1. (10 points) We can represent the polynomial as a set of vectors:

$$\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\-4\\1\\0 \end{bmatrix}, \begin{bmatrix} 6\\-18\\9\\1 \end{bmatrix} \right\}$$

In this form it is clear that the set is linearly independent, therefore the set is linearly independent and is a basis for \mathbb{P}_3 .

The change of basis matrix from \mathbb{C} to \mathbb{B} is composed of the vectors above:

$$\begin{bmatrix} 1 & 1 & 2 & 6 \\ 0 & -1 & -4 & -18 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$[u]_{\mathbb{B}} = \begin{bmatrix} 1 & 1 & 2 & 6 \\ 0 & -1 & -4 & -18 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 9 \\ -1 \end{bmatrix} = \begin{bmatrix} 22 \\ -51 \\ 18 \\ -1 \end{bmatrix}$$

2. (5 points) rank A = 5

$$\begin{array}{l} \operatorname{dim} \, \operatorname{Nul} \, A = 0 \\ \operatorname{dim} \, \operatorname{Nul} \, A = n - rank A = 1 \\ \operatorname{Basis} \, \operatorname{Col} \, A = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ -13 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} \\ \operatorname{Basis} \, \operatorname{for} \, \operatorname{row} \, \operatorname{space} = \left\{ \begin{bmatrix} 1 \\ 1 \\ -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -13 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

3. To find the characteristic polynomial we simply set the determinant of $\begin{bmatrix} 4-\lambda & 4\\ 1 & 4-\lambda \end{bmatrix}$ equal to 0 and solve. We find that it is $(4-\lambda)^2-4=(\lambda-2)(\lambda-6)=0$. We plug each of the solutions into the matrix $A-\lambda I$ and solve for 0 to get $Span\left\{\begin{bmatrix} -2\\ 1\end{bmatrix}\right\}$ when $\lambda=2$ and $Span\left\{\begin{bmatrix} 2\\ 1\end{bmatrix}\right\}$ when $\lambda=6$. So two linearly independent eigenvectors are $\begin{bmatrix} -2\\ 1\end{bmatrix}$ and $\begin{bmatrix} 2\\ 1\end{bmatrix}$.

4. $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 & 0 \\ 0 & 1 - \lambda & 3 \\ 0 & 0 & 1 - \lambda \end{bmatrix}$ so $det A = (1 - \lambda)^3$, and the matrix is singular when $\lambda = 1$.

We substitute this eigenvalue back into $A - \lambda I$ to get $\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$. We set this matrix to 0 and get

the solution $Span \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$ and this is the only eigenvector.

5. Since this is a triangular matrix we can immediately see that the determinant is the product is the product of the diagonal entries. So the characteristic polynomial is $(4 - \lambda)(3 - \lambda)(2 - \lambda) = 0$.

When we substitute each of these into the matrix $A - \lambda I$ we get the solutions $Span \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$,

 $Span \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}, \text{ and } Span \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ so three linearly independent eigenvectors are } \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$ and $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$

6. $A - 4I_4 = \begin{bmatrix} 0 & 2 & 3 & 3 \\ 0 & -2 & h & 3 \\ 0 & 0 & 0 & 14 \\ 0 & 0 & 0 & -2 \end{bmatrix}$. After row reduction, we have $\begin{bmatrix} 0 & 0 & h+3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ and we see

7. We know that $(A+B)^T = A^T + B^T$ and det $A = \det A^T$. So $\det(A-\lambda I) = \det(A-\lambda I)^T = \det(A^T - (\lambda I)^T) = \det(A^T - \lambda I)$.