NOTES ON SYMPLECTIC GEOMETRY

NILAY KUMAR

Contents

1. Week 1	1
1.1. The cotangent bundle	1
1.2. Geodesic flow as Hamiltonian flow	4
2. Week 2	7
2.1. Darboux's theorem	7
3. Week 3	10
3.1. Submanifolds of symplectic manifolds	10
3.2. Some neighborhood theorems	11
3.3. Contact manifolds	12

1. Week 1

1.1. The cotangent bundle.

Definition 1. Let X be a smooth n-manifold and $\pi: M = T^*X \to X$ be its cotangent bundle. We define the **canonical one-form** $\theta \in \Omega^1(M)$ as follows. For any $p = (x, \xi) \in M$, set

$$\theta_n(v) = \xi(d_x\pi(v)).$$

The one-form θ is canonical (or tautological) in the sense that its value at a point is simply given by the covector determined by that point. More precisely, we have the following characterization.

Proposition 2. The canonical one-form θ is the (unique) one-form such that for every $\lambda \in \Omega^1(X)$, $\lambda^*\theta = \lambda$.

Proof. We compute, for $v \in T_pX$,

$$(\lambda^* \theta)_p(v) = \theta_{\lambda(p)}(d_p \lambda(v))$$

= $\lambda_p(d_p(\pi \circ \lambda)(v))$
= $\lambda_p(v)$,

where we have used the fact that λ is a section of π , i.e. $\pi \circ \lambda = \mathrm{id}_X$. Uniqueness is easily checked.

Definition 3. The canonical symplectic form $\omega \in \Omega^2(M)$ is now defined to be the exterior derivative

$$\omega = -d\theta$$
,

Date: Fall 2015.

of the canonical one-form. To be symplectic, ω must be closed and nondegenerate. That it is closed is obvious.

Proposition 4. The form $\omega \in \Omega^2(M)$ is nondegenerate and thus defines a symplectic structure on $M = T^*X$.

Proof. For ω to be non-degenerate, it must be nondegenerate at each point $p \in M$. Given coordinates $p = (x, \xi) = (x^1, \dots, x^n, \xi_1, \dots, \xi_n)$ in a neighborhood of p, we can compute

$$\theta_{(x,\xi)} \left(v^i \frac{\partial}{\partial x^i} + \nu^i \frac{\partial}{\partial \xi^i} \right) = \xi \left(v^i \frac{\partial}{\partial x^i} \right)$$
$$= \xi_i v^i$$

and hence

$$\theta = \xi_i dx^i$$
.

Taking an exterior derivative, we find that

$$\omega = -d\theta$$
$$= dx^i \wedge d\xi_i.$$

Fix $v \in T_pM$ and suppose that $\iota_v\omega_p = 0$, i.e. $\omega_p(v,w) = 0$ for all $w \in T_pM$. In coordinates, this implies that

$$\iota_{v^{j}\frac{\partial}{\partial x^{j}}+\nu^{j}\frac{\partial}{\partial \xi^{j}}}(dx^{i}\wedge d\xi_{i}) = v^{i}d\xi_{i} - \nu^{i}dx^{i}$$
$$= 0,$$

and hence that $v^i = \nu^i = 0$, i.e. v = 0. We conclude that ω_p is nondegenerate at each $p \in M$.

Remark 5. Note that a 2-form ω on a manifold M is nondegenerate if and only if ω^n is nowhere vanishing. Fix $p \in M$ and consider the vector space (T_pM,ω_p) . If ω_p is nondegenerate, we can find a symplectic basis for T_pM , and so ω_p^n evaluated on $(u_1,\ldots,u_n,v_1,\ldots,v_n)$ is nonzero, whence ω_p^n is not zero on V. On the other hand, suppose ω_p is degenerate, i.e. there is a $v \neq 0$ such that $\omega_p(v,w) = 0$ for all $w \in V$. Choosing a basis v_1,\ldots,v_{2n} for V such that $v_1 = v$, we find that $\omega_p(v_1,\ldots,v_{2n}) = 0$ and hence $\omega_p = 0$ on V.

We conclude that every symplectic manifold is orientable.

It is easy to see that ω provides an isomorphism $\iota: T_xX \xrightarrow{\sim} T_x^*X$ between tangent and cotangent spaces at each point $x \in X$: since ω_x is nondegenerate, the linear map $\iota: v \mapsto \omega_x(v, -)$ is injective and hence bijective. In fact, we can say more.

