Contents

1. Monochromatic sets	. 2
1.1. Ramsey's theorem	. 2
1.2. Applications of Ramsey's theorem	
1.3. Van der Waerden's theorem	
1.4. The Hales-Jewett theorem	
2. Partition regular systems	
3. Euclidean Ramsey theory	

1. Monochromatic sets

1.1. Ramsey's theorem

Notation 1.1.1 N denotes the set of positive integers, $[n] = \{1, ..., n\}$, and $X^{(r)} = \{A \subseteq X : |A| = r\}$. Elements of a set are written in ascending order, e.g. $\{i, j\}$ means i < j. Write e.g. ijk to mean the set $\{i, j, k\}$ with the ordering (unless otherwise stated) i < j < k.

Definition 1.1.2 A *k*-colouring on $A^{(r)}$ is a function $c: A^{(r)} \to [k]$.

Example 1.1.3

- Colour $\{i,j\} \in \mathbb{N}^{(2)}$ red if i+j is even and blue if i+j is odd. Then $M=2\mathbb{N}$ is a monochromatic subset.
- Colour $\{i, j\} \in \mathbb{N}^{(2)}$ red if $\max\{n \in \mathbb{N} : 2^n \mid (i+j)\}$ is even and blue otherwise. $M = \{4^n : n \in \mathbb{N}\}$ is a monochromatic subset.
- Colour $\{i, j\} \in \mathbb{N}^{(2)}$ red if i + j has an even number of distinct prime divisors and blue otherwise. No explicit monochromatic subset is known.

Theorem 1.1.4 (Ramsey's Theorem for Pairs) Let $\mathbb{N}^{(2)}$ are 2-coloured by $c: \mathbb{N}^{(2)} \to \{1,2\}$. Then there exists an infinite monochromatic subset M.

Proof.

- Let $a_1 \in A_0 := \mathbb{N}$. There exists an infinite set $A_1 \subseteq A_0$ such that $c(a_1, i) = c_1$ for all $i \in A_1$.
- Let $a_2 \in A_1$. There exists infinite $A_2 \subseteq A_1$ such that $c(a_2,i) = c_2$ for all $i \in A_2$.
- Repeating this inductively gives a sequence $a_1 < a_2 < \dots < a_k < \dots$ and $A_1 \supseteq A_2 \supseteq \dots$ such that $c(a_i,j) = c_i$ for all $j \in A_i$.

- One colour appears infinitely many times: $c_{i_1}=c_{i_2}=\cdots=c_{i_k}=\cdots=c.$
- $M = \{a_{i_1}, a_{i_2}, \ldots\}$ is a monochromatic set.

Remark 1.1.5

- The same proof works for any $k \in \mathbb{N}$ colours.
- The proof is called a "2-pass proof".
- An alternative proof for k colours is split the k colours 1, ..., k into 2 colours: 1 and "2 or ... or k", and use induction.

Note 1.1.6 An infinite monochromatic set is very different from an arbitrarily large finite monochromatic set.

Example 1.1.7 Let $A_1 = \{1, 2\}$, $A_2 = \{3, 4, 5\}$, etc. Let $\{i, j\}$ be red if $i, j \in A_k$ for some k. There exist arbitrarily large monochromatic red sets but no infinite monochromatic red sets.

Example 1.1.8 Colour $\{i < j < k\}$ red iff $i \mid (j+k)$. A monochromatic subset $M = \{2^n : n \in \mathbb{N}_0\}$ is a monochromatic set.

Theorem 1.1.9 (Ramsey's Theorem for r-sets) Let $\mathbb{N}^{(r)}$ be finitely coloured. Then there exists a monochromatic infinite set.

Proof.

