

planetmath.org

Math for the people, by the people.

if $d(x_i, x_{i+1}) < 1/2^i$ then x_i is a Cauchy sequence

 ${\bf Canonical\ name} \quad {\bf If Dxi Xi112 i Then XiIs A Cauchy Sequence}$

Date of creation 2013-03-22 14:37:31 Last modified on 2013-03-22 14:37:31

Owner matte (1858) Last modified by matte (1858)

Numerical id 5

Author matte (1858)

Entry type Result
Classification msc 26A03
Classification msc 54E35

Lemma 1. Suppose $x_1, x_2, ...$, is a sequence in a metric space. If for some $N \geq 1$, we have $d(a_i, a_{i+1}) < 1/2^i$ for all $i \geq N$, then $\{x_i\}$ is a Cauchy sequence.

Proof. Let us denote by d the metric function. If $\varepsilon > 0$, then for some $N \in \mathbb{N}$ we have $1/2^N < \varepsilon$. Thus, if N < m < n we have

$$d(x_m, x_n) \leq d(x_m, x_{m+1}) + \dots + d(x_{n-1}, x_n)$$

$$= \left(\frac{1}{2}\right)^m + \dots + \left(\frac{1}{2}\right)^{n-1}$$

$$= \left(\frac{1}{2}\right)^{m-1} \sum_{i=1}^{n-m} \left(\frac{1}{2}\right)^i$$

$$= \left(\frac{1}{2}\right)^{m-1} \frac{1 - \left(\frac{1}{2}\right)^{n-m}}{1 - \frac{1}{2}}$$

$$< \left(\frac{1}{2}\right)^m$$

$$< \left(\frac{1}{2}\right)^N$$

$$< \varepsilon,$$

where we have used the triangle inequality and the $\mathtt{http://planetmath.org/GeometricSeries}$ sum formula.