Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

## FYZIKÁLNÍ PRAKTIKUM

## Fyzikální praktikum 1

**Zpracoval:** Lukáš Lejdar **Naměřeno:** 30. dubna 2023

**Obor:** F **Skupina:** Út 16:00 **Testováno:** 

## Úloha č. 5:

## Měření modulu pružnosti pevných látek

 $T=21,1~^{\circ}\text{C}$  p=101,35~kPa  $\varphi=47,7~\%$ 

## 1. Úvod

V úloze budu měřit různé moduly pružnosti. Zavádíme je následujícím způsobem:

Pro materiál v tahu platí v nejjednodušším případě Hookův zákon

$$\sigma_{\rm n} = \frac{dF_{\rm n}}{dS} = \frac{\Delta l}{l}E,\tag{1}$$

kde  $\Delta$  l délkové prodloužení, l délka vzorku,  $dF_n$  průmět síly na kolmici ke zvolené plošce dS,  $\sigma_n$  normálové napětí a E modul pružnosti. Pokud je materiál v torzi místo v tahu a speciálně se zabýváme drátem o rozměrech l  $\times \rho \times 2\pi$ , bude platit velmi obdobný zákon

$$\sigma_{\rm t} = \frac{dF_{\rm t}}{dS} = \frac{\rho\varphi}{a}G\tag{2}$$

kde  $\varphi$  je úhel zkroucení konce drátu a G modul pružnosti ve smyku.

## 2. Postup měření

# ${\bf 2.1.}$ Měření modulu pružnosti v tahu přímou metodou z prodloužení drátu

Měření bude probíhat jako na obrázku 1. Z úchytu visí kolmo dolů drát o délce l a průměru d, který můžu postupně zatěžovat a úchylkoměrem velmi citlivě měřit jeho prodloužení.

Do Hookova zákona dosadím za S obsah průřezu drátu a za F gravitační sílu, kterou na drát působí závaží.

$$\frac{4gm}{\pi d^2} = \frac{\Delta l}{l}E\tag{3}$$

Změřím odchylku pro každé další přidané závaží a modul pružnosti určím ze sklonu lineárního fitu hodnot.

$$k = \frac{\Delta l}{m} = \frac{4gl}{\pi d^2 E}$$
 (4) Obrázek 1: Přímá metoda



#### 2.2. Měření modulu pružnosti v tahu z průhybu plného obdélníkového nosníku

Měření bude probíhat jako na obrázku 2. Mezi dvěma podpěrami ve vzdálenosti l je položený obdélníkový nosník o rozměrech a  $\times$  b  $\times$  c, který můžu postupně zatěžovat přidáváním závaží a úchylkoměrem měřit výchylku y od původní polohy.



Obrázek 2: průhyb nosníku

Vztah mezi průhybem y daného nosníku a zatížením F=mg je

$$y = \frac{mgl^3}{4Ea^3b} \tag{5}$$

Stejně jako v předešlém případě budu postupovat zvyšováním zátěže pro závislost y(m), kterou vyhodnotím fitem.

#### 2.3. Měření modulu pružnosti ve smyku dynamickou metodou

Na homogenní drát délky l o poloměru r je zavěšena homogenní koule o poloměru R a hmotnosti m mnohem větší, než je hmotnost drátu. Když kouli pootočím kolem svislé osy, vykonává torzní kmity. Pokud zkroucení drátu odpovídá pružné torzní deformaci, pak platí vztah pro modul pružnosti ve smyku G

$$G = \frac{16\pi mR^2 l}{5r^4 T^2}. (6)$$

Přitom T je perioda kmitání. Provedu 10 měření doby 10 period kmitání, veličiny zprůměruju a dopočítám G.



Obrázek 3: Torzní oscilátor

## 3. Výsledky měření

#### 3.1. Měření modulu pružnosti v tahu přímou metodou z prodloužení drátu

Na svislý ocelový drát o průměru d a délce l=1567 mm jsem postupně přidával závaží a měřil prodloužení  $\Delta l$ . Získané hodnoty jsou uvedené v grafu 4. Dosazením do vztahu (4) dostávám modul pružnosti drátu E. Pro výpočet nejistoty jsem použil python script uvedený v příloze 1.



| n  | d (mm)           |
|----|------------------|
| 1  | 0.50             |
| 2  | 0.50             |
| 3  | 0.50             |
| 4  | 0.50             |
| 5  | 0.51             |
| 6  | 0.50             |
| 7  | 0.49             |
| 8  | 0.50             |
| 9  | 0.49             |
| 10 | 0.50             |
| X  | $(0.5 \pm 0.02)$ |

