下圖為使用 boosting 算法跑出的預測結果。

```
> table(dta$是否1年内离职, bp$class)
在职 离职
在职 1217 0
离职 0 242
```

下圖為 gbm 模型的 relative influence 及前十重要變數。

> print(impo		
LIL COL	Overall	
性别	0.000000	
工作单位	567.254896	
工作单位类别	27.044328	
入职年份	5.730876	
学历	5.197385	
毕业院校地区	493.736418	
专业类别	51.940060	
职称	40.428796	
职业资格	0.000000	
是否党员	4.741006	
言语理解	130.998061	
数学	82.900199	
逻辑	92.000879	
常识	22.081579	
成就导向	14.402401	
抗压能力	167.565596	
灵活性	62.024621	
影响性	66.113981	
支配性	25.863762	
外向性	22.425999	
社交能力	81.651510	
心理感受性	28.043930	
创新	26.173300	
敬业	146.505167	
情绪稳定性	41.055088	
严谨性	82.106316	
完美主义倾向	47.220287	
录用时岗位级别	6.456336	
是否有晋升	129.950589	
<u> </u>	<u>"</u>	

下圖為 Random Forest 跑出的預測結果。

左圖為 MeanDecreaseAccuracy;右圖為 MeanDecreaseGini。

			-+(+ 2))
> print(impor	tance(r, type = 1))	> br.tur(tmbot	rtance(r, type = 2))
14-00	MeanDecreaseAccuracy	性别	MeanDecreaseGini
性别	0.3931632		2.7003264
工作单位	4.9710190	工作单位	15.8723336
工作单位类别	4.9871153	工作单位类别	9.5272192
入职年份	6.1857156	入职年份	6.6307938
学历	0.9753027	学历	2.5122017
毕业院校地区	1.5884117	毕业院校地区	12.1255405
专业类别	0.9763469	专业类别	7.0593838
职称	7.2624575	职称	3.1515274
职业资格	0.3653418	职业资格	0.3224313
是否党员	1.0690326	是否党员	4.0169366
言语理解	10.8283225	言语理解	20.2793350
数学	8.2050712	数学	21.7048946
逻辑	7.3256053	逻辑	25.4746362
常识	9.6059001	常识	17.2217428
成就导向	4.8722095	成就导向	17.8311600
抗压能力	9.1158297	抗压能力	24.4598955
灵活性	3.4789337	灵活性	16.6085496
影响性	3.9421469	影响性	15.8991854
支配性	4.7747966	支配性	18.0778324
外向性	7.2342872	外向性	17.6099065
社交能力	9.7547769	社交能力	19.9386810
心理感受性	2.2783987	心理感受性	14.1690061
创新	3.5382186	创新	17.2190657
敬业	7.6424926	敬业	21.3938448
情绪稳定性	3.2909593	情绪稳定性	17.3652738
严谨性	6.9502830	严谨性	19.0097206
完美主义倾向	2.3848677	完美主义倾向	19.3341606
录用时岗位级别	7.7483977	录用时岗位级别	9.2191841
是否有晋升	16.5548521	是否有晋升	7.0369760

下圖為 MeanDecreaseAccuracy 的視覺化圖表。

Random Forest

下圖為 MeanDecreaseGini 的視覺化圖表。

Random Forest

110305075 繆孟珊 此處附上完整版 R code。 library(tidyverse) library(data.table) library(ggplot2) library(ALSM) library(adabag) library(gbm) library(ada) library(caret) #匯入資料 dta <- as.data.frame(fread("C:/Users/ingri/OneDrive/桌面/政大/HRDA/畢業生數 據 2_.csv", sep=",")) dta <- dta[,3:32] dta[["是否 1 年内离职"]] <- factor(dta[["是否 1 年内离职"]]) colnames(dta) levels(dta[["是否 1 年内离职"]]) <- list(在职 = 0, 离职 = 1) set.seed(4410) #boosting

dta\$性别 <- factor(dta\$性别, levels = c("男", "女"))

dta\$学历 <- factor(dta\$学历, levels = c("大专","本科", "硕士", "博士"))

dta\$工作单位 <- factor(dta\$工作单位, levels = c("A 分公司", "B 分公司", "C 分公 司", "D 分公司", "E 分公司","F 分公司","G 分公司","H 分公司","I 分公司","J 分公司 ","K 分公司","L 分公司","M 分公司","N 分公司","O 分公司","P 分公司","Q 分公司","R 110305075 繆孟珊

