Листок 10

Tема 10(3.1). p-адические числа: элементарное определение и свойства

Упражнения и задачи

- 1. Докажите, что различные канонические последовательности определяют различные целые p-адические числа.
- 2. Докажите, что для целых p-адических чисел α и β заданные в лекции операции $\alpha\beta$, $\alpha+\beta$ корректно определены (то есть результат не зависит от выбора последовательностей-представителей $\alpha \sim (x_n)$, $\beta \sim (y_n)$) и \mathbb{Z}_p действительно коммутативное кольцо.
- 3. Пусть $\alpha = \sum_{n=0}^{\infty} a_n p^n \in \mathbb{Z}_p$. Какой будет иметь вид разложение числа $-\alpha$?
- 4. Докажите, что уравнение $x^2 = 2$ не имеет решений в \mathbb{Q}_5 .
- 5. Докажите, что $\forall \alpha \in \mathbb{Z}_p \ \exists a \in \mathbb{Z}: \ \alpha \equiv a \pmod{p^n}$. Для $a,b \in \mathbb{Z} \ a \equiv b \pmod{p^n}$ как сравнение в $\mathbb{Z}_p \Leftrightarrow a \equiv b \pmod{p^n}$ как сравнение в \mathbb{Z} .
- 6. Пусть $p \neq 2$, c квадратичный вычет $\operatorname{mod} p$. Докажите, что существует два различных p-адических числа $\alpha, \beta \in \mathbb{Q}_p$: $\alpha^2 = \beta^2 = c$.
- 7. Пусть $p \neq 2$, (m,p) = 1. Сформулируйте и докажите необходимое и достаточное условие разрешимости уравнения $x^2 = m$ в \mathbb{Q}_p . Сделайте вывод, что \mathbb{Q}_p не является алгебраически замкнутым.
- 8. Докажите, что если $\xi_n \to \xi$ в \mathbb{Q}_p и $\xi \neq 0$, то $1/\xi_n \to 1/\xi$ в \mathbb{Q}_p .
- 9. Докажите p-адический аналог утверждения из анализа: из всякой ограниченной последовательности можно выделить сходящуюся подпоследовательность.
- 10. Докажите *p*-адический критерий Коши: последовательность (ξ_n) сходится $\Leftrightarrow \nu_p(\xi_m \xi_n) \to \infty$, при $m, n \to \infty$.
- 11. Пусть последовательность (x_n) определена как $x_n = 1 + p + \dots + p^{n-1}$. Докажите, что в $\mathbb{Q}_n x_n \to 1/(1-p), n \to \infty$.
- 12. Докажите, что для $0 \neq \xi \in \mathbb{Q}_p \cap \mathbb{Q}$ представление $\xi = \sum_{n=0}^{\infty} a_n p^n$, $0 \leqslant a_n \leqslant p-1$ имеет периодические коэффициенты (начиная с некоторого номера k_0 , т.е. $\exists m : \forall k \geq k_0 \ a_{m+k} = a_k$). Обратно всякий такой ряд представляет рациональное число.

SageMath

• Исследуйте основные функции SageMath связанные с арифметикой p-адических чисел. Определение кольца и поле p-адических чисел: Zp(n), Qp(n). Рассмотрите примеры уравнения $x^2 = m$ (используйте функцию sqrt()).