Optimization for the information and data sciences

Mahdi Soltanolkotabi

High Dimensional derivatives and Matrix Calculus

Ming Hsieh Department of Electrical Engineering

Derivatives

Suppose $f:\mathbb{R}^n \to \mathbb{R}^m$ and $x \in \mathbf{int}$ dom f. The derivative of f at x denoted by Df(x) is an $m \times n$ matrix defined as

$$Df(x)ij = \frac{\partial f_i(x)}{\partial x_j}, \quad i = 1, 2, \dots, m, \quad j = 1, 2, \dots, n.$$

Derivatives

Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ and $x \in \mathbf{int}$ dom f. The derivative of f at x denoted by Df(x) is an $m \times n$ matrix defined as

$$Df(x)ij = \frac{\partial f_i(x)}{\partial x_j}, \quad i = 1, 2, \dots, m, \quad j = 1, 2, \dots, n.$$

The affine function of z given by

$$f(x) + Df(x)(z - x)$$

is called the *first-order approximation* of f at (or near) x.

The gradient

When f is real-valued (i.e., $f: \mathbb{R}^n \to \mathbb{R}$) the derivative is a $1 \times n$ row vector. Gradient is column vector

$$\nabla f(x) = Df(x)^T$$

with components the partial derivatives

$$\nabla f(x)_i = \frac{\partial f(x)}{\partial x_i}, \quad i = 1, 2, \dots, n.$$

The gradient

When f is real-valued (i.e., $f: \mathbb{R}^n \to \mathbb{R}$) the derivative is a $1 \times n$ row vector. Gradient is column vector

$$\nabla f(x) = Df(x)^T$$

with components the partial derivatives

$$\nabla f(x)_i = \frac{\partial f(x)}{\partial x_i}, \quad i = 1, 2, \dots, n.$$

first order approximation of f at a point x is the affine function of z given by

$$f(x) + \nabla f(x)^T (z - x).$$

Examples of gradients

Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$

$$f(x) = \frac{1}{2}x^T P x + q^T x + r.$$

Examples of gradients

Quadratic function $f:\mathbb{R}^n \to \mathbb{R}$

$$f(x) = \frac{1}{2}x^T P x + q^T x + r.$$

Gradient is equal to

$$\nabla f(x) = (P + P^T)x + q.$$

log det function

logdet function $f:\mathcal{S}^n o \mathbb{R}$, given by

$$f(X) = \log \det X$$
, $\operatorname{dom} f = \mathcal{S}_{++}^n$.

log det function

logdet function $f:\mathcal{S}^n \to \mathbb{R}$, given by

$$f(X) = \log \det X$$
, $\operatorname{dom} f = \mathcal{S}_{++}^n$.

Note that

$$\begin{split} f(Z) &= \log \det Z = \log \det(X + Z - X) \\ &= \log \det\left(X^{1/2} \left(I + X^{-1/2} (Z - X) X^{-1/2}\right) X^{1/2}\right) \\ &= \log \det X + \log \det\left(\left(I + X^{-1/2} (Z - X) X^{-1/2}\right)\right) \\ &= \log \det X + \sum_{i=1}^n \log(1 + \lambda_i) \\ &\approx \log \det X + \sum_{i=1}^n \lambda_i \\ &= \log \det X + \operatorname{tr}\left(X^{-1/2} (Z - X) X^{-1/2}\right) \\ &= \log \det X + \operatorname{tr}\left(X^{-1/2} (Z - X)\right) \\ &= f(X) + \operatorname{tr}\left(X^{-1} (Z - X)\right). \end{split}$$

Thus $\nabla f(X) = X^{-1}$.

Chain rule

Suppose

- $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x \in \mathbf{int} \ \mathbf{dom} \ f$ and
- $g: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at $f(x) \in \operatorname{int}$ dom g
- ullet composition $h:\mathbb{R}^n o \mathbb{R}^p$ by h(z)=g(f(z))

$$Dh(x) = Dg(f(x))Df(x)$$

Chain rule

Suppose

- $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x \in \operatorname{int} \operatorname{dom} f$ and
- $g: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at $f(x) \in \operatorname{int}$ dom g
- ullet composition $h:\mathbb{R}^n o \mathbb{R}^p$ by h(z)=g(f(z))

$$Dh(x) = Dg(f(x))Df(x)$$

 $\bullet \ f: \mathbb{R}^n \to \mathbb{R}, \ g: \mathbb{R} \to \mathbb{R} \ \text{and} \ h(x) = g(f(x))$

$$\nabla h(x) = g'(f(x))\nabla f(x).$$

Composition with affine function

- Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable, $A \in \mathbb{R}^{n \times p}$, and $b \in \mathbb{R}^n$.
- $\bullet \ \ \text{Define} \ g:\mathbb{R}^p \to \mathbb{R}^m \ \text{as} \ g(x) = f(Ax+b) \text{, with } \mathbf{dom} \ \mathbf{g} = \{x|Ax+b \in \mathbf{dom} \ f\}$

