Banach Spaces

Definition: Banach

Let E be a normed space. To say that E is *complete* means that every Cauchy sequence in E converges to some element of E.

A complete normed space is called a *Banach* space.

Examples

1). $E = \mathcal{P}[a, b]$ with the sup (uniform convergence) norm is not Banach.

As a counterexample, consider $f_n = \sum_{k=1}^n \frac{t^k}{k!} \in \mathcal{P}[0,1]$

AWLOG: n < m.

$$||f_n - f_m|| = \left\| \sum_{k=1}^m \frac{t^k}{k!} - \sum_{k=1}^n \frac{t^k}{k!} \right\| = \left\| \sum_{k=n+1}^m \frac{t^k}{k!} \right\| = \sum_{k=n+1}^m \frac{1}{k!} \to 0$$

Thus, f_n is Cauchy; however, $f_n \to f = e^t \notin \mathcal{P}[0,1]$.

Therefore, $\mathcal{P}[0,1]$ is not Banach.

2).
$$E=\mathcal{C}[0,1]$$
 with $\|f\|=\int_0^1|f(t)|\,dt$ is not Banach.

As a counterexample, consider $f_n = t^n \in \mathcal{C}[0,1]$.

Claim: f_n is Cauchy in the norm.

 $\mathsf{AWLOG} \mathpunct{:} n < m$

$$||f_n - f_m|| = \int_0^1 |f_n - f_m|$$

$$= \int_0^1 (t^n - t^m) dt$$

$$= \left[\frac{1}{n+1} t^{n+1} - \frac{1}{m+1} t^{m+1} \right]_0^1$$

$$= \frac{1}{n+1} - \frac{1}{m+1}$$

$$\to 0$$

Claim: $f_n \to f$ where $f = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$

$$||f_n - f|| = ||f_n - 0||$$

$$= ||f_n||$$

$$= \int_0^1 t^n dt$$

$$= \frac{1}{n+1} t^{n+1} \Big|_0^1$$

$$= \frac{1}{n+1}$$

$$\to 0$$

Thus, f_n is Cauchy in the norm and $f_n \to f$ in the norm; however, f is discontinuous and thus $f \notin \mathcal{C}[0,1]$.

Therefore, $\mathcal{C}[0,1]$ is not complete, and thus not Banach.

3). $E = \mathcal{C}[a,b]$ with the sup (uniform convergence) norm is Banach.

Assume (f_n) in $\mathcal{C}[a,b]$ is Cauchy.

Thus, $\forall \epsilon > 0, \exists N > 0, n, m > N \implies ||f_n - f_m|| < \epsilon.$

$$|f_n(x) - f_m(x)| \le \max_{x \in [a,b]} |f_n - f_m| = ||f_n - f_m|| < \epsilon$$

Thus, $\forall x \in [a, b], (f_n(x))$ is Cauchy.

So by completeness of \mathbb{R} , $\forall x \in [a,b], f_n(x) \to f(x)$.

By letting $m \to \infty$, $\forall x \in [a, b], |f_n(x) - f(x)| < \epsilon$.

Thus, $f_n \rightrightarrows f$ and is f_n continuous, so f is also continuous and $f \in \mathcal{C}[a,b]$.

Therefore, C[a, b] is Banach.

4).
$$\ell^p$$
 with $||x||_p = \left(\sum_{k=1}^{\infty} (x_n)^p\right)^{\frac{1}{p}}$ is Banach for $1 \le p < \infty$.

Assume (α_n) is a Cauchy sequence (of sequences) in ℓ^p , where $\alpha_n = (\alpha_{n,1}, \alpha_{n,2}, \ldots)$. Assume $\epsilon > 0$.

$$\exists N > 0, n, m > N \implies \|\alpha_n - \alpha_m\| = \left(\sum_{k=1}^{\infty} |\alpha_{n,k} - \alpha_{m,k}|^p\right)^{\frac{1}{p}} < \epsilon$$

And so:

$$\sum_{k=1}^{\infty} \left| \alpha_{n,k} - \alpha_{m,k} \right|^p < \epsilon^p$$

Thus, for each fixed k:

$$|\alpha_{n,k} - \alpha_{m,k}|^p \le \sum_{k=1}^{\infty} |\alpha_{n,k} - \alpha_{m,k}|^p < \epsilon^p$$

And so:

$$|\alpha_{n,k} - \alpha_{m,k}| < \epsilon$$

Thus, for each fixed k, the sequence $(\alpha_{n,k})$ is Cauchy in \mathbb{C} . But \mathbb{C} is complete, so $\alpha_{n,k} \to \alpha_k \in \mathbb{C}$. Let $\alpha = (\alpha_n)$, i.e., α is the sequence of the limits.

