Matemáticas II

Marcos Bujosa

Universidad Complutense de Madrid

14/01/2023

L-6 L-7 L-8 L-9 L-10 L-R

1 Esquema de la Lección 6

Esquema de la Lección 6

• Introducción a los espacios y subespacios vectoriales

Marcos Bujosa. Copyright © 2008–2023
Algunos derechos reservados. Esta obra está bajo una licencia de Creative Commons Reconocimiento-Compartirlgual 4.0
Internacional. Para ver una copia de esta licencia, visite
http://creativecommons.org/licenses/by-sa/4.0/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

L-6 L-7 L-8 L-9 L-10 L-R

2 Introducción

1/61

¿Que operaciones hemos empleado con vectores?

ullet suma de vectores: $oldsymbol{v} + oldsymbol{w}$

ullet producto por un escalar: $\lambda oldsymbol{v}$

2/61 3/61

L-6 L-7 L-8 L-9 L-10 L

3 Espacio vectorial: definición

Un espacio vectorial es un conjunto ${\cal V}$ junto con dos operaciones

Suma
$$(\overrightarrow{x} + \overrightarrow{y})$$
: $\mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$

Asocia a cada par \vec{x} , \vec{y} otro elemento de \mathcal{V} llamado $\vec{x} + \vec{y}$

Producto por escalares $(\alpha \vec{x})$: $\mathbb{R} \times \mathcal{V} \to \mathcal{V}$

Asocia a cada par $\alpha,\ \overrightarrow{x}$ otro elemento de $\mathcal V$ llamado $\alpha\overrightarrow{x}$

que verifican:

- \bullet $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$
- Existe un único $\vec{0}$ tal que $\vec{x} + \vec{0} = \vec{x}$
- Para cada \overrightarrow{x} hay un único $-\overrightarrow{x}$ tal que $\overrightarrow{x} + (-\overrightarrow{x}) = \overrightarrow{0}$
- $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$
- $(\alpha + \beta)\vec{x} = \alpha\vec{x} + \beta\vec{x}$
- $(\alpha \cdot \beta) \overrightarrow{x} = \alpha(\beta \overrightarrow{x})$
 - $1\overrightarrow{x} = \overrightarrow{x}$

4/61

L-6 L-7 L-8 L-9 L-10 L-R $footnote{5}$ Ejemplos: $\Bbb R^2$

 \mathbb{R}^2 : conjunto de pares de números reales

 $\begin{pmatrix} 3 \\ 2 \end{pmatrix}; \quad \begin{pmatrix} 0 \\ 0 \end{pmatrix}; \quad \begin{pmatrix} \pi \\ e \end{pmatrix}; \quad \begin{pmatrix} \mathbf{1^{\underline{a}}\ comp.} \\ \mathbf{2^{\underline{a}}\ comp} \end{pmatrix}$

Es el plano xy (Todos los vectores bi-dimensionales) dibujo

4 Espacios Vectoriales: resumen

- Un espacio vectorial es un conjunto de objetos matemáticos (pueden ser números, listas de números, matrices, funciones, etc...)
- y dos operaciones:
 - suma de vectores
 - producto de un escalar por un vector.

que deben verificar las ocho propiedades indicadas.

• Los elementos de un espacio vectorial se denominan vectores.

Para nosotros los escalares serán siempre los números reales (\mathbb{R}).

L-6 L-7 L-8 L-9 L-10 L-R

6 Más ejemplos

 \mathbb{R}^3 : todas las ternas de números reales

 $\begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$

 \mathbb{R}^1 : listas con un solo número real: (0,) $(\pi,)$ (a,)

 \mathbb{R}^n : n-tuplas de números reales

L-6 L-7 L-8 L-9 L-10 L
7 Subespacios vectoriales

Un subespacio ${\mathcal W}$ del espacio vectorial ${\mathcal V}$

es un subconjunto no vacío de $\mathcal V$ (con las operaciones de $\mathcal V$) tal que para cualesquiera \overrightarrow{v} y \overrightarrow{w} de $\mathcal W$, y cualesquiera escalares c y d:

- ullet $(\overrightarrow{v}+\overrightarrow{w})$ está en ${\mathcal W}$
- $(c \cdot \overrightarrow{v})$ también está \mathcal{W}

Cualquier combinación lineal $(c \cdot \overrightarrow{v} + d \cdot \overrightarrow{w})$ está en \mathcal{W}

 $\mathcal{W} \subset \mathcal{V}$ es un subespacio si es cerrado para ambas operaciones.

Un subespacio de \mathcal{V} es un espacio vectorial contenido dentro de \mathcal{V} .

8/61

L-6 L-7 L-8 L-9 L-10 L-R $oldsymbol{9}$ Listado de subespacios de \mathbb{R}^2

- 1. Todo (el plano) \mathbb{R}^2
- 2.
- 3.

¿ Cuáles de los siguientes subconjuntos de \mathbb{R}^2 son subespacios?

- Primer cuadrante del plano
- Recta en el plano que contiene el cero
- Recta en el plano que no pasa por el origen
- $\{0\}$: conjunto con únicamente por el vector nulo 0

Todo subespacio debe contener el vector "cero"

L-6 L-7 L-8 L-9 L-10 L-R

10 Unión e Intersección de subespacios

9/61

Sean dos subespacios ${\cal S}$ y ${\cal T}$

- $\mathcal{S} \cup \mathcal{T}$: todos los vectores que están en \mathcal{S} , en \mathcal{T} , o en ambos ¿Es un subespacio?
- $S \cap T$: los vectores que están simultáneamente en S, y en T ¿Es un subespacio? (demo?)

10 / 61 11 / 61

Problemas de la Lección 6

(L-6) Problema 1.

- (a) Encuentre un subconjunto W de \mathbb{R}^2 $(W\subseteq\mathbb{R}^2)$ cerrado para la suma, (si $v,w\in W$ entonces $v+w\in W$), pero no para el producto por un escalar (cv) no necesariamente pertenece a W).
- (b) Encuentre un subconjunto W de \mathbb{R}^2 $(W\subseteq \mathbb{R}^2)$ cerrado para el producto (si $v,w\in W$, entonces $cv\in W$), pero no para la suma (v+w) no necesariamente pertenece a W).

(Strang, 2007, ejercicio 1 del conjunto de problemas 2.1.)

(L-6) Problema 2. Considere el plano \mathbb{R}^2 como un espacio vectorial. ¿Cuáles de los siguientes subconjuntos son también subespacios vectoriales y cuales no?

- (a) $\{(a, a^2,) \mid a \in \mathbb{R}\}$
- (b) $\{(b, 0,) \mid b \in \mathbb{R}\}$
- (c) $\{(0, c,) \mid c \in \mathbb{R}\}$
- (d) $\{(m, n,) \mid m, n \in \mathbb{Z}\}$ donde \mathbb{Z} es el conjunto de números enteros.
- (e) $\{(d, e,) \mid d, e \in \mathbb{R}, d \cdot e = 0\}$
- (f) $\{(f, f,) | f \in \mathbb{R}\}$

(L-6) PROBLEMA 3. ¿Por qué \mathbb{R}^2 no es un sub-espacio de \mathbb{R}^3 ? (Strang, 2007, ejercicio 31 del conjunto de problemas 2.1.)

L-8

11 / 61

L-R

(L-6) Problema 8.

L-6

- (a) La intersección de dos planos que pasan por (0,0,0,) probablemente es una _____, aunque puede ser un _____.
- (b) La intersección de un plano que pasa por (0,0,0,) con una recta que pasa por (0,0,0,) probablemente es ______, aunque puede ser _____.
- (c) Si $\mathcal S$ y $\mathcal T$ son subespacios de $\mathbb R^5$, su intersección $\mathcal S\cap\mathcal T$ (vectores en ambos subespacios) es un subespacio de $\mathbb R^5$. Compruebe los requerimientos sobre x+y y cx.

(Strang, 2007, ejercicio 18 del conjunto de problemas 2.1.)

(L-6) Problema 9. ¿Cuáles de los siguientes conjuntos de \mathbb{R}^3 son realmente subespacios?

- (a) el plano de vectores $\boldsymbol{b} = (b_1, b_2, b_3,)$ cuya primera componente es $b_1 = 0$.
- (b) el plano de vectores $\boldsymbol{b}=(b_1,\ b_2,\ b_3,)$ cuya primera componente es $b_1=1.$
- (c) Los vectores b con $b_2b_3=0$ (esta es la unión de dos subespacios: el plano de vectores con segundas componentes nulas $b_2=0$ y el plano de vectores con terceras componentes nulas $b_3=0$).
- (d) Únicamente el vector b = 0.
- (e) Todas las combinaciones de dos vectores dados (1, 1, 0,) y (2, 0, 1,).
- (f) El plano de vectores $(b_1, b_2, b_3,)$ que satisface $b_3 b_2 + 3b_1 = 0$.

(Strang, 2007, ejercicio 2 del conjunto de problemas 2.1.)

Uno más...un poco más difícil

L-6 L-7 L-8 L-9 L-10 L-

(L-6) Problema 4. Sea P el plano en \mathbb{R}^3 formado por el conjunto de puntos que satisfacen la ecuación

$$x - y - z = 3.$$

Encuentre dos vectores en P y demuestre que su suma no está en P.

(L-6) PROBLEMA 5. Demuestre que para $b \neq 0$, el conjunto de soluciones $\{x \mid \mathbf{A}x = b\}$ no es un subespacio.

(L-6) Problema 6. Considere el espacio vectorial $\mathbb{R}^{2\times 2}$ de matrices de orden 2. Sean

$$\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}; \qquad \mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & -3 \end{bmatrix};$$

- (a) Diga un subespacio que contenga A pero no B.
- (b) Diga un subespacio que contenga B pero no A.
- (c) ¿Hay algún subespacio que contenga a A y B pero no contenga a la matriz identidad l?

(L-6) Problema 7. Considere el conjunto de matrices $\mathbb{R}^{n \times n}$ como un espacio vectorial. ¿Cuáles de los siguientes conjuntos son subespacios?

- (a) El conjunto de matrices simétricas, $\mathcal{S} = \{\mathbf{A} \in \mathbb{R}^{n \times n} \mid_{i} \mathbf{A} = \mathbf{A}_{i}\}$
- (b) El conjunto de matrices NO simétricas, $\mathcal{NS} = \{\mathbf{A} \in \mathbb{R}^{n \times n} \mid \mathbf{A}^\intercal \neq \mathbf{A}\}$
- (c) El conjunto de matrices anti-simétricas $\mathcal{AS} = \{\mathbf{A} \in \mathbb{R}^{n \times n} \mid \mathbf{A}^\intercal = -\mathbf{A}\}$

11/61

L-6 L-7 L-8 L-9 L-10 L-R

(L-6) PROBLEMA 10. Para que un conjunto tenga estructura de espacio vectorial, se requiere que la suma y la multiplicación por un escalar cumplan las ocho siguientes condiciones; donde x, y y z son vectores, y a y b escalares

- 1. x + y = y + x.
- 2. x + (y + z) = (x + y) + z.
- 3. Hay un único vector $\mathbf{0}$ ("vector cero") tal que $x+\mathbf{0}=x$ para todo x.
- 4. Para cada x, hay un único vector -x ("el opuesto") tal que x + (-x) = 0.
- 5. 1x = x.
- 6. $(a \cdot b)\mathbf{x} = a(b\mathbf{x})$.
- 7. $a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + a\mathbf{y}$.
- 8. $(a+b)\mathbf{x} = a\mathbf{x} + b\mathbf{x}$.
- (a) Suponga que la suma en \mathbb{R}^2 añade un 1 de más a cada componente, de modo que (3,1,)+(5,0,)=(9,2,) en lugar de (8,1,). Si la multiplicación por un escalar permanece sin cambio, ¿qué reglas se rompen?
- (b) Demuestre que el conjunto de todos los números reales positivos con la siguiente nueva definición de suma y producto por un escalar es espacio vectorial:

$$\bullet \ x + y = xy \qquad \bullet \ x = x^c$$

¿Cuál es el vector 0 en este caso?:

(c) Suponga que $(x_1, x_2,) + (y_1, y_2,)$ se define cómo $((x_1 + y_2), (x_2 + y_1),)$; con el producto usual $c\mathbf{x} = (cx_1, cx_2,)$. ¿Cuáles de las ocho reglas no se cumplen? (Strang, 2007, ejercicio 5 del conjunto de problemas 2.1.)

Esquema de la Lección 7

• Espacio Nulo de **A**: resolviendo $\mathbf{A}x = \mathbf{0}$

Cálculo del Espacio Nulo ($\mathbf{A}x=\mathbf{0}$)

mediante eliminación por columnas

- Forma (pre)escalonada por columnas
- Variables pivote (o endógenas) y variables libres (o exógenas)
- Soluciones especiales

12 / 61

L-6 L-7 L-8 L-9 L-10 L-R $\mathbf{3}$; Es el espacio nulo \mathcal{N} (\mathbf{A}) un subespacio?

Debemos comprobar que para cualesquiera $a,b\in\mathbb{R}$

Si $\mathbf{A} v = \mathbf{0}$ y si $\mathbf{A} w = \mathbf{0}$, entonces

El conjunto de soluciones $\mathcal{N}\left(\mathbf{A}\right)$ es subespacio

2 Subespacios asociados a matrices: espacio nulo $\mathcal{N}\left(\mathbf{A}\right)$

$$\mathbf{A}\boldsymbol{x} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

 $\mathcal{N}\left(\mathbf{A}\right)$ es el conjunto de soluciones x del sistema $\mathbf{A}x=\mathbf{0}.$

 $\mathcal{N}(\mathbf{A})$ es subconjunto de $\mathbf{i}\mathbb{R}^{?}$?

