Unità didattica: strutture dati per la rappresentazione di un albero binario

Titolo: Struttura dei dati ed algoritmi di visita

Argomenti trattati:

- ✓ Regole di rappresentazione di un albero binario mediante array
- Rappresentazione di un albero binario mediante lista multipla
- ✓ Algoritmi di visita iterativi (con stack esplicito) di un albero binario
- ✓ Algoritmi di visita ricorsivi (con stack implicito) di un albero binario

Prerequisiti richiesti: generalità sugli alberi binari

Tipo strutturato albero binario ... in C

The of the state o

rappresentazione in memoria

Regole di rappresentazione di un albero binario tramite array

Un albero binario completo con $n=2^p-1$ nodi è rappresentato tramite un array $a \equiv (a_1, a_2, ..., a_n)$ e per un qualsiasi nodo a_i si ha:

- Se $i \neq 1$ padre($\mathbf{a_i}$)= $\mathbf{a_k}$ dove $\mathbf{k} = \lfloor i/2 \rfloor$; se i = 1 allora $\mathbf{a_i}$ è radice e non ha padre.
- □Se $2i+1 \le n$ \implies $figlio_destro(a_i) \equiv a_k$ dove k=2i+1; se 2i+1 > n allora a_i non ha figlio destro.

Attenzione!!! In *C* gli indici su array partono da 0, ma se si usa il valore i=0, non si può trovare il figlio sinistro perché 2i=0 (... e nemmeno il destro)!

SOLUZIONE 1: Traslare di ±1 le formule degli indici: ad esempio

SOLUZIONE 2: Sovradimensionare di 1 l'array e <u>non</u> usare la prima componente

a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈ a₉ a₇

Qualunque struttura (array o lista) si utilizzi per la memorizzazione di un albero binario, l'algoritmo di visita deve necessariamente far uso di uno stack

dove conservare l'informazione sull'ordine dei nodi di cui non si è completata la visita dei sottoalberi.

Lo stack

va gestito esplicitamente nell' algoritmo iterativo di visita mentre

è gestito implicitamente dal linguaggio di programmazione se si ricorre ad un algoritmo ricorsivo.

Esempio: Visita preorder con stack

Lo stack conserva i nodi di cui non si

è ancora visitato il sottoalbero destro.

Esempio: Visita preorder ricorsiva

Esercizi:

Scrivere function C per la visita (preorder, inorder e postorder) di un albero binario implementato mediante array.

6

Scrivere function C per la costruzione e visita (preorder, inorder, postorder) di un albero binario implementato mediante liste multiple. [liv. 3]