Федеральное агентство по образованию Центральный оргкомитет Всероссийских олимпиад Методическая комиссия по физике

XLI Всероссийская олимпиада школьников по физике

Заключительный этап

Теоретический тур

Методическое пособие

Санкт-Петербург, 2007 г.

Комплект задач подготовлен методической комиссией по физике Центрального оргкомитета Всероссийских олимпиад школьников Телефоны: (495) 408-80-77, 408-86-95, (477) 361-80-43.

E-mail: physolymp@gmail.com, vip@mail.mipt.ru

Авторы задач

9 класс	10 класс	11 класс
1. Фольклор	1. Воробьёв И.	1. Ко́зел С.
2. Слободянин В.	2. Фольклор	2. Воробьёв И.,
3. Соболев М.	3. Ко́зел С.	Ершов А.
4. Ко́зел С.	4. Плис В.	3. Дельцов В.
	5. Ко́зел С.	4. Малеев А.
		Жак С.

Общая редакция — Ко́зел С.

Оформление и вёрстка — Ерофеев И., Гущин И.

При подготовке оригинал-макета использовалась издательская система \LaTeX 2ε . © Авторский коллектив Подписано в печать 11 марта 2008 г. в 13:18.

141700, Московская область, г. Долгопрудный Московский физико-технический институт

9 класс

Задача 1. Шайба на льду

По гладкой горизонтальной поверхности скользит пластинка, на которой отмечены 3 точки $(A, B \ u \ C)$, лежащие в вершинах прямоугольного треугольника с углом 30° при вершине B (рис. 1). Гипотенуза треугольника равна L. В некоторый момент времени скорость точки A равна по модулю v и направлена под углом 30° к катету BC. Известно также, что скорость точки B в этот момент времени направлена вдоль линии a_1a_2 , параллельной катету AC.

Определите:

- 1. Модуль и направление скорости точки B.
- 2. Модуль и направление скорости точки C.
- 3. Положение точки O, скорость в которой в данный момент времени равна вудю
- 4. Изобразите на чертеже векторы скоростей точек B и C, а также положение точки O.

Задача 2. Случай на станции

Пассажирский поезд длиной l стоял на первом пути. В последнем вагоне сидел Дядя Фёдор (герой книги Э. Успенского «Каникулы в Простоквашино») и ожидал письмо, которое ему должен был передать Шарик от кота Матроскина. В тот момент, когда поезд тронулся, на привокзальной площади, как раз напротив первого вагона, появился Шарик (рис. 2). Он определил, что расстояние до последнего вагона равно L. С какой минимальной скоростью v_0 должен бежать пёс, чтобы передать письмо, если поезд движется с постоянным ускорением \vec{a} ?

Задача 3. Отопление дачного домика

Дачный домик отапливается с помощью электрических батарей. При температуре батарей $t_{\rm B1}=40^{\circ}{\rm C}$ и температуре наружного воздуха $t_1=-10^{\circ}{\rm C}$ в домике устанавливается температура $t=20^{\circ}{\rm C}$. Во сколько раз надо увеличить силу тока в батареях, чтобы прежняя температура в комнате поддерживалась в холодные дни при температуре $t_2=-25^{\circ}{\rm C}$? Какова при этом будет температура батарей $t_{\rm B2}$? Считать электрическое сопротивление нагревательных элементов не зависящим от температуры.

Задача 4. «Чёрный ящик»

В «чёрном ящике» с тремя выводами (рис. 3) находятся два резистора и нелинейный элемент (лампочка от карманного фонарика), вольт-амперная характеристика которого изображена на рис. 4 (график ВАХ Π). На том же рисунке изображены вольт-амперные характеристики «чёрного ящика», снятые между выводами $2{\text -}3$ и $1{\text -}2$.

- 1. Определите сопротивления обоих резисторов.
- 2. Нарисуйте схему соединения элементов «чёрного ящика» и укажите на ней значения сопротивлений резисторов.
- 3. Графически постройте вольт-амперную характеристику «чёрного ящика» между выводами 1–3.
- 4. Предполагая, что лампочка рассчитана на напряжение $U_0 = 4.5$ В, определите, какое напряжение нужно создать между выводами 1 и 3, чтобы она горела полным накалом.

Примечание. Необходимые построения следует производить непосредственно на приведённом рисунке.

Рис. 4. ВАХ лампочки и «чёрного ящика».

10 класс

Задача 1. Столкновение дисков

На горизонтальной плоскости находятся два одинаковых диска с гладкой боковой поверхностью. Первый покоился, а второму сообщили скорость v. Найдите скорости дисков после их упругого соударения, используя рисунок 5, где отмечены положение центра первого диска до столкновения (A) и положения центров первого и второго дисков в один и тот же момент времени после столкновения (точки B и C соответственно). Трением пренебречь.

Задача 2. Кривизна траектории Луны

В астрономии за единицу длины принято среднее расстояние R от Земли до Солнца, называемое астрономической единицей (1 а.е.). В геоцентрической системе отсчёта, связанной с Землёй, Луна вращается по круговой орбите радиуса $r_{\pi}=2.57\cdot 10^{-3}$ а.е. В гелио-

Рис. 6

центрической системе траектория нашего естественного спутника выглядит гораздо более сложно, поскольку Луна вращается вокруг Земли, которая в свою очередь вращается вокруг Солнца (вращение происходит в одну сторону). Вычислите радиусы кривизны $r_{\rm H}$ и $r_{\rm H}$ траектории Луны в гелиоцентрической системе отсчета во время полнолуния и новолуния. Ответ выразите в астрономических единицах. Отметьте качественно положение соответствующих центров кривизны $(O_{\rm H}$ и $O_{\rm H})$ на рисунке 6, на котором изображены Солнце и Земля. Отношение массы Земли к массе Солнца $m_3/m_{\rm G}=3\cdot 10^{-6}$.

Задача 3. Скорость потока воды

Для измерения скорости потока воды в отопительной системе используется устройство, изображенное на рисунке 7 (так называемый манометр Вентури). Скорость потока измеряется в трубе с диаметром $d_1=2$ см; в месте установки манометра труба сужается до диаметра $d_2=0.6$ см. В верхней части Π -образной манометрической труб-

Рис. 7

ки содержится масло с плотностью $\rho_M = 0.82 \text{ г/см}^3$. Вертикальные колена трубки врезаны в широкую и узкую части трубы с текущей водой. Рассматривая воду как идеальную несжимаемую жидкость, определите объём воды,

протекающей через трубу в 1 с, если разность уровней воды в вертикальных коленах манометрической трубки h=1,2 см. Плотность воды $\rho=1$ г/см³.

