2. Übungsblatt zu "Analysis I" Wintersemester 2022/23

Abgabetermin: Sonntag, 30.10.2021, 24.00 Uhr

Aufgabe 1: (3 + 3 = 6 Punkte)

Beweisen Sie folgende Aussagen.

a) Für alle $n \in \mathbb{N}$ und jedes $x \in \mathbb{R}$ mit $x \neq 1$ gilt

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

b) Für alle $m, n \in \mathbb{N}_0$ gilt:

$$\sum_{k=0}^{n} \binom{m+k}{k} = \binom{m+n+1}{n}$$

Aufgabe 2: (1+1+1+1+1=6 Punkte)

Sei K ein Körper welcher aus mindestens 2 Elementen besteht. Beweisen Sie folgende Aussagen mithilfe der Körperaxiome aus der Vorlesung

a)
$$x \cdot 0 = 0$$
, **b**) $0 \neq 1$ **c**) $(x^{-1})^{-1} = x$ falls $x \neq 0$ **d**) $x \cdot (-y) = -(x \cdot y)$ **e**) $0 = -0$, **f**) $-(-x) = x$

Aufgabe 3: (4 Punkte)

Es seien $A, B \subseteq \mathbb{R}$ zwei nicht leere Mengen mit $A \cup B = \mathbb{R}$ und der Eigenschaft

$$\forall a \in A \ \forall b \in B \colon a < b.$$

Zeigen Sie, dass genau ein $c \in \mathbb{R}$ existiert, so dass für jedes $x \in \mathbb{R}$ gilt:

$$x < c \implies x \in A \quad \text{und} \quad x > c \implies x \in B.$$

Aufgabe 4 (4 Punkte)

Bestimmen Sie sup M und inf M für folgende Mengen.

a)
$$M = \left\{ \frac{3 + (-1)^n}{2^{n+1}} \mid n \in \mathbb{N} \right\}$$
 b) $M = \left\{ \frac{x}{1 + x^2} \mid x \in \mathbb{R} \right\}$.