Counters

15/10/13

Clear Register is used to clear the previous existing values when necessary to do so. These are of two types

- 1. Asynchronous Register
- 2. Synchronous Register

CLEAR REGISTER

Asynchronous

Synchronous

Irrespective of the clock the register clears itself

Clears along with clock pulse/edge

COUNTERS:

Counters are classified into 3 types

- 1. Shift Register
- 2. Ripple Counter
- 3. Synchronous Counter

SHIFT REGISTER

shift register is a cascade of flip flops, sharing the same clock, in which the output of each flip-flop is connected to the data input of the next flip-flop in the chain, resulting in a circuit that shifts by one position the bit array stored in it.

Example

Block Diagram for shift register

Consider the above example

Initially $Q_3Q_2Q_1Q_0 = 1001$

After one cycle $Q_3Q_2Q_1Q_0 = 1100 (Q_i \text{ shifts to } Q_{i-1})$

After second cycle $Q_3Q_2Q_1Q_0 = 0110$

After third cycle $Q_3Q_2Q_1Q_0 = 0011$

• In normal shift register maximum 4 different outputs are possible.

Johnson Counter (special case of shift register)

In the above example

Initially $Q_3Q_2Q_1Q_0 = 1001$

In this counter maximum 8 different outputs are possible.

RIPPLE COUNTERS

A ripple counter is a counter in which state transitions of one or more flip flops are triggered by the outputs of other flip flops in the circuit.

Ripple counter is Asynchronous counter

4 BIT BINARY UP COUNTER

Q_3	Q_2	Q_1	Q_0
0	0	0	0
0	0	0	1
0	0	1	0/
0	0	1	1
0	1	0	0
•	•	•	•
•	•	•	•
1	1	1	1

- ➤ Q₀ always toggles
- $ightharpoonup Q_1$ toggles when Q_0 changes from 1
 ightharpoonup 0
- $ightharpoonup Q_2$ toggles when Q_1 changes from $1 \longrightarrow 0$
- ➤ Q₃ toggles when Q₂ changes from 1→0

4 bit binary up counter using J-K flip flop

Using negative edge triggered clock

We know that when J=K=1 in J-K Flip-flop Output toggles

So for output Q_0 when clock is in negative edge triggered state the value toggles

Similarly for Q₁, Q₀ acts as clock signal

Similarly for Q₂, Q₁ acts as clock signal

Similarly for Q_3 , Q_2 acts as clock signal

Using positive edge triggered clock

We know that when J=K=1 in J-K Flip-flop Output toggles

So for output Q_0 when clock is in positive edge triggered state the value toggles

Similarly for Q₁, Q₀ acts as clock signal

Similarly for Q₂, Q₁ acts as clock signal

Similarly for Q₃, Q₂ acts as clock signal

4 BIT BINARY DOWN COUNTER

- ➤ Q₀ always toggles
- $ightharpoonup Q_1$ toggles when Q_0 changes from $0 \longrightarrow 1$
- → Q₂ toggles when Q₁ changes from 0→1
- → Q₃ toggles when Q₂ changes from 0→1

4 Bit Binary down Counter using J-K flip-flop

Using negative edge triggered clock

We know that when J=K=1 in J-K Flip-flop Output toggles

So for output Q_0 when clock is in negative edge triggered state the value toggles

Similarly for Q₁, Q₀ acts as clock signal

Similarly for Q₂, Q₁ acts as clock signal

Similarly for Q₃, Q₂ acts as clock signal

Using positive edge triggered clock

We know that when J=K=1 in J-K Flip-flop Output toggles

So for output Q_0 when clock is in positive edge triggered state the value toggles

Similarly for Q₁, Q₀ acts as clock signal

Similarly for Q₂, Q₁ acts as clock signal

Similarly for Q₃, Q₂ acts as clock signal

Decade up counter

After 1001 $Q_3Q_2Q_1Q_0$ goes to 0000 instead of 1010. So we reset the flip-flop using 1010 value Reset = $Q_3\overline{Q_2}Q_1\overline{Q_0}$

Decode down counter

After 0000 $Q_3Q_2Q_1Q_0$ goes to 1001 instead of 1111. So we reset the flip-flop using 1111 value Reset = Q_3 Q_2 Q_1 Q_0

Synchronous counter

Every flip-flop receives the exact same clock pulse at the exact same time (Global Clock)

3 Bit Binary up Counter

- Q_2 Q_1 Q_0
- 0 0 0
- 0 0 1
- 0 1 0
- 0 1 1
- 1 0 0
- 1 0 1
- 1 1 0
- 1 1 1
- 0 0 0

- $ightharpoonup Q_1$ toggles in next cycle when $Q_0 = 1$
- $ightharpoonup Q_2$ toggles in next cycle when $Q_0=Q_1=1$