Примечание. При течении идеальной несжимаемой жидкости по горизонтальной трубе переменного сечения $p + \rho v^2/2 = \mathrm{const}$ вдоль всей трубы. Здесь p —давление жидкости, ρ — плотность, v — скорость течения.

Задача 4. Пузырёк воздуха в воде

В высоком закрытом вертикально расположенном цилиндрическом сосуде сечением S и высотой h находится вода, занимающая весь объём сосуда, кроме маленького пузырька воздуха объёмом V, образовавшегося у дна (рис. 8). Давление воды в верхней части сосуда равно атмосферному давлению p_0 . Определите, каким будет давление воды в верхней части сосуда после того, как пузырёк поднимется вверх. Процесс считать изотермическим. Модуль всестороннего сжатия жидкости равен K. Рассмотрите предельные переходы:

- $V \to 0$
- 2. $K \to 0$ (сильно сжимаемая жидкость),
- 3. $K \to \infty$ (несжимаемая жидкость).

 $\begin{array}{c|cccc}
 & -p_0 & - & & \\
 & - & & - & \\
 & - & & - & \\
 & - & & - & \\
 & - & & - & \\
 & - & & - & \\
 & V_{\bigcirc} & - & \\
 & S & \\
\end{array}$

Рис. 8

Найдите численное решение для случая h=3 м, S=10 см 2 , V=0.2 см 3 , $K=2\cdot 10^9$ Па, плотность воды $\rho=10^3$ кг/м 3 , g=10 м/с 2 .

Примечание. Модуль всестороннего сжатия жидкости K определяется соотношением $\Delta p = -K\Delta V_{\rm x}/V_{\rm x}$, где Δp — изменение давления, $|\Delta V_{\rm x}/V_{\rm x}| = \varepsilon$ — относительное изменение объёма жидкости.

Задача 5. «Чёрный ящик»

Школьнику Васе Незнайкину на олимпиаде по физике предложили разгадать схему «чёрного ящика» с тремя выводами (рис. 9), в котором по условию задачи находились два резистора и нелинейный элемент (автомобильная лампочка, рис. 9 рассчитанная на номинальное напряжение $U_N=12~\mathrm{B}$ и мощность $P_N=6~\mathrm{Bt}$). Были приведены две вольт-амперные характеристики (рис. 10), снятые между выводами 1 и 2 (ВАХ 1–2) и выводами 2 и 3 (ВАХ 2–3).

Нужно было:

- 1. Проанализировать возможные схемы включения элементов чёрного ящика, совместимые с условием задачи.
- 2. Выбрать одну из возможных схем и определить для этой схемы сопротивления резисторов.
 - 3. Построить вольт-амперную характеристику нелинейного элемента.
- 4. Построить вольт-амперную характеристику, снятую между выводами 1 и 3 (ВАХ 1–3).

Помогите Васе!

Примечание. Необходимиые построения следует выполнять непосредствен-

XLI Всероссийская олимпиада школьников по физике

11 класс

Задача 1. Аннигиляция частиц

В вакууме на расстоянии L=10 см друг от друга находятся протон p^+ и антипротон p^- . Обе частицы имеют одинаковые массы $m=1,67\cdot 10^{-27}$ кг и одинаковые по модулю заряды $e=1,602\cdot 10^{-19}$ Кл. В первый момент частицы неподвижны. При сближении частиц на расстояние $l=10^{-13}$ м происходит их аннигиляция с рождением γ -квантов.

- 1. Какие скорости будут иметь частицы при таком сближении?
- 2. Через какое время произойдет аннигиляция частиц?
- 3. Нужно ли при решении задачи учитывать гравитационные силы, действующие между частицами? Ответ поясните расчётом.

Электрическая постоянная $\varepsilon_0 = 0.885 \cdot 10^{-11} \text{ K} \pi^2 / (\text{H} \cdot \text{м}^2).$

Гравитационная постоянная $G = 6.67 \cdot 10^{-11} \text{ H} \cdot \text{M}^2/\text{kr}^2$.

Задача 2. Столкновение дисков

На горизонтальной плоскости с коэффициентом трения μ находятся два одинаковых малых диска с гладкой боковой поверхностью. Первый диск покоился, а второй налетел на него со скоростью \vec{v} в момент удара. Считая столкновение дисков упругим, но не обязательно лобовым, найдите, на каком расстоянии окажутся диски к моменту их остановки, если первый диск остановился, пройдя расстояние x_1 . Чему равно наибольшее и наименьшее возможные конечные расстояния между дисками при данных значениях модуля скорости v и коэффициента трения μ ?

Размерами дисков пренебречь. Ускорение свободного падения g.

Задача 3. Теплотрасса

ТЭЦ снабжает жилой район горячей водой под высоким давлением, имеющей на выходе из котельной температуру $t_0=120\,^{\circ}\mathrm{C}$. Вода течет по стальной трубе радиусом R=20 см, покрытой теплоизолирующим слоем минеральной ваты толщиной h=4 см и расположенной на открытом воздухе. Расход воды $\mu=100$ кг/с. Температура окружающего воздуха $t_{\mathrm{B}}=-20\,^{\circ}\mathrm{C}$. Коэффициент теплопроводности ваты $\chi=0.08$ Вт/(м · K). Коэффициент теплопроводности стали на несколько порядков больше, чем у минеральной ваты. Найдите температуру воды t_{K} на конце теплотрассы в двух случаях:

- 1. Длина теплотрассы $L_1 = 10$ км.
- 2. Длина теплотрассы $L_2 = 100$ км.

Удельная теплоемкость воды $c = 4200 \; \text{Дж/(кг \cdot K)}.$

Примечание. Количество теплоты Δq , проходящее через слой вещества площадью S и толщиной h за время Δt при разности температур ΔT определяется соотношением $\Delta q = \chi(S/h)\Delta T\Delta t$, где χ — коэффициент теплопроводности.

Задача 4. Светодиоды

Между круглыми полюсами радиусом R=5 см большого электромагнита, создающего в зазоре однородное магнитное поле с индукцией B=1 Тл, перпендикулярно линиям магнитной индукции движется с постоянной скоростью v=10 м/с металлический стержень (рис. 11).

