SEQUENCE LISTING

<110>	Chiron SpA GRANDI, Guido	
	RAPPUOLI, Rino	
	GIULIANI, Marzia Monica	
	PIZZA, Mariagrazia	
<120>	ENHANCEMENT OF BACTERICIDAL ACTIVITY OF NEISSERIA ANTIGENS	WITH
	OLIGONUCLEOTIDES CONTAINING CG MOTIFS	
<130>	22300-21022.00	
<140>	US 09/914,454	
<141>	2002-01-14	
<150>	PCT/IB00/00176	
<151>	2000-02-09	
<150>		
<151>	1999-02-26	
<160>	34	
<170>	SeqWin99	
<210>	1	
<211>	20	
<212>	DNA	
<213>		
	•	
<220>		
<223>	oligonucleotide adjuvant	
<400>	1	
tccatga	acgt tootgacgtt	20
1010		
<210> <211>	2 20	
<211>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	2	
	gacg ttcaagcaag	20
	,, - <u> </u>	_ •
<210>	3	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence .	
<220>		
<223>	oligonucleotide adjuvant	
< 4.0.0÷		
<400>	3	

ggggtca	aacg ttgaggggg	20
<210><211><211><212><213>	4 18 DNA Artificial Sequence	
<220> <223>	oligonucleotide adjuvant	
<400> tctccca	4 agcg tgcgccat	18
<210><211><211><212><213>	5 20 DNA Artificial Sequence	
<220> <223>	oligonucleotide adjuvant	
<400> gagaacg	5 gctc gaccttcgat	20
<210><211><211><212><213>		
<220> <223>	oligonucleotide adjuvant	
<400> tccatgt	6 cgt tcctgatgct	20
<210><211><211><212><213>	7 20 DNA Artificial Sequence	
<220> <223>	oligonucleotide adjuvant	
<400> tccatga	7 acgt teetgatget	20
<210><211><211><212><213>	8 15 DNA Artificial Sequence	
<220> <223>	oligonucleotide adjuvant	
<400>	8 cgtt agcgt	15

```
<210>
       9
<211>
       20
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       oligonucleotide adjuvant
<400>
atcgactctc gagcgttctc
                                                                     20
       10
<210>
<211>
       20
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       oligonucleotide adjuvant
<400>
       10
                                                                     20
gaaccttcca tgctgttccg
<210>
       11
<211>
       15
<212>
       DNA
<213>
       Artificial Sequence
<220>
       oligonucleotide adjuvant
<223>
<400>
        11
gctagatgtt agcgt
                                                                     15
<210>
        12
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
        oligonucleotide adjuvant
<400>
       12
tcaacgtt
                                                                     8
<210>
        13
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
        oligonucleotide adjuvant
<400>
        13
                                                                     8
gcaacgtt
<210>
        14
<211>
        8
```

```
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        oligonucleotide adjuvant
<400>
        14
                                                                       8
tcgacgtc
<210>
        15
<211>
        8
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        oligonucleotide adjuvant
<400>
        15
                                                                       8
tcagcgct
<210>
        16
<211>
        8
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        oligonucleotide adjuvant
<400>
        16
                                                                       8
tcaacgct
<210>
        17
<211>
        8
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        oligonucleotide adjuvant
<400>
        17
                                                                       8
tcatcgat
<210>
         18
<211>
         8
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        oligonucleotide adjuvant
<400>
        18
                                                                       8
tcttcgaa
<210>
         19
<211>
         22
<212>
         DNA
<213>
        Artificial Sequence
```

<220>	alimanual actida adiument	
<223>	oligonucleotide adjuvant	
<400>	19	
tgactgt	gaa cgttcgagat ga	22
<210>	20	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
4000		
<220> <223>	oligonucleotide adjuvant	
(220)	origonacicociae adjavane	
<400>	20	
tgactgt	gaa cgttagcgat ga	22
<210>	21	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	21	20
tgactgt	gaa cgttagagcg ga	22
<210>	22	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	22	
	caa cgttgttgcc at	22
9000909	saa ogeegeegee ae	
<210>	23	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	23	
	caa cgttgcgcaa ac	22
<210>	24	
<211>	22	
<211>	DNA	
<213>	Artificial Sequence	
<220>		

