والح والح والح

ر واج واج واج

15 면도 만을 만을 만드

5일 5일 5일 5일

5

전달 전달 전달 전달 전달 전달 전달 전달 전달 전달

中華民國經濟部智慧財產局

INTELLECTUAL PROPERTY OFFICE MINISTRY OF ECONOMIC AFFAIRS REPUBLIC OF CHINA

茲證明所附文件,係本局存檔中原申請案的副本,正確無訛,

其申請資料如下 :

This is to certify that annexed is a true copy from the records of this office of the application as originally filed which is identified hereunder:

申 請 日: 西元 2002 年 08 月 09 日

Application Date

申 請 案 號: 091118043

Application No.

申 請 人 : 揚智科技股份有限公司

Applicant(s)

局

長

Director General

Issue Date

發文字號: 09111020887

Serial No.

申請	日	期	:	,	 	案號

(以上各欄由本局填註)

		發明專利說明書
	中文	一種積體電容及其製法
發明名稱	英文	INTEGRATED CAPACITOR AND METHOD OF MAKING SAME
		1. 胡曼君 2. 林文忠
一二 一 一 一 一 一 一 一	(英文)	1. Hu, Man-Chun 2. Lin, Wen-Chung
	國籍	1. 中華民國 2. 中華民國
		1. 寸半八四 之 1 半八四 1. 台北縣沙止市新台五路一段八十八號二十一樓 2. 台北縣沙止市新台五路一段八十八號二十一樓
	(名稱) (中文)	1. 揚智科技股份有限公司
	姓 名 (名稱) (英文)	I. Acer Laboratories, Inc.
_	國籍	1. 中華民國
申請人	住、居所 (事務所)	1. 台北縣汐止市新台五路一段88號21樓
	代表人 姓 名 (中文)	1. 呂理達
	代表人 姓 名 (英文)	1. Lu, Teddy

四、中文發明摘要 (發明之名稱:一種積體電容及其製法)

英文發明摘要 (發明之名稱: INTEGRATED CAPACITOR AND METHOD OF MAKING SAME)

An integrated capacitor including a semiconductor substrate is disclosed. An outer vertical plate is laid over the semiconductor abstrate. The outer vertical plate consists of a plurality of first conductive slabs connected vertically using multiple first via plugs. The outer vertical plate defines a grid area. An inner vertical plate is laid over the semiconductor substrate in parallel with the first vertical plate and is encompassed by the grid area defined

四、中文發明摘要 (發明之名稱:一種積體電容及其製法)

英文發明摘要 (發明之名稱:INTEGRATED CAPACITOR AND METHOD OF MAKING SAME)

by the outer vertical plate. The inner vertical plate consists of a plurality of second conductive slabs connected vertically using multiple second in plugs. A parallel conductive plate is laid under the outer vertical plate and inner vertical plate over the semiconductor substrate for shielding the outer vertical plate from producing a plate-to-substrate parasitic capacitance thereof. The inner vertical plate is electrically connected with the parallel conductive plate using

四	中文發明摘要	(發明之名稱:一種積體電容及其製法)	
		•	T
			8
g.		·	
	英文發明摘要	(發明之名稱: INTEGRATED CAPACITOR AND METHOD OF MAKING	G SAME)
at	least one	e third via plug.	
			1
g ni	BANDONIST MENNYAN AND A	PROPERTY.	
	MANUSCO PARADAS PARADA	\$\$\#\\$\#\	1

,				
本案已向				1
國(地區)申請專利	申請日期	案號	主張優先權	
		無		
* 4				
	•	•		
有關微生物已寄存於		寄存日期	寄存號碼	
有關假生物已可行於		411 - 22	•	
		無		
			•	

五、發明說明 (1)

發明之領域

本發明係關於一種積體電容(integrated capacitor) 及其製法,尤指一種可具有極性且具有接近完美匹配 (matching)特性之積體電容結構,特別適合應用於類比/ 數位轉換器(A/D converter)或數位/類比轉換器(D/A converter)或切換電路(switch cap circuit)領域。

背景說明

一直以來,被動元件如電容等已經被廣泛地使用在無線電波 (radio frequency, RF)及混合訊號 (mixed-signal)電路中,應用在諸如過濾器 (filter)、共振電路 (resonant circuit)、及導流電路 (bypass)等電路設計上。而為了降低生產製造成本, IC製造或設計業者莫不製力朝提高積體電路積集度之潮流邁進。