Концы стержня, длина которого больше 2R, соединены гибкими проводами со схемой, включающей батарею с ЭДС $\mathcal{E}_0=0.5$ В и два светодиода C_1 и C_2 , которые горят при напряжении $U\geqslant 0.25$ В и определённой полярности, указанной на рисунке. Будем считать, что в начальный момент времени стержень касается окружности (т.е. начинает пересе-

кать при своем движении линии магнитной индукции). Определите напряжение U(t) на светодиодах и найдите моменты времени их зажигания и гашения на интервале времени движения стержня в магнитном поле $(0 \le t \le 2R/v)$. Качественно постройте график зависимости U(t) и укажите на нем интервалы зажигания светодиодов C_1 и C_2 .

Задача 5. Параметрические колебания

В схеме изображенной на рисунке 12 ёмкость конденсатора C периодически изменяется путем механического перемещения пластин. Допустим, что вследствие некоторого возмущения в схеме возникли малые колебания с амплитудой напряжения на конденсаторе порядка нескольких милливольт. В момент времени, когда напряжение на конденсаторе максимально, его ёмкость скачкообразно умень-

денсаторе максимально, его емкость скачкоооразно уменьшают на долю $\varepsilon = |\Delta C|/C$. Через четверть периода $\frac{\pi}{2}\sqrt{LC}$ ёмкость скачком увеличивают до прежнего значения; ещё через четверть периода ёмкость вновь скачкообразно уменьшают на долю ε и.т.д. При определённых условиях в схеме могут возбудиться незатухающие электрические колебания.

В схему включен нелинейный элемент (лампочка накаливания Λ), вольтамперная характеристика которой представлена на рисунке 13.

- 1. Найдите минимальное значение ε_{\min} , при котором в схеме возбуждаются незатухающие колебания, если $L=0.1~\Gamma$ н, $C=10^{-7}~\Phi$.
- 2. Найдите амплитуду установившихся колебаний напряжения на лампочке, если $\varepsilon=3\%$.

XLI Всероссийская олимпиада школьников по физике

Примечание. Необходимиые построения следует выполнять непосредственно на рисунке.

Рис. 13. Вольт-амперная характеристика лампочки.

Возможные решения 9 класс

Задача 1. Шайба на льду

- 1. Проекции скоростей v_A и v_B на гипотенузу AB треугольника должны быть одинаковыми и равными $v_0/2$ (рис. 14). Следовательно, $v_B=v_A=v_0$. Вектор скорости \vec{v}_B направлен вертикально вниз.
- 2. Поскольку проекция скорости \vec{v}_B на катет CB равна нулю, вектор скорости \vec{v}_C также должен быть направлен перпендикулярно катету CB и иметь проекцию на катет AC такую же, как и проекция скорости точки A. Отсюда следует, что $v_C = v_0/2$.

Рис. 14

3. Точка O, скорость которой в данный момент времени равна нулю, лежит на пересечении перпендикуляров, восстановленных к векторам скоростей \vec{v}_A , \vec{v}_B и \vec{v}_C . Как видно из построений (рис. 14), эта точка лежит на катете BC на расстоянии $l=L\sin 30^\circ$ tg $30^\circ\approx 0.3L$.

Критерии оценивания

Задача 2. Случай на станции

По теореме Пифагора первоначальное расстояние между Шариком и путём, по которому движется поезд, равно $x = \sqrt{L^2 - l^2}$. Ясно, что пёс должен двигаться по прямой (рис. 15). Тогда расстояние, пройденное Шариком, равно

$$s = \sqrt{\left(\frac{at^2}{2} - l\right)^2 + x^2} = \sqrt{\left(\frac{at^2}{2} - L\right)^2 + a(L - l)t^2},$$

где t — время движения Шарика. Скорость Шарика

$$v = \frac{s}{t} = \sqrt{\left(\frac{a}{2}t - \frac{L}{t}\right)^2 + a(L - l)}.$$

Она минимальна, когда at/2 - L/t = 0. При этом $v_0 = v_{\min} = \sqrt{a(L-l)}$.

гражение в

Критерии оценивания

Формула для пути, пройденного Шариком	٠
Определение условия минимальности скорости	4
Выражение минимальной скорости	:

Задача 3. Отопление дачного домика

Количество теплоты Q_1 , уходящее за 1 с через стенки домика, равно количеству теплоты, поступающему в домик от батарей отопления, то есть равно мощности батарей W_1 :

$$Q_1 = k_1(t_{\rm B1} - t) = k_2(t - t_1) = W_1,$$

где k_1 и k_2 — коэффициенты пропорциональности. Отсюда

XLI Всероссийская олимпиада школьников по физике

$$\frac{k_1}{k_2} = \frac{t - t_1}{t_{\text{B1}} - t}.$$

Во втором случае

$$Q_2 = k_1(t_{\rm B2} - t) = k_2(t - t_2) = W_2,$$

$$t_{\rm E2} = t + \frac{k_2}{k_1}(t - t_2) = t + \frac{(t_{\rm E1} - t)(t - t_2)}{t - t_1} = 50^{\circ} \rm C.$$

Во втором случае количество теплоты, отдаваемое батареями в домике возросло в n раз:

$$n = \frac{Q_2}{Q_1} = \frac{t_{\text{B2}} - t}{t_{\text{B1}} - t} = 1,5.$$

Мощность нагревательных элементов пропорциональна квадрату силы тока (при неизменном сопротивлении), следовательно,

$$\frac{I_2}{I_1} = \sqrt{\frac{W_2}{W_1}} \approx 1,22.$$

Критерии оценивания

 Нахождение $t_{\rm B2}$ 5

 Нахождение отношения сил токов
 5

Задача 4. «Чёрный ящик»

1. Вольт-амперная характеристика ВАХ 2–3 изображается прямой линией. Это значит, что между выводами 2–3 в «чёрном ящике» включен резистор с постоянным сопротивлением. Обозначим это сопротивление R_1 . По наклону графика находим: $R_1=25\,$ Ом.

2. Обратим внимание на то, что график ВАХ 1–2 расположен выше ВАХ Л. Это означает, что между выводами 1–2 нелинейный элемент (лампочка) включен параллельно второму резистору R_2 . Вольт-амперную характеристику резистора R_2 можно найти, приняв во внимание, что вертикальный отрезок между графиками ВАХ 1–2 и ВАХ Л выражает ток, текущий при каждом значении напряжения U через резистор R_2 . Вычитая по точкам один график из другого, строим вольтамперную характеристику резистора R_2 (ВАХ R_2). По наклону характеристики определяем: $R_2 = 50$ Ом.

