Lecture 7

Instructor: Subrahmanyam Kalyanasundaram

29th August 2019

Plan

- Last class, we saw structure of randomly built BSTs
- ▶ We saw that the expected average depth is $O(\log n)$
- ▶ We also mentioned that expected height is $O(\log n)$ (without proof)

Plan

- Last class, we saw structure of randomly built BSTs
- ▶ We saw that the expected average depth is $O(\log n)$
- ▶ We also mentioned that expected height is O(log n) (without proof)
- ► Today, we see 2-3-4 trees (or (2,4)-trees), another height balanced tree
- ► This generalizes to (a, b)-trees and B-trees

Course grading scheme

- ► 60% Exams (2 or 3)
- ► 30% Programming Assignments
- ► 10% Attendance and Quizzes

Course grading scheme

- ► 60% Exams (2 or 3)
- 30% Programming Assignments
- ▶ 10% Attendance and Quizzes

Exam on Thursday, 5 Sep?

Multiway search Trees

- Search trees, but not binary search trees
- Each node has at least 2 children
- Each node can store many keys
- ▶ If a node stores d keys, then it has d + 1 children
- All leaf nodes are NIL nodes
- ► All leaf nodes are at the same level

Example

All the NIL nodes are not shown above

2-3-4 Trees

- ▶ Multiway search tree where each node has 1, 2 or 3 keys.
- ► Consequently, each node has 2, 3 or 4 children
- ▶ What can we say about the height of a 2-3-4 tree?

2-3-4 Trees

- ▶ Multiway search tree where each node has 1, 2 or 3 keys.
- ► Consequently, each node has 2, 3 or 4 children
- ▶ What can we say about the height of a 2-3-4 tree?
- $1/2\log(n+1) \le h \le \log(n+1)$

Example

No NIL nodes are shown above

Searching in 2-3-4 tree

- Similar to BST search
- Start from the root node
- ▶ Find two keys in the node k_{i-1} and k_i such that the searched value is between these two values
- ► Search the subtree between k_{i-1} and k_i
- Running time?

Searching in 2-3-4 tree

- Similar to BST search
- Start from the root node
- ▶ Find two keys in the node k_{i-1} and k_i such that the searched value is between these two values
- ► Search the subtree between k_{i-1} and k_i
- Running time?
- ► Takes $O(\log n)$ time

Other query operations

How do you find successor/predecessor?

Other query operations

- ► How do you find successor/predecessor?
- ► How about Max/Min?

Other query operations

- ► How do you find successor/predecessor?
- ► How about Max/Min?
- Running time?

Insertion

- ► Suppose we want to insert the value *x*
- Search for x in the tree
- ▶ If *x* not found, insert *x* in the leaf node where it should ideally have been
- ▶ Two cases:

Insertion

- ► Suppose we want to insert the value *x*
- Search for x in the tree
- ► If *x* not found, insert *x* in the leaf node where it should ideally have been
- ► Two cases:
 - ▶ The node has room for x it has 1 or 2 values only
 - ► The node is full it has already 3 values

Case 1

The node has room for x

Case 1

The node has room for x

Resolution:

- ▶ We simply add *x* to the leaf node where it should have been
- Maintain the keys in sorted order

15 | 17 |

16

15 | 17 |

15 16 17

Case 2

The node has no room for x

Case 2

The node has no room for x

Resolution:

- ► Adding *x* to the node results in 4 keys
- We cannot have 4 keys

Case 2

The node has no room for x

Resolution:

- ► Adding *x* to the node results in 4 keys
- We cannot have 4 keys
- We split the node and promote the median

Split and promote!

- ► Can we promote any other key?
- ▶ What if the parent node doesn't have room?

Can we promote any other key?

The other median.

What if the parent node doesn't have room?

Recurse up!

INSERT Example

On the board

Deletion

- We want to insert the value x
- ▶ If *x* is in the leaf, we delete *x* from the leaf
- ► Else, we swap *x* with its successor/predecessor and delete the succ/pred

Deletion

- We want to insert the value x
- ▶ If *x* is in the leaf, we delete *x* from the leaf
- Else, we swap x with its successor/predecessor and delete the succ/pred
- Note: The succ/pred will always be in a leaf node if x is not in a leaf.

Deletion

- We want to insert the value x
- ▶ If *x* is in the leaf, we delete *x* from the leaf
- Else, we swap x with its successor/predecessor and delete the succ/pred
- Note: The succ/pred will always be in a leaf node if x is not in a leaf.
- From now on, we discuss deletion from leaf node

Deletion

Cases:

Deletion

Cases:

- ► The node has another key apart from *x*
- ► *x* is the only value in the node, but can "borrow" from sibling
- ➤ *x* is the only value in the node and cannot "borrow" from sibling

Case 1 The node has another key

Case 1

The node has another key

Resolution:

ightharpoonup We simply remove the key x

15 16 17

▶ Delete 17

▶ Delete 17 Done!

15 | 16 |

- ▶ Delete 17 Done!
- ▶ Delete 16

- ▶ Delete 17 Done!
- ▶ Delete 16 Done!

15

- ► Delete 17 Done!
- ► Delete 16 Done!
- ► Delete 15? Next Cases!

Case 2

The node only one key, *x* Can "borrow" from sibling node

Case 2

The node only one key, *x* Can "borrow" from sibling node

Resolution:

- ► Adjacent sibling must have ≥ 2 keys
- Can borrow from the adjacent sibling, through the parent

▶ Delete 15

▶ Delete 15

- ▶ Delete 15
- ▶ 13 is transferred to the parent node, and 14 is brought down
- ► Similar to

- ▶ Delete 15
- ▶ 13 is transferred to the parent node, and 14 is brought down
- Similar to Rotation!
- ▶ Like in rotation, we transfer one child of the sibling node

- ▶ Delete 15
- ▶ 13 is transferred to the parent node, and 14 is brought down
- Similar to Rotation!
- Like in rotation, we transfer one child of the sibling node
- What if we cannot borrow from sibling?

Case 3

The node only one key, *x* Cannot borrow from sibling

Case 3

The node only one key, *x* Cannot borrow from sibling

Resolution:

Merge with a sibling

Case 3

The node only one key, *x* Cannot borrow from sibling

Resolution:

- Merge with a sibling
- Need to bring a key down from parent node

- ▶ Delete 14
- Cannot borrow from either sibling

- ▶ Delete 14
- Cannot borrow from either sibling
- Once we remove the node, we have an issue

- ▶ Delete 14
- Cannot borrow from either sibling
- Once we remove the node, we have an issue
- Bring down a key from parent

- ▶ Delete 14
- Cannot borrow from either sibling
- Once we remove the node, we have an issue
- Bring down a key from parent
- ▶ What if parent has only one key?

- ▶ Delete 14
- Cannot borrow from either sibling
- Once we remove the node, we have an issue
- Bring down a key from parent
- ► What if parent has only one key? Recurse!

DELETE Example

On the board

Summary of Insert and Delete

- ▶ At each node, we do an O(1) time operation
 - Add/remove key
 - ► Split/Merge
 - Borrow from sibling
 - Promote to/bring down from parent
- ▶ We may go up the tree as well, upto height h
- ▶ Running time is $O(h) = O(\log n)$

Questions

- ► Think about how the insert/delete operations compare with the operations in Red-Black Trees.
- ► Could we extend this notion to an (*a*, *b*)-tree? What conditions should be satisfied by *a* and *b*?