Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\frac{\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{i}k\sigma_{2+}^{\#1\alpha\beta} = 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{X} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{ \delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\gamma}$	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \partial_{\delta}) == 0$	
Total constraints/gau	ige generators:	16

$\sigma_{2^{+}}^{\#1}$ $\tau_{2^{+}}^{\#1}$ $\sigma_{2^{-}}^{\#1}$	$+^{\alpha\beta} \frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$ $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ $\frac{4k^2}{(1+2k^2)^2t_1}$ 0	$ \begin{array}{c} \sigma_2^{\#1}_{\alpha\beta\chi} \\ 0 \\ 0 \\ \frac{2}{t_1} \end{array} $	$\omega_{0^{+}}^{\#1} \dagger$ $f_{0^{+}}^{\#1} \dagger$ $f_{0^{+}}^{\#2} \dagger$ $\omega_{0^{-}}^{\#1} \dagger$		$-i \sqrt{2} kt_3$	0	$\omega_0^{\#1}$ 0 0 0 $k^2 r_2 + t_2$	$\frac{t_1}{2} - \frac{ikt_1}{\sqrt{2}}$	0					
	$\omega_{\alpha\beta\chi}^{\kappa} + \omega_{\alpha\beta\chi}^{\beta} - 4t_1 \omega_{\alpha\beta}^{\beta} \partial_{\beta} f^{\alpha\prime} + + 4t_1 \omega_{\beta}^{\beta} \partial_{\beta} f^{\alpha} + 8t_3 \omega_{\kappa}^{\kappa} \partial_{\beta} f^{\beta}$	$\int_{\beta}^{\kappa} \frac{\partial^{l} f^{\alpha}}{\partial \theta^{l}} d\theta^{l} d\theta^{l}$	$+2t_2\partial_{lpha}f_{, heta}\partial^{\sigma}f^{lpha\prime}-4t_1\partial_{lpha}$ $2t_1\partial_{ec{f}}_{lpha heta}\partial^{eta}f^{lpha\prime}-t_2\partial_{ec{f}}_{lpha heta}$	$t + t_2 \partial_{\theta} f_{\alpha_l} \partial^{\theta} f^{\alpha_l}$ $2 (t_1 + t_2) \omega_{\alpha_l \theta}$	$egin{array}{l} ((au_1 - 2 au_2) \; \omega^{} + 2(2 au_1 - au_2) \partial^\circ f^{}) + \ \omega_{lpha ert eta} \partial^ heta \omega^{lpha eta_ert} - 4r_2 \partial_eta \omega_{lpha eta_ert} \partial^ heta \omega^{lpha eta_ert} + \end{array}$	$egin{align*} 4r_2\partial_eta\omega_{ ueta^{eta}}\partial^eta\omega_{lphaeta^{eta}} - 2r_2\partial_{ u}\omega_{lphaeta}\partial^eta\omega^{lphaeta} + \ 2r_2\partial_eta\omega_{lpha^{eta}}\partial^eta\omega_{lpha^{eta}} + \ 4t_3\partial_{ u}f^{lpha'}\partial_{ u}f^{$	3	$\sigma_{0^{+}}^{\#1} + \frac{i}{(1+2)^{2}}$ $\tau_{0^{+}}^{\#1} + \frac{i}{(1+2)^{2}}$	$ \begin{array}{c c} \frac{ikt_1}{\sqrt{2}} & k^2 t_1 \\ 0 & 0 \\ & \tau_0^{++} & \tau_0^{++} \\ & \frac{1}{(2k^2)^2 t_3} & -\frac{i}{(1+2k^2)^2 t_3} \\ & \frac{\sqrt{2} k}{(2k^2)^2 t_3} & \frac{2k}{(1+2k^2)^2 t_3} \\ & 0 & 0 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_{1}^{\#1} \alpha \beta$	$\omega_{1^{-}}^{\#1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}{}_{lpha}$	$f_{1}^{\#2}{}_{lpha}$
	$-4t_3 \omega^{\alpha_l} c$ $-\alpha\beta c_{\alpha\beta} + 6c$ $3 \omega^{\kappa} \partial_i f^{\alpha_l}$	$\theta = \frac{\partial}{\partial \theta} \int_{C}^{B} d\theta$	$\partial^{\theta}f^{\alpha i}$	$\int_{\alpha}^{\alpha} \partial^{\theta} f^{\alpha l} + \int_{\alpha}^{\alpha} \partial^{\theta} $	$Z \; \omega_{lpha eta_I} \; ((au_1 - Z t_2) \; G \; g \; G_{lpha_I eta} \partial^{eta} \omega^{lpha eta_I} \; G \; $	$\partial_{\mu} \partial_{\mu} \partial_{\mu$	3	$\omega_{1}^{\#1}\dagger^{lphaeta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
	$0, \frac{\theta}{\theta} - 4t_3$ $6 f^{\alpha\beta} t_{\alpha}$ $8t_3 \omega_{\alpha k}^{k}$	$2t_1\partial_i f^{ heta}$ $4t_1\partial^i f^{lpha}$	$4t_1\partial_{\alpha}f$ $t_2\partial_{\alpha}f_{ heta_1}$	$4t_1\partial_{\theta}f_{\alpha}$ $t_2\partial_{\theta}f_{\alpha}g_{\alpha}$	$\omega_{\alpha\theta}$ ω_{α}	$r_2 \partial_{\beta} u$ $r_2 \partial_{\theta} u$ $t_3 \partial_{\tau} f^{\alpha}$		$\omega_{1}^{#2} \dagger^{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	\frac{t_1+t_2}{3}	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
ction	α ω' _α 6	2 4	t 4	t_2	7 00	4 0 4		$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{i}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
Quadratic (free) action	$t_1 \ \omega^{lpha}$							$\omega_{1}^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ <i>i k</i> (t_1 - 2 t_3)
tic (fr	$\iiint \int (\frac{1}{6} (2 t_1)$							$\omega_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	<u>t</u> 1+t3 3	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
adra]]]]=							$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
ηŎ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							$f_1^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ik(t_1-2t_3)$	$-\frac{1}{3}i\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}$	$ au_1^{\#1}\!\!+\!lphaeta$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1^{-}lpha}^{\#2}$	$t_{1}^{\#1}$	τ ₁ -
$\sigma_1^{\#1} + ^{\alpha \beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	J
$\sigma_1^{\#2} + \alpha \beta$	$ \frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2} $	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0)
$\tau_1^{\#1} + \alpha \beta$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0)
$\sigma_1^{\#1} +^\alpha$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1 - 2 t_3)}{3 (1 + 2 k^2) t_1 t_3}$	0	$-\frac{2ikt_1}{3t_1t_3}$
$\sigma_1^{\#2} +^{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2 k^2) t_1 t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$\frac{i\sqrt{2}k(t)}{3(1+2k)}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0)
$\tau_1^{\#2} + ^{\alpha}$	0	0	0	$\frac{2ikt_1 - 4ikt_3}{3t_1t_3 + 6k^2t_1t_3}$	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2k^2(t_1)}{3(1+2k^2)}$

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$