LES VIRUS:

DÉFINITION, STRUCTURE ET CLASSIFICATION

Pr. S. GOURARI Virologie, CHU MUSTAPHA

INTRODUCTION: ampleur des infections virales

INFECTIONS CHRONIQUES

- 296 millions de porteurs chroniques du VHB (OMS/2019)
- 71 millions de porteurs chroniques du VHC (OMS/2020)
- 38,4 millions de personnes vivant avec le VIH (OMS/2021) et plus de 40 millions de décès à ce jour (UNAIDS)

INFECTIONS AIGUES:

- Les IRA virales sont les premières infections en terme de fréquence.
- Des pandémies de grippe sont observées régulièrement avec parfois une létalité exceptionnelle:

la plus meurtrière de

tous les temps: 20 à

40 millions de morts

Fig. 1.3 Deaths from pneumonia and influenza in USA in three influenza pandemics. "Massachusetts only, (Adapted from Dauer & Serfling 1961.)

Le cytomégalovirus (CMV):

- Premier responsable d'infections opportunistes
 chez les greffés d'organes solides ou de moelle
- Premier responsable d'infections congénitales dans le monde

Virus associés aux cancers, par exemples:

- Le papillomavirus (HPV) est associé au cancer du col utérin
- Epstein Barr Virus (EBV) est associé au cancer du nasopharynx
 - deux cancers qui sont endémiques chez nous

Virus émergents:

Depuis 2003, émergence de nombreux virus :

- •Un nouveau coronavirus à l'origine du **SRAS** (syndrome respiratoire aigu sévère) en **2003**
- •Le virus de grippe pandémique H1N1 en 2009
- Le syndrome respiratoire du Moyen-Orient (MERS) dû à un nouveau coronavirus détecté pour la première fois en Arabie saoudite en 2012
- •L'épidémie à virus Ebola en 2014 en Afrique
- ·L'épidémie à virus Zika en 2015 en Amérique
- Pandémie due au Sars-CoV-2 (2019)

Définition

virus: agents infectieux microscopiques (taille 10 à 300 nm) qui peuvent être responsables de maladies transmissibles = agents pathogènes

Ils se définissent par certains caractères communs qui sont:

- Présence de deux éléments de structure obligatoires
 - le génome: porte l'information génétique
 - la capside: protège le génome
- Enveloppe facultative
- Parasitisme intracellulaire obligatoire
- Un seul type d'acide nucléique: ARN ou ADN.
- Réplication à partir de son seul acide nucléique, il ne se divise pas
- Spécificité d'hôte, contrôlée par un récepteur à la surface de la cellule

Le Génome (l'acide nucléique)

- ADN ou ARN = premier critère de classification des virus
- Le génome peut être: linéaire (adénovirus), circulaire (VHB) ou segmenté (virus de la grippe)
- Génome à ADN: 3,2 kpb (VHB)
 — 300 kpb (Poxvirus)
 ADNv = bicaténaires sauf les Parvoviridae
- Gènome à ARN: 7kb (Picornaviridae) ____ 32 kb (Coronaviridae) ARNv = monocaténaires sauf les Reoviridae
 - ARN +: directement traduit par les ribosomes sauf HIV, Reov.
 - ARN : transcrit en brin de polarité (+) par transcriptase v

Virus avec génome segmenté: virus de la grippe

LA CAPSIDE VIRALE

Structure polymérisée composée de sous-unités protéiques appelées capsomères entourant le génome viral.

Résistante et très stable ayant principalement comme rôles :

- protection du génome viral dans le milieu extracellulaire.
- attachement du virus à la cellule hôte (virus nus)
- antigénique: elle porte des structures antigéniques à sa surface.

Génome + capside = nucléocapside

La symétrie de la capside constitue un critère de classification des virus

Capside à symétrie cubique « capside icosaédrique »

Icosaèdre régulier: 20 faces, 12 sommets et 30 arêtes

ex: Adénovirus = 252 capsomères

Picornaviridae ou Parvoviridae = 32 capsomères

(Icosaèdre tronqué = sphérique)

Capside à symétrie hélicoïdale « capside tubulaire »

Les unités de structure sont disposées en hélice autour du génome qui est enroulé en spirale, on décrit le nombre d'unités par tour d'hélice

Les virus à capside hélicoïdale sont toujours enveloppés, ce sont stt des

virus à ARN

Exemples: Orthomyxoviridae,

Paramyxoviridae, Rhabdoviridae,...

