Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

Hoja de Problemas 5

Autómatas Finitos No Deterministas

NIVEL DEL EJERCICIO : (\star) básico, (\clubsuit) medio, (\clubsuit) avanzado.

1. (⋆) ¿Cuál es el lenguaje reconocido por el autómata siguiente?

Solución:

El lenguaje que reconoce este autómata es un lenguaje binario donde las palabras aceptadas son de la siguiente manera:

$$L = \{ (10)^n \mid n \ge 0 \}$$

2. (⋆) Dado el siguiente autómata:

(a) Indica el lenguaje L reconocido.

Solución:

El lenguaje que reconoce este autómata es el siguiente:

$$L = \{ w \in \{a\}^* \mid n_a(w) \bmod 2 = 0 \}$$

(b) Construye un AFND que genere el lenguaje $L \cup \{a^5\}$.

Solución:

(c) Encuentra un AFD equivalente.

3. (\star) ¿ Cuál es el lenguaje reconocido por el autómata siguiente?

Solución:

El lenguaje que reconoce este autómata es un lenguaje binario donde las palabras aceptadas tienen, al menos, dos ceros separados por un carácter:

$$L = \{x0y0z \mid x,z \in \{0,1\}^*, \ y \in \{0,1\}\}$$

4. (*) Construye un AFND con cuatro estados que reconozca el lenguaje L siguiente:

$$L = \{a^n \mid n \ge 0\} \cup \{b^n a \mid n \ge 1\}.$$

5. (*) Para cada uno de los autómatas finitos no deterministas siguientes, calcula un autómata finito determinista equivalente mínimo:

Solución:

Solución:

Solución:

Solución:

Solución:

6. (*) Para cada uno de los autómatas finitos no deterministas siguientes, calcula un AFD equivalente mínimo:

(a)
$$AFND_1 = (\{a, b\}, \{p, q, r, s\}, f_1, p, \{s\})$$

f_1	a	b	λ
\rightarrow p	$_{\rm q,s}$	p	q,r
q		$_{\mathrm{q,r}}$	r
r		p,s	q
*s	S	q,r,s	

Solución:

f_1	a	b	λ
\rightarrow p	q,s	р	q,r
q		$_{\mathrm{q,r}}$	r
r		p,s	q
*s	S	q,r,s	

Primero debemos obtener un AFD a partir de este AFND. En los apuntes existen dos métodos a aplicar. El primero consiste en generar una tabla de transiciones donde se tengan en cuenta todas las posibles partes de Q, o sea, 2^Q . Este método puede dar lugar a estados inaccesibles que luego deberían ser eliminados. Como alternativa podemos utilizar el otro método que consiste en empezar a construir la tabla de transición a partir del estado

 $CLAUS_{\lambda}(q_0) = q'_0$, y definiendo a continuación todos los estados $f'(q_0, a)$ que vayan surgiendo, hasta que no existan nuevos estados nuevos. Aquí seguiremos este método.

Primero vemos cual será el nuevo estado inicial:

$$CLAUS_{\lambda}(q_0) = \{p, q, r\}$$

Ahora deberemos ir rellenando la tabla de transiciones para cada uno de los símbolos del alfabeto (excluyendo λ) para este nuevo estado y vamos añadiendo los nuevos estados que se van creando y rellenando sus correspondientes entradas en la tabla. De esta forma, llegamos al AFD equivalente:

f_1'	a	b
\rightarrow {p,q,r}	$\{q,r,s\}$	$\{p,q,r,s\}$
*{q,r,s}	S	$\{p,q,r,s\}$
$*{p,q,r,s}$	$\{q,r,s\}$	$\{p,q,r,s\}$
*s	S	$\{q,r,s\}$

