Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Учебно-исследовательская работа №2 (УИР2) "Марковские модели систем массового обслуживания"

по дисциплине «Моделирование»

Вариант: 15 / 31 / 16

Выполнил:

Векшин Арсений Р3316

Преподаватель:

Алиев Т.И

Содержание

Цель работы	3
Постановка задачи и исходные данные	3
Система 1	
Описание исследуемой системы	
Графическое представление	
Перечень состояний марковского процесса	
Граф переходов марковского процесса	5
Матрица интенсивности переходов	
Характеристики системы	
Система 2	7
Описание исследуемой системы	7
Графическое представление	7
Перечень состояний марковского процесса	8
Граф переходов марковского процесса	8
Матрица интенсивности переходов	
Характеристики системы	
Сравнение систем	
Вывод	

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей — систем массового обслуживания (СМО) с однородным потоком заявок.

Постановка задачи и исходные данные

Разработать и рассчитать марковские модели одно- и многоканальных СМО с однородным потоком заявок и выбрать наилучший вариант построения СМО в соответствии с заданным критерием эффективности.

В процессе исследований для расчета характеристик функционирования СМО использовать программу MARK.

Вариант: 15 / 31 / 16

Таблица 1 - Параметры структурной и функциональной организации систем.

Danuaria	Система 1		Система 2		//a
Вариант	П	EH	П ЕН		Критерий эффективности
15 / 31	3	3	2(H ₂)	2	максимальная производительность
					системы

Емкость накопителя, представленная одним числом, означает общий накопитель перед всеми приборами

Обозначения:

П – число обслуживающих приборов в системе

 $\Pi \left(H_{v} \right) -$ в одном из Приборов (любом) длительность обслуживания распределена по гиперэкспоненциальному закону с коэффициентом вариации, равным v

EH – Емкости Накопителей: X/Y/Z (X – перед первым прибором, Y – перед вторым прибором и Z –перед третьим прибором)

Таблица 2 - Параметры нагрузки.

Da	Интенс. потока	Ср. длит. обслуж.	Вероятн	ости занятия	прибора
Вариант	λ, 1/c	b, c	П1	П2	П3
16	0,1	40	0,7	0,05	0,25

в случае трехканальной СМО выбираются из таблицы 2 (см. вероятности занятия приборов П1, П2 и П3)

в случае двухканальной СМО вероятность занятия прибора П1 выбирается из табл.2, а вероятность занятия прибора П2 принимается равной сумме вероятностей занятия приборов П2 и П3

Система 1

Описание исследуемой системы

Интенсивность обслуживания – 0,1 1/с, время обслуживания – 40 с.

Система обладает 3 приборами. В обоих приборах время обслуживания распределено по экспоненциальному распределению. Система имеет накопитель емкостью 3 перед приборами. При поступлении заявки, она направляется в накопитель или отбрасывается, в случае если очередь заполнена. Как только какой-то из приборов освобождается заявка из накопителя направляется по принципу:

- 0,7 на первый прибор
- 0,05 на второй прибор
- 0,25 на третий прибор

Графическое представление

Перечень состояний марковского процесса

Цомор состояния	Система 1	Popostuosti	
Номер состояния	$\Pi_1 / \Pi_2 / \Pi_3 / O_1$	Вероятность	
1	0/0/0/0	0,0178	
2	1/0/0/0	0,0499	
3	0/1/0/0	0,0036	
4	0/0/1/0	0,0178	
5	1/1/0/0	0,0100	
6	1/0/1/0	0,0499	
7	0/1/1/0	0,0036	
8	1/1/1/0	0,0100	
9	1/1/1/1	0,0399	
10	1/1/1/2	0,1595	
11	1/1/1/3	0,6383	

Граф переходов марковского процесса

Матрица интенсивности переходов

$$\mu = \frac{1}{b} = \frac{1}{40} = 0.025 \quad \lambda = 0.1$$

$$\lambda_1 = p_1 * \lambda = 0.07$$
 $\lambda_2 = p_2 * \lambda = 0.005$ $\lambda_3 = p_3 * \lambda = 0.025$

