Parameter control in the presence of uncertainties

Victor Trappler

Supervisors: Élise Arnaud, Laurent Debreu, Arthur Vidard

March 29, 2018

AIRSEA Research team (Inria)- Laboratoire Jean Kuntzmann

Introduction

Bottom friction

- The friction of the ocean bed has an influence on the water circulation
- Depends on the type and/or characteristic length of the asperities
- Subgrid phenomenon

Outline

Introduction

Deterministic problem

Dealing with uncertainties

Robust minimization

Surrogates and optimization

Conclusion

Deterministic problem

Computer code: the Shallow Water Equations

Input

- **k**: Bottom friction (spatially distributed)
- u: Environmental variables (fixed and known)

Output

• $W(\mathbf{k}) = \{W_i^n(\mathbf{k})\}_{i,n}$, where $W_i^n(\mathbf{k}) = [h_i^n(\mathbf{k}) \quad q_i^n(\mathbf{k})]^T$ for $0 \le i \le N_x$ and $0 \le n \le N_t$

Computer code: the Shallow Water Equations

- Input
- **k**: Bottom friction (spatially distributed)
- u: Environmental variables (fixed and known)
- Output
- $W(\mathbf{k}) = \{W_i^n(\mathbf{k})\}_{i,n}$, where $W_i^n(\mathbf{k}) = [h_i^n(\mathbf{k}) \quad q_i^n(\mathbf{k})]^T$ for $0 \le i \le N_x$ and $0 \le n \le N_t$

Data assimilation framework: Twin experiments

Let us set
$$\emph{\textbf{k}}_{\mathrm{ref}}$$

We have $\emph{\textbf{y}}^{\mathrm{obs}} = M(\emph{\textbf{k}}_{\mathrm{ref}}) = \{h_i^n(\emph{\textbf{k}}_{\mathrm{ref}})\}_{i,n}$
$$j(\emph{\textbf{k}}) = \frac{1}{2}\|M(\emph{\textbf{k}}) - \emph{\textbf{y}}^{\mathrm{obs}}\|^2$$

Data assimilation framework: Twin experiments

Let us set
$$\emph{\textbf{k}}_{\mathrm{ref}}$$
 We have $\emph{\textbf{y}}^{\mathrm{obs}} = M(\emph{\textbf{k}}_{\mathrm{ref}}) = \{h_i^n(\emph{\textbf{k}}_{\mathrm{ref}})\}_{i,n}$
$$j(\emph{\textbf{k}}) = \frac{1}{2} \|M(\emph{\textbf{k}}) - \emph{\textbf{y}}^{\mathrm{obs}}\|^2$$

$$\arg\min_{\emph{\textbf{k}} \in \mathcal{K}} j(\emph{\textbf{k}})?$$

Dealing with uncertainties

Introducing the uncertainties

Instead of considering \boldsymbol{u} fixed, we consider that \boldsymbol{U} is a random variable (pdf $\pi(\boldsymbol{u})$), and the output of the model depends on its realization.

Introducing the uncertainties

Instead of considering \boldsymbol{u} fixed, we consider that \boldsymbol{U} is a random variable (pdf $\pi(\boldsymbol{u})$), and the output of the model depends on its realization.

The cost function as a random variable

• Output of the computer code (u is an input):

$$M(\mathbf{k})$$
 becomes $M(\mathbf{k}, \mathbf{u})$

• The (deterministic) quadratic error is now

$$j(\boldsymbol{k}, \boldsymbol{u}) = \frac{1}{2} \| M(\boldsymbol{k}, \boldsymbol{u}) - \boldsymbol{y}^{\text{obs}} \|^2$$

What to do with j(k, U) (random variable)?

Variational approach or Bayesian approach?

- Variational: Minimize a function of j(k, U), e.g. Minimize $\mathbb{E}[j(K, U)|K = k]$.
 - $\longrightarrow \mathsf{Precise}\ \mathsf{objective}$

Variational approach or Bayesian approach?

- Variational: Minimize a function of j(k, U),
 e.g. Minimize E[j(K, U)|K = k].
 → Precise objective
- Bayesian: let us assume $e^{-j(m{k},m{u})} \propto p(m{y}^{\mathrm{obs}}|m{k},m{u})$ Work around the likelihood and posterior distributions $p(m{k}|m{y}^{\mathrm{obs}})$
 - \longrightarrow More general method

Variational approach or Bayesian approach?

