Introdução à Estatística com Pandas

Agostinho, P.; Custódio, A.; Marinho, M.; Guilardi, M.; Guisordi, P.

O que é PyLadies?

PyLadies é um grupo internacional de mentoria com foco em ajudar mais mulheres a tornarem-se participantes ativas e líderes da comunidade Python.

#souPyLadiesSP

PyLadies São Paulo

O PyLadies São Paulo é um capítulo das PyLadies internacional cuja missão é incentivar quaisquer mulheres a aprenderem Python, ensinarem e motivarem outras a fazerem o mesmo.

Grupo de Estudos de Ciência de Dados

O Grupo de Estudos é um grupo de mulheres integrantes do PyLadies São Paulo que se reuniram para estudar Python e Ciência de Dados.

A sua formação ocorreu após a reunião de planejamento da comunidade em julho/2018

Sua missão é incentivar outras mulheres a formarem grupos de estudos de temas que lhe interessem e disponibilizar para a comunidade o que elas estudaram.

Agenda do Dia

Ciência de Dados

Tipos de dados

Média, Mediana e Moda

Variabilidade, Dispersão e Quartis

A importância dos dados

Pandas

Visualização dos dados

Ciência de Dados

Ciência de Dados, ou Data Science, é uma ciência interdisciplinar que processa grandes conjuntos de dados, geralmente brutos, usando métodos estatísticos, ou matemáticos, para extrair idéias sobre determinado assunto.

Ciclo da Ciência de Dados

Fonte: Curso - R (www.cursor.com.br)

Ferramentas para Ciência de Dados

Anaconda

Distribuição gratuita de código aberto das linguagens Python e R. Permite gerenciar pacotes via interface gráfica e linha de comando (conda prompt).

Jupyter Notebook

Notebooks são documentos que contém códigos, textos, gráficos, links, equações etc. e por conta da quantidade de recursos são muito utilizados em análises exploratórias.

Jupyter Notebook

As células configuradas como "Markdown" permite escrever textos simples e formatados.

Modo edição

```
# Seu título aqui 1
## Seu título aqui 2
### Seu título aqui 3
#### Seu título aqui 4
Seu texto aqui, você pode utilizar _itálico_, **negrito**, `destacado` e até
elementos HTML.
> Identação:
1. Item numerado 1
2. Item numerado 2

- Marcador 1
- Marcador 2
```

Célula executada

```
Seu título aqui 2

Seu título aqui 3

Seu título aqui 4

Seu texto aqui, você pode utilizar itálico, negrito, destacado e até elementos HTML.

Identação:

1. Item numerado 1
2. Item numerado 2

• Marcador 1
• Marcador 2
```

```
<h3> Markdown com HTML </h3>
|

Estou criando um link para
<a href="https://github.com/angelica93/GEDS">Grupo de estudos Data Science</a>.
```

Markdown com HTML

Estou criando um link para Grupo de estudos Data Science.

Jupyter Notebook

- 1. Visualização dos arquivos do diretório atual;
- 2. Nome do arquivo e quando foi salvo;
- Configuração da célula, pode ser: code, markdown ou Raw NBConvert;
- 4. Célula para digitar texto ou código;
- 5. Adicionar célula abaixo;
- 6. Executar a célula atual.

Google Colaboratory

O Colab segue o mesmo padrão do Jupyter Notebook. Nele é possível adicionar células de código, texto, importar arquivos etc. Para ter acesso ao Google Colab, basta logar na sua conta Google e acessar o link https://colab.research.google.com;

Aparecerá uma tela como essa:

Bibliotecas para Ciência de Dados em Python

As que utilizaremos hoje

Pandas é uma biblioteca de código aberto que fornece estruturas de dados de alto desempenho e fáceis de usar e ferramentas de análise de dados para a linguagem de programação Python.

https://pandas.pydata.org/

O Matplotlib é uma biblioteca de plotagem 2D em Python que produz números de qualidade de publicação em uma variedade de formatos impressos e ambientes interativos entre plataformas. W

https://matplotlib.org/

Importância dos Dados

Dados são **importantes** para qualquer organização, seja ela pública ou privada. A partir dos dados é possível fazer planejamento de metas, estratégias e tomadas de decisão.

Tipos de dados

Quantitativos - Quantifica ou mede

Discretos:

Assumem valores em um conjunto especificado de números.

Continuos:

Assumem valores em um intervalo contínuo de números.

Qualitativos - Característica ou qualidade

Nominal:

Característica que não possui ordem.

Ordinal:

Característica que possui uma ordem de grandeza.

Tipos de Dados

Quantitativos

Discretos:

- Quantidade de pessoas na sala?
- Quantidade de dias no mês?

Continuos:

- Qual sua altura?
- Qual a distância daqui até sua casa?

Qualitativos

Nominal:

- Qual seu Estado?(SP, MG, RJ, Outros)
- Qual gênero você se identifica?

