Лабораторная работа №16

Задачи оптимизации. Модель двух стратегий обслуживания

Лихтенштейн Алина Алексеевна

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
	3.1 Постановка задачи	6
	3.2 Модель для второй стратегии обслуживания	8
	3.3 Оптимизация модели двух стратегий обслуживания	10
4	Выводы	22
5	Список литературы	23

Список иллюстраций

3.1	Модель первой стратегии обслуживания (2 пункта)	7
3.2	Отчёт по модели первой стратегии обслуживания (2 пункта)	8
3.3	Модель второй стратегии обслуживания (2 пункта)	9
3.4	Отчёт по модели второй стратегии обслуживания (2 пункта)	9
3.5	Модель с одним пропускным пунктом (обе стратегии)	11
3.6	Отчёт по модели с одним пропускным пунктом (обе стратегии) .	12
3.7	Модель первой стратегии обслуживания (3 пункта)	13
3.8	Отчёт по модели первой стратегии обслуживания (3 пункта)	14
3.9	Модель второй стратегии обслуживания (3 пункта)	15
3.10	Отчёт по модели второй стратегии обслуживания (3 пункта)	16
3.11	Модель первой стратегии обслуживания (4 пункта)	17
3.12	Отчёт по модели первой стратегии обслуживания (4 пункта)	18
3.13	Отчёт по модели первой стратегии обслуживания (4 пункта)	19
3.14	Модель второй стратегии обслуживания (4 пункта)	20
3.15	Отчёт по модели второй стратегии обслуживания (4 пункта)	21

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Выполнение лабораторной работы

3.1 Постановка задачи

На пограничном контрольно -пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a, b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1. автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2. автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

Целью моделирования является определение:

- характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;
- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем: - коэффициенты загрузки системы; - максимальные и средние длины очередей; - средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. fig. 3.1).

```
GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч
TEST E Q$Other1,Q$Other2,Obsl_1 ; длина оч. 1= длине оч. 2
TRANSFER 0.5,Obsl_1,Obsl_2 ; длины очередей равны,
; выбираем произв. пункт пропуска
 моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl_2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; ванятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней x 24 часа x 60 мин = 10080 мин)
ТЕРМІНАТЕ 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.1: Модель первой стратегии обслуживания (2 пункта)

После запуска симуляции получаем отчёт (рис. fig. 3.2).

	GPS	S World	Simulat	ion Rep	ort -	lab16_	1.1.1				
		суббо	га, мая	03, 202	5 18:0	8:27					
	START	TIME	1	END TIM	E BLO	CKS F	ACILIT	TIES	STORAG	GES	
	0	.000	1	0080.00	0 1	8	2		0		
	NAM OBSL_1 OBSL_2 OTHER1 OTHER2 PUNKT1 PUNKT2			1 1 1	VALU 5.0 11.0 0000.0 0001.0 0003.0	00 00 00 00 00					
	PUNK12			1	0002.0	00					
LABEL OBSL_1		LOC 1 2 3 4 5	BLOCK T GENERATI TEST TEST TRANSFE QUEUE SEIZE DEPART	YPE E R	58 58	53 53		O 0 0 0 387 0		ETRY 0 0 0 0 0	
OBSL 2		9	RELEASE		25	62 31 28 41 41 41 40 40 25		0 1 0 0 388		0 0 0 0 0	
_		13 14 15 16 17	DEPART ADVANCE RELEASE TERMINA GENERATI TERMINA	TE E TE	25 25 25 25 25	37 37 37 36 36 1		0 1 0 0 0		0 0 0 0 0 0 0 0 0 0	
FACILITY PUNKT2 PUNKT1		ENTRIES 2537 2541	UTIL. 0.996 0.997	AVE.	TIME A 3.957 3.955	VAIL. 1 1	OWNER 5078 5079	PEND 0 0	INTER 0 0	RETRY 0 0	DELAY 388 387
QUEUE OTHER1 OTHER2		MAX C 393 393	ONT. ENT 387 29 388 29	RY ENTR 28 25	Y(0) A 12 1 12 1	VE.CON 87.098 87.114	IT. AVE 64	E.TIME 14.107 14.823	AVI 7 64 8 64	E.(-0) 46.758 47.479	RETRY 0 0
FEC XN 5855 5079 5078 5856	PRI 0 0 0 0	BDT 10081. 10083. 10083. 20160.	AS: 102 58: 517 50' 808 50' 000 58:	SEM CU 55 79 78 56	RRENT 0 8 14 0	NEXT 1 9 15 17	PARAM	METER	VAI	LUE	

Рис. 3.2: Отчёт по модели первой стратегии обслуживания (2 пункта)

3.2 Модель для второй стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом. Теперь мы используем многоканальное устройство (рис. fig. 3.3).