Graf 4: Závislost prodloužení drátu na hmotnosti závaží

Tabulka 1: měření průměru drátu mikrometrem

$$E = (170 \pm 10) \text{ GPa } (p = 99.73 \%, \nu = 9)$$

#### 3.2. Měření modulu pružnosti v tahu z průhybu plného obdélníkového nosníku

Na obdélníkové nosníky o rozměrech a  $\times$  b  $\times$  c (tabulka 2) jsem postupně přidával závaží a měřil prohnutí y. Získané hodnoty jsou uvedené v grafu 5, python script pro výpočet v příloze 2 a výsledné moduly pružnosti v tabulce 2. Vzdálenost břitů  $l = (89.9 \pm 0.03)$  cm jsem změřil pravítkem.



Graf 5: Závislost prohnutí nosníku na hmotnosti závaží.

| materiál | dui    | ral    | mos    | saz    | mě     | éď     | oc     | el     |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| rozměry  | a (mm) | b (cm) |
| 1        | 5.04   | 3.030  | 5.04   | 3.022  | 5.06   | 3.008  | 5.75   | 2.980  |
| 2        | 5.04   | 3.028  | 5.06   | 3.010  | 5.05   | 3.012  | 5.75   | 2.978  |
| 3        | 5.04   | 3.022  | 5.10   | 3.032  | 5.06   | 3.022  | 5.77   | 2.980  |
| 4        | 5.03   | 3.020  | 5.04   | 3.024  | 5.06   | 3.014  | 5.76   | 2.988  |
| 5        | 5.03   | 3.040  | 5.03   | 3.010  | 5.06   | 3.016  | 5.75   | 2.982  |
| 6        | 5.04   | 3.022  | 5.04   | 3.080  | 5.06   | 3.012  | 5.75   | 2.986  |
| 7        | 5.02   | 3.020  | 5.02   | 3.120  | 5.06   | 3.080  | 5.76   | 2.980  |
| 8        | 5.03   | 3.036  | 5.04   | 3.120  | 5.06   | 3.010  | 5.75   | 2.982  |
| 9        | 5.04   | 3.020  | 5.04   | 3.160  | 5.06   | 3.008  | 5.75   | 2.984  |
| 10       | 5.02   | 3.016  | 5.05   | 3.020  | 5.06   | 3.012  | 5.75   | 2.982  |

Tabulka 2: Měření rozměrů nosníků

| materiál | a (mm)            | b (cm)            | k ( $\mu \text{m kg}^{-1}$ ) | E (GPa)          |
|----------|-------------------|-------------------|------------------------------|------------------|
| dural    | $5.033 \pm 0.032$ | $3.025 \pm 0.030$ | $6800 \pm 8$                 | $(67.9 \pm 0.2)$ |
| mosaz    | $5.059 \pm 0.012$ | $3.02 \pm 0.08$   | $4770 \pm 5$                 | $(95.6 \pm 0.2)$ |
| měď      | $5.05 \pm 0.08$   | $3.06 \pm 0.22$   | $3894 \pm 9$                 | $(120 \pm 10)$   |
| ocel     | $5.754 \pm 0.027$ | $2.982 \pm 0.012$ | $1528.0 \pm 2.0$             | $(205 \pm 3)$    |

Tabulka 3: Vypočítané moduly pružnosti E z rozměrů nosníků.  $(p=99.73\,\%,\,\nu=9)$ 

#### 3.3. Měření modulu pružnosti ve smyku dynamickou metodou

Železná koule o poloměru D a hmotnosti m = 5.905 g je zavěšená na drátě o průměru d a délce  $l = 51.450 \pm 0.003$  cm. Vychýlil jsem kouli a pokaždé změřil dobu deseti period T. Pro výpočet modulu pružnosti ze vztahu (6) jsem použil python script z přílohy 3.

