ZK SHANGHAI 零知识证明工作坊

WORKSHOP!

数学基础构件

现代零知识密码学

Hosted by SutuLabs & Kepler42B-ZK Planet

课程资源: zkshanghai.xyz

个人介绍

区块链 架构师

上海交大 计算机博士生

(休学创业中)

微信: icerdesign 微博: @wizicer Github: @wizicer Twitter: @icerdesign

LinkedIn: www.linkedin.com/in/icerdesign

1999年

• 正式开始学习写程序

2009年

• 在新媒传信(飞信)做高性能服务器程序架构及 开发

2012年

• 在Honeywell工业控制部门做PLC、RTU上位机组态软件架构及开发

2017年

• 接触区块链,并开始创业开发区块链数据库

2020年

• 入学上海交大攻读博士学位,研究零知识证明数据库

2022年

• 获Chia全球开发大赛第一名,并开始Pawket钱 包的开发

2023年

• 获得零知识链Mina的项目资助

起源

交互式零知识证明的诞生

Mental Poker over the Telephone [SRA81]

Once there were two "mental chess" experts who had become tired of their pastime. "Let's play 'Mental Poker,' for variety" suggested one. "Sure" said the other. "Just let me deal!"

- 两个可能不诚实的玩家能否在没有使用任何纸牌的情况下,公平 地玩扑克,例如通过电话?该文提供以下答案:
 - 1. 不行。(提供严谨的数学证明。)
 - 2. 可以。(给出正确而<u>完备</u>的协议。)

· Bob对牌进行加密,并以随机 顺序将其发送给Alice。

• Alice为Bob选择一张牌,并加密另一张牌用于自己,并将它们都发送给Bob。

· Bob解密两张牌,并将Alice的加密牌返回给她。

Mental Poker over the Telephone [SRA81]

Once there were two "mental chess" experts who had become tired of their pastime. "Let's play 'Mental Poker,' for variety" suggested one. "Sure" said the other. "Just let me deal!"

- Mental Poker是否可证明的隐藏了所有部分信息?
 - 如何定义部分信息?
 - 如何定义隐藏?
 - 如何理解可证明?
 - 以上对于Mental Poker来说是否足够?

计算不可区分加密

如何加密一个比特位

- 找到一个<u>判定性</u>问题
 - 平均难度:不能在PPT中区分
 - 即对于随机实例, Yes/No实例的 产生概率为1/2+negl
 - 易于生成: 随机Yes/No实例
- 设定
 - 随机Yes实例=加密0
 - 随机No实例=加密1

Shafi和第一篇零知识证明论文

完美零知识性

如果"模拟视图"和"真实交互"在计算上无法区分,则为完美零知识。

课堂练习: 利用非对称加密的零知识证明

- 1. V提出挑战:选择不可预测的随机明文M1,并利用公钥pk将明文M1加密为密文E
- 2. V提出挑战:要求P对密文E解密
- 3. P响应挑战: 利用私钥sk对密文E解密为明文M2
- 4. V验证挑战:接收明文M2,并比对M1=M2

• 该方案是否满足零知识证明,是否满足完美零知识证明?

通用交互式零知识证明

基于汉密尔顿回路的一种实现方式

零知识证明的基本概念

•属于:证明系统

•形式:交互性证明

• 角色:证明者(P),验证者(V)

- 理想属性
 - 完备性
 - 如果所有人都诚实且遵守规则,则一定可以正确运行。
 - 可靠性 (知识可靠性)
 - 如果证明者不遵守规则,则一定失败。
 - 零知识性
 - 验证者除了正确性外,无法获得任何其他信息

交互式证明

证明者

• 我(证明者)想要说服你(验证者),我能够区分出在你看起来是相同的两种颜色

汉密尔顿回路

汉密尔顿环:在图中每个顶点 恰好经过一次的环,最终返回 起点。

- 公共知识: 图G
- •目的:证明者想向验证者证明他知道图**G**的一个汉密尔顿回路,而不泄露任何额外信息。

汉密尔顿回路

目的:证明者想向验证者证明他知道图G的一个汉密尔顿回路,而不泄露任何额外信息。

证明者

- 根据随机排列,为每个顶点分配一个 1到n之间的标签,并记住这个排列。
- 对于每一对顶点ij,将 B_{ij} 放进加密盒 子,其代表ij是否是G的一条边。

所有的加密盒子 B_{ij}

随机选择*b* ∈ {0,1}

验证者

 $\frac{1}{1}$ $\frac{1$

检查:

(如果b = 0: 是同一幅图

如果b = 1: 是汉密尔顿回路

承诺

Σ-Protocol (Sigma Protocol)

汉密尔顿回路的零知识证明协议属性

- 完备性
 - 如果所有人都按照协议要求执行,则协议成功。
- 可靠性
 - 如果没有汉密尔顿回路,无论证明者做什么,验证者都会以1/2的概率拒绝。
- 知识可靠性
 - 这是可靠性的更强要求,它认为即使图中存在汉密尔顿回路,但证明者不知道它的存在,协议仍将失败。
- 零知识性
 - 如果验证者接受,则他无法从交互中获得除了证明是正确的以外的任何信息。

通用零知识证明

- 为什么关注汉密尔顿回路问题
 - 因为他是NP完全问题
 - 更多关于NP问题: https://zkshanghai.xyz/math/computation.html
- 每个NP问题都能在多项式时间内被规约为NP完全问题
- 通过Fiat-Shamir启发式将交互式证明转换为非交互式证明
- 利用汉密尔顿回路问题做零知识证明既不精简,也不实用
 - 后续课程中的zk-SNARK会解决这个问题

椭圆曲线

椭圆曲线及离散对数问题

定义曲线上点的加法

曲线: $y^2 = x^3 + ax + b$

加出任意位置

曲线: $y^2 = x^3 + ax + b$

椭圆曲线

- 私钥=群上元素(标量)
- · 公共定义:
 - 曲线参数
 - 生成元 (基础点)
 - 阶 (个数)
- 公钥=私钥*生成元

离散对数问题:

从点坐标恢复标量是困难的 即从公钥恢复出私钥是困难的

注意: 不是所有离散对数问题都是困难的

各类曲线

ECDH

Elliptic Curve Diffie-Hellman

困难问题

- 离散对数问题
 - The Discrete Logarithm Problem(DLP)
- 计算性DH问题
 - The Computational Diffie-Hellman Problem(CDH)
- 判定性DH问题
 - The Decisional Diffie-Hellman Problem (DDH)

难度: DLP>CDH>DDH

扩展阅读: https://zkshanghai.xyz/math/dlp.html

Schnorr Protocol

目的:证明者想向验证者证明他知道秘密 $s \in \mathbb{Z}_q$ 使得 $x = sg \in \mathbb{G}$

证明者

- $s \in \mathbb{Z}_q$, $x = sg \in \mathbb{G}$
- $r \leftarrow_R \mathbb{Z}_q$

验证者

• $x \in \mathbb{G}$

• $c \leftarrow_R \mathbb{Z}_q$

检查: zg = u + cx

论断:该协议是基于离散对数的零知识证明