Diga algunas soluciones. Dígalas todas

¿Qué aspecto (dimensión) tiene $\mathcal{N}(\mathbf{A})$? (dibujo)

13 / 61

L-6 L-7 L-8 L-9 L-10 L-R

4 Conjunto de soluciones del sistema no homogéneo

Cambiemos el lado derecho (sistema NO homogéneo)

$$\mathbf{A}\boldsymbol{x} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

¿Cuál es el conjunto de soluciones?

¿Forman las soluciones un subespacio? ; Pertenece **0** al conjunto de soluciones?

5 Cálculo del espacio nulo $\mathcal{N}\left(\mathbf{A}\right)$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix}$$

- ¿Hay columnas que sean combinación lineal del resto?
- La eliminación nos lo dirá...

16 / 61

18 / 61

L-6 L-7 L-8 L-9 L-10 L-R $\mathbf{7}$ Cálculo del espacio nulo $\mathcal{N}(\mathbf{A})$: eliminación y "soluciones especiales"

$$\left\| \mathbf{A} \big(\mathbf{I}_{\tau_1 \cdots \tau_k} \big)_{|j} = \big(\mathbf{A}_{\tau_1 \cdots \tau_k} \big)_{|j}$$

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} =
\begin{bmatrix}
1 & 2 & 2 & 2 \\
2 & 4 & 6 & 8 \\
3 & 6 & 8 & 10 \\
1 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & 1
\end{bmatrix}
\xrightarrow{\begin{bmatrix} (-2)1+2 \\ [(-2)1+3] \\ [(-2)1+4] \end{bmatrix}}
\xrightarrow{\begin{bmatrix} (-2)1+2 \\ [(-2)1+2] \end{bmatrix}$$

Si $\mathbf{A}ig(\mathbf{E}_{|i}ig) = \mathbf{0}$ entonces $\mathbf{E}_{|i}$ es solución de $\mathbf{A}x = \mathbf{0}$

El número de pivotes de K es el rango de una matriz

6 ¿Qué columnas son combinación lineal del resto?

Entonces
$$\mathbf{A} \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \mathbf{0}$$
 \Longrightarrow $\mathbf{A} \begin{pmatrix} 2 \\ 0 \\ -2 \\ 1 \end{pmatrix} = \mathbf{0}$ \Longrightarrow

L-6 L-7 L-8 L-9 L-10 L-R S Cálculo del espacio nulo $\mathcal{N}\left(\mathbf{A}\right)$: solución general

17 / 61

Solución general: $\mathcal{N}\left(\mathbf{A}\right)$

¿Cuál es el conjunto de TODAS las soluciones?

$$\mathcal{N}\left(\mathbf{A}\right) = \left\{ x \in \right.$$

¿Cuántas soluciones especiales?

¿Cuántas columnas nulas tengo?

¿Por qué no hay más soluciones?

Sea $\mathbf{A}x = \mathbf{0}$ y $\mathbf{AE} = \mathbf{K}$

 $(\mathsf{E} = \mathsf{I}_{oldsymbol{ au}_1 \cdots oldsymbol{ au}_k}$ rango completo)

; Es x combinación de las col. de E? $(\boldsymbol{x} = \mathsf{E}\boldsymbol{y})$

Tomando $y = \mathbf{E}^{-1}x$, tenemos que $x = \mathbf{E}y$ ¿Necesitamos todas las columnas de ${\sf E}$ para generar x?

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} \to \begin{bmatrix} \mathbf{K} \\ \mathbf{E} \end{bmatrix} = \begin{bmatrix} * & 0 & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ \mathbf{E}_{|1} & \mathbf{E}_{|2} & \mathbf{E}_{|3} & \mathbf{E}_{|4} & \mathbf{E}_{|5} \end{bmatrix}$$

 $\mathbf{A}x = \mathbf{AE}y = \mathbf{K}y = \mathbf{0} \Rightarrow (y_i = ? \text{ para columnas pivote})$

 $\forall x \in \mathcal{N} (A), x$ es combinación de las soluciones especiales

20 / 61

L-6 L-7 L-R 11 Otro ejemplo: $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$

$$\frac{\begin{bmatrix} \mathbf{A}^{\mathsf{T}} \\ \mathbf{I} \end{bmatrix}}{\begin{bmatrix} \mathbf{I} & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 6 & 8 \\ 2 & 8 & 10 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}} \xrightarrow{\begin{smallmatrix} \mathbf{T} \\ [(-2)\mathbf{1}+2] \\ [(-3)\mathbf{1}+3] \\ [(-1)\mathbf{2}+3] \\ \hline \end{bmatrix}} = \underbrace{\begin{bmatrix} \mathbf{L} \\ \mathbf{E} \end{bmatrix}}$$

¿Cuántos pivotes?

¿Cuántas columnas libres? ¿Cuántas soluciones especiales? i conjunto de soluciones a $\mathbf{A}^{\mathsf{T}}x = \mathbf{0}$?

L-6 **10** Calculo de $\mathcal{N}(\mathbf{A})$: Algoritmo completo para resolver $\mathbf{A}x = \mathbf{0}$

Algoritmo para resolver $\mathbf{A}x=0$

- 1. Encuentre una forma pre-escalonada:
- 2. Si hay soluciones especiales:
 - Solución completa

 $\mathcal{N}(\mathbf{A}) = \{\text{combinaciones lineales de las soluciones especiales }\}$

3. Si no hay soluciones especiales (si K no tiene columnas nulas)

Solución completa:

$$\mathcal{N}\left(\mathbf{A}
ight)=\left\{ \mathbf{0}
ight\}$$

21 / 61

L-7 L-6

Problemas de la Lección 7

(L-7) Problema 1. Calcule una forma pre-escalonada para obtener los rangos de las siguientes matrices. Describa el espacio nulo con ecuaciones paramétricas, e indique su forma geométrica..

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 5 \\ 2 & 3 & 1 & 4 \\ -1 & -1 & -1 & 1 \end{bmatrix}$$

(b) $\mathbf{F} = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 3 & 4 \\ 2 & -1 & -3 \end{bmatrix}$
(c) $\mathbf{G} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ -2 & -1 & 4 \end{bmatrix}$.
(d) $\mathbf{H} = \begin{bmatrix} 1 & 3 \\ 2 & 1 \\ -1 & -3 \end{bmatrix}$.

L-R

(L-7) PROBLEMA 2. Describa el espacio nulo de las siguientes matrices con ecuaciones paramétricas, e indique su forma geométrica.

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 0 \end{bmatrix}$$
.

(b)
$$\mathbf{F} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$
.

(b)
$$\mathbf{F} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$
.
(c) $\mathbf{G} = \begin{bmatrix} 1 & 2 & -4 \\ -1 & 1 & 3 \\ 1 & 5 & -5 \end{bmatrix}$.

(L-7) PROBLEMA 3. Reduzca
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$$
 a una forma pre-escalonada

para encontrar sus rangos. Encuentre las soluciones especiales de $\mathbf{A}x=\mathbf{0}$. Describa todas las soluciones.

(Strang, 2007, ejercicio 2 del conjunto de problemas 2.2.)

(L-7) PROBLEMA 4. Encuentre una forma pre-escalonada y el rango de las siguientes matrices (encuentre además la solución de los sistemas homogéneos $\mathbf{A}x=\mathbf{0}$ en cada caso):

- (a) La matriz de 3 por 4 con todos sus componentes iguales a uno.
- (b) La matriz de 4 por 4 con $a_{ij} = (-1)^{ij}$.
- (c) La matriz de 3 por 4 con $a_{ij} = (-1)^j$.

(Strang, 2007, ejercicio 13 del conjunto de problemas 2.2.)

22 / 61

L-R

L-R

L-6

L-7

L-8

L-9

(L-7) PROBLEMA 7. Encuentre la forma escalonada reducida por columnas de las siguientes matrices

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

(b) $\mathbf{B} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 0 & 1 \end{bmatrix}$.

(c)
$$\mathbf{C} = \begin{bmatrix} 1 & 2 & 1 & 2 & 1 \\ 2 & 1 & 2 & 1 & 2 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$
.

(d)
$$\mathbf{D} = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 4 \end{array} \right].$$

(L-7) PROBLEMA 5. La matriz A tiene dos soluciones especiales:

$$m{x}_1 = \begin{pmatrix} c \\ 1 \\ 0 \end{pmatrix}; \qquad m{x}_2 = \begin{pmatrix} d \\ 0 \\ 1 \end{pmatrix}$$

- (a) Describa todas las posibilidades para el número de columnas de A.
- (b) Describa todas las posibilidades para el número de filas de A.
- (c) Describa todas las posibilidades para el rango de A.

Explique sus respuestas.

L-7

(MIT Course 18.06 Quiz 1, Fall, 2008)

(L-7) Problema 6. Suponga que A tiene como forma escalonada reducida por columnas R

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & \clubsuit \\ 2 & a & \clubsuit \\ 1 & 1 & \clubsuit \\ b & 8 & \clubsuit \end{bmatrix}, \quad \mathbf{R} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 0 \end{bmatrix}.$$

- (a) ¿Qué puede decir sobre la tercera columna de A?
- (b) ¿Qué números son a y b?
- (c) Describa el espacio nulo de **A** si: $\mathbf{A} \begin{bmatrix} -1 & 2 & 1 \\ 1 & -1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{R}.$

22 / 61

L-R

L-6

(L-7) PROBLEMA 8. Sea la matriz $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

- (a) Sabiendo que A es invertible, y sin realizar ningún cálculo ; puede decir cuál es su forma escalonada reducida?
- (b) Calcule la matriz inversa de A.

(L-7) PROBLEMA 9. Sea la matriz $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

- (a) Sabiendo que A es invertible, y sin realizar ningún cálculo ; puede decir cuál es su forma escalonada reducida?
- (b) Calcule la matriz inversa de A.

1 Esquema de la Lección 8

Esquema de la Lección 8

- El espacio columna de **A**: resolviendo $\mathbf{A}x = \mathbf{b}$
- Estudiaremos solución de $\mathbf{A}x = \mathbf{b}$, ... si existe.
 - ¿es x único?
 - ¿o hay toda una familia de soluciones?

$$\left\{oldsymbol{x}=oldsymbol{x}_p+oldsymbol{x}_n \;\left|\; egin{array}{c} oldsymbol{\mathsf{A}}(oldsymbol{x}_p)=oldsymbol{b} \ oldsymbol{\mathsf{A}}(oldsymbol{x}_n)=oldsymbol{0} \end{array}
ight\}$$

23 / 61

L-6

L-7

L-8

1_0

L_10

L-R

3 Subespacios asociados a matrices: espacio columna $\mathcal{C}\left(\mathbf{A}\right)$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix}$$

 $\mathcal{C}\left(\mathbf{A}\right)$ es un subespacio de

¿Qué hay en $\mathcal{C}\left(\mathbf{A}\right)$?

¿Está todo el espacio \mathbb{R}^3 incluido en $\mathcal{C}(\mathbf{A})$?

Para responder volvamos a los sistemas de ecuaciones...

 $oxed{2}$ Subespacios asociados a matrices: espacio columna $\mathcal{C}\left(\mathbf{A}\right)$

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix}$$

Sus columnas son vectores de

¿Qué debemos añadir al conjunto de columnas para generar un subespacio?

Llamamos a este conjunto *espacio columna de* \mathbf{A} : $\mathcal{C}(\mathbf{A})$. Así que $\mathcal{C}(\mathbf{A})$ es un subespacio de

L-6 L-7 L-8 L-9 L-10 L-R $oldsymbol{4}$ Conexión entre $\mathcal{C}\left(\mathbf{A}\right)$ y $oldsymbol{\mathsf{A}} x = oldsymbol{b}$

¿Tiene $\mathbf{A}x = \mathbf{b}$ solución para cualquier \mathbf{b} ? (la cuestión de hoy)

$$\mathbf{A}\boldsymbol{x} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

¿Para qué vectores b el sistema es resoluble?

¿Se puede encontrar una solución para $m{b}_1=\begin{pmatrix}1,&2,&3,\end{pmatrix}$? ¿y para $m{b}_2=\begin{pmatrix}2,&6,&8,\end{pmatrix}$? ¿y para $m{b}_3=\begin{pmatrix}0,&0,&0,\end{pmatrix}$? ¿y para $m{b}_4=\begin{pmatrix}3,&6,&9,\end{pmatrix}$? ¿y para $m{b}_5=\begin{pmatrix}1,&0,&0,\end{pmatrix}$?

5 Conexión entre $\mathcal{C}\left(\mathbf{A}\right)$ y $\mathbf{A}x=\mathbf{b}$

$$\mathbf{A}\boldsymbol{x} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

¿podemos desechar alguna columna manteniendo el mismo $\mathcal{C}(\mathbf{A})$?

y la eliminación mostrará qué columnas son combinación lineal de las que están a su izquierda.

Pero ¿cómo afecta la eliminación a los espacios $\mathcal{N}\left(\mathbf{A}\right)$ y $\mathcal{C}\left(\mathbf{A}\right)$?

27 / 61

L-R

7 Ejemplo de sistema de ecuaciones lineales

L-6

 $\begin{cases} x_1 + 2x_2 + 2x_3 + 2x_4 = b_1 \\ 2x_1 + 4x_2 + 6x_3 + 8x_4 = b_2 \\ 3x_1 + 6x_2 + 8x_3 + 10x_4 = b_3 \end{cases}$

¿ Qué descubrirá la eliminación respecto a las columnas?

