Mathematics for Informatics

Carlos Areces and Patrick Blackburn

areces@loria.fr

http://www.loria.fr/~areces

blackbur@loria.fr

http://www.loria.fr/~blacbur

INRIA Lorraine Nancy, France

2007/2008

Theorem

Let $f: \mathbb{N}^n \to \mathbb{N}$ be a partially computable function. Then there is a p.r. predicate $R: \mathbb{N}^{n+1} \to \mathbb{N}$ such that

$$f(x_1,\ldots,x_n) = I\left(\min_z R(x_1,\ldots,x_n,z)\right)$$

Theorem

Let $f: \mathbb{N}^n \to \mathbb{N}$ be a partially computable function. Then there is a p.r. predicate $R: \mathbb{N}^{n+1} \to \mathbb{N}$ such that

$$f(x_1,\ldots,x_n) = I\left(\min_z R(x_1,\ldots,x_n,z)\right)$$

Proof.

Let e be the number for some program for $f(x_1, \ldots, x_n)$.

Theorem

Let $f: \mathbb{N}^n \to \mathbb{N}$ be a partially computable function. Then there is a p.r. predicate $R: \mathbb{N}^{n+1} \to \mathbb{N}$ such that

$$f(x_1,\ldots,x_n) = I\left(\min_{z} R(x_1,\ldots,x_n,z)\right)$$

Proof.

Let e be the number for some program for $f(x_1, \ldots, x_n)$. Remember that the instant configuration is represented as

 $\langle instruction\ number, list\ representing\ the\ state \rangle$

Theorem

Let $f: \mathbb{N}^n \to \mathbb{N}$ be a partially computable function. Then there is a p.r. predicate $R: \mathbb{N}^{n+1} \to \mathbb{N}$ such that

$$f(x_1,\ldots,x_n) = I\left(\min_z R(x_1,\ldots,x_n,z)\right)$$

Proof.

Let e be the number for some program for $f(x_1, \ldots, x_n)$. Remember that the instant configuration is represented as

(instruction number, list representing the state)

The following predicate $R(x_1, \ldots, x_n, z)$ is what we need:

$$\mathsf{STP}^{(n)}(x_1,\ldots,x_n,e,r(z)) \ \land$$

Theorem

Let $f: \mathbb{N}^n \to \mathbb{N}$ be a partially computable function. Then there is a p.r. predicate $R: \mathbb{N}^{n+1} \to \mathbb{N}$ such that

$$f(x_1,\ldots,x_n) = I\left(\min_{z} R(x_1,\ldots,x_n,z)\right)$$

Proof.

Let e be the number for some program for $f(x_1, \ldots, x_n)$. Remember that the instant configuration is represented as

(instruction number, list representing the state)

The following predicate $R(x_1, \ldots, x_n, z)$ is what we need:

$$\mathsf{STP}^{(n)}(x_1,\ldots,x_n,e,r(z)) \land \\ I(z) = \underbrace{r\left(\mathsf{SNAP}^{(n)}(x_1,\ldots,x_n,e,r(z))\right)}_{\text{final state of } e \text{ with input } x_1,\ldots,x_n} \underbrace{\mathsf{Value of the variable } Y \text{ in the final state}}_{\mathsf{Value of the variable } Y \text{ in the final state}}$$

Another characterization of computable functions

Theorem

A function is partially computable if it can be obtained from initial functions by means of a finite number of applications of

- composition,
- primitive recursion and
- minimization

Another characterization of computable functions

Theorem

A function is partially computable if it can be obtained from initial functions by means of a finite number of applications of

- composition,
- primitive recursion and
- minimization

Theorem

A function is computable if it can be obtain from initial functions by means of a finite number of applications of

- composition,
- primitive recursion and
- ▶ proper minimization (of the form $\min_t q(x_1, ..., x_n, t)$ where there is always at least one t such that $q(x_1, ..., x_n, t)$ is true)

Let's consider the program P that uses the input variables X_1 and X_2 :

```
\begin{array}{lll} \text{INSTRUCTION 1} & \#(\mathit{I}_1) \\ & \vdots \\ \text{INSTRUCTION k} & \#(\mathit{I}_k) \end{array}
```

Let's consider the program P that uses the input variables X_1 and X_2 :

