Theorem 6-3

'If one angle of a triangle is larger than a second angle, then the side opposite the first angle is longer than the side opposite the second angle.

Given: $\triangle RST$; $m \angle S > m \angle T$

Prove: RT > RS

Proof:

Assume temporarily that $RT \not > RS$. Then either RT = RS or RT < RS.

Case 1: If RT = RS, then $m \angle S = m \angle T$.

Case 2: If RT < RS, then $m \angle S < m \angle T$ by Theorem 6-2.

In either case there is a contradiction of the given fact that $m \angle S > m \angle T$. The assumption that $RT \ge RS$ must be false. It follows that RT > RS.

Corollary 1

The perpendicular segment from a point to a line is the shortest segment from the point to the line.

Corollary 2

The perpendicular segment from a point to a plane is the shortest segment from the point to the plane.

See Classroom Exercises 18 and 19 for proofs of the corollaries.

Theorem 6-4 The Triangle Inequality

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Given: $\triangle ABC$

Prove: (1) AB + BC > AC

(2) AB + AC > BC

(3) AC + BC > AB

Proof:

One of the sides, say \overline{AB} , is the longest side. (Or \overline{AB} is at least as long as each of the other sides.) Then (1) and (2) are true. To prove (3), draw a line, \overline{CZ} , through C and perpendicular to \overline{AB} . (Through a point outside a line, there is exactly one line perpendicular to the given line.) By Corollary 1 of Theorem 6-3, \overline{AZ} is the shortest segment from A to \overline{CZ} . Also, \overline{BZ} is the shortest

segment from B to CZ. Therefore AC > AZ and BC > ZB.

AC + BC > AZ + ZB (Why?)

AC + BC > AB (Why?)