Discovering variable length phrases from symbolic notation of Carnatic music

Ranjani, H. G. and Prof. T. V. Sreenivas ranjanihg@ece.iisc.ernet.in, tvsree@ece.iisc.ernet.in

Problem

• Given symbolic transcript of a $r\bar{a}ga$, discover repetitive phrases

Figure 1: Sample symbol transcript of Begada rāga.

- Let transcript be denoted by $\underline{A} = [A_1, A_2, \dots A_I]$.
- Any rhythm cycle, $A_i \triangleq [u_{t=1}u_{t=2}\dots u_{t=T_{A_i}}]$, where swaras, $u_t \in V$, with $V = \{S, R, G, M, P, D, N, S\}$.

Figure 2: Rough pitch contours of more than 100 rhythm cycles from symbolic transcripts o $Begada\ r\bar{a}ga$.

- Multiple and unknown phrases
- Variable length phrases

Assumptions

- Rhythm cycle contains note sequences : concatenation of independent phrases
- Phrases are well within rhythm cycle
- Phrases are repeated across rhythm cycles/compositions

Experimental details

- Publicly available online database [http://www.shivkumar.org/music/]
 by Dr. Shivakumar Kalyanaraman)
- Experiments on 12 rāgas: Hari-Kambhoji, Bhairavi, Shankarābharana, Thōdi, Nāttai, Panthuvarāli, Madhyamāvathi, Khamas, Begada, Kalyani, Reethigowla and Sahana
- Octave folded
- Each note of unit duration
- Performance measures: perplexity, semantic relevance

Conclusions

- Use of 7 notes as generally available in transcription
- Discovering grammatical structure of music
- Obtain phrases containing varied length subsequences
- Multigram perplexity lower than N-gram on training and test data
- Modified multigram for longer length sequences
- Appreciable number of musicological phrases captured

Formulation

- Any rhythm cycle $A = [u_1, u_2, u_3, \dots, u_{T_A}]$ s.t. $p(A) = \prod_{k=1}^{Q_A} p(s_k) \triangleq \prod_{k=1}^{Q_A} \theta_k$ where s_k is such that $|s_k| \leq N$ and for any $T_A > N$, $Q_A > 1$. and $s_1 = [u_{b_0}, \dots u_{b_1}]$, $s_2 = [u_{b_1+1}, \dots u_{b_2}]$ and $s_{Q_A} = [u_{b_{Q_{A-1}}+1}, \dots u_{b_{Q_A}}]$, $b_0 = 1$ and $b_{Q_A} = T_A$.
- A typical segmentation on A gives : $A \equiv [s_1, s_2, s_3, \dots s_{Q_A}]$
- $Z = \{b_k\}, k = 1 : Q_A$
- Estimate parameters, θ_k to maximize posterior $p(\underline{Z}|\underline{A};\theta)$: $\theta^* = \arg\max_{\theta} \left\{ \max_{\underline{Z}} \left[\log p(\underline{Z}|\underline{A};\theta^{old}) \right] \right\}$
- Constraint: $\sum_{k=1}^{Y} \theta_k = 1$ where, Y is total number of unique phrases
- Algorithm :
 - 1. Find Z^* , $Z^* = \arg\max_{Z \in \mathcal{Z}} \log p(\underline{A}, \underline{Z}; \theta^{old}) = \arg\max_{Z \in \mathcal{Z}} \log p(\underline{A}|\underline{Z}, \theta^{old}) p(Z; \theta^{old})$
 - 2. Update parameters

$$\theta_j^{new} = \frac{c_j^Z}{c^Z}$$

Results

Figure 3: Rough pitch contours of more than $100 \ \bar{a}varthanas$ from training data of $r\bar{a}ga \ Begada$ (in blue) and top ten frequently occurring phrases (sorted aided by other colors) as discovered by 8-multigram. Two characteristic phrase(s) are highlighted using (black and red) arrowheads.

