

Vehicular Communications

Prof. Gianluigi Ferrari, Prof. Luca Davoli

Internet of Things (IoT) Lab

Department of Engineering and Architecture

University of Parma

https://iotlab.unipr.it

Lecture 3

Intra-vehicle Communications

Outline

- Bus systems: basics
- Protocols
 - K-Line
 - CAN
 - LIN
 - FlexRay
 - MOST
 - In-car Ethernet
- ECUs
- Safety

Outline

- Bus systems: basics
- Protocols
 - K-Line
 - CAN
 - | |N
 - FlexRay
 - MOST
 - In-car Ethernet
- ECUs
- Safety

ISO/OSI Layers

- Layered communication architecture
 - One layer ⇔ one function ⇔ one protocol

 - Layer interacts only with immediate base layer (byn blow) Interfaces follow rigid specification
 - commonly by standards body
- ISO/OSI layered communication model
 - Defines 7 layers
 - see next slide
 - Common architectures relax rigid guidelines
 - cf. TCP/IP

Meray ISO/OSI Layers: Router ► Application **Application** Presentation Presentation Session 5 Session Segment Transport **Transport Packet** Network Network Network Network Frame Data link Data link Data link Data link Bit Physical Physical Physical Physical Router

lyer if the winh provoct is the seme of oll

ISO/OSI Layers: Functions in Detail

Physical Layer

- Physical Layer

 Specifies mechanical, electrical properties to transmit bits
- Time synchronization, coding, modulation, ...
- Data Link Layer
 - Checked transmission of frames
 - Frame synchronisation, error checking, flow control, ...
- Network Layer
 - Transmission of datagrams / packets
 - Connection setup, routing, resource management, ...
- Transport Layer

• Reliable end to end transport of segments - lud-75-end from Coural formal ignition Ferrari Prof Live 70 "

ISO/OSI Layers: Functions in Detail

- Session Layer
 - Establish and tear down sessions
- Presentation Layer
 - Define Syntax and Semantics of information
- Application Layer
 - Communication between applications

- Physical Layer
- Data Link Layer

(R.g., troutig) re us weeded.

Why bus systems?

- ower cost
- thou deducted P2P bencoton rysoms
- Material

- Higher modularity
 - customizability of vehicles
 - cooperation with Original Equipment Manufacturers (OEMs)
- Shorter development cycles
 - Re-usability of components
 - Standard protocols and testing plans ⇒ less errors

History

(ECV)

• First micro processors in vehicles in 1980s

- . There were four comostous
- Communication via point to point connections
- Simple control lines, little real data transmission
- True data transmission for connection external diagnosis equipment
- Birth of standard for character transmission
 - via K-Line (ISO 9141)
- Finally: introduction of data busses for in-vehicle communication
- Later standardized as CAN (ISO 11898)
- Use in series production models starts 1991

Overview and Use Cases

- State of the art
 - K-Line and CAN are part of On Board Diagnosis (OBD) connector
 - Enables, e.g., reading engine parameters, catcon, oxygen (lambda) sensor
 - Mandatory for newly registered vehicles in both EU und U.S.

Use Cases

- Driveline
 - Engine and transmission control
- Active Safety
 - Electronic Stability Programme (ESP)
- Passive Safety
 - Air bag, belt tensioners
- Comfort
 - Interior lighting, A/C automation

Bee-he

- Multimedia and Telematics
 - Navigation system, CD changer

of Nother Communications

time controlis ore ourcal!

@

RTU = Real-tru hureritiss

2 Sept - Us Now

2 Septem & Galles - China

Flands - Rustine

Classification: On board communication

- Complex control and monitoring tasks
 - Data transmissions between ECUs / to MMI
 - E.g., engine control, ext. sensors, X-by-Wire
- Simplification of wiring
 - Replaces dedicated copper wiring
 - E.g., central power locks, power windows, turn signal lights
- Multimedia bus systems
 - Transmission of large volumes of data
 - E.g., Navigation unit, Radio/CD, Internet

wend vehicle vongstochen veeds to have the may and uplead outrons

Mon-Meetine Interfole (Mos HMI)

Classification Off board communication

- Diagnosis
 - Readout of ca. 3000 kinds of errors
 - Garage, exhaust emission testing
- · Flashing Su flaming
 - Initial installation of firmware on ECUs
 - · Adaptation of ECU to make, model, extras, ...
- Debugging
 - Detailed diagnosis of internal status
 - During development

v Penoud Copper

Classification by use case

	Application	Message length	Message rate	Data rate	Latency	Robustness	Cost
ON-	Control and monitoring		**	**	***	***	**
ON-	Simplified Wiring				*	**	*
	Multimedia	*	**	***	*	*	***
OFF-	Diagnosis						*
OFF-	Flashing	**		**		*	
	Debugging		*	*	**		

Classification by Society of Automotive Engineers (SAE)

- Line
 - ✓ Cost
 - Complexity
 - ☐ Robustness
- Star
 - ☐ Cost
 - ✓ Complexity
 - (√) Robustness
- Ring
 - Cost
 - □ Complexity
 - √ Robustness

Coupling of bus elements

- Repeater
 - Signal amplification
 - Signal refreshing
- Bridge
 - Medium / timing adaptation
 - Unfiltered forwarding
- Router
 - Filtered forwarding
- Gateway
 - Address adaptation
 - Speed adaptation
 - Protocol adaptation

Bus 1

Bus 2

Medium and Data transmission

- Concurrent bus access for typical wiring
 - Shared data line connected to pull-up resistors
 - Transistors can pull data line to GND (signal ground)
 - Base state
 - transistors non-conductive
 - pull up resistors raise bus level to high
 - One or more ECUs turn transistor conductive
 - This connects bus to signal ground
 - Bus level is low independent of other ECUs (⇒ dominant state)

- Wired OR
 - Example (assuming negative logic)

- Wired OR
 - Example (assuming negative logic)

- Wired OR
 - Example (assuming negative logic)

• 5V = logical 0 • 0V = logical 1

5V

Single has courantous!

Measurement point: 0V

(logical 1)

the box, you court detect
a collsion

- Wired AND
 - Example (assuming positive logic)

- Wired AND
 - Example (assuming positive logic)

• Example (assuming positive logic)

0

0

0

~105 Km/g =108 M/s

Network Topologies: Wave Effects

Wave effects: Reflections and ends of wire or connectors

Vehicular Communications

- Non negligible at high data rates, i.e., short bit lengths
- Propagation velocity of a signal on in-vehicle bus:

•
$$c \approx \frac{1}{3}c_0$$
 $\sim 3 - 10^5 \text{ km/s} (vecum)$

• Signal delay on typical in-vehicle bus:

•
$$t = \frac{c}{c} \approx 200 \text{ns}$$
 - bus dimension

Wave effects problematic if:

•
$$t_{bit} < 10t = 20 \text{ ns} = 2.40 \text{ s}$$

- Countermeasures
 - Add terminator plugs (resistor)
 - Minimize use of connectors

Bit coding

	logical 0	logical 1
Non return to Zero (NRZ)		
Manchester (original variant)		

Manchester

NRZ

