

Agenda

- · Duality Review
 - Motivation example
 - Weak/Strong duality, duality for LPS
 - _ Farkas Lemma
- . Taking the dual example
- · Dual of I norm example

Logistics

- · HW 5 out, due Friday March 25 at 9pm
- · HW 6 due Friday April 1 at 9pm
- · Midtern 2 on Tuesday April 12

· We want to get a lower bound for

Farkas Lemma
Given A and b, one of the following 2 statements the 1. $\exists x \text{ s.t. } Ax=b, \times 20$ 2. $\exists y \text{ s.t. } ATy20, b^Ty < 0$

Dual of std LP

Inequality form min cTx S.t. Ax Sb max $-b^{T}y$ s.t. $A^{T}y+c \ge 0$

max -b^ty s.t. A^ty +c=0 y≥0

Example: find the dual one way: pattern matching

min $3x_1 + 4x_2$ s.t. $x_1 + x_2 \ge 5$ $2x_1 + x_2 \ge 6$ $\times \ge 0$

Other way: derive the dual min ctx st. Ax2b

Dual of I norm problem

min cTx

x s.t ||Ax+b|| \le |

d. formulate this LP inequality form

b. derive the dual LP and show that it's equivalent to max $b^{T}z - 11211_{000}$ s.t. $A^{T}z + c = 0$

C. give a direct argument that whenever x is primal feasible and z is dual feasible, c^Tx ≥ b^Tz - 11z11po

$$max b^{T}2 - 11211_{\infty}^{2}$$

s.f. $A^{T}2 + c = 0$