Конспекты лекций по алгебре-геометрии

Ведёт: Акопян Ольга Владимировна перенесено в электронный формат Ширкуновым А.

2024-2025 учебный год, первый семестр

1 Множества

1.1 Основные понятия

Прим.: опущу часть с определением множеств и операций над ними, т.к эта тема пересекается с первыми лекциями по алгему.

1.2 Ограниченность множеств

Множество E ограничено сверху, если $\exists b \in \mathbb{R} : \forall x \in E \ x \leq b$. В таком случае b называют мажорантой множества E. Если $b \in E$, то b обозначают как $\max(e)$, читается как 'максимальный элемент множества E'.

Наименьшая мажоранта множества E называется **супремумом** этого множества или его верхней границей. Записывается через $M = \sup(E)$.

Множество E ограничено снизу, если $\exists b \in \mathbb{R} : \forall x \in E \ x \geq b$. В таком случае b называют минорантой множества E. Если $b \in E$, то b обозначают как $\min(e)$, читается как 'минимальный элемент множества E'.

Наибольшая миноранта множества E называется **инфинумом** этого множества или его нижней границей. Записывается через $m = \inf(E)$.

$$M = \sup(E) \Leftrightarrow (\forall x \in E \ x \le M \ \text{and} \ \forall \epsilon > 0 \ \exists x_{\epsilon} : M - \epsilon < x_{\epsilon})$$

 $m = \inf(E) \Leftrightarrow (\forall x \in E \ x > M \ \text{and} \ \forall \epsilon > 0 \ \exists x_{\epsilon} : M + \epsilon > x_{\epsilon})$

Свойства супремума и инфинума множеств:

- $\sup(X + Y) = \sup(X) + \sup(Y)$
- $\inf(X + Y) = \inf(X) + \inf(Y)$
- $\sup(X Y) = \sup(X) \inf(Y)$
- $\inf(X Y) = \inf(X) \sup(Y)$

•
$$\sup(\lambda X) = \begin{cases} \lambda \cdot \sup(X), \lambda > 0 \\ \lambda \cdot \inf(X), \lambda < 0 \end{cases}$$

•
$$\inf(\lambda X) = \begin{cases} \lambda \cdot \inf(X), \lambda > 0 \\ \lambda \cdot \sup(X), \lambda < 0 \end{cases}$$

Если множество не обладает свойством ограниченности сверху или снизу, его называют **неограниченным**: $\forall b \in \mathbb{R} \ \exists x \in E : x > b$ – пример для неограниченности сверху для множества E.

Принцип Архимеда гласит: если существуют a, b: a < b, то $\exists n: na > b$ (в классе рассмотрели доказательство от противного).

Мажоранта функции – функция, значения которой не меньше соответствующих значений данной функции.

2 Числовые последовательности

2.1 Ограниченность числовой последовательности

Числовая последовательность действительных чисел – функция, определяемая следующим образом: $f: N \to R, \ N = \{x \mid x \in \mathbb{N}\}, R = \{x \mid x \in \mathbb{R}\}.$ Чаще рассматривается как пронумерованное множество действительных чисел.

Последовательность $\{x_n\}$ считается ограниченной, если $\exists k, K : \forall n \in \mathbb{N} \ k \le x_n \le K$, где k – миноранта x_n , а K – мажоранта $\{x_n\}$.

Супремумом числовой последовательности называют наименьшую из её мажорант, а **инфинумом** – наибольшую из минорант.

Последовательность $\{x_n\}$ считается неограниченной, если $\forall c>0 \ \exists k\in \mathbb{N}: x_k\geq c.$

2.2 Предел числовой последовательности

Числовая последовательность $\{x_n\}$ называется **сходящейся** в случае, если: $\forall \epsilon > 0 \ \exists N : \forall n > N \ |x_n - A| < \epsilon$, где число A – **предел** этой последовательности. Другими словами, последовательность сходится тогда и только тогда, когда существует некоторый предел равный A.

Данное утверждение понимается следующим образом: каким бы ни было число ϵ , все члены последовательности, начиная с некоторого N, попадают в ϵ -окрестности точки A. Вне ϵ -окрестности лежит лишь конечное число членов $\{x_n\}$.

Значение предела числовой последовательности записывается следующим образом:

$$\lim_{n \to \infty} (x_n) = A$$