INSTRUCTION 1
$$\#(I_1)$$
 \vdots It computes the function $f: \mathbb{N}^2 \to \mathbb{N}$ INSTRUCTION k $\#(I_k)$ $\#(P) = [\#(I_1), \dots, \#(I_k)] - 1$

Let's consider the program P that uses the input variables X_1 and X_2 :

INSTRUCTION 1
$$\#(I_1)$$
 \vdots
INSTRUCTION k $\#(I_k)$
 $\#(P) = [\#(I_1), \dots, \#(I_k)] - 1$

Look for the number of the program P_0 for $f_0 : \mathbb{N} \to \mathbb{N}$, $f_0(x) = f(x, 0)$

Let's consider the program P that uses the input variables X_1 and X_2 :

INSTRUCTION 1
$$\#(I_1)$$
 \vdots It computes the function $f: \mathbb{N}^2 \to \mathbb{N}$ INSTRUCTION k $\#(I_k)$ $\#(P) = [\#(I_1), \dots, \#(I_k)] - 1$

Look for the number of the program P_0 for $f_0 : \mathbb{N} \to \mathbb{N}, f_0(x) = f(x, 0)$

[A]
$$X_2 \leftarrow X_2 - 1$$
 109
IF $X_2 \neq 0$ GOTO A 110
INSTRUCTION 1 #(I_1)
 \vdots
INSTRUCTION k #(I_k)

Let's consider the program P that uses the input variables X_1 and X_2 :

INSTRUCTION 1
$$\#(I_1)$$

$$\vdots \\ f(x,y) = \Psi_P^{(2)}(x,y)$$
INSTRUCTION k $\#(I_k)$

$$\#(P) = [\#(I_1),\ldots,\#(I_k)] - 1$$

Look for the number of the program P_0 for $f_0 : \mathbb{N} \to \mathbb{N}$, $f_0(x) = f(x, 0)$

[A]
$$X_2 \leftarrow X_2 - 1$$
 109
IF $X_2 \neq 0$ GOTO A 110
INSTRUCTION 1 $\#(I_1)$ $f_0(x) = \Psi_{P_0}^{(1)}(x)$
:
INSTRUCTION k $\#(I_k)$ $\#(P_0) = [109, 110, \#(I_1), \dots, \#(I_k)] - 1$

Look for the number of the program P_1 for $f_1: \mathbb{N} \to \mathbb{N}, f_1(x) = f(x, 1)$

Look for the number of the program P_1 for $f_1: \mathbb{N} \to \mathbb{N}, f_1(x) = f(x, 1)$

```
[A] X_2 \leftarrow X_2 - 1 109

IF X_2 \neq 0 GOTO A 110

X_2 \leftarrow X_2 + 1 26

INSTRUCTION 1 \#(I_1)

\vdots

INSTRUCTION k \#(I_k)
```

Look for the number of the program P_1 for $f_1: \mathbb{N} \to \mathbb{N}, f_1(x) = f(x, 1)$

[A]
$$X_2 \leftarrow X_2 - 1$$
 109
IF $X_2 \neq 0$ GOTO A 110
 $X_2 \leftarrow X_2 + 1$ 26
INSTRUCTION 1 #(I_1) $f_1(x) = \Psi_{P_1}^{(1)}(x)$
 \vdots #(P_1) =
INSTRUCTION k #(I_k) [109, 110, 26, #(I_1), ..., #(I_k)] - 1

Look for the number of the program P_1 for $f_1: \mathbb{N} \to \mathbb{N}, f_1(x) = f(x, 1)$

```
[A] X_2 \leftarrow X_2 - 1 109

IF X_2 \neq 0 GOTO A 110

X_2 \leftarrow X_2 + 1 26

INSTRUCTION 1 #(I_1) f_1(x) = \Psi_{P_1}^{(1)}(x)

\vdots #(P_1) =

INSTRUCTION k #(I_k) [109, 110, 26, #(I_1), \dots, \#(I_k)] -1
```

Look for the program P_2 for $f_2 : \mathbb{N} \to \mathbb{N}$, $f_2(x) = f(x, 2)$

Look for the number of the program P_1 for $f_1 : \mathbb{N} \to \mathbb{N}, f_1(x) = f(x, 1)$

```
[A] X_2 \leftarrow X_2 - 1 109

IF X_2 \neq 0 GOTO A 110

X_2 \leftarrow X_2 + 1 26

INSTRUCTION 1 #(I_1) f_1(x) = \Psi_{P_1}^{(1)}(x)

\vdots #(P_1) =

INSTRUCTION k #(I_k) [109, 110, 26, #(I_1), ..., #(I_k)] - 1
```

