ESP-WROOM-32 技术规格书

Espressif Systems

2017年10月26日

关于本手册

本文档为用户提供 ESP-WROOM-32 模组的技术规格。

发布说明

日期	版本	发布说明		
2016.08	V1.0	首次发布。		
2016.11	V1.1	更新图 6 电路原理图。		
2016.11	V1.2	增加图 7 外设原理图。		
2016.12	V1.3	更新章节 2.1 管脚布局。		
		更新章节 1 前言;		
		更新章节2管脚定义;		
		更新章节3功能描述;		
2017.03	V1.4	更新表建议工作条件;		
		更新表 9 Wi-Fi 射频;		
		更新章节 5.4 回流焊温度曲线;		
		增加章节9学习资源。		
		更新章节 2.2 管脚描述;		
2017.03	V1.5	更新章节 3.2 外部 Flash 和 SRAM;		
		更新章节 4.1 外设接口和传感器描述。		
2017.04	V1.6	增加图 2 回流焊温度曲线。		
2017.04	V1.7	增加模组尺寸误差值;		
2017.04		将表 9 Wi-Fi 射频中输入阻抗值 50 Ω 改为输出阻抗值 30+j10 Ω 。		
2017.05	V1.8	更新图 1 ESP-WROOM-32 俯视图和侧视图。		
		在章节 2.1 管脚布局中增加一条说明;		
2017.06	V1.9	更新章节 3.3 晶振;		
2017.00		更新图 3 电路原理图;		
		增加文档变更通知。		
		将表 2 中 NZIF 接收器的 BLE 接收灵敏度改为 -97 dBm;		
		更新模组尺寸;		
2017.08	V2.0	更新表 6 不同功耗模式下的功耗,并增加两条说明;		
2011100	12.0	更新表 8、9、10、11;		
		増加章节8模组尺寸;		
		增加产品证书下载 <u>链接</u> 。		
2017.09	V2.1	更新工作电压/供电电压范围为 2.7V~3.6V;		
		更新章节 7,增加一条说明。		
		修改章节 2.3 Strapping 管脚中关于芯片系统复位的描述;		
2017.10	V2.2	删除表 6 中 "关联睡眠方式";增加关于 Active sleep 和 Modem-sleep 的说明;		
		在章节7中修改外围设计原理图的说明;增加 VDD33 放电电路图。		

文档变更通知

用户可以通过乐鑫官网订阅技术文档变更的电子邮件通知。

证书下载

用户可以通过乐鑫官网下载产品证书。

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2017 乐鑫所有。保留所有权利。

目录

1	概述	1
2 2.1 2.2 2.3	管脚定义	3 3 4
3.1 3.2 3.3 3.4	外部 Flash 和 SRAM 晶振	6 6 6 7
4 4.1	外设接口和传感器 外设接口和传感器描述	9
5 5.1 5.2 5.3	Wi-Fi 射频 低功耗蓝牙射频 5.3.1 接收器 5.3.2 发射器	14 14 15 15 15
6	电路原理图	17
7	外围原理图	18
8	模组尺寸	19
9.1	学习资源 必读资料	20 20 20

表格

2	ESP-WROOM-32 产品规格	1
3	管脚定义	3
4	Strapping 管脚	5
5	不同功耗模式下的功能	7
6	不同功耗模式下的功耗	7
7	外设接口和传感器描述	9
8	极限参数	14
9	Wi-Fi 射频特性	14
10	低功耗蓝牙接收器特性	15
11	低功耗蓝牙发射器特性	15

插图

1	ESP-WROOM-32 管脚布局前视图	3
2	回流焊温度曲线	16
3	ESP-WROOM-32 电路原理图	17
4	ESP-WROOM-32 外围原理图	18
5	VDD33 放电电路图	18
6	ESP-WROOM-32 尺寸	19

1. 概述

ESP-WROOM-32 是一款通用型 Wi-Fi+BT+BLE MCU 模组,功能强大,用途广泛,可以用于低功耗传感器网络和要求极高的任务,例如语音编码、音频流和 MP3 解码等。

此款模组的核心是 ESP32-DOWDQ6 芯片*, 具有可扩展、自适应的特点。两个 CPU 核可以被单独控制。时钟 频率的调节范围为 80 MHz 到 240 MHz。用户可以切断 CPU 的电源,利用低功耗协处理器来不断地监测外设的 状态变化或某些模拟量是否超出阈值。ESP32 还集成了丰富的外设,包括电容式触摸传感器、霍尔传感器、低噪声传感放大器,SD 卡接口、以太网接口、高速 SDIO/SPI、UART、I2S 和 I2C 等。