	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11
E1		λ1	λ2	λ3							
E2	μ				λ2	λ3					
E3	μ				λ1		λ3				
E4	μ					λ1	λ2				
E5		μ	μ					λ3			
E6		μ		μ				λ2			
E7			μ	μ				λ1			
E8					μ	μ	μ		λ		
E9								μ		λ	
E10									μ		λ
E11										μ	

Характеристики системы

Характеристика	Прибор	Формула	Значение
	П1	$y = \lambda_1 * b$	2,8
Hammer	П2	$y = \lambda_2 * b$	0,2
Нагрузка	П3	$y = \lambda_3 * b$	1
	Сумм	$y = \lambda * b$	4
	П1	$\rho_1 = 1 - (p_1 + p_3 + p_4 + p_7)$	0,9572
	П2	$\rho_2 = 1 - (p_1 + p_2 + p_4 + p_6)$	0,8646
Загрузка	П3	$\rho_3 = 1 - (p_1 + p_2 + p_3 + p_5)$	0,9187
	Сумм	$\rho = \frac{\rho_1 + \rho_2 + \rho_3}{3}$	0,9135
Длина	П1-3	Нет личных накопителей	
очереди	Сумм	$L = p_9 + 2p_{10} + 3p_{11}$	2,2738
Dana	П1-3	Нет личных накопителей	
Вероятность потери	Сумм	$\pi=p_{11}$	0.6383
	П1-3	Нет личных накопителей	
Число заявок в системе	Сумм	$m = p_1 + p_2 + p_3 + p_4 + 2(p_5 + p_6 + p_7) + 3p_8 + 4p_9 + 5p_{10} + 6p_{11}$	5,033
Произродитолицост	П1-3	Нет личных накопителей	
Производительность	Сумм	$\lambda' = \lambda * (1 - \pi)$	0,03617
Droves oversours	П1-3	Нет личных накопителей	
Время ожидания	Сумм	$w = L/\lambda$	22,738
Drove and E	П1-3	Нет личных накопителей	
Время пребывания	Сумм	$u = m/\lambda$	50,33

Система 2

Описание исследуемой системы

Интенсивность обслуживания – 0,1 1/с, время обслуживания – 40 с.

Интенсивность обслуживания прибора: $\mu = \frac{1}{b} = \frac{1}{40} = 0.025$

 $q \leq \frac{2}{1+v^2} = 0.4$, Выберем q=0,3. (при q=0.4 b2=0)

$$b_1 = \left[1 + \sqrt{\frac{1-q}{2q}(v^2 - 1)}\right] b \approx 114.83 \rightarrow \mu_1 = \frac{1}{114.83} = 0.0087$$

$$b_2 = \left[1 - \sqrt{\frac{q}{2(1-q)}(v^2 - 1)}\right]b = 7.93 \rightarrow \mu_2 = \frac{1}{7.93} = 0.126$$

Система обладает 2 приборами. Время обслуживания **прибора 2** распределено по гиперэкспоненциальному закону с коэффициентом вариации, равным 2. Система имеет накопитель емкостью 2 перед приборами. При поступлении заявки, она направляется в накопитель или отбрасывается, в случае если очередь заполнена. Как только какой-то из приборов освобождается заявка из накопителя направляется по принципу:

- 0,7 на первый прибор
- 0,3 на второй прибор

Графическое представление

Перечень состояний марковского процесса

	Система 2	
Номер состояния	$\Pi_1 / \Pi_{2.1} / \Pi_{2.2} / O_1$	Вероятность
1	0/0/0/0	0,0304
2	1/0/0/0	0,0878
3	0/1/0/0	0,0146
4	0/0/1/0	0,0057
5	1/1/0/0	0,0351
6	1/0/1/0	0,0190
7	1/1/0/1	0,2036
8	1/0/1/1	0,0186
9	1/1/0/2	0,5736
10	1/0/1/2	0,0115

