CSC 411: Lecture 4 - Logistic regression Ethan Fetaya, James Lucas and Emad Andrews

Key Concepts:

- Logistic Regression
- Regularization
- Cross validation

note: we are still talking about binary classification (with $\{0,1\}$ labels)

So far: Turned a real score $\mathbf{w}^T \mathbf{x} = w_0 \cdot 1 + \sum_{i=1}^d w_i \cdot x_i$ to binary decision by thresholding.

Alternative: Model the probability $P(y = 1|\mathbf{x})$.

Need to squash $\mathbf{w}^T \mathbf{x}$ into [0, 1], $p(y = 1 | \mathbf{x}) = f(\mathbf{w}^T \mathbf{x})$.

What about
$$P(y = -1|\mathbf{w})$$
? $P(y = -1|\mathbf{w}) = 1 - P(y = 1|\mathbf{w}) = 1 - f(\mathbf{w}^T\mathbf{x})$

How to chose label? Pick the most probable (when shouldn't you do that?).

Benefits:

- Models uncertainty (in a limited manor)
- Can use probability for decision making.
- Can use probabilistic objective (ML/MAP).

Useful squashing function: sigmoid or logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- Smooth function.
- Monotonic increasing.
- $\sigma(0) = 0.5$
- \bullet $\sigma(z) \xrightarrow{z \to -\infty} = 0, \ \sigma(z) \xrightarrow{z \to \infty} = 1$

Sigmoid

- Let's look at how modifying w changes the shape of the function
- 1D example:

$$y = \sigma \left(w_1 x + w_0 \right)$$

The magnitude of $\mathbf{w}_{[1:]}$ decides the slope.

It can be seen as a smooth alternative to the step function.

- What is the decision boundary for logistic regression?
- $p(y=1|\mathbf{x},\mathbf{w}) = \sigma(\mathbf{w}^T\mathbf{x}) \ge 0.5 \Rightarrow \mathbf{w}^T\mathbf{x} \ge 0$
- Decision boundary: $\mathbf{w}^T \mathbf{x} = w_0 + \sum_{j=1}^d w_j x_j = 0$.
- Logistic regression has a linear decision boundary
- The decision boundary is invariant to scaling but the probability isn't.

Logistic regression

- When we have a d-dim input $\mathbf{x} \in \Re^d$
- How should we learn the weights $\mathbf{w} = (w_0, w_1, \dots, w_d)$?
- We have a probabilistic model
- Let's use maximum likelihood

- Assume $y \in \{0,1\}$, we can write the probability distribution of each of our training points $p(y^{(1)}, \dots, y^{(N)} | \mathbf{x}^{(1)}, \dots \mathbf{x}^{(N)}; \mathbf{w})$
- Assuming that the training examples are sampled IID: independent and identically distributed, we can write the likelihood function:

$$L(\mathbf{w}) = p(y^{(1)}, \dots, y^{(N)} | \mathbf{x}^{(1)}, \dots \mathbf{x}^{(N)}; \mathbf{w}) = \prod_{i=1}^{N} p(y^{(i)} | \mathbf{x}^{(i)}; \mathbf{w})$$

• We can write each probability as (will be useful later):

$$p(y^{(i)}|\mathbf{x}^{(i)};\mathbf{w}) = p(y = 1|\mathbf{x}^{(i)};\mathbf{w})^{y^{(i)}}p(y = 0|\mathbf{x}^{(i)};\mathbf{w})^{1-y^{(i)}}$$
$$= p(y = 1|\mathbf{x}^{(i)};\mathbf{w})^{y^{(i)}}\left(1 - p(y = 1|\mathbf{x}^{(i)};\mathbf{w})^{1-y^{(i)}}\right)$$

■ We can learn the model by maximizing the likelihood

$$\max_{\mathbf{w}} L(\mathbf{w}) = \max_{\mathbf{w}} \prod_{i=1}^{N} p(y^{(i)}|\mathbf{x}^{(i)}; \mathbf{w})$$

■ Easier to maximize the log likelihood $\log L(\mathbf{w})$

Optimization

$$L(\mathbf{w}) = \prod_{i=1}^{N} p(y^{(i)}|\mathbf{x}^{(i)}) \quad \text{(likelihood)}$$
$$= \prod_{i=1}^{N} \left(1 - p(y=1|\mathbf{x}^{(i)})\right)^{1-y^{(i)}} p(y=1|\mathbf{x}^{(i)})^{y^{(i)}}$$

■ We can convert the maximization problem into minimization the negative log-likelihood (NLL):

$$(L_{log}(\mathbf{w}) = -\log L(\mathbf{w}) = -\sum_{i=1}^{N} \log p(y^{(i)}|\mathbf{x}^{(i)};\mathbf{w})$$

$$L_{log}(\mathbf{w}) = -\log L(\mathbf{w})$$

$$= -\sum_{i=1}^{N} y^{(i)} \log(p(y=1|\mathbf{x}^{(i)}, \mathbf{w})) - \sum_{i=1}^{N} (1-y^{(i)}) \log p(y=0|\mathbf{x}^{(i)}; \mathbf{w})$$

Is there a closed form solution?