- Variational: Minimize a function of j(k, U), e.g. Minimize $\mathbb{E}[j(K, U)|K = k]$.
 - → Precise objective
- Bayesian: let us assume $e^{-j(m{k},m{u})} \propto p(m{y}^{\mathrm{obs}}|m{k},m{u})$ Work around the likelihood and posterior distributions $p(m{k}|m{y}^{\mathrm{obs}})$
 - \longrightarrow More general method

But

- Dependent on the efficiency of the statistical estimators
- Knowledge of *U*? Assumptions on error?
- Computational cost ?

Robust minimization

An illustration

$$(\mathbf{u}, \mathbf{k}) \mapsto f(\mathbf{u}, \mathbf{k}) = \tilde{f}(\mathbf{u} + \mathbf{k})$$

 $\mathbf{U} \sim \mathcal{N}(0, s^2)$ truncated on [-3; 3]. Plot of $f(0, \cdot) = \tilde{f}(\cdot)$

Different approaches for the minimization of f

An illustration

$$(\boldsymbol{u}, \boldsymbol{k}) \mapsto f(\boldsymbol{u}, \boldsymbol{k}) = \tilde{f}(\boldsymbol{u} + \boldsymbol{k})$$

 $\boldsymbol{U} \sim \mathcal{N}(0, s^2)$ truncated on $[-3; 3]$. Plot of $\max_{\boldsymbol{u}} \{f(\boldsymbol{u}, \cdot)\}$

Different approaches for the minimization of f

An illustration

$$(\boldsymbol{u}, \boldsymbol{k}) \mapsto f(\boldsymbol{u}, \boldsymbol{k}) = \tilde{f}(\boldsymbol{u} + \boldsymbol{k})$$

 $\boldsymbol{U} \sim \mathcal{N}(0, s^2)$ truncated on [-3; 3]. Plot of $\mathbb{E}_{\boldsymbol{u}}[f(\boldsymbol{u}, \cdot)]$

Different approaches for the minimization of f

Variational Approach

Non-exhaustive list of "Robust" Objectives

- Global Optimum: $min_{(k,u)}j(u,k) \longrightarrow EGO$
- Worst case: $\min_{\mathbf{k}} \max_{\mathbf{u}} j(\mathbf{u}, \mathbf{k}) \longrightarrow \text{Explorative EGO}$
- M-robustness: $\min_{\pmb{k}} \mathbb{E}\left[j(\pmb{U}, \pmb{k})\right] \longrightarrow \text{iterated LHS}$
- ullet V-robustness: $\min_{\pmb{k}} \mathbb{V}\mathrm{ar}\left[j(\pmb{U},\pmb{k})
 ight] \longrightarrow \mathrm{gradient}\text{-descent with}$ PCE
- ρ -robustness: min $\rho(j(\boldsymbol{U},\boldsymbol{k}))$ \longrightarrow gradient-descent with PCE
- ullet Multiobjective: choice within Pareto frontier $\longrightarrow 1L/2L$ kriging

Bayesian approach

Let us suppose $\mathbf{K} \sim \pi(\mathbf{k})$.

Having observed $\mathbf{y}^{\mathrm{obs}}$, joint distribution of (\mathbf{K}, \mathbf{U}) : $p(\mathbf{k}, \mathbf{u} | \mathbf{y}^{\mathrm{obs}})$?

Bayesian approach

Let us suppose $\mathbf{K} \sim \pi(\mathbf{k})$.

Having observed $\mathbf{y}^{\mathrm{obs}}$, joint distribution of (\mathbf{K}, \mathbf{U}) : $p(\mathbf{k}, \mathbf{u} | \mathbf{y}^{\mathrm{obs}})$?

Bayes' Theorem

$$p(\mathbf{k}, \mathbf{u}|\mathbf{y}^{\text{obs}}) \propto p(\mathbf{y}^{\text{obs}}|\mathbf{k}, \mathbf{u})\pi(\mathbf{k}, \mathbf{u})$$

$$\propto L(\mathbf{k}, \mathbf{u}; \mathbf{y}^{\text{obs}})\pi(\mathbf{k})\pi(\mathbf{u})$$

Bayesian approach

Let us suppose $K \sim \pi(k)$.