<223>	oligonucleotide adjuvant	
<400>	24	
cattgga	aaa cgttcttcgg gg	22
<210>	25	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	25	
	gaa cgttttccaa tg	22
<210>	26	
<211>	12	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	26	
attgacg		12
.010.		
<210>	27	
<211>	22	
<212> <213>	DNA Artificial Seguence	
(213)	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	27	
ctttcca	ttg acgtcaatgg gt	22
<210>	28	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer from example 2	
<400>	28	
	ccc atatgtgcca aagcaagagc atc	33
<210>	29	
<211>	25	
<212>	DNA	
<213>	Reverse primer from example 2	
<400>	29	
	gag cgggcggtat tcggg	25

```
<211>
        1326
<212>
        DNA
<213>
        Neisseria meningitidis
<400>
atgaaaaaat acctattccg cgccgccctg tacggcatcg ccgccgccat cctcgccgcc
                                                                     60
tgccaaagca agagcatcca aacctttccg caacccgaca catccgtcat caacggcccg
                                                                     120
gaccggccgg tcggcatccc cgaccccgcc ggaacgacgg tcggcggcqq cqqqqccqtc
                                                                     180
tataccgttg taccgcacct gtccctgccc cactgggcgg cgcaggattt cgccaaaagc
                                                                     240
ctgcaatcct tccgcctcgg ctgcgccaat ttgaaaaacc gccaaggctg gcaggatgtg
                                                                     300
tgcgcccaag cctttcaaac ccccgtccat tcctttcagg caaaacagtt ttttgaacgc
                                                                     360
tatttcacgc cgtggcaggt tgcaggcaac ggaagccttg ccggtacggt taccggctat
                                                                     420
tacgaaccgg tgctgaaggg cgacgacagg cggacggcac aagcccgctt cccqatttac
                                                                     480
ggtattcccg acgattttat ctccgtcccc ctgcctgccg gtttgcggag cggaaaagcc
                                                                     540
cttgtccgca tcaggcagac gggaaaaaac agcggcacaa tcgacaatac cggcggcaca
                                                                     600
cataccgccg accteteccg atteceeate accgegegea caacagcaat caaaggcagg
                                                                     660
tttgaaggaa geegetteet eeectaceae aegegeaaee aaateaaegg eggegeett
                                                                     720
gacggcaaag ccccgatact cggttacgcc gaagaccctg tcgaactttt ttttatgcac
                                                                     780
atccaagget egggeegtet gaaaacceeg teeggeaaat acateegeat eggetatgee
                                                                     840
gacaaaaacg aacatccyta cgtttccatc ggacgctata tggcggataa gggctacctc
                                                                     900
aaactcggac aaacctccat gcagggcatt aagtcttata tgcggcaaaa tccgcaacgc
                                                                     960
ctcgccgaag ttttgggtca aaaccccagc tatatctttt tccgcgagct tgccggaagc
                                                                     1020
agcaatgacg gccctgtcgg cgcactgggc acgccgctga tgggggaata tgccggcgca
                                                                    1080
gtcgaccggc actacattac cttgggtgcg cccttatttg tcgccaccgc ccatccggtt
                                                                     1140
acccgcaaag ccctcaaccg cctgattatg gcgcaggata ccggcagcgc gattaaaggc
                                                                     1200
gcggtgcgcg tggattattt ttggggatac ggcgacgaag ccggcgaact tqccqgcaaa
                                                                     1260
cagaaaacca cgggatatgt ctggcagctc ctacccaacg gtatgaagcc cgaataccgc
                                                                     1320
ccgtaa
                                                                     1326
<210>
        31
<211>
        441
<212>
        PRT
<213>
        Neisseria meningitidis
<400>
        31
Met Lys Lys Tyr Leu Phe Arg Ala Ala Leu Tyr Gly Ile Ala Ala Ala
Ile Leu Ala Ala Cys Gln Ser Lys Ser Ile Gln Thr Phe Pro Gln Pro
                                25
                                                    30
Asp Thr Ser Val Ile Asn Gly Pro Asp Arg Pro Val Gly Ile Pro Asp
                            40
Pro Ala Gly Thr Thr Val Gly Gly Gly Ala Val Tyr Thr Val Val
Pro His Leu Ser Leu Pro His Trp Ala Ala Gln Asp Phe Ala Lys Ser
Leu Gln Ser Phe Arg Leu Gly Cys Ala Asn Leu Lys Asn Arg Gln Gly
Trp Gln Asp Val Cys Ala Gln Ala Phe Gln Thr Pro Val His Ser Phe
            100
                                105
```

