Linear Algebra

Yashas.N

O Symbols and notations used

 $A_{m \times n} \to m \times n$ matrix. $A_n \to n \times n$ matrix. \sim the relation below $A \sim B \implies A = P^{-1}AP$. iff $\to \iff$

Basic Linear equations theory

Every $A_{m \times n} = PR_{m \times n}$ for Row reduced Echelon form R and an invertible matrix P let this relation be denoted by A rrec R

if m < n then the homogeneous system $A_{m \times n} X = o$ has a non trivial solution i.e. if the number of equations is less than the number of variables then the Homogeneous System has a non trivial solution

Inverse Properties

1

- A_n has inverse A^{-1} iff AX = 0 has only trivial solutions.
- \blacksquare **A** is invertible iff **A** rrec **I** (identity)
- if Elementary matrices are the corresponding matrices of elementary transforms (change of rows, addition of one row to another, multiplication of a row with an non zero constant) then **A** is invertible iff **A** is product of elementary matrices.

Echelon Form

every $A_{m \times n} = P_m R Q_n$ for P, Q invertible and R is such that it has an identity in

upper corner and all other entries zero i.e.

$$R = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}$$
 for some identity I_k .

Consistency

System of linear equations:

 $A_{m \times n} X_{n \times 1} = b_{1 \times m}$ for $b \neq 0$ is consistent (has a solution) iff the row reduced Echelon form of augmented matrix [A:b] has same number of non zero rows as in row reduced echelon form of A.

2 Vector Spaces

Definition

 $(V,\mathbb{F},+)$ denoted by $V(\mathbb{F})$: V is vector space over Field \mathbb{F} if

- (V,+) is a commutative group, for every $\alpha, \beta \in \mathbb{F}$ and every $\alpha, b \in V$
- $\mathbf{1a} = \mathbf{a}$ where $\mathbf{1} \in \mathbb{F}$ is multiplicative identity of \mathbb{F} .
- $\blacksquare (\alpha + \beta)\alpha = \alpha\alpha + \beta\alpha$
- $\blacksquare \alpha(\alpha + b) = \alpha\alpha + \alpha b$
- \blacksquare $(\alpha\beta)\alpha = \alpha(\beta\alpha)$

The elements of V are called **vectors** and elements of \mathbb{F} are called **scalars**

Span

if $K = \{v_1, v_1, ..., v_n\} \subseteq V(\mathbb{F})$ then span of K is the set $\{\sum \alpha_i v_i | v_i \in K, \alpha_i \in \mathbb{F}\}$ i.e. is all the formal sums from set K with \mathbb{F} . This is denoted by span(K).

Subspace

A subset S of vector space $V(\mathbb{F})$ is a subspace if $S(\mathbb{F})$ is a vector space by same operations as in V

- \blacksquare given any $K \subseteq V(F)$ span(K) is a subspace of $V(\mathbb{F})$.
- S is a subspace of V iff $\alpha \alpha + b \in S \ \forall \alpha, b \in S$ and $\alpha \in \mathbb{F}$ the underlying field of both spaces
- Intersection of subspaces (arbitrary) is again a subspace i.e. if W_1, W_2 are subspaces of V then $W_1 \cap W_2$ is also a subspace of V.
- Union of subspaces may not be a subspace
- Union of two subspaces is a subspace iff one of them is contained in another i.e. for W_1, W_2 subspaces of $V, W_1 \cup W_2$ is a subspace iff $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

(note: this is not the same in case of 3 subspaces : consider $Z_2 \times Z_2(Z_2)$ vector space here $Z_2 \times Z_2 = span((0,1)) \cup span((1,0)) \cup span((1,1))$.)

Dependence

a set of vectors $\{v_1, v_1, ..., v_n\} \subseteq V(\mathbb{F})$ are called Linearly independent in V if $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = 0 \implies \text{all } \alpha_i' s \text{ are } o$ and no other choice is left. Other wise the subset is called linearly dependent

Basis

a subset K of V is a spanning set of V if span(K) = V.

A Linearly independent spanning set of $V(\mathbb{F})$ is called a Basis of V.

Dimension

In a given vector space $V(\mathbb{F})$.

- The number of elements in Basis is constant $n \in \mathbb{Z}^+$.
- if a set contains more vectors than the Basis set of a vector space then it is linearly dependent.
- if a linearly independent set contains exactly the same number of elements as a Basis

then it is also a Basis.