3. Таким образом, схема соединений элементов в «чёрном ящике» имеет вид, показанный на рисунке 16.

- 4. Пусть между выводами 1–3 «чёрного ящика» создано постоянное напряжение U_{13} . Тогда по закону Ома будем иметь: $U_{13} = U_{12} + I_{13}R_1 = U_{12} + U_{23}$, где I_{13} сила тока, протекающего по резистору R_1 (то есть между выводами 1–3). С помощью приведённой формулы можно графически (по точкам) построить вольт-амперную характеристику между выводами 1–3 (ВАХ 1–3) (рис. 17). Для этого нужно при каждом значении силы тока $I = I_{13}$ просуммировать напряжения, соответствующие вольт-амперным характеристикам ВАХ 1–2 и ВАХ 2–3. Обратим внимание, что ВАХ 1–3 мало отличается от ВАХ линейного резистора с сопротивлением приблизительно 33 Ом.
- 5. Лампочка горит полным накалом при напряжении $U_0=4,5~\mathrm{B}$ и токе $I_0=0,183~\mathrm{A}\approx 0,18~\mathrm{A}$ (номинальный режим). При таком напряжении на лампочке через резистор R_2 будет протекать ток $I_2=U_0/R_2\approx 0,09~\mathrm{A}$. Следовательно, сила тока между выводами 1–3 будет равна $I_1=I_0+I_2=0,27~\mathrm{A}$. Такой ток создаёт на резисторе R_1 напряжение $U_{23}=I_1R_1=6,75~\mathrm{B}$. Таким образом, чтобы создать на лампочке напряжение $U_0=4,5~\mathrm{B}$, к выводам 1–3 нужно приложить напряжение $U=U_0+U_{23}=11,25~\mathrm{B}$.

Критерии оценивания

Нахождение R_1
Нахождение R_2
Схема «чёрного ящика»
Построение ВАХ 1-3
Определение напряжения 1-3 для создания полного накала

Задача 1. Столкновение дисков

Закон сохранения импульса в случае равных масс дисков даёт $\vec{v}_1 + \vec{v}_2 = \vec{v}$, где v_1 и v_2 — векторы скорости дисков после удара, а v — вектор скорости налетевшего диска до удара. Поэтому векторы скорости составляют треугольник, указанный на рисунке 18.

Сохранение энергии при упругом столкновении да-

ёт $v_1^2 + v_2^2 = v^2$, то есть сумма квадратов двух сторон треугольника равна квадрату третьей. Отсюда следует, что угол между конечными скоростями прямой.

Скорость \vec{v}_1 первого диска после удара направлена по прямой AB. С другой стороны, она приобретается под действием силы, направленной по нормали к поверхности дисков в точке соприкосновения, то есть лежит на прямой. соединяющей центры дисков в момент удара. Поскольку угол между конечными скоростями прямой, то скорость второго шара \vec{v}_2 лежит на прямой, перпендикулярной AB и проходящей

Рис. 19

через точку C. Тогда пересечение этих прямых — точка E — даёт положение центра налетавшего диска в момент удара (рис. 19).

Длина отрезка AB равна $L_1 = v_1 T$, а длина отрезка EC равна $L_2 = v_2 T$, где T — время, прошедшее с момента удара. Поскольку $v^2 = v_1^2 + v_2^2$, то

$$\frac{v_1^2}{v^2} = \frac{L_1^2}{L_1^2 + L_2^2} = \frac{12^2}{12^2 + 9^2} = \frac{16}{25}, \quad \text{и} \quad \frac{v_2^2}{v^2} = \frac{L_2^2}{L_1^2 + L_2^2} = \frac{9^2}{12^2 + 9^2} = \frac{9}{25}.$$

Значит, $v_1 = 0.8v$ и $v_2 = 0.6v$.

Критерии оценивания

Закон сохранения импульса1
Закон сохранения энергии1
Обоснование того, что угол между скоростями прямой
Определение положения точки E
Ответ для v_1
Ответ для v_2

Задача 2. Кривизна траектории Луны

Пусть v_3 — скорость Земли в гелиоцентрической системе отсчёта, v_{π} скорость Луны в геоцентрической системе отсчёта. Тогда справедливы следующие выражения для центростремительных ускорений Земли а, в гелиоцен-

XLI Всероссийская олимпиада школьников по физике

трической системе отсчёта и Луны a_{π} в геопентрической системе отсчёта:

$$a_3 = \frac{v_3^2}{R} = G\frac{m_c}{R^2}, \qquad a_{\pi} = \frac{v_{\pi}^2}{r_{\pi}} = G\frac{m_3}{r_{\pi}^2},$$
 (1)

где G — гравитационная постоянная. Отсюда получаем

$$v_{\scriptscriptstyle \Pi} = v_{\scriptscriptstyle 3} \sqrt{\frac{m_{\scriptscriptstyle 3}}{m_{\scriptscriptstyle c}} \frac{R}{r_{\scriptscriptstyle \Pi}}}.$$
 (2)

В гелиоцентрической системе имеем

$$\frac{(v_3 + v_{\pi})^2}{r_{\pi}} = G\left(\frac{m_{\text{c}}}{(R + r_{\pi})^2} + \frac{m_3}{r_{\pi}^2}\right), \qquad \frac{(v_3 - v_{\pi})^2}{r_{\pi}} = G\left(\frac{m_{\text{c}}}{(R - r_{\pi})^2} - \frac{m_3}{r_{\pi}^2}\right).$$

С учётом (1) и (2) получаем:

$$r_{\text{II}} = R \frac{\frac{r_{\text{II}}}{R} \left(\sqrt{\frac{r_{\text{II}}}{R}} + \sqrt{\frac{m_{\text{3}}}{m_{\text{c}}}}\right)^{2}}{\left(\frac{r_{\text{II}}}{R}\right)^{2} + \frac{m_{\text{3}}}{m_{\text{c}}} \left(1 + \frac{r_{\text{II}}}{R}\right)^{2}} \approx 0,73 \text{ a.e.,}$$

$$r_{\rm H} = R rac{rac{r_{_{
m I}}}{R} \left(\sqrt{rac{r_{_{
m I}}}{R}} - \sqrt{rac{m_{_{
m 3}}}{m_{_{
m c}}}}
ight)^2}{\left(rac{r_{_{
m I}}}{R}
ight)^2 - rac{m_{_{
m 3}}}{m_{_{
m c}}} \left(1 - rac{r_{_{
m I}}}{R}
ight)^2} pprox 1,70 {
m a.e.}$$

Схематическое положение соответствующих центров кривизны показано на рисунке 20. Следует заметить, что траектория Луны в гелиоцентрической системе всюду выпукла.