- r = 1: use pigeonhole principle.
- r = 2: Ramsey's theorem for pairs.
- For general r, use induction.
- Let $c: \mathbb{N}^r \to [k]$ be a k-colouring. Let $a_1 \in \mathbb{N}$, and consider all r-1 sets of $\mathbb{N} \setminus \{a_1\}$, induce colouring $c': (\mathbb{N} \setminus \{a_1\})^{(r-1)} \to [k]$ via $c'(F) = c(F \cup \{a_1\})$.
- By inductive hypothesis, there exists $A_1 \subseteq \mathbb{N} \setminus \{a_1\}$ such that c' is constant on it (taking value c_1).
- Now pick $a_2 \in A_1$ and induce a colouring $c': (A_1 \setminus \{a_2\})^{(r-1)} \to [k]$ such that $c'(F) = c(F \cup \{a_2\})$. By inductive hypothesis, there exists $A_2 \subseteq A_1 \setminus \{a_2\}$ such that c' is constant on it (taking value c_2).
- Repeating this gives a_1, a_2, \ldots and A_1, A_2, \ldots such that $A_{i+1} \subseteq A_i \setminus \{a_{i+1}\}$ and $c(F \cup \{a_i\}) = c_i$ for all $F \subseteq A_{i+1}$, for |F| = r 1.
- One colour must appear infinitely many times: $c_{i_1} = c_{i_2} = \dots = c$.
- $M = \{a_{i_1}, a_{i_2}, ...\}$ is a monochromatic set.

1.2. Applications of Ramsey's theorem

Example 1.2.1 In a totally ordered set, any sequence has monotonic subsequence.

Proof.

- Let (x_n) be a sequence, colour $\{i,j\}$ red if $x_i \leq x_j$ and blue otherwise.
- By Ramsey's theorem for pairs, $M = \{i_1 < i_2 < \cdots \}$ is monochromatic. If M is red, then the subsequence x_{i_1}, x_{i_2}, \ldots is increasing, and is strictly decreasing otherwise.
- We can insist that (x_{i_j}) is either concave or convex: 2-colour $\mathbb{N}^{(3)}$ by colouring $\{j < k < \ell\}$ red if $(i, x_{i_j}), (j, x_{i_k}), (k, x_{i_\ell})$ form a convex triple, and blue if they form a concave triple. Then by Ramsey's theorem for r-sets, there is an infinite convex or concave subsequence.

Theorem 1.2.2 (Finite Ramsey) Let $r, m, k \in \mathbb{N}$. There exists $n \in \mathbb{N}$ such that whenever $[n]^{(r)}$ is k-coloured, we can find a monochromatic set of size (at least) m.

Proof.

- Assume not, i.e. $\forall n \in \mathbb{N}$, there exists colouring $c_n : [n]^{(r)} \to [k]$ with no monochromatic m-sets.
- There are only finitely many (k) ways to k-colour $[r]^{(r)}$, so there are infinitely many of colourings c_r, c_{r+1}, \ldots that agree on $[r]^{(r)}$: $c_i \mid_{[r]^{(r)}} = d_r$ for all i in some infinite set A_1 , where d_r is a k-colouring of $[r]^{(r)}$.
- Similarly, $[r+1]^{(r)}$ has only finitely many possible k-colourings. So there exists infinite $A_2 \subseteq A_1$ such that for all $i \in A_2$, $c_i \mid_{[r+1]^{(r)}} = d_{r+1}$, where d_{r+1} is a k-colouring of $[r+1]^{(r)}$.
- Continuing this process inductively, we obtain $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n$. There is no monochromatic m-set for any $d_n : [n]^{(r)} \to [k]$ (because $d_n = c_i|_{[n]^{(r)}}$ for some i).
- These d_n 's are nested: $d_\ell|_{[n]^{(r)}} = d_n$ for $\ell > n$.

• Finally, we colour $\mathbb{N}^{(r)}$ by the colouring $c: \mathbb{N}^{(r)} \to [k], \ c(F) = d_n(F)$ where $n = \max(F)$ (or in fact $n \geq \max(F)$, which is well-defined by above). So c has no monochromatic m-set (since M was a monochromatic m-set, then taking $\ell = \max(M), \ d_\ell$ has a monochromatic m-set), which contradicts Ramsey's Theorem for r-sets.

Remark 1.2.3

- This proof gives no bound on n = n(k, m), there are other proofs that give a bound.
- It is a proof by compactness (essentially, we proved that $\{0,1\}^{\mathbb{N}}$ with the product topology, i.e. the topology derived from the metric $d(f,g) = \frac{1}{\min\{n \in \mathbb{N}: f(n) \neq g(n)\}}$, is sequentially compact).

Remark 1.2.4 Now consider a colouring $c: \mathbb{N}^{(2)} \to X$ with X potentially infinite. This does not necessarily admit an infinite monochromatic set, as we could colour each edge a different colour. Such a colouring would be injective. We can't guarantee either the colouring being constant or injective though, as c(ij) = i satisfies neither.

