UGANDA MARTYRS UNIVERSITY

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

DIFFERENTIAL EQUATIONS I: FINAL ASSESSMENT

YEAR 2015/2016: First Year (BSc GEN, ECON & FM)

Date: May 11, 2016

Time: 9:30 AM - 12:30 PM

INSTRUCTIONS

(i) Attempt ALL questions

(ii) Read through the paper carefully and follow the instructions on each respective questions.

(iii) Calculators and mathematical tables may be used.

1. (a) [2 marks] Define a differential equation.

(b) [2 marks] What is meant by the order of a differential equation.

2. [7 marks] Chose (a) OR (b). Use the Wronskian to prove that the given functions are linearly independent on the real line

(a)
$$f(x) = e^x$$
, $g(x) = e^{2x}$, $h(x) = e^{3x}$

(b)
$$f(x) = e^{2x}$$
, $g(x) = \cos 2x$, $h(x) = \sin 2x$

3. [8 marks] Choose (a) OR (b). Verify by substitution that each of the given functions is a solution of the given differential equation

(a)
$$y'' + 4y' + 4y = 0$$
; $y_1 = e^{-2x}$, $y_2 = xe^{-2x}$

(b)
$$y'' - 2y' + 2y = 0$$
; $y_1 = e^x \cos x$, $y_2 = e^x \sin x$

4. [8 marks] Choose (a) OR (b). Verify that y(x) is a solution of the given differential equation. Then determine a value of the constant C so that y(x) satisfies the initial condition.

1

(a)
$$xy' + 3y = 2x^5$$
; $y(x) = \frac{1}{4}x^5 + Cx^{-3}$; $y(2) = 1$

(b)
$$xy' - 3y = x^3$$
; $x^3(C + \ln x)$; $y(1) = 17$

5. [12 marks] Choose (a) OR (b). Verify that y_1 and y_2 are solutions of the given differential equation, then find a particular solution of the form $y = c_1y_1 + c_2y_2$ that satisfies the given initial solution

(a)
$$y'' - 3y' + 2y = 0$$
; $y_1 = e^x$, $y_2 = e^{2x}$; $y(0) = 1$, $y'(0) = 0$

(b)
$$y'' + y' - 6y = 0$$
; $y_1 = e^{2x}$, $y_2 = e^{-3x}$; $y(0) = 7$, $y'(0) = -1$

6. [9 marks] Choose (a) OR (b). Verify that the given differential equation is exact and then

(a)
$$(4x - y)dx + (6y - x)dy = 0$$

(b)
$$(3x^2 + 2y^2)dx + (4xy + 6y^2)dy = 0$$

7. [6 marks] Choose (a) OR (b). Find the general solution of the differential equation

(a)
$$y' + 2xy = 0$$

(b)
$$(1+x)y' = 4y$$
.

8. [8 marks] Choose (a) OR (b). Find the explicit particular solution of the initial value problem

(a)
$$2y \frac{dy}{dx} = x(x^2 - 16)^{-1/2}$$
; $y(5) = 2$ (b) $x \frac{dy}{dx} - y = 2x^2y$; $y(1) = 1$

(b)
$$x \frac{dy}{dx} - y = 2x^2y$$
; $y(1) = 1$

9. [13 marks] Choose (a) OR (b). A third order homogeneous lineal differential equation and three linearly independent solutions are given. Find a particular solution satisfying the given initial value problem

(a)
$$y''' - 3y'' + 3y' - y = 0$$
; $y(0) = 2$, $y'(0) = 0$, $y''(0) = 0$; $y_1 = e^x$, $y_2 = xe^x$, $y_3 = xe^{2x}$

(b)
$$y''' - 3y'' + 4y' - 2y = 0$$
; $y(0) = 1$, $y'(0) = 0$, $y''(0) = 0$;

$$y_1 = e^x$$
, $y_2 = e^x \cos x$, $y_3 = e^x \sin x$

10. [8 marks] Choose (a) OR (b) Find the explicit particular solution of the initial value problem

(a)
$$xy' + y = 3xy$$
; $y(1) = 1$

(b)
$$xy' - 3y = x^3$$
; $y(1) = 10$

11. [9 marks] Choose (a) OR (b). Find the general solution of the given differential equation

(a)
$$yy' + x = (x^2 + y^2)^{\frac{1}{2}}$$

(b)
$$xy' = y + (x^2 + y^2)^{1/2}$$

12. [8 marks] Choose (a) OR (b). Find the general solution of the given differential equations

(a)
$$2xy' - 3y = 9x^3$$

(b)
$$3xy' + y = 12x$$