Metody sztucznej inteligencji 2 Projekt 1. — Algoryt
mk najbliższych sąsiadów Raport

Bartłomiej Dach, Tymon Felski

27 maja 2018

Niniejszy dokument zawiera raport z implementacji algorytmu k najbliższych sąsiadów (k-NN, ang. k nearest neighbors) oraz analizę efektywności jego działania dla dostarczonych danych treningowych.

1 Algorytm k najbliższych sąsiadów

Algorytm k najbliższych sąsiadów jest jedną z wielu metod rozwiązywania **problemu klasyfikacji**, czyli predykcji wartości zmiennych jakościowych (zwanych również zmiennymi kategorycznymi lub dyskretnymi) na podstawie przykładowych **danych treningowych** [1, s. 9–10]. Klasycznym przykładem tego typu problemu jest klasyfikacja gatunków irysów z użyciem pomiarów rozmiarów działek kielicha oraz płatków kwiatu.

Klasyfikatory oparte na metodzie k najbliższych sąsiadów operują na punktach w przestrzeni n-wymiarowej. Proces klasyfikacji danego punktu $x_0 \in \mathbb{R}^n$ odbywa się w następujący sposób:

- 1. Ze zbioru treningowego wybierane jest k punktów znajdujących się najbliżej punktu x_0 [2, s. 261].
- 2. Jeżeli większość z wybranych k punktów należy do jednej klasy, to punkt wejściowy jest przypisywany do tej samej klasy.
- 3. Potencjalne remisy w punkcie (2) są rozstrzygane losowo [1, s. 463–464].

Liczba punktów wybieranych ze zbioru treningowego (wartość k) stanowi parametr algorytmu. Jakość działania metody w dużym stopniu zależy od odpowiedniego doboru tego parametru dla danego zadania klasyfikacji [1, s. 468–470].

Do parametrów algorytmu można zaliczyć również metrykę używaną do obliczania odległości między punktami. W zaimplementowanym algorytmie uwzględnione zostały następujące metryki:

1. odległość euklidesowa:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

2. odległość taksówkowa (miejska, Manhattan):

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

3. odległość Czebyszewa (maksimum):

$$d(x,y) = \max_{i=1,\dots,n} |x_i - y_i|$$

4. odległość Minkowskiego z parametrem p, stanowiąca uogólnienie powyższych:

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{1/p}$$

Ponieważ algorytm k-NN wymaga zapamiętania całości danych treningowych do swojego działania, zaliczany jest on do klasy klasyfikatorów **opartych na pamięci** (ang. memory-based) [1, s. 463].

2 Sposób analizy efektywności algorytmu

Efektywność działania k-NN była mierzona z użyciem dwóch dostarczonych dwuwymiarowych zbiorów danych oraz zastosowaniem metody kroswalidacji, zalecanej do doboru parametrów metody [1, s. 470].

2.1 Kroswalidacja

k-krotna kroswalidacja (walidacja krzyżowa, sprawdzian krzyżowy) to technika ewaluacji metod klasyfikacji z użyciem zebranych danych. W tej technice zbiór danych treningowych X dzielony jest losowo na k rozłącznych podzbiorów X_1, \ldots, X_k podobnej liczności.

Po podziale danych wykonywane jest k serii testowych. W i-tej serii testowany klasyfikator jako dane treningowe otrzymuje zbiór $X\setminus X_i$. Zadaniem klasyfikatora jest wyznaczenie klas dla punktów ze zbioru X_i . Następnie dla każdego punktu $x_j\in X_i$ następuje porównanie etykiety y_j' wyznaczonej przez testowaną metodę z etykietą faktyczną y_j [1, s. 241–243].

Główną metryką dokładności algorytmu przy tym porównaniu jest **proporcja błędnej** klasyfikacji, obliczana wzorem

$$e_i = \frac{1}{|X_i|} \cdot |\{y_j \neq y_j' : j = 1, 2, \dots, |X_i|\}|$$

Końcowa proporcja błędnej klasyfikacji dla danej metody jest obliczane poprzez uśrednienie uzyskanych k wyników.

