Optimization for Deep Learning

Adaptive SGD

Kun Yuan

Peking University

Main contents in this lecture

- Preconditioned SGD
- AdaGrad
- RMSProp
- Adam

• Consider an ill-conditioned quadratic problem

$$\min_{x} \quad x^{T}Qx + c^{T}x$$

where ${\it Q}$ is an ill-conditioned matrix. GD is slow when solving the problem

Figure: An ill-conditioned QP problem. (From Prof. Chris De Sa's lecture notes)

- We now let $x = P^{\frac{1}{2}}w$ for some positive definite matrix P. Since P is positive definite, x and w is an 1-1 mapping
- If we choose $P=Q^{-1}$, we have $x^TQx=w^TQ^{-\frac{1}{2}}QQ^{\frac{1}{2}}w=\|w\|^2$
- With $x = P^{\frac{1}{2}}w$ and $P = Q^{-1}$, the ill-conditioned problem becomes

$$\min_{w} \quad \frac{1}{2} \|w\|^2 + c^T Q^{-\frac{1}{2}} w$$

which is a benign problem. GD is fast to achieve w^* .

• Once w^* is determined, we have $x^* = P^{\frac{1}{2}}w^*$.

- We now let $x = P^{\frac{1}{2}}w$ for some positive definite matrix P. Since P is positive definite, x and w is an 1-1 mapping
- \bullet If we choose $P=Q^{-1},$ we have $x^TQx=w^TQ^{-\frac{1}{2}}QQ^{\frac{1}{2}}w=\|w\|^2$
- With $x = P^{\frac{1}{2}}w$ and $P = Q^{-1}$, the ill-conditioned problem becomes

$$\min_{w} \quad \frac{1}{2} \|w\|^2 + c^T Q^{-\frac{1}{2}} w$$

which is a benign problem. GD is fast to achieve w^* .

• Once w^* is determined, we have $x^* = P^{\frac{1}{2}}w^*$.

- We now let $x = P^{\frac{1}{2}}w$ for some positive definite matrix P. Since P is positive definite, x and w is an 1-1 mapping
- \bullet If we choose $P=Q^{-1},$ we have $x^TQx=w^TQ^{-\frac{1}{2}}QQ^{\frac{1}{2}}w=\|w\|^2$
- With $x=P^{\frac{1}{2}}w$ and $P=Q^{-1}$, the ill-conditioned problem becomes

$$\min_{w} \quad \frac{1}{2} \|w\|^2 + c^T Q^{-\frac{1}{2}} w$$

which is a benign problem. GD is fast to achieve w^{\star} .

• Once w^* is determined, we have $x^* = P^{\frac{1}{2}}w^*$.

- We now let $x = P^{\frac{1}{2}}w$ for some positive definite matrix P. Since P is positive definite, x and w is an 1-1 mapping
- ullet If we choose $P=Q^{-1}$, we have $x^TQx=w^TQ^{-\frac{1}{2}}QQ^{\frac{1}{2}}w=\|w\|^2$
- With $x=P^{\frac{1}{2}}w$ and $P=Q^{-1}$, the ill-conditioned problem becomes

$$\min_{w} \quad \frac{1}{2} \|w\|^2 + c^T Q^{-\frac{1}{2}} w$$

which is a benign problem. GD is fast to achieve w^{\star} .

• Once w^{\star} is determined, we have $x^{\star} = P^{\frac{1}{2}}w^{\star}$.

Figure: Left: an ill-conditioned QP problem. Right: a benign QP problem after transformation.(From Prof. Chris De Sa's lecture notes)

Consider a general ill-conditioned optimization problem

$$\min_{x \in \mathbb{R}^d} \quad f(x)$$

- We let $x=P^{\frac{1}{2}}w$ so that $g(w)=f(P^{\frac{1}{2}}w)$ is a nice function.
- Use gradient descent to minimize g(w), i.e.,

$$w_{k+1} = w_k - \gamma \nabla g(w_k) = w_k - \gamma P^{\frac{1}{2}} \nabla f(P^{\frac{1}{2}} w_k)$$

• Left-multiplying $P^{\frac{1}{2}}$ to both sides, we achieve

$$P^{\frac{1}{2}}w_{k+1} = P^{\frac{1}{2}}w_k - \gamma P \nabla f(P^{\frac{1}{2}}w_k)$$

$$\implies x_{k+1} = x_k - \gamma P \nabla f(x_k)$$

where P is called the preconditioning matrix

• Consider a general ill-conditioned optimization problem

$$\min_{x \in \mathbb{R}^d} \quad f(x)$$

- We let $x = P^{\frac{1}{2}}w$ so that $g(w) = f(P^{\frac{1}{2}}w)$ is a nice function.
- Use gradient descent to minimize g(w), i.e.,

$$w_{k+1} = w_k - \gamma \nabla g(w_k) = w_k - \gamma P^{\frac{1}{2}} \nabla f(P^{\frac{1}{2}} w_k)$$