Proposition 6. The metric ω induces an isomorphism of vector bundles $\iota: TX \xrightarrow{\sim} T^*X = M$.

¹Is there a coordinate invariant proof?

Proof. Recall that an isomorphism in the category of smooth vector bundles is a smooth bijection² ι such that the diagram

commutes and for each $x \in X$, the restriction $\iota_x : T_x X \to T_x^* X$ is linear. The map $\iota : TX \to T^* X$ taking $(x,v) \mapsto (x,\omega(v,-))$ fits into the diagram above and is bijective and fiberwise linear. Moreover, ι is a smooth map, as is seen by its coordinate description computed above.

Definition 7. A **Hamiltonian** is a smooth function $H: M = T^*X \to \mathbb{R}$. we define the **Hamiltonian vector field** v_H associated to H to be the vector field on M satisfying

$$\iota_{v_H}\omega = dH.$$

The (local) flow $F:(-\varepsilon,\varepsilon)\times M\to M$ determined by v_H is called the **Hamiltonian** flow.³

Note that an integral curve $\gamma_{v_H}: (-\varepsilon, \varepsilon) \to M$ of v_H can be thought of as the trajectory of a physical state in phase space. Indeed, Hamilton's equations are given

$$\begin{split} \frac{\partial x^i}{\partial t} &= \frac{\partial H}{\partial \xi_i} \\ \frac{\partial \xi_i}{\partial t} &= -\frac{\partial H}{\partial x^i}, \end{split}$$

which is precisely the condition that $\gamma'_{v_H}(t) = (v_H)_{\gamma(t)}$. Moreover, H is constant along the Hamiltonian flow, as

$$dH(v_H) = (\iota_{v_H}\omega)(v_H) = \omega(v_H, v_H) = 0,$$

i.e. v_H is perpendicular to the level sets of H. In a physical system, where H is the energy functional on phase space, this phenomenon is the law of conservation of energy.

Proposition 8. The Hamiltonian flow is a symplectomorphism, i.e. $F_t^*\omega = \omega$.

Proof. We use the following trick:

$$\int_0^t \frac{d}{dt} F_t^* \omega \, dt = F_t^* \omega - \omega$$

since $F_0 = \mathrm{id}_M$, and hence F_t is a symplectomorphism if and only if the integrand is zero. But

$$\frac{d}{dt}F_t^*\omega = \frac{d}{ds}\bigg|_{s=0} F_{t+s}^*\omega = F_t^* \frac{d}{ds}\bigg|_{s=0} F_s^*\omega$$
$$= F_t^* \mathcal{L}_{v_H}\omega,$$

²Existence of a smooth inverse is automatic (reference?).

 $^{^{3}}$ Is this a global flow? Does it depend on X?

⁴Is there a better proof?

and Cartan's magic formula,

$$\mathcal{L}_{v_H}\omega = d\iota_{v_H}\omega + \iota_{v_H}d\omega,$$

tells us that $\mathcal{L}_{v_H}\omega = 0$ since $\iota_{v_H}\omega = dH$ is closed, as is ω .

Corollary 9 (Liouville's Theorem). The volume form ω^n on $M = T^*X$ is preserved by the Hamiltonian flow.

1.2. **Geodesic flow as Hamiltonian flow.** We wish to discuss geodesics and geodesic flow. For this, we need the concept of connections and covariant derivatives.⁵

Definition 10. A **connection** on a vector bundle $E \to X$ is an \mathbb{R} -linear map $\nabla : \Gamma(X, E) \to \Gamma(X, E \otimes T^*X)$ such that the Leibniz rule

$$\nabla (f\sigma) = (\nabla \sigma)f + \sigma \otimes df,$$

for all $f \in C^{\infty}(X)$ and $\sigma \in \Gamma(X, E)$.

Theorem 11. Given a Riemannian manifold (X, g), there exists a unique connection on $\pi : TX \to X$, known as the **Levi-Civita connection**, satisfying

(i) symmetry:

$$\nabla_X Y - \nabla_Y X - [X, Y] = 0,$$

for $X, Y \in \Gamma(X, TX)$;

(ii) compatibility with g:

$$Xq(Y,Z) - q(\nabla_X Y, Z) - q(Y, \nabla_X Z) = 0,$$

for
$$X, Y, Z \in \Gamma(X, TX)$$
.