ENVELOPPE VIRALE

Elément facultatif. Nature lipido-glucido-protéique Constitue un critère de classification des virus

L'acquisition de l'enveloppe par le virus se fait dans la dernière phase du cycle de réplication virale, en général par bourgeonnement de la nucléocapside à travers l'une des membranes cellulaires suivantes:

- la membrane cytoplasmique (virus de la grippe, VIH)
- la membrane nucléaire (virus herpes)
- Plus rarement au niveau des membranes intra-cytoplasmiques: l'appareil de golgi et le réticulum endoplasmique.

Les protéines de l'enveloppe peuvent avoir plusieurs fonctions: morphologique, antigénique, enzymatique ou de site d'attachement au récepteur cellulaire.

Dans certains cas (virus de la grippe, VIH), une **matrice protéique** d'origine virale peut doubler l'enveloppe de l'intérieur, séparant celle-ci de la nucléocapside et lui confère une certaine rigidité

L'enveloppe = un élément de fragilité, ainsi les virus enveloppés:

- → résistent mal dans le milieu extérieur et dans le tube digestif
- → se transmettent par contact rapproché
- → exigent des modalités particulières de conditionnement et de transport des prélèvements biologiques susceptibles de les contenir.

Virus complexes

Poxvirus

VIH

Virus complexes

- Cas du VIH qui a une structure assez complexe : un génome diploïde sous formes de 2 molécules d'ARN associées à des nucléoprotéines, dans une capside protéique conique tronquée, le tout sous une enveloppe classique
- Les Poxvirus sont les plus volumineux des virus (375 kpb).
 L'ADN est enserré dans une nucléocapside tubulaire, qui est repliée dans une coque interne flanquée de 2 corps latéraux, le tout enveloppé dans des structures tubulaires virales qui n'ont rien de commun avec les enveloppes virales classiques

CLASSIFICATION DES VIRUS

Définie par l'ICTV (International Committee on Taxonomy of Viruses) et remise à jour régulièrement. Elle se base sur:

- □ la nature de l'acide nucléique: ADN ou ARN
- la symétrie de la capside: hélicoïdale, cubique ou complexe
- la présence ou non d'une enveloppe: virus enveloppé ou nu
- stratégie de multiplication du virus

- Famille (suffixe viridae) ex: Herpesviridae
 - Sous-famille (suffixe virinae) Herpesvirinae
 - Genre (suffixe virus)
 - Espèce (suffixe virus)
 - Nom du virus

Alphaherpesvirus

Human alphaherpesvirus3

VZV

Type d'ac. nucléique	Symétrie capside	enveloppe	Famille	Exemple (Maladie)
ARN			Reoviridae ds, segt	Rotavirus (gastroentérites)
	Cubique		Caliciviridae ss(+)	Norovirus (gastroentérites)
		Non	Hepeviridae ss(+)	VHE (hépatite E)
			Picornaviridae ss(+)	Poliovirus (poliomyélite)
			Flaviviridae ss(+)	VHC (hépatite C), V. Zika
		Oui	Togaviridae ss(+)	Virus de la rubéole
	Hélicoïdale		Coronaviridae ss(+)	Sars-Cov, Mers-Cov
		Oui	Rhabdoviridae ss(-)	Virus de la rage
			Filoviridae ss(-)	Virus Ebola (F. hemorrag.)
			Paramyxoviridae ss(-)	Virus de la rougeole
			Orthomyxoviridae ss(-), segt	Virus de la grippe
			Arenaviridae ss(±), segt	Virus Lassa (F. hemorrag.)
	Complexe	Oui	Retroviridae ss(+), diploide	VIH (SIDA)

Type d'ac. nucléique	Symétrie capside	enveloppe	Famille	Exemple (Maladie)		
ADN	Cubique	Non	Adenoviridae ds	Adénovirus (inf. resp., gastroentérites)		
			Papillomaviridae ds	HPV (verrues, cancer col)		
			Polyomaviridae ds	BKV (néphropathie/greffé de rein) JCV (LEMP/ID)		
			Parvoviridae ss	Parvovirus B19 (érythème) Bocavirus (inf. resp.)		
		Oui	Herpesviridae ds	VZV (varicelle, zona) EBV, CMV,		
			Hepadnaviridae ds, rt	VHB (hépatite B)		
			Poxviridae ds	Virus du molluscum		

Complexe

Oui

contagiosum

Les virus peuvent être regroupés selon des critères épidémio-cliniques:

- Virus respiratoires: transmis par gouttelettes ou par aérosols: Paramyxovirus, adénovirus, picornavirus,...
- Virus oncogènes, associés au cancers: HPV, EBV,...
- Arbovirus: transmis par piqûre d'insecte: Flavivirus,...