Concours CR CNRS 2023

Ismaël Jecker

Projet de recherche : Synthèse automatique de programmes

en Mathématiques	Informatique	Postdoctorat	Postdoctorat
2015 2019 2021			21
Collaborations :	Emmanuel Filiot Jean-François Raskin Christof Löding Nathan Lhote Pierre-Alain Reynier Marie van den Bogaard	Krishnendu Chatterjee Henning Fernau Oma Kupferman Karoliina Lehtinen Shibashis Guha Martin Zimmermann	Wojciech Czerwiriski Filip Mazowiecki Sławomir Lasota David Purser Anca Muscholl Gabriele Puppis
Publications : Talks invités :	LICS'17 ICALP'17 ICALP'16 FoSSaCS'17 MFCS'18 CSL'18 IJFCS(×2) DLT'15'16	SODA'21 STACS'21 MFCS'21 best paper award CONCUR'21 MFCS'20 (X2) FSTTCS'21 TRENDS 2019	AAAl'23 STACS'23 Acta Informatica FSTTCS'22 (×2) DLT 2023

Thématiques de recherche

Thématiques de recherche

Problème: Comment concevoir des programmes informatiques corrects?

- Protocoles de sécurité
- Équipements médicaux
- Véhicules autonomes

Solution: En construisant automatiquement des systèmes à partir de leurs spécifications


```
public static void sort(int[] a)
    if(c.length <= 1) { return; }
    int[] first = new int[a.length / 2];
    int[] second = new int[a.length + first.length];
    for(int i = 0; is first.length; i++)
    {
        first[i] = a[i];
        second[i] = a[i];
        second[i] = a[i];
        second[i] = a[i];
        ser(if(int));
        sort(first);
        sort(first);
```

Problème : Comment concevoir des programmes informatiques corrects?

- Protocoles de sécurité
- Équipements médicaux
- Véhicules autonomes

Solution : En construisant automatiquement des systèmes à partir de leurs spécifications

Problème : Comment concevoir des programmes informatiques corrects?

- Protocoles de sécurité
- Équipements médicaux
- Véhicules autonomes

Solution : En construisant automatiquement des systèmes à partir de leurs spécifications

4

Problème : Comment concevoir des programmes informatiques corrects?

- Protocoles de sécurité
- Équipements médicaux
- Véhicules autonomes

Solution: En construisant automatiquement des systèmes à partir de leurs spécifications

4

Résultat significatif :

[STACS 2023] A Regular and Complete Notion of Delay for Streaming String Transducers

Emmanuel Filiot, Ismaël Jecker, Christof Löding, Sarah Winter

Reconnaît un langage

Automate fini

Équivalence :

DÉCIDABLE

Équivalence : DÉCIDABLE

Transducteur déterministe

Reconnaît une fonction

•

Transducteur non-déterministe

Reconnaît une relation

Reconnaît un langage Automate fini Équivalence : DÉCIDABLE **DÉCIDABLE INDÉCIDABLE** Équivalence : Équivalence : Transducteur déterministe Transducteur non-déterministe Reconnaît une fonction Reconnaît une relation

Le **délai** mesure à quel point deux exécutions équivalentes sont différentes **Régulier** : transforme tout problème en un problème sur les automates **Complet** : capable d'identifier les transducteurs déterministes équivalents

Le **délai** mesure à quel point deux exécutions équivalentes sont différentes **Régulier** : transforme tout problème en un problème sur les automates **Complet** : capable d'identifier les transducteurs déterministes équivalents

Le **délai** mesure à quel point deux exécutions équivalentes sont différentes **Régulier** : transforme tout problème en un problème sur les automates **Complet** : capable d'identifier les transducteurs déterministes équivalents

Le **délai** mesure à quel point deux exécutions équivalentes sont différentes Les résultats majeurs sur les transducteurs reposent sur la notion de délai : Équivalence, déterminisabilité, minimisation, ...

Le **délai** mesure à quel point deux exécutions équivalentes sont différentes Les résultats majeurs sur les transducteurs reposent sur la notion de délai : Équivalence, déterminisabilité, minimisation, ...