```
| lab16_2.gps
punkt STORAGE 2
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
 ; моделирование работы пункта
QUEUE Other ; присоединение к очереди
ENTER punkt,1 ; занятие пункта
DEPART Other ; выход из очереди
ADVANCE 4,3 ; обслуживание на пункте
LEAVE punkt,1 ; освобождение пункта
TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
 ; указывающего на окончание рабочей недели
 ; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.3: Модель второй стратегии обслуживания (2 пункта)

После запуска симуляции получаем отчёт (рис. fig. 3.4).

```
lab16_2.2.1 - REPORT
                      GPSS World Simulation Report - lab16_2.2.1
                            суббота, мая 03, 2025 18:18:14
                  NAME
                                                                 VALUE
                                                          10001.000
                OTHER
                PUNKT
                                                            10000.000
                               LABEL
                                      TERMINATE
                         MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 668 668 5719 4 344.466 607.138 607.562 0
 OTHER
STORAGE
                           CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
2 0 0 2 5051 1 2.000 1.000 0 668

        FEC XN
        PRI
        BDT
        ASSEM
        CURRENT
        NEX

        5721
        0
        10080.466
        5721
        0
        1

        5051
        0
        10081.269
        5051
        5
        6

        5052
        0
        10083.431
        5052
        5
        6

        5722
        0
        20160.000
        5722
        0
        8

                                                ASSEM CURRENT NEXT PARAMETER VALUE
```

Рис. 3.4: Отчёт по модели второй стратегии обслуживания (2 пункта)

Сведём полученные статистики моделирования в таблицу (табл. 3.1).

Таблица 3.1: Сравнение стратегий

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

По сравнению видно, что в первой стратегии через два пункта прошло больше автомобилей (5853), из них было обслужено 5076, то есть 777 машин не были приняты (примерно 13%). Во второй стратегии поступило 5719 автомобилей, обслужили 5049, и потери составили 670 машин (около 12%).

Несмотря на большее количество обслуженных машин в первой стратегии, во второй процент потерь меньше. Также во второй стратегии коэффициент загрузки равен 1, что означает отсутствие простоев. Максимальная и средняя длина очереди, а также среднее время ожидания во второй стратегии тоже ниже. Это говорит о более равномерной и устойчивой работе. В целом, вторая стратегия показала себя лучше с точки зрения эффективности и организации процесса.

3.3 Оптимизация модели двух стратегий обслуживания

Теперь нужно поменять модели так, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Условия:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Если у нас 1 пункт, то модель будет выглядеть одинаково (рис. fig. 3.5).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей; моделирование работы пункта
QUEUE Other; присоединение к очереди
SEIZE punkt; занятие пункта
DEPART Other; выход из очереди
ADVANCE 4,3; обслуживание на пункте
RELEASE punkt; освобождение пункта
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 3.5: Модель с одним пропускным пунктом (обе стратегии)

После запуска симуляции получаем отчёт (рис. fig. 3.6).

Рис. 3.6: Отчёт по модели с одним пропускным пунктом (обе стратегии)

Здесь легко заметить, что условия не выполняются. Слишком большое время ожидания, коэффициент загрузки равен 1, среднее число автомобилей велико.

Так как модели с 2 пропускными пунктами у нас уже реализованы, и под условия также не подходят, перейдём к 3 и 4 пунктам.

Далее попробуем смоделировать три КПП для первой стратегии (рис. fig. 3.7).

```
| lab16_1.gps
 GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TRANSFER 0.33,variant,Obsl_3;
variant TRANSFER 0.5,Obsl_1,Obsl_2
 ; моделирование работы пункта 1
 Obsl_1 QUEUE Other1 ; присоединение к очереди _1
 SEIZE punkt1 ; занятие пункта 1
 DEPART Other1 ; выход из очереди 1
 ADVANCE 4,3 ; обслуживание на пункте 1
 RELEASE punkt1 ; освобождение пункта 1
 TERMINATE ; автомобиль покидает систему
 ; моделирование работы пункта 2
 Obsl 2 QUEUE Other2 ; присоединение к очереди 2
 SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
 TERMINATE ; автомобиль покидает систему
  моделирование работы пункта 3
 Obsl_3 QUEUE Other3 ; присоединение к очереди 3
SEIZE punkt3 ; занятие пункта 3
DEPART Other3 ; выход из очереди 3
 ADVANCE 4,3 ; обслуживание на пункте 3
 RELEASE punkt3 ; освобождение пункта 3
 TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
 GENERATE 10080 ; генерация фиктивного транзакта,
 ; указывающего на окончание рабочей недели
   (7 дней х 24 часа х 60 мин = 10080 мин)
 термінате 1 ; остановить моделирование
 START 1 ; запуск процедуры моделирования
```

Рис. 3.7: Модель первой стратегии обслуживания (3 пункта)

После запуска симуляции получаем отчёт (рис. fig. 3.8).