• Left-multiplying $P^{\frac{1}{2}}$ to both sides, we achieve

$$P^{\frac{1}{2}}w_{k+1} = P^{\frac{1}{2}}w_k - \gamma P \nabla f(P^{\frac{1}{2}}w_k)$$

$$\Rightarrow x_{k+1} = x_k - \gamma P \nabla f(x_k)$$

where P is called the preconditioning matrix

Consider a general ill-conditioned optimization problem

$$\min_{x \in \mathbb{R}^d} \quad f(x)$$

- We let $x = P^{\frac{1}{2}}w$ so that $g(w) = f(P^{\frac{1}{2}}w)$ is a nice function.
- Use gradient descent to minimize g(w), i.e.,

$$w_{k+1} = w_k - \gamma \nabla g(w_k) = w_k - \gamma P^{\frac{1}{2}} \nabla f(P^{\frac{1}{2}} w_k)$$

• Left-multiplying $P^{\frac{1}{2}}$ to both sides, we achieve

$$P^{\frac{1}{2}}w_{k+1} = P^{\frac{1}{2}}w_k - \gamma P \nabla f(P^{\frac{1}{2}}w_k)$$

$$\Rightarrow x_{k+1} = x_k - \gamma P \nabla f(x_k)$$

where P is called the preconditioning matrix

Consider a general ill-conditioned optimization problem

$$\min_{x \in \mathbb{R}^d} \quad f(x)$$

- We let $x = P^{\frac{1}{2}}w$ so that $g(w) = f(P^{\frac{1}{2}}w)$ is a nice function.
- Use gradient descent to minimize g(w), i.e.,

$$w_{k+1} = w_k - \gamma \nabla g(w_k) = w_k - \gamma P^{\frac{1}{2}} \nabla f(P^{\frac{1}{2}} w_k)$$

• Left-multiplying $P^{\frac{1}{2}}$ to both sides, we achieve

$$P^{\frac{1}{2}}w_{k+1} = P^{\frac{1}{2}}w_k - \gamma P \nabla f(P^{\frac{1}{2}}w_k)$$

$$\iff x_{k+1} = x_k - \gamma P \nabla f(x_k)$$

where P is called the preconditioning matrix.

• The preconditioned GD algorithm

$$x_{k+1} = x_k - \gamma P_k \nabla f(x_k)$$

- ullet It is critical to choose the preconditioning matrix P_k
- ullet If $P_k = [
 abla^2 f(x_k)]^{-1}$, then preconditioned GD reduces to Newton's method
- It is critical to construct an efficient and effective P matrix

• The preconditioned GD algorithm

$$x_{k+1} = x_k - \gamma P_k \nabla f(x_k)$$

- ullet It is critical to choose the preconditioning matrix P_k
- If $P_k = [\nabla^2 f(x_k)]^{-1}$, then preconditioned GD reduces to Newton's method
- ullet It is critical to construct an efficient and effective P matrix

• The preconditioned GD algorithm

$$x_{k+1} = x_k - \gamma P_k \nabla f(x_k)$$

- ullet It is critical to choose the preconditioning matrix P_k
- ullet If $P_k = [
 abla^2 f(x_k)]^{-1}$, then preconditioned GD reduces to Newton's method
- It is critical to construct an efficient and effective P matrix

• The preconditioned GD algorithm

$$x_{k+1} = x_k - \gamma P_k \nabla f(x_k)$$

- ullet It is critical to choose the preconditioning matrix P_k
- If $P_k = [\nabla^2 f(x_k)]^{-1}$, then preconditioned GD reduces to Newton's method
- ullet It is critical to construct an efficient and effective P matrix

$$\min_{x \in \mathbb{R}^d} \quad f(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[F(x;\xi)]$$

- \circ ξ is a random variable indicating data samples
- \circ $\mathcal D$ is the data distribution; unknown in advance
- $\circ \ F(x;\xi)$ is differentiable in terms of x
- Similar to preconditioned GD, preconditioned SGD iterates as follows

$$x_{k+1} = x_k - \gamma P_k \nabla F(x_k; \xi_k)$$

$$\min_{x \in \mathbb{R}^d} \quad f(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[F(x;\xi)]$$

