### Alphabet Grec

#### Minuscules:

- $\alpha$  : alpha
- $\beta$  : bêta
- $\gamma$  : gamma
- $\delta$  : delta
- $\varepsilon$ ,  $\epsilon$ : epsilon
- $\zeta$  : zêta
- $\eta$  : êta
- $\theta$ ,  $\vartheta$ : thêta
- $\iota$  : iota
- $\kappa$  : kappa
- $\lambda$  : lambda
- $\mu$  : mu
- $\nu$  : nu
- $\xi$  : xi
- o : omicron (rarement utilisé)
- $\pi$ ,  $\varpi$ : pi
- $\rho$ ,  $\varrho$ : rho
- $\sigma$ ,  $\varsigma$  : sigma
- $\tau$  : tau
- v: upsilon
- $\phi$ ,  $\varphi$ : phi
- $\chi$  : khi
- $\psi$  : psi
- $\bullet \ \omega$ : oméga

#### Majuscules:

- $\Gamma$  : Gamma
- $\Delta$  : Delta
- $\bullet$   $\Theta$  : Thêta
- $\Lambda$  : Lambda
- Ξ : Xi
- Π : Pi
- $\Sigma$  : Sigma
- $\Upsilon$  : Upsilon
- $\Phi$  : Phi
- $\Psi$  : Psi
- $\Omega$ : Oméga

### Ensembles et espaces

- $\mathbb{N}$ : entiers naturels
- $\mathbb{Z}$ : entiers relatifs
- $\mathbb{Q}$ : nombres rationnels
- $\bullet~\mathbb{R}$ : réels
- $\mathbb{R}^+$ : réels positifs
- $\bullet \ \mathbb{R}^n$  : espace vectoriel réel de dimension n
- $\mathbb{C}$ : nombres complexes
- K : corps (générique)
- $\emptyset$ : ensemble vide



## Relations et Logique

- $\bullet \in :$  appartient à
- ∉ : n'appartient pas à
- $\bullet$   $\subset$  : inclus strictement dans
- $\bullet \subseteq :$  inclus dans
- $\supset$ ,  $\supseteq$ : contient
- ∪ : union
- $\bullet \cap : intersection$
- \ : différence d'ensemble
- $\forall$ : pour tout
- ∃ : il existe
- ∄ : il n'existe pas
- $\Rightarrow$  : implique
- $\bullet \Leftarrow : \text{ est impliqué par }$
- $\bullet \; \Leftrightarrow :$ équivalent à
- ¬: non (négation)
- $\bullet \land : et$
- V : ou

#### Exemple:

 $\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R} : x < y \Rightarrow x + 1 \le y$ 

### Vecteurs et Matrices

#### Vecteurs

Les vecteurs sont généralement notés par une lettre minuscule (ex: v, a, b, c, y...) et leurs éléments par la lettre correspondante avec des indices (ex:  $v_1, v_2$ ).

$$v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

- On accompagne souvent un vecteur d'une flèche  $\vec{v}$  mais cela n'est pas obligatoire.
- $||\vec{v}||$ : désigne la norme du vecteur v

#### Matrices

Les matrices sont notées en général par une lettre majuscule (ex: A, B, M, W) et leurs éléments par la lettre correspondante en minuscule avec des indices (ex:  $a_{ij}, w_{ij}$ ).

$$W = \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{pmatrix}$$

- Le premier indice i dans  $w_{ij}$  désigne la **ligne**.
- $\bullet$  Le second indice j désigne la **colonne**.
- Par exemple :
  - $-w_{11}$  est l'élément de la 1<sup>re</sup> ligne, 1<sup>re</sup> colonne.
  - $w_{31}$  est l'élément de la  $3^{\rm e}$  ligne,  $1^{\rm re}$  colonne.
  - $w_{23}$  est l'élément de la 2<sup>e</sup> ligne, 3<sup>e</sup> colonne.

