Recap of general problem

- we wanted to pick a function f amongst a class \mathcal{F} of functions which hopefully not only classifies some given sample S (picked according to some probability distribution) but also future points that come along according to the same prob. dist.
- ullet it seemed reasonable not to pick a very complicated function that fits the sample S exactly as this might decrease performance on future points that come along
- \Rightarrow need some measure of complicatedness of function class \mathcal{F} (Jochen: Rademacher complexity)

What to do with data not separable linearly?

Some data does not look linearly separable at all

- idea: apply some mapping to the points before trying the linear classifier; e.g. for points separated by $f: x \mapsto x^3$, use mapping $(x,y) \to (x,y^{1/3})$
- mapping might go to some higher dimension where linear classifiers are also more powerful (in terms of VC dimension) e.g. $(x,y) \rightarrow (x,y,x^2+y^2)$
- Kernel methods: do not apply the mapping explicitly, but instead of applying dot products using some *kernel function*

The kernel method

- ullet we are interested in functions k(x,y) that replace $x\cdot y$
- Mercer's theorem characterizes functions k(x,y) for which there exists a mapping ϕ to some strange space such that $k(x,y)=\phi(x)\cdot\phi(y)$
- typical kernel methods that can be realized as dot products in some higher dimensional space are
 - polynomials of degree d': $k(x,y) = (x^Ty + c)^{d'}$
 - Gaussian functions: $k(x,y) = e^{-c||x-y||^2}$
 - Sigmoid functions $k(x,y) = \tanh(x^T y + c)$

Linear Support Vector Machines

• we want to determine a hyperplane of the form $\mathbf{w} \cdot x + \mathbf{b} = 0$ which separates the +1 from the -1 points, maximizing the 'margin', i.e.

$$x_i \cdot \mathbf{w} + \mathbf{b} \ge 1$$
 for $y_i = +1$
 $x_i \cdot \mathbf{w} + \mathbf{b} \le -1$ for $y_i = -1$

$$\Leftrightarrow$$
 $\min ||\mathbf{w}||^2 \text{ such that}$
 $y_i(x_i \cdot \mathbf{w} + \mathbf{b}) - 1 \ge 0$

• for x_i with tight constraints, distance to origin is $\frac{|1-b|}{||\mathbf{w}||}$, $\frac{|-1-b|}{||\mathbf{w}||}$ respectively, so the margin is $2/||\mathbf{w}||$

Lagrangian Formulation

We replace the original problem

$$\min ||\mathbf{w}||^2 \text{ s.t.}$$

 $y_i(x_i \cdot \mathbf{w} + \mathbf{b}) - 1 \ge 0$

(penalizing violations of the constraint) by

- its Lagrangian formulation $L_P \equiv \frac{1}{2} ||\mathbf{w}||^2 \sum_{i=1}^l \alpha_i y_i (x_i \cdot \mathbf{w} + b) + \sum_{i=1}^l \alpha_i$ which needs to be minimized (wrt \mathbf{w} , \mathbf{b} ; requiring that the derivatives wrt α_i vanish and $\alpha_i \geq 0$)
- in the respective dual we maximize L_P s.t. the gradients wrt to w,b vanish and $\alpha_i \geq 0$; hence the respective dual is

$$L_D = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i \cdot x_j$$
 s.t. $\sum \alpha_i y_i = 0$, $\alpha_i \ge 0$

- Lagrange multiplier α_i for each training point x_i ; $\alpha_i > 0 \Leftrightarrow x_i$ is support vector
- w can be computed as $\sum \alpha_i y_i x_i$
- \bullet KKT conditions guarantee equality of primal and dual solution and allow to compute b

Non-linear SVMs

Recall we need to maximize the following:

$$L_D = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i \cdot x_j$$
 s.t. $\sum \alpha_i y_i = 0$, $\alpha_i \ge 0$

- only operation on the training points is dot product
- we could replace the dot product by any other function $k(x_i, x_j)$ that is "justifiable", e.g.

 $\exists \phi : \mathbb{R}^d \to \mathcal{H} \text{ s.t.}$ $h(x, x) = \Phi(x) \Phi(x)$

$$k(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j)$$

i.e. the result of $k(x_i, x_j)$ equals dot product in some other space \mathcal{H} (feature space)

- ullet we don't even need to know about Φ or ${\mathcal H}$ provided we know that such exists
- ullet from VC-dimension we know that linear classifiers become more powerful in higher dimensions \Rightarrow this kernel trick might allow to separate more complicated data

Using the SVM

- ullet the separating hyperplane unfortunately also lives in that highdimensional space ${\cal H}!$
- there need not exist some \mathbf{w}' living in the original space that maps via Φ to the above
- but we can evaluate the learned SVM using $f(x) = \mathbf{w} \cdot \Phi(x) = \sum \alpha_i y_i \Phi(s_i) \cdot \Phi(x) + b = \sum \alpha_i y_i k(s_i, x) + b$ so no need to compute $\Phi(x)$ explicitly

Characterization of valid kernel functions

- \bullet let us first consider a kernel function for which we can explicitly construct the mapping Φ
- ullet data in \mathbb{R}^2 , $k(x,x')=(x\cdot x')^2$
- ullet we need to find $\Phi:\mathbb{R}^2 \to \mathcal{H}$ such that $(x\cdot y)^2 = \Phi(x)\cdot \Phi(y)$
- ullet let's choose $\mathcal{H}=\mathbb{R}^3$ and $\Phi(x)=\left(egin{array}{c} x_1^2 \ \sqrt{2}x_1x_2 \ x_2^2 \end{array}
 ight)$
- \mathcal{H} and $\Phi(x)$ are not unique for k(.)

$$ullet$$
 $\Phi(x)=\left(egin{array}{c} x_1^2 \ x_1x_2 \ x_2^2 \ \end{array}
ight)$, $\mathcal{H}=\mathbb{R}^4$

would have worked as well

Mercer's Theorem

- characterizes for which kernel functions \mathcal{H}, Φ exist.
- for k(x,y) there exists a mapping Φ such that $k(x,y) = \sum \Phi(x)_i \Phi(y)_i$ if and only if for any g(x) with $\int g(x)^2 dx$ finite we have that $\int k(x,y)g(x)g(y)dxdy \geq 0$
- again example for $k(x,y) = (x \cdot y)^2$ in \mathbb{R}^2
- ullet generalizes to $k(x,y)=(x\cdot y)^p$
- ullet Mercer's Theorem does not reveal anything about ${\cal H}$ or Φ

Discussion

- e.g. 16×16 images (d=256) and a degree p=4 polynomial, the dimension of \mathcal{H} is > 180000000!
- there are kernels for which Mercer's Theorem does not hold, still they seem to work in practice
- due to the often high dimension of \mathcal{H} , the VC dimension 'justification' seems pointless; generalization performance should be very bad
- some handwaving arguments why things still work out nicely:
 - mapped surface still lives in some sort of low-dimensional subspace
 - looking for the maximum margin hyperplane also seems to help
- in general there is no theory which guarantees good generalization properties of SVMs!

Examples: Polynomial Classifiers

- $\bullet \ k(x,y) = (x \cdot y + 1)^p$
- kernel functions with implicit high-dimensional \mathcal{H} don't seem to perform too badly on linearly separable examples (no overfitting observed) really high dimension leads to overfitting, though
- high-dimensional kernel really necessary to separate more difficult data

Examples: Radial Basis functions

• $k(x,y) = e^{-||x-y||^2/2\sigma^2}$

Examples: Sigmoidal Neural Network

• $k(x,y) = \tanh(\kappa x \cdot y - \delta)$