TRIGONOMETRI, BARIS, DAN DERET

Perbandingan Trigonometri

1. Perbandingan sisi suatu segitiga siku-siku

$$\sin a = \frac{BC}{AB} = \frac{a}{c} \qquad \csc a = \frac{AB}{BC} = \frac{c}{a}$$

$$\cos a = \frac{AC}{AB} = \frac{b}{c} \qquad \sec a = \frac{AB}{AC} = \frac{c}{b}$$

$$\tan a = \frac{BC}{AC} = \frac{a}{b} \qquad \cot a = \frac{AC}{BC} = \frac{b}{a}$$

2. Nilai perbandingan sudut-sudut istimewa

х	0°	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
cos	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{2}$	∞

Keterangan: ∞ = tidak terdefinisi

Rumus-rumus dalam Segitiga

1. Hubungan sin, cos, dan tan

•
$$\tan x = \frac{\sin x}{\cos x}$$

$$\sin^2 x + \cos^2 x = 1$$

•
$$\sec^2 x = \tan^2 x + 1$$

2. Aturan sinus, kosinus, dan luas segitiga

Aturan sinus

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

Aturan kosinus

$$a^2 = b^2 + c^2 - 2bc \cos a$$

 $b^2 = a^2 + c^2 - 2ac \cos b$

 $c^2 = a^2 + b^2 - 2ab \cos q$

Luas segitiga ABC

$$\frac{1}{2}$$
.a.b. $\sin \gamma = \frac{1}{2}$.a.c. $\sin \beta = \frac{1}{2}$.b.c. $\sin \alpha$

Rumus-rumus dalam Trigonometri

- 1. Jumlah dan selisih dua sudut
 - sin (a + b) = sin a cos b + cos a sin b
 - \cdot sin (a b) = sin a cos b cos a sin b
 - $\cos(a + b) = \cos a \cos b \sin a \sin b$
 - cos (a b) = cos a cos b + sin a sin b

•
$$\tan (a + b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tanh}$$

•
$$\tan (a - b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$$

2. Sudut rangkap

•
$$\sin 2a = 2 \sin a \cos a$$

•
$$\cos 2a = \cos^2 a - \sin^2 a$$

= $2 \cos^2 a - 1$
= $1 - 2\sin^2 A$

•
$$\tan 2a = \frac{2\tan a}{1-\tan^2 a}$$

3. Perkalian sinus dan kosinus

•
$$2 \cos a \sin b = \sin (a + b) - \sin (a - b)$$

•
$$2 \cos a \cos b = \cos (a + b) + \cos (a - b)$$

•
$$-2 \sin a \sin b = \cos (a + b) - \cos (a - b)$$

d. Penjumlahan dan pengurangan sinus dan kosinus

•
$$\sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

•
$$\sin a - \sin b = 2\cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

•
$$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

•
$$\cos a - \cos b = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

Grafik Fungsi Trigonometri

Bentuk umum:

$$f(x) = A \cdot \cos(kx + b) = A \cdot \cos k \left(x + \frac{b}{k}\right)$$

$$f(x) = A \cdot \sin(kx + b) = A \cdot \sin k\left(x + \frac{b}{k}\right)$$

Langkah-langkah menyusun grafik f(x), yaitu:

- 1. Gambar grafik $y = \cos x$ atau $y = \sin x$
- 2. Kalikan semua ordinatnya (sumbu-Y) dengan k
- 3. Geser grafik ke kiri sejauh $\frac{b}{k}$ jika $\frac{b}{k}$ positif,

atau geser grafik ke kanan sejauh
$$\frac{b}{k}$$
 jika $\frac{b}{k}$

4. Periode grafik adalah $\frac{2\pi}{k}$

Persamaan dan Pertidaksamaan Trigonometri

a. Persamaan Trigonometri

1. Persamaan dasar

$$\sin x = \sin p \to \begin{cases} x_1 = p + n.360^{\circ} \\ x_2 = (180 - p) + n.360^{\circ} \end{cases}$$

$$\cos x = \cos p \to x = \pm p + n.360^{\circ}$$

$$\tan x = \tan p \to x = p + n.180^{\circ}$$

 Bentuk persamaan a cos x + b sin x = c
 Dapat diselesaikan dengan mengubah menjadi bentuk k cos (x - a) dimana:

$$k = \sqrt{a^2 + b^2}$$
 dan tan $a = \frac{b}{a}$

b. Pertidaksamaan Trigonometri

Pertidaksamaan trigonometri dapat diselesaikan dengan:

- 1. Menggambar grafiknya.
- 2. Menggunakan garis bilangan seperti pertidaksamaan biasa.
- 3. Untuk soal-soal pilihan ganda bisa dilakukan cara uji pilihan ganda.

B. Baris dan Deret

Notasi Sigma

Notasi sigma atau \sum digunakan untuk menyatakan operasi penjumlahan bilangan berurutan. Sifat-sifat notasi sigma:

$$1. \qquad \sum_{i=m}^{n} i = \sum_{p=m}^{n} p$$

2.
$$\sum_{i=m}^{n} ki = k \sum_{i=m}^{n} i, k = konstanta$$

3.
$$\sum_{i=m}^{a-1} ki + \sum_{i=a}^{n} ki = \sum_{i=m}^{n} ki$$

4.
$$\sum_{i=m+a}^{n+a} (i-a) = \sum_{i=m-a}^{n-a} (i+a)$$

5.
$$\sum_{i=m}^{n} ai \pm \sum_{i=m}^{n} ai = \sum_{i=m}^{n} (ai \pm bi)$$

Baris dan Deret Aritmetika

Barisan Aritmetika a.

