Melchor Pinto, J.C. Última revisión del documento: 17 de febrero de 2025

Soluciones propuestas

3° de Secundaria

Unidad 2 2024-2025

Practica la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:

- 🔽 Deduce información acerca de la estructura atómica a partir de dat experimentales sobre propiedades atómicas periódicas.
- 🔽 Representa y diferencia mediante esquemas, modelos y simbología q mica, elementos y compuestos, así como átomos y moléculas.
- 🔽 Explica y predice propiedades físicas de los materiales con base modelos submicroscópicos sobre la estructura de átomos, moléculas iones, y sus interacciones electrostáticas.

Puntuacion:												
Pregunta	1	2	3	4	5	6	7	8	9			
Puntos	5	5	5	5	5	5	5	5	10			
${ m Obtenidos}$												
Pregunta	10	11	12	13	14	15	16		Total			
Puntos	10	5	5	5	10	10	5		100			
Obtenidos												

Ejemplo 1

Identifica en las siguientes reacciones cuáles son de combinación, de descomposición, de desplazamiento o desplazamiento doble.

- \circ 3 O_2 + energía $\uparrow \longrightarrow 2 O_3$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $Ba(NO_3)_2 + K_2SO_4 \longrightarrow BaSO_4 + KNO_3$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

- $c \quad CaCO_3(s) \longrightarrow CaO(s) + CO_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- $\mathsf{d} \quad \mathrm{C_6H_{12}O_6(ac)} \longrightarrow 2\,\mathrm{C_2H_5OH(ac)} + 2\,\mathrm{CO_2(g)}$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 1

de 5 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 H_2 O(l) \longrightarrow 2 H_2(g) + O_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- **b** $CuSO_4 + calor \uparrow \longrightarrow CuO + SO_3O$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

- $ightharpoonup N_2O + energía \uparrow \longrightarrow 2 N_2 + O_2$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- d $4 \operatorname{Al}(s) + 3 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{Al}_2 \operatorname{O}_3(s)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 2 ____ de 5 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $2 \operatorname{Al}(s) + 3 \operatorname{S}(s) \longrightarrow \operatorname{Al}_2 \operatorname{S}_3(s)$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- $\mathsf{C} \ \mathrm{Mg}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Mg}(\mathrm{OH})_2(\mathrm{s})$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- d $Al + H_2SO_4 \longrightarrow Al_2(SO_4)_3 + H_2$
 - (A) Descomposición
 - B Combinación
 - (C) Desplazamiento
 - Doble desplazamiento

Ejemplo 2

Balancea la siguiente ecuación química:

$$H_2O + \longrightarrow H_2 O_2$$

Si representamos la ecuación química con átomos de distintos colores para cada elemento, tenemos:

$$H_2O + \longrightarrow H_2 O_2$$
 \bigcirc

Hay 2 O en los productos y 1 O en los reactivos, por lo que hay que multiplicar por 2 al H_2O .

Ahora, hay 4 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar por 2 al H_2 .

Por lo tanto, la ecuación química balanceada es:

$$2\,H_2O \longrightarrow 2\,H_2 + O_2$$

Ejemplo 3

Balancea la siguiente ecuación química:

Si representamos la ecuación química con átomos de distintos colores para cada elemento, tenemos:

Hay 4 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 2 al H₂O.

Ahora hay 4 O en los productos y 2 en los reactivos, por lo que hay que multiplicar por 2 al O_2 . Y la ecuación balanceada es:

Por lo tanto, la ecuación química balanceada es:

$$\mathrm{CH_4} + 2\,\mathrm{O_2} \longrightarrow \mathrm{CO_2} + 2\,\mathrm{H_2O}$$

Ejercicio 3 de 5 puntos

Balancea la siguiente ecuación química:

$$Fe + H_2O \longrightarrow Fe_3O_4 + H_2$$

Hay 3 Fe en los productos y 1 en los reactivos, por lo que hay que multiplicar por 3 al Fe.

$$3 \text{ Fe} + \text{H}_2\text{O} \longrightarrow \text{Fe}_3\text{O}_4 + \text{H}_2$$

Hay 4 O en los productos y 1 en los reactivos, por lo que hay que multiplicar por 4 al H₂O.