Ordinal:

- Avaliação curso (Ruim a Ótimo).
- Qual seu nível de escolaridade?

Tipos de Dados - Exemplo PyLadies

ID	Estado Origem	Idade	Escolaridade	Trabalha como Programadora	Renda Mensal
1	SP	36	4	S	3737,52
2	SP	25	2	N	400,00
3	MG	34	3	S	2366,14
4	RJ	23	3	S	2841,29
5	SP	31	4	N	800
6	SP	34	5	S	3433,02
7	SP	39	5	S	2752,74
8	PE	24	3	S	3682,33
9	RJ	29	3	S	2359,28
10	SP	27	3	S	2119,15
11	SP	30	3	S	3326,79
12	SP	25	4	S	2684,05
13	SP	23	2	S	3507,84
14	SP	16	1	N	0
15	SP	36	4	N	800

Legenda Escolaridade

1	Ensino Medio Completo
2	Graduanda
3	Graduação Completa
4	Pós graduanda
5	Pós graduação completa

Dados meramente ilustrativos.

Tipos de Dados - Dados Qualitativos

ID	Estado Origem	Idade	Escolaridade	Trabalha co Programad		Renda Mensal
1	SP	36	4	S		3737,52
2	SP	25	2	N		400,00
3	MG	3/1	2	ς		2366,14
4	RJ	Dados	s Qualita	tivos		2841,29
5	SP	51	4	IN		800
6	SP	34	5	S		3433,02
7	SP	39	5	S		2752,74
8	PE	24	3	S		3682,33
9	RJ	29	3	S		2359,28
10	SP	27	3	S		2119,15
11	SP	30	3	S		3326,79
12	SP	25	4	S		2684,05
13	SP	23	2	S		3507,84
14	SP	16	1	N		0
15	SP	36	4	N		800

Legenda Escolaridade

Ensino Medio Completo
Graduanda
Graduação Completa
Pós graduanda
Pós graduação completa

Tipos de Dados - Categóricos

ID	Estado Origem	Idade	Escolaridade	Trabalha como Programadora	Renda Mensal
1	SP	36	4	S	3737,52
2	SP	25	2	N	400,00
3	MG	34	2		2366,14
4	Nominal	23	Ordinal	Nominal	2841,29
5	SP	31	4	N	800
6	SP	34	5	S	3433,02
7	SP	39	5	S	2752,74
8	PE	24	3	S	3682,33
9	RJ	29	3	S	2359,28
10	SP	27	3	S	2119,15
11	SP	30	3	S	3326,79
12	SP	25	4	S	2684,05
13	SP	23	2	S	3507,84
14	SP	16	1	N	0
15	SP	36	4	N	800

Legenda Escolaridade

1	Ensino Medio Completo
2	Graduanda
3	Graduação Completa
4	Pós graduanda
5	Pós graduação completa

Tipos de Dados - Dados Quantitativos

ID	Estado Origem	Idade	Escolaridade	Trabalha como Programadora	Renda Mensal
1	SP	36	4	S	3737,52
2	SP	25	2	N	400,00
3	MG	34	3	S	2366,14
4	RJ	23	Dados O	uantitativ	1,29
5	SP	31	Dados C	<u>t</u> uantitativ	03
6	SP	34	5	S	3433,02
7	SP	39	5	S	2752,74
8	PE	24	3	S	3682,33
9	RJ	29	3	S	2359,28
10	SP	27	3	S	2119,15
11	SP	30	3	S	3326,79
12	SP	25	4	S	2684,05
13	SP	23	2	S	3507,84
14	SP	16	1	N	0
15	SP	36	4	N	800

Legenda Escolaridade

Ensino Medio Completo
Graduanda
Graduação Completa
Pós graduanda
Pós graduação completa

Tipos de Dados - Numéricos

ID	Estado Origem	Idade	Escolaridade	Trabalha como Programadora	Renda Mensal
1	SP	3 6	4	S	3737,52
2	SP	25	2	N	400,00
3	MG	34	3	S	2366,14
4	RJ	Discreto	3	S	Contínuo
5	SP	31	4	N	800
6	SP	34	5	S	3433,02
7	SP	39	5	S	2752,74
8	PE	24	3	S	3682,33
9	RJ	29	3	S	2359,28
10	SP	27	3	S	2119,15
11	SP	30	3	S	3326,79
12	SP	25	4	S	2684,05
13	SP	23	2	S	3507,84
14	SP	16	1	N	0
15	SP	36	4	N	800

Legenda Escolaridade

1	Ensino Medio Completo
2	Graduanda
3	Graduação Completa
4	Pós graduanda
5	Pós graduação completa

Trabalhando com Pandas

O acrônimo Pandas vem da combinação de Panel Data e Python Data Analysis*.

