S2: Analyse

CH. 4: INTÉGRATION NUMÉRIQUE.

1 Rappel sur le calcul intégral (voir aussi le cours de P.S., ch 4.)

On considère une fonction f définie sur un intervalle [a,b], continue par morceaux, et positive. Le nombre $\int_{x=a}^{x=b} f(x)dx$ désigne l'aire de la région délimitée par le graphe de f l'horizontale y=0 et les deux verticales x=a et x=b:

FIGURE 1 – Aire correspondant à $\int_{x=0}^{x=3} \frac{1}{2} (x^3 - 4x^2 + \frac{7}{3}x + 5) dx$

Donnons une définition plus précise et "constructive" (permettant d'approcher ce nombre) :

On suppose que f est continue sur [a, b] (sinon on considère chaque morceau sur lequel elle est continue).

- on partage [a, b] en n intervalles $I_k = [x_k, x_{k+1}]$ de longueur $\delta = \frac{b-a}{n}$.
- soit m_k l'inf. de f sur I_k et M_k le sup. de f sur I_k . Le rectangle de base I_k et de hauteur m_k a pour aire : $\delta \times m_k$. Soit s_n la somme des aires de tous ces rectangles. C'est un minorant de l'aire cherchée.
- de même on considère les rectangles de base I_k et de hauteur M_k qui ont pour aire : $\delta \times M_k$. La somme S_n de ces aires est un majorant de l'aire cherchée.
- on peut montrer que ces deux suites (s_n) et (S_n) sont des suites adjacentes. Elles ont donc une limite commune quand n tend vers l'infini. Par définition cette limite est le nombre $\int_{x=a}^{x=b} f(x)dx$.

Remarques:

- Cela a encore un sens si f prend des valeurs négatives, à condition de compter négativement les aires en-dessous de l'axe des abscisses.
- Tout ceci garde encore parfois un sens lorsque l'une ou les deux extrémités deviennent infinies: l'aire est obtenue en prenant la limite quand a tend vers $-\infty$ ou b vers $+\infty$. Il faut alors que cette limite existe et soit finie.

Comment calculer "exactement" cette aire? On considère une primitive F de f, c'està-dire une fonction dont la dérivée est f. Il en existe toujours si f est continue, mais elle n'est pas toujours "calculable". Elle est unique à l'addition près d'une constante, et vraiment unique si on impose que F(a) prenne une valeur donnée. On a le théorème important suivant : pour toute primitive F de f,

$$\int_{x=a}^{x=b} f(x)dx = F(b) - F(a).$$

Il ramène le calcul d'une aire à un calcul de primitives. Remarque - L'application $b\mapsto \int_{x=a}^{x=b} f(x)dx$ a pour dérivée f(b). C'est donc la primitive F de f qui s'annule en b=a. Si on fait le changement de notation $b\to x, x\to t$, on peut donc noter cette primitive:

$$F(x) = \int_{a}^{x} f(t)dt.$$

Comment calculer une primitive? Il faut d'abord connaître les primitives des fonctions usuelles. Exemples:

- si $f(x) = x^{\alpha}$, $(\alpha \neq -1)$, $F(x) = \frac{x^{\alpha+1}}{\alpha+1} + c$ (où c est une constante quelconque). si f(x) = 1/x, $F(x) = \ln(x) + c$. si $f(x) = e^{kx}$, $F(x) = \frac{e^{kx}}{k} + c$. si $f(x) = \frac{1}{1+x^2}$, F(x) = Arctg(x) + c. si $f(x) = \sin(x)$, $F(x) = -\cos(x) + c$, si $f(x) = \cos(x)$, $F(x) = \sin(x) + c$.

Pour les fonctions plus compliquées, on s'y ramène par combinaison linéaire (facile), intégration par partie (pour les produits), ou par changement de variable (on pose X = u(x), d'où dX = u'(x)dx. Si f(x) = g(X), on a alors

$$\int_{x=a}^{x=b} f(x)dx = \int_{X=u(a)}^{X=u(b)} g(X)dX.$$

Néanmoins, dans beaucoup de cas, aucune de ces méthodes ne s'applique, et on ne peut trouver d'expression explicite de la primitive. On a alors recours au calcul approché des intégrales.

Exercice 1. (voir figure 1)

- Calculer une primtive de la fonction $f: x \mapsto \frac{1}{2}(x^3 4x^2 + \frac{7}{3}x + 5)$.
- Déterminer l'aire délimitée par le graphe de f, les deux verticales x=0 et x=3 et l'axe horizontal, représentée en figure 1.
- Vérifiez graphiquement, en évaluant l'aire des rectangles de la subdivision représentée.

Exercice 2.

- Calculer une primitive de la fonction $f: x \mapsto x \sin x$. On rappelle le principe de l'intégration par parties

$$\int_a^x uv' = [uv]_a^x - \int_a^x u'v.$$

 $où [uv]_a^x d\'{e}signe u(x)v(x) - u(a)v(a).$

Choisir u et v', puis chercher u' et v et appliquer cette formule.