Les formalismes suivants reconnaissent la même classe de fonctions :

Transducteurs bidirectionnels déterministes

[Shepherdson, 1959]

• Transductions monadiques du second ordre

[Courcelle, 1991]

Streaming string transducers déterministes

[Alur, Černý, 2010]

Regular Combinators

[Alur, Freilich, Raghothaman, 2014]

• Transducteurs bidirectionnels réversibles

[Dartois, Fournier, Jecker, Lhote, 2017]

Regular list functions

[Bojańczyk, Daviaud, Krishna, 2018]

Existe-t-il une notion de délai régulier et complet pour les SST?

- [FSTTCS 2018] Origin-Equivalence of Two-Way Word Transducers Is in PSpace Sougata Bose, Anca Muscholl, Vincent Penelle, Gabriele Puppis
 - [MFCS 2019] On Synthesis of Resynchronizers for Transducers
 Sougata Bose, Shankara Narayanan Krishna, Anca Muscholl, Vincent Penelle, Gabriele Puppis
- [FoSSaCS 2021] One-way Resynchronizability of Word Transducers Sougata Bose, Shankara Narayanan Krishna, Anca Muscholl, Gabriele Puppis
 - [STACS 2023] A Regular and Complete Notion of Delay for SST Emmanuel Filiot, Ismaël Jecker, Christof Löding, Sarah Winter

Existe-t-il une notion de délai régulier et complet pour les SST?

- [FSTTCS 2018] Origin-Equivalence of Two-Way Word Transducers Is in PSpace Sougata Bose, Anca Muscholl, Vincent Penelle, Gabriele Puppis
 - [MFCS 2019] On Synthesis of Resynchronizers for Transducers
 Sougata Bose, Shankara Narayanan Krishna, Anca Muscholl, Vincent Penelle, Gabriele Puppis
- [FoSSaCS 2021] One-way Resynchronizability of Word Transducers Sougata Bose, Shankara Narayanan Krishna, Anca Muscholl, Gabriele Puppis

[STACS 2023] A Regular and Complete Notion of Delay for SST Emmanuel Filiot, Ismaël Jecker, Christof Löding, Sarah Winter

Tri stable $a \begin{vmatrix} R_1 \leftarrow R_1 a \\ R_2 \leftarrow R_2 \end{vmatrix}$ $R_1:$ $R_2:$ $b \begin{vmatrix} R_1 \leftarrow R_1 a \\ R_2 \leftarrow R_2 \end{vmatrix}$

Tri stable $a \begin{vmatrix} R_1 \leftarrow R_1 a \\ R_2 \leftarrow R_2 \end{vmatrix}$ $R_1:$ $R_2:$ $b \begin{vmatrix} R_1 \leftarrow R_1 a \\ R_2 \leftarrow R_2 \end{vmatrix}$

a b b a a a b b b a b a a a

 R_1 :

 R_2 :

 $R_1 \leftarrow R_1$

 $P: \rightarrow \bigcirc \rightarrow R_1R_2$

 $|R_1 \leftarrow R_1|$

 ${}^{\upsilon}|R_2 \leftarrow R_2 b$

a b b a a a b b b a b a a a

 R_1 :

 R_2 :

 $a \mid R_1 \leftarrow R_1 \iota$

 $P: \rightarrow \bigcirc R_1R_2$

a b b a a a b b b a b a a a

 $R_1: \square$

 R_2 : b

 $a \mid R_1 \leftarrow R_1 \iota$

 $P: \rightarrow \bigcirc + R_1R_2$

a b b a a a a b b b a b a a a

 $R_1: \square$

 R_2 : bb

 $a \mid R_1 \leftarrow R_1$

 $P: \rightarrow \bigcirc R_1R_2$

a b b a a a b b b a b a a a

 $R_1: \boxed{a}$

 R_2 : bb

 $a \mid R_1 \leftarrow R_1$

 $P: \rightarrow \bigcirc + R_1R_2$

a b b a a a b b b a b a a a

 R_1 : aaa

 R_2 : bb

 $a \mid R_1 \leftarrow R_1$

 $P: \rightarrow \bigcirc \rightarrow R_1R_2$

a b b a a a b b b a b a a a

 R_1 : aaaa

 R_2 : bb

 $a \mid R_1 \leftarrow R_1 \iota$

 $P: \rightarrow \bigcirc \rightarrow R_1R_2$

 $b \begin{vmatrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 \end{vmatrix}$