2.2 Rozważane zbiory treningowe

Algorytm został przetestowany na dwuwymiarowych zbiorach simple i three_gauss, w których większość punktów zawiera się w kwadracie $[-1,1] \times [-1,1]$. Oba zbiory mają dość regularną charakterystykę, dzięki czemu możliwe jest również zastosowanie metod statystycznych do oceny efektywności klasyfikatora k-NN.

2.2.1 Zbiór simple

Zbiór simple składa się z punktów o rozkładzie zbliżonym do jednostajnego wzdłuż obu współrzędnych Punkty w tym zbiorze podzielone są na dwie klasy wzdłuż prostej o równaniu x+y=0. Docelowo klasyfikator powinien więc jak najwierniej odwzorować podział punktów wzdłuż tej prostej.

2.2.2 Zbiór three_gauss

Zbiór three_gauss zawiera trzy klasy, częściowo nakładające się na siebie. Każda z trzech klas charakteryzuje się rozkładem podobnym do dwuwymiarowego rozkładu normalnego:

$$f(\mathbf{x}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)}{2\pi\sqrt{|\boldsymbol{\Sigma}|}}$$

Na podstawie zbioru zawierającego 30 000 punktów wyznaczone zostały przybliżone parametry rozkładów:

1. Dla klasy 1. mamy

$$\mu_1 pprox egin{bmatrix} 0.1 \\ 0.5 \end{bmatrix}, \qquad \mathbf{\Sigma}_1 pprox egin{bmatrix} 0.04 & 0 \\ 0 & 0.04 \end{bmatrix},$$

2. Dla klasy 2. mamy

$$m{\mu}_2 pprox egin{bmatrix} -0.6 \\ 0.2 \end{bmatrix}, \qquad m{\Sigma}_2 pprox egin{bmatrix} 0.04 & 0 \\ 0 & 0.0025 \end{bmatrix},$$

3. Dla klasy 3. mamy

$$\boldsymbol{\mu}_3 pprox egin{bmatrix} 0 \ -0.3 \end{bmatrix}, \qquad \boldsymbol{\Sigma}_3 pprox egin{bmatrix} 0.03 & -0.045 \ -0.045 & 0.16 \end{bmatrix}.$$

Używając powyższych parametrów, można podzielić kostkę $[-1,1] \times [-1,1]$ na trzy obszary, obliczając w każdym jego punkcie **odległość Mahalanobisa** od poszczególnych rozkładów wzorem

$$D_M(\mathbf{x}) = \sqrt{(\mathbf{x} - \boldsymbol{\mu})^\mathsf{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

i przypisując dany punkt do rozkładu, do którego jest mu najbliżej. Podział ten dla zbioru three_gauss ukazuje rysunek 1.

Rysunek 1: Podział obszaru $[-1,1] \times [-1,1]$ na klasy z użyciem odległości Mahalanobisa

3 Wyniki eksperymentów

Zgodnie z opisem zawartym w poprzednim rozdziale, jakość klasyfikacji przy pomocy algorytmu k-NN została przetestowana metodą kroswalidacji przy użyciu dwóch zbiorów treningowych i różnych wartości parametrów. Zbadano zbiory simple oraz three_gauss zawierające odpowiednio 1000 i 3000 elementów. Pod uwagę wzięto wartości parametru k ze zbioru $\{1, 3, 5, 7, 9, 11, 13\}$ oraz pięć metryk:

- odległość taksówkową,
- odległość euklidesową,
- odległość Czebyszewa,
- odległość Minkowskiego z parametrem p wynoszącym 1.5,
- odległość Minkowskiego z parametrem p wynoszącym 3.

Zastosowano pięciokrotną kroswalidację, tzn. dane treningowe zostały losowo podzielone na 5 rozłącznych podzbiorów. We wszystkich próbach ziarno generatora liczb losowych zostało ustalone, aby podział był ten sam dla wszystkich permutacji wartości parametrów algorytmu.