Hacemos un cambio de nombres para que quede más limpio, quedando:

f_1'	a	b
$\rightarrow q_a$	q_b	q_c
$*q_b$	q_d	q_c
$*q_c$	q_b	q_c
$*q_d$	q_d	q_b

Ahora minimizamos este autómata:

$$Q/E_0 = \{\underbrace{\{q_a\}}_{p}, \underbrace{\{q_b, q_c, q_d\}}_{c}\} = Q/E_1 = Q/E$$

Renombrando nos queda la siguiente tabla de transición del autómata mínimo:

$$\begin{array}{c|cc} f_1' & a & b \\ \hline \rightarrow p & c & c \\ \hline *c & c & c \end{array}$$

(b)
$$AFND_2 = (\{a, b\}, \{p, q, r, s, t, u, v\}, f_2, p, \{v\})$$

f_2	a	b
$\rightarrow p$	$_{\mathrm{q,r}}$	p
q	$_{\mathrm{q,r}}$	$_{\mathrm{s,t,u}}$
r		$_{\mathrm{p,v}}$
S	r,u	
t		
u	s,t	V
$*_{V}$	u,s,t	V

Solución:

(c) $AFND_3 = (\{a, b, c\}, \{p, q, r, s, t, u, v\}, f_3, p, \{v\})$

			-	-
f_3	a	b	c	λ
\rightarrow p				q,t
q		r,s		$_{\rm r,s}$
r				q,u
S	$_{\mathrm{t,p}}$		u	
t		V		q
u	$_{\mathrm{s,q}}$		V	S
*v				r
	$ \begin{array}{c} \rightarrow p \\ q \\ r \\ s \\ t \end{array} $	$\begin{array}{c c} \rightarrow p & \\ q & \\ r & \\ s & t,p \\ t & \\ u & s,q \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Solución:

7. (*) Dados los autómatas siguientes:

(a) Determina si son equivalentes (calculando autómatas mínimos).

Solución:

(b) Obtén gramáticas lineales derechas que generen los lenguajes reconocidos por dichos autómatas.

Solución:

8. (*) Dados los autómatas siguientes:

(a) Determina si son equivalentes (calculando autómatas mínimos).

Solución:

(b) Obtén gramáticas lineales derechas que generen los lenguajes reconocidos por dichos autómatas.

Solución:

9. (\clubsuit) Construye un AFD mínimo que reconozca el lenguaje generado por la gramática con las producciones siguientes:

$$\begin{array}{ccc} A & ::= & 0B \mid \lambda \\ B & ::= & 1C \mid 1 \\ C & ::= & 0B \end{array}$$

Solución:

10. (*) Construye un AFD mínimo que reconozca el lenguaje generado por la gramática con las producciones siguientes:

$$S ::= bS \mid aA \mid \lambda$$

$$A ::= aA \mid bB$$

$$B ::= bS \mid \lambda$$

Solución:

Lo primero que debemos hacer es limpiar la gramática de reglas reductoras que no sean del tipo $S := \lambda$.

$$S \ ::= \ bS \mid aA \mid \lambda$$

$$\begin{array}{ll} A & ::= & aA \mid bB \mid b \\ B & ::= & bS \end{array}$$

Generamos el AFND correspondiente a esta gramática regular lineal por la derecha:

f	a	b
→*S	Α	S
A	Α	{B,F}
*F	Ø	Ø
В	Ø	S

El AFD correspondiente (y mínimo a su vez) es:

f'	a	b
→*S	Α	S
A	Α	$\{B,F\}$
*{B,F}	Ø	S
Ø	Ø	Ø

Renombrando los estados se obtiene el AFD mínimo final:

f'	a	b
$\rightarrow^* q_0$	q_1	q_0
q_1	q_1	q_2
$*q_2$	q_3	q_0
q_3	q_3	q_3

11. (*) Construye un AFD mínimo que reconozca el lenguaje generado por la gramática con las producciones siguientes:

$$S ::= bR_1 \mid cR_2 \mid a \mid b$$

$$R_1 ::= aR_1 \mid a$$

$$R_2 ::= cR_2 \mid a$$

Solución: