Задание: Разработать алгоритм оптимизации функции Розенброка искусственной иммунной сетью.

Функция Розенброка для двух переменных определяется как:

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2.$$

Она имеет глобальный минимум в точке (x,y)=(1,1) где f(x,y)=0.

Основные понятья и определения

Для использования в информационных технологиях наибольший интерес представляют функции приобретенной иммунной системы, которые реализуют, прежде всего, лимфоциты. *Лимфоциты* (*lymphocytes*) — главные клетки иммунной системы, вырабатывающие антитела в ответ на вторжение антигенов. По функциональным признакам различают несколько типов лимфоцитов, главными из которых являются *B*-лимфоциты, осуществляющие распознавание антигенов и выработку антител. Среди *B*-лимфоцитов выделяют клетки «памяти», живущие относительно долго и хранящие в себе информацию о встреченных ранее организмом чужеродных белках.

При распознавании B-лимфоцитами антигенов совпадение образа антигена в рецепторах и встреченного антигена может быть неполным. Мера близости антигена (точнее, его образа в рецепторах B-лимфоцита) и антитела носит наименование $a\phi\phi$ инности (affinity).

Оптимизация с помощью модели иммунной сети

Иммунная сеть представляет собой математическую структуру, имитирующую некоторые функции иммунной системы человека. Многие внешние черты сближают иммунную сеть с такой современной информационной технологией, как нейронные сети. Подобно нейронным сетям, иммунные сети обладают способностью к обучению, прогнозированию и принятию решений в незнакомой ситуации. Как и нейронные сети, иммунные сети не нуждаются в заранее известной модели задачи, а строят эту модель на основе полученной информации. Наконец, как нейронные, так и иммунные сети наиболее эффективны при решении плохо формализованных (слабо структурированных) задач, таких как прогнозирование, классификация и управление. Популяцию антител (детекторов) обозначим $S^b = (s_i^b, i \in [1:|S^b|])$, а популя-

Популяцию антител (детекторов) обозначим $S^b = (s_i^b, i \in [1:|S^b|])$, а популяцию антигенов (данных) — $S^g = (s_j^g, j \in [1:|S^g|])$. Положим, что текущие координаты антитела s_i^b и антигена s_j^g определяют, соответственно, векторы $X_i^b = (x_{i,k}, k \in [1:|X|])$, $X_i^g = (x_{i,l}, l \in [1:|X|])$.

 $X_i^b = (x_{i,k}, k \in [1:|X|]), \ X_j^g = (x_{j,l}, l \in [1:|X|]).$ Аффинность связей антител s_i^b, s_j^b друг с другом (*BB*-аффинность) определяем как расстояние $\rho(X_i^b, X_j^b) = \rho_{i,j}^{bb}$ между соответствующими векторами. Аналогично определяем *BG*-аффинность связей антитела s_i^b и антигена s_j^g в виде расстояния $\rho(X_i^b, X_j^g) = \rho_{i,j}^{bg}$. Полагаем, что меньшим значениям расстояния $\rho(\cdot, \cdot)$ соответствует большая аффинность связей между агентами. Совокупность всех расстояний $\rho_{i,j}^{bb}$ обозначаем

$$R^{bb} = \{ \rho_{i,j}^{bb}, i, j \in [1: |S^b|] \},$$

При бинарном кодировании координат агентов в качестве меры расстояния $\rho(\cdot,\cdot)$ обычно используют расстояние Хемминга $\|\cdot\|_{_H}$

Таким образом, иммунная сеть может быть представлена в виде графа (не обязательно связного), узлы которого соответствуют антителам и антигенам, а дуги – аффинным связям между ними. Формально иммунную сеть определяет набор

$$\langle S^b, S^g, R^{bb}, R^{bg}, S^m, n_b, n_c, b_s, b_b, b_r, b_n \rangle$$

где кроме введенных выше приняты следующие обозначения: S^m — подмножество популяции антител S^b , состоящее из клеток памяти иммунной сети; n_b — число лучших антител, отбираемых для клонирования и мутации из множества антител S^b ; n_c — число клонов, создаваемых каждым из отобранных антител; b_s — стелень селекции (selection rate), то есть относительное число улучшенных антител, отбираемых из множества клонированных клеток; b_b — пороговый коэффициент гибели или стимуляции антител в зависимости от значений их ρ^{bg} -аффинности; b_r — пороговый коэффициент сжатия иммунной сети; b_r — коэффициент обновления иммунной сети.

В общем случае схему функционирования иммунной сети можно представить в следующем виде.

- 1) Инициализируем популяции антител и антигенов S^b , S^g .
- 2) Для каждого из антигенов s_i^g , $i \in [1:|S^g|]$ выполняем следующие действия.
- 2.1) Вычисляем BG-аффинность антигена s_i^g со всеми антителами сети s_j^b , $j \in [1:|S^b|]$ и отбираем среди указанных антител n_b агентов с максимальной BG-аффинностью.
- 2.2) Клонируем отобранные антитела с коэффициентом клонирования, пропорциональным их BG-аффинности, так чтобы общее число клонов было равно $n_h n_a$. Все полученные клоны подвергаем мутации.
- 2.3) Вычисляем для полученных антител их BG-аффинность с антигеном s_i^g . Среди всех полученных антител выбираем $n_d = b_s n_b n_c$ антител, имеющих максимальную BG-аффинность, и помещаем в популяцию клеток памяти S^m . Удаляем из популяции S^m те клетки, BG-аффинность которых ниже величины b_b .
- 2.4) Вычисляем BB-аффинность всех клеток скорректированной популяции S^m . Удаляем из популяции S^m тех агентов, BB-аффинность которых ниже величины b_r (клональное сжатие). Расширяем популяцию S^b агентами популяции S^m .
- 3) Вычисляем BB-аффинность агентов расширенной популяции S^b и удаляем из этой сети тех агентов, аффинность которых ниже величины b_r (*ceme-вое сжатие*).
- 4) Заменяем b_n процентов худших (с точки зрения BB-аффинности) агентов популяции S^b новыми, случайно сгенерированными клетками.
- 5) Проверяем выполнение условий окончания итераций и в зависимости от результата проверки либо переходим к шагу 2, либо завершаем вычисления.

Пример алгоритма искусственной иммунной сети

Рассмотрим несколько упрощенный алгоритм искусственной иммунной схема одной итерации которого имеет следующий вид.

- 1) Из текущей популяции антител S^b выбираем n_b антител с максимальной BG-аффинностью.
- 2) Для каждого антитела из числа отобранных n_b антител создаем n_c клонов и помещаем их во множество S^m .
 - 3) Выполняем мутацию каждого антитела из множества S''' по формуле

$$X_{i}^{m}(t+1) = X_{i}^{m}(t) + \alpha U_{|X|}(-0.5; 0.5), i \in [1:|S^{m}|],$$

где α – коэффициент мутации.

- 4) Определяем BG-аффинность всех антител модифицированного множества S^m и осуществляем его сжатие путем исключения всех антител, кроме n_d лучших.
- 5) Объединяем популяцию S^b с полученной указанным образом популяцией S^m и выполняем сжатие этой объединенной популяции с сохранением наилучших решений.

Используем данный алгоритм для решения задачи глобальной безусловной минимизации тестовых функций Розенброка, Химмельблау и Растригина (см. Приложение Б). Примем следующие значения свободных параметров алгоритма: размер популяции $|S^b| = 50$; число лучших антител, отбираемых для клонирования и мутации, $n_b = 10$; число лучших клонов, оставляемых после мутации, $n_d = 5$.