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Fe}_3 \operatorname{O}_4 + \operatorname{H}_2$$

Por último, hay 8 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 4 al H_2 . Y la ecuación balanceada es:

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_3 O_4 + 4 \operatorname{H}_2$$

Ejercicio 4 de 5 puntos

Balancea la siguiente ecuación química:

$$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$$

Hay 2 C en los reactivos y 1 C en los productos, por lo que hay que multiplicar por 2 al CO₂.

$$C_2H_6O + O_2 \longrightarrow 2CO_2 + H_2O$$

Ahora, hay 6 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar por 3 al H₂O.

$$C_2H_6O + O_2 \longrightarrow 2CO_2 + 3H_2O$$

Hay 3 O en los reactivos y 7 O en los productos, por lo que hay que multiplicar por 3 al O_2 . Y la ecuación balanceada es:

$$C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O$$

Ejercicio 5 de 5 puntos

Balancea la siguiente ecuación química:

$$Mg(OH)_2 + HCl \longrightarrow MgCl_2 + H_2O$$

Hay 2 O en los reactivos y 1 en los productos, por lo que hay que multiplicar por 2 al HCl.

$$Mg(OH)_2 + HCl \longrightarrow MgCl_2 + 2H_2O$$

Hay 3 H en los reactivos y 4 en los productos, por lo que hay que multiplicar por 2 al HCl. Y la ecuación queda:

$$Mg(OH)_2 + 2HCl \longrightarrow MgCl_2 + 2H_2O$$

Balancea la siguiente ecuación química:

$$N_2H_4 + O_2 \longrightarrow NO_2 + H_2O$$

Hay 2 N en los reactivos y 1 N en el producto, por lo que hay que multiplicar a NO_2 por 2.

$$N_2H_4 + O_2 \longrightarrow 2NO_2 + H_2O$$

 ${
m Hay}$ 4 ${
m H}$ en los reactivos y 2 ${
m H}$ en los productos, por lo que hay que multiplicar a ${
m H}_2{
m O}$ por 2.

$$N_2H_4 + O_2 \longrightarrow 2NO_2 + 2H_2O$$

Hay 2 O en los reactivos y 6 O en los productos, por lo que hay que multiplicar a O_2 por 3. Y la ecuación balanceada es:

$$N_2H_4 + 3O_2 \longrightarrow 2NO_2 + 2H_2O$$

Ejercicio 7 de 5 puntos

Balancea la siguiente ecuación química:

$$NH_4NO_3 \longrightarrow N_2 + H_2O + O_2$$

Hay 4 H en el reactivo y 2 en el producto, por lo que el coeficiente de H2O es 2.

$$NH_4NO_3 \longrightarrow N_2 + 2H_2O + O_2$$

Hay 3 O en los reactivos y 4 los productos, por lo que si intentamos dar al O_2 un coeficiente de 1/2, nos da 3 oxígenos en ambos lados.

$$\mathrm{NH_4NO_3} \longrightarrow \mathrm{N_2} + 2\,\mathrm{H_2O} + \frac{1}{2}\,\mathrm{O_2}$$

Dado que usualmente no se usan fracciones como coeficientes, multiplicamos todo por 2 para deshacernos de la fracción, y la ecuación balanceada es:

$$2 \, \mathrm{NH_4NO_3} \longrightarrow 2 \, \mathrm{N_2} + 4 \, \mathrm{H_2O} + \mathrm{O_2}$$

Ejercicio 8 de 5 puntos

Completa la siguiente tabla determinando para cada especie, la cantidad de protones (+), neutrones (1) y electrones

Especie	Símbolo	\oplus	1	Θ
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

Ejercicio 9	de 10 puntos

Relaciona cada elemento con las características que le corresponden.

- <u>E</u> Titanio
- (A) Elemento metaloide del grupo III, subgrupo A de la tabla periódica.
- _____ Oro
- (B) Elemento metálico con Z = 31.
- ____ Helio
- (C) Elemento metaloide, ubicado en el tercer período de la tabla periódica.
- A Boro
- (D) Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.
- ____ Radón
- (E) Elemento con 22 protones y 22 electrones.
- __**F**__ Yodo
- (F) Elemento de la familia de los Halógenos con 74 neutrones.
- H Bismuto
- (G) Elemento de la familia de metales alcalino-terreos con 138 neutrones.
- h G Radio
- (H) Elemento no metálico con Z = 83.
- i B Galio
- (I) Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.
- ____ Silicio
- (J) Metal brillante utilizado en joyería.