- $\circ \xi$ is a random variable indicating data samples
- $\circ \mathcal{D}$ is the data distribution; unknown in advance
- $\circ \ F(x;\xi)$ is differentiable in terms of x
- Similar to preconditioned GD, preconditioned SGD iterates as follows

$$x_{k+1} = x_k - \gamma P_k \nabla F(x_k; \xi_k)$$

$$\min_{x \in \mathbb{R}^d} \quad f(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[F(x;\xi)]$$

- $\circ~\xi$ is a random variable indicating data samples
- $\circ \mathcal{D}$ is the data distribution; unknown in advance
- $\circ F(x;\xi)$ is differentiable in terms of x
- Similar to preconditioned GD, preconditioned SGD iterates as follows

$$x_{k+1} = x_k - \gamma P_k \nabla F(x_k; \xi_k)$$

$$\min_{x \in \mathbb{R}^d} \quad f(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[F(x;\xi)]$$

- $\circ \xi$ is a random variable indicating data samples
- $\circ \mathcal{D}$ is the data distribution; unknown in advance
- $\circ \ F(x;\xi)$ is differentiable in terms of x
- Similar to preconditioned GD, preconditioned SGD iterates as follows

$$x_{k+1} = x_k - \gamma P_k \nabla F(x_k; \xi_k)$$

$$\min_{x \in \mathbb{R}^d} \quad f(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[F(x;\xi)]$$

- \circ ξ is a random variable indicating data samples
- $\circ \mathcal{D}$ is the data distribution; unknown in advance
- o $F(x;\xi)$ is differentiable in terms of x
- Similar to preconditioned GD, preconditioned SGD iterates as follows

$$x_{k+1} = x_k - \gamma P_k \nabla F(x_k; \xi_k)$$

Adaptive gradient method

$$g_k = \nabla F(x_k; \xi_k)$$

$$s_k = s_{k-1} + g_k \odot g_k$$

$$x_{k+1} = x_k - \frac{\gamma}{\sqrt{s_k} + \epsilon} \odot g_k$$

where $1/\sqrt{s_k}=\operatorname{col}\{1/\sqrt{s_{k,1}},\cdots,1/\sqrt{s_{k,d}}\}\in\mathbb{R}^d$ is an element-wise operation, s_0 is initialized as 0, and a small ϵ is added for safe-guard.

• AdaGrad falls into preconditioned SGD

• If we let $P_k=\mathrm{diag}\{\frac{1}{\sqrt{s_{k,1}+\epsilon}},\cdots,\frac{1}{\sqrt{s_{k,d}+\epsilon}}\}\in\mathbb{R}^{d\times d}$, AdaGrad becomes

$$x_{k+1} = x_k - \gamma P_k g_k$$

- AdaGrad imposes smaller learning rates for notable gradient directions
- AdaGrad imposes larger learning rates for insignificant gradient directions

- AdaGrad falls into preconditioned SGD
- If we let $P_k=\mathrm{diag}\{\frac{1}{\sqrt{s_{k,1}+\epsilon}},\cdots,\frac{1}{\sqrt{s_{k,d}+\epsilon}}\}\in\mathbb{R}^{d\times d}$, AdaGrad becomes

$$x_{k+1} = x_k - \gamma P_k g_k$$

- AdaGrad imposes smaller learning rates for notable gradient directions
- AdaGrad imposes larger learning rates for insignificant gradient directions

- AdaGrad falls into preconditioned SGD
- If we let $P_k=\mathrm{diag}\{\frac{1}{\sqrt{s_{k,1}}+\epsilon},\cdots,\frac{1}{\sqrt{s_{k,d}}+\epsilon}\}\in\mathbb{R}^{d\times d}$, AdaGrad becomes

$$x_{k+1} = x_k - \gamma P_k g_k$$

- AdaGrad imposes smaller learning rates for notable gradient directions
- AdaGrad imposes larger learning rates for insignificant gradient directions

- AdaGrad falls into preconditioned SGD
- If we let $P_k=\mathrm{diag}\{\frac{1}{\sqrt{s_{k,1}+\epsilon}},\cdots,\frac{1}{\sqrt{s_{k,d}+\epsilon}}\}\in\mathbb{R}^{d\times d}$, AdaGrad becomes

$$x_{k+1} = x_k - \gamma P_k g_k$$

- AdaGrad imposes smaller learning rates for notable gradient directions
- AdaGrad imposes larger learning rates for insignificant gradient directions

AdaGrad alleviates the "Zig-Zag" phenomenon

Figure: GD converges slow for ill-conditioned problem

AdaGrad alleviates the "Zig-Zag" phenomenon

Figure: AdaGrad has alleviated "Zig-Zag" phenomenon

The learning rate in AdaGrad is adaptive; no need to tune.

$$\gamma_k = \frac{\gamma}{\sqrt{\sum_{t=1}^k g_t^2}} = O(\frac{1}{\sqrt{T}})$$

Subgradient g_k stays constant

Gradient decays at $g_k = O(\rho^k)$

$$\gamma_k = \frac{\gamma}{\sqrt{\sum_{t=1}^k g_t^2}} = O(1)$$

Figure: AdaGrad automatically adapts to problem structure¹.

