ABHISMEK SRIVASTAVA

19BCE10071

Class - Test

0-1> Minimise:

In standard form,:

$$. : B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} & B^{-1} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\therefore \times_{\mathcal{B}} = \mathcal{B}^{-1}b = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

Zj-Cj

...
$$XB = Min \{-1, -2\} = -2$$

... as is leaving vector.

 $\frac{2k-C_{1k}}{\sqrt{k_{1k}}} = \frac{Max}{3} \cdot \frac{1}{3} = \frac{-16}{3}$
 $\frac{7k_{1k}}{\sqrt{k_{1k}}} = \frac{Max}{3} \cdot \frac{1}{3} = \frac{-16}{3}$

... $K = 1$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

CB B $\frac{1}{3}$ $\frac{1}{3}$

3)

	A	B		D	E
A	00	里	30	6	_a
B	h	00	0	6	0
C	1	9	00	0	0
D	8	0	2	00	4
E	0	2_	0	7	00

$$N=\gamma$$
, $S=SKS$.

	Ø	1	3.	6	[0]
	4	<i>®</i>	[0]	6	0
1	4	3 .	Ø	Co]	3
1	c	107	1		
	[0]	2	6	7/	B

$$A = E - A \Rightarrow B - C - D - 8$$

 $Gst = 1 + 3 + 4 + 4 + 4 + 1$

As per sequence from above assignment, indicates (5) to produce A, then E & then A without producing product B, CRP. It voivates restriction of producing each product. Now, we have to sexmaine matrix for headsoln. assignming with CIS to C12 & FIZ to C45. Nowwerd, A - B - C - D - E - A .: Cost = 2+3+4+5+(=15. Here, the cost is increased by Rs. 2. fødder 2 foodder 1 Nutient A Nutrient B Nu bient C Cost of folder 1 is \(\frac{7}{3} \) per unit & that of folder 2 \(\frac{7}{2} \).

Let x unit of fedder 1 by unit of folder 2. .. total costo = 3n+ /2y fodder 2. Nutrient fædder 1 requirement Come to coins will be: LPP Minimise: Z := 3x+24 2nty = 14, 2x+3y = 22 スラーノガンロッ

No of Supply Constraint = 3 No of demand constraint = 3

SI	DI 6	8	D3	Suppid 14
52	4	9	3	12
S3	1	2	6	15
Temand	6	10	15	

In 154 2000;

Smallest toansforman cost is 4 in cell 5,0. allocation in this cell is min (14,15) = 14.

so, table will be

/ .				
-	DI	D	D3	Supply
32	6	8	14	0
52	4	9	3 4	12
Down S3		2	6	5
Denat	6	10	1	

In 2nd vois, smallest transforman cost is 3 in SzD3 .: Allocation in the cell will be min (12,1) = 1

Nov, table will be S1 S2 S3 Temat	D1 4 1	P 2 8 9 2 10	D3 14 1 6 0	Supply 0	8
S2DI: allow	cation ?	D . Ing G	3 Suppl	s 4 in be min	(1,6)
Sidnely / S2D with the will be	ansporta allocateo	Macated n cost.	dy 5. x	53DZ 8	(a)

Snitial feasible Solution Table

	DI 1	D 2	D2	Supply
SI	6	8	14	14
S2	6	\ 5	1	12
S 3	1	5	6	.5
	6	10	13	31/31

Minimum table transporter Cost = 4×14 + 4×6 + 9×5 + 3×1 + 2×1 = 138.

No. of allocated cells= 5= 3+3-1=5

Bolutian is \$w ron-dengeoate.