<210>

30

Gln Ala Ly		Phe Glu	Arg	Tyr	Phe	Thr	Pro	Trp 125	Gln	Val	Ala
Gly Asn Gl	y Ser Leu.	Ala Gly 135	Thr	Val	Thr	Gly	Tyr 140	Tyr	Glu	Pro	Val
Leu Lys G3	y Asp Asp	Arg Arg 150	Thr .	Ala	Gln	Ala 155	Arg	Phe	Pro	Ile	Tyr 160
Gly Ile Pa	o Asp Asp 165		Ser	Val	Pro 170	Leu	Pro	Ala	Gly	Leu 175	Arg
Ser Gly Ly	s Ala Leu 180	Val Arg		Arg 185	Gln	Thr	Gly	Lys	Asn 190	Ser	Gly
Thr Ile As		Gly Gly	Thr 200	His	Thr	Ala	Asp	Leu 205	Ser	Arg	Phe
Pro Ile Th 210	nr Ala Arg	Thr Thr 215	Ala	Ile	Lys	Gly	Arg 220	Phe	Glu	Gly	Ser
Arg Phe Le 225	eu Pro Tyr	His Thr 230	Arg	Asn	Gln	Ile 235	Asn	Gly	Gly	Ala	Leu 240
Asp Gly Ly	s Ala Pro 245		Gly	Tyr	Ala 250	Glu	Asp	Pro	Val	Glu 255	Leu
Phe Phe Me	et His Ile 260	: Gln Gly		Gly 265	Arg	Leu	Lys	Thr	Pro 270	Ser	Gly
Lys Tyr II 2	_	: Gly Tyr	Ala 280	Asp	Lys	Asn	Glu	His 285	Pro	Tyr	Val
Ser Ile Gl 290	y Arg Tyr	Met Ala 295	_	Lys	Gly	Tyr	Leu 300	Lys	Leu	Gly	Gln
Thr Ser Me	et Gln Gly	lle Lys 310	Ser	Tyr	Met	Arg 315	Gln	Asn	Pro	Gln	Arg 320
Leu Ala G	lu Val Leu 325	_	. Asn	Pro	Ser 330	Tyr	Ile	Phe	Phe	Arg 335	Glu
Leu Ala G	Ly Ser Ser 340	Asn Asp		Pro 345	Val	Gly	Ala	Leu	Gly 350	Thr	Pro
Leu Met G. 3!		· Ala Gly	Ala 360	Val	Asp	Arg	His	Tyr 365	Ile	Thr	Leu
Gly Ala P: 370	co Leu Phe	val Ala 375		Ala	His	Pro	Val 380	Thr	Arg	Lys	Ala
Leu Asn A 385	rg Leu Ile	e Met Ala 390	Gln	Asp	Thr	Gly 395	Ser	Ala	Ile	Asp	Gly 400
Ala Val A	g Val Asp 405	=	Trp	Gly	Tyr 410	Gly	Asp	Glu	Ala	Gly 415	Glu