Критерии оценивания

Выражение для a_3
Выражение для $a_{\scriptscriptstyle \Pi}$
Связь между r_{π}, v_{3} и v_{π}
Связь между $r_{\scriptscriptstyle \rm H},v_{\scriptscriptstyle 3}$ и $v_{\scriptscriptstyle \Pi}$
Окончательная формула для $r_{\scriptscriptstyle \Pi}$
Окончательная формула для $r_{\scriptscriptstyle \rm H}$
Численное значение r_{π}
Численное значение $r_{\scriptscriptstyle \rm H}$
Положение O_{π} и O_{H} на рисунке

Задача 3. Скорость потока воды

Скорости потока в широкой и узкой частях трубы обозначим v_1 и v_2 соответственно. Запишем уравнение Бернулли и условие несжимаемости жидкости:

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2, \qquad v_1 S_1 = v_2 S_2,$$

где p_1 и p_2 — давления, а S_1 и S_2 — площади сечения широкой и узкой частей трубы. Отсюда следует

$$p_1 - p_2 = \frac{1}{2}\rho(v_2^2 - v_1^2) = \frac{1}{2}\rho v_1^2 S_1^2 (\frac{1}{S_2^2} - \frac{1}{S_1^2}), \quad \text{if} \quad V = v_1 S_1 = \sqrt{\frac{2(p_1 - p_2)}{\rho(S_2^{-2} - S_1^{-2})}},$$

где V — объём воды, протекающей по трубе за 1 с. Найдём разность $p_1 - p_2$:

$$p_1 = p_3 + \rho g y_1, \qquad p_2 = p_3 + \rho g y_2 + \rho_M g h,$$

где p_3 — давление в масле на уровне $y_1(\text{рис. 21})$. Выражая площади S_1 и S_2 через диаметры d_1 и d_2 , получим окончательно:

$$V = \frac{1}{2}\pi\sqrt{\frac{gh}{2}\cdot\frac{1-\rho_M/\rho}{d_2^{-4}-d_1^{-4}}} = 5.9 \text{ cm}^3/\text{c}.$$
 PMc. 21

Критерии оценивания

Уравнение Бернулли	1
Уравнение непрерывности	1
Выражение для расхода воды через разность давлений	2
Определение $p_1 - p_2 \dots \dots$	2
Формула для расхода воды	3
Численный ответ	1

Задача 4. Пузырёк воздуха в воде

Давление воздуха в пузырьке у дна сосуда $p_1=p_0+\rho gh$. Пусть после подъёма пузырька вверх давление воздуха стало равным $p_2=p_0+\Delta p$, а объём $V_2=V+\Delta V$. Поскольку $\Delta V_{\tt m}=-\Delta V$, то $\Delta p=-K\Delta V_{\tt m}/V_{\tt m}=K\Delta V/V_{\tt m}$. Так как процесс изотермический, $(p_0+\rho gh)V=(V+\Delta V)(p_0+K\Delta V/V_{\tt m})$. Обозначая отношение $\Delta V/V$ через ε , получим:

$$\rho gh = p_0 \varepsilon + K \varepsilon \frac{V}{V_{K}} + K \frac{V}{V_{K}} \varepsilon^2.$$

Решая квадратное уравнение, получаем:

$$\varepsilon = \frac{-p_0 - K\frac{V}{V_{\text{xx}}} \pm \sqrt{(p_0 + K\frac{V}{V_{\text{xx}}})^2 + \frac{4KV\rho gh}{V_{\text{xx}}}}}{2K\frac{V}{V_{\text{xx}}}}.$$

XLI Всероссийская олимпиада школьников по физике

Давление в верхней части сосуда

$$p_2 = p_0 + K \frac{V}{V_{\text{xx}}} \varepsilon = \frac{p_0 - K \frac{V}{V_{\text{xx}}} + \sqrt{(p_0 + K \frac{V}{V_{\text{xx}}})^2 + \frac{4KV\rho gh}{V_{\text{xx}}}}}{2}.$$

(Мы учли, что объём пузырька не может стать меньше нуля, и поэтому одно из решений не подходит.)

Числовой расчёт даёт для p_2 значение $p_2 = 1.17 \cdot 10^5 \; \Pi a$.

Таким образом, при подъёме пузырька давление во всём сосуде возрастёт на величину $p_2-p_0=0.17\cdot 10^5$ Па. При этом давление в пузырьке изменится на $\Delta p=p_2-p_1=-0.13\cdot 10^5$ Па. Следовательно, $|\Delta p|/p_1=0.1$. В предельных случаях расчёт даёт следующие результаты:

- 1. Из $V \to 0$ следует $p_2 \to p_0$.
- 2. Из $K \to 0$ следует $p_2 \to p_0$.
- 3. Из $K \to \infty$ следует $p_2 \to p_1 = p_0 + \rho g h$.

Примечание. Так как относительное изменение давления в пузырьке при его подъёме достаточно мало, можно было воспользоваться приближённой формулой, связывающей изменения давления и объёма воздуха в пузырьке при его подъёме: $p\Delta V + V\Delta p = 0$. Из этой формулы следует $\Delta p = -p_1\Delta V/V$. Формула для p_2 приобретает следующий приближённый вид:

$$p_2 = p_1 \frac{VK + V_{\text{xx}} p_0}{VK + V_{\text{xx}} p_0 + V_{\text{xx}} \rho g h} \approx 1.15 \cdot 10^5 \text{ Ha}.$$

Предельные переходы дают те же результаты, что и при точном решении. Приближённое решение будет рассматриваться как полное решение задачи при условии обоснованности его применимости ($\frac{|\Delta p|}{\pi} \ll 1$).

Критерии оценивания

Уравнение Бойля-Мариотта с учетом сжимаемости воды
Выражение для давления в пузырьке при его подъёме
Предельный переход $V \to 0$
Предельный переход $K \to 0 \dots 1$
Предельный переход $K \to \infty$
Численный ответ для изменения давления воды при подъёме пузырька 1
Оценка отношения $\frac{ \Delta p }{p_1}$ для воздуха при подъёме пузырька

Задача 5. «Чёрный ящик»

1. Вольт-амперная характеристика, снятая между выводами 2 и 3, является прямой линией. Следовательно, между выводами 2 и 3 включен резистор с постоянным сопротивлением. Обозначим это сопротивление через R_1 . Из наклона графика находим $R_1=50~{\rm Om}$.

