<u> Pspice -המעגל מתוכנת ה</u>

נקודות העבודה של הטרנזיסטורים:

Q1: $Ic \approx 79uA$; VCE = 0.988V > VCEsat

Q2: $Ic \approx 78uA$; VCE = 3.72V > VCEsat

Q3: $Ic \approx 2.1 mA$; VCE = 1.421V > VCEsat

Q4: Ic $\approx 7.58mA$; VCE = 4.53V > VCEsat

. בכל הטרנזיסטורים אולכן ולכן אולכן פעיל קדמי ערנזיסטורים בפעיל אולכן בכל הטרנזיסטורים בפעיל קדמי

:β = 100 , VA = 100V פרמטרי אות קטן, כזכור

	Gm	rpi	ro
Q1	$3m\Omega^{-1}$	32k Ω	1.2M Ω
Q2	$3m\Omega^{-1}$	32k Ω	1.2M Ω
Q3	$0.08\Omega^{-1}$	$1.2k\Omega$	47.6kΩ
Q4	$0.28\Omega^{-1}$	345Ω	13.2kΩ

<u>:Av=100[v/v] ההגבר עם המשוב בחוג סגור</u>

דרגה2+1)

$$A_{1+2} \cong -gm*rpi*(1+gmro) \cong -20 \quad \Big(Rin \gg Rs + RG3 \big| |R11| \big| (rg1+rg2) \Big), rpi \ll ro)$$

$$A_3 \cong -gm_3Rc \cong -56 \ (ro \gg Rc)$$
 (3 דרגה

$$A_4\cong 1 \ (gm_4*RE\gg 1)$$
 (4 דרגה

 $A_{ol}\cong A_{1+2}*A_3\cong 1000$: הגבר בחוג סגור

$$B = \frac{Rf1}{Rf1 + Rf2} \approx 0.0085$$

$$A_{cl} \cong \frac{A_{ol}}{1 + A_{ol} * B} \cong 100$$

$$WL \cong \frac{1}{5p * 8.5K\Omega} \cong 95[\frac{M * rad}{sec}]$$

$$WH \cong \frac{1}{79F * 8.5K\Omega} \cong 0.35[\frac{G * rad}{sec}]$$

$$W_l = WL/(1 + AB) \cong 10 \left[\frac{M * rad}{sec} \right]$$

$$W_H = (1 + AB)WH \cong 2.89 \left[\frac{G * rad}{sec} \right]$$

ניתן לראות שמשוב משמש אותנו בשליטה על הגבר מדויק לצד קביעת ערכי תדרי הברך הרצוים, כמו כן, סייע לנו בעמידה בניחות מקסימלי בתדרים הנמוכים והגבוהים.

צריכת הזרם בדרגות ההגבר נמוכה יחסית) זרמים נמוכים מ-1m בדרגות 1 ו-2 וזרמים בסדרי גודל של 1m בדרגה 3, רוב הספק נצרך ע"י הCC (כנדרש – ע"מ שיהיה מועיל כחוצץ), אנו סבורים כי יכולנו לצמצם עוד את צריכת הזרם מה-CC ע"י פיצוי עם המשוב שתיכננו(לאחר משחק רב עם שאר הפרמטרים שהצבנו במעגל).

סך צריכת הזרם ממקור המתח: <u>10.5 ma</u> לכן ההספק:

תגובת התדר של המעגל (בודה, הגבר ופאזה):