3.1 Zbiór simple

3.1.1 Kroswalidacja

Wyniki testów jakości klasyfikacji przy pomocy pięciokrotnej kroswalidacji dla zbioru simple znajdują się w tabeli poniżej. Liczby w tabeli oznaczają średnią proporcję poprawnej klasyfikacji $(1-\overline{e_i})$. Kolorem zielonym zaznaczono wynik najlepszy, a kolorem czerwonym — najgorszy. Poza najlepszym i najgorszym wynikiem, na pomarańczowo wyróżniono także dwa zestawy parametrów z wynikiem bardzo zbliżonym do najlepszego.

		Wartość parametru k						
		1	3	5	7	9	11	13
Użyta metryka	taksówkowa	0.9850	0.9880	0.9870	0.9800	0.9820	0.9800	0.9810
	euklidesowa	0.9850	0.9860	0.9820	0.9820	0.9830	0.9830	0.9790
	Czebyszewa	0.9830	0.9860	0.9820	0.9810	0.9800	0.9810	0.9820
	Minkowskiego (1.5)	0.9850	0.9870	0.9840	0.9800	0.9830	0.9810	0.9800
î	Minkowskiego (3)	0.9840	0.9850	0.9840	0.9820	0.9800	0.9810	0.9800

Tablica 1: Wyniki kroswalidacji algorytmu k-NN dla zbioru treningowego simple

W przypadku powyższych wyników dla zbioru simple można zauważyć tendencję osiągania lepszej klasyfikacji dla mniejszych wartości parametrów k. Co prawda jest to bardzo mała różnica, ponieważ różnica pomiędzy najlepszym a najgorszym wynikiem nie wynosi nawet 1 punktu procentowego, jednak jest ona widoczna. Jest to zgodne z przewidywaniami – dla zbioru, w którym dane są liniowo separowalne, co skutkuje ostrym brzegiem pomiędzy klasami, rozważanie mniejszej liczby sąsiadów pozytywnie wpływa na ostateczny wynik, ponieważ nie rozmywa brzegu. Najlepiej wypadła tutaj klasyfikacja algorytmem k-NN dla k=3 i z metryką taksówkową, jednak takie samo wywołanie dla k=5 oraz wywołanie z k=3 i metryką Minkowskiego przy p=1.5 dały bardzo zbliżone wyniki. Równomierny rozkład punktów w obszarze niweluje różnice w wynikach spowodowane wyborem metryki.

Po ustaleniu najkorzystniejszych wartości parametrów algorytmu k-NN dla powyższego zbioru, zdecydowano się zbadać cały obszar $[-1,1] \times [-1,1]$ z gęstością próbkowania $\delta=0.05$ i ustalić przynależność środkowych punktów każdego z kwadratów o boku δ , zawartych w tym obszarze, do jednej z klas zbioru treningowego. Poniższy wykres jest graficzną reprezentacją otrzymanych wyników dla k=3 oraz metryki będącej odległością taksówkową.

Rysunek 2: Klasyfikacja punktów z obszaru $[-1,1]\times[-1,1]$ dla k=3i odległości taksówkowej

Dla kontrastu, podobną analizę przeprowadzono dla parametrów, które zapewniły najgorszą klasyfikację, czyli dla k=13 i odległości euklidesowej.

Rysunek 3: Klasyfikacja punktów z obszaru $[-1,1]\times[-1,1]$ dla k=13i odległości euklidesowej

Zamieszczone powyżej wykresy 2 oraz 3 potwierdzają opisane wcześniej przypuszczenia. Rozważanie aż 13 sąsiadów powoduje, że brzeg punktów ze zbioru nie jest poprawnie wyznaczony. Zjawisko rozmycia jest szczególnie widoczne w okolicy punktu (-0.6,0.7), w drugiej ćwiartce wykresu. Wokół punktów z klasy czerwonej, które znajdują się na brzegu, znajduje się więcej punktów z klasy szarej, co skutkuje zaklasyfikowaniem obszaru jako szary.