Theorem 1.2.5 (Canonical Ramsey) Let $c: \mathbb{N}^{(2)} \to X$ be a colouring with X an arbitrary set. Then there exists an infinite set $M \subseteq \mathbb{N}$ such that:

- 1. c is constant on $M^{(2)}$, or
- 2. c is injective on $M^{(2)}$, or
- 3. c(ij) = c(kl) iff i = k for all i < j and $k < l, i, j, k, l \in M$, or
- 4. c(ij) = c(kl) iff j = l for all i < j and $k < l, i, j, k, l \in M$.

Proof (Hints).

- First consider the 2-colouring c_1 of $\mathbb{N}^{(4)}$ where ijkl is coloured same if c(ij) = c(kl) and DIFF otherwise. Show that an infinite monochromatic set $M_1 \subseteq \mathbb{N}$ (why does this exist?) coloured same leads to case 1.
- Assume M_1 is coloured DIFF, consider the 2-colouring of $M_1^{(4)}$, which colours ijkl SAME if c(il) = c(jk) and DIFF otherwise. Show an infinite monochromatic $M_2 \subseteq M_1$ (why does this exist?) must be coloured DIFF by contradiction.
- Consider the 2-colouring of $M_2^{(4)}$ where ijkl is coloured SAME if c(ik) = c(jl) and DIFF otherwise. Show an infinite monochromatic set $M_3 \subseteq M_2$ (why does this exist?) must be coloured DIFF by contradiction.
- 2-colour $M_3^{(3)}$ by: ijk is coloured same if c(ij)=c(jk) and DIFF otherwise. Show an infinite monochromatic set $M_4\subseteq M_3$ (why does this exist) must be coloured DIFF by contradiction.
- 2-colour $M_4^{(3)}$ by the other two similar colourings to above, obtaining monochromatic $M_6\subseteq M_5\subseteq M_4$.
- Consider 4 combinations of these colourings on M_6 , show 3 lead to one of the cases in the theorem, and the other leads to contradiction.

Proof.

- 2-colour $\mathbb{N}^{(4)}$ by: ijkl is red if c(ij) = c(kl) and blue otherwise. By Ramsey's Theorem for 4-sets, there is an infinite monochromatic set $M_1 \subseteq \mathbb{N}$ for this
- If M_1 is red, then c is constant on $M_1^{(2)}$: for all pairs $ij, i'j' \in M_1^{(2)}$, pick m < nwith j, j' < m, then c(ij) = c(mn) = c(i'j').
- So assume M_1 is blue.
- Colour $M_1^{(4)}$ by giving ijkl colour green if c(il) = c(jk) and purple otherwise. By Ramsey's theorem for 4-sets, there exists an infinite monochromatic $M_2 \subseteq M_1$ for this colouring.
- Assume M_2 is coloured green: if $i < j < k < l < m < n \in M_2$, then c(jk) = c(in) = c(in)c(lm) (consider ijkn and ilmn): contradiction, since M_1 is blue.
- Hence M_2 is purple, i.e. for $ijkl \in M_2^{(4)}$, $c(il) \neq c(jk)$.
- Colour M_2 by: ijkl is orange if c(ik) = c(jl), and pink otherwise.
- By Ramsey's theorem for 4-sets, there exists infinite monochromatic $M_3 \subseteq M_2$ for this colouring.
- Assume M_3 is orange, then for $i < j < k < l < m < n \in M_3$, we have c(jm) =c(ln) (consider jlmn) and c(jm) = c(ik) (consider ijkm): contradiction, since $M_3 \subseteq M_1$.
- Hence M_3 is pink, i.e. for ijkl, $c(ik) \neq c(jl)$.
- Colour $M_3^{(3)}$ by: ijk is yellow if c(ij) = c(jk) and grey otherwise. By Ramsey's theorem for 3-sets, there exists infinite monochromatic $M_4\subseteq M_3$ for this colouring.
- Assume M_4 is yellow: then (considering $ijkl \in M_4^{(4)}$) c(ij) = c(jk) = c(kl):
- contradiction, since $M_4\subseteq M_1$.

 So for any $ijk\in M_4^{(3)},\ c(ij)\neq c(jk)$.