Leu Ala Gly Lys Gln Lys Thr Thr Gly Tyr Val Trp Gln Leu Leu Pro 420 Asn Gly Met Lys Pro Glu Tyr Arg Pro 435 <210> 32 <211> 797 <212> PRT <213> Neisseria meningitidis <400> 32 Met Lys Leu Lys Gln Ile Ala Ser Ala Leu Met Met Leu Gly Ile Ser 10 Pro Leu Ala Leu Ala Asp Phe Thr Ile Gln Asp Ile Arg Val Glu Gly 20 25 Leu Gln Arg Thr Glu Pro Ser Thr Val Phe Asn Tyr Leu Pro Val Lys Val Gly Asp Thr Tyr Asn Asp Thr His Gly Ser Ala Ile Ile Lys Ser Leu Tyr Ala Thr Gly Phe Phe Asp Asp Val Arg Val Glu Thr Ala Asp Gly Gln Leu Leu Thr Val Ile Glu Arg Pro Thr Ile Gly Ser Leu Asn Ile Thr Gly Ala Lys Met Leu Gln Asn Asp Ala Ile Lys Lys Asn 105 Leu Glu Ser Phe Gly Leu Ala Gln Ser Gln Tyr Phe Asn Gln Ala Thr 115 Leu Asn Gln Ala Val Ala Gly Leu Lys Glu Glu Tyr Leu Gly Arg Gly Lys Leu Asn Ile Gln Ile Thr Pro Lys Val Thr Lys Leu Ala Arg Asn 150 155 Arg Val Asp Ile Asp Ile Thr Ile Asp Glu Gly Lys Ser Ala Lys Ile 165 Thr Asp Ile Glu Phe Glu Gly Asn Gln Val Tyr Ser Asp Arg Lys Leu 185 Met Arg Gln Met Ser Leu Thr Glu Gly Gly Ile Trp Thr Trp Leu Thr 195 200 Arg Ser Asn Gln Phe Asn Glu Gln Lys Phe Ala Gln Asp Met Glu Lys

235

Val Thr Asp Phe Tyr Gln Asn Asn Gly Tyr Phe Asp Phe Arg Ile Leu

230

Asp	Thr	Asp	Ile	Gln 245	Thr	Asn	Glu	Asp	Lys 250	Thr	Lys	Gln	Thr	Ile 255	Lys
Ile	Thr	Val	His 260	Glu	Gly	Gly	Arg	Phe 265	Arg	Trp	Gly	Lys	Val 270	Ser	Ile
Glu	Gly	Asp 275	Thr	Asn	Glu	Val	Pro 280	Lys	Ala	Glu	Leu	Glu 285	Lys	Leu	Leu
Thr	Met 290	Lys	Pro	Gly	Lys	Trp 295	Tyr	Glu	Arg	Gln	Gln 300	Met	Thr	Ala	Val
Leu 305	Gly	Glu	Ile	Gln	Asn 310	Arg	Met	Gly	Ser	Ala 315	Gly	Tyr	Ala	Tyr	Ser 320
Glu	Ile	Ser	Val	Gln 325	Pro	Leu	Pro	Asn	Ala 330	Glu	Thr	Lys	Thr	Val 335	Asp
Phe	Val	Leu	His 340	Ile	Glu	Pro	Gly	Arg 345	Lys	Ile	Tyr	Val	Asn 350	Glu	Ile
His	Ile	Thr 355	Gly	Asn	Asn	Lys	Thr 360	Arg	Asp	Glu	Val	Val 365	Arg	Arg	Glu
Leu	Arg 370	Gln	Met	Glu	Ser	Ala 375	Pro	Tyr	Asp	Thr	Ser 380	Lys	Leu	Gln	Arg
Ser 385	Lys	Glu	Arg	Val	Glu 390	Leu	Leu	Gly	Tyr	Phe 395	Asp	Asn	Val	Gln	Phe 400
Asp	Ala	Val	Pro	Leu 405	Ala	Gly	Thr	Pro	Asp 410	Lys	Val	Asp	Leu	Asn 415	Met
Ser	Leu	Thr	Glu 420	Arg	Ser	Thr	Gly	Ser 425	Leu	Asp	Leu	Ser	Ala 430	Gly	Trp
Val	Gln	Asp 435	Thr	Gly	Leu	Val	Met 440	Ser	Ala	Gly	Val	Ser 445	Gln	Asp	Asn
Leu	Phe 450	Gly	Thr	Gly	Lys	Ser 455	Ala	Ala	Leu	Arg	Ala 460	Ser	Arg	Ser	Lys
Thr 465	Thr	Leu	Asn	Gly	Ser 470	Leu	Ser	Phe	Thr	Asp 475	Pro	Tyr	Phe	Thr	Ala 480
Asp	Gly	Val	Ser	Leu 485	Gly	Tyr	Asp	Val	Tyr 490	Gly	Lys	Ala	Phe	Asp 495	Pro
Arg	Lys	Ala	Ser 500	Thr	Ser	Ile	Lys	Gln 505	Tyr	Lys	Thr	Thr	Thr 510	Ala	Gly
Ala	Gly	Ile 515	Arg	Met	Ser	Val	Pro 520	V,al	Thr	Glu	Tyr	Asp 525	Arg	Val	Asn
Phe	Gly 530	Leu	Val	Ala	Glu	His 535	Leu	Thr	Val	Asn	Thr 540	Tyr	Asn	Lys	Ala

```
Pro Lys His Tyr Ala Asp Phe Ile Lys Lys Tyr Gly Lys Thr Asp Gly
                    550
                                        555
Thr Asp Gly Ser Phe Lys Gly Trp Leu Tyr Lys Gly Thr Val Gly Trp
                565
                                    570
Gly Arg Asn Lys Thr Asp Ser Ala Leu Trp Pro Thr Arg Gly Tyr Leu
                                585
Thr Gly Val Asn Ala Glu Ile Ala Leu Pro Gly Ser Lys Leu Gln Tyr
        595
                            600
Tyr Ser Ala Thr His Asn Gln Thr Trp Phe Phe Pro Leu Ser Lys Thr
                        615
Phe Thr Leu Met Leu Gly Gly Glu Val Gly Ile Ala Gly Gly Tyr Gly
625
                    630
                                        635
                                                            640
Arg Thr Lys Glu Ile Pro Phe Phe Glu Asn Phe Tyr Gly Gly Leu
                645
                                    650
Gly Ser Val Arg Gly Tyr Glu Ser Gly Thr Leu Gly Pro Lys Val Tyr
                                665
Asp Glu Tyr Gly Glu Lys Ile Ser Tyr Gly Gly Asn Lys Lys Ala Asn
        675
Val Ser Ala Glu Leu Leu Phe Pro Met Pro Gly Ala Lys Asp Ala Arg
                        695
Thr Val Arg Leu Ser Leu Phe Ala Asp Ala Gly Ser Val Trp Asp Gly
                   710
                                       715
Lys Thr Tyr Asp Asp Asn Ser Ser Ser Ala Thr Gly Gly Arg Val Gln
                725
Asn Ile Tyr Gly Ala Gly Asn Thr His Lys Ser Thr Phe Thr Asn Glu
                                745
Leu Arg Tyr Ser Ala Gly Gly Ala Val Thr Trp Leu Ser Pro Leu Gly
        755
                            760
Pro Met Lys Phe Ser Tyr Ala Tyr Pro Leu Lys Lys Pro Glu Asp
Glu Ile Gln Arg Phe Gln Phe Gln Leu Gly Thr Thr Phe
<210>
        33
<211>
        792
<212>
        PRT
<213>
       Neisseria gonorrhoeae
<400>
Met Lys Leu Lys Gln Ile Ala Ser Ala Leu Met Met Leu Gly Ile Ser
```