Composition with affine function

- Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable, $A \in \mathbb{R}^{n \times p}$, and $b \in \mathbb{R}^n$.
- $\bullet \ \ \text{Define} \ g:\mathbb{R}^p \to \mathbb{R}^m \ \text{as} \ g(x) = f(Ax+b) \text{, with } \mathbf{dom} \ \mathbf{g} = \{x|Ax+b \in \mathbf{dom} \ f\}$
- **Q:** What is $\nabla g(x)$?

Composition with affine function

- Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable, $A \in \mathbb{R}^{n \times p}$, and $b \in \mathbb{R}^n$.
- $\bullet \ \ \text{Define} \ g:\mathbb{R}^p \to \mathbb{R}^m \ \text{as} \ g(x) = f(Ax+b) \text{, with } \mathbf{dom} \ \mathbf{g} = \{x | Ax+b \in \mathbf{dom} \ f\}$
- **Q:** What is $\nabla g(x)$?
- Answer:

chain rule
$$\Rightarrow$$
 $Dg(x) = Df(Ax + b)A \Rightarrow \nabla g(x) = A^T \nabla f(Ax + b)$

Consider $f: \mathbb{R}^n \to \mathbb{R}$, with **dom** $f = \mathbb{R}^n$ and

$$f(x) = \log \sum_{i=1}^{m} \exp\left(a_i^T x + b_i\right)$$

Consider $f: \mathbb{R}^n \to \mathbb{R}$, with $\operatorname{dom} f = \mathbb{R}^n$ and

$$f(x) = \log \sum_{i=1}^{m} \exp \left(a_i^T x + b_i\right)$$

Note that f(x) = g(Ax + b)

- with $g: \mathbb{R}^m \to \mathbb{R}$ given by $g(y) = \log \left(\sum_{i=1}^m e^{y_i} \right)$
- \bullet $A \in \mathbb{R}^{m \times n}$ with rows a_1^T, \dots, a_m^T

Consider $f: \mathbb{R}^n \to \mathbb{R}$, with $\operatorname{dom} f = \mathbb{R}^n$ and

$$f(x) = \log \sum_{i=1}^{m} \exp\left(a_i^T x + b_i\right)$$

Note that f(x) = g(Ax + b)

- with $g: \mathbb{R}^m \to \mathbb{R}$ given by $g(y) = \log \left(\sum_{i=1}^m e^{y_i} \right)$
- \bullet $A \in \mathbb{R}^{m \times n}$ with rows a_1^T, \dots, a_m^T

$$\nabla g(y) = \frac{1}{\sum_{i=1}^{m} e^{y_i}} \begin{bmatrix} e^{y_1} \\ \vdots \\ e^{y_m} \end{bmatrix}$$

Consider $f: \mathbb{R}^n \to \mathbb{R}$, with **dom** $f = \mathbb{R}^n$ and

$$f(x) = \log \sum_{i=1}^{m} \exp\left(a_i^T x + b_i\right)$$

Note that f(x) = g(Ax + b)

- with $g: \mathbb{R}^m \to \mathbb{R}$ given by $g(y) = \log \left(\sum_{i=1}^m e^{y_i} \right)$
- \bullet $A \in \mathbb{R}^{m \times n}$ with rows a_1^T, \dots, a_m^T

$$\nabla g(y) = \frac{1}{\sum_{i=1}^{m} e^{y_i}} \begin{bmatrix} e^{y_1} \\ \vdots \\ e^{y_m} \end{bmatrix}$$

so by composition formula we have

$$\nabla f(x) = \frac{1}{\mathbf{1}^T z} A^T z$$
 where $z_i = e^{a_i^T x + b_i}, i = 1, 2, \dots, m$.