说明:

*关于 ESP32 系列芯片的产品型号说明请参照文档 _《ESP32 技术规格书》。

ESP-WROOM-32 集成了传统蓝牙、低功耗蓝牙和 Wi-Fi,具有广泛的用途: Wi-Fi 支持极大范围的通信连接,也支持通过路由器直接连接互联网; 而蓝牙可以让用户连接手机或者广播 BLE Beacon 以便于信号检测。ESP32 芯片的睡眠电流小于 5 μ A,使其适用于电池供电的可穿戴电子设备。ESP-WROOM-32 支持的数据传输速率高达 150 Mbps,经过功率放大器和天线后,输出功率可达到 20.5 dBm,可实现最大范围的无线通信。因此,这款芯片拥有行业领先的技术规格,在高集成度、无线传输距离、功耗以及网络联通等方面性能最佳。

ESP32 的操作系统是带有 LwIP 的 freeRTOS,还内置了带有硬件加速功能的 TLS 1.2。芯片同时支持 OTA 加密升级,开发者可以在产品发布之后继续升级。

表 2 列出了 ESP-WROOM-32 的产品规格。

表 2: ESP-WROOM-32 产品规格

类别	项目	产品规格		
	RF 认证	FCC/CE/IC/TELEC/KCC/SRRC/NCC		
	协议	802.11 b/g/n/e/i(802.11n,速度高达 150 Mbps)		
Wi-Fi		A-MPDU 和 A-MSDU 聚合,支持 0.4 μs 保护间隔		
	频率范围	2.4 GHz ~ 2.5 GHz		
	协议	义 符合蓝牙 v4.2 BR/EDR 和 BLE 标准		
		具有 -97 dBm 灵敏度的 NZIF 接收器		
蓝牙	射频	Class-1, Class-2 和 Class-3 发射器		
		AFH		
	音频	CVSD 和 SBC 音频		

类别	项目	产品规格		
	# 4日 4文 🖂	SD 卡、UART、SPI、SDIO、I2C、LED PWM、电机 PWM、I2S、IR		
	模组接口	GPIO、电容式触摸传感器、ADC、DAC、LNA 前置放大器		
	片上传感器	霍尔传感器、温度传感器		
	板上时钟	40 MHz 晶振		
硬件	工作电压/供电电压	2.7V ~ 3.6V		
PXII	工作电流	平均: 80 mA		
	供电电流	最小: 500 mA		
	工作温度范围	-40°C ~ +85°C		
	环境温度范围	正常温度		
	封装尺寸	18±0.2 mm x 25.5±0.2 mm x 3.1±0.15 mm		
	Wi-Fi 模式	Station/SoftAP/SoftAP+Station/P2P		
	Wi-Fi 安全机制	WPA/WPA2/WPA2-Enterprise/WPS		
	加密类型	AES/RSA/ECC/SHA		
软件	固件升级	UART 下载/OTA(通过网络或主机下载和写固件)		
	软件开发	支持云服务器开发/SDK 用于用户固件开发		
	网络协议	IPv4、IPv6、SSL、TCP/UDP/HTTP/FTP/MQTT		
	用户配置	AT+ 指令集、云端服务器、安卓/iOS app		

2. 管脚定义

2.1 管脚布局

图 1: ESP-WROOM-32 管脚布局前视图

2.2 管脚定义

ESP-WROOM-32 共有 38 个管脚,具体描述参见表 3。

表 3: 管脚定义

名称	序号	类型	功能	
GND	1	Р	Ground	
3V3	2	Р	Power supply.	
EN	3	1	Chip-enable signal. Active high.	
SENSOR_VP	4	1	GPIO36, SENSOR_VP, ADC_H, ADC1_CH0, RTC_GPIO0	
SENSOR_VN	5	1	GPIO39, SENSOR_VN, ADC1_CH3, ADC_H, RTC_GPIO3	
IO34	6	1	GPIO34, ADC1_CH6, RTC_GPIO4	
IO35	7	1	GPIO35, ADC1_CH7, RTC_GPIO5	
1032	8	I/O	GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4,	
1032	0 1/0		TOUCH9, RTC_GPIO9	
1033	9 1/0		GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5,	
		1/0	TOUCH8, RTC_GPIO8	
IO25	10	I/O	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0	
IO26	11	I/O	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1	

