Rarest Insects

Возле дома Пака Блангкона живут N насекомых, пронумерованных от 0 до N-1. Каждое из насекомых имеет определенный **тип**, который явялется целым числом от 0 до 10^9 , включительно. Несколько насекомых могут иметь один и тот же тип.

Сгруппируем насекомых по типу. Назовем **максимальной частотой** количество насекомых в группе, которая имеет наибольший размер. Аналогичным образом **минимальной частотой** назовем количество насекомых в группе, которая имеет наименьший размер.

К примеру, пусть всего есть 11 насекомых с типами [5,7,9,11,11,5,0,11,9,100,9]. Тогда максимальная частота равна 3. Группы с наибольшим количеством насекомых соответствуют типам 9 и 11, каждая из них состоит из 3 насекомых. Минимальная частота равна 1. Группы с наименьшим количеством насекомых соответствуют типам 7, 0 и 100, каждая из них состоит из 1 насекомого.

Пак Блангкон не знает типы насекомых. У него есть специальный аппарат с единственной кнопкой, сообщающий какую-то информацию о типах насекомых. Изначально аппарат пуст. Для использования аппарата можно выполнить три типа действий:

- 1. Поместить насекомое в аппарат.
- 2. Достать насекомое из аппарата.
- 3. Нажать кнопку на аппарате.

Каждое из действий может быть выполнено не более $40\ 000$ раз.

При нажатии кнопки аппарат сообщает **максимальную частоту** среди тех насекомых, которые находятся внутри аппарата.

Ваша задача состоит в том, чтобы определить **минимальную частоту** среди всех N насекомых Пака Блангкона с помощью предоставленного аппарата. В некоторых подзадачах ваш балл дополнительно зависит от максимального числа действий определенного вида, которые были выполнены с аппаратом (смотрите секцию Subtasks).

Implementation Details

Вы должны реализовать функцию:

int min_cardinality(int N)

- N: количество насекомых.
- Эта функция должна возвращать **минимальную частоту** среди всех N насекомых в доме Пака Блангкона.
- Эта функция будет вызвана ровно один раз.

Вышеописанная функция может вызывать функцию

```
void move_inside(int i)
```

- i: номер насекомого, которого требуется поместить в аппарат. Значение i должно находиться в диапазоне от 0 до N-1, включительно.
- Если насекомое уже находится в аппарате, то этот вызов не влияет на множество насекомых внутри аппарата. Однако, он все еще считается отдельным вызовом функции.
- ullet Эта функция может быть вызвана не более 40~000 раз.

```
void move_outside(int i)
```

- ullet i: номер насекомого, которого требуется достать из аппарата. Значение i должно находиться между 0 и N-1, включительно.
- Если насекомое уже не находится в аппарате, то этот вызов не влияет на множество насекомых внутри аппарата. Однако, он все еще считается отдельным вызовом функции.
- Эта функция может быть вызвана не более 40~000 раз.

```
int press_button()
```

- Эта функция возвращает максимальную частоту среди насекомых внутри аппарата.
- Эта функция может быть вызвана не более $40\ 000$ раз.
- Грейдер в этой задаче **не адаптивный**. Это означает, что типы всех N насекомых зафиксированы перед первым вызовом функции min_cardinality.

Example

Рассмотрим пример, в котором есть 6 насекомых с типами [5,8,9,5,9,9], соответственно. Функция min_cardinality будет вызвана следующим образом:

```
min_cardinality(6)
```

Эта функция может вызвать функции move_inside, move_outside и press_button как показано ниже:

Вызов	Возвращаемое значение	Насекомые внутри аппарата	Типы насекомых внутри аппарата
		{}	
<pre>move_inside(0)</pre>		{0}	[5]
<pre>press_button()</pre>	1	{0}	[5]
move_inside(1)		$\{0,1\}$	[5,8]
<pre>press_button()</pre>	1	$\{0,1\}$	[5,8]
move_inside(3)		$\{0, 1, 3\}$	[5, 8, 5]
<pre>press_button()</pre>	2	$\{0, 1, 3\}$	[5, 8, 5]
move_inside(2)		$\{0,1,2,3\}$	[5, 8, 9, 5]
move_inside(4)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
<pre>press_button()</pre>	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
press_button()	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_outside(5)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
press_button()	2	$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]

После всех вышеописанных вызовов мы обладаем информацией для того, чтобы заключить, что наименьшей частотой среди всех насекомых является число 1. Поэтому функция $min_cardinality$ должна вернуть 1.

В данном примере функция move_inside была вызвана 7 раз, move_outside была вызвана 1 раз, a функция press_button была вызвана 6 раз.

Constraints

• $2 \le N \le 2000$

Subtasks

- 1. (10 баллов) $N \leq 200$
- 2. (15 баллов) $N \leq 1000$

3. (75 баллов) Без дополнительных ограничений.

Если в каком-либо из тестов подзадачи аргументы вызовов функций move_inside, move_outside или press_button не удовлетворяют ограничениям, описанным в разделе Implementation Details, или же возвращаемое значение функции min_cardinality не является корректным, вы получите 0 баллов за эту подзадачу.

Пусть q обозначает **максимальное** из трех значений: числа вызовов функции move_inside, числа вызовов функции move_outside и числа вызовов функции press_button.

В подзадаче 3 вы можете также получить частичный балл. Пусть m обозначает максимальное значение $\frac{q}{N}$ среди всех тестов данной подзадачи. Ваш балл за эту подзадачу вычисляется согласно приведенной ниже таблице:

Условие	Баллы		
20 < m	0 (отображается как "Output isn't correct" в CMS)		
$6 < m \leq 20$	$\frac{225}{m-2}$		
$3 < m \le 6$	$81-rac{2}{3}m^2$		
$m \leq 3$	75		

Sample Grader

Пусть T — массив из N целых чисел, где T[i] обозначает тип насекомого i.

Доступный вам грейдер считывает данные в следующем формате:

- строка 1: *N*
- строка $2:T[0]\ T[1]\ \dots\ T[N-1]$

Если грейдер обнаруживает нарушение протокола взаимодействия, то он выдает сообщение Protocol Violation: <MSG>, где <MSG> это одна из следующих фраз:

- invalid parameter: при вызове функции move_inside или функции move_outside значение i не находилось в диапазоне 0 and N-1, включительно.
- \bullet too many calls: число вызовов функции к **любой** из трех функций move_inside, move_outside или press_button превысило 40~000.

В противном случае грейдер выводит данные в следующем формате:

- строка 1: возвращаемое значение функции min_cardinality
- строка 2: q