■ These above points leads us to the Definition: Number of elements $\mathfrak n$ in The Basis set of $V(\mathbb F)$ is unique and is called the Dimension of $V(\mathbb F)$ denoted by $\dim(V) = \mathfrak n$.

if $W_1, W_2 \subseteq V$ are subspaces then

- \blacksquare dim $(W_i) \leq V$.
- \blacksquare let $W_1 + W_2 = \operatorname{span}(W_1, W_2)$ then

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2)$$
$$-\dim(W_1 \cap W_2).$$

(note: there cannot be a definite formula for $\dim(\sum_{i=1}^n W_i)$ using dimensions of W_i 's and their counterparts (union, intersections) if $n \geq 3$.)

Matrix Representation of vectors

Fix a basis $\beta = \{b_1, b_2, ..., b_n\}$ for a vector space $V(\mathbb{F})$ then as B spans V every vector $x \in V$ can be written as $x = x_1b_1 + x_2b_2 + ... x_nb_n$ for $x_i \in \mathbb{F}$ and $b_i \in B$ and this representation is unique so each vector can be associated with a column matrix $x_\beta = [x_1 \ x_2 ... x_n]^T$

Change of Basis Matrix

Given two basis $\beta = \{b_1, b_2, ..., b_n\}$, $\beta' = \{b'_1, b'_2, ..., b'_n\}$ for V Then one can change the representation of $x \in V$ from $[x]_{\beta}$ to $[x]_{\beta'}$ by

$$[x]_{\beta'} = P[x]_{\beta}$$

where P_n is a invertible matrix given by if $b_j = p_{1j}b_1' + p_{2j}b_2' + ... + p_{nj}b_n'$ then $[p_{1j} \ p_{2j}... p_{nj}]^T$ forms the j^{th} column of P.

3 Linear Transform

Definition

a map $T:V(\mathbb{F})\to W(\mathbb{F})$ (between vector spaces with same underlying field) is called a linear transform if for every $v,u\in V$ and $\alpha\in F$

- $\blacksquare T(v + u) = T(v) + T(u)$
- $\blacksquare T(\alpha v) = \alpha T(V)$

Range and Null space

For a linear transform $T: V \rightarrow W$:

- Range Space of T denoted by $R(T) \subseteq W$ is $\{w|w = T(v) \text{ for some } v \in V\}$
- Null Space of T denoted by $N(T) \subseteq V$ is $\{v|T(v) = o \in W\}$
- Both of them are subspaces of the underlying space.
- \blacksquare T is one-one iff $N(T) = \{o\}$.
- \blacksquare T is onto if R(T) = W
- if dim(V) = dim(W) and $N(T) = \{o\}$ then T is onto thus T is bijective.

if T, U are both liner transforms from $V \rightarrow W$ and if both agree on a basis of V (i.e. $T(b_i) = U(b_i) \ \forall i$ for some basis $\beta = \{..., b_i, ...\}$ of V) then both of then are same i.e. $T \equiv U$.

Rank Nullity Theorem

for a linear transform $T:V(\mathbb{F})\to W(\mathbb{F})$ if rank(T)=dim(R(T)) and nullity(T)=dim(N(T)) then

$$rank(T) + nullity(T) = dim(V)$$

(this is just an analogue of $\mathbf{1}^{st}$ isomorphism theorems of Groups)

Matrix of Linear Transform

Given a linear transform $T:V\to W$, basis $\beta=\{b_1,b_2...,b_n\}$ of V and basis $\beta'=\{b_1',b_2',...,b_m'\}$ of W then we can write the liner transform in the corresponding matrix representation of vectors as

$$[\mathsf{T}(x)]_{\beta'} = [\mathsf{T}]_{\beta}^{\beta'}[x]_{\beta}$$

where $[T]_{\beta}^{\beta'}$ is a $m \times n$ matrix called Matrix of linear transform of T and is given by if $T(b_j) = t_{1j}b_1' + t_{2j}b_1' + ... + t_{mj}b_m'$ then $[t_{1j} \ t_{2j}...t_{mj}]^T$ forms the j^{th} column of $[T]_{\beta'}^{\beta}$.

Change of Basis

if $T: V \to V$ then $[T]^{\beta}_{\beta}$ is simply written as $[T]_{\beta}$ now if P is the change of basis matrix from basis β' to basis β of V i.e. $[x]_{\beta} = P[x]_{\beta'}$ then

$$[T]_{\beta'} = P^{-1}[T]_{\beta}P$$

(This can be treated as the origin of 'similar' equivalence matrix relationship $A \sim B \iff A = P^{-1}BP$.)

Isomorphism of Vector spaces

Two spaces V,W over same vector space \mathbb{F} are said to be isomorphic to each other if there exist an invertible linear transform $T:V\to W$ (i.e. T is linear bijective map) and this is denoted by $V\cong W$.

