

NRS: Non-Reliability Suppression for False Positives Elimination in YOLOv3

Ren Wang¹, Jin-Sung Kim²*, Hyuk-Jae Lee¹
¹Seoul National University, Korea ²Sun Moon University, Korea

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

서울대학교 컴퓨터구조 및 병렬처리 연구실

Computer Architecture and Parallel Processing Lab.

- Modern object detectors generally give redundant detections for a single object.
- Non-maximum suppression (NMS) is widely used as a post-processing step to select an accurate bounding box for an object among cluttered candidates.
- However, NMS cannot handle the redundant detections with different classification results.

Redundant 'bicycle' and 'person' detections for the object 'person'

Remaining redundant 'bicycle' detection for the object 'person'

Problem Analysis

- Redundant detections are considered as false positives (FP). -> *Accuracy degradation*.
- Two basic methods for eliminating potential FPs.
 - Confidence Threshold: Detections with low confidence scores.
 - NMS: Detections with identical classification results and high overlap ratios.
- Limitation of Confidence Threshold: loss of true positives (TP).

Redundant 'bicycle' detection for the object 'person'.

Correct 'bicycle' detection for the object 'bicycle'.

Proposed Metric: Classification Reliability Score (R)

- What is a perfect detection?
 - Condition 1: Confidence score of true positive is **1**. $(S_n = C_n * P_{obj})$
 - Condition 2: IoU between the predicted bounding box and ground truth box is 1.
 - Condition 3: The sum of false positives' classification scores is 0.
- A new metric: Classification Reliability Score. -> $R_n = C_n / sum(C_0, C_1, ... C_n)$

Components in the predicted bounding box of YOLOv3

Properties of Classification Reliability Score

- Range: [0, 1]
- High R score means high reliability of classification result.

■ Example: Two 'bicycle' detections have the same confidence scores but totally different R scores.

Classification Reliability Score

Non-Reliability Suppression (NRS)

- Detections with low R scores are likely to be FPs.
- NRS: Eliminate detections with R scores lower than predefined thresholds.
- R threshold: category specific & confidence score specific
 - Confidence regions: [1, 0.5], [0.5, 0.1], [0.1, 0.05], [0.05, 0.01], [0.01, 0.005]
- Applied after NMS.

dog: 97%

sheep: 11%

person: 10.0%

person: 1%

tymonitor: 3% pottedplant: 29%

NRS

dog: 97%

person: 10.0%

pottedplant: 29%

Experiments & Results

- Dataset: PASCAL VOC detection benchmark.
- Performance on different categories.

Class	NMS			NMS + NRS			
Class	# of TP	# of FP	AP_{50}	# of TP	# of FP	AP_{50}	# of GT
aeroplane	256	196	87.2	254	95	87.1	285
bicycle	292	313	84.0	289	109	83.9	337
bird	361	288	75.4	360	259	75.4	459
boat	206	421	70.4	205	230	71.0	263
bottle	323	449	61.8	322	316	62.1	469
bus	187	237	84.8	187	149	84.8	213
car	1081	655	87.9	1079	434	88.0	1201
cat	324	287	88.3	323	179	88.3	358
chair	543	1300	60.9	539	1022	61.0	756
cow	222	343	81.3	221	330	81.2	244
diningtable	170	373	74.0	168	152	74.4	206
dog	440	595	85.4	439	465	85.4	489
horse	311	387	86.9	311	371	87.1	348
motorbike	289	342	86.1	287	129	86.2	325
person	3823	2227	81.4	3819	1958	81.4	4528
pottedplant	282	534	48.1	282	415	48.8	480
sheep	203	396	76.1	202	246	76.2	242
sofa	211	580	78.4	211	435	78.5	239
train	249	287	84.7	248	96	84.8	282
tv/monitor	247	280	75.7	246	122	76.3	308

3.8% FP ↓

0.7 AP↑

66.6% FP ↓

Experiments & Results

■ Performance on different confidence thresholds.

■ 0.005: 28.4% FP ↓ & 0.3% TP ↓

Confidence		NMS		NMS + NRS		
Threshold	# of TP	# of FP	mAP	# of TP	# of FP	mAP
0.5	8849	1356	70.8	8849	1305	70.8
0.1	9396	2894	74.8	9390	2593	74.8
0.05	9574	3869	75.8	9561	3334	75.8
0.01	9908	7652	77.5	9886	6114	77.6
0.005	10020	10490	77.9	9992	7512	78.1

■ Elimination of unreliable detections.

■ Classification: 39.0% ↓; Non-classification: 13.2% ↓

Method	# of FP (classification error)	# of FP (non-classification error)		
NMS	6164	4326		
NMS + NRS	3757	3755		

■ Inference latency.

■ Image resolution: 416 x 416

■ NRS: 0.01 ~ 0.02ms per image on Intel(R) Xeon(R) Gold 5118 CPU @2.30GHz.

■ Total inference latency: 29ms per image on one NVIDIA Titan Xp GPU.

sheep: 11%; -> classification error person: 1%; -> non-classification error

- NRS efficiently eliminates the false positives while the loss of true positives can be ignored.
- NRS is simple to be implemented and the computational complexity is minimal.
- Comparison with recent NMS algorithms.

	NMS	Extra Training	Extra Neural Network
	Traditional-NMS	No	No
	Soft-NMS No Softer-NMS Yes Fitness-NMS Yes	No	
Greedy-based NMS	Softer-NMS	Yes	No
	Fitness-NMS	Yes	No
	IoU-guided NMS	Yes	Yes
	Adaptive-NMS	nal-NMS No NMS No -NMS Yes s-NMS Yes led NMS Yes re-NMS Yes p Net Yes	Yes
Learning-based NMS	Gossip Net	Yes	Yes
	Object Relation Module	Yes	Yes
NRS		No	No

■ Lack of NRS

■ Empirically predefined R thresholds. Need some strategies to find optimal parameters.

Thank You