Look for the program P_2 for $f_2 : \mathbb{N} \to \mathbb{N}$, $f_2(x) = f(x, 2)$

[A]
$$X_2 \leftarrow X_2 - 1$$
 109
IF $X_2 \neq 0$ GOTO A 110
 $X_2 \leftarrow X_2 + 1$ 26
 $X_2 \leftarrow X_2 + 1$ 26
INSTRUCTION 1 #(I_1)
:
INSTRUCTION k #(I_k)

Look for the number of the program P_1 for $f_1: \mathbb{N} \to \mathbb{N}, f_1(x) = f(x, 1)$

Look for the program P_2 for $f_2 : \mathbb{N} \to \mathbb{N}, f_2(x) = f(x, 2)$

[A]
$$X_2 \leftarrow X_2 - 1$$
 109
IF $X_2 \neq 0$ GOTO A 110 It computes the function $f_2 : \mathbb{N} \to \mathbb{N}$
 $X_2 \leftarrow X_2 + 1$ 26 $f_2(x) = \Psi_{P_2}^{(1)}(x)$
INSTRUCTION 1 # (I_1)
 \vdots # $(P_2) =$
INSTRUCTION k # (I_k) [109, 110, 26, 26, # $(I_1), \dots, \#(I_k)$]-1

Parameters theorem

There is a program P_i for the function $f_i(x) = f(x, i)$

The transformation $\#(P) \mapsto \#(P_i)$ is p.r., i.e., there is a function $S: \mathbb{N}^2 \to \mathbb{N}$ p.r. such that given $\#(P), x_2$ it computes $\#(P_{x_2})$:

$$S(x_2, y) = \left(2^{109} \cdot 3^{110} \cdot \prod_{j=1}^{x_2} p_{j+2}^{26} \cdot \prod_{j=1}^{|y+1|} p_{j+x_2+2}^{(y+1)[j]}\right) - 1$$

Parameters theorem

There is a program P_i for the function $f_i(x) = f(x, i)$

The transformation $\#(P) \mapsto \#(P_i)$ is p.r., i.e., there is a function $S: \mathbb{N}^2 \to \mathbb{N}$ p.r. such that given $\#(P), x_2$ it computes $\#(P_{x_2})$:

$$S(x_2, y) = \left(2^{109} \cdot 3^{110} \cdot \prod_{j=1}^{x_2} p_{j+2}^{26} \cdot \prod_{j=1}^{|y+1|} p_{j+x_2+2}^{(y+1)[j]}\right) - 1$$

Theorem

There is a p.r. function $S: \mathbb{N}^2 \to \mathbb{N}$ such that

$$\Phi_y^{(2)}(x_1,x_2) = \Phi_{S(x_2,y)}^{(1)}(x_1)$$

Parameters theorem

There is a program P_i for the function $f_i(x) = f(x, i)$

The transformation $\#(P) \mapsto \#(P_i)$ is p.r., i.e., there is a function $S : \mathbb{N}^2 \to \mathbb{N}$ p.r. such that given $\#(P), x_2$ it computes $\#(P_{x_2})$:

$$S(x_2,y) = \left(2^{109} \cdot 3^{110} \cdot \prod_{j=1}^{x_2} p_{j+2}^{26} \cdot \prod_{j=1}^{|y+1|} p_{j+x_2+2}^{(y+1)[j]}\right) - 1$$

Theorem

There is a p.r. function $S: \mathbb{N}^2 \to \mathbb{N}$ such that

$$\Phi_{y}^{(2)}(x_1,x_2) = \Phi_{S(x_2,y)}^{(1)}(x_1)$$

Theorem

For each n, m > 0 there is an invective p.r. function $S_m^n : \mathbb{N}^{n+1} \to \mathbb{N}$ such that

$$\Phi_{y}^{(n+m)}(x_{1},\ldots,x_{m},u_{1},\ldots,u_{n})=\Phi_{S_{n}(u_{1},\ldots,u_{n},v)}^{(m)}(x_{1},\ldots,x_{m})$$

Autoreferencing programs

- ▶ in the proof of the Halting Problem we built a program P such that, when it is executed with its own program number (i.e., #(P)), it turns into a contradiction.
- ▶ in general, we can assume that programs known their own program number

