Connaissances et compétences exigibles:

- ✓ Savoir identifier un solvant et un soluté.
- ✓ Connaître et utiliser la notion de concentration.
- ✓ Savoir préparer une solution par dissolution ou dilution.
- ✓ Savoir déterminer une concentration expérimentalement.
- Savoir réaliser une solution par dissolution ou dilution.
- ✓ Connaître le principe de dosage par étalonnage

I. Que contient une solution?

Définition :

Quand une ou plusieurs espèces chimiques (solides, liquides ou gazeuses) se dissolvent dans un liquide, on obtient un mélange homogène appelé <u>solution</u>.

- → Les espèces dissoutes, minoritaires, sont appelés solutés.
- → Le liquide, majoritaire, dans lequel elles sont dissoutes, est le solvant.

Dans une solution, les entités chimiques constituant le soluté sont dispersées <u>uniformément</u> parmi les molécules de solvant : ces entités sont soit des molécules (ex : saccharose) soit des ions (ex : Na^+ , Cl^-)

Remarque:

- Si le solvant utilisé est l'eau, on obtient une solution aqueuse.
- La solution est dite <u>saturée</u> lorsque le solvant ne peut plus dissoudre de soluté même après agitation.

Exemple : Solution sucrée

Le glucose est l'espèce chimique dissoute : c'est le soluté. L'eau est l'espèce majoritaire dans la solution : C'est le solvant.

II. Concentration massique ou teneur massique

Les propriétés (goût, couleur...) d'une solution dépendent de la masse de soluté qui s'y trouve, mais aussi du volume de la solution.

<u>Définition</u>:

La **concentration massique**, ou **titre massique**, d'une espèce chimique en solution est la masse de soluté par litre de solution.

La concentration massique se note C_m ou t, elle s'exprime en $g.L^{-1}$.

$$g.L^{-1}$$
 \longrightarrow C_m ou $t = \frac{m_{soluté}}{V_{solution}}$ \longleftarrow L

III. Préparation d'une solution

1. Par dissolution d'un composé solide

Principe:

Préparer par **dissolution** une solution de concentration en masse donnée de soluté, c'est mettre en solution une espèce chimique.

Il faut déterminer la masse de solide à peser $\frac{m_{soluté}}{m_{soluté}} = \frac{C_m \times V_{solution}}{m_{soluté}}$ en fonction du volume de la fiole jaugée.

<u>Protocole expérimentale :</u>

2. Par dilution d'une solution mère

Définitions :

La dilution d'une solution est l'ajout de solvant à cette solution.

- * La solution obtenue (solution fille) est moins concentrée que la solution initiale (solution mère).
- * Au cours d'une dilution, la masse de soluté $m_{\text{mère}}$ de la solution mère est égale à la masse de soluté m_{fille} présent dans la solution fille :

Donc :
$$Cm_{m\`{e}re} \times V_{m\`{e}re} = Cm_{fille} \times V_{fille}$$

* Diluer F fois une solution mère de concentration massique $Cm_{m\`{e}re}$, c'est obtenir une solution fille Cm_{fille} telle que :

$$Cm_{fille} = \frac{Cm_{m\`ere}}{F}$$

F s'appelle le facteur de dilution :

$$\mathsf{F} = \frac{\mathsf{C} m_{m\`{e}re}}{\mathsf{C} m_{fille}} \quad \text{ou} \quad \mathsf{F} = \frac{v_{fille}}{v_{m\`{e}re}}$$

Protocole expérimentale :

IV. <u>Détermination d'une concentration massique à partir d'une échelle de teintes</u>

Principe:

Une échelle de teintes permet d'estimer la concentration d'une solution en une espèce chimique colorée par comparaison de sa teinte avec celles des solutions étalon de l'échelle de teintes.

