Solutions to HW8 of Math 103A, Fall 2018

Zilu Ma zim022@ucsd.edu

November 28, 2018

(1) Let G be a group and let $K \leq H \leq G$. Assume (G:K) is finite. Prove that (G:H) and (H:K) are finite.

Proof. This is practice midterm II (6).

(2) Let G be a group and let H, K be two subgroups of G. Assume (G : K) is finite. Prove that $(H : H \cap K)$ is finite.

Proof. Suppose $\{g_1K, \dots, g_rK\}$ is the set of left cosets of K. Then

$$G = \bigcup_{i=1}^{r} g_i K, \quad g_i K \cap g_j K = \emptyset \text{ if } i \neq j.$$

Let

$$I = \{i | 1 < i < r, \ H \cap q_i K \neq \emptyset\}.$$

Clearly I is finite. For every $i \in I$, there is $h_i \in H \cap g_i K$. So $h_i = g_i k_i$ for some $k_i \in K$. For every $h \in H, h \in g_i K$ for some i. Then $i \in I$ and there is $k \in K$ such that $h = g_i k$. It follows that

$$h_i^{-1}h = k_i^{-1}g_i^{-1}g_ik = k_i^{-1}k \in K.$$

Since $h_i^{-1}h \in H$ as well, we have $h_i^{-1}h \in K \cap H$ and in particular, $h \in h_i(K \cap H)$. Thus

$$H \subseteq \bigcup_{i \in I} h_i(H \cap K).$$

Since $H \cap K \leq H$ and $h_i \in H$, clearly $\bigcup_{i \in I} h_i(H \cap K) \subseteq H$. So

$$H = \bigcup_{i \in I} h_i(H \cap K),$$

and $(H: H \cap K) \leq |I| \leq (G: H) < \infty$.

(3) Let G be a group and let H, K be two subgroups of G. Assume $(G: H), (G: K) < \infty$. Prove that $(G: H \cap K) < \infty$.

Proof. By (2) above, we know $(H:H\cap K)<\infty$. Now consider the chain of subgroups

$$H \cap K \leq H \leq G$$
.

Then $(G: H \cap K) < \infty$ because $(G: H), (H: H \cap K) < \infty$.

- (4) (a) Recall from HW7 (6-a), $N_G(H) \leq G$. Clearly $H \leq N_G(H) \leq G$. By (1), $(G:N_G(H))$ is finite. So there are $g_1, \dots, g_n \in G$ so that $\{g_iN_G(H)|1 \leq i \leq n\}$ is the set of left cosets of $N_G(H)$ in G. Then $g_iN_G(H) \neq g_jN_G(H)$ if $i \neq j$. By HW7 (6-c), this implies $g_iHg_i^{-1} \neq g_jHg_j^{-1}$ whenever $i \neq j$.
 - (b) For every $g \in G$, it must belong to some left coset $g_i N_G(H)$. Then $gN_G(H) = g_i N_G(H)$. By HW7 (6-c), $gHg^{-1} = g_i Hg_i^{-1}$.
- **(5)** (P.110 # 1)

element

$$(0,0)$$
 $(0,1)$
 $(0,2)$
 $(0,3)$
 $(1,0)$
 $(1,1)$
 $(1,2)$
 $(1,3)$

 order
 1
 4
 2
 4
 2
 4
 2
 4

Since \mathbb{Z}_n is abelian for every integer n, the product $\mathbb{Z}_2 \times \mathbb{Z}_4$ is abelian.

- (6) (P.110 #7) The orders of 3, 6, 12, 16 in \mathbb{Z}_4 , \mathbb{Z}_{12} , \mathbb{Z}_{20} , \mathbb{Z}_{24} are 4, 2, 5, 3, respectively. So the order of (3, 6, 12, 16) = 1.c.m.(4, 2, 5, 3) = 60.
- (7) (P.110 #13) The prime decomposition of 60 is $60 = 2^2 \times 3 \times 5$. So

$$\mathbb{Z}_{60} \cong \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \cong \mathbb{Z}_{12} \times \mathbb{Z}_5 \cong \mathbb{Z}_4 \times Z_{15} \cong \mathbb{Z}_{20} \times \mathbb{Z}_3.$$

(8) (P.111 #26) $24 = 2^3 \times 3$, $25 = 5^2$. By the fundamental theorem of finitely generated abelian groups, the abelian groups of order 24 are

$$\mathbb{Z}_{24} \cong \mathbb{Z}_8 \times \mathbb{Z}_3, \quad \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_3, \quad \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3.$$

The abelian groups of order 25 are

$$\mathbb{Z}_{25}$$
, $\mathbb{Z}_5 \times \mathbb{Z}_5$.