1

abbaaab<mark>b</mark>babaaa

 R_1 : aaaa

 R_2 : bbb

 $a \mid R_1 \leftarrow R_1$

 $P: \rightarrow \bigcirc R_1R_2$

a b b a a a b b b a b a a a

 R_1 : aaaa

 R_2 : bbbb

 $a \mid R_1 \leftarrow R_1$

 $P: \rightarrow \bigcirc \rightarrow R_1R_2$

a b b a a a b b b a b a a a

 R_1 : aaaa

 R_2 : bbbbb

 $a \mid R_1 \leftarrow R_1$

 $P: \rightarrow \bigcirc \rightarrow R_1R_2$

a b b a a a b b b a b a a a

 R_1 : aaaaa

 R_2 : bbbbb

 $R_1 \leftarrow R_1$

 $P: \rightarrow \bigcirc R_1R_2$

 $b \begin{vmatrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 l \end{vmatrix}$

٤

a b b a a a b b b a b a a a

 R_1 : aaaaa

 R_2 : bbbbb

 $a \mid R_1 \leftarrow R_1$

 $P: \rightarrow \bigcirc + R_1R_2$

a b b a a a b b b a b a a a

 R_1 : aaaaaa

 R_2 : bbbbbb

 $R_1 \leftarrow R_1$

 $P: \rightarrow \bigcirc \rightarrow R_1R_2$

a b b a a a b b b a b a a a

 R_1 : aaaaaaa

 R_2 : bbbbbb

 $_{a}|_{\mathbf{R}_{1}}^{R_{1}}\leftarrow R_{1}$

 $P: \rightarrow \bigcirc \rightarrow R_1R_2$

 $b \begin{vmatrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 \end{vmatrix}$

٤

a b b a a a b b b a b a a a

 R_1 : aaaaaaa

 R_2 : bbbbbb

 $a \mid R_1 \leftarrow R_1$

 $P: \rightarrow \bigcirc \rightarrow R_1R_2$

 $b \begin{vmatrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 \end{vmatrix}$

a b b a a a b b b a b a a a

R₁R₂: aaaaaaaabbbbbbb

 $a \begin{vmatrix} R_1 \leftarrow R_1 a \\ R_2 \leftarrow R_2 \end{vmatrix}$ $P : \longrightarrow R_1 R$ $b \begin{vmatrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 h \end{vmatrix}$

1

a b b a a a b b b a b a a a

a a a a a a a b b b b b b

$$a \mid R_1 \leftarrow R_1 a$$
 $R_2 \leftarrow R_2$

 $P: \xrightarrow{0} R_1 R_2$

 $b \begin{vmatrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 b \end{vmatrix}$

Tri instable

a b b a a a b b b a b a a a

a a a a a a a b b b b b b

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc R$$

$$b \mid R \leftarrow Rb$$

$$a \mid R_1 \leftarrow R_1 \alpha \atop R_2 \leftarrow R_2$$

$$R_1 \leftarrow R_1$$

$$R_2 \leftarrow R_2 h$$

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \rightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \mid R_1 \leftarrow R_1 \iota$$
 $R_2 \leftarrow R_2 \iota$

$$P: \longrightarrow R_1 I$$

$$P: \longrightarrow R_1 I$$

$$P: \mid R_1 \leftarrow R_1 \mid R_2 \leftarrow R_2 b$$

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \longrightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \mid R_1 \leftarrow R_1 \iota$$
 $R_2 \leftarrow R_2$

$$b \mid \begin{matrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 b \end{matrix}$$

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \longrightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \begin{vmatrix} R_1 \leftarrow R_1 a \\ R_2 \leftarrow R_2 \end{vmatrix}$$

$$P: \xrightarrow{\bullet} R_1$$

$$\downarrow P: \downarrow R_1 \leftarrow R_1$$

$$\downarrow R_2 \leftarrow R_2 b$$

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \rightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \mid R_1 \leftarrow R_1 \alpha \mid R_2 \leftarrow R_2 \alpha \mid R_3 \leftarrow R_3 \alpha \mid R_3 \rightarrow R_3$$