 Finally, colour $M_4^{(3)}$ by: ijk is gold if c(ij)=c(ik) and c(ik)=c(jk), silver if c(ij) = c(ik) and $c(ik) \neq c(jk)$, bronze if $c(ij) \neq c(ik)$ and c(ik) = c(jk), and platinum if $c(ij) \neq c(ik)$ and $c(ik) \neq c(jk)$.
- By Ramsey's theorem for 3-sets, there exists monochromatic $M_5 \subseteq M_4$. M_5 cannot be gold, since then c(ij) = c(jk): contradiction, since $M_5 \subseteq M_4$. If silver, then we have case 3 in the theorem. If bronze, then we have case 4 in the theorem. If platinum, then we have case 2 in the theorem.

Remark 1.2.6

- A more general result of the above theorem states: let $\mathbb{N}^{(r)}$ be arbitrarily coloured. Then we can find an infinite M and $I \subseteq [r]$ such that for all $x_1...x_r \in M^{(r)}$ and $y_1...y_r \in M^{(r)}, c(x_1...x_r) = c(y_1...y_r) \text{ iff } x_i = y_i \text{ for all } i \in I.$
- In canonical Ramsey, $I = \emptyset$ is case 1, $I = \{1, 2\}$ is case 2, $I = \{1\}$ is case 3 and $I = \{2\}$ is case 4.
- These 2^r colourings are called the **canonical colourings** of $\mathbb{N}^{(r)}$.

Exercise 1.2.7 Prove the general statement.

1.3. Van der Waerden's theorem

Remark 1.3.1 We want to show that for any 2-colouring of \mathbb{N} , we can find a monochromatic arithmetic progression of length m for any $m \in \mathbb{N}$. By compactness, this is equivalent to showing that for all $m \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that for any 2-colouring of [n], there exists a monochromatic arithmetic progression of length m. (If not, then for each $n \in \mathbb{N}$, there is a colouring $c_n : [n] \to \{1,2\}$ with no monochromatic arithmetic progression of length m. Infinitely many of these colourings agree on [1], infinitely many of those agreeing in [1] agree on [2], and so on - we obtain a 2-colouring of \mathbb{N} with no monochromatic arithmetic progression of length m).

We will prove a slightly stronger result: whenever \mathbb{N} is k-coloured, there exists a length m monochromatic arithmetic progression, i.e. for any $k, m \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that whenever [n] is k-coloured, we have a length m monochromatic progression.

Definition 1.3.2 Let $A_1,...,A_k$ be length m arithmetic progressions: $A_i = \{a_i,a_i+d_i,...,a_i+(m-1)d_i\}$. $A_1,...,A_k$ are **focussed** at f if $a_i+md_i=f$ for all i.

Example 1.3.3 $\{4,8\}$ and $\{6,9\}$ are focussed at 12.

Definition 1.3.4 If length m arithmetic progressions $A_1, ..., A_k$ are focused at f and are monochromatic, each with a different colour (for a given colouring), they are called **colour-focussed** at f.

Remark 1.3.5 We use the idea that if $A_1, ..., A_k$ are colour-focussed at f (for a k-colouring) and of length m-1, then some $A_i \cup \{f\}$ is a length m monochromatic arithmetic progression.

Theorem 1.3.6 Whenever \mathbb{N} is k-coloured, there exists a monochromatic arithmetic progression of length 3, i.e. for all $k \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that any k-colouring of [n] admits a length 3 monochromatic progression.

Proof (Hints).

- Prove by induction the claim: $\forall r \leq k, \exists n \in \mathbb{N}$ such that for any k-colouring of [n], there exists a monochromatic arithmetic progression of length 3, or r colour-focussed arithmetic progressions of length 2.
 - r = 1 case is straightforward.
 - Let claim be true for r-1 with witness n, let $N=2n(k^{2n}+1)$.
 - \triangleright Partition N into blocks of equal size, show that two of these blocks must have the same colouring.
 - Using the inductive hypothesis, merge the r-1 colour-focussed arithmetic progressions from these two blocks into a new set of r-1 colour-focussed arithmetic progressions.
 - Find another length 2 monochromatic arithmetic progression, reason that this is of different colour.
- Reason that this claim implies the result.

Proof.

