

This Lecture

Aim:

Introduce Structured Query Language (SQL)

Learning Outcomes:

- Write SQL statements that will build up a set of tables within an RDBMS implementation
- Write SQL statements that will manipulate the existing structures to add, modify and remove columns and constraints.

What is Structured Query Language?

- Originally developed by IBM for querying, altering and defining relational databases
- A database computer language designed for managing data in relational database management systems (RDBMS)
- A declarative language, though now also includes procedural elements

SQL comprises?

- DDL Data Definition Language
- DML Data Manipulation Language
- DCL Data Control Language
- Applies to any aspect of RDBs
 - can create/delete databases, tables, fields
 - can insert/update/delete/query data
 - can define access controls

SELECT Data Retrieval Oracle INSERT UPDATE Data Manipulation Language DELETE **CREATE Data Definition Language ALTER DROP** RENAME TRUNCATE **Transaction Control COMMIT** ROLLBACK **SAVEPOINT GRANT Data Control Language** REVOKE

SERVER

Data Retrieval

Data Manipulation Language

Data Definition Language

Transaction Control

Data Control Language

SELECT INSERT UPDATE DELETE **CREATE ALTER DROP**

TRUNCATE

TABLE

COMMIT

ROLLBACK

SAVE TRAN

GRANT

REVOKE

Data Definition Language (DDL)

- DDL is a syntax for creating & modifying database objects such as tables, indices & users
- **DDL** contains far more statements than we can present here,
 - & each statement is far more complex than we show in this introduction
 - If you want to master this material, you will need to go through the SQL Server documentation
- DDL statements are used to build & modify the structure of your tables & other objects in the database
- When you execute a DDL statement, it takes effect immediately UNIVERSITY OF

Components/syntax of SQL

```
Reserved wordsshown in upper case; e.g., SELECTUser-defined wordsshown in lower case; e.g., customer_number| (vertical bar)indicates a selection; e.g., a | b | c (a or b or c){ } (braces)indicate a required element; e.g., {a}[ ] (square brackets)indicate an optional element; e.g., {b}... (ellipsis)indicates optional repetition; e.g., {a | b} [,c...]
```

Lay any commands out neatly for legibility

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transact-sql-syntax-conventions-transact-sql?view=sql-server-ver15

Components/syntax of SQL

- Some versions of SQL are case sensitive
 Case sensitivity only exists in literal character strings, thus
 'smith' 'SMITH' 'Smith'
 are each different
- Oracle is case sensitive, SQL Server is NOT case sensitive

System Datatypes in SQL Server

Numeric

```
int bigint smallint tinyint numeric bit decimal money float real
```

Date and time

date datetime time

Character strings

char varchar

Binary strings

binary image

Data Definition Language (DDL) commands

- CREATE creates an object (e.g. a table) in the database
- ALTER modifies the structure of an existing object in various ways – e.g. adding a column to an existing table
- DROP deletes an object in the database, usually irretrievably

CREATE TABLE syntax

For the full syntax:

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15

Create Table example

```
CREATE TABLE subject (
     Subject_id INT IDENTITY(1,1) NOT NULL,
     Menu_item VARCHAR(255) NOT NULL,
     Position TINYINT,
     Visible BIT DEFAULT 1,
          PRIMARY KEY (Subject_id)
```


ALTER TABLE

ALTER TABLE subject ADD cost FLOAT(2);

ALTER TABLE

ALTER TABLE
ADD CONSTRAINT <constraint name> PRIMARY KEY (<attribute list>);

ALTER TABLE

- Statement may be used to specify primary & foreign key constraints, as well as to make other modifications to the table structure
- Key constraints may also be specified in the CREATE TABLE statement – but need to include a constraint name.
- You should specify the constraint name (e.g. con_customer_id).
 The attribute list contains one or more attributes
- if more than one, the names are separated by commas

PRIMARY KEY Examples

```
ALTER TABLE person
ADD PRIMARY KEY (Customer_id);
```

ALTER TABLE person

ADD pk_person PRIMARY KEY (Customer_id);

For defining a PRIMARY KEY constraint on multiple columns:

ALTER TABLE person

ADD CONSTRAINT pk_person PRIMARY KEY

(Customer_id, Last_name);

Foreign key

Need to specify both the foreign key attributes in the (child)
 table & the primary key attributes they link to in the parent table

Foreign key

- If there is more than one attribute in the FK, all of them must be included (with commas between) in both the FK attribute list & the REFERENCES (parent table) attribute list
- You need a separate foreign key definition for each relationship in which this table is the child

FOREIGN KEY Examples

ALTER TABLE order

ADD FOREIGN KEY (Person_id)

REFERENCES person (Person_id);

For defining a FOREIGN KEY constraint on multiple columns:

ALTER TABLE order

ADD CONSTRAINT FK_PersonOrder

FOREIGN KEY (Person_id, Lastname)

REFERENCES person (Person_id, Lastname);

DROP

You can delete any object you have created:

DROP TABLE ;

ALTER TABLE <table_name>
DROP COLUMN <column_name>;

ALTER TABLE <tablename>
DROP CONSTRAINT <constraintname>;

DROP

- The DROP TABLE statement won't work unless you separately drop any foreign keys that refer to the table you want to drop
- It also removes all data that was contained in the table
- Seems you can only drop the PRIMARY KEY by using the constraint name. Otherwise you would need to drop whole table & recreate it.

Data Manipulation Language (DML)

 DML is the subset of SQL used to add, retrieve, update & delete data

Operation	SQL	Description
Create	INSERT INTO	Inserts new data
Read (Retrieve)	SELECT	Extracts data
U pdate	UPDATE	Updates data
Delete	DELETE	Deletes data

INSERT INTO

Adds new rows to a table:

INSERT INTO
VALUES (<value1>, ..., <value n>);

The comma delimited list of values must match the table structure **exactly** in the number of attributes & the data type of each attribute – except for sequences, which are omitted.

You need a separate INSERT statement for every row

INSERT INTO

- Character type values are always enclosed in single quotes
- Numeric values are never in quotes
- Date values are often (but not always) in the format

'yyyy-mm-dd'

e.g. '2006-11-30'

However, there are functions which will perform a conversion to a date/time datatype

UPDATE

Change values that are already in a table:

```
UPDATE <tablename>
    SET <attribute> = <expression> WHERE<condition>;
```

• The expression can be:

a constant,

any computed value,

or even the result of a SELECT statement

that returns a single row & a single column

UPDATE

- If the WHERE clause is omitted, then the specified attribute is set to the same value in **every row** of the table
- You can also set multiple attribute values at the same time with a comma-delimited list of attribute=expression pairs

DELETE FROM

• Deletes records (rows) in a table:

DELETE FROM WHERE <condition>;

- If the WHERE clause is omitted, then every row of the table is deleted
 - you will not get a "do you really want to do this?" message!

SUMMARY

- Write SQL statements that will build up a set of tables within an RDBMS implementation
- Write SQL statements that will manipulate the existing structures to add, modify and remove columns and constraints.

