SRM University-AP, Amaravati

Department of Mathematics

Discrete Mathematics(MAT141)

Assignment 1:The Foundations: Logic and Proofs

- 1. Which of these sentences are propositions? what are the truth values of those that are propositions?
 - (a) Mumbai is the capital of India.
 - (b) 2+3=5.
 - (c) 5 + 7 = 10.
 - (d) x + 2 = 11.
 - (e) Answer this question.
 - (f) What time is it?
 - (g) The moon is made of green cheese.

- (h) $4 + x = 5, \forall x \neq 1$ and domain is the set of real number.
- (i) $4 + x = 5, \forall x = 1$ and domain is the set of real number.
- (j) $4 + x = 6, \forall x \neq 1$ and domain is the set of real number.
- (k) $2^n \ge 100$.
- 2. Let p, q, and r be the propositions
 - p: You have the flu.
 - q: You miss the final examination.
 - r: You pass the course.

Express each of these propositions as an English sentence.

- (a) $p \to q$
- (b) $\neg q \leftrightarrow r$
- (c) $q \rightarrow \neg r$

- (d) $p \lor q \lor r$
- (e) $(p \to \neg r) \lor (q \to \neg r)$
- (f) $(p \wedge q) \vee (\neg q \wedge r)$
- 3. Determine whether these biconditionals are true or false.

 - (a) 2+2=4 if and only if 1+1=2. (c) 1+1=3 if and only if monkeys can fly.
 - (b) 1+1=2 if and only if 2+3=4.
- (d) 0 > 1 if and only if 2 > 1
- 4. Determine whether each of these conditional statements is true or false.
 - (a) If 1+1=2, then 2+2=5.
- (c) If 1+1=3, then 2+2=5.
- (b) If 1+1=3, then 2+2=4.
- (d) If monkeys can fly, then 1 + 1 = 3.

- 5. State the converse, contrapositive, and inverse of each of these conditional statements.
 - (a) If it snows tonight, then I will stay at home.
 - (b) I go to the beach whenever it is a sunny summer day.
 - (c) When I stay up late, it is necessary that I sleep until noon.
- 6. Construct the truth table for each of these compound propositions.
 - (a) $p \wedge \neg p$

(d) $(p \lor q) \to (p \land q)$

(b) $p \vee \neg p$

(e) $(p \to q) \leftrightarrow (\neg q \to \neg p)$

(c) $(p \vee \neg q) \rightarrow q$

- (f) $(p \to q) \to (q \to p)$
- 7. Construct a truth table for each of these compound propositions.
 - (a) $(p \lor q) \to (p \oplus q)$

(d) $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$

(b) $(p \oplus q) \to (p \land q)$

(e) $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow \neg r)$

(c) $(p \lor q) \oplus (p \land q)$

- (f) $(p \oplus q) \to (p \oplus \neg q)$
- 8. Construct a truth table for each of these compound propositions.
 - (a) $p \to (\neg q \lor r)$

(d) $(p \to q) \land (\neg p \to r)$

(b) $\neg p \rightarrow (q \rightarrow r)$

(e) $(p \leftrightarrow q) \lor (\neg q \leftrightarrow r)$

(c) $(p \to q) \lor (\neg p \to r)$

- (f) $(\neg p \leftrightarrow \neg q) \leftrightarrow (q \leftrightarrow r)$
- 9. Use truth tables to verify these equivalences.
 - (a) $p \wedge T \equiv p$

(d) $p \vee F \equiv p$

(b) $p \wedge F \equiv F$

(e) $p \lor T \equiv T$

(c) $p \lor p \equiv p$

- (f) $p \wedge p \equiv p$
- 10. Use truth tables to verify commutative laws
 - (a) $p \lor q \equiv q \lor p$
 - (b) $p \wedge q \equiv q \wedge p$
- 11. Use truth tables to verify associative laws
 - (a) $(p \lor q) \lor r \equiv p \lor (q \lor r)$

- (b) $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
- 12. Show that each of these conditional statements is a tautology by using truth tables.
 - (a) $[\neg p \land (p \lor q)] \to q$

- (c) $[p \land (p \rightarrow q)] \rightarrow q$
- (b) $[(p \to q) \land (q \to r)] \to (p \to r)$
 - (d) $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$
- 13. Show that $p \to q$ and $\neg q \to \neg p$ are logically equivalent.
- 14. Show that $\neg(p \leftrightarrow q)$ and $\neg p \leftrightarrow q$ are logically equivalent.
- 15. Show that $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ are logically equivalent.
- 16. Show that $\neg p \to (q \to r)$ and $q \to (p \lor r)$ are logically equivalent.
- 17. Show that $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$ is a tautology.
- 18. Translate these statements into English, where C(x) is "x is a comedian" and F(x) is "x is funny" and the domain consists of all people.
 - (a) $\forall x (C(x) \to F(x))$

(c) $\forall x (C(x) \land F(x))$

(b) $\exists x (C(x) \to F(x))$

- (d) $\exists x (C(x) \land F(x))$
- 19. Let Q(x) be the statement "x + 1 > 2x". If he domain consists of all integers, what are these truth values?
 - (a) Q(0)

(e) $\forall x Q(x)$

(b) Q(-1)

(f) $\exists x \neg Q(x)$

(c) Q(1)

(d) $\exists x Q(x)$

- (g) $\forall x \neg Q(x)$
- 20. Determine the truth value of each of these statements if the domain consists of all real numbers.
 - (a) $\exists x(x^3 = -1)$

(c) $\forall x((-x)^2 = x^2)$

(b) $\exists x (x^4 < x^2)$

- (d) $\forall x (2x > x)$
- 21. What are the negations of the statement $\forall x(x^2 > x)$ and $\exists x(x^2 = 2)$?
- 22. Let S(x) be the predicate "x is a student", F(x) the predicate "x is a faculty member", and A(x,y) the predicate "x has asked y a question", where the domain consists of all people associated with your school. Use quantifiers to express each of these statements.