Definition 12. Let v be a vector field on (X, g); we define the **covariant derivative** of v along a smooth curve $c: I \to X$ to be the vector field

$$\frac{Dv}{dt} = \nabla_{dc/dt}v,$$

where ∇ is the Levi-Civita connection. Explicitly, if we write $v = v^i \partial / \partial x^i$ and $c(t) = (c_1(t), \dots, c_n(t)),$

$$\frac{Dv}{dt} = \sum_{i} \frac{dv^{i}}{dt} \frac{\partial}{\partial x^{i}} + \sum_{ijk} \frac{dc_{i}}{dt} v^{i} \Gamma^{k}_{ij} \frac{\partial}{\partial x^{k}}.$$

Here Γ_{ij}^k are the Christoffel symbols of ∇ , determined by

$$\nabla_{\partial/\partial x^i} \frac{\partial}{\partial x^j} = \sum_{ijk} \Gamma^k_{ij} \frac{\partial}{\partial x^k}.$$

We say that c is **geodesic** at some $t \in I$ if D/dt(dc/dt) = 0 at t, and that c is geodesic if it is geodesic at all $t \in I$. In coordinates, the condition for c to be geodesic is given by a system of second-order differential equations:

$$\frac{d^2c^i}{dt^2} + \sum_{jk} \Gamma^i_{jk} \frac{dc^j}{dt} \frac{dc^k}{dt} = 0,$$

for $i = 1, \ldots, n$.

⁵Reference do Carmo.

For the rest of the section, assume (X,g) is Riemannian and we fix the Hamiltonian $H:M=T^*X\to\mathbb{R}$ as

$$H(x,\xi) = \frac{1}{2} \left| \xi_x \right|_g^2,$$

i.e. consisting of only a kinetic term. Here we are implicitly using the nondegeneracy of g to associate ξ_x with its corresponding vector (or, equivalently, using g^{-1}).

Proposition 13. The Hamiltonian flow on $M = T^*X$ is dual to the geodesic flow on TX. In other words, the integral curves of the Hamiltonian vector field v_H associated to the Hamiltonian above project to geodesics of g on X.

Proof. It suffices to show, in coordinates, that Hamilton's equations (i.e. the condition for being on the integral curve) yield the geodesic equations above after the necessary dualization. Note first that in coordinates the Hamiltonian becomes

$$H(x,\xi) = \frac{1}{2}g^{ij}\xi_i\xi_j.$$

For convenience we will denote the components of an integral curve as $x^{i}(t)$. Hamilton's equations yield

$$\begin{split} \frac{dx^i}{dt} &= \frac{\partial}{\partial \xi_i} \left(\frac{1}{2} g^{jk} \xi_j \xi_k \right) \\ &= \frac{1}{2} g^{jk} \delta_{ij} \xi_k + \frac{1}{2} g^{jk} \xi_j \delta_{ik} \\ &= g^{ij} \xi_j \\ \frac{d\xi_i}{dt} &= -\frac{\partial}{\partial x^i} \left(\frac{1}{2} g^{jk} \xi_j \xi_k \right) \\ &= -\frac{1}{2} \frac{\partial g^{jk}}{\partial x^i} \xi_j \xi_k. \end{split}$$

Differentiating the first equation with respect to t and using both of Hamilton's equations yields

$$\begin{split} \frac{d^2x^i}{dt^2} &= \frac{\partial g^{ij}}{\partial x^k} \frac{dx^k}{dt} \xi_j + g^{im} \frac{d\xi_m}{dt} \\ &= g^{kl} \left(\frac{\partial}{\partial x^k} g^{ij} \right) \xi_l \xi_j - \frac{1}{2} g^{im} \left(\frac{\partial}{\partial x^m} g^{nr} \right) \xi_n \xi_r. \end{split}$$

Next, differentiating the identity $g^{ij}g_{jk}=\delta^i_k$, it easy to see that

$$\frac{\partial}{\partial x^i} g^{kl} = -g^{la} g^{kb} \frac{\partial}{\partial x^i} g_{ab}.$$

⁶Is there a coordinate-free proof? See Paternain's book.