Having observed \mathbf{y}^{obs} , joint distribution of (\mathbf{K}, \mathbf{U}) : $p(\mathbf{k}, \mathbf{u} | \mathbf{y}^{\text{obs}})$?

Bayes' Theorem

$$p(\mathbf{k}, \mathbf{u}|\mathbf{y}^{\mathrm{obs}}) \propto p(\mathbf{y}^{\mathrm{obs}}|\mathbf{k}, \mathbf{u})\pi(\mathbf{k}, \mathbf{u})$$

 $\propto L(\mathbf{k}, \mathbf{u}; \mathbf{y}^{\mathrm{obs}})\pi(\mathbf{k})\pi(\mathbf{u})$

Link with cost function j: Squared error \leftrightarrow Gaussian errors

$$L(\mathbfit{k}, \mathbfit{u}; \mathbfit{y}^{\mathrm{obs}}) \propto \exp\left[-rac{1}{2}\|M(\mathbfit{k}, \mathbfit{u}) - \mathbfit{y}^{\mathrm{obs}}\|_{\Sigma^{-1}}^{2}
ight] = \exp\left[-j(\mathbfit{k}, \mathbfit{u})
ight]$$

Bayesian Quantities of interest

Bayes' theorem

$$p(\mathbf{k}, \mathbf{u}|\mathbf{y}^{\text{obs}}) \propto L(\mathbf{k}, \mathbf{u}; \mathbf{y}^{\text{obs}}) \pi(\mathbf{k}) \pi(\mathbf{u}) \propto p(\mathbf{k}|\mathbf{y}^{\text{obs}}, \mathbf{u}) \pi(\mathbf{u})$$

ML:
$$\underset{(\boldsymbol{k},\boldsymbol{u})}{\operatorname{arg max}} L(\boldsymbol{k},\boldsymbol{u};\boldsymbol{y}^{\operatorname{obs}})$$

MAP:
$$\underset{(\boldsymbol{k},\boldsymbol{u})}{\operatorname{arg max}} p(\boldsymbol{k},\boldsymbol{u}|\boldsymbol{y}^{\operatorname{obs}}) = L(\boldsymbol{k},\boldsymbol{u};\boldsymbol{y}^{\operatorname{obs}})\pi(\boldsymbol{k})\pi(\boldsymbol{u})$$

MMAP:
$$\arg \max_{\boldsymbol{k}} p(\boldsymbol{k}|\boldsymbol{y}^{\text{obs}}) = \int_{\mathcal{U}} p(\boldsymbol{k}, \boldsymbol{u}|\boldsymbol{y}^{\text{obs}}) d\boldsymbol{u}$$

Min of variance :
$$\arg\min_{\boldsymbol{k}} \mathbb{V} \operatorname{ar}_{\boldsymbol{U}} \left[p(\boldsymbol{k} | \boldsymbol{y}^{\operatorname{obs}}, \boldsymbol{U}) \right]$$

Worst Case:
$$\arg \max_{\boldsymbol{k}} \{ \min_{\boldsymbol{u}} p(\boldsymbol{k}|\boldsymbol{y}^{\text{obs}}, \boldsymbol{u}) \}$$

MPE: Mode of
$$K_{arg max} = arg max p(k|y^{obs}, U)$$

Bayesian Quantities of interest

Bayes' theorem

$$p(\mathbf{k}, \mathbf{u}|\mathbf{y}^{\text{obs}}) \propto L(\mathbf{k}, \mathbf{u}; \mathbf{y}^{\text{obs}}) \pi(\mathbf{k}) \pi(\mathbf{u}) \propto p(\mathbf{k}|\mathbf{y}^{\text{obs}}, \mathbf{u}) \pi(\mathbf{u})$$

ML:
$$\underset{(\boldsymbol{k},\boldsymbol{u})}{\operatorname{arg max}} L(\boldsymbol{k},\boldsymbol{u};\boldsymbol{y}^{\operatorname{obs}})$$

$$\mathsf{MAP}: \quad \arg\max_{(\boldsymbol{k},\boldsymbol{u})} p(\boldsymbol{k},\boldsymbol{u}|\boldsymbol{y}^{\mathrm{obs}}) = L(\boldsymbol{k},\boldsymbol{u};\boldsymbol{y}^{\mathrm{obs}})\pi(\boldsymbol{k})\pi(\boldsymbol{u})$$

$$\mathsf{MMAP}: \quad \arg\max_{\boldsymbol{k}} p(\boldsymbol{k}|\boldsymbol{y}^{\mathrm{obs}}) = \int_{\mathcal{U}} p(\boldsymbol{k}, \boldsymbol{u}|\boldsymbol{y}^{\mathrm{obs}}) \, \mathrm{d}\boldsymbol{u}$$