名称	序号	类型	功能		
IO27	12	I/O	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV		
1014	10	I/O	GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK,		
IO14	13	1/0	HS2_CLK, SD_CLK, EMAC_TXD2		
IO12	14	I/O	GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ,		
1012	14	1/0	HS2_DATA2, SD_DATA2, EMAC_TXD3		
GND	15	Р	Ground		
IO13	16	I/O	GPI013, ADC2_CH4, TOUCH4, RTC_GPI014, MTCK, HSPID,		
1010	10	1/0	HS2_DATA3, SD_DATA3, EMAC_RX_ER		
SHD/SD2*	17	I/O	GPIO9, SD_DATA2, SPIHD, HS1_DATA2, U1RXD		
SWP/SD3*	18	I/O	GPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD		
SCS/CMD*	19	I/O	GPI011, SD_CMD, SPICS0, HS1_CMD, U1RTS		
SCK/CLK*	20	I/O	GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS		
SDO/SD0*	21	I/O	GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS		
SDI/SD1*	22	I/O	GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS		
IO15	23	I/O	GPI015, ADC2_CH3, TOUCH3, MTD0, HSPICS0, RTC_GPI013,		
1010	20	1/0	HS2_CMD, SD_CMD, EMAC_RXD3		
102	24	1/0	GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0,		
102		1,0	SD_DATA0		
100	25	I/O	GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1,		
	20	1,0	EMAC_TX_CLK		
104	26	I/O	GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1,		
104	20	""	SD_DATA1, EMAC_TX_ER		
IO16	27	I/O	GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT		
IO17	28	I/O	GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180		
IO5	29	I/O	GPIO5, VSPICSO, HS1_DATA6, EMAC_RX_CLK		
IO18	30	I/O	GPIO18, VSPICLK, HS1_DATA7		
IO19	31	I/O	GPIO19, VSPIQ, U0CTS, EMAC_TXD0		
NC	32	-	-		
IO21	33	I/O	GPIO21, VSPIHD, EMAC_TX_EN		
RXD0	34	I/O	GPIO3, U0RXD, CLK_OUT2		
TXD0	35	I/O	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2		
1022	36	I/O	GPIO22, VSPIWP, U0RTS, EMAC_TXD1		
IO23	37	I/O	GPIO23, VSPID, HS1_STROBE		
GND	38	Р	Ground		

说明:

2.3 Strapping 管脚

ESP32 共有 5 个 Strapping 管脚,可参考章节 6 电路原理图:

• MTDI

^{*} 管脚 SCK/CLK,SDO/SD0,SDI/SD1,SHD/SD2,SWP/SD3,和 SCS/CMD,即 GPIO6 至 GPIO11 用于连接模组上集成的 SPI Flash,不建议用于其他功能。

- GPI00
- GPIO2
- MTDO
- GPI05

软件可以读取寄存器 "GPIO_STRAPPING"中这 5 个位的值。

在芯片的系统复位(上电复位、RTC 看门狗复位、欠压复位)过程中,Strapping 管脚对电平采样并存储到锁存器中,锁存为"0"或"1",并一直保持到芯片掉电或关闭。锁存器中 Strapping 比特的值用于配置设备的启动模式,VDD_SDIO 工作电压和其他的系统初始设置。

每一个 Strapping 管脚都会连接内部上拉/下拉。如果一个 Strapping 管脚没有连接或者连接的外部线路处于高阻抗状态,内部弱上拉/下拉将决定 Strapping 管脚输入电平的默认值。

为改变 Strapping 比特的值,用户可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32 上电 复位时的 Strapping 管脚电平。

复位后, Strapping 管脚和普通管脚功能相同。

配置 Strapping 管脚的详细启动模式请参阅表 4。

表 4: Strapping 管脚

内置 LDO (VDD_SDIO) 电压						
管脚	默认	3.3	3V	1.8V		
MTDI	下拉	()	-	1	
		系统	虎启动模式			
管脚	默认	SPI Flash	启动模式	下载启	动模式	
GPIO0	上拉	-	1	()	
GPIO2	下拉	元 ジ	关项	()	
	系统启动过程中,UOTXD 输出 log 打印信息					
管脚	默认	U0TXD 翻转 U0TXD 静止)静止	
MTDO	上拉	1		()	
	SDIO 从机信号输入输出时序					
管脚	默认	下降沿输入	下降沿输入	上升沿输入	上升沿输入	
	动人人	下降沿输出	上升沿输出	下降沿输出	上升沿输出	
MTDO	上拉	0	0	1	1	
GPIO5	上拉	0	1	0	1	