3.1.2 Analiza powstałych obszarów

Dla wyznaczonego w procesie kroswalidacji parametru k=3 przetestowano wpływ wyboru metryki na odwzorowanie kształtu brzegów między obszarami wyznaczonymi przez klasyfikator. Po podziałe obszaru $[-1,1] \times [-1,1]$ dokonano próbkowania klasyfikatora dla równoodległych punktów z interwałem $\delta=0.05$ i porównania wynikowych etykiet z idealnymi. Wyniki tego eksperymentu znajdują się w tabeli 2.

Użyta metryka	Jakość odwzorowania brzegu
taksówkowa	0.9786
Minkowskiego ($p = 1.5$)	0.9798
euklidesowa	0.9810
Minkowskiego $(p=3)$	0.9827
Czebyszewa	0.9833

Tablica 2: Wyniki porównania odwzorowania brzegów między zbiorami przez algorytm k-NN z odwzorowaniem dokładnym dla zbioru simple

Różnice między poszczególnymi metrykami nie są znaczne (rozstęp 0.5 punkta procentowego różnicy), lecz najlepszym wynikiem wykazała się metryka Czebyszewa.

3.2 Zbiór three_gauss

3.2.1 Kroswalidacja

Pięciokrotną kroswalidację badanego klasyfikatora przeprowadzono także dla zbioru three_gauss. Jej wyniki znajdują się w tabeli poniżej. Komórki tabeli wyróżnione kolorami: zielonym, czerwonym i pomarańczowym mają tutaj takie same znaczenia.

		Wartość parametru k						
		1	3	5	7	9	11	13
Użyta metryka	taksówkowa	0.9053	0.9233	0.9257	0.9283	0.9333	0.9280	0.9290
	euklidesowa	0.9073	0.9220	0.9230	0.9303	0.9290	0.9290	0.9267
	Czebyszewa	0.9113	0.9213	0.9217	0.9253	0.9277	0.9307	0.9300
	Minkowskiego (1.5)	0.9070	0.9237	0.9253	0.9290	0.9307	0.9280	0.9263
n	Minkowskiego (3)	0.9090	0.9210	0.9230	0.9300	0.9297	0.9297	0.9297

Tablica 3: Wyniki kroswalidacji algorytmu k-NN dla zbioru treningowego three_gauss

Jak już zostało to wcześniej opisane, klasy punktów w zbiorze three_gauss częściowo na siebie nachodzą; ponadto mamy w nim do czynienia z tzw. obserwacjami odstającymi, czyli punktami z klasy, które znajdują się daleko od pozostałych. Wybór większego

parametru k pozwala na zniwelowanie wpływu obserwacji odstających na działanie algorytmu, co demonstrują dane doświadczalne. Lepsze wyniki klasyfikacji można dostrzec w prawej części tabeli. Najlepiej wypadło tutaj wywołanie dla k=9 z metryką taksówkową, jednak niewiele gorszy wynik można osiągnąć dla takiej samej wartości k z metryką Minkowskiego dla p=9 lub dla k=11 i odległości Czebyszewa. Różnica pomiędzy najgorszym a najlepszym wynikiem wynosi w przypadku zbioru three_gauss już aż prawie 3 punkty procentowe.

Dla wyróżnionych parametrów algorytmu k-NN podczas klasyfikacji zbioru three_gauss przeprowadzono analogiczną analizę, jak w przypadku zbioru simple. Punkty z obszaru $[-1,1]\times[-1,1]$ z gęstością próbkowania $\delta=0.05$ zostały sklasyfikowane, w celu wizualizacji przyporządkowania. Poniższy wykres zawiera wyniki uzyskane dla wywołania algorytmu k-NN dla k=9 i odległości taksówkowej.

Rysunek 4: Klasyfikacja punktów z obszaru $[-1,1]\times[-1,1]$ dla k=9i odległości taksówkowej

Podobnie jak w poprzednim podrozdziale, dla zbioru three_gauss również zwizualizowano wynik działania algorytmu k-NN dla najgorszego zestawu parametrów, czyli k=1 i odległości taksówkowej. Przedstawia to poniższy wykres.