Между выводами 1 и 2 (или 1 и 3) включены (параллельно или последовательно) неизвестное сопротивление R_2 и лампочка. Обратим внимание на то, что при номинальном напряжении $U_N=12$ В между выводами 1 и 2 сила протекающего тока I меньше номинального значения тока $I_N=P_N/U_N=0.5$ А. Кроме того, вольт-амперная характеристика ВАХ 1–2 располагается на графике выше ВАХ 2–3. Из этих соображений следует, что обе схемы с параллельным включением лампы и второго резистора невозможны.

Остаются схемы «чёрного ящика», изображённые на рисунках 22,23 и 24. Схема б) также не соответствует условию задачи, так как номинальное значение силы тока $I_N=0.5~\mathrm{A}$ в цепи по условию достигается при $U_{12}=20~\mathrm{B}$. В схеме б) при $U_{12}=20~\mathrm{B}$ сила тока $I_{12}<20/50=0.4~\mathrm{A}$, так как последовательно с лампой Л в цепи 1–2 включено сопротивление $R_1=50~\mathrm{Om}$. Схема в) эквивалентна схеме а) при условии: $R_2^\mathrm{B}=R_2^\mathrm{a}$, $R_1^\mathrm{B}+R_2^\mathrm{B}=R_1^\mathrm{a}$. Далее решение будет проведено для схемы а).

- 2. Как видно из ВАХ 1–2, номинальный ток $I_N=0.5$ А будет протекать через лампу при $U_{12}=20$ В. При таком токе падение напряжения на резисторе R_2 равно $U_{R_2}=8$ В. Отсюда следует $R_2=16$ Ом.
- 3. Построим на графике BAX R_2 . При каждом значении тока I, текущего через последовательно соединённые R_2 и Π , падение напряжения на Π равно $U_{\Pi}=U_{12}-IR_2$. Это соотношение позволяет графически построить BAX нелинейного элемента путём вычитания при заданном токе I напряжений, соответствующих BAX 1–2 и BAX R_2 (рис. 25).
- 4. Аналогичным образом строится BAX 1–3. При каждом значении тока I, текущего между выводами 1 и 3, $U_{13}=U_{12}+IR_1$ Таким образом, задача сводится к суммированию напряжений, соответствующих BAX 1–2 и BAX 2–3, при каждом значении тока I Обратим внимание на то, что нелинейность BAX 1–3 выражена достаточно слабо.

Kpumepuu оценивания

Анализ возможных схем		2
Выбор схемы и определение сопротивления резисторов		3
Построение BAX нелинейного элемента	:	3
Построение ВАХ 1-3		2

Задача 1. Аннигиляция частиц

1. Задачу удобно решать, совместив начало координат с центром масс системы (точка O, рис. 26). Сила притяжения протона и антипротона, находящихся на одинаковых расстояниих от точки O, равна

Рис. 26

$$F = \frac{e^2}{4\pi\varepsilon_0(2r)^2}.$$

Таким образом, сила, действующая на каждую частицу, пропорциональна $1/r^2$, где r — расстояние от неподвижной точки O. Следовательно, потенциальная энергия E_p каждой частицы выражается формулой

$$E_p = \frac{-e^2}{16\pi\varepsilon_0 r}.$$

Знак (-) означает, что частицы притягиваются к точке O. Запишем теперь закон сохранения энергии для каждой частицы:

$$-\frac{e^2}{16\pi\varepsilon_0(L/2)} = -\frac{e^2}{16\pi\varepsilon_0(x/2)} + \frac{mv^2}{2}.$$

Принимая во внимание, что $L\gg x$, получим

$$v = \sqrt{\frac{e^2}{4\pi\varepsilon_0 xm}} = 1.17 \cdot 10^6 \text{ m/c} \ll c,$$

где c — скорость света.

2. Траектории частиц можно рассматривать как вырожденные эллипсы с большой полуосью L/4. Время t, через которое произойдет столкновение протона и антипротона и их аннигиляция, равно половине периода обращения по такому эллипсу. По третьему закону Кеплера период обращения частицы по эллипсу равен периоду обращения по круговой орбите радиуса L/4.

Условие вращения по окружности радиуса L/4 вокруг точки O запишется в виде

$$\begin{split} \frac{mv_0^2}{L/4} &= \frac{e^2}{4\pi\varepsilon_0(2\cdot L/4)^2},\\ T^2 &= \left(\frac{2\pi L/4}{v_0}\right)^2 = \frac{\varepsilon_0 m(\pi L)^3}{e^2},\\ t &= \frac{T}{2} = \frac{1}{2}\sqrt{\frac{\varepsilon_0 m(\pi L)^3}{e^2}} \approx 67 \text{ Mc}. \end{split}$$

3. Отношение $F_{\rm rp}/F_{\rm эл}$ гравитационной и электрической силы, действующих между частицами, равно

$$\frac{F_{\rm rp}}{F_{\rm PH}} = \frac{4\pi\varepsilon_0 Gm^2}{e^2} \approx 10^{-36} \ll 1.$$

Таким образом, гравитационные силы принимать в расчёт не следует. $Kpumepuu\ ouehuвahus$

Выражения для силы и для энергии1
Закон сохранения энергии1
Окончательное выражение для скорости
Численный ответ и проверка на отсутствие релятивистких эффектов1
Идея движения по вырожденной эллиптической траектории
Условие вращения по окружности1
Выражение для времени
Численный ответ
Оценка вклада гравитационной силы

Задача 2. Столкновение дисков

1. Сохранение импульса в случае равных масс дисков даёт $\vec{v_1} + \vec{v_2} = \vec{v}$, где $\vec{v_1}$ и $\vec{v_2}$ — векторы скорости дисков после удара, а \vec{v} — вектор скорости налетевшего диска до удара. Таким образом, векторы составляют треугольник, указанный на рис. 27.

Сохранение энергии при упругом столкновении Рис. 27 даёт $v_1^2 + v_2^2 = v^2$ (сумма квадратов двух сторон треугольника равна квадрату третьей). Отсюда следует, что угол между конечными скоростями прямой. Прямым будет и угол между отрезками x_1 и x_2 , пройденными дисками после столкновения.