说明:

固件可以通过配置一些寄存器比特位,在启动后改变"内置 LDO (VDD_SDIO) 电压"和"SDIO 从机信号输入输出时序"的设定。

3. 功能描述

本章描述了 ESP-WROOM-32 的各个模块和功能。

3.1 CPU 和内存

ESP32-D0WDQ6 内置两个低功耗 Xtensa® 32-bit LX6 MCU。片上存储包括:

- 448-kB 的 ROM, 用于程序启动和内核功能调用。
- 用于数据和指令存储的 520 kB 片上 SRAM (包括 8 kB RTC 快速存储器)。
 - RTC 快速存储器,为 8 kB 的 SRAM,可以在 Deep-sleep 模式下 RTC 启动时用于数据存储以及被主 CPU 访问。
- RTC 慢速存储器,为 8 kB的 SRAM,可以在 Deep-sleep 模式下被协处理器访问。
- 1 kbit 的 eFuse, 其中 256 bit 为系统专用 (MAC 地址和芯片设置); 其余 768 bit。保留给用户程序, 这些程序包括 Flash 加密和芯片 ID。

3.2 外部 Flash 和 SRAM

ESP32 最多支持 4 个 16 MB 的外部 QSPI Flash 和静态随机存储器 (SRAM), 具有基于 AES 的硬件加密功能, 从而保护用户的程序和数据。

- ESP32 通过高速缓存访问外部 QSPI Flash 和 SRAM。高达 16 MB 的外部 Flash 映射到 CPU 代码空间,支持 8-bit、16-bit 和 32-bit 访问,并可执行代码。
- 高达 8 MB 的外部 Flash 和 SRAM 映射到 CPU 数据空间,支持 8-bit、16-bit 和 32-bit 访问。Flash 仅支持 读操作,SRAM 可支持读写操作。

ESP-WROOM-32 集成了 4 MB 的 SPI Flash, 可以映射到 CPU 代码空间, 支持 8-bit、16-bit 和 32-bit 访问, 并可执行代码。ESP32 的管脚 GPIO6, GPIO7, GPIO8, GPIO9, GPIO10 和 GPIO11 用于连接模组集成的 SPI Flash, 不建议用于其他功能。

3.3 晶振

目前 ESP32 Wi-Fi/BT 固件只支持 40 MHz 晶振。

3.4 RTC 和低功耗管理

ESP32 采用了先进的电源管理技术,可以在不同的省电模式之间切换。(参见表 5)。

• 省电模式

- Active 模式: 芯片射频处于工作状态。芯片可以接收、发射和侦听信号。
- Modem-sleep 模式: CPU 可运行, 时钟可被配置。Wi-Fi/蓝牙基带和射频关闭。
- Light-sleep 模式: CPU 暂停运行。RTC 存储器和外设以及 ULP 协处理器运行。任何唤醒事件 (MAC、主机、RTC 定时器或外部中断) 都会唤醒芯片。
- Deep-sleep 模式: 只有 RTC 存储器和外设处于工作状态。Wi-Fi 和蓝牙连接数据存储在 RTC 中。ULP 协处理器可以工作。
- Hibernation 模式: 內置的 8 MHz 振荡器和 ULP 协处理器均被禁用。RTC 内存恢复电源被切断。只有 1 个位于慢时钟上的 RTC 时钟定时器和某些 RTC GPIO 在工作。RTC 时钟定时器或 RTC GPIO 可以 将芯片从 Hibernation 模式中唤醒。

• 睡眠方式

- 关联睡眠方式: 省电模式在 Active、Modem-sleep、Light-sleep 模式之间切换。CPU、Wi-Fi、蓝牙和射频按照预设的时间间隔被唤醒,以保证 Wi-Fi/蓝牙的连接。
- 超低功耗传感器监测方式: 主系统处于 Deep-sleep 模式, ULP 协处理器定期被开启或关闭来测量传感器数据。根据传感器测量到的数据, ULP 协处理器决定是否唤醒主系统。

功耗模式 Active Modem-sleep Light-sleep Deep-sleep Hibernation 超低功耗 关联睡眠方式 睡眠方式 传感器监测方式 CPU 开启 开启 暂停 关闭 关闭 Wi-Fi/蓝牙基带和射频 关闭 关闭 关闭 关闭 开启 RTC 存储器和外设 开启 开启 开启 开启 关闭 ULP 协处理器 开启 开启 开启/关闭 关闭 开启