Autoreferencing programs

- ▶ in the proof of the Halting Problem we built a program P such that, when it is executed with its own program number (i.e., #(P)), it turns into a contradiction.
- in general, we can assume that programs known their own program number
- but if a program P knows it's own program number, it could, for example, return it's own number, i.e. #(P)

Theorem

If $g:\mathbb{N}^{n+1} \to \mathbb{N}$ is partially computable, then there is e such that

$$\Phi_e^{(n)}(x_1,\ldots,x_n)=g(e,x_1,\ldots,x_n)$$

Theorem

If $g:\mathbb{N}^{n+1} o \mathbb{N}$ is partially computable, then there is e such that

$$\Phi_e^{(n)}(x_1,\ldots,x_n)=g(e,x_1,\ldots,x_n)$$

Proof.

Let S_n^1 be the function in the Parameters theorem:

$$\Phi_y^{(n+1)}(x_1,\ldots,x_n,u)=\Phi_{S_n^1(u,y)}^{(n)}(x_1,\ldots,x_n).$$

Theorem

If $g:\mathbb{N}^{n+1} o \mathbb{N}$ is partially computable, then there is e such that

$$\Phi_e^{(n)}(x_1,\ldots,x_n)=g(e,x_1,\ldots,x_n)$$

Proof.

Let S_n^1 be the function in the Parameters theorem:

$$\Phi_y^{(n+1)}(x_1,\ldots,x_n,u)=\Phi_{S_n^1(u,y)}^{(n)}(x_1,\ldots,x_n).$$

The function $g(S_n^1(v,v),x_1,\ldots,x_n)$ is partially computable,

Theorem

If $g:\mathbb{N}^{n+1} o \mathbb{N}$ is partially computable, then there is e such that

$$\Phi_e^{(n)}(x_1,\ldots,x_n)=g(e,x_1,\ldots,x_n)$$

Proof.

Let S_n^1 be the function in the Parameters theorem:

$$\Phi_y^{(n+1)}(x_1,\ldots,x_n,u)=\Phi_{S_n^1(u,y)}^{(n)}(x_1,\ldots,x_n).$$

The function $g(S_n^1(v, v), x_1, \dots, x_n)$ is partially computable, hence there is d such that

$$g(S_n^1(v,v),x_1,\ldots,x_n) = \Phi_d^{(n+1)}(x_1,\ldots,x_n,v)$$

Theorem

If $g:\mathbb{N}^{n+1} o\mathbb{N}$ is partially computable, then there is e such that

$$\Phi_e^{(n)}(x_1,\ldots,x_n)=g(e,x_1,\ldots,x_n)$$

Proof.

Let S_n^1 be the function in the Parameters theorem:

$$\Phi_y^{(n+1)}(x_1,\ldots,x_n,u)=\Phi_{S_n^1(u,y)}^{(n)}(x_1,\ldots,x_n).$$

The function $g(S_n^1(v, v), x_1, \dots, x_n)$ is partially computable, hence there is d such that

$$g(S_n^1(v,v),x_1,...,x_n) = \Phi_d^{(n+1)}(x_1,...,x_n,v)$$

= $\Phi_{S_n^1(d,v)}^{(n)}(x_1,...,x_n)$

Theorem

If $g:\mathbb{N}^{n+1} o\mathbb{N}$ is partially computable, then there is e such that

$$\Phi_{\mathbf{e}}^{(n)}(x_1,\ldots,x_n)=g(\mathbf{e},x_1,\ldots,x_n)$$

Proof.

Let S_n^1 be the function in the Parameters theorem:

$$\Phi_y^{(n+1)}(x_1,\ldots,x_n,u)=\Phi_{S_n^1(u,y)}^{(n)}(x_1,\ldots,x_n).$$

The function $g(S_n^1(v, v), x_1, \dots, x_n)$ is partially computable, hence there is d such that

$$g(S_n^1(v,v),x_1,...,x_n) = \Phi_d^{(n+1)}(x_1,...,x_n,v)$$

= $\Phi_{S_n^1(d,v)}^{(n)}(x_1,...,x_n)$

Theorem

If $g:\mathbb{N}^{n+1} o\mathbb{N}$ is partially computable, then there is e such that

$$\Phi_{\mathbf{e}}^{(n)}(x_1,\ldots,x_n)=g(\mathbf{e},x_1,\ldots,x_n)$$

Proof.

