Politechnika Warszawska

Metody Komputerowe w Spalaniu

Analiza laminarnej prędkości spalania wodoru w zależności od współczynnika ekwiwalencji

Adrian Kowalczyk

Prowadzący: dr mgr. Mateusz Żbikowski

Data oddania: **03.06.2025 r.**

Spis treści

1	Wprowadzenie	3
2	Metodyka obliczeń	3
3	Analiza wyników	3
	3.1 Laminarna prędkość spalania	3
	3.1.1 Freeflame	3
	3.1.2 Burnerflame	5
	3.1.3 Wyniki eksperymentalne	
	3.2 Profil stężenia wodoru	7
	3.3 Wydzielanie ciepła	
	3.4 Zmienność lepkości dynamicznej	10
	3.5 Profil temperatury	11
4	Porównanie metod symulacji w Cantera	12
5	Wnioski	12
6	Bibliografia	13

1 Wprowadzenie

Spalanie wodoru jest istotnym procesem w badaniach nad ekologicznymi źródłami energii. Laminarną prędkość spalania (SL) można wyznaczyć w różnych warunkach, uwzględniając m.in. współczynnik ekwiwalencji (ϕ) . W niniejszym raporcie przeprowadzono analizę wpływu ϕ na prędkość spalania oraz dokonano porównania dwóch metod symulacji procesów spalania w **Cantera**: BurnerFlame oraz FreeFlame.

2 Metodyka obliczeń

Symulacje zostały przeprowadzone przy użyciu modelu FreeFlame w Cantera, dla mieszanki wodoru z powietrzem w temperaturze 300K i ciśnieniu atmosferycznym. Przyjęte wartości ϕ obejmowały zakres od 0.4 do 4.0. Symulacje przy użyciu modelu Burnerflame zostały przeprowadzone dla tych samych warunków brzegowych, a prędkość przepływu ustalono na 0.5 m/s. Przeprowadzone będzie porównanie obu metod i wyciągnięcie wniosków, która metoda do jakich przypadków jest lepsza. Laminarną prędkość spalania obliczono poprzez analizę profilu prędkości płomienia.

3 Analiza wyników

3.1 Laminarna prędkość spalania

3.1.1 Freeflame

ϕ	Długość płomienia [m]	Laminarną prędkość spalania [m/s]
0.4	0.0800	0.1145
0.6	0.0800	0.8515
0.8	0.0800	1.9207
1.0	0.0800	2.4171
1.2	0.0800	2.9934
1.4	0.0800	3.2512
1.6	0.0800	3.2599
2.0	0.0900	3.0836
3.0	0.0900	2.2577
4.0	0.0800	1.7451

Table 1: Porównanie długości płomienia i prędkości spalania dla różnych wartości ϕ (metoda spalania Freeflame) .

Figure 1: Wykres prędkości spalania dla różnych wartości ϕ (metoda spalania Freeflame).

Wyniki pokazują, że laminarną prędkość spalania wzrasta wraz ze współczynnikiem ekwiwalencji, osiągając maksimum dla $\phi=1.6$ (3.2599 m/s). Następnie dla mieszanki bogatszej niż stechiometryczna ($\phi>2.0$) prędkość spalania zaczyna spadać. Jest to spowodowane nadmiarem paliwa w stosunku do dostępnego utleniacza, co ogranicza intensywność reakcji spalania.

Analiza długości płomienia powstała na bazie analizy profilu temperatury. Wyniki pokazują, że pozostaje ona stosunkowo stała dla ϕ w zakresie 0.4 – 1.6, wynosząc około 0.0800 m. W przypadku bardziej bogatych mieszanek, $\phi=2.0$ oraz $\phi=3.0$, długość płomienia wzrasta do 0.0900 m. Może to wynikać z większej ilości wydzielanego ciepła, które wpływa na strukturę płomienia.

ϕ	Laminarną prędkość spalania [m/s]
0.4	0,5
0.6	2,5311
0.8	2,6196
1.0	2,6922
1.2	$2,\!4527$
1.4	2,281
1.6	2,2179
2.0	2,1537
3.0	2,0889
4.0	2,0416

Table 2: Porównanie długości płomienia i prędkości spalania dla różnych wartości ϕ .

3.1.2 Burnerflame

Figure 2: Wykres prędkości spalania dla różnych wartości ϕ .

Na podstawie wyników można zauważyć, że dla $\phi=0.4$ nie dochodzi do zapłonu mieszanki, przez co laminarna prędkość spalania dla tego punktu jest równa zadanej prędkości przepływu. Kolejne wartości prędkości wyglądają rozsądnie. Maksymalna wartość laminarnej prędkości spalania występuje dla $\phi=1$ (2,6922 m/s). Następnie dla mieszanek bogatych prędkość spalania zaczyna spadać hiperbolicznie. Porównując wyniki do wyników eksperymentalnych należy stwierdzić, że metoda ta jest obarczona błędami, ponieważ z badań wynika, że maksymalne wartości laminarnej prędkości spalania osiąga się w przybliżeniu dla ($\phi=1.6$).

3.1.3 Wyniki eksperymentalne

Figure 3: Wykres prędkości spalania dla różnych wartości ϕ .

Hydrogen concentration (%)

$$\phi = \frac{(F/A)_{\text{rzeczywisty}}}{(F/A)_{\text{stech}}}$$

$$(F/A)_{\text{stech}} = \frac{1}{2.38} \approx 0.420$$

$$(F/A)_{\text{rzeczywisty}} = \frac{0.40}{0.60} = 0.667$$

$$\phi = \frac{0.667}{0.420} \approx \boxed{1.59}$$

3.2 Profil stężenia wodoru

Figure 4: Profil stężenia wodoru (H2) w płomieniu w zależności od współczynnika ekwiwalencji.(Metoda Freeflame)

Na wykresie 4 przedstawiono rozkład stężenia wodoru wzdłuż płomienia dla różnych wartości współczynnika ekwiwalencji. Widać, że dla bogatszych mieszanek ($\phi > 1$) zawartość paliwa w początkowej fazie spalania jest wyższa, co zwiększa ilość dostępnego wodoru w strefie reakcji. W mieszankach ubogich ($\phi < 1$) spalanie przebiega szybciej, a stężenie wodoru gwałtownie maleje.