- (a) Lois has asked professor Michaels a question.
- (b) Every student has asked Professor Gross a question.
- (c) Every faculty member has either asked Professor Miller a question or been asked a question by Professor Miller.
- (d) Some students has not asked any faculty member a question.
- (e) There is a faculty member who has never been asked a question by a student.
- (f) Some student has asked every faculty member a question.
- (g) There is a faculty member who has asked every other faculty member a question.
- (h) Some student has never been asked a question by a faculty member.
- 23. Express each of these statements using predicates, quantifiers, logical connectives, and mathematical operators where the domain consists of all integers.
 - (a) The product of two negative integers is positive.
 - (b) The average of two positive integers is positive.
 - (c) The difference of two negative integers is not necessarily negative.
 - (d) The absolute value of the sum of two integers does not exceed the sum of the absolute values of these integers.
- 24. Translate each of these nested quantifications into an English statement that express a mathematical fact. The domain in each case consists of all real numbers.
 - (a) $\exists x \forall y (xy = y)$
 - (b) $\forall x \forall y (((x > 0) \land (y < 0)) \rightarrow (xy > 0))$
 - (c) $\forall x \forall y \exists z (x + y = z)$
- 25. Determine the truth value of each of these statements if the domain of each variable consists of all real numbers.

(a)
$$\forall x \exists y (x^2 = y)$$

(f)
$$\exists x \exists y (x + 2y = 2 \land 2x + 4y = 5)$$

(b)
$$\exists x \forall y (xy = 0)$$

(g)
$$\forall x \exists y (x + y = 2 \land 2x - y = 1)$$

(c)
$$\forall x (x \neq 0 \rightarrow \exists y (xy = 1))$$

(h)
$$\forall x \forall y \exists z (z = (x + y)/2)$$

(d)
$$\exists x \forall y (y \neq 0 \rightarrow xy = 1)$$

(i)
$$\forall x \exists y (x = y^2)$$

(e)
$$\forall x \exists y (x + y = 1)$$

(j)
$$\exists x \exists y (x + y \neq y + x)$$

- 26. Rewrite each of these statements so that negations appear only within predicates (that is, so that no negation is outside a quantifier or an expression involved logical connectives).
 - (a) $\neg \exists y \exists x P(x,y)$

- (d) $\neg \exists y (\forall x \exists z T(x, y, z) \lor \exists x \forall z U(x, y, z))$
- (b) $\neg \exists y (Q(y) \land \forall x \neg R(x,y))$
- (e) $\neg \forall x \exists y P(x,y)$
- (c) $\neg \exists y (\exists x R(x, y) \lor \forall x S(x, y))$
- 27. Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all integers.
 - (a) $\forall x \forall y (x^2 = y^2 \to x = y)$
 - (b) $\forall x \exists y (y^2 = x)$
 - (c) $\forall x \forall y (xy \ge x)$
- 28. Establish the validity of the following argument forms using the rules of inferences.
 - (a) $p \to q$

 $\neg q$

 $\neg \gamma$

 $\overline{ \therefore \neg (p \vee r)}$

(d) $\neg q$

 $\neg r$

 $\neg p \lor q \lor r$

 $\therefore \neg p$

(b) $p \vee q$

 $\neg r$

 $\underline{\neg p \vee r}$

 $\therefore q$

(e) $(\neg p \lor q) \to r$

 $r \to (s \lor t)$

 $\neg s \wedge \neg u$

 $\neg u \rightarrow \neg t$

 $\therefore p$

(c) $p \vee q$

 $p \rightarrow r$

 $r \to s$

 $\overline{: q \lor s}$

(f) $p \rightarrow q$

 $\neg r \lor s$

 $p \vee r$

 $\neg a \rightarrow s$

- 29. Use a direct proof to show that the product of two odd numbers is odd.
- 30. Prove or disprove that the product of a nonzero rational number and an irrational number is irrational.

- 31. Use a proof by contraposition to show that if $x + y \ge 2$, where x and y are real numbers, then $x \ge 1$ or $y \ge 1$.
- 32. Prove that if m and n are integers and mn is even, then m is even or n is even.
- 33. Show that if n is an integer and $n^3 + 5$ is odd, then n is even using
 - a) a proof by contraposition.
 - b) a proof by contradiction.
- 34. Prove the proposition P(0), where P(n) is the proposition "If n is a positive integer greater than 1, then $n^2 > n$ ". What kind of proof did you use?
- 35. Let P(n) be the proposition "If a and b are positive real numbers, then $(a+b)^n \ge a^n + b^n$." Prove that P(1) is true. What kind of proof did you use?
- 36. Use a proof by contradiction to show that there is no rational number r for which $r^3 + r + 1 = 0$. [Assume that r = a/b is a root, where a and b are integers and a/b is in lowest terms.obtain an equation involving integers by multiplying by b^3 . then look at whether a and b are each odd or even.]
- 37. Prove that $m^2 = n^2$ if and only if m = n or m = -n.
- 38. Prove that these four statements about the integers n are equivalent: (i) n^2 is odd, (ii)1-n is even, (iii) n^3 is odd, (iv) $n^2 + 1$ is even.