Comandos de Seleção (ILP-010)

Prof. Dr. Silvio do Lago Pereira

Departamento de Tecnologia da Informação

Faculdade de Tecnologia de São Paulo

Valor booleano

é um valor que pode ser apenas **0** (representando falso) ou **1** (representando verdade).

Em C:

- O tipo __Bool pode ser usado para criar variáveis que guardam valores booleanos.
- O arquivo **stdbool**. **h**, define o tipo **bool** e as constantes **false** e **true**.
- Em vez de bool, podemos usar o tipo int e as constantes 0 (false) e 1 (true).
- A constante o representa falso e todo valor diferente de o representa verdade.

Exemplo 1. O tipo bool

```
#include <stdio.h>
#include <stdbool.h>
int main(void) {
  bool p = false, q = 7;
  printf("%zu %d %d\n", sizeof(bool), p, q); // 1 0 1
   return 0;
```


Operador relacional

é um operador que compara valores, resultando em **0** (falso) ou **1** (verdade).

Exemplo 2. Operadores relacionais

```
#include <stdio.h>
int main(void) {
                  // 0
  printf("%d\n",1==2);
                  // 1
  printf("%d\n",1!=2);
  printf("%d\n", 1>2);  // 0
  printf("%d\n", 9-2<=2*3+1); // 1
  return 0;
```

Operador	Significado
==	Igual
!=	Diferente
<	Menor
>	Maior
<=	Menor ou igual
>=	Maior ou igual

Os operadores aritméticos têm prioridade sobre os operadores relacionais!

Operador lógico

assim como um operador relacional, sempre resulta em **0** (falso) ou **1** (verdade).

Exemplo 3. Operadores lógicos

Operador	Significado
!	Negação (não)
& &	Conjunção (e)
11	Disjunção (ou)

Observações:

- ! tem prioridade sobre &&, que tem prioridade sobre | |.
- Os resultados dos operadores lógicos são definidos por suas respectivas tabelas-verdade.

Os operadores relacionais têm prioridade sobre os operadores lógicos!

Exercício 1. Tabela-verdade do operador & &

Execute o programa a seguir e analise o resultado.

```
#include <stdio.h>
int main(void) {
  printf("0 && 0 == %d\n'', 0 && 0);
  printf("0 && 1 == %d\n", 0 && 1);
  printf("1 && 0 == %d\n",1 && 0);
  printf("1 && 1 == %d\n",1 && 1);
   return 0;
```

Exercício 2. Tabela-verdade do operador 📙

Com base no programa anterior, crie um programa para exibir a tabela-verdade do operador | |.

Exercício 3. Tabela-verdade do operador!

Crie um programa para exibir a tabela-verdade do operador !..

O comando if-else

seleciona um comando para ser executado, de acordo com uma condição.

Exemplo 4. O comando if-else

```
#include <stdio.h>
int main(void) {
   int idade;
   printf("Idade? ");
   scanf("%d", &idade);
   if( idade<=18 ) puts("Menor");</pre>
   else puts("Maior");
   return 0;
```



```
if ( condição ) comando-1;
else comando-2;
```

A função **puts ()**, declarada em **stdio.h**, exibe uma cadeia (*string*) e muda o cursor de linha!

Exercício 4. Situação do aluno

Dadas as duas notas de prova de um aluno, informe se ele está aprovado ou reprovado. Considere que a média mínima necessária para aprovação é 6.0.

```
#include <stdio.h>
int main(void) {
   float p1, p2, m;
  printf("Notas? ");
   scanf("%f %f", &p1, &p2);
  m = (p1+p2)/2;
   if( m>=6 ) puts("Aprovado");
  else puts("Reprovado");
   return 0;
```

Exercício 5. Maior entre dois números

Dados dois **números distintos**, informe qual deles é o maior.

Bloco

é uma sequência de comandos entre **chaves**, tratada como um único comando.