Let S_n^1 be the function in the Parameters theorem:

$$\Phi_y^{(n+1)}(x_1,\ldots,x_n,u)=\Phi_{S_n^1(u,y)}^{(n)}(x_1,\ldots,x_n).$$

The function $g(S_n^1(v, v), x_1, \dots, x_n)$ is partially computable, hence there is d such that

$$g(S_n^1(v,v),x_1,...,x_n) = \Phi_d^{(n+1)}(x_1,...,x_n,v)$$

= $\Phi_{S_n^1(d,v)}^{(n)}(x_1,...,x_n)$

d is fixed; v is variable.

Theorem

If $g:\mathbb{N}^{n+1} o \mathbb{N}$ is partially computable, then there is e such that

$$\Phi_{\mathbf{e}}^{(n)}(x_1,\ldots,x_n)=g(\mathbf{e},x_1,\ldots,x_n)$$

Proof.

Let S_n^1 be the function in the Parameters theorem:

$$\Phi_y^{(n+1)}(x_1,\ldots,x_n,u)=\Phi_{S_n^1(u,y)}^{(n)}(x_1,\ldots,x_n).$$

The function $g(S_n^1(v, v), x_1, \dots, x_n)$ is partially computable, hence there is d such that

$$g(S_n^1(v,v),x_1,...,x_n) = \Phi_d^{(n+1)}(x_1,...,x_n,v)$$

= $\Phi_{S_n^1(d,v)}^{(n)}(x_1,...,x_n)$

d is fixed; v is variable. Choose v = d and $e = S_n^1(d, d)$.

Aplications of the Recursion theorem

Corollary

If $g: \mathbb{N}^{n+1} \to \mathbb{N}$ is partially computable, then there are infinite e such that

$$\Phi_e^{(n)}(x_1,\ldots,x_n)=g(e,x_1,\ldots,x_n)$$

Aplications of the Recursion theorem

Corollary

If $g: \mathbb{N}^{n+1} \to \mathbb{N}$ is partially computable, then there are infinite e such that

$$\Phi_e^{(n)}(x_1,\ldots,x_n)=g(e,x_1,\ldots,x_n)$$

Proof.

In the proof of the previous theorem, there are infinite d such that

$$\Phi_d^{(n+1)} = g(S_n^1(v,v), x_1, \ldots, x_n).$$

 $S_n^1(v,v)$ is invective and hence there are infinite

$$e=S_n^1(d,d).$$

Quines

A quine is a program that when executed, it returns as output the same program.

For example:

```
char*f="char*f=%c%s%c;main()
{printf(f,34,f,34,10);}%c";
main(){printf(f,34,f,34,10);}
```

Quines

Is there an e such that $\Phi_e(x) = e$?

Is there an e such that $\Phi_e(x) = e$?

Yes, the empty program has number 0 and computes the constant function 0, i.e. $\Phi_0(x) = 0$.

11

Is there an e such that $\Phi_e(x) = e$?

Yes, the empty program has number 0 and computes the constant function 0, i.e. $\Phi_0(x) = 0$.

Corollary

There are infinite e such that $\Phi_e(x) = e$.

Is there an e such that $\Phi_e(x) = e$?

Yes, the empty program has number 0 and computes the constant function 0, i.e. $\Phi_0(x) = 0$.

Corollary

There are infinite e such that $\Phi_e(x) = e$.

Proof.

Let's consider the function $g: \mathbb{N}^2 \to \mathbb{N}, g(z,x) = z$.

Is there an e such that $\Phi_e(x) = e$?

Yes, the empty program has number 0 and computes the constant function 0, i.e. $\Phi_0(x) = 0$.

Corollary

There are infinite e such that $\Phi_e(x) = e$.

Proof.

Let's consider the function $g: \mathbb{N}^2 \to \mathbb{N}, g(z,x) = z$. Applying the Recursion theorem, there are infinite e such that

$$\Phi_e(x) = g(e, x) = e.$$

Fixed point theorem

Theorem

If $f: \mathbb{N} \to \mathbb{N}$ is computable, then there is e such that $\Phi_{f(e)}(x) = \Phi_e(x)$.

Fixed point theorem

Theorem

If $f: \mathbb{N} \to \mathbb{N}$ is computable, then there is e such that $\Phi_{f(e)}(x) = \Phi_e(x)$.

