Lecture 9: Describing and Evaluating Algorithms

Core 109S IDWT?, Spring 2017 Michael Hay

Algorithms

- Algorithm: a sequence of steps to accomplish a task
 - Making a sandwich
 - Multiplying two large numbers 1402 x 345
- Algorithm properties
 - Correctness
 - Resource usage: time, space, as a function of the size of the input

Terminology

- Procedure
 - Parameters to a procedure
 - Procedures are called; procedures returns a value
- Array
 - Index i
 - A[i] entry of array A at index i
 - Time to access entry i is the same for all i (if A in memory)

Algorithm 1 An algorithm for searching an array

1: **procedure** LinearSearch(A, n, x)

 \triangleright Find x in array A of length n

- 2: Set answer to Not-Found.
- 3: Set i to 1.
- 4: while $i \leq n$ do
- 5: If A[i] = x, then set answer to the value of i.
- 6: Increment i.
- 7: end while
- 8: **return** the value of *answer* as the output.
- 9: end procedure

Algorithm 2 A more efficient algorithm for searching an array

- 1: **procedure** SentinelLinearSearch(A, n, x) \triangleright Find x in array A of length n
- 2: Save A[n] into last and then put x into A[n].
- 3: Set i to 1.
- 4: while $A[i] \neq x$ do
- 5: Increment i.
- 6: end while
- 7: Restore A[n] from last.
- 8: If i < n or A[n] = x, then return the value of i as the output.
- 9: Otherwise, return Not-Found as the output.
- 10: end procedure

Algorithm 1 An algorithm for searching an array

1: **procedure** LinearSearch(A, n, x)

 \triangleright Find x in array A of length n

- 2: Set answer to Not-Found.
- 3: Set i to 1.
- 4: while $i \leq n$ do
- 5: If A[i] = x, then set answer to the value of i.
- 6: Increment i.
- 7: end while
- 8: **return** the value of *answer* as the output.
- 9: end procedure

When is A2 more efficient?

Algorithm 2 A more efficient algorithm for searching an array

1: **procedure** SentinelLinearSearch(A, n, x)

- \triangleright Find x in array A of length n
- 2: Save A[n] into last and then put x into A[n].
- 3: Set i to 1.
- 4: while $A[i] \neq x$ do
- 5: Increment i.
- 6: end while
- 7: Restore A[n] from last.
- 8: If i < n or A[n] = x, then return the value of i as the output.
- 9: Otherwise, return Not-Found as the output.
- 10: end procedure

Exercise 1

Instructions: Work in small groups of 3-4.

• Complete exercise 1 on your worksheet.

Using Big-O to Hide Constants

- We say f(n) is order of g(n) if f(n) is bounded by a constant times g(n)
- Notation: f(n) is O(g(n))
- Roughly, f(n) is O(g(n)) means that f(n) grows like g(n) or slower, to within a constant factor
- "Constant" means fixed and independent of n

We say that f(n) = O(g(n)) if there exist positive constants c and n_0 such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

A Graphical View

To prove that f(n) is O(g(n)):

Find an n0 and c such that $f(n0) \le c g(n0)$ for all $n \ge n0$

We call the pair (c, N) a witness pair for proving that f(n) is O(g(n))

Big-O Example

- Claim: Let f(n) = 100 n + lg n and g(n) = n. Claim is f(n) = O(g(n))
 - We know $\lg n \le n$ for $n \ge 1$
 - So $100 \text{ n} + \text{lg n} \le 101 \text{ n for n} \ge 1$
 - So by definition, 100 n + Ig n is O(n) for c = 101 and N = 1

Exercise 2.a.

Instructions: ~2 minute to think/ answer on your own; then discuss with neighbors; then I will call on one of you

Complete exercise 2.a. on your worksheet.

Exercise 2

Instructions: Work in small groups of 3-4.

 Working in groups, finish exercise 2 on your worksheet.

Problem-Size Examples

Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

	1 second	1 minute	1 hour
n	1000	60,000	3,600,000
n log n	140	4893	200,000
n ²	31	244	1897
3n ²	18	144	1096
n ³	10	39	153
2 ⁿ	9	15	21

Commonly Seen Time Bounds

O(1)	constant	excellent
O(log n)	logarithmic	excellent
O(n)	linear	good
O(n log n)	n log n	pretty good
O(n ²)	quadratic	often OK
O(n ³)	cubic	maybe OK
O(2 ⁿ)	exponential	too slow

Algorithm 3 An algorithm for computing the cumulative sum

```
1: procedure CumulativeSum(A, n) \triangleright Constructs an array B where B[i] is the sum of
   the first i elements of the array A which has length n.
       Initialize B to an n-length array of zeros.
 2:
       Set i to 1.
 3:
       while i \leq n do
 4:
          Set j to 1.
 5:
          Set total to 0.
 6:
          while j \leq i do
 7:
              Add A[i] to total.
 8:
              Increment j.
9:
           end while
10:
           Set B[i] equal to total.
11:
       end while
12:
       return the array B.
13:
14: end procedure
```

Exercise 3

Instructions: Work in small groups of 3-4.

 Working in groups, work on exercises 3 and 4 on your worksheet.

Improving search

 If we knew the array was sorted, how might we speed up search?