| Nr Ćwiczenia 203                    | Data wykonania 10.12.2024 | Wydział WIiT      | Semestr 3 | Grupa LAB L1 |
|-------------------------------------|---------------------------|-------------------|-----------|--------------|
| Prowadzący: mgr inż. Taras Zhezhera |                           | Stanisław Fiedler |           | Ocena:       |

Sprawozdanie Laboratorium Fizyka dla informatyków

# Wyznaczanie zależności przewodnictwa od temperatury dla półprzewodników i przewodników.

Stanisław Fiedler 160250

LAB 4, 10 grudnia 2024

### Spis treści

1Wstęp teoretyczny12Wyniki pomiarów23Opracowanie wyników33.1Wykres zaleznosci R = f(T)33.2Energia aktywacji w półprzewodniku33.2.1Wynik44Wnioski4

### 1 Wstęp teoretyczny

Prawo Ohma mówi że gęstość prądu w dowolnym miejscu przewodnika jest wprost proporcjonalna do natężenia pola elektrycznego oraz zależy od przewodnictwa elektrycznego. Wartość przewodnictwa jest określona bezpośrednio przez koncentrację i ruchliwość nośników.

$$j = \sigma E$$

W przewodnikach koncentracja nośników jest bardzo duża i nie zależy od temperatury. Zmianę przewodnictwa powoduje zmniejszanie się ruchliwości elektronów wraz ze wzrostem temperatury.

W półprzewodnikach nośnikami prądu są elektrony w paśmie przewodnictwa oraz dziury w paśmie walencyjnym. Liczba elektronów w paśmie przewodzenia zależy od temperatury. Zmiana ruchliwości nośników w półprzewodnikach ma znikomy wpływ na przewodnictwo, zależy ono przedewszystkim od koncentracji nośników. Zwiększanie liczby nośników powoduje zmniejszenie oporu elektrycznego.

# 2 Wyniki pomiarów

|   | D + At = 0.5°C   | 200012 0.3)<br>1544444 ± (0,840 + 1000) 12 | 24VZ              |
|---|------------------|--------------------------------------------|-------------------|
|   | temperature (°C) | opir presodula [2] opir                    | pitpremodula (er) |
| 3 | 20,5             | 108,2                                      | 231               |
| 3 | 254              | MO                                         | 185 14            |
| 3 | 30,1             | MM 7                                       | N2 Z              |
| 3 | 35,1             | 113/18 6                                   | 122               |
| 3 | 10,2             | 115,4                                      | 99                |
| 3 | 45               | 117,2                                      | 81 PS             |
| 3 | 50               | 119                                        | 607               |
|   | 55,2             | 170,9                                      | 56                |
| 3 | 60,0             | 177,8                                      | 47                |
| 3 | 64,9             | 124,7                                      | 40                |
| 3 |                  | 126,6                                      | 34                |
| 3 | 69,69            |                                            |                   |
| 3 |                  | 128,4                                      | 28                |
| 3 | 80,2             | 130,4                                      | 84                |
| 3 | 82               | 1738, 2                                    | 21                |
|   | 90               | 134                                        | VA                |
| 3 | 84,3             | 132,3                                      | Ø\$323            |
| 3 | 74,9             | 129,2                                      | 32                |
| 3 | 70,6             | 127,6                                      | 86                |
| 9 | 06, 64,8         | 175,3                                      | 43                |
| 8 | 60,4             | 103,7                                      | 51                |
| 0 | 54,9             | 121,6                                      | 61                |
|   | 429,8            | 119,5                                      | 73                |
|   | 45,1             | VV810                                      | 87                |
|   | 40               | 115,9                                      | 106               |
|   | 35,2             | 0.04.1                                     | 128 10            |
| 닏 | 30               | AAT                                        | 156               |
|   | 0-0              | MAY 82 NO                                  | 190               |

# 3 Opracowanie wyników

## 3.1 Wykres zaleznosci R = f(T)



Czerwony: przewodnik  $[\Omega]$ 

Niebieski: półprzewodnik  $[2k\Omega]$ 

## 3.2 Energia aktywacji w półprzewodniku

| temp $[C]$ | K      | opór $[k\Omega]$ | $[\Omega]$ | $R^{-1}$     | $T^{-1}$ | $ln(R^{-1})$ |
|------------|--------|------------------|------------|--------------|----------|--------------|
| 20.5       | 293.65 | 231              | 231000     | 4.329004E-06 | 0.003405 | -12.3501     |
| 25.4       | 298.55 | 185              | 185000     | 5.405405E-06 | 0.003349 | -12.1281     |
| 30.1       | 303.25 | 152              | 152000     | 6.578947E-06 | 0.003297 | -11.9316     |
| 35.1       | 308.25 | 122              | 122000     | 8.196721E-06 | 0.003244 | -11.7117     |
| 40.2       | 313.35 | 99               | 99000      | 1.010101E-05 | 0.003191 | -11.5028     |
| 45         | 318.15 | 81               | 81000      | 1.234567E-05 | 0.003143 | -11.3022     |
| 50         | 323.15 | 67               | 67000      | 1.492537E-05 | 0.003094 | -11.1124     |
| 55.2       | 328.35 | 56               | 56000      | 1.785714E-05 | 0.003045 | -10.9331     |
| 60         | 333.15 | 47               | 47000      | 2.127659E-05 | 0.003001 | -10.7579     |
| 64.9       | 338.05 | 40               | 40000      | 0.000025     | 0.002958 | -10.5966     |
| 69.9       | 343.05 | 34               | 34000      | 2.941176E-05 | 0.002915 | -10.4341     |
| 75.1       | 348.25 | 28               | 28000      | 3.571428E-05 | 0.002871 | -10.2399     |
| 80.2       | 353.35 | 24               | 24000      | 4.16666E-05  | 0.002830 | -10.0858     |
| 85         | 358.15 | 21               | 21000      | 4.761904E-05 | 0.002792 | -9.95227     |
| 90         | 363.15 | 18               | 18000      | 5.55555E-05  | 0.002753 | -9.79812     |



Regresja liniowa została wyznaczona z użyciem Python z bibliotekami numpy oraz scipy. Równanie prostej ma postać:

$$y = -3916.94699x + 0.994993$$

Więc współczynnik a wynosi

$$a = -3912.050913 \pm 13.221968$$

Energia aktywacji wyznaczona z równia wynosi:

$$E_A = a \cdot k$$

$$E_A = -3917 \cdot 1,38 \cdot 10^{-23} = -5,40546 \cdot 10^{-20} \quad J$$

$$\Delta E_A = |a \cdot \Delta k| + |k \cdot \Delta a| \quad J$$

$$\Delta E_A = |1,38 \cdot 10^{-23} \cdot 13.221968| = 0,0182 \cdot 10^{-20} \quad J$$

$$E_A = \frac{-5,40546 \cdot 10^{-20}}{1,6 \cdot 10^{-19}} = -0.3378 \quad eV$$

$$\Delta E_A = \frac{1,82 \cdot 10^{-22}}{1,6 \cdot 10^{-19}} = 0.001 \quad eV$$

#### 3.2.1 Wynik

$$E_A = (-5, 41 \pm 0, 02) \cdot 10^{-20}$$
  $J$   
 $E_A = -0, 338 \pm 0, 001$   $eV$ 

### 4 Wnioski

Wykresy R = f(T) pokazują zgodnie z oczekiwaniami zachowanie przewodnika i półprzewodnika pod wpływem zmiany temperatury. Opór przewodnika rośnie wprost proporcjonalnie do temperatury, natomiast opór półprzewodnika maleje ze wzrostem temperatury.