¿Qué debe cumplir $(b_1,b_2,b_3,)$ para que exista solución?

Si $b_1=1$ y $b_2=5$, ¿cuánto debe valer b_3 para que exista solución? ¡Veamos!

$$oldsymbol{\mathsf{A}} x = b \quad \Leftrightarrow \quad oldsymbol{\mathsf{A}} x - rac{1}{1} b = 0 \quad \Leftrightarrow \quad ig[egin{array}{c|c} \mathbf{A} & -b \end{array}ig] rac{x}{1} = 0$$

L-6 L-7 **L-8** L-9 L-10 L-R

6 En el próximo ejemplo usaremos la forma escalonada reducida

Eliminación Gauss-Jordan: pivotes iguales a 1, con ceros a la izda.

$$\begin{split} \left. \left(\mathbf{A}_{\tau_{1} \cdots \tau_{k}} \right)_{|j} &= \mathbf{A} \left(\mathbf{I}_{\tau_{1} \cdots \tau_{k}} \right)_{|j} \\ \left(\mathbf{A}_{\tau_{1} \cdots \tau_{k}} \right) \left(\mathbf{I}_{\tau_{k}^{-1} \cdots \tau_{1}^{-1}} \right)_{|j} &= \mathbf{A}_{|j} \end{split} \right. \\ & \Longrightarrow \quad \mathcal{C} \left(\mathbf{A} \right) = \mathcal{C} \left(\mathbf{A}_{\tau_{1} \cdots \tau_{k}} \right). \end{split}$$

Sin embargo, en general $\mathcal{N}\left(\mathbf{A}\right) \neq \mathcal{N}\left(\mathbf{A}_{\tau_1 \cdots \tau_k}\right)$.

28 / 61

L-6 L-7 L-8 L-9 L-10 L-R

8 Sistema de ecuaciones lineales: condición de resolubilidad

$$\begin{bmatrix} \mathbf{A} \mid -\mathbf{b} \end{bmatrix} (\mathbf{x}, 1,) = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{A} \mid -\mathbf{b} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \mid -b_1 \\ 0 & 1 & 0 & 0 \mid -b_2 \\ 1 & 1 & 0 & 0 \mid -b_3 \\ \hline 3 & -1 & -2 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ -1 & \frac{1}{2} & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathbf{f} \\ [(b_1)\mathbf{1} + \mathbf{5}] \\ [(b_2)\mathbf{2} + \mathbf{5}] \\ \hline \end{bmatrix}} \begin{bmatrix} 1 & 0 & 0 & 0 \mid 0 \\ 0 & 1 & 0 & 0 \mid 0 \\ 1 & 1 & 0 & 0 \mid b_1 + b_2 - b_3 \\ \hline 3 & -1 & -2 & 2 & 3b_1 - b_2 \\ 0 & 0 & 1 & 0 & 0 \\ -1 & \frac{1}{2} & 0 & -2 & -b_1 + \frac{1}{2}b_2 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} \mid \mathbf{0} \\ \mathbf{E} \mid \mathbf{x}_p \\ \hline \mid \mathbf{1} \end{bmatrix}$$

Condición para que el sistema sea resoluble :

Si
$$b_1=1$$
 y $b_2=5$ entonces $b_3=$ Si ${m b}=\begin{pmatrix} 1,&5,&6, \end{pmatrix}$ ¿cómo es la última columna? Resuelva para ${m b}=\begin{pmatrix} 2,&2,&4, \end{pmatrix}$

9 Algoritmo de resolución del sistema de ecuaciones $\mathbf{A}x = \mathbf{b}$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix}; \quad \mathbf{b} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}; \qquad \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\begin{bmatrix} 1 & 2 & 2 & 2 & | & -2 \\ 2 & 4 & 6 & 8 & | & -2 \\ 3 & 6 & 8 & 10 & | & -4 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 2 & 0 & 2 & 4 & | & 2 \\ 3 & 0 & 2 & 4 & | & 2 \\ \hline 1 & -2 & -2 & -2 & | & 2 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \tau \\ [(-2)\mathbf{3} + 4] \\ [(-1)\mathbf{3} + \mathbf{5}] \\ \hline \end{bmatrix} \xrightarrow{[(-2)\mathbf{3} + 4]} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 2 & 0 & 2 & 0 & | & 0 \\ \hline 3 & 0 & 2 & 0 & | & 0 \\ \hline 1 & -2 & -2 & 2 & | & 4 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & -2 & -1 \\ \hline 0 & 0 & 0 & 0 & | & 1 \end{bmatrix}$$

$$\left\{ \boldsymbol{x} \in \mathbb{R}^4 \;\middle|\; \text{existe } \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2 \; \text{tal que } \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ -1 \\ 0 \end{pmatrix} + a \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 2 \\ 0 \\ -2 \\ 1 \end{pmatrix} \right\}$$

31 / 61

L-6 L-7 L-8 L-9 L-10 L-R

11 Teorema de Rouché-Frobenius

Sist. $\mathbf{A}x = \mathbf{b} \mid \mathbf{r} = \mathbf{m} = \mathbf{n} \mid \mathbf{r} = \mathbf{n} < \mathbf{m} \mid \mathbf{r} = \mathbf{m} < \mathbf{n} \mid \mathbf{r} < \mathbf{m}; \quad \mathbf{r} < \mathbf{n}$ soluciones

 $\begin{bmatrix} \mathbf{A} & | -\mathbf{b} \\ \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \xrightarrow{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \begin{bmatrix} \mathbf{R} & | -\mathbf{b} \\ \mathbf{E} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & 0 & \cdots & 0 & \cdots & 0 & 0 & | & -b_1 \\ 0 & \mathbf{1} & \cdots & 0 & \cdots & 0 & 0 & | & -b_2 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \mathbf{1} & \cdots & 0 & 0 & | & -b_h \\ \vdots & \vdots & & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 & 10 & | & -b_h \\ \vdots & \vdots & & \ddots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & 0 & | & 1 \end{bmatrix}$

donde **A** (de orden $m \times n$) tiene rango r; y donde "1" son pivotes.

L-0 L-7 L-8 L-9 L-10

10 Algoritmo de resolución completa (o general) del sistema $\mathbf{A}x = \mathbf{b}$

Aplicamos la eliminacion para resolver $\left[egin{array}{c|c} \mathbf{A} & -b \end{array}
ight] \left(\begin{matrix} x \\ \hline 1 \end{matrix}
ight) = \mathbf{0}$

$$\begin{bmatrix} \mathbf{A} & | -b \\ \mathbf{I} & \mathbf{0} \\ 0 \cdots 0 & 1 \end{bmatrix} \xrightarrow{\mathsf{Eliminación}} \begin{bmatrix} \mathbf{K} & \mathbf{c} \\ \mathbf{E} & \mathbf{x}_p \\ 0 \cdots 0 & 1 \end{bmatrix}, \quad \mathsf{donde} \quad \mathbf{K} = \mathbf{AE}.$$

- Si $c \neq 0$, el sistema $\mathbf{A}x = \mathbf{b}$ NO tiene solución.
- ullet Si c=0 entonces $b\in\mathcal{C}\left(\mathbf{A}
 ight)$ y el conjunto de soluciones es

$$\left\{ oldsymbol{x} \in \mathbb{R}^n \mid \mathsf{existe} \; oldsymbol{y} \in \mathcal{N}\left(oldsymbol{\mathsf{A}}
ight) \; \mathsf{tal} \; \mathsf{que} \; oldsymbol{x} = oldsymbol{x}_p + oldsymbol{y}
ight\}.$$

Si $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$, entonces \mathbf{x}_p es la única solución.

32 / 61

Problemas de la Lección 8

(L-8) PROBLEMA 1. ¿Cuáles de las siguientes reglas proporcionan una definición correcta del rango de ${\bf A}$?

- (a) El número de columnas diferentes de cero en R (forma reducida por columnas).
- (b) El número de columnas menos el número total de filas
- (c) El número de columnas menos el número de columnas libres
- (d) El número de unos en R.

(Strang, 2007, ejercicio 12 del conjunto de problemas 2.2.)

(L-8) PROBLEMA 2. Encuentre la solución completa (o solución general) a

$$\begin{bmatrix} 1 & 3 & 1 & 2 \\ 2 & 6 & 4 & 8 \\ 0 & 0 & 2 & 4 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$

(Strang, 2003, ejercicio 4 del conjunto de problemas 3.4.)

(L-8) PROBLEMA 3. Encuentre la solución completa (o solución general) a

$$\begin{bmatrix} 1 & 2 & -1 & -2 & 1 \\ 1 & 2 & 0 & 0 & 3 \\ 2 & 4 & 1 & 2 & 9 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ -4 \end{pmatrix}$$

(L-8) PROBLEMA 4. Resuelva el siguiente sistema de ecuaciones

$$x_1 + x_3 + x_5 = 1$$

$$x_2 + x_4 = 1$$

$$x_1 + x_2 + x_3 + x_4 = 2$$

$$x_3 + x_4 = 2$$

33 / 61

L-6 L-7 L-8 L-9 L-10 L-R

(L-8) PROBLEMA 7. Describa el conjunto de vectores b que hacen el sistema $\mathbf{A}x = b$ resoluble (el espacio columna $\mathcal{C}(\mathbf{A})$) para el caso

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix},$$

encontrando las restricciones necesarias sobre b tras realizar el procedimiento de eliminación. ¿Cual es el rango de A? Indique un posible lado derecho y la una solución particular al sistema. Describa también el espacio nulo. (Strang, 2007, ejercicio 6 del conjunto de problemas 2.2.)

(L-8) PROBLEMA 8. Suponga una compañía que pinta coches, trenes y aviones: Cada coche supone 10 horas de trabajo de preparación, 30 de pintado y 12 de retogues finales.

Cada tren supone 20 horas de trabajo de preparación, 75 de pintado y 36 de retoques finales.

Cada avión supone 40 horas de trabajo de preparación, 135 de pintado y 64 de retoques finales.

Dada la plantilla de la empresa, decide dedicar los siguientes recursos cada semana, 760 horas de trabajo a la preparación, 2595 al pintado, y 1224 a retoques finales. ¿Cuantos aviones, trenes y coches puede pintar la empresa a la semana?.

(L-8) Problema 5.

Sean

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & 2 & 0 & 6 \end{bmatrix}; \qquad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$

- (a) Encuentre la forma escalonada por columnas de A
- (b) Encuentre las variables libres
- (c) Encuentre las soluciones especiales:
- (d) $\mathbf{A} x = \mathbf{b}$ es consistente (tiene solución) cuando la segunda componente de \mathbf{b} satisface $b_2 =$
- (e) Encuentre la solución completa del sistema lineal de ecuaciones cuando b_2 satisface la condición.

(Strang, 2007, ejercicio 3 del conjunto de problemas 2.2.)

(L-8) Problema 6. Calcule lo mismo que en el problema anterior para encontrar la solución completa de $\mathbf{A}x = \mathbf{b}$.

$$\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 1 & 2 \\ 0 & 0 \\ 3 & 6 \end{bmatrix}; \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}.$$

(Strang, 2007, ejercicio 4 del conjunto de problemas 2.2.)

L-6 L-7 L-8 L-9 L-10 L-R

(L-8) PROBLEMA 9. Para el sistema $\mathbf{A}x = \mathbf{b}$ dado por

$$\begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 10 \\ 3 & 1 & c \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 14 \\ 20 \end{pmatrix}$$

- (a) Encuentre el valor de c que hace a la matriz ${\bf A}$ no invertible. Use dicho valor en los apartados siguientes.
- (b) Encuentre la solución completa al sistema $\mathbf{A}x = \mathbf{b}$.
- (c) Describa el sistema de ecuaciones mediante la visión por columnas (columnas de **A** y el vector **b**), o bien mediante la visión por filas (las tres ecuaciones del sistema).

(L-8) PROBLEMA 10. Construya (si es que es posible) una matriz cuyo espacio columna contenga a (1,1,5) y a (0,3,1) y cuyo espacio nulo conste de todas las combinaciones de (1,1,2).

(Strang, 2007, ejercicio 62 del conjunto de problemas 2.2.)

(L-8) Problema 11. ; Para qué vectores b los siguientes sistemas tienen solución?

(a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

(Strang, 2007, ejercicio 24 del conjunto de problemas 2.1.)

(L-8) PROBLEMA 12. ¿Cuáles deben ser las condiciones sobre b_1 y b_2 (en caso de haber alguna) para que $\mathbf{A}x=b$ tenga solución?

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 0 & 7 \end{bmatrix}, \qquad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$

Encuentre dos vectores en el espacio nulo de ${\bf A}$; así como la solución completa al sistema ${\bf A}x=b$.

(Strang, 2007, ejercicio 8 del conjunto de problemas 2.2.)

(L-8) PROBLEMA 13. Sea la matriz

$$\mathbf{B}_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & -0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Sin realizar la multiplicación, diga una base de $\mathcal{N}\left(\mathbf{B}\right)$, y el rango de \mathbf{B} . Explique su respuesta.
- (b) ¿Cuál es la solución completa a $\mathbf{B}x = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$?

33 / 61

33 / 61

L-6 L-7 L-8 L-9 L-10 L-R

(L-8) PROBLEMA 16. Ana, Belén, y Carlos deciden que no les gusta el color de las paredes del aula donde estudian Matemáticas II. Ana compra un bote de pintura roja, seis de pintura azul, y un bote de pintura verde. La factura es de 44 euros; Belén compra dos botes azules y tres verdes la factura es de 24 euros; y por último Carlos compra un bote rojo y cinco azules por un importe de 33 euros.

