ТЕОРИЯ НА ГРАФИТЕ. ДЪРВЕТА

Графи

- **>** <u>Дефиниция:</u> **Граф** G = (V, E), където:
- \circ V≠Ø е множество на възлите;
- \circ E множество на връзките между възлите, наречени ребра.

Ребрата са неподредена двойка от по два възела $e = \{u, v\}$.

Казваме, че графите са **прости** или **ненасочени**, ако ребрата са им ненасочени, т.е. няма значение кой е първи и кой втори възел.

- ightharpoonup Дефиниция: Два възела u и v в ненасочения граф G = (V, E) се наричат cъсеdнu в G, ако u и v са крайни точки на реброто e в G. Реброто e се нарича uнuиdенuнu0 с e0 сърховеu0 и v0 или казваме, че e0 сe0 совързe2 u0 и v0.
- ightharpoonup Дефиниция: Броят на ребрата, инцидентни с върха $a \in V$ ще наричаме *степен* на върха a и ще означаваме с $\deg(a)$.
- ightharpoonup <u>Дефиниция:</u> Един връх $a \in V$ се нарича *изолиран*, ако $\deg(a) = 0$ и *краен (лист)*, ако $\deg(a) = 1$.
- ightharpoonup Дефиниция: За граф G=(V,E) с $V=\{v_1,\ldots,v_n\}$ матрица на съседство наричаме квадратна матрица $M=(m_{i,j})_{1\leq i,j\leq n}$ с размерност броя на върховете |V|=n, където

$$m_{i,j} =$$

$$\begin{cases} 1, & \text{ако } \{v_i, v_j\} \in E \\ 0, & \text{ако } \{v_i, v_j\} \notin E \end{cases}.$$

Пример: За ненасочения граф G имаме:

Степени:

$$deg(a) = 2, deg(b) = 4, deg(c) = 4$$

 $deg(d) = 1, deg(e) = 3, deg(f) = 4, deg(g) = 0$

Списък на съседство:	Матрица на съседство:
a: b, f b: a, c, e, f c: b, d, e, f d: c e: b, c, f f: a, b, c, e	$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

У Дефиниция: G = (V, E) е насочен граф, ако:

$$\circ$$
 $G = (V, E)$ е граф;

 \circ E - множество от наредени двойки върху V.

Ребрата в насочения граф се наричат клони.

От ненасочен граф ще получим насочен, ако във всяко ребро дефинираме начало и край.

 \triangleright Дефиниция: Ако $a \in V$, то с deg⁺(a) ще означаваме броя на ребрата с начало a(изходящи или излизащи ребра за a), а с $\deg^-(a)$ — броя на ребрата с край a (входящи или **влизащи** ребра за a).

Пример: За насочения граф Н имаме:

Входящи:

$$deg^{-}(a) = 2, deg^{-}(b) = 2, deg^{-}(c) = 3,$$

 $deg^{-}(d) = 2, deg^{-}(e) = 3, deg^{-}(f) = 0$

Изходящи:

$$\deg^+(a) = 4, \deg^+(b) = 1, \deg^+(c) = 2, \deg^+(d) = 2, \deg^+(e) = 3, \deg^+(f) = 0$$

Задачи:

Задача 1. Постройте ненасочените графи G = (V, E):

a)
$$V = \{a, b, c, d, e\}$$

$$E = \{aa, ac, bc, ad, de, ae\}$$

$$E = \{aa, ac, bc, ad, de, ae\}$$

б)
$$V = \{a, m, p, s, v\}$$

$$E = \{am, ap, av, pv\}$$

Задача 2. За графите от **задача 1**

а) постройте матрицата на съседство;

Задача 3. За дадения граф:

- а) постройте матрицата на съседство;
- б) определете списъка на съседство;.
- в) определете степените на върховете.

б) списъка на съседство.