Optimization

$$\min_{\mathbf{w}} L(\mathbf{w}) = \min_{\mathbf{w}} \left\{ -\sum_{i=1}^{N} y^{(i)} \log p(y = 1 | \mathbf{x}^{(i)}, \mathbf{w}) - \sum_{i=1}^{N} (1 - y^{(i)}) \log (1 - p(y = 1 | \mathbf{x}^{(i)}, \mathbf{w})) \right\}$$

■ Gradient descent: iterate and at each iteration compute steepest direction towards optimum, move in that direction, step-size λ

$$w_j^{(t+1)} \leftarrow w_j^{(t)} - \lambda \frac{\partial L(\mathbf{w})}{\partial w_j}$$

You can write this in vector form

$$\nabla L(\mathbf{w}) = \left[\frac{\partial L(\mathbf{w})}{\partial w_0}, \cdots, \frac{\partial L(\mathbf{w})}{\partial w_k} \right]^T \qquad \mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \lambda \nabla_{\mathbf{w}} L(\mathbf{w}^{(t)})$$

 \blacksquare But where is **w**?

$$p(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}, \quad p(y = 0|\mathbf{x}) = \frac{\exp(-\mathbf{w}^T\mathbf{x})}{1 + \exp(-\mathbf{w}^T\mathbf{x})}$$

■ The loss is

$$(L_{log-loss}(\mathbf{w}) = -\sum_{i=1}^{N} y^{(i)} \log p(y = 1 | \mathbf{x}^{(i)}, \mathbf{w}) - \sum_{i=1}^{N} (1 - y^{(i)}) \log p(y = 0 | \mathbf{x}^{(i)}, \mathbf{w})$$

where the probabilities are

$$p(y = 1|\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-z)}$$
 $p(y = 0|\mathbf{x}, \mathbf{w}) = \frac{\exp(-z)}{1 + \exp(-z)} = \frac{1}{1 + \exp(z)}$

and $z = \mathbf{w}^T \mathbf{x}$

■ We can simplify

$$\begin{split} L(\mathbf{w})_{log-loss} &= \sum_{i} y^{(i)} \log(1 + \exp(-z^{(i)})) + \sum_{i} (1 - y^{(i)}) z^{(i)} + \sum_{i} (1 - y^{(i)}) \log(1 + \exp(-z^{(i)})) \\ &= \sum_{i} \log(1 + \exp(-z^{(i)})) + \sum_{i} (1 - y^{(i)}) z^{(i)} \end{split}$$

■ Now it's easy to take derivatives

Optimization

$$L(\mathbf{w}) = \sum_{i} (1 - y^{(i)}) z^{(i)} + \sum_{i} \log(1 + \exp(-z^{(i)}))$$

- Now it's easy to take derivatives
- Remember $z = \mathbf{w}^T \mathbf{x} \Rightarrow \frac{\partial z}{\partial w_j} = x_j$

$$\frac{\partial \ell}{\partial w_j} = \frac{\partial \ell}{\partial z} \cdot \frac{\partial z}{\partial w_j} = \sum_i x_j^{(i)} \left(1 - y^{(i)} - \frac{\exp(-z^{(i)})}{1 + \exp(-z^{(i)})} \right) = \sum_i x_j^{(i)} \left(\frac{1}{1 + \exp(-z^{(i)})} - y^{(i)} \right)$$

- What's $x_j^{(i)}$? The j-th dimension of the i-th training example $\mathbf{x}^{(i)}$
- And simplifying

$$\frac{\partial \ell}{\partial w_j} = \sum_i x_j^{(i)} \left(p(y = 1 | \mathbf{x}^{(i)}; \mathbf{w}) - y^{(i)} \right)$$

lacksquare Don't get confused with indices: j for the weight that we are updating and i for the training example

■ Putting it all together (plugging the update into gradient descent): Gradient descent for logistic regression:

$$w_j^{(t+1)} \leftarrow w_j^{(t)} - \lambda \sum_i x_j^{(i)} \left(p(y=1|\mathbf{x}^{(i)}; \mathbf{w}) - y^{(i)} \right)$$

where:

$$p(y = 1 | \mathbf{x}^{(i)}; \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

■ This is all there is to learning in logistic regression. Simple, huh?

