X 2 12		
FULL NAME:	SECTION:	Exam 3
MATH 221, Differential Equations	Dr. Adam Larios	No calculators

Answers without full, proper justification will not receive full credit.

Here f and g are functions that have well-defined Laplace transforms, a, b, c are real constants, $\mathcal{L}\{f\}(s) = F(s)$ is the Laplace transform of f, and $\mathcal{L}\{g\}(s) = G(s)$ is the Laplace transform of g.

Table of Laplace Transforms:

1. (12 points) Solve the following initial value problem.

Find eigenvalues:
$$\frac{dx}{dt} = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} x, \quad x(0) = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & \text{preval solvation} \\ \frac{1}{3} & \text{total sol$$

points) Compute the inverse Laplace transform, \mathcal{L}^{-1} , of

$$F(s) = \frac{1}{s^2 + 2s + 5} + \frac{1}{s^2 + 10s + 21}$$

$$F(s) = \frac{1}{s^2 + 2s + 5} + \frac{1}{s^2 + 10s + 21}$$

Partial Fractions:

$$(5+3)(5+7) = \frac{A}{5+3} + \frac{B}{5+7} \Rightarrow 1 = A(5+7) + B(5+3).$$
 Choose $5 = -7$
 $= \frac{V4}{5+3} + \frac{-1/4}{5+7}$
 $\Rightarrow A = 1/4$

Thus,
$$\left[\frac{1}{2} - \left[\frac{1}{4} e^{-3t} \right] \right] = \frac{1}{2} e^{-t} \sin(2t) + \frac{1}{4} e^{-3t} - \frac{1}{4} e^{-7t}$$

3. (3 points) Does the Laplace transform of $f(t) = e^{(t^4)}$ exist? Briefly state why or why not.

No. since the function grows faster than exponentially.

 $\hat{x}(t) = ce \left(\frac{1}{3}\right) + c_2 e \left(\frac{1}{3}\right)$

 $\binom{0}{y} = \overset{\sim}{\times} (0) = c_1 \binom{1}{3} + c_2 \binom{1}{1}$

 $\vec{\chi}(t) = \lambda e^{\lambda t} \begin{pmatrix} 1 \\ 3 \end{pmatrix} - \lambda e^{\lambda t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Initial condition:

4. (12 points) Consider a 2×2 linear system $\frac{d}{dt}\vec{\mathbf{x}} = A\vec{\mathbf{x}}$ where A is a constant matrix with eigenvalues λ_1 and λ_2 . Match each pair of eigenvalues [left] with the letter of the corresponding behavior near the origin [right].

- (A) Center
- (B) Saddle Node
- (C) Non-spiral Source
- (D) Non-spiral Sink
- (E) Spiral Sink
- (F) Spiral Source
- 5. (10 points) Consider the ODE system given by tt may help to remember; $\frac{d}{dt}\vec{x} = A\vec{x}$ (a+bi)t at (cos(bt)+isin(bt))

where A has eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 1$ corresponding to eigenvectors $\vec{\xi}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\vec{\xi}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ respectively. Plot the **phase portrait** (vector field) of this system on the axes on the left below, and draw an **integral curve** of the system on it. On the axes on the right, draw the corresponding function $x_1(t)$.

6. (12 points) Transform the following second-order linear initial value problem

$$y'' + 7y' + 9y = t^3$$
, $y(1) = 1$, $y'(2) = 2$,

into a first-order system of equations of the form $\,$

$$\frac{d}{dt}\vec{\mathbf{x}} = A\vec{\mathbf{x}} + \vec{\mathbf{f}}(t), \qquad \vec{\mathbf{x}}(0) = \vec{\mathbf{x}}_0.$$

Explicitly identify the matrix A and the vectors $\vec{\mathbf{f}}(t)$ and $\vec{\mathbf{x}}_0$. You are not asked to solve!

Set $x_1 = y$, $x_2 = y'$. Then $x_1' = y' = x_2$, and $x_2' = y''$ Also, from the equation, $x_2' + 7x_2 + 9x_1 = t^2$ Thus, $\begin{cases} x_1' = 0x_1 + x_2 + 0 \\ x_2' = -9x_1 - 7x_2 + t^3 \end{cases}$

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ -9 \\ -7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ t^3 \end{pmatrix}$$

$$\vec{x}(0) = \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} y(0) \\ y'(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\vec{x}_0$$

Laplace transform. [The result is already in the table, but you are asked to derive it.] $\int_{0}^{\infty} \int_{0}^{\infty} \int_{$

7. (12 points) Find the Laplace transform of the function f(t) = t from the definition of the

- Thus, $\int_{S} (t) = \int_{S} \int_{0}^{\infty} e^{-st} dt = \int_{S} (-\frac{1}{5}e^{-st}) \Big|_{0}^{\infty} = \int_{S} (-\frac{1}{5}e^{-st}) = \int_{S} (-\frac$
 - Heaviside function with jump at c.
 - (a) Show that for c > 0, we have $\mathcal{L}[\delta_c] = s\mathcal{L}[u_c] u_c(0)$. (Hint: compute both sides.) $\mathcal{L}[\delta_c] = e^{-SC} \qquad \text{Also, } u_c(\delta) = 0, \text{ since } c > 0.$ $\mathcal{L}[\delta_c] = e^{-SC} \qquad \text{Thus, } \mathcal{L}[\delta_c] = s\mathcal{L}[u_c] u_c(0).$
 - (b) What relationship does this suggest between δ_c and u_c ?

 From the relationship L(y') = sf(y) y(0), part (a) suggests that $u_c = s_c$, i.e. Dirac-S is the "derivative"

 9. (12 points) Find the general solution to the following system.
 - 9. (12 points) Find the general solution to the following system. $\frac{d}{dt}\vec{\mathbf{x}} = \begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix} \vec{\mathbf{x}}$ some sense.
 - Hint: The characteristic equation for the matrix is $\lambda^2 6\lambda + 9 = 0$, and $\begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$. $\lambda^2 6\lambda + 9 = 0$, $\lambda^2 6\lambda + 9 = 0$, and $\lambda^2 6\lambda$
- Then $\begin{pmatrix} 2-3 & 1 \\ -1 & 4-3 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow \begin{cases} -x+y=1 \\ -x+y=1 \end{cases}$ Choose x=0. Then y=1, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - Thus, general solution is $\hat{\chi}(t) = c_1 e^{3t} (1) + c_2 \left(te^{3t} (1) + e^{3t} (0) \right)$

10. (12 points) Solve the following initial value problem.

$$y'' + 4y' + 13y = \delta_5(t),$$
 $y(0) = 0,$ $y'(0) = 0.$

Apply $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$
 $\begin{cases} 1 & \text{if } 1 \\ \text{if } 1 \end{cases}$

$$2 \left[\frac{1}{5^2 + 45 + 13} \right] = \frac{-5t}{5^2 + 45 + 13}$$

Complete
$$= \frac{1}{3} \frac{3}{(5+2)^2+3^2} e^{-5t}$$
the square

$$y(t) = \frac{1}{3} e^{-2(t-5)} Sin(3(t-5)) u_5(t)$$
 here

$$=\begin{cases}0\\\frac{1}{3}e^{-\lambda(t-s)}\\\frac{1}{3}e^{-\lambda(t-s)}\end{cases}, t \ge 5$$

rough sketch (not required):

Rnot to scale