Creating the Database Environment Mullins chapter 2

Bjarte Kileng

HVL

January 10, 2018

- Choosing a DBMS
- DBMS Architectures
- Installation

- 4 Upgrading DBMS Versions and Releases
- Database Standards and Procedures

Standards and Procedures

- ► Minimise the number of DBMSs.
- ▶ Choose one DBMS, or one DBMS for each platform/OS.
- Choose a vendor with large market share:
 - Missing functionality compared to others might soon be implemented.
- ▶ If vendor has small market share:
 - Fewer developers.
 - Long time before errors are corrected.
 - Can have more undiscovered errors.
 - What about the future of the DBMS?

Market share 2010 and 2011, popularity

- Oracle:
 - Linux, Solaris, Windows.
- IBM DB2:
 - Linux, UNIX, Windows, z/OS, iSeries.
- Microsoft SQL server:
 - Windows.

- Not very visible in the market share statistics (why?)
- MvSQL Owned by Oracle.
- MariaDB Community-developed fork of MySQL.
- PostgreSQL.

- BerkeleyDB Owned by Oracle.
- PostgreSQL and MySQL compared:
 - MariaDB vs. MySQL vs. PostgreSQL Comparison.

► Report from Gartner:

- Open source RDBMS have matured and today can be considered as a standard infrastructure choice for most new enterprise applications
- ► Which relational DBMS is best for your company? From the author of our book.

MySQL and MariaDB

Fast.

Choosing a DBMS

- Many engines for different needs (MySQL, MariaDB).
- MySQL is owned by Oracle.
- For all practical purposes, MariaDB is a binary drop in replacement of the same MySQL version (ref).
- ► High market share (ref).

MySQL and MariaDB

We will be using MariaDB at the lab.

OS support.

- Organisation:
 - Government, financial, healt etc. are more conservative than universities, dot-coms and web companies.
 - Conservative Oracle, DB2.
 - Liberal MariaDB, MySQL, PostgreSQL, MongoDB.
- Benchmark tests.
 - Might not be representative for production database system.
 - TPC Benchmarks
- Scalability.

More factors when choosing a DBMS

- Available software tools:
 - Query tools.
 - Analysis tools.Administration tools.
 - Backup and recovery tools.
 - a Parformance manitoring tools
 - Performance monitoring tools.
 - Connectors
- Knowledge available in the organisation.
- Total cost:

- License for DBMS.
- License for supporting tools.
- Cost of programming.
- Support and administration.
- Cost of hardware.

And more factors when choosing a DBMS

Release schedule:

- Cutting edge features Fast cycle is good.
- Conservative organisation:
 - Slow cycle is good.
 - Frequent changes can be difficult to support.
 - Frequent changes can cause the organisation to use an outdated DRMS-version
- Experiences of others?
 - How is support? Do they respond well?
 - Are there any problems?
 - Quality of new releases?
 - Many bug fixes?

- Enterprise DBMS.
- Departmental DBMS.
- Personal DBMS.
- Mobile DBMS.

Enterprise DBMS

- High scalability.
- High performance.
- Support very large databases.
- Large numbers of concurrent users.
- Multiple types of applications.
- Mainframe or high-end server.
- Including all "bells and whistles" available from the DBMS vendor.
- Multiprocessor support and support for parallel queries.

DBMS Architectures Installation Upgrading the DMBS Standards and Procedures

Departmental DBMS

- Dedicated servers.
- Used by work group (small to medium sized) within organisation.

DBMS Architectures Installation Upgrading the DMBS Standards and Procedures

Personal DBMS*

- Single user.
- ▶ Low- to medium-powered PC.
- Microsoft Access, SQLite, FileMaker.
- Personal versions of other DBMSs.
- Only for small scale projects.

^{*}Not focus for this course.

Choosing a DBMS Architectures Installation Upgrading the DMBS Standards and Procedures

Mobile DBMS[†]

- ► Specialized version of departmental or enterprise DBMS.
- ▶ For remote users witout permanent network connection.
- Database access on laptops and handheld devices.
- Requires later synchronisation to DBMS in organisation.

[†]Not focus for this course.

- DBMS distributed through multiple computing systems:
 - Working toghether as a single, high available system.
- MySQL DBMS cluster.
- ▶ Two predominant architectures, *shared-nothing* and *shared-disk*.

Shared-nothing

- ▶ Each computer has its own resources.
- Communication by passing messages through the network.
- Requests are routed to the computer that owns the resource.
- Scales well.