# **Opérateurs**

- $\bullet \sum_{i=1}^{m} x_i = x_1 + x_2 + \dots + x_m : \text{ somme des } x_i$
- $\prod_{i=1}^{m} x_i = x_1 \times x_2 \times ... \times x_m$ : produit des  $x_i$

exemple:

$$MSE = \frac{1}{2m} \sum_{i=1}^{m} \left( y^{(i)} - \hat{y}^{(i)} \right)^2$$

#### Fonctions Usuelles

- $\sin x$ ,  $\cos x$ ,  $\tan x$ : trigonométriques
- $\arcsin x$ ,  $\arccos x$ ,  $\arctan x$
- $\sinh x$ ,  $\cosh x$ ,  $\tanh x$ : hyperboliques
- $\exp(x)$ ,  $e^x$ : exponentielle
- $\ln x$ ,  $\log x$ : logarithmes
- |x|: valeur absolue
- $\sqrt{x}$ ,  $\sqrt[n]{x}$ : racines
- max, min, sup, inf

### Dérivées Usuelles

- (f(x))',  $\frac{df}{dx}$ ,  $\frac{dy}{dx}$ : dérivée
- $\frac{d^n f}{dx^n}$  : dérivée d'ordre n
- $\nabla f$ : gradient
- $\partial f/\partial x$  : dérivée partielle
- Dérivées de base :

$$-(x^n)' = nx^{n-1}$$

$$-(e^x)' = e^x$$

$$- (\ln x)' = \frac{1}{x}$$

$$-(\sin x)' = \cos x, (\cos x)' = -\sin x$$

## Intégrales Usuelles

- $\int f(x) dx$ : intégrale indéfinie
- $\int_{a}^{b} f(x) dx$ : intégrale définie
- $\iint$ ,  $\iiint$ : intégrales multiples
- $\int \cos x dx = \sin x + C$

quelques formules importantes:

- $\bullet \int_0^x t^n dt = \frac{x^{n+1}}{n+1}$
- $\bullet \int e^x dx = e^x + C$
- $\bullet \int \frac{1}{x} dx = \ln|x| + C$
- $\int \cos x dx = \sin x + C$

# Opérateurs Mathématiques

- $\bullet$  +, -: addition, soustraction
- $\bullet \times :$  multiplication
- · : produit scalaire
- $\div$ ,  $\frac{a}{b}$ : division
- $\bullet = \neq : \text{égal, différent}$
- <, >,  $\le$ ,  $\ge$ : inégalités
- $\bullet$   $\pm$ : plus ou moins
- $\infty$ : infini
- $\propto$  : proportionnel à
- $\approx$ ,  $\sim$  : approximativement égal
- $\bullet \equiv :$ équivalent
- mod : modulo

### Statistiques et Probabilités

•  $\sigma$  : écart type d'une population

 $\bullet~\bar{X}$ : Moyenne d'un échantillon X

 $\bullet$   $s_x$  : écart-type d'un échantillon X

•  $\mathbb{P}(A)$  : probabilité de A

•  $\mathbb{E}[X]$  : espérance

• Var(X) : variance

• Cov(X, Y) : covariance

•  $X \sim \mathcal{N}(\mu, \sigma^2)$ : X suit ( $\sim$ ) une loi Normale

•  $p(y \mid x)$  : probabilité conditionnelle : la probabilité de y sachant x

# Notations en Machine Learning

En Machine Learning, un jeu de données est généralement présenté sous forme de matrice (X,y)

| $x_2$ | $x_3$ |            | $\mid y \mid$ |
|-------|-------|------------|---------------|
| 3     | 1     |            | 210           |
| 4     | 2     |            | 320           |
| 2     | 3     |            | 180           |
| :     | :     |            | :             |
|       | 3 4   | 3 1<br>4 2 | 3 1<br>4 2    |

$$\boldsymbol{X} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \quad \boldsymbol{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

où:

- $\bullet$  m désigne le nombre de données (le nombre de lignes)
- $\bullet$  n désigne le nombre de variables
- • X : représente les variables d'entrée (features). On note  $x_{j}^{(i)}$  : j-ième variable de la i-ième donnée
- y : représente la variable de sortie (target). On note  $y^{(i)}$  : sortie (label) associée à la donnée i
- $\bullet \ \hat{y}$  : sont les prédictions du modèle