- (a) ¿Cuanto vale cada bote de pintura?
- (b) ¿Qué no tiene sentido en la respuesta a la pregunta anterior?
- (c) Cuando Ana, Belén, y Carlos comparan las facturas se dan cuenta de que a uno de ellos le han cobrado 4 euros de menos. ¿A quién?
- (d) Tras intentar dar respuesta a la pregunta anterior, se habrá dado cuenta de que es un tanto "trabajoso" dar con el resultado. Intente lo siguiente: genere la matriz ampliada $[\mathbf{A} | a \quad b \quad c]$ donde \mathbf{A} es la matriz de coeficientes del sistema de ecuaciones, y a es el vector de precios suponiendo que a Ana deberían haberle cobrado 4 euros más (es decir 48 en lugar de 44), b el vector de precios suponiendo que sólo a Belén deberían haberle cobrado 4 euros más, y c lo mismo para Carlos. Calcule la forma escalonada reducida de la matriz ampliada. A la vista de lo obtenido ¿cuanto vale cada bote de pintura? y ¿a quien han cobrado 4 euros de menos?

L-6 L-7 L-8 L-9 L-10 L-R

(L-8) PROBLEMA 14. ¿Para qué miembros derechos b los siguientes sistemas son resolubles? Dicho de otra forma ¿qué condición debe cumplir b para que sea solución del sistema?

(a)

$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

¿Cubre el espacio columna $\mathcal{C}(\mathbf{A})$ todo el espacio \mathbb{R}^3 o sólo un subespacio? Si es un subespacio, ¿es un plano en \mathbb{R}^3 ? ¿es una recta, o es un punto?

(b)

$$\begin{bmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

¿Cubre el espacio columna $\mathcal{C}(\mathbf{A})$ todo \mathbb{R}^3 o sólo un subespacio? Si es un subespacio, ¿es un plano en \mathbb{R}^3 ? ¿es una recta, o es un punto? Basado en (Strang, 2007, ejercicio 22 del conjunto de problemas 2.1.)

(L-8) Problema 15. La solución completa a $\mathbf{A}x = \mathbf{b} \in \mathbb{R}^m$ es:

$$\left\{ \boldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists \; c_1, c_2 \in \mathbb{R} \; \mathsf{tales} \; \mathsf{que} \; \boldsymbol{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_1 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}. \qquad \text{¿Cómo es } \boldsymbol{\mathsf{A}} \in \mathbb{R}^3 \; \middle| \; \boldsymbol{\mathsf{A}} = \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \\ c_4 \end{array} \right] \right\}.$$

33 / 61

L-6 L-7 L-8 L-9 L-10 L-R

(L-8) PROBLEMA 17. Suponga que el sistema de ecuaciones $\mathbf{A}x=\mathbf{b}$ es consistente (que tiene solución), donde \mathbf{A} y $\mathbf{x}=(x_1,...,x_n)$. Demuestre las siguientes

afirmaciones:

- (a) $b \in \mathcal{C}(A)$.
- (b) Si x_0 es una solución particular del sistema, entonces cualquier vector de la forma $x_0 + z$, donde $z \in \mathcal{N}(\mathbf{A})$, es también solución del sistema.
- (c) Demuestre que si hay dependencia lineal entre las columnas de **A**, entonces hay más de una solución.

(L-8) PROBLEMA 18. Resuelva el siguiente sistema de ecuaciones usando el método de eliminación Gaussiano.

$$\begin{cases} 3x + y + z = 6 \\ x - y - z = -2 \\ 4y + z = 3 \end{cases}$$

- (L-8) Problema 19. Escriba los siguientes problemas clásicos en forma matricial 2 por 2 para $\mathbf{A}x = \mathbf{b}$, y resuélvalos:
- (a) X es dos veces más viejo que Y, y la suma de la edad de ambos es igual a 39.
- (b) Los puntos (x,y,)=(2,5,) y (x,y,)=(3,7,) están en la recta y=mx+c. Encuentre los valores de m y de c.

(Strang, 2007, ejercicio 32 del conjunto de problemas 1.4.)

(L-8) Problema 20. La parábola $y=a+bx+cx^2$ pasa por los puntos $(x,y,)=(1,4,),\ (2,8,)$ y (3,14,). Encuentre y resuelva una ecuación matricial para las incógnitas $x=\begin{pmatrix} a, & b, & c, \end{pmatrix}$.

(Strang, 2007, ejercicio 33 del conjunto de problemas 1.4.)

(L-8) PROBLEMA 21. Explique por qué el sistema

$$\begin{cases} u + v + w = 2 \\ u + 2v + 3w = 1 \\ v + 2w = 0 \end{cases}$$

es singular y no tiene solución.

¿Por qué valor debe sustituirse el último cero del lado derecho para que el sistema sea resoluble? Indique una de las soluciones al sistema.

(Strang, 2007, ejercicio 8 del conjunto de problemas 1.2.)

(L-8) PROBLEMA 22. Escoja un coeficiente b que haga singular este sistema. Luego, escoja un valor para g que permita resolver el sistema. Encuentre dos soluciones del caso singular

$$\begin{cases} 2x + by &= 16\\ 4x + 8y &= g \end{cases}$$

Basado en (Strang, 2003, ejercicio 6 del conjunto de problemas 2.2.)

33 / 61

L-R

33 / 61

L-7 L-8 L-9 L-10 (L-8) PROBLEMA ${f 25}$. La solución completa de ${f A}x=inom{1}{3}$ es ${m x}=inom{1}{0}+cinom{0}{1}$.

Encuentre A.

(Strang, 2007, ejercicio 50 del conjunto de problemas 2.2.)

(L-8) PROBLEMA 27. Considere un sistema de ecuaciones lineales $\mathbf{A}x = \mathbf{b}$; donde la matriz \mathbf{A} tiene tres filas y cuatro columnas.

- (a) Un sistema como este ¿tiene siempre solución? Si no es así, escriba un ejemplo de sistema que no tenga solución.
- (b) ¿Es posible que el sistema tenga una única solución? Si es así, proporcione un eiemplo.
- (c) Formule, si es posible, una condición necesaria y suficiente sobre ${\bf A}$ y ${\bf b}$ que garantice que el sistema tiene al menos una solución.
- (d) Formule, si es posible, una condición necesaria y suficiente sobre ${\bf A}$ que garantice que el sistema tiene al menos una solución para cualquier vector ${\bf b}$.

L-6 L-7 L-8 L-9 L-10 L-R

(L-8) PROBLEMA 23. Resuelva el siguiente sistema para encontrar una combinación de las columnas que sea igual a $b = (b_1, b_2, b_3,)$.

$$u - v + w = b_1$$
$$v + w = b_2$$
$$w = b_3.$$

Verifique que su respuesta es correcta multiplicando la matriz de coeficientes del sistema por su vector solución para obtener b.

(Strang, 2007, ejercicio 2 del conjunto de problemas 1.2.)

(L-8) Problema 24. Encuentre las siguiente matrices **A** y **B**, o bien, explique por qué no es posible encontrar tales matrices.

- (a) La única solución a $\mathbf{A}x=\begin{pmatrix}1\\2\\3\end{pmatrix}$ es $\mathbf{x}=\begin{pmatrix}0\\1\end{pmatrix}$
- (b) La única solución a $\mathbf{B}x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ es $x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

(Strang, 2007, ejercicio 49 del conjunto de problemas 2.2.)

L-6 L-7 L-8 L-9 L-10 L-R

(L-8) PROBLEMA 28. Mediante eliminación sobre la matriz **A** de orden 4×7

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & 2 & 0 & -1 & 0 \\ 2 & -2 & 1 & 5 & 0 & -1 & 0 \\ -3 & 3 & -1 & -7 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 \end{bmatrix}$$

hemos obtenido la matriz $\mathbf{B} = \mathbf{A}_{ au_1 \cdots au_b}$:

$$\mathbf{B} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}; \quad \mathsf{donde} \ \mathbf{I}_{\tau_1} \dots \tau_k = \begin{bmatrix} 2 & 1 & 0 & -2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -4 & 0 & 2 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

- (a) ¿Cuál es el rango de A? Resuelva el sistema $\mathbf{A}x = \mathbf{0}$.
- (b) Exprese, si es posible, la solución en función de las variables x_2 , x_4 y x_6 .
- (c) Encuentre, si es posible, un $b \in \mathbb{R}^4$ tal que $\mathbf{A} x = b$ no tenga solución.
- (d) Proporcione un vector b tal que el vector $x = \mathbf{I}_{11}$ sea solución al sistema $\mathbf{A}x = b$.
- (e) Si b es la suma de todas las columnas de ${\bf A}$. Escriba, si es posible, la solución completa del sistema ${\bf A}x={\bf b}$.

Versión modificada de MIT Course 18.06 Quiz 1, October 4, 2004

33 / 61

(L-8) Problema 29. $oldsymbol{\mathsf{A}}$ es una matriz de rango r. Suponga que $oldsymbol{\mathsf{A}} x = b$ no tiene

solución para algunos vectores $oldsymbol{b}$, pero infinitas soluciones para otros vectores $oldsymbol{b}$.

- (a) Decida si el espacio nulo $\mathcal{N}(\mathbf{A})$ contiene sólo el vector cero, y explique porqué.
- (b) Decida si el espacio columna $\mathcal{C}(\mathbf{A})$ es todo \mathbb{R}^m y explique porqué.
- (c) Para esta matriz **A**, encuentre las relaciones entre los números r, m; y entre r y n.
- (d) ¿Puede existir un lado derecho b para el que $\mathbf{A}x = b$ tenga una y sólo una solución? ¿Porqué es posible o porqué no?
- (L-8) PROBLEMA 30. Sea la matriz

$$\mathbf{A} = \left[\begin{array}{cccc} 2 & 3 & 1 & -1 \\ 6 & 9 & 3 & -2 \end{array} \right]$$

- (a) Encuentre un conjunto de soluciones del sistema ${\bf A}x={\bf 0}$ y describa con él el espacio nulo de ${\bf A}$.
- (b) Encuentre la solución completa— es decir todas las soluciones (x_1,x_2,x_3,x_4) de

$$\mathbf{A}\boldsymbol{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

(c) Cuando una matriz $\mathbf{A}_{m \times n}$ tiene rango r=m ¿para qué vectores \mathbf{b} el sistema $\mathbf{A} x = \mathbf{b}$ puede resolverse? ¿Cuantas soluciones especiales tiene $\mathbf{A} x = \mathbf{0}$ (dimensión del espacio nulo)?

33 / 61

L-6 L-7 L-8 L-9 L-10 L-R

(L-8) PROBLEMA 33. ¿Cuáles de las siguientes descripciones son correctas? Las soluciones $m{x}$ del sistema

$$\mathbf{A}\boldsymbol{x} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

constituyen:

- (a) Un plano
- (b) Una recta (c) Un punto
- (d) Un subespacio
- (e) El espacio nulo de A. (f) El espacio columna de A.

(Strang, 2007, ejercicio 8 del conjunto de problemas 2.1.)

(L-8) PROBLEMA 34. Considere la ecuación $\mathbf{A}x = \mathbf{b}$

$$\begin{bmatrix} 1 & 0 \\ 4 & 1 \\ 2 & -1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

¿Para que vectores b el sistema tiene solución? Basado en MIT Course 18.06 Quiz 1, Fall 2008 (I 0) Propress 21 Considers of sixtense de considera

(L-8) PROBLEMA 31. Considere el sistema de ecuaciones,

$$\begin{cases}
 x + y + 2z = 1 \\
 2x + 2y - z = 1 \\
 y + cz = 2
\end{cases}$$

¿Para qué valores de c este sistema no tiene solución? ¿sólo una solución? ¿e infinitas soluciones?

(L-8) PROBLEMA 32. Sea el sistema de ecuaciones

$$\begin{cases} x - y + 2z &= 1\\ 2x - 3y + mz &= 3\\ -x + 2y + 3z &= 2m \end{cases}$$

- (a) Demuestre que tiene solución para cualquier valor del parámetro m.
- (b) Halle la solución del sistema anterior si m = -1.
- (c) ¿Corresponde la solución obtenida a las ecuaciones de una recta en \mathbb{R}^3 ?¿Existe algún valor del parámetro m para el que la solución del sistema anterior sea un plano en \mathbb{R}^3 ? ¿Y un punto en \mathbb{R}^3 ?
- (d) Halle la solución del sistema anterior cuando m=1.

33 / 61

L-6 L-7 L-8 L-9 L-10 L-R

(L-8) PROBLEMA 35. En un teatro de barrio, tres grupos están haciendo cola. Hay cuatro tipos de tarifas; tercera edad (t), adulto (a), infantil (i) y tarifa con descuento para empleados del teatro y familiares (d).

El primer grupo compra tres entradas de adulto y tres infantiles por 39 euros.