圖一為習知高積集度積體電容之部份結構側視圖。如圖一所示,習知之積體電容1條由複數個平行排列之垂直金屬板100及120所構成,其中無陰影的為垂直金屬板20,表示其為電連接一節點A,有陰影的為垂直金屬板100及120皆形成於一半導體基底(未顯示)上。每一垂直金屬板100皆由複數個金屬層10a、10b、10c及10d以及電連接複數個金屬

五、發明說明 (2)

層 10a、10b、10c及10d之金屬插塞 11a、11b及11c所構成。每一垂直金屬板 120皆由複數個金屬層 12a、12b、12c及 12d以及電連接複數個金屬層 12a、12b、12c及 12d之金屬插塞 13a、13b及13c所構成。垂直金屬板 100及120之間為一介電層 (未顯示)。一般而言,習知之積體電容 1的複數個金屬層 10a、10b、10c及10d以及複數個金屬層 12a、12b、12c及12d條與積體電路之金屬內連線製程同時定義完成,不需要額外的光罩來定義圖案,因此可以節省成本。此外,習知之積體電容 1可提供較高的單位面積電容值(capacitance per unit area)。

然而,習知之積體電容 l由於連接節點 A的垂直金屬板 120以及連接節點 B的垂直金屬板 100,操作時皆會與位於其下方之半導體基底產生所謂的寄生電容 (parasitic capacitance)。請參閱圖二,圖二為圖一中之習知積體電容 1之等效電路圖 如前所述,習知積體電容 1之至效電路圖 是一節點 A,垂直金屬板 100,其為電連接一節點 B。在 A節點與 B節點之間,除了本身電容 C產生,而在節點 B端尚有一寄生電容 C產生,而在節點 B端尚有一寄生電容 C產生,而在節點 B端尚有一寄生電容 C產生。寄生電容 C以及 全生電容 C皆是由於垂直金屬板 100及 120之最下層金屬層 (分別為金屬層 10a與金屬層 12a)與接地之半導體基底感態產生。如此一來,使得習知積體電容 1由於在設計上兩端節點皆有寄生電容而不具有極性,因此不適合應用於類比

五、發明說明 (3)

/數位轉換器 (A/D converter)或數位/類比轉換器 (D/A converter)或切換電路 (switch cap circuit)領域。

此外,為了增加電容值,傳統的積體電容經常採用「指型」電容(finger capacitor)結構,卻產生不匹配的問題。請參閱圖三,圖三為習知積體電容名の佈局上視圖。如圖三所示,積體電容為自複數個「指型」電容點 A 2 重直金屬板 311以及一電連接節點 B之垂直金屬板 312。 據如圖三所示之習知積體電容結構,「指型」電容胞 31 在空間,其分別為 a、b、c、d,其四邊所看到周圍環境不盡相同,即稱為不匹配(not match)。曾有利用假金屬(dummy metal)佈設於各「指型」電容胞 31之四周,但仍未改善匹配問題,而且假金屬佈局亦會浪費實責的晶片面積。

發明概述

在本發明之最佳實施例中,揭露了一種可具有極性之

五、發明說明 (4)

為讓本發明之上述目的、特徵、和優點能更明顯易 懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說 明如下。

發明之詳細說明

請參閱圖四,圖四為本發明具有高匹配度之積體電容 胞上視圖。如圖四所示,積體電容 胞 40包含有一呈格狀佈局之外垂直金屬板 41以及內垂直金屬板 42a、42b、42c及 42d。外垂直金屬板 41定義出四個格狀區域 41a、41b、41c 41d,使內垂直金屬板 42a、42b、42c及 42d分別位於格狀區域 41a、41b、41c及 41d內。外垂直金屬板 41以及內垂直金屬板 42a、42b、42c及 42d之間為一介電層 45以構成絕緣。垂直金屬板 41及 42皆形成於一半導體基底上(未顯

五、發明說明 (5)

示),且每一垂直金屬板皆由複數個金屬層以及電連接複數個金屬層之金屬插塞所構成。一般以垂直金屬板 41電連接一節點 B,其中內垂直金屬板 42電連接一節點 B的方式係以提供一底部水平金屬板 (未顯示於圖四),經由接觸插塞電連接各內垂直金屬板42,俾產生可具有極性之積體電容。

請參閱圖五,圖五為圖四中積體電容 40之部份結構放大立體剖面圖。如圖五所示,本發明高積集度積體電容 40係由外垂直金屬板 41及內垂直金屬板 42所構成,其中無陰影的為內垂直金屬板 42,表示其為電連接一節點 B。垂直影屬板 41及 42皆形成於一半導體基底上 (未顯示)。外垂直金屬板 41由複數個金屬層 411a、411b、411c及 411d以及電連接複數個金屬層 411a、411b、411c及 411d之金屬插塞412a、412b及 412c所構成。內垂直金屬板 42由複數個金屬