表 5: 不同功耗模式下的功能

功耗随省电模式/睡眠方式以及功能模块的工作状态而改变(见表 6)。

表 6: 不同功耗模式下的功耗

省电模式	描述	功耗	
	Wi-Fi Tx packet 14 dBm ~ 19.5 dBm		
A otivo (钟版工 //tr)	Wi-Fi/BT Tx packet 0 dBm	详见_《ESP32 技术规格书》_	
Active (射频工作)	Wi-Fi/BT Rx 和侦听		
	CPU 处于工作状态	最大速度 (240 MHz): 30 mA ~ 50 mA	
Modem-sleep		正常速度(80 MHz): 20 mA ~ 25 mA	
		慢速 (2 MHz): 2 mA ~ 4 mA	
Light-sleep	-	0.8 mA	

省电模式	描述	功耗
	ULP 协处理器处于工作状态	150 μA
Deep-sleep	超低功耗传感器监测方式	100 μA @1% duty
	RTC 定时器 +RTC 存储器	10 μΑ
Hibernation 仅有 RTC 定时器处于工作状态		5 μΑ
关闭 CHIP_PU 脚拉低,芯片处于关闭状态		0.1 μΑ

说明:

- 在 Wi-Fi 开启的场景中,芯片会在 Active 和 Modem-sleep 模式之间切换,功耗也会在两种模式间变化。
- Modem-sleep 模式下,CPU 频率自动变化,频率取决于 CPU 负载和使用的外设。
- Deep-sleep 模式下,仅 ULP 协处理器处于工作状态时,可以操作 GPIO 及低功耗 I2C。
- 当系统处于超低功耗传感器监测模式时,ULP 协处理器和传感器周期性工作,ADC 以 1% 占空比工作,系统功 耗典型值为 100 μ A。

4. 外设接口和传感器

4.1 外设接口和传感器描述

表 7: 外设接口和传感器描述

接口	信号	管脚	功能	
	ADC1_CH0	SENSOR_VP		
	ADC1_CH3	SENSOR_VN		
	ADC1_CH4	IO32		
	ADC1_CH5	IO33		
	ADC1_CH6	IO34		
	ADC1_CH7	IO35		
	ADC2_CH0	104		
ADC	ADC2_CH1	IO0	, 两个 12-bit 的 SAR ADCs	
	ADC2_CH2	102		
	ADC2_CH3	IO15		
	ADC2_CH4	IO13		
	ADC2_CH5	IO12		
	ADC2_CH6	IO14		
	ADC2_CH7	1027		
	ADC2_CH8	IO25		
	ADC2_CH9	IO26		
超低噪声前置模拟放	SENSOR_VP	IO36	通过 PCB 上更大的电容来为 ADC 提供大	
大器	SENSOR_VN	IO39	约 60 dB 的增益。	
DAC	DAC_1	IO25	亜久 0 bit 44 DAC	
DAC	DAC_2	IO26	- 两个 8-bit 的 DAC	
	TOUCH0	104		
	TOUCH1	IO0		
	TOUCH2	102		
	TOUCH3	IO15		
 触摸传感器	TOUCH4	IO13] 电容式触摸传感器	
	TOUCH5	IO12		
	TOUCH6	IO14		
	TOUCH7	1027		
	TOUCH8	IO33		
	TOUCH9	IO32		
	HS2_CLK	MTMS		
	HS2_CMD	MTDO		
SD/MMC 主机控制器	HS2_DATA0	IO2	, ,符合 V3.01 标准的 SD 卡	
○○//////○ 土///-// 工作// (1) (1) (1)	HS2_DATA1	IO4		
	HS2_DATA2	MTDI		
	HS2_DATA3	MTCK		