- lacksquare if $V(\mathbb{F})$ is of dimension $\mathfrak n$ then
- $V \cong \mathbb{F}^n = \{(\alpha_1, \alpha_2, ... \alpha_n) | \alpha_i \in \mathbb{F}\}$ i.e. set of n tuples of \mathbb{F} with component wise addition.
- clearly $V(\mathbb{F}) \cong W(\mathbb{F})$ iff dim(W) = dim(V).

Space of Linear Transform

Set of linear transforms

- $$\begin{split} L(V,W) &= \{T|T:V\to W \text{ is linear transform}\}\\ \text{forms a commutative group under addition}\\ \text{i.e.} \quad (T+U)(\nu) &= T(\nu) + U(\nu) \text{ (as in } W \text{)}\\ \text{so it also forms a Vector space over } \mathbb{F} \text{ (same field as in } V \text{ and } W.\text{)} \end{split}$$
- if dim(V) = n and dim(W) = m both finite then dim(L(V, W)) = nm

Linear Functional

Linear transformation $f:V(\mathbb{F})\to \mathbb{F}$ is called a Linear Functional

- This is possible as $\mathbb{F}(\mathbb{F})$ is an one dimensional vector space.
- rank(f) = 1 or 0 so Nullity(f) = n 1 or n if $dim(V) = n < \infty$.
- Dual space of V denoted by $V^* = L(V, \mathbb{F})$ is the set of all linear functionals on V

- clearly $dim(V^*) = dim(V)$ if dim(V) is finite
- $\begin{array}{ll} \blacksquare & \textbf{Dual Basis} : \text{ for every basis } \beta = \{b_1, b_2, \ldots, b_n\} \text{ of } V \text{ there exist a corresponding basis } \beta^* = \{f_1, f_2, \ldots, f_n\} \text{ of } V^* \text{ such that } \\ f_i(b_j) = \delta_{ij} = \begin{cases} \mathbf{1} & \text{if } i = j \\ \mathbf{0} & \text{if } i \neq j \end{cases} \text{ this } \beta^* \text{ is called the dual basis of } \beta \end{array}$
- if $\{..., f_i,...\}$ is the dual basis of $\{..., b_i,...\}$ and $x \in V$ is represented as $x = x_1b_1 + x_2b_2 + ... + x_nb_n$ then $x_i = f_i(x)$ i.e. the coordinate functions in representation is nothing but the dual functions, i.e.

$$x = \sum_{i=1}^{n} f_i(x)b_i.$$

■ $\mathbf{V} \stackrel{\sim}{=} \mathbf{V}^* \stackrel{\simeq}{=} \mathbf{V}^{**} = \mathbf{L}(\mathbf{V}^*, \mathbb{F})$ (note: $\stackrel{\simeq}{=}$ in $\mathbf{V} \stackrel{\simeq}{=} \mathbf{V}^{**}$ is nothing but functional evaluation at a point(vectors) only i.e. every element of \mathbf{V}^{**} is of form $\hat{\mathbf{x}}$ for $\hat{\mathbf{x}}(\psi) = \psi(x)$ for some $x \in \mathbf{V}$.)

Functional representation Theorem

if **V** is finite dimensional vector space, $\beta = \{b_i\}$ is its basis and $[x]_\beta = [x_1 \ x_2...x_n]$ then every functional **f** is of form

$$f(x) = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n$$

in which $a_i = f(b_i)$. are fixed but x_i varies on input representation x.

Annihilator

if $A \subset V(\mathbb{F})$ be any subset of V then annihilators of A is the set of linear functionals $A^o = \{f | f(A) = o, f \in V^*\} \subset V^*$

- \blacksquare clearly A^o is a subspace of V^* for any subset A of V
- \blacksquare subspaces $W_1 = W_1$ iff $W_1^0 = W_2^0$
- $\blacksquare (W_{1} + W_{2})^{o} = W_{1}^{o} \cap W_{2}^{o}.$
- \blacksquare if W is subspace of V then

$$\dim(W) + \dim(W^{o}) = \dim(V).$$

■ if W is subspace of V then $W \cong W^{oo}$.