$$: \rightarrow \bigcirc R_1$$

$$|R_1 \leftarrow R_1|$$

$$|R_2 \leftarrow R_2b|$$

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \rightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \mid R_1 \leftarrow R_1 a \mid R_2 \leftarrow R_2 a \mid R_3 \leftarrow R_3 a \mid R_3 \rightarrow R_3 a \mid R_3 a$$

$$b \mid \begin{matrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 b \end{matrix}$$

$$a \mid R \leftarrow aR$$

$$P': \xrightarrow{()} R$$

$$b \mid R \leftarrow Rb$$

$$a \begin{vmatrix} R_1 \leftarrow R_1 a \\ R_2 \leftarrow R_2 \end{vmatrix}$$

$$b \mid \begin{matrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 b \end{matrix}$$

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \rightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \mid R_1 \leftarrow R_1 a \mid R_2 \leftarrow R_2 a \mid R_3 \leftarrow R_3 a \mid R_3 \rightarrow R_3 a \mid R_3 a$$

$$P: \xrightarrow{()} R_1$$

$$b \begin{vmatrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 b \end{vmatrix}$$

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \rightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \mid R_1 \leftarrow R_1 \iota \atop R_2 \leftarrow R_2$$

$$P: \xrightarrow{()} R_1$$

$$b \begin{vmatrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 b \end{vmatrix}$$

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \rightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \mid R_1 \leftarrow R_1 \iota$$
 $R_2 \leftarrow R_2 \iota$

$$P: \longrightarrow \mathbb{R}_1 R_2$$

$$b \mid_{R_2}^{R_1} \leftarrow R_1 \\ R_2 \leftarrow R_2 b$$

- abbaaabbbaaaa
- a a a a <mark>b b b b</mark>

- $a \mid R \leftarrow aR$
- $P': \xrightarrow{Q} R$
 - $b \mid R \leftarrow Rb$

$$\begin{array}{c|c}
a & R_1 \leftarrow R_1 a \\
R_2 \leftarrow R_2 & R_2
\end{array}$$

$$P: \longrightarrow \longrightarrow R_1 R_2$$

$$b & R_1 \leftarrow R_1$$

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \rightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \mid R_1 \leftarrow R_1 a \mid R_2 \leftarrow R_2 a \mid R_2 \rightarrow R_2$$

$$P: \xrightarrow{b} R_1$$

$$b \mid R_1 \leftarrow R_1 \atop R_2 \leftarrow R_2 b$$

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \rightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \mid R_1 \leftarrow R_1 \iota$$
 $R_2 \leftarrow R_2$

$$P: \xrightarrow{\bullet} R_1$$

$$b \begin{vmatrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 b \end{vmatrix}$$

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \rightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \begin{vmatrix} R_1 \leftarrow R_1 a \\ R_2 \leftarrow R_2 \end{vmatrix}$$

$$P: \longrightarrow \mathbb{R}_1 R_2$$

$$b \begin{vmatrix} R_1 \leftarrow R_1 \\ R_1 \leftarrow R_1 \end{vmatrix}$$

Tri instable

abbaaabbbabaaa

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \rightarrow R$$

$$b \mid R \leftarrow Rb$$

$$a \begin{vmatrix} R_1 \leftarrow R_1 a \\ R_2 \leftarrow R_2 \end{vmatrix}$$

$$P : \longrightarrow \mathbb{R}_1 R_2$$

$$b \begin{vmatrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 \end{vmatrix}$$

Tri instable

a b b a a a b b b a b a a

a a a a a a a b b b b b

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc \rightarrow R$$

$$b \mid R \leftarrow Rb$$

a b b a a a b b b a b a a a

a a a a a a a a b b b b b b

$$a \mid R_1 \leftarrow R_1 a$$
 $R_2 \leftarrow R_2 a$

 $P: \rightarrow \mathbb{Q} \rightarrow R_1 R_2$

 $b \mid \begin{matrix} R_1 \leftarrow R_1 \\ R_2 \leftarrow R_2 b \end{matrix}$

Tri instable

a b b a a a b b b a b a a a

a a a a a a a b b b b b b

$$a \mid R \leftarrow aR$$

$$P': \rightarrow \bigcirc R$$

$$b \mid R \leftarrow Rb$$

Tri stable
$$\begin{array}{c} a \mid R_1 \leftarrow R_1 a \\ | R_2 \leftarrow R_2 \\ | a \mid R_2 \leftarrow R_2 \\ | P : \longrightarrow R_1 R_2 \\ | b \mid R_1 \leftarrow R_1 \\ | R_2 \leftarrow R_2 b \\ \end{array}$$
 Tri instable
$$\begin{array}{c} a \mid R \leftarrow aR \\ | a \mid R \leftarrow aR \\ | a \mid R \leftarrow aR \\ | b \mid R \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid R_2 \leftarrow R_2 \\ | c \mid R_1 \leftarrow R_1 \\ | c \mid$$

