1: Introduction to Introduction to Statistics

Frank Edwards

Syllabus / schedule

https://f-edwards.github.io/intro_stats

Course communication on Slack

https://introstatsfall2024.slack.com

Books for class

- Diez, Rudel, and Barr: Open Intro to Statistics https://
 leanpub.com/os
- Healy: Data Visualization https://socviz.co/
- Alexander: Telling Stories with Data https://tellingstorieswithdata.com/

Navigating the schedule

https://f-edwards.github.io/intro_stats

Software installation

- Install R https://cran.r-project.org/
- Install RStudio https://posit.co/download/rstudio-desktop/

Open science basic principles

- Science should be reproducible
- Scientific decision-making should be transparent
- Free and open source software are the best foundations for reproducible and open research

RStudio walkthrough

The script and the console

Let's work with R

Using the console

- Try some simple math operations with: + / *
- Now try some operations that use: ^ ()
- Try sqrt(); try log()

Objects in R

For the following, please work in your RStudio Console

- In R, we use the assignment operator <- to assign values to objects
- Try to create an object named x and assign the value 3 to the object
- Confirm that x is equal to three using the == operator
- Compute $\frac{x+3}{2x^2}$

Objects in R

- Create a new object named y that is equal to 3x
- Confirm that y is equal to 3x using the == operator
- Print both y and 3x to the console

The Environment

- List all objects in your environment with ls()
- Compare the results to your 'Environment` tab in RStudio
- Next, let's restart our session of R and see what happens to our Environment
- (Session Menu -> Restart R or Shift + Cmd + 0)

X is gone, so is y!

Reproducible research: the environment is a sandbox, treat it that way

- The environment should always be treated as temporary
- It disappears when you close R
- For now, you never need to save the environment
- You can use the environment for quick checks on objects or operations

Reproducible research: the importance of scripts

- Scripts provide line-by-line instructions for everything you do in your analysis.
- ALWAYS DO YOUR WORK IN SCRIPTS!
- Scripts allow your entire analysis to be reproduced by simply running the program
- To make a new script: Cmd+Shift+N, or File -> New File -> R Script

File paths and the command line

We need to choose a good place to save this cool new script we are making

- Click the 'terminal' tab and let's check out how file paths work from the command line
- Basic unix command line tools: cd; ls; mkdir
- Navigate to your root directory with cd ~
- Use ls to identify a good place for you to store your stats course work
- create a new directory called intro_stats using mkdir

Your class folder and path

- Now save this script as lab1.R in ./intro_stats/
- Make note of its exact file path (the details before the cursor on your terminal)
- Create a new directory inside intro_stats called hw
- Use these directories all semester!

Back to our script

Let's repeat the operations we did before in the console, but now in the script - On line 1: create an object named x and assign the value 3 to the object - On line 2: Confirm that x is equal to three using the == operator - On line 3: Create a new object named y that is equal to 3x - On line 4: print the object y by simply calling y

Sourcing and confirming output

- Now run your program! Click 'source' or use cmd+shift+return to run the script
- Check out your environment tab in RStudio, what do you see?
- Restart R again: cmd+shift+0
- Now source your script again. Reproducibility!

Congrats you wrote a program!

Let's document your program

- We use # to write code comments
- Before each line of code in your script, write a brief comment explaining what the line of code will do in plain english

Packages in R

- Packages extend the functionality of R (dramatically!)
- Thousands of FOSS packages available through CRAN
- Try it:
 - On the console: `install.packages("tidyverse")
 - you only have to install once!

Loading packages in R

- Use the library("packagename") format to import a package
- Try it with tidyverse
- Package loading will usually be the first few lines of your scripts

Homework 1

https://github.com/f-edwards/intro_stats/blob/master/hw/
HW1.Rmd