	GPS				Report -					
			ra,		2025 18:					
	START						FACILITIE		AGES	
	_	.000		10080		23	3	0		
	NAM	E				UE				
	OBSL_1					000				
	OBSL_2					000				
	OBSL_3					000				
	OTHER1				10004. 10000.					
	OTHER2 OTHER3				10000.					
	PUNKT1				10002.					
	PUNKT2				10003.					
	PUNKT3				10003.					
	VARIANT					000				
LABEL	· marini		BLO	CK TYPE			CURRENT	COUNT	RETRY	
		1		ERATE		5547	Jordani	0	0	
		2		NSFER		547		0	0	
ARIANT		_		NSFER		682		0	o	
BSL 1			QUE			853		1	o	
			SEI			852		0	o	
			DEP			852		0	0	
		7	ADV.	ANCE	1	852		1	0	
		8	REL	EASE	1	.851		0	0	
		9	TER	MINATE	1	.851		0	0	
BSL 2		10	QUE	UE	1	.829		0	0	
		11	SEI	ZE	1	.829		0	0	
		12	DEP.	ART	1	.829		0	0	
		13	ADV.	ANCE	1	.829		0	0	
		14	REL	EASE	1	.829		0	0	
		15		MINATE		.829		0	0	
BSL_3			QUE	UE	1	.865		3	0	
			SEI			.862		0	0	
		18		ART		.862		0	0	
				ANCE		.862		1	0	
				EASE		.861		0	0	
		21		MINATE	1	.861		0	0	
		22		ERATE		1		0	0	
		23		MINATE		1		0	0	
ACILITY							OWNER PE			
PUNKT2				.717	3.952		0	0 0	_	0
PUNKT3		1862		.740	4.006		5534	0 0	_	3
PUNKT1		1852	0	.727	3.957	1	3546	0 0	0	1
UEUE		MAY C	ONTER	PARTOV F	AMERICAN ACCURATE	ATTE CO	ייי אנונג יייי	TMP 31	7F2 / CV	DEMDA
OEUE OTHER2				1829	508		NT. AVE.T		8.482	0
OTHER2		13	3	1865	513	1.112		132	8.458	
OTHERS		9		1853		0.929		055	7.075	
OTHERT		,	1	1000	323	0.323	, 3.	000	7.075	U
EC XN	PRI	BDT		ASSEM	CURRENT	NEXT	PARAMET	ER V	ALUE	
5549	0			5549	0	1				
5534	0			5534	19	20				
	0	10085.		5546	7	8				
				5550	0					

Рис. 3.8: Отчёт по модели первой стратегии обслуживания (3 пункта)

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

А вот **для второй стратегии три КПП – оптимальное количество** (рис. fig. 3.9).

```
punkt STORAGE 3
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; моделирование работы пункта
QUEUE Other; присоединение к очереди
ENTER punkt,1; занятие пункта
DEPART Other; выход из очереди
ADVANCE 4,3; обслуживание на пункте
LEAVE punkt,1; освобождение пункта
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирования
START 1; запуск процедуры моделирования
```

Рис. 3.9: Модель второй стратегии обслуживания (3 пункта)

После запуска симуляции получаем отчёт (рис. fig. 3.10).

	GPSS World	l Simulation	Report - 1	ab16_2.4	.1		
	субба	та, мая 03,	2025 19:03	:33			
	START TIME 0.000	END 10080	TIME BLOC	KS FACI	LITIES ST	ORAGES 1	
	NAME OTHER PUNKT		VALUE 10001.00 10000.00				
LABEL	2 3 4 5 6 7 8	BLOCK TYPE GENERATE QUEUE ENTER DEPART ADVANCE LEAVE TERMINATE GENERATE TERMINATE	568 568 568 568 568 568	3 3 3 3 3 0 0	0 0 0 0	0 0 0 0 0	
QUEUE OTHER	MAX (CONT. ENTRY E 0 5683	ENTRY(0) AV 2521	E.CONT. 1.063	AVE.TIME 1.885	AVE.(-0) 3.388	RETRY 0
STORAGE PUNKT	CAP.	REM. MIN. MA					
5680 5683 5685	0 10085	.434 5680 .631 5683 .068 5685	5 5 0 5	6 6 1 6	RAMETER	VALUE	

Рис. 3.10: Отчёт по модели второй стратегии обслуживания (3 пункта)

В этом случае все критерии выполняются.

