Sensor de Luminosidade LDR

Dimensões

Características elétricas

Electrical characteristics

T_A = 25°C. 2854°K tungsten light source

Parameter	Conditions	Min.	Тур.	Max.	Units
Cell resistance	1000 lux	-	400	-	Ω
	10 lux	-	9	-	kΩ
Dark resistance	-	1.0	-	-	МΩ
Dark capacitance	-	-	3.5	-	pF
Rise time 1	1000 lux	-	2.8	-	ms
	10 lux	-	18	-	ms
Fall time 2	1000 lux	-	48	-	ms
	10 lux	-	120	-	ms

Dark to 110% R_L

Um resistor dependente de luz ou fotoresistência, conhecido pela sigla inglesa LDR (*Light Dependent Resistor*), é um componente eletrônico passivo do tipo resistor variável, mais especificamente, é um resistor cuja resistência varia conforme a intensidade da luz (iluminamento) que incide sobre ele. Tipicamente, à medida que a intensidade da luz aumenta, a sua resistência diminui.

O LDR é construído a partir de material semicondutor com elevada resistência elétrica. Quando a luz que incide sobre o semicondutor tem uma frequência suficiente, os fótons que incidem sobre o semicondutor liberam elétrons para a banda condutora que irão melhorar a sua condutividade e assim diminuir a resistência.

Um multímetro pode ser usado para encontrar a resistência na escuridão ou na presença de luz intensa. Os resultados típicos para um LDR poderão ser:

- Escuridão : resistência máxima, geralmente mega ohms.
- Luz muito brilhante : resistência mínima, geralmente dezenas de ohms.

Para a nossa aplicação o sensor de luminosidade LDR foi escolhido pelo fato de ser um dos melhores sensores de luminosidade existentes no mercado, também por servir para o propósito do projeto e por sua fácil programação.

^{2.} To $10 \times R_L$

R_L = photocell resistance under given illumination.