Proof.

Consider the function $g: \mathbb{N}^2 \to \mathbb{N}, g(z,x) = \Phi_{f(z)}(x)$. Applying the Recursion theorem, there is an e such that

$$\Phi_e(x) = g(e, x) = \Phi_{f(e)}(x)$$

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Suppose f is computable. We can define

[A] IF
$$f(X) = 1$$
 GOTO A

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Suppose f is computable. We can define

[A] IF
$$f(X) = 1$$
 GOTO A

and then

$$g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is partially computable.

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Suppose f is computable. We can define

[A] IF
$$f(X) = 1$$
 GOTO A

and then

$$g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is partially computable. By the Recursion theorem, let e be such that $\Phi_e(y) = g(e,y)$.

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Suppose f is computable. We can define

[A] IF
$$f(X) = 1$$
 GOTO A

and then

$$g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is partially computable. By the Recursion theorem, let e be such that $\Phi_e(y) = g(e,y)$.

 \blacktriangleright Φ_e is total

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Suppose f is computable. We can define

[A] IF
$$f(X) = 1$$
 GOTO A

and then

$$g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is partially computable. By the Recursion theorem, let e be such that $\Phi_e(y) = g(e, y)$.

• Φ_e is total $\Rightarrow g(e, y) \uparrow$ for any y

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Suppose f is computable. We can define

[A] IF
$$f(X) = 1$$
 GOTO A

and then

$$g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is partially computable. By the Recursion theorem, let e be such that $\Phi_e(y) = g(e, y)$.

▶ Φ_e is total $\Rightarrow g(e, y) \uparrow$ for any $y \Rightarrow \Phi_e(y) \uparrow$ for any y

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Suppose f is computable. We can define

[A] IF
$$f(X) = 1$$
 GOTO A

and then

$$g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is partially computable. By the Recursion theorem, let e be such that $\Phi_e(y) = g(e,y)$.

▶ Φ_e is total $\Rightarrow g(e, y) \uparrow$ for any $y \Rightarrow \Phi_e(y) \uparrow$ for any $y \Rightarrow \Phi_e$ is not total

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Suppose f is computable. We can define

[A] IF
$$f(X) = 1$$
 GOTO A

and then

$$g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is partially computable. By the Recursion theorem, let e be such that $\Phi_e(y) = g(e,y)$.

- ▶ Φ_e is total $\Rightarrow g(e,y) \uparrow$ for any $y \Rightarrow \Phi_e(y) \uparrow$ for any $y \Rightarrow \Phi_e$ is not total
- Φ_e is not total

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Suppose f is computable. We can define

[A] IF
$$f(X) = 1$$
 GOTO A

and then

$$g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is partially computable. By the Recursion theorem, let e be such that $\Phi_e(y) = g(e, y)$.

- ▶ Φ_e is total $\Rightarrow g(e, y) \uparrow$ for any $y \Rightarrow \Phi_e(y) \uparrow$ for any $y \Rightarrow \Phi_e$ is not total
- Φ_e is not total $\Rightarrow g(e, y) = 0$ for any y

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Suppose f is computable. We can define

[A] IF
$$f(X) = 1$$
 GOTO A

and then

$$g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is partially computable. By the Recursion theorem, let e be such that $\Phi_e(y) = g(e,y)$.

- ▶ Φ_e is total $\Rightarrow g(e, y) \uparrow$ for any $y \Rightarrow \Phi_e(y) \uparrow$ for any $y \Rightarrow \Phi_e$ is not total
- $lackbox{\Phi}_{e}$ is not total $\Rightarrow g(e,y)=0$ for any $y\Rightarrow \Phi_{e}(y)=0$ for any y

Prove that $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is not computable.

Suppose f is computable. We can define

[A] IF
$$f(X) = 1$$
 GOTO A

and then

$$g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is partially computable. By the Recursion theorem, let e be such that $\Phi_e(y) = g(e, y)$.

- ▶ Φ_e is total $\Rightarrow g(e, y) \uparrow$ for any $y \Rightarrow \Phi_e(y) \uparrow$ for any $y \Rightarrow \Phi_e$ is not total
- ▶ Φ_e is not total $\Rightarrow g(e, y) = 0$ for any $y \Rightarrow \Phi_e(y) = 0$ for any $y \Rightarrow \Phi_e(y) = 0$ is total