对于 \vec{x}_4 ,我们有 $s_1=-22.17$, $s_2=9.41$, $s_3=12.77$,对应的我们可以计算出 $\vec{\hat{Y}}_4=(0.00,0.02,0.98)^T$,对照 $\vec{Y}_4=(0,0,1)^T$,此时对于样本 \vec{x}_4 分类是正确的。

计算 $E_{in} = (-ln1 - ln1 - ln0.90 - ln0.98)/4 = 0.03$

于是我们最终得到的是:

$$\vec{w}_1 = (-0.60, 7.19, 1.38)^T$$

$$\vec{w}_2 = (0.83, -2.86, 1.62)^T$$

$$\vec{w}_3 = (-0.22, -4.33, -3)^T$$