Задача 4. Постройте насочения граф G = (V, E)

$$V = \{a, b, c, d, e, f, g\}$$

$$E = \{(a, a), (a, b), (b, a), (b, c), (c, e), (e, f), (f, d), (g, a)\}$$

- а) постройте матрицата на съседство;
- б) списъка на съседство;
- в) определете степените на върховете.

Движения през граф

ightharpoonup Дефиниция: Нека G = (V, E), е граф. *Маршрут* (walk) W с дължина n > 0 в G наричаме редицата:

$$v_0$$
, e_1 , v_1 , e_2 , v_2 , ..., v_{n-1} , e_n , v_n ,

така че $v_k \in V$, а $e_k \in E$ за всяко $k=1,\dots,n$ като e_k свързва v_{k-1} и v_k , т.е. W свързва v_0 и v_n от v_0 към v_n .

- Всяко ребро може да се разглежда като маршрут с дължина 1.
- Aко $v_0 = v_n$ и $n \ge 1$, то казваме че маршрута W е затворен. B противен случай е незатворен.
- Ако всички ребра в W са различни се нарича верига (trail), (ако не е затворен).
- Ако всички възли му са различни се нарича елементарен маршрут или път.
- Ако W е затворен и е верига като всичките му възли са различни, казваме че W е цикъл.
- Забелязваме, че в геометрична реализация елементарната верига образува проста незатворена линия, а елементарния цикъл проста затворена линия.

Задача 5. За графа от *задача 1. а)* проверете дали:

- a) *b*, *c*, *a*, *d*, *a* е маршрут
- б) *b*, *c*, *a*, *d*, *a* е верига
- в) b, c, a, a, d, e е елементарна верига
- Γ) a, a, d, e, a е затворена верига
- д) *a, a, d, e, a* е цикъл

Задача 6. За дадения граф определете вида на :

- a) *a*, *d*, *c*, *f*, *e*
- б) *d, e, c, a*
- в) *b, c, f, e, b*
- г) a, b, e, d, a, b

- ightharpoonup <u>Дефиниция:</u> Казваме, че G=(V,E) е *свързан граф*, ако за всеки два възела съществува маршрут от единия към втория.

Задача 7. Определете дали следните графи са свързани или не

Компонент на G е един максимален свързан подграф на G, (т.е. един свързан подграф на G), който не е подграф на никой друг свързан подграф на G.

<u>Задача 8.</u> Свързани ли са графите от задача 1. Определете компонентите им, ако не са. <u>Задача 9.</u> За графа:

- а) Определете колко вериги можем да построим между v1 и v2 ?
- б) Коя от тях е с най-малка дължина r(v1, v2)?
- в) Коя е най-дългата верига, която можем да построим в графа?
- г) А най-дългия път?
- д) Има ли цикли кои са те?
- е) А паралелни ребра?

Ойлеров и Хамилтънов граф

- ▶ Дефиниция: Цикъл (или тур) на Ойлер в G е затворена верига, която съдържа всяко ребро само веднъж. Всеки граф, който притежава Ойлеров цикъл се нарича Ойлеров граф.
- > Дефиниция: *Ойлеров път* в G е елементарна верига, която съдържа всяко ребро на G.

<u>Задача 10.</u> Определете дали следните насочени и ненасочени графи имат Ойлеров цикъл или Ойлеров път:

- > <u>Дефиниция:</u> **Цикъл на Хамилтън** в G е цикъл, който съдържа всеки възел на графа. Граф, притежаващ Хамилтънов цикъл се нарича **Хамилтънов граф.**
 - **Хамилтънов цикъл** в G е свързан подграф на G, съдържащ всичките му възли, в който всеки възел има степен 2.
 - Всяка проста верига, съдържаща всички възли на един граф G е Xамилтънова верига.
 - Ако един граф е Хамилтънова верига, но не е Хамилтънов цикъл, то той е полухамилтънов граф.

Задача 11. Определете дали следните графи имат Хамилтънов цикъл или Хамилтънова верига.