| měření | d (mm)           | D (mm)         | $10 \cdot T (s)$ |
|--------|------------------|----------------|------------------|
| 1      | 1.00             | 99.60          | 39.89            |
| 2      | 0.99             | 99.70          | 39.81            |
| 3      | 0.99             | 99.80          | 39.56            |
| 4      | 0.99             | 99.78          | 40.05            |
| 5      | 0.99             | 99.70          | 39.64            |
| 6      | 0.99             | 99.80          | 39.94            |
| 7      | 1.00             | 99.72          | 39.82            |
| 8      | 0.99             | 99.78          | 39.94            |
| 9      | 0.99             | 99.76          | 39.93            |
| 10     | 1.00             | 99.76          | 39.72            |
| X      | $0.993 \pm 0.02$ | $99.7 \pm 0.2$ | $39.8 \pm 0.6$   |

Tabulka 4: Měření poloměru drátu a na něm zavěšené koule.  $(p=99.73\,\%,\,\nu=9)$ 

$$G = (79 \pm 6) \text{ GPa } (p = 99.73 \%, \nu = 9)$$

#### 4. Závěr

Z prodloužení ocelového drátu jsem změřil modul pružnosti  $E = (174 \pm 3)$  GPa. Ne celkové nejistotě se podílela nejistota měření průměru drátu mikrometrem a nejistota sklonu lineárního fitu hodnot.

Metodou prohnutí nosníků jsem změřil moduly pružnosti hliníku, mědi, mosazi a ocele a výsledné hodnoty uvedl v tabulce 3. Pro všechny čtyři kovy je rozdíl oproti tabulkám z odkazu [1] v řádech několika procent. Metoda průhybu nosníku dosáhla mnohem přesnějšího výsledku, než přímá metoda měření z prodloužení drátu.

Pomocí periody torzních kmitů jsem změřil modul pružnosti ve smyku ocelového drátu  $G=(79\pm4)$  GPa. Nepřesnost měření je převážně způsobená nejistotou periody kmitání. Bylo by potřeba místo manuálního spouštění stopek použít nějakou přesnější metodu. Tabulková hodnota je 79.3 GPa.

#### Reference

- [1] Tabulky Youngových modulů pružnosti http://kabinet.fyzika.net/studium/tabulky/modul-pruznosti.php.
- [2] návod k úloze https://www.physics.muni.cz/kof/vyuka/fp1\_05.pdf

## 5. Přílohy

```
1 import numpy as np
2 import uncertainties as unc
3 import math
4
5 d = np.array([ 0.50, 0.50, 0.50, 0.50, 0.51, 0.50, 0.49, 0.50, 0.49, 0.50 ]) * 0.001
6 d = unc.ufloat(np.mean(d), np.std(d) * 4.094)
7 k = unc.ufloat(449, 4) * 1e-6
8 l = 1567 * 0.001
9
10 print(4 * 9.81 * 1 / (math.pi * d ** 2 * k))
```

Listing 1: Výpočet modulu pružnosti v tahu přímou metodou

```
1 import uncertainties as unc
2 import numpy as np
3
4 def E(b, a, k):
      k = unc.ufloat(k[0], k[1]) * 1e-6
6
      a = unc.ufloat(np.mean(a), np.std(a) * 4.094) * 0.001
7
      b = unc.ufloat(np.mean(b), np.std(b) * 4.094) * 0.01
8
      l = unc.ufloat(89.9, 0.03) * 0.01
9
      g = 9.809980
10
11
      return g * 1**3 / (4 * k * a ** 3 * b)
12
13 table = np.loadtxt("nosniky_rozmery.txt")
14 print('dural', E(table[:, 0], table[:, 1], (6800, 8)))
15 print('mosaz', E(table[:, 4], table[:, 5], (4770, 5)))
16 \text{ print('med', E(table[:, 2], table[:, 3], (3894, 9)))}
17 print('ocel', E(table[:, 6], table[:, 7], (1528, 2)))
```

Listing 2: Výpočet modulů pružností nosníků

```
1 import uncertainties as unc
2 import math
3 import numpy as np
4
5 table = np.loadtxt("oscilator_rozmery.txt")
6 d = table[:, 0]
7 D = table[:, 1]
8 T = table[:, 2]
9
10 d = unc.ufloat(np.mean(d), np.std(d) * 4.094) * 0.001
11 D = unc.ufloat(np.mean(D), np.std(D) * 4.094) * 0.001
12 T = unc.ufloat(np.mean(T), np.std(T) * 4.094) / 10.0
13 l = unc.ufloat(51.45, 0.003) * 0.01
14 m = 5.905
15
16 print(16 * math.pi * m * (D/2) ** 2 * 1 / (5 * (d/2) ** 4 * T ** 2))
```

Listing 3: Výpočet modulu pružnosti dynamickou metodou