И перейдём к четырём пропускным пунктам. Для первой стратегии получим:(рис. fig. 3.11)

```
GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей
TRANSFER 0.5, one, two;
one TRANSFER 0.5,0bsl_1,0bsl_2
two TRANSFER 0.5,0bsl_3,0bsl_4
; моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1 RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
  моделирование работы пункта 2
Obsl_2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; saharne пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
  моделирование работы пункта 3
Obsl_3 QUEUE Other3 ; присоединение к очереди 3
SEIZE punkt3 ; занятие пункта 3
DEPART Other3 ; выход из очереди 3
ADVANCE 4,3 ; обслуживание на пункте 3
RELEASE punkt3 ; освобождение пункта 3
TERMINATE ; автомобиль покидает систему
  моделирование работы пункта 4
Obsl_4 QUEUE Other4 ; присоединение к очереди 4
SEIZE punkt4 ; занятие пункта 4
DEPART Other4 ; выход из очереди 3
ADVANCE 4,3 ; обслуживание на пункте 4
RELEASE punkt4 ; освобождение пункта 4
TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта, 
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.11: Модель первой стратегии обслуживания (4 пункта)

После запуска симуляции получаем отчёт (рис. fig. 3.12, fig. 3.13).

	21 22	RELEASE TERMINATE	1378 1378	0	0 0
	20	ADVANCE	1378	0	0
	18 19	SEIZE DEPART	1378 1378	0	0
OBSL_3		QUEUE	1378	0	0
	16	TERMINATE	1366	0	0
		RELEASE	1366	0	0
	14	ADVANCE	1366	0	0
	13	DEPART	1366	0	0
		SEIZE	1366	0	0
OBSL 2		QUEUE	1366	0	0
	10	TERMINATE	1464	0	0
		RELEASE	1464	0	0
	8	ADVANCE	1465	1	0
	7	DEPART	1465	0	0
		SEIZE	1465	0	Ö
OBSL 1	5	QUEUE	1465	0	o
TWO		TRANSFER	2791	0	0
ONE		TRANSFER	2831	0	0
	2	TRANSFER	5622	0	0
	1	GENERATE	5622	0	0
LABEL		BLOCK TYPE		IT CURRENT CO	OUNT RETRY
	TWO		4.000		
	PUNKT4		10003.000		
	PUNKT3		10003.000		
	PUNKT2		10007.000		
	PUNKT1		10007.000		
	OTHERS		10002.000		
	OTHER2 OTHER3		10004.000		
	OTHER1		10004.000		
	OTHER1		10006.000		
	OBSL_4 ONE		3.000		
	OBSL_3 OBSL 4		17.000 23.000		
	OBSL_2				
	OBSL_1		5.000 11.000		
	NAME		VALUE		
	0.000	10080.	000 30	4	0
	START TIME		IME BLOCKS		

Рис. 3.12: Отчёт по модели первой стратегии обслуживания (4 пункта)

LABEL		LOC	BLOC	K TYPE	ENTR	COUNT	CURREN	T COUN	T RE	TRY	
		1	GENE	RATE	5	522		0		0	
		2	TRAN	ISFER	5	522		0		0	
ONE		3	TRAN	ISFER	28	331		0		0	
TWO		4	TRAN	ISFER	2	791		0		0	
OBSL 1		5	QUEU	JΕ	14	165		0		0	
_		6	SEIZ	Œ	14	165		0		0	
		7	DEPA	RT	14	165		0		0	
		8	ADVA	NCE	14	165		1		0	
		9	RELE	EASE	14	164		0		0	
		10	TERM	INATE	14	164		0		0	
OBSL 2		11	QUEU	JΕ	13	366		0		0	
_		12	SEIZ	Œ	13	366		0		0	
		13	DEPA	RT	13	366		0		0	
		14	ADVA	NCE	13	366		0		0	
		15	RELE	EASE	13	366		0		0	
		16	TERM	INATE	13	366		0		0	
OBSL 3		17	QUE	JE	13	378		0		0	
_		18	SEIZ	Œ	13	378		0		0	
		19	DEPA	RT	13	378		0		0	
		20	ADVA	NCE	13	378		0		0	
		21	RELE	EASE	13	378		0		0	
		22	TERM	INATE	13	378		0		0	
OBSL 4		23	QUEU	JΕ	14	113		0		0	
_		24	SEIZ	Œ	14	113		0		0	
		25	DEPA	RT	14	113		0		0	
		26	ADVA	NCE	14	113		1		0	
		27	RELE	EASE	14	112		0		0	
		28	TERM	IINATE	14	112		0		0	
		29	GENE	RATE		1		0		0	
		30	TERM	IINATE		1		0		0	
FACILITY		ENTRIES	UTI	L. AV	E. TIME	AVAIL.	OWNER E	END IN	TER	RETRY	DELA
PUNKT4		1413	0.	557	3.971	1	5623	0	0	0	
PUNKT3		1378	0.	545	3.989	1	0	0	0	0	
PUNKT2		1366	0.	541	3.993	1	0	0	0	0	
PUNKT1		1465	0.	584	4.018	1	5621	0	0	0	
QUEUE		MAX C	ONT.	ENTRY E	ENTRY (0)	AVE.CON	T. AVE.	TIME	AVE	(-0)	RETR
OTHER4		7	0	1413	628	0.415	2	2.958		5.325	0
OTHER3		8	0	1378	655	0.345	2	2.527		4.816	0
OTHER2		6	0	1366	625	0.363	2	2.676		4.934	0
OTHER1		6	0	1465	590	0.492	. 3	3.385		5.667	0
FEC XN	PRI	BDT		ASSEM	CURRENT	NEXT	PARAME	ETER	VAL	UE	
5624	0	10080.	041	5624	0	1					
5621	0	10080.	398	5621	8	9					
5623	0	10082.	255	5623	26	27					
3623											

Рис. 3.13: Отчёт по модели первой стратегии обслуживания (4 пункта)

Для первой стратегии это количество пропускных пунктов (четыре) является оптимальным, так как выполняются все критерии: среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, а также среднее время ожидания меньше 4.

И для второй стратегии, хоть мы уже и нашли оптимальное количество КПП, смоделируем работу с 4-мя КПП: (рис. fig. 3.14).