El segundo grupo compra tres entradas de adulto y cuatro de la tercera edad por 44 euros

El tercer grupo compra dos entradas con descuento y dos entradas infantiles por 22 euros

- (a) Si intenta descubrir el precio de cada entrada ¿cuantas soluciones puede encontrar? Ninguna, una, o infinitas
- (b) Si las entradas de la tercera edad valen lo mismo que las infantiles. ¿Cuánto vale cada tipo de entrada?
- (L-8) Problema 36. Considere el siguiente sistema de ecuaciones lineales

$$\begin{cases} x_1 + 2x_2 - x_3 + x_4 = -1 \\ -x_1 - 2x_2 + 3x_3 + 5x_4 = -5 \\ -x_1 - 2x_2 - x_3 - 7x_4 = 7 \end{cases}$$

- (a) (0.5 pts) ¿Cuál es el rango de la matriz de coeficientes?
- (b) (1.5 pts) Resuelva el sistema de ecuaciones
- (c) (0.5 pts) Describa la forma geométrica del conjunto de vectores solución a este sistema de ecuaciones (considerando el conjunto como un subconjunto de \mathbb{R}^4).

(L-8) Problema 37. Considere el sistema $\mathbf{A} x = \mathbf{0}$ donde

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 2 & 3 \\ a & 1 & 1 & 2 \end{bmatrix}.$$

- (a) $(0.5^{\rm pts})$ Encuentre los valores del parámetro a de manera que la solución del sistema sea una recta.
- (b) $(0.5^{\rm pts})$ ¿Para qué valores de a el conjunto de soluciones es un plano?
- (L-8) PROBLEMA 38. Encuentre la solución completa del sistema de ecuaciones

$$\begin{bmatrix} 1 & 3 & 2 & 4 & -3 \\ 2 & 6 & 0 & -1 & -2 \\ 0 & 0 & 6 & 2 & -1 \\ 1 & 3 & -1 & 4 & 2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -7 \\ 0 \\ 12 \\ -6 \end{pmatrix}$$

33 / 61

L-6 L-7 L

L-8

L-9

L-10

L-R

Esquema de la Lección 9

Esquema de la Lección 9

- Independencia lineal
- Sistema generador de un espacio
- **BASE** y dimensión

L-6 L-7 L-8 L-9 L-10 L-

(L-8) PROBLEMA 39. Sea la matriz $\mathbf{A}_{3\times 4}$ y el vector columna \boldsymbol{b} de \mathbb{R}^3 :

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 & 2 \\ 2 & 7 & 6 & 8 \\ 3 & 9 & 6 & 7 \end{bmatrix}; \qquad \mathbf{b} = \begin{pmatrix} 2 \\ 7 \\ 7 \end{pmatrix}$$

- (a) Encuentre todas la soluciones al sistema $\mathbf{A}x=b$ (si es que existen soluciones). Describa el conjunto de soluciones geométricamente. ¿Es dicho conjunto un sub-espacio vectorial?
- (b) ¿Quién es el espacio columna $\mathcal{C}(\mathbf{A})$? Cambie el 7 de la esquina inferior derecha por un número que conduzca a un espacio columna más pequeño de la nueva matriz (digamos \mathbf{M}). Dicho número es ____.
- (c) Encuentre un lado derecho b tal que, para la nueva matriz, el sistema $\mathbf{M}x=b$ tenga solución; y otro lado derecho b tal que $\mathbf{M}x=b$ no tenga solución.

33/61

L-6 L-7 L-8 **L-9** L-10 L-R

2 Sistema de ecuaciones homogéneo: nuestro punto de partida

Suponga \mathbf{A} con m < n y el sistema $\mathbf{A} \boldsymbol{x} = \mathbf{0}$.

 $m \times n$

(más incógnitas que ecuaciones (m < n), columnas libres)

Entonces hay soluciones no nulas a $\mathbf{A}x = \mathbf{0}$.

Hay combinaciones lineales no triviales $\mathbf{A}x$ que son $\mathbf{0}$

L-6 L-7 L-8 **L-9** L-10 L-R

3 Independencia lineal

Vectores \vec{v}_1 , ..., \vec{v}_n son (linealmente) independientes si: ninguna combinación lineal es $\vec{0}$

$$(\overrightarrow{v}_1)p_1 + (\overrightarrow{v}_2)p_2 + \cdots + (\overrightarrow{v}_n)p_n \neq \overrightarrow{0}$$

excepto la combinación nula (todos p_i nulos).

 $(\overrightarrow{v}_1)p_1+\cdots+(\overrightarrow{v}_n)p_n=\overrightarrow{0}$ solo ocurre cuando todos los p_i son cero

$$[\vec{v}_1;\;\ldots\;\vec{v}_n;]oldsymbol{p}=\vec{0}$$
 si y solo si $oldsymbol{p}=\mathbf{0}$

36 / 61

L-7 L-8 L-9 L-10 L-R

5 independencia lineal y rango de una matriz

Las columnas de **A** son:

L-6

- independientes: Si el espacio nulo $\mathcal{N}\left(\mathbf{A}\right)$ es
- independientes si: rg (A)
- dependientes si: rg (A)

L-6 L-7 L-8 **L-9** L-10 L-

f 4 independencia lineal: ejemplos en $\Bbb R^2$

¿Puede encontrar números a y b tales que av + bw = 0?

- \boldsymbol{v} y $\boldsymbol{w} = 2\boldsymbol{v}$
- $lackbox{v}$ y $oldsymbol{w}=oldsymbol{0}$
- 2 vectores no alineados
- 3 vectores en \mathbb{R}^2

6 Espacio generado por un sistema de vectores: Sistema generador

Sistema generador

El sistema $\mathbf{Z} = \left[\overrightarrow{z}_1; \dots \overrightarrow{z}_j; \right]$ genera el subespacio \mathcal{W} si sus combinaciones lineales "llenan" \mathcal{W}

- \mathcal{W} consiste en todas las combinaciones lineales de $\vec{z}_1, \ldots \vec{z}_j$.
- \mathcal{W} es el menor subespacio que contiene Z.

$$\mathcal{W} = \mathcal{L}\Big(ig[ec{z}_1; \dots ec{z}_j;ig]\Big).$$

Ejemplo

L-6

• El espacio columna:

$$\mathcal{C}\left(\mathbf{A}
ight) = \left\{m{b} \mid \exists m{x} ext{ tal que } m{b} = \mathbf{A}m{x}
ight\} = \mathcal{L}\Big(\mathsf{las} ext{ columnas de } \mathbf{A}\Big).$$

• El espacio nulo:

$$\mathcal{N}\left(\mathbf{A}
ight) = \left\{x \mid \mathbf{A}x = \mathbf{0}
ight\} = \mathcal{L}\Big(ext{soluciones especiales de }\mathbf{A}x = \mathbf{0}\Big).$$

7 Base de un espacio vectorial

Base de un subespacio ${\mathcal W}$

es un sistema de vectores $[\vec{z}_1; \dots \vec{z}_d;]$ tales que;

- 1. generan el subespacio ${\cal W}$
- 2. son linealmente independientes

ejemplos

 \mathbb{R}^3 :

 $oxed{a_1; \ldots a_n;}$ es una base de \mathbb{R}^n si es una matriz invertible

Todas las bases de un subespacio ${\mathcal W}$ dado tienen el mismo $\it n\'umero$ de vectores

40 / 61

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \end{bmatrix};$$

- ¿generan las columnas $C(\mathbf{A})$?
- ¿son las columnas una base de $C(\mathbf{A})$?
- ¿Cuál es el rg (A)?
- escriba varias bases distintas de $C(\mathbf{A})$

$$\operatorname{rg}\left(\mathbf{A}
ight)=\mathsf{n}^{\mathbf{Q}}$$
 pivotes $=$ dimensión de $\mathcal{C}\left(\mathbf{A}
ight)$

L-6 L-7 L-8 **L-9** L-10 L-F

8 Dimensión

todas las bases de un subespacio ${\mathcal W}$ tienen el mismo ${\it n\'umero}$ de vectores

La dimensión de un espacio es ese número

Ese número indica como de "grande" es el espacio

1.6 1.7 1.0 1.0 1.10 I.D

 $oxed{10}$ Ejemplos: $\mathcal{N}\left(\mathbf{A}
ight)$

$$\mathbf{A}_{m \times n} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \end{bmatrix}; \qquad \mathbf{v} = \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$

- ¿está \boldsymbol{v} en $\mathcal{N}\left(\mathbf{A}\right)$?
- ¿Es suficiente v para generar el espacio $\mathcal{N}(\mathbf{A})$?
- ullet escriba otro vector de $\mathcal{N}\left(\mathbf{A}
 ight)$ independiente de v .
- ¿generan v y w el espacio $\mathcal{N}(\mathbf{A})$?
- ¿son v y w una base de $\mathcal{N}(\mathbf{A})$?
- ¿Cuál es la dimensión del espacio $\mathcal{N}(\mathbf{A})$?

$$n-\operatorname{rg}\left(\mathbf{A}\right)=\ \mathsf{n}^{\mathbf{Q}}\ \mathsf{variables}\ \mathsf{libres}=\dim\mathcal{N}\left(\mathbf{A}\right)$$

Problemas de la Lección 9

(L-9) PROBLEMA 1. Establezca si los siguientes vectores son o no linealmente independientes, resolviendo $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 + c_4 \mathbf{v}_4 = \mathbf{0}$:

$$m{v}_1 = egin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \qquad m{v}_2 = egin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad m{v}_3 = egin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \qquad m{v}_4 = egin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

Decida también, si generan \mathbb{R}^4 , intentando resolver $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 + c_4 \mathbf{v}_4 = (0, 0, 0, 1).$ (Strang, 2007, ejercicio 16 del conjunto de problemas 2.3.)

(L-9) Problema 2. Señale la opción correcta. Suponga que $v_1 \dots v_6$ son seis vectores de \mathbb{R}^4 .

- (a) Estos vectores (generan)(no generan)(podrían no generar) \mathbb{R}^4 .
- (b) Estos vectores (son)(no son)(podrían ser) linealmente independientes.
- (c) Si esos vectores son las columnas de A, entonces Ax = b (tiene)(no tiene)(podría no tener) solución.
- (d) Si esos vectores son las columnas de ${\bf A}$, entonces ${\bf A}x=b$ (tiene)(no tiene)(podría no tener) una solución única.

(Strang, 2007, ejercicio 22 del conjunto de problemas 2.3.)

43 / 61

L-R

L-6 L-8 L-9 L-R

(L-9) PROBLEMA 6. ¿cuáles de los siguientes vectores generan el espacio \mathbb{R}^3 ?

- (a) (1,2,0,) y (0,-1,1,).
- (b) (1,1,0,), (0,1,-2,), y (1,3,1,).
- (c) (-1,2,3,), (2,1,-1,), y (4,7,3,).
- (d) (1,0,2,), (0,1,0,), (-1,3,0,), y (1,-4,1,).

(L-9) Problem 7. ; Son linealmente dependientes o independientes los siguientes sistemas de vectores? Si son dependientes, escriba un vector como combinación de los otros.

- (a) (-1,2,3,), (2,1,-1,), y (4,7,3,) en \mathbb{R}^3 .
- (b) (1,2,0,) y (0,-1,1,) en \mathbb{R}^3 .
- (c) (1,2,), (2,3,), y (8,-2,) en \mathbb{R}^2 . (d) t^2+2t+1 , t^3-t^2 , t^3+1 , y t^3+t+1 en P_3 .

(L-9) Problema 8. Suponga que la única solución de \mathbf{A} x=0 es x=0. ¿Cuál es el rango y por qué? Las columnas de A son linealmente (Strang, 2007, ejercicio 8 del conjunto de problemas 2.4.)

(L-9) PROBLEMA 9. [Importante] Si A es de orden 4×6 , demuestre que las columnas de A son linealmente dependientes.

L-R

(L-9) Problem 3. Encuentre una matriz con la siguiente propiedad, o explique por qué no existe tal matriz.

- (a) La solución *completa* a $\mathbf{B}x = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ es el vector $\mathbf{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Encuentre \mathbf{B} , o diga por qué no existe.
- (b) La solución completa a $\mathbf{C}x=\begin{pmatrix}5\\1\end{pmatrix}$ es el vector $x=\begin{pmatrix}1\\4\\\end{bmatrix}$. Encuentre \mathbf{C} , o diga por qué no existe.

(L-9) Problema 4. Demuestre que $m{v}_1,\ m{v}_2,\ m{v}_3$ son independientes pero que v_1, v_2, v_3, v_4 son dependientes:

$$oldsymbol{v}_1 = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}; \quad oldsymbol{v}_2 = egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}; \quad oldsymbol{v}_3 = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}; \quad oldsymbol{v}_4 = egin{pmatrix} 2 \ 3 \ 4 \end{pmatrix}.$$

Resuelva $\mathbf{A}c = \mathbf{0}$ (donde las v s son las columas de \mathbf{A}). (Strang, 2007, ejercicio 1 del conjunto de problemas 2.3.)

(L-9) PROBLEMA 5. Justifique si es verdadera o falsa la siguiente afirmación: Si $A^{T} = 2A$, entonces las filas de A son linealmente dependientes

43 / 61

L-6 L-7 L-8 L-9 L-10
$$\text{(L-9) Problema 10. } \textbf{A} \text{ is such that } \mathcal{N}\left(\textbf{A}\right) = \mathcal{L}\left(\begin{bmatrix} 1\\2\\-1 \end{bmatrix}; \quad \begin{pmatrix} 0\\1\\1 \end{bmatrix}; \quad \begin{pmatrix} -1\\-1\\3 \end{bmatrix}; \right).$$

- (a) Find a matrix **B** such that its column space $\mathcal{C}(\mathbf{B}) = \mathcal{N}(\mathbf{A})$. [Thus, any vector $\boldsymbol{y} \in \mathcal{N}\left(A\right)$ satisfies $\mathbf{B}\boldsymbol{u} = \boldsymbol{y}$ for some \boldsymbol{u} .
- (b) Give a different possible answer to (a): another **B** with $\mathcal{C}(\mathbf{B}) = \mathcal{N}(\mathbf{A})$
- (c) For some vector b, you are told that a particular solution to $\mathbf{A}x = \hat{b}$ is

$$\boldsymbol{x}_p = \begin{pmatrix} 1, & 2, & 3, & 4, \end{pmatrix}$$

Now, your classmate Zarkon tells you that a second solution is:

$$\boldsymbol{x}_Z = \begin{pmatrix} 1, & 1, & 3, & 0, \end{pmatrix}$$

while your other classmate Hastur tells you "No, Zarkon's solution can't be right, but here's a second solution that is correct:"

$$\boldsymbol{x}_H = \begin{pmatrix} 1, & 1, & 3, & 1, \end{pmatrix}$$

Is Zarkon's solution correct, or Hastur's solution, or are both correct? (Hint: what should be true of x - x_p if x is a valid solution?)