Using this, contracting indices, and using the first Hamilton's equation to dualize ξ 's into dx/dt's, we find

$$\frac{d^2x^i}{dt^2} = -g^{ib} \left(\frac{\partial}{\partial x^k} g_{lb} \right) \frac{dx^k}{dt} \frac{dx^l}{dt} + \frac{1}{2} g^{im} \left(\frac{\partial}{\partial x^m} g_{ts} \right) \frac{dx^s}{dt} \frac{dx^t}{dt}
= -\frac{1}{2} g^{ib} \left(\frac{\partial}{\partial x^k} g_{lb} \right) \frac{dx^k}{dt} \frac{dx^l}{dt} - \frac{1}{2} g^{ib} \left(\frac{\partial}{\partial x^l} g_{kb} \right) \frac{dx^k}{dt} \frac{dx^l}{dt}
+ \frac{1}{2} g^{im} \left(\frac{\partial}{\partial x^m} g_{ts} \right) \frac{dx^s}{dt} \frac{dx^t}{dt}
= -\Gamma^i_{kl} \frac{dx^k}{dt} \frac{dx^l}{dt},$$

as desired.

2. Week 2

2.1. Darboux's theorem.

Theorem 14 (Darboux). Let (M, ω) be a symplectic 2n-manifold. Then M is locally symplectomorphic to $(\mathbb{R}^{2n}, \omega_{\mathbb{R}^{2n}})$.

We prove Darboux's theorem using the following stronger statement.

Theorem 15. Let M be a 2n-dimensional manifold and $Q \subset M$ be a compact submanifold. Suppose that $\omega_1, \omega_2 \in \Omega^2(M)$ are closed 2-forms such that at each point q of Q the forms ω_0 and ω_1 are equal and nondegenerate on T_qM . Then there exist neighborhoods N_0 and N_1 of Q and a diffeomorphism $\psi: N_0 \to N_1$ such that $\psi|_Q = \mathrm{id}_Q$ and $\psi^*\omega_1 = \omega_0$.

Proof. Consider the family of closed two-forms

$$\omega_t = \omega_0 + t(\omega_1 - \omega_0)$$

on M for $t \in [0,1]$. Note that $\omega_t|_Q = \omega_0|_Q$ is nondegenerate and hence there exists an open neighborhood N_0 of Q such that $\omega_t|_{N_0}$ is nondegenerate. Suppose, for now, that there is a one-form $\sigma \in \Omega^1(N_0)$ (possibly shrinking N_0), such that $\sigma|_{T_0M} = 0$ and $d\sigma = \omega_1 - \omega_0$ on N_0 . Then

$$\omega_t = \omega_0 + t d\sigma$$

and we obtain by nondegeneracy a smooth vector field X_t on N_0 characterized by

$$\iota_{X_t}\omega_t = -\sigma.$$

The condition $\sigma|_{T_QM} = 0$ implies, again by nondegeneracy of ω_t , that $X_t|_Q = 0$. Now consider the initial value problem for the flow ψ_t of X_t ,

$$\frac{d}{dt}\psi_t = X_t \circ \psi_t$$
$$\psi_0 = \mathrm{id}.$$

This differential equation can be solved uniquely for $t \in [0,1]$ on some open neighborhood of Q contained in N_0 , call it again N_0 .⁸ Note that $\psi_t|_Q = \mathrm{id}_Q$ since $X_t|_Q = 0$. We compute now that

$$\frac{d}{dt}\psi_t^*\omega_t = \psi_t^* \left(\frac{d}{dt}\omega_t + \mathcal{L}_{X_t}\omega_t\right)$$
$$= \psi_t^* \left(d\sigma + d\iota_{X_t}\omega_t\right)$$
$$= 0.$$

Hence $\psi_1^*\omega_1 = \psi_0^*\omega_0 = \omega_0$. Thus the desired diffeomorphism is ψ_1 and the desired neighborhoods are N_0 and N_1 . The above argument is known as **Moser's trick**, and is extremely useful in symplectic geometry.

It remains to construct a smooth one-form σ satisfying $\sigma|_{T_QM}=0$ and $d\sigma=\omega_1-\omega_0$. If Q were a point (or more generally, diffeomorphic to a star-shaped subset of Euclidean space), we could simply use the Poincaré lemma; in general, however the construction is as follows. Fix any Riemannian metric on M and consider the

⁷Why?