接口	信号	管脚	功能		
	PWM0_OUT0~2				
	PWM1_OUT_IN0~2				
	PWM0_FLT_IN0~2		 3 路 16-bit 定时器产生 PWM 波形, 每路		
 电机 PWM	PWM1_FLT_IN0~2	任意 GPIO	包含一对输出信号。3个故障检测信号。3		
-5761 ************************************	PWM0_CAP_IN0~2		个 even capture 信号。3 个同步信号。		
	PWM1_CAP_IN0~2		1 0.0 capta.c ii 3 0 0 1 1 4 5 ii 3 0		
	PWM0_SYNC_IN0~2				
	PWM1_SYNC_IN0~2				
LED PWM	ledc_hs_sig_out0~7	任意 GPIO	16 个独立的通道运行在 80 MHz 的时钟或		
LLD I VVIVI	ledc_ls_sig_out0~7	1 江思 切 10	RTC 时钟上。占空比精确度:16-bit。		
	U0RXD_in				
	U0CTS_in				
	U0DSR_in				
	U0TXD_out				
	U0RTS_out				
	U0DTR_out				
UART	U1RXD_in	」 」任意 GPIO	两个带有硬件流控制和 DMA 的 UART 设		
	U1CTS_in		备		
	U1TXD_out				
	U1RTS_out				
	U2RXD_in				
	U2CTS_in				
	U2TXD_out				
	U2RTS_out				
	I2CEXT0_SCL_in				
	I2CEXT0_SDA_in				
	I2CEXT1_SCL_in				
I2C	I2CEXT1_SDA_in	 ・任意 GPIO	两个 I2C 设备,以从机或主机模式工作		
	I2CEXT0_SCL_out				
	I2CEXT0_SDA_out				
	I2CEXT1_SCL_out				
	I2CEXT1_SDA_out				

接口	信号	管脚	功能				
	I2S0I_DATA_in0~15						
	I2S0O_BCK_in						
	12S0O_WS_in						
	I2S0I_BCK_in						
	12S0I_WS_in						
	I2S0I_H_SYNC						
	I2S0I_V_SYNC						
	I2S0I_H_ENABLE						
	I2S0O_BCK_out						
	I2S0O_WS_out						
	I2S0I_BCK_out						
	I2S0I_WS_out	任意 GPIO	 				
I2S	I2S0O_DATA_out0~23		用于串行立体声数据的输入输出,并行 LCD 数据的输出				
	I2S1I_DATA_in0~15		としり 数1/6日1 制 山				
	I2S1O_BCK_in						
	12S10_WS_in						
	I2S1I_BCK_in						
	I2S1I_WS_in						
	I2S1I_H_SYNC						
	I2S1I_V_SYNC						
	I2S1I_H_ENABLE						
	I2S1O_BCK_out						
	I2S1O_WS_out						
	I2S1I_BCK_out						
	I2S1I_WS_out						
	I2S1O_DATA_out0~23						
红 从 逐 坎 哭	RMT_SIG_IN0~7	· 任意 GPIO	8.以 IR 收货界 支持不同油形标准				
红外遥控器	RMT_SIG_OUT0~7	TI.思 GFIU	8 路 IR 收发器,支持不同波形标准				

接口	信号	管脚	功能
	SPIHD	SHD/SD2	
	SPIWP	SWP/SD3	
	SPICS0	SCS/CMD	
	SPICLK	SCK/CLK	
	SPIQ	SDO/SD0	
	SPID	SDI/SD1	
	HSPICLK	IO14	
	HSPICS0	IO15	
并行 QSPI	HSPIQ	IO12	支持 Standard SPI、Dual SPI 和 Quad SPI,
7114	HSPID	IO13	可以连接外部 Flash 和 SRAM
	HSPIHD	IO4	
	HSPIWP	IO2	
	VSPICLK	IO18	
	VSPICS0	IO5	
	VSPIQ	IO19	
	VSPID	IO23	
	VSPIHD	IO21	
	VSPIWP	IO22	
	HSPIQ_in/_out		
	HSPID_in/_out		
	HSPICLK_in/_out]	Standard SPI 包含时钟、片选、MOSI 和
	HSPI_CS0_in/_out		MISO。这些 SPI 可连接 LCD 和其他外设。
	HSPI_CS1_out		具有以下特性:
 通用 SPI	HSPI_CS2_out	任意 GPIO	(a) 主机和从机工作模式;
X2/17 0	VSPIQ_in/_out	1776	(b) 根据极性 (POL) 和相位 (PHA) 的 4
	VSPID_in/_out]	种模式的 SPI 格式传输;
	VSPICLK_in/_out		(c) 可配置的 CLK 频率;
	VSPI_CS0_in/_out		(d) 64 Byte 的 FIFO 和 DMA。
	VSPI_CS1_out		
	VSPI_CS2_out]	
	MTDI	IO12	
JTAG	MTCK	IO13	- 用于软件调试的 JTAG
JIAG	MTMS	IO14	7 加 1 秋洋炯風的 0 1 A Q
	MTDO	IO15	