Rysunek 5: Klasyfikacja punktów z obszaru $[-1,1] \times [-1,1]$ dla k=1 i odległości taksówkowej

Zamieszczone powyżej wykresy 4 oraz 5 pokazują znaczenie poprawnego dobrania wartości parametru k dla zbioru o takiej charakterystyce. Rozważanie większej liczby sąsiadów (w tym przypadku dziewięciu) powoduje, że punkty z danej klasy znajdujące się daleko od pozostałych nie wpływają na klasyfikację w swojej okolicy, jeżeli zdecydowana większość sąsiadów należy do innej klasy. Dobrym przykładem tego zjawiska jest punkt z klasy czerwonej znajdujący się w okolicy punktu (-0.3, -0.45). Dla k=9 został on pominięty i znajduje się w obszarze należącym do klasy szarej. W przypadku klasyfikacji z k=1 punkt ten znacznie wpłynął na ostateczny wynik i spowodował przyporządkowanie sporego obszaru trzeciej ćwiartki wykresu do swojej klasy.

3.2.2 Analiza powstałych obszarów

Analogicznie jak w przypadku zbioru **simple**, kształt obszarów wyznaczonych przez k-NN porównano z wzorcowym (w tym przypadku jest to podział wyznaczony przez odległość Mahalanobisa, ukazany na rys. 1). Wyniki tego eksperymentu znajdują się w tabeli 4.

Użyta metryka	Jakość odwzorowania brzegu
taksówkowa	0.7829
Minkowskiego ($p = 1.5$)	0.7948
euklidesowa	0.7995
Minkowskiego $(p=3)$	0.8061
Czebyszewa	0.8126

Tablica 4: Wyniki porównania odwzorowania brzegów między zbiorami przez algorytm k-NN z odwzorowaniem wyznaczonym przez metrykę Mahalanobisa dla zbioru three_gauss

Jakość odwzorowania w tym przypadku znacząco spada, ponieważ podział przedstawiony na wykresie 1 nie jest intuicyjny z geometrycznego punktu widzenia. Algorytm k-NN w dużej mierze opiera się na miarach w celu wyznaczenia sąsiedztwa, więc szczególnie w drugiej ćwiartce układu współrzędnych (blisko klasy 2, oznaczonej na rysunkach kolorem pomarańczowym) rozbieżności są duże. Natomiast i w tym przypadku zauważalny jest wzrost jakości odwzorowania wraz z wzrostem parametru p w normie Minkowskiego.

4 Wnioski

Algorytm k najbliższych sąsiadów jest jednym z najprostszych klasyfikatorów pod względem zasady działania. Testy z dostarczonymi zbiorami pokazały jednak, że jest on w stanie osiągać bardzo dobre wyniki dla danych o odpowiedniej regularności. Dużym minusem algorytmu jest jednak konieczność zapamiętania całego zbioru treningowego, co jest w przypadku dużych ilości danych źródłem problemów zarówno pamięciowych, jak i wydajnościowych.

Z przeprowadzonych eksperymentów wynika, że odpowiedni dobór parametrów klasyfikatora stanowi kluczową rolę w jego dokładnym działaniu. Przy doborze parametru k należy brać pod uwagę czynniki takie, jak separowalność klas, zaszumienie danych oraz występowanie obserwacji odstających, zaś wybór metryki ma znaczący wpływ na kształty obszarów, na które klasyfikator dzieli przestrzeń \mathbb{R}^n .

Literatura

- [1] T. Hastie, R. Tibshirani, J. Friedman, *The Elements of Statistical Learning: Data Mining, Inference, and Prediction.* Nowy Jork: Springer-Verlag, 2009. [Online] Dostępne: https://web.stanford.edu/~hastie/ElemStatLearn/. [Dostęp 26 lutego 2018]
- [2] V.N. Vapnik, Statistical learning theory. Nowy Jork: John Wiley and Sons, 1998.