 $^{^1}$ These examples are from https://conferences.mpi-inf.mpg.de/adfocs/material/alina/adaptive-L1.pdf

- ullet Since s_k keeps increasing, the rate γ_k in AdaGrad keeps decreasing
- AdaGrad may suffer from slow convergence
- RMSProp proposes a different way to construct s_k

$$s_k = \beta s_{k-1} + (1 - \beta)g_k \odot g_k$$

where $\beta \in (0,1)$. A typical value for β is 0.9.

ullet In RMSProp, only the most recent g_k influences the convergence rate

- ullet Since s_k keeps increasing, the rate γ_k in AdaGrad keeps decreasing
- AdaGrad may suffer from slow convergence
- RMSProp proposes a different way to construct s_k

$$s_k = \beta s_{k-1} + (1 - \beta)g_k \odot g_k$$

where $\beta \in (0,1)$. A typical value for β is 0.9.

ullet In RMSProp, only the most recent g_k influences the convergence rate

- Since s_k keeps increasing, the rate γ_k in AdaGrad keeps decreasing
- AdaGrad may suffer from slow convergence
- ullet RMSProp proposes a different way to construct s_k

$$s_k = \beta s_{k-1} + (1 - \beta)g_k \odot g_k$$

where $\beta \in (0,1)$. A typical value for β is 0.9.

• In RMSProp, only the most recent g_k influences the convergence rate

- ullet Since s_k keeps increasing, the rate γ_k in AdaGrad keeps decreasing
- AdaGrad may suffer from slow convergence
- ullet RMSProp proposes a different way to construct s_k

$$s_k = \beta s_{k-1} + (1 - \beta)g_k \odot g_k$$

where $\beta \in (0,1)$. A typical value for β is 0.9.

ullet In RMSProp, only the most recent g_k influences the convergence rate

ullet Suppose $g_k=1/k$, we can visualize s_k from AdaGrad and RMSProp

Figure: AdaGrad increases very fast while RMSProp decays slowly with $\beta=0.9$

• We also visualize s_k from RMSProp with different β .

Figure: Gradient accumulation in RMSProp with different β .

• RMSProp has the following update

$$g_k = \nabla F(x_k; \xi_k)$$

$$s_k = \beta s_{k-1} + (1 - \beta) g_k \odot g_k$$

$$x_{k+1} = x_k - \frac{\gamma}{\sqrt{s_k} + \epsilon} \odot g_k$$

where s_0 is initialized as 0, and a small ϵ is added for safe-guard.

Adam

• Adam applies both momentum and adaptive rate to alleviate "Zig-Zag".

$$g_k = \nabla F(x_k; \xi_k)$$

$$m_k = \beta_1 m_{k-1} + (1 - \beta_1) g_k$$

$$s_k = \beta_2 s_{k-1} + (1 - \beta_2) g_k \odot g_k$$

$$x_{k+1} = x_k - \frac{\gamma}{\sqrt{s_k} + \epsilon} \odot m_k$$

where m_0 and s_0 are initialized as 0, and a small ϵ is added for safe-guard.

• It is good to set $\beta_1 = 0.9$ and $\beta_2 = 0.999$

Adam

• Adam applies both momentum and adaptive rate to alleviate "Zig-Zag".

$$g_k = \nabla F(x_k; \xi_k)$$

$$m_k = \beta_1 m_{k-1} + (1 - \beta_1) g_k$$

$$s_k = \beta_2 s_{k-1} + (1 - \beta_2) g_k \odot g_k$$

$$x_{k+1} = x_k - \frac{\gamma}{\sqrt{s_k} + \epsilon} \odot m_k$$

where m_0 and s_0 are initialized as 0, and a small ϵ is added for safe-guard.

• It is good to set $\beta_1 = 0.9$ and $\beta_2 = 0.999$.

Animation of different adaptive SGDs

https://imgur.com/a/Hqolp

Numerical performance

Figure: This figure is from the Adam paper (?)