Dados de Painel - Python para Análise de Dados

Primeiro Passo:

- 1. Abrir as bibliotecas que você utilizará
- 2. Subir o arquivo que possui seus dados

```
[ ] #abrindo as bibliotecas que serão utilizadas
import pandas as pd
import matplotlib.pyplot as plt
from google.colab import files
uploaded = files.upload()
```

Browse... dados.txt
dados.txt(text/plain) - 379 bytes, last modified: n/a - 100% done
Saving dados.txt to dados.txt

Abrindo o arquivo:

Importando um CSV para o Colab:

CSV - Comma-Separated Values vírgula separando valor

```
pd.read_csv('nome_arquivo', sep = ';', decimal = ',')
```

```
# Transformando o arquivo importando em um dataframe
dados_pyladies = pd.read_csv('dados.txt', sep=';', decimal = ',')
```

Argumentos separador decimal

Visualizando o arquivo:

nome_dataframe.head()

	dos_pyla		17			
	Estado	Origem	Idade	Escolaridade	Trabalha_como_Programadora	Renda_Mensal
0		SP	36	4	s	3737.52
1		SP	25	2	N	400.00
2		MG	34	3	S	2366.14
3		RJ	23	3	s	2841.29
4		SP	31	4	N	800.00

Visualizando o arquivo:

nome_dataframe.tail()

[22] # para ver as cinco últimas linhas dados_pyladies.tail()

₽		Estado	Origem	Idade	Escolaridade	Trabalha_como_Programadora	Renda_Mensal
	10		SP	30	3	S	3326.79
	11		SP	25	4	S	2684.05
	12		SP	23	2	S	3507.84
	13		SP	16	1	N	0.00
	14		SP	36	4	N	800.00

As Estruturas dos Dados:

O que é um dataframe??

DataFrame é uma estrutura de dados bidimensional - parecida com uma tabela de excel ou um banco de dados.

As Estruturas dos Dados:

Estrutura de dados bidimensional (colunas e linhas) cujo índice começa no **zero.**

O dataframe contém colunas que armazenam diferentes tipos de informações (string, float, integer e etc)

Ele é uma classe de objeto da biblioteca Pandas.

dataframe

As Estruturas dos Dados:

E o series ??

DataSerie é estrutura unidimensional - como uma coluna do excel

As Estrutura dos Dados

Series

A 3 B - 5 C 7

Um array unidimensional e rotulado capaz de armazenar qualquer tipo de dado.

```
s = pd.Series([3,-5,7,4], index = ['a','b','c','d'])
print(s)

a     3
b     -5
c     7
d     4
dtype: int64
```

As Estrutura dos Dados:

Linhas e Colunas

nome_dataframe.shape

```
dados_pyladies.shape

(15, 5)
```

Variáveis (colunas)

nome_dataframe.columns

Conhecendo os Dados:

Informações Gerais

nome_dataframe.info()

dados pyladies.info()

Selecionando uma Variável (coluna):

nome_dataframe['coluna']

```
dados pyladies['Estado Origem ']
      SP
      SP
      MG
      RJ
      SP
      SP
      SP
      PE
      RJ
      SP
10
      SP
11
      SP
12
      SP
13
      SP
14
      SP
Name: Estado Origem , dtype: object
```


Lembrando que uma coluna de dataframe é uma series.

Filtrando um dataframe:

nome_dataframe[nome_dataframe['coluna'] == condição]

	ID	Estado Origem	Idade	Escolaridade	Trabalha_como_Programadora	Renda_Mensa
0	1	SP	36	4	S	3737,5
2	3	MG	34	3	S	2366,1
3	4	RJ	23	3	s	2841,2
5	6	SP	34	5	S	3433,0
6	7	SP	39	5	S	2752,7
7	8	PE	24	3	s	3682,3
8	9	RJ	29	3	s	2359,2
9	10	SP	27	3	s	2119,1
10	11	SP	30	3	S	3326,7
11	12	SP	25	4	s	2684,0
12	13	SP	23	2	S	3507,8

Aqui você insere a condição para o filtro que você quer. Se a condição for um texto, não se esqueça das aspas!

Aqui você coloca o operador lógico que atende o filtro que você precisa.

Dataset Tips

O dataset **Tips** tem informações sobre os clientes de restaurantes, valores pagos, dia das refeições, entre outras informações.

Ele está disponível em inglês na biblioteca Seaborn. O Grupo de Estudos de Ciência de Dados das PyLadies São Paulo tratou o dataset (tradução e inserção da coluna tempo_permanencia).

O dataset Tips será a sua base de dados de trabalho nesse workshop.

Colunas

- 1. total conta: valor gasto na refeição. Variável Numérica contínua.
- 2. gorjeta: valor dado como gorjeta. Variável Númerica contínua.
- 3. **genero:** feminino ou masculino. Variável Categórica.
- 4. **fumante:** se fuma ou não. Variável Categórica.
- 5. dia: dia da semana. Variável Categórica.
- 6. **pessoas_mesa:** quantas pessoas havia em cada mesa. Variável Numérica discreta.
- tempo_permanencia: o tempo que as pessoas ficaram no restaurante.
 Variável Numérica discreta.

