

Tentamen i ET1545, ET1546, ET1459, ET1422 Automation 1 resp. Analog och Digitalteknik

Datum 2020-06-01

Tid: 09:00-14:00
Hemtentamen med zoomövervakning med anledning av COVID-19
Hjälpmedel: Räknedosa, kursbok, egna anteckningar och annat skriftligt material som t.ex. böcker utskrifter etc.

VIKTIGT

- Uppgifterna skall lösas så utförligt att din tankegång går att följa.
- Det räcker inte med enbart svar till räkneuppgifter.
- Använd inte RÖD penna!!!!
- Det är en klar fördel om du skriver läsligt!
- Ange tydliga svar på varje uppgift, dvs "Svar: a) b) "etc.
- TIPS: Kontrollera antalet värdesiffror i både mellanresultat och svar!

NOTERA att beroende på vilken tentamen man skriver så är det olika uppgifter i slutet av tentamenshäftet.

Uppgift 1

Nedan finns fyra kopplingar (a, b, c resp. d) med tre glödlampor var, se bild. Glödlamporna har märkeffekten 60 W och märkspänningen 230 V. Om spänningen till en glödlampa överstiger 300 V, förkortas livslängden markant och lampan går i sönder efter en kort stund. De fyra kopplingarna är anslutna till ett symmetriskt trefassystem (400V/230V) med faserna L1, L2, L3 samt neutralledaren N.

Tyvärr har den nyanställde elektrikern misslyckats med att koppla in lamporna korrekt. Några anslutningar fattas eller är felkopplade.

- a) Analysera de fyra kretsarna och ange vilka lampor (1, 2 resp. 3) som <u>lyser normalt</u>, <u>lyser för svagt</u> eller <u>lyser så starkt att de går i sönder</u>. (Svaret består alltså av 4x3=12 delsvar.)
- b) Beräkna även den totala effekten för varje krets. (Svaret består alltså av 4 delsvar.)

Nedan visas en likströmskrets med fyra motstånd.

- a) Beräkna spänningarna U1, U2, U3 och U4.
- b) Beräkna strömmarna I₁, I₂, I₃ och I₄.
- c) Beräkna den totala effekten P_{TOT} för hela kretsen.

Uppgift 3

I kretsen nedan är effektivvärdet på Uin = 5,0 V medan frekvensen är 200 Hz.

- a) Beräkna storleken (beloppet) på utspänningen Uut.
- b) Beräkna vinkeln mellan U_{ut} och U_{in} (där U_{in} i detta fallet används som referens).

Uppgift 4

Sanningstabellen till höger beskriver funktionen hos en kombinatorisk krets med insignalerna A, B och C samt utsignalen U.

- a) Tag fram det booleska uttrycket för U.
- b) Förenkla det booleska uttrycket för U så långt det är möjligt.
- c) Rita den nya minimala kretsen.

Insignaler			Utsignal
Α	В	С	U
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1
1	1	1	1

Uppgift 5

Beräkna strömmen I som går igenom resistansen R1.

Man vill mäta hur stor effekt som utvecklas i en glödlampa när den lyser. Utrustningen som finns tillgänglig är ett likspänningsaggregat, en voltmeter, en amperemeter och sladdar.

- a) Rita en figur som visar hur man skall koppla för att kunna få fram effekten.
- b) Visa vilka beräkningar som måste göras för att få fram effekten.
- c) Om lampan har extremt låg effekt, vilket krav ställs på voltmetern, förutom att den skall vara noggrann?
- d) Om lampan har extremt hög effekt, vilket krav ställs på amperemetern, förutom att den skall vara noggrann?

Uppgift 7

I en Y-kopplad symmetrisk trefasbelastning är linjeströmmen 5,3 A och effektfaktorn 0,95. Huvudspänningen är 400 V. Hur stor är då strömmen i neutralledaren?

Uppgift 8

Beräkna Utot, UR, UL och Uc i nedanstående växelströmskrets. Samtliga indata har två värdesiffror.