Граф переходов марковского процесса

Матрица интенсивности переходов

$$\mu_1 = \mu = \frac{1}{b} = \frac{1}{40} = 0,025 \quad \mu_2 = \frac{1}{b_2} = 0,0087 \quad \mu_3 = \frac{1}{b_3} = 0,126 \quad \lambda = 0,1$$

$$a_1 = p_2 * q_1 * \mu_3 = 0,011 \quad a_2 = p_2 * q_2 * \mu_2 = 0,0018$$

$$\lambda_1 = p_1 * \lambda = 0,07 \quad \lambda_2 = p_2 * q_1 * \lambda = 0,009 \quad \lambda_3 = p_2 * q_2 * \lambda = 0,021$$

	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
E1		λ1	λ2	λ3						
E2	μ1				λ2	λ3				
E3	μ2				λ1					
E4	μ3					λ1				
E5		μ2	$\mu 1$				λ			
E6		μ3		$\mu 1$	$\mu 1 + \mu 2$			λ		
E7					a1	a2			λ	
E8						$\mu 1 + \mu 3$				λ
E9							$\mu 1 + \mu 2$	a2		
E10							a1	$\mu 1 + \mu 3$		

Характеристики системы

Характеристика	Прибор	Формула	Значение
	П1	$y_1 = \lambda_1 * b$	2,8
Hamilian	П2.1	$y_2 = \lambda_2 * b_1$	1,03347
Нагрузка	П2.2	$y_3 = \lambda_3 * b_2$	0,16653
	Сумм	$y = y_1 + y_2 + y_3$	4
	П1	$\rho_1 = 1 - (p_1 + p_3 + p_4)$	0,9493
	П2.1	$\rho_2 = 1 - (p_1 + p_2 + p_4 + p_6 + p_8 + p_{10})$	0,827
Загрузка	П2.2	$\rho_3 = 1 - (p_1 + p_2 + p_3 + p_5 + p_7 + p_9)$	0,0549
	Сумм	$\rho = \frac{\rho_1 + \rho_2 + \rho_3}{3}$	0,6104
Длина	П1-2	Нет личных накопителей	
очереди	Сумм	$L = p_7 + p_8 + 2(p_9 + p_{10})$	1,3924
Рородтиост, потори	П1-2	Нет личных накопителей	
Вероятность потери	Сумм	$\pi = p_9 + p_{10}$	0,5851
	П1-2	Нет личных накопителей	
Число заявок в системе	Сумм	$m = p_1 + p_2 + p_3 + p_4 + 2(p_5 + p_6) + 3(p_7 + p_8) + 4(p_9 + p_{10})$	3,2537
Произродитовиност	П1-2	Нет личных накопителей	
Производительность	Сумм	$\lambda' = \lambda * (1 - \pi)$	0,04149
Provid OWARDING	П1-2	Нет личных накопителей	
Время ожидания	Сумм	$w = L/\lambda$	13,924
Время пребывания	П1-2	Нет личных накопителей	
ъремя преобвания	Сумм	$u = m/\lambda$	32,537

Сравнение систем

Характеристика	Система 1	Система 2
Нагрузка	4	4
Загрузка	0,9135	0,6104
Длина очереди	2,2738	1,3924
Вероятность потери	0,6383	0,5851
Число заявок в системе	5,033	3,2537
Производительность	0,03617	0,04149
Время ожидания	22,738	13,924
Время пребывания	50,33	32,537

При сравнении двух систем, мы можем сделать вывод, что система 2 более производительна. Она превосходит систему 1 по производительности, и прочим метрикам.

Вывод

В процессе выполнения данной работы мы изучили метод марковских процессов для случайных процессов, разработали и рассчитали марковские модели многоканальных СМО с однородным потоком заявок, а также сравнили полученные результаты. Система 2 оказалась более релевантной, так как она превосходит систему 1 по всем рассчитанным метрикам