分公司","S 分公司","T 分公司"))

dta\$职业资格 <- factor(dta\$职业资格, levels = c("无","软体设计师","助理人力资源管理师","全国计算机信息高新技术考试合格证","会计从业资格","电工证","仓库保管工","三级企业人力资源管理师","CCNA证书"))

dta\$毕业院校地区 <- factor(dta\$毕业院校地区, levels = c("上海","山东","山西"," 广东","广西","云南","内蒙古","天津","北京","四川","宁夏","甘肃","吉林","安徽","江西"," 江苏","辽宁","武汉","河北","河南","贵州","重庆","陕西","浙江","海南","湖北","湖南","黑龙江","新疆","境外","福建"))

dta\$专业类别 <- factor(dta\$专业类别, levels = c("工学","文学","农学","体育","医学 ","其他","法学","哲学","教育学","理学","管理学"))

dta\$职称 <- factor(dta\$职称, levels = c("工程师","无","助理工程师","助理会计师","助理经济师"))

dta\$工作单位类别 <- factor(dta\$工作单位类别, levels = c("A 类", "B 类","C 类","D 类","E 类","F 类","G 类",)

dta\$是否党员 <- factor(dta\$是否党员, levels = c("是", "否"))

#by boosting

b <- boosting(是否 1 年内离职~., dta)

bp <- predict(b, dta)

table(dta\$是否 1 年内离职, bp\$class)

importanceplot(b, top = 5)

#by gbm_model

dta\$是否 1 年内离职 <- ifelse(dta\$是否 1 年内离职 == "在职", 0, 1)

```
gbm_model <- gbm(是否1年内离职~.,
                   data = dta,
                   distribution = "bernoulli",
                   n.trees = 500,
                   interaction.depth = 3,
                   shrinkage = 0.01,
                   cv.folds = 5)
n_trees <- length(gbm_model$trees)</pre>
# Calculate feature importance using permutation-based method
importance <- varImp(gbm_model, scale = FALSE, numTrees = n_trees)
print(importance)
summary(
  gbm_model, # gbm object
  cBars = 10, # the number of bars to draw. length(object$var.names)
  plotit = TRUE, # an indicator as to whether the plot is generated.defult TRUE.
  method = relative.influence, # The function used to compute the relative
influence. 亦可使用 permutation.test.gbm
  las = 2,
  main = "Boosting"
)
```

```
110305075 繆孟珊
#Random forest
library(randomForest)
set.seed(4410)
dta2 <- read.csv("C:/Users/ingri/OneDrive/桌面/政大/HRDA/畢業生數據 2_.csv")
dta2 <- dta2[,3:32]
dta2[["是否 1 年内离职"]] <- factor(dta2[["是否 1 年内离职"]])
levels(dta2[["是否 1 年内离职"]]) <- list(在职 = 0, 离职 = 1)
set.seed(101010)
r <- randomForest(是否 1 年内离职~., data = dta2, proximity = TRUE, importance
= TRUE, na.rm = TRUE)
rp <- predict(r, dta2)
table(dta2$是否 1 年内离职, rp)
# Relative Influence
var_importance <- importance(r)</pre>
print(var_importance)
print(importance(r, type = 1))
#視覺化圖表
```

varImpPlot(r, sort = TRUE, type = 1,main = "Random Forest")

varImpPlot(r, type = 2,main = "Random Forest")