Ejercicio 10 de 10 puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

- (A) Ión oxígeno (O^-)
- (B) Nitrógeno (N)
- C Silicio (Si)
- (D) Calcio (Ca)
- \bigcirc Ión Fluor (F^-)
- (F) Oxígeno (O)
- (G) Neón (Ne)
- (H) Ión Litio (Li⁺)
- (I) Fósforo (P)
- (J) Selenio (Se)

- 20 protones y 2 electrones de valencia.
- **b** ______ 9 protones y 8 electrones de valencia.
- c _____ 15 protones y 5 electrones de valencia.
- **d** ______ 8 protones y 7 electrones de valencia.
- **e** _____ 34 protones y 6 electrones de valencia.
- f _____ 14 protones y 4 electrones de valencia.
- 9 _____ 7 protones y 5 electrones de valencia.
- h _____ 3 protones y 2 electrones de valencia.
- i ______ 8 protones y 6 electrones de valencia.
- j _____ 10 protones y 8 electrones de valencia.

Ejercicio 11 ____ de 5 puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

 \bigcirc Ión de Aluminio (Al^{3+})

(B) Ión de Nitrógeno (N³⁻)

(C) Ión de Flúor (F⁻)

(D) Litio (Li)

E Ión de Potasio (K⁺)

F Ión de Berilio (Be⁻)

 \bigcirc Ión de Azúfre (S²⁺)

(H) Ión de Cloro (Cl⁻)

(I) Ión de Hierro (Fe³⁺)

(I) Fósforo (P)

- o F 13 protones y 8 electrones de valencia.
- **b** <u>G</u> 17 protones y 8 electrones de valencia.
- c ____ 9 protones y 8 electrones de valencia.
- d B 4 protones y 3 electrones de valencia.
- e <u>H</u> 16 protones y 4 electrones de valencia.

- f _____ 15 protones y 5 electrones de valencia.
- **9** D 26 protones y 2 electrones de valencia.
- h A 7 protones y 8 electrones de valencia.
- i ____ 3 protones y 1 electrón de valencia.
- j <u>E</u> 19 protones y 8 electrones de valencia.

Ejercicio 12 de 5 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - (E) Ninguna de las anteriores
- b ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A La electronegatividad y el tamaño atómico
 - (B) El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - D Potencial de ionización y electronegatividad
 - E Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - (B) Derecha y hacia abajo
 - C Izquierda y hacia arriba
 - D Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - A Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - (A) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 13 ____ de 5 puntos

Relaciona cada concepto con su definición.

- (A) Las sustancias se representan sólo con símbolos atómicos.
- B Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- C Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- Esquema tridimensional en el que no es posible identificar a los enlaces químicos.

- o Diagrama de esferas.
- **b** C Fórmula estructural.
- c _A Fórmula condensada.
- **d** B Diagrama de esferas y barras.

Ejercicio 14 ____ de 10 puntos

Contesta a las siguientes preguntas, argumentando ampliamente tu respuesta.

- a Explica bajo qué condiciones el número atómico permite deducir el número de electrones presentes en un átomo.
 - El número atómico Z se relaciona con la cantidad de protones en un átomo. Si consideramos un átomo eléctricamente neutro, la cantidad de electrones deberá ser la misma.
- b En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?

$$10,000 \times 2 \text{ mm} = 20,000 \text{ mm} = 20m$$

Ejercicio 15 de 10 puntos

Escribe el grupo, subgrupo, período y clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla periódica que se muestra abajo.

Elemento	Grupo	Subgrupo	Período	Tipo	H													-
Oro						L	_	_	_	_	_	_	_	_				
Potasio						Н	\dashv	\dashv	\dashv	+	+	+	+	\vdash		_	\dashv	-
Paladio									\exists	#	1	1	T					
Yodo																		
Samario									\Box	\Box								
						Ш				\perp	\perp		\perp					

Soluciones propuestas 3°	de Secundaria ((2024-2025
--------------------------	-----------------	------------

