ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

SUMMER SEMESTER, 2015-2016

TIME: 1 Hour 30 Minutes

FULL MARKS: 75

CSE 4403: Algorithms

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks.

1.	a)	Write an algorithm to find the minimum of a given array. Calculate the complexity of the algorithm.	4+4
	/b)	If we say the asymptotic bound for the equation $f(n) = 5n^2 + 8B^3 + 4$ (B is a constant) is n^3 what asymptotic notation is applicable for it? Explain your answer.	4
	c)	Find the solution to the resursion $T(n) = 8T(n/2) + n^2$ using master method.	8
	d)	The following equation is called horner's rule: $P(x) = \sum_{k=0}^{n} a_k x^k$.	5
		Write a non-recursive algorithm to calculate the summation for the given horner's rule.	
2.	a) b)	Compare dynamic programming with greedy algorithms. Find the solution to the recursion, $T(n) = 2T(n/2) + n \lg n$ using substitution method.	5 7
	c)	Find the optimal parenthesization of a matrix-chain multiplication whose sequence of dimensions is $\langle 5, 10, 3, 12, 5, 50 \rangle$.	.: 10
		Show the calculation of m and s matrix in each recursion.	
	d)	Do an ordering of the following growth functions: $n^3, \sqrt{n}, 2^n, n \lg n$. 3
3.	p)	Devise a divide and conquer algorithm to calculate the mean of a given array. The algorithm may be useful when the data size is very large. However, is it possible to devise such an algorithm for median?	6+2
	b)	Discuss the solution to rod cutting problem when the rod size is 4.	7
	c)	Generate the optimal binary prefix code for the following characters using Huffman's algorithm. The frequency is given with the characters separated by: (colon).	10
4.	a)	a: 12 b: 45, c: 13, d: 16, e: 9, f: 5 List the characteristics of dynamic programming algorithms. How do they differ from recursive solutions? Is it possible to device recursive solutions to dynamic programming	8
	b)	problems? Write a recursive version of insertion sort algorithm and comment on the complexity of it. Suppose you are given a set $S = \{a_1, a_2,, a_n\}$ of tasks, where task a_i requires p_i units of processing time to complete, once it has started. You have one computer on which to run these tasks, and the computer can run only one task at a time. Let c_i be the completion time of task a_i , that is, the time (clock time) at which task a_i completes processing. Your goal is	n e is
		to minimize the average completion time $(1/n)\sum_{i=1}^{n} c_i$. Provide an algorithm and argue provide algorithmic analysis towards its optimality. [Hint: the algorithm is one of FCF]	or
		provide algorithmic analysis towards its optimality. [Hint: the algorithm is one of FCF Shortest Job First, or RR]	S,