Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники Направление системного и прикладного программного обеспечения

ОТЧЕТ ПО МОДУЛЮ № 1 курса «Системы искусственного интеллекта»

Выполнил студент:

Тюрин Иван Николаевич

группа: Р33102

Преподаватель:

Авдюшина А. Е.

Содержание

Модуль № 1.	2
1. Введение	2
1. Описание целей проекта и его значимости	2
2. Анализ требований	2
1. Определение основных требований к системе поддержки	
принятия решений	2
2. Выявление требований к базе знаний и онтологии для	
представления знаний	2
3. Изучение основных концепций и инструментов	3
1. Обзор основных концепций баз знаний и онтологий	3
2. Изучение Prolog и его возможностей для разработки систем	
искусственного интеллекта	3
3. Инструменты подходящие для работы	4
4. Реализация системы искусственного интеллекта	4
5. Оценка и интерпретация результатов	4
6. Заключение	5

Модуль № 1

1. Введение

1. 1. Описание целей проекта и его значимости.

Проект разрабатывался с целью создания «Системы поддержки и принятия решения на основе базы знаний или онтологии», которая основывалась на, разработанных на предыдущих этапах, базе знаний (далее БЗ) и онтологии.

2. Анализ требований

2. 1. Определение основных требований к системе поддержки принятия решений

- 1. Получение справочной информации по использовнию системы.
- 2. Выволнение запросов определенного формата в БЗ.
- 3. Корректный вывод множественных результатов запросов.

2. 2. Выявление требований к базе знаний и онтологии для представления знаний

- 1. Определение фактов принадлежности объектов определенному классу.
- 2. Определение фактов соответствия объектов разных классов.
- 3. Создание правил для управления данными.
- 4. Создание тестовых запросов.

3. Изучение основных концепций и инструментов

3. 1. Обзор основных концепций баз знаний и онтологий

База знаний – база данных, содержащия факты и правила вывода фактов и другую информацию о человеческом опыте в некоторой предметной области для последующего анализа и поиска.

Онтология – способ формализации и представления некоторой области знаний с помощью концептуальной схемы, в виде некоторой стуктуры данных, содержащей классы, их связи и правила.

3. 2. Изучение Prolog и его возможностей для разработки систем искусственного интеллекта

- 1. Принципы и концепции
 - Логическое программирование (факты, правила, поиск решений на основе утверждений и логических операторов)
 - Декларотивное программирование (алгоритмы описываются как последовательность утверждений)
 - Рекурсивные алгоритмы (поддержка оптимизации хвостовой рекурсии)

2. Синтаксис

- Определения
- Правила-предикаты
- Переменные
- Константы, атомы
- Операторы
- 3. Решение задач искусственного интеллекта
 - Формализация знаний и автоматическое принятие решений
 - Вывод дополнительных фактов, логические связи, доказательство теорем
 - Анализ естественного языка
- 4. Функциональные возможности
 - Выполнение запросов к БЗ

- Интерпретация кода
- Модульная структура

5. Преимущества

- Декларативность
- Короткий синтаксис
- Формализация информации

6. Недостатки

- Низкая скорость решеняи задач
- Редкая парадигма программирования
- Сложность в отладке
- Низкая популярность

3. 3. Инструменты подходящие для работы

Для выполнения работы было найдено множество инструментов, способных помочь при реализации системы. Примеры: Swi-PL, Protege, pyswip, OWL, PL/SQL, SQLAlchemy и пр.

4. Реализация системы искусственного интеллекта

Реализация моей системы искусственного интеллекта доступна в личном репозитории [1]. . Для разработки был использован язык программирования Python с дополнительной библиотекой рузмір, выполняющей закпросы в интерпретатор Prolog (Swi-PL).

5. Оценка и интерпретация результатов

Примеры запросов к БЗ можно найти в моем GitHub репозитории [2].

Выбранноая мной предметная область удобнее всего представляется с помощью Prolog, тогда как с использованием Protege было трудно определить правила с помощью представленных в нем возможностей.

Разработанная системе была разработана в соответствии с поставленными к ней требованиями.

Результат выполнения работы, на мой взгляд, положительный. Система может быть улучшена путем увеличения числа доступных форматов запросов и пополнения БЗ.

6. Заключение

Разработанная система достаточно проста для использования и понимания принципов ее работы. Она уже может использоваться для выполненеия запросов к БЗ. Ее легко усовершенствовать используя язык программирвоания Python и Prolog. Онтология в моем случае не пригодилась для разработки системы.

Литература

- [1] Ссылка на созданную систему в личном репозиторий GitHub: https://github.com/elturin/itmo-ai-systems/tree/main/module-1/lab-3
- [2] Ссылка на примеры запросов к Базе знаний составленной на языке Prolog: https://github.com/elturin/itmo-ai-systems/blob/main/module-1/lab-1/request.pl