Первый диск проходит до остановки расстояние x_1 , откуда $v_1^2=2\mu gx_1$. Для второго диска имеем $v_2^2=2\mu gx_2$. Из закона сохранения энергии можно получить $x_1+x_2=L=\frac{v^2}{2\mu g}$. По теореме $\frac{v^2}{8\mu^2 g^2}$ Пифагора квадрат расстояния между дисками

$$R^{2} = x_{1}^{2} + x_{2}^{2} = 2x_{1}^{2} - 2Lx_{1} + L^{2} = 2x_{1}^{2} - \frac{x_{1}v^{2}}{\mu g} + \frac{v^{4}}{4\mu^{2}g^{2}}.$$

2. Для ответа на второй вопрос рассмотрим это выражение как функцию x_1 (рис. 28). Понятно, что $L \geqslant x_1 \geqslant 0$. На концах интервала R^2 принимает наибольшее значение, тогда $R = L = v^2/(2\mu g)$. Наименьшее значение достигается

после их остановки

при $x_1 = L/2$, тогда

$$R^2 = \frac{L^2}{2}, \qquad R = \frac{L}{\sqrt{2}} = \frac{v^2}{2\sqrt{2\mu g}}.$$

Случай $x_1 = 0$ соответствует скользящему столкновению, случай $x_1 = L -$ лобовому.

Критерии оценивания

Векторная запись закона сохранения импульса	2
Обоснование того, что угол между скоростями прямой	2
Формулы для расстояний, пройденных дисками	2
Формула квадрата расстояния между дисками после их остановки	1
Исследование экстремальных значений расстояния	3

Задача 3. Теплотрасса

Рассмотрим малый участок трубы Δx (рис. 29). В выделенный участок трубы вода втекает при температуре t, а вытекает при температуре $t+\Delta t$ ($\Delta t<0$). Таким образом, за время $\Delta \tau$ протекшая вода отдаёт на участке Δx количество теплоты $\Delta Q=-$

Рис. 29

 $-c\mu\Delta t\Delta \tau$, где c — удельная теплоемкость воды. Такое же количество теплоты в стационарном режиме передается через теплоизолирующий слой окружающему воздуху.

$$\Delta Q = \chi \frac{2\pi R \Delta x}{h} (t - t_{\text{\tiny B}}) \Delta \tau.$$

Приравнивая эти выражения и в пределе, заменяя Δt и Δx на dt и dx, можно записать

$$\frac{dt}{t - t_{\rm R}} = -Adx,\tag{3}$$

где $A=\chi \frac{2\pi R}{c\mu h}$ — постоянный множитель. При вычислении численного значения A следует учесть поправку на толщину теплоизолирующего слоя и вместо значения R=20 см подставлять (R+h/2)=22 см. Тогда

$$A = \frac{0.08 \cdot 2 \cdot 3.14 \cdot 0.22}{4200 \cdot 100 \cdot 0.04} = 6.54 \cdot 10^{-6} \text{ m}^{-1}.$$

Интегрируя левую часть уравнения (3) в пределах от t_0 до t_{κ} , а правую, соответственно, от 0 до L, получим

$$\ln \frac{t_{\rm \scriptscriptstyle K} - t_{\rm \scriptscriptstyle B}}{t_0 - t_{\rm \scriptscriptstyle B}} = -AL,$$

$$t_{\rm K} = t_{\rm B} + (t_0 - t_{\rm B})e^{-AL}$$
.

- 1. Для теплотрассы длиной $L_1=10$ км $t_{\kappa 1}=-20+(120+20)e^{-0.0654}\approx \approx 111$ °C
- 2. Для теплотрассы длиной $L_2=100$ км $t_{\kappa 2}=-20+(120+20)e^{-0.654}\approx 53$ ° С Примечание. При длине теплотрассы $L_1=10$ км температура понизилась незначительно, поэтому в этом случае задачу можно решить приближенно без

незначительно, поэтому в этом случае задачу можно решить приолиженно оез интегрирования уравнения, предполагая, что теплообмен с окружающим воздухом во всей трубе идет при разности температур $(t_0 - t_{\rm B})$, как на начальном участке теплотрассы. Это приволит к уравнению

$$-c\mu(t_{k1} - t_0) = \chi \frac{2\pi R L_1}{h}(t_0 - t_{\text{B}}).$$

Выражая $t_{\kappa 1}$, получим

$$t_{\rm K1} = t_0 - AL_1(t_0 - t_{\rm B}) \approx 111^{\circ}{\rm C}$$

Подсчет температуры $t_{\rm k2}$ подобным методом приводит к ошибочному результату: $t_{\rm k2}\approx 28^{\circ}{\rm C}$. Однако, можно предположить, что теплообмен вдоль всей теплотрассы происходит при некоторой средней температуре воды $(t_0+t_{\rm k})/2$. В этом случае

$$t_{\rm K2} = \frac{t_0 - AL_2(t_0/2 - t_{\rm B})}{1 + AL_2/2} \approx 50^{\circ} \text{C},$$

что является уже вполне приличным приближением.

Критерии оценивания

Выражение для теплоотдачи
Идея разделения переменных
Учет толщины теплоизолирующего слоя1
Интегрирование уравнения
Выражение конечной температуры в явном виде
Численный ответ для случая 11
Численный ответ для случай 2

Задача 4. Светодиоды

При движении стержня в магнитном поле в нем возникает ЭДС индукции $|\mathcal{E}^{\text{инд}}| = \Delta \Phi/\Delta t$, модуль которой зависит от времени. Знак $\mathcal{E}^{\text{инд}}$ может быть определён либо из выражения для силы Лоренца, либо из закона электромагнитной индукции Фарадея. В итоге приходим к эквивалентной схеме замкнутой электрической цепи (рис. 30). Обратим внимание на то, что $\mathcal{E}^{\text{инд}}$ и \mathcal{E}_0 включены в цепь навстречу друг другу.

$$|AB| = 2|AD| = 2\sqrt{R^2 - (R - vt)^2} = 2\sqrt{vt(2R - vt)}.$$

Изменение магнитного потока за малое время Δt равно $\Delta \Phi = B \cdot |AB| \cdot v \Delta t$. Отсюда находим

$$|\mathcal{E}^{\text{инд}}| = 2Bv\sqrt{vt(2R - vt)}.$$

Максимальное значение $\mathscr{E}^{\text{инд}}$ достигается при t=R/v

$$|\mathscr{E}^{\text{инд}}|_{\text{max}} = 2BvR = 1 \text{ B}.$$

Напряжение на светодиодах равно $U=\mathscr{E}_0$ — $-\mathscr{E}^{\text{инд}}$. Качественно зависимость U(t) может быть представлена графически (рис. 32). Из приведенного графика следует, что светодиод С2 будет светиться при $U \geqslant 0.25$ B, то есть на интервалах времени $[0,t_1]$ и $[t_4,t_0]$, где $t_0=2R/v$. Светодиод C_1 будет светиться при U < -0.25 B, то есть на интервале времени $[t_2,t_3]$.

