SC205- Discrete Mathematics

Home Work 8

Tutorial Discussion Week: March 23, 2020

- (1) Is the sequence $\{a_n\}$ a solution of the recurrence relation $a_n = 8a_{n-1} 16a_{n-2}$ if $a_n = 0$?, $a_n = 1$?, $a_n = 2^n$?, $a_n = 4n$?, $a_n = n4^n$? $a_n = n2^n$?
- (2) Suppose that the number of bacteria in a colony triples every hour. Set up a recurrence relation for the number of bacteria after n hours have elapsed. If 100 bacteria are used to begin a new colony, how many bacteria will be in the colony in 10 hours?
- (3) Determine which of these are linear homogeneous recurrence relations with constant coefficients. Also find the degree of those that are.

$$a_n = 3a_{n-1} + 4a_{n-2} + 5a_{n-3}, a_n = a_{n-1} + n, a_n = a_{n-1}^2 + a_{n-2},$$

$$a_n = a_{n-1} + 2, a_n = \frac{a_{n-1}}{n}, a_n = a_{n-1} + a_{n-4},$$

$$a_n = a_{n-2}, a_n = 3, a_n = 3a_{n-2}$$

- (4) The Lucas number satisfy the recurrence relation $L_n = L_{n-1} + L_{n-2}$ and the initial conditions $L_0 = 2$ and $L_1 = 1$. Find the explicit formula for the Lucas number.
- (5) Find the solution to $a_n = 7a_{n-2} + 6a_{n-3}$, with $a_0 = 9$, $a_1 = 10$ and $a_2 = 32$.
- (6) Consider an equation $a_n = 3a_{n-1} + 2^n$. Show that $a_n = -2^{n+1}$ is a solution of this recurrence relation. Using an appropriate theorem find all solutions of this recurrence relation. Find the solution with $a_0 = 1$.