2 Calcul approché des intégrales $I = \int_a^b f(x) dx$

On suppose que la fonction f est positive et intégrable sur [a, b].

2.1 La méthode des rectangles.

On partage l'intervalle [a,b] en n parties de longueur $\frac{b-a}{n}$:

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b.$$

On approxime I par la somme R_n des aires des rectangles de base $[x_{i+1} - x_i]$ et de hauteur $f(x_i)$:

$$R_n = (x_1 - x_0)f(x_0) + (x_2 - x_1)f(x_1) + \cdots + (x_n - x_{n-1})f(x_{n-1})$$

= $\frac{b-a}{n} [f(x_0) + f(x_1) + \cdots + f(x_{n-1})].$

D'après la définition que nous avons prise de l'intégrale, nous avons $\lim_{n\to+\infty} R_n = I$. En effet, on a : pour tout $n, s_n \leq R_n \leq S_n$, puisque $m_k \leq f(x_k) \leq M_k$.

On peut aussi utiliser les rectangles dont la hauteur est donnée par la valeur de la fonction à droite de chaque intervalle :

$$R'_n = \frac{b-a}{n} [f(x_1) + f(x_2) + \cdots + f(x_n)].$$

On a encore : $\lim_{n\to+\infty} R'_n = I$.

Autre variante ($m\acute{e}thode\ du\ point\ milieu$) : on prend pour hauteur des rectangles la valeur de la fonction au point milieu de chaque intervalle : $f(m_i)$ avec $m_i = \frac{x_i + x_{i+1}}{2}$, d'où

$$R''_n = \frac{b-a}{n} \sum_{i=0}^{n-1} f(m_i).$$

2.2 La méthode des trapèzes.

Avec le même partage de l'intervalle [a, b] en n intervalles de même longueur, on approxime I par la somme T_n des aires des trapèzes délimités par les 4 points : $(x_i, 0), (x_{i+1}, 0), (x_i, f(x_i))$

et $(x_{i+1}, f(x_{i+1}))$. Chacune de ces aires vaut $\frac{f(x_i) + f(x_{i+1})}{2}(x_{i+1} - x_i)$. On a donc :

$$T_n = \frac{b-a}{n} \left[\frac{f(x_0) + f(x_1)}{2} + \frac{f(x_1) + f(x_2)}{2} + \dots + \frac{f(x_{n-1}) + f(x_n)}{2} \right]$$
$$= \frac{b-a}{n} \left[\frac{f(a) + f(b)}{2} + f(x_1) + \dots + f(x_{n-1}) \right].$$

On peut remarquer que $T_n = \frac{1}{2}(R_n + R'_n)$ ce qui prouve que $\lim_{n \to +\infty} T_n = \frac{1}{2}(I + I) = I$.

2.3 La méthode de Simpson.

On remplace le segment joignant $(x_i, f(x_i))$ et $(x_{i+1}, f(x_{i+1}))$ de la méthode du trapèze par la portion de parabole passant par ces deux points et le troisième point $(m_i, f(m_i))$ où m_i est le milieu de $[x_i, x_{i+1}]$. On peut démontrer (voir T.D. : ex.3), que cette aire vaut $\frac{(x_{i+1}-x_i)}{6}[f(x_i)+4f(m_i)+f(x_{i+1})]$. On a donc :

$$S_n = \frac{b-a}{6n} \left[f(x_0) + f(x_n) + 2f(x_1) + \dots + 2f(x_{n-1}) + 4f(m_0) + \dots + 4f(m_{n-1}) \right].$$

2.4 Majoration des erreurs commises

Si f est de classe C^2 , et si M'' est un majorant de f'' sur [a,b] on peut montrer en utilisant la formule de Taylor que l'erreur $|R_n - I|$ dans la méthode des rectangles (avec le point milieu) est majorée par

$$|R_n - I| \le \frac{(b-a)^2 M''}{24} \times \frac{1}{n^2}.$$

Dans le cas de la méthode des trapèzes on a :

$$|T_n - I| \le \frac{(b-a)^2 M''}{12} \times \frac{1}{n^2}.$$

Enfin, dans le cas de la méthode de Simpson, si on suppose f de classe C^4 et si M'''' est un majorant de sa dérivée quatrième sur [a, b], on a la majoration :

$$|S_n - I| \le \frac{(b-a)^2 M''''}{2880} \times \frac{1}{n^4}.$$

Nous étudierons expérimentalement ces erreurs en T.P. avec Maple.

Exercice 3.

- On suppose l'ordre de grandeur d'une erreur est : $E \simeq C/n^p$ (ou C est une constante). Exprimer $\log(E)$ en fonction de $\log(n)$. En déduire une méthode pour déterminer numériquement p.

Test d'auto-évaluation sur le chapitre 4

- 1. Calculer une primitive de $f: x \mapsto x^2 \cos x$.
- 2. Décrire la méthode de Simpson pour approcher une intégrale.

