Tests d'hypothèses

21 septembre 2021

Contents

Références	2
2. Effet des feuilles mortes sur l'apport en azote de semis	1
1. Concentration d'ozone dans trois jardins	1

Ce laboratoire doit être remis le **29 septembre à 17h sur Moodle**. Dans votre réponse pour chaque question, veuillez inclure le code R utilisé (s'il y a lieu) et les résultats obtenus.

1. Concentration d'ozone dans trois jardins

Pour cet exercice, nous utiliserons le tableau de données gardens.csv, qui provient du manuel Statistics: An Introduction Using R de Michael Crawley. Ces données représentent les concentrations d'ozone (en parties par 100 millions ou pphm) mesurées dans trois jardins (A, B et C) lors de différentes journées.

```
gardens <- read.csv("gardens.csv")
head(gardens)</pre>
```

##		Ozone	Garden
##	1	3	Α
##	2	4	Α
##	3	4	Α
##	4	3	Α
##	5	2	Α
##	6	3	Α

- a) Visualisez les mesures d'ozone en fonction du jardin avec un graphique de type geom_jitter dans qqplot2. Quel est l'avantage de ce type de graphique ici, comparé à geom_point ou geom_boxplot?
- b) Quelle est la moyenne et l'écart-type de la concentration d'ozone dans chaque jardin? Est-ce que la moyenne est une bonne indicatrice de la valeur "typique" dans chaque jardin?
- c) À partir de ces données, testez l'hypothèse nulle selon laquelle les jardins A et B reçoivent la même concentration d'ozone en moyenne. Quel est votre estimé de la différence entre les moyennes et son intervalle de confiance à 99%? Est-ce que ce test donne une bonne idée de la différence entre les deux jardins? Expliquez votre réponse.
- d) Répétez l'exercice précédent pour l'hypothèse nulle selon laquelle les jardins A et C reçoivent la même concentration d'ozone en moyenne. Commentez sur la différence entre ce résultat et le résultat précédent.

2. Effet des feuilles mortes sur l'apport en azote de semis

Le tableau de données nconc.csv présente les résultats d'une expérience (fictive) visant à estimer l'effet des feuilles mortes sur l'apporte en azote de semis.

```
nconc <- read.csv("nconc.csv")
nconc</pre>
```

```
plot
##
            litter no_litter
## 1
        1 1.859543 1.8073724
## 2
        2 1.461364 0.7367826
##
        3 1.488136 1.6332546
##
        4 1.325093 1.1615338
        5 1.600666 0.9864743
##
        6 2.038625 1.9011473
        7 1.788214 1.3162220
## 7
## 8
        8 1.994081 1.7849742
```

Huit placettes (plot) ont été délimitées dans une forêt et divisées en deux moitiés. Dans chaque placette, une moitié (choisie au hasard) a reçu le traitement qui consistait à enlever systématiquement les feuilles mortes au sol. Les deux dernières colonnes du tableau montrent la concentration d'azote (en % de la biomasse) pour les semis de la moitié non-traitée (litter) et de la moitié traitée (no_litter).

- a) Quel est l'avantage d'avoir effectué l'expérience de cette façon plutôt que d'avoir enlevé complètement les feuilles mortes de quatre placettes sur huit? Quel type de test t est approprié ici pour déterminer l'effet du traitement sur la concentration moyenne d'azote des semis?
- b) Effectuez le test t choisi et déterminez si le traitement a un effet significatif à un seuil $\alpha = 0.05$. Quel est l'effet moyen estimé (n'oubliez pas d'interpréter le signe de la différence) et son intervalle de confiance?

Références

Le contenu de cette partie est basé sur le cours ECL7102 - Analyses et modélisation des données écologiques offert à l'UQAT lors de la session d'automne 2021 créé par Philippe Marchand (anciennement professo UQAT). Le contenu du cours est disponible en ligne à l'adresse suivante : https://github.com/pmarchand1/ECL7102