<u>Задача 12.</u> Покажете, че можете да начертаете следните графи без да вдигате молива. Определете дали са Ойлерови цикли, Хамилтънови цикли или Хамилтънови вериги:

<u>Задача 13.</u> Задачата за Кьонингсбергските мостове Можем ли да обходим всички мостове като минаваме по тях само веднъж?

- а) Може ли да построим Ойлеров цикъл?
- б) А Хамилтънов цикъл?
- в) А Хамилтънова верига?

Изоморфизъм

ightharpoonup Дефиниция: Нека G=(V,E) и H=(W,F) са графи. Казваме, че са *изоморфни*, ако съществува биекция $\varphi:V\to W$, така че за всяко u,v от $V\colon\{u,v\}\in E$ следва, че $\{\varphi(u),\varphi(v)\}\in F$. Тази биекция φ наричаме *изоморфизъм* между двата графа.

Задача 16. Определете дали следните двойки графите са изоморфни.

Задача 17. Някои от графите са изоморфни. Кои са те?

Дървета

- **Дефиниция: Дървото** е свързан, ориентиран граф, който не съдържа затворени вериги. Обикновено се бележи с Т.
 - Дървото има един специален възел корен.
 - Дърво с корен бележим (Т,г).
 - Възли, от които не излиза ребро се наричат листа.
 - Останалите вътрешни възли.
 - Дължината на пътя от корена до най-далечното листо се нарича височина на дървото.
- ▶ Дефиниция: Две дървета са изоморфни тогава и само тогава, когато съществува биекция между множествата на възлите им, която запазва съседите, не съседите и възела.

Обхождане на дървета

Алгоритъм за Preorder за генериране списък на възлите (<i>от горе - надолу</i>)	Алгоритъм за Inorder за генериране списък на възлите
procedure <i>preorder</i> (<i>T</i> : ordered rooted tree)	procedure inorder (T: ordered rooted tree)
r := root of T	r:= root of T
list r	if r is a leaf then list r
for each child c of r from left to right	else
T(c):=subtree with c as its root	l:= first child of r from left to right
$preorder\left(T(c) ight)$	T(l):=subtree with l as its root
Алгоритъм за Postorder за генериране списък на възлите (<i>omdoлy нагоре</i>)	$inorder\left(T(l) ight)$
	list r
	for each child c of r except for l from left to
<pre>procedure postorder (T: ordered rooted tree)</pre>	right
r := root of T	T(c):=subtree with c as its root
for each child c of r from left to right	inorder (T(c))
T(c):=subtree with c as its root	
$postorder\left(T(c)\right)$	
list r	
	<u> </u>

Пример: Обхождане на дървото:

Preorder: обхождане първо на корена, а после на поддърветата от ляво на дясно

Postorder: обхождане на поддърветата от ляво на дясно, а след това обхождане на корена

Inorder

jenkopbfaclgmdhi

Задачи:

Задача 1. Начертайте всички неизоморфни дървета с 5 възела.

Задача 2. Начертайте всички неизоморфни дървета с корен с 4 възела.

Задача 3. Начертайте пълно бинарно дърво с корен с

а) 11 възела

б) 14 възела.

Възможно ли е? Колко листа и вътрешни възли има?

Задача 4. Как ще обходим дървото, ако използваме

- а) преордер (от горе надолу)
- б) постордер (отдолу нагоре)

<u>Задача 5.</u> За двоичното дърво обходете възлите с **inorder**

Допълнителни задачи:

Задача 1. За дадените графи:

- а) постройте матрицата на съседство;
- б) определете списъка на съседство;.
- в) определете степените на върховете.

Задача 2. За дадените графи определете вида на:

Задача 3. Определете дали в дадените графи има:

а) Ойлеров цикъл;

г) *c, b, d, a, e, c*

- б) Ойлерови път;
- в) Хамилтънов цикъл;
- г) Хамилтънова верига.

г) a, b, e, c, b, d, a

Задача 4. Как ще обходим дървото, ако използваме метод за генериране на списък на възлите:

