Graphic Lasso: Common precision matrix

Jiaxin Hu

January 13, 2021

1 Consistency

Suppose K categories share the same precision matrix Θ_0 . Consider the constrained optimization problem

$$\min_{\Theta} \sum_{k=1}^{K} \operatorname{tr}(S^k \Theta) - \log |\Theta|$$
s.t. $\|\Theta\|_0 \le b_0$,

where S^k is the sample covariance matrix for k-th category with sample size n, $\|\cdot\|_0$ is the number of non-zero elements in the matrix.

Before the theorem, here is a useful lemma for the proof.

Lemma 1. Let $Z_i \sim_{i.i.d.} \mathcal{N}(0, \Sigma)$ and $\phi_{max}(\Sigma) \leq \tau < \infty$. Let $\Sigma = [\![\Sigma_{ij}]\!]$, then

$$P\left(\left|\sum_{i=1}^{n} Z_{ij} Z_{ik} - n\Sigma_{jk}\right| \ge n\nu\right) \le c_1 e^{-c_2 n\nu^2}, \quad for \quad |\nu| \le \delta,$$

where c_1, c_2, δ depends on τ only.

Proof. See Lemma 1 of Rothman et.al.

Theorem 1.1. Let Θ_0 be the true precision matrix. Suppose $0 < \tau_1 < \phi_{min}(\Theta_0) \le \phi_{max}(\Theta_0) < \tau_2 < \infty$, where τ_1, τ_2 are positive constants. For the estimate such that $\sum_{k=1}^K tr(S^k \hat{\Theta}_0) - \log |\hat{\Theta}_0| \le \sum_{k=1}^K tr(S^k \Theta_0) - \log |\Theta_0|$, we have the following accuracy bound with probability tending to 1.

$$\left\| \hat{\Theta}_0 - \Theta_0 \right\|_F \le K^{-1/2} \left(C_1 \sqrt{\frac{b_0 \log p}{n}} + C_2 \sqrt{\frac{p \log p}{n}} \right).$$

Proof. Let $\Delta = \hat{\Theta}_0 - \Theta_0$. Define the function

$$G(\Delta) = \frac{1}{K} \sum_{k=1}^{K} \operatorname{tr}(S^{k}(\Theta_{0} + \Delta)) - \operatorname{tr}(S^{k}\Theta_{0}) - \log|\Theta_{0} + \Delta| + \log|\Theta_{0}| = I_{1} + I_{2}.$$

By Taylor Expansion, we have

$$I_1 = \operatorname{tr}\left(\left(\frac{1}{K}\sum_{k=1}^K S^k - \Sigma\right)\Delta\right), \quad I_2 = (\tilde{\Delta})^T \int_0^1 (1-v)(\Theta_0 + v\Delta)^{-1} \otimes (\Theta_0 + v\Delta)^{-1} dv\tilde{\Delta},$$

where $\tilde{\Delta} = \text{vec}(\Delta)$, and Σ is the true covariance matrix.

Let $\bar{S} = \frac{1}{K} \sum_{k=1}^{K} S^k$. Let $X_1^k, ..., X_n^k \sim_{i.i.d.} \mathcal{N}_p(0, \Sigma)$ denote the sample for k-th category. Consider the entry of \bar{S} .

$$\bar{S}_{jk} = \frac{1}{K} \sum_{m=1}^{K} \frac{1}{n} \sum_{i=1}^{n} (X_{ij}^{m} - X_{.j}^{m})(X_{ik}^{m} - X_{.k}^{m})$$
$$= \frac{1}{nK} \sum_{i=1}^{n} \sum_{m=1}^{K} (X_{ij}^{m} X_{ik}^{m} - X_{.j}^{m} X_{.k}^{m}),$$

where $X_{.j}^m = \frac{1}{n} \sum_i X_{ij}^m$. By Lemma (1), we have

$$\left| \frac{1}{nK} \sum_{i=1}^{n} \sum_{m=1}^{K} X_{ij}^{m} X_{ik}^{m} - \Sigma_{jk} \right| \le C \sqrt{\frac{\log p}{nK}},$$

by letting n=nK and $\nu=\sqrt{\frac{\log p}{nK}}$, with probability tending to 1 as $p\to\infty$. Also, by SLLN, $X_{.j}^m\to_{a.s.}0$ as $n\to\infty$ for j=1,...,p, m=1,...,K. Then, we have

$$\max_{jk} |\bar{S}_{jk} - \Sigma_{jk}| \le C\sqrt{\frac{\log p}{nK}},$$

with probability tending to 1 for some constant C.