Uppgift 9

I en verkstad finns belysning och två olika motorer enligt följande tabell:

Objekt	Aktiv effekt P	Effektfaktor cosφ
Belysning	5,50 kW	1,00
Motor 1	10,0 kW	0,800
Motor 2	5,00 kW	0,707

- a) Vad är effektfaktorn cosφ för hela anläggningen?
- b) I ett försök att faskompensera, kopplas en kondensator på 2 kVAr in. Den småländske automationsingenjören var emellertid för snål och köpte en alldeles för liten kondensator så den gjorde inte så stor nytta. Vad blir den nya effektfaktorn cosφ?
- c) För att höja effektfaktorn cosφ upp till önskade 0,900 behöver man koppla in <u>vtterligare</u> en kondensator. Beräkna reaktiva effekten på denna <u>nva</u> kondensator mätt i kVAr. (Man behöver inte räkna ut kapacitansen C.) Den gamla kondensatorn skall sitta kvar.

Uppgift 10

Rita tillståndsdiagram för sekvenskretsen nedan. Samtliga möjliga tillstånd skall vara med.

Beräkna följande tal:

- a) Omvandla 1100 11002 till decimalt
- b) Omvandla 3A₁₆ till decimalt
- c) Hur många kombinationer kan man uppnå med 12 bitar?
- d) Omvandla 1000 1101 0100 11002 till hexadecimalt
- e) Omvandla 358 till hexadecimalt
- f) Omvandla 349₁₀ till binärt
- g) Omvandla 1000 1101 0100 11002 till oktalt
- h) Omvandla 231₁₀ till binärt
- i) Omvandla 1000 0101 0110 01002 till BCD-kod
- j) Omvandla 112₁₀ till hexadecimalt
- k) Utför subtraktionen 0011012 0001112 med hjälp av tvåkomplement

(<u>OBS</u>! Kompletta uträkningar skall finnas där man kan se <u>exakt varje beräkningssteg</u>. Att bara använda omvandlingsfunktion på räknedosa eller utelämna mellanled godkänns inte.)

Uppgift 12:

I figuren visas en förenklad elinstallation i en villa där jordfelsbrytare är installerad. De tre faserna är avsäkrade med 10 A säkring vardera.

I figuren finns fyra små röda "åskblixtar" som var och en illustrerar ett elektriskt fel. I fall fyra

Du skall (för varje vart och ett av de fem olika felfallen) med egna ord beskriva:

- a) Vad som är fel.
- b) Om INTE jordfelsbrytare finns: Hade felet kunna skada personen eller ej, och varför.
- c) Om jordfelsbrytaren finns: Hade felet kunna skada personen eller ej, och varför.

Kommentar om felfall 5:

- Ingen person närvarande:
- Två fall:
 - I) Fullständig kortslutning.
 - II) Mindre isolationsfel med felströmmen på ca 1 A.

Vissa elapparater har ett extra lager isolering och kallas dubbelisolerade.

- a) Rita symbolen
- b) Rita hur elkontakten ser ut.

Uppgift 14

På vilket sätt är en helvågslikriktare bättre än en halvvågslikriktare?

Uppgift 15

Två förstärkare skall kopplas i serie (utgången på förstärkare 1 kopplas till ingången på förstärkare 2) så att man för en högre förstärkning. Data för förstärkarna är: Förstärkare 1:

Förstärkning = - 5 ggr, Inresistans = 1,0 M Ω , Utresistans = 4,7 k Ω Förstärkare 2:

Förstärkning = - 100 ggr, Inresistans = 3,7 k Ω , Utresistans = 2,2 k Ω

- a) Beräkna totala förstärkningen
- b) På ingången till förstärkare 1 kopplar man till en spänningsgenerator på 10 V med utresistansen 1 Ω . På utgången till förstärkare 2 kopplar man till en last på 550 Ω . Vad blir effekten i lasten?