By letting $m \to \infty$ and assuming n > N:

$$\sum_{k=1}^{\infty} \left| \alpha_{n,k} - \alpha_k \right|^p < \epsilon^p < \infty$$

Furthermore, since $\alpha_N \in \ell^p$:

$$\sum_{k=1}^{\infty} |\alpha_N, k|^p < \infty$$

Now, applying Minkowski:

$$\left(\sum_{k=1}^{\infty} |\alpha_{k}|^{p}\right)^{\frac{1}{p}} = \left(\sum_{k=1}^{\infty} \left[\left(|\alpha_{k}| - |\alpha_{N,k}|\right) + |\alpha_{N,k}|\right]^{p}\right)^{\frac{1}{p}} \\
\leq \left(\sum_{k=1}^{\infty} \left(|\alpha_{k}| - |\alpha_{N,k}|\right)^{p}\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} |\alpha_{N,k}|^{p}\right)^{\frac{1}{p}} \\
\leq \left(\sum_{k=1}^{\infty} |\alpha_{k} - \alpha_{N,k}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} |\alpha_{N,k}|^{p}\right)^{\frac{1}{p}} \\
< \infty$$

Therefore, $\alpha \in \ell^p$.

Moreover:

$$\|\alpha_n - \alpha\| = \left(\sum_{k=1}^{\infty} |\alpha_{n,k} - \alpha_k|^p\right)^{\frac{1}{p}} < \epsilon$$

And so $\|\alpha_n - \alpha\| \to 0$.

Thus, $\alpha_n \to \alpha \in \ell^p$, so ℓ^p is complete and therefore Banach.

5). ℓ^{∞} with $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$ is Banach.

Assume (α_n) is a Cauchy sequence (of sequences) in ℓ^{∞} , where $\alpha_n = (\alpha_{n,1}, \alpha_{n,2}, \ldots)$. Assume $\epsilon > 0$.

$$\exists N > 0, n, m > N \implies \|\alpha_n - \alpha_m\| = \sup_{k \in \mathbb{N}} |\alpha_{n,k} - \alpha_{m,k}| < \epsilon$$

And so:

$$|\alpha_{n,k} - \alpha_{m,k}| \le \sup_{k \in \mathbb{N}} |\alpha_{n,k} - \alpha_{m,k}| < \epsilon$$

Thus, for each fixed k, the sequence $(\alpha_{n,k})$ is Cauchy in \mathbb{C} . But \mathbb{C} is complete, so $\alpha_{n,k} \to \alpha_k \in \mathbb{C}$.

Let $\alpha = (\alpha_n)$, i.e., α is the sequence of the limits.

By letting $m \to \infty$ and assuming n > N:

$$\sup_{k\in\mathbb{N}} |\alpha_{n,k} - \alpha_k| < \epsilon < \infty$$

Furthermore, since $\alpha_N \in \ell^{\infty}$:

$$\sup_{k\in\mathbb{N}}|\alpha_N,k|<\infty$$

Now, to show that $\alpha \in \ell^{\infty}$:

$$\sup_{k \in \mathbb{N}} |\alpha_k| = \sup_{k \in \mathbb{N}} \{ (|\alpha_k| - |\alpha_{N,k}|) + |\alpha_{N,k}| \}$$

$$\leq \sup_{k \in \mathbb{N}} \{ |\alpha_k| - |\alpha_{N,k}| \} + \sup_{k \in \mathbb{N}} |\alpha_{N,k}|$$

$$< \infty$$

Therefore, $\alpha \in \ell^{\infty}$.

Moreover:

$$\|\alpha_n - \alpha\| = \sup_{k \in \mathbb{N}} |\alpha_{n,k} - \alpha_k| < \epsilon$$

And so $\|\alpha_n - \alpha\| \to 0$.

Thus, $\alpha_n \to \alpha \in \ell^{\infty}$, so ℓ^{∞} is complete and therefore Banach.

Theorem

Let E be a Banach space and F a closed subspace of E. F is also Banach.

Proof

Assume (\vec{x}_n) is Cauchy in F. Thus (\vec{x}_n) is Cauchy in E and $\vec{x}_n \to \vec{x} \in E$, since E is complete. But F is closed and thus contains all of its limit points, and so $\vec{x} \in F$.

Therefore ${\cal F}$ is complete, and thus Banach.