Hessians

Hessian matrix of $f:\mathbb{R}^n \to \mathbb{R}$ denoted by $\nabla^2 f(x)$ is given by

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, i = 1, 2, \dots, n, \quad j = 1, 2, \dots, n,$$

Hessians

Hessian matrix of $f:\mathbb{R}^n \to \mathbb{R}$ denoted by $\nabla^2 f(x)$ is given by

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, i = 1, 2, \dots, n, \quad j = 1, 2, \dots, n,$$

The quadratic function of z given by

$$f(x) + \nabla f(x)^{T}(z-x) + \frac{1}{2}(z-x)^{T}\nabla^{2}f(x)(z-x)$$

is called the second-order approximation of f at (or near) x.

 $f:\mathbb{R}^n o \mathbb{R}$ then

- $f:\mathbb{R}^n o \mathbb{R}$ then
 - ullet gradient $\nabla f: \mathbb{R}^n o \mathbb{R}^n$

```
f:\mathbb{R}^n 	o \mathbb{R} then
```

- ullet gradient $abla f: \mathbb{R}^n o \mathbb{R}^n$
- $\bullet \ \nabla^2 f(x) = D \nabla f(x)$

 $f:\mathbb{R}^n \to \mathbb{R}$ then

ullet gradient $abla f: \mathbb{R}^n o \mathbb{R}^n$

Examples

• $f: \mathbb{R}^n \to \mathbb{R}$, with $f(x) = \frac{1}{2}x^T P x + q^T x + r$

```
f:\mathbb{R}^n \to \mathbb{R} then
```

ullet gradient $abla f: \mathbb{R}^n o \mathbb{R}^n$

Examples

•
$$f: \mathbb{R}^n \to \mathbb{R}$$
, with $f(x) = \frac{1}{2}x^TPx + q^Tx + r$
• $\nabla f(x) = \frac{1}{2}(P+P^T)x + q$

```
f:\mathbb{R}^n \to \mathbb{R} then
```

- ullet gradient $\nabla f: \mathbb{R}^n o \mathbb{R}^n$
- \bullet $\nabla^2 f(x) = D\nabla f(x)$

Examples

- $f: \mathbb{R}^n \to \mathbb{R}$, with $f(x) = \frac{1}{2}x^T P x + q^T x + r$

 - $\nabla f(x) = \frac{1}{2}(P + P^T)x + q$ $\nabla^2 f(x) = \frac{1}{2}(P + P^T)$

 $f:\mathbb{R}^n \to \mathbb{R}$ then

• gradient $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$

Examples

•
$$f: \mathbb{R}^n \to \mathbb{R}$$
, with $f(x) = \frac{1}{2}x^T P x + q^T x + r$

•
$$\nabla f(x) = \frac{1}{2}(P + P^T)x + q$$

• $\nabla^2 f(x) = \frac{1}{2}(P + P^T)$

• $f(X) = \log \det(X)$ then $\nabla f(X) = X^{-1}$

$$Z^{-1} = (X + Z - X)^{-1}$$

$$= \left(X^{1/2} \left(I + X^{-1/2} (Z - X) X^{-1/2}\right) X^{1/2}\right)^{-1}$$

$$= X^{-1/2} \left(I + X^{-1/2} (Z - X) X^{-1/2}\right)^{-1} X^{-1/2}$$

$$\approx X^{-1/2} \left(I - X^{-1/2} (Z - X) X^{-1/2}\right)^{-1} X^{-1/2}$$

$$= X^{-1} - X^{-1} (Z - X) X^{-1}$$

Thus

$$\nabla^2 f(X)[U,V] = -\mathbf{tr}(X^{-1}UX^{-1}V)$$

Suppose $f: \mathbb{R}^n \to R$, $g: \mathbb{R} \to \mathbb{R}$, and h(x) = g(f(x))

Suppose
$$f: \mathbb{R}^n \to R$$
, $g: \mathbb{R} \to \mathbb{R}$, and $h(x) = g(f(x))$

composition with scalar function

$$f:\mathbb{R}^n \to \mathbb{R}, \ g:\mathbb{R} \to \mathbb{R}, \ \mathrm{and} \ h(x) = g(f(x))$$

$$\nabla^2 h(x) = g'(f(x))\nabla^2 f(x) + g''(f(x))\nabla f(x)\nabla f(x)^T$$

Suppose $f: \mathbb{R}^n \to R$, $g: \mathbb{R} \to \mathbb{R}$, and h(x) = g(f(x))

composition with scalar function

$$f:\mathbb{R}^n \to \mathbb{R}, \ g:\mathbb{R} \to \mathbb{R}, \ \mathrm{and} \ h(x) = g(f(x))$$