Pro Leu Ala Phe Ala Asp Phe Thr Ile Gln Asp Ile Arg Val Glu Gly 25 Leu Gln Arg Thr Glu Pro Ser Thr Val Phe Asn Tyr Leu Pro Val Lys 40 Val Gly Asp Thr Tyr Asn Asp Thr His Gly Ser Ala Ile Ile Lys Ser 55 Leu Tyr Ala Thr Gly Phe Phe Asp Asp Val Arg Val Glu Thr Ala Asp 70 Gly Gln Leu Leu Thr Val Ile Glu Arg Pro Thr Ile Gly Ser Leu 90 Asn Ile Thr Gly Ala Lys Met Leu Gln Asn Asp Ala Ile Lys Lys Asn 100 105 110 Leu Glu Ser Phe Gly Leu Ala Gln Ser Gln Tyr Phe Asn Gln Ala Thr 120 Leu Asn Gln Ala Val Ala Gly Leu Lys Glu Glu Tyr Leu Gly Arg Gly Lys Leu Asn Ile Gln Ile Thr Pro Lys Val Thr Lys Leu Ala Arg Asn Arg Val Asp Ile Asp Ile Thr Ile Asp Glu Gly Lys Ser Ala Lys Ile Thr Asp Ile Glu Phe Glu Gly Asn Gln Val Tyr Ser Asp Arg Lys Leu Met Arg Gln Met Ser Leu Thr Glu Gly Gly Ile Trp Thr Trp Leu Thr 195 Arg Ser Asp Arg Phe Asp Arg Gln Lys Phe Ala Gln Asp Met Glu Lys Val Thr Asp Phe Tyr Gln Asn Asn Gly Tyr Phe Asp Phe Arg Ile Leu 225 235 Asp Thr Asp Ile Gln Thr Asn Glu Asp Lys Thr Arg Gln Thr Ile Lys 245 250 Ile Thr Val His Glu Gly Gly Arg Phe Arg Trp Gly Lys Val Ser Ile 265 Glu Gly Asp Thr Asn Glu Val Pro Lys Ala Glu Leu Glu Lys Leu Leu Thr Met Lys Pro Gly Lys Trp Tyr Glu Arg Gln Gln Met Thr Ala Val Leu Gly Glu Ile Gln Asn Arg Met Gly Ser Ala Gly Tyr Ala Tyr Ser 310 315

