In [1]:

```
#Roll No- 33238
# Importing the libraries
import numpy as nm
import matplotlib.pyplot as mtp
import pandas as pd
```

In [3]:

```
dataset = pd.read_csv('Mall_Customers.csv')
```

In [4]:

dataset

Out[4]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
		•••			
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

In [5]:

```
x = dataset.iloc[:, [3, 4]].values
```

In [6]:

```
#Finding the optimal number of clusters using the dendrogram
import scipy.cluster.hierarchy as shc
dendro = shc.dendrogram(shc.linkage(x, method="ward"))
mtp.title("Dendrogrma Plot")
mtp.ylabel("Euclidean Distances")
mtp.xlabel("Customers")
mtp.show()
```


In [7]:

```
#training the hierarchical model on dataset
from sklearn.cluster import AgglomerativeClustering
hc= AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')
y_pred= hc.fit_predict(x)
```

In [8]:

```
#visulaizing the clusters
mtp.scatter(x[y_pred == 0, 0], x[y_pred == 0, 1], s = 100, c = 'blue', label = 'Clu
mtp.scatter(x[y_pred == 1, 0], x[y_pred == 1, 1], s = 100, c = 'green', label = 'Clu
mtp.scatter(x[y_pred == 2, 0], x[y_pred == 2, 1], s = 100, c = 'red', label = 'Clust
mtp.scatter(x[y_pred == 3, 0], x[y_pred == 3, 1], s = 100, c = 'cyan', label = 'Clu
mtp.scatter(x[y_pred == 4, 0], x[y_pred == 4, 1], s = 100, c = 'magenta', label = '
mtp.title('Clusters of customers')
mtp.xlabel('Annual Income (k$)')
mtp.ylabel('Spending Score (1-100)')
mtp.legend()
mtp.show()
```


In []: