ES710 – Controle de Sistemas Mecânicos

08 – Realimentação

Eric Fujiwara

Unicamp – FEM – DSI

Índice

Índice:

- 1) Controle;
- 2) Realimentação;
- 3) Controle PID;
- Questionário;
- Referências;
- · Exercícios.

1. Controle

1.1. Controle de sistemas:

• Seja um sistema modelado por um circuito RL em série. A corrente i(t) (saída) deve ser regulada em função da tensão da fonte v(t) (entrada). (Ex: aquecedor, torque de motor, etc.)

$$v(t) = L\frac{d}{dt}i(t) + Ri(t)$$

$$G(s) = \frac{I(s)}{V(s)} = \frac{1/L}{s + R/L}$$

$$I(s) = G(s)V(s)$$

1. Controle

1.1. Controle de sistemas:

- Requisitos de projeto:
 - Dada uma corrente de referência $i^*(t)$, é possível modular a tensão de entrada v(t) de modo a garantir que a corrente de saída obtida seja igual à desejada, $i(t) = i^*(t)$?
 - É possível regular a saída dentro de uma faixa de tolerância, supondo um erro $e(t) = |i^*(t) i(t)| \le e_{\min}$?
 - É possível regular as características transientes da resposta, como tempo de subida, tempo de estabilização... ?

1. Controle

1.2. Controle em malha fechada:

 O objetivo do controle em malha fechada é minimizar a diferença (erro) entre a saída desejada e obtida, de modo a forçar o sistema a responder conforme as especificações do projeto.

2. Realimentação

- 2.1. Função de transferência em malha fechada:
 - Seja um sistema em malha fechada representado pelo diagrama de blocos abaixo:
 - *R*(*s*): entrada (referência);
 - Y(s): saída do sistema;
 - *G*(*s*): TF da planta;
 - E(s): erro;
 - *H*(*s*): TF do sensor;
 - *B*(*s*): leitura do sensor.

2. Realimentação

- 2.1. Função de transferência em malha fechada:
 - A função de transferência da planta em malha fechada é calculada por:

$$Y(s) = G(s)E(s)$$

$$B(s) = H(s)Y(s)$$

$$E(s) = R(s) - B(s)$$

$$Y(s) = \frac{G(s)}{1 + G(s)H(s)}R(s)$$
(1)

• Se o sistema tiver **realimentação unitária** (H(s) = 1):

$$Y(s) = \frac{G(s)}{1 + G(s)}R(s)$$
 (2)

2. Realimentação

- 2.2. Desempenho do sistema em malha fechada:
 - Observando o diagrama de blocos, nota-se que a planta é excitada em função do sinal de erro:
 - Se a saída é menor que a referência, o erro é positivo;
 - Se a saída é maior que a referência, o erro é negativo;
 - **Pergunta:** é possível regular a saída Y(s) dentro dos requisitos de desempenho somente com o sinal de erro E(s)?
 - Resposta: pode ser que sim, mas é possível aprimorar a estratégia de controle!

3.1. Ganho de realimentação:

- Uma forma de corrigir a saída do sistema é amplificar o erro referente a y(t) e utilizá-lo como estímulo de entrada à planta;
- Adicionalmente, é possível amplificar os erros referentes à integral $\int y(t)dt$ e à derivada da saída $\dot{y}(t)$;
- O controlador K(s) realiza esta operação:

$$Y(s) = \frac{K(s)G(s)}{1 + K(s)G(s)}R(s)$$

$$R(s) \longrightarrow K(s) \longrightarrow K(s)$$

$$(3)$$

- 3.2. Controlador proporcional (P):
 - O controlador P amplifica o erro com um ganho k_p ;
 - Quanto maior o valor de k_p , maior é a resposta do controlador em relação ao erro da entrada;
 - Por exemplo, para uma entrada ao degrau, o sistema atinge o valor final em um tempo menor aumentando k_p .

$$K(s) = k_p \tag{4}$$

$$\frac{Y(s)}{E(s)} = k_p G(s) \tag{5}$$

- 3.3. Controlador integral (I):
 - O controlador I amplifica a integral do erro com um ganho k_i ;
 - A integral do erro é igual a zero quando o erro se torna nulo, ou seja, k_i pode ser ajustado para reduzir o erro em regime estacionário.

