Sèrie 3 Travaux dirigés de cinématique du point

Exercice 1

Un mobile animé d'une vitesse $\overrightarrow{v_0} = v_0 \overrightarrow{i}$ constante, pénètre dans un milieu résistant dans lequel il est soumis à une accélération $\overrightarrow{a} = -kv^2 \overrightarrow{i}$; k est une constante et v la vitesse instantanée.

- 1. En prenant pour origine des temps et des espaces le moment où le mobile pénètre dans le milieu, établir la loi donnant v(t).
- 2. En déduire l'équation du mouvement.
- 3. Montrer qu'après un parcours x , la vitesse est $v=v_0e^{-kx}$

Exercice 2

Dans le plan xOy d'un repère $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, un point P se déplace sur un cercle de rayon R et de centre I(R,0,0). A l'instant t=0, P se trouve en A(2R,0,0) et possède la vitesse positive $\overrightarrow{v_0}(0,v_0,0)$. On désigne par r et θ les coordonnées polaires de P.

- 1. Former l'équation polaire du cercle, en déduire son équation cartésienne.
- 2. Représenter sur la figure la base polaire $(\overrightarrow{u_r}, \overrightarrow{u_\theta})$ de P. Calculer en fonction de θ et de ses dérivées successives par rapport au temps les composantes polaires des vecteurs vitesse \overrightarrow{v} et \overrightarrow{a} de P dans le repère $(O, \overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{k})$.
- 3. Soit s l'abscisse curviligne de P (l'origine est en A). \odot Donner l'expression de s en fonction de θ . \odot Représenter sur la figure la base intrinsèque $(\overrightarrow{u_t}, \overrightarrow{u_n})$ de P. \odot Calculer en fonction de θ et de ses dérivées successives par rapport au temps les composantes de \overrightarrow{v} et de \overrightarrow{a} dans cette base. \odot Calculer les composantes polaires de $\overrightarrow{u_t}$ et de $\overrightarrow{u_n}$. Retrouver dans ces conditions les composantes polaires de \overrightarrow{v} et de \overrightarrow{a} .
- 4. On désigne par ω la vitesse angulaire de P, dont on suppose dans tout ce qui suit qu'elle est constante. \odot Donner en fonction de t, les expressions de θ puis de r. \odot En déduire les expressions en fonction de t de \overrightarrow{v} et \overrightarrow{a} dans les bases polaire et de Frenet.

Exercice 3

Un point M décrit une hélice circulaire d'axe Oz.

Ses équations horaires sont : $x = Rcos\theta$; $y = Rsin\theta$; $z = h\theta$. R est le rayon du cylindre de révolution sur lequel est tracé l'hélice, h est une constante et θ est l'angle que fait avec Ox la projection \overrightarrow{Om} de \overrightarrow{OM} sur Oxy.

- 1. Donner en coordonnées cylindriques les exp ressions de la vitesse et de l'accélération.
- 2. Montrer que le vecteur vitesse fait avec le plan Oxy un angle constant.
- 3. Montrer que si le mouvement de rotation est uniforme, le vecteur accélération passe par l'axe du cylindre et est parallèle au plan Oxy . Calculer le rayon de courbure.