Exemplo 5. Uso de blocos

```
#include <conio.h>
if( m>=6 ) { _textcolor(9); puts("Aprovado"); }
else { _textcolor(12); puts("Reprovado"); }
```

Observações:

- O arquivo conio.h (console input/output header) não faz parte da linguagem C padrão.
- A função _textcolor() seleciona a cor de exibição de textos no vídeo do computador (0 a 15).

Exercício 6. Situação do aluno

[2ª versão

Dados o número de **faltas** e a **média** de um aluno, informe se ele está aprovado ou reprovado. Considere que a aprovação requer no máximo 5 faltas e no mínimo média 6.0. Use uma condição composta por um operador lógico e exiba as possíveis situações em cores distintas.

Observações:

- Num comando if, a parte else não é obrigatória e pode ser omitida.
- Nesse caso, se a condição for falsa, a execução segue para o próximo comando.

Exemplo 6. Omissão de else

Um posto de combustíveis dá um desconto de 5% para abastecimentos com valores superiores a R\$ 100,00. Dados o número de litros abastecidos e o preço do litro de combustível, informe o valor total e o valor do desconto (apenas se houver um desconto).

```
total = litros*preco;
if( total>100.00 ) {
   desconto = 0.05*total;
   printf("Desconto: R$ %.2f\n", desconto);
   total = total - desconto;
printf("Total: R$ %.2f\n", total);
```


Operador condicional (?:)

- Sintaxe: $(condição ? expressão_1 : expressão_2)$
- Se a *condição* é verdadeira, o resultado é a *expressão*₁; senão, ele é a *expressão*₂.

Exemplo 7. Uso do operador condicional

Dados dois números inteiros distintos, informe qual dele é o maior.

```
#include <stdio.h>
int main(void) {
   int a, b;
   printf("Numeros? ");
   scanf("%d %d",&a,&b);
   printf("Maior = %d\n",(a>b ? a : b));
   return 0;
}
```

Note que o uso do operador condicional pode deixar o código do programa mais conciso!

Aninhamento e encadeamento

- Um comando if é chamado aninhado se ele fica na parte verdadeira de outro if.
- Um comando if é chamado encadeado se ele fica na parte falsa de outro if.

Comandos if-else podem ser aninhados e/ou encadeados em qualquer quantidade!

Exemplo 8. Classificação de triângulos

Dados três números positivos quaisquer, verifique se eles podem representar as medidas dos lados de um triângulo e, se puderem classifique o triângulo em equilátero, isósceles ou escaleno.

```
#include <stdio.h>
int main(void) {
   float a, b, c;
   printf("Numeros? ");
   scanf("%f %f %f", &a, &b, &c);
   if( a < b + c && b < a + c && c < a + b ) {</pre>
      printf("Triangulo: ");
      if( a==b && b==c ) puts("equilatero");
      else if( a==b || a==c || b==c) puts("isosceles");
      else puts("escaleno");
   else puts("Nao e triangulo!");
   return 0;
```


Exercício 7. Situação do aluno

[3ª versão]

Dados o número de **faltas** e a **média** de um aluno, informe sua **situação**. Um aluno com mais de 5 faltas ou com média inferior a 4.0 é **reprovado**; caso contrário, se ele tem média no mínimo 6.0, ele é **aprovado**; senão, ele fica de **recuperação**. Exiba os textos em cores.

Exercício 8. Equação do 2º grau

Dados os **coeficientes** ($a\neq 0$, $b\in c$) de uma equação do 2º grau, informe quais são suas raízes reais (se elas existirem).

Use a formula de **Bhaskara**: $x = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$

Exercício 9. Imposto de renda

Dado o **salário** de um funcionário, informe o valor de **Imposto de Renda** a ser recolhido. Considere as alíquotas na tabela ao lado.