```
punkt STORAGE 4
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
; моделирование работы пункта
QUEUE Other; присоединение к очереди
ENTER punkt,1; занятие пункта
DEPART Other; выход из очереди
ADVANCE 4,3; обслуживание на пункте
LEAVE punkt,1; освобождение пункта
TERMINATE; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 3.14: Модель второй стратегии обслуживания (4 пункта)

После запуска симуляции получаем отчёт (рис. fig. 3.15).

	GPSS	S World	l Sim	ulation	Repor	t - 1a	b16_	2.5.1		
		суббо	та,	мая 03,	2025	19:16:	19			
	START 1	TIME		END	TIME	BLOCE	S F.	ACILITIES	STORAGES	
		.000			0.000			0	1	
	NAME	3				VALUE				
	OTHER				100	01.000)			
	PUNKT				100	00.000)			
LABEL		LOC	BLO	CK TYPE	: Е	NTRY (COUNT	CURRENT C	OUNT RETRY	
		1	GEN	ERATE		5719		0	_	
		2	QUE			5719		0	_	
		3	ENT			5719		0	_	
		4 5	DEPART			5719 5719		0	0	
		6	LEA			5719		0	_	
				7 TERM		5715		0		
		8		ERATE		3713		0		o
		9		MINATE		1		0		
UEUE		MAX (ONT.	ENTRY	ENTRY (O) AVE	CON	T. AVE.TIM	E AVE. (-	0) RETR
OTHER			0			(31 0
TORAGE		CAD	DEM	MTN M	nv r	NITTOTE	. 7777	. AVE.C.	סיחים דדיחוו	V DEIXV
PUNKT			ΛΕM. 0		1AA. E.			2.253		
2 021112						0.25	_	2.200		
EC XN 5718	PRI 0			5718			6	PARAMETER	VALUE	
5717	0			5717			6			
5719	0			5717			6			
5721	-			5721			1			
5720	0			5720			6			
5722	0	20160.	000	5722	0		8			

Рис. 3.15: Отчёт по модели второй стратегии обслуживания (4 пункта)

Все условия выполняются, но по отчёту можно сделать вывод, что четвертый пункт не играет значительной роли, и лишь немного разгружает остальные три пункта, что не является необходимым. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

4 Выводы

В ходе данной лабораторной работы с помощью gpss были реализованы модель с двумя очередями, модель с одной очередью, а также модели были изменены, чтобы определить оптимальное число пропускных пунктов.

5 Список литературы

Королькова А.В., Кулябов Д.С. Моделирование информационных процессов