Figure 5: Profil stężenia wodoru (H2) w płomieniu w zależności od współczynnika ekwiwalencji.(Metoda Burnerflame)

Proces spalania w tej metodzie występuje od razu, a nie jak w poprzednim przypadku w okolicach 3cm od początku analizowanego przypadku. Pomimo różnic stężenie wodoru w spalinach jest bardzo zbilżone co świadczy o poprawnym procesie spalania.

3.3 Wydzielanie ciepła

Figure 6: Maksymalna szybkość wydzielania ciepła w płomieniu w zależności od współczynnika ekwiwalencji.(Metoda Freeflame)

Wykres 6 pokazuje intensywność wydzielania ciepła w różnych warunkach spalania. Można zauważyć, że dla $\phi \approx 1.2-1.6$ osiągane są największe wartości. Bogate mieszanki sprzyjają wzrostowi wydzielania ciepła, co może wpływać na stabilność płomienia oraz jego długość.

Figure 7: Maksymalna szybkość wydzielania ciepła w płomieniu w zależności od współczynnika ekwiwalencji.(Metoda Burnerflame)

Na powyższym wykresie widoczne jest ustalenie się spalania na "garbie". Zauważalna jest tendencja w tej metodzie spalania, że najefektywniejsze spalanie jest dla mieszanki stechiometrycznej, co nie jest zgodne z doświadczeniami. Bogatsze i uboższe mieszanki osiągają niższe wartości wydzielania ciepła i przesunięte są w wzdłuż kierunki=u spalania.

3.4 Zmienność lepkości dynamicznej

Figure 8: Zmienność lepkości dynamicznej w płomieniu dla różnych współczynników ekwiwalencji.(Metoda Freeflame)

Wykres 8 przedstawia lepkość płomienia, która odgrywa kluczową rolę w transporcie masy i energii. Wraz ze wzrostem ϕ lepkość płomienia również się zwiększa. Wyższa lepkość wpływa na efektywność mieszania składników oraz wpływa na stabilność spalania.

Figure 9: Zmienność lepkości dynamicznej w płomieniu dla różnych współczynników ekwiwalencji.(Metoda Burnerflame)

Zmiana lepkość w tej metodzie zbliżona jest do metody pierwszej. Wartości również nieznacznie różnią się, świadczy to o poprawnym mechanizmie spalania. Dla $\phi=0.4$ proces spalania nie został przeprowadzony, może wynikać to z za niskiego stężenia wodoru(12%).

3.5 Profil temperatury

Figure 10: Profil temperatury w płomieniu wodoru w zależności od współczynnika ekwiwalencji.(Metoda Freeflame)

Na wykresie 10 przedstawiono zmianę temperatury wzdłuż płomienia. Maksimum temperatury osiągane jest w pobliżu $\phi=1.6$, co pokrywa się z wynikami dla laminarniej prędkości spalania. W bogatszych mieszankach płomień jest cieplejszy, co wpływa na szybkość reakcji oraz jego długość.

Figure 11: Profil temperatury w płomieniu wodoru w zależności od współczynnika ekwiwalencji.(Metoda Burnerflame)

Profile temperatur są znacznie niższe niż w poprzednim przypadku, lecz rozkład ten jest zbliżony do rozkładu profilu prędkości, ze względu na powiązanie tych parametrów w równaniu spalania. Gdy więc prędkości spalania są niższe to i można było się spodziewać niższych temperatur maksymalnych.

4 Porównanie metod symulacji w Cantera

W Cantera istnieją różne podejścia do symulacji procesów spalania:

- Metoda FreeFlame model płomienia swobodnie propagującego się, który jest bardziej realistyczny w warunkach naturalnych spalania. Nie narzuca wymuszonej prędkości dopływu paliwa, co pozwala analizować jego stabilność i propagację.
- Metoda BurnerFlame narzuca warunki przepływu, co jest przydatne w analizie palników, ale mniej odpowiednie do badania naturalnego spalania bez wstępnie wymuszonego przepływu. Nie można w prosty sposób zdefiniować takiej prędkości przepływu, aby rzetelnie móc porównywać te metody.

5 Wnioski

Przeprowadzone symulacje pokazują, że laminarną prędkość spalania wodoru różni się w zależności od metody i osiąga maksimum przy $\phi \approx 1.0$ oraz przy $\phi \approx 1.6$, a następnie stopniowo maleje. Po porównaniu wyników z badaniami labolatoryjnymi należy stwierdzić że metoda freeflame bardzo dokładnie

odwzorowała wartości laminarnej prędkości spalania oraz kształt funkcji, zaś metoda burnerflame źle odwzorowała wyniki eksperymentów. Porównanie metod w Cantera wskazuje, że FreeFlame jest lepszy do badania propagacji płomienia, podczas gdy BurnerFlame nie sprawdza się w analizie danego procesu spalania lub prędkość przepływu nie została dobrze dobrana. Możliwe jest również że metoda ta potrzebowała by innych lub dokładniejszych biblioteki z procesami spalania np.h2o2.yaml

6 Bibliografia

- https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2017.00031.com
- https://libra.ibuk.pl/reader/energetyka-wodorowa-tadeusz-chmielniak-tomasz-225137