Barisan aritmetika adalah barisan bilangan yang mempunyai beda (selisih) yang tetap untuk setiap dua suku yang berurutan.

Contoh:

- 1, 3, 5, 7,
- 2, 6, 10, 14,
- 100, 90, 80, 70,

Bentuk umum barisan aritmetika adalah:

$$U_1$$
, U_2 , U_3, U_n
a, a + b, a + 2b,...., a + (n - 1)b

Suku ke-n barisan aritmetika dapat dirumuskan sebagai berikut:

$$U_n = a + (n - 1)b$$

Keterangan:

 $U_n = suku ke-n$

a = suku pertama

 $b = beda barisan (b = U_n - U_n)$

Deret Aritmetika

Bentuk umum deret aritmetika adalah:

$$U_1 + U_2 + U_3 + \dots + U_n$$

a + (a + b) + (a + 2b) + \dots + (a + (n - 1)b)

Deret aritmetika dapat dirumuskan sebagai

$$S_n = \frac{n}{2}(a + U_n) = \frac{n}{2}(2a + (n-1)b)$$

S_n adalah jumlah n suku yang pertama.

Kemudian berlaku:

$$U_n = S_n - S_{n-1}$$

Baris dan Deret Geometri

Barisan Geometri

Bentuk umum barisan geometri adalah sebagai berikut:

Contoh:

- 1, 2, 4, 8,
- 27, -9, 3, -1,
- 1, -1, 1, -1

Suku ke-n barisan geometri dapat dirumuskan sebagai berikut:

$$U_n = ar^{n-1}$$

Keterangan:

 $U_n = suku ke-n$

a = suku pertama
r = rasio (r =
$$\frac{U_n}{U_{n-1}}$$
)

Deret Geometri

Bentuk umum dari deret geometri sebagai berikut:

$$U_1 + U_2 + U_3 + \dots + U_n$$

a + ar + ar² + \dots + arⁿ⁻¹

Rumus mencari jumlah n suku pertama pada deret geometri:

$$S_n = \frac{a(r^n - 1)}{r - 1}, jika r > 1$$

$$S_n = \frac{a(1 - r^n)}{1 - r}, jika r < 1$$

Deret Geometri Tak Hingga

Deret geometri tak hingga adalah deret geometri yang memiliki jumlah suku sampai tak terhingga. Deret geometri tak hingga dibedakan menjadi:

Deret geometri divergen

Syarat deret geometri divergen: jika r < -1 atau r > 1.

Contoh:

$$2 + 6 + 18 + 54 + \dots + \infty \rightarrow S_{\infty} = \infty$$

S_∞= jumlah suku-suku sampai tak terhingga

Deret geometri konvergen

Syarat deret geometri konvergen: jika

Rumus jumlah suku sampai tak terhingga (S_m) adalah:

$$S_{\infty} = \frac{a}{1-r}$$

CONTOH SOAL

TRIGONOMETRI, BARIS, & DERET

1. Soal Ujian SPMB

Jika
$$x_1$$
 dan x_2 adalah solusi persamaan $\sqrt{2} + 2\cos x = 0,0^0 \le x \le 360^0$ maka $x_1 + x_2$

Pembahasan:

$$\sqrt{2} + 2\cos x = 0$$
$$\cos x = -\frac{\sqrt{2}}{2}$$

Nilai kosinus negatif pada kuadran II dan III

maka:
$$\cos x = -\frac{\sqrt{2}}{2}$$

Pada kuadran III:
$$180^{\circ} + 45^{\circ} = 225^{\circ} (x_{3})$$

Jadi,
$$x_1 + x_2 = 135^\circ + 225^\circ = 360^\circ$$

Jawaban: E

2. Soal Ujian SPMB

Jika jumlah n suku pertama deret aritmatika adalah $S_n = 2n^2 + 3n$, beda deretnya adalah

C. 4

Pembahasan:

$$S_n = 2n^2 + 3n$$

Beda (b) = $U_2 - U_1$
= $(S_2 - S_1) - S_1$
= $S_2 - 2S_1$
= $[(2 \cdot 2^2 + 3 \cdot 2)] - 2[2 \cdot 1^2 + 3 \cdot 1]$
= $14 - 10$
= 4

Jawaban: C

3. Soal Ujian SNMPTN

Misalkan, U_n menyatakan suku ke-n suatu barisan geometri. Jika diketahui $U_s = 12$ dan $log U_4 + log U_5 - log U_6 = log 3 maka nilai <math>U_4$ adalah

C. 8

Pembahasan:

Step 1: menyederhanakan persamaan

$$logU_4 + logU_5 - logU_6 = log 3$$
$$logU_4 + logU_5 = log 3 + logU_6$$

Ingat:

$$\log a + \log b = \log (a.b)$$

Maka:

$$\log(U_4.U_5) = \log(3.U_6)$$

$$U_4.U_5 = 3.U_6$$

$$12.U_4 = 3.U_6.....(2)$$

Diketahui: U_n menyatakan suku ke-n suatu barisan geometri dan $U_s = 12$ maka:

$$r = \frac{U_6}{U_5}$$

$$r = \frac{U_6}{12}$$

$$U_6 = 12r(1)$$

Substitusikan persamaan (1) ke persamaan (2) maka:

$$12.U_4 = 3.U_6$$

$$12.U_4 = 3.(12r)$$

$$U_{\lambda} = 3r$$

Step 2: mencari nilai r

$$U_5 = U_4 \cdot r$$

$$12 = 3r.r$$

$$12 = 3r^2$$

$$r^2 = 4 \implies r = 2$$

Jadi,
$$U_a = 3r = 3 \cdot 2 = 6$$

Jawaban: D