得分: 一、填空题(每空2分,共30分)

- 1. 排列13···(2*n*-1) 2 4···(2*n*) 的逆序数为。
- 2. 行列式 $\begin{vmatrix} 3 & x & -2 \\ 3 & 0 & 2x \\ x & -x & -1 \end{vmatrix}$ 中 x^3 的系数是_____。
- 4. 设 A 为 4 阶方阵,若线性方程组 Ax=0 的基础解系中只有 2 个向量,则 A 的伴随矩阵 A^* 的秩为 。
- 5. 已知正交矩阵 $\mathbf{A} = (a_1, a_2, a_3)$,则 $\|a_1\| = \underline{\hspace{1cm}}$ 。
- 6. 设向量组 $A: a_1, a_2, a_3$ 的秩为 3,向量组 $B: a_1, a_2, a_4$ 的秩为 2,则向量_______一定可以由其它向量线性表示。
- 7. 设 3 维向量 $a_1=a_2+2a_3$,且 a_2 和 a_3 是不共线的非零向量,则方阵 $A=(a_1,a_2,a_3)$ 的行列式为_____。
- 8. 设 a_1, a_2, a_3, a_4 均是 3 维向量,那它们一定线性_____。(填相关或者无关)
- 9. 已知 3 阶方阵 A 的特征值为 1, 2, k,且|-2A| = -32,则 $k = _____$ 。
- 10. 设 2 是方阵 A 的一个特征值,则 $A^2+2A-3E$ 一定有一个特征值为_____。
- 11. 已知 5 阶方阵 A 的秩为 4,则齐次线性方程组 Ax=0 的解空间的维数为_____
- 12. 齐次线性方程组两个解的和 一个解。(填"是"或者"不是")
- 13. 向量空间 $V = \{(0, x, 0, y) | x, y \in R\}$ 的基包含_______个向量。
- 14. 设二次型 $f(x) = x^T \begin{pmatrix} 1 & 3 & 0 \\ -1 & 2 & 6 \\ 2 & -2 & 2 \end{pmatrix} x$,则它的秩为_____。

得分: 二、计算题(每题8分,共40分)

得分: _____ 1. 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} a+b & a & \cdots & a \\ a & a+b & \cdots & a \\ \cdots & \cdots & \cdots & \cdots \\ a & a & \cdots & a+b \end{vmatrix}$

得分: _____ 2. 设
$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 3 & 4 \end{pmatrix}$$
, 求 $|A^4|$.

得分: _____ 4. 已知 B 为 3 阶矩阵,3 维列向量组 a_1, a_2, a_3 的秩为 3,且有 $Ba_1 = 2a_2 - 2a_3$,

 $Ba_2 = a_1 + 3a_2$, $Ba_3 = a_1 - 2a_2$.

(1) 求矩阵 P,满足 $B(a_1, a_2, a_3) = (a_1, a_2, a_3)P$ (2) 求|B|.

得分:_____ 5. 设 4 阶方阵 A=(a_1 , a_2 , a_3 , a_4)的秩为 3,且 a_1 + a_2 + a_4 =0,已知向量 b= a_1 + a_2 + a_3 ,求方程组 Ax=b 的通解。

得分: ____ 三、(10 分) 已知
$$p = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 是矩阵 $A = \begin{pmatrix} 2 & -1 & 0 \\ a & 0 & 1 \\ 0 & -2 & b \end{pmatrix}$ 的一个特征向量.

- (1) 求参数 a 和 b 以及 p 对应的特征值;
- (2) 求 A 的所有特征值。

得分: _____ 四、(10 分) 已知向量组 $a_1 = (1,1,0,-1), a_2 = (-1,0,1,0), a_3 = (0,1,1,0), a_4 = (0,1,0,1)$ 和向量 b = (1,1,1,1).

- (1) 验证 a_1 , a_2 , a_3 , a_4 是四维实向量空间的一个基。
- (2) 求 b 在该基下的坐标。

得分: ____ 五、(10 分) 设二次型 $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2 - 2\sqrt{2}x_1x_2$.

- (1) 求该二次型的标准形和规范形(不用写出线性变换);
- (2) 求该二次型的秩及正惯性指数,并判断其是否为正定二次型。