MIT Course 18.06 Quiz 1, Spring, 2009

(L-9) PROBLEMA 11. Considere la matriz

$$\mathbf{A} = \left[\begin{array}{ccccc} 1 & 2 & -1 & 0 & 0 \\ 1 & 2 & 0 & 2 & 2 \\ 1 & 2 & -1 & 0 & 0 \\ 2 & 4 & 0 & 4 & 4 \end{array} \right]$$

- (a) Encuentre una base del espacio columna (del espacio vectorial generado por las columnas) $C(\mathbf{A})$.
- (b) Encuentre una base del espacio nulo (del conjunto de soluciones del sistema homogeneo $\mathbf{A}x = \mathbf{0}$) $\mathcal{N}(\mathbf{A})$.
- (c) Encuentre las condiciones lineales sobre a, b, c, d que garantizan que el sistema $\mathbf{A}\mathbf{x} = (a, b, c, d,)$ tiene solución.
- (d) Encuentre la solución completa al sistema $\mathbf{A} x = \left[egin{array}{c} 1 \\ 0 \end{array}
 ight]$

MIT Course 18.06 Quiz 1, March 5, 2007

(L-9) PROBLEMA 12. Si a una matriz A se le "añade" una nueva columna extra b, entonces el espacio columna se vuelve más grande, a no ser que Proporcione un ejemplo en el que espacio columna se haga más grande, y uno en el que no. ¿Por qué $\mathbf{A}x = \mathbf{b}$ es resoluble cuando el espacio columna no crece al añadir *b*?

43 / 61

43 / 61

L-6 L-8 L-9 L-R

(L-9) PROBLEMA 16. ¿Cuáles de los siguientes vectores generan el espacio de polinomios de, a lo sumo, grado 4; es decir, el conjunto de polinomios $P_3 = \{at^3 + bt^2 + ct + d\}$?

- $\begin{array}{l} \text{(a)}\ t+1,\ t^2-t,\ \text{y}\ t^3.\\ \text{(b)}\ t^3+t\ \text{y}\ t^2+1.\\ \text{(c)}\ t^2+t+1,\ t+1,\ 1,\ \text{y}\ t^3.\\ \text{(d)}\ t^3+t^2,\ t^2-t,\ 2t+4,\ \text{y}\ t^3+2t^2+t+4. \end{array}$

(L-9) PROBLEMA 17. Considere los vectores $u_1 = (1, 0, 1,)$ y $u_2 = (1, -1, 1,)$.

- (a) Demuestre que $u_1 \vee u_2$ son linealmente independientes.
- (b) ¿Pertenece v=(2,1,2,) al espacio generado por $\{u_1,u_2\}$? Explique las razones de su respuesta.
- (c) Encuentre una base de \mathbb{R}^3 que contenga a u_1 y a u_2 . Explique su respuesta.

(L-9) Problema 18.

(a) ¿Son linealmente independientes los siguientes vectores? Explique su respuesta

$$egin{aligned} oldsymbol{v}_1 = egin{pmatrix} -2 \ -1 \ 3 \ 4 \end{pmatrix}; \qquad oldsymbol{v}_2 = egin{pmatrix} -8 \ 2 \ -2 \ 1 \end{pmatrix} \end{aligned}$$

L-R

(L-9) Problema 13. Si el sistema de 9 por 12 $\mathbf{A}x = \mathbf{b}$ es resoluble para todo \mathbf{b} , entonces $\mathcal{C}(\mathbf{A}) =$

(Strang, 2007, ejercicio 30 del conjunto de problemas 2.1.)

(L-9) Problema 14. [Importante] Suponga que el sistema $[v_1; \ldots v_n]$ de vectores de \mathbb{R}^m genera el subespacio \mathcal{V} , y suponga que v_n es una combinación lineal de los vectores $v_1, \ldots v_{n-1}$. Demuestre que el sistema $[v_1; \ldots v_{n-1}]$ también genera el subespacio \mathcal{V} .

(L-9) Problema 15.

(a) Encuentre la solución completa al siguiente sistema de ecuaciones

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$$

(b) Encuentre una base del espacio columna de la siguiente matriz por bloques de orden 3 por 9 $[\mathbf{A}; 2\mathbf{A}; \mathbf{A}^2;]$.

MIT Course 18.06 Final, May 18, 1998

43 / 61

43 / 61

L-6 L-8 L-9 L-R

(b) ¿Son los siguientes vectores una base de \mathbb{R}^4 ? Explique su respuesta.

$$oldsymbol{v}_1 = egin{pmatrix} -2 \ -1 \ 3 \ 4 \end{pmatrix}; \quad oldsymbol{v}_2 = egin{pmatrix} 8 \ 2 \ 2 \ 1 \end{pmatrix}; \quad oldsymbol{v}_3 = egin{pmatrix} 10 \ 1 \ 1 \ 6 \end{pmatrix}; \quad oldsymbol{v}_4 = egin{pmatrix} -2 \ -1 \ 3 \ 4 \end{pmatrix}$$

(c) ; Son los siguientes vectores una base del subespacio descrito por el plano tridimensional $x_1 + 2x_2 + 3x_3 + 6x_4 = 0$? Explique su respuesta.

$$oldsymbol{v}_1 = egin{pmatrix} -2 \ 1 \ 0 \ 0 \end{pmatrix}; \quad oldsymbol{v}_2 = egin{pmatrix} -1 \ -1 \ 1 \ 0 \end{pmatrix}; \quad oldsymbol{v}_3 = egin{pmatrix} -4 \ -2 \ 2 \ 1 \end{pmatrix}$$

(d) Encuentre el valor de q para el que los siguientes vectores no generan \mathbb{R}^3 .

$$oldsymbol{v}_1 = egin{pmatrix} 1 \\ 4 \\ 6 \end{pmatrix}; \quad oldsymbol{v}_2 = egin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}; \quad oldsymbol{v}_3 = egin{pmatrix} -1 \\ 12 \\ 10 \end{pmatrix}; \quad oldsymbol{v}_4 = egin{pmatrix} q \\ 3 \\ 1 \end{pmatrix}$$

(L-9) Problema 19. Suponga que tiene 4 vectores columna $u, v, w \vee z$ en el

 $^{^1}$ $_{pista:}$ Piense si el espacio ${\cal V}$ se puede expresar como el espacio columna de una matriz ${f V}$ cuyas columnas son los vectores v_1,\ldots,v_n . Una vez expresado de esa manera, recuerde que las operaciones entre columnas no alteran el espacio columna de la matriz. Por último, transforme V de manera que transforme una de las columnas en un vector de ceros.

espacio tridimensional \mathbb{R}^3 .

- (a) Dé un ejemplo donde el espacio columna de ${\bf A}$ contenga ${\bf u}, {\bf v}$ y ${\bf w}$, pero no a ${\bf z}$. (escriba unos vectores ${\bf u}, {\bf v}, {\bf w}$ y ${\bf z}$; y una matriz ${\bf A}$ que cumplan lo anterior).
- (b) ¿Cuáles son las dimensiones del espacio columna y del espacio nulo de su matriz ejemplo A del apartado anterior?

1 Esquema de la Lección 10

Esquema de la Lección 10

• Los cuatro subespacios fundamentales de una matriz A

L-10

- Espacio columna $C(\mathbf{A})$
- Espacio nulo $\mathcal{N}\left(\mathbf{A}\right)$
- Espacio fila C (A^T)
- Espacio nulo por la izquierda $\mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right)$

 $43 \, / \, 61$

L-R

L-10

L-6

2 Los cuatro subespacios fundamentales de una matriz A

¿Donde están estos subespacios si A?

- Espacio columna $C(\mathbf{A})$
- Espacio nulo $\mathcal{N}\left(\mathbf{A}\right)$
- Espacio fila Combinaciones lineales de las filas Combinaciones lineales de las columnas de $\mathbf{A}^\intercal = \mathcal{C}\left(\mathbf{A}^\intercal\right)$
- Espacio nulo por la izquierda de \mathbf{A} , $\mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right)$

Bases de los 4 subespacios: Espacio fila

 $\begin{bmatrix} \textbf{A} \\ \textbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{smallmatrix} \tau \\ [(-2)1+2] \\ [(-3)1+3] \\ [(-1)1+4] \\ \hline \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{smallmatrix} \tau \\ [(-1)2] \\ [(-1)2+1] \\ [(-1)2+1] \\ [(1)2+3] \\ \hline \\ 0 & 1 & 0 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 1 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}} = \begin{bmatrix} \textbf{R} \\ \textbf{E} \end{bmatrix}$

operaciones preservan $\mathcal{C}\left(\mathbf{A}\right)$ (pero no el espacio fila $\mathcal{C}\left(\mathbf{A}^{\intercal}\right)$)

$$\mathcal{C}\left(\mathbf{A}^{\intercal}\right) \neq \mathcal{C}\left(\mathbf{L}^{\intercal}\right) \neq \mathcal{C}\left(\mathbf{R}^{\intercal}\right); \quad \left(1, \quad 2, \quad 3, \quad 1,\right) \in \mathcal{C}\left(\mathbf{A}^{\intercal}\right) \text{ pero } \notin \mathcal{C}\left(\mathbf{R}^{\intercal}\right)$$

¿Cuál es la dimensión del espacio fila $\mathcal{C}(\mathbf{A}^{\mathsf{T}})$? ¿base del espacio fila de \mathbf{A} ? ¿base del espacio columna de \mathbf{A} ?

L-6 L-7 L-8 L-9 L-10 L-R

4 Espacio nulo por la izquierda: ¿por qué ese nombre?

 $\mathcal{N}\left(\mathbf{A}^{\intercal}\right)$

es decir...

$$egin{aligned} oldsymbol{y} oldsymbol{\mathsf{A}} &= oldsymbol{\mathsf{0}} \ (y_1, & \dots & y_m,) \left[egin{array}{cccc} oldsymbol{\mathsf{A}} \end{array}
ight] = \left(0, & \dots & 0,
ight) \end{aligned}$$

47 / 61

L-6 L-7 L-8 L-9 **L-10** L-R

6 Encontrando una base de $\mathcal{N}\left(\mathbf{A}^{\intercal}\right)$ mediante eliminación por columnas

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-2)\mathbf{1}+\mathbf{2} \\ [(-3)\mathbf{1}+\mathbf{3}] \\ [(-1)\mathbf{1}+\mathbf{4}] \end{bmatrix}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-1)\mathbf{2} \\ [(1)\mathbf{2}+\mathbf{1}] \\ [(1)\mathbf{2}+\mathbf{3}] \end{bmatrix}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \mathbf{R}$$

¿Base de $\mathcal{N}\left(\mathbf{A}^{\intercal}\right)$?

$$\begin{pmatrix} -1, & 0, & 1, \end{pmatrix}$$

5 Eliminación por columnas no modifica el espacio nulo por la izquierda

Sea $\mathbf{E}_{n \times n} = \mathbf{I}_{ au_1 \cdots au_k}$ (invertible) entonces

• Si $oldsymbol{x} \in \mathcal{N}\left(\mathbf{A}^\intercal
ight)$

$$xA = 0$$
 y $xAE = 0E = 0$ $\Rightarrow x \in \mathcal{N}((AE)^{\mathsf{T}});$

• Si $x \in \mathcal{N}((\mathbf{AE})^{\mathsf{T}})$

$$x A E = 0$$
 y $x A = 0 E^{-1} = 0$ $\Rightarrow x \in \mathcal{N}(A^{\mathsf{T}})$.

Por tanto,

$$\mathcal{N}\left(\mathbf{A}^{\intercal}\right) = \mathcal{N}\left((\mathbf{A}\mathbf{E})^{\intercal}\right) = \mathcal{N}\left(\left(\mathbf{A}_{\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k}}\right)^{\intercal}\right).$$

48 / 61

7 Encontrando una base de $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$ mediante eliminación por columnas

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \\ a & b & c \\ d & e & f \end{bmatrix} \xrightarrow{[(1)\mathbf{1}+\mathbf{3}]} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & a+c \\ d & e & d+f \end{bmatrix} \xrightarrow{[(1)\mathbf{2}+\mathbf{1}]} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ a+b & b & a+c \\ d+e & e & d+f \end{bmatrix}$$

¿Base de
$$\mathcal{N}\left(\mathbf{A}^{\intercal}\right)$$
?

8 Los 4 espacios

A ¿dimensiones?