- ullet N determines maximum length of sub=sequence
- Propose a modified 2-stage approach:
 - Obtain $\{s_k\}_{k=1}^Y$ containing $\leq N$ length phrases, using multigram training
 - Create new vocab: $V' = \{ V \cup \{ s_i : |s_i| = N, \ \theta_i > P_{thr} \}, \ \forall i \in \{ s_i \}_{i=1}^Y \}.$
 - Replace any occurrence of s_i in data with its corresponding entry from V'
 - Obtain $\{s'_j\}_{j=1}^{Y'}$ containing N+N' length phrases through a second stage of multigram training

	N-gram									N-multigram model								Modified N'-multigram model								
	Training Testing							Training				Testing					Training				Testing					
Rāgo	N = 5	N = 6	N = 7	N = 8	N = 5	N = 6	N = 7	N = 8	Rago	N = 5	N = 6	N = 7	N=8	N = 5	N = 6	N = 7	N = 8	Rāg	1	5 N = 6 $5 N' = 6$	1	1	II	ı	ı	1 11
Bh	2.80	2.79	2.81	2.93	17.55	33.5	61.45	90.25	Bh	1.91	1.72	1.56	1.43	2.65	2.66	2.67	2.63	Bh	1.6	2 1.55	1.53	1.63	2.86	2.75	2.69	2.65
Nt	3.07	3.08	2.83	2.81	8.4	26.7	90.2	152.65	Nt	1.93	1.73	1.55	1.43	2.18	2.27	2.29	2.33	Nt	1.5	1.62	1.62	1.64	2.64	2.36	2.35	2.36
Pa	2.97	2.73	2.72	2.94	7.62	10.34	9.17	5.77	Pa	1.98	1.77	1.62	1.48	2.82	2.92	2.99	3.02	Pa	1.7	5 1.64	1.59	1.61	2.93	2.97	2.99	3.02
Sb	2.77	2.55	2.50	2.45	11.57	25.6	51.6	70.55	Sb	1.90	1.72	1.52	1.36	2.50	2.52	2.61	2.55	Sb	1.5	1.41	1.43	1.34	2.86	2.76	2.63	2.59
Th	2.76	2.43	2.25	2.19	8.48	16.36	27.02	34.35	Th	1.92	1.77	1.54	1.41	2.50	2.44	2.53	2.55	Th	1.3	1.30	1.31	1.29	2.85	2.61	2.58	2.55
Hk	2.47	2.29	2.29	2.22	9.7	29.08	62.61	60.49	Hk	1.82	1.59	1.40	1.31	2.47	2.47	2.56	2.62	Hk	1.3	2 1.30	1.34	1.26	2.72	2.52	2.59	2.62
Mv	2.93	2.68	2.77	3.06	7.2	10.69	10.25	7.55	Mv	1.86	1.65	1.48	1.33	2.16	2.18	2.25	2.24	Mv	1.6	1.69	1.66	1.57	2.37	2.19	2.25	2.27
Kh	2.53	2.32	2.19	2.15	6.19	10.61	12.23	11.46	Kh	1.83	1.67	1.44	1.33	2.50	2.59	2.62	2.76	Kh	1.4	1.38	1.41	1.33	2.82	2.70	2.63	2.77
Bg	2.63	2.50	2.45	2.35	59.64	236.08	186.75	85.97	Bg	1.84	1.57	1.50	1.30	2.68	2.86	2.99	3.01	Bg	1.5	2 1.56	1.56	1.48	2.75	2.86	2.99	3.01
K1	2.97	2.96	3.17	2.10	156.31	770.04	1667	1946.5	K1	1.87	1.65	1.51	1.41	2.81	2.96	3.17	3.24	K1	1.7	1.66	1.74	1.73	3.01	3.05	3.19	3.24
Sh	2.30	2.12	2.02	1.98	30.7	212.28	1163	2324	Sh	1.74	1.59	1.42	1.33	2.50	2.45	2.58	2.64	Sh	1.3	1.20	1.22	1.20	2.92	2.75	2.63	2.67
Rg	2.67	2.51	2.44	2.49	31.95	239.13	1136	1777	Rg	1.83	1.70	1.49	1.41	2.46	2.54	2.73	2.78	Rg	1.4	1.47	1.42	1.46	2.76	2.72	2.75	2.79

Figure 4: Perplexity values of N-gram, N-multigram and modified (N, N')-multigram on training and testing symbolic music data for the $r\bar{a}gas$ considered.

Figure 5: Rough pitch contours of more than 100 $\bar{a}varthanas$ from training data of $r\bar{a}ga$ Begada (in blue) and top ten frequently occurring phrases (sorted aided by other colors) as discovered by modified N'-multigram with (N, N') = (8, 8). Two characteristic phrase(s) are highlighted using (black and red) arrowheads.