Equations

$$1. \ P = \frac{dW}{dt} = IV$$

$$2. I = \frac{dq}{dt}$$

$$3. V = \frac{W}{q}$$

4.
$$R = \frac{\rho L}{A}$$

5. Ohm's Law:
$$V = IR$$

6. Coulomb's Law:
$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r^2} \hat{r}$$

7. Kirchhoff's Voltage Law:
$$\sum V_i = 0$$

8. Conductance:
$$G = \frac{1}{R}$$

9. Equivalent resistance:
$$R_{eq} = \frac{V_{test}}{I_{test}}$$

- (R_{eq}) Turn off all independent sources (dependent sources remain unchanged) and calculate the resulting resistance at the desired port. Notice that you may have to apply the i-v test if resistors cannot be combined through series and parallel connections, or if the circuit includes dependent sources.
- (V_{th}) Leave the desired port open-circuited (i.e. no load connected) and find the voltage across it.
- (I_N) Short-circuit the desired port (i.e. connect a short circuit across the port) and find the current through it.