接口	信号	管脚	功能
	SD_CLK	IO6	
	SD_CMD	IO11	
SDIO 从机	SD_DATA0	107	- - SDIO 接口符合 V2.0 行业标准
	SD_DATA1	IO8	ODIO 接口符号 V2.0 行业标准
	SD_DATA2	109	
	SD_DATA3	IO10	
	EMAC_TX_CLK	IO0	
	EMAC_RX_CLK	105	
	EMAC_TX_EN	IO21	
	EMAC_TXD0	IO19	
	EMAC_TXD1	1022	
	EMAC_TXD2	IO14	
	EMAC_TXD3	IO12	
	EMAC_RX_ER	IO13	
	EMAC_RX_DV	1027	
FN 44 C	EMAC_RXD0	IO25	## NAU/DNAU 48 46 DV 1.155 NAA O
EMAC	EMAC_RXD1	IO26	带 MII/RMII 接口的以太网 MAC
	EMAC_RXD2	TXD0	
	EMAC_RXD3	IO15	
	EMAC_CLK_OUT	IO16	
	EMAC_CLK_OUT_180	IO17	
	EMAC_TX_ER	104	
	EMAC_MDC_out	任意 GPIO	
	EMAC_MDI_in	任意 GPIO	
	EMAC_MDO_out	任意 GPIO	
	EMAC_CRS_out	任意 GPIO	
	EMAC_COL_out	任意 GPIO	

说明:

- 电机 PWM、LED PWM、UART、I2C、I2S、通用 SPI 和红外遥控器的功能可以被配置到除了 GPIO6, GPIO7, GPIO8, GPIO9, GPIO10 和 GPIO11 的其他任一管脚。
- 关于"管脚"—列中的"任一 GPIO*", 用户需要注意的是, GPIO6, GPIO7, GPIO8, GPIO9, GPIO10 和 GPIO11 这 6 个管脚用于连接 ESP-WROOM-32 模组上集成的 SPI Flash, 不建议用于其他功能。

5. 电气特性

说明:

如无特别说明,本章参数测试条件如下: VDD = 3.3V, $T_A = 27$ °C。

5.1 极限参数

表 8: 极限参数

参数	名称	最小值	典型值	最大值	单位
供电电压	VDD	2.7	3.3	3.6	V
供电电流	I_{VDD}	0.5	-	-	А
输入逻辑电平低	V_{IL}	-0.3	-	0.25×V _{IO} ¹	V
输入逻辑电平高	V_{IH}	0.75×V _{IO} ¹	-	V _{IO} ¹ +0.3	V
输入漏电流	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	-	-	50	nA
输入引脚电容	C_{pad}	-	-	2	pF
输出逻辑电平低	V_{OL}	-	-	0.1×V _{IO} ¹	V
输出逻辑电平高	V_{OH}	0.8×V _{IO} ¹	-	-	V
输出最大驱动能力	I_{MAX}	-	-	40	mA
存储温度范围	T_{STR}	-40	-	85	°C
工作温度范围	T_{OPR}	-40	-	85	°C

^{1.} V_{IO} 为 pad 的供电电源,具体请参考_<u>《ESP32 技术规格书》</u>中附录 IO_{MUX} ,如 SD_{CLK} 的供电电源为 VDD_{SDIO} 。

5.2 Wi-Fi 射频

表 9: Wi-Fi 射频特性

参数	最小值	典型值	最大值	单位
输入频率	2412	-	2484	MHz
输入反射	-	-	-10	dB
	输出功率			
72.2 Mbps PA 输出功率	13	14	15	dBm
11b 模式下 PA 输出功率	19.5	20	20.5	dBm
	灵敏度			
DSSS, 1 Mbps	-	-98	-	dBm
CCK, 11 Mbps	-	-91	-	dBm
OFDM, 6 Mbps	-	-93	-	dBm
OFDM, 54 Mbps	-	-75	-	dBm
HT20, MCS0	-	-93	-	dBm
HT20, MCS7	-	-73	-	dBm
HT40, MCS0	-	-90	-	dBm
HT40, MCS7	-	-70	-	dBm

参数	最小值	典型值	最大值	单位
MCS32	-	-89	-	dBm
	邻道抑制			
OFDM, 6 Mbps	-	37	-	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS0	-	37	-	dB
HT20, MCS7	-	20	-	dB