$$K(s) = \frac{k_i}{s} \tag{6}$$

• Os ganhos k_p e k_i podem ser combinados para ajustar o tempo de subida e o erro estacionário \rightarrow **Controlador PI**.

$$\frac{Y(s)}{E(s)} = \left(k_p + \frac{k_i}{s}\right)G(s) \tag{7}$$

- 3.4. Controlador derivativo (D):
 - O controlador **D** amplifica a derivada do erro com um ganho k_d ;
 - A derivada de um sinal representa a sua taxa de variação, ou seja, o controlador D proporcional à sensibilidade da resposta, ajustando a estabilidade do sistema.

$$K(s) = k_d s \tag{8}$$

 Os ganhos k_p e k_d podem ser combinados para ajustar o tempo de subida, de estabilização e as oscilações da saída → Controlador PD.

$$\frac{Y(s)}{E(s)} = (k_p + k_d s)G(s) \tag{9}$$

- 3.5. Controlador proporcional-integral-derivativo (PID):
 - O controlador PID realiza compensação do tempo de resposta, erro estacionário, e das oscilações de saída;
 - Os ganhos do controlador podem ser ajustados pelo método empírico, variando k_p , k_i e k_d e monitorando a saída para uma excitação de entrada conhecida;
 - De fato, este procedimento ainda é usual em aplicações industriais;
 - Evidentemente, existem métodos que permitem projetar controladores de forma precisa → serão ao longo do curso.

$$\frac{Y(s)}{E(s)} = \left(k_p + \frac{k_i}{s} + k_d s\right) G(s) \tag{10}$$

3.5. Implementação do controlador:

- A TF do controlador K(s) e o processamento do erro podem ser realizados analogicamente utilizando AMPOPs;
- Na prática, a aquisição e processamento dos sinais é realizada de forma digital, ou seja, o controlador é modelado em software e implementado em hardware utilizando um módulo de I/O;
 - Mas existem implicações na discretização dos sinais...

Questionário

• Questionário:

- 1) O que é realimentação? Quais são as diferenças entre controladores com e sem realimentação (malha fechada e aberta, respectivamente)?
- 2) O controlador opera sobre o sinal de entrada ou de saída?
- 3) Por quê utilizar o controlador PID se um controlador proporcional simples (P) é muito mais simples de ser implementado?
- 4) Fisicamente, o que é o controlador K(s)? Como você faria para implementá-lo em hardware? Qual componente aplica o **esforço de controle** sobre a planta?

Referências

Referências:

- G. F. Franklin *et al.*, Feedback Control of Dynamic Systems, Prentice Hall, 2002.
- K. Ogata, Modern Control Engineering, Prentice Hall, 2002.

■ Ex. 8.1) Seja o drone de massa m=0.8 kg sujeito a uma força de arrasto b=0.4 N.s/m e excitado por uma força de propulsão F(t). Projete uma malha de controle de **posição** y(t) que proporcione tempo de subida $t_r \le 0.1$ s e erro estacionário ao degrau $e_{est} = |y(\infty) - y^*(\infty)| \le 0.01$ m. Ignore o efeito da gravidade.

- **Ex. 8.1)**
 - Função de transferência:

$$m\ddot{y}(t) + b\dot{y}(t) = F(t)$$

$$G(s) = \frac{Y(s)}{F(s)} = \frac{1}{ms^2 + bs}$$

• A planta G(s) pode ser descrita como um sistema de primeira ordem acoplado a um integrador 1/s, ou seja, G(s) possui um polo na origem s=0.

- **Ex.** 8.1)
 - Resposta ao degrau unitário (sem controlador):
- $t_r \leq 0.1 \text{ s}$ $e_{est} \leq 0.01 \text{ m}$

- A saída de posição y(t) deve seguir o sinal de entrada de força F(t);
- Note que o sistema é instável, pois a altitude continua aumentando para F(t) constante.

