rats and toys changes on a periodic basis).
- After two months, the rats were tested on a variety of learning a maze.
 Their time to complete the maze task is below. Compute the appropriate test by using 5% sig. level. What is your finding?

Loser	<u>Standard</u>	<u>Enriched</u>	Super Enriched
22	17	12	8
19	21	14	7
15	15	11	10
24	12	9	9
18	19	15	12

Topics

- One-Way ANOVA without repeated measures
 - One-way ANOVA

- One-Way ANOVA with repeated measures
 - Randomized complete block ANOVA

- Repeated measures ANOVA is the equivalent of the one-way ANOVA, but for related, not independent groups
- The nature of the repeated measures ANOVA, that of a test to detect any overall differences between related means
- Studies that investigate either
 - changes in mean scores over three or more time points
 - differences in mean scores under three or more different conditions

In repeated measures ANOVA, the independent variable has categories called **related groups**.

Where measurements are repeated over time in this case, such as when measuring changes in team trust due to an adventure journey, the independent variable is **time**.

Condition 1

Condition2

Condition3

In repeated measures ANOVA, the independent variable has categories called **related groups**.

Where measurements are repeated under different conditions, such as when measuring changes in performance due to class room, the independent variable is **conditions**.

Batting average

Batting average

Team Batting Average- 2016

If you want to infer that the population means differ

This time, the real data looks like

	<u>Boston</u>	Minnesota	<u>Colorado</u>	NY Yankees
Player A	Player A	Player A	Player A	Player A
	0.284	0.221	0.287	0.221
Player B	Player B	Player B	Player B	Player B
	0.331	0.234	0.277	0.256
Player C	Player C	Player C	Player C	Player C
	0.276	0.256	0.276	0.225

	<u>Boston</u>	<u>Minnesota</u>	<u>Colorado</u>	NY Yankees	<u>Subjects</u>
Player A	Player A 0.284	Player A 0.221	Player A 0.287	Player A 0.221	
Player B	Player B 0.331	Player B 0.234	Player B 0.277	Player B 0.256	
Player C	Player C 0.276	Player C 0.256	Player C 0.276	Player C 0.225	
ВА	0.297	0.237	0.280	0.234	0.262

$$= 3(0.297 - 0.262)^{2} + 3(0.237 - 0.262)^{2} + 3(0.280 - 0262)^{2} + 3(0.234 - 0.262)^{2} = 0.0089$$

$$SST = \sum_{j=1}^{k} n_{j} (\overline{x}_{j} - \overline{\overline{x}})^{2}$$

	Boston	<u>Minnesota</u>	<u>Colorado</u>	NY Yankees	<u>Subjects</u>
Player A	Player A 0.284	Player A 0.221	Player A 0.287	Player A 0.221	
Player B	Player B 0.331	Player B 0.234	Player B 0.277	Player B 0.256	
Player C	Player C 0.276	Player C 0.256	Player C 0.276	Player C 0.225	
ВА	0.297	0.237	0.280	0.234	

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (x_{ij} - \bar{x}_{j})^{2}$$

$$= (0.284 - 0.297)^{2} + (0.331 - 0.297)^{2} + (0.276 - 0.297)^{2}$$

$$+ (0.221 - 0.237)^{2} + (0.234 - 0.237)^{2} + (0.256 - 0.237)^{2}$$

$$+ (0.287 - 0.280)^{2} + (0.277 - 0.280)^{2} + (0.276 - 0.280)^{2}$$

$$+ (0.221 - 0.234)^{2} + (0.256 - 0.234)^{2} + (0.225 - 0.234)^{2} = 0.0032$$

	Boston	Minnesota	ROCKIES	NY Yankees	Subjects
Player A	Player A 0.284	Player A 0.221	Player A 0.287	Player A 0.221	0.253
Player B	Player B 0.331	Player B 0.234	Player B 0.277	Player B 0.256	0.275
Player C	Player C 0.276	Player C 0.256	Player C 0.276	Player C 0.225	0.258
ВА	0.297	0.237	0.280	0.234	0.262

Player B is excellent

$$SS_{subjects} = k \cdot \sum (\bar{x}_i - \bar{x})^2$$

$$SSB = 4(0.253 - 0.262)^2 + 4(0.275 - 0.262)^2 + 4(0.258 - 0.262)^2 = 0.001$$

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2$$

	<u>Boston</u>	<u>Minnesota</u>	<u>Colorado</u>	NY Yankees	Subjects
Player A	Player A 0.284	Player A 0.221	Player A 0.287	Player A 0.221	0.253
Player B	Player B 0.331	Player B 0.234	Player B 0.277	Player B 0.256	0.275
Player C	Player C 0.276	Player C 0.256	Player C 0.276	Player C 0.225	0.258
ВА	0.297	0.237	0.280	0.234	0.262

Real within-treatments variation

$$= SSE - SS_{subject} = 0.0032-0.001 = 0.0022$$

$$SS_{subjects} = k \cdot \sum (\bar{x}_i - \bar{x})^2$$

R codes

- b<-c(0.284,0.331,0.276)
- m<-c(0.221,0.234,0.256)
- c<-c(0.287,0.277,0.276)
- ny<-c(0.221,0.256,0.225)
- mydata<-data.frame(b,m,c,ny)
- mydata2<- stack(mydata)
- id<-factor(rep(1:3, times=4))
- mydata2<-data.frame(mydata2,id)
- mydata2
- aov2<- aov(values ~ ind + Error(id/ind), data=mydata2)
- summary(aov2)
- pairwise.t.test(mydata2\$values,mydata2\$ind)

R codes

```
> b < -c(0.284, 0.331, 0.276)
> m<-c(0.221,0.234,0.256)
> c<-c(0.287,0.277,0.276)
> ny<-c(0.221,0.256,0.225)
> mydata<-data.frame(b,m,c,ny)</pre>
> mydata2<- stack(mydata)</pre>
> id<-factor(rep(1:3, times=4))</pre>
> mydata2<-data.frame(mydata2,id)</pre>
> mydata2
   values ind id
  0.284
            b 1
   0.331
           b 2
   0.276
           b 3
   0.221
            m 1
            m 2
                   > aov2<- aov(values ~ ind + Error(id/ind), data=mydata2)
   0.234
                   > summary(aov2)
            m 3
   0.256
   0.287 c 1
                   Error: id
   0.277 c 2
                                   Sum Sq Mean Sq F value Pr(>F)
                             Df
   0.276
           c 3
                   Residuals 2 0.0009875 0.0004937
   0.221
           ny 1
10
   0.256
           ny 2
11
                   Error: id:ind
           ny 3
   0.225
12
                                  Sum Sq Mean Sq F value Pr(>F)
                              3 0.008874 0.0029580 8.022 0.016 *
                    ind
                   Residuals 6 0.002212 0.0003687
                   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

R codes

```
> pairwise.t.test(mydata2$values,mydata2$ind)

Pairwise comparisons using t tests with pooled SD

data: mydata2$values and mydata2$ind

b    m    c
m   0.031 -    -
c   0.657   0.090 -
ny   0.029   0.859   0.090
```

What is the difference?

One-way ANOVA without Repeated measures

One-way ANOVA with Repeated measures

Where are we going?