Le bloc de a est rempli différemment, mais à la même **cadence**

Le délai est **petit** si lorsque l'on décompose la sortie en blocs puissances de **petits** mots, chacun de ces blocs est rempli à une cadence **proche**

<i>t</i> =			

u = 1

Le délai est **petit** si lorsque l'on décompose la sortie en blocs puissances de **petits** mots, chacun de ces blocs est rempli à une cadence **proche**

<i>t</i> =			

u = 1

Le délai est **petit** si lorsque l'on décompose la sortie en blocs puissances de **petits** mots, chacun de ces blocs est rempli à une cadence **proche**

Le délai est **petit** si lorsque l'on décompose la sortie en blocs puissances de **petits** mots, chacun de ces blocs est rempli à une cadence **proche**

<i>u</i> =	u_1^*	u_2^*	<i>u</i> ₃ *	u_4^*	u_{5}^{*}	<i>u</i> ₆ *
<i>u</i> =	u_1^*	<i>u</i> ₂ *	u_3^*	u_4^*	<i>u</i> ₅ *	u ₆ *

10

Le délai est **petit** si lorsque l'on décompose la sortie en blocs puissances de **petits** mots, chacun de ces blocs est rempli à une cadence **proche**

<i>u</i> =	u_1^*	u_2^*	<i>u</i> ₃ *	u_4^*	u_{5}^{*}	<i>u</i> ₆ *
<i>u</i> =	u_1^*	<i>u</i> ₂ *	u_3^*	u_4^*	<i>u</i> ₅ *	<i>u</i> ₆ *

Régulier : transforme tout problème en un problème sur les automates

Complet : capable d'identifier les SST déterministes équivalents

Exemple concret d'application : le Problème de Décomposition

• Énoncé par Rajeev Alur et Jyotirmoy Deshmukh en 2011

Peut-on décomposer tout SST finiment valué en SST déterministes?

 Résolu en 2017 pour les SST avec un unique registre : [STACS 2017] On the Decomposition of Finite-Valued SST Paul Gallot, Anca Muscholl, Gabriele Puppis, Sylvain Salvati

• Finalement résolu dans le cadre général grâce au délai :

Théorème de Décomposition [Filiot, **Jecker**, Löding, Muscholl, Puppis, Winter] Tout SST **finiment valué** peut être décomposé en SST déterministes

Corollaire : l'équivalence des SST finiment valués est décidable

Exemple concret d'application : le **Problème de Décomposition**

• Énoncé par Rajeev Alur et Jyotirmoy Deshmukh en 2011

Peut-on décomposer tout SST finiment valué en SST déterministes?

une vaste classe de SST non-déterministes

 Résolu en 2017 pour les SST avec un unique registre : [STACS 2017] On the Decomposition of Finite-Valued SST

Paul Gallot, Anca Muscholl, Gabriele Puppis, Sylvain Salvati

• Finalement résolu dans le cadre général grâce au délai :

Théorème de Décomposition [Filiot, Jecker , Löding, Muscholl, Puppis, Winter]
Tout SST finiment valué peut être décomposé en SST déterministes

Corollaire : l'équivalence des SST finiment valués est décidable

Projet de recherche:

Synthèse automatique de programmes

Axe 1 : Développer de meilleurs algorithmes de synthèse

Axe 2 : Étendre le cadre de la synthèse

Synthèse automatique de programmes

Synthèse de transducteurs Indécidable

Spécifications : Transducteurs

Programmes: Transducteurs **déterministes**

$$b \mid a \qquad b \mid a \qquad b \mid a$$

$$0 \mid a \mid \epsilon \qquad a \mid a \mid a$$

$$0 \mid a \mid \epsilon \qquad a \mid a \mid a$$

Synthèse synchrone ExpTime-complète

Spécifications : Transducteurs synchrones
Programmes : Transducteurs déterministes

 $S \subseteq I \times O$ $Sp\'{e}cification \longrightarrow P: I \to O$ Correct par construction! $Sp\'{e}correct par construction!$

1. Développer de meilleurs algorithmes de synthèse

1.1 : Identifier la source de la complexité théorique

Peut-on évaluer la complexité d'un système à l'aide des relations de Green?