• We claim that for all $r \leq k$, there exists an $n \in \mathbb{N}$ such that if [n] is k-coloured, then either:

- ► There exists a monochromatic arithmetic progression of length 3.
- ightharpoonup There exist r colour-focussed arithmetic progressions of length 2.
- This claim implies the result by the above remark.
- We prove the claim by induction on r:
 - r = 1: take n = k + 1, then by pigeonhole, some two elements of [n] have the same colour, so form a length two arithmetic progression.
 - Assume true for r-1 with witness n. We claim that $N=2n(k^{2n}+1)$ works for r.
 - ▶ Let $c : [2n(k^{2n} + 1)] \to [k]$ be a colouring. We partition [N] into $k^{2n} + 1$ blocks of size 2n: $B_i = \{2n(i-1) + 1, ..., 2ni\}$ for $i = 1, ..., k^{2n} + 1$.
 - Assume there is no length 3 monochromatic progression for c. By inductive hypothesis, each block B_i has r-1 colour-focussed arithmetic progressions of length 2.
 - Since $|B_i| = 2n$, each block also contains their focus. For a set M with |M| = 2n, there are k^{2n} ways to k-colour M. So by pigeonhole, there are blocks B_s and B_{s+t} that have the same colouring.
 - Let $\{a_i, a_i + d_i\}$ be the r-1 arithmetic progressions in B_s colour-focussed at f, then $\{a_i + 2nt, a_i + d_i + 2nt\}$ is the corresponding set of arithmetic progressions in B_{s+t} , each colour-focussed at f + 2nt.
 - Now $\{a_i, a_i + d_i + 2nt\}$, $i \in [r-1]$, are r-1 arithmetic progressions colour-focused at f + 4nt. Also, $\{f, f + 2nt\}$ is monochromatic of a different colour to the r-1 colours used (since there is no length 3 monochromatic progression for c). Hence, there are r arithmetic progressions of length 2 colour-focussed at f + 4nt.

Remark 1.3.7 The idea of looking at all possible colourings of a set is called a product argument.

Definition 1.3.8 The **Van der Waerden** number W(k, m) is the smallest $n \in \mathbb{N}$ such that for any k-colouring of [n], there exists a monochromatic arithmetic progression in [n] of length m.

Remark 1.3.9 The above theorem gives a **tower-type** upper bound $W(k,3) \le k^{k(\cdot)^{k+2}}$.

Theorem 1.3.10 (Van der Waerden's Theorem) For all $k, m \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that for any k-colouring of [n], there is a length m monochromatic arithmetic progression.

 $Proof\ (Hints).$

• Use induction on m.

- Given induction hypothesis on m-1, prove the claim: for all $r \leq k$, there exists $n \in \mathbb{N}$ such that for any k-colouring of [n], we have either a monochromatic length m arithmetic progression, or r colour-focussed arithmetic progressions of length m-1. Reason that this claim implies the result.
- Use induction on r. Give an explicit n for r = 1.
- Let n be the witness for r-1, let $N=W(k^{2n},m-1)\cdot 2n$. Assume a k-colouring of [N], $c:[N]\to [k]$, has no arithmetic progressions of length m.
- Partition [N] into the obvious choice of $W(k^{2n}, m-1)$ blocks B_i , each of length 2n.
- Colour the indices $1 \le i \le W(k^{2n}, m-1)$ of the blocks by

$$c'(i) = (c(2n(i-1)+1), c(2n(i-1)+2)...., c(2ni)) \\$$

- Reason that we can find monochromatic arithmetic progression s, s + t, ..., s + (m-2)t of length m-1 (w.r.t c'), and that this corresponds to sequence of blocks $B_s, B_{s+t}, ..., B_{s+(m-2)t}$, each identically coloured.
- Reason that B_s contains r-1 colour-focussed length m-1 arithmetic progressions A_i together with their focus f.
- Let A'_i be the same arithmetic progression but with common difference 2nt larger than that of A_i . Show the A'_i are colour-focussed at some focus in terms of f.
- Find another length m-1 arithmetic progression, show this must be monochromatic and of different colour to all A'_i . Show it also has same focus as all A'_i .

Proof.

• By induction on m. m = 1 is trivial, m = 2 is by pigeonhole principle. m = 3 is the statement of the previous theorem.