 $m \times n$

•
$$\dim (\mathcal{C}(\mathbf{A})) = = \dim (\mathcal{C}(\mathbf{A}^{\mathsf{T}}))$$

- $\dim (\mathcal{N}(\mathbf{A})) =$
- $\dim (\mathcal{N}(\mathbf{A}^{\intercal})) =$

51 / 61

L-6 L-7 L-8 L-9 **L-10** L-R

(Strang, 2007, ejercicio 20 del conjunto de problemas 2.4.)

(L-10) PROBLEMA 4. Si $\bf A$ tiene los mismos cuatro subespacios fundamentales que $\bf B$, $\bf \xi$ Es cierto que $\bf A=c\bf B$? (Strang, 2007, ejercicio 19 del conjunto de problemas 2.4.)

(L-10) Problema 5. Encuentre la dimensión y una base para cada uno de los cuatro subespacios fundamentales de

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}; \qquad \mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \mathbf{AE}; \quad \text{donde} \quad \mathbf{E} = \begin{bmatrix} 1 & -2 & 2 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Basado en (Strang, 2007, ejercicio 3 del conjunto de problemas 2.4.)

(L-10) PROBLEMA 6. Encuentre las dimensiones de los siguientes espacios vectoriales:

- (a) El espacio de todos los vectores en \mathbb{R}^4 tales que la suma de sus componentes es cero.
- (b) El espacio nulo de la matriz identidad de 4 por 4.
- (c) El espacio de todas las matrices de 4 por 4

(Strang, 2007, ejercicio 32 del conjunto de problemas 2.3.)

Problemas de la Lección 10

(L-10) Problema 1. Encuentre la dimensión, y construya una base para los cuatro subespacios asociados con cada una de las siguientes matrices

L-10

(a)
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 4 & 0 \\ 0 & 2 & 8 & 0 \end{bmatrix}$$

(b) ¿Cuánto suma $\dim \overline{\mathcal{C}}(\mathbf{A}) + \dim \mathcal{N}(\mathbf{A}^{\mathsf{T}})$? ¿Y $\dim \mathcal{C}(\mathbf{A}^{\mathsf{T}}) + \dim \mathcal{N}(\mathbf{A})$?

(c)
$$\mathbf{U} = \begin{bmatrix} 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(d) ¿Cuánto suma $\dim \mathcal{C}(\mathbf{U}) + \dim \mathcal{N}(\mathbf{U}^{\mathsf{T}})$? ¿Y $\dim \mathcal{C}(\mathbf{U}^{\mathsf{T}}) + \dim \mathcal{N}(\mathbf{U})$? (Strang, 2007, ejercicio 2 del conjunto de problemas 2.4.)

 $\left(L\text{-}10\right)$ Problema 2. Describa los cuatro subespacios en el espacio tridimensional asociados con

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

(Strang, 2007, ejercicio 4 del conjunto de problemas 2.4.)

(L-10) Problema 3.

- (a) Si el rango de una matriz 7 por 9 es 5, ¿Cuáles son las dimensiones de sus cuatro subespacios fundamentales? ¿Cuánto suman las cuatro dimensiones?
- (b) Si es rango de una matriz de 3 por 4 es 3, ¿cuáles son el espacio columna $\mathcal{C}(\mathbf{A})$ y el espacio nulo por la izquierda $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$?

51 / 61

L-6 L-7 L-8 L-9 L-10 L-R

(L-10) PROBLEMA 7. Sin multiplicar las matrices, encuentre bases de los espacios fila y columna de A:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} 3 & 0 & 3 \\ 1 & 1 & 2 \end{bmatrix}.$$

¿Cómo sabe a partir de esta factorización que **A** no es invertible? (Strang, 2007, ejercicio 36 del conjunto de problemas 2.4.)

(L-10) PROBLEMA 8. ¿Cuáles de los siguientes conjuntos son sub-espacios vectoriales? Para aquellos casos que no lo son, muestre un ejemplo que viole alguna de las propiedades.

(a) Dada una matriz ${\bf A}$ de orden 3×5 con rango completo por filas, el conjunto de soluciones del sistema

$$\mathbf{A} \boldsymbol{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

- (b) vectores x tales que $\langle \vec{x}, \vec{y} \rangle = 0$ y $\langle \vec{x}, \vec{z} \rangle = 0$ para los vectores particulares z e u.
- (c) Todas las matrices de orden 3×5 cuyo espacio columna contiene al vector $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
- (d) Todas las matrices de orden 5×3 con $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ en su espacio nulo.

MIT Course 18.06 Quiz 1, Spring, 2009

(L-10) PROBLEMA 9. ¿Cuál es el espacio columna $\mathcal{C}\left(\mathbf{A}\right)$ y el espacio fila $\mathcal{C}\left(\mathbf{A}^{\intercal}\right)$ de la matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 5 & -2 \\ 2 & -1 & 3 & -4 \\ -1 & 4 & 2 & 2 \end{bmatrix}$$

MIT Course 18.06 Final. May 18, 1998

(L-10) PROBLEMA 10. Si ${\bf A}_{5\times 4}$ es una matriz con sus cuatro columnas linealmente independientes, escriba explícitamente:

- (a) El espacio nulo de A.
- (b) La dimensión del espacio nulo por la izquierda $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$.
- (c) Una solución particular x_p del sistema $\mathbf{A}x = \mathbf{A}_{12}$.
- (d) La solución general (completa) de $\mathbf{A}x = \mathbf{A}_{12}$.
- (e) La forma escalonada reducida R de la matriz A.

51 / 61

L-6

L-6 L-7 L-8 L-9 L-10 L-R

(L-10) PROBLEMA 12. Se conoce la siguiente información sobre A:

$$\mathbf{A} oldsymbol{v} = \mathbf{A} egin{pmatrix} 1 \ -2 \ 3 \ 1 \end{pmatrix} = egin{pmatrix} -6 \ 3 \end{pmatrix}; \qquad ext{y que} \qquad \mathbf{A} oldsymbol{w} = \mathbf{A} egin{pmatrix} 3 \ -1 \ 1 \ 2 \end{pmatrix} = egin{pmatrix} -18 \ 9 \end{pmatrix}.$$

De hecho, $\mathbf{A}x$ es siempre algún múltiplo del vector $\begin{pmatrix} -2, & 1, \end{pmatrix}$ sea cual sea el vector $x \in \mathbb{R}^4$.

- (a) ¿Cuál es el orden y el rango de A?
- (b) ¿Cuál es la dimensión del espacio nulo $\mathcal{N}(\mathbf{A})$?
- (c) ¿Cuál es la dimensión del espacio fila $C(A^{T})$?
- (d) ¿Cuál es la dimensión del espacio nulo por la izquierda $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$?
- (e) Encuentre una solución $m{x}$ no nula al sistema $m{A}m{x} = egin{pmatrix} 0 \\ 0 \end{pmatrix}$.

(L-10) PROBLEMA 11. Verdadero o falso

- (a) Si una matriz es cuadrada (m=n), entonces el espacio columna es igual al espacio fila.
- (b) La matriz A y la matriz (-A) comparten los mismos cuatro sub-espacios fundamentales.
- (c) Si A y B comparten los mismos cuatro sub-espacios fundamentales, entonces A es un múltiplo de B.

L-10

L-10

(d) Indique si la siguiente aseveración es verdadera o falsa. Si es verdadera explique el motivo, si es falsa encuentre un contraejemplo: "Un sistema con n ecuaciones y n incógnitas es resoluble cuando las columnas de la matriz de coeficientes son independientes."

51 / 61

(L-10) PROBLEMA 13. Sea la matriz **A** con su forma escalonada reducida por columnas **R** calculada mediante eliminación gaussiana sin efectuar permutaciones:

L-9

L-8

 $\frac{ \left[\mathbf{A} \right] }{ \left[\mathbf{I} \right] } = \underbrace{ \begin{bmatrix} 1 & -1 & 5 & 1 & 0 \\ 2 & 1 & 4 & 2 & 1 \\ 3 & 0 & 9 & 3 & 1 \\ -1 & -1 & -1 & -1 & 2 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} }_{ \begin{array}{c} \mathbf{A} \\ \mathbf{B} \\ \mathbf{I} \end{array} } \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -1/8 & 2/8 & 0 & 0 & 3/8 \end{bmatrix} }_{ \begin{array}{c} \mathbf{E} \\ \mathbf{E} \\ \end{array} }$

- (a) ¿Cuál es el rango de \mathbf{A} ? ¿y las dimensiones del espacio columna $\mathcal{C}(\mathbf{A})$, del espacio fila $\mathcal{C}(\mathbf{A}^{\mathsf{T}})$ y del espacio nulo $\mathcal{N}(\mathbf{A})$?
- (b) Encuentre una base del espacio fila $C(\mathbf{A}^{\mathsf{T}})$.
- (c) Encuentre una base del espacio columna $\mathcal{C}\left(\mathbf{A}\right)$.
- (d) Encuentre una base del espacio nulo $\mathcal{N}\left(\mathbf{A}\right)$.
- (e) Exprese ${\bf A}_{|3}$ como una combinación lineal de ${\bf A}_{|1}$, ${\bf A}_{|2}$, ${\bf A}_{|4}$ y ${\bf A}_{|5}$.

L-R

(L-10) Problema 14. Construya (si es que es posible) una matriz cuyo espacio nulo esté generado por todas las combinaciones de (2,2,1,0,) y (3,1,0,1,). (Strang, 2007, ejercicio 60 del conjunto de problemas 2.2.)

(L-10) PROBLEMA 15. Construya (si es que es posible) una matriz cuyo espacio nulo sea todas las combinaciones de $(4,3,2,1)^{\mathsf{T}}$ (Strang, 2007, ejercicio 61 del conjunto de problemas 2.2.)

(L-10) Problema 16.

r + s?

- (a) Suponga que el producto de **A** y **B** es la matriz nula: **AB** = **0**. Entonces el espacio (I)_____ de la matriz **A** contiene el espacio (II)____ de la matriz **B**. También el espacio (III)__ de la matriz **B** contiene el espacio (IV)____ de la matriz **A**. (incluya los nombres de los cuatro espacios fundamentales en los lugares apropiados)
- (IV)

 (b) Suponga que la matriz **A** es de dimensiones 5 por 7 con rango r, y **B** es de dimensiones 7 por 9 de rango s. ¿Cuáles son las dimensiones de los espacios (I) y

(II)? Del hecho de que el espacio (I) contiene el espacio (II), ¿qué sabe acerca de

L-6 L-7 L-8 L-9 L-10 L-R

- (c) ¿Cuantas soluciones tiene el sistema $\mathbf{A}x=b$? ¿Depende la respuesta de cómo es b? Justifique su respuesta.
- (d) ¿Son las filas de A linealmente independientes? ¿Por qué?
- (e) Escriba una base de $\mathcal{N}\left(\mathbf{A}\right)$ (del conjunto de soluciones del sistema homogeneo $\mathbf{A}x=\mathbf{0}$).
- (f) Escriba una base del espacio nulo por la izquierda $\mathcal{N}\left(\mathbf{A}^{\intercal}\right)$.
- (g) Escriba, si es posible, la matriz $\begin{bmatrix} \mathbf{A}_{11}, \mathbf{A}_{13}; \mathbf{A}_{16}; \mathbf{A}_{17} \end{bmatrix}^{-1}$
- (h) Escriba, si es posible, la matriz $[\mathbf{A}_{11}; \mathbf{A}_{13}; \mathbf{A}_{16}; \mathbf{A}_{18};]^{-1}$

Basado en MIT Course 18.06 Quiz 1, October 4, 2004

(L-10) PROBLEMA 18. Sea la matriz ${\bf R}$ de dimensiones 5 por 3 (en su forma escalonada reducida por columnas) con tres pivotes (r=3).

- (a) ¿Cual es el espacio nulo de R?
- (b) Sea la matriz por bloques **B** de 10 por 3; $\mathbf{B} = \begin{bmatrix} \mathbf{R} \\ 2\mathbf{R} \end{bmatrix}$. ¿Cuál es la forma escalonada reducida por columnas de esta matriz? ¿y su rango?
- (c) Sea la matriz por bloques C de 10 por 6; C = $\begin{bmatrix} R & R \\ R & 0 \end{bmatrix}$. ¿Cuál es la forma escalonada reducida por columnas de esta matriz?
- (d) ¿Cual es el rango de C?
- (e) ¿Cuál es la dimensión del espacio nulo de C^{T} ; dim $\mathcal{N}\left(C^{T}\right)$?

(L-10) Problema 17. Mediante eliminación gausiana por columnas (y posiblemente algún intercambio de columnas) sobre la matriz $\bf A$ de orden 4×8

L-10

- (a) ¿Cuál es el rango de A?
- (b) ¿Cuáles son las dimensiones de los cuatro espacios fundamentales de A?

51 / 61

L-R

L-6 L-7 L-8 L-9 L-10 L-R
$$(L-10)$$
 PROBLEMA 19 . Sea el sistema de ecuaciones $\mathbf{A}x = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$

cuya solución completa es
$$\left\{ oldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists \; c,d \in \mathbb{R} \; \mathrm{tal} \; \mathrm{que} \; oldsymbol{x} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + c \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

- (a) (1^{pts}) ¿Cuál es la dimensión del espacio vectorial generado por las filas de A?
 Explique su respuesta.
- (b) (1^{pts}); Quién es **A** (escriba la matriz completa)? Explique su respuesta.
- (c) (0.5^{pts}) ; Para qué vectores **b** el sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ tiene solución?
- (L-10) PROBLEMA 20. ¿Falso o verdadero? (proporcione una razón aceptable)
- (a) Si las columnas de una matriz son dependientes, también lo son las filas.
- (b) El espacio columna de una matriz de 2 por 2 es el mismo que su espacio fila.
- (c) El espacio columna de una matriz 2 por 2 tiene la misma dimensión que su espacio fila
- (d) Las columnas de una matriz son una base para el espacio columna.