Agora é com você!

Com um novo notebook aberto é hora de começar a trabalhar. Execute as linhas abaixo e quando abrir a janela de seleção de arquivos, escolha o arquivo a ser importado.

https://colab.research.google.com;

Arquivo importado com sucesso.

```
# Transformando o arquivo importado em um dataframe
tips_data = pd.read_csv('tips.csv')
```


Célula executada sem erros.

Desafio Conhecendo os Dados

Agora é a hora de explorar o nosso dataset. Cada um dos exercícios podem ser resolvidos com apenas uma instrução do Pandas.

- 1. Mostre as 7 primeiras linhas do dataset que você importou.
- Mostre as 9 últimas linhas do dataset.
- 3. Quantas colunas e linhas tem o dataframe?
- 4. Quais são os nomes das colunas?
- 5. Mostre de uma vez só: quantas linhas e colunas tem o dataset, além do nome das colunas, o tipo delas e se elas apresentam valores nulos.
- 6. **Liste**: a coluna **genero**, depois somente a coluna **gorjeta**. Por último, liste as **duas colunas**: gorjeta e genero.
- 7. Filtre o dataframe com as linhas das clientes mulheres.

Resposta Desafio Conhecendo os Dados

1. Mostre as 7 primeiras linhas do dataset que você importou.

```
tips_data.head(7)
```

Mostre as 9 últimas linhas do dataset.

```
tips_data.tail(9)
```

3. Quantas colunas e linhas tem o dataframe?

tips_data.shape

O dataframe tem 244 linhas e 8 colunas.

4. Quais são os nomes das colunas?

tips_data.columns

Resposta Desafio Conhecendo os Dados

5. Mostre de uma vez só: quantas linhas e colunas tem o dataset, além do nome das colunas, o tipo delas e se elas apresentam valores nulos.

```
tips_data.info()
```

6. **Liste**: a coluna **genero**, depois somente a coluna **gorjeta**. Por último, liste as **duas colunas**: gorjeta e genero.

```
tips_data['genero']
tips_data['gorjeta']
```

tips_data[['genero', 'gorjeta']]

7. Filtre o dataframe com as linhas das clientes mulheres.

```
tips_data[tips_data['genero'] == 'Feminino']
```


Estatística

Média

A **média** é a soma de todos os elementos dividido pelo número de elementos.

Média

Qual a renda média das meninas no dataframe dados_pyladies?

Para responder essa pergunta precisamos:

1º) Somar a renda mensal de todas as meninas;

```
valor = (3737.52 + 400.00 + 2366.14 + 2841.29 + 800.00 + 3433.02 + 2752.74 + 3682.33 + 2359.28 + 2119.15 + 3326.79 + 2684.05 + 3507.84 + 0.00 + 800.00)
```

2º) Dividir o valor obtido pelo total de meninas.

Ou seja, em média a Renda Mensal é de R\$2.320,68.

Média

Codando fica:

nome_dataframe['coluna'].mean()

Média Renda Mensal:

```
dados_pyladies['Renda_Mensal'].mean()

2320.6766666666667
```

Média Idade:

```
dados_pyladies['Idade'].mean_()

28.8
```


Desafio Média

Que tal utilizar a média para conhecermos ainda mais os dados que estamos analisando? Agora é com você!

- 1. Mostre a **média** da coluna **gorjetas**.
- 2. Escolha uma coluna quantitativa e mostre a média.
- 3. Como fazer para mostrar a **média** de **todas as colunas** quantitativas ao mesmo tempo? Mostra pra gente!

Resposta Desafio Média

1. Mostre a **média** da coluna **gorjetas**.

```
tips_data['gorjeta'].mean()
```

2. Escolha uma coluna quantitativa e mostre a média.

```
tips_data['total_conta'].mean()
```

3. Como fazer para mostrar a média de todas as colunas quantitativas ao mesmo tempo? Mostra pra gente!

```
tips_data.mean()
```


Moda

A **Moda** é aquele elemento que mais se repete na distribuição dos dados.

