Основи програмування – 1. Алгоритми та структури даних

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів »

Варіант 1<u>0</u>

Виконав студент	III-15,Закірова Олександра Володимирівна
•	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота 6 Дослідження рекурсивних алгоритмів Варіант 10

Мета - дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Задача 10.

Сформувати послідовність з 10 чисел Фібоначчі: перші два значення дорівнюють 0 та 1, а кожне наступне значення – це сума двох попередніх.

Постановка задачі. Результатом розв'язку є послідовність з десяти чисел Фібоначчі, початком якої буде 0, 1, а кожне наступне значення — це сума двох попередніх.. Інших початкових даних для розв'язку не потрібно.

Математична побудова. Складемо таблицю змінних.

Змінна	Тип	Ім'я	Призначення
Число а	Цілий	n	Початкове дане
Число b	Дійсний	mersen	Проміжна змінна
Число і	Дійсний	p	Проміжна змінна
Функція F	Дійсний	F	Рекурсивна функція
Результат mersen	Рядок	mersen	Результат

Таким чином, математичне формулювання задачі зводиться до обчислення членів послідовності. Однак, виконуватися задача буди лише до тих пір, поки кількість членів не більше за 10.

Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію знаходження членів послідовності.

Псевдокод

крок 1

початок

a = 0

b = 1

Вивід "0 1"

Знаходження членів послідовності

Вивід членів послідовності

кінець

крок 2

початок

a = 0

b = 1

Вивід "0 1"

для i = 1; i < 9; i++

b = F(a, b)

a = b - a

Вивід в

все повторити

кінець

Блок-схема

крок1

Код програми

Випробування алгоритму

Блок	Дія
1	Початок
2	a = 0 $b = 1$
3	i = 1 b = 1 a = 1 Вивід: 1
4	i = 2 b = 2 a = 1 Вивід: 2
5	i = 3 b = 3 a = 2 Вивід: 3
21	i = 8 b = 34 a = 21 Вивід: 34
22	Кінець

Висновок

Під час виконання лабораторної були досліджени особливості роботи рекурсивних алгоритмів та набуто практичних навичок їх використання під час складання програмних специфікацій. Покращено навички написання псевдокоду, побудови та тестування алгоритмів.