五、發明說明 (6)

層 421a、421b、421c及 421d以及電連接複數個金屬層 421a、421b、421c及 421d之金屬插塞 422a、422b及 422c所構成。垂直金屬板 41及 42之間為一介電層(未顯示)。依據本發明較佳實施例,積體電容 40的複數個金屬層 411a、411b、411c及 411d以及複數個金屬層 421a、421b、421c及 421d條與積體電路之金屬內連線製程同時定義完成,不需要額外的光罩來定義圖案,因此可以節省成本。

仍然參閱圖五,本發明高積集度積體電容 40另包含有 底部水平導電板 43, 設於外垂直金屬板 41及內垂直金屬板 42之下,且介於外垂直金屬板 41及內垂直金屬板 42與半 體基底 (未顯示)之間。底部水平導電板 43為導電材料所 構成,例如金屬或多晶砂。依據本發明較佳實施例,底部 水平導電板 43與積體電路之金屬內連線製程中的第一層金 屬導線 (metal 1)同時定義完成。底部水平導電板 43與內 垂直金屬板 42之間透過至少一個金屬插塞 431電連接。底 部水平導電板 43與外垂直金屬板 41之間為介電層,以形成 絕緣。

請參閱圖六,圖六為圖五中之積體電容 40之等效電路。如前所述,本發明高積集度積體電容 40之外垂直金屬板 41,其為電連接一節點 A,內垂直金屬板 42,其經由底部水平導電板 43而電連接一節點 B。在 A節點與 B節點之間,除了本身電容結構所貢獻之電容值 Cin之外,在節點 B

五、發明說明 (7)

端有一寄生電容 C產生。寄生電容 C諧是由於底部水平導電板 43與接地之半導體基底 (未顯示) 威應產生。在節點 A端則由於底部水平導電板 43之遮蔽,而無寄生電容產生。如此一來,使得習知積體電容 40由於在設計上只有一端節點有寄生電容因而具有極性,適合應用於類比/數位轉換器 (A/D converter)或數位/類比轉換器 (D/A converter)或切換電路 (switch cap circuit)領域。

請參閱圖七,圖七為本發明積體電容之部份佈局上視 圖。如圖七所示,積體電容由複數個對稱電容胞 70所構 成。電容胞 70包含有一電連接節點 A之垂直金屬板 71以及 一電連接節點 B之垂直金屬板 72。根據如圖三所示之習知 積體電容結構,電容胞 70有四個邊,其四邊所看到周圍環 境相同,因此接近完美匹配 (match)。本發明不需利用假 金屬 (dummy metal)佈設於各電容胞 70之四周,因此可以 節省寶貴的晶片面積。

相較於習知技藝,本發明乃可具有極性之高積集度積體電容,可以解決匹配問題,適合應用於類比/數位轉換器 (A/D converter)或數位/類比轉換器 (D/A converter) 切換電路 (Switch cap circuit)設計中。積體電容的金屬層係與積體電路之金屬內連線製程同時定義完成,不需要額外的光罩來定義圖案,因此可以節省成本。以上種種優點均顯示本發明已完全符合專利法所規定之產業利用

五、發明說明 (8)

性、新穎性及進步性等法定要件,爰依專利法提出申請, 敬請詳查並賜准本案專利。

以上所述僅為本發明之較佳實施例,本發明的效用並不限於前述之電容結構,蓋所有其他習知之積體電容結構,若其具有雙邊寄生電容,均可以依前述實施例之做法,在基板與電容間增加一導電板,而形成一具有極性之積體電容。因此,凡依上述方法所完成之積體電容,以及根據本發明實施例與申請專利範圍所作之均等變化與修飾,皆應屬本發明專利之涵蓋範圍。

圖式簡單說明

圖示之簡單說明

圖一為習知高積集度積體電容之部份結構放大側視

圖。

49

圖二為圖一中之習知積體電容之等效電路圖。 圖三為習知積體電容之部份佈局上視圖。 圖四為本發明具有高匹配度之積體電容胞上視圖。 圖五為圖四中積體電容之部份結構放大立體剖面圖。 圖六為圖五中之積體電容之等效電路圖。

圖七為本發明積體電容之部份佈局上視圖。

圖示之符號說明

1			
10a、	10b	10c及	10 d
11a,	11b及	11c	
12a ·	12b、	12c及	12d
13a、	13b及	13с	
100 .	120		
3 0			
3 1			
311			
312			
40			

