Ambient Assisted Living

Pietro Colombo **793679** Marco Fagioli **808176**

Ambient Assisted Living

Ambient Assisted Living è un programma di **ricerca** europeo verso lo sviluppo di **tecnologie** per **l'assistenza** agli anziani in ambiente

domestico con la finalità di:

- migliorare la loro autonomia;
- facilitare le attività quotidiane;
- garantire buone condizioni di sicurezza;
- monitorare e curare le persone malate.

Obiettivi del progetto

Sviluppo e progettazione di un **modello predittivo** sulle misurazioni di 4 **sensori**:

- applicati su bacino, gamba, caviglia e braccio;
- effettuate su 4 persone con età e sesso differenti;
- registrate circa 8 rilevazioni per secondo.

Dataset

Il dataset contiene **165.633 rilevazione** definite su 19 **feature**:

- dati anagrafici degli utenti
- tipo di movimento effettuato

 per ogni sensore una misurazione nello spazio x, y e z

	user	gender	age	how_tall_in_meters	 x4	у4	z4	class
0	debora	Woman	46	1,62	 -150	-103	-147	sitting
1	debora	Woman	46	1,62	 -149	-104	-145	sitting
2	debora	Woman	46	1,62	 -151	-104	-144	sitting
3	debora	Woman	46	1,62	 -153	-103	-142	sitting
4	debora	Woman	46	1,62	 -153	-104	-143	sitting

Distribuzione rilevazioni per utente

Distribuzione rilevazioni per classe

Distribuzione attività per utente

Data preprocessing

La progettazione e sviluppo del **modello predittivo** ha richiesto un **elaborazione** del **dataset**, la sequenza di operazioni è descritta dal seguente flowchart:

Data preprocessing

add_position_measure.py

Per ogni sensore e riga del dataset vengono calcolati:

•
$$Roll = \frac{180}{\pi} * atan2(y, z)$$

•
$$Pitch = \frac{180}{\pi} * atan2(-x, \sqrt{y^2 + z^2})$$

•
$$Accel = \sqrt{x^2 + y^2 + z^2}$$

Data preprocessing

Le successive operazioni step by step sono:

- **chuncker.py** (opzionale), unisce il dataseta chuck di 8 righe su cui calcola variazioni e moduli dei parametri;
- add_parameters.py, calcola media e deviazione standard delle accelerazioni dei sensori e costruisce una feature per ogni movimento;
- discretize.py, discretizza tutte le feature di interesse su 10 intervalli.

Dataset finale

	accel1	accel2	accel3	 accel4_disc	accel_mean_disc	accel_std_disc
0	113.982044	29.443006	137.710577	 0	0	1
1	114.797920	28.398393	137.909730	 0	0	1
2	114.892001	28.135276	137.932841	 0	0	1
3	115.612094	28.280680	138.280399	 0	0	1
4	118.338101	28.052128	137.944565	 1	0	1

Prima modellazione rete bayesiana

Iniziale analisi della **correlazione**tra le **feature** di interesse e le classi
dei **movimenti**.

È stata effettuata sui campi di rilievo per cui è stato calcolato il **valore medio** associato ad ogni classe di movimento.

Prima Rete Bayesiana

Modellazione rete con correlazione di Pearson

Funzione cor della libreria caret

- input: dataset definito su più colonne
- output: matrice in cui viene calcolato il coefficiente di correlazione di Pearson per ogni coppia di feature

Rete Bayesiana con correlazione di Pearson

Implementazione rete bayesiana

 Divisione del dataset in 80% train e 20% test, mantenendo bilanciato il numero di elementi per ogni tipologia di movimento.

- Implementazione del modello predittivo
 - effettuata tramite l'ambiente di sviluppo R;
 - o usando il package bnlearn.

Creazione e fitting del modello

- Iniziale definizione manuale della struttura della rete
 - creazione dei nodi ed archi
- Vengono caricati i dataset di train e di test
- Effettuato l'apprendimento e fitting del modello
 - usato il metodo bayes

Inferenza

Per la previsione sul dataset di test viene usata l'inferenza. Per ogni riga:

- vengono estratte le feature di interesse;
- per ognuno dei nodi associato alle classi dei movimenti viene effettuata
 l'inferenza esatta;
- si sceglie il movimento con probabilità calcolata maggiore e viene confrontato con il target, andando a costruire man mano la matrice di confusione.

Prima rete vs rete Pearson

Risultati

	sitting	sittingdown	standing	standingup	walking				
	Primo modello								
recall	0.989	0.210	0.936	0.138	0.402				
precision	0.603	0.458	0.860	0.386	0.829				
		llo							
recall	0.992	0.142	0.953	0.172	0.316				
precision	0.543	0.457	0.888	0.513	0.940				

Le reti generate hanno **performance simili**. Per l'interfaccia viene usata la prima vista la maggior semplicità e leggera accuratezza in più, **70**% invece che 68%.

Graphical User Interface

Graphical User Interface

l'inferenza su un nuovo input.

Vengono visualizzate le **statistiche** delle **inferenze** effettuate.

Grazie per l'attenzione!

Pietro Colombo Marco Fagioli