Ejercicio 16	de 5 puntos
Señala en cada uno de los enunciados si la sentencia es fa	lsa o verdadera.
La tabla periódica se encuentra constituida por filas (períodos) y columnas (grupos).	k Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula.
✓ Verdadero □ Falso	✓ Verdadero □ Falso
b Los electrones de valencia se encuentran siempre en el último nivel de energía.	l El símbolo Cl ⁻ indica que el átomo de cloro ha tenido una reducción o pérdida de electrones.
✓ Verdadero □ Falso	☐ Verdadero ✓ Falso
c El oxígeno y el nitrógeno son dos gases nobles de gran importancia.	m Una fórmula química sólo expresa la composición cualitativa de una sustancia.
☐ Verdadero ☑ Falso	☐ Verdadero ✓ Falso
d El mercurio es un elemento líquido.	n En una fórmula química, los coeficientes indican el número de
✓ Verdadero □ Falso	moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia.
e Los metales se ubican a la derecha y al centro de la tabla periódica.	✓ Verdadero □ Falso
✓ Verdadero □ Falso	Él neutrón es una partícula subatómica que se encuentra gi- rando alrededor del núcleo atómico.
f Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad.	☐ Verdadero ☑ Falso
✓ Verdadero □ Falso	O La masa de un neutrón es similar a la del protón.
${f 9}$ La fórmula ${ m H}_2{ m O}$ expresa que la molécula de agua está cons-	✓ Verdadero ☐ Falso
tituida por dos átomos de oxígeno y uno de hidrógeno.	ρ Las únicas partículas elementales en el núcleo, son los proto-
☐ Verdadero ☑ Falso	nes y neutrones. ☐ Verdadero
h En la fórmula de la Taurina, $4C_2H_7NO_3S$, el número 4 indica que hay 4 átomos de carbono.	
✓ Verdadero □ Falso	q El número de masa representa la suma de protones y neutrones.
i Al número entero positivo, negativo o cero que se asigna a	✓ Verdadero □ Falso
cada elemento en un compuesto, se denomina número de oxidación.	r El número total de electrones en un átomo lo determina el grupo al que pertenece.
☐ Verdadero ☑ Falso	☐ Verdadero ☑ Falso
j En la construcción de una fórmula química se escribe primero la parte positiva y enseguida la negativa.	S Los protones y neutrones son partículas constituidas por quarks.
✓ Verdadero □ Falso	✓ Verdadero ☐ Falso