Min of variance :
$$\arg\min_{\boldsymbol{k}} \mathbb{V}\operatorname{ar}_{\boldsymbol{U}}\left[p(\boldsymbol{k}|\boldsymbol{y}^{\operatorname{obs}},\boldsymbol{U})\right]$$

Worst Case:
$$\arg \max_{\boldsymbol{k}} \{ \min_{\boldsymbol{u}} p(\boldsymbol{k}|\boldsymbol{y}^{\text{obs}}, \boldsymbol{u}) \}$$

$$\mathsf{MPE}: \quad \mathsf{Mode of } \; \boldsymbol{K}_{\mathsf{arg \, max}} = \arg \max_{\boldsymbol{k}} p(\boldsymbol{k}|\boldsymbol{y}^{\mathsf{obs}}, \boldsymbol{U})$$

Illustration on the SWE

Family of densities: $\{p(\mathbf{k}|\mathbf{y}^{\text{obs}},\mathbf{u});\mathbf{u}\in\mathcal{U}\}$

MMAP:
arg $\max_{\boldsymbol{k}} p(\boldsymbol{k}|\boldsymbol{y}^{\text{obs}})$ $Min\ Var$:
arg $\min_{\boldsymbol{k}} \mathbb{V} \text{ar}_{U} \left[p(\boldsymbol{k}|\boldsymbol{y}^{\text{obs}}, \boldsymbol{U}) \right]$ $Worst\ case$:
arg $\max_{\boldsymbol{k}} \{ \min_{\boldsymbol{u}} p(\boldsymbol{k}|\boldsymbol{y}^{\text{obs}}, \boldsymbol{u}) \}$

"Most Probable Estimate"

```
\mathbf{K}_{\operatorname{arg\,max}} = \operatorname{arg\,max}_{\mathbf{k} \in \mathcal{K}} p(\mathbf{k} | \mathbf{y}^{\operatorname{obs}}, \mathbf{U}) random variable \longrightarrow estimate its density (how often is the value \mathbf{k} a maximizer)
```

- Straightforward algorithm: • For i = 1...N:
 - Sample $\mathbf{u}^{(i)}$ from $\pi(\mathbf{u})$ / Adapted space-filling designs
 - Maximize $p(\mathbf{k}|\mathbf{y}^{\text{obs}}, \mathbf{u}^{(i)})$ yielding $\mathbf{k}_{\text{arg max}}^{(i)}$ (adjoint method)
 - Estimate density (KDE) / Mode

Illustration of MPE

Surrogates and optimization

Why surrogates?

- Computer model: expensive to run
- ullet dim ${\cal K}$, dim ${\cal U}$ can be very large: curse of dimensionality
- Uncertainties upon u directly in the surrogate

Why surrogates?

- Computer model: expensive to run
- ullet dim ${\cal K}$, dim ${\cal U}$ can be very large: curse of dimensionality
- ullet Uncertainties upon $oldsymbol{u}$ directly in the surrogate

Using surrogates for optimization: adaptative sampling

Based on kriging model (=Gaussian Process Regression) \longrightarrow mean and variance

How to choose a new point to evaluate ? Criterion $\kappa(\mathbf{x}) \longrightarrow$ "potential" of the point

$$\mathbf{x}_{\mathrm{new}} = \operatorname{arg\,max} \kappa(\mathbf{x})$$

Conclusion

Conclusion

Wrapping up

- Variational and bayesian approaches for this inverse problem results in different methods
- ullet In both case, strategies rely heavily on surrogate models \longrightarrow Kriging, Polynomial chaos

Perspective and future work

- ullet Cost of computer evaluations o limit the total number of runs
- \bullet Dimensionality of the input space \to reduction of the input space ?
- \bullet How to deal with uncontrollable errors \to errors between model and reality ?