$$\nabla^2 h(x) = g'(f(x))\nabla^2 f(x) + g''(f(x))\nabla f(x)\nabla f(x)^T$$

composition with affine function

Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $A \in \mathbb{R}^{n \times m}$, and $b \in \mathbb{R}^n$. Define $g: \mathbb{R}^m \to \mathbb{R}$ by g(x) = f(Ax + b)

$$\nabla^2 g(x) = A^T \nabla^2 f(Ax + b) A$$

Suppose $f: \mathbb{R}^n \to R$, $g: \mathbb{R} \to \mathbb{R}$, and h(x) = g(f(x))

composition with scalar function

$$f:\mathbb{R}^n \to \mathbb{R}, \ g:\mathbb{R} \to \mathbb{R}, \ \mathrm{and} \ h(x) = g(f(x))$$

$$\nabla^2 h(x) = g'(f(x))\nabla^2 f(x) + g''(f(x))\nabla f(x)\nabla f(x)^T$$

composition with affine function

Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $A \in \mathbb{R}^{n \times m}$, and $b \in \mathbb{R}^n$. Define $g: \mathbb{R}^m \to \mathbb{R}$ by g(x) = f(Ax + b)

$$\nabla^2 g(x) = A^T \nabla^2 f(Ax + b) A$$

Example: $f(x) = \log \sum_{i=1}^{m} \exp(a_i^T x + b_i)$

Suppose $f: \mathbb{R}^n \to R$, $g: \mathbb{R} \to \mathbb{R}$, and h(x) = g(f(x))

composition with scalar function

$$f:\mathbb{R}^n \to \mathbb{R}$$
, $g:\mathbb{R} \to \mathbb{R}$, and $h(x) = g(f(x))$

$$\nabla^2 h(x) = g'(f(x))\nabla^2 f(x) + g''(f(x))\nabla f(x)\nabla f(x)^T$$

composition with affine function

Suppose $f:\mathbb{R}^n\to\mathbb{R}$, $A\in\mathbb{R}^{n\times m}$, and $b\in\mathbb{R}^n$. Define $g:\mathbb{R}^m\to\mathbb{R}$ by g(x)=f(Ax+b)

$$\nabla^2 g(x) = A^T \nabla^2 f(Ax + b) A$$

Example: $f(x) = \log \sum_{i=1}^m \exp(a_i^T x + b_i)$ can think of it as f(x) = g(Ax + b) with $g(y) = \log (\sum_{i=1}^m e^{y_i})$

Suppose $f: \mathbb{R}^n \to R$, $g: \mathbb{R} \to \mathbb{R}$, and h(x) = g(f(x))

composition with scalar function

$$f:\mathbb{R}^n \to \mathbb{R}$$
, $g:\mathbb{R} \to \mathbb{R}$, and $h(x) = g(f(x))$

$$\nabla^2 h(x) = g'(f(x))\nabla^2 f(x) + g''(f(x))\nabla f(x)\nabla f(x)^T$$

composition with affine function

Suppose $f:\mathbb{R}^n\to\mathbb{R}$, $A\in\mathbb{R}^{n\times m}$, and $b\in\mathbb{R}^n$. Define $g:\mathbb{R}^m\to\mathbb{R}$ by g(x)=f(Ax+b)

$$\nabla^2 g(x) = A^T \nabla^2 f(Ax + b) A$$

Example: $f(x) = \log \sum_{i=1}^m \exp(a_i^T x + b_i)$ can think of it as f(x) = g(Ax + b) with $g(y) = \log \left(\sum_{i=1}^m e^{y_i}\right)$

 \bullet Note that $\nabla^2 g(y) = \operatorname{diag} \left(\nabla g(y) \right) - \nabla g(y) \nabla g(y)^T$

Suppose $f: \mathbb{R}^n \to R$, $g: \mathbb{R} \to \mathbb{R}$, and h(x) = g(f(x))

composition with scalar function

$$f:\mathbb{R}^n \to \mathbb{R}$$
, $g:\mathbb{R} \to \mathbb{R}$, and $h(x) = g(f(x))$

$$\nabla^2 h(x) = g'(f(x))\nabla^2 f(x) + g''(f(x))\nabla f(x)\nabla f(x)^T$$

composition with affine function

Suppose $f:\mathbb{R}^n\to\mathbb{R}$, $A\in\mathbb{R}^{n\times m}$, and $b\in\mathbb{R}^n$. Define $g:\mathbb{R}^m\to\mathbb{R}$ by g(x)=f(Ax+b)

$$\nabla^2 g(x) = A^T \nabla^2 f(Ax + b) A$$

Example: $f(x) = \log \sum_{i=1}^{m} \exp(a_i^T x + b_i)$ can think of it as f(x) = g(Ax + b) with $g(y) = \log (\sum_{i=1}^{m} e^{y_i})$

