Sets 4 Relations
R set of real numbers a complex
a complex a rational 3 muln, m E I n m +0 n gcd (n, m) = 13
Zintegers
M natural 21,2,3
$A^* = 2aEA \mid a \neq 03$ $A^{\dagger} = 2aEA \mid a \neq 03$
A = 2 a E A a < 0 3
nQnR = Q = R/Q is the set of ireational numbers
$Q \cap N = Q$
]x - there exists at least one
Z'x - " only one

Definitions

A is a subset of B ASB

iff takA aEB

A is a proper subset of B iff YaEA, aEB A 3bEB, bEA (Jenoted ACB)

A relation R on set A is a subset of $A \times A$ $R \subseteq A \times A$

R is an equivolence relation iff

1) Va EA, aRa ((a,a) ER) Liet bexive]

2) Va, aEA aRb => bRa [symmetric]

3) Va, b, c EA aRb 1bRc => aRc
[transitive]

Operations

AUB = \(\frac{2}{x} \right) \(\times \text{CA} \right) \times \text{EB} \\

ANB = \(\frac{2}{x} \right) \times \text{CA} \right) \(\times \text{EB} \) intersection

ANB = \(\frac{2}{x} \right) \(\times \text{CA} \right) \times \text{EB} \) complement of

B in A

ANB = \(\frac{2}{x} \right) \right) \(\times \text{CA} \right) \(\times \text{CA} \right) \\(\times \text{CA} \right)

*Mote

AUB = BUA } commutative

ANB = BNA

AXB ≠ BXA

Definitions

A for f:A-B is bijective iff f is susjective conto B) FCAT=B iff (YBEB Ja FA) F(W)=b and f is injective (1-1) $\forall \alpha_1, \alpha_2 \in A \qquad f(\alpha_1) = f(\alpha_2) = 0 \qquad \alpha_1 = \alpha_2$ A Note A bijective for has an inverse let 5 be a collection of sets relation R on S, A,BES, ARB IFF If: A+B, f-bijedive IF ARB, AAB are eguanimous (of the same size bes theres a H correspondence)

Notice from the last definition 1) VAES ARA bes [reflexive] If = idx: A>A, f-bijedise 2) HA, B ES ARB => BRA DCS [symmetric] $\exists f: A \rightarrow B$, f-bi; $\Rightarrow \exists g = f^{-1}: B \rightarrow A$, g-bi3) VA,B,CES ARB, BRC => ARC If: A=B, Iq:B>C, f,q-bij (teansitive) => 3h. A >C h-bij .. R is an equiv relation on S 4 partitions 5

Note

EA = 3865 | XRB3

contain all sets of size IA1

Definitions

Cot 1 ic don blo iff

A is equationed to M

Set A is countable iff
A is finite or denomerable