Estado Origem	Frequência
SP	11

Qual será a UF que mais se repete?

nome_dataframe['coluna'].mode()

```
[48] dados_pyladies['Estado Origem '].mode()

O SP
dtype: object
```


Desafio Moda

Vimos que a moda é o valor que mais se repete em um conjunto de dados, daí vem o nome dela. Sendo assim, queremos saber:

- 1. Quem mais frequenta o restaurante que estamos analisando, homens ou mulheres?
- 2. Qual é o dia preferido para os clientes irem ao restaurante?
- 3. Na maioria das vezes os clientes vão ao restaurante para almoçar ou para jantar?
- 4. **Faça uma pergunta** e responda utilizando a moda. Conta pra gente o que descobriu! ;)

Resposta Desafio Moda

1. Quem mais frequenta o restaurante que estamos analisando, homens ou mulheres?

```
tips_data['genero'].mode()
```

- Qual é o dia preferido para os clientes irem ao restaurante? tips_data['dia'].mode()
- 3. Na maioria das vezes os clientes vão ao restaurante para almoçar ou para jantar? tips_data['horario'].mode()
- Faça uma pergunta e responda utilizando a moda. Conta pra gente o que descobriu!;)

Mediana

Mediana é o valor do meio de um conjunto de dados ordenados.

- Para um conjunto com número ímpar de observações: é o valor que divide exatamente na metade esse conjunto.
- Para um conjunto com número par de observações: é a média dos adois valores do meio.

Mediana

Qual a Mediana quando observamos a idade das meninas?

Para responder essa pergunta precisamos:

- 1º) Ordenar os dados do menor para o maior valor;
- 2º) Selecionar o valor mediano dos dados.

Observamos que a Mediana não é influenciada pelo valor baixo de idade.

Mediana

Codando fica:

nome_dataframe['coluna'].median()

Idade Mediana:

```
[50] dados_pyladies['Idade'].median()
```

[→ 29.0

Salário Mediano:

- dados_pyladies['Renda_Mensal'].median()
- € 2684.05

Desafio Mediana

Vimos que a mediana é o valor que divide ao meio um conjunto de dados ordenados. Então conta pra gente:

- 1. Qual é a mediana das contas que os clientes pagam no restaurante?
- 2. Qual é a mediana das gorjetas que os clientes pagam no restaurante?
- 3. A mediana das contas é igual, maior ou menor do que a média das contas?
- 4. Compare também a mediana e a média das gorjetas.

Resposta Desafio Mediana

- Qual é a mediana das contas que os clientes pagam no restaurante? tips_data['total_conta'].median()
- Qual é a mediana das gorjetas que os clientes pagam no restaurante? tips_data['gorjeta'].median()
- A mediana das contas é igual, maior ou menor do que a média das contas?
 tips_data['total_conta'].mean()
 A mediana é maior do que a média do total das contas.
- Compare também a mediana e a média das gorjetas.
 tips_data['gorjeta'].mean()
 A mediana e a média das gorjetas são iguais.

Mas média e mediana são as mesmas coisas???

Como Média, Moda e Mediana se relacionam?

Falando brevemente sobre distribuições, há vários tipos de comportamento natural das medidas que observamos, um deles é a distribuição Normal.

Como Média, Moda e Mediana se relacionam?

Em amostras normalmente distribuídas a Média, a Mediana e a Moda possuem valores próximos!

Distribuição Simétrica

Média = Mediana = Moda

Se observarmos a renda mensal das meninas que trabalham com programação temos que a média e a mediana são muito próximas mesmo.

Média	R\$ 2982,74
Mediana	R\$ 2841,29

Se observarmos a idade das meninas, também obtemos valores de média e mediana próximos!

Média	Aprox. 29 anos
Mediana	29 anos

Desafio Média, Moda e Mediana

Vimos como as medidas se relacionam, agora conta pra gente:

- 1. Qual é a **média** do tempo que os clientes ficam no restaurante?
- 2. Qual é a mediana do tempo que os clientes ficam no restaurante?
- 3. Qual é a moda do tempo que os clientes ficam no restaurante?

Resposta Desafio Média, Moda e Mediana

- Qual é a média do tempo que os clientes ficam no restaurante?
 tips_data['tempo_permanencia'].mean()
- Qual é a mediana do tempo que os clientes ficam no restaurante?
 tips_data['tempo_permanencia'].median()
- Qual é a moda do tempo que os clientes ficam no restaurante?
 tips_data['tempo_permanencia'].mode()

Quartis

Quartis são valores que dividem uma amostra de dados ordenados em quatro partes iguais.

Com eles você pode rapidamente avaliar a dispersão e a tendência central de um conjunto de dados, que são etapas importantes na compreensão dos seus dados.

Quartis

Importante: para encontrar os quartis, os dados devem estar ordenados!

- 1º Quartil (Q1) é onde estão 25% dos valores do conjunto de dados.
- 2º Quartil (Q2) é onde estão até 50% dos valores, ou seja, a mediana!
- 3º Quartil (Q3) é onde estão até 75% dos valores.

Isso quer dizer que:

✓ 25% dos valores do conjunto de dados são menores ou iguais ao Q1 e 75% dos valores são superiores ao Q1.

- ✓ 25% dos valores são superiores ou iguais ao Q3 e 75% dos valores são menores que Q3.
- ✓ 50% dos valores estão entre o 1º e o 3º Quartil.