Transpose of linear transform

if $T:V\to W$ is linear transform then its transpose $T^t:W^*\to V^*$ is a linear transform defined by the evaluation

 $\mathsf{T}^{\mathsf{t}}(\mathsf{g}(.)) = \mathsf{g}(\mathsf{T}(.))$ i.e. for $\mathsf{g} \in W^*$, $\mathsf{T}^{\mathsf{t}}(\mathsf{g})$ is the functional $\mathsf{f} = \mathsf{g}(\mathsf{T}(.)) \in \mathsf{V}^*$

- $[T^t]_{\gamma^*}^{\beta^*} = ([T]_{\beta}^{\gamma})^t$ i.e. the corresponding matrix of T^t in dual basis of γ in W and β in V is just the Transpose of the matrix of T in β and γ .
- if W is finite dimensional then for linear $T: V \rightarrow W$ we have

 $R(T^t) = (N(T))^o$ and $N(T^t) = (R(T))^o$

- T is 1-1 iff T^t is onto and T is onto iff T^t is 1-1.
- \blacksquare Rank(T^t) = Rank(T).

if linear transform $T \in L(V) = L(V, V)$ then it is called a linear operator.

4 Determinant

Motivation

for a finite dimensional space every linear transform in L(V) can be represented as a unique Matrix, but we need to 'uncover' this matrix to gain the properties of corresponding linear transform one such way is to create a Function from set of matrices to the underlying field with some properties which helps us with this 'gain'.

Some Properties needed for such a function are :

- It must be a linear in terms of rows (or columns) of the matrix this is called *n*-linear.
- It must be alternating i.e. if any 2 rows (or columns) are equal then it is zero.
- its vale on Identity should be 1.

Say we obtain a function **D** with this property for $(n-1) \times (n-1)$ matrices then this

can be extend to $n \times n$ by

$$E_j(A_n) = \sum_{i=1}^n \alpha_{ij} D(A_{ij})$$

for fixed $j \in \{1,2,...,n\}$, where $a_i j$ is the i^{th} row j^{th} column entry of A and $A_i j$ is the $n-1 \times n-1$ matrix obtained from A_n by removing i^{th} row and j^{th} column.

Definition

From above points we get determinant for a $n \times n$ matrix with entries from $\mathbb F$ as $D: \mathbb F^{n \times n} \to \mathbb F$ that is n-linear, Alternating and $D(I) = \mathbf 1$ is Defined by recursion from the above point or if $(i_1,i_2,...,i_n)$ runs trough all the possible permutations of n i.e n- tuple with elements from $\{1,2,...,n\}$ with out repetition then $D(A = [a_{ij}]) = \sum_{i=1}^n (-1)^{i_1+i_2+...+i_n} a_{1i_1} a_{2i_2}...a_{ni_n}$

Additional Properties

- det(A) = det(B) if B is obtained by interchanging rows of A
- $\det \begin{bmatrix} A & B \\ o & C \end{bmatrix} = \det(A)\det(C)$.

5 Canonical Forms

5.1 Digonalization

For linear operator $T \in L(V)$ a vector $\alpha \in V$ is called an eigenvector and λ called eigenvalue if $T(\alpha) = \lambda \alpha$. i.e. $\alpha \in N(A - \lambda I)$

- if $A \in M_n(\mathbb{F})$ (all $n \times n$ matrices with entries from \mathbb{F}) then λ is an eigenvalue og A iff $det(A \lambda I) = o$.
- From above point we get all eigenvalues of $A \in M_n(\mathbb{F})$ are the solutions of Characteristic polynomial f(t) = det(A tI).

for a linear operator **T** on finite dimensional space **V**

- The polynomial p(T) such that $p(T) \equiv o$ i.e $p(T)x = o \ \forall x \in V$ then p(T) is called the annihilating polynomial of T
- the set of all annihilating polynomials of T forms an ideal in $\mathbb{F}[x]$ now as \mathbb{F} is a field it is also an euclidean domain so this ideal is principle thus is generated by a monic polynomial of minimum degree in it called the **minimal polynomial** of T.

Cayley-Hamilton Theorem

if T is a linear operator on finite dimensional space V then characteristic polynomial of T divides minimal polynomial of T i.e. if f is characteristic polynomial of T then $f(T) \equiv o$.

for a given eigenvalue λ of $T \in L(V)$ the set of all eigenvectors corresponding to λ form a subspace of V this is called eigenspace of λ .

Invariant subspace

W is an invariant subspace of T over V if $T(W) \subseteq W$.

Eigenspaces are invariant subspaces.

Diagonalizability test

- $T \in L(V)$ is diagonalisable if there exist an ordered basis $\beta = \{b_1, b_2, ..., b_n\}$ of V such that each of the vector in β is an eigenvector of T.
- T is diagonalizable iff characteristic polynomial of T splits in the underlying field and for each eigenvalue λ of T the multiplicity (in characteristic polynomial) equals $n rank(T \lambda I)$.

6 Inner Product Spaces

7 Forms	8 Bilinear Forms