 ${\sf DBMS\ Architectures} \qquad \qquad {\sf Installation} \qquad \qquad {\sf Upgrading\ the\ DMBS} \qquad \qquad {\sf Standards\ and\ Procedures}$

Shared-disk

- ▶ All computers share the same disk devices.
- Does not scale as well as shared nothing.
- ▶ For applications with only modest shared access to data.
- System with heavy data update is better implemented using shared noting.

<u>Cloud</u> database system

Cost effective.

Choosing a DBMS

Minimize database administration, mantenance cost and effort.

Installation

- Improve collaboration among partners, remote workers and mobile devices.
- But can you trust the provider to store and manage your data?
- Examples of systems:
 - SQL E.g. Amazon RDS (MySQL, Oracle, MS SQL and PostgreSQL), Microsoft SQL Azure (MS SQL), Heroku (PostgreSQL).
 - NoSQL E.g. Amazon DynamoDB, Amazon SimpleDB, Google App Engine Datastore, Heroku (Cloudant, Couchbase Server, MongoDB and Redis).

Understand the prerequisites

OS.

- Libraries and related software.
- CPU version, speed, numbers.
- Storage (disk, tape).
- Memory (internal).

Storage requirements

- The (primary) databases.
- System databases (administration, monitoring, tuning, testing, etc.).
- ▶ System catalogue (meta-data, ANSI Data Dictionary, chapter 10).
- Indexes.
- Log files:
 - All changes to databases, problems, slow queries, errors.
- Configuration files.
- DBMS-specific work files.
- Temporary databases.
- System dump and error files.
- Grant-tables.
- Backup.

DBMS Architectures Installation Upgrading the DMBS Standards and Procedures

Use multiple storage devices

DBMS files

Choosing a DBMS

The DBMS uses many of the files concurrently. Use multiple storage devices.

Installation

Memory requirements

- DBMSs love memory.
- ▶ I/O is slow much memory is used for data caches:
 - Buffer pool stores accessed data.
 - Program cache stores "compiled" SQL, etc.
- Sorted data.
- Locks.

Means to configure the DBMS

► GUI.

- ► Configuration files.
- OS commands and DBMS program switches.
- DBMS commands.

Configuring MySQL and MariaDB

► GUI – MySQL workbench.

Choosing a DBMS

▶ Command-line switches when starting the server.

```
/usr/bin/mysqld_safe —default-storage-engine=MyISAM
```

► Configuration files – "/etc/my.cnf", "~/.my.cnf".

```
[mysqld_safe]
default-storage-engine=MyISAM
```

▶ Options given to a running server with the «SET» command.

```
SET storage_engine=MyISAM;
```

DBMS Architectures Installation Upgrading the DMBS Standards and Procedures

Testing the installation

Verification

Choosing a DBMS

After installation, run tests to verify that the DBMS has been properly installed and configured.

Upgrading DBMS Versions and Releases

- ► New revision are frequent:
 - MySQL 5.7 revisions.
- ▶ New versions are much less frequent:
 - July 1999 MySQL 3.23.
 - December 2001 MySQL 4.0.
 - December 2003 MySQL 4.1.
 - July 2004 MySQL 5.0.
 - November 2005 MySQL 5.1.
 - December 2010 MySQL 5.5.
 - April 2011 MySQL 5.6.
 - April 2013 MySQL 5.7.

Upgrading – Pros

- New functionality.
- Might be required by 3'd party applications.
- Better performance.
- Better and faster support for a new release.
- Same version in test and production environments.

- Disruption to business operation.
- Might have to convert database structures.
- Previously supported features are removed.
- Cost (DBMS, planning, testing, deploying).
- Performance can suffer:
 - Performance tuning to existing DBMS might not work as well for the new version.
 - Changes in access paths to data.
 - Missing support from 3'd party applications.

Factors determining whether upgrading a DBMS

Functionality.

- Complexity of the existing DBMS environment.
- Reputation of vendor.
- Support policy.
- Organisation style.
- DBA skills.
- Platform support.

Running a new version of the DBMS

Fallback

Choosing a DBMS

Do too bugs, we might have to fallback to an earlier version of the DBMS.

Review the fallback procedures provided by the DBMS.

Verification

Implement procedures to verify that the DBMS release upgrade is satisfactory.

Standards and Procedures

Standards:

Choosing a DBMS

- Common practises.
- Ensures consistency and effectiveness of the database environment.
- Procedures:
 - Defined step-by-step instructions for specific events, e.g. disaster recovery and backup.

Standards and Procedures

High level of standardisation reduces cost.

▶ Naming conventions.

- Roles and Responsibilities.
- ▶ Data administration standard.
- Database administration standards.
- System Administration Standards.
- Database Application Development Standards.
- Database Security Standards.
- Application Migration Standards.