5.3 低功耗蓝牙射频

5.3.1 接收器

表 10: 低功耗蓝牙接收器特性

参数	条件	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	-	-	-97	-	dBm
最大接收信号 @30.8% PER	-	0	-	-	dBm
共信道抑制比 C/I	-	-	+10	-	dB
	F = F0 + 1 MHz	-	-5	-	dB
	F = F0 - 1 MHz	-	-5	-	dB
邻道抑制比 C/I	F = F0 + 2 MHz	-	-25	-	dB
邻理抑制化 0/1	F = F0 - 2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-45	-	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
世 <i>5</i> 1. 米/ 15. 世内	2000 MHz ~ 2400 MHz	-27	-	-	dBm
带外数据带阻	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
互调	-	-36	-	-	dBm

5.3.2 发射器

表 11: 低功耗蓝牙发射器特性

参数	条件	最小值	典型值	最大值	单位
射频发射功率	-	-	0	-	dBm
增益控制步长	-	-	±3	-	dBm
射频功率控制范围	-	-12	-	+12	dBm
邻道发射功率	F = F0 + 1 MHz	-	-14.6	-	dBm
	F = F0 - 1 MHz	-	-12.7	-	dBm
	F = F0 + 2 MHz	-	-44.3	-	dBm
	F = F0 - 2 MHz	-	-38.7	-	dBm
	F = F0 + 3 MHz	-	-49.2	-	dBm
	F = F0 - 3 MHz	-	-44.7	-	dBm
	F = F0 + > 3 MHz	-	-50	-	dBm
	F = F0 - > 3 MHz	-	-50	-	dBm

参数	条件	最小值	典型值	最大值	单位
$\Delta f1_{avg}$	-	-	-	265	kHz
$\Delta f2_{max}$	-	247	-	-	kHz
$\Delta f 2_{\text{avg}}/\Delta f 1_{\text{avg}}$	-	-	-0.92	-	-
ICFT	-	-	-10	-	kHz
漂移速率	-	-	0.7	-	kHz/50 μs
偏移	-	-	2	-	kHz

5.4 回流焊温度曲线

图 2: 回流焊温度曲线

6. 电路原理图

图 3: ESP-WROOM-32 电路原理图

7. 外围原理图

图 4: ESP-WROOM-32 外围原理图

说明:

- MTDI 应保持低电平。
- ESP-WROOM-32 管脚 39,可以不焊接到底板。若用户将该管脚焊接到底板,请确保使用适量的焊锡膏。

图 5: VDD33 放电电路图

说明:

放电电路用在需要快速反复开关 VDD33,且 VDD33 外围电路上有大电容的场景。详情请参考<u>《ESP32 技术规格书》</u>中**电源管理**章节。

8. 模组尺寸

00

模组尺寸

Front view Side view Back view

图 6: ESP-WROOM-32 尺寸

说明:

图中模组尺寸单位为毫米 (mm)。

9. 学习资源

9.1 必读资料

访问以下链接可下载有关 ESP32 的文档资料。

• ESP32 技术规格书

本文档为用户提供 ESP32 硬件技术规格简介,包括概述、管脚定义、功能描述、外设接口、电气特性等。

• ESP32 技术参考手册

该手册提供了关于 ESP32 的具体信息,包括各个功能模块的内部架构、功能描述和寄存器配置等。

• ESP32 硬件资源

压缩包提供了 ESP32 模组和开发板的硬件原理图, PCB 布局图, 制造规范和物料清单。

• ESP32 硬件设计指南

该手册提供了 ESP32 系列产品的硬件信息,包括 ESP32 芯片,ESP-WROOM-32 模组以及 ESP32-DevKitC 开发板。

• ESP32 AT 指令集与使用示例

该文档描述 ESP32 AT 指令集功能以及使用方法,并介绍几种常见的 AT 指令使用示例。其中 AT 指令包括基础 AT 指令, Wi-Fi 功能 AT 指令, TCP/IP 相关 AT 指令等;使用示例包括单连接 TCP 客户端,UDP 传输,透传,多连接 TCP 服务器等。

9.2 必备资源

以下为有关 ESP32 的必备资源。

• ESP32 在线社区

工程师对工程师(E2E)的社区,用户可以在这里提出问题,分享知识,探索观点,并与其他工程师一起解决问题。

• ESP32 GitHub

乐鑫在 GitHub 上有众多开源的开发项目。

• ESP32 工具

ESP32 flash 下载工具以及《ESP32 认证测试指南》。

ESP32 IDF

ESP32 所有版本 IDF。

• ESP32 资源合集

ESP32 相关的所有文档和工具资源。