- **Ex.** 8.1)
 - Controle PID:

$$K(s) = k_p + \frac{k_i}{s} + k_d s$$

$$H(s) = \frac{K(s)G(s)}{1 + K(s)G(s)}$$

- Estratégia para ajuste dos ganhos de K(s):
 - Para $k_i = k_d = 0$, ajustar k_p até que o requisito de tempo de subida seja atendido;
 - Ajustar k_d de acordo com os requisitos de sobressinal;
 - Ajustar k_i para reduzir o erro em regime estacionário;
 - Repetir o procedimento até que todos os requisitos sejam atendidos.

- **Ex.** 8.1)
 - Implementação no MATLAB:

```
%Planta
s = tf('s');
Gs = 1/(m*s^2+b*s)

%Controlador
Ks = kp + ki/s + kd*s

%Planta em malha fechada
Hs = feedback(Ks*Gs,1) %realimentacao unitaria
step(Hs) %Resposta ao degrau
```

Ex. 8.1)

 $t_r \le 0.1 \text{ s}$ $e_{est} \le 0.01 \text{ m}$

- Resposta ao degrau:
 - $k_p = 1$;
 - $k_i = 0$,
 - $k_d = 0$,
 - Sistema estável (veja as raízes do denominador de H(s));
 - Erro estacionário nulo;
 - Tempo de subida de ~1.6 s.

Saída de posição!!!

Ex. 8.1)

 $t_r \leq 0.1 \text{ s}$ $e_{est} \leq 0.01 \text{ m}$

- Resposta ao degrau:
 - $k_p = 100$;
 - $k_i = 0$,
 - $k_d = 0$,
 - Sistema estável;
 - Erro estacionário ~0;
 - Tempo de subida de ~0.14 s;
 - As oscilações são aceitáveis?

Ex. 8.1)

 $t_r \leq 0.1 \text{ s}$ $e_{est} \leq 0.01 \text{ m}$

- Resposta ao degrau:
 - $k_p = 100$;
 - $k_i = 0$,
 - $k_d = 15$,
 - · Sistema estável;
 - Erro estacionário ~0;
 - Tempo de subida de ~0,1 s;
 - Sobressinal de 0,15 m.

Ex. 8.1)

 $t_r \le 0.1 \text{ s}$ $e_{est} \le 0.01 \text{ m}$

- Resposta ao degrau:
 - $k_p = 50$;
 - $k_i = 20$,
 - $k_d = 50$,
 - · Sistema estável;
 - Erro estacionário ~0.01 m;
 - Tempo de subida de ~0,1 s.

- **Ex.** 8.1)
 - Implementação no Simulink:

- **Ex.** 8.1)
 - Resposta a uma entrada arbitrária:

- Ex. 8.2) Projete o controle de velocidade de um motor de corrente contínua de imãs permanentes:
 - Dados: $R = 10 \ \Omega$, $L = 1 \ \text{mH}$, $J = 10^{-4} \ \text{N.m/s}^2$, $B = 0.02 \ \text{N.m/s}$, $k = 1 \ \text{V.s/rad}$
 - Requisitos: tempo de subida < 0,1 s, erro estacionário ao degrau < 0.02 rad/s.

- **Ex. 8.2)**
 - Função de transferência:

$$V(s) = (sL + R)I(s) + E(s)$$

$$V(s) = \frac{(sL + R)(sJ + B)}{k}T(s) + k\omega(s)$$

$$G(s) = \frac{\omega(s)}{V(s)} = \frac{k}{(sL+R)(sJ+B) + k^2}$$

Ex. 8.2)

- Resposta ao degrau:
 sistema em malha aberta
 - · Sistema estável;
 - Tempo de subida < 0.1 s;
 - Erro estacionário de ~0.17 rad.

Ex. 8.2)

- Resposta ao degrau: controle PID
 - · Sistema estável;
 - Tempo de subida < 0.1 s;
 - Erro estacionário
 ~0.01 rad/s;
 - $k_p = 100$;
 - $k_i = 0$;
 - $k_d = 0.1$;

Ex. 8.2)

- Resposta a uma entrada arbitrária:
 - O controlador gera um sinal que é convertido posteriormente na tensão a ser aplicada na armadura do motor;
 - É importante verificar se o esforço de controle é compatível com os limites físicos do sistema.