- Assume true for m-1 and all $k \in \mathbb{N}$.
- For fixed k, we prove the claim: for all $r \leq k$, there exists $n \in \mathbb{N}$ such that for any k-colouring of [n], either:
 - \rightarrow There is a monochromatic arithmetic progression of length m, or
 - ▶ There are r colour-focussed arithmetic progressions of length m-1.
- We will then be done (by considering the focus).
- To prove the claim, we use induction on r.
- r=1 is the claim of the first inductive hypothesis: take n=W(k,m-1).
- Assume the claim holds for r-1 with witness n, and assume there is no monochromatic arithmetic progression of length m. We will show that $N = W(k^{2n}, m-1)2n$ is sufficient for r.
- Partition [N] into $W(k^{2n},m-1)$ blocks of length 2n: $B_i=\{2n(i-1)+1,...,2ni\}$ for $i=1,...,W(k^{2n},m-1)$.
- Each block has k^{2n} possible colourings. Colour the blocks as

$$c'(i) = (c(2n(i-1)+1), c(2n(i-1)+2)...., c(2ni)) \\$$

By definition of W, there exists a monochromatic arithmetic progression of length m-1 (w.r.t. to c'): $\{\alpha, \alpha+t, ..., \alpha+(m-2)t\}$. The repsective blocks $B_{\alpha}, ..., B_{\alpha+(m-2)t}$ are identically coloured.

- B_{α} has length 2n, so by induction B_{α} contains r-1 colour-focussed arithmetic progressions of length m-1, together with their focus (as length of block is 2n).
- Let $A_1,...,A_{r-1},$ $A_i=\{a_i,a_i+d_i,...,a_i+(m-2)d_i\},$ be colour-focussed at f.
- Let $A_i' = \{a_i, a_i + (d_i + 2nt), ..., a_i + (m-2)(d_i + 2nt)\}$ for i = 1, ..., r-1. The A_i' are monochromatic as the blocks are identically coloured and the A_i are monochromatic. Also, A_i and A_i' have the same colouring, and the A_i are colour-focussed, hence the A_i' have pairwise distinct colours.
- The A_i are focussed at f and the colour of f of different than the colour of all A_i . $f = a_i + (m-1)d_i$ for all i.
- Now $\{f, f+2nt, f+4nt, ..., f+2n(m-2)t\}$ is an arithmetic progression of length m-1, is monochromatic and of a different colour to all the A'_i .
- It is enough to show that $a_i + (m-1)(d_i + 2nt) = f + 2n(m-1)t$ for all i, but this is equivalent to $a_i + (m-1)d_i = f$, which is true as all A_i were focussed at f.

Corollary 1.3.11 For any k-colouring of \mathbb{N} , there exists a colour class containing arbitrarily long arithmetic progressions.

Remark 1.3.12 We can't guarantee infinitely long arithmetic progressions, e.g.

- 2-colour \mathbb{N} by 1 red, 2, 3 blue, 4, 5, 6 red, etc.
- The set of infinite arithmetic progressions in $\mathbb N$ is countable (since described by two integers: the start term and step). Enumerate them by $(A_k)_{k \in \mathbb N}$. Pick $x_1 < y_1 \in A_1$, colour x_1 red and y_1 blue. Then pick $x_2, y_2 \in A_2$ with $y_1 < x_2 < y_2$, colour x_2 red, y_2 blue. Continue inductively.

Theorem 1.3.13 (Strengthened Van der Waerden) Let $m, k \in \mathbb{N}$. There exists $n \in \mathbb{N}$ such that for any k-colouring of [n], there exists a monochromatic length m arithmetic progression whose common difference is the same colour (i.e. there exists a, a + d, ..., a + (m - 1), d all of the same colour).

 $Proof\ (Hints).$

- Use induction on k.
- If n is the witness for k-1 colours, show that N=W(k,n(m-1)+1) is a witness for k colours, by considering n different multiples of the step of a suitable arithmetic progression.

Proof.

- Fix $m \in \mathbb{N}$. We use induction on k. k = 1 case is trivial.
- Let n be witness for k-1 colours.
- We will show that N = W(k, n(m-1) + 1) is suitable for k colours.
- If [N] is k-coloured, there exists a monochromatic (say red) arithmetic progression of length n(m-1) + 1: a, a+d, ..., a+n(m-1)d.