Glu	Ile	Ser	Val	Gln 325	Pro	Leu	Pro	Asn	Ala 330	Gly	Thr	Lys	Thr	Val 335	Asp
Phe `	Val	Leu	His 340	Ile	Glu	Pro	Gly	Arg 345	Lys	Ile	Tyr	Val	Asn 350	Glu	Ile
His	Ile	Thr 355	Gly	Asn	Asn	Lys	Thr 360	Arg	Asp	Glu	Val	Val 365	Arg	Arg	Glu
Leu .	Arg 370	Gln	Met	Glu	Ser	Ala 375	Pro	Tyr	Asp	Thr	Ser 380	Lys	Leu	Gln	Arg
Ser :	Lys	Glu	Arg	Val	Glu 390	Leu	Leu	Gly	Tyr	Phe 395	Asp	Asn	Val	Gln	Phe 400
Asp .	Ala	Val	Pro	Leu 405	Ala	Gly	Thr	Pro	Asp 410	Lys	Val	Asp	Leu	Asn 415	Met
Ser	Leu	Thr	Glu 420	Arg	Ser	Thr	Gly	Ser 425	Leu	Asp	Leu	Ser	Ala 430	Gly	Trp
Val	Gln	Asp 435	Thr	Gly	Leu	Val	Met 440	Ser	Ala	Gly	Val	Ser 445	Gln	Asp	Asn
Leu	Phe 450	Gly	Thr	Gly	Lys	Ser 455	Ala	Ala	Leu	Arg	Ala 460	Ser	Arg	Ser	Lys
Thr 465	Thr	Leu	Asn	Gly	Ser 470	Leu	Ser	Phe	Thr	Asp 475	Pro	Tyr	Phe	Thr	Ala 480
Asp	Gly	Val	Ser	Leu 485	Gly	Tyr	Asp	Ile	Tyr 490	Gly	Lys	Ala	Phe	Asp 495	Pro
Arg	Lys	Ala	Ser 500	Thr	Ser	Val	Lys	Gln 505	Tyr	Lys	Thr	Thr	Thr 510	Ala	Gly
Gly	Gly	Val 515	Arg	Met	Gly	Ile	Pro 520	Val	Thr	Glu	Tyr	Asp 525	Arg	Val	Asn
Phe	Gly 530	Leu	Ala	Ala	Glu	His 535	Leu	Thr	Val	Asn	Thr 540	Tyr	Asn	Lys	Ala
Pro 545	Lys	Arg	Tyr	Ala	Asp 550	Phe	Ile	Arg	Lys	Tyr 555	Gly	Lys	Thr	Asp	Gly 560
Ala	Asp.	Gly	Ser	Phe 565	Lys	Gly	Leu	Leu	Tyr 570	Lys	Gly	Thr	Val	Gly 575	Trp
Gly	Arg	Asn	Lys 580	Thr	Asp	Ser	Ala	Ser 585	Trp	Pro	Thr	Arg	Gly 590	Tyr	Leu
Thr	Gly	Val 595	Asn	Ala	Glu	Ile	Ala 600	Leu	Pro	Gly	Ser	Lys 605	Leu	Gln	Tyr
Tyr	Ser 610	Ala	Thr	His	Asn	Gln 615	Thr	Trp	Phe	Phe	Pro 620	Leu	Ser	Lys	Thr