⁸Why?

restriction of the exponential map $\exp: TM \to M$ to a neighborhood U_{ε} of the zero section of the normal bundle $TQ^{\perp} \to M$:

$$U_{\varepsilon} = \{(q, v) \in TM \mid q \in Q, v \in T_q Q^{\perp}, |v| < \varepsilon\}.$$

Recall that exp becomes a diffeomorphism for ε sufficiently small, so we choose ε such that $N_0 = \exp(U_{\varepsilon})$ is contained in the neighborhood of Q above on which ω_t is nondegenerate. Define now a family of maps $\phi_t : N_0 \to N_0$ for $t \in [0, 1]$ by

$$\phi_t(\exp(q,v)) = \exp(q,tv).$$

Note that ϕ_t is a diffeomorphism onto its image for $t \neq 0$. Moreover, $\phi_t|_Q = \mathrm{id}_Q$, $\phi_0(N_0)$, and $\phi_1 = \mathrm{id}_{N_0}$. If we now write $\tau = \omega_1 - \omega_0$, we find that

$$\phi_0^* \tau = 0$$
$$\phi_1^* \tau = \tau,$$

since $\tau = 0$ on T_QM . Now, for $t \in (0,1]$, we define a family of vector fields,

$$Y_t = \left(\frac{d}{dt}\phi_t\right) \circ \phi_t^{-1}.$$

Then for any $\delta > 0$,

$$\phi_1^* \tau - \phi_\delta^* \tau = \int_\delta^1 \frac{d}{dt} \phi_t^* \tau dt = \int_\delta \phi_t^* \mathcal{L}_{Y_t} \tau dt$$
$$= \int_\delta^1 \phi_t^* (d\iota_{Y_t} \tau) dt$$
$$= d \int_\delta^1 \phi_t^* (\iota_{Y_t} \tau) dt$$

Clearly $\phi_1^*\tau - \phi_\delta^*\tau = \tau - \phi_\delta^*\tau$ approaches τ as $\delta \to 0^+$, so we find that

$$\tau = d \int_0^1 \phi_t^*(\iota_{Y_t} \tau) dt.$$

Defining

$$\sigma = \int_0^1 \phi_t^*(\iota_{Y_t}\tau) dt,$$

we find that $\tau = \omega_1 - \omega_0 = d\sigma$ and $\sigma|_{T_QM} = 0$ because $\phi_t|_Q = \mathrm{id}_Q$ and $\tau = 0$ on Q, forcing the integrand to vanish on T_QM . Hence σ is the one-form required above for Moser's trick, and we are done.

The proof of Darboux's theorem is now straightforward: we choose a coordinate chart ϕ so that $\phi^*\omega$ is equal to the standard form on a subset of \mathbb{R}^{2n} at a single point, and then apply Moser's theorem with Q equal to the chosen point.

Proof of Darboux's theorem. Let $q \in M$ and fix a symplectic basis $\{u_i, v_i\}$ for the symplectic vector space $(T_q M, \omega_q)$. Fix any Riemannian metric on M and pick an open $U \ni 0$ small enough such that exp restricted to $U \subset T_q M$ is a diffeomorphism

⁹Why is σ smooth?

and hence a chart $(x^i, y_i) = \exp : U \subset \mathbb{R}^{2n} \to M \ (i = 1, ..., n)$ such that $x^i(p) = y_i(p) = 0$. Now we can compute, for example,

$$\exp^* \omega_p \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial y^k} \right) = \omega_p \left(\exp_* \frac{\partial}{\partial x^j}, \exp_* \frac{\partial}{\partial y^k} \right)$$
$$= \omega_p \left(u_j, v_k \right) = \delta_{jk},$$

to check that $\exp^* \omega_p = (\omega_0)_0$ where ω_0 is the standard form on T_0U . Here we have used the fact that $\exp_* = \operatorname{id}$ at $0 \in U$. Applying Theorem 2.1 to U with $Q = 0 \in U$, we obtain a diffeomorphism ψ of (some possibly smaller) U such that $\psi^* \exp^* \omega = \omega_0$ on U. But now $\exp \circ \psi$ provides a symplectomorphism in a neighborhood of q to a neighborhood of \mathbb{R}^{2n} pulling ω back to the standard form ω_0 .

3. Week 3

3.1. Submanifolds of symplectic manifolds.

Definition 16. Let (V, ω) be a symplectic vector space. We define the **symplectic complement** U^{ω} of a subspace $U \subset V$ as

$$U^{\omega} = \{ v \in V \mid \omega(v, u) = 0 \text{ for all } u \in U \}.$$

Lemma 17. For any subspace $U \subset V$, $U^{\omega\omega} = U$ and

$$\dim U + \dim U^{\omega} = \dim V.$$

Proof. Nondegeneracy of ω yields an isomorphism $\iota_{\omega}: V \to V^*$ which identifies U^{ω} with $U^{\perp} \equiv \{ \nu \in V^* \mid \nu(u) = 0 \text{ for all } u \in U \}$. The result now follows from the fact that $\dim U + \dim U^{\perp} = \dim V$.