- If rd is red for any $1 \le r \le n$, then we are done (consider a, a + rd, ..., a + (m 1)rd).
- If not, then $\{d, 2d, ..., nd\}$ is k-1-coloured, which induces a k-1 colouring on [n]. Therefore, there exists a monochromatic arithmetic progression b, b+s, ..., b+(m-1)s (with s the same colour) by induction, which translates to db, db+ds, ..., db+d(m-1)s and ds being monochromatic.

Remark 1.3.14 The case m=2 of strengthened Van der Waerden is **Schur's theorem**: for any k-colouring of \mathbb{N} , there are monochromatic x, y, z such that x+y=z. This can be proved directly from Ramsey's theorem for pairs: let $c: \mathbb{N} \to [k]$ be a k-colouring, then induce $c': \mathbb{N}^{(2)} \to [k]$ by c'(ij) = c(j-i). By Ramsey, there exist i < j < k such that c'(ij) = c'(ik) = c'(jk), i.e. c(j-i) = c(k-i) = c(k-j). So take x = j-i, z = k-i, y = k-j.

1.4. The Hales-Jewett theorem

Definition 1.4.1 Let X be finite set. We say X^n consists of words of length n on alphabet X.

Definition 1.4.2 Let X be finite. A **combinatorial line** in X^n is a set $L \subseteq X^n$ of the form

$$L = \left\{ (x_1,...,x_n) \in X^n : \forall i \not\in I, x_i = a_i \text{ and } \forall i,j \in I, x_i = x_j \right\}$$

for some non-empty set $I \subseteq [n]$ and $a_i \in X$ (for each $i \notin I$). I is the set of **active** coordinates for L.

Note that a combinatorial line is invariant under permutations of X.

Example 1.4.3 Let X = [3]. Some lines in X^2 are:

- $I = \{1\}$: $\{(1,1),(2,1),(3,1)\}$ (with $a_2 = 1$), $\{(1,2),(2,2),(3,2)\}$ (with $a_2 = 2$), $\{(1,3),(2,3),(3,3)\}$ (with $a_2 = 3$).
- $I=\{2\}$: $\{(1,1),(1,2),(1,3)\}$ (with $a_1=1),$ $\{(2,1),(2,2),(2,3)\}$ (with $a_1=2),$ $\{(3,1),(3,2),(3,3)\}$ (with $a_1=3).$
- $I = \{1, 2\}: \{(1, 1), (2, 2), (3, 3)\}.$

Note that $\{(1,3),(2,2),(3,1)\}$ is **not** a combinatorial line.

Example 1.4.4 Some sets of lines in $[3]^3$ are:

- $I=\{1\}$: $\{(1,2,3),(2,2,3),(3,2,3)\}$ (with $a_2=2,a_3=3)$.
- $I = \{1,3\}$: $\{(1,3,1), (2,3,2), (3,3,3)\}$ (with $a_2 = 3$).

Theorem 1.4.5 (Hales-Jewett) Let $m, k \in \mathbb{N}$ (we use alphabet X = [m]), then there exists $n \in \mathbb{N}$ such that for any k-colouring of $[m]^n$, there exists a monochromatic combinatorial line.

Notation 1.4.6 Denote the smallest such n by HJ(m, k).

Corollary 1.4.7 Hales-Jewett implies Van der Waerden's theorem.

Proof (Hints). For a colouring $c: \mathbb{N} \to [k]$, consider the induced colouring $c'(x_1, ..., x_n) = c(x_1 + \cdots + x_n)$ of $[m]^n$.

Proof. Let c be a k-colouring of \mathbb{N} . For sufficiently large n (i.e. $n \geq \mathrm{HJ}(m,k)$), induce a k-colouring c' of $[m]^n$ by $c'(x_1, ..., x_n) = c(x_1 + \cdots + x_n)$. By Hales-Jewett, a monochromatic (with respect to c') combinatorial line L exists. This gives a monochromatic (with respect to c) length m arithmetic progression in \mathbb{N} . The step is equal to the number of active coordinates. The first term in the arithmetic progression corresponds to the point in L with all active coordinates equal to 1, the last term corresponds to the point in L with all active coordinates equal to m.

Exercise 1.4.8 Show that the *m*-in-a-row noughts and crosses game cannot be a draw in sufficiently high dimensions, and that the first player can always win.

2. Partition regular systems

3. Euclidean Ramsey theory