Back to $|I_1|$. We obtain the upper bound

$$|I_{1}| \leq |\sum_{i \neq j} (\bar{S}_{ij} - \Sigma_{ij}) \Delta_{ij}| + |\sum_{i=1}^{p} (\bar{S}_{ii} - \Sigma_{ii}) \Delta_{ii}|$$

$$\leq C \sqrt{\frac{\log p}{nK}} |\Delta^{-}|_{1} + \left[\sum_{i=1}^{p} (\bar{S}_{ii} - \Sigma_{ii})^{2} \right]^{1/2} ||\Delta^{+}||_{F}$$

$$\leq C \sqrt{\frac{\log p}{nK}} |\Delta^{-}|_{1} + C_{2} \sqrt{\frac{p \log p}{nK}} ||\Delta^{+}||_{F},$$

where C_2 is a positive constants. Further, let $T = \{(i,j)|\Theta_{0,ij} \neq 0\}$, and we have $|\Delta^-|_1 = |\Delta^-_T|_1 + |\Delta^-_{T^c}|_1$. Note that $\|\Delta^-_T\|_0 \leq b_0$ and $\|\Delta^-_{T^c}\|_0 \leq b_0$. Thus, we have $|\Delta^-_T|_1 \leq \sqrt{b_0} \|\Delta\|_F$ and $|\Delta^-_{T^c}|_1 \leq \sqrt{b_0} \|\Delta\|_F$. Therefore, we obtain the upper bound

$$|I_1| \le C_1 \sqrt{\frac{b_0 \log p}{nK}} \|\Delta\|_F + C_2 \sqrt{\frac{p \log p}{nK}} \|\Delta\|_F.$$
 (1)

By Rothman et.al, we also have

$$I_2 \ge \frac{1}{4\tau_2^2} \|\Delta\|_F^2 \,. \tag{2}$$

Since the estimate satisfies $\sum_{k=1}^{K} \operatorname{tr}(S^k \hat{\Theta}_0) - \log |\hat{\Theta}_0| \leq \sum_{k=1}^{K} \operatorname{tr}(S^k \Theta_0) - \log |\Theta_0|$, we have $G(\Delta) \leq 0$. Then, we need $I_2 \leq |I_1|$. Combining the upper bound (1) and lower bound (2), we obtain the accuracy rate

$$\frac{1}{4\tau_2^2} \|\Delta\|_F^2 \le C_1 \sqrt{\frac{b_0 \log p}{nK}} \|\Delta\|_F + C_2 \sqrt{\frac{p \log p}{nK}} \|\Delta\|_F,$$

which implies that with probability tending to 1 we have

$$\|\Delta\|_F = \left\|\hat{\Theta}_0 - \Theta\right\|_F \le K^{-1/2} \left(C_1 \sqrt{\frac{b_0 \log p}{n}} + C_2 \sqrt{\frac{p \log p}{n}}\right).$$

2 New comparison results

Let $Q(\{\Omega^k\}) = \sum_{k=1}^K \operatorname{tr}(S^k \Omega^k) - \log |\Omega^k|, q^k = |\Omega^k|_0$, and $q = \max_k q^k$.

	Penalized	
	L_0 L_1	
Problem	$\min_{\{\Omega^k\}} Q(\{\Omega^k\}) + \lambda \sum_{k=1}^K \Omega^k _0. \qquad \qquad \min_{\{\Omega^k\}} Q(\{\Omega^k\}) + \lambda \sum_{k=1}^K \Omega^k _1.$	
Accuracy	A1: Suppose $\lambda \ge \Lambda_1 \left(\frac{\log p}{n}\right)^{1/2} \sum_{k=1}^K \left\ \Delta^k\right\ _F$ A2: Suppose $\lambda \ge \Lambda_1 \left(\frac{\log p}{n}\right)^{1/2}$, we have ground truth	
	$\sum_{k=1}^{K} \ \Delta\ _F \le C' K \frac{F(p,q,K)}{n^{1/2}}, \qquad \sum_{k=1}^{K} \ \Delta\ _F \le C' K \frac{F(p,q)}{n^{1/2}},$	
	where $F(p,q,K) = CKq\sqrt{\log p} + C_2\sqrt{p\log p}$ where $F(p,q) = C\sqrt{q\log p} + C_2\sqrt{p\log p}$.	

lambda |\Delta|_0 - |delta|_1 >0

	Constrained		
	L_0	L_1	
Problem			
	$\min_{\{\Omega^k\}} Q(\{\Omega^k\}) s.t. \Omega^k _0 \le s.$	$\min_{\{\Omega^k\}} Q(\{\Omega^k\}) s.t. \Omega^k _1 \le c^k.$	
Accuracy	A3: We have	A4: Suppose $c^k = \Omega^k _1$. We have	
	$\sum_{k=1}^{K} \ \Delta\ _F \le C' K \frac{F(p,q)}{n^{1/2}},$	$\sum_{k=1}^{K} \ \Delta\ _F \le C' K \frac{F(p,q)}{n^{1/2}},$	
	where $F(p,q) = C_1 \sqrt{s \log p} + C_2 \sqrt{p \log p}$	where $F(p,q) = C_1 \sqrt{q \log p} + C_2 \sqrt{p \log p}$.	

Summary

The dependence on (p, n) are at the same rate now. The penalized L_0 has a slightly worse dependence on the sparsity q. Note that the condition for λ in penalized L_0 and the condition c^k in constrained L_1 may be improved.