RESPUESTAS GUIA Nº4

- 1. Son lineales: a), b), d)
- 2. a) $Ker\ T = \{(x, y, z, w)/2x y + z = 0, y + 3z w = 0\} = \langle (1, 0, -2, -6), (0, 1, 1, 4) \rangle$; $Im\ T = \mathbb{R}^2$

b)
$$Ker\ T = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} / a + b - 2c = 0, -b + 3c = 0, a + c = 0 \right\} = \left\langle \begin{bmatrix} -1 & 3 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\rangle;$$

$$Im T = \langle x^2 + 1, x^2 - x \rangle$$

3. a)
$$T(x, y, z) = (4x - 6y - 2z, 4x - 8y - 3z, 4x - 6y - 2z, 2x - 3y - z)$$

b)
$$Ker\ T = \langle (1,2,-4) \rangle;\ n(T) = 1;\ Im\ T = \langle (2,2,2,1), (0,1,0,0) \rangle,\ r(T) = 2$$

6. a)
$$\frac{1}{2}\begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ b) $P \cdot Q = I_3$ $\therefore Q = P^{-1}$ c) $x = 2f_1 + 0 \cdot f_2 + (-1)f_3$

7. a)
$$A = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$

8. a)
$$T(x, y, z) = \left(x - \frac{y}{2}, -x - 2y, 2x + \frac{3y}{2}, -x + \frac{y}{2}\right)$$
 c) $\begin{bmatrix} 8/5 & -6/5 \\ 1/5 & -7/5 \end{bmatrix}$

9. a) c I_n b)
$$[T]_{\beta} = \begin{bmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{bmatrix}$$
; $[T]_{\beta} = \begin{bmatrix} a & c & 0 & 0 \\ b & d & 0 & 0 \\ 0 & 0 & a & c \\ 0 & 0 & b & d \end{bmatrix}$; $[T]_{\beta} = \begin{bmatrix} 0 & -c & b & 0 \\ -b & a-d & 0 & b \\ c & 0 & d-a & -c \\ 0 & c & -b & 0 \end{bmatrix}$

10. Valores propios: $\lambda_1 = 2$, $\lambda_2 = 6$

$$W_2 = \{(x, y) \in \mathbb{R}^2 / x + 3y = 0\}$$
 Base de W_2 : $\{(-3, 1)\}$

$$W_6 = \{(x, y) \in \mathbb{R}^2 / x - y = 0\}$$
 Base de $W_6: \{(1, 1)\}$

11.
$$\begin{vmatrix} 1-\lambda & 2 \\ -1 & -1-\lambda \end{vmatrix} = \lambda^2 + 1 = 0$$
 No tiene solución real, por lo tanto A no tiene valores propios.

12. a) Para A: Valores propios: $\lambda_1 = 1$, $\lambda_2 = -1$

Espacios propios:
$$W_1 = \langle (1,1,1) \rangle$$
, $W_{-1} = \langle (1,0,0), (0,1,2) \rangle$

Para *B*: Valores propios: $\lambda_1 = 1$, $\lambda_2 = 2$

Espacios propios:
$$W_1 = \langle (-1,1,2) \rangle$$
, $W_2 = \langle (1,1,1) \rangle$

b) A es diagonalizable pues $B = \{(1,1,1), (1,0,0), (0,1,2)\}$ es base de \mathbb{R}^3 formado por vectores propios de A.

B no es diagonalizable pues no existe base de \mathbb{R}^3 formada por los vectores propios de B, sólo existen 2 vectores propios L.I., ya que cada espacio propio tiene dimensión 1.

$$14. \text{ a)} D^{k} = \begin{bmatrix} d_{1}^{k} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{n}^{k} \end{bmatrix} \text{ asi } e^{D} = \sum_{k=0}^{\infty} \frac{1}{k!} \begin{bmatrix} d_{1}^{k} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{n}^{k} \end{bmatrix} = \begin{bmatrix} \sum_{k=0}^{\infty} \frac{1}{k!} d_{1}^{k} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sum_{k=0}^{\infty} \frac{1}{k!} d_{n}^{k} \end{bmatrix} = \begin{bmatrix} e^{d_{1}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{d_{n}} \end{bmatrix}$$

$$e^{A} = \sum_{k=0}^{\infty} \frac{1}{k!} A^{k} = \sum_{k=0}^{\infty} \frac{1}{k!} (PDP^{-1})^{k} = \sum_{k=0}^{\infty} \frac{1}{k!} PD^{k} P^{-1} = P \left(\sum_{k=0}^{\infty} \frac{1}{k!} D^{k} \right) P^{-1} = P \cdot e^{D} \cdot P^{-1}$$

b) Valores propios de A: -2, 1, 4 Vectores propios asociados: (1, -1, 1), (1, 0, 1), (1, -2, 0), por lo tanto A es diagonalizable pues existe base de \mathbb{R}^3 formada por vectores propios de A.

$$P = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & -2 \\ 1 & 1 & 0 \end{bmatrix}, \ D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
Se cumple que: $P^{-1}AP = D$ o sea: $A = PDP^{-1}$

$$e^{A} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & -2 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} e^{-2} & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e^{4} \end{bmatrix} \begin{bmatrix} -2 & -1 & 2 \\ 2 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -2e^{-2} + 2e + e^{4} & -e^{-2} + e & 2e^{-2} - e - e^{4} \\ 2e^{-2} - 2e^{4} & e^{-2} & -2e^{-2} + 2e^{4} \\ -2e^{-2} + 2e & -e^{-2} + e & 2e^{-2} - e \end{bmatrix}$$

15.
$$P_A(\lambda) = -\lambda^3 + 4\lambda^2 - \lambda - 6$$
 Valores propios: $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 3$

$$Tr(A) = -3 + 2 + 5 = 4; \quad \lambda_1 + \lambda_2 + \lambda_3 = -1 + 2 + 3 = 4$$

$$\det(A) = -6; \ \lambda_1 \cdot \lambda_2 \cdot \lambda_3 = -6$$