Particle spectrograph

Wave operator and propagator

#2 0		Multiplicities
	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$t_0^{\#_1} - 2ik\sigma_0^{\#_1} = 0 \qquad \partial$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha == 0 \ \partial$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}t^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}t^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	е
$\tau_{1}^{\#1}\alpha == 0 \qquad \partial$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	е
$\tau_1^{\#1}\alpha\beta == 0 \qquad \qquad \partial$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} = =$	м
	$\partial_{\chi}\partial^{\alpha} \iota^{\chi\beta} + \partial_{\chi}\partial^{\beta} \iota^{\alpha\chi} + \partial_{\chi}\partial^{\chi} \iota^{\beta\alpha}$	
$\sigma_1^{\#2}\alpha\beta == 0 \qquad \partial$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	8
$\sigma_{2}^{\#_{1}}\alpha\beta\chi==0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta\chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta} +$	
	$3 \eta^{\alpha \chi} \partial_{\phi} \partial_{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\beta \delta \varepsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} = =$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} \partial_{\delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha\chi\beta} +$	
	$3~\eta^{lpha\chi}~\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{eta}\sigma^{\deltaarepsilon}$	
	$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial_\delta \sigma^{\alpha\delta\epsilon} +$	
	$3~\eta^{lpha\chi}~\partial_{\phi}\partial_{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{eta\delta}_{~\delta}$	
$\tau_2^{\#1}\alpha\beta == 0 \qquad 4$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	2
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi\delta} == 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta\chi} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$	

	0	0	0	0	0	0	$\sigma_1^{\#2} + \alpha \beta$
)	0	0	0	0	0	$\frac{1}{k^2 (2 r_3 + r_5)}$	$\sigma_{1}^{\#1} + \alpha \beta$
$ au_1^{\#}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\sigma_{1^-\alpha}^{\#1}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}$	$\sigma_{1}^{\#1}{}_{lphaeta}$ $\sigma_{1}^{\#2}{}_{lphaeta}$ $\tau_{1}^{\#1}{}_{lphaeta}$	
		$12 r_5 \partial^{\theta} \mathcal{A}^{\alpha \prime}_{\alpha} \partial_{\kappa} \mathcal{A}^{\kappa}_{\beta} + 6 r_5 \partial_{\alpha} \mathcal{A}^{\alpha \prime \theta} \partial_{\kappa} \mathcal{A}^{\kappa}_{\beta'} - \\ 12 r_5 \partial^{\theta} \mathcal{A}^{\alpha \prime}_{\alpha} \partial_{\kappa} \mathcal{A}^{\kappa}_{\beta'}) (t, \kappa, y, z) dz dy d\kappa dt$	$\mathcal{A}^{\alpha'}_{\alpha}\partial_{\kappa}\mathcal{A}^{\kappa}_{\beta}+6$	$12 r_5 \partial^{\theta}$ $12 r_5 \partial^{\theta}$			
		$\partial_{\alpha}\mathcal{A}^{\alpha l}{}^{\theta}\partial_{\kappa}\mathcal{A}_{l}{}^{\kappa}{}^{+}$	$6r_5\partial_ heta\mathcal{R}_{I_{K}}^{K}\partial^ heta\mathcal{R}^{lpha I_{lpha}}-6r_5\partial_lpha\mathcal{R}^{lpha I_{eta}}\partial_\kappa\mathcal{R}_{I_{eta}}^{K}+$	$6 r_5 \partial_{\theta} \mathcal{F}$			
		0,34 K 08 34" -	$4r_2\partial_\theta \mathcal{A}_{\alpha l\beta}\partial^\theta \mathcal{A}^{\alpha \beta l}+6r_5\partial_l \mathcal{A}_\theta^{\ \ \ \ \ }\partial^\theta \mathcal{A}^{\alpha l}_{\ \ \ \ \ \ \ }$	$4 r_2 \partial_{\theta} \mathcal{F}$			
		$\partial_{ heta} \mathcal{A}_{lphaeta_{l}} \partial^{ heta} \mathcal{A}^{lphaeta_{l}}$ -	$2 r_2 \partial_i \mathcal{R}_{\alpha\beta\theta} \partial^{\theta} \mathcal{R}^{\alpha\beta'} + 2 r_2 \partial_{\theta} \mathcal{R}_{\alpha\beta'} \partial^{\theta} \mathcal{R}^{\alpha\beta'} -$	2 r2 0,99			
		$4r_2\partial_{eta}\mathcal{F}_{1etalpha}\partial^{eta}\mathcal{F}^{lphaeta_I}$ -24 $r_3\partial_{eta}\mathcal{F}_{1etalpha}\partial^{eta}\mathcal{F}^{lphaeta_I}$ -	$\pi_{1\theta\alpha}\partial^{\theta}\mathcal{R}^{\alpha\beta\prime}$ -24 r_{Ξ}	$4 r_2 \partial_{eta} \mathcal{F}$			
		$\partial_{eta} \mathcal{A}_{lpha heta_{\prime}} \partial^{ heta} \mathcal{A}^{lpha eta_{\prime}} +$	$8r_2\partial_{\beta}\mathcal{A}_{\alpha\prime\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime}$ $-4r_2\partial_{\beta}\mathcal{A}_{\alpha\theta\prime}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime}$ +	$8 r_2 \partial_{eta} \mathcal{F}$			
		$3r_3\partial_{lpha}\mathcal{A}^{lphaeta_1}\partial_{eta}\mathcal{A}^{eta_1}_{\ eta}+6r_3\partial'\mathcal{A}^{lphaeta}_{\ lpha}\partial_{eta}\mathcal{A}^{eta_1}_{\ eta}+$	$q^{lphaeta_I}\partial_{ heta}\mathcal{H}_I^{\ eta}+6r_3$	$3 r_3 \partial_{\alpha} \mathcal{F}$			
		$\partial^{\prime}\mathcal{A}^{lphaeta}{}_{lpha}\partial_{ heta}\mathcal{A}_{eta}{}_{eta}^{\;\;eta}.$	$3r_3\partial_{\alpha}\mathcal{A}^{\alpha\beta'}\partial_{\theta}\mathcal{A}^{\ \ \ \ \ \ \ \ }_{\beta}+6r_3\partial'\mathcal{A}^{\alpha\beta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$3 r_3 \partial_{\alpha} \mathcal{F}$			
1	$\partial_{ heta} f_{}^{}$	$3r_3\partial_{\beta}\mathcal{A}_{\beta}^{\ \theta}\partial^{\prime}\mathcal{A}^{\alpha\beta}_{\ \alpha}+4t_3\partial_{\prime}f^{\alpha\prime}\partial_{\theta}f_{\alpha}^{\ \theta}-8t_3\partial^{\prime}f^{\alpha}_{\ \alpha}\partial_{\theta}f_{\beta}^{\ \theta}-$	$({}^{\theta}_{\beta}{}^{\partial}\mathcal{A}^{\alpha\beta}_{\alpha}+4t_{3}$	3 r3 0,99			
	α	$\alpha', \theta \sigma' \alpha' = 113 \sigma' \beta' \theta' \alpha' \alpha' \beta' \sigma' \beta' \alpha' \beta' \alpha' \alpha'$	α 11,3011 β	θ', θ			