Definition 18. Let (M,ω) be a symplectic manifold. A submanifold $Q\subset M$ is called symplectic, isotropic, coisotropic, or Lagrangian if for each $q \in Q$, the linear subspace $T_q Q \equiv V_q$ of $(T_q M, \omega_q)$ is

- (a) symplectic: $V_q \cap V_q^{\omega_q} = 0$, (b) isotropic: $V_q \subset V_q^{\omega_q}$,
- (c) coisotropic: $V_q^{\omega_q} \subset V_q$
- (d) Lagrangian: $V_q = V_q^{\omega_q}$,

respectively.

Remark 19. Note that $Q \subset M$ is Lagrangian if and only if the restriction of ω to Q is zero and dim $Q = \dim M/2$.

Example 20. Let X be any manifold, and $(M = T^*X, \omega)$ be its cotangent bundle with the usual symplectic structure. Recall that $\omega = -d\theta$, where $\theta_{\xi}(v) =$ $\xi(d_x\pi(v))$. In coordinates, if (x^i,ξ^i) are coordinates for M, we can write $\omega=$ $dx^i \wedge d\xi^i$.

It is then easy to see that the fibre $T_x^*X\subset M$ is Lagrangian, as

$$0 = (dx^{i} \wedge d\xi^{i}) \left(a_{j} \frac{\partial}{\partial \xi^{j}}, b_{k} \frac{\partial}{\partial \xi^{k}} + c_{l} \frac{\partial}{\partial x^{l}} \right)$$
$$= (dx^{i} \wedge d\xi^{i}) \left(a_{j} \frac{\partial}{\partial \xi^{j}}, c_{l} \frac{\partial}{\partial x^{l}} \right)$$
$$= a_{i}c_{i},$$

forces $c_i = 0$.

Similarly, the zero section $\Gamma_0 \subset M$ is Lagrangian, as

$$0 = (dx^{i} \wedge d\xi^{i}) \left(a_{j} \frac{\partial}{\partial x^{j}}, b_{k} \frac{\partial}{\partial \xi^{k}} + c_{l} \frac{\partial}{\partial x^{l}} \right)$$
$$= (dx^{i} \wedge d\xi^{i}) \left(a_{j} \frac{\partial}{\partial x^{j}}, b_{k} \frac{\partial}{\partial \xi^{k}} \right)$$
$$= a_{i}b_{i},$$

forces $b_i = 0$.

¹⁰Can we do this coordinate-invariantly?

More generally, given a submanifold $Q \subset L$, the annihilator

$$TQ^{\perp} = \{(q, \nu) \in T^*L \mid q \in Q, \nu|_{T_qQ} = 0\}$$

is Lagrangian.

Example 21. Let (M, ω) be a symplectic manifold. The product $M \times M$ can be given a symplectic structure $\omega' = \alpha \pi_1^* \omega + \beta \pi_2^* \omega$ for $\alpha, \beta \in \mathbb{R}$. Consider in particular the case of $\alpha = 1, \beta = -1$. Then it is clear that $M \times \{m\}$ and $\{m\} \times M$ are symplectic submanifolds. Moreover, the diagonal $\Delta \subset M \times M$ is Lagrangian, as

$$0 = \omega'((u, u), (v, w))$$
$$= \omega(u, v) - \omega(u, w)$$
$$= \omega(u, v - w)$$

and hence v = w, as desired.

Example 22. Let $S \subset (M,\omega)$ be a codimension 1 submanifold. Then S is coisotropic. Indeed, fix $s \in S$, and note that $T_sS \subset T_sM$ is codimension one. By Lemma 17, $T_sS^{\omega_s}$ is a one-dimensional subspace. Pick any vector $v \in T_sS^{\omega_s}$; v spans the entire symplectic complement, and hence if v is not in $T_sS^{\omega_s}$, $T_sS \cap T_sS^{\omega_s} = 0$ and T_sS is symplectic and thus even-dimensional. This is a contradiction, and hence T_sS must be coisotropic.

Proposition 23. The graph $\Gamma_{\sigma} \subset T^*X$ of a one-form is Lagrangian if and only if σ is closed.