Since gcd(24, 25) = 1, every abelian group of order (24)(25) is isomorphic to a product of a group of order 24 and a group of order 25, there are 6 abelian groups of order (24)(25).

- (9) (P.110 #29)
 - (a) It suffices to consider a combinatorial problem: what is the number p_n of integer solutions to

$$\alpha_1 + \dots + \alpha_n = n$$

with $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n \geq 0$. Because for every such solutions $(\alpha_1, \dots, \alpha_n)$ $(\alpha_i \text{ might be } 0)$, we get an abelian group

$$\mathbb{Z}_{p^{\alpha_1}} \times \cdots \mathbb{Z}_{p^{\alpha_n}},$$

and vise versa. So the table is

n	2	3	4	5	6	7	8
number of abelian groups of order p^n	2	3	5	7	11	15	22

In general, there is no simple formula for p_n . But if you learned about combinatorics, it is not hard to find the generating function of $\{p_n\}$, which is

$$\sum_{n=0}^{\infty} p_n x^n = (1 + x + x^2 + x^3 + \dots)(1 + x^2 + x^4 + \dots)(1 + x^3 + x^9 + \dots) \dots$$

(10) (P.113 #47) Let G be an abelian group. Let H be the subset of G consisting of the identity e and all elements of order 2. Show $H \leq G$.

Proof. By definition $e \in H$. If $x \in H, x \neq e$, then by definition, $x^2 = e$. So $x^{-1} = x \in H$. For every $x, y \in H$, as G is abelina,

$$(xy)(xy) = x^2y^2 = e.$$

So H is closed. Thus H is a subgroup.

(11) (P.113 #50) Since G is defined to be $G = H \times K$, every element of G is of form (h, k) for some $h \in H, k \in K$. Let e_H, e_K be identities of H, K, respectively. Then

$$(h,k) = (h,e_K)(e_H,k),$$

where $(h, e_K) \in H \times \{e_K\} \cong H, (e_H, k) \in \{e_H\} \times K \cong K$.

For any $h \in H, k \in K$,

$$(h, e_K)(e_H, k) = (h, k) = (e_H, k)(h, e_K).$$

And clearly

$$H \times \{e_K\} \cap \{e_H\} \times K = \{(e_H, e_K) = e_G\}.$$

- (12) (P.113 #52) Suppose G is a finite abelian group. By the fundamental theorem of finitely generated abelian groups, $G \cong \mathbb{Z}_{p_1^{r_1}} \times \cdots \times \mathbb{Z}_{p_m^{r_m}}$ for some primes p_1, \cdots, p_m , not necessarily distinct, and r_i are positive integers.
 - (\Rightarrow) Suppose G is not cyclic. By Corallary 11.6, since G is not cyclic, there are $p_i^{r_i}$ and $p_j^{r_j}$ with $i \neq j$ that are not coprime. But p_k 's are prime. We must have $p_i = p_j = p$. So $\mathbb{Z}_{p^{r_i}} \times \mathbb{Z}_{p^{r_j}}$ can be viewed a subgroup of G. Let $H_1 = \langle p^{r_i-1} \rangle$, $H_2 = \langle p^{r_j-1} \rangle$ be cyclic subgroups of $\mathbb{Z}_{p^{r_i}}, \mathbb{Z}_{p^{r_j}}$, respectively. Clearly $H_1 \cong H_2 \cong \mathbb{Z}_p$ and $H_1 \times H_2 \cong \mathbb{Z}_p \times \mathbb{Z}_p$ can be viewed as a subgroup of G. (\Leftarrow) If G is cyclic, then any subgroup of G should be cyclic as well. But G contains a subgroup that is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$, which is not cyclic by Corallary 11.6.
- (13) (P.113 #53) Let G be an abelian group of order p^k , where p is prime and k is a positive integer. For any $g \in G, \langle g \rangle$ is a subgroup of G. By Lagrange's theorem, the order of g, which equals $|\langle g \rangle|$, divides p^k . Thus the order of g is also a power of p.

 Yes, the hypothesis of commutativity can be dropped, since in the proof above we never used the commutativity.