Real Analysis

Module 3

January 19, 2022

Uniform Convergence & Differentiation

Theorem (7.17)

Suppose $\{f_n\}$ is a sequence of functions differentiable on [a,b] and such that the sequence $\{f_n(x_0)\}$ converges for some $x_0 \in [a,b]$. If $\{f'_n\}$ converges uniformly on [a,b], then $\{f_n\}$ converges uniformly on [a,b] to a function f and

$$f'(x) = \lim_{n \to \infty} f'_n(x), \quad \forall x \in [a, b]$$

Uniform Convergence & Differentiation

Proof.

Let $\varepsilon > 0$.

We have, sequence $\{f_n(x_0)\}$ converges for some $x_0 \in [a,b]$.

Choose natural number N such that $\forall n, m > N$,

$$|f_n(x_0) - f_m(x_0)| < \frac{\varepsilon}{2},$$
 since every convergent sequence is Cauchy $|f_n'(t) - f_m'(t)| < \frac{\varepsilon}{2(b-a)}$ since f_n' converges to f uniformly on $[a,b]$

$$|f_n'(t) - f_m'(t)| < \frac{\varepsilon}{2(b-a)}$$
 since f_n' converges to funiformly on $[a,b]$

Thank You