Proof. Note that Γ_{σ} is defined to be the image of the embedding $\sigma: X \to T^*X$. Then dim $\Gamma_{\sigma} = n$, so it remains to show that ω restricts to zero on Γ_{σ} if and only if σ is closed. Using Proposition 2, we compute

$$d\sigma = d\sigma^*\theta = \sigma^*d\theta = -\sigma^*\omega,$$

which yields the desired statement, as $\sigma^*\omega = 0$ on X if and only if $\omega = 0$ on Γ_{σ} , by virtue of σ being an embedding.

3.2. Some neighborhood theorems.

Definition 24. Let V be a vector space. A **complex structure** on V is an automorphism $J: V \to V$ such that $J^2 = -\operatorname{id}_V$. Note that a complex structure gives V the structure of a complex vector space (i acts by J). We denote the set of all complex structures on V by $\mathcal{J}(V)$. Now suppose (V, ω) is a symplectic vector space. We say that a complex structure J is **compatible** with ω if

$$\omega(Jv, Jw) = \omega(v, w)$$

for all $v, w \in V$, and

$$\omega(v, Jv) > 0$$

for all nonzero $v \in V$. We denote the set of all compatible complex structures on (V, ω) by $\mathcal{J}(V, \omega)$.

Lemma 25. Let $J \in \mathcal{J}(V, \omega)$ be a compatible complex structure on (V, ω) . Then

$$g_J(v, w) = \omega(v, Jw)$$

defines an inner product on V.

Definition 26. A symplectic vector bundle (E,ω) over X is a real vector bundle $\pi: E \to X$ together with a smooth symplectic bilinear form $\omega \in \Gamma(X, E^* \wedge E^*)$, i.e. a symplectic bilinear form on each E_x that varies smoothly with x. A **complex structure** on $\pi: E \to M$ is a bundle automorphism $J: E \to E$ such that $J^2 = -\operatorname{id}_E$. We say J is **compatible** with ω if the induced complex structure on E_x is compatible with ω_x for all $x \in X$. By the above lemma, we obtain a symmetric, positive-definite bilinear form $g_J \in \Gamma(X, \operatorname{Sym}^2 E^*)$, and we call the triple (E, ω, g_J) a **Hermitian structure** on E.

Theorem 27. Every symplectic vector bundle (E, ω) over a manifold X admits a Hermitian structure.

With these definitions out of the way, we present a number of theorems characterizing neighbhorhoods of special submanifolds of symplectic manifolds.

Theorem 28 (Symplectic neighborhood theorem). Let $(M_0, \omega_0), (M_1, \omega_1)$ be symplectic manifolds with compact symplectic submanifolds Q_0, Q_1 respectively. Suppose there is an isomorphism $\Phi: TQ_0^{\omega} \to TQ_1^{\omega}$ of symplectic normal bundles covering a symplectomorphism $\phi: (Q_0, \omega_0) \to (Q_1, \omega_1)$. Then ϕ extends to a symplectomorphism $\psi: (N(Q_0), \omega_0) \to (N(Q_1), \omega_1)$ such that $d\psi$ induces the map Φ on TQ_0^{ω} .

Proof. Let \exp_0 , \exp_1 be diffeomorphisms mapping neighborhoods of the zero section in the normal bundle to neighborhoods of Q_0 , Q_1 in X, respectively. Then we obtain

$$\phi' = \exp_1 \circ \Phi \circ \exp_0^{-1},$$

a diffeomorphism between these neighborhoods of Q_0 and Q_1 . Now $\phi'^*\omega_1$ and ω_0 are two symplectic forms on M_0 whose restrictions to Q_0 agree. Now ϕ' extends to the desired ψ by Theorem 2.1.

Theorem 29 (Lagrangian neighborhood theorem). Let (M,ω) be a symplectic manifold and let $L \subset M$ be a compact Lagrangian submanifold. Then there exists a neighborhood $N(\Gamma_0) \subset T^*L$ of the zero section Γ_0 , a neighborhood $U \subset M$ of L, and a diffeomorphism $\phi: N(\Gamma_0) \to U$ such that $\phi^*\omega = -d\theta$ and $\phi|_L = \mathrm{id}$, where θ is the canonical one-form on T^*L .

Proof.

3.3. Contact manifolds. Let X be a differential manifold and $H \subset TX$ be a smooth hyperplane field, i.e. a smooth subbundle of codimension one. Then, locally on some open U, we can write $H = \ker \alpha$, for $\alpha \in \Omega_1(U)$. In fact, if we assume that H is coorientable, we can extend U to all of X.¹¹ We will assume for what follows that H is coorientable.