1.2 : Décomposer les instances compliquées

Comment décomposer efficacement les transducteurs non-déterministes?

1.3 : Établir des algorithmes efficaces en pratique

Quel est l'impact de la bisimulation à congruence près sur la synthèse?

1.1 Identifier la source de la complexité théorique

Spécification définie par un transducteur synchrone ⇒ ExpTime-complet Toutefois, les systèmes très **grands** sont parfois très **simples**

Quel paramètre permet de mesurer la complexité intrinsèque d'un système?

1.1 Identifier la source de la complexité théorique

Spécification définie par un transducteur synchrone ⇒ ExpTime-complet **Proposition** : Analyser les systèmes à l'aide des **monoïdes**

Peut-on évaluer la complexité d'un système grâce aux relations de Green?

Premiers résultats : Étude de la *J*-hauteur régulière [STACS 2021]

2. Étendre le cadre de la synthèse

2.1 : Étudier la synthèse des streaming string transducers

Peut-on synthétiser des SST utilisant un nombre minimal de registres?

2.2 : Approfondir l'étude du déterminisme en histoire

Quelles sont les limites du dét. en histoire pour les systèmes à états infinis?

2.3 : Explorer les variantes quantitatives de la synthèse

Comment synthétiser le programme le plus proche de la spécification?

2.3 Explorer les variantes quantitatives de la synthèse

Un algorithme de synthèse standard répond soit :

- Oui, la spécification est réalisable, voici un programme P qui la satisfait
- Non, la spécification n'est pas réalisable

L'utilisation de **spécifications quantitatives** permet d'être plus précis

2.3 Explorer les variantes quantitatives de la synthèse

Un algorithme de synthèse standard répond soit :

- Oui, la spécification est réalisable, voici un programme P qui la satisfait
- Non, la spécification n'est pas réalisable

L'utilisation de spécifications quantitatives permet d'être plus précis

Modèle proposé : les transducteurs pondérés

Comment synthétiser le programme le plus proche de la spécification?

Premiers résultats : Krishnendu Chatterjee et Ege Saraç (ISTA)

Intégration

Aix Marseille Université, LIS, équipe MOVE

Thématiques : Langages et transformations, vérification

Collaborations: K. Lehtinen, N. Lhote, B. Monmege, P.-A. Reynier, J.-M. Talbot

ENS Lyon, LIP, équipe PLUME

Thématiques: Programmes corrects par construction

Collaborations: A. Doumane, D. Kuperberg, D. Pous

Université Gustave Eiffel, LIGM, équipe BAAM

Thématiques: Théorie des modèles finis et infinis, Théorie des jeux

Collaborations: A. Carayol, M. van den Bogaard

I S T AUSTRIA

en Mathématiques

Informatique

Postdoctorat

Postdoctorat

2021 2015 2019 Emmanuel Filiot Krishnendu Chatterjee Wojciech Czerwiński Jean-Francois Raskin Henning Fernau Filip Mazowiecki Christof Lödina Orna Kupferman Sławomir Lasota Collaborations: Karoliina Lehtinen David Purser Nathan Lhote Pierre-Alain Reynier Shibashis Guha Anca Muscholl Marie van den Bogaard Martin Zimmermann Gabriele Puppis LICS'17 SODA'21 STACS'23 ICALP'17 STACS'21 AAAI'23 ICALP'16 MFCS'21 best paper award Acta Informatica FoSSaCS'17 Publications: MECS'18 CONCUR'21 MFCS'20 (X2) CSI '18 FSTTCS'22 (X2) IJFCS(×2) DIT'15'16 FSTTCS'21 Talks invités : **TRENDS** 2019 **DLT** 2023

19