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{2}{H}\overset{4.0025}{e}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.180}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}}}{\overset{N}}}{\overset{N}}{\overset{N}}}}}}{\overset{N}}}}}}}}$	$\stackrel{18}{A}_{\Gamma}^{39.948}$	$\overset{36}{K}\overset{83.8}{\Gamma}$ Kriptón	$\sum_{Xen\'on}^{54}$	$\mathop{Radon}\limits^{86}$	$0 \\ \frac{118}{O} \\ \frac{294}{S}$	$\overset{71}{\mathbf{L}}\overset{174.97}{\mathbf{U}}$	$\frac{103}{L}$ 262	
	17 VIIA	9 18.998 Fluor	17 35.453 Cloro	$\overset{35}{B}\overset{79.904}{\Gamma}$	53 126.9 T Yodo	$\overset{85}{At}_{\dot{ ext{Astato}}}^{210}$	\prod_{Teneso}^{292}	$\sum_{\text{Yterbio}}^{70} \sum_{\text{TS:04}}^{173.04}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{S}\overset{32.065}{S}$	$\overset{34}{S}\overset{78.96}{e}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{Po}\overset{209}{O}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	69 168.93 Tulio	$\overset{\text{101}}{\text{Mondelevio}}$	
	15 VA	$\sum_{\text{Nitrógeno}}^{7}$	$\overset{\text{15}}{P}\overset{30.974}{\text{Posforo}}$	${\overset{33}{\mathrm{AS}}}_{\mathrm{Arsenico}}^{74.922}$	$\overset{51}{\mathbf{S}}\overset{121.76}{\mathbf{b}}$ Antimonio	$\overset{83}{\mathbf{Bismuto}}$	${\stackrel{115}{M}}_{\text{Moscovio}}$	$\stackrel{\textbf{68}}{\textbf{Erbio}}_{\textbf{r}}$	100 257 Fm	
	14 IVA	$\bigcup_{\text{Carbono}}^{6}$	$\overset{14}{\text{Silicio}}$	${\overset{32}{G}}^{72.64}$	$\mathop{Sn}_{\text{Estaño}}^{\text{118.71}}$	$\overset{82}{Pb}_{\text{Pomo}}^{207.2}$	114 289 Flerovio	$\displaystyle \frac{67 164.93}{H0}$	99 252 Einsteinio	
	13 IIIA	5 Boro	$\bigwedge_{\text{Aluminio}}^{13 26.982}$	$\overset{31}{\mathbf{Galo}}^{69.723}$	49 114.82 Indo	81 204.38 Talio	Nihonio	$\bigcup_{\text{Disprosio}}^{66} 162.50$	$\bigcup_{\text{Californio}}^{98}$	
			12 IIB	$\overset{30}{ ext{Zn}}$	$\overset{48}{C}\overset{112.41}{d}$	$\overset{80}{H}\overset{200.59}{S}$	$\overset{\text{112}}{C}\overset{285}{n}$	\prod_{Terbio}^{65}	$\frac{97}{Bk}$	
			11 18	$\overset{29}{\overset{63.546}{U}}$	${}^{47}_{}{}^{107.87}_{}$	${\overset{79}{\mathrm{Au}}}_{\overset{196.97}{\mathrm{Oro}}}$	Roentgenio	$\overset{64}{\text{Gadolinio}}$	$\overset{96}{Cm}^{247}$	
			10 VIIIB	$\overset{28}{\mathbf{Niquel}}$	$\underset{\text{Paladio}}{\overset{46}{\text{Pol}}}$	$\Pr_{Platino}^{78}$	$\overset{110}{\text{DS}}\overset{281}{\text{S}}$	$\overset{\textbf{63}}{\textbf{Europio}} \overset{151.96}{\textbf{Lu}}$	95 243 243 Am	
			9 VIIIB	27 58.933 CO Cobalto	$\mathop{Rh}\limits^{45 102.91}_{\text{Rodio}}$	$\frac{77}{L}$	109 268 Meitnerio	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{P}\overset{244}{u}$	
		10	8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\mathop{Rut}\limits^{44}$ 101.07	$\overset{76}{\text{Osmio}}$	$\overset{\text{108}}{\text{Hassio}}$	$\underset{\text{Prometio}}{\overset{61}{P}} \overset{145}{D}$	$\frac{93}{N} \frac{237}{D}$ Neptunio	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{N}\overset{54.938}{\text{Manganeso}}$	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Re}_{\text{Renio}}^{75~186.21}$	$\underset{\text{Bohrio}}{\underline{\text{107}}}$	60 144.24 Neodimio	$\bigcup_{\text{Uranio}}^{92 238.03}$	
	Simbología:	Negro: I Gris: Si	6 VIB	$\overset{ extbf{24}}{\overset{ ext{51.996}}{\text{Cromo}}}$	${\overset{42}{\mathrm{Molybdeno}}}^{95.94}$	74 183.84 W	106 266 S8 Seaborgio	$\sum_{\mathbf{Praseodymio}}^{59} 140.91$	$\overset{\text{91}}{P}\overset{231.04}{a}$	
	Sin	$\sum_{\text{S'imbolo}}^{\mathbf{Z}} A_r$	5 VB	23 $ 50.942 $ Vanadio	$\overset{41}{N}\overset{92.906}{\text{Niobio}}$	$\overset{73}{ ext{Tantalo}}$	$\bigcup_{\text{Dubnio}}^{105}$	$\overset{58}{\overset{140.12}{Cerio}}$	$\prod_{Torio}^{90-232.04}$	
			4 IVB	$\prod_{\text{Titanio}}^{22}$	$\sum_{ ext{Circonio}}^{40}$	$\overset{72}{\mathrm{Hafnio}}^{178.49}$	$\underset{\text{Rutherfordio}}{\text{Rutherfordio}}$	$\overset{57}{La}$	$\overset{89}{Ac}^{227}$	
			3 IIIA	$\overset{21}{S}\overset{44.956}{c}$ Escandio	$\sum_{\text{ltrio}}^{39} 88.906$	57-71	: 89-103 : * * 	erreos		iidos
	2 IIA	$\mathop{Berilio}_{\text{Berilio}}^{4}$	$\overline{\mathrm{Mg}}^{22.305}_{\mathrm{Magnesio}}$	$\overset{20}{\overset{40.078}{\mathbf{a}}}$	$\overset{38}{\mathrm{Sr}}$ 87.62 Stroncio	$\overset{56}{\mathrm{Bario}}$	\mathop{Radio}^{88}	Metales Alcalinos Metales Alcalino-terreos Metal	le 1	Gases Nobles Lantánidos/Actínidos
1 IA	$\prod_{\text{Hidrógeno}}^{1 - 1.0079}$	$\sum_{\text{Litio}}^{3} \frac{6.941}{1}$	$\overset{_{11}}{\overset{22.990}{\text{N}}}$	$\sum_{\text{Potasio}}^{19 39.098}$	$\mathop{Rbidio}\limits^{37-85.468}$	$\sum_{\text{Cesio}}^{55} \mathbf{S}$	$\frac{87}{F_1}$	Metales Metales Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/A
	1	2	e	4	Ŋ	9				