Definition 30. Let X be a manifold of odd dimension 2n+1. A **contact structure** on X is a hyperplane field $H = \ker \alpha$ where the top-dimensional form $\alpha \wedge (d\alpha)^n$ is nowhere vanishing. We call α a **contact form**, and the pair (X, H) a **contact manifold**.

Remark 31. Suppose we have $\alpha, \alpha' \in \Omega^1(X)$ such that $H = \ker \alpha = \ker \alpha'$. Then α is a contact form if and only if α' is. This is because the condition that α, α' cut out H requires $\alpha' = f\alpha$ for some nonzero $f: X \to \mathbb{R}$.

¹¹Why?

Remark 32. In the language of distributions, H can be described as a codimension one distribution that is maximally non-integrable in the following sense. Recall that a distribution on X is said to be integrable if every point p of X is contained in a integral manifold of H, i.e. in a nonempty immersed submanifold $N \subset X$ such that $T_pN = H_p$. The Frobenius theorem tells us that H is integrable if and only if H is involutive, i.e. H is closed under the Lie bracket of local sections. Now, since

$$d\alpha(X,Y) = X\alpha(Y) - Y\alpha(X) - \alpha[X,Y],$$

we find that H is integrable if and only if $d\alpha = 0$ on H. Thus asking for $d\alpha$ to be nondegenerate on H forces the distribution to be "as non-integrable as possible."

Indeed, we obtain the above definition of a contact structure by noting that $d\alpha$ is nondegenerate on H if and only if $\alpha \wedge (d\alpha)^n$ is nowhere vanishing, as follows. By remark 5, $d\alpha$ is nondegenerate on H if and only if $(d\alpha)^n$ is nowhere vanishing, but this is simply equivalent to asking that $\alpha \wedge (d\alpha)^n$ be nowhere vanishing.

Armed simply with the definition of a contact manifold, one might think that contact geometry is somewhat obscure. We provide the following list of examples as evidence that contact manifolds are actually quite common.

Example 33. Let $X = \mathbb{R}^{2n+1}$ with coordinates $(x^1, \dots, x^n, y^1, \dots, y^n, z)$. The one-form

$$\alpha = dz + x^i dy^i$$

is a contact form, as

$$\alpha \wedge (d\alpha)^n = dz \wedge dx^1 \wedge dy^1 \wedge \dots \wedge dx^n \wedge dy^n.$$

which is nowhere vanishing. We define the standard contact structure on \mathbb{R}^{2n+1} to be $H = \ker \alpha$.

For the next few examples the following lemma will be useful.

Lemma 34. Let (M, ω) be a symplectic manifold of dimension 2n. A vector field Y on M satisfying $\mathcal{L}_Y \omega = \omega$ is called a **Liouville vector field**. In this case, $\alpha = \iota_Y \omega$ is a contact form on any hypersurface $Q \subset M$ transverse to Y (i.e. at any point p, T_pQ and Y_p span T_pM).

Proof. Cartan's magic formula in this case tells us that $\omega = d\iota_Y \omega$, and hence

$$\alpha \wedge (d\alpha)^{n-1} = \iota_Y \omega \wedge \omega^{n-1}$$
$$= \iota_Y(\omega^n)/n.$$

Now, since ω^n is a volume form on M, we find that $\alpha \wedge (d\alpha)^{n-1}$ is a volume form when restricted to the tangent bundle of any hypersurface transverse to Y.

Example 35. Consider $M = \mathbb{R}^4$ with its usual symplectic form $\omega = dx^1 \wedge dy^1 + dx^2 \wedge dy^2$. The vector field

$$Y = \frac{1}{2} \left(x_1 \frac{\partial}{\partial x^1} + y^1 \frac{\partial}{\partial y^1} + x^2 \frac{\partial}{\partial x^2} + y^2 \frac{\partial}{\partial y^2} \right)$$

is clearly transverse to the sphere S^3 given by $(x^1)^2 + (y^1)^2 + (x^2)^2 + (y^2)^2 = 1$. It is a straightforward computation to check that Y is Liouville, using the identity

$$(\mathcal{L}_Y \omega)(v, w) = \mathcal{L}_Y(\omega(v, w)) - \omega([Y, v], w) - \omega(v, [Y, w]).$$

We conclude, using the previous lemma, that S^3 is a contact manifold, with a contact structure $\ker \iota_Y \omega$.