Phe Thr Leu Met Leu Gly Gly Glu Val Gly Ile Ala Gly Gly Tyr Gly 630 Arg Thr Lys Glu Ile Pro Phe Phe Glu Asn Phe Tyr Gly Gly Leu 645 650 Gly Ser Val Arg Gly Tyr Glu Ser Gly Thr Leu Gly Pro Lys Val Tyr 665 Asp Glu Tyr Gly Glu Lys Ile Ser Tyr Gly Gly Asn Lys Lys Ala Asn 680 Val Ser Ala Glu Leu Leu Phe Pro Met Pro Gly Ala Lys Asp Ala Arg 695 Thr Val Arg Leu Ser Leu Phe Ala Asp Ala Gly Ser Val Trp Asp Gly 710 715 Arg Thr Tyr Thr Ala Ala Glu Asn Gly Asn Asn Lys Ser Val Tyr Ser 725 730 Glu Asn Ala His Lys Ser Thr Phe Thr Asn Glu Leu Arg Tyr Ser Ala 745 Gly Gly Ala Val Thr Trp Leu Ser Pro Leu Gly Pro Met Lys Phe Ser 755 Tyr Ala Tyr Pro Leu Lys Lys Pro Glu Asp Glu Ile Gln Arg Phe 775 Gln Phe Gln Leu Gly Thr Thr Phe 790 <210> 34 797 <211> <212> PRT <213> Neisseria meningitidis Met Lys Leu Lys Gln Ile Ala Ser Ala Leu Met Val Leu Gly Ile Ser 5 Pro Leu Ala Leu Ala Asp Phe Thr Ile Gln Asp Ile Arg Val Glu Gly Leu Gln Arg Thr Glu Pro Ser Thr Val Phe Asn Tyr Leu Pro Val Lys 40 Val Gly Asp Thr Tyr Asn Asp Thr His Gly Ser Ala Ile Ile Lys Ser 50 Leu Tyr Ala Thr Gly Phe Phe Asp Asp Val Arg Val Glu Thr Ala Asp Gly Gln Leu Leu Thr Val Ile Glu Arg Pro Thr Ile Gly Ser Leu 90

Asn Ile Thr Gly Ala Lys Met Leu Gln Asn Asp Ala Ile Lys Lys Asn Leu Glu Ser Phe Gly Leu Ala Gln Ser Gln Tyr Phe Asn Gln Ala Thr Leu Asn Gln Ala Val Ala Gly Leu Lys Glu Glu Tyr Leu Gly Arg Gly Lys Leu Asn Ile Gln Ile Thr Pro Lys Val Thr Lys Leu Ala Arg Asn Arg Val Asp Ile Asp Ile Thr Ile Asp Glu Gly Lys Ser Ala Lys Ile Thr Asp Ile Glu Phe Glu Gly Asn Gln Val Tyr Ser Asp Arg Lys Leu Met Arg Gln Met Ser Leu Thr Glu Gly Gly Ile Trp Thr Trp Leu Thr Arg Ser Asn Gln Phe Asn Glu Gln Lys Phe Ala Gln Asp Met Glu Lys Val Thr Asp Phe Tyr Gln Asn Asn Gly Tyr Phe Asp Phe Arg Ile Leu Asp Thr Asp Ile Gln Thr Asn Glu Asp Lys Thr Lys Gln Thr Ile Lys Ile Thr Val His Glu Gly Gly Arg Phe Arg Trp Gly Lys Val Ser Ile Glu Gly Asp Thr Asn Glu Val Pro Lys Ala Glu Leu Glu Lys Leu Leu Thr Met Lys Pro Gly Lys Trp Tyr Glu Arg Gln Gln Met Thr Ala Val Leu Gly Glu Ile Gln Asn Arg Met Gly Ser Ala Gly Tyr Ala Tyr Ser Glu Ile Ser Val Gln Pro Leu Pro Asn Ala Glu Thr Lys Thr Val Asp Phe Val Leu His Ile Glu Pro Gly Arg Lys Ile Tyr Val Asn Glu Ile His Ile Thr Gly Asn Asn Lys Thr Arg Asp Glu Val Val Arg Arg Glu 360 365 Leu Arg Gln Met Glu Ser Ala Pro Tyr Asp Thr Ser Lys Leu Gln Arg Ser Lys Glu Arg Val Glu Leu Leu Gly Tyr Phe Asp Asn Val Gln Phe