積金金金金垂積積垂垂積體屬屬屬屬直體體直直體體高金電電金金電電金金電電金金電電金金電器 塞屬容容屬屬容

圖式簡單說明

41

42a · 42b · 42c · 42d

41a, 41b, 41c, 41d

43

431

45

411a、411b、411c、411d 金屬層

412a · 412b · 412c

421a、421b、421c、421d 金屬層

422a · 422b · 422c

70

71 . 72

外垂直金屬板

內垂直金屬板

格狀區域

底部水平導電板

金屬插塞 介電層

金屬插塞

金屬插塞

電容胞

垂直金屬板

- 1. 一種積體電容,包含有:
 - 一半導體基底;
- 一外垂直板設於該半導體基底上,該外垂直板係由複數個並列第一導電條上下經由複數個第一插塞互相電連接所構成,該外垂直板定義出一格狀區域;
- 一內垂直板,設置於該格狀區域之該半導體基底上,該內垂直板係由複數個並列第二導電條上下經由複數個第二插塞互相電連接所構成;及
- 一水平導電板,設於該外垂直板及該內垂直板之下, 是介於該外垂直板及該內垂直板與該半導體基底之間;

""其中該內垂直板係經由至少一第三插塞與該水平導電板電連接。

- 如申請專利範圍第1項所述之積體電容,其中該水平 導電板由金屬構成。
- 如申請專利範圍第1項所述之積體電容,其中該水平 導電板與該外垂直板係藉由一介電層形成電性絕緣。
- 4. 如申請專利範圍第1項所述之積體電容,其中該第一 電條及該第二導電條皆由金屬構成。
- 如申請專利範圍第1項所述之積體電容,其中該外垂直板與該內垂直板係互為電性絕緣。

- 6. 如申請專利範圍第 1項所述之積體電容,其中該外垂直板係電連接一節點 A,該內垂直板係電連接一節點 B,該 積體電容於該節點 B端與該半導體基底構成一寄生電容。
- 7. 如申請專利範圍第 6項所述之積體電容,其中該外垂直板係電連接一節點 A,該內垂直板係電連接一節點 B,該積體電容於該節點 A端並無寄生電容產生。
- 一種形成具有極性積體電容的方法,包含有: 提供一半導體基底,包含有一外垂直板,其由複數個並列第一導電條上下經由複數個第一插塞互相電連接所構成,並定義至少一格狀區域;及
- 一內垂直板,設於該格狀區域中,其由複數個並列第 二導電條上下經由複數個第二插塞互相電連接所構成;

提供一導電板,設於該外垂直板及該內垂直板之下, 且介於該外垂直板及該內垂直板與該半導體基底之間;及 經由至少一第三插塞電連接該內垂直板與該導電板。

- 9. 如申請專利範圍第8項所述之方法,其中該導電板係企
 金屬所構成。
- 10. 如申請專利範圍第8項所述之方法,其中該導電板與該外垂直板係藉由一介電層形成電性絕緣。

- 11. 如申請專利範圍第 8項所述之方法,其中該外垂直板係電連接一節點 A,該內垂直板係電連接一節點 B,該積體電容於該節點 B端與該半導體基底構成一寄生電容。
- 12. 如申請專利範圍第 8項所述之方法,其中該外垂直板係電連接一節點 A,該內垂直板係電連接一節點 B,該積體電容於該節點 A端並無寄生電容產生。
- 13. 一種形成具有極性積體電容的方法,包含有: 提供一半導體基底;

提供一導電板於該半導體基底之上,該導電板與該半導體基底電性絕緣;

提供第一電容金屬件與第二電容金屬件於該導電板 上,該第一電容金屬件以絕緣方式平行包覆圍繞該第二電容金屬件構成一積體電容;

使該第一電容金屬件與該導電板電性絕緣;及 使該第二電容金屬件與該導電板電性連接。

- 14. 如申請專利範圍第 13項所述之方法,其中該電容金屬 為垂直電容板,其由複數個並列導電條上下經由複數個 播塞互相電連接所構成。
- 15. 如申請專利範圍第 1 3項所述之方法,其中該電容金屬

470

件為垂直電容柱,係由複數個導電塊上下經由複數個插塞 互相電連接所構成。

16. 如申請專利範圍第13項所述之方法,其中該第一電容金屬件與該第二電容金屬件形成對稱匹配的電容結構。

\$

. . .

Œ\$

gh.

第 12/19 頁 第 12/19 頁 第 14/19 頁

第 18/19 頁