Найдём моменты времени t_1 и t_2 . Моменты времени t_3 и t_4 находятся из симметрии графика: $t_3 =$ $= t_0 - t_2, t_4 = t_0 - t_1.$

 \square ля t_1 и t_4

$$R$$
 O $V \Delta t$

Рис. 30

$$\mathscr{E}_0 - 2Bv\sqrt{vt_{1,4}(2R - vt_{1,4})} = 0.25 \text{ B} = \frac{1}{4}|\mathscr{E}^{\text{инд}}|_{\max} = \frac{1}{2}BvR.$$

Принимая во внимание $\mathscr{E}_0 = \frac{1}{2} |\mathscr{E}^{\text{инд}}|_{\text{max}} = BvR$, приходим к квадратному уравнению

$$t_{1,4}^2 - \frac{2R}{v}t_{1,4} + \frac{1}{16}\frac{R^2}{v^2} = 0,$$

откуда $t_{1,4} = \frac{R}{v} \left(1 \pm \sqrt{\frac{15}{16}} \right) = 5 \cdot 10^{-3} \cdot (1 \pm 0.97)$ с. Таким образом, $t_1 = 150$ мкс, $t_{4} = 9.85 \text{ MC}.$

Аналогично для t_2 и t_3

$$t_{2,3}^2 + \frac{2R}{v}t_{2,3} + \frac{9}{16}\frac{R^2}{v^2} = 0,$$

$$t_{2,3} = \frac{R}{v} \left(1 \pm \sqrt{\frac{7}{16}} \right) = 5 \cdot 10^{-3} \cdot (1 \pm 0,66) \text{ c.}$$
 $t_2 = 1.8 \text{ mc}$ $t_3 = 8.3 \text{ mc.}$

Критерии оценивания

Выражение для $\mathscr{E}^{\text{инд}}$ и эквивалентная схема	. 2
Определение $ \mathscr{E}^{\text{инд}} _{\max}$. 1
Формула для напряжения на светодиодах	
Построение графика зависимости напряжения на светодиодах от времени.	. 2
Определение моментов времени зажигания и гашения светодиода $C_1 \ldots \ldots$. 2
Определение моментов времени зажинагия и гашения светодиода С2	. 2

Задача 5. Параметрические колебания

1. За период колебаний $T=2\pi\sqrt{LC}$ внешние силы дважды совершают положительную работу по раздвижению пластин конденсатора в моменты максимального значения U_m напряжения. Эта работа затрачивается на увеличение энергии конденсатора

$$A = \Delta W = 2\Delta \left(\frac{q^2}{2C}\right) = -\frac{q^2}{C^2}\Delta C = \varepsilon C U_m^2.$$

Здесь $q = CU_m$ — заряд конденсатора, $\Delta C < 0$ — изменение ёмкости конденсатора, $\varepsilon = -\Delta C/C$ — относительное изменение ёмкости (по модулю). При скачкооюразном увеличении ёмкости до прежнего значения внешние силы работы не совершают, так как в эти моменты напряжение на конденсаторе равно нулю. При колебаниях тока в цепи часть энергии выделяется в виде джоулева тепла на лампочке, которая является инерционным нелинейным элементом. Она будет вести себя как резистор, сопротивление которого при малых колебаниях определяется наклоном касательной к вольт-амперной характеристике в начале координат.

Рис. 33. Вольт-амперная характеристика лампочки.

Из приведённого графика (рис. 33) следует $R_0 = 2$ Ом.

Таким образом, на лампочке за период колебаний T будет рассеиваться энергия

$$\Delta Q = \frac{R_0 I_m^2}{2} T = \frac{R_0 T}{2} \omega^2 C^2 U_m^2.$$

Здесь $I_m = \omega C U_m$ — амплитуда колебаний тока на лампочке. Условие возбуждения незатухающих параметрических колебаний запишется в виде

$$\Delta W \geqslant \Delta Q$$
, или $\varepsilon C U_m^2 \geqslant \frac{R_0 T}{2} \omega^2 C^2 U_m^2$.

XLI Всероссийская олимпиада школьников по физике

Принимая во внимание $T=2\pi/\omega=2\pi\sqrt{LC}$, получим для ε_{\min} :

$$\varepsilon_{\min} = \frac{R_0 T}{2} \omega^2 C = \frac{R_0}{2} \cdot 2\pi \sqrt{LC} \cdot \frac{1}{LC} \cdot C = \pi R_0 \sqrt{\frac{C}{L}}.$$

Подстановка числовых значений даёт $\varepsilon_{\min} = 6.3 \cdot 10^{-3} = 0.63\%$.

2. Период колебаний $T=2\pi\sqrt{LC}=6,3\cdot 10^{-4}$ с. Температура нити лампочки за период не успевает измениться, поэтому лампочка ведёт себя просто как резистор. Как следует из пункта 1, её сопротивление в установившемся режиме при $\varepsilon=3\%$ равно $R=(\varepsilon/\pi)\sqrt{L/C}=9,55$ Ом. Проведём на вольт-амперной характеристике прямую, соответствующую этому значению сопротивления. Точка пересечения прямой с вольт-амперной характеристикой лампочки определяет эффективное напряжение на лампочке $U_{9\phi\phi}=1,75$ В. Следовательно, $U_0=\sqrt{2}U_{9\phi\phi}\approx 2.5$ В.

Примечание. Из-за неточности графического определения R_0 и $U_{• ф ф}$ численные значения этих величин могут отличаться приблизительно на 5%.

Критерии оценивания

Работа внешних сил за период колебаний1
Графическое определение R_0 1
Выражение для потерь энергии за период
Условие возбуждения незатухающих колебаний
Определение ε_{\min}
Определение R в стационарном режиме колебаний (при $\varepsilon=3\%$)
Графическое определение $U_{• ф ф}$ на лампочке в стационарном режиме1
Определение амплитуды стационарных колебаний