Quartis

Codando fica:

nome_dataframe['coluna'].quantile()

25%

dados_pyladies.quantile(.25)

Local Characteristics
Local

75%

[21] dados_pyladies.quantile(.75)

Escolaridade 4.000
Renda_Mensal 3379.905
Name: 0.75, dtype: float64

Desafio Quartis

Vimos que os quartis dividem o conjunto de dados em 4 partes iguais e podem nos dar insights sobre os dados.

- 1. Quais são os quartis das contas? (coluna total_contas)
- 2. Calcule a mediana das contas. Existe algum quartil igual à mediana? Por que?
- 3. Qual é o máximo do valor que classifica uma conta entre as 25% contas mais baratas?
- 4. Qual é o mínimo do valor que classifica uma conta entre as 25% contas mais caras?

Resposta Desafio Quartis

1. Quais são os quartis das contas? (coluna total_contas)

```
tips_data['total_conta'].quantile(0.25)
tips_data['total_conta'].quantile(0.50)
tips_data['total_conta'].quantile(0.75)
```

2. Calcule a mediana das contas. Existe algum quartil igual à mediana? Por que?

```
tips_data['total_conta'].median()
```


Resposta Desafio Quartis

3. Qual é o máximo do valor que classifica uma conta entre as 25% contas mais baratas?

tips_data['total_conta'].quantile(0.25)

Contas até 13.35 estão entre as contas mais baratas do dataset tips. Utilizamos o 10 quartil (Q1) para responder essa questão pois 25% dos dados são iguais ou menores que ele.

4. Qual é o mínimo do valor que classifica uma conta entre as 25% contas mais caras?

tips_data['total_conta'].quantile(0.75)

Contas a partir de 24.13 estão entre as contas mais caras do dataset tips. Utilizamos o 3o quartil (Q3) para responder essa questão pois 25% dos dados são iguais ou maiores que ele e 75 % dos dados são menores que ele.

O que vimos até aqui!

Tabela de Frequência

Mas será que a renda mensal média varia com relação às demais características?

Para respondermos isso podemos criar uma tabela de frequência que nos mostrará a variação dos dados um pelo outro

Trabalha como Programadora	Soma Renda Mensal	Quantidade Meninas	Renda Mensal Média
S	32810,15	11	2982,74
N	2000	4	500,00

Característica: Trabalhar ou não com programação!

Tabela de Frequência - Usando o Groupby

O Pandas possui a função groupby que nos permite agrupar dados, como o exemplo anterior.

Ele nos permite visualizar rapidamente uma tabela de frequência.

nome_dataframe.groupby('coluna').método()

0	dados_pyladies.groupby('Tra	balha_como_Pr	ogramado	ra').count()		
₽		Estado Orige	m Idade	Escolaridade	Renda_Mensal	
	Trabalha_como_Programadora					
	N		4 4	4	4	
	s		11 11	11	11	

 alguns métodos não funcionam com o groupby, para saber mais consulte a documentação da <u>biblioteca</u> Pandas

Tabela de Frequência - Groupby

Podemos agrupar separando os dados por outras variáveis (colunas) como no exemplo abaixo

nome_dataframe.groupby('coluna')['coluna'].método()

Como podemos ler a tabela acima?

Tabela de Frequência - Groupby

Há vários métodos que podem ser utilizados com o groupby.

Para contar os valores

nome_dataframe.groupby('coluna')['coluna'].value_counts()

Para somar valores

nome_dataframe.groupby('coluna')['coluna'].sum()

qual outro?

nome_dataframe.groupby('coluna')['coluna'].método()

Tabela de Frequência - Groupby + Agg

Podemos utilizar um Groupby com uma função Para isso utilizamos a função aggregation.

nome_dataframe.groupby('coluna')['coluna'].agg(['método', 'método'])

		omo_Programa	dora')['Rend	a_mensal.l.agg([.c	count, 'mean', 'med
	count	mean	median		
Trabalha_como_Progra	amadora				
Trabalha_como_Progra	amadora 4	500.000000	600.00		

Desafio Tabela de Frequência - Groupby + Agg

Vimos que o Groupby agrupa valores. Sendo assim, utilize o GroupBy para descobrir:

- 1. Temos mais homens ou mulheres fumantes no dataset? Quantas mulheres e quantos homens são fumantes?
- 2. Existe algum dia na semana que há mais mulheres do que homens no dataset? Se sim, qual é o dia?
- 3. Qual é o **número de pessoas nas mesas** que é **mais comum** durante o almoço e durante o jantar?
- 4. Em qual refeição o restaurante mais fatura?
- Mostre a soma total e a média das contas por gênero com um único comando do Pandas.

Resposta Desafio Tabela de Frequência

1. Temos mais homens ou mulheres fumantes no dataset? Quantas mulheres e quantos homens são fumantes?

tips_data.groupby('genero')['fumante'].value_counts()

Analisando os dados vemos que o dataset tem 33 mulheres fumantes e 60 homens que fumam. Portanto os dados mostram mais homens fumantes.