We are optimizing
$$\sum_{i} (1 - y^{(i)}) z^{(i)} + \sum_{i} \log(1 + \exp(-z^{(i)}))$$
.

We can forget the probabilistic interpretation and just think about a surrogate loss function

$$\ell(y, \hat{y}) = (1 - y)\hat{y} + \log(1 + \exp(-\hat{y})) = \begin{cases} \log(1 + \exp(-\hat{y})), & y = 1, \\ \log(1 + \exp(\hat{y})), & y = 0, \end{cases}$$

It is convex, so gradient descent converges to global minimum.

Logistic Regression vs Least Squares Regression:

If the right answer is 1 and the model says 1.5, it loses, so it changes the boundary to avoid being "too correct" (tilts aways from outliers)

Prior

Regularization:

■ We can also look at

$$p(\mathbf{w}|\{y\}, \{\mathbf{x}\}) \propto p(\{y\}|\{\mathbf{x}\}, \mathbf{w}) p(\mathbf{w})$$

with
$$\{y\} = (y^{(1)}, \dots, y^{(N)})$$
, and $\{\mathbf{x}\} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)})$

- \blacksquare We can define priors on parameters ${f w}$
- This is a form of regularization
- Helps avoid large weights and overfitting

$$\max_{\mathbf{w}} \log \left[p(\mathbf{w}) \prod_{i} p(y^{(i)} | \mathbf{x}^{(i)}, \mathbf{w}) \right]$$

- This is called maximum-a-posteriori estimation (MAP)?
- What's $p(\mathbf{w})$?

- For example, define prior: normal distribution, zero mean and identity covariance $p(\mathbf{w}) \propto \mathcal{N}(0, \alpha^{-1}\mathbf{I})$ (best to exclude w_0)
- This prior pushes parameters towards zero (why is this a good idea?)
- Equivalent to L_2 regularization
- Including this prior the new gradient is

$$w_j^{(t+1)} \leftarrow w_j^{(t)} - \lambda \frac{\partial L(\mathbf{w})}{\partial w_j} - \lambda \alpha w_j^{(t)}$$

where t here refers to iteration of the gradient descent

- \blacksquare The parameter α is the importance of the regularization, and it's a hyper-parameter
- How do we decide the best value of α (or a hyper-parameter in general)?

Example

MNIST digit data-set: 60,000 training 28×28 digit images, 10,000 test images. Need to classify as 0-9.

Only take zero and ones - binary classification.

Train logistic regression with various regularization parameters-

Example

How do the classifiers look?

(doesn't overfit that much, still great on test)

Tuning hyper-parameters:

- Never use test data for tuning the hyper-parameters
- We can divide the set of training examples into two disjoint sets: training and validation.
- Use the first set (i.e., training) to estimate the weights **w** for different values of α .
- Use the second set (i.e., validation) to estimate the best α , by evaluating how well the classifier does on this second set.
- This tests how well it generalizes to unseen data.
- Trade-off: Large validation set \rightarrow less training data to use.
- Trade-off: Small validation set \rightarrow less accurate estimation.
- Can overfit on the validation set!

■ Leave-p-out cross-validation:

- lacktriangle We use p observations as the validation set and the remaining observations as the training set.
- This is repeated on all ways to cut the original training set.
- It requires $\binom{n}{p}$ for a set of n examples
- Leave-1-out cross-validation: When p = 1, does not have this problem
- k-fold cross-validation:
 - The training set is randomly partitioned into k equal size subsamples.
 - Of the k subsamples, a single subsample is retained as the validation data for testing the model, and the remaining k-1 subsamples are used as training data.
 - \blacksquare The cross-validation process is then repeated k times (the folds).
 - The k results from the folds can then be averaged (or otherwise combined) to produce a single estimate

Train your model:

- Leave-one-out cross-validation:
- k-fold cross-validation:

Cross-validation

Logistic Regression wrap-up

Pros:

- Probabilistic view of class predictions
- Quick to train, convex loss
- Fast at classification
- Good accuracy for many simple data sets
- Resistant to overfitting (Rule of thumb: $\#data >= 10 \cdot \#features$)
- Can interpret model coefficients as indicators of feature importance

Cons:

- Linear decision boundary (too simple for more complex problems?)
- Very simple model of the conditional probabilities