(Strang, 2007, ejercicio 28 del conjunto de problemas 2.3.)

L-R

L-6 L-7 L-8 L-9 **L-10** L

(L-10) Problema 21. Si $\bf A$ es una matriz y $\bf R$ es su forma escalonada reducida $\bf por$ filas. Conteste verdadero o falso a las siguientes afirmaciones. (Si hay contraejemplos a las afirmaciones, debe elegir "falso" como respuesta).

- (a) Si x es una solución a $\mathbf{A}x = \mathbf{b}$ entonces también es solución al sistema $\mathbf{R}x = \mathbf{b}$.
- (b) Si x es una solución a $\mathsf{A} x = 0$ entonces también es solución al sistema $\mathsf{R} x = 0$.
- (c) ; Y si R fuera la forma reducida por columnas de A?

1 Esquema de la Lección

Esquema de la Lección

- Bases de nuevos espacios vectoriales
- Matrices de rango uno
- Variables libres

51 / 61

L-6 L-7 L-8 L-9 L-10 L-R

2 Un nuevo espacio vectorial

 $\mathbb{R}^{3\times3}$: ¡Todas las matrices $3\times3!$ $\mathbf{A}+\mathbf{B};$ $c\mathbf{A};$

subespacios de $\mathbb{R}^{3\times3}$

- \mathcal{U} : Todas las matrices triangulares superiores
- S: Todas las matrices simétricas
- $U \cap S$: Intersección de los dos anteriores:

¿Cuál es la dimensión de estos subespacios?

¿Es $\mathcal{U} \cup \mathcal{S}$ un subespacio?

Sea $\mathcal{U} + \mathcal{S}$ el conjunto de todas las sumas de cualquier vector de \mathcal{U} + cualquiera de \mathcal{S} ; entonces $\mathcal{U} + \mathcal{S} = ?$

L-6 L-7 L-8 L-9 L-10 L-R

3 Matrices de rango 1

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & 5 \\ & & \end{bmatrix}$$

- ¿Una base del espacio fila $\mathcal{C}(\mathbf{A}^{\intercal})$?:
- ¿Una base del espacio columna $C(\mathbf{A})$?

¿Dimensión de $C(\mathbf{A})$, dimensión de $C(\mathbf{A}^{\mathsf{T}})$ y $\operatorname{rg}(\mathbf{A})$?

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & 5 \\ & & \end{bmatrix} = \begin{bmatrix} 1 \\ \end{bmatrix} \begin{bmatrix} 1 & 4 & 5 \end{bmatrix}$$

Toda matriz de rango uno tiene una descomposición de la forma

$$\mathbf{A} = \left[\mathbf{A}_{|1}\right] \left[_{1|} \mathbf{A}\right]^{\mathsf{T}} = \mathsf{matriz} \ \mathsf{columna} \ \mathsf{por} \ \mathsf{matriz} \ \mathsf{fila}$$

53 / 61

0

 3×3

Suponga el subconjunto de \mathbb{R}^4 :

$$\mathcal{S} = \left\{ \boldsymbol{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} \in \mathbb{R}^4 \,\middle|\, v_1 + v_2 + v_3 + v_4 = 0 \right\}$$

¿Es S un subespacio?

¿dimensión y base?

 ${\cal S}$ es espacio nulo de cierta matriz ${\bf A}$ $({\bf A}{m v}=0)\dots$ ¿Qué matriz?

55 / 61

L-6 L-7 L-8 L-9 L-10 L-R

6 Un problema de Microeconomía

Resuelva Y en términos de X para obtener la FPP

$$\begin{cases} X & = 4L_x \\ Y & = 3L_y \\ L_x + L_y = 80 \end{cases} \rightarrow \begin{cases} X & -4L_x = 0 \\ Y & -3L_y = 0 \\ L_x + L_y = 80 \end{cases}$$

("en términos de" X significa X libre)

$$\begin{bmatrix} 1 & 0 & -4 & 0 & 0 & 0 \\ 0 & 1 & 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & 1 & -80 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 4 & -4 & 320 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & -1 & 80 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 3 & 0 \\ \hline 0 & 0 & 1 & -1 & 80 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 3 & 0 \\ \hline 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline \end{bmatrix}$$

$$= \begin{bmatrix} X \\ Y \\ L_x \\ L_y \end{bmatrix} = \begin{bmatrix} 320 - 4L_y \\ 3L_y \\ 80 - L_y \\ L_y \end{bmatrix} \quad \text{"en términos de" } L_y$$

L-6 L-7 L-8 L-9 L-10 L-R

5 Matrices de rango 1

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}; \quad \operatorname{rg}(\mathbf{A}) = \quad \mathcal{S} = \mathcal{N}(\mathbf{A})$$

- $\dim \mathcal{S} = \dim \mathcal{N} (\mathbf{A}) =$
- ¿base de $\mathcal{S} = \mathcal{N}(\mathbf{A})$?

$$\left[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \right]$$

56 / 61

•
$$\dim \mathcal{C} (\mathbf{A}^{\mathsf{T}}) =$$
• $\dim \mathcal{N} (\mathbf{A}^{\mathsf{T}}) =$
 $\lim_{t \to 0} \mathcal{N} (\mathbf{A}^{\mathsf{T}}) =$
 $\lim_{t \to 0} \mathcal{N} (\mathbf{A}^{\mathsf{T}}) =$

7 Variable libre

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 4 & -4 & 320 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & -1 & 80 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 4 & 1 & 0 \\ \hline 0 & 1 & 0 & -3/4 & 240 \\ \hline 0 & 0 & 0 & -1/4 & 80 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{pmatrix} X \\ Y \\ L_x \\ L_y \end{pmatrix} = \begin{pmatrix} 0 \\ 240 \\ 0 \\ 80 \end{pmatrix} + a \begin{pmatrix} 1 \\ -\frac{3}{4} \\ \frac{1}{4} \\ -\frac{1}{4} \end{pmatrix} \implies a = X \implies \begin{pmatrix} X \\ Y \\ L_x \\ L_y \end{pmatrix} = \begin{pmatrix} X \\ 240 - \frac{3}{4}X \\ \frac{1}{4}X \\ 80 - \frac{1}{4}X \end{pmatrix}$$

"en términos de" X

57/61 58/61

8 Variables libres

$$\begin{cases} x + 2y - z + w = -1 \\ -x - 2y + 3z + 5w = -5 \\ -x - 2y - z - 7w = 7 \end{cases}$$

- 1. Resuelva en función de y y w
- 2. Resuelva en función de x y w
- 3. Resuelva en función de x y z
- 4. Resuelva en función de x y y

59 / 61

$$\begin{bmatrix} -2 & -4 & | & 4 \\ 1 & 0 & | & 0 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} \begin{cases} \frac{\tau}{[(\frac{-1}{2})1]} & \begin{bmatrix} & 1 & 0 & | & 0 \\ \frac{-1}{2} & -2 & | & 2 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} & \frac{\tau}{[(\frac{-1}{3})1]} & \begin{bmatrix} & 1 & 0 & | & 0 \\ \frac{-1}{2} & \frac{2}{3} & | & 0 \\ 0 & 1 & | & 0 \end{bmatrix} \\ \frac{\tau}{[(\frac{-1}{2})1]} & \begin{bmatrix} & 1 & 0 & | & 0 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} & \frac{\tau}{[(\frac{-1}{2})2]} & \begin{bmatrix} & 1 & 0 & | & 0 \\ \frac{-1}{2} & -2 & | & 2 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} & \frac{\tau}{[(\frac{-1}{2})2]} & \begin{bmatrix} & 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & \frac{3}{4} & \frac{3}{2} & 0 \\ \frac{-1}{4} & \frac{-1}{2} & | & 1 \end{bmatrix}$$

L-6 L-7 L-8 L-9 L-10 L-R

T 1	2	-1	1	-1	$ \tau $	T 1	0	0	0	0	1
-1	-2	3	5	-5	[(-2) 1 + 2]	-1	0	2	6	-6	l
_1	-2	-1	-7	7	$[(1)\mathbf{1+3}]$ $[(-1)\mathbf{1+4}]$	_1	0	-2	-6	6	١
1	0	0	0	0	[(1) 1 + 5]	1	-2	1	-1	1	ĺ
0	1	0	0	0	<i>→</i>	0	1	0	0	0	l
0	0	1	0	0		0	0	1	0	0	l
0	0	0	1	0		0	0	0	1	0	l
0	0	0	0	1		0	0	0	0	1	

60 / 61

L-6 L-7 L-8 L-9 L-10 L-R

Problemas de la Lección opcional 1 _

(L-Opt-1) Problema 1.

- (a) ¿Cuál es el menor subespacio de matrices de 3 por 3 que contiene a todas las matrices simétricas y a todas las matrices triangulares inferiores?
- (b) ¿Cuál es el mayor subespacio que está contenido los dos subespacios anteriores? (Strang, 2007, ejercicio 4 del conjunto de problemas 2.1.)
- $(L\text{-}\mathrm{OPT-1})$ PROBLEMA 2. Para cada una de las siguientes afirmaciones, diga si sin verdaderas o falsas. Justifique su respuesta
- (a) **Verdadero/Falso:** El conjunto de matrices 3 por 3 no invertibles es un sub-espacio
- (b) Verdadero/Falso: Si el sistema $\mathbf{A}x = \mathbf{b}$ no tiene solución, entonces \mathbf{A} no es de rango completo por filas.
- (c) True/False: There exist $n \times n$ matrices **A** and **B** such that **B** is not invertible but **AB** is invertible.
- (d) True/False: For any permutation matrix ${\bf P}$, we have that ${\bf P}^2={\bf I}$.

MIT Course 18.06 Quiz 1, October 4, 2004

L-6 L-7 L-8 L-9 L-10 L-R

(L-Opt-1) Problema 3:

- (a) Sean los vectores u, v y w en \mathbb{R}^7 ¿Cuál es la dimensión (o cuáles son las posibles dimensiones) del espacio generado por estos tres vectores?
- (b) Sea una matriz cuadrada $\bf A$. Si su espacio nulo $\mathcal{N}\left(\bf A\right)$ está compuesto únicamente por el vector nulo $\bf 0$, ¿Cuál es el espacio nulo de su traspuesta (espacio nulo por la izquierda $\mathcal{N}\left(\bf A^{T}\right)$?
- (c) Piense en el espacio vectorial de todas las matrices de orden 5 por 5, $\mathbb{R}^{5\times5}$. Piense en el subconjunto de matrices 5 por 5 que son invertibles ¿es este subconjunto un sub-espacio vectorial? Si lo es, explique el motivo; si no lo es encuentre un contraejemplo.
- (d) Indique si la siguiente aseveración es verdadera o falsa. Si es verdadera explique el motivo, si es falsa encuentre un contraejemplo: "Si ${\bf B}^2={\bf 0}$, entonces necesariamente ${\bf B}={\bf 0}$ "
- (e) Si intercambio dos columnas de la matriz **A** ¿qué espacios fundamentales siguen siendo iguales?
- (f) Si intercambio dos filas de la matriz A ¿qué espacios fundamentales siguen siendo iguales?
- (g) ¿Por qué el vector $v=\begin{pmatrix}1\\2\\3\end{pmatrix}$ no puede estar en el espacio nulo de una matriz ${\bf A}$ y simultáneamente ser una fila de dicha matriz?

61 / 61

L-6 L-7 L-8 L-9 L-10 L-R

(L-OPT-1) PROBLEMA 6. ¿Cuál es la dimensión de los siguientes espacios?

(a) El conjunto de matrices simétricas de orden 2×2 , $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$.

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ b & d \end{array} \right],$$

(b) El conjunto de matrices simétricas de orden 2×2

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right],$$

tales que a+d=0.

- (c) El conjunto de vectores de \mathbb{R}^4 de la forma $\left\{\left(x,\ y,\ (x-3y),\ (2y-x),\right)\ \mid\ x,y\in\mathbb{R}\right\}.$
- Strang, G. (2003). *Introduction to Linear Algebra*. Wellesley-Cambridge Press, Wellesley, Massachusetts. USA, third ed. ISBN 0-9614088-9-8.
- Strang, G. (2007). Álgebra Lineal y sus Aplicaciones. Thomsom Learning, Inc, Santa Fe, México, D. F., fourth ed. ISBN 970686609-4.

61/61

L-6 L-7 L-8 L-9 L-10 L-R

(L-OPT-1) PROBLEMA 4. Empleando la definición de sub-espacio vectorial, verifique si los siguientes subconjuntos son sub-espacios vectoriales del espacio vectorial que los contiene.

(a) $\mathcal V$ es el espacio vectorial de todas las matrices 2×2 de números reales, con las operaciones habituales de suma y producto por un escalar; y el conjunto $\mathcal W$ son todas las matrices de la forma

$$\begin{bmatrix} a & b \\ 0 & b \end{bmatrix}$$

donde a y b son números reales.

(b) \mathcal{V} es el espacio vectorial C[0,1] de todas las funciones continuas en el intervalo [0,1]; y el conjunto \mathcal{W} son todas las funciones $f\in C[0,1]$ tales que f(0)=2.

(L-OPT-1) PROBLEMA 5. Encuentre una base (de dimensión infinita) para el espacio de todos los polinomios

$$\mathcal{P} = \left\{ a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \mid \text{ para todo } n \right\}.$$