2. Existe algum dia na semana que há mais mulheres do que homens no dataset? Se sim, qual é o dia?

tips_data.groupby('genero')['dia'].value_counts() Sim, na quinta-feira há mais mulheres que homens.

Resposta Desafio Tabela de Frequência

3. Qual é o número de pessoas nas mesas que é mais comum durante o almoço e durante o jantar?

tips_data.groupby('horario')['pessoas_mesa'].value_counts()
Durante o almoço e o jantar é mais comum ter 2 pessoas na mesa.

4. Em qual refeição o restaurante mais fatura?

tips_data.groupby('horario')['total_conta'].sum()
O restaurante fatura mais durante o horário do jantar.

5. Mostre a **soma** total e a **média** das contas por gênero com um único comando do Pandas.

tips_data.groupby('genero')['total_conta'].agg(['sum', 'mean'])

Para identificarmos como as variáveis estão distribuídas e tornar as informações de um conjunto mais visuais nós plotamos gráficos.

Histograma

O Histograma é um gráfico que representa a distribuição de frequências de uma variável numérica contínua.

nome_dataframe['coluna'].plot.hist()

BoxPlot

O boxplot nos permite avaliar a distribuição do conjunto de dados, utilizando como referência os quartis.

A "caixa principal" é formada pelo primeiro quartil, a mediana e terceiro quartil.

As hastes inferior e superior são os limites e podem ser calculadas da seguinte forma:

Limite inferior: $Q_1 - 1.5(Q_3 - Q_1)$

Limite superior: $Q_3 + 1,5(Q_3 - Q_1)$

plt.boxplot(nome_dataframe['coluna'])

Desafio Visualização de Dados - Gráficos

- 1. Explore a visualização do tempo de permanência (coluna tempo_permanencia) utilizando um histograma.
- Observe a distribuição do valor da conta (coluna total_conta) utilizando um boxplot.

Resposta Desafio Visualização de Dados

```
    Mostre o histograma da coluna tempo_permanencia.
    plt.hist(tips_data['tempo_permanencia'])
    plt.title('Histograma: Tempo de Permanência')
    plt.xlabel('tempo_permanencia')
    plt.ylabel('Frequência');
```

Plote o boxplot da coluna total_conta.
 plt.boxplot(tips_data['total_conta'])
 plt.title('Boxplot: Tempo de Permanência')
 plt.xlabel('total_conta')
 plt.ylabel('Frequência')

Dispersão dos Dados

Quando comparamos a média com o restante dos valores de uma váriavel, nós queremos entender o quanto aquele valor está distante da média.

ID	Estado Origem	Idade	Escolaridade	Trabalha como Programadora	Renda Mensal
1	SP	36	4	S	3737,52
2	SP	25	2	N	400,00

A média da Renda Mensal é de: R\$ 2320,68

Se compararmos os valores da tabela acima percebemos o quanto eles variam em relação a média

Uma medida muito interessante para avaliarmos a dispersão dos dados é a variância!

Vimos que a média nos informa sobre a tendência central, mas a variância que indica como esses dados variam dentro de uma distribuição.

Será que as meninas que trabalham como programadora tem rendas parecidas? E as meninas que não trabalham como programadoras?

Para responder essa pergunta precisamos:

- 1º) Selecionar separadamente as meninas que trabalham ou não, como programadoras;
- 2º) Avaliar a soma dos desvios ao quadrado;
- 3º) Dividir essa soma pelo total de meninas considerado.

Renda Mensal
(x)
3737,52
400
2366,14
2841,29
800
3433,02
2752,74
3682,33
2359,28
2119,15
3326,79
2684,05
3507,84
0
800
2684,05

$$s = (x1 - média)^{2} + (x2 - média)^{2} + (x3 - média)^{2}$$

$$(n-1)$$

$$s = (3737,52 - 26805)^{2} + (400 - 2684,05)^{2} + \dots$$

$$(15-1)$$

$$s = 1560989.622$$

Codando fica:

nome_dataframe['coluna'].var()

Variância Renda:

- dados_pyladies['Renda_Mensal'].var()
- 1560989.6225666667

Variância Idade:

- dados_pyladies['Idade'].var()
 - 39.60000000000001

Desvio Padrão

O desvio padrão é uma medida que expressa o grau de dispersão de um conjunto de dados

Ele é a raiz quadrada da variância e a vantagem de utilizarmos esta medida é que o desvio padrão é expresso na mesma unidade dos dados, o que facilita a comparação.