Chapitre 4 : Travaux dirigés

- 1. Calcul de l'aire de l'ellipse d'équation : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a>0, \ b>0)$:
 - (a) On se place dans le quart de plan x > 0, y > 0. Pour tout point (x, y) de l'ellipse dans ce quart de plan, déterminer y en fonction de x: on obtient y = f(x).
 - (b) On veut calculer $I = \int_{x=0}^{a} f(x) dx$. Effectuez le changement de variable $x = a \cos \theta$ et en déduire que $I = ab \int_{\theta=0}^{\pi/2} \sin^2 \theta d\theta$.
 - (c) En utilisant la formule trigonométrique : $\sin^2\theta = \frac{1}{2}(\cos(2\theta) 1)$, calculez I et en déduire l'aire de l'ellipse. Qu'obtient-on lorsque a = b = r?
- 2. Utilisation d'une décomposition en éléments simples.
 - (a) Déterminer 3 constantes A, B, et C telles que :

$$\frac{1}{x(x-1)(x-2)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x-2}.$$

- (b) En déduire une primitive de cette fonction sur l'intervalle $]2, +\infty[$.
- 3. Preuve de la formule de Simpson : Soit [p,q] un intervalle sur lequel f est définie, $m=\frac{p+q}{2}$ son milieu, et $y=ax^2+bx+c$ la prabole passant par les 3 points (p,f(p)), (q,f(q)) et (m,f(m)).
 - (a) Ecrire les 3 équations traduisant le fait que ces 3 points sont sur la parabole.
 - (b) Calculer

$$I = \int_{p}^{q} (ax^2 + bx + c)dx$$

(on mettra $\frac{q-p}{6}$ en facteur).

(c) En déduire : $I = \frac{q-p}{6}[f(p)+f(q)+4f(m)]$, puis, en sommant sur tous les intervalles de la subdivision, la formule donnée en (2.3) page 4.

S2 Analyse: T.P. 3

I. Les méthodes d'intégration numérique.

- 1. Ecrivez une procédure rect qui prend en arguments d'entrée (f, a, b, n), où f est une fonction intégrable sur un intervalle [a, b], n est le nombre de subdivisions de l'intervalle, et qui calcule l'approximation $R_n(f)$ de $I(f) = \int_a^b f(x)dx$ avec la méthode des rectangles par le point milieu (formule de R''_n p.3).
 - Testez cette méthode pour l'exemple de la page 1, et pour différentes valeurs de n.
 - Comparez avec la valeur exacte trouvée en cours (39/8).
- 2. Ecrivez une procédure trap qui, avec la même entrée, calcule l'approximation $T_n(f)$ de I(f) avec la méthode des trapèzes (formule de T_n p. 3). Testez sur le même exemple.
- 3. Ecrivez une procédure simpson qui, avec la même entrée, calcule l'approximation $S_n(f)$ de I(f) avec la méthode de Simpson. Testez sur le même exemple : que remarquez-vous?

II. Efficacité des méthodes d'intégration numérique.

- Nous allons tester cette efficacité sur un exemple où on connait la valeur exacte de l'intégrale I(f) (ce qui n'est pas le cas en général) : la fonction exponentielle (question 1 ci-dessous).
- Pour cela, pour chaque méthode d'approximation $A_n(f) = R_n(f)$ ou $T_n(f)$ ou $S_n(f)$, on étudie l'évolution de l'erreur $|A_n(f) I(f)|$ avec n (question 2 ci-dessous).
- Pour évaluer la vitesse d'évolution de l'erreur, nous cherchons un entier p et une constante C tels que

$$|A_n(f) - I(f)| \le \frac{C}{n^p}.$$

Plus p est grand, plus l'erreur diminue vite avec n et plus la méthode est efficace. Si on prend le logarithme de cette majoration, on obtient

$$\log|A_n(f) - I(f)| \le \log(C) + p\log(n).$$

On peut donc estimer p en regardant la limite de $\frac{\log |A_n(f)-I(f)|}{\log(n)}$ (question 3 ci-dessous).

- 1. Calculez la valeur exacte de I(f) pour $f: x \mapsto e^x$. $\int_a^b f(x)dx$ se calcule sous Maple par : int(f(x), x=a..b);
- 2. On considère les suites d'ereurs obtenues quand la subdivision n varie :

$$U: n \mapsto |R_n(f) - I(f)|, V: n \mapsto |T_n(f) - I(f)|, W: n \mapsto |S_n(f) - I(f)|.$$

Tracer et comparer les graphes de ces trois suites sur un même dessin. On recommande les réglages : style=line, view=[0..100,0..0.2];

3. En calculant $\log U(n)/\log n$, $\log V(n)/\log n$, et $\log W(n)/\log n$, pour une grande valeur de n (par exemple 100), estimer pour chaque méthode l'entier p contrôlant la vitesse de convergence de la méthode.

6