0

0 0

0

0 0

 $\begin{aligned}
 \tau_{1}^{\#1} + \alpha \beta \\
 \sigma_{1}^{\#1} + \alpha \\
 \sigma_{1}^{\#2} + \alpha \\
 \tau_{1}^{\#1} + \alpha \\
 \tau_{1}^{\#2} + \alpha
 \end{aligned}$

0

0

0	0	0	0	0	0	0							
0	0	0	$-\frac{\sqrt{2}t_3}{3}$	٤ 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$							
0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 <i>ikt</i> 3 3	$\mathscr{A}_2^{\sharp 1}$:		$\mathcal{A}_{2}^{\#1}_{\alpha\beta}$ $-\frac{3k^2r_3}{2}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\mathcal{A}_2^{\#_2^2}$		σ
0	0	0	0	0	0	0	$f_{2^{+}}^{#1}$	$t^{lphaeta}$	0	0	(
0	0	0	0	0	0	0	Я ^{#1} †		$\sigma_{0}^{\#1}$	0 $\tau_{0+}^{\#1}$:	$ au_{0^{+}}^{#2}$	$\sigma_0^{\!\#}$
$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0	$\sigma_{0^+}^{\sharp 1}$ †		$\frac{1}{(2k^2)^2t_3}$	$-\frac{i\sqrt{2}}{(1+2k^2)}$		0	0
k^2 (2)							$ au_{0}^{\#1}$ †	$\frac{i}{(1+2)}$	$\frac{\sqrt{2} k}{(2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2}$	$\frac{1}{(2t_3)^2t_3}$	0	0
$+^{\alpha\beta}$	$+^{\alpha\beta}$	$f_1^{\#1} + \alpha \beta$	$\mathcal{A}_{1}^{\#1} \dagger^{lpha}$	$\mathcal{A}_{1}^{\#2} \dagger^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} \dagger^{\alpha}$	$ au_{0}^{\#2}$ †		0	0		0	0
$\mathcal{A}_1^{\#1} + \alpha^{\beta}$	$\mathcal{A}_1^{\#_2} + ^{\alpha eta}$	$f_1^{\#1}$	$\overset{\#}{\mathcal{H}}_{1}$	$\overset{\#}{\mathcal{R}}_{1}$	$f_1^{\#}$	$f_1^{\#}$	$\sigma_0^{\#1}$ †		0	0		0	$\frac{1}{k^2}$

0

Massive	and	massless	spectra

(No massive particles)

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$