Desvio Padrão

Codando fica:

nome_dataframe['coluna'].std()

Desvio Padrão Renda:

- dados_pyladies['Renda_Mensal'].std()
 - 1249.3957029567

Desvio Padrão Idade:

- dados_pyladies['Idade'].std()
 - 6.29285308902091

Desafio - Variabilidade

Vimos que podemos usar duas medidas de variabilidade para entender o quanto os valores variam em relação a média. Sendo assim, responda:

- 1. Qual a variância do tempo de permanência dos clientes no restaurante ? Ela varia muito em relação a média? E o desvio padrão? O que podemos entender com isso?
- Será que o valor da fatura varia muito entre homens e mulheres?
 Selecione a melhor medida para comparar um grupo ao outro e verifique.

Resposta Desafio - Variabilidade

Vimos que podemos usar duas medidas de variabilidade para entender o quanto os valores variam em relação a média. Sendo assim, responda:

Qual a variância do tempo de permanência dos clientes no restaurante ?
 Ela varia muito em relação a média? E o desvio padrão? O que podemos entender com isso?
 tips_data['tempo_permanencia'].var()
 tips_data['tempo_permanencia'].std()

Será que o valor da fatura varia muito entre homens e mulheres?
Selecione a melhor medida para comparar um grupo ao outro e verifique.
tips_data['total_conta'].std()
tips_data[tips_data['genero']=='Feminino']['total_conta'].std()
tips_data[tips_data['genero']=='Masculino']['total_conta'].std()
Outra solução: tips_data.groupby('genero')['total_conta'].std()

Por fim! Describe

Para conseguirmos visualizar as medidas centrais e de dispersão de um conjunto de dados, nós podemos utilizar o método describe.

nome_dataframe.describe()

[14]	dados_j	dados_pyladies.describe()					
₽		Idade	Escolaridade	Renda_Mensal			
	count	15.000000	15.000000	15.000000			
	mean	28.800000	3.266667	2320.676667			
	std	6.292853	1.099784	1249.395703			
	min	16.000000	1.000000	0.000000			
	25%	24.500000	3.000000	1459.575000			
	50%	29.000000	3.000000	2684.050000			
	75%	34.000000	4.000000	3379.905000			
	max	39.000000	5.000000	3737.520000			

Desafio Describe

Vimos que o Describe traz todas as medidas de uma variável, agora utilizando este método verifique:

- 1. As informações do **faturamento** do restaurante.
- 2. As informações de todo o dataset.
- 3. Que tipos de variáveis ele mostra?

Resposta Desafio Describe

Vimos que o Describe traz todas as medidas de uma variável, agora utilizando este método verifique:

1. As informações do faturamento do restaurante.

```
tips_data['total_conta'].describe()
```

- As informações de todo o dataset. tips_data.describe()
- 3. Que tipos de variáveis ele mostra?O describe mostra resultados para variáveis numéricas.

O que vimos hoje

- O valor médio de uma distribuição, calculando a média;
- Vimos como identificar qual dado mais se repete na distribuição, observando a moda;
- Aprendemos que a mediana separa os dados no meio, 50% 50%
 e que ela é o 2º quartil;
- O conjunto de dados pode ser dividido em 4 Quartis, 25% em cada um;
- Podemos construir Tabelas de Frequência para os dados categóricos;
- Conversamos que visualizar os dados é um jeito de entender a distribuição das variáveis e para isso plotamos o histograma e o boxplot;
- Vimos como os dados podem ser dispersos e que podemos avaliar essa dispersão pela variância e o desvio padrão.

Não Entre em Pânico!

CIÊNCIA DE DADOS

01	FAÇA UMA PERGUNTA INTERESSANTE	 O que você quer prever? Qual o objetivo científico? O que você faria se tivesse todos esses dados? O que pode acontecer?
02	OBTENHA OS DADOS	 Como os dados foram amostrados? Quais dados são relevantes? Existem problemas de privacidade?
03	EXPLORE OS DADOS	Existem anomalias?Existem padrões?
04	MODELE OS DADOS	 Construa um modelo; Encaixe o modelo; Valide o modelo.
05	VISUALIZE E DIVULGUE OS RESULTADOS	 O que aprendemos? Os resultados fazem sentido? Podemos contar uma história?
		117

Para saber mais

- Livro Guia Mangá de Estatística Shin Takahashi
- Plataforma Kaggle https://www.kaggle.com/
- Podcast Pizza de Dados https://pizzadedados.com/
- Documentação Pandas https://pandas.pydata.org/pandas-docs/stable/index.html
- Udacity https://www.udacity.com/
- Canal EstaThiFisco
 https://www.youtube.com/channel/UC4jROkPjTvnXRkuo2GAwKX
- Minerando Dados http://minerandodados.com.br/
- Cientista de Dados com GIFs https://paulovasconcellos.com.br/
- Data Hackers https://datahackers.com.br/
- Estatística Básica P. A. Bussab, W. de O. Moretin -https://edisciplinas.usp.br/mod/resource/view.php?id=2425203

E por hoje é só pessoal!

meetup PyLadiesSP

Mulheres que amam programar e ensinar Python