Topics of the week

- 1. Pseudo-inverse, definition and properties;
- 2. Pseudo-inverse and minimum norm solution;
- 3. Pseudo-inverse and projection;
- 4. Polyhedron, projections of sets, Farkas lemma.

Left inverse of $A: U \to V$ is the matrix A^{\dagger} s.t. $A^{\dagger}A = I$.

Interpretation: Given $y \in \text{im } A$, find the **unique** pre-image $x = A^{\dagger}y$.

Criterion: There is $A^{\dagger} \iff A$ is injective \iff columns of A are linearly independent.

Reason: If it's not injective, the pre-image of y = Ax is non-unique.

Description: $(AA^{\dagger})^2 = AA^{\dagger}$ is a projection on im A.

Left pseudoinverse is $A^{\dagger} = (A^{\top}A)^{-1}A^{\top}$. For each y, finds x that minimizes ||Ax - y||. **Extra**: AA^{\dagger} is the orthogonal projection on im A.

Right inverse of $A: U \to V$ is the matrix A^{\dagger} s.t. $AA^{\dagger} = I$.

Interpretation: Given $y \in V$, find any pre-image $x = A^{\dagger}y$.

Criterion: There is $A^{\dagger} \iff A$ is surjective \iff rows of A are linearly independent.

Reason: If it's not surjective, there are y that without pre-image.

Description: $(A^{\dagger}A)^2 = A^{\dagger}A$ is a projection on a "representative" subspace im $A^{\dagger} \subset U$.

Right pseudoinverse is $A^{\dagger} = A^{\top} (AA^{\top})^{-1}$. For each y, finds x s.t. Ax = y and $||x|| \to \min$. **Extra**: $A^{\dagger}A$ is the orthogonal projection on $(\ker A)^{\perp} = \operatorname{im} A^{\top}$.

Pseudoinverse of a matrix A = CR is $A^{\dagger} = R^{\dagger}C^{\dagger} = R^{\top}(C^{\top}AR^{\top})^{-1}C^{\top}$. Solves the problem:

$$\begin{split} \|x\| &\to \min, \\ \text{s.t. } \|Ax - y\| &\to \min. \end{split}$$

Implied equations Let Ax = b, then $(y^{\top}A)x = y^{\top}b$ for any y.

Fredholm theorem For a matrix A and a vector b, exactly one of the following holds:

- 1. There is x s.t. Ax = b;
- 2. There is y s.t. $y^{\top}A = 0$ and $y^{\top}b \neq 0$.

Interpretation: Ax = b is infeasible \iff there is an infeasible implied equation.

Proof: If there is such x, it means $y^{\top}b = y^{\top}(b - Ax) = 0$ for any y s.t. $y^{\top}A = 0$. If there is no such x, use Gaussian elimination to find y.

Variant: if there is no such x, use y = Ax - b, where $||Ax - b|| \to \min$.

Conic combination of v_1, \ldots, v_n is $x_1v_1 + \cdots + x_nv_n$, where $x_1, \ldots, x_n \ge 0$.

Implied inequalities Let $Ax \leq b$ and $y \geq 0$, then $y^{\top}Ax \leq y^{\top}b$.

Conic combinations: When $x \ge 0$, the linear combination $x_1v_1 + \cdots + x_nv_n$ is called **conic**.

Fourier-Motzkin elimination Consider a set of inequalities $Ax \leq b$. We can eliminate x_n :

$$\begin{cases} x_n \ge b_i - a_i^\top x', \\ x_n \le b_j - a_j^\top x' \end{cases} \implies b_j - a_j^\top x' \le x_n \le b_i - a_i^\top x'$$

Add an inequality without x_n for each such (i,j). If there is a solution $x = (x', x_n)$, then it also satisfies the new system. Correspondingly, if there is a solution x' of the new system, it's possible to find x_n s.t. $x = (x', x_n)$ is the solution to the old system.

Note: Each new inequality is an implied inequality of the previous ones.

Note: Very inefficient in practice, compared to standard linear programming solvers.

Farkas lemma For a matrix A and a vector b, exactly one of the following holds:

- 1. There is x s.t. $Ax \leq b$;
- 2. There is $y \geq 0$ s.t. $y^{\top}A = 0$ and $y^{\top}b < 0$.

Interpretation: $Ax \leq b$ is infeasible \iff there is an infeasible implied inequality.

Proof: If there is such x, it means $y^{\top}b = y^{\top}(b - Ax) \ge 0$ for any $y \ge 0$ s.t. $y^{\top}A = 0$. If there is no such x, use Fourier-Motzkin elimination to find y.

Variant: If there is no such x, use y = Ax - b', where $||Ax - b'|| \to \min$ s.t. $b' \le b$.

In-class exercises Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ be arbitrary matrices.

- 1. Prove that if rank $A = \operatorname{rank} B = n$, then $(AB)^{\dagger} = B^{\dagger} A^{\dagger}$.
- 2. Prove that $A^{\dagger}AA^{\dagger} = A^{\dagger}$.
- 3. Prove that $(A^{\top})^{\dagger} = (A^{\dagger})^{\top}$.
- 4. Prove that $A^{\dagger}A$ is symmetric and is the projection matrix for im A^{\top} .