Asp	Ala	Val	Pro	Leu 405	Ala	Gly	Thr	Pro	Asp 410	Lys	Val	Asp	Leu	Asn 415	Met
Ser	Leu	Thr	Glu 420	Arg	Ser	Thr	Gly	Ser 425	Leu	Asp	Leu	Ser	Ala 430	Gly	Trp
Val	Gln	Asp 435	Thr	Gly	Leu	Val	Met 440	Ser	Ala	Gly	Val	Ser 445	Gln	Asp	Asn
Leu	Phe 450	Gly	Thr	Gly	Lys	Ser 455	Ala	Ala	Leu	Arg	Ala 460	Ser	Arg	Ser	Lys
Thr 465	Thr	Leu	Asn	Gly	Ser 470	Leu	Ser	Phe	Thr	Asp 475	Pro	Tyr	Phe	Thr	Ala 480
Asp	Gly	Val	Ser	Leu 485	Gly	Tyr	Asp	Val	Tyr 490	Gly	Lys	Ala	Phe	Asp 495	Pro
Arg	Lys	Ala	Ser 500	Thr	Ser	Ile	Lys	Gln 505	Tyr	Lys	Thr	Thr	Thr 510	Ala	Gly
Ala	Gly	Ile 515	Arg	Met	Ser	Val	Pro 520	Val	Thr	Glu	Tyr	Asp 525	Arg	Val	Asn
Phe	Gly 530	Leu	Val	Ala	Glu	His 535	Leu	Thr	Val	Asn	Thr 540	Tyr	Asn	Lys	Ala
Pro 545	Lys	His	Tyr	Ala	Asp 550	Phe	Ile	Lys	Lys	Tyr 555	Gly	Lys	Thr	Asp	Gly 560
Thr	Asp	Gly	Ser	Phe 565	Lys	Gly	Trp	Leu	Tyr 570	Lys	Gly	Thr	Val	Gly 575	Trp
Gly	Arg	Asn	Lys 580	Thr	Asp	Ser	Ala	Leu 585	Trp	Pro	Thr	Arg	Gly 590	Tyr	Leu
Thr	Gly	Val 595	Asn	Ala	Glu	Ile	Ala 600	Leu	Pro	Gly	Ser	Lys 605	Leu	Gln	Tyr
Tyr	Ser 610	Ala	Thr	His	Asn	Gln 615	Thr	Trp	Phe	Phe	Pro 620	Leu	Ser	Lys	Thr
Phe 625	Thr	Leu	Met	Leu	Gly 630	Gly	Glu	Val	Gly	Ile 635	Ala	Gly	Gly	Tyr	Gly 640
Arg	Thr	Lys	Glu	Ile 645	Pro	Phe	Phe	Glu	Asn 650	Phe	Tyr	Gly	Gly	Gly 655	Leu
Gly	Ser	Val	Arg 660	Gly	Tyr	Glu	Ser	Gly 665	Thr	Leu	Gly	Pro	Lys 670	Val	Tyr
Asp	Glu	Tyr 675	Gly	Glu	Lys	Ile	Ser 680	Tyr	Gly	Gly	Asn	Lys 685	Lys	Ala	Asn
Val	Ser 690	Ala	Glu	Leu	Leu	Phe 695	Pro	Met	Pro	Gly	Ala 700	Lys	Asp	Ala	Arg

Thr Val Arg Leu Ser Leu Phe Ala Asp Ala Gly Ser Val Trp Asp Gly Lys Thr Tyr Asp Asp Asn Ser Ser Ser Ala Thr Gly Gly Arg Val Gln Asn Ile Tyr Gly Ala Gly Asn Thr His Lys Ser Thr Phe Thr Asn Glu Leu Arg Tyr Ser Ala Gly Gly Ala Val Thr Trp Leu Ser Pro Leu Gly Pro Met Lys Phe Ser Tyr Ala Tyr Pro Leu Lys Lys Pro Glu Asp Glu Ile Gln Arg Phe Gln Phe Gln Leu Gly Thr Thr Phe