- Note that $\nabla^2 g(y) = \operatorname{diag} (\nabla g(y)) \nabla g(y) \nabla g(y)^T$
- by composition $\nabla^2 f(x) = A^T \left(\frac{1}{(\mathbf{1}^T \mathbf{x})} \mathbf{diag}(z) \frac{1}{(\mathbf{1}^T \mathbf{x})^2} z z^T \right) A$ where $z_i = \exp(a_i^T x + b_i)$, $i = 1, 2, \dots, m$.

Matrix calculus cheat sheet-simple stuff

```
(A is a constant)
                   \partial(\alpha \mathbf{X}) = \alpha \partial \mathbf{X}
          \partial(\mathbf{X} + \mathbf{Y}) = \partial\mathbf{X} + \partial\mathbf{Y}
            \partial(\operatorname{Tr}(\mathbf{X})) = \operatorname{Tr}(\partial \mathbf{X})
                  \partial(\mathbf{XY}) = (\partial\mathbf{X})\mathbf{Y} + \mathbf{X}(\partial\mathbf{Y})
            \partial(\mathbf{X} \circ \mathbf{Y}) = (\partial \mathbf{X}) \circ \mathbf{Y} + \mathbf{X} \circ (\partial \mathbf{Y})
          \partial (\mathbf{X} \otimes \mathbf{Y}) = (\partial \mathbf{X}) \otimes \mathbf{Y} + \mathbf{X} \otimes (\partial \mathbf{Y})
                 \partial (\mathbf{X}^{-1}) = -\mathbf{X}^{-1}(\partial \mathbf{X})\mathbf{X}^{-1}
          \partial(\det(\mathbf{X})) = \operatorname{Tr}(\operatorname{adj}(\mathbf{X})\partial\mathbf{X})
          \partial(\det(\mathbf{X})) = \det(\mathbf{X})\operatorname{Tr}(\mathbf{X}^{-1}\partial\mathbf{X})
\partial(\ln(\det(\mathbf{X}))) = \operatorname{Tr}(\mathbf{X}^{-1}\partial\mathbf{X})
                        \partial \mathbf{X}^T = (\partial \mathbf{X})^T
                        \partial \mathbf{X}^H = (\partial \mathbf{X})^H
```

Matrix calculus cheat sheet-Derivatives of determinant

$$\frac{\partial \det(\mathbf{Y})}{\partial x} = \det(\mathbf{Y}) \operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right]$$

$$\sum_{k} \frac{\partial \det(\mathbf{X})}{\partial X_{ik}} X_{jk} = \delta_{ij} \det(\mathbf{X})$$

$$\frac{\partial^{2} \det(\mathbf{Y})}{\partial x^{2}} = \det(\mathbf{Y}) \left[\operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \frac{\partial \mathbf{Y}}{\partial x}}{\partial x} \right] + \operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] \operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] \right]$$

$$-\operatorname{Tr} \left[\left(\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right) \left(\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right) \right] \right]$$

Matrix calculus cheat sheet-grad and hessians

$$f = \mathbf{x}^{T} \mathbf{A} \mathbf{x} + \mathbf{b}^{T} \mathbf{x}$$

$$\nabla_{\mathbf{x}} f = \frac{\partial f}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{T}) \mathbf{x} + \mathbf{b}$$

$$\frac{\partial^{2} f}{\partial \mathbf{x} \partial \mathbf{x}^{T}} = \mathbf{A} + \mathbf{A}^{T}$$

Matrix calculus cheat sheet-first order

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}) = \mathbf{I}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}\mathbf{A}) = \mathbf{A}^{T}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{A}\mathbf{X}\mathbf{B}) = \mathbf{A}^{T}\mathbf{B}^{T}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{A}\mathbf{X}^{T}\mathbf{B}) = \mathbf{B}\mathbf{A}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}^{T}\mathbf{A}) = \mathbf{A}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{A}\mathbf{X}^{T}) = \mathbf{A}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{A} \otimes \mathbf{X}) = \operatorname{Tr}(\mathbf{A})\mathbf{I}$$