Uppgift 16

Operationsförstärkarkopplingar, OP:

- a) Vad är främsta användningsområdet för en spänningsföljare. (Förklara med exempel.)
- b) Vad skiljer en inverterande OP-förstärkare och en icke-inverterande OP-förstärkare. (Förklara med exempel samt rita exempelkurvor.)
- c) Förklara vad virtuell jord innebär och hur man kan använda detta vid beräkningar.

Uppgift 17

Rangordna följande alternativ efter hur jämn likriktning man får av utsignalen. OBS! Ange den bästa först.

- a) Helvågslikriktare med en fas.
- b) Halvvågslikriktare med tre faser.
- c) Helvågslikriktare med tre faser.
- d) Halvvågslikriktare med en fas.

Uppgift 18

Förenkla nedanstående kombinatoriska grindnät:

Notera att följande sidor innehåller frågor specifika för antingen kursen Automation 1 eller kursen Analog och Digitalteknik.

Denna sida gäller endast Automation 1, ET1545, ET1459 (Se annan sida för frågor till Analog- och Digitalteknik)

Uppgift 19 (Automation 1)

Givare:

- a) Beskriv skillnaden i uppbyggnad mellan termoelement och motståndsgivare.
- b) Beskriv i detalj hur varför motstånden i en trådtöjningsgivare förändras (dvs hur motstånden är uppbyggda, hur man monterar dem på en balk som böjs, hur resistansen ändras och varför den ändras). Beskriv även hur man monterar dessa i en brygga (korrekt placering) samt analysera hur bryggan fungerar med ett exempel med insatta komponentvärden.
- c) I vilken givare använder man en bimetall.
- d) I vilken givare använder man en strypfläns

Uppgift 20 (Automation 1)

Reglering:

- a) Vad kallas är skillnaden mellan börvärde och ärvärde i ett kort perspektiv (innan processen har stabiliserat sig) respektive på lång sikt (efter att processen har stabiliserat sig) ?
- b) Till vilken form av regering använder man en termostat?
- c) Vilken av reglerteknikerna PI resp. PD ger minst reglerfel.
- d) Vad är den största fördelen med PD-reglering framför PI-reglering? Finns det någon nackdel med PD-reglering? Vilken (eller vilka)?

Lycka till / Mikael Åsman

Denna sida gäller Analog och Digitalteknik, ET1546, ET1422 (Se annan sida för frågor till Automation 1)

Uppgift 19 (Analog och Digitalteknik)

Störningar etc:

- a) Hur kan det komma sig att man förr använde BNC-kablar till nätverkstrafik medan man idag använder tvistade nätverkskablar? (Bortse från kostnad.) Förklara grundligt.
- b) Förklara i detalj vad en jordslinga är och hur man kan undvika att ger störningar. Ange minst två olika sätt för att reducera störningarna.
- c) Varför skall man inte ha mikrofonkabel och 230V-kabel i samma installationsrör?

Uppgift 20 (Analog och Digitalteknik)

Digitala signaler:

- a) Om en människa kan urskilja frekvenser upp till 20 kHz efter att en signal har digitaliserats, hur snabbt måste man sampla? Motivera!
- b) En A/D-omvandlare med 16 bitar har inspänningsområdet 0-10V. Ange kvantiseringsintervallet (=upplösningen) i volt.
- c) En A/D-omvandlare med 16 bitar har inspänningsområdet 0-10V. Om insignalen är 4V, vad blir det digitala värdet?
- d) En av A/D-omvandlarna (som gåtts igenom i kursen) kan användas för mätning av mikrovågor. Vilken och varför? Motivera!
- e) En av A/D-omvandlarna (som gåtts igenom i kursen) har i princip ingen unik fördel. Vilken?
- f) En 8-bitars D/A-omvandlare med utspänningsområdet 0-10V har insignalen 01111011₂. Vilken spänning får den analoga utsignalen?

Lycka till / Mikael Åsman