Faixa salarial	Alíquota
Até 1.903,98	isento
Acima de 1.903,98 , até 2.826,65	7,5 %
Acima de 2.826,65 , até 3.751,05	15,0 %
Acima de 3.751,05 , até 4.664,68	22,5 %
Acima de 4.664,68	27,5 %

O comando switch-case

seleciona um comando para ser executado, de acordo com o valor de uma expressão.

```
switch( expressão ) {
   case cte<sub>1</sub>: sequência_de_comandos<sub>1</sub>; break;
   case cte<sub>2</sub>: sequência_de_comandos<sub>2</sub>; break;
   ...
   default : sequência_de_comandos<sub>n</sub>; break;
}
```

Observações:

- Avalia a *expressão* (que deve ser do tipo **char** ou **int**).
- Entra no caso cuja constante (cte;) é igual ao valor da expressão.
- Se um tal caso não existe, entra no caso default (que é opcional).
- Após entrar num caso, a execução só termina quando um break é encontrado.

O comando switch-case só pode ser usado quando as comparações são de igualdade!

Exemplo 9. Efeito do break num switch-case

```
#include <stdio.h>
int main(void) {
   int n;
  printf("Numero? ");
   scanf("%d", &n);
   switch( n ) {
      case 1: putchar('A'); break;
      case 3: putchar('B');
      case 4: putchar('C'); break;
      default: putchar('*');
      case 5: putchar('D');
  puts(".");
   return 0;
```

Resultados:

```
\bullet Para n = 1
  A.
\bullet Para n=2:
  *D.
\bullet Para n = 3:
  BC.
\bullet Para n = 4:
  C.
\bullet Para n = 5:
  D.
\bullet Para n=6
```

*D.

A função putchar (), declarada em stdio.h, exibe um único caractere no vídeo!

Exemplo 10. Uma calculadora simples

[1ª versão]

Dada uma expressão composta por dois números reais e um operador aritmético, exiba seu valor.

```
#include <stdio.h>
int main(void) {
   float x, y;
   char o;
  printf("Expressao? ");
   scanf("%f %c %f", &x, &o, &y);
   switch( o ) {
      case '+': printf("Valor = %.2f\n", x+y); break;
      case '-': printf("Valor = %.2f\n", x-y); break;
      case '*': printf("Valor = %.2f\n", x*y); break;
      case '/': printf("Valor = %.2f\n", x/y); break;
      default : printf("Operador invalido: %c\n",o);
   return 0;
```


Exercício 10. Uma calculadora simples

[2ª versão]

Usando um comando if-else, dentro do switch-case, altere o programa anterior para que uma divisão por zero cause a exibição de uma mensagem de alerta para o usuário.

Exercício 11. Uma calculadora simples

[3ª versão]

Altere o programa anterior de modo que os caracteres * e x possam ser usados para representar um **produto**, e os caracteres / e : possam ser usados para representar uma divisão.

Exercício 12. Numerologia de *Facebook*

Suponha que o **perfil** de uma pessoa possa ser determinado pela sua data de nascimento (como exemplificado a seguir). Dada uma data de nascimento, informe o perfil correspondente.

Data de nascimento: 13/06/1970	Resto	Perfil
1º passo: 1306 + 1970 = 3276	0	Tímido
2º passo: 32 + 76 = 108	1	Sonhador
3º passo: 108 _5	2	Paquerador
-105 21	3	Atraente
3	4	Irresistível

Exercício 13. Rodízio de veículos

[1ª versão]

Usando comandos if-else, faça um programa para ler o número da **placa** de um veículo (sem as letras) e informar em que dia da semana ele deve estar no rodízio.

Final da placa	Dia do rodízio
1 e 2	Segunda-feira
2 e 3	Terça-feira
4 e 5	Quarta-feira
6 e 7	Quinta-feira
9 e 0	Sexta-feira

Exercício 14. Rodízio de veículos

[2ª versão]

Usando o comando switch-case, faça um programa para ler o número da placa de um veículo (sem as letras) e informar em que dia da semana ele deve estar no rodízio.

Exercício 15. Índice de massa corpórea (IMC)

Uma pessoa com IMC entre 18.5 e 30 está **normal**, com IMC abaixo de 18.5 está **magra** e com IMC acima de 30 está **obesa**. Dados o peso e a altura de uma pessoa, informa a sua situação.

Fim