AoPS Community 1991 USAMO

USAMO 1991

www.artofproblemsolving.com/community/c4489

by MithsApprentice, e.lopes, xqpx, DPatrick, liangchene, rrusczyk

- April 23rd
- 1 In triangle ABC, angle A is twice angle B, angle C is obtuse, and the three side lengths a, b, c are integers. Determine, with proof, the minimum possible perimeter.
- 2 For any nonempty set S of numbers, let $\sigma(S)$ and $\pi(S)$ denote the sum and product, respectively, of the elements of S. Prove that

$$\sum \frac{\sigma(S)}{\pi(S)} = (n^2 + 2n) - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)(n+1),$$

where " Σ " denotes a sum involving all nonempty subsets S of $\{1, 2, 3, \ldots, n\}$.

3 Show that, for any fixed integer $n \ge 1$, the sequence

$$2, 2^2, 2^{2^2}, 2^{2^{2^2}}, \dots \pmod{n}$$

is eventually constant.

[The tower of exponents is defined by $a_1=2,\ a_{i+1}=2^{a_i}$. Also $a_i\ (\mathsf{mod}\ n)$ means the remainder which results from dividing a_i by n.]

- Let $a=\frac{m^{m+1}+n^{n+1}}{m^m+n^n}$, where m and n are positive integers. Prove that $a^m+a^n\geq m^m+n^n$. 4
- Let D be an arbitrary point on side AB of a given triangle ABC, and let E be the interior 5 point where CD intersects the external common tangent to the incircles of triangles ACDand BCD. As D assumes all positions between